Week 3 Solutions

Gov January Linear Algebra Review 2021-01-19

1. (Strang 4.1.13) Put bases for the subspaces ${\bf V}$ and ${\bf W}$ into the columns of the matrices V and W. Explain why the test for orthogonal subspaces can be written $V^TW=$ zero matrix. This matches ${\bf v}^T{\bf w}=0$ for orthogonal vectors.

Remember from page 194, that **subspaces** – some subset of vectors belonging to some greater **space**, e.g. \mathbb{R}^2 that can be **spanned** by some set of independent vectors (a **basis**) – \mathbf{V} and \mathbf{W} are **orthogonal** when $v^Tw=0$ for every v in \mathbf{V} and every w in \mathbf{W} . Two vectors are orthogonal if they're perpendicular or *completely* unaligned directionally. If two subspaces are orthogonal, all pairs of vectors across the two subspaces are orthogonal. Since every vector in a subspace is a linear combination of basis vectors, this means that each subspace's basis vector must be orthogonal to the other subspace's basis vectors.

An example are the horizontal and vertical planes in \mathbb{R}^3 that go through (0,0,0):

 $V^TW=$ zero matrix makes each column of V orthogonal to each column of W. This means: each basis vector for \boldsymbol{V} is orthogonal to each basis vector for \boldsymbol{W} . Then every v in \boldsymbol{V} (combinations of the basis vectors) is orthogonal to every w in \boldsymbol{W} .

2. (Strang 4.1.25) Find A^TA if the columns of A are unit vectors, all mutually perpendicular.

If the columns of A are unit vectors, all mutually perpendicular, then $A^TA=I$. Simple but important! We usually call such a matrix Q.

3. (Strang 4.2.13) Suppose A is the 4 by 4 identity matrix with its last column removed. A is 4 by 3. Project $\boldsymbol{b}=(1,2,3,4)$ onto the column space of A. What shape is the projection matrix P and what is P?

Recall in our first review session the intuitive geometric idea of projecting vector a onto b: finding a point on vector b that is the "closest" to vector b.

The **projection** of a vector b onto a subspace A is the closest vector p in A. Incidentally, b - p ends up being orthogonal to A.

An example of some vector $x \in \mathbb{R}^3$ being projected down to the subspace in \mathbb{R}^3 made up by a horizontal plane is shown here:

The formula for projection of a vector b onto a column space of A (given on page 206 and some motivation on the following pages as well as this lecture video) is given by $p = A(A^TA)^{-1}A^Tb$. The first part of the right-hand side, $A(A^TA)^{-1}A^T$, is called the **projection matrix**.

Let's get each of the components of the projection matrix:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$A^{T}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

which you can get either by doing it out by hand, or in R:

```
A <- rbind(c(1, 0, 0),
           c(0, 1, 0),
           c(0, 0, 1),
           c(0, 0, 0))
AtA <- t(A) %*% A
print(AtA)
```

Note that the inverse of an identity matrix is itself, so $(A^TA)^{-1} = I$.

Finally, we can get P which involves computing $A \cdot A^T$ (which is different from $A^T \cdot A$):

$$P = A \cdot (A^T A)^{-1} \cdot A^T = A \cdot A^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

which we can do by hand or in R:

Now to get the projection p we must do $P \cdot b$:

$$P \cdot b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$$

4. (Strang 4.2.21) Multiply the matrix $P = A(A^TA)^{-1}A^T$ by itself. Cancel to prove that $P^2 = P$. Explain by P(Pb) always equals Pb. The vector Pb is in the column space of A so its projection onto that column space is

$$P^{2} = \left(A(A^{T}A)^{-1}A^{T}\right)^{2} = A(A^{T}A)^{-1}A^{T} \cdot A(A^{T}A)^{-1}A^{T} \qquad \text{(1)}$$

$$= A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}A^{T} \qquad \text{(group together middle term)}$$

$$(2)$$

$$= A(A^{T}A)(A^{T}A)(A^{T}A)(A^{T}A)^{-1}A^{T} \qquad \text{(cancel out inverses)}$$

$$(3)$$

$$= A(A^{T}A)^{-1}A^{T} \qquad \text{(cancel out inverses)}$$

$$(4)$$

$$= P \qquad \qquad \text{(5)}$$

The implication is that we can't re-project a vector once it's already projected. Pb is in the column space (where P projects), and the projection of the projection P(Pb) is also Pb.

A square matrix is **symmetric** if the upper triangular matrix entries are equal to the lower triangular matrix entries, e.g.

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 0 \end{bmatrix}$$

Or in other words, $A^T = A$. Let's show this for P:

We would get exactly what we need if we could just show that $\Big((A^TA)^{-1}\Big)^T=(A^TA)^{-1}.$ Is this true?

Note that A^TA is always going to produce a symmetric matrix (you can draw out an example in low dimensions). Therefore, by the given prompt, $(A^TA)^{-1}$ is also symmetric. By definition of symmetry, then, $(A^TA)^{-1} = A^TA$, so indeed this is true and we're done. Huzzah!

6. (Strang 4.2.23) Is the error vector e orthogonal to b or p or e or \hat{x} ? Show that $||e||^2$ equals e^Tb which equals $b^Tb - p^Tb$.

Let's back up and get a visual of how these quantities relate to each other (a slightly less technically correct version is shown on p. 208 of Strang):

Here, \hat{x} is the single-dimensional equivalent of the projection matrix – just one number that tells us where b should project down to along the line a.

We can see clearly here that the error vector $oldsymbol{e}$ – obtained by vector addition of p and b – is orthogonal to p, but not b or e (itself). \widehat{x} is simply a number and a vector cannot be orthogonal to a number.

We can walk through the simplifications needed to show the first equality using the definition of length, the distributive property, the definition of e, and the above orthogonality we've discovered:

$$||e||^2 = e^T e = e^T \cdot (b - p) = e^T \cdot b - e^T$$

We can again use the definition of \boldsymbol{e} and the fact that transposition can be distributed to get the rest of the way:

$$e^T b = (b - p)^T b = b^T b - p^T b$$

Huzzah, again!