ASSIGNMENT 12

1

d) $\frac{\pi}{2}$

d) 4

EE24BTECH11034 - K Teja Vardhan

I. JEE PYQ 2024 JANUARY 30, SHIFT 2 1) If $F(s) = \tan^{-1}(s) + k$ is the Laplace transform of some function f(t), $t \ge 0$,

2) Suppose $y_p(x) = x \cos(2x)$ is a particular solution of $y'' + \alpha y = -4 \sin(2x)$. Then

3) Let $S = [(0,1,1), (1,0,1), (-1,2,1)] \subseteq \mathbb{R}^3$. Suppose \mathbb{R}^3 is endowed with the standard inner product $\langle \cdot, \cdot \rangle$. Define $M = [x \in \mathbb{R}^3 : \langle x, y \rangle = 0$ for all $y \in S$]. Then

c) 0

c) 2

b) $-\frac{\pi}{2}$

b) -2

then k is:

the constant α equals:

the dimension of M equals:

d) has a countable basis at each point

a) $(S_1 \cup S_2)^c = S_1^c \cup S_2^c$

d and ρ , respectively. Then: a) \mathcal{T}_1 is a proper subset of \mathcal{T}_2 b) \mathcal{T}_2 is a proper subset of \mathcal{T}_1 c) Neither $\mathcal{T}_1 \subseteq \mathcal{T}_2$ nor $\mathcal{T}_2 \subseteq \mathcal{T}_1$

b) $(\bigcup_n S_n)^c = \bigcup_n S_n^c$ c) $\bigcup_n S_n = \bigcup_n \overline{S_n}$ d) $\overline{S_1 \cup S_2} = \overline{S_1} \cup \overline{S_2}$

a) $-\pi$

a) -4

Then:

d) $\mathscr{T}_1 = \mathscr{T}_2$

is:

a) 0	b) 1	c) 2	d) 3				
4) Let X be an uncountable set and let $\mathscr{T}=[U\subseteq X:U=\emptyset \text{ or }U^c \text{ is finite}].$ Then the topological space (X,\mathscr{T}) :							
a) is separat	ole						
b) is Hausdorff							
c) has a cou	ntable basis						

5) Suppose (X, \mathcal{T}) is a topological space. Let $[S_n]_{n>1}$ be a sequence of subsets of X.

6) Suppose (X, d) is a metric space. Consider the metric ρ on X defined by: $\rho(x, y) = \min \left[\frac{1}{2}, d(x, y)\right], \quad x, y \in X$. Suppose \mathscr{T}_1 and \mathscr{T}_2 are topologies on X defined by

7) A basis of $V = [(x, y, z, w) \in \mathbb{R}^4 : x + y - z = 0, y + z + w = 0, 2x + y - 3z - w = 0]$

- a) [(1, 1, -1, 0), (0, 1, 1, 1), (2, 1, -3, 1)]
- b) [(1,-1,0,1)]
- c) [(1,0,1,-1)]
- d) [(1,-1,0,1),(1,0,1,-1)]
- 8) Consider \mathbb{R}^3 with the standard inner product. Let [(1,1,1),(2,-1,2),(1,-2,1)].

For a subset W of \mathbb{R}^3 , let L(W) denote the linear span of W in \mathbb{R}^3 . Then an orthonormal set T with L(S) = L(T) is

- a) $\left[\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{6}}(1,-2,1)\right]$ b) $\left[(1,0,0), (0,1,0), (0,0,1)\right]$
- c) $\left[\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(1,-1,0)\right]$
- d) $\left[\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{2}}(0,1,-1)\right]$
- 9) Let A be a 3×3 matrix. Suppose that the eigenvalues of A are -1,0,1 with respective eigenvectors $(1,-1,0)^T$, $(1,1,-2)^T$, and $(1,1,1)^T$. Then 6A equals:
 - a) $\begin{bmatrix} -1 & 3 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} -2 & 5 & 2 \\ 5 & -1 & 2 \\ 2 & 2 & 2 \end{bmatrix}$
- 10) A matrix is called row stochastic if the sum of each of its row entries is 1. Suppose P is a row stochastic matrix of size 4×4 . Then for any $\mathbf{x} \in \mathbb{R}^4$ and for any n > 0, $\mathbf{1}^T P^n \mathbf{x} =$
 - a) 1
 - b) 0
 - c) $\mathbf{1}^T \mathbf{x}$
 - d) x
- 11) Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Let $B = A^n$ for $n \ge 1$. Then B equals:
 - a) $2^{n-1}A$
 - b) *nA*
 - c) $2^{n-2}A$
 - d) A^2
- 12) Let $u(x,y) = f(xe^x) + g(y^2\cos(y))$, where f and g are infinitely differentiable functions. Then the partial differential equation of minimum order satisfied by u is
 - a) $u_{xx} + xu_{xy} = u_x$
 - b) $u_{yy} + xu_{xx} = xu_x$
 - c) $u_{yy} xu_{xy} = u_x$

d)	11.000	_	xu_{xx}	=	xu_x
u,	uyy		uuxx	_	uux

- 13) Let C be the boundary of the triangle formed by the points (1,0,0), (0,1,0), (0,0,1). Then the value of the line integral $\int_C -2y \, dx + \left(3x 4y^2\right) \, dy + \left(z^2 + 3y\right) \, dz$ is
 - a) 0
 - b) 1
 - c) 2
 - d) 4
- 14) Let X be a complete metric space and let $E \subseteq X$. Consider the following statements:
 - a) E is compact,
 - b) E is closed and bounded,
 - c) E is closed and totally bounded,
 - d) Every sequence in E has a subsequence converging in E.

Which one of the above statements does NOT imply all the other statements?

a) S_1

b) S_2

c) S_3

- d) S_4
- 15) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \sin{(nx)}$. Then the series
 - a) converges uniformly on \mathbb{R}
 - b) converges pointwise but NOT uniformly on $\mathbb R$
 - c) converges in L^1 norm to an integrable function on $[0,2\pi]$ but does NOT converge uniformly on $\mathbb R$
 - d) does NOT converge pointwise
- 16) Let f(z) be an analytic function. Then the value of $\int_0^{2\pi} f(e^{it}) \cos(t) dt$ equals
 - a) 0
 - b) $2\pi f(0)$
 - c) $2\pi f'(0)$
 - d) $\pi f'(0)$
- 17) Let G_1 and G_2 be the images of the disc $[z \in \mathbb{C}: |z+1| < 1]$ under the transformations $w = \frac{(1-i)z+2}{(1+i)z+2}$ and $w = \frac{(1+i)z+2}{(1-i)z+2}$ respectively. Then
 - a) $G_1 = [w \in \mathbb{C} : \operatorname{Im}(w) < 0]$ and $G_2 = [w \in \mathbb{C} : \operatorname{Im}(w) > 0]$
 - b) $G_1 = [w \in \mathbb{C} : \text{Im}(w) > 0]$ and $G_2 = [w \in \mathbb{C} : \text{Im}(w) < 0]$
 - c) $G_1 = [w \in \mathbb{C} : |w| > 2]$ and $G_2 = [w \in \mathbb{C} : |w| < 2]$
 - d) $G_1 = [w \in \mathbb{C} : |w| < 2]$ and $G_2 = [w \in \mathbb{C} : |w| > 2]$