WARTHOG 2018, Lecture IV-4

Main Exercise 1. We work in the standard setup, assuming that $W^F = W$.

(a) Let $b \in B_W^+$ and $s \in S$. Recall that

$$\mathbf{X}(b,s,s) = \{ (\mathbf{B}_1, \dots, \mathbf{B}_r) \mid \mathbf{B}_1 \xrightarrow{b} \mathbf{B}_{r-1} \xrightarrow{s} \mathbf{B}_r \xrightarrow{s} F(\mathbf{B}_1) \}.$$

Show that elements of $\mathbf{X}(b, s, s)$ must satisfy $\mathbf{B}_{r-1} = F(\mathbf{B}_1)$ or $\mathbf{B}_{r-1} \stackrel{s}{\to} F(\mathbf{B}_1)$.

(b) Show that $X_f = \{(\mathbf{B}_i) \in \mathbf{X}(b, s, s) \mid \mathbf{B}_{r-1} = F(\mathbf{B}_1)\}$ is a closed subvariety of $\mathbf{X}(b, s, s)$ and that the map

$$(\mathbf{B}_1,\ldots,\mathbf{B}_r)\longmapsto (\mathbf{B}_1,\ldots,\mathbf{B}_{r-2})$$

induces a line bundle $\mathbf{X}_f \longrightarrow \mathbf{X}(b)$. Deduce the cohomology of \mathbf{X}_f .

(c) Let $\mathbf{X}_o = \mathbf{X}(b, s, s) \setminus \mathbf{X}_f$ and

$$\mathbf{X}'_o = \{ (\mathbf{B}_1, \dots, \mathbf{B}_r) \mid \mathbf{B}_1 \xrightarrow{b} \mathbf{B}_{r-1} \xrightarrow{s} F(\mathbf{B}_1) \text{ and } \mathbf{B}_r \xrightarrow{s} F(\mathbf{B}_1) \}.$$

(i) Show that

$$\mathbf{X}'_o \longrightarrow \mathbf{X}(b,s)$$

 $(\mathbf{B}_1,\ldots,\mathbf{B}_r) \longmapsto (\mathbf{B}_1,\ldots,\mathbf{B}_{r-1})$

is a line bundle.

- (ii) Show that \mathbf{X}_o is open in \mathbf{X}'_o and that the complement is isomorphic to $\mathbf{X}(b,s)$.
- (iii) Deduce that $\sum (-1)^i H_c^i(\mathbf{X}_o) = 0$ as a virtual character of G.
- (d) Deduce that the virtual representations afforded by the cohomology of $\mathbf{X}(b, s, s)$ and $\mathbf{X}(b)$ are equal.
- (e) Show that the virtual character $\sum (-1)^i H_c^i(\mathbf{X}(b))$ depends only on the image of b in W.
- (f) Example: compare the individual cohomology groups of $\mathbf{X}(t)$ and $\mathbf{X}(s, s, t)$ where s, t are the simple reflections of the Weyl group of GL_3 .

WARTHOG 2018, Lecture IV-4 supplementary exercises

Exercise 1. Let $G = GL_n$ with the standard Frobenius. We consider the Deligne-Lusztig varieties

$$\mathbf{X}_n = \mathbf{X}((1, 2, \dots, n))$$
 and $\mathbf{Y}_n = \mathbf{X}((n-1, n)(1, 2, \dots, n))$

with the convention that $\mathbf{Y}_2 = \mathbf{X}(\boldsymbol{\pi})$ when n = 2. The variety \mathbf{X}_n is a Coxeter variety.

We recall that the trivial representation 1_G (resp. the Steinberg representation St_G) occurs only in the cohomology group of $\mathbf{X}(w)$ of degree $2\ell(w)$ (resp. of degree $\ell(w)$).

(a) Determine the individual cohomology groups of \mathbf{Y}_2 together with the eigenvalues of F.

Let $I = \{s_1, \ldots, s_{n-2}\}$ so that $L_I \simeq \operatorname{GL}_{n-1}(q) \times \operatorname{GL}_1(q)$. We assume that there is an F-equivariant long exact sequence of L_I -modules

$$\cdots \to H_c^{i-2}(\mathbf{Y}_{n-1})(1) \oplus H_c^{i-1}(\mathbf{Y}_{n-1}) \to {^*R}_{\mathbf{L}_I}^{\mathbf{G}}\big(H_c^i(\mathbf{Y}_n)\big) \to H_c^{i-2}(\mathbf{X}_{n-1})(1) \to \cdots$$

- (b) Determine $H_c^i(\mathbf{Y}_n)$ for n = 3, 4, 5.
- (c) Observe that the only partitions associated to the unipotent charaters occurring in these cohomology groups have (n-1)-core equal to (1).
- (d) Determine $H_c^i(\mathbf{Y}_n)$ for all n.
- (e) Check the conjectures of the lecture notes on this variety.