サイバー攻撃誘引基盤

STARDUST

~事後対応からリアルタイム対応へ~

国立研究開発法人 情報通信研究機構 サイバーセキュリティ研究所 サイバーセキュリティ研究室 井上 大介

NICTER

国立研究開発法人 情報通信研究機構とは?

● 情報通信分野を専門とする日本で唯一の公的研究機関

日本標準時の生成・配信 (うるう秒挿入)

光诵信システム (ペタbps級 マルチコアファイバ) (超高速インターネット衛星きずな) (ひまわり8号リアルタイムWeb) (Pi-SAR2による3.11直後の

宇宙通信システム

サイエンスクラウド

電磁波センシング 仙台空港)

バイオ·ナハCT (生体分子の自己組織化)

脳情報通信融合 (ブレイン・マシーン・ インターフェイス)

多言語音声翻訳 (多言語音声翻訳アプリ VoiceTra)

超臨場感コミュニケーション (初音ミクさんの 電子ホログラフィ)

サイバーセキュリティ (対サイバー攻撃アラートシステム DAEDALUS)

サイバーセキュリティ研究室 研究マップ

サイバー攻撃誘引基盤

STARDUST

標的型攻擊

- 特定組織を標的にした長期に渡る執拗なサイバー攻撃
- 周到な内容のメールに添付されたマルウェアで組織に侵攻

標的型攻撃のCyber Kill Chain

| **講報 | 侵攻 | 潜伏 | ^{橋頭堡} | 索敵 | 浸透 | 占領 | 収奪 | 撤収** |

標的型攻撃研究の難しさ(2011年当時)

- ●標的型攻撃の実データが集まらない!
 - ✓ N I C T E R のような大規模観測網に掛からない
 - ✓攻撃を受けた被害組織からデータが出てこない
 - ログを長期間保存していない
 - ログが攻撃者に消されている
 - ログが存在しても機微情報が含まれ提供不可
 - ✓マルウェアを解析しても初期侵入の表層的情報のみ
 - バックドアを仕掛けた後は攻撃者による手動の攻撃

攻撃者の挙動を観測できる研究基盤が必要!

STARDUST

標的型攻撃等の攻撃者を誘い込む サイバー攻撃誘引基盤

- 組織を精巧に模擬した "<u>並行ネットワーク</u>"を 自動生成
- <u>Wormhole</u>で 並行ネットワークに 実ネットワークの IPアドレスを付与

(1)攻擊者

S T A R D U S T システム概要

STARDUST

- 並行ネットワークと模擬ノード -

● 並行ネットワーク

- ✓政府や企業等を精巧に模した模擬環境
- ✓各種サーバやPCが数十台~数百台稼働
- ✓数十の並行ネットワークを同時稼働可能

● 模擬ノード

- ✓並行ネットワーク内で稼働するPC端末
- ✓組織の情報資産を模した模擬情報を配置
- ✓模擬ノード内外の挙動をステルスに観測

標的型攻撃をリアルタイムに観測・分析可能に

ケーススタディ

● 日本を標的にした攻撃グループを解析

vs. Blue Termite(予備調査): 真っさらな並行ネットワークを利用

vs. DragonOK: 生活感のある並行ネットワークを利用

● 解析のワークフロー

- 1. マルウェアの動的解析によりC&Cサーバのドメインを入手
- 2. 上述のC&Cサーバへの接続性を検証
- 3. 並行ネットワーク上のホストでマルウェアを実行
- 4. C&Cサーバと接続できなくなれば解析終了

#	解析日	攻撃グループ	マルウェア(MD5)	C&Cサーバの 場所	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
0	2015/08/04 ~ 2015/08/04	Blue Termite	7af68ddba01ba2d69a8ef7c17430e5d0	JP	٠	ADのドメインに参加 AD = Active Directory
1	2016/03/25 ~ 2016/04/11	DragonOK	251c0f90bfe9a302c471bf352b259874	US		ADのドメインに参加 ファイルやメールを設置
2	2016/05/27 ~ 2016/05/31	DragonOK	acc2e5f8abd7426574712fe6a13c2342	SG		ADのドメインに参加 ファイルやメールを設置
3	2016/08/18 ~ 2016/09/30	DragonOK	c938690a0558d070528a7cab4de0e9b3	US		ADのドメインに参加 ファイルやメールを設置

ケーススタディ用の並行ネットワーク

Case 0 (vs. Blue Termite)

- ネットワークやホストの状態を調査
- その後、攻撃者が format や shutdown コマンドでホストの停止を試みる

NICTER

Case 1 (vs. DragonOK)

1	net view	15	whomai /groups find /i "level"
2	systeminfo	16	whoami
3	whoami	17	whoami /groups
4	tasklist	18	net group
5	dir c:¥users¥nito¥desktop¥	19	net view
6	dir "c:¥program files¥"	20	arp -a
7	dir d:¥	21	netstat -ano
8	dir c:¥users¥nito¥	22	ping 10.136.8.4 -n 1
9	dir c:\u00e4users\u00e4nito\u00e4documents\u00e4	23	tasklist
10	dir c:¥users¥ni to¥downl oads¥	24	netstat -an
11	dir ¥x03"c: ¥Program Files (x86)¥"	25	net view
12	netstat -an	26	tracert
13	dir c:\u00e4users\u00e4nito\u00e4documents\u00e4\u00e4x03Credential	27	net view ¥¥win05
14	ipconfig /all		

- 前ケースと同様にネットワーク/ホストを調査
- whoami コマンドの実行を whomai とタイポ
 - ◆ 手動でインタラクティブにコマンドを実行

Case 2 (vs. DragonOK)

1	ipconfig /all	20	net view
2	cd Users¥ktakahashi ¥Desktop	21	dir ¥¥SOUMUO4¥
3	dir	22	z:
4	[download] [MembersOfGeneral Affair.xlsx]	23	<skip "cd="" &="" 24,="" ????"="" l23,=""></skip>
5	cd ??-??????201605	25	cd *2011
6	dir	26	dir
7	net view /domain	27	cd
8	<pre>z: <mount "fs"="" a="" file="" named="" server=""></mount></pre>	28	cd *2016
9	dir	29	dir
10	cd ??2016	30	cd
11	dir	31	cd *2015
12	tasklist	32	dir
13	net view	33	<skip &="" domain="" group="" l33-34,="" net="" view="" w=""></skip>
14	<skip "net="" "whoami"="" 4="" and="" l14-18,="" user"="" x=""></skip>	35	ping FS -n 1
19	cd ¥	36	net view ¥¥10.136.8.10 < <i>IP addr. of FS</i> >

- 正規表現を利用して cd コマンドを実行していた
- L35-36から、手動でコマンドを実行していたと推察

Case 3 (vs. DragonOK)

STARDUST: ケーススタディまとめ

- 通説1:標的型攻撃は国家が関与した高度な攻撃 多くの攻撃者がマニュアルに沿った類似性の高い挙動(アルバイト?)
- 通説 2:攻撃者は組織内で不用意なスキャンをしない 組織内部調査のために頻繁にスキャン等を行う(ネットワークで容易に観測可能)
- 通説 3:攻撃者は潜入先のユーザの挙動を模して慎重に行動 一般ユーザが使用しないコマンドを多数使用(エンドホストで容易に観測可能)

リーズナブルなリアルタイム対応は可能!

