$11a_{354} \ (K11a_{354})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -160922417u^{20} - 82767962u^{19} + \dots + 2637274048b + 1724364181, \\ & 1172455205u^{20} + 3315332618u^{19} + \dots + 15823644288a - 17023392209, \ u^{21} + u^{20} + \dots - u - 3 \rangle \\ I_2^u &= \langle 3.10404 \times 10^{24}u^{33} - 6.92641 \times 10^{24}u^{32} + \dots + 3.33278 \times 10^{25}b + 3.58251 \times 10^{25}, \\ & 2.34878 \times 10^{26}u^{33} - 6.49522 \times 10^{26}u^{32} + \dots + 9.99835 \times 10^{25}a - 2.61013 \times 10^{26}, \ u^{34} - 3u^{33} + \dots - 8u + 1 \\ I_3^u &= \langle b + 1, \ 2a + 1, \ u - 1 \rangle \\ I_4^u &= \langle b - 1, \ 4a^2 - 4a + 3, \ u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 58 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.61 \times 10^8 u^{20} - 8.28 \times 10^7 u^{19} + \dots + 2.64 \times 10^9 b + 1.72 \times 10^9, \ 1.17 \times 10^9 u^{20} + 3.32 \times 10^9 u^{19} + \dots + 1.58 \times 10^{10} a - 1.70 \times 10^{10}, \ u^{21} + u^{20} + \dots - u - 3 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0740951u^{20} - 0.209518u^{19} + \dots - 3.81221u + 1.07582 \\ 0.0610185u^{20} + 0.0313839u^{19} + \dots + 1.11500u - 0.653843 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.197971u^{20} - 0.0494518u^{19} + \dots + 0.314954u + 1.35005 \\ 0.165057u^{20} - 0.0143368u^{19} + \dots - 0.408900u + 0.0392300 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0130767u^{20} - 0.178134u^{19} + \dots - 2.69722u + 0.421977 \\ 0.0610185u^{20} + 0.0313839u^{19} + \dots + 1.11500u - 0.653843 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0825253u^{20} - 0.112909u^{19} + \dots - 0.258326u + 1.55523 \\ -0.208288u^{20} - 0.526602u^{19} + \dots + 1.07412u + 0.824561 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.135443u^{20} - 0.0407053u^{19} + \dots + 1.31928u - 0.158672 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00777699u^{20} - 0.204864u^{19} + \dots + 4.09651u + 0.616331 \\ 0.242228u^{20} + 0.162054u^{19} + \dots + 0.967988u - 1.29833 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.374119u^{20} - 0.144655u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots - 0.685947u - 0.315896 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.374119u^{20} - 0.144655u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460u + 1.75638 \\ 0.0747139u^{20} + 0.125515u^{19} + \dots + 0.278460$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{637817299}{659318512}u^{20} + \frac{458613173}{659318512}u^{19} + \cdots - \frac{13858087997}{659318512}u - \frac{901043607}{82414814}u^{19} + \cdots$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{21} - 6u^{19} + \dots + 57u + 24$
c_2, c_3, c_8	$u^{21} - 3u^{20} + \dots - 24u + 8$
c_5, c_7, c_9 c_{11}	$u^{21} - u^{20} + \dots - u + 3$
c_6,c_{10}	$8(8u^{21} - 4u^{20} + \dots - 2u + 4)$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{21} - 12y^{20} + \dots + 13233y - 576$
c_2, c_3, c_8	$y^{21} + 23y^{20} + \dots + 96y - 64$
c_5, c_7, c_9 c_{11}	$y^{21} + 11y^{20} + \dots + 85y - 9$
c_6, c_{10}	$64(64y^{21} + 656y^{20} + \dots + 60y - 16)$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.090880 + 0.306968I		
a = -0.388613 + 0.046984I	-3.50254 + 0.45372I	-13.2351 - 10.9889I
b = -1.011870 + 0.167863I		
u = 1.090880 - 0.306968I		
a = -0.388613 - 0.046984I	-3.50254 - 0.45372I	-13.2351 + 10.9889I
b = -1.011870 - 0.167863I		
u = 0.300491 + 1.132360I		
a = -0.48749 - 1.67733I	2.01539 - 5.30911I	-6.93058 + 7.06093I
b = 1.27655 + 0.93600I		
u = 0.300491 - 1.132360I		
a = -0.48749 + 1.67733I	2.01539 + 5.30911I	-6.93058 - 7.06093I
b = 1.27655 - 0.93600I		
u = 0.059914 + 1.172390I		
a = 1.13290 - 0.84676I	8.68556 - 1.36021I	3.27021 + 3.85751I
b = -1.89114 + 0.74167I		
u = 0.059914 - 1.172390I		
a = 1.13290 + 0.84676I	8.68556 + 1.36021I	3.27021 - 3.85751I
b = -1.89114 - 0.74167I		
u = -0.173596 + 1.178810I		
a = 0.45364 + 1.66491I	6.35701 + 3.86289I	-1.42698 - 7.24526I
b = -0.33964 - 1.52106I		
u = -0.173596 - 1.178810I		
a = 0.45364 - 1.66491I	6.35701 - 3.86289I	-1.42698 + 7.24526I
b = -0.33964 + 1.52106I		
u = -0.533873 + 0.533126I		
a = 0.131827 + 0.649526I	-2.36275 + 1.38248I	-10.93113 - 5.35701I
b = 1.259740 + 0.049663I		
u = -0.533873 - 0.533126I		
a = 0.131827 - 0.649526I	-2.36275 - 1.38248I	-10.93113 + 5.35701I
b = 1.259740 - 0.049663I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.485617 + 1.267790I		
a = 0.17265 - 1.58270I	3.28365 + 11.20830I	-7.47113 - 8.56307I
b = -1.29660 + 0.72895I		
u = -0.485617 - 1.267790I		
a = 0.17265 + 1.58270I	3.28365 - 11.20830I	-7.47113 + 8.56307I
b = -1.29660 - 0.72895I		
u = 0.37790 + 1.38499I		
a = -0.392046 + 1.240810I	14.7040 - 8.5355I	-2.42060 + 4.78360I
b = 0.173107 - 1.254650I		
u = 0.37790 - 1.38499I		
a = -0.392046 - 1.240810I	14.7040 + 8.5355I	-2.42060 - 4.78360I
b = 0.173107 + 1.254650I		
u = -0.409786 + 0.332736I		
a = 1.34718 - 1.22922I	3.45120 + 1.15767I	-7.19855 - 5.90528I
b = -0.508583 + 0.245922I		
u = -0.409786 - 0.332736I		
a = 1.34718 + 1.22922I	3.45120 - 1.15767I	-7.19855 + 5.90528I
b = -0.508583 - 0.245922I		
u = -1.44772 + 0.30988I		
a = 0.380476 - 0.106586I	2.63271 - 1.46369I	-5.79825 + 4.59200I
b = 0.868563 + 0.334615I		
u = -1.44772 - 0.30988I		
a = 0.380476 + 0.106586I	2.63271 + 1.46369I	-5.79825 - 4.59200I
b = 0.868563 - 0.334615I		
u = 0.57781 + 1.39987I		
a = -0.00890 - 1.47507I	11.0553 - 15.1817I	-5.60482 + 7.58890I
b = 1.33922 + 0.65997I		
u = 0.57781 - 1.39987I		
a = -0.00890 + 1.47507I	11.0553 + 15.1817I	-5.60482 - 7.58890I
b = 1.33922 - 0.65997I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.287195		
a = -0.849896	-0.522581	-19.0060
b = 0.261262		

 $II. \\ I_2^u = \langle 3.10 \times 10^{24} u^{33} - 6.93 \times 10^{24} u^{32} + \dots + 3.33 \times 10^{25} b + 3.58 \times 10^{25}, \ 2.35 \times 10^{26} u^{33} - 6.50 \times 10^{26} u^{32} + \dots + 1.00 \times 10^{26} a - 2.61 \times 10^{26}, \ u^{34} - 3u^{33} + \dots - 8u + 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2.34917u^{33} + 6.49629u^{32} + \dots - 50.6654u + 2.61056 \\ -0.0931366u^{33} + 0.207827u^{32} + \dots - 1.02591u - 1.07493 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.80446u^{33} - 4.85974u^{32} + \dots + 35.4986u + 5.80588 \\ -0.547249u^{33} + 1.50787u^{32} + \dots - 10.1466u + 3.14923 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2.44231u^{33} + 6.70412u^{32} + \dots - 51.6914u + 1.53563 \\ -0.0931366u^{33} + 0.207827u^{32} + \dots - 1.02591u - 1.07493 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.62724u^{33} + 4.23174u^{32} + \dots - 36.5972u - 2.57013 \\ 0.387178u^{33} - 1.14075u^{32} + \dots + 6.79493u - 2.47847 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -6.82156u^{33} + 19.3458u^{32} + \dots - 168.898u + 23.4185 \\ -0.665031u^{33} + 1.70903u^{32} + \dots - 14.3783u + 0.0625691 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.38071u^{33} + 6.62892u^{32} + \dots - 52.8462u + 3.16664 \\ -0.184318u^{33} + 0.472228u^{32} + \dots - 2.87104u - 0.556871 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.38071u^{33} + 6.62892u^{32} + \dots - 52.8462u + 3.16664 \\ -0.184318u^{33} - 9.19499u^{32} + \dots + 80.6634u - 20.0540 \\ 0.711601u^{33} - 2.04963u^{32} + \dots + 16.6163u - 2.48121 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 3.10781u^{33} - 9.19499u^{32} + \dots + 80.6634u - 20.0540 \\ 0.711601u^{33} - 2.04963u^{32} + \dots + 16.6163u - 2.48121 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3.10781u^{33} - 9.19499u^{32} + \dots + 80.6634u - 20.0540 \\ 0.711601u^{33} - 2.04963u^{32} + \dots + 16.6163u - 2.48121 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^{17} + u^{16} + \dots + u + 1)^2$
c_2, c_3, c_8	$(u^{17} + u^{16} + \dots + u - 1)^2$
c_5, c_7, c_9 c_{11}	$u^{34} + 3u^{33} + \dots + 8u + 1$
c_6, c_{10}	$9(9u^{34} - 45u^{33} + \dots + 5844u + 4123)$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^{17} - 9y^{16} + \dots + y - 1)^2$
c_2, c_3, c_8	$(y^{17} + 19y^{16} + \dots + y - 1)^2$
c_5, c_7, c_9 c_{11}	$y^{34} + 23y^{33} + \dots - 16y + 1$
c_6, c_{10}	$81(81y^{34} + 1539y^{33} + \dots + 2.18604 \times 10^8y + 1.69991 \times 10^7)$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.957129 + 0.297465I		
a = 0.507777 + 0.193862I	9.44087 - 3.91820I	-4.40216 + 2.39256I
b = 0.231761 - 0.782357I		
u = 0.957129 - 0.297465I		
a = 0.507777 - 0.193862I	9.44087 + 3.91820I	-4.40216 - 2.39256I
b = 0.231761 + 0.782357I		
u = 0.161699 + 1.038480I		
a = -1.42815 - 2.19989I	2.28510	-14.8691 + 0.I
b = 0.756727		
u = 0.161699 - 1.038480I		
a = -1.42815 + 2.19989I	2.28510	-14.8691 + 0.I
b = 0.756727		
u = -0.940515 + 0.104107I		
a = -0.333927 + 0.063655I	-0.35577 - 6.09306I	-11.29297 + 6.87425I
b = -1.156820 - 0.481476I		
u = -0.940515 - 0.104107I	0.05555	11 00007 - 0 074077
a = -0.333927 - 0.063655I	-0.35577 + 6.09306I	-11.29297 - 6.87425I
b = -1.156820 + 0.481476I $u = -0.307123 + 1.022680I$		
	0.05940 + 0.057707	19.01090 0.970161
a = -0.25597 + 1.53917I	-0.85249 + 2.05778I	-13.01930 - 0.37816I
b = 1.151920 - 0.412149I $u = -0.307123 - 1.022680I$		
a = -0.25597 - 1.53917I	-0.85249 - 2.05778I	-13.01930 + 0.37816I
b = 1.151920 + 0.412149I	-0.00249 - 2.001101	-13.01330 + 0.376101
$\frac{b = 1.151920 + 0.412149I}{u = -0.067078 + 1.070590I}$		
a = 0.23390 + 1.62274I	5.15765 + 0.50801I	-9.57451 + 0.23246I
b = -1.172060 - 0.309872I	0.10100 0.000011	0.07 101 7 0.202 101
$\frac{v = 1.172000 - 0.303872I}{u = -0.067078 - 1.070590I}$		
a = 0.23390 - 1.62274I	5.15765 - 0.50801I	-9.57451 - 0.23246I
b = -1.172060 + 0.309872I		
	1	<u> </u>

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.471546 + 1.054750I		
a = -0.68713 - 1.28004I	4.41315 + 1.83062I	-4.40697 - 5.22267I
b = -0.758174 + 0.422247I		
u = -0.471546 - 1.054750I		
a = -0.68713 + 1.28004I	4.41315 - 1.83062I	-4.40697 + 5.22267I
b = -0.758174 - 0.422247I		
u = 0.159768 + 1.144820I		
a = 0.047737 - 1.065180I	2.59185 - 1.70542I	-8.10923 + 4.02096I
b = -0.112463 + 0.679715I		
u = 0.159768 - 1.144820I		
a = 0.047737 + 1.065180I	2.59185 + 1.70542I	-8.10923 - 4.02096I
b = -0.112463 - 0.679715I		
u = 1.242980 + 0.035364I		
a = 0.425094 + 0.265693I	6.70220 + 8.83664I	-7.62632 - 5.87120I
b = 1.162590 - 0.537552I		
u = 1.242980 - 0.035364I		
a = 0.425094 - 0.265693I	6.70220 - 8.83664I	-7.62632 + 5.87120I
b = 1.162590 + 0.537552I		
u = -0.256339 + 1.285380I		
a = 0.744327 + 0.249553I	4.41315 - 1.83062I	-4.40697 + 5.22267I
b = -0.758174 - 0.422247I		
u = -0.256339 - 1.285380I		
a = 0.744327 - 0.249553I	4.41315 + 1.83062I	-4.40697 - 5.22267I
b = -0.758174 + 0.422247I		
u = 0.527279 + 1.235790I		
a = 0.057533 + 1.306180I	-0.35577 - 6.09306I	-11.29297 + 6.87425I
b = -1.156820 - 0.481476I		
u = 0.527279 - 1.235790I		
a = 0.057533 - 1.306180I	-0.35577 + 6.09306I	-11.29297 - 6.87425I
b = -1.156820 + 0.481476I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.517554 + 0.135833I		
a = -0.175022 - 0.661640I	-0.85249 + 2.05778I	-13.01930 - 0.37816I
b = 1.151920 - 0.412149I		
u = 0.517554 - 0.135833I		
a = -0.175022 + 0.661640I	-0.85249 - 2.05778I	-13.01930 + 0.37816I
b = 1.151920 + 0.412149I		
u = -0.31225 + 1.43262I		
a = -0.024272 - 0.935289I	9.44087 + 3.91820I	-4.40216 - 2.39256I
b = 0.231761 + 0.782357I		
u = -0.31225 - 1.43262I		
a = -0.024272 + 0.935289I	9.44087 - 3.91820I	-4.40216 + 2.39256I
b = 0.231761 - 0.782357I		
u = 0.75838 + 1.29857I		
a = 0.522896 - 0.887131I	12.06090 - 2.39923I	-3.13400 + 3.27109I
b = 0.774885 + 0.615952I		
u = 0.75838 - 1.29857I		
a = 0.522896 + 0.887131I	12.06090 + 2.39923I	-3.13400 - 3.27109I
b = 0.774885 - 0.615952I		
u = -0.426686 + 0.176855I		
a = -1.277270 - 0.237723I	2.59185 + 1.70542I	-8.10923 - 4.02096I
b = -0.112463 - 0.679715I		
u = -0.426686 - 0.176855I		
a = -1.277270 + 0.237723I	2.59185 - 1.70542I	-8.10923 + 4.02096I
b = -0.112463 + 0.679715I		
u = -0.64393 + 1.45144I		
a = 0.026307 + 1.133160I	6.70220 + 8.83664I	-7.62632 - 5.87120I
b = 1.162590 - 0.537552I		
u = -0.64393 - 1.45144I		
a = 0.026307 - 1.133160I	6.70220 - 8.83664I	-7.62632 + 5.87120I
b = 1.162590 + 0.537552I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.43320 + 1.55847I		
a = -0.299894 + 0.393593I	12.06090 + 2.39923I	-3.13400 - 3.27109I
b = 0.774885 - 0.615952I		
u = 0.43320 - 1.55847I		
a = -0.299894 - 0.393593I	12.06090 - 2.39923I	-3.13400 + 3.27109I
b = 0.774885 + 0.615952I		
u = 0.167479 + 0.133177I		
a = -6.08394 - 4.32345I	5.15765 - 0.50801I	-9.57451 - 0.23246I
b = -1.172060 + 0.309872I		
u = 0.167479 - 0.133177I		
a = -6.08394 + 4.32345I	5.15765 + 0.50801I	-9.57451 + 0.23246I
b = -1.172060 - 0.309872I		

III.
$$I_3^u=\langle b+1,\; 2a+1,\; u-1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -0.5 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1.25 \\ 1.5 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1.5 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -0.5 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -0.5 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.25 \\ 0.5 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -0.5 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -7.5

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7	u-1
c_2, c_3, c_8	u
c_4, c_9, c_{11}	u+1
<i>C</i> ₆	2(2u+1)
c_{10}	2(2u-1)

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_7, c_9, c_{11}$	y-1
c_2, c_3, c_8	y
c_6, c_{10}	4(4y-1)

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.500000	-3.28987	-7.50000
b = -1.00000		

IV.
$$I_4^u = \langle b-1, \ 4a^2-4a+3, \ u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\-1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a\\1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.75\\-a+2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a+1\\1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a\\-1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a-\frac{3}{4}\\a-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1\\-2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 3a-1\\4a-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -a+\frac{5}{2}\\-2a+3 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -a+\frac{5}{2}\\-2a+3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_5, c_7	$(u+1)^2$
c_2, c_3, c_8	$u^2 + 2$
c_4, c_9, c_{11}	$(u-1)^2$
c_6	$4(4u^2 - 4u + 3)$
c_{10}	$4(4u^2 + 4u + 3)$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_7, c_9, c_{11}$	$(y-1)^2$
c_2, c_3, c_8	$(y+2)^2$
c_6, c_{10}	$16(16y^2 + 8y + 9)$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.500000 + 0.707107I	1.64493	-12.0000
b = 1.00000		
u = -1.00000		
a = 0.500000 - 0.707107I	1.64493	-12.0000
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)(u+1)^{2}(u^{17}+u^{16}+\cdots+u+1)^{2}(u^{21}-6u^{19}+\cdots+57u+24)$
c_2, c_3, c_8	$u(u^{2}+2)(u^{17}+u^{16}+\cdots+u-1)^{2}(u^{21}-3u^{20}+\cdots-24u+8)$
c_4	$((u-1)^2)(u+1)(u^{17}+u^{16}+\cdots+u+1)^2(u^{21}-6u^{19}+\cdots+57u+24)$
c_5,c_7	$(u-1)(u+1)^{2}(u^{21}-u^{20}+\cdots-u+3)(u^{34}+3u^{33}+\cdots+8u+1)$
c_6	$576(2u+1)(4u^2 - 4u + 3)(8u^{21} - 4u^{20} + \dots - 2u + 4)$ $\cdot (9u^{34} - 45u^{33} + \dots + 5844u + 4123)$
c_9,c_{11}	$((u-1)^2)(u+1)(u^{21}-u^{20}+\cdots-u+3)(u^{34}+3u^{33}+\cdots+8u+1)$
c_{10}	$576(2u-1)(4u^2+4u+3)(8u^{21}-4u^{20}+\cdots-2u+4)$ $\cdot (9u^{34}-45u^{33}+\cdots+5844u+4123)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^3)(y^{17} - 9y^{16} + \dots + y - 1)^2$ $\cdot (y^{21} - 12y^{20} + \dots + 13233y - 576)$
c_2, c_3, c_8	$y(y+2)^2(y^{17}+19y^{16}+\cdots+y-1)^2(y^{21}+23y^{20}+\cdots+96y-64)$
c_5, c_7, c_9 c_{11}	$((y-1)^3)(y^{21}+11y^{20}+\cdots+85y-9)(y^{34}+23y^{33}+\cdots-16y+1)$
c_6, c_{10}	$331776(4y-1)(16y^2+8y+9)(64y^{21}+656y^{20}+\cdots+60y-16)$ $\cdot (81y^{34}+1539y^{33}+\cdots+218604056y+16999129)$