GEOMETRIC REALIZATION OF COVERING COMPLEXES

FRANK MURPHY-HERNANDEZ AND ALBERTO MACIAS

ABSTRACT. We prove that the geometric realization of a covering complex is a covering space. Also, this holds true for the universal covering complex. Finally, we prove that the fundamental group of a complex coincides with the fundamental group of the geometric realization.

Introduction

1. Preliminaries

We recall that, given a topological space X, a covering space on X it's a continuous map $p: E \to X$, such that for every $x \in X$, there is an open neighborhood U such that $p^{-1}(U)$ it's a disjoint union of open sets U_{λ} , $\lambda \in \Lambda$, and $p|_{U_{\lambda}}: U_{\lambda} \to U$ it's a homeomorphism. We recommend the book of P. May [1] and the book of J. Rotman [3] as reference of covering spaces.

An abstract simplicial complex is a pair (S, \mathcal{K}) where S is a set and \mathcal{K} is a family of non-empty finite subsets of S such that, if $\sigma \subseteq \tau$ and $\tau \in \mathcal{K}$ then $\sigma \in \mathcal{K}$. We call complexes to the abstract simplicial complexes. If $\sigma \in \mathcal{K}$, then the dimension of σ is $|\sigma|-1$, and we denote it by $dim(\sigma)$. The elements of \mathcal{K} of dimension n are called n-simplices, and we denote the set of n-simplices by \mathcal{K}_n . The 0-simplices are called vertices. An edge e in (S, \mathcal{K}) is a pair of vertices (x, y) where $\{x, y\} \in \mathcal{K}$, x is the origin of the edge e and we denote it by orig(e), and y is the end of the edge eand we denote by end(e). A path α in (S, \mathcal{K}) is a finite sequence of edges e_1, \ldots, e_n such that $end(e_i) = orig(e_{i+1})$ with $i = 1, \ldots, n-1$. We define $orig(\alpha) = orig(e_1)$ and $end(\alpha) = end(e_n)$.

The geometric realization of a complex (S, \mathcal{K}) is the set of all function $\phi \colon S \longrightarrow$ [0,1] such that:

- $supp(\phi) \in \mathcal{K}$ $\sum_{s \in S} \phi(s) = 1$

We denote this set by $|(S,\mathcal{K})|$. We may think $[0,1]^S$ as the direct limit of $[0,1]^A$ where Aranges over all finite subsets of S. So we give the $|(S,\mathcal{K})|$ the subspace

A morphism between complex (S_1, \mathcal{K}_1) and (S_2, \mathcal{K}_2) is a map $f: S_1 \longrightarrow S_2$ such that $f(\sigma) \in \mathcal{K}_2$ for any $\sigma \in \mathcal{K}_2$.

Date: October 17, 2019.

²⁰⁰⁰ Mathematics Subject Classification. Primary ****, ****; Secondary ****, ****.

Key words and phrases. Abstract Simplicial Complexes, Coverings, Fundamental Group.

2. Geometric Realization of Covering Complexes

Definition 2.1. Let (S, \mathcal{K}) be a complex. We say that (S, \mathcal{K}) is connected if for any pair of vertices x, y of (S, \mathcal{K}) there is a path α such that $orig(\alpha) = x$ and $end(\alpha) = y$.

The following definition is due J. Rotman in [2].

Definition 2.2. Let (S, \mathcal{K}) be a complex. A covering of (S, \mathcal{K}) is a pair $((T, \mathcal{L}), p)$ where (T, \mathcal{L}) is a complex and $p: T \longrightarrow S$ is a morphism of complexes such that:

- (T, \mathcal{L}) is a connected complex.
- For every $\sigma \in \mathcal{L}$, $p^{-1}(\sigma) = \bigcup_{i \in I} \sigma_i$ where the family $\{\sigma_i\}_{i \in I}$ is a pairwise disjoint family of simplices of K such that $p|_{\sigma_i} : \sigma_i \longrightarrow \sigma$ is bijective.

The map p is called projection and the simplices σ_i are called sheets over σ .

Proposition 2.1. Let (S, \mathcal{K}) be an abstract simplicial complex and $((T, \mathcal{L}), p)$ an abstract simplicial covering of (S, \mathcal{K}) . Then $(|(T, \mathcal{L})|, |p|)$ is covering of $|(S, \mathcal{K})|$.

Proof.

3. Geometric Realization of the Universal Covering Complex

4. Fundamental Group

References

- [1] J Peter May. A concise course in algebraic topology. University of Chicago press, 1999.
- [2] Joseph Rotman. Covering complexes with applications to algebra. The Rocky Mountain Journal of Mathematics, 3(4):641–674, 1973.
- [3] Joseph J Rotman. An introduction to algebraic topology, volume 119. Springer Science & Business Media, 2013.

FACULTAD DE CIENCIAS, UNAM, MEXICO CITY *Email address*: murphy@ciencias.unam.mx

INSTITUTO DE MATEMÁTICAS, UNAM, MEXICO CITY