Лабораторная работа № 2

Технология Виртуализации

Цель работы:

Практическое освоение технологии виртуализации на примере создания виртуальной машины с помощью приложения VirtualBox фирмы IBM.

Задачи:

Изучить основные методы виртуализации, их особенности, достоинства и недостатки. Научиться создавать виртуальные машины в VirtualBox. Научиться настраивать аппаратную часть виртуальной машины.

Результатами работы являются:

- Настроенная виртуальная машина
- Подготовленный отчет

КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ИЗУЧЕНИЯ, ИССЛЕДОВАНИЯ

Виртуализация подразумевает запуск одном физическом на компьютере нескольких виртуальных компьютеров. То есть, в основе виртуализации лежит возможность одного компьютера выполнять работу компьютеров благодаря распределению его ресурсов по нескольких нескольким средам. С помощью виртуальных серверов и виртуальных настольных компьютеров можно разместить несколько ОС и несколько приложений в едином местоположении. Виртуальная инфраструктура позволяет снизить энергопотребление, сократить расходы на приобретение аппаратных ресурсов, обеспечить высокий уровень доступности ресурсов, более эффективную систему управления, повышенную безопасность и усовершенствованную систему восстановления в критических ситуациях.

Виртуальная машина представляет собой приложение, запущенное на **хостовой** операционной системе, которое работает с собственной операционной системой, называемой **гостевой**, и собственными приложениями, подобно физическому компьютеру.

Виртуальная машина действует так же, как физический компьютер, и содержит собственные виртуальные (т.е. программные) ОЗУ, жесткий диск и сетевой адаптер. которые эмулируют физические устройства компьютера.

Основные методы виртуализации.

Полная виртуализация (Full, Native Virtualization). Используются не модифицированные экземпляры гостевых операционных систем, а для поддержки работы этих ОС служит общий слой эмуляции их исполнения поверх хостовой ОС, в роли которой выступает обычная операционная система.

Приложения	Приложения		
Гостевая ОС (Debian)	Гостевая ОС (Ubuntu)	Приложение	Управление
Приложение виртуализации (VirtualBox)		Windows	
	Хостовая ОС	(Windows 7)	L.
	Оборуд	цование	

Такая технология применяется в VMware Workstation, VMware Server, Parallels Desktop, Parallels Server, MS Virtual PC, MS Virtual Server, Virtual Iron, VirtualBox. Достоинствами данного подхода являются относительная простота реализации, универсальность и надежность решения - все функции управления берет на себя хост-ОС. Недостатки — высокие дополнительные накладные расходы на используемые аппаратные ресурсы, отсутствие учета особенностей гостевых ОС, меньшая, чем нужно, гибкость в использовании аппаратных средств.

Паравиртуализация (paravirtualization). Модификация ядра гостевой ОС выполняется таким образом, что в нее включается новый набор АРІ, через который она может напрямую работать с аппаратурой, не конфликтуя с другими виртуальными машинами. При ЭТОМ нет необходимости задействовать полноценную ОС в качестве хостового ПО, функции которого в данном случае исполняет специальная система, получившая название гипервизора (hypervisor). Именно этот вариант является сегодня наиболее актуальным направлением развития серверных технологий виртуализации и применяется в VMware ESX Server, Xen (и решениях других поставщиков на базе этой технологии), Microsoft Hyper-V.

Приложения	Приложения		
Модифицированная гостевая ОС	Модифицированная гостевая ОС	10/5/07	Управление
API	API		
	Гипервизор (VM	IM)	
	Оборудование	9	

Достоинства данной технологии заключаются в отсутствии потребности в хостовой ОС – ВМ, устанавливаются фактически на "голое железо", а аппаратные ресурсы используются эффективно.

Недостатки — в сложности реализации подхода и необходимости создания специализированной ОС-гипервизора.

Виртуализация на уровне ядра ОС (operating system-level virtualization). Этот вариант подразумевает использование одного ядра хостовой ОС для создания независимых параллельно работающих операционных сред.

Для гостевого ПО создается только собственное сетевое и аппаратное окружение. Такой вариант используется в Virtuozzo (для Linux и Windows), OpenVZ (бесплатный вариант Virtuozzo) и Solaris Containers.

Достоинства — высокая эффективность использования аппаратных ресурсов, низкие накладные технические расходы, отличная управляемость, минимизация расходов на приобретение лицензий.

Недостатки — реализация только однородных вычислительных сред (только Windows или Linux).

Виртуализация приложений подразумевает применение модели сильной изоляции прикладных программ с управляемым взаимодействием с ОС, при которой виртуализируется каждый экземпляр приложений, все его основные компоненты: файлы (включая системные), реестр, шрифты, INІфайлы, СОМ-объекты, службы. Приложение исполняется без процедуры инсталляции в традиционном ее понимании и может запускаться прямо с внешних носителей (например, с флэш-карт или из сетевых папок).

точки зрения ИТ-отдела, такой подход имеет очевидные преимущества: ускорение развертывания настольных систем и возможность управления ими, сведение к минимуму не только конфликтов между потребности в приложениями, тестировании приложений НО И совместимость. Данная технология позволяет использовать на одном компьютере, а точнее в одной и той же операционной системе несколько несовместимых между собой приложений одновременно. Виртуализация приложений позволяет пользователям запускать одно и то же заранее сконфигурированное приложение или группу приложений с сервера. При этом приложения будут работать независимо друг от друга, не внося никаких изменений в операционную систему.

Фактически именно такой вариант виртуализации используется в Sun Java Virtual Machine, Microsoft Application Virtualization (ранее называлось Softgrid), Thinstall (в начале 2008 г. вошла в состав VMware), Symantec/Altiris.

Виртуализация представлений (рабочих мест) Виртуализация представлений подразумевает эмуляцию интерфейса пользователя. Т.е. пользователь видит приложение и работает с ним на своём терминале, хотя на самом деле приложение выполняется на удалённом сервере, а пользователю передаётся лишь картинка удалённого приложения. В зависимости от режима работы пользователь может видеть удалённый рабочий стол и запущенное на нём приложение, либо только само окно приложения.

VirtualBox

Приложение VirtualBox представляет собой систему виртуализации для host-систем Windows, Linux и Mac OS и обеспечивает взаимодействие с гостевыми операционными системами Windows, Linux, OpenBSD, FreeBSD,

OS/2 Warp. VirtualBox реализует метод полной виртуализации. Скачать VirtualBox можно по ссылке https://www.virtualbox.org/wiki/Downloads. Инсталляция производится стандартным способом. После запуска главное окно VirtualBox имеет вид:

Основные настройки производятся при выборе в меню пункта **Файл**, и далее **Настройки**. Рекомендуется установить свой каталог для хранения виртуальных машин.

Для установки виртуальной машины нажать кнопку Создать на панели инструментов. В окне Создать виртуальную машину вписать имя, которое будет отображаться в VirtualBox, выбрать тип и версию устанавливаемой операционной системы.

После нажатия кнопки **Next** в следующем окне следует определить размер оперативной памяти, выделяемой виртуальной машине.

Создать виртуальную машину	? ×
Укажите объём памяти Укажите объём оперативной памяти (RAM) в машине. Рекомендуемый объём равен 64 МБ.	выделенный данной виртуальной
4 M6	256 \$ M6
	Next Отмена

На следующем шаге следует выбрать пункт Создать новый виртуальный жесткий диск. Если он уже существует, то отметить Использовать существующий виртуальный жесткий диск.

Далее выбрать тип файла **VDI** для виртуального жесткого диска и нажать **Next**.

В новом окне будет предложено выбрать тип создаваемого диска –

Динамический или Фиксированный жесткий диск. Загрузочный диск удобнее создать фиксированного размера — это позволит автоматически ограничить его размер, упростить и ускорить хранение, восстановление и создание резервных копий диска.

Если для системы нужно будет создать несколько жестких дисков, то те, которые не будут являться загрузочными, удобнее создавать динамически расширяющимися.

Далее указать размер диска в соответствии со своим вариантом.

После нажатия кнопки **Создать** начнется процесс создания виртуального жесткого диска.

По его окончании процесс создания виртуальной машины закончится, и в главном окне VirtualBox можно увидеть только что созданную виртуальную машину Linux, а в поле с правой стороны её описание.

Настройка аппаратной части виртуальной машины

В колонке слева выбрать виртуальную машину и нажать на панели инструментов кнопку **Настроить**. В открывшемся окне в колонке с левой стороны выводится список устройств. На первой вкладке раздела «Общие» отображаются основные параметры созданной виртуальной машины:

На вкладке Дополнительно возможны следующие настройки:

• Папка для снимков. В этой папке можно сохранить текущее состояние машины и в любой момент времени затем можно к нему вернуться. Рекомендуется создавать снимки перед

каждым значительным изменением в виртуальной системе. Можно создать несколько снимков, содержащих отличные друг от друга настройки и установленные приложения. При назначении папки необходимо учитывать, что снимки занимают значительный объем памяти;

• Общий буфер обмена — определение того, как будет работать буфер обмена между host-системой и виртуальной машиной. Вариантов работы буфера предоставлено четыре — «выключено», «только из гостевой ОС в основную», «только из основной ОС в гостевую», «двунаправленный».

Последний вариант обеспечит максимальное удобство в работе. Аналогично настраивается функция перетаскивания файлов мышью (**Drag'n'Drop**).

В разделе Система и на первой вкладке Материнская плата производятся изменение размера оперативной памяти, корректировка порядка загрузки - первым обязательно должен быть CD/DVDROM, чтобы обеспечить возможность установки ОС с загрузочного диска. При этом в роли загрузочного диска может выступать как компакт-диск, так и образ ISO. Остальные настройки зависят от аппаратной части реального ПК, причем если выставить настройки, неприменимые к ПК, система виртуальной машины может не запуститься;

На вкладке **Процессор** можно выбрать количество процессоров, установленных на виртуальную материнскую плату, а также предел загрузки процессора. Эта опция доступна только при условии поддержки аппаратной виртуализации AMD-V или VT-х, а также включенной опции I/O APIC на предыдущей вкладке. Перед включением этих настроек, нужно выяснить, поддерживает ли эти возможности процессор хостового компьютера и включены ли они по умолчанию в BIOS.

На вкладке сеть задается способ, которым виртуальный адаптер гостевой ОС подсоединяется к настоящей сети основной ОС, а также количество сетевых адаптеров и тип подключения.

В режиме **NAT**, гостевому сетевому интерфейсу присваивается по умолчанию IPv4 адрес из диапазона 10.0.х.0/24, где х обозначает конкретный адрес NAT-интерфейса, определяемый по формуле +2. Таким образом, х будет равен 2, если имеется только один активный NAT-интерфейс. В этом случае, гостевая операционная система получает IP-адрес 10.0.2.15, сетевому шлюзу назначается адрес 10.0.2.2, серверу имен (DNS) назначается адрес 10.0.2.3.

В соединении типа Сетевой мост виртуальная машина работает также, как и все остальные компьютеры в сети. В этом случае адаптер выступает в роли моста между виртуальной и физической сетями. Со стороны внешней сети имеется возможность напрямую соединяться с гостевой операционной системой.

При подключении типа **Виртуальный адаптер хоста** гостевые ОС могут взаимодействовать между собой, а также с компьютером на котором установлена виртуальная машина. В этом режиме адаптер хоста использует свое собственное, специально для этого предназначенное устройство, которое называется vboxnet0. Также им создается подсеть и назначаются IP-адреса сетевым картам гостевых операционных систем. Гостевые ОС не

могут взаимодействовать с устройствами, находящимися во внешней сети, так как они не подключены к ней через физический интерфейс.

Режим **Виртуальный адаптер хоста** предоставляет ограниченный набор служб, полезных для создания частных сетей под VirtualBox для ее гостевых ОС.

В меню **Общие папки** можно подключить папку для более легкого обмена файлами с виртуальными машинами. Для этого нажать кнопку **Добавить общую папку** (справа папка с плюсом) и указать путь и имя общей папки.

Запуск виртуальной машины

Для запуска гостевой системы нужно нажать кнопку **Запустить**. При первом запуске виртуальной машины необходимо произвести инсталляцию гостевой операционной системы. Для этого указать путь к образу операционной системы в формате iso.

ЗАДАНИЕ

- 1. Произвести инсталляцию гостевой операционной системы в соответствии со своим вариантом.
- 2. Создать общую папку для обмена данными с хостовой операционной системой.
- 3. Получить доступ к своему аккаунту в Microsoft из гостевой операционной системы.
- 4. Оформить отчет по лабораторной работе, используя приложение Word.
- 5. Отчет разместить на OneDrive и на своей личной странице в интернет, предоставив преподавателю возможность для их просмотра.

Варианты задания

Вариант	Гостевая ОС	Объем ОП	Формат
			жесткого диска
1	Ubuntu	2048 MB	VHD
2	Debian	2048 MB	VHD
3	CentOS	2048 MB	VHD
4	Linux Mint	2048 MB	VHD
5	Kali Linux	2048 MB	VMDK
6	Fedora	2048 MB	VMDK
7	Manjaro	2048 MB	VDI
8	OpenSUSE	2048 MB	VDI
9	Elementary OS	2048 MB	VDI
10	Arch Linux	2048 MB	VDI
11	LinuxLite	2048 MB	VMDK
12	Ubuntu	2048 MB	VHD
13	Debian	2048 MB	VHD
14	CentOS	2048 MB	VMDK
15	Ubuntu	2048 MB	VMDK

16	Fedora	2048 MB	VMDK