EM and ELBO

Jiachun Jin jinjch@shanghaitech.edu.cn

The claim

The EM algorithm maximizes a lower bound of the marginal likelihood $P(D; \theta)$

My opinion

If the student claims that there should be a "log" before the term "marginal likelihood P(D; θ)", then this claim is correct.

But the claim that there should be a "expected" before the term "marginal likelihood P(D; θ)" is wrong

$$\log p(X) = \log \frac{p(X,Z)}{p(X,Z)/p(X)}$$

$$= \log \frac{p(X,Z)}{q(Z)} \frac{q(Z)}{p(Z|X)}$$

$$\tag{2}$$

$$= \log \frac{p(X,Z)}{q(Z)} \frac{q(Z)}{p(Z|X)} \tag{2}$$

$$= \underbrace{\int q(Z)dZ}_{\text{this equals to 1}} \left[\log \frac{p(X,Z)}{q(Z)} + \log \frac{q(Z)}{p(Z|X)} \right]$$
(3)

$$= \int q(Z) \log \frac{p(X,Z)}{q(Z)} dZ + \int q(Z) \log \frac{q(Z)}{p(Z|X)} dZ \tag{4}$$

$$= \underbrace{\int q(Z) \log \frac{p(X,Z)}{q(Z)} dZ}_{\text{Evidence Lower Bound(ELBO)}} + KL(q(Z)||p(Z|X))$$
(5)

In (5), since KL divergence is non-negative, so $\int q(Z)\log rac{p(X,Z)}{q(Z)}dZ$ is a lower bound of $\log p(X)$, p(X) is called evidence and $\int q(Z)\log rac{p(X,Z)}{q(Z)}dZ$ is call evidence lower bound(ELBO).

We can further write the ELBO as:

$$\int q(Z)\log\frac{p(X,Z)}{q(Z)}dZ = \int q(Z)\log p(X,Z) - \int q(Z)\log q(Z)dZ \tag{6}$$

$$= \int q(Z) \log p(X, Z) dZ + \underbrace{H(q(Z))}_{\text{entropy of q(Z)}}$$

$$= \mathbb{E}_{q(Z)} \left[\log p(X, Z) \right] + H(q(Z))$$
(8)

$$= \mathbb{E}_{q(Z)} \left[\log p(X, Z) \right] + H(q(Z)) \tag{8}$$

And in the M step of EM, we approximately maximize $\mathbb{E}_{q(Z)}\left[\log p(X,Z)
ight]$ as maximizing the ELBO, which is the lower bound of the \log marginal likelihood $\log p(X)$.