

موضوعات المحاضرة:

- أصناف الدارات المتكاملة الأنظمة المدمجة.
- العوامل المؤثرة في تصميم الأنظمة المدمجة.
 - 🔲 ماهو المتحكم المصغر.
 - معیاریة تصمیم بنیة المعالجات.
 - بنى مسجلات التعليمات في المعالجات.
- □ مقارنة بين المتحكم المصغر والمعالج المصغر
 - □ المعالجات المبنية بواسطة : ARM
 - CORTEX-ARM الهيكلية
 - □ مزايا المتحكم STM32G0
- □ أنواع اللوحات التطويرية المتوفرة Boards type

أصناف الدارات المتكاملة

العوامل المؤثرة في تصميم الأنظمة المدمجة:

- MIPS (Processing Power) منعة المعالجة
- 4bit, 8bit, 16bit, 32bit (Data-Bus) عرض الناقل الداخلي
- Flash, RAM, EEPROM (Memory Space) حجم الذاكرة
 - mW/MIPS (Power Consumption) استهلاك الطاقة 💠
 - + W+SW − (Development Cost) كلفة التطوير ♦
 - المنتج (Lifetime) يؤثر في جميع قرارات التصميم المنتج
- الوثوقية (Reliability) مقدرة النظام على الاستجابة في مختلف الظروف؟
- متطلبات وظيفية أخرى خاصة تتعلق بهوية النظام _ المعالجة في الزمن الحقيقي

:Microcontroller VS microprocessor

MCU MPU Outputs Inputs 1/0 **CPU CPU** Serial **RAM ROM RAM ROM** Serial

What is Microcontroller?

Internal Buses

مكونات الأساسية لمتحكم المصغر ذو الاغراض العامة

1) المعالج CPU:

يقوم بالعمليات الحسابية والمنطقية والنقل والتحكم.

:Registers مستجلات (2

هي عبارة عن ذاكرة مؤقتة يعتمد حجمها على نوع معالج CPU ولها عدة أنواع:

- مسجلات ذات أغراض عامة.
 - مسجلات الخاصة.
 - مسجلات التحكم.
 - مسجلات الحالة.
 - مسجلات المعطيات.

مكونات الأساسية لمتحكم المصغر ذو الاغراض العامة

:Flash memory ذاكرة

هي ذاكرة دائمة تستخدم لتخزين برنامج المتحكم المصغر

:RAM memory ذاكرة

هي عبارة عن ذاكرة مؤقتة للبيانات Data التي يقوم معالجتها الـCPU.

5) ذاكرة EEPROM memory:

هي ذاكرة دائمة تستخدم لتخزين معطيات المستخدم.

مكونات الأساسية لمتحكم المصغر ذو الاغراض العامة

6) منافذ رقمیة Ports:

تستخدم لتبادل المعطيات الرقمية مع العالم الخارجي.

7) مؤقتات وعدادات Timer & Counter.

وقد تحتوي أيضاً:

- محولات تشابهیة رقمیة ADC.
 - محولات رقمية تشابهية DAC
 - طرفيات اتصال تسلسلي.
 - طرفیات أخری.

المقارنة بين ذواكر المتحكم المصغر

ديمومة المعطيات	عدد مرات الكتابة والمسح	سرعة الكتابة	الاستخدام	النوع الذاكرة
نفقد المعطيات بانقطاع التغذية	غیر محدود	سرعة جداً من مرتبة ns	مكان معالجة المعطيات	RAM
لا نفقد المعطيات بانقطاع التغذية	قد يتجاوز 100000 مرة	بطیئة من مرتبة ms	مكان تخزين البرنامج	FLASH
لا نفقد المعطيات بانقطاع التغذية	قد يتجاوز 100000 مرة	بطيئة من مرتبة ms ولكنها اسرع من FLASH	مكان تخزين معطيات المستخدم	EEPROM

أشهر عوائل المتحكمات المصغرة

ARM Cortex-M based

أشهر عوائل المتحكمات المصغرة

أشهر لغات البرمجة

Low level

High level

لغات برمجة المتحكمات المصغرة الشائعة:

- Assembly
 - C •
 - C++ •
 - Basic
 - Java •
 - Python •
 - Matlab •
- Visual programming (Labview, Simulink, etc.) •

أشهر لغات البرمجة

المالجات عميم بنية المعالجات :

معيارية Von-Neumann: تعتمد على ناقل وحيد لنقل التعليمات والبيانات بين الذاكرة (الوحيدة) ووحدة المعالجة المركزية بحيث:

- 1) يقوم المعالج بجلب كود التعليمات من الذاكرة.
 - 2) يقوم بقراءة البيانات من الذاكرة.
 - 3) إجراء العمليات على البيانات.
 - 4) إعادة كتابة تلك البيانات على الذاكرة.

المعالية تصميم بنية المعالجات:

معيارية Harvard: ناقلين منفصلين أحدهما لنقل التعليمات والآخر لنقل البيانات وتختلف ذاكرة البيانات عن ذاكرة التعليمات عن ذاكرة التعليمات حيث أن لكل ذاكرة خطوط عنونة وتحكم وممر معطيات مختلفة، وبالتالي تتم عملية قراءة التعليمات والبيانات في نفس الوقت...

RISC:

Reduced Instruction Set Computer.

30 ~ 130 Instruction

CISC:

Complex Instruction Set Computer.

150 ~ **1000 Instruction**

MISC:

Minimum Instruction Set Computer.

15 ~ 30 Instruction

المعالجات المبنية بواسطة ARM

- Advanced RISC Machines هي اختصار لـ ARM ❖
- ♦ تقوم شركة ARM بتطوير الهياكل المعمارية للمعالجات المختلفة وأيضاً تصميم نوى المعالجات المبنية على معمارية RISC ومن ثم تقوم بإعطاء رخص للشركات system on a chip لاستخدامها في تصميم منتجاتها المختلفة على سبيل المثال SOC)و system on module (SOM)
- بكلفتها المنخفضة واستهلاكها المنخفضة وأيضاً توليد ARM بكلفتها المنخفض للطاقة وأيضاً توليد حرارة أقل مقارنةً مع نظيراتها من المعالجات، لذا تعتبر المعالجات المثالية لاستخدامها في الأجهزة المحمولة التي تعتمد على البطاريات في تغذيتها كالهواتف الذكية والكمبيوترات اللوحية computer tap وأيضاً أجهزة الكمبيوترات المحمولة laptop وغيرها العديد من الأنظمة المدمجة.

ARM Architecture

ARM- CORTEX LIGATION

الهيكلية CORTEX - ARM هي عبارة عن مجموعة كبيرة من المعماريات والأنوية 32/64bit المنتشرة في عالم الأنظمة المدمجة، حيث تقسم المعالجات المبنية على معمارية CORTEX إلى ثلاثة عائلات فرعية وهي:

- □ CORTEX-A : ويرمز الحرف A إلى التطبيقات CORTEX-A ، وهي عبارة عن سلسلة من المعالجات توفر مجموعة من الحلول التي للأجهزة التي تتطلب إنجاز مهام حوسبة معقدة مثل استضافة نظام تشغيل كامل ك Linux أو Android وغيرها والتي تدعم العديد من التطبيقات، وتستخدم هذه المعمارية في أغلب الهواتف الذكية
- □ Cortex-M والتي ترمز إلى Embedded وتتميز هذه المعمارية بالعديد من الخصائص منها الكفاءة في استخدام الطاقة أيضاً التكلفة المنخفضة للمعالجات التي تستخدم هذه المعمارية وهي مصممة من أجل المتحكمات المستخدمة في تطبيقات انترنت الأشياء IOT، التحكم في المحركات
- □ Cortex-R: والتي ترمز إلى Real Time ، حيث تقوم المعالجات التي تستخدم هذه المعمارية بتقديم أداء عالي في مجالات أنظمة الزمن الحقيقي

STM32 المستخدمة في بناء متحكمات Cortex-M أصناف الهيكلية

STM32 المستخدمة في بناء متحكمات Cortex-M أصناف الهيكلية

أصناف الهيكلية Cortex-M المستخدمة في بناء متحكمات STM32

STM32G0 ASSAN

- ❖ Core: Arm® 32-bit Cortex®-M0+ CPU, frequency up to 64 MHz
- **❖ -40°C to 85°C/105°C/125°C operating temperature**
- Memories
 - Up to 128 Kbytes of Flash memory
 - 36 Kbytes of SRAM
- CRC calculation unit

- Clock management
 - 4 to 48 MHz crystal oscillator
 - 32 kHz crystal oscillator with calibration
 - Internal 16 MHz RC with PLL option (±1 %)
 - Internal 32 kHz RC oscillator (±5 %)
- **Reset and power management**
- **⋄** Voltage range: 1.7 V to 3.6 V
- ***** Low-power modes:
 - Sleep, Stop, Standby, Shutdown

- Up to 60 fast I/Os
 - All mappable on external interrupt vectors
- Multiple 5 V-tolerant I/Os
- 7-channel DMA controller with flexible mapping
- *12-bit, 0.4 μs ADC (up to 16 ext. channels)
- *Two 12-bit DACs, low-power sample-and-hold

- Two fast low-power analog comparators
- 14 timers (two 128 MHz capable)
- Communication interfaces
- **❖ Two I2C-bus**
- Four USARTs with master/slave
- One low-power UART
- * Two SPIs (32 Mbit/s) with 4- to 16-bit

STM32 شحکمات کیفیة

هناك طريقتين أساسيتين لاستخدام متحكمات STM32:

- □ من خلال بناء وتصميم لوحتك الخاصة
- □ من خلال استخدام إحدى اللوحات التطويرية المتاحة

Boards type أنواع اللوحات التطويرية المتوفرة

Nucleo board

Boards type أنواع النطويرية المتوفرة

Discovery kit

Boards type فَيُويرِيةُ الْمَتُولُوعُ الْوَحَاتُ النَّطُويرِيةُ الْمَتُوفُرةُ

Eval board

Boards type أنواع النطويرية المتوفرة

Blue Pill

Boards type أنواع النطويرية المتوفرة

Hexabitz موديولات

Thank you for listening