Idee zur näherungsweisen Bestimmung der momentanen Änderungsrate

Animation GeoGebra

Differenzenquotient mit h:

Beispiel: $f(x)=0.5x^2$, $x_0=2$

h	$rac{f(x_0+h)-f(x_0)}{h}$	h	$rac{f(x_0+h)-f(x_0)}{h}$
1		-1	
0,1		-0,1	
0,01		-0,01	
0,001		-0,001	

Mathematik Seite 4/8

Die h-Methode

Die näherungsweise Bestimmung der momentanen Änderungsrate durch eine Tabelle ist sehr aufwendig. Die h-Methode liefert ein anderes Vorgehen, den Grenzwert (Limes) des Differenzenquotienten zu bestimmen.

Ableitung & Differentialquotient

Die momentane Änderungsrate an der Stelle x_0 ist der Wert der Ableitung der Funktion f an der Stelle x_0 . Man schreibt $f'(x_0)$.

Den Grenzwert für h o 0 des Differenzenquotient wird als Differentialquotient bezeichnet.

Man schreibt:
$$\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}=f'(x_0)$$

Beispiel:

$$\begin{split} f(x) &= 0.5x^2, x_0 = 2 \\ f'(2) &= \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} \\ &= \lim_{h \to 0} \frac{0.5 \cdot (2+h)^2 - 0.5 \cdot 2^2}{h} \\ &= \lim_{h \to 0} \frac{0.5 \cdot (4+4h+h^2) - 2}{h} \\ &= \lim_{h \to 0} \frac{2+2h+0.5h^2 - 2}{h} \\ &= \lim_{h \to 0} \frac{2h+0.5h^2}{h} \\ &= \lim_{h \to 0} 2 + 0.5h \\ &= 2 \end{split}$$

9 Arina hat Ableitungen berechnet. Geben Sie an, welche Fehler Arina gemacht hat, und korrigieren Sie diese.

Mathematik Seite 5/8