MATH 633(HOMEWORK 2)

HIDENORI SHINOHARA

Exercise. (Problem 2a) Let $\gamma(t) = Re^{2\pi it}$.

$$\int_{\gamma} z^n dz = \int_0^1 R^n e^{2\pi i n t} R 2\pi i e^{2\pi i t} dt$$

$$= 2\pi i R^{n+1} \int_0^1 e^{2\pi i (n+1) t} dt$$

$$= \begin{cases} R^{n+1} \frac{e^{2\pi i (n+1) t}}{n+1} = 0 & (n \neq -1) \\ 2\pi i & (n = -1). \end{cases}$$

Exercise. (Problem 2b) Let $\gamma(t) = z_0 + Re^{2\pi it}$ where $|R/z_0| < 1$.

$$\int_{\gamma} z^n dz = \int_0^1 (z_0 + Re^{2\pi i t})^n (z_0 + Re^{e\pi i t})' dt$$

When $n \neq -1$, $(z_0 + Re^{2\pi it})^{n+1}/(n+1)$ is a primitive, so the integral is 0. Suppose n = -1.

$$\int_{0}^{1} \frac{2\pi i R e^{2\pi i t}}{z_{0} + R e^{2\pi i t}} dt = \int_{0}^{1} \frac{2\pi i R e^{2\pi i t}/z_{0}}{1 + R e^{2\pi i t}/z_{0}} dt$$

$$= \int_{0}^{1} \frac{2\pi i R e^{2\pi i t}}{z_{0}} \cdot \sum_{k=0}^{\infty} \left(\frac{-R e^{2\pi i t}}{z_{0}}\right)^{k} dt$$

$$= -2\pi i \sum_{k=0}^{\infty} \int_{0}^{1} \left(\frac{-R e^{2\pi i t}}{z_{0}}\right)^{k+1} dt$$

$$= -2\pi i \sum_{k=0}^{\infty} \left(\frac{-R e^{2\pi i t}}{z_{0}}\right)^{k+1} \int_{0}^{1} e^{2\pi i t(k+1)} dt$$

$$= 0$$

Each $\int_0^1 e^{2\pi i t(k+1)} dt = 0$ because $e^{2\pi i t(k+1)}/(2\pi i t(k+1))$ is a primitive.

Exercise. (Problem 2c)

$$\frac{1}{(z-a)(z-b)} = \frac{1}{a-b} \left(\frac{1}{z-a} - \frac{1}{z-b} \right)$$

Thus we will compute two integrals and add them later.

$$\int_{\gamma} \frac{1}{z - a} dz = \int_{\gamma} \frac{1/z}{1 - a/z} dz$$

$$= \int_{\gamma} \frac{1}{z} \sum_{k=0}^{\infty} (-\frac{a}{z})^k dz$$

$$= \sum_{k=0}^{\infty} (-a)^k \int_{\gamma} \frac{1}{z^{k+1}} dz$$

$$= 2\pi i$$

because $z^{-(k+1)}$ has a primitive $z^{-k}/-k$ whenever $k \neq 0$ and when k=0 we can use the results above.

$$\int_{\gamma} \frac{1}{b-z} dz = \int_{\gamma} \frac{1/b}{1-z/b} dz$$

$$= \frac{1}{b} \sum_{k=0}^{\infty} \int_{\gamma} (\frac{z}{b})^k dz$$

$$= \frac{1}{b} \sum_{k=0}^{\infty} \frac{1}{b^k} \int_{\gamma} z^k dz$$

$$= 0$$

because $z^{k+1}/(k+1)$ is a primitive.

By putting these together, we conclude that the desired value is $2\pi i/(a-b)$.

Exercise. (Problem 3)

$$\int_{a}^{b} |z'(t)|dt = \int_{c}^{d} |z'(t(s))|t'(s)ds$$
$$= \int_{c}^{d} |z'(t(s))t'(s)|ds$$
$$= \int_{c}^{d} |\tilde{z}'(s)|ds$$

where $\tilde{z}(s):[c,d]\to\mathbb{C}$ is a reparametrization of $z(t):[a,b]\to\mathbb{C}$.

Exercise. (Problem 4a) If $t^* \in \Omega_1$, then there exists an open neighborhood U of $z(t^*)$ contained in Ω_1 . Then $z^{-1}(U)$ is a neighborhood of t^* in [0,1] because z is continuous. Since $z(1) \in \Omega_2$, $t^* \neq 1$. However, this implies the existence of $\epsilon > 0$ such that $t^* + \epsilon < 1$ and $z(t^* + \epsilon) \in \Omega_1$. This is a contradiction.

If $t^* \in \Omega_2$, then there exists an open neighborhood U of $z(t^*)$ contained in Ω_2 . Since U is open, $z^{-1}(U)$ is a neighborhood of t^* in [0,1], so $\exists \epsilon > 0$ such that $z(t^* - \epsilon) \in \Omega_2$.

In each case, we reached a contradiction, so Ω is not disconnected.

Exercise. (Problem 4b) For every $v \in \Omega_1$, there exists an open set U such that $v \in U \subset \Omega_1$. Then for any $v' \in U$, v and v' can be joined by $\gamma(t) = tv + (1-t)v'$. Thus $U \subset \Omega_1$, so Ω_1 is open.

Let $v \in \Omega_2$. Suppose that for all $\epsilon > 0$, the open disk at v with the radius ϵ is not contained in Ω_2 . Otherwise we are done. Let $v_0 = w$. For every $n \in \mathbb{N}$, choose $v_n \in D(v, 1/n) \setminus \Omega_2$. Then there exists a path between each v_n and w. Moreover, there exists a path between v_n and v_{n-1} for each n and we will call it γ_n . Define $\gamma : [0,1] \to \Omega$ such that for each $n \in \mathbb{N}$, $\gamma([1-1/n,1-1/(n+1)])$ is the path γ_n and $\gamma(1) = v$. Then γ is a well-defined path from v to v, which is a contradiction because $v \in \Omega_2$.

Clearly, $\Omega_1 \cap \Omega_2 = \emptyset$ and $\Omega_1 \cup \Omega_2 = \Omega$. Since $w \in \Omega_1$, $\Omega_1 \neq \emptyset$, so $\Omega_2 = \emptyset$.