Notation: $a \times a \times a \times ... \times a$ (n times) = a^n [a^o = identity]; $a \in G$. $a^n \times a^m = \underbrace{a \times a \times ... \times a}_{n \text{ times}} \times \underbrace{a \times a \times a \times ... \times a}_{m \text{ times}} = \underbrace{a^n \times a^n \times ... \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times ... \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times ... \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times ... \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times ... \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times ... \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a^n \times a^n \times a}_{n \text{ -times}} \times \underbrace{a^n \times a}_{n \text{ -times}} \times$

Order of an element: The order of an element a in a growth of is the smallest positive integer n such that $a^n = e$. There 'e' is the identity of G. I no such integer exists, say a has infinite order. Notation is |a| or o(a).

Ex1 $\{ \mathbb{Z}_4, \mathbb{P}_4 \}$ is a group-of order 4. The order of each elevel of this group is as [0 is the identity and order of 0 order of 0 is 1. identity is always [0 is always 1] order of $[0 \text{ is } 1] \oplus [0 \text{ order } 1] \oplus [0 \text{ order$

We can see the order of I and 3 is same and the reason is both are inverse of each other in this group.

(i. $|a| = |a^{-1}|$, $\forall a \in G$.)

Note: - Every element of a finite group has order finite. But order of element of infinite group may be finite or infinite.