Calculus II

Alessio Esposito

May 21, 2023

Theorem 1. A is closed \iff every accumulation point for A is in A

Proof. " \Longrightarrow " Let $A \subseteq \mathbb{R}^n$, $A = A \cup \partial A$.

Then $\forall p \in \bar{\mathcal{D}}(A), \ C_r(p)_{n \neq 0} \cap A \neq \emptyset \ \forall C \in \mathcal{C}_p.$

if $p \notin A$ then $C_r(p)$ has elements that dont belong to $A \Rightarrow p \in \partial A$.

" \longleftarrow " Let $p \in \partial A \Rightarrow \forall C \in \mathcal{C}_p$ of center r with $r \in \mathbb{R}$ by definition we can find some $x \in C_{\searrow p} \cap A$, so that means $p \in \bar{\mathcal{D}}(A) \Rightarrow p \in A$. \square

Limits

Definition 1. Let $A \subseteq \mathbb{R}^2$ and (x_0, y_0) an accumulation point for A. we define A^* as follows: $A^* = \{ (\rho, \theta) \in [0, +\infty] \times [0, 2\pi] : (x_0 + \rho \cos(\theta), y_0 + \rho \sin(\theta)) \in A \}.$

Proposition 1. Lets suppose that exist a circle C of center (x_0, y_0) such that $C_{\setminus \{(x_0, y_0)\}} \subseteq A$ let r be the radius of the circle and as a consequence $(0,r] \times [0,2\pi] \subseteq A^*$

$$\begin{split} &\textit{Proof. Let } C_{\diagdown\{(x_0,y_0)\}} \text{ and } \begin{cases} 0 < \rho \leqslant r \\ 0 \leqslant \theta \leqslant 2\pi \end{cases} \text{ if } (\rho,\theta) \in (0,r] \times [0,2\pi] \\ &\text{then } (x_0 + \rho \cos(\theta), y_0 + \rho \sin(\theta)) \in C_{\diagdown\{(x_0,y_0)\}} \subseteq A \Rightarrow (\rho,\theta) \in A^*. \end{split}$$

Definition 2. Let $\theta \in [0, 2\pi]$ and $\forall \rho \in (0, r]$ we define $\varphi_{\theta}(\rho) = F(\rho, \theta)$ if $\rho \in (0, r], (\rho, \theta) \in A^*$ so the $\lim_{\rho \to 0} \varphi(\rho) = l \in \mathbb{R}$. If that limit exists that means $\forall \theta \in [0, 2\pi]$ and $\forall \varepsilon > 0$, $\exists \delta > 0 \ \forall \rho \in (0, r]$ with $\rho < \delta \ |\varphi_{\theta} - l| < \varepsilon$. We say that $\lim_{\rho\to 0} \varphi(\rho) = l \in \mathbb{R}$ Uniformly With Respect To (U.W.R.T.) θ .

Theorem 2. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ with (x_0, y_0) accumulation point for A.

Follows the equivalence:

 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l \in \bar{\mathbb{R}} \iff \lim_{\rho\to 0} F(\rho,\theta) = l \ U.W.R.T. \ \theta.$

Proof. Let $l \in \bar{\mathbb{R}}$.

" \Longrightarrow " $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l$ so $\forall \varepsilon > 0, \exists \delta > 0 : \forall (x,y) \in A$ with $\|(x,y)-(x_0,y_0)\| < \delta, |f(x,y)-l| < \varepsilon.$

We have to prove that $\forall \varepsilon > 0, \ \exists \delta > 0 : \forall \theta \in [0, 2\pi], \ \forall \rho(0, r]$

with $\rho < \delta |F(\rho, \theta) - l| < \varepsilon$.

Let $\varepsilon > 0$, $\theta \in [0, 2\pi]$, $\rho \in (0, r]$ with $\rho < \delta$ we create the system that changes the coordinates from cartesians to polars:

$$\begin{cases} x = x_0 + \rho \cos(\theta) \\ y = y_0 + \rho \sin(\theta) \end{cases} \quad \rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

 $\rho \in (0,r], \ \theta \in [0,2\pi] \in (0,r] \times [0,2\pi] \subseteq A^*, \ (\rho,\theta) \in A^* \Rightarrow (x,y) \in A.$

Now $0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} = \rho < \delta \Rightarrow |f(x,y) - l| < \varepsilon.$ $\Rightarrow |f(x_0 + \rho\cos(\theta), y_0 + \rho\sin(\theta)) - l| < \varepsilon \Rightarrow |F(\rho, \theta) - l| < \varepsilon.$

" $\Leftarrow=$ " $\forall \varepsilon > 0, \exists \delta \leq r : \forall \theta \in [0, 2\pi] \text{ and } \forall \rho \text{ with } 0 < \rho < \delta \Rightarrow$ $|F(\rho,\theta)-l|<\varepsilon.$

We have to prove that $\forall \varepsilon > 0, \exists \delta > 0, \forall (x, y) \in A$ with

 $\sqrt{(x-x_0)^2+(y-y_0)^2} = \|(x,y)-(x_0,y_0)\| < \delta \Rightarrow |f(x,y)-l| < \varepsilon.$

Let $\varepsilon > 0$, $\delta \le r$, $(x,y) \in A$, $\sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta$, we switch coordinates with ρ and θ as follows:

$$\begin{cases} x = x_0 + \rho \cos(\theta) \\ y = y_0 + \rho \sin(\theta) \end{cases} \quad \rho = \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

 $0 < \rho < \delta \le r \Rightarrow \rho \in (0, r), \ \theta \in [0, 2\pi].$

We notice that $|F(\rho,\theta)-l|<\varepsilon$, so $|f(x_0+\rho\cos(\theta),y_0+\rho\sin(\theta))-l|<\varepsilon$ $\Rightarrow |f(x,y) - l| < \varepsilon.$

Definition 3. We say that $\theta \in [0, 2\pi]$ is admissible if $0 \in \overline{\mathcal{D}}(A_{\theta})$.

Definition 4. Let's suppose that $\lim_{\rho \to 0} F(\rho, \theta) = l \in \mathbb{R}$ then $\forall \rho \in (0, r], \ \varphi(\rho) = \sup\{|F(\rho, \theta) - l| : \theta \in [0, 2\pi]\}$

Theorem 3. $\lim_{\rho \to 0} F(\rho, \theta) = l \in \mathbb{R}$ U.W.R.T. $\theta \iff \lim_{\rho \to 0} \varphi(\rho) = 0$.

Proof. (\Rightarrow) $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall \theta \in [0, 2\pi] \text{ and } \forall \rho \in (0, r] \text{ with } \rho < \delta \; |F(\rho, \theta) - l| < \frac{\varepsilon}{2} \text{ so } |\varphi(\rho)| \leq \frac{\varepsilon}{2} < \varepsilon \Rightarrow \lim_{\rho \to 0} \varphi(\rho) = 0.$ (\Leftarrow) $\forall \varepsilon > 0 \; \exists \delta > 0 : \forall \rho \in (0, r) \text{ with } \rho < \delta \; \varphi(\rho) < \varepsilon \text{ but } |F(\rho, \theta) - l| \leq \varphi(\rho) \forall \theta \text{ so if } \rho \in (0, r] \text{ and } \rho < \delta \; |F(\rho, \theta) - l| < \varepsilon \Rightarrow \lim_{\rho \to 0} F(\rho, \theta) = l \; U.W.R.T. \; \theta$

Corollary 1. $\lim_{\rho \to 0} F(\rho, \theta) = l \in \mathbb{R}$ U.W.R.T. $\theta \iff \exists$ a function $\psi(\rho)$ such that $\lim_{\rho \to 0} \psi(\rho) = 0$ and $\forall \theta \mid F(\rho, \theta) - l \mid \leqslant \psi(\rho)$.

Corollary 2. Let's suppose that $\lim_{\rho\to 0} F(\rho,\theta) = +\infty$.

 $\forall \rho \in (0, r] \ let \ h(\rho) = \inf\{F(\rho, \theta) : \theta \in [0, 2\pi]\} \ so \ then \lim_{\rho \to 0} F(\rho, \theta) = +\infty \ U.W.R.T. \ \theta \Longleftrightarrow \lim_{\rho \to 0} h(\rho) = +\infty$

Obs 1. $\lim_{\rho \to 0} F(\rho, \theta) = +\infty$ *U.W.R.T.* $\theta \iff \exists$ *a function* $K(\rho)$ *s.t.* $\lim_{\rho \to 0} K(\rho) = +\infty$ *and* $F(\rho, \theta) \ge K(\rho)$

Corollary 3. Let's suppose that $\lim_{\rho\to 0} F(\rho,\theta) = -\infty$.

 $\forall \rho \in (0, r] \ let \ g(\rho) = \sup \{ F(\rho, \theta) : \theta \in [0, 2\pi] \} \ so \ then \ \lim_{\rho \to 0} F(\rho, \theta) = -\infty \ U.W.R.T. \ \theta \Longleftrightarrow \lim_{\rho \to 0} g(\rho) = -\infty$

Definition 5. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ with A open.

let $(x_0, y_0) \in A$, $\varphi(x) = f(x, y_0)$ and $\psi = f(x_0, y)$. A is open that means that those two functions are well defined.

Differentiability

Definition 6. Let be $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ with A Open. Let $\bar{x} \in A$ and let $i \le n$, we denote as $\varphi_i(x_i) = f(\bar{x}_1, \bar{x}_2, ..., \bar{x}_{i-1}, \bar{x}_i, \bar{x}_{i+1}, ..., \bar{x}_n)$. Notice that \bar{x} is an internal point so then it exist an interval where φ_i is well defined.

Definition 7. We say that f is partially derivable with respect to the variable x_i in the point \bar{x} if φ_i is derivable in that point. We denote as $\frac{\partial f}{\partial x_i}$ the partial derivative with respect to x_i in the point \bar{x} .

Definition 8. The gradient of a function in n variables is defined as follows:

$$\nabla f: \bar{x} \in A \longmapsto \left(\frac{\partial f}{\partial x_1}, ..., \frac{\partial f}{\partial x_n}\right) \in \mathbb{R}^n$$

Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ with A open, and let $(x_0, y_0) \in A$.

 $(x_0, y_0, f(x_0, y_0)) \in \mathcal{G}(f)$. The equation of the plane that passes for

 $(x_0, y_0, f(x_0, y_0))$ is $Z = f(x_0, y_0) + a(X - x_0) + b(Y - y_0)$ where $a, b \in \mathbb{R}$.

Definition 9. We say that f is partially derivable with respect to x in (x_0, y_0) if φ is differentiable in x_0 . in that case we φ is the partial derivative of f in the variable x and its written $\frac{\partial f}{\partial x}$

Definition 10. We define the gradient as $\nabla f: (x,y) \in A \longmapsto \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \in \mathbb{R}^2$

Definition 11. We say that f is differentiable in the point (x_0, y_0) if exists $a, b \in \mathbb{R}$ such that:

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - a(X - x_0) - b(Y - y_0)}{\|(x,y) - (x_0,y_0)\|} = 0 \ (\triangle)$$

f is differentiable in the point (x_0, y_0) if exists a plane that passes in the point $(x_0, y_0, f(x_0, y_0))$ that approximates the graph of the function f.

Proposition 2. If f is differentiable in the point (x_0, y_0) , f is partially derivable with respect to x and y such that $a = \frac{\partial f(x_0, y_0)}{\partial x}$ and $b = \frac{\partial f(x_0, y_0)}{\partial y}$

Definition 12. if f is differentiable in a point $(x,y) \in A$, the differential in the point is defined as follows:

$$d_{(x,y)}f:(h,k)\in\mathbb{R}^2\longmapsto \frac{\partial f(x,y)}{\partial x}h+\frac{\partial f(x,y)}{\partial y}k\in\mathbb{R}$$

Definition 13. More in general if $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ and $\mathbf{x} \in A$:

$$d_{\boldsymbol{x}}^r f: h \in \mathbb{R}^n \longmapsto \sum_{\substack{i_1, \dots, i_n \geqslant 0 \\ i_1 + \dots + i_n = r}} \frac{r!}{i_1! \dots i_n!} \frac{\partial^r f}{\partial x^{i_1} \dots \partial x^{i_n}}(\boldsymbol{x}) h_1^{i_1}, \dots, h_n^{i_n} \in \mathbb{R}$$

Corollary 4. f is differentiable in the point $(x_0, y_0) \iff f$ is partially derivable in the point (x_0, y_0) and the (Δ) is true.

Definition 14. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ with A open and k > 0 a positive integer. let $(x_0, y_0) \in A$ and if f has differentiable derivatives of order k - 1 we define the "k-grade Taylor polinomia" as follows:

$$P_k(x,y) = f(x_0, y_0) + \sum_{i=1}^k \frac{1}{i!} d^i_{(x_0, y_0)} f(x - x_0, y - y_0)$$

Theorem 4. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ with A. If $\exists \frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ in A and are continuos in a point (x_0, y_0) , then the function is differentiable in (x_0, y_0) .

Proof. We have to prove that:

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - \frac{\partial f(x_0,y_0)}{\partial x}(x-x_0) - \frac{\partial f(x_0,y_0)}{\partial y}(y-y_0)}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} = 0$$

Lets add and subtract $f(x, y_0)$, so one has:

$$f(x,y) - f(x_0, y_0) = f(x,y) - f(x,y_0) + f(x,y_0) - f(x_0, y_0)$$

We call
$$\varphi(t) = f(x, t)$$
 where $t \in I[y, y_0]$ and $I[y, y_0] = \begin{cases} [y, y_0] & y \le y_0 \\ [y_0, y] & y_0 \le y \end{cases}$

 φ is derivable and for the Lagrange theorem $\exists y_1 \in I[y,y_0]: \varphi(y)-\varphi(y_0)=\dot{\varphi}(y_1)(y-y_0)$. So one has $f(x,y)-f(x,y_0)=\frac{\partial f(x,y_1)}{\partial y}(y-y_0)$, and we repeat the same reasoning for the other variable and one will have $f(x,y_0)-f(x_0,y_0)=\frac{\partial f(x_1,y_0)}{\partial x}(x-x_0)$ We have then:

$$\left| \frac{f(x,y) - f(x_0, y_0) - \frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) - \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} \right| =$$

$$= \left| \frac{\frac{\partial f(x_1, y_0)}{\partial x}(x - x_0) - \frac{\partial f(x, y_1)}{\partial y}(y - y_0) - \frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) - \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} \right| =$$

$$= \left| \frac{\left(\frac{\partial f(x_1, y_0)}{\partial x} - \frac{\partial f(x_0, y_0)}{\partial x}\right)(x - x_0) + \left(\frac{\partial f(x, y_1)}{\partial x} - \frac{\partial f(x_0, y_0)}{\partial x}\right)(y - y_0)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} \right|$$

The last member is increased by the following:

$$\left| \frac{\partial f(x_1, y_0)}{\partial x} - \frac{\partial f(x_0, y_0)}{\partial x} \right| \frac{|x - x_0|}{\|(x - x_0, y - y_0)\|} + \left| \frac{\partial f(x, y_1)}{\partial y} - \frac{\partial f(x_0, y_0)}{\partial y} \right| \frac{|y - y_0|}{\|(x - x_0, y - y_0)\|} \le \left| \frac{\partial f(x_1, y_0)}{\partial x} - \frac{\partial f(x_0, y_0)}{\partial x} \right| + \left| \frac{\partial f(x, y_1)}{\partial y} - \frac{\partial f(x_0, y_0)}{\partial y} \right|$$

And since $x \to x_0 \Rightarrow x_1 \to x_0$ and $y \to y_1 \Rightarrow y_1 \to y_0$ so the second member of the inequality is equal to zero.

Theorem 5. Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ with A open. If the function is differentiable in a point $x \in A$ then is continuous in that point.

Proof. Since we have:

$$\lim_{x \to \mathbf{x}} \frac{f(x) - f(\mathbf{x}) - \sum_{i=1}^{n} \frac{\partial f(\mathbf{x})}{\partial x_i} (x_i - \mathbf{x}_i)}{\|x - \mathbf{x}\|} = 0$$

If we fix an $\varepsilon = 1$ there exists $\delta > 0$: $\forall x \in A$ with $0 < ||x - \mathbf{x}|| < \delta$ one has:

$$\left| \frac{f(x) - f(\mathbf{x}) - \nabla f(\mathbf{x})(x - \mathbf{x})}{\|x - \mathbf{x}\|} \right| < \varepsilon \Longrightarrow |f(x) - f(\mathbf{x}) - \nabla f(\mathbf{x})(x - \mathbf{x})| < \|x - \mathbf{x}\|$$

So we have the following:

$$|f(x) - f(\mathbf{x})| - |\nabla f(\mathbf{x})(x - \mathbf{x})| \le |f(x) - f(\mathbf{x}) - \nabla f(\mathbf{x})(x - \mathbf{x})| \le ||x - \mathbf{x}|| \triangle$$

The \triangle implies that $|f(x) - f(\mathbf{x})| - |\nabla f(\mathbf{x})(x - \mathbf{x})| \le |\nabla f(\mathbf{x})(x - \mathbf{x})| + ||x - \mathbf{x}|| \le ||\nabla f(\mathbf{x})|| ||x - \mathbf{x}|| + ||x - \mathbf{x}||$. The last member of the inequality is equal to $||x - \mathbf{x}|| (|\nabla f(\mathbf{x})| + 1) \triangle$ so, if $0 < ||x - \mathbf{x}|| < \delta$ then by calling the $\triangle = c$ one finally has:

$$0 < |f(x) - f(\mathbf{x})| < c ||x - \mathbf{x}|| \to 0 \Leftarrow x \to \mathbf{x} \Rightarrow |f(x) - f(\mathbf{x})| \to 0$$

Or equivalently: $\lim_{x\to\mathbf{x}} f(x) = f(\mathbf{x})$.

Theorem (Schwartz). ¹ Let $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$ be a function in two variables defined on a open set Ω .

If f admits continuous second derivatives in the point $(f \in C^2(\Omega))$ then $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

Proof. Let $p = (x_0, y_0) \in \Omega$ and chose two real numbers $\varepsilon, \delta > 0$ such that $(x_0 - \varepsilon, x_0 + \delta) \times (y_0 - \delta, y_0 + \delta) \subset \Omega$. That is possible since Ω is Open. Lets also define the two functions F and G as follows:

$$F: (-\varepsilon, \varepsilon) \subset \mathbb{R} \to \mathbb{R}$$
$$G: (-\delta, \delta) \subset \mathbb{R} \to \mathbb{R}$$

In the way that:

$$F(t) = f(x_0 + t, y_0 + s) - f(x_0 + t, y_0) \ \forall s \in (-\delta, \delta)$$

$$G(s) = f(x_0 + t, y_0 + s) - f(x_0, y_0 + s) \ \forall t \in (-\varepsilon, \varepsilon)$$

It can be easily proved that: F(t) - F(0) = G(s) - G(0) also if we apply the Lagrange theorem two times one has: $F(t) - F(0) = t\dot{F}(\xi_1)$ with $t\dot{F}(\xi_1)$ equal to: $t\left[\frac{\partial f}{\partial x}(x_0 + \xi_1, y_0 + s) - \frac{\partial f}{\partial x}(x_0 + \xi_1, y_0)\right] = ts\frac{\partial^2 f}{\partial y\partial x}(x_0 + \xi_1, y_0 + \sigma_1)$. The same reasoning can be applied to G(s) - G(0) obtaining: $st\frac{\partial^2 f}{\partial x\partial y}(x_0 + \xi_2, y_0 + \sigma_2)$ with $\xi_i \in (0, t)$ and $\sigma_i \in (0, s)$ where without loss of generality we can say t, s > 0. Thinking about $t \to 0$ and $s \to 0 \Rightarrow \xi_i \to 0$ and $\sigma_i \to 0$ with the continuity of the two derivatives one has: $\frac{\partial^2 f}{\partial y\partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x\partial y}(x_0, y_0)$.

Directional Derivatives

If we take $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ defined on an open set $A, (x_0, y_0) \in A$ and a vector of unitary norm $\vec{v} = (v_1, v_2)$, the Directional derivative of $f(x_0, y_0)$ along the direction \bar{v} can be defined as the limit if it exists and its finite:

$$\frac{\partial f}{\partial \bar{v}}(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + tv_1, y_0 + tv_2) - f(x_0, y_0)}{t}$$

Study of the maxima and minima

Definition 15. If a partial derivative $\frac{\partial f}{\partial x}$ of a function $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ is partially derivable with respect to x in a point $(x_0, y_0) \in A$ we say that f is partially derivable two times with respect to x in the point (x_0, y_0) ad it will be denoted as $\frac{\partial f}{\partial x} f_x(x_0, y_0) = \frac{\partial^2 f(x_0, y_0)}{\partial x^2} = \frac{\partial^2 f}{\partial x^2} (x_0, y_0)$.

The same goes for the other partial derivatives: $\frac{\partial}{\partial y}f_x = \frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial}{\partial x}f_y = \frac{\partial^2 f}{\partial y \partial x}$, ...

Definition 16. We define the hessian matrix as follows:

$$\mathcal{D}^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

Definition 17. The determinant of $\mathcal{D}^2 f$ is:

$$\mathcal{H}(x,y) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix}$$

and is called the Hessian determinant.

Definition 18. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, we say that $(x_0, y_0) \in A$ is maxima (minima) for f if $\forall (x, y) \in A$, $f(x, y) \leqslant f(x_0, y_0)$ $(f(x, y) \geqslant f(x_0, y_0))$.

Theorem 6. If f is continuous and A is compact, f admits minima and maxima.

Theorem 7. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ and let $(x_0, y_0) \in \dot{A}$ a relative extreme and let f be partially derivable in (x_0, y_0) , so then $\frac{\partial f(x_0, y_0)}{\partial x} = 0$ and $\frac{\partial f(x_0, y_0)}{\partial y} = 0$.

The points where the partial derivatives are 0 are said "critical points" of f, $(x_0, y_0) \in \dot{A}$ is an extreme ralative $\Rightarrow (x_0, y_0)$ is a critical point for f ($\not\leftarrow$).

Obs 2. Let $(x_0, y_0) \in A$ and let $g(x, y) = f(x, y) - f(x_0, y_0)$, (x_0, y_0) is a relative minimum (relative maximum) for $f \iff \exists$ a circle C of center (x_0, y_0) such that $g \ge 0$ $(g \le 0)$.

Theorem 8. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ and let $(x_0, y_0) \in \dot{A}$ a relative extreme $\Longrightarrow \mathcal{H}(x_0, y_0) \geqslant 0$.

Theorem 9. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$, $f \in \mathbb{C}^2$. Let $(x_0, y_0) \in \dot{A}$ a critical point and lets suppose that $\mathcal{H}(x_0, y_0) > 0 \Longrightarrow (x_0, y_0)$ is a relative extreme and is maximum or minimum depending on $\frac{\partial^2 f(x_0, y_0)}{\partial x^2}$ be < 0 or > 0.

 $^{^{1}\}Omega$ this time is used instead of A

Vectorial Functions

A vectorial function is defined as follows: $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$. $\forall x \in A, f(x) \in \mathbb{R}^m$ and $f(x) = (f_1(x), \dots, f_m(x))$ with $f_i: A \subseteq \mathbb{R}^n \to \mathbb{R}$

Definition 19. Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and let x_0 be an accumulation point for A, we say that $\lim_{x \to x_0} f(x) = l \in \mathbb{R}^m$ if $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in A \text{ with } 0 < \|x - x_0\| < \delta \Rightarrow \|f(x) - l\| < \varepsilon$.

Lemma 1. Let $a_1, \ldots, a_n \in \mathbb{R}$, then $\forall j \leq n \ |a_j| \leq \sqrt{\sum_{i=1}^n a_i^2} \leq \sum_{i=1}^n |a_i|$.

Proof. Let $j \leq n$. $|a_j| = \sqrt{a_j^2} \leq \sqrt{\sum_{i=1}^n a_i^2}$. We have to prove that $\sum_{i=1}^n a_i^2 \leq \left(\sum_{i=1}^n |a_i|\right)^2$ and thats true for n=2 infact: $(|a_1| + |a_2|)^2 = a_1^2 + a_2^2 + 2|a_1| |a_2| \geq a_1^2 + a_2^2$. Lets suppose that's true for n-1, that means $\sum_{i=1}^n a_i^2 \leq \left(\sum_{i=1}^n |a_i|\right)^2$ because $\sum_{i=1}^n a_i^2 = \sum_{i=1}^{n-1} a_i^2 + a_n^2 \leq \left(\sum_{i=1}^{n-1} |a_i|\right)^2 + a_n^2 \leq \left(\sum_{i=1}^{n-1} |a_i| + |a_n|\right)^2 = \left(\sum_{i=1}^n |a_i|\right)^2$.

Theorem 10. Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}^m$ with $f = (f_1, \dots, f_m)$. Let x_0 be an accumulation point for A and let $l = (l_1, \dots, l_m) \in \mathbb{R}^m$. Then $\lim_{x \to x_0} f(x) = l \iff \forall i \le m$, $\lim_{x \to x_0} f_i = l_i$.

Proof. We know that if $a_i = f_i(x) - l_i$ then $\forall j \leq m$, $|f_j(x) - l_j| \leq \sqrt{\sum_{i=1}^m (f_i(x) - l_i)^2} = ||f(x) - l|| \leq \sum_{i=1}^m |f_i(x) - l_i|$. Lets suppose that $\lim_{x \to x_0} f(x) = l$, then $||f(x) - l|| \to 0$ for $x \to x_0$ and for the sandwich theorem $|f_j(x) - l_j| \to 0$ for $x \to x_0 \ \forall j \leq m \Longrightarrow \forall j \leq m \ \lim_{x \to x_0} f_j(x) = l_j$. Viceversa lets suppose that $\forall i \leq m \ \lim_{x \to x_0} f_i(x) = l_i \Rightarrow |f_i(x) - l_i| \to 0$ for $x \to x_0 \ \forall i \leq m \Rightarrow \sum_{i=1}^m \to 0$ for $x \to x_0 \Rightarrow ||f(x) - l|| \to 0$ for $x \to x_0 \Rightarrow \lim_{x \to x_0} f(x) = l$.

Definition 20. f(x) is continuous in a point $x_0 \in A$ if $\forall \varepsilon > 0, \exists \delta$ such that $\forall x \in A, ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \varepsilon$.

Implicit functions

By defining a function $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ the expression: $f(x,y) = 0 \lozenge$ means that one can consider the variable x as a parameter and y as unknown and the question is when, $\forall x \exists ! y$ such that the \lozenge is true.

Definition 21. The equation defines implicitly y as a function of x if $\forall x, \exists ! y : f(x,y) = 0$ in that case the function g is defined as:

$$g: x \longmapsto y \Rightarrow f(x,y) = 0$$

Proposition 3. The equation $f(x_0, y_0) = 0$ defines implicitly y as a function of x, the set of all the zeros of f is equal to the graph of the implicit function.

Proof.
$$(x_0, y_0)$$
 is a zero of $f \iff f(x_0, y_0) = 0 \iff y_0 = g(x_0) \iff (x_0, y_0) \in Gr(g)$

Theorem (Implicit Functions). Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ lets suppose that f and $\frac{\partial f}{\partial y}$ are continuous. Let $(x_0, y_0) \in A$ be a zero of of the function where $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. i. Then there exists an open interval I of center x_0 and an open interval J of center $y_0: I \times J \subseteq A$ and $\forall x \in I, \exists ! y \in J: f(x, y) = 0$. ii. Also if $g: I \to J$ is the implicit function, g is continuous and $g(x_0) = y_0$. iii. In addition if $\exists \frac{\partial f}{\partial x}, g$ is derivable and $\forall x \in I, \dot{g}(x) = -\frac{\frac{\partial f}{\partial x}(x, g(x))}{\frac{\partial f}{\partial y}(x, g(x))}$. iv. Furthermore $f \in C^k$, then $g \in C^k$.

Proof. i. By hypotesis $\frac{\partial f}{\partial y} \neq 0$. Lets suppose that $\frac{\partial f}{\partial y}(x_0, y_0) > 0$, so for the sign permanence theorem there exists a rectangle $R_0 = [x_0 - \alpha, x_0 + \alpha] \times [y_0 - \beta, y_0 + \beta] \subseteq A : \forall (x, y) \in R_0, \frac{\partial f}{\partial y}(x, y) > 0$. Let $\varphi : y \in [y_0 - \beta, y_0 + \beta] \longmapsto f(x_0, y)$, by hypotesis $\exists \frac{\partial f}{\partial y}(x_0, y) = 0$, so, by definition φ is derivable and $\dot{\varphi}(y) = \frac{\partial f}{\partial y}(x_0, y) > 0 \Rightarrow \varphi$ is strictly growing. $\varphi(y_0) = f(x_0, y_0) = 0$, $\varphi(y_0 + b) > \varphi(y_0) = 0 \Rightarrow f(x_0, y_0 - b) < 0$ and $f(x_0, y_0 + b) > 0$. Lets define:

$$\varphi_1: x \in [x_0 - \alpha, x_0 + \alpha] \longmapsto f(x, y_0 - b)$$

 $\varphi_2: x \in [x_0 - \alpha, x_0 + \alpha] \longmapsto f(x, y_0 + b)$

 φ_1 and φ_2 are continuous because f is continuous and $\varphi_1(x_0) = f(x_0, y_0 - b) < 0$ and $\varphi_2(x_0) = f(x_0, y_0 + b) > 0$ so there exists an interval $[x_0 - \delta, x_0 + \delta] \subseteq [x_0 - \alpha, x_0 + \alpha] : \forall x \in [x_0 - \delta, x_0 + \delta], \ \varphi_1(x) < 0$ and $\varphi_2(x) > 0$. Now $\forall x \in [x_0 - \delta, x_0 + \delta], f(x, y_0 - b) < 0$ and $f(x, y_0 + b) > 0$ if we take an $x \in (x_0 - \delta, x_0 + \delta)$ and define:

$$\psi: y \in [y_0 - b, y_0 + b] \longmapsto f(x, y)$$

One has that ψ is derivable and $\dot{\psi}(y) = \frac{\partial f}{\partial y}(x,y) > 0$ that implies ψ is strictly growing and also continuous. $\psi(y_0 - b) = f(x, y_0 - b) < 0$ and $\psi(y_0 + b) = f(x, y_0 + b) > 0$ for the zeros theorem, $\exists y \in (y_0 - b, y_0 + b)$ where $\psi(y) = 0 \Rightarrow f(x, y) = 0$. Also y is unique since ψ is strictly growing and that means it can't become zero in two diffrent points. ii. Let $g: I \longrightarrow J$ the implicit function defined by the equation f(x, y) = 0. $\forall x \in I$, f(x, g(x)) = 0 and $f(x_0, y_0) \Rightarrow y_0 = g(x_0)$ we have to prove that g is continuous, so let $\overline{x} \in I$ and the claim is $\lim_{x \to \overline{x}} g(x) = g(\overline{x})$. $\forall x \in I$, g(x) and $g(\overline{x})$ are two distinct points of $J \Rightarrow K[g(x), g(\overline{x})] \subseteq J$.

$$y_0 \stackrel{\bullet}{-} b$$
 $g(x)$ y_0 $g(\overline{x})$ $y_0 + b$

 $\forall x \in I, \text{ let } \psi: y \in K[g(x), g(\overline{x})] \longmapsto f(x,y) \text{ with } \dot{\psi}(y) = \frac{\partial f}{\partial y}(x,y) > 0, \text{ for the lagrange theorem, } \exists \text{ a point } \xi_x \in K[g(x), g(\overline{x})]:$

$$\psi(g(x)) - \psi(g(\overline{x})) = \dot{\psi}(\xi_x)(g(x) - g(\overline{x}))$$

That becomes: $f(x,g(x)) - f(x,g(\overline{x})) = \frac{\partial f}{\partial y}(x,\xi_x)(g(x) - g(\overline{x})) \Rightarrow g(x) - g(\overline{x}) = -\frac{f(x,g(\overline{x}))}{\frac{\partial f}{\partial y}(x,\xi_x)} \Rightarrow |g(x) - g(\overline{x})| = \frac{|f(x,g(\overline{x}))|}{|\frac{\partial f}{\partial y}(x,\xi_x)|}.$ $\frac{\partial f}{\partial y}$ is continuous and R_0 is compact. By the Weierstrass theorem there exists $m = \min\left\{\left|\frac{\partial f}{\partial y}(x,y)\right| : (x,y) \in R_0\right\}, \frac{\partial f}{\partial y} > 0$ in R_0 and that means m > 0 so $\left|\frac{\partial f}{\partial y}(x,y)\right| \geq m$ therefore one has:

$$|g(x) - g(\overline{x})| = \frac{|f(x, g(\overline{x}))|}{\frac{\partial f}{\partial u}(x, \xi_x)} \le \frac{f(x, g(\overline{x}))}{m}$$

 $x \to \overline{x} \Rightarrow (x, g(\overline{x})) \to (\overline{x}, g(\overline{x})), \ f \text{ is continuous} \Rightarrow f(x, g(\overline{x})) \to f(\overline{x}, g(\overline{x})) = 0 \text{ so } \lim_{x \to \overline{x}} g(x) = g(\overline{x}). \text{ iii. Let } \overline{x} \in I \text{ we have to prove that } g \text{ is derivable in } \overline{x}. \text{ If } x \in I$

$$g(x) - g(\overline{x}) = -\frac{f(x, g(\overline{x}))}{\frac{\partial f}{\partial y}(x, \xi_x)} \Rightarrow \frac{g(x) - g(\overline{x})}{x - \overline{x}} = -\frac{1}{\frac{\partial f}{\partial y}(x, \xi_x)} \frac{f(x, g(\overline{x})) - f(\overline{x}, g(\overline{x}))}{x - \overline{x}} \blacktriangle$$

And since there exists the partial derivative of f with respect to x the last member of the \blacktriangle is the incremental ratio of the function $f(x,g(\overline{x}))$ in the point $f(\overline{x},g(\overline{x}))$ and by examining $\frac{\partial f}{\partial y}(x,\xi_x)$ with $\xi_x\in K[g(x)-g(\overline{x})],\ x\to\overline{x}\Rightarrow g(x)\to g(\overline{x})\Rightarrow \xi_x\to g(\overline{x})\Rightarrow (x,\xi_x)\to (\overline{x},g(\overline{x})).$ $\frac{\partial f}{\partial y}$ is continuous $\Rightarrow \lim_{x\to\overline{x}}\frac{\partial f}{\partial y}(x,\xi_x)=\frac{\partial f}{\partial y}(\overline{x},g(\overline{x}))$ finally $\exists \lim_{x\to\overline{x}}\frac{g(x)-g(\overline{x})}{x-\overline{x}}=-\frac{\frac{\partial f}{\partial x}(\overline{x},g(\overline{x}))}{\frac{\partial f}{\partial y}(\overline{x},g(\overline{x}))}$. iv. is proved by induction infact, if we take k=1 if $f\in C^1$ its partial derivatives are continuous so g is continuous, the rest can be easily verified. \Box

Bound extremes

Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ with A open. If $g: A \to \mathbb{R}^m$ then we define $E_0 = \{x \in A : g(x) = 0\}$. $g = (g_1, \dots, g_m)$ so g(x) = 0 is equivalent to say:

$$\begin{cases} g_1(x) = 0 \\ g_2(x) = 0 \\ \vdots \\ g_m(x) = 0 \end{cases}$$

Definition 22. A point $x_0 \in E_0$ is said to be bound maximum (bound minimum) if $\forall x \in E_0$ $f(x) \leq f(x_0)$ $(f(x) \geq f(x_0))$.

Theorem (Lagrange Multipliers). Let $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ and $g: A \to \mathbb{R}$ with $g \in C^1$ in an open set A. Let $E_0 = \{(x,y) \in A: g(x,y) = 0\}$ and $(x_0,y_0) \in E_0$ a bound relative extreme for f and suppose that $\nabla g(x_0,y_0) \neq (0,0)$ then $\exists! \lambda \in \mathbb{R}: (x_0,y_0)$ be a critical point for the function $\mathcal{L}(x,y) = f(x,y) + \lambda g(x,y) \left(\frac{\partial f}{\partial x}(x_0,y_0) + \lambda \frac{\partial g}{\partial x}(x_0,y_0) = 0 \wedge \frac{\partial f}{\partial y}(x_0,y_0) + \lambda \frac{\partial g}{\partial y}(x_0,y_0) = 0\right)$.

Proof. Existence Since $\nabla g(x_0, y_0) \neq (0, 0)$ we can assume $\frac{\partial g}{\partial y}(x_0, y_0) \neq 0$. g(x, y) = 0 verifies the conditions of the implicit functions theorem $(g \in C^1, g(x_0, y_0) = 0, \frac{\partial g}{\partial y}(x_0, y_0) \neq 0)$, so for that theorem \exists an open interval I of center x_0 and an open interval J of center $y_0 : I \times J \subseteq A$ and $\forall x \in I \exists ! y \in J : g(x, y) = 0$ also the implicit function $\varphi : I \to J$ is C^1 . $\varphi(x_0) = y_0$ and $\forall x \in I$ one has:

$$\dot{\varphi}(x) = -\frac{\frac{\partial g}{\partial x}(x, \varphi(x))}{\frac{\partial g}{\partial y}(x, \varphi(x))}$$

Lets suppose for example that (x_0, y_0) is a bound relative minimum, then there exists a rectangle $I' \times J' \subseteq I \times J$ of center (x_0, y_0) such that $\forall (x, y) \in (I' \times J') \cap E_0 \Rightarrow f(x, y) \leq f(x_0, y_0)$. φ is continuous in x_0, J' is an interval of center $y_0 = \varphi(x_0) \exists I'' \subseteq I'$ of center $x_0 : \forall x \in I'' \ \varphi(x) \in J'$. $\forall x \in I'' \ (x, \varphi(x)) \in (I' \times J') \cap E_0$. $\varphi : x \longmapsto y$ such that $g(x_0, y_0) = 0$ so $g(x, \varphi(x)) = 0 \ \forall x \in I$. $\forall x \in I'' \ f(x, \varphi(x)) \leq f(x_0, y_0)$. $\forall x \in I''$ we define $\psi(x) = f(x, \varphi(x))$ such that $\forall x \in I''$ we have $(x, \varphi(x)) \in I' \times J' \subseteq I \times J \subseteq A$ and that means $\forall x \ \psi(x) \leq f(x_0, y_0) = \psi(x_0) \Rightarrow x_0$ is a bound relative maximum for ψ and is internal to I''. $\psi \in C^1$ since is a composition of C^1 functions so is derivable and $\forall x \in I''$:

$$\dot{\psi}(x) = \frac{\partial f}{\partial x}(x, \varphi(x)) + \frac{\partial f}{\partial y}(x, \varphi(x))\dot{\varphi}(x) = \frac{\partial f}{\partial x}(x, \varphi(x)) - \frac{\partial f}{\partial y}(x, \varphi(x))\frac{\frac{\partial g}{\partial x}(x, \varphi(x))}{\frac{\partial g}{\partial y}(x, \varphi(x))}$$

Since ψ is derivable, and x_0 is a maximum, for fermat theorem one has $\dot{\psi}(x_0) = 0$ with:

$$\dot{\psi}(x_0) = \frac{\partial f}{\partial x}(x_0, y_0) - \frac{\partial f}{\partial y}(x_0, y_0) \frac{\frac{\partial g}{\partial x}(x_0, y_0)}{\frac{\partial g}{\partial x}(x_0, y_0)} = 0 \Longleftrightarrow \frac{\partial f}{\partial x}(x_0, y_0) \frac{\partial g}{\partial y}(x_0, y_0) - \frac{\partial f}{\partial y}(x_0, y_0) \frac{\partial g}{\partial x}(x_0, y_0) = 0$$

Equivalently we can use this expression:

$$\begin{vmatrix} \frac{\partial f}{\partial x}(x_0, y_0) & \frac{\partial f}{\partial y}(x_0, y_0) \\ \frac{\partial g}{\partial x}(x_0, y_0) & \frac{\partial g}{\partial y}(x_0, y_0) \end{vmatrix} = 0$$

And if thats is true that implies $\exists (\lambda_1, \lambda_2) \neq (0, 0)$ such that one of the two coloums is **l.d.** $^2 \Longrightarrow \lambda_1 \frac{\partial f}{\partial x}(x_0, y_0) + \lambda_2 \frac{\partial g}{\partial x}(x_0, y_0) = 0$. If $\lambda_1 = 0 \Rightarrow \lambda_2 \neq 0 \Rightarrow \frac{\partial g}{\partial x}(x_0, y_0) = 0$ but that's impossible since the hypotesis impose it to be different from zero, so it must be $\lambda_1 \neq 0$ and if we chose $\lambda = \frac{\lambda_2}{\lambda_1}$ we have $\mathcal{L}(x, y) = f(x, y) + \lambda g(x, y) = 0$.

Uniqueness Let $\mathcal{L}(x,y) = f(x,y) + \lambda g(x,y) = 0$ and $\mathcal{L}(x,y) = f(x,y) + \overline{\lambda}g(x,y) = 0$. If we subtract member to member the last equations one has:

$$(\lambda - \overline{\lambda}) \frac{\partial g}{\partial y}(x_0, y_0) = 0 \Rightarrow \lambda = \overline{\lambda}$$

²Linearly dependent