## Homework 5 Solutions

via Gradescope

- Failure to submit homework correctly will result in zeroes.
- Handwritten homework is OK. You do not have to type up your work.
- $\bullet$  Problems assigned from the textbook are from the  $5^{\rm th}$  edition.
- No late homework accepted. Lateness due to technical issues will not be excused.
- 1. (3 points) Section 4.8 #8.

Solution: #8.

Conjecture.  $\sqrt{4} \notin \mathbb{Q}$ .

Disproof. 
$$\sqrt{4} = \sqrt{2(2)} = \sqrt{2}(\sqrt{2}) = 2 \in \mathbb{Z} \subseteq \mathbb{Q} \text{ so } \sqrt{4} \in \mathbb{Q}.$$

2. (3 points) Prove or disprove the following conjecture.

Conjecture.  $xy \in \mathbb{R} - \mathbb{Q}$  for any  $x, y \in \mathbb{R} - \mathbb{Q}$ .

Disproof. Choose  $x = y = \sqrt{2} \in \mathbb{R} - \mathbb{Q}$  such that

$$xy = \sqrt{2}(\sqrt{2}) = \sqrt{2(2)} = \sqrt{4} = 2 \in \mathbb{Z} \subseteq \mathbb{Q}$$

so  $xy \in \mathbb{Q}$ .

- 3. (6 points) Provided the Pythagorean Theorem 4.8.1,  $\sqrt{2} \notin \mathbb{Q}$ :
  - (a) Prove that  $\sqrt{6} \notin \mathbb{Q}$  using Proposition 4.7.4 and Euclid's lemma.
  - (b) Prove that  $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$  using the previous part.

**Proposition** (4.7.4).  $n^2 \in 2\mathbb{Z}$  implies  $n \in 2\mathbb{Z}$  for any  $n \in \mathbb{Z}$ .

**Lemma** (Euclid's lemma). Let p be prime. Let  $a, b \in \mathbb{Z}$  and a > 1 and b > 1. If  $p \mid ab$  and  $p \nmid a$ , then  $p \mid b$ .

Solution:

(a) Proof. Suppose  $\sqrt{6} \in \mathbb{Q}$ . There exist  $m \in \mathbb{Z}$  and  $n \in \mathbb{Z} - \{0\}$  such that m, n are relatively prime and  $\sqrt{6} = \frac{m}{n}$ .

$$\sqrt{6} = \frac{m}{n}$$
$$6 = \frac{m^2}{n^2}$$
$$6n^2 = m^2$$
$$2(3n^2) = m^2$$

 $3n^2 \in \mathbb{Z}$  since  $\mathbb{Z}$  is closed under products, so  $m^2 \in 2\mathbb{Z}$ .  $m \in 2\mathbb{Z}$  via Proposition 4.7.4.  $m = 2k_1$  for some integer  $k_1 \in \mathbb{Z}$ .

$$6n^2 = m^2 = (2k_1)^2 = 4k_1^2$$
$$3n^2 = 2k_1^2$$

 $k_1^2 \in \mathbb{Z}$  since  $\mathbb{Z}$  is closed under products, so  $2 \mid (3n^2)$ .  $2 \mid (3n^2)$  and 2 is prime but  $2 \nmid 3$  so  $2 \mid n^2$  via Euclid's lemma.  $n^2 \in 2\mathbb{Z}$  implies  $n \in 2\mathbb{Z}$  via Proposition 4.7.4.  $n = 2k_2$  for some integer  $k_2 \in \mathbb{Z}$ . However now m, n have a common factor of 2 > 1, which contradicts that m, n are relatively prime to write in reduced form,  $\frac{m}{n} \in \mathbb{Q}$ .

Thus  $\sqrt{6} \notin \mathbb{Q}$ .

(b) Proof. Suppose  $\sqrt{2} + \sqrt{3} \in \mathbb{Q}$ . There exist  $m \in \mathbb{Z}$  and  $n \in \mathbb{Z} - \{0\}$  such that  $\sqrt{2} + \sqrt{3} = \frac{m}{n}$ .

$$\sqrt{2} + \sqrt{3} = \frac{m}{n}$$
$$(\sqrt{2} + \sqrt{3})^2 = \left(\frac{m}{n}\right)^2$$
$$2 + 3 + 2\sqrt{6} = \frac{m^2}{n^2}$$
$$2\sqrt{6} = \frac{m^2}{n^2} - 5$$
$$\sqrt{6} = \frac{m^2 - 5n^2}{2n^2}$$

 $m^2 - 5n^2 \in \mathbb{Z}$  since  $\mathbb{Z}$  is closed under products and differences.  $2n^2 \in \mathbb{Z}$  since  $\mathbb{Z}$  is closed under products.  $2 \neq 0$  and  $n \neq 0$  since  $n \in \mathbb{Z} - \{0\}$ , so  $2n^2 \neq 0$  via Zero Product Property. Thus  $\sqrt{6} \in \mathbb{Q}$  but this contradicts  $\sqrt{6} \notin \mathbb{Q}$  from the previous part. Therefore  $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$ .

4. (6 points) Section 4.10 # 12, 15.

Solution: #12.

$$48 = 3(16) = (2^4)3$$
 and  $54 = 2(27) = 2(3^3)$  so  $gcd(48, 54) = 2(3) = 6$ .



#15. Following the Euclidean algorithm and written in the form of the Quotient-Remainder theorem:

$$10933 = 832(13) + 117$$
$$832 = 117(7) + 13$$
$$117 = 13(9) + 0$$

so  $\gcd(10933, 832) = \gcd(832, 117) = \gcd(117, 13) = \gcd(13, 0) = 13.$ 

5. (6 points) Section 4.10 #22, 24.

**Definition.** Let  $a, b \in \mathbb{Z}$ , not both zero.  $d \in \mathbb{Z}$  is the *greatest common divisor* of a and b, denoted gcd(a, b), if and only if

- (1)  $d \mid a \text{ and } d \mid b$
- (2) For any  $c \in \mathbb{Z}$ ,  $c \mid a$  and  $c \mid b$  implies  $c \leq d$ .

**Definition.**  $a, b \in \mathbb{Z}$  are relatively prime if and only if gcd(a, b) = 1.

Solution: #22.

**Theorem.**  $a \mid b$  if and only if gcd(a, b) = a for any  $a, b \in \mathbb{Z}^+$ .

Proof. Let  $a, b \in \mathbb{Z}^+$ .

Case 1: Suppose  $a \mid b$ .  $1 \in \mathbb{Z}$  such that a = a(1) so  $a \mid a$ . So  $a \mid a$  and  $a \mid b$  and a is a common divisor of a and b.  $a \leq \gcd(a,b)$  via definition of greatest common divisor. Provided  $d := \gcd(a,b)$ ,  $d \mid a$  and  $d \mid b$ .  $d \mid a$  via specialization, so  $d \leq a$  via Theorem 4.4.1 and  $\gcd(a,b) \leq a$ . Since  $a \leq \gcd(a,b)$  and  $\gcd(a,b) \leq a$ ,  $a = \gcd(a,b)$ .

Case 2: Suppose gcd(a, b) = a. So  $a \mid b$  and  $a \mid a$ . Also if  $c \mid a$  and  $c \mid b$  then  $c \leq a$  for any  $c \in \mathbb{Z}$ .  $a \mid b$  via specialization.

Thus  $a \mid b$  if and only if gcd(a, b) = a for any  $a, b \in \mathbb{Z}^+$ .

#24.

**Lemma** (4.10.2). For any  $a, b \in \mathbb{Z}$  not both zero and  $q, r \in \mathbb{Z}$ , a = bq + r implies gcd(a, b) = gcd(b, r).

*Proof.* Let  $a, b \in \mathbb{Z}$ , not both zero, and  $q, r \in \mathbb{Z}$ . Suppose a = bq + r.

Case 2: Our goal is to show that  $gcd(b, r) \leq gcd(a, b)$ .

(a) Let c be a common divisor of b and r, i.e.  $c \mid b$  and  $c \mid r$ . There exist  $k_1, k_2 \in \mathbb{Z}$  such that  $b = k_1 c$  and  $r = k_2 c$ .

$$a = bq + r$$

$$a = (k_1c)q + k_2c$$

$$a = c(k_1q + k_2)$$

 $k_1q + k_2 \in \mathbb{Z}$  since  $\mathbb{Z}$  is closed under products and sums, so  $c \mid a$ .  $c \mid a$  and  $c \mid b$  via conjunction, so c is common divisor of a and b. Thus every common divisor of b and  $c \mid b$  and c

(b) Since  $a \neq 0$  or  $b \neq 0$ , i.e. a, b are not both zero, a and b have a greatest common divisor. Since every common divisor of b and r is a common divisor of a and b from part (a), the greatest common divisor of b and c is a common divisor of a and b. Thus

$$\gcd(b,r) \le \gcd(a,b)$$

since gcd(a, b) is the greatest such divisor.

6. (6 points) Section 4.10 #28, 29.

**Definition.** Let  $a, b \in \mathbb{Z} - \{0\}$ .  $c \in \mathbb{Z}^+$  is the *least common multiple* of a and b, denoted lcm(a, b), if and only if

- (1)  $a \mid c$  and  $b \mid c$
- (2) For any  $m \in \mathbb{Z}^+$ ,  $a \mid m$  and  $b \mid m$  implies  $c \leq m$ .

Solution: #28.

- (a)  $18 = 2(3^2)$  and  $12 = (2^2)(3)$  so  $lcm(12, 18) = (2^2)(3^2) = 4(9) = 36$ .
- (b)  $lcm(2^2 \cdot 3 \cdot 5, 2^3 \cdot 3^2) = (2^3)(3^2)(5) = 360.$
- (c)  $2800 = 28(100) = (2^2)(7)(2^2)(5^2) = (2^4)(5^2)(7)$  and  $6125 = (125)(49) = (5^3)(7^2)$  so

$$lcm(2800, 6125) = (2^4)(5^3)(7^2) = (2)(5)(4)(25)(2)(49) = (10)(100)(98) = 98000.$$

#29.

**Theorem.** gcd(a, b) = lcm(a, b) if and only if a = b for any  $a, b \in \mathbb{Z}^+$ .

Proof. Let  $a, b \in \mathbb{Z}^+$ .

Case 1: Suppose a = b.



- (i)  $1 \in \mathbb{Z}$  such that a = a(1) and b = a(1), so  $a \mid a$  and  $a \mid b$ . Thus a is a common divisor of a and b, so  $a \le \gcd(a,b)$ .  $1 \in \mathbb{Z}$  such that a = b(1), so  $b \mid a$ .  $a \mid a$  and  $b \mid a$  so  $\operatorname{lcm}(a,b) \le a$ .  $\operatorname{lcm}(a,b) \le a$  and  $a \le \gcd(a,b)$ , so  $\operatorname{lcm}(a,b) \le \gcd(a,b)$  via transitivity.
- (ii)  $\gcd(a,b) \mid a \text{ so } \gcd(a,b) \leq a \text{ via Theorem 4.4.1. } a \mid \operatorname{lcm}(a,b) \text{ so } \operatorname{lcm}(a,b) = ka$  for some  $k \in \mathbb{Z}$ .  $\operatorname{lcm}(a,b) > 0$  by definition and a > 0 so  $k \geq 1 > 0$  via Property T25.  $\operatorname{lcm}(a,b) = ka \geq (1)a = a$ .  $\gcd(a,b) \leq a$  and  $a \leq \operatorname{lcm}(a,b)$ , so  $\gcd(a,b) \leq \operatorname{lcm}(a,b)$  via transitivity.

 $\operatorname{lcm}(a,b) \leq \operatorname{gcd}(a,b)$  and  $\operatorname{gcd}(a,b) \leq \operatorname{lcm}(a,b)$ , so  $\operatorname{gcd}(a,b) = \operatorname{lcm}(a,b)$ . a = b implies  $\operatorname{gcd}(a,b) = \operatorname{lcm}(a,b)$ .

Case 2: Suppose  $c := \gcd(a, b) = \text{lcm}(a, b) > 0$ .

- (i)  $c \mid a$  by definition of greatest common divisor, so  $c \leq a$  via Theorem 4.4.1.  $a \mid c$  by definition of least common multiple, so  $a \leq c$  via Theorem 4.4.1. Thus a = c.
- (ii)  $c \mid b$  by definition of greatest common divisor, so  $c \leq b$  via Theorem 4.4.1.  $b \mid c$  by definition of least common multiple, so  $b \leq c$  via Theorem 4.4.1. Thus b = c.

a = b via transitivity.

gcd(a, b) = lcm(a, b) implies a = b.

Therefore gcd(a, b) = lcm(a, b) if and only if a = b.

7. (3 points) Section 5.1 # 79.

Solution: Recall Euclid's lemma.

*Proof.* Let p > 1 be prime and  $r \in \mathbb{Z}$  such that 0 < r < p.

 $\binom{p}{r} \in \mathbb{Z}$  since  $\binom{n}{k} \in \mathbb{Z}$  for any  $n, k \in \mathbb{Z}$  such that  $n \ge k \ge 0$ .

Since p - r = p - r + 0 = p - r + 1 - 1 = p - 1 - (r - 1),

$$\binom{p}{r} = \frac{p!}{r!(p-r)!} = \frac{p(p-1)!}{r(r-1)!(p-1-(r-1))!} = \frac{p}{r} \binom{p-1}{r-1}$$
$$r \binom{p}{r} = p \binom{p-1}{r-1}.$$

 $\binom{p-1}{r-1} \in \mathbb{Z}$  since  $p-1 > r-1 \ge 0$ , so  $p \mid (r\binom{p}{r})$ . p > 1 is prime and  $p \nmid r$  since 0 < r < p, therefore  $p \mid \binom{p}{r}$  via Euclid's lemma.