Summary of Key Concepts

Quantum Simulation

Week of March 17th, 2024

Resources	1
Key Terms	2
Lecture	3
Learning Objectives	3
Key Ideas	3

Resources

- QXQ YLC Week 20 Lab Notebook [STUDENT].ipynb
- QXQ YLC Week 20 Homework Notebook [STUDENT].ipynb
- 37. QXQ YLC 23-24 NumPy Simulator Cheat Sheet
- Monte Carlo Integration (nice visualizations)
- Richard Feynman's famous 1981 speech: <u>Simulating Physics with Computers</u>
- Paper on Quantum Photosynthesis (very advanced)
- Quantum Network Simulator Python Library: NetSquid

Key Terms

Key Term	Definition
Quantum Simulation	Quantum simulation generally refers to simulating one quantum system with a different system.
Statevector Simulation	Using vector and matrix math to model quantum computations and generate a statevector as the output.
Monte Carlo Simulation	Using random number generation to simulate various aspects of quantum systems, including measurement outcomes, the effects of noise, and more.
Tensor Network Simulation	Using more generalized forms of vectors and matrices (tensors) to efficiently statevectors, energies, or other outputs.
Discrete Event Simulation	Using a framework where "events", like noise, entanglement generation, or qubit communication, occur randomly over time.
Random Walk	Any problem where something follows a path of random decisions or steps, often leading to unpredictable outcomes.
High Energy Physics	High Energy Physics is the study of how elementary particles behave and interact. This field of physics seeks to understand how matter, energy, and radiation came into existence.
Quantum Field Theory	Quantum Field Theory is the field of physics which attempts to combine the theories of quantum mechanics and the Theory of Special Relativity.

Lecture

Learning Objectives

- 1. Recognize that we can simulate quantum computing with many classical methods, each their own strengths and weaknesses.
- 2. Recognize that quantum computers can be used to simulate a variety of physical effects far better than classical computers can.

Key Ideas

- 1. Quantum simulations offer many advantages:
 - a. In the short term:
 - i. We don't have fault tolerant quantum computers yet.
 - ii. Even NISQ devices are not the most accessible yet.
 - iii. Simulations can help us build and use fault tolerant quantum computers.
 - b. In the long term:
 - i. Optimizing use of quantum hardware.
 - ii. Access to quantum hardware may always be difficult.
 - iii. Quantum inspired algorithms can be powerful.
- We can simulate quantum mechanics using classical computers in many ways, including:
 - a. **Statevector Simulations**: Using vector and matrix math to model quantum computations and generate a statevector as the output.
 - b. **Monte Carlo Simulations**: Using random number generation to simulate various aspects of quantum systems, including measurement outcomes, the effects of noise, and more.
 - c. **Tensor Network Simulation**: Using more generalized forms of vectors and matrices (tensors) to efficiently statevectors, energies, or other outputs.
 - d. **Discrete Event Simulations**: Using a framework where "events", like noise, entanglement generation, or qubit communication, occur randomly over time.
- 3. Simulating quantum mechanics is hard. One way to make it more tractable is using high powered hardware such as:

Quantum Simulation

- a. **GPUs and TPUs**: Parts of a computer that are specialized for working with vectors, matrices, and tensors.
- b. **High-Performance Computing (HPC) Systems**: Collections of powerful computers that can work in parallel.
- c. **Quantum Hardware**: What we've been studying all year! Richard Feynman's famous idea proposed in 1981 was to use a programmable quantum device to simulate other quantum systems.
- 4. Quantum computing offers several key advantages over classical computing when it comes to modeling certain physics problems. The reasons for that include:
 - a. Quantum parallelism allows quantum computers to simulate all possible solutions simultaneously, increasing speed and efficiency.
 - b. Quantum entanglement allows quantum computers to simulate interactions between particles far more efficiently than classical computers.
 - c. Quantum computers model quantum effects far more accurately than classical computers.
- 5. Improving our ability to model problems in individual fields not only improves our understanding of that field, but also has applications to a wide range of problems. This is because the field of quantum physics and quantum technology is very interdisciplinary.

