Intro to Engineering Project: Bomb Defusal Simulator

Section 11, Group 2
Santiago Calderon Novoa,
Thomas Eckburg, Patrick West,
Sung Hyun Shin, Nick Marcopoli

Overall Design Statement

Create an interactive game which allows the user to defuse a randomly generated bomb, along with three algorithms aimed at simulating the game to find the fastest and most accurate solving method.

Figure 1. Screenshot of bomb from Keep Talking and Nobody Explodes¹

Figure 2. Screenshot of Bomb Defusal Simulator

Method

- 1. Created a list of rules needed to solve a randomly generated bomb
- Created a GUI to allow a user to interact with the bomb and be able to play the game
- 3. Created three unique algorithms to solve the bomb
 - Brute force
 - Randomization
 - Rule abider
- Created a GUI to run and display results of three algorithms solving a desired amount of bombs

Prediction

- Expected Rule Abider to have the shortest computational & simulated time
- Expected Brute Force and Randomization to have similar simulated times and failed attempts

Graph and Data

- Rule abider fastest comp speed by 2 orders of magnitude
- Randomization slowest comp speed by 2 orders of magnitude
- Randomization has 40% more failures compared to brute force
- Brute force fastest 'human' simulated time

Figure 3. Screenshot of Simulation Tool

Conclusions and Evaluation

- If one knows the rules, rule abider would be better
 - Never fails
 - Fastest computational time
- If one doesn't know the rules of the bomb, the brute force algorithm would be better
 - Fails fewer times
 - Faster computational time than randomization
- Major assumptions:
 - Bomb is able to "fail" attempts without losing game
 - Results are not transferable to a real game situation outside of our GUI
 - Rules always apply and do not change