

Universität Stuttgart Institute für Photogrammetrie

Ingenieurgeodäsie Übung12: Regression zur Höhenberechnung

Ausarbeitung im Studiengang Geodäsie und Geoinformatik an der Universität Stuttgart

Ziqing Yu, 3218051

Stuttgart, Mai 2020

Betreuer: Dipl.-Ing. Otto Lerke

Universität Stuttgart

Inhaltsverzeichnis

1.1	Einleit	tung	3									 											2
1.2	Aufga	be																					3
	1.2.1	a																					3
	1.2.2	b																					4
	1.2.3	с.																					5
	1.2.4	d																					6
	1.2.5	e .																					7
	1.2.6	f.										 											7

Kapitel 1

1.1 Einleitung

Das amtliche Höhensystem in Deutschland basiert auf Normalhöhen H_N . Bezugsfläche dieses Höhensystems ist das Quasigeoid. In dieser Übung sind 30 Festpunkten mit Ellipsoidische Höhen gegeben, 20 davon haben bekannte Normalhöhen. Die übrige Normalhöhen sind angefragt.

1.2 Aufgabe

1.2.1 a

Höhenanomalie

$$\zeta = h - H_N$$

wobei

• *h*: ellpsoidische Höhe

• H_N : Normalhöhe

Höhenanomalie von Punkten 1 bis 20:

Pkt.Nr	Höhenanomalie [m]	Pkt.Nr	Höhenanomalie [m]
1	48,3548	11	48,3946
2	48,3928	12	48,4203
3	48,4118	13	48,4420
4	48,4159	14	48,4556
5	48,4290	15	48,4695
6	48,3750	16	48,4148
7	48,4098	17	48,4483
8	48,4360	18	48,4659
9	48,4360	19	48,4762
10	48,4487	20	48,4890

Standardabweichung

$$\sigma_{\zeta} = \sqrt{(\sigma_h^2 + \sigma_{H_N}^2)} = 0,0051 \,\mathrm{m}$$

Graphische Darstellung:

(a) Höhenanomalie

1.2.2 b

Der funktionale Modell:

$$\zeta_{i} = a_{0} + a_{1} \cdot y_{i} + a_{2} \cdot x_{i} + a_{3} \cdot y_{i} \cdot x_{i} + a_{4} \cdot y_{i}^{2} + a_{5} \cdot x_{i}^{2}$$

$$\underbrace{\begin{bmatrix} \zeta_{1} \\ \zeta_{2} \\ \vdots \\ \zeta_{19} \\ \zeta_{20} \end{bmatrix}}_{l} = \underbrace{\begin{bmatrix} 1 & y_{1} & x_{1} & y_{1} \cdot x_{1} & y_{1}^{2} & x_{1}^{2} \\ 1 & y_{2} & x_{2} & y_{2} \cdot x_{2} & y_{2}^{2} & x_{2}^{2} \\ \vdots & & & & \\ 1 & y_{19} & x_{19} & y_{19} \cdot x_{19} & y_{19}^{2} & x_{19}^{2} \\ 1 & y_{20} & x_{20} & y_{20} \cdot x_{20} & y_{20}^{2} & x_{20}^{2} \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5} \end{bmatrix}}_{x}$$

$$\hat{x} = (A'A)^{-1}A'l = \begin{bmatrix} 64990, 1304 \\ -0, 0500 \\ 0, 0086 \\ 1, 3003 \cdot 10^{-8} \\ -2, 8173 \cdot 10^{-9} \\ -5, 0615 \cdot 10^{-9} \end{bmatrix}$$

1.2.3 c

n ist die Anzahl der übrigen Koeffizienten, r = 20 - n Kovarianzmatrix von alle Koeffizienten

$$\Sigma_a = \sigma_\zeta^2 \cdot (A'A)^{-1}$$

Standardabweichung von Koeffizienten:

$$\sigma_a = \sqrt{diag(\Sigma_a)}$$

Testgröße für eine Koeffizient

$$\frac{|a_i-0|}{\sigma_{a_i}}$$

Quantil ist $t_{97,5,r}^t$ in t-Verteilung. Testgröße in jeder Schleife:

	Quantil	T_{a_0}	T_{a_1}	T_{a_2}	T_{a_3}	T_{a_4}	T_{a_5}
1	2,1448	1,2128e5	-0,0814	0,0082	1,7880e-8	-2,0830e-9	-6,6258e-9
2	2,1314	4,9219e4	-0,0279		1,0868e-8	-4,3181e-9	-3,5627e-9
3	2,1199		-1,1886e-5		7,3875e-9	-5,6267e-9	-2,4217e-9

Koeffizienten in jeder Schleife:

	a_0	a_1	a_2	<i>a</i> ₃	a_4	a_5
1	$1,2128 \cdot 10^{-5}$	-0,0814	0,0082	$1,7880 \cdot 10^{-8}$	$-2,0830\cdot 10^{-9}$	$-6,6258 \cdot 10^{-9}$
2	4,9219e4	-0,0279		$1,0868 \cdot 10^{-8}$	$-4,3181 \cdot 10^{-9}$	$-3,5627\cdot 10^{-9}$
3		$-1,1886\cdot 10^{-5}$		$7,3875 \cdot 10^{-9}$	$-5,6267 \cdot 10^{-9}$	$-2,4217\cdot 10^{-9}$

(a) Höhenanomalie

1.2.4 d

Wir haben jetzt das neue Flächenpolynom:

$$\zeta_i = a_1 \cdot y_i + a_3 \cdot y_i \cdot x_i + a_4 \cdot y_i^2 + a_5 \cdot x_i^2$$

Die Koordinaten der Neupunkten sind bekannt, damit darf man die Höhenanomalie berechnen.

Pkt.Nr	Höhenanomalie [m]
21	48,4386
22	48,4397
23	48,4301
24	48,4303
25	48,4357
26	48,4465
27	48,4463
28	48,4413
29	48,4317
30	48,4199

Die ellipsoidesche Höhen sind bekannt, dann:

Pkt.Nr	Normalhöhe [m]
21	799,9974
22	791,3263
23	614,9569
24	570,9737
25	504,6443
26	495,1945
27	466,7147
28	441,3237
29	412,4763
30	376,8061

1.2.5 e

Standardabweichung der Neupunktennormalhöhen sind durch Fehlerfortpflanzung bestimmbar.

$$\Sigma_{neu} = F \cdot \Sigma_{ll} \cdot F'$$

wobei:

$$F = \underbrace{ \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & y_{21} & y_{21} \cdot x_{21} & y_{21}^2 & x_{21}^2 \\ 0 & 1 & 0 & \cdots & 0 & 0 & y_{22} & y_{22} \cdot x_{22} & y_{22}^2 & x_{22}^2 \\ 0 & 0 & 1 & \cdots & 0 & 0 & y_{23} & y_{23} \cdot x_{23} & y_{23}^2 & x_{23}^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & y_{29} & y_{29} \cdot x_{29} & y_{29}^2 & x_{29}^2 \\ 0 & 0 & 0 & \cdots & 0 & 1 & y_{30} & y_{30} \cdot x_{30} & y_{30}^2 & x_{30}^2 \end{bmatrix}}_{10 \times 14}$$

Die Standardabweichungen sind:

Pkt.Nr	Standardabweichung [mm]
21	5,4100
22	5,2923
23	5,2878
24	5,2675
25	5,2893
26	5,2625
27	5,4290
28	5,4597
29	5,4504
30	5,4347

1.2.6 f

Die Standardabweichung für 1 km Doppelnivellement ist 0,4 mm.