Assignment 1

EP3110 Electromagnetics and applications 04-08-2022

Last date for submission:11-08-2022

- 1. The electric potential of some configuration is given by the expression $V(r) = A \frac{e^{-\lambda r}}{r}$ where A and λ are constants. Find the electric field $\vec{E}(r)$, the charge density $\rho(r)$, and the total charge Q.
- 2. An electron and a proton separated by a distance of 10^{-11} meter are symmetrically arranged along the *z*-axis with z = 0 as its bisecting plane. Determine the potential and *E* field at the position P(3, 4, 12).
- 3. Consider a plane boundary (y=0) between air (region 1, $\mu_{r1}=1$) and iron (region 2, $\mu_{r2}=5000$). a) Assuming $\vec{B}_1=0.5\hat{x}-10\hat{y}$ (mT), find \vec{B}_2 and the angle that \vec{B}_2 makes with the interface. b) Assuming $\vec{B}_2=10\hat{x}+0.5\hat{y}$ (mT), find \vec{B}_1 and the angle that \vec{B}_1 makes with the normal to the interface.
- 4. Write the set of four Maxwell's equations (relating \vec{E} , \vec{B} , \vec{D} and \vec{H} fields) in linear medium as eight scalar equations a) in Cartesian coordinates, b) in cylindrical coordinates and c) in spherical coordinates.
- 5. Prove that the Lorentz condition for potentials is consistent with the equation of continuity.
- 6. Prove by direct substitution that any twice differentiable function of $(t R\sqrt{\mu\varepsilon})$ or of $(t + R\sqrt{\mu\varepsilon})$ is a solution of the homogeneous wave equation $\frac{\partial^2 U}{\partial R^2} \mu\varepsilon \frac{\partial^2 U}{\partial t^2} = 0$.