Supplementary Material for "Dual-Refinement: Joint Label and Feature Refinement for Unsupervised Domain Adaptive Person Re-Identification"

Anonymous Author(s) Submission Id: 679

A OVERALL TRAINING PROCEDURE

Algorithm 1: Alternative Training Procedure of Our Dual-Refinement Method

Input: Labeled source dataset D_s ; Unlabeled target dataset D with N images; Feature encoder F pretrained on ImageNet; Identity classifier ϕ ; Instant memory bank V; Maximum training epoch max_epoch ; Maximum training iteration max_iter

Output: Optimized feature encoder *F* for target domain;

- 1 Pretain feature encoder F on the labeled source dataset D_s with classification loss and triplet loss;
- 2 for epoch = 1 to max epoch do
- 3 // Off-line pseudo label generation and refinement 4 Extract features of the target dataset D using F and calculate Jaccard distance $d_I(i, j)$ by Eq. (1) (2);
- Perform DBSCAN clustering on D with d_I and assign the coarse pseudo labels $\widetilde{D} = \{(x_i, \widetilde{y}_i)|_{i=1}^N\}$;
 - Perform fine clustering and assign refined pseudo labels by Eq. (6) (7) to obtain the refined target dataset $\widehat{D} = \{(x_i, \widehat{y}_i)|_{i=1}^N\};$
- // On-line feature learning and refinement
- **for** iter = 1 to max_iter **do**
 - Sample $(x_i, \widetilde{y}_i, \widehat{y}_1)$ from $\widetilde{D} \cup \widehat{D}$;
 - Update the feature encoder F, classifier ϕ and instant memory bank V by computing the gradients of the overall loss (Eq. (12)) with back-propagation;
- 11 end
- **end**

return feature encoder *F*;

We demonstrate the details of the alternative training procedure for our Dual-Refinement method in Algorithm 1. Our method can be easily incorporated into the general clustering-based UDA framework [4]. In detail, we perform the DBSCAN clustering [1] by the implementation in scikit-learn [3].

B COMPUTATIONAL COST COMPARISONS

As shown in Table 1, we compare our Dual-Refinement method with the baseline and the state-of-the-art method MMT [2] in the computional cost. The experiments are conducted when Market1501 [5] → DukeMTMC-ReID [6]. MMT uses two networks to train with each other, which is not memory efficient. Compared with MMT, our Dual-Refinement can achieve higher performance by costing less training time and GPU memory. Compared with the baseline method, our Dual-Refinement only introduces little extra GPU

Table 1: Computional cost comparisions.

Method	Market1501 → DukeMTMC-ReID		
	R1 (%)	Time (hours)	GPU Memory (MB)
Baseline	72.5	3.17	8692
Dual-Refinement	82.1	3.53	9600
MMT	78.0	11.45	15068

memory cost (about 908 MB) and little extra time cost (about 0.36 hours) because of the proposed instant memory bank. However, our Dual-Refinement outperforms the baseline method's rank-1 accuracy (R1) by a large margin. Based on the above analyses, our proposed Dual-Refinement is superior not only in the performance but also in the computational cost.

REFERENCES

- Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A densitybased algorithm for discovering clusters in large spatial databases with noise.. In Kdd, Vol. 96. 226–231.
- [2] Yixiao Ge, Dapeng Chen, and Hongsheng Li. 2020. Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification. arXiv preprint arXiv:2001.01526 (2020).
- [3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research* 12 (2011), 2825–2830.
- [4] Liangchen Song, Cheng Wang, Lefei Zhang, Bo Du, Qian Zhang, Chang Huang, and Xinggang Wang. 2020. Unsupervised domain adaptive re-identification: Theory and practice. *Pattern Recognition* (2020), 107173.
- [5] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. 2015. Scalable person re-identification: A benchmark. In Proceedings of the IEEE international conference on computer vision. 1116–1124.
- [6] Zhedong Zheng, Liang Zheng, and Yi Yang. 2017. Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In *Proceedings of the IEEE International Conference on Computer Vision*. 3754–3762.