Задача 3. Алгоритм RSA

Имя входных файлов: задается в параметрах командной строки

Имя выходного файла: стандартный вывод

Ограничения по времени: - Ограничения по памяти: -

Реализовать следующие алгоритмы работы с длинными числами и алгоритмы, реализующие арифметику сравнений:

- 1. Add сложение двух чисел по модулю N
- 2. Multiply умножение двух чисел по модулю ${\sf N}$
- 3. ModExp возведение в степень по модулю N
- 4. Euclid алгоритм Эвклида
- 5. ExtendedEuclid расширенный алгоритм Эвклида
- 6. Primality проверка числа на простоту
- 7. Primality2 проверка числа на простоту
- 8. GetRandomPrim получение случайного простого числа
- 9. Алгоритм RSA

Величину разрядности n выбрать в зависимости от номера варианта:

№№ вариантов	Разрядность, бит
1, 6, 11, 16	128
2, 7, 12, 17	256
3, 8, 13, 18	512
4, 9, 14, 19	1024
5, 10, 15, 20	2048

Формат входных данных

```
Для алгоритма Add:
```

Для алгоритма Multiply:

Для алгоритма ModExp:

Для алгоритма Euclid, ExtendedEuclid:

Для алгоритма Primality, Primality2:

Для алгоритма GetRandomPrim:

project> rnd

Для алгоритма RSA:

Пусть

x - значение, записанное в <file1>;

у - значение, записанное в <file2>,

N – значение, переданное параметром <mod>.

Формат выходных данных

Для алгоритма Add: значение $x+y \mod N$

Для алгоритма Multiply: значение x*y mod N

Для алгоритма ModExp: значение $x^y \mod N$

Для алгоритма Euclid: нод (х, у)

Для алгоритма ExtendedEuclid: пара чисел, возвращаемых алгоритмом Extended uclid Для алгоритма Primality, Primality2: 1 – если число простое, 0 – если составное.

Для алгоритма GetRandomPrim: случайное число.

Для алгоритма RSA: необходимо продемонстрировать пошаговую работу алгоритма с выводом промежуточных результатов, а также осуществить проверку правильности шифрования, проведя дешифровку полученного закодированного числа.