Całki oznaczone

Zad 1. Oblicz całkę oznaczoną:

(a)
$$\int_{1}^{e} x \ln x dx$$
; (b) $\int_{\pi}^{2\pi} \left(\sin x + \cos^2 x \right) dx$; (c) $\int_{0}^{3} \sqrt{9 - x^2} dx$; (d) $\int_{0}^{1} x \sqrt{x + 1} dx$; (e) $\int_{0}^{\frac{\pi}{2}} e^{2x} \cos x dx$;

(f)
$$\int_{e^{-1}}^{e} |\ln x| dx;$$
 (g) $\int_{0}^{100\pi} \sqrt{1 - \cos(2x)} dx;$ (h) $\int_{1}^{e} \frac{\ln x}{x} dx;$ (i) $\int_{0}^{1} \sqrt{3x + 1} dx;$ (j) $\int_{0}^{1} \frac{\arctan^{2} x}{1 + x^{2}} dx;$

(k)
$$\int_{-1}^{2} \frac{x}{(x^2+1)^3} dx$$
; (l) $\int_{2}^{3} \frac{2x^4-5x^2+3}{x^2-1} dx$; (m) $\int_{0}^{4} \frac{dx}{1+\sqrt{2x+1}}$; (n) $\int_{-\pi}^{\pi} x \sin x dx$; (o) $\int_{0}^{1} \frac{dx}{\sqrt{4-x^2}}$;

(p)
$$\int_{0}^{1} \frac{dx}{x^2 - x + 1} dx$$
; (q) $\int_{0}^{\frac{\sqrt{2}}{2}} \frac{x^2 \arcsin x}{\sqrt{1 - x^2}} dx$; (r) $\int_{4}^{6} \frac{dx}{\sqrt{x^2 - 2x - 8}}$; (s) $\int_{2}^{4} \frac{dx}{\sqrt{-x^2 + 6x - 5}}$; (t) $\int_{1}^{4} \frac{1 + \sqrt{x}}{x^2} dx$;

(u)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \operatorname{ctg} x dx;$$
 (v)
$$\int_{0}^{2\pi} \sqrt{1 - \cos x} dx;$$

Zad 2. Wykorzystując odpowiednie własności całek oznaczonych uprość wyrażenie:

(a)
$$\int_{-\pi}^{\pi} e^{x^2} \sin x dx$$
; (b) $\int_{-1}^{1} \frac{x^5}{\sqrt{3-x^2}} dx$; (c) $\int_{-4}^{4} \sqrt{x^2+1} \cos x$;

Zad 3. Oblicz całkę niewłaściwą I-go rodzaju:

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} dx;$$
 (b)
$$\int_{-\infty}^{\infty} \frac{\arctan^2 x}{1+x^2} dx;$$
 (c)
$$\int_{\sqrt{3}}^{\infty} \frac{dx}{x^2+9};$$
 (d)
$$\int_{3}^{\infty} \frac{dx}{x^2};$$
 (e)
$$\int_{4}^{\infty} \frac{dx}{(x-3)^2};$$
 (f)
$$\int_{1}^{\infty} \frac{dx}{2x^2+4};$$

(g)
$$\int_{0}^{\infty} \frac{dx}{x^2 - 6x + 13}$$
; (h) $\int_{-\infty}^{-\frac{1}{2}} \frac{dx}{x^2 + x + 1}$; (i) $\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}$; (j) $\int_{1}^{\infty} \frac{dx}{x(x + 10)^2}$; (k) $\int_{0}^{\infty} \frac{dx}{1 + x^3}$; (l) $\int_{0}^{\infty} xe^{-x^2} dx$;

(m)
$$\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^2} dx;$$
 (n) $\int_{0}^{\infty} e^{-x} \sin x dx;$ (o) $\int_{0}^{\infty} \frac{(7x+2)}{x^3-5x^2+12x-60} dx;$ (p) $\int_{1}^{\infty} x e^{-x} dx;$ (q) $\int_{4}^{\infty} \frac{dx}{x^2-2x+3};$

Zad 4. Oblicz całkę niewłaściwą II-go rodzaju:

(a)
$$\int_{0}^{1} \frac{x}{1-x} dx$$
; (b) $\int_{0}^{1} \frac{dx}{\sqrt[3]{x}}$; (c) $\int_{0}^{2} \frac{dx}{\sqrt[3]{x^4}}$; (d) $\int_{0}^{16} \frac{dx}{\sqrt[4]{x^3}}$; (e) $\int_{0}^{16} \frac{dx}{\sqrt[4]{4x^3}}$; (f) $\int_{0}^{1} \frac{dx}{\sqrt[5]{x^3}}$;

(g)
$$\int_{0}^{a} \frac{dx}{\sqrt{a^{2}-x^{2}}};$$
 (h) $\int_{a}^{b} \frac{dx}{\sqrt{(x-a)(x-b)}};$ (i) $\int_{0}^{\sqrt{\frac{2}{3}}} \frac{x}{\sqrt{4-9x^{4}}} dx;$ (j) $\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} dx;$ (k) $\int_{-2}^{0} \frac{1}{(2-x)^{2}} \sqrt[3]{\frac{2-x}{2+x}} dx;$

(l)
$$\int_{2}^{3} \frac{x}{\sqrt{x^{2}-4}} dx$$
; (m) $\int_{0}^{6} \frac{2x}{\sqrt[3]{(x^{2}-4)^{2}}} dx$; (n) $\int_{-2}^{-1} \frac{dx}{x\sqrt{x^{2}-1}}$; (o) $\int_{1}^{2} \sqrt{\frac{x}{x-1}} dx$; (p) $\int_{0}^{\frac{\pi}{4}} \frac{dx}{\cos^{2}(2x)}$; (q) $\int_{2}^{3} \frac{4x-6}{\sqrt{x^{2}-3x+2}} dx$;

Zad 5. Oblicz wartość średnią zadanej funkcji we wskazanym przedziale:

(a)
$$f(x) = x^2$$
; $x \in [0, 1]$; (b) $f(x) = 10 + 2\sin x + 3\cos x$; $x \in [0, 2\pi]$; (c) $f(x) = e^x$; $x \in [-2, 2]$;

(d)
$$f(x) = \sin^3 x; \quad x \in [0, \pi];$$
 (e) $f(x) = \frac{x}{1+x^2}; \quad x \in [0, 2];$ (f) $f(x) = \cos x; \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right];$

(g)
$$f(x) = x \sin x$$
; $x \in [0, \pi]$; (h) $f(x) = x\sqrt{1 - x^2}$; $x \in [0, \frac{1}{2}]$;

Zad 6. Obliczyć pole obszaru ograniczonego krzywymi:

(a)
$$y = x^2$$
, $x = a$, $y = 0$; (b) $y = x^2$, $y^2 = x$; (c) $y^2 = x$, $x^2 = 8y$; (d) $y = x^3$, $y = 4x$;

(e)
$$y = 2x^3$$
, $y^2 = 4x$; (f) $y = x^3$, $y^2 = x$; (g) $y = x^2 - x - 6$, $y = -x^2 + 5x + 14$;

(h)
$$y = 2x - x^2$$
, $x + y = 0$; (i) $xy = 4$, $x + y = 5$; (j) $y = -x^2 + x + 6$, $y = -2x^2 - 5x + 13$;

(k)
$$y = xe^{-2x}$$
, $x = 0$, $x = \frac{1}{2}$, $y = 0$; (1) $(x - 6)^2 + y^2 = 36$, $y^2 = 6x$;

(m)
$$y = x^2$$
, $y = 2x^2$, $y = 8$, $(x \ge 0)$; (n) $y^2 = 2x + 1$, $x - y - 1 = 0$;

(a)
$$y = \frac{1}{2}x^2 - \frac{7}{2}x + 7$$
, $y = \frac{4}{x}$; (b) $y = -x^2 + 2x + 2$, $y = \frac{3}{x}$;

(q)
$$y = x + 3$$
, $y = x^3 + 3x^2$; (p) $y = -\frac{4}{x}$, $y = x^3 + \frac{15}{2}x^2 + \frac{35}{2}x + 15$;

$$(\mathbf{s}) \quad y = \frac{4}{\pi}, \quad y = -x^4 + \frac{13}{2}x^3 - 10x^2 - \frac{5}{2}x + 11; \quad (\mathbf{t}) \quad y = -\frac{4}{\pi}, \quad y = x^4 - \frac{17}{2}x^3 + 25x^2 + \frac{65}{2}x + 19;$$

Zad 7. Obliczyć długość łuku krzywej na zadanym przedziale:

- (a) $y = x^2$; $x \in [0, 2]$; (b) $y^2 = 4x^3$; y > 0, $x \in [0, \frac{8}{9}]$; (c) $9y^2 = x^3$; $x \in [0, 12]$; (d) $y^2 = 2x x^2$; $x \in [0, 1]$; (e) $y = \ln \sin x$; $x \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$; (f) $y = \ln \left(1 x^2\right)$; $x \in \left[0, \frac{1}{2}\right]$;

(g) $y = \arcsin x + \sqrt{1 - x^2}$; $x \in [-1, 1]$;

Zad 8. Obliczyć objętość bryły obrotowej powstałej przez obrót krzywej f(x) wokół osi Ox na zadanym przedziale:

- (a) $f(x) = \sin x$, $x \in [0, 2\pi]$; (b) $f(x) = e^{-x}$, $x \in [0, 1]$; (c) $f(x) = \frac{1}{1+x^2}$, $x \in [-\infty, \infty]$;

Zad 9. Obliczyć objętość bryły obrotowej powstałej przez obrót krzywej f(x) wokół osi Oy na zadanym przedziale:

- (a) $f(x) = e^{-x}$, $x \in [0,1]$; (b) $f(x) = \sqrt{x}$, $x \in [0,4]$; (c) $f(x) = \frac{2}{\sqrt{x^2 + 4}}$, $x \in [0,\sqrt{5}]$;

Zad 10. Obliczyć pole powierzchni bryły obrotowej powstałej przez obrót krzywej f(x) wokół osi Ox na zadanym prze-

- (a) $f(x) = \sin x$, $x \in [0, 2\pi]$; (b) $f(x) = \sqrt{4+x}$, $x \in [-4, 2]$;

Zad 11. Obliczyć pole powierzchni bryły obrotowej powstałej przez obrót krzywej f(x) wokół osi Oy na zadanym przedziale:

- (a) $f(x) = \ln x$, $x \in [1, \sqrt{3}]$; (b) $f(x) = \frac{x^2}{2}$, $x \in [0, \sqrt{3}]$; (c) $f(x) = 2\sqrt{x}$, $x \in [0, 1]$;

Całki oznaczone - odpowiedzi

Zad 1.

(b)
$$\frac{1}{2}$$
 -

(c)
$$\frac{9\pi}{4}$$
;

(a)
$$\frac{1}{4}(e^2+1)$$
; (b) $\frac{\pi}{2}-2$; (c) $\frac{9\pi}{4}$; (d) $\frac{4}{15}(\sqrt{2}+1)$; (e) $\frac{e^{\pi}-2}{5}$; (f) $2-\frac{2}{e}$; (g) $200\sqrt{2}$; (h) $\frac{1}{2}$;

(e)
$$\frac{e^{\pi}-2}{5}$$
;

(f)
$$2 - \frac{2}{e}$$
;

(g)
$$200\sqrt{2}$$
; (

(h)
$$\frac{1}{2}$$
;

(i)
$$\frac{14}{9}$$

(j)
$$\frac{\pi^3}{192}$$
;

(1)
$$\frac{29}{3}$$

(m)
$$2 - \ln 2$$

(n)
$$2\pi$$
;

(o)
$$\frac{\pi}{6}$$
;

(p)
$$\frac{2\pi}{3\sqrt{3}}$$

(i)
$$\frac{14}{9}$$
; (j) $\frac{\pi^3}{192}$; (k); (l) $\frac{29}{3}$; (m) $2 - \ln 2$; (n) 2π ; (o) $\frac{\pi}{6}$; (p) $\frac{2\pi}{3\sqrt{3}}$; (q) $\frac{1}{64} \left(\pi^2 - 4\pi + 8\right)$; (r) $\ln 3$; (s) $\frac{\pi}{3}$; (t) $\frac{7}{4}$; (u) $\frac{1}{2} \ln 2$; (v) $4\sqrt{2}$;

(s)
$$\frac{\pi}{3}$$
;

(t)
$$\frac{7}{4}$$
;

(u)
$$\frac{1}{9} \ln 2$$

(v)
$$4\sqrt{2}$$
;

Zad 2.

(a) 0; (b) 0; (c)
$$2\int_{0}^{4} \sqrt{x^2+1}\cos x$$
;

Zad 3.

(b)
$$\frac{\pi^3}{19}$$
;

(c)
$$\frac{\pi}{9}$$
;

(d)
$$\frac{1}{3}$$
;

(a)
$$\pi$$
; (b) $\frac{\pi^3}{12}$; (c) $\frac{\pi}{9}$; (d) $\frac{1}{3}$; (e) 1; (f) $\frac{\pi}{8}\sqrt{2} - \frac{1}{4}\sqrt{2}\arctan\frac{\sqrt{2}}{2}$; (g) $\frac{3\pi}{8}$;

(g)
$$\frac{3\pi}{8}$$
;

(h)
$$\frac{\sqrt{3}\pi}{2}$$
:

(j)
$$-\frac{1}{2} + \ln 2$$
;

(k)
$$\frac{2\sqrt{3}\pi}{9}$$
;

(1)
$$\frac{1}{2}$$
;

(m)
$$e-1$$

(n)
$$\frac{1}{2}$$

(h)
$$\frac{\sqrt{3}\pi}{3}$$
; (i) π ; (j) $-\frac{1}{2} + \ln 2$; (k) $\frac{2\sqrt{3}\pi}{9}$; (l) $\frac{1}{2}$; (m) $e - 1$; (n) $\frac{1}{2}$; (o) $\frac{1}{6}\pi\sqrt{3} - \frac{1}{2}\ln\frac{25}{12}$;

Zad 4.

(b)
$$\frac{3}{2}$$
:

(c)
$$\infty$$

(a)
$$\infty$$
; (b) $\frac{3}{2}$; (c) ∞ ; (d) 8; (e) $4\sqrt{2}$; (f) $\frac{5}{2}$; (g) $\frac{\pi}{2}$; (h) π ; (i) $\frac{\pi}{12}$; (j) 1; (k) $-\frac{9}{64}$;

(f)
$$\frac{5}{2}$$
;

$$\frac{\pi}{2}$$
;

Zad 5.

(1)
$$\sqrt{5}$$
; (m) $9\sqrt[3]{4}$; (n) $-\frac{\pi}{3}$; (o) $\frac{\pi}{2}$; (p) ∞ ;

$$\frac{2}{2}$$
: (g)

(a)
$$\frac{1}{3}$$
; (b) ; (c) ; (d) $\frac{4}{3\pi}$; (e) $\frac{1}{4} \ln 5$; (f) $\frac{2}{\pi}$; (g) 1; (h) $\frac{2}{3} \left(1 - \frac{3\sqrt{3}}{8}\right)$;

Zad 6.

(a)
$$\frac{1}{2}a^3$$

(b)
$$\frac{1}{3}$$
;

(c)
$$\frac{8}{3}$$
;

(a)
$$\frac{1}{3}a^3$$
; (b) $\frac{1}{3}$; (c) $\frac{8}{3}$; (d) 8; (e); (f); (g) $114\frac{1}{3}$; (h); (i); (j); (k); (l); (m);

Zad 7.

(a)
$$\sqrt{17} + \frac{1}{4} \ln \left(4 + \sqrt{17}\right)$$
; (b) $\frac{52}{27}$; (c) $\frac{56}{3}$; (d) $\frac{\pi}{2}$; (e) $\frac{\ln 3}{2}$; (f) $\ln 3 - \frac{1}{2}$; (g) 4;

Zad 8.

$$(a)$$
; (b) ; (c) ;

Zad 9.

(a); (b)
$$4\pi$$
; (c);

Zad 10.

(a); (b)
$$\frac{62}{3}\pi$$
; (c);

Zad 11.

(a)
$$\pi \left(2\sqrt{3} - \sqrt{2} + \ln \frac{2+\sqrt{3}}{1+\sqrt{2}}\right)$$
; (b) $\frac{14}{3}\pi$; (c) $\pi \left(\frac{3\sqrt{2}}{2} - \frac{1}{4}\ln \left(2\sqrt{2} + 3\right)\right)$;

(b)
$$\frac{14}{3}\pi$$
;

(c)
$$\pi \left(\frac{3\sqrt{2}}{2} - \frac{1}{4} \ln \left(2\sqrt{2} \right) \right)$$