МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Машинное обучение»

Тема: Кластеризация (к-средних, иерархическая)

Студент гр. 8304	 Холковский К.В
Преподаватель	 Жангиров Т. Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами кластеризации модуля Sklearn.

Ход работы

1. Загрузка данных

Были загружены данные

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica
[150	rows	x 5	colum	ns]	

Рис 1 – Загруженные данные

2. K-means

Провели кластеризацию методом k-means

Рис 2 — Результат класстеризации

n_int – сколько раз перезапускать алгоритм.

Нарисовли карту для всей области значений

K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

Рис 3 – Результат после PCA и k-means

Методы init	Суть работы		
k-means++	Выбирает первый центр случайно.		
	Каждый последующий выбирается		
	так, чтобы вероятность выбора точки		
	была пропорциональна		
	вычисленному для неё квадрату		
	расстояния		
random	Случайные центры		
массив точек	Заданные центры		

Рис 4 – Результат определения числа кластеров методом локтя

Рис 5 – Рзличие результатов работы методов k-means

3. Иерархическая кластеризация

Была проведена иерархическая кластеризация

Рис 6 – Результат иерархической кластеризации

Выполнили кластеризацию для разного количества кластеров.

Рис 7 – 2 кластера

Рис 8 – 3 кластера

Рис 10 – 5 кластеров

Была нарисована дендограмма до 6-го уровня

Исследовали кластеризацию при всех параметрах linkage

Рис 12 – ward

Рис 13 – average

Рис 14 – complete

Лучший результат кластеризации был достигнут при linkage='single'.

Вывод

Ознакомились с методами кластеризации модуля Sklearn.