

Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian

Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Kyun (T-K) Kim

Introduction

Objective

We aim to enable 3D-aware image deformation with minimal restrictions on shape category and deformation type.

Motivation

For 3D-aware deformation, it is necessary to reconstruct the object in a 2D image to 3D space; however, it is not sufficient in general.

- → Modeling deformation often requires the shape Laplacian [1].
- → However, most of existing methods of image-based 3D reconstruction produce a surface without proper consideration about intrinsic shape properties.

Key Idea & Method Overview

We propose to take a supervised learning-based approach to predict the shape Laplacian of the underlying volume of a 3D reconstruction.

References

- [1] A. Jacobson, et al. Bounded biharmonic weights for real-time deformation. In SIGGRAPH, 2011.
- [2] S. Saito, et al. PIFu: Pixel-aligned implicit function for high-resolution clothed human digitization. In ICCV, 2019.
- [3] M. Kazhdan et al. Screened poisson surface reconstruction. TOG, 2013.
- 4] G. Guennebaud and M. Gross. Algebraic point set surfaces. In SIGGRAPH, 2007
- [5] F. Bernardini et al. The ball-pivoting algorithm for surface reconstruction. TVCG, 1999
- [6] J. Park et al. DeepSDF: Learning continuous signed distance functions for shape representation. In CVPR, 2019. [7] F. Williams et al. Deep geometric prior for surface reconstruction. In CVPR, 2019.
- B) M. Liu et al. Meshing point clouds with predicted intrinsic-extrinsic ratio guidance. In ECCV, 2020.
- [9] M. Belkin, et al. Constructing laplace operator from point clouds in Rd. In Proc. Annu. ACM-SIAM Symp. Discrete
- [10] N. Sharp and K. Crane. A laplacian for nonmanifold triangle meshes. In SGP, 2020
- [11] F. Bogo, et al. Dynamic FAUST: Registering human bodies in motion. In CVPR, 2017

Handle-Based Deformation Weights [1]

Bounded Biharmonic Weights [1]

- H_k: k-th deformation handle
- W_k: deformation weights associated with k-th handle

Images from [1]

Laplacian-Based Deformation Energy (A)

Desired properties:

positive semi-definiteness / symmetry / sparsity

 $A \in \mathbb{R}^{n \times n}$: deformation energy $L \in \mathbb{R}^{n \times n}$: cotangent Laplacian

 $M^{-1} \in \mathbb{R}^{n \times n}$: inverse mass

n: number of vertices in the source mesh

Laplacian Learning Network

We introduce a novel network that can learn the shape Laplacian with several desired properties (i.e., positive semi-definiteness, symmetry and sparsity) from a 3D reconstruction.

Quantitative Evaluation

Metric	PSR[3]	APSS[4]	BPA[5]	DeepSDF[6]	DGP[7]	MIER[8]	PCDLap[9]	NMLap[10]	Ours
Weight L1 (×100) ↓	3.86	3.46	4.32	2.66	4.15	3.26	3.53	3.34	2.10
Shape CD ($\times 100$) \downarrow	3.84	3.04	3.83	2.61	4.09	3.16	2.97	4.04	1.81
Shape HD ($\times 0.1$) \downarrow	1.81	1.31	1.73	0.48	2.85	1.13	0.42	0.43	0.42

• Dataset: DFAUST [11] • Evaluation Metric: Deformation Weight Error (L1 Distance) , Deformed Shape Error (Chamfer Distance, Hausdorff Distance)

3D-Aware Image Deformation

Deformation Weight Visualization

Please visit our project page (QR code above) for more results, including motion videos generated using our image deformation method.