43 Доказать, что если шар радиуса 7 содержится в шаре радиуса 3, то они совпадают.

Доказательство.
$$B_7(x_0) \subset B_3(y_0) \implies \forall x: d(x,x_0) < 7 \quad d(x,y_0) < 3$$
 Сразу получаем, что $d(x_0,y_0) < 3$.

Пусть $B_3(y_0) \not\subset B_7(x_0)$, тогда существует такое $y \in B_3(y_0)$, что $d(y,x_0) \ge 7$ Применим свойство полуметрики, учитывая, что $d(y_0,y) < 3$:

$$d(x_0, y_0) \ge |d(x_0, y) - d(y_0, y)| > 4$$

Получили противоречие, значит, имеет место включение и шары совпадают.

.. Задача с лекции 03.10.23. Найти μ , при которых уравнение разрешимо и найти решение

$$x(t) - \mu \int_0^1 tsx(s)ds = t$$

Пусть $C = \int_0^1 sx(s)ds$

$$x(t) = (\mu C + 1)t$$

$$tx(t) = (\mu C + 1)t^{2}$$

$$C = \int_{0}^{1} (\mu C + 1)y^{2}dy$$

$$C = \frac{(\mu C + 1)}{3}$$

$$C = \frac{1}{3 - \mu}$$

$$x(t) = \frac{3t}{3 - \mu}, \quad \mu \neq 3$$

37 Доказать, что если (X, d) - полуметрическое пространство, то

- (a) $\forall x \in X, R > r > 0$ $B_r[x] \subset B_R(x)$;
- (b) $\forall x \in X, r > 0$ cl $B_r(x) \subset B_r[x]$, а вот равенства может не быть;
- (c) $\forall x \in X, r > 0$ $B_r(x) \in Op(X, d), B_r[x] \in Cl(X, d);$
- (d) шар большего радиуса может быть собственным подмножеством шара меньшего радиуса

Доказательство. (a)
$$B_r[x] = \{y \in X \mid d(x,y) \le r\}$$
 $B_R(x) = \{y \in X \mid d(x,y) < R\}$ Для всех у из шара $B_r[x]$, т.е $y \in X$, таких что $d(x,y) \le r < R \implies y \in B_R(x)$ (b)