

Lab sessions:

Máster en Ingeniería Industrial

Lab session 1: Control of a three-phase inverter connected to the grid

Author

Ricard Lado Roigé

Barcelona, October 24th 2019

Contents

Li	st of Figures	V
1.	Introduction	1
2.	Modelling the AC side	2
3.	Modelling the DC side	5
4.	Modelling the converter	7

List of Figures

1.1	Three-phase inverter connected to the grid	1
1.2	Final model after the first lab session	1
2.1	AC-side of a three-phase inverter (RL filter $+$ grid) \dots	2
2.2	Mathematical model for the AC-side	2
2.3	Mathematical model for the AC-side translated into Simulink	3
2.4	Three-phase grid fault	4
3.1	DC-link of a three-phase inverter	5
3.2	Mathematical model for the DC-side	5
3.3	Mathematical model for the DC-side translated into Simulink	6
4.1	Three-phase inverter with IGBTs and diodes in anti-parallel	7
4.2	Mathematical model for converter	7
4.3	Mathematical model for the converter translated into Simulink	8

1. Introduction

The first lab session has consisted in implementing in MATLAB-Simulink the block diagram corresponding to each part of the inverter. The following is a summary of the work carried out on the first session.

 ${\bf Figure~1.1:~Three-phase~inverter~connected~to~the~grid}$

 ${\bf Figure~1.2:~Final~model~after~the~first~lab~session}$

2. Modelling the AC side

The AC-side consists of a RL filter connected to an AC grid of 400V RMS 50Hz. The grid model includes a mechanism to drop the voltage for a certain amount of time in order to simulate a fault on the grid, the simulated fault is a three-phase fault with a 50% depth during 5.5 cycles (or 110ms).

The RL filter is used to filter out high frequencies generated by the power converter switching.

Figure 2.1: AC-side of a three-phase inverter (RL filter + grid)

$$\begin{split} i_{a} &= \int \frac{1}{L} \big(v_{ca} - Ri_{a} - v_{ga} - v_{n0} \big) dt \\ i_{b} &= \int \frac{1}{L} \big(v_{cb} - Ri_{b} - v_{gb} - v_{n0} \big) dt \\ i_{c} &= \int \frac{1}{L} \big(v_{cc} - Ri_{c} - v_{gc} - v_{n0} \big) dt \\ v_{n0} &= \frac{v_{ca} + v_{cb} + v_{cc} - (v_{ga} + v_{gb} + v_{gc})}{3} \end{split}$$

Figure 2.2: Mathematical model for the AC-side

Figure 2.3: Mathematical model for the AC-side translated into Simulink

Figure 2.4: Three-phase grid fault

3. Modelling the DC side

The DC link of the power converter has also been modeled using a DC source in paralle with a resistor and a capacitor.

Figure 3.1: DC-link of a three-phase inverter

$$v_{dc} = \int \frac{1}{C} \left(i_{dc} - \frac{v_{dc}}{R_p} - i_p \right) dt$$

Figure 3.2: Mathematical model for the DC-side

Figure 3.3: Mathematical model for the DC-side translated into Simulink

4. Modelling the converter

Finally, the power converter has also been modeled, but control will be implemented on the next session.

Figure 4.1: Three-phase inverter with IGBTs and diodes in anti-parallel

$$v_{ca} = \left(s_a - \frac{1}{2}\right) v_{dc}$$

$$v_{cb} = \left(s_b - \frac{1}{2}\right) v_{dc}$$

$$v_{cc} = \left(s_c - \frac{1}{2}\right) v_{dc}$$

$$i_p = s_a i_a + s_b i_b + s_c i_c$$

Figure 4.2: Mathematical model for converter

Figure 4.3: Mathematical model for the converter translated into Simulink