Interval scheduling

Input: set of intervals on the line, represented by pairs of points (ends of intervals)

Output: the largest set of intervals such that none two of them overlap

Dynamic Programming paradigm

Dynamic Programming (DP):

- Decompose the problem into series of sub-problems
- Build up correct solutions to larger and larger subproblems

Similar to:

- Recursive programming vs. DP: in DP sub-problems may strongly overlap
- Exhaustive search vs. DP: in DP we try to find redundancies and reduce the space for searching

(Weighted) Interval scheduling

(Weighted) Interval scheduling:

Input: set of intervals (with weights) on the line, represented by pairs of points - ends of intervals

Output: the largest (maximum sum of weights) set of intervals such that none two of them overlap

Basic structure and definition

- Sort the intervals according to their right ends
- Define function *p* as follows:
 - p(1) = 0
 - -p(i) is the number of intervals which finish before i^{th} interval starts

Basic property

- Let w_i be the weight of j^{th} interval
- Optimal solution for the set of first *j* intervals satisfies

$$OPT(j) = max\{ w_j + OPT(p(j)), OPT(j-1) \}$$

Proof:

If j^{th} interval is in the optimal solution **O** then the other intervals in **O** are among intervals $1, \dots, p(j)$.

Otherwise search for solution among first j-1 intervals.

Sketch of the algorithm

• Additional array M[0...n] initialized by 0,p(1),...,p(n) (intuitively M[j] stores optimal solution OPT(j))

Algorithm

```
• For j = 1,...,n do
```

$$- \operatorname{Read} p(j) = M[j]$$

- Set
$$M[j] := \max\{ w_j + M[p(j)], M[j-1] \}$$

```
weight 1 p(1)=0

weight 3 p(2)=1

weight 2 p(3)=0

weight 1 p(4)=2
```

Consider the set of weighted intervals given below, where s_i is the start time, f_i is the finish time, and v_i is the value of the interval.

\boldsymbol{j}	s_{j}	f_{j}	v_{j}	p(j)
1	0	6	2	0
2	2	10	4	0
3	9	15	6	1
4	7	18	7	1

Solve this instance of the weighted interval scheduling problem, i.e. find a set of (non-conflicting) intervals with maximum total weight.

$$Opt(j) = \max \{Opt(j-1), v_j + Opt(p(j))\}.$$

Therefore, we have

$$\begin{array}{lll} Opt(0) & = & 0 \\ Opt(1) & = & \max \left\{ Opt(0), \ v_1 + Opt(p(1)) \right\} = 2 \\ Opt(2) & = & \max \left\{ Opt(1), \ v_2 + Opt(p(2)) \right\} = \max\{2, \ 4+0\} = 4 \\ Opt(3) & = & \max \left\{ Opt(2), \ v_3 + Opt(p(3)) \right\} = \max\{4, \ 6+2\} = 8 \\ Opt(4) & = & \max \left\{ Opt(3), \ v_4 + Opt(p(4)) \right\} = \max\{8, \ 7+2\} = 9 \end{array}$$

Complexity of solution

Time: $O(n \log n)$

- Sorting: $O(n \log n)$
- Initialization of M[0...n] by 0,p(1),...,p(n): O(n log n)
- Algorithm: n iterations, each takes constant time, total O(n)

Memory: O(n) - additional array M

