

### **Rescue Robot**

Gruppe 3:

Katrin Glöwing, Domenic Drechsel, Justin Frommberger & Alexander Wilms



# **Motivation**



Abb. 1: Waldbrand



Abb. 2: Schiffsunglück



Abb. 3: Tsunami/Überflutung



Abb. 4: Vulkanausbruch



Abb. 5: Atomkraftwerk



# Konzept: Anforderungen

| Тур | ID. | Description                                                                                       |
|-----|-----|---------------------------------------------------------------------------------------------------|
| F   | 010 | Der Roboter muss Hindernisse erkennen.                                                            |
| F   | 011 | Der Roboter muss den Abstand zu den Hindernissen erkennen.                                        |
| NF  | 012 | Der Roboter muss mit acht Sensoren ausgestattet sein.                                             |
| NF  | 013 | Die Sensoren müssen in gleiche Abständen am Roboter angebracht sein (N, NO, O, OS, S, SW, W, WN). |
| F   | 014 | Der Roboter muss Hindernisse entfernen.                                                           |
| F   | 020 | Der Roboter auf Land fahren können.                                                               |
| F   | 030 | Der Roboter muss durch Wasser fahren können.                                                      |
| NF  | 031 | Der Roboter muss einen Propeller besitzen.                                                        |
| F   | 041 | Der Roboter muss erkennen ob er auf Wasser oder Land fährt.                                       |
| NF  | 042 | Der Roboter muss einen Feuchtigkeitssensor besitzen.                                              |
| F   | 043 | Der Roboter muss für das Fahren durch das Wasser den Propeller verwenden.                         |
| F   | 044 | Der Roboter muss für das Fahren auf dem Land die Ketten verwenden.                                |
| NF  | 050 | Der Roboter muss einen Kompass besitzen.                                                          |
| F   | 060 | Der Roboter muss einen Akku besitzten.                                                            |
| F   | 070 | Der Roboter muss mit dem "Umweltsystem" interagieren.                                             |
| F   | 080 | Der Roboter muss gut sichtbar sein.                                                               |
| NF  | 090 | Der Roboter muss mit vier Lichquellen ausgestattet sein.                                          |
| F   | 110 | Der Roboter muss Personen identifizieren können.                                                  |
| NF  | 111 | Der Roboter muss eine Kamera haben.                                                               |
| F   | 112 | Der Roboter muss nach Erkennung einer Person die Livesteuerung aktivieren.                        |
| NF  | 113 | Der Roboter muss über einen Roboterarm verfügen (für die Livesteuerng).                           |
| F   | 120 | Der Roboter muss die Richtung in die er fahren möchte anzeigen.                                   |
| NF  | 121 | Der Roboter muss mit einem Display ausgestattet sein.                                             |
| NF  | 122 | Das Display muss die nächste Richtung (mit Pfeilen) anzeigen.                                     |

Abb. 6: Anforderungen (aus Github)



# **Konzept: Kontextdiagramm**



Abb. 7: Kontextdiagramm



# **Konzept: Use Case**



Abb. 8: Use-Case Diagramm

**24**.08.2020 **5** 



6

# **Konzept: Szenario**

- Explosion im Mehrfamilienhaus
- brennende Gegenstände außerhalb



Abb. 9: Karte



# **Konzept: Stakeholder**

| 1. | Politiker                                                                                                                                                                                                                                                                                                                                | <ul> <li>Das Fahrzeug hat Kontakt mit der Umwelt und Personen, dies kann zu rechtlichen Problemen führen.</li> <li>Durch bestimmte Erweiterungen am Rettungsauto, könnte die Umwelt verbessert werden.</li> </ul> |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | 2. Menschen, die gerettet werden - Sind nicht einverstanden mit der neuen Technik, möchten diese nich Anspruch nehmen Sind begeistert von der Idee und unterstützen das Projekt.                                                                                                                                                         |                                                                                                                                                                                                                   |
| 3. | Feuerwehr &<br>Polizei                                                                                                                                                                                                                                                                                                                   | <ul> <li>Sind gegen die Einführung eines technischen Hilfsmittels, da Arbeitsplätze wegfallen.</li> <li>Freuen sich über die Verbesserung der Arbeitsbedingungen und die Unterstützung.</li> </ul>                |
| 4. | <ul> <li>Sehen den technischen Erfolg nicht und möchten deshalb den p         Aufwand nicht finanzieren.     </li> <li>Sind skeptisch doch interessiert an der neuen Technik und möc         finanzieren.     </li> <li>Sehen das Potential in der neuen Technik und freuen sich so ein         Projekt zu unterstützen.     </li> </ul> |                                                                                                                                                                                                                   |
| 5. | Mitbürger                                                                                                                                                                                                                                                                                                                                | <ul> <li>Haben Angst in einen Unfall mit dem Rettungsauto zu geraten.</li> <li>Fühlen sich sicherer durch das Rettungsauto.</li> </ul>                                                                            |



8

# **Konzept: Block-Diagramm**





9

# Konzept: Klassendiagramm



Abb. 11: Klassendiagramm



# **Konzept: Vorbereitung Software**

Karte einlesen in Python → Simulation in C#



Abb. 12: Karte mit Markierung



# Software: Konsolenausgabe (1)



Abb. 13: Konsolenausgabe (1)



# Software: Konsolenausgabe (2)



Abb. 14: Konsolenausgabe (2)

#### **Anforderung 112**:

Der Roboter muss nach Erkennung einer Person die Livesteuerung aktivieren.

#### **Anforderung 011**:

Der Roboter muss den Abstand zu den Hindernissen erkennen.

#### **Anforderung 010:**

Der Roboter muss Hindernisse erkennen.

#### **Anforderung 014**:

Der Roboter muss Hindernisse entfernen.



# Software: Konsolenausgabe (3)





# Auflistung HW (Vor-Nachteile)

| Auflistung der Hardware & Mechanik / Vorteile & Nachteile |              |                          |                                                                                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-----------------------------------------------------------|--------------|--------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Hardware<br>Mechanik                                      | Beschreibung | Material                 | Vorteile                                                                           | Nachteile                                                                               | Zusammenfassung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Forttrieb                                                 | Ketten       | Gummi,<br>Kunststoff     | Leicht,<br>Günstig,<br>Schwimmt,<br>Herstellung<br>simpel,<br>Formbar, 3D<br>Druck | Hitze, Kälte, nicht<br>langlebig, bricht<br>schell, geringe<br>Belastbarkeit            | Generell gut für Steigungen und<br>verschiedne Terrains. Jedoch schlecht<br>geeignet für Hitze und<br>Brandsituation da Kunststoffe und<br>Gummistoffe schon bei leichter Hitze<br>schmelzen können. Dadurch kann<br>ein Einseit; je nach Betroffenheit<br>nicht korrekt durchgeführt werden.                                                                                                                                                                                                                          |  |
| Forttrieb                                                 | Ketten       | Metall                   | Hitze, Kälte,<br>langlebig,<br>stabil, hohe<br>Belastbarkeit                       | Schwer, Teurer,<br>Schwimmt nicht,<br>Straße<br>Deschädigen,<br>komplexe<br>Herstellung | Ketten sind generell eher schwer und spering. Der große Vorteil: Ein Kettenfahrzeig kann in fast; jedem Terrain fahren. Hügel, Geröll und Erle. Auch Hindemisse und Stelgungen sind leicht passierbar. Zudem sind die Metalliketten für große Temperaturschwankungen geiegnet. Sowohl große Hitze und Kälte und können überwunden werden. Somit wäre ein Kettenfahrzeig auch für Brandsituation eine gute Möglichkeit. Zudem kann ein Kettenfahrzeig sich auf der Stelle drehen und ist von der Fahrtrichtung fleubel. |  |
| Forttrieb                                                 | Räder        | Mecanum Räder<br>(Gummi) | 360° Drehung,<br>Straße,<br>Sand/Erde,<br>Hügel                                    | langsam, Wasser,<br>Hitze, Kälte, Steine                                                | Mecanumräder sind generell<br>praktisch da sie sich in jede Richtung<br>drehen können. Damit Wäre das<br>Fahrzeug sehr flexibel und wendig.<br>Jedoch ist die Beschichtung aus<br>Gummi und somit für Hitze eher<br>ungeeignet. Deswelteren könnte<br>Geröll die Mechanik blockieren und<br>somit den Einsatz frühzeitig<br>beenden.                                                                                                                                                                                   |  |
| Forttrieb                                                 | Räder        | Reifen (Gummi)           | Schnell, Straße,<br>Sand/Erde,<br>Hügel,<br>günstig,<br>Verfügbarkeit              | nicht drehbar,<br>Wasser, Hitze,<br>Kälte, Steine                                       | Räder bzw. Reifen sind fast überall<br>verfügbar. Die Neubeschäftung bei<br>einer Beschädigung wäre leicht und<br>unkomplüzert. Da die Reifen eine<br>Gummibeschichtung sind sie nicht<br>für Hitzestrustion geeignet auf<br>Grund des geringen Schmelzpunkt.<br>Zudem haben Reifen nicht den<br>besten Grip und könnten z.B im Sand<br>stecken bleiben. Auch größere<br>Hindernisse können nicht<br>überwunden werden.                                                                                                |  |

| Model   | Chassis               | Vollmetall           | stabil, Hitze,<br>Kälte,<br>Explosionen,<br>Feuer, hohe<br>belastbarkeit                            | hohes Gewicht,<br>relativ teuer                                          | Auch wenn das Chassis etwas<br>schwerer ausfällt sind die Vorteile<br>enorm. Es ist gegen fast alle äußeren<br>Einflüsse geschützt und halt auch<br>eventuelle Explosionen aus.                                                                                                                        |
|---------|-----------------------|----------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model   | Chassis               | Kunststoff           | leicht,<br>Herstellung<br>einfach,<br>günstig                                                       | instabil, Hitze,<br>Kälte, Explosionen,<br>Feuer, keine<br>belastbarkeit | Die Herstellung ist zwar einfach und<br>das Chassis wäre leicht jedoch ist die<br>Gefahr dass es durch Hitze oder<br>Einschläge demoliert wird.                                                                                                                                                        |
| Model   | Chassis               | Super<br>Materialien | leicht 'stabil,<br>extreme Hitze,<br>extreme Kälte,<br>Explosionen,<br>Feuer, hohe<br>belastbarkeit | Anschaffung<br>schwer, teuer,<br>Herstellung,<br>Forschung               | Supermaterialien sind zwar in der<br>Herstellung teuer und schwer zu<br>beschaffen aber die Vorteile sind<br>enorm: Sie sind sehr leicht, stabil und<br>extrem hitzebständig. Somit wären sie<br>für riskante und gesonderte Situation<br>ideal geeignet.                                              |
| Rettung | Rettungsarm /<br>Kran | Vollmetall           | Hitze, Kälte,<br>langlebig,<br>stabil, hohe<br>Belastbarkeit                                        | Schwer, Teurer                                                           | Der Vorteil beim Vollmetall ist, dass er sehr stabil ist und sehr lange genutzt werden kann ohne ihn auszutauschen. Zudem kann man auch bei unterschiedlichen Wetter Bedingungen damit arbeiten. Ein Nachteil ist, dass man bei der Rettung des Patienten vorsichtig sein muss ihn nicht zu verlätzen. |
| Rettung | Rettungsarm /<br>Kran | Kunststoff           | leicht, günstig,<br>3D Druck,<br>einfache<br>Herstellung                                            | Hitze, Kälte,<br>instabil, geringe<br>Belastbarkeit                      | Ist instabil und nicht nutzbar im<br>richtigen Betrieb, nutzvoll um eine<br>miniatur Darstellung zu erstellen da<br>es 3D Druckbar ist.                                                                                                                                                                |
| Rettung | Rettungsarm /<br>Kran | Super<br>Materialien | leicht 'stabil,<br>extreme Hitze,<br>extreme Kälte,<br>Explosionen,<br>Feuer, hohe<br>belastbarkeit | Anschaffung<br>schwer, teuer,<br>Herstellung,<br>Forschung               | Super Materialien sind vielseitig<br>einsetztbar, in Feuer/Hitze-Situationen<br>könnte der Kran auch hitzebeschichtet<br>sein so das der Patient nicht vom<br>heißen Stahl verletzt werden kann.                                                                                                       |
| Antrieb | E-Batterie/Akku       | Lithium              | Elektro:<br>aufladbar                                                                               | Akkulaufzeit,<br>Teurer in der<br>Anschaffung                            | Sind wiederaufladbar und besser für<br>die Umwelt, doch haben nicht so viel<br>Leistung wie ein Brennstoffmotor                                                                                                                                                                                        |
| Antrieb | Brennstoffmotor       | Benzin/Diesel        | günstig,<br>universell                                                                              | explosionsgefahr,<br>Leck und<br>Auslaufgefahr                           | Haben eine hohe Leistung, doch sind<br>schlecht für die Umwelt, könnte zu<br>Problmen führen bei einer explosion.                                                                                                                                                                                      |

Abb. 15: Auflistung HW (Vor-Nachteile) (aus Github)



# **Hardware Analyse**

- Analyse verschiedener Komponenten und Bauteile
- Betrachtung von Vor- und Nachteilen
- Auf das Szenario anwendbar?
- Verschiedene Kriterien: Temperatur, Feuerschutz, Explosionsschutz, Materialbeschaffenheit, Sicherheit Kompatibilität, Technik
- Anylse von: Chassis, Antrieb, Rettungsvorgang, Akku/Motor, Kameras, Mikrofone, Lautsprecher etc.



# **Festlegung HW**

#### Vortrieb (Ketten)

Metall

Ketten sind generell eher schwer und sperrig. Der große Vorteil: Ein Kettenfahrzeug kann in fast jedem Terrain fahren. Hügel, Geröll und Erde. Auch Hindernisse und Steigungen sind leicht passierbar. Zudem sind die Metalliketten für große Temperaturschwankungen geiegnet. Sowohl große Hitze und Kälte und können überwunden werden. Somit wäre ein Kettenfahrzeug auch für Brandsituation eine gute Möglichkeit. Zudem kann ein Kettenfahrzeig sich auf der Stelle drehen und ist von der Fahrtrichtung flexibe

#### Modell (Chassis)

- Super Materialien
- Heat Shield aus Kohlenstoff-Verbundstoff mit spezieller Kermaikfarbe

Supermaterialien sind zwar in der Herstellung teuer und schwer zu beschaffen aber die Vorteile sind enorm: Sie sind sehr leicht, stabil und extrem hitzebständig. Somit wären sie für riskante und gesonderte Situation ideal geeignet.

#### Rettung (Rettungsarm/Kran)

- Super Materialien
- Heat Shield aus Kohlenstoff-Verbundstoff mit spezieller Kermaikfarbe

Supermaterialien sind zwar in der Herstellung teuer und schwer zu beschaffen aber die Vorteile sind enorm: Sie sind sehr leicht, stabil und extrem hitzebständig. Somit wären sie für riskante und gesonderte Situation ideal geeignet.

#### Antrieb (Motor)

Elektromotor

Sind wiederaufladbar und besser für die Umwelt, doch haben nicht so viel Leistung wie ein Brennstoffmotor der aber explodieren könnte.

#### Abstandssensor

- Laser
- Infra

Laser hat eine hohe Reichweite und Infrarot eine kurze Reichweite.Recht zuverlässig.

#### Kamera

Thermalcamera/Infrarot

Sind super dafür da um einen Patienten im Rauch bzw in der Dunkelheit zu finden.

#### Mikrofon

- 360° Mikro
- Gute Qualität

#### Lautsprecher

360° Lautspreche

Raumklang. Sind perfekt für Räume ausgelegt da sich unser Fahrzeug nicht drehen muss um eine Mitteilung von Patienten zu erhalten.

#### Beleuchtung (Vorne)

- LEE
- Gut sichbar, keine Hitze, sparsam

#### Beleuchtung (Warnung)

- LEI
- Gut sichbar, keine Hitze, sparsam

Abb. 16: Festlegung HW (aus Github)



### Festlegung Hardware für finales Modell

- Chassis aus leichtem Metall und Feuerbeschichtung
- Greifarm zur Rettung
- Kettenantrieb zur Fortbewegung
- Elektromotor und E-Akku
- Schiffspropller und Wasserdüsen
- 3 Räume:

Raum 1. Personenrettung mit Tür/Klappe nach oben

Raum 2. Technikraum mit Akku, Motoren und Pumpe

Raum 3. Luftraum als Hohlraum für Wasserauftrieb



## Festlegung Hardware für finales Modell

1 Pumpe

Düsen für Wasser: Einlass und Auslass

Feuchtigkeitssensor

- 8 Motoren
- 2 Ketten
- 3 Kran
- 1 Tür/Klappe
- 1 Propeller
- 1 Schiene-Propeller Höhenverstellung



### Festlegung Hardware für finales Modell - Technik

Kamera vorne:

Normal, Infrarot, Thermal und Nachtsicht

Display vorne: Kommunikation und Richtung

LED Panels: Beleuchtung

Kompass: Orientierung

Antenne:

Kommunikation, Signale empfangen und abgeben

8 Abstandsensoren: in gleichem Abstand

Multimedia Globe im Kran: Kamera + Mikrofon + Lautsprecher

**24**.08.2020 **19** 



20

### Skizze des ersten Ansatzes



Abb. 17: Paperprototyp (1)



Abb. 18: Erstes Rendering Prototyp



# **Design (Entwurf)**



Abb. 19: Löschfahrzeug



Abb. 21: LKW mit Roboterarm



# Design (PaperPrototype)



Abb. 22: Paperprototyp (2)



## **Finales Modell**



Abb. 23: Finales Modell



### Finales Modell - Ansicht Vorne



Das Display muss die nächste Richtung (mit Pfeilen) anzeigen.



### Finales Model - Ansicht vorne



Abb. 25: Finales Modell - Ansicht Vorne - Beschriftung (2)

**24**.08.2020 **25** 



Finales Modell - Ansicht Oben



Abb. 26: Finales Modell – Ansicht Oben



### Finales Modell - Ansicht Oben



Die Sensoren müssen in gleiche Abständen am Fahrzeug angebracht sein (N, NO, O, OS, S, SW, W, WN)..



### Finales Modell - Ansicht Seite



Abb. 28: Finales Modell - Ansicht Seite - Beschriftung



# Finales Modell – Ansicht Hinten



Abb. 29: Finales Modell - Ansicht Hinten



### Finales Modell - Ansicht Hinten





### Finales Modell - Ansicht Unten





# **Auswertung Anforderungen (1)**

| Тур | ID. | Description                                                                                       | SW       | HW       |
|-----|-----|---------------------------------------------------------------------------------------------------|----------|----------|
| F   | 010 | Der Roboter muss Hindernisse erkennen.                                                            | <u> </u> |          |
| F   | 011 | Der Roboter muss den Abstand zu den Hindernissen erkennen.                                        | <u> </u> |          |
| NF  | 012 | Der Roboter muss mit acht Sensoren ausgestattet sein.                                             | <u> </u> | ~        |
| NF  | 013 | Die Sensoren müssen in gleiche Abständen am Roboter angebracht sein (N, NO, O, OS, S, SW, W, WN). |          | ~        |
| F   | 014 | Der Roboter muss Hindernisse entfernen.                                                           | <u> </u> | ~        |
| F   | 020 | Der Roboter auf Land fahren können.                                                               | <u> </u> | ~        |
| F   | 030 | Der Roboter muss durch Wasser fahren können.                                                      | <u> </u> | ~        |
| NF  | 031 | Der Roboter muss einen Propeller besitzen.                                                        |          | <u>~</u> |
| F   | 041 | Der Roboter muss erkennen ob er auf Wasser oder Land fährt.                                       | <u> </u> | ~        |
| NF  | 042 | Der Roboter muss einen Feuchtigkeitssensor besitzen.                                              | <u> </u> | ~        |
| F   | 043 | Der Roboter muss für das Fahren durch das Wasser den Propeller verwenden.                         | <u> </u> |          |
| F   | 044 | Der Roboter muss für das Fahren auf dem Land die Ketten verwenden.                                | <u>~</u> |          |

Abb. 32: Auswertung Anforderungen (1) (aus Github)



# **Auswertung Anforderungen (2)**

| Тур | ID. | Description                                                                | sw       | HW       |
|-----|-----|----------------------------------------------------------------------------|----------|----------|
| NF  | 050 | Der Roboter muss einen Kompass besitzen.                                   |          | <u>~</u> |
| F   | 060 | Der Roboter muss einen Akku besitzten.                                     |          | <u>~</u> |
| F   | 070 | Der Roboter muss mit dem "Umweltsystem" interagieren.                      | <u>~</u> | <u>~</u> |
| F   | 080 | Der Roboter muss gut sichtbar sein.                                        |          | <u>~</u> |
| NF  | 090 | Der Roboter muss mit vier Lichquellen ausgestattet sein.                   |          | ×        |
| F   | 110 | Der Roboter muss Personen identifizieren können.                           | <b>~</b> |          |
| NF  | 111 | Der Roboter muss eine Kamera haben.                                        |          | <u>~</u> |
| F   | 112 | Der Roboter muss nach Erkennung einer Person die Livesteuerung aktivieren. | <u>~</u> |          |
| NF  | 113 | Der Roboter muss über einen Roboterarm verfügen (für die Livesteuerng).    |          | <u>~</u> |
| F   | 120 | Der Roboter muss die Richtung in die er fahren möchte anzeigen.            | <u>~</u> | <u> </u> |
| NF  | 121 | Der Roboter muss mit einem Display ausgestattet sein.                      |          | <u>~</u> |
| NF  | 122 | Das Display muss die nächste Richtung (mit Pfeilen) anzeigen.              |          | <u>~</u> |

Abb. 33: Auswertung Anforderungen (2) (aus Github)



### **Ausblick**

- Elektronische Umetzung
- Proportionen
- Visualisierung der Kamera und Livesteuerung
- 3D Simulation (evtl. mit Unity)

**24**.08.2020 **34** 



### **Showcase**

• Live •



# Abbildungsverzeichnis (1)

| Abb. 1: | Waldbrand                        | https://www.br.de/nachrichten/wissen/was-tun-bei-einem-waldbrand,RZyK3iS                                                  |
|---------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Abb. 2: | Schiffsunglück                   | https://www.haz.de/Nachrichten/Wissen/Uebersicht/Umweltschuetzer-befuerchten-Oel-Katastrophe-nach-Schiffsunglueck         |
| Abb. 3: | Tsunami/Überflutung              | https://www.brigitte.de/leben/reise/europas-kuesten-von-tsunami-bedroht-11261762.html                                     |
| Abb. 4: | Vulkanausbruch                   | https://www.reisegeek.de/indonesien-das-land-der-1000-geschichten/vulkanausbruch-auf-bali/                                |
| Abb. 5: | Atomkraftwerk                    | https://www.verlagshaus-jaumann.de/inhalt.basel-zwischenfaelle-im-atomkraftwerk.58e2360e-de7c-4376-8052-66f081021e39.html |
| Abb.6:  | Anforderungen (aus Github)       | Eigener Entwurf                                                                                                           |
| Abb.7:  | Kontextdiagram                   | Eigener Entwurf                                                                                                           |
| Abb. 8: | Use-Case-Diagramm                | Eigener Entwurf                                                                                                           |
| Abb.9:  | Karte                            | Aus Vorlesung Projekt angewandte Elektrotechnik                                                                           |
| Abb.10: | Blockdiagramm                    | Eigener Entwurf                                                                                                           |
| Abb.11: | Klassendiagramm                  | Eigener Entwurf                                                                                                           |
| Abb.12: | Karte mit Markierung             | Aus Vorlesung Projekt angewandte Elektrotechnik + Eigener Entwurf                                                         |
| Abb.13: | Konsolenausgabe (1)              | Eigner Entwurf                                                                                                            |
| Abb.14: | Konsolenausgabe (2)              | Eigener Entwurf                                                                                                           |
| Abb.15: | Auflistung HW Vor- und Nachteile | Eigener Entwurf                                                                                                           |
| Abb.16: | Festlegung HW (aus Github)       | Eigener Entwurf                                                                                                           |
| Abb.17: | Paper Prototyp (1)               | Eigener Entwurf                                                                                                           |



# Abbildungsverzeichnis (2)

| Abb.18: | Erstes Rendering Prototyp                       | Eigener Entwurf                                                                                             |
|---------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Abb.19: | Löschfahrzeug                                   | https://upload.wikimedia.org/wikipedia/commons/1/18/Hemer-<br>L%C3%B6schpanzer1-Bubo.JPG                    |
| Abb.20: | Kettenfahrzeug                                  | https://imgr1.auto-motor-und-sport.de/Ripsaw-EV2-Kettenfahrzeug-169FullWidth-3556f8a7-869791.jpg            |
| Abb.21: | LKW mit Roboterarm                              | https://autodienst-west.de/wp-content/uploads/2019/01/ladekran-pk135002-tec7-adw-kran-mieten-8-1024x578.jpg |
| Abb.22: | Paper Prototyp (2)                              | Eigener Entwurf                                                                                             |
| Abb.23: | Finales Modell Ansicht Vorne                    | Eigener Entwurf                                                                                             |
| Abb.24: | Finales Modell Ansicht Vorne – Beschriftung (1) | Eigener Entwurf                                                                                             |
| Abb.25: | Finales Modell Ansicht Vorne – Beschriftung (2) | Eigener Entwurf                                                                                             |
| Abb.26: | Finales Modell Ansicht Oben                     | Eigener Entwurf                                                                                             |
| Abb.27: | Finales Modell Ansicht Beschriftung             | Eigener Entwurf                                                                                             |
| Abb.28: | Finales Modell Ansicht Seite – Beschriftung     | Eigener Entwurf                                                                                             |
| Abb.29: | Finales Modell Ansicht Hinten -                 | Eigener Entwurf                                                                                             |
| Abb.30: | Finales Modell Ansicht Hinten - Beschriftung    | Eigener Entwurf                                                                                             |
| Abb.31: | Finales Modell Ansicht Unten - Beschriftung     | Eigener Entwurf                                                                                             |
| Abb.32: | Auswertung Anforderung (1)                      | Eigener Entwurf                                                                                             |
| Abb.33: | Auswertung Anforderungen (2)                    | Eigener Entwurf                                                                                             |



# Vielen Dank für Ihre Aufmerksamkeit!

Gruppe 3:

Katrin Glöwing, Domenic Drechsel, Justin Frommberger & Alexander Wilms