RAPPORT D'ANALYSE DE DÉFAILLANCE

CAPTEURS DE POSITION

AIRBUS A320

Référence: RAF-A320-CP-2025-088

Classification: TECHNIQUE / USAGE INTERNE

Date d'analyse: 23 mai 2025

Échantillon: Capteur de position #CP-47-83621

Catégorie: Train d'atterrissage

Niveau d'urgence pour changement: Normal

1. CONTEXTE ET OBJECTIFS

Ce rapport présente les résultats de l'analyse de défaillance effectuée sur un capteur de position déposé lors de la maintenance programmée d'un Airbus A320-251N (MSN 8932). L'analyse a été réalisée suite à des indications erratiques de position du train d'atterrissage principal droit signalées par l'équipage.

Objectifs de l'analyse: - Identifier la nature et l'étendue de la défaillance - Déterminer les mécanismes de dégradation - Évaluer l'impact sur la sécurité des vols - Formuler des recommandations pour la maintenance de la flotte

Historique du composant: - Heures de vol: 9,850 - Cycles: 6,230 - Date de mise en service: Juillet 2021 - Dernière inspection: Janvier 2025

2. MÉTHODOLOGIE ET RÉSULTATS

2.1 Examen visuel et macroscopique

L'inspection visuelle a révélé une détérioration du connecteur électrique et des traces d'humidité à l'intérieur du boîtier du capteur. Le joint d'étanchéité présente des signes de vieillissement et de déformation.

Observations macroscopiques: - Corrosion légère sur les broches du connecteur - Traces d'humidité à l'intérieur du boîtier - Joint d'étanchéité déformé et durci - Absence de dommage mécanique externe - Câblage intact sans abrasion visible

2.2 Analyse électrique

Des tests électriques ont été effectués pour évaluer les performances du capteur.

Paramètre	Valeur nominale	Tolérance	Valeur mesurée	Écart
Résistance interne	1200 Ω	±50 Ω	1345 Ω	+145 Ω
Tension de sortie (0°)	2,50 V	±0,05 V	2,48 V	-0,02 V
Tension de sortie (90°)	4,50 V	±0,05 V	4,12 V	-0,38 V
Tension de sortie (180°)	2,50 V	±0,05 V	2,47 V	-0,03 V
Tension de sortie (270°)	0,50 V	±0,05 V	0,83 V	+0,33 V
Linéarité	<1%	-	4,8%	Non conforme
Isolation	>10 MΩ	-	2,4 ΜΩ	Non conforme

Les mesures révèlent une non-linéarité significative et une dégradation de l'isolation électrique.

2.3 Analyse interne

Le capteur a été ouvert en environnement contrôlé pour analyse interne.

Observations: - Traces de corrosion sur le circuit imprimé - Dépôts blanchâtres sur les composants électroniques - Microfissures sur deux soudures critiques - Décoloration du revêtement de protection - Déformation du potentiomètre rotatif

2.4 Analyse chimique

Des échantillons des dépôts ont été prélevés pour analyse par spectroscopie à dispersion d'énergie (EDS).

Résultats: - Présence de chlorures (NaCl) - 65% - Oxydes métalliques (principalement CuO) - 25% - Résidus organiques - 10%

La présence de chlorures indique une contamination par un environnement salin, probablement due à une infiltration d'eau de mer ou d'air marin.

2.5 Tests de simulation

Le capteur a été soumis à des tests de simulation pour reproduire les conditions de défaillance.

Test	Conditions	Résultat	Observation
Cycle thermique	-55°C à +85°C	Défaillance à +70°C	Perte de signal intermittente
Test d'humidité	95% HR, 38°C, 48h	Défaillance	Dérive progressive du signal
Test vibratoire	10-2000 Hz, 10g	Conforme	Pas d'anomalie détectée
Test de choc	20g, 11ms	Conforme	Pas d'anomalie détectée

Les tests confirment que l'humidité est le facteur principal de défaillance.

3. INTERPRÉTATION ET CONCLUSIONS

3.1 Mécanisme de défaillance

L'analyse indique que la défaillance est due à une infiltration d'humidité dans le boîtier du capteur, caractérisée par: - Dégradation du joint d'étanchéité due au vieillissement - Infiltration progressive d'humidité contenant des chlorures - Corrosion des contacts électriques et du circuit imprimé - Dégradation des caractéristiques électriques du potentiomètre - Perte de linéarité et d'isolation électrique

Les facteurs contributifs probables sont: 1. Vieillissement accéléré du joint d'étanchéité 2. Exposition à un environnement marin 3. Cycles thermiques répétés 4. Possible défaut de fabrication du lot concerné

3.2 Évaluation de la sécurité

La défaillance observée présente un niveau de risque **MODÉRÉ** pour les raisons suivantes: - La dégradation est progressive et détectable lors des tests systèmes - Les systèmes d'indication de position des trains sont redondants - La défaillance n'affecte pas directement le fonctionnement mécanique du train - L'indication erronée peut toutefois entraîner une confusion pour l'équipage

3.3 Recommandations

Sur la base de cette analyse, les recommandations suivantes sont formulées:

- 1. Pour le composant analysé:
- 2. Mise au rebut définitive (non réparable)
- 3. Conservation comme échantillon de référence pour formation

4. Pour la flotte:

 Inspection spéciale des capteurs de position sur les appareils ayant accumulé >5000 cycles

- 6. Réduction de l'intervalle d'inspection de 1200 à 800 cycles pour les capteurs de position
- 7. Test d'isolation électrique à ajouter aux procédures de maintenance
- 8. Remplacement préventif des joints d'étanchéité lors des visites C-check

9. Pour la maintenance:

- 10. Mise à jour de la procédure d'inspection avec attention particulière aux connecteurs
- 11. Formation spécifique des techniciens sur la détection précoce de l'infiltration d'humidité
- 12. Révision de la procédure de test électrique (ajout test de linéarité)

13. Pour la conception:

- 14. Évaluation de l'utilisation d'un joint d'étanchéité amélioré
- 15. Considération d'un revêtement hydrophobe sur le circuit imprimé
- 16. Amélioration de la protection du connecteur électrique

Analyse réalisée par:

[Signature]
Dr. Émilie Renard
Ingénieure Électronique Senior
Certification COFREND ET3 #14587

Approuvé par:

[Signature]
Philippe Moreau
Responsable Bureau d'Analyse Technique
EASA Part-145 #FR.145.0824

Ce rapport est conforme aux exigences EASA Part-145.A.45 et FAA AC 43-210.

Note concernant le changement de pièce:

Niveau d'urgence: NORMAL

Le remplacement de ce composant doit être planifié dans les 400 heures de vol ou 250 cycles, selon la première échéance. Une vérification fonctionnelle renforcée est requise jusqu'au remplacement.