Bone Fracture Detection

Team Members:

Omnia Saaed
Amira Kamel
Roaa Ahmed
Farah Ashraf
Menna Osama
20228003
20228004
20228006
20228015

Supervised By:

Dr: Soha Ahmed

Dr: Ahmed Swar

Overview

To build and evaluate machine learning and deep learning models for automatically classifying X-ray images into **fractured** and **not fractured** categories.

Source: Kaggle Datasets

Dataset Preparation

- Source: X-ray image folders categorized as:
 - o train/fractured-labeled
 - train/not fractured-labeled
 - test/fractured-labeled
 - test/not fractured-labeled

EDA

Show Distribution of the data

- Check for corrupted/invalid Images
- Check for duplicated Images
- Check for images size

Images Not Sized 224x224

Check For quality of images

Preprocessing

- Resize Images to '224*224'
- Enhance The Image quality by
 - Enhance The Contrast
 - Remove noises using GaussianBlur
- Extracted relative paths for labeling.
- Created CSV files with image paths and binary labels (1 = fractured, 0 = not fractured).
- Combined and shuffled data into train_df and test_df.

Classical ML

- Used MobileNetV2 as a feature extractor (without the top classification layer).
- Extracted features and trained:
 - 1) Logistic Regression
 - Accuracy: ~67%

Confusion Matrix

ROC and loss curves visualized.

o 2) KMeans Clustering

- Evaluated as an unsupervised baseline.
- Accuracy: ~49% (as expected from unsupervised learning).
- Confusion Matrix

Plotted inertia curve (Elbow Method) and ROC.

3. Deep Learning CNN Model (Custom)

- Built a custom CNN with:
 - o Conv2D, MaxPooling, GlobalAveragePooling, Dense, and Dropout.
- Trained with early stopping on accuracy.
- Evaluation:
 - Accuracy on test set plotted. ~76%
 - Confusion matrix

o ROC curve, and loss curves visualized.

4. Transfer Learning (ResNet50)

- Used ResNet50 (pretrained on ImageNet) as a frozen feature extractor.
- Added custom classification head.
- Trained and evaluated on the same X-ray dataset.
- Results included classification report and accuracy. ~59%
- ROC curve, and loss curves visualized.

☑ Key Metrics (Sample Summary)

Model	Accuracy	AUC (ROC)	Notes
Logistic Regression	~0.67	~0.70	Classical ML with deep features
KMeans Clustering	~0.49	~0.50	Unsupervised baseline
Custom CNN	~0.75+	~0.80	End-to-end image learning
ResNet50 Transfer	TBD	TBD	Powerful pretrained backbone

Conclusion

This project showcases a full machine learning pipeline:

- Data labeling & preprocessing
- Deep feature extraction & classical modeling
- · Custom deep learning modeling
- Transfer learning with state-of-the-art architectures
- Evaluation using both metrics and visualizations