San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Non-Regular Languages (Part 1)

Lecture 24 Day 28/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 28

- About Final Exam
- Solution and Feedback of Quiz 9
- Summary of Lecture 23
- Lecture 24: Teaching ...
 - Non-Regular Languages (Part 1)

About Final Exam

• Value: 20%

Topics: Everything covered from the beginning of the semester

Type: Closed all materials

Section	Date	Time	Venue
01 (TR 4:30)	Thursday, May 17	2:45 – 5:00 pm	MH 233
02 (TR 6:00)	Thursday, May 17	5:15 – 7:30 pm	MH 233
03 (TR 3:00)	Tuesday, May 22	2:45 – 5:00 pm	SCI 311

- We won't need whole 2:15 hours.
- As usual, I'll announce officially the type and number of questions via Canvas. (study guide)

Solution and Feedback of Quiz 9 (Out of 30)

Metrics	Section 1	Section 2	Section 3
Average	25	23	24
High Score	29	27	30
Low Score	20	18	11

Summary of Lecture 23: We learned ...

Grammars: Parser Algorithms

- There are two types of algorithms for parsers:
 - Top-down and bottom-up
- Exhaustive parsing algorithm is ...
 - a top-down algorithm that check all possible derivations to find a derivation sequence for a given string.
- This algorithm has two serious problems:
 - It is extremely inefficient: O(|P|^{2|w|+1})
 - It is possible that it never terminates.

- Two good news:
 - Theorem: there exists an efficient algorithm for every CFG with complexity |w|3.
 - 2. If we use s-grammar, the efficiency would be O(|w|).

Ambiguity in Grammars

Ambiguity of grammars ...

... happens when for some strings in the language, we can construct two or more parse-tree.

Any Question

Objective of This Lecture

- We defined "regular languages" as ...
- A language is called regular iff there exists a ...
 - DFA/NFA to accept it.
 - REGEX to generate it.
 - regular grammar to generate it.
- The main question of this lecture is:

How to PROVE a language is NON-REGULAR?

Obviously, we cannot say:

L is non-regular because I cannot construct a DFA/NFA/REGEX/regular grammar for it!

Objective of This Lecture

- Also, we used a heuristic technique to figure out a language was non-regular.
 - We looked at the language's pattern and if it needed some kind of memory, it could not be regular.
- But this is NOT a mathematical proof!
- Also, in some cases, we might make mistakes.
 - e.g.: L = {w : w has an equal number of ab and ba}
- So, in this lecture we are looking for a ...
 ... solid technique to prove a language is non-regular.

Background

Required & Recommended Background

Required

- 1. The concept of regular and non-regular languages
- 2. Proof by contradiction
- 3. Cycle and simple cycle definitions in graphs
- 4. One-dimensional projection of a walk
- 5. Pigeonhole principle (will be covered)

Recommended

1. Predicate calculus

Regular and Non-Regular Languages

U = All Formal Languages

Proof by Contradiction

- Logically, proving a theorem means to assume the truth of some statements (e.g.: p) and entailing the truth of another statement (e.g.: q)
- Sometimes, it is hard to follow this procedure.
- In these cases, we might use the following logical equivalency:

Contrapositive

$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

- In fact, we prove that if the negation of the desired result (e.g. ~q) is true, then it leads to a contradiction.
- And to resolve the contradiction, we have no choice except blaming our assumption (~q is true) and this means q ≡ T.
- This technique is called "proof by contradiction".

- A walk from a vertex (called base) to itself with no repeated edges.
- But: Walk + No repeated edges = path
- Rewording: A cycle is a path from a vertex (called base) to itself.

Examples 1

- Walk 1: (v₁, v₃), (v₃, v₁)
- Walk 2: $(v_1, v_3), (v_3, v_3), (v_3, v_1)$
- Walk 3: (v₃, v₃)

A cycle that no vertex other than the base is repeated.

Examples 2

- Walk 1: (v₁, v₃), (v₃, v₁)
- Walk 2: (v₃, v₁), (v₁, v₃)

Example 3

• Given following DFA with 3 states over $\Sigma = \{a, b\}$:

Show one-dimensional projection of w = baab.

Example 4

• Given following NFA with 4 states over $\Sigma = \{a, b\}$:

• Show one-dimensional projection of w = aaaab.

(1) Pumping Lemma

What is a Lemma?

Etymology

- "Lemma" is a smaller theorem to help proving a bigger one.
- Very occasionally lemmas can take on a life of their own.
- In computer science, "pumping lemma" is one of them.

Pumping Lemma

If L is an INFINITE regular language,

Then there exists an $m \ge 1$ such that

If $w \in L$ and $|w| \ge m$

Then //pumping lemma guarantees that ...

We must be able to divide w into three parts xyz in such a way that all of the following conditions are satisfied:

 $|xy| \le m$, and $|y| \ge 1$, and $w_i = x y^i z \in L$ for i = 0, 1, 2, 3, ...

Formal Statement of Pumping Lemma

```
If L is an infinite regular language,
Then
   there exists an m \ge 1 such that
      If w \in L and |w| \ge m
      Then //P. L. guarantees that ...
           We must be able to divide
           w into xyz in such a way
           that all of the following
           conditions are satisfied:
            |xy| \leq m, and
            |y| \geq 1, and
           W_i = X Y^i Z \in L
                for i = 0, 1, 2, ...
```

```
If L is an infinite regular language,
Then
    (\exists m \geq 1)
         [(w \in L \text{ and } |w| \ge m) \rightarrow
             (\exists x,y,z)
                W = XYZ \wedge
                 |xy| \leq m \wedge
                 |y| \geq 1 \wedge
                 (\forall i \in \mathbb{N}) (w_i = x y^i z \in L)
           )]
```

Pumping Lemma

Example 5

 Verify the pumping lemma property on the following infinite regular language.

$$L = \{a^n b: n \ge 0\}$$

- Let's take the m = 2. Why not 3?
- OK, let's take it as m.
- If we need, we'd make some boundary on it later.
- Let's take w = a^mb
 //note that m is constant and finite.
- Check its size:
 |w| = |a^mb| = m+1≥ m

- Pumping lemma guarantees that:
- There exists x, y, z such that:

•
$$w = a^mb = xyz = \lambda$$
 a $a^{m-1}b$

•
$$|xy| = |a| = 1 \le m$$

•
$$|y| = 1 \ge 1$$

•
$$xz = a^{m-1}b \in L$$
 $i=0$

•
$$xy^1z = a^mb \in L$$
 $i=1$

•
$$xy^2z = a^{m+1}b \in L$$
 $i=2$

•
$$xy^3z = a^{m+2}b \in L$$
 i=3

• ...

xyⁱz ∈ L

Pumping Lemma: Notes

- 1. In the previous example, we took $w = a^mb = xyz = \lambda$ a $a^{m-1}b$
 - Note that a^mb is a string of the language, and not a pattern because m is a constant.
 - We should make sure that no string gets negative power.
 - For example, if we something like $a^{m-3}b$, then we should mention "we pick $m \ge 3$ ".
 - So, in the previous example, we should mention m ≥ 1 somewhere, but in this particular case we don't need because by default m ≥ 1.
 - Recall that the pumping lemma has the power to make a boundary for 'm'.

Pumping Lemma: Notes

- 2. One might take w something else such as:
 - $a^{2m}b$ or $a^{m+100}b$
 - But, take it as simple as possible.
- 3. One might take x, y, and z something else such as:
 - $w = xyz = a^{m-5} a^2 a^3 b$ //in this case, you need to mention $m \ge 5$.
 - Again, take it as simple as possible.

Pumping Lemma

Example 6

 Verify the pumping lemma property on the following infinite regular language.

$$L = \{bba^n : n \ge 0\}$$

Homework

 Verify the pumping lemma property on the following infinite regular languages.

```
1. L = \{a^n b^k : n \ge 0, k \ge 0\}
```

2.
$$L = \{aaab^n (ab)^k : n \ge 0, k \ge 0\}$$

3.
$$L = \{(ab)^n : n \ge 0\}$$

① Conclusion

This is an important property of "INFINITE regular languages".

 If an "infinite language" does not have this property, it is "non-regular".

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Costas Busch's website: http://csc.lsu.edu/~busch/
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790