Practice Problems for Quiz 12 Math 2000A

Quiz #12 will take place in class on Thursday, December 4th. It's the final quiz, unless you count the final exam (which is like a quiz, but lasts longer). As usual, solving the problems on this sheet will significantly improve your chances of getting a high score on the quiz.

Note to help session tutors: It's 100% OK for you to help my students solve these questions.

- 1. For which $n \in \mathbb{N}$ is it true that $n^2 < 2^n$? Justify your conclusion.
- 2. Define a sequence a_1, a_2, a_3, \ldots of real numbers recursively by defining $a_1 = a$, and for each $n \in \mathbb{N}$,

$$a_{n+1} = r \cdot a_n$$

where r is some fixed real number. Thus, $a_1 = a, a_2 = r \cdot a, a_3 = r \cdot a_2 = r \cdot (r \cdot a)$, etc. This sequence is known as a *geometric* sequence. Use mathematical induction to prove that $a_n = a \cdot r^{n-1}$ for all $n \in \mathbb{N}$.

3. Define a sequence a_1, a_2, a_3, \ldots by $a_1 = 1, a_2 = 1$, and for each $n \in \mathbb{N}$,

$$a_{n+2} = \frac{1}{2} \left(a_{n+1} + \frac{2}{a_n} \right).$$

- (a) Calculate a_3 through to a_5 . If you're feeling adventurous, calculate a_6 .
- (b) Use the strong form of mathematical induction to prove that $1 \le a_n \le 2$ for all $n \in \mathbb{N}$.
- 4. Let $A = \{a, b, c\}$ and let $R = \{(a, a), (a, c), (b, b), (b, c), (c, a), (c, b)\}$ define a relation on A. Determine whether the following statements are true or false. Explain your answer.
 - (a) For each $x \in A$, x R x.
 - (b) For every $x, y \in A$, if x R y, then y R x.
 - (c) For every $x, y, z \in A$, if x R y and y R z, then x R z.
 - (d) The relation R defines a function from A to A.
- 5. Define a relation on \mathbb{R} by $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x < y\}.$
 - (a) What are the domain and range of R?
 - (b) Is the relation R a function from R to R? Explain.

- 6. Let $A = \{a, b\}$, and consider the relations $R_1 = \{(a, a), (b, b)\}$ and $R_2 = \{(a, a), (a, b)\}$. Show that R_1 is an equivalence relation but R_2 is not. Is R_2 transitive?
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 4$, and define a relation \sim on \mathbb{R} by $x \sim y$ if and only if f(x) = f(y).
 - (a) Is \sim an equivalence relation? Justify your answer.
 - (b) Determine the set of all real numbers x such that $x \sim 5$.
- 8. Define a relation \sim on \mathbb{Q} by $a \sim b$ if and only if $a b \in \mathbb{Z}$. The equivalence class of an element $a \in \mathbb{Q}$ is the set $[a] = \{b \in \mathbb{Q} : b \sim a\}$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) Prove that $\left[\frac{3}{5}\right] = \left\{\frac{3}{5} + m : m \in \mathbb{Z}\right\}$.
 - (c) If $a \in \mathbb{Z}$, what is [a]?
 - (d) Prove that for $a \in \mathbb{Z}$, there is a bijection from [a] to $\left\lceil \frac{3}{5} \right\rceil$.