ChatGPT 3.5 ~

仚

You

The integral of (a^2*e^(-a^2/(2*sigma^2))da) over minus infinity to plus infinity?

ChatGPT

The integral you provided is related to the normal distribution and is commonly encountered in probability and statistics. The integral you're asking about is:

$$\int_{-\infty}^{\infty} a^2 e^{-\frac{a^2}{2\sigma^2}} da$$

To solve this integral, you can use the fact that it involves a Gaussian function. One way to solve it is by completing the square. The integral can be rewritten as follows:

$$\int_{-\infty}^{\infty}a^2e^{-rac{a^2}{2\sigma^2}}\,da=\sqrt{2\pi}\sigma^3\int_{-\infty}^{\infty}rac{1}{\sqrt{2\pi}\sigma}a^2e^{-rac{a^2}{2\sigma^2}}\,da$$

Now, if you let $u=\frac{a}{\sigma}$, the integral becomes:

$$\sqrt{2\pi}\sigma^3\int_{-\infty}^\infty rac{1}{\sqrt{2\pi}\sigma}a^2e^{-rac{a^2}{2\sigma^2}}\,da=\sqrt{2\pi}\sigma^3\int_{-\infty}^\infty rac{1}{\sqrt{2\pi}}(\sigma u)^2e^{-rac{u^2}{2}}\,du$$

Solving this integral involves standard Gaussian integral results. The final answer is:

$$\int_{-\infty}^{\infty} a^2 e^{-rac{a^2}{2\sigma^2}} \, da = \sqrt{2\pi}\sigma^3$$

So, the integral evaluates to $\sqrt{2\pi}\sigma^3$.

