STATEMENT OF PURPOSE

YANSHU WANG

My primary research interest lies in the area of number theory, and arithmetic geometry. I am actively involved in a research project that introduces a more streamlined version of the groupoid GTSh, which is an approximation of a specific type of Grothendieck–Teichmüller group. But I am open to exploring new ideas as well.

Under the supervision of Professor Vasily Dolgushev, I conducted the research that introduced a more streamlined version of the groupoid GTSh of GT-shadows and contributed to the SageMath package for working with GT-shadows. The groupoid GTSh is a 'computable' approximation to the gentle version of the Grothendieck-Teichmüller group \widetilde{GT} widehat $GT_{GT} - GT_{GT} - GT_$

Mentored by Professor Maxence Mayrand, I participated in a research internship that constructed new GKP code from the Abelian varieties on the cyclotomic field $K = \mathbb{Q}(\zeta_n)$. The construction $(K \otimes_{\mathbb{Q}} \mathbb{R})/\mathcal{O}_K$ is an abelian variety of CM-type. We defined a skew-symmetric form E and extended it to a hermitian inner product E on E on E on E on E on E of E of

Under the supervision of Professor Lisa Berger, Ajmain Yamin and Connor Stewart, I participated in an online collaborative research to obtain equations for $K_{\rm Q}$ dessin, that is the bipartification dessin

of the complete regular map from K_9 graph. We proved that the Riemann surface of the K_9 dessin is a degree 9 cover of the Bolza

surface $y^2 = x(x^4 - 1)$ with covering group $(\mathbb{Z}/3\mathbb{Z})^2$. We used the fact that any unramified abelian cover of a Riemann surface S is obtained from pulling back S along an unramified abelian cover of the Jacobian Jac(S) of S. So, we computed the equation for the Abel-Jacobi map of the Bolza surface S_B and constructed a degree 9 cover of the Jacobian Jac(S_B) and obtained the equation.

These research experiences let me explore a wide range of mathematics and significantly improve my self-learning, writing, programming and speaking skills. It is these research experiences that boost my determination to seek admission to a graduate program and do mathematical research.

My short-term plan after admission is to try to finish the required courses, attend colloquia, find an advisor, and begin my dissertation work as soon as possible. My long-term plan is to to become a Mathematics professor at a research institution and make original contributions to the mathematics community. I like ALGANT's diverse course program and the opportunity to study in two countries. I believe that The ALGANT is the best program for me to build a successful mathematical career.