

Sectional Views

Unit 4

Sectional Orthographic Projections:

The projections in which the internal shape of an object is shown.

Figure 1. Illustrates a full Section view

Figure 3. Illustrating an offset section

Figure 2. Illustrating a half section view

Figure 4. Illustrating a Broken-out Section

PURPOSES OF SECTION VIEWS

Clarify the views by:

- Reducing or eliminating the hidden lines.
- Revealing the cross sectional's shape.

CUTTING PLANE

Cutting plane is a plane that imaginarily cuts the object to reveal the internal features.

CUTTING PLANE LINE

Cutting plane line is an edge view of the cutting plane.

CUTTING PLANE LINESTYLES

SECTION LINING

Section lines or cross-hatch lines are used to indicate the surfaces that are cut by the cutting plane.

SECTION LINES SYMBOLS

- The section lines are different for each of material's type.
- For practical purpose, the cast iron symbol is used most often for any materials.

SECTION LINES SYMBOLS

- Materials –Common materials
- The symbol for cast iron can be used for most section views.
- Refer to any common drafting text for additional symbols

SECTION LINING

- → 45 degree angle lines should be used.
- 2 to 5mm gap between lines.
- All lines should be uniformly spaced
- Thin sections may be blackened in completely

Section Lining – Line Placement

- Lines should never be parallel or perpendicular to the object lines.
- If the outline of the object has 45 degree lines, 30 or 60 degree lines should be used.
- Assemblies with several parts should be lined with varying angle section lines.

Section Lining – Line Placement

SECTION LINING PRACTICE

The spaces between lines may vary from 2 mm for small sections to 5 mm for large sections.

SECTION LINING PRACTICE

It **should not** be drawn parallel or perpendicular to contour of the view.

TREATMENT OF HIDDEN LINES

Hidden lines are *normally omitted* from section views.

Types of Sectioning

- 1. Full section
- 2. Half section
- 3. Offset section

FULL SECTION VIEW

The view is made by passing the *straight* cutting plane *completely through* the part.

A half-section is a view of an object showing of the view in section.

Symmetrical parts can be shown in half sections.

Half sections are commonly used to show both the *internal* and view of symmetrical

objects.

The view is made by passing the cutting plane *halfway* through an object and remove a *quarter* of it.

- A center line is used to separate the sectioned half from the unsectioned half of the view.
- Hidden line is omitted in unsection half of the view.

OFFSET SECTION VIEW

The cutting plane is *off-set* to include features that are not in a straight line.

It is possible for the cutting plane to *change directions*, to *minimise on the number* of sectional views required to capture the necessary details.

OFFSET SECTION VIEW

The view is made by passing the **bended** cutting plane **completely through** the part.

OFFSET SECTION VIEW

EXAMPLE: Comparison among several section techniques

(Fig.4.2.Revolved section)

Oblique section

In a mechanical drawing, a section taken through an object at an angle (other than 90°) to its longest axis is known as Oblique section.

in the Oblique projection is termed as oblique section as shown in the figure.

(Fig4.4. Oblique section)

- 1. Full Sectional Front View
- 2. Top View

- 1. Full Sectional Front View
- 2. Top View

- 1. Full Sectional Front View
- 2. Top View

