Model No 5.9: CHI-SQUARE TEST FOR INDEPENDENT OF ATTRIBUTES

Problem 28: The following table gives the classification of 100 workers according to sex and nature of work. Test whether the nature of work is independent of the sex of the worker.

	Stable	Unstable	Totla
Males	40	20	60
Females	10	30	40
Total	50	50	100

Elw Observed freg & Expected freg.

Solution:

[i) Null Hypothesis (H₀):

(ii) Alternative Hypothesis (H₁): There is Significant difference blue Observed & Expected friequency

(iii) Level of Significance (α): $\alpha = 0.05$

(iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$

$$E(a) = \frac{(a+c)(a+b)}{N} = \frac{60\times50}{100} = 30 \quad E(b) = \frac{(b+d)(a+b)}{N} = \frac{60\times50}{100} = 30$$

$$E(a) = \frac{(a+c)(c+d)}{N} = \frac{40\times50}{100} = 20 \quad E(b) = \frac{(b+d)(c+d)}{N} = \frac{40\times50}{100} = 20$$

60		
0 40	30	30
	20	20
		ostable 100 20

Observed Frequency (O_i)	Expected Frequency(E _i)	$(O_i - E_i)^2$	$(O_i - E_i)^2$
40 20 10 30	30 30 20 20 20	100 100 100 100	8.3333 3.3333 5
Anna Paris			x = 2 16.6666

(v) Conclusion: Degrees of freedom = (n-1)(m-1) = (9-1)((-1) = (2-1)(2-1) = 1

Calculated value of χ^2_{tot} 16.6666

Tabulated value of χ^2_{tot} $\chi^2_{\text{0.05}}$ $\chi^2_{\text{0.05}}$ $\chi^2_{\text{0.05}}$ (91-1) = $\chi^2_{\text{0.05}}$ (1) = 3.841

Calculated value of χ^2 Tabulated value of χ^2

réal > réab Null Hypothesis is Rejected.

Problem 29: Given the following contingency table for hair colour and eye colour. Find the value of χ^2

Is there good association between the two?

	I	Iair co	lour		
		Fair	Brown-	Black	Total
Eye colour	Blue	15	5	20	-40
	Grey	20	10	20	50
	Brown	25	15	20	60
	Total-	60	30-	60	150

Solution:

- (i) Null Hypothesis (H₀):
- (ii) Alternative Hypothesis (H1):
- (iii) Level of Significance (α) :
- (iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_i E_i)^2}{E}$

$E(a) = \frac{(a+d+g)(a+b+c)}{N} = \frac{140\times60}{150 \text{ N}}$	$E(b) = \frac{(b+e+h)(a+b+c)}{N} = \frac{40 \times 30}{150}$	$E(b) = \frac{(c+f+i)(a+b+c)}{N} = \frac{40\times60}{150} \ge 16$
$E(c) = \frac{(a+d+g)(d+e+f)}{N} = \underbrace{\frac{50\times60}{150}}$	$E(b) = \frac{(b+e+h)(d+e+f)}{N} = \frac{50 \times 30}{150}$	$E(b) = \frac{(c+f+i)(d+e+f)}{N} = \frac{50 \times 60}{150} = 20$
$E(c) = \frac{(a+d+g)(g+h+i)}{N} = \frac{60\times60}{150}$	$E(b) = \frac{(b+e+h)(g+h+1)}{N} = \frac{60 \times 30}{150}$	$E(b) = \frac{(b+y) + (x_0 + x_0 + y_0)}{y} = \frac{60 \times 60}{150} = 24$

Observed Frequency (O_i)	Expected Frequency (E_i)	$(O_i - E_i)^2$	(0, 0)
15	16	V 3 = 67	$\frac{(O_i - E_i)^2}{E_i}$
5 20	20	1	E,
	100	9	0.06
20	90	16	1.12
10	20	0	to
20 25	20	0	8
15		1	0.04
20	12	9	0.75
	-24	16	0.66
			x-50-27 3.63

(v) Conclusion: Degrees of freedom = (n-1)(m-1) = (3-1)(3-1) = 4Calculated value of $\chi^2 = 3.63$ Tabulated value of $\chi^2 = 3.63$ Calculated value of $\chi^2 = 3.63$ Calculated value of $\chi^2 = 3.63$ Problem 30: From the following data, find whether there is any significant liking in the habit of taking soft drinks among the categories of employees.

Employees Soft drinks	Clerks	Teachers	Officers	Total
Pepsi	10	25	65	100
Thums Up	15	30	65	110
Fanta	50	60	30	
Total	75	115	160	140

Solution:

(i) Null Hypothesis (Ho):

(ii) Alternative Hypothesis (H_1) :

(iii) Level of Significance (α): $\alpha = 0.05$

(iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_i - E_i)^2}{E}$

$E(a) = \frac{(a+d+g)(a+b+c)}{N} = \frac{100 \times 75}{350}$	$E(b) = \frac{(b+e+h)(a+b+c)}{N} = 1 \frac{\text{DOXIIS}}{350}$	$E(b) = \frac{(c+f+1)(a+b+c)}{N} = 100 \times 160$
$E(c) = \frac{(a+d+g)(d+e+f)}{N} = 110 \times 35$	$E(b) = \frac{(b+e+h)(d+e+f)}{N} = \frac{110\times115}{850}$	$E(b) = \frac{(c+f+i)(d+e+f)}{N} = \frac{110 \times 160}{350}$
$E(c) = \frac{(a+d+g)(g+h+i)}{N} = \underbrace{140x75}_{350}$	$E(b) = \frac{(b+e+h)(g+h+i)}{N} = 140 \times 115$	$E(b) = \frac{(c+f+i)(c+h+i)}{N} = \frac{160 \times 160}{350}$

Observed Frequency (O _i)	Expected Frequency (E_i)	$(O_i - E_i)^2$	$(O_i - E_i)^2$
10 25 65 15 30 65 50 60 30	21.4286 32.8571 45.7143 33.5714 36.1429 50.2857	130.6129 61.7340 371.9382 73.4689 37.7352 216.5106 400 196	E, 6.0953 1.8989 8.1361 3.1169 1.0441 4.3056 13.3333 4.2609 18.0625

(v) Degrees of freedom = (n-1)(m-1) = (3-1)(3-1) = HConclusion:

Calculated value of $\chi^2 = 60.2336$ Tabulated value of $\chi^2 = 60.2336$ Calculated value of $\chi^2 = 50.05(H) = 9.488$ Calculated value of $\chi^2 = 50.05(H) = 9.488$ Problem 31: 1000 students at college level were graded according to their I.Q. and the economic conditions of their home. Use χ^2 test to find out whether there is any association between condition at home and I.Q. Use 0.05 L.O.S.

I.Q. Economic Condition	High	Low	Total
Rich	460	140	600
Poor	240	160	400
Total	700	300	1000

Solution:

(i) Null Hypothesis (H₀):

(ii) Alternative Hypothesis (H_1) :

(iii) Level of Significance (α): $\alpha = 0.05$

(iv) Test Statistic: The test statistic $\chi^2 = \sum \frac{(O_i - E_i)^2}{E}$

$$E(a) = \frac{(a+c)(a+b)}{N} = \frac{600 \times 700}{1000} \quad E(b) = \frac{(b+d)(a+b)}{N} = \frac{600 \times 300}{1000}$$

$$E(a) = \frac{(a+c)(c+d)}{N} = \frac{400 \times 700}{1000} \quad E(b) = \frac{(b+d)(c+d)}{N} = \frac{400 \times 300}{1000}$$

$$120$$

Observed Frequency (O_i)	Expected Frequency (E_i)	$(O_i - E_i)^2$	$\frac{(O_i - E_i)^2}{C_i}$
460 140 240 160	420 180 280 120	1600 1600 1600	3.8695 8.8889 5.7143 13.3333

Degrees of freedom = (n-1)(m-1) = (2-1)(2-1) = 1(v) conclusion:

Calculated value of $\chi_{col}^2 = 31.7460$ Tabulated value of $\chi_{col}^2 = 3.841$ Calculated value of $\chi_{col}^2 = 3.841$

Null Flypothesis is Rejected

Part C:

Analysis of Variance (Anova) Model No 5.10: One-way Anova Model No 5.11: Two-way Anova