Лабораторная работа № 3.5.1 "Изучение плазмы газового разряда в неоне"

Кирилл Шевцов Б03-402 16.09.2025

Цель работы

Изучить вольт-амперную характеристику тлеющего разряда, изучить свойства плазмы методом зондовых характеристик.

Оборудование

Стеклянная газоразрядная трубка, наполненная неоном, источник напряжения, делитель напряжения, потенциометр, амперметры, амперметры, переключатели.

Лабораторная установка

Стеклянная газоразрядная трубка имеет ненагреваемый полый катод, три анода и геттерный узелстеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона при давлении 2 мм. рт. столба. Катод и один из анодов с помощью переключателя P_1 подключаются через балластный резистор R_b к регулируемому ВИП. При подключении первого анода к ВИП, между ним и катодом возникает газовый разряд. Ток раз-

Рис. 1: установка для исследования газового разряда

ряда измеряется амперметром A_1 , падение напряжения - на вольтметре V_1 , подключенным к трубке через делитель напряжения с коэффициентом, равным $\alpha = R_1 + R_2/R_2 = 10$. При подключении к ВИП второго анода, возникает газовый разряд между катодами и вторым анодом, где находится двойной зонд, необходимый для диагностики плазмы. Третий анод в работе не используется.

Необходимые формулы

Частота коллективных колебаний электронов (или плазменная частота) относительно квазинейтрального состояния (то есть такого состояния, при котором равна нулю средняя плотность заряда):

$$\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \tag{1}$$

колебания, описываемые плазменной частотой, называют ленгмюровскими.

Важнейшний плазменный параметр, задающий характерный пространственный масштаб многих плазменных явления - дебаевский радиус:

$$r_D = \sqrt{\frac{k_B T_e}{4\pi n_e e^2}} \tag{2}$$

Эти два параметра представляют собой две важные характеристики плазмы, определяющие временной и пространственный масштабы коллективного движения электронов относительно ионов.

Замечание: если плазма неравновесная, различают два типа дебаевской длины: электронную (слева) и ионную (справа), в понимании, что их температуры различны $T_e \neq T_i$:

$$r_{De} = \sqrt{\frac{k_B T_e}{4\pi n_e e^2}} \quad r_{Di} = \sqrt{\frac{k_B T_i}{4\pi n_i e^2}}$$
 (3)

Поэтому иногда дебаевский радиус называют поляризационной длиной.

Выражение, определяющее энергию кулоновского взаимодействия частиц в плазме:

$$\varphi = -\frac{q}{\tilde{r}} \exp\left(-\frac{r}{r_D}\right) \tag{4}$$

где $\varphi_0 = q/\tilde{r}$ - потенциал одного иона.

Плотность энергии кулоновского взаимодействия зарядов в плазме:

$$\omega = -\frac{1}{2}n_i \frac{q^2}{r_D} \tag{5}$$

В сравнении полученной кулоновской энергии с тепловой $l \sim n_i kT$:

$$\frac{l}{\omega} \sim \frac{kTr_D}{g^2} = 4\pi n_i r_D^3 \tag{6}$$

Отсюда выражение для числа заряженных частиц в сфере дебаевского радиуса (дебаевской сфере):

$$N_D = \frac{4}{3}\pi n_i r_D^3 \tag{7}$$

Оценка тока насыщения для ионов, согласно полуэмпирическому соотношению Д. Бомома:

$$I_{in} \sim 0.4 n_i e S \sqrt{\frac{2kT_e}{m_i}} \tag{8}$$

Зависимость тока от напряжения для ВАХ газового разряда:

$$I = I_0 t h \frac{eU}{2k_B T_e} \tag{9}$$

Эту формулу можно использовать для определения температуры электронов по вольт-амперной характеристике двойного зонда. По пересечению асимптот с вертикальной осью можно определить ток насыщения I_{in} , а затем и концентрацию заряженных частиц в плазме.

Измерения и снятие данных

1. Настроим установку для ВАХ газового разряда согласно инструкции, плавно увеличивая напряжение на ВИП, запишем напряжение зажигания, показание вольтметра V_1 . показания выходного напряжения U_{out} , входного $U_{in} = 1/\alpha \cdot U_{out}$.

Номер измерения	1	2	3	4		
$U_{out} \pm \Delta U_{out}$, B	152.52 ± 0.01	149.54 ± 0.01	152.51 ± 0.01	152.53 ± 0.01		
ΔU_{out} , B	0.01					

Таблица 1: Напряжение зажигания для газового разряда

2. С помощью вольтметра V_1 и амперметра A_1 измерим ВАХ газового разряда I(U). Ток изменяется в диапазоне 0.5-5.0 мА.

I, MA	0.55	0.93	1.55	2.14	2.55	3.07	3.53	4.07	4.51	5.09
U, B	34.00	32.60	31.32	23.69	20.70	18.05	16.35	15.72	15.19	14.43
I, MA	4.50	4.02	3.53	3.00	2.53	2.03	1.55	1.04	0.54	-
U, B	15.10	15.60	16.26	18.33	20.70	24.70	31.26	32.30	34.24	-

Таблица 2: Снятие ВАХ газового разряда в неоне

3. Построим график участка вольт-амперной характеристики газового разряда. Определим дифференциальное сопротивление:

Рис. 2: вах газового разряда

$$R_{dif} = \frac{dU}{dI} = -9605.89 \pm 175.32 \text{ Om} \quad \Delta R = R\left(\frac{\Delta(dU)}{dU} + \frac{\Delta(dI)}{dI}\right) = 175.32 \text{ Om}$$
 (10)

Построенный график соответствует участку поднормального тлеющего разряда.

4. Снимем ВАХ двойного зонда, плавно увеличивая напряжение от $-U_0$ до U_0 при фиксированном токе разряда I_p . Построим график зондовых характеристик для разных разрядных токов

I_p , MA	5.000 ± 0.001										
I, MA	22.98	22.10	21.17	20.25	19.26	18.17	17.25	15.88	12.90	6.89	0.07
U, B	24.99	22.07	19.02	16.11	13.08	10.11	8.09	6.08	4.03	2.06	0.55
<i>I</i> , мА	-2.66	-6.74	-12.96	-15.90	-17.13	-18.19	-19.38	-20.37	-21.34	-22.33	-23.18
U, B	0.00	2.02	4.07	6.20	8.08	10.13	13.04	16.04	19.08	22.19	24.99
I_p , мА		1			4.	$005 \pm 0.$	001			1	
I, мА	19.67	18.97	18.12	17.35	16.50	15.54	14.70	13.42	10.85	5.61	0.12
U, B	24.99	22.11	19.09	16.12	13.09	10.07	8.01	6.01	4.08	2.08	0.60
I, мА	-0.15	-5.71	-10.78	-13.37	-14.62	-15.34	-16.29	-17.17	-18.00	-18.76	-19.56
U, B	0.6	2.11	4.08	6.07	8.19	10.02	13.01	16.10	19.14	22.08	25.00
I_p , мА					3.	$101 \pm 0.$	001				
I, мА	15.92	15.31	14.65	14.00	13.28	12.37	11.68	10.45	8.05	3.98	0.05
U, B	24.99	22.02	19.09	16.22	13.12	10.12	8.10	6.03	4.04	2.07	0.58
I, мА	-0.04	-3.82	-8.03	-10.41	-11.56	-12.26	-13.07	-13.75	-14.42	-15.07	-15.70
U, B	0.58	2.01	4.06	6.07	8.12	10.10	13.24	16.09	19.11	22.18	24.99
I_p , мА	1.513 ± 0.001										
I, мА	9.05	8.65	8.27	7.82	7.42	6.93	6.42	5.52	4.07	1.94	0.13
U, B	24.99	22.01	19.06	16.04	13.09	10.12	8.09	5.97	4.02	2.11	0.56
I, мА	-0.13	-1.88	-4.06	-5.52	-6.37	-6.84	-7.34	-7.73	-8.16	-8.56	-8.95
U, B	0.56	2.06	4.05	6.03	8.09	10.14	13.18	16.10	19.06	22.02	24.99

Таблица 3: Вольт-Амперная характеристика двойного зонда

Рис. 3: вах двойного зонда

5. По каждой зондовой характеристике определим ионный ток насыщения I_{in} , наклон характеристики G = dI/dU, U = 0 в начале координат. Данные графика аппроксимируются зависимостью $y(x) = A \cdot th(Bx) + C$:

I_p , MA	$A = I_{in}, \text{ MA}$	G = dI/dU, м A/B	$B = e/2kT_e, 1/B$
5.000 ± 0.001	21.40 ± 0.01	3.21 ± 0.01	0.150 ± 0.001
4.005 ± 0.001	18.26 ± 0.01	2.66 ± 0.01	0.146 ± 0.001
3.101 ± 0.001	14.86 ± 0.01	1.96 ± 0.01	0.132 ± 0.001
1.513 ± 0.001	8.52 ± 0.01	1.01 ± 0.01	0.118 ± 0.001

Таблица 4: Аппроксимация и соответствие коэффициентов

6. Рассчитаем температуру электронов T_e , концентрацию n_e электронов для заданных токов разряда. Считаем площадь поверхности зонда равной $S \approx \pi dl$, параметры установки: l=5.2 мм - длина проволоки зонда, d=0.2, мм - диаметр проволоки зонда. Величины $m_i=3.35\times 10^{-26}$ кг - масса иона неона, $e=1.6\times 10^{-19}$ Кл - элементарный заряд электрона:

$$T_e = \frac{e}{2kB}$$
 $n_i = \frac{2.5I_{in}}{e\pi dl} \sqrt{\frac{m_i}{2kT_e}}$

Данные	Результаты вычислений						
I_p , MA	5.000	4.005	3.101	1.513			
T_e , K	38726	39864	43882	49158			
$n_e \times 10^{19} \text{ 1/m}$ 3	1.81	1.52	1.18	0.64			

Таблица 5: расчеты температур и концентрации электронов в плазме

7. Рассчитаем плазменную частоту колебаний ω_p , электронную поляризационную длину r_{D_e} и дебаевский радиус экранирования r_D для заданных токов разряда. Температура ионов для участка тлеющего разряда $T_i=300~{\rm K}.$

Данные	Результаты вычислений						
I_p , MA	5.000	4.005	3.101	1.513			
$\omega_p \times 10^6$, Hz	2.50	2.32	2.04	1.5			
r_{De} , M	0.43	0.47	0.56	0.81			
r_D , M	0.026	0.029	0.033	0.044			

Таблица 6: расчеты дебаевских длин и плазменной частоты

8. Оценим степень ионизации плазмы, считая давление в трубке $P\approx 2$ торр. Значения ионизации плазмы действительно малы - плазму можно считать идеальной.

$$\alpha = n_i/n = \frac{n_i}{P/kT_i} = kT_i n_i/P$$

Данные	Результаты вычислений					
$n_e \times 10^{19} \text{ 1/m}3$	1.81	1.52	1.18	0.64		
$\alpha \times 10^{-4}$	2.81	2.36	1.83	0.99		

Таблица 7: расчет степени ионизации плазмы

9. Построим графики зависимости $T_e(I_p)$, $n_e(I_p)$.

Рис. 4: Зависимости температуры плазмы разряда и концентрации ионов от тока

Анализ зависимости $n(I_p)$: Концентрация ионов плазмы линейно зависит от тока разряда плазмы, зависимость линейно возрастает на всем промежутке измерений.

Анализ зависимости $T(I_p)$: Температура электронов в плазме возрастает при уменьшении тока разряда по всему промежутку измерений. При меньших токах плазма становится более разреженной и столкновения электронов происходят реже. Ионизация плазмы приводит к увеличению температуры.

Вывод

В ходе работы были изучены свойства плазмы и работа двойного зонда.