Program: B.Tech (CSE)

Course: Computer Architecture and

Organization

Course Code: CSE 205

Unit-IV-Lecture 7-

Buses: bus protocols, local and geographic arbitration

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus (PC)
- e.g. Unibus (DEC-PDP)

What is a Bus?

- A communication pathway connecting two or more devices
- Usually broadcast
- Often grouped
 - A number of channels in one bus
 - e.g. 32 bit data bus is 32 separate single bit channels
- Power lines may not be shown

Data Bus

- Carries data
 - Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - -8, 16, 32, 64 bit

Address bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
 - e.g. 8080 has 16 bit address bus giving 64k
 address space

Control Bus

- Control and timing information
 - Memory read/write signal
 - Interrupt request
 - Clock signals

Bus Interconnection Scheme

Bus Types

- Dedicated
 - Separate data & address lines
- Multiplexed
 - Shared lines
 - Address valid or data valid control line
 - Advantage fewer lines
 - Disadvantages
 - More complex control
 - Ultimate performance

Bus Arbitration

- More than one module controlling the bus
- e.g. CPU and DMA controller
- Only one module may control bus at one time
- Arbitration may be centralised or distributed

Centralised or Distributed Arbitration

Centralised

- Single hardware device controlling bus access
 - Bus Controller
 - Arbiter
- May be part of CPU or separate
- Distributed
 - Each module may claim the bus
 - Control logic on all modules

References

 William Stallings "Computer Organization and architecture", Prentice Hall, 7th edition, 2006.