Łukasz Magnuszewski Weronika Jakimowicz

Pracownia z analizy numerycznej

Sprawozdanie do zadania **P.2.3.** Prowadzący: mgr. Filip Chudy

Wrocław, 8 stycznia 2023, 21:37

Spis treści

	Wstęp 1.1. Metodologia	
2.	Rozwiązywanie równań liniowych 2.1. Eliminacja Gaussa 2.2. Rozkład QR	2
3.	Algorytm eliminacji Gaussa	4
	Transformacja Householdera 4.1. Podstawy teoretyczne 4.2. Wyniki 4.3. Złożoność obliczeniowa 4.4. Złożoność obliczeniowa 4.5. Złożoność obliczeniowa 4.7. Złożoność obliczeniowa 4.8. Złożoność obliczeniowa	4 6
5	Podsumowania	7

1. Wstęp

Fajne podpierdalanko:

algorytmy

jak użyć do rozwiązywania równań

1.1. Metodologia

W poniższej pracy zostaną porównane dwa sposoby doprowadzania macierzy kwadratowej A do postaci górnotrójkątnej: metoda eliminacji Gaussa oraz rozkład QR z transformacją Householdera. Oba te algorytmy zostaną wykorzystane do rozwiązywania układu równań

$$Ax = b$$

dla odwracalnej macierzy A oraz dowolnego wektora x.

W ramach testowania praktycznego zastosowania naszych algorytmów, macierz A będzie losowo wygenerowaną macierzą $A \in GL_n(\mathbb{R})$ dla $n \in \{20, 100, 400\}$. Dalej losowany będzie wektor x i na tej podstawie wyliczymy wektor b. Stosowane przez nas algorytmy dostaną jedynie macierz A oraz wektor b, a zwrócą wektor x' mający być rozwiązaniem jak wyżej. Co więcej, dla algorytmu rozkładu QR jesteśmy w stanie sprawdzić poprawność obliczonej formy macierzy A.Błąd dla każdej z metod będzie obliczany jako

$$e = -\log(\|x' - x\|).$$

Dla metody Householdera, która produkuje macierz ortogonalną Q oraz górnotrójkątną R, takie, że A=QR, porównane również zostaną macierze

$$A - QR$$

$$Q^{T}A - R$$

$$Q^{T}Q - I$$

poprzez wyznaczenie normy macierzy B, gdzie B to jedna z powyższych macierzy. Macierze będące wynikami powyższych przekształceń powinny być macierzami zerowymi, co wynika z przekształcenia A = QR oraz ortogonalności macierzy Q (wtedy $Q^{-1} = Q^T$). Do obliczania normy macierzy B wykorzystana będzie biblioteczna funkcja norm(A, p) mająca zwracać p-normę macierzy A. Ponieważ jesteśmy w przestrzeni Euklidesowej, interesować nas będzie p=2.

Wszystkie obliczenia zostaną wykonane na BigFloatach w trzech precyzjach: 68, 419 oraz 2005.

2. Rozwiązywanie równań liniowych

Mając dany układ równań liniowych:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

możemy go opisać w postaci macierzy. Macierz główna tego układu równań to macierz zawierająca wszystkie współczynniki przy zmiennych [X]:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}.$$

Jeśli do macierzy głównej dołączymy wektor zawierający wszystkie wyrazy wolne [B], to dostaniemy macierz rozszerzoną tego układu:

$$A|B = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} & b_n \end{bmatrix}.$$

Zapisanie układu równań w postaci macierzowej ma wiele zalet. Jesteśmy w stanie w szybki sposób sprawdzić, czy równanie ma jednoznaczne rozwiązanie przez sprawdzenie czy wyznacznik macierzy głównej nie jest zerowy, gdyż jeśli AX=B, to $A^{-1}AX=X=A^{-1}B$. Musi więc istnieć macierz odwrotna. Sprawia to również, że zapis układu jest bardziej czytelny oraz pozwala ułatwić operowanie na takim układzie równań za pomocą komputera.

2.1. Eliminacja Gaussa

Metoda eliminacji Gaussa jest algorytmem stosowanym do rozwiązywania układu równań. Polega ona na doprowadzeniu macierzy do postaci schodkowej, tzn. zawierającej niezerowe wartości tylko na głównej przekątnej. W algorytmie dozwolone są tylko operacje na wierszach i kolumnach, czyli dodawanie lub odejmowanie od wiersza (kolumny) wielokrotności innego wiersza (kolumny) oraz zamienianie kolejności dwóch wierszy (kolumn).

Alternatywnie, na kursie algebry liniowej poznaliśmy metodę na odwracanie macierzy za pomocą eliminacji Gaussa. Wtedy z lewej stronie wpisujemy oryginalną macierz, z prawej macierz identyczności i dokonując operacji wierszowych na całości staramy się doprowadzić lewą macierz do macierzy identyczności. Wtedy to co, powstanie z prawej strony będzie szukaną macierzą odwrotną. W poniższej pracy nie skorzystamy z tej wariacji na tematy metody eliminacji Gaussa.

$\mathbf{2.2.}$ Rozkład QR

Każdą macierz A $m \times n$ o wyrazach rzeczywistych taka, że rank(A) = n, można zapisać jako A = QR, gdzie R jest macierzą górnotrójkątną, a Q ma kolumny ortogonalne. Ponieważ my będziemy rozważać macierze A będące reprezentacją jednoznacznych układów równań, to interesują nas tylko $A \in GL_n(\mathbb{R})$.

Zauważmy, że jeśli A ma niezerowy wyznacznik, to A nie może mieć liniowo zależnych kolumn. W takim razie, wektory $a_1, ..., a_n$ odpowiadające kolumnom A są bazą przestrzeni \mathbb{R}^n jako maksymalny możliwy układ wektorów liniowo niezależnych. Możemy na ich podstawie stworzyć bazę ortonormalną $u_1, ..., u_n$ przez proces Grama-Schmidta. Wtedy dla k = 1, ..., n

$$u_k = a_k - \sum_{i=1}^{k-1} \frac{\langle u_i, a_k \rangle}{\langle u_i, u_i \rangle} u_i.$$

Co więcej, dla dowolnego a_k z oryginalnej bazy możemy go zapisać za pomocą kombinacji liniowej wektorów z bazy ortonormalnej:

$$a_k = \sum_{i=1}^{n} c_i u_i = \sum_{i=1}^{n} c_i \sum_{i=1}^{i-1} [a_k - \sum_{i=1}^{k-1} \frac{\langle u_i, a_k \rangle}{\langle u_i, u_i \rangle} u_i]$$

a ponieważ $a_1,...,a_n$ były wektorami lnz, to dla i > k $c_i = 0$. Niech r_k to będzie wektor zawierający współczynniki c_i dla wektora a_k :

$$r_k = \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_k \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

Czyli mamy, że

$$a_k = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} r_k$$

i dalej

$$A = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix} \begin{bmatrix} r_1 & r_2 & \dots & r_n \end{bmatrix}.$$

Zauważamy, że $R=\begin{bmatrix}r_1 & r_2 & \dots & r_n\end{bmatrix}$ to macierz górnotrójkątna, a Q to macierz ortogonalna.

Niech teraz A to macierz główna rozważanego układu równań, Q, R to macierze z jej rozkładu, X niech będzie wektorem wartości szukanych, a B niech będzie wektorem wyrazów wolnych. Wtedy

$$AX = B$$
$$(QR)X = B$$

i ponieważ dla macierzy ortonormalnych mamy $Q^{-1}=Q^T$, to w prosty sposób możemy zamienić powyższy układ na

$$RX = Q^T B.$$

3. Algorytm eliminacji Gaussa

3.1. Wyniki

Precyzja	20×20	100×100	400×400
68	41.78	35.1	31.15
419	286.01	280.42	276.44
2005	1474.83	1471.28	1466.6

Tabelka 1. Liczba cyfr znaczących normy wektora (Ax'-b), gdzie x' to wektor uzyskany z metody eliminacji Gaussa.

W Tabeli 1 umieszczone zostały ilości cyfr znaczących wartości ||x'-x||. Bez względu na precyzję obliczeń większe macierze dawały nieco mniej precyzyjne wyniki. Co ciekawe, różnica ta, w okolicach 4 cyfr znaczących, ulegała jedynie niezauważalnym zmianom między różnymi precyzjami obliczeń.

3.2. Złożoność obliczeniowa

W zaimplementowanym przez nas algorytmie przy każdym kroku dokonujemy jednego dzielenia skalaru oraz jednego mnożenia przez skalar i odejmowania wektora o długości n, gdzie n to szerokość naszej macierzy. Czyli za każdym razem wykonujemy

$$a = 1 + 2n$$

operacji. Co więcej, w algorytmie zewnętrzna pętla wykonuje się (n-1) razy, natomiast wewnętrzna - n+1-(i+1) razy, gdzie i to jest aktualna pozycja zewnętrznej pętli. Czyli wykonujemy

$$\sum_{i=1}^{n-1} (n-i)a = \frac{a(n-2)^2}{2} = \frac{(1+2n)(n-2)^2}{2} = O(n^3)$$

operacji w trakcie całego algorytmu.

4. Transformacja Householdera

4.1. Podstawy teoretyczne

Transformacja Householdera [\cong : Householder transformation] to liniowe przekształcenie poprzez odbicie punktu wokół płaszczyzny, lub hiperpłaszczyzny, która zawiera początek układu współrzędnych.

Płaszczyzna wokół której obracamy jest zdefiniowana przez jednostkowy wektor u do niej normalny, a więc odbicie względem niej to x pomniejszony o dwa rzuty na u:

$$x' = x - 2u\langle x, u \rangle = x - 2u(u^*x)$$

co dla przestrzeni rzeczywistej wynosi

$$x' = x - 2u(u^T x).$$

Macierz tego odbicia to

$$P = I - 2uu^*$$

i jest ona Hermitowska:

$$P^* = (I - 2uu^*)^* = I^* - (2uu^*)^* = I - 2(uu^*)^* = I - 2(u^*)^*u^* = I - 2uu^* = P$$

oraz unitarna (czyli $P^*P = PP = I$):

$$P^*P = P^2 = (I - 2uu^*)^2 = I - 4uu^* + 4(uu^*)^2 =$$

$$= I - 4uu^* + 4u(u^*u)u^* = I - 4uu^* + 4u\langle u, u \rangle u^* =$$

$$= I - 4uu^* + 4uu^* = I$$

a więc w przypadku rzeczywistym dostajemy macierz symetryczną i ortogonalną, czyli taką jakiej szukamy.

Niech teraz A będzie macierzą $m \times m$, której formę QR chcemy znaleźć, a $a_1, ..., a_m$ będą wektorami odpowiadającymi jej kolumnom. Dalej, niech $e_1, ..., e_m$ będą wektorami ze standardowej bazy przestrzeni \mathbb{R}^m i ustalmy

$$v = a_1 - ||a_1||e_1$$

 $u = \frac{v}{||v||}.$

Wektor u jest jednostkowym wektorem pewnej płaszczyzny przechodzącej przez początek układu współrzędnych, możemy więc dla niego znaleźć macierz Householdera

$$P_1' = I - 2uu^*.$$

Zauważmy, że

$$P_1'a_1 = \begin{pmatrix} \|a_1\| \\ 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

czyli zaczynamy tworzyć macierz górnotrójkątną. Proces transformacji Householdera możemy powtórzyć dla macierzy P_1A bez pierwszej kolumny i wiersza, co da nam macierz P_2' która dla $P_2'a_2$ daje wektor niezerowy tylko na pierwszej współrzędnej. Jednak P_2' jest $(m-1)\times(m-1)$, więc musimy ją rozciągnąć, chociażby dodając identyczność w lewym górnym rogu. Rozciągając tę procedurę na przypadek ogólny, mamy

$$P_k = \begin{pmatrix} I_{k-1} & * \\ 0 & P_k' \end{pmatrix}$$

gdzie I_{k-1} to identyczność ale na \mathbb{R}^{k-1} .

Szukana przez nas macierz górnotrójkątna ma zatem postać

$$R = P_m...P_1A$$

natomiast szukana macierz ortogonalna to

$$Q = (P_m...P_1)^{-1} = P_1^{-1}...P_m^{-1} = P_1...P_m$$

z faktu, że każda z macierzy P_k jest unitarna i hermitowska.

Dla polepszenia wyników algorytmu definicja wektora v musi brać pod uwagę znak lewego górnego rogu macierzy (minora) którą będziemy poddawać transformacji Householdera. Chcemy zawsze mnożyć normę a_1 przez znak przeciwny do wspomnianego elementu macierzy.

4.2. Wyniki

W Tabeli 2 umieszczona została ilość cyfr znaczących dla wektora ||x'-x|| w zależności od wielkości macierzy A oraz precyzji arytmetyki. Różnica między precyzja obliczeń dla różnych wielkości macierzy jest w okolicach 3 cyfr znaczących i zachowuje się miedzy różnymi precyzjami, co jest wynikiem napawającym nadzieją. Z Tabeli 4 widzimy też, że otrzymana przez nas macierz Q jest bardzo bliska bycia macierzą ortogonalną, przynajmniej pod względem normy, to znaczy

$$||Q|| = \sup_{\|x\| \le 1} \frac{||Qx||}{\|x\|}$$

jest niewiele większe od zera.

Co ciekawe, liczba cyfr znaczących różnicy między otrzymanym przez nas rozwiązaniem równania a rozwiązaniem poprawnym (Tabela 2) oraz norma macierzy będących przekształceniem A=QR (Tabele 3,4,5) jest na tym samym poziomie precyzji.

Precyzja	20×20	100×100	400×400
68	42.66	39.46	36.86
419	286.19	282.58	280.144
2005	1476.08	1473.03	1470.28

Tablusia 2. Liczba cyfr znaczących normy wektora (Ax'-b), gdzie x' to wektor uzyskany z metody transformacji Householdera.

Precyzja	20×20	100×100	400×400
68	41.96	40.68	38.67
419	286.50	284.19	282.22
2005	1476.00	1471.28	1470.08

Tabelka 3. Rząd wielkości normy macierzy A - QR (obliczany z $-\log ||A - QR||$).

4.3. Złożoność obliczeniowa

W naszej implementacji najpierw wykonujemy n iteracji zewnętrznej pętli. Wewnątrz której mamy pętle po kolumnach oraz pętle po wierszach.

Precyzja	20×20	100 × 100	400×400
68	43.48	42.18	40.85
419	286.91	285.47	284.14
2005	1477.15	1475.61	1474.25

Tabelka 4. Rząd wielkości normy macierzy $Q^TQ - I$ (obliczany z $-\log \|Q^TQ - I\|$).

Precyzja	20×20	100×100	400×400
68	43.20	40.97	38.91
419	286.59	284.3	282.25
2005	1476.83	1474.34	1472.37

Tabelka 5. Rząd wielkości normy macierzy $Q^TA - R$ (obliczany z $-\log \|Q^TA - R\|$).

W każdym kroku obu tych pętli wykonujemy stałą liczbę następujących operacji: mnożenie wektora przez skalar, dodawania/odejmowanie wektorów, mnożenie wektora przez wektor o takim rozmiarze ale, który został transponowany. Wszystkie te operacje mają złożoność O(n). I jako że jest ich stała liczba, to każda iteracja tych pętli ma złożoność O(n)

Żeby użyć tego algorytmu do rozwiązania układu równań, trzeba potem użyć algorytmu Backward substitution, ma on złożoność $O(n^2)$.

Czyli złożoność całego algorytmu to

$$\sum_{i=1}^{n} \left(\sum_{j=i}^{n} O(N) + \sum_{j=i}^{n} O(N) \right) + O(n^{2}) = O(n^{3})$$

5. Podsumowanie

W porównaniu Tabeli 1 oraz Tabeli 2 widzimy niewielką różnicę na zysk algorytmu wykorzystującego transformację Householdera. Miał on ogółem większą precyzję niż algorytm wykorzystujący metodę eliminacji Gaussa. Różnica w precyzji między macierzami różnej wielkości była również mniejsza w rozkładzie QR. Sugeruje to nieco większa stabilność numeryczną metody Householdera.

Złożoność obu algorytmów była taka sama - oba wykonują $O(n^3)$ operacji, jednak przy metodzie Householdera potrzebujemy większej liczby zmiennych. Z drugiej strony, metoda Householdera zwraca więcej informacji o macierzy A niz metoda eliminacji Gaussa.

Jeżeli potrzebujemy bardzo wysokiej precyzji obliczeń lepszym wyborem jest metoda Householdera. Jednak jeśli liczy się prostota implementacji oraz zmniejszenie ilości używanej przez algorytm pamięci, to metoda eliminacji Gaussa jest bardzo dobrym rozwiązaniem.