

Einführung in Data Science Überwachtes Lernen – Block 3

PVA 3 – Programm

Thema	Form	Zeit
Besprechung der Semesterarbeit	Diskussion	13:45 – 14:00
Besprechung Vorbereitung	Diskussion	14:00 – 14:15
Supervised Learning	Vorlesung, Diskussion	14:15 – 15:00
Pause		15:00 – 15:15
Workshop 2	Gruppenarbeit	15:15 – 16:30
Workshop 1	Gruppenarbeit	16:30 – 17:00

Machine Learning

Definition

 Arthur Samuel (1959). ML: Field of study that gives computers the ability to learn without being explicitly programmed

Supervised Learning vs. Unsupervised Learning

Supervised Learning vs. Unsupervised Learning

Benign

Malignant

Beispiel mit mehreren Features

Beispiel mit mehreren Features

Beispiel mit mehreren Features

Noch mehr Features

- Einheitlichkeit der Zellgrössen
- Einheitlichkeit der Zellformen
- Dichte
- ...
- Lern-Algorithmen können mit theoretisch unendlich vielen Features umgehen
 - → Hochdimensionale Räume

Beispiel Regression - Hauspreis

Beispiel Regression - Hauspreis

Beispiel Regression - Hauspreis

Classification vs Regression

Classification

Die Ausgangsvariable nimmt Klassenbezeichnungen.

Regression

Die Ausgangsvariable nimmt kontinuierliche Werte an.

Classification vs Regression

Training Data Test Data Prediction Regression Size Size Price Schema Price **Training Data** Prediction **Test Data** Classification Height Height Species Weight Weight Schema Species

Unsupervised Learning

- Die bekannten Daten haben keine Labels (im Unterschied zum Supervised Learning)
- Wir wissen auch nicht, was die Datenpunkten bedeuten
- Die Aufgabe besteht darin, in den Daten Muster (Clusters) zu finden

Unsupervised Learning

- Die bekannten Daten haben keine Labels (im Unterschied zum Supervised Learning)
- Wir wissen auch nicht, was die Datenpunkten bedeuten
- Die Aufgabe besteht darin, in den Daten Muster (Clusters) zu finden

Linear Regression

Kostenfunktion

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

$$\displaystyle \mathop{minimizeJ}_{\theta_0,\theta_1}(\theta_0,\theta_1)$$

Gradient Descent

Cost Function - "One Half Mean Squared Error":

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Objective:

$$\min_{\theta_0,\,\theta_1} J(\theta_0,\,\theta_1)$$

Derivatives:

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) \cdot x^{(i)}$$

Learning Rate

Bias-Variance Dilemma

- Bias: Differenz zwischen der erwarteten Vorhersage des Modells und dem wahren Wert.
- Variance: Wie stark die Vorhersagen für einen bestimmten Punkt zwischen verschiedenen Realisierungen des Modells variieren.

Bias-Variance Tradeoff

High bias (underfit)

"Just right"

High variance (overfit)

Supervised Learning Algorithmen

- Naive Bayes
- Decision Trees
- Random Forest
- Support Vector Machines (SVM)
- K-Nearest Neighbors
- Neural Networks

Naive Bayes

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$

P (A|B) = bedingte Wahrscheinlichkeit von A, vorausgesetzt B.

P (A ∩ B) = gemeinsame Wahrscheinlichkeit für A und B (Schnittwahrscheinlichkeit)

P (B) = Wahrscheinlichkeit von B (hier Bedingung)

Satz von Bayes

$$P\left(A\mid B
ight) \ = \ rac{P(A\cap B)}{P(B)} \ = \ rac{rac{P(A\cap B)}{P(A)}\cdot P(A)}{P(B)} \ = \ rac{P\left(B\mid A
ight)\cdot P(A)}{P\left(B
ight)}$$

Naive Bayes

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table			
Weather	No	Yes	
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	

Like	elihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

Problem: Die Spieler spielen bei sonnigem Wetter. Ist diese Aussage korrekt?

Naive Bayes

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table			
Weather	No	Yes	
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	

Like	elihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
8	=5/14	=9/14		
	0.36	0.64		

Problem: Die Spieler spielen bei sonnigem Wetter. Ist diese Aussage korrekt?

Mehrere Variabel

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Z.B. Workshop: Klassifizieren eine Frucht mit Attributes "rund, süss, rot" (anhand gegebene Beispiele)

Decision Trees

Verschiedene Algorithmen ID3 → Entropy und Information Gain

Beispiel

R₁: IF (Outlook=Sunny) AND
(Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND
(Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN
Play=Yes

R₄: IF (Outlook=Rainy) AND
(Humidity=High) THEN Play=No

R₅: IF (Outlook=Rain) AND
(Humidity=Normal) THEN
Play=Yes

Entropy

Entropie ist der Grad der Zufälligkeit, oder es ist das Mass der Unreinheit.

$$H = -\sum p(x)\log p(x)$$

```
For example, if we have items as number of dice face occurrence in a throw event as 1123, the entropy is p(1) = 0.5 p(2) = 0.25 p(3) = 0.25 entropy = -(0.5 * \log(0.5)) - (0.25 * \log(0.25)) - (0.25 * \log(0.25)) = 0.45
```

Information Gain

- Der Informationsgewinn basiert auf der Abnahme der Entropie nach der Aufteilung eines Datensatzes auf ein Attribut.
- Information Gain Maximisieren

Entropie aus der der Häufigkeitstabelle eines Attributs

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64) = - (0.36 log₂ 0.36) - (0.64 log₂ 0.64) = 0.94 Entropie aus der der Häufigkeitstabelle zwei Attributs

$$E(T, X) = \sum_{c \in X} P(c)E(c)$$

		Play Golf		
		Yes	No	
Outlook	Sunny	3	2	5
	Overcast	4	0	4
	Rainy	2	3	5
				14

E(PlayGolf, Outlook) =
$$P(Sunny)*E(3,2) + P(Overcast)*E(4,0) + P(Rainy)*E(2,3)$$

= $(5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971$
= 0.693

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

Beispiel

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Play Golf			
Yes	No		
9	5		
	ī		

Entropy(PlayGolf) = Entropy (5,9)

= Entropy (0.36, 0.64)

= - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

= 0.94

Play Golf			Golf
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

		Play Golf		
		Yes	No	
	Hot	2	2	
Temp.	Mild	4	2	
	Cool	3	1	
Gain = 0.029				

		Play Golf		
		Yes	No	
	High	3	4	
Humidity	Normal	6	1	
Gain = 0.152				

Play Golf			Golf	
·		Yes	No	
Mend.	False	6	2	
Windy	True	3	3	
Gain = 0.048				

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

Maximum Information Gain

Beispiel

Hot Hig			
_	h	FALSE	Yes
Cool Nor	mal	TRUE	Yes
Mild Hig	h	TRUE	Yes
Hot Nor	mal	FALSE	Yes
not no	illai	TALSE	163

Entropy = $0 \rightarrow Leaf$

Beispiel

Temp.	Humidity	Windy	Play Golf				
Mild	High	FALSE	Yes			Outlook	
Cool	Normal	FALSE	Yes	_			
Mild	Normal	FALSE	Yes				
Cool	Normal	TRUE	No	Sun	nv	Overcast	Rainy
Mild	High	TRUE	No	Jun	,		- namy
				Wind		Play=Yes	
				FALSE	TRI	JE	
				Play=Yes	Play:	=No	

Entropy not 0 → more splits

Random Forest

Support Vector Machines (SVM)

- Das Ziel des SVM ist es, eine Hyperebene in einem N-dimensionalen Raum (N = Anzahl Features) zu finden, die die Datenpunkte eindeutig klassifiziert
- In zwei Dimensionen ist diese Hyperebene eine Linie.
- In drei Dimensionen ist diese Hyperebene eine Ebene.

Support Vector Machines (SVM)

 Support Vectors sind Datenpunkte, die n\u00e4her an der Hyperebene liegen und die Position und Orientierung der Hyperebene beeinflussen. Mit diesen Vektoren maximieren wir den Rand des Klassifikators

K Nearest Neighbors (KNN)

Euclidean

$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$

Beispiel: Kredit geben?

Customer	Age	Loan	Default	Euclidean distance
John	25	40000	N	1,02,000.00
Smith	35	60000	N	82,000.00
Alex	45	80000	N	62,000.00
Jade	20	20000	N	1,22,000.00
Kate	35	120000	N	22,000.00
Mark	52	18000	N	1,24,000.00
Anil	23	95000	Υ	47,000.01
Pat	40	62000	Υ	80,000.00
George	60	100000	Υ	42,000.00
Jim	48	220000	Υ	78,000.00
Jack	33	150000	Υ	8,000.01
Andrew	48	142000	?	

Customer	Age	Loan	Default	Euclidean distance	Minimum Euclidean Distance
John	25	40000	N	1,02,000.00	
Smith	35	60000	N	82,000.00	
Alex	45	80000	N	62,000.00	5
Jade	20	20000	N	1,22,000.00	
Kate	35	120000	N	22,000.00	2
Mark	52	18000	N	1,24,000.00	
Anil	23	95000	Υ	47,000.01	4
Pat	40	62000	Υ	80,000.00	
George	60	100000	Y	42,000.00	3
Jim	48	220000	Υ	78,000.00	
Jack	33	150000	Υ	8,000.01	1
Andrew	48	142000	?		

Euclidean $\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$

We need to predict Andrew default status by using Euclidean distance

First Step calculate the Euclidean distance dist(d) = Sq.rt $(x_1-y_1)^2 + (x_2-y_2)^2$ = Sq.rt(48-25)2+ (142000 - 40000)2 dist $(d_1) = 1,02,000$.

We need to calcuate the distance for all the datapoints

Let assume K = 5

Find minimum euclidean distance and rank in order (ascending)

In this case, 5 minimum euclidean distance. With k=5, there are two Default = N and three Default = Y out of five closest neighbors.

We can say Andrew default stauts is 'Y' (Yes)

Machine Learning Anwendungen in der Industrie

- Predictive maintenance or condition monitoring
- Warranty reserve estimation
- Propensity to buy
- Demand forecasting
- Process optimization
- Telematics

- Predictive inventory planning
- Recommendation engines
- Upsell and cross-channel marketing
- Market segmentation and targeting
- Customer ROI and lifetime value

- Alerts and diagnostics from real-time patient data
- Disease identification and risk stratification
- Patient triage optimization
- Proactive health management
- Healthcare provider sentiment analysis

Manufacturing

Retail

Healthcare and Life Sciences

- Aircraft scheduling
- Dynamic pricing
- Social media consumer feedback and interaction analysis
- Customer complaint resolution
- Traffic patterns and congestion management

Travel and Hospitality

- Risk analytics and regulation
- Customer Segmentation
- Cross-selling and up-selling
- Sales and marketing campaign management
- Credit worthiness evaluation

- Power usage analytics
- Seismic data processing
- Carbon emissions and trading
- Customer-specific pricing
- Smart grid management
- Energy demand and supply optimization

Financial Services

Energy, Feedstock, and Utilities

Deep Learning

Quelle: NVidia

Warum Deep Learning?

Warum Deep Learning?

Neural Networks

Output of neuron = Y= f(w1. X1 + w2. X2 + b)

Feed Forward Neural Network

Single Layer Perceptron → No Hidden Layer

Multi Layer Perceptron → Ein oder mehrere Hidden Layers

Backpropagation

Forward Propagation

Move Signal forward

Backward Propagation

Move Error Backwards

Model

Vorgehen im Machine Learning

Quelle: Chappell: Introduction to Machine Learning, 2015" p.5

Data Preprocessing

- Data types
 - Numerical, categorical
 - Static, dynamic (temporal)
 - Discrete Attributes (counts, Wörter, Postleitzahl)
 - Continuous Attributes (Temperatur, Gewicht)
- Andere
 - Distributed Data
 - Text
 - Web
 - Metadata
 - Images
 - Videos
 - Audio

Data Preprocessing Steps

Data Preprocessing Beispiel - Noise

Verzerrung (Distorsion) der Stimme einer Person, wenn sie mit einem schlechten Telefon redet

Two Sine Waves

Two Sine Waves + Noise

Data Preprocessing Beispiel - Outliers

Outliers sind Datenobjekte die wesentlich anders als die meisten anderen Datenobjekte sind

Data Preprocessing Beispiel - Clustering

Data Preprocessing Beispiel - PCA

Ziel ist es, eine Projektion zu finden, die die grösste Variationsbreite der Daten enthält

Quelle: Chappell: Introduction to Machine Learning, 2015" p.5

Kreuzvalidierung

test
train
train
train
train

train
test
train
train
train

train
train
test
train
train

train
train
train
test
train

train
train
train
train
train

Kreuzvalidierung

Kreuzvalidierung

- Gegen high Bias
 - Länger Trainieren
 - Komplexeres Modell trainieren
 - Mehr Features
 - Neues Modell trainieren
- Gegen high Variance
 - Mehr Daten
 - Wenige Features
 - Neues Modell trainieren

Quelle: Chappell: Introduction to Machine Learning, 2015" p.5

■ Quelle: Chappell: Introduction to Machine Learning, 2015" p.10

Quelle: Chappell: Introduction to Machine Learning, 2015" p.12

Quelle: Chappell: Introduction to Machine Learning, 2015" p.14

Computer Vision

- Computer Vision ist definiert als ein Bereich, das Techniken entwickeln will, die Computern helfen, den Inhalt digitaler Bilder wie Fotos und Videos zu "sehen" und zu verstehen.
- Eine klassische Anwendung des Computer Vision ist die Handschrifterkennung

https://www.youtube.com/watch?v=OcycT1Jwsns

Workshop 1

Buch Unterkapitel 3.4.3 und 3.5.2

Workshop 2

Teil 1

Classification mit Naive Bayes

Teil 2

Classification von Emails in Spam/Nicht Spam mit Decision Tree

https://medium.com/machine-learning-101/chapter-3-decision-tree-classifier-coding-ae7df4284e99

