ALOK KUMAR

☐ alok.csit@gmail.com

\(\begin{aligned}
(+91) 8404845135

Palok-github

inalok-linkedIn

SUMMARY

I am a passionate developer with expertise in Data Structures and Algorithms (DSA) in C++. Currently, delving into backend development and machine learning to create robust and intelligent systems. With a strong foundation in problem-solving and coding, I aims to build solutions that make a difference.

EDUCATION

University of Engineering And Management, Kolkata, West Bengal	2023 - 2027
B.Tech, Computer Science and Engineering - CGPA: 8.7	
New Horizon School, Bhagalpur, Bihar - CBSE	2021 - 2022
XI and XII - 70%	
St. Joseph School, Kahalgaon, Bihar - ICSE	2008 - 2020
X - 86%	

PROJECTS

- <u>Bone Fracture Detection:</u> Al-powered system leveraging Machine Learning techniques for efficient and accurate detection of bone fractures from medical images.
 - Developed an AI model for detecting bone fractures in X-ray images using ResNet, YOLO, and CNN architectures.
 - Preprocessed and augmented medical imaging datasets to improve model accuracy and robustness.
 - Achieved [92% accuracy] for detecting and localizing fractures.
 - Implemented the solution for real-time analysis with potential applications in healthcare diagnostics.
- Arduino Based ESP32 Surveillance Car: A project which focuses on classifying images from the CIFAR- 10 dataset using a Residual Network (ResNet) architecture.
 - Designed and implemented a Wi-Fi-controlled robotic car using the ESP32-CAM module and L298N motor driver.
 - Enabled remote control capabilities for directional movements (forward, backward, left, and right).
 - Integrated hardware components, including a 4WD car kit, servo motor, and a Pan Tilt Servo assembly.
- Crop Price Prediction [SIH 2024]: AI-ML based models for predicting prices of agri-horticultural commodities
 [Problem Statement ID 1647]
 - Built a price prediction model using LSTM networks, achieving 96% accuracy on test data
 - Preprocessed time-series data to extract meaningful patterns and trends for improved prediction
 - Optimized hyperparameters and implemented advanced deep learning techniques to enhance model performance
 - Tools & Technologies: Python, TensorFlow, Keras, Matplotlib.

SKILLS

- · Programming Languages: Python, JAVA, C/C++, JavaScript
- · Web Technologies: HTML, CSS, React.js, Node.js, Django
- · Tools: MATLAB, Git, Docker
- · Frameworks & Libraries: TensorFlow, OpenCV, scikit-learn, Pandas, NumPy
- · Databases: SQLPlus, MongoDB