

Bi-directional ESD protection device, 18 V, 0.2 pF, 0201

Product description

This Infineon ESD (electrostatic discharge) protection device has a bi-directional and symmetric *I/V* characteristic and excellent clamping performance.

Feature list

- ESD / transient protection according to:
 - IEC61000-4-2 (ESD): ±18 kV (air) / ±18 kV (contact)
 - IEC61000-4-4 (EFT): ±2.5 kV / ±50 A (5/50 ns)
 - IEC61000-4-5 (Surge): ±3.5 A (8/20 μs)
- Bi-directional maximum working voltage: V_{WM} = ±18 V
- Line capacitance: $C_L = 0.2 \text{ pF at } f = 1 \text{ MHz}$
- Clamping voltage: $V_{cl} = 12.5 \text{ V}$ at $I_{TLP} = 16 \text{ A}$ with $R_{dyn} = 0.58 \Omega$
- Very low leakage current: I_L = 1 nA
- Small form factor SMD size 0201, low profile (0.58 x 0.28 x 0.15 mm³)

Potential applications

NFC, RF Antenna

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Device information

Table 1 Part information

Product name / Ordering code	Package	Pin configuration	Marking	Pieces / Reel
ESD144-B1-W0201/ESD144B1W0201E6327XTSA1	WLL-2-3	1 line, bi-directional	AA	15 k

Bi-directional ESD protection device, 18 V, 0.2 pF, 0201

Table of contents

Table of contents

	Product description	
	Feature list	1
	Potential applications	1
	Product validation	1
	Device information	1
	Table of contents	2
1	Absolute maximum ratings	3
2	Electrical characteristics	4
3	Typical characteristic diagrams	6
4	Package information WLL-2-3	12
5	References	13
6	Revision history	13
	Disclaimer	14

Bi-directional ESD protection device, 18 V, 0.2 pF, 0201

1 Absolute maximum ratings

Absolute maximum ratings 1

Table 2 Absolute maximum ratings at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Va	lues	Unit	Note or test condition
		Min.	Max.		
Working voltage	V_{WM}	-18	+18	V	
ESD discharge voltage	V _{ESD} (contact)	-18	+18	kV	Discharge network:
	V _{ESD} (air)	-18	+18		$R = 330 \Omega, C = 150 \mathrm{pF}^{1)}$
Peak pulse power	P _{PK}	_	21	W	Stress pulse:
Peak pulse current	I _{PP}	-3.5	+3.5	А	8/20 μs current waveform ²⁾
Operating temperature	Top	-55	+125	°C	
Storage temperature	$T_{ m stg}$	-65	+150		

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings. Exceeding only one of these values may cause irreversible damage to the component.

¹ Based on IEC61000-4-2.

² Based on IEC61000-4-5.

2 Electrical characteristics

2 Electrical characteristics

Note: $T_A = 25$ °C, unless otherwise specified. Device is electrically symmetrical.

Figure 2 //V characteristic curve

Table 3 I/V characteristic parameters

Symbol	Parameter				
I_{h}	Holding current				
I _L	Leakage current				
I _{PP}	Peak pulse current, based on IEC61000-4-5				
I_{t}	Test current				
I _{TLP}	TLP current				
$R_{\rm dyn}$	Dynamic resistance				
$\overline{V_{br}}$	Breakdown voltage				
$\overline{V_{\rm cl}}$	Clamping voltage				
$\overline{V_{h}}$	Holding voltage				
$\overline{V_{t}}$	Test voltage				
$\overline{V_{tr}}$	Trigger voltage				
$\overline{V_{WM}}$	Maximum working voltage				

Note: For more detailed explanation of electrical parameters refer to [1]

Bi-directional ESD protection device, 18 V, 0.2 pF, 0201

2 Electrical characteristics

Table 4 **DC** characteristics

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Breakdown voltage	$V_{ m br}$	18.5	22	28.5	V	$I_t = 1 \text{ mA}$
Holding voltage	V_{h}	_	1.9	_	V	$I = I_h$
Holding current	I _h	_	25	_		$V = V_h$
Leakage current	/ _L	_	1	50	nA	V _{WM} = 18 V

AC characteristics Table 5

Parameter	Symbol	Values		Unit	Note or test condition	
		Min.	Тур.	Max.		
Line capacitance	C_{L}	_	0.2	0.35	pF	V = 0 V, f = 1 MHz
		_	0.19	_		V = 0 V, f = 2.5 GHz
Series inductance	L _S	_	<1	-	nH	Extracted from S-parameters

Table 6 **Protection characteristics**

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Clamping voltage (TLP) 3) 4)	$V_{\rm cl}$	_	8	-	V	I _{TLP} = 8 A
		_	12.5	_		I _{TLP} = 16 A
Clamping voltage (8/20 µs) 5)		_	3	_		/ _{PP} = 1 A
		_	5	_		I _{PP} = 3 A
Dynamic resistance 3)	R _{dyn}	_	0.58	_	Ω	

³ TLP parameters: Z_0 = 50 Ω , t_p = 100 ns, t_r = 0.6 ns, averaging window 30-60 ns. Refer to application note AN210 [2]

⁴

 t_p = 8/20 μ s. Stress pulse based on IEC61000-4-5.

3 Typical characteristic diagrams

Note: $T_A = 25$ °C, unless otherwise specified.

Figure 3 Leakage current: $I_L = f(V_t)$

Figure 4 Line capacitance: $C_L = f(V_t), f = 1 \text{ MHz}$

Figure 5 Clamping voltage (ESD): $V_{cl} = f(t_p)$, 8 kV positive pulse according to IEC61000-4-2

Figure 6 Clamping voltage (ESD): $V_{cl} = f(t_p)$, 8 kV negative pulse according to IEC61000-4-2

Figure 7 Clamping voltage (ESD): $V_{cl} = f(t_p)$, 15 kV positive pulse according to IEC61000-4-2

Figure 8 Clamping voltage (ESD): $V_{cl} = f(t_p)$, 15 kV negative pulse according to IEC61000-4-2

Bi-directional ESD protection device, 18 V, 0.2 pF, 0201

3 Typical characteristic diagrams

Figure 9 Clamping voltage (TLP): $I_{TLP} = f(V_{cl})$

v2.0

Figure 10 Clamping voltage (Surge): $I_{PP} = f(V_{cl})$ according to IEC61000-4-5

Bi-directional ESD protection device, 18 V, 0.2 pF, 0201

Figure 11 Insertion loss IL = f(f), measured in a 50 Ω system

4 Package information WLL-2-3

4 Package information WLL-2-3

Figure 12 WLL-2-3 package

Note: For package information including footprint, packing and assembly recommendation refer to:

https://www.infineon.com/packages/SG-WLL-2-3/

Bi-directional ESD protection device, 18 V, 0.2 pF, 0201

5 References

5 References

[1]	Infineon AG - Understanding ESD protection device characteristics
[2]	Infineon AG - Application note AN210 : Effective ESD Protection Design at System Level Using VF-TLP Characterization Methodology

6 Revision history

Document version	Date of release	Description of changes			
1.0	2017-08-14	First final datasheet release			
2.0	2020-11-30	New datasheet layoutEditorial changes			

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-11-30 Published by Infineon Technologies AG 81726 Munich, Germany

© 2020 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-xnv1602845466887

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.