Unos ejercicios de familias de conjuntos

M. Lynch

Agosto de 2014 - Álgebra - ITBA

Ejercicio. Sea $A_p = \{k \in \mathbb{N} : p \text{ divide a } k\}; \mathcal{L} = \{A_p \in \mathcal{P}(\mathbb{N}) : p \text{ es primo } \}.$ Hallar $\bigcup \mathcal{L} y \cap \mathcal{L}$.

Proposición. $\bigcup \mathcal{L} = \mathbb{N} \setminus \{1\}.$

Demostración. $\forall p$ primo, $1 \notin A_p$, pues solamente 1 divide a 1 (en \mathbb{N}) y 1 no es primo. Es decir: $1 \in A_n \Rightarrow n = 1$, pero $A_1 \notin \mathcal{L}$, luego $1 \notin \bigcup \mathcal{L}$.

Ahora bien, $x \in \mathbb{N} \setminus \{1\} \Rightarrow x$ es primo o x es compuesto. Si x es primo, $x \in A_x$, y $A_x \in \mathcal{L}$, luego $x \in \bigcup \mathcal{L}$. Si x es compuesto, tiene al menos un divisor primo y, por lo tanto $x \in A_y$, y como $A_y \in \mathcal{L}$, luego $x \in \bigcup \mathcal{L}$. Tenemos pues que $x \in \mathbb{N} \setminus \{1\} \Rightarrow x \in \bigcup \mathcal{L}$, es decir, $\mathbb{N} \setminus \{1\} \subset \bigcup \mathcal{L}$. Como $1 \notin \bigcup \mathcal{L}$, y $\bigcup \mathcal{L} \subset \mathbb{N}$ pues $A_p \in \mathcal{P}(\mathbb{N})$, entonces $\bigcup \mathcal{L} \subset \mathbb{N} \setminus \{1\}$.

Por lo tanto
$$\bigcup \mathcal{L} = \mathbb{N} \setminus \{1\}$$
.

Proposición. $\bigcap \mathcal{L} = \emptyset$.

Demostraci'on. Para probarlo, veamos que $\forall n \in \mathbb{N}$ existe p primo tal que $n \notin A_p$. Si para cualquier elemento de \mathbb{N} encontramos un A_p que no lo contiene, entonces ningún elemento está en la intersecci\'on, luego la intersecci\'on es el conjunto vacío (hablamos de elementos de \mathbb{N} porque forzosamente $\bigcap \mathcal{L} \subset \mathbb{N}$).

Sea $a \in \mathbb{N}$, tomemos un q primo tal que q > a. Como $a \neq q$ son naturales, $q > a \Rightarrow a$ no es divisible por q. Pero entonces $a \notin A_q$. Entonces $a \notin \bigcap \mathscr{L}$. Luego $\bigcap \mathscr{L} = \emptyset$

Ejercicio. Hallar $\bigcup \mathcal{L}$ y $\bigcap \mathcal{L}$, si \mathcal{L} es la familia de subconjuntos cuyos miembros son los intervalos de la forma $I_n = (-\frac{1}{n}, \frac{1}{n})$, con $n \in \mathbb{N}$.

Proposición. $\bigcup \mathcal{L} = (-1, 1).$

Demostración. Probemos la doble inclusión

$$(\supset)$$
 $1 \in \mathbb{N} \Rightarrow I_1 \in \mathcal{L} \Rightarrow (-\frac{1}{1}, \frac{1}{1}) \in \mathcal{L} \Rightarrow (-1, 1) \subset \bigcup \mathcal{L}$.

(\subset) $x \in \bigcup \mathscr{L} \Rightarrow x \in I_m$, para algún m natural. Entonces $-\frac{1}{m} < x < \frac{1}{m}$. Pero como $m \geq 1$, tenemos que $-1 \leq -\frac{1}{m} < x < \frac{1}{m} \leq 1$. Entonces -1 < x < 1, luego $x \in (1,1)$. Entonces $\bigcup \mathscr{L} \subset (-1,1)$, y por lo tanto concluimos que $\boxed{\bigcup \mathscr{L} = (-1,1)}$.

Proposición. $\bigcap \mathcal{L} = \{0\}.$

Demostración. Como $\forall n \in \mathbb{N}$ se cumple $-\frac{1}{n} < 0 < \frac{1}{n}$, entonces $\forall n, 0 \in I_n$. Entonces $0 \in \bigcap \mathcal{L}$.

Veamos ahora que si $x \neq 0 \Rightarrow$ existe $m \in \mathbb{N}$ tal que $x \notin I_m$, es decir, que $x \notin \bigcap \mathscr{L}$

Caso 1: x > 0:

Sea $y \in \mathbb{N}$: $y > \frac{1}{x}$ (y existe por ser \mathbb{R} arquimediano). $y > \frac{1}{x} \Rightarrow \frac{1}{y} < x$. Luego x no pertenece a $I_y = (-\frac{1}{y}, \frac{1}{y})$, pues si así fuera, $-\frac{1}{y} < x < \frac{1}{y}$. Pero $I_y \in \mathcal{L}$, luego $x \notin \bigcap \mathcal{L}$

Caso 2: x < 0:

Tomemos $z \in \mathbb{N}$: $z > -\frac{1}{x}$. $z > -\frac{1}{x} \Rightarrow x < -\frac{1}{z}$. Pero entonces $x \notin I_z = (-\frac{1}{z}, \frac{1}{z})$, y como $I_z \in \mathcal{L}$, es $x \notin \bigcap \mathcal{L}$.

Resumiendo, vimos que $x=0 \Rightarrow x \in \bigcap \mathcal{L}$, y $x \neq 0 \Rightarrow x \notin \bigcap \mathcal{L}$. Luego $\bigcap \mathcal{L} = \{0\}$.

Ejercicio. Hallar $\bigcup \mathcal{L} \ y \cap \mathcal{L}$, siendo $\mathcal{L} = \{L_m \in \mathcal{P}(\mathbb{R}^2) / m \in \mathbb{R}\}$ Con $L_m = \{(x, y) \in \mathbb{R}^2 / mx - 1 \le y \le mx + 1\}$.

Proposición. [] $\mathcal{L} = \mathbb{R}^2 \setminus A$, siendo $A = \{(0, y) \in \mathbb{R}^2 / |y| > 1\}$.

Demostración. i) Sea $(a,b) \in A$, veamos que $\forall m \in \mathbb{R}$ $(a,b) \notin L_m$. Es decir, $(a,b) \notin \bigcup \mathscr{L}$. Supongamos que existe $(a,b) \in A$ y $m \in \mathbb{R}$ tal que $(a,b) \in L_m$. Como $(a,b) \in L_m$, tenemos $ma-1 \leq b \leq ma+1$. Pero $(a,b) \in A$, entonces a=0, luego $-1 \leq b \leq 1$, absurdo pues |b|>1, por ser $(a,b) \in A$. El absurdo viene de suponer que existe $m \in \mathbb{R}$ tal que $(a,b) \in L_m$, luego esto no puede pasar. Entonces $(a,b) \notin \bigcup \mathscr{L}$.

ii) Veamos ahora que si $(a,b) \notin A$, entonces existe $m \in \mathbb{R}$ tal que $(a,b) \in L_m$. Sea $(a,b) \notin A$, tenemos que $a \neq 0$ o $|b| \leq 1$

Caso 1) a = 0. Tomemos cualquier $m \in \mathbb{R}$.

Tenemos $|b| \leq 1 \Rightarrow -1 \leq b \leq 1 \Rightarrow ma-1 \leq b \leq ma+1 \Rightarrow (a,b) \in L_m$. Entonces $(a,b) \in L_m \ \forall m \in \mathbb{R}$ (una condición más fuerte de la que necesitabamos, que era que estuviera en algún L_m : esto nos servirá más adelante). Pero entonces $(a,b) \in \bigcup \mathcal{L}$.

Caso 2) $a \neq 0$:

Entonces $\frac{b}{a} \in \mathbb{R}$, y veamos que $(a,b) \in L_{\frac{b}{a}}$: $b-1 \le b \le b+1 \Rightarrow \frac{b}{a}a-1 \le b \le \frac{b}{a}a+1 \Rightarrow (a,b) \in L_{\frac{b}{a}}$ Y como $L_{\frac{b}{a}} \in \mathcal{L}$, entonces $(a,b) \in \bigcup \mathcal{L}$

Resumiendo, vimos que si $(a,b) \in A$ entonces $(a,b) \notin \bigcup \mathcal{L}$, y que si $(a,b) \notin A$ entonces $(a,b) \in \bigcup \mathcal{L}$. Entonces efectivamente $\bigcup \mathcal{L} = \mathbb{R}^2 \setminus A$

Proposición. $\bigcap \mathcal{L} = B$, siendo $B = \{(0, y) \in \mathbb{R}^2 / |y| \le 1\}$.

Demostración. Ya vimos en el Caso 1 del apartado (ii) de la demostración anterior que si $(a,b) \in B$ entonces para todo $m \in \mathbb{R}$ se cumple $(x,y) \in L_m$. Esto quiere decir que $(a,b) \in B \Rightarrow (a,b) \in \bigcap \mathcal{L}$

Veamos para completar la demostración que si $(a,b) \notin B$ podemos encontrar un $m \in \mathbb{R}$ tal que $(a,b) \notin L_m$: esto es, $(a,b) \notin B \Rightarrow (a,b) \notin \bigcap \mathscr{L}$.

Sea $(a, b) \notin B$, se cumple que $a \neq 0$ o |b| > 1.

Caso 1) Si a=0, entonces |b|>1, pero esto quiere decir que $(a,b)\in A$ (el conjunto que definimos en la demostración anterior). Pero en esa demostración vimos que si $(a,b)\in A$ entonces $(a,b)\notin L_m$ para todo $m\in\mathbb{R}$. Entonces obviamente $(a,b)\notin \bigcap \mathscr{L}$.

Caso 2) $a \neq 0$. Veamos que si tomamos $m = \frac{b+2}{a} \in \mathbb{R}$, entonces $(a,b) \notin L_m$. Para eso supongamos que $(a,b) \in L_{\frac{b+2}{a}}$. Entonces

$$\begin{split} & (\frac{b+2}{a})a - 1 \leq b \leq (\frac{b+2}{a})a + 1 \\ \Rightarrow b + 1 \leq b \leq b + 3 \\ \Rightarrow 1 \leq 0 \leq 3 \\ \Rightarrow 1 \leq 0, \text{ jabsurdo!} \end{split}$$

Entonces $(a,b) \notin L_{\frac{b+2}{a}}$, y por lo tanto $(a,b) \notin \bigcap \mathscr{L}$.

Resumiendo, vimos que $(a,b) \in B \Rightarrow (a,b) \in \bigcap \mathcal{L}$, y que $(a,b) \notin B \Rightarrow (a,b) \notin \bigcap \mathcal{L}$.

Esto quiere decir en efecto que $\bigcap \mathcal{L} = B$