2. Events and Probabilities - Bernoulli distribution

Lai Hui Shan m5281022

Let us consider a Bernoulli distribution;

$$\mathbb{P}(X=1)=p,\quad \mathbb{P}(X=0)=1-p.$$

1. The expectation $\mathbb{E}(X)$

Ans:

For a Bernoulli random variable X, which can take values 0 or 1, the expectation is computed as:

$$\mathbb{E}(X) = \sum_x x \cdot \mathbb{P}(X = x)$$

Since X = 1 with probability p and X = 0 with probability 1 - p, we have:

$$\mathbb{E}(X) = 1 \cdot \mathbb{P}(X=1) + 0 \cdot \mathbb{P}(X=0)$$
 $\mathbb{E}(X) = 1 \cdot p + 0 \cdot (1-p) = p$

Thus, the expectation of X is:

$$\mathbb{E}(X) = p$$

2. The expectation $\mathbb{E}((X - \mathbb{E}(X))^2)$

Ans:

The quantity $\mathbb{E}((X - \mathbb{E}(X))^2)$ is the **variance** of X. Let's compute it.

First, recall that $\mathbb{E}(X) = p$. The variance is defined as:

$$\operatorname{Var}(X) = \mathbb{E}((X - \mathbb{E}(X))^2)$$

We can expand this expression as:

$$\mathrm{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

For a Bernoulli distribution, since X can only take values 0 or 1, we have $X^2 = X$, so $\mathbb{E}(X^2) = \mathbb{E}(X)$. Therefore:

$$\mathrm{Var}(X) = \mathbb{E}(X) - (\mathbb{E}(X))^2$$
 $\mathrm{Var}(X) = p - p^2$

We can also factor this expression as:

$$Var(X) = p(1-p)$$

Thus, the expectation $\mathbb{E}((X - \mathbb{E}(X))^2)$ is:

$$\mathbb{E}((X - \mathbb{E}(X))^2) = p(1-p)$$

3. Denoting $S_n = X_1 + X_2 + \cdots + X_n$ for Bernoulli IID $\{X_n\}$, then S_n becomes a binomial distribution. Prove it.

Ans:

To prove this, let's first define $S_n = X_1 + X_2 + \cdots + X_n$, where each X_i is an independent and identically distributed (IID) Bernoulli random variable with probability p of success ($X_i = 1$) and 1 - p of failure ($X_i = 0$).

The random variable S_n represents the sum of n Bernoulli trials, which counts the number of successes (the number of times $X_i = 1$) in n independent trials.

The probability mass function of a binomial distribution is given by:

$$\mathbb{P}(S_n=k)=\binom{n}{k}p^k(1-p)^{n-k}$$

Now, let's show that S_n follows this form:

- Each X_i is Bernoulli distributed, so the probability of success in a single trial is p, and the probability of failure is 1 p.
- Since the X_i 's are independent, the probability of getting exactly k successes (i.e., $S_n = k$) is the probability of choosing k trials to be successes (which can happen in $\binom{n}{k}$ different ways), times the probability of k successes $\binom{p^k}{n}$ and n-k failures $(1-p)^{n-k}$.

Thus, the probability that $S_n = k$ is:

$$\mathbb{P}(S_n=k)=\binom{n}{k}p^k(1-p)^{n-k}$$

This is exactly the probability mass function of a binomial distribution with parameters n and p.

Therefore, we have proven that S_n , the sum of n IID Bernoulli random variables, follows a binomial distribution:

$$S_n \sim \operatorname{Binomial}(n, p)$$