

Ficha de Trabalho | Sucessões e Geometria Analítica Preparação Para o Exame Nacional de Matemática A

MATEMÁTICA A | 12.º Ano

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

1. Seja (u_n) uma progressão aritmética tal que $u_4 = 15$ e $u_{10} = 33$.

Qual é o valor de $\lim \left(\frac{u_n}{3n-6}\right)^{2n}$?

$$\mathbf{A}$$
 e^{-2}

$$\mathbf{B}$$
 e^3

$$\mathbf{C}$$
 e^6

2. Considere a sucessão (u_n) definida por recorrência da seguinte forma $\begin{cases} u_1 = -1 \\ u_2 = -2 \\ u_{n+2} \times u_n = u_{n+1}, \ \ \forall n \in \mathbb{N} \end{cases}$

Qual das seguintes afirmações não é verdadeira?

$$\boxed{\mathbf{A}} \quad u_{n+6} - u_n = 0 \,, \ \forall n \in \mathbb{N}$$

$$lackbox{\textbf{B}} \left(u_{\scriptscriptstyle n}\right)$$
 é limitada.

$$lackbox{\textbf{C}}$$
 (u_n) é convergente.

$$D$$
 (u_n) não é monótona.

- 3. Seja $\left(u_{\scriptscriptstyle n}\right)$ uma progressão aritmética tal que $\,u_{\scriptscriptstyle 30}+u_{\scriptscriptstyle 40}=40$.
 - 3.1. Qual é a soma de todos os termos consecutivos de (u_n) entre os termos de ordem 10 e 60, incluindo-os?

- **3.2**. Admita que $u_{10} = 5 r$, sendo r a razão da progressão aritmética (u_n) , com $r \in \mathbb{R}$.
 - a) Mostre que $u_n = \frac{2n-10}{3}$.
 - b) Determine a soma dos primeiros quarenta e nove termos de ordem par da sucessão (u_n) .

- **4.** Seja (w_n) uma progressão geométrica de termos positivos tal que $w_3 \times w_7 = w_1 = 16$.
 - **4.1.** Mostre que $w_n = \sqrt{2^{9-n}}$.
 - 4.2. Qual é o valor da soma de todos os termos da progressão entre o sétimo e o décimo segundo, incluindo-os?
- 5. Seja (w_n) uma progressão geométrica de termos não nulos tal que $w_{n+3} + w_n = 0$, para todo o n natural

A soma dos 2020 primeiros termos de (w_n) é igual a:

- **A** 0
- $\mathbf{B} w_1$
- \mathbf{C} w_1

- **D** 2020
- **6.** Na figura está representada, em referencial o.n. Oxyz, a pirâmide $\begin{bmatrix} ABCDV \end{bmatrix}$ cuja base é o quadrilátero $\begin{bmatrix} ABCD \end{bmatrix}$.

Sabe-se que:

- o ponto A tem pertence ao plano xOz e o ponto C pertence ao eixo Oz
- o ponto V tem a cota igual a 5 e abcissa positiva;
- a abcissa do ponto A é igual ao dobro da abcissa do ponto V
- $\overrightarrow{AV} \cdot \overrightarrow{CA} = -56$
- uma equação cartesiana do plano $ACV \notin 5x + 8y + 10z = 30$
- **6.1.** Mostre que A(8,0,-1) e que V(4,-5,5).

6.2. Determine a amplitude do ângulo AVC.

Apresente o resultado em graus, arredondado às décimas.

- **6.3.** Admita que D(0,-4,-1).
 - a) Mostre que uma equação vectorial da recta r que contém o ponto V e é perpendicular ao plano ABC é:

$$(x, y, z) = (-3, 9, -9) + k(-1, 2, -2), k \in \mathbb{R}$$

- b) Sabendo que ABC é o plano mediador do segmento de recta $\lceil VQ \rceil$, determine as coordenadas do ponto Q
- c) Determine as coordenadas do ponto E , pertencente à recta r , de modo que a recta ED seja estritamente paralela ao plano ACV .
- 7. Na figura está representado em referencial o.n. Oxyz a pirâmide $\begin{bmatrix} ABCDE \end{bmatrix}$

Sabe-se que:

$$\overrightarrow{AB}(-1,-3,2) \ e \ \overrightarrow{AE}(8,-5,0)$$

•
$$B(1,-1,3)$$
 e $C(3,1,7)$

7.1. Mostre que uma equação vectorial da recta perpendicular a ABC que contém o ponto A é:

$$(x, y, z) = (-2, 4, 2) + k(4, -2, -1), k \in \mathbb{R}$$

- **7.2.** Mostre que E(10,-3,1) e que escreva uma equação cartesiana que define o plano paralelo a ABC e que contém o ponto E .
- **7.3.** Determine a altura da pirâmide [ABCDE].
- **7.4.** Tal como sugerido na figura, além dos vértices, estão também assinalados mais quatro pontos: um sobre a aresta $\begin{bmatrix} AB \end{bmatrix}$, dois sobre a aresta $\begin{bmatrix} CD \end{bmatrix}$ e um sobre a aresta $\begin{bmatrix} CE \end{bmatrix}$.
 - a) Escolhem-se, simultaneamente e ao acaso, três desses pontos assinalados.

Qual é a probabilidade de definirem o plano ABC?

Apresente o resultado na forma de fracção irredutível.

b) Estão disponíveis dez cores para colorir as faces da pirâmide, entre as quais as cores verde, azul e encarnado.

A coloração deve ser feita respeitando as seguintes condições:

- as faces que partilham uma aresta são coloridas com cores distintas;
- a face [ABCD] só pode ser colorida de verde, azul ou encarnado.

Nestas condições, de quantas maneiras distintas se pode colorir a pirâmide?

Uma resposta a este problema é $3 \times ({}^{9}A_{4} + {}^{9}C_{3} \times 3 \times 2 \times 2! + {}^{9}C_{2} \times 2)$.

Numa pequena composição, explique-a.

8. Na figura, estão representadas, num referencial o.n. xOy, as retas $r \in s$ e a circunferência centrada no ponto de coordenadas (0,2) e que contém a origem.

Sabe-se que:

- lacktriangle a reta r é tangente à circunferência no ponto Q de ordenada 3 e abcissa positiva;
- a reta r interseta o eixo Ox no ponto A
- ullet a reta s interseta o eixo Ox no ponto C
- as retas $r \in S$ intersetam-se no ponto B, que pertence ao eixo Oy

Qual das seguintes pode ser a equação reduzida da recta s?

$$\mathbf{B} \quad y = -\sqrt{3} \, x + 6$$

C
$$y = -\frac{\sqrt{3}}{3}x + 6$$

D
$$y = -\sqrt{3} x + 3\sqrt{3}$$

FIM

Solucionário

4.2.
$$\frac{7}{2} + \frac{7\sqrt{2}}{4}$$

6.2.
$$\approx 69,1^{\circ}$$

6.3. b)
$$Q(0,3,-3)$$

6.3. c)
$$E(-4,11,-11)$$

7.2.
$$4x-2y-z-45=0$$

7.3.
$$2\sqrt{2}$$

7.4. a)
$$\frac{5}{14}$$