

Data Sheet

V 1.1 / Oct. 2017

MSM261S4030H0R

I²S digital output MEMS microphone with Multi-modes

购买原装正品请认准-德方电子 免费服务热线: 400-655-8700 深圳总部电话: 0755-28187877 I²S digital output MEMS microphone

GENERAL DESCRIPTION

MSM261S4030H0R is an omnidirectional, Top-ported, I²S digital output MEMS microphone. It has high performance and reliability.

MSM261S4030H0R is available in a 4 mm \times 3 mm \times 1.0 mm metal can LGA package. It is SMT compatible with no sensitivity degradation.

APPLICATIONS

- ♦ Mobile Phone
- ♦ Laptop
- ♦ Tablet computer
- ♦ Bluetooth headset
- ♦ Earphone
- ♦ Wearable intelligent equipment

FEATURES

- ♦ Cost effective
- ♦ Low Power mode
- ♦ Digital I²S output
- Compatible with Sn/Pb and Pb-free solder processes
- ♦ RoHS/Halogen free compliant
- ♦ Sensitivity Matching within +/-1dB

PRODUCT VIEW

ABSOLUTE MAXIMUM RATINGS

Parameter	Maximum value	Unit
Supply Voltage	-0.3 to 4.0	V
Sound Pressure Level	140	dB SPL
Mechanical Shock	10,000	g
Temperature Range	-40 to 100	°C
Electrostatic discharge protection	2 (HBM)	kV

SPECIFICATIONS

All data taken at 25°C, Relative Humidity 45±5% L/R pin grounded unless otherwise specified Vdd=1.8V, clock frequency=3.072MHz

vuu-1.6v, clock frequency-3.072ivii12							
	Limits			unit	condition		
	Min.	Nom.	Max.				
Directivity	(Omni directional					
Sensitivity	-27	-26	-25	dB	dBFS @1kHz 1Pa		
Operation voltage	1.6		3.6	٧			
Freq. range	Refer to	the frequency	response	Hz			
Sensitivity loss across supply voltage	No change	No change across the voltage range dB					
Signal to noise ratio	-	61	-	dB	20 kHz bandwidth, A-weighted		
THD	-	0.2	-	%	94dB SPL @1kHz S =Nom, Rload > 2 k		
AOP	-	124	-	dB SPL	10% THD @1kHz S =Nom, Rload > 2 k		
Polarity	Ir	ncreasing sour	nd		Increasing density of 1's		
PSR		-72		dBFS(A)			
Current consumption	-	750	1000	μΑ	Normal mode		
Current consumption	-	400	-	μΑ	Low power mode		
Clock frequency	1.0	3	4.0	MHz	Normal mode		
Clock Hequelicy	150		800	KHz	Low power mode		
Storage temperature	-40	-	100	°C			

TYPICAL FREQUENCY RESPONSE

LOGIC TABLE

	Parameter	Symbol	Min	Max	Unit
Digital	Low Voltage Input(L/R WS, SCK)		0	0.25 × VDD	V
Input	High Voltage VIH 0.7 × VDD		VDD	V	
	Voltage Output Low	VOL		0.1 × VDD	V
	Voltage Output Low	VOL		0.3 × VDD	V
SD	Voltage Output High	VOH	0.7 × VDD		V
Digital	Voltage Output High	VOH	0.9 × VDD		V
Digital	Voltage Output Low	VOL		0.1 × VDD	V
Output	Voltage Output Low	VOL		0.3 × VDD	V
·	Voltage Output High	VOH	0.7 × VDD		V
	Voltage Output High	VOH	0.9 × VDD		V

TIMING DIAGRAM

Parameter	Description	Min.	Norm.	Max.	Unit
tSCH	SCK High		50	_	ns
tSCL	SCK Low	_	50	_	ns
tSCP	SCK Period	_	325	_	ns
fSCK	SCK Frequency		3.072	_	MHz
tWSS	WS Setup		0	_	ns
tWSH	WS Hold		20	_	ns
fWS	WS Frequency	_	48	_	kHz

SMT Parameters:

1. Recommend PCB land pattern layout: (unit: mm)

2. Recommend reflow profile:

Description	Parameter	Pb free
Average ramp rate	T _L to T _P	3 °C/sec max
Preheat		
Minimum temperature	T _{SMIN}	150 °C
Maximum temperature	T _{SMAX}	200 °C
Time(T _{SMIN} to T _{SMAX})	t _s	60 sec to 120 sec
Ramp-up rate	T _{SMAX} to T _L	1.25 °C/sec
Time maintained above liquidus temperature	t _L	60 sec to 150 sec
Liquidus temperature	T _L	217 °C
Peak temperature	T _P	260 °C
Time within 5°C of actual peak temperature	t _P	20 sec to 40 sec
Ramp-down rate	T _P to T _{smax}	6 °C/sec max
Time 25 °C (t25 °C) to peak temperature	t	8 minutes max

OUTLINE DIMENSIONS AND PIN DEFINITION:

TOP VIEW	SIDE VIEW
----------	-----------

1	GND	Ground	Connect to ground on the PCB.
2	N/C	_	Do not connect
3	WS	Input	Serial Data-Word Select for I ² S Interface.
4	CHIPEN	Input	Microphone Enable. When set low (ground), the microphone is disabled and put in power-down mode. When set high (VDD), the microphone is enabled.
5	L/R	Input	Left/Right Channel Select. When set low, the microphone outputs its signal in the left channel of the I ² S frame; when set high, the microphone outputs its signal in the right channel.
6	SCK	Input	Serial Data Clock for I ² S Interface.
7	SD	Output	Serial Data Output for I^2 S Interface. This pin tristates when not actively driving the appropriate output channel. The SD trace should have a 100 k Ω pull-down resistor to discharge the line during the time that all microphones on the bus have tristated their outputs.
8	VDD	Power	1.8 to 3.3 V. This pin should be decoupled to Pin 1 with a 0.1 μF capacitor and a 10 μF capacitor.

ltem	Dimension	Tolerance
Length (L)	4.0	±0.10
Width (W)	3.0	±0.10
Height (H)	1.25	±0.10
Acoustic Port (AP)	Ø0.65	±0.05

Dimensions are in millimeters

Tolerance is ± 0.1 mm unless otherwise specified.

ADDITIONAL NOTES

- (A) MSL (moisture sensitivity level) Class 2a.
- (B) Maximum of 3 reflow cycles is recommended.
- (C) In order to minimize device damage:

Do not board wash or clean after the reflow process.

Do not brush board with or without solvents after the reflow process.

Do not directly expose to ultrasonic processing, welding, or cleaning.

Do not insert any object in port hole of device at any time.

Do not apply air pressure into the port hole.

Do not pull a vacuum over port hole of the microphone.

MATERIALS STATEMENT

Meets the requirements of the European RoHS and Halogen-Free.

PACKAGING & MARKING DETAIL:

Direction of Feed

ITEM	W	E	F	ØD0	K0
DIM(mm)	12.00±0.30	1.75±0.10	5.50±0.10	1.500+0.10	1.35±0.10
ITEM	P0	10P0	P1	A0	В0
DIM(mm)	4.00±0.10	40.00±0.20	8.00±0.10	4.30±0.10	3.30±0.10
ITEM	P2	Т			
DIM(mm)	2.00±0.10	0.25±0.05			

Note:

- 1) Dimensions are in mm;
- 2) Don't put the vacuum suction nozzle alignment the port hole;
- 3) Tape &Reel Per EIA-481 standard;
- 4) Label applied to external package and direct to reel;
- 5) Static voltage <100V;

Model Number	Reel Diameter	Quantity Per Reel	
MSM261S4030H0R	13 inch	5700	

RECOMMENDED INTERFACE CIRCUIT:

I²S DATA INTERFACE

The serial data is in slave mode I²S format, which has 24-bit depth in a 32 bit word. In a stereo frame there are 64 SCK cycles, or 32 SCK cycles per data-word. When L/R=0, the output data in the left channel, while L/R=Vdd, data in the right channel. The output data pin (SD) is tri-stated after the LSB is output so that another microphone can drive the common data line.

Data Word Length

The output data-word length is 24 bits per channel. The Mic must always have 64 clock cycles for every stereo data-word (fSCK = $64 \times fWS$).

Data-Word Format

The default data format is I2S, MSB-first. In this format, the MSB of each word is delayed by

one SCK cycle from the start of each half-frame.

RELIABILITY SPECIFICATIONS

Test	Description
Thermal Shock	100 cycles air-to-air thermal shock from -40°C to +125°C with 15 minute soaks. (IEC 68-2-4)
High Temperature Storage	1,000 hours at +105°C environment (IEC 68-2-2 Test Ba)
Low Temperature Storage	1,000 hours at -40°C environment (IEC 68-2-2 Test Aa)
Reflow	5 reflow cycles with peak temperature of +260°C
ESD-HBM/LID-GND	3 discharges of ±2 kV direct contact to I/O pins. (MIL 883E, Method 3015.7)& 3 discharges of ±8 kV direct contact to lid while unit is grounded. (IEC 61000-4-2)
Vibration	4 cycles of 20 to 2,000 Hz sinusoidal sweep with 20 G peak acceleration lasting 12 minutes in X, Y and Z directions. (Mil-Std-883E, Method 2007.2 A)
Mechanical Shock	3 pulses of 10,000 G in the X, Y and Z direction (IEC 68-2-27, Test Ea)
High Temperature Bias	1,000 hours at +105°C under bias (IEC 68-2-2 Test Ba)
Low Temperature Bias	1,000 hours at -40°C under bias (IEC 68-2-2 Test Aa)
Temperature/Humidity Bias	1,000 hours at +85°C/85% R.H. under bias. (JESD22-A101A-B)
Drop Test	To be no interference in operation after dropped to 1.0cm steel plate 18 times from 1.5 meter height

NOTE: Sensitivity should vary within ± 3 dB from initial sensitivity. (The measurement to be done after 2 hours of conditioning at 20 ± 2 °C, R.H 60% \sim 70%)

MSM261S4030H0R

I²S digital output MEMS microphone

Revision	Subjects (major changes since last revision)	Date
0.8	Preliminary Edition	2017-02-14
1.0	Initial release	2017-05-02
1.1	Update packaging detail	2017-10-24

公司销售、技术支持联系方式

For English:

MEMSensing Microsystems(Suzhou, China)

Co. Ltd.

No. 99 Jinji Lake Avenue, Bldg. NW-09, Suite 501

Suzhou Industrial Park, China 215123

Phone: +86 512 62956055

Fax: +86 512 62956056

(http://www.memsensing.com)

苏州敏芯微电子技术股份有限公司

MEMSensing Microsystems (Suzhou, China) Co., Ltd.

中文用户:

苏州敏芯微电子技术股份有限公司

苏州工业园区金鸡湖大道 99 号, NW-09 楼, 501 室

中国 215123

电话: +86 512 62956055

传真: +86 512 62956056

<u>Disclaimer</u>: specifications and characteristics are subject to change without notice. MEMSensing Microsystems Co. Ltd. assumes no liability to any customer, licensee or any third party for any damages or any kind of nature whatsoever related to using this technical data.