Introduction Systèmes de numération Représentation des nombres Approximations et erreurs

Fondements de l'informatique

Arnaud Labourel
Courriel: arnaud.labourel@lif.univ-mrs.fr

Université de Provence

Quelques annonces

- Pas de cours la semaine prochaine
- Les TD et les TP commence la semaine prochaine
- Partiel le 3 ou 4 novembre
- Examen du 4 au 10 janvier 2012

But du cours

Les mathématiques au service de l'informatique

Apprendre à utiliser des notions mathématiques afin de résoudre des problèmes de l'informatique

Programme

- Systèmes de numération : premiers pas vers la notion de représentation finie
- Ensembles et dénombrement
- Relations et fonctions
- Algèbre de Boole
- Simplification de formules booléennes
- Codes correcteurs d'erreurs
- Probabilités combinatoires
- Introduction à la logique propositionnelle
- (Théorie de l'information de Shannon)

Contenu

Volume horaire

- 10 cours (20h)
- 15 TD (30h)
- 5 TP (10h, programmation en Python)

Évaluation

- Un examen (E)
- Un partiel (P)
- Une note de contrôle continu (CC)

Note finale =
$$\max\left(E, \frac{2E + \max\left(P, \frac{CC + 2P}{3}\right)}{3}\right)$$

Sources

Transparents et feuilles de TD/TP

http://www.lif.univ-mrs.fr/~labourel/FI/index.html

Livres

- Méthodes mathématiques pour l'informatique, Jacques Vélu
- The new Turing Omnibus, A.K. Dewdey

Définition de l'informatique

Informatique?

- Représenter
- Modéliser
- Approximer
- Calculer sur des modèles, des représentations
- Résoudre de manière efficace et précise (et le prouver)

Un exemple : prévision météorologique

Un problème : prévoir le temps

- Étape 1 : Acquisition des données
 - nombreuses données
 - sources très différentes : images satellite, relevés au sol et par ballon sonde, radar météorologique
- Étape 2 : Modèle numérique
 - équations qui régissent l'atmosphère (mécanique des fluides)
 - ullet impossible de tout prendre en compte o approximation
- Étape 3 : Simulation
 - Calculer pas à pas l'évolution du système suivant le modèle numérique
 - De nos jours, plusieurs simulations sont lancées en parallèle avec des modèles différents

Définition de l'informatique

Une définition

Informatique = Domaine des concepts et autres techniques employées pour le traitement automatique de l'information.

Une citation

« La science informatique n'est pas plus la science des ordinateurs que l'astronomie n'est celle des télescopes »

Edsger Dijkstra.

Information et codage

- Processeur = système automatique de traitement d'information
- Information = éléments tels que texte, parole, image, mesure d'une grandeur physique, nombre, etc...
- Information représentée sous une forme physique appropriée au traitement qu'elle doit subir
- Première étape essentielle : codage de l'information. Signaux (images, paroles, textes) codés in fine sous forme de 0 et de 1 (système binaire).

De l'information au bit

Nombreuses étapes entre le phénomène réel et son codage dans la machine.

Exemple de codage en plusieurs phases :

- En biologie : de l'ADN à la protéine.
- En informatique : du son au fichier mp3

Exemple en biologie

Exemple en multimédia

Diagramme commutatif

Diagramme commutatif

Modéliser : représenter en plus simple

De l'infini au fini

DD = 1To, RAM = 2Go, très grande capacité de stockage.

Modéliser et approximer

- Se ramener au fini, mais rester fidèle : représenter la modélisation dans un monde fini
- Ne pas faire d'erreur de calcul (ou les connaître)

Les systèmes de numération

Systèmes de numération

Les systèmes de numération

- Système conventionnel de comptage en base 10 incompatible avec la machine
 - ⇒ Etude d'autres systèmes de numération
- Systèmes de numération : utilisation de symboles appelés digits
- Le nombre de digits utilisés correspond à la base du système

```
Système binaire : base 2 (symboles – ou digits – 0 et 1)
```

Système Hexadécimal : Base 16 (symboles – ou digits – 0 à 9, et A B C D E F)

Principe d'une base

- Base : le nombre qui définit le système de numération
- Base du système décimal = 10, base du système octal = 8, etc.

Formule magique en base β

$$\sum_{i=n}^{i=0} (b_i \beta^i) = b_n \beta^n + \dots + b_2 \beta^2 + b_1 \beta^1 + b_0 \beta^0$$

où:

 b_i est le chiffre de la base de rang i β^i est la puissance de la base β d'exposant de rang i

Principe d'une base

$$\sum_{i=n}^{i=0} (b_i \beta^i) = b_n \beta^n + \dots + b_2 \beta^2 + b_1 \beta^1 + b_0 \beta^0$$

Exemple en base $\beta = 10$

$$2011 = (2 \times 10^3) + (0 \times 10^2) + (1 \times 10^1) + (1 \times 10^0)$$

rang i	3	2	1	0
chiffre b _i	2	0	1	1
élément $b_i \beta^i$	2×10^3	0×10^2	1×10^{1}	1×10^{0}

Le système décimal

- Origine : le nombre de doigts ?
- 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Poids du digit = la puissance de 10 qu'il multiplie
- Système de numération de position
 Les digits s'écrivent de gauche à droite, par ordre décroissant des puissances de 10.
- La formule magique se précise, pour un nombre x composé de n chiffres

$$(x)_{10} = \sum_{i=n}^{i=0} (b_i 10^i) = b_n 10^n + \dots + b_2 10^2 + b_1 10 + b_0$$

où bi est un des 10 digits.

Le système octal

- Origine : pratique car c'est une puissance de 2
- 8 digits: 0, 1, 2, 3, 4, 5, 6, 7
- On adapte la formule magique :

$$(x)_8 = \sum_{i=n}^{i=0} (b_i 8^i) = b_n 8^n + \dots + b_2 8^2 + b_1 8 + b_0$$

• Pour lever les ambiguités : $(x)_{\beta}$ pour préciser le système de numération

$$(2011)_{10} = 3 \times 8^3 + 7 \times 8^2 + 3 \times 8^1 + 3 \times 8^0 = (3733)_8$$

Pour se détendre

Pourquoi les informaticiens mélangent toujours Noël et Halloween?

$$\Longrightarrow$$
 Parce que DEC 25 = 25₁₀ = OCT 31 = 31₈

Le système binaire

Au centre de l'informatique

- 2 digits: 0 et 1 (vrai et Faux, ON et OFF, Oui et Non etc.)
- On adapte la formule magique :

$$(x)_2 = \sum_{i=n}^{i=0} (b_i 2^i) = b_n 2^n + \dots + b_2 2^2 + b_1 2 + b_0$$

$$(2009)_{10} = 1024 + 512 + 256 + 128 + 64 +0 \times 32 + 16 + 8 + 0 \times 4 + 0 \times 2 + 1 = (11111011001)_2$$

Le système binaire (cont'd)

Octets, bits et bytes

- Binary digits = Bits la plus petite unité
- Un octet = 8 bits (et en anglais : un byte)
- Un octet = la taille nécessaire pour coder en binaire un caractère parmi 256 (256 = 2⁸)

Préfixes binaires (kilo, mega...)

- Souvent utilisés lorsqu'on a affaire à de grandes quantités d'octets : puissances de 2
- Ne pas confondre 15 Mbit et 15 Mo = 15 Mbytes...
- Dérivés (mais différents) des préfixes SI (Système International d'Unités : puissance de 10)

Préfixes binaires conventionnels

Nom	Symbole	Puissance	∽Déc	Nombre
unité		$2^0 = 1$	10^{0}	un
kilo	k/K	$2^{10} = 1024$	10^{3}	mille
mega	М	$2^{20} = 1048576$	10 ⁶	million
giga	G	$2^{30} = 1073741824$	10 ⁹	milliard
tera	Т	$2^{40} = 1099511627776$	10^{12}	billion
peta	Р	$2^{50} = 1125899906842624$	10^{15}	billiard
exa	Е	$2^{60} = 1152921504606846976$	10^{18}	trillion

Exemple de confusion dans les systèmes de mesure

La délinquance des fabricants de disques dur

Un disque dur de 1 To.

• Informatique : $1024 \times 1024 \times 1024 \times 1024 = 1$ *To*

• Fabricant de disque : $1000 \times 1000 \times 1000 \times 1000 \approx 0.9095$ To

Le système hexadécimal

Pratique pour l'adressage mémoire

- Unité de RAM, puissance de 2
- 16 digits: 0,1,2,...,9, A, B, C, D, E, F
- On adapte la formule magique :

$$(x)_{16} = \sum_{i=n}^{i=0} (b_i 16^i) = b_n 16^n + \dots + b_2 16^2 + b_1 16 + b_0$$

Exemple

$$\begin{array}{rcl} (2009)_{10} & = & 7 \times 16^2 + 13 \times 16 + 9 \\ & = & 7 \times 16^2 + D \times 16 + 9 \\ & = & (7D9)_{16} \end{array}$$

Principe général

On réalise autant de divisions par 10 que nécessaires, en gardant les restes, et on lit de droite à gauche

 \implies idem pour les autres bases

Conversion décimal vers binaire

Même principe : divisons par 2, gardons les restes

$$(49)_{10} = (110001)_2$$

Relation binaire / octal

Examinons (103)₁₀ en bases 8 et 2

Relation binaire / octal

Examinons $(103)_{10}$ en bases 8 et 2

Relation binaire / puissances de 2

- ullet Equivalence : trois bits \Longleftrightarrow chiffre octal
- Conversion simplifiée $\begin{pmatrix} 1 & 4 & 7 \\ 001 & 100 & 111 \end{pmatrix}_2$
- Autre exemple : $(010 \quad 000 \quad 101 \quad 100)_2$
- Même type de relation entre binaire / hexa (groupe de 4 bits)

Relation octal / hexadecimal

Astuce

Il suffit de passer par le binaire :

Nombre de digits pour représenter un nombre

Nombre de chiffres de x dans une base β

- Soit $x = b_n b_{n-1} b_{n-2} \cdots b_2 b_1 b_0$ écrit dans la base β .
- Si $b_n \neq 0$, on note $n+1 = N_{\beta}(x)$ le nombre de chiffres nécessaires pour exprimer x dans la base β .
- Estimons $N_{\beta}(x)$
- Exemple : $\beta = 2$, combien de bits pour exprimer (45)₁₀ ?

Théorème

 $N_{\beta}(x)$ est le plus petit entier strictement supérieur à $\log_{\beta}(x)$

Nombre de digits pour représenter un nombre (cont'd)

Théorème

 $N_{\beta}(x)$ est le plus petit entier strictement supérieur à $\log_{\beta}(x)$

Exemple pour $\beta = 2$ et $x = (1503)_{10}$

$$\begin{array}{l} \ln(1503) = 7,32 \text{ et } \ln(2) = 0,693 \\ \text{Donc } \text{Log}_2(1503) = \frac{7,32}{0,693} = 10,6 \text{ et } \textit{N}_2(1503) = 11 \end{array}$$

Donc il faut 11 bits pour représenter $(1503)_{10}$ en binaire. En effet, ce nombre s'écrit, en base 2 :

10111011111

Systèmes de numération meilleurs que les bâtons

Indifférence de la base β pour x grand

Théorème

Le rapport $\frac{N_{\beta}(x)}{N_{\beta'}(x)}$ tend vers $\frac{\log(\beta')}{\log(\beta)}$ quand x tend vers l'infini

Exemple

Pour écrire un grand nombre en base 2, il faut environ 3,32 fois plus de digits qu'en base 10 car

$$\frac{\ln(10)}{\ln(2)} = 3,32...$$

Bienfaits de la représentation binaire

Calculer y^x , si x entier positif

$$y^2 = y \times y$$
 puis $y^3 = y^2 \times y$ puis $y^4 = y^3 \times y$

Méthode plus astucieuse et plus rapide

- **1** Rep. x en binaire : $x = b_n 2^n + b_{n-1} 2^{n-1} + \cdots + b_1 \times 2 + b_0$
- ② Du coup, $y^{\times} = y^{b_n 2^n + b_{n-1} 2^{n-1} + \dots + b_1 \times 2 + b_0}$ = $(y^{2^n})^{b_n} (y^{2^{n-1}})^{b_{n-1}} \cdots (y^2)^{b_1} (y)^{b_0}$
- Or on simplifie ce produit car

$$(y^{2^k})^{b_k} = \{ \begin{array}{ll} y^{2^k} & \text{si } b_k = 1 \\ 1 & \text{si } b_k = 0 \end{array} \}$$

• On multiplie tous les y^{2^i} pour lesquels b_i n'est pas nul.

Exemple de calcul de puissance

Calculons $y^{1041} = y^1 + y^{16} + y^{1024}$

• Méhode classique On calcule $y^2 = y \times y$ puis $y^3 = y^2 \times y$ puis $y^4 = y^3 \times y$ puis $y^5 \times y$ et y^6 et y^7 y^{103} y^{677} y^{1040} et enfin y^{1041} .

(1040 multiplications –
$$(x-1)$$
)

Méthode via système binaire

On calcule
$$y^4 = y^2 \times y^2$$
 puis $y^8 = y^4 \times y^4$ puis $y^{16} = y^8 \times y^8$ puis y^{32} puis y^{64} puis y^{128} puis y^{256} et $y^{512} = y^{256} \times y^{256}$ et finalement $y^{1024} = y^{512} \times y^{512}$ On calcule pour finir $y \times y^{16} \times y^{1024}$ (10 + 2 multiplications – < $2 \text{Log}_2(x)$)

Représentation des nombres

De l'infini au fini

Les nombres en mathématiques

Une infinité d'entiers naturels (\mathbb{N}) , une infinité de réels (\mathbb{R}) , et la précision des irrationnels

Les nombres en informatique

- Représentation dans le système binaire
- Limites matérielles
 - Quelle que soit la taille d'une disquette (sa capacité), il y aura toujours un entier qui ne pourra pas y être stocké.
 - Soit une disquette de taille 3 kBits = $3 \times 1024 = 3072$ chiffres binaires : pas d'entier > 2^{3072} .
 - Représentation approchée des réels Pas de représentation numérique exacte de $\sqrt{2}$: nécessité de représentations symboliques

Les entiers non-signés

- Les entiers naturels (zéro et les positifs)
- Pas de gestion du signe : codage binaire pur
- Sur un octet, on représente les entiers de 0 à $2^8 1 = 255$
- Sur deux octets, on représente les entiers de 0 à $2^{16} 1 = 65535$

Les entiers signés

- Tous les entiers (dans la limite de capacité)
- Il faut un bit pour représenter le signe (positif ou négatif) et codage binaire de la valeur absolue
- Sur un octet, on représente les entiers de $-2^7+1=-127$ à $2^7-1=127$
- Sur deux octets, on représente les entiers de $-2^{15} + 1 = -32767$ à $2^{15} 1 = 255 = 32767$

Alternative : le complément à deux

- Toujours éventuellement un bit pour le signe, mais autre façon de coder la valeur absolue
 - On exprime la valeur en base 2
 - 2 Tous les bits sont inversés
 - On ajoute une unité au résultat
- Exemple (sur 2 octets, un négatif de plus) :

```
\begin{array}{rcl}
1 & = & (0000000000000001) \\
-1 & = & (1111111111111111)
\end{array}
```

3 = (00000000000011)

32767 = (01111111111111111)

-32767 = (1000000000000001)

-32768 = (1000000000000000)

Répartition des entiers dans le complément à deux

positifs					négatif					
0	1	2		32767	-32768		-3	-2	<u>-</u> 1	
000000000000000000000000000000000000000	0000000000000000000001	000000000000000	10	0111111111111111	100000000000000000	11	111111111111101	1111111111111111	11111111111111111	

Pourquoi utiliser cette représentation?

Pour simplifier l'addition!

$$\begin{array}{c} 00000000000000011 \\ +1111111111111111 \\ \hline 100000000000000010 \end{array} \qquad \begin{array}{c} 3 \\ +(-1) \\ \hline 2 \end{array}$$

Représentation des données réelles

Une approximation

- Problématiques :
 - 1 assurer la précision derrière la virgule
 - 2 pouvoir représenter de grands nombres
 - 152140021536955471089444875,0000000000000000000000001
- Avant et après la virgule

Solutions classiques

- Virgule fixe
- Virgule flottante

Virgule fixe

Nombre fixe de chiffres après la virgule

- ullet Opérations plus simple o processeurs moins chers
- Plus facile à coder dans la machine

Deux parties

- La partie entière codée en binaire (complément à deux)
- La partie décimale : chaque bit correspond à l'inverse d'une puissance de 2

Exemple

$$-3,625_{10} = \underbrace{1111111111111111}_{-3} \underbrace{1010000000000000}_{0,625 = 0,5+0,125 = \frac{1}{2} + \frac{0}{4} + \frac{1}{8}}_{}$$

Capacité de représentation en virgule fixe

Représentation rigide

- Petits nombres : gaspillage des digits à gauche de la virgule
- Peu de décimales : gaspillage à droite
- Plus simple à mettre en œuvre, pour des ordres de grandeur comparables

Bornes

Si n est le nombre de bits de la partie entière, et d est le nombre de bits de la partie fractionnaire

- Borne maximale : $2^{n-1} \frac{1}{2^d}$
- Borne minimale : -2^{n-1}

Partie décimale de 0,347 en binaire

Virgule flottante

Solution la plus répandue

- Norme IEEE 75 : deux formats (32bits et 64bits) selon précision (simple et double)
- Ordinateurs actuels : implémentation matérielle de ce mode de représentation (dans le micro-processeur)

Un triplet

Le signe s – La mantisse m – L'exposant e : $x = sm\beta^e$

$$-1540, 412654 = -1, 540412654.10^3 = -0, 1540412654.10^4$$

 $101110, 001101 = 1, 01110001101.2^5$

Virgule flottante (cont'd)

Remarques

- Mantisse de taille fixée
- On fait flotter la virgule en faisant varier e
- Base souvent 2 (Héxa chez anciennes machines, 10 chez certaines calculatrices)

Précisions $1 \le m < 2$

	taille	signe	e	m	valeur
Simple précision	32b	1	8	23	$-1^{s}m2^{e-127}$
Double précision	64b	1	11	52	$-1^{s}m2^{e-1023}$

Exemple du nombre $-6,625_{10}$

En simple précision

- Binaire (valeur absolue): 110, 101
- Normalisation de la mantisse : 1, 10101.2²
- Décalage de l'exposant (S.P. = 127) donc exposant = $(2+127)_{10} = 10000001_2$
- Signe = 1 car négatif

Introduction Approximations en virgule flottant Exemples célèbres

Approximations et erreurs

Exemples introductifs

Chez les entiers

- Supposons les entiers positifs codés sur 2 octets (de 0 à 65535)
- Calculons $(39001 + 27446)_{10} = 66447_{10}$

$$\begin{array}{rcl} & 1001100001011001 \\ + & 0110101100110110 \\ \hline = & 1 \underbrace{00000011110001111}_{= (911)_{10}} \end{array}$$

• ⇒ Dépassement de capacité

Exemples introductifs (cont'd)

Chez les réels (flottants)

- Considérons la représentation en virgule flottante D.P.
- Le nombre $2^{60} + 1$ n'est pas représentable (pas assez de capacité), et approximé par 2^{60}

• Conséquence : $(2^{60} + 1) - 2^{60} = 0$

Dispositions particulières (exposant)

- bit d'information : NaN : Not a Number (avec propagation)
- bit d'information : +INF et -INF (avec propagation)

Intervalle et précision

Infiniment petit et infiniment grand

Densité des réels (ici codés en 16bits)

Ecart entre x et sa représentation

Estimation de l'approximation

$$\frac{\Delta x}{x} = \frac{\Delta m}{m} \le \frac{\beta^{-N}}{\beta^{-1}} = \beta^{1-N}$$

Exemple en base 2

• En simple précision, mantisse sur 23 bits

$$\frac{\Delta x}{x} \le 2^{-22} = 4194304_{10} - 4, 2.10^6$$

• En double précision, mantisse sur 52 bits

$$\frac{\Delta x}{x} \le 2^{-51} = 2251799813685248_{10} \sim 2,3.10^{15}$$

Illustration du phénomène d'absorption

Conséquences de ces approximations

Erreurs d'arrondis

Lorsque N est dépassé, approximation :

- arrondi vers la décimale la plus proche
- troncature

⇒ Calcul flottant non-associatif

$$\sum_{i=1}^{n} \frac{1}{i} \neq \sum_{i=n}^{1} \frac{1}{i}$$

Somme des inverses : leçon

Pour $n = 10^9$

- Simple précision (32 bits)
 - $\sum_{i=1}^{n} \frac{1}{i} \rightarrow 15.403$
 - $\sum_{i=n}^{1} \frac{1}{i} \to 18.807$
- Double précision (64 bits)
 - $\sum_{i=1}^{n} \frac{1}{i} \rightarrow 21.3004815023485$
 - $\sum_{i=n}^{1} \frac{1}{i} \rightarrow 21.30048150234\underline{61}$

Règle générale

Sommer en premier les termes ayant la plus petite valeur absolue

Phénomène de compensation (élimination)

Erreurs d'approximation liées à la soustraction

Les termes sommés s'annulent si trop proches

$$e^{-10} \approx \sum_{k=0}^{n} (-1)^k \frac{10^k}{k!} \rightsquigarrow e^{-10} \approx -1,295050418187$$

Eviter les sommations dans lesquelles les termes de signes opposés se compensent

$$e^{10} \approx \sum_{k=0}^{n} \frac{10^{k}}{k!} \rightsquigarrow e^{-10} = \frac{1}{e^{10}} \approx 0,000045401$$

Visualisation de l'élimination

Coefficient d'amplification

• Deux façons de calculer

$$I_n = \int_0^1 x^n e^{-x} dx = -e^{-1} + nI_{n-1} \text{ et } I_0 = 1 - e^{-1}$$

qui converge vers 10³

- 1 En montant (de I_0 à I_n)
- 2 En descendant, de $I_{4n} = a$ quelconque à I_n
- Bizarrement, c'est la seconde solution qui converge
- Coefficient d'amplification de l'erreur d'arrondi

Après multiplication par 1000

⇒ mieux vaut diviser...

Missiles Patriot: 0,34s de retard et 28 morts

En février 1991, guerre du Golfe : un missile Patriot (tueur de missiles Scud) tue 28 soldats

L'erreur : accumulation d'arrondis

- Nombres en virgule fixe sur 24 bits
- ullet Temps compté par horloge interne en 1/10 de seconde

$$1/10 = 0, 1_{10} = 0,0001100110011001100110011..._2$$

- Arrondi à 24 chiffres : erreur tous les 10^{èmes} de sec.
- Au moment de l'attaque, batterie du Patriote démarrée depuis 100h donc accumulation de 0,34s d'erreur
- Vitesse Scud ≈ 1 km/s : cible ratée

Explosion d'Ariane 5

Juin 1996, explosion d'Ariane 5 (1 milliard de dollars)

Conversion et approximation sévère

- Reprise à l'identique du logiciel d'Ariane 4 pour la gestion des centrales de guidage : nombres de 16 bits en entiers signés
- Tout le reste d'Ariane 5 : nombres de 64 bits en virgule flottante
- Passage d'un système à l'autre de la vitesse horizontale de la fusée par rapport à la plate-forme de tir : plus grande que 32767
- Effet modulo et déviation de la trajectoire impossible à rectifier

Autres bugs célèbres

Pentium d'Intel, 1994

Erreur dans la table de référence des divisions

Conversion Euro

Erreurs d'arrondis, amplifiées par opérations de conversion et de reconversion avant totalisation!

Augmentation du Vancouver Stock Exchange (1983)

(alors que les prix n'ont pas varié) Troncature de 4 vers 3 décimales et amplification quotidienne