

Prof. MSc. Marcos Alexandruk

E-mail: alexandruk@uni9.pro.br

https://tinyurl.com/uni9-poo

Introdução ao Java

Objetivo

Esta aula apresenta uma breve introdução ao Java, sua história e sua importância na atualidade.

Apresenta também evolução da linguagem Java.

Você terminará essa aula com o seu primeiro programa em Java funcionando: O clássico Hello World.

Breve história

Java é uma linguagem que se originou em 1991 em um projeto da Sun Microsystems.

Começou com **James Gosling** e o **Projeto Green** que visava a criação de tecnologias para que diferentes dispositivos eletrônicos pudessem se comunicar.

Java pode rodar em praticamente qualquer dispositivo, pois não depende da plataforma.

O Projeto Green criou o **Star Seven**, um controle remoto universal com uma tela interativa.

O software deste controle foi desenvolvido com a linguagem de programação Oak.

Questões legais obrigaram a equipe a alterar o nome. Portanto, em **maio de 1995**, surgiu o **Java**, uma evolução da linguagem Oak.

A equipe escolheu Java, com base no nome de uma cafeteria que servia um café com origem em Java (uma ilha da Indonésia). Por isso o ícone do Java é uma xícara de café.

Em 2009, a Oracle adquiriu a Sun Microsystems por US\$ 7,4 milhões.

Java: linguagem multiplataforma

Java é uma das linguagens mais populares do mundo e sua portabilidade é um de seus pontos mais fortes.

Portabilidade é a capacidade de portar um software para diferentes plataformas, com o mínimo de esforço.

A maior parte das linguagens de programação que precisam de um compilador específico para cada plataforma.

Java possui um compilador único, portanto não é uma linguagem que depende de uma plataforma específica para sua execução.

Java: linguagem multiplataforma

Os binários compilados da linguagem são executados na **JVM (Java Virtual Machine)**, por isso o mesmo código Java pode ser executado em praticamente qualquer dispositivo com uma JVM.

Existem JVMs para quase todas as plataformas, desde eletrodomésticos até computadores quânticos.

Java é uma linguagem proprietária da Oracle, mas de uso livre e gratuito.

Alguns afirmam que Java é uma linguagem lenta, porque não é executada diretamente no Sistema Operacional (as instruções do Sistema Operacional são geradas pela JVM), mas a tecnologia Java evoluiu tanto que o processo de execução é quase transparente.

Versões do Java

O versionamento da linguagem Java segue um padrão bastante interessante.

O Java está sempre na versão 1.

Desde 1995 o Java está na versão 1 e as evoluções da linguagem são tratadas como "subversões". Para referência, usa-se normalmente a subversão do Java, por exemplo, a versão 1.8, é referenciada como versão 8 do Java.

Em 2013, a Oracle criou um novo esquema de versionamento do Java para identificar uma versão do tipo CPU (Critical Patch Update) e uma versão do tipo LFR (Limited Feature Release).

- CPU Critical Patch Update: Atualizações criadas com correções de segurança importantes.
- LFR Limited Feature Release: Atualizações com correções de performance, funcionalidades e recursos.

Versões do Java

É importante manter o Java atualizado.

Algumas atualizações retiram ou substituem métodos prontos em uso.

A grande vantagem de usar uma IDE (Integrated Development Environment ou Ambiente de Desenvolvimento Integrado) para desenvolvimento Java é que ela lhe avisará se as funções em uso já estão obsoletas (já foram retiradas) ou se ficarão obsoletas na próxima versão, sugerindo outra forma de chamar algum método.

Ranking das linguagens de programação (IEEE)

Posição	2015	2020
1	Java	Python
2	С	Java
3	C++	С
4	Python	C++
5	C#	JavaScript
6	R	C#
7	PHP	Go
8	JavaScrit	R
9	Ruby	Ruby
10	Matlab	Dart

JRE - Java Runtime Environment (ambiente de execução Java)

A JRE contém as bibliotecas que são responsáveis pela execução das aplicações na JVM. A JRE é composta pela JVM, bibliotecas e componentes necessários para essa execução.

JVM - Java Virtual Machine (máquina virtual Java)

A JVM é responsável por executar instruções compiladas em Java. A JVM é um ambiente de computação virtualizado (abstrato) que executa e gerencia os processos Java, a alocação de memória e recursos de CPU etc. É a JVM quem abstrai a execução do código compilado para o equipamento onde será executada a aplicação.

JDK - Java Development Kit (kit de desenvolvimento Java)

Kit de Desenvolvimento Java que será instalado para desenvolver aplicações em Java. O JDK possui todas as ferramentas necessárias para compilação de código Java para a JRE. O JDK possui bibliotecas Java para diferentes tipos de desenvolvimento.

JSE - Java Standard Edition (edição padrão do Java)

É a edição essencial do Java e já contém a JDK, JVM e JRE. Trabalharemos com essa edição do Java, que é capaz de criar qualquer aplicação para ser executada em um computador.

JEE - Java Enterprise Edition (edição corporativa do Java)

Edição do Java para desenvolver aplicações corporativas de grande porte e que rodam em rede. Inclui bibliotecas para Web Services, desenvolvimento WEB, JSP (Java Server Pages), JSF (Java Server Faces), JavaBeans etc.

JME - Java Micro Edition (edição micro do Java)

Esta edição do Java acompanha bibliotecas que permitem o desenvolvimento para sistemas embarcados que possuem uma JVM (carros, eletrodomésticos, celulares etc.). Não confundir com desenvolvimento para Android ou iOS (Apple), pois para estes sistemas operacionais existem ferramentas de desenvolvimento específicas de cada fabricante.

Extensões dos arquivos Java

.java - Arquivos de código fonte Java.

.class - Arquivos compilados Java (bytecodes).

.jar - Pacote de arquivos .class. Possui informações de execução do projeto. É possível exportar o projeto compilado para um único arquivo .jar e este será o executável.

IDE - Integrated Development Environment

O Ambiente de Desenvolvimento Integrado (IDE, em inglês) Fornece um enorme conjunto de ferramentas de desenvolvimento que aumentam a produtividade no processo de desenvolvimento. A IDE possui ferramentas de edição de código, implementa as bibliotecas, compila, executa, gera executáveis, depura código em tempo real etc.

Existem diversas IDEs disponíveis no mercado, como:

- Netbeans
- Eclipse
- BlueJ
- JCreator
- Visual Studio Code

Java JDK e Netbeans

Softwares

Java JDK 14

https://www.oracle.com/br/java/technologies/javase/jdk14-archive-downloads.html

Netbeans 12.0

https://netbeans.apache.org/download/nb120/nb120.html

Necessário criar uma conta (gratuita) na Oracle.

Para criar a conta deverá informar um e-mail válido e escolher uma senha.


```
* To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
                                                                             Comentários. Começam com /* terminam com */
   and open the template in the editor.
                             Nome do pacote. Usar minúsculas. Exemplo: br.com.domínio.helloworld
package helloworld;
                              Comentários para Java doc. Começam com /** terminam com */
   @author malex
public class HelloWorld {
                                     Nome da classe. Começar com maiúsculas. Notação CamelCase: NomeDaClasse
                                                                   public: Qualificador que indica que o método é visível a outras classes
      * @param args the command line arguments
                                                                  static: Qualificador que indica que o método pertence (é estático) a classe
                                                                  que o criou
    public static void main(String[] args) {
                                                                  void: Indica que não há nenhum valor a ser retornado
                                                                  main: Método principal. Indica o ponto inicial da execução da classe.
         System.out.println("hello world");
                                                                  String[] args: Vetor de strings. Responsável por receber valores que serão
                                                                  processados internamente à classe.
             println: Método da classe System.
          Imprime uma linha e posiciona o cursor
                   na linha seguinte.
```

Referências

Deitei P. e Deitel H., 2010, Java: Como programar, 8ª Ed., Pearson Pretice Hall

Teruel, E. C., 2015, Programação Orientada a Objetos com Java - sem mistérios - 1ª Ed., Editora Uninove

Prof. MSc. Marcos Alexandruk

E-mail: alexandruk@uni9.pro.br

https://tinyurl.com/uni9-poo

Prof. MSc. Marcos Alexandruk

E-mail: alexandruk@uni9.pro.br

https://tinyurl.com/uni9-poo

Introdução à Programação Orientada a Objetos com Java

Objetivo

Apresentar os conceitos de orientação a objetos, preparar o ambiente para programação Java SE (Standard Edition) e iniciar a programação em Java com orientação a objetos.

Orientação a Objetos

Classes dão origem aos objetos, que só existem no programa em execução.

A classe é a "receita de bolo" do objeto.

Uma classe pode gerar vários objetos com características e comportamentos diferentes.

Exemplo: Cada ser humano possui suas próprias características físicas: cor dos olhos, cor dos cabelos, altura, peso etc. No entanto, podemos dizer que cada ser humano pertence a uma classe chamada Pessoa.

Orientação a Objetos

Dentro da classe **Pessoa** são definidas as **características** e os **comportamentos**.

Chamamos as características, no mundo orientado a objetos, de **atributos** e os comportamentos de **métodos**.

A classe **Pessoa** pode ter, por exemplo, os seguintes atributos e seus tipos (em java, atributos também podem ser chamados de variáveis):

- nome (texto)
- cor dos olhos (texto)
- cor do cabelo (texto)
- sexo (caractere uma letra)
- altura (número real)
- peso (número real)

Orientação a Objetos

Objeto1: **Pessoa1**:

nome = "Alfie"

corDosOlhos = "Preto"

corDoCabelo = "Azul"

Sexo = "M"

altura = 1.80

peso = 100

Objeto2: Pessoa2:

nome = "Josefina"

corDosOlhos = "Amarelo"

corDoCabelo = "Magenta"

Sexo = "F"

altura = 1.70

peso = 80

Cada uma dessas pessoas criadas é um objeto da classe **Pessoa**. No mundo da orientação a objetos, dizemos que **cada objeto é uma instância da classe que o cria**.

Classe

Ambiente de Desenvolvimento

Classe: Pessoa

nome: Texto

corDosOlhos: Texto

corDoCabelo: Texto

sexo: Caractere

altura: Real peso: Real

Instâncias

Programa em Execução

Objeto: Pessoa1

nome: Alfie

corDosOlhos: Preto

corDoCabelo: Azul

sexo: M

altura: 1.80

peso: 100

Objeto: Pessoa1

nome: Josefina

corDosOlhos: Amarelo

corDoCabelo: Magenta

sexo: F

altura: 1.70

peso: 80

Orientação a Objetos

Essa é a grande "sacada" da orientação a objetos: Uma classe que pode criar vários objetos, como uma "fábrica de objetos", mas a coisa não para aí: Um objeto pode se relacionar com outro(s) ou ser criado por outro(s).

Podemos ter, por exemplo, uma classe chamada Endereço e poderemos associar a pessoa a um endereço. Poderemos fazer, ainda, com que um endereço consiga criar um bairro ainda não cadastrado. Tudo é possível no maravilhoso mundo orientado a objetos. Perceba que a classe Endereço, não precisa se relacionar apenas com uma pessoa, pode relacionar-se com uma empresa e se for preciso dar manutenção no endereço, apenas uma classe é afetada. Uma das grandes vantagens da orientação a objetos é essa: Casa coisa deve ficar em seu devido lugar.

- Thiago Graziani Traue

Orientação a Objetos

Classes são "moldes" que programamos e que geram os objetos em tempo de execução, ou seja, quando o programa está rodando.

Esses objetos são chamados de instâncias das classes. O que define as características dos objetos são seus atributos e seus métodos.

Programar de forma estruturada é mais fácil. Pois orientação a objetos é um paradigma totalmente novo; uma nova forma de pensar.

Contudo, imagine que você está desenvolvendo uma aplicação para uma grande corporação, onde é preciso manipular dados financeiros, de clientes, funcionários, etc. Separar as coisas em seus devidos lugares lhe facilitará muito na hora de realizar alterações ou dar manutenção em seu código.

- Thiago Graziani Traue

Classes, atributos e métodos

Este é um dos tópicos mais importantes desta disciplina, pois o entendimento destes conceitos é fundamental para programar corretamente em Java, utilizando orientação a objetos.

Para programarmos em Java, é muito importante seguirmos as boas práticas de programação que definem a estrutura de uma classe, que deve ser composta, nessa ordem, por:

- 1. Importações de outras classes e pacotes
- 2. Definição do pacote o qual a classe pertence
- 3. Definição da classe
- 4. Atributos locais
- 5. Métodos

Os **atributos** são as variáveis locais que pertencem a classe e são por ela utilizados. Os atributos podem ser de vários tipos: texto, caractere, número inteiro, número real etc.

Os **métodos** são, os comportamentos das classes, ou seja, são "funções" que podem ser chamadas para executar alguma tarefa.

Métodos

Um método, nada mais é que a execução de alguma tarefa quando necessário.

Para essa execução, os métodos podem receber informações (dados) externas e podem retornar valores para quem o chamou. Sim, os métodos precisam ser chamados.

Se um método retorna um valor, dizemos que o método é "tipado", ou seja, ele conterá uma informação de algum tipo que pode ser um texto, um número etc.

Se o método não retorna nada para quem o chamou, então ele é "vazio", ou, como dizemos em Java, "void".

Veja um exemplo de método "vazio" que apenas imprime, em console, o nome do autor:

```
public void imprimeNomeAutor() {
   System.out.println("Fulano de Tal");
```

Veja um exemplo de um método "**tipado**", que recebe dois valores e retorna a soma deles:

```
public int soma(int a, int b) {
  return a + b;
```

Note que no método "**soma**" dois valores são necessários para sua execução. Neste caso, eles são passados via "parâmetros" dos métodos, ou seja, quem invocar este método deverá passar, também, os valores que devem ser somados.

Classes

Uma classe Java pode ser instanciada por outra, ou seja, quando seu programa estiver sendo executado, um objeto poderá se relacionar a outro, através de suas instruções.

Em Java, para uma classe referenciar outra, utiliza-se a palavra reservada "new". Ao utilizar a instanciação de uma classe, o método construtor da classe é chamado automaticamente.

Por exemplo, imagine a classe "Pessoa" criando um endereço. Sua estrutura será assim:

```
public class Pessoa() {
   Endereco end = new Endereco();
   //Criou-se, aqui, um atributo "end", do TIPO Endereco.
```

A variável "end" é do TIPO Endereco e, portanto, assume todas as características e comportamentos que a classe "Endereco" pode ter.

Podemos, também, invocar um construtor com passagem de parâmetros, como boas práticas de programação, contudo, neste caso, devemos implementar o construtor na classe.

Let's coding


```
import java.util.Scanner;
public class Main {
   public static void main(String[] args) {
      String texto;
      texto = "O São Paulo é tricampeão mundial de futebol";
      System.out.println(texto);
      leitor.close();
   }
}
```


Classe Scanner

```
import java.util.Scanner;

Scanner sc = new Scanner(System.in);

float numF = sc.nextFloat();
int num1 = sc.nextInt();
byte byte1 = sc.nextByte();
long lg1 = sc.nextLong();
boolean b1 = sc.nextBoolean();
double num2 = sc.nextDouble();
String nome = sc.nextLine();
```



```
import java.util.Scanner;
public class Main {
  public static void main(String[] args) {
    String texto;
    Scanner leitor = new Scanner(System.in);
    System.out.print("Digite o texto: ");
    texto = leitor.nextLine();
    System.out.println("Você digitou: " + texto);
    leitor.close();
  }
}
```


Calculadora

Vamos implementar uma simples **calculadora de números inteiros**, com **dois atributos locais** (para armazenamento de valores a serem operados) e **quatro métodos com retorno**: Soma, Subtração, Multiplicação e Divisão.

Serão necessárias **duas classes**, pois vamos programar já utilizando o conceito de orientação a objetos com passagem de valores para métodos.

A classe "Main" ("Principal") que será responsável por criar a instância da classe responsável pelas operações matemáticas. Nessa classe, faremos a leitura dos valores via teclado.

A classe "Matematica" que será responsável por realização das operações aritméticas. Lembre-se do conceito de orientação a objetos: Cada coisa deve ficar em seu respectivo lugar, por isso, quem executa operações aritméticas, é a classe responsável por isso que, neste caso, chama-se "Matematica".

NOTA: Podemos invocar um construtor com passagem de parâmetros. Contudo, como boa prática de programação, neste caso, precisamos implementar o construtor na classe. A classe "Matematica" mostra o construtor implementado manualmente e a passagem de parâmetros para ele pela classe "Principal".


```
public class Matematica {
//Atributos locais
  int a, b;
//Construtor da classe, que recebe dois valores (x e y) e atribui
//aos valores locais (a e b);
 public Matematica (int x, int y) {
    a = x;
    b = y;
//Metodo de soma
 public int soma(){
    return a + b;
//Metodo de subtracao
 public int subtrai(){
    return a - b;
//Metodo de multiplicacao
  public int multiplica() {
    return a * b;
//Metodo de divisao
 public int divide(){
    return a / b;
```



```
import java.util.Scanner;
public class Main {
  public static void main(String args[]) {
    //Define o leitor do teclado
    Scanner leitor = new Scanner(System.in);
    //Define a variáveis locais
    int x, y;
    //Le:
    System.out.print("Informe o 1° valor: ");
    x = leitor.nextInt();
    System.out.print("Informe o 2° valor: ");
    y = leitor.nextInt();
    //Cria a instancia da classe Matematica utilizando o construtor
    Matematica mat = new Matematica(x, y);
    // Imprime o resultado das operações através
    // de chamadas aos métodos da classe Matemática
    System.out.println("-----"); //Apenas para organizar a saída
    System.out.println("O valor da soma é: " + mat.soma());
    System.out.println("O valor da subtração é: " + mat.subtrai());
    System.out.println("O valor da multiplicação é: " + mat.multiplica());
    System.out.println("O valor da divisão é: " + mat.divide());
    System.out.println("-----"); //Apenas para organizar a saída
```


Prof. MSc. Marcos Alexandruk

E-mail: alexandruk@uni9.pro.br

https://tinyurl.com/uni9-poo

Tipos de dados em Java

O que são tipos de dados

Cada Classe em Java representa algo que virará um ou mais objetos, quando o programa estiver em execução.

O objeto tem duas partes principais: características (atributos) e comportamentos (métodos).

Para se definir os atributos de uma classe usamos as variáveis, que podem ser de vários tipos: texto, número inteiro, número real, verdadeiro ou falso, caractere etc.

Existem dois tipos de dados em Java: primitivo e referência.

Tipos primitivos

	Tipo primitivo	Espaço em bytes usado na memória	Exemplo
	char	2	char sexo='M';
inteiros	byte	1	byte idade=55;
	short	2	short x=3456;
	int	4	int y = 678934;
	long	8	log cod=1756453;
reais	float	4	float pi=3.1415F;
	double	8	double valor=34.56;
	boolean	1	Boolean casado=true;

Tipos primitivos

Cada tipo usa uma quantidade diferente de bytes em memória para armazenamento das informações. Hoje em dia, com computadores poderosos, pode não ser tão preocupante usar uma variável do tipo **long** para se armazenar um inteiro curto (idade, por exemplo), mas lembre-se que se você estiver programando para dispositivos móveis ou legados, a quantidade de memória, muitas vezes, pode ser limitada. Isso quer dizer que é muito importante usar o tipo certo para armazenar a informação desejada, independente de onde será executado seu programa.

Tipos primitivos

char: Armazena um único caractere. A atribuição de valor deve ser feita sempre com aspas simples;

byte: Armazena valores inteiros, com um byte alocado em memória. Pode armazenar valores de -128 até 127 (o zero conta);

short: Armazena valores inteiros, utilizando 2 bytes de memória. Pode armazenar valores entre -32,768 e 32,767;

int: Armazena valores inteiros, utilizando 4 bytes. Pode armazenar valores inteiros de -2147483648 até 2147483647.

long: Armazena valores inteiros, utilizando 8 bytes. Pode-se armazenar valores de -9223372036854775808 até 9223372036854775807.

float: Armazena valores de ponto flutuante, ou seja, valores reais, que necessitam de casas decimais. Utiliza-se o ponto para separação do decimal. Utiliza 4 bytes de memória.

double: Armazena valores reais, isto é, com ponto flutuante. Utiliza 8 bytes de memória;

boolean: Armazena informações que podem ser apenas de dois tipos: verdadeiro (true) ou falso (false), por isso utiliza apenas 1 byte de espaço em memória.

Tipos de referência

String: Este tipo de dados é um dos mais usados para se armazenar texto. Esse tipo é implementado nativamente pelo Java, utilizando a classe **String.java**, como uma cadeia de caracteres e, internamente, é manipulado dessa forma. Deve-se utilizar aspas duplas para atribuição de valores a este tipo. Exemplo:

```
String nome = new String("Fulado de Tal");
```

Date: É utilizado para armazenamento de datas. É implementado pelo Java através da classe Date.java. Exemplo:

```
Date dtNascimento = new Date("10/10/2020").
```

IMPORTANTE:

Note que todos os tipos primitivos são declarados com todas as letras minúsculas e os tipos de referência começam com uma letra maiúscula. Porque? Porque String e Date são classes Java.

Convertendo tipos (casting)

Em Java é muito comum a necessidade de converter um tipo em outro, e isso vale tanto para tipos primitivos quanto tipos de referência.

Isso, em programação, chama-se "casting".

Para fazer isso, será exemplificada a conversão de um valor float para int:

```
float X = 10;
int Y = (int) X;
```

Contudos, se o valor for um número real, a conversão irá pegar somente a parte inteira do valor, ou seja:

```
float X = 20.5F;
int Y = (int)X; //neste caso o Y valerá 20
```

No exemplo acima, foi preciso usar a letra F junto ao número real, para "dizer" ao Java que isso é um número real.

Principais tipos de operações

Como qualquer linguagem de programação, em Java é possível realizar uma série de operações com os valores armazenados nas variáveis.

Os principais tipos de operações que podem ser realizadas sobre os dados são por meio de expressões:

- Aritméticas
- Relacionais
- Lógicas

Expressões aritméticas

Utilizadas para cálculos matemáticos convencionais (soma, subtração, divisão e multiplicação):

Soma:

```
int a = 10;
int b = 20;
int c = a + b;
```

Subtração:

```
double salario = 2456.76;
double desconto = 200.57;
double salLiquido = salario - desconto;
```

Multiplicação:

```
double quantidade = 20;
double valor = 109.6;
double total = quantidade * valor;
```

Divisão:

```
double salario = 1950.75;
double percentualAumento = 10.0;
double aumento = salario * percentual / 100;
```


Forma reduzida de escrever uma operação

Em Java há uma forma simples de escrever operações, facilitando muito na hora de digitar. Podemos dizer que é uma forma reduzida de se escrever uma operação.

Por exemplo, se for preciso incrementar 1 em uma variável chamada a, normalmente escrevemos assim:

```
//...
a = a + 1;
//...
```

A forma reduzida dessa mesma expressão é:

```
//...
a++;
//...
```

E se precisarmos incrementar essa mesma variável de 2, podemos escrever da seguinte forma:

```
//...
a += 2;
```


Expressões relacionais

As expressões relacionas envolvem a comparação de dois valores. Em Java podemos comparar duas variáveis e obter verdadeiro (true) ou falso (false) como resultado dessa comparação.

Os operadores relacionais são:

- Igual: ==
- Menor: <
- Menor ou igual: <=
- Maior: >
- Maior ou igual: >=
- Diferente: !=

Exemplo:

```
//...
int a, b, c;
a = 2;
b = 5;
c = 5;
//...
a == b // false
b == c // true
b < a // false
b <= c // true
a > b // false
b >= c // true
```


Expressões lógicas

Expressões lógicas são aquelas que envolvem a comparação de dois valores boolean e resultam em um terceiro valor boolean.

Em Java podemos utilizar o "Não", o "ou" e o "e", conforme ilustrado pelo cenário abaixo.

- Não (not):!
- E (and): &&
- Ou (or): ||

Exemplo:

```
//...
boolean a, b;
a = true;
b = false;
//...
!a // false
!b // true
a && b // false
a && a // true
a || b // true
b || b // false
```


Exemplo: Calculo do IMC (Índice de Massa Corporal)

```
import java.util.Scanner;
public class CalculadoraSimples {
  public static void main(String[] args) {
    //Declaração do scanner:
    Scanner leitor = new Scanner(System.in);
    //Declaração das variaveis que serão utilizadas:
    float peso, altura, imc;
    //Informacao de instrucoes para o usuário:
    System.out.print("Informe o PESO: ");
    //le e armazena o valor do peso:
    peso = leitor.nextFloat(); //Le um valor de ponto flutuante
    //le e armazena o valor da altura:
    System.out.print("Informe a ALTURA: ");
    altura = leitor.nextFloat(); //Le um valor de ponto flutuante
    //calcula:
    imc = peso / (altura * altura);
    //Imprime o resultado
    System.out.println("\n\tO IMC desta pessoa é " + imc + "\n\n");
```


Prof. MSc. Marcos Alexandruk

E-mail: alexandruk@uni9.pro.br

https://tinyurl.com/uni9-poo

