

ME 397- ASBR Week 5-Lecture 1

a Curiosity NASA/JPLCaltech;
 b Savioke Relay;
 c self driving car, Oxford Univ.;
 d Cheetah legged robot, Boston Dynamics

FARSHID ALAMBEIGI, Ph.D.

Assistant Professor | Walker Department of Mechanical Engineering Cockrell School of Engineering | The University of Texas at Austin

Figure shows a top view of a car, with a single steerable front wheel, driving on a plane. The $\hat{\mathbf{z}}_b$ -axis of the body frame $\{b\}$ is into the page and the $\hat{\mathbf{z}}_s$ -axis of the fixed frame $\{s\}$ is out of the page.

The angle of the front wheel of the car causes the car's motion to be a pure angular velocity w = 2 rad/s about an axis out of the page at the point r in the plane.

stack of angular and linear velocities

If $\mathbf{r}_{s} = (2;-1;0)$ or $\mathbf{r}_{b} = (2;-1.4;0)$, calculate twists \mathbf{v}_{s} and \mathbf{v}_{b} and verify them using corresponding adjoints.

$$\mathbf{r_s} = (2;-1;0)$$

 $\mathbf{r_b} = (2;-1.4;0)$

$$\boldsymbol{\omega}_{\mathbf{s}} = (0; 0; 2)$$

$$\omega_{b} = (0; 0; -2)$$

$$T_{sb} = \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} =$$

$$v_b = \omega_b \times \overline{(-r_b)} = r_b \times \omega_b = (2.8, 4, 0)$$

$$\mathcal{V}_s = \left[\begin{array}{c} \omega_s \\ v_s \end{array} \right] = \left[\begin{array}{c} \omega_s \\ \end{array} \right]$$

$$\mathcal{V}_b = \left[\begin{array}{c} \omega_b \\ v_b \end{array} \right] = \left[\begin{array}{c} 0 \\ -2 \\ 2.8 \\ 4 \\ 0 \end{array} \right]$$

$$\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix} = \begin{bmatrix} R & 0 \\ pR & R \end{bmatrix} \begin{bmatrix} \omega_b \\ v_b \end{bmatrix} = \begin{bmatrix} \operatorname{Ad}_{T_{sb}} \end{bmatrix} \mathcal{V}_b$$

$$[x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$$

[p] is the **skew-symmetric matrix** representation of vector p_{sb}

The Screw Interpretation of a Twist

- Just as an angular velocity $\boldsymbol{\omega} = \hat{\boldsymbol{\omega}} \dot{\boldsymbol{\theta}}$, where $\hat{\boldsymbol{\omega}}$ is the unit rotation axis and $\dot{\boldsymbol{\theta}}$, is the rate of rotation about that axis, a twist $v = (\boldsymbol{\omega}; v)$ can be interpreted in terms of a screw axis S and a angular velocity $\dot{\boldsymbol{\theta}}$ about the screw axis i.e., $v = S \dot{\boldsymbol{\theta}}$.
- We can write the twist $v = (\omega; v)$ corresponding to an angular velocity $\dot{\theta}$ about Screw Axis S (represented by point q; a unit direction \hat{s} ; and a pitch h)

$$\mathcal{V} = \left[\begin{array}{c} \omega \\ v \end{array} \right] = \left[\begin{array}{c} \hat{s}\dot{\theta} \\ -\hat{s}\dot{\theta} \times q \end{array} \right] + h\hat{s}\dot{\theta}$$

Linear motion at the **origin** induced by rotation about the axis

Translation along the screw axis

h = pitch =

the

linear speed/angular speed

velocity

Pitch is the ratio of

along the screw axis to

the angular velocity $\dot{\theta}$

about the screw axis.

linear

- The second term is in the direction of \hat{s} , while the first term is in the plane orthogonal to \hat{s} .
- For <u>any</u> $v = (\omega; v)$ where $\omega \neq 0$, <u>there exists an equivalent screw axis</u> defined by $\{q; \hat{s}; \text{ and } h\}$ and <u>velocity</u> $\dot{\theta}$.

The Screw Interpretation of a Twist

Instead of defining the screw axis S using the cumbersome collection {q; \$\mathbf{s}\$; and h}, we can define the screw axis S using a normalized version of any twist ν = (ω; ν) corresponding to motion along the screw:

(a) If $\underline{\omega} \neq \underline{0}$ then $\underline{S} = \underline{v/||\omega||} = (v/||\omega||, \underline{\omega}/||\omega||)$.

The screw axis S is simply twist vector ν normalized by the length of the angular velocity vector. The angular velocity about the screw axis is $\dot{\theta} = ||\omega||$, such that $S\dot{\theta} = \nu$.

(b) If $\underline{\omega} = \underline{0}$ then $\underline{S} = \underline{v/||v||} = (\underline{0}; \underline{v/||v||})$.

The screw axis S is simply twist vector ν normalized by the length of the linear velocity vector \mathbf{v} . The linear velocity along the screw axis is $\dot{\theta} = ||\mathbf{v}||$, such that $S\dot{\theta} = \nu$.

The Screw Interpretation of a Twist

For a given reference frame, a screw axis S is written as $-\hat{s}\hat{\theta} \times q$

$$\mathcal{S} = \left[egin{array}{c} \omega \ v \end{array}
ight] \in \mathbb{R}^6$$

where either (i) $\|\omega\| = 1$ or (ii) $\|\omega\| = 0$ and $\|\nu\| = 1$.

- ✓ If (i) holds then $v = -ω \times q + hω$, where q is a point on the axis of the screw and h is the pitch of the screw (h = 0 for a pure rotation about the screw axis).
- If (ii) holds then the pitch h of the screw is <u>infinite</u> and the twist is a translation along the axis defined by v (Pure Translation).
- Screw axis S simply is just a normalized twist, the 4×4 matrix representation [S] of $S = (\omega; v)$ is

$$[\mathcal{S}] = \begin{bmatrix} \begin{bmatrix} \omega \end{bmatrix} & v \\ 0 & 0 \end{bmatrix} \in se(3), \qquad [\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3).$$

A screw axis represented as S_a in a frame $\{a\}$ is related to the representation S_b in a frame $\{b\}$ by

$$S_a = [Ad_{T_{ab}}]S_b, \qquad S_b = [Ad_{T_{ba}}]S_a$$

Example: Screw axis of a revolute joint

$$\mathcal{S} = \left[egin{array}{c} \omega \ v \end{array}
ight] \in \mathbb{R}^6$$

- Each revolute joint axis is:
 - ✓ a zero-pitch (2D motion) screw axis
 - ✓ and its **location** is **center of rotation** defining parameter **q**.
- ➤ If θ_1 and θ_2 are held at their **zero position** then the **screw axis** corresponding to rotating about **joint 3** can be expressed in the $\{0\}$ frame as

$$S_{3} = \begin{bmatrix} \omega_{3} \\ v_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -(L_{1} + L_{2}) \\ 0 \end{bmatrix} \quad v_{3} = -\omega_{3} \times q_{3} \\ q_{3} = (L_{1} + L_{2}, 0, 0)$$

Exponential Coordinates of Rigid-Body Motions

- The Chasles-Mozzi theorem states that <u>every</u> rigid-body <u>displacement</u> can be expressed as a <u>displacement along a fixed screw axis</u> S in space (compare it with *Rodriguez theorem* for rigid body <u>rotation!</u>).
- By analogy to the three-dimensional exponential coordinates $\widehat{\omega}\theta \in \mathbb{R}^3$ for rotations (Rodriguez equation), we define the six-dimensional exponential coordinates of a homogeneous transformation T as

$$S\theta \in \mathbb{R}^6$$

where S is the screw axis and θ is the distance that must be traveled along the screw axis to take a frame from the origin I to T.

If the pitch of the screw axis $S = (\omega; v)$ is finite then $||\omega|| = 1$ and $\theta \in \mathbb{R}$ corresponds to the angle of rotation about the screw axis.

$$\mathbf{T} = e^{[\mathcal{S}]\theta} = \begin{bmatrix} e^{[\omega]\theta} \\ 0 \end{bmatrix} \underbrace{\left(I\theta + (1-\cos\theta)[\omega] + (\theta-\sin\theta)[\omega]^2\right)v}_{1}$$

Pure Translation) If the pitch of the screw is infinite then $\omega = 0$ and ||v|| = 1 and θ corresponds to the linear distance traveled along the screw axis. $e^{[S]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$

Exponential Coordinates of Rigid-Body Motions

Three-dimensional exponential coordinates $\widehat{\omega}\theta \in \mathbb{R}^3$ for rotations, matrix exponential, and matrix logarithm (log):

exp:
$$[\hat{\omega}]\theta \in so(3) \rightarrow R \in SO(3),$$

 $\log : R \in SO(3) \rightarrow [\hat{\omega}]\theta \in so(3).$

Six-dimensional exponential coordinates $S\theta \in \mathbb{R}^6$ of a homogeneous transformation T, matrix exponential (exp) and matrix logarithm (log):

exp:
$$[S]\theta \in se(3) \rightarrow T \in SE(3)$$
,

$$\log: T \in SE(3) \rightarrow [S]\theta \in se(3).$$

Matrix Logarithm of Rigid-Body Motions

➤ Given an arbitrary transformation (R; p) ∈ SE(3), one can always find a screw axis

S = (
$$\omega$$
; v) and a scalar θ such that $e^{[S]\theta} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$

[S] is the 4 × 4 matrix representation of $S = (\omega; v)$

i.e., the matrix
$$[S]\theta = \begin{bmatrix} [\omega]\theta & v\theta \\ 0 & 0 \end{bmatrix} \in se(3)$$
 is the matrix logarithm of $T = (R; p)$.

- Given (**R**; **p**) written as T∈ SE(3), find a θ ∈ [0; π] and a screw axis $S = (\omega; v) ∈ \mathbb{R}^6$ (where at least one of $\|\omega\|$ and $\|v\|$ is unity) such that $e^{[S]\theta} = T$.
 - The vector $S\theta \in \mathbb{R}^6$ comprises the exponential coordinates for **T** and the matrix $[S]\theta \in se(3)$ is the matrix logarithm of **T**.
- (a) If $\mathbf{R} = \mathbf{I}$ then set $\boldsymbol{\omega} = 0$, $\boldsymbol{v} = \mathbf{p}/\|\boldsymbol{p}\|$, and $\boldsymbol{\theta} = \|\boldsymbol{p}\|$.
- (b) Otherwise, first use the <u>matrix logarithm on RE SO(3)</u> to determine $\underline{\omega}$ and $\underline{\theta}$ for R. Next, \underline{v} is calculated as: $\underline{v} = G^{-1}(\theta)p$

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}\omega + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)\omega^{2}.$$

The rigid-body motion is confined to the \hat{x}_s - \hat{y}_s plane. The initial frame {b} and final frame {c} in the Figure can be represented by the following SE(3) matrices:

$$T_{sb} = \begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} & 0 & 1\\ \sin 30^{\circ} & \cos 30^{\circ} & 0 & 2\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$T_{sc} = \begin{bmatrix} \cos 60^{\circ} & -\sin 60^{\circ} & 0 & 2\\ \sin 60^{\circ} & \cos 60^{\circ} & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Find the <u>fixed frame screw motion</u> that displaces the frame at T_{sb} to T_{sc} .

We seek the <u>fixed frame</u> screw motion that displaces the frame at T_{sh} to T_{sc} :

$$T_{sc} = e^{[S]\theta} T_{sb} \longrightarrow T_{sc} T^{-1}{}_{sb} = e^{[S]\theta}$$

Because the motion is 2D and occurs in the $\hat{x}_s - \hat{y}_s$ plane, the corresponding screw has an axis of rotation in the direction of the \hat{z}_s -axis and has zero pitch (since it does not have a translation along the screw axis \hat{z}_s). The screw axis $S = (\omega; v)$, expressed in $\{s\}$, therefore has the following form:

 $\omega_3 = 1 \text{ rad/s}$

 $\overline{q} = (3.37, 3.37)$

$$[S] = \begin{bmatrix} v & = & (v_1, v_2, 0) \\ 0 & 0 & 0 \end{bmatrix} \in se(3),$$

$$[S] = \begin{bmatrix} 0 & -\omega_3 & 0 & v_1 \\ \omega_3 & 0 & 0 & v_2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad [\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3),$$

$$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3)$$

- We can apply the matrix logarithm algorithm directly to $T_{sc}T_{sb}^{-1}$ to obtain [S] (and therefore S) and θ as follows:
- We first use the matrix logarithm on **R** \in (1)**SO(3)** to determine ω and θ for R (Rodriguez formula: check W2-L1).
- (ii) Then \boldsymbol{v} is calculated as:

$$v = G^{-1}(\theta)p$$

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2}\right)[\omega]^2.$$

(iii) The matrix
$$[S]\theta = \begin{bmatrix} [\omega]\theta & v\theta \\ 0 & 0 \end{bmatrix} \in se(3)$$

$$[\mathcal{S}] = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathcal{S} = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3.37 \\ -3.37 \\ 0 \end{bmatrix}, \quad \theta = \frac{\pi}{6} \text{ rad (or } 30^\circ).$$

 $\omega_3 = 1 \text{ rad/s}$

 $T_{sc}T^{-1}_{sh} = e^{[S]\theta}$

$$\theta = \frac{\pi}{6} \text{ rad (or } 30^{\circ}).$$

The value of S means that the **constant screw axis**, expressed in the fixed frame $\{s\}$, is represented by an angular velocity of 1 rad/s about the $\hat{\mathbf{z}}_s$ -axis and a linear velocity of $(3.37;-3.37;\ 0)$ expressed in the frame $\{s\}$.

$$S = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3.37 \\ -3.37 \\ 0 \end{bmatrix}, \quad \theta = \frac{\pi}{6} \text{ rad (or } 30^\circ).$$

- We can also graphically determine the point $q = (q_x; q_y)$ in the \hat{x}_s - \hat{y}_s plane through which the screw axis passes; for our example this point is given by q = (3.37; 3.37).
- Screw axis can either be defined by point q, pitch h, and axis s OR screw axis S.
- Transformation T can be defined using translation and rotation about screw axis!

Summary of Rigid Body Motion

W1-L2	R
W2-L1	R_a
	uni

7	
H	
3	

$$R \in SO(3) : 3 \times 3 \text{ matrices}$$

 $R^{T}R = I, \det R = 1$

$$T \in SE(3): 4 \times 4 \text{ matrices}$$

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix},$$
where $R \in SO(3), p \in \mathbb{R}^3$

$$R^{-1} = R^{\mathrm{T}} \qquad \qquad T^{-1} = \left[\begin{array}{cc} R^{\mathrm{T}} & -R^{\mathrm{T}}p \\ 0 & 1 \end{array} \right]$$

change of coordinate frame: $R_{ab}R_{bc} = R_{ac}$, $R_{ab}p_b = p_a$

rotating a frame {b}:

$$R = \operatorname{Rot}(\hat{\omega}, \theta)$$

$$R_{sb'} = RR_{sb}$$
:
rotate θ about $\hat{\omega}_s = \hat{\omega}$
 $R_{sb''} = R_{sb}R$:
rotate θ about $\hat{\omega}_b = \hat{\omega}$

change of coordinate frame:

$$T_{ab}T_{bc} = T_{ac}, \ T_{ab}p_b = p_a$$

displacing a frame {b}:

$$T = \begin{bmatrix} \operatorname{Rot}(\hat{\omega}, \theta) & p \\ 0 & 1 \end{bmatrix}$$

 $T_{sb'} = TT_{sb}$: rotate θ about $\hat{\omega}_s = \hat{\omega}$ (moves {b} origin), translate p in {s} $T_{sb''} = T_{sb}T$: translate p in {b}, rotate θ about $\hat{\omega}$ in new body frame

unit rotation axis is
$$\hat{\omega} \in \mathbb{R}^3$$
,
where $\|\hat{\omega}\| = 1$

"unit" screw axis is
$$S = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$$
,
where either (i) $\|\omega\| = 1$ or
(ii) $\omega = 0$ and $\|v\| = 1$

for a screw axis $\{q, \hat{s}, h\}$ with finite h, $\mathcal{S} = \begin{bmatrix} \omega \\ v \end{bmatrix} = \begin{bmatrix} \hat{s} \\ -\hat{s} \times q + h\hat{s} \end{bmatrix}$

angular velocity is $\omega = \hat{\omega}\dot{\theta}$

twist is $\mathcal{V} = \mathcal{S}\dot{\theta}$

W5-L1

Summary of Rigid Body Motion

	Rotations (cont.)	Rigid-Body Motions (cont.)
W4-L1	for any 3-vector, e.g., $\omega \in \mathbb{R}^3$,	for $\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \in \mathbb{R}^6$,
	$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \in so(3)$	$[\mathcal{V}] = \begin{bmatrix} \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in se(3)$
	identities, $\omega, x \in \mathbb{R}^3, R \in SO(3)$: $[\omega] = -[\omega]^{\mathrm{T}}, [\omega]x = -[x]\omega,$ $[\omega][x] = ([x][\omega])^{\mathrm{T}}, R[\omega]R^{\mathrm{T}} = [R\omega]$	(the pair (ω, v) can be a twist \mathcal{V} or a "unit" screw axis \mathcal{S} , depending on the context)
W4	$\dot{R}R^{-1} = [\omega_s], R^{-1}\dot{R} = [\omega_b]$	$\dot{T}T^{-1} = [\mathcal{V}_s], T^{-1}\dot{T} = [\mathcal{V}_b]$
		$[\mathrm{Ad}_T] = \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix} \in \mathbb{R}^{6 \times 6}$ identities: $[\mathrm{Ad}_T]^{-1} = [\mathrm{Ad}_{T^{-1}}],$
		$[\mathrm{Ad}_{T_1}][\mathrm{Ad}_{T_2}] = [\mathrm{Ad}_{T_1 T_2}]$
	change of coordinate frame: $\hat{\omega}_a = R_{ab}\hat{\omega}_b, \ \omega_a = R_{ab}\omega_b$	change of coordinate frame: $S_a = [Ad_{T_{ab}}]S_b, \ \mathcal{V}_a = [Ad_{T_{ab}}]\mathcal{V}_b$
W2-L2	exp coords for $R \in SO(3)$: $\hat{\omega}\theta \in \mathbb{R}^3$	exp coords for $T \in SE(3)$: $\mathcal{S}\theta \in \mathbb{R}^6$
	$\exp: [\hat{\omega}]\theta \in so(3) \to R \in SO(3)$	$\exp: [\mathcal{S}]\theta \in se(3) \to T \in SE(3)$
	$R = \operatorname{Rot}(\hat{\omega}, \theta) = e^{[\hat{\omega}]\theta} =$	$T = e^{[S]\theta} = \begin{bmatrix} e^{[\omega]\theta} & * \\ 0 & 1 \end{bmatrix}$
	$I + \sin \theta [\hat{\omega}] + (1 - \cos \theta)[\hat{\omega}]^2$	where $* = (I\theta + (1 - \cos\theta)[\omega] + (\theta - \sin\theta)[\omega]^2)v$
	$\log: R \in SO(3) \to [\hat{\omega}]\theta \in so(3)$ algorithm in Section 3.2.3.3	$\log: T \in SE(3) \to [\mathcal{S}]\theta \in se(3)$ algorithm in Section 3.3.3.2

W5-L1

References

- Murray, R.M., Li, Z., Sastry, S.S., "A Mathematical Introduction to Robotic Manipulation.", Chapter 2.
- Corke, Peter. "Robotics, vision and control: fundamental algorithms in MATLAB®" second, completely revised. Vol. 118. Springer, 2017, **Chapter 2.**
- Lynch and Park, "*Modern Robotics*," Cambridge U. Press, 2017, **Chapter 3.**