2.4 The precise definition of a limit

- 1. definition of limit 極限定義
- 2. one-side limit 單邊極限
- 3. infinite limit 無限極限

什麼叫靠近 (approach)? 一公分? 一公尺? 一公里? 你問我靠你有多近? 我挨你有幾分? 你去想一想, 你去看一看, ε - δ 我的近。

Definition of limit 0.1

Recall: $\lim_{x\to a} f(x) = L \iff f(x) \to L \text{ as } x \to a.$ 怎麼說明靠近 (approach "\rightarrow")? 要用 ε -δ 語言: 以 ε & δ 代表<mark>距離</mark>, 用來描述<mark>靠近</mark>。

Define: f(x) is defined on (b, c) with b < a < c (except a possibly).

$$\lim_{x \to a} f(x) = \underline{L}$$

 $\label{eq:force_force} \boxed{\lim_{x\to a} f(x) = L}$ if $\forall \ \varepsilon > 0, \ \exists \ \delta > 0, \ \ni \ 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon.$

如果對所有 $\varepsilon>0,$ 都存在 $\delta>0,$ 使得只要 $0<|x-a|<\delta,$ 就會 $|f(x)-L|<\varepsilon.$

 $\lim_{x\to a}f(x)=L$ 代表: 不管你要求 f(x) 以任何 (你給的) 距離 ε 靠近 L, 它能 保證只要 x 與 a 距離在某個 (一定存在的) δ 以內就有。

反過來 (脚色互換), 要證明 $\lim_{x\to a} f(x) = L$, 就要對任意給定的 ε 找出 δ , 證明 只要 x 是以 δ 的距離 (或更小) 靠近 a, f(x) 就會以 (至少有) ε 的距離靠近 L。

Ex:
$$f(x) = \begin{cases} 2x - 1, & x \neq 3 \\ 6, & x = 3 \end{cases}$$
, $\lim_{x \to 3} f(x) = 5$ (polynomial).

How to prove $f(x) \to 5$ as $x \to 3$?

Case 1. $\varepsilon = 0.1$.

$$|f(x) - L| = |(2x - 1) - 5| = 2|x - 3| < 0.1 \iff |x - 3| < 0.05.$$
 所以只要 x 以 0.05 的距離靠近 3 , $f(x)$ 就會以 0.1 的距離靠近 5 。

Case 2. $\varepsilon = 0.01$.

$$|f(x) - L| = |(2x - 1) - 5| = 2|x - 3| < 0.01 \iff |x - 3| < 0.005.$$
 所以只要 x 以 0.005 的距離靠近 3 , $f(x)$ 就會以 0.01 的距離靠近 5 。

Case 3. $\varepsilon > 0$.

$$|f(x) - L| = |(2x - 1) - 5| = 2|x - 3| < \varepsilon \iff |x - 3| < \frac{\varepsilon}{2}.$$

所以只要 x 以 $\delta \stackrel{(\leq)}{=} \frac{\varepsilon}{2}$ (或更小) 的距離靠近 3, f(x) 就會以 (至少有) ε 的 $\longrightarrow 5$

距離靠近 5. ... By the definition of limit, $\lim_{x\to 3} f(x) = 5$.

0.2 One-side limit

Define: f(x) is defined on (b, a) (resp. (a, c)).

$$\lim_{\substack{x \to \frac{\mathbf{a}^-}{a^+}}} f(x) = \underline{L}$$

if
$$\forall \varepsilon > 0, \exists \delta > 0, \ni \frac{a - \delta < x < a}{a < x < a + \delta} \Rightarrow |f(x) - L| < \varepsilon.$$

(Prove by definition " $\lim_{x\to a} f(x) = L \iff \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L$ ".)

0.3 Infinite limit

Define: f(x) is defined on $(b, a) \cup (a, c)$ (resp. (b, a) or (a, c)).

$$\lim_{\substack{x \to a \\ \frac{a^{-}}{a^{+}}}} f(x) = \infty$$

$$\begin{array}{c|c} \text{if} & \forall \ M>0, \ \exists \ \delta>0, \ \ni \ 0<|x-a|<\delta \implies f(x)>M. \\ N<0 & \frac{a-\delta < x < a}{a < x < a+\delta} & f(x)$$

怎麼描述任意大/小? 任何 (至少比零)大/小的 M/N, 都能找到 δ , 保證只要 x 以 δ 的距離 (從兩/ \mathbf{z} /右邊) 靠近 a, f(x) 就會比 M/N 還大/小。

How to prove limit by the definition (find δ): (標準流程)

Step 1. Guessing a value for δ ($\delta = \delta(\varepsilon)$).

(說明 δ 是怎麼找到的。)

Step 2. Showing this δ works.

(驗證符合定義的描述。)

Example 0.1 Prove $\lim_{x\to 3} (4x - 5) = 7$.

Prove: " $\forall \ \varepsilon > 0, \ \exists \ \delta > 0, \ \ni 0 < |x - 3| < \delta \implies |(4x - 5) - 7| < \varepsilon$."

1. (Guess) $|(4x-5)-7|<\varepsilon\iff 4|x-3|<\varepsilon\iff |x-3|<\varepsilon/4$, (比較 $0<|x-3|<\delta$) guess $\delta=\varepsilon/4$.

2. (Show) Given $\varepsilon > 0$, choose $\delta = \varepsilon/4$.

If $0 < |x-3| < \delta$, then $|(4x-5)-7| = 4|x-3| < 4 \cdot \delta = 4 \cdot \varepsilon/4 = \varepsilon$. Therefore, by the definition (of the limit), $\lim_{x \to 3} (4x-5) = 7$.

Skill 1: 用 $|f(x) - L| < \varepsilon$ 推出 $|x - a| < \delta(\varepsilon)$, 猜 $\delta = \delta(\varepsilon)$.

Example 0.2 Prove $\lim_{x\to 0^+} \sqrt{x} = 0$.

 $Prove: \ "\forall \ \varepsilon > 0, \ \exists \ \delta > 0, \ \ni \ 0 < x < \delta \implies |\sqrt{x} - 0| < \varepsilon."$

1. $|\sqrt{x} - 0| = \sqrt{x} < \varepsilon \iff x < \varepsilon^2$, guess $\delta = \varepsilon^2$.

2. Given $\varepsilon > 0$, choose $\delta = \varepsilon^2$.

If $0 < x < \delta$, then $|\sqrt{x} - 0| = \sqrt{x} < \sqrt{\delta} = \sqrt{\varepsilon^2} = |\varepsilon| = \varepsilon$.

Therefore, by the definition (of the right-hand limit), $\lim_{x\to 0^+} \sqrt{x} = 0$.

Attention: $\lim_{x\to 0} \sqrt{x} \neq 0$. (Can you explain why?)

Example 0.3 Prove $\lim_{x\to a} c = c$. (Choose $\delta = 1$.)

Example 0.4 Prove $\lim_{x\to a} x = a$. (Choose $\delta = \varepsilon$.)

Example 0.5 Prove $\lim_{x \to 3} x^2 = 9$.

1. $|x^2 - 9| = |x + 3||x - 3|$. (|x - 3|| 很靠近零,但是 |x + 3|| 呢?) idea: If |x + 3| < C for some C > 0, then let $|x - 3| < \frac{\varepsilon}{C}$ and hence $|x^2 - 9| < C \cdot \frac{\varepsilon}{C} = \varepsilon$.

try: When |x-3| < 1, |x+3| < 7; so let C = 7 and guess $\delta = \min \left\{ 1, \frac{\varepsilon}{7} \right\}$.

2. Given $\varepsilon > 0$, choose $\delta = \min\left\{1, \frac{\varepsilon}{7}\right\}$. (選最小才能保證 <, < 都成立。) If $0 < |x-3| < \delta$, then $0 < |x-3| < 1 \Rightarrow |x+3| < 7$, and $0 < |x-3| < \frac{\varepsilon}{7}$, so $|x^2-9| = |x+3||x-3| < 7 \cdot \frac{\varepsilon}{7} = \varepsilon$.

Therefore, by the definition, $\lim_{x \to 3} x^2 = 9$.

Skill 2: δ 可以嘗試一些數字 (like 1) 夾住其他乘積項, 再讓 δ 取最小值。

[Another method]: (用 Skill 1)

Choose
$$\delta = \begin{cases} \min\{3 - \sqrt{9 - \varepsilon}, \sqrt{9 + \varepsilon} - 3\} & \text{when } \varepsilon < 9, \\ \sqrt{9 + \varepsilon} - 3 & \text{when } \varepsilon \ge 9. \end{cases}$$

從點 (a,L) 沿著 y=f(x) 找第一次跑出 $y=L+\varepsilon$ 與 $y=L-\varepsilon$ 包圍的 x (解 $|f(x)-L|=\varepsilon$), 選擇 $\delta=\min\{|x-a|\}$ (要取最小, 這也是最大可能的 δ), 但是有時候不好算。

 \heartsuit 考: 已知 $\lim_{x\to a} f(x) = L$, 給定 ε , 找最大/可用的 δ 。 (100,101,102 會考)

Example 0.6 Prove limit law: (addition)

$$\lim_{x \to a} f(x) = L \& \lim_{x \to a} g(x) = M \implies \lim_{x \to a} [f(x) + g(x)] = L + M.$$

Proof. Given $\varepsilon > 0$. $|[f(x) + g(x)] - (L + M)| = |(f(x) - L) + (g(x) - M)| \le$ |f(x) - L| + |g(x) - M|. $(: |a + b| \le |a| + |b|$.)

$$\lim_{x \to a} f(x) = L, \ \exists \ \delta_1 > 0, \ \ni 0 < |x - a| < \delta_1 \implies |f(x) - L| < \frac{\varepsilon}{2}.$$

$$\lim_{x \to a} g(x) = M, \ \exists \ \delta_2 > 0, \ \ni 0 < |x - a| < \delta_2 \implies |g(x) - M| < \frac{\varepsilon}{2}.$$

 $Choose \ \delta = \min\{\delta_1, \delta_2\}.$

If $0 < |x - a| < \delta$, then $0 < |x - a| < \delta_1$ and $0 < |x - a| < \delta_2$, and so $|f(x) - L| < \frac{\varepsilon}{2}$ and $|g(x) - M| < \frac{\varepsilon}{2}$,

$$\implies |[f(x) + g(x)] - (L+M)| \le |f(x) - L| + |g(x) - M| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
Therefore, by the definition, $\lim_{x \to a} [f(x) + g(x)] = L + M.$

Skill 3: 用 triangle inequality 三角不等式 $(|a+b| \le |a|+|b|, |a+b+c| \le |a|+|b|+|c|, \ldots)$ 分成總和爲 ε 的多項 $(\frac{\varepsilon}{2}+\frac{\varepsilon}{2},\frac{\varepsilon}{3}+\frac{2\varepsilon}{3},\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3},\frac{\varepsilon}{3},\ldots)$, 找出 個別的 δ , 最後再取最小值 (保證每項不等式都成立

Example 0.7 (Extended) (continue) $\implies \lim_{x \to a} f(x)g(x) = LM$.

Proof. $|fg - LM| = |(fg - Lg) + (Lg - LM)| \le |f - L||g| + |L||g - M|$. 1. $\exists \delta_1 > 0, \ \ni 0 < |x - a| < \delta_1 \implies |g - M| < 1 \iff |g| < |M| + 1;$

1.
$$\exists \delta_1 > 0, \ \ni 0 < |x - a| < \delta_1 \implies |g - M| < 1 \iff |g| < |M| + 1;$$

2.
$$\exists \delta_2 > 0, \ \ni 0 < |x - a| < \delta_2 \implies |f - L| < \frac{\varepsilon}{2(|M| + 1)};$$

3.
$$\exists \delta_3 > 0, \exists \delta_3 > 0, \exists \delta_3 > 0 < |x - a| < \delta_3 \implies |g - M| < \frac{\varepsilon}{2(|L| + 1)}.$$
 (避開 $L = 0$)

Choose
$$\delta = \min\{\delta_1, \delta_2, \delta_3\}$$
. If $0 < |x - a| < \delta$, then (略) and $|fg - LM| < \frac{\varepsilon}{2(|M| + 1)} \cdot (|M| + 1) + |L| \cdot \frac{\varepsilon}{2(|L| + 1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Example 0.8 (infinite limit) Prove $\lim_{x\to 0} \frac{1}{x^2} = \infty$.

Prove: " $\forall M > 0, \exists \delta > 0, \ni 0 < |x - 0| < \delta \implies \frac{1}{x^2} > M$."

1.
$$\frac{1}{x^2} > M \iff |x| < \frac{1}{\sqrt{M}}, \ guess \ \delta = \frac{1}{\sqrt{M}}.$$

2. Given
$$M > 0$$
, choose $\delta = \frac{1}{\sqrt{M}}$.

If
$$0 < |x - 0| < \delta$$
, then $\frac{1}{x^2} > \frac{1}{\delta^2} = \frac{1}{(\frac{1}{\sqrt{M}})^2} = M$.

Therefore, by the definition, $\lim_{x\to 0} \frac{1}{x^2} = \infty$. $(\frac{1}{x^2} \to \infty \text{ as } x \to 0.)$

Remind:
$$\lim_{\substack{x \to a \\ a^- \\ a^+ \\ a^+ \\ -\infty}} f(x) = \underbrace{L}_{\infty} \quad \text{or} \quad f(x) \to \underbrace{L}_{\infty} \text{ as } x \to a$$

$$\underset{\alpha^+}{\infty} \quad \underset{\alpha^+}{\infty} \quad \underset{\alpha^+}{\alpha^-}$$

$$\begin{array}{ccc} \text{if } \forall & \varepsilon > 0 \text{ , } \exists \; \delta > 0, \ni 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon. \\ M > 0 & a - \delta < x < a & f(x) > M \\ N < 0 & a < x < a + \delta & f(x) < N \end{array}$$

When proving

- limit: $0 < |x-a| < \delta$ 避開 x = a 的情形。
- one-side limit: $a \delta < x < a \& a < x < a + \delta$ 左右邊不同。
- infinite limit: f(x) > M & f(x) < N 沒有絕對值。

Remark: 計算極限的方法: 極限律, 左右極限, 夾擠定理, 都可用 ε - δ 證明。 (Try to prove by ε - δ : limit laws, left/right-hand limits, Squeeze Theorem.)

♦ Additional: Proof of left/right-hand limits

"
$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$
"

Proof. $(\Rightarrow) \forall \varepsilon > 0$,

$$\lim_{x \to a} f(x) = L, \ \exists \ \delta > 0, \ \ni 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.$$

If
$$a - \delta < x < a$$
, then $0 < a - x = |x - a| < \delta \implies |f(x) - L| < \varepsilon$.

 \therefore by the definition, $\lim_{x\to a^-} f(x) = L$.

If
$$a < x < a + \delta$$
, then $0 < x - a = |x - a| < \delta \implies |f(x) - L| < \varepsilon$.

 \therefore by the definition, $\lim_{x \to a^+} f(x) = L$.

$$(\Leftarrow) \ \forall \ \varepsilon > 0,$$

$$\therefore \lim_{n \to \infty} f(x) = L, \ \exists \ \frac{\delta_1}{\delta_1} > 0, \ \ni \ a - \frac{\delta_1}{\delta_1} < x < a \implies |f(x) - L| < \varepsilon;$$

$$\therefore \lim_{x \to a^+} f(x) = L, \ \exists \ \delta_2 > 0, \ \ni \ a < x < a + \delta_2 \implies |f(x) - L| < \varepsilon.$$

Choose $\delta = \min\{\delta_1, \delta_2\}$.

If
$$0 < |x - a| < \delta$$
, then
$$\begin{cases} \text{either } -\delta < x - a < 0, \ a - \frac{\delta_1}{\delta} < a - \delta < x < a \\ \text{or} \qquad 0 < x - a < \delta, \ a < x < a + \delta < a + \frac{\delta_2}{\delta} \end{cases}$$

$$\implies |f(x) - L| < \varepsilon.$$

 \therefore by the definition, $\lim_{x\to a} f(x) = L$.

♦ Additional: Proof of limit "does not exist"

"
$$\lim_{x \to a} f(x) \neq L, \ \forall \ L \in \mathbb{R}$$
"

 $\forall L \in \mathbb{R}, \exists \varepsilon > 0, \exists \delta > 0, \exists x \text{ with } 0 < |x - a| < \delta \text{ and } |f(x) - L| \ge \varepsilon.$