Missing Hoare

Linear Temporal Logic

What is Temporal Logic?

- Temporal logic is the logic of time.
- It is a modal logic.
- There are different ways of modeling time.
 - linear time vs. branching time
 - time instances vs. time intervals
 - discrete time vs. continuous time
 - past and future vs. future only

First Order Logic

- We have used FOL to express properties of states.
 - $\langle x: 21, y: 49 \rangle \models x < y$
 - $\langle x : 21, y : 7 \rangle \not\models x < y$
- A computation is a sequence of states.
- To express properties of computations, we need to extend FOL.
- This we can do using temporal logic.

Linear Temporal Logic Introduction

In Linear Temporal Logic (LTL) we can describe such properties as, if i is now.

- p holds in i and every following point (the future)
- p holds in i and every preceding point (the past)

We will only be concerned with the future.

$$\dots \longrightarrow \bullet_{i-2}^p \longrightarrow \bullet_{i-1}^p \longrightarrow \bullet_{i}^p \longrightarrow \bullet_{i+1}^p \longrightarrow \bullet_{i+2}^p \longrightarrow \dots$$

Linear Temporal Logic Introduction

We extend our first-order language \mathcal{L} to a temporal language $\mathcal{L}_{\mathcal{T}}$ by adding the temporal operators \Box , \Diamond , \bigcirc , U, R and W.

Interpretation

We define LTL formulae as follows.

Definition

- $\mathcal{L} \subseteq \mathcal{L}_T$: first-order formulae are also LTL formulae.
- ullet If φ is an LTL formula, so are the following.

$$\Box \varphi \quad \Diamond \varphi \quad \bigcirc \varphi \quad \neg \varphi$$

ullet If arphi and ψ are LTL formulae, so are

$$\varphi U\psi \quad \varphi R\psi \quad (\varphi W\psi)$$
$$(\varphi \lor \psi) \quad (\varphi \land \psi) \quad (\varphi \to \psi) \quad (\varphi \leftrightarrow \psi)$$

nothing else

Definition

• A path is an infinite sequence

$$\sigma = \mathit{s}_0, \mathit{s}_1, \mathit{s}_2, \ldots$$

of states.

- σ^k denotes the path $s_k, s_{k+1}, s_{k+2}, \dots$
- σ_k denotes the state s_k .
- All computations are paths, but not vice versa.

Definition

We define the notion that an LTL formula φ is true (false) relative to a path σ , written $\sigma \models \varphi \ (\sigma \not\models \varphi)$ as follows.

$$\sigma \models \varphi & \text{iff} \quad \sigma_0 \models \varphi \text{ when } \varphi \in \mathcal{L} \\
\sigma \models \neg \varphi & \text{iff} \quad \sigma \not\models \varphi \\
\sigma \models \varphi \lor \psi & \text{iff} \quad \sigma \models \varphi \text{ or } \sigma \models \psi \\$$

$$\sigma \models \Box \varphi & \text{iff} \quad \sigma^k \models \varphi \text{ for all } k \ge 0 \\
\sigma \models \Diamond \varphi & \text{iff} \quad \sigma^k \models \varphi \text{ for some } k \ge 0 \\
\sigma \models \bigcirc \varphi & \text{iff} \quad \sigma^1 \models \varphi$$

(cont.)

Semantics (2)

Definition

```
(cont.)
       \sigma \models \varphi U \psi iff \sigma^k \models \psi for some k \geq 0, and
                                      \sigma^i \models \varphi for every i such that 0 < i < k
       \sigma \models \varphi R \psi iff for every j \geq 0,
                                      if \sigma^i \not\models \varphi for every i < j then \sigma^j \models \psi
```

 $\sigma \models \varphi W \psi$ iff $\sigma \models \varphi U \psi$ or $\sigma \models \Box \varphi$

Linear Temporal Logic

Definition

- We say that φ is (temporally) valid, written $\models \varphi$, if $\sigma \models \varphi$ for all paths σ .
- We say that φ and ψ are equivalent, written $\varphi \sim \psi$, if $\models \varphi \leftrightarrow \psi$ (i.e. $\sigma \models \varphi$ iff $\sigma \models \psi$, for all σ).

Example

 \square distributes over \wedge , while \Diamond distributes over \vee .

$$\Box(\varphi \wedge \psi) \sim (\Box \varphi \wedge \Box \psi)$$
$$\Diamond(\varphi \vee \psi) \sim (\Diamond \varphi \vee \Diamond \psi)$$

Semantics

$$\sigma \models \Box p$$

$$\bullet_0^p \longrightarrow \bullet_1^p \longrightarrow \bullet_2^p \longrightarrow \bullet_3^p \longrightarrow \bullet_4^p \longrightarrow \dots$$

$$\sigma \models \Diamond p$$

$$\bullet_0 \longrightarrow \bullet_1 \longrightarrow \bullet_2 \longrightarrow \bullet_3^p \longrightarrow \bullet_4 \longrightarrow \dots$$

$$\sigma \models \bigcirc p$$

$$\bullet_0 \longrightarrow \bullet_1^p \longrightarrow \bullet_2 \longrightarrow \bullet_3 \longrightarrow \bullet_4 \longrightarrow \dots$$

 $\sigma \models pUq$ (sequence of p's is finite)

$$\bullet_0^p \longrightarrow \bullet_1^p \longrightarrow \bullet_2^p \longrightarrow \bullet_3^q \longrightarrow \bullet_4 \longrightarrow \dots$$

 $\sigma \models pRq$ (The sequence of qs may be infinite)

$$\bullet_0^q \longrightarrow \bullet_1^q \longrightarrow \bullet_2^q \longrightarrow \bullet_3^{p,q} \longrightarrow \bullet_4 \longrightarrow \dots$$

 $\sigma \models pWq$. The sequence of qs may be infinite. $(pWq \sim pUq \vee \Box p)$.

$$\bullet_0^p \longrightarrow \bullet_1^p \longrightarrow \bullet_2^p \longrightarrow \bullet_3^q \longrightarrow \bullet_4 \longrightarrow \dots$$

• [?] uses pairs (σ, j) of paths and positions instead of just the path σ because they have past-formulae: formulae without future operators (the ones we use) but possibly with past operators, like \Box^{-1} and \Diamond^{-1} .

$$\begin{split} (\sigma,j) &\models \Box^{-1} \varphi \quad \text{iff} \quad (\sigma,k) \models \varphi \text{ for all } k, \ 0 \leq k \leq j \\ (\sigma,j) &\models \Diamond^{-1} \varphi \quad \text{iff} \quad (\sigma,k) \models \varphi \text{ for some } k, \ 0 \leq k \leq j \end{split}$$

• However, it can be shown that for any formula φ , there is a future-formula (formulae without past operators) ψ such that

$$(\sigma,0) \models \varphi \quad \text{iff} \quad (\sigma,0) \models \psi$$

The Past

Example

What is a future version of $\Box(p \to \Diamond^{-1}q)$? $(\sigma, 0) \models \Box(p \to \Diamond^{-1}q)$

$$\bullet^{p\to\Diamond^{-1}q}\longrightarrow\bullet^{p\to\Diamond^{-1}q}\longrightarrow\bullet^{p\to\Diamond^{-1}q}\longrightarrow\bullet^{p\to\Diamond^{-1}q}\longrightarrow\bullet$$

$$(\sigma,0) \models qR(p \rightarrow q)$$

$$\bullet^{p \to q} \longrightarrow \bullet^{p \to q} \longrightarrow \bullet^{p \to q, q} \longrightarrow \bullet \longrightarrow \cdots$$

Examples

Example

 $\varphi \to \Diamond \psi$: Inf φ holds initially, then ψ holds eventually.

This formula will also hold in every path where φ does not hold initially.

Example: Response

Example (Response)

$$\Box(\varphi \to \Diamond \psi)$$

Every $\varphi\text{-position}$ coincides with or is followed by a $\psi\text{-position}.$

$$\bullet \longrightarrow \bullet^{\varphi} \longrightarrow \bullet \longrightarrow \bullet^{\psi} \longrightarrow \bullet \longrightarrow \bullet^{\varphi,\psi} \longrightarrow \dots$$

This formula will also hold in every path where φ never holds.

$$\bullet^{\neg\varphi} \longrightarrow \bullet^{\neg\varphi} \longrightarrow \bullet^{\neg\varphi} \longrightarrow \bullet^{\neg\varphi} \longrightarrow \bullet^{\neg\varphi} \longrightarrow \dots$$

Examples

Example

There are infinitely many ψ -positions.

This formula can be obtained from the previous one, $\Box(\varphi \to \Diamond \psi)$, by letting $\varphi = \top : \Box(\top \to \Diamond \psi)$.

Example

Example

 $\Diamond\Box\varphi$

Eventually φ will hold permanently.

Equivalently: there are finitely many $\neg \varphi$ -positions.

LTL example

Example

 $(\neg \varphi)W\psi$

The first φ -position must coincide or be preceded by a ψ -position.

$$\bullet^{\neg\varphi} \longrightarrow \bullet^{\neg\varphi} \longrightarrow \bullet^{\neg\varphi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\varphi} \longrightarrow \bullet \longrightarrow \cdot .$$

 φ may never hold

LTL Example

Example

$$\Box(\varphi \to \psi W \chi)$$

Every φ -position initiates a sequence of ψ -positions, and if terminated, by a χ -position.

$$\bullet \longrightarrow \bullet^{\varphi,\psi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\chi} \longrightarrow \bullet \longrightarrow \bullet^{\varphi,\psi} \longrightarrow \dots$$

The sequence of ψ -positions need not terminate.

$$\bullet \longrightarrow \bullet^{\varphi,\psi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\psi} \longrightarrow \bullet^{\psi} \longrightarrow \dots$$

Nested waiting-for

A nested waiting-for formula is of the form

$$\Box(\varphi \to (\psi_m W(\psi_{m-1} W \cdots (\psi_1 W \psi_0) \cdots))),$$

where $\varphi, \psi_0, \dots, \psi_m \in \mathcal{L}$. For the sake of convenience, we write

$$\Box(\varphi \to \psi_m \, W \, \psi_{m-1} \, W \, \cdots \, W \, \psi_1 \, W \, \psi_0).$$

Every φ -position initiates a succession of intervals, beginning with a ψ_m -interval, ending with a ψ_1 -interval and possibly terminated by a ψ_0 -position. Each interval may be empty or extend to infinity.

$$\ldots \longrightarrow \bullet^{\varphi,\psi_m} \longrightarrow \bullet^{\psi_m} \longrightarrow \bullet^{\psi_m} \longrightarrow \bullet^{\psi_{m-1}} \longrightarrow \cdots$$

$$\dots \longrightarrow \bullet^{\psi_2} \quad \dots \quad \bullet^{\psi_2} \longrightarrow \bullet^{\psi_1} \quad \dots \quad \bullet^{\psi_1} \longrightarrow \bullet^{\psi_0} \longrightarrow \dots$$

It can be difficult to correctly formalize informally stated requirements in temporal logic.

Example

How does one formalize the informal requirement " φ implies ψ "?

- $\varphi \to \psi$? $\varphi \to \psi$ holds in the initial state.
- $\Box(\varphi \to \psi)$? $\varphi \to \psi$ holds in every state.
- $\varphi \to \Diamond \psi$? φ holds in the initial state, ψ will hold in some state.
- $\Box(\varphi \to \Diamond \psi)$? We saw this earlier.
- None of these is necessarily what is meant.

Definition (Duals)

For binary boolean connectives \circ and \bullet , we say that \bullet is the dual of \circ if

$$\neg(\varphi \circ \psi) \sim (\neg \varphi \bullet \neg \psi).$$

Similarly for unary connectives: \bullet is the dual of \circ if $\neg \circ \varphi \sim \bullet \neg \varphi$.

Duality is symmetrical:

- If is the dual of then
- is the dual of •, thus
- we may refer to two connectives as dual.

Which connectives are duals?

∧ and ∨ are duals:

$$\neg(\varphi \wedge \psi) \sim (\neg \varphi \vee \neg \psi).$$

¬ is its own dual:

$$\neg\neg\varphi\sim\neg\neg\varphi$$
.

• What is the dual of \rightarrow ? It's $\not\leftarrow$:

$$\neg(\varphi \not\leftarrow \psi) \sim \varphi \leftarrow \psi$$
$$\sim \psi \rightarrow \varphi$$
$$\sim \neg \varphi \rightarrow \neg \psi$$

Linear Temporal Logic Duals

- A set of connectives is complete (for boolean formulae) if every other connective can be defined in terms of them.

Example

 $\{\vee,\neg\}$ is complete.

- \bullet \wedge is the dual of \vee .
- $\varphi \to \psi$ is equivalent to $\neg \varphi \lor \psi$.
- $\varphi \leftrightarrow \psi$ is equivalent to $(\varphi \to \psi) \land (\psi \to \varphi)$.
- \top is equivalent to $p \lor \neg p$
- \perp is equivalent to $p \land \neg p$

Linear Temporal Logic Duals

We can extend the notions of duality and completeness to temporal formulae.

Duals of temporal operators

- What is the dual of \square ? And of \lozenge ?
- \bullet \square and \Diamond are duals.

$$\neg\Box\varphi \sim \Diamond\neg\varphi$$
$$\neg\Diamond\varphi \sim \Box\neg\varphi$$

- Any other?
- U and R are duals.

$$\neg(\varphi U\psi) \sim (\neg \varphi)R(\neg \psi)$$
$$\neg(\varphi R\psi) \sim (\neg \varphi)U(\neg \psi)$$

Linear Temporal Logic Duals

We don't need all our temporal operators either.

Proposition

 $\{\lor, \neg, U, \bigcirc\}$ is complete for LTL.

Proof: •
$$\Diamond \varphi \sim \top U \varphi$$

$$\Box \varphi \sim \bot R \varphi$$

$$\varphi R \psi \sim \neg (\neg \varphi U \neg \psi)$$

$$\varphi W \psi \sim \Box \varphi \lor (\varphi U \psi)$$

28 / 127

Classification Properties

We can classify a number of properties expressible in LTL.

Classification

Classification Safety

Definition (Safety)

• A safety formula is of the form

 $\Box \varphi$

for some first-order formula φ .

• A conditional safety formula is of the form

$$\varphi \to \Box \psi$$

for first-order formulae φ and ψ .

• Safety formulae express *invariance* of some state property φ : that φ holds in every state of the computation.

Example

• Mutual exclusion is a safety property. Let C_i denote that process P_i is executing in the critical section. Then

$$\Box \neg (C_1 \wedge C_2)$$

expresses that it should always be the case that not both P_1 and P_2 are executing in the critical section.

 Observe that the negation of a safety formula is a liveness formula; the negation of the formula above is the liveness formula

$$\Diamond (C_1 \wedge C_2)$$

which expresses that eventually it *is* the case that both P_1 and P_2 are executing in the critical section.

Definition (Liveness)

• A liveness formula is of the form

$$\Diamond \varphi$$

for some first-order formula φ .

A conditional liveness formula is of the form

$$\varphi \to \Diamond \psi$$

for first-order formulae φ and ψ .

• Liveness formulae guarantee that some event φ eventually happens: that φ holds in at least one state of the computation.

 \bullet Partial correctness is a safety property. Let P be a program and ψ the post condition.

$$\Box$$
(terminated(P) $\rightarrow \psi$)

• In the case of full partial correctness, where there is a precondition φ , we get a *conditional safety* formula,

$$\varphi \to \Box (terminated(P) \to \psi),$$

which we can express as $\{\varphi\}P\{\psi\}$ in Hoare Logic.

 \bullet Total correctness is a liveness property. Let P be a program and ψ the post condition.

$$\Diamond(\mathsf{terminated}(P) \land \psi)$$

• In the case of full total correctness, where there is a precondition φ , we get a *conditional liveness* formula,

$$\varphi \rightarrow \Diamond (terminated(P) \land \psi).$$

Partial and total correctness are dual. Let

$$PC(\psi) \triangleq \Box(terminated \rightarrow \psi)$$
$$TC(\psi) \triangleq \Diamond(terminated \land \psi)$$

Then

$$\neg PC(\psi) \sim PC(\neg \psi)$$

 $\neg TC(\psi) \sim TC(\neg \psi)$

Definition (Obligation)

• A simple obligation formula is of the form

$$\Box \varphi \vee \Diamond \psi$$

for first-order formula φ and ψ .

• An equivalent form is

$$\Diamond \chi \to \Diamond \psi$$

which states that some state satisfies χ only if some state satisfies ψ .

Proposition

Every safety and liveness formula is also an obligation formula.

Proof: This is because of the following equivalences.

$$\Box \varphi \sim \Box \varphi \vee \Diamond \bot$$
$$\Diamond \varphi \sim \Box \bot \vee \Diamond \varphi$$

and the facts that $\models \neg \Box \bot$ and $\models \neg \Diamond \bot$.

Classification Recurrence

Definition (Recurrence)

• A recurrence formula is of the form

$$\Box\Diamond\varphi$$

for some first-order formula φ .

• It states that infinitely many positions in the computation satisfies φ .

Observation

A response formula, of the form $\Box(\varphi \to \Diamond \psi)$, is equivalent to a recurrence formula, of the form $\Box \Diamond \chi$, if we allow χ to be a past-formula.

$$\Box(\varphi \to \Diamond \psi) \sim \Box \Diamond (\neg \varphi) W^{-1} \psi$$

Proposition

Weak fairness can be specified as the following recurrence formula.

$$\Box\Diamond(\mathit{enabled}(\tau)\to\mathit{taken}(\tau))$$

Observation

An equivalent form is

$$\Box(\Box enabled(\tau) \rightarrow \Diamond taken(\tau)),$$

which looks more like the first-order formula we saw last time.

Definition (Persistence)

• A persistence formula is of the form

 $\Diamond \Box \varphi$

for some first-order formula φ .

- It states that all but finitely many positions satisfy φ .
- Persistence formulae are used to describe the eventual stabilization of some state property.

Recurrence and persistence are duals.

$$\neg(\Box\Diamond\varphi)\sim(\Diamond\Box\neg\varphi)$$
$$\neg(\Diamond\Box\varphi)\sim(\Box\Diamond\neg\varphi)$$

Definition (Reactivity)

• A simple reactivity formula is of the form

$$\Box \Diamond \varphi \vee \Diamond \Box \psi$$

for first-order formula φ and ψ .

- A very general class of formulae are conjunctions of reactivity formulae.
- An equivalent form is

$$\Box \Diamond \chi \rightarrow \Box \Diamond \psi$$
,

which states that if the computation contains infinitely many χ -positions, it must also contain infinitely many ψ -positions.

Classification Reactivity

Proposition

Strong fairness can be specified as the following reactivity formula.

 $\Box \Diamond enabled(\tau) \rightarrow \Box \Diamond taken(\tau)$

Below is a computation σ of our recurring GCD program.

- a and b are fixed: $\sigma \models \Box (a \doteq 21 \land b \doteq 49)$.
- at(I) denotes the formulae $(\pi \doteq \{I\})$.
- terminated denotes the formula $at(l_8)$.

P-computation

States are of the form $\langle \pi, x, y, g \rangle$.

$$\sigma: \quad \langle I_{1}, 21, 49, 0 \rangle \to \langle I_{2}^{b}, 21, 49, 0 \rangle \to \langle I_{6}, 21, 49, 0 \rangle \to \langle I_{1}, 21, 28, 0 \rangle \to \langle I_{2}^{b}, 21, 28, 0 \rangle \to \langle I_{6}, 21, 28, 0 \rangle \to \langle I_{1}, 21, 7, 0 \rangle \to \langle I_{2}^{a}, 21, 7, 0 \rangle \to \langle I_{4}, 21, 7, 0 \rangle \to \langle I_{1}, 14, 7, 0 \rangle \to \langle I_{2}^{a}, 14, 7, 0 \rangle \to \langle I_{4}, 14, 7, 0 \rangle \to \langle I_{1}, 7, 7, 0 \rangle \to \langle I_{1}, 7, 7, 0 \rangle \to \langle I_{2}^{a}, 7, 7, 7, 0 \rangle \to \langle I$$

Classification GCD Example

Does the following properties hold for σ ? And why?

- 1. □terminated (safety)
- 2. $at(l_1) \rightarrow terminated$
- 3. $at(l_8) \rightarrow terminated$
- 4. $at(l_7) \rightarrow \Diamond terminated$ (conditional liveness)
- 5. $\Diamond at(I_7) \rightarrow \Diamond terminated$ (obligation)
- 6. $\Box(\gcd(x,y) \doteq \gcd(a,b))$ (safety)
- 7. *♦terminated* (liveness)
- 8. $\Diamond \Box (y \doteq \gcd(a, b))$ (persistence)
- 9. $\Box \Diamond terminated$ (recurrence)

Exercises

- 1. Show that the following formulae are (not) LTL-valid.
 - 1.1 $\square \varphi \leftrightarrow \square \square \varphi$
 - 1.2 $\Diamond \varphi \leftrightarrow \Diamond \Diamond \varphi$
 - 1.3 $\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$
 - 1.4 $\Box(\Box\varphi\to\psi)\to\Box(\Box\psi\to\varphi)$
 - 1.5 $\Box(\Box\varphi\to\psi)\lor\Box(\Box\psi\to\varphi)$
 - 1.6 $\Box \Diamond \Box \varphi \rightarrow \Diamond \Box \varphi$
 - 1.7 $\Box \Diamond \varphi \leftrightarrow \Box \Diamond \Box \Diamond \varphi$
- 2. A modality is a sequence of \neg , \square and \diamondsuit , including the empty sequence ϵ . Two modalities σ and τ are equivalent if $\sigma\varphi \leftrightarrow \tau\varphi$ is valid.
 - 2.1 Which are the non-equivalent modalities in LTL, and
 - 2.2 what are their relationship (ie. implication-wise)?

References I

```
    [Blackburn et al., 2001] Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic.
    Cambridge University Press.
    [Harel et al., 2000] Harel, D., Kozen, D., and Tiuryn, J. (2000). Dynamic Logic.
    Foundations of Computing, MIT Press.
```