BLOCKVOTE

Jose Gabriel Tomas Zapata - 2201779 Juan Diego Herrera Cáceres - 2151316 Ricardo Andrés López Tarazona - 2201710

Profesor: Luis Carlos Guayacán Chaparro Automatas y lenguajes formales

Universidad Industrial de Santander Marzo 18, 2022

¿Que es Blockchain?

Es un bloque de información protegido por un compartimiento en la nube mediante una conexión con otros ordenadores.

Problemática principal.

Durante la historia de Colombia se ha evidenciado que durante los procesos de votaciones en el país se ha visto una gran vulnerabilidad en el sistema y muchas veces ineficiente.

Posible alternativa.

Con esta máquina de turing se quiere brindar una ayuda a que los conteos de votación sean más precisos y confiables.

Estado del arte.

Encriptación hecha a partir de máquinas de Turing, se reconoce otro trabajo previo de encriptado por el método César, pero BLOCKVOTE es más completo ya que abarca el mencionado anteriormente y mucho más.

Definición formal y diagramas.

```
Definición formal:
MT = (Q, q0, F, \Sigma, \Gamma, B, \delta)
Q = (q0', 'q1', 'q11', 'q2', 'q22', 'q3', 'q33', 'q4', 'q44', 'q5', 'q55', 'q6', 'q66', 'q7', 'q77', 'q8', 'q88', 'q9', 'q99', 'qf')
q0 = ('q0')
F = ('qf')
Σ = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'Ñ', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z')
Γ = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'Ñ', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', ' ')
B = ' '
\delta(Q,(\Gamma)) = (Q, \rightarrow)
\delta(q0,(1)) = (q1, R)
```

Diagramas.

Código y resultado.

1234567890VotodepruebaBucaramanga

('qf', TMTape('1345678901WPUPEFQSVFCBCVDBSBNBNHB'))

```
from automata.tm.dtm import DTM
v = DTM(
       states={'q0','q1','q1','q2','q22','q3','q33','q4','q44','q5','q55','q6','q66','q7','q7','q8','q88','q9','q9','qf'},
       input_symbols={'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I','J','K','L','M','N','N','N','N','S','T','U','V','W','X','Y','Z'},
       tape_symbols={'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I','J','K','L','M','N','N','N','P','Q','R','S','T','U','V','W','X','Y','Z',''},
      print("Información votante\n")
      votante = input()
       f = votante.upper()
      d = v.validate input(f)
       try:
            print(d)
       except Exception as e:
                 print("Entrada no valida \n")
      Información votante
```

Conclusiones y aspiraciones.

 El uso de la encriptación y la tecnología blockchain para reforzar la seguridad de los sistemas electorales ayuda a tener mayor transparencia en los mismos.

- Se aspira a escalar el sistema y hacer que se ejecute en paralelo.

Agradecimientos.

Gracias.

