```
library(forecast)

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo

data <- ts(read.csv("D:/预删除文件夹/大三下/时间序列/sunpot.csv")$sunsplo
t)
plot(data)
title("时序图")</pre>
```



```
par(mfrow=c(1,2))
acf(data)
acf(data,type = "partial")
```



从 ACF 图和 PACF 图来看,推测其可能为 PACF 二阶截尾,但 ACF 图没有表现出明显的拖尾特征,而是表现出显著的周期性,从时序图来看也是明显的周期性序列,故不应该尝试使用 AR 模型或 MA 模型,而是应该对其进行趋势分解

```
data2 <- ts(data, frequency = 11)
model <- decompose(data2)</pre>
```

## plot(model) title("decompose 分解结果")

## Decomposition of additive time series decompose分析结果



```
Box.test(model$random,lag = 11,type = "Ljung")
##
## Box-Ljung test
##
## data: model$random
## X-squared = 67.826, df = 11, p-value = 3.157e-10
```

从时序图和 ACF 图中观察到太阳黑子的活动大致为 11 年一个周期,故将数据视作周期为 11 的数据,并且波动大小没有明显地随时间变化,故采取加法模型进行分解,结果如上图所示,对随机波动序列作纯随机性检验,结果不佳。下面分别使用AR(2)模型和 SARIMA 模型进行拟合

```
library(modelsummary)

library(ggplot2)

#AR(2)

model2 <- auto.arima(data)

model2 %>% forecast(h=60) %>% autoplot() +

labs(title = "AR2 模型预测结果")
```



```
Box.test(model2$residuals,lag = 11,type = "Ljung-Box")
##
## Box-Ljung test
##
## data: model2$residuals
## X-squared = 10.891, df = 11, p-value = 0.4524
#ARIMA
model3 <- auto.arima(data2)
model3 %>% forecast(h=60) %>% autoplot() +
labs(title = "SARIMA 模型预测结果")
```



```
Box.test(model3$residuals,lag = 11,type = "Ljung-Box")
##
## Box-Ljung test
##
## data: model3$residuals
## X-squared = 12.811, df = 11, p-value = 0.3059
modelsummary(list(AR2=model2,SARIMA=model3))
```

|           | AR2     | SARIMA  |
|-----------|---------|---------|
| ar1       | 1.421   | 0.593   |
|           | (0.088) | (0.176) |
| ar2       | -0.773  |         |
|           | (0.087) |         |
| intercept | 50.640  |         |
|           | (5.427) |         |

|              | AR2                      | SARIMA                    |
|--------------|--------------------------|---------------------------|
| ma1          |                          | 0.872                     |
|              |                          | (0.345)                   |
| drift        |                          | 0.646                     |
|              |                          | (0.955)                   |
| Num.Ob<br>s. | 50                       | 39                        |
| AIC          | 412.1                    | 331.5                     |
| BIC          | 419.8                    | 338.1                     |
| RMSE         | 13.38                    | 13.06                     |
| x            | 0.85352<br>9232457<br>95 | 0.86620<br>9426269<br>778 |
|              |                          |                           |

从上面的结果可以看出二者都在一定程度上较好地提取了序列信息,但从预测结果来看,AR2模型的平稳性使其预测结果不符合已有观测值的周期性,而 SARIMA模型较好地拟合了周期性特征