Last updated: August 22, 2011

Contents

1	produce_results.pro	1
2	Format Structures	3
3	results_intensity_setup	3
4	produce_image	4
5	produce_voronoi_image	5
6	produce_los	5
7	produce_points	5

1 produce_results.pro

This procedure is the starting point for creating results from model outputs. An input structure or file and a format structure or file are required. The model output files associated with the input file should be created before running this routine.

The possible result types are:

- image = 2-D image from a specified viewing geometry
- voronoi image = 2-D image using the voronoi regions method
- los = the line-of-sight results along specific spacecraft trajectory and look direction
- points = the density sampled at specified points or along a spacecraft trajectory

The quantities that can be determined are:

- Density
- Column density

- Intensity (multiple excitation processes possible)
- Spectrum (simulated spectrum over wavelength range)

The rest of this section outlines the produce_results procedure.

- 1 Function call: produce_results, inputtemp, formattemp, data=data, npackets=npackets, savefile=savefile
 - 1.1 inputtemp can be:
 - 1.1.1 an input file that can be restored
 - 1.1.2 an input structure
 - 1.1.3 list of output files to restore
 - The input structure is determined from the first output file in the list
 - If the input structure is not the same for each output file, the results will be unpredictable (i.e., wrong).
 - 1.2 formattemp can be:
 - 1.2.1 a format file that can be restored
 - 1.2.2 a format structure
 - 1.3 data = points at which to produce results
 - 1.3.1 if producing LOS results, data is a structure with (x, y, z, xbore, ybore, zbore)
 - 1.3.2 if producing density or column density, data is a structure with (x, y, z)
 - 1.4 npackets = minimum number of packets needed to produce a result (default = 0)
 - 1.5 savefile = file to save the loaded packets into still working on this option
- 2 Common block results contains:
 - 2.1 input = the input structure for this model run
 - 2.2 format = the format structure for this result
 - 2.3 SystemConsts
 - 2.4 stuff
 - 2.5 gvalue
 - 2.6 plasma = current plasma parameters for the simulation
- 3 stuff structure contains:
 - 3.1 aplanet = distance of planet from the sun (AU)
 - 3.2 vr = radial velocity of planet relative to the sun (km/s)
 - 3.3 atoms_per_packet = number of atoms 1.0 packets represents
 - 3.4 mod_rate = rate packets are ejected from the surface
 - 3.5 totalsource = total number of packets ejected
- 4 Restore the inputs and determine which output files to use

- 5 Restore the SystemConsts structure and determine the distance and radial velocity of the central planet based on input.geometry.taa
 - function calls to SystemConstants and planet_dist
- 6 Determine totalpackets = total number of packets available
 - 6.1 extracts the number of saved packets from the output file headers and
 - 6.2 If the *npackets* keyword is not set, then npackets = 0.
 - 6.3 If no output files are found, then totalpackets = 0
 - 6.4 If totalpackets < npackets then there is nothing to do.
- 7 Restore the format structure if the filename is given as an input
- 8 Determine stuff.totalsource by extracting the values from the output files
 - 8.1 $totalsource = \sum output.frac0 \rightarrow total starting fractional values for the packets$
 - 8.2 totalpackets is the number of packets ignoring the initial fractional value
- 9 $stuff.mod_rate = stuff.totalsource/input.options.endtime \rightarrow packets$ ejected per second
- 10 $stuff.atoms_per_packet = format.strength \times 10^{26} \rightarrow \text{number of atoms each packet represents.}$ $format.strength = \text{source rate in units of } 10^{26} \text{ atoms/sec.}$
- 11 if format.quantity = 'intensity', then setup the intensity parameters
 - run procedure results_intensity_setup
- 12 Run the appropriate results production program based on format.type:
 - 12.1 'image': Create an image from a specified viewing geometry
 - result = produce_image(files, savefile=savefile)
 - 12.2 'voronoi image': Create an image from a specified viewing geometry using the voronoi region method (still in progress)
 - result = produce_voronoi_image(files, savefile=savefile)
 - 12.3 'los': Determine result along a trajectory line of sight
 - result = produce_los(files, savefile=savefile)
 - 12.4 'points': Determine density at specified points
 - result = produce_density(files, savefile=savefile)

2 Format Structures

3 results_intensity_setup

- 1 procedure is in the file results_functions_4.0.pro
- 2 This routine loads the gvalues and plamsa info for resonant scattering and electron impact excitation
- 3 Resonant scattering emission:

- 3.1 format.emission.mechanism must contain 'resscat'
- 3.2 g-value determined from get_gvalue, which gives the gvalues for specified atom at specified distance from the sun as function of radial velocity. The g-value structure contains:
 - 3.2.1 species: the emitting atom
 - 3.2.2 a: distance from sun (AU)
 - 3.2.3 wavelength: array of emission line wavelengths (Å)
 - 3.2.4 v: array of radial velocities relative to the sun (km s⁻¹)
 - 3.2.5 g: $(n_v \times n_\lambda)$ -array with g-value as function of v_r and λ (photons atom⁻¹ s⁻¹)
 - 3.2.6 radaccel: radiation accelleration as function of v_r (cm s⁻²)
- 4 Electron impact excitation
 - 4.1 format.emission.mechanism must contain 'eimp'
 - 4.2 This has not been set up correctly yet.

$4 \quad { m produce_image}$

This procedure produces a 2-D image from a specified viewing geometry \rightarrow See Section 2 for required parameters. The user does not call this function directly – it is called from produce_results.

The procedure is outlined below:

- 1 Determine the image origin There are some differences in the calculations depending on whether the image center is the planet or a satellite.
- 2 Image dimensions:
 - 2.1 Size of the output image (number of pixels) is given by format.geometry.dims
 - 2.2 The image center is given by format.geometry.center measured in R_{obj} relative to the center of the image origin (format.geometry.origin).
 - 2.3 The width of the image is given by format.geometry.width measured in R_{obj} .
 - 2.4 Note that geometry.dims, geometry.width, and geometry.center are all 2-element vectors.
- 3 Coordinate system
 - 3.1 The packets are rotated into a reference frame with the x-axis aligned along the image horizontal axis, the z-axis aligned along the image vertical axis, and the y-axis along the image line of sight with the observer located at $(0, -\infty, 0)$
 - 3.2 Image scale:

$$scale = \frac{geometry.width}{geometry.dims - 1} \tag{1}$$

- ${\bf 5} \quad {\bf produce_voronoi_image}$
- 6 produce_los
- $7 \quad \text{produce_points}$