제5장. 정형데이터 마이닝

활용하여 성능평가에 활용

 데이터마이닝 개요 데이터마이닝 정의 : 대용량 데이터에 	서		ᄋᆝ	파악하거니	나 예측하	여 이사격정
에 활용하는 방법	^1			— - - - -	-1 311 -1 31	-1 -1 1 2 0
 통계분석과 데이터마이닝의 차이 A. 통계분석: B. 데이터 마이닝: 	0				. – – –	를 추출
• 데이터마이닝 활용 :		' -	,		, _	
• 데이터마이닝 방법론 :		,			,	
		' 등			,	
2. 데이터마이닝 학습법			\		버스기 2	5 TII
A (,): 		연구기 t 	:_^II,
B (١.		벼스가 S	었이 석명은 위
D (한분석,				_,		
 3. 데이터마이닝 추진단계						
5. 네이디마이용 구선단계 A B			_ 를 준비 및	정제(
) C						
E)등의 기대효과 전파				적용,		(
4. 데이터 분할	,	•	, OL FILOLEL =	ㅎ레 O O -	= 51.0	
A (B ():	· ⁹ · ⁹	6의 데이터들 6의 데이터를	운던용으 과대/과소	_{도 잘 풍} 추정의 단	단정 목적으로

5. 모델의 성능 평가 은행의 대출 문제로 연이율 20%로 가정, 100만원을 100명에게 대출한다고 가정

C. _ _ _ _ _ (_ _ _ _ _): _ _ _ _ %의 데이터를 테스트데이터나 과거 데이터를

(EX) 두 모형에서 정확도가 85%로 같다면 은행 입장에선 어떤 모형이 더 좋은 모형인가?

모형1	Α	В	
a	6	5	10
b		5	20

모형2	Α	В	
a		75	0
b		15	10

a, b: 테스트 데이터의 예측 분류. a: 우량고객, b: 불량고객 A, B: 테스트 데이터의 실제 분류. A: 우량고객, B: 불량고객

: 연이율 20%로 100만원을 대출

A. 기대수익				
a. 기대수익 = (명 *	만원) - (명 *	만원)
= 만원				
b. 기대수익 = (명 *	만원) - (명 *	만원)
= 만원		, ,		,
B. 기대손실비용				
a. 기대손실비용 = (명 *	만원) + (명 *	
만원) = [
b. 기대손실비용 = (명 *	만원) - (명 *	
만원) =	마워	, ,		

C. 결과 기대수익과 기대손실비용으로 봤을 때 _ _ _ _ 모형이 우수함

2. 의사결정분석 나무

1.	분류	분석	vs	예	측분	ᅛᅺ
----	----	----	----	---	----	----

^ 고투저·레크드이	으 미리 아이 마치트 저
A. 공통점 : 레코드의	을 미리 알아 맞히는 점

B. 차이점

• 분류: _ _ _ _ _ 속성의 값을 예측 • 예측: _ _ _ _ _ 속성의 값을 예측

C. 분류의 예 : 학생들의 국어, 영어, 수학 점수를 예측, 카드회사에서 회원들의 가입정보를 통해 1년 후 신용등급을 예측

D. 분류기법

a.		 (_)			
b.		 (_),	 (),
	C5.0					
C.		 (_),	 		
d.		 (_)			
e.		 (_)			

f. _ _ _ _ _ (_ _ _ _ _) q. 규칙기반 분류와 사례추론

1. 의사결정나무 특징

- 분류함수를 의사결정 규칙으로 이뤄진 나무 모양으로 그리는 방법
- 의사결정 문제를 시각화하여 _ _ _ _ 과 _ _ 과 _ _ _ 를 한 눈에 볼 수 있음
- _ _ _ _ _ _ 가 직접 나타나게 돼어 분석이 간편함
- ____가 좋음
- _ _ _ _ _ _ _ _ _ _ _ 에서도 빠르게 만들 수 있음
- _ _ _ _ _ _ _ _ _ _ _ _ 에 대해서도 민감함 없이 분류
- _ _ _ _ _ 이 높은 다른 불필요한 변수에 큰 영향을 받지 않음

2. 의사결정나무 활용

• (): ^t	범주를 몇 개의 등급으로 나눔
• (() :	규칙을 찾고, 미래의 사건을 예상) : 목표변수에 큰 영향을
□) : 여러개의 예측 변수들을 결합해
목표 변수 파악	
• 의 몇 개로 병합, 또는 연속형 변수를 몇 기): 범주형 변수를 소수 개의 등급으로 이산화
3. 의사결정나무 분석	
• 분석 단계 :	>
>	 방하기 위해 마디의 자료가 일정수 이하일 경우 가지치기를 정
·	
4. 의사결정나무 분석의 종류 A ()
• 목적변수가 범주형인 경우 를 사용	, 연속형인 경우 을 이용해 _
• 개별 입력변수 뿐만 아니라 입력변수	들의 선형결합등 중 최적의 분리를 찾을 수있다.
B 와 와	
C ((변수이어야 함
3. 앙상블 기법	
1. 앙상블 기법	드오마드후 조화되어 됩니어
을 만드는 기업	들을 만든후 조합하여 하나의
Convination 등 ● 학습방법의 을 해결 [®]	(), classifier 하기 위해 고안 , 가장 안전한 기법은
 • 종류:	
A (■ 여러) 을 생성하고 예측모형 결과를 결과를 결합

	■ 훈련자료를	으로 생각하고	을
	구한 것과 같음 ■ 을 줄이고,	을 향상 시킬 수 있음	
B.	(1	
D. ₋		/ 모형들을 결합하여 을 만드	는
		를 빨리 쉽게 줄일 수 있고,	의
	향상으로	에 비해 뛰어난 예측력을 보임	
C. ₋) 크다는 점을 고려, 과 보다 더 믾 을 주어 약한 학습기를 생성후 선형결합하여	낳은 -
	를 만드는 방법		
	•	이나 해석이 어렵다는 단점,	_ 0
	매우 높은 장점		
	•	가 많은 경우 더 좋은 예측력을 보임	
D	()	
	■ 동일한 타입의 모델을 조합하는	, 과는 달리 다양한 학습 모델을 통해 구성	성

2. 오분류표

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

٩.	[]: (TP+TN)/Total, 올바르게 검출 (실제 악성/정상을 예즉)
В.	[] : (FP+FN)/Total, 잘못되게 검출 (잘못된 악성/정상 예측)
	[] : TP/Predicted YES, 참으로 분류한 것중 올바른 참의 비율 (악성으로
	예측한 것 중 실제 악성 샘플의 비율)
Э.	[
	성으로 예측)
Ε.	[] : FP/Actual NO, 실제 거짓을 거짓으로 분류 (실제 정상 중에서
	악성으로 예측)
F.	[]: TP/Actual YES, 예측과 실제 모두 참 (실
	제 악성 중에서 악성으로 예측)
Э.	[]: TN/Actual NO, 예측과 실제 모두 거짓 (실
	제 정상 중에서 정상으로 예측)
Η.	[]: FP/Actual NO, 실제 거짓인데 참으로 분
	류 (실제 정상을 악성으로 예측)
I.	[]: FN/Acutual YES, 실제 참인데 거짓으로
	검출 (실제 악성을 정상으로 예측)

1. RO	С		
•	를 활용하		
	■ = (AR+1)/2 ■ 90%이상 excellecnt, 80% 이상 good, 70% 이상		
4. 인공	당신경망 분석		
1. 인공	공신경망 연구		
	1943년 (루 모형으로 개발	
	로젠블럿(Rosenblatt): ((·	
•	변() 아주 단순하지만 복잡하게 연결된 프로세스로 이루아 가 있는 로 연결됨 여러개의 를 받아 하나의 _ = 입력신호의 의 합을 계산하여 _ 의 합이 보다 작년 _ 을 출력	를 생성)을 사용 과 비교	_ , 같거나 크면
	경망모형 구축시 고려사항 . 입력변수		
	 형 변수 : 가 일정수준 이상이고 ■ 가변수화하여 적용(성별[남여], 남성[1,0], 여 		
	 형 변수 : 범위가 변수들간에 큰 차이가 평균을 중심으로 가 대칭이 아니면 또는 를 통해 활용하는 것 	비효율적	
В.	. 가중치 초기값		
	 의 경우, 초기값(가중치가 0이면 함수에서는 _ 을 모형이 됨. 초기값은 0 근처의 랜덤값으로 선정 초기에는 모형에서 	이 되고 신경당	망 모형은
C.	. 신경망 모형의 함수는 비볼록하무이고, 여러 를 가짐	l 개의 국소	()

	• 랜덤하게 선택된 여러개의 조기값에 내한 신경말을 석압한 우 얻은 해들을 비교하여 가상
	가 적은 것을 선택
	• 최종 예측값을 얻거나 (또는)을 구하여 최종 예측값으로 선정
	• 훈련자료에 대해서 ()을 적용하여 최종 예측값을 선정
D	. 학습률
	• 처음에는 큰 값으로 정하고 반복이 진행될 수록 에 가까워 짐
_	
E	(), 노드()의 수
	• 많으면 가중치가 많아져 문제 발생
	• 적으면 문제 발생
	• 하나인 신경망은 범용근사자(Universal Approximator)이므로 가급적이면 하나로 선정
	• 노드는 적절히 큰 값으로 설정하고 를 감소하면서 모수에 대한 를 적용
4 로져	지스틱 회귀분석
—	
•	가 형인 경우에 적용하는 회귀분석모형
•	새로운 변수가 주어질 때 변수의 각 범주에 속할 확률이 얼마인지 추정, 추정 확률을
	기준으로 분류하는 목적으로 활용
•	모형의 적합을 통해 추정될 확률을 (
•	함수를 활용하여 로짓분석 실행
•	변수 (변수 ~ 변수1 + 변수2 + , family=binomial, data=데이
	터셋)
•	결과 추정값이 5.14이면, 독립변수의 단위가 증가함에 따라 종속변수가 0에서 1로 바뀔 (
)가 exp(5.140) = 170배 증가한다는 의미.
5. 군집	↓분석
5. 군집	
5. 군 집 1. 군집	
1. 군집	일분석
1. 군 잔	집 분석 각 객체의 을 측정하여 이 높은 대상집단을
1. 군 잔	집 분석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명하
1. 군집 • •	집 분석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명하 는 분석 방법
1. 군집 • •	집 분석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 을 규명하 는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔
1. 군집 • •	집 분석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명하 는 분석 방법
1. 군집 • •	집 분석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 을 규명하 는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔
1. 군집 • •	집 분석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 을 규명하 는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔
1. 군접 • • • •	대보석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 에 대한 가정없이 를 기준으로 군집화 유도
1. 군접 • • • •	대보석 각 객체의 을 측정하여 이 높은 대상집단을 을 규명하고집에 속한 객체들의 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 나 에 대한 가정없이 를 기준으로 군집화 유도 대보석 특정 ()에 해당하며 의 정의 없이 학습 가능
1. 군집 • • •	김보석 각 객체의 을 측정하여 이 높은 대상집단을 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 이 대한 가정없이 를 기준으로 군집화 유도 김보석 특징 ()에 해당하며 의 정의 없이 학습 가능분석 목적에 따라 적절한 군집으로 정의 가능
1. 군집 • • •	대보석 각 객체의 을 측정하여 이 높은 대상집단을 을 규명하고집에 속한 객체들의 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 나 에 대한 가정없이 를 기준으로 군집화 유도 대보석 특정 ()에 해당하며 의 정의 없이 학습 가능
1. 군접 • • • • •	김보석 각 객체의 을 측정하여 이 높은 대상집단을 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 이 대한 가정없이 를 기준으로 군집화 유도 김보석 특징 ()에 해당하며 의 정의 없이 학습 가능분석 목적에 따라 적절한 군집으로 정의 가능
1. 군접 • • • • •	대보석 각 객체의 을 측정하여 이 높은 대상집단을
1. 군집 • • • • • • • • • •	대보석 각 객체의 을 측정하여 이 높은 대상집단을 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 에 대한 가정없이 를 기준으로 군집화 유도 대보석 특징 ()에 해당하며 의 정의 없이 학습 가능분석 목적에 따라 적절한 군집으로 정의 가능요약분석과의 차이 : 변수를 묶는 것이 아닌 를 묶어줌판별면석과의 차이 : 판별분석은 사전에 집단이 나누어져 있어야 하지만, 군집분석은 이 업는상태에서 구분
1. 군집 • • • • • • • • • •	대 보석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 이 대한 가정없이 를 기준으로 군집화 유도 대보석 특징 ()에 해당하며 의 정의 없이 학습 가능 분석 목적에 따라 적절한 군집으로 정의 가능 요약분석과의 차이 : 변수를 묶는 것이 아닌 를 묶어줌 판별변석과의 차이 : 판별분석은 사전에 집단이 나누어져 있어야 하지만, 군집분석은 이 업는
1. 군접 • • • • • • • • • • • • • • •	각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 나 에 대한 가정없이 를 기준으로 군집화 유도 정본석 특징 ()에 해당하며 의 정의 없이 학습 가능 분석 목적에 따라 적절한 군집으로 정의 가능 요약분석과의 차이 : 변수를 묶는 것이 아닌 를 묶어줌 판별변석과의 차이 : 판별분석은 사전에 집단이 나누어져 있어야 하지만, 군집분석은 이 업는 상태에서 구분
1. 군접 • • • • • • • • • • • • • • •	대보석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 는 에 대한 가정없이 를 기준으로 군집화 유도 대보석 특징 ()에 해당하며 의 정의 없이 학습 가능 분석 목적에 따라 적절한 군집으로 정의 가능 요약분석과의 차이 : 변수를 묶는 것이 아닌 를 묶어줌 판별변석과의 차이 : 판별분석은 사전에 집단이 나누어져 있어야 하지만, 군집분석은 이 업는 상태에서 구분 대이터가 인 경우 : 거리, 거리, 거리,
1. 군집 • • • • • • • • • • • • • • • • • • •	각 객체의 을 측정하여 이 높은 대상집단을 을 규명하는 보석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 는 에 대한 가정없이 를 기준으로 군집화 유도 집보석 특징 에 대한 가정없이 을 기준으로 군집화 유도 집보석 특징 이 해당하며 의 정의 없이 학습 가능분석 목적에 따라 적절한 군집으로 정의 가능요약분석과의 차이 : 변수를 묶는 것이 아닌 를 묶어줌판별변석과의 차이 : 판별분석은 사전에 집단이 나누어져 있어야 하지만, 군집분석은 이 업는상태에서 구분 집본석 거리 측정 이 점우 : 거리, 거리, 거리, 거리, 기리, 기리,
1. 군집 • • • • • • • • • • • • • • • • • • •	대보석 각 객체의 을 측정하여 이 높은 대상집단을 군집에 속한 객체들의 과 서로 다른 군집에 속한 객체간의 을 규명하는 분석 방법 특성에 따라 여러개의 인 집단으로 나눔 군집의 나 는 에 대한 가정없이 를 기준으로 군집화 유도 대보석 특징 ()에 해당하며 의 정의 없이 학습 가능 분석 목적에 따라 적절한 군집으로 정의 가능 요약분석과의 차이 : 변수를 묶는 것이 아닌 를 묶어줌 판별변석과의 차이 : 판별분석은 사전에 집단이 나누어져 있어야 하지만, 군집분석은 이 업는 상태에서 구분 대이터가 인 경우 : 거리, 거리, 거리,

3. 계층적 군집 분석
3. 계층적 군집 분석 • n개의 군집으로 시작해 군집의 개수를 방법 A
4. 비계층적 군집 분석
n개의 개체를 g개의 군집으로 나눌 수 있는 모든 방법을 점검해 최적화한 군집을 형성
• ()
A. 원하는 군집의 개수와 초기값()들을 정해 를 중심으로 군집을 형성 B. 각 데이터를 가 가장 가까운 가 있는 군집으로 분류 C. 각 군집의 값을 다시 계산 D 값이 변화가 없고 가 군집으로 할당될 때까지 반복
의 특징
- 거리 계산을 통해 군집화되므로 변수에 활용 가능 - k개의 초기 중심값은 임의로 선택 가능, 가급적이면 것이 바람직
하다
- 초기값을 일려로 선택하지 않는 것이 좋다 - 초기 중심으로부터을 최소화하는 방향으로 군집이 형성되는 () 알고리즘이므로 안정된 군집은 보장하나이라는 보장은
없다.
의 장점 1. 알고리즘이하며, 빠르게 수행되어 분석 방법 적용이 용이 1. 계층적 군집분석에 비해양의 데이터를 다룰 수 있다.
의 단점
1. 군집의,의 의 의 와 정의가 어렵다
1. 사전에 주어진이 없으므로 결과 해석이 어렵다. 1이나에 영향을 많이 받는다.
1이더에 중앙을 많이 듣는데. 1 형태가 아닌() 군집이 존재할 경우 성능이 떨어진다

1. 혼합분포 군집

모형기반()의 군집 방법	이며, 데이E	귀가 k개의	(흔히 정	<mark>け</mark> 규분포 또는 다변
량 정규분포를	가정함)의 가중합으로 표현	되는 모집단	<u>·</u> 모형으로부터	더 나왔다는 가정하에서	너 와 함께
를 자	료로 부터 추정하는 방법				

B. 군집을 몇개의 C 알고리즘을 (· 군집화된다 정은 알고리즘이 사	용 를 도입하여 군집을 수 다른 크기나 모양의 가 커지면 에 시간(-행 _ 을 찾을 수 있다. 이 걸릴 수 있다.
2. SOM(_)		
SOM(되었으며 맵(_ A 의 데이터· 해하기 쉽다		_)이라고도 알려져 있다.	
B 변수의 위: 상에 표시		하기 때문에 실제 데이	터가 유사하면 지도
C 발견, D (분석 등에서 뛰어	리즘 등을 이용하는 인공신경	
 E 학습처리를	를 할 수 있다		
6. 연관분석			
1. 연관성 분석			
기업의 데이터베이스에서 상품 견하기 위한 분석으로 흔히 분석 :	분석(등이 있다.),	
. –	·러 온 30대 직장인 고객은 주 ·의 전자제품을 주로 구매한 그		
B 분석 : 구미	H이력을 분석해서 A 품목 구대	배후 추가로 B 품목을 구매히	는지 분석
	여성은 한달 내에 가죽부츠를 · 고객은 한달 내에 휴대폰 케	· ·· — ·	
2. 연관성 규칙 개념			
과 과 다.	형태(): 만일 A가 일	Ӈ이나면 B가 일어난
3. 연관성 분석의 측도			
산업의 특성에 따라	, ,		칙을 선택해야 함.
A : 전체 거리 • : P(A	매 중 항목 A와 B를 .∩B) = (

B : 항목 A를 포함하는 거래 중에서 항목 A와 항목 B가 같이 포함될 확률 의 정도를 파악
• : P(A∩B)/P(A) = ()/()/()
: A가 주어지지 않았을 때의 품목 B의 확률에 비해 A가 주어졌을 때의 품목 B가 비율.
D : /P(B) = P(A∩B)/P(A)P(B) = ()/(X)
4. 연관분석 특징 A. 절차
a (
B. 장점 a 기법 : 으로 표현되는 연관성 분석의 결과를 쉽게 이해 가능 b. 강력한 분석 기법 : 분석 이나 이 없을 경우 유용 c. 사용인 편리한 분석 데이터 : 거래 내용에 대한 데이터를 변환 없이 그 자체로 이용 d. 계산의 : 계산이 간단함
C. 단점 a. 상당한 수의 : 품목수가 늘어나면 계산은 기하급수적으로 늘어남
b 품목의 결정 : 너무 하여 을 찾으면 의미 없는 분석이 될 수 있음
• 적절한 로 구분해 세부적으로 을 찾는 작업을 수행
c. 품목의 차이 : 품목들이 동일한 를 갖는 경우 좋은 결과를 얻을 수 있지 만, 이 적은 품목은 과정 중에서 제외되기 쉬움
1. **평가기준 적용시 주의점** 1. 두 항목의 가 높다고 해서 꼭 두 항목이 높은 가 있는 것은 아님.(를 함께 고려) 1. 만일 두 항목의 가 나와도 가 낮으면 신뢰하기 부족. 즉, 이 낮으면 관계로 보기 어려움 - 빈번하게 구매되는 항목은 으로 으로 그 그 그 그 그 가 높게 나올 수 있음 1. A, B 두 항목의 ()가 높으면 B의 보다 A의 이 더 높아야 의미가 있음 를 분석해보면 알 수 있음. 1. **Apriori 가장 많이 사용하는 알고리즘**
알고리즘 중에서 가장 먼저, 그리고 가장 많이 사용하는 알고리즘 - 원떤이 빈발하면, 그의 모든도 빈 발함.
- 예 : [우유, 빵, 과자]가 빈발항목이면, 부분집합인 [,_,], [,, _], [,] 도 빈발항목집합. 의의 성질 : 어떤 항목 집합의는 그 부분집
하들이 르 년은 스 없은

