西安交通大学 数学实验报告

合金强度及其碳含量关系求解

Xi'an Jiaotong University

Report on Mathematical Experiments

The Solution of the Relationship

between Alloy Intensity and Carbon Content

评分表:

班级	学号	姓名	班号	组号	任务	成绩
电类 938	2194323176	胡欣盈			模型的代码实现	
电类 937	2196123402	何佩阳	7	52	建立数学模型	
电类 935	2196123421	刘雪婷			撰写实验报告	

2020年7月13日

合金强度与其碳含量关系求解

一、问题重述

1.1 目标任务

合金的强度y与其中的碳含量x有比较密切的关系,今从生产中收集了一批数据如表 1。

表1

x	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18
у	42.3	41.5	45.2	45.5	44.9	47.6	48.9	55.1	50.2

试先拟合一个函数y(x), 再用回归分析对它进行检验。

二、模型假设

合金的强度y仅与其中的碳含量x有关,其余影响因素在此模型中均忽略不计。

三、符号说明

符号	符号意义
x	合金的碳含量
у	合金的强度
r	可决系数
SE	离回归标准误
R	可决系数

四、问题分析

本题是一个基于回归分析的预测问题,问题要求我们运用函数进行数据的拟合,并运用回归分析模型对拟合函数进行检验,对系统进行定量的综合预测。

五、模型的建立与求解

5.1 数据处理

当 x 为 0.17, y=55.1 时, 数据异常, 将此时的 y 值变为左右 y 值的平均数, 即 $y = \frac{48.9+50.2}{2} = 49.55$.

5.2 建立一元回归分析模型

利用 MATLAB 绘图软件做散点图:得到图一:

再利用 MATLAB 拟合得该曲线的二次函数和三次函数

 $y_2 = -66.5584x^2 + 127.3864x + 29.6982$ $y_3 = 1.0 \times 10^4 \times (-1.0732x^3 + 0.4441x^2 - 0.0491x + 0.0057)$

得到图二:

图二

5.3 判断拟合效果

分别计算二次函数与三次函数的可决系数:

$$R = \frac{\sum (\widehat{y} - \overline{y})^2}{\sum (y - \overline{y})^2} = 1 - \frac{\sum (y - \widehat{y})^2}{\sum (y - \overline{y})^2}$$

求得 R2 =0.9223, R3 =0.9082, 因 R2>R3, 所以二次函数拟合效果优于三次函数。

5.4 回归分析检验(回归的偏离度分析)

偏差平方和的大小表示了实测点与回归直线偏离的程度,因而此偏差平方和又称为离回归平方和。统计学证明:在直线回归分析中离回归平方和的自由度为 n-2, 那么, 离回归均方为:

$$\sum \frac{(y-\widehat{y})^2}{n-2}$$

离回归均方的平方根叫离回归标准误,记为SE.

经过计算得 SE=0.9240.

5.5 代码实现

$$x=[0.10 \quad 0.11 \quad 0.12 \quad 0.13 \quad 0.14 \quad 0.15 \quad 0.16 \quad 0.17 \quad 0.18];$$
 $y=[42.3 \quad 41.5 \quad 45.2 \quad 45.5 \quad 44.9 \quad 47.6 \quad 48.9 \quad 49.55 \quad 50.2];$ figure; plot $(x, y, -*);$

```
p=polyfit(x,y,3)
y2= -66.5584*x.^2+127.3864*x+29.6982;
y3=1.0e+004*(-1.0732*x.^3+0.4441*x.^2-0.0491*x+0.0057);
figure;
plot(x,y,'-*',x,y2,'-o',x,y3,'-+'),
legend('原始数据','二次函数','三次函数')

R2=1-sum((y-y2).^2)/sum((y-mean(y)).^2)
R3=1-sum((y-y3).^2)/sum((y-mean(y)).^2)
SE=sqrt(sum((y-y2).^2)/7)
```

六、模型的评价

本模型根据题目已知数据的变化规律,寻找合金的碳含量 x 与合金的强度 y 之间的拟合函数,本回归问题属于一元非线性回归。经过回归分析检验,发现函数拟合得较好。本模型将对象的影响因素确定化,考虑因素的变化情况,模型求解过程简单。

七、参考文献

[1]韩中庚,数学建模方法及应用(第二版),2009,北京:高等教育出版社

[2]李继成,数学实验(第二版),2014,北京:高等教育出版社

[3]姜启源、谢金星、叶俊,数学模型(第四版),2011,北京:高等教育出版社