Technische Universiteit
Eindhoven
University of Technology

Components in Wireless Technologies

Module 1:
Transmission Line
Theory

Sander Bronckers

Transmission Lines of a 24 GHz Low-Noise Amplifier

Let's start investigating transmission lines, using Qucs

Free online book:

https://arxiv.org/abs/1911.08484

One of the goals of today is to understand this!

Transmission Line Theory

Content

- Telegrapher Equations
- Wave Propagation on a Transmission Line
- The Lossless Transmission Line

Examples of transmission line	Schematic view	Field mode
Parallel wires and twisted pair		TEM
Coaxial		TEM
Micro-/Strip and coplanar waveguide		Quasi-TEM
Hollow waveguides		Non-TEM

 Following theory is derived for transmission lines with TEM field modes!

Basic Transmission line along z-axis

- Two-wire line representation
- Tline with TEM wave propagation has at least two conductors
- A short piece of length is Δz ($<<\lambda$) and can be modelled as a lumped-element circuit
- Question: How???

Lumped-element circuit model

R: series resistance per unit length (Ohm/m)

L: series inductance per unit length (H/m)

G: shunt conductance per unit length (S/m)

C: shunt capacitance per unit length (F/m)

Physical interpretation

"Simplified view"

Both Electric and Magnetic fields are present in the transmission lines

 These fields are perpendicular to each other and to the direction of wave propagation for TEM mode waves

Electric field is established by a potential difference between two conductors.

Implies equivalent circuit model must contain capacitor.

Magnetic field induced by current flowing on the line

Implies equivalent circuit model must contain inductor.

Telegrapher Equations (Time Domain)

Apply Kirchhoff's voltage and current laws:

$$v(z,t) - R\Delta z i(z,t) - L\Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z,t) = 0$$
$$i(z,t) - G\Delta z v(z + \Delta z,t) - C\Delta z \frac{\partial v(z + \Delta z,t)}{\partial t} - i(z + \Delta z,t) = 0$$

Telegrapher Equations (Time Domain)

$$v(z,t) - R\Delta z i(z,t) - L\Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z,t) = 0$$
$$i(z,t) - G\Delta z v(z + \Delta z,t) - C\Delta z \frac{\partial v(z + \Delta z,t)}{\partial t} - i(z + \Delta z,t) = 0$$

Divide by Δz and take limit $\Delta z \rightarrow 0$:

$$\begin{split} \frac{\partial v(z,t)}{\partial z} &= -Ri(z,t) - L \frac{\partial i(z,t)}{\partial t} \\ \frac{\partial i(z,t)}{\partial z} &= -Gv(z,t) - C \frac{\partial v(z,t)}{\partial t} \end{split}$$

Telegrapher equations (Frequency Domain)

$$\frac{\partial v(z,t)}{\partial z} = -Ri(z,t) - L\frac{\partial i(z,t)}{\partial t}$$
$$\frac{\partial i(z,t)}{\partial z} = -Gv(z,t) - C\frac{\partial v(z,t)}{\partial t}$$

$$\frac{\partial V(z)}{\partial z} = -(R + j\omega L)I(z)$$
$$\frac{\partial I(z)}{\partial z} = -(G + j\omega C)V(z)$$

- Telegrapher Equations
- Wave Propagation on a Transmission Line
 - Propagation constant
 - Characteristic impedance
- The Lossless Transmission Line

Wave propagation on a transmission line

Solving the Telegrapher equations:

$$I. \quad \frac{\partial V(z)}{\partial z} = -(R + j\omega L)I(z)$$

Telegrapher equations (see previous slide)

II.
$$\frac{\partial I(z)}{\partial z} = -(G + j\omega C)V(z)$$

$$\stackrel{II.}{\Leftrightarrow} V(z) = -\frac{1}{(G + j\omega C)} \frac{\partial I(z)}{\partial z}$$

$$\xrightarrow{I.} \frac{\partial V(z)}{\partial z} = -\frac{1}{(G+i\omega C)} \frac{\partial^2 I(z)}{\partial z^2} = -(R+j\omega L)I(z)$$

$$\frac{\partial^2 I(z)}{\partial z^2} = (R + j\omega L)(G + j\omega C)I(z) = \gamma^2 I(z)$$

Wave propagation on a transmission line

Solving the Telegrapher equations gives:

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$
$$I(z) = I_0^+ e^{-\gamma z} + I_0^- e^{\gamma z}$$

Where γ is the **complex propagation constant**:

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

Wave propagation on a Tline

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$
$$I(z) = I_0^+ e^{-\gamma z} + I_0^- e^{\gamma z}$$

The relation between Voltage and Current amplitudes is:

$$I_0^+ = \frac{\gamma}{R + j\omega L} V_0^+, I_0^- = \frac{-\gamma}{R + j\omega L} V_0^-$$

$$Z_0 = \frac{R + j\omega L}{\gamma} \qquad \text{Why...?}$$
(next slide)

 Z_0 is the **characteristic impedance** of the Tline.

Wave propagation on a Tline

$$V(z) = V_0^+ e^{-\gamma z} + V_0^- e^{\gamma z}$$
$$I(z) = I_0^+ e^{-\gamma z} + I_0^- e^{\gamma z}$$

$$I \frac{\partial V(z)}{\partial z} = -\gamma V_0^+ e^{-\gamma z} + \gamma V_0^- e^{\gamma z} = -(R + j\omega L)I(z)$$

$$= -(R + j\omega L)I_0^+ e^{-\gamma z} - (R + j\omega L)I_0^- e^{\gamma z}$$

$$I_0^+ = \frac{\gamma}{R + j\omega L} V_0^+ \qquad I_0^- = \frac{-\gamma}{R + j\omega L} V_0^-$$

$$Z_0 = \frac{V_0^+}{I_0^+} = -\frac{V_0^-}{I_0^-} = \frac{R + j\omega L}{\gamma} = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}$$

 Z_0 is the **characteristic impedance** of the Tline.

Complex propagation constant

 $\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$ α is called **attenuation constant**. β is called **phase constant**.

- Telegrapher Equations
- Wave Propagation on a Transmission Line
- The Lossless Transmission Line
 - Reflection coefficient
 - Impedance transformation

The lossless line

The lossless line

Since R = 0 and G = 0:

$$\begin{split} \gamma &= \alpha + j\beta = j\beta = j\omega\sqrt{LC}\,,\\ \beta &= \omega\sqrt{LC}\,,\\ \alpha &= 0,\\ Z_0 &= \sqrt{\frac{L}{C}}\,,\\ \lambda &= \frac{2\pi}{\beta} = \frac{2\pi}{\omega\sqrt{LC}}\,, &\text{Wavelength}\\ v_p &= \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} &\text{Phase velocity} \end{split}$$

The terminated lossless Transmission Line

Total voltage and current are now:

$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta z}$$

The terminated lossless Transmission Line

Total voltage and current at the load at z=0:

$$Z_{L} = \frac{V(0)}{I(0)} = \frac{V_{0}^{+} + V_{0}^{-}}{V_{0}^{+} - V_{0}^{-}} Z_{0}$$

Rewriting gives:

$$V_0^- = \frac{Z_L - Z_0}{Z_L + Z_0} V_0^+$$

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Reflection coefficient

The terminated lossless Transmission Line

Special cases:

$$Z_L = Z_0 \Longrightarrow \Gamma = 0,$$

$$Z_L = 0 => \Gamma = -1,$$

$$Z_L = \infty \Longrightarrow \Gamma = 1$$
.

The terminated lossless Transmission Line

 Γ can be generalised to any point l on the transmission line:

$$\Gamma(z=-l) = \frac{V_0^- e^{-j\beta l}}{V_0^+ e^{j\beta l}} = \Gamma e^{-2j\beta l},$$

$$\Gamma = \Gamma(z=0).$$

The **impedance** Z_{in} at z=-l is now:

$$Z_{in} = \frac{V(z = -l)}{I(z = -l)} = \frac{V_0^{+} \left[e^{j\beta l} + \Gamma e^{-j\beta l} \right]}{V_0^{+} \left[e^{j\beta l} - \Gamma e^{-j\beta l} \right]} Z_0 = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l}$$

Insertion Loss

Consider two transmission lines connected to each other.

Transmitted wave for *z>0*:

$$V(z) = V_0^+ T e^{-j\beta z}$$

T is the transmission coefficient:

$$T = 1 + \Gamma = 1 + \frac{Z_1 - Z_0}{Z_1 + Z_0} = \frac{2Z_1}{Z_1 + Z_0}$$

The insertion loss (IL) is now:

$$IL = -10 \log \left(\frac{P_1}{P_0}\right) = -10 \log \left(\frac{|V_1|^2}{|V_0|^2}\right)$$
$$= -20 \log |T| + 10 \log \left(\frac{Z_1}{Z_0}\right)$$

Minus sign because we are calculating the loss

Quarter-wave transformer

"The impedance viewpoint"

Input impedance at $z=-\lambda/4$:

$$Z_{in} = Z_1 \frac{R_L + jZ_1 \tan \beta l}{Z_1 + jR_L \tan \beta l}$$

Now

$$\beta l = (2\pi/\lambda)(\lambda/4) = \pi/2$$

$$Z_{in} = \frac{Z_1^2}{R_L} \qquad \qquad \Gamma = 0 \qquad \text{if} \qquad \qquad Z_1 = \sqrt{Z_0 R_L}$$

Can we now understand this?

The Smith Chart

Smith Chart

Phillip H. Smith (1905-1987)

- Invented by Phillip H. Smith in 1939
- Easily usable graphical representation of the complex reflection coefficient Γ
- Easily reading the associated complex terminating impedance

 $Re{Z} = const.$

 $Im{Z} = const.$

 $Im{Z} = const.$

The same can be done for admittances!

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{Z - Z_0}{Z + Z_0}$$

$$\Gamma = \frac{\frac{Z}{Z_0} - 1}{\frac{Z}{Z_0} + 1} = \frac{1 - \frac{Y}{Y_0}}{1 + \frac{Y}{Y_0}}$$

Red lines: $\frac{Z}{Z_0}$ Green lines: $\frac{Y}{Y_0}$

Picture source: www.microwaves101.com

The terminated lossless Transmission Line

From previously:

 Γ at any point l on the transmission line:

$$\Gamma(z = -l) = \frac{V_0^- e^{-j\beta l}}{V_0^+ e^{j\beta l}} = \Gamma e^{-2j\beta l}$$

V(z), I(z)

 Z_0, β

$$\beta = \frac{2\pi}{\lambda}$$

$$\Rightarrow -2\beta l = -2\pi \text{ for } l = \frac{\lambda}{2}$$

Smith Chart - Summary

The Smith Chart contains

- Magnitude, $|\Gamma|$, of the reflection coefficient
- Phase, Θ , of the reflection coefficient
- Real and imaginary part of the reflection coefficient
- Real and imaginary part of the load impedance and admittance (normalised to the reference impedance Z_0 and admittance Y_0 , respectively)