Homework 1

(Due March 29 by 12:30pm. Note the non-standard date and time.)

Instruction: Check the boxes next to the correct answers. There can be **zero to four** correct answers to each question. A question with m boxes is worth m points. One point is deduced each time a correct answer is not checked, or an incorrect answer is checked.

- 1. For linear regression, the residual plot below suggests that
 - \square The errors have non-constant variance but the linear assumption is correct.
 - ☐ The errors have non-constant variance and the linear assumption is wrong.
 - \Box The linear assumption is correct and the errors have constant variance.
 - \square The linear assumption is wrong and the errors have constant variance.

- **2.** Which of the following assumptions did we make when deriving the expression $\hat{\beta} = (X^{\top}X)^{-1}Xy$ for the least squares estimator for linear regression?
 - \square The matrix X^TX is invertible.
 - \square The errors follow a normal (aka Gaussian) distribution.
 - \square The distribution of the errors is symmetric around zero
- 3. Nonlinearity between the response and a predictor x in regression
 - \square May be handled by including a term of the form $\beta * x^2$.
 - \square May be handled by including a term of the form $\beta * \sqrt{x}$.
 - \square May be handled by including a term of the form $\beta * \log(x)$.
 - ☐ Can never be handled since the model would become nonlinear.

4. Suppose the true model between the response y and a predictor x is $y = f(x)$.	Which of the following
models can be estimated using the least squares approach to linear regression?	

```
\Box f(x) = \beta_0 + \beta_1 \sqrt{x}
\Box f(x) = \beta_0 + \beta_1 x \cdot \cos(x)
\Box f(x) = \beta_0 + \beta_1 x + \beta_2 \log(x + \beta_3)
```

5. Running a linear regression in R and applying the summary function we get the following output

```
lm(formula = y ~ x + I(x^2))
Residuals:
    Min
              1Q
                  Median
                                30
                                        Max
-2.31384 -0.67054 0.01942 0.62198 2.35304
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01030 0.06014 -0.171
                                        0.864
            1.02598
                       0.07512 13.658
                                         <2e-16 ***
                       0.08409
                                          0.387
I(x^2)
            0.07300
                                 0.868
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '' 1
Residual standard error: 0.3079 on 97 degrees of freedom
Multiple R-squared: 0.8892,
                              Adjusted R-squared: 0.8881
F-statistic: 790.8 on 2 and 97 DF, p-value: < 2.2e-16
```

Based on this output we can say that

 \Box The predictor x can be dropped from the linear model since it does not help to predict the response in the presence of the second predictor.

- \square The predictor x^2 can be dropped from the linear model since it does not help to predict the response in the presence of the first predictor.
- \square Both the predictors x and x^2 can be dropped from the linear model since they have no relationship with the response.
- 6. Assume that we want to classify data points in one of K=4 classes based on some predictor values. For a new data point with predictor value x_0 , we use the K Nearest Neighbor algorithm to compute $\hat{p}_1(x_0), ..., \hat{p}_K(x_0)$, which denote estimators for the conditional class probabilities given the predictor value x_0 of class 1, ..., K, respectively.
 - \Box If $\hat{p}_k(x_0) < 0.5$, then one should never classify the new data point to class k.
 - \square Whenever $\hat{p}_k(x_0) = 1$, one should classify the new data point to class k.
 - \square One should classify the new data point to class k if $\hat{p}_k(x_0)$ is the largest among $\hat{p}_1(x_0), \dots, \hat{p}_K(x_0)$.
 - \square One should classify the new data point to class k if $\hat{p}_k(x_0)$ is the smallest among $\hat{p}_1(x_0), ..., \hat{p}_K(x_0)$.
- 7. Comparing forward selection, backward selection and best subset selection (on the same data set)...
 - \square Best subset selection can be computationally more expensive than forward selection.

	\square Best subset selection can be computationally less expensive than forward selection.
	\square Best subset selection and forward selection are computationally equally expensive.
	\square Forward selection and backward selection <i>always</i> lead to the same result.
	Using 5-fold cross validation with a data set of size $n=100$ to select the value of K in the K -Nearest Neighbor algorithm
	\square Will always result in the same K since it does not involve any randomness.
	\square Might give different answers depending on the random splitting in 5-fold cross validation.
	\square Does not make sense since n is larger than the number of folds.
9.	If we want to select a subset of variables in linear regression,
	\square It is always better to use adjusted \mathbb{R}^2 than cross-validation
	\square Adjusted R^2 and cross-validation will <i>always</i> lead to a model with the same prediction error. \square We should choose the subset that leads to the lowest R^2 .
10.	Which of the following statements is/are true for best subset selection based on BIC?
	\square It will <i>sometimes</i> select a less flexible model than using adjusted \mathbb{R}^2 .
	\square It will always select a more flexible model than using adjusted R^2 .
	\square It will always select the same model as using adjusted \mathbb{R}^2 .
	In linear regression, if $p > n$, where p is the number of predictors and n is the number of training data points. \square We can compute the unique least squares solution using all predictors, although its accuracy will
	be low.
	□ We can select a subset of the predictors and compute the least squares solution using them.
	1 + M/c can lit a linear model with zero error on the training data (that is zero training error).
	\square We can fit a linear model with zero error on the training data (that is, zero training error). \square Fitting a linear model using all p predictors will give good test error, since the model is flexible.
12.	
12.	\Box Fitting a linear model using all p predictors will give good test error, since the model is flexible. In linear regression, if we add more high order terms as predictors, the value of the R^2 statistic will
12.	\Box Fitting a linear model using all p predictors will give good test error, since the model is flexible. In linear regression, if we add more high order terms as predictors, the value of the R^2 statistic will typically
12.	\Box Fitting a linear model using all p predictors will give good test error, since the model is flexible. In linear regression, if we add more high order terms as predictors, the value of the R^2 statistic will typically \Box increase.
12.	\Box Fitting a linear model using all p predictors will give good test error, since the model is flexible. In linear regression, if we add more high order terms as predictors, the value of the R^2 statistic will typically \Box increase. \Box decrease.
	□ Fitting a linear model using all p predictors will give good test error, since the model is flexible. In linear regression, if we add more high order terms as predictors, the value of the R^2 statistic will typically □ increase. □ decrease. □ remain the same.
	□ Fitting a linear model using all p predictors will give good test error, since the model is flexible. In linear regression, if we add more high order terms as predictors, the value of the R^2 statistic will typically □ increase. □ decrease. □ remain the same. □ first decrease and then increase.
	□ Fitting a linear model using all p predictors will give good test error, since the model is flexible. In linear regression, if we add more high order terms as predictors, the value of the R^2 statistic will typically □ increase. □ decrease. □ remain the same. □ first decrease and then increase. Recall the bias-variance tradeoff. A more flexible model typically
	 □ Fitting a linear model using all p predictors will give good test error, since the model is flexible. In linear regression, if we add more high order terms as predictors, the value of the R² statistic will typically □ increase. □ decrease. □ remain the same. □ first decrease and then increase. Recall the bias-variance tradeoff. A more flexible model typically □ Has higher bias.

14. In the K -NN classification algorithm, using a larger K typically
\square increases the bias.
\Box increases the variance.
\square leads to a more flexible model.
\square leads to a lower training error.
15. Adding interaction terms in linear regression
\Box increases the bias.
\Box increases the variance.
\Box leads to a more flexible model.
\square leads to a lower training error.
16. Logistic regression
\square has higher variance than K-NN.
\square has lower variance than K-NN.
\Box has the same variance as K -NN.
\square has better performance on test data than K-NN.
17. Which of the following is/are true about k -means clustering.
\Box It is a heuristic method that is not guaranteed to find the exact optimal solution (that minimizes the total within cluster variability).
\Box It is always better to use a larger value of k .
\square If you run k-means with different initialization, you may get different clustering results.
\square It alternates between computing the cluster centers and associating observations to clusters.