Introduction to Information Retrieval

Dictionaries and tolerant retrieval

Recap of the previous lecture

- The type/token distinction
 - Terms are normalized types put in the dictionary
- Tokenization problems:
 - Hyphens, apostrophes, compounds, CJK
- Term equivalence classing:
 - Numbers, case folding, stemming, lemmatization
- Skip pointers
 - Encoding a tree-like structure in a postings list
- Biword indexes for phrases
- Positional indexes for phrases/proximity queries

This lecture

- Dictionary data structures
- "Tolerant" retrieval
 - Wild-card queries
 - Spelling correction
 - Soundex

Dictionary data structures for inverted indexes

The dictionary data structure stores the term vocabulary, document frequency, pointers to each postings list ... in what data structure?

i

A naïve dictionary

An array of struct:

	term	docum	nent	pointer	to
		freque	frequency postin		list
	а	656,26	55	\longrightarrow	,
	aachen	65		\longrightarrow	
cł	zulu	221		\longrightarrow	
20 bytes 4/8 bytes 4/8 bytes					

- How do we store a dictionary in memory efficiently?
- How do we quickly look up elements at query time?

Dictionary data structures

- Two main choices:
 - Hashtables
 - Trees
- Some IR systems use hashtables, some trees

Hashtables

- Each vocabulary term is hashed to an integer
 - (We assume you've seen hashtables before)
- Pros:
 - Lookup is faster than for a tree: O(1)
- Cons:
 - No easy way to find minor variants:
 - judgment/judgement
 - No prefix search [tolerant retrieval]
 - If vocabulary keeps growing, need to occasionally do the expensive operation of rehashing everything

Tree: binary tree

Tree: B-tree

 Definition: Every internal nodel has a number of children in the interval [a,b] where a, b are appropriate natural numbers, e.g., [2,4].

Trees

- Simplest: binary tree
- More usual: B-trees
- Trees require a standard ordering of characters and hence strings ... but we typically have one
- Pros:
 - Solves the prefix problem (terms starting with hyp)
- Cons:
 - Slower: O(log M) [and this requires balanced tree]
 - Rebalancing binary trees is expensive
 - But B-trees mitigate the rebalancing problem

WILD-CARD QUERIES

Wild-card queries: *

- mon*: find all docs containing any word beginning with "mon".
- Easy with binary tree (or B-tree) lexicon: retrieve all words in range: mon ≤ w < moo</p>
- *mon: find words ending in "mon": harder
 - Maintain an additional B-tree for terms backwards.
 Can retrieve all words in range: nom ≤ w < non.

Exercise: from this, how can we enumerate all terms meeting the wild-card query **pro*cent**?

Query processing

- At this point, we have an enumeration of all terms in the dictionary that match the wild-card query.
- We still have to look up the postings for each enumerated term.
- E.g., consider the query:
 se*ate AND fil*er
 This may result in the execution of many Boolean
 AND queries.

B-trees handle *'s at the end of a query term

- How can we handle *'s in the middle of query term?
 - co*tion
- We could look up co* AND *tion in a B-tree and intersect the two term sets
 - Expensive
- The solution: transform wild-card queries so that the
 *'s occur at the end
- This gives rise to the Permuterm Index.

Permuterm index

- For term **hello**, index under:
 - hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello where \$ is a special symbol.
- Queries:

```
    X lookup on X$ X* lookup on $X*
    *X lookup on X$* *X* lookup on X*
```

X*Y lookup on Y\$X*
X*Y*Z
??? Exercise!

Permuterm query processing

- Rotate query wild-card to the right
- Now use B-tree lookup as before.
- Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English.

Bigram (k-gram) indexes

- Enumerate all k-grams (sequence of k chars)
 occurring in any term
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

```
$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,ue,el,le,es,st,t$,$m,mo,on,nt,h$
• $ is a special word boundary symbol
```

 Maintain a <u>second</u> inverted index <u>from bigrams to</u> <u>dictionary terms</u> that match each bigram.

Bigram index example

• The k-gram index finds terms based on a query consisting of k-grams (here k=2).

Processing wild-cards

- Query mon* can now be run as
 - \$m AND mo AND on
- Gets terms that match AND version of our wildcard query.
- But we'd enumerate moon.
- Must post-filter these terms against query.
- Surviving enumerated terms are then looked up in the term-document inverted index.
- Fast, space efficient (compared to permuterm).

Processing wild-card queries

- As before, we must execute a Boolean query for each enumerated, filtered term.
- Wild-cards can result in expensive query execution (very large disjunctions...)
 - pyth* AND prog*
- If you encourage "laziness" people will respond!

Search

Type your search terms, use '*' if you need to.

E.g., Alex* will match Alexander.
 Which web search engines allow wildcard queries?

SPELLING CORRECTION

Spell correction

- Two principal uses
 - Correcting document(s) being indexed
 - Correcting user queries to retrieve "right" answers
- Two main flavors:
 - Isolated word
 - Check each word on its own for misspelling
 - Will not catch typos resulting in correctly spelled words
 - e.g., from 🍪 form
 - Context-sensitive
 - Look at surrounding words,
 - e.g., I flew form Heathrow to Narita.

Document correction

- Especially needed for OCR'ed documents
 - Correction algorithms are tuned for this: rn/m
 - Can use domain-specific knowledge
 - E.g., OCR can confuse O and D more often than it would confuse O and I (adjacent on the QWERTY keyboard, so more likely interchanged in typing).
- But also: web pages and even printed material have typos
- Goal: the dictionary contains fewer misspellings
- But often we don't change the documents and instead fix the query-document mapping

Query mis-spellings

- Our principal focus here
 - E.g., the query **Alanis Morisett**
- We can either
 - Retrieve documents indexed by the correct spelling, OR
 - Return several suggested alternative queries with the correct spelling
 - Did you mean ...?

Isolated word correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - A standard lexicon such as
 - Webster's English Dictionary
 - An "industry-specific" lexicon hand-maintained
 - The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms etc.
 - (Including the mis-spellings)

Isolated word correction

- Given a lexicon and a character sequence Q, return the words in the lexicon closest to Q
- What's "closest"?
- We'll study several alternatives
 - Edit distance (Levenshtein distance)
 - Weighted edit distance
 - n-gram overlap

Edit distance

- Given two strings S_1 and S_2 , the minimum number of operations to convert one to the other
- Operations are typically character-level
 - Insert, Delete, Replace, (Transposition)
- E.g., the edit distance from dof to dog is 1
 - From cat to act is 2 (Just 1 with transpose.)
 - from cat to dog is 3.
- Generally found by dynamic programming.
- See http://www.merriampark.com/ld.htm for a nice example plus an applet.

Weighted edit distance

- As above, but the weight of an operation depends on the character(s) involved
 - Meant to capture OCR or keyboard errors
 Example: m more likely to be mis-typed as n than as q
 - Therefore, replacing m by n is a smaller edit distance than by q
 - This may be formulated as a probability model
- Requires weight matrix as input
- Modify dynamic programming to handle weights

Using edit distances

- Given query, first enumerate all character sequences within a preset (weighted) edit distance (e.g., 2)
- Intersect this set with list of "correct" words
- Show terms you found to user as suggestions
- Alternatively,
 - We can look up all possible corrections in our inverted index and return all docs ... slow
 - We can run with a single most likely correction
- The alternatives disempower the user, but save a round of interaction with the user

Edit distance to all dictionary terms?

- Given a (mis-spelled) query do we compute its edit distance to every dictionary term?
 - Expensive and slow
 - Alternative?
- How do we cut the set of candidate dictionary terms?
- One possibility is to use n-gram overlap for this
- This can also be used by itself for spelling correction.

n-gram overlap

- Enumerate all the n-grams in the query string as well as in the lexicon
- Use the n-gram index (recall wild-card search) to retrieve all lexicon terms matching any of the query n-grams
- Threshold by number of matching n-grams
 - Variants weight by keyboard layout, etc.

Example with trigrams

- Suppose the text is november
 - Trigrams are nov, ove, vem, emb, mbe, ber.
- The query is december
 - Trigrams are dec, ece, cem, emb, mbe, ber.
- So 3 trigrams overlap (of 6 in each term)
- How can we turn this into a normalized measure of overlap?

One option – Jaccard coefficient

- A commonly-used measure of overlap
- Let X and Y be two sets; then the J.C. is

- $|X \ \ C \ Y| / |X \ \ E \ Y|$ Equals 1 when X and Y have the same elements and zero when they are disjoint
- X and Y don't have to be of the same size
- Always assigns a number between 0 and 1
 - Now threshold to decide if you have a match
 - E.g., if J.C. > 0.8, declare a match

Matching trigrams

 Consider the query *lord* – we wish to identify words matching 2 of its 3 bigrams (*lo*, *or*, *rd*)

Standard postings "merge" will enumerate ...

Adapt this to using Jaccard (or another) measure.

Context-sensitive spell correction

- Text: I flew from Heathrow to Narita.
- Consider the phrase query "flew form Heathrow"
- We'd like to respond Did you mean "flew from Heathrow"? because no docs matched the query phrase.

Context-sensitive correction

- Need surrounding context to catch this.
- First idea: retrieve dictionary terms close (in weighted edit distance) to each query term
- Now try all possible resulting phrases with one word "fixed" at a time
 - flew from heathrow
 - fled form heathrow
 - flea form heathrow
- Hit-based spelling correction: Suggest the alternative that has lots of hits.

Exercise

• Suppose that for "flew form Heathrow" we have 7 alternatives for flew, 19 for form and 3 for heathrow. How many "corrected" phrases will we enumerate in this scheme?

Another approach

- Break phrase query into a conjunction of biwords (Lecture 2).
- Look for biwords that need only one term corrected.
- Enumerate only phrases containing "common" biwords.

General issues in spell correction

- We enumerate multiple alternatives for "Did you mean?"
- Need to figure out which to present to the user
 - The alternative hitting most docs
 - Query log analysis
- More generally, rank alternatives probabilistically argmax_{corr} P(corr | query)
 - From Bayes rule, this is equivalent to argmax_{corr} P(query | corr) * P(corr)

SOUNDEX

Soundex

- Class of heuristics to expand a query into phonetic equivalents
 - Language specific mainly for names
 - E.g., chebyshev (%) tchebycheff
- Invented for the U.S. census ... in 1918

Soundex - typical algorithm

- Turn every token to be indexed into a 4-character reduced form
- Do the same with query terms
- Build and search an index on the reduced forms
 - (when the query calls for a soundex match)
- http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

Soundex - typical algorithm

- 1. Retain the first letter of the word.
- 2. Change all occurrences of the following letters to '0' (zero):

```
'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.
```

- 3. Change letters to digits as follows:
- B, F, P, V 🗞 1
- C, G, J, K, Q, S, X, Z 🗞 2
- D,T 🗞 3
- L 🗞 4
- M, N 🗞 5
- R 🗞 6

Soundex continued

- 4. Remove all pairs of consecutive digits.
- 5. Remove all zeros from the resulting string.
- 6. Pad the resulting string with trailing zeros and return the first four positions, which will be of the form <uppercase letter> <digit> <digit> <digit>.

E.g., Herman becomes H655.

Will *hermann* generate the same code?

Soundex

- Soundex is the classic algorithm, provided by most databases (Oracle, Microsoft, ...)
- How useful is soundex?
- Not very for information retrieval
- Okay for "high recall" tasks (e.g., Interpol), though biased to names of certain nationalities
- Zobel and Dart (1996) show that other algorithms for phonetic matching perform much better in the context of IR

What queries can we process?

- We have
 - Positional inverted index with skip pointers
 - Wild-card index
 - Spell-correction
 - Soundex
- Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)

Exercise

- Draw yourself a diagram showing the various indexes in a search engine incorporating all the functionality we have talked about
- Identify some of the key design choices in the index pipeline:
 - Does stemming happen before the Soundex index?
 - What about n-grams?
- Given a query, how would you parse and dispatch sub-queries to the various indexes?

Resources

- IIR 3, MG 4.2
- Efficient spell retrieval:
 - K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys 24(4), Dec 1992.
 - J. Zobel and P. Dart. Finding approximate matches in large lexicons. Software - practice and experience 25(3), March 1995. http://citeseer.ist.psu.edu/zobel95finding.html
 - Mikael Tillenius: Efficient Generation and Ranking of Spelling Error Corrections. Master's thesis at Sweden's Royal Institute of Technology. http://citeseer.ist.psu.edu/179155.html
- Nice, easy reading on spell correction:
 - Peter Norvig: How to write a spelling corrector http://norvig.com/spell-correct.html