(힌트: u = x, v = y - 1로 치환하거나, 부등식 $0 \le r \le 2 \sin \theta$ 를 이용하세요.)

- 2 2 2 2 2 3 2 3 3 3 4 4 5

(a)
$$\iiint_D ze^{x^2+y^2} dx dy dz$$
, $D = \{(x, y, z) \mid x^2 + y^2 \le 1, y \ge 0, 0 \le z \le 2\}$

- (b) $\iiint_D z\,dxdydz$, D는 원기둥면 $x^2+y^2=1$ 과 두 평면 $y+z=1,\,x-z=-4$ 로 둘러싸인 영역
- (c) $\iiint_D x^2 dx dy dz$, D는 두 포물면 $z=x^2+y^2$ 과 $z=8-x^2-y^2$ 으로 둘러싸인 영역

(d)
$$\iiint_D 1 \, dx dy dz, \quad D = \{(x,y,z) \mid x^2 + y^2 + z^2 \leq a^2\} \ (a \text{는 양의 상수})$$

(e)
$$\iiint_D z^2 dx dy dz$$
, $D = \{(x, y, z) \mid 1 \le x^2 + y^2 + z^2 \le 4\}$

- (f) $\iiint_D z\,dxdydz$, D는 반구면 $z=\sqrt{2-x^2-y^2}$ 과 원뿔면 $z=\sqrt{x^2+y^2}$ 으로 둘러싸인 영역
- (g) $\iiint_D (x^2+y^2) dx dy dz$, D는 반구면 $y=\sqrt{1-x^2-z^2}$ 과 xz 평면으로 둘러 싸인 영역 (힌트: $\sin^3\phi=(1-\cos^2\phi)\sin\phi$)
- -4 상수 α,β 가 $0\leq \alpha<\beta\leq 2\pi$ 를 만족한다. 실함수 f가 구간 $[\alpha,\beta]$ 에서 연속이고 $f\geq 0$ 이라 하자. xy의 유계 영역 D가 극좌표 연립부등식

$$\alpha \le \theta \le \beta, \quad 0 \le r \le f(\theta)$$

로 주어졌을 때, D의 넓이가 $\frac{1}{2}\int_{\alpha}^{\beta} (f(\theta))^2 d\theta$ 임을 보이시오.