W. SIERPIŃSKI (Warszawa)

Uwaga o liczbach złożonych m, dzielących a^m-a

Jak wiadomo, najmniejszą liczbą złożoną m, dzielącą 2^m-2 , jest liczba $m=341=11\cdot 31$. Liczba ta jest dosyć duża, nie widać racji, dlaczego jest właśnie taka, toteż starożytni Chińczycy przypuszczali, że takiej liczby nie ma, czyli że dla żadnej liczby złożonej m liczba 2^m-2 nie jest podzielna przez m.

Godnym uwagi jest, że dla każdej liczby naturalnej a > 2 łatwo jest znaleźć liczbe złożoną m, dzielącą $a^m - a$.

W samej rzeczy, jeżeli a jest liczbą złożoną, to możemy przyjąć m=a, gdyż oczywiście $a|a^a-a$. Jeżeli zaś a jest liczbą pierwszą >2, to możemy przyjąć m=2a, gdyż wtedy liczba a jest nieparzysta i liczba $a^{2a}-a$ jest parzysta, a jako podzielna przez liczbę nieparzystą a oraz przez liczbę 2, jest podzielna przez 2a.

Mamy wife na przykład $6|3^6-3, 4|4^4-4, 10|5^{10}-5, 6|6^6-6$.

Ale mamy też $4|5^4-5$. Ogólnie, jeżeli a jest liczbą nieparzystą > 3, to liczba a-1 (jako parzysta > 2) jest złożona i mamy oczywiście $a-1|a^{a-1}-1$.

Jeżeli więc dla liczby naturalnej a oznaczymy przez m_a najmniejszą liczbę złożoną, taką iż $m_a|a^{m_a}-1$, to będzie $m_2=341$, zaś $m_a\leqslant a$ dla a>2. Mamy stąd na przykład $m_{50}\leqslant 50$, ale łatwo dowieść, że $m_{50}=10$. Trudniej nieco byłoby dowieść, że dla każdej liczby naturalnej a mamy $m_a\leqslant 561$, gdyż dla każdej liczby całkowitej a mamy $3\cdot 11\cdot 7=561|a^{561}-a$.

Zauważmy, że A. Schinzel dowiódł, iż dla każdej liczby naturalnej a istnieje nieskończenie wiele liczb złożonych m, takich że $m|a^m-a$ (zob. [1]). Dowód na to podał też H. J. A. Dupare ([2]). A. Schinzel postawił zagadnienie wyznaczenia wszystkich wartości, jakie mogą przyjmować liczby m_a dla naturalnych a. Dowiódł on, że są one różne od 4 i od 6 tylko dla tych liczb a, które przy dzieleniu przez 12 dają resztę 2 lub 11. Mamy na przykład $m_{11}=10$, $m_{14}=14$, $m_{23}=22$, $m_{26}=10$, $m_{35}=10$, $m_{38}=38$.

Zauważymy tu jeszcze, że A. Rotkiewicz dowiódł, iż jeżeli a i b są liczbami naturalnymi, takimi że a-b jest liczbą parzystą ≥ 4 , to istnieje

nieskończenie wiele liczb parzystych n, dla których $n|a^{n-1}-b^{n-1}$. Dowiódł on też, że istnieje nieskończenie wiele liczb parzystych n, dla których $n|3^{n-1}-1$. Najmniejszą z nich jest liczba n=286 (zob. [3]).

Prace cytowane

- [1] A. Schinzel, Sur les nombres composés n qui divisent a^n-a , Rendiconti del Circolo Matematico di Palermo VII (1958), str. 37-41.
- [2] H. J. A. Duparc, On almost primes, Math. Centrum, Amsterdam, Rapport ZW 1955 - 012, 4 p. (1955).
- [3] A. Rotkiewicz, Sur les nombres pairs n pour lesquels les nombres a^nb-ab^n , respectivement $a^{n-1}-b^{n-1}$ sont divisibles par n, Rendiconti Palermo VIII (1959), str. 341-342.