

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

From RISC-V Edition (1st) – No Changes

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Addition by Carry-Ripple Adder

Delay is approx. $n \times t(carry) \rightarrow SLOW$

$$n \times t(carry)$$

$$\rightarrow$$
 SLOW

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

<u>-6: 1111 1111 ... 1111 1010</u>

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest than representable value
 - E.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplications performed in parallel

RISC-V Multiplication

- Four multiply instructions:
 - mul: multiply
 - Gives the lower 64 bits of the product
 - mulh: multiply high
 - Gives the upper 64 bits of the product, assuming the operands are signed
 - mulhu: multiply high unsigned
 - Gives the upper 64 bits of the product, assuming the operands are unsigned
 - mulhsu: multiply high signed/unsigned
 - Gives the upper 64 bits of the product, assuming one operand is signed and the other unsigned
 - Use mulh result to check for 64-bit overflow

Division

- Algorithm in the book not used (too slow)
 - We skip it
- Can't use parallel hardware as in multiplier
- Faster dividers (e.g. SRT division)
 generate multiple quotient bits per step
 - Still require multiple steps
 From 10 to 28 iterations for binary64

RISC-V Division

- Four instructions:
 - div, rem: signed divide, remainder
 - divu, remu: unsigned divide, remainder
- Overflow and division-by-zero don't produce errors
 - Just return defined results
 - Faster for the common case of no error

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

2019

- Defined by IEEE Std 754-1985 (rev. 2008)
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Common representations
 - Half precision (16-bit) binary16
 - Single precision (32-bit) binary32
 - Double precision (64-bit) binary64

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Floating Point and Integer Formats

Source: Popescu et al, "Flexpoint: Predictive Numerics for Deep Learning", 2018

Binary16 (introduced in 754-2008)

Recently popular for Deep Learning training

5 bits 10 bits

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- Storage 16 bits
- Exponent 5 bits
- Fraction f = 10 bits
- Bias = 15

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest normalized value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 111111110 \Rightarrow actual exponent = 254 - 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest normalized value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $+1.0 \times 2^{-1022} \approx +2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Binary16 Range

Small dynamic range ≈ 4.3 × 10¹²

- Exponents 00000 and 11111 reserved
- Smallest normalized value
 - Exponent: $00000 \Rightarrow \text{actual exponent} = 1 15 = -14$

 - $\pm 1.0 \times 2^{-14} \approx \pm 6.1 \times 10^{-5}$
- Largest value
 - exponent: $11110 \Rightarrow \text{actual exponent} = 30 15 = +15$
 - Fraction: 1111111111 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+15} \approx \pm 6.5 \times 10^{+5}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - binary16: approx 2⁻¹⁰
 - Equivalent to 10 × log₁₀2 ≈ 10 × 0.3 ≈ 3 decimal digits of precision
 - binary32 (single): approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - binary64 (double): approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

Represent –0.75

$$-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$$

$$S = 1$$
, Fraction = $1000...00_2$

- Exponent = -1 + Bias
 - binary16: $-1 + 15 = 14 = 011110_2$
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- binary16: 1011101000000000
- Single: 1011111101000.....00
- Double: 10111111111101000......00

Floating-Point Example

- What number is represented by the binary32 (single-precision) float
 - 11000000101000...00
 - S = 1
 - Fraction = $01000...00_2$
 - Exponent = 10000001₂ = 129

$$X = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Subnormal (Denormal) Numbers

■ Exponent = 000...0 ⇒ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Subnormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Binary32 (single precision) Examples

S_{x}	$E_{\scriptscriptstyle X}$	M_{\times}		V
0	00000000	0.0000000000000000000000000000000000000	=	0
0	01111111	1.000000000000000000000000000000000000	=	$2^{127-127} \cdot (1.0)_2 = 1$
0	01111110	1.0000000000000000000000000000000000000	=	$2^{126-127} \cdot (1.0)_2 = 0.5$
0	10000000	1.000000000000000000000000000000000000	=	$2^{128-127} \cdot (1.0)_2 = 2$
0	10000001	1.101000000000000000000000000000000000	=	$2^{129-127} \cdot (1.101)_2 = 6.5$
1	10000001	1.101000000000000000000000000000000000	=	$-[2^{129-127} \cdot (1.101)_2] = -6.5$
0	0000001	1.0000000000000000000000000000000000000	=	$2^{1-127} \cdot (1.0)_2 = 2^{-126}$
0	00000000	0.1000000000000000000000000000000000000	=	$2^{-126} \cdot (0.1)_2 = 2^{-127}$
0	00000000	0.0000000000000000000000000000000000000	=	$2^{-126} \cdot (0.0000000000000000000000000000000000$
			=	2^{-149} (Smallest positive value)
0	11111111	000000000000000000000000000000000000000	=	∞
1	11111111	000000000000000000000000000000000000000	=	$-\infty$
1	11111111	100000000000000000000000	=	$\sqrt{-1}$ (NaN)

Floating-Point Addition

- Consider a 4-digit <u>decimal example</u>
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹

$$\bullet$$
 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹

- 3. Normalize result & check for over/underflow
 - 1.0015×10^{2}
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Rounding

```
Need extra bits for rounding
Three additional bits sufficient:
   guard (G), round (R), and sticky (T)
\square Examples for binary16 (f=10):
               LGRT
   1.100111101001 \leftarrow Normalized
                  1 \leftarrow add rounding bit (if R or T = 1)
   1. 1001111010 \leftarrow Rounded (f=10 \rightarrow binary16)
               LGRT
   0.100111101001
                     ← need normalization
   1.00111101001 \leftarrow Normalized
                    \leftarrow T=0 no rounding bit
   1. 0011110100
                         \leftarrow Rounded (f=10 \rightarrow binary16)
```

Floating-Point Multiplication

- Consider a 4-digit <u>decimal example</u>
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5

■
$$1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$$

- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Multiplier Hardware

Source: Ercegovac & Lang, "Digital Arithmetic", Morgan Kaufmann, 2003.

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined (<u>not</u> div, rec & sqrt)

FP Instructions in RISC-V

- Separate FP registers: f0, ..., f31
 - double-precision
 - single-precision values stored in the lower 32 bits
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - flw, fld
 - fsw, fsd

FP Instructions in RISC-V

- Single-precision arithmetic
 - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.se.g., fadds.s f2, f4, f6
- Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d
 e.g., fadd.d f2, f4, f6
- Single- and double-precision comparison
 - feq.s, flt.s, fle.s
 - feq.d, flt.d, fle.d
 - Result is 0 or 1 in integer destination register
 - Use beq, bne to branch on comparison result
- Branch on FP condition code true or false
 - B.cond

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in f10, result in f10, literals in global memory space
- Compiled RISC-V code:

FP Example: Array Multiplication

- $C = C + A \times B$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Do it at home as Exercise

```
c[i][j] = c[i][j]
+ a[i][k] * b[k][j];
```

}

Addresses of c, a, b in x10, x11, x12, and i, j, k in x5, x6, x7

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Right Shift and Division

- Left shift by i places multiplies an integer by 2i
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - \blacksquare 11111011₂ >> 2 = 111111110₂ = -2
 - Rounds toward -∞
 - c.f. $11111011_2 >> 2 = 001111110_2 = +62$

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	X+(Y+Z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Disasters Caused by Numerical Errors

On June 4, 1996 an unmanned **Ariane 5** rocket launched by ESA exploded just forty seconds after lift-off

Source: http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html

Ariane 5 Explosion

Cause of failure: software error in inertial reference system

 A 64 bit floating-point number (horizontal velocity of rocket with respect to launch platform) was converted to a 16 bit signed integer

binary64 int16

- The number larger than max. 16-bit signed integer (32,768) <u>overflowed</u> resulting in "garbage"
- The conversion failed causing an "exception" in the guidance software → mission aborted

Cost of rocket and payload estimated to \$500 millions

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow

