Teori Bilangan (Aritmatika Modulo)

© Muhammad Yafi. Digunakan untuk kepentingan pelatihan OSN. Dilarang mengkomersilkan materi ini. Dilarang mengutip tanpa mencantumkan sumber. Diizinkan mendistribusikan materi untuk kepentingan belajar.

Prerequisites

Teori Bilangan (FPB, KPK, Algoritma Euclid)

Outline

- Pengantar
- Aritmatika Modulo
- Modulo Kongruen
- Algoritma Pemangkatan
- Modulo Inverse

Pengantar

- Banyak bilangan bulat adalah tak hingga.
- Pada suatu kasus, kita hanya peduli hasil bagi suatu bilangan bulat (modulo) dengan bilangan bulat.
- Modulo akan membatasi ketidakhinggaan bilangan bulat.
- Contoh:
 - Pada jam dengan sistem 24 jam, jam ke-24 dianggap sama dengan jam ke-0 (modulo 24)
 - Pada penanggalan masehi, banyak bulan adalah 12. Bulan ke-13 dianggap sama dengan bulan ke-1 (modulo 12)
 - Pada kriptografi dan ISBN

Aritmatika Modulo

- Misalkan a dan m bilangan bulat (m > 0). Operasi
 a mod m (dibaca "a modulo m")
 memberikan sisa jika a dibagi dengan m.
- Notasi: $a \mod m = r$ sedemikian sehingga a = mq + r, dengan $0 \le r < m$.
- m disebut **modulus** atau **modulo**, dan hasil aritmetika modulo m terletak di dalam himpunan $\{0, 1, 2, ..., m-1\}$.

Beberapa hasil operasi dengan operator modulo:

(i)
$$23 \mod 5 = 3$$

$$(23 = 5 \cdot 4 + 3)$$

(ii)
$$27 \mod 3 = 0$$

$$(27 = 3 \cdot 9 + 0)$$

(iii)
$$6 \mod 8 = 6$$

$$(6 = 8 \cdot 0 + 6)$$

(iv)
$$0 \mod 12 = 0$$

$$(0 = 12 \cdot 0 + 0)$$

$$(v) - 41 \mod 9 = 4$$

$$(-41 = 9 (-5) + 4)$$

$$(vi) - 39 \mod 13 = 0$$

$$(-39 = 13(-3) + 0)$$

Penjelasan unuk (v):

-41 mod 9 = -5. karena kita ingin hasil modulo harus positif maka tambahkan 9 ke hasil modulo sehingga didapat -5 + 9 = 4

Kongruen Modulo

- Sebuah bilangan bulat positif a dan b merupakan kongruen modulo dari bilangan bulat positif m jika (a-b) dibagi m tidak memiliki sisa. (m habis membagi a-b)
- Atau a dan b memiliki sisa bagi yang sama ketika dibagi m.
- Notasi : a ≡ b (mod m) baca : a kongruen b modulo m
- Negasinya adalah a ≡/ b (mod m) baca : a tidak kongruen b modulo m

Contoh kongruen

- $14 \equiv 2 \pmod{3}$
 - karena 3 habis membagi (14-2 = 12)
- $100 \equiv 30 \pmod{10}$
 - karena 10 habis membagi (100-30 = 70)
- $12 \equiv / 5 \pmod{4}$
 - karena 4 tidak habis membagi (12-5 = 7)
- $5 \equiv / 4 \pmod{3}$
 - karena 3 tidak habis membagi (5-4 = 1)

 $a \mod m = r \operatorname{dapat} \operatorname{ditulis} a \equiv r \pmod{m}$

Contoh:

- i. 23 mod 4 = 3 -> 23 \equiv 3 (mod 4)
- ii. 27 mod 3 = $0 \rightarrow 27 \equiv 0 \pmod{3}$
- iii. $40 \mod 13 = 1 \rightarrow 40 \equiv 1 \pmod 13$
- iv. $0 \mod 15 = 0 \rightarrow 0 \equiv 0 \pmod 15$
- v. $6 \mod 7 = 6 -> 6 \equiv 6 \pmod 7$

Ini hanya masalah mengubah notasi saja.

Sifat Kongruen Modulo

Jika $a \equiv b \pmod{m}$ dan c adalah sembarang bilangan bulat maka

- $(a+c) \equiv (b+c) \pmod{m}$
- $ac \equiv bc \pmod{m}$
- $a^p \equiv b^p \pmod{m}$, p bilangan bulat tak-negatif

Jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$, maka

- $(a+c) \equiv (b+d) \pmod{m}$
- $ac \equiv bd \pmod{m}$

Sifat Modulo

- Berdasarkan sifat tersebut, kita dapat menentukan bahwa
- 1. (a + b) mod m = ((a mod m) + (b mod m)) mod m
- 2. (a b) mod m = ((a mod m) (b mod m)) mod m
- 3. (ab) mod m = ((a mod m)(b mod m)) mod m
- 4. $a^p \mod m = ((a^x \mod m)(a^y \mod m)) \mod m$, dengan $x,y \ge 0 \dim x+y = p$.

Contoh: hitunglah (100124) mod 25.

```
100124 \mod 25 = (100000 + 124) \mod 25
                = ((100000 mod 25) + (124 mod 25)) mod 25
                = (0 + (124 \mod 25)) \mod 25
                = (125 - 1) \mod 25
                = ((125 \mod 25) + (-1 \mod 25)) \mod 25)
                = -1 mod 25 (karena negatif, +25 ke hasil)
                = 24
```

Contoh: Hitunglah 5! mod 13

```
5! mod 13 = 5 x 4 x 3! mod 13

= (20 mod 13)(6 mod 13) mod 13

= (7 x 6) mod 13

= 42 mod 13

= 3
```

Contoh: carilah 2 angka terakhir dari 2²⁰.

Jawab : 2 angka terakhir artinya sama dengan mencari 2²⁰ mod 100.

$$2^{20} \mod 100 = 2^{10} \times 2^{10} \mod 100$$

$$2^{10} \mod 100 = 2^5 \times 2^5 \mod 100$$

Karena 2⁵ mod 100 = 32 mod 100, maka

$$2^{10} \mod 100 = 32 \times 32 \mod 100$$

$$= (1000 + 24) \mod 100$$

Karena 2^{10} mod 100 = 24 maka

$$2^{20} \mod 100 = 24 \times 24 \mod 100$$

$$= 576 \mod 100 = (500 + 76) \mod 100 = 76$$

Algoritma Pemangkatan

$$f(a,p) = a * a * a * a * \cdots * a$$

Menghitung f(2,8) dengan cara biasa

$$f(2,8) = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 7$$
 operasi perkalian

– Cara lain :

$$f(2,8) = f(2,4) * f(2,4)$$

$$f(2,4) = f(2,2) * f(2,2)$$

$$f(2,2) = f(2,1) * f(2,1)$$

$$f(2,1) = f(2,0) * 2$$

$$f(2,0) = 1$$

- Total ada 4 operasi!
- Kita akan menghitung f(a, p) mod m jika p sangat besar

Algoritma Pemangkatan

- Berdasarkan sifat a^p mod $m = ((a^x \mod m)(a^y \mod m))$ mod m, kita dapat menghitung a^p mod m dengan p yang sangat besar, misalnya p = 1.000.000 tanpa harus mengalikan a sebanyak 1.000.000 kali.
- Ide yang digunakan adalah :
 - Jika p = 0, maka a^0 mod m= 1 mod m.
 - Jika p ganjil, maka hitung $a^p \mod m = (a \mod m)(a^{p-1} \mod m)$ mod m
 - Jika p genap, maka hitung $a^{p/2}$ mod m, misal hasilnya t.
 - Dengan rumus $a^p \mod m = (a^{p/2} \mod m)(a^{p/2} \mod m) \mod m$ maka $a^p \mod m = t \times t \mod m$
- Algoritma tersebut lebih cepat karena pada p genap, dia membagi dua nilai p dan hanya menghitung ($a^{p/2}$ mod m) sekali saja. Dan sifat tersebut berlaku rekursif!

Algoritma Pemangkatan

$$f(a,n) = \begin{cases} 1, & \text{jika}(n=0) \\ \left(f\left(a,\frac{n}{2}\right)\right)^2, & \text{jika}(n \bmod 2 = 0) \\ a * f(a,n-1), & \text{jika}(n \bmod 2 = 1) \end{cases}$$

```
function pangkat(a,n : integer);
var
   tmp : integer;
begin
  if (n = 0) then pangkat := 1
  else
      if (n \mod 2 = 1) then pangkat := a * pangkat(a,n-1);
      else
      begin
         tmp := pangkat(a, n div 2);
         pangkat := tmp * tmp;
         end;
end;
```

Question: kenapa pake tmp? Gak langsung pangkat(a,n div 2) * pangkat(a,n div 2)

Modulo Inverse

- Inverse: balikan.
- Dalam aritmatika biasa : inverse dari perkalian adalah pembagian
- Contoh: invers dari 5 adalah 1/5 karena 5 x
 1/5 = 1

Invers dapat digunakan untuk menyelesaikan persamaan aritmatika biasa

Contoh: carilah solusi 4a = 36

Solusi dari persamaan tersebut adalah dengan mencari invers dari 4, yaitu ¼, sehingga

$$4a(\frac{1}{4}) = 36(\frac{1}{4})$$

$$a = 9$$

Invers dapat digunakan untuk menyelesaikan persamaan modulo

Contoh: carilah solusi $4a \equiv 5 \pmod{9}$

Solusi dari persamaan tersebut dapat dicari dengan mengubah bentuk persamaan menjadi

 $a \equiv suatu_bilangan \pmod{9}$

artinya, kita akan mencari invers dari $4 \pmod{9}$ dan mengalikannya ke kedua ruas $4a \equiv 5 \pmod{9}$.

Apakah invers dari 4 (mod 9) itu?

- Bentuk persamaan $4a \equiv 5 \pmod{9}$ tersebut dapat kita ubah menjadi $px \equiv q \pmod{m}$
- Kalikan kedua ruas dengan suatu bilangan r $prx \equiv qr \pmod{m}$
- Ingat rumus : Jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$, maka $ac \equiv bd \pmod{m}$
- Kita dapat mencari solusi x dari $prx \equiv qr \pmod{m}$ dengan membuat :

```
a \equiv b \pmod{m} menjadi pr \equiv 1 \pmod{m}
c \equiv d \pmod{m} menjadi x \equiv qr \pmod{m}
```

- Nah, berarti r ini harus sesuatu yang membuat $pr \equiv 1 \pmod{m}$
- r ini disebut invers dari p (mod m) atau $r = p^{-1}$ (mod m)
- Dalam soal ini, artinya kita mencari $4r \equiv 1 \pmod{9}$
- r ini disebut invers dari 4 (mod 9)

- Suatu bilangan r disebut invers modulo dari p jika $pr \equiv 1 \pmod{m}$
- Pada soal tadi, artinya kita mencari 4r ≡ 1 (mod 9)
- Cara mencarinya bisa dengan coba-coba:

$$- r = 1 -> 4(1) \equiv / 1 \pmod{9}$$

$$- r = 2 -> 4(2) \equiv / 1 \pmod{9}$$

$$- r = 3 \rightarrow 4(3) \equiv / 1 \pmod{9}$$

— ...

$$- r = 7 -> 4(7) \equiv 1 \pmod{9}$$

Inverse dari 4 (mod 9) adalah 7

Kita kembali lagi ke soal : $4a \equiv 5 \pmod{9}$

Kalikan kedua ruas dengan invers dari 4, yaitu 7, sehingga

$$4(7) a \equiv 35 \pmod{9}$$

Karena $28 \equiv 1 \pmod{9}$, maka hal tersebut sama dengan

(1)
$$a \equiv 35 \pmod{9}$$

 $a \equiv 8 \pmod{9}$

Artinya solusi dari $4a \equiv 5 \pmod{9}$ adalah *seluruh nilai a* sehingga $a \equiv 8 \pmod{9}$

Dengan mendaftar, a= ..., -10, -1, 8, 17, 26, ...

Atau dengan menggunakan sifat a mod m = r sama dengan a = mq + r, maka a = 9q + 8 (suatu bilangan kelipatan 9 lalu ditambah 8)

- Mencari inverse 4 (mod 9) dengan mendaftar seluruh kemungkinan $4r \equiv 1 \pmod{9}$ tentu membuat lelah.
- Ingat : $a \mod m = r$ atau $a \equiv r \pmod m$ sama dengan a = mn + r
- Kita bisa menggunakan cara dengan mengembalikan arti modulo ke dalam bentuk aljabar, yaitu 4r = 9q + 1
- Dengan aljabar, r = (9q + 1)/4
- Cara ini membuat perhitungan lebih mudah, dengan cara mencari (9q + 1)/4 yang bulat. namun ujung-ujungnya juga mendaftar lagi.

Inverse Modulo dengan Algoritma Euclid

- Ingat kembali definisi kongruensi modulo
- $4r \equiv 1 \pmod{9}$ dapat diubah dengan mengubah bentuk tersebut menjadi 4r = 9q + 1

$$4r - 9q = 1$$

- Perhatikan bahwa penyelesaian persamaan tersebut dapat diselesaikan dengan mencari kombinasi linear dari 4r – 9q = 1.
- Kombinasi linear dapat dicari dengan menggunakan algoritma euclid!

Algoritma Euclid

Mencari FPB dari dua buah bilangan

Misalkan m dan n adalah bilangan bulat tak negatif dengan $m \ge n$.

Misalkan $r_0 = m \operatorname{dan} r_1 = n$.

Lakukan secara berturut-turut pembagian untuk memperoleh

$$r_0 = r_1 q_1 + r_2$$
 $0 \le r_2 \le r_1$,
 $r_1 = r_2 q_2 + r_3$ $0 \le r_3 \le r_2$,
...
$$r_{n-2} = r_{n-1} q_{n-1} + r_n \ 0 \le r_n \le r_{n-1}$$
,
 $r_{n-1} = r_n q_n + 0$

Karena FPB(m, n) = FPB (r_0, r_1) = FPB (r_1, r_2) = ... = FPB (r_{n-2}, r_{n-1}) = FPB (r_{n-1}, r_n) = FPB $(r_n, 0)$ = r_n

Jadi, fpb dari *m* dan *n* adalah sisa terakhir yang tidak nol dari runtunan pembagian tersebut

m = 80, n = 12 dan dipenuhi syarat $m \ge n$

Sisa pembagian terakhir sebelum 0 adalah 4, maka fpb(80, 12) = 4.

$$m = 312, n = 70$$

$$312 = 4 \times 70 + 32$$

 $70 = 2 \times 32 + 6$
 $32 = 5 \times 6 + 2$
 $6 = 3 \times 2 + 0$

Hasil sisa sebelum nol adalah 2, maka FPB(312,70) = 2.

Kombinasi Linear (Extended Euclid)

- FPB dari 2 buah bilangan dapat ditulis dari penjumlahan dari 2 buah bilangan tersebut, Contoh: FBB(80,12) = 4 = -1 x 80 + 7 x 12.
- Jika m dan n adalah bilangan bulat positif maka terdapat bilangan bulat p dan q sehingga pm + qn = FPB(m,n).

Kombinasi Linear (ext. euclid)

- Contoh 7: Nyatakan fpb(21, 45) sebagai kombinasi lanjar dari 21 dan 45.
- Solusi:

$$45 = 2(21) + 3$$

$$21 = 7(3) + 0$$

Sisa pembagian terakhir sebelum 0 adalah 3, maka fpb(45, 21) = 3

Substitusi dengan persamaan-persamaan di atas menghasilkan:

$$3 = 45 - 2(21)$$

yang merupakan kombinasi lanjar dari 45 dan 21

Nyatakan fpb(312, 70) sebagai kombinasi lanjar 312 dan 70.

Solusi: Terapkan algoritma Euclidean untuk memperoleh fpb(312, 70):

$$312 = 4 \cdot 70 + 32 \tag{i}$$

$$70 = 2 \cdot 32 + 6$$
 (ii)

$$32 = 5 \cdot 6 + 2$$
 (iii)

$$6 = 3 \cdot 2 + 0$$
 (iv)

Sisa pembagian terakhir sebelum 0 adalah 2, maka fpb(312, 70) = 2

Susun pembagian nomor (iii) dan (ii) masing-masing menjadi

$$2 = 32 - 5 \cdot 6$$
 (iv)

$$6 = 70 - 2 \cdot 32$$
 (v)

Sulihkan (v) ke dalam (iv) menjadi

$$2 = 32 - 5 \cdot (70 - 2 \cdot 32) = 1 \cdot 32 - 5 \cdot 70 + 10 \cdot 32 = 11 \cdot 32 - 5 \cdot 70$$
 (vi)

Susun pembagian nomor (i) menjadi

$$32 = 312 - 4 \cdot 70$$
 (vii)

Sulihkan (vii) ke dalam (vi) menjadi

$$2 = 11 \cdot 32 - 5 \cdot 70 = 11 \cdot (312 - 4 \cdot 70) - 5 \cdot 70 = 11 \cdot 312 - 49 \cdot 70$$

Jadi, fpb(312, 70) = $2 = 11 \cdot 312 - 49 \cdot 70$

Inverse Modulo dengan Algoritma Euclid

- Inverse modulo $a \pmod{m}$ dari persamaan $ax \equiv 1 \pmod{m}$ dapat dicari menyelesaikan persamaan linear (ax = mq + 1), atau ax mq = 1
- Penyelesaian tersebut dapat dicari dengan mencari FPB dari a dan m.

Contoh: carilah inverse dari 4 (mod 9) atau carilah
$$4x \equiv 1 \pmod{9}$$

FPB(4,-9) kita cari dengan algoritma euclid.

i.
$$-9 = 4(-3) + 3$$

ii.
$$4 = 3(1) + 1$$

iii.
$$3 = 1(3) + 0$$

Balik ruas semua persamaan

iv.
$$1 = 4 - 3(1)$$

v.
$$3 = -9 - 4(-3)$$

Subtitusikan v ke iv

$$1 = 4 - (-9 - 4(-3))(1)$$

$$1 = (-1)(-9) + 4(-2)$$

Artinya inverse dari $4 \pmod{9} = -2$

 Sebuah bilangan bulat jika dibagi dengan 3 bersisa 2 dan jika ia dibagi dengan 5 bersisa 3. Berapakah bilangan bulat tersebut

```
Misal: bilangan bulat = x
    x \mod 3 = 2 \rightarrow x \equiv 2 \pmod{3}
    x \mod 5 = 3 \rightarrow x \equiv 3 \pmod 5
 Jadi, terdapat sistem kekongruenan:
   x \equiv 2 \pmod{3}
   x \equiv 3 \pmod{5}
                                    (ii)
 Untuk kongruen pertama:
         x = 2 + 3k_1
                                     (iii)
 Substitusikan (iii) ke dalam (ii):
         2 + 3k_1 \equiv 3 \pmod{5} \rightarrow 3k_1 \equiv 1 \pmod{5}
diperoleh
     k_1 \equiv 2 \pmod{5} atau k_1 = 2 + 5k_2
```

Tentukan sebuah bilangan bulat yang bila dibagi dengan 5 menyisakan 3, bila dibagi 7 menyisakan 5, dan bila dibagi 11 menyisakan 7.

```
x \equiv 3 \pmod{5}
 x \equiv 5 \pmod{7}
 x \equiv 7 \pmod{11}
x \equiv 3 \pmod{5} \rightarrow x = 3 + 5k_1 (i)
Sulihkan (i) ke dalam kongruen kedua menjadi:
3 + 5k_1 \equiv 5 \pmod{7} \rightarrow k_1 \equiv 6 \pmod{7}, atau k_1 = 6 + 7k_2 (ii)
Sulihkan (ii) ke dalam (i):
x = 3 + 5k_1 = 3 + 5(6 + 7k_2) = 33 + 35k_2 (iii)
Sulihkan (iii) ke dalam kongruen ketiga menjadi:
33 + 35k_2 \equiv 7 \pmod{11} \rightarrow k_2 \equiv 9 \pmod{11} atau k_2 = 9 + 11k_3. Sulihkan k_2 ini
ke dalam (iii) menghasilkan:
x = 33 + 35(9 + 11k_3) = 348 + 385k_3
atau x \equiv 348 \pmod{385}. Ini adalah solusinya.
```

348 adalah bilangan bulat positif terkecil yang merupakan solusi sistem

348 mod 11 = 7. Catatlah bahwa 385 = $5 \cdot 7 \cdot 11$.

kekongruenan di atas. Perhatikan bahwa 348 mod 5 = 3, 348 mod 7 = 5, dan

Referensi

- Rinaldi Munir, Slide Kuliah Matematika Diskrit
- Kenneth H. Rosen, Discrete Mathematics and Its Application 6^{th} .