Materials Modelling

Weixuan Zhang

CONTENTS:

1	Morse module	3
2	MorseFast module	5
3	UnitCell module	7
4	pairwise module	9
5	hydrostatic module	11
6	shear module	13
7	util module	15
8	Indices and tables	17
Py	thon Module Index	19
In	dex	21

Modules ===

CONTENTS: 1

2 CONTENTS:

ONE

MORSE MODULE

```
class Morse.MorsePotential(**kwargs)
    Bases: ase.calculators.calculator.Calculator

calculate(atoms=None, properties=None, system_changes=['positions', 'numbers', 'cell', 'pbc', 'initial_charges', 'initial_magmoms'])
    Do the calculation.
```

properties: list of str List of what needs to be calculated. Can be any combination of 'energy', 'forces', 'stress', 'dipole', 'charges', 'magmom' and 'magmoms'.

system_changes: list of str List of what has changed since last calculation. Can be any combination of these six: 'positions', 'numbers', 'cell', 'pbc', 'initial_charges' and 'initial_magmoms'.

Subclasses need to implement this, but can ignore properties and system_changes if they want. Calculated properties should be inserted into results dictionary like shown in this dummy example:

The subclass implementation should first call this implementation to set the atoms attribute and create any missing directories.

```
default_parameters: Dict[str, Any] = {'D': 0.16156, 'alpha': 2.0926, 'r0': 2.6163,
implemented_properties: List[str] = ['energy', 'forces', 'stress', 'local_energy']
morse_pair_energy(r)
morse_pair_energy_deriv(r)
nolabel = True
```

CHAPTER	
TWO	

MORSEFAST MODULE

UNITCELL MODULE

```
Calculations on a unit cell
class UnitCell.CuCell(a: float = 3.6)
      Bases: object
      A class for the Cu unit cell, with methods for applying strain and shear
      cu
           an object representing the atoms
               Type ase. Atoms
      default a
           default unit cell size
               Type float
      default_a = 3.6
      \textbf{classmethod from\_default\_eq\_strain} (\textit{strain: float}) \rightarrow \textit{UnitCell.CuCell}
           Create the class from strain (with respect to the default unit cell size)
           The is used to create a unit cell with size where the potential energy is minimum, as calculated elsewhere.
               Parameters strain (float) – the strain
               Returns class created
               Return type CuCell
      hydrostatic deform (strain: float) \rightarrow ase.atoms.Atoms
           Function that returns the deformed unit cell under a given hydrostatic strain
               Parameters strain (float) – the hydrostatic strain applied
               Returns deformed unit cell
               Return type ase. Atoms
      property init_cell
           Get initial cell vectors
               Returns initial cell vectors (columns)
               Return type np.ndarray
      property init_vol
           Get initial unit call volume
               Returns initial volume (Å^3)
```

Return type float

```
\mathtt{set\_cell}\ (\mathit{cell: numpy.ndarray}) \ \to \ \mathsf{None} Set the unit cell length
```

Parameters cell (float) – the new unit cell

 $shear_deform(shear: float) \rightarrow ase.atoms.Atoms$

Function that returns the deformed unit cell under a shear in Y direction

Parameters shear (float) – shear in Y direction

Returns deformed unit cell

Return type ase. Atoms

 $strain_deform(strain_x: float, strain_y: float, strain_z: float) \rightarrow ase.atoms. Atoms Function that returns the deformed unit cell under normal strains$

Parameters

- **strain_x** (float) strain in the x direction
- **strain_y** (float) strain in the y direction
- **strain_z** (*float*) strain in the z direction

Returns deformed unit cell

Return type ase. Atoms

 $\textbf{visualize} () \rightarrow None$

Visualize the unit cell

PAIRWISE MODULE

```
Calculations involving a pair of Cu atoms
pairwise.build_pair(d0: Union[float, int] = 1) \rightarrow Callable
     Closure to store the atoms object
          Parameters d0 (Union[float, int], optional) - default unit cell length
          Returns function to apply strain
          Return type Callable
pairwise.get_pair(d: Union[float, int]) \rightarrow ase.atoms.Atoms
     Function that returns the deformed unit cell under a given hydrostatic strain
          Parameters d (Union[float, int]) - distance (Å)
          Returns deformed atom pair
          Return type Atoms
pairwise.get_pairwise_force(d: Union[float, int]) \rightarrow float
     Calculate the force between two atoms separated by the given distance
          Parameters d (Union[float, int]) – distance (Å)
          Returns force (eV/Å)
          Return type float
pairwise.get_pairwise_forces(arr: numpy.ndarray) → numpy.ndarray
     Apply pairwise force calculation to an array of distances
          Parameters arr (np.ndarray) – array of distances (Å)
          Returns array of forces (eV/Å)
          Return type np.ndarray
pairwise.get_pairwise_pe(d: Union[float, int]) \rightarrow float
     Calculate the potential energy of two atoms separated by the given distance
          Parameters d(Union[float, int]) - distance (Å)
          Returns potential energy (eV)
          Return type float
pairwise.get_pairwise_pes(arr: numpy.ndarray) → numpy.ndarray
     Apply pairwise potential energy calculation to an array of distances
          Parameters arr (np.ndarray) – array of distances (Å)
```

Materials Modelling

Returns array of potential energies (eV)

Return type np.ndarray

FIVE

HYDROSTATIC MODULE

```
Calculations related to hydrostatic loading
hydrostatic.cu_cell
     instance of CuCell class with default lattice vector size
          Type CuCell
hydrostatic_{pe}(strain: float) \rightarrow float
     Calculate the potential energy after applying a hydrostatic strain
          Parameters strain (float) - strain
          Returns potential energy (eV)
          Return type float
hydrostatic.get_hydrostatic_pes(arr: numpy.ndarray) → numpy.ndarray
     Apply the potential energy calculation to an array of strains
          Parameters arr (np.ndarray) – array of strains
          Returns array of potential energies (eV)
          Return type np.ndarray
hydrostatic_pressure (strain: float) \rightarrow float
     Calculate the pressure from the stress matrix
          Parameters strain (np.ndarray) - strain
          Returns hydrostatic pressure (eV/Å^3)
          Return type float
hydrostatic.get_hydrostatic_pressures(arr: numpy.ndarray) → numpy.ndarray
     Apply the pressure calculation to an array of strains
          Parameters arr (np.ndarray) – array of strains
          Returns array of pressures (eV/Å^3)
          Return type np.ndarray
hydrostatic.get hydrostatic stress(strain: float) → numpy.ndarray
     Calculate the stress after applying a hydrostatic strain
          Parameters strain (float) - strain
          Returns stress (eV/Å^3)
```

Return type float

```
\label{eq:continuity} \mbox{hydrostatic\_vol} \ (\textit{strain: float}) \ \to \mbox{float} \\ \mbox{Calculate the new volume after applying the strain}
```

Parameters strain (float) - strain

Returns new volume (Å^3)

Return type float

 $\label{eq:hydrostatic_vols} \mbox{ (arr: numpy.ndarray)} \rightarrow \mbox{numpy.ndarray} \\ \mbox{ Apply the deformed volume calculation to an array of strains}$

Parameters arr (np.ndarray) - array of strains

Returns array of volumes (sÅ^3)

Return type np.ndarray

SIX

SHEAR MODULE

Calculations related to shear

 $\verb|shear.cu_cell|$

instance of CuCell class with default lattice vector size

Type CuCell

 $\verb|shear.get_shear_stress| (\textit{shear: float}) \rightarrow \verb|numpy.ndarray| \\$

Calculate the stress after applying a shear in y direction

The shear tensor is

$$\left[\begin{array}{cccc} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{array}\right]$$

if the stress is only applied in the y direction, $\tau_{xz}=\tau_{yz}=0$

Parameters shear (float) - shear

Returns shear stress τ_{xy} (eV/Å^3)

Return type float

SEVEN

UTIL MODULE

Helper functions

util.map_func (func: Callable[[Union[float, int]], float], arr: numpy.ndarray) → numpy.ndarray Mapping a function over a Numpy array

Parameters

- **func** (Callable [[Union[float, int]], float]) function applied to each element of the array
- arr (np.ndarray) array to be mapped over

Returns transformed array

Return type np.ndarray

util.**x_of_miny** (x: numpy.ndarray, y: numpy.ndarray) \rightarrow Union[int, float] Get the value of x where the y is minimum

Parameters

- \mathbf{x} (np.ndarray) array of \mathbf{x}
- **y** (np.ndarray) array of y

Returns x of the minimum point

Return type Union[int, float]

EIGHT

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

h hydrostatic, 11 m Morse, 3 p pairwise, 9 S shear, 13 U UnitCell, 7 util, 15

20 Python Module Index

INDEX

В	<pre>module, 11 hydrostatic_deform() (UnitCell.CuCell method),</pre>
build_pair() (in module pairwise), 9	7
C	
<pre>calculate() (Morse.MorsePotential method), 3 cu (UnitCell.CuCell attribute), 7 cu_cell (in module hydrostatic), 11 cu_cell (in module shear), 13 CuCell (class in UnitCell), 7</pre>	<pre>implemented_properties (Morse.MorsePotential</pre>
D	M
default_a (UnitCell.CuCell attribute), 7 default_parameters (Morse.MorsePotential attribute), 3	<pre>map_func() (in module util), 15 module hydrostatic, 11 Morse, 3</pre>
F	pairwise, 9
<pre>from_default_eq_strain() (UnitCell.CuCell</pre>	<pre>shear, 13 UnitCell, 7 util, 15</pre>
G	Morse
<pre>get_hydrostatic_pe() (in module hydrostatic), 11 get_hydrostatic_pes() (in module hydrostatic), 11</pre>	<pre>module, 3 morse_pair_energy()</pre>
get_hydrostatic_pressure() (in module hydro- static), 11	morse_pair_energy_deriv() (Morse.MorsePotential method), 3 MorsePotential (class in Morse), 3
<pre>get_hydrostatic_pressures() (in module hy- drostatic), 11</pre>	N
${\tt get_hydrostatic_stress()} \ \ \textit{(in module hydrostatic)}, 11$	nolabel (Morse.MorsePotential attribute), 3
<pre>get_hydrostatic_vol() (in module hydrostatic), 11</pre>	P
<pre>get_hydrostatic_vols() (in module hydrostatic), 12</pre>	pairwise module,9
get_pair() (in module pairwise), 9	S
<pre>get_pairwise_force() (in module pairwise), 9 get_pairwise_forces() (in module pairwise), 9 get_pairwise_pe() (in module pairwise), 9 get_pairwise_pes() (in module pairwise), 9 get_shear_stress() (in module shear), 13</pre>	<pre>set_cell() (UnitCell.CuCell method), 7 shear module, 13 shear_deform() (UnitCell.CuCell method), 8 strain_deform() (UnitCell.CuCell method), 8</pre>
H	
hydrostatic	

```
U
```

```
UnitCell
    module, 7
util
    module, 15

V
visualize() (UnitCell.CuCell method), 8

X
x_of_miny() (in module util), 15
```

22 Index