Type Safety

Alex Kavvos

Reading: PFPL, §6.

The **statics** and the **dynamics** play well together: we show that **well-typed programs do not go wrong**. **Theorem 1** (Type safety).

- 1. (Preservation) If $\vdash e : \tau$ and $e \longmapsto e'$ then $\vdash e' : \tau$.
- 2. (Progress) If $\vdash e : \tau$ then either e val or $e \longmapsto e'$ for some e'.

Therefore **closed**, **well-typed terms** behave well under reduction:

- 1. their type is preserved under evaluation, and
- 2. if they're not done evaluating, transitions will continue to take place.

1 Preservation

Preservation is the statement that types are preserved under evaluation. This is a central **safety** property of type systems: it shows that a step-by-step computation preserves the kind of value that is being computed.

Theorem 2 (Preservation). If $\vdash e : \tau$ and $e \longmapsto e'$ then $\vdash e' : \tau$.

Proof. By induction on the derivation of $e \longmapsto e'$. We show the most difficult case, namely that of D-Let.

Case(D-Let). Suppose that the reduction $e \longmapsto e'$ is of the form

$$\frac{}{\mathsf{let}(e_1; x. e_2) \longmapsto e_2[e_1/x]} \mathsf{ D-Let}$$

We know that $\vdash \mathsf{let}(e_1; x. e_2) : \tau$. By **inversion** there must exist σ such that $\vdash e_1 : \sigma$ and $x : \sigma \vdash e_2 : \tau$. By the **substitution lemma** (Lecture 4) we obtain $\vdash e_2[e_1/x] : \tau$, which is what we wanted to prove.

2 Progress

Progress is the statement that if a well-typed program is not done computing (is a value), then there is a step of computation it may take. It is a central **liveness** property of type systems: it shows that a computation will continue to evolve until it produces a useful result (if ever!).

First, we need to characterise the values of each type. The following lemma follows 'by inspection.'

Lemma 3 (Canonical forms). Suppose e val.

- 1. If $\vdash e$: Num then e = num[n] for some $n \in \mathbb{N}$.
- 2. If $\vdash e$: Str then e = str[s] for some $s \in \Sigma^*$.

Theorem 4 (Progress). If $\vdash e : \tau$ then either e val or $e \longmapsto e'$ for some e'.

Proof. By induction on the derivation of $\vdash e : \tau$. We only show the case for Plus.

Case(Plus). Suppose that the derivation is of the form

$$\frac{\vdots}{\vdash e_1 : \mathsf{Num}} \qquad \frac{\vdots}{\vdash e_2 : \mathsf{Num}} \qquad \mathsf{PLUS}$$

$$\vdash \mathsf{plus}(e_1; e_2) : \mathsf{Num}$$

 e_1 is a closed, well-typed term with a 'smaller' derivation, so the **induction hypothesis** applies to it. Hence, either e_1 val, or there exists e_1' such that $e_1 \longmapsto e_1'$. We consider each case separately.

- Suppose e_1 val. We then apply the **induction hypothesis** to e_2 , and obtain the same two cases for e_2 .
 - Suppose e_2 val. Then, by the canonical forms lemma (Lemma 3) we have that $e_1 = \operatorname{num}[n_1]$ and $e_2 = \operatorname{num}[n_2]$ for some $n_1, n_2 \in \mathbb{N}$. Then the reduction rule D-PLUS applies to the term $\operatorname{plus}(e_1; e_2) = \operatorname{plus}(\operatorname{num}[n_1]; \operatorname{num}[n_2])$, and we have $\operatorname{plus}(\operatorname{num}[n_1]; \operatorname{num}[n_2]) \longmapsto \operatorname{num}[n_1 + n_2]$.
 - Suppose there exists e_2' so that $e_2 \longmapsto e_2'$. Then we can construct a derivation

$$\begin{array}{ccc} \vdots & & \vdots \\ \hline \frac{e_1 \text{ val}}{\text{plus}(e_1; e_2)} & \hline \frac{e_2 \longmapsto e_2'}{\text{plus}(e_1; e_2')} \text{ D-Plus-2} \end{array}$$

so that $\mathsf{plus}(e_1; e_2)$ in fact steps to $\mathsf{plus}(e_1; e_2')$ according to the dynamics.

• Suppose there exists e_1' so that $e_1 \longmapsto e_1'$. Then we can construct a derivation

$$\frac{\vdots}{e_1 \longmapsto e_1'}$$

$$\frac{1}{\mathsf{plus}(e_1; e_2) \longmapsto \mathsf{plus}(e_1'; e_2)} \text{ D-Plus-1}$$

so that $plus(e_1; e_2)$ in fact steps to $plus(e'_1; e_2)$ according to the dynamics.

In each case of this exhaustive analysis, there always exists a term to which $plus(e_1; e_2)$ steps (if well-typed).