Exo 1

Rappel de cours:

- Une fonction dérivable est continue, par contre le réciproque n'est pas vraie
- Une fonction est dérivable sur un intervalle si elle est dérivable en tout point de cette intervalle
- Une fonction est dérivable en un point a si $\exists l, \lim_{x \to a} \frac{f(x) f(a)}{x a} = l$ ou $\exists l, \lim_{h \to 0} \frac{f(a + h) f(a)}{h}$
- une fonction est dérivable sur un intervalle donn si elle est un assemblage de fonctions connues et drivables sur cette intervalle.

La fonction $f(x) = |x - \pi| \sin(x)$ est égale à

$$f(x) = \begin{cases} (x - \pi)sin(x) & x \ge \pi \\ (\pi - x)sin(x) & x < \pi \end{cases}$$

Les deux parties sont un assemblage fonctions dérivables sur leur intervalle. Il reste à démontrer si la fonction est dérivable en π .

$$\exists l, \lim_{x \to \pi} \frac{f(x) - f(\pi)}{x - \pi} = l$$

$$\begin{cases} \lim_{x \to \pi^+} \frac{(x - \pi)sin(x) - (\pi - \pi)sin(\pi)}{x - \pi} \\ \lim_{x \to \pi^-} \frac{(\pi - x)sin(x) - (\pi - \pi)sin(\pi)}{x - \pi} \end{cases}$$

$$\begin{cases} \lim_{x \to \pi^+} \frac{(x - \pi)sin(x)}{x - \pi} \\ \lim_{x \to \pi^-} \frac{-(x - \pi)sin(x)}{x - \pi} \end{cases}$$

$$\begin{cases} \lim_{x \to \pi^+} sin(x) \\ \lim_{x \to \pi^-} -sin(x) \end{cases}$$

La fonction sinus est impaire, sin(-x) = -sin(x). Donc

$$\begin{cases} \lim_{x \to \pi^+} \sin(x) \\ \lim_{x \to \pi^-} \sin(-x) \end{cases}$$

on a $\lim_{x\to\pi^-} \sin(-x) = \lim_{x\to\pi^+} \sin(x)$. La valeur l existe donc la fonction f est dérivable.

La proposition est Vraie.

Exo 2

Soit
$$f(x) = e^x$$
. on a $\forall x, f'(x) = e^x$

$$\lim_{h \to 0} \frac{f(x_0 + 3h) - f(x_0 + h)}{h}$$

$$\lim_{h \to 0} \frac{e^{(x_0 + 3h)} - e^{(x_0 + h)}}{h}$$

$$\lim_{h \to 0} \frac{e^{x_0} \cdot e^{3h} - e^{x_0} \cdot e^{h}}{h}$$

$$\lim_{h \to 0} \frac{e^{x_0} (e^{3h} - e^{h})}{h}$$

$$e^{x_0} \lim_{h \to 0} \frac{(e^{3h} - e^{h})}{h}$$

Si $\lim_{h\to 0} \frac{f(x_0+3h)-f(x_0+h)}{h} = 2f'(x_0)$ alors on a $\lim_{h\to 0} \frac{(e^{3h}-e^h)}{h} = e^{x_0}$. Ce qui est faux.

La proposition est Fausse.

Exo 3

Pour x voisin de 0, on a $e^{\sin(2x)} = 1 + 3x + x\epsilon(x)$ avec $\lim_{x\to 0} \epsilon(x) = 0$.

Exo 4

Soit $f(x) = (x-1)^3$, le fonction est dérivable $f'(x) = 3(x-1)^2$ et f'(1) = 0. Le point 1 n'est pas un extremum de la fonction sur l'intervalle [-2,3]. En effet, f(-2) = -27 < f(1) = 0 donc 1 n'est pas un minimum local et f(3) = 8 > f(1) = 0 donc 1 n'est pas un maximum local.

La proposition est Fausse.

Exo 5

Soit f(x) = |x|, la fonction est définie et continue en 0 mais pas dérivable en 0. En effet, si f(x) est dérivable en a alors, $\exists l, \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$

$$\begin{cases} \lim_{x \to 0^+} \frac{x-0}{x-0} = 1\\ \lim_{x \to 0^-} \frac{-x-0}{x-0} = -1 \end{cases}$$

La proposition est Fausse.

Exo 6

Exo 7

Exo 8

Exo 9

Preuve par l'absurde.

Admettons que la fonction f ne soit pas bornée sur l'intervalle [0,1], donc elle n'admet pas de valeur maximale (resp. minimale) sur l'intervalle [0,1]; $\exists c \in [0,1], f(c) = +\infty (resp. -\infty)$ [1].

La fonction f est continue sur l'intervalle [0,1], donc $\forall x_0 \in [0,1], \forall \epsilon > 0, \exists \eta > 0$ tel que $(\forall x \in [0,1] \cap]x_0 - \eta, x_0 + \eta[,|f(x) - f(x_0)| < \epsilon)$ [2].

Au point c, la proposition [2] est fausse, la fonction f admet une valeur maximale M (resp. minimale m) sur l'intervalle [0,1]. Donc la fonction f est bornée.

On peut également utiliser le théorème de Bolzano-Weierstrass.

La proposition est Vraie.

Exo 10

Preuve par l'absurde.

Admettons que la fonction f n'a pas de valeur maximale sur l'intervalle [0,1], donc $\exists c \in [0,1], f(c) = +\infty$ [1].

La fonction f est continue sur l'intervalle [0,1], donc $\forall x_0 \in [0,1], \forall \epsilon > 0, \exists \eta > 0$ tel que $(\forall x \in [0,1] \cap]x_0 - \eta, x_0 + \eta[,|f(x) - f(x_0)| < \epsilon)$ [2].

Au point c, la proposition [2] est fausse, la fonction f admet une valeur maximale sur l'intervalle [0,1].

On peut également utiliser le théorème de Bolzano-Weierstrass.

La proposition est Vraie.

Exo 11

Preuve par l'absurde.

Soit une fonction f périodique de période p et continue.

Admettons que la fonction f n'a pas de valeur maximale sur l'intervalle [0, p], donc $\exists c \in [0, p], f(c) = +\infty$ [1].

La fonction f est continue sur \mathbb{R} donc également sur l'intervalle [0,p], donc $\forall x_0 \in [0,p], \forall \epsilon > 0, \exists \eta > 0$ tel que $(\forall x \in [0,p] \cap]x_0 - \eta, x_0 + \eta[,|f(x) - f(x_0)| < \epsilon)$ [2].

Au point c, la proposition [2] est fausse, la fonction f admet une valeur maximale sur l'intervalle [0, p]. Comme la fonction est périodique, on a $\forall x \in \mathbb{R}, f(x) = f(x\%p)$, et $x\%p \in [0, p]$, donc la valeur maximale sur l'intervalle [0, p] est également la valeur maximale de la fonction f sur \mathbb{R} .

On peut également utiliser le théorème de Bolzano-Weierstrass.

La proposition est Vraie.

Exo 12

Exo 13

Montrons:

$$\begin{aligned} \forall x,y \in [-1,1], |x^{2013}-y^{2013}| &\leq 2013|x-y|\\ |x-y| &\geq 0, \, \text{donc} \end{aligned} \\ \forall x,y \in [-1,1], \frac{|x^{2013}-y^{2013}|}{|x-y|} &\leq 2013\\ \forall x,y \in [-1,1], \left|\frac{x^{2013}-y^{2013}}{x-y}\right| &\leq 2013\\ \forall x,y \in [-1,1], \left|\frac{x^{2013}-y^{2013}}{x-y}\right| &\leq 2013 \end{aligned}$$

On a $x, y \in [-1, 1]$, donc $x^m, y^m \in [-1, 1]$ et $x^m.y^m \in [-1, 1]$. Donc $\sum_{k=0}^{2012} x^k.y^{2012-k} \in [-2013, 2013]$ et $|\sum_{k=0}^{2012} x^k.y^{2012-k}| \le 2013$.

La proposition est Vraie.

Exo 14

Exo 15

Exo 16