Escuela Secundaria Nº 34 "Carlos Villamil" – El Redomón

CURSO: 5° Año "A"

ESPACIO CURRICULAR: Matemática

PROFESORA: Benitez, Liliana T.

FECHA DE ENTREGA: jueves, 29 de octubre de 2.020.

MEDIOS DE CONTACTO PARA ENVIAR TRABAJO Y CONSULTAS:

E-MAIL: <u>lilianabenitez34@hotmail.com</u>

WHATSAPP: 3454062915GRUPO DE WHATSAPP

> PLATAFORMA EVA

ACTIVIDADES

Sistemas de ecuaciones lineales

es hallar la intersección de ambas (conjunto solución). grado con dos incógnitas cada una, representa dos rectas en el plano, y resolverlo Un sistema de ecuaciones lineales formado por dos ecuaciones de primer

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$

punto en común o son coincidentes) Dos rectas en un plano pueden ser incidentes (tienen un punto en común) o paralelas (no tienen ningún

compatibles pueden ser determinados o indeterminados, según tengan una o infinitas soluciones Los sistemas se clasifican en compatibles e incompatibles, según tengan o no solución; los sistemas

Rectas incidentes

Rectas paralelas

Determinado (solución única)

$$R_1 \cap R_2 = R_1 = R_2$$

Indeterminado (infinitas soluciones)

 $R_1 \cap R_2 = \emptyset$

Sistema incompatible (no tiene solución)

Resolución gráfica de un sistema de ecuaciones lineales

Para resolver gráficamente un sistema de ecuaciones, se deben representar ambas rectas en un mismo

sistema de ejes y hallar la intersección de ambas.

a)
$$\begin{cases} 2x + y = 1 \\ x - y = 5 \end{cases}$$
 \Rightarrow $\begin{cases} y_1 = -2x + 1 \\ y_2 = x - 5 \end{cases}$

b)
$$\begin{cases} -x + y = 2 \\ -x + y = -3 \end{cases} \Rightarrow \begin{cases} y_1 = x + 2 \\ y_2 = x - 3 \end{cases}$$

Sistema compatible determinado $S = \{(2;-3)\}$

Sistema incompatible

Sistemas de ecuaciones lineales II

Para resolver analíticamente un sistema de ecuaciones existen varios métodos. Todos ellos permiten obtener

el mismo resultado, y la utilización de uno u otro dependerá de cómo está planteado el sistema original.

Método de sustitución

Se debe despejar una de las variables en una de las ecuaciones, y luego reemplazarla en la otra ecuación

Se despeja x en la ecuación (a):
$$x = 1 + y$$

$$\begin{cases} 2x - 3y = 1 \end{cases}$$

(b) Se reemplaza la "x" por "
$$1 + y$$
" en la ecuación (b): $2(1 + y) - 3y = 1$

Se resuelve la ecuación, obteniéndose el valor de "y":

Se resuelve la ecuación, obtenienuose en varior
$$x^2$$
 $y^2 - 2y - 3y = 1 \Rightarrow 2 - y = 1 \Rightarrow -y = 1 - 2 \Rightarrow -y = -1 \Rightarrow y = 1$

Se reemplaza el valor de "y" obtenido, en cualquiera de las dos ecuaciones, y se calcula el de "x":

$$x-1=1 \Rightarrow x=2$$

Se escribe el conjunto solución: $S = \{(2;1)\}$

Método de igualación

Se debe despejar en ambas ecuaciones la misma incógnita y luego igualar las ecuaciones obtenidas

$$\begin{cases} 2x - 3y = 9 & \text{(a)} \end{cases}$$

Se despeja "x" de ambas ecuaciones

$$(a): x = \frac{9 + 3y}{2}$$

(b)

(b): x = -8 - y

Se igualan ambas ecuaciones y se calcula el valor de "y":

$$\frac{9+3y}{2} = -8-y \implies 9+3y = -16-2y \implies 3y+2y = -16-9 \implies 5y = -25 \implies y = -25$$

 $x + (-5) = -8 \Rightarrow -5 + x = -8 \Rightarrow x = -3$ Se reemplaza el valor de "y" obtenido, en cualquiera de las dos ecuaciones, y se calcula el de "x".

Se escribe el conjunto solución: $S = \{(-3,-5)\}$

Método de reducción por sumas y restas

para eliminarla. convenientemente, obteniéndose un sistema equivalente al dado, y luego se suman o restan ambas ecuaciones Se "igualan" los coeficientes de una de las incógnitas en ambas ecuaciones multiplicando ambos miembros 15x + 6y = 12

$$\begin{cases} 5x + 2y = 4 \\ 3x - 3y = 15 \end{cases}$$

(5x + 2y).3 = 4.3(3x - 3y).2 = 15.2

1

Se igualan los coeficientes de "y"

Se suman las ecuaciones miembro a miembro

Se calcula el valor de "x": $21x = 42 \implies x = 2$

Se reemplaza el valor de "x" obtenido, en cualquiera de las dos ecuaciones, y se calcula el de "y":

Se escribe el conjunto solución: $S = \{(2; -3)\}$

Sistemas de ecuaciones lineales II

VERIFICACIÓN 37

e Escribir un sistema equivalente al dado, con los coeficientes de "x" iguales en ambas ecuaciones.

$$\begin{cases} -6x + 5y = -2 \\ 4x - 3y = 7 \end{cases}$$

APLICACIÓN 37

Ejercicio 37.1

Resuelvan los siguientes sistemas por el método de sustitución.

1)
$$\begin{cases} 2x + 4y = 2 \\ 3x - 2y = 9 \end{cases}$$

2)
$$\begin{cases} \frac{2}{3}x - 5y = -3\\ 2x + \frac{1}{2}y = \frac{13}{2} \end{cases}$$

