Biostatistics

Lecture 3: Data types and Figures

- Different types of data
- Summary statistics
- Histograms and distributions
- Plot types

Data is in categories

The data can only be expressed in groups or categories

Quantitative

Data can be expressed in numbers

The data can be expressed in numbers

Nominal

Groups which cannot be ordered in a way that signifies different levels of value

For example, we cannot say that different hair colors are greater or less than others

Qualitative

Data is in categories

Ordinal

Categories that can have an order e.g. size (low, medium high)

Ordinal

Groups which can be ordered in way that signifies different levels of value

For example, while not quantified, size categories of small, medium, large indicates that small < medium < large

Discrete

Quantitative data that can only be expressed in whole numbers, for example, count data of number of species

Quantitative

Data can be expressed in numbers

Discrete

Count data that are whole numbers e.g. number of people (1,100, etc)

Discrete

Quantitative data that can be expressed as an integer (number with fractional values), for example, body mass

Quantitative

Data can be expressed in numbers

Continuous

Integers, numbers that can be fractions e.g. body mass (10, 2.5, 4.44)

What does my data look like?

How are my observations spread across the groups

They may be evenly spread across each group

What does my data look like?

How are my observations spread across the groups

Or distributed unevenly across groups

What does my data look like?

How are the observations for the different species distributed for the iris dataset.

Use the below code in R to check

iris_data <- iris</pre>

plot(iris_data\$Species)

What does my data look like?

For continuous data we can ask the same question using histograms

Histograms put continuous data into bins and plots them.

For example, we are plotting the number of observation between 0 and 0.5 in the first bin, than the number of observations between 0.5 and 1 in the second bin etc.

Uniform

Data can have a uniform distribution

i.e. any value is equally likely to be observed across the range of the data.

Normal

Normal distribution

One of the common type of distribution in biological data

This is where there is a central common value with less frequent values spread evenly on both sides of the most common value.

What does my data look like?

What is the distribution of Sepal Width in our iris dataset

Use the below code in R to check

iris_data <- iris</pre>

hist(iris_data\$Sepal.Width)

Summary statistics

Using numbers to explain what my data looks like e.g. averages, ranges, etc.

Mean

The arithmetic mean is the average value, Calculated as the sum of values divided by the number of values.

The mean (\bar{x}) of some sequence of numbers x, which has n entries is

$$\bar{x} = \frac{\sum x}{n}$$

Mean

The arithmetic mean is the average value, Calculated as the sum of values divided by the number of values.

The mean (\bar{x}) of the numbers

$$\bar{x} = \frac{1+2+2+3+4+7+9}{7}$$

$$\bar{x} = 4$$

In R we can use the mean() function

Median

The middle value. The value which separates the lower and upper half of the values.

To get the median of the numbers

c(20, 10, 5, 30, 5)

we reorder according to rank

c(5, 5, **10**, 20, 30)

10

In R we can use the median() function

median(c(1, 2, 2, 3, 4, 7, 9))

The most frequent value observed.

In R we can use the hdr() function

library("hdrcde")

hdr(c(1, 2, 2, 3, 4, 7, 9))

Mode

The most frequent value observed.

Spread of the data

How much does the data spread from some measure of central tendency.

Spread of the data

How much does the data spread from some measure of central tendency.

The simplest and most basic measure of this is the range of the values. This is the minimum and maximum values.

range(iris_data\$Sepal.Width)

Variance

A measure of how far the data spread.

Calculated by getting the distance of each datapoint from the mean

$$S^2 = \frac{\sum (X - \bar{x})^2}{n - 1}$$

 S^2 = variance \bar{x} = mean N = sample size

Variance

A measure of how far the data spread.

Calculated by getting the distance of each datapoint from the mean

$$S^2 = \frac{\sum (X - \bar{x})^2}{n - 1}$$

 S^2 = variance \bar{x} = mean N = sample size The variance of our list of numbers can be calculated as

$$S^{2} = \frac{(1-4)^{2} + (2-4)^{2} + (2-4)^{2} + (3-4)^{2} + (4-4)^{2} + (7-4)^{2} + (9-4)^{2}}{7-1}$$

$$S^2 = \frac{9+4+4+1+0+9+25}{6} = \frac{52}{6}$$

$$S^2 = 8.67$$

Variance

A measure of how far the data spread.

Calculated by getting the distance of each datapoint from the mean

$$S^2 = \frac{\sum (X - \bar{x})^2}{n - 1}$$

 S^2 = variance \bar{x} = mean N = sample size

Variance

A measure of how far the data spread.

Calculated by getting the distance of each datapoint from the mean

$$S^2 = \frac{\sum (X - \bar{x})^2}{n - 1}$$

 S^2 = variance \bar{x} = mean N = sample size

Variance

A measure of how far the data spread.

Calculated by getting the distance of each datapoint from the mean

$$S^2 = \frac{\sum (X - \bar{x})^2}{n - 1}$$

 S^2 = variance \bar{x} = mean N = sample size In R we can use the var() function

var(c(1, 2, 2, 3, 4, 7, 9))

Standard deviation

A measure of how far the data spread.

$$\sigma = \sqrt{S^2}$$

$$\sigma = \sqrt{\frac{\sum (X - \bar{x})^2}{n - 1}}$$

 σ = standard deviation \bar{x} = mean N = sample size

In R we can use the sd() function

sd(c(1, 2, 2, 3, 4, 7, 9))

Kurtosis

A measure of how flat the distribution Is relative to a normal distribution.

If the data is very tight to the mean it has positive Kurtosis,

if the data is flat is has a negative Kurtosis

Kurtosis

This is rarely used as a summary statistic but you can calculate in R using the moments package

install.packages("moments")

library("moments")

kurtosis(iris_data\$Sepal.Width)

Summary statistics

Summary statistics of Sepal.Width

Using R calculate the mean, median, mode, range, variance and standard deviation of Sepal.Width

R Code examples

iris_data <- iris</pre>

hdr(iris_data\$Sepal.Width)

var(iris_data\$Sepal.Width)

Summary statistics

Summary statistics of Sepal.Width

Because the distribution of Sepal Width is close to normal the Mode, mean and median will be very similar.

Normal distribution

Sepal Width is an example of something close to a normal distribution.

In a normal distribution
68.27% of the values are between
the 1 standard deviation,
95.45% between 2 standard
deviations and
99.7% between 3 values of standard
deviation.

Non-normal

This is not true for other distributions of data

For example, in this example the mean, mode and Median are all different. This is why its useful to have several measures of central tendency.

This is an example of a skewed distribution

Skewness

A measure of the symmetry of a distribution.

If the peak (i.e. mode) of the distribution is to the left of the mean/median it is positively skewed

If the peak (i.e. mode) of the distribution is to the right of the mean/median it is negatively skewed

Skewness

This is rarely used as a summary statistic but you can calculate in R using the moments package

install.packages("moments")

library("moments")

skewness(iris_data\$Sepal.Width)

Log -Normal

Log-Normal distribution

Positively skewed

A distribution that when log transformed becomes normal.

Very common in biology especial when scales are very large such as with body size across species.

Log transformation

Make a log normal distribution

Into a normal distribution

Log -Normal

Log-Normal distribution

Positively skewed

A distribution that when log transformed becomes normal.

Very common in biology especial when scales are very large such as with body size across species.

Most animals are small leading to a log normal distribution

Bimodal

Bimodal distribution

Data with 2 peaks (i.e. 2 modes)

Often can indicate distribution is made up of different groups

Example, plot the histogram of hist(iris_data\$Petal.Width)

There are lots of distributions that describe the shape of data and are linked to the process that generate these shapes.

Plotting data

Use boxplot, violin plots etc. for Qualitative data

25% 25% 25% 25% 35 8 25 Frequency 20 9 2 2.5 3.0 3.5 4.0 iris_data\$Sepal.Width 20 2.5 3.0 3.5 4.0

boxplot

A single box plot is a version of the Distribution simplified using the median and interquartile range

The black line is the median

The distribution can be broken down into 4 sections, called quartiles each with 25% of the data.

The box extends to the 2nd and 3rd quartiles which is called the interquartile range.

boxplot

A single box plot is a version of the Distribution simplified using the median and interquartile range

The whiskers extend to 1.5 times the interquartile range (IQR)

The dots at the end are called outliers and fall outside the whiskers

Barchart of boxplot?

Violin plots add distribution

If comparing two quantitative variables

Scatter plots

Lifespan (yrs)

Response variable changes in response to changes to the explanatory variable.

This always goes on the y-axis

Explanatory variable
This is the variable
That causes a change
in the other variable

This always goes on the x-axis

Changes in Canopy height here are predicted to cause changes in species richness.

Hence, Canopy height is on the x-axis as the explanatory variable and

Species richness on the y-axis as the response variable

Do's and don'ts of graphs

Label the axis and give the units

Do's and don'ts of graphs

Truncated graph giving false impression of large difference

Non-truncated graph show only small differences

Keep it simple Make sure the main point is clear

Colors

Use color pallets or color gradients

Here I used a color pallet of different shades of blue to based on the whales to distinguee between the two groups.

Colors

Think of color blindness

Avoid using red with green

Use light and dark shades of colours (if printed in black and white would your graph still work?)

Use colour blind friendly pallets

Colors

Think of color blindness

Avoid using red with green

Use light and dark shades of colours (if printed in black and white would your graph still work?)

Use colour blind friendly pallets