CS323 Asignment 3

Exercise 1

1. The string "a+a-a" is NOT a valid sentence in $\mathcal{L}(G)$ since

$$a+a-a \iff S+a-a \iff S+S-a \iff S+S-S$$

And there is no derivation can apply to the sentence.

2. The leftmost derivation is as below:

$$S \implies SS + \implies SS - S + \implies SS + S - S +$$

$$\implies SS - S + S - S + \implies aS - S + S - S + \implies aa - S + S - S +$$

$$\implies aa - a + S - S + \implies aa - a + a - S + \implies aa - a + a - a +$$

3. The rightmost derivation is as below:

$$S \implies SS+ \implies Sa+ \implies SS-a+$$

$$\implies Sa-a+ \implies SS+a-a+ \implies Sa+a-a+$$

$$\implies SS-a+a-a+ \implies Sa-a+a-a+ \implies aa-a+a-a+$$

4. The parse tree is as below:

Exercise 2

1.

Since $S \to aB$, then $a \in FIRST(S)$. Since $B \to S*B|\epsilon$ and $S \to aB$, then $a \in FIRST(B), \epsilon \in FIRST(B)$. So

$$FIRST(S) = \{a\},\$$

 $FIRST(B) = \{a, \epsilon\}$

Add \$ into FOLLOW(S) and FOLLOW(B). Since $S \to aB$, then $FOLLOW(S) \subset FOLLOW(B)$ except ϵ . Since $B \to S * B | \epsilon$, then $* \in FOLLOW(S)$. So

$$FOLLOW(S) = \{\$, *\},$$

$$FOLLOW(B) = \{\$, *\}$$

For
$$S o aB$$
, $FIRST(aB) = FIRST(a) = \{a\}$
For $B o S*B$, $FIRST(S*B) = FIRST(S) = \{a\}$
For $B o \epsilon$, $FIRST(\epsilon) = \{\epsilon\}$, then $FOLLOW(B) = \{\$, *\}$

The predictive parsing table is as below:

NON-TERMINAL	а	*	\$
S	S o aB		
В	B o S * B	$B o\epsilon$	$B o\epsilon$

- 2. The grammar is LL(1) since there is no entries with multiple productions.
- 3. Yes.

Input: string aaaa * **, the parsing table M. The steps is as below.

MATCHED	STACK	INPUT	ACTION
	S\$	aaaa***\$	
	аВ\$	aaaa***\$	output $S o aB$
а	В\$	aaa***\$	match a
а	S*B\$	aaa***\$	output $B o S * B$
а	aB*B\$	aaa***\$	output $S o aB$
aa	B*B\$	aa***\$	match a
aa	S*B*B\$	aa***\$	output $B o S * B$
aa	aB*B*B\$	aa***\$	output $S o aB$
aaa	B*B*B\$	a***\$	match a
aaa	S*B*B*B\$	a***\$	output $B o S*B$
aaa	aB*B*B*B\$	a***\$	output $S o aB$
аааа	B*B*B*B\$	***\$	match a
aaaa	*B*B*B\$	***\$	output $B o \epsilon$

MATCHED	STACK	INPUT	ACTION
aaaa*	B*B*B\$	**\$	match *
aaaa*	*B*B\$	**\$	output $B o \epsilon$
aaaa**	B*B\$	*\$	match *
aaaa**	*B\$	*\$	output $B o \epsilon$
aaaa***	B\$	\$	match *
aaaa***	\$	\$	output $B o \epsilon$

Exercise 3

Grammar G (code the derivations):

$$egin{aligned} (1)S &
ightarrow aB \ (2)B &
ightarrow S*B \ (3)B &
ightarrow \epsilon \end{aligned}$$

Augmented grammar G':

$$S' o S \ S o aB \ B o S * B | \epsilon$$

Items:

$$S' \rightarrow \cdot S, S' \rightarrow S \cdot \\ S \rightarrow \cdot aB, S \rightarrow a \cdot B, S \rightarrow aB \cdot \\ B \rightarrow \cdot S * B, B \rightarrow S \cdot * B, B \rightarrow S * B \cdot \\ B \rightarrow \cdot$$

FIRST and FOLLOW:

$$FIRST(S) = \{a\},$$

$$FIRST(B) = \{a, \epsilon\};$$

$$FOLLOW(S) = \{\$, *\},$$

$$FOLLOW(B) = \{\$, *\}$$

Calculation of canonical LR(0) collection:

- Initial state: $C = \{I_0\} = \{CLOSURE(\{[S' \rightarrow \cdot S]\})\} = \{[S' \rightarrow \cdot S], [S \rightarrow \cdot aB]\}.$
- Iteration for item set $I_0 = \{[S' \to \cdot S], [S \to \cdot aB]\}$:
 - \circ for grammar symbol S, $GOTO(I_0,S)=CLOSURE(\{[S' o S\cdot]\})=\{[S' o S\cdot]\},$ which is not in C and thus named I_1 and added into C.
 - \circ for grammar symbol $a, GOTO(I_0, a) = CLOSURE(\{[S o a \cdot B]\}) = \{[S o a \cdot B], [B o \cdot S * B], [B o \cdot]\}$, which is not in C and thus named I_2 and added into C.
- Iteration for item set $I_1 = \{[S' o S \cdot]\}$:
 - ∘ No GOTO
- Iteration for item set $I_2 = \{[S o a \cdot B], [B o \cdot S * B], [B o \cdot]\}$
 - \circ for grammar symbol B, $GOTO(I_2,B)=CLOSURE(\{[S o aB\cdot]\})=\{[S o aB\cdot]\}$, which is not in C and thus named I_3 and added into C.
 - \circ for grammar symbol S, $GOTO(I_2,S)=CLOSURE(\{[B o S \cdot *B]\})=\{[B o S \cdot *B]\}$, which is not in C and thus named I_4 and added into C.
- Iteration for item set $I_3 = \{[S \to aB \cdot]\}$:
 - \circ No GOTO
- Iteration for item set $I_4 = \{[B \to S \cdot *B]\}$
 - o for grammar symbol *, $GOTO(I_4,*) = CLOSURE(\{[B \to S * \cdot B]\}) = \{[B \to S * \cdot B], [B \to \cdot S * B], [B \to \cdot]\}$, which is not in C and thus named I_5 and added into C.
- Iteration for item set $I_5 = \{[B o S * \cdot B], [B o \cdot S * B], [B o \cdot]\}$
 - o for grammar symbol B, $GOTO(I_5,B) = CLOSURE(\{[B \rightarrow S*B\cdot]\}) = \{[B \rightarrow S*B\cdot]\}$, which is not in C and thus named I_6 and added into C.
 - \circ for grammar symbol S, $GOTO(I_5,S)=CLOSURE(\{[B o S\cdot *B]\})=\{[B o S\cdot *B]\}=I_4$
- Iteration for item set $I_6 = \{[B o S * B \cdot]\}$
 - \circ No GOTO

After all, the canonical LR(0) collection is as below:

SET	ITEMS
I_0	$[S' ightarrow \cdot S], [S ightarrow \cdot aB]$
I_1	$[S' o S\cdot]$
I_2	$[S o a\cdot B], [B o\cdot S*B], [B o\cdot]$
I_3	$[S o aB\cdot]$

SET	ITEMS
I_4	$[B \to S \cdot *B]$
I_5	$[B o S*\cdot B], [B o \cdot S*B], [B o \cdot]$
I_6	$[B o S*B\cdot]$

And the function GOTO is defined as below:

$$egin{aligned} GOTO(I_0,S) &= I_1, GOTO(I_0,a) = I_2, \ GOTO(I_2,B) &= I_3, GOTO(I_2,S) = I_4, \ GOTO(I_4,*) &= I_5, \ GOTO(I_5,B) &= I_6, GOTO(I_5,S) = I_4 \end{aligned}$$

For accept,

• Since $[S' o S \cdot] \in I_1$, ACTION[1,\$] = acc.

For shift,

- Since $[S
 ightarrow \cdot aB] \in I_0$ and $GOTO(I_0,a) = I_2$, ACTION[0,a] = s2.
- Since $[B o S\cdot *B]\in I_4$ and $GOTO(I_4,*)=I_5$, ACTION[4,*]=s5.

For reduce,

- Since $[B o\cdot]\in I_2$ and $FOLLOW(B)=\{\$,*\}$, $ACTION[2,\$]=ACTION[2,*]=reduce\ B o\epsilon\ (r3)$.
- Since $[S o aB\cdot]\in I_3$ and $FOLLOW(S)=\{\$,*\}$, $ACTION[3,\$]=ACTION[3,*]=reduce\ S o aB\ (r1).$
- Since $[B o\cdot]\in I_5$ and $FOLLOW(B)=\{\$,*\}$, $ACTION[5,\$]=ACTION[5,*]=reduce\ B o\epsilon\ (r3)$.
- Since $[B o S*B\cdot]\in I_6$ and $FOLLOW(B)=\{\$,*\}$, $ACTION[6,\$]=ACTION[6,*]=reduce\ B o S*B\ (r2).$

Then we can construct the SLR parsing table:

STATE		ACTION		GOTO	
SIAIE	а	*	\$	S	В
0	s2			1	
1			acc		
2		r3	r3	4	3
3		r1	r1		
4		s5			
5		r3	r3	4	6
6		r2	r2		

(2) CLR

Calculation of canonical LR(1) collection:

- $\bullet \ \ \text{Initial state:} \ C=\{I_0\}=\{CLOSURE(\{[S'\to \cdot S,\$]\})\}=\{[S'\to \cdot S,\$],[S\to \cdot aB,\$]\}$
- Iteration for item set $I_0 = \{[S'
 ightarrow \cdot S, \$], [S
 ightarrow \cdot aB, \$]\}$:
 - o for grammar symbol S, $GOTO(I_0,S) = CLOSURE(\{[S' \to S \cdot,\$]\}) = \{[S' \to S \cdot,\$]\}$, which is not in C and thus named I_1 and added into C.
 - \circ for grammar symbol a, $GOTO(I_0,a) = CLOSURE(\{[S \to a \cdot B,\$]\}) = \{[S \to a \cdot B,\$], [B \to \cdot S * B,\$], [B \to \cdot,\$]\}$, which is not in C and thus named I_2 and added into C.
- Iteration for item set $I_1 = \{[S' o S \cdot, \$]\}$:
 - \circ No GOTO
- Iteration for item set $I_2=\{[S o a\cdot B,\$],[B o\cdot S*B,\$],[B o\cdot,\$]\}$
 - \circ for grammar symbol B, $GOTO(I_2,B)=CLOSURE(\{[S o aB\cdot,\$]\})=\{[S o aB\cdot,\$]\}$, which is not in C and thus named I_3 and added into C.
 - \circ for grammar symbol S, $GOTO(I_2,S) = CLOSURE(\{[B \to S \cdot *B,\$]\}) = \{[B \to S \cdot *B,\$]\}$, which is not in C and thus named I_4 and added into C.
- Iteration for item set $I_3 = \{[S \to aB \cdot, \$]\}$:
 - No GOTO
- Iteration for item set $I_4 = \{[B o S \cdot *B, \$]\}$
 - o for grammar symbol *, $GOTO(I_4,*) = CLOSURE(\{[B \rightarrow S*\cdot B,\$]\}) = \{[B \rightarrow S*\cdot B,\$], [B \rightarrow \cdot S*B,\$], [B \rightarrow \cdot S*B,\$]\}$, which is not in C and thus named I_5 and added into C.
- Iteration for item set $I_5=\{[B o S*\cdot B,\$],[B o\cdot S*B,\$],[B o\cdot,\$]\}$
 - \circ for grammar symbol B, $GOTO(I_5,B)=CLOSURE(\{[B o S*B\cdot,\$]\})=\{[B o S*B\cdot,\$]\}$, which is not in C and thus named I_6 and added into C.

- \circ for grammar symbol S, $GOTO(I_5,S)=CLOSURE(\{[B o S\cdot *B,\$]\})=\{[B o S\cdot *B,\$]\}=I_4$
- Iteration for item set $I_6 = \{[B o S * B \cdot, \$]\}$
 - No GOTO

After all, the canonical LR(1) collection is as below:

SET	ITEMS
I_0	$[S' o\cdot S,\$],[S o\cdot aB,\$]$
I_1	$[S' o S\cdot,\$]$
I_2	$[S o a\cdot B,\$], [B o\cdot S*B,\$], [B o\cdot,\$]$
I_3	$[S o aB\cdot,\$]$
I_4	$[B o S\cdot *B,\$]$
I_5	$[B o S*\cdot B,\$], [B o \cdot S*B,\$], [B o \cdot,\$]$
I_6	$[B o S*B\cdot,\$]$

And the function GOTO is defined as below:

$$egin{aligned} GOTO(I_0,S) &= I_1, GOTO(I_0,a) = I_2, \ GOTO(I_2,B) &= I_3, GOTO(I_2,S) = I_4, \ GOTO(I_4,*) &= I_5, \ GOTO(I_5,B) &= I_6, GOTO(I_5,S) = I_4 \end{aligned}$$

For accept,

• Since $[S' o S \cdot, \$] \in I_1$, ACTION[1, \$] = acc.

For shift,

- Since $[S
 ightarrow \cdot aB, \$] \in I_0$ and $GOTO(I_0, a) = I_2$, ACTION[0, a] = s2.
- Since $[B o S \cdot *B, \$] \in I_4$ and $GOTO(I_4, *) = I_5$, ACTION[4, *] = s5.

For reduce.

- Since $[B
 ightarrow \cdot, \$] \in I_2$, $ACTION[2, \$] = reduce \ B
 ightarrow \epsilon \ (r3)$.
- Since $[S o aB \cdot,\$] \in I_3$, $ACTION[3,\$] = reduce \ S o aB \ (r1)$.
- Since $[B
 ightarrow \cdot, \$] \in I_5$, $ACTION[5, \$] = reduce \ B
 ightarrow \epsilon \ (r3)$.
- Since $[B o S * B \cdot, \$] \in I_6$, $ACTION[6, \$] = reduce \ B o S * B \ (r2)$.

Then we can construct the CLR parsing table:

STATE	ACTION			GOTO	
SIAIE	а	*	\$	S	В
0	s2			1	
1			acc		
2			r3	4	3
3			r1		
4		s5			
5			r3	4	6
6			r2		

(3) LALR

From the above, we can get the canonical LR(1) collection is as below:

SET	ITEMS
I_0	$[S' o\cdot S,\$],[S o\cdot aB,\$]$
I_1	$[S' o S\cdot,\$]$
I_2	$[S o a\cdot B,\$], [B o\cdot S*B,\$], [B o\cdot,\$]$
I_3	$[S o aB\cdot,\$]$
I_4	$[B o S\cdot *B,\$]$
I_5	$[B o S*\cdot B,\$], [B o \cdot S*B,\$], [B o \cdot,\$]$
I_6	$[B o S*B\cdot,\$]$

And the function GOTO is defined as below:

$$egin{aligned} GOTO(I_0,S) &= I_1, GOTO(I_0,a) = I_2, \ GOTO(I_2,B) &= I_3, GOTO(I_2,S) = I_4, \ GOTO(I_4,*) &= I_5, \ GOTO(I_5,B) &= I_6, GOTO(I_5,S) = I_4 \end{aligned}$$

Combining the canonical LR(1) collection, we can get the new LR(1) collection as (actually there is no need to combine)

SET	ITEMS
I_0	$[S' o\cdot S,\$],[S o\cdot aB,\$]$
I_1	$[S' o S\cdot,\$]$
I_2	$[S o a\cdot B,\$], [B o\cdot S*B,\$], [B o\cdot,\$]$
I_3	$[S o aB\cdot,\$]$
I_4	$[B \to S \cdot *B, \$]$
I_5	$[B o S*\cdot B,\$], [B o \cdot S*B,\$], [B o \cdot,\$]$
I_6	$[B o S*B\cdot,\$]$

Then we can construct the LALR parsing table:

STATE		ACTION			GOTO	
SIAIE	а	*	\$	S	В	
0	s2			1		
1			acc			
2			r3	4	3	
3			r1			
4		s5				
5			r3	4	6	
6			r2			

- 2. The grammar is SLR(1), LR(1) and LALR(1). All because it can construct the parsing table and there is no conflict.
- 3. No. It will enter the error state.

Stack	Symbol	Input	Action
0		aaaa***\$	shift
0 2	а	aaa***\$	shift
			error

Optional Exercise

1. Yes. The leftmost derivation is as below:

$$Phrase \implies Phrase Verb Phrase \implies Human Verb Phrase \\ \implies Tom Verb Phrase \implies Tom like Phrase \\ \implies Tom like Animal \implies Tom like dog$$

Since the right part of the non-terminals' derivations are exclusive, i.e., for any given non-terminals, they must derive different strings, and for any given strings, they must be derived from different derivation paths. Therefore, the grammar is not anbiguous.

2. Grammar G:

$$S \rightarrow SS + |SS - |a|$$

Since it is immediate left recursion, we can apply the method for eliminating immediate left recursion and get the result as below.

$$S
ightarrow aS' \ S'
ightarrow S + S' |S - S'| \epsilon$$

By left factoring, we have

$$S
ightarrow aS' \ S'
ightarrow ST | \epsilon \ T
ightarrow + S' | - S'$$