MATAH 2 Семестр

Носорев Константин

2019

Содержание

1	$\Gamma \Pi I$	ABA]
	1.1	Опред	целение ряда. Основные свойства]
		1.1.0	Конечные суммы]
		1.1.1	Числовые ряды]
		1.1.2	Основные свойства	4
		1.1.3	Неотрицательные числовые ряды	4
		1.1.4	Телескопический признак. Эталонный ряд $\sum_{k=1}^{\infty} \frac{1}{n^{p}}$.	

1 ГЛАВА

1.1 Определение ряда. Основные свойства

1.1.0 Конечные суммы

$$a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

- $\sum_{k=1}^{n} a_n + \sum_{k=1}^{n} b_n = \sum_{k=1}^{n} (a_n + b_n)$
- $\lambda \sum_{k=1}^{n} a_n = \sum_{k=1}^{n} (\lambda a_n)$

1.1.1 Числовые ряды

Определение 1. Числовым рядом называется выражение вида

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \dots + a_n + \dots$$

где $a_k \in \mathbb{R}$ - общий член последовательности, а $S_1=a_1, S_2=a_1+a_2, S_n=\sum_{k=1}^n a_k$ - частичные суммы ряда

Определение 2. Числовой ряд называется *сходящимся*, если сходится последовательность его частичных сумм

$$\lim_{n o \infty} S_n = S$$
 - сумма ряда, $\sum_{k=1}^\infty a_k = S \in \mathbb{R}$

Если предел бесконечен или не существует, то ряд расходится

Пример. $\sum_{k=0}^{\infty}q^k$ - геометрическая прогрессия

$$S_0 = 1, S_1 = 1 + q, S_2 = 1 + q + q^2, \dots, S_n = \sum_{k=1}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Если |q|<1, то $S_n\xrightarrow{n\to\infty}\frac{1}{1-q}$ - ряд сходится Если |q|>1, то $S_n\xrightarrow{n\to\infty}\infty$ - ряд расходится Если q=1, то $S_n\xrightarrow{n\to\infty}\infty$ - ряд расходится Если q=-1, то $S_n=\begin{cases} 0, & n=2k\\ 1, & n=2k+1 \end{cases}$ - ряд расходится

1.1.2 Основные свойства

Теорема 1 (Критерий Коши).

$$\sum_{k=1}^{\infty} a_k \Leftrightarrow \forall \varepsilon > 0 \; \exists N : \; \forall m \ge n > N \; |\sum_{k=n}^{m} a_k| < \varepsilon$$

Доказательство. Используя критерий Коши для посл-ти частичных сумм

$$\sum_{k=1}^{\infty} a_k$$
 - сходится $\Leftrightarrow S_n = \sum_{k=1}^n a_k$ - сходится

$$\xrightarrow{\text{По кр. Коши}} \forall \varepsilon > 0 \exists N : \forall m \ge n-1 > N |S_m - S_{n-1}| < \varepsilon$$

$$\forall \varepsilon > 0 \exists N : \forall m \ge n \ge N+1 |\sum_{k=0}^m a_k| < \varepsilon$$

Пример.

$$\sum_{k=1}^{\infty} \frac{1}{n}$$
 - расходится $\sum_{k=1}^{\infty} \frac{1}{n^2}$ - сходится

Следствие. Если в ряду изменить произвольным образом конечное число слагаемых, то новый ряд сходится, когда сходится исходный, и новый ряд расходится, если исходный расходится

Замечание 1. Сходимость ряда независит от поведения конечного числа слагаемых

Теорема 2 (Необходимый признак сходимости ряда). $Ecnu \sum_{k=1}^{\infty} a_k - cxodumcs$, $mo \lim_{n\to\infty} a_n = 0$

Следствие. Если $\lim_{n\to\infty} a_n \neq 0$, то ряд расходится

Доказательство.

$$a_n = S_n - S_{n-1} \Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - S_{n-1} = 0$$

Теорема 3 (Арифметические свойства). Пусть ряды $\sum_{k=1}^{\infty} a_k \sum_{k=1}^{\infty} b_k$ - сходятся, тогда

$$\forall \lambda, \mu \in \mathbb{R} \sum_{k=1}^{\infty} (\lambda a_k + \mu b_k) = \lambda \sum_{k=1}^{\infty} a_k + \mu \sum_{k=1}^{\infty} b_k$$
 - сходится

Доказательство. Пусть $S_n^A = \sum_{k=1}^n a_k \to S^A \ S_n^B = \sum_{k=1}^n b_k \to S^B$ Рассмотрим $\sum_{k=1}^{\infty} (\lambda a_k + \mu b_k)$,

$$S_n = \sum_{k=1}^n \lambda a_k + \mu b_k = \lambda \sum_{k=1}^n a_k + \mu \sum_{k=1}^n b_k = \lambda S_n^A + \mu S_n^B \Rightarrow$$

$$\exists \lim_{n \to \infty} S_n = \lim_{n \to \infty} (\lambda S_n^a + \mu S_n^B) = \lambda S^A + \mu S^B$$

Замечание. В частности $\sum_{k=1}^{\infty} \lambda a_k = \lambda \sum_{k=1}^{\infty} a_k$

Неотрицательные числовые ряды

Рассмотрим $\sum_{k=1}^{\infty} a_k, a_k \geq 0, S_n \nearrow$

Теорема 4 (Критерий сходимости ряда с неотрицательными числами). Pяд, члены короторого неотрицательны, сходится \Leftrightarrow посл-ть частичных сумм ограничена

Доказательство.

 \Rightarrow Ряд сходится $\xrightarrow{\Pi_0 \text{ определению}}$ последовательность частичных сумм сходится $\xrightarrow{\text{По свойству сходящейся посл-ти}} \{S_n\}$ - ограничена $\Leftarrow \{S_n\}$ - ограничена и $S_n\nearrow \xrightarrow{\text{По th. Вейерштрасса}} \{S_n\}$ - сходится $\xrightarrow{\text{По определению}}$

$$\Leftarrow \{S_n\}$$
 - ограничена и S_n \nearrow \Longrightarrow $\{S_n\}$ - сходится \Longrightarrow ряд сходится

Теорема 5 (Признак сравнения). Пусть

$$\exists N > 0 : \forall n > N \sum_{k=n}^{\infty} a_k, \sum_{k=n}^{\infty} b_k, a_k \ge 0, b_k \ge 0 \ u \ a_k \le b_k$$

- 1. Из сходимости $\sum_{k=1}^{\infty} b_k \Rightarrow cxoдимость ряда \sum_{k=1}^{\infty} a_k$
- 2. Из расходимости $\sum_{k=1}^{\infty} a_k \Rightarrow pасходимость ряда \sum_{k=1}^{\infty} b_k$

Доказательство. Конченое число членов ряда не влияет на сходимость \Rightarrow будем считать, что $a_k \leq b_k \forall k \geq 1$

1. Пусть
$$S_n^A = \sum_{k=1}^n a_k, S_n^B = \sum_{k=1}^n b_k$$

$$\forall k \geq 1 \ a_k \leq b_k \ \Rightarrow S_n^A \leq S_n^B \ \forall n \ , \ \text{если сходится} \ \sum_{k=1}^\infty b_k$$
 то $S_n^B \nearrow$ и сходится к S^B при $n \to \infty \Rightarrow S_n^A \leq S_n^B \leq S^B \Rightarrow S_n^A \nearrow$ ограничена сверху $S^B \xrightarrow{\text{по th } 4}$ ряд $\sum_{k=1}^\infty a_k$ сходится

2. (от противного) Пусть $\sum_{k=1}^{\infty} a_k$ - расходится, а $\sum_{k=1}^{\infty} b_k$ - сходится, тогда по пункту 1 ряд $\sum_{k=1}^{\infty} a_k$ - сходится $\Rightarrow \bot$

Теорема 6 (Признак сравнения в предельной форме). Пусть

$$\sum_{k=1}^{\infty}a_k,\;\sum_{k=1}^{\infty}b_k,a_k\geq 0$$
 $b_k>0$ $u\;\exists\lim_{n o\infty}rac{a_n}{b_n}=c>0$ - конечное

тогда ряды сходятся и расходятся одновременно

Доказательство.

$$\forall \varepsilon > 0 \exists N > 0: \ \forall n > N \ \left| \frac{a_n}{b_n} - c \right| < \varepsilon$$
$$-\varepsilon < \frac{a_n}{b_n} - c < \varepsilon$$
$$-\varepsilon + c < \frac{a_n}{b_n} < \varepsilon + c$$
$$(-\varepsilon + c)b_n < a_n < (\varepsilon + c)b_n$$

Возьмем $\varepsilon = \frac{c}{2}$

$$\exists N_0 > 0: \ \forall n > N_0$$
$$\frac{c}{2}b_n < a_n < \frac{3c}{2}b_n$$

- 1. Пусть $\sum_{k=1}^{\infty} b_k$ сходится $\xrightarrow{\text{по сл-вию из th. Коши}} \sum_{k=N_0}^{\infty} b_k$ сходится $\xrightarrow{\text{по th 3}} \sum_{k=N_0}^{\infty} \frac{3c}{2} b_n$ сходится $\xrightarrow{\text{по th 5}} \sum_{k=N_0}^{\infty} a_n$ сходится $\xrightarrow{\text{по сл-вию из th. Коши}} \sum_{k=1}^{\infty} a_n$ сходится
- 2. Пусть $\sum_{k=1}^{\infty} b_k$ расходится $\xrightarrow{\text{по сл-вию из th. Коши}} \sum_{k=N_0}^{\infty} b_k$ расходится $\xrightarrow{\text{по th 3}} \sum_{k=N_0}^{\infty} \frac{c}{2} b_n$ расходится $\xrightarrow{\text{по th 5}} \sum_{k=N_0}^{\infty} a_n$ расходится $\xrightarrow{\text{по сл-вию из th. Коши}} \sum_{k=1}^{\infty} a_n$ расходится

1.1.4 Телескопический признак. Эталонный ряд $\sum_{k=1}^{\infty} rac{1}{n^p}$

Теорема 7 (Телескопический признак). Пусть $a_n \searrow, a_n \ge 0$ ряд $\sum_{k=1}^{\infty} a_n$ - $cxodumcs \Leftrightarrow cxodumcs \sum_{k=0}^{\infty} 2^n a_{2^n}$

Доказательство. Правый ряд $a_1 + 2a_2 + 4a_4 + \dots$

Рассмотрим
$$a_2 < a_2 < a_1$$

$$2a_4 \le a_3 + a_4 \le 2a_2$$
$$4a_8 \le a_5 + a_6 + a_7 + a_8 \le 4a_4$$

 $2^{n}a_{2^{n+1}} \le \sum_{k=2^{n+1}}^{2^{n+1}} a_k \le 2^{n}a_{2^n}$