Spring 2022 Data 100/200 Midterm 2 Reference Sheet

Ordinary Least Squares

Multiple Linear Regression Model: $\hat{\mathbb{Y}} = \mathbb{X}\theta$ with design matrix \mathbb{X} , response vector \mathbb{Y} , and predicted vector $\hat{\mathbb{Y}}$. If there are p features plus a bias/intercept, then the vector of parameters $\theta = [\theta_0, \theta_1, \dots, \theta_p]^T \in \mathbb{R}^{p+1}$. The vector of estimates $\hat{\theta}$ is obtained from fitting the model to the sample (\mathbb{X}, \mathbb{Y}) .

Concept	Formula	Concept	Formula
Mean squared error	$R(heta) = rac{1}{n} Y - X heta _2^2$	Normal equation	$\mathbb{X}^T\mathbb{X}\hat{\theta}=\mathbb{X}^T\mathbb{Y}$
Least squares estimate, if $\mathbb X$ is full rank	$\hat{\theta} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$	Residual vector, \boldsymbol{e}	$e=\mathbb{Y}-\hat{\mathbb{Y}}$
		Multiple R^2 (coefficient of determination)	$R^2 = rac{ ext{variance of fitted values}}{ ext{variance of }y}$
Ridge Regression L2 Regularization	$rac{1}{n} Y-X heta _2^2+lpha heta _2^2$	Squared L2 Norm of $ heta \in \mathbb{R}^d$	$ heta _2^2 = \sum_{j=1}^d heta_j^2$
Ridge regression estimate (closed form)	$\hat{ heta}_{ ext{ridge}} = (\mathbb{X}^T \mathbb{X} + n lpha I)^{-1} \mathbb{X}^T \mathbb{Y}$		
LASSO Regression L1 Regularization	$rac{1}{n} Y-X heta _2^2+lpha heta _1$	L1 Norm of $ heta \in \mathbb{R}^d$	$ heta _1 = \sum_{j=1}^d heta_j $

Scikit-Learn

Suppose sklearn.model_selection and sklearn.linear_model are both imported packages.

Package	Function(s)	Description
sklearn.linear_model	LinearRegression(fit_intercept=True)	Returns an ordinary least squares Linear Regression model.
	<pre>LassoCV(fit_intercept=True), RidgeCV(fit_intercept=True)</pre>	Returns a Lasso (L1 Regularization) or Ridge (L2 regularization) linear model, respectively, and picks the best model by cross validation.
	model.fit(X, y)	Fits the scikit-learn model to the provided X and y.
	model.predict(X)	Returns predictions for the X passed in according to the fitted model.
	model.coef_	Estimated coefficients for the linear model, not including the intercept term.
	model.intercept_	Bias/intercept term of the linear model. Set to 0.0 if fit_intercept=False.
sklearn.model_selection	<pre>train_test_split(*arrays, test_size=0.2)</pre>	Returns two random subsets of each array passed in, with 0.8 of the array in the first subset and 0.2 in the second subset.

Probability

Let X have a discrete probability distribution P(X=x). X has expectation $\mathbb{E}[X] = \sum_x x P(X=x)$ over all possible values x, variance $\mathrm{Var}(X) = \mathbb{E}[(X-\mathbb{E}[X])^2]$, and standard deviation $\mathrm{SD}(X) = \sqrt{\mathrm{Var}(X)}$.

The covariance of two random variables X and Y is $\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$. If X and Y are independent, then $\mathrm{Cov}(X,Y)=0$.

Notes	Property of Expectation	Property of Variance
X is a random variable.		$\mathrm{Var}(X) = E[X^2] - (E[X])^2$
X is a random variable. $a,b\in\mathbb{R}$ are scalars.	$\mathbb{E}[aX+b] = a\mathbb{E}[X] + b$	$\mathrm{Var}(aX+b)=a^2\mathrm{Var}$
X,Y are random variables.	$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$	$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$
X is a Bernoulli random variable that takes on value 1 with probability p and 0 otherwise.	$\mathbb{E}[X] = p$	$\mathrm{Var}(X) = p(1-p)$
Y is a Binomial random variable representing the number of ones in n	E[Y]=np	$\mathrm{Var}(Y) = np(1-p)$

representing the number of ones in n independent Bernoulli trials with probability p of 1.

Central Limit Theorem

Let (X_1,\ldots,X_n) be a sample of independent and identically distributed random variables drawn from a population with mean μ and standard deviation σ . The sample mean $\overline{X}_n = \sum_{i=1}^n X_i$ is normally distributed, where $\mathbb{E}[\overline{X}_n] = \mu$ and $\mathrm{SD}(\overline{X}_n) = \sigma/\sqrt{n}$.

Parameter Estimation

Suppose for each individual with fixed input x, we observe a random response $Y = g(x) + \epsilon$, where g is the true relationship and ϵ is random noise with zero mean and variance σ^2 .

For a new individual with fixed input x, define our random prediction $\hat{Y}(x)$ based on a model fit to our observed sample (\mathbb{X}, \mathbb{Y}) . The model risk is the mean squared prediction error between Y and $\hat{Y}(x)$:

$$\mathbb{E}[(Y-\hat{Y}(x))^2] = \sigma^2 + \left(\mathbb{E}[\hat{Y}(x)] - g(x)
ight)^2 + \mathrm{Var}(\hat{Y}(x)).$$

Suppose that input x has p features and the true relationship g is linear with parameter $\theta \in \mathbb{R}^{p+1}$. Then $Y = f_{\theta}(x) = \theta_0 + \sum_{j=1}^p \theta_j x_j + \epsilon$ and $\hat{Y} = f_{\hat{\theta}}(x)$ for an estimate $\hat{\theta}$ fit to the observed sample (\mathbb{X}, \mathbb{Y}) .

Gradient Descent

Let $L(\theta, \mathbb{X}, \mathbb{Y})$ be an objective function to minimize over θ , with some optimal $\hat{\theta}$. Suppose $\theta^{(0)}$ is some starting estimate at t=0, and $\theta^{(t)}$ is the estimate at step t. Then for a learning rate α , the gradient update step to compute $\theta^{(t+1)}$ is

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla_{\theta} L(\theta^{(t)}, \mathbb{X}, \mathbb{Y}),$$

where $\nabla_{\theta} L(\theta^{(t)}, \mathbb{X}, \mathbb{Y})$ is the partial derivative/gradient of L with respect to θ , evaluated at $\theta^{(t)}$.

SQL

SQLite syntax:

SELECT [DISTINCT]
 {* | expr [[AS] c_alias]
 {,expr [[AS] c_alias] ...}}
FROM tableref {, tableref}
[[INNER | LEFT] JOIN table_name
 ON qualification_list]
[WHERE search_condition]
[GROUP BY colname {,colname...}]
[HAVING search_condition]
[ORDER BY column_list]
[LIMIT number]
[OFFSET number of rows];

Syntax	Description	
SELECT column_expression_list	List is comma-separated. Column expressions may include aggregation functions (MAX, FIRST, COUNT, etc). AS renames columns. DISTINCT selects only unique rows.	
FROM s INNER JOIN t ON cond	Inner join tables s and t using cond to filter rows; the INNER keyword is optional.	
FROM s LEFT JOIN t ON cond	Left outer join of tables s and t using cond to filter rows.	
FROM s, t	Cross join of tables s and t: all pairs of a row from s and a row from t	
WHERE a IN cons_list	Select rows for which the value in column a is among the values in a cons_list.	
ORDER BY RANDOM LIMIT n	Draw a simple random sample of n rows.	
ORDER BY a, b DESC	Order by column a (ascending by default), then b (descending).	
CASE WHEN pred THEN cons ELSE alt END	Evaluates to cons if pred is true and alt otherwise. Multiple WHEN/THEN pairs can be included, and ELSE is optional.	
WHERE s.a LIKE 'p'	Matches each entry in the column a of table s to the text pattern p. The wildcard % matches at least zero characters.	
LIMIT number	Keep only the first number rows in the return result.	
OFFSET number	Skip the first number rows in the return result.	