PATENT ABSTRACTS OF JAPAN

(11) Publication number:

09-033850

(43) Date of publication of application: 07.02.1997

(51) Int. Cl.

G02B 26/10

G02B 26/10 B41J 2/44

G02B 13/00

(21) Application number : 08-024525

(71) Applicant : SEIKO EPSON CORP

(22) Date of filing:

09, 02, 1996

(72) Inventor: TAKADA TAMA

INOUE NOZOMI

HAMA TAKASHI NOMURA YUJIRO

(30) Priority

Priority number: 07114971

Priority date : 12.05.1995

Priority country: JP

(54) OPTICAL SCANNER

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an optical scanner used in a laser beam printer, etc., where aberration characteristic is excellently corrected and also the diameter of a beam spot is constant. SOLUTION: Plural beams emitted from a semiconductor laser array 1 having plural light emitting parts are reflected and deflected by the reflection surface of a rotary polygon mirror 5 and pass an image formation lens 6 so as to form plural beam spots on a surface to be scanned 7. As for the incident surface and the exiting surface of the lens 6, the curvature in the vertical scanning direction and that in the horizontal scanning direction are independent and the curvature in the vertical scanning direction is continuously changed in the horizontal scanning direction in the effective part of the lens 6.

LEGAL STATUS

[Date of request for examination]

22.08.2002

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of

rejection or application converted
registration]

[Date of final disposal for application]

[Patent number]

3712017

[Date of registration]

26. 08. 2005

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-33850

(43)公開日 平成9年(1997)2月7日

(51) Int.Cl. ⁶	識別記号	F I 技術表示箇所
G 0 2 B 26/10	103	G 0 2 B 26/10 1 0 3
		В
		E
B 4 1 J 2/44		13/00
G 0 2 B 13/00		B 4 1 J 3/00 D
		審査請求 未請求 請求項の数9 OL (全 13 頁)
(21)出願番号	特顯平8-24525	(71)出願人 000002369
		セイコーエプソン株式会社
(22)出願日	平成8年(1996)2月9日	東京都新宿区西新宿2丁目4番1号
		(72)発明者 高田 球
(31)優先権主張番号	特願平7-114971	長野県諏訪市大和3丁目3番5号 セイコ
(32)優先日	平7 (1995) 5月12日	ーエプソン株式会社内
(33)優先権主張国	日本(JP)	(72)発明者 井上 望
		長野県諏訪市大和3丁目3番5号 セイコ
		ーエプソン株式会社内
		(72)発明者 ▲浜▼ 高志
		長野県諏訪市大和3丁目3番5号 セイコ
		ーエプソン株式会社内
		(74)代理人 弁理士 鈴木 喜三郎 (外1名)
		最終頁に続く

(54) 【発明の名称】 光走査装置

(57)【要約】

【課題】 レーザビームプリンタ等に用いられる光走査 装置において、収差特性が良好に補正された上に、ビー ムスポット径が一定な光走査装置を提供すること。

【解決手段】 複数の発光部を有する半導体レーザアレ イ1より射出した複数のビームが、回転多面鏡5の反射 面で反射、偏向され、結像レンズ6を通過し、被走査面 7上に複数のビームスポットを形成する。結像レンズ6 の入射面と射出面において、副走査方向の曲率と主走査 方向の曲率が独立であり、副走査方向の曲率が、結像レ ンズ6の有効部で主走査方向に沿って連続的に変化して いる。

【特許請求の範囲】

【請求項1】 光ビームを発生する光源と、前記光ビームを偏向する偏向器と、前記偏向器により偏向された光ビームを結像し、被走査面上にビームスポットを形成させるための結像レンズを有する光走査装置において、前記結像レンズのレンズ面のうち、少なくとも2つの面において、副走査方向の曲率が、前記結像レンズの有効部で主走査方向に沿って連続的に、かつ主走査方向の曲率とは独立に変化していることを特徴とする光走査装置。

【請求項2】 前記結像レンズの副走査方向の光学倍率が、有効走査領域において一定であることを特徴とする請求項1記載の光走査装置。

【請求項3】 前記結像レンズは、単レンズであることを特徴とする請求項1乃至2の何れかに記載の光走査装置。

【請求項4】 前記結像レンズは、以下のa)、b)の うちのいずれかを満足することを特徴とする請求項3記 載の光走査装置。

- a) 前記結像レンズの入射面の副走査方向断面は、走査中心で凹、走査端で凸である
- b) 前記結像レンズの射出面の副走査方向断面は、走査中心で凸、走査端で凹である

【請求項5】 前記結像レンズは、前記a)、b)の両方を満足することを特徴とする請求項4記載の光走査装置

【請求項6】 前記結像レンズは主走査方向で非球面となるレンズ面を有することを特徴とする請求項1乃至5の何れかに記載の光走査装置。

【請求項7】 前記結像レンズは主走査方向で変曲点の あるレンズ面を有することを特徴とする請求項6記載の 光走査装置。

【請求項8】 前記光源は複数の発光部を有することを 特徴とする請求項1乃至7の何れかに記載の光走査装 置。

【請求項9】 前記結像レンズのうち、副走査方向の曲率が、前記結像レンズの有効部で主走査方向に沿って連続的に変化している面を有するレンズは、樹脂で形成されていることを特徴とする請求項1乃至8の何れかに記載の光走査装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、レーザビームプリンタ等に用いられる光走査装置に関するものである。

[0002]

【従来の技術】光走査装置に用いる結像レンズに要求される収差特性は以下の2点である。一つは、等速走査性を得るために、特定の負の歪曲収差を持たせることであり、もう一つは、ビームスポット径を回折限界に近くするために、像面湾曲を小さくして像面の平坦性を得るこ

とである。

【0003】従来の光走査装置に用いられている結像レンズの構成枚数は、1枚から複数枚まで様々である。収差特性を重要視する場合には構成枚数を多くし、コストを重要視する場合には単レンズが用いられている。特に最近では、収差特性をさらに向上させるために、特開平4-50908号公報に代表されるように、結像レンズに非球面を用いることが行われている。特開平4-50908号公報の結像レンズは、入射面と射出面において、副走査方向の曲率が、結像レンズの有効部で主走査方向に沿って連続的に変化している。ただし、入射面は光軸まわりに回転対称な面なので、主走査方向の曲率と副走査方向の曲率は、互いに依存している。

【0004】また、高速走査を実現するために、特開昭51-100742号公報に開示されているように、独立に変調可能な複数の発光部を有する半導体レーザアレイを光源として用い、1回の走査で複数の走査線を同時に走査することも行われている。

【0005】しかしながら、半導体レーザアレイを用いた光走査装置では、複数のビームにより形成される複数の走査線の間隔が不均一であるという問題があった。

【0006】この問題を解決するために、特開昭54-158251号公報のように、半導体レーザアレイの複数の発光部を斜めに配列させれば、走査線の間隔の変動を小さくすることができる。

【0007】また、特開昭56-161566号公報のように、シリンドリカルレンズを被走査面からほぼその 焦点距離だけ離れた位置に配置すれば、走査線の間隔は 一定となる。

【0008】あるいは、特開昭60-21031号公報のように、光源と回転多面鏡の間に超音波光偏向器を設ければ、ブラグ回折角を調整することにより走査線の湾曲を補正し、走査線の間隔を一定にすることができる。

【0009】さらに、特開平2-54211号公報のように、発光部から被走査面までの間の光学系の横倍率の絶対値を2以下とすることにより、一度に走査する走査線の間隔を小さくし、走査線の間隔の変動を抑えることができる。

[0010]

【発明が解決しようとする課題】しかしながら、特開平4-50908号公報の結像レンズは、副走査方向の光学倍率が有効走査領域で変化しているために、被走査面に結像するビームスポットの副走査方向の径が有効走査領域で不均一になるという問題点を有していた。そのような光走査装置をレーザビームプリンタに用いれば、印字濃度にむらを生じ、良好な印字品質が得られない。

【0011】また、光源として半導体レーザアレイを用い、1回の走査で複数の走査線を走査する光走査装置については、特開昭54-158251号公報では、走査線の間隔の変動を完全に補正することはできないという

問題点を有する。しかも、ビーム数を多くすると、走査 線の間隔の変動量が大きくなるため、ビーム数をあまり 多くすることができず、複数のビームで高速走査すると いう利点を十分に発揮することができない。

【0012】特開昭56-161566号公報では、複数の半導体レーザと、ビーム数に相当するだけの鏡やシリンドリカルレンズが必要であるため、非常に高価になり、光学系が複雑になり大型化するため実用的ではないという問題点を有する。

【0013】特開昭60-21031号公報の超音波光 偏向器は、高価、複雑かつ大型であり、駆動回路も複雑 であるという問題点を有する。

【0014】特開平2-54211号公報によると、横 倍率が2倍以下と極めて低いため、半導体レーザの光出 力の大部分は、「けられ」により失われ、被走査面まで 到達するのはごく一部となり、光出力に関する光学系の 効率が非常に低い。そのため、半導体レーザの光出力で は不十分となり、実用的ではないという問題点を有す る。また、横倍率の縮小に比例して、走査線の間隔の変 動を少なくするだけであり、走査線の間隔の変動を完全 に補正することはできず、根本的に解決するものではな い。

【0015】そこで本発明は、このような問題点を解決するもので、像面湾曲特性と等速走査性の収差特性が良好に補正された上に、結像レンズの副走査方向の光学倍率が、有効走査領域において一定で、しかもビームスポット径が一定な光走査装置を提供することを目的とする。また、複数の発光部を有する光源を用いた場合に、走査線の間隔が一定で、光出力の利用効率が高い実用的な光走査装置を提供することを目的とする。

[0016]

【課題を解決するための手段】本発明の光走査装置は、 光ビームを発生する光源と、前記光ビームを偏向する偏 向器と、偏向器により偏向された光ビームを結像し、被 走査面上にビームスポットを形成させるための結像レン ズを有する光走査装置において、結像レンズのレンズ面 のうち、少なくとも2つの面において、副走査方向の曲 率が、結像レンズの有効部で主走査方向に沿って連続的 に、かつ主走査方向の曲率とは独立に変化していること を特徴とする。

【0017】さらに、本発明の光走査装置は、上記の構成に加え、以下のいずれかの構成をとることを特徴とする。

【0018】1)結像レンズの副走査方向の光学倍率 が、有効走査領域において一定である。

- 2)結像レンズは、単レンズである。
- 3)結像レンズは、以下のa)、b)のうちのいずれか を満足する。
- a)結像レンズの入射面の副走査方向断面は、走査中心 で凹、走査端で凸である

- b)結像レンズの射出面の副走査方向断面は、走査中心 で凸、走査端で凹である
- 4)結像レンズは、上記a)、b)の両方を満足する。
- 5)結像レンズは主走査方向で非球面となるレンズ面を 有する。さらに、結像レンズは主走査方向で変曲点のあ るレンズ面を有する。
- 6)光源は複数の発光部を有する。
- 7)結像レンズのうち、副走査方向の曲率が、結像レンズの有効部で主走査方向に沿って連続的に変化している面を有するレンズは、樹脂で形成されている。

[0019]

【発明の実施の形態】以下、図面に基づき本発明を詳細 に説明する。

【0020】図1は本発明を実施する形態である光走査装置を示したものである。まず、偏向器の回転軸に平行な方向を副走査方向と定義し、副走査方向と光軸に垂直な方向を主走査方向と定義する。

【0021】複数の発光部を有する光源である半導体レーザアレイ1より射出した複数のビームは、コリメータレンズ2によってわずかに集束するビームに変換され、アパーチャ3により絞り込まれ、シリンドリカルレンズ4により、副走査方向にのみ集束作用を受ける。さらに、ビームは、副走査方向で、偏向器としての回転多面鏡5の反射面の近傍に結像し、反射面で反射される。ビームは回転多面鏡5の回転に伴って偏向される。偏向されたビームは結像レンズ6で集束作用を受け、被走査面7上に複数のビームスポットを形成する。

【0022】結像レンズ6の主走査方向断面を図2に示す。図2に示されるように、結像レンズ6の主走査方向断面形状は、入射面 S_a 、射出面 S_b ともに非球面形状をしており、球面レンズと比べて収差補正は良好で、1枚の結像レンズ6で像面湾曲特性と等速走査性の収差特性が良好に補正されている。特に入射面 S_a 、射出面 S_b ともに、主走査方向断面形状には変曲点があり、入射面 S_a は回転多面鏡に向かって走査中心で凸、走査端で凹となっており、射出面 S_b は被走査面7に向かって走査中心で凹、走査端で凸となっている。このような形状にすると、主走査方向の収差は極めて良好に補正される。

【0023】副走査方向の像面湾曲収差を補正するためには、結像レンズの入射面と射出面のうち、いずれか1面のみが副走査方向に屈折力を持っていればよい。すなわち、副走査方向断面が平凸であればよい。副走査方向に屈折力を持つ方のレンズ面の副走査方向の曲率を、結像レンズ有効部で主走査方向に沿って連続的に変化させ、、有効走査領域全域で常に副走査方向の結像点が被走査面上に位置するようにすれば、副走査方向の像面湾曲収差を完全に補正することができる。しかしながら、副走査方向の収差補正の自由度が1つしかなく、結像レンズの副走査方向の光学倍率を有効走査領域で一定にすることはできない。

【0024】そこで、本形態では、結像レンズの入射面 と射出面の両面において、副走査方向の曲率が、結像レ ンズの有効部で主走査方向に沿って連続的に、かつ主走 査方向とは独立に変化するようにしている。そのため、 副走査方向の収差補正の自由度がさらに1つ大きくな り、副走査方向の光学倍率を一定にすることができる。 【0025】このことを図3を用いて説明する。一般的 な結像レンズ206の副走査方向で、屈折力を変えずに 両面の曲率を任意に設定できれば、図3(a)~(e) のようにベンディングにより主点Hの位置も任意に設定 することができる。そこで、副走査方向の光学倍率が有 効走査領域で一定となるように、両面の副走査方向の曲 率を設定すればよい。本形態では、結像レンズの副走査 方向断面は、走査中心で入射面が凹、射出面が凸となっ ており、図4に示すように副走査方向の主点H₁は結像 レンズ6よりも被走査面7側に位置する。逆に走査端で は、入射面、射出面がそれぞれ凸、凹となっているた め、主点H2は結像レンズよりも回転多面鏡側に位置す る。そのため、走査中心と走査端でのそれぞれの副走査 方向の光学倍率 b_1/a_1 と b_2/a_2 は一致する。本発明 では、この原理に基づき、走査中心と走査端に限らず、 有効走査領域全域で副走査方向の光学倍率が一定となる ような、結像レンズの曲率を導き出している。

【0026】なお、副走査方向の曲率が連続的に変化する面であっても、光軸まわりに回転対称な非球面であれば、主走査方向の曲率と副走査方向の曲率が互いに依存するため、主走査方向と副走査方向の収差を同時に補正するだけの自由度がなく、副走査方向の光学倍率を一定にすることはできない。従って、副走査方向の光学倍率を一定にするためには、副走査方向の曲率が、結像レンズの有効部で主走査方向に沿って連続的に、かつ主走査方向の曲率とは独立に変化していることが必要である。ただし、光軸上での主走査方向の曲率と副走査方向の曲率は、同じであっても構わない。

【0027】上述したような本形態の光走査装置では、 結像レンズの副走査方向の光学倍率が有効走査領域の全 域で一定なので、被走査面上に形成されるビームスポットの副走査方向の径も一定になり、解像度むらがなく光 学特性の良好な高解像度化に適した光走査装置が得られ る。なお、本形態では、光源は複数の発光部を有する半 導体レーザアレイであるが、単一の発光部を有する半導 体レーザを光源に用いても、やはりビームスポットの副 走査方向の径が一定になるという効果が得られる。

【0028】また、副走査方向の光学倍率が一定であるため、複数の走査線の間隔は一定となる。従って、複数のビームを用いて走査することにより、印字速度の高速化、高解像度化が可能で、しかも走査線の間隔が一定な、良好な光学特性を有する光走査装置が得られる。 【0029】なお、本形態の結像レンズは単レンズであ

るが、結像レンズを複数枚のレンズで構成した場合も、

結像レンズのレンズ面のうち、少なくとも2つの面において、副走査方向の曲率を、前記結像レンズの有効部で主走査方向に沿って連続的に変化させれば、やはり副走査方向の光学倍率を一定にすることができる。

【0030】本形態の結像レンズ6の光軸方向の厚さは薄く、光軸から離れても厚さはあまり変化しない。このような、薄いレンズは、レンズを形成している材料の量を少なくすることができるだけでなく、成形により製造する際には、成形時間を短くすることができ、内部歪みのないレンズが得られるという利点を有する。さらに、厚さの変化が小さいレンズは、射出成形で製造する際に、材料の流動状態が均一になり、やはり内部歪みのないレンズが得られる。

【0031】このように、結像レンズ6の厚さは薄く、結像レンズ6の主走査方向の集束作用は小さいので、被走査面7にビームスポットを結像させるために、主走査方向において集束しているビームを結像レンズ6に入射させている。

【0032】次に、比較的厚さの薄い結像レンズ6の副走査方向の面構成について説明する。図5は、結像レンズ6の副走査方向の断面形状と副走査方向の光学倍率の関係を示す図である。横軸は被走査面7における走査位置であり、縦軸は、各走査位置における、結像レンズ6の副走査方向の光学倍率である。同図は、副走査方向の像面湾曲を完全に補正した状態での、結像レンズ6の副走査方向の断面形状と、それに対応する副走査方向の光学倍率を表すものである。実線で示す曲線は、入射面が副走査方向に屈折力を持たない場合、すなわち副走査方向の断面形状が、入射面側が直線の平凸形状である。破線で示す曲線は、射出面が副走査方向に屈折力を持たない場合、すなわち副走査方向の断面形状が、射出面側が直線の平凸形状である。

【0033】領域Aは、結像レンズ6の副走査方向断面が、入射面で走査中心から走査端へ向かって凹から凸へと変化し、射出面では凸から凹へと変化する領域である。領域Bは、結像レンズの副走査方向断面が、入射面で走査中心から走査端へ向かって凹から凸へと変化するが、射出面では常に凸となっている領域である。領域Cは、結像レンズの副走査方向断面が、入射面で常に凸となっており、射出面では走査中心から走査端へ向かって凸から凹へと変化する領域である。後述する実施例1、実施例2、実施例3はそれぞれ領域A、領域B、領域Cに属する。

【0034】図5において、領域Bよりも下側では、射出面の走査中心での副走査方向の曲率が大きくなり、球面収差が大きくなる。また、領域Cよりも上側では、入射面の走査端での副走査方向の曲率が大きくなり、やはり球面収差が大きくなる。従って、結像レンズ6の面形状が、これらの領域A、領域B、領域Cのいずれかに属していることが望ましく、そうすれば、球面収差が小さ

く、副走査方向の像面湾曲が完全に補正され、副走査方 向の光学倍率が一定な良好な光学特性を有する光走査装 置が得られる。領域A、領域B、領域Cのいずれかに属 するということは、言い換えれば、以下の2項、

- a)結像レンズの入射面の副走査方向断面が、走査中心 で凹、走査端で凸である
- b)結像レンズの射出面の副走査方向断面が、走査中心 で凸、走査端で凹である

のいずれかを満足させるということである。

【0035】また、特に領域Aに属していれば、入射 面、射出面ともに副走査方向の曲率を比較的小さくする ことができ、球面収差の発生がほとんどなく、ビームス ポットの形状が極めて良好となる。領域Aに属するとい うことは、言い換えれば、上記2項a)b)の両方を満 足させるということである。

【0036】本形態において、結像レンズは樹脂で形成 されている。非球面を有するレンズをガラスで製造する と、コストが高くつくため実用的ではないが、樹脂で成 形すると容易に大量生産をすることができ、コストも低 くすることができる。

【0037】なお、本形態では、偏向器が回転多面鏡で ある場合について説明を行なってきたが、その他に、回 転単面鏡、回転2面鏡、あるいは、回転軸を中心に正弦 振動を行なうガルバノミラー等についても容易に実現可 能であり、同様の効果が得られる。

【0038】また、本形態では、コリメータレンズから 射出されるビームは、わずかに集束するビームである が、平行ビームや、やや発散するビームであっても、副 走査方向の光学倍率を一定にすることはでき、本発明の 同様の効果は得られる。

【0039】以上述べたように、本発明はレーザビーム プリンタに用いると特に有効であるが、デジタル複写 機、ファクシミリ、レーザ走査ディスプレイ等の画像形 成装置やスキャナ等の画像入力装置、あるいは光学マー ク読み取り用レーザ走査装置、表面検査用レーザ走査装 置等にも適用することができる。

[0040]

【実施例】

(実施例1)本形態の代表的な実施例の光学諸元を表1 に示す。ただし、1走査の走査開始から走査終了までの 回転多面鏡の回転角を2ωとする。半導体レーザアレイ の発光点をS₁、コリメータレンズの入射面、射出面を それぞれS₂、S₃、シリンドリカルレンズの入射面、射 出面をそれぞれ S_4 、 S_5 、回転多面鏡の反射面を S_6 、 結像レンズの入射面、射出面をそれぞれS7、S8とす る。各光学諸元の記号については、第i面Siの曲率半 径を r_i 、第i面から次の面までの軸上間隔を d_i とし、 コリメータレンズ、シリンドリカルレンズ、結像レンズ の屈折率をそれぞれ n_2 、 n_4 、 n_7 とする。また、アナ モフィックなレンズ面では、副走査方向、主走査方向の 曲率半径をそれぞれrix、riyとし、非球面の曲率半径 については、光軸上の値を示す。結像レンズの副走査方 向だけは、曲率半径ではなく、曲率 u;を示す。

[0041]

【表1】

2ω=40.1°			
面Sュ	曲率半径 ri	面間隔 di	屈折率 n ₁
5555 5555 5555 5555 5555 5555 5555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15. 264 2. 800 8. 000 3. 000 40. 000 6. 000 114. 000	1.67500 1.51118 1.57800

【0042】結像レンズの主走査方向断面形状は非球面 形状であり、

$$z_{i} = \frac{y^{2}/r_{iy}}{1 + \sqrt{1 - (K_{i} + 1)(y/r_{iy})^{2}}} + A_{i}y^{4} + B_{i}y^{6} + C_{i}y^{8} + D_{i}y^{10}$$

【0044】で表す。ただし、座標は、レンズ面が光軸 と交わる点を原点とし、光軸方向にz軸、光軸に垂直で 主走査方向にy軸をとっている。 K_i 、 A_i 、 B_i 、 C_i 、 D_iは非球面係数である。結像レンズの副走査方向の曲 率は、結像レンズの有効部で主走査方向に沿って連続的 に変化しており、曲率Uiを、

[0043] 【数1】

[0045]

【数2】

 $U_{i} = u_{ix} + A_{ix}y^{2} + B_{ix}y^{4} + C_{ix}y^{6} + D_{ix}y^{8} + E_{ix}y^{10}$

【0046】で表す。 u_{ix} は光軸上での曲率、 A_{ix} 、Bix、Cix、Dix、Eixは係数である。これらの係数の値 を表2に示す。 【0047】 【表2】

ř ₇₅	18. 167	ray	17.139
K ₇	-5. 1910	Ka	-5.5897
A ₇	-2. 4074E-6	Aa	-2.9273E-6
B ₇	-3. 2387E-10	Ba	9.1596E-11
C ₇	9. 2043E-14	Ca	6.0670E-15
D ₇	-2. 2206E-17	Da	-4.2985E-17
U7x	-0.070777	u sx	-0.11513
A7x	6.1697E-4	A sx	4.8210E-4
B7x	-1.6903E-6	B sx	-1.0916E-6
C7x	2.9372E-9	C sx	1.7455E-9
D7x	-2.5833E-12	D sx	-1.4006E-12
E7x	8.7070E-16	E sx	4.2586E-16

【0048】走査中心および走査端における、結像レンズの副走査方向の曲率を表3に示す。なお、入射面あるいは射出面において、曲率中心が当該面に対してビームの進行方向側にある場合の曲率を正とし、曲率中心が当該面に対してビームの進行方向とは逆側にある場合の曲

率を負とする。また、表3には断面の凹凸の区別も示す

【0049】 【表3】

	入射面	射出面
走査中心 走査端	四 -0.0708	四 -0.116 四 +0.0705

【0050】表3に示すとおり、入射面の副走査方向断面は、走査中心で凹、走査端で凸となっており、射出面の副走査方向断面は、走査中心で凸、走査端で凹となっている。

【0051】図6は本実施例についての主走査方向断面図、図7は本実施例の収差図である。なお、収差図については、像面湾曲は破線が主走査方向、実線が副走査方向の収差を示している。等速走査性は、理想像高y=fのからの像高のずれを%で表す。ただし、ωはビームスポットが被走査面上で走査中心から走査端まで走査する間の、回転多面鏡の回転角である。

【0052】本実施例では、結像レンズに非球面を用いているため、わずか1枚の結像レンズで、図7に示すように主走査方向の像面湾曲は ± 2 mm以内と、良好に補正されている。 $1\sim 2$ mm程度の振幅で振動している像面湾曲は、結像レンズの主走査方向断面形状の非球面係数の次数を、10次までしか用いていないことにより生じるものである。従って、より高次の非球面係数を用いれば、像面湾曲をさらに小さくすることができる。

【0053】また、結像レンズの入射面、射出面は、副走査方向の曲率が、結像レンズの有効部で主走査方向に沿って連続的に変化しているため、図7に示すように副走査方向の像面湾曲も±2mm以内と良好に補正されている。副走査方向の曲率は、12次までの係数を用いて近似しているが、やはり、より高次の非球面係数を用いれば、像面湾曲をさらに小さくすることができる。

【0054】結像レンズの副走査方向の光学倍率を図8

に、ビームスポットの副走査方向直径を図9に、ビームスポットの副走査方向位置を図10に示す。図8~10のいずれの図においても、横軸は被走査面における走査位置であり、データ曲線については、本実施例の場合を実線で示し、比較のために従来技術である、特開平4-50908号公報の場合の一例を破線で示す。従来例に対して、本実施例の光学倍率、ビームスポット位置は、有効走査領域全域に渡って極めて一定である。なお、図9のビームスポット直径とは、ビームの中心強度に対して、 $1/e^2$ の強度となる点を連ねた形状の直径のことである。また、図10のビームスポット位置は、光源において光軸から副走査方向に50 μ m離れた位置に配置された発光部から射出されたビームが、被走査面上に形成するビームスポットの位置を示す。

【0055】(実施例2)本発明の光走査装置の第2の 実施例は、第1の実施例に対し、結像レンズの副走査方 向の曲率のみが異なる。結像レンズの副走査方向断面 が、入射面の走査中心で凹、走査端で凸、射出面では常 に凸となっている。

【0056】本実施例の結像レンズの副走査方向の曲率 と係数を表4に示す。曲率の表記については、実施例1 と同じである。結像レンズの主走査方向に関する光学諸 元と、結像レンズ以外の要素の光学諸元は実施例1と同 じである。

【0057】

【表4】

【0058】走査中心および走査端における、結像レンズの副走査方向の曲率を表5に示す。

【0059】 【表5】

	入射面	射出面
走査中心 走査端	四 -0.200	凸 -0.180 凸 -0.0204

【0060】表5に示すとおり、入射面の副走査方向断面は、走査中心で凹、走査端で凸となっている。

【0061】図11は本実施例の収差図である。主走査方向の像面湾曲、等速走査性は実施例1と同じなので、副走査方向の像面湾曲のみを示す。結像レンズの入射面、射出面は、副走査方向の曲率が、結像レンズの有効部で主走査方向に沿って連続的に変化しているため、副走査方向の像面湾曲は良好に補正されている。

【0062】結像レンズの副走査方向の光学倍率を図12に、ビームスポットの副走査方向直径を図13に、ビームスポットの副走査方向位置を図14に示す。光学倍率、ビームスポット径、ビームスポット位置は、有効走査領域全域に渡って極めて一定である。

【0063】(実施例3)本発明の光走査装置の第3の 実施例は、第1の実施例に対し、結像レンズの副走査方 向の曲率のみが異なる。結像レンズの副走査方向断面 が、入射面では常に凸、射出面の走査中心で凸、走査端 で凹となっている。

【0064】本実施例の結像レンズの副走査方向の曲率と係数を表6に示す。曲率の表記については、実施例1と同じである。結像レンズの主走査方向に関する光学諸元と、結像レンズ以外の要素の光学諸元は実施例1と同じである。

[0065]

【表6】

u 7x	0. 039444	u ax	-0.032522
A 7x	3. 7185E-4	Aax	4.6564E-4
B 7x	-1. 0114E-6	Bax	-9.6765E-7
C 7x	1. 7734E-9	Cax	1.5423E-9
D 7x	-1. 5609E-12	Dax	-1.2334E-12
E 7x	5. 2925E-16	Eax	3.7693E-16

【0066】走査中心および走査端における、結像レンズの副走査方向の曲率を表7に示す。

【0067】 【表7】

	入射面	射出面
走査中心	凸 +0.0392	凸 -0.0329
走査端	凸 +0.151	凹 +0.188

【0068】表7に示すとおり、射出面の副走査方向断面は、走査中心で凸、走査端で凹となっている。

【0069】図15は本実施例の収差図である。主走査 方向の像面湾曲、等速走査性は実施例1と同じなので、 副走査方向の像面湾曲のみを示す。結像レンズの入射 面、射出面は、副走査方向の曲率が、結像レンズの有効 部で主走査方向に沿って連続的に変化しているため、副 走査方向の像面湾曲は良好に補正されている。

【0070】結像レンズの副走査方向の光学倍率を図16に、ビームスポットの副走査方向直径を図17に、ビームスポットの副走査方向位置を図18に示す。光学倍率、ビームスポット径、ビームスポット位置は、有効走査領域全域に渡って極めて一定である。

【0071】(実施例4)本発明の光走査装置の第4の

実施例は、第1の実施例と構成要素は同じであるが、光学諸元が異なる。本実施例では、コリメータレンズから射出されるビームは平行ビームである。また、結像レンズの形状も実施例1とは異なる。

【0072】図19は本実施例の主走査方向断面図である。結像レンズ6の主走査方向断面形状は、入射面 S_7 、射出面 S_8 ともに非球面形状をしている。また、結像レンズ6の入射面 S_7 、射出面 S_8 の両面で、副走査方向の曲率が、結像レンズの有効部で主走査方向に沿って連続的に変化している。

【0073】本実施例の光学諸元を表8に示す。表記については、実施例1と同じである。

[0074]

【表8】

2ω=40.0°			
面 Si	曲率半径 ri	面間隔 di	屈折率 ni
SS 5 5 7 S 8	-11.432 r _{4x} 21.462 r _{4y} 0.03950 u _{7x} 0.03950 u _{8x} -0.03733 r _{8y} -81.04	15. 264 2. 800 8. 000 3. 000 40. 000 30. 000 30. 000 140. 000	1.67500 1.51118 1.48600

【0075】本実施例の結像レンズの副走査方向の曲率 と係数を表9に示す。曲率の表記についても、実施例1 と同じである。 【0076】 【表9】

u _{7x} A _{7x} B _{7x} C _{7x} D _{7x}	0.03950 -3.870E-5 6.953E-8 -9.908E-11 9.566E-14	u ax Aax Bax Cax Dax	-0.03733 2.633E-6 -4.546E-10 -1.481E-14 3.751E-16
E_{7x}	-4.143E-17	E _{8x}	-2.330E-19

【0077】走査中心および走査端における、結像レンズの副走査方向の曲率を表10に示す。

【0078】 【表10】

	入射面	射出面
走査中心	凸 +0.0395	凸 -0.0373
走査端	凸 +0.0289	凸 -0.0346

【0079】図20は本実施例の収差図である。像面湾曲、等速走査性共に良好に補正されている。

【0080】結像レンズの副走査方向の光学倍率を図21に、ビームスポットの副走査方向直径を図22に、ビームスポットの副走査方向位置を図23に示す。光学倍率、ビームスポット径、ビームスポット位置は、有効走査領域全域に渡って極めて一定である。

[0081]

【発明の効果】以上説明したように、本発明によれば以 下のような効果を有する。

【0082】まず、請求項1記載の発明によれば、副走 査方向の像面湾曲を完全に補正した上で、ビームスポットの副走査方向の径が一定となる。

【0083】請求項2記載の発明によれば、ビームスポットの副走査方向の径がさらに一定となる。

【0084】請求項3記載の発明によれば、光走査装置の構成が簡素になる。

【0085】請求項4記載の発明によれば、結像レンズの厚さが薄くなる。

【0086】請求項5記載の発明によれば、球面収差が小さくなり、ビームスポット形状が良好となる。

【0087】請求項6記載の発明によれば、主走査方向の像面湾曲特性と等速走査性が良好に補正される。

【0088】請求項7記載の発明によれば、主走査方向の像面湾曲特性と等速走査性がさらに良好に補正され

る。

【0089】請求項8記載の発明によれば、走査速度の 高速化や高解像度化が可能になり、複数の発光部から射 出されるビームにより被走査面上に形成される、複数の 走査線の間隔が一定となる。

【0090】請求項9記載の発明によれば、容易に結像 レンズを大量生産することが可能であり、コストが低く なる。

【図面の簡単な説明】

- 【図1】本発明の光走査装置の斜視図。
- 【図2】本発明の結像レンズの主走査断面図。
- 【図3】一般的な結像レンズのベンディングを示す図。
- 【図4】本発明の結像レンズの主走査断面図。
- 【図5】本発明の結像レンズの副走査断面の面形状と副 走査方向の光学倍率の関係を示す図。
- 【図6】本発明の実施例1の光学系の主走査断面図。
- 【図7】本発明の実施例1の光学系の収差図。
- 【図8】本発明の実施例1の副走査方向の光学倍率を示す図。

【図9】本発明の実施例1のビームスポットの副走査方 向直径を示す図。

【図10】本発明の実施例1のビームスポットの副走査 方向位置を示す図。

【図11】本発明の実施例2の光学系の収差図。

【図12】本発明の実施例2の副走査方向の光学倍率を

示す図。

【図13】本発明の実施例2のビームスポットの副走査 方向直径を示す図。

【図14】本発明の実施例2のビームスポットの副走査 方向位置を示す図。

【図15】本発明の実施例3の光学系の収差図。

【図16】本発明の実施例3の副走査方向の光学倍率を 示す図。

【図17】本発明の実施例3のビームスポットの副走査 方向直径を示す図。

【図18】本発明の実施例3のビームスポットの副走査 方向位置を示す図。

【図19】本発明の実施例4の光学系の主走査断面図。

【図20】本発明の実施例4の光学系の収差図。

【図21】本発明の実施例4の副走査方向の光学倍率を示す図。

【図22】本発明の実施例4のビームスポットの副走査 方向直径を示す図。

【図23】本発明の実施例4のビームスポットの副走査 方向位置を示す図。

【符号の説明】

1 半導体レーザアレイ

2 コリメータレンズ

3 アパーチャ

4 シリンドリカルレンズ

5 回転多面鏡

6 結像レンズ

7 被走查面

【図1】 【図15】

【図4】

【図6】

【図7】

【図11】

フロントページの続き

(72)発明者 野村 雄二郎 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内