

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Pato Branco

Informações da disciplina

Código Ofertado	Disciplina/Unidade Curricular	Modo de Avaliação	Modalidade da disciplina	Oferta
EL26CP	Eletrônica B	Nota/Conceito E Frequência	Presencial	Semestral

Carga Horária					
AT	АР	APS	ANP	APCC	Total
2	2	4	0	0	60

- AT: Atividades Teóricas (aulas semanais).
- AP: Atividades Práticas (aulas semanais).
- ANP: Atividades não presenciais (horas no período).
- APS: Atividades Práticas Supervisionadas (aulas no período).
- APCC: Atividades Práticas como Componente Curricular (aulas no período, esta carga horária está incluída em AP e AT).
- Total: carga horária total da disciplina em horas.

Objetivo

Capacitar os alunos para entenderem o comportamento de dispositivos semicondutores e modelagem,

análise e síntese de circuitos eletrônicos usando dispositivos semicondutores analógicos discretos e

integrados.

Ementa

Modelagem de transistores; Análise de pequenos sinais e resposta em frequência para Transistores;

Amplificadores Operacionais e aplicações; Realimentação e circuitos osciladores.

Conteúdo Programático

Ordem	Ementa	Conteúdo		
1	Modelagem de Transistores	Amplificação no domínio CA; Modelagem do transistor TBJ; Parâmetros Importantes: Zi, Zo, Av, Ai; Modelo re do transistor; Modelo híbrido equivalente.		

Ordem	Ementa	Conteúdo	
2	Análise de Pequenos Sinais e Resposta em Frequência para Transistores	Configuração emissor-comum com polarização fixa; Polarização po divisor de tensão; Configuração EC com polarização do Emissor Configuração com seguidor de emissor; Configuração base comum; Configuração com realimentação do coletor Configuração com realimentação CC do coletor; Circuito híbrido equivalente aproximado; Modelo híbrido equivalente completo.	
3	Amplificadores Operacionais e Aplicações	Introdução Amp-op; Especificações do Amp-op parâmetros de offse CC; Especificações do Amp-op Parâmetros de freqüência Especificações de um CI amp-op Operação diferencial e modo comum; Amp-ops básicos Circuitos Ampops práticos Aplicações do Amp-op (Multiplicador, Somador, Buffer de tensão, fontes controladas Circuitos para instrumentação e filtros ativos).	
4	Realimentação e Circuitos Osciladores	Conceitos sobre realimentação Tipos de conexão do realimentação; Circuitos práticos com realimentação; Amplificado com realimentação considerações sobre fase e frequência; Operação dos osciladores; Circuito oscilado sintonizado;	

Bibliografia Básica

BOYLESTAD, Robert L.; NASHELSKY, Louis (Autor). **Dispositivos eletrônicos e teoria de circuitos.** 11. ed. São Paulo, SP: Pearson Education do Brasil, c2013. xii, 766 p. ISBN 9788564574212.

MALVINO, Albert Paul. Eletrônica. 4. ed. São Paulo: Makron, c1997. 2 v.

PERTENCE JÚNIOR, Antonio. **Amplificadores operacionais e filtros ativos:** teoria, projetos, aplicações e laboratório. 5. ed. São Paulo: Makron, 1996. xvi, 359 p. ISBN 85-346-0498-3.

Bibliografia Complementar

SEDRA, Adel S.; SMITH, Kenneth Carless. **Microeletronica.** 5.ed. São Paulo, SP: Pearson Prentice Hall, 2007. 848 p. ISBN 9788576050223.

THE MEASUREMENT, instrumentation, and sensors handbook. Boca Raton, Fla.: CRC, IEEE, c1999. 2 v (Electrical engineering handbook series) ISBN 0849383471.

DUNN, William C. **Introduction to instrumentation, sensors, and process control.** Boston: Artech House, 2006. ISBN 1580530117.

JUNG, Walter G. **Op amp applications handbook.** Burlington, MA: Elsevier, 2006. xvi, 878 p. (analog devices series) ISBN 9780750678445.

MILLMAN, Jacob; HALKIAS, Christos C. Eletrônica: dispositivos e circuitos. São Paulo, SP: McGraw-Hill, 1981. 2 v.

#	Resumo da Alteração	Edição	Data	Aprovação	Data
1	ok.	Geremi Gilson Dranka	15/12/2015	Pablo Gauterio Cavalcanti	20/04/2016

14/09/2021 19:10