Classroom Exercises

1. Name each figure shown that appears to be:

- b. a rectangle
- c. a rhombus
- d. a square
- 2. Name each figure that is both a rectangle and a rhombus.
- **3.** Name each figure that is a rectangle but not a square.
- **4.** Name each figure that is a rhombus but not a square.

- 5. When you know that one angle of a parallelogram is a right angle, you can prove that the parallelogram is a rectangle. Draw a diagram and explain.
- 6. When you know that two consecutive sides of a parallelogram are congruent, you can prove that the parallelogram is a rhombus. Draw a diagram and explain.
- 7. Given: Rhombus EFGH
 - **a.** F, being equidistant from E and G, must lie on the $\frac{?}{EG}$ of \overline{EG} .
 - **b.** H, being equidistant from E and G, must lie on the $\frac{?}{EG}$ of \overline{EG} .
 - c. From (a) and (b) you can deduce that \overline{FH} is the $\frac{?}{}$ of \overline{EG} .
 - **d.** State the theorem of this section that you have just proved.

$\angle KAP$ is a right angle, and \overline{AM} is a median. Complete.

8. If
$$MP = 6\frac{1}{2}$$
, then $MA = \frac{?}{}$.

9. If
$$MA = t$$
, then $KP = \frac{?}{}$.

10. If
$$m \angle K = 40$$
, then $m \angle KAM = \frac{?}{}$

- 11. In the diagrams below, the red figures are formed by joining the midpoints of the sides of the quadrilaterals.
 - a. What seems to be the common property of the red figures?
 - b. Describe how you would prove your answer to part (a).

