Innovation and Imitation With and Without IPRs

Rufus Pollock

Emmanuel College
University of Cambridge

FLOSS 2.0, June 2008

Motivation and Background

Growing Amount of 'Open' Knowledge Production

- Open source software (Firefox), content (Wikipedia), etc.
- Though how much ex-ante 'commercial' and profit-motivated still debated

Impact of IP on Innovation/Creativity

- Controversy over impact of IP on innovation/creativity
 - Software/business process patents, Biotech, Music (Hip-hop)

Commonality

- Weak/No IP may be better for innovation
 - NB: NOT about impact of IP on welfare
- Open models may do better than closed ones
- Does not fit well with traditional theory ...

Traditional Theory

Innovation Space

- Level of Innovation = I(Appr. Value, Cost) = I(V, C)
- Trad. view: $V^{IP} > V^{NIP} > V^O \approx 0$ and $C^{IP} = C^{NIP} = C^O$
- ⇒ more innovation with IPRs
- In fact, more than that
- If imitation cheaper than innovation (and 'fast') then simple competition
- $\Rightarrow V^{NIP} = C^{IMM} < C \Rightarrow$ No innovation w/o IPRs

But in Reality

Or Even

Innovation Space

But in Reality

Or Even

Innovation Space

So What Gives?

- Two directions to go (theoretically and empirically)
- Focus on C
 - Maybe costs are lower w/o IP or when open
 - Will not look at this here dealt with elsewhere
- Focus on V
 - Nonrivalry is clearly a simplification
 - Firms can appropriate returns w/o IPR (+ imitation costly)
 - Levin et al (1987), Mansfield (1986), Cohen et al (2001), and Arundel (2001)
 - So examine imitation and appropriation more carefully

What Does This Paper Do

- Incorporate imitation formally
 - · Both costly in itself
 - And allows innovator some kind of first-mover role
- Occurrence and degree of innovation with imitation
- Natural conception of a general innovation 'space'
- Allows us to look at relation of:
 - Policy regimes (IP vs. no IP vs. Open) and welfare
 - · Some general results and conjectures

Model

Setup

- Innovation and imitation costs: f_I, f_m
- Imitation cost as proportion of inno cost: $\phi = f_m/f_I$
 - Assume imitation cost is always less than innovation cost
- As specified innovation is defined by tuple (f_l, ϕ)
- Some model (M) of competition determines (for each f_i, ϕ) inno income V
 - If $V > f_i$ then the innovation occurs, otherwise not.
 - In paper look at one natural case (Stackelberg)
 - · Plenty of others: seq. entry, hotelling with choice etc etc

The Space of Innovations

 Under the assumptions given and using normalized variables the space of innovations is then the unit square:

$$IS = \{(f_I, f_m) \in [0, 1] \times [0, 1] : f_m \le f_I\}$$
$$= \{(f_I, \phi) \in [0, 1] \times [0, 1]\}$$

Location of Technologies and Industries

- Each (potential) innovation located somewhere in this space
- If uncertainty (for policy-maker)
 then location a distribution g
- Similarly industry/ies naturally represented by distbn g
- To left: conjectured industry locations (without IPRs)

The effect of intellectual property rights

- Introduction of IPRs (patent or copyright) has natural representation:
 - 1. (Default) All imitation is prohibited \Rightarrow all innovations occur.
 - 2. Original g^{NIP} is transformed to a new distribution g^{IP}

Results

Results

- Basic question: given model M what innovations occur
 - With and without IP (and in Open case)
- Next question: how does this relate to welfare

Figure: Innovation without IP in Stackelberg case. (yellow: non-integer no. of imitators ok, red: integer only)

- 'Feasible' imitation costs fall faster than inno costs
 - Stackelberg: 'Squared rule': $f_m \ge f_i^2$
- Given distbn g can get inno w/o IP and compare to with IP
- How does this generalize for arbitrary competition models M?

Figure: Innovation without IP in Stackelberg case. (yellow: non-integer no. of imitators ok, red: integer only)

- 'Feasible' imitation costs fall faster than inno costs
 - Stackelberg: 'Squared rule': $f_m \ge f_i^2$
- Given distbn g can get inno w/o IP and compare to with IP
- How does this generalize for arbitrary competition models M?

Welfare

- For inno. f_i , ϕ can calculate welfare (assuming it occurs)
- Compare welfare with IP W^{IP} to welfare without IP W^{NIP}
- Result (any M): welfare ratios higher than inno ratios
 - (trad) given inno generates higher welfare w/o IP (less d/w)
 - (novel) innos that occur w/o IP have higher welfare on average than those that occur only with IP because costs are lower
- In stackelberg case/uniform distbn: welfare ratio = 75% vs.
 50% for inno ratio

Conclusion

- General framework in which to look at innovation and imitation
 - One major aspect of why/when IP rights
 - Imitation ratio falls with inno cost
 - Understand changes in IPRs over time (Bonito boats/Perfumes etc)
- Innovation when imitation cheaper
- Welfare 'better' than inno when comparing no IP (or Open) to IP