OTIC FILE COPY

AD-A202 007

AFWAL-TR-87-2042 Volume VI

PRODUCTION OF JET FUELS FROM COAL DERIVED LIQUIDS

VOL VI - Preliminary Analysis of Upgrading Alternatives For The Great Plains Liquid By-Product Streams

Amoco Oil

- B. A. FLEMING
- J. D. FOX
- M. W. FURLONG
- J. G. MASIN
- L. P. SAULT
- D. F. TATTERSON

Lummus Crest

- L. L. FORNOFF
- M. A. LINK
- E. STAHLNECKER
- K. TORSTER

AMOCO OIL COMPANY RESEARCH AND DEVELOPMENT P. O. BOX 400 NAPERVILLE, IL 60566

SEPTEMBER 1988

INTERIM REPORT FOR THE PERIOD MARCH 1987 - FEBRUARY 1988

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

AERO PROPULSION LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6563

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/CPA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

WILLIAM E. HARRISON III

Project Engineer

Fuels Branch

CHARLES L. DELANEY, Chief

Fuels Branch

Fuels and Lubrication Division

FOR THE COMMANDER

BENITO P. BOTTERI, Asst Chief Fuels and Lubrication Division

Mero Propulsion Laboratory
"If your address has changed.

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFWAL/POSF, Wright-Patterson AFB, Ohio 45433-6563 to help us maintain a current mailing list."

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

	CLASSI.			
(FAILE)	7 PLACEIE	CATION	OF 1	LIC DAZE

	SSIFICATION		OCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188
_	CURITY CLASS	IFICATION		1b. RESTRICTIVE	MARKINGS		
2a. SECURITY	CLASSIFICATIO	N AUTHORITY			/AVAILABILITY O		
N/A 2b. DECLASSIF	ICATION / DOW	NGRADING SCHEDU	LE		for Public tion is Unli		²;
N/A	IG OPGANIZAT	ION REPORT NUMBE	D/S\	S MONITORING	ORGANIZATION R	EPORT NU	MRER(S)
	ONOAMEA!	TOTAL NET ON THOMBE	N(3)		OHOAHILAHO!		
N/A	PERFORMING	ORGANIZATION	6b. OFFICE SYMBOL		-87-2042 V ONITORING ORGA	OL VI	
			(If applicable)	Air Force	Wright Aer	onautio	
	Oil Compa City, State, an		N/A		oulsion Lab		/POSF)
	Box 400	d zir code)	ı	· ·	itterson ARB		
Naperv	ille, IL	60566	İ	45433-656		,	
8a. NAME OF ORGANIZA	FUNDING / SPC	NSORING	8b. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT ID	ENTIFICAT	ION NUMBER
ORGANIZA	(TION		(If applicable)	FY 1455-8	R6-NO657		
8c. ADDRESS (City, State, and	ZIP Code)			UNDING NUMBER	RS .	
	-			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
			!	63216F	2480	100	
	ude Security C						
Produc	tion of J	et Fuels from	Coal Derived Li r the Great Plai	quids - Vol	VI - Preli	minary	Analysis
12. PERSONAL		ternatives io	the Great Plai	ps Liquids i	y-Product S	treams	
		J. D. Fox, M.	W. Furlong J.	g. Masin, L.	P. Sault,	D. F. 7	latterson `
13a. TYPE OF		13b. TIME CO	, ,	14. DATE OF REPO		Day) 15.	``
Interi	M NTARY NOTAT	FROM 3/8	37 to <u>2/88</u>	1988 Septe	mber		310
TO. SOFFEEINE	MIARI NOIA		1				1
None						7.74	
TIA FIELD	GROUP	SUB-GROUP	18 SUBJECT TERMS (C Turbine Fue				oy block number) iel, Great Plains
21	21	07					na, Tar Oil,
, Q	05	03		ramming, Eco	nomics - (N	m-1	\subseteq
			and identify by block no leveloped seven		oradina hv_	nroduct	t liquide
from t	he Great	Plains Coal Ga	sification plan	t to jet fue	els, and in	several	of the cases,
			on to jet fuels.				
The an	alvsis she	ows that the v	various grades o	f iet fuel c	an he nrodu	ced fro	om the
			economically.				
do hav	e the pote	ential to sign	ificantly incre	ase (on the	order of \$1	0-15 mi	lllion/year)
the ne	t revenues	s at Great Pla	iins by producin hese chemicals,	g chemicals,	especially	cresyl	lic acid, cresol,
profit	s can be	generated ever	when oxygenate	d chemical s	ales are li	nited t	to 10 percent of
the U.	S. market	. Another con	cern is that wh	ile commerci	al processe	s exist	to extract
	ic mixture ic stream		esses have not	been demonst	rated with	the Gre	at Plains
20 DISTRIBILIT	ION / AVAII API	LITY OF ABSTRACT		21 ARSTRACT CE	CURITY CLASSIFIC	ATION	
■ UNCLASS	IFIED/UNLIMIT	ED SAME AS R	PT. DTIC USERS	Unclassif			
22a NAME OF				22b. TELEPHONE (
W111181	n E. Harri	ROU III		513-255-			AL/POSF

SECURITY CLASSIFICATION OF UNCLASSIFIED

SUMMARY

Amoco and Lummus Crest are contracted with DOE to develop an upgrading scheme for the liquid by-products (tar oil, phenols, and naphtha) produced by the Great Plains gasifiers. These streams are currently burned in the utility boilers and steam superheaters in the Great Plains plant. Task l of the contract is complete and the results are reported here. The objective of this task is to develop preliminary economics for seven different upgrading schemes with product slates ranging from maximum jet fuel (JP-4, JP-8, and JP-8X) production to chemical production (cresylic acid, phenol, cresol, xylenol, benzene, toluene, and xylene). A linear program has been developed to evaluate the various upgrading alternatives.

The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However, the phenolic and naphtha streams do have the potential to significantly increase (on the order of \$10-15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to ten percent of the U. S. market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream.

The revenues from chemical sales are sufficient to subsidize the production of jet fuel from the tar oil stream. The economics for these cases are very sensitive to the cost of the replacement fuel for the utility boilers. Replacement fuel costs cannot exceed approximately \$3.00/million Btu if a ten percent real rate of return is to be realized on the capital invested in the upgrading plant.

It should be stressed that these results are preliminary. Numerous assumptions, which need to be verified in subsequent tasks or additional projects, have been made in arriving at the above conclusions.

FOREWORD

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, commenced an investigation of the potential for production of jet fuel from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant located in Buelah, North Dakota. Funding was provided to the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This report details the effort of AMOCO 011 Company, who as a contractor to DOE (DOE Contract Number DE-AC22-87PC90015), conducted a preliminary analysis of upgrading alternatives for the production of turbine fuels from the Great Plains liquid by-product streams. DOE/PETC was funded through Military Interdepartmental Purchase Request (MIPR)—FY1455-86-N0657. Mr. William E. Harrison III was the Air Force Program Manager, Mr. Gary Stiegel was the DOE/PETC Program Manager, and Drs. Bruce Fleming and Mark Furlong were the AMOCO Program Managers.

DISCLAIMER

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trade name, mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

TABLE OF CONTENTS

Secti	<u>on</u>	Page
I.	INTRODUCTION	1
II.	PROJECT OVERVIEW	2
III.	SOURCE OF BY-PRODUCT LIQUIDS	6
IV.	TASK 1 RESULTS	8
	1. Subtask 1.1 By-Product Anaylsis	8
	a. Tar Oil	8
	b. Phenols	12
	c. Naphtha	17
	2. Subtask 1.2 Process Modeling and Design	17
	a. Technical Approach	21
	b. Process Design and Cost Estimate	45
	3. Subtask 1.3 Economic Analysis	48
	a. Assumptions and Basis	48
	b. Economic Results	50
	c. Sensitivities	53
	d. Hydrogen Cost	56
	e. Effect of Oxygenated Chemical Market Size	56
v.	SUMMARY AND CONCLUSIONS	64
VI.	RECOMMENDATIONS	66
	REFERENCES	68
	APPENDICES	
	A. SATURATION KINETICS	A-1

TABLE OF CONTENTS (Concluded)

Section		Page
APPENDICES		
B. CASE 1	- MAXIMUM JP-4 PRODUCTION	B-1
C. CASE 2	- PROFITABLE JP-4 PRODUCTION	C-1
D. CASE 3	- MAXIMUM JP-8 PRODUCTION	D-1
E. CASE 4	- PROFITABLE JP-8 PRODUCTION	E-1
F. CASE 5	- PROFITABLE JP-8X PRODUCTION	F-1
G. CASE 6	- PROFITABLE JP-8X PRODUCTION	G-1
H CASE 7	- MAYIMIM PROFIT	H-1

LIST OF ILLUSTRATIONS

Figure		Page
1	Production of Jet Fuel from Coal-Derived Liquids: Amoco/Lummus Activities	3
2	Subtask 1.2: Process Modeling and Design Case Summary	4
3	Great Plains Gasification Process Block-Flow Diagram	7
4	Great Plains Coal Liquids Upgrading Tar Oil Distillation Results	9
5	Great Plains Coal Liquids Upgrading Simulated Distillation Results Before/After 4-Weeks Storage at 150°F	14
6	Great Plains Coal Liquids Upgrading Phenols Distillation Results	16
7	Great Plains Coal Liquids Upgrading Naphtha Distillation Results (Method ASTM-D-86)	20
8	Linear Program Flowsheet for Great Plains By-Product Refining	25
9	Block Flow Diagram: Great Plains Case 1: Maximum JP-4 Production	31
10	Block Flow Diagram: Great Plains Case 1: LP Maximum JP-4 Production	32
11	Block Flow Diagram: Great Plains Case 1: LP Maximum JP-4 Production	35
12	Block Flow Diagram: Great Plains Case 3: LP Maximum JP-8 Production	36
13	Block Flow Diagram: Great Plains Case 5: Maximum JP-8X Production	37
14	Block Flow Diagram: Great Plains Case 5: LP Maximum JP-8X Production	38
15	Great Plains Liquid By-Products Use Case 7:	39

LIST OF ILLUSTRATIONS (Concluded)

Figure		Page
16	Great Plains Liquid By-Products Use Case 2: Profitable JP-4 Case	41
17	Great Plains Liquid By-Product Use Case 4: Profitable JP-8 Case	43
18	Great Plains Liquid By-Product Use Case 6: Profitable JP-8X Case	46
19	Maximum Jet Fuel Cases: Effect of Fuel Price	55
20	Cases with JP-4: Effect of Fuel Price	57
21	Profitable Cases: Effect of Fuel Price	58
22	Maximum Profit Case: Effect of Chemicals Sale	60
23	Great Plains Liquid By-Products Use With No Cresols or Cresylic Acids	62
24	Maximum Profit Case: Chem Process Alternatives	63

LIST OF TABLES

Table		Page
1	Great Plains Coal Liquids Upgrading; Feedstock CharacterizationTar Oil	10
2	Great Plains Coal Liquids Upgrading; Tar Oil Bench-Scale Distillation Results	13
3	Great Plains Coal Liquids Upgrading; Feedstock CharacterizationPhenols	15
4	Great Plains Coal Liquids Upgrading; Feedstock CharacterizationNaphtha	18-19
5	Process Blocks Included in Linear Program Simulation of Great Plains Liquids Upgrading	24
6	Cost and Price Bases and Assumptions	28
7	Product Specifications	29
8	Comparison of Maximum Jet Fuel Cases with LP Solutions	33
9	Great Plains Liquid By-Products Case Summary	42
10	Summary of Process Design and Cost Estimates	47
11	Great Plains Investment and Utilities Summary	51
12	Great Plains Economics Summary	52
13	Effect of Fuel Prices on Stream Values	54
14	Effect of Hydrogen Cost on Profitability	59

SECTION I

INTRODUCTION

The Great Plains Coal Gasification Plant in Beulah, North Dakota, produces about 145 MM SCF/D of substitute natural gas (SNG) from lignite. The plant also produces three liquid by-products: about 2,900 B/D of tar oil, 830 B/D of crude phenols, and 650 B/D of naphtha. These liquids are all products from the devolatilization of lignite in the Lurgi gasifiers. Currently, the by-products are burned in the plant's boilers and superheaters to produce steam. The economic viability of the plant might be improved by producing marketable products, rather than steam, from these by-product liquids. To this end, Amoco and Lummus Crest, under a contract with the United States Department of Energy, are investigating the technical and economic feasibility of converting the by-product liquids to jet fuels and other saleable products. Jet fuels are of particular interest because of the close proximity of Great Plains to several U. S. Air Force bases.

SECTION II

PROJECT OVERVIEW

As shown in Figure 1, this project is divided into five major tasks:

Process Concept Definition, Bench Scale Testing, Pilot Plant Testing,

Preliminary Process Design and Economics, and Production Run Recommendation.

The results of the first task are reported here.

The first task, Process Concept Definition, includes three subtasks: Liquid By-product Analysis, Process Modelling and Design, and Economic Modelling. The first of these subtasks (1.1), By-Product Analysis, involves analytical characterizations of samples of each by-product taken at six-week intervals. The results from this program, which provide an indication of the average quality of each stream and the variability of that quality over time, are an important input to the second subtask (1.2), Process Modelling and Design. Other inputs to the second subtask include limited experimental processing data on the Great Plains by-products by the Western Research Institute (WRI), (1) Amoco's petroleum refining process models and linear programming technology, Lummus' process simulation and design programs and a market analysis of by-products from Great Plains developed by Sinor Consultants. (2) In addition, throughout Task 1, ANG Coal Gasification Company provided valuable input and advice on all fronts. The major objective of subtask 1.2 is to produce seven conceptual designs and associated capital and operating costs for facilities to refine the Great Plains by-products. These seven designs are listed in Figure 2. They include designs for maximizing production of each grade of jet fuel (JP-4, JP-8, JP-8X), designs for profitable schemes which produce the various jet fuel grades, and a scheme for maximizing profits. In subtask 1.3 the results generated by Amoco and Lummus are subjected to economic analysis.

The two products from Task 1 are the design and economic results for each of the seven designs and a plan for bench scale testing (Task 2) to confirm any assumptions made in Task 1. Based on the design and economic results from Task 1 and the experimental results from Task 2, the Department of Energy and the Department of Defense will decide on a preferred processing scheme for the

FIGURE 1
PRODUCTION OF JET FUEL
FROM COAL DERIVED LIQUIDS:
AMOCO/LUMMUS ACTIVITIES

THE FOLLOWING DESIGN CASES WILL RESULT FROM ACTIVITIES IN THIS SUBTASK:

CASE	DESCRIPTION
1	MAXIMUM JP-4 PRODUCTION.
2	PROFITABLE PRODUCT SLATE INCLUDING JP-4.
3	MAXIMUM JP-8 PRODUCTION.
4	PROFITABLE PRODUCT SLATE INCLUDING JP-8.
5	Maximum JP-8X production.
6	PROFITABLE PRODUCT SLATE INCLUDING JP-8X.
7	MAXIMUM PROFIT.

NOTE: Cases 2, 4, 6, and 7 REQUIRE LINEAR PROGRAMMING TECHNOLOGY.

FIGURE 2

SUBTASK 1.2: PROCESS MODELING AND DESIGN CASE SUMMARY

Great Plains liquids. Amoco will then carry out pilot plant testing (Task 3) to confirm the process design and to provide barrel quantities of product for testing by the government. The pilot plant results will be used by Amoco and Lummus to develop a preliminary process design (Task 4) for a plant to upgrade the liquid by-products at Great Plains. Finally, in Task 5, Lummus will locate existing facilities where the processing scheme can be carried out on a scale sufficient to provide jet fuel for aircraft testing.

SECTION III

SOURCE OF BY-PRODUCT LIQUIDS

Tar oil, crude phenols, and naphtha are produced at the Great Plains Gasification Plant; a schematic of the plant is shown in Figure 3. The plant currently produces about 145 MMSCFD of synthetic natural gas (SNG) from North Dakota lignite. The SNG is composed almost entirely of methane, which is derived mostly from synthesis gas (H₂ + CO) produced in the Lurgi Mark IV gasifiers and methanated in downstream reactors. Some methane is produced by devolatilization of the coal in the gasifiers. The liquid by-products (tar oil, phenolics, and naphtha) are produced during lignite devolatilization in the gasifiers.

The tar oil and phenolics are condensed from the product gas along with water vapor to form a gas liquor. This condensation takes place in heat exchangers located in the gasifier quench, shift converter, gas cooling, and Rectisol units. The liquor is routed to the gas liquor separation unit, where the tar oil is recovered by gravity separation. The heaviest portion of the tar oil, which contains about 20 percent coal dust, is recycled to the gasifiers. The recycle rate of this "dusty tar" is about 1800 B/D. The remaining tar oil, which contains 2-6 percent dust, is produced at a rate of 2900 B/D. The phenolics are recovered from the gas liquor by extraction with isopropyl ether in the Phenolsolvan unit. The resulting crude phenol stream, which is produced at a rate of about 830 B/D is composed mostly of phenol, cresol, and xylenol, with the remainder being water and neutral oils. The naphtha is condensed from the gasifier raw gas by contacting the stream with cold methanol in the Rectisol unit. The naphtha is produced at a rate of 650 B/D.

)

FIGURE 3. GREAT PLAINS GASIFICATION PROCESS BLOCK FLOW DIAGRAM

SECTION IV

TASK 1 RESULTS

1. Subtask 1.1 By-Product Analysis

Each of the three by-product streams from the Great Plains Coal Gasification Plant have been sampled at six to eight week intervals since May of 1987 to monitor seasonal and operational variations in quality and to characterize them as feedstocks for the processes under consideration. This program will continue until mid-1988. These data, with hydrotreating kinetics results from Task 2, will be utilized in Task 4 to prepare a preliminary design of the proposed commercial upgrading/refining facility, integrated into the existing Great Plains plant.

a. Tar Oil

The tar oil stream is the most viable of the by-product streams as a feedstock for the production of jet fuel. ASTM distillations and analyses characterizing this stream are shown in Figure 4 and Table 1. All distillation results have been obtained according to ASTM Method D-2887 with an aromatic standard, except for one D-86, and one D-1160 corrected to D-86. D-86 and D-1160 results are reported on a volume basis and D-2887 on a weight basis. While volume results cannot be rigorously converted to weight without a density profile of the material, the distillations show fairly constant composition among the samples tested. About 2-6 percent of the material boils at less than 300°F and 8-20 percent boils above 800°F on a weight basis.

Previous analyses at the University of North Dakota Energy Research Center (UNDERC) (3) by Wilson and co-workers showed the tar oil contained 90 to 95 percent aromatics, the remainder being paraffins. WRI's (1) hydrogenation data show that significant amounts of jet fuel can be made from this stream, but only at severe processing conditions (2,000 psig) and high hydrogen

FIGURE 4 GREAT PLAINS COAL LIQUIDS UPGRADING TAR OIL DISTILLATION RESULTS

)

•

GREAT PLAINS COAL LIQUIDS UPGRADING FEEDSTOCK CHARACTERIZATION -- TAR OIL

imple Description:	5/11/87	6/18/87	8/10/87	9/25/87	11/16/87
iter, vt.%	2.04	11.38*	2.30	2.69	1.41
Norides, ppm ctal/organic)	8/4	;	7/7	2.2	1.0
emental Analysis, D	Ory Basis:				
drogen, wt.% drogen, wt.% trogen, ppm ilfur, ppm (yqen, ppm (diff.)	83.83 8.7 8,932 4,083	84.80 9.9 5.495 4,006 43.986	84.50 8.9 6.612 4,094	84,76 8,8 6,813 4,316	84.19 8.7 8,297 4,7308
omic H/C Ratio	1.24	1,38	1.26	· ·	1.23
C NMR, WE. SCA	61.4	: •	;	į	63.8
ecific Gravity scosity, cP @ 25C ur Point, F	6.6 1.025 185.1 70	8.0 1.014	1.019	7.5	7.8
h Oxide, wt. %	0.0	0.1	0.0	0.1	0.0
Itered Solids, wt.	0.25	09.0	1	0.25	.16/.20**
PSD (Microtrac), % <4 microtrac), % <4 microns 4.4-6.6 6.6-9.4 9.4-13 13-19 19-27 >27 mic.rons	17.6 17.6 17.8 17.4 0.8	81 82 7.20 1.00 1.00 1.00	1111111	12.1 13.9 16.8 17.4 8.7	7.6 9.0 13.4 11.0

Contaminated Sample Fresh/Aged 4-WK. @ 150F consumption (3000-4000 SCFB). Most of the hydrogen consumed goes to saturate aromatics to meet jet fuel specifications (less than 25 percent aromatics).

Water may damage hydrotreating catalysts, and the content of hydrotreated products of materials boiling below about 300°F which may be present in jet fuels is limited. Therefore, water, along with pyridines and other heteroatomic materials boiling at less than 300°F, should be removed by distillation before hydrotreating to decrease hydrogen requirements.

Bench-scale distillations of tar oil with and without addition of toluene as an entrainer demonstrated that most of the water can be removed without use of an entrainer, as shown in Table 2.

Storage of the tar oil sample of 11/16/87 for four weeks at 150°F resulted in no significant changes in ASTM distillation and solids content, shown in Figure 5 and Table 1, respectively.

b. Phenols

The phenolic stream is characterized in Table 3. This stream is composed almost entirely of single-ring hydroxyaromatics, as shown by its high oxygen content of 16-20 weight percent. According to WRI, (1) the crude phenol can be easily hydrogenated to produce highly naphthenic JP-4 blendstock, but the hydrogen consumption is very high, around 5,000 SCFB.

Distillation results for the phenol stream, shown in Figure 6, indicate very good agreement among the samples tested. ASTM Method D-86 is used for all phenol samples. The analytical results, listed in Table 3, also show little variability with a hydrogen-to-carbon ratio of 1.21 to 1.24.

As with the tar oil, the 300°F- fraction of the phenolic stream (about 10 percent of the total) should not be hydrotreated because the water may damage catalysts, and the content of low boiling compounds is limited for jet fuel production. The phenolics stream is also stable, as shown by Figure 5.

TABLE 2

GREAT PLAINS COAL LIQUIDS UPGRADING

TAR OIL BENCH-SCALE DISTILLATIONS RESULTS

ME THOO	WATER, WI. %
KARL FISHER ANALYSIS, AS-RECEIVED TAR OIL	1.41
AZEOTROPIC DISTILLATION, TOLUENE	1.28
VACUUM DISTILLATION, NO ENTRAINER	1.21

FIGURE 5 GREAT PLAINS COAL LIQUIDS UPGRADING SIMULATED DISTILLATION RESULTS BEFORE/AFTER 4-WEEKS STORAGE @ 150 F

TABLE 3

)

GREAT PLAINS COAL LIQUIDS UPGRADING FEEDSTOCK CHARACTERIZATION -- PHENOLS

mple Description:	5/11/87	6/18/87	8/10/87	9/25/87	11/16/87
ter, wt.%	ţ	!	5.46	5.86	5.56
lorides, ppm otal/organic)	:	4/5	5/3	8.	~
emental Analysis, Dr	ry Basis:				
rbon, vt.% drogen, vt.%	72.88	72.38	76.76	76.76	75.89
trogen, ppm Jfur, ppm Vgen. ppm (diff.)	7,360 780 189,060	570 197,070	4,870 751 148,593	4,746 914 148,789	4,0% 837 158,503
I	1.24	1.21	1.21	1.21	1.21
C NMR, Wt.%CA	82.6	!	;	:	:
Gravity	1.6	. 7	1.4	0.9	0.1
ecific Gravity scosity, cP @ 25C	15.3	3.0.1	 	Y00.1	0.1
ur Point, F	07-	;	;	:	:

FIGURE 6 GREAT PLAINS COAL LIQUIDS UPGRADING PHENOLS DISTILLATION RESULTS (Method: ASTM D-86)

c. Naphtha

The naphtha stream is characterized by analyses shown in Table 4 and distillation results in Figure 7. Comparison of as-received and caustic-extracted samples shows significant decreases in carbon-to-hydrogen ratio, sulfur, and nitrogen for extracted naphtha. As-received samples contain significant amounts of methanol acetone, and methylethylketone from the Great Plains Rectisol unit, and the presence of thiols, mercaptans, and thiophenes. These produce extremely noxious odors when opened. Resulting safety and environmental concerns have limited the number of naphtha analyses and distillations performed. The boiling range of the naphtha stream is too low to produce significant amounts of jet fuel. Aromatics can be recovered from this stream, but only after hydrotreatment to reduce sulfur and nitrogen levels.

2. Subtask 1.2 Process Modelling and Design

The seven design cases for which conceptual process designs have been developed are listed in Figure 2. The first six cases, which are required by the contract, involve making jet fuel either at maximum production rate or with co-products such that the total product slate is profitable. The seventh case has been added by Amoco as a natural extension of the project. This case drops the requirement of production of jet fuel and produces the most profitable product slate.

TABLE 4

GREAT PLAINS COAL LIQUIDS UPGRADING

FEEDSTOCK CHARACTERIZATION -- NAPHTHA

Sample Description:	5/11/87	5/11/87 Extract	6/18/87	6/18/87 Extract	8/10/87
Water, wt%	0.56	I	0.42	0.11	0.51
Elemental Analysis, Dry Basis:	asis:				
Carbon, wt%	84.22	86.33	84.46	86.30	84.85
Hydrogen, wt%	10.00	9.57	6.97	9.93	9.64
Nitrogen, ppm	2,062	630	2,089 16, 871	1,321	1,970
Oxygen, ppm (diff)	38,365	27,770	36,674	35,459	31,702
Atomic H/C Ratio	1.41	1.32	1.41	1.37	1.40
13C NMR, wt CA	62.9	!	i	ŧ	ł
API Gravity Specific Gravity Viscosity, cP @ 25C	38.9 0.830 0.5	39.5 40.0 0.827 	39.8 0.825 	53.8 0.826 	0.764
PONA Analysis, Liq. Volz					
Paraffins Naphthenes Olefins, noncyc/cy Aromatics	23.1 12.2 64.6	7.4 3.9 14.4/9.7 64.6	8.3 4.5 15.6/7.7 63.9	1111	1111

TABLE 4 (concluded)

GREAT PLAINS COAL LIQUIDS UPGRADING

FEEDSTOCK CHARACTERIZATION -- NAPHTHA

Sa.ple Description:	5/11/87		5/11/87 Extract	6/18/87	6/18/87 Extract	8/10/87
Light Ends, wt%						
į		hommp)				
5	;	!		1	1	c c
C2	:	:		; <u> </u>	ì	
nC3	0	-			ì	0.0
C3.		• 1		0.0	\$ 1	0.0
774	_	֓֞֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		!	1	:
104		7.0		0.1	1	0.1
7 4		0.0		0.0	1	0.0
ו ני		064			0.725	0.886
105	0.158	0.603			0.217	0.259
C5 eve.		080		•	0.175	
75m		007		0.253	ì	0.291
		735		2.046	1	3.003
	3.50/ 4.0	660		2.887	1	2.932
Misc. Components, wt%						
Methanol	2.27		i	7 7.7		
Acetone	6.32		1	/ ** 7	;	1.82
MEK	2 22		i	!	1	i
Renzene	7000		1	I	1	1
	45.62		†	46.04	1	46.30
Twienes (4nc) TB)	17.93			15.99	;	16.54
CS== (11111 ED)	3.23		1	3.60	1	3.86
	3.307		660.4	2.887	;	2.932
Misc. Components, wt%						
Methenol						
	17.7		1	2.47	!	1.82
MCCCOURS MENOUS	0.32		1 1	1	1	ł
נוקיי	3.32		!	!	1	;
John Sene	45.62		!	46.04	ì	46.30
Verland (4.1) max	17.93		1	15.99	;	16.54
Aytenes (Incl. Eb)	3.25		;	3.60	ł	3.86

FIGURE 7 GREAT PLAINS COAL LIQUIDS UPGRADING NAPHTHA DISTILLATION RESULTS (Method: ASTM D-86)

Many alternative routes to upgrade the by-product streams can be proposed. While it may be easy to pick the route that maximizes jet fuel production, the routes that produce a profitable product slate with jet fuel, or the maximum profit product slate are difficult to determine without using a computerized approach which can consider many alternatives for the profitable cases.

a. Technical Approach

To evaluate all possible cases, Amoco has developed a linear program for the Great Plains by-products. This LP has numerous inputs, including:

- Amoco's proprietary linear programming technology (including refinery process models).
- 2. The results of the Western Research Institute scoping hydrotreating study. (1)
- 3. The price structure for various oxygenated chemicals from the Sinor report. (2)
- 4. Amoco's price structure for hydrocarbon products and feeds in the North Dakota area.
- 5. Information on processes to upgrade oxygenated chemicals. (4,5)

The Great Plains LP contains 1,450 equations and approximately 2,400 variables. The equations describe process and utility constraints, mass and energy balance constraints, blending options, capital and operating costs.

Linear programming is used by Amoco to help guide research and refining planning. It is a methodology to rigorously analyze the effects of process

technology, feeds, and products on refinery configurations. Amoco's linear program technology is based on Amoco's extensive commercial petroleum refining experience. It can be used to evaluate additions and revamps of existing refineries or design a new refinery (utilities available), as would be the case for Great Plains.

Amoco's linear programming technology has an extensive data base. It includes process models; raw material and product specifications, and prices; capital investment, operating cost and utility requirement correlations; and product blending algorithms. The process models are based on Amoco's technology wherever possible, but all technologies are commercially proven and licensable. The data base is used in conjunction with a refinery and petrochemical modeling system that draws on the data base to construct linear program models, which are solved consistent with whatever constraints the user chooses to apply. In essence, a tailor-made LP model is developed for each new problem. The user may specify virtually any combination of feed material and/or product volumes, specifications, and prices. Alternatively, or in addition, refinery configurations can be specified completely, in part, or not at all. Optimal solutions are developed for each variable not specified. This affords a great deal of flexibility in analyzing a wide variety of refining environments and refinery configurations. The LP analysis also considers and optimizes process interactions and product blending effects.

Table 5 lists the processes which are included in the linear program developed for Great Plains liquid by-product upgrading. The major process blocks are also shown schematically in Figure 8. Several processes use standard petroleum refining technology. Most other processes (denoted by (1) in Table 5) have been adapted from standard petroleum technology by adjusting for the different feedstock inspections of the Great Plains streams. Where interpolation between literature or proprietary data points is not possible, proprietary Amoco process simulation models are used to predict the effects of feedstock inspections on process operations. These simulations have been developed from data using petroleum based feeds, including high-aromatics stocks similar to the Great Plains streams. A few processes (denoted by (2) in Table 5) are critical enough or different enough from standard petroleum

processing that customized models were developed. The development of these models is outlined below.

TABLE 5

PROCESS BLOCKS INCLUDED IN LINEAR PROGRAM SIMULATION OF GREAT PLAINS LIQUIDS UPGRADING

Aromatics Recovery (1) Butane and Pentane Isomerization Catalytic Cracking (1) Cresylic Acid Fractionation (1) Delayed Coker (1) Distillate Hydrotreater (NiMo & NiW) (2) Dynaphen (2) Gas Oil Desulfurizer Gasoline Reformer (1) Hydrocracking for JP-4, JP-8, and Gasoline (1) Hydrogenation/Saturation (2) Naphtha Distillation (1) Naphtha Hydrotreater (2) Naphtha Sweetening Phenoraffin/ANG Extraction (2) Pressure Swing Absorption (PSA) (1) Product Blending Propylene, Butylene, and Amylene Alkylation Propylene Concentration Propylene and Butylene Polymerization Sulfur Recovery Tar Oil Distillation (1) Utilities Generation

⁽¹⁾ Units which differ in feedstock properties from standard petroleum refining technology, but can readily be adapted to Great Plains stocks.

⁽²⁾ Units which differ enough from standard petroleum refining technology to be customized for application to Great Plains stocks (see text for details).

FIGURE 8

The distillate hydrotreating and hydrogenation/saturation processes are modeled using process data from coal-derived feedstocks published by Chevron. (6) Since aromatics saturation reactions are so important in processing Great Plains streams to meet jet fuels specifications, an aromatics saturation model was developed and reported in Appendix A. The phenol hydrotreating is based on WRI (1) test 87-07-5, adjusted for different feed inspections and adding light ends yields. The hydrotreating results from neutral oils from Phenoraffin extraction are estimated based on a higher aromatics content than the original streams.

An expanded bed technology was selected to hydrotreat the tar oil. This process selection was based on the following advantages for expanded beds, relative to fixed beds, for this feed: (1) Little or no feed preheat is required, (2) Relatively isothermal operation with no large reactor temperature exotherm and relatively simple reactor temperature control requirements, (3) Tolerance to solids in the feed, and (4) Operating flexibility.

The data used for estimating the yields and process conditions for hydrotreating the Great Plains naphtha comes from Chevron's results with SRC-II naphtha. (6) A proprietary fractionation simulation is used to divide the Great Plains naphtha stream into 160°F- and 160°F+ cuts. The 160°F- cut is used as fuel. The coker naphtha hydrotreating yields are based on proprietary data using delayed coker naphtha from petroleum stocks.

All hydrotreater (naphtha and tar oil) investments and operating costs are based on estimates developed by Lummus, based on their preliminary process designs. Dynaphen processing is based on the literature. (5) The Dynaphen process, which is still to be confirmed for Great Plains feedstocks by HRI, will partially dealkylate coal liquids to phenol and benzene.

The Phenoraffin process yields are based on published recoveries of pure components adjusted for Great Plains phenolic composition. Phenoraffin is Lurgi's proprietary process for separation and purification of phenols, cresols, and other commodity chemicals from mixed oxygenate streams. A firmer process design and cost basis for Phenoraffin was sought from Lurgi, but they

reportedly needed to do experimental work using Great Plains feedstocks before they would provide this information. As a result, Lummus developed a process design and cost basis for the phenolic extraction based on a dual solvent extraction process under development by ANG. (4) Henceforth in this report, this process will be referred to as the Phenoraffin/ANG process.

Feed costs and product values are taken from Amoco proprietary North Dakota refinery information and a recent Sinor study. (2) Hydrogen cost, based on extraction from Great Plains syngas, is from a recent Burns and Roe study. (8) Hydrogen is extracted by pressure swing adsorption. The cost of feeds and the value of products used in the linear program are listed in Table 6.

Product specifications for the various grades of gasoline and jet fuel have also been included in the LP data base. These specs are given in Table 7. Specification for the oxygenated chemical products have not been determined for the preliminary evaluation in Task 1. It is assumed that the Phenoraffin/ANG process which produced the various oxygenated chemicals, could meet the required specifications. This assumption should be verified.

b. Conceptual Upgrading Schemes

Using the Great Plains LP, conceptual upgrading schemes have been developed, along with sensitivities to key variables and assumptions. The cases are presented in the order: maximum jet fuels (Case 1:JP-4; Case 3:JP-8; Case 5:JP-8X); maximum profit (Case 7); and profitable jet fuels (Case 2:JP-4; Case 4:JP-8; Case 6:JP-8X).

The maximum jet fuels cases have been estimated by hand-calculation and by the LP. The hand calculation allowed Lummus to begin work before the LP was finished. They also provide a check on the accuracy of the LP. The economics presented below, however, are based on the LP estimated cases. The LP simulations do not exactly match the hand-calculated process schemes because of three reasons. First, the linear program cannot exactly match the non-linear curves which relate yields and qualities to process conditions, because it approximates these curves with straight line segments. Second, the

TABLE 6
COST AND PRICE BASES AND ASSUMPTIONS

Input Streams	Price \$/Bb1	Max. BCD	Fuel Value, \$/MMBtu
Natural gas	13.57	_	2.15
LPG/Propane	7.57	_	2.15
i-Butane	19.11	_	4.98
n-Butane	11.76	_	2.95
GP Naphtha	12.69	660	2.15
GP Phenols	10.43	833	2.15
GP Tar Oil	13.07	2896	2.15
Toluene	38.01	5000	2.13
GP Syngas for H2	1.23/MSCF H2	36810	MSCFD 2.47
Output Streams			Limitation:
I.DC /Dunnana	7.56	_	•
LPG/Propane Unleaded Gasoline	23.35	_	
		•	
Unleaded Premium	26.29	-	
Sweetened GP Naphtha	25.45	•	
Reformer Feed	24.61	-	
Hydrotreated GP Naphtha		-	
JP-4	24.19	-	
JP-8	21.84	-	
JP-8X	21.84	-	•
Benzene	48.00	-	
Toluene	38.00	-	
Xylene	49.00	-	
Phenol	80.00	-	100 U C V - 1 - 4
o-Çresol	182.00	25	10% U.S. Market
m,p-Cresol	199.00	80	10% U.S. Market
Xylenols ,	174.00	30	10% U.S. Market
Cresylic Acids	134.00	, 140	10% U.S. Market
GP Fuel Pool	, 2.15/MMBTU	25540	MMBTU/CD
Sulfur	125/LT	-	,
Cale	16/T	_	

16/T

()

Coke

TABLE 7
PRODUCT SPECIFICATIONS

Jet Fuel			
Specification	JP-4	JP-8	JP-8X
Boiling Range, °F	160-518	300-572	300-572
Specific Gravity, min.	0.7507	0.775	0.850
" , max.	40.8017	0.840	
Sulfur, wt%, max.	0.4	0.3	0.3
Aromatics, min.			10
" , max.	25	25	30
Paraffins, max.			10
Naphthenes, min.			70
, max.			90
Reid Vapor Pressure, min.	2.0		
" ',max.	3.0		
Flash Point, °F, min.		100	122
Pour Point, °F, max.		-72	-62

Gasoline Specification	Unleaded Regular	Unleaded Premium	Unleaded Midgrade
Road Octane, min.	87	93	89
Reid Vapor Pressure, min.		9.6	9.6
" '" ,max.	12.7	12.7	12.7
Specific Gravity, max.	0.7669	0.7669	0.7669
Sulfur, wt%, max.	0.1	0.1	0.15

In addition, distillation specifications consistent with ASTM D-439 were employed.

In addition, distillation specifications consistent with ASTM D-1655, MIL-T-5624L, and MIL-T-83133 were employed. Pour point and flash point specifications were met for JP-8 and JP-8X using proprietary non-linear blending techniques.

Also sold but blended from stocks which are produced to required purity specifications are: LPG, sweetened naphtha, reformer feed, hydrotreated naphtha, BTX, phenol, o-cresols, m- and p-cresols, xylenols, cresylic acids, coke, and sulfur. See Table 3.

LP adjusts process conditions in response to optimal costs until process limitations are reached. Thus, the LP design always results in a solution which is limited by some constraint. Finally, a true LP maximum sometimes results in absurd processing choices. For example, the unconstrained LP maximum JP-4 case includes processing the Great Plains naphtha and several other streams, of less than 100 B/D, to get a few more barrels of jet fuel. It does this by building a very small catalytic cracker to get a low gravity jet fuel stock which allows a few more barrels of high gravity stocks to go to jet fuel. The cases reported here externally forbid process options which result in very high costs or very small stream or unit sizes. The prohibited streams are less than 10 percent of the parent stream volumes.

The other four cases have no corresponding hand-calculated solutions to compare with, since they are economic optima. Some external process limits are also imposed on these cases to avoid processing very small streams or building very small units.

Lummus's estimate of investment and operating costs for each case are reported below.

Case 1 - Maximum JP-4.--Figure 9 shows hand-calculated maximum JP-4 case. This case hydrotreats the Great Plains tar oil and phenol streams, while leaving the naphtha for plant fuel needs. The hydrotreated 500°F+ stream is hydrocracked to produce additional jet fuel blending stocks. Combined JP-4 production is 4270 BSD, along with 560 BSD of naphtha stocks. The LP solution, shown in Figure 10, produces about 4 percent more JP-4 than the hand-calculated case. This is within the range expected, due to LP limitations discussed above. Figure 9 reports flows in BSD (barrels per stream day), while Figure 10 reports them in BCD (barrels per calendar day). Using the Great Plains operating factor of 91 percent, BCD values are 9 percent lower than BSD values. Yields of key products, in barrels per calendar day, are compared in Table 8. Both Figures 9 and 10 include the same processes, so the match of these two cases is sufficient for this scoping evaluation.

TABLE 8

COMPARISON OF MAXIMUM JET FUEL CASES WITH LP SOLUTIONS

	JP-4		JP-8	.	JP-8X		
Streams	Hand- Calculated	LP	Hand- Calculated	LP	Hand- Calculated	LP	
Naphtha, BCD	510	466	1215	1222	505	378	
Jet Fuel, BCD	3886	4052	2266	2323	1784	1764	
Fuel Oil, BCD	0	0	0	0	804	947	
Syngas, MMSCFCD	31.0	30.4	24.0	23.7	13.6	14.3	

Case 3 - Maximum JP-8.--Figure 11 shows hand-calculated maximum JP-8 case. This case uses only the tar oil stream to make jet fuel, while leaving both the phenol and naphtha stream for plant fuel needs. The same sequence of hydrotreating and hydrocracking is used as for JP-4 production, but the cut point from the hydrotreater is 550°F instead of 500°F. The linear program maximum JP-8 case, shown in Figure 12, again estimates about 3% more JP-8 than the hand calculated case, as Table 8 shows. Again, the close match of unit operations in Figures 11 and 12 confirms the estimating design basis.

Case 5 - Maximum JP-8X.--Figure 13 shows the hand-calculated maximum JP-8X case. Here too, only the Great Plains tar oil stream is used for jet fuel production. This case first fractionates the tar oil at 750°F and hydrotreats only the 750°F- cut. The hydrotreater products are naphtha, JP-8X, and a 550°F+ stock which is combined with 750°F+ tar oil to provide plant fuel. The high-boiling fractions of the tar oil are too aromatic to make JP-8X. The LP maximum JP-8X case, shown in Figure 14, bypasses some tar oil directly to hydrotreating to save distillation costs. However, the close match of units chosen and overall yields listed in Table 8 again confirms the design basis used. The preferred design basis should be to fractionate all the tar oil, since the incremental cost of this capacity is low and this improves plant operating flexibility.

Case 7 - Maximum Profit. -- The maximum profit case is shown in Figure 15. This case processes only the Great Plains naphtha and phenol streams. The tar oil stream is used as plant fuel. The naphtha is fractionated to remove undesirable heteroatoms boiling below 160°F. Improved operation of the existing Great Plains stripper might eliminate this process step, but it is included here if the desired stripper performance cannot be achieved. The 160°F+ naphtha is hydrotreated and then aromatic components (benzene, toluene, and xylene, or BTX) are recovered for sale. The remaining naphtha components are blended to gasoline. A small PSA unit recovers 0.2 MMSCFD of hydrogen from the Great Plains Rectisol gas stream to provide the hydrogen for this hydrotreating step.

FIGURE 11 BLOCK FLOW DIAGRAM GREAT PLAINS CASE 3: MAXIMUM JP-8 PRODUCTION

FIGURE 13 BLOCK FLOW DIAGRAM CASE 5: MAXIMUM JP-8X PRODUCTION **PLAINS** GREAT

,

The Great Plains phenol stream goes to a Phenoraffin/ANG extraction unit to recover purified phenol and cresylic acids. The remaining neutral oil stream is burned for plant fuel. Some of the cresylic acids are fractionated to make o-, m-, and p-cresol, and xylenols, which are available for sale up to the market limit (10 percent of U.S. market). (9) If the cresylic acid fractionation system is built to handle the entire stream volume, the LP chooses to fractionate enough to meet the market limit on all stocks, even though this means dumping 6 BD excess xylenols to fuel. The arbitrary market limit is explored as a sensitivity later in this report.

Since the maximum profit case uses only the Great Plains naphtha and phenol streams, the tar oil stream is available to make jet fuels. The remaining cases use maximum available tar oil to make jet fuel. The profit in these cases is less than when no jet fuels are produced. Profitability for these cases depends on replacement fuel cost, which is reported later as a sensitivity.

Case 2 - Profitable JP-4. -- The profitable JP-4 case is shown in Figure 16. The Great Plains tar oil is hydrotreated and hydrocracked as in Case 1. The Great Plains naphtha and phenol streams are processed to make chemicals and BTX, as in Case 7, but the amount of BTX extraction is adjusted to balance the octane requirements for blending with naphthas from the hydroprocessors to produce an unleaded gasoline product. The design basis for this case specifies aromatics recovery and cresylic acid fractionation units big enough to process the entire stream, since the incremental cost is small. As in the maximum profit case, a small volume of xylenols are diverted to fuel. Hydrogen for all three hydroprocessors is obtained from a PSA unit.

With the price structure assumed, it is better to sell some naphtha streams as reformer feed to existing refiners than to build a new reformer unit at the Great Plains site. Table 9 shows this sales option was selected in Cases 2, 4, and 6.

Case 4 - Profitable JP-8. -- The profitable JP-8 case is shown in Figure 17. The Great Plains tar oil is hydrotreated and hydrocracked under almost identical conditions as in Case 3. The Great Plains naphtha and phenol

TABLE 9
SUMMARY OF PROCESS DESIGN AND COST ESTIMATES

Case	_1_		3		6				
Unit Production Rates (BPCD)*									
Jet Fuel	3698	3062	2864	2297	1744	•			
Reformer Feed/Gasoline	-	437	-	1190	511	41			
Phenol	-	285		285	285	285			
Cresylic Acids	-	236	-	236	236	236			
BTX	-	294	•	398	398	398			
Capital Cost (THSD \$)									
Jet Fuel/Naphtha	51,430	43008	44,799	42978	31111	-			
Phenol/Cresylic Acids	-	20124	•	20124	20124	20124			
BIX	-	1500 0	•	17664	17664	17664			
TOTAL	51,430	78,132	44,799	80,766	68,899	37,788			
Operating Costs (\$/D)									
Utilities (Incl. SNG Equiv.)	79,230	89,980	51,130	90,947	74,416	21,121			
Cat & Chem	2400	3416	2963	3331	3140	1373			
STM Usage (#/H) HP	-	54,700	-	58,200	58,200	58,200			
MP	5300(Exp)	8900	6945(Exp)	-	9,300	15,900			
LP	•	6900(Exp)	•	7050(Exp)	7050(Exp)	6900(Exp)			
Personnel	40	76	40	76	68	56			

^{*}Appendices give production rates based on barrels per stream day, not barrels per calendar day.

streams are processed to make chemicals and BTX as in Case 7, but additional toluene is added to the gasoline blending stock in the aromatics recovery unit to balance the octane requirements for blending with naphthas from the hydroprocessors. The commercial design basis for this case would build the cresylic acid fractionation unit big enough to process the entire stream. Hydrogen for all three hydroprocessors is obtained from a PSA unit.

Case 6 - Profitable JP-8X.--The profitable JP-8X case is shown in Figure 18. To produce a volume of jet fuel comparable to Case 5, the LP hydrotreats the neutral oil from Phenoraffin extraction along with 85 percent of the 750°F- Great Plains tar oil. The remaining tar oil and the 750°F+ cut are used as fuel. The neutral oil stream, not available in Case 5, can be hydrotreated to produce JP-8X more cheaply than from tar oil. The Great Plains naphtha and phenol streams are processed to make chemicals and BTX, as in Case 7, but the amount of BTX extraction is adjusted to balance the octane requirements for blending with naphtha from the hydrotreater. The design basis for this case would build the aromatics recovery and cresylic acid fractionation units big enough to process the entire stream. Hydrogen for both hydroprocessors is obtained from a PSA unit.

A summary of the feeds and products for the LP Cases 1-7 are shown in Table 10, along with unit capacities for each case.

c. Process Design and Cost Estimate

Based on the LP conceptual process schemes, Lummus has developed conceptual process designs and cost estimates for the various product slates, with the exception of Case 5. Table 9 summarizes Lummus production rates, capital and operating costs, which have been developed for each case. Appendices B through H detail the results. Production rates in Tables 9 and 10 are different because Table 9 is based on a preliminary process design basis, whereas Table 10 gives rates which were re-optimized based on capital and operating costs from the preliminary process design and all the process and blending limits in the LP. Investments and utilities are also different in Tables 9 and 10 because of this re-optimization.

In agreement with Amoco and the DOE, the phenol stream process (Phenoraffin/ANG) design is based on data received from ANG Coal Gasification Co. (4) Consequently, the phenol extraction and cresylic acid distillation areas are not based on proven, licensable technology and remain the least certain processing blocks in the plant.

TABLE 10

GREAT PLAINS LIQUID BY-PRODUCTS CASE SUMMARY

(Total Upgrading Process)

	Max	JP-	-4	JP	-8	JP-	-8X
Economics	Profit	Max.	Prof.	Max	Prof.	Max	Prof.
Profit, M\$/CD Profit, MM\$/yr	40.8 14.9	-3.2 -1.2	32.7 11.9	-16.2 -5.9	24.8 9.0	-14.7 -5.3	29.0 10.6
Investment, MM\$	37.0	53.1	87.1	52.7	89.3	33.7	68.5
Feedstocks, BCD							
G.P. Naphtha G.P. Phenol G.P. Tar Oil Syngas, MMSCFD	660 833 0 0.4	0 833 2896 30.4	660 833 2896 23.8	0 0 2896 23.7	660 833 2896 24.2	0 0 2896 14.3	660 833 2896 13.2
Products, BCD							
Gasoline Reformer Feed Jet Fuel BTX Oxygenated Chem. Liq. Fuel	62 0 0 389 519 457	466 0 4052 0 0	336 154 3090 336 519 457	239 983 2323 0 0	297 988 2322 330 519 454	0 379 1763 0 0 947	165 376 1720 351 519 1377
Unit Cap., BCD							
Aromatics Rec. Phenoraffin/ANG Tar Oil Dist. Hydrocrack. Hydrotreat. Naphtha Dist. Naphtha Hydrotrt. PSA, MMSCFD	444 833 0 0 0 660 476 0.4	0 0 0 1159 3729 0 0 30.4	444 833 0 1134 3563 660 476 23.8	0 0 0 753 4797 0 0 23 7	444 833 0 754 4796 660 476 24.2	0 0 841 0 2379 0 0	444 833 2477 0 1925 660 476 13.2

As a result of the work accomplished during this task, two important items for the economic success of the by-product processing must be resolved.

The first and most apparent is the development of a process to provide a saleable cresylic acid product slate. Product specifications and limitations on production, if any, must be developed. Also, allowable levels of guaiscol and catechol in the cresylic acids must be addressed. One means of separating these close-boiling materials from the desired products may be through the use of crystallization. Although the compounds have close boiling points, their melting points differ substantially. It may be desirable to separate the components into narrow boiling point ranges and then purify each cut by fractional crystallization. Pilot plant work should be undertaken to develop an effective means of recovering these saleable products.

Secondly, Great Plains fuel requirements will increase significantly in some cases to replace the fuel presently being provided by the by-products. Since the replacement fuel required for the various profitable cases (1-4 MBD) is comparable to the residual fuel in LPG consumption of all North Dakota (3 MBD), (2) alternative fuel sources must be studied and incorporated into the design basis of these units.

3. Subtask 1.3 Economic Analysis

a. Assumptions and Basis

As is the case with all preliminary evaluations, a number of assumptions were made to reach the economic results which are presented in this section.

Before presenting the results, a review of these assumptions is warranted.

In all seven cases,

 It is assumed that the existing Great Plains plant can supply adequate high pressure steam and other utilities and power to the liquid by-product upgrading plant. Cost and availability information was supplied by ANG.

- 2. It is assumed that any H₂S generated by the upgrading facility can be processed to produce sulfur by the existing Great Plains sulfur plant. No capital or operating allowance has been made for a separate sulfur plant for by-product upgrading.
- 3. It is assumed that any ammonia and wastewater produced by the upgrading facility can be handled by the existing Great Plains ammonia recovery and wastewater treatment plants.
- 4. It is assumed that the existing boilers which currently burn the tar oil, naphtha, and phenolic streams can be modified to burn the selected alternative fuel with little or no capital investment. No capital has been included in the estimates for the various cases to modify the boilers. Furthermore, no allowance has been made for storage of the replacement fuel.
- 5. It is also assumed that the various processes which are considered by the LP can produce the required product at the commercial specifications for that product. As pointed out previously, this assumption is particularly important for the processes which handle the phenolic stream. Amoco has no commercial experience with these processes.
- 6. Numerous economic assumptions are made. It is assumed that:
 - a. The upgrading plant is 100 percent equity financed.
 - b. The upgrading facility is built in two years and started up in one year.
 - c. A 10 percent real rate of return is required on invested capital.
 - d. No land purchase is necessary.
 - e. Upgrading plant life is 20 years and the plant has zero salvage value.

- f. Federal and North Dakota state taxes combined are 40 percent of gross profit.
- g. The plant onstream factor is assumed to be 0.91 for tar oil and naphtha processing and 0.89 for phenolic processing.
- h. The upgrading plant is depreciated over a 10 year period using the Tax Recovery Act of 1986 schedule.
- i. Various levels of investment contingency (10 to 30 percent) have been added according to process definition and maturity.

These assumptions are consistent with a capital charge factor of 16 percent/year.

Note that assumptions I through 4 will be dealt with during Task 4.

b. Economic Results

The conceptual process schemes to upgrade the by-products were developed by the Great Plains LP, based on Amoco estimates of capital and operating costs for the various process steps. As discussed above, Lummus developed detailed process designs and capital and operating costs for each conceptual case. The LP was revised with these Lummus cost figures and the economics of each case was estimated, assuming a replacement fuel cost of \$2.15/MMBtu. In the discussion that follows, profit is above a 10 percent real rate of return on invested capital, as all costs include a capital charge on capital employed in the upgrading plant.

Table 11 shows the investment breakdown by unit. Table 12 summarizes the economics of the cases, broken down by cost component. All the maximum jet fuel cases show a loss (negative profit) because the total cost of upgrading

TABLE 11

GREAT PLAINS INVESTMENT AND UTILITIES SUMMARY

	Max	JP-		JP			-8X
MM\$	Profit	Max.	Prof.	Max	Prof.	Max	Prof.
Aromatics Rec.	12.3	0	12.3	0	12.3	0	12.3
Phenoraffin	19.4	0	19.4	0	19.4	0	19.4
Tar Oil Dist.	0	0	0	0	0	3.5	4.3
Hydrocrack.	0	13.2	13.0	11.2	11.2	0	0
Hydrotreat.	0	28.1	27.5	31.3	31.3	23.2	21.1
Naphtha Dist.	0.2	0	0.2	0	0.2	0	0.2
Naphtha Hydro.	4.5	0	4.5	0	4.5	0	4.5
PSA	0.5	10.5	8.8	8.8	9.0	6.2	5.9
Power Dist.	0.1	1.4	1.3	1.4	1.4	0.8	0.8
Total	37.0	53.1	87.1	52.7	89.3	33.7	68.5
Utilities (1)							
othities							
Cat & Chem, \$/D	542	3533	3920	4470	5014	4389	4092
Fuel, FOEB/D	1068	4071	4330	3094	4336	2159	2935
Power, MW	0.2	6.2	5.8	6.0	6.3	3.2	2.9
Cool Wat., M gpm	2.9	2.2	4.9	2.3	5.2	1.0	3.8
Proc Wat., gpm	3	31	33	38	40	17	16

Note: Steam costs or credits are allocated in this table to fuel and cat & chem.

⁽¹⁾ These utilities do not agree with those in Table 9 because of reoptimization by the LP.

TABLE 12

GREAT PLAINS ECONOMICS SUMMARY

Cash Flow M\$/CD	Max Profit	JP- Max.		JP Max	-8 Prof.	JP Max	-8X Prof.
Net Sales (1)	79.9	104.3	163.2	78.4	158.5	47.9	127.7
Fuel (2)	-14.6	-65.4	-66.7	-52.0	-66.9	-34.1	-48.3
Cat and Chem	-0.5	-3.5	-3.9	-4.5	-5.0	-4.4	-4.1
Utilities (3)	-0.9	-6.5	-6.5	-6.4	-7.3	-3.3	-3.7
MTIO (4)	-4.1	-5.8	-9.5	-5.8	-9.8	-3.7	-7.5
Fixed Costs (5)	-2.6	-2.8	-5.3	-2.7	-5.2	-2.3	-4.9
Capital Recov.(6)	-16.4	-23.5	-38.5	-23.3	-39.5	-14.9	-30.3
							
Total Profit	40.8	-3.2	32.7	-16.2	24.8	-14.7	29.0
Total MM\$/yr	14.9	-1.2	11.9	-5.9	9.0	-5.3	10.6

Notes:

- (1) Includes naphtha, gasoline, BTX, and chemicals, less the cost of purchased gasoline blending stocks (e.g., butane).
- (2) Includes Great Plains naphtha, tar oil, phenol, and hydrogen removed from syngas, as well as purchased fuel, less credit for fuel returned to the Great Plains pool. Hydrogen is priced at a premium over fuel value. Replacement fuel is assumed to be LPG at \$2.15/MMBtu.
- (3) Includes power, process water, and cooling water. Steam costs and credits are allocated to fuel and catalysts and chemicals.
- (4) Maintenance, taxes, insurance, and overhead charges.
- (5) Primarily operating labor.
- (6) Ten percent real rate of return, 5 percent inflation, 2-year construction, 1-year startup.

Jet Fuel, BCD Production Rate	0	4052	3090	2323	2322	1763	1720
Jet Fuel Unit Profit/Loss to Breakeven, \$/B	-	-0.8	10.6	-7.0	10.7	-8.4	16.9

the feeds to jet fuels and of replacement fuel exceed the revenue generated by jet fuel sales. Table 6 shows that oxygenated chemicals and BTX are valued high enough above feed prices that cases which make these products from the Great Plains phenol and naphtha streams generate a profit. The maximum profit case could potentially add about 15 MM \$/yr to the Great Plains annual profits. Profitability of the cases which make jet fuels, besides chemicals and BTX, are between 9 and 12 MM \$/yr.

Another way of looking at the economics is to calculate how much the jet fuel price would have to be subsidized to break even for the maximum jet fuels cases, and how much the jet fuel price could drop to break even for the profitable jet fuels cases. These values, shown in Table 12, suggest that a subsidy less than a \$9/B is needed to break even for the maximum jet fuels cases; in fact, the JP-4 case subsidy is less than \$1/B. If BTX and chemicals by-products are produced, jet fuel sales prices could be lowered by \$10-17/B and still break even.

c. Sensitivities

The economics discussed above are affected by several key assumptions. The effects of altering these assumptions is explored in this section. The objective of this section is to provide a scoping estimate of the impact of these assumptions on the economics. Lummus has not confirmed Amoco's estimated capital and operating costs for some of the process schemes discussed in this section.

The economics presented above assume that the Great Plains stocks could be replaced with other fuel stocks at \$2.15/MMBtu. This value is roughly the current cost of LPG in the North Dakota area. Table 13 shows the values of LP streams if other fuel costs are assumed from \$1.50/MMBtu to \$5.00/MMBtu, by adjusting for the Btu content of the various streams. The LP has been optimized with these values, and the effect of fuel price on profitability for the maximum jet fuels cases is shown in Figure 19. Higher fuel costs have a strong negative effect on profit. Fuel costs at least below \$2.00/MMBtu are

TABLE 13
EFFECT OF FUEL PRICES ON STREAM VALUES

Fuel Price, \$/ MM Btu

Stream	Unit	1.50	2.15	3.80	5.00
					
Natural Gas	FOE B	9.45	13.57	23.94	31.50
LPG	Bbl	5.26	7.57	13.32	17.53
n-Butane	Bb1	11.76*	11.76*	15.16	19.95
Grt Pl Naphtha	Bb1	8.85	12.69	22.42	29.50
Grt Pl Phenol	ВЬ1	7.28	10.43	18.43	24.25
Grt Pl Tar Oil	Bbl	9.12	13.07	23.10	30.40
Syngas for H2	MSCF	0.67*	0.67*	1.08	1.42
Utilities Fuel	MMBtu	1.50	2.15	3.80	5.00

^{*} Current price is above fuel value. Current price is used.

MAXIMUM JET FUEL CASES EFFECT OF FUEL PRICE

needed to generate a profit in the maximum JP-4 case. Fuel costs below \$1.50 MMBtu would be required to generate a profit in the JP-8 and JP-8X cases.

Figure 20 shows the effect of varying product slates along with fuel price. The maximum profit case retains profitability for all fuel values studied, although profit falls by about \$2 MM/yr for each \$1/MMBtu increase in fuel costs. The maximum JP-4 case is copied from Figure 19. If the phenolic stream in the maximum JP-4 case is processed to make oxygenated chemicals while processing the tar oil to make JP-4, the profitability is increased about \$10 MM/yr. This processing is profitable if fuel costs are below about \$3.10/MMBtu. If, in addition, the Great Plains naphtha stream is processed for BTX, profits increase further at low fuel costs. Break even fuel cost is about \$3.20/MMBtu for this processing.

Figure 21 shows the effect of fuel cost on profitability for the profitable jet fuels cases. The JP-8 case is profitable for all fuel costs below \$3.00/MMBtu; the JP-4 case is profitable below \$3.20/MMBtu; and the JP-8X case is profitable below \$3.50/MMBtu. Profits are below the case which produces no jet fuels, and these cases are also more sensitive to fuel costs.

d. Hydrogen Cost

Table 14 shows that the hydrogen cost component in the maximum profit case is negligible, so that case would not be affected by hydrogen cost variation. The cases which produce jet fuels have hydrogen costs between 3 and 7 MM\$/yr. Doubling hydrogen costs would therefore decrease profits by 3 to 7 MM\$/yr.

e. Effect of Oxygenated Chemical Market Size

Figure 22 shows the effect of imposing various limits on the sales of cresols, xylenols, and cresylic acids as a percent of the U.S. market. (9) The starting basis for this discussion is Case 7 at 10 percent of the U.S. market for these oxygenated chemicals. As Figure 15 shows, in Case 7 the Great

FIGURE 21
PROFITABLE CASES
FFFECT OF FILE PRICE

TABLE 14

EFFECT OF HYDROGEN COST ON PROFITABILITY

			Cost*
Case	Syngas, MMSCFD	M\$/CD	MM\$/yr
Maximum Profit	0.4	0.2	0.1
Maximum JP-4	30.4	20.4	7.4
Maximum JP-8	23.7	15.9	5.8
Maximum JP-8X	14.3	9.6	3.5
Profitable JP-4	23.8	15.9	5.8
Profitable JP-8	24.2	16.2	5.9
Profitable JP-8X	15.2	8.8	3.2

^{*} at \$1.23/MSCF of hydrogen removed.

MAXIMUM PROFIT CASE EFFECT OF CHEMICALS SALE

Plains phenols stream is extracted to make phenol and cresylic acids. Then some cresylic acids are fractionated to make maximum amounts of cresols and xylenol. Remaining cresylic acids are sold.

If cresylic acids sales are limited to lower levels, a Dynaphen unit is built to convert any non-fractionated cresylic acids into benzene and phenol. Fractionation for sales as cresol and xylenol is always favored over cresylic acid sales or Dynaphen processing. Figure 23 shows the process units when Dynaphen is maximally used (at 0 percent of cresol, xylenol, and cresylic acid sales). In this process scheme, all cresylic acids from extraction are processed in Dynaphen. It may be possible to process the Great Plains phenol stream directly with Dynaphen without prior extraction by distilling phenol from the cresylic acid. This would improve the economics of this case by about \$4 MM/yr in capital and operating costs. All points in the lower left of Figure 22 involve some Dynaphen processing, as illustrated by Figure 24.

As sales volumes are increased from 10 percent of the U.S. market, cresol and xylenol sales are satisfied by fractionating additional cresylic acids. When cresol and xylenol and cresylic acid volumes combined reach or exceed 30 percent of the U.S. market, the tar oil stream is fractionated so that additional chemicals can be extracted from 450°F- tar oil. Ultimately, all 450°F- tar oil is extracted, and all cresylic acids from both streams are fractionated into cresols and xylenols. Figure 22 shows that this is reached at about 60 percent of the U.S. xylenols market, although cresols volume are feedstock limited to 25 to 35 percent of the U.S. market. The change of slope in the lines observed in Figure 22 at market size greater than 20 percent of U.S. market is due to the fact that the 450°F- tar oil is leaner in oxygenated chemicals than the phenolic stream. Also shown in Figure 24 are the estimated regions of Dynaphen and 450°F- tar oil processing.

These economics assume the sales prices listed in Table 6. It is doubtful if these prices would exist if Great Plains significantly expanded the U.S. supply without further market development.

FIGURE 24
MAXIMUM PROFIT CASE
CHFM PROCFSS ALTERNATIVES

SECTION V

SUMMARY AND CONCLUSIONS

A preliminary evaluation of the upgrading alternatives for the by-product streams (naphtha, phenols, and tar oil) from the Great Plains Gasification plant has been completed. The evaluation is based on (1) Amoco and other laboratory analytical analyses of the three streams, (2) the Western Research Institute scoping studies on hydrotreating the tar oil, (3) a market analysis of the various products by J. E. Sinor Consultants, Inc., (4) Amoco's proprietary process models for various refining technologies, (5) Lummus's cost estimates for the various required processes and (6) literature and ANG information on processes to upgrade and separate the phenolics stream. As a result of the analyses, seven possible upgrading schemes for the by-product streams were developed. The product slates in these schemes ranged from the maximum production of the various grades of jet fuel (JP-4, JP-8, JP-8X) to a slate which produced various chemicals (cresylic acid, phenol, cresols, xylenol, benzene, toluene, and xylene). As a result of this preliminary evaluation, the following conclusions have been reached:

- The aging of the various by-product streams under storage conditions is minimal. Thus the quality of the by-product streams will not deteriorate in intermediate storage.
- The quality of the by-product streams produced from the gasifier does not vary greatly with time. Thus the by-product quality bases used in our conceptual designs are representative.
- 3. The various grades of jet fuel can be produced from the tar oil at Great Plains, but not economically.
- 4. The phenolic and naphtha streams have the potential to significantly increase revenues at Great Plains.
- 5. The phenolic and naphtha streams could provide sufficient revenue to subsidize the production of jet fuel.

- 6. The economics of jet fuel production are sensitive to replacement fuel cost.
- The amount of cresols and cresylic acid which can be marketed is a concern.
- 8. Processing the phenolic stream to produce cresols and cresylic acid should be demonstrated. The potential problems with contaminants such as guaiacol, catechol, and other contaminants should be assessed.

SECTION VI

RECOMMENDATIONS

An important goal of Task 1 is to recommend experiments which would be carried out in Task 2 to confirm the major (significant) assumptions of Task 1. Recommended experiments are:

For the tar oil by-product:

- Additional hydrotreating data are needed to confirm yields, upgraded tar
 oil qualities, process conditions, and hydrogen consumption. These
 variables have the greatest impact on the economics.
- 2. Heat release as a function of product quality should be estimated to confirm the choice of an expanded bed over a fixed bed hydrotreater.
- 3. The impact on hydrotreating requirements of blending the phenolic stream with the tar oil stream to maximize JP-4 production should be determined.
- 4. The effect of catalyst type on JP-8X properties should be determined. (Can a catalyst be found which will allow saturation of sufficient aromatic rings, without opening the rings, so that the JP-8X specifications on aromatics and paraffin content can be met?).
- 5. The 500°F+ and the 550°F+ fractions of the hydrotreated tar oil should be hydrocracked to determine yield, product quality, process conditions, hydrogen consumption and heat release.

For the naphtha stream:

-- The naphtha stream should be hydrotreated to determine yields and product quality (mainly heteroatom content of hydrotreated naphtha).

For the phenolic stream:

--The Phenoraffin or equivalent process should be demonstrated with the Great Plains phenolics stream. The yields and qualities (purity) of the various chemicals produced should be determined. Since this is potentially the most profitable stream to process, it is important that DOE or ANG do this. Evaluation of these processes is currently beyond Amoco's experimental capabilities.

REFERENCES

- Smith, E. B., "Jet Fuels from Coal; Third Quarterly Report," U.S.
 Department of Energy Research Contract No. DE-FC21-86MC11076, May 1987.
- Sinor, J. E., "Production of Jet Fuel from Coal-Derived Liquids, Vol 1, Market Assessment for Liquid By-Products from the Great Plains Gasification Plant," AFWAL-TR-87-2042, August 1987.
- 3. Wilson, W. G., C. L. Knudson, and J. R. Rindt, "Feasibility of Producing Jet Fuel from GPGP By-Products; Interim Quarterly Technical Progress Report for February 17, 1987 to May 16, 1987," U.S. Department of Energy Research Contract No. DE-AC22-87PC90016.
- 4. Pollock, D. C., ANG letter to K. Torster (Lummus Crest), ANG letter 9440-DHD-87-041, December 30, 1987.
- 5. Huiber, D. T. A., and J. L. Gendler, "The Dynaphen Process: Phenol and Benzene via Thermal Hydroalkylation of Coal Liquids," Paper 3D, AIChE Annual Meeting, New Orleans, Louisiana, Nov. 8-12, 1981.
- 6. Sullivan, R. F., and H. A. Frumpkin, "Refining and Upgrading of Synfuels from Coal and Oil Shales by Advanced Catalytic Processes; Third Interim Report: Processing of SRC-II Syncrude," Report FE-2315-47, March 1980.
- 7. Ma. J. J. L., "Coal Tar Chemicals," SRI Report No. 101, December 1976.
- 8. Daley, D. P., letter to L. Lorenzi, DPD-87-863, Contract DE-AC22-87PC79338, October 20, 1987.
- 9. Anonymous, "Key Chemicals-Phenolics," Chemical and Engineering News, Nov. 4, 1985, p 12.

APPENDIX A SATURATION KINETICS

APPENDIX A SATURATION KINETICS

The tar oil, which at 3,180 b/sd is the largest volume liquid stream produced at Great Plains, has the greatest potential as a feedstock for jet fuel production. The very low H/C ratio and API gravity of this stream reveal that it is highly aromatic. Indeed, GC/MS analyses of the tar oil by Wilson and co-workers at the University of North Dakota Energy Research Center (UNDERC) have shown that it contains 90-95% aromatics, with the rest being paraffins. (3) Hydrogenation data from WRI (2,4) indicate that significant amounts of specification jet fuels can be made from the tar oil, but at the cost of very severe processing conditions (> 2,000 psig total pressure) and high hydrogen consumption (3,000-4,000 SCF/bbl). Much of this hydrogen is consumed in order to meet the jet fuel specification for aromatics content (<25%).

Aromatics Saturation Kinetics

As indicated by the above discussion, a central unit for processing the tar oil and crude phenols to make jet fuels would be a hydrotreater. The WRI data indicate that the limiting factor in this hydrotreater would be saturation of the tar oil aromatics. Thus, the kinetics of tar oil aromatics saturation play an important role in the design of this hydrotreater.

The WRI hydrogenation data with the whole tar oil (4) and Chevron hydrogenation data with SRC-II liquids (5,6) were used to develop a rate expression for tar oil aromatics saturation. The SRC-II data were chosen because these liquids resemble the Great Plains tar oil in terms of heteroatom content, aromatics content, and, to a lesser extent, boiling range. The rate expression resulting from this analysis is:

$$-r_A = k_o \exp (-E_A/RT) (P_{H_2})^{1.45} (1-X_A)^{\frac{1}{2}}$$

where:

 X_A = fractional conversion of aromatics

R = gas constant

 r_A = rate of aromatics saturation, hr^{-1}

k₀ = rate constant = f(feed, catalyst)

 E_{A} = activation energy = 23,700 Btu/lb-mol

T = average reactor temperature, °R

P_{H₂} = average reactor hydrogen pressure, psia

This expression indicates that the rate of aromatics saturation is half-order with respect to the concentration of aromatics.

APPENDIX B

AMOCO/DOE

GREAT PLAINS GASIFICATION PLANT

JET FUEL FROM COAL DERIVED LIQUIDS

CASE 1
MAXIMUM JP-4 PRODUCTION
SUBTASKS 1.2 & 1.3
PROCESS DESIGN AND COST ESTIMATE

LCI PROJECT 5571 JAN 30, 1988

TABLE OF CONTENTS

1.0 CASE DESCRIPTION

- 1.1 Overall Process Description1.2 Overall Material Balance1.3 Overall Utility Balance

2.0 PROCESS DESCRIPTION

- 2.1 Hydrotreater
- 2.2 Hydrocracker
- 2.3 PSA Hydrogen Unit & Recompression

3.0 CAPITAL COSTS

- 3.1 Equipment Lists
- 3.2 Cost Estimates

4.0 OPERATING COSTS

- 4.1 Operating Labor
- 4.2 Utilities
- 4.3 Catalysts & Chemicals
- 4.4 Maintenance & Operating Supplies

5.0 PLOT PLAN & TIE INS

Appendix A - Computer Simulation Hydrotreater Appendix B - Computer Simulation Hydrocracker

1.0 CASE DESCRIPTION

1.1 Overall Process Description

The purpose of this case is to maximize the production of type JP-4 aviation turbine fuel from Great Plains liquid by products. Figure 1 presents a block diagram for the process and referring to Figure 1 the flow is as follows:

- Two by product streams are combined and charged to the hydrotreater (Area 100).
 - Tar Oil 47620 #/hr (3182 RPSD)
 - Phenol 14213 #/hr (920 BPSD)
- The hydrotreater is a 3 stage expanded bed type process which removes 99% + of the sulfur, nitrogen, and oxygen compounds and begins the conversion of 500°F+ material. The hydrotreater adds a large quantity of hydrogen to the feed (3850 SCF/bbl) which results in a high heat of reaction. An expanded bed type reactor was chosen to both control and utilize the heat of reaction. Three stages were used to both control the temperature rise as well as to obtain the high efficiency associated with staging a back-mixed reactor.
- . The hydrotreater produces 6 streams:
 - High pressure purge gas (approximately 90% hydrogen)
 which is sent to the Rectisol Unit in the SNG plant for
 recovery of the H₂ and CH₄.
 - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
 - Unstabilized naphtha which is sent to the combined naphtha stabilizer in the hydrocracker (area 200).
 After stabilization, to control vapor pressure, the naphtha is sent to the main boiler in the SNG plant.
 - JP4 turbine fuel which is combined with JP4 produced in the hydrocracker (area 200) and sent to storage.
 - 500^of+ unconverted bottoms product which is sent to the hydrocracker (area 200).
 - Wastewater containing, NH4OH and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.

- Approximately 750 #/day of spent catalyst which is shipped to a catalyst reclaimer in the same drums that the catalyst is received in.
- The 500°F+ unconverted stream from the expanded bed hydrotreater (area 100) is charged to the fixed bed hydrocracker (area 200). The hydrocracker converts this material to naphtha and JP-4 turbine fuel. For this service a 5 stage unit was chosen with 65% conversion per pass. This unit also includes a naphtha stabilizer which stabilizes both the naphtha produced in the hydrotreater and hydrocracker.
- The hydrocracker produces 4 streams in addition to JP-4.
 - High pressure purge as (approximately 90% hydrogen) which is sent to the Rectisol Unit of the SNG plant for recovery of the H₂ and CH₄.
 - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
 - Stabilized naphtha which is sent to the main boiler in the SNG plant.
 - A small sour water stream which is sent to the PHOSAM unit in the SNG plant or alternatively used as part of the injection water to the hydrotreating plant.
 - Hydrogen make-up for both the Hydrotreater and the Hydrocracker is supplied from a PSA Hydrogen Unit. High pressure (355 psig) synthesis gas from the Rectisol Unit (which contains about 63% hydrogen) is charged to the PSA unit which recovers 86% of the contained hydrogen as a high pressure 99.99% purity hydrogen gas product. The remaining purge gas is available at low pressure (5 psig) which has a fuel value of about 565 BTU/ft. This H₂, CO & CH₄ rich gas is recompressed into the methanation unit of the SNG plant.

1.2 Overall Material Balance

The overall material balance is presented in Table 1.1 which presents overall material balances for the major process units. Detailed material balances for each unit can be found in appendixes A&B. The balance was computed on the basis that the fuel value of the feed will be replaced by fuel gas and naphtha produced in the process and the difference made up by the purchase of #6 Fuel Oil.

The overall balance is as follows:

<u>Feeds</u>

4109 BPSD of Tar Oil and Phenol Feed 3372 BPSD of #6 Fuel Oil

13.34 MMSCFD equivalent SNG product loss due to the syn gas feed to the PSA unit.

Products

4278 BPSD of JP-4 turbine fuel
8.53 MMSCFD Equivalent SNG product credit due to HDT, HDC & PSA purge gas reinjection into SNG Plant.

1.3 Overall Utility Balance

The overall utility consumption of the complex is as follows:

#6 Fuel Oil	3372 BPSD
SNG Equivalent	
of Syn Gas & Purge Gas	4.81 MM SCFD
Power	7100 kW
Cooling Water	2400 GPM (30 ⁰ F rise)
Process Water	18.5 GPM `

In addition the process exports 5280 #/hr of 100 psig saturated steam which was credited against boiler requirements.

Purge Gas to Methanation 33182 #/hr HP Fuel Gas To Rectisol 115 #/hr LP Fuel Gas to Boiler 2440 #/hr Naphtha to Boiler Fuel 5768 #/hr JP-4 Product Production 49985 #/hr 4278 BPSD JP-4 1-Maximum 800 LP Fuel Gos LP Fuel Gas HP Fuel Gas FLE Naphtha Naphtha 3631 #/hr H2 JP-4 4-9C J. 500 oF+ 17056 #/hr Recovery & Recompression Hydrocracker and Product Separation Hydrotreater and Product Separation 1:Case 504 #/hr H2 Jaol Product GF Stream 1401) anola Stream # GF-6007 620 #/hr oii Stream # GF-6005 37319 #/hr igure 213 #/hr

54.75 45.25	0.7238 0.6787	3403 2813		323 284
Wt %	Grav	#/hr	#Mole/hr	BFSD
	ı#			
102.96		17560		1558
0.003		0.5	0.03	_ # ** - # ** **
	0.7563		ስ ስን	1273
				284
0.21				
102.95		17560		
100.00				1236
2.95		504	250.0	
Wt %	Grav	#/hr	#Mole/hr	BPSD
105.87		65464		4564
				AND THE RESERVE SHAPE AND A SECOND SHAPE SHAPE
				_
11.06				
27.58		17056		1236
58.14	0.8203	35948		3005
吗. 尼 奇	0.7238		20.0	323
		65464		
100.00				4102
5.87				
		#/NE	#######	prou
Wt %	Grav	#/hr	#Mole/hr	BPSD
ed Hydrot	reater			
lakeup==>	46646	#/hr	3372	BFSD
			4.8	MMSCFD
Gammaus) Feedman	77213 77213	#/II″ #/hr		
	47620 14013	#/he	3182 920	
	Feed==> ct===> tt===> tt Loss=> lakeup==> led Hydrot Wt % 105.87 0.13 2.13 5.50 58.14 27.58 11.06 0.35 0.97 105.87 Hydrocrac Wt % Wt % 0.21 3.95 16.49 82.30 0.003 102.96 abilizer Wt %	Feed===> 61833 ct====> 49985 t Loss=> 8268 dakeup==> 46646 Med Hydrotreater Mt % Grav 5.87 100.00 1.0342 105.87 0.13 2.13 5.50 0.7238 58.14 0.8203 27.58 0.9465 11.06 0.35 0.97 105.87 Hydrocracker Wt % Grav 2.95 100.00 0.9465 102.95 0.21 3.95 16.49 0.6787 82.30 0.7563 0.003 0.003 102.96 abilizer Wt % Grav	t Loss=> #985 #/hr t Loss=> #268 #/hr lakeup==> #6646 #/hr led Hydrotreater Wt % Grav #/hr 5.87	Feed===> 61833

PSA Hydrogen Recovery Unit(86% Recovery)

********				====			
Component	H2	CO	C02	CH4	E2H6	N2+Ar	Total
Mel %							
Feed Gas	116.28	34.26	2.72	29. 84	ା. 58	0.35	184.03
Prod. H2	100.00	0.01					100.01
Purge Gas	16.28	34.25	2.72	29.84	0.58	0.35	84.02
Wt %					·		
Feed Gas	116.28	475.95	59.44	237.46	8.63	5.55	903.31
Prod. H2	100.00	0.12	0.00	0.00	0.00	0.00	100.12
Purge Gas	16. 28	475.83	59.44	237.46	6.63	5.55	803.19
#Ma)/hr							
Feed Gas	2385.0	702.7	55.8	612.0	11.9	7. 2	3774.6
Prod. H2	2051.1	0.2	0.0	0.Q	$Q \bullet Q$	0.0	2051.3
Purge Gas	333.9	702.5	35.€	612.0	11.9	7.2	1783.3
#Zhr							
Feed Gas	4803	19581	2458	7817	357	229	37352
Prod. H2	4135	5	Ó	O	O	O	4140
Purge Gas	673	15676	2450	9819	357	229	33212

Fuel Gas Generated in Hydrotreating and Hydrocracking

Companent	#/hr	#Mol/hr	MMBTU/hr
(IDTE) FOR Engagement	4.77.4.00	/E A	25.1
HDTR FG Produced HDT FG Produced	1319 673	65.0 24.0	12.8
Stab FG Produced	448	9.8	6.2
Total Fuel Gas	2440	98.9	46.0

Purge Gas Generated in PSA Hydrogen Unit

		******		E ## ##
Component	#/hr	#Mol/hr	BTU/ft3	MMBTU/hr
H2	673	333.9	324	41.0
CO	19676	702.5	321	85.5
CO2	2458	55.8	o	0.0
Ci	9819	612.0	1010	234.3
C2	357	11.9	1769	B. 0
N2+Ar	229	7.2	0	0.0
Total	33212	1723.3	565	368.7

	#/hr	BTU/#	MMBTU/hr	MMSCFD	BTU/ft3	BPSD
	-14213		-185.8			-920
	-47620				4.000	-3182
Fuel Gas Naphtha	2440 5768		46.0 115.6	0.9	1228	574
Export Steam						5/7
Fuel Oil to Boiler			828.4			3347
Total	-2321		0.0	0.9		-201
Fuel Oil to Process Heaters	622	18000	11.2			45
Net Changes in SNG F			EOV SNO MMSCFD		FSA/Funge #Mol/SD	Ga∈
SMS equivalent of Sy	yn Gas c	-	13.34		90591	
SNG Dredit for PSA F			E.40		41360	
SMG Credit for Pdtrs Total SMG Production		gas	0.13 4.81		836	
Reaction Gases Reaction Solution	H20 6839 6317	H2S 218	NH3 602	NH4HS 327	NH40H 1015	Total 7659 7659
Stripping Steam Softened Water	1856 6826					1856 6826
	14999		,			
HDT Sour Water	14777			327	1015	16340
HDT Sour Water Water Balance Hydrod	cracker			327	1015	16340
Water Balance Hydrocenters	cracker	H2S		 NH4HS	1015 NH40H	···
Water Balance Hydroc Englishment Component Reaction Gases Reaction Solution Stripping Steam	cracker ===== H2O 556.9	H2S 0.5	NH3 	NH4HS 	NH40H 	Total 1.0
Water Balance Hydroc Englishment Component Reaction Gases Reaction Solution Stripping Steam	cracker ====== H2O	H2S	NH3	NH4HS 	NH40H	Total 1.0 1.3 556.9
Water Balance Hydrocontent Component Reaction Gases Reaction Solution Stripping Steam HCR Sour Water Total Sour Water	556.9	H2S 0.5	NH3 	NH4HS 0.8	NH40H 0.5 0.5	Total 1.0 1.3 556.9 558.2
Water Balance Hydrocontent Component Reaction Gases Reaction Solution Stripping Steam HCR Sour Water	556.9	H2S 0.5	NH3 	NH4HS 0.8	NH40H 	Total 1.0 1.3 556.9 558.2

2.0 PROCESS DESCRIPTION

2.1 <u>Hydrotreater</u> (Area 100)

Operating conditions for the hydrotreater were provided to Lummus by Amoco and these conditions are presented in Table 2.1. The basic processing step selected was the expanded bed hydrotreater (LC Fining) system. Due to the extremely high exothermic heat of reaction it was necessary to use 3 reactors in with interstage cooling. Referring to drawing D5571-10101 and the material balance printouts (Appendix A) the flow is as follows:

- Feed Tar Oil and Phenol are charged into the hydrotreater from day tanks FA-101 and FA-102 through charge pumps GA-101 and GA-102 and preheater exchanger EA-101.
- . The preheated charge oil is combined with feed hydrogen gas (at 576°F) from heater BA-101. Preheat of the oil is limited to 505°F to prevent cracking. The preheated mixture is then charged to the first reactor DC-101A.
- . The expanded bed reactor DC-101A approaches isothermal conditions in which the heat of reaction is used to heat the feed up to 700°F .
- The effluent from DC101A is cooled in exchanger EA-101 and combined with recirculating hydrogen from recycle hydrogen gas compressor GB-102. The combined mixture (which has been cooled to 486°F) is charged into the second reactor where the heat of reaction increases the temperatures to 700°F.
- The effluent from DC101B is cooled in exchanger EA-104 and combined with recirculating hydrogen gas from recirculating compressor GB-102. This mixture is charged into the third reactor DC-101C where its temperature rises from 531°F to 700°F.
- The effluent from DC101C goes to the high temperature/high pressure separator FA-103. Hot liquid from FA-103 flows to the hydrotreator fractionation DA-101. The vapors from FA-103 flows through exchangers EA-102 and EA-105 and then through air cooler EC-101. Process water is injected prior to EC-101 to convert the H2S and NH3 in the gas to an aqueous NH40H/NH4HS solution.
- Exchangers EA-104 and EA-105 are part of a circulating hot oil belt which allows for the generation of steam from waste heat in the high pressure loop without having the problem of a hydrocarbon leak from the high pressure system into the steam system.

2.1 Hydrotreater - Cont'd

- The cooled gas then passes into the High Pressure/Low Temperature Separator FA-104 where hydrogen rich gas is taken as an overhead product. A purge stream of this high pressure gas is taken (to purge H2 and light gases from the loop) and sent to the Rectisol Unit 1400 in the SNG plant to recover the hydrogen in the purge gas. The remaining gas is recirculated to reactors DC-101B and DC-101C.
- The water phase from separator FA-104 goes to the PHOSAM Unit in the SNG plant to recover the H2S and NH3.
- The hydrocarbon phase from separator FA-104 is preheated in exchanger EA-105 and is combined with the hot liquid from FA-103 and charged to the HDT Fractionator DA-101. Fractionator DA-101 produces 500°F+ product (which is sent to hydrocracking, area 200), JP-4 (which is sent to storage), and unstabilized naphtha (which is sent to the naphtha stabilizer in the hydrocracking area 200).
- Catalyst is replaced every third day in each reactor so that one reactor is receiving and withdrawing catalyst each day. Catalyst is added and replaced by the catalyst handling system.
- Waste heat is converted to 100 psig saturated steam in exchangers EA-107 and EA-108. This steam is used for stripping in DA-101 and in the hydrocracking area 200 for stripping steam. There is an excess of about 5280 #/hr which is exported to the SNG steam system.

Table 2.1 Hydrotreater Conditions

Case 1 Maximum JP-4 Operation

Reactor Type Number of Reactors	Expanded Bed 3
Reactor Temperature	700 ⁰ F
Temp. rise/stage Ratio of H2 in Feed to Chemical H2	225 ⁰ F max. 2.0 min.
Catalyst Replacement	0.18 #/Bb1

2.2 Hydrocracker (Area 200)

Operating conditions for the hydrocracker were provided to Lummus by AMOCO and these conditions are presented in Table 2.2. The basic processing step selected was a 5 bed fixed bed reactor system with recycle of unconverted 500°F+ material. Beds 1 and 2 use a catalyst that is most active for sulfur, nitrogen and oxygen removal while beds 3,4,5 use a catalyst that is most active for hydrocracking. Referring to drawing D5571-10201 and the material balance printouts (Appendix B) the flow is as follows:

Hydrotreated 500°F+ material from the hydrotreater (Area 100) enters the system from day tank FA-201 through feed pump GA-201 and is preheated in exchanger EA-201. The preheated feed is combined with unconverted bottoms from fractionator DA-201 (approximately 35% of the feed is recycled). The combined oils are then mixed with hot hydrogen coming from heater BA-201 and charged to the reactor.

The combined feed to the first bed in the reactor is $670^{\circ}F$.

In the first bed the temperature rises to about 685°F. Quench hydrogen is added to cool the effluent from the first bed to about 652°F. In each of the remaining beds quench hydrogen is added to cool the beds. The inlet and outlet temperatures from each bed are as follows:

	Inlet	Outlet
Bed 1	675	685
Bed 2	652	683
Bed 3	653	682
Bed 4	653	688
Bed 5	656	696

The reactor effluent is cooled in EA-201 and passes into the high temperature/high pressure separator FA-202. Vapors from FA-202 are cooled in EA-202 and then air condenser EC-201. Water is injected into the condenser EC-201 to dissolve H2S and NH3 into a NH4OH/NH4HS solution. This solution is sent to the PHOSAM unit in the SNG plant.

The cooled vapors pass into separator FA-203 and the overhead hydrogen rich gas is divided with the major portion being used as recycle gas to the reactors via compressor GB-202 and heater BA-201. A small portion of the gas is purged from the system as high pressure purge gas which goes to the Rectisol unit in the SNG plant.

2.2 <u>Hydrocracker</u> (Area 200)

- . The hydrocarbon phase from separator FA-203 is heated in exchanger EA-202, combined with the hot oil from separator FA-202 and charged to fractionator DA-201.
- . Fractionator DA-201 produces unstabilized naphtha (which is charged to naphtha stabilizer DA-203), JP4 (which is sent to product storage after cooling), 500°F+ oil (which is recycled to reactor DC-201) and fuel gas (which flows to the boiler in the SNG plant).
- . Unstabilized naphtha from DA-201 is combined with unstabilized naphtha from area 100 and charged to naphtha stabilizer DA-203 after being preheated in exchanger EA-205. Heat for reboiling the naphtha stabilizer is obtained by heat exchange with the hot jet fuel product.
- . Fuel gas from the naphtha stabilizer is combined with fuel gas from FA-206 and is routed to the SNG boilers.
- The stabilized naphtha is cooled and sent to storage. It is also sent to the SNG boilers to be used as fuel.

Table 2.2 Hydrocracker Conditions

Reactor Conditions	5 Fixed Beds
Catalyst, % of Total & Type	
Bed 1	10%, HDS/HDN/HC
Bed 2	22.5%, HDS/HDN/HC
Beds ₁ 3-5	22.5% HC
WHSV, hr	1.1.
Average Reactor Temp.	670°F
	0/U F
Temperature Increase	0-
Bed 1	25 ⁰ F 50 ⁰ F
Bed 2-5	50°F
Heat of Reaction	20,000 BTU/#Mole H2
Reactor Pressure	
Inlet	1200 psig
Outlet	1175 psig
Recycle Rate H2	15,000 scf/Bbl
Conversion/Pass	65%
Catalyst Replacement	3 years @ \$6/#

2.3 PSA Hydrogen Unit & Recompression (Area 300)

Pressure Temp.

H20

2.3.1 Hydrogen for both the hydrotreator and the hydrocracker will be supplied by a PSA hydrogen unit. The feed gas will come from the Rectisol Unit in the SNG plant (Stream ID-GF 1401) which has the following properties:

Composition	mol%		
H2			63.19
CO			18.61
CO2			1.48
CH4			16.21
C2H6			0.31
COS, H2S, C	S2	<	0.01
N2 + Ar			0.19

355_opsig 65 F

The PSA unit selectively absorbs all components expect H2 and produces a 99.99% vol. purity stream at about 345 psig and 80°F. The other components are available as a purge gas having the following properties.

< 0.01

Pressure	5 psig
Temperature	5 psig 100 F
Composition	Mole %
H2	19.32
CO	40.76
CO2	3.24
CH4	35.51
C2H6	0.69
N2+Ar	0.41
Others	0.06

At the conditions given a 10 bed PSA unit will recover 86% of the hydrogen in the feed according to the manufacturer, Union Carbide EP&P Division.

The system uses 10 absorption vessels which are sequenced through adsorption, depressurization, purging, and repressurization steps. The process continously produces product and purge gas. It is purchased as a skid mounted unit and the control of the unit is fully automated. Drawing 5571-10301 presents a schematic of a Union Carbide Polybed PSA unit.

2.3.2 The purge gas is recompressed to 375 psia and sent to the methanation unit of the SNG plant.

ŧ

B - 16

ı

AMOCO/DOE GREAT PLAINS GASIFICATION PLANT JET FUEL FROM COAL DERIVED LIQUIDS

3.0 CAPITAL COSTS

3.1 Equipment List

CASE 1 - MAXIMUM JP-4

CHOC I INVIII	011 01 - 4
AREA 100 -	HYDROTREATER
TAG NO	DESCRIPTION
BA-101	HDT Makeup Gas Heater
DA-101 DA-102	HDT Fractionator JP-4 Stripper
DC-101A,B,C	Hydrotreater Reactors
EA-101 EA-102 EA-103 EA-104 EA-105 EA-106 EA-107 EA-108	HDT Reactor Feed/Effl. Exch. Fract. Feed Exch. HDT Condenser HDT Reactor Int. Stg. Clr. Waste Heat Exchanger BFW Preheat Exch. Circulating Oil Stm. Gen. HTD Fract. Btms. Stm. Gen.
EC-101 EC-102 EC-103	Reactor Effl. Cooler Hydrotreater Btms. Cooler JP-4 Product Cooler
FA-101 FA-102 FA-103 FA-104 FA-105 FA-106 FA-107 FA-108 FA-109	Tar Oil Surge Drum Crude Phenol Surge Drum HT/HP Separator LT/HP Separator Recycle Gas KO Drum HDT Makeup Gas Ko Drum Fractionator Reflux Drum Steam Drum Hot Oil Surge Drum
GA-101A/S GA-102A/S GA-103A/S GA-107A/S GA-109A/S GA-110A/B/C	Tar Oil Feed Charge Pump Crude Phenol Feed Charge Pump Wash Water Pump HDT Reflux Pump Hot Oil Pump Reactor Recycle Pump
GB-101A/B GB-102A/B	H ₂ Makeup Compr. Recycle Gas Compr.

CASE 1 - MAXIMUM JP-4 - Cont'd

AREA 200 -	<u>HYDROCRACKER</u>
TAG. NO.	DESCRIPTION
BA-201	HDC Reactor Gas Heater
DA-201 DA-202 DA-203 DC-201	HDC Fractionator HDC JP-4 Stripper Naphtha Stabilizer HDC Reactor
EA-201 EA-202 EA-203 EA-204 EA-205 EA-206 EA-207	HDC Reactor Feed/Effl. Exch. HDC Fract. Feed Exch. HDC Fract. Condenser Stabilizer Reboiler Stabilizer Feed Exch. Stabilizer Condenser Naphtha Cooler
EC-201 EC-202	Reactor Effl. Cooler JP-4 Product Cooler
FA-201 FA-202 FA-203 FA-204 FA-205 FA-206 FA-207 FA-208	HDC Feed Surge Drum HT/HP Separator LT/HP Separator Recycle Gas KO Drum Makeup Gas KO Drum HDC Fract. Reflux Drum Stabilizer Reflux Drum Fuel Oil Day Tank
GA-201A/S GA-202A/S GA-203A/S GA-204A/S GA-207A/S GA-208A/S GA-209A/S	HDC Feed Pump Wash Water Pump HDC Recycle Pump HDC Naphtha Pump Stabilizer Btms Pump Stabilizer Reflux Pump Fuel Oil Pump
GB-201A/B GB-202A/B	Makeup Gas Compr. Recycle Gas Compr.
AREA 300 -	PSA HYDROGEN UNIT & RECOMPRESSION
FA-301	Purge Gas Surge Drum
GB-301	Purge Gas Compressor
PA-301	PSA Hydrogen Unit Package

CASE 1 - MAXIMUM JP-4 - Cont'd

TAG NO.	DESCRIPTION
AREA 400	- STORAGE AREA
FB-401 FB-402 FB-403	Jet Fuel Storage Tank Naphtha Storage Tank Fuel Oil Storage Tank
GA-401A/S GA-402A/S GA-403A/S GA-404A/S	Tar/Tar Oil Feed Pump Crude Phenol Feed Pump Fuel Oil Transfer Pump Naphtha Transfer Pump
AREA 500	CATALYST HANDLING
TAG NO.	DESCRIPTION
FA-501 FA-502 FA-503 FA-504	Catalyst Oil Drum Catalyst Storage Hopper Catalyst Transfer Vessels Spent Catalyst Vessel
FL-501	Catalyst Screen
GA-501A/S GA-502A/S	Catalyst Transfer Pump Catalyst Oil Pump

3.2 Cost Estimate

3.2.1 Basis of Estimate

The estimate is an equipment factored type estimate using the equipment sizes & specifications developed for this project. The equipment unit pricing is based on return data for high pressure equipment purchased for various hydrotreater/hydrocracker projects. The unit pricing is some what conservative compared to world wide markets of 2-3 years ago, however, the exchange rate decline during this period will lead to higher purchase prices.

The commodity materials & subcontracts are ratioed from the equipment costs using factors considering the high pressure processing, the size of the units, and the location of the plant.

The labor and indirects also are factored considering process, sizing, and location.

Engineering costs are based on the equipment count times the historical number of manhours per equipment item, and the current average engineering selling rate.

In light of the preliminary data developed for this effort, a 20% contingency has been applied to the base costs.

Excluded from this estimate are:

Spare Parts
Start-Up
Insurances & Taxes
Permits
Royalties on Processing Technology Knowhow

3.2.2 Estimate Summary

	(Thousands of \$)
	<u>Case 1</u>
Area 100 Hydrotreater Area 200 Hydrocracker Area 300 PSA & Recompression Area 400 OSBL Area 500 Catalyst Handing	\$23,836 11,598 9,600 5,111 1,285 \$51,430

LCI PROJECT 5571 SUBTASK 1.2 CASE 1 PAGE 3-5

3.2.3 <u>Estimate Breakdown</u> (Area 100) All Values in Thousands

		 ,	•	
	<u>Equipment</u>	\$ Value	%. Co	mm \$ Comm.
<u>Items</u>	Туре			
1 2 3 12 3 9 13 4	Heaters Towers Internals Reactors Exchangers Air Coolers Vessels Pumps Compressors Special	80 55 7 2025 625 99 429 881 2050	120 140 - 65 70 100 85 80 60	96 77 - 1316 438 99 365 705
47	Total	\$6251		\$4326
	Equipment		6251	
	Commodities		4326	
	Labor		3221	10% Equip. 60% Comm.
	Indirects		3221	100%
	Office		2844	47 pcs x 1100 x \$55-
	Subtota	1	19,863	
	Contingency		3,973	20%
	Total		\$23,836	

3.2.3 <u>Estimate Breakdown</u> - Cont'd

Area	200
------	-----

	Equipment	<pre>\$ Valve</pre>	%. Co	S Comm.
<u>Items</u>	<u>Type</u>			
1 3 1 8 2 8 14 4	Heaters Towers Internals Reactors Exchangers Air Coolers Vessels Pumps Compressors	175 52 8 400 181 57 261 162 800	120 140 - 85 100 110 100 120	210 73 - 340 181 63 261 194 800
41	Special Total	\$2096		\$2122
	Equipment	V	2096	V
	Commodities Labor		2122 1483	10% Equip. 60% Comm.
	Indirects		1483	100%
	Office		2481	41 pcs x 1100 x \$55-
	Subtotal		9665	
	Contingency Total		1933 \$11,598	20%

Area 300

PSA-unit 20 mm SCFD budget quote \$3500

PSA unit 17 mm SCFD 3000

Installation 50% 1500

Subtotal \$4500

Subtotal \$8700

Contingency 900 10%

Total \$9600

3.2.3 <u>Estimate Breakdown</u> - Cont'd

Area 400

Equipment & Value

Tankage MTLS/C Pumps MTL	805 44
Yard Piping 28,400 LF MTL Labor 22,000 Hrs x \$50/hr Labor S/C Pipe Insulation S/C Tracing S/C Excavation for U/G Pipe 55,000 Y ³ S/C Rack 150 Ton Steel S/C Rack FDN-500 Y ³ S/C	\$ 475 \$1,100 160 210 275 300 200
Equipment Related Commodities	
Insulation 18000 Ft ² x \$10 S/C FDNS, Instr, Elec, Paint - 20% x Equip. MTL S/C Labor @ 100% MTL S/C Total	180 170 170 \$4,089
Contingency 25%	\$1,022
Total	\$5,111

<u>Area 500</u>

	Equipment	\$ Value	%. Comm	\$ Comm.
<u>Items</u>	<u>Type</u>			
4 4	Vessels Pumps	105 48	120 120	126 58
8	Total	\$153		\$184
	Equipment Commodities Labor Indirects Office Subtotal Contingency		125 100%	ip. 60% Comm.

4.0 OPERATING COSTS

)

4.1 Operating Labor

It is estimated that it will require 7 men/shift to operate the plant broken down as follows:

Foreman	1	
Control Room	1	
HDT Operator	2	
HCR Operator	2	
PSA & relief man	_1_	
	7	Shift Positions

Maintenance will probably be provided from the existing SNG plant maintenance shop. It is likely that the existing maintenance department will be expanded by about 5 people.

The total additional people (assuming 6 & 2 operation for the process units) are as follows:

Shift Personnel	7 positions x 4 people/position	- 28
Supervisor & Admin.		5
QC Technician		1
Maintenance		5
Other (Stores or Janitor	ial)	1
Total	•	40

4.2 Utilities

The following utilities have been estimated from the computer simulations:

<u>Utility</u>	<u>Consumption</u>	Cost	<u>\$/SD</u>
#6 Fuel Oil SNG equivalent		\$16/Bbl ^(a) \$3.80/MM Btu ^(b)	53952 17912
of Syn Gas & Pur Cooling Water	rge Gas 2400 GPM	\$0.155/MGal ^(c) \$0.04/kWH ^(c) \$0.45/MGal ^(c)	536
Power	7100 kW	\$0.04/kWH ^(c)	6816
Process Water	18.5 GPM	\$0.45/MGal ^(C)	12

- (a) Cut of 1% sulfur \$6 oi! in Minnesota on 11/24/87 as per Platts Oilgram.
- (b) Memo from D. Daley of Burns & Roe to L. Lorenzo of DOE dated Oct. 20, 1987, reference DPD-87-863.
- (c) ANG utility cost information dated 5/87.

4.3 <u>Catalyst & Chemicals</u>

The catalyst and chemicals cost is as follows:

<u>Catalyst</u>	<u>Use</u>	Cost	<u>\$/SD</u>
HDT Cat. HCR Cat. Inhibitors	0.18 #/Bbl 0.013 #/Bbl 50 PPM	\$3.00/# \$6.00/# \$10/Gal	2218 96 <u>86</u> 2400

4.4 Maintenance Supplies

Maintenance supplies for hydrotreating operations typically cost between 1.5-2.0% of the installed cost per year. For a daily cost we would estimate the cost of maintenance supplies to be 0.005% of the total installed cost of the process units. On this basis the maintenance supplies would be $0.00005 \times 51,430,000 = \$2571/SD$

5.0 PLOT PLAN AND UNIT TIE-INS

5.1 Plot Plan

)

The process units required for the production of JP-4 are proposed to be located to the east of the Rectisol Unit and Main Control Room of the existing gasification plant as indicated on the markup of the overall Process Area Plot Plan, LCI Dwg E7102-00010A. This area approx. 300' x 220' will be surrounded by an access road and will be divided by a central east-west road. Areas 100 & 500 will be located to the north and Areas 200 & 300 to the south.

A diked storage tank area approx. 360' x 265' will be required for product and fuel oil storage and is proposed to be located to the south of the existing tankage area adjacent to the railcar loading spurs.

5.2 Unit Tie-Ins

Approximately 2000 ft of new interconnecting pipe rack will be required to connect the new process area with the main yard rack of the gasification plant, the product storage area and flare.

New storm, oily water and sanitary sewer lines will be run from the new process units south to their respective collection systems.

A summary of the lines is shown in table 5.1.

TABLE 5.1 INTERCONNECTING PIPING

EST. SIZE	SERVICE	TO/FROM
4 ⁿ	Tar/Tar Oil (Elec. Tr.)	Storage
2"	Crude Phenol (Elec. Tr.)	Storage
4 "	JP-4 Product	Storage
1 1/2	Naphtha Product	Storage
18"	Wet Flare (Trace)	Flare
8"	Synthesis Gas	PSA/Rectisol
6"	Purge Gas	Methanation/PSA
2"	Off Gas	Rectisol/HDT,HDC
2"	Nitrogen	Main Rack
2"	Plant Air	M
2"	Instr. Air	Ħ
2"	Raw Water (Elec. Tr.)	H
6"	M.P. Steam	н
1 1/2	Stm Cond.	II
1 1/2	BFW	n
1 1/2	Boiler B.D.	H
12"	C. W. Supply & Return	H
2"	Waste Water	Phosam/HDT,HDC
- 6"	Fuel Oil	Exist TKS/New TKS.
15"	Storm Sewer (9' deep)	Storm Basin
15"	Oily Water Sewer (9' deep)	8100/Process Unit
6"	Sanitary Sewer (9' deep)	8400/Process Unit
10"	Fire Water	Ring Headers

ı

CRADE EL 1928 FUTURE 100 & 500

B-30

responsible to the second of t

J
1
t
ø
7
Ţ
Ţ
L

PAGE 20 HAX JP4 16 1957	10 11 00 00 15 HOT SEP LIC	00 200°00	84.4119 2182.7847 17.2969 69449.2969 108 12.855 38.0253 93.7171 547.5342 3	48.28	13.30 19.10 0.7396 C.755 5.2875 27.908	71.4063 10919.9219 10872.4727 2990.44 1189.07 1184.28 98.32 135.61 35.45 0.7192 0.7582 0.7578 25.4531 127.5177 127.77643 40.2585 39.2558 39.2434 23.6696 29.8915 29.8532	655.0 73 10731.0762 10685.093 141.1/39 142.7919 142.969 10.6338 10.9789 10.974 50.2837 -54.2865 -54.196 605.8790 565.6893 570.599	1328 51425,2969	0.45 0.45 0.45 0.7885 0.28.2321 3C.1993 0.	0 00000 000000
900	9 101A OUTLET 1018 MIXED	000	1724.6343 16 65463.9531 6656 30.0528 459.0744 4	29373.F328 381	13.86 .7879 .2990	3652,77 3652,77 1072,76 0.6694 135,4171 42,2335	357C2.9438 276 145.7165 1 10.2764 -19.451 = 644.9381 6	26169.4531 333	0.51 0.8222 19.4677	0000.0
PRJCESS SOLUTION	TOTA INLET	521	2245.U112 6546.2422 15.5983 235.2719 29.1469	\$441.2051	16.48 1.6970 4.5550	\$7023.0391 \$940.74 191.36 0.5505 145.1591 52.5237 8.5542	56767,1096 149,9209 9,820,820,820,820,820,820,820,820,820,820	7105.1943	0.00 1.4105 3.40105	0.0000
I NC •	7 4 4 4 X X X X X X X X X X X X X X X X	503.5925	446.U145 61832.9141 13.1170 212.1343 138.6343	0.0000	00000	61832.9141 6361.15 171.06 0.8751 138.6343 54.3710	60240.4688 168.4372 9.7261 119.6567 412.4564	0 200 0	000	0.000
VERSION 2.C1 SIMULATION SCIENCES PRUJECT GP JET FUELS PROBLEM CTUTOU	NYDROTREATER STAGAF ID. STRGAM NAAG	TEMPERATURE, DEG F	RATE LU ROLS/HR RATE LG /HR ENTHALPY MM BTU /HR ENTHALPY MB BTU /LB MOLECULAR MEIGHT	*** VAPOR PNASE ****	STO.BATE NH FT3/DAY CP. BTU /LB F HOLECULAR MEIGHT	RATE LEGUIO PRASE *** RATE LE /HR ACT.HATE BEL/DAY STO. LV RATE BEL/HR FOLECULAR EEEGNT ACT.DENS LE /FT3 STO. API GRAVITY	AATE LE LE LE AND ABOUT LE	BATE LB /HR	E # 2	VISCOSITY, CP

一年 ときない 一種のでしま

				i					i		
PA & A - 3	18 COLD SEP LIG LIGUID	120.0000	422.5313 47032.2188 0.5580 11.8645 111.3106	0.0000	0.0000	47032.218 4049.25 165.76 165.76 111.3106 49.6492 42.6492	47017.0134 111.4073 11.2643 17.2643 17.8154 549.8154	0.0000	000000000000000000000000000000000000000	0.000	47017.0154 4048.22 0.4638 111.2645 42.661
	17 COLD SEP VAP VAPOR	120.0000	126C.6277 4063.7197 -1.8977 -466.9748 3.2236	4063.7197	11.48 2.2613 3.2236	0000000	000000	4044.3599	• •	00000	000000000000000000000000000000000000000
PAGE 21 MAX JP4 OCT 16 1987	15 16 HZO WASH EFF + HZO LIGUID MIXED										
PROCETS SOLUTION	14 COCL RX EFF Mixed	437.5931	2097.6465 58575.8241 17.0475 325.1774 27.9245	20842.4219	15.64 0.0528 12.1399	37733.3906 3965.44 130.05 0.0447 94.0930 40.6708 39.0882	36473-8750 117-3274 11.1838 -61.5335 525-6302 607-3491	14997.3945	0.53 1.0320 10.7709	0.000	36673-3750 3562-36 3562-36 717-323-4 717-323-4 72-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3663-4 73-3683-4
* 3 %	HOT SEP VAP	659.9121	2097.6475 \$6575.9281 34.1750 \$83.4320 27.9245	SE575.6281	19.10 0.7557 27.9245		000000	51471.2313	0.45 0.7683 30.2189	0.0000	0.0000000000000000000000000000000000000
CIENCES JET FUELS 100	SHAMP TO THE SHAMP THE SHA	TEMPERATURE, DEG F	RATE CONTRACTOR CONTRACTOR SATURAL CONTRACTOR SATURAL SATURA	*** VAPOR PHASE *** RATE LB /HR	STO.RATE MM FT3/DAY CP. BTG /LB F MCLECULAM MEIGHT	ACT. BATE FEBL/AND TO BE ACT. BATE FEBL/AND CP. BTD / LB F ACT. BEST ACT. BE	MATE LB / IR / IR NOLECULAR MEIGHT FLASS POINT, DEG F CRIT. TERP, F F CRIT. PRES, F F SIA	PHASE Ld /	STO-RAIG SE FIS/SE CP. GTC /LD F BOLECULAR MENGET	VISCOSITY, CP	RATE LEGID PRASE *** RATE LE LE SEL/DAY CP. BTU / LE F MOLECLLAR BEIGHT *** ACT. BEAR STO. ACT.
						B-33					

2.2603 2.2603 3.2236	11.26
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.	0.0000 0.000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.
0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0	0.0000 0.0000 0.0000 C. 0.0000 0.0000 0.0000 C. 0.0000 0.0000 0.0000 C. 0.0000 0.0000 0.0000 C. 0.001 0.47 0.47 0.47 2.2673 2.2648 3.2110 3.2110 3.2110 G.
FT3/MR 78.5717 3965.7576 3965.7964 1078. 673/MR 0.01 0.47 0.47 6.7578 5.2648 5.2673 7 6.26648 5.2109 3.2110 3	FT3/MR 72.5717 3965.7576 3965.7964 1078. C 108.7 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0
#T3/MR 0.01 0.47 0.47 F 2.2639 2.2698 2.2673 2 216H1	FT3/MR 0.01 0.47 0.47 F 2.2648 2.2673 2 3.2109 3.2109 3.2110 2 0.0000 C
	3 000000 0000000 0000000 000000

• •

; ! .

DYG		
	13	701

)

SINCLATION SCIENCES .	1 h C .	PROCESS		PAGE 13	•	
00		SCLUTION		4 198		
REFINER	Y PROCESSOR BR	ROPERTIES SET				
NAME	TOT FRAC FD FIXED	25 HDC FEED LIGUID	26 MDT JP-4 LIQUID	27 FRAC OVHD VAPOR	28 HDT HC VAP VAPOR	29 HOT NAPHTHA LIGUID
TEMPERATURE, DEG F	0.677	740	114	4.077	9	
2	0000.	9	65.5000	0000.00	BC.0000	000.08
CLS/X	7.559	5.53	4.067	010.172	1.251	708-99
L8 / H	399.9	6.003	47.992	5.867	7.716	3209.635
₹/ OL	6.537	3.184	4.067	15.877	6.314	900"0
7	7.404	86.953	13.152	8.953	2.022	2.683
_	4.059	3	.244	6.441	18.933	71.6398
	İ					1
HASE *						
Le /xx	9	8	8	867	1727.716	ö
T3/5£	20.8	0.0	0	21.6		i
813/0	•	, <	? 0	6		
				2		•
	70.0	000	000	78	****	Š
:	.510	900.	900.	.441	16,933	ŏ
ACT. DENS La /FT3	0.6547	0.000	0.000	0.7590	C.2606	0.000
(7)		9	000.	.927	\$86.0	Ď
•						
1 T T	.642	A.003	7.007	8	000.0	1200.415
2	816.2	1509.1	3536.3	0	0.0	318.7
BL/KR	26.62		124.85	00.0	0.0	12.98
	621	0.592	0.577	900	000.0	905.0
	4.967	4.289	2.244	000.	0000	71.639
-	.650	. 309	.452	8	0.00	43.045
	9.550	7.687	0.404	.000	000.0	68.612
•						
					•	
× .	2461.6272	17,007,5954	33//2.2500	0000.0	200.0	\$20g-8184 0
		27.12	178.67	200		*****
•	20.	90.01	907-1	300	000.0	74.11
9 20	3.423	01.571	029.85	900	000.0	-74.476
	151	6.439	7.105	000	000.0	422.676
V I S d	.00.	22.014	30.607	5	000.0	575.386
1 20						
2	46.00	0	0	014 1111	377 404	000
fo / 22	00.00.00.00	0000	000.0	10 FT		
3777		•	•	•	- 6	•
	- 6	•	9 6	1 0		
		3 8	3 9		7000	
	220.10	200	9 6			
	000	3	000	000	0000	20.0
2	. 25.	000	000.	75.	S86")	00.0
A .	, LO.	• 000	000.	•000		00.0
*						
¥ .	199	7.194	7.226	0.000	0000	1208.818
BBL/DAY	G16.8	1504.3	1523.0	. 0		318.6
	621	1000	0.576	9	000	935.0
:	6.191	1.175	5. 121		000,	71.694
7	5.550	200	207 27	9	000	43.042
	13,5511	44.0.44	7:53.07	0.0000	0000	68.6278
	:		1	•		474.0

1 :

;

1

					861 90 33
	10100		0FU110		
Color Colo	E F I N E R	FROCESSOR	RCPERTIES SE		
LB / MR 1299-9990 1599-1999 150-0000		30 RAC STR ST VAPC	31 P-4 ST# ST	SCUR HZ	SS EFLUX LIGUI
	URE, DEG	30.641	31.327	0.000	0000
LB PCLSAM	154	3.899	95.500	000.00	80.000
Le	B FCLS/H	72.162	33.914	158.031	715.187
## #19 /## 196.5105 196.5105 19.0164 D.1064 D.1	3 9	566.662	505.505	Pe3.146	1235.843
FILE FILE FILE FILE FILE FILE FILE FILE	NA BTC /N	1.547	1.904	0.166	.137
	ETU /L	190.210	190.213	2.015	2.683
	R VEIGHT	18.015	\$. 01 S	8.015	1.639
FINE 1295-9990 1599-9999	TANGE A				
FINALLY (2) 1.72 2.06 0.00	TE/ 97	566.962	299.666	0000	9
## #73/AAY	FT3/8E	1.7	٥.	ō,	9
PRASE	MP 673/DA	*	7	Č	Ç
Detail D					
Delicity (22)		3.015	6.0.0	000	000
PHASE *** C.00C0	L5 /FT	253	. 213		900
Delica	(7) 1177101		,	200	
LE /HR 0.0000 0.000 2663,1460 51235.843 RATE BEL/HR 0.000 0.000 19,08 5097.9 REGNT 0.000 0.0000 16,015 71.539 RASIS *** 0.000 0.0000 0.0000 17.752.804 RASIS *** 0.0000 0.0000 0.0000 17.752.804 RASIS *** 0.0000 0.0000 0.0000 17.752.804 RASIS *** 0.0000 0.0000 0.0000 0.0000 17.752.804 RASIS *** 0.0000	TO PHASE **				
## ## ## ## ## ## ## ## ## ## ## ## ##	Le / HR	200	000	563.146	1235.843
### BELLAN ### FINAN ##################################	SL/DA	0	0	197.0	5087.9
	ATE SBL/H	J	9	٠.	207.1
## WEIGHT: 0.00CC 0.0000 18.0150 71.539 ### List /FT3 0.00CC 0.0000 10.0635 68.612 ### List / / / / / / / / / / / / / / / / / / /	/LD F	200	.000	140.	0.504
## FT3 0.0000 0.0000 62.1002 43.045 ### ### 0.0000 0.0000 0.0000 77.694 ### ### 0.0000 0.0000 0.0000 77.694 ### ### 0.0000 0.0000 0.0000 77.694 ### ### 0.0000 0.0000 0.0000 77.694 ### ### 0.0000 0.0000 0.0000 77.694 ### ### 0.0000 0.0000 0.0000 0.0000 #### ### 0.0000 0.0000 0.0000 0.0000 ##########	R LEIGHT	200.	.603	8.01S	1.539
### ### 0.0000 0.0000 10.0635 68.612 ### ### 0.0000 0.0000 0.0000 11.792 ### ### 0.0000 0.0000 11.792 ### ### 0.0000 0.0000 11.792 ### ### 0.0000 0.0000 0.0000 11.792 ### ### 0.0000 0.0000 0.0000 11.792 ### ### 0.0000 0.0000 0.0000 0.0000 ### ### 0.0000 0.0000 0.0000 0.0000 ### ### 0.0000 0.0000 0.0000 0.0000 ### ### 0.0000 0.0000 0.0000 0.0000 ### ### 0.0000 0.0000 0.0000 0.0000 #### 0.0000 0.0000 0.0000 0.0000 #### 0.0000 0.0000 0.0000 0.0000 ##########	L8 /FT	222	000	2,100	3.045
##515 *** 0.0000 0.0000 0.0000 71.694 ##15.0000 0.0000 0.0000 11.792 ##15.0000 0.0000 0.0000 11.792 ##15.0000 0.0000 0.0000 11.792 ##15.0000 0.00	GRAVITY	200.	.000	0.063	8.612
NET NET 0.0000 0.0000 71.694					
	44 S1SYB	•	•		
##16#1 10000	7	200.	000		166.2221
ENT. PEG F C.00C0 0.0000 0.0000 71.792 884 85.85 F C.00C0 0.0000 0.0000 75.85 86 85.85 F C.00C0 0.0000 0.0000 75.85 86 85.85 F C.00C0 0.00000 0.00000 0.00000 0.00000 0.0000 0.00000 0.0	M WELGHIA	-00-	000	000	****
#### PEG F C.00C0 9.0009 0.0000 -74.476 ES FIR 0.00C0 0.0009 0.0000 422.8676 ##################################		200.	000	000	11.792
	INT, DEG	200.	• 000	900.	74.476
# PMASE ***		.000	000.	000	22.676
# PMASE *** LB / MR LB / MR LB / MR LB / MR PT3/SEC N.00 N.000 N.000 N.000 N.000 N.0000 N.0000 N.00000 N.00000 N.00000 N.00000 N.00000 N.00000 N.00000 N.00000 N.00000	ES, PSI	200.	900.	000	75.386
FISTSEC 0.0000	22 23 27 4				
FISSEC 0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Č	5	Č	Č
## FISHR 0.0000 0.000 0.	22777	5)))	
Le F 15777 (2) 0.0000	44/4/8		•		۶
#EIGHT ***EIGHT ***EIGHT ***CP******************************		ָ ס			0 0
BILITY (2). La /FT3 0.0000 0.					
## CP					
PHASE +++ C.00C0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000				200	9
D PHASE *** D PHASE *** L4 / MA C 0000 0.0000 0.000 0.000 E EL/DAY 0.00 0.00 0.00 51222.804 E EL/DAY 0.00 0.000 0.000 0.000 L8 F C 0000 0.0000 0.0000 0.504 L8 FT 0.000 0.0000 0.0000 771.694 L4 / FT 0.0000 0.0000 441.042 GAALITY 0.0000 441.042	BILITY (Z)	200	. 000	000	. 000
D PRASE *** Ly /HK	•	200.	.000	.000	000-
Ly / HA 0.0003 0.0030 0.0000 51222.804 Ly / HA 0.00 0.00 0.00 50.00 Ly / HA 0.00 0.00 0.00 0.00 Ly / HA 0.000 0.000 0.000 0.504 Ly / HT 0.000 0.000 0.000 42.042 AAANITY 0.000 0.000 42.042	D PLASE				
EB F C.00Cu C.00Qu O.0000 0.00 0.5047.00 0.00 0.00 0.5047.00 0.5047.00 0.0000 0.5047.0	91/ 7	טטט	(000	1222 AUG
LB F C.00Cu C.00Qu 0.50Au 0.50	40/ 1E	ָ פֿי			50.47
#E36#1 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		, ,			704
	A 5616H1		c	000	1.494
STREAM DIVING TO THE PROPERTY OF THE PROPERTY	L3 /6T			000	1.62
	SANITY	ë			1.0.7

· ! ·

SIMULATION SCIENCES INC. PROCESS PAGE 34
PROJECT GP JET FUELS
PROBLEM CIUZO4 SCILUTION OCT 21 1937

	13 SEP LIG LIGUID	860	9.23	67	1 2	8		000000		231	84.3	0.674	188.7466	9.040		9.021	88.848 11.273	5.014	710.1290 290.5C71				0.000		38	Š		.021	47.4	878-8	41.1391	((
	12 PURGE GAS HOT VAPOR	120.0000	6.499	2.674	0	0	2.1363	80	.043	8	• •	.000	0000.0	.00		.000		8	0.0000		0		2.1437	~ •	0	8		ဥ	.00	.000	00000.0) () () (
	11 RECYCLE GAS VAPOR	120.0000 1095.0000 2140.6616	476.922	2.673	2	N. N.	2.1303	2 8	.043	8		.000	0000	.00		900		.000	0.0000	;	٤,	•	2.1437	2 2	.043	.000		ខ	900	S.	0.000.0	-
•	FFFR 1-201 Mixed	418.2935	240.964	.219 .378	7	\$ ° ¢	1.1587	187 057	.033	013	31.1	0.633	160,2012	7.220		3.269	11.493	40.718	329.0555		2	•	1.1607	2 5	.033	.000		. 269 15 5	633	9.303	27.22.74	: :
ROPERTIES SET	HOT SEP VAP	\$80.2936 1145.0003 2348.2407	13.466	2.873	30240.9588	÷-		2 12	9	8°	90	000	0.0000	000		800		000	0.0000		-	, 20	1.0311	1.279	.032	.000		0000°0	, ç	3.		1
SOR	-2C2 CLTLET MIXED	580.3386 1150.0000 2367.84C3	940.171	6.265	72	4.5		284	.032	3724.3750	12.C	0.674	2 2	9.072		162	11.274	4.769	290.5542	, ,	6.6 6.6	8.0	1.0329	1.284	.032	900.	;	7,	9.674	.031	- ,	ŗ
RETARES	STATES TATES TO STATE TO STATES TO S	IME, DEG	==	ETU /L	PHASE ++	STD.RATE FT3/SEC		ACT. DENS LB /FT3	OMPAESSIBILITY (2)	### LIGUID PRASE ### #ATE LO LTR ACT.#ATE BELLDAY	TO. LV RATE BBL/HR		ACT. DEPS RELEGIO	:	DKY BASIS .	RATE LO /RR MOLECULAR LEIGHT		FLASH POINT, DEG F	ALT. PRES. P.	** VAPOR PHASE	AATE FT3/S			ACT. DENS LB /FT3	$\hat{}$	43 /11/603614	• :			MOLECULAR BELGHT	ATLA GAPATTY	>

B-38

: : : :

:

•

	•	ï	•				
PAGE 35	17 SOUR H20 LIGUID	120.0000 1095.0000 0.5511 9.9596 0.0003 18.0189	0000000	6	0.0557 18.7403 11.6004 1.8953 181.3166	000000000000000000000000000000000000000	0.0587 0.01 1.5294 13.7403 33.5482 102.316
	15 WASH H20 LIGUID	125.0000 1110.0000 0.5704 17.4815 0.0017 95.7991	000000000000000000000000000000000000000	17.4815 1.21 0.9928 18.0150 61.6306	000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000
PROCESS SOLUTION CPEATIES SET	15 EC COMP DIS VAPOR	152.8118 1265.0000 2160.6670 7477.0352 -2.4979 -334.0800	7477.0352 3.24 19.50 2.1395 3.4929 0.6413	000000000000000000000000000000000000000	000000	7417.5693 3.23 0.81 2.1530 3.4704 0.0571 1.0484	0000°0 0000°0 0000°0 000°0
INC.	14 COLD SEF LTA R LIQUID	120.0000 1095.0000 197.5457 22735.0977 0.4840 21.2877	000000000000000000000000000000000000000	22735.0977 2167.75 2167.75 10.8020 115.0454 46.1073	22727.9483 115.2750 11.9570 -91.1659 523.3317	000000000000000000000000000000000000000	22727.9623 21C7.20 2.5C25 115.2799 49.1030
VERSION 11 SIMULATION SCIENCES IN PROJECT GP JET FUELS PROBLEM C1U204 REFINERY	STREAM ID (STREAM NAME	PRESSURE, DEG F PARESSURE, PSIA RATE LB PCLS/HR RATE LB AN /HR ENTWALPY MM GTU /HR ENTHALPY GTU /LP MOLECULAR MEIGHT	AATE LB /MR ACT.RATE FT3/SEC STD.RATE NM FT3/DAY CP. BTU /LB F HOLECULAR MEIGHT ACT.DEMS LB /FT3 COMPRESSIBILITY (2).	ACT. BATE LB /HR ACT. BATE BBL/DAY STD. LV RATE BBL/HR CP. BTU /LB f ROLECULAR MEIGHT ACT. DENS LG. /FT3 STD. API GRAVITY	RATE LB /HR NOLECULAR MEIGHT UOP K	RATE LB /HR ACT.RATE FT3/SEC STD.RATE RT3/HR CP BTU/LE F MOLECULAR MEIGHT ACT.DEMS Ld /FT3 VISCOSITY, CP	MATE LIGUID PHASE *** ACT.RATE BBL/DAY CP. ETU /LE F MOLECULAR BEIGHT ACT.DENS L2 /FTS STD: AFI GRAVITY
·	•			B-39			

. •

.

¥2,

	į	!						i											;						į		į.						
PAGE A-10	;	STR STR VAPOR	312.2646			0.7974	=	!				0.1242	;	•		0.000	36	8	- 3	58	88		3	0.0000	00.00	, 0	0000	0000	3	0	0.0	900	00000
	;	SO FRAC STR STM	322,6034	300	66.5		18.01	6	<u> </u>	0	, , , , , , , , , , , , , , , , , , ,	0.1674		8	, 0	0000		000.		.00	96	000		0	•	8	85	00000		8	0.0	000	0000.0
PAGE 19 MAX JP4 DEC 04 1987	;	ADC HC VAPOR	90.000	5.623	6.534	7000	27.567	:	4 40	0.5	567	0.2855		8		0.000	38	90.			999		3	47		0.529	. 678 . 286	0.9818		်	0.00	200	0000-0
	:	27 FRAC CVHD VAPOR	70	25.339	7.574	6.669	60.393	,	: :	E (300	00		8	• •	00000	38	900			900	0000	•	8	٠,	\$05	.330	0.0217	•	_	0.0	000	
PPCCESS SOLUTION		20 HDC 76-4	2.351	15.97	7.302	1.305	633	ć	20	0.0		00000		200	52.7		. 576	4.628		.357	976	600.5232	coc•14	0	00	.00	000	0.0000) }	.337	434	3.257	32.
INC.	a aos	HDC NAFFTHA LIQUID	9000.04	9.451	3.628	150.0	.427	9	30	0.0	900	0.000.0	,	•	- 2	0.5444	:-	7:7		6.899 1.681	12.735	363.9533	2010-20	0900.0	00.0	90.	000	0.000.0		999	311.61	1.4.1	
SELS	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MARKAT LD THE WITHOUT A STATE OF THE	TEMPERATURE, DEG F	LE FOLS	LB /H	METERIFY AND BALC AND METERIFY AND STATE AND S	LEIGHT	SAN PINOR PINOR	ACT.RATE FI3/SEC	STO. RATE MM FT3/DAY	MOLECULAR PRIGHT	ACT.DERS LB /FT3 CORPRESSIBILITY (2).	*** LIQUID PHASE ***	ATE LB /H	STD. LV RATE BUL/HR	CP. BTU /LB F	ACT.DENS LB /FT3	STD. API GRAVITY	BASIS +	3	STATE BOTHT OF F				STD-RATE RK FT3/SEC	CP. OTU /LB F	MOLECULAR MEIGHT			RATE LIGOID FRASE ***	.RATE 60L/D ETU/Le f	CULAR BEIGHT	CITY OF GRANTER CONTRACTOR
															B-	40																	

)

PRUCESS SOLUTION SOLUTION ADPENTIES SET ADPENTIES SET ADPENTIES SET ADPENTIES SET	1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20923.9803 2293.73 32.71 0.54.4 71.4272 39.1644 87.7927 87.7927 11.4814 17.4814 17.4814 17.535 98.2333 583.9538	0.000 0.000 0.000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0
PACCESSOR P PACCESSOR P 50UR M20 L19010	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	201 201 201 201 201 201 201 201 201 201	
VERSION SIRULATION SCIENCES IN PROJECT GF JET FUELS PROBLEM CIFCOS STREAM ID	## S	T	ACT. RATE FT3/SEC STO. RATE FT3/SEC STO. RATE FT3/SEC STO. RATE FT3/FR FT3/FR COMPRESSIBILITY (2). VISCOSITY, CP. RATE EGL/DAY CP. GIU/CE EGL/DAY CP. GIU/CE EGL/DAY CP. GIU/CE EGL/DAY CT. RATE EGL/DAY CP. GIU/CE EGL/DAY CT. RATE GRAVITY

:	!		•	• • •		
44 REBOILER LIGUID	226.5963 141.5000 146.9895 10470.0488 91.6606 71.2299		10470.0488 1275.42 64.54 0.65.84 71.2299 35.0904 79.0423	10468.9688 71.2516 12.2821 -77.2691 401.0717 529.5265	000000000000000000000000000000000000000	10468 1275 1275 1275 14295 175 185 185 185 185 185 185 185 185 185 18
43 NAP PROD LIGUID	262.5658 142.0000 77.5554 5767.9932 0.6457 111.9418	000000000000000000000000000000000000000	5767.9932 716.00 26.05 0.6893 74.5725 34.4351	5767.8945 74.3765 12.1437 -57.6594 421.0440 515.4408	000000000000000000000000000000000000000	5767.8945 716.00 0.6893 74.3765 34.4549 74.9007
42 Reflux Liquid	94.1650 125.0000 17.9156 951.0134 0.0347 36.4371	000000000000000000000000000000000000000	951.0134 122.78 4.88 0.7108 53.0829 33.1094	950.6528 53.1222 13.8836 -118.4625 263.5591 603.4601	000000000000000000000000000000000000000	950.6528 122.76 0.7107 53.122 33.1036 122.7061
41 Tab offgas Vapor	94,1650 125,0000 7,1663 294,8259 0,0616 209,0047 41,1406	254.8259 0.08 0.07 0.4772 41.1406 0.9812	000000000000000000000000000000000000000	000000000000000000000000000000000000000	294.0104 0.08 0.08 0.4775 41.2876 0.9856 0.9851	00000000000000000000000000000000000000
40 NAP FEED S Liquid	89.8248 144.0000 84.7563 6063.4775 0.0601 7.9084	0000000	6063.4775 629.37 25.62 0.5233 71.5334 71.1822	6061.9326 71.5939 12.2361 -83.7369 404.6239	000000000000000000000000000000000000000	6061.9326 62.9326 0.5232 71.5939 71.13
29 HDT NAP Liquid	96.0060 44.8026 3209.6338 6.0086 7.6839	0000000	3209. 318. 42. 10.906. 10.906. 11.6090. 63.0080. 643.00820.	3208.8169 71.6941 11.7920 -73.3390 722.6771 575.3867	000000000000000000000000000000000000000	3203. 316.40 316.40 71.6941 71.6941 63.0787
STREAT 10. STREAT STREET STREET STREET	TEMPERATURE, DEG F PRESSURE, PSIA PATE LB ROLS/HR RATE LB /HR ENTWALPY MR BTU /HR ENTWALPY MR BTU /HR ENTWALPY BTU /HR ENTWALPY BTU /HR	AATE LB /HR ACT.RATE FT3/SEC STD.RATE MM FT3/DAY CP. BTU /LB F NOLECULAR MEIGHT ACT.DEMS LB /FT3 COMPRESSIBILITY (2).	AATE LIBULIO PRASE +++ AATT LB / LB / STO. LY AATE BBL/TR CP, BTU / LB F HOLECULAR WELGHT, ACT. DENS LB / FT! STO. API GRAVIT	AATE LB /HR ADLECULAR MEIGHT UOP K	ACT.RATE FT3/SECSTO-SALE STATE OF STATE ST	ACT. BATE BOL/DAY CP. GTU / LO F ACT. BATE BOL/DAY CP. GTU / LO F ACT. DEAS STO ACT. F VINCONTY.
	TREAM 10 HOT NAP REED STAB OFFGAS REFLUX NAP PROD REGOLLE TREAM PHASE LIQUID LIQUID LIQUID	HOT NAP	NET NAP NET	Mer		

APPENDIX C

AMOCO/DOE

GREAT PLAINS GASIFICATION PLANT

JET FUEL FROM COAL DERIVED LIQUIDS

CASE 2
PROFITABLE JP-4 PRODUCTION
SUBTASKS 1.2 & 1.3
PROCESS DESIGN AND COST ESTIMATE

LCI PROJECT 5571 DATE - JAN. 30, 1988

TABLE OF CONTENTS

1.0 CASE DESCRIPTION

- 1.1 Overall Process Description1.2 Overall Material Balance1.3 Overall Utility Balance

2.0 PROCESS DESCRIPTION

3.0 CAPITAL COSTS

- 3.1 Equipment Lists 3.2 Cost Estimates

4.0 OPERATING COSTS

- 4.1 Operating Labor

- 4.2 Utilities
 4.3 Catalysts & Chemicals
 4.4 Maintenance & Operating Supplies

5.0 PLOT PLAN & TIE INS

1.0 CASE DESCRIPTION

)

1.1 Overall Process Description

The purpose of this case is to produce JP-4 type aviation turbine fuel and chemical byproducts to maximize profit from Great Plains liquid by products. Figure 1 presents a block diagram for the process and referring to Figure 1 the flow is as follows:

- . Tar Oil byproduct stream (47620 #/hr, 3182 BPSD) is charged to the hydrotreater (Area 100).
- The hydrotreater is a 3 stage expanded bed type process which removes 99% + of the sulfur, nitrogen, and oxygen compounds and begins the conversion of 500 F+ material. The hydrotreater adds a large quantity of hydrogen to the feed (3400 SCF/bbl) which results in a high heat of reaction. An expanded bed type reactor was chosen to both control and utilize the heat of reaction. Three stages were used to both control the temperature rise as well as to obtain the high efficiency associated with staging a back-mixed reactor.
 - The hydrotreater produces 6 streams:
 - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit in the SNG plant for recovery of the $\rm H_2$ and $\rm CH_4$.
 - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
 - Unstabilized naphtha which is sent to the combined naphtha stabilizer in the hydrocracker (area 200).
 After stabilization, to control vapor pressure, the naphtha is sent to storage and gasoline blending.
 - JP-4 turbine fuel which is combined with JP-4 produced in the hydrocracker (area 200) and sent to storage.
 - 500^oF+ unconverted bottoms product which is sent to the hydrocracker (area 200).
 - Wastewater containing, NH4OH and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.

)

- Approximately 950 #/day of spent catalyst which is shipped to a catalyst reclaimer in the same drums that the catalyst is received in.
- The 500°F+ unconverted stream from the expanded bed hydrotreater (area 100) is charged to the fixed bed hydrocracker (area 200). The hydrocracker converts this material to naphtha and JP-4 turbine fuel. For this service a 5 stage unit was chosen with 65% conversion per pass. This unit also includes a naphtha stabilizer which stabilizes both the naphtha produced in the hydrotreater and hydrocracker.
- The hydrocracker produces 4 streams in addition to JP-4
 - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit of the SNG plant for recovery of the H₂ and CH₄.
 - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
 - Stabilized naphtha which is sent to storage and gasoline blending.
 - A small sour water stream which is sent to the PHOSAM unit in the SNG plant or alternatively used as part of the injection water to the hydrotreating plant.
- Hydrogen make-up for the Hydrotreater, the Hydrocracker and the Naphtha Hydrotreater (Area 600) is supplied from a PSA Hydrogen Unit (Area 300). High pressure (355 psig) synthesis gas from the Rectisol Unit (which contains about 63% hydrogen) is charged to the PSA unit which recovers 86% of the contained hydrogen as a high pressure 99.99% purity hydrogen gas product. The remaining purge gas is available a low pressure (5 psig) which has a fuel value of about 565 BTU/ft. This H₂, CO & CH₄ rich gas is recompressed into the methanation unit of the SNG plant.
- The crude naphtha byproduct stream (8738#/hr, 725 BPSD) is charged to the distillation and hydrotreating unit (Area 600).
- The distillation removes the material boiling below 160°F, which is sent to the SNG Plant fuel pool, and produces a bottoms product which is charged to the hydrotreater.
- The fixed bed hydrotreater is a single bed reactor which removes 99% + of the sulfur, nitrogen, and oxygen compounds. Hydrogen is added to the feed at the rate of 430 SCF/bbl.

1.1 Overall Process Description - cont'd

١

- The naphtha hydrotreater produces 4 streams:
 - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit in the SNG plant for recovery of the $\rm H_2$ and $\rm CH_4$.
 - Naphtha which is stabilized to control vapor pressure.
 Approximately 74% of the naphtha is the sent to the Aromatics Recovery Unit (Area 700), the remainder is sent to gasoline blending.
 - A low pressure off gas which is sent to the Stretford unit in the SNG plant.
 - Wastewater containing, NH4OH and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.
- A portion of the hydrotreated naphtha is charged to the extraction section of the Aromatics Recovery Unit (Area 700) where it is contacted with a solvent to extract the aromatic components from the stream. The raffinate is sent to storage and gasoline blending while the solvent is recovered from the aromatic extract. The aromatic extract is then sent to fractionation to produce the BTX products.
- . Five streams are produced in the ARU plant.
 - A hydrocarbon gasoline blending stock which is sent to storage and gasoline blending.
 - A small process water stream which is sent to the waste treatment plant in the SNG Plant.
 - Three product streams Benzene, Toluene & Xylene which are sent to storage.
- The crude phenol byproduct stream (14490 #/hr, 936 BPSD), is feed to the dual solvent phenol extraction unit (Area 800).

)

1.1 Overall Process Description - cont'd

- . Distillation removes approx. 85% of the phenol which is further distilled to remove light ends and then reflashed over sulfuric acid producing a 99.8% pure product.
- The remainder of the stream (a cresylic acid mixture) is flash distilled over a 3 wt.% concentrated sulfuric acid mixture to remove pyridine type substances.
- The acid tar produced is water washed and mixed with light oil and sent to fuel.
- The remaining cresol/xylenol mixture is double solvent extracted to remove neutral hydrocarbons. The resulting crude cresylic acid is dried and sent either to storage or distillation (Area 900).
- Streams produced in the phenol extraction unit are:
 - Phenol product sent to storage
 - Crude Cresylic Acid sent to distillation (Area 900) or storage.
 - Wash Water sent to Water Treatment in the SNG Plant.
 - Waste Water sent to the Phenosolvan unit in the SNG Plant.
 - Neutral Oil sent to storage and fuel for the SNG Plant boilers.
- . The Crude Cresylic Acid is progressively distilled (Area 900) to separate the cresols and xylenols. No attempt has been made to remove the guaiacol from the product streams.
- Streams produced in the crude cresylic acid distallation unit are:
 - o-Cresol product which is sent to storage.
 - m,p-Cresol product which is sent to storage.
 - Xylenol product which is sent to storage.
 - A heavy distillate which is combined with neutral oil in Area 800.

1.1 Overall Process Description - cont'd

- A crude phenol stream which is recycled to the
- A small water stream which is sent to Area 800 for tar acid washing.

1.2 Overall Material Balance

The overall material balance is presented in Table 1.1 which presents overall material balances for the major process units. The balance was computed on the basis that the fuel value of the feed will be replaced by fuel gas, neutral oil and 160°Fdistillate produced in the process and the difference made up by the purchase of #6 Fuel Oil.

The overall balance is as follows:

Feeds

١

)

)

- 936 BPSD of Crude Phenol
- 725 BPSD of Crude Naphtha
- 3182 BPSD of Tar 0il
- 4347 BPSD of #6 Fuel Oil
- 9.52 MMSCFD equivalent SNG product loss due to the syn gas feed to the PSA unit.

Products

- 3403 BPSD of JP-4 turbine fuel 324 BPSD of 160°F Naphtha for gasoline blending
 - 317 BPSD of Phenol
 - 56 BPSD of o-Cresol
 - 131 BPSD of m,p-Cresol
 - 75 BPSD of Xylenols
- 312 BPSD of Neutral Oil for Fuel 202 BPSD of 160°F Distillate for Fuel 161 BPSD of Gasoline Blending Stock 233 BPSD of Benzene

- 83 BPSD of Toluene
- BPSD of Xvlene 11
- 6.27 MMSCFD equivalent SNG product credit due to HDT, HDC & PSA purge gas reinjection into SNG plant.

1.3 Overall Utility Balance

The overall utility consumption of the complex is as follows:

#6 Fuel Oil	4347 BPSD
SNG Equivalent	
of Syn Gas & Purge Gas	3.25 MM SCFD
Power	6180 kW
Cooling Water	6140 GPM (30 ⁰ F rise)
Process Water	31.0 GPM `

In addition the process utilizes steam as summarized below which was debited against boiler requirements.

HP Steam Import	54,700	#/H
MP Steam Import	8,900	
LP Steam Export	6,900	
Condensate Return	63,600	#/H

Jet Fuel 3403 BPSD Naphtha 324 BPSD Phenol 317 BPSD ► M,P-Cresol O-Cresol Crude Cresylic Acids Benzene ▼ Xylenols Gasoline To Fuel → Toluene 11 BPSD Xylene 485 BPSD NNF(166 BPSD Design) 131 BPSD 161 BPSD 233 BPSD **56 BPSD** 75 BPSD 83 BPSD Aromatics Recovery 328 BPSD 160 oF+ 1380 BPSD 255 BPSD 34 BPSD 127 BPSD 31 BPSD Phenol 46 BPSD 160 oF-→ 195 #/hr Fuel Gas Cresyfic Acid Distil-lation → 22 #/hr Purge Gas 1325 BPSD Hydrocrack **488** BPSD 2022 BPSD 526 #/hr H2 **Hydrotreat** Crude Cresylle Acids Phenol 69 BPSD 160 -500 oF 271 BPSD 45 BPSD Water 2960 #/hr H2 Purge Gas 23746 #/hr 160 oF-62 #/hr H2 160 oF-202 BPSD 160 oF+ 523 BPSD 500 oF+ Neutral Oil Hydrotreat Extraction Phenol ation Distil-PSA 2372 #/hr H2 GP Tar Oil 3182 BPSD Syn Gas 26706 #/hr GP Naphtha 725 BPSD GP Phenols 936 BPSD C-9

)

2:Profitable JP-4

Case

Figure

)

)

Table 1.1					Production							
Tar Oil Fe				7182								
Fhenol Fee	(d=====>	14490	#/hr	936								
Crd Naphth					BPSD							
Naphtha Pr					BPSD							
JF4 Froduc				3403								
Phenol Pro				317								
				56								
o-Cresol F			#/hr	131								
m.p-Cresol												
Xylenols F				75								
Gasoline S			#/hr	161								
Penzene Pr			#/hr	233								
Toluene Pr			#/hr	83								
Xylene Pro			#/hr	11								
SNG Produc	t Loss=>	5586	#/hr	3.3	MMSCFD							
Fuel Oil M	lakeup==>	60183	#/hr	4347	8FSD							
Empanded Bed Hydrotreater ***********************************												
.damuO	Wt %	Grav	#/hr	#Mole/hr	BPSD							
Feeds												
H2	4.98		0777	1176.9								
		1 00/0		11/0.7	7100							
Tar Oil	100.00	1.0268	47620 		3182							
Total	104.98		49993									
Products												
Purge Gas	0.11		54	16.8								
Fuel Gas	1.99		950	46.8								
Naphtha	1.61	0.6825	765		77							
JF-4	50.86	0.8218	24221		2022							
500 oF+	39.95	0.9850			1325							
H2O in SW	8.96	, , , , , ,		237.1								
HIPS in SW			205									
MH3 in SW	1.06		505									
[otal	104.98		49993		3424							
Fixed Red	, = . =											
			#/b=	#Mole/hr	ppen.							
	wc /.		#711r	#HO16/H								
Feeds												
H2	2.76		526	260.9								
500oF+		0.9850			1325							
Total	102.76		19552									
Products			- ·									
Purge Gas	0.94		179	60.7								
Fuel Gas			820									
Naphtha	13.96	0.6675	2656	.5.5	273							
JP-4	Q7 55	0.7900	15896		1381							
H2S in SW	0.003	W#/7UU	0.6	0.02	1201							
MAS IN SW	0.003		0.6									

19552

0.6

0.03

1654

NH3 in SW

Total

0.003

102.77

)	Comp.	Wt %	Grav	#/hr	#Mole/hr	BPSD
	HDT Nap	22.37	0.6825	765		77
	HCR Nap	77.63	0.6675	2656		273
	Stab Nap	98.50	0.7140	3370		324
	Fuel Gas	1.50		51	1.2	

PSA Hydrogen Recovery Unit(86% Recovery)

Component	H2	co	CO2	CH4	C2H6	N2+Ar	Total
Mol %							
Feed Gas	116.28	34.26	2.72	29.84	0.58	0.35	184.03
Fred. H2	100.00	0.01					100.01
Pur ge Gas	16.28	34.25	2.72	29.84	0.58	0.35	84.02
Wt %							
Feed Gas	116.28	475.95	59.44	237.46	8.63	5.55	903.31
Prod. H2	100.00	0.12	0.00	0.00	0.00	0.00	100.12
Purge Gas	16.28	475.83	59.44	237.46	8.6%	5.55	803.19
#Mol/hr							
Feed Gas	1707.6	503.1	3 9. 9	438.2	8.5	5.1	2702.6
Prod. H2	1468.5	0.1	0.0	0.0	0.0	0.0	1468.7
Punge Gas	239.1	503.0	39.9	438.2	8.5	5.1	1233.9
#/hr			,				
Feed Gas	3443	14091	1760	7030	255	164	26743
Prod. H2	2961	4	O.	O	Ò	Ф	2964
Purge Gas	482	14087	1760	7030	255	164	23779

Crude Naphtha	Wt %	Gravity	#/hr	BPSD
Feed Naphtha	100.00	0.8269	8738	725
Frad 160 oF- Frad 160 oF+	24.77 75.23	0.7350 0.8627	2164 6574	202 5 23

·- · ·

Naphtha	Hydro	tr	a	te	r

Component	Wt %	Grav	#/hr	#Mole/hr	BPSD
Feed 160 oF+	100.00	0.8627	6574		523
Feed Hydrogen	0.94		6 2	30.8	
Feed Total Froducts	100.94		6636		523
Purqe Gas Fuel Gas	0.33 2.97		22 195	6.8 10.8	
HDT Naphtha H2O in SW	93.61 1.96	0.8650	6154 129		488
H2S in SW NH3 in SW	1.76 0.30		116 20		
Total Products	100.94		6636		488

Aromatics Recovery

Companent	Wt %	Grav	#/hr	BPSD
Feed HDT Naphtha	100.00	0.8650	4552	361
Products				
Raffinate	7.82	0.7175	356	34.0
Benzene	65.97	0.8844	3003	233.0
Toluene	23.15	0.8718	1054	83.0
Xylene	3.0 5	0.8729	139	10.9
Total Products	100		4552	361

Phenol Extraction

Wt %	#/hr	Grav	BPSD
100.00	14490	1.0621	936
1.97	285	1.8300	11
101.97	14775		947
35.13	5090	1.0290	339
29.09	4215	1.0661	271
30.68	4445	1.0860	281
7.07	1025	1.2558	56
101.97	14775		947
	100.00 1.97 101.97 35.13 29.09 30.68 7.07	100.00 14490 1.97 285 101.97 14775 35.13 5090 29.09 4215 30.68 4445 7.07 1025	100.00 14490 1.0621 1.97 285 1.8300 101.97 14775 35.13 5090 1.0290 29.09 4215 1.0661 30.68 4445 1.0860 7.07 1025 1.2558

Cresylic Acid Distillation

Component	Wt %	#/hr	Grav	BPSD
Cr. Cresylic Acid	100.00	5090	1.0290	339
Phenol	13.95	710	1.0661	46
o-Cresol	16.60	845	1.0350	56
m.p-Cresol	38.78	1974	1.0340	131
Xvlenols	21.02	1070	0.9750	75
Heavies	9.65	491	1.0800	31
Total	100.00	5090		339

Fuel Gas Generated in Hydrotreating and Hydrocracking

Component	#/hr	#Mol/hr	MMBTU/hr
HDTR FG Produced	950	46.8	17.1
HCR FG Produced	820	45.3	14.8
Stabilizer FG	51	1.2	0.9
Nachtha Hdtr FG	195	10.8	3.5
lotal Fuel Gas	1821	93.3	32.8

Furde Gas Generated in PSA Hydrogen Unit

Component	#/hr	#Mol/hr	BTU/ft3	MMBTU/hr
H2	482	239.1	324	29.4
00	14087	503.0	324 321	61.2
CO2	1760	39.9	0	0.0
Ci	7030	438.2	1010	167.7
C2	255	8.5	1769	5.7
N7+Ar	164	5.1	0	0.0
Total	23779	1233.9	565	264.0

Page	1-13	
------	------	--

Net Changes in Boiler Fuel Fired				Page 1-	13	
		BTU/#	MMBTU/hr		BTU/ft3	BPSD
Tar Oil	-47620	17000	-B09.5			-3182
Crude Phenol	-14490	13070	-189.4			-936
Crude Naphtha			-161.7			~725
Fuel Gas			32.8	0.8	927	
160 oF- distillate	2164	17400	37.7			202
Neutral Oil			74.0			312
Import Steam			-56.7			
Fuel Oil to Boiler	59600	18000	1072.8			4305
Total	-59027			0.8		-24
Fuel Oil to Process Heaters	583	18000	10.5			42
Net Changes in SNG	Production	on	EQV SNG MMSCFD		PSA/Purge #Mol/SD	Gas
SNG equivalent of S	SNG equivalent of Syn Gas to PSA				64862	
SNG Credit for PSA	Purge gas	5	5.96		29613	
SNG Credit for Hdtr	s purge (gas	0.31		2023	
Total SNG Productio	n Loss		3.25			

2.0 PROCESS DESCRIPTION

2.1 <u>Hydrotreater</u> (Area 100)

For a description of the Hydrotreater process see Case 3 Section 2.1.

2.2 <u>Hydrocracker</u> (Area 200)

For a description of the Hydrocracker process see Case 1 Section 2.2.

2.3 PSA Hydrogen Unit & Recompression (Area 300)

Pressure Temp.

Composition

2.3.1 Hydrogen for both hydrotreaters and the hydrocracker will be supplied by a PSA hydrogen unit. The feed gas will come from the Rectisol Unit in the SNG plant (Stream ID-GF 1401) which has the following properties:

•	
H2	63.19
CO	18.61
CO2	1.48
CH4	16.21
C2H6	0.31
COS, H2S, CS2	< 0.01
N2 + Ar	0.19
H2O	< 0.01

mo 1%

355_opsig 65 F

The PSA unit selectively absorbs all components expect H2 and produces a 99.99% vol. purity stream at about 345 psig and 80°F. The other components are available as a purge gas having the following properties.

Pressure	5 psig
Temperature	5 psig 100 F
Composition	Mole %
H2 [*]	19.32
CO	40.76
CO2	3.24
CH4	35.51
C2H6	0.69
N2+Ar	0.41
Others	0.06

At the conditions given a 10 bed PSA unit will recover 86% of the hydrogen in the feed according to the manufacturer, Union Carbide EP&P Division.

2.3 PSA Hydrogen Unit & Recompression (Area 300) - cont'd

2.3.1 Cont'd

The system uses 10 absorption vessels which are sequenced through adsorption, depressurization, purging, and repressurization steps. The process continously produces product and purge gas. It is purchased as a skid mounted unit and the control of the unit is fully automated. Drawing 5571-20301 presents a schematic of a Union Carbide Polybed PSA unit.

- 2.3.2 The purge gas is recompressed to 375 psia and sent to the methanation unit of the SNG plant.
- 2.4 Phenol Stream (Area 800 and 900)

For description of the Phenol Extraction (Area 800) and Cresylic Acid Distillation (Area 900) Units see Case 7 Section 2.1.

2.5 Naphtha Stream (Areas 600 and 700)

For a description of the Naphtha Distillation and Hydrotreating Unit (Area 600) and the Aromatics Recovery Unit (Area 700) see Case 7 Section 2.2.

mperatory of the

AMOCO/DOE GREAT PLAINS GASIFICATION PLANT JET FUEL FROM COAL DERIVED LIQUIDS

3.0 CAPITAL COSTS

3.1 Equipment List

CASE 2 - PROFITABLE JP-4

AREA 100	-	HYDROTREATER
TAG. NO.		DESCRIPTION
Can Cana 2 Ava	- 100	

See Case 3 Area 100

AREA 200 - HYDROCRACKER

See Case 1 Area 200

See case I Area	200	
AREA 300	-	PSA HYDROGEN UNIT & RECOMPRESSION
FA-301		Purge Gas Surge Drum
GB-301		Purge Gas Compressor
PA-301		PSA Hydrogen Unit Package
AREA 400	-	STORAGE AREA
FB-401		Jet Fuel Storage Tank
FB-402		Naphtha Storage Tank
FB-403 FB-404		Fuel Oil Storage Tank
FB-405		Blending Stock
FB-406		Benzene Storage Toluene Storage
FB-407		Xylene Storage
FB-409		Gasoline Storage
FB-410		Neutral Oil Storage
FB-411		Phenol Product Storage
FB-412		Crude Cresylic Acid Storage
FB-413		O-Cresol Storage
FB-414		M, P Cresol Stoage
FB-415		Xylenol Storage
		AJ TONO 1 DODI MYC

3.0 CAPITAL COSTS

3.1 Equipment List - cont'd

CASE 2 - PROFITABLE JP-4

TAG NO.	DESCRIPTION
AREA 400	STORAGE AREA
GA-401A/S GA-402A/S GA-403A/S GA-405A/S GA-406A/S GA-407A/S GA-409A/S GA-411A/S GA-411A/S GA-413A/S GA-414A/S GA-416A/S	Tar/Tar Oil Feed Pump Crude Phenol Feed Pump Fuel Oil Transfer Pump Naphtha Transfer Pump Crude Naphtha Transfer Pump Blending Stock Pump Benzene Transfer Pump Toluene Transfer Pump Xylene Transfer Pump Gasoline Transfer Pump Neutral Oil Transfer Pump Crude Cresylic Acid Transfer Pump O-Cresol Transfer Pump M, P. Cresol Transfer Pump Xylenol Transfer Pump
PA-401	Gasoline Blending Package
AREA 500 -	CATALYST HANDLING
See Case 3 Area 500	
AREA 600 -	NAPHTHA DISTILL. AND HDT
See Case 7 Area 600)
AREA 700 -	AROMATICS RECOVERY
See Case 7 Area 700)
AREA 800 -	PHENOL EXTRACTION
See Case 7 Area 800)
AREA 900 -	CRESYLIC ACID DISTILLATION
See Case 7 Area 900)

3.2 Cost Estimate

3.2.1 Basis of Estimate

The estimate for this case is a factored type estimate using the T.I.C. values developed for the various cases referenced in this project.

The total investment costs are scaled to the capacity requirement of this case using a o.6 exponent.

In light of the preliminary data developed for this effort, a 20% contingency has been applied to the base costs for Areas 100 thru 700 and 30% for Areas 800 & 900.

Excluded from this estimate are:

Spare Parts
Start-Up
Insurances & Taxes
Permits
Royalties on Processing Technology Knowhow

3.2.2 Estimate Summary

(Thousands of \$)

			Case 2
Area	100	Hydrotreater	\$20,702
Area	200	Hydrocracker	10,430
Area	300	PSA & Recompression	8,100
Area	400	OSBL	8,443
Area	500	Catalyst Handling	1,285
		Naph. Dist & HDT	4,615
Area	700	ARÚ	7,887
Area	800	Phenol Ext.	12,276
Area	900	Cresylic Acid Dist.	4,832
		Subtotal	\$78,570
Area	700	ARU Solvent Inventory	80
		Total	\$78,650

3.2.3 <u>Estimate Breakdown</u> (Area 100) All Values in Thousands

This unit has the same capacity as the 100 Area of Case 3. Therefore, T.I.C. = \$20,702.

Area 200

This unit has a 107% capacity of the 200 Area of Case 1. Therefore, T.I.C. = $(1.07)^{0.6}$ (10,012) = \$10,430

3.2.3 <u>Estimate Breakdown</u> - Cont'd

Area 300

`)

This unit has a 96% capacity of the 300 Area of Case 3. Therefore T.I.C. = (0.96) (8300) = \$8100.

Area 400

Tar Oil Stream Storage 80% Case 1 TIC = $(0.8)^{\circ}$ (5 m) = \$4300

Phenol Stream Storage = 100% Case 7 TIC = \$3,016

Naphtha Stream Storage 75% Case 7 TIC = (0.75(*** (3058) = \$2,890 Subtotal 10,206

Less Duplicate Pipe & Rack $\frac{-1763}{\text{Total}}$ = \$8,443

Area 500

The capacity of this unit is identical to the 500 Area of Case 3. Therefore T.I.C. = \$1,285

Area 600

This unit has a capacity of 100% of the 600 Area of Case 7. Therefore T.I.C. = \$4,615

Area 700

This unit has a capacity of 0.75% of the 700 Area of Case 7. Therefore T.I.C. = (0.75) (9,373) = \$7,887

<u>Area 800</u>

This unit has a capacity of 100% of the 800 Area of Case 7. Therefore T.I.C. = \$ 12,276

<u>Area 900</u>

This unit has a capacity of 100% of the 900 Area of Case 7. Therefore = T.I.C. = \$ 4,832

)

4.0 OPERATING COSTS

4.1 Operating Labor

It is estimated that it will require men/shift to operate the plant broken down as follows:

Foreman	2		
Control Room	2		
HDT Operator	2		
HCR Operator	2		
PSA & relief man	1		
Naphtha Distil. & HDT	2		
ARÚ	2		
Phenol Ext.	1		
Cresylic Acid Dist.	1		
Ţ	15	Shift	Positions

Maintenance will probably be provided from the existing SNG plant maintenance shop. It is likely that the existing maintenance department will be expanded by about 7 people.

The total additional people (assuming 6 & 2 operation for the process units) are as follows:

Shift Personnel	15 positions x 4 people/position	- 60
Supervisor & Admin.	. , , , ,	6
QC Technician		2
Maintenance		7
Other (Stores or Janitori	ial)	1
Total	•	76

4.2 Utilities

The following utilities have been estimated:

<u>Utility</u>	Consumption	Cost	\$/SD
#6 Fuel Oil SNG equivalent	4347 BPSD 3.25 MMSCFD	\$16/Bbl (a) \$3.80/MM Btu(b)	69,552 12,105
of Syn Gas & Put		\$0.155/MGal ^(c) \$0.04/kWH ^(c) \$0.45/MGal ^(c)	1,370
Power	6180 kW	\$0.04/kWH ^(C) ,	5,933
Process Water	31 GPM	\$0.45/MGal ^(C)	20

(a) Cut of 1% sulfur \$6 oil in Minnesota on 11/24/87 as per Platts Oilgram.

4.2 Utilities - cont'd

- (b) Memo from D. Daley of Burns & Roe to L. Lorenzo of DOE dated Oct. 20, 1987, reference DPD-87-863.
- (c) ANG utility cost information dated 5/87.

4.3 Catalyst & Chemicals

The catalyst and chemicals cost is as follows:

Catalyst & Chem.	Use	Cost	<u>\$/\$D</u>
Nap. HDT Cal	0.021 #/Bb1	\$3.00/#	33
HDT Cat.	0.30 #/Bb1	\$3.00/#	2864
HCR Cat.	0.013 #/Bb1	\$6.00/#	104
Inhibitors	50 PPM	\$10/Gal	92
ARU Solvent	18 #/D	\$2.10/#	38
H ₂ SO ₄	7100 #/D	\$0.04/#	_285_
2 4	•		\$3416

4.4 <u>Maintenance Supplies</u>

Maintenance supplies for hydrotreating operations typically cost between 1.5-2.0% of the installed cost per year. For a daily cost we would estimate the cost of maintenance supplies to be 0.005% of the total installed cost of the process units (excluding ARU solvent inventory). On this basis the maintenance supplies would be

 $0.00005 \times 78,570,000 = $3929/SD$

)

5.0 PLOT PLAN AND UNIT TIE-INS

5.1 Plot Plan

The process units required for the production of JP-4 and by-product chemicals are proposed to be located to the east of the Phenosolvan Unit and Water Treatment Area of the existing gasification plant as indicated on the markup of the overall Process Area Plot Plan, LCI Dwg E7102-00010A. This area approx. 340' x 575' will be surrounded by an access road and will be divided by three central east-west roads. Areas 100 & 500 will be located to the north and Areas 200 & 300 South of Area 100, Areas 800 & 900 next and then Areas 600 & 700.

A diked storage tank area approx. 375' x 375' will be required for product and fuel oil storage and is proposed to be located to the south of the existing tankage area adjacent to the railcar loading spurs.

5.2 Unit Tie-Ins

Approximately 2500 ft of new interconnecting pipe rack will be required to connect the new process area with the main yard rack of the gasification plant, the product storage area and flare.

New storm, oily water and sanitary sewer lines will be run from the new process units south to their respective collection systems.

A summary of the lines has not been prepared for this case but will be similar to a combination of Cases 3 and 7 with the utility lines of like services being combined.

Ţ

. - 5

APPENDIX D

AMOCO/DOE

GREAT PLAINS GASIFICATION PLANT

JET FUEL FROM COAL DERIVED LIQUIDS

CASE 3
MAXIMUM JP-8 PRODUCTION
SUBTASKS 1.2 & 1.3
PROCESS DESIGN AND COST ESTIMATE

LCI PROJECT 5571 DATE - JAN. 30, 1988

TABLE OF CONTENTS

1.0 CASE DESCRIPTION

- 1.1 Overall Process Description1.2 Overall Material Balance
- 1.3 Overall Utility Balance

2.0 PROCESS DESCRIPTION

- 2.1 Hydrotreater
- 2.2 Hydrocracker
 2.3 PSA Hydrogen Unit & Recompression

3.0 CAPITAL COSTS

- 3.1 Equipment Lists
- 3.2 Cost Estimates

4.0 OPERATING COSTS

- 4.1 Operating Labor
- 4.2 Utilities
- 4.3 Catalysts & Chemicals
- 4.4 Maintenance & Operating Supplies

5.0 PLOT PLAN & TIE INS

Appendix A - Computer Simulation Hydrotreater Appendix B - Computer Simulation Hydrocracker

1.0 CASE DESCRIPTION

1.1 Overall Process Description

The purpose of this case is to maximize the production of type JP-8 aviation turbine fuel from Great Plains liquid by products. Figure 1 presents a block diagram for the process and referring to Figure 1 the flow is as follows:

- Tar Oil byproduct stream (47620 #/hr, 3182 BPSD) is charged to the hydrotreater (Area 100).
- The hydrotreater is a 3 stage expanded bed type process which removes 99% + of the sulfur, nitrogen, and oxygen compounds and begins the conversion of 550°F+ material. The hydrotreater adds a large quantity of hydrogen to the feed (4075 SCF/bbl) which results in a high heat of reaction. An expanded bed type reactor was chosen to both control and utilize the heat of reaction. Three stages were used to both control the temperature rise as well as to obtain the high efficiency associated with staging a back-mixed reactor.
- The hydrotreater produces 6 streams:
 - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit in the SNG plant for recovery of the $\rm H_2$ and $\rm CH_4$.
 - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
 - Unstabilized naphtha which is sent to the combined naphtha stabilizer in the hydrocracker (area 200).
 After stabilization, to control vapor pressure, the naphtha is sent to the main boiler in the SNG plant.
 - JP-8 turbine fuel which is combined with JP-8 produced in the hydrocracker (area 200) and sent to storage.
 - 550^oF+ unconverted bottoms product which is sent to the hydrocracker (area 200).
 - Wastewater containing, NH40H and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.

The second

- Approximately 950 #/day of spent catalyst which is shipped to a catalyst reclaimer in the same drums that the catalyst is received in.
- The 550°F+ unconverted stream from the expanded bed hydrotreater (area 100) is charged to the fixed bed hydrocracker (area 200). The hydrocracker converts this material to naphtha and JP-8 turbine fuel. For this service a 5 stage unit was chosen with 65% conversion per pass. This unit also includes a naphtha stabilizer which stabilizes both the naphtha produced in the hydrotreater and hydrocracker.
- The hydrocracker produces 4 streams in addition to JP-8
 - High pressure purge as (approximately 90% hydrogen) which is sent to the Rectisol Unit of the SNG plant for recovery of the $\rm H_2$ and $\rm CH_4$.
 - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
 - Stabilized naphtha which is sent to the main boiler in the SNG plant.
 - A small sour water stream which is sent to the PHOSAM unit in the SNG plant or alternatively used as part of the injection water to the hydrotreating plant.
 - Hydrogen make-up for both the Hydrotreater and the Hydrocracker is supplied from a PSA Hydrogen Unit. High pressure (355 psig) synthesis gas from the Rectisol Unit (which contains about 63% hydrogen) is charged to the PSA unit which recovers 86% of the contained hydrogen as a high pressure 99.99% purity hydrogen gas product. The remaining purge gas is available a low pressure (5 psig) which has a fuel value of about 565 BTU/ft. This H₂, CO & CH₄ rich gas is recompressed into the methanation unit of the SNG plant.

1.2 Overall Material Balance

The overall material balance is presented in Table 1.1 which presents overall material balances for the major process units. Detailed material balances for each unit can be found in appendixes A&B. The balance was computed on the basis that the fuel value of the feed will be replaced by fuel gas and naphtha produced in the process and the difference made up by the purchase of #6 Fuel Oil.

The overall balance is as follows:

Feeds

)

3182 BPSD of Tar Oil 1978 BPSD of #6 Fuel Oil

11.07 MMSCFD equivalent SNG product loss due to the syn gas feed to the PSA unit.

Products

2490 BPSD of JP-8 turbine fuel

7.37 MMSCFD equivalent SNG product credit due to HDT, HDC & PSA purge gas reinjection into SNG plant.

1.3 Overall Utility Balance

The overall utility consumption of the complex is as follows:

#6 Fuel Oil 1978 BPSD
SNG Equivalent
of Syn Gas & Purge Gas 3.7 MM SCFD
Power 5450 kW
Cooling Water 2040 GPM (30°F rise)
Process Water 20.5 GPM

In addition the process exports 6945 #/hr of 100 psig saturated steam which was credited against boiler requirements.

Purge Gas to Methanation 27541 #/hr HP Fuel Gas To Rectisol 384 #/hr LP Fuel Gas to Boller 1470 #/hr Naphtha to Boller Fuel 14445 #/hr Production JP-8 Product 29880 #/hr 2490 BPSD JP-8 3-Maximum HP Fuel Gas LP Fuel Gas HP Fuel Gos LP Fuel Gas Naphtha Naphtha 2925 #/hr H2 JP-8 S-P-S 550 oF+ 11660 #/hr Recompression Hydrotreater and Product Separation PSA Hydrogen Recovery & and Product Separation Hydrocracker 1:Case 504 #/hr H2 Rectisol Product Gos(GF Stream 1401) Figure 47620 #/hr Tar oii Stream ID # GF-6005 30974 #/hr

Table 1.: Great Flains Lase 3: Maximum JFB Froduction businessessessessesses

Tar (h1 Feed====>	47620	#/hr	3182	BP5D
JP-8 Froduct=====>	29880	#/hr	2490	BFSD
SNG Froduct Loss	6275	#/hr	3.7	MMSCFD
Fuel Oil Makeup==>	27386	#/hr	1978	BPSD

Expanded Bed Hydrotreater

Comp.	Wt %	Grav	#/hr	#Mole/hr	BFSD
Feeds					-
H2	6.14		2925	1450.9	
03.1	100.00	1.0268	4762 0		3182
fotal	106.14	Ann	50545		
Froducts			_,,		
Puros Sac	0.:0		. 46	14.5	
Fuel Gas	1.87		891	43.9	
Naphtha	107	0.7406	9127		823
JF:8,	50.29		23950		1975
5 5 0 of +	24.49	0.9697	11660		825
H20 in SW	8.73		4159	231.1	
H2S in Sw	0.43		205	6.0	
NHT in SW	1.06		505	29.7	
Total	106.14	No. of the state of the state	50545	******	3623

Fixed Bed Hydrocracker

ပြတ်ကြား	Wt %	Grav	#/hr	#Mole/hr	BFSD
Feerls		~			
HS.	4.32		504	25 0.0	
5 5 0oF+	100.00	0.9697	11660		825
Total	104.32		12164	2. p	
Froducts					
Punge Gas	2.88		336	113.9	
Fuel Gas	2.12		247	13.7	
Naphtha	48.46	0.7148	5650		542
JF'-8	50.86	0.7900	5 930		515
H2S in SW	0.003		0.4	0.01	
NH3 in SW	0.003		0.4	0.02	
Total	104.32		12164		1057

Naphtha Stabilizer

Comp.	Wt %	Grav	#/hr	#Mole/fir	BFSD
HDT Nap	61.76	0.7606	9127		823
HCR Nap	38.24	0.7148	5650		542
Stab Nap	97.75	0.7346	14445		1349
Fuel Gas	2.25		332	7.8	

C 1885

PSA Hydrogen Recovery Unit (86% Recovery)

Component	H2:	CO	COZ	CH4	C2H6	N2+Ar	Total
Mol %							
Feed Gas	116.28	34.26	2.72	29.84	0.58	0.35	1 24. 03
Prod. H2	100.00	0.01					100.01
Purge Gas	16.28	34.25	2.72	29.84	0.58	0.35	84.02
Wt. %							
Feed Gas	116.28	475.95	59.44	237.46	8.63	5.55	901.31
Frod. H2	100.00	0.12	0.00	0.00	0.00	0.00	100.12
Purge Gas	16.28	475.83	59.44	237.46	8.63	5 . 5 5	803.15
#Mol/hr							
Feed bas	1977.8	582.7	46.3	507.5	7.9	6.0	7.30 2
Prod. H2	1700.9	$\mathbf{O}_{\bullet} \otimes$	0.0	0.0	0.0	$\phi_*\phi$	1701.1
Furge Bas	276.9	582.6	46.3	507.5	9.9	6.0	1419.1
#/tir							
Feed Gas	3987	16320	1038	8143	296	190	0.0074
Prod. H2	3429	4	0	Ů.	Q	Q.	3431
Funge Gas	558	16316	2038	8143	296	190	Izt.

fuel Gas Generated in Hydrotreating and Hydrocracking

Component	#/hm	#Mol/hr	MMBTU/hr	
HDTR FG Produced	891	43.9	16.0	
HER FG Produced	247	13.7	4.4	
Stab FG Froduced	332	7.8	6.0	
Total Fuel Gas	1470	65.4	26.5	

Purge Gas Generated in PSA Hydrogen Unit

Component	#/hr	#Mol/hr	BTU/ft3	MMRTU/hr
H2	558	276.9	324	34.0
CO	16316	582.6	321	70.9
CO2	2038	46.3	0	0.0
C1	8143	507.5	1010	194.3
E2	296	9.9	1769	6.6
N2+Ar	190	6.0	O	0.0
Total	27541	1429.1	565	305.8

Fuel			MMBTU/hr		BTU/ft3	BESD
	-47620	17000				-3182
				0.6	1068	
Naphtha	1470 14445	20040	289.5			1349
Export Steam	6945	1000	6.9			
Fuel Oil to Boiler						175
Total	2277			0.6		120
Fuel Cil to Process Heaters	35 0	18 000	6.3			en e Xilo
Not Charmes in SNS			EGV SNG MMSCFD		PSA/Punge #Mol/SD	<u> </u>
swe equivalent of S			11.02		75124	
SNG Cradit for PSA	Purde das		6.90		34998	
SNO Cred t for Hdir			0.47		309:	
Total SNG Amoductio	n Losk	,	5.65		•	
Reaction Solution	4:59 3733	205	5 (/5	308	829	4869 4869
Stripping Steam	3733 1225 9281			308	829	486° 122°
the same can the same time and the stage that have approximately use				aller o in the sale of the sale of		928.
HDT Sour Water	14259			308	825	150-75
Water Balance Hydro						
Camponent			NH3	NH4HS	NH40H	Total
Reaction Gases			0.4			0.
Reaction Solution				0.5	0.4	ο,
	225.1					215.
	225.1				0.4	226.0
Total Sour Water						
Total Sour Water	H20	# H2S			NH40H	
					NH40H	

2.0 PROCESS DESCRIPTION

2.1 Hydrotreater (Area 100)

Operating conditions for the hydrotreater were provided to Lummus by Amoco and these conditions are presented in Table 2.1. The basic processing step selected was the expanded bed hydrotreater (LC Fining) system. Due to the extremely high exothermic heat of reaction it was necessary to use 3 reactors in with interstage cooling. Referring to drawing D5571-30101 and the material balance printouts (Appendix A) the flow is as follows:

- Feed Tar Oil is charged into the hydrotreater from day tank FA-101 and through charge pump GA-101 and preheater exchanger EA-101.
- The preheated charge oil is combined with feed hydrogen gas from heater BA-101. Preheat of the oil is limited to 550°F to prevent cracking. The preheated mixture is then charged to the first reactor DC-101A.
- . The expanded bed reactor DC-101A approaches isothermal conditions in which the heat of reaction is used to heat the feed up to $700^{\circ}\mathrm{F}$.
- The effluent from DC101A is cooled in exchanger EA-101 and combined with recirculating hydrogen from recycle hydrogen gas compressor GB-102. The combined mixture is charged into the second reactor where the heat of reaction increases the temperatures to 700 F.
- . The effluent from DC101B is cooled in exchanger EA-104 and combined with recirculating hydrogen gas from recirculating compressor GB-102. This mixture is charged into the third reactor DC-101C.
- The effluent from DC101C goes to the high temperature/high pressure separator FA-103. Hot liquid from FA-103 flows to the hydrotreator fractionation DA-101. The vapors from FA-103 flows through exchangers EA-102 and EA-105 and then through air cooler EC-101. Process water is injected prior to EC-101 to convert the H2S and NH3 in the gas to an aqueous NH40H/NH4HS solution.
- . Exchangers EA-104 and EA-105 are part of a circulating hot oil belt which allows for the generation of steam from waste heat in the high pressure loop without having the problem of a hydrocarbon leak from the high pressure system into the steam system.

2.1 Hydrotreater - Cont'd

- The cooled gas then passes into the High Pressure/Low Temperature Separator FA-104 where hydrogen rich gas is taken as an overhead product. A purge stream of this high pressure gas is taken (to purge H2 and light gases from the loop) and sent to the Rectisol Unit 1400 in the SNG plant to recover the hydrogen in the purge gas. The remaining gas is recirculated to reactors DC-101B and DC-101C.
- The water phase from separator FA-104 goes to the PHOSAM Unit in the SNG plant to recover the H2S and NH3.
- The hydrocarbon phase from separator FA-104 is preheated in exchanger EA-105 and is combined with the hot liquid from FA-103 and charged to the HDT Fractionator DA-101. Fractionator DA-101 produces 550°F+ product (which is sent to hydrocracking, area 200), JP-8 (which is sent to storage), and unstabilized naphtha (which is sent to the naphtha stabilizer in the hydrocracking area 200).
 - Catalyst is replaced every third day in each reactor so that one reactor is receiving and withdrawing catalyst each day. Catalyst is added and replaced by the catalyst handling system.
- Waste heat is converted to 100 psig saturated steam in exchangers EA-107 and EA-108. This steam is used for stripping in DA-101 and in the hydrocracking area 200 for stripping steam. There is an excess of about 6945 #/hr which is exported to the SNG steam system.

Table 2.1 Hydrotreater Conditions

Case 3 Maximum JP-8 Operation

Reactor Type Number of Reactors	Expanded Bed 3
Reactor Temperature	700 ⁰ F
Temp. rise/stage Ratio of H2 in Feed to Chemical H2	225 ⁰ F max. 2.0 min.
Catalyst Replacement	0.30 #/Bb1

2.2 Hydrocracker (Area 200)

Operating conditions for the hydrocracker were provided to Lummus by AMOCO and these conditions are presented in Table 2.2. The basic processing step selected was a 5 bed fixed bed reactor system with recycle of unconverted 550°F+ material. Beds 1 and 2 use a catalyst that is most active for sulfur, nitrogen and oxygen removal while beds 3,4,5 use a catalyst that is most active for hydrocracking. Referring to drawing D5571-30201 and the material balance printouts (Appendix B) the flow is as follows:

Hydrotreated 550°F+ material from the hydrotreater (Area 100) enters the system from day tank FA-201 through feed pump GA-201 and is preheated in exchanger EA-201. The preheated feed is combined with unconverted bottoms from fractionator DA-201 (approximately 35% of the feed is recycled). The combined oils are then mixed with hot hydrogen coming from heater BA-201 and charged to the reactor.

The combined feed to the first bed in the reactor is 6620F.

In the first bed the temperature rises to about 675°F. Quench hydrogen is added to cool the effluent from the first bed to about 648°F. In each of the remaining beds quench hydrogen is added to cool the beds. The inlet and outlet temperatures from each bed are as follows:

	Inlet	Outlet
Bed 1	662	675
Bed 2	648	676
Bed 3	652	677
Bed 4	656	680
Bed 5	661	684

The reactor effluent passes into the high temperature/high pressure separator FA-202. Vapors from FA-202 are cooled in EA-201, EA-202 and then air condenser EC-201. Water is injected into the condenser EC-201 to dissolve H2S and NH3 into a NH40H/NH4HS solution. This solution is sent to the PHOSAM unit in the SNG plant.

The cooled vapors pass into separator FA-203 and the overhead hydrogen rich gas is divided with the major portion being used as recycle gas to the reactors via compressor GB-202 and heater BA-201. A small portion of the gas is purged from the system as high pressure purge gas which goes to the Rectisol unit in the SNG plant.

2.2 <u>Hydrocracker</u> (Area 200)

- The hydrocarbon phase from separator FA-203 is heated in exchanger EA-202, combined with the hot oil from separator FA-202 and charged to fractionator DA-201.
- . Fractionator DA-201 produces unstabilized naphtha (which is charged to naphtha stabilizer DA-203), JP-8 (which is sent to product storage after cooling), 550°F+ oil (which is recycled to reactor DC-201) and fuel gas (which flows to the boiler in the SNG plant).
 - Unstabilized naphtha from DA-201 is combined with unstabilized naphtha from area 100 and charged to naphtha stabilizer DA-203 after being preheated in exchanger EA-205. Heat for reboiling the naphtha stabilizer is obtained by heat exchange with the hot jet fuel product.
- Fuel gas from the naphtha stabilizer is combined with fuel gas from FA-206 and is routed to the SNG boilers.
- The stabilized naphtha is cooled and sent to storage. It is also sent to the SNG boilers to be used as fuel.

Table 2.2 Hydrocracker Conditions

Reactor Conditions	5 Fixed Beds
Catalyst, % of Total & Type	
Bed 1	10%, HDS/HDN/HC
Bed 2	22.5%, HDS/HDN/HC
Beds ₁ 3-5	22.5% HC
WHSV, hr ⁻¹	1.5
Average Reactor Temp.	675 ⁰ F
Temperature Increase	
Bed 1	15 ⁰ F 40 ⁰ F
Bed 2-5	40 ⁰ F
Heat of Reaction	20,000 BTU/#Mole H2
Reactor Pressure	•
Inlet	1200 psig
Outlet	1175 psig
Recycle Rate H2	13,000 scf/Bb1
Conversion/Pass	50%
Catalyst Replacement	3 years @ \$6/#

2.3 PSA Hydrogen Unit & Recompression (Area 300)

Pressure Temp.

2.3.1 Hydrogen for both the hydrotreator and the hydrocracker will be supplied by a PSA hydrogen unit. The feed gas will come from the Rectisol Unit in the SNG plant (Stream ID-GF 1401) which has the following properties:

Composition	mo i %
H2	63.19
CO	18.61
CO2	1.48
CH4	16.21
C2H6	0.31
COS, H2S, CS2	< 0.01
N2 + Ar	0.19
H20	< 0.01

355_opsig 65 F

The PSA unit selectively absorbs all components expect H2 and produces a 99.99% vol. purity stream at about 345 psig and 80°F. The other components are available as a purge gas having the following properties.

Pressure	5 psig
Temperature	5 psig 100 F
Composition	Mole %
H2	19.32
CO	40.76
CO2	3.24
CH4	35.51
C2H6	0.69
N2+Ar	0.41
Others	0.06

At the conditions given a 10 bed PSA unit will recover 86% of the hydrogen in the feed according to the manufacturer, Union Carbide EP&P Division.

The system uses 10 absorption vessels which are sequenced through adsorption, depressurization, purging, and repressurization steps. The process continously produces product and purge gas. It is purchased as a skid mounted unit and the control of the unit is fully automated. Drawing 5571-30301 presents a schematic of a Union Carbide Polybed PSA unit.

2.3.2 The purge gas is recompressed to 375 psia and sent to the methanation unit of the SNG plant.

ţ

المراجع والما

)

AMOCO/DOE GREAT PLAINS GASIFICATION PLANT JET FUEL FROM COAL DERIVED LIQUIDS

3.0 CAPITAL COSTS

3.1 Equipment List

CASE 3 - MAXIMUM JP-8

AREA 100 -	HYDROTREATER
TAG NO	DESCRIPTION
BA-101	HDT Makeup Gas Heater
DA-101	HDT Fractionator
DA-102	JP-8 Stripper
DC-101A,B,C	Hydrotreater Reactors
EA-101	HDT Reactor Feed/Effl. Exch.
EA-102	Fract. Feed Exch.
EA-103	HDT Condenser
EA-104	HDT Reactor Int. Stg. Clr.
EA-105	Waste Heat Exchanger
EA-106	BFW Preheat Exch.
EA-107	Circulating Oil Stm. Gen.
EC-101	Reactor Effl. Cooler
EC-102	Hydrotreater Btms. Cooler
EC-103	JP-8 Product Cooler
FA-101 FA-102 FA-103 FA-104 FA-105 FA-107 FA-108 FA-109	Tar Oil Surge Drum HDT Makeup Gas KO Drum HT/HP Separator LT/HP Separator Recycle Gas KO Drum Fractionator Reflux Drum Steam Drum Hot Oil Surge Drum
GA-101A/S	Tar Oil Feed Charge Pump
GA-103A/S	Wash Water Pump
GA-107A/S	HDT Reflux Pump
GA-109A/S	Hot Oil Pump
GA-110A/B/C	Reactor Recycle Pump
GB-101A/B	H ₂ Makeup Compr.
GB-102A/B	Recycle Gas Compr.

CASE 3 - MAXIMUM JP-8 - Cont'd

AREA 200 -	HYDROCRACKER
TAG. NO.	DESCRIPTION
BA-201	HDC Reactor Gas Heater
DA-201 DA-202 DA-203 DC-201	HDC Fractionator HDC JP-8 Stripper Naphtha Stabilizer HDC Reactor
EA-201 EA-202 EA-203 EA-204 EA-205 EA-206 EA-207	HDC Reactor Feed/Effl. Exch. HDC Fract. Feed Exch. HDC Fract. Condenser Stabilizer Reboiler Stabilizer Feed Exch. Stabilizer Condenser Naphtha Cooler
EC-201 EC-202	Reactor Effl. Cooler JP-8 Product Cooler
FA-201 FA-202 FA-203 FA-204 FA-205 FA-206 FA-207 FA-208	HDC Feed Surge Drum HT/HP Separator LT/HP Separator Recycle Gas KO Drum Makeup Gas KO Drum HDC Fract. Reflux Drum Stabilizer Reflux Drum Fuel Oil Day Tank
GA-201A/S GA-202A/S GA-203A/S GA-204A/S GA-207A/S GA-208A/S GA-209A/S	HDC Feed Pump Wash Water Pump HDC Recycle Pump HDC Naphtha Pump Stabilizer Btms Pump Stabilizer Reflux Pump Fuel Oil Pump
GB-201A/B GB-202A/B	Makeup Gas Compr. Recycle Gas Compr.
AREA 300 -	PSA HYDROGEN UNIT & RECOMPRESSION
FA-301	Purge Gas Surge Drum
GB-301	Purge Gas Compressor
PA-301	PSA Hydrogen Unit Package

CASE 3 - MAXIMUM JP-8 - Cont'd

TAG NO.	DESCRIPTION
AREA 400	- STORAGE AREA
FB-401 FB-402 FB-403	Jet Fuel Storage Tank Naphtha Storage Tank Fuel Oil Storage Tank
GA-401A/S GA-403A/S GA-404A/S	Tar/Tar Oil Feed Pump Fuel Oil Transfer Pump Naphtha Transfer Pump
AFEA 500	- CATALYST HANDLING
TAG NO.	DESCRIPTION
FA-501 FA-502 FA-503 FA-504	Catalyst Oil Drum Catalyst Storage Hopper Catalyst Transfer Vessels Spent Catalyst Vessel
FL-501	Catalyst Screen
GA-501A/S GA-502A/S	Catalyst Transfer Pump Catalyst Oil Pump

3.2 <u>Cost Estimate</u>

3.2.1 Basis of Estimate

The estimate is an equipment factored type estimate using the equipment sizes & specifications developed for this project. The equipment unit pricing is based on return data for high pressure equipment purchased for various hydrotreater/hydrocracker projects. The unit pricing is some what conservative compared to world wide markets of 2-3 years ago, however, the exchange rate decline during this period will lead to higher purchase prices.

The commodity materials & subcontracts are ratioed from the equipment costs using factors considering the high pressure processing, the size of the units, and the location of the plant.

The labor and indirects also are factored considering process, sizing, and location.

Engineering costs are based on the equipment count times the historical number of manhours per equipment item, and the current average engineering selling rate.

In light of the preliminary data developed for this erfort, a 20% contingency has been applied to the base costs.

Excluded from this estimate are:

Spare Parts Start-Up Insurances & Taxes Permits Royalties on Processing Technology Knowhow

3.2.2 <u>Estimate Summary</u>

(Thousands of \$)

			<u>Case 3</u>
		Hydrotreater	\$20,702
Area	200	Hydrocracker	10,012
Area	300	PSA & Recompression	8,300
Area	400	OSBL	4,500
Area	500	Catalyst Handling	1,285
		Total	\$44,799

3.2.3 <u>Estimate Breakdown</u> (Area 100) All Values in Thousands

	Equipment	<pre>\$ Value</pre>	%. C	omm \$ Comm.
<u>Items</u>	<u>Type</u>			
1 2 - 3 13 3 8 11 4	Heaters Towers Internals Reactors Exchangers Air Coolers Vessels Pumps Compressors Special Total	50 39 7 1650 582 113 388 739 1700	120 140 - 70 70 100 85 80 60	60 55 - 1155 407 113 330 591 1020
	Equipment	40200	5268	43 , 31
	Commodities		3731	
	Labor		2765	10% Equip. 60% Comm.
	Indirects		2765	100%
	Office		2723	45 pcs x 1100 x \$55-
	Subtotal		17,252	
	Conting	jency	3,450	20%
	To	otal	\$20,702	

3.2.3 <u>Estimate Breakdown</u> - Cont'd

<u>Area 200</u>

	Equipment	<pre>\$ Valve</pre>	<u>%.</u> C	omm \$ Comm.
<u>Items</u>	Туре			
1 3 1 8 2 8 14 4	Heaters Towers Internals Reactors Exchangers Air Coolers Vessels Pumps Compressors Special Total Equipment Commodities Labor	130 54 9 325 188 46 258 152 550 		156 70 - 276 188 50 258 182 550 \$1730
	Indirects		1210	100%
	Office Subtotal		<u>2481</u> 8343	41 pcs x 1100 x \$55-
	Contingency Total		\$10,012	20%

<u>Area 300</u>

PSA-unit 20 mm SCFD budget quote \$3500

PSA unit 14 mm SCFD 2500

Installation 50% 1300

Subtotal \$3800

Compressor 3400 1700 x 2.0 T.I.C. Drum 300 100 x 3.0 T.I.C. Subtotal \$7500

Contingency 800 10%

Total \$8300

3.2.3 <u>Estimate Breakdown</u> - Cont'd

Area 400

Case 1 TIC = \$5100

For Case 3 Deduct Equipment $3 \times 150 = 450$ Piping
Total Deduct \$650

Case 3 Total - \$4500

<u>Area 500</u>

	<u>Equipment</u>	<pre>\$ Value</pre>	%. Comm	\$ Comm.
<u>Items</u>	<u>Туре</u>			
4 4	Vessels Pumps	105 48	120 120	126 58
8	Total	\$153		\$184
	Equipment Commodities Labor Indirects Office Subtotal Contingency		125 100%	ip. 60% Comm. : 1100 x \$55-

4.0 OPERATING COSTS

4.1 Operating Labor

It is estimated that it will require 7 men/shift to operate the plant broken down as follows:

Foreman	1	
Control Room	1	
HDT Operator	2	
HCR Operator	2	
PSA & relief man	1	
	7	Shift Positions

Maintenance will probably be provided from the existing SNG plant maintenance shop. It is likely that the existing maintenance department will be expanded by about 5 people.

The total additional people (assuming 6 & 2 operation for the process units) are as follows:

Shift Personnel	7 positions x 4 people/position	- 28
Supervisor & Admin.	. , , ,	5
QC Technician		1
Maintenance		5
Other (Stores or Janitor	rial)	_1_
Total	•	40

4.2 Utilities

)

The following utilities have been estimated from the computer simulations:

<u>Utility</u>	Consumption	<u>Cost</u>	\$/SD
#6 Fuel Oil SNG equivalent	1978 BPSD 3.7 MMSCFD	\$16/Bbl (a) \$3.80/MM &tu(b)	31648 13780
of Syn Gas & Pur	rge Gas	•	
Cooling Water	2040 GPM	\$0.155/MGal(C)	456
Power	5450 kW	\$0.04/kWH(C)	5232
Process Water	20.5 GPM	\$0.155/MGal ^(c) \$0.04/kWH ^(c) \$0.45/MGal ^(c)	13

- (a) Cut of 1% sulfur \$6 oil in Minnesota on 11/24/87 as per Platts Oilgram.
- (b) Memo from D. Daley of Burns & Roe to L. Lorenzo of DOE dated Oct. 20, 1987, reference DPD-87-863.
- (c) ANG utility cost information dated 5/87.

4.3 <u>Catalyst & Chemicals</u>

The catalyst and chemicals cost is as follows:

<u>Catalyst</u>	Use	Cost	\$/\$D
HDT Cat. HCR Cat. Inhibitors	0.30 #/Bb1 0.0095 #/Bb1 50 PPM	\$3.00/# \$6.00/# \$10/Gal	2864 47 <u>52</u> 2963

4.4 Maintenance Supplies

Maintenance supplies for hydrotreating operations typically cost between 1.5-2.0% of the installed cost per year. For a daily cost we would estimate the cost of maintenance supplies to be 0.005% of the total installed cost of the process units. On this basis the maintenance supplies would be $0.00005 \times 44,799,000 = \$2240./\$D$

5.0 PLOT PLAN AND UNIT TIE-INS

5.1 Plot Plan

The process units required for the production of JP-8 are proposed to be located to the east of the Rectisol Unit and Main Control Room of the existing gasification plant as indicated on the markup of the overall Process Area Plot Plan, LCI Dwg E7102-00010A. This area approx. 300' x 200' will be surrounded by an access road and will be divided by a central east-west road. Areas 100 & 500 will be located to the north and Areas 200 & 300 to the south.

A diked storage tank area approx. 360' x 265' will be required for product and fuel oil storage and is proposed to be located to the south of the existing tankage area adjacent to the railcar loading spurs.

5.2 Unit Tie-Ins

Approximately 2000 ft of new interconnecting pipe rack will be required to connect the new process area with the main yard rack of the gasification plant, the product storage area and flare.

New storm, oily water and sanitary sewer lines will be run from the new process units south to their respective collection systems.

A summary of the lines is shown in table 5.1.

TABLE 5.1 INTERCONNECTING PIPING

EST. SIZE	SERVICE	TO/FROM
4" 3" 2" 16" 8" 6" 1 1/2" 2" 2" 6" 1 1/2 1 1/2 1 1/2 1 2" 4" 15"	Tar/Tar Oil (Elec. Tr.) JP-8 Product Naphtha Product Wet Flare (Trace) Synthesis Gas Purge Gas Off Gas Nitrogen Plant Air Instr. Air Raw Water (Elec. Tr.) M.P. Steam Stm Cond. BFW Boiler B.D. C. W. Supply & Return Waste Water Fuel Oil Storm Sewer (9' deep) Oily Water Sewer (9' deep)	Storage Storage Storage Flare PSA/Rectisol Methanation/PSA Rectisol/HDT, HDC Main Rack " " " " " Phosam/HDT, HDC Exist TKS/New TKS. Storm Basin
6" 10"	Sanitary Sewer (9' deep) Fire Water	8100/Process Unit 8400/Process Unit Ring Headers

V01.7.7.

CASE 3

Copy available to DTIC does not permit fully legible reproduction

CASE 3 AREA 100	23 26	VAPOR 101C ME	151.1667 151.1667	488.5923 2297.1611 -C.9060 -0.8363 364.0683 -364.0686 3.4161 3.4160	488.5923 2297.1611	6.63 6.12 2.1428 2.1428 3.4161 3.4160	0000 0000 0000 0000 0000 0000 0000 0000 0000	0000°0 0000°0 0000°0 0000°0 0000°0 0000°0 0000°0 0000°0	2477.1152 2286.5669	0.28 0.25 2.1505 2.1506 1.4033 3.4035	00000 000000	0000 0 0000 0
PAGE 13 MOV 17 1987	.	ET MAKEUP 1018 VAPOR	395.9963	1449.9998 2925.2324 0.1755 59.9865 2.0174	2925.2324 2	13.21 3.4460 2.6174	00000000000000000000000000000000000000	0.0000	2925.2324	C.55 3.4460 2.0174	0.000	0.0000
-	'n	of tak oil N Liguio	550.000	354.0535 47757.5703 11.3451 237.3640 156,434	0000	0000°u 6000°u 6000°u	47707.5703 3824.95 1324.05 0.5913 156.4934 53.3155	4675; 7056 125.5983 0.9530 142.3063 706.2930	0.000	0.00 0.000 0.000 0.000	0.000.0	45753.7656 3736527 05720
PECCESS SOLUTION	OFERTIES SET	AKEUP #2 # VAPOR	70.000	1450.0000 2425.2324 -3.0145 -1030.5194 2.0174	262.2324	13.21 3.4201 2.6174	00000000000000000000000000000000000000	000000000000000000000000000000000000000	235.23562	0.55 3.4201 2.0174	0.00.0	0000°0 0000°0
м 6.	PROCESSOR PR	FEED TAR M	154.0000	304.8536 47707.57C3 2.0518 43.0074 156.6934	0300*3	0.00 0.00 0.0000	47707 3269:42 1339:42 133:10 0.40:10 155:4934 62:3749	46753.7650 185.5965 9.9530 142.3663 905.2930	0.0000	000000000000000000000000000000000000000	c.000.3	46755.7858 3262.71 0.3928
VERSION 2.01 SIMULATION SCIENCES II PROJECT GP JET FUELS PROGLEM CJUTIO	REF IN	STREAT PRACTIONS	TEMPERATURE, DEG F	RATE LB PCLS/HR RATE LB /HH ENTHALPY RW BTU /HR ENTHALPY BTU /LB	*** VAPOR PHASE *** RATE LG /HR	STD.RATE MM FT3/DAY CP. 6TU /LB F MOLECULAR WEIGHT	RATE LIGUID PHASE *** RATE LA / HR ACT.RATE BAL/DAY STD LV HATE BAL/HR CP. HIU / LG F MOLECULAR WEIGHT ACT.DENS LU / FT3	RATE LB /HR MOLECULAR WEIGHT UOP K	*** VAPOR PHASE *** Rate le /hr	STD.RATE MM FT3/HR CP. btu /le f Molecular reight	VISCOSITY, CP	RATE LGUID PHASE *** RATE LG /HR ACT.RATE ESL/DAY

PAGE 19 ML NOV 17 1987 PPOCESS SOLUTION VERSICM 2.61 SIMULATION SCIENCES INC. PROJECT GP JET FUELS PROBLEM CSU10U

REFINERY PROCESSOR PROPERTIES SET

13 HOT SEP VAP VAPOR	699.9308	1978.5837 47058.1875 27.0339 574.477 53.7838	47058.1878 W	18.02 0.8149 23.7838	000000000000000000000000000000000000000	0000000	42796.3281	0.66	0.000	
12 HOT SEP LIG P	8026.669	58.9225 8365.1719 2.9036 347.1082 141.9691	0000*0	0.0000000000000000000000000000000000000	8365.1719 897.70 27.13 C.7212 141.8591 39.8351	8254.7793 152.1266 11.0063 -31.6788 580.9435 329.3210	0000	0000.0	0.000	8284.7793 884.95 C.6941 152.1266 4C.0177 29.2194
11 101C OUTLET P	700.0000	2037,5063 55423,3672 29,9376 540,1617 27,2016	47019.6406	18.02 0.8150 23.7685	3403.7207 901.53 27.26 0.7214 141.7721 39.8658	8322.6630 151.9371 11.0075 -32.233 579.9640 329.358	42758.4375	0.8657 0.8457 24.5499	0.000	\$322.6690 848.67 0.6941 151.9371 60.0328
101e CUTLET .	700.0000	1714,6738 53122,7031 26,3515 496,0495	32405.3750	14.31 0.8264 20.6213	20717.3203 2161.44 54.67 0.5971 144.6516 40.9712	20533.1992 154.3628 10.7379 -19.3667 623.0140	29310.3320	0.53 0.6697 20.9412	0.000	20537.1992 2132.21 0.6718 154.3328 41.1641
9 101A OUTLET "	700.0000	1363,436# 50633,4766 22,5462 445,2832 37,1357	18865.8439	10.44	31767.6367 3221.31 55.52 0.6653 145.1566 17.3274	31526.7969 154.3732 10.4359 -1.0973 660.3578 348.6959	16974.6494	0.39 U.4020 10.3032	0.000	31526.7953 3133.09 0.6650 154.1732 42.3475
101A INLET 1	467.2208	1/54,8521 5C632,9C47 11,52C4 227,5274 28,8530	5532.7441	13,41 1,9962 3,7569	4510C.0469 3645.26 128.51 0.8512 159.8856 52.8856 9.5333	44961.8359 163.7550 16.0351 10.7020 788.6456 366.2594	4717.1543	2.2542 3.3047	0.0000	944 945 945 945 9445 9445 9445 9445 944
STREAT TO	TEMPERATURE, DEG F	RATE LE MOLS/HR RATE LA /HR ENTHALPY MM STU /HR ENTHALPY BTU /LB MOLECULAR MEIGHT	*** VAPOR PTASE *** RATE LE /IR	STD.RATE MM FT3/DAY CP. BTU /LB F MOLECULAR WEIGHT	*** LIGUID PHASE *** RATE LB /HR ACT.RATE BBL/DAY STD. LV RATE BAL/HR CP. BTU /LB F ROLECULAR MEIGHT ACT.DENS LB /FT3 STD. API GRAVITY	AATE LB /NR NOLECULAR WEIGHT UOP K	*** VAPOR PHASE *** RATE LE /HR	STD.RATE MM FT3/WR CP. btu /LB F Molecular Weight	VISCOSITY, CP	AATE LIGUID PRASE *** AATE LG /HR ACT.RATE BGL/DAY CP. BTU /LB F MOLECULAR MEIGHT *** ACT. DENS LD /FT

VA66 A-3		19 20 Sour HZO PURGE GAS LIGUID VAPOR	170.000	16.0176 54.7174 -0.0285 -428.5779 3.6161	54.7174	0.15 2.1464 3.4161	000000000000000000000000000000000000000	000000000000000000000000000000000000000	54.4651	2.1543	00000	000000000000000000000000000000000000000
PASE 20 ML MOV 17 1987		18 COLD SEP LIG LIQUID	120.000	303.4501 37544.5781 0.4793 12.7554	000000	000000000000000000000000000000000000000	37544.5781 3549.67 133.21 0.4767 123.7257 49.3855 44.1161	37533.6641 123.9373 11.5026 -77.8037 564.1465	0.000	0000.0	0.000	37533.5641 3248.92 0.4766 123.937! 44.1269
	ET	17 CCLO SEP VAP C	120.030	1410.9827 4840.5156 -2.0745 -23.5753 3.4161	4940,5155	12.97 2.1473 7.4161	0.0000000000000000000000000000000000000	00000000000000000000000000000000000000	4813,1924	0.54 2.1543 3.4033	0.000	00000000000000000000000000000000000000
PEUCESS SOLUTION	PROCESSOR PROFERTIES SE	15 16 H2C MASH EFF + H23										
ACES IN Fuels	REFINERY P	STREAT ID. STREET STREET STREET PRASE.	TEMPERATURE, DEG F	RATE LG POLS/HR RATE LG /HR ENTHALPY MK BTU /HR ENTHALPY BTU /Lb MOLECULAR bEIGHT	RATE LE /HR	SID.KAIE MR PIS/DAT CP. BTU /LB F MGLECULAR WEIGHT	RATE LIQUID PHASE *** RATE LA /HR ACT.RATE BOL/DAY STD. LV RATE BOL/HR CP. BTU /L8 F HOLECULAR WEIGHT ACT.DENS LB /FT3 STD. API GRAVITY	AATE LS /HR MOLECULAR WEIGHT UOP K	*** VAPOR PHASE ***	STD.RATE MM FT3/WR CP. STU /LB F HOLECULAR WEIGHT	YISCOSITY, CP	AATE LOUID PHASE *** AATE LO / HR ACT.RATE LOL/DAY CP. HTU / LE F MOLECULAR WEIGHT ACT.DENS LO / FT? STO. API GRAVITY
							D-33					

		140.	# L	PAGE 21
	ROJECT GP JET FU RODLEM C3U1UU		SCLUTION	NOV 17 1987
	REFINER	FINERY PROCESSOP P	Las salleace	
	STREAT TO	21 RECYCLE GAS VAPCR	SIG COMP DIS	
	TEMPERATURE, DEG F	120.0000	151,1567	
	RATE LB FCLS/MR RATE LB /KR ENTWALPY BY BYD /KR ENTWALPY BYD /KB MOLECULAR WEIGHT	1400.4648 4785.7979 -2.0511 -428.5744 3.4161	1400.9009 4745.7539 -1.7423 -364.0534 5.4101	
	AATE LO /HR	4785.7979	4795.7539	
	STD.RATE MR FT3/DAY CP. BIU /LB F MOLECULAR MEIGHT	12.76 2.1464 3.4161	12.76 2.1446 3.4161	
D-34	RATE LU / RATE BEL/DAY STO. LV RATE BEL/HR CP. BTU / LB F HOLECULAR MEIGHT ACT.DEMS LE /FTS STO. API GRAVITY	20000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
	MATE DRY BASIS MOLECULAR REIGHT UOP K FLASH POINT, DEG F CRIT. TERP,	0390°3	0.000°0 0.000°0 0.000°0 0.000°0	
	BATE LB /IR	4703.7275	4765.0525	
	STO.RATE RR FT3/NR CP. BTU /LB F ROLECULAR REJGHT	0.53 2.1543 3.4035	0.55 2.1523 3.4033	
•	VISCESITY, CP	00000	0000.0	
1	AATE LB /HB AATE ABL/DAY CP &TU /LG F MOLECULAR FEIGHT ACT-DERS LD /FT:	99999999999999999999999999999999999999	00.00 00	

######################################	VERSICM LOUT SCIENCES PROJECT GP JET FUEL PROBLEM C3U100	3 NC.	PROCESS SOLUTION		PAGE 13 NOV 20 1987		PAGE	A- 5
The color of the	EFIN	RY PACCESSOR P	OPERTIES SE					
\$ 150.1304	NAME	OT FRAC FO	25 DC FEE L16UI	26 57 JP- L19UI	27 RAC OVHD VAPOR	28 7 HC VAP VAPO	29 DT NAPHTHA LIGUT	
126.000		3.304	90.544	83.711	5.179	000	00,00	
Mar. Mar.	SSURE, PSIA	3.000	57.000	55.500	000.0	000.0	9.00	
Mar.	E LB FOLS/HR	362.372	20.404	153.045	572.496	65.827	93.17	
	E / F /	5 20 9 . 77 3	1660.005	3550.011	2544.328	111.179	150.15	
	MALPY AR GTC /EX	5.619	1.973	3.535	2.301	C. 193	200	i
	RALFT WIG /LS	5.692	31.330	56.400	7	16.890	70.5	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				•			, i	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	VAPCR PHA							
The color The	۰ د	260.435	900	9000	2544.328	111.179	000000	
Colored Colo	_	, . , .		• c	, ,	• •		i
		- 4						
F	1	20.674	900		4 313	6.880	00000	
Color	1/ 8	0.405	80	800	0.472	0.115	00000	
F. *** 4623.3184 11460.0059 23950.0117 0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000	Y (2	.967	.000	000	.957	766.	0000-0	
Color	O PHA							
L/MM 115.57 992.65 2265.61 0.00 0.00 0.000 0.5511 2.28.4013 231.3308 156.489 0.0000 0.0000 0.4003 // T	J	623.318	1560.005	3950.011	900.	.000	90.152	
	RATE BBL/DAY	13.5	95.6	363.6	÷	•	58.1	٠
The color of the	LV RATE BOL/HR	13.7	34.4	92.2	0	0.0	35.1	
VFT3 47.7821 50.2005 45.7583 0.0000 0.0000 45.7583 VAR 46.23.2461 14.7462 39.5351 0.0000<		0.00	275.0	30¢.0			069.0	
V		47.783	50.210	63,313		000	444	
LB /HR	API GRAVITY	6.097	4.746	3.535	88	.00	7.581	
LB /HR	• SISE							
Tell Tell	LG / HR	623.246	1540.587	3898.968	۰.	.000	188.455	
PEG F 144-2612 228-3018 110-9470 0.0000 C.0000 -18-0632 F 144-2612 228-3018 110-9470 0.0000 C.0000 -18-0632 F 144-2612 228-3018 110-9470 0.0000 C.0000 -18-0632 F 144-2612 228-3018 110-9470 0.0000 C.0000 C.0000 -18-0632 F 14-2612 228-3018 110-9470 0.0000 C.0000	CULAR MEIGHT	228.444	235.992	159.101		900	98.715	
## ## ### ### ### ### ### #### #### ### ### ### ####	*	10.539	10.588	11.457	٩.	90.	11.756	
MASE MASE	0	44.261	28.301	10.947	9	86	18.063	
##SE *** 41195.2188 0.0000 0.0000 40607.9063 109C.6182 0.000		57.321 12.789	87.350 06.075	44.573	9 9		32.051	
FIGURE 4195.2183 0.0000 0.0000 40607.9063 109C.6182 0.0000 0.000 0.18 0.00 0.000 0.000 0.18 0.00 0.00						•		
FT3/FE	64E7 E07E9	4406 349	6		100	• • • • • •	č	: :
FT3/HR 0.13 0.00 0.00 0.18 0.00 0.00 0.00 0.18 0.00 0.00		37.6			604.5000	7		
F 0.5869 0.0000 0.0000 0.5117 C.6009 0.0000 0.0000 0.5117 C.6009 0.0000 0.0000 0.5117 C.6009 0.0000 0.0000 0.5117 C.6009 0.0000 0.0000 0.51149 0.0000 0.0000 0.5606 0.1149 0.0000 0.0000 0.5606 0.1149 0.0000 0.5606 0.1149 0.0000 0.5606 0.1149 0.0000 0.5606 0.1149 0.0000 0.5606			0	? 0				!
IGHT 122,2172 9.0000 0.0000 87.3287 16.8600 0.0000 6.1149 0.0000 0.0000 0.5606 0.1149 0.0000 0.0000 0.5606 0.1149 0.0000 0.0000 0.5606 0.1149 0.0000 0.0000 0.9490 0.9947 0.0000 0.9666 0.0010 0.0000 0.9490 0.0000 0.9666 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.64902 0.5724 0.0000 0.0000 0.0000 0.0000 0.4902 0.0000 0.0000 0.0000 0.0000 0.4902 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000 0.0000 0		.586	000	000	.511	9	0000	
LB /FT3 0.4112 0.0000 0.0000 0.5606 0.1149 0.0000 0.0000 0.9490 0.9497 0.0000 0.0000 0.9490 0.9490 0.9947 0.0000 0.0000 0.9490 0.9490 0.9497 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	I GHT	122,217	000	.000	7.328	6.86	0000	
ITY (2). 0.9666 0.0000 0.0000 0.9490 C.9947 0.000 0.012 0.000 0.012 0.000 0.012 0.000 0.012 0.012 0.000 0.012 0.012 0.000 0.012 0.012 0.000 0.012 0.012 0.000 0.012 0.01	1	0.411	9	000	0.560	Ξ.	0000	
MASE ***	2	0.966	.000	.000	676.	6.	ë	
MASE *** 4523.2461 11646,5879 23898,9688 0.0000 C.0000 9188.455 65.0 C.0000 9188.455 65.0 C.0000 0.00 858.0 C.0000 C.0000 0.00 858.0 C.5055 C.5055 C.5726 C.5726 C.5055 C.5055 C.5726 C.5726 C.0000 C.0000 C.0000 C.0000 C.0000 C.0000 C.0000 C.0000 C.0000 C.5746 C.5746 C.5746 C.5746 C.0000 C.0000 C.0000 C.5746 C.5746 C.0000 C.0000 C.0000 C.5746 C.	COSITY, CP	.012	. 300	.000	.010	<u>.</u>	ŝ	
LS /HR 4623.2461 1164G.5879 23898.9688 0.0000 C.0000 9188.455 66L/DAY 413.58 9-00.97 2359.59 C.0C 0.0C 858.0 0.4C 0.5C 0.5C 0.0C 0.4C 0.4C 0.4C 0.4C 0.4C 0.4C 0.4	LIBUID PHASE							
66L/0AY 413.58 443.58 443.58 443.58 6.00 0.00 858.0 F C.605 G.572 0.4031 0.000 0.000 0.490 IGHT 223.4443 235.492 159.1016 0.000 0.000 98.715 LA /FT1 47.7947 0.000 0.000 45.774 VITY 10.000 10.000 57.590	د	523.246	1646.587	3252.968	9	900	188.455	
F C.5055 G.572¢ D.4031 D.0000 G.0050 G.490 IGHT 223.444) 235.492 159.1016 D.0000 C.0000 98.715 L.4 /FT1 L.7.7552 50.2113 44.7947 D.0000 C.0000 45.774 VITY 12.0771 14.7540 J.4740 D.4001 C.0000 57.590	.0	413.5	3.04.5	2359.5	O	0.0	58.0	
16H7 223.4443 235.4922 159.1016 0.0000 0.0000 98.715 Li /FT:	8Tu /La F	C. 505	0.572	0.403	٠.	90.	0.4.0	
12.777 00000 00000 00000 00000 00000 00000 0000	I GHT	43.446	35,642	50.101	9	86	8.715	
DECENCE 000010 010010 0000 000010 000010 000010 000010 000010 000010 000010 000010 000010 000010 000010 000010	֡֝֝֝֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		113.0	70/	5,	900	7.7.6	
			3 ()	· ·	٠,٠	֝֟֝֟֝֟֝֟֝֟֝֟֝ <u>֚</u>	7.04	

:

i

÷

Net Net	ERSION C. I					
NET 10 10 10 10 10 10 10 1	IMULATION SCIENCES	Ž	PFCCESS		- 1 - 1	
Name	ROBLEM C3U1GO	_	OLUTIO		0V 20 195	
NATE NATE	E F I N S	Y PROCESSO	ROPERTIES SE			
NAME	TAEAM ID	RAC STR ST	31 P-8 STP ST	32 00 ÷ 42	33 EFLUX	
The part The part	TREAM PEASE	0 4 A	V > 0	LIGUI	רוסחו	
The Principle The Principl	EMPERATURE, DEG F	14.077	11.698	0.000	000	
The book between the color of	30000000000000000000000000000000000000	71000	7.200	200.04	000.00	
APOR	A76 A76 A76	666.60	666 510	908.570	0316.757	
No. No.	NTHALPY MY BTU /H	1,035	1.237	0.110	-0.087	
MAR MERCHT 13,015 15,0	MTHALPY BTU /L	189.563	189.568	P.015	2.892	
MATE 13.56 1.29 0.0000	OLECULAR WEIGHT	8.018	3.015	3.015	8.633	
Table Tabl	** VAPOR PHASE **					
######################################	ATE LB /HR	565.69	066.610	.000	.000	
Name Name	CT.RATE FT3/SE	•:	٣.	Ō,	0	
	TO RATE MK F13/DA	7	3	0	0.0	
ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000 1908.5906 30334.757 14.8 ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000 1908.5906 30334.757 14.8 ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000 1908.5906 30334.757 14.8 ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000 19.037 14.8 ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000 0.0000 11.758 14.8 ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000 0.0000 11.758 14.8 ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000 0.0000 0.0000 11.758 14.8 ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000 0.0000 0.0000 11.758 14.8 ESSIBILITY (2). 19010 PHASE *** C.GGG 0.0000	7, 310 /LB F	255.0	0.531	000	98	
SESTBELLITY (22) 0.9575 0.0000 1905.5906 3035.757	CLECCIAN BELGAL	2.5	7.0		36	
LUID PHASE *** C.CCCC 0.000 19CS.5906 30334.757 LU ART ESL/RAY 0.000 0.000 0.978 0.453 LU ART ESL/RAY 0.000 0.000 0.978 0.453 LU ART ESL/RAY 0.000 0.000 0.978 0.453 LU ART ESTACT 0.000 0.0	OMPRESSIBILITY (2)	95,	.96		88	
ATE BELYNA 0.00 0.00 19CS.5906 30334.757 LUAN WEIGHT 0.000 0.000 19.05 90.633 LUAN WEIGHT 0.0000 0.0000 0.0000 19.05 90.633 LUAN WEIGHT 0.0000 0.0000 0.0000 0.0000 11.756 LUAN WEIGHT 0.0000 0.0	44 39448 ATTOL 44					
LUN RATE BAL/NA	ATE LIMOTO THASE TO ATE	9	.000	968.836	0334.757	
PRINTERSONAL PRODUCTS OF CONTRACTOR PRODUCTS	CT.AATE BBL/DA	ů	ō	131.3	832.6	
### GRAVITY ### GRAVITY ### GRAVITY ### GRAVITY #### GRAVITY #### GRAVITY #################################	TO. LV RATE BBL/H A. Ati /io f		0	5 . 6 0 0 4	15.6	
### GRAVITY ### GRAVITY ### GRAVITY #### G.0000 0.0000 10.0000 11.756 ###################################	OLECULAR WEIGHT			8.015	8.633	
## GRAVITY 0.0000 0.0000 10.0635 57.581	CT.DENS LB /FT	8	8	2.100	5.776	
LEAR MEIGHT LEAR MEIGHT LEAR MEIGHT C.0000	TD. API GRAVITY	230.	000.	0.063	7.581	
LULAR WEIGHT LULAR	DRY BASIS **	,	1			
PRES. PSIA C.0000 C.00	LE AB LETCHT	500	000	000	0329.148	
PRES. PESTA C.0000 C.0000 C.0000 S32.051					1.756	
### PHASE *** C.0000 0.0000 0.0000 \$32.057 #### C.0000 0.0000 0.000 0.000 ##############	POINT, DEG F	3	0000	2000	16.063	
The color Color	TERP. F	3 0	000	000	32.051	
## WAPOR PHASE *** ATE LB /HR C.0000 0.00		•				
CT.RATE FT3/SEC 0.C0 0.00 0.00 0.00 0.00 0.00 0.00 0.	ATE APOR PRASE BY	000	Ü	000	000	
TO-RATE NH F13/NH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	CT.RATE FT3/SE			0	0.0	
DLECULAR WEIGHT OLOGO 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	TO.RATE MM FT3/M	0	0.0	0.0	0.0	
CT.068% LW /FI3 0.00C0 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	P. GTU /LB F	96	000		960	
	CT.DENS LA /FT					
SECONTIFY CP	(1) ALL ILBESSEMENT					
## LIGUID PHASE +++ ATE CI.RATE CLCD O.0000 O.0000 O.0000 O.400 O.400 O.400 O.400 O.400 O.4000 O.4000 O.4000 O.4000 CL0000 CL	ISCOSITY, CP	330	200	600	90	
### LB /HR 0.0000 0.0000 30329.143 CI.RAIE 64L/DAY C.C. 0.0000 0.0000 2532.2 U.O. 0.00 0.0000 0.40	** LIGUID PHASE **					
CI.RATE	ATE LS /HR	.365	60.	.500	0329.148	
## #IU /LE	CT.RATE BULIDA	S	ď	٥. د	332.2	
CITORES	P. 8TU /LE F		5:	000	0.490	
COSTAN CONTRACTANT CONTRACTOR CON	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	: : د : د			5.774	
was a constant to the same of	TO. API GAAVITY	, ,	10		7.590	
			•	,	5	

0. 6. 0. 6.	TM OLUTION ATIES SE	-	PAGE 37 40V 18 1937		PAGE A-7 CASE 3 AREA 200
1 HDT 55C+ LIQUID	AKEUP HZ		AET MAKEUP	RX INCET	6 Ri effluent Mixed
200.0000 1240.9999 50.5699	500	-	302.5687 1310.0000 250.0000	662.0000 120C.0000 613.2278	683.7249 1175.0000
259	504.350	11304.962	504.35	\$6.265 6.311	780.839
259	2.017	259.707	2.01	. 555	4.312
၂ ဗွ	50	000.0	Š	39	18838.0352
ب	٠.٠	0.0	4. 5	4.	- 50 A
200	420	000	476	.256	
00000	0.1139	00000	0.3098	C.8177 C.8177 1.0334	1.7035
.816	8	11364.962	8	3.613	.804
3.6	0.0	1.500	0.0	1581.2	761.4
0.432		0.612		2642	0.692
57.7093 14.9850	0.000		00000	42.8563	38.9739
216	Č	1110,000	Š	0 0 0	713 670
230.5899	0000	•	00000		1998 496 1998 498
5.207	8	243.461	88	20.216	18.851
19.464	900	261.198		1.572	1.265
,		•			
	304.35U4 1.18	00.0	\$000.400 \$4.0	1.49	18816.2378 1.07 1.07
38	3.420	0.0	m.u	258	ö
38	0.118		0.3	.817	
200	1.014	00.0	-0	80	1.0327
6	6		•	•	
63.6	0000°0	775C4.75C	00000	81.0	•17•
0.432		0.412	0	2.672	0.692
57.7053	0000°0	50.0713	0.000	7/67-67	38.9742
4) (·	K9C*9+	•	7.510	5.765

₹ .	1	4 .	1			
PASC 12 12 VAPOR	2000 2000 2000 2000 2000 2000 2000 200	119.256 0.4858 2.9248 0.4832	0 00000	000000	336.0247 2.50546 2.50546 0.0000	0 00000
11 RECYCLE GAS VAPOR		2315,1357 1,30 7,21 2,4858 2,9248 1,0432		000000	2291.0664 1.30 0.30 2.9034 2.9034 0.4892 1.0640	0000000
PAGE 38 NOV 18 1987 10 10 10 10 10 10 10 10 10 10 10 10 10 1	10000000	7205.7803 2.21 8.72 1.2866 7.4761 0.9067	11906.2520 1172.41 41.50 0.6133 157.2098 43.4098	1894.9570 158.3731 11.6975 -39.4843 631.0258 321.7490	6945.2979 2.18 2.18 1.3173 7.3175 1.0376 0.0000	11894. 1171.88 1171.88 0.6189 155.8731 455.8731 41.0591
9 E-202 OUTLET MIXED		7140.0643 2.20 8.69 1.2813 7.6972 1.0350	11521.1738 1139.93 40.01 0.6182 160.008 43.2028	11520.3184 160.1033 11.6781 - 38.6711 634.0975 318.6971	7319.9404 2.20 0.36 1.2835 7.6847 0.9235 1.0351	11520. 1129. 1129. 2.6112 160. 160. 1033 43. 20033
PRUCESS SOLUTION ROPERTIES SET REF FROWERS	584.8490 1145.0000 1025.7036 18562.0391 7.6068 403.2874	- 13840.5379 2.810 9.10 1.0164 15.8471 1.3599	5021.7061 522.39 16.30 0.6730 191.7631 41.0911	5021.4668 191.8315 11.2991 0.3040 710.1705 231.3445	13518.7964 2.80 2.80 0.38 13.8421 1.3693 1.0326 0.0000	5021.4668 522.37 522.37 101.0.1815 611.0.1815 611.0.1815
TAC. T PROCESSCA P. TOT SEP VAP. VAPCA	681.6332 1176.0066 1025.0339 1=362.0391 7.7359 516.1650 15.3894	18862.0391 3.03 9.36 0.9423 18.3894 1.69E5	000000000000000000000000000000000000000	000000	18840.0578 0.3578 0.3578 0.3578 0.3578 1.05985 0.000.0	00000000000000000000000000000000000000
SIRULATION SCIENCES I SIRULATION SCIENCES I PROJECT 6P JET FUELS PROBLEM CSU201 REFINERY STREAP NAME	TURE, P Ld PC Y MR BI AR BI AR BI	AATE LB /HR ACT.RATE FT3/SEC STO.RATE MN FT3/DAY CP. BTU /LB F MOLECULAR WEIGHT ACT.DENS LB /FT3 COMPRESSIBILITY (2).	AATE LIQUID PHASE *** AATE LB /HR ACT.BATE GEL/DAY STD. LV RATE BEL/HR CF BIU /LB F MOLECULA MEIGHT *** ACT.DEMS LB /FT3 STD. API GRAVITY ***	RATE LB /HR MOLECULAR MEIGHT UOP K FLASH POINT, DEG F CAIT. TEMP, F	RATE LB / LB / LB / LB / LB / LB / LB / LB	HATE ACT.RATE BEL/DAY CLEULAR WEIGHT ACT.BENS STO. ALL GRAVITY
			D-38			

ERSIGN 2 IMULATION SCIENCES	IVC.	PROCESS		PAGE 39		Ω
_		SOLUTION		NOV 18 1987		1
REFIXERY	PRUCESSOR	PROPERTIES SET				
MARRY NO MARRY MA	13 HOT SEP LIG LIQUID	14 CCLD SEP LIB	15 BEC COMP DIS VAPOR	16 H20 WASH LIGUID	17 SOUR #20 - LIQUID	
TEMPERATURE, DEG F	3.633	000	33.	125.000	0	
Se	ğ	1095.0000	1265.0000	95.0	1095.0000	
LE FOLS/H	34.679	113.570	73.	13.877	6	
1	8.602	701.0	<u>.</u> :	7.0.0	2 6	•
K > > 0 LE	11.501	4.379	9	5.761	3 2	
	199.5084	755	.~	.015	50	,
PEASE	•					
, ea	8	;	2315.150	8	00000	
F13	0		1.2	0	0.00	!
HR F13/	0	•	7.2	0.0		
/LB F	900	ن ن	7.07		0000	•
THE PERCENT	3 5		22.5			
COMPRESSIBILITY (2).	0.000	0.000	1.0491	0.000	00000	
IID PHASE						
XX/ 01	. 402	•	8	666	-	
•	2	•	0.00	17.34	16.82	
RATE 69L/	21.5	20.0	2 6	0 0	• •	
, /LB F	260	75.5		8.015	00	
	39.991	47.915	000	2	-	
17:	7:0	4.659	000.	0.063	C. 28	
*** DRY BASIS ***				,		
Le /H	8.514	0.839	8	8	0.319	
ELGHT	99.592	30.05	0000	900	223	
ALASH BOTTET, SEC. 1	10,000	-66.1846	0.000	0.000	1.9601	
	22.472	4.550	900	.000	6.541	
•	1.254	67.000	. 000	80.	827	
PHASE *				•		
LB /HR	0.0000	ö	2293,090	0.000	00000	
ACT. BATE F13/SEC	200	000				:
# /C 4	2 0	ن	2.515	, 0	•	
EIGHT	9	ö	2,001			•
TH/ HT	9	3	0.531	۰.	•	;
LITY	0	ö	1.049	00.00	0000	
a.	•	Ö	000.0	٠.	-	
** LIQUID PHASE *			•	6	;	
ATE L3 /h	. 514	16210.339	2		<u> </u>	
7E 59L/	4 0 4	7.64.1	ċ		750	
O /LC P		• • • • • • • • • • • • • • • • • • •	Ċ	000.0	4.225	
)	27	21.5.73	ت	0.000	31.794	
17.			ت	כי נ	W 1	
:	,	•	r	ć ·		

NA CORREA PARAMEN COLOCO COCCO CO	
LI	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
7 00-000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	916.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.
NC. 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$647.9697 \$647.9697 \$71.77 \$7.1252
CO SCIENCES CO SC	CP STD / LB F MOLECULAR WEIGHT ACT.DENS LB /FT3 COMPRESSIBILITY (2). VISCOSITY. CP RATE LBUID PHASE *** RATE LBUID PHASE *** RATE LBUID PHASE *** ACT.RATE BULLDAY CP. ETU / LB F MOLECULAR WEIGHT ACT.DENS LB /FT3 STD. ALI GARVITY

P40C5SS SCLUTION		PEFFUX	0000	8369-8887 0-1463	₩4. ₩4.00	80	000000000000000000000000000000000000000	000	9369.8887 848.50 34.17 0.5373 96.9657 70.5915	8367.3945 97.0937 12.4155 -40.9109 490.7809	0.000 0.00 0.00 0.00 0.00 0.00 0.00 0.	
•	SC4	SOUR HZO LIGUID	0.000	1107.3677 0.0663	7.97C	ပ္ပင္	00000	900	1107.367 76.53 76.53 0.9978 14.0150 61.3514	000000000000000000000000000000000000000	00000000000000000000000000000000000000	
NCES FUELS	REFIN TREAM ID		ERPERATURE, DEG F RESSURE, 100 PS	TE LO FOLS/ TE LS / THALPY MR bTU /	NTHALPY BTU /L. OLECULAR WEIGHT	** VAPOR PH ATE CT.AATE	TO. MATE MY FISSON P. BIL /LB F OLECCLAN FEIGHT	COMPRESSIBILITY (2)	ATE LIQUID PHASE *** ACT. RATE BAL/DAY STD. LV RATE BAL/DAY CP. BTU /LE F MOLECULAR WEIGHT ACT. DENS LB /FT3 STD. API GRAVITY	MATE NATE NOLECULAR BEIGHT UOP K FLASH PUINT, DEG F CRIT. PRES, PSIA	ACT. RATE FT3/SEC STD. RATE MK FT3/SEC STD. RATE MK FT3/HR CP. BTU /LE F MOLECULAR MEIGHT ACT. DENS LU /FT3 COMPRESSIBILITY (2).	RATE ACT.RATE CP. BTU /LB F ROLECULAN WELSHT ACT.DENS L9 /FTS ACT.DENS L9 /FTS STO. AFI GRAVITY

PAGE 14 NOV 13 1987

A Commence

3

D-4

6 4 6 1 6 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	148 200 273 964 1950		6.040 6.1040	000000000000000000000000000000000000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	2000 88 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000	2903 272 227 226 226 226 33
PAGE NOV 20 19 NOV 20 19 NAPHTHA PS LIBU	00 NO 40 B	0 0000	1455 100 100 100 100 100 100 100 100 100 1	0 00000	16656.77 1793. 0.70 190.80
42 Reflux Liquid	29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0000000	1045.5327 133.44 55.22 0.7083 55.7178 33.4915 115.3759 115.475 15.679 284.2679 587.5289	000000000000000000000000000000000000000	1044.0978 133.41 0.7091 55.7775 33.4436
FACCESS SOLUTION ACPERTIES SET ATAL OFFGAS VAROR	, 900 W 90 V	319.0 0.09 0.007 0.007 0.0313 42.6235 0.9856		318.5894 0.00 0.00 0.4918 0.4923 0.4923 0.09453	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
TAC. Y PROCESSUR PA NAPHTHA FEED S LIGUID	90000 9000 9000 9000 9000 9000 9000 90	000000000000000000000000000000000000000	14776.7715 1422.75 157.94 0.5085 97.9319 44.3959 62.5319 1473.3887 98.0315 122.1468 515.677 465.1137		14.773.3557 14.25.52 0.5094 0.0315
RSION 2.11 RULATION SCIENCES OJECT GP JET FUELS OGLEM C3U2OU REFINER) REFINER) REAR IO	PERATURE, DEG F SSURE, BOLS/FR E LG POLS/FR E LG / HR HALPY MH BILU / HR HALPY BILU / LB ECCLAR MEIGHT	ATE LB /HR CT.RATE FT3/SEC TD.RATE MR FT3/DAY P. BTU /LB F CT.CULA HEIGHT CT.CENS LB /FT3 OMPRESSIBILITY (2).	AATE LIQUID PHASE *** ACT. RATE BBL/DAY STD. LV RATE BBL/HR CP. BTU /LB F ACT. DENS LB /HT3 ACT. DENS LB /HT3 ACT. DENS LB /HT3 STD. API GRAVITY RATE LB /HR MOLECULAR WEIGHT UOP K FLASH POINT, DEG F CRIT. TERP, FSIA	ATE LB /HR CT.RATE FT3/SEC TD.RATE NM FT3/HR P. GTU /LG F OLECULAR PEIGHT CT.DENS LG /FT3 OMPRESSIBILITY (2).	** LIGUIO PHASE *** ATE LG /HR CT.RATE BGL/DAY P. ETU /LB F GLECLEAR BEIGHT CT.DENS LG /FI

APPENDIX E

AMOCO/DOE

GREAT PLAINS GASIFICATION PLANT

JET FUEL FROM COAL DERIVED LIQUIDS

CASE 4
PROFITABLE JP-8 PRODUCTION
SUBTASKS 1.2 & 1.3
PROCESS DESIGN AND COST ESTIMATE

LCI PROJECT 5571 DATE - JAN. 30, 1988

TABLE OF CONTENTS

1.0 CASE DESCRIPTION

- 1.1 Overall Process Description
- 1.2 Overall Material Balance
 1.3 Overall Utility Balance

2.0 PROCESS DESCRIPTION

3.0 CAPITAL COSTS

- 3.1 Equipment Lists 3.2 Cost Estimates

4.0 OPERATING COSTS

- 4.1 Operating Labor
- 4.2 Utilities
- 4.3 Catalysts & Chemicals4.4 Maintenance & Operating Supplies

5.0 PLOT PLAN & TIE INS

1.0 CASE DESCRIPTION

1.1 Overall Process Description

The purpose of this case is to produce JP-8 type aviation turbine fuel and chemical byproducts to maximize profit from Great Plains liquid by products. Figure 1 presents a block diagram for the process and referring to Figure 1 the flow is as follows:

- . Tar Oil byproduct stream (47620 #/hr, 3182 BPSD) is charged to the hydrotreater (Area 100).
- The hydrotreater is a 3 stage expanded bed type process which removes 99% + of the sulfur, nitrogen, and oxygen compounds and begins the conversion of 550°F+ material. The hydrotreater adds a large quantity of hydrogen to the feed (4100 SCF/bbl) which results in a high heat of reaction. An expanded bed type reactor was chosen to both control and utilize the heat of reaction. Three stages were used to both control the temperature rise as well as to obtain the high efficiency associated with staging a back-mixed reactor.
 - The hydrotreater produces 6 streams:
 - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit in the SNG plant for recovery of the $\rm H_2$ and $\rm CH_4$.
 - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
 - Unstabilized naphtha which is sent to the combined naphtha stabilizer in the hydrocracker (area 200).
 After stabilization, to control vapor pressure, the naphtha is sent to storage and gasoline blending.
 - JP-8 turbine fuel which is combined with JP-4 produced in the hydrocracker (area 200) and sent to storage.
 - 550°F+ unconverted bottoms product which is sent to the hydrocracker (area 200).
 - Wastewater containing, NH4OH and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.

- Approximately 950 #/day of spent catalyst which is shipped to a catalyst reclaimer in the same drums that the catalyst is received in.
- The 550°F+ unconverted stream from the expanded bed hydrotreater (area 100) is charged to the fixed bed hydrocracker (area 200). The hydrocracker converts this material to naphtha and JP-8 turbine fuel. For this service a 5 stage unit was chosen with 65% conversion per pass. This unit also includes a naphtha stabilizer which stabilizes both the naphtha produced in the hydrotreater and hydrocracker.
- The hydrocracker produces 4 streams in addition to JP-8
 - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit of the SNG plant for recovery of the $\rm H_2$ and $\rm CH_A$.
 - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
 - Stabilized naphtha which is sent to storage and gasoline blending.
 - A small sour water stream which is sent to the PHOSAM unit in the SNG plant or alternatively used as part of the injection water to the hydrotreating plant.
- Hydrogen make-up for the Hydrotreater, the Hydrocracker and the Naphtha Hydrotreater is supplied from a PSA Hydrogen Unit (Area 300). High pressure (355 psig) synthesis gas from the Rectisol Unit (which contains about 63% hydrogen) is charged to the PSA unit which recovers 86% of the contained hydrogen as a high pressure 99.99% purity hydrogen gas product. The remaining purge gas is available a low pressure (5 psig) which has a fuel value of about 565 BTU/ft. This H₂, CO & CH₄ rich gas is recompressed into the methanation unit of the SNG plant.
- The crude naphtha byproduct stream (8738#/hr, 725 BPSD) is charged to the distillation and hydrotreating unit (Area 600).
- The distillation removes the material boiling below 160°F, which is sent to the SNG Plant fuel pool, and produces a bottoms product which is charged to the hydrotreater.
- The fixed bed hydrotreater is a single bed reactor which removes 99% + of the sulfur, nitrogen, and oxygen compounds. Hydrogen is added to the feed at the rate of 430 SCF/bbl.

1.1 Overall Process Description - cont'd

- The naphtha hydrotreater produces 4 streams:
 - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit in the SNG plant for recovery of the $\rm H_2$ and $\rm CH_4$.
 - Naphtha which is stabilized to control vapor pressure, and the sent to the aromatics recovery unit (Area 700).
 - A low pressure off gas which is sent to the Stretford unit in the SNG plant.
 - Wastewater containing, NH4OH and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.
- The hydrotreated naphtha is charged to the extraction section of the Aromatics Recovery Unit (Area 700) where it is contacted with a solvent to extract the aromatic components from the stream. The raffinate is sent to storage and gasoline blending while the solvent is recovered from the aromatic extract. The aromatic extract is then sent to fractionation to produce the BTX products.
- Five streams are produced in the ARU plant.
 - A hydrocarbon gasoline blending stock which is sent to storage and gasoline blending.
 - A small process water stream which is sent to the waste treatment plant in the SNG Plant.
 - Three product streams Benzene, Toluene & Xylene which are sent to storage.
- The crude phenol byproduct stream (14490 #/hr, 936 BPSD), is feed to the dual solvent phenol extraction unit (Area 800).

1.1 Overall Process Description - cont'd

- Distillation removes approx. 85% of the phenol which is further distilled to remove light ends and then reflashed over sulfuric acid producing a 99.8% pure product.
- The remainder of the stream (a cresylic acid mixture) is flash distilled over a 3 wt.% concentrated sulfuric acid mixture to remove pyridine type substances.
- The acid tar produced is water washed and mixed with light oil and sent to fuel.
- . The remaining cresol/xylenol mixture is double solvent extracted to remove neutral hydrocarbons. The resulting crude cresylic acid is dried and sent either to storage or distillation (Area 900).
- . Streams produced in the phenol extraction unit are:
 - Phenol product sent to storage
 - Crude Cresylic Acid sent to distillation (Area 900) or storage.
 - Wash Water sent to Water Treatment in the SNG Plant.
 - Waste Water sent to the Phenosolvan unit in the SNG Plant.
 - Neutral Oil sent to storage and fuel for the SNG Plant boilers.
- The Crude Cresylic Acid is progressively distilled (Area 900) to separate the cresols and xylenols. No attempt has been made to remove the guaiacol from the product streams.
- Streams produced in the crude cresylic acid distallation unit are:
 - o-Cresol product which is sent to storage.
 - m,p-Cresol product which is sent to storage.
 - Xylenol product which is sent to storage.
 - A heavy distillate which is combined with neutral oil in Area 800.

1.1 Overall Process Description - cont'd

- A crude phenol stream which is recycled to the Area 800.
- A small water stream which is sent to Area 800 for tar acid washing.

1.2 Overall Material Balance

The overall material balance is presented in Table 1.1 which presents overall material balances for the major process units. The balance was computed on the basis that the fuel value of the feed will be replaced by fuel gas, neutral oil and 160°Fdistillate produced in the process and the difference made up by the purchase of #6 Fuel Oil.

The overall balance is as follows:

Feeds

936 BPSD of Crude Phenol 725 BPSD of Crude Naphtha

3182 BPSD of Tar Oil 4361 BPSD of #6 Fuel Oil

10.76 MMSCFD equivalent SNG product loss due to the syn gas feed to the PSA unit.

Products

2552 BPSD of JP-8 turbine fuel 1276 BPSD of 300°F - Naphtha for gasoline blending

317 BPSD of Phenol

56 BPSD of o-Cresol

131 BPSD of m,p-Cresol

75 BPSD of Xylenols

312 BPSD of Neutral Oil for Fuel 202 BPSD of 160°F - Distillate for Fuel 46 BPSD of Gasoline Blending Stock

315 BPSD of Benzene

112 BPSD of Toluene

15 BPSD of Xylene

7.02 MMSCFD equivalent SNG product credit due to HDT, HDC & PSA purge gas reinjection into SNG plant.

1.3 Overall Utility Balance

The overall utility consumption of the complex is as follows:

#6 Fuel Oil	4361 BPSD
SNG Equivalent	
of Syn Gas & Purge Gas	3.73 MM SCFD
Power	6160 kW
Cooling Water	6050 GPM (30 ⁰ F rise)
Process Water	24 GPM

In addition the process utilizes steam as summarized below which was debited against boiler requirements.

HP Steam Import	58,200 #/H
MP Steam Import	8,900 #/H
LP Steam Export	6,900 #/H
Condensate Return	67,100 #/H

)

Table 1.1 Great Plains Case 4: Profitable JP8 Production

					-
Tar Oil Feed====>	47620	#/hr	3182	BPSD	
Phenol Feed====>	14490	#/hr	936	BPSD	
Crd Naphtha Feed=>	8738	#/hr	725	BPSD	
Naphtha Product==>	13588	#/hr	1276	BPSD	
JP8 Product====>	30631	#/hr	2552	BPSD	
Phenol Product===>	4925	#/hr	317	BPSD	
o-Cresol Prod===>	845	#/hr	56	BPSD	
m,p-Cresol Prod==>	1974	#/hr	131	BPSD	
Xylenols Prod====>	1070	#/hr	75	BPSD	
Gasoline Stock===>	481	#/hr	46	BPSD	
Benzene Prod=====>	4060	#/hr	315	BPSD	
Toluene Prod====>	1425	#/hr	112	BPSD	
Xylene Prod=====>	188	#/hr	15	BPSD	
SNG Product Loss=>	6411	#/hr	3.7	MMSCFD	
Fuel Oil Makeup==>	60370	#/hr	4361	BPSD	

Expanded Bed Hydrotreater

Comp.	Wt %	Grav	#/hr	#Mole/hr	BPSD
Feeds				~~~~~	
H2	6.26		2982	1479.2	
Tar Oil	100.00	1.0268	47620		3182
Total	106.26		50602		
Products	100.20		30002		
Purge Gas	0.10		48	14.9	
Fuel Gas	1.87		891	43.9	
Naphtha	17.70	0.7600	8430		761
JP-8	51.87	0.8320	24701		_ 337
550 oF+	24.49	0.9700	11663		€25
H2O in SW	8.73		4159	231.1	
H2S in SW	0.43		205	6.0	
NH3 in SW	1.06		505	29.7	
Total	106.26		50602		3623

Fixed Bed Hydrocracker

Comp.	Wt %	Grav	#/hr	#Mole/hr	BPSD
Feeds					
H2	2.61		304	150.8	
500oF+	100.00	0.9700	11663		825
				~~~~~	
Total	102.61		11967		
Products					
Purge Gas	1.48		173	58.4	
Fuel Bas	4.27		498	27.5	
Naphtha	46.00	0.7148	5365		515
JP-8	50.84	0.7900	5930		515
H2S in SW	0.003		0.4	0.01	
NH3 in SW	0.003		0.4	0.02	
Total	102.60		11967		1030

والمحموس الميلانين والمعال والمعار

Naphtha	Stab	ili	zer
---------	------	-----	-----

Comp.	Wt %	Grav	#/hr	#Mole/hr	BPSD
HDT Nap	61.11	0.7600	8430		761
HCR Nap	<b>38.89</b>	0.7148	53 <b>65</b>		515
Stab Nap	98.50	0.7306	13588		1276
Fuel Gas	1.50		207	4.8	

#### PSA Hydrogen Recovery Unit(86% Recovery)

Component	H2	CO	C02	CH4	C2H6	N2+Ar	Total
M-1 *							
Mol %	444 00	74 07	0.70	20.04	A 50	A 75	104 07
feed Gas	116.28	34.26	2.72	29.84	0.58	0.35	184.03
Prod. H2	100.00	0.01					100.01
Purge Gas	16.28	34.25	2.72	29.84	0.58	0.35	84.02
Wt %							
Feed Gas	116.28	475.95	59.44	237.46	8.63	5.55	903.31
Prod. H2	100.00	0.12	0.00	0.00	0.00	0.00	100.12
Furge Gas	16.28	475.83	59.44	237.46	8.63	5.55	B03.19
#Mol/hr							
Feed Gas	1931.1	569.0	45.2	495.6	9.6	5.8	3056.2
Prod. H2	1660.7	0.2	0.0	0.0	0.0	0.0	1660.9
Purge Gas	270.4	568.8	45.2	495.6	9.6	5.8	1395.3
#/hr							
Feed Gas	3893	15935	1990	7950	289	186	30243
Frod H2	3348	4	0	Ó	o	0	3352
Furge Gas	545	15931	1990	7950	289	186	26891

Crude Naphtha Distillation	Wt %	Gravity	#/hr	BPSD
Feed Naphtha	100.00	0.8269	8738	725
Prod 160 oF-	24.77	0.7350	2164	202
Frod 160 oF+	<b>75.2</b> 3	0.8627	6574	<b>52</b> 3

Naphtha	Hydrotr	ater

Component	Wt %	Grav	#/hr	#Mole/hr	BPSD
Feed 160 oF+ Feed Hydrogen	100.00	0.8627	657 <b>4</b> 62	30.8	523
Feed Total	100.94		663 <b>6</b>		523
Purge Gas	0.33		22	6.8	
Fuel Gas	2 <b>.9</b> 7		195	10.8	
HDT Naphtha	93.61	0.8650	6154		488
H2O in SW	1.96		129		
H2S in SW	1.76		116		
NH3 in SW	0.30		20		
Total Froducts	100.94		6636		488

## Aromatics Recovery

Component	Wt %	Grav	#/hr	BFSD
Feed HDT Naphtha	100.00	0.8650	6154	488
Freducts	200.00	0.0000	0101	,00
Raffinate	7.82	0.7175	481	46
Benzene	65.97	0.8844	4060	315
Toluene	23.16	0.8718	1425	112
Xvlene	3.05	0.8729	188	15
Total Products	100		6154	488

## Phonol Extraction

Component	Wt %	#/hr	Grav	BFSD
Feeds				
Crude Phenol	100.00	14490	1.0621	936
Sulfuric Acid	1.97	285	1.8300	11
Total Feed	101.97	14775		947
Products				
Cr. Cresylic Acid	35.13	5090	1.0290	339
Phenol	29.09	4215	1.0661	271
Neutral Oil	30.68	4445	1.0860	281
Acidic Wa <b>ste Wate</b> r	7.07	1025	1.2558	56
Takal Dandunka	101.07	14775	~	047
Total Products	101.97	14775		947

#### Cresylic Acid Distillation

Component	Wt %	#/hr	Grav	BPSD
Or. Cresylic Acid	100.00	5090	1.0290	339
Phenol	13.95	710	1.0661	46
o-Cresol	16.60	845	1.0350	56
m.p-Cresol	38.78	1974	1.0340	131
Xylenols	21.02	1070	0.9750	75
Heavies	9.65	491	1.0800	31
Total	100.00	5090		339

### Fuel Gas Generated in Hydrotreating and Hydrocracking

Component	#/hr	#Mol/hr	MMBTU/hr
HDTR FG Produced	891	43.9	16.0
HCR FG Produced	498	27.5	9.0
Stabilizer FG	207	4.8	3.7
Naphtha Hdtr FG	195	10.8	3.5
Total Fuel Gas	1596	76.3	28.7

## Furge Gas Generated in PSA Hydrogen Unit

Component	#/hr	#Mol/hr	BTU/ft3	MMBTU/hr
H2	545	270.4	324	33.2
co	15931	568.8	321	69.2
CO2	1990	45.2	0	0.0
C1	7950	495.6	1010	189.7
C2	<b>289</b>	9.6	1769	6.5
N2+Ar	186	5.8	0	0.0
Total	26891	1395.3	565	298.6

Page 1-13

Net	Changes	in	Boiler	Fuel	Fired

Fuel	#/hr	BTU/#	MMBTU/hr	MMSCFD	BTU/ft3	BFSD
Tar Oil	-47620	17000	-809.5			-3182
Crude Phenol	-14490	13070	-189.4			-936
Crude Naphtha	-8738	18500	-161.7			-725
Fuel Gas	1596	18000	28.7	0.7	994	
160 oF- distillate	2164	17400	37.7			202
Neutral Oil	4936	15000	74.0			31 <b>2</b>
Import Steam	-60200	1000	-60.2			
Fuel Oil to Boiler	60020	18000	1080.4	<b>e</b> s.		4336
Total	-62332		0.0	0.7		7
Fuel Dil to	350	18000	6.3			25

Net Changes in SNG Production	EQV SNG MMSCFD	FSA/Furge Gas #Mol/SD
SNG equivalent of Syn Gas to PSA	10.76	73350
SNG Oredit for PSA Purge gas	6.74	33488
SNG Credit for Hdtrs purge gas	0.29	192 <b>9</b>
Total SNG Production Loss	3.73	

#### 2.0 PROCESS DESCRIPTION

#### 2.1 <u>Hydrotreater</u> (Area 100)

For a description of the Hydrotreater process see Case 3 Section 2.1.

#### 2.2 Hydrocracker (Area 200)

For a description of the Hydrocracker process see Case 3 Section 2.2.

#### 2.3 PSA Hydrogen Unit & Recompression (Area 300)

Pressure

2.3.1 Hydrogen for both the hydrotreater and the hydrocracker will be supplied by a PSA hydrogen unit. The feed gas will come from the Rectisol Unit in the SNG plant (Stream ID-GF 1401) which has the following properties:

355 psig

Temp.	65 °F	
Composition	mo1%	
H2		
CO		
CO2		

CO 18.61 CO2 1.48 CH4 16.21 C2H6 0.31 COS, H2S, CS2 < 0.01 N2 + Ar 0.19 H2O < 0.01

The PSA unit selectively absorbs all components expect H2 and produces a 99.99% vol. purity stream at about 345 psig and 80°F. The other components are available as a purge gas having the following properties.

63.19

Pressure	5 psia
Temperature	5 psig 100 F
Composition	Mole %
H2	19.32
CO	40.76
CO2	3.24
CH4	35.51
C2H6	0.69
N2+Ar	0.41
Others	0.06

At the conditions given a 10 bed PSA unit will recover 86% of the hydrogen in the feed according to the manufacturer, Union Carbide EP&P Division.

## 2.3 PSA Hydrogen Unit & Recompression (Area 300) - cont'd

#### 2.3.1 Cont'd

The system uses 10 absorption vessels which are sequenced through adsorption, depressurization, purging, and repressurization steps. The process continously produces product and purge gas. It is purchased as a skid mounted unit and the control of the unit is fully automated. Drawing 5571-40301 presents a schematic of a Union Carbide Polybed PSA unit.

- 2.3.2 The purge gas is recompressed to 375 psia and sent to the methanation unit of the SNG plant.
- 2.4 Phenol Stream (Areas 800 and 900)

For a description of the Phenol Extraction (Area 800) and Cresylic Acid Distillation (Area 900) Units see Case 7 Section 2.1.

2.5 Naphtha Stream (Area 600 and 700)

For a description of the Naphtha Distillation and Hydrotreating Unit (Area 600) and the Aromatics Recovery Unit (Area 700) see Case 7 Section 2.2.



)

#### AMOCO/DOE GREAT PLAINS GASIFICATION PLANT JET FUEL FROM COAL DERIVED LIQUIDS

# 3.0 CAPITAL COSTS

# 3.1 Equipment List

#### CASE 4 - PROFITABLE JP-8

AREA 100	-	<u>HYDROTREATER</u>
TAG. NO.		DESCRIPTION
See Case 3	Area 100	
AREA 200	-	HYDROCRACKER
See Case 3	Area 200	
AREA 300	-	PSA HYDROGEN UNIT & RECOMPRESSION
FA-301		Purge Gas Surge Drum
GB-301		Purge Gas Compressor
PA-301		PSA Hydrogen Unit Package
AREA 400	-	STORAGE AREA
FB-401 FB-402 FB-403 FB-405 FB-406 FB-407 FB-409 FB-410 FB-411 FB-412 FB-413 FB-414		Jet Fuel Storage Tank Naphtha Storage Tank Fuel Oil Storage Tank Blending Stock Benzene Storage Toluene Storage Xylene Storage Gasoline Storage Neutral Oil Storage Phenol Product Storage Crude Cresylic Acid Storage O-Cresol Storage M, P Cresol Storage Xylenol Storage

#### 3.0 CAPITAL COSTS

# 3.1 Equipment List - cont'd

## CASE 4 - PROFITABLE JP-8

AREA 400 STORAGE AREA	
GA-401A/S GA-402A/S Crude Phenol Feed Pump GA-403A/S Fuel Oil Transfer Pump GA-404A/S Naphtha Transfer Pump GA-405A/S Crude Naphtha Transfer Pump GA-406A/S Blending Stock Pump GA-407A/S Benzene Transfer Pump GA-410A/S GA-411A/S GA-412A/S GA-413A/S Crude Cresylic Acid Transfer Pump GA-415A/S M, P. Cresol Transfer Pump GA-416A/S Xylenol Transfer Pump	mp
PA-401 Gasoline Blending Package	
AREA 500 - CATALYST HANDLING	

See Case 3 Area 500

AREA 600 - NAPHTHA DISTILL. AND HDT

See Case 7 Area 600

AREA 700 - AROMATICS RECOVERY

See Case 7 Area 700

AREA 800 - PHENOL EXTRACTION

See Case 7 Area 800

AREA 900 - CRESYLIC ACID DISTILLATION

See Case 7 Area 900

Ţ

)

#### 3.2 Cost Estimate

#### 3.2.1 Basis of Estimate

The estimate for this case is a factored type estimate using the T.I.C. values developed for the various cases referenced in this project.

The total investment costs are scaled to the capacity requirement of the case use a o.6 exponent.

In light of the preliminary data developed for this effort, a 20% contingency has been applied to the base costs for Areas 100 thru 700 and 30% for Areas 800 & 900.

Excluded from this estimate are:

Spare Parts
Start-Up
Insurances & Taxes
Permits
Royalties on Processing Technology Knowhow

#### 3.2.2 Estimate Summary

(Thousands of \$)

			Case 4
Area	100	Hydrotreater	\$20,702
		Hydrocracker	10,012
		PSA & Recompression	8,400
		OSBL	9,421
Area	500	Catalyst Handling	1,285
		Naph. Dist & HDT	4,615
Area			7,887
		Phenol Ext.	12,276
Area	900	Cresylic Acid Dist.	4.832
		Subtotal	\$79,430
Area	700	ARU Solvent Inventory	100
		Total	\$79,530

# 3.2.3 <u>Estimate Breakdown</u> (Area 100) All Values in Thousands \$

This unit has the same capacity as the 100 Area of Case 3. Therefore, T.I.C. = \$20,702.

#### Area 200

This unit has a 100% capacity of the 200 Area of Case 3. Therefore, T.I.C. = \$10,012.

#### 3.2.3 Estimate Breakdown - Cont'd

#### Area 300

This unit has a 102% capacity of the 300 Area of Case 3. Therefore T.I.C. =  $(1.02)^{0.0}$  (8300) = \$8400.

#### Area 400

Tar Oil Stream Storage 100% Case 1 TIC = \$5,110

Phenol Stream Storage = 100% Case 7 TIC = \$3,016

Naphtha Stream Storage 100% Case 7 TIC = \$3058 Subtotal \$11,184

#### Area 500

The capacity of this unit is identical to the 500 Area of Case 3. Therefore T.I.C. = \$1,285

#### Area 600

This unit has a capacity of 100% of the 600 Area of Case 7. Therefore T.I.C. = \$4,615

#### <u>Area 700</u>

This unit has a capacity of 100% of the 700 Area of Case 7. Therefore T.I.C. = \$7,887

#### Area 800

This unit has a capacity of 100% of the 800 Area of Case 7. Therefore T.I.C. = \$12,276

#### Area 900

This unit has a capacity of 100% of the 900 Area of Case 7. Therefore = T.I.C. = \$4,832

#### 4.0 OPERATING COSTS

# 4.1 Operating Labor

It is estimated that it will require men/shift to operate the plant broken down as follows:

Foreman	2	
Control Room	2	
HDT Operator	2	
HCR Operator	2	
PSA & relief man	1	
Naphtha Distil. & HDT	2	
ARU	2	
Phenol Ext.	1	
Cresylic Acid Dist.		
	15	Shift Positions

Maintenance will probably be provided from the existing SNG plant maintenance shop. It is likely that the existing maintenance department will be expanded by about 7 people.

The total additional people (assuming 6 & 2 operation for the process units) are as follows:

Shift Personnel	15 positions x 4 people/position	- 60 6
Supervisor & Admin.		2
QC Technician		7
Maintenance		í
Other (Stores or Janito	orial)	<del></del> -
Total		10

#### 4.2 Utilities

The following utilities have been estimated:

Utility	Consumption	Cost	\$/SD
#6 Fuel Oil SNG equivalent	4361 BPSD ' 3.73 MMSCFD	\$16/Bb} ^(a) \$3.80/MM Btu ^(b)	69776 13892
of Syn Gas & Pur Cooling Water Power Process Water	rge Gas 6050 GPM 6160 kW 24 GPM	\$0.155/MGal ^(c) \$0.04/kWH ^(c) \$0.45/MGal ^(c)	1350 5914 15

(a) Cut of 1% sulfur \$6 oil in Minnesota on 11/24/87 as per Platts Oilgram.

#### 4.2 Utilities - cont'd

- (b) Memo from D. Daley of Burns & Roe to L. Lorenzo of DOE dated Oct. 20, 1987, reference DPD-87-863.
- (c) ANG utility cost information dated 5/87.

#### 4.3 <u>Catalyst & Chemicals</u>

The catalyst and chemicals cost is as follows:

Catalyst & Chem.	Use	Cost	\$/\$D
Nap. HDT Cal	0.021 #/Bbl	\$3.00/#	33
HDT Cat.	0.30 #/Bbl	\$3.00/#	2864
HCR Cat. Inhibitors	0.0095 #/Bbl 50 PPM	\$6.00/# \$10/Gal	47 52
ARU Solvent	24 #/D	\$2.10/#	50 50
H ₂ SO ₄	7100 #/D	\$0.04/#	_285_
2 4	•	·	\$3331

#### 4.4 Maintenance Supplies

Maintenance supplies for hydrotreating operations typically cost between 1.5-2.0% of the installed cost per year. For a daily cost we would estimate the cost of maintenance supplies to be 0.005% of the total installed cost of the process units (excluding the ARU solvent inventory). On this basis the maintenance supplies would be  $0.00005 \times 79,430,000 = $3971/SD$ 

E-23

## 5.0 PLOT PLAN AND UNIT TIE-INS

#### 5.1 Plot Plan

The process units required for the production of JP-8 and by-product chemicals are proposed to be located to the east of the Phenosolvan Unit and Water Treatment Area of the existing gasification plant as indicated on the markup of the overall Process Area Plot Plan, LCI Dwg E7102-00010A. This area approx. 340' x 575' will be surrounded by an access road and will be divided by three central east-west roads. Areas 100 & 500 will be located to the north and Areas 200 & 300 south of Area 100, Areas 800 & 900 next and then Areas 600 & 700.

A diked storage tank area approx. 375' x 425' will be required for product and fuel oil storage and is proposed to be located to the south of the existing tankage area adjacent to the railcar loading spurs.

#### 5.2 Unit Tie-Ins

Approximately 2500 ft of new interconnecting pipe rack will be required to connect the new process area with the main yard rack of the gasification plant, the product storage area and flare.

New storm, oily water and sanitary sewer lines will be run from the new process units south to their respective collection systems.

A summary of the lines has not been prepared for this case but will be similar to a combination of Cases 3 and 7 with the utility lines of like services being combined.



E-25



CASE 4



Ţ



#### APPENDIX F

AMOCO/DOE

**GREAT PLAINS GASIFICATION PLANT** 

JET FUEL FROM COAL DERIVED LIQUIDS

CASE 5
PROFITABLE JP-8X PRODUCTION
SUBTASKS 1.2

LCI PROJECT 5571 DATE - JAN. 30, 1988

#### 1.0 CASE DESCRIPTION

The design basis for the Maximum JP-8X case was received from Amoco and is presented on the following pages.

For various reasons, the most significant being the time restraint, this case was not developed into a conceptual process design and estimated by Lummus.

Also, of significance in the decision was the importance of developing Case 7 - Maximum Profit and that the Amoco LP did not choose vacuum distillation for the Profitable JP-8X Case 6.

BY-PRODUCT GAS GAS TO FUEL OR METHRNATION TO REFORMER FEED STORAGE TO PLANT FUEL TO TREATING TO JP-BX STORAGE 285 B/D 3875 LB/HR 24545 LB/HR 4285 LB/HR 6345 LB/HR 605 LB/HR 1968 8/0 555 8/0 FIGURE 1 BLOCK FLOW DIAGRAM CASE 5: MAXIMUM JP-8X PRODUCTION (S) **(** (<u>0</u>) **©** (e) HYDROTREATER SEPARATION PRODUCT ONE ONE 2584 8/0  $\odot$ 37870 LB/HR CASE 5: 9750 LB/HR S98 B/D (C) DISTILLATION GREAT PLAINS JIS SCF/BBL 1785 LB/HR VACUUM 3182 B/D 47620 LB/HR TAR OIL FROM GAS/LIQUOR SEP. HYDROGEN FROM PSA F-3

ŧ

)

Mr. Kurt Torster September 22, 1987 Page 6

#### TABLE I

# TAR OIL PROPERTIES GREAT PLAINS CASE 5: MAXIMUM JP-8X PRODUCTION

Flow Rate, B/D	3,182±500
API	6.6
Elemental Analysis, Wt%:	
С	82.1
Н	8.6
N	0.9
S	0.4
0 (Difference)	8.0
Solids, Wt%	0.8±0.6
Ash, Wt%	0.1±0.08
Ramscarbon Residue, Wt%	2.0
Water, Wt%	2.0±1.0
Simulated Distillation*	
Temperature @ IBP, °F	225
5%	320
10%	352
20%	405
30%	454
50%	542
70%	656
80%	734
90%	845
95%	918
FBP	1018

^{*}D-2887 with aromatic standard

TABLE 11

STREAM FLUWS AND COMPOSITION CREAT PLAINS CASE 5: MAXIMUM JP-8X PRODUCTION

	Hydro- treater 550+*P		1	:	!	:	:	1	:	:	:	:	:	245				24,545 3,875 1,960 285
i	,																	
-	Reformer Feed		:	1	1	i	;	1	;	:	ł	•	6,345	. 1	;	ł	1	6,345
9	Hydrocarbon Gases	V	ָרָר : יי	8	145	185	20	8	20	:	;	:	:	:	:	:	ľ	605 60(F0E)
5	By-product Gases	;	1	!	1	:	:	;	:	091	340	3,785	ł	i	:	ł	ł	4,285
4	liydrogen	1785		ļ †	ł	;	:	:	:	!	:	•	:	:	1	ŀ	;	1,785
3	750+*F Tar 011	;	;	}	;	:	:	;	ł	:	ł	ł	ł	ł		1 ;	9,750	9,750 598
7	750-°F Tar 011	!	;		}	ł	:	:	!	;	1 5	006	:	: ;	סנס אנ	076.00	;	37,870 2,584
-	Ter 011	ţ	:	ţ	;	<b>;</b> ;	1 1	<b>;</b> ;	}	1 1	3	2 1	۱ ۱	66.670	1	<b>:</b>	}	47,620 3,182
Stream No.	Description Composition, Lb/Nr:	2°5	5	:ភ	75	<b>~</b>	* <u>`</u> ``	<del>د</del> ن	S. E.	- F	70	Reformer Food	JP-6X	Ter 011	750-°F TAF 011	Fuel 011		Total Flow, Lb/Hr B/D

PROPERTIES OF PRODUCTS FROM TAR OIL DISTILLATION
GREAT PLAINS CASE 5:
HAXIMM JP-6x PRODUCTION

Stream No.   2   3   3   5   5   5   5   5   5   5   5		750-°F Tar 011	750+°P Tar Oil
API 9.5 -4.7  Elemental Analysis, wtX:  C 81.3 85.3  H 8.7 8.1  N 0.7 1.4  S 0.4 0.4  O (Difference) 8.9 4.8  Solids, wtX 0 3.922.9  Ash, wtX 0 0.520.4  Ramscarbon Residue, wtX 0 10  Water, wtX 2.521.0 0  TBP Distillation, *F   IBP 272 557  5% 333 683  10% 363 714  20% 407 755  30% 445 785  50% 513 831  70% 587 859  80% 633 874  90% 690 890  95% 728 889	Stream No.	2	3
Elemental Analysis, wtX:  C 81.3 85.3  H 8.7 8.1  N 0.7 1.4  S 0.4 0.4  O (Difference) 8.9 4.8  Solids, wtX 0 3.922.9  Ash, wtX 0 0.520.4  Ramscarbon Residue, wtX 0 0.520.4  Ramscarbon Residue, wtX 2 0 0.520.4  TBP Distillation, *F  IBP 272 557  5X 333 683  10X 363 714  20X 407 755  30X 445 785  50X 513 831  70X 587 859  80X 633 874  90X 690 890  95X 728 899	Flow Rate, B/D	2,584	598
C 81.3 85.3 H 8.7 8.1 N 0.7 1.4 S 0.4 0.4 O (Difference) 8.9 4.8  Solids, wtx 0 3.922.9 Ash, wtx 0 0.520.4 Ramscarbon Residue, wtx 0 10 Water, wtx 2.521.0 0  TBP Distillation, *F  IBP 272 557 5% 333 683 10% 363 714 20% 407 755 30% 445 785 50% 50% 513 831 70% 587 859 80% 633 874 90% 690 890 95% 728 899	API	9.5	-4.7
H 8.7 8.1 N 0.7 1.4 S 0.4 0.4 O (Difference) 8.9 4.8  Solids, wt% 0 3.922.9 Ash, wt% 0 0.520.4 Remscarbon Residue, wt% 0 10 Water, wt% 2.521.0 0  TBP Distillation, *F   IBP 272 557 5% 333 683 10% 363 714 20% 407 755 30% 407 755 30% 445 785 50% 513 831 70% 587 859 80% 59% 690 890 95% 728 899	Elemental Analysis, wt%:		
N 0.7 1.4 S 0.4 0.4 O (Difference) 8.9 4.8  Solids, wt% 0 3.922.9 Ash, wt% 0 0.520.4 Ramscarbon Residue, wt% 0 10 Water, wt% 2.521.0 0  TBP Distillation, *F  IBP 272 557 5% 333 683 10% 363 714 20% 407 755 30% 407 755 30% 445 785 50% 513 831 70% 587 859 80% 633 874 90% 690 890 95% 728 899	C	81.3	85.3
N 0.7 1.4 S 0.4 0.4 0.4 0.4 0 (Difference) 8.9 4.8 Solids, wt% 0 3.9±2.9 Ash, wt% 0 0.5±0.4 Ramscarbon Residue, wt% 0 10 Water, wt% 2.5±1.0 0 TBP Distillation, °F  IBP 272 557 5% 333 683 714 20% 363 714 20% 407 755 30% 407 755 30% 445 785 50% 50% 513 831 70% 587 859 80% 50% 633 874 90% 690 890 95% 728 899	H	8.7	
S		0.7	
O (Difference) 8.9 4.8  Solids, wt% 0 3.922.9 Ash, wt% 0 0.520.4  Ramscarbon Residue, wt% 0 10 Water, wt% 2.521.0 0  TBP Distillation, °F  IBP 272 557 5% 333 683 10% 363 714 20% 407 755 30% 445 785 50% 513 831 70% 587 859 80% 633 874 90% 690 890 95% 728 899	S	0.4	
Ash, wtX Ramscarbon Residue, wtX 0 Vater, wtX 2.5±1.0  TBP Distillation, *F   IBP 272 557 5X 333 683 10X 363 714 20X 407 755 30X 445 785 50X 513 831 70X 587 859 80X 633 874 90X 690 890 95X 728 899	O (Difference)	8.9	
Ramscarbon Residue, wt% 2.5±1.0 10 Water, wt% 2.5±1.0 0  TBP Distillation, *F  IBP 272 557 5% 333 683 10% 363 714 20% 407 755 30% 445 785 50% 513 831 70% 587 859 80% 633 874 90% 690 890 95% 728 899		0	3.922.9
Ramscarbon Residue, wt% 2.5±1.0 0  Water, wt% 2.5±1.0 0  TBP Distillation, *F  IBP 272 557 5% 333 683 10% 363 714 20% 407 755 30% 445 785 50% 513 831 70% 587 859 80% 633 874 90% 690 890 95% 728 899	Ash, wt%	0	0.520.4
TBP Distillation, °F         IBP       272       557         5X       333       683         10X       363       714         20X       407       755         30X       445       785         50X       513       831         70X       587       859         80X       633       874         90X       690       890         95X       728       899	Ramscarbon Residue, wt%	0	
IBP       272       557         5X       333       683         10X       363       714         20X       407       755         30X       445       785         50X       513       831         70X       587       859         80X       633       874         90X       690       890         95X       728       899	Water, wt%	2.5±1.0	_
5Z 333 683 10Z 363 714 20Z 407 755 30Z 445 785 50Z 513 831 70Z 587 859 80Z 633 874 90Z 690 890 95Z 728 899	TBP Distillation, *F		
5%     333     683       10%     363     714       20%     407     755       30%     445     785       50%     513     831       70%     587     859       80%     633     874       90%     690     890       95%     728     899	IBP	272	557
20%       407       755         30%       445       785         50%       513       831         70%       587       859         80%       633       874         90%       690       890         95%       728       899	5%	333	683
20X       407       755         30X       445       785         50X       513       831         70X       587       859         80X       633       874         90X       690       890         95X       728       899	10%	363	714
30% 445 785 50% 513 831 70% 587 859 80% 633 874 90% 690 890 95% 728 899	20%	407	
50%       513       831         70%       587       859         80%       633       874         90%       690       890         95%       728       899	30%	445	
70% 587 859 80% 633 874 90% 690 890 95% 728 899	50%	513	
80Z 633 874 90Z 690 890 95Z 728 899	70%	587	- <del>-</del> -
90% 690 890 95% 728 899	80%	633	
95% 728 899	90%	690	
	95%		
	FBP		925

TABLE IV

HYDROTREATER PRODUCT PROPERTIES

GREAT PLAINS CASE 5

MAXIMUM JP-8X PRODUCTION

	Reformer Feed	JP-8X	550+°F
Stream No.	7	8	9
Flow Rate, B/D	555	1,960	285
API	50	33	21
Composition, Vol%:			
Paraffins	14	9	20
Naphthenes	70	72	65
Aromatics	16	19	15
Octane: Research	72	<b>~</b>	
Motor	68		
RVP, psi	3		
V/L = 20, °F	195		
ASTM D-86 IBP, °F	165	273	439
5%	180	343	490
10%	194	353	501
30%	232	380	529
50%	254	404	554
70 <b>%</b>	273	433	617
90%	307	476	706
95 <b>%</b>	325	495	732
FBP	392	596	767

#### TABLE V

# HYDROTREATER OPERATING CONDITIONS AND UTILITIES GREAT PLAINS CASE 5 MAXIMUM JP-8X PRODUCTION

Opera	ting	Cond1	tions

Reactor Type Catalyst Feed Rate, B/D	Ebullated Bed NiW 3,200
Reactor Temperature, *F	700
Recycle Gas Rate, SCF/Bbl	6,000
Catalyst Replacement Rate, Lb/Bbl	0.18 (Approx. \$6/Lb)
Estimated Utilities	
Fuel, MMBtu/Hr Power, KW Steam, MLb/Hr: 600 psig 100 psig Cooling Water, GPM Process Water, GPM	0 2,600 (650) 250 580 150

#### APPENDIX G

AMOCO/DOE

**GREAT PLAINS GASIFICATION PLANT** 

JET FUEL FROM COAL DERIVED LIQUIDS

CASE 6
PROFITABLE JP-8X PRODUCTION
SUBTASKS 1.2 & 1.3
PROCESS DESIGN AND COST ESTIMATE

LCI PROJECT 5571 DATE - JAN. 30, 1988

#### TABLE OF CONTENTS

- 1.0 CASE DESCRIPTION
  - 1.1 Overall Process Description

  - 1.2 Overall Material Balance
    1.3 Overall Utility Balance
- 2.0 PROCESS DESCRIPTION
- 3.0 CAPITAL COSTS
  - 3.1 Equipment Lists 3.2 Cost Estimates
- 4.0 OPERATING COSTS
  - 4.1 Operating Labor

  - 4.2 Utilities
    4.3 Catalysts & Chemicals
    4.4 Maintenance & Operating Supplies
- 5.0 PLOT PLAN & TIE INS

#### 1.0 CASE DESCRIPTION

#### 1.1 Overall Process Description

The purpose of this case is to produce JP-8X type aviation turbine fuel and chemical byproducts to maximize profit from Great Plains liquid by products. Figure 1 presents a block diagram for the process and referring to Figure 1 the flow is as follows:

- A portion of the Tar Oil byproduct stream (40604 #/hr, 2713 BPSD) and the Neutral Oil stream produced in the Phenol Processing (4936 #/hr, 312 BPSD) is charged to the hydrotreater (Area 100).
- The hydrotreater is a 3 stage expanded bed type process which removes 99% + of the sulfur, nitrogen, and oxygen compounds and begins the conversion of 550°F+ material. The hydrotreater adds a large quantity of hydrogen to the feed (3618 SCF/bbl) which results in a high heat of reaction. An expanded bed type reactor was chosen to both control and utilize the heat of reaction. Three stages were used to both control the temperature rise as well as to obtain the high efficiency associated with staging a back-mixed reactor.
  - The hydrotreater produces 6 streams:
    - High pressure purge gas (approximately 90% hydrogen)
      which is sent to the Rectisol Unit in the SNG plant for
      recovery of the H₂ and CH₄.
    - Low pressure fuel gas (75 psig) which is sent to the main boiler in the SNG plant.
    - Unstabilized naphtha which is sent to the naphtha stabilizer. After stabilization, to control vapor pressure, the naphtha is sent to storage and gasoline blending.
    - JP-8X turbine fuel which is sent to storage.
    - 550⁰F+ unconverted bottoms product which is sent storage and fuel.
    - Wastewater containing, NH4OH and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.

- Approximately 900 #/day of spent catalyst which is shipped to a catalyst reclaimer in the same drums that the catalyst is received in.
- Hydrogen make-up for both the Hydrotreater (Area 100) and the Naphtha Hydrotreater (Area 600) is supplied from a PSA Hydrogen Unit (Area 300). High pressure (355 psig) synthesis gas from the Rectisol Unit (which contains about 63% hydrogen) is charged to the PSA unit which recovers 86% of the contained hydrogen as a high pressure 99.99% purity hydrogen gas product. The remaining purge gas is available a low pressure (5 psig) which has a fuel value of about 565 BTU/ft. This H₂, CO & CH₄ rich gas is recompressed into the methanation unit of the SNG plant.
- The crude naphtha byproduct stream (8738#/hr, 725 BPSD) is charged to the distillation and hydrotreating unit (Area 600).
  - The distillation removes the material boiling below 160°F, which is sent to the SNG Plant fuel pool, and produces a bottoms product which is charged to the hydrotreater.
  - The fixed bed hydrotreater is a single bed reactor which removes 99% + of the sulfur, nitrogen, and oxygen compounds. Hydrogen is added to the feed at the rate of 430 SCF/bbl.
- The naphtha hydrotreater produces 4 streams:
  - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit in the SNG plant for recovery of the  $\rm H_2$  and  $\rm CH_4$ .
  - Naphtha which is stabilized to control vapor pressure, and the sent to the aromatics recovery unit (Area 700).
  - A low pressure off gas which is sent to the Stretford unit in the SNG plant.
  - Wastewater containing, NH4OH and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.

The hydrotreated naphtha is charged to the extraction section of the Aromatics Recovery Unit (Area 700) where it is contacted with a solvent to extract the aromatic components from the stream. The raffinate is sent to storage and gasoline blending while the solvent is recovered from the aromatic extract. The aromatic extract is then sent to fractionation to produce the BTX products.

1000 AND 1500 1803

#### 1.1 Overall Process Description - cont'd

- . Five streams are produced in the ARU plant.
  - A hydrocarbon gasoline blending stock which is sent to storage and gasoline blending.
  - A small process water stream which is sent to the waste treatment plant in the SNG Plant.
  - Three product streams Benzene, Toluene & Xylene which are sent to storage.
- The crude phenol byproduct stream (14490 #/hr, 936 BPSD), is feed to the dual solvent phenol extraction unit (Area 800).
- Distillation removes approx. 85% of the phenol which is further distilled to remove light ends and then reflashed over sulfuric acid producing a 99.8% pure product.
- The remainder of the stream (a cresylic acid mixture) is flash distilled over a 3 wt.% concentrated sulfuric acid mixture to remove pyridine type substances.
- The acid tar produced is water washed and mixed with light oil and sent to fuel.
- . The remaining cresol/xylenol mixture is double solvent extracted to remove neutral hydrocarbons. The resulting crude cresylic acid is dried and sent either to storage or distillation (Area 900).
- . Streams produced in the phenol extraction unit are:
  - Phenol product sent to storage
  - Crude Cresylic Acid sent to distillation (Area 900) or storage.
  - Wash Water sent to Water Treatment in the SNG Plant.
  - Waste Water sent to the Phenosolvan unit in the SNG Plant.
  - Neutral Oil sent to storage and fuel for the SNG Plant boilers.
- The Crude Cresylic Acid is progressively distilled (Area 900) to separate the cresols and xylenols. No attempt has been made to remove the guaiacol from the product streams.

#### 1.1 Overall Process Description - cont'd

- Streams produced in the crude cresylic acid distallation unit are:
  - o-Cresol product which is sent to storage.
  - m,p-Cresol product which is sent to storage.
  - Xylenol product which is sent to storage.
  - A heavy distillate which is combined with neutral oil in Area 800.
  - A crude phenol stream which is recycled to the Area 800.
  - A small water stream which is sent to Area 800 for tar acid washing.

#### 1.2 Overall Material Balance

The overall material balance is presented in Table 1.1 which presents overall material balances for the major process units. The balance was computed on the basis that the fuel value of the feed will be replaced by fuel gas 160°F-distillate, and 550°F heavy oil produced in the process and the difference made up by the purchase of #6 Fuel Oil.

The overall balance is as follows:

#### Feeds

936 BPSD of Crude Phenol

725 BPSD of Crude Naphtha

2713 BPSD of Tar Oil

3312 BPSD of #6 Fuel Oil

8.72 MMSCFD equivalent SNG product loss due to the syn gas feed to the PSA unit.

#### **Products**

1938 BPSD of JP-8X turbine fuel
 522 BPSD of 300°F - Naphtha for gasoline blending

317 BPSD of Phenol

56 BPSD of o-Cresol

131 BPSD of m.p-Cresol

75 BPSD of Xylenols 844 BPSD of 550°F+ for Fuel 202 BPSD of 160°F - Distillate for Fuel

#### 1.2 Overall Material Balance - cont'd

# **Products**

- 46 BPSD of Gasoline Blending Stock 315 BPSD of Benzene

- 112 BPSD of Toluene
  15 BPSD of Xylene
  5.60 MMSCFD equivalent SNG product credit due to HDT, & PSA purge gas reinjection into SNG plant.

### 1.3 Overall Utility Balance

The overall utility consumption of the complex is as follows:

#6 Fuel Oil	3312 BPSD
SNG Equivalent	
of Syn Gas & Purge Gas	3.12 MM SCFD
Power	4810 kW
Cooling Water	5250 GPM (30 ⁰ F rise)
Process Water	24 GPM `

In addition the process utilizes steam as summarized below which was debited against boiler requirements.

HP Steam Import	58,200 #/H
MP Steam Import	9,300 #/H
LP Steam Export	7,050 #/H
Condensate Return	67,500 #/H

Stock M.P. Cresol Blending 0-Cresol Naphtha Gasoline Benzene Xylenols Jet Fuel Cresylic Toluene To Fuel Phenoi Xylene Crude JP-8X Acids 522 BPSD 1046 BPSD 1938 BPSD 15 BPSD 75 BPSD Aromatics Recovery 488 BPSD 112 BPSD S6 BPSD 46 BPSD 315 BPSD 317 BPSD NNF(166 BPSD Design) 131 BPSD 46 BPSD 62 #/hr H2 Phenoi Fuel Gas 195 #/hr Cresylia Distillation Acid Hydrotreat 21783 #/hr Purge Gas 844 BPSD Heavies 31 BPSD Furge Gos 22 #/hr Crude Cresylic Acids 300-550 of 271 BPSD Phenol 2715 #/hr H2 300 oF-550 of+ 323 BPSD Hydrotreat Fuel Gas 982 Water 45 BPSD 202 BPSD 160 oF+ Extraction Purge Gos 105 Distil-lation #/hr Phenoi PSA 160 oF-Neutral Oil 281 BPSD 2650 #/hr H2 Syn Gas 24492 #/hr of Propositio 725 BPSD GP Phenois 936 BPSD GP Tar Oll 2713 BPSD G-8

UP-WX

Profitable

9

Case

Figure

Tuble 1.1 Great Plains Case 6: Profitable JPBX Production

			*********		
Tar Oil Feed====>	40604	#/hr	2713	BPSD	
Fhenol Feed====>>	14490	#/hr	936	BPSD	
Crd Naphtha Feed=>	8738	#/hr	725	BPSD	
Naphtha Product==>	5665	#/hr	522	BPSD	
JP8X Product====>	24318	#/hr	1938	BPSD	
Phenol Product===>	4925	#/hr	317	BPSD	
o-Cresol Prod====>	845	#/hr	56	BPSD	
m.p-Cresol Prod==>	1974	#/hr	131	BPSD	
Xylenols Prod====>	1070	#/hr	75	BPSD	
Gasoline Stock===>	481	#/hr	46	BPSD	
Benzene Prod=====>	4060	#/hr	315	BPSD	
Toluene Prod=====>	1425	#/hr	112	BPSD	
Xylene Prod=====>	188	#/hr	15	BPSD	
SNG Product Loss=>	5353	#/hr	3.1	MMSCFD	
Fuel Oil Makeup==>	45852	#/hr	3312	BPSD	

# Expanded Bed Hydrotreater

Comp.			#/hr	#Mole/hr	BFSD
Oil Feeds					
Tar Oil	89.16	1.0268	40604		2713
Neut. Oil			4445		281
Heavies		_			31
Tot. Oil	100.00		45540		3025
H2	5.82		2650	1314.5	
Total	105.82		48190		
Products					
Furge Gas	0.23		105	32.6	
Fuel Gas			982	48.4	
Naphtha		0.7600	5781		522
JF-8X		0.8608			1938
550 oF+					844
H2O in SW		-	4082	226.8	
H2S in SW			197	5.8	
NH3 in SW				28.5	
Total	105.82		48190		3304

#### Naphtha Stabilizer

-------Comp. Wt % Grav #/hr #Mole/hr BPSD HDT Nap 100.00 0.7600 5781 522 Stab Nap 98.00 0.7450 5665 522 Fuel Gas 2.00 116 2.7

		CO	CC2	CH4	C2H6	N2+Ar	Total
Mol %							
Feed Gas Frod. H2	116.28 100.00	34.26 0.01	2.72	29.84	0.58	0.35	184.03
Furge Gas	16.28	34.25	2.72	29.84	0.58	0.35	84.02
Wt %						•	
Feed Gas	116.28			237.46			-
frod. H2 Furge Gas	100.00 16.28	0.12 475.83	0.00 59.44	0.00 237.46			
rurge Gas	10.28	4/3.83	27.44	22/.46	8.63	5.55	803.19
#Mol/hr	15/4 7	470.0	- • / /	154 0	7.0		2175
Feed Gas Frod. H2	1564.3 1345.3	460.9 0.1	76.6 0.0	401.4		4.7 0.0	2475.7 1345.4
Furge Gas	219.0	460.8	36.6	401.4	7.8	4.7	1130.3
#/br							
	3154	12908	1612	6440	234	151	24498
Frod. H2	2712	3	0	Ŏ, t t ō		0	2715
Purge Gas	442	12905	1612	6440	234	151	217 <b>9</b> 3
Crude Naph	<b>.</b> h. s.						
Distillati	on	Wt %	Gravity	#/hr	ÐF:SD		
Feed Napht		100.00	0.8269	8738	725		
Frod 150 o	F-	24.77	0.7350	2164	202		
Frod 160 o	F+		0.8627	6574			
Naphtha Hv							
Componen		= Wt %	Grav	#/hr	#Mole/hr	BPSD	
Feed 160 o	 F+	100.00	0.8627	6574		523	
Feed Hydro	gen	0.94	0.20027	62	30.8	020	
Feed Total Freducts		100.94		6636		523	
Furge Gas		0.33		22	6.8		
Fuel Gas		2.97		195	10.8		
HDT Naphth	a	93.61	0.8650	6154		488	

129

116

20

488

6636

1.96

1.76

0.30

100.94

H2O in SW

Total Froducts

H2S in SW

NH3 in SW

Aroma	tics	Recovery
-------	------	----------

Component	Wt %	Grav	#/hr	BPSD
Feed HDT Naphtha Products	100.00	0.8650	6154	488
Raffinate	7.82	0.7175	481	46
Benzene	65.97	0.8844	4060	315
Toluene	23.16	0.8718	1425	112
λ∨len <b>e</b>	3.05	0.8729	188	15
Total Products	100		6154	488

# Phenol Extraction

***********				
Component	Wt %	#/hr	Grav	BPSD
Feeds				
Crude Phenol	100.00	14490	1.0621	936
Sulfuric Acid	1.97	285	1.8300	11
Total Feed	101.97	14775		947
Products				
Cr. Cresylic Acid	35.13	5090	1.0290	339
Phenol	29.09	4215	1.0661	271
Neutral Oil	30.68	4445	1.0860	281
Acidic Waste Water	7.07	1025	1.2558	56
Total Products	101.97	14775		947

# Cresylic Acid Distillation

Component	Wt %	#/hr	Grav	BPSD
Cr. Cresylic Acid Products	100.00	5090	1.0290	339
Phenol	13.95	710	1.0661	46
o-Cresol	16.60	845	1.0350	56
m.p-Cresol	38.78	1974	1.0340	131
Xvlenols	21.02	1070	0.9750	75
Heavies	9.65	491	1.0800	31
Total	100.00	5090		339

Fuel Gas Generated in Hydrotreating and Hydrocracking

Component	#/hr	#Mol/hr	MMBTU/hr	
HDTR FG Produced	982	48.4	17.7	
Stabilizer FG	116	2.7	2.1	
Naphtha Hdtr FG	195	10.8	3 <b>.5</b>	
Total Fuel Gas	1098	51.1	19.8	

# Furge Gas Generated in FSA Hydrogen Unit

Component	#/hr	#Mol/hr	BTU/ft3	MMBTU/hr
H2	442	219.0	324	26.9
CO	12905	460.8	321	56.1
C02	1612	36.6	0	0.0
Ci	6440	401.4	1010	153.7
C2	234	7.8	1769	5.2
N2+Ar	151	4.7	0	0.0
Total	21783	1130.3	565	241.8
I O CAI	21/03	1100.0	200	271.0

# Net Changes in Boiler Fuel Fired

公司公司 化氯苯基甲基苯基甲基苯基甲基甲基甲基甲基甲基甲基甲基甲甲基甲甲甲甲甲甲甲甲甲甲甲							
Fuel	#/hr	BTU/#	MMBTU/hr	MMSCFD	BTU/ft3	BPSD	
Tar Oil	-40604	17000	-690.3			-2713	
Crude Phenol	-14490	13070	-189.4			-936	
Crude Naphtha	-8738	18500	-161.7			~725	
Fuel Gas	1098	18000	19.8	0.5	1020		
160 oF- distillate	2164	17400	37.7			202	
550 oF+Hvy Oil	12240	18000	220.3			844	
Import Steam	-60450	1000	-60.5				
Fuel Oil to Boiler	45779	18000	824.0			3307	
Total	-63001		0.0	0.5		-21	
Fuel Oil to Process Heaters	73	18000	1.3			5	

	EQV SNG	FSA/Furge Gas
Net Changes in SNG Production	MMSCFD	#Mol/SD
SNG equivalent of Syn Gas to PSA	8.72	59416
SNG Credit for PSA Purge gas	5.46	27127
SNG Credit for Hdtrs purge gas	0.14	947
Total SNG Production Loss	3.12	

#### 2.0 PROCESS DESCRIPTION

#### 2.1 <u>Hydrotreater</u> (Area 100)

For a description of the Hydrotreater process see Case 3 Section 2.1.

#### 2.2 PSA Hydrogen Unit & Recompression (Area 300)

Pressure Temp.

2.2.1 Hydrogen for both hydrotreaters will be supplied by a PSA hydrogen unit. The feed gas will come from the Rectisol Unit in the SNG plant (Stream ID-GF 1401) which has the following properties:

Composition	mo1%	
H2	63.19	)
CO	18.61	
CO2	1.48	
CH4	16.21	
C2H6	0.31	
COS, H2S, CS2	< 0.01	
N2 + Ar	0.19	,
H20	< 0.01	

355_opsig 65 F

The PSA unit selectively absorbs all components expect H2 and produces a 99.99% vol. purity stream at about 345 psig and 80°F. The other components are available as a purge gas having the following properties.

Pressure	5 psiq
Temperature	5 psig 100 ⁰ F
Composition	Mole %
H2 .	19.32
CO	40.76
CO2	3.24
CH4	35.51
C2H6	0.69
N2+Ar	0.41
Others	0.06

At the conditions given a 8 bed PSA unit will recover 86% of the hydrogen in the feed according to the manufacturer, Union Carbide EP&P Division.

## 2.3 PSA Hydrogen Unit & Recompression (Area 300) - cont'd

#### 2.3.1 Cont'd

The system uses 8 absorption vessels which are sequenced through adsorption, depressurization, purging, and repressurization steps. The process continously produces product and purge gas. It is purchased as a skid mounted unit and the control of the unit is fully automated. Drawing 5571-60301 presents a schematic of a Union Carbide Polybed PSA unit.

- 2.3.2 The purge gas is recompressed to 375 psia and sent to the methanation unit of the SNG plant.
- 2.4 Phenol Stream (Area 800 and 900)

For a description of the Phenol Extraction (Area 800) and Cresylic Acid Distillation Units see Case 7 Section 2.1.

2.5 Naphtha Stream (Area 600 and 700)

For a description of the Naphtha Distillation and Hydrotreating Unit (Area 600) and the Aromatics Recovery Unit (Area 700) see Case 7 Section 2.2.



## AMOCO/DOE GREAT PLAINS GASIFICATION PLANT JET FUEL FROM COAL DERIVED LIQUIDS

## 3.0 CAPITAL COSTS

## 3.1 Equipment List

## CASE 6 - PROFITABLE JP-8X

AREA 100 -	HYDROTREATER
TAG. NO.	DESCRIPTION
See Case 3 Area 100	
<u>AREA 300</u> -	PSA HYDROGEN UNIT & RECOMPRESSION
FA-301	Purge Gas Surge Drum
GB-301	Purge Gas Compressor
PA-301	PSA Hydrogen Unit Package
<u>AREA 400</u> -	STORAGE AREA
FB-401 FB-402 FB-403 FB-404 FB-405 FB-406 FB-407 FB-409 FB-411 FB-412 FB-413 FB-414	Jet Fuel Storage Tank Naphtha Storage Tank Fuel Oil Storage Tank Blending Stock Benzene Storage Toluene Storage Xylene Storage Gasoline Storage Phenol Product Storage Crude Cresylic Acid Storage O-Cresol Storage M, P Cresol Storage Xylenol Storage

## 3.0 CAPITAL COSTS

## 3.1 Equipment List - cont'd

# CASE 6 - PROFITABLE JP-8X

TAG NO.		DESCRIPTION
AREA 400		STORAGE AREA
GA-401A/S GA-402A/S GA-403A/S GA-404A/S GA-405A/S GA-406A/S GA-407A/S GA-409A/S GA-411A/S GA-413A/S GA-415A/S GA-415A/S GA-416A/S		Tar/Tar Oil Feed Pump Crude Phenol Feed Pump Fuel Oil Transfer Pump Naphtha Transfer Pump Crude Naphtha Transfer Pump Blending Stock Pump Benzene Transfer Pump Toluene Transfer Pump Xylene Transfer Pump Gasoline Transfer Pump Crude Cresylic Acid Transfer Pump O-Cresol Transfer Pump M, P. Cresol Transfer Pump Xylenol Transfer Pump Gasoline Blending Package
AREA 500	-	CATALYST HANDLING

See Case 3 Area 500

AREA 600 - NAPHTHA DISTILL. AND HDT

See Case 7 Area 600

AREA 700 - AROMATICS RECOVERY

See Case 7 Area 700

AREA 800 - PHENOL EXTRACTION

See Case 7 Area 800

AREA 900 - CRESYLIC ACID DISTILLATION

See Case 7 Area 900

## 3.2 Cost Estimate

#### 3.2.1 Basis of Estimate

The estimate for this case is a factored type estimate using the T.I.C. values developed for the various cases referenced in this project.

The total investment costs are scaled to the capacity requirement of the case use a 0.6 exponent.

In light of the preliminary data developed for this effort, a 20% contingency has been applied to the base costs for Areas 100 thru 700 and 30% for Areas 800 & 900.

Excluded from this estimate are:

Spare Parts
Start-Up
Insurances & Taxes
Permits
Royalties on Processing Technology Knowhow

## 3.2.2 <u>Estimate Summary</u>

(Thousands of \$)

			<u>Case 6</u>
Area	100	Hydrotreater	\$20,702
Area	300	PSA & Recompression	6,760
Area	400	OSBL	8,511
Area	500	Catalyst Handling	1,285
Area	600	Naph. Dist & HDT	4,615
Area			9,373
Area	800	Phenol Ext.	12,276
Area	900	Cresylic Acid Dist.	4,832
		Subtotal	\$68,354
Area	700	ARU Solvent Inv.	100
		Total	\$68,454

## 3.2.3 Estimate Breakdown (Area 100) All Values in Thousands

This unit has the same capacity as the 100 Area of Case 3. Therefore, T.I.C. = \$20,702.

## 3.2.3 <u>Estimate Breakdown</u> - Cont'd

#### Area 300

This unit has a 71% capacity of the 300 Area of Case 3. Therefore T.I.C. = (0.71) (8300) = \$6760.

#### Area 400

Tar Oil Stream Storage 75% Case 1 TIC = (0.75) (5 m) = \$4200

Phenol Stream Storage = 100% Case 7 TIC = \$3,016

Naphtha Stream Storage 100% Case 7 TIC = \$3058

Subtotal \$10,274

Less Duplicate Pipe & Rack  $\frac{-1763}{\text{Total}}$  = \$8,511

#### Area 500

The capacity of this unit is identical to the 500 Area of Case 3. Therefore T.I.C. = \$1,285

#### Area 600

This unit has a capacity of 100% of the 600 Area of Case 7. Therefore T.I.C. = \$4,615

#### Area 700

This unit has a capacity of 100% of the 700 Area of Case 7. Therefore T.I.C. = \$9,373

#### Area 800

This unit has a capacity of 100% of the 800 Area of Case 7. Therefore T.I.C. = \$12,276

#### Area 900

This unit has a capacity of 100% of the 900 Area of Case 7. Therefore = T.I.C. = \$4,852

t

#### 4.0 OPERATING COSTS

#### 4.1 Operating Labor

It is estimated that it will require men/shift to operate the plant broken down as follows:

Foreman	2	
Control Room	2	
HDT Operator	2	
PSA & relief man	1	
Naphtha Distil. & HDT	2	
ARÜ	2	
Phenol Ext.	1	
Cresylic Acid Dist.	1_	
•	13	Shift Positions

Maintenance will probably be provided from the existing SNG plant maintenance shop. It is likely that the existing maintenance department will be expanded by about 7 people.

The total additional people (assuming 6 & 2 operation for the process units) are as follows:

Shift Personnel	13 positions x 4 people/position	- 52
Supervisor & Admin.		6
QC Technician		2
Maintenance		7
Other (Stores or Janitor	·ial)	_1_
Total	·	68

#### 4.2 Utilities

The following utilities have been estimated:

<u>Utility</u>	<u>Consumption</u>	<u>Cost</u>	\$/SD
SNG equivalent		\$16/Bbl ^(a) \$3.80/MM Btu ^(b)	52992 11619
of Syn Gas & Pui Cooling Water	rge Gas 5250 GPM	\$0.155/MGal(c)	1172
Power	4810 kW	\$0.155/MGal ^(c) \$0.04/kWH ^(c) \$0.45/MGal ^(c)	4618
Process Water	24 GPM	\$0.45/MGa1 (C)	15

(a) Cut of 1% sulfur \$6 oil in Minnesota on 11/24/87 as per Platts Oilgram.

#### 4.2 Utilities - cont'd

- (b) Memo from D. Daley of Burns & Roe to L. Lorenzo of DOE dated Oct. 20, 1987, reference DPD-87-863.
- (c) ANG utility cost information dated 5/87.

#### 4.3 Catalyst & Chemicals

The catalyst and chemicals cost is as follows:

Catalyst & Chem.	Use	<u>Cost</u>	\$/SD
Nap. HDT Cal	0.021 #/Bbl	\$3.00/#	33
HDT Cat.	0.30 #/Bb1	\$3.00/#	2720
Inhibitors	50 PPM	\$10/Gal	52
ARU Solvent	18 #/D	\$2.10/#	50
H2SO4	7100	\$0.04/#	285
2 4			\$3140

#### 4.4 Maintenance Supplies

Maintenance supplies for hydrotreating operations typically cost between 1.5-2.0% of the installed cost per year. For a daily cost we would estimate the cost of maintenance supplies to be 0.005% of the total installed cost of the process units. On this basis the maintenance supplies would be  $0.00005 \times 68,354,000 = \$3418/SD$ 

## 5.0 PLOT PLAN AND UNIT TIE-INS

#### 5.1 Plot Plan

The process units required for the production of JP-8X and by-product chemicals are proposed to be located to the east of the Phenosolvan Unit and Water Treatment Area of the existing gasification plant as indicated on the markup of the overall Process Area Plot Plan, LCI Dwg E7102-00010A. This area approx. 340' x 390' will be surrounded by an access road and will be divided by two central east-west roads. Areas 100, 300 & 500 will be located to the north, Areas 800 & 900 next and then Areas 600 & 700.

A diked storage tank area approx. 375' x 325' will be required for product and fuel oil storage and is proposed to be located to the south of the existing tankage area adjacent to the railcar loading spurs.

#### 5.2 Unit Tie-Ins

Approximately 2500 ft of new interconnecting pipe rack will be required to connect the new process area with the main yard rack of the gasification plant, the product storage area and flare.

New storm, oily water and sanitary sewer lines will be run from the new process units south to their respective collection systems.

A summary of the lines has not been prepared for this case but will be similar to a combination of Cases 3 and 7 with the utility lines of like services being combined.



G-23

t





G-24



#### APPENDIX H

AMOCO/DOE

GREAT PLAINS GASIFICATION PLANT

JET FUEL FROM COAL DERIVED LIQUIDS

CASE 7
MAXIMUM PROFIT
SUBTASK 1.2
PROCESS DESIGN AND COST ESTIMATE

LCI PROJECT 5571 DATE JAN 30, 1988

## TABLE OF CONTENTS

## 1.0 CASE DESCRIPTION

- 1.1 Overall Process Description
- 1.2 Overall Material Balance 1.3 Overall Utility Balance

## 2.0 PROCESS DESCRIPTION

- 2.1 Phenol Stream
  - 2.1.1 Phenol Extraction
  - 2.1.2 Cresylic Acid Distillation
- 2.2 Naphtha Stream
  - 2.2.1 Naphtha Distillation & Hydrotreating
  - 2.2.2 Aromatics Recovery
  - 2.2.3 PSA Hydrogen Unit

## 3.0 CAPITAL COSTS

- 3.1 Phenol Stream
  - 3.1.1 Equipment List
  - 3.1.2 Cost Estimate
- 3.2 Naphtha Stream
  - 3.2.1 **Equipment List**
  - 3.2.2 Cost Estimate

## 4.0 OPERATING COSTS

- 4.1 Phenol Stream
  - 4.1.1 Operating Labor
  - 4.1.2 Utilities
  - 4.1.3 Catalysts & Chemicals
  - 4.1.4 Maintenance & Operating Supplies

## 4.2 Naphtha Stream

- 4.2.1 Operating Labor
- 4.2.1 Utilities
- 4.2.3 Catalysts & Chemicals
- 4.2.4 Maintenance & Operating Supplies

# 5.0 PLOT PLAN & TIE INS

Appendix A - Preliminary Material Blanace for Phenol Extraction and Cresylic Acid Distillation

Appendix B - Computer Simulation Naphtha Distillation and Hydrotreater

#### 1.0 CASE DESCRIPTION

#### 1.1 Overall Process Description

The purpose of this case is to maximize the profit from the processing of Great Plains liquid by products. Figure 1 presents a block diagram for the process and referring to Figure 1 the flow is as follows:

- . Two by product streams are processed.
  - Phenol 14490 #/hr (936 BPSD)
  - Naphtha 8738 #/hr (725 BPSD)
- . The crude naphtha byproduct stream (8738#/hr, 725 BPSD) is charged to the distillation and hydrotreating unit (Area 600).
- . The distillation removes the material boiling below 160°F, which is sent to the SNG Plant fuel pool, and produces a bottoms product which is charged to the hydrotreater.
- The fixed bed hydrotreater is a single bed reactor which removes 99% + of the sulfur, nitrogen, and oxygen compounds. Hydrogen is added to the feed at the rate of 430 SCF/bbl.
- . The naphtha hydrotreater produces 4 streams:
  - High pressure purge gas (approximately 90% hydrogen) which is sent to the Rectisol Unit in the SNG plant for recovery of the  $\rm H_2$  and  $\rm CH_4$ .
  - Naphtha which is stabilized to control vapor pressure, and then sent to the aromatics recovery unit (Area 700).
  - A low pressure off gas which is sent to the Stretford unit in the SNG plant.
  - Wastewater containing, NH4OH and NH4HS which is sent to the PHOSAM unit in the SNG plant for recovery of the H2S and NH3.
- Hydrogen make-up for the Hydrotreater is supplied from a PSA Hydrogen Unit. High pressure (355 psig) synthesis gas from the Rectisol Unit (which contains about 63% hydrogen) is charged to the PSA unit which recovers 86% of the contained hydrogen as a high pressure 99.99% purity hydrogen gas product. The remaining gas is available at low pressure (5 psig) and has a fuel value of about 565 BTU/ft. This gas is sent to the main boilers in the SNG plant.

- The hydrotreated naphtha is charged to the extraction section of the Aromatics Recovery Unit (Area 700) where it is contacted with a solvent to extract the aromatic components from the stream. The raffinate is sent to storage and gasoline blending while the solvent is recovered from the aromatic extract. The aromatic extract is then sent to fractionation to produce the BTX products.
- Five streams are produced in the ARU plant.
  - A hydrocarbon gasoline blending stock which is sent to storage and gasoline blending.
  - A small process water stream which is sent to the waste treatment plant in the SNG Plant.
  - Three product streams Benzene, Toluene & Xylene which are sent to storage.
- The crude phenol byproduct stream (14490 #/hr, 936 BPSD), is feed to the dual solvent phenol extraction unit (Area 800).
- Distillation removes approx. 85% of the phenol which is further distilled to remove light ends and then reflashed over sulfuric acid producing a 99.8% pure product.
- The remainder of the stream (a cresylic acid mixture) is flash distilled over a 3 wt.% concentrated sulfuric acid mixture to remove pyridine type substances.
- . The acid tar produced is water washed and mixed with light oil and sent to fuel.
- . The remaining cresol/xylenol mixture is double solvent extracted to remove neutral hydrocarbons. The resulting crude cresylic acid is dried and sent either to storage or distillation (Area 900).
- Streams produced in the phenol extraction unit are:
  - Phenol product sent to storage
  - Crude Cresylic Acid sent to distillation (Area 900) or storage.
  - Wash Water sent to Water Treatment in the SNG Plant.

## 1.1 Overall Process Description - cont'd

- Waste Water sent to the Phenosolvan unit in the SNG Plant.
- Neutral Oil sent to storage and fuel for the SNG Plant boilers.
- . The Crude Cresylic Acid is progressively distilled (Area 900) to separate the cresols and xylenols. No attempt has been made to remove the guaiacol from the product streams.
- . Streams produced in the crude cresylic acid distallation unit are:
  - o-Cresol product which is sent to storage.
  - m,p-Cresol product which is sent to storage.
  - Xylenol product which is sent to storage.
  - A heavy distillate which is combined with neutral oil in Area 800.
  - A crude phenol stream which is recycled to the Area 800.
  - A small water stream which is sent to Area 800 for tar acid washing.

#### 1.2 Overall Material Balance

The overall material balance is presented in Table 1.1 which presents overall material balances for the major process units. Detailed material balances for the Phenol Extraction & Cresylic Acid Distillation can be found in Appendix A and for the Naphtha Distillation & HDT unit Appendix B. The balance was computed on the basis that the fuel value of the feed will be replaced by fuel gas, neutral oil and 160°F minus distillate produced in the process and the difference made up by the purchase of #6 Fuel Oil.

The overall balance is as follows:

#### Feeds

725 BPSD of Naphtha Feed

936 BPSD Phenol Feed BPSD of #6 Fuel Oil

0.20 MMSCFD equivalent SNG product loss due to the syn gas feed to the PSA unit.

#### 1.2 Overall Material Balance - cont'd

#### **Products**

317 BPSD of Phenol
56 BPSD of o-Cresol
131 BPSD of m,p-Cresol
75 BPSD of Xylenols
312 BPSD of Neutral Oil for Fuel
202 BPSD of 160°F - Distillate for Fuel
46 BPSD of Gasoline Blending Stock
315 BPSD of Benzene
112 BPSD of Toluene
15 BPSD of Xylene

0.03 MMSCFD Equivalent SNG product credit due to HDT purge gas return to SNG plant.

#### 1.3 Overall Utility Balance

The overall utility consumption of the complex is as follows:

#6 Fuel Oil 1193 BPSD

SNG Equivalent
of Syn Gas 0.17 MM SCFD
Power 525 kW

Cooling Water 4000 GPM (30°F rise)
Process Water 3 GPM

In addition the process imports/exports steam and returns condensate as follows:

HP Steam 58,200 #/HR Import
MP Steam 15,900 #/HR Import
LP Steam 6,900 #/HR Export
Condensate return 74,100 #/HR



)

labie i.i Great Plai					Page 1-8
			********		
Phonol Feed=====>	14490	#/hr	936	8PSD	
Crd [!aphtha Feed=>	8738	#/hr	725	BPSD	
Phenol Product===>	4925	#/hr	317	BPSD	
o-Cresol Prod====>	845	#/hr	56	BF:SD	
m.p-Cresol Prod==>	1974	#/hr	131	8PSD	
(ylenols Prod====>	1070	#/hr	75	BPSD	
Gasoline Stock===>	481	#/hr	46	BPSD	
Senzene Prod=====>	4060	#/hr	315	BPSD	
foluene Prod====>	1425	#/hr	112	BPSD	
<pre>(/lene Prod=====&gt;)</pre>	188	#/hr	15	BPSD	
SNG Product Loss=>	300	#/hr	0.17	MMSCFD	
Fuel Oil Makeup==>	16517	#/hr	1193	BPSD	

Unode Naphtha Distillation	Wt %	Gravity	#/hr	BFSD
Feed Naphtha	100.00	0.8269	8738	725
Frod 160 oF- Frod 160 oF+	24.77 75.23	0.7350 0.8627	2164 6574	202 523

# Naphtha Hydrotrater

Component	Wt %	Grav	#/hr	#Mole/hr	BPSD
Peed 160 oF+	100.00	0.8627	6574		523
Feed Hydrogen	0.74		62	30 <b>.8</b>	
Feed Total	100.94		6636		523
Products					
Purqe Gas	0.33		22	6.8	
Fuel Gas	2.97		195	10.8	
HDT Maphtha	93.61	0.8650	6154		488
H2O in SW	1.96		129		
H2S in SW	1.76		116		
NHS in SW	0.30		20		
Total Products	100.94		6636		488

P	ad	e	1-	9
	uч	-	4-	•

PSA Hydrogen Recovery Unit(86% Recovery)					Page 1-9		
*==##==## H2	CO	CO2	CH4	C2H6	N2+Ar	Total	
116.28	34.26	2.72	29.84	0.58	0.35	184.03 100.01	
16.28	34.25	2.72	29.84	0.58	0.35	84.02	
	475 05	50 AA	777 AA	7A. B	5.55	903.31	
		<del>-</del>				100.12	
16.28	475.83	59.44	237.46	8.63	5.55	803.19	
35.8	10.5	0.8				56.6	
30.8	0.0	0.0				30.8	
5.0	10.5	0.8	9.2	0.2	0.1	25.9	
				<b></b>	**	560	
72		<del>-</del> :		_		560 62	
62	_		-			498	
10	295	37	147	5	<u>ئ</u>	470	
	H2 116.28 100.00 16.28  116.28 100.00 16.28  35.8 30.8 5.0	H2 C0	H2 C0 C02	H2         C0         C02         CH4           116.28         34.26         2.72         29.84           100.00         0.01         2.72         29.84           116.28         34.25         2.72         29.84           116.28         475.95         59.44         237.46           100.00         0.12         0.00         0.00           16.28         475.83         59.44         237.46           35.8         10.5         0.8         9.2           30.8         0.0         0.0         0.0           5.0         10.5         0.8         9.2           72         295         37         147           62         0         0         0           0         0         0         0           10         0         0         0	H2         C0         C02         CH4         C2H6           116.28         34.26         2.72         29.84         0.58           100.00         0.01         2.72         29.84         0.58           116.28         34.25         2.72         29.84         0.58           116.28         475.95         59.44         237.46         8.63           100.00         0.12         0.00         0.00         0.00           16.28         475.83         59.44         237.46         8.63           35.8         10.5         0.8         9.2         0.2           30.8         0.0         0.0         0.0         0.0           5.0         10.5         0.8         9.2         0.2           72         295         37         147         5           62         0         0         0         0         0           62         0         0         0         0         0         0	H2 C0 C02 CH4 C2H6 N2+Ar  116.28 34.26 2.72 29.84 0.58 0.35 100.00 0.01 16.28 34.25 2.72 29.84 0.58 0.35  116.28 475.95 59.44 237.46 8.63 5.55 100.00 0.12 0.00 0.00 0.00 0.00 16.28 475.83 59.44 237.46 8.63 5.55  35.8 10.5 0.8 9.2 0.2 0.1 30.8 0.0 0.0 0.0 0.0 0.0 0.0 5.0 10.5 0.8 9.2 0.2 0.1  72 295 37 147 5 3 62 0 0 0 0 0 0	

Arcmatics F	Recovery
-------------	----------

Component	Wt %	Grav	#/hm	BPSD
Feed HDT Naphtha	100.00	0.8650	6154	488
Products Raffinate	7.82	0.7175	481	46
Benzene Toluene	65.97 23.15	0.8840 0.8715	4060 1425	315 112
xvlene	3,05	0.8729	188	15
Total Products	100		6154	488

# Phenol Extraction

Component	Wt %	#/hr	Grav	<b>BFSD</b>
Feeds				
Crude Phenol	100.00	14490	1.0621	936
Sulfuric Acid	1.97	285	1.8300	11
Total Feed	101.97	14775		947
Products				
Cr. Cresylic Acid	35.13	5090	1.0290	339
Phenol	29.09	4215	1.0661	271
Neutral Oil	30.68	4445	1.0860	281
Acidic Waste Water	7.07	1025	1.2558	56
Total Products	101.97	14775		947

i	resvi	i.⊂	HCid	Distil	lation
---	-------	-----	------	--------	--------

Component	Wt %	#/hr	Grav	BPSD
Feed Cresylic Acid Froducts	100.00	5090	1.0290	33 <b>9</b>
Phenol	13.95	710	1.0661	46
o-Gresol	16.60	845	1.0350	56
n.p−Cresol	38.78	1974	1.0340	131
Xvlenols	21.02	1070	0.9750	75
Heavies	9.65	491	1.0800	31
Total	100.00	5090		33 <b>9</b>

## Fuel Gas Generated in Hydrotreating

	<b>-</b>			
Companer	nt	#/hr	#Mol/hr	MMBTU/nr
(I) sohtha	Hdtr FG	195	10.8	3.7

# Purge Gas Generated in PSA Hydrogen Unit

Component	#/hr	#Mol/hr	BTU/ft3	MMBTU/hr
H⊇	10	5.0	324	0.6
ĊΟ	295	10.5	321	1.3
0.02	37	∘.8	Q	0.0
C1	147	9.2	1010	3.5
CB	5	0.2	1769	0.1
N2+Ar	3	0.1	0	0.0
Total	498	25.9	565	5.5

# Net Changes in Boiler Fuel Fired

Fuel	#/hr	BTU/#	MMBTU/hr	MMSCFD	BTU/ft3	BPSD
Crude Phenol	-14490	13070	 -189.4			-936
Crude Naphtha	-8738	18500	-161.7			-725
MSA Punge Gas	498	11102	5.5	0.24	565	
Fuel Gas	195	19000	3.7	0.10		
150 oF- distillate	2164	17400	37.7			202
Meutral Oil	4936	15000	74.0			312
Import Steam	-67200	1000	-67.2			
Fuel Oil to Boiler	16517	18000	297.3			1193
Total	-66118		0.0	0.3		46

Net Changes in SNG Production	EQV SNG MMSCFD	PSA/Purge Gas #Mol/SD
SNG equivalent of Syn Gas to PSA	0.20	1359
SNG Credit for Hdtrs purge gas Total SNG Production Loss	0.02 0.17	164

#### 2.1 Phenol Stream

## 2.1.1 Phenol Extraction

Data for the design of the Phenol Extraction Unit (Area 800) were provided to Lummus by ANG. The basic processing step used in this unit is a dual solvent extraction to recover the phenol product. Referring to drawing D5571-70801A and B and the material balance (Appendix A) the flow is as follows:

- Crude Phenol from the Great Plains Plant is charged to the Crude Phenol Column DA-801 from Surge Drum FA-801 through Feed Pump GA-801. Recycled phenol streams from Cresylic Acid Distillation (Area 900) and the Phenol Column DA-804 overheads are also charged to column DA-801. The bottoms from DA-801 is pumped by GA-802 to Acid Flash Column DA-802. The overhead from DA-802 contains light ends and phenol. Non condensibles are relieved to flare. The overhead liquids are pumped by GA-803 and GA-804 to the light ends column DA-803. Water condensed in the overheads is separated and sent to the Phenosolvan Unit in the SNG Plant.
- The Crude Phenol Column overhead enters the Light Ends Column DA-803. The overhead light ends product is sent to SNG Plant Fuel. Water condensed in the overhead drum is sent to the Phenosolvan Unit in the SNG Plant. The bottoms from the Light Ends Column are pumped to Phenol Column via Light Ends Bottoms Pump GA-809.
- Bottoms from the Light Ends Column are distilled in the Phenol Column DA-804 to produce an overhead stream which is returned to the Crude Phenol Column, DA-801 a side draw stream of 99.8% pure phenol product, and a bottoms stream which is pumped to Acid Flash Column DA-802 via Phenol Column Bottoms Pump GA-813. A small amount of sulfuric acid is added to the tower in order to control product purity.
- The Phenol Product is drawn off DA-804 to Phenol Draw-off Pot FA-804 and pumped by Phenol Drawoff Pump GA-814 through Phenol Product Cooler EA-810 to Phenol Product Day Tank FB-803. From the day tank, phenol product is pumped to storage via GA-815, Phenol Product Pump.

## 2.1.1 Phenol Extraction - cont'd

- The bottom streams from DA-801, Crude Phenol Column, and DA-804 Phenol Column are sent to Acid Flash Column DA-802. This combined stream contains the cresylic acid, neutral oil and heavies. This material is flashed over sulfuric acid to remove pyridine type substances. The overhead product of the acid flash is pumped to Extraction Column DA-805. The bottoms product is an acid tar, and is water washed in FD-801 & FD-802, 1st and 2nd stage Water Wash Tanks, to remove acid materials, and then routed to the Great Plains Fuel pool together with other fuel streams recovered in the Phenol Extraction and Cresylic Acid Distillation Units, (Areas 800 and 900). The combined stream is called "neutral oil."
- The acid flash overhead from DA-804 is extracted with hexane and methanol/water in Extractor Column DA-805. Hexane enters the extractor column at the bottom and preferentially absorbs the oil components. The hexane/oil mixture exits the top of DA-805.
- Methanol/water solution enters the top of the Extractor Column. The methanol/water preferentially adsorbs the phenolic compounds. Methanol/water/phenolic mixture exits the bottom of DA-805.
  - The oil components are stripped from the hexane in the Hexane Column DA-806. The hexane is recycled to Extractor Column DA-804. The oil is pumped by Hexane Column Bottoms Pump GA-822 through Neutral Oil Cooler EA-815 to Neutral Oil Day Tank FB-802. From FB-802 Neutral Oil can be pumped to fuel or storage by GA-812 Neutral Oil Pump.
- Make-up Hexane is added as needed from Hexane Storage Tank FB-804 by GA-824 Hexane Make-up Pump.

#### 2.1.1 Phenol Extraction - cont'd

- The phenolics are recovered from the methanol/water solution in Methanol Column DA-807. The methanol/water is condensed overhead and recycled to the extractor column by Methanol Column Reflux Pump GA-826. The phenolics are pumped to Drying Column DA-808 by Methanol Column Bottoms Pump GA-825 through Methanol Column Bottoms Cooler EA-818.
- Drying Column DA-808 is reboiled to remove water carry-over from the phenolic product. The dry Crude Cresylic Acid leaves the bottom of DA-808. Product is pumped to either Cresylic Acid Distallation (Area 900) or through the Crude Cresylic Acid Cooler EA-821 to the Cresylic Acid Day Tank, FB-805 by Drying Column Bottoms Pump GA-828.
- . Crude Cresylic Acid from Cresylic Acid Day Tank is pumped to storage by Crude Cresylic Acid Pump GA-829.

#### 2.1.2 Cresylic Acid Distillation

Data for the design of the Cresylic Acid Distillation Unit (Area 900) were provided to Lummus by ANG. The basic process used is a series of distillation columns to recover progressively higher boiling products. Referring to drawing D5571-70901 and the material balance (Appendix A) the flow is as follows:

- Dry Crude Cresylic Acid from Phenol Extraction (Area 800) is chargeed to O-Cresol Column DA-901.
- . o-Cresol Reboiler EA-901 uses HP Steam to reboil the column. Liquid distillate product is returned to the Crude Phenol Column in Area 800. o-Cresol is a side draw product. Column DA-901 bottoms are feed to m,p-Cresol Column DA-902.
- o-Cresol product is stripped in o-Cresol stripper, DA-902, o-Cresol product is pumped by o-Cresol Stripper Pump GA-902 through o-Cresol Product Cooler EA-903 to o-Cresol Day Tank FB-901, o-Cresol product is pumped to storage by o-Cresol Product Pump GA-910.

)

#### 2.1.2 Phenol Extraction - cont'd

- o-Cresol column bottoms is charged to the m,p-Cresol Column.
- m,p-Cresol product is recovered overhead.
  m,p-Cresol is pumped from m,p-Cresol Reflux Drum
  FA-902 by m,p-Cresol Reflux Pump GA-906 through
  m,p-Cresol Product Cooler EA-908 to the day tank
  FB-902. m,p-Cresol product is pumped to storage
  by the product pump GA-911.
- m,p-Cresol column bottoms is feed to DA-905 xylenol column. The xylenol product is recovered overhead. Xylenol is pumped from Xylenol Reflux Drum FA-903 by Xylene Reflux Pump GA-908 through Xylenol Product Cooler EA-911 to Xylenol Day Tank FB-903. Xylenol product is pumped to storage by Xylenol Product Pump GA-912.
- . Xylenol column bottoms contains the undesirable heavies. Xylenol column bottoms are pumped by Xylenol Bottoms Pump GA-907 through Cresylic Acid By-product Cooler EA-912 to SNG plant fuel via the Neutral Oil system in Area 800.

#### 2.2 Naphtha Stream

## 2.2.1 Naphtha Distillation & Hydrotreating (Area 600)

Operating conditions for the naphtha distillation and hydrotreater were provided to Lummus by Amoco and these conditions are presented in Table 2.1. The basic processing steps selected were a distillation to produce a 160°F+ feed stock and a fixed bed hydrotreater. Referring to drawing D5571-70601 and the material balance (Appendix B) the flow is as follows:

- The crude naphtha is charged to the Naphtha Distillation Column DA-601 via Surge Drum FA-601 and Feed Pump GA-601.
- . The column is reboiled with steam in EA-601 to produce a 160°F+ bottoms product.
- . The 160⁰F- overheads are condensed in EA-602 and sent to fuel via GA-603.
- . The 160⁰F+ Distillation Column bottoms is charged to the HDT surge drum FA-603 via GA-602.

#### 2.2.1 <u>Hydrotreater</u> - cont'd

- . 160°F+ naphtha is charged into the hydrotreater from surge tank FA-603 by charge pumps GA-604 through Feed/Effluent Exchanger EA-603.
- . The charge oil is combined with feed hydrogen gas from heater EA-604 prior to entering the feed/effluent exchanger. The preheated mixture is then charged to the reactor DC-601.
- . The reactor DC-601A operates adiabatically with an average bed temperature of 450°F.
- The effluent from DC-601 is cooled in EA-603 and flows through exchangers EA-605 and EA-606. Process water is injected prior to EA-606 to convert the H2S and NH3 in the gas to an aqueous NH40H/NH4HS solution.
- The cooled mixture then passes into the High Pressure/Low Temperature Separator FA-605 where hydrogen rich gas leaves overhead. A portion of this high pressure gas is purged to remove H₂S and light gases from the loop and sent to the Rectisol Unit 1400 in the SNG plant to recover the hydrogen in the purge gas. The remaining gas is recirculated to reactor DC-601.
- The water phase from separator FA-606 goes to the PHOSAM Unit in the SNG plant to recover the H2S and NH3.
- . The hydrocarbon phase from separator FA-606 is preheated in exchanger EA-605 and charged to the HDT Naphtha Stabilizer DA-602.
- . The unstabilized naphtha is charged into DA-602 which is reboiled by MP Steam to stabilize the naphtha.
- Offgas from the Naphtha Stabilizer is sent to the SNG plant for fuel.
- The stabilized naphtha is cooled and sent to the aromatics recovery unit (Area 700).

### 2.2.1 Hydrotreater - cont'd

## Table 2.1 Hydrotreater Conditions

Case 7 Maximum Profit 160°F+ Naphtha Feed Stock Reactor Type Fixed Bed Number of Stages 1 LHSV Hr 1.0 450°F Average Reactor Temperature 500 psig H₂ Partial Reactor Pressure Pressure H2 Recycle Rate 2500 SCF/BBL Catalyst Ni-Mo Catalyst Replacement 2 years @ \$3/#

#### 2.2.2 Aromatics Recovery Unit (Area 700)

This unit is based on the Shell Sulfolane Process licensed by Universal Oil Products. Referring to Drawings D5571-70701A and B the flow is as follows:-

Stabilized Naphtha from Naphtha Hydrotreater (Area 600) is charged to the Extraction Column DA-701 through Feed Surge Drum FA-701 by Feed Charge Pump GA-701. Lean Solvent is charged to the top of column DA-701. As the feed flows through the column, aromatic components are selectively dissolved in the solvent. Raffinate with very low aromatics content is withdrawin from the top of DA-701.

Rich solvent leaves the bottom of the extractor. After heat exchange in Lean/Rich Solvent Exchanger EA-702, the rich solvent is charged to the top of DA-703, Stripper.

The raffinate stream from the Extractor Column DA-701 overheads is cooled in raffinate cooler EA-701 and then contacted with wash water in Water Wash Column DA-702. Water removes any dissolved solvent from the raffinate. Raffinate leaving DA-702 overhead is pumped to Gasoline Blending Stock Storage. The solvent rich water from DA-702 flows to DA-705, Water Stripper.

Solvent accumulates in the bottom of Water Stripper DA-705 and is pumped back to the Recovery Column by Water Stripper Bottoms Pump GA-710. The rich water is returned to the Recovery Column as stripping steam generated via the Water Stripper Reboiler EA-709 by exchange with the hot circulating lean solvent.

## 2.2.2 Aromatics Recovery Unit (Area 700) - cont'd

A solvent regeneration system is included to guard against excessive solvent degradation. In normal operation a slipstream of solvent is routed to the Solvent Regenerator DA-706. Degraded solvent is periodically withdrawn from the bottom of DA-706.

In the Stripper, non-aromatic hydrocarbons, which are more volatile, are stripped from the solvent, removed overhead, condensed and recycled to the Extractor Column DA-701 for recovery.

The stripper bottoms consists of aromatics in the solvent. This stream is pumped to the Recovery Column DA-704 by Stripper Bottoms Pump GA-704.

In the Recovery Column DA-704, the aromatics are stripped from the solvent. Lean solvent leaves the column bottom and is returned to Extraction Column DA-701 by GA-707 Lean Solvent Pump after heat Exchange in Water Stripper Reboiler EA-709 and Lean/Rich Solvent Exchanger EA-702.

The aromatic product recovered overhead from the Recovery Column in fractionated to recover benzene, toluene and xylene product streams.

The recovery column overhead is pumped by Recovery Column Overhead Pump GA-709 to Clay Tower Surge Tank, FB-703. From FB-703 the aromatic stream is pumped by Clay Tower Feed Pump GA-715 through Clay Tower Feed/Effluent Exchanger EA-712 and Clay Tower Feed Heater EA-713 and then into Clay Towers DA-707A/B. In the Clay Tower, trace amounts of unsaturates and residual non-hydrocarbon impurities are removed.

After heat exchange in the Clay Tower Feed/Effluent Exchanger, the extract flows to benzene column DA-708. Benzene product is withdrawn from a tray near the top of the tower. After cooling in Benzene Product Cooler EA-715, benzene flows to Benzene Day Tank FB-704. Product from FB-704 is pumped to product storage by Benzene Product Pump GA-719.

Any water that accumulates in Benzene Column Reflux Drum FA-708 is permed to Waste Treatment by Benzene Column Water Pump GA-718.

1

## 2.2.2 Aromatics Recovery Unit (Area 700) - cont'd

Benzene column bottoms are pumped by Benzene Column Bottoms Pump GA-716 to Toluene column DA-709. The Toluene Product leaves overhead. Toluene is pumped from Toluene Column Reflux Drum FA-709 by Toluene Column Reflux Pump GA-721 through Toluene Product cooler EA-720 to Toluene Day Tanks FB-706A/B. Toluene from FB-706A/B is pumped to storage by Toluene Product Pump GA-723.

Xylene is taken as bottoms product from Toluene Column DA-709. Xylene is pumped by Toluene Column Bottoms pump GA-720 through Xylene Product Cooler EA-718 to Xylene Day Tank FB-705. Xylene from FB-705 is pumped to storage by Xylene Product Pump GA-722.

## 2.2.3 PSA Hydrogen Unit (Area 300)

Hydrogen for the naphtha hydrotreater will be supplied by a PSA hydrogen unit. The feed gas will come from the Rectisol Unit in the SNG plant (Stream ID-GF 1401) which has the following properties:

Pressure	355 _o psig 65 F
Temp.	65 °F
Composition	mo1%

H2		63.19
CO		18.61
CO2		1.48
CH4		16.21
C2H6		0.31
COS, H2S, CS2	<	0.01
N2 + Ar		0.19
H20	<	0.01

The PSA unit selectively absorbs all components expect H2 and produces a 99.99% vol. purity stream at about 345 psig and 80°F. The other components are available as a purge gas having the following properties.

Pressure	5 psia
Temperature	5 psig 100 F
Composition	Mole %
H2 .	19.32
LO	40.76
CO2	3.24
CH4	35.51
C2H6	0.69
N2+Ar	0.41
Others	0.06

## 2.2.3 PSA Hydrogen Unit (Area 300) - cont'd

At the conditions given a 4 bed PSA unit will recover 86% of the hydrogen in the feed according to the manufacturer, Union Carbide EP&P Division.

The system uses 4 absorption vessels which are sequenced through adsorption, depressurization, purging, and repressurization steps. The process continously produces product and purge gas. It is purchased as a skid mounted unit and the control of the unit is fully automated. Drawing 5571-70301 presents a schematic of a Union Carbide Polybed PSA unit.





ţ











B



l











# 3.0 CAPITAL COSTS

# 3.1 Phenol Stream

# 3.1.1 Equipment List

# Case 7 Maximum Profit

<u>Area 400</u>	- Storage Area
FB-410	Noutes 1 Oct Change
FB-411	Neutral Oil Storage
FB-412	Phenol Product Storage
FB-413	Crude Cresylic Acid Storage O-Cresol Storage
FB-414	M P Chocal Chaman
FB-415	M, P Cresol Storage
	Xylenol Storage
GA-402A/S	Crude Phenol Feed Pump
GA-412A/S	Neutral Oil Transfer Pump
GA-413A/S	Crude Cresylic Acid Transfer Pump
GA-414A/S	O-Cresol Transfer Pump
GA-415A/S	M, P Cresol Transfer Pump
GA-416A/S	Xylenol Transfer Pump
,	My conditional steel Famp
<u> Area 800</u> -	Phenol Extraction
DA-801	Chuda Dhanal C. 2
DA-802	Crude Phenol Column
DA-803	Acid Flash Column
DA-804	Light Ends Column
DA-805	Phenol Column
DA-806	Extractor Column
DA-807	Hexane Column
DA~808	Methanol Column
UA~608	Drying Column
EA-801	Crude Phenol Reboiler
EA-802	Crude Phenol Steam Generator
EA-803	LT. Ends Condenser
EA-804	Acid Flash Reboiler
EA-805	Acid Flash Condenser
EA-806	Tar Acid Cooler
EA-807	LT. Ends Reboiler
EA-808	LT. Ends OVHD Condenser
EA-809	Phenol Reboiler
EA-810	Phenol Product Cooler
EA-811	Phenol OVHO Stm. Generator
EA-812	Phenol OVHD Condenser
EA-813	Hexane Reboiler
EA-814	Hexane Condenser
EA-815	Noutral Oil Coals
EA-816	Neutral Oil Cooler
	Methanol Reboiler

# 3.1 Phenol Stream

# 3.1.1 <u>Equipment List</u> - cont'd

<u> Area - 800</u>	Phenol Extractor
EA-817 EA-818 EA-819 EA-820 EA-821 EA-822	Methanol Condenser Methanol Column Bottoms Cooler Drying Column Reboiler Drying Column Condenser Crude Cresylic Acid Cooler Phenol Ejector Condenser
EE-801	Phenol Ejector
FA-808 FA-809 FA-810	Phenol Reflux Drum Hexane Reflux Drum Methanol Reflux Drum Drying Column Reflux Drum
FA-811 FB-801 FB-802 FB-803 FB-804 FB-805	Phenol Ejector Condensate Drum Sulfuric Acid Day Tank Neutral Oil Day Tank Phenol Product Day Tank Hexane Storage Tank Crude Cresylic Acid Day Tank
FD-801 FD-802	1st Stg. Water Wash Tank 2nd Stg. Water Wash Tank
GA-801A/S GA-802A/S GA-803A/S GA-804A/S GA-805A/S GA-806A/S GA-807A/S GA-809A/S GA-810A/S GA-811A/S GA-812A/S GA-814A/S	Crude Phenol Feed Pump Crude Phenol Bottoms Pump Crude Phenol Reflux Pump Crude Phenol Waste Water Pump Light Ends Pump Acid Flash Bottoms Pump Acid Flash Reflux Pump Sulfuric Acid Feed Pump Light Ends Bottoms Pump Light Ends Waste Water Pump Light Ends Reflux Pump Neutral Oil Pump Phenol Column Bottoms Pump Phenol Drawoff Pump
GA-815A/S GA-816A/S	Phenol Product Pump Phenol Column Reflux Pump

# 3.1 Phenol Stream

# 3.1.1 Equipment List - cont'd

<u>Area 800</u>	-	Phenol Extractor
GA-817A/S		Wash Water Pump
GA-818A/S		Acid Tar Pump
GA-819A/S		Wash Water Circulating Pump
GA-820A/S		Washed Tar Acid Pump
GA-821A/S		Extractor Bottoms Pump
GA-822A/S		Hexane Column Bottoms Pump
GA-823A/S		Hexane Feed Pump
GA-824A/S		Hexane Make-up Pump
GA-825A/S		Methanol Column Bottoms Pump
GA-826A/S		Methanol Column Reflux Pump
GA-827A/S		Drying Column Feed Pump
GA-828A/S		Drying Column Bottoms Pump
GA-829A/S		Crude Cresylic Acid Pump
GA-830A/S		Drying Column Condensate Pump
GA-831A/S		Phenol Ejector Condensate Pump
un 001/1/0		Thenor Ejector condensate ramp
GD-801		1st Stg. Water Wash Mixer
GD-902		2nd Stg. Water Wash Mixer
GD-803		Extractor Mixer
HA-801		Inline Mixer
HA-802		Inline Mixer
<u>Area 900</u>	-	Cresylic Acid Distillation
D4 001		O Cuscal Calumn
DA-901		O-Cresol Column
DA-902		O-Cresol Stripper
DA-903		M,P-Cresol Column
DA-905		Xylenol Column
EA-901		O-Cresol Reboiler
EA-902		O-Cresol Stripper Reboiler
EA-903		O-Cresol Product Cooler
EA-904		O-Cresol Condenser
EA-905		M,P-Cresol Reboiler
EA-907		M,P-Cresol Condenser
EA-908		M,P-Cresol Product Cooler
FA-909		Xylenol Reboiler
EA-910		Xylenol Condenser
EA-911		Xylenol Product Cooler
EA-912		Cresylic Acid By-product Cooler
EA-913		Cresylic Acid Ejector Condenser
271 727		orogric hera Elector condenser
EE-901		Cresylic Acid Ejector

# 3.1 Phenol Stream

# 3.1.1 <u>Equipment List</u> - cont'd

<u>Area 900</u> -	Cresylic Area Distillation
FA-901	O-Cresol Reflux Drum
FA-902	M,P-Cresol Reflux Drum
FA-903	Xylenol Reflux Drum
FA-904	Cresylic Acid Ejector Condensate Drum
FB-901	O-Cresol Day Tank
FB-902	M,P-Cresol Day Tank
FB-903	Xylenol Day Tank
GA-901A/S GA-902A/S GA-903A/S GA-904A/S GA-906A/S GA-907A/S GA-908A/S GA-909A/S GA-910A/S GA-911A/S GA-912A/S	O-Cresol Bottoms Pump O-Cresol Stripper Pump O-Cresol Reflux Pump M,P-Cresol Bottoms Pump M,P-Cresol Reflux Pump Xylenol Bottoms Pump Xylenol Reflux Pump Cresylic Acid Ejector Cond. Pump O-Cresol Product Pump M,P-Cresol Product Pump Xylenol Product Pump

#### 3.1 Phenol Stream - cont'd

#### 3.1.2 Cost Estimate

#### 3.1.2.1 Basis of Estimate

The estimate is an equipment factored type estimate using the equipment sizes & specifications developed for this project. The equipment unit pricing is based on return data for equipment purchased for various projects. The unit pricing is some what conservative compared to world wide markets of 2-3 years ago, however, the exchange rate decline during this period will lead to higher purchase prices.

The commodity materials & subcontracts are ratioed from the equipment costs using factors considering the process, the size of the units, and the location of the plant.

The labor and indirects also are factored considering process, sizing, and location.

Engineering costs are based on the equipment count times the historical number of manhours per equipment item, and the current average engineering selling rate.

In light of the preliminary process basis developed for this section of the plant, a 30% contingency has been applied to the base costs.

Excluded from this estimate are:

Spare Parts Start-Up Insurances & Taxes Permits Royalties on Processing Technology Knowhow

### 3.1.2.2 Estimate Summary

(Thousands of \$)

Casa 7

			<u>case /</u>
		Phenol Extraction	12276
		Cresylic Acid Distil.	4832
Area	400	OSBL (Phenol Stream Part)	3016
		Total \$2	20,124

## 3.1 Phenol Stream - cont'd

# 3.1.2.3 Estimate Breakdown

A	rea	<u>800</u>

	<b>Equipment</b>		\$ Va	lue % Comm	. \$ Comm.
	Items	Type			
	8	Towers	865	50	432
	-	Internals	90	-	•
	22	Exchangers	375	100	375
	11	Vessels	151	120	181
	5 Tanks		74	120	89
	2 Filters		30	100	30
	62	Pumps	353	120	424
Total	110		\$2038		\$1531
		Equipment	2038		
		Commodities	1531		
		Labor	1122	10% Equip,	60% Comm.
		Indirects	1122		-
		Office	3630	110 pcs. x 6	500 x \$55
			\$9,443	, , , , , , , , , , , , , , , , , , ,	
		Contingency _	2833	30%	

\$12,276

# <u>Area 900</u>

	Equipm	ent	\$ Val	ue % Comm.	\$ Comm.
	<u>Items</u>	<u>Type</u>			
	4			120	263
	12	<ul><li>Internals</li><li>Exchangers</li></ul>		110	- 152
	<b>4</b> 3	4 Vessels		120	50
	24	Tanks Pumps	20 132	120 120	24 158
Total	47		\$ 619		\$ 647
		quipment	619		
	L	ommodities abor ndirects	647 450 450	10% Equip,	60% Comm.
	0	ffice	<u>1551</u> \$3,717	47 x 600 x	\$55
	С	ontingency _	1,115 \$4,832	30%	

# 3.1 Phenol Stream - cont'd

# 3.1.2.3 <u>Estimate Breakdown</u> - cont'd

# <u>Area 400</u>

Tankage Pumps Equipment related commodities			S/C \$199 54 200
Yard Piping	29000 LF Labor	MTL	\$330 870
Pipe Insul.		S/C	178
Tracing		S/C S/C	132
Excavation		S/C	150
Rack		S/C	<u>300</u>
	Subtotal		\$2,413
	Contingency	25%	603
	Total		\$3,016

## AMOCO/DOE GREAT PLAINS GASIFICATION PLANT JET FUEL FROM COAL RERIVED LIQUIDS

## 3.0 CAPITAL COSTS

#### 3.2 Naphtha Stream

## 3.2.1 Equipment List

Case 7	_	Maximum	Profit
--------	---	---------	--------

Area 300	-	PSA Hydrogen Unit
Tag. No.		<u>Description</u>
PA-301		PSA Hydrogen Unit Package
Area 400	-	<u>Storage</u>
FB-403 FB-404 FB-405 FB-406 FB-407 FB-408 FB-409		Fuel Oil Storage Blending Stock Benzene Storage Toluene Storage Xylene Storage Butane Storage Gasoline Storage
GA-403A/S GA-405A/S GA-406A/S GA-407A/S GA-408A/S GA-409A/S GA-410A/S GA-411A/S		Fuel Oil Transfer Pump Crude Naphtha Pump Blending Stock Pump Benzene Transfer Pump Toluene Transfer Pump Xylene Transfer Pump Butane Transfer Pump Gasoline Transfer Pump
PA-401		Gasoline Blending Package
Area 600	-	Naphtha Distillation & HDT
DA-601 DA-602		Naphtha Distillation Lolumn HDT Naphtha Stabilizer Column
DC-601		Naphtha Hydrotreater Reactor

# 3.2 <u>Maphtha Stream</u>

# 3.2.1 <u>Equipment List</u> - cont'd

<u>Area 600</u> -	Naphtha Distillation & HDT
EA-601	Naphtha Distillation Column Reboiler
EA-602	Naphtha Distillation Column Condenser
EA-603	HDT Reactor Feed/Eff1. Exchanger
EA-604	HDT Reactor Recycle Gas Heater
EA-605	Stabilizer Feed Exchanger
EA-606	Reactor Effl. Cooler
EA-607	Stabilizer Reboiler
EA-608	Naphtha Stabilizer Condenser
EA-609	HDT Naphtha Cooler
FA-601	Crude Naphtha Feed Surge Drum
FA-602	Distil. Col'n Reflux Drum
FA-603	HDT Feed Surge Drum
FA-604	Makeup Gas KÖ Drum
FA-606	LT/HP Separator
FA-607	Recycle Gas KO Drum
FA-608	Naphtha Stabil. Reflux Drum
GA-601A/S	Crude Naphtha Feed Pump
GA-602A/S	Distil. Col'n Bottoms Pump
GA-603A/S	Distil. Col'n Reflux Pump
GA-604A/S	HDT Feed Pump
GA-605A/S	Process Water Pump
GA-606A/S	HDT Naphtha Pump
GA-607A/S	Naphtha Stabil. Reflux Pump
GA-608A/S	Sour Water Pump
GB-601A/B	Makeup Gas Compressor
GB-602A/B	Recycle Gas Compressor

# 3.2 Naphtha Stream

# 3.2.1 Equipment List - cont'd

Area 700	- Aromatics Recovery
DA-701	Extractor Column
DA-702	Raffinate Water Wash Column
DA-703	Stripper
DA-704	Recovery Column
DA-705	Water Stripper
DA-706	Solvent Regenerator
DA-707A/B	Clay Tower
DA-708	Benzene Column
DA-709	Toluene Column
EA-701	Raffinate Cooler
EA-702	Lean/Rich Solvent Exchanger
EA-703	Stripper Reboiler
EA-704	Stripper Condenser
EA-705	Recovery Column Reboiler
EA-706	Recovery Column Intermediate Reboiler
EA-707	Recovery Column Condenser
EA-708	Recovery Column Ejector Condenser
EA-709	Water Stripper Reboiler
EA-710	Solvent Regenerator Reboiler
EA-711	Solvent Cooler
EA-712	Clay Tower Feed/Effl. Exchanger
EA-713	Clay Tower Feed Heater
EA-714	Benzene Column Reboiler
EA-715	Benzene Product Cooler
EA-716	Benzene Column Condenser
EA-717	Toluene Column Reboiler
EA-718	Xylene Product Cooler
EA-719	Toluene Column Condenser
EA-720	Toluene Product Cooler
EE-701	Recovery Column Ejector
FA-701	Feed Surge Drum
FA-702	Stripper Reflux Drum
FA-703	Recovery Column Reflux Drum
FA-704	Ejector Condensate Drum
FA-705	Solvent Sump
FA-706	Vent KO Drum
FA-708	Benzene Column Reflux Drum
FA-709	Toluene Column Reflux Drum

#### 3.2 Naphtha Stream

#### 3.2.1 Equipment List - cont'd

FB-701 FB-702 FB-703 FB-704	Solvent Storage Tank Wet Solvent Storage Tank Clay Tower Surge Tank Benzene Day Tank
FB-705	Xylene Day Tank
FB-706A/B	Toluene Day Tanks
FD-701	Solvent Filter
GA-701A/S	Feed Charge Pump
GA-702A/S	Pumparound Pump
GA-703A/S	Raffinate Pump
GA-704A/S	Stripper Bottoms Pump
GA-705A/S	Stripper Water Pump
GA-706A/S	Extractor Recycle Pump
GA-707A/S	Lean Solvent Pump
GA-708A/S	Wash Water Pump
GA-709A/S	Recovery Column OV'HD Pump
GA-710A/S	Water Stripper Bottoms Pump
GA-711A/S	Ejector Condensate Pump
GA-712	Solvent Transfer Pump
GA-713	Wet Solvent Pump
GA-714A/B	Solvent Sump Pump (Warehouse Spare)
GA-715A/S	Clay Tower Feed Pump
GA-716A/S	Benzene Column Bottoms Pump
GA-717A/S	Benzene Column Reflux Pump
GA-718A/S	Benzene Column Water Pump
GA-719A/S	Benzene Product Pump
GA-720A/S	Toluene Column Bottoms Pump
GA-721A/S	Toluene Column Reflux Pump
GA-722A/S	Xylene Product Pump
GA-723A/S	Toluene Product Pump
PA-701	Clay Handling Equipment

### 3.2.2 <u>Cost Estimate</u>

#### 3.2.2.1 Basis of Estimate

The estimate is an equipment factored type estimate using the equipment sizes & specifications developed for this project. The equipment unit pricing is based on return data for various projects. The unit pricing is some what conservative compared to world wide markets of 2-3 years ago, however, the exchange rate decline during this period will lead to higher purchase prices.

#### 3.2.2 Cost Estimate

#### 3.2.2.1 Basis of Estimate - cont'd

The commodity materials & subcontracts are ratioed from the equipment costs using factors considering the high pressure processing, the size of the units, and the location of the plant.

The labor and indirects also are factored considering process, sizing, and location.

Engineering costs are based on the equipment count times the historical number of manhours per equipment item, and the current average engineering selling rate.

In light of the preliminary data developed for this effort, a 20% contingency has been applied to the base costs.

Excluded from this estimate are:

Spare Parts
Start-Up
Insurances & Taxes
Permits
Royalties on Processing Technology Knowhow

#### 3.2.2.2 <u>Estimate Summary</u>

(Thousands of \$)

			Case 7
		Naphtha Distill. & HDT	4615
Area	700	Aromatics Recovery	9373
Area	300	PSA	518
Area	400	OSBL (Naphtha Stream Part) Subtotal	3058 \$17,564
Area	700	- ARU Solvent Inventory Total	\$17,664

#### 3.2 Naphtha Stream - cont'd

# 3.2.2.3 <u>Estimate Breakdown</u> (Area 600) All values in Thousands

	Equipme	<u>ent</u>	<b>\$ Value</b>	% Comm.	\$ Comm.
	<u>Items</u>	<u>Type</u>			
	2	Towers	48	140	67
	-	Internals	8	-	-
	1	Exchangers	125	85	106
	ğ	Vessels	123	100	123
	1 9 7	Tanks	89	100	89
	16	Pumps	68	100	68
	4	Compressors		60	138
Total	39		\$ 691		\$ 591
		Equipment	691		
		Commoditi	es 591		
		Labor	424	10% Equip	., 60% Comm.
		Indirects	424	• •	•
		Office	1716	39 pcs. x	800 x \$55
		Subtota		•	
		Contingen Total	cy <u>769</u> \$4,615		

#### Area 700

	Equipm	<u>ent</u>	\$ Value	% Comm.	\$ Comm.
	<u>Items</u>	<u>Type</u>			
	10	Towers	350	140	490
	8	Internals	66	-	-
	20	Exchangers	113	100	113
	9	Vessels	65	120	78
	7	Tanks	117	100	117
	44	Pumps	180	120	216
	3	Special	20	100	20
Total	101		\$ 911		\$1034

Equipment 911
Commodities 1034
Labor 711 10% Equip., 60% Comm.
Indirects 711 100%
Office 4444
Subtotal \$7,811

Contingency <u>1.562</u> 20% Total \$9,373

#### 3.2 Naphtha Stream - cont'd

# 3.2.2.3 <u>Estimate Breakdown</u> (Area 600) All Values in Thousands - cont'd

#### Area 300

PSA Hydrogen Package Unit (one skid)

205	MMSCFD	budget quote Installation Subtotal Contingency	50%	\$300 150 \$450 68
		Total		\$518

#### Area 400

#### Equipment & Value

Tankage Pumps	MTL S/C MTL	366 62
Yard Piping 27,000 LF Labor Pipe Insulation Tracing Excavation Rack	MTL S/C S/C S/C S/C S/C	300 813 108 84 135 300
Equipment Related Commodities	65% Equip.	278

Subtotal

Contingency 25% <u>612</u> \$3,058

\$2,446

#### 4.0 OPERATING COSTS

#### 4.1 Phenol Stream

#### 4.1.1 Operating Labor

It is estimated that it will require 6 men/shift to operate the plant broken down as follows:

Maintenance will probably be provided from the existing SNG plant maintenance shop. It is likely that the existing maintenance department will be expanded by about 3 people.

The total additional people (assuming 4 & 2 operation for the process units) are as follows:

Shift Personnel	4 positions x 4 people/	
	position	- 16
Supervisor & Admin.	·	5
QC Technician		1
Maintenance		3
Other (Stores or Janitori	[a])	1
Total	•	26

## 4.1.2 <u>Utilities</u>

The following utilities have been estimated from the preliminary process designs:

Utility	Consumption	<u>Cost</u>	\$/SD
#6 Fuel Oil Cooling Water Power	626 BPSD 2300 GPM 290 kW	\$16/Bb1 (a) \$0.155/MGa1(b) \$0.04/kWH(b) \$J.45/MGa1(b)	10,016 513 278
Process Water	2 GPM	\$J.45/MGal\"/	2

- (a) Cut of 1% sulfur \$6 oil in Minnesota on 11/24/87 as per Platts Oilgram.
- (b) ANG utility cost information dated 5/87.

#### 4.1.3 Chemicals

The chemical cost is as follows:

<u>Chemical</u>	Use	<u>Cost</u>	\$/SD
H ₂ SO ₄	7100 #/D	\$0.04/#	285

#### 4.1.4 Maintenance Supplies

Maintenance supplies costs are not known but will be assumed to be 1.5-2.0% of the installed cost per year. For a daily cost we would estimate the cost of maintenance supplies to be 0.005% of the total installed cost of the process units. On this basis the maintenance supplies would be  $0.00005 \times 20,124,000 = \$1006/SD$ 

#### 4.2 Naphtha Stream

#### 4.2.1 Operating Labor

It is estimated that it will require 7 men/shift to operate this section plant broken down as follows:

Foreman	1
Control Room	1
HDT Operator	2
ARU Operator	2
PSA & relief man	_ 1_
	7 Shift Positions

Maintenance will probably be provided from the existing SNG plant maintenance shop. It is likely that the existing maintenance department will be expanded by about 5 people.

The total additional people (assuming 6 & 2 operation for the process units) are as follows:

Shift Personnel	7 positions x 4 people/	
	position – 28	
Supervisor & Admin.	5	
QC Technician	1	
Maintenance	5	
Other (Stores or Janitor	ial) 1	
Total	40	•

#### 4.2.2 Utilities

The following utilities have been estimated from the simulations:

Utility	Consum	<u>ption</u>	Cost	\$/SD
#6 Fuel Oil	567 BF	W	\$16/Bbl (a)	9072
SNG equivalent	0.17 MP		\$3.80/MM BTU(b)	633
Cooling Water	1700 GF		\$0.155/MGal(c)	380
Power	235 kF		\$0.04/kWH(c)	226
Process Water	1 GF		\$0.45/MGal(c)	1

- (a) Cut of 1% sulfur \$6 oil in Minnesota on 11/24/87 as per Platts Oilgram.
- (b) Memo from D. Daley of BRSC to L. Lorenzo of DOE dtd. 10/20/87, Ref. Dpd-87-863.
- (c) ANG utility cost information dated 5/87.

#### 4.2.3 <u>Catalyst & Chemicals</u>

The catalyst and chemicals cost is as follows:

Catalyst &Chem	<u>Use</u>	Cost	\$/SD
HDT Cat. ARU Solvent	0.021 #/Bb1 24 #/D	\$3.00/# \$2.10/#	33 50 \$88

#### 4.2.4 Maintenance Supplies

Maintenance supplies for refining operations typically cost between 1.5-2.0% of the installed cost per year. For a daily cost we would estimate the cost of maintenance supplies to be 0.005% of the total installed cost of the process units excluding solvent inventory. On this basis the maintenance supplies would be

 $0.00005 \times 17,564,000 = \$878/SD$ 

#### 5.0 PLOT PLAN AND UNIT TIE-INS

#### 5.1 Plot Plan

The process units required for the maximum profit case are proposed to be located to the east of the Phenosolvan and Waste Water Units of the existing gasification plant as indicated on the markup of the overall Process Area Plot Plan, LCI Dwg E7102-00010A. This area approx. 375' x 350' will be surrounded by an access road and will be divided by a central east-west road. Areas 300, 600 & 700 will be located to the south and Areas 800 & 900 to the north of the road.

A diked storage tank area approx. 360' x 260' will be required for product and fuel oil storage associated with the naphtha stream and an area approx. 60' x 300' is required for the phenol stream. These areas are proposed to be located to the south of the existing tankage area adjacent to the railcar loading spurs.

#### 5.2 Unit Tie-Ins

Approximately 1200 ft of new interconnecting pipe rack will be required to connect the new process area with the main yard rack of the gasification plant, the product storage area and flare.

New storm, oily water and sanitary sewer lines will be run from the new process units south to their respective collection systems.

A summary of the lines is shown in table 5.1.

LCI PROJECT 5571 SUBTASK 1.2 CASE 7 PAGE 5-2

# TABLE 5.1 INTERCONNECTING PIPING

# I - PHENOL STREAM

EST. SIZE	SERVICE	TO/FROM
2"	Crude Phenol (Elec. Tr.)	Storage
1 1/2"	Light Ends	Storage/Ph. Ext.
1 1/2*	Neutral Oil	Storage
1 1/2"	Phenol Product (Elec. Tr.)	Storage
1 1/2"	Crude Cresylic Acid (Elec. Tr.)	Storage
1 1/2"	O-Cresol (Elec. Tr.)	Storage
1 1/2"	M,P-Cresol (elec. Tr.)	Storage
1 1/2"	Xylenol Product (Elec. Tr.)	Storage
1 1/2"	Methanol Make-up	Ph. Ext./MeoH Unit
1 1/2"	Sulfuric Acid (Elec. Tr.)	Ph. Ext/Storage
12"	Wet Flare (Trace)	Flare
2"	Nitrogen	Main rack
2" 2"	Plant Air	н
2"	Instr. Air	н
2 " 3 "	Raw Water (Elec. Tr.)	•
3"	LP Steam	H
2*	M.P. Steam	n
6"	H.P. Steam	n
4"	Stm. Cond.	H
2"	BFW	Ħ
12"	C. W. Supply & Return	•
1 1/2"	Wash Water	Treatment/Ph. Ext.
1 1/2"	Waste Water (Elec. Tr.)	Phenosolvan/Ph. Ext.
15"	Storm Sewer (9' deep)	Storm Basin
15 <b>"</b>	Oily Water Sewer (9' deep)	8100/Process Unit
6 <b>"</b>	Sanitary Sewer (9' deep)	8400/Process Unit
10"	Fire Water	Ring Headers

# TABLE 5.1 - cont'd

## INTERCONNECTING PIPING

## II - NAPHTHA STREAM

EST. SIZE	SERVICE	TO/FROM
1 1/2 1 1/2" 1 1/2" 1 1/2" 1 1/2" 1 1/2" 1 1/2" 3"	Crude Naphtha 160°F - Distillate Blending Stock Benzene Toluene Xylene Butane Gasoline	Storage Storage/Dist. Storage/ARU Storage/ARU Storage/ARU Storage/ARU Storage Storage
14" 1 1/2" 3" 1 1/2" 2" 2" 2" 6" 6"	Wet Flare (Trace) Synthesis Gas Purge Gas Off Gas Nitrogen Plant Air Instr. Air Raw Water (Elec. Tr.) M.P. Steam H.P. Steam	Flare PSA/Rectisol Fuel Gas/PSA & HDT Rectisol/HDT Main Rack " "
6" 10" 2" 4" 15" 15" 6" 10"	Stm Cond. C. W. Supply & Return Waste Water Fuel Oil (Elec. Tr.) Storm Sewer (9' deep) Oily Water Sewer (9' deep) Sanitary Sewer (9' deep) Fire Water	" Phosam/HDT Exist TKS/New TKS. Storm Basin 8100/Process Unit 8400/Process Unit Ring Headers



H-47



COAL PREPARATION
AND HANDLING
AREA-2000 DXYGEN PLANTS SHIFT CONVERSION GASIFICATION AREA-1100 GAS COOLING AREA-3000 AREA-1200 AREA-1200 OFF GA **呵** ••• 2227 2754.56 (22.27) 331.68 340.91 9.02 (15 8.4.) (A) FILLING GAS 4978 4(COMR GAS 23.342) 78.46 (MN,N) ±@ [22] (152.86) (XX) (1135 (國) (748) \$9.5 185.82 47.28 153,861 42.28 SULFUR RECOVERY 0 <u>(1)</u> 10.34 FUEL OILF SOO GAS 

WASH WATER



	CRUDE PHENOLS PR		113	MILLION F	B/YR		CRUDE PHE	NOT COTTN	N	
STREAM NO	STREAM FACTOR ON-STREAM HR/YR	89 7796.4		1		13				
STREAM DESCRIPTION				CRUDE PHENOL	PHENOL RECYCLE	o-CRESOL PHENOL	FEED	TOTAL OVERHEAD	OVERNEAD PMENOL	WATER + LIGHTS
COMPONENT		M.P. DEG C	B.P. DEG C	#/HR	#/HR	#/HR	#/WR	S/IR	g/HR	#/HR
WATER	N20		100	724	0		724	724	55	670
METHANOL MEXANE				0	0					
SURFUIC ACID	N2S04			0	0		291	291		291
LIGHTS PYRIDINES	C5N5N		115	290 145	ò		145	145	1	144
PHENOL	C6H5OH	43	181	4925 579	490 1	703	6118 580	5479 82	5426 82	53
MEUTRAL DIL o-CRESOL	CH3C6H4OH 1,2	30	191	869	0	7	877	0		
p-CRESOL	CH3C6H4OH 1,4	35.5 11	202 202	0 1977	0	0	0 1978	0		
m-CRESOL GUA!ACOL	CH3C6H4OH 1,3 HOC6H4OCH3 1,2	32	202	1777	ŏ		1770	Ō		
O-ETHYL PHENOL	OHC6H4C2H5		207	58	0		58	0		
2,4-XYLENOL	HOC6H3(CH3)2 NOC6H3(CH3)2	26 75	211 212	1050 0	0		1050 0	0		
2,5-XYLENOL 2,6-XYLENOL	NOC6H3(CH3)2	13	212	Ō	0		Ö	0		
P-ETHYL PHENOL			214	0	0		0	0		
2,3-XYLENOL 3.5-XYLENOL	NOC6H3(CH3)2	68	218 219	0	0		0	0		
m-ETHYL PHENOL		-	219	109	0		109	0		
3,4-XYLENOL	MOC6H3(CH3)2	62.5	225 245	0	0		0	0		
CATECHOL RESIDUE	C6H4(OH)2 1,2	105	243	3767	ŏ		3767	0		
RESORCINOL UNKNOWNS	C6H4(OH)2 1,3	110	281	0	0		0	0		
Carloans				-	•					***
TOTAL #/HR				14494 1.7	492 1.2		15697 1.7		5564 1.5	1157 12.4
API S.G.				1.062	1.066		1.062	1.05	1.064	0.983
#/GAL				8.857	8.890	8.890	8.858	8.756	8.873	8.197
CSE				935 832	32 28		1013 901	439 390	358 319	81 72
BCD				WT X			,	ut %	א זע	WT X
WT% / RECOVERY	•									
WATER METHANOL				5.00				100	•	17.00
HEXANE										
SURFUIC ACID				2.00				100	1	
LIGHTS PYRIDINES				1.00				100		
PHENOL				34.00				89.55	_	1.40
NEUTRAL OIL o-CRESOL				4,00 6.00				1.50	1.5	
p-CRESOL				0.00						
m-CRESOL				13.65						
GUATACOL O-ETHYL PHENOR	L			0.40						
2,4-XYLENOL	•			7.25						
2,5-XYLENOL 2.6-XYLENOL										
D-ETHYL PHENOL	L									
2,3-XYLENOL										
3,5-XYLENOL m-ETHYL PHENOR	L			0.75						
3,4·XYLENOL	-									
CATECHOL				26.00						
RESIDUE RESORCINOL				20.00						
UNKNOWNS										

#### PHENOL COLUMN

STREAM NO		2									5
STREAM DESCRIPTION	WATER	LIGHTS	BOTTONS	PEED	WATER	OVERNEAD LIGHTS	OVERNEAD WATER	BOTTONS	TOTAL OVERHEAD PHENOL	BOTTORS	PHENOL
COPURE	9/ MK	<b>3/100</b>	ø/WR	#/WR	#/HR	#/HR	Ø/MR	Ø/WR	Ø/NR	#/HR	Ø/HR
COMPONENT  MATER HETHANOL HEXAME SURFUIC ACID LIGHTS PYRIDINES PHENOL MEUTRAL OIL O-CRESOL M-CRESOL M-CRESOL O-ETHYL PHENOL 2,4-XYLENOL 2,5-XYLENOL 2,5-XYLENOL 2,3-XYLENOL 0-ETHYL PHENOL 3,5-XYLENOL M-ETHYL PHENOL 3,4-XYLENOL CATECHOL RESIDUE RESORCINOL MICHOLINS	670 18	Ø/HR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	55 0 0 291 145 5461 82 0 0 0 0 0 0	#/WR	0 0 0 280 145 0 0 0 0 0 0 0	40777 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	5386 111 5 0 0 0 0 0 0 0	<b>9/HR</b> 70 70	0 0 0 10 0 4896 10 5 0 0 0 0 0 0
TOTAL #/HR AP: S.G. #/GAL BSD BCD	687 10.0 1 8.339 47 42	469 15.1 0.965 8.047 33 30	8976 5.9 1.03 8.589 597 531	6033 2.6 1.055 8.802 392 349	4340 10.0 1.000 8.343 297 265	425 14.4 0.970 8.093 30 27	4399 10.0 1.000 8.343 301 268	5549 2.0 1.060 8.843 359 319	5419 1.2 1.066 8.894 348 310	141 10.0 1.000 8.343 10	4926 1.2 1.066 8.89 316 282
MI / RECOVERY					WT %	UT X	VT X	WT %	WT %	VI Z	WT X
ATER					66.67		100				
EXAME URFUIC ACID IGHTS YRIDINES HEWOL EUTRAL OIL -CRESOL -CRESOL -CRESOL -CRESOL -CRESOL -CRESOL -THYL PHENOL -XYLENOL					8	100	0 8 0	0.2 99.8	0.2 99.4 0.2 0.1	50 50	91 91 91 91 91 91 91 91 91 91 91 91 91 9
	STREAM DESCRIPTION  COMPONENT  MATER HETHANOL HEXAME SURFUIC ACID LIGHTS PYRIDINES PHENOL MEUTRAL OIL O-CRESOL O-CRESOL O-CRESOL O-ETHYL PHENOL 2,6-XYLENOL 2,6-XYLENOL 2,5-XYLENOL 3,5-XYLENOL MICHAEL PHENOL 2,3-XYLENOL MICHAEL PHENOL 3,4-XYLENOL MICHAEL PHENOL 3,4-XYLENOL MICHAEL PHENOL 3,4-XYLENOL CRESOL MICHAEL PHENOL 3,4-XYLENOL CRESOL CRESOL MICHAEL PHENOL EXAME URFUIC ACID IGHTS YRIDINES HENOL EXAME URFUIC ACID IGHT IGHT IGHT IGHT IGHT IGHT IGHT IGHT	STREAM DESCRIPTION  COMPONENT  WATER  WATER  MATER  MATER  MATER  MATER  MATER  METHANOL  HEXAME  SURFUIC ACID  LIGHTS  PYRIDINES  PHENOL  MEUTRAL OIL  O-CRESOL  M-CRESOL  M-CR	STREAM DESCRIPTION DESCRIPTION COMPONENT  WATER MATER METHANOL MEXAME SURFUIC ACID LIGHTS PYRIDINES PHENOL MEUTRAL OIL O-CRESOL P-CRESOL M-CRESOL M	STREAM DESCRIPTION  COMPONENT  MATER HETHAMOL HETHAMOL HEXAME SURFUIC ACID LIGHTS PYRIDINES PHENOL P-CRESOL P-C	STREAM BESCRIPTION  MATER  ### LIGHTS ####################################	STREAM BRECRIPTION  MATER COMPONENT  MATER   STREAM DESCRIPTION UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER UNTER	STREAM   DRENIEAD   OWERNEAD   COMPONENT   WATER   COMPONENT   WATER   COMPONENT   COMPO	STREAM   BESCRIPTION   ONERHEAD   MATER   LIGHTS   BOTTOMS   PEED   MATER   LIGHTS   WITH   WATER   STREAM   DETECTION   DUTENHEAD   DUTENHE	STREAM BESCRIPTION DESCRIPTION DATE BESCRIPTION DATE BESC		

,	ı	ACID FLA	<b>B</b> M				TAR WASHI	NG		EXTRACTO	R COLUMN
STREAM NO		r			7		4		8		
STREAM DESCRIPTION COMPONENT	PHENOL RECYCLE B/HR	FEED C/HR	SULFURIC ACID S/HR	TOTAL FEED	OVERNEAD #/HR	TAR OIL	Wash Water #/Hr	WASTE WATER #/HR	WASHED TAR S/HR	FEED FR ACID FLASH B/HR	MEXANE SOLVENT #/HR
WATER	0	0	6	6	6	0	1246	1246	0	6	0
RETHANOL	0	•	•		0			.545	Ō	Ō	0
NEXANE SURFUIC ACID	0		285	285	0	285		285	0	-	11372 0
LIGHTS	i	0		Ō	Ô	0		-	Ō	Ō	0
PYRIDINES	.0	0		0	_	0			0	•	0
PHENOL NEUTRAL OIL	490 1	710 569		710 569	710 569	0			0		0
o-CRESOL	ó	877		877	877	ŏ			ŏ		0
p-CRESOL	0	0		0	-	0			.0	_	0
m·CRESOL GUATACOL	0	1978 0		1978	1938 0	40 0			40 0		0
O-ETHYL PHENOL	Ŏ	58		58	57	ĭ			1	57	ŏ
2,4-XYLENOL	0	1050		1050	1029	21			21	1029	0
2,5-XYLENOL 2,6-XYLENOL	0	0		0	0	0			0		0
P-ETHYL PHENOL	ŏ	ŏ		ő	ŏ	ŏ			ŏ		ŏ
2,3-XYLENOL	0	0		0	0	0			0	-	0
3,5-XYLENOL m-ETHYL PHENOL	0	0 109		0 109		0 2			0		0
3,4-XYLENOL	ŏ	ő		ó		ō			ō		ŏ
CATECHOL	0	0		0	•	0			0	-	0
RESIDUE RESORCINOL	0	3767 0		3767 0	377 0	3390 0			3390 0		0
JUNKHOLMS	ŏ	ŏ		ŏ	ŏ	ŏ			ŏ		Ö
TOTAL #/HR	493	9117	291	9408	5669	3739	1246	1532	3454		11372
API S.G.	1.2 1.066	6.0 1.029	1.83	4.1 1.043	11.9 0.987	1.140	1.000	1,100	1.100	11.9 0.987	0.660
#/GAL	8.89	8.585	15.27	8.703	8.23	9.51	8.34	9.18	9.18		5.51
BSD	32	607	11	618	393	225	85	95	215		1180
BCD	28	540	10	550	350	200	76	85	191	350	<b>105</b> 0
WTX / RECOVERY	WT %		WT %		WT X		WTX				WT X
WATER	9		2		100		33.33				
METHANOL HEXANE	9										100
SURFUIC ACID	ý		3								100
LIGHTS	9				100						
PYRIDINES Phenol	9				100 100						
NEUTRAL OIL	ý				100						
o-CRESOL	9				100						
p-CRESOL m-CRESOL	9				98 98						
GUATACOL	9				98						
O-ETHYL PHENOL	9				98						
2,4-XYLENOL 2,5-XYLENOL	9 9				96 98						
2,6-XYLENOL	9				98						
P-ETHYL PHENOL	9				98						
2,3-XYLENOL 3,5-XYLENOL	9				96 98						
m-ETHYL PHENOL	9				98						
3,4-XYLENOL	9				98						
CATECHOL RESIDUE	9				95 10						
RESORCINOL	9				5						
UNKNOWNS	9				5						

					HEXAME C	OLUM	METHANOL	COLUMN	DRYING C	DLUMM	o-CRESOL	COLUMN
	STREAM NO					10				11	13	12
	STREAM DESCRIPTION COMPONENT	METHANOL, WATER SOLVENT S/MR	OVERNEAD  8/HR	BOTTONS #/HR	NEXAME OVERHEAD #/HR	MEUTRAL OIL BOTTONS #/HR	METMANOL, WATER OVERHEAD 6/HR	/ WET CRESYLIC ACID 6/HR	DRYING COLUMN OVNO #/HR	DRY CRESYLIC ACID #/HR	o-CRESOL PHENOL Ø/HR	o-CRESOL #/HR
		•	0		•	•			•	··· <del>·</del>	<b></b>	<b>,</b>
	WATER METHANOL	1765 3278	0	1771 3278	0			177 0		0		
	HEXANE	0	11372	0	11372		0	_				
	SURFUIC ACID	0	0	0	0		•			0		
	LIGHTS PYRIDINES	0	0	0	0	_		_		0		
	PHENOL	ŏ	ŏ	710	Ŏ		-			710	703	7
	MEUTRAL DIL	Ō	569	0	Ŏ	-				0		•
	o·CRESOL	0	0	877	0		_			877	7	
	p-CRESOL m-CRESOL	0		0 1938	0			_		0 1938	0	0 17
	GUA I ACOL	ŏ	Ö		Ö	-				1938		17
	O-ETHYL PHENOL	Ö	Ō	57	Ŏ					57		
	2,4-XYLENOL	0		1029	0		-			1029		
	2,5-XYLENOL 2,6-XYLENOL	0	0	0	0	_	_			0		
	P.ETHYL PHENOL	ŏ	0	0	0					0		
	2,3-XYLENOL	Ŏ	Ō	Ŏ	Ŏ	_				Ŏ		
	3,5-XYLENOL	0		.0	0	_	-	_		0		
	M-ETHYL PHENOL	0	0	106 0	0	_	•			106		
	3,4-XYLENOL CATECHOL	0	0	0	Ö			_		0		
	RESIDUE	ŏ	ŏ	377	ŏ					377		
_	RESORCINOL	0	0	0	Ó	-	Ö			0		
	UNKNOWNS	0	0	0	0	0	0	0		0		
	TOTAL #/HR API	5043	11940	10142	11372	569	4871	5271	177		710	849
	S.G.	0.878	0.669	0.950	0.660	0.914	0.876	8.6 1.030		8.6 1.030	2 1.066	5.9 1.035
	B/GAL	7.33	5.58	7.93	5.51	7.63		8.59		8.59	8.89	8.63
	BSD	393	1222	731	1180		•	351	12		46	56
	BCD	350	1088	651	1050	38	339	312	11	301	41	50
1	WT% / RECOVERY	WT X	RECOVERY	RECOVERY							RECOVERY	RECOVERY
ı	WATER	35		100			90	10				
	METHANOL	65		100			100					
	HEXANE BURFUIC ACID		100		100							
	LIGHTS											
	PYRIDINES											
	PHENOL		444	100							99	1
	WEUTRAL DIL D-CRESOL		100	100								
	D-CRESOL			100							1	95
4	n-CRESOL											2
	ZUA I ACOL											
	P-ETHYL PHENOL 2.4-XYLENOL											
	2,5-XYLENOL											
	.6-XYLENOL											
	ETHYL PHENOL											
	?,3-XYLENOL 3,5-XYLENOL											
	P.STAYLENOL B-ETNYL PHENOL											
	4-XYLENOL											
	ATECHOL											
	RESIDUE RESORCINOL											
	MKNOWS											
1												

XYLENOL COLUMN

		••						
STREAM NO		14			15	16		6
STREAM DESCRIPTION	o-CRESOL COLUMN BOTTOMS	n/pCRESOL	o-ETHYL PHENOL	m/pCRESOLUMN COLUMN BOTTOMS	XYLENOLS	WEAVIES	PHEN EXT NEUTRAL OIL	TOTAL MEUTRAL OIL
COMPONENT	#/HR	S/HR	S/HR	Ø/WR	Ø/HR	S/NR	#/HR	#/HR
WATER	0	0		0	0			•
METHANOL		•		·	v	0	0	0
MEXAME							Ŏ	Ŏ
SURFUIC ACID	0			0	0	0	0	0
LIGHTS PYRIDINES	0	0		0	0	0	280	280
PHENOL	ŏ	Ö		Ö	0	0	145	145
NEUTRAL OIL	ŏ	ŏ		ŏ	Ŏ	ŏ	570	570
o-CRESOL	44	44		Ö	Ŏ	ŏ	Ŏ	0
p-CRESOL	4000	_		0	0	0	0	0
m-CRESOL GUATACOL	1922 0	1826	0	% 0	96 0	0	40	40
O-ETHYL PHENOL	57		0	3	3	0	0	0
2,4-XYLENOL	1029		•	978	929	49	21	70
2,5-XYLENOL	0			0		0	0	Ō
2,6·XYLENOL p·ETHYL PHENOL	0			0		0	0	0
2.3-XYLENOL	0			0		0	0	0
3,5-XYLENOL	ŏ			ŏ		Ö	ŏ	Ö
m-ETHYL PHENOL	106			106	49	58	ž	60
3,4-XYLENOL	0			0		0	_	0
CATECHOL RESIDUE	0 377			0	•	_0	_	0
RESORCINOL	3,,,			377 0	0	377 0	3390 0	3767 0
UNKNOWNS	ŏ			ŏ		Ö	ŏ	ŏ
_						•	•	•
TOTAL #/HR	3535	1975	0	1560	1077	483	4448	4931
API S.G.	5.9 1.024	5.9 1.034	5.9 1.030	14.4	13.6 0.975	.0.5	2.1	0.7
#/GAL	8.54	8.63	8.59	8.43	8.13	1.08 9.01	1.059 8.834	1.07 8.93
BSD	237	131	0.50	106	76	31	288	316
BCD	210	116	0	94	67	27	256	281
WTX / RECOVERY		RECOVERY	RECOVERY		RECOVERY			
WATER								
METHANOL								
MEXANE								
SURFUIC ACID LIGHTS								
PYRIDINES								
PHENOL								
NEUTRAL OIL								
o·CRESOL p·CRESOL								
#- CRESOL		95						
GUATACOL		•••						
O-ETHYL PHENOL		95	0					
2,4·XYLENOL		5			95			
2,5-XYLENOL 2,6-XYLENOL								
P-ETHYL PHENOL								
2,3-XYLENOL								
3,5-XYLENOL								
M-ETHYL PHENOL					5			
3,4-XYLENOL CATECHOL								
RESIDUE					0			
RESORCINOL					•			
UNKNOWNS								

		! : !			:			·
,					:	; ; ;		
2		11 RECYCLE 6AS VAPOR	120.0000 710.0000 168.4035 691.6453 -0.1986	1.0260	000000000000000000000000000000000000000	000000000000000000000000000000000000000	684.4674 0.42 0.06 1.8233 4.0741 1.0261 0.0106	000000000000000000000000000000000000000
PAGE B-		10 PURGE GAS VAPOR	120.0000 710.0000 5.3009 21.7711 -0.0062 -286.8285	21.777 0.00 1.8091 6.1671 0.4569	0000000	000000	21.5452 0.01 1.8293 4.0754 0.4533 1.0261	000000000000000000000000000000000000000
		COLD SEP LIQ	12C.0000 710.0000 82.3024 6446.4883 0.2584 4C.0906 78.3268	0000000	64664 541.70 21.83 0.4189 78.359 50.8668 36.4288	6443.5264 78.4478 10.1772 -75.8712 515.0099 678.9440	000000000000000000000000000000000000000	6643.5266 641.649 78.6437 78.6475 50.8653 36.1375
Partie 20		8 WASH WATER LIGUID	100,0000 735,0000 138,7735 2499,9995 0,1750 69,9971		2499,9995 172.41 7.15 0.9941 18.0150 61.9844 10.0635		00000000	000000000000000000000000000000000000000
		7 REACTOU FFFL VAPOR	475.0000 775.0000 264.3793 7321.4014 2.5851 353.3820 27.6928	7321,4014 0.93 2.41 0.6083 27,6928 2,1894 0.9773	0000000	000000000000000000000000000000000000000	7487.2246 0.00 0.10 0.413 27.733 2.2128 0.0768	000000000000000000000000000000000000000
TM PROCESS SOLUTION	RCPERTIES	5 REACTOR INLE VAPOR	425.0000 400.0000 277.6176 7324.1631 2.2362 305.3162 26.3922	7324.1631 0.69 2.53 0.6138 26.3922 2.2787 0.9757	0000000		7316.9984 0.899 0.111 0.1119 26.394 2.2744 0.9756 0.9756	00000000000000000000000000000000000000
• U Z H	RY PROCESSOR P	5 MAKE-UP GAS WAPOR	70.0000 340.0000 31.0000 62.8398 -0.0644 -1030.5195	62.5395 0.135 3.4261 2.0174 1.0169			82 88 88 88 88 88 88 88 88 88 88 88 88 8	
VERSION : SIMULATION SCIENCES PROJECT OF JET FUELS PROBLEM MAPHOT	321 4 3 4	STREAM PARE	TEMPERATURE, DEG F PRESSURE, PSIA RATE LO FOLS/HR RATE LO /HR ENTHALPY MH BTU /HR ENTHALPY MH BTU /HR ENTHALPY MH BTU /HR	ATE LB /AR PLASE *** ACT.RATE F13/SEC STD.RATE RR F13/OAY CP. STU /LB F ACT.SECULAR MEIGHT.** ACT.SECS.SECULAR WEIGHT.***	AATE LB LB LB AATE AATE ACT. AATE BBL/BAY STO. LV RATE BBL/BA CP. BTU /LB F MOLECULAR MEIGHT ACT. DENS LB /FT3 STO. AFI GRAVITY	MATE DAY MASIS MALECULAR MEIGHT UOP K FLASH POINT, DEG F CRIT. TERP, PSIA	PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE OF PASE O	RATE LOUID PHASE *** RATE LO /HR ACT.WATE GBL/DAY CP. BTU /LG f HOLECULAR WEIGHT ACT.DENS LO /FTZ STO. A.1 GRAVITY

ERSION A				)	
2 5		PROCESS		PAGE 13	
ROBLER NAPST		SCLUTION		DEC 31 1987 ·	
NAPHTHA MOT PRODUCT S'	TRIPPER				
TREAM 10.	12			1,	
STREAM PHASE	SOUF HEG	STAS PRO	STAR OFFGAS	STAB SOUR HZO	
Z Z	20.000	7.528			
RESSURE, PS	800	70.000	40.000 40.000		
1/8/10 HOL8/1	147.145	73.826	8.443	0.030	
NTHALPY AN STU	CA70-0	6135.1143	313.3105	0.5570	
IALPY BTU /L	321	2.448	8.577	7.000	
OLECULAR WEI	8.087	660.	37.107	0.15	
POR PHASE .					
EX/ 81	2	8	5	8	
TE NA F13/D	ء د	•	~	0.0	
. n /ce F	999	900	0.0	000	
ILAR WEIGHT	000	8	107		
COMPRESSIBILITY (2).	000000	0000	0.3844	00000	
LIGUID PHASE .			•		
ATE LO /HR	495	116			
ACT, RATE BBL	185	576	00.0		
P. DT. //B E	?;	20.3	0.0	0	
MOLECULAR MEIGHT	8.087	4.6	900	766-0	
CT.DENS LB	2	808		210.	
TO. API GRAVITY	0.894	2.512	.00	: ;	
** ORY BASIS *					
E Le /#R	7.683	5.101	.000	.000	
DP K	5.125	8	000	000	
ISH POINT, DEG F	-5.3046	10.0651	0000	0.000	
T. TEMP, F	214.937	61.628	000		
T. PRE	12.352	.329	000	8	
TA VAPOR PHASE					
CT.RATE FT	0000	00000	7,	8	
TO-RATE MM FT3/MR	9	90	Y	Ģ	
P. 6TU /LG F	200.	.000	0.397	90	
	25	88	.413	000	
OMPRESSIBILITY (2)			.367	88	
ISCOSITY, CP	200	.000	0.0102	000000000000000000000000000000000000000	
** LIGUID PHASE +				  -  -	
ATE LB /HR	8	101	00	8	
LickATE 68L/D Poblic /20 7	•	76.2	0.0	0	
OLECULAR MEIGHT	5.125	0.64.0	SSS	900	
DENS LB /FT	36.0032	45.5030	000000000000000000000000000000000000000	0.000	
IA WE TOWN	.7e1	2.512	ē.	660	
		:	•	ξ	