

UNIVERSITATEA BABEŞ-BOLYAI Facultatea de Matematică și Informatică

INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme bazate pe reguli în medii certe

Laura Dioşan

Sumar

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - □ Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
- Sisteme hibride
- Sisteme bazate pe reguli în medii certe
- Sisteme bazate pe reguli în medii incerte (Bayes, factori de certitudine, Fuzzy)

Materiale de citit și legături utile

- capitolul III din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 4 şi 5 din H.F. Pop, G. Şerban, Inteligenţă artificială, Cluj Napoca, 2004
- capitolul 2 din Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- capitolul 6 și 7 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*

Conținut

- Sisteme inteligente
 - Sisteme bazate pe cunoştinţe
 - Sisteme bazate pe logică
 - Sisteme bazate pe reguli în medii certe

Sisteme inteligente

Sisteme inteligente – sisteme bazate pe cunoştinţe (SBC)

- sistemele computaţionale alcătuite din 2 module principale (roluri):
 - Domeniul de cunoştinţe (baza de cunoştinţe BC
 - knowledge base)
 - Informaţiile specifice despre un domeniu
 - Modulul de control (MC inference engine)
 - Regulile prin care se pot obţine informaţii noi
 - Algoritmi independenţi de domeniu

- Conţinut
- Tipologie
- Modalități de reprezentare a cunoştinţelor
- Modalități de stocare a cunoştinţelor

- Conţinut
 - Informaţii (exprimate într-o anumită reprezentare ex. propoziţii) despre mediu
 - informaţii necesare pentru înţelegerea, formularea şi rezolvarea problemelor
 - mulţime de propoziţii (exprimate/reprezentate într-un limbaj formal) care descriu mediul
 - □ reprezentare uşor interpretabilă de către calculator → limbaj de reprezentare a cunoștințelor
 - □ mecanismul de obţinere a unor propoziţii noi pe baza celor vechi → inferenţă/raţionare
- Tipologie
 - cunoştinţe exacte (perfecte)
 - cunoştinţe imperfecte (nesigure, incerte)
 - Inexacte
 - Incomplete
 - Incomensurabile
- Modalități de reprezentare a cunoştințelor
 - Logica formală (limbaje formale)
 - Reguli
 - Reţele semantice

- Modalități de reprezentare a cunoștințelor
 - Logica formală (limbaje formale)
 - Definiţie
 - Știinţa principiilor formale de raţionament
 - Componente
 - Sintaxă simbolurile atomice folosite de către limbaj şi regulile de construcţie a expresiilor (structurilor/propoziţiilor) limbajului
 - Semantică asociază un înţeles simbolurilor şi o valoare de adevăr (Adevărat sau Fals) regulilor (propoziţiilor) limbajului
 - Metodă de inferenţă sintactică regulile necesare determinării unei submulţimi de expresii logice → teoreme (folosite pentru obţinerea de noi expresii)
 - Tipologie
 - În funcție de numărul valorilor de adevăr:
 - logică duală
 - logică polivalentă
 - În funcţie de tipul elementelor de bază:
 - clasică → primitivele = propoziţii (predicate)
 - probabilistică → primitivele = variabile aleatoare
 - În funcție de obiectul de lucru:
 - logica propoziţională → se lucrează doar cu propoziţii declarative, iar obiectele descrise sunt fixe sau unice (Ionică este student)
 - logica predicatelor de ordin I → se lucrează cu propziţii declarative, cu predicate şi cuantificări , iar obiectele descrise pot fi unice sau variabile asociate unui obiect unic (Toţi studenţii sunt prezenţi)
 - Reguli
 - Reţele semantice

Baza de cunoştinţe (BC)

- Modalități de reprezentare a cunoștințelor
 - Logica formală (limbaje formale)
 - Reguli
 - Euristici speciale care generează informații (cunoștințe)
 - O modalitate de exprimare (reprezentare) a cunoştinţelor
 - Ex. dacă Ionică lucrează la Facebook, atunci el câștigă mulți bani și are puțin timp liber
 - □ Interdependenţele între reguli → reţea de inferenţă
 - □ Fac legătura între cauză și efect memorate în calculator sub forma unor structuri de control IF cauză THEN efect

Reţele semantice

- Grafuri orientate cu noduri care conţin concepte şi arce care reprezintă relaţii semantice între concepte precum:
 - Meronymy (A este meronym al lui B dacă A este o parte a lui B)
 - Ex. Degetul este un meronym al mâinii, roata este un meronym al maşinii
 - Holonymy (A este holonym al lui B dacă B este o parte a lui A)
 - Ex. Copacul este un holonym al scoarței
 - Hyponymy (A este hyponym al lui B dacă A este un fel de B)
 - Ex. Tractorul este un hyponym al autovehiculului
 - Hypernymy (A este hypernym al lui B dacă A este o generalizare al lui B)
 - Ex. Fructul este un hypernym al portocalei
 - Synonymy (A este sinonim al lui B dacă A denotă acelaşi lucru ca B)
 - Ex. A alerga este sinonim cu a fugi
 - Antonymy (A este antonim al lui B dacă A denotă lucruri opuse ca B)
 - Ex. Uscat este antonim cu ud

- Modalități de stocare a cunoștințelor
 - Relaţii
 - □ Simple → baze de date
 - □ Ierarhice → ierarhii de concepte (reţele semantice)
 - Logică formală
 - Reguli
 - Logică procedurală
 - Algoritmi

Modulul de control (MC)

- Conţinut
 - Responsabil cu inferenţa
 - A ajunge la o concluzie plecând de la anumite premise (cunoştinţe) şi aplicând anumite reguli de inferenţă
 - MC depinde de complexitate şi tipul cunoştinţelor cu care are de-a face

Tipologie

- În funcție de direcția inferenței:
 - MC cu legătură înainte (forward chaining)
 - Pornesc de la informația disponibilă (fapte date, condiții) şi încearcă să ajungă la o concluzie (fapte derivate)
 - Se bazează pe date (data driven)
 - MC cu legătură înapoi (backward chaining)
 - Pornesc de la o concluzie potenţială (ipoteză) şi caută evidenţe care să o suporte-contrazică (explicaţii)
 - Se bazează pe scop (goal driven)

□ Tehnici de raţionare (tehnici de inferenţă)

- În medii certe
 - bazate pe logică
 - bazate pe reguli
- În medii incerte
 - bazate pe teoria probabilităţilor
 - bazate pe teoria posibilității

Tipologia SBC

- Sisteme bazate pe logică (SBL)
- Sisteme bazate pe reguli (SBR)
- Case-based reasoning
- Hypertext manipulating systems
- Data bases and intelligent UI
- □ Intelligent tutoring systems

Sisteme bazate pe logică (SBL)

- Conţinut şi obiective
- Arhitectură
- Tipologie
- Tool-uri
- Avantaje şi limite

Continut şi obiective

Conţinut

- explorează o multitudine de cunoștințe date pentru a obține concluzii noi despre activități dificil de examinat, folosind metode specifice logicii formale
- Un sistem logic este alcătuit din:
 - limbaj (sintaxă + semantică)
 - metodă de deducţie (inferenţă)

Scopul SBL

- Rezolvarea de probleme cu ajutorul programării declarative
 - descriind ceea ce este adevărat sau nu în rezolvarea problemelor
 - permiţând tehnici de raţionare automată
- Exemple de probleme rezolvate de SBRL
 - demonstrarea automată a teoremelor

De ce se studiază SBL?

Logica formală este precisă şi definită

Arhitectură

Baza de cunoştinţe (BC)

- Sintaxă
 - simbolurile atomice folosite de către limbaj şi regulile de construcţie a expresiilor (structurilor/propoziţiilor) limbajului
- Semantică
 - asociază un înțeles simbolurilor şi o valoare de adevăr (Adevărat sau Fals) regulilor (propozițiilor) limbajului

Modulul ce control (MC)

 Metodă de inferenţă sintactică – regulile necesare determinării unei submulţimi de expresii logice → teoreme (folosite pentru obţinerea de noi expresii)

Tipologie

Sisteme bazate pe logica propoziţională

- se lucrează doar cu propoziții declarative
- obiectele descrise sunt unice şi fixe (*Ionică este student*)

Sisteme bazate pe logica predicatelor de ordin I

- se lucrează cu propoziţii declarative, cu predicate (Student(a)) şi cuantificări (variabile cuantificabile → pentru orice a, Student(a) → AccesWiFi(a))
- obiectele descrise pot fi unice sau dinamice (variabile asociate unui obiect unic Toţi studenţii sunt prezenţi)
- predicatele au argumente simple (Student(a))

□ Sisteme bazate pe logica predicatelor de ordin superior (≥ 2)

- se lucrează cu propoziții declarative, cu predicate și cuantificări (variabile cuantificabile)
- permit variabilelor să reprezinte mai multe relaţii între obiecte
- predicatele pot avea argumente simple, argumente de tip predicat (StudentSenator(Student(a)))
 sau argumente de tip funcţie (Bursier(a are media peste 9.50))

Sisteme temporale

Reprezintă valoarea de adevăr a faptelor de-a lungul timpului (Ionică este uneori grăbit)

Sisteme modale

Reprezintă şi fapte îndoielnice (Ionică poate să promoveze examenul)

Sisteme bazate pe logica propoziţională

- Baza de cunoştinţe
 - Poate fi alcătuită din:
 - Simboluri (A, B, P, Q, ...)
 - Propoziţii (formule)
 - definite astfel:
 - Un simbol
 - 2. Dacă P este o propziție, atunci și ¬P este tot propoziție
 - Dacă P şi Q sunt propoziții, atunci $P \land Q$, $P \lor Q$, $P \Rightarrow Q$, $P \Leftrightarrow Q$ sunt tot propoziții
 - Un număr finit de aplicări ale regulilor (1) (3)
 - Interpretare a unei propoziţii → stabilirea valorii de adevăr
 - Model → interpretare a unei mulţimi de propoziţii astfel încât toate propoziţiile să fie adevărate
- Modulul de control
 - realizează inferenţa
 - stabilirea valorii de adevăr a unei propoziții obiectiv pe baza informațiilor din BC
 - în mai multe moduri
 - verificarea modelului
 - enumerarea tuturor combinaţiilor posibile pentru valorile de adevăr ale simbolurilor şi propoziţiilor implicate în SBL
 - deducția modelului cu ajutorul regulilor de inferență

Sisteme bazate pe logica propoziţională – modulul de control

- Problemă
 - Se dă o BC = {P1, P2, ..., Pm} formată din simbolurile {X1, X2, ..., Xn} şi o propoziție obiectiv O.
 - Se poate deduce O din BC?
- Verificarea modelului
 - Etape
 - Se construieşte tabelul corespunzător tuturor combinaţiilor posibile pentru valorile de adevăr ale simbolurilor
 - Se determină dacă toate modelele BC sunt şi modele ale lui O
 - Modelele BC acele linii în care toate propziţiile din BC sunt adevărate

Exemplu

- P = Afară este foarte cald
- Q = Afară este umezeală
- R = Afară plouă
- \square BC = { $P \land Q \Rightarrow R, Q \Rightarrow P, Q$ }
- Arr R = Va ploua?

Р	Q	R	P∧Q⇒R	Q⇒P	Q	ВС	R	BC⇒R
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	T	T	F	F	Т
Т	F	Т	Т	Т	F	F	Т	Т
Т	F	F	Т	Т	F	F	F	Т
F	Т	Т	Т	F	Т	F	Т	Т
F	T	F	Т	F	Т	F	F	Т
F	F	Т	Т	Т	F	F	Т	Т
F	F	F	Т	Т	F	F	F	Т

Dificultăți

- □ Nr tuturor combinaţiilor creşte exponenţial cu n → timp mare de calcul
- Soluţia: deducerea prin folosirea regulilor de inferenţă

Sisteme bazate pe logica propoziţională - modulul de control

- Problemă
 - Se dă o BC = {P1, P2, ..., Pm} formată din simbolurile {X1, X2, ..., Xn} şi o propoziţie obiectiv O.
 - Se poate deduce O din BC?
- Deducţia modelului cu ajutorul regulilor de inferenţă
 - Etape
 - Construirea unei demonstraţii a valorii de adevăr a propoziţiei obiectiv pe baza:
 - propoziţiilor
 - originale din BC
 - derivate
 - regulilor de inferenţă

Regulă de inferență	Premisă	Propoziția derivată		
Modus ponens	A, A⇒B	В		
Şi introductiv	A, B	$A \wedge B$		
Şi eliminativ	$A \wedge B$	Α		
Negaţie dublă	¬¬A	Α		
Rezoluţie unitară	A∨B, ¬B	Α		
Rezoluţie	$A\lor B$, $\neg B\lor C$	A∨C		

- Exemplu
 - Problemă

	P =	Afară	este	foarte	cald
--	-----	-------	------	--------	------

- Q = Afară este umezeală
- R = Afară plouă

• BC =
$$\{P \land Q \Rightarrow R, Q \Rightarrow P, Q\}$$

R = Va ploua?

Soluţie

 $\begin{array}{ccc} 1. & Q & \text{Premisă} \\ 2. & Q {\Rightarrow} P & \text{Premisă} \end{array}$

3. P Modus Ponens (1,2)

. (P∧Q)⇒R Premisă

5. $P_{\wedge}Q$ Si introductiv (1,3)

R Modus Ponens (4,5)

Tipologia SBC

- Sisteme bazate pe logică (SBL)
- □ Sisteme bazate pe reguli (SBR)
- Case-based reasoning
- Hypertext manipulating systems
- Data bases and intelligent UI
- □ Intelligent tutoring systems

- □ Sisteme bazate pe reguli (SBR)
 - Conţinut şi obiective
 - Proiectare
 - Arhitectură
 - Tool-uri şi exemple
 - Avantaje şi limite

Conţinut şi obiective

Conţinut

- explorează o multitudine de cunoștințe date pentru a obține concluzii noi despre activități dificil de examinat, folosind metode asemănătoare cu experţii umani
- pot avea succes la problemele fără soluție algoritmică deterministă
- încearcă să imite un expert uman (într-un anumit domeniu)
- SBR nu înlocuiesc experienţa umană, dar îi lărgesc sfera disponibilităţii permiţând ne-experţilor să lucreze mai bine → Sisteme expert (SE)

Scopul SBR

- Rezolvarea acelor tipuri de probleme care, de obicei, necesită experţi umani prin
 - □ Transferul expertizei de la un expert la un sistem computaţional şi
 - Apoi la alţi oameni (ne-experţi)
- Exemple de probleme rezolvate de SBR → Probleme de recomandare/consultare
 - Consultant medical aplicaţie care înlocuieşte medicul (dându-se simptomele, SE sugerează un diagnostic şi un tratament)
 - Detector al problemelor de funcționare ale unei mașini
 - Detector de probleme în sistemele de operare Microsoft Windows troubleshooting
 - Consultant financiar

De ce se studiază SBR?

- Pentru a înțelege metodele umane de raționare
- Experţii umani au nevoie de vacanţe, pot pleca la alte companii, se pot îmbolnăvi, cer măriri de salar, etc.
- Au foarte mare succes comercial

Proiectare

- Achiziţionarea informaţiilor (cunoştinţelor)
- Reprezentarea cunoştinţelor
- Inferenţa cunoştinţelor
- Transmiterea către utilizator a cunoştinţelor

Arhitectură

- Baza de cunoştinţe (BC)
 - Informaţiile specifice despre un domeniu
- Modulul de control (MC)
 - Regulile prin care se pot obţine informaţii noi
- Interfața cu utilizatorul
 - permite dialogul cu utilizatorii în timpul sesiunilor de consultare, precum şi accesul acestora la faptele şi cunostintele din BC pentru adăugare sau actualizare
- Modulul de îmbogățire a cunoașterii
 - ajută utilizatorul expert să introducă în bază noi cunoștințe
 într-o formă acceptată de sistem sau să actualizeze baza de cunoștințe.
- Modulul explicativ
 - are rolul de a explica utilizatorilor atât cunoștințele de care dispune sistemul, cât și
 raționamentele sale pentru obținerea soluțiilor în cadrul sesiunilor de consultare. Explicațiile
 într-un astfel de sistem, atunci când sunt proiectate corespunzător, îmbunătățesc la rândul
 lor modul în care utilizatorul percepe și acceptă sistemul

Arhitectură → baza de cunoştinţe

- Conţine
 - Informaţiile specifice despre un domeniu sub forma unor
 - □ fapte afirmaţii corecte
 - reguli euristici speciale care generează informaţii (cunoştinţe)

Rol

 stocarea tuturor elementelor cunoașterii (fapte, reguli, metode de rezolvare, euristici) specifice domeniului de aplicație, preluate de la experții umani sau din alte surse

Arhitectură → baza de cunoștințe

- Fapte
 - Definiţie
 - Afirmaţii necondiţionate corecte (propoziţii)
 - Memorate în calculator sub forma unor structuri de date
 - Exemplu
 - Ionică lucrează la Facebook
 - Tipologie
 - □ În funcție de persistență (ritmul de modificare)
 - Fapte statice aprox. permanente (*Ionică lucrează la Facebook*)
 - Fapte tranzitive specifice unei instanţe/rulări (Ionică este în pauza de masă)
 - În funcţie de modul de generare
 - Fapte date (Ionică participă la ședință)
 - Fapte derivate rezultate prin aplicarea unor reguli (Dacă Ionică este PM, atunci el trebuie să conducă ședința)

Arhitectură → baza de cunoştinţe

Reguli

Definiţie

- Euristici speciale care generează informaţii (cunoştinţe)
- O modalitate de exprimare (reprezentare) a cunoştinţelor
- □ Interdependenţele între reguli → reţea de inferenţă
- Fac legătura între cauză şi efect memorate în calculator sub forma unor structuri de control IF cauză THEN efect
 - Deducţie cauză + regulă → efect
 - Abducţie efect + regulă → cauză
 - Inducţie cauză + efect → regulă

Exemplu

- O cauză şi mai multe consecinţe (combinate cu ŞI)
 - DACĂ Ionică lucrează la Facebook, ATUNCI el câștigă mulți bani ŞI are puțin timp liber
- O cauză şi mai multe consecințe (combinate cu SAU)
 - DACĂ anotimpul este iarnă ATUNCI vremea este rece SAU este zăpadă
- Mai multe cauze/antecedente (combinate cu ŞI) şi un efect/o consecinţă
 - DACĂ anotimpul este iarnă ŞI temperatura este sub 0 grade ŞI bate vântul ATUNCI nu mergem la plimbare
- Mai multe cauze/antecedente (combinate cu SAU) și un efect/o consecință
 - DACĂ anotimpul este iarnă SAU temperatura este sub 0 grade SAU bate vântul ATUNCI vremea este rece
- Mai multe cauze/antecedente (combinate cu ŞI şi SAU) şi un efect/o consecinţă
 - DACĂ anotimpul este iarnă ŞI temperatura este sub 0 grade SAU bate vântul ATUNCI avioanele nu pot ateriza

Arhitectură → baza de cunoştinţe

- Reguli
 - Tipologie
 - În funcție de gradul de incertitudine
 - Reguli sigure Dacă eşti angajat, atunci primeşti salar
 - Reguli nesigure Dacă este iarnă, temperatura este sub 0 grade
 - În funcţie de ceea ce exprimă
 - Relaţii ex. Dacă studentul are media peste 9.50, atunci el primeşte bursă
 - Recomandări ex. Dacă plouă, atunci să luăm umbrela
 - Directive ex. Dacă bateria telefonului este gata, atunci trebuie pusă la încărcat
 - Euristici ex. Dacă lumina telefonului este stinsă, atunci bateria este plină
 - Avantajul lucrului cu reguli
 - Uşor de înţeles (o formă naturală a cunoştinţelor)
 - Simplu de explicat
 - Simplu de modificat şi întreţinut
 - Limitări ale regulilor
 - Cunoştinţele complexe necesită exprimarea prin foarte multe reguli
 - Căutarea în sistemele cu numeroase reguli devine greoaie

Arhitectură

- Baza de cunoştinţe (BC)
 - Informaţiile specifice despre un domeniu
- Modulul de control (MC)
 - Regulile prin care se pot obţine informaţii noi
- Interfața cu utilizatorul
 - permite dialogul cu utilizatorii în timpul sesiunilor de consultare, precum și accesul acestora la faptele și cunoștințele din BC pentru adăugare sau actualizare
- Modulul de îmbogățire a cunoașterii
 - ajută utilizatorul expert să introducă în bază noi cunoștințe
 într-o formă acceptată de sistem sau să actualizeze baza de cunoștințe.
- Modulul explicativ
 - are rolul de a explica utilizatorilor atât cunoștințele de care dispune sistemul, cât și
 raționamentele sale pentru obținerea soluțiilor în cadrul sesiunilor de consultare. Explicațiile
 într-un astfel de sistem, atunci când sunt proiectate corespunzător, îmbunătățesc la rândul
 lor modul în care utilizatorul percepe și acceptă sistemul

Arhitectură → modulul de control

- Conţinut
 - Regulile prin care se pot obţine informaţii noi
 - Algoritmi independenţi de domeniu
 - Creierul SBR un algoritm de deducere bazat pe BC şi specific metodei de raţionare
 - un program în care s-a implementat cunoașterea de control, procedurală sau operatorie, cu ajutorul căruia se exploatează baza de cunoștințe pentru efectuarea de raționamente în vederea obținerii de soluții, recomandări sau concluzii.
 - depinde de complexitate şi tipul cunoştinţelor cu care are de-a face
- Rol
 - cu ajutorul lui se exploatează baza de cunoștințe pentru efectuarea de raționamente în vederea obținerii de soluții, recomandări sau concluzii
- Tipologie în funcţie de direcţia inferenţei:
 - MC cu legătură înainte (forward chaining)
 - MC cu legătură înapoi (backward chaining)

Arhitectură → modulul de control cu legătură înainte (*forward chaining*)

- Ideea de bază
 - Se porneşte de la informaţia disponibilă (fapte date, condiţii) şi se încearcă ajungerea la o concluzie (fapte derivate) folosind regulile disponibile
 - Regulile sunt de forma:
 - partea stângă (PS) =>partea dreaptă (PD)
 - partea de condiţii =>partea de consecinţe (efecte)
 - Se bazează pe date (data driven)
- Exemplu
 - Întrebare (problemă): Angajatul Popescu are telefon?
 - Regulă: Dacă Popescu este angajat, atunci el are telefon.
 - Fapt curent: Popescu este angajat.
 - Concluzie: Popescu are telefon.

Arhitectură → modulul de control cu legătură înainte (forward chaining)

Algoritm

- Ciclul de execuţie
 - Repetă
 - Se selectează o regulă a cărei condiţii din PS sunt satisfăcute de starea curentă a faptelor stocată în memoria curentă
 - Se execută PD a regulii anterior selectate (schimbând starea curentă)
 - Până când nu se mai poate aplica nici o regulă

Observaţii

- Faptele sunt reprezentate în memoria curentă (de lucru) care este continuu actualizată
- Regulile reprezintă acţiuni care pot fi executate atunci când condiţiile specificate sunt satisfăcute de elementele stocate în memoria curentă
- Condiţiile sunt, de obicei, şabloane care se potrivesc cu elementele din memoria curentă
- Acţiunile implică, de obicei, adăugarea sau eliminarea unor elemente în memoria curentă

Arhitectură → modulul de control cu legătură înapoi (backward chaining)

- Ideea de bază
 - Se porneşte de la o concluzie potenţială (ipoteză) şi se caută evidenţe care să o suporte/contrazică (explicaţii)
 - Regulile sunt de forma:
 - partea stângă (PS) ==>partea dreaptă (PD)
 - Se bazează pe scop (goal driven)

Exemplu

- Întrebare (problemă): Angajatul Popescu are calculator?
- Afirmaţie: Popescu are calculator.
- **Fapt curent**: *Popescu este programator*
- Regulă: Dacă Popescu este programator, atunci el are calculator
- Se verifică setul de reguli şi se caută ce trebuie să fie Adevărat (în PS) pentru ca Popescu să aibă calculator: un programator. Popescu este programator este un fapt, deci atunci el are calculator.

Arhitectură → modulul de control cu legătură înapoi (backward chaining)

Algoritm

- Ciclul de execuţie
 - Se începe cu starea obiectiv
 - Se verifică dacă obiectivul nu se potriveşte cu unul din faptele iniţiale. Dacă da, atunci STOP. Altfel, se caută acele reguli a căror concluzie se potriveşte cu starea obiectiv.
 - Se alege una dintre reguli şi se încearcă demonstrarea faptelor din precondiţie (folosind acelaşi mecanism), care devin noi obiective.
- Observaţii
 - este necesară memorarea obiectivelor urmărite

Arhitectură → modulul de control - exemplu

- Baza de cunoştinţe
 - Fapte
 - A secreţii nazale
 - B sinuzită
 - C dureri de cap
 - D ameţeli
 - E febră
 - □ F probleme cu tensiunea
 - X infecţie
 - Y antibiotic
 - Z repaus la pat

Reguli

- R1: dacă A este adevărat și C este adevărat atunci B este adevărat
- R2: dacă C este adevărat și D este adevărat atunci F este adevărat
- R3: dacă C este adevărat și D este adevărat și E este adevărat atunci X este adevărat
- R4: dacă A este adevărat și B este adevărat și X este adevărat atunci Y este adevărat
- R5: dacă D este adevărat şi Y este adevărat atunci Z este adevărat
- Scop
 - faptul Z

Arhitectură → modulul de control – exemplu □ Algoritm *forward chaining*

- Se repetă
 - Se selectează regulile aplicabile pentru faptele existente în BC
 - Regulile care conţin în PS a lor doar fapte deja existente în BC
 - Dacă pentru un fapt se pot aplica mai multe reguli, se alege doar una dintre ele (care nu a mai fost folosită)
 - Se aplică regulile selectate, iar faptele noi obţinute se adaugă în BC
- Până când se ajunge la concluzie sau la o regulă care indică oprirea procesului

Arhitectură → modulul de control – exemplu □ Iteraţia 1

Arhitectură → modulul de control – exemplu □ Iteraţia 2

Arhitectură → modulul de control – exemplu □ Iteraţia 3

Arhitectură → modulul de control – exemplu □ Algoritm *backward chaining*

- Se repetă
 - Se selectează regulile care se potrivesc cu scopul
 - Regulile care conţin în PD a lor scopul urmărit
 - Dacă pentru un scop se pot aplica mai multe reguli, se alege doar una dintre ele
 - Se verifică regulile selectate
 - Se înlocuieşte scopul cu premisele (cauzele) regulii selectate, acestea devenind sub-scopuri
- Până când toate sub-scopurile sunt adevărate
 - Sunt fapte cunoscute (existente iniţial în BC)
 - sunt informaţii oferite de utilizator
- Se repetă
 - Se aplică regulile anterior verificate în ordine inversă
- Până la aplicarea tuturor regulilor şi obţinerea scopului urmărit (ca fapt in BC)

Arhitectură → modulul de control – exemplu ■ Iteraţia 1.1

R1: if A & C then B

R2: if C & D then F

R3: if C & D & E then X

R4: if A & B & X then Y

R5: if D & Y then Z

Z

Arhitectură → modulul de control – exemplu ■ Iteraţia 1.1

Arhitectură → modulul de control – exemplu ■ Iteraţia 1.2

Arhitectură → modulul de control – exemplu ■ Iteraţia 1.2

= sub-scop Inteligență artificială - sisteme bazate pe reguli (în medii certe)

Arhitectură → modulul de control – exemplu ■ Iteraţia 2.1

Arhitectură → modulul de control – exemplu ■ Iteraţia 2.1

Arhitectură → modulul de control – exemplu ■ Iteraţia 2.1

Arhitectură - modulul de control

- Dificultăţi
 - Forward Chaining (FC) sau Backward chaining (BC)?
 - Rezolvarea conflictelor

- Forward Chaining (FC) sau Backward chaining (BC)?
 - FC se recomandă a fi folosit atunci când:
 - Toate (sau aproape toate) informaţiile se dau de la început în problemă
 - Există un număr mare de scopuri potenţiale, dar doar o parte din ele sunt realizabile pentru o instanţă dată a problemei
 - Este dificilă formularea unui scop sau a unor ipoteze
 - BC se recomandă a fi folosit atunci când:
 - Scopul sau ipotezele se dau în problemă sau sunt uşor de formulat
 - Există numeroase reguli care se potrivesc cu faptele din BC, producând numeroase concluzii
 - Datele problemei nu se dau (sau nu sunt uşor accesibile), dar trebuie achiziţionate (în anumite sisteme)

- Rezolvarea conflictelor
 - Dacă se pot aplica mai multe reguli, care regulă este aleasă?
 - De ex.
 - R1: dacă culoarea este galben atunci fructul este măr
 - R2: dacă culoarea este galben şi forma este lunguiaţă atunci fructul este banană
 - R3: dacă forma este rotundă atunci fructul este măr
 - Strategii de alegere a regulii care se aplică
 - prima regulă
 - o regulă aleatoare
 - regula cea mai specifică
 - cea mai veche regulă
 - cea mai bună regulă

- Rezolvarea conflictelor
 - Alegerea primei reguli care se potriveşte (First in first serve)
 - Exemplu
 - R1: dacă culoarea este galben atunci fructul este măr
 - R2: dacă culoarea este galben şi forma este lunguiaţă atunci fructul este banană
 - R3: dacă forma este rotundă atunci fructul este măr
 - Observaţii
 - Regulile sunt ordonate doar în sistemele mici

- Rezolvarea conflictelor
 - Alegerea aleatoare a unei reguli care se potriveşte
 - Exemplu
 - R1: dacă culoarea este galben atunci fructul este măr
 - R2: dacă culoarea este galben şi forma este lunguiaţă atunci fructul este banană
 - R3: dacă forma este rotundă atunci fructul este măr
 - Observaţii
 - Alegerea poate fi bună sau mai puţin bună

- Rezolvarea conflictelor
 - Alegerea celei mai specifice reguli (Specificity)
 - Cea cu cele mai multe condiţii, fiind cea mai relevantă pentru datele existente
 - Exemplu
 - R1: dacă culoarea este galben atunci fructul este măr
 - R2: dacă culoarea este galben şi forma este lunguiaţă atunci fructul este banană
 - R3: dacă forma este rotundă atunci fructul este măr
 - Observaţii
 - O regulă specifică procesează mai multă informație decât o regulă generală
 →longest matching strategy

Arhitectură - modulul de control - dificultăți

- Rezolvarea conflictelor
 - Alegerea celei mai vechi reguli utilizate (Recency):
 - Fiecare regulă are asociată o marcă temporală ultima dată când a fost folosită
 - Exemplu
 - R1: dacă culoarea este galben atunci fructul este măr [12.01.2012 13.45]
 - R2: dacă culoarea este galben şi forma este lunguiaţă atunci fructul este banană [7.02.2012 – 21.10]
 - R3: dacă forma este rotundă atunci fructul este măr [10.01.2012 10.25]

Observaţii

 Noile reguli au fost adăugate de experţi mai puţin pregătiţi decât vechile reguli (adăugate de experţi mai bine pregătiţi – cu mai multe cunoştinţe în domeniu)

- Rezolvarea conflictelor
 - Alegerea celei mai bune reguli (*Prioritization*)
 - Fiecare regulă are asociată o pondere care specifică importanţa ei (relativ la alte reguli)
 - Exemplu
 - R1: dacă culoarea este galben atunci fructul este măr [30%]
 - R2: dacă culoarea este galben şi forma este lunguiaţă atunci fructul este banană [30%]
 - R3: dacă forma este rotundă atunci fructul este măr [40%]
 - Observaţii
 - Necesită expertiză umană pentru stabilirea importanţei

Arhitectură

- Baza de cunoştinţe (BC)
 - Informaţiile specifice despre un domeniu
- Modulul de control (MC)
 - Regulile prin care se pot obţine informaţii noi
- Interfața cu utilizatorul
 - permite dialogul cu utilizatorii în timpul sesiunilor d consultare, precum şi accesul acestora la faptele şi cun din bază pentru adăugarea sau actualizarea bazei.
- Modulul de îmbogățire a cunoașterii
 - ajută utilizatorul expert să introducă în bază noi cunoștințe
 într-o formă acceptată de sistem sau să actualizeze baza de cunoștințe.
- Modulul explicativ
 - are rolul de a explica utilizatorilor atât cunoștințele de care dispune sistemul, cât și
 raționamentele sale pentru obținerea soluțiilor în cadrul sesiunilor de consultare. Explicațiile
 într-un astfel de sistem, atunci când sunt proiectate corespunzător, îmbunătățesc la rândul
 lor modul în care utilizatorul percepe și acceptă sistemul

Arhitectură

- Interfaţa cu utilizatorul
 - Procesarea limbajului de dialog
 - Tehnici de procesare a limbajului
 - Meniuri
 - Elemente grafice, etc
- Modulul de îmbogățire a cunoașterii
 - ajută utilizatorul expert să introducă în bază noi cunoștințe într-o formă acceptată de sistem sau să actualizeze baza de cunoștințe

Arhitectură

- Modulul explicativ
 - are rolul de a explica utilizatorilor
 - cunoștințele de care dispune sistemul,
 - raționamentele sale pentru obținerea soluțiilor în cadrul sesiunilor de consultare.
 - explicaţiile într-un astfel de sistem, atunci când sunt proiectate corespunzător, îmbunătăţesc la rândul lor modul în care utilizatorul percepe şi acceptă sistemul
 - Exemplu
 - Un expert medical care prescrie un tratament unui pacient trebuie să explice
 - motivele pentru care a ajuns la acea recomandare
 - riscurile unui astfel de tratament
 - alternative la acest tratament

- Conţinut şi obiective
- Proiectare
- Arhitectură
- Tool-uri şi exemple
- Avantaje şi limite

Tool-uri si limbaje existente

- PROLOG
 - Limbaj de programare care utilizează backward chaining
- ART (Inference Corporation)
 - în 1984, Inference Corporation a dezvoltat Automated Reasoning Tool (ART), un sistem expert bazat pe *forward chaining*
- CLIPS
 - NASA preia abilitățile de forward chaining ale sintaxei ART şi dezvoltă C Language Integrated Production System" (CLIPS)
- ART-IM (Inference Corporation)
 - Inference Corporation implementează o versiunea forward-chaining a ART/CLIPS, numită ART-IM.
- OPS5 (Carnegie Mellon University)
 - Primul libaj de IA utilizat pentru sisteme de producţie (XCON)
- Eclipse (The Haley Enterprise, Inc.)
 - Eclipse este singurul modul de control pentru C/C++ care suportă atât forward chaining, cât şi backward chaining

Exemple

- DENDRAL (1965-1983)
 - Analizează structura moleculelor şi propune structuri plauzibile pentru compuşi chimici noi sau necunoscuţi
- MYCIN (1972-1980)
 - Program interactiv pentru
 - diagnosticarea unor boli infecţioase sangvine
 - Recomandări terapeutice antimicrobiene
- EMYCIN, HEADMED, CASNET și INTERNIST
 - pentru domeniul medical
- PROSPECTOR (1974-1983)
 - Oferă recomandări pentru explorările mineralelor
- TEIRESIAS
 - pentru achiziția inteligentă a cunoașterii
- XCON (1978-1999)
 - Oferă recomandări pentru configurarea calculatoarelor
- SBR financiare
 - ExpertTAX, Risk Advisor (Coopers & Lybrand), Loan Probe, Peat/1040 (KPMG), VATIA, Flow Eval (Ernst & Young), Planet, Compas, Comet (Price Waterhouse), Rice (Arthur Andersen), Audit Planning Advisor, World Tax Planner (Deloitte Touche)

Avantaje și limite

Avantaje

- Oderă recomandări celor mai puţin experţi în anumite domenii
- Permit companiilor replicarea celor mai buni angajaţi
 - Preiua informația și cunoștințele intelectuale ale experților și le pun la dispoziția celorlalți oameni
- Se reduc erorile datoarate proceselor de automatizare a sarcinilor monotone, repetitive sau critice
- Se reduce necesarul de forţă umană şi de timp pentru testarea şi analizarea datelor
- Se reduc costurile prin accelerarea procesului de observare a greşelilor
- Se elimină munca pe care oamenii nu ar trebui să o facă (dificilă, consumatoare de timp, susceptibilă de erori, care necesită antrenare lungă şi costisitoare)
- Se elimină munca pe care oamenii nu şi-o doresc să o facă (luarea unor decizii care nu-i pot mulţumi pe toţi – sistemele expert nu pot fi acuzate de favoritsime)

Dezavantaje

- Domeniu îngust de aplicare a unui SBR
- Focus limitat la anumite obiective
- Lipsa capacităţii de învăţare şi adaptare
- Probleme de întreţinere
- Costuri de dezvoltare mari

Recapitulare

SBC

- Sisteme computaţionale în care
- baza de cunoştinţe şi modulul de control se suprapun

SBC pot fi

- SBL
 - explorează o multitudine de cunoștințe date pentru a obține concluzii noi despre activități dificil de examinat, folosind metode specifice logicii formale
 - Componenţă
 - limbaj (sintaxă + semantică) şi
 - metoda de deducţie (inferenţă)

SBR

- explorează o multitudine de cunoștințe date pentru a obține concluzii noi despre activități dificil de examinat, folosind metode asemănătoare cu experții umani
- pot avea succes la problemele fără soluție algoritmică deterministică
- încearcă să imite un expert uman (într-un anumit domeniu)
- Componenţă
 - Baza de cunoştinţe → fapte şi reguli
 - Modulul de control → inferență înainte sau înapoi

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - □ Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme hibride
 - Sisteme bazate pe reguli în medii certe
 - Sisteme bazate pe reguli în medii incerte (Bayes, factori de certitudine, Fuzzy)

Cursul următor – Materiale de citit și legături utile

- Capitolul V din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 3 din Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- capitolul 8 şi 9 din *C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop