CSC236 Worksheet 3 Review

Hyungmo Gu

May 8, 2020

Question 2

• Proof. Define $P(e): S_1(e) = 3(s_2(e) - 1)$

I will use structural induction to prove $\forall e \in \varepsilon, P(e)$.

Basis:

Let $\{x, y, z\} \in \varepsilon$.

In this step, there are following cases to consider: e = x, e = y, and e = z.

In each of the cases, we have $s_1(e) = 0$ and $s_2(e) = 1$.

Thus,

$$s_1(e) = 0 = 3(0) \tag{1}$$

$$= 3(1-1) (2)$$

$$=3(s_2(e)-1) (3)$$

So, P(e) holds.

<u>Inductive Step:</u>

Let $e_1, e_2 \in \varepsilon$. Assume $H(e): P(e_1)$ and $P(e_2)$. That is, $s_1(e_1) = 3(s_2(e_1) - 1)$ and $s_2(e_2) = 3(s_2(e_2) - 1)$.

I need to prove all possible combinations of e_1 and e_2 satisfy the statement. That is $P((e_1 + e_2))$ and $P((e_1 - e_2))$.

In each of the combination, the total number of variables of e is the sum of the number of variables in e_1 and e_2 , and the total number of parenthesis and operators in e is the sum of operators and parenthesis in e_1 and e_2 plus 3.

Then, using these facts, we have

$$s_2(e) = s_2(e_1) + s_2(e_2) \tag{4}$$

$$s_1(e) = s_1(e_1) + s_1(e_2) + 3 (5)$$

Thus, we can calculate

$$s_1(e) = s_1(e_1) + s_1(e_2) + 3$$
 [By 5] (6)
 $= 3(s_2(e_1) - 1) + 3(s_2(e_2) - 1) + 3$ [By I.H] (7)
 $= 3(s_2(e_1) + s_2(e_2)) - 6 + 3$ [By I.H] (8)
 $= 3s_2(e) - 3$ [By 4] (9)
 $= 3(s_2(e) - 1)$ (10)

2