Μεταθετική Άλγεβρα Εργασία 2

Ονομ/νο: Νούλας Δ ημήτριος AM: 1112201800377 email: dimitriosnoulas@gmail.com

"Dad why is my sisters name Rose?"

"Because your Mother loves roses"

"Thanks Dad"

"No Problem Nullstellensatz

Άσκηση 2.1) Βρείτε τα πρώτα και μέγιστα ιδεώδη του R καθώς για το nil(R) και Jac(R) στις ακόλουθες περιπτώσεις.

- (1) $R = \mathbb{Z}$.
- (2) $R = \mathbb{Z}_n, n = p^2 q^3, p, q$ διαχεχριμένοι πρώτοι.
- (3) $R = \mathbb{R}[x]$.
- $(4) R = \mathbb{C}[x].$
- (5) $R = \mathbb{Q}[x]/(x^2(x-1)).$

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

(1) Για το $R = \mathbb{Z}$ έχουμε ότι το $\mathbb{Z}/p\mathbb{Z}$ είναι σώμα και ακέραια περιοχή για p πρώτο. Αν έχουμε σύνθετο n το $\mathbb{Z}/n\mathbb{Z}$ έχει μηδενοδιαιρέτες και άρα δεν είναι καν περιοχή. Επιπλέον το (0) είναι πρώτο ιδεώδες καθώς $\mathbb{Z}/(0) \simeq \mathbb{Z}$ είναι περιοχή. Άρα τα πρώτα ιδεώδη είναι:

$$(p)$$
 p πρώτος, (0)

Τα μέγιστα είναι (p) με p πρώτο και

$$nil(\mathbb{Z}) = \bigcap_{p \text{ prostog}} (p) = (0)$$

καθώς για $p \neq q, p \not\in (q)$. Διαφορετικά αν $x \in \mathbb{Z}$ με $x^n = 0 \implies x = 0$.

Επιπλέον

$$Jac(\mathbb{Z}) = (0) \cap \left(\bigcap_{p \text{ troútos}}(p)\right) = (0)$$

(2) Για το $R=\mathbb{Z}_n$ με $n=p^2q^3, p,q$ διαχεχριμένοι πρώτοι έχουμε ότι τα ιδεώδη του \mathbb{Z}_m είναι σε 1-1 και επί αντιστοιχία με τα ιδεώδη του \mathbb{Z} που περιέχουν το (m). Άρα το διάγραμμα ιδεωδών του \mathbb{Z}_n είναι

και τα μέγιστα ιδεώδη όπως φαίνεται στο διάγραμμα είναι τα ([p]),([q]). Μπορούμε να το δούμε διαφορετικά ως:

$$\frac{\mathbb{Z}_{p^2q^3}}{([p])} = \frac{\mathbb{Z}/p^2q^3\mathbb{Z}}{p\mathbb{Z}/p^2q^3\mathbb{Z}} \simeq \mathbb{Z}/p\mathbb{Z}$$

όπου ο ισομορφισμός είναι από το 3ο θεώρημα ισομορφισμών δακτυλίων και αυτό είναι σώμα, άρα το ([p]) είναι μέγιστο. Όμοια και το ([q]).

καθώς σε έναν πεπερασμένο δακτύλιο θα έχουμε πεπερασμένα πηλίκα και κάθε πεπερασμένη περιοχή είναι σώμα, τα πρώτα με τα μέγιστα ιδεώδη ταυτίζονται. Άρα

$$nil(\mathbb{Z}_n) = Jac(\mathbb{Z}_n) = ([p]) \cap ([q]) = ([pq])$$

(3) Έχουμε το αποτέλεσμα ότι στα σώματα k τα ιδεώδη του k[x] είναι κύρια. Για $k=\mathbb{R}$ από το θεμελιώδες θεώρημα της άλγεβρας, αν $deg(f(x)) \geq 3$ τότε υπάρχει $z \in \mathbb{C}$ έτσι ώστε

$$x^2 - (z + \overline{z})x + z\overline{z} \in \mathbb{R}[x]$$

$$(x^2 - (z + \overline{z})x + z\overline{z})|f(x)|$$

άρα τα ανάγωγα $f(x) \in \mathbb{R}[x]$ είναι τα πολυώνυμα βαθμού 1 και βαθμού 2 με αρνητική διακρίνουσα. Αν τώρα ένα g(x) έχει παραγοντοποίηση τότε ο δακτύλιος $\mathbb{R}[x]/(g(x))$ θα έχει μηδενοδιαιρέτες και δεν θα είναι περιοχή.

Άρα τα μέγιστα ιδεώδη του $\mathbb{R}[x]$ είναι τα $(x-a), (x^2+ax+b)$ με $a^2-4b<0$ και τα πρώτα είναι τα ίδια μαζί με το (0) εφόσον $\mathbb{R}[x]$ περιοχή. Επιπλέον, ένα μη μηδενικό πολυώνυμο υπεράνω των πραγματικών θα έχει μη μηδενικό μεγιστοβάθμιο συντελεστή a_n και στο πολυώνυμο υψωμένο σε κάποια δύναμη m θα εμφανίζεται ο συντελεστής $(a_n)^m \neq 0$. Άρα δεν υπάρχουν μηδενοδύναμα στοιχεία, δηλαδή $nil(\mathbb{R}[x]) = (0)$.

Αν $f(x) \in Jac(\mathbb{R}[x])$ με f(x) όχι το μηδενικό πολυώνυμο, τότε από την πρόταση 2.4.3 έχουμε ότι για κάθε $g(x) \in \mathbb{R}[x]$ ότι

$$1 - f(x)g(x) \in U(\mathbb{R}[x]) = \mathbb{R} \setminus \{0\}$$

άρα για g(x)=x παίρνουμε το συμπέρασμα ότι το f(x) πρέπει να είναι βαθμού 0 για να ισχύει ότι deg(1-f(x)g(x))=0 ώστε να είναι αντιστρέψιμο. Αν $f(x)=c\in\mathbb{R}$, τότε για $g(x)=\frac{1}{c}$ παίρνουμε $0\in\mathbb{R}\setminus\{0\}$ το οποίο είναι άτοπο. Άρα $Jac(\mathbb{R}[x])=(0)$.

- (4) Για $R=\mathbb{C}[x]$ όμοια με πριν, με το θεμελιώδες θεώρημα της άλγεβρας έχουμε ότι τα μόνα ανάγωγα πολυώνυμα είναι τα $x-a\in\mathbb{C}[x]$ και άρα τα μέγιστα ιδεώδη είναι τα (x-a) και τα πρώτα τα ίδια μαζί με το (0). Με τα ίδια επιχειρήματα με το (3) έχουμε $nil(\mathbb{C}[x])=Jac(\mathbb{C}[x])=(0).$
- (5) Όμοια με το \mathbb{Z}_n και την ανάλυση σε διαιρέτες, έχουμε το διάγραμμα ιδεωδών

Όπως φαίνεται στο διάγραμμα, τα μέγιστα και πρώτα ιδεώδη είναι τα ([x]),([x-1]) (με αγκύλες εννούμε την κλάση modulo $x^2(x-1)$). Πράγματι έχουμε

$$R/([x]) = \frac{\mathbb{Q}[x]/(x^2(x-1))}{(x)/(x^2(x-1))} \simeq \mathbb{Q}[x]/(x) \simeq \mathbb{Q}$$

το οποίο είναι σώμα και όμοια το ([x-1]).

Τα υπόλοιπα ιδεώδη δεν είναι πρώτα, το (0) δεν είναι καθώς ο R δεν είναι περιοχή. Έχουμε:

$$R/([x^2]) = \frac{\mathbb{Q}[x]/(x^2(x-1))}{(x^2)/(x^2(x-1))} \simeq \mathbb{Q}[x]/(x^2)$$

$$R/([x(x-1)]) = \frac{\mathbb{Q}[x]/(x^2(x-1))}{(x(x-1))/(x^2(x-1))} \simeq \mathbb{Q}[x]/(x(x-1))$$

τα οποία δεν είναι περιοχές αφού $x \cdot x = 0$ και x(x-1) = 0 αντίστοιχα.

Άρα

$$nil(R) = Jac(R) = ([x]) \cap ([x-1]) = ([x^2 - x]) = \frac{(x^2 - x)\mathbb{Q}[x]}{x^2(x-1)}$$

Άσκηση 2.2) Υπολογίστε το \sqrt{I} στις ακόλουθες περιπτώσεις.

- (1) $R = k[x,y], I = ((x-1)^3, y^4)$, όπου k σώμα.
- (2) $R = k[x, y], I = (x 1, y^2 4y xy + y + 4)$, όπου k σώμα.
- (3) $R = \mathbb{Z}[x], I = (5, x^2 + 2).$

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

(1)
$$\sqrt{I} = \sqrt{((x-1)^3, y^4)} = \sqrt{((x-1)^3) + (y^4)} = \sqrt{\sqrt{((x-1)^3)} + \sqrt{(y^4)}} = \sqrt{\sqrt{(x-1)^3} + \sqrt{(y)^4}} = \sqrt{(x-1) + (y)} = \sqrt{(x-1, y)} = (x-1, y)$$

όπου η τρίτη ισότητα είναι η ιδιότητα του ριζικού $\sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$. Στην τέταρτη ισότητα χρησιμοποιούμε ότι το κύριο ιδεώδες $((x-1)^3)$ είναι ίσο με το I^3 όπου I=(x-1) και όμοια για το (y). Έπειτα χρησιμοποιούμε την ιδιότητα που φεύγουν οι ρίζες και οι δυνάμεις καθώς τα (x-1),(y) είναι πρώτα ιδεώδη εφόσον:

$$k[x,y]/(x-1) \simeq k[y]$$
 $k[x,y]/(y) \simeq k[x]$

τα οποία είναι περιοχές. Στο τέλος εφαρμόζουμε την ίδια ιδιότητα καθώς το (x-1,y) είναι μέγιστο και άρα πρώτο εφόσον

$$k[x,y]/(x-1,y) \simeq k$$

(2) Έχουμε
$$y^2-4y-xy+y+4=(y-2)^2+y(1-x)$$
. Άρα
$$I=(x-1,y^2-4y-xy+y+4)=(x-1,(y-2)^2+y(1-x))=(x-1,(y-2)^2)$$
 Άρα με τις ίδιες ιδιότητες με πριν

$$\sqrt{I} = \sqrt{\sqrt{x-1} + \sqrt{((y-2)^2)}} = \sqrt{(x-1) + \sqrt{(y-2)^2}} = \sqrt{(x-1) + \sqrt{(y-2)^2}}$$

$$= \sqrt{(x-1, y-2)} = (x-1, y-2)$$

(3)
$$\frac{\mathbb{Z}[x]}{(5, x^2 + 2)} \simeq \frac{\mathbb{Z}[x]/(5)}{(5, x^2 + 2)/(5)} \simeq \frac{\mathbb{Z}_5[x]}{(x^2 + 2)} \simeq \mathbb{F}_{5^2}$$

άρα το ιδεώδες είναι μέγιστο και συνεπώς $\sqrt{I}=I=(5,x^2+2).$

Ο πρώτος ισομορφισμός προχύπτει από το 3ο θεώρημα ισομορφισμών. Για τον δεύτερο, από το 1ο θεώρημα ισομορφισμών για τον ομομορφισμό:

$$\pi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_5[x]$$

$$\sum_{i=0}^{n} a_i x^i \longmapsto \sum_{i=0}^{n} [a_i]_5 x^i$$

με πυρήνα το ιδεώδες (5) παίρνουμε ότι

$$\mathbb{Z}[x]/(5) \simeq \mathbb{Z}_5[x]$$

και ο περιορισμός του π στο ιδεώδες $(5,x^2+2)$ δίνει $(x^2+2)\simeq (5,x^2+2)/(5)$ και επειδή είναι ο περιορισμός του ισομορφισμού του "αριθμητή" έχουμε τον δεύτερο ισομορφισμό. Ο τελευταίος προκύπτει επειδή το x^2+2 είναι βαθμού 2 χωρίς ρίζες στο Z_5 και άρα το πηλίκο είναι σώμα.

Άσκηση 2.3) Έστω I,J ιδεώδη του δακτυλίου R. Δείξτε τις εξής σχέσεις.

- (1) $\sqrt{\sqrt{I}} = \sqrt{I}$.
- (2) $\sqrt{I} = R \iff I = R$.
- (3) $\sqrt{\sqrt{I} + \sqrt{J}} = \sqrt{I + J}$.

Aπόδειξη.

- (1) Έχουμε από ορισμό ριζιχού $\sqrt{I}\subseteq \sqrt{\sqrt{I}}$. Για την άλλη κατεύθυνση, έστω $x\in \sqrt{\sqrt{I}}$. Τότε υπάρχει $n\in \mathbb{Z}_{>0}$ τέτοιο ώστε $x^n\in \sqrt{I}$. Δηλαδή, υπάρχει $k\in \mathbb{Z}_{>0}$ τέτοιο ώστε $(x^n)^k\in I$. Άρα $x^{nk}\in I$, δηλαδή $x\in \sqrt{I}$.
- (2) Αν I=R επειδή $I\subseteq \sqrt{I}$ παίρνουμε $\sqrt{I}=R$. Αν $\sqrt{I}=R$, αυτό σημαίνει ότι $1\in \sqrt{I}$ δηλαδή $1^n\in I$ για κάποιο θετικό n. Δηλαδή, $1\in I$ \Longrightarrow I=R.
- (3) Έστω $x \in \sqrt{I+J}$. Τότε υπάρχει $n \in \mathbb{Z}_{>0}$ τέτοιο ώστε $x^n \in I+J \subseteq \sqrt{I}+\sqrt{J}$. Δηλαδή, $x^n \in \sqrt{I}+\sqrt{J} \implies x \in \sqrt{\sqrt{I}+\sqrt{J}}$.

Αντίστροφα, έστω $x\in \sqrt{\sqrt{I}+\sqrt{J}}$. Υπάρχει $n\in\mathbb{Z}_{>0}$ τέτοιο ώστε $x^n=a+b\in \sqrt{I}+\sqrt{J}$ και επιπλέον υπάρχουν $k,\lambda\in\mathbb{Z}_{>0}$ τέτοια ώστε $a^k\in I,b^\lambda\in J$. Έχουμε:

$$(x^n)^{k+\lambda} = (a+b)^{k+\lambda} = \sum_{i=0}^{k+\lambda} {k+\lambda \choose i} a^i b^{k+\lambda-i} =$$

$$=a^k\left(\sum_{i=k}^{k+\lambda}\binom{k+\lambda}{i}a^{i-k}b^{k+\lambda-i}\right)+b^\lambda\left(\sum_{i=0}^{k-1}\binom{k+\lambda}{i}a^ib^{k-i}\right)\in I+J$$

δηλαδή $x^{n(k+\lambda)} \in I + J \implies x \in \sqrt{I+J}$.

Άσκηση 2.7) Έστω R,S δακτύλιοι. Δείξτε ότι κάθε πρώτο ιδεώδες του $R\times S$ είναι της μορφής $\mathfrak{p}\times S$ ή $R\times \mathfrak{q}$, όπου \mathfrak{p} (αντίστοιχα \mathfrak{q}) είναι πρώτο ιδεώδες του R (αντίστοιχα S). Αληθεύει ότι $nil(R\times S)=nil(R)\times nil(S);$

Αληθεύει ότι $Jac(R \times S) = Jac(R) \times Jac(S)$;

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Θα δείξουμε κάποια αποτελέσματα πριν απαντήσουμε. Αρχικά, κάθε ιδεώδες I ενός δακτυλίου $R=R_1\times R_2$ είναι της μορφής $I=I_1\times I_2$ με I_1 ιδεώδες του R_1 και I_2 ιδεώδες του R_2 . Πράγματι, έστω I ιδεώδες του $R=R_1\times R_2$. Θέτουμε:

$$I_1 = \{x_1 : (x_1, 0) \in I\} \subseteq R_1$$

$$I_2 = \{x_2 : (0, x_2) \in I\} \subseteq R_2$$

τα οποία είναι ιδεώδη των R_1, R_2 αντίστοιχα.

Πράγματι, αν $x,y\in I_1$ τότε $(x,0),(y,0)\in I$ και το I είναι ιδεώδες. Άρα $(x,0)-(y,0)=(x-y,0)\in I$, δηλαδή $x-y\in I_1$. Επιπλέον αν $r\in R_1$, τότε $(r,r')(x,0)=(rx,0)\in I$. Δηλαδή $rx\in I_1$ και έτσι το I_1 είναι ιδεώδες του R_1 και όμοια το I_2 είναι ιδεώδες του R_2 .

Τώρα ισχυριζόμαστε ότι $I=I_1\times I_2$. Έχουμε ότι $I_1\times 0, 0\times I_2\subseteq I$ και άρα

$$I \supseteq (I_1 \times 0) + (0 \times I_2) = I_1 \times I_2$$

Αντίστροφα, έστω $(x,y) \in I$. Τότε $(x,0) = (1,0)(x,y) \in I$ αφού το I είναι ιδεώδες, δηλαδή $x \in I_1$. Όμοια $y \in I_2$ και άρα $(x,y) \in I_1 \times I_2$.

Έχουμε επιπλέον τον ισομορφισμό:

$$R/I \simeq R_1/I_1 \times R_2/I_2$$

$$(r_1, r_2) + I \longmapsto (r_1 + I_1, r_2 + I_2)$$

Είναι πράγματι ισομορφισμός, το ομομορφισμός και το επί είναι προφανή. Για τον πυρήνα της απεικόνισης έχουμε:

$$(r_1 + I_1, r_2 + I_2) = (0, 0) \iff r_1 + I_1 = 0, r_2 + I_2 = 0 \iff r_1 \in I_1, r_2 \in I_2$$

 $\iff (r_1, 0), (0, r_2) \in I \implies (r_1, r_2) \in I = 0_{R/I}$

άρα ο πυρήνας είναι τετριμμένος.

Ένα άλλο αποτέλεσμα είναι ότι ο δαχτύλιος $R = R_1 \times R_2$ είναι περιοχή αν και μόνο αν ένα από τα R_1 ή R_2 είναι περιοχή και το άλλο είναι 0. Πράγματι, αν R περιοχή τότε:

$$(1,0)(0,1) = (0,0) \implies (1,0) = (0,0) \ \acute{\eta} \ (0,1) = (0,0)$$

άρα για κάποιον δακτύλιο θα ισχύει 1=0, δηλαδή θα είναι ο τετριμμένος. Έτσι δίχως βλάβη γενικότητας, αν $R_2=0$ τότε:

$$xy = 0 \implies (xy, 0) = (0, 0) \iff (x, 0)(y, 0) = (0, 0)$$

$$\implies (x,0) = (0,0) \ \dot{\eta} \ (y,0) = (0,0) \iff x = 0 \ \dot{\eta} \ y = 0$$

Αντίστροφα, αν R_1 περιοχή και $R_2=0$ τότε:

$$(x,0)(y,0) = (0,0) \iff (xy,0) = (0,0) \iff xy = 0$$

$$\implies x = 0 \ \acute{\eta} \ y = 0 \implies (x, 0) = (0, 0) \ \acute{\eta} \ (y, 0) = (0, 0)$$

Έστω τώρα ο δαχτύλιος $R \times S$ και $P = (P_1, P_2)$ ένα πρώτο ιδεώδες του. Τότε ο δαχτύλιος πηλίκο $(R \times S)/P$ είναι περιοχή. Δηλαδή μέσω του ισομορφισμού έχουμε την περιοχή $R/P_1 \times S/P_2$.

Με βάση τα προηγούμενα αποτελέσματα, στην πρώτη περίπτωση αν $S/P_2=0$ έχουμε $S=P_2$ και R/P_1 περιοχή, δηλαδή P_1 πρώτο ιδεώδες του R. Άρα $P=(\mathfrak{p},S)$ στην πρώτη περίπτωση και $P=(R,\mathfrak{q})$ όμοια στην άλλη περίπτωση όπου $R/P_1=0$.

$$nil(R \times S) = \bigcap_{P \leq R \times S} \bigcap_{\pi \rho \acute{\omega} \tau o} P = \left(\bigcap_{\mathfrak{p} \leq R} \bigcap_{\pi \rho \acute{\omega} \tau o} \mathfrak{p} \times S\right) \bigcap \left(\bigcap_{\mathfrak{q} \leq S} \bigcap_{\pi \rho \acute{\omega} \tau o} R \times \mathfrak{q}\right) =$$

$$= \left(\left(\bigcap_{\mathfrak{p} \leq R} \bigcap_{\pi \rho \acute{\omega} \tau o} \mathfrak{p}\right) \times S\right) \bigcap \left(R \times \left(\bigcap_{\mathfrak{q} \leq S} \bigcap_{\pi \rho \acute{\omega} \tau o} \mathfrak{q}\right)\right) =$$

$$= (nil(R) \times S) \bigcap (R \times nil(S)) = nil(R) \times nil(S)$$

Για το $Jac(R\times S)$, αν \mathfrak{m} μεγιστικό ιδεώδες τότε θα είναι και πρώτο. Άρα $\mathfrak{m}=\mathfrak{p}\times S$ ή $R\times\mathfrak{q}$ με \mathfrak{p} ή αντίστοιχα \mathfrak{q} πρώτο. Ωστόσο, θα έχουμε ότι $(R\times S)/m$ σώμα ισόμορφο με $R/\mathfrak{p}\times 0$ αν βρισκόμαστε στην πρώτη περίπτωση. Δηλαδή, το R/\mathfrak{p} είναι σώμα και άρα \mathfrak{p} μεγιστικό. Συνεπώς έχουμε τις ίδιες πράξεις με παραπάνω:

$$\begin{split} Jac(R\times S) &= \bigcap_{P \trianglelefteq R\times S} \bigcap_{\text{mégisto}} P = \left(\bigcap_{\mathfrak{p} \trianglelefteq R} \bigcap_{\text{mégisto}} \mathfrak{p} \times S\right) \bigcap \left(\bigcap_{\mathfrak{q} \trianglelefteq S} \bigcap_{\text{mégisto}} R\times \mathfrak{q}\right) = \\ &= \left(\left(\bigcap_{\mathfrak{p} \trianglelefteq R} \bigcap_{\text{mégisto}} \mathfrak{p}\right) \times S\right) \bigcap \left(R\times \left(\bigcap_{\mathfrak{q} \trianglelefteq S} \bigcap_{\text{mégisto}} \mathfrak{q}\right)\right) = \\ &= \left(Jac(R)\times S\right) \bigcap \left(R\times Jac(S)\right) = Jac(R)\times Jac(S) \end{split}$$

Αν επιχειρηματολογήσουμε χωρίς να βασιστούμε στα προηγούμενα, έστω $(x,y) \in nil(R \times S)$. Τότε για κάποιο n ισχύει $(0,0)=(x,y)^n=(x^n,y^n)$ και άρα $x \in nil(R), y \in nil(S) \Longrightarrow (x,y) \in nil(R \times S)$. Αντίστροφα, αν $x \in nil(R), y \in nil(S)$ τότε υπάρχουν $n,m \in \mathbb{Z}_{>0}$ έτσι ώστε $x^n=0_R,y^m=0_S$. Αν $k=\max\{n,m\}$ τότε

$$(x,y)^k = (x^k, y^k) = (0,0)$$

άρα $(x,y) \in nil(R \times S)$.

Όμοια, αν $(x,y) \in Jac(R \times S)$ τότε για κάθε $(r,s) \in R \times S$ έχουμε

$$(1,1) - (x,y)(r,s) \in U(R \times S) = U(R) \times U(S)$$

$$\iff (1 - xr, 1 - ys) \in U(R) \times U(S)$$

$$\iff x \in Jac(R), \quad y \in Jac(S)$$

Άσκηση 2.10) Τα μόνα ταυτοδύναμα στοιχεία τοπικού δακτυλίου είναι τα 0,1. Απόδειξη.

Έστω $e \neq 0,1$. Τότε $e^2 = e \implies 0 = e(1-e)$. Δηλαδή, τα $e,(1-e) \neq 0$ είναι μηδενοδιαιρέτες και άρα όχι αντριστρέψιμα. Έτσι το ιδεώδες (e) περιέχεται σε κάποιο μέγιστο ιδεώδες \mathfrak{m} . Αυτό είναι μοναδικό καθώς βρισκόμαστε σε τοπικό δακτύλιο και άρα το e ανήκει στην τομή όλων των μεγίστων ιδεωδών, δηλαδή $e \in Jac(R)$. Με την πρόταση 2.4.3 αυτό είναι ισοδύναμο με:

$$e \in Jac(R) \iff (1 - er) \in U(R) \quad \forall r \in R$$

και για r=1 παίρνουμε ότι το 1-e είναι αντριστρέψιμο, το οποίο είναι άτοπο.

Άσκηση 2.12) Έστω $V \subseteq k^n$ μη κενό αλγεβρικό σύνολο.

(1) Δείξτε ότι το I(V) είναι ιδεώδες του $k[x_1,\ldots,x_n]$ και

$$k[x_1,\ldots,x_n]/I(V) \simeq k[V]$$

- (2) Δείξτε ότι nil(k[V]) = 0.
- (3) Για κάθε $P \in V$, έστω $\mathfrak{m}_P \in k[V]$ τό σύνολο των πολυωνυμικών συναρτήσεων του k[V] που μηδενίζονται στο P. Δείξτε ότι το \mathfrak{m}_P είναι μέγιστο ιδεώδες του k[V].
- (4) Σύμφωνα με το (3) έχουμε μια απεικόνιση

$$P \mapsto \mathfrak{m}_P$$

από το V στα ιδεώδη του k[V]. Δείξτε ότι αυτή η απειχόνιση είναι 1-1.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Όπου x θα συμβολίζουμε το (x_1,x_2,\ldots,x_n) στα παρακάτω

(1) Έστω $f(x), g(x) \in I(V)$ και $h(x) \in k[x_1, \dots, x_n]$. Τότε για τυχόν $P \in V$ έχουμε:

$$0 = f(P) - q(P) = (f - q)(P)$$

άρα το πολυώνυμο f(x) - g(x) = (f - g)(x) ανήχει στο I(V). Επιπλέον

$$(hf)(P) = h(P)f(P) = h(P) \cdot 0 = 0$$

άρα και το πολυώνυμο h(x)f(x)=(hf)(x) ανήκει στο I(V), δηλαδή το I(V) είναι ιδεώδες του k[V].

Ορίζουμε την απεικόνιση

$$\phi: k[x_1, \dots, x_n] \longrightarrow k[V]$$
$$f \longmapsto f_V: V \to k$$
$$P \mapsto f(P)$$

Η απεικόνιση ϕ είναι επί εφόσον περιορίζουμε κάθε πολυώνυμο στο υποσύνολο V του k^n . Είναι επιπλέον ομομορφισμός καθώς:

$$\phi(f+g)(P) = (f+g)_V(P) = (f+g)(P) = f(P) + g(P) = f_V(P) + g_V(P) =$$

$$= (f_V + g_V)(P) = [\phi(f) + \phi(g)](P)$$

$$\phi(fg)(P) = (fg)_V(P) = (fg)(P) = f(P)g(P) = f_v(P)g_v(P) = [\phi(f)\phi(g)](P)$$

Αν τώρα $f(x) \in I(V)$ τότε $f_V(P) = f(P) = 0$ για κάθε $P \in V$ δηλαδή η f_V είναι η μηδενική απεικόνιση από το V στο k και άρα $f(x) \in ker\phi$.

Αντίστροφα, αν

$$\phi(f) = 0_{k[V]} : V \to k$$
$$P \mapsto 0 = f(P) \quad \forall P \in V$$

τότε $f(x) \in I(V)$. Άρα $ker\phi = I(V)$ και από το 1ο θεώρημα ισομορφισμών δακτυλίων παίρνουμε:

$$k[x_1,\ldots,x_n]/I(V) \simeq k[V]$$

(2) Έστω $f_V \in nil(k[V])$. Τότε υπάρχει $n \in \mathbb{Z}_{>0}$ τέτοιο ώστε $(f_V)^n = 0_{k[V]} : V \to k$. Το $0_{k[V]}$ είναι ως συνάρτηση το μηδενικό πολυώνυμο περιορισμένο στο V.

Αν υποθέσουμε ότι το f_V δεν είναι περιορισμός του μηδενιχού πολυωνύμου τότε θα έχει μεγιστοβάθμιο συντελεστή (ως προς όλες τις μεταβλητές $x_1, \ldots x_n$) $a_m \neq 0 \in k$.

Τότε στο $(f_V)^n$ θα εμφανίζεται ο συντελεστής $(a_m)^n$ ο οποίος από την υπόθεση θα είναι 0. Δηλαδή, το στοιχείο a_m του σώματος k θα είναι 0 το οποίο είναι άτοπο.

(3) Έστω $P \in V$, το $\mathfrak{m}_P = \{f_V \in k[V]: f_V(P) = 0\}$ είναι ιδεώδες εφόσον:

$$(f_V - g_V)(P) = f_V(P) - g_V(P) = 0 - 0 = 0$$

$$(q_V f_V)(P) = q_V(P) f_V(P) = q_V(P) \cdot 0 = 0$$

Ορίζουμε τον ομομορφισμό εκτίμησης ϕ_P στο P

$$k[V] \longrightarrow k$$

$$f_V \longmapsto f_V(P) = f(P)$$

ο οποίος είναι επί εφόσον μπορούμε να θεωρήσουμε τα σταθερά πολυώνυμα f(x)=a για κάθε όρο $a\in k$ και να τα περιορίσουμε στο V.

Aν $f_V \in \mathfrak{m}_P$ τότε $\phi_P(f_V) = f_V(P) = 0$, άρα $\mathfrak{m} \subseteq ker\phi_P$.

Αντίστροφα, αν $f_v \in ker\phi_P$ τότε $\phi_P(f_V) = 0$, όμως $\phi_P(f_V) = f_V(P)$. Άρα $f_V(P) = 0$, δηλαδή $f_V \in \mathfrak{m}_P$.

Επομένως, από το 1ο θεώρημα ισομορφισμών δακτυλίων παίρνουμε

$$\frac{k[V]}{\mathbf{m}_{D}} \simeq k$$

και άρα εφόσον το k είναι σώμα, το \mathfrak{m}_P είναι μέγιστο ιδεώδες.

(4) Έστω $P,Q \in V$ και ότι

$$\mathfrak{m}_P=\mathfrak{m}_Q$$

$$\{f_V \in k[V]: f_V(P) = 0\} = \{f_V \in k[V]: f_V(Q) = 0\}$$

Αν $P=(P_1,\ldots,P_n), Q=(Q_1,\ldots,Q_n)$ τότε για $i=1,\ldots,n$ θεωρούμε τα πολυώνυμα:

$$f_i(x) = x_i - P_i$$

και ισχύει ότι $(f_i)_V\in\mathfrak{m}_P$ αφού $(f_i)_V(P)=f_i(P)=P_i-P_i=0$. Από την ισότητα των συνόλων έχουμε ότι τα $(f_i)_V$ ανήκουν στο \mathfrak{m}_Q δηλαδή μηδενίζονται στο Q. Αυτό σημαίνει ότι $Q_i-P_i=0$ για κάθε $i=1,\ldots,n$. Άρα P=Q.

Άσκηση 2.14) Έστω $\phi:R\to S$ ένας ομομορφισμός δακτυλίων.

- (1) Δείξτε ότι αν $\mathfrak q$ είναι πρώτο ιδεώδες του S, τότε το σύνολο $\phi^{-1}(\mathfrak q)$ είναι πρώτο ιδεώδες του R.
- (2) Αληθεύει ότι αν \mathfrak{m} είναι μέγιστο ιδεώδες του S, τότε το σύνολο $\phi^{-1}(\mathfrak{m})$ είναι μέγιστο ιδεώδες του R;

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

(1) Έστω $a,b \in R$ με $ab \in \phi^{-1}(\mathfrak{q})$. Δηλαδή, υπάρχει $y \in \mathfrak{q}$ τέτοιο ώστε $y = \phi(ab) = \phi(a)\phi(b)$. Άρα $\phi(a)\phi(b) \in \mathfrak{q}$ το οποίο είναι πρώτο. Έπεται ότι

$$\phi(a) \in \mathfrak{q} \quad \not \gamma \quad \phi(b) \in \mathfrak{q} \implies a \in \phi^{-1}(\mathfrak{q}) \quad \not \gamma \quad b \in \phi^{-1}(\mathfrak{q})$$

άρα το $\phi^{-1}(\mathfrak{q})$ είναι πρώτο ιδεώδες του R.

(2) Δεν αληθεύει. Αν θεωρήσουμε την εμφύτευση $i:\mathbb{Z}\hookrightarrow\mathbb{Q}$ και το μοναδικό μέγιστο ιδεώδες $\{0\}$ του \mathbb{Q} , είναι μέγιστο αφού $\mathbb{Q}/\{0\}\simeq\mathbb{Q}$ σώμα, έχουμε:

$$i^{-1}(\{0\}) = \{0\}$$

το οποίο φυσικά είναι πρώτο ιδεώδες του $\mathbb Z$ αλλά όχι μέγιστο, διαφορετικά θα είχαμε $\mathbb Z/\{0\}\simeq \mathbb Z$ σώμα που δεν ισχύει.

Άσκηση 2.16) Δείξτε ότι ο δακτύλιος

$$\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} \in \mathbb{C} : a, b \in \mathbb{Z}\}\$$

δεν είναι περιοχή μοναδικής παραγοντοποίησης.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

Έχουμε $2 \cdot 2 = (1 - \sqrt{-3})(1 + \sqrt{-3}) = 4$. Θα δείξουμε ότι κανένα από τα $2, 1 \pm \sqrt{-3}$ δεν είναι αντιστρέψιμο και ότι όλα είναι ανάγωγα.

Ορίζουμε το μέτρο του μιγαδικού

$$N: \mathbb{Z}[\sqrt{-3}] \longrightarrow \mathbb{N}$$

$$a + b\sqrt{-3} \longmapsto |a + b\sqrt{-3}|^2 = a^2 + 3b^2$$

και έχουμε N(xy) = N(x)N(y).

 $Aν \ u \in U(\mathbb{Z}[\sqrt{-3}]) \ \text{τότε} \ uv = 1 \ \text{και άρα} \ 1 = N(u)N(v) \implies N(u) = 1. \ \Delta \text{ηλαδή} \ a^2 + 3b^2 = 1$ με $a,b \in \mathbb{Z}$ το οποίο συμβαίνει μόνο όταν $a = \pm 1, b = 0$. Άρα $U(\mathbb{Z}[\sqrt{-3}]) = \{\pm 1\}.$

Δείχνουμε ότι το 2 είναι ανάγωγο. Αν 2=xy με $x,y\in\mathbb{Z}[\sqrt{-3}]$ τότε

$$4 = N(2) = N(xy) = N(x)N(y)$$

αν $N(x) = a^2 + 3b^2$ έχουμε:

$$N(x) = \begin{cases} 1, & x \in U(\mathbb{Z}[\sqrt{-3}]) \\ 2, & a^2 + 3b^2 = 2, \text{ δεν μπορεί να ισχύει} \\ 4, & N(y) = 1 \implies y \in U(\mathbb{Z}[\sqrt{-3}]) \end{cases}$$

άρα το 2 είναι ανάγωγο σε κάθε δυνατή περίπτωση του N(x). Όμοια είναι και τα υπόλοιπα ανάγωγα αφού $4=N(1\pm\sqrt{-3})$.

Άρα το $\mathbb{Z}[\sqrt{-3}]$ δεν είναι περιοχή μοναδικής παραγοντοποίησης καθώς τα $2,1\pm\sqrt{-3}$ είναι όλα ανάγωγα και έτσι η σχέση $2\cdot 2=(1-\sqrt{-3})(1+\sqrt{-3})$ θα έπρεπε να μας δίνει ότι $2=u(1\pm\sqrt{-3})$ το οποίο δεν ισχύει για κανένα αντιστρέψιμο $u=\pm 1$.