Peal III

$$S = \int_{0}^{\infty} f(x) dx = F(b) - F(a)$$

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \dots = -\frac{3}{7} \ln 2$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

Зміст

1	Вст	уп до \mathbb{R}^m (багатовимірний математичний аналіз)	3
	1.1	Про простір \mathbb{R}^m	3
	1.2	Топологія та принцип аналіза в \mathbb{R}^m	4
	1.3	Границя послідовності	6
	1.4	Функція від декількох змінних. Границя функції	8
	1.5	Неперервність функції	11
	1.6	Символіка Ландау	12
	1.7	Векторнозначні функції. Границя, неперервність, символіка Ландау функції	12
2	Диференційованість		15
	2.1	Для функції багатьох змінними	15
	2.2	Для векторнозначних функцій	19
	2.3	Похідна за напрямком. Градієнт	21
	2.4	Диференціювання та похідні старших порядків	22
	2.5	Формула Тейлора	26
	2.6	Локальні екстремуми	29
	2.7	Умовні локальні екстремуми	31
	2.8	Теорема про існування оберненої функції	34
	2.9	Неявно задані функції	36
3	Інтє	еграли з параметром	41
	3.1	Основні означення та властивості	41
	3.2	Невласні інтеграли з параметром та ознаки збіжності	44
	3.3	Властивості невласного інтегралу	46
	3.4	Інтеграл Діріхлє	48
	3.5	Інтеграл Ойлера-Пуассона	49
	3.6	Гамма-функція	50
	3.7	Бета-функція	51
	3.8	Основна теорема гамма-функції	52
	3.9	Різні формули, що пов'язують гамма-функцію; зв'язки між гамма- та бета-функціями	53
	3.10	Графік гамма-функції	

Вступ до \mathbb{R}^m (багатовимірний математичний аналіз) 1

На даному етапі допускається, що читач володіє матеріалом лінійної алгебри. Знати треба вже наступне: векторні простори та суміжні поняття, лінійні оператори, евклідові простори, нормовані простори. Буде корисно також знати якусь теорію метричних просторів, але це не обов'язково, бо все одно я буду проходитися з нуля.

Про простір \mathbb{R}^m 1.1

Definition 1.1.1 Простір \mathbb{R}^m містить об'єкти, що називаються арифметичними векторами

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix},$$

де кожний елемент $x_j \in \mathbb{R}$. Ці елементи x_j ще називають **координатами**.

Візьмемо довільні вектори $\vec{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_m \end{pmatrix},\; \vec{y}=\begin{pmatrix} y_1\\y_2\\\vdots\\y_{--} \end{pmatrix}$. Ми можемо створити операції **додавання** та множення на скаляр таким чи

$$\vec{x} + \vec{y} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_m + y_n \end{pmatrix} \qquad \alpha \vec{x} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_m \end{pmatrix}, \alpha \in \mathbb{R}$$

Також позначимо $\vec{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \hat{0} \end{pmatrix}$ — це буде так званий нульовий вектор.

Proposition 1.1.2 Виконуються ось такі влетивості $\forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^m, \ \forall \alpha, \beta \in \mathbb{R}$:

- 1) $\vec{x} + \vec{y} = \vec{y} + \vec{x}$; 5) $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$;
- 2) $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z};$ 6) $(\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x};$ 3) $\vec{x} + \vec{0} = \vec{x};$ 7) $\alpha(\beta \vec{x}) = (\alpha \beta)\vec{x};$

- 3) $\vec{x} + \vec{0} = \vec{x}$; 4) $\vec{r} + (-\vec{x}) = \vec{0}$:
 - 8) $1 \cdot \vec{x} = \vec{x}$.

Ці вісім пунктів свідчать про те, що \mathbb{R}^m утворює так званий лінійний простір. Вправа: довести.

Надалі ми ще будемо використовувати скалярний добуток, що визначається таким чином:

$$(\vec{x}, \vec{y}) = x_1 y_1 + x_2 y_2 + \dots + x_m y_m$$

Proposition 1.1.3 Виконуються ось такі властивості $\forall \vec{x}, \vec{y}, \vec{x}_1, \vec{x}_2 \in \mathbb{R}^m, \ \forall \alpha \in \mathbb{R}$:

- 1) $(\vec{x}, \vec{y}) = (\vec{y}, \vec{x});$
- 2) $(\vec{x}, \vec{x}) \ge 0$, $(\vec{x}, \vec{x}) = 0 \iff \vec{x} = \vec{0}$; 3) $(\vec{x}_1 + \vec{x}_2, \vec{y}) = (\vec{x}_1, \vec{y}) + (\vec{x}_2, \vec{y})$;
- 4) $(\alpha \vec{x}, \vec{y}) = \alpha(\vec{x}, \vec{y}).$

Ці чотири властивості свідчать про те, що (\vec{x}, \vec{y}) дійсно задає скалярний добуток. При цьому в такому разі простір \mathbb{R}^m буде вже називатися евклідовим. Вправа: довести.

Далі визначимо ще норму вектора ось таким чином:

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_m^2}$$

Ця штука, насправді, є узагальненням такого поняття як довжина вектора.

Remark 1.1.4 $||\vec{x}|| = \sqrt{(\vec{x}, \vec{x})}$.

Theorem 1.1.5 Нерівність Коші-Буняковського

 $|(\vec{x}, \vec{y})|^2 \le ||\vec{x}|| ||\vec{y}||.$

Можна подивитися доведення в pdf лінійної алгебри.

Proposition 1.1.6 Виконуються ось такі властивості $\forall \vec{x}, \vec{y} \in \mathbb{R}^m, \ \forall \alpha \in \mathbb{R}$:

- 1) $\|\vec{x}\| \ge 0$ $\|\vec{x}\| = 0 \iff \vec{x} = \vec{0};$
- 2) $\forall \alpha \in \mathbb{R} : \|\alpha \vec{x}\| = \alpha \|\vec{x}\|;$
- 3) $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.

Отже, заданий $\|\vec{x}\|$ утвроює норму. Відповідно, \mathbb{R}^m буде нормованим простором.

Вправа: довести.

Також нас ще цікавить відстань між двома векторами. Обчислити це можна таким чином:

$$d(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}\| \stackrel{\text{мкщо розписати}}{=} \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_m - y_m)^2}$$

Буквально так само ми рахували відстань між точками в одновимірному випадку.

Proposition 1.1.7 Виконуються такі властивості $\forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^m$:

- 1) $d(\vec{x}, \vec{y}) \ge 0;$
- 2) $d(\vec{y}, \vec{x}) = d(\vec{x}, \vec{x});$
- 3) $d(\vec{x}, \vec{y}) \le d(\vec{x}, \vec{z}) + d(\vec{z}, \vec{y}).$

Ці три властивості дають підстави нам казати, що $d(\vec{x}, \vec{y})$ задає відстань між двома об'єктами. У такому разі простір \mathbb{R}^m називають метричним.

Вправа: довести.

Висновок: \mathbb{R}^m – лінійний, евклідів, нормований та метричний простір.

1.2 Топологія та принцип аналіза в \mathbb{R}^m

Означеня будуть абсолютно аналогічними, просто тепер буде випадок з векторами.

Definition 1.2.1 ε **-околом** точки \vec{x} будемо називати таку множину:

$$U_{\varepsilon}(\vec{x}) = \{ \vec{a} \in \mathbb{R}^m : ||\vec{x} - \vec{a}|| < \varepsilon \}$$

Його ще також називають **відкритим шаром** з радіусом ε в центрі точки \vec{x} та позначають як $B(\vec{x}, \varepsilon)$. Я вже буду користуватися старим позначенням, тобто $U_{\varepsilon}(\vec{x})$.

Definition 1.2.2 Задамо множину $A \subset \mathbb{R}^m$ та елемент $\vec{a} \in A$.

Точку \vec{a} називають **внутрішньою**, якщо

$$\exists \varepsilon > 0 : U_{\varepsilon}(\vec{a}) \subset A$$

A множина A називається **відкритою**, якщо кожна її точка — внутрішня.

Definition 1.2.3 Задамо множину $A \subset \mathbb{R}^m$ та елемент $\vec{a} \in \mathbb{R}^m$.

Точку \vec{a} називають **граничною** множини A, якщо

$$\forall \varepsilon > 0 : \exists \vec{x} \in A : \vec{x} \neq \vec{a} : \vec{x} \in U_{\varepsilon}(\vec{a})$$

A множина A називається **замкненою**, якщо вона містить всі граничні точки.

Definition 1.2.4 Задано множину $A \subset \mathbb{R}^m$ та точка $\vec{x} \in A$.

Точка \vec{x} називається **ізольованою**, якщо

$$\exists \varepsilon > 0 : U_{\varepsilon}(\vec{x}) \cap A = \{\vec{x}\}\$$

Решта тверджень будуть схожі на ті твердження, що були при топології ℝ. Доведення теж аналогічні, тому доводити я повторно не буду, просто залишу формулювання.

Proposition 1.2.5 Якщо $\{A_{\lambda}\}$ – сім'я відкритих підмножин, то $\bigcup A_{\lambda}$ – відкрита.

Proposition 1.2.6 Якщо $\{A_{\lambda}\}$ – скінченна сім'я відкритих підмножин, то $\bigcap A_{\lambda}$ – відкрита.

Proposition 1.2.7 \vec{a} – гранична точка $A \subset \mathbb{R}^m \iff \forall \varepsilon > 0 : A \cap U_{\varepsilon}(\vec{a})$ – нескінченна множина.

Proposition 1.2.8 A – відкрита множина $\iff A^c$ – замкнена множина.

Proposition 1.2.9 Точка $\vec{x} \in A$ – ізольована $\iff \vec{x}$ – не гранична для A.

Proposition 1.2.10 \mathbb{R}^{m} , \emptyset – одночасно відкриті та замкнені множини.

Ось наступне твердження необхідно проясянити.

Proposition 1.2.11 Відкритий шар $B(\vec{a},r) = \{ \vec{x} \in \mathbb{R}^m : \|\vec{x} - \vec{a}\| < r \}$ є дійсно відкритим. Замкнений шар $B[\vec{a},r] = \{\vec{x} \in \mathbb{R}^m : \|\vec{x} - \vec{a}\| \le r\}$ є дійсно замкненим.

Proof.

Нехай $\vec{x} \in B(\vec{a},r) \implies \|\vec{x}-\vec{a}\| < r$. Встановимо $\varepsilon = r - \|\vec{x}-\vec{a}\|$. Тоді $\vec{y} \in U_{\varepsilon}(\vec{x}) \implies \|\vec{y}-\vec{x}\| < \varepsilon \implies \|\vec{y}-\vec{a}\| = \|\vec{y}-\vec{x}+\vec{x}-\vec{a}\| \leq \|\vec{y}-\vec{x}\| + \|\vec{x}-\vec{a}\| < \varepsilon + \|\vec{x}-\vec{a}\| = 0$ $\varepsilon \implies \vec{y} \in B(\vec{a}, r).$

Отже, $U_{\varepsilon}(\vec{x}) \subset B(\vec{a},r)$, так для кожної точки $\vec{x} \in B(\vec{a},r)$. А тому множина $B(\vec{a},r)$ – відкрита.

 $B[\vec{a},r]=\mathbb{R}^m\setminus B(\vec{a},r)=\mathbb{R}^m\cap B^c(\vec{a},r)$ – обидві множини є замкненими. Тому перетин замкнена. \blacksquare

Definition 1.2.12 Задана множина $A \subset \mathbb{R}^m$.

Вона називається обмеженою, якщо

$$\exists R > 0 : \forall \vec{x} \in A : ||\vec{x}|| \le R$$

Або інакше це можна записати таким чином:

$$\exists R > 0 : A \subset U_R(\vec{0})$$

Example 1.2.13 Зокрема одинична сфера $\mathcal{S}^{m-1} \stackrel{\text{def.}}{=} \{ \vec{x} \in \mathbb{R}^m : ||\vec{x}|| = 1 \}$ буде обмеженою. Досить важлива множина, бо з нею ми будемо неодноразово працювати.

Зараз буде нові поняття, яких не було бажання вводити в мат. аналізі в ℝ. Більшість з них були просто непотрібними, а зараз без них не обійдемося.

Definition 1.2.14 Задана множина $A \subset \mathbb{R}^m$.

Замиканням множини A називають ось таку множину, що містить A та його граничні точки. Позначення: $\operatorname{Cl} A$.

Часто ще замикання позначають за \overline{A} , але для мене це менш читабельно.

Proposition 1.2.15 Задана множина $A \subset \mathbb{R}^m$. Тоді

Definition 1.2.16 Задана множина $A \subset \mathbb{R}^m$.

Внутрішністю множини A називають множину всіх внутрішніх точок A.

Позначення: Int A.

Часто ще замикання позначають за A° , але для мене це менш читабельно.

Definition 1.2.17 Задамо множину $A \subset \mathbb{R}^m$.

Межею множини A називають множину точок, в кожному околі яких є точки з A та з A^c . Тобто це можна записати так:

$$\partial A = \{ \vec{x} \in \mathbb{R}^m \mid \forall \varepsilon > 0 : U_{\varepsilon}(\vec{x}) \cap A \neq \emptyset \text{ Ta } U_{\varepsilon}(\vec{x}) \cap A^c \neq \emptyset \}$$

Приклад внутрішньості, замикання, межі деякої множини.

Proposition 1.2.18 $\partial A = \operatorname{Cl} A \setminus \operatorname{Int} A$.

Proof.

Нехай $\vec{x} \in \partial A$. Перше ми маємо $U_{\varepsilon}(\vec{x}) \cap A \neq \emptyset$. Це як раз означатиме, що або $\vec{x} \in A$, або \vec{x} – гранична точка A, тобто $\vec{x} \in \operatorname{Cl} A$. Друге ми маємо $U_{\varepsilon}(\vec{x}) \cap A^c \neq \emptyset$. Це буде означати, що $U_{\varepsilon}(\vec{x}) \not\subset A$, тобто \vec{x} – не внутрішня точка A, тобто $\vec{x} \notin \operatorname{Int} A$. У результаті чого $\vec{x} \in \operatorname{Cl} A \setminus \operatorname{Int} A$.

Якщо $\vec{x} \in \operatorname{Cl} A \setminus \operatorname{Int} A$, то можна просто в зворотному порядку піти та отримати врешті-решт, що $\vec{x} \in \partial A$.

Example 1.2.19 Зокрема розглянемо відкриту двовимірну кулю $B(\vec{0},1)$. Зауважимо, що $\partial B(\vec{0},1) = \mathcal{S}^1$ – одинична сфера (тобто коло в нашому випадку).

Перше червоне – це відкрита куля. Друге червоне – його межа.

Також специфічні приклади. Маємо $\partial \emptyset = \emptyset$, а також $\partial \mathbb{R}^m = \emptyset$ (тут тіпа безмежна множина).

Example 1.2.20 Якщо повернутися до одновимірного випадку, то $\partial(a,b) = \partial(a,b) = \partial[a,b] = \partial[a,b] = \{a,b\}$. У нас тут межа містить точки, які ніяк не зв'язуються на числовій прямій, тому ми й не розглядали межі.

Proposition 1.2.21 Маємо $A \subset \mathbb{R}^m$. Тоді межа ∂A – замкнена множина.

Proof.

Нехай \vec{x} – гранична точка ∂A ; тоді треба довести, що $\vec{x} \in \partial A$.

Для кожного $\varepsilon>0$, за умовою, існує $\vec{y}\in\partial A, \vec{y}\neq\vec{x}$, для якого $\|\vec{y}-\vec{x}\|<\varepsilon$. Оскільки $\vec{y}\in\partial A$, то тоді існують $\vec{z}_1\in A, \vec{z}_2\in A^c$, які не збігаються з точкою \vec{y} і для яких $\|y-\vec{z}_1\|<\varepsilon$, $\|y-\vec{z}_2\|<\varepsilon$. Маючи нерівність трикутників для норми, маємо $\|\vec{x}-\vec{z}_1\|<2\varepsilon, \|\vec{x}-\vec{z}_2\|<2\varepsilon$. Оскільки це виконується для всіх $\varepsilon>0$, то звідси доводимо $\vec{x}\in\partial A$.

Corollary 1.2.22 S^m – одинична сфера – замкнена множина.

1.3 Границя послідовності

Definition 1.3.1 Вектор $\vec{a} \in \mathbb{R}^m$ називається **границею** послідовності векторів $\{\vec{a}^{(n)}, n \geq 1\}$, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : \|\vec{a}^{(n)} - \vec{a}\| < \varepsilon$$

Позначення: $\lim_{n\to\infty} \vec{a}^{(n)} = \vec{a}$.

Theorem 1.3.2 Для послідовності $\{\vec{a}^{(n)}, n \geq 1\}$ існує $\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a} \iff$ для всіх координат послідовності $\{a_j^{(n)}, n \geq 1\}$ існують $\lim_{n \to \infty} a_j^{(n)} = a_j, j = \overline{1, m}.$

Proof.

$$\exists \lim_{n \to \infty} \vec{a}^{(n)} = \vec{a}, \text{ тобто } \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : \|\vec{a}^{(n)} - \vec{a}\| < \varepsilon.$$

У нас границя визначається вектором $\vec{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}$. Тоді $\|\vec{a}^{(n)} - \vec{a}\| = \sqrt{(a_1^{(n)} - a_1)^2 + \dots + (a_1^{(m)} - a_m)^2}$ $\implies \forall j = \overline{1,m} : |a_j^{(n)} - a_j| = \sqrt{(a_j^{(n)} - a_j)^2} < \sqrt{(a_1^{(n)} - a_1)^2 + \dots + (a_1^{(m)} - a_m)^2} < \varepsilon$.

$$\sqsubseteq$$
 Дано: $\forall j=\overline{1,m}:\exists\lim_{n\to\infty}a_j^{(n)}=a_j.$ Тоді $\forall \varepsilon>0:\exists N:\forall n\geq N:|a_j^{(n)}-a_j|<\dfrac{\varepsilon}{\sqrt{m}}.$ $\Longrightarrow \|\vec{a}^{(n)}-\vec{a}\|=\sqrt{(a_1^{(n)}-a_1)^2+\cdots+(a_m^{(n)}-a_m)^2}<\sqrt{\dfrac{\varepsilon^2}{m}+\cdots+\dfrac{\varepsilon^2}{m}}=\varepsilon.$ Отже, $\exists\lim_{n\to\infty}\vec{a}^{(n)}=\vec{a}.$

Definition 1.3.3 Послідовність $\{\vec{a}^{(n)}, n \geq 1\}$ називається фундаментальною, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n, k \ge N : ||\vec{a}^{(n)} - \vec{a}^{(k)}|| < \varepsilon$$

Theorem 1.3.4 Критерій Коші

 $\{\vec{a}^{(n)}, n \geq 1\}$ – збіжна $\iff \{\vec{a}^{(n)}, n \geq 1\}$ – фундаментальна.

 \implies Дано: $\{\vec{a}^{(n)}, n \ge 1\}$ — збіжна, тобто $\forall j = \overline{1,m}: \{a^{(n)}_j, n \ge 1\}$ — збіжні. Тоді всі вони — фундаментальні за критерієм Коші мат.
аналіза \mathbb{R} , тобто $\forall \varepsilon > 0: \exists N_j: \forall n,k \geq N_j: |a_j^{(n)} - a_j^{(k)}| < \frac{\varepsilon}{\sqrt{m}}$

$$\Rightarrow \exists N = \max\{N_1, \dots, N_m\} : \forall n, k \ge N : \\ \|\vec{a}^{(n)} - \vec{a}^{(k)}\| = \sqrt{(a_1^{(n)} - a_1^{(k)})^2 + \dots + (a_m^{(n)} - a_m^{(k)})^2} < \sqrt{\frac{\varepsilon^2}{m} + \dots + \frac{\varepsilon^2}{m}} = \varepsilon.$$

Отже, наша послідовність - фундаментальна.

 \sqsubseteq Дано: $\{\vec{a}^{(n)}, n \geq 1\}$ – фундаментальна, тобто $\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n, k \geq N : \|\vec{a}^{(n)} - \vec{a}^{(k)}\| < \varepsilon$. Тоді $\forall j=\overline{1,m}:|a_j^{(n)}-a_j^{(k)}|<\varepsilon$ (зрозуміло), тобто $\forall j=\overline{1,m}:\{a_j^{(n)},n\geq 1\}$ – фундаментальні. Отже, вони всі збіжні, а тому $\{\vec{a}^{(n)}, n \geq 1\}$ – збіжна.

Definition 1.3.5 Послідовність $\{\vec{a}^{(n)}, n \geq 1\}$ називається **обмеженою**, якщо

$$\exists C > 0 : \forall n \ge 1 : \|\vec{a}^{(n)}\| \le C$$

Definition 1.3.6 Підпослідовність послідовності $\{\vec{a}^{(n)}, n \geq 1\}$ називається послідовність

$$\{\vec{a}^{(n_l)}, l \ge 1\},\$$

де $\{n_l, l \ge 1\}$ – строго зростаюча послідовність в \mathbb{N} .

Theorem 1.3.7 Теорема Бользано-Ваєрштрасса

Будь-яка обмежена послідовність векторів має збіжну підпослідовність векторів.

Proof.

Маємо обмежену послідовність $\{\vec{a}^{(n)}, n \geq 1\}$, тобто $\exists C > 0 : \forall n \geq 1 : \|\vec{a}^{(n)}\| \leq C$. Тоді кожна координата є обмеженою, оскільки $\forall j = \overline{1,m} : |a_j^{(n)}| \leq \sqrt{\left|a_1^{(n)}\right|^2 + \cdots + \left|a_m^{(n)}\right|^2} \leq C$.

Тобто всі послідовності $\{a_i^{(n)}, n \ge 1\}$ – обмежені.

Розглянемо $\{a_1^{(n)}, n \geq 1\}$ – обмежена. Тоді існує збіжна підпослідовність $\{a_1^{(n_l)}, l \geq 1\}$ (теорема Бользано-Ваєрштраса в мат.аналізі $\mathbb R$).

Розглянемо підпослідовність $\{\vec{a}^{(n_l)}, l \geq 1\}$. Вона також є обмеженою, тому всі координатні послідовності - обмежені.

Розглянемо $\{a_2^{(n_l)}, l \geq 1\}$ – обмежена. Тоді існує збіжна підпідпослідовність $\{a_2^{(n_{l_k})}, k \geq 1\}$. Оскільки підпослідовність $\{a_1^{(n_l)}, l \geq 1\}$ — збіжна, то збіжною буде й підпідпослідовність $\{a_1^{(n_{l_k})}, k \geq 1\}$. Розглянемо підпідпослідовність $\{\vec{a}_1^{(n_{l_k})}, k \geq 1\}$ — за аналогічними міркуваннями, теж обмежена.

Розглянемо підпідпослідовність $\{a_3^{(n_{l_k})}, k \geq 1\}$ – обмежена. Тоді існує збіжна підпідпідпослідовність

 $\{a_3^{(n_{l_{k_p}})}, p \geq 1\}$. Оскільки підпідпослідовності $\{a_1^{(n_{l_k})}, k \geq 1\}$, $\{a_2^{(n_{l_k})}, k \geq 1\}$ – збіжні, то збіжними будуть підпідпідпослідовності $\{a_1^{(n_{l_{k_p}})}, p \geq 1\}$, $\{a_2^{(n_{l_{k_p}})}, p \geq 1\}$.

Після m кроків отримаємо підпослідовність $\{\vec{a}^{(n_q)}, l \geq 1\}$, у якій всі координатні послідовності є збіжними. Тоді $\{\vec{a}^{(n_q)}, l \geq 1\}$ – збіжна.

Proposition 1.3.8 Задані $\{\vec{a}^{(n)}, n \geq 1\}, \{\vec{b}^{(n)}, n \geq 1\}$, такі, що $\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a}, \lim_{n \to \infty} \vec{b}^{(n)} = \vec{b}$. Тоді:

- 1) $\forall c \in \mathbb{R} : \lim_{n \to \infty} c\vec{a}^{(n)} = c \lim_{n \to \infty} \vec{a}^{(n)};$ 2) $\lim_{n \to \infty} (\vec{a}^{(n)} + \vec{b}^{(n)}) = \lim_{n \to \infty} \vec{a}^{(n)} + \lim_{n \to \infty} \vec{b}^{(n)};$
- 3) $\lim_{n \to \infty} (\vec{a}^{(n)}, \vec{b}^{(n)}) = \left(\lim_{n \to \infty} \vec{a}^{(n)}, \lim_{n \to \infty} \vec{b}^{(n)}\right);$
- 4) $\lim_{n \to \infty} \|\vec{a}^{(n)}\| = \left\| \lim_{n \to \infty} \vec{a}^{(n)} \right\|.$

Proof.

1),2) випливае з властивостей границь в \mathbb{R} , якщо розглянути покоординатну збіжність.

3)
$$\lim_{n\to\infty} (\vec{a}^{(n)}, \vec{b}^{(n)}) = \lim_{n\to\infty} (a_1^{(n)}b_1^{(n)} + \dots + a_m^{(n)}b_m^{(n)}) = a_1b_1 + \dots + a_mb_m = (\vec{a}, \vec{b}) = \left(\lim_{n\to\infty} \vec{a}^{(n)}, \lim_{n\to\infty} \vec{b}^{(n)}\right).$$

$$4) \lim_{n \to \infty} \|\vec{a}^{(n)}\| = \lim_{n \to \infty} \sqrt{(\vec{a}^{(n)}, \vec{a}^{(n)})} = \sqrt{\lim_{n \to \infty} (\vec{a}^{(n)}, \vec{a}^{(n)})} = \sqrt{(\vec{a}, \vec{a})} = \|\vec{a}\| = \left\|\lim_{n \to \infty} \vec{a}^{(n)}\right\|.$$
 Всі властивості доведені.

Example 1.3.9 Розглянемо $\vec{x}^{(n)} = \left(\sqrt{n+1} - \sqrt{n} \quad \frac{n-1}{n} \quad \frac{2n^2-1}{n^2} \quad \left(1 + \frac{1}{n}\right)^n\right)^{\iota}$ — послідовність

векторів в \mathbb{R}^4 . Обчислимо її границю. Ми можемо обчислити покоординатно, згідно з теоріями:

$$\lim_{n \to \infty} x_1^{(n)} = \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

$$\lim_{n \to \infty} x_2^{(n)} = \lim_{n \to \infty} \frac{n-1}{n} = 1.$$

$$\lim_{n \to \infty} x_3^{(n)} = \lim_{n \to \infty} \frac{2n^2 - 1}{n^2} = 2.$$

$$\lim_{n \to \infty} x_4^{(n)} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Таким чином, $\lim_{n\to\infty} \vec{x}^{(n)} = \lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n} \quad \frac{n-1}{n} \quad \frac{2n^2-1}{n^2} \quad \left(1+\frac{1}{n}\right)^n\right)^T = \begin{pmatrix} 0 & 1 & 2 & e \end{pmatrix}^T$.

Theorem 1.3.10 Задана множина $A \subset \mathbb{R}^m$. $\vec{x}^0 \in \mathbb{R}^m$ – гранична точка для $A \iff \exists \{\vec{x}^{(n)}, n \geq 1\} \subset A : \vec{x}^{(n)} \neq \vec{x}^0 : \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0$

Proof.

$$\Rightarrow$$
 Дано: \vec{x}^0 – гранична точка для A , тобто $\forall \varepsilon > 0: U_{\varepsilon}(\vec{x}^0) \cap A$ – нескінченна.
Зафіксуємо $\varepsilon = \frac{1}{n} \implies \forall \vec{x}^{(n)} \in U_{\varepsilon}(\vec{x}^0) \cap A: \|\vec{x}^{(n)} - \vec{x}^0\| < \frac{1}{n}$. Тоді $\forall j = \overline{1,m}: |x_j^{(n)} - x_j^0| < \frac{1}{n}$.
За теоремою про 2 поліцаїв, отримаємо: $\forall j = \overline{1,m}: x_j^{(n)} \stackrel{n \to \infty}{\longrightarrow} x_j^0$. Із покоординатної збіжності

випливає, що $\vec{x}^{(n)} \stackrel{n \to \infty}{\longrightarrow} \vec{x}^0$ для послідовності $\{\vec{x}^{(n)}, n \ge 1\}$.

$$\sqsubseteq \exists \{\vec{x}^{(n)}, n \geq 1\} \subset A: \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0. \text{ Тобто } \forall \varepsilon > 0: \exists N: \forall n \geq N: \|\vec{x}^{(n)} - \vec{x}^0\| < \varepsilon.$$

$$\longrightarrow$$
 $\forall n \geq N: \vec{x}^{(n)} \in U_{\varepsilon}(\vec{x}^0) \cap A$ — тобто нескінченна $\Longrightarrow \vec{x}^0$ — гранична точка.

Функція від декількох змінних. Границя функції

Ми будемо розглядати функції вигляду $f\colon A\to\mathbb{R}$, де $A\subset\mathbb{R}^m$. Тобто ця функція має аргумент \vec{x} , а повертає деяке дійсне число $f(\vec{x})$. Проте оскільки $\vec{x} = \begin{pmatrix} x_1 & \dots & x_m \end{pmatrix}^T$ складається з m дійсних чисел, то ми можемо функцію сприймати як $f(x_1,\ldots,x_m)$, тобто це функція з m аргументами.

Example 1.4.1 Розглянемо такі приклади:

- 1) Маємо функцію $f\colon \mathbb{R}^2\setminus\{(0,0\}\to\mathbb{R},$ що задана як $f(x,y)=\frac{xy}{x^2+y^2};$
- 2) Маємо функцію $f: \mathbb{R}^m \to \mathbb{R}$, що задана як $f(\vec{x}) = f(x_1, \dots, x_m) = x_1 x_2^2 \dots x_m^m$.

Definition 1.4.2 Задана функція $f\colon A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}^m$ – гранична точка для A.Число a називається **границею функції** $f(\vec{x}) = f(x_1, \dots, x_m)$ **в точці** \vec{x}^0 , якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall \vec{x} \in A: \vec{x} \neq \vec{x}^0: \|\vec{x} - \vec{x}^0\| < \delta \Rightarrow |f(\vec{x}) - a| < \varepsilon \qquad \qquad \text{означення Коші}$$

$$\forall \{\vec{x}^{(n)}, n \geq 1\} \subset A: \forall n \geq 1: \vec{x}^{(n)} \neq \vec{x}^0: \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0 \Rightarrow \lim_{n \to \infty} f(\vec{x}^{(n)}) = a \qquad \text{ означення Гайне}$$

Позначення: $\lim_{\vec{x} \to \vec{x}^0} f(\vec{x}) = a$.

Theorem 1.4.3 Означення Коші \iff Означення Гайне.

Доведення аналогічне як в матані \mathbb{R} .

Proposition 1.4.4 Арифметичні властивості

Задані $f,g\colon A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}^m$ – гранична точка A. Відомо, що $\exists\lim_{\vec{x}\to\vec{x}^0}f(\vec{x})=\ a,\exists\lim_{\vec{x}\to\vec{x}^0}g(\vec{x})=b.$

- $\begin{array}{ll} 1) & \lim\limits_{\vec{x} \to \vec{x}^0} cf(\vec{x}) = ca, \forall c \in \mathbb{R}; \\ 2) & \lim\limits_{\vec{x} \to \vec{x}^0} (f(\vec{x}) + g(\vec{x})) = a + b; \end{array}$
- 3) $\lim_{\vec{x} \to \vec{x}^0} f(\vec{x})g(\vec{x}) = ab;$
- 4) $\lim_{\vec{x} \to \vec{x}^0} \frac{f(\vec{x})}{g(\vec{x})} = \frac{a}{b}$ при $b \neq 0$.

Всі вони випливають із арифметичних послідовностей та означення Гайне.

Theorem 1.4.5 Критерій Коші

Задана функція $f\colon A \to \mathbb{R}$ та $\vec{x}^0 \in \mathbb{R}^m$ – гранична точка для A.

$$\exists \lim_{\vec{x} \to \vec{x}} f(\vec{x}) \iff \forall \varepsilon > 0 : \exists \delta : \forall \vec{x_1}, \vec{x_2} \in A : ||\vec{x_1} - \vec{x_2}|| < \delta \Rightarrow |f(\vec{x_1}) - f(\vec{x_2})| < \varepsilon.$$

Доведення аналогічне як в матані \mathbb{R} .

Example 1.4.6 Обчислити $\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right)$. Можна позначати це інакше: $\lim_{\substack{x\to 1\\y\to\pi}} \left(\frac{y}{x} + \cos(xy)\right)$.

$$\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right) = \lim_{(x,y)\to(1,\pi)} \frac{y}{x} + \lim_{(x,y)\to(1,\pi)} \cos(xy) = \frac{\pi}{1} + \cos\pi = \pi - 1.$$

Example 1.4.7 Покажемо, що не існує границі $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$. Для доведення скористаємось означенням Гайне. Візьмемо дві послідовності:

$$\{(x_n,y_n), n\geq 1\}$$
 так, щоб $y_n=x_n$, а також $(x_n,y_n)\to (0,0)$. Тоді $\frac{2x_ny_n}{x^2+u^2}=\frac{2x_n^2}{2x^2}\to 1$.

$$\{(x_n,y_n),n\geq 1\}$$
 так, щоб $y_n=x_n$, а також $(x_n,y_n)\to (0,0)$. Тоді $\frac{2x_ny_n}{x_n^2+y_n^2}=\frac{2x_n^2}{2x_n^2}\to 1$. $\{(x_n,y_n),n\geq 1\}$ так, щоб $y_n=-x_n$, а також $(x_n,y_n)\to (0,0)$. Тоді $\frac{2x_ny_n}{x_n^2+y_n^2}=\frac{-2x_n^2}{2x_n^2}\to -1$.

Можна конкретизувати, сказати $x_n = \frac{1}{n}$, а можна цього не робити, напевно. У будь-якому випадку, ми показали, що не існує границі.

Тобто ми прямували до точки (0,0) з двох сторін: вздовж прямої y=x та y=-x.

Theorem 1.4.8 Границя в полярних координатах

Задана функція $f: \mathbb{R}^2 \to \mathbb{R}$. Припустимо, що $f(\rho\cos\varphi, \rho\sin\varphi) = F_1(\rho)F_2(\varphi)$, причому $\lim_{\rho \to 0} F_1(\rho) = 0$ та $F_2(\varphi)$ – обмежена. Тоді $\lim_{(x,y)\to(0,0)}f(x,y)=0.$

Proof.

Маємо $\lim_{\rho \to 0} F_1(\rho) = 0 \implies \forall \varepsilon > 0 : \exists \delta : \forall \rho : |\rho| < \delta \implies |F_1(\rho)| < \varepsilon.$

Також F_2 – обмежена, тобто $\exists M>0: \forall \varphi: |F_2(\varphi)| < M$.

Нехай $\varepsilon>0$. Тоді існує таке $\delta>0$, що $\forall (x,y),$ якщо $\|(x,y)\|=\sqrt{x^2+y^2}=\sqrt{\rho^2}=|\rho|<\delta,$ то звідси $|f(x,y)|=|f(\rho\cos\varphi,\rho\sin\varphi)|=|F_1(\rho)||F_2(\varphi)|< M \varepsilon.$ Таким чином, дійсно, $\lim_{(x,y)\to(0,0)}f(x,y)=0.$

Таким чином, дійсно,
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

Example 1.4.9 Обчислити $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$.

Маємо $x=\rho\cos\varphi$ та $y=\rho\sin\varphi$. Тоді функція $\frac{x^2y^2}{x^2+y^2}=\frac{\rho^4\cos^2\varphi\sin^2\varphi}{\rho^2}=\rho^2\cos^2\varphi\sin^2\varphi.$

Ми змогли розбити на функції $F_1(\rho) = \rho^2 \stackrel{\rho \to 0}{\longrightarrow} 0$ та $F_2(\varphi) = \cos^2 \varphi \sin^2 \varphi$ — обмежена, бо $|F_2(\varphi)| \le 1$. Таким чином, $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = \lim_{\rho \to 0} \rho^2 \cos^2 \varphi \sin^2 \varphi = 0$.

 ${f Remark}$ 1.4.10 Якщо так станеться, що для двох різних кутів heta при ho o 0 ми отримаємо два різних ліміта, то тоді $\exists \lim_{(x,y)\to(0,0)} f(x,y).$

Remark 1.4.11 Щойно ми провели полярну заміну в двовимірному випадку: $\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$ Можна те саме повторити для трьовимірного випадку, взявши заміну $\begin{cases} x = \rho \sin \theta \cos \varphi \\ y = \rho \sin \theta \sin \varphi \end{cases}$ $z = \rho \cos \theta$ $\begin{cases} x_1 = \rho \cos \varphi \sin \nu_1 \dots \sin \nu_{m-3} \sin \nu_{m-2} \\ x_2 = \rho \sin \varphi \sin \nu_1 \dots \sin \nu_{m-3} \sin \nu_{m-2} \\ x_3 = \rho \sin \nu_1 \dots \sin \nu_{m-3} \sin \nu_{m-2} \end{cases}$ Або можемо психанути та узагальнити на m-вимірний випадок: $\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \theta \sin \varphi \\ \vdots \\ x_{m-1} = \rho \sin \nu_{m-3} \sin \nu_{m-2} \\ \vdots \\ x_{m-1} = \rho \cos \nu_{m-2} \end{cases}$

$$\begin{cases} x_1 = \rho \cos \varphi \sin \nu_1 \dots \sin \nu_{m-3} \sin \nu_{m-1} \\ x_2 = \rho \sin \varphi \sin \nu_1 \dots \sin \nu_{m-3} \sin \nu_{m-1} \\ x_3 = \rho \sin \nu_1 \dots \sin \nu_{m-3} \sin \nu_{m-2} \\ \vdots \\ x_{m-1} = \rho \sin \nu_{m-3} \sin \nu_{m-2} \\ \vdots \\ x_{m-1} = \rho \cos \nu_{m-2} \sin \nu_{m-2} \end{cases}$$

Definition 1.4.12 Число $L=\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)$ називається **повторною границею**, якщо

$$\exists \lim_{y \to y_0} f(x, y) = g(y)$$

Аналогічно визначається $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$.

Останне дається для загального знання, таке ми точно використовувати не будемо. Тут надто багато плутанини з ними. Також можна було це узагальнити для функцій більше за двох змінних, але я цього не буду робити.

Example 1.4.13 Маємо функцію $f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$. Якщо шукати $\lim_{x \to 0} \lim_{y \to 0} f(x,y)$, то вона не існує, тому що при фіксованому x ми маємо порахувати

границю від $\sin\frac{1}{y}$, якого не існує. Також не існує $\lim_{y\to 0}\lim_{x\to 0}f(x,y)$ за аналогічними міркуваннями. Проте! Подвійна границя $\lim_{(x,y)\to(0,0)}\left(x\sin\frac{1}{y}+y\sin\frac{1}{x}\right)=0$. Дійсно, $\left|x\sin\frac{1}{y}+y\sin\frac{1}{x}\right|\leq \left|x\sin\frac{1}{y}\right|+\left|y\sin\frac{1}{x}\right|\leq |x|+|y|<2\delta=\varepsilon.$

Остання оцінка отримана в силу $\|(x,y)\|<\delta$, кладемо $\delta=rac{arepsilon}{2}$ – границя доведена.

$$\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} 0 = 0 \qquad \qquad \lim_{y \to 0} \lim_{x \to 0} \frac{xy}{x^2 + y^2} = \lim_{y \to 0} 0 = 0.$$

Example 1.4.14 Маємо функцію $f(x,y)=\frac{xy}{x^2+y^2}$. $\lim_{x\to 0}\lim_{y\to 0}\frac{xy}{x^2+y^2}=\lim_{x\to 0}0=0\qquad \lim_{y\to 0}\lim_{x\to 0}\frac{xy}{x^2+y^2}=\lim_{y\to 0}0=0.$ Проте! Подвійної границі $\lim_{(x,y)\to (0,0)}\frac{xy}{x^2+y^2}$ не існує. Дійсно, якщо $x=\rho\cos\varphi,y=\rho\sin\varphi$, то тоді

$$f(x,y) = \frac{\rho^2 \cos \varphi \sin \varphi}{\rho^2} = \frac{1}{2} \sin 2\varphi.$$

Для різного напрямку кривої отримаємо різні границі, а тому не існує.

Remark 1.4.15 Окремо можуть виникнути границі вигляду $\lim_{(x,y)\to(\infty,\infty)} f(x,y)$. У такому разі необхідні уточнення, що мається увазі під цим лімітом. Або дивитись на контекст задачі.

Example 1.4.16 Маємо $\lim_{(x,y)\to(+\infty,+\infty)}(x^2+y^2)e^{-(x+y)}$. У даному контексті маєтсья на увазі, що x,y робимо скільки завгодно великими одночасно. Маємо ось таку оцінку: $0 \le (x^2+y^2)e^{-(x+y)} = \frac{x^2+y^2}{e^{x+y}} \le \frac{(x+y)^2}{e^{x+y}}$. Оскільки x>0,y>0 в силу характеру прямування, то ця нерівність справедлива. Цілком зрозуміло, що при $x\to+\infty,y\to+\infty$ одночасно маємо $x+y\to+\infty$, а тому $\frac{(x+y)^2}{e^{x+y}}\to 0, x+y\to+\infty$. Таким чином, $\lim_{(x,y)\to(+\infty,+\infty)} (x^2 + y^2)e^{-(x+y)} = 0.$

Неперервність функції 1.5

Definition 1.5.1 Задана функція $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – гранична точка. Функція f називається **неперервною в точці** \vec{x}^0 , якщо

$$\exists \lim_{\vec{x} \to \vec{x}^0} f(\vec{x}) = f(\vec{x}^0)$$

У будь-якій ізольованій точці \vec{x}^0 функція f також неперервна. Функція f називається **неперервною на множині** A, якщо

$$\forall \vec{x} \in A : f$$
 – неперервна.

Позначення: C(A) – множина неперервних функцій на A.

Remark 1.5.2 Можна було спочатку дати означення через ε - δ мову, а згодом прийти до еквівалентного означення, як ми це робили в мат. аналізі \mathbb{R} , однак буде все аналогічно. Тому я цього не

Proposition 1.5.3 Задані функції $f,g\colon A\to \mathbb{R}$ та $\vec{x}^0\in A$ – гранична точка. Відомо, що f,g – неперервні в точці \vec{x}^0 . Тоді:

- 1) cf неперервна в точці $\vec{x}^0, \forall c \in \mathbb{R}$;
- 2) f + g неперервна в точці \vec{x}^0 ;
- 3) fg неперервна в точці \vec{x}^0 ; 4) $\frac{f}{g}$ неперервна в точці \vec{x}^0 , якщо $g(\vec{x}^0) \neq 0$.

Випливають з властивостей границь функцій та неперервності.

Theorem 1.5.4 Наступні функції є неперервними на своїй множині *A*:

- 1) $f(\vec{x}) = const \text{константа}, A = \mathbb{R}^m;$
- 2) $f(\vec{x}) = x_j, j = \overline{1, m}$ координата, $A = \mathbb{R}^m$;
- 3) $P(x_1, x_2, \dots, x_m) = \sum_{\substack{0 \le k_1 \le n_1 \\ 0 \le k_2 \le n_2}} a_{k_1 k_2 \dots k_m} \cdot x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}$ многочлен від m змінних, $A = \mathbb{R}^m$;
- 4) $R(x_1, \dots, x_m) = \frac{P(x_1, \dots, x_m)}{Q(x_1, \dots, x_m)}$ раціональна функція від m змінних, $A = \mathbb{R}^m \setminus \{\vec{x} : Q(\vec{x}) = 0\}.$
- 1) Все зрозуміло.
- 2) $|f(\vec{x}) f(\vec{x}^0)| = |x_j x_j^0| < \varepsilon$, тому встановлюється $\delta = \varepsilon$.
- 3) Безпосередньо випливае з Prp. 1.5.3 як сума та добуток функцій 1),2).
- 4) Безпосередньо випливає з **Prp. 1.5.3** як частка двох функцій 3).

Example 1.5.5 Доведемо, що функція $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$ неперервна на $\mathbb{R}^2 \setminus \{0\}$.

Для цього покажемо, що $\sqrt{x^2+y^2}$ – неперервна в деякій точці $(x_0,y_0)\in\mathbb{R}\setminus\{0\}$. Дійсно, $|\sqrt{x^2+y^2}-\sqrt{x_0^2+y_0^2}|=\frac{|x^2+y^2-x_0^2-y_0^2|}{\sqrt{x^2+y^2}+\sqrt{x_0^2+y_0^2}}\leq \frac{|x^2+y^2-x_0^2-y_0^2|}{\sqrt{x_0^2+y_0^2}}\to 0$ при $(x,y)\to(x_0,y_0)$. Ми вже знаємо, що $f(x,y)=x^2+y^2$ – неперервна в точці (x_0,y_0) , а тому $\lim_{(x,y)\to(x_0,y_0)}(x^2+y^2)=x_0^2+y_0^2$,

тож вище все правильно. Отже,
$$\lim_{(x,y)\to(x_0,y_0)}\frac{1}{\sqrt{x^2+y^2}}=\frac{1}{\lim\limits_{(x,y)\to(x_0,y_0)}\sqrt{x^2+y^2}}=\frac{1}{\sqrt{x_0^2+y_0^2}}.$$

A це й доводить неперервність функції f в будь-якій точці $(x_0, y_0) \in \mathbb{R}^2 \setminus \{0\}$.

Example 1.5.6 Взагалі-то кажучи, про точки розриву в матані \mathbb{R}^m ніхто не розповідає, бо не сильно це й треба, але хай буде даний приклад. Дослідити на розривність функцію $f(x,y)=\frac{x+y}{x^3+y^3}$

Точки, де відбувається розрив – це точки при x=-y. Тобто маємо $(x,y)=(a,-a), a\in\mathbb{R}$ – точка

$$\lim_{(x,y)\to(a,-a)} \frac{x+y}{x^3+y^3} = \lim_{(x,y)\to(a,-a)} \frac{1}{x^2-xy+y^2} = \begin{cases} \frac{1}{3a^2}, & a\neq 0\\ \infty, & a=0 \end{cases}.$$

Отже, маємо (0,0) – точка нескінченного розриву та $(a,-a), a \neq 0$ – точка усуненого розриву.

Theorem 1.5.7 Теорема Ваєрштраса 1, 2

Задана множина A – замкнена та обмежена; функція $f \in C(A)$. Тоді:

- 1. f обмежена на A;
- 2. f досягає найбільшого та найменшого значень, тобто $\exists \vec{x}^*, \vec{x}_* \in A: f(\vec{x}^*) = \max_{\vec{x} \in A} f(\vec{x}), \ f(\vec{x}_*) = \max_{\vec{x} \in A} f(\vec{x})$

Доведення аналогічне як в матані \mathbb{R} .

Definition 1.5.8 Задана функція $f: A \to \mathbb{R}$.

Функція f називається **рівномірно неперервною** на множині A, якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall \vec{x_1}, \vec{x_2} \in A: ||\vec{x_1} - \vec{x_2}|| < \delta \Rightarrow |f(\vec{x_1}) - f(\vec{x_2})| < \varepsilon.$$

Позначення: $C_{\text{unif}}(A)$ – множина рівномірно неперервних функцій на A.

Theorem 1.5.9 Задана функція $f \in C_{\text{unif}}(A)$. Тоді $f \in C(A)$. Доведення аналогічне як в матані \mathbb{R} .

Theorem 1.5.10 Теорема Кантора

Задана функція $f \in C(A)$ та A – замкнена, обмежена. Тоді $f \in C_{\text{unif}}(A)$. Доведення аналогічне як в матані \mathbb{R} .

1.6 Символіка Ландау

Definition 1.6.1 Задані функції $f,g:A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}$ – гранична точка A. Функція f називається **О-великою** від функції g в точці \vec{x}^0 , якщо

$$\exists L > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : ||\vec{x} - \vec{x}^0|| < \delta \implies |f(\vec{x})| \le L|g(\vec{x})|$$

Позначення: $f(\vec{x}) = O(g(\vec{x})), \vec{x} \to \vec{x}^0$.

Функція f називається **о-малою** від функції g в точці \vec{x}^0 , якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : ||\vec{x} - \vec{x}^0|| < \delta \implies |f(\vec{x})| < \varepsilon |g(\vec{x})|$$

Позначення: $f(\vec{x}) = o(q(\vec{x})), \vec{x} \to \vec{x}^0$.

Всі властивості символік Ландау для функції від однієї змінної переходять на функцію від декількох змінних в силу аналогічності доведення.

Example 1.6.2 Зокрема $xy = o(\sqrt{x^2 + y^2 + z^2})$ при $(x, y, z) \to (0, 0, 0)$. Дійсно,

$$\left|\frac{xy}{\sqrt{x^2+y^2+z^2}}\right| \leq \frac{|x||y|}{\sqrt{x^2}} = |y| \to 0 \text{ при } (x,y,z) \to (0,0,0). \text{ Отже, } \lim_{(x,y,z)\to(0,0,0)} \frac{xy}{\sqrt{x^2+y^2+z^2}} = 0.$$

1.7 Векторнозначні функції. Границя, неперервність, символіка Ландау функції

Ми будемо розглядати вектор-функції кількох (або однієї) змінної вигляду $\vec{f}\colon A\to\mathbb{R}^k$, де $A\subset\mathbb{R}^m$.

Тобто тепер
$$\vec{f}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_k(\vec{x}) \end{pmatrix}$$
.

Example 1.7.1 Маємо деяку функцію $\vec{f} \colon \mathbb{R}^2 \to \mathbb{R}^2$, що задана таким чином: $\begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} x^2 + y^2 \\ 2xy \end{pmatrix}$. Або зазвичай це пишуть так: $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 + y^2 \\ 2xy \end{pmatrix}$.

Definition 1.7.2 Задана функція $\vec{f} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ – гранична точка для A. Вектор \vec{b} називається границею вектор-функції $\vec{f}(\vec{x})$ в точці \vec{x}^0 , якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall \vec{x} \in A: \vec{x} \neq \vec{x}^0: \|\vec{x} - \vec{x}^0\| < \delta \Rightarrow \|\vec{f}(\vec{x}) - \vec{b}| < \varepsilon \qquad \text{означення Коші}$$

$$\forall \{\vec{x}^{(n)}, n \geq 1\} \subset A: \forall n \geq 1: \vec{x}^{(n)} \neq \vec{x}^0: \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0 \Rightarrow \lim_{n \to \infty} \vec{f}(\vec{x}^{(n)}) = \vec{b} \qquad \text{ означення Гайне}$$

Позначення: $\lim_{\vec{x} \to \vec{x}^0} \vec{f}(\vec{x}) = \vec{b}$.

Theorem 1.7.3 Означення Коші \iff Означення Гайне.

Все аболютно аналогічно.

Proposition 1.7.4 Задана функція $\vec{f} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ – гранична точка для A. $\exists \lim_{\vec{x} \to \vec{x}^0} \vec{f}(\vec{x}) = \vec{u} \iff \forall j = \overline{1, k} : \exists \lim_{\vec{x} \to \vec{x}^0} f_j(\vec{x}) = u_j$. Випливає із означення Гайне та покоординатної збіжності.

Proposition 1.7.5 Арифметичні властивості

Задані $\vec{f}, \vec{g} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ – гранична точка для A. Відомо, що $\exists \lim_{\vec{x} \to \vec{x}^0} \vec{f}(\vec{x}) = \vec{u}, \exists \lim_{\vec{x} \to \vec{x}^0} \vec{g}(\vec{x}) = \vec{v}$.

- $1)\lim_{\vec{x}\to\vec{x}^0}c\vec{f}(\vec{x})=c\vec{u},\forall c\in\mathbb{R};$
- 2) $\lim_{\vec{x} \to \vec{x}^0} (\vec{f}(\vec{x}) + \vec{g}(t)) = \vec{u} + \vec{v};$
- 3) $\lim_{\vec{x} \to \vec{x}^0} (\vec{f}(\vec{x}), \vec{g}(\vec{x})) = (\vec{u}, \vec{v});$
- 4) $\lim_{\vec{x} \to \vec{x}^0} \|\vec{f}(\vec{x})\| = \|\vec{u}\|.$

Всі вони випливають із векторних послідовностей та означення Гайне.

Theorem 1.7.6 Границя від композиції вектор-функції

Задані функції $\vec{f} \colon A \to B, \vec{g} \colon B \to \mathbb{R}^p$ та композиція $\vec{h} = \vec{g} \circ \vec{f}$. Нехай $\vec{x}^0 \in \mathbb{R}^m, \vec{y}^0 \in \mathbb{R}^k$ – граничні точки A, B відповідно та $\exists \lim_{\vec{x} \to \vec{x}^0} \vec{f}(\vec{x}) = \vec{y}^0$ та $\exists \lim_{\vec{y} \to \vec{y}^0} \vec{g}(\vec{y}) = \vec{b}$. Тоді $\exists \lim_{\vec{x} \to \vec{x}^0} \vec{h}(\vec{x}) = \vec{b}$.

Доведення аналогічне, як в матані \mathbb{R}

Remark 1.7.7 У випадку векторної функції $\vec{a} \colon A \to \mathbb{R}^k$, де $A \subset \mathbb{R}$, оскільки прямування йде за дійсною множиною, то ми можемо визначти границю ліворуч та праворуч даної функції. Думаю, буде зрозуміло, як це визначити.

Example 1.7.8 Знайти границю $\lim_{t\to 0+0} \left(\frac{\sin 2t}{t} \quad t^t\right)^T$.

За одним твердженням, ми можемо покоординатно шукати границі: $\lim_{t\to 0+0} \frac{\sin 2t}{t} = 2$, $\lim_{t\to 0+0} t^t = 1$.

Отже,
$$\lim_{t \to 0+0} \begin{pmatrix} \sin 2t & t^t \end{pmatrix}^T = \begin{pmatrix} 2 & 1 \end{pmatrix}^T$$
.

Definition 1.7.9 Задана функція $\vec{f} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ – гранична точка. Функція \vec{f} називається **неперервною в точці** \vec{x}^0 , якщо

$$\exists \lim_{\vec{x} \to \vec{x}^0} \vec{f}(\vec{x}) = \vec{f}(\vec{x}^0).$$

Позначення: C(A) – множина неперервних функцій на A.

Remark 1.7.10 Аналогічно сума неперервних функцій – неперервна; множення на скаляр – неперервна. Також скалярний добуток неперервних функцій – неперервна; норма неперервних функцій – неперервна.

Theorem 1.7.11 Задані множини $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^k$. Задані функції $\vec{f} \colon A \to B$ – неперервна в точці \vec{x}^0 , $\vec{g} \colon B \to \mathbb{R}^n$ – неперервна в точці $\vec{f}(\vec{x}^0)$. Тоді функція $\vec{h} \colon A \to \mathbb{R}^n \colon \vec{h}(\vec{x}) = \vec{g}(\vec{f}(\vec{x}))$ – неперервна в точці $\vec{x_0}$.

Доведення аналогічне як в матані \mathbb{R} .

Definition 1.7.12 Задані функції $\vec{f}, \vec{g} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ – гранична точка A. Функція \vec{f} називається **О-великою** від функції \vec{g} в точці \vec{x}^0 , якщо

$$\exists L > 0: \exists \delta > 0: \forall \vec{x}: \vec{x} \neq \vec{x}^0: \|\vec{x} - \vec{x}^0\| < \delta \implies \|\vec{f}(\vec{x})\| \le L \|\vec{g}(\vec{x})\|$$

Позначення: $\vec{f}(\vec{x}) = \vec{O}(\vec{g}(\vec{x})), \vec{x} \rightarrow \vec{x}^0$.

Функція \vec{f} називається **о-малою** від функції \vec{g} в точці \vec{x}^0 , якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : ||\vec{x} - \vec{x}^0|| < \delta \implies ||\vec{f}(\vec{x})|| < \varepsilon ||\vec{g}(\vec{x})||$$

Позначення: $\vec{f}(\vec{x}) = \vec{o}(\vec{g}(\vec{x})), \vec{x} \to \vec{x}^0$.

Corollary 1.7.13
$$\vec{f}(\vec{x}) = o(\vec{g}(\vec{x})), \vec{x} \to \vec{x}^0 \iff \lim_{\vec{x} \to \vec{x}^0} \frac{\|\vec{f}(\vec{x})\|}{\|\vec{g}(\vec{x})\|} = 0.$$

$\mathbf{2}$ Диференційованість

Для функції багатьох змінними 2.1

Definition 2.1.1 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Функція f називається **диференційованою** в точці \vec{x}^0 , якщо

$$\exists L_1, \dots, L_m \in \mathbb{R} : f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\Delta \vec{x}||)$$

Тобто диференційованість означає, що поверхня навколо точки \vec{x}^0 дуже схожа на площину, що проходить через точку \vec{x}^0 .

Example 2.1.2 Розглянемо функцію $f(x,y) = x^2 - xy - y^2$ на \mathbb{R}^2 . Вона є диференційованою в будь-якій точці (x_0, y_0) . Дійсно, розпишемо різницю:

будь-якій точці
$$(x_0,y_0)$$
. Дійсно, розпишемо різницю:
$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = (x_0 + \Delta x)^2 - (x_0 + \Delta x)(y_0 + \Delta y) - (y_0 + \Delta y)^2 - (x_0^2 - x_0y_0 - y_0^2) = x_0^2 + 2x_0\Delta x + \Delta x^2 - x_0y_0 - x_0\Delta y - y_0\Delta x - \Delta x\Delta y - y_0^2 - 2y_0\Delta y - \Delta y^2 - x_0^2 + x_0y_0 + y_0^2 = (2x_0 - y_0)\Delta x + (-x_0 - 2y_0)\Delta y + (\Delta x^2 - \Delta x\Delta y - \Delta y^2).$$
 Залишилось довести, що $\Delta x^2 - \Delta x\Delta y - \Delta y^2 = o(\|(\Delta x, \Delta y)\|)$ при $(\Delta x, \Delta y) \to (0, 0)$. Дійсно,
$$\lim_{\Delta x \to 0} \frac{\Delta x^2 - \Delta x\Delta y - \Delta y^2}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\rho \to 0} \frac{\rho^2 \cos^2 \varphi - \rho^2 \sin \varphi \cos \varphi - \rho^2 \sin^2 \varphi}{\rho} = \lim_{\rho \to 0} \frac{\rho^2 \cos^2 \varphi - \rho^2 \sin \varphi \cos \varphi - \rho^2 \sin^2 \varphi}{\rho}$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta x^2 - \Delta x \Delta y - \Delta y^2}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\rho \to 0} \frac{\rho^2 \cos^2 \varphi - \rho^2 \sin \varphi \cos \varphi - \rho^2 \sin^2 \varphi}{\rho} =$$

 $= \lim_{\rho \to 0} \rho(\cos^2 \varphi - \sin \varphi \cos \varphi - \sin^2 \varphi) = 0.$

$$\lim_{\rho \to 0} \rho(\cos \varphi - \sin \varphi) = 0.$$
 Отже, $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = (2x_0 - y_0)\Delta x + (-x_0 - 2y_0)\Delta y + o(\|(\Delta x, \Delta y)\|).$ $(\Delta x, \Delta y) \to (0,0)$

Proposition 2.1.3 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Відомо, що функція f– диференційована в точці \vec{x}^0 . Тоді f – неперервна в точці \vec{x}^0 .

$$f$$
 — диференційована в точці \vec{x}^0 , тобто $f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\Delta \vec{x}||)$.

Або можна це записати інакше:

Нось можна де зависати нажине:
$$f(\vec{x}) - f(\vec{x}^0) = L_1(x_1 - x_1^0) + \dots + L_m(x_m - x_m^0) + o(||\vec{x} - \vec{x}^0||) \implies \lim_{\vec{x} \to \vec{x}^0} (f(\vec{x}) - f(\vec{x}^0)) =$$
 Всі дужки прямують покоординатно до нуля, *о*-маленьке також, в силу н.м.

$$= 0 \implies f$$
 – неперервна в точці \vec{x}^0 .

Definition 2.1.4 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка.

Частинною похідною функції f за змінною x_i в точці \vec{x}^0 називають величину:

$$\frac{\partial f}{\partial x_j}(x_1^0, \dots, x_j^0, \dots, x_m^0) = \lim_{\Delta x_j \to 0} \frac{f(x_1^0, \dots, x_j^0 + \Delta x_j, \dots, x_m^0) - f(x_1^0, \dots, x_j^0, \dots, x_m^0)}{\Delta x_j}$$

Якщо уважно придивитись на означення, то, насправді, ми просто підставили $x_1^0,\dots,x_{j-1}^0,x_{j+1}^0,\dots,x_m^0$ та отримали функцію $g(x_j)=f(x_1^0,\dots,x_{j-1}^0,x_j,x_{j+1}^0,\dots,x_m^0)$ — функція від одного агрументу x_j — та обчислили похідну цієї функції в точці x_j^0 . Отже,

$$\frac{\partial f}{\partial x_j}(x_1^0, \dots, x_j^0, \dots, x_m^0) = g'(x_j^0)$$

Example 2.1.5 Маємо функцію $f(x,y)=1-x^2-y$. Знайдемо всі її частинні похідні. $\frac{\partial f}{\partial x}=-2x \qquad \qquad \frac{\partial f}{\partial u}=-1$

$$\frac{\partial f}{\partial x} = -2x \qquad \qquad \frac{\partial f}{\partial y} = -1$$

Сенс $\frac{\partial f}{\partial x}$ – знайти дотичну прямої в певній точці, але ця дотична напрямлена туди саме, де й вісь OX. Аналогічно $\frac{\partial f}{\partial u}$ — знайти дотичну прямої в певній точці, але ця дотична напрямлена туди саме, де й вісь OY.

Таких дотичних прямих існують безліч, але про це згодом.

Proposition 2.1.6 Необхнідна умова диференційованості

Задана функція $f\colon A\to\mathbb{R}$ — диференційована в точці $\vec{x}^0\in A$ — внутрішня точка. Тоді вона має частинні похідні в точці \vec{x}^0 , причому $\frac{\partial f}{\partial x_i}(x_1^0,\ldots,x_j^0,\ldots,x_m^0)=L_j.$

Proof.

$$f - \text{диференційована в точці } \vec{x}^0, \text{ тоді } \exists L_1, \dots, L_m \in \mathbb{R} : \\ f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$$
 У окремому випадку, встановити можна $\Delta \vec{x} = \begin{pmatrix} 0 & \dots & \Delta x_j & \dots & 0 \end{pmatrix}^T.$ Тоді
$$\frac{\partial f}{\partial x_j}(x_1^0, \dots, x_j^0, \dots, x_m^0) = \lim_{\Delta x_j \to 0} \frac{f(x_1^0, \dots, x_j^0 + \Delta x_j, \dots, x_m^0) - f(x_1^0, \dots, x_j^0, \dots, x_m^0)}{\Delta x_j} \xrightarrow{f - \text{диференційована}} = \lim_{\Delta x_j \to 0} \frac{L_1 \cdot 0 + \dots + L_j \Delta x_j + \dots + L_m \cdot 0 + o(|\Delta x_j|)}{\Delta x_j} = \lim_{\Delta x_j \to 0} \frac{L_j \Delta x_j + o(\Delta x_j)}{\Delta x_j} = L_j.$$

Remark 2.1.7 У зворотному напрямку це не завжди вірно.

Example 2.1.8 Маємо функцію $f(x,y) = \sqrt{|xy|}$. Розглянемо її в околі точки $(x_0,y_0) = (0,0)$.

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{|\Delta x \cdot 0| - 0}}{\Delta x} = 0.$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\sqrt{|0 \cdot \Delta y| - 0}}{\Delta y} = 0.$$
Тобто в точці (x_0,y_0) функція має частинні похідні. Проте виявляється, що в (x_0,y_0) вона не ди-

ференційована. Дійсно,

ференциована. Дисно,
$$f(\Delta x, \Delta y) = 0\Delta x + 0\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) = o(\sqrt{\Delta x^2 + \Delta y^2}), \text{ тобто}$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(\Delta x, \Delta y)}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\sqrt{|\Delta x \Delta y|}}{\sqrt{\Delta x^2 + \Delta y^2}} \xrightarrow[]{\text{полярна заміна}} \lim_{\rho \to 0} \sqrt{|\cos \varphi \sin \varphi|} - \text{не існує, тому рівність}$$

Можливо виникне питання, а чи існують інші числа $(L_1, L_2) \neq (0, 0)$. Ні. Це випливає з необхідної умови диференційованості.

Виникає тоді інше питання, а коли ми можемо гарантувати диференційованість через існування частинних похідних.

Theorem 2.1.9 Достатня умова диференційованості

Задана функція $f:A\to\mathbb{R}$ та $\vec{x}^0\in A\subset\mathbb{R}^m$ – внутрішня точка. Відомо, що в деякому околі точки \vec{x}^0 існують всі частинні похідні, які неперервні в точці \vec{x}^0 . Тоді f – диференційована в точці \vec{x}^0 .

Mи будемо доводити при \mathbb{R}^2 . Для функцій в \mathbb{R}^m – аналогічно, але більш технічна справа.

Proof.

Отже, дано f(x,y) та в околі точці (x_0,y_0) існують частинні похідні $\frac{\partial f}{\partial x}$ та $\frac{\partial f}{\partial y}$, які неперервні в (x_0, y_0) . Розглянемо приріст аргументу $\Delta x, \Delta y$ так, щоб ми були всередині околу точці (x_0, y_0) . Нехай $\Delta x > 0, \Delta y > 0$, для інших все аналогічно.

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) + f(x_0 + \Delta x, y_0) - f(x_0, y_0) \boxed{\equiv}$$
 Позначу $h(t) = f(x_0 + \Delta x, y_0 + t), t \in [0, \Delta y].$ Тоді $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) = h(\Delta y) - h(0).$

Позначу $h(t) = f(x_0 + \Delta x, y_0 + t), t \in [0, \Delta y]$. Тоді $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) = h(\Delta y) - h(0)$. Функція h – диференційована на $[0, \Delta y]$, оскільки існує $\frac{\partial f}{\partial y}$, яка неперервна. Тому $h \in C([0, \Delta y])$, а значить, за теоремою Лагранжа,

$$h(\Delta y) - h(0) = h'(c_1)\Delta y, c_1 \in (0, y)$$

$$h'(t) = f'_t(x_0 + \Delta x, y_0 + t) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + t)$$

$$\implies h(\Delta y) - h(0) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y.$$

Аналогічно розглянемо функцію $g(s) = f(x_0 + s, y_0), s \in [0, \Delta x]$. Тоді

$$f(x_0 + \Delta x, y_0) - f(x_0, y_0) = g(\Delta x) - g(0)$$
 Th. Лагранжа $= g'(c_2)\Delta x = \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x, c_2 \in (0, \Delta x)$. Повертаємось до нашої рівності.

$$\boxed{\exists} \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y + \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x$$

Залишилось довести, що виконується наступна рівність:

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o(||(\Delta x, \Delta y)||).$$

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) =$$

$$= \left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y + \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x\right) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta x\right) =$$

$$= \left(\frac{\partial f}{\partial x}(x_0 + c_2, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)\right)\Delta x + \left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1) - \frac{\partial f}{\partial y}(x_0, y_0)\right)\Delta y.$$
 Якщо $\Delta x \to 0, \Delta y \to 0$, то звідси $c_1 \to 0, c_2 \to 0$ та за умовою того, що частинні похідні є неперерв-

$$\left(\frac{\partial f}{\partial x}(x_0 + c_2, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)\right) \stackrel{\text{позн}}{=} \alpha \to 0$$

$$\left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1) - \frac{\partial f}{\partial y}(x_0, y_0)\right) \stackrel{\text{позн}}{=} \beta \to 0$$

Далі, використовуючи нерівність Коші-Буняковського, отримаємо таке:

Далі, використовуючи нерівність Коші-Буняковського, отримаємо таке:
$$\left| \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \stackrel{\text{K-B}}{\leq} \left| \frac{\sqrt{\alpha^2 + \beta^2} \sqrt{\Delta x^2 + \Delta y^2}}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \to 0 \implies \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \to 0, \Delta x \to 0, \Delta y \to 0.$$
 Остаточно отримуємо:

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o(||(\Delta x, \Delta y)||)$$

Тобто звідси f – диференційована в точці (x_0, y_0) .

Definition 2.1.10 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. **Похідною функції** f в точці \vec{x}^0 називається ковектор

$$f'(\vec{x}^0) = \left(\frac{\partial f}{\partial x_1} \quad \dots \quad \frac{\partial f}{\partial x_m}\right)(\vec{x}^0)$$

Таким чином, ми можемо визначити лінійний функціонал по
$$\Delta \vec{x}$$
 ось так:
$$f'(\vec{x}^0)\Delta \vec{x} = \frac{\partial f}{\partial x_1}(\vec{x}^0)\Delta x_1 + \dots + \frac{\partial f}{\partial x_m}(\vec{x}^0)\Delta x_m.$$

Тоді означення диференційованої функції f перепишеться в такому вигляді: $f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = f'(\vec{x}^0) \Delta \vec{x} + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$

Remark 2.1.11 Для похідної функції f в точці \vec{x}^0 можна зустріти ще позначення $\frac{\partial f}{\partial \vec{x}}$ або $\frac{\partial f}{\partial (x_1,\dots,x_m)}$. Цими позначеннями я користуватися, мабуть, не буду.

Proposition 2.1.12 Задані функції $f,g\colon A\to \mathbb{R}$ та $\vec{x}^0\in A$ – внутрішня точка. Відомо, що f,g – диференційовані в точці \vec{x}^0 . Тоді:

- 1) αf диференційована в точці $\vec{x}^0, \forall \alpha \in \mathbb{R}$, похідна $(\alpha f)'(\vec{x}^0) = \alpha f'(\vec{x}^0)$;
- 2) f + g диференційована в точці \vec{x}^0 , похідна $(f + g)'(\vec{x}^0) = f'(\vec{x}^0) + g'(\vec{x}^0)$;
- 3) fg диференційована в точці \vec{x}^0 , похідна $(fg)'(\vec{x}^0) = f'(\vec{x}^0)g(\vec{x}^0) + f(\vec{x}^0)g'(\vec{x}^0)$.

Proof.

Доведемо кожну (крім першого пункту) властивість.

- Зрозуміло.
- $2) \ (f(\vec{x}^0 + \Delta \vec{x}) + g(\vec{x}^0 + \Delta \vec{x})) (f(\vec{x}^0) + g(\vec{x}^0)) = (f(\vec{x}^0 + \Delta \vec{x}) f(\vec{x}^0)) + (g(\vec{x}^0 + \Delta \vec{x}) g(\vec{x}^0)) = \\ = f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|) + g'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|) = (f'(\vec{x}^0) + g'(\vec{x}^0)) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$
- 3) $f(\vec{x}^0 + \Delta \vec{x})g(\vec{x}^0 + \Delta \vec{x}) f(\vec{x}^0)g(\vec{x}^0) =$ = $(f(\vec{x}^0) + f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|)) \cdot (g(\vec{x}^0) + g'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|)) f(\vec{x}^0)g(\vec{x}^0)$ = Після розкриття дужок ми залишимо лише доданки $(f(\vec{x}^0)g'(\vec{x}^0)) \cdot \Delta \vec{x}$ та $(g(\vec{x}^0)f'(\vec{x}^0)) \cdot \Delta \vec{x}$. Ось чому:

 $\begin{array}{l} f(\vec{x}^0)o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) & g(\vec{x}^0)o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) \\ (f'(\vec{x}^0) \cdot \Delta\vec{x}) \cdot (g'(\vec{x}^0) \cdot \Delta\vec{x}) = o(\|\Delta\vec{x}\|), \text{ тому що, розписавши, побачимо } \Delta x_i \Delta x_j = o(\|\Delta\vec{x}\|). \\ (f'(\vec{x}^0) \cdot \Delta\vec{x})o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) & (g'(\vec{x}^0) \cdot \Delta\vec{x})o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|), \\ \text{тому що, розписавши, побачимо } \Delta x_j o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|). \\ (o(\|\Delta\vec{x}\|))^2 = o(\|\Delta\vec{x}\|) & \\ \end{array}$

Повертаємось до рівності:

$$= (f(\vec{x}^0)g'(\vec{x}^0)) \cdot \Delta \vec{x} + (g(\vec{x}^0)f'(\vec{x}^0)) \cdot \Delta \vec{x} + o(||\Delta \vec{x}||).$$

Майже всі властивості доведені.

Definition 2.1.13 Задана функція $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Диференціалом функції f(x) в точці \vec{x}^0 називається такий вираз:

$$df(\vec{x}^0, \Delta \vec{x}) = f'(\vec{x}^0) \cdot \Delta \vec{x}$$

Частіше позначають ще диференціал в точці ось так: $df_{\vec{x}^0}$.

Remark 2.1.14 Якщо згадати лінійну алгебру, то $df_{\vec{x}^0} : \mathbb{R}^m \to \mathbb{R}$ – це, насправді, лінійний функціонал, де в нас записується ковектор $f'(\vec{x}^0) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\vec{x}^0) & \dots & \frac{\partial f}{\partial x_n}(\vec{x}^0) \end{pmatrix}$. І ми маємо: $df_{\vec{x}^0}(\Delta \vec{x}) = f'(\vec{x}^0) \cdot \Delta \vec{x}$

Як й раніше, аргумент $\Delta \vec{x}$ опускають, а також позначають $\Delta \vec{x} = \vec{dx}$, тобто $\Delta x_1 = dx_1, \dots, \Delta x_m = dx_m$. Тоді маємо інший вигляд:

$$df(\vec{x}^0) = f'(\vec{x}^0) \cdot d\vec{x} = \frac{\partial f}{\partial x_1}(\vec{x}^0) dx_1 + \dots + \frac{\partial f}{\partial x_m}(\vec{x}^0) dx_m$$

Example 2.1.15 Маємо функцію $f(x,y) = 1 - x^2 - y$. Ми вже знайшли $\frac{\partial f}{\partial x} = -2x$, $\frac{\partial f}{\partial y} = -1$, вони є неперервними в будь-якій точці. Отже, f – диференційована будь-де. Знадемо тепер диференціал функції. Це дуже просто:

$$df(x,y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = (-2x) dx - dy \stackrel{\text{a6o}}{=} (-2x - 1) d\vec{r}.$$

2.2Для векторнозначних функцій

Definition 2.2.1 Задана функція $\vec{f}\colon A\to\mathbb{R}^k$ та $\vec{x}^0\in A$ – внутрішня точка. Вектор-функція \vec{f} називається **диференційованою** в точці \vec{x}^0 , якщо

$$\exists M \in \operatorname{Mat}_{m \times k}(\mathbb{R}) : \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{f}(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(||\Delta \vec{x}||)$$

Зараз дізнаємось, що це за матриця $M = \begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{1m} & M_{1m} \end{pmatrix}$ під час доведення твердження.

Proposition 2.2.2 Задана функція $\vec{f} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ – внутрішня точка. $ec{f}$ – диференційована в точці $ec{x}^0 \iff f_1,\ldots,f_k$ – диференційовані в точці $ec{x}^0.$

Proof.

$$\begin{pmatrix} f_1(\vec{x}^0 + \Delta \vec{x}) \\ \vdots \\ f_k(\vec{x}^0 + \Delta \vec{x}) \end{pmatrix} - \begin{pmatrix} f_1(\vec{x}^0) \\ \vdots \\ f_k(\vec{x}^0) \end{pmatrix} = \begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{k1} & \dots & M_{km} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \vdots \\ \Delta x_m \end{pmatrix} + \begin{pmatrix} o(||\Delta \vec{x}||) \\ \vdots \\ o(||\Delta \vec{x}||) \end{pmatrix}$$

$$(J_k(\vec{x} + \Delta \vec{x}))$$
 ($J_k(\vec{x})$) (M_{k1} ... M_{km}) ($\Delta \vec{x}_m$) Із цієї рівності випливає, що $\forall j = \overline{1, k}$: $f_j(\vec{x}^0 + \Delta \vec{x}) - f_j(\vec{x}^0) = M_{j1}\Delta x_1 + \dots + M_{jm}\Delta x_m + o(||\Delta \vec{x}||)$.

Це означає, що f_j – диференційована в точці \vec{x}^0 . Тоді звідси випливає, що:

$$M_{j1} = \frac{\partial f_j}{\partial x_1}(\vec{x}^0), \dots, M_{jm} = \frac{\partial f_j}{\partial x_m}(\vec{x}^0).$$

$$M = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k}{\partial x_1} & \cdots & \frac{\partial f_k}{\partial x_m} \end{pmatrix} (\vec{x}^0) = \begin{pmatrix} f_1' \\ \vdots \\ f_k' \end{pmatrix} (\vec{x}^0) = J(\vec{x}^0) = \vec{f}'(\vec{x}^0)$$
 – це називають **матрицею Якобі**.

Матриця Якобі описує **похідну** вектор-функції \vec{f} в точці \vec{x}^0 , тобто $\vec{f'}$ – це лінійний оператор. А якщо матриця буде квадратною, то ми можемо обчислити det $\vec{f'}(\vec{x}^0)$ – це називається **якобіаном**.

 \sqsubseteq Дано: f_1, \ldots, f_k – диференційовані в точці \vec{x}^0 . Хочемо довести, що $\overrightarrow{f}(\overrightarrow{x}^0 + \Delta \overrightarrow{x}^0) - \overrightarrow{f}(\overrightarrow{x}^0) - M\Delta \overrightarrow{x} = \overrightarrow{o}(\|\Delta \overrightarrow{x}\|), \Delta \overrightarrow{x} \to \overrightarrow{0}$, але це є правда, тому що $\forall j = \overline{1, k} : f_j$ – диференційована $\implies f_j(\overrightarrow{x}^0 + \Delta \overrightarrow{x}^0) - f_j(\overrightarrow{x}^0) - f_j'(\overrightarrow{x}^0) \cdot \Delta \overrightarrow{x} = o(\|\Delta \overrightarrow{x}\|), \Delta \overrightarrow{x} \to \overrightarrow{0}$ – виконана покоординатна рівність.

Remark 2.2.3 Для матриці Якобі існують різні позначення: зазначені вже $J(\vec{x}^0), \ \vec{f'}(\vec{x}^0),$ а також навіть $\frac{\partial \vec{f}}{\partial \vec{x}}(\vec{x}^0)$ або $\frac{\partial (f_1,\ldots,f_m)}{\partial (x_1,\ldots,x_m)}(\vec{x}^0)$. Інколи користуватимусь цими позначеннями.

Proposition 2.2.4 Задана функція $\vec{f} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ – внутрішня точка. Відомо, що векторфункція \vec{f} – диференційована в точці \vec{x}^0 . Тоді \vec{f} – неперервна в точці \vec{x}^0 .

Дійсно, $\lim_{\vec{x} \to \vec{x}^0} \left(M(\vec{x} - \vec{x}^0) + \vec{o}(||\vec{x} - \vec{x}^0||) \right) = \vec{0}$, оскільки виконується покоординатна границя.

Proposition 2.2.5 Задані функції $\vec{f}, \vec{g} \colon A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ – внутрішня точка. Відомо, що \vec{f}, \vec{g} – диференційовані в точці \vec{x}^0 . Тоді $\alpha \vec{f} + \beta \vec{g}$ – диференційована в точці \vec{x}^0 , похідна $(\alpha \vec{f} + \beta \vec{g})'(\vec{x}^0) = \alpha \vec{f}'(\vec{x}^0) + \beta \vec{g}'(\vec{x}^0).$

Випливає з арифметики матриці. Тут цілком зрозуміло.

Маємо вектор-функцію $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \end{pmatrix}$. Знайдемо її похідну та якобіан.

$$\vec{f'}(\vec{x}^0) = \begin{pmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{pmatrix} \qquad \det \vec{f'}(\vec{x}^0) = \cos \varphi \rho \cos \varphi + \sin \varphi \rho \sin \varphi = \rho.$$

Ше знадобиться, коли будемо шукати подвійні інтеграли.

Proposition 2.2.7 Задані функції $\vec{f} \colon A \to B$ та $\vec{g} \colon B \to \mathbb{R}^k$, де $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^n$. Відомо, що \vec{f} — диференційована в точці \vec{x}^0 та \vec{g} — диференційована в точці \vec{y}^0 . Тоді $\vec{g} \circ \vec{f}$ — диференційована в точці \vec{x}^0 , похідна $(\vec{g} \circ \vec{f})'(\vec{x}^0) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)$.

Lemma 2.2.8 Задана матриця $A \in \operatorname{Mat}_{m \times k}(\mathbb{R})$. Тоді $\exists C \geq 0 : \forall \vec{h} \in \mathbb{R}^m : ||A\vec{h}|| \leq C||\vec{h}||$.

Дійсно,
$$A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{km} \end{pmatrix} \implies A\vec{h} = \begin{pmatrix} a_{11}h_1 + \dots + a_{1m}h_m \\ \vdots \\ a_{k1}h_1 + \dots + a_{km}h_m \end{pmatrix}.$$

$$\implies \|A\vec{h}\| = \sqrt{(a_{11}h_1 + \dots + a_{1m}h_m)^2 + \dots + (a_{k1}h_1 + \dots + a_{km}h_m)^2} \stackrel{\text{K-B}}{\leq}$$

$$\leq \sqrt{(a_{11}^2 + \dots + a_{1m}^2)(h_1^2 + \dots + h_m^2) + \dots + (a_{k1}^2 + \dots + a_{km}^2)(h_1^2 + \dots + h_m^2)} =$$

$$= \|\vec{h}\| \sqrt{(a_{11}^2 + \dots + a_{1m}^2) + \dots + (a_{k1}^2 + \dots + a_{km}^2)} = C\|\vec{h}\|.$$

Тепер безпосередньо доведення твердження.

$$\vec{g} \circ \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{g} \circ \vec{f}(\vec{x}^0) = \vec{g}(\vec{f}(\vec{x}^0 + \Delta \vec{x})) - \vec{g}(\vec{f}(\vec{x}^0)) = \vec{g}(\vec{f}(\vec{x}^0) + \vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|)) - \vec{g}(\vec{f}(\vec{x}^0)) = \vec{g}(\vec{y}^0 + \Delta \vec{y}) - \vec{g}(\vec{y}^0) = \vec{g}'(\vec{y}^0)\Delta \vec{y} + o(\|\Delta \vec{y}\|) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|) = \vec{g}(\|\Delta \vec{y}\|) = \vec{o}(\|\Delta \vec{x}\|), \text{ якщо } \Delta \vec{x} \to \vec{0}, \text{ тобто}$$

$$\lim_{\Delta \vec{x} \to \vec{0}} \frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} = 0.$$

$$\frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} \le \frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \|\vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} \xrightarrow{\text{Lm. 2.2.8}} C \frac{\vec{o}(\|\Delta \vec{x}\|)}{\|\Delta \vec{x}\|} + \frac{\vec{o}(\|\Delta \vec{y}\|)}{\|\Delta \vec{x}\|} = C \frac{\vec{o}(\|\Delta \vec{x}\|)}{\|\Delta \vec{x}\|} + \frac{\vec{o}(\|\Delta \vec{y}\|)}{\|\Delta \vec{y}\|} \frac{\|\Delta \vec{y}\|}{\|\Delta \vec{x}\|}.$$

Якщо $\Delta \vec{x} \to \vec{0}$, то перший доданок прямує до нуля, а другий буде прямувати до нуля, якщо $\frac{\|\Delta \vec{y}\|}{\|\Delta \vec{x}\|}$

буде обмеженою. Зараз це й покажемо:
$$\frac{\|\Delta \vec{y}\|}{\|\Delta \vec{x}\|} = \frac{\|\vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|} \leq \frac{\|\vec{f}'(\vec{x}^0)\Delta \vec{x}\| + \|\vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|} \overset{\textbf{Lm. 2.2.8}}{\leq} C^* + \frac{\|\vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|}.$$

Якщо $\Delta \vec{x} \to \vec{0}$, то отримаємо обмеженість

Отже, остаточно, $\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta\vec{x}\|) + \vec{o}(\|\Delta\vec{y}\|) = \vec{o}(\|\Delta\vec{x}\|)$, якщо $\Delta\vec{x} \to \vec{0}$, а значить $\vec{g} \circ \vec{f}(\vec{x}^0 + \Delta\vec{x}) - \vec{g} \circ \vec{f}(\vec{x}^0) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)\Delta\vec{x} + \vec{o}(\|\Delta\vec{x}\|)$ при $\Delta\vec{x} \to \vec{0}$.

Corollary 2.2.9 Задана функція $\vec{f} \colon A \to B$ та $g \colon B \to \mathbb{R}$, де $A \subset \mathbb{R}^m, B \subset \mathbb{R}^n$. Відомо, що \vec{f} диференційована в точці \vec{x}^0 та g диференційована в точці \vec{y}^0 . Тоді $\frac{\partial h}{\partial x_j}(\vec{x}^0) = \frac{\partial g}{\partial y_1}(\vec{y}^0) \frac{\partial f_1}{\partial x_j}(\vec{x}^0) + \frac{\partial g}{\partial y_2}(\vec{y}^0) \frac{\partial f_2}{\partial x_j}(\vec{x}^0) + \cdots + \frac{\partial g}{\partial y_n}(\vec{y}^0) \frac{\partial f_n}{\partial x_j}(\vec{x}^0)$, виконано $\forall j = \overline{1,m}$.

Тоді
$$\frac{\partial h}{\partial x_j}(\vec{x}^0) = \frac{\partial g}{\partial y_1}(\vec{y}^0) \frac{\partial f_1}{\partial x_j}(\vec{x}^0) + \frac{\partial g}{\partial y_2}(\vec{y}^0) \frac{\partial f_2}{\partial x_j}(\vec{x}^0) + \dots + \frac{\partial g}{\partial y_n}(\vec{y}^0) \frac{\partial f_n}{\partial x_j}(\vec{x}^0)$$
, виконано $\forall j = \overline{1, m}$. Тут $h(\vec{x}) = g(\vec{f}(\vec{x}))$.

Example 2.2.10 Маємо функцію $f\left(xy, \frac{x}{y}\right)$. Знайдемо частинні похідні за x, y.

Позначимо
$$u(x,y)=xy,\,v(x,y)=\frac{x}{y}.$$
 Тоді маємо:
$$\frac{\partial f}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}=\frac{\partial f}{\partial u}\cdot y+\frac{\partial f}{\partial v}\cdot \frac{1}{y}$$

$$\frac{\partial f}{\partial y}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}=\frac{\partial f}{\partial u}\cdot x+\frac{\partial f}{\partial v}\cdot \frac{-x}{y^2}.$$

Схематично, як шукати $\frac{\partial f}{\partial x}$.

2.3 Похідна за напрямком. Градієнт

Definition 2.3.1 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. А також задано вектор \vec{l} , такий, що $\|\vec{l}\| = 1$. Його ще називають **напрямком**.

Похідною функції f за напрямком \vec{l} в точці \vec{x}^0 називають величину

$$\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t}$$

Як вже було зазначено, дотичних прямих буває дуже багато, тому ми й задаємо напрямок.

Remark 2.3.2 Якщо всі координати вектора \vec{l} будуть нулевими, окрім $l_j=1$, то $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0)=\frac{\partial f}{\partial x_j}(\vec{x}^0)$.

Theorem 2.3.3 Задана функція f — диференційована в точці $\vec{x}^0 \in A$ — внутрішня точка. Тоді $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = f'(\vec{x}^0) \cdot \vec{l} = \frac{\partial f}{\partial x_1} l_1 + \dots + \frac{\partial f}{\partial x_m} l_m$.

Proof.

f – диференційована в точці \vec{x}^0 , тобто $f(\vec{x}^0+t\vec{l})-f(\vec{x}^0)=rac{\partial f}{\partial x_1}tl_1+\cdots+rac{\partial f}{\partial x_m}tl_m+o(\|t\vec{l}\|)$. Тому

$$\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t} = \lim_{t \to 0} \frac{\frac{\partial f}{\partial x_1} t l_1 + \dots + \frac{\partial f}{\partial x_m} t l_m + o(\|t\vec{l}\|)}{t} = \frac{\partial f}{\partial x_1} l_1 + \dots + \frac{\partial f}{\partial x_m} l_m. \quad \blacksquare$$

Example 2.3.4 Маємо функцію $f(x,y) = 1 - x^2 - y$. Знайти похідну за напрямком $\vec{l} = (0.6, 0.8)$. $\frac{\partial f}{\partial x} = -2x$ $\frac{\partial f}{\partial y} = -1$.

$$\frac{\partial f}{\partial x} = -2x \qquad \frac{\partial f}{\partial y} = -1.$$

$$\implies \frac{\partial f}{\partial \vec{l}} = -0.6 \cdot 2x - 0.8 \cdot 1 = -1.2x - 0.8.$$

Definition 2.3.5 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Градієнтом функції f в точці \vec{x}^0 називають такий вектор:

$$\operatorname{grad} f(\vec{x}^0) \stackrel{\text{a6o}}{=} \nabla f(\vec{x}^0) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_m} \end{pmatrix} (\vec{x}^0)$$

Похідну функції \vec{f} за напрямком \vec{l} в точці \vec{x}^0 можна записати інакше: $\frac{\partial f}{\partial \vec{l}} = \left(\operatorname{grad} f(\vec{x}^0), \vec{l} \right)$.

Example 2.3.6 Зокрема для функції $f(x,y) = 1 - x^2 - y$ маємо, що grad $f(\vec{x}) = \begin{pmatrix} -2x \\ -1 \end{pmatrix}$.

 $\operatorname{grad} f(\vec{x}^0)$ описує, який треба взяти напрямок руху в точці \vec{x}^0 , щоб приріст функції був найбільшим. Цей факт підтвердить наступне твердження:

Proposition 2.3.7 $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0)$ приймає:

- тах значення $\iff \vec{l} \uparrow \uparrow \operatorname{grad} \vec{f}(\vec{x}^0);$
- min значення $\iff \vec{l} \uparrow \downarrow \operatorname{grad} \vec{f}(\vec{x}^0)$.

Proof.

Дійсно, $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \left(\operatorname{grad} f(\vec{x}^0), \vec{l}\right) = \|\operatorname{grad} f(\vec{x}^0)\| \|\vec{l}\| \cos \alpha = \|\operatorname{grad} f(\vec{x}^0)\| \cos \alpha :$

Диференціювання та похідні старших порядків

Definition 2.4.1 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Також f – диференційована в точці \vec{x}^0 .

Частинними похідними другого роду від функції f в точці \vec{x}^0 називають вираз:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} (\vec{x}^0) \right) = \frac{\partial^2 f}{\partial x_j \partial x_k} (\vec{x}^0)$$

Example 2.4.2 Знайдемо всі частинні похідні другого порядку функції $f(x,y) = x^4 + y$

$$\frac{\partial f}{\partial x} = 4x^3 - 8xy^2 \implies \begin{cases} \frac{\partial^2 f}{\partial x^2} = 12x^2 - 8y^2 \\ \frac{\partial^2 f}{\partial y \partial x} = -16xy \end{cases} \qquad \frac{\partial f}{\partial y} = 4y^3 - 8x^2y \implies \begin{cases} \frac{\partial^2 f}{\partial x \partial y} = -16xy \\ \frac{\partial^2 f}{\partial y^2} = 12y^2 - 8x^2 \end{cases}.$$

Можемо зауважити, що $\frac{\partial^2 f}{\partial u \partial x} = \frac{\partial^2 f}{\partial x \partial u}$. Проте в загальному випадку це не так.

Example 2.4.3 Приклад Шварца

Ехатріе 2.4.5 Приклад Інверас $\text{Розглянемо функцію } f(x,y) = \begin{cases} xy\frac{x^2-y^2}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases} . \text{ Зосередимось лише на знаходженні}$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0), \frac{\partial^2 f}{\partial x \partial y}(0,0).$$

$$\frac{\partial f}{\partial x} = \begin{cases} y \frac{x^4 - y^4 + 4x^2y^2}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\frac{\partial f}{\partial y} = \begin{cases} -x \frac{y^4 - x^4 + 4x^2y^2}{(x^2 + y^2)^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{\Delta x \to 0} \frac{\frac{\partial f}{\partial y}(\Delta x,0) - \frac{\partial f}{\partial y}(0,0)}{\Delta x} = 1$$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{\Delta y \to 0} \frac{\frac{\partial f}{\partial x}(0,\Delta y) - \frac{\partial f}{\partial x}(0,0)}{\Delta y} = -1$$
 Таким чином,
$$\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}.$$

Theorem 2.4.4 Теорема Шварца

Задана функція $f\colon A\to\mathbb{R}$ та $\vec{x}^0\in A\subset\mathbb{R}^m$ – внутрішня точка. Відомо, що $\exists \frac{\partial^2 f}{\partial x_i\partial x_\iota}, \frac{\partial^2 f}{\partial x_\iota\partial x_\iota}$ в околі точки \vec{x}^0 та є неперервними в точці \vec{x}^0 . Тоді $\frac{\partial^2 f}{\partial x_i \partial x_k} = \frac{\partial^2 f}{\partial x_k \partial x_i}$

Mи будемо доводити при \mathbb{R}^m . Для функцій в \mathbb{R}^m – аналогічно, але більш технічна справа.

Proof.

Отже, дано f(x,y) та в околі точки (x_0,y_0) існують частинні похідні другого порядку $\exists \frac{\partial^2 f}{\partial x \partial u}, \frac{\partial^2 f}{\partial u \partial x}$ які неперервні в (x_0, y_0) .

Розглянемо вираз $\Delta = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0).$ Покладемо функцію $k(s) = f(s, y_0 + \Delta y) - f(s, y_0), s \in [x_0, x_0 + \Delta x].$ Тоді $\Delta = k(x_0 + \Delta x) - k(x_0).$ $k'(s) = (f(s, y_0 + \Delta y) - f(s, y_0))'_s = \frac{\partial f}{\partial s}(s, y_0 + \Delta y) - \frac{\partial f}{\partial s}(s, y_0).$

Оскільки нам відомі другі частинні похідні, то зрозуміло, що в нас існує $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, причому в тому самому околі точки (x_0,y_0) . Тобто звідси k – диференційована на $[x_0,x_0+\Delta x]$, тоді за теоремою Лагранжа, $\exists \xi_1 \in (x_0,x_0+\Delta x): \Delta=k(x_0+\Delta x)-k(x_0)=k'(\xi_1)\Delta x=\left(\frac{\partial f}{\partial s}(\xi_1,y_0+\Delta y)-\frac{\partial f}{\partial s}(\xi_1,y_0)\right)\Delta x.$

Покладемо функцію $m(t) = \frac{\partial f}{\partial s}(\xi_1, t), t \in [y_0, y_0 + \Delta y].$ Тоді $\Delta = (m(y_0 + \Delta y) - m(y_0))\Delta x.$

$$m'(t) = \left(\frac{\partial f}{\partial s}(\xi_1, t)\right)' = \frac{\partial}{\partial t} \left(\frac{\partial f}{\partial s}(\xi_1, t)\right) = \frac{\partial^2 f}{\partial t \partial s}(\xi_1, t).$$

Похідна дійсно існує за умовою теореми, тобто m – диференційована на $[y_0, y_0 + \Delta y]$, тоді за теоремою Лагранжа, $\exists \eta_1 \in (y_0, y_0 + \Delta y) : \Delta = (m(y_0 + \Delta y) - m(y_0))\Delta x = m'(\eta_1)\Delta y \Delta x = \frac{\partial^2 f}{\partial t \partial x}(\xi_1, \eta_1)\Delta y \Delta x.$

Повернімось до виразу $\Delta = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0)$, ми розглянемо її з іншої сторони.

Покладемо функцію $p(t) = f(x_0 + \Delta x, t) - f(x_0, t), t \in [y_0, y_0 + \Delta y]$. Тоді $\Delta = p(y_0 + \Delta y) - p(y_0)$. А далі я буду просто продовжувати рівність, міркування аналогічні, що пов'язані зі застосуванням теореми Лагранжа двічі:

$$\Delta = p(y_0 + \Delta y) - p(y_0) = p'(\eta_2) \Delta y = (f(x_0 + \Delta x, t) - f(x_0, t))_t'(\eta_2) \Delta y = \left(\frac{\partial f}{\partial t}(x_0 + \Delta x, \eta_2) - \frac{\partial f}{\partial t}(x_0, \eta_2)\right) \Delta y = 0$$

Покладемо функцію $q(s) = \frac{\partial f}{\partial t}(s, \eta_2)$. А далі аналогічно.

$$\boxed{=}(q(x_0+\Delta x)-q(x_0))\Delta y=q'(\xi_2)\Delta x\Delta y=\left(\frac{\partial f}{\partial t}(s,\eta_2)\right)'_s(\xi_2)\Delta x\Delta y=\frac{\partial^2 f}{\partial s\partial t}(\xi_2,\eta_2)\Delta x\Delta y.$$
 Зауважу, що $\eta_2\in (y_0,y_0+\Delta y), \xi_2\in (x_0,x_0+\Delta x).$

Отримали таку рівність: $\frac{\partial^2 f}{\partial t \partial s}(\xi_1, \eta_1) \Delta y \Delta x = \frac{\partial^2 f}{\partial s \partial t}(\xi_2, \eta_2) \Delta x \Delta y \implies \frac{\partial^2 f}{\partial t \partial s}(\xi_1, \eta_1) = \frac{\partial^2 f}{\partial s \partial t}(\xi_2, \eta_2).$ Нарешті, за умовою задачі, другі частинні похідні є неперервними в точці (x_0, y_0) , тому далі одночасно прямуємо $x \to x_0, y \to y_0 \implies \Delta x \to 0, \Delta y \to 0$. Оскільки $\xi_1, \xi_2 \in (x_0, x_0 + \Delta x)$ $\eta_1, \eta_2 \in (y_0, y_0 + \Delta y)$, то звідси $\xi_1, \xi_2 \to x_0$ та $\eta_1, \eta_2 \to y_0$.

Остаточно отримаємо $\frac{\partial^2 f}{\partial u \partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$ (літери s, t я замінив на x, y, результат не змі-

Theorem 2.4.5 Теорема Янґа

Задана функція $f\colon A\to\mathbb{R}$ та $\vec{x}^0\in A\subset\mathbb{R}^m$ – внутрішня точка. Відомо, що $\exists \frac{\partial f}{\partial x_j}, \frac{\partial f}{\partial x_k}$ в околі точки \vec{x}^0 та диференційовані в точці \vec{x}^0 . Тоді $\exists \frac{\partial^2 f}{\partial x_i \partial x_k}, \frac{\partial^2 f}{\partial x_k \partial x_i}$, причому $\frac{\partial^2 f}{\partial x_i \partial x_k} = \frac{\partial^2 f}{\partial x_k \partial x_i}$.

Mu будемо доводити при \mathbb{R}^m . Для функцій в \mathbb{R}^m – аналогічно, але більш технічна справа.

Proof.

Початок такий самий, як в теоремі Шварца. Ми розглядаємо ту саму штуку $\Delta = f(x_0 + \Delta x, y_0 +$ $\Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0)$. Аналогічними міркуваннями ми отримаємо $\Delta =$ $\left(\frac{\partial f}{\partial s}(\xi_1,y_0+\Delta y)-\frac{\partial f}{\partial s}(\xi_1,y_0)\right)\Delta x$. Але тепер далі обробимо інакше. Розпишемо ось так:

$$\Delta = \left(\frac{\partial f}{\partial s}(\xi_1, y_0 + \Delta y) - \frac{\partial f}{\partial s}(x_0, y_0)\right) \Delta x - \left(\frac{\partial f}{\partial s}(\xi_1, y_0) - \frac{\partial f}{\partial s}(x_0, y_0)\right) \Delta x.$$

Оскільки $\frac{\partial f}{\partial x}$ диференційована в точці (x_0, y_0) , то ми отримаємо таку рівність:

$$\Delta = \left(\frac{\partial^2 f}{\partial s^2}(x_0, y_0)(\xi_1 - x_0) + \frac{\partial^2 f}{\partial t \partial s}(x_0, y_0)\Delta y + o(\|(\xi_1 - x_0, \Delta y)\|)\right) \Delta x - \left(\frac{\partial^2 f}{\partial s^2}(x_0, y_0)(\xi_1 - x_0) + o(|\xi_1 - x_0|)\right) \Delta x$$

$$\Delta = \frac{\partial^2 f}{\partial t \partial s}(x_0, y_0)\Delta y \Delta x + o(\|(\xi_1 - x_0, \Delta y)\|)\Delta x + o(|\xi_1 - x_0|)\Delta x.$$

Точно так само ми розписувати $\Delta = \left(\frac{\partial f}{\partial t}(x_0 + \Delta x, \eta_2) - \frac{\partial f}{\partial t}(x_0, \eta_2)\right) \Delta y$, а далі аналогічними мір-

$$\Delta = \frac{\partial^2 f}{\partial s \partial t}(x_0, y_0) \Delta y \Delta x + o(\|(\Delta x, \eta_2 - y_0)\|) \Delta y + o(|\eta_2 - y_0|) \Delta y.$$
 Разом отримаемо таку рівність:

$$\frac{\partial^2 f}{\partial t \partial s}(x_0, y_0) \Delta y \Delta x + o(\|(\xi_1 - x_0, \Delta y)\|) \Delta x + o(|\xi_1 - x_0|) \Delta x = \frac{\partial^2 f}{\partial s \partial t}(x_0, y_0) \Delta y \Delta x + o(\|(\Delta x, \eta_2 - y_0)\|) \Delta y + o(|\eta_2 - y_0|) \Delta y.$$

$$\begin{aligned} &o(|\xi_1-x_0|)\Delta x.\\ &\frac{\partial^2 f}{\partial t\partial s}(x_0,y_0)\Delta y\Delta x+o(\|(\Delta x,\Delta y)\|)=\frac{\partial^2 f}{\partial s\partial t}(x_0,y_0)\Delta x\Delta y+o(\|(\Delta x,\Delta y)\|).\\ &\frac{\partial^2 f}{\partial t\partial s}(x_0,y_0)+o(1)=\frac{\partial^2 f}{\partial s\partial t}(x_0,y_0)+o(1), \text{ при цьому }(\Delta x,\Delta y)\to(0,0). \end{aligned}$$
 Таким чином, ми доводимо, що
$$\frac{\partial^2 f}{\partial t\partial s}(x_0,y_0)=\frac{\partial^2 f}{\partial s\partial t}(x_0,y_0).$$

Зараз буде кілька прикладів, які дадуть додатковий опис цих теорем.

Example 2.4.6 Маємо функцію $f(x,y) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ (так, вона не залежить від y). Це приклад функції, що задовольняє теоремі Шварца, але не теоремі Янґа. $\frac{\partial f}{\partial x} = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \quad \frac{\partial f}{\partial y} \equiv 0.$ $\frac{\partial^2 f}{\partial x} = \frac{\partial^2 f}{\partial x} = \frac{\partial^2 f}{\partial y} = 0.$

$$\frac{\partial f}{\partial x} = \begin{cases} 2x \sin\frac{1}{x} - \cos\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \quad \frac{\partial f}{\partial y} \equiv 0.$$

$$\frac{\partial^2 f}{\partial y \partial x} \equiv 0 \quad \frac{\partial^2 f}{\partial x \partial y} \equiv 0.$$
 Коротше, в точці $(0,0)$ мішані частинні похідні неперервні. Тому тут теорема Шварца працює.

Частинна похідна $\frac{\partial f}{\partial x}$ в точці (0,0) уже не буде диференційованою. Тому тут теорема Янґа не

Example 2.4.7 Маємо функцію $f(x,y) = \begin{cases} x^3y^3\sin\frac{1}{xy}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$. Це приклад функції, що задо-

вольняє теоремі Янґа, але не теоремі Шварца.
$$\frac{\partial f}{\partial x} = 3x^2y^3\sin\frac{1}{xy} - xy^2\cos\frac{1}{xy}.$$

$$\frac{\partial^2 f}{\partial y\partial x} = 9x^2y^2\sin\frac{1}{xy} - 5xy\cos\frac{1}{xy} - \sin\frac{1}{xy}.$$

Ця мішана частинна похідна вже не буде неперервною в точці (0,0) (в принципі, неважко довести).

Тому тут теорема Шварца не працює. Але зараз доведемо, що $\frac{\partial f}{\partial x}$ буде диференційованою в точці (0,0). Тобто хочу, щоб $\frac{\partial f}{\partial x}(0+\Delta x,0+\Delta y)-\frac{\partial f}{\partial x}(0,0)=\frac{\partial^2 f}{\partial x^2}(0,0)\Delta x+\frac{\partial^2 f}{\partial y\partial x}(0,0)\Delta y+o(\sqrt{\Delta x^2+\Delta y^2})$ при $(\Delta x,\Delta y)\to(0,0)$.

Легко буде обчислити другі частинні похідні $\frac{\partial^2 f}{\partial x^2}(0,0) = \frac{\partial^2 f}{\partial u \partial x}(0,0) = 0$. Залишилося лише довести,

що $3\Delta x^2\Delta y^3\sin\frac{1}{\Delta x\Delta y}-\Delta x\Delta y^2\cos\frac{1}{\Delta x\Delta y}=o(\sqrt{\Delta x^2+\Delta y^2}).$ Але, в принципі, це неважко, якщо перейти до полярної заміни $\Delta x=\rho\cos\varphi,\ \Delta y=\rho\sin\varphi.$

Аналогічно можна довести, що $\frac{\partial f}{\partial u}$ буде диференційованою в точці (0,0). Тому тут теорема Янґа працює.

Example 2.4.8 Маємо функцію $f(x,y) = \begin{cases} |x|^{\frac{3}{2}}|y|^{\frac{3}{2}}\sin\frac{1}{x}\sin\frac{1}{y}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$. Це приклад функції, що

не задовольняє ані теоремі Шварца, ані теоремі Янґа. При цьому (!) мішані частинні похідні збіга-

Якщо акуратно порахувати, то отримаємо наступне:
$$\frac{\partial f}{\partial x} = \begin{cases} -\operatorname{sgn}(xy) \frac{3}{2} x^{\frac{1}{2}} y^{\frac{3}{2}} \sin \frac{1}{x} \sin \frac{1}{y} + \operatorname{sgn}(xy) x^{-\frac{1}{2}} y^{\frac{3}{2}} \cos \frac{1}{x} \sin \frac{1}{y}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}.$$

Зазначимо, що $\frac{\partial f}{\partial x}$ уже не буде неперервною в точці (0,0) (цілком зрозуміло, як показати), значить

не диференційована в
$$(0,0)$$
. Тому тут теорема Янґа не працює.
$$\frac{\partial^2 f}{\partial y \partial x} = \begin{cases} \pm \frac{9}{4} x^{\frac{1}{2}} y^{\frac{1}{2}} \sin \frac{1}{x} \sin \frac{1}{y} \pm \frac{3}{2} x^{-\frac{1}{2}} y^{\frac{1}{2}} \cos \frac{1}{x} \sin \frac{1}{y} \pm \frac{3}{2} x^{\frac{1}{2}} y^{-\frac{1}{2}} \sin \frac{1}{x} \cos \frac{1}{y} \pm x^{-\frac{1}{2}} y^{-\frac{1}{2}} \cos \frac{1}{x} \cos \frac{1}{y}, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$

(знаки + чи - в залежності від розкриття модулів, мені вже стало лінь точно підбирати).

Знаки не сильно ролі гратимуть. Все одно $\frac{\partial^2 f}{\partial y \partial x}$ не буде неперервною в точці (0,0) (цілком неважко буде показати). Тому тут теорема Шварца не працює.

Тепер головний панчлайн: $\frac{\partial^2 f}{\partial y \partial x}(0,0) = 0$. Аналогічними кроками можна довести, що $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 0$. 0. Тобто мішані частинні похідні існують та рівні.

Отже, теорема Шварца та теорема Янґа характеризують лише достатні умови рівності мішаних частинних похідних.

Definition 2.4.9 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Функція f називається **двічі диференційованою** в точці \vec{x}^0 , якщо

всі частинні похідні існують в околі точки \vec{x}^0 та диференційовані в точці \vec{x}^0 .

Example 2.4.10 Маємо функцію $z = x^2 + 2y^2 - 5xy$. З'ясуємо, чи буде ця функція двічі диферен-

$$\frac{\partial z}{\partial x} = 2x - 5y$$
 $\frac{\partial z}{\partial y} = 4y - 5x$

$$\frac{\partial^2 z}{\partial x^2} = 2 \qquad \frac{\partial^2 z}{\partial u \partial x} = -5 \qquad \frac{\partial^2 z}{\partial u^2} = 4.$$

ційованою. $\frac{\partial z}{\partial x} = 2x - 5y \qquad \frac{\partial z}{\partial y} = 4y - 5x$ Усі отримані частинні похідні існують в будь-якому околі деякої точки. $\frac{\partial^2 z}{\partial x^2} = 2 \qquad \frac{\partial^2 z}{\partial y \partial x} = -5 \qquad \frac{\partial^2 z}{\partial y^2} = 4.$ Отримані частинні похідні визначені та неперервні в будь-якій точці. Таким чином, за теоремою Шварца, функція $\frac{\partial z}{\partial x}$ — диференційована. Так само функція $\frac{\partial z}{\partial y}$ — диференційована. Отже, за означенням, z — двічі диференційована функція.

Proposition 2.4.11 Функція f двічі диференційована в точці $\vec{x}^0 \iff \operatorname{grad} f$ – диференційований в точці \vec{x}^0 .

Proof.

Proof. Дійсно,
$$f$$
 — двічі диференційована в точці $\vec{x}^0\iff \forall j=\overline{1,m}:\exists \frac{\partial f}{\partial x_j}$ — диференційована в точці $\vec{x}^0\iff \operatorname{grad} f=\begin{pmatrix} \frac{\partial f}{\partial x_1}\\ \vdots\\ \frac{\partial f}{\partial x_m} \end{pmatrix}$ — як вектор-функція — диференційована в точці \vec{x}^0 .

Розпишемо диференційованість вектор-функції grad f в точці \vec{x}^0 за означенням:

Звідси ми маємо, що
$$M = \begin{pmatrix} \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_1} \right) & \cdots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_1} \right) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_m} \right) & \cdots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_m} \right) \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1} & \frac{\partial^2 f}{\partial x_2} & \frac{\partial$$

Розпишемо диференційованість вектор-функції grad
$$f$$
 в точці \vec{x}^0 за означенням: grad $f(\vec{x}^0 + \Delta \vec{x}) - \operatorname{grad} f(\vec{x}^0) = M \Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}$.

Звідси ми маємо, що $M = \begin{pmatrix} \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_1} \right) & \dots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_1} \right) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_m} \right) & \dots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_m} \right) \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \dots & \frac{\partial^2 f}{\partial x_m \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_m} & \dots & \frac{\partial^2 f}{\partial x_m^2} \end{pmatrix} (\vec{x}^0) = H(\vec{x}^0) = f''(\vec{x}^0)$ – це називають **матрицею Гесе**. Матриця Гесе описує **другу похідну** функції f в точці \vec{x}^0 та одночасно **похідну** век

Матриця Γ есе описує **другу похідну** функції f в точці \vec{x}^0 та одночасно **похідну** вектор-функції grad f в точці \vec{x}^0 . Дана матриця — квадратна, тож ми можемо обчислити $\det f''(\vec{x}^0)$ — це називають гесіаном.

Definition 2.4.12 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Також f – диференційована в точці \vec{x}^0 .

Другим диференціалом функції f називають вираз:

$$d^2 f(\vec{x}^0) = d(df(\vec{x}^0))$$

З'ясуємо, як цей вираз можна по-інакшому записати. Маємо:

$$d^{2}f = d\left(df\right) = d\left(\frac{\partial f}{\partial x_{1}} dx_{1} + \dots + \frac{\partial f}{\partial x_{m}} dx_{m}\right) = d\left(\frac{\partial f}{\partial x_{1}} dx_{1}\right) + \dots + d\left(\frac{\partial f}{\partial x_{m}} dx_{m}\right) =$$

$$= d\left(\frac{\partial f}{\partial x_{1}}\right) dx_{1} + \dots + d\left(\frac{\partial f}{\partial x_{m}}\right) dx_{m} = \left(\frac{\partial}{\partial x_{1}} \left(\frac{\partial f}{\partial x_{1}}\right) dx_{1} + \dots + \frac{\partial}{\partial x_{m}} \left(\frac{\partial f}{\partial x_{1}}\right) dx_{m}\right) dx_{1} + \dots +$$

$$\left(\frac{\partial}{\partial x_{1}} \left(\frac{\partial f}{\partial x_{m}}\right) dx_{1} + \dots + \frac{\partial}{\partial x_{m}} \left(\frac{\partial f}{\partial x_{m}}\right) dx_{m}\right) dx_{m} =$$

$$= \left(\frac{\partial^{2} f}{\partial x_{1}^{2}} dx_{1}^{2} + \dots + \frac{\partial^{2} f}{\partial x_{m} \partial x_{1}} dx_{m} dx_{1}\right) + \dots + \left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{m}} dx_{1} dx_{m} + \dots + \frac{\partial^{2} f}{\partial x_{m}^{2}} dx_{m}^{2}\right) = \sum_{i,j=1}^{m} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} dx_{i} dx_{j}.$$

Отже, маємо іншу формулу для другого диференціалу в точці \vec{x}^0 :

$$d^2 f(\vec{x}^0) = \sum_{i,i=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j} (\vec{x}^0) \, dx_i \, dx_j$$

Якщо придивитись, то $d^2 f(\vec{x}^0)$ виглядає як квадратична форма.

Example 2.4.13 Знайдемо другий диференціал функції $z=x^3+2y^2-5xy$. Ми вже шукали другі частинні похідні $\frac{\partial^2 f}{\partial x^2}=6x$ $\frac{\partial^2 f}{\partial x\partial y}=\frac{\partial^2 f}{\partial y\partial x}=-5$ $\frac{\partial^2 f}{\partial y^2}=4$. Таким чином,

$$d^2z = \frac{\partial^2 f}{\partial x^2} dx^2 + 2 \frac{\partial^2 f}{\partial x \partial y} dx dy + \frac{\partial^2 f}{\partial y^2} dy^2 = 6x dx^2 - 10 dx dy + 4 dy^2.$$

Definition 2.4.14 Задана функція $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Також f - k разів диференційована в точці \vec{x}^0 .

Частинними похідним k+1-го порядку в точці \vec{x}^0 називають похідну:

$$\frac{\partial}{\partial x_{j_{k+1}}} \left(\frac{\partial^k f}{\partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}} \right) (\vec{x}^0) = \frac{\partial^{k+1} f}{\partial x_{j_{k+1}} \partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}} (\vec{x}^0)$$

$$j_1 + j_2 + \dots + j_k + j_{k+1} = k + 1$$

Definition 2.4.15 Задана функція $f \colon A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Також f - k разів диференційована в точці \vec{x}^0 .

k+1-им диференціалом функції f називають вираз:

$$d^{k+1}f(\vec{x}^0) = d(d^k f(\vec{x}^0))$$

Якщо дуже сильно постаратись, то за індукцією можна довести таку формулу диференціала k-го порядку:

$$d^k f(\vec{x}^0) = \sum_{j_1, \dots, j_k=1}^m \frac{\partial^k f}{\partial x_{j_1} \dots \partial x_{j_k}} (\vec{x}^0) \cdot dx_{j_1} \dots dx_{j_k}$$

Definition 2.4.16 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка. Функція f називається k-разів диференційованою в точці \vec{x}^0 , якщо

всі частинні похідні (k-1)-го порядку існують в околі точки \vec{x}^0 та всі вони диференційовані в точці \vec{x}^0 .

Позначення: $C^k(A)$ – множина k разів неперервно-диференційованих функцій.

2.5 Формула Тейлора

Зробимо певні позначення:

$$[\vec{x}^0, \vec{x}] = \{(1-t)\vec{x}^0 + t\vec{x} : t \in [0,1]\}$$
$$(\vec{x}^0, \vec{x}) = \{(1-t)\vec{x}^0 + t\vec{x} : t \in (0,1)\}$$

Theorem 2.5.1 Теорема Тейлора (у формі Лагранжа)

Задана функція f – диференційована n разів на $[\vec{x}^0, \vec{x}]$ та (n+1)-ий раз диференційована на (\vec{x}^0, \vec{x}) . Тоді $\exists \vec{\xi} \in (\vec{x}^0, \vec{x})$ або (\vec{x}, \vec{x}^0) , для якого

$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + \frac{d^{n+1}f(\vec{\xi})}{(n+1)!}$$

Proof.

Розглянемо функцію $p(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))$, тут $t \in [0, 1]$ - функція від однієї змінної. Знайдемо похідні від цієї функції:

Shandemo floxidation for the right that the qyrixin:
$$p'(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))'_t = (f(x_1 + t(x_1 - x_1^0), \dots, x_m + t(x_m - x_m^0)))'_t = (f(u_1, \dots, u_m))'_t =$$

$$= \frac{\partial f}{\partial u_1} \frac{\partial u_1}{\partial t} + \dots + \frac{\partial f}{\partial u_m} \frac{\partial u_m}{\partial t} = \frac{\partial f}{\partial u_1} (x_1 - x_1^0) + \dots + \frac{\partial f}{\partial u_m} (x_m - x_m^0) = \left(\frac{\partial f}{\partial u_1} \dots \frac{\partial f}{\partial u_m}\right) \begin{pmatrix} x_1 - x_1^0 \\ \vdots \\ x_m - x_m^0 \end{pmatrix} =$$

$$= df(\vec{x}^0 + t(\vec{x} - \vec{x}^0)).$$

$$p''(t) = [f'(\vec{x}^0 + t(\vec{x} - \vec{x}^0)) \cdot (\vec{x} - \vec{x}^0)]_t' \stackrel{\text{аналогічно}}{=} d^2 f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))$$

 $p^{(k)}(t) = d^k f(\vec{x}^0 + t(\vec{x} - \vec{x}^0)).$

Коротше, наша функція n разів диференційована на [0,1] та має (n+1) похідну на (0,1). Тому ми

можемо розкласти формулу Тейлора як функцію з однією змінною.
$$\exists \xi \in (0,1)$$
:
$$p(1) = p(0) + \frac{p'(0)}{1!}(1-0) + \frac{p''(0)}{2!}(1-0)^2 + \dots + \frac{p^{(n)}(0)}{n!}(1-0)^n + \frac{p^{(n+1)}(\xi)}{(n+1)!}(1-0)^{n+1}.$$

$$p(0) = f(\vec{x}^0)$$

$$p'(0) = df(\vec{x}^0)$$

$$p''(0) = d^2 f(\vec{x}^0)$$

$$p^{(n+1)}(\xi) = d^{n+1}f(\vec{x}^0 + \xi(\vec{x} - \vec{x}^0))$$

Отже,
$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + \frac{d^{n+1}f(\vec{\xi})}{(n+1)!}$$
, де $\vec{\xi} = \vec{x}^0 + \xi(\vec{x} - \vec{x}^0) \in (\vec{x}^0, \vec{x})$.

Theorem 2.5.2 Теорема Тейлора (у формі Пеано)

Задана функція
$$f$$
 — диференційована n разів в точці \vec{x}^0 . Тоді
$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + o(\|\vec{x} - \vec{x}^0\|^n), \vec{x} \to \vec{x}^0.$$

Для доведення саме теореми Тейлора у формі Пеано нам будуть потрібні певні леми.

Lemma 2.5.3 Розглянемо функцію $g_m(\vec{x}) = f(\vec{x}) - f(\vec{x}^0) - \sum_{k=1}^n \frac{d^k f(\vec{x}^0)}{k!}$ (так би мовити це буде

майбутня помилка). Припустимо, що f задовольняє умові теореми Тейлора (у формі Пеано). Тоді g_m та всі її частинні похідні до n-го порядку включно будуть нулевими в точці \vec{x}^0 .

Proof.

Доведення проведемо за MI за $n \ge 1$.

Доведення проведемо за мп за $n \ge 1$. І. База індукції. При n=1 маємо $g_1(\vec{x})=f(\vec{x})-f(\vec{x}^0)-df(\vec{x}^0)$. Цілком зрозуміло, що $g_1(\vec{x}^0)=0$. Частинні похідні $\frac{\partial g_1}{\partial x_k}(\vec{x}^0)=\frac{\partial f}{\partial x_k}(\vec{x}^0)-\frac{\partial f}{\partial x_k}(\vec{x}^0)\cdot\frac{\partial (x_k-x_0)}{\partial x_k}=0$. ІІ. Припущення індукції. Для фіксованого n виконується лема. ІІІ. Крок індукції. Доведемо для випадку n+1. Ми маємо функцію $g_{n+1}(\vec{x})=f(\vec{x})-f(\vec{x}^0)-\frac{n+1}{n+1}$ де $g(\vec{x}^0)$

 $\sum_{k=1}^{n+1} \frac{d^k f(\vec{x}^0)}{k!}$. Знову тут зрозуміло, що $g_{n+1}(\vec{x}^0)=0$, але тепер дослідимо частинні похідні. Споча-

тку буде частинна похідна першого порядку (не втрачаючи загальності, відносно x_1). Перед цим

варто згадати, що $d^k f(\vec{x}^0) = \sum_{i_1 + \dots + i_m = k} \frac{k!}{i_1! \dots i_m!} \frac{\partial^k f}{\partial x_1^{i_1} \dots \partial x_m^{i_m}} (\vec{x}^0) (x_1 - x_1^0)^{i_1} \dots (x_m - x_m^0)^{i_m}$. Тепер

$$\frac{\partial g_{n+1}}{\partial x_1}(\vec{x}) = \frac{\partial f}{\partial x_1}(\vec{x}) - \frac{\partial}{\partial x_1} \left(\sum_{k=1}^{n+1} \frac{1}{k!} \sum_{i_1 + \dots + i_m = k} \frac{\partial^k f}{\partial x_1^{i_1} \dots \partial x_m^{i_m}} (\vec{x}^0) \frac{k!}{i_1! \dots i_m!} (x_1 - x_1^0)^{i_1} \dots (x_m - x_m^0)^{i_m} \right) = 0$$

$$=\frac{\partial f}{\partial x_1}(\vec{x})-\sum_{l=1}^{n+1}\frac{1}{k!}\sum_{k=1,\ldots,n}\frac{\partial^k f}{\partial x_1^{i_1}\ldots\partial x_m^{i_m}}(\vec{x}^0)\frac{k!}{(i_1-1)!i_2!\ldots i_m!}(x_1-x_1^0)^{i_1-1}(x_2-x_2^0)^{i_2}\ldots(x_m-x_m^0)^{i_m}$$

 $=\frac{\partial f}{\partial x_1}(\vec{x})-\sum_{k=1}^{n+1}\frac{1}{k!}\sum_{i_1+\dots+i_m=k}\frac{\partial^k f}{\partial x_1^{i_1}\dots\partial x_m^{i_m}}(\vec{x}^0)\frac{k!}{(i_1-1)!i_2!\dots i_m!}(x_1-x_1^0)^{i_1-1}(x_2-x_2^0)^{i_2}\dots(x_m-x_m^0)^{i_m}$ — Можливо, варто зауважити. Якщо так станеться, що $i_1=0$, то тоді всередині вираз онулюється після взяття $\frac{\partial}{\partial x_1}$. Не знаю, як тут більш строго розписати. Може, треба під сумою накласти умову

 $i_1 \ge 1$, але не можу загромаджувати й так.

Тепер розглянемо вираз під сумою при k=1. У нас виникне сумування по $i_1+\cdots+i_m=1$. Єдина можливість – коли один з i буде одиничним, а всі решта – нулеві. Якщо $i_2=1$ або $i_3=1$ або . . . або $i_m=1$, тоді після взяття $\frac{\partial}{\partial x_1}$ отримаємо нуль. Водночає при $i_1=1$ після взяття $\frac{\partial}{\partial x_1}$ отримаємо лише $\frac{\partial f}{\partial x_1}(\vec{x}^0)$.

Нарешті, в другій сумі зробимо заміну індексів: $\tilde{i}_1=i_1-1,\ \tilde{i}_2=i_2,\dots,\tilde{i}_m=i_m.$ Отримаємо:

Парешті, в другім сумі зроонмо заміну індексів.
$$i_1 = i_1$$
 — $i_1, i_2 = i_2, \ldots, i_m = i_m$. Отримаємо:
$$\equiv \frac{\partial f}{\partial x_1}(\vec{x}) - \frac{\partial f}{\partial x_1}(\vec{x}^0) - \sum_{k=2}^{n+1} \frac{1}{k!} \sum_{\tilde{i}_1 + \cdots + \tilde{i}_m = k-1} \frac{\partial^k f}{\partial x_1^{\tilde{i}_1 + 1} \dots \partial x_m^{\tilde{i}_m}} (\vec{x}^0) \frac{k!}{\tilde{i}_1! \dots \tilde{i}_m!} (x_1 - x_1^0)^{\tilde{i}_1} \dots (x_m - x_m^0)^{\tilde{i}_m} \boxed{\equiv}$$
Тепер для зручності буду писати індекс i_1 замість \tilde{i}_1, \ldots індекс i_m замісить \tilde{i}_m .

$$\boxed{ \boxed{ }} \frac{\partial f}{\partial x_1}(\vec{x}) - \frac{\partial f}{\partial x_1}(\vec{x}^0) - \sum_{k=2}^{n+1} \frac{1}{(k-1)!} \sum_{i_1 + \dots + i_m = k-1} \frac{\partial^{k-1}}{\partial x_1^{i_1} \dots \partial x_m^{i_m}} (\vec{x}^0) \left(\frac{\partial f}{\partial x_1} \right) \frac{(k-1)!}{i_1! \dots i_m!} (x_1 - x_1^0)^{i_1} \dots (x_m - x_m^0)^{i_m}$$

Проведемо заміну індексації k = l + 1.

$$\boxed{\boxed{\boxed{}} \frac{\partial f}{\partial x_1}(\vec{x}) - \frac{\partial f}{\partial x_1}(\vec{x}^0) - \sum_{l=1}^n \frac{1}{l!} \sum_{i_1 + \dots + i_m = l} \frac{\partial^l}{\partial x_1^{i_1} \dots \partial x_m^{i_m}} \left(\frac{\partial f}{\partial x_1}\right) (\vec{x}^0) \frac{l!}{i_1! \dots i_m!} (x_1 - x_1^0)^{i_1} \dots (x_m - x_m^0)^{i_m} \\
= \frac{\partial f}{\partial x_1}(\vec{x}) - \frac{\partial f}{\partial x_1}(\vec{x}^0) - \sum_{l=1}^n \frac{1}{l!} d^l \left(\frac{\partial f}{\partial x_1}\right) (\vec{x}^0).$$

Отже,
$$\frac{\partial g_{n+1}}{\partial x_1}(\vec{x}) = \frac{\partial f}{\partial x_1}(\vec{x}) - \frac{\partial f}{\partial x_1}(\vec{x}^0) - \sum_{l=1}^n \frac{1}{l!} d^l \left(\frac{\partial f}{\partial x_1}\right) (\vec{x}^0)$$
. Якщо перепозначити $\frac{\partial f}{\partial x_1}(\vec{x}) = \varphi(\vec{x})$, то

отримаємо функцію
$$\frac{\partial g_{n+1}}{\partial x_1}(\vec{x}) = \varphi(\vec{x}) - \varphi(\vec{x}^0) - \sum_{l=1}^n d^l \varphi(\vec{x}^0)$$
. Знайомий тип функції, із формулюва-

ння нашої леми. За припущенням індукції, $\frac{\partial g_{n+1}}{\partial x_1}(\vec{x})=0$ та всі частинні похідні до n-го порядку включно нулеві в точці \vec{x}^0 . Але тоді звідси всі частинні похідні функції g_{n+1} до n+1-го порядку включно нулеві в точці \vec{x}^0 (ми тільки брали частинну похідну за x_1 , все буквально те саме для x_2,\ldots,x_m).

МІ доведено.

Lemma 2.5.4 Нехай функція g задовольняє таким умовам:

- 1) q-n разів диференційована в точці \vec{x}^0 ;
- 2) g та всі її частинні похідні до n-го порядку включно в точці \vec{x}^0 нулеві.

Тоді $g(\vec{x}) = o(\|\vec{x} - \vec{x}^0\|^m)$ при $\vec{x} \to \vec{x}^0$.

Proof.

Знову доведення за індукцією за n.

I. База індукції. При n=1 маємо, що g — диференційована в точці \vec{x}^0 , тобто $g(\vec{x})-g(\vec{x}^0)=$ $\sum_{j=1}^m \frac{\partial g}{\partial x_j}(\vec{x}^0) \Delta x_j + o(\|\vec{x} - \vec{x}^0\|). \ \text{Проте за умовою, } g(\vec{x}^0) = 0 \ \text{та всі} \ \frac{\partial g}{\partial x_j}(\vec{x}^0) = 0. \ \text{Отже, звідси} \ g(\vec{x}) = 0$ $o(\|\vec{x} - \vec{x}^0\|)$ при $\vec{x} \to \vec{x}^0$.

II. Припущення індукції. При деякому n лема виконується.

III. $Kpok\ indykuii$. Доведемо при n+1. У нас за умовою g щонаменше диференційована в околі \vec{x}^0 . Тоді можна розкласти формулою Тейлора у формі Лагранжа:

$$g(\vec{x}) = g(\vec{x}^0) + dg(\vec{\xi})$$
 при $\vec{\xi} \in (\vec{x}^0, \vec{x})$ або (\vec{x}, \vec{x}^0) .

Детальніше розглянемо $dg(\vec{\xi}) = \sum_{i=1}^m \frac{\partial g}{\partial x_j} (\vec{\xi}) (x_j - x_j^0)$. Зазначимо, що функції $\frac{\partial g}{\partial x_j}$ задовольняють

умовам даної леми. Тоді за припущенням МІ, $\frac{\partial g}{\partial x_i}(\vec{\xi}) = o(\|\vec{\xi} - \vec{x}^0\|^m)$ при $\vec{\xi} \to \vec{x}^0$. Водночас $o(\|\vec{\xi} - \vec{x}^0\|^m)$ $ec{x}^0\|^m) = o(\|ec{x} - ec{x}^0\|^m)$ при $ec{x} o ec{x}^0$ (це неважко доводиться). Звідси

$$g(\vec{x}) = g(\vec{x}^0) + \sum_{j=1}^{m} (x_j - x_j^0) o(\|\vec{x} - \vec{x}^0\|^m) = o(\|\vec{x} - \vec{x}^0\|^{m+1}).$$

MI доведено.

А тепер фінальний акорд – це доведення теореми Тейлора в формі Пеано.

Proof.

Розглянемо функцію $g_m(\vec{x}) = f(\vec{x}) - f(\vec{x}^0) - \sum_{k=1}^n \frac{d^k f(\vec{x}^0)}{k!}$. За першою лемою, g_m та всі її частинні

похідні до n-го порядку включно нулеві в точці \vec{x}^0 . Ну й крім того, g_m диференційована n разів в

точці
$$\vec{x}^0$$
 (як многочлен). Значить, $g_m(\vec{x}) = o(\|\vec{x} - \vec{x}^0\|^m)$. Отже, $f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + o(\|\vec{x} - \vec{x}^0\|^n), \vec{x} \to \vec{x}^0$.

Example 2.5.5 Розкласти функцію $f(x,y) = e^{x+y}$ відносно точки $(x_0,y_0) = (1,-1)$.

Заздалегідь зауважимо, що $\frac{\partial^s f}{\partial x^{s_1} \partial u^{s_2}}(1,-1) = e^{x+y}|_{(1,-1)} = 1$, де $s_1+s_2=s$.

$$f(1,-1) = 1$$

$$f'(1,-1)(\vec{x}-\vec{x}^0) = (x-1) + (y+1)$$

$$f''(1,-1)(\vec{x}-\vec{x}^0)^2 = (x-1)^2 + 2(x-1)(y+1) + (y+1)^2$$

$$f'''(1,-1)(\vec{x}-\vec{x}^0)^3 = (x-1)^3 + 3(x-1)^2(y+1) + 3(x-1)(y+1)^2 + (y+1)^3$$
:

Таким чином, ми можемо це записати ось так

$$f(x,y) = 1 + \left[\frac{(x-1)}{1!} + \frac{(y+1)}{1!} \right] + \left[\frac{(x-1)^2}{2!} + \frac{2(x-1)(y+1)}{2!} + \frac{(y+1)^2}{2!} \right] + \dots + \left[\frac{(x-1)^n}{n!} + \frac{C_n^2(x-1)^{n-1}(y+1)}{n!} + \dots + \frac{(y+1)^n}{n!} \right] + o\left(\sqrt{(x-1)^2 + (y+1)^2}\right) = \sum_{k=1}^n \sum_{p=0}^k \frac{C_p^k}{k!} (x-1)^{k-p} (y+1)^p + o\left(\sqrt{(x-1)^2 + (y+1)^2}^n\right), (x,y) \to (1,-1).$$

Remark 2.5.6 Можна формулу Тейлора записати в якості ряда Тейлора за певними умовами, але я цього робити не буду.

2.6 Локальні екстремуми

Definition 2.6.1 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ – внутрішня точка.

Точка \vec{x}^0 називається точкою:

- локального максимуму, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \geq f(\vec{x});$ локального мінімуму, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \leq f(\vec{x}).$

Для строгих екстремумів нерівність строга та існують околи $U_{\varepsilon}(\vec{x}^0)\setminus\{\vec{x}^0\}$.

Theorem 2.6.2 Необхідна умова локального екстремуму

Задана функція $f\colon A\to\mathbb{R}$ — диференційована в точці $\vec{x}^0\in A$ — внутрішня. Відомо, що \vec{x}^0 — локальний екстремум. Тоді $\frac{\partial f}{\partial x_i}(\vec{x}^0)=0, \forall j=\overline{1,m}.$

Розглянемо функцію $h(x_1)=f(x_1,x_2^0,\ldots,x_m^0)$ — функція від однієї змінної, така, що x_1^0 — локальний екстремум. Для інших змінних аналогічно. Більш того, $h'(x_1) = \frac{\partial f}{\partial x_1}(x_1, x_2^0, \dots, x_m^0)$. Таким чином, за необхідною умовою локального екстремуму матана в \mathbb{R} , маємо $h'(x_1) = 0 \implies \partial f$ $\frac{\partial f}{\partial x_1}(x_1^0, x_2^0, \dots, x_m^0) = 0.$

$$\textbf{Remark 2.6.3} \ \frac{\partial f}{\partial x_j}(\vec{x}^0) = 0, \forall j = \overline{1,m} \iff df(\vec{x}^0) \equiv 0.$$

= Вказівка: підставити в диференціал $(dx_1, dx_2, \dots, dx_n) = (1, 0, \dots, 0),$ щоб було $\frac{\partial f}{\partial x_i}(\vec{x}^0) = 0.$

Definition 2.6.4 Точка \vec{x}^0 називається **стаціонарною** для функції f, якщо

всі частинні похідні в заданній точці нулеві.

Proposition 2.6.5 Інше означення стаціонарної точки

Точка \vec{x}^0 – стаціонарна $\iff df_{\vec{x}^0}$ – не сюр'єктивне.

Proof.

 \Rightarrow Зрозуміло.

Дано: $df_{\vec{x}^0}$ – не сюр'єктивне. Взагалі, будь-який функціонал уже автоматично сюр'єктивний. $\overline{\text{Тодi}}$ звідси $df_{\vec{x}^0} \equiv 0$ – єдиний варіант. Отже, звідси всі частинні похідні нулеві, а тому \vec{x}^0 – стаціо-

Theorem 2.6.6 Достатня умова локального екстремуму

Задана функція $f: A \to \mathbb{R}$, така, що $f \in C^2$ в околі точки $\vec{x}^0 \in A$, де \vec{x}^0 – стаціонарна та внутрішня

- 1) Нехай $d^2 f(\vec{x}^0)$ строго додатноозначена. Тоді \vec{x}^0 строгий локальний мінімум;
- 2) Нехай $d^2f(\vec{x}^0)$ строго від'ємноозначена. Тоді \vec{x}^0 строгий локальний максимум;
- 3) Нехай $d^2 f(\vec{x}^0)$ знакозмінна. Тоді \vec{x}^0 не локальний екстремум.

Proof.

1) Нехай $d^2f(\vec{x}^0)$ – додатноозначена. Оскільки функція f – двічі диференційована в точці \vec{x}^0 , то тоді за теоремою Тейлора в формі Пеано,

$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + o(\|\vec{x} - \vec{x}^0\|^2), \vec{x} \to \vec{x}^0.$$

Позначу $\rho = \|\vec{x} - \vec{x}^0\|$, а також $\xi_k = \frac{x_k - x_k^0}{2}$, $k = \overline{1,m}$. Можна зауважити, що $\xi_1^2 + \dots + \xi_m^2 = 1$.

Оскільки \vec{x}^0 – стаціонарна, то звідси $d\!f(\vec{x}^0)\equiv 0.$ Таким чином,

$$f(\vec{x}) - f(\vec{x}^0) = \frac{1}{2}d^2f(\vec{x}^0) + o(\rho^2) = \frac{1}{2}\sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}^0)(x_i - x_i^0)(x_j - x_j^0) + o(\rho^2) = \frac{1}{2}\rho^2 \left(\sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}^0)\xi_i \xi_j + o(1)\right).$$

Розглянемо функцію $F(\xi_1,\ldots,\xi_m)=\sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}^0)\xi_i \xi_j$, що визначена на одиничній сфері \mathcal{S}^m , а

ця множина — замкнена та обмежена. Також відомо, що $F \in C(S^m)$ як многочлен, а тому вона досягає мінімуму. Проте F – додатноозначена, а отже $\min F > 0$.

Рівність $f(\vec{x}) - f(\vec{x}^0) = \frac{1}{2}\rho^2(F(\xi_1, \dots, \xi_m) + o(1)), \rho \to 0$ перепишеться таким чином:

$$\exists \delta: \forall \rho < \delta \implies f(\vec{x}) - f(\vec{x}^0) > \frac{1}{4}\rho^2 \min F > 0$$
, остаточно

$$\exists \delta > 0 : \forall \vec{x} : ||\vec{x} - \vec{x}^0|| < \delta \implies f(\vec{x}) - f(\vec{x}^0) > 0.$$

 $\exists \delta > 0: \forall \vec{x}: \|\vec{x} - \vec{x}^0\| < \delta \implies f(\vec{x}) - f(\vec{x}^0) > 0.$ Тобто, знайшли окіл, де $\forall \vec{x}: f(\vec{x}^0) < f(\vec{x})$, а тому \vec{x}^0 – строгий локальний мінімум.

- 2) Все аналогічно.
- 3) А тепер припустимо, що $d^2f(\vec{x}^0)$ знакозмінна. Ми розглядаємо функцію лише в деякому околі $U_{\delta_0}(\vec{x}^0)$ через диференційованість. Тоді $\exists \overrightarrow{\Delta x} : d^2 f(\vec{x}^0, \overrightarrow{\Delta x}) > 0$. Ми окіл ще звужимо до $U_{\delta = \|\overrightarrow{\Delta x}\|}(\vec{x}^0)$.

Там будемо шукати точку в вигляді $\vec{x}^t = \vec{x}^0 + t \overrightarrow{\Delta x}$, де t>0 – довільне. Тоді за Тейлором, $f(\vec{x}^t) - f(\vec{x}^0) = \frac{1}{2} d^2 f(\vec{x}^0, t \overrightarrow{\Delta x}) + o(\|\vec{x}^t - \vec{x}^0\|)$, де $\vec{x}^t \to \vec{x}^0$.

$$f(\vec{x}^t) - f(\vec{x}^0) = \frac{1}{2} d^2 f(\vec{x}^0, t \overrightarrow{\Delta x}) + o(\|\vec{x}^t - \vec{x}^0\|), \text{ де } \vec{x}^t \to \vec{x}^0.$$

$$f(\vec{x}^t) - f(\vec{x}^0) = \frac{1}{2}t^2d^2f(\vec{x}^0, \overrightarrow{\Delta x}) + o(t^2\|\overrightarrow{\Delta x}\|^2) = \frac{t^2}{2}\left(d^2f(\vec{x}^0, \overrightarrow{\Delta x}) + o(1)\right), \text{ де } t \to 0.$$

Якщо більш детально це розписати o(1), а згодом обрати $\varepsilon=\frac{1}{2}d^2f(\vec{x}^0,\Delta\overrightarrow{x}),$ то отримаємо, що

 $\exists \delta^*: \forall t: t < \delta^* \implies f(\vec{x}^t) - f(\vec{x}^0) > 0.$ Якщо так станеться, що $U_{\delta^*}(\vec{x}^0)$ буде більшим за $U_{\delta=\|\overrightarrow{\Delta x}\|}(\vec{x}^0)$, то тоді буде ми можемо взяти точку $\vec{x}^0 + \overrightarrow{\Delta x}$, для якої $f(\vec{x}^0 + \overrightarrow{\Delta x}) - f(\vec{x}^0) > 0$.

Також буде $\exists \overrightarrow{\Delta x'} : d^2 f(\overrightarrow{x^0}, \overrightarrow{\Delta x'}) < 0$ в силу невизначеності знака. І там абсолютно аналогічно. Остаточно, $\forall U_{\delta}$,

- якщо U_{δ} більший за U_{δ_0} , то вже автоматично виконано;
- інакше знайдуться точки по цим крокам.

Отже, \vec{x}^0 – не екстремум.

Example 2.6.7 Дослідити на локальні екстремуми функцію $f(x) = x^3 + 3xy^2 - 39x - 36y + 26$. Спочатку шукаємо критичні точки:

$$\begin{cases} \frac{\partial f}{\partial x} = 3x^2 + 3y^2 - 39 = 0 \\ \frac{\partial f}{\partial y} = 6xy - 36 = 0 \end{cases} \implies (x, y) \in \{(3, 2), (-3, -2), (2, 3), (-2, -3)\}.$$

Далі знайдемо другий диференціал:

$$d^{2}f = \frac{\partial^{2}f}{\partial x^{2}} dx^{2} + 2 \frac{\partial^{2}f}{\partial x \partial y} dx dy + \frac{\partial^{2}f}{\partial y^{2}} dy^{2}.$$

 $d^2f = 6(x dx^2 + 2y dx dy + x dy^2).$

Для кожної критичної точки подивимось на цей диференціал.

I. $d^2 f(3,2) = 6(3 dx^2 + 4 dx dy + 3 dy^2)$.

1. $d^2f(3,2)=0$ (3 dx+4axay+3ay). Диференціал $d^2f(3,2)$ можна розглядати як квадратичну форму $(d^2f(3,2))(dx,dy)$. Даній квадратичній формі відповідає матриця $H=6\begin{pmatrix}3&2\\2&3\end{pmatrix}=\begin{pmatrix}18&12\\12&18\end{pmatrix}$ (див. лінійну алгебру). До речі, дана матриця — це в точності матриця Гесе. Застосуємо критерій Сільвестра. Маємо $\Delta_1^H=18>0$ та $\Delta_2^H=\det\begin{pmatrix}18&12\\12&18\end{pmatrix}=6(3\cdot 3-2\cdot 2)=30>0$. Отже, за цим критерієм, маємо $d^2f(3,2)$ — додатноозначена. Отже, (3,2) — локальний мінімум.

II. $d^2f(-3,-2)$ – аналогічними міркуваннями доводимо, що (-3,-2) – локальний максимум.

III.
$$d^2 f(2,3) = 12(dx^2 + 3 dx dy + dy^2)$$
.

Знову запишемо матрицею $H=6\begin{pmatrix}2&3\\3&2\end{pmatrix}$. Зауважимо, що матриця має власні числа -1,5. Вони різного знаку, що приводить до висновку: $d^2f(2,3)$ – знакозмінна. Отже, (2,3) – не екстремум.

IV. $d^2f(-2,-3)$ – аналогічними міркуваннями доводимо, що (-2,-3) – не екстремум.

Example 2.6.8 Дослідити на локальні екстремуми функцію $f(x,y) = x^2 + y^4$.

$$\begin{cases} \frac{\partial f}{\partial x} = 2x = 0\\ \frac{\partial f}{\partial y} = 4y^3 = 0\\ d^2f = 2\,dx^2 + 12y^2\,dy^2. \end{cases} \Longrightarrow (0,0) - \epsilon$$
дина критична точка.

 $d^2f(0,0) = 2 dx^2 \ge 0$ – дана квадратична форма невід'ємноозначена, тому що при (dx,dy) = (0,0.1) маємо $d^2f(0,0) = 0$. Тож скористатися достатньою умовою ми не можемо.

Однак можна зауважити, що $f(0,0) \leq f(x,y)$, причому $\forall (x,y) \in \mathbb{R}^2$, зокрема в будь-якій точці окола (0,0). Таким чином, (0,0) – локальний мінімум.

Example 2.6.9 Дослідити на локальні екстремуми функцію $f(x,y) = x^2 - y^4$.

Тут також (0,0) – єдина критична точка, тут також $d^2f(0,0)=2\,dx^2\geq 0$ – невід'ємноозначена квадратична форма.

Проте цього разу (0,0) не буде локальним екстремумом. Дійсно, для кожного околу $U_{\delta}(0,0)$ зна-йдуться точки $(x_1,y_1)=\left(\frac{\delta}{2},0\right)$ та $(x_2,y_2)=\left(0,\frac{\delta}{2}\right)$, причому ці дві точки в середині околу, для яких:

$$f(x_1, y_1) = \frac{\delta^2}{4} > 0 = f(0, 0)$$
 $f(x_2, y_2) = -\frac{\delta^4}{16} < 0 = f(0, 0).$

2.7 Умовні локальні екстремуми

Definition 2.7.1 Задана функція $f: A \to \mathbb{R}$ та $A \subset \mathbb{R}^{n+m}$ — відкрита множина. Задані також функції $g_1, \dots, g_m: A \to \mathbb{R}$. Розглянемо множину $\Gamma_{g_1, \dots, g_m} = \{ \vec{x} \in G: g_1(\vec{x}) = \dots = g_m(\vec{x}) = 0 \}$. Точка $\vec{x}^0 \in \Gamma_{g_1, \dots, g_m}$ називається **умовним локальним максимумом (мінімумом)**, якщо

 \vec{x}^0 є локальним максимумом (мінімумом) функцій $\tilde{f}\colon \Gamma_{g_1,...,g_m}\to \mathbb{R}$, де $\tilde{f}\equiv f$.

Definition 2.7.2 Рівняння вигляду

$$g_1(\vec{x}) = 0,$$

$$\vdots$$

$$g_m(\vec{x}) = 0$$

називається рівняннями зв'язку.

Example 2.7.3 Зокрема маємо функцію $f(x,y) = x^2 - y^2$ та функцію g(x,y) = y = 0. Маємо тоді $ilde{f}(x,y)=f(x,0)=x^2$, звідси x=0 – точка локального мінімуму функції $ilde{f}.$ Отже, x = 0 – точка умовного локального мінімуму функції f.

Definition 2.7.4 Задані функції $g_1, \ldots, g_m \colon A \to \mathbb{R}$, де $A \subset \mathbb{R}^p$ — відкрита множина. Всі функції неперервно-диференційовані на A.

Функції $\{g_1, \dots, g_m\}$ називаються функціонально незалежними в точці $\vec{x}^0 \in A$, якщо

$$\{g_1'(\vec{x}^0), \dots, g_m'(\vec{x}^0)\}$$
 – лінійно незалежна

Example 2.7.5 Зокрема $\{g_1, g_2\}$, де $g_1(x, y) = x$, $g_2(x, y) = y$ – функціонально незалежні. Дійсно, $g_1'(x,y)=(1,0)$ та $g_2'(x,y)=(0,1)$ в кожній точці. Ці похідні – лінійно незалежні.

Definition 2.7.6 Задані функції $f,g_1,\ldots,g_m\colon A\to\mathbb{R}$ та $A\subset\mathbb{R}^{n+m}$ - відкрита множина. Функцією Лагранжа назвемо таку функцію:

$$F_{\vec{\lambda}}(\vec{x}) = f(\vec{x}) - \lambda_1 g_1(\vec{x}) - \dots - \lambda_m g_m(\vec{x}),$$

де
$$\vec{\lambda} = (\lambda_1, \dots, \lambda_m)^T \in \mathbb{R}^m$$
.

Theorem 2.7.7 Необхідна умова умовного локального екстремуму

Задані функції $f,g_1,\ldots,g_m\colon A\to\mathbb{R}$ та $A\subset\mathbb{R}^{n+m}$ – відкрита множина. Всі функції – неперервнодиференційовані на A. Відомо, що $\vec{x}^0 \in \Gamma_{g_1,\dots,g_m}$ – умовний локальний екстремум функції f, а також $\{g_1,\dots,g_m\}$ – функціонально незалежні в \vec{x}^0 . Тоді існують $\lambda_1,\dots,\lambda_m \in \mathbb{R}$, для яких \vec{x}^0 – стаціонарна точка функції Лагранжа $F_{(\lambda_1,...,\lambda_m)^T}$.

Mu будемо доводити при n=2, m=1. Для більших аргументів – аналогічно, але більш технічна cnpaea.

Proof.

Нехай f(x,y,z) має локальний екстремум $(x_0,y_0,z_0)\in\Gamma_g$ з рівнянням g(x,y,z)=0.

У силу функціональної незалежності за умовою в точці, маємо $g'(x_0, y_0, z_0) \neq \vec{0}$, тобто всі частинні похідні ненулеві. Тоді за теоремою про неявну функцію, існує $\varphi \colon U(x_0,y_0) \to U(z_0)$, де $\varphi(x_0, y_0) = z_0$

 $\forall (x,y) \in U(x_0,y_0) : g(x,y,\varphi(x,y)) = \tilde{g}(x,y) = 0.$

Тоді маємо функцію $\tilde{f}(x,y) = f(x,y,\varphi(x,y))$ – функція 2-х змінних, де (x_0,y_0) – точка локального

екстремуму. Звідси випливає, що
$$d\tilde{f}(x_0, y_0) = 0$$
 $d\tilde{f}(x_0, y_0) = df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial f}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial f}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$

Також оскільки $\tilde{g}(x,y)\equiv 0$, то звідси маємо

$$d\tilde{g}(x_0, y_0) = dg(x_0, y_0) = \frac{\partial g}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial g}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial g}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$$

Також осылыки
$$g(x,y) = 0$$
, то зыдам масыо.
$$d\tilde{g}(x_0,y_0) = dg(x_0,y_0) = \frac{\partial g}{\partial x}(x_0,y_0,z_0) \, dx + \frac{\partial g}{\partial y}(x_0,y_0,z_0) \, dy + \frac{\partial g}{\partial z}(x_0,y_0,z_0) \, d\varphi(x_0,y_0) = 0.$$
Останню рівність домножимо на λ , яка відніметься з першим рівнянням.
$$\left(\frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x}\right)(x_0,y_0,z_0) \, dx + \left(\frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y}\right)(x_0,y_0,z_0) \, dy + \left(\frac{\partial f}{\partial z} - \lambda \frac{\partial g}{\partial z}\right)(x_0,y_0,z_0) \, d\varphi(x_0,y_0) = 0.$$

Оскільки $\frac{\partial g}{\partial z}(x_0,y_0,z_0)\neq 0$ в силу функціональної незалежності, то ми оберемо такий λ , щоб

$$\frac{\partial f}{\partial x}(x_0,y_0,z_0) - \lambda \frac{\partial g}{\partial z}(x_0,y_0,z_0) = 0.$$
 Отримаємо:

$$\begin{split} &\frac{\partial f}{\partial x}(x_0,y_0,z_0) - \lambda \frac{\partial g}{\partial z}(x_0,y_0,z_0) = 0. \text{ Отримаємо:} \\ &\left(\frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x}\right)(x_0,y_0,z_0)\,dx + \left(\frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y}\right)(x_0,y_0,z_0)\,dy = 0. \\ &\text{I ня рівність виконується для всіх } \Delta x, \Delta y. \text{ Отже,} \\ &\frac{\partial f}{\partial x}(x_0,y_0,z_0) - \lambda \frac{\partial g}{\partial x}(x_0,y_0,z_0) = 0 \end{split}$$

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0) - \lambda \frac{\partial g}{\partial x}(x_0, y_0, z_0) = 0$$

$$\frac{\partial f}{\partial y}(x_0, y_0, z_0) - \lambda \frac{\partial g}{\partial y}(x_0, y_0, z_0) = 0.$$

$$dF_{\lambda}(x_0, y_0, z_0) = d(f - \lambda g)(x_0, y_0, z_0) = \frac{\partial (f - \lambda g)}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial (f - \lambda g)}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial (f - \lambda g)}{\partial z}(x_0, y_0, z_0) dz = 0.$$

Theorem 2.7.8 Достатня умова умовного локального екстремуму

Задані функції $f,g_1,\ldots,g_m\colon A o\mathbb{R}$ та $A\subset\mathbb{R}^{n+m}$ – відкрита множина. Всі функції – двічі неперервнодиференційовані на A. Відомо, що $\bar{x}^0 \in \Gamma_{g_1,...,g_m}$ — стаціонарна точка функції Лагранжа для деякого $\vec{\lambda}$. Нехай $\{g_1,\ldots,g_m\}$ — функціонально незалежні в точці \vec{x}^0 . Розглянемо множину $\Gamma^*_{g_1,\ldots,g_m}(\vec{x}^0)=$

- $\{\vec{\Delta x} \in \mathbb{R}^{n+m}: dg_1(\vec{x}^0) = \dots = dg_m(\vec{x}^0) = 0\}.$ 1) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ строго додатноозначена на $\Gamma^*_{g_1,\dots,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 умовний локальний мінімум; 2) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ строго від'ємноозначена на $\Gamma^*_{g_1,\dots,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 умовний локальний макси-
- 3) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ знаконеозначена на $\Gamma^*_{g_1,\dots,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 не умовний локальний екстремум.

Mu будемо доводити при n=2, m=1. Для більших аргументів – аналогічно, але більш технічна справа.

Proof.

Нехай рівняння зв'язку лише g(x,y,z)=0. Функція Лагранжа $F_{\lambda}(x,y,z)=f(x,y,z)-\lambda g(x,y,z)$. За умовою, (x_0, y_0, z_0) – стаціонарна точка F_{λ} для деякого λ .

g – функціонально незалежна в (x_0, y_0, z_0) , тож $g'(x_0, y_0, z_0) \neq \vec{0}$. Ми тут припустимо, що $\frac{\partial g}{\partial z}(x_0, y_0, z_0) \neq \vec{0}$

0. Тоді за теоремою про неявну функцію, існує $\varphi \colon U(x_0,y_0) \to U(z_0)$, для якого $\varphi(x_0, y_0) = z_0$

 $\forall (x,y) \in U(x_0,y_0) : g(x,y,\varphi(x,y)) = \tilde{g}(x,y) = 0.$

Причому сама функція φ також двічі неперервно-диференційована.

Розглянемо функцію $\hat{f}: U(x_0, y_0) \to \mathbb{R}$, що визначена як $\hat{f}(x, y) = f(x, y, \varphi(x, y))$.

Покажемо, що (x_0, y_0) – стаціонарна точка функції \tilde{f} .

$$d\tilde{f}(x_0, y_0) = df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial f}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial f}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0).$$

$$\begin{split} & d\tilde{f}(x_0,y_0) = df(x_0,y_0) = \frac{\partial f}{\partial x}(x_0,y_0,z_0) \, dx + \frac{\partial f}{\partial y}(x_0,y_0,z_0) \, dy + \frac{\partial f}{\partial z}(x_0,y_0,z_0) \, d\varphi(x_0,y_0). \\ & dF_{\lambda}(x_0,y_0,z_0) = d(f-\lambda g)(x_0,y_0,z_0) = \frac{\partial (f-\lambda g)}{\partial x}(x_0,y_0,z_0) \, dx + \frac{\partial (f-\lambda g)}{\partial y}(x_0,y_0,z_0) \, dy + \frac{\partial (f-\lambda g)}{\partial z}(x_0,y_0,z_0) \, dz = \frac{\partial (f-\lambda g)}{\partial z}(x_0,y_0,z_0)$$

$$=\left(\frac{\partial f}{\partial x}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial x}(x_0,y_0,z_0)\right)\,dx+\left(\frac{\partial f}{\partial y}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial y}(x_0,y_0,z_0)\right)\,dy+\left(\frac{\partial f}{\partial z}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial z}(x_0,y_0,z_0)\right)\,dz.$$
 Але в силу стаціонарної точки маємо $dF_\lambda(x_0,y_0,z_0)=0$. Зокрема для $dz=d\varphi(x_0,y_0)$ маємо рівність

Оскільки $g(x,y,\varphi(x,y))=0,$ то звідси $dg(x,y,\varphi(x,y))=0, \forall (x,y)\in U, \forall (\Delta x,\Delta y)\in \mathbb{R}^2.$

$$dg(x,y,\varphi(x,y)) = \frac{\partial g}{\partial x}(x,y,\varphi(x,y)) dx + \frac{\partial g}{\partial y}(x,y,\varphi(x,y)) dy + \frac{\partial g}{\partial z}(x,y,\varphi(x,y)) d\varphi(x,y).$$

Зокрема, підставляючи $(x,y)=(x_0,y_0)$, отримаємо:

$$\frac{\partial g}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial g}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial g}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$$

$$\frac{\partial x}{\partial x}$$
 Совет бум (били) $\frac{\partial z}{\partial y}$ Совет бум (били) Домножимо це рівняння на λ та додамо його до рівняння $dF_{\lambda}(x_0,y_0,z_0)=0$. Отримаємо: $\frac{\partial f}{\partial x}(x_0,y_0,z_0)\,dx+\frac{\partial f}{\partial y}(x_0,y_0,z_0)\,dy+\frac{\partial f}{\partial z}(x_0,y_0,z_0)\,d\varphi(x_0,y_0)=0$.

Але це теж саме, що $d\tilde{f}(x_0,y_0)=0$, що доводить: (x_0,y_0) – стаціонарна точка \tilde{f} .

Тепер для визначення характеру точки (x_0, y_0) функції \tilde{f} ми обчислимо другий диференціал. Якщо все обережно зробити, отримаємо:

$$d^{2}\tilde{f}(x_{0}, y_{0}) = d^{2}f(x_{0}, y_{0}, z_{0})|_{\Delta z = d\varphi(x_{0}, y_{0})} + \frac{\partial f}{\partial z}(x_{0}, y_{0}, z_{0}) d^{2}\varphi(x_{0}, y_{0}).$$

Аналогічним чином для $\tilde{g}(x,y)$ маємо:

$$d^2 \tilde{g}(x_0,y_0) = d^2 g(x_0,y_0,z_0)|_{\Delta z = d \varphi(x_0,y_0)} + \frac{\partial g}{\partial z}(x_0,y_0,z_0) \, d^2 \varphi(x_0,y_0) = 0.$$
 Попереднє рівняння віднімемо на останнє, помножене на λ – отримаємо:

$$d^2 \tilde{f}(x_0, y_0) = d^2 (f - \lambda g)(x_0, y_0, z_0)|_{\Delta z = d\varphi(x_0, y_0)} + \left(\frac{\partial f}{\partial z} - \lambda \frac{\partial g}{\partial z}\right)(x_0, y_0, z_0)d^2\varphi(x_0, y_0).$$

$$d^{2}\tilde{f}(x_{0}, y_{0}) = d^{2}F_{\lambda}(x_{0}, y_{0}, z_{0})|_{\Delta z = d\varphi(x_{0}, y_{0})} + \frac{\partial F_{\lambda}}{\partial z}(x_{0}, y_{0}, z_{0})d^{2}\varphi(x_{0}, y_{0}).$$

Але (x_0, y_0, z_0) - кртична функція F_{λ} , а том

 $d^2 \tilde{f}(x_0, y_0) = d^2 F_{\lambda}(x_0, y_0, z_0)|_{\Delta z = d\varphi(x_0, y_0)}.$

Більш детально треба пояснити, що дає умова $\Delta z = d\varphi(x_0, y_0)$. Ми вже знаємо, що $g(x, y, \varphi(x, y)) =$ $0, \forall (x, y), \text{ a Tomy}$

 $dg(x, y, \varphi(x, y))(x_0, y_0) = 0$, але звідси ж, враховуючи умову, отримаємо

 $dg(x, y, \varphi(x, y))(x_0, y_0) = dg(x_0, y_0, z_0) = 0.$

А це означає, що $(\Delta x, \Delta y, \Delta z) \in \Gamma_q^*(x_0, y_0, z_0)$.

Остаточно $d^2 \tilde{f}(x_0, y_0) = d^2 F_{\lambda}(x_0, y_0, z_0)|_{(\Delta x, \Delta y, \Delta z) \in \Gamma_q^*(x_0, y_0, z_0)}$.

А далі все цілком зрозуміло.

- 1) $d^2F_{\lambda}(x_0,y_0,z_0)>0 \implies d^2\tilde{f}(x_0,y_0)>0 \implies (x_0,y_0)$ локальний мінімум $\tilde{f}\implies (x_0,y_0,z_0)$ умовний локальний мінімум f;
- 2) аналогічно;
- 3) аналогічно.

Example 2.7.9 Дослідити функцію f(x, y, z) = xyz на умовний локальний екстремум за умовою x + y + z = 3.

У цьому випадку g(x, y, z) = x + y + z - 3 = 0. Запишемо функцію Лагранжа:

$$L_{\lambda}(x, y, z) = xyz - \lambda(x + y + z - 3).$$

Знайдемо всі критичні точки L_{λ} , що лежать на множині Γ_{q} :

$$\begin{cases} \frac{\partial L_{\lambda}}{\partial x} = yz - \lambda = 0\\ \frac{\partial L_{\lambda}}{\partial y} = xz - \lambda = 0\\ \frac{\partial L_{\lambda}}{\partial z} = xy - \lambda = 0\\ g(x, y, z) = x + y + z - 3 = 0 \end{cases}$$

Якщо розв'язати систему рівнянь, отримаємо наступні розв'язки (x, y, z):

 $M_0(1,1,1), M_1(3,0,0), M_2(0,3,0), M_3(0,0,3).$

А також відповідні λ будуть наступні:

$$\lambda_0 = 1, \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0.$$

$$\lambda_0 = 1, \lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 0.$$
 Дослідимо тепер d^2L_{λ} для кожної точки з відповідним λ .
$$d^2L_{\lambda} = \frac{\partial^2L_{\lambda}}{\partial x^2} dx^2 + \frac{\partial^2L_{\lambda}}{\partial y^2} dy^2 + \frac{\partial^2L_{\lambda}}{\partial z^2} dz^2 + 2\left(\frac{\partial^2L_{\lambda}}{\partial x\partial y} dx dy + \frac{\partial^2L_{\lambda}}{\partial y\partial z} dy dz + \frac{\partial^2L_{\lambda}}{\partial z\partial x} dz dx\right) = 0.$$

= 2(z dx dy + x dy dz + y dx dz).

Із рівняння зв'язку маємо, що $d(x+y+z)=d(3)=0=dx+dy+dz \implies dz=-dx-dy$

Підставимо це в d^2L_{λ} :

$$d^{2}L_{\lambda} = 2(-ydx^{2} + (z - x - y) dx dy - x dy^{2}).$$

I. $M_0(1,1,1)$ та $\lambda_0=1$.

$$d^2L_{\lambda_0}(M_0) = 2(-dx^2 - dx\,dy - dy^2) = -2\left(\left(dx + \frac{1}{2}\,dy\right)^2 + \frac{3}{4}\,dy^2\right) < 0.$$
 Тобто маємо від'ємноозначену

квадратичну форму. Отже, $M_0(1,1,1)$ – умовний локальний максимум.

II.
$$M_1(3,0,0)$$
 та $\lambda_1 = 0$.

 $d^2L_{\lambda_1}(M_1) = 2(-3 dx dy - 3 dy^2) = -6(dx + dy) dy$. Тобто маємо знаконеозначену квадратичну форму. Отже, $M_1(3,0,0)$ – не умовний локальний екстремум.

III. $M_2(0,3,0)$ та $\lambda_2=0$ – аналогічно не умовний локальний екстремум.

IV. $M_3(0,0,3)$ та $\lambda_3=0$ – аналогічно не умовний локальний екстремум.

2.8 Теорема про існування оберненої функції

Спочатку трохи необхідних теорем, лем, тверджень, аби довести основний результат.

Theorem 2.8.1 Теорема Лагранжа про середнє

Задана функція $f\colon G\to\mathbb{R}$, де $G\subset\mathbb{R}^n$ – відкрита та f – диференційована. Оберемо точки $\vec{x},\vec{y}\in G$ так, що $[\vec{x}, \vec{y}] \subset G$. Тоді існує $\vec{\xi} \in (\vec{x}, \vec{y})$, для якого $|f(\vec{y}) - f(\vec{x})| \le |\operatorname{grad} f(\vec{\xi})| ||\vec{y} - \vec{x}||$.

Proof.

Дійсно, $f(\vec{y}) - f(\vec{x}) = df(\vec{\xi})$ при $\xi \in (\vec{x}, \vec{y})$ за формулою Тейлора із залишком у формі Лагранжа. Із іншого боку, $df(\vec{\xi}) = \operatorname{grad} f(\vec{\xi})(\vec{y} - \vec{x})$. Отримаємо в результаті, що $|f(\vec{y}) - f(\vec{x})| \le |\operatorname{grad} f(\vec{\xi})| ||\vec{y} - \vec{x}||$ за нерівністю Коші-Буняковського.

Definition 2.8.2 Функція $\vec{f} \colon A \to A$ при $A \subset \mathbb{R}^n$ називається **стиско**м, якщо

$$\exists q \in (0,1) : \forall \vec{x}, \vec{y} \in A : \|\vec{f}(\vec{x}) - \vec{f}(\vec{y})\| \le q \cdot \|\vec{x} - \vec{y}\|$$

Remark 2.8.3 Стискаючі функції – неперервні.

Brasiera: oбрати $\delta = \frac{q}{\varepsilon}$ при всіх $\varepsilon > 0$.

Theorem 2.8.4 Задана $A \subset \mathbb{R}^n$ та $\vec{f} \colon A \to A$ – стискаюче відображення. Тоді існує єдина точка нерухома точка, тобто $\exists ! \vec{x} \in A : f(\vec{x}) = \vec{x}$.

Якщо хтось вчив теорію метричних просторів, то може впізнати, що це теорема Банаха.

Proof.

І. Існування.

Нехай $\vec{x}_0 \in A$ – довільна точка. Зробимо позначення: $\vec{x_1} = \vec{f}(\vec{x}_0), \ \vec{x}_2 = \vec{f}(\vec{x}_1), \ \dots, \vec{x}_n = \vec{f}(\vec{x}_{n-1}), \dots$ Покажемо, що послідовність $\{\vec{x}_n, n \geq 0\}$ – фундаментальна. Дійсно, для $m \leq n$ маємо:

$$\begin{aligned} &\|\vec{x}_m - \vec{x}_n\| = \|\vec{f}(\vec{x}_{m-1}) - \vec{f}(\vec{x}_{n-1})\| \le q \cdot \|\vec{x}_{m-1} - \vec{x}_{n-1}\| \le \dots \le q^m \|\vec{x}_0 - \vec{x}_{n-m}\|. \\ &\|\vec{x}_0 - \vec{x}_{n-m}\| \le \|\vec{x}_0 - \vec{x}_1\| + \|\vec{x}_1 - \vec{x}_2\| + \dots + \|\vec{x}_{n-m-1} - \vec{x}_{n-m}\| \le \|\vec{x}_0 - \vec{x}_1\| (1 + q + \dots + q^{n-m-1}) \le \\ &\le \|\vec{x}_0 - \vec{x}_1\| \frac{1}{1 - q}. \end{aligned}$$

Разом отримаємо $\|\vec{x}_m - \vec{x}_n\| \le \frac{q^m}{1-q} \|\vec{x}_0 - \vec{x}_1\| \to 0, n, m \to \infty.$

Отже, $\{\vec{x}_n, n \geq 0\}$ – збіжна, позначимо $\vec{a} = \lim_{n \to \infty} \vec{x}_n$. Зважаючи на неперервність стиска, отримаємо $\vec{f}(\vec{a}) = \vec{f} \left(\lim_{n \to \infty} \vec{x}_n \right) = \lim_{n \to \infty} \vec{f}(\vec{x}_n) = \lim_{n \to \infty} \vec{x}_{n+1} = \vec{a}$. Тобто \vec{a} – це наша шукана нерухома точка.

II. *Єдиність*

!Припустимо, що \vec{f} має дві різні нерухомі точки \vec{a}, \vec{b} . Буде суперечність! Дійсно, $0 < \|\vec{a} - \vec{b}\| = \|\vec{f}(\vec{a}) - \vec{f}(\vec{b})\| \le q \cdot \|\vec{a} - \vec{b}\| < \|\vec{a} - \vec{b}\|$.

Lemma 2.8.5 Маємо $\vec{g}: U_r(\vec{0}) \to \mathbb{R}^n$ таку, що $\vec{g}(\vec{0}) = \vec{0}$, а також $\|\vec{g}(\vec{x}) - \vec{g}(\vec{y})\| \le \frac{1}{2} \|\vec{x} - \vec{y}\|$ для всіх $\vec{x}, \vec{y} \in U_r(\vec{0})$. Тоді функція $\vec{f}: U_r(\vec{0}) \to \mathbb{R}^n$, що задається як $\vec{f}(x) = \vec{x} + \vec{g}(x)$, буде ін'єктивною. Крім того, $\vec{f}(U_r(\vec{0})) \supset U_{\frac{r}{2}}(\vec{0})$.

Remark 2.8.6 Зазначимо, що \vec{g} – стиск, тому неперервна, зокрема звідси \vec{f} – неперервна.

Proof.

 \vec{f} – iн' ϵ кmивнa.

Припустимо $\vec{f}(\vec{x}) = \vec{f}(\vec{y})$, тобто маємо $\vec{x} + \vec{g}(\vec{x}) = \vec{y} + \vec{g}(\vec{y})$. Звідси $\|\vec{g}(\vec{x}) - \vec{g}(\vec{y})\| = \|\vec{x} - \vec{y}\| \le \frac{1}{2} \|\vec{x} - \vec{y}\|$. Єдина можливість, коли працюватиме нерівність, – це випадок $\vec{x} = \vec{y}$.

$$\vec{f}(U_r(\vec{0})) \supset U_{\frac{r}{2}}(\vec{0}).$$

Нехай $\vec{y} \in U_{\frac{r}{2}}(\vec{0})$. Ми хочемо довести, що $\vec{y} \in f(U_r(\vec{0}))$, тобто знайти точку $\vec{x} \in U_r(\vec{0})$, для якого $\vec{f}(\vec{x}) = \vec{y}$. Іншими словами, $\vec{x} = \vec{y} - \vec{g}(\vec{x})$.

Розглянемо функцію $\vec{F}: U_r(\vec{0}) \to U_r(\vec{0})$, що визначена як $\vec{F}(\vec{x}) = \vec{y} - \vec{g}(\vec{x})$. Зазначимо, що $\vec{F}(\vec{x}) \in U_r(\vec{0})$. Справді,

$$\|\vec{F}(\vec{x})\| \le \|\vec{y}\| + \|\vec{g}(\vec{x})\| \le \frac{r}{2} + \|\vec{g}(\vec{x}) - \vec{g}(\vec{0})\| \le \frac{r}{2} + \frac{1}{2}\|\vec{x} - \vec{0}\| < \frac{r}{2} + \frac{r}{2} = r.$$

Крім того, \vec{F} буде стиском, тому що $\|\vec{F}(\vec{x}) - \vec{F}(\vec{x'})\| = \|\vec{g}(\vec{x'}) - \vec{g}(\vec{x})\| \le \frac{1}{2} \|\vec{x'} - \vec{x}\|$. Значить, за щойно доведеною, існує нерухома точка, тобто $\exists \vec{x} \in U_r(\vec{0}) : \vec{F}(\vec{x}) = \vec{x} \implies \vec{x} = \vec{y} - \vec{g}(\vec{x})$.

Theorem 2.8.7 Теорема про існування оберненої функції

Задана $E \subset \mathbb{R}^n$ – відкрита множина та $\vec{f} \colon E \to \mathbb{R}^n$ – неперервно-диференційована функція. Припустимо, що $\vec{f}'(\vec{x}^0)$ – оборотна матриця. Тоді існують $U \subset E$ – відкритий окіл \vec{x}^0 та V – відкритий окіл $\vec{f}(\vec{x}^0)$, для яких $\vec{f} \colon U \to V$ буде бієкцією. Зокрема існує \vec{f}^{-1} , причому $(\vec{f}^{-1})'(\vec{f}(\vec{x}^0)) = (\vec{f}'(\vec{x}^0))^{-1}$.

Proof.

I. Випадок, коли $\vec{x}^0 = \vec{0}$, при цьому $\vec{f}(\vec{x}^0) = \vec{0}$, а також $\vec{f'}(\vec{x}^0) = I$ – одинична матриця.

Розглянемо функцію $\vec{g} \colon E \to \mathbb{R}^n$ ось таку: $\vec{g}(\vec{x}) = \vec{f}(\vec{x}) - \vec{x}$. Звідси маємо $\vec{g}(\vec{0}) = \vec{0}$, а також $\vec{g}'(\vec{0}) = \vec{0}$. Зокрема маємо grad $g_i(\vec{x}) = \vec{0}$ для всіх $i = \overline{1, n}$.

Оскільки \vec{g} – неперервно-диференційована функція, то існує $U_r(\vec{0}) \subset E$, де для кожної $\vec{x} \in U_r(\vec{0})$ маємо $\|\operatorname{grad} g_i(\vec{x})\| \leq \frac{1}{2n^2}$ (чисто із означення неперервності).

Тепер оберемо $\vec{x}, \vec{y} \in U_r(\vec{0})$. За теоремою Лагранжа, $|g_i(\vec{x}) - g_i(\vec{y})| \le \|\operatorname{grad} g(\vec{\xi_i}\| \|\vec{x} - \vec{y}\| \le \frac{1}{2n^2} \|\vec{x} - \vec{y}\|$.

Зокрема звідси $\|\vec{g}(\vec{x}) - \vec{g}(\vec{y})\| \leq \frac{1}{2n} \|\vec{x} - \vec{y}\| \leq \frac{1}{2} \|\vec{x} - \vec{y}\|$. Ця нерівність каже, що \vec{g} — стискаюче відображення. Отже, за щойно доведеною лемою, відображення $\vec{f} = \vec{g} + I$ — ін'єкція та $\vec{f}(U_r(\vec{0})) \supset U_{\frac{r}{2}}(\vec{0})$. Зокрема існуватиме $\vec{f}^{-1} \colon U_{\frac{r}{2}}(\vec{0}) \to U_r(\vec{0})$.

При $\vec{y}=\vec{0}$ матимемо $\|\vec{g}(\vec{x}\|\leq \frac{1}{2}\|\vec{x}\|$ для всіх $\vec{x}\in U_r(\vec{0})$. Зокрема, за нерівністю трикутника $\frac{1}{2}\|\vec{x}\| \le \|\vec{f}(\vec{x}\| \le \frac{3}{2}\|\vec{x}\|.$

Покладемо $V=U_{\frac{r}{2}}(\vec{0})$ та $U=\vec{f}^{-1}(U_r(\vec{0}))$. За побудовою, $\vec{f}:U\to V$ задає бієкцію. Обидві множини U,V — відкриті, оскільки \vec{f} — неперервна. Залишилося довести, що $\vec{f}^{-1}\colon V\to U$ — диференційована в $\vec{0}$ та $(\vec{f}^{-1})'(\vec{0})=(\vec{f}(\vec{0}))^{-1}=I^{-1}=I$.

Ми зараз маємо $\vec{f}(\vec{x}) - \vec{f}(\vec{0}) = I \cdot (\vec{x} - \vec{0}) + \vec{o}(\vec{x})$ при $\vec{x} \to \vec{0}$. Ну або бути простішим, $\vec{f}(\vec{x}) = \vec{x} + \vec{o}(\vec{x})$ при $\vec{x} \to \vec{0}$. Ми хочемо довести, що $\vec{f}^{-1}(\vec{y}) - \vec{f}^{-1}(\vec{0}) = I(\vec{y} - \vec{0}) + \vec{o}(\vec{y})$ при $\vec{y} \to \vec{0}$. Знову простіше кажучи, $\vec{f}^{-1}(\vec{y}) = \vec{y} + \vec{o}(\vec{y})$ при $\vec{y} \to \vec{0}$.

Маємо $\vec{f}^{-1}(\vec{y}) - \vec{y} = \vec{x} - \vec{f}(\vec{x}) = -\vec{o}(\vec{x}) = \vec{o}(\vec{x}) = \vec{o}(\vec{y})$ при $\vec{y} \to \vec{0}$.

II. Випадок, коли досі $\vec{x}^0 = \vec{0}$, при цьому $\vec{f}(\vec{x}^0) = \vec{0}$, але похідна – довільна оборотна. Розглянемо функцію $\vec{u}(\vec{x}) = (\vec{f'}(\vec{x}^0))^{-1} \cdot \vec{f}(\vec{x})$. Маємо $\vec{u}(\vec{x}^0) = \vec{0}$, а також $\vec{u}'(\vec{x}^0) = I$. Оскільки ми довели пункт I, то для даної функції існуватимуть U,V із умови теореми, для яких $\vec{u}\colon U \to V$ – бієкція. Тоді функція $\vec{f}: U \to V$, яка задається як $\vec{f}(\vec{x}) = \vec{f}'(\vec{x}^0) \cdot \vec{u}(\vec{x})$, буде теж бієкцією. Зокрема

зазначимо, що $(\vec{f}^{-1})'(\vec{0}) = \vec{f}'(\vec{x}^0) \cdot I$.

III. Випадок, коли досі \vec{x}^0 – довільне та $\vec{f}(\vec{x}^0) = \vec{0}$.

Розглянемо функцію $\vec{u}(\vec{x}) = \vec{f}(\vec{x} + \vec{x}^0)$. Зазначимо, що $\vec{u}(\vec{x}^0) = \vec{0}$, а також $\vec{u}'(\vec{x}) = \vec{f}'(\vec{x} + \vec{x}^0)$, при цьому $\vec{u}'(\vec{x}^0) = \vec{f}'(\vec{x}^0)$ – оборотна матриця. Тоді за пунктом ІІ, функція $\vec{u}: U' \to V'$ – бієкція. Зауважимо, що $\vec{f}^{-1}(\vec{y}) = \vec{u}^{-1}(\vec{y}) + \vec{x}^0$. Дійсно, $\vec{f}^{-1}\vec{f}(\vec{x}) = \vec{f}^{-1}\vec{f}(\vec{x} - \vec{x}^0 + \vec{x}^0) = \vec{f}^{-1}\vec{u}(\vec{x} - \vec{x}^0) = \vec{u}^{-1}\vec{u}(\vec{x} - \vec{x}^0) + \vec{x}^0 = \vec{x}$.

 $\vec{f}\vec{f}^{-1}(\vec{y}) = \vec{f}(\vec{u}^{-1}(\vec{y}) + \vec{x}^0) = \vec{u}\vec{u}^{-1}(\vec{y}) = \vec{y}.$

Коротше, в нас $\vec{f}: U' + \vec{x}^0 \to V'$ – бієкція. При цьому $(\vec{f}^{-1})'(\vec{f}(\vec{x}^0)) = (\vec{u}^{-1})'(\vec{f}(\vec{x}^0)) = (\vec{u}^{-1})(\vec{u}(\vec{0})) =$ $(\vec{u}'(\vec{0})^{-1} = (\vec{f}'(\vec{x}^0))^{-1}.$

IV. Bunadok, $konu \vec{x}^0$ уже довільна точка.

Розглянемо функцію $\vec{u}(\vec{x}) = \vec{f}(\vec{x}) - \vec{f}(\vec{x}^0)$. Зауважимо, що $\vec{u}(\vec{x}^0) = \vec{0}$, вона задовольняє пункту III. Зазначимо, що $\vec{f}^{-1}(\vec{y}) = \vec{u}^{-1}(\vec{y} - \vec{f}(\vec{x}^0))$. У нас бієкція $\vec{u}: U' \to V'$, а тепер бієкція $\vec{f}: U' \to V' + \vec{f}(\vec{x}^0)$. $(\vec{f}^{-1})'(\vec{f}(\vec{x}^0)) = (\vec{u}^{-1})'(\vec{0}) = (\vec{u}'(\vec{0}))^{-1} =$

Неявно задані функції

Remark 2.9.1 Приклад для розуміння

Задано рівняння кола на площині \mathbb{R}^2 – один з прикладів неявної функції: $x^2+y^2-1=0$.

Зрозуміло, що це — не графік функції однієї змінної. Просто тому що (майже) кожному значенню x тут ставиться у відповідність два значення y. Проте якщо розглядати деякий малий окіл точки (x_0,y_0) , то ми отримаємо деякий шматок малюнку, що й буде графіком функції. Зокрема в нашому випадку або $y=\sqrt{1-x^2}$, або $y=-\sqrt{1-x^2}$.

Проте існують певні точки, де цього зробити не можна – точки (1,0), (-1,0). Як би ми не зменшували окіл цієї точки, там існують ікси, які ставлять у відповідність два ігрика. Я цю точку позначил червоним кольором.

Саме тому з'явилась мотивацію створити теорему, де через рівняння F(x,y)=0 ми можемо отримати y=f(x) в деякому околі точки (x_0,y_0) під деякими важливими умовами.

Важливо розуміти, що функція існує, проте явну формулу отримати не завжди вийде. Зокрема маємо неявну функцію $y^5 + y^3 + y + x = 0$. Щоб знати y = f(x), треба розв'язати рівняння п'ятого степеня, проте корені цього многочлена не можна виразити через формулу. І тим не менш, під деякими умовами, ми можемо знати функцію y = f(x), просто без формули.

Я спочатку запишу теорему для двовимірного випадку, а далі почну поступово узагальнювати.

Theorem 2.9.2 Теорема про неявну функцію (2D)

Задана $E \subset \mathbb{R}^2$ — відкрита множину та $F \colon E \to \mathbb{R}$ — неперервно-диференційована функція. Припустимо, що $(x_0,y_0) \in E$ така, що $F(x_0,y_0)=0$, а також $\frac{\partial F}{\partial y}(x_0,y_0) \neq 0$. Тоді існує $U \subset \mathbb{R}$ — відкритий окіл точки x_0 та існує $V \subset E$ — відкритий окіл точки y_0 , а також функція $f \colon U \to \mathbb{R}$, для якої

окіл точки
$$x_0$$
 та існує $V \subset E$ – відкритий окіл точки y_0 , а також функція $f \colon U \to \mathbb{R}$, для якої $f(x_0) = y_0$. Більш того, $F(x,y) = 0 \iff y = f(x)$. Нарешті, похідна $\frac{df}{dx}(x_0) = -\frac{\frac{\partial f}{\partial x}(x_0,y_0)}{\frac{\partial f}{\partial y}(x_0,y_0)}$.

Example 2.9.3 Зокрема для $F(x,y)=x^2+y^2-1$ маємо, що вона – неперервна, $\frac{\partial F}{\partial x}=2x$ $\frac{\partial F}{\partial y}=2y$ – диференційована. Причому $\frac{\partial F}{\partial y}\neq 0\iff y\neq 0.$

Тому за попередньою теоремою, дійсно, існує функція y = f(x), але найголовніше: $f'(x) = -\frac{x}{y}$.

Theorem 2.9.4 Теорема про неявну функцію

Задано $E \subset \mathbb{R}^n$ — відкриту множину та $f \colon E \to \mathbb{R}$ — неперервно-диференційована функція. Припустимо, що $\vec{y} = (y_1, \dots, y_n) \in E$ така, що $f(\vec{y}) = 0$, а також $\frac{\partial f}{\partial x_n}(\vec{y}) \neq 0$. Тоді існує $U \subset \mathbb{R}^{n-1}$ — відкритий окіл точки (y_1, \dots, y_{n-1}) та існує $V \subset E$ — відкритий окіл точки \vec{y} , а також функція $g \colon U \to \mathbb{R}$, для якої $g(y_1, \dots, y_{n-1}) = y_n$. Більш того, $f(x_1, \dots, x_n) = 0 \iff x_n = g(x_1, \dots, x_{n-1})$.

Нарешті, похідна
$$\frac{\partial g}{\partial x_j}(y_1,\ldots,y_{n-1}) = -\frac{\frac{\partial f}{\partial x_j}(\vec{y})}{\frac{\partial f}{\partial x_n}(\vec{y})}.$$

Proof.

Розглянемо функцію $\vec{F} \colon E \to \mathbb{R}^n$, що задається як $F(x_1, \dots, x_n) = (x_1, \dots, x_{n-1}, f(x_1, \dots, x_n))$. Зрозуміло, що \vec{F} – неперервно-диференційована, причому $\vec{F}(\vec{y}) = (y_1, \dots, y_{n-1}, 0)$, а також його похідна

$$\vec{F}'(\vec{y}) = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ \frac{\partial f}{\partial x_1}(\vec{y}) & \frac{\partial f}{\partial x_2}(\vec{y}) & \dots & \frac{\partial f}{\partial x_{n-1}}(\vec{y}) & \frac{\partial f}{\partial x_n}(\vec{y}) \end{pmatrix}.$$

Оскільки $\frac{\partial f}{\partial x_n}(\vec{y}) \neq 0$ за умовою задачі, то $\vec{F}'(\vec{y})$ – оборотна матриця. Ми можемо її знайти безпосередньо методом Гауса – отримаємо таку матрицю:

$$(\vec{F}'(\vec{y})^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ -\frac{\partial f}{\partial x_1}(\vec{y}) & -\frac{\partial f}{\partial x_2}(\vec{y}) & \dots & -\frac{\partial f}{\partial x_{n-1}}(\vec{y}) & \frac{1}{\partial f}(\vec{y}) \end{pmatrix}.$$
Vere group we were the property and the configuration respects to the property and in the configuration of the configuratio

У нас спрацьовують всі умови, щоб застосувати теорему про існування оберненої функції для \vec{F} . Зокрема існують відкритий окіл $V \subset E$ точки \vec{y} , а також відкритий окіл W точки $\vec{F}(\vec{y}) = (y_1, \ldots, y_{n-1}, 0)$ для яких функція $\vec{F} \colon V \to W$ — бієкція. При цьому \vec{F}^{-1} буде диференційованою в точці $(y_1, \ldots, y_{n-1}, 0)$. Позначимо $\vec{F}^{-1}(\vec{x}) = (h_1(\vec{x}), h_2(\vec{x}), \ldots, h_n(\vec{x}))$ при $\vec{x} \in W$.

Із того, що $\vec{F}(\vec{F}^{-1}(\vec{x})) = \vec{x}$ випливає, що $h_1(\vec{x}) = x_1, \ldots, h_{n-1}(\vec{x}) = x_{n-1}$, а також найголовніше тут $f(x_1, \ldots, x_{n-1}, h_n(x_1, \ldots, x_n)) = x_n$. Функція h_n буде диференційована, бо \vec{F}^{-1} є такою.

Покладемо $U = \{(x_1, \dots, x_{n-1}) : (x_1, \dots, x_{n-1}, 0) \in W\}$ – це буде відкритим околом точки (y_1, \dots, y_{n-1}) . Тепер визначимо функцію $g \colon U \to \mathbb{R}$ таким чином: $g(x_1, \dots, x_{n-1}) = h_n(x_1, \dots, x_{n-1}, 0)$. Маємо, що g – диференційована в точці (y_1, \dots, y_{n-1}) . Перша частина теореми завершена.

Нехай $(x_1,\ldots,x_n)\in V$ така, що $f(x_1,\ldots,x_n)=0$. Тоді $\vec{F}(x_1,\ldots,x_n)=(x_1,\ldots,x_{n-1},0)\in W$. Зокрема звідси $(x_1,\ldots,x_n)=\vec{F}^{-1}(x_1,\ldots,x_{n-1},0)$, а тому $x_n=h_n(x_1,\ldots,x_{n-1},0)=g(x_1,\ldots,x_{n-1})$. Якщо $(x_1,\ldots,x_n)\in V$ така, що $x_n=g(x_1,\ldots,x_{n-1})$, то приблизно в такому самому ключі доводи-

ться, що $f(x_1,\ldots,x_n)=0$. Отже, ми отримали $f(x_1,\ldots,x_{n-1},g(x_1,\ldots,x_{n-1}))=0$ для всіх $(x_1,\ldots,x_{n-1})\in U$. Оскільки g – диференційована в (y_1,\ldots,y_{n-1}) та f – диференційована в (y_1,\ldots,y_{n-1},y_n) , то маємо ∂f — ∂g

диференциована в
$$(g_1, \dots, g_{n-1})$$
 на f диференциована в $(g_1, \dots, g_{n-1}, g_n)$, то маемо $\frac{\partial f}{\partial x_j}(\vec{y}) + \frac{\partial f}{\partial x_n}(\vec{y}) \frac{\partial g}{\partial x_j}(y_1, \dots, y_{n-1}) = 0$. Отримали необхідну рівність.

Theorem 2.9.5 Теорема про неявну вектор-функцію

Задано $E \subset \mathbb{R}^{n+k}$ – відкрита множина та $\vec{F} \colon E \to \mathbb{R}^k$ – неперервно-диференційована функція.

Proof.

Розглянемо функцію $\vec{g} \colon E \to \mathbb{R}^{n+k}$, що задається ось таким величезним чином:

$$\begin{pmatrix} g_1(x_1, \dots, x_n, y_1, \dots, y_k) \\ \vdots \\ g_n(x_1, \dots, x_n, y_1, \dots, y_k) \\ g_{n+1}(x_1, \dots, x_n, y_1, \dots, y_k) \\ \vdots \\ g_{n+k}(x_1, \dots, x_n, y_1, \dots, y_k) \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ F_1(x_1, \dots, x_n, y_1, \dots, y_k) \\ \vdots \\ F_k(x_1, \dots, x_n, y_1, \dots, y_k) \end{pmatrix}.$$

Функція \vec{g} — неперервно-диференційована, причому $\vec{g}(\vec{x}^0, \vec{y}^0) = (\vec{x}^0, \vec{0})$. Напишемо матрицю Якобі:

$$\vec{g}' = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} & \frac{\partial f_1}{\partial y_1} & \dots & \frac{\partial f_1}{\partial y_k} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_k}{\partial x_1} & \frac{\partial f_k}{\partial x_2} & \dots & \frac{\partial f_k}{\partial x_n} & \frac{\partial f_k}{\partial y_1} & \dots & \frac{\partial f_k}{\partial y_k} \end{pmatrix} = \begin{pmatrix} I & O \\ \vec{F}'_{\vec{x}} & \vec{F}'_{\vec{y}} \end{pmatrix}.$$

За умовою теореми, матриця $\vec{F}_{\vec{v}}^{\prime}$ буде оборотною в точці (\vec{x}^0, \vec{y}^0) , а тому звідси $\vec{g}^{\prime}(\vec{x}^0, \vec{y}^0)$ буде оборотною матрицею, оскільки $\det \vec{g}' = \det I \cdot \det \vec{F}'_{\vec{n}} \neq 0$. Значить, спрацьовує теорема про існування оберненої функції \vec{g}^{-1} . Зокрема існують відкритий окіл $V \subset E$ точки (\vec{x}^0, \vec{y}^0) та відкритий окіл W точки $\vec{g}(\vec{x}^0, \vec{y}^0) = (\vec{x}^0, \vec{0})$, для яких функція $\vec{g} \colon V \to W$ — бієкція. При цьому \vec{g}^{-1} буде диференційованою в точці $(\vec{x}^0, \vec{0})$.

Позначимо
$$\vec{g}^{-1}(\vec{y}, \vec{x}) = \begin{pmatrix} h_1(\vec{y}, \vec{x}) \\ \vdots \\ h_{n+k}(\vec{y}, \vec{x}) \end{pmatrix}$$
. Користуючись тим фактом, що $\vec{g} \circ \vec{g}^{-1}(\vec{x}, \vec{y}) = (\vec{x}, \vec{y})$, то то-

ді отримаємо $h_1(\vec{x}, \vec{y}) = x_1, \dots, h_n(\vec{x}, \vec{y}) = x_n$, а також $f_1(x_1, \dots, x_n, h_{n+1}(\vec{x}, \vec{y}), \dots, h_{n+k}(\vec{x}, \vec{y})) =$ $y_1, \ldots, f_k(x_1,\ldots,x_n,h_{n+1}(\vec x,\vec y),\ldots,h_{n+k}(\vec x,\vec y))=y_k$. Усі функції h_i – диференційовані.

Покладемо $U = \{ \vec{x} : (\vec{x}, \vec{0}) \in W \}$ – це буде відкритим околом точки \vec{x}^0 . Визначимо тепер функцію

$$ec{f}\colon U o\mathbb{R}^k$$
 ось таким чином: $ec{f}(ec{x})=egin{pmatrix} h_{n+1}(ec{x},ec{0}) \\ dots \\ h_{n+k}(ec{x},ec{0}) \end{pmatrix}$. Ми знайшли шукану функцію, яка неперервно-

диференційована.

Нехай $(\vec{x}, \vec{y}) \in V$ така, що $\vec{F}(\vec{x}, \vec{y}) = \vec{0}$. Тоді $\vec{g}(\vec{x}, \vec{y}) = (\vec{x}, \vec{0}) \in W$. Зокрема звідси $(\vec{x}, \vec{y}) = \vec{g}^{-1}(\vec{x}, \vec{0})$, а TOMY $\vec{y} = \vec{h}(\vec{x}, \vec{0}) = \vec{f}(\vec{x}).$

Якщо $(\vec{x}, \vec{y}) \in V$ така, що $\vec{y} = \vec{f}(\vec{x})$, то приблизно в такому самому ключі доводиться, що $\vec{F}(\vec{x}, \vec{y}) = \vec{0}$. Отже, ми отримали $\vec{F}(\vec{x}, \vec{f}(\vec{x})) = \vec{0}$ для всіх $\vec{x} \in U$.

Example 2.9.6 Задано вектор-функцію \vec{F} таким чином: $\begin{cases} x^2 + y_1^2 - \frac{1}{2}y_2^2 = F_1(x, y_1, y_2) = 0 \\ x + y_1 + y_2 - 2 = F_2(x, y_1, y_2) = 0 \end{cases}$

Маємо
$$\det \vec{F}_y'(x, y_1, y_2) = \det \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} \end{pmatrix} = \det \begin{pmatrix} 2y_1 & -y_2 \\ 1 & 1 \end{pmatrix} = 2y_1 + y_2 \neq 0 \iff y_2 \neq -2y_1, a$$

тому й $x \neq 2 + y_2$.

Тоді враховуючи обмеження, існує вектор-функція
$$\vec{f}(\vec{x}) = \vec{y}$$
, але тепер знайдемо похідну. Маємо: $\vec{F}_y' = \begin{pmatrix} 2y_1 & -y_2 \\ 1 & 1 \end{pmatrix} \implies (\vec{F}_y')^{-1} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 1 & y_2 \\ -1 & 2y_1 \end{pmatrix}$ $\vec{F}_x' = \begin{pmatrix} 2x \\ 1 \end{pmatrix}$

$$\vec{f'} = -(\vec{F'_y})^{-1}\vec{F'_x} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 1 & y_2 \\ -1 & 2y_1 \end{pmatrix} \begin{pmatrix} 2x \\ 1 \end{pmatrix} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 2x + y_2 \\ -2x + 2y_1 \end{pmatrix} = \begin{pmatrix} \frac{2x + y_2}{2y_1 + y_2} \\ \frac{-2x + 2y_1}{2y_1 + y_2} \end{pmatrix}.$$

$$\begin{pmatrix}
\frac{\partial F_1}{\partial x} \\
\frac{\partial F_2}{\partial x} \\
\frac{\partial F_2}{\partial y_1}
\end{pmatrix}
\begin{vmatrix}
\frac{\partial F_1}{\partial y_2} & \frac{\partial F_1}{\partial y_2} \\
\frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2}
\end{pmatrix}$$

Тут записано матрицю Якобі для функції \vec{F} . Червоним виділено \vec{F}_y' , а синім виділено \vec{F}_x' .

3 Інтеграли з параметром

3.1Основні означення та властивості

Definition 3.1.1 Задана функція $f:[a,b]\times[c,d]\to\mathbb{R}$, така, що $\forall y\in[c,d]:f\in\mathcal{R}([a,b]).$ Інтегралом з параметром називають таку функцію $J \colon [c,d] \to \mathbb{R}$:

$$J(y) = \int_{a}^{b} f(x, y) \, dx$$

Remark 3.1.2 Зауважимо, що якщо додатково вимагати $f \in C([a,b] \times [c,d])$, то отримаємо $\forall y \in$ $[c,d]:f\in C([a,b]).$ Таким чином, $\forall y\in [c,d]:f\in \mathcal{R}([a,b]),$ а тому функція $J(y)=\int^{b}f(x,y)\,dx$ буде визначеною коректно.

Proposition 3.1.3 Про неперервність інтеграла з параметром

Задана функція $f:[a,b]\times[c,d]\to\mathbb{R}$, така, що $f\in C([a,b]\times[c,d])$. Тоді $J\in C([c,d])$.

Proof.

$$f(x,y) \in C([a,b] \times [c,d]) \implies f(x,y) \in C_{\mathrm{unif}}([a,b] \times [c,d]) \implies \forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (x_1,y_1), (x_2,y_2) \in [a,b] \times [c,d] :$$

$$||(x_1, y_1) - (x_2, y_2)|| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} < \delta \Rightarrow |f(x_1, y_1) - f(x_2, y_2)| < \frac{\varepsilon}{b - a}$$

Тоді
$$|J(y_1) - J(y_2)| = \left| \int_a^b f(x, y_1) dx - \int_a^b f(x, y_2) dx \right| \le \int_a^b |f(x, y_1) - f(x, y_2)|$$

Якщо я оберу (x,y_1) , (x,y_2) так, що $\|(x,y_1)-(x,y_2)\|=\sqrt{(y_1-y_2)^2}=|y_1-y_2|<\delta$, то тоді $|f(x,y_1)-f(x,y_2)|<\frac{\varepsilon}{b-a}$.

Збираючи пазл, отримаємо $J \in C_{\mathrm{unif}}([c,d]) \implies J \in C([c,d]).$

Proposition 3.1.4 Про диференційованість інтеграла з параметром

Задана функція $f : [a,b] \times [c,d] \to \mathbb{R}$, така, що $f \in C([a,b] \times [c,d])$. Відомо, що $\exists \frac{\partial f}{\partial u} \in C([a,b] \times [c,d])$.

Тоді J – диференційована на [c,d], причому $J'(y) = \int_{-\partial u}^{b} \frac{\partial f}{\partial u}(x,y) dx$.

Proof.

Диференційованість означає існування похідної, тобто необхідно довести її існування.

$$\frac{J(y+\Delta y)-J(y)}{\Delta y}=\frac{1}{\Delta y}\int_a^bf(x,y+\Delta y)-f(x,y)\,dx$$
 Прадаемо Ньютона-Ляйбніца та властивості інтеграла,

та властивості інтеграла, розпишемо підінтегральний вираз ось так:

$$f(x, y + \Delta y) - f(x, y) = \int_{y}^{y + \Delta y} f'_{y}(x, t) dt = \int_{y}^{y + \Delta \hat{y}} \frac{\partial f}{\partial y}(x, t) dt$$

$$= \frac{1}{\Delta y} \int_{a}^{b} \left(\int_{y}^{y+\Delta y} \frac{\partial f}{\partial y}(x,t) dt \right) dx$$

Тепер зафіксуємо точку
$$y_0$$
 та розпишемо праву частину рівності, що ми доводимо:
$$\int_a^b \frac{\partial f}{\partial y}(x,y_0) \, dx = \int_a^b \frac{1}{\Delta y} \left(\int_{y_0}^{y_0+\Delta y} \frac{\partial f}{\partial y}(x,y_0) \, dt \right) dx = \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0+\Delta y} \frac{\partial f}{\partial y}(x,y_0) \, dt \right) dx$$

$$\left| \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} - \int_a^b \frac{\partial f}{\partial y}(x, y_0) \, dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, t) \, dt \right) dx - \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, t) - \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| \le 1$$

$$= \left| \frac{\partial}{\partial y} \int_{a} \left| \int_{y_{0}} \frac{\partial}{\partial y} (x, t) - \frac{\partial}{\partial y} (x, y_{0}) dt \right| dx \right| \leq \int_{a}^{b} \int_{a}^$$

За умовою твердження,
$$\frac{\partial f}{\partial u}(x,y) \in C([a,b] \times [c,d]) \implies \frac{\partial f}{\partial u}(x,y) \in C_{\mathrm{unif}}([a,b] \times [c,d]) \implies$$

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall (x,t), (x,y_0) \in [a,b] \times [c,d]: \|(x,t) - (x,y_0)\| < \delta \Rightarrow \left| \frac{\partial f}{\partial y}(x,t) - \frac{\partial f}{\partial y}(x,y_0) \right| < \frac{\varepsilon}{b-a}$$

Збираємо пазл – отримаємо, що: $\forall y_0 \in [c,d]: \exists \lim_{\Delta y \to 0} \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} = \int_c^b \frac{\partial f}{\partial y}(x,y_0) \, dx = J'(y_0).$ Отже, J – диференційована на [c,d].

Proposition 3.1.5 Про інтегрованість інтеграла з параметром

Задана функція $f\colon [a,b]\times [c,d]\to \mathbb{R},$ така, що $f\in C([a,b]\times [c,d]).$ Тоді $J\in \mathcal{R}([c,d]),$ причому $\int_c^d \underbrace{\int_a^b f(x,y)\,dx}_{=J(y)}\,dy = \int_a^b \int_c^d f(x,y)\,dy\,dx.$

Proof.

Розглянемо дві функції: $h(t) = \int_{t}^{t} \int_{a}^{b} f(x,y) dx dy$ $g(t) = \int_{a}^{b} \int_{t}^{t} f(x,y) dy dx$.

У нашому випадку $t \in [c,d]$. Якщо t=c, то маємо h(c)=g(c)=0. Ми хочемо зараз довести, що g'(t)=h'(t), і тоді за наслідком теореми Лагранжа, h(t)=g(t)+C. Підставивши t=c, отримаємо C=0, тому h(t)=g(t), зокрема h(d)=g(d) – бажана рівність.

Доведемо те, що хочемо. Зробимо позначення: $h(t) = \int_{a}^{t} J(y) \, dy$, $g(t) = \int_{a}^{b} F(x,t) \, dx$. У цьому

випадку $F(x,t) = \int_{-t}^{t} f(x,y) \, dy$

Перший – це інтеграл від верхньої межі, тому h'(t) = J(t).

Покажемо, що другий інтеграл задовольняє умові Ргр. 3.1.4, тоді можемо знайти похідну.

Спочатку доведемо, що підінтегральна функція $F \in C([a,b] \times [c,d])$ (нижче припускаю $t > t_0$).

$$|F(x,t) - F(x_0,t_0)| = \left| \int_c^t f(x,y) \, dy - \int_c^{t_0} f(x_0,y) \, dy \right| = \left| \int_c^t f(x,y) - f(x_0,y) \, dy - \int_{t_0}^t f(x_0,y) \, dy \right| \le \int_c^t |f(x,y) - f(x_0,y)| \, dy + \int_t^t |f(x_0,y)| \, dy.$$

Оскільки $f \in C([a,b] \times [c,d])$, то вона обмежена, тож $\exists M>0: \forall (x,y) \in [a,b] \times [c,d]: |f(x,y)| \leq M$. Оберемо $\varepsilon>0$. Оскільки $f \in C([a,b] \times [c,d])$, то $\exists \delta>0: \forall (x,y): \|(x,y)-(x_0,y_0)\| < \delta \Longrightarrow |f(x,y)-f(x_0,y_0)| < \varepsilon$. Зокрема оберемо $y_0=y$, тоді $\forall x: |x-x_0| < \delta \Longrightarrow |f(x,y)-f(x_0,y)| < \frac{\varepsilon}{d-c}$.

Отже, $|F(x,t) - F(x_0,t_0)| < (t-c)\frac{\varepsilon}{d-c} + (t-t_0)M \le \varepsilon + \tilde{\delta}M.$

Оберемо $\tilde{\delta}=\min\left\{\delta,\frac{\varepsilon}{M}\right\}$. Тоді якщо обрати кожну точку (x,t) так, що $\|(x,t)-(x_0,t_0)\|<\tilde{\delta},$ отримаємо $|F(x,t)-F(x_0,t_0)|<2\varepsilon$ (при $t< t_0$ все працюватиме). Тепер зауважимо, що $\frac{\partial F}{\partial t}(x,t)=f(x,t)\in C([a,b]\times[c,d]).$ Отже, дійсно, g можна продиференціювати за $\operatorname{\mathbf{Prp.}}$ 3.1.4, отримаємо наступне:

$$g'(t)=\int_a^b rac{\partial F}{\partial t}(x,t)\,dt=\int_a^b f(x,t)\,dx=J(t).$$
 Разом ми довели, що хотіли, а саме $g'(t)=h'(t)$ для всіх $t\in[c,d]$. Завершили доведення.

Example 3.1.6 Обчислити $\lim_{\alpha \to 0} \int_0^2 x^2 \cos \alpha x \, dx$.

Маємо $I(\alpha) = \int_0^2 x^2 \cos \alpha x \, dx$. Розглянемо функцію $f(x,\alpha) = x^2 \cos \alpha x$ на $[0,2] \times [-1,1]$ (можна й менше взяти другу сторону, головне щоб навколо точки 0). Ця функція є неперервною, тоді $I(\alpha)$ неперервна, зокрема в точці $\alpha = 0$.

 $\lim_{\alpha \to 0} \int_0^2 x^2 \cos \alpha x \, dx = \lim_{\alpha \to 0} I(\alpha) = I(0) = \int_0^2 x^2 \, dx = \frac{x^3}{3} = \frac{8}{3}.$

Example 3.1.7 Знайти похідну функції $I(\alpha) = \int_{-\infty}^{2} e^{\alpha x^2} \frac{dx}{x}$.

Позначу $f(x,\alpha)=\frac{e^{\alpha x^2}}{\frac{x}{2}}$. Знайдемо частинну похідну за другим аргументом: $\frac{\partial f}{\partial \alpha}=\frac{x^2e^{\alpha x^2}}{x}=xe^{\alpha x^2}$. Зауважимо, що f та $\frac{\partial f}{\partial \alpha}$ неперервні на прямокутнику $[1,2]\times[-1,1]$, тому ми можемо диференціювати

функцію
$$I$$
, а також $I'(\alpha) = \int_1^2 x e^{\alpha x^2} dx$.
$$I'(\alpha) = \frac{1}{2} \int_1^2 e^{\alpha x^2} dx^2 = \frac{1}{2\alpha} e^{\alpha x^2} \Big|_1^2 = \frac{e^{4\alpha} - e^{\alpha}}{2\alpha}$$

Example 3.1.8 Обчислити $\int_0^1 \frac{x^b - x^\alpha}{\ln x} \, dx$, якщо a,b>0.

Зауважимо, що $\frac{x^b-x^a}{\ln x}=\int_a^b x^y\,dy$. Тоді взагалі маємо обчислити $\int_0^1 \int_a^b x^y\,dy\,dx$. Оскільки функція $f(x,y)=x^y$ є неперервною на прямокутнику $[0,1]\times[a,b]$, то звідси ми можемо змінити місцями порядок інтегрування, тобто

$$\int_0^1 \int_a^b x^y \, dy \, dx = \int_a^b \int_0^1 x^y \, dx \, dy = \int_a^b \frac{x^{y+1}}{y+1} \Big|_0^1 \, dy = \int_a^b \frac{1}{y+1} \, dy = \ln(y+1) \Big|_a^b = \ln \frac{b+1}{a+1}.$$

Зараз будуть більш специфічні приклади. Але на них простіше зрозуміти узагальнення теореми про неперервність та диференційованість.

Example 3.1.9 Знайти $\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2}$

Інтуїтивно хочеться, щоб це дорівнювало $\int_0^1 \frac{dx}{1+x^2}$. Запишемо наш ліміт ось так:

$$\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} = \lim_{\alpha \to 0} \left(\int_{0}^{1} \frac{dx}{1+x^2+\alpha^2} + \int_{1}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} - \int_{0}^{\alpha} \frac{dx}{1+x^2+\alpha^2} \right)$$

 $\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} = \lim_{\alpha \to 0} \left(\int_{0}^{1} \frac{dx}{1+x^2+\alpha^2} + \int_{1}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} - \int_{0}^{\alpha} \frac{dx}{1+x^2+\alpha^2} \right).$ Перший інтеграл, тобто $\lim_{\alpha \to 0} \int_{0}^{1} \frac{dx}{1+x^2+\alpha^2} = \int_{0}^{1} \frac{dx}{1+x^2}.$ Тому задля нашої інтуіції, треба довести, що останні два інтеграла дорівнюють нулю. $\left| \int_{0}^{\alpha} \frac{dx}{1+x^2+\alpha^2} \right| \leq \int_{0}^{\alpha} \left| \frac{dx}{1+x^2+\alpha^2} \right| \leq \int_{0}^{\alpha} M \, dx = M\alpha \to 0.$

$$\left| \int_0^\alpha \frac{dx}{1+x^2+\alpha^2} \right| \leq \int_0^\alpha \left| \frac{dx}{1+x^2+\alpha^2} \right| \leq \int_0^\alpha M \, dx = M\alpha \to 0.$$

$$\left| \int_1^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} \right| \leq M(1+\alpha-1) \to 0 \text{ аналогічними міркуваннями.}$$

Тут $M=\max_{x\in[0,2]\times[0,1]}\frac{1}{1+x^2+\alpha^2},$ і це можна знайти через неперервність самої функції. Отже, $\lim_{\alpha\to 0}\int_{\alpha}^{1+\alpha}\frac{dx}{1+x^2+\alpha^2}=\int_{0}^{1}\frac{dx}{1+x^2}=\frac{\pi}{4}.$

Отже,
$$\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} = \int_{0}^{1} \frac{dx}{1+x^2} = \frac{\pi}{4}$$
.

Отже, теорему про неперервність інтеграла з параметром можна узагальнити.

Theorem 3.1.10 Маємо $f \in C([a,b] \times [c,d])$ та $a(y),b(y) \in C([c,d])$, причому $a(y) \geq a$ та $b(y) \leq b$. Тоді $J(y) = \int_{-\infty}^{b(y)} f(x,y) \, dx \in C([c,d]).$

$$\lim_{y \to y_0} \int_{a(y)}^{b(y)} f(x, y) \, dx = \lim_{y \to y_0} \left(\int_{a(y_0)}^{b(y_0)} f(x, y) \, dx \pm \int_{b(y_0)}^{b(y)} f(x, y) \, dx \pm \int_{a(y_0)}^{a(y)} f(x, y) \, dx \right).$$

Знак \pm залежить від взаємного розташування точок $a(y), b(y), a(y_0), b(y_0)$.

Перший інтеграл неперервний, за Prp. 3.1.3. Другий та третій інтеграли оцінюються за модулем так само, як це було на прикладі. Маємо права, бо f обмежується сталою M. Тоді там отримаємо, що ці інтеграли прямують до нуля.

Example 3.1.11 Знайти похідну функції $F(\alpha) = \int_{\alpha}^{\alpha^2} \frac{\ln(1+\alpha x)}{x} \, dx$, нехай $\alpha \geq 0$. Інтуїтивно хочеться продиференціювати як інтеграл від межі та інтеграл від параметру.

=f(x,lpha) неперервна функція, то вона має первісну H. Тоді за формулою $\frac{x}{x}$ Ньютона-Ляйбніца:

$$F(\alpha) = H(x,\alpha)\Big|_{\alpha}^{\alpha^2} = H(\alpha^2,\alpha) - H(\alpha,\alpha) = H(u(\alpha),\alpha) - H(v(\alpha),\alpha), \text{ ge } u(\alpha) = \alpha^2, \ v(\alpha) = \alpha.$$

$$F'(\alpha) = \frac{\partial H}{\partial \alpha^2}(\alpha^2, \alpha) \frac{d\alpha^2}{d\alpha} + \frac{\partial H}{\partial \alpha}(\alpha^2, \alpha) - \frac{\partial H}{\partial \alpha}(\alpha, \alpha) \frac{d\alpha}{d\alpha} - \frac{\partial H}{\partial \alpha}(\alpha, \alpha)$$

$$= \left(\frac{\partial H}{\partial \alpha^2}(\alpha^2, \alpha) \cdot 2\alpha - \frac{\partial H}{\partial \alpha}(\alpha, \alpha) \cdot 1\right) + \left(\frac{\partial H}{\partial \alpha}(\alpha^2, \alpha) - \frac{\partial H}{\partial \alpha}(\alpha, \alpha)\right)$$

$$= \left(f(\alpha^2, \alpha) \cdot 2\alpha - f(\alpha, \alpha) \cdot 1\right) + \left(f(\alpha^2, \alpha) - f(\alpha, \alpha)\right).$$

Підставимо все, що маємо - отримаємо

$$F'(\alpha) = \frac{\ln(1+\alpha^3)}{\alpha^2} \cdot 2\alpha - \frac{\ln(1+\alpha^2)}{\alpha} + \frac{\ln(1+\alpha^3)}{\alpha^2} - \frac{\ln(1+\alpha^2)}{\alpha} = \frac{\ln(1+\alpha^3)}{\alpha} \left(2 + \frac{1}{\alpha}\right) - 2\frac{\ln(1+\alpha^2)}{\alpha}.$$

Для диференціювання існує більш загальна формула.

Theorem 3.1.12 Маємо $f, \frac{\partial f}{\partial u} \in C([a,b] \times [c,d]), a,b \in C([c,d]),$ причому $a(y) \geq a$ та $b(y) \leq b$. Тоді $J(y) = \int_{a(x)}^{b(y)} f(x,y) dx$ буде диференційованою на [c,d], причому

$$J'(y) = f(b(y), y)b'(y) - f(a(y), y)a'(y) + \int_{a(y)}^{b(y)} \frac{\partial f}{\partial y}(x, y) dx.$$

Для її доведення можна скористатися формулою Ньютона-Ляйбніца.

3.2 Невласні інтеграли з параметром та ознаки збіжності

Definition 3.2.1 Задана функція $f \colon A \times B \to \mathbb{R}$, де $A, B \subset \mathbb{R}$, та $y_0 \in \mathbb{R}$ – гранична точка для B. Функція f поточково збігається до функції φ при $y \to y_0$, якщо

$$\forall x \in A : \lim_{y \to y_0} f(x, y) = \varphi(x)$$

Функція f збігається рівномірно до функції φ при $y \to y_0$ на множині A, якщо

$$\sup_{x \in A} |f(x,y) - \varphi(x)| \to 0, y \to y_0$$

Позначення: $f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \rightarrow y_0$.

Новий вигляд збіжності можна звести до збіжності функціональних послідовностей таким твердженням.

Proposition 3.2.2 $f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \to y_0$ на множині $A \iff \forall \{y_n, n \geq 1\} \subset B : \forall n \geq 1 : y_n \neq y_0 : x_n \neq y_n \neq y_n = 0$ $f(x,y_n) \xrightarrow{\rightarrow} \varphi(x), n \to \infty$ на множині A. Випливає з означення рівномірної збіжності.

Theorem 3.2.3 Критерій Коші

$$f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \to y_0 \text{ на } A \iff \forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall y_1, y_2 \in B, y_1, y_2 \neq y_0 : \begin{cases} |y_1 - y_0| < \delta \\ |y_2 - y_0| < \delta \end{cases} \implies \sup_{x \in A} |f(x,y_1) - f(x,y_2)| < \varepsilon.$$

Proof.

⇒ Вказівка: означення рівномірної границі та нерівність трикутника.

Візьмемо деяку послідовність
$$\{y_n, n \ge 1\}$$
, де $y_n \ne y_0, y_n \to y_0$. Тоді $\exists N: \forall n, m \ge N: |y_n - y_0| < \delta, |y_m - y_0| < \delta$. За умовою, звідси $\sup_{x \in A} |f(x, y_n) - f(x, y_m)| < \varepsilon$. За

критерієм Коші рівномірної збіжності функціональної послідовності, $f(x, y_n)$ є рівномірно збіжною на A. Отже, f(x,y) - рівномірно збіжний на A за **Prp. 5.2.2.** (**TODO**: лінкування)

Тепер уже до суті цього підрозділу.

Definition 3.2.4 Задана функція $f \colon [a,\omega) \times A$, така, що $\forall y \in A : \forall c \in [a,\omega) : f \in \mathcal{R}([a,c])$. Також маємо збіжний невласний інтеграл із параметром $J(y) = \int_{a}^{x} f(x,y) dx, \forall y \in A.$

Невласний інтеграл **збігається рівномірно** на множині $\overset{\circ}{A}$, якщо

$$\sup_{y \in A} \left| \int_{a}^{\omega} f(x, y) \, dx - \int_{a}^{c} f(x, y) \, dx \right| \stackrel{c \to \omega}{\to} 0$$

Remark 3.2.5 Воно якось схоже за рівномірну збіжність функції, але трошки не так. Тут розглядається взагалі-то рівномірна збіжність функції g(x,y) до функції g(y) TA при цьому аргумент $x \to x_0$.

Theorem 3.2.6 Критерій Коші

$$\int_{a}^{\omega} f(x,y) \, dx$$
 – збіжний рівномірно на $A \iff \forall \varepsilon > 0 : \exists C : \forall c_{1}, c_{2} \in (C,\omega) : \sup_{y \in A} \left| \int_{c_{1}}^{c_{2}} f(x,y) \, dx \right| < \varepsilon.$ Випливає з критерію Коші рівномірної збіжності функцій.

Theorem 3.2.7 Ознака Ваєрштраса

Задані функції $f\colon [a,\omega)\times A\to \mathbb{R},\ g\colon [a,\omega)\to \mathbb{R}$ такі, що виконується наступне:

1)
$$\forall x \in [a, \omega) : \forall y \in A : |f(x, y)| \le g(x);$$

$$(2)$$
 $\int_{-\infty}^{\omega} g(x) dx$ – збіжний.

Тоді
$$\int_a^\omega f(x,y)\,dx$$
 – збіжний рівномірно на $A.$

$$\mathbf{Proof.}$$

$$\sup_{y \in A} \left| \int_{c}^{\omega} f(x, y) \, dx \right| \le \left| \int_{c}^{\omega} g(x) \, dx \right| \stackrel{c \to \omega}{\to} 0.$$

Example 3.2.8 Довести, що $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ рівномірно збіжний на множині $[1+\gamma,+\infty)$, якщо $\gamma>0$.

Маємо функцію $f(x,\alpha)=\frac{1}{x^{\alpha}}$. Також відома оцінка $x^{\alpha}>x^{1+\gamma}\implies \frac{1}{x^{\alpha}}<\frac{1}{x^{1+\gamma}},$ виконано $\forall x\geq 1.$

Також $\int_{1}^{+\infty} \frac{dx}{x^{1+\gamma}}$ – збіжний невласний інтеграл (еталон). Тому за ознакою Ваєрштрасса, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ рівномірно збіжний на множині $[1+\gamma,+\infty)$.

Example 3.2.9 Довести, що $\int_1^{+\infty} \frac{dx}{x^{\alpha}}$ не ϵ рівномірно збіжним на множині $(1, +\infty)$.

Дійсно,
$$\sup_{\alpha>1}\left|\int_{c}^{+\infty}\frac{dx}{x^{\alpha}}\right|=\sup_{\alpha>1}\left(\frac{1}{c^{\alpha-1}}\frac{1}{1-\alpha}\right)=+\infty\not\to 0$$
 при $c\to+\infty.$

Theorem 3.2.10 Ознака Діріхлє та Абеля

Задані функції $f,\ g\colon [a,\omega)\times A\to \mathbb{R}$ такі, що виконана одна з двох пар умов:

Бадані функції
$$f, g: [a, \omega) \times A \to \mathbb{R}$$
 такі, що виконана одна з двох пар умов.
$$\int_a^A f(x,y) \, dx - \text{рівномірно обмежена на } [a,\omega).$$

$$g - \text{монотонна на } [a,\omega) \ (\forall y \in A) \text{ та}$$

$$g(x,y) \stackrel{\rightarrow}{\to} 0, \ x \to \omega.$$

$$oзнака \ \mathcal{J}ipixлe$$

$$\int_a^\omega f(x,y) \, dx - \text{збіжний рівномірно на } A.$$

$$g - \text{монотонна на } [a,\omega) \ (\forall y \in A) \text{ та}$$

$$pівномірно обмежена на } [a,\omega) \times A.$$

$$oзнака \ A белл$$

$$Tоді \int_a^\omega f(x,y)g(x,y) \, dx - \text{рівномірно збіжний на } A.$$

Тоді
$$\int_{-\infty}^{\infty} f(x,y)g(x,y)\,dx$$
 – рівномірно збіжний на A .

Доведення теореми Діріхлє анаголігно доводиться, як це було в розділі про прості невласні інтеграли (ТОДО: лінкування). Так само із Діріхлє випливає Абеля аналогічним чином.

Example 3.2.11 Довести, що $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} dx$ збіжний рівномірно на $[\alpha, +\infty)$, $\alpha > 0$.

Розглянемо функції $f(x,y) = \sin xy$ та $g(x,y) = \frac{1}{\sqrt{x}+1}$.

 $\int_0^A \sin xy \, dx = -\frac{1}{y} \cos xy \Big|_0^A = -\frac{1}{y} \cos Ay + \frac{1}{y}.$ Ця штука – рівномірно обмежена на $[0, +\infty)$, тому що

$$\frac{1}{y}|1-\cos Ay| \le \frac{1}{y} \le \frac{1}{\alpha}$$
, виконано $\forall A \in [0,+\infty)$.

 $\frac{1}{\sqrt{x}+1}$ ясно, що монотонна на $[0,+\infty)$ та рівномірно прямує до нуля при $x\to+\infty$.

Отже, за ознакою Діріхлє, $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x+1}} dx$ - збіжний рівномірно на $[\alpha, +\infty)$.

Example 3.2.12 Довести, що $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} \operatorname{arctg} xy \, dx$ збіжний рівномірно на $[\alpha, +\infty)$, $\alpha > 0$.

Розглянемо функції $f(x,y)=\dfrac{\sin xy}{\sqrt{x}+1}$ та $g(x,y)=\arctan xy$.

 $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1}$ – збіжний рівномірно за попереднім прикладом.

Отже, за ознакою Абеля, $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} \arctan xy \, dx$ – збіжний рівномірно на $[\alpha, +\infty)$.

Theorem 3.2.13 Ознака Діні

Задано функцію $f \in C([a,\omega) \times [c,d])$. Також відомо, що $f \geq 0$ та $J(y) = \int_{-\infty}^{\infty} f(x,y) \, dx \in C([c,d])$. Тоді J – збіжний рівномірно на [c,d].

Proof.

Доведення ознаки прямо випливає з теореми Діні про рівномірну збіжність функціонального ряда. Для спрощення доведення розгляну випадок, коли $\omega = +\infty$.

Розглянемо функціональну послідовність $g_n(y) = \int_{-1}^{a+n} f(x,y) \, dx$, які визначені на [c,d]. Зауважи-

мо, що $g_n\in C([c,d])$ за **Prp. 3.1.3**. Далі, $\lim_{n\to\infty}g_n(y)=\int_a^\infty f(x,y)\,dx=J(y)\in C([c,d])$. Нарешті, всі $g_n(y)$ неспадають в силу того, що $f \ge 0$.

Отже, за ознакою Діні для функціональної послідовності, g_n збігається рівномірно до J при $n \to \infty$. Тоді звідси $\forall \varepsilon > 0 : \exists N : \forall y \in [c,d] : |g_N(y) - J(y)| < \varepsilon$. Тобто маємо $\left| \int_{a+N}^{+\infty} f(x,y) \, dx \right| < \varepsilon$.

Оберемо C=a+N, тоді $\forall c>C$ та $\forall y\in [c,d]$ матимемо $\left|\int_{a}^{+\infty}f(x,y)\,dx\right|<\varepsilon.$ Власне, це доводить рівномірну збіжність J на [c,d].

3.3 Властивості невласного інтегралу

Proposition 3.3.1 Про неперервність невласного інтеграла з параметром

Задана функція $f:[a,\omega)\times[c,d] o\mathbb{R}$, така, що $f\in C([a,\omega)\times[c,d])$. Також J – рівномірно збіжний на [c,d]. Тоді $J \in C([c,d])$.

За означенням рівномірної збіжності, маємо $\sup_{y\in[c,d]}\left|\int_{\xi}^{\omega}f(x,y)\,dx\right|\to 0,\ \xi\to\omega.$ Іншими словами,

 $\forall \varepsilon > 0 : \exists \xi > a : \sup_{x \in [\varepsilon, d]} \left| \int_{\varepsilon}^{\omega} f(x, y) \, dx \right| < \frac{\varepsilon}{3}.$ Тепер оцінимо J:

$$|J(y_1) - J(y_2)| = \left| \int_a^{\omega} f(x, y_1) \, dx - \int_a^{\omega} f(x, y_2) \, dx \right| =$$

$$= \left| \int_a^{\xi} f(x, y_1) \, dx - \int_a^{\xi} f(x, y_2) \, dx + \int_{\xi}^{\omega} f(x, y_1) \, dx - \int_{\xi}^{\omega} f(x, y_2) \, dx \right| \le$$

$$\le \left| \int_a^{\xi} f(x, y_1) - f(x, y_2) \, dx \right| + \left| \int_{\xi}^{\omega} f(x, y_1) \, dx \right| + \left| \int_{\xi}^{\omega} f(x, y_2) \, dx \right| \le$$

Перший модуль: $f \in C_{\mathrm{unif}}([a,\xi] \times [c,d])$, тоді $\exists \delta: \forall y_1,y_2: |y_1-y_2| < \delta \Rightarrow |f(x,y_1)-f(x,y_2)| < \frac{\varepsilon}{\varepsilon-a}$.

Другий модуль: $\sup_{y\in[c,d]}\left|\int_{\varepsilon}^{\omega}f(x,y)\,dx\right|<\frac{\varepsilon}{3}\implies \forall y\in[c,d]:\left|\int_{\varepsilon}^{\omega}f(x,y)\,dx\right|<\frac{\varepsilon}{3}.$

Proposition 3.3.2 Про інтегрованість невласного інтеграла з параметром

Задана функція $f\colon [a,\omega)\times [c,d] o \mathbb{R}$, така, що $f\in C([a,\omega)\times [c,d])$. Також J – рівномірно збіжний на [c,d]. Тоді $J \in \mathcal{R}([c,d])$, причому $\int_c^d \underbrace{\int_a^\omega f(x,y) \, dx}_d \, dy = \int_a^\omega \int_c^d f(x,y) \, dy \, dx$.

Proof.

Розпишемо інтеграл
$$\int_{c}^{d} J(y) \, dy = \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy + \int_{c}^{d} \int_{b}^{\omega} f(x,y) \, dx \, dy$$
. Перший доданок – це визначений інтеграл, тому там виконується **Prp 3.1.4.** (TODO: лінкування),

тобто
$$\int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy = \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx.$$
 Другий доданок уже цікавіше, його ми оцінимо:
$$\left| \int_{c}^{d} \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{a}^{d} \left| \int_{a}^{\omega} f(x,y) \, dx \, dy \right| dx \, dx + \int_{a}^{\omega} f(x,y) \, dx \, dx$$

$$\left| \int_{c}^{d} \int_{b}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{b}^{\omega} f(x,y) \, dx \right| \, dy \leq \int_{c}^{d} \sup_{y \in [c,d]} \left| \int_{b}^{\omega} f(x,y) \, dx \right| \, dy = \int_{c}^{d} \left| \int_{b}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}^{d} \left| \int_{c}^{d} f(x,y) \, dx \right| \, dx = \int_{c}$$

$$=\sup_{y\in[c,d]}\left|\int_b^\omega f(x,y)\,dx\right|(d-c)\to 0, b\to\omega.$$
 Якщо $b\to\omega$, то тоді отримаємо

$$\int_{c}^{d} J(y) \, dy = \int_{a}^{\omega} \int_{c}^{d} f(x, y) \, dx \, dy + 0 = \int_{a}^{\omega} \int_{c}^{d} f(x, y) \, dx \, dy.$$

Proposition 3.3.3 Про диференційованість невласного інтеграла з параметром

Задана функція $f \colon [a,\omega) \times [c,d] \to \mathbb{R}$, така, що виконані умови:

$$\exists y_0 \in [c,d] : J(y_0)$$
 – збіжний;

2)
$$\frac{\partial f}{\partial y} \in C([a, \omega) \times [c, d]);$$

3)
$$\int_{0}^{\infty} \frac{\partial f}{\partial y}(x,y) dx$$
 – рівномірно збіжний.

Тоді J – збіжний, диференційований на [c,d], при цьому $J'(y)=\int_{-\infty}^{\infty}\frac{\partial f}{\partial u}(x,y)\,dx.$

Розглянемо функцію $I(y)=\int_a^\omega \frac{\partial f}{\partial y}(x,y)\,dx$. Оскільки $\frac{\partial f}{\partial y}$ неперервна та I – рівномірно збіжний, то тоді за **Prp. 3.2.6.** (TODO: лінкування), $I\in\mathcal{R}([y,y_0])$. $\int_{y_0}^y I(t)\,dt=\int_a^\omega \int_{y_0}^y \frac{\partial f}{\partial y}(x,t)\,dt\,dx=\int_a^\omega f(x,y)-f(x,y_0)\,dx=J(y)-J(y_0).$

$$\int_{y_0}^{y} I(t) dt = \int_{a}^{\omega} \int_{y_0}^{y} \frac{\partial f}{\partial y}(x, t) dt dx = \int_{a}^{\omega} f(x, y) - f(x, y_0) dx = J(y) - J(y_0).$$

Отже, $J(y) = \int_{-\infty}^{y} I(t) dt - J(y_0)$ – збіжний $\forall y \in [c,d]$, як сума окремих збіжних доданків. Значить,

$$J'(y) = I(y) - 0 = \int_a^\omega \frac{\partial f}{\partial y}(x, y) \, dx.$$

Example 3.3.4 Обчислити $\int_0^{\frac{\pi}{2}} \frac{\arctan(\operatorname{tg} x))}{\operatorname{tg} x} \, dx.$ Ми розглянемо функцію $J(y) = \int_0^{\frac{\pi}{2}} \frac{\arctan(y \operatorname{tg} x))}{\operatorname{tg} x} \, dx$. Про неї відомо, що: $1) \ \exists y_0 = 0 : J(0) = 0, \ \text{тобто звіжний;}$ $2) \ \frac{\partial f}{\partial y} = \frac{1}{1 + y^2 \operatorname{tg}^2 x} \in C\left(\left[0, \frac{\pi}{2}\right) \times [-1, 1]\right);$

1)
$$\exists u_0 = 0 : J(0) = 0$$
, тобто звіжний:

2)
$$\frac{\partial f}{\partial y} = \frac{1}{1 + y^2 \operatorname{tg}^2 x} \in C\left(\left[0, \frac{\pi}{2}\right) \times [-1, 1]\right)$$

3)
$$\int_0^{\frac{\pi}{2}} \frac{1}{1+y^2 \operatorname{tg}^2 x} \, dx$$
 — збіжний рівномірно принаймні на $[-1,1]$ за мажорантною Ваєрштраса. Дійсно, $\frac{1}{1+y^2 \operatorname{tg}^2 x} \leq 1, \forall y \in [-1,1].$

Отже, ми можемо продиференціювати функцію J(y) та отримати:

$$J'(y) = \int_0^{\frac{\pi}{2}} \frac{1}{1+y^2 \operatorname{tg}^2 x} dx \stackrel{t=\operatorname{tg} x}{=} \cdots = \frac{\pi}{2} \frac{1}{1+y}.$$
 $J(y) = \int \frac{\pi}{2} \frac{1}{1+y} dy = \frac{\pi}{2} \ln|1+y| + C.$ Оскільки $J(0) = 0$, то звідси $C = 0$. Наша мета б

Оскільки J(0) = 0, то звідси C = 0. Наша мета була – це знайти J(1). Таким чином,

$$J(1) = \int_0^{\frac{\pi}{2}} \frac{\arctan(\tan x)}{\tan x} dx = \frac{\pi}{2} \ln 2.$$

Proposition 3.3.5 Про невласне інтегрування невласного інтеграла з параметром

Задана функція
$$f \in C([a,+\infty) \times [c,+\infty))$$
, причому $f \geq 0$. Також відомо, що $\int_a^{+\infty} f(x,y) \, dx \in C([c,+\infty))$, а також $\int_c^{+\infty} f(x,y) \, dy \in C([a,+\infty))$. Тоді якщо $\int_c^{+\infty} \int_a^{+\infty} f(x,y) \, dx \, dy$ — збіжний, то $\int_a^{+\infty} \int_c^{+\infty} f(x,y) \, dy \, dx$ — збіжний. Навпаки теж. Нарешті, $\int_c^{+\infty} \int_a^{+\infty} f(x,y) \, dx \, dy = \int_a^{+\infty} \int_c^{+\infty} f(x,y) \, dy \, dx$.

Proof.

Позначимо $I(y)=\int_a^{+\infty}f(x,y)\,dx$, про неї відомо, що $I\in C([c,+\infty))$, а також $\int_c^{+\infty}I(y)\,dy$ — збіжний.

Хочемо довести, що
$$\lim_{R\to +\infty} \int_a^R \int_c^{+\infty} f(x,y) \, dy \, dx = \int_c^{+\infty} \int_a^{+\infty} f(x,y) \, dx \, dy.$$

Відомо, що
$$\int_{c}^{+\infty} \int_{a}^{+\infty} f(x,y) \, dx \, dy$$
 - збіжний, тобто

$$\forall \varepsilon > 0 : \exists \Delta_1 : \forall d > c : d > \Delta_1 \implies \left| \int_d^{+\infty} \int_a^{+\infty} f(x, y) \, dx \, dy \right| < \frac{\varepsilon}{2}.$$

Також відомо, що $\int_{a}^{+\infty} f(x,y) \, dx$ – збіжний рівномірно за ознакою Діні, тоді

$$\forall \varepsilon > 0 : \exists \Delta_2 : \forall R > a : R > \Delta_2 \implies \forall y \in [c, +\infty) : \left| \int_R^{+\infty} f(x, y) \, dx \right| < \frac{\varepsilon}{2(d - c)}.$$

Оберемо $\Delta=\max\{\Delta_1,\Delta_2\}$, фіксуємо довільне $d>\overset{\circ}{\Delta}$ та $R>\Delta$ таким чином, щоб d>c,R>a.

А далі для доведення ліміту зробимо оцінку:

$$\left|\int_{c}^{+\infty}\int_{a}^{+\infty}f(x,y)\,dx\,dy-\int_{c}^{+\infty}\int_{a}^{R}f(x,y)\,dx\,dy\right|=\left|\int_{c}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|=$$

$$=\left|\int_{c}^{d}\int_{R}^{+\infty}f(x,y)\,dx\,dy+\int_{d}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|\leq\left|\int_{c}^{d}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|+\left|\int_{d}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|\leq$$

$$\leq\int_{c}^{d}\left|\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|+\left|\int_{d}^{+\infty}\int_{a}^{+\infty}f(x,y)\,dx\,dy\right|<\int_{c}^{d}\frac{\varepsilon}{2(d-c)}+\frac{\varepsilon}{2}=\varepsilon.$$
Таким чином, дійсно,
$$\int_{a}^{+\infty}\int_{c}^{+\infty}f(x,y)\,dy\,dx=\int_{c}^{+\infty}\int_{a}^{+\infty}f(x,y)\,dx\,dy.$$

3.4 Інтеграл Діріхлє

Інтегралом Діріхлє називають таку рівність, яку зараз доведу (про збіжність вже говорили) (TODO: лінкування)

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

Розглянемо функцію $J(a)=\int_0^{+\infty}e^{-ax}\frac{\sin x}{x}\,dx$, причому підінтегральну функцію ми довизначимо в точці 0. Тоді підінтегральна функція неперервна.

Перш за все J(a) – рівномірно збіжний на $[0,+\infty)$, бо за ознакою Абеля, маємо:

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx - з \text{біжний рівномірно (доводили)};$$

 e^{-ax} – монотонна відносно x та рівномірно обмежена, бо $|e^{-ax}| \leq 1.$ Із цього ми отримуємо, що $J\in C([0,+\infty))$, а тому $J(0)=\lim_{a\to 0}J(a)$. Далі маємо наступне:

1)
$$\exists a_0 = 0 : J(0)$$
 – збіжний:

1)
$$\exists a_0 = 0 : J(0)$$
 – збіжний;
2) $\frac{\partial f}{\partial a} = -e^{-ax} \sin x \in C([0, +\infty) \times [0, +\infty));$

3)
$$-\int_0^{+\infty} e^{-ax} \sin x \, dx$$
 збіжний рівномірно на $[\gamma, +\infty)$, де $\gamma>0$, за мажорантною Ваєрштраса.

Дійсно,
$$|e^{-ax}\sin x| \le e^{-\gamma x}$$
, а $\int_0^{+\infty} e^{-\gamma x} dx$ – збіжний.

Таким чином,
$$J'(a) = -\int_0^{+\infty} e^{-ax} \sin x \, dx = \dots = -\frac{1}{1+a^2}.$$

 $J(a) = - \operatorname{arctg} a + C$, причому ця рівність виконана $\forall a \in [\gamma, +\infty)$. Але водночас $J(0) = \lim_{a \to 0} J(a) = C$.

Проте ще маємо, що
$$|J(a)| = \left| \int_0^{+\infty} e^{-ax} \frac{\sin x}{x} \, dx \right| \le \int_0^{+\infty} \left| e^{-ax} \frac{\sin x}{x} \right| dx \stackrel{|\sin x| \le x}{\le} \int_0^{+\infty} e^{-ax} \, dx = \frac{1}{a}.$$
 А тому $J(a) \to 0$ при $a \to +\infty$. Звідси випливає, що $0 = -\frac{\pi}{2} + C \implies J(0) = \frac{\pi}{2}.$

Додатково дослідимо ось такий інтеграл та доведемо рівність:

$$\int_0^{+\infty} \frac{\sin ax}{x} \, dx = \frac{\pi}{2} \operatorname{sgn} a$$

Поки обмежимось a > 0, тод

$$F(a) = \int_0^{+\infty} \frac{\sin ax}{x} \, dx \stackrel{ax=t}{=} \int_0^{+\infty} \frac{\sin t}{t} \, dt = \frac{\pi}{2}.$$

$$F(-a) = -F(a) = -\frac{\pi}{2} \text{ та } F(0) = 0 - \text{тут відносно ясно.}$$

$$F(-a) = -F(a) = -\frac{\pi}{2}$$
 та $F(0) = 0$ – тут відносно ясно.

3.5 Інтеграл Ойлера-Пуассона

Інтегралом Ойлера-Пуассона називають таку рівність, яку зараз доведу

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Позначимо $J = \int_0^{+\infty} e^{-x^2} dx$. Зробимо заміну x = at. А потім помножимо обидві частини рівності

на
$$e^{-a^2}$$
. Разом отримаємо рівність: $Je^{-a^2}=\int_0^{+\infty}e^{-a^2}e^{-a^2t^2}a\,dt.$

А потім проінтегруємо обидві частини рівності по
$$a$$
 на $[0,+\infty)$ – отримаємо:
$$\int_0^{+\infty} J e^{-a^2} \, da = J \int_0^{+\infty} e^{-a^2} \, da = J^2.$$
 А з іншого боку, ми отримали:

$$J^{2} = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-a^{2}} e^{-a^{2}t^{2}} a \, dt \, da \stackrel{?}{=} \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-a^{2}t^{2} - a^{2}} a \, da \, dt \stackrel{s=-a^{2}t^{2} - a^{2}}{=}$$

$$= \int_{0}^{+\infty} \frac{1}{2(t^{2} + 1)} \int_{-\infty}^{0} e^{s} \, ds \, dt = \int_{0}^{+\infty} \frac{1}{2(t^{2} + 1)} \, dt = \frac{\pi}{4}.$$

Отже, взявши квадратний корінь, отримаємо $J=\frac{\sqrt{\pi}}{2}$ (ясно, що J – невід'ємне число). Варто обґрунтувати рівняння зі знаком питання. Для цього перевіримо всі умови для невласного інтегрування невласного інтеграла. Функція $f(t,a)=ae^{-a^2(t^2+1)}\in C([0,+\infty)\times[0,+\infty)),$ причому

$$\int_0^{+\infty} ae^{-a^2(t^2+1)} da = \frac{1}{2} \frac{1}{t^2+1} \in C([0,+\infty)) \text{ та } \int_0^{+\infty} ae^{-a^2(t^2+1)} dt = Je^{-a^2} \in C([0,+\infty)) \text{ (неважко довести, шо } J \text{ рівномірно збігається}).$$

довести, шо J рівномірно збігається). Нарешті, $\int_0^{+\infty} \int_0^{+\infty} ae^{-a^2(t^2+1)}\,da\,dt$ ми знайшли вище, який виявився збіжним. Отже, рівність '?'

Гамма-функція

Definition 3.6.1 Гамма-функцією називають таку функцію:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx, \qquad \alpha > 0$$

Lemma 3.6.2 При $\alpha > 0$ гамма-функція збіжна.

$$\int_{0}^{+\infty} x^{\alpha-1} e^{-x} dx = \int_{0}^{1} x^{\alpha-1} e^{-x} dx + \int_{1}^{+\infty} x^{\alpha-1} e^{-x} dx.$$

Розглянемо перший інтеграл. Особлива точка – це точка x=0. Порівняємо з інтегралом $\int_{-1}^{1} x^{\alpha-1} dx$ – збіжний при $\alpha > 0$. Маємо:

 $\lim_{x\to 0}\frac{x^{\alpha-1}e^{-\bar{x}}}{x^{\alpha-1}}=1. \ \text{Отже, обидва збіжні, тому перший доданок}-збіжний при \ \alpha>0.$

Розглянемо другий інтеграл. Особлива точка – це $x=\infty$. Порівняємо з інтегралом $\int_{-\infty}^{+\infty} e^{-\frac{x}{2}} dx$ —

збіжний. Маємо: $\lim_{x\to\infty}\frac{x^{\alpha-1}e^{-x}}{e^{-\frac{x}{2}}}=\begin{bmatrix}0\text{ за Лопіталем, }\alpha\geq1\\\lim_{x\to\infty}\frac{1}{x^{1-\alpha}e^{\frac{x}{2}}}=0,\alpha<1\\\text{при всіх }\alpha\in\mathbb{R}\text{ (у тому числі при }\alpha>0\text{)}.$

Остаточно, $\Gamma(\alpha)$ – збіжний при $\alpha > 0$

Lemma 3.6.3 $\Gamma \in C^{\infty}((0, +\infty))$.

Proof.

Коли будемо диференціювати n разів гамма-функцію, ми очікуватимемо таке:

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln^n x \, dx.$$

Спробуємо зараз довести, що
$$\Gamma^{(n)}$$
 – рівномірно збіжний на проміжку $[a,b] \subset (0,+\infty)$. Маємо $\int_0^{+\infty} x^{\alpha-1}e^{-x} \ln^n x \, dx = \int_0^1 x^{\alpha-1}e^{-x} \ln^n x \, dx + \int_1^{+\infty} x^{\alpha-1}e^{-x} \ln^n x \, dx$. Розглянемо перший інтеграл. Використаємо мажорантну Ваєрштрасса:

$$|x^{\alpha-1}e^{-x}\ln^n x| = x^{\alpha-1}e^{-x}(-1)^n \ln^n x \le \begin{bmatrix} (-1)^n x^{b-1}e^{-x} \ln^n x \\ (-1)^n x^{a-1}e^{-x} \ln^n x \end{bmatrix}$$

 $|x^{\alpha-1}e^{-x}\ln^n x|=x^{\alpha-1}e^{-x}(-1)^n\ln^n x\leq egin{bmatrix} (-1)^nx^{b-1}e^{-x}\ln^n x \ (-1)^nx^{a-1}e^{-x}\ln^n x \end{bmatrix}$ Ситуації тут можуть бути різними, але поведінка інтеграла не зміниться. Я буду на розгляд брати перший випадок. Тобто дослідимо $\int_0^1 x^{b-1}e^{-x}\ln^n x\,dx$ на збіжність. Відомо, що $\ln x=o(x^{-\varepsilon}), x\to 0$, де $\varepsilon>0$. Тоді правилом Лопіталя можна довести, що $\ln^n x=o(x^{-\varepsilon}), x\to 0$. Завдяки цьому, ми візьмемо $\int_0^1 x^{b-1}x^{-\varepsilon}e^{-x}\,dx$ – збіжний, допоки $b>\varepsilon$. Це доводили під час попе-

редньої леми. А далі $\lim_{x\to 0} \frac{x^{b-1} e^{-x} \ln^n x}{x^{b-1} x^{-\varepsilon} e^{-x}} = \lim_{x\to 0} \frac{\ln^n x}{x^{-\varepsilon}} = 0.$ Отже, $\int_0^1 x^{b-1} e^{-x} \ln^n x \, dx$ – збіжний. І тому за мажорантною Ваєрштрасса, $\int_0^1 x^{\alpha-1} e^{-x} \ln^n x \, dx$ -

збіжний рівномірно на [a,b].

Аналогічно доводиться, що $\int_1^{+\infty} x^{\alpha-1}e^{-x} \ln^n x \, dx$ — збіжний рівномірно на [a,b]. Там та сама оцінка на мажоранту, а також треба використати $\ln x = o(x^\varepsilon), x \to +\infty$, де $\varepsilon > 0$.

Остаточно, $\int_{a}^{+\infty} x^{\alpha-1}e^{-x}\ln^n x\,dx$ – збіжний рівномірно на $[a,b]\subset(0,+\infty)$, що й доводить той факт, що $\Gamma \in C^{\infty}((0, +\infty)).$

Theorem 3.6.4 $\forall \alpha > 0 : \Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

Вказівка: $\Gamma(\alpha+1)$ інтегруємо частинами, взявши за $u=x^{\alpha},\ dv=e^{-x}\,dx.$

Corollary 3.6.5 $\Gamma(n+1) = n!$ при $n \in \mathbb{N}$.

Proof.

Дійсно, за попередньою теоремою, маємо таку рівність:

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n(n-1)(n-2)\dots 2 \cdot 1\Gamma(1).$$

Нарешті, обчислимо
$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1.$$

Corollary 3.6.6
$$\Gamma\left(\frac{1}{2} + n\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}.$$

Дійсно, за попередньою теоремою, маємо таку рівність:

Дійсно, за попередньою теоремою, маємо таку рівність:
$$\Gamma\left(\frac{1}{2}+n\right) = \Gamma\left(n-\frac{1}{2}+1\right) = \left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{3}{2}+1\right) = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\dots\left(n-\frac{2n-1}{2}\right)\Gamma\left(\frac{1}{2}\right) = \frac{(2n-1)(2n-3)\dots 1}{2^n}\Gamma\left(\frac{1}{2}\right) = \frac{(2n-1)!!}{2^n}\Gamma\left(\frac{1}{2}\right).$$

Нарешті, обчислимо
$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} x^{-\frac{1}{2}} e^{-x} dx \stackrel{\text{Заміна: } t = \sqrt{x}}{=} 2 \int_0^{+\infty} e^{-t^2} dt = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}.$$

Remark 3.6.7 До речі кажучи, завдяки функціональному рівнянню $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$, ми можемо продовжити нашу функцію на $\mathbb{R} \setminus \mathbb{Z}_{<0}$.

Якщо я хочу порахувати $\Gamma(-0.5)$, то для цього я просто визначаю його як $\Gamma(-0.5) = \frac{\Gamma(0.5)}{-0.5}$. Для цілих чисел я продовження не можу зробити, бо $\Gamma(-1)=\frac{\Gamma(0)}{-1},$ проте $\Gamma(0)$ тупо не визначена. Якби $\Gamma(0)$ була визначена, то $\Gamma(1)=0\cdot\Gamma(0)=0$, але ми знаємо, що $\Gamma(1)=1$ – тому визначити не можна.

Бета-функція 3.7

Definition 3.7.1 Бета-функцією називають таку функцію:

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx, \qquad \alpha, \beta > 0$$

Lemma 3.7.2 При $\alpha, \beta > 0$ бета-функція збіжна.

$$\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \int_0^{\frac{1}{2}} x^{\alpha - 1} (1 - x)^{\beta - 1} dx + \int_{\frac{1}{2}}^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx.$$

Розглянемо перший інтеграл. Особлива точка – це точка x=0. Порівняємо з інтегралом $\int_{-\pi}^{\pi} x^{\alpha-1} dx$

— збіжний для
$$\alpha>0$$
. Маємо
$$\lim_{x\to 0}\frac{x^{\alpha-1}(1-x)^{\beta-1}}{x^{\alpha-1}}=1.$$
 Отже, обидва збіжні, тому перший доданок — збіжний.

Розглянемо другий інтеграл. Проводимо заміну 1-x=t, тоді маємо:

$$-\int_0^{\frac{1}{2}} (1-t)^{\alpha-1} t^{\beta-1} dt$$
 — це той самий перший доданок. І він вже буде збіжним, якщо $\beta>0$. Остаточно, $B(\alpha,\beta)$ — збіжний при $\alpha>0,\beta>0$.

Lemma 3.7.3
$$B \in C^{\infty}((0, +\infty) \times (0, +\infty)).$$

Proof.

Proposition 3.7.4
$$B(\alpha,\beta)=\int_0^{+\infty}\frac{y^{\alpha-1}}{(1+y)^{\alpha+\beta}}\,dy.$$

Brasiera: зробити заміну $x=\frac{y}{1+y}.$

Proposition 3.7.5
$$B(\alpha, \beta) = B(\beta, \alpha)$$
.

Bказівка: x = 1 - t.

Proposition 3.7.6 $B(\alpha,\beta)=\frac{\alpha-1}{\beta+\alpha-1}B(\alpha-1,\beta)$ при $\alpha>1.$

Вказівка: інтегруємо частинами, де $u = x^{\alpha - 1}$ та решта dv

Зауважимо, що
$$B(\alpha,\beta)=B(\beta,\alpha)=\dfrac{\beta-1}{\alpha+\beta-1}B(\beta-1,\alpha)=\dfrac{\beta-1}{\alpha+\beta-1}B(\alpha,\beta-1)$$
 при $\beta>1.$

Ше зауважимо, що
$$B(\alpha,1)=\frac{1}{\alpha}$$
, якщо порахувати бета-функцію. Використовуючи два зауваження, можемо отримати ось це:
$$B(\alpha,n)=\frac{n-1}{\alpha+n-1}B(\alpha,n-1)=\frac{n-1}{\alpha+n-1}\frac{n-2}{\alpha+n-2}\dots\frac{2}{\alpha+2}\frac{1}{\alpha+1}\frac{1}{\alpha}=\frac{(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)}.$$
 Зокрема при $\alpha=m$ ми отримаємо $B(m,n)=\frac{(n-1)!(m-1)!}{(m+n-1)!}.$

3.8 Основна теорема гамма-функції

Proposition 3.8.1 Гамма-функція логарифмічно опукла вниз на проміжку $(0, +\infty)$.

Proof.

Тобто хочемо довести, що $\ln \Gamma$ опукла вниз на $(0, +\infty)$. Маємо $(\ln \Gamma)'' = \frac{1}{\Gamma^2} (\Gamma'' \Gamma - (\Gamma')^2)$.

Також, за допомогою нерівності Коші-Буняковського, ми доведемо наступне:
$$(\Gamma'(\alpha))^2 = \left(\int_0^{+\infty} x^{\alpha-1}e^{-x}\ln x\,dx\right)^2 = \left(\int_0^{+\infty} \left(x^{\frac{\alpha-1}{2}}e^{-\frac{x}{2}}\right)\left(x^{\frac{\alpha-1}{2}}e^{-\frac{x}{2}}\ln x\right)\,dx\right)^2 \leq \\ \leq \left(\int_0^{+\infty} \left(x^{\frac{\alpha-1}{2}}e^{-\frac{x}{2}}\right)^2\,dx\right) \left(\int_0^{+\infty} \left(x^{\frac{\alpha-1}{2}}e^{-\frac{x}{2}}\ln x\right)^2\,dx\right) = \int_0^{+\infty} x^{\alpha-1}e^{-x}\,dx \int_0^{+\infty} x^{\alpha-1}e^{-x}\ln^2 x\,dx = \\ \Gamma(x)\Gamma''(x)$$

Власне, це доводить, що $(\Gamma')^2 - \Gamma\Gamma'' \le 0$, а тому звідси $(\ln \Gamma)'' > 0$, що доводить бажане.

Theorem 3.8.2 Теорема Бора-Молерупа

Припустимо, що задана функція $f:(0,+\infty)\to\mathbb{R}$, що задовольняє умовам:

- 1) f(1) = 1;
- 2) $f(\alpha+1)=\alpha f(\alpha)$ при $\alpha>0$;
- 3) f логарифмично опукла вниз функція на $(0, +\infty)$.

Тоді функція $f \equiv \Gamma$, тобто є гамма-функцією.

Тобто гамма-функція — єдина можлива функція, яка задовольняє трьом властивостям вище.

Proof.

Із умов 1), 2) випливає, що f(n)=(n-1)! при $n\in\mathbb{N}$. Отже, нам достатньо показати рівність $f(\alpha) = \Gamma(\alpha)$ лише при $\alpha \in (0,1]$.

Умова 3) каже, що $\ln f$ опукла вниз на $(0, +\infty)$. Це означає, що на інтервалі [n-1, n+1] та точці $n+\alpha, \alpha \in (0,1], n \geq 2$ маємо наступну нерівність:

$$\frac{\ln f(n-1) - \ln f(n)}{n-1-n} \le \frac{\ln f(n+\alpha) - \ln f(n)}{n+\alpha-n} \le \frac{\ln f(n+1) - \ln f(n)}{n+1-n}.$$

 $\frac{\ln f(n-1) - \ln f(n)}{n-1-n} \le \frac{\ln f(n+\alpha) - \ln f(n)}{n+\alpha-n} \le \frac{\ln f(n+1) - \ln f(n)}{n+1-n}.$ Зауважимо, що $\ln f(n-1) - \ln f(n) = \ln \frac{1}{n-1} = -\ln(n-1)$, а також $\ln f(n+1) - \ln f(n) = \ln n$.

Зважаючи на знаменники, отримаємо такі нерівності:
$$\ln(n-1) \leq \frac{\ln f(n+\alpha) - \ln(n-1)!}{1 + \ln n} \leq \ln n.$$

$$\ln(n-1)^{\alpha}=\alpha\ln(n-1)\overset{\alpha}{\leq}\ln f(n+\alpha)-\ln(n-1)!\leq\alpha\ln n=\ln n^{\alpha}.$$
 Далі проекспоненціюємо нерівності з обох сторін:

$$(n-1)^{\alpha} \le \frac{f(n+\alpha)}{(n-1)!} \le n^{\alpha};$$

$$(n-1)^{\alpha}(n-1)! \le f(n+\alpha) \le n^{\alpha}(n-1)!.$$

$$\frac{(n-1)!}{(n-1)^{\alpha}(n-1)!} \leq f(n+\alpha) \leq n^{\alpha}(n-1)!.$$
 За пунктом 2), отримаємо $f(n+\alpha) = (\alpha+n-1)\dots(\alpha+1)\alpha f(\alpha).$ Звідси вилпиває:
$$\frac{(n-1)^{\alpha}(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)} \leq f(\alpha) \leq \frac{n^{\alpha}(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)}$$

$$\frac{(n-1)^{\alpha}(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)} \leq f(\alpha) \leq \frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \frac{\alpha+n}{n}$$
 Дана нерівність виконана для всіх $n \geq 2$ та $\alpha \in (0,1].$ Зокрема ми взяли фіксоване n , тому щойно

отримана нерівність працюватиме й для n+1. Коротше, буде

$$\frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \le f(\alpha) \le \frac{(n+1)^{\alpha}(n+1)!}{\alpha(\alpha+1)\dots(\alpha+n+1)} \frac{\alpha+n+1}{n+1}.$$

$$\frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \leq f(\alpha) \leq \frac{(n+1)^{\alpha}(n+1)!}{\alpha(\alpha+1)\dots(\alpha+n+1)} \frac{\alpha+n+1}{n+1}.$$
 Нас з цих двох нерівностей цікавитиме ланцюг з червоних нерівностей:
$$f(\alpha) \leq \frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \frac{\alpha+n}{n} \leq \frac{\alpha+n}{n} f(\alpha).$$

$$\frac{n}{\alpha+n} f(\alpha) \leq \frac{n^{\alpha}n!}{\alpha(\alpha+1)\dots(\alpha+n)} \leq f(\alpha).$$

$$\frac{n}{\alpha+n} f(\alpha) \leq n^{\alpha}B(\alpha,n) \frac{n}{\alpha+n} \leq f(\alpha).$$

Спрямуємо $n \to \infty$. Звідси отримаємо $f(\alpha) = \lim_{n \to \infty} n^{\alpha} B(\alpha, n) \frac{n}{\alpha + n} = \lim_{n \to \infty} n^{\alpha} B(\alpha, n)$. Оскільки нам вже відомо, що Γ задовольняє 1),2),3), то ми би такими самими міркуваннями отримали $\Gamma(\alpha)=$ $\lim_{n\to\infty} n^{\alpha} B(\alpha,n)$. Звідси отримали $f(\alpha) = \Gamma(\alpha)$.

3.9 Різні формули, що пов'язують гамма-функцію; зв'язки між гаммата бета-функціями

Proposition 3.9.1 $\Gamma(\alpha) = \lim_{n \to \infty} n^{\alpha} B(\alpha, n).$

При $\alpha < 0$ нецілих так некрасиво писати, тут краще $\Gamma(\alpha) = \lim_{n \to \infty} n^{\alpha} \frac{(n-1)!}{\alpha(\alpha+1)\dots(\alpha+(n-1))}$. Хоча цей дріб збігається з бета-функцією, але бета-функція при $\alpha < 0$ не визн

Під час доведення теореми Бора-Молерупа ми отримали $\Gamma(\alpha) = \lim_{n \to \infty} n^{\alpha} B(\alpha, n)$ лише при $\alpha \in (0, 1]$. Зараз покажемо, що ця формула справедлива для всіх $\alpha \in \mathbb{R} \setminus \mathbb{Z}_{\leq 0}$.

Нехай
$$\beta \in (1,2]$$
 та зауважимо, що $n^{\beta}B(\beta,n)=n^{\beta}\frac{\beta-1}{\beta+n-1}B(\beta-1,n)=n^{\beta-1}B(\beta-1,n)\frac{n(\beta-1)}{\beta+n-1}.$

Якщо спрямувати
$$n \to \infty$$
, то буде $\lim_{n \to \infty} n^{\alpha} B(\beta, n) = \lim_{n \to \infty} n^{\beta-1} B(\beta-1, n) \lim_{n \to \infty} \frac{n(\beta-1)}{\beta+n-1} = \Gamma(\beta)$. Аналогічно робиться при $\beta \in (2,3]$ (що зводиться до $(1,2]$); а потім при $\beta \in (3,4]$ (що зводиться

(2,3]) тощо.

$$(2,3]) \ \text{тощо.}$$
 Нехай $\beta \in (-1,0)$ та зауважимо, $\frac{n^{\beta+1}(n-1)!}{(\beta+1)(\beta+2)\dots(\beta+n)} = \frac{n^{\beta}(n-1)!}{\beta(\beta+1)\dots(\beta+n-1)} \frac{\beta n}{\beta+n}$. Значить, звідси $\frac{n^{\beta}(n-1)!}{\beta(\beta+1)\dots(\beta+n-1)} = \frac{\beta+n}{\beta n} \frac{n^{\beta+1}(n-1)!}{(\beta+1)(\beta+2)\dots(\beta+n)}$. Якщо $n \to \infty$, то буде
$$\lim_{n \to \infty} \frac{n^{\beta}(n-1)!}{\beta(\beta+1)\dots(\beta+n-1)} = \Gamma(\beta+1) \frac{1}{\beta} = \Gamma(\beta).$$

Theorem 3.9.2 Зображення Ваєрштраса

$$\Gamma(\alpha) = e^{-\gamma \alpha} \frac{1}{\alpha} \prod_{n=1}^{\infty} \frac{e^{\frac{\alpha}{n}}}{1 + \frac{\alpha}{n}}.$$

Proof.

Розглянемо
$$n^{\alpha}B(\alpha,n)=\frac{n^{\alpha}(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)}=\frac{1}{\alpha}\frac{e^{\alpha\ln n}}{\left(\frac{\alpha}{1}+1\right)\dots\left(\frac{\alpha}{n-1}+1\right)}=\frac{1}{\alpha}\frac{e^{\alpha\ln n}}{\left(\frac{\alpha}{1}+1\right)\dots\left(\frac{\alpha}{n-1}+1\right)}=\frac{1}{\alpha}e^{\alpha\ln \alpha-\alpha-\frac{\alpha}{2}-\dots-\frac{\alpha}{n}}\frac{e^{\alpha}e^{\frac{\alpha}{2}}\dots e^{\frac{\alpha}{n}}}{\left(\frac{\alpha}{1}+1\right)\left(\frac{\alpha}{2}+1\right)\dots\left(\frac{\alpha}{n+1}+1\right)}=\frac{1}{\alpha}e^{-\alpha\left(1+\frac{1}{2}+\dots+\frac{1}{n}-\ln n\right)}\prod_{k=1}^{n}\frac{e^{\frac{\alpha}{k}}}{1+\frac{\alpha}{k}}.$$

Спрямуємо
$$n \to \infty$$
, тоді отримаємо наступне:
$$\Gamma(\alpha) = \frac{1}{\alpha} e^{-\gamma \alpha} \prod_{k=1}^{\infty} \frac{e^{\frac{\alpha}{k}}}{1+\frac{\alpha}{k}}, \text{ де } \gamma - \text{константа Ойлера-Маскероні.}$$

Theorem 3.9.3 Формула подвоєння Лежандра

$$2^{\alpha-1}\Gamma\left(\frac{\alpha}{2}\right)\Gamma\left(\frac{\alpha+1}{2}\right)=\sqrt{\pi}\Gamma(\alpha)$$
 лише при $\alpha>0.$

Позначимо функцію $f(\alpha) = \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\alpha+1}{2}\right) 2^{\alpha-1}$ при $\alpha > 0$. Вона задовольняє умові теореми

Бора-Молерупа. Перевіримо три пункти:

1)
$$f(1) = \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}\right) \Gamma(1) 2^{1-1} = 1;$$

2)
$$f(\alpha+1) = \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{\alpha+1}{2}\right) \Gamma\left(\frac{\alpha}{2}+1\right) 2^{\alpha} = \alpha f(\alpha);$$

3)
$$\ln f(\alpha) = -\ln \sqrt{\pi} + \ln \Gamma\left(\frac{\alpha}{2}\right) + \ln \Gamma\left(\frac{\alpha+1}{2}\right) + (\alpha-1)\ln 2.$$

Кожна з функцій (у тому числі константи) опуклі вниз, тому $\ln f(\alpha)$ також опукла вниз як сума. Значить задана функція $f(\alpha) = \Gamma(\alpha)$, що дає формулу Лежандра.

Theorem 3.9.4 Функціональне рівняння Ойлера $\Gamma(\alpha)\cdot\Gamma(1-\alpha)=\frac{\pi}{\sin\pi\alpha} \text{ лише при } \alpha\in\mathbb{R}\setminus\mathbb{Z}.$

$$\Gamma\left(\frac{1}{2} + \alpha\right) \cdot \Gamma\left(\frac{1}{2} - \alpha\right) = \frac{\pi}{\cos \pi \alpha}$$
лише при $\alpha \in \mathbb{R} \setminus \left(\frac{1}{2} + \mathbb{Z}\right)$.

Proof.

Розглянемо функцію $\varphi(\alpha) = \Gamma(\alpha)\Gamma(1-\alpha)\sin\pi\alpha$, яка визначена на $\alpha \notin \mathbb{Z}$. Наша мета: довести, що $\varphi(\alpha) \equiv \pi$.

По-перше, слід зазначити, що φ має період 1, адже

$$\varphi(\alpha+1)=\Gamma(\alpha+1)\Gamma(-\alpha)\sin\pi(\alpha+1)=\alpha\Gamma(\alpha)\frac{\Gamma(1-\alpha)}{-\alpha}.$$
 По-друге, $\lim_{\alpha\to 0}\varphi(\alpha)=\pi.$ Справді, розпишемо функцію ось таким чином:

$$\varphi(\alpha) = \frac{1}{\alpha} \Gamma(1+\alpha) \Gamma(1-\alpha) \sin \pi \alpha = \Gamma(1+\alpha) \Gamma(1-\alpha) \sum_{k=0}^{\infty} \frac{(-1)^k \pi^{2k+1} \alpha^{2k}}{(2k+1)!}.$$

Оскільки Г неперервна та ряд рівномірно збіжний, то звідси отримаємо:

 $\lim_{\alpha \to 0} \varphi(\alpha) = \Gamma(1)\Gamma(1)\pi = \pi.$

Отже, ми можемо функцію φ довизначити в точці $\alpha=0$. У силу одиничної періодичності ми тоді можемо функцію φ довизначити в усіх точках $\alpha \in \mathbb{Z}$.

Тепер по-третє, $\varphi \in C^{\infty}(\mathbb{R})$ (працюємо уже з довизначеною функцією). Справді, $\Gamma(1+\alpha)$, $\Gamma(1-\alpha) \in$ $C^{\infty}(\mathbb{R})$, а також степеневий ряд теж нескінченно диференційований, який визначений на \mathbb{R} .

По-четверте, функція $\varphi > 0$ на всьому \mathbb{R} , тому ми можемо визначити функцію $\psi(\alpha) = \ln \varphi(\alpha)$.

Перед цим зауважимо, що справджується рівність $\varphi\left(\frac{\alpha}{2}\right)\varphi\left(\frac{\alpha+1}{2}\right)=\pi\varphi(\alpha)$ при $0<\alpha<1$. Дій-

$$\varphi\left(\frac{\alpha}{2}\right)\varphi\left(\frac{\alpha+1}{2}\right) = \Gamma\left(\frac{\alpha}{2}\right)\Gamma\left(1-\frac{\alpha}{2}\right)\sin\pi\frac{\alpha}{2}\Gamma\left(\frac{\alpha+1}{2}\right)\Gamma\left(1-\frac{\alpha+1}{2}\right)\sin\pi\frac{\alpha+1}{2} =$$

$$= \Gamma\left(\frac{\alpha}{2}\right)\Gamma\left(\frac{\alpha+1}{2}\right)\Gamma\left(\frac{2-\alpha}{2}\right)\Gamma\left(\frac{1-\alpha}{2}\right)\sin\frac{\pi\alpha}{2}\sin\frac{\pi\alpha+\pi}{2} \xrightarrow{\text{формула Лежандра}}$$

$$=\frac{\sqrt{\pi}\Gamma(\alpha)}{2^{\alpha-1}}\frac{\sqrt{\pi}\Gamma(1-\alpha)}{2^{1-\alpha-1}}\sin\frac{\pi\alpha}{2}\cos\frac{\pi\alpha}{2} = 2\pi\Gamma(\alpha)\Gamma(1-\alpha)\sin\frac{\pi\alpha}{2}\cos\frac{\pi\alpha}{2} = \pi\Gamma(\alpha)\Gamma(1-\alpha)\sin\pi\alpha = \pi\varphi(\alpha).$$

Оскільки φ періодична з 1, то $\varphi\left(\frac{\alpha}{2}\right)\varphi\left(\frac{\alpha+1}{2}\right)=\pi\varphi(\alpha)$ виконана при $\alpha\in\mathbb{R}.$

Прологарифмуємо обидві частини рівноє
$$\ln \varphi\left(\frac{\alpha}{2}\right) + \ln \varphi\left(\frac{\alpha+1}{2}\right) = \ln \pi + \ln \varphi(\alpha).$$

Ми мали визначену функцію $\psi = \ln \varphi$, тож рівність перепишеться ось так:

Ми мали визначену функцію
$$\psi = \psi\left(\frac{\alpha}{2}\right) + \psi\left(\frac{\alpha+1}{2}\right) = \ln \pi + \psi(\alpha).$$

$$\frac{1}{2}\psi'\left(\frac{\alpha}{2}\right) + \frac{1}{2}\psi'\left(\frac{\alpha+1}{2}\right) = \psi'(\alpha).$$

Відносно зрозуміло, що $\psi \in \mathcal{R}([0,1])$. Зауважимо, що на [0,1] ми маємо $\psi'(\alpha) = \frac{1}{2^n} \sum_{i=1}^{2^n} \psi'\left(\frac{\alpha+j-1}{2^n}\right)$.

При $n \to \infty$ в силу інтегрованості ми отримаємо $\psi'(\alpha) = \int_0^1 \psi'(u) du$. За формулою Ньютона-Ляйбніца, ми взагалі отримаємо $\psi'(\alpha) = \psi(1) - \psi(0) = \ln \varphi(1) - \ln \varphi(0) = 0$, тому що $\varphi(n) = \pi, n \in \mathbb{Z}$. Внаслідок чого $\psi'(\alpha)=0, \forall \alpha\in[0,1],$ тоді $\psi(\alpha)=C.$ Проте оскільки $\psi(1)=\ln\pi,$ то тоді $C=\ln\pi.$ Коротше, $\psi(\alpha) = \ln \pi$ при всіх $\alpha \in [0,1]$. Значить, $\varphi(\alpha) = \pi, \forall \alpha \in [0,1]$. У силу періодичності маємо

$$\varphi(\alpha) = \pi, \forall \alpha \in \mathbb{R}.$$
 Нарешті,
$$\pi = \Gamma(\alpha)\Gamma(1-\alpha)\sin\pi\alpha \implies \Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin\pi\alpha}$$
при $\alpha \notin \mathbb{Z}.$

У другій формулі просто дам вказівку: провести заміну $\beta = \alpha + \frac{1}{2}$.

Theorem 3.9.5 $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$

Розглянемо функцію $f(\alpha) = \frac{1}{\Gamma(\beta)} B(\alpha, \beta) \Gamma(\alpha + \beta)$ при фіксованому $\beta > 0$. Вона задовольняє теоремі

Бора-Молерупа. Дійсно,
1)
$$f(1) = \frac{1}{\Gamma(\beta)} B(1,\beta) \Gamma(1+\beta) = \frac{1}{\Gamma(\beta)} \frac{1}{\beta} \beta \Gamma(\beta) = 1;$$

2)
$$f(\alpha+1)=\frac{1}{\Gamma(\beta)}B(\alpha+1,\beta)\Gamma(\alpha+1+\beta)=\frac{1}{\Gamma(\beta)}\frac{\alpha}{\alpha+\beta}B(\alpha,\beta)(\alpha+\beta)\Gamma(\alpha+\beta)=\alpha f(\alpha);$$
3) f логарифмічно опулка вниз на $(0,+\infty)$, оскільки $\ln f(\alpha)=\ln\Gamma(\alpha+\beta)+\ln(\alpha,\beta)-\ln\Gamma(\beta)$ – опукла

вниз як сума опуклих вниз функцій.

Таким чином, $\forall \alpha > 0$ виконується $f(\alpha) = \Gamma(\alpha)$, тобто $\frac{1}{\Gamma(\beta)}B(\alpha,\beta)\Gamma(\alpha+\beta) = \Gamma(\alpha)$. Всі ці міркування працюватимуть при всіх $\beta > 0$.

Графік гамма-функції

Proposition 3.10.1 $\lim_{\alpha \to +\infty} \Gamma(\alpha) = +\infty$.

Proof.

Маємо
$$\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$$
 для великих $\alpha>0.$ Оцінимо $\Gamma(\alpha).$
$$\Gamma(\alpha)>\int_1^{+\infty}x^{\alpha-1}e^{-x}\,dx>\int_1^{+\infty}e^{-x}\,dx=\frac{1}{e}.$$

Таким чином, $\Gamma(\alpha+1) > \frac{\alpha'}{\alpha} \to +\infty$ при $\alpha \to +\infty$.

Proposition 3.10.2 $\lim_{\alpha \to 0+0} \Gamma(\alpha) = +\infty$.

Proof.

Дійсно, маємо
$$\Gamma(\alpha) > \int_0^1 x^{\alpha-1} e^{-x} dx \ge \frac{1}{e} \int_0^1 x^{\alpha-1} dx = \frac{x^{\alpha}}{\alpha e} \Big|_0^1 = \frac{1}{\alpha e} \to +\infty.$$

Proposition 3.10.3 Гамма-функція опукла вниз на проміжку $(0, +\infty)$.

Дійсно,
$$\Gamma''(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} \ln^2 x \, dx > 0$$
 при всіх $\alpha > 0$.

Proposition 3.10.4 $\Gamma'(1) = -\gamma$, де γ – константа Ойлера-Маскероні.

$$\Gamma'(1) = \int_0^{+\infty} e^{-x} \ln x \, dx \stackrel{\text{заміна:}}{=} \int_0^1 \ln(-\ln u) \, du =$$

Пригадаємо, що $\ln a = \lim_{n \to \infty} n(\sqrt[n]{a} - 1)$. За допомогою цього ліміту, ми можемо отримати наступне:

$$= \int_0^1 \ln\left(\lim_{n\to\infty} n(1-\sqrt[n]{u})\right) du \stackrel{?}{=} \lim_{n\to\infty} \int_0^1 \ln n + \ln\left(1-\sqrt[n]{u}\right) du = \lim_{n\to\infty} \left(\ln n + \int_0^1 \ln\left(1-\sqrt[n]{u}\right) du\right) = \lim_{n\to\infty} \left(\ln n + \ln\left(1-\sqrt[n]{u}\right) d$$

Тепер згадаємо, що $\ln(1-t) = -\sum_{k=0}^{\infty} \frac{t^k}{k}$, тож звідси випливає наступне:

$$\int_0^1 \ln(1 - \sqrt[n]{x}) \, du = -\int_0^1 \sum_{k=1}^\infty \frac{(\sqrt[n]{u})^k}{k} \, du = -\sum_{k=1}^\infty \int_0^1 \frac{u^{\frac{k}{n}}}{k} \, du = -\sum_{k=1}^\infty \frac{1}{k} \frac{1}{\frac{k}{n} + 1} = \sum_{k=1}^\infty \frac{n}{k(k+n)} = -\sum_{k=1}^\infty \frac{n}{k} \frac{1}{k} + \sum_{k=1}^\infty \frac{n}{k(k+n)} = -\sum_{k=1}^\infty \frac{n}{k} \frac{n}{k} = -\sum_{k=1}^\infty \frac{n}{k} = -\sum_$$

$$= -\sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+n} \right) = 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

$$\boxed{\equiv} \lim_{n \to \infty} \left(\ln n - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \right) \right) = -\gamma.$$

Окремо варто пояснити рівність [?], щоб все було цілком строго. (TODO: додати)

Proposition 3.10.5 $\Gamma'(2) = 1 - \gamma$.

Proof.

Маємо рівняння $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)$, яке ми продиференціюємо.

 $\Gamma'(\alpha+1) = \Gamma(\alpha) + \alpha\Gamma'(\alpha).$

Власне, звідси отримаємо
$$\Gamma'(2) = \Gamma(1) + \Gamma'(1) = 1 - \gamma$$
.

Remark 3.10.6 Таким чином, буде простіше дослідити похідну. По-перше, оскільки $\Gamma'' \geq 0$, то тоді звідси Γ' має бути неспадною на $(0, +\infty)$. По-друге, між (1, 2) існує точка α_0 , яка буде точкою локального мінімуму. В силу неспадності похідної отримаємо, що на $(1, \alpha_0)$ гамма-функція спадатиме та на $(\alpha_0, +\infty)$ гамма-функція зростатиме.

Графік гамма-функції при $\alpha>0.$