

Nachrichtentechniklabor

Wintersemester 2014

Übung C: RFID

Übungsdatum: 18.11.2014

Gruppe: 05

Protokollführer: Thomas Neff

Laborteilnehmer:

- 1. Daniel Freßl, 1230028
- 2. Thomas Neff, 1230319
- 3. Thomas Pichler, 1230320
- 4. Martin Winter, 1130688

Laborleiter: Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Erich Leitgeb

Betreuer: Paul Seebacher

Graz, am 16. November 2014

Inhaltsverzeichnis

1	Rüc	ckwirkungsfreie Messung des H-Feldes zweier PCD-Schleifenantennen	
	\mathbf{mit}	unterschiedlichen Güten	2
	1.1	Aufgabenstellung	2
	1.2	Messaufbau	٠
	1.3	Tabellen	٠
	1.4	Formeln	4
	1.5	Berechnungsbeispiele	
	1.6	Diagramme	-
	1.7	Diskussion	١
2	Mes	ssung der H-Feldstärke über der Frequenz bei unterschiedlichen An-	
		-	6
	2.1	Aufgabenstellung	(
	2.2	Messaufbau	7
	2.3	Tabellen	7
	2.4	Formeln	8
	2.5	Berechnungsbeispiele	8
	2.6	Diagramme	Ć
	2.7	Diskussion	(
3	Arb	peitsbereich eines Lesegerätes	(
	3.1	Aufgabenstellung	(
	3.2	Tabellen	(
	3.3	Formeln	(
	3.4	Berechnungsbeispiele	(
	3.5	Diskussion]
4	Seit	enbandpegel der Rückmodulation	1
	4.1	Aufgabenstellung]
	4.2	Messaufbau	1
	4.3	Tabellen	1
	4.4	Formeln	1
	4.5	Berechnungsbeispiele	1
	4.6	Diagramme	1
	47	Diskussion 1	1

1 Rückwirkungsfreie Messung des H-Feldes zweier PCD-Schleifenantennen mit unterschiedlichen Güten

1.1 Aufgabenstellung

Der Zweck dieser Übung besteht darin, Energie- und Informatuonsübertragung (Von Lesegerät zu Transponder-Karte) für RFID-Systeme in Abhängigkeit der Güte der PCD-Sendeantenne deutlich zu machen. Bei gleicher Treiberleitsung kann man mit einer höheren Antennengüte eine höhere H-Feldstärke erreichen, verliert jedoch in der zeitlichen Auflösung von Pulsen, dies bedeutet eine geringere mögliche Datenrate.

- Nehmen Sie hierfür bei zwei Antennen, unterschiedlicher Güte, die Feldstärke in Abhängigkeit der Distanz auf.
- Nehmen Sie die Anstiegszeiten bei beiden Antennen auf.

1.2 Messaufbau

1.3 Tabellen

	Q=50	Q=5	Q=50	Q=5
Distanz	$U_i(pp)$	$U_i(pp)$	H(rms)	H(rms)
[mm]	[V]	[V]	[A/m]	[A/m]
0	2.9	0.894	3.167	0.976
0.5	2.75	0.863	3.003	0.942
1	2.61	0.813	2.85	0.888
1.5	2.44	0.756	2.664	0.826
2	2.25	0.706	2.457	0.771
2.5	2.06	0.637	2.249	0.696
3	1.89	0.584	2.064	0.638
3.5	1.7	0.531	1.86	0.579
4	1.55	0.481	1.69	0.525
4.5	1.39	0.434	1.52	0.474
5	1.25	0.425	1.37	0.464
5.5	1.13	0.425	1.23	0.464
6	1.01	0.425	1.102	0.464
6.5	0.92	0.425	1.004	0.464
7	0.82	0.425	0.895	0.464
7.5	0.75	0.425	0.819	0.464
8	0.68	0.425	0.743	0.464
8.5	0.62	0.425	0.677	0.464
9	0.55	0.425	0.6	0.464
9.5	0.5	0.425	0.546	0.464
10	0.46	0.425	0.502	0.464
10.5	0.41	0.425	0.448	0.464
11	0.38	0.425	0.415	0.464
11.5	0.35	0.425	0.382	0.464
12	0.32	0.425	0.349	0.464
12.5	0.29	0.425	0.317	0.464
13	0.29	0.425	0.317	0.464
13.5	0.29	0.425	0.317	0.464
14	0.29	0.425	0.317	0.464

1.4 Formeln

$$U_{ind} = 2 \cdot \pi \cdot f_r \cdot \mu_e \cdot \mu_r \cdot H \cdot A \tag{1}$$

$$U_{SS} = \sqrt{2} \cdot 2 \cdot U_{ind} \tag{2}$$

1.5 Berechnungsbeispiele

$$U_{ind} = 2 \cdot \pi \cdot f_r \cdot \mu_e \cdot \mu_r \cdot H \cdot A \tag{3}$$

$$U_{SS} = \sqrt{2} \cdot 2 \cdot U_{ind} \tag{4}$$

- 1.6 Diagramme
- 1.7 Diskussion

2 Messung der H-Feldstärke über der Frequenz bei unterschiedlichen Antennengüten

2.1 Aufgabenstellung

Der Zweck dieser Übung besteht darin, die starke Frequenzabhängigkeit bei Antennen hoher Güte (Bandpass-Filter) im Frequenzbereich zu zeigen. Hochgütige Antennen haben eine starke Resonanzerhöhung an der Resonanzfrequenz, niedergütige Antennen einen eher flachen Verlauf. Bei Frequenzen deutlich über oder unter der Resonanzfrequenz, im Fall von RFID-Systemen insbesondere den Unterträgern, welche die Transponderkarten zur Rückmodulation nutzen, können hochgütige Antennen durchaus eine deutlich größere Dämpfung haben, als niedergütige Sendeantennen. Dies hat Einfluss auf die Empfindlichkeit im Empfangszweig eines Lesegerätes.

• Messen Sie die Frequenzabhängigkeit zweier Antennen mit unterschiedleiher Güte und stellen Sie den Verlauf grafisch dar.

2.2 Messaufbau

2.3 Tabellen

	Q = 50	Q=5	Q=50	Q=5
Frequenz	$U_i(pp)$	$U_i(pp)$	H(rms)	H(rms)
[MHz]	[V]	[V]	[A/m]	[A/m]
12	0.363	0.5	0.396	0.546
12.2	0.425	0.575	0.464	0.628
12.4	0.5	0.6	0.546	0.655
12.6	0.784	0.813	0.856	0.888
12.8	1	0.844	1.092	0.922
13	1.3	0.869	1.419	0.949
13.2	1.78	0.887	1.944	0.969
13.25	1.97	0.894	2.151	0.976
13.3	2.14	0.9	2.337	0.983
13.35	2.31	0.906	2.523	0.989
13.4	2.5	0.906	2.73	0.989
13.45	2.64	0.906	2.883	0.989
13.5	2.73	0.913	2.981	0.997
13.55	2.76	0.913	3.014	0.997
13.6	2.7	0.913	2.948	0.997
13.65	2.61	0.919	2.85	1.004
13.7	2.45	0.925	2.675	1.01
13.75	2.31	0.925	2.523	1.01
13.8	2.14	0.925	2.337	1.01
14	1.59	0.925	1.736	1.01
14.2	1.23	0.925	1.343	1.01
14.4	1.02	0.919	1.114	1.004
14.6	0.86	0.906	0.939	0.989
14.8	0.734	0.9	0.802	0.983
15	0.653	0.887	0.713	0.987

2.4 Formeln

2.5 Berechnungsbeispiele

- 2.6 Diagramme
- 2.7 Diskussion

3 Arbeitsbereich eines Lesegerätes

3.1 Aufgabenstellung

• ???.

3.2 Tabellen

H(rms))	$U_i(pp)amScope$	$U_i(pp)amTransponder$
[A/m]	[V]	[V]
0	0	0
0.5	0.456	0.982
1	0.913	1.933
1.5	1.344	3.154
2	1.8	4.21
2.5	2.23	5.26
3	2.69	6.29
3.5	3.19	7.46
4	3.61	8.5
4.5	4.09	9.5
5	4.59	10.52
5.5	5.03	11.55
6	5.47	12.55
6.5	5.91	13.53
7	6.34	14.55
7.5	6.78	15.56
8	7.19	16.5

3.3 Formeln

3.4 Berechnungsbeispiele

3.5 Diskussion

4 Seitenbandpegel der Rückmodulation

4.1 Aufgabenstellung

• ???.

4.2 Messaufbau

4.3 Tabellen

H(rms))	$U_i(pp)oberesSeitenband$	$U_i(pp)unteresSeitenband$
[A/m]	[mV]	[mV]
1	320.6	41.95
2	866.21	727.24
3	158.54	32.35
4	218.7	312.14
5	175.37	61.54
6	323.9	267.93

4.4 Formeln

4.5 Berechnungsbeispiele

4.6 Diagramme

4.7 Diskussion

Literatur

[1] Markus Lenzhofer, Paul Meissner, Dr. Klaus Witrisal. Übung E: Messungen an digitalen Übertragungssystemen. Technische Universität Graz.