HD14021B

8-bit Static Shift Register

The HD14021B 8-bit Static shift register finds primary use in parallel-to serial data conversion, asynchronous parallel input, serial output data queueing; and other general purpose register applications requiring low power and/or high noise immunity.

FEATURES

- Quiescent Current = 5nA/pkg typ. @5V
- Asynchronous Parallel Input/Serial Output
- Full Static Operation from DC to 7MHz
- Supply Voltage Range = 3 to 18V
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

■LOGIC DIAGRAM

■ DC CHARACTERISTIC TEST CIRCUIT

■ PIN ARRANGEMENT

TRUTH TABLE

Serial Operation

t	Clock	D,	P/S			
n		0	0			
n + 1		1	0			
n + 2		0	0			
n + 3		1	0			
		×	0			

Q,	Q ₇	Q,		
$t = n \div 6$	t = n + 7	t = n + 8		
0	?	?		
1	. 0	?		
0	1	0		
1	0	1		
Q,	Q ₇	Q,		

● Parallel Operation

Clock	D,	P/S	Dm	Qm *
	×	1	0	0
\mathcal{L}	×	1	1	1

注) *: Qs, Q7, & Qs are available externally ×: Don't Care

■ ELECTRICAL CHARACTERISTICS

Chamataniatia	C		Test Conditions -40°C			25℃		85℃		V V V MA mA pF	Unit	
Characteristic	Symbol	15 5.0 10 $V_{in}=0 \text{ or } V_{BB}$ 15 5.0 $V_{out}=4.5 \text{ or } 0.5V$ 10 $V_{out}=9.0 \text{ or } 1.0V$ 15 $V_{out}=13.5 \text{ or } 1.5V$ 5.0 $V_{out}=0.5 \text{ or } 4.5V$	min	max	min	typ	max	min	max	Onit		
					0.05	-	0	0.05	_	0.05		
	VoL	10	$V_{in} = V_{DD}$ or 0	_	0.05	-	0	0.05	_ }	0.05	V	
O V.N		15			0.05	-	0	0.05	-	0.05		
Output voitage		5.0		4.95	_	4.95	5.0	_	4.95		V	
Characteristic Output Voltage Input Voltage Output Drive Current Input Current Input Capacitance Quiescent Current	V _{OH}	10	$V_{in}=0$ or V_{DD}	9.95		9.95	10		9,95	_		
		15		14.95		14.95	15		14.95			
14		5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$	-	1.5	-	2.25	1.5	_	1.5	v	
	VIL	10	$V_{out} = 9.0 \text{ or } 1.0\text{V}$		3.0		4.50	3.0		3.0		
T6 37-14.		15	V _{**} , = 13.5 or 1.5V	min max min typ max min max Unit — 0.05 — 0.05 — 0.05 — 0.05 V — 0.05 — 0.05 — 0.05 V — 0.05 — 0.05 — 0.05 V — 0.05 — 0.05 — 0.05 — 0.05 V 4.95 — 0.05 — 0								
Output Voltage Input Voltage Output Drive Current Input Current Input Capacitance Quiescent Current		5.0	$V_{***} = 0.5 \text{ or } 4.5 \text{V}$	3.5	_	3.5	2.75		3.5	_	V V V W MA MA PF	
	V_{IH}	10	$V_{\rm out} = 1.0 \text{ or } 9.0 \text{V}$	7.0		7.0	5.50	-	7.0			
		15	$V_{\rm out} = 1.5 \text{ or } 13.5 \text{V}$	11.0	_	11.0	8.25	-	11.0	_		
		5.0	$V_{OH}=2.5V$	-1.0	_	-0.8	-1.7	_	-0.6		mA	
		5.0	$V_{OH} = 4.6 \text{V}$	-0.2	_	-0.16	-0.36	_	-0.12			
	Іон	10	$V_{OH} = 9.5V$	-0.5		-0.4	-0.9	_	-0.3	-		
Output Drive Current		15	$V_{OH} = 13.5 \text{V}$	-1.4	_	-1.2	-3.5		-1.0	- 1		
		5.0	$V_{oL} = 0.4V$	0.52		0.44	0.88	_	0.36	_	mA	
	IoL	10	$V_{ol} = 0.5 \text{V}$	1.3	_	1.1	2.25	_	0.9			
		15	$V_{oL} = 1.5 \text{V}$	3.6	_	3.0	8.8	_	2.4	_		
Input Current	I in	15	!	_	±0.3	_	±0.00001	± 0.3	_	±1.0	μA	
Input Capacitance	Cin		V., = 0	_	_	_	5.0	7.5	i –	_	pF	
		5.0	7 0	-	20	_	0.005	20	_	150		
Quiescent Current	IDD	10	Zero Signal, per Package	-	40	_	0.010	40	-	300	V V mA mA pF	μA
	ļ	15		_	80	_	0.015	80	_	600		
-	ì	5.0	Dynamic $+I_{DD}$,	_	-	i –	0.76	_	_	_	- ;	
Total Supply Current*	I_T	10	per Gate		† <u> </u>	_	1.51	_		_		
• • •		15	$C_L = 50 \text{pF}, f = 1 \text{ kHz}$			-	†		•	1		

^{*} To calculate total supply current at frequency other than IkHz.

■POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

 $[@]V_{\text{DD}} = 5.0 \text{V} \quad I_{\text{T}} = (0.75 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad @V_{\text{DD}} = 10 \\ V \quad I_{\text{T}} = (1.50 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad @V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{T}} = (2.25 \, \mu\text{A/kHz}) \\ f + I_{\text{DD}}, \quad W \quad V_{\text{DD}} = 15 \\ V \quad I_{\text{DD}} = 15 \\ V$

ESWITCHING CHARACTERISTICS $(C_L = 50 \text{pF}, Ta = 25^{\circ}\text{C})$

Characteristic	Symbol	$V_{DD}(V)$	min	typ	max	Unit
	t,	5.0	_	180	400	ns
Output Rise Time		10	_	90	200	
		15	_	65	160	1
		5.0	_	100	200	
Output Fall Time	t_f	10	_	50	100	ns
		15		37	80	1
		5.0	_	400	1000	ns ns
Propagation Delay Time	t_{PLH} ,	10		170	400	
	t _{PHL}	15	_	115	265	
	PW_c	5.0	500	150		ns
Clock Pulse Width		10	200	75		
		15	150	40		
	f_{c}	5.0		3.0	1.0	MHz
Clock Frequency		10	_	6.0	2.5	
		15		8.0	3.0	
		5.0	500	150		ns
Parallel/Serial Control Pulse Width	PW(P/S)	10	200	75		
		15	150	40	_	
		5.0	500	150	_	ns
Setup Time	tsetup	10	100	50		
		15	-80	30	-	
		5.0	_	-	15	!
Input Clock Rise Time	t.,	10			15	i ns
		15			15	-

■ SWITCHING TIME TEST CIRCUIT

Unit: mm 19.20 20.00 Max 16 7.40 Max 6.30 1.3 1.11 Max 7.62 5.06 Max 2.54 Min 0.51 Min $0.25^{+0.13}_{-0.05}$ 0.48 ± 0.10 2.54 ± 0.25 $0^{\circ} - 15^{\circ}$ Hitachi Code DP-16 **JEDEC** Conforms EIAJ Conforms Weight (reference value) 1.07 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica URL Europe

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http:semiconductor.hitachi.com/

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group.

Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom

Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666

Fax: <886> (2) 2718-8180

Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Hitachi Asia (Hong Kong) Ltd.

Group III (Electronic Components)

7/F., North Tower, World Finance Centre,

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.