Ferramentas para o controle de qualidade

Prof. Ramon Gomes da Silva

Ferramentas para o controle de qualidade

- 1. Características gerais das ferramentas;
- 2. Classificação das ferramentas;
- 3. As ferramentas e suas aplicações;

- → As ferramentas do controle de qualidade são mecanismos simples para selecionar, implantar ou avaliar alterações no processo produtivo por meio de análises objetivas de partes bem definidas deste processo.
- → A ferramenta não gera, por si só, melhoria, e nem implanta alterações. O que ela faz, na verdade, é orientar a ação do usuário.
- Ferramentas são métodos estruturados de modo consistente para viabilizar a definição de melhorias que possam vir a ser implantadas em partes definidas do processo produtivo. As ferramentas atuam tanto na parte anterior da implantação (listagem de opções; processos de escolha; regras de preferência, por exemplo) quanto na fase posterior (análise de resultados, avaliação de efeitos; implicações práticas; decorrências das ações, por exemplo).

1. Características gerais das ferramentas

Apesar das diferenças entre as ferramentas, todas, em maior ou menor grau, apresentam as características listadas a seguir:

- 1. Facilidade de uso;
- 2. Lógica de operação;
- 3. Sequência coerente de ações;
- 4. Alcance visual;
- 5. Etapas de implantação;
- 6. Delimitação;
- 7. Implicações no atendimento ao cliente final;
- 8. Foco na solução.

Uma possível classificação das ferramentas básicas pode considerar duas dimensões básicas. O primeiro envolve as ferramentas que investem em ações para facilitar o entendimento de como o processo opera via imagens ou outras formas de representação do próprio processo ou de partes dele.

- 1. Ferramentas que buscam identificar e definir como operam as relações entre ações ou situações que podem ser consideradas causas ou origem de determinadas decorrências ou efeitos.
- 2. Ferramentas que buscam determinar expressões simplificadas do processo de forma a facilitar a visualização do contexto de análise.
- 3. Ferramentas que visam a acompanhar o desenvolvimento do processo produtivo e a analisar como os desdobramentos destas ações vão se estruturando.
- 4. Ferramentas que criam representações próprias de operações usuais do processo e, assim, mapeiam todo o encadeamento natural dessas operações.

2. Classificação das ferramentas

O segundo grupo envolve as ferramentas que atuam sobre o processo produtivo, gerando ações específicas. Neste contexto, identificam-se três categorias:

- 1. Ferramentas que buscam organizar o processo produtivo, em termos de layouts, informações, materiais, equipamentos etc.
- 2. Ferramentas que visam a otimizar as operações produtivas, investindo, por exemplo, na produção da qualidade mais do que em seu controle.
- 3. Ferramentas que visam motivar a participação dos recursos humanos no esforço pela qualidade em ações mais gerais, próprias de equipes, ou no desempenho técnico de suas atribuições.

2. Classificação das ferramentas

CATEGORIA	FERRAMENTAS MAIS CONHECIDAS
CONHECIMENTO DO PROCESSO	
1. Análise das relações entre causas e efeitos.	(1) Diagrama de causa-efeito; (2) Gráficos de
	Pareto;
	(3) Diagrama de dependência.
2. Expressões simplificadas do processo.	(1) Histogramas; (2) Fluxogramas; (3) Diagramas
	de dispersão.
3. Análise do desenvolvimento de ações do	(1) Folhas de checagem; (2) Gráficos de controle;
processo.	(3) Diagrama de programação da decisão
4. Representações da operação do processo.	(1) Diagrama-matriz; (2) Diagrama seta; (3)
	Diagrama árvore.
AÇÕES NO PROCESSO	
5. Organização do processo produtivo.	(1) Células de produção; (2) Kanban; (3) Diagrama
	de similaridade.
6. Otimização do processo produtivo.	(1) Perda zero; (2) Qualidade na origem.
7. Envolvimento dos recursos humanos no processo	(1) Manutenção Produtiva Total (TPM); (2) Círculos
produtivo.	da qualidade.

3. As ferramentas e suas aplicações

- Análise das relações entre causas e efeitos;
- Expressões simplificadas do processo;
- 3. Análise do desenvolvimento de ações do processo;
- 4. Representações da operação do processo;
- 5. Organização do processo produtivo;
- 6. Otimização do processo produtivo;
- 7. Envolvimento dos recursos humanos no processo produtivo.

Diagrama de causa-efeito

Este diagrama é conhecido também como gráfico de espinha de peixe ou diagrama de Ishikawa, referência ao engenheiro japonês Kaoru Ishikawa (1915 – 1989) que criou este diagrama em 1943. O objetivo desta ferramenta é a análise das operações dos processos produtivos.

A lógica do diagrama é simples. O fluxo apresentado evidencia causas que conduzem a determinados efeitos. Assim, se o efeito é nocivo, as causas podem ser eliminadas; se for benéfico, pode-se conferir consistência a elas, garantindo a sua continuidade.

Um roteiro simples permite elucidar a construção do diagrama:

- 1. Inicialmente, identifica-se o efeito a estudar.
- 2. Este efeito é colocado no lado direito do diagrama.
- **3.** O grupo que estuda o problema começa a sugerir e a determinar causas que podem determinar este efeito.
- **4.** Em princípio, todas as causas possíveis, prováveis e até mesmo remotas que forem mencionadas são listadas.
- **5.** A ênfase desta fase do processo é dispor do maior número de ideias que conduzam às causas. Não há imposição prévia a qualquer causa apontada (aceitam-se, até mesmo, causas aparentemente inviáveis ou altamente improváveis).
- **6.** Concluída esta primeira listagem de ideias, seguem-se novas rodadas para definir ideias decorrentes de situações já mencionadas.

- 7. Concluída a fase de definição do problema (efeito) e a listagem de todas as possíveis causas que vieram à tona, são classificadas as causas listadas em dois grupos: (1) causas básicas e (2) causas secundárias.
- 8. Métodos como a análise 5W e 1H (por que, o que, onde, quando, quem e como) são usados neste processo.
- **9.** As causas principais e as secundárias são alocadas à esquerda no diagrama.
- **10.** Cada causa passa por uma revisão crítica, associando-se a ela, por exemplo, níveis de viabilidade de gerarem o efeito.
- **11.** A seguir, segue-se a fase de experimentação. Cada causa vai sendo testada ou analisada com mais detalhes. O diagrama vai sendo refinado.
- **12.** Em sua estrutura final, o diagrama permite definir as causas do efeito.

Gráficos de Pareto

Em 1897, Pareto desenvolveu um estudo sobre a distribuição de renda no seu país. Por meio deste estudo, ele percebeu que a distribuição de riqueza não se dava de maneira equitativa, mas, bem ao contrário, 80% de toda a riqueza nacional estavam concentradas nas mãos de uma pequena parcela da população (20%). Esta distribuição inadequada foi expressa em um gráfico, que leva o seu nome e que, mais tarde, viria a transformar-se em uma das mais conhecidas ferramentas da gualidade.

O modelo Pareto (que, na verdade, era de Economia – a maior parte da renda está concentrada em poucas pessoas) foi traduzido para a área da Qualidade sob a forma "alguns elementos são vitais; muitos, apenas triviais", por Juran (JURAN; GRYNA 1991).

Este princípio pode ser expresso em variadas formas:

- → Alguns consumidores concentram a maior parte da demanda.
- → Algumas causas geram a maior parte dos defeitos.
- → Alguns defeitos são responsáveis pela maioria das reclamações.
- → Alguns equipamentos determinam a maioria das quebras e paradas.
- → Algumas operações envolvem a maior parte das falhas.
- → Alguns funcionários respondem pela grande maioria das sugestões de melhoria.
- → Alguns produtos determinam a maioria das receitas.
- → Alguns materiais são responsáveis pela maior parcela dos custos.

As categorias mais à direita do diagrama identificam e destacam os elementos mais críticos. A interpretação dos resultados é imediata graças ao impacto visual do diagrama. Conforme já mencionado, a força visual é uma característica comum à maioria das ferramentas da qualidade.

Um roteiro para construir o diagrama de Pareto:

- **1.** Parte-se de algum processo de classificação das informações disponíveis por defeito detectado, problema encontrado, causa, tipo de falhas ou perdas, efeitos observados etc.
- 2. A seguir, uma escala de medidas é associada os elementos (unidades financeiras ou percentuais, por exemplo).
- 3. Fixa-se um determinado período de tempo para o horizonte de análise.
- **4.** Coletam-se os dados no período em questão.
- **5.** As informações são classificadas segundo os elementos selecionados.
- **6.** As informações são postas no diagrama em ordem crescente a partir da esquerda.

Próxima aula

- → Expressões simplificadas do processo;
- → Análise do desenvolvimento de ações do processo;
- → Representações da operação do processo;
- → Organização do processo produtivo;
- → Otimização do processo produtivo;
- → Inserção das ferramentas no processo do controle da qualidade.

Espaço para dúvidas

Prof. Ramon Gomes da Silva, MSc.

ramongs1406@gmail.com https://ramongss.github.io

