- 5.3.3 Decidability of context-sensitive languages
- 5.3.4 Recursive language that is not context-sensitive
- 6 Hierarchy of languages, automata and grammars
 - **6.1 Structural complexity of languages**
 - **6.1.1 Chomsky hierarchy**
 - 6.1.2 Hierarchy of grammars and automata
 - **6.2 Computational complexity theory**
 - 6.2.1 Time and space complexity
 - **6.2.2 Properties of time and space complexity**

- **5.3.3 Decidability of context-sensitive languages**
- 5.3.4 Recursive language that is not context-sensitive
- 6 Hierarchy of languages, automata and grammars
 - **6.1 Structural complexity of languages**
 - **6.1.1 Chomsky hierarchy**
 - 6.1.2 Hierarchy of grammars and automata
 - **6.2 Computational complexity theory**
 - 6.2.1 Time and space complexity
 - **6.2.2 Properties of time and space complexity**

- Iterative algorithm that finds a path in a graph
 - build a list K of strings generated by the CSG

$$-|\alpha| \leq |w|$$

- K_i contents of the list after i-th iteration
- K_i strings α
 - $|\alpha| \le |w|$
 - —CSG generates α in at most *i* steps

- Initialization:
 - K only contains the initial nonterminal S
- *i*-th iteration:

•
$$K_i = K_{i-1} \cup \{ \beta \mid \alpha \Rightarrow \beta, \alpha \in K_{i-1} \mid \beta \mid \leq |w| \}$$


```
1) S
              → [ACaB]
                                      4) [aCB] \rightarrow [aE]
                                                                        7) [aE]
                                                                                      \rightarrow [Ea]
2) [Ca]a \rightarrow aa[Ca]
                                      5) a[Da] \rightarrow [Da]a
                                                                           a[Ea] \rightarrow [Ea]a
   [CaB] \rightarrow a[aCB]
                                         [aDB] \rightarrow [DaB]
                                                                           [Aa][Ea] \rightarrow [AEa]a
   [CaB] \rightarrow a[aCB]
                                         a[DaB] \rightarrow [Da][aB]
                                                                        8) [AEa] \rightarrow a
   [ACa]a \rightarrow [Aa]a[Ca]
                                         [Aa][Da] \rightarrow [ADa]a
   [ACa]a \rightarrow [Aa]a[Ca]
   [ACa][aB] \rightarrow [Aa]a[CaB]
                                         [Aa][DaB] \rightarrow [ADa][aB]
   [ACaB] \rightarrow [Aa][aCB]
                                      6) [ADa] \rightarrow [ACa]
3) [aCB] \rightarrow [aDB]
```

$$w = a, / w / = 1$$

$$i = 0$$
: $K_0 = \{ S \}$
 $i = 1$: $K_1 = \{ S, [ACaB] \}$
 $i = 2$: $K_2 = \{ S, [ACaB] \}$

 $a \notin L(G)$


```
1) S
              \rightarrow [ACaB]
                                      4) [aCB] \rightarrow [aE]
                                                                        7) [aE] \rightarrow [Ea]
2) [Ca]a \rightarrow aa[Ca]
                                      5) a[Da] \rightarrow [Da]a
                                                                           a[Ea] \rightarrow [Ea]a
   [CaB] \rightarrow a[aCB]
                                         [aDB] \rightarrow [DaB]
                                                                           [Aa][Ea] \rightarrow [AEa]a
   [CaB] \rightarrow a[aCB]
                                         a[DaB] \rightarrow [Da][aB] 8) [AEa] \rightarrow a
   [ACa]a \rightarrow [Aa]a[Ca]
                                         [Aa][Da] \rightarrow [ADa]a
   [ACa]a \rightarrow [Aa]a[Ca]
   [ACa][aB] \rightarrow [Aa]a[CaB]
                                         [Aa][DaB] \rightarrow [ADa][aB]
   [ACaB] \rightarrow [Aa][aCB]
                                      6) [ADa] \rightarrow [ACa]
3) [aCB] \rightarrow [aDB]
```

```
w = aa, |w| = 2

i = 0: K_0 = \{ S \}

i = 1: K_1 = \{ S, [ACaB] \}

i = 2: K_2 = \{ S, [ACaB], [Aa][aCB] \}

i = 3: K_3 = \{ S, [ACaB], [Aa][aCB], [Aa][aDB], [Aa][aE] \}
```



```
1) S
              \rightarrow [ACaB]
                                      4) [aCB]
                                                                        7) [aE]
                                                                                      \rightarrow [Ea]
                                                     \rightarrow [aE]
2) [Ca]a \rightarrow aa[Ca]
                                      5) a[Da] \rightarrow [Da]a
                                                                           a[Ea] \rightarrow [Ea]a
   [CaB] \rightarrow a[aCB]
                                         [aDB] \rightarrow [DaB]
                                                                           [Aa][Ea] \rightarrow [AEa]a
   [CaB] \rightarrow a[aCB]
                                         a[DaB] \rightarrow [Da][aB] 8) [AEa] \rightarrow a
   [ACa]a \rightarrow [Aa]a[Ca]
                                         [Aa][Da] \rightarrow [ADa]a
   [ACa]a \rightarrow [Aa]a[Ca]
   [ACa][aB] \rightarrow [Aa]a[CaB]
                                        [Aa][DaB] \rightarrow [ADa][aB]
   [ACaB] \rightarrow [Aa][aCB]
                                      6) [ADa] \rightarrow [ACa]
3) [aCB] \rightarrow [aDB]
```

```
i = 4: K_4 = \{ S, [ACaB], [Aa][aCB], [Aa][aDB], [Aa][aE], [Aa][DaB], [Aa][Ea] \}
i = 5: K_5 = \{ S, [ACaB], [Aa][aCB], [Aa][aDB], [Aa][aE], [Aa][DaB], [Aa][Ea], [ADa][aB], [AEa]a, [ACa][aB] \}
```



```
1) S
              \rightarrow [ACaB]
                                      4) [aCB] \rightarrow [aE]
                                                                        7) [aE]
                                                                                      \rightarrow [Ea]
2) [Ca]a \rightarrow aa[Ca]
                                                                           a[Ea] \rightarrow [Ea]a
                                      5) a[Da] \rightarrow [Da]a
   [CaB] \rightarrow a[aCB]
                                         [aDB] \rightarrow [DaB]
                                                                           [Aa][Ea] \rightarrow [AEa]a
   [CaB] \rightarrow a[aCB]
                                         a[DaB] \rightarrow [Da][aB]
                                                                       8) [AEa] \rightarrow a
   [ACa]a \rightarrow [Aa]a[Ca]
                                         [Aa][Da] \rightarrow [ADa]a
   [ACa]a \rightarrow [Aa]a[Ca]
   [ACa][aB] \rightarrow [Aa]a[CaB]
                                         [Aa][DaB] \rightarrow [ADa][aB]
   [ACaB] \rightarrow [Aa][aCB]
                                      6) [ADa] \rightarrow [ACa]
3) [aCB] \rightarrow [aDB]
```

$$i = 6$$
: $K_6 = \{S, [ACaB], [Aa][aCB], [Aa][aDB], [Aa][aE],$
 $[Aa][DaB], [Aa][Ea], [ADa][aB], [AEa]a,$
 $[ACa][aB], aa\}$

- 5.3.3 Decidability of context-sensitive languages
- 5.3.4 Recursive language that is not context-sensitive
- 6 Hierarchy of languages, automata and grammars
 - **6.1 Structural complexity of languages**
 - **6.1.1 Chomsky hierarchy**
 - 6.1.2 Hierarchy of grammars and automata
 - **6.2 Computational complexity theory**
 - 6.2.1 Time and space complexity
 - **6.2.2 Properties of time and space complexity**

$$\{L_1, L_2, L_3, ...\} = K \subset RECL$$

$$\boxed{ Coding of M_1 Coding of M_2 Coding of M_3 B}$$

$$\boxed{TM M_K}$$

- We define language L_R as follows:
 - $w \in L_R$ if and only if TM M_i rejects w
 - -i is the integer whose binary representation is w
- We will show that language L_R is both:
 - Different from languages or all TMs M_1 , M_2 , M_3 , ...
 - A recursive language.
- In conclusion, $L_R \in RECL \mid L_R \notin K \implies K \subset RECL$

• Language L_R is recursive - $L_R \in RECL$

- Language L_R is different from languages of M_1 , M_2 , ...
 - Assume language of TM M_j is L_R
 - Let x be the binary representation of j
 - Assumption that M_j accepts L_R leads to contradiction:
 - $-\text{If } x \in L_R \Rightarrow x \notin L(M_i)$
 - $-\operatorname{If} x \notin L_R \Rightarrow x \in L(M_i)$
- Therefore, L_R is recursive and different from every L(M_j)!

Coding grammars using binary code

Grammar symbol	Code
----------------	------

Terminal 0	10
Terminal 1	100
,	1000
\rightarrow	10000
{	100000
}	1000000
(1000000
)	10000000
Nonterminal A ₁	10 ⁹
Nonterminal A _i	10 ⁱ⁺⁸

- TM *M_{CSL}*
 - Generates and outputs all valid codes of context-sensitive grammars.

- 5.3.3 Decidability of context-sensitive languages
- 5.3.4 Recursive language that is not context-sensitive
- 6 Hierarchy of languages, automata and grammars
 - **6.1 Structural complexity of languages**
 - **6.1.1 Chomsky hierarchy**
 - 6.1.2 Hierarchy of grammars and automata
 - **6.2 Computational complexity theory**
 - 6.2.1 Time and space complexity
 - **6.2.2 Properties of time and space complexity**

Chomsky hierarchy

```
All languages over alphabet: 2^{\Sigma^*}
```

Recursively enumerable languages: REL
Universal language L

REL i L

RECU

Recursive languages: RECL Language L_P∈ RECL i L_P∉ CSL

Context-sensitive languages: CSL Language L_1 : { ww | w ∈ (0+1)* i |w|>1 }

Nondeterministic context-free languages: NCFL Language L_2 : { $ww^R \mid w \in (0+1)^* i \mid w \mid >1$ }

Deterministic context-free languages: DCFL Language L_3 : { $w2w^R \mid w \in (0+1)^* i \mid w \mid >1$ } $L_3 \in DCFL i L_3 \notin REG$

Regular languages: RL

5.3.3 Decidability of context-sensitive languages	172
5.3.4 Recursive language that is not context-sensitive	174
6 Hierarchy of languages, automata and grammars	177
6.1 Structural complexity of languages	177
6.1.1 Chomsky hierarchy	177
6.1.2 Hierarchy of grammars and automata	179
6.2 Computational complexity theory	180
6.2.1 Time and space complexity	181
6.2.2 Properties of time and space complexity	183

Hierarchy of grammars and automata

Unrestricted grammar

 G_0 : $\alpha \rightarrow \beta$

Context-sensitive grammar G_1 :

 $\alpha \rightarrow \beta$, $|\alpha| \le |\beta|$

Context-free grammar G₂:

 $A \rightarrow \alpha$

Regular grammar G₃:

 $A \rightarrow wB i A \rightarrow w$

 $A \rightarrow Bw i A \rightarrow w$

Turing machine:

 $M_0 = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

Linear bounded automaton:

 $M_1 = (Q, \Sigma, \Gamma, \delta, q_0, \phi, \$, F)$

Pushdown automaton:

 $M_2 = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

Finite automaton:

 $M_3 = (Q, \Sigma, \delta, q_0, F)$

Recursively enumerable languages: $L_0=L(G_0)=L(M_0)$

Context-sensitive languages: $L_1=L(G_1)=L(M_1)$

Context-free languages: $L_2=L(G_2)=L(M_2)$

Regular languages: $L_3=L(G_3)=L(M_3)$

5.3.3 Decidability of context-sensitive languages	172
5.3.4 Recursive language that is not context-sensitive	174
6 Hierarchy of languages, automata and grammars	177
6.1 Structural complexity of languages	177
6.1.1 Chomsky hierarchy	177
6.1.2 Hierarchy of grammars and automata	179
6.2 Computational complexity theory	180
6.2.1 Time and space complexity	181
6.2.2 Properties of time and space complexity	183

Space complexity

Time complexity

Language is of time complexty T(n)

Detail: $max(n+1, \lceil T(n) \rceil)$

Example

$$L = \{ wcw^R \mid w \in (a+b)^* \}$$

Input tape
$$\begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix}$$
 $\begin{vmatrix} a_2 & a_3 & a_2 & a_4 \end{vmatrix}$ $\begin{vmatrix} a_1 & B & B & B & B & B \end{vmatrix}$ $\begin{vmatrix} B & B & B & B & B & B \end{vmatrix}$

Time complexity

$$T(n) = n + 1$$

Example

$$L = \{ wcw^R \mid w \in (a+b)^* \}$$

Example

$$L = \{ wcw^R \mid w \in (a+b)^* \}$$

Substring w Substring
$$w^R$$

Input tape $a_1 \ a_2 \ a_3 \ c \ a_3 \ a_2 \ a_1 \ B \ B \ B \ B \ B \ B$

Space complexity

$$S(n) = \log_2 n$$

- 5.3.3 Decidability of context-sensitive languages
- 5.3.4 Recursive language that is not context-sensitive
- 6 Hierarchy of languages, automata and grammars
 - **6.1 Structural complexity of languages**
 - **6.1.1 Chomsky hierarchy**
 - **6.1.2 Hierarchy of grammars and automata**
 - **6.2 Computational complexity theory**
 - **6.2.1 Time and space complexity**
 - **6.2.2 Properties of time and space complexity**

Number of tapes and space complexity

Simulating three tape TM M_1 using six tracks of one tape of TS M_2

Head position 1		X		
Contents of tape 1	A ₁	A_2	 A_i	 \boldsymbol{A}_{m}
Head position 2			 X	
Contents of tape 2	<i>B</i> ₁	B_2	 B _i	 B _m
Head position 3	X			
Contents of tape 3	C ₁	C ₂	 Ci	 C _m

[State TS M_1 , Counter, Contents of tape 1, ..., Contents of tape k]

Number of tapes and time complexity

Initial step

Distance: 0

i-th step

Distance: 2i

Simulating one transition: at least 4*i* moves

m total moves

$$\sum_{i=1}^{m} 4i \approx 2m^2$$

Tape compression

Tape of TM M₁

Tape of $TM M_2$

Linear speed-up

Simulating m moves of $TM M_1$ using at most 8 moves of $TM M_2$

Tape of TM M₁

A₁ A₂ A₃ A₄ B₁ B₂ B₃ B₄ C₁ C₂ C₃ C₄

Reading - 4 moves

Tape of $TM M_2$

A ₁	<i>B</i> ₁	C ₁
A_2	B ₂	C ₂
A_3	B ₃	C ₃
A_4	B ₄	C ₄

Linear speed-up

Simulating m moves of $TM M_1$ using at most 8 moves of $TM M_2$

Tape of TM M₁

Writing - 4 pomaka

Tape of TM M₂

A ₁	B ₁	C ₁
A_2	B_2	C ₂
A_3	B_3	C ₃
A_4	B ₄	C ₄

