Lecture Two: What to Learn

Yi Ma

Director of the School of Computing and Data Science
Director of the Institute of Data Science

Predictable information from data sensed of the external world (Humans, including animals, have learned a model of the world)

Prediction based on correlation among things

Predictable information from data sensed of the external world (Humans, including animals, have learned a model of the world)

But correlation is not causality.

(Human starts to develop physical and mathematical models of the world)

Newton's first law of Motion

(Human starts to develop physical and mathematical models of the world)

Newton's second law of motion and law of gravity

$$F_1 = F_2 = G \frac{m_1 \times m_2}{r^2}$$

(Human starts to develop physical and mathematical models of the world)

Why equations?

1.	Pythagoras's Theorem	$a^2 + b^2 = c^2$	Pythagoras, $530~\mathrm{BC}$
2.	Logarithms	$\log xy = \log x + \log y$	John Napier, 1610
3.	Calculus	$\frac{\mathrm{d}f}{\mathrm{d}t} = \lim_{h \to 0} = \frac{f(t+h) - f(t)}{h}$	Newton, 1668
1.	Law of Gravity	$F = G \frac{m_1 m_2}{r^2}$	Newton, 1687
5.	The Square Root of Minus One	$i^2 = -1$	Euler, 1750
i.	Euler's Formula for Polyhedra	V-E+F=2	Euler, 1751
7.	Normal Distribution	$\Phi(x) = \frac{1}{\sqrt{2\pi\rho}}e^{\frac{(x-\mu)^2}{2\rho^2}}$	C.F. Gauss, 1810
3.	Wave Equation	$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	J. d'Almbert, 1746
).	Fourier Transform	$f(\omega) = \int_{\infty}^{\infty} f(x)e^{-2\pi ix\omega} dx$	J. Fourier, 1822
10.	Navier-Stokes Equation	$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}$	C. Navier, G. Stokes, 184
1.	Maxwell's Equations	$\begin{array}{ll} \nabla \cdot \mathbf{E} = 0 & \nabla \cdot \mathbf{H} = 0 \\ \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} & \nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial E}{\partial t} \end{array}$	J.C. Maxwell, 1865
12.	Second Law of Thermodynamics	$\mathrm{d}S\geq 0$	L. Boltzmann, 1874
3.	Relativity	$E=mc^2$	Einstein, 1905
14.	Schrodinger's Equation	$i\hbar\frac{\partial}{\partial t}\Psi=H\Psi$	E. Schrodinger, 1927
5.	Information Theory	$H = -\sum p(x)\log p(x)$	C. Shannon, 1949
16.	Chaos Theory	$x_{t+1} = kx_t(1 - x_t)$	Robert May, 1975
17.	Black-Scholes Equation	$\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}V}{\partial S^{2}} + rS\frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - rV = 0$	F. Black, M. Scholes, 1990

The Calabi-Yau manifold (the standard model & string theory)

9+1-dimensional universe

How to model predictability mathematically or computationally?

$$x_{n+1} = f(x_n)$$

$$x_{n+1} = f(x_n, x_{n-1})$$

How to model predictability mathematically or computationally?

$$x_{n+1} = f(x_n, x_{n-1}, ..., x_{n-d+1})$$

How to model predictability mathematically or computationally?

$$x_{n+1} = f(x_n, u_n)$$

What to Learn? How to model predictability mathematically or computationally?

$$x_{n+1} = f(x_n, x_{n-1}, ..., x_{n-d+1})$$

$$\vec{x} = [x_i, x_{i+1}, \dots, x_{i+D-1}]$$

What to Learn? How to model predictability mathematically or computationally?

$$x_{n+1} = f_1(x_n, x_{n-1}, ..., x_{n-d+1})$$

$$x_{n+1} = f_2(x_n, x_{n-1}, ..., x_{n-d+1})$$

$$x_{n+1} = f_3(x_n, x_{n-1}, \dots, x_{n-d+1})$$

$$\vec{x} = [x_i, x_{i+1}, ..., x_{i+D-1}]$$

Mathematically, all predictable information can be modeled as certain low-dimensional structures in the high-dimensional data

low-dimensional probabilistic distributions

Properties of low-dimensional structures:

- 1. Completion
- 2. Denoising
- 3. Error Correction

Properties of low-dimensional structures: Completion

Properties of low-dimensional structures: Denoising

Properties of low-dimensional structures: Error correction

Properties of low-dimensional structures: Error correction

Highly coherent (volume $\leq 1.5 \times 10^{-229}$)

Completely different geometric and statistical phenomena in high-dimensional spaces

a 9-dimensional cube

a high-dim sphere

a high-dim Gaussian

How to Learn?