JABTI

الممعورية الجرائرية الحيمةراطية الفعبية

الدبوان الوطني للمتعانات والمسابقات * دورة جوان 2008 * المدة : 03 ساعات و 30 د

وزارة التربية الوطنية امتحان بكالوريا التعليم الثانوي الشعبة: العلوم التجريبية

اختبار في مادة الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين : الموضوع الأول

التمرين الأول (04,5 نقط)

1 − حل في مجموعة الأعداد المركبة ℃ المعادلة :

 $z^2 - (1+2i)z - 1 + i = 0$

 $|z_1| < |z_2|$: حيث $|z_1| < |z_2|$ نرمز للحلين بـ $|z_1| < |z_2|$

. عدد حقیقی عدد حقیقی این آن $\left(\frac{z_1}{z_1}\right)^{2008}$

الممىتوي منسوب إلى معلم متعامد و متجانس $\left(O; \overline{u}, \overline{v}
ight)$ التكن $B \in C$ $B \in C$ نقط المستوي التي لاحقاتها Cعلى الترتيب الرتيب على الترتيب

 $Z = \frac{z_2 - 1}{z_1 - 1}$: ليكن لعدد المركب حيث : ليكن

 $e^{i(\theta_i+\theta_i)}=e^{i\theta_i} imes e^{i\theta_i}:$ انطالقا من التعريف $e^{i\theta}=\cos\theta+i\sin\theta$ و من الخاصية

. برهن أن $\theta_2 = \frac{\theta_1}{e^{i\theta_1}} = e^{i(\theta_1-\theta_2)}$ و أعداد حقيقية $e^{-i\theta} = \frac{1}{e^{i\theta}}$: برهن أن

ب) أكتب Z على الشكل الأمىي . - جس الشكل المثلثي و استنتج أن النقطة C هي صورة النقطة C بتشابه مباشر مركزه C ، بطلب تعین زاویته و نسبته.

التمرين الثاني (04 نقط)

الفضاء منسوب إلى معلم متعامد و متجانس $\left(O;ec{i},ec{j},ec{k}
ight)$ نعتبر المستوى $\left(P
ight)$ الذي معادلته :

x+2y-z+7=0

. C(-1,-2,2) و B(3,2,0) و A(2,0,1)

ABC و C و B ، A و B و C ليست على استقامية ، ثم بين أن المعادلة الديكارتية للمستوى By+2z-2=0: x=0

2 − أ − تحقق أن المستويين (P) و (ABC) متعامدان ، ثم عين تمثيلا وسيطيا للمستقيم (△)مستقيم تقاطعً $\cdot (ABC)_{\varepsilon}(P)$

 Λ بين النقطة Λ و المستقيم (Δ) .

 $1+\alpha+\beta\neq 0$ عدان حقیقیان یحققان $\{(A,1),(B,\alpha),(C,\beta)\}$ عدان حقیقیان یحققان G عدان G عدان حقیقیان یحققان G (Δ) عين α حتى تنتمي النقطة G إلى المستقيم

ABIL SOFT

<u>التمرين الثالث (</u> 04 نقط)

• $f(x) = \frac{x+2}{-x+4}$: بالعبارة: $f(x) = \frac{x+2}{-x+4}$: العبارة: 1

أ- بين أن الدالة f متزايدة تماما على 1.

I بنتمى إلى f(x) ، I من المجال f(x) ، f(x) بنتمى إلى f(x)

(u_n) (2) هي المنتالية العددية المعرقة على Ŋ كما يأتي:

 $u_{n+1} = f(u_n)$ $u_0 = \frac{3}{2}$

اً - بر هن بالتراجع أنه من أجل كل عدد طبيعي $u_{_{n}}$ ، $u_{_{n}}$ نتمي إلى 1

ب- أدرس اتجاه تغير المنتالية (u) ، ثم استنج أنها متقاربة.

$$u_n = 1 + \frac{1}{\left(\frac{3}{2}\right)^n + 1}$$
 : n عين النبر اجم أنه من اجل كل عدد طبيعي n : n عين النهاية : n

التمرين الرابع (07,5 نقط)

: عنبر الدالة العددية للمتغير الحقيقي x المعرفة على المجال $[-2,+\infty[$ كما يأتى -1

 $f(x) = (ax+b) e^{-x} + 1$

حیث a و b عددان حقیقیان.

، المنحنى الممثل للدالة f في معلم متعامد و متجانس $\left(O;\vec{i},\vec{j}\right)$ وحدة الطول $\left(C_{f}
ight)$

عين قيمتي a و b بحيث تكون النقطة A(-1,1) تتتمي إلى C_f) و معامل توجيه المماس -e) عند A يساوي

x المعرفة على المجال g للمتغير الحقيقي x المعرفة على المجال g2,+ ∞

$$g(x) = (-x-1)e^{-x} + 1$$

و (C_{s}) تمثیلها البیانی فی نفس المعلم المعابق.

(انظر أن g(x) = 1 و فسر هذه النتيجة بيانيا (نذگر أن g(x) = 1) بين أن

ب) ادرس تغیرات الدالة g ، ثم أنشئ جدول تغیراتها.

ج) بيّن أن المنحنى (C_s) يقبل نقطة انعطاف I يطلب تعيين احداثييها.

.1 عند النقطة المماس للمنحنى ($C_{
m g}$) عند النقطة الم

 (C_g) ارسم

و) H الدالة العددية المعرفة على $[-2,+\infty]$ كما ياتى: $H(x)=(\alpha x+\beta)e^{-x}$ حيث α و β عددان حقيقيان.

 $x \mapsto g(x)-1$: عين α و β بحيث تكون H دالة أصلية للدالة

استنتج الدالة الأصلية للدالة ع و التي تنعدم عند القيمة 0.

III) لتكن k الدالة المعرفة على المجال] 2,+∞ كما يأتى:

 $k(x) = g(x^2)$

باستعمال مشتقة دالة مركبة ، عين اتجاه تغير الدالة له ثم شكل جدول تغيراتها .

NABIL SOFT

الموضوع الثاثى

التمرين الأول (03 نقط)

لكل سؤال من الأسئلة التالية جواب واحد صحيح فقط . عين الجواب الصحيح معللا اختيارك. نعتبر في الفضاء المنسوب إلى معلم متعامد ومتجانس $\left(O; ar{i}, ar{j}, ar{k}
ight)$ النقط:

$$D(3,2,1) \cdot C(-2,0,-2) \cdot B(4,1,0) \cdot A(1,3,-1)$$

x-3z-4=0 الذي معادلته: (P) الذي

2) شعاع ناظمي للمستوي (P) هو :

$$\vec{n_3}(2,0,-1)$$
 (3 ϵ · $\vec{n_2}(-2,0,6)$ (2 ϵ · $\vec{n_1}(1,2,1)$ (1 ϵ

(3) المسافة بين النقطة D و المستوى

$$\frac{2\sqrt{10}}{5}(3_{\overline{c}}$$
, $\frac{\sqrt{10}}{10}(2_{\overline{c}}$, $\frac{\sqrt{10}}{5}(1_{\overline{c}}$

التمرين الثاني (05 نقط)

(un)منتالية عددية معرفة كما يلي :

$$u_{n+1} = \frac{2}{3}u_n + 2$$
: n example 2 and $u_0 = \frac{5}{2}$

ا الممثل (d) الذي معادلته y=x و المنحنى (Δ) الذي معادلته y=x و المنحنى (d) الممثل الممثل أ

$$f(x) = \frac{2}{3}x + 2$$
: بالدالة f المعرفة على \mathbb{R}

 u_4 و u_3,u_2,u_3,u_6 : على حامل محور الفواصل و بدون حساب الحدود : u_4 مثل على حامل محور الفواصل و بدون حساب الحدود : u_4

جــ - ضع تخمينا حول انجاه تغير المتتالية (u_n) و تقاربها.

. $u_n \le 6$: n عدد طبیعی أنه من أجل كل عدد طبیعي (2

. ب - تحقق أن (u_n) منز ايدة

. $v_n = u_n - 6$: n نضع من أجل كل عدد طبيعي (3

أ - اثبت أن (v_n) متتالية هندسية يطلب تعيين أساسها و حدها الأول.

 $\lim_{n \to \infty} u_n$ بدلالة n ثم استنتج السيت

NABIL SOFT

التمرين الثالث (05 نقط)

مل في مجموعة الأعداد المركبة ℃المعادلة ذات المجهول z التالية:

$$z^2 + iz - 2 - 6i = 0$$

2. نعتبرفي المستوي المركب المنسوب إلى معلم متعامد و متجانس $O(\bar{u},\bar{v})$ النقطنين ، A و B اللئين Z_{n} الاحقتاهما Z_{n} على الترتيب حيث :

$$z_B = -2 - 2i \qquad z_A = 2 + i$$

[AB] عبن z_{ω} لاحقة النقطة ω مركز الدائرة (Γ) ذات القطر

.
$$z_c = \frac{4-i}{1+i}$$
 حيث z_c دات اللاحقة المنكن c النقطة ذات اللاحقة المنكن

 (Γ) على الشكل الجبري ثم أثبت أن النقطة C تتتمي إلى الدائرة z_c

و الذي $M_0(z_0)$ و نسبته $M_0(z_0)$ و الذي $M_0(z_0)$ و الذي $M_0(z_0)$ و الذي M(z) و الذي M(z) برفق بكل نقطة M(z) النقطة M(z) هي :

.
$$z' + \frac{1}{2}i = 2e^{i\frac{\pi}{3}}\left(z + \frac{1}{2}i\right)$$
 : ين الطبيعة و العناصر المميزة للتحويل S المعرف بـ و العناصر المميزة التحويل و العناصر و العناصر المميزة التحويل و ا

التمرين الرابع (07 نقط)

المنحنى (C) المقابل هو التمثيل البياني للدالة العددية g المعرفة على المجال (C) كما يأتي:

$$g(x) = x^3 + 3x^2 + 3x - 1$$

 $g\left(\frac{1}{2}\right)$ و بقراءة بيانية شكل جدول تغيرات الدالة g و حدّد g و اشارة g

- $g(\alpha)=0$: وجود عدد حقيقي α من المجال $0,\frac{1}{2}$ يحقق α
 - g(x) استنتج إشارة g(x) على المجال g(x) g(x) . f=0 هي الدالة العددية المعرفة على المجال f=0 بما يأتي f=0

$$f(x) = \frac{x^3 + 3x^2 + 3x + 2}{(x+1)^2}$$

. $\left(O; \overline{i}\,, \overline{j}\,
ight)$ متعامد متعامد (Γ) بمثیلها البیانی فی معام

 $f'(x) = \frac{g(x)}{(x+1)^3}$:]-1;+∞[من المجال x من المجال عدد حقيقي x من المجال أنه من الجل كل عدد حقيقي

f' هي الدالة المشتقة للدالة

ب) عين دون حساب
$$\frac{f(x)-f(\alpha)}{x-\alpha}$$
 و فسر النتيجة بيانيا.

ج) احسب :
$$f(x) = \lim_{x \to \infty} \left[f(x) - (x+1) \right]$$
 و فَسَر النترَجِئين بياتيا.

د) شكل جدول تغيرات الدالة f

$$\alpha = 0.26$$
 - 3

ه عددان حقيقيان.
$$f(x) = x + a + \frac{b}{(x+1)^2}$$
 عددان حقيقيان. $f(x) = a + a + \frac{b}{(x+1)^2}$

$$F(1) = 2$$
 : والذي تحقق $F(1) = 1; +\infty$ الدالة الأصلية للدالة أ f على المجال $F(1) = 1; +\infty$ التوفيق التهى الصفحة 4/4