数据交换方式

电路交换

电路交换(Circuit Exchanging)

电路交换的原理:在数据传输期间,源结点与目的结点之间有一条由中间结点构成的专用物理连接线路,在数据传输结束之前,这条线路一直保持。

电路交换的阶段:

建立连接(呼叫/电路建立) → 通信(数据传输) → 释放连接(拆除电路)

特点:独占资源,用户始终占用端到端的固定传输带宽。适用于远!程批处理信息传输或系统间实时性要求高的大量数据传输的情况。

电路交换优点	电路交换缺点
传输时延小	建立连接时间长
数据顺序传送,无失序问题	线路独占,即使通信线路空闲, 也不能供其他用户使用,信道使用效率低。
实时性强,双方一旦建立物理通路, 便可以实时通信, 适用于交互式会话类通信	灵活性差,双方连接通路中的任何一点出了故障, 必须重新拨号建立新连接,不适应突发性通信
全双工通信,没有冲突, 通信双方有不同的信道,不会争用物理信道	无数据存储能力,难以平滑通信量

电路交换优点	电路交换缺点
适用于模拟信号和数字信号	电路交换时,数据直达,不同类型、不同规格、 不同速率的终端很难相互进行通信
控制简单,电路的交换设备及控制较简单	无法发现与纠正传输差错, 难以在通信过程中进行差错控制。

报文交换(Message Exchanging)

报文(message): 报文是网络中交换与传输的数据单元,即站点一次性要发送的数据块。报文包含了将要发送的 完整的数据信息,其长短很不一致,长度不限且可变。

报文交换的原理:无需在两个站点之间建立一条专用通路,其数据传输的单位是报文,传送过程采用存储转发方式。

报文交换优点	报文交换缺点
无需建立连接,无建立连接时延, 用户可随时发送报文	实时性差,不适合传送实时或交互式业务的数据。 数据进入交换结点后要经历存储转发过程, 从而引起转发时延
动态分配线路, 动态选择报文通过的最佳路径, 可以平滑通信量	只适用于数字信号。
提高线路可靠性,某条传输路径发生故障, 可重新选择另一条路径传输。	由于报文长度没有限制, 而每个中间结点都要完整地接收传来的整个报文,
提高线路利用率, 通信双方在不同的时间一段一段地 部分占有这条物理通道, 多个报文可共享信道。	当输出线路不空闲时, 还可能要存储几个完整报文等待转发, 要求网络中每个结点有较大的缓冲区。为了降低成本, 减少结点的缓冲存储器的容量, 有时要把等待转发的报文存在磁盘上,
提供多目标服务: 一个报文可同时发往多个目的地址。	进一步增加了传送时延。

在存储转发中容易实现代码转换和速率匹配, 甚至收发双方可以不同时处于可用状态。 这样就便于类型、

规格和速度不同的计算机之间进行通信。

分组交换(Packet Exchanging)

分组(packet): 大多数计算机网络都不能连续地传送任意长的数据,所以实际上网络系统把数据分割成小块,然后逐块地发送,这种小块就称作分组。

分组交换的原理: 分组交换与报文交换的工作方式基本相同,都采用存储转发方式,形式上的主要差别在于,分组交换网中要限制所传输的数据单位的长度,一般选 128B。发送节点首先对从终端设备送来的数据报文进行接收、存储,而后将报文划分成一定长度的分组,并以分组为单位进行传输和交换。接收结点将收到的分组组装成信息或报文。

分组交换优点	分组交换缺点
无建立时延, 无需为通信双方预先建立一条专用通信 线路,用户可随时发送分组。	尽管分组交换比报文交换的传输时延少, 但仍存在存储转发时延, 而且其结点交换机必须具有更强的处理能力。
线路利用率高, 通信双方在不同的时间一段一段地部分 占有这条物理通道, 多个分组可共享信道。	每个分组都要加控制信息,一定程度上降低了通信效率,增加了处理的时间。
简化了存储管理。 因为分组的长度固定, 相应的缓冲区的大小也固定, 在交换结点中存储器的管理通常被简化 为对缓冲区的管理,相对比较容易。	当分组交换采用数据报服务时,可能出现失序、 丢失或重复分组,分组到达目的结点时, 要对分组按编号进行排序等工作,增加了麻烦。 若采用虚电路服务,虽无失序问题,但有呼叫建立、 数据传输和虚电路释放三个过程。
加速传输, 后一个分组的存储可以和前一个分组的 转发并行操作; 传输一个分组比一份报文所需缓冲区小 ,减少等待发送时间。	

减少出错几率和重发数据量,提高可靠性,减少传输时延。

分组短小,

适用于计算机之间突发式数据通信。

数据报方式

- 1. 源主机(A) 将报文分成多个分组,依次发送到直接相连的结点(A)。
- 2. 结点 A 收到分组后,对每个分组 差错检测 和 路由选择,不同分组的下一跳结点可能不同。
- 3. 结点 C 收到分组 P1 后,对分组 P1 进行 **差错检测**,若正确则向 A 发送确认信息,A 收到 C 确认后则丢弃分组 P1 副本。
- 4. 所有分组到家(主机 B)!

数据报方式的特点

- 1. 数据报方式为网络层提供无连接服务。发送方可随时发送分组,网络中的结点可随时接收分组。
- 2. 同一报文的不同分组达到目的结点时可能发生乱序、重复与丢失。
- 3. 每个分组在传输过程中都必须携带源地址和目的地址,以及分组号。
- 4. 分组在交换结点存储转发时,需要排队等候处理,这会带来一定的时延。当通过交换结点的通信量较大或 网络发生拥塞时,这种时延会大大增加,交换结点还可根据情况丢弃部分分组。
- 5. 网络具有冗余路径,当某一交换结点或一段链路出现故障时,可相应地更新转发表,寻找另一条路径转发 分组,对故障的适应能力强,适用于突发性通信,不适于长报文、会话式通信。

无连接服务:不事先为分组的传输确定传输路径,每个分组独立确定传输路径,不同分组传输路径可能不同。

虚电路方式

虚电路将数据报方式和电路交换方式结合,以发挥两者优点。

虚电路:一条源主机到目的主机类似于电路的路径(逻辑连接),路径上所有结点都要维持这条虚电路的建立,都维持一张虚电路表,每一项记录了一个打开的虚电路的信息。

• 建立连接(虚电路建立):源主机发送「呼叫请求」分组并收到「呼叫应答」分组后才算建立连接。

• 数据传输:每个分组携带虚电路号,分组号、检验和等控制信息。

• 释放连接(虚电路释放): 源主机发送「释放请求」分组以拆除虚电路。

虚电路方式的特点

- 1. 虚电路方式为网络层提供连接服务。源节点与目的结点之间建立一条逻辑连接,而非实际物理连接。
- 2. 一次通信的所有分组都通过虚电路顺序传送,分组不需携带源地址、目的 地址等信息,包含虚电路号,相对数据报方式开销小,同一报文的不同分组到达目的结点时不会乱序、重复或丢失。
- 3. 分组通过虚电路上的每个节点时, 节点只进行差错检测, 不需进行路由选择。
- 4. 每个节点可能与多个节点之间建立多条虚电路,每条虚电路支持特定的两个端系统之间的数据传输,可以对两个数据端点的流量进行控制,两个端系统之间也可以有多条虚电路为不同的进程服务。
- 5. 致命弱点: 当网络中的某个结点或某条链路出故障而彻底失效时,则所有经过该结点或该链路的虚电路将 遭到破坏

连接服务: 首先为分组的传输确定传输路径(建立连接),然后沿该路径(连接)传输系列分组,系列分组传输路径相同,传输结束后拆除连接。

	数据报服务	虚电路服务
连接的建立	不要	必须有
目的地址	每个分组都有完整的目的地址	仅在建立连接阶段使用, 之后每个分组使用长度较短的虚电路号
路由选择	每个分组独立地进行路由选择和转发	属于同一条虚电路的分组按照同一路由转发
分组顺序	不保证分组的有序到达	保证分组的有序到达
可靠性	不保证可靠通信, 可靠性由用户主机来保证	可靠性由网络保证

	数据报服务	虚电路服务
对网络故障的适应性	出故障的结点丢失分组, 其他分组路径选择发生变化, 可正常传输	所有经过故障结点的虚电路均不能正常工作
差错处理和流量控制	由用户主机进行流量控制, 不保证数据报的可靠性	可由分组交换网负责,也可由用户主机负责

数据交换方式的选择

- 1. 传送数据量大,且传送时间远大于呼叫时,选择 电路交换。电路交换传输时延最小。
- 2. 当端到端的通路有很多段的链路组成时,采用 分组交换 传送数据较为合适。
- 3. 从信道利用率上看,**报文交换** 和 **分组交换** 优于电路交换,其中 **分组交换** 比报文交换的时延小,尤其适合于计算机之间的突发式的数据通信。