# **Proyecto 1 Data mining**

## Realizado por:

## **Nombres**

- Augusto Alonso 181085
- · Joohno Molina -
- Mario Sarmientos -

#### In [1]:

## !pip install plotly

Requirement already satisfied: plotly in / Library/Frameworks/Python.framework/Versio ns/3.7/lib/python3.7/site-packages (4.14.3)

Requirement already satisfied: six in /Lib rary/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from plot ly) (1.11.0)

Requirement already satisfied: retrying>= 1.3.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from plotly) (1.3.3)

#### In [2]:

```
!pip install pyreadstat
!pip install seaborn
!pip install xlrd==1.2.0
!pip install sklearn
```

Requirement already satisfied: pyreadstat in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.1.0)

Requirement already satisfied: pandas>0.2 4.0 in /Library/Frameworks/Python.framewor k/Versions/3.7/lib/python3.7/site-packages (from pyreadstat) (1.1.5)

Requirement already satisfied: python-date util>=2.7.3 in /Library/Frameworks/Python. framework/Versions/3.7/lib/python3.7/site-packages (from pandas>0.24.0->pyreadstat) (2.7.3)

Requirement already satisfied: numpy>=1.1 5.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>0.24.0->pyreadstat) (1.20.2) Requirement already satisfied: pytz>=2017. 2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>0.24.0->pyreadstat) (2019.3) Requirement already satisfied: six>=1.5 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas>0.24.0->pyreadstat) (1.11.0)

Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages (0.11.1)

Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.6.2)

Requirement already satisfied: matplotlib>

=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.0.0)

Requirement already satisfied: pandas>=0.2 3 in /Library/Frameworks/Python.framework/ Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.5)

Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.20.2)

Requirement already satisfied: pyparsing!= 2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/ Frameworks/Python.framework/Versions/3.7/1 ib/python3.7/site-packages (from matplotli b>=2.2->seaborn) (2.2.2)

Requirement already satisfied: python-date util>=2.1 in /Library/Frameworks/Python.fr amework/Versions/3.7/lib/python3.7/site-pa ckages (from matplotlib>=2.2->seaborn) (2.7.3)

Requirement already satisfied: cycler>=0.1 0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0) Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.0.1)

Requirement already satisfied: six in /Lib rary/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from cycl er>=0.10->matplotlib>=2.2->seaborn) (1.11.0)

Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Ve rsions/3.7/lib/python3.7/site-packages (fr om kiwisolver>=1.0.1->matplotlib>=2.2->sea born) (39.0.1)

Requirement already satisfied: pytz>=2017. 2 in /Library/Frameworks/Python.framework/

```
Versions/3.7/lib/python3.7/site-packages
(from pandas>=0.23->seaborn) (2019.3)
Requirement already satisfied: xlrd==1.2.0
in /Library/Frameworks/Python.framework/Ve
rsions/3.7/lib/python3.7/site-packages (1.
2.0)
Requirement already satisfied: sklearn in
/Library/Frameworks/Python.framework/Versi
ons/3.7/lib/pvthon3.7/site-packages (0.0)
Requirement already satisfied: scikit-lear
n in /Library/Frameworks/Python.framework/
Versions/3.7/lib/python3.7/site-packages
(from sklearn) (0.24.1)
Requirement already satisfied: joblib>=0.1
1 in /Library/Frameworks/Python.framework/
Versions/3.7/lib/python3.7/site-packages
(from scikit-learn->sklearn) (1.0.1)
Requirement already satisfied: numpy>=1.1
3.3 in /Library/Frameworks/Python.framewor
k/Versions/3.7/lib/python3.7/site-packages
(from scikit-learn->sklearn) (1.20.2)
Requirement already satisfied: threadpoolc
tl>=2.0.0 in /Library/Frameworks/Python.fr
amework/Versions/3.7/lib/python3.7/site-pa
ckages (from scikit-learn->sklearn) (2.1.
0)
Requirement already satisfied: scipy>=0.1
9.1 in /Library/Frameworks/Python.framewor
k/Versions/3.7/lib/python3.7/site-packages
(from scikit-learn->sklearn) (1.6.2)
```

## In [3]:

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import pyreadstat
import numpy as np
import plotly.express as px
```

#### In [4]:

#### In [5]:

#### In [6]:

```
defunciones = pd.concat(lista)
defunciones.shape
defunciones.columns
```

#### Out[6]:

#### In [7]:

```
defunciones.head()
```

## Out[7]:

|   | Depreg | Mupreg | Mesreg | Añoreg | Depocu | Mupocu | A |
|---|--------|--------|--------|--------|--------|--------|---|
| 0 | 5.0    | 0505   | 1.0    | 9.0    | 5.0    | 0505   |   |
| 1 | 1.0    | 0101   | 9.0    | 9.0    | 1.0    | 0101   |   |
| 2 | 22.0   | 2206   | 9.0    | 9.0    | 22.0   | 2206   |   |
| 3 | 2.0    | 0201   | 12.0   | 9.0    | 2.0    | 0201   |   |
| 4 | 1.0    | 0101   | 5.0    | 9.0    | 1.0    | 0101   |   |

5 rows × 32 columns

## In [8]:

defunciones = defunciones[defunciones.columns[:-6]]
defunciones.head()

## Out[8]:

|   | Depreg | Mupreg | Mesreg | Añoreg | Depocu | Mupocu | A |
|---|--------|--------|--------|--------|--------|--------|---|
| 0 | 5.0    | 0505   | 1.0    | 9.0    | 5.0    | 0505   |   |
| 1 | 1.0    | 0101   | 9.0    | 9.0    | 1.0    | 0101   |   |
| 2 | 22.0   | 2206   | 9.0    | 9.0    | 22.0   | 2206   |   |
| 3 | 2.0    | 0201   | 12.0   | 9.0    | 2.0    | 0201   |   |
| 4 | 1.0    | 0101   | 5.0    | 9.0    | 1.0    | 0101   |   |

5 rows × 26 columns

# Observamos que tenemos algunas columnas con data perdida

#### In [9]:

## defunciones.isna().any()

#### Out[9]:

Depreg False Mupreq False False Mesrea False Añoreg Depocu False Mupocu False True Areaq Sexo False Diaocu False False Mesocu True Añoocu Edadif False Perdif False Getdif True Ecidif False Ocudif True Dnadif False Mnadif False Nacdif False Dredif False Mredif False Caudef False Asist False False 0cur Cerdef False False year dtype: bool

Se decidio llenar los vacios con 0 Puesto que si la columna es categórica entonces no habría problema porque a la hora de contar no se categorizaría al elemento

## In [10]:

```
data = defunciones.fillna(0)
data.head()
```

## Out[10]:

|   | Depreg | Mupreg | Mesreg | Añoreg | Depocu | Mupocu | A |
|---|--------|--------|--------|--------|--------|--------|---|
| 0 | 5.0    | 0505   | 1.0    | 9.0    | 5.0    | 0505   |   |
| 1 | 1.0    | 0101   | 9.0    | 9.0    | 1.0    | 0101   |   |
| 2 | 22.0   | 2206   | 9.0    | 9.0    | 22.0   | 2206   |   |
| 3 | 2.0    | 0201   | 12.0   | 9.0    | 2.0    | 0201   |   |
| 4 | 1.0    | 0101   | 5.0    | 9.0    | 1.0    | 0101   |   |

5 rows × 26 columns

#### In [11]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 852835 entries, 0 to 83070
Data columns (total 26 columns):
             Non-Null Count
#
     Column
                               Dtype
             _____
___
     _____
     Depreg 852835 non-null
                               float64
 0
     Mupreg 852835 non-null
 1
                               object
 2
                               float64
     Mesreg 852835 non-null
 3
     Añoreg 852835 non-null
                               float64
 4
                               float64
     Depocu
             852835 non-null
 5
             852835 non-null
     Mupocu
                               object
 6
                               float64
     Areag
             852835 non-null
 7
     Sexo
             852835 non-null
                               float.64
 8
     Diaocu
             852835 non-null
                               float64
 9
             852835 non-null
                               float64
     Mesocu
 10
     Añoocu
            852835 non-null
                               float64
     Edadif 852835 non-null
 11
                               float64
 12
     Perdif
             852835 non-null
                               float64
 13
     Getdif
             852835 non-null
                               float64
 14
     Ecidif
             852835 non-null
                               float64
 15
     Ocudif
             852835 non-null
                               object
                               float64
 16
     Dnadif
             852835 non-null
 17
     Mnadif
             852835 non-null
                               object
 18
     Nacdif
             852835 non-null
                               float64
             852835 non-null
                               float64
 19
     Dredif
 20
     Mredif
             852835 non-null
                               object
 21
     Caudef
             852835 non-null
                               object
     Asist
                               float64
 22
             852835 non-null
 23
             852835 non-null
                               float64
     0cur
 24
             852835 non-null
                               float64
     Cerdef
 25
     vear
             852835 non-null
                               int64
dtypes: float64(19), int64(1), object(6)
memory usage: 175.7+ MB
```

## In [12]:

## data.describe()

## Out[12]:

|       | Depreg        | Mesreg        | Añoreg        |      |
|-------|---------------|---------------|---------------|------|
| count | 852835.000000 | 852835.000000 | 852835.000000 | 8528 |
| mean  | 8.661829      | 6.449960      | 1677.597797   |      |
| std   | 6.703955      | 3.447516      | 750.227793    |      |
| min   | 1.000000      | 1.000000      | 9.000000      |      |
| 25%   | 1.000000      | 3.000000      | 2011.000000   |      |
| 50%   | 9.000000      | 6.000000      | 2014.000000   |      |
| 75%   | 14.000000     | 9.000000      | 2017.000000   |      |
| max   | 22.000000     | 12.000000     | 2019.000000   |      |

#### In [13]:

```
dic = pd.read_excel("Data/diccionario.xlsx", sheet_name="
dic["Valor"].unique()
```

```
Out[13]:
```

```
array(['Departamento de registro', nan, 'M
unicipio de registro',
       'Mes de registro', 'Año de registr
o', 'Departamento de ocurrencia',
       'Municipio de ocurrencia', 'Área ge
ográfica de ocurrencia',
       'Sexo del difunto(a)', 'Día de ocur
rencia', 'Mes de ocurrencia',
       'Edad del difunto(a)', 'Periodo de
edad del difunto(a)',
       'Grupo étnico del difunto(a)', 'Est
ado civil del difunto(a)',
       'Ocupación del difunto(a)',
       'Departamento de nacimiento del dif
unto(a)',
       'Municipio de nacimiento del difunt
o(a)',
       'Nacionalidad del difunto(a)',
       'Departamento de residencia del dif
unto(a)',
       'Municipio de residencia del difunt
o(a)', 'Causa de defuncion',
       'Asistencia recibida', 'Sitio de oc
urrencia', 'Quien certifica'],
      dtype=object)
```

Notese que los departamentos que tienen más fallecidos son Guatemala, Quetzaltenango, Altaverapaz y San Marcos

#### In [14]:

```
a = data["Depocu"].value_counts()
a[:5]
```

#### Out[14]:

| 1.0  | 249554 |
|------|--------|
| 9.0  | 52543  |
| 16.0 | 52122  |
| 12.0 | 50036  |
| 5 0  | 48986  |

Name: Depocu, dtype: int64

#### In [15]:

```
sns.countplot(y=data["Depocu"])
```

#### Out[15]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff4646ed0b8>



Por otro lado los municipios donde más gente fallece es Guatemala, Quetzaltenango, Escuintla y Mazatenango

## In [16]:

```
a = data["Mupocu"].value_counts()
a[:5]
```

## Out[16]:

| 0101 | 169866 |
|------|--------|
| 0108 | 20203  |
| 0501 | 19938  |
| 0901 | 18712  |
| 1601 | 13763  |

Name: Mupocu, dtype: int64

#### In [17]:

```
b = a[:5]
sns.barplot(b.index,b)
```

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

#### Out[17]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff46768eba8>



Los meses donde la gente fallecio mas fuel mes de Enero, Julio y Mayo. Aunque no hay mucha diferencia con el resto. Yo no la consideraría una variable para un modelo puesto que apenas hay alguna diferencia.

## In [18]:

```
a = data["Mesocu"].value_counts()
a[:5]
```

## Out[18]:

```
7.0
         73479
         72792
1.0
3.0
         72758
12.0
         72659
8.0
         72119
4.0
         71605
10.0
         71602
5.0
         71560
```

Name: Mesocu, dtype: int64

#### In [19]:

#### sns.barplot(a.index,a)

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

#### Out[19]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff45c6d59b0>



Si ignoramos la categoría donde se llenaron los datos no disponibles vemos que ha ido en aumento el número de defunciones en Guatemala,

## en este periodo han aumentado más de 10000 muertes

```
In [20]:
```

```
a = data["Añoocu"].value_counts()
a
```

## Out[20]:

| 0.0    | 227103 |
|--------|--------|
| 2017.0 | 163452 |
| 9.0    | 143414 |
| 2018.0 | 83071  |
| 2016.0 | 82565  |
| 2015.0 | 80876  |
| 2011.0 | 72354  |

Name: Añoocu, dtype: int64

#### In [21]:

#### sns.barplot(a.index,a)

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

#### Out[21]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff45d799668>



Claramente vemos como es que los hombres murieron más que las mujeres, sin embargo la proporción es bastante similar

#### In [22]:

```
a = data["Sexo"].value_counts()
a
```

#### Out[22]:

```
1.0 481148
2.0 371687
```

Name: Sexo, dtype: int64

#### In [23]:

```
plt.pie(a,labels=a.index,autopct='%1.2f%%')
plt.title("Hombres y mujeres fallecidos entre 2009 a 201
```

#### Out[23]:

Text(0.5, 1.0, 'Hombres y mujeres fallecid os entre 2009 a 2019')

Hombres y mujeres fallecidos entre 2009 a 2019



Vemos que ha medida que las personas van aumentando de edad también aumenta la probabilidad de fallecer puesto que el histogram tiene una asimetría hacia la izquierda. Sin embargo hasta la izquierda tenemos un gran número de defunciones que son los niños menores de un año

## In [24]:

#### Out[24]:

0.25 29.0 0.50 59.0 0.75 78.0

Name: Edadif, dtype: float64



#### In [25]:

```
from matplotlib import rcParams
rcParams['figure.figsize'] = 7.7,4.27
# Los datos atipicos que removimos aca fueron porque huk
data = data[data["Edadif"] < 200]
data.hist('Edadif',bins=14)</pre>
```

#### Out[25]:



Vemos que las personas que no son del grupo índigena fallecieron más que las personas que si pertenecen a este grupo, pero esta variable no la tomaria en cuenta debido a la poca cantidad de datos

```
In [26]:
```

```
a = data["Getdif"].value_counts()
a
```

## Out[26]:

```
0.0 560119
9.0 103521
2.0 95016
1.0 87019
```

Name: Getdif, dtype: int64

#### In [27]:

#### sns.barplot(a.index,a)

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

#### Out[27]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff42c5503c8>



Vemos que las personas que están solteras fueron las más fallecieron a lo largo de este período

```
In [28]:
```

```
a = data['Ecidif'].value_counts()
a
```

## Out[28]:

```
1.0 536530
2.0 292669
9.0 8519
3.0 7957
```

Name: Ecidif, dtype: int64

#### In [29]:

#### sns.barplot(a.index,a)

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

#### Out[29]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff45da6de10>



Las ocupaciones de las personas que más fallecieron fueron las de trabajos domésticos no remunerados, peones de explotaciones agrícolas, agricultores y trabajadores calificados de cultivos extensivos, Estudiante

## In [30]:

```
a = data['Ocudif'].value_counts()
a[1:6]
```

## Out[30]:

```
9711 81831
9211 54481
9714 43132
6111 23204
9712 18713
Name: Ocudif, dtype: int64
```

#### In [31]:

```
b = a[1:6]
sns.barplot(b.index,b)
```

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

#### Out[31]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff42cc9d0b8>



Los departamentos donde nacieron la mayoria de los difuntos son Guatemala, San Marcos, Alta Verapaz y Huehuetenango

```
In [32]:
```

```
a = data['Dnadif'].value_counts()
a[:9]
```

## Out[32]:

```
1.0 150096
12.0 60023
16.0 56215
13.0 51176
9.0 50694
```

Name: Dnadif, dtype: int64

#### In [33]:

## g = sns.barplot(a.index,a)

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

#### FutureWarning



Las causas principales de fallecimiento fueron: Infarto agudo del miocardio, sin otra especificación, Neumonía, no especificada, Diabetes mellitus no especificada, sin mención de complicación, Muerte sin asistencia, Exposición a factores no especificados, causando otras lesiones y las no especificadas.

#### In [34]:

```
a = data['Caudef'].value_counts()
a[:5]
```

#### Out[34]:

```
      I219
      54027

      J189
      53038

      E149
      29872

      X599
      28308

      R98X
      28099
```

Name: Caudef, dtype: int64

#### In [35]:

```
b = a[:5]
g = sns.barplot(b.index,b)
```

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

#### FutureWarning



La gran mayoría no recibio ninguna asistencia, aunque su proporción es bastante parecida con los que recibieron atención médica, muy por atrás encontramos la asistencia empírica y los otros tipos de asistencia.

```
In [36]:
```

```
a = data['Asist'].value_counts()
a
```

#### Out[36]:

```
1.0 383618
5.0 355526
4.0 93984
9.0 5056
3.0 4361
2.0 3130
```

Name: Asist, dtype: int64

#### In [37]:

## g = sns.barplot(a.index,a)

/Library/Frameworks/Python.framework/Versi ons/3.7/lib/python3.7/site-packages/seabor n/\_decorators.py:43: FutureWarning: Pass t he following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

#### FutureWarning



```
In [38]:
```

```
data['Asist']
Out[38]:
          1.0
0
          4.0
1
2
          4.0
3
          4.0
4
          4.0
83066
          1.0
          1.0
83067
83068
          5.0
83069
          9.0
83070
          1.0
Name: Asist, Length: 845675, dtype: float6
4
```

Podemos observar que a lo largo de los años la cantidad de defunciones ha ido en aumento, podemos observar que en este periodo de 10 años han aumentado las defunciones aproximadamente

#### In [39]:

```
sns.countplot(y=data["year"])
```

#### Out[39]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff45d949438>



## Cruzando variables

En la siguiente tabla cruzamos el departamento donde se registro el difunto y el departamento de residia el difunto, encontramos por ejemplo que son más de 50000 personas las que vivían en el departamento de Guatemala pero sin embargo fallecieron fuera de este departamento

#### In [40]:

| <pre>pd_crosstab = pd.crosstab(data["Depreg"], data["Dredif</pre> | " ] |
|-------------------------------------------------------------------|-----|
| pd_crosstab                                                       |     |
|                                                                   | _   |

| 2.0  | 203  | 8188 | 3     | 5     | 16    | 8     | 2     | 2     | 6     |
|------|------|------|-------|-------|-------|-------|-------|-------|-------|
| 3.0  | 780  | 13   | 14272 | 579   | 228   | 59    | 15    | 17    | 24    |
| 4.0  | 304  | 2    | 261   | 26264 | 53    | 19    | 40    | 28    | 35    |
| 5.0  | 1108 | 35   | 120   | 182   | 39075 | 641   | 60    | 31    | 90    |
| 6.0  | 750  | 15   | 13    | 24    | 168   | 18842 | 6     | 15    | 6     |
| 7.0  | 109  | 6    | 15    | 62    | 21    | 4     | 16825 | 62    | 20    |
| 8.0  | 92   | 2    | 6     | 7     | 9     | 7     | 50    | 22422 | 212   |
| 9.0  | 304  | 8    | 13    | 30    | 101   | 9     | 287   | 1396  | 41876 |
| 10.0 | 207  | 4    | 19    | 35    | 230   | 18    | 633   | 24    | 221   |
| 11.0 | 85   | 3    | 5     | 7     | 57    | 9     | 5     | 14    | 314   |
| 12.0 | 274  | 2    | 2     | 9     | 30    | 7     | 6     | 23    | 212   |
| 13.0 | 93   | 3    | 5     | 5     | 15    | 1     | 12    | 30    | 110   |

#### In [41]:

Ahora cruzamos los grupos de edad y el sexo donde vemos que las mujeres de edad avanzada fueron las personas que más fallecieron en este período de tiempo seguidas de los hombres.

# In [42]:

pd\_crosstab = pd.crosstab(data["Edadrange"], data["Sexo"
pd\_crosstab

## Out[42]:

| Sexo            | 1.0    | 2.0    | All    |
|-----------------|--------|--------|--------|
| Edadrange       |        |        |        |
| 0               | 9738   | 5871   | 15609  |
| Adolescente     | 32178  | 16902  | 49080  |
| Adulto          | 62799  | 34421  | 97220  |
| Adulto 2        | 70517  | 62282  | 132799 |
| Edad avanzada   | 175495 | 176217 | 351712 |
| Joven           | 66093  | 24456  | 90549  |
| Menos de un año | 20047  | 16770  | 36817  |
| Niño            | 39863  | 32026  | 71889  |
| All             | 476730 | 368945 | 845675 |

### In [43]:

sns.heatmap(pd crosstab,annot=True)

### Out[43]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff464846048>



Los hombres solteros fueron las personas que más fallecieron en este período seguidos de las mujeres solteras

# In [44]:

```
pd_crosstab = pd.crosstab(data["Ecidif"], data["Sexo"],
pd_crosstab
```

# Out[44]:

| Sexo   | 1.0 2.0 |        | All    |
|--------|---------|--------|--------|
| Ecidif |         |        |        |
| 1.0    | 296156  | 240374 | 536530 |
| 2.0    | 170674  | 121995 | 292669 |
| 3.0    | 4275    | 3682   | 7957   |
| 9.0    | 5625    | 2894   | 8519   |
| ΔII    | 476730  | 368945 | 845675 |

### In [45]:

sns.heatmap(pd crosstab,annot=True)

### Out[45]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff4649947f0>



En la siguiente tabla comparamos la causa de defunción con el departamento donde sucede y vemos que en Guatemala es donde más gente fallece por ataques al corazón, seguido de Quetzaltenango y Alta Verapaz.

Con la Neumonía tenemos a Alta Verapaz como el departamento donde más gente muere por esto, esto puede ser debido a sus temperaturas frías y sus altas temperaturas, seguido de Guatemala y Totonicapán.

### In [46]:

```
pd_crosstab = pd.crosstab(data["Caudef"], data["Dredif"]
pd_crosstab.sort_values("All",ascending=False).head(6)
```

### Out[46]:

| Dredif | 1.0    | 2.0   | 3.0   | 4.0   | 5.0   | 6.0   | 7    |
|--------|--------|-------|-------|-------|-------|-------|------|
| Caudef |        |       |       |       |       |       |      |
| All    | 195477 | 11183 | 17437 | 29860 | 45806 | 23197 | 1888 |
| I219   | 12901  | 1594  | 996   | 1560  | 3542  | 1869  | 6    |
| J189   | 5305   | 557   | 724   | 2645  | 1718  | 852   | 236  |
| E149   | 8917   | 478   | 736   | 1108  | 1923  | 746   | 5{   |
| X599   | 8151   | 295   | 737   | 1083  | 1679  | 710   | 59   |
| R98X   | 1613   | 54    | 333   | 491   | 2507  | 1058  | 58   |

6 rows × 25 columns

A continuación hacemos una tabla del rango de edad y la causa de muerte, donde vemos que las personas mayores fallecieron a causa de enfermedades del corazón, seguida de la diabetes y muerte sin asistencia.

El segundo grupo más afectado son los adultos que se encuentran entre los 50 y 65 años de edad

# In [47]:

pd\_crosstab = pd.crosstab(data["Caudef"], data["Edadrance
pd\_crosstab.sort\_values("All",ascending=False).head(6)

# Out[47]:

| Edadrange | 0     | Adolescente | Adulto | Adulto 2 | Edac<br>avanzada |
|-----------|-------|-------------|--------|----------|------------------|
| Caudef    |       |             |        |          |                  |
| All       | 15609 | 49080       | 97220  | 132799   | 351712           |
| I219      | 727   | 347         | 4103   | 9010     | 38048            |
| J189      | 501   | 1447        | 2493   | 4634     | 26023            |
| E149      | 414   | 71          | 3272   | 9255     | 16198            |
| X599      | 958   | 3444        | 5501   | 3897     | 4771             |
| R98X      | 432   | 925         | 2969   | 4714     | 14867            |

### In [48]:

a = pd\_crosstab.sort\_values("All",ascending=False).head(
sns.heatmap(a)

### Out[48]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff42da990b8>



# **Aplicando Kmeans**

```
In [49]:
```

```
from sklearn.cluster import KMeans
data = data.select_dtypes(exclude=['object'])
```

```
In [50]:
```

```
lista2 = []
for i in range(1,11):
    kmeans = KMeans(n_clusters = i, max_iter = 300)
    kmeans.fit(data)
    lista2.append(kmeans.inertia_)
```

Al hacer la gráfica de codo vemos que el número optimo de clusters para este conjunto de datos es de 4 puesto que es el que menor error cuadrado tiene y práctiamente tiene la misma precisión con más clusters

### In [51]:

```
plt.plot(range(1,11),lista2)
plt.title("Gráfica de codo")
plt.xlabel("Número de clusters")
plt.ylabel("Within-Cluster-Sum-of-Squares")
```

### Out[51]:

Text(0, 0.5, 'Within-Cluster-Sum-of-Square
s')



### In [52]:

```
# Create a KMeans instance with 3 clusters: model
model = KMeans(n_clusters = 4)

# Fit model to points
model.fit(data)
```

### Out[52]:

KMeans(n\_clusters=4)

Creado ya el modelo creamos una nueva columna para ver a donde pertenece cada individuo

### In [53]:

```
data['Clusters'] = model.labels_
sns.countplot(y=data["Clusters"])
```

## Out[53]:

<matplotlib.axes.\_subplots.AxesSubplot at
0x7ff4647e3438>



Note que el sexo no es un factor tan importante en los primeros 3 clusters, solamente en el cluster 3 donde la mayoria son hombres

```
In [54]:
```

```
pd_crosstab = pd.crosstab(data["Clusters"], data["Sexo"]
pd_crosstab
```

## Out[54]:

| Sexo     | 1.0      | 2.0      |
|----------|----------|----------|
| Clusters |          |          |
| 0        | 0.562266 | 0.437734 |
| 1        | 0.559240 | 0.440760 |
| 2        | 0.576605 | 0.423395 |
| 3        | 0.770915 | 0.229085 |
| All      | 0.563727 | 0.436273 |

En todos los clusters se mantiene casi la misma proporcion en cuanto al departamento donde fallecieron menos en el cluster 3

## In [55]:

```
pd_crosstab = pd.crosstab(data["Clusters"], data["Depocu
pd_crosstab
```

## Out[55]:

| Depocu   | 1.0      | 2.0      | 3.0      | 4.0      | 5.0      |
|----------|----------|----------|----------|----------|----------|
| Clusters |          |          |          |          |          |
| 0        | 0.291107 | 0.010598 | 0.021784 | 0.035304 | 0.057093 |
| 1        | 0.289857 | 0.010812 | 0.022384 | 0.035110 | 0.058710 |
| 2        | 0.299848 | 0.011265 | 0.020830 | 0.034229 | 0.053205 |
| 3        | 0.755556 | 0.006209 | 0.009477 | 0.003268 | 0.028105 |
| All      | 0.293554 | 0.010815 | 0.021917 | 0.034898 | 0.057247 |

5 rows × 22 columns

Notemos que los que pertenecen al cluster 2 y 1 tienen una mayor proporcion de personas con edad avanzada que el cluster 0

### In [56]:

### Out[56]:

| Edadrange | drange 0 Adolescente Adu |          | Adulto   | Adulto 2 | av |
|-----------|--------------------------|----------|----------|----------|----|
| Clusters  |                          |          |          |          |    |
| 0         | 0.018225                 | 0.057650 | 0.113625 | 0.157893 | 0  |
| 1         | 0.018396                 | 0.055920 | 0.114011 | 0.160357 | 0  |
| 2         | 0.019229                 | 0.065130 | 0.117844 | 0.145121 | 0  |
| 3         | 0.009150                 | 0.086275 | 0.226471 | 0.130065 | 0  |
| All       | 0.018457                 | 0.058036 | 0.114961 | 0.157033 | 0  |

## In [59]:

```
data2 = data.select_dtypes(exclude=['object'])
X = data2.iloc[:,:].values
from sklearn.metrics import silhouette_score
grupos = [KMeans(n_clusters = i, max_iter = 300).fit(X)
```

```
In [*]:
scores = [silhouette_score(X, model.labels_) for model i
scores
In []:
```