Enhanced Exact Algorithms for Discrete Bilevel Linear Problems

Seminar: Selected Topics in Bilevel Optimization

Leon Eifler

Institut für Mathematik
Technische Universität Berlin

13.05.2016

Table of Contents

Introduction

A Cutting Plane Method

A Branch and Cut Algorithm

Computational Experiments

Table of Contents

Introduction

A Cutting Plane Method

A Branch and Cut Algorithm

Computational Experiments

Problem

(DBLP)
$$\min_{x,y} F(x,y) = c_1^T x + c_2^T y$$
s.t.
$$Cx + Dy \le e$$

$$x \in \mathbb{Z}_+^n$$

$$y \in \arg\min_y f(y) = d^T y$$
s.t.
$$Ax + By \le b$$

$$y \in \mathbb{Z}_+^m$$

Assumptions

- No upper level constraints
- Optimistic approach

Notation

Constrained Region

$$S = \{(x,y) \mid x \in \mathbb{Z}_+^m, y \in \mathbb{Z}_+^m, Cx + Dy \le e, Ax + By \le b\}$$

► Followers Feasible Set

$$\Omega_y(x) = \{ y \mid y \in \mathbb{Z}_+^m, By \le b - Ax \}.$$

Reaction Set

$$R_y(x) = \arg\min_{y} \{f(y) \text{ s.t. } y \in \Omega_y(x).$$

► Inducible Region

$$IR = \{(x,y) \mid x \in \mathbb{Z}_{+}^{n}, Cx + Dy \le e, y \in R_{v}(x)\}$$

$$\min_{x,y} F(x,y) = 2x + 7y$$
s.t. $x \in \mathbb{Z}_+$
 $y \in \arg\min_{y} f(y) = -y$
s.t. $2x - 8y \ge -25$
 $7x + 10y \le 60$
 $2x + y \ge 6$
 $11x - 4y \le 31$
 $y \in \mathbb{Z}_+$

$$\min_{x,y} F(x,y) = 2x + 7y$$
s.t. $x \in \mathbb{Z}_+$
 $y \in \arg\min_{y} f(y) = -y$
s.t. $2x - 8y \ge -25$
 $7x + 10y \le 60$
 $2x + y \ge 6$
 $11x - 4y \le 31$
 $y \in \mathbb{Z}_+$

$$\min_{x,y} F(x,y) = 2x + 7y$$
s.t. $x \in \mathbb{Z}_+$
 $y \in \arg\min_{y} f(y) = -y$
s.t. $2x - 8y \ge -25$
 $7x + 10y \le 60$
 $2x + y \ge 6$
 $11x - 4y \le 31$
 $y \in \mathbb{Z}_+$

$$\min_{x,y} F(x,y) = 2x + 7y$$
s.t. $x \in \mathbb{Z}_+$
 $y \in \arg\min_{y} f(y) = -y$
s.t. $2x - 8y \ge -25$
 $7x + 10y \le 60$
 $2x + y \ge 6$
 $11x - 4y \le 31$
 $y \in \mathbb{Z}_+$

Single Level Linear Problem

The Single Level Linear Problem is

(SLP)
$$\min_{x,y} F(x,y) = c_1^T x + c_2^T y$$

s.t. $(x,y) \in S$.

- This is a relaxation of DBLP
- Dropping integrality and maintaining bilevel structure is not a relaxation

Table of Contents

Introduction

A Cutting Plane Method

A Branch and Cut Algorithm

Computational Experiments

Cutting Plane Method

- ▶ Solve (SLP). Get an integer solution (\bar{x}, \bar{y}) .
- ▶ If (\bar{x}, \bar{y}) is bilevel infeasible, add valid inequality to eliminate bilevel-infeasible solutions at \bar{x} .
- Valid inequality is non linear but can be reformulated as bilevel and linear
- Cut turns (SLP) into bilevel problem with continuous follower variables.
- This can again be transformed into a single-level problem

$$\min_{x,y} F(x,y) = 2x + 7y$$

$$y \in \arg\min_{y} f(y) = -y$$

s.t.
$$2x - 8y \ge -25$$

$$7x + 10y \le 60$$

$$2x + y \ge 6$$

$$11x - 4y \le 31$$

$$y \in \mathbb{Z}_+$$

$$\min_{x,y} F(x,y) = 2x + 7y$$
s.t. $x \in \mathbb{Z}_+$
 $y \in \arg\min_{y} f(y) = -y$
s.t. $2x - 8y \ge -25$
 $7x + 10y \le 60$
 $2x + y \ge 6$
 $11x - 4y \le 31$
 $y \in \mathbb{Z}_+$

The valid inequality

- Assume solution of SLP is (\bar{x}, \bar{y}) bilevel infeasible.
- ▶ There exists (\bar{x}, \hat{y}) (bilevel feasible) with $f(\hat{y}) < f(\bar{y})$.
- Valid inequality is

$$f(y) \le f(\hat{y}) + L \|x - \bar{x}\|_{\infty}. \tag{1}$$

Reformulation I

The inequality ??? can be reformulated as

$$f(y) \le f(\hat{y}) + L\hat{z}$$

where \hat{z} is the optimal solution of

$$(P_{\widehat{z}}) \quad \min_{z} z$$
s.t. $z \ge x_i - \overline{x}_i \quad i = 1,...,n$

$$z \ge \overline{x}_i - x_i \quad i = 1,...,n$$

Reformulation II

Adding this to SLP results in a bilevel continuous Problem

(SLPC)
$$\min_{x,y} F(x,y) = c_1^T x + c_2^T y$$
s.t. $(x,y) \in S$.
$$f(y) \le f(\hat{y}) + L\hat{z}$$
 $\bar{z} \in \underset{z}{\operatorname{arg min}} z$
s.t. $z \ge x_i - \bar{x}_i \quad i = 1, ..., n$

$$z \ge \bar{x}_i - x_i \quad i = 1, ..., n$$

$$z \in \mathbb{R}$$

This can again be reformulated as a single level problem.

Table of Contents

Introduction

A Cutting Plane Method

A Branch and Cut Algorithm

Computational Experiments

Branch and Cut Method

- ▶ Divide S into smaller constrained regions S', S''.
- Solve both subproblems using Branch and Cut.
- ▶ Optimal solution is likely to be in S'.
- S" might be discarded based on relaxation and upper bound of S'.

Motivation

Proposition

The inducible region of a bilevel linear problem can be written equivalently as a piecewise linear inequality constraint comprised of supporting hyperplanes of S.

Motivation

Proposition

The inducible region of a bilevel linear problem can be written equivalently as a piecewise linear inequality constraint comprised of supporting hyperplanes of S.

Finding S' and S''

We solve the max-min problem

$$(BLP_{min}^{max}) \quad \max_{x,y} f(y) = d^{T}y$$

$$\text{s.t.} \quad x \in \mathbb{R}_{+}^{n}$$

$$y \in \arg\min_{y} f(y) = d^{T}y$$

$$\text{s.t.} \quad Ax + By \le b$$

$$y \in \mathbb{R}_{+}^{m}$$

- ▶ Let (\hat{x}, \hat{y}) be optimal solution of (BLP_{min}^{max})
- ▶ Split S into S', S" by adding $f(y) \le \lceil f(\hat{y}) \rceil$ and $f(y) \ge \lceil f(\hat{y}) \rceil + 1$ respectively

Branch and Cut for *S'* and *S''*

We can solve the two subproblems using any branch and cut or cutting plane method method, i.e.:

- Step 0 Determine S' and S''.
- Step 1 Solve the subproblem (DBLP') induced by S'. Use continuous single-level relaxation.
- Step 2 Branch if solution is not integral, add cut if solution is integral but not bilevel feasible
- Step 3 Compute *LB*" for problem (*DBLP*") induced by *S*". If this is worse than the *UB* found before, stop. Otherwise solve (*DBLP*").

Proposed Variant

- Use branch and cut to solve (DBLP')
 - Use cuts that are computationally less expensive
 - ► Intuition that S' contains few bilevel-infeasible integral points
- Use previously introduced cutting plane method for (DBLP")
 - Yields strong bounds quickly
 - Possibly prune whole subproblem

Table of Contents

Introduction

A Cutting Plane Method

A Branch and Cut Algorithm

Computational Experiments

Setup

- Compare with algorithm from DeNegre and Ralphs
- Testsets: Random instances and modified MIPLIB 2010 instances
- All algorithms implemented in C
- ► PC Pentium Core 2 Duo with a 2 GHz processor and 1 GB RAM
- Solver used is CPLEX 12.3

Random Set

Miplib set

