

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

State Assignment Problem

Administrative Stuff

Homework 9 is due on Monday

Administrative Stuff

- Homework 10 is out
- It is due on Monday Nov 14 @ 4pm

Quick Review

The general form of a synchronous sequential circuit

Moore Type

Mealy Type

Moore Machine

- The machine's current state and current inputs are used to decide which next state to transition into.
- The machine's current state decides the current output.

Mealy Machine

- The machine's current state and current inputs are used to decide which next state to transition into.
- The machine's current state and current input values decide the current output.

Example #1

We need to find both the *next state logic* and the *output logic* implied by this machine.

Present	Next state		Output
state	w = 0 w	= 1	Z
A			
В			
C			

Present	Next	Output	
state	w = 0	w = 1	\overline{z}
A	A	В	0
В	A	C	0
C	A	C	1

Figure 6.4 from the textbook]

How to represent the States?

One way is to encode each state with a 2-bit binary number

A ~ 00

B~01

C ~ 10

How to represent the states?

One way is to encode each state with a 2-bit binary number

A ~ 00

B ~ 01

C ~ 10

How many flip-flops do we need?

Let's use two flip flops to hold the state of this machine

We will call y_1 and y_2 the present state variables.

We will call Y_1 and Y_2 the next state variables.

Two zeros on the output JOINTLY represent state A.

This flip-flop output pattern represents state B.

This flip-flop output pattern represents state C.

What does this flip-flop output pattern represent?

This would be state D, but we don't have one in this example. So this is an impossible state.

We will call y_1 and y_2 the present state variables.

We will call Y_1 and Y_2 the next state variables.

We will call y_1 and y_2 the present state variables.

We will call Y_1 and Y_2 the next state variables.

We need to find logic expressions for $Y_1(w, y_1, y_2)$, $Y_2(w, y_1, y_2)$, and $z(y_1, y_2)$.

We need to find logic expressions for $Y_1(w, y_1, y_2)$, $Y_2(w, y_1, y_2)$, and $z(y_1, y_2)$.

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	\mathbf{C}	0
C	A	C	1

Suppose that we encoded our states in the same order in which they were labeled:

A ~ 00

B ~ 01

C ~ 10

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	C	1

	Present	Next state	
	state	w = 0 $w = 1$	Output
			Z
A	00		
В	01		
C	10		
	11		

The finite state machine will never reach a state encoded as 11.

[Figure 6.6 from the textbook]

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	C	1

	Present	Next s		
	state	w = 0 $w = 1$		Output
	<i>y</i> 2 ^{<i>y</i>} 1	Y_2Y_1	Y_2Y_1	z
A	00	00	01	0
В	01	00	10	0
C	10	00	10	1
	11	dd	dd	d

We arbitrarily chose these as our state encodings.
We could have used others.

[Figure 6.6 from the textbook]

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next s	tate	
state	w = 0	w = 1	Output
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_I	Y_2	Y_I
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_2	y_I	Z
0	0	
0	1	
1	0	
1	1	

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next s		
state	w = 0	Output	
<i>y</i> 2 <i>y</i> 1	Y_2Y_1 Y_2Y_1		Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_I	Y_2	Y_I
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

			1
Present	Next s		
state	w = 0	w = 1	Output
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d
01 10	00 00	10 10	1

w	y_2	y_I	Y_2	Y_I
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_2	y_1	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

	1		
Present	Next s		
state	w = 0	w = 1	Output
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w		y_2	y_I	Y_2	Y_I
0		0	0	0	
0		0	1	0	
0		1	0	0	
0	Ī	1	1	d	
1		0	0		
1		0	1		
1	1	1	0		
1	1	1	1		

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Dungant	Next s		
Present state	w = 0	Output	
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Z	
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_I	Y_2	Y_I
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

			D.	
Present	Next s	Next state		
state	w = 0	w = 1	Output	
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	Z	
00	00	01	0	
01	00	10	0	
10	00	10	1	
11	dd	dd	d	

w	y_2	y_I	Y_2	Y_I
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_2	y_1	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next s	tate	
state	w = 0	w = 1	Output
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_I	Y_2	Y_I
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_2	y_1	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next s		
state	w = 0	Output	
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1 Y_2Y_1		Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_I	Y_2	Y_I
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

Present	Next s		
state	w = 0 $w = 1$		Output
<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	Z
00	00	01	0
01	00	10	0
10	00	10	1
11	dd	dd	d

w	y_2	y_I	Y_2	Y_{I}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_2	y_1	Z
0	0	0
0	1	0
1	0	1
1	1	d

Note that the textbook draws these K-Maps differently from all previous K-maps (the least significant bits index the columns, instead of the most significant bits).

y_1 y_2y_1						
w	00	01	11	10		
0	0	0	d	0		
1	1	0	d	0		

$$Q(t) = y_2 y_1 \text{ and } Q(t+1) = Y_2 Y_1$$

w	y_2	y_I	Y_2	Y_I
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_2	y_I	Z
0	0	0
0	1	0
1	0	1
1	1	d

Don't care conditions simplify the combinatorial logic

$$\begin{bmatrix} z & y_1 & & & & & \\ y_2 & 0 & 1 & & & \\ & 0 & 0 & 0 & & \\ & 1 & 1 & d & & \\ \end{bmatrix}$$

Ignoring don't cares

$$Y_1 = w\overline{y_1}\overline{y_2}$$

$$Y_2 = wy_1\overline{y}_2 + \overline{w}y_1y_2$$

$$z = \overline{y}_1 y_2$$

Using don't cares

$$Y_1 = w\overline{y_1}\overline{y_2}$$

$$Y_2 = wy_1 + wy_2$$
$$= w(y_1 + y_2)$$

$$z = y_2$$

[Figure 6.7 from the textbook]

[Figure 6.8 from the textbook]

[Figure 6.8 from the textbook]

Finally, we add a reset signal.
When it is equal to zero it puts the machine back to its start state, which is state 00 in this case.

[Figure 6.8 from the textbook]

Finally, we add a reset signal.

When it is equal to zero it puts the machine back to its start state, which is state 00 in this case.

[Figure 6.8 from the textbook]

[Figure 6.9 from the textbook]

Summary: Designing a Moore Machine

- Obtain the circuit specification
- Derive a state diagram
- Derive the state table
- Decide on a state encoding
- Encode the state table
- Derive the output logic and next-state logic
- Draw the Circuit Diagram
- Add a reset signal

An Alternative State Encoding For Example #1

A Better State Encoding

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	C	1

Suppose we encoded our states another way:

$$A \sim 00$$

$$B \sim 01$$

We will call y_1 and y_2 the present state variables.

We will call Y_1 and Y_2 the next state variables.

Two zeros on the output JOINTLY represent state A.

This flip-flop output pattern represents state B.

This flip-flop output pattern represents state C.

What does this flip-flop output pattern represent?

This would be state D, but we don't have one in this example. So this is an impossible state.

A Better State Encoding

Present	Next	Output	
state	w = 0	w = 1	2
A	A	В	0
В	A	C	0
C	A	C	1

Suppose we encoded our states another way:

$$A \sim 00$$

$$B \sim 01$$

A Better State Encoding

Present	Next	Output	
state	w = 0	w = 1	z
A	A	В	0
В	A	C	0
C	A	C	1

$A \sim 00$	
$B \sim 01$	
C ~ 11	

Present	Next state	
state	w = 0 $w = 1$	Output
		Z

A Better State Encoding

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	C	1

	Present	Next			
	state	w = 0	Output		
	<i>y</i> 2 <i>y</i> 1	$Y_2 Y_1$	Y_2Y_1	Z	
A	00	00	01	0	
В	01	00	11	0	
\mathbf{C}	11	00	11	1	
	10	dd	dd	d	

Let's Derive the Logic Expressions

	Present	Next				
	state	w = 0	Output			
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z		
A	00	00	01	0		
В	01	00	11	0		
C	11	00	11	1		
	10	dd	dd	d		

Let's Derive the Logic Expressions

Warning: This table does not enumerate y_2y_I , in the standard way, so be careful when filling out the K-Map.

A B C

Present	Next		
state	w = 0	Output	
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Z	
00	00	01	0
01	00	11	0
11	00	11	1
10	dd	dd	d

Let's Derive the Logic Expressions

Warning: This table does not enumerate y_2y_1 , in the standard way, so be careful when filling out the K-Map.

A B C

Present	Next			
state	w = 0	Output		
<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Z		
00	00	01	0	
01	00	11	0	
11	00	11	1	
10	dd	dd	d	

$$Y_2(w, y_2, y_1) = wy_1$$

$$Y_1(w, y_2, y_1) = w$$

$$\begin{bmatrix} z & y_1 & & & & & \\ y_2 & & 0 & 1 & & & \\ & 0 & 0 & 0 & & & \\ & 1 & d & 1 & & & \\ \end{bmatrix}$$

$$z(y_2, y_1) = y_2$$

Original State Encodings

New State Encodings

The New and Improved Circuit Diagram

[Figure 6.17 from the textbook]

Main Idea

Different state assignments of the same Moore machine generally lead to different circuits.

Some may be better than others.

Example #2

Register Swap Controller

Register Swap Controller

Design a Moore machine control circuit for swapping the contents of registers R1 and R2 by using R3 as a temporary.

State Diagram

[Figure 6.11 from the textbook]

These are the original values of the 8-bit registers

For clarity, only inputs that are equal to 1 will be shown.

State Diagram

[Figure 6.11 from the textbook]

Some Questions

How many flip-flops are we going to use?

How many logic expressions do we need to find?

Present	Next	t state	Outputs						
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A									
В									
C									
D									

Present	Next	state	Outputs						
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	A	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

As we saw before, we can expect that some state encodings will be better than others.

We will consider three encoding schemes.

Encoding #1: A=00, B=01, C=10, D=11

(Uses Two Flip-Flops)

Present	Next	tstate	Outputs							
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
A	Α	В	0	0	0	0	0	0	0	
В	C	C	0	0	1	0	0	1	0	
C	D	D	1	0	0	1	0	0	0	
D	A	A	0	1	0	0	1	0	1	

State-Assigned Table

Present	Next	state	Outputs							
state	w = 0	w = 1	Outputs							
y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	$R3_{in}$	Done	

A

Present	resent Next state Outputs								
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	Α	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State Assigned Table

	Present	Next	state	Outputs						
	state	w = 0	w = 1				Outputs	.		
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00									
В	01									
C	10									
D	11									

Present	Next	tstate	Outputs								
state	w = 0	w = 1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done		
A	Α	В	0	0	0	0	0	0	0		
В	C	C	0	0	1	0	0	1	0		
C	D	D	1	0	0	1	0	0	0		
D	A	A	0	1	0	0	1	0	1		

State Assigned Table

Present	Next	state	Outputs							
state	w = 0	w = 1	Outputs							
y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
00	00	0 1								
01	10	10								
10	11	1 1								
11	00	0 0								

A

В

Present	Next	tstate	Outputs							
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
A	Α	В	0	0	0	0	0	0	0	
В	C	C	0	0	1	0	0	1	0	
C	D	D	1	0	0	1	0	0	0	
D	A	A	0	1	0	0	1	0	1	

State Assigned Table

Present	Nex	t state	Outputs							
state	w = 0	w = 1								
y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	$R3_{in}$	Done	
00	00	0 1	0	0	0	0	0	0	0	
01	10	10	0	0	1	0	0	1	0	
10	11	1 1	1	0	0	1	0	0	0	
11	00	0 0	0	1	0	0	1	0	1	

В

D

	Present	Next	state	Outputs						
	state	w = 0	w = 1	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	0	1	0	0	1	0	1

y_2	y_1	w	Y_2	Y_I
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Let's derive the next-state expressions

	Present	Next	tstate	Outputs						
	state	w = 0	w = 1	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	0	1	0	0	1	0	1

y_2	y_1	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Present	Next	state		Outouta							
state	w = 0	w = 1	Outputs								
y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done		
00	00	0 1	0	0	0	0	0	0	0		
01	10	10	0	0	1	0	0	1	0		
10	11	1 1	1	0	0	1	0	0	0		
11	00	0 0	0	1	0	0	1	0	1		

y_2	y_I	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

	Present	Next	tstate	Outputs						
	state	w = 0	w = 1							
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	0	1	0	0	1	0	1

y_2	y_I	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Y_1 y_2y	1			
w	00	01	11	10
0	0	0	0	1
1	1	0	0	1

Present	Next	state		Outeuta							
state	w = 0	w = 1		Outputs							
y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done		
00	00	0 1	0	0	0	0	0	0	0		
01	10	10	0	0	1	0	0	1	0		
10	11	1 1	1	0	0	1	0	0	0		
11	00	0 0	0	1	0	0	1	0	1		

y_2	y_I	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Present	Next	state		Ontonto							
state	w = 0	w = 1		Outputs							
y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done		
00	00	0 1	0	0	0	0	0	0	0		
01	10	10	0	0	1	0	0	1	0		
10	11	1 1	1	0	0	1	0	0	0		
11	00	0 0	0	1	0	0	1	0	1		

y_2	y_I	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

A

B C

D

$$Y_1 = w\bar{y}_1 + \bar{y}_1 y_2$$

$$Y_2 = y_1 \bar{y}_2 + \bar{y}_1 y_2$$

	Present	Next	tstate	Outputs						
	state	w = 0	w = 1							
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	0	1	0	0	1	0	1

y_2	y_1	R1 _{out}	R1 _{in}	$R2_{out}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions

	Present	Next	state	Outputs						
	state	w = 0	w = 1							
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	$\mid 0 \mid$	0	1	$\mid 0 \mid$	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	$oxed{0}$	1	0	0	1	0	1

y_2	y_1	R1 _{out}	RI_{in}	$R2_{out}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions

We need to derive only these 3 unique ones

	Present	Next	state	Outputs						
	state	w = 0	w = 1	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	1 0	$\mid 0 \mid$	0	1	$\mid 0 \mid$	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	$oxed{0}$	1	0	0	1	0	1

y_2	y_I	$R1_{out}$	R1 _{in}	$R2_{out}$
0	0	0	0	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

	Present	Next	state	Outputs						
	state	w = 0	w = 1							
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	1 0	$\mid 0 \mid$	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	$oxed{0}$	1	0	0	1	0	1

y_2	y_I	RI_{out}	R1 _{in}	$R2_{out}$
0	0	0	0	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

R1_{out} = R2_{in} =
$$\overline{y}_1 y_2$$

R1_{in} = R3_{out} = Done = $y_1 y_2$
R2_{out} = R3_{in} = $y_1 \overline{y}_2$

Present	Next	state	Outputs							
state	w = 0	w = 1	Outputs							
y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
00	00	0 1	0	0	0	0	0	0	0	
01	10	10	0	0	1	0	0	1	0	
10	11	1 1	1	0	0	1	0	0	0	
11	00	0 0	0	1	0	0	1	0	1	

	Present	Next	state	Outputs						
	state	w = 0	w = 1							
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	0	1	0	0	1	0	1

Encoding #2: A=00, B=01, C=11, D=10

(Also Uses Two Flip-Flops)

Present	Next	t state		Outputs							
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done		
A	Α	В	0	0	0	0	0	0	0		
В	C	C	0	0	1	0	0	1	0		
C	D	D	1	0	0	1	0	0	0		
D	A	A	0	1	0	0	1	0	1		

State-Assigned Table

Present	Next	state	Outputs R1 _{out} R1 _{in} R2 _{out} R2 _{in} R3 _{out} R3 _{in} Done						
state	w = 0	w = 1							
y_2y_1	Y_2Y_1	Y_2Y_1							

В

Present	Next	tstate	Outputs								
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done		
A	Α	В	0	0	0	0	0	0	0		
В	C	C	0	0	1	0	0	1	0		
C	D	D	1	0	0	1	0	0	0		
D	A	A	0	1	0	0	1	0	1		

State-Assigned Table

	Present	Next	t state	Outputs						
	state	w = 0	w = 1	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00									
В	01									
C	11									
D	10									

Present	Next	state	Outputs								
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done		
A	Α	В	0	0	0	0	0	0	0		
В	C	C	0	0	1	0	0	1	0		
C	D	D	1	0	0	1	0	0	0		
D	A	A	0	1	0	0	1	0	1		

State-Assigned Table

	Present	Next	state	Outputs						
	state	w = 0	w = 1							
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
$A \mid$	00	00	0 1							
В	01	11	1 1							
C	11	10	10							
D	10	00	0 0							

Present	Next	state							
state	w = 0	w = 1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	Α	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present	Next	state				_			
	state	w = 0	w = 1				Outputs	5		
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	11	1 1	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	0 0	0	1	0	0	1	0	1

	Present	Next	t state								
	state	w = 0	w = 1	Outputs							
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
A	00	00	0 1	0	0	0	0	0	0	0	
В	01	11	1 1	0	0	1	0	0	1	0	
C	11	10	10	1	0	0	1	0	0	0	
D	10	00	0 0	0	1	0	0	1	0	1	

y_2	y_1	w	Y_2	Y_I
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Let's derive the next-state expressions

	Present	Next	state	Outputs R1 _{out} R1 _{in} R2 _{out} R2 _{in} R3 _{out} R3 _{in} Done							
	state	w = 0	w = 1								
	y_2y_1	Y_2Y_1	Y_2Y_1								
	00	00	0 1	0	0	0	0	0	0	0	
,	01	11	1 1	0	0	1	0	0	1	0	
,	11	10	10	1	0	0	1	0	0	0	
, [10	00	0 0	0	1	0	0	1	0	1	

y_2	y_1	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	0

	Present	Next	state	Outouta						
	state	w = 0	w = 1	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	11	1 1	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	0 0	0	1	0	0	1	0	1

y_2	y_I	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	0

	Present	Next	state	Outputs							
	state	w = 0	w = 1								
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
.	00	00	0 1	0	0	0	0	0	0	0	
	01	11	1 1	0	0	1	0	0	1	0	
	11	10	10	1	0	0	1	0	0	0	
· [10	00	0 0	0	1	0	0	1	0	1	

y_2	y_I	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	0

	Present	Next	tstate	Outputs						
	state	w = 0	w = 1							
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	11	1 1	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	0 0	0	1	0	0	1	0	1

y_2	y_I	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	0

	Present state	Next $w = 0$	v = 1		Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
_	00	00	0 1	0	0	0	0	0	0	0	
	01	11	1 1	0	0	1	0	0	1	0	
	11	10	10	1	0	0	1	0	0	0	
)	10	00	0 0	0	1	0	0	1	0	1	

y_2	y_I	w	Y_2	Y_I
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	0

$$Y_1 = w\overline{y}_2 + y_1\overline{y}_2$$

$$y_2$$
 y_2y_1
 $00 \quad 01 \quad 11 \quad 10$
 $0 \quad 0 \quad 1 \quad 1 \quad 0$
 $1 \quad 0 \quad 1 \quad 1 \quad 0$

$$Y_2 = y_1$$

	Present	Next	tstate							
	state	w = 0	w = 1		Outputs					
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	11	1 1	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	0 0	0	1	0	0	1	0	1

y_2	y_I	R1 _{out}	R1 _{in}	$R2_{out}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions

	Present	Next	state				044-			
	state	w = 0	w = 1		Outputs					
	<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	11	1 1	0	0	1	$\mid 0 \mid$	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	0 0	0	1	0	0	1	0	1

y_2	y_I	R1 _{out}	R1 _{in}	$R2_{out}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions

Once again, we only need to derive these three unique ones.

	Present	Next	state							
	state	w = 0	w = 1	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	11	1 1	$\mid 0 \mid$	0	1	$\mid \mathbf{O} \mid$	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	0 0	$oxed{0}$	1	0	0	1	0	1

	y_2	y_I	$R1_{out}$	R1 _{in}	R2 _{out}
A	0	0	0		
В	0	1	0		
D	1	0	0		
C	1	1	1		

Note that C and D are swapped in the truth table due to the new state encoding that was chosen.

	Present	Next	state							
	state	w = 0	w = 1		Outputs					
	y_2y_1	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	11	1 1	0	0	1	$\mid \mathbf{O} \mid$	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	0 0	0	1	0	0	1	0	1

	y_2	y_I	$R1_{out}$	R1 _{in}	$R2_{out}$
A	0	0	0	0	0
В	0	1	0	0	1
D	1	0	0	1	0
C	1	1	1	0	0

	Present	Next	tstate							
	state	w = 0	w = 1	Outputs						
	<i>y</i> ₂ <i>y</i> ₁	Y_2Y_1	Y_2Y_1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	11	1 1	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	0 0	0	1	0	0	1	0	1

	y_2	y_I	RI_{out}	R1 _{in}	$R2_{out}$
A	0	0	0	0	0
В	0	1	0	0	1
D	1	0	0	1	0
C	1	1	1	0	0

R1_{out} = R2_{in} =
$$y_1 y_2$$

R1_{in} = R3_{out} = Done = $\overline{y_1} y_2$
R2_{out} = R3_{in} = $y_1 \overline{y_2}$

Let's Complete the Circuit Diagram

$$Y_1 = w\overline{y}_2 + y_1\overline{y}_2$$
$$Y_2 = y_1$$

R1_{out} = R2_{in} =
$$y_1 y_2$$

R1_{in} = R3_{out} = Done = $y_1 y_2$
R2_{out} = R3_{in} = $y_1 y_2$

Encoding #3: A=0001, B=0010, C=0100, D=1000

(One-Hot Encoding – Uses Four Flip-Flops)

One-Hot State Encoding

- So far, we have been encoding states in a way that minimizes the number of flip-flops.
- But sometimes we can decrease the complexity of our logic if we encode states more sparsely.

Encoding for State A

Encoding for State B

Encoding for State C

Encoding for State D

Register Swap Controller

Present	Next	tstate				Outputs	.		
state	w = 0	w = 1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	Α	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

Register Swap Controller

Present	Next	t state				Outputs			
state	w = 0	w = 1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	A	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

Let's use four flip-flops and the following one-hot state encoding scheme:

$$A = 0001$$

$$B = 0010$$

$$C = 0100$$

$$D = 1000$$

Present	Next	t state				Outputs			
state	w = 0	w = 1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	Α	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present	Nex	t State	Outputs						
	State	w = 0	w = 1	Outputs						
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
1										

В

Present	Next	t state				Outputs			
state	w = 0	w = 1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	Α	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present	Nex	t State	Outputs						
	State	w = 0	w = 1							
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	0 001									
В	0 010									
C	0 100									
D	1 000									

Present	Next	t state				Outputs			
state	w = 0	w = 1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	Α	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present	Nex	t State							
	State	w = 0	w = 1	Outputs						
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	0 001	0001	0010							
В	0 010	0100	0100							
C	0 100	1000	1000							
D	1 000	0001	0001							

Present	Next	t state				Outputs			
state	w = 0	w = 1	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
A	Α	В	0	0	0	0	0	0	0
В	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present	Nex	t State								
	State	w = 0	w = 1	Outputs							
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
A	0 001	0001	0010	0	0	0	0	0	0	0	
В	0 010	0100	0100	0	0	1	0	0	1	0	
C	0 100	1000	1000	1	0	0	1	0	0	0	
D	1 000	0001	0001	0	1	0	0	1	0	1	

Let's Derive the Next-State Expressions

	Present	Nex	t State								
	State	w = 0	w = 1	Outputs							
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
	0 001	0001	0010	0	0	0	0	0	0	0	
3	0 010	0100	0100	0	0	1	0	0	1	0	
7	0 100	1000	1000	1	0	0	1	0	0	0	
)	1 000	0001	0001	0	1	0	0	1	0	1	

Let's Derive the Next-State Expressions

$$Y_1(w, y_4, y_3, y_2, y_1)$$

 $Y_2(w, y_4, y_3, y_2, y_1)$
 $Y_3(w, y_4, y_3, y_2, y_1)$
 $Y_4(w, y_4, y_3, y_2, y_1)$

We need to do four 5-variable K-maps!

B

	Present	Nex	t State	Outputs							
	State	w = 0	w = 1								
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
	0 001	0001	0010	0	0	0	0	0	0	0	
3	0 010	0100	0100	0	0	1	0	0	1	0	
7	0 100	1000	1000	1	0	0	1	0	0	0	
)	1 000	0001	0001	0	1	0	0	1	0	1	

Let's Derive the Next-State Expressions

$$Y_1(w, y_4, y_3, y_2, y_1) = \overline{wy}_1 + y_4$$

 $Y_2(w, y_4, y_3, y_2, y_1) = wy_1$
 $Y_3(w, y_4, y_3, y_2, y_1) = y_2$
 $Y_4(w, y_4, y_3, y_2, y_1) = y_3$

Or we can be smarter than that ©

	Present State	w = 0	Outputs							
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	R1 _{in}	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done
L	0 001	0001	0010	0	0	0	0	0	0	0
•	0 010 0 100	0100 1000	0100 1000	0	$0 \\ 0$	$\frac{1}{0}$	0 1	0	1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	1 000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Output Expressions

	Present	Next State									
	State	w = 0	w = 1	Outputs							
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
\	0 001	0001	0010	0	0	0	0	0	0	0	
3	0 010	0100	0100	0	0	1	0	0	1	0	
7	0 100	1000	1000	1	0	0	1	0	0	0	
)	1 000	0001	0001	0	1	0	0	1	0	1	

Let's Derive the Output Expressions

We need to do seven 4-variable K-maps!

	Present State	Next State									
		w = 0	w = 1			S					
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
A	0 001	0001	0010	0	0	0	0	0	0	0	
В	0 010	0100	0100	0	0	1	0	0	1	0	
C	0 100	1000	1000	1	0	0	1	0	0	0	
D	1 000	0001	0001	0	1	0	0	1	0	1	

Let's Derive the Output Expressions

R1_{out}(
$$y_4$$
, y_3 , y_2 , y_1) = y_3
R1_{in} (y_4 , y_3 , y_2 , y_1) = y_4
R2_{out}(y_4 , y_3 , y_2 , y_1) = y_2
R2_{in} (y_4 , y_3 , y_2 , y_1) = y_3
R3_{out}(y_4 , y_3 , y_2 , y_1) = y_4
R3_{in} (y_4 , y_3 , y_2 , y_1) = y_2
Done(y_4 , y_3 , y_2 , y_1) = y_4

Or we can be smarter than that by exploiting the one-hot property

	Present State	Next State									
		w = 0	w = 1			S					
	<i>y</i> ₄ <i>y</i> ₃ <i>y</i> ₂ <i>y</i> ₁	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	R1 _{out}	$R1_{in}$	R2 _{out}	R2 _{in}	R3 _{out}	R3 _{in}	Done	
A	0 001	0001	0010	0	0	0	0	0	0	0	
В	0 010	0100	0100	0	0	1	0	0	1	0	
C	0 100	1000	1000	1	0	0	1	0	0	0	
D	1 000	0001	0001	0	1	0	0	1	0	1	

Let's Complete the Circuit Diagram

Questions?

THE END