Bagging and Random Forests

(source: David Rosenberg)

Yann Chevaleyre

November 4, 2022

Contents

- Ensemble Methods: Introduction
- The Benefits of Averaging
- Bootstrap and Bagging
- Random Forests

Ensemble Methods: Introduction

Ensembles: Parallel vs Sequential

- Ensemble methods combine multiple models
- Parallel ensembles: each model is built independently
 - e.g. bagging and random forests
 - Main Idea: Combine many (high complexity, low bias) models to reduce variance
- Sequential ensembles:
 - Models are generated sequentially
 - Try to add new models that do well where previous models lack

The Benefits of Averaging

A Poor Estimator

- Let $z, z_1, ..., z_n$ i.i.d. $\mathbb{E}z = \mu$ and $Var(z) = \sigma^2$.
- We could use any single z_i to estimate μ .
- Performance?
- Unbiased: $\mathbb{E}z_i = \mu$.
- Standard error of estimator would be σ .
 - The standard deviation:
 - $SD(z) = \sqrt{Var(z)} = \sqrt{\sigma^2} = \sigma$.

Variance of a Mean

- Let z, z_1, \ldots, z_n be i.i.d. with $\mathbb{E}z = \mu$ and $Var(z) = \sigma^2$.
- Let's consider the average of the z_i 's.
 - Average has the same expected value but smaller standard error:

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}z_{i}\right]=\mu\qquad\operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}z_{i}\right]=\frac{\sigma^{2}}{n}.$$

- Clearly the average is preferred to a single z_i as estimator.
- Can we apply this to reduce variance of general prediction functions?

- Suppose we have B independent training sets from the same distribution. Suppose $\hat{\mathcal{Y}} = \mathbb{R}$
- Learning algorithm gives B decision functions: $\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)$
- Define the average prediction function as:

$$\hat{f}_{\text{avg}} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b$$

- What's random here?
- ullet The B independent training sets are random, which gives rise to variation among the \hat{f}_b 's.

- Fix some particular $x_0 \in \mathcal{X}$.
- Then average prediction on x_0 is

$$\hat{f}_{avg}(x_0) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x_0).$$

- Consider $\hat{f}_{avg}(x_0)$ and $\hat{f}_1(x_0), \dots, \hat{f}_B(x_0)$ as random variables
 - Since the training sets were random
- We have no idea about the distributions of $\hat{f}_1(x_0), \ldots, \hat{f}_B(x_0)$ they could be crazy...
- ullet But we do know that $\hat{f}_1(x_0),\ldots,\hat{f}_B(x_0)$ are i.i.d. And that's all we need here...

- The average prediction on x_0 is $\hat{f}_{avg}(x_0) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b(x_0)$.
- $\hat{f}_{avg}(x_0)$ has smaller variance: $Var\left(\hat{f}_{avg}(x_0)\right) = \frac{1}{B}Var\left(\hat{f}_1(x_0)\right)$
- But $\hat{f}_{avg}(x_0)$ and $\hat{f}_b(x_0)$ have the same expected value, so the bias does not change:

$$\underbrace{\mathbb{E}\left[\hat{f}_{avg}(x_0) - \mathbb{E}\left[Y \mid x_0\right]\right]}_{bias\left(\hat{f}_{avg}\right)} = \underbrace{\mathbb{E}\left[\hat{f}_{1}(x_0) - \mathbb{E}\left[Y \mid x_0\right]\right]}_{bias\left(\hat{f}_{1}\right)}$$

• This gives us the bias/variance decomposition of the mean square error at x_0 :

$$\mathbb{E}\left[\left(\hat{f}_{avg}(x_0) - Y\right)^2 \mid X = x_0\right] = bias^2\left(\hat{f}_{avg}\right) + Var\left(\hat{f}_{avg}(x_0)\right) + Var\left(Y \mid x_0\right)$$

$$= bias^2\left(\hat{f}_1\right) + \frac{1}{B}Var\left(\hat{f}_1(x_0)\right) + Var\left(Y \mid x_0\right)$$

Using

$$\hat{f}_{\mathsf{avg}} = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_b$$

seems like a win.

- But in practice we don't have B independent training sets...
- Instead, we can use the bootstrap....

Bootstrap and Bagging

Bagging

- Draw B bootstrap samples D^1, \ldots, D^B from original data S (same size, with replacement)
- Let $\hat{f}_1, \hat{f}_2, \dots, \hat{f}_B$ be the prediction functions from training on D^1, \dots, D^B , respectively.
- The bagged prediction function is a combination of these:

$$\hat{f}_{avg}(x) = \text{Combine}\left(\hat{f}_1(x), \hat{f}_2(x), \dots, \hat{f}_B(x)\right)$$

- How might we combine
 - prediction functions for regression?
 - binary class predictions?
 - binary probability predictions?
- Bagging proposed by Leo Breiman (1996).

Bagging

bootstrap samples

Bagging for Regression

- Draw B bootstrap samples D^1, \ldots, D^B from original data S.
- Let $\hat{f}_1, \hat{f}_2, \dots, \hat{f}_B: \mathcal{X} \to \mathbf{R}$ be the real-valued prediction functions from D^1, \dots, D^B , respectively.
- Bagged prediction function is given as

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(x).$$

- **Empirically**, \hat{f}_{bag} often performs similarly to what we'd get from training on B independent samples:
 - $\hat{f}_{\mathsf{bag}}(x)$ has same expectation as $\hat{f}_1(x)$, but
 - $\hat{f}_{bag}(x)$ has smaller variance than $\hat{f}_1(x)$

Out-of-Bag Error Estimation

- Each bagged predictor is trained on about 63% of the data.
- Remaining 37% are called out-of-bag (OOB) observations.
- For ith training point, let

$$S_i = \{b \mid D^b \text{ does not contain } i\text{th point}\}.$$

• The OOB prediction on x_i is

$$\hat{f}_{OOB}(x_i) = \frac{1}{|S_i|} \sum_{b \in S_i} \hat{f}_b(x_i).$$

- The OOB error is a good estimate of the test error.
- OOB error is similar to cross validation error both are computed on training set.

Bagging Classification Trees

• Input space $\mathfrak{X} = \mathbb{R}^5$ and output space $\mathfrak{Y} = \{-1, 1\}$.

- Sample size n = 30
- Each bootstrap tree is quite different
- Different splitting variable at the root
- This high degree of variability from small perturbations of the training data is why tree methods are described as high variance.

Comparing Classification Combination Methods

• Two ways to combine classifications: consensus class or average probabilities.

Conventional Wisdom on When Bagging Helps

- Hope is that bagging reduces variance without making bias worse.
- General sentiment is that bagging helps most when
 - Approximation error (biais) is low
 - High variance / low stability
 - i.e. small changes in training set can cause large changes in predictions
- Hard to find clear and convincing theoretical results on this
- But following this intuition leads to improved ML methods, e.g. Random Forests

Random Forests

Recall the Motivating Principal of Bagging

- Averaging $\hat{f}_1, \ldots, \hat{f}_B$ reduces variance if they're based on i.i.d. samples from $P_{X \times Y}$
- Bootstrap samples are
 - independent samples from the training set, but
 - are **not** independent from other samples in other bags
- This dependence limits the amount of variance reduction we can get.
- Would be nice to reduce the dependence between \hat{f}_i 's...

Random Forest

Main idea of random forests

Use **bagged decision trees**, but modify the tree-growing procedure to reduce the dependence between trees.

- Key step in random forests:
 - When constructing **each tree node**, restrict choice of splitting variable to a randomly chosen subset of features of size *m*.
- Typically choose $m \approx \sqrt{p}$, where p is the number of features.
- Can choose m using cross validation.

Random Forest

- Usual approach is to build very deep trees (low bias)
- Diversity in individual tree prediction functions comes from
 - bootstrap samples (somewhat different training data) and
 - randomized tree building
- Bagging seems to work better when we are combining a diverse set of prediction functions.

Random Forest: Effect of *m* size

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

24 / 26

Appendix

Variance of a Mean of Correlated Variables

• For $Z, Z_1, ..., Z_n$ i.i.d. with $\mathbb{E}Z = \mu$ and $\text{Var}Z = \sigma^2$,

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right] = \mu \qquad \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right] = \frac{\sigma^{2}}{n}.$$

- What if Z's are correlated?
- Suppose $\forall i \neq j$, $Corr(Z_i, Z_i) = \rho$. Then

$$\operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}Z_{i}\right] = \rho\sigma^{2} + \frac{1-\rho}{n}\sigma^{2}.$$

• For large n, the $\rho\sigma^2$ term dominates – limits benefit of averaging.