Cryptanalysis

Lattices

John Manferdelli JohnManferdelli@hotmail.com

© 2004-2025, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Lattices

- The set $\Lambda = \mathbb{Z}b_1 + \mathbb{Z}b_2 + ... + \mathbb{Z}b_n$, where $b_1, b_2, ..., b_n$ are linearly independent is called a lattice.
- $\Lambda^* = \{ y \in \mathbb{Z}^n : (x, y) \in \mathbb{Z}, \forall x \in \Lambda \}$
- $vol(\Lambda) = \det(b_1, b_2, ..., b_n)$, where $b_1, b_2, ..., b_n$ are the generators of Λ . Note that any set of generators will do since they are related by unimodular transformations.
- Let Λ be a lattice
 - The CVP problem is: Find $v \in \Lambda$: $||v|| = min_{w \in \Lambda, w \neq 0}(||w||)$
 - The CVP_{γ} problem is: Find $v \in \Lambda$: $||v|| \le \gamma \cdot min_{w \in \Lambda, w \ne 0}(||w||)$
- Volume of n-dimensional sphere: $V_n(r) \approx \frac{1}{\sqrt{n\pi}} (\sqrt{\frac{2\pi e}{n}} r)^n$

Definitions

Hermite Normal Form (HNF)

$$\begin{bmatrix} > 0 & 0 & 0 & \cdots & 0 & 0 & \dots & 0 \\ \ge 0 & > 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ \ge 0 & \vdots & > 0 & \ddots & \vdots & 0 & \dots & 0 \\ \ge 0 & \ge 0 & \ge 0 & \dots & 0 & 0 & \dots & 0 \\ \ge 0 & \ge 0 & \ge 0 & \cdots & > 0 & 0 & \dots & 0 \end{bmatrix}$$

Minkowski's Theorem

Let Λ be a lattice in \mathbb{R}^n and suppose $S \subseteq \mathbb{R}^n$ is a convex, centrally symmetric region. If $vol(S) > 2^n \det(\Lambda)$ then S has a non-zero lattice point of Λ . Suppose first that Λ' is the simple lattice generated by $e_1, e_2, \dots e_n$. Represent a point $r \in S$ as $r = (\alpha_1 + x_1, \alpha_2 + x_2, ..., \alpha_n + x_n)$ with $\alpha_i \in \mathbb{Z}$ and $|x_i| \le 1$, for $1 \le i \le n$. Define $T(r) = (x_1, x_2, ..., x_n)$. If $S_1 \cap S_2 = \emptyset$, $vol(S_1 \cup S_2) = vol(S_1) + vol(S_2)$. So, if S has the property that $T(t) \neq T(s), \forall s \neq t \in S$, then vol(S) = vol(T(S)). Note that $vol(T(S)) \le 1$. So, if vol(S) > 1, there are at least two points $r^{(1)} =$ $(\alpha_1^{(1)} + x_1, \alpha_2^{(1)} + x_2, ..., \alpha_n^{(1)} + x_n), r^{(2)} = (\alpha_1^{(2)} + x_1, \alpha_2^{(2)} + x_2, ..., \alpha_n^{(2)} + x_n^{(2)})$ (x_n) , where $\alpha_i^{(1)} \neq \alpha_i^{(2)}$ for some i. Since S is centrally symmetric, $-r^{(1)}$, $-r^{(2)} \in S$; finally, note that $0 \neq r^{(1)} - r^{(2)} \in \mathbb{Z}^n$. Similarly, if $vol(S) > 2^n$, there are at least 2^n+1 points $r^{(i)}$, $1 \le i \le 2^n+1$ with $0 \ne r^{(i)}-r^{(j)} \in \mathbb{Z}^n$, $i \ne j$ for at least two, say $r^{(i)}$ and $r^{(j)}$, all corresponding coordinates in $r^{(i)}-T(r^{(i)})$ and $r^{(j)}-T(r^{(j)})$ are equal $(mod\ 2)$. Thus, $0 \neq \frac{r^{(i)}-r^{(j)}}{2} \in \mathbb{Z}^n$. But since S is convex, $\frac{r^{(i)}-r^{(j)}}{2} \in S$. So, the result holds for the simple lattice. Suppose now that Λ is generated by $a_1, a_2, ... \ a_n$ and put $A = [a_1, a_2, ... \ a_n]. \ e_i = A^{-1}(a_i)$, so $vol(\Lambda') = \frac{vol(\Lambda)}{\det(\Lambda)}$ and the simple lattice result thus implies the general theorem.

q-ary lattices and other definitions

- Definition: If $q \in \mathbb{Z}$, a lattice, Λ , is called q-ary if $q\mathbb{Z}^n \subseteq \Lambda \subseteq \mathbb{Z}^n$.
- Suppose $A \in \mathbb{Z}^{m \times n}$, $\Lambda_q(A) = \{ y \in \mathbb{Z}^n : y = A^T x \pmod{q}, x \in \mathbb{Z}_q^m \}$. Note $\Lambda_q(A)$ is q-ary.
- $\Lambda_q^{\perp}(A) = \{ y \in \mathbb{Z}^n : Ay = 0 \pmod{q} \}$
- $\lambda_1(\Lambda) = \left| \min_{v \in \Lambda} ||v| \right| |$
- $\lambda_n(\Lambda) = \min_S(\max_{v \in S} ||v||)$, where $S \subseteq \Lambda$ is a set of linearly independent vectors, |S| = n
- Solving CVP in $\Lambda_q^{\perp}(A)$ when A is chosen uniformly at random is as hard as worse case CVP.

Some simple results

- Remember S is centrally symmetric if $s \in S$ implies $-s \in S$, and S is convex if $s, t \in S$ implies $us + (1 u)t \in S, u \in [0,1]$. We used this in proving Minkowski's Theorem.
- Theorem: $\lambda_1(\Lambda) \leq \sqrt{n} \det(\Lambda)^{\frac{1}{n}}$
 - Let B_r be a ball centered at 0 having radius $r = \sqrt{n} \det(\Lambda)^{\frac{1}{n}}$. Let $(x_1, x_2, ..., x_n)$ be the coordinates of a vector v, with respect to the basis generating the lattice Λ , if $|x_i| \leq 1$ for $1 \leq i \leq n$, $v \in B_r$. So $-\det(\Lambda)^{\frac{1}{n}}$ (1,1,...,1) and $\det(\Lambda)^{\frac{1}{n}}$ (1,1,...,1) as well as the line joining them are in B_r so $vol(B_r) \geq 2^n \det(\Lambda)$ and the result follows from Minkowski's theorem.

Reduced Basis

- $\langle v_1, v_2 \rangle$ is reduced if
 - $||v_2|| \le |v_1||$; and,
 - $-1/2||v_1||^2 \le (v_1, v_2) \le 1/2||v_1||^2.$

Good basis and Gram-Schmidt Orthogonalization

- Good basis for lattices are orthonormal when that is possible. If a basis, $b_1, b_2, ..., b_n$ for Λ , is orthonormal, then, for example, $vol(\Lambda) = ||b_1|| \cdot ||b_2|| \cdot ... \cdot ||b_n||$
- The orthogonality defect of a basis $b_1, b_2, ..., b_n$ is $\frac{||b_1|| \cdot ||b_2|| \cdot ... \cdot ||b_n||}{\det(b_1, b_2, ..., b_n)}$
- Given a space generated by $b_1, b_2, ..., b_n$ can also be generated by a set of vectors, $b_1^*, b_2^*, ..., b_n^*$ with the property that $(b_i^*, b_j^*) = 0, i \neq j$. Th Gram-Schmidt orthogonalization procedure computes this.

GSO, given,
$$b_1, b_2, ..., b_n$$
, compute $b_1^*, b_2^*, ..., b_n^*$
1. put $b_1^* = b_i$.
2. for $i = 2, i \le n$
 $b_i^* = b_i - \sum_{i=1}^{i-1} \mu_{i,j} b_j$, $\mu_{i,j} = \frac{\left(b_j^*, b_i\right)}{\left(b_j^*, b_j^*\right)}$

Size Reduction

- Definition: A basis $b_1, b_2, ..., b_n$ is size reduced if $\left|\mu_{i,j}\right| \leq \frac{1}{2}$, in the Gram-Schmidt orthogonalization procedure.
- If b_1, b_2, \ldots, b_n is a basis for Λ , in general, $b_1^*, b_2^*, \ldots, b_n^*$ is not also a lattice basis because $\mu_{i,j}$ is generally not an integer. We can find a "nearly" orthogonal set of vectors b_1', b_2', \ldots, b_n' in Λ , by rounding the $\mu_{i,j}, b_1', b_2', \ldots, b_n'$ is also a basis for the lattice and has the same gram Schmidt basis, $b_1^*, b_2^*, \ldots, b_n^*$. When performing GSO on this *reduced* basis, $|\mu_{i,j}| \leq \frac{1}{2}$.

Size-reduction

```
\begin{aligned} \text{for } i &= 2, \, i \leq n \\ \text{for } j &= i-1, \, j \geq 1 \\ b_i &\leftarrow b_i - \!\! \upharpoonright \mu_{ij} \downarrow b_j \\ \text{for } k &= 1, k \leq j \\ \mu_{ik} &\leftarrow \mu_{ik} - \!\! \upharpoonright \mu_{ij} \downarrow \mu_{jk} \end{aligned}
```

Size reduction and basis reordering

• Let $b_1, b_2, ..., b_n$ be a basis for Λ , and ${b_1}^*, {b_2}^*, ..., {b_n}^*$ the resulting GSO basis. Let $B_i = ||b_i||^2$. Then $b_1, b_2, ..., b_n$ satisfies the *Lovasz condition* with factor δ if it is size reduced and $(\delta - \mu_{i+1,i}^2)B_i \leq B_{i+1}$. The LLL algorithm calculates such a basis.

LLL Algorithm

Given $b_1, b_2, ..., b_n$ generating Λ , calculate the LLL reduced basis

- 1. Reduce the basis b_1, b_2, \dots, b_n with the size reduction algorithm and calculate $b_1^*, b_2^*, \dots, b_n^*$ and μ_{ij}
- 2. Compute $B_i = ||b_i^*||^2$, i = 1, 2, ..., n
- 3. for i = 1, i < n
 - 4. If $((\delta \mu_{i+1,i}^2)B_i > B_{i+1})$
 - 5. Swap b_i and b_{i+1}
 - 6. Go to 1
- 7. return $b_1, b_2, ..., b_n$

Example (LLL including GSO)

- LLL $(\delta = \frac{3}{4})$
- $b_1 = (2,3,14)^T$, $b_2 = (0,7,11)^T$, $b_3 = (0,0,23)^T$.
 - GSO: $b_1^* = b_1$, $b_2^* = b_2 \mu_{21}b_1$, $\mu_{21} = \frac{(b_1^*, b_2)}{(b_1^*, b_1^*)} = \frac{21 + 154}{4 + 9 + 196} = \frac{175}{209}$, $\mu_{31} = \frac{322}{209}$, $\mu_{31} = \frac{3473}{4905}$. $b_2^* = (-\frac{350}{209}, \frac{938}{209}, -\frac{151}{209})^T$
 - Size reduction: $b_2 = b_2 \uparrow \mu_{21} \downarrow b_1 = (-2,4,-3)^T$, $\mu_{21} = \mu_{21} \uparrow \mu_{21} \downarrow = -\frac{34}{209}$; $b_3 = b_3 \uparrow \mu_{32} \downarrow b_2 = (-2,4,20)^T$, $\mu_{31} = \mu_{31} \uparrow \mu_{31} \downarrow = -\frac{1432}{4905}$; last change is $b_3 = b_3 \uparrow \mu_{31} \downarrow b_1 = (-4,1,6)^T$, $\mu_{31} = \mu_{31} \uparrow \mu_{31} \downarrow = -\frac{79}{209}$.
 - Now, $b_1 = (2,3,14)^T$, $b_2 = (-2,4,-3)^T$, $b_3 = (-4,1,6)^T$.
 - $B_1 = 209$, $B_2 = \frac{4905}{209}$, $B_3 = \frac{103684}{4905}$. Lovasz condition is not satisfied for i = 1: since $(\delta \mu_{21}^2)B_1 > B_2$. So swap b_1 and b_2 .
 - Applying GSO we get $\mu_{21} = \frac{-34}{29}$, $\mu_{31} = \frac{-6}{29}$, and $\mu_{32} = \frac{2087}{4905}$.
 - Size reduction produces: $b_2 = b_2 1 \mu_{21} + b_1 = (0,7,11)^T$ and $\mu_{21} = \frac{-6}{29}$. μ_{31} and μ_{32} don't change. μ_{32}

Example (LLL including GSO) - continued

- Now Lovasz condition is satisfied for i=1 since $(\delta-\mu_{21}{}^2)B_1 < B_2$. but not i=2 since $(\delta-\mu_{32}{}^2)B_2 < B_3$. swap b_2 and b_3 .
 - Now, $b_1 = (-2,4,-3)^T$, $b_2 = (-4,1,6)^T$, $b_3 = (0,7,11)^T$. $B_1 = 29$, $B_2 = \frac{1501}{29}$, $B_3 = \frac{103684}{1501}$. GSO coefficients are $\mu_{21} = \frac{-6}{29}$, $\mu_{31} = \frac{-5}{29}$, and $\mu_{32} = \frac{2087}{1501}$. Applying size reduction does not affect b_2 or μ_{21} . $b_3 = b_3 1$ $\mu_{32} + 1$ $b_2 = (4,6,5)^T$, $\mu_{31} = \mu_{31} 1$ $\mu_{32} + 1$ $\mu_{21} = \frac{1}{29}$, $\mu_{31} = \frac{586}{1501}$. Both Lovasz conditions now hold.
 - LLL basis is thus $b_1 = (-2,4,-3)^T$, $b_2 = (-4,1,6)^T$, $b_3 = (4,6,5)^T$. Notice $||b_1||$ is actually the shortest vector in Λ .

12

LLL Properties

- Suppose we apply LLL to b_1,b_2,\ldots,b_n , with ${b_1}^*,{b_2}^*,\ldots$, ${b_n}^*$ and B_1,B_2,\ldots,B_n defined as above. With $X=min_{v\in\Lambda}(\left||b_i|\right|)$ and $\frac{1}{4}<\delta<1$, LLL runs in $O(n^6\ln(x)^3)$.
 - 1. $B_i \le ||b_i||^2 \le (\frac{1}{2} + 2^{i-2})B_i$
 - 2. $||b_i|| \le 2^{\frac{i-1}{2}} ||b_i^*||$
 - 3. $\lambda_1(\Lambda) \geq \min_i(||b_i^*||)$
 - 4. $||b_1|| \le 2^{\frac{n-1}{2}} \lambda_1(\Lambda)$
 - 5. $\det(\Lambda) \le \prod_{i=1}^{n} ||b_i|| \le 2^{\frac{n(n-1)}{4}} \det(\Lambda)$
 - 6. $||b_i|| \le 2^{\frac{(n-1)}{4}} \det(\Lambda)^{\frac{1}{n}}$
- If w is a vector in \mathbb{R}^n and the lattice basis for Λ is b_1, b_2, \ldots, b_n with $B = [b_1, b_2, \ldots, b_n]$, the coefficients for w are $u = B^{-1}(w)$. w is not necessarily in the lattice but if we take each element in u and round it, $B \downarrow B^{-1}(w)$ $1 \in \Lambda$. This is *Babai rounding*.

Attack on RSA using LLL

- Attack applies to messages of the form "M xxx" where only "xxx" varies (e.g.-"The key is xxx") and xxx is small.
- From now on, assume M(x) = B + x where B is fixed
 - |x| < Y.
 - Not that $E(M(x)) = c = (B + x)^3 \pmod{n}$
 - $f(x)=(B+x)^3-c=x^3+a_2x^2+a_1x+a_0 \pmod{n}$.
- We want to find x: $f(x) = 0 \pmod{n}$, a solution to this, m, will be the corresponding plaintext.

Attack on RSA using LLL

```
• To apply LLL, let:
```

```
- v_1 = (n, 0, 0, 0),

- v_2 = (0, Yn, 0, 0),

- v_3 = (0, 0, Y^2n, 0),

- v_4 = (a_0, a_1Y, a_2Y^2, a_3Y^3)
```

• When we apply LLL, we get a vector, b_1 :

$$- ||b_1|| \le 2^{3/4} |\det(v_1, v_2, v_3, v_4)| = 2^{3/4} n^{3/4} Y^{3/2}$$

.... Equation 1.

• Let $b_1 = c_1v_1 + ... + c_4v_4 = (e_0, Ye_1, Y^2e_2, Y^3e_3)$. Then:

Attack on RSA using LLL

- Now set $g(x) = e_3x^3 + e_2x^2 + e_1x + e_0$.
- From the definition of the e_i , $c_4 f(x) = g(x) \pmod{n}$, so if m is a solution of $f(x) \pmod{n}$, $g(m) = c_4 f(m) = 0 \pmod{n}$.
- The trick is to regard g as being defined over the real numbers, then the solution can be calculated using an iterative solver.
- If $Y < 2^{(7/6)} n^{(1/6)}$, $|g(x)| \le 2||b_1||$.
- So, using the Cauchy-Schwartz inequality, $||b_1|| \le 2^{-1}n$.
- Thus |g(x)| < n and g(x) = 0 yielding 3 candidates for x.
- Coppersmith extended this to small solutions of polynomials of degree d using a d+1 dimensional lattice by examining the monic polynomial $f(T) = 0 \pmod{n}$ of degree d when $|x| \le n^{1/d}$.

Example attack on RSA using LLL

- p= 757285757575769, q= 2545724696579693.
- n= 1927841055428697487157594258917.
- B= 200805000114192305180009190000.
- $c = (B + m)3, 0 \le m \le 100.$
- $f(x) = (B+x)3 c = x^3 + a_2x^2 + a_1x + a_0 \pmod{n}$.
 - $a_2 = 602415000342576915540027570000$
 - $-a_1$ = 1123549124004247469362171467964
 - $-a_0$ = 587324114445679876954457927616
 - $v_1 = (n,0,0,0)$
 - $v_2 = (0,100n,0,0)$
 - $v_3 = (0,0,10^4 n,0)$
 - $v_4 = (a_0, a_1 100, a_2 10^4, 10^6)$

Example attack on RSA using LLL

- Apply LLL, b_1 =
 - $-308331465484476402v_1 + 589837092377839611v_2 +$
 - $-316253828707108264v_3 + (-1012071602751202635)v_4 =$
 - (246073430665887186108474, -577816087453534232385300, 405848565585194400880000, -1012071602751202635000000)
- g(x)= (-1012071602751202635) t³ + 40584856558519440088 t² + (-57781608745353442323853) t +246073430665887186108474.
- Roots of g(x) are 42.0000000, (-.9496±76.0796i)
- The answer is 42.

GGH Public Key System

- Pick $n, M \in \mathbb{N}$ and σ is "small", say $\sigma = 4$
- Plaintext: $\mathcal{M} = \{x: -M \le x \le M\}$, Cipher-space: $\mathcal{C} \in \mathbb{Z}^n$.
- Gen:
 - 1. Choose $B \in \mathbb{Z}^{n \times n}$ with small entries $|B_{ij}| \leq \sigma$
 - 2. Check *B* is invertible. *B* is the secret key.
 - 3. H = HNF(B)
- Enc
 - 1. For $\vec{m} \in \mathcal{M}^n$, choose $\vec{r} \in (-\sigma, \sigma)^n$ uniformly at random
 - 2. $\vec{c} = H\vec{m} + \vec{r}$
- Dec
 - 1. Babai round $\overrightarrow{m} = H^{-1}B \downarrow ((B^{-1}(\overrightarrow{c})))$
- Works if $\ \ B^{-1}(r) = 0$.

GGH Example

•
$$B = \begin{bmatrix} 2 & -3 & 1 & -4 \\ -2 & 1 & 0 & 4 \\ -1 & 3 & 2 & 1 \\ -1 & -4 & 3 & -2 \end{bmatrix}$$
, $H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 44 & 18 & 4 & 49 \end{bmatrix}$

•
$$B^{-1} = \frac{1}{49} \begin{bmatrix} 61 & 45 & 10 & -27 \\ -10 & -13 & 8 & -2 \\ 29 & 23 & 16 & -4 \\ 33 & 38 & 3 & -13 \end{bmatrix}$$
, $H^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{-44}{49} & \frac{-18}{49} & \frac{-4}{49} & \frac{1}{49} \end{bmatrix}$

•
$$m = (3, -4, 1, 3)^T$$
, $r = (-1, 1, 1, -1)^T$, $c = Hm + r = (2, -3, 2, 210)^T$

•
$$B^{-1}c = \frac{1}{7}(-809, -55, -117, -396)^T$$
, $Arg B^{-1}c = (-116, -8, -17, -57)^T$

•
$$B \downarrow B^{-1}c = (3, -4, 1, 211)^T$$

•
$$m = H^{-1}B \mid B^{-1}c \mid 1 = (3, -4, 1, 3)^T$$

Learning with Errors (LWE)

- Based on solving noisy linear equations $mod\ q$. Choose $\overrightarrow{a_i} \in \mathbb{Z}_q^n$ uniformly at random. $\overrightarrow{s} \in \mathbb{Z}_q^n$ is a secret and $m \ge n$ approximate equations $\overrightarrow{a_i} \cdot \overrightarrow{s} = b_i \pmod{q}$. Errors, e_1, e_2, \dots, e_n are chosen from distribution χ .
- Reduces to LWE:
 - Search LWE problem: Given a_{ij} , $(\vec{b} + \vec{e})$ find \vec{s} .
 - Decision LWE: Distinguish, with non-negligible probability, between $\vec{b}=A\vec{s}+\vec{e}$ and $\vec{b}\in\mathbb{Z}_q^{\ m}$ chosen uniformly at random given A,\vec{b}
- Errors chosen from distribution, $p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{x^2}{2\sigma^2})$. Often use $s = \sigma\sqrt{2\pi}$ as parameter specifying distribution.
- Regev's showed it is possible to pick parameters so that solving an LWE cipher is equivalent to solving worst-case LWE.
 - Theorem (Regev): Let $n \in \mathbb{N}$ be a security parameter, $m, q \in \mathbb{N}$, polynomial in n and $\chi = D_{\mathbb{Z},S}$ a discrete Gaussian distribution with $s = \alpha q > 2\sqrt{n}$, $0 < \alpha < 1$. Then solving the LWE decision problem is at least as hard as quantumly solving $SIVP_{\Upsilon}$ on an arbitrary n-dimensional lattice where $\gamma = \widetilde{O}(n^n/\alpha)$.

LWE cryptosystem

- Given $(n \ge m, l, t, r, q, \chi)$ where χ is a probability distribution \mathbb{Z}_q , message space is \mathbb{Z}_2^l and cipher space is $\mathbb{Z}_q^n \times \mathbb{Z}_q^l$.
- Key Gen
 - 1. Choose $S \in \mathbb{Z}_q^{n \times l}$, uniformly from the distribution χ .
 - 2. Choose $A \in \mathbb{Z}_q^{m \times n}$, and $E \in \mathbb{Z}_q^{m \times l}$ uniformly from the distribution χ .
 - 3. Private key is S, public key is (A, P = AS + E)
- Enc
 - 1. For $\vec{v} \in \mathbb{Z}_2^l$, choose $\vec{a} \in \{0,1\}^m$, uniformly at random

2.
$$\overrightarrow{CT} = (\overrightarrow{u} = A^T \overrightarrow{a}, \overrightarrow{c} = P^T \overrightarrow{a} + \lceil \frac{q}{2} \rfloor \overrightarrow{v}))$$

- Dec
 - 1. Compute $\lceil (\lceil \frac{q}{2} \rfloor)^{-1} (\vec{c} S^T \vec{u}) \rceil \pmod{2}$
- Decryption may have errors. Suppose χ is a discrete Gaussian $D_{\mathbb{Z},s}$. Then $E^T\vec{a}$ has magnitude $\leq \sqrt{m}s$ with high probability. Error occurs if $E^T\vec{a} \geq \frac{q}{4}$. One can show that for any n, $\exists q$, m, s such that the error is small and the underlying LWE problem is hard.

•
$$n = 4, q = 23, m = 8, \alpha = \frac{5}{23}, s = 5, \sigma = \frac{s}{\sqrt{2\pi}}, l = 4$$

•
$$A^{m \times n} = A = \begin{bmatrix} 9 & 5 & 11 & 13 \\ 13 & 6 & 6 & 2 \\ 6 & 21 & 17 & 18 \\ 22 & 19 & 20 & 8 \\ 2 & 17 & 10 & 21 \\ 10 & 8 & 17 & 11 \\ 5 & 16 & 12 & 2 \\ 5 & 7 & 11 & 7 \end{bmatrix}$$
, $S^{n \times l} = S = \begin{bmatrix} 5 & 2 & 9 & 1 \\ 6 & 8 & 19 & 1 \\ 19 & 18 & 9 & 18 \\ 9 & 2 & 14 & 18 \end{bmatrix}$

•
$$E^{m \times l} = E = \begin{bmatrix} 0 & 22 & 1 & 21 \\ 0 & 22 & 22 & 22 \\ 6 & 21 & 17 & 18 \\ 22 & 22 & 22 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 1 & 22 & 1 & 22 \\ 22 & 0 & 0 & 1 \end{bmatrix}$$
, $P^{m \times l} = P = \begin{bmatrix} 10 & 3 & 21 & 7 \\ 3 & 1 & 13 & 1 \\ 19 & 15 & 6 & 13 \\ 22 & 22 & 22 & 0 \\ 9 & 20 & 20 & 17 \\ 15 & 21 & 1 & 2 \\ 0 & 12 & 3 & 19 \\ 16 & 2 & 7 & 15 \end{bmatrix}$

- Encrypt $\vec{v} = (1,0,1,1)^T$, using $a = (1,1,0,1,0,0,0,1)^T$ - $l \frac{23}{2} \vec{v} = (12,0,12,12)^T$, - $(u,c) = (A^T a, P^T a + l \frac{23}{2} m 1) = ((3,14,2,7)^T, (4,5,7,5)^T) (mod 23)$
- Decrypt:
 - $-\vec{v}' = c S^T u = (11,21,12,10)^T \pmod{23},$
 - $\downarrow \frac{1}{12} \vec{v}' \uparrow (mod 2) = (1,0,1,1)^T$

- Encrypt $m = (1,0,1,1)^T$, using $a = (1,1,0,1,0,0,0,1)^T$
 - $\lim_{T \to T} \frac{23}{2} m = (12,0,12,12)^T$
 - $(u,c) = \left(A^{T}a, P^{T}a + \frac{23}{2}m \right) = ((3,14,2,7)^{T}, (4,5,7,5)^{T})(mod 23)$
- Decrypt:
 - $-m'=c-S^Tu=(11,21,12,10)^T \pmod{23},$
 - $\downarrow \frac{1}{12}m' \uparrow (mod 2) = (1,0,1,1)^T$

From Heiko Knopse

LWE/Ring-LWE parameters

Level	n	q	S	Р	P&A	C	Exp
Low	128	4093	8.87	2.9×10^5	7.4×10^5	3.8×10^{3}	30
High	320	4093	8	4.9×10^5	17.7×10^5	17.4×10^3	42

Ring-LWE cuts ciphertext by factor of n

Ring-LWE

- Put $R = R_{n,q} = \frac{\mathbb{Z}_q[x]}{x^{n+1}}$, $n = 2^k$, $R \approx \mathbb{Z}_q^n$. $a \in R$, generates ideal (a) corresponding to a q-ary ideal lattice.
- Ring LWE: Given $a \in R$, and b = as + e, for $s, e \in R$, find s.
- Solving R-LWE is at least as hard as solving CVP_{γ} on arbitrary ideal lattices

NTRU Public Key System

- NTRU is a ring lattice-based system.
- $R = \frac{\mathbb{Z}[x]}{x^{N-1}}, R_p = \frac{\mathbb{Z}_p[x]}{x^{N-1}}, R_q = \frac{\mathbb{Z}_q[x]}{x^{N-1}}$
- $(c_0 + c_1 x + \dots + c_{N-1}) = (a_0 + a_1 x + \dots + a_{N-1}) \otimes (b_0 + b_1 x + \dots + b_{N-1})$, where $c_k = \sum_{i+j=k \ (mod \ N)} a_i b_j$
- $\mathcal{T}(d_1,d_2)$ is the set of "ternary" polynomials of degree < N, having d_1 coefficients equal to 1, having d_2 coefficients equal to -1, and remaining coefficients equal to 0.
- Pick N, p prime and $q, d \in \mathbb{N}, (p, q) = (N, q) = 1, q > (6d + 1)p$.

NTRU Public Key System

KeyGen

- 1. Pick $f, g \in R, f \in \mathcal{T}(d+1,d), g \in \mathcal{T}(d,d)$.
- 2. Find $f_p, f_q: f \cdot f_p = 1 \pmod{p}, \ f \cdot f_q = 1 \pmod{q}, \ h = f_q \cdot g \pmod{q}$.
- 3. Public key is (N, p, q, h), private key is f.
- Plaintext is $m \in R_p$, ciphertext is $c \in R_q$
- Encryption
 - 1. Chose random $r \in R, r \in \mathcal{T}(d, d)$.
 - 2. $c = prh + m \pmod{q}$.
- Decryption
 - 1. Compute $a = fc \pmod{q}$
 - 2. Plaintext is f_p a.
 - 3. Verify that $a = fc = f(prh + m)(mod q) = pfrf_q g + fm(mod q) = prg + fm(mod q)$.

NTRU Example

•
$$N = 5, p = 3, q = 29, d = 1, f = x^4 + x^3 - 1, g = x^3 - x^2$$

•
$$f_p = -x^3 - x^2 + x - 1$$
, $f_q = -5x^4 + 8x^3 + 3x^2 + 11x + 13$

•
$$h = f_a g = 8x^4 + 2x^3 + 11x^2 + 13x - 5 \pmod{29}$$

$$\bullet \quad r = x^4 - x$$

•
$$c = prh + m = 8x^4 + 21x^3 + 25x^2 + 20x + 15 \pmod{29}$$

•
$$a = fc = -2x^4 + 2x^3 + 4x^2 - 3x + 1 \pmod{29}$$

- We check a = prg + fm in R
- $m = x^3 + x$

Some NIST Round 3 entries

- Public-Key Encryption/KEMs
 - Classic McEliece
 - CRYSTALS-KYBER
 - NTRU
 - SABER
- Digital Signatures
 - CRYSTALS-DILITHIUM
 - FALCON
 - Rainbow

- Public-Key Encryption/KEMs (Alternates)
 - BIKE;
 - FrodoKEM
 - HQC
 - NTRU Prime
 - SIKE
- Digital Signatures
 - GeMSS
 - Picnic
 - SPHINCS+

Winner: Dilithium (signing), Kyber (key-encapsulation)

Common features of Dilithium and Kyber

- Ring is $\mathbb{Z}_p[x]/(x^{256}+1)$ in both cases
 - p = 3329 for Kyber
 - $p = 2^{23} 2^{13} + 1 = 8380417$ for Dilithium
 - So, the same modular arithmetic we all grew up with.
- For p=3329, there is a primitive (and hence 128 primitive) 256th roots of unity (You are not expected to understand this).
 - As a result, $x^{256} + 1$ factors into coprime 128 quadratics
 - Allows us to perform a "Number Theory Transform" that turns convolution into pointwise multiplication for ring operations giving a nice speedup
- For p=8380417, there is a primitive (and hence 256 primitive) 512th roots of unity
 - As a result, $x^{256} + 1$ factors into coprime 256 linear polys
 - Allows us to perform a "Number Theory Transform" that turns convolution into pointwise multiplication for ring operations giving a nice speedup

Useful definitions

- $r^+ = r \pmod{q}, q > r^+ \ge 0$
- $r'=r\ mod^\pm(m)$ means $r'=r\ (mod\ m)$ and $-\frac{m}{2}\leq r'\leq \frac{m}{2}$, if m is even; $-\frac{m}{2}< r'\leq \frac{m}{2}$, if m is odd
- $decompose(r, \alpha, q)$
 - $r_0 = r^+ mod^{\pm}(\alpha)$
 - if $r^+ r_0 == (q 1)$
 - $-r_1=0$, $r_0=q-1$
 - else
 - $r_1 = \frac{r^+ r_0}{\alpha}$
 - return (r_1, r_0)

Useful definitions

- $lowbits(x, \alpha, q)$
 - $(r_1, r_0) = decompose(x, \alpha, q)$
 - return r_0
- $highbits(x, \alpha, q)$
 - $(r_1, r_0) = decompose(x, \alpha, q)$
 - return r_1
- power2round(r,d,q)
 - $r^+ = r \mod(q)$
 - $r_0 = r^+ mod^{\pm}(2^d)$
 - return $(\frac{r^+-r_0}{2^d}, r_0)$

Examples

• $decompose(r, \alpha, q)$ examples (second shows roundoff edge case)

q	α	r	$r mod^{\pm}(\alpha)$	$r-r mod^{\pm}(\alpha)$	r_0	r_1
17	8	5	-3	8	-3	1
17	8	15	-1	16	-2	0
3329	104	50	50	0	50	0
3329	104	100	-4	104	-4	1

SHAKE-256/SHAKE-128

- H(v,d) = SHAKE256(v,d)
- $H_{128}(v,d) = SHAKE128(v,d)$
- RAWSHAKE256(J, d) = KECCAK[512](J||11, d)
- SHAKE256(M,d) = RAWSHAKE256(M||11,d)
- RAWSHAKE128(J, d) = KECCAK[256](J||11, d)
- SHAKE128(M, d) = RAWSHAKE128(M||11, d)
- Note
 - $SHA3_{256}(M) = KECCAK[512](M||11,256)$
 - $SHA3_{512}(M) = KECCAK[1024](M||11,1024)$

Number Theory Transform (NTT)

- $p = 3329, p 1 = 2^8 \cdot 13.$
- \mathbb{Z}_p has a primitive 256th root of unity ($\zeta = 17$ is a primitive root) but no 512 root of unity, so $x^{256} + 1$ factors into 128 coprime quadratic factors of the form $(x^2 \xi)$, $17^{128} = -1$.
- $x^{256} + 1 = \prod_{k=0}^{127} (x^2 \zeta^{2 \cdot bitrev_7(k) + 1}).$
- $bitrev_7(k)$ reverses the bit order in a 7-bit byte, k.

•
$$x^{256} + 1 = (x^2 - 17) \cdot (x^2 - 17^{129}) \cdot \dots \cdot (x^2 - 17^{255})$$

- For p=8380417, $\zeta=1753$ is a primitive 512th root of unity, • $p-1=2^{13}(2^{10}-1)=2^{13}\cdot 3\cdot 11\cdot 31$.
- Because of this, an analog of the Chinese remainder theorem holds in $R_p = \frac{\mathbb{Z}_p(x)}{x^{256}+1}.$

NTT for Dllithium

• NTT:
$$R_p \to T_p$$
, $f \mapsto \hat{f}$, $T_q = \prod_{i=0}^{255} \mathbb{Z}_q$

- For $f \in R_p$
 - $\hat{f} = \prod_{i=0}^{511} f \pmod{x \zeta^{2i+1}}$, $\zeta = 1753$, so each element in the vector is just an element of \mathbb{Z}_p
 - If $a(x) = a_0 + a_1x + a_2x^2 + \dots + a_{511}x^{255}$
 - $\hat{a} = (a(r_0), a(-r_0), ..., a(r_{127}), a(-r_{127})), r_i = \zeta^{i+128}$
- Multiplication is then pointwise

Dilithium template

```
• Gen
```

- $A \leftarrow R_q^{k \times l}$ • $(\mathbf{s_1}, \mathbf{s_2}) \leftarrow S_n^l \times S_n^k$
- $t = As_1 + s_2$
- return $(pk = (A, t), sk = (A, t, s_1, s_2))$
- Verify $(pk, M, \sigma = (\mathbf{z}, c))$
 - $w_1' = highbits(Az ct, 2\gamma_2)$
 - return $||z||_{\infty} < \gamma_1 \beta \land c == H(M||w_1'|)$

- Sign(*sk*, *m*)
 - z=⊥
 - while $z == \bot$

$$- y \leftarrow S_{\gamma_1-1}^l$$

- $w_1 = highbits(Ay, 2\gamma_2)$
- $-c \in B_{60}, c = H(M||w_1)$
- // view c as polynomial in R_q
- $-z=y+cs_1$
- if $||\mathbf{z}||_{\infty} < \gamma_1 \beta \lor$ $||lowbits(Ay - cs_2, 2\gamma_2)||_{\infty} \ge \gamma_2 - \beta$
 - z=⊥
- return $\sigma = (\mathbf{z}, c)$

For real Dilithium, k = 5, l = 4

Dilithium security argument -1

$$\eta = 5, \gamma_1 = \frac{q-1}{16}, \gamma_2 = \frac{\gamma_1}{2}, R_q = \frac{\mathbb{Z}_q[x]}{x^{256}+1}, q = 2^{23} - 2^{13} + 1,$$
$$q - 1 = 2^{13} \cdot 3 \cdot 11 \cdot 31. k = 5, l = 4$$

1.
$$A \leftarrow R_q^{k \times l}$$
, $(s_1, s_2) \leftarrow S_\eta^l \times S_\eta^k$, $t = As_1 + s_2$, $pk = (A, t)$, $sk = (A, t, s_1, s_2)$, $S = R_q$

- 2. $\mathbf{y} \leftarrow S_{\gamma_1-1}^l$, $\mathbf{w_1} = highbits_{2\gamma_2}(A\mathbf{y})$
 - Write coefficients of $\mathbf{w} = A\mathbf{y}$, as $\mathbf{w}^{[i]} = (2\gamma_1)\mathbf{w}_1^{[i]} + \mathbf{w}_0^{[i]}$
 - $\mathbf{w_1} = highbits_{2\gamma_2}(A\mathbf{y})$ then $\mathbf{w}_0^{[i]} < \gamma_2$
- 3. $c \in B_{60}$, $c = H(M||w_1)$. Set $\beta = max_i((cs_1)^{[i]})$. Then $\beta \le 60\eta$.
- 4. Set $z = y + cs_1$, if any coefficient of $z > \gamma_1 \beta$, reject and start over.
- 5. If any coefficient of $lowbits_{2\gamma_2}(A\mathbf{z}-c\mathbf{t}) > \gamma_2 \beta$, reject and start over.
 - Note: $A\mathbf{z} c\mathbf{t} = A\mathbf{y} c\mathbf{s}_2$
 - coefficients of $\mathbf{z} \leq \gamma_1 \beta$, coefficients of $lowbits_{2\gamma_2}(A\mathbf{z} c\mathbf{t}) \leq \gamma_2 \beta$
- 6. Signature is $\sigma = (\mathbf{z}, c)$
 - $c \in B_{60}$ is ensured by SampleInBall in the final algorithm.
 - Parameters chosen so that expected rejections in steps 4 and 5 is between 4 and 7.

Dilithium security argument - 2

Verification

- $Az ct = Ay cs_2$
- To show $highbits_{2\gamma_2}(A\mathbf{z}-c\mathbf{t})=highbits_{2\gamma_2}(A\mathbf{y})$, we need only show $highbits_{2\gamma_2}(A\mathbf{y})=highbits_{2\gamma_2}(A\mathbf{y}-c\mathbf{s_2})$.
 - This follows because $\left|lowbits_{2\gamma_2}(A\mathbf{y}-c\mathbf{s}_2)\right|_{\infty}<\gamma_2-\beta$; and,
 - The coefficients of $||cs_2||_{\infty} < \beta$
 - Adding $c\mathbf{s}_2$ never causes a carry of γ_2 from the lowbits and, hence, $highbits_{2\gamma_2}(A\mathbf{z}-c\mathbf{t})=highbits_{2\gamma_2}(A\mathbf{y})$
 - Now we can compute $highbits_{2\gamma_2}(\pmb{w}_1)$ and hence $H(M||\pmb{w}_1)$

Template > Dilithium

- NTT is used to speed multiplications.
- Produce hint, h to help verifier calculate w'_1 in verify.
 - $r_1 \leftarrow Highbits(r), \upsilon \leftarrow Highbits(r+z), h \leftarrow [[r_1 \neq \nu]]$
 - $h \leftarrow MakeHint(-\ll(ct_0)\gg, w-\ll cs_2\gg+\ll ct_0\gg)$
 - $\tilde{c} \leftarrow H(\mu||w_1,\lambda)$
- Drop d=13, bottom bits in t. $\omega=75$ is man number of 1's in h.
- In final algorithm, A, is generated from a seed using SHAKE-128.
- Notes:
 - Compute $w'_1 = highbits_{2\gamma_2}(Az ct)$ from the compressed public key.
 - SampleinBall, guarantees $c \in B_{60}$ using Fisher-Yates shuffle on $H(M||w_1)$

Template → Dilithium

- $\xi \leftarrow H(\{0,1\}^{256}), (\rho, \rho', K) \leftarrow H(\xi, 512), \hat{A} \leftarrow Expand(\rho)$
- $tr \leftarrow H(pk, 512)$, sign: $\mu \leftarrow H(tr||M, 512)$, $(\hat{s}_1, \hat{s}_2) \leftarrow ExpandS(\rho')$.
- $(t_1, t_0) \leftarrow Power2Round(t, d), sk \leftarrow (\rho, K, tr, s_1, s_2, t_0)$
- $Usehint(h, w'_{appx}), r, z \in \mathbb{Z}_q$
 - $m \leftarrow \frac{q-1}{2\gamma_2}$, $(r_1, r_0) \leftarrow decompose(r)$
 - If $(h == 1 \land r_0 > 0)$ return $(r_1 + 1) \mod m$
 - If $(h == 1 \land r_0 \le 0)$ return $(r_1 1) \mod m$
 - return r_1

Algorithm	Public key	Private key size	Signature size
ML-DSA-87	4864	2592	4595

Dilithium, unedited, motivation

- Basic scheme is Fiat-Shamir MSA-DL with aborts.
- Classic version with discrete log is:
 - Prover and verifier know $(g, y = g^x)$. Prover knows x.
 - 1. Prover generates r, sends commitment g^r .
 - 2. Verifier sends c.
 - 3. Prover returns s = r cx.
 - 4. Verifier can check $g^s \cdot y^c = g^r$
- Non interactive version replaces c with hash of $g^r || M$
- LWE version
 - Publish A, $t = As_1 + s_2$
 - Prover: Pick, y, commit by sending $w_{approx} = Ay + y_2$, y_2 has small coefficients.
 - Verifier: Send challenge, c.
 - Prover: $z = y + cs_1$
 - Verifier: Check z and $Az tc \approx w_{approx}$

Dilithium (simplified)

- Remember $A^{k \times l}$ is generated randomly from $R = \mathbb{Z}_p[x]/(x^{256} + 1)$.
- s_1 is a vector of dimension l with entries from R has random coefficients $\leq \eta$
- s_2 is a vector of dimension k with entries from R has random coefficients $\leq \eta$
- $t = As_1 + s_2$

```
Sign y \coloneqq S_{\gamma_1-1}^{\quad l} w_1 \coloneqq \text{highbits}(Ay, 2\gamma_2) c \coloneqq SH(M||w_1) z \coloneqq y + cs_1 \text{return}(z, c)
```

```
Verify w_1' \coloneqq \text{highbits}(\text{Az} - \text{ct}, 2\gamma_2) c' \coloneqq SH(M||w_1') Check c' == c AND ||z||_{\infty} < \gamma_1 - \beta
```

Dilithium (less simplified)

Parameters:
$$p = 8380417$$
, $k = 5$, $l = 4$, $\gamma_1 = \frac{p-1}{16}$, $\gamma_2 = \frac{\gamma_1}{2}$, $\eta = 5$, $\beta = 275$ $R_p = \frac{\mathbb{Z}_p[x]}{r^{256}+1}$

KeyGen

- $A \in \mathbb{R}_p^{k \times l}$, selected from random distribution over \mathbb{R}_p
- $(s_1, s_2) \in S_{\eta}^k \times S_{\eta}^l$, selected at random, S_{η}^k consists of elements of R_p^k with coefficients $\leq \eta$
- Set $t = As_1 + s_2$
- Public key is (A, t), Private key is (s_1, s_2) For the sake of compression A is generated from a seed and SHAKE-256

Dilithium

• Sign(pk, sk, M) --- simplified

```
1. z = \bot
2. while (z = \bot) {
3. y = S_{\gamma_1}{}^l - 1
4. w_1 = highbits(Ay, 2\gamma_2)
5. c = SHAKE - 256(M||w_1)
6. z = y + cs_2
7. if (||z||_{\infty} \ge \gamma_1 - \beta) OR lowbits(Ay - cs_2, 2\gamma_1) \ge \gamma_2 - \beta) then z = \bot
8. }
Signature is (z, c)
```

 Real Dilithium uses a number of functions to generate A from a seed. It also has a hedged version and a deterministic version. The hedged version avoids some possible side channels.

Dilithium

- Verify(pk, M,z, c) --- simplified
 - 1. $w_1' = highbits(Az ct, 2\gamma_2)$
 - 2. Return true if $||z||_{\infty} \le \gamma_1 \beta$ AND $c = SHAKE 256(M||w_1'|)$, otherwise return false

- usehint(h,r)
 - $m = \frac{p-1}{2\gamma_2}$
 - $(r_1, r_0) = decompose(r, 2\gamma_2, p)$
 - If h == 1 and $r_0 > 0$ then return $(r_1 + 1) mod(m)$
 - If h == 1 and $r_0 \le 0$ then return $(r_1 1) mod(m)$
 - return r_1
- makehint(z,r)
 - $r_1 = highbits(r)$
 - $v_1 = highbits(r + z)$
 - return $r_1 \neq v_1$

• $RejNTTPoly(\rho)$ // returns NTT polynomial • c = 0; j = 0• while (j < 256) $- \hat{a}[j] = coeffFromThreeBytes(H_{128}(\rho||c), H_{128}(\rho||c+1), \dots, H_{128}(\rho||c+2))$ - c += 3- If $(\hat{a}[j] \neq \perp)$ then j + +• return \hat{a} • $RejBoundedPoly(\rho)$ • c = 0; j = 0• while (j < 256) $-z = H(\rho)[c]$ - $z_0 = CoeffFromHalfByte(z mod(16), \eta)$ - $z_1 = CoeffFromHalfByte(\lfloor z/16 \rfloor, \eta)$ - If $(z_0 \neq \perp)$ $-a_{j}=z_{0}; j++$ - If $(z_1 \neq \perp \text{ and } j < 256)$ $- a_j = z_1; j + +$

• c++

return a

```
ExpandA(\rho)
   • for(r = 0; r < k; k + +)
      for (s = 0; s < l)
         \hat{A}[r,s] = RejNTTPoly(\rho||IntegerToBits(s,8)||INtegerToBits(r,8))
   return Â
ExpandS(\rho)
   • for (r=0; r<1; r++)
      - s_1[r] = RejBoundedPoly(\rho||IntegerToBits(r, 16))
   • for (r=0; r<k; r++)
      - s_2[r] = RejBoundedPoly(\rho||IntegerToBits(r + l16))
 return (s_1, s_2)
ExpandMask(\rho, \mu)
   • c = 1 + bitlen(\gamma_1 - 1)
   • for(r = 0; r < l; r + +)
      - n = IntegerToBits(\mu + r, 16)
      - v = (H(\rho||n)[32rc], H(\rho||n)[32rc+1], ..., H(\rho||n)[32rc+32c-1])
      -s[r] = BitUnpack(v, \gamma_1 - 1, \gamma_1)
     return s
```

```
• // Calculate c(x), coefficients are 1, -1 or 0

• SampleinBall(\rho, \tau)

• c(x) \coloneqq 0; k=8;

• for(i=256-\tau; i<256; i++)

- while(H(\rho)[[k]]>i) // H(\rho)[[k]] is kth byte k++

j=H(\rho)[k]

c_i=c_j

c_j=(-1)^{H(\rho)[i+\tau-256]} // [k] is bit position k

k++

• return c
```

SampleInBall generates an element of B_{60} pseudorandomly; it is based on the Fisher-Yates shuffe. The first 8 bytes of H(ρ) choose the signs of the nonzero entries of c; subsequent bytes choose the positions of those nonzero entries

Here H is SHAKE256 used as an XOF.

NTT for Dilithium

```
NTT(w) --- outputs \widehat{w_i} = (w(\zeta_0), w(-\zeta_0), w(\zeta_1), w(-\zeta_1), ..., w(-\zeta_{127}))
  • for(j = 0; j < 256; j + +) \widehat{w}[j] = w[j]
      - k = 0; len = 128
      - while(len \ge 1)
         • start = 0
         • while (start < 256)
           - k + +
           - zeta = \zeta^{bitrev(k)} \mod(q)
           - for(j = start; j \le start + len - 1)
             • t = zeta \cdot \widehat{w}[j + len]
             • \widehat{w}[j + len] = \widehat{w}[j] - t
             • \widehat{w}[j] = \widehat{w}[j] + t
           - start += 2 \cdot len
         • len = len/2
```

NTT for Dilithium

```
• NTT^{-1}(\widehat{w})
    • for(j = 0; j < 256; j + +) w[j] = \widehat{w}[j]
    • k = 256; len = 1
    • while(len < 256)
       - start = 0
       while (start < 256)</li>
          • k — —
          • zeta = \zeta^{bitrev(k)} mod(q)
          • for(j = start; j \le start + len - 1)
           -t=w|j|
           -w[j] = t + w[j + len]
            -w[j+len] = t-w[j+len]
            - w[j + len] = zeta \cdot w[j + len]
            - start += 2 \cdot len
       - len = len/2
    • f = 8347861
    • for(j = 0; j < 256; j + +) w[j] = f \cdot w[j]
```

Dilithium, unedited, motivation

- Preliminary lattice version is prover generates: $A \in \mathbb{Z}_q^{k \times l}$, $S_1 \in \mathbb{Z}_q^{l \times n}$, $S_2 \in \mathbb{Z}_q^{k \times n}$, with short coefficients and computes $t = AS_1 + S_2$. Public key is (A, t). Private key is (S_1, S_2)
 - 1. Prover generates $y \in \mathbb{Z}_q^l$ with "small coefficients". Sends commitment as Ay
 - 2. Verifiers sends challenge $c \in \mathbb{Z}_q^n$ with small coefficients
 - 3. Prover returns $z = y + S_1 c$.
 - 4. Verifier checks coefficients of z are small and that $Az tc \approx Ay$
- To avoid having z leak S_1 , signer applies rejection sampling to z.
- Dilithium
 - 1. Uses elements of $R_q = \frac{\mathbb{Z}_q[x]}{x^{256}+1}$ rather than \mathbb{Z}_q .
 - 2. Uses a seed, ρ , to generate A, compresses t by dropping low order bits.
 - 3. Signs a message representative, μ , which is a hash of the public key and the message
 - 4. Uses a rounded version of w = Ay, w_1 .
 - 5. Provides a hint, h, to help reconstruct w_1 from z

Dilithium parameters for security category 5

Parameter	Meaning	Value
q	modulus	8380417
d	# dropped bits from t	13
τ	# ± 1 s in $c(x)$	60
λ	Collision strength	256
γ_1	Coefficient range of y	2 ¹⁹
γ_2	Low order rounding range	$\frac{q-1}{32}$
(k, l)	Dimensions of A	(8,7)
η	Private key range	2
$\beta = \tau \cdot \eta$		120
ω	Max # of 1's in hint	75

Dilithium, Keygen

Keygen

- 1. $\xi = \mathbb{Z}_2^{256}$ (random)
- 2. $(\rho, \rho', K) := H(\xi, 1024)$, (256, 512, 256) bits respectively
- 3. $\hat{A} := ExpandA(\rho)$
- 4. $(s_1, s_2) := ExpandS(\rho')$
- 5. $t := NTT^{-1} \left(\hat{A} NTT(s_1) \right) + s_2$
- 6. $(t_1, t_0) := Power2Round(t, d)$
- 7. $pk := pkEncode(\rho, t_1)$
- 8. tr := H(BytesToBits(pk), 512)
- 9. $sk := skEncode(\rho, K, tr, s_1, s_2, t_0)$
- 10. return (pk, sk)

Dilithium, Sign

```
1. (\rho, K, tr, s_1, s_2, t_0) = skdecode(sk)
2. \widehat{s_1} := NTT(s_1), \widehat{s_2} := NTT(s_2), \widehat{s_1} := NTT(t_0); \widehat{A} := ExpandA(\rho)
3. \mu := H(tr||M,512); rnd := \mathbb{Z}_2^{256}
4. \rho' := H(K||rnd||\mu, 512)
5. \kappa = 0
6. while(1) {
           a. y = ExpandMask(\rho', \kappa)
           b. w := NTT^{-1}(\widehat{A}NTT(y)), \quad w_1 := highbits(w, 2\gamma_2)
           c. \tilde{c} := H(\mu||w1Encode(w_1), 2\lambda)
           d. (\hat{c}_1, \hat{c}_2) := first 256 and last 256 – 2\lambda bits
           e. c := SampleBall(\hat{c}_1); \hat{c} = NTT(c)
           f. cs_1 := NTT^{-1}(\hat{c} \hat{s}_1); cs_2 := NTT^{-1}(\hat{c} \hat{s}_2);
           g. z := y + cs_1
           h. r_0 := lowbits(w - cs_2)
           i. If (||z||_{\infty} \ge \gamma_1 - \beta \text{ or } ||r_0||_{\infty} \ge \gamma_2 - \beta \text{ then continue}
           j. ct_0 := NTT^{-1}(\tilde{c}t_0); h := makehint(-ct_0, w - cs_2 + ct_0)
           k. If (||ct_0||_{\infty} < \gamma_2 and # 1's in h \le \omega) then break
           l \kappa += l
       9. \sigma := sigEncode(\tilde{c}, z mod^{\pm}(q), h)
```

Dilithium, Verify

Verify

1. $(\rho, t_1) \coloneqq pkdecode(pk)$ 2. $(\tilde{c}, z, h) \coloneqq sigdecode(\sigma)$ 3. $\hat{A} \coloneqq ExpandA(\rho)$ 4. $tr \coloneqq H(BytestoBits(pk), 512)$ 5. $\mu \coloneqq H(tr||M, 512)$ 6. $(\tilde{c}_1, \tilde{c}_2) \coloneqq \text{first 256 and last 256} - 2\lambda \text{ bits}$ 7. $c \coloneqq SampleBall(\tilde{c}_1)$ 8. $w'_{appx} \coloneqq NTT^{-1}(\tilde{A} \cdot NTT(z) - NTT(c)NTT(t_12^d))$ 9. $w'_1 \coloneqq usehint(h, w'_{appx}) // w_{approx} = (Az - ct_1) \cdot 2^d$ 10. $\tilde{c}' \coloneqq H(\mu||w1Encode(w'_1, 2\lambda))$ 11. $\text{return } ||z||_{\infty} < \gamma_1 - \beta \text{ and } \tilde{c} == \tilde{c}' \text{ and } \# 1\text{'s in } h \leq \omega$

Kyber

- Kyber is a key encapsulation algorithm that uses a public key encryption algorithm similar to Dilithium in conjunction with an encapsulation mechanism (Fujisaki-Okamoto transform) which converts a conditionally secure encryption into a CCA safe encapsulation. Here are some definitions.
 - $PRF_{\eta}(s,b) = shake256(s||b,64 \cdot \eta)$
 - $XOF(\rho, i, j) = shake128(\rho||i||j)$
 - $H(s) = sha3_{256}(s), J(s) = shake256_{32}(s)$
 - $G(s) = sha3_{512}(s)$
 - NTT and NTT^{-1} are different for Kyber and Dilithium
- Fujisaki-Okamoto transform:
 - $\mathcal{E}_{pk}^{hy}(m) = \mathcal{E}_{pk}^{asym}(\sigma, H(\sigma, m)) || \mathcal{E}_{G(\sigma)}^{sym}(m)$
 - σ is random string, G, H are hash functions, $\mathcal{E}_{G(\sigma)}^{sym}$ is symmetric encryption with key $G(\sigma)$ and \mathcal{E}_{pk}^{asym} is original asymmetric encryption algorithm.

```
• Parse: \mathcal{B}^* \to R_q^n
    Input: B = b_0, b_1, ... \in \mathcal{B}^*
• Output: \hat{a} \in R_a^n,
      i = 0; j = 0;
      while j < i
          d = b_i + 256 \cdot b_{i+1}
           if d < 19q
              \widehat{a_i} = d
             j + +
          i += 2
      return \hat{a}_0 + \hat{a}_1 x + \dots + \hat{a}_{n-1} x^{n-1}
```

- $SamplePolyCBD(B,\eta))$ --- samples from (Central Binomial) distribution $D_{\eta}(R_q)$ Output: $f \in R_q^{256}$ $b \coloneqq ByteToBits(B)$ for(i=0;i<256;i++) $x = \sum_{j=0}^{\eta-1}b[2i\eta+j]; y = \sum_{j=0}^{\eta-1}b[2i\eta+\eta+j]$ $f[i]\coloneqq (x-y)\ mod(q)$ return f
- $Sample(a_1, a_2, ..., a_{\eta}, b_1, ..., b_{\eta}) \leftarrow \{0,1\}^{2\eta}$, output $\sum_{i=1}^{\eta} (a_i b_i)$
- For central binomial distribution with N=10000, $p=rac{1}{2}$, $\sigma=\sqrt{Np(1-p)}$,

•
$$P(4900 \le n_1 \le 5100) = \sum_{j=4900}^{5100} {N \choose j} p^j (1-p)^{N-j} \approx \Phi(\frac{5100-5000}{50}) - \Phi(\frac{5100-5000}{50}),$$

Φ is CDF for normal distribution

- $encode_d(x)$, x is an array of length 256, $m=2^d$, $1 \le d \le 12$ for (i = 0; i < 256; i++)

 a = x[i]• for (j=0; j < d; j++)

 $b[d \cdot i + j] = a \pmod{2}$ $a = \frac{a-b[d \cdot i+j]}{2}$
 - return bits-to-bytes(b)
- $decode_d(x)$, x is a byte array of length 32d, $m=2^d$, $1 \le d \le 12$
 - b = bytes to bits(x)
 - for (i=0; i < 256; i++)
 - $out[i] = \sum_{j=0}^{d-1} b[i \cdot d + j] \cdot 2^{j}$
 - return out

```
• SampleNTT() --- samples uniformly from T_q i \coloneqq 0; j \coloneqq 0 while (j < 256) d_1 = b[i] + 256(b[i+1]mod(16)) d_2 = b[i+1]/16 + 16(b[i+2]) If (d_1 < q) \hat{a}[j] = d_1; j+1 If (d_2 < q) and j < 256 \hat{a}[j] = d_2; j+1 i+1 i+1
```

- $compress(x, d, q) --- compress_d: \mathbb{Z}_q \to \mathbb{Z}_{2^d}, x \to \stackrel{?}{\uparrow} \frac{2^d}{q} \cdot x \uparrow$ $x \to \stackrel{?}{\uparrow} \frac{2^d}{q} \cdot x \downarrow$
- $decompress(y, d, q) \longrightarrow decompress_d: \mathbb{Z}_{2^d} \to \mathbb{Z}_q, y \to \stackrel{q}{\vdash} \frac{q}{2^d} \cdot y \downarrow y \to \stackrel{q}{\vdash} \frac{q}{2^d} \cdot y \to \stackrel{q}{\vdash} \frac{q}{2^d} \to \stackrel{q}{\vdash} \frac{q}{2^d} \cdot y \to \stackrel{q}{\vdash} \frac{q}{2^d} \cdot y \to \stackrel{q}{\vdash} \frac{q}{2^d} \to \stackrel{q}{\vdash} \stackrel{q}{$
- compress(decompress(x, d, q), d, q) = x
- $decompress(compress(y,d,q),d,q) = t, (t-y)mod^{\pm}(q) \le \lceil \frac{q}{2^{d+1}} \rfloor$

- Note $x^{256} + 1 = \prod_{k=0}^{127} (x^2 \zeta^{2 \cdot bitrev_7(k)+1})$. This allows us to decompose an element in R_p into 127 coprime quadratics and recreate it using the Chinese Remainder Theorem.
- $NTT: R_p \to T_p, f \mapsto \hat{f}$
- For $f \in R_p$
 - $\hat{f} = (\prod_{i=0}^{127} f \pmod{x^2 \zeta^{2rev_7(i)+1}})$
 - $\hat{g} = (\hat{g}_{0,0} + \hat{g}_{01}x, \hat{g}_{1,0} + \hat{g}_{11}x, ..., \hat{g}_{127,0} + \hat{g}_{127,1}x)$
 - $NTT(g) = \hat{g} = (\hat{g}_{0,0}, \hat{g}_{01}, \hat{g}_{1,0}, \hat{g}_{11}, \dots, \hat{g}_{127,0}, \hat{g}_{127,1})$
 - Operations are performed element-wise
- For $\hat{h} = \hat{f} \cdot \hat{g}$,
 - $\hat{h}_{2i} + \hat{h}_{2i+1}x = (\hat{f}_{2i} + \hat{f}_{2i+1}x) \cdot (\hat{g}_{2i} + \hat{g}_{2i+1}x) \pmod{x^2 \zeta^{2rev_7(i)+1}}$

```
• NTT(f)

• \hat{f} = f; k = 1

• for(len = 128; len \ge 2; len = len/2)

- for(start = 128; start < 256; start += 2len)

- zeta = \zeta^{bitrev(k)} \ mod(q); k + +

- for(j = start; j < start + len; j + +)

• t = zeta \cdot \hat{f}[j + len] \ mod(q)

• \hat{f}[j + len] = \hat{f}[j] - t \ mod(q)

• \hat{f}[j] = \hat{f}[j] + t \ mod(q)

• return(\hat{f})
```

```
• NTT^{-1}(\hat{f})

• f = \hat{f}; k = 127

• for(len = 2; len \le 128 \le ; len = 2 \cdot len)

- for(start = 0; start < 256; start += 2len)

- zeta = \zeta^{bitrev(k)} mod(q); k -= 1

- for(j = start; j < start + len; j + +)

• t = f[j] mod(q)

• f[j] = f[j] + f[j + len] mod(q)

• f[j + len] = zeta \cdot (f[j + len] - t) mod(q)

• return(f \cdot 3303 mod(q))
```

- MultiplyNTT(f̂, ĝ)
 For(i = 0; i < 128; i + +)
 (ĥ_{2i}, ĥ_{2i+1}) ← Basecasemultiply(f̂_{2i}, f̂_{2i+1}, ĝ_{2i}, ĝ_{2i+1}, ζ^{2·bitrev(i)+1})
- Basecasemultiply($a_0, a_1, b_0, b_1, \gamma$)
 - $c_0 \leftarrow a_0 \cdot b_0 + a_1 \cdot b_1 \cdot \gamma$
 - $c_1 \leftarrow a_0 \cdot b_1 + a_1 \cdot b_0$
 - return (c_0, c_1)

Kyber (simplified a little)

- Parameters: $(p = 3329, \zeta = 1753, R_p = \frac{\mathbb{Z}_p[x]}{x^{256}+1}, k = 4, \eta = 2), \hat{x} = NTT(x)$
- Make public key
 - 1. $KeyGen_{PKE}$, generates a Dilithium-like key (see full version)
 - 2. $\hat{t} = \hat{A}\hat{s} + \hat{e}$, A is generated from seed ρ . $A \in \mathbb{R}_p^{k \times k}$, $s, e \in \mathbb{R}_p^k$
- $Enc_{PKE}(m,r)$ [$r \in R_p^k$ is generated from CDB_{η_1} , e_1 is generated from CDB_{η_2}]
 - 1. $\hat{r} = NTT(r)$
 - 2. $u(x) = NTT^{-1}(\hat{A}^T\hat{r}) + e_1$
 - 3. $\mu = decompress_1(decode_1(m)), \nu = NTT^{-1}(\hat{t}^T \cdot \hat{r}) + e_2 + \mu$
 - 4. $c_1 = encode_{d_u}(compress_{d_u}(u)), c_2 = encode_{d_v}(compress_{d_v}(r))$
 - 5. return (c_1, c_2)
- $Dec_{PKE}(c_1, c_2)$
 - 1. $w = v NTT^{-1}(\hat{s} \cdot NTT(u))$
 - 2. return $encode_1(compress_1(w))$

Kyber simplified a little

- KEMKeygen
 - $z = \mathbb{Z}_2^{256}$ (random)
 - $(ek_{PKE}, dk_{PKE}) = KeyGen_{PKE}()$
 - $ek_{KEM} = ek_{PKE}$; $dk_{KEM} = dk_{PKE} ||e_{PKE}|| H(e_{PKE}) ||z|$
 - return (ek_{KEM}, dk_{KEM})
- $KEMencaps(pk_{KEM})$
 - 1. m is a random 32-byte value
 - 2. $(K,r) = SHA3_{512}(m||H(e_{PKE}))$
 - 3. $c = Enc_{PKE}(ek, m, r)$
 - 4. return (K, c)
- $KEMdecaps(sk_{KEM})$
 - 1. $m' = Dec_{PKE}(dk, c)$
 - 2. $(K',r') = SHA3_{512}(m'||H(e_{PKE}))$
 - 3. $\overline{K} = SHAKE256 (z||c,32)$
 - 4. $c' = Enc_{PKE}(e_{PKE}, m', r')$
 - 5. If (c == c') return K' else error

Kyber parameters

Alg	n	\boldsymbol{q}	k	η_1	η_2	d_u	d_v	Strength
KEM-512	256	3329	2	3	2	10	768	128
KEM-768	256	3329	3	2	2	10	1088	192
KEM-1024	256	3329	4	2	2	11	1568	256

ML-KEM-1024 is security category 5

Туре	Encap-key	Decap-key	Ciphertext	Key
KEM-512	800	1632	768	32
KEM-768	1184	2400	1088	32
KEM-1024	1568	3168	1568	32

Size in bytes

```
    KeyGen<sub>PKE</sub>

    1. d = \mathbb{Z}_2^{256}, random
    2. (\rho, \sigma) = G(d); N = 0
    3. for(i = 0; i < k; i + +)
       - for(j = 0; j < k; j + +)
          • \hat{A}[i,j] = SampleNTT(XOF(\rho,i,j))
    4. for(i = 0; i < k; i + +)
          • s[i] = SamplePolyCBD(PRF_{\eta_1}(\sigma, N)); N + +
    5. for(i = 0; i < k; i + +)
          • e[i] = SamplePolyCDB(PRF_{\eta_1}(\sigma, N)); N + +
    6. \hat{s} = NTT(s); \hat{e} = NTT(e)
    7 \hat{t} = \hat{A}\hat{s} + \hat{e}
    8. ek_{PKE} = ByteEncode_{12}(\hat{t})||\rho; dk_{PKE} = ByteEncode_{12}(\hat{s})|
    9. return (e_{PKE}, d_{PKE})
```

```
Enc_{PKE}(m,r) // r is randomness, (\boldsymbol{u},v)=(A^T\boldsymbol{r}+\boldsymbol{e_1},\boldsymbol{t}^T\cdot\boldsymbol{r}+\boldsymbol{e_2}), \mu added to term 2.
   N = 0; \hat{t} = ByteDecode_{12}(ek_{PKE}[0:384k]); \rho = ek_{PKE}[384k + 384k + 32]
     for(i = 0; i < k; i + +)
        for (j = 0; j < k; j + +)
          \hat{A}[i,j] = SampleNTT(XOF(\rho,i,j))
     for(i = 0; i < k; i + +)
         r[i] = SamplePolyCBD_{\eta_1}(PRF_{\eta_2}(r, N)); N + +
     for(i = 0; i < k; i + +)
      e_1[i] = SamplePolyCBD_{\eta_2}(PRF_{\eta_2}(r, N)); N + +
   e_2 = SamplePolyCBD_{\eta_2}(PRF_{\eta_2}(r, N))
   \hat{r} = NTT(r)
   \mathbf{u}(x) = NTT^{-1}(\hat{A}^T\hat{r}) + e_1
   \mu = decompress_1(decode_1(m)), v = NTT^{-1}(\hat{t}^T \cdot \hat{r}) + e_2 + \mu
  c_1 = encode_{d_n}(compress_{d_n}(u)), c_2 = encode_{d_n}(compress_{d_n}(r))
 return (c_1, c_2)
```

```
• Dec_{PKE}(c_1, c_2)

1. c_1 = c[0:32d_uk]; c_2 = c[32(d_uk + d_v)]

2. u = decompress_{d_u}(ByteDecode_{d_u}(c_1))

3. v = decompress_{d_v}(ByteDecode_{d_v}(c_2))

4. \hat{s} = ByteDecode_{12}(d_{PKE})

5. w = v - NTT^{-1}(\hat{s}^T \cdot NTT(u))

6. m = ByteEncode_1(compress_1(w))

7. return m
```

- $Keygen_{KEM}$
 - $z = \mathbb{Z}_2^{256}$ (random)
 - $(ek_{PKE}, dk_{PKE}) = KeyGen_{PKE}()$
 - $ek_{KEM} = ek_{PKE}$; $dk_{KEM} = dk_{PKE} ||ek_{PKE}|| H(ek_{PKE}) ||z|$
 - return (ek_{KEM}, dk_{KEM})
 - $\hat{t} = \hat{A}\hat{s} + \hat{e}$, A is generated from seed ρ
 - return (ek_{PKE}, dk_{PKE})

- $KEMencaps(pk_{KEM})$
 - 1. m is a random 32-byte value
 - 2. (K,r) = G(m||H(ek))
 - 3. $c = Enc_{PKE}(ek, m, r)$
 - 4. return (K, c)

- KEMdecaps(c,dk)
 - 1. $dk_{PKE} = dk[0:384k]$
 - 2. $ek_{PKE} = dk[384k:768k + 32]$
 - 3. h = dk[768k + 32:768k + 64]
 - 4. z = dk[768k + 64:768k + 96]
 - 5. $m' = Dec_{PKE}(dk, c)$
 - 6. $(K', r') = G(m'||H(e_k))$
 - 7. $\overline{K} = J(z||c,32)$
 - 8. $c' = Enc_{PKE}(ek, m', r')$
 - 9. If (c == c') return K' else error

Kyber Notes

- Define $Adv_{m,k,\eta}^{mlwe} = |\Pr[b'=1, A \leftarrow R_q^{m \times k}; (\boldsymbol{s}, \boldsymbol{e}) \leftarrow \beta_{\eta}^k \times \beta_{\eta}^m; \boldsymbol{b} = A\boldsymbol{s} + \boldsymbol{e}; b' = A(\boldsymbol{A}, \boldsymbol{b})] \Pr[(b'=1, A \leftarrow R_q^{m \times k}; b \leftarrow R_q^m); b' = A(\boldsymbol{A}, \boldsymbol{b})]|.$
- **Theorem**: Suppose XOF and G are random oracles. For all adversaries, A, there are adversaries, B, C: $Adv_{kvher,CPAPKE}^{cpa}((A) \le 2 \ Adv_{k+1,k,\eta}^{mlwe}(B) + Adv_{PRF}^{prf}(C)$
- **Theorem**: Suppose XOF and G are random oracles. For any classical adversary, A, that make at most q_{RO} to random oracles XOF, H, G there are adversaries B, C of the same running time: $\mathbf{Adv}_{kyber,CCAKEM}^{cca}((A) \leq 2 \ \mathbf{Adv}_{k+1,k,\eta}^{mlwe}(B) + \mathbf{Adv}_{PRF}^{prf}(C) + 4\delta q_{RO}$
- **Theorem**: Suppose XOF and G are random oracles. For any quantum adversary, A, that make at most q_{RO} to random oracles XOF, H, G there are adversaries B, C of the same running time: $\mathbf{Adv}_{kyber,CCAKEM}^{cca}((A) \leq 4q_{RO}\sqrt{\mathbf{Adv}_{k+1,k,\eta}^{mlwe}(B)} + \mathbf{Adv}_{PRF}^{prf}(C) + 8\delta q_{RO}^2$

Kyber Parameters

Alg	Failure rate	Alg	Failure rate	Alg	Failure rate
KEM-512	2^{-139}	KEM-768	2^{-164}	KEM-1024	2^{-174}

Failure rates

Attacks

The Blum-Kalai-Wasserman (BKW) algorithm is a combinatorial algorithm used to solve the Learning With Errors (LWE).

The attack typically involves two main phases:

Reduction Phase: This phase progressively reduces the dimension of the LWE/LWR problem, essentially trying to simplify the equations involved. This is achieved by combining samples (vectors with associated 'noise' or errors) in a way that eliminates certain positions in the vectors, albeit at the cost of increasing the noise in the remaining positions.

Solving Phase: Once the problem is reduced to a manageable size, the remaining entries of the secret are recovered. This often involves techniques like hypothesis testing to distinguish the correct guess of the secret subvector from incorrect ones.

End

LLL Theorem

• Let L be the n-dimensional lattice generated by $\langle v_1, ..., v_n \rangle$ and I the length of the shortest vector in L. The LLL algorithm produces a reduced basis $\langle b_1, ..., b_n \rangle$ of L.

- 1. $||b_1|| \le 2^{(n-1)/4} D^{1/n}$.
- 2. $||b_1|| \le 2^{(n-1)/2}|$.
- 3. $||b_1|| ||b_2|| ... ||b_n|| \le 2^{n(n-1)/4} D.$
- If ||b_i||²≤C algorithm takes O(n⁴ lg(C)).

Gauss again

• Let $\langle v_1, v_2 \rangle$ be a basis for a two-dimensional lattice L in R². The following algorithm produces a reduced basis.

```
for(;;) {
    if(||v<sub>1</sub>||>||v<sub>2</sub>||)
        swap v_1 and v_2;
    t= [(v_1, v_2)/(v_1, v_1)]; // [] is the "closest integer" function
    if(t==0)
        return;
    v<sub>2</sub> = v_2-tv<sub>1</sub>;
    }
```

• $\langle v_1, v_2 \rangle$ is now a reduced basis and v_1 is a shortest vector in the lattice.