Chapitre 1

Initiation

Definitions 1.1

Exemple 1. $l^2(\mathbb{N}) = \{n \in \mathbb{N} \mapsto f(n) \in \mathbb{C} \text{ t.q. } \sum_{n \geq 0} |f(n)|^2 < \infty\}$ $l^2(\mathbb{N})$ est \mathbb{C} espace. $\forall f, g \in l^2(\mathbb{N})$:

$$(f|g)_{l^2(\mathbb{N})} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \sum_{n>0} f(n)\overline{g(n)}.$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $l^2(\mathbb{N})$:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > p \ge N : \quad ||f_n - f_p||_{l^2(\mathbb{N})} < \varepsilon. \tag{*}$$

Question.
$$\exists f \in l^2(\mathbb{N})$$
 telle que $\lim_{n \to \infty} f_n = f$?
 $(*) \Leftrightarrow \forall \varepsilon > 0 \ \exists N \ t.q. \ \forall n > p \ge N \ ||f_n - f_p||^2 = \sum_{j \ge 0} |f_n(j) - f_p(j)|^2 \le \varepsilon^2$

$$\Rightarrow |f_n(j) - f_p(j)| \le \varepsilon \ \forall j \in \mathbb{N}.$$

 $\Rightarrow \forall j \in \mathbb{N} \ (f_n(j))_{n \in \mathbb{N}}$ est de Cauchy dans \mathbb{C} qui est complet, donc $\exists f(j) \in \mathbb{C}$ telle que $\lim_{n\to\infty} |f_n(j) - f(j)| = 0.$

Il faut montrer que
$$f$$
 est la limite dans $l^2(\mathbb{N})$ de la suite f_n . $\forall \varepsilon > 0 \; \exists N \; \text{t.q.} \; \forall n > p \geq N \sum_{j \geq 0} |f_n(j) - f_p(j)|^2 \leq \varepsilon^2$

$$\Rightarrow \forall J \in \mathbb{N} \sum_{j=0}^{J} |f_n(j) - f_p(j)|^2 \leq \varepsilon^2, \text{ par passage à la limite sur } p: \sum_{j=0}^{J} |f_n(j) - f(j)|^2 \leq \varepsilon^2$$

 ε^2

Conclusion: $\forall \varepsilon > 0 \ \exists N \ \text{telle que} \ \forall n \geq N \ ||f_n - f|| < \varepsilon \Longrightarrow \lim_{n \to \infty} f_n = f.$

Mais $f \in l^2(\mathbb{N})$.

Vérifions que $f \in l^2(\mathbb{N})$:

$$(\sum_{j\geq 0} |f(j)|^2)^{1/2} = (\sum_{j\geq 0} |f_n(j) - f(j) + f(j)|^2)^{\frac{1}{2}} = ||\underbrace{f - f_n}_{\in l2n} + \underbrace{f_n}_{\in l2n}|| \leq ||f - f_n|| + \underbrace{f_n}_{\in l2n}|| + \underbrace{f_n}$$

 $||f_n|| < +\infty.$

Theorem 1 (Projection orthogonale). Soit H un espace de Hilbert et C une partie convexe fermée et non vide de H. Alors $\forall x \in H \exists ! y_0 \in C$ t.q.

- 1. $\operatorname{dist}(x,C) := \inf\{d(x,y), y \in C\} = \inf\{||x-y||_H, y \in C\} = ||x-y_0||_H$
- 2. $\forall y \in C \ \text{Re}(x y_0 | y y_0) \le 0 ?$

 y_0 est la projection orthogonale de x sur C.

Remarque.

- 1. C est convexe $si \ \forall x, y \in C \ [x,y] = \{tx + (1-t)y, t \in [0,1]\} \in C$
- 2. $H = \mathbb{R}^2 : [x, y] \in C$
- 3. $si \ x_0 \in C \ dans \ le \ cas \ y_0 = x_0 \ et \ dist(x_0, C) = 0 = ||x_0 x_0||_H$

Démonstration. Notons par d=d(x,C)>0 $(x\in H\setminus C)$. Soit $y,z\in C$ on pose $b=x-\frac{1}{2}(y+z),\ c=\frac{1}{2}(y-z)$: $||b||=||x-\frac{1}{2}\underbrace{(y+z)}||\geq d$. On a aussi b-c=x-y et

 $b+c=x-z \Rightarrow ||x-y||^2+||x-z||^2=||b-c||^2+||b+c||^2=(b-c|b-c)+(b+c|b+c)=||b||^2+||c||^2-(b|c)-(c|b)+||b||^2+||c||^2+(b|c)+(c|b).$

 $||x-y||^2 + ||x-z||^2 = 2(||b||^2 + ||c||^2) \ge 2d^2 + 2\frac{1}{4}||y-z||^2 \Rightarrow ||y-z||^2 \le 2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2).$ Pour $n \in N$ $C_n = \{y \in C ||x-y||^2 \le d^2 + \frac{1}{n}\}$ est fermée dans H (boule fermée).

Puisque C est fermé, $C_n = \{y \in H | |x-y||^2 \le d^2 + \frac{1}{n}\} \cap C$ est fermé dans C. De plus : $\delta(n) := \sup\{||y-z||, (y,z) \in C_n \times C_n\} \le \sup\{[2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2)]^{\frac{1}{2}}, y, z \in C_n \Rightarrow \delta(n) \le \frac{2}{n^{\frac{1}{2}}} \to 0 \text{ quand } n \to +\infty.$

H est complet et $C \subset H_x$ c est fermé. C est un espace métrique complet. Il satisfait le critère de Cantor : $\bigcap C_n = \{y_0\}$.

 $y_0 \in \bigcup_n C_n \ d^2 \le ||x - y_0||^2 \le d^2 + \frac{1}{n} \ \forall n \in \mathbb{N}^* = \mathbb{N}$ $\{0\} \Rightarrow ||x - y_0|| = d^2.$

Aadff ii): $\forall t \in [0,1], \ \forall \in H \ \phi(t) = ||\underbrace{y_0 + t(y - y_0)}_{\in C} - x||^2 = ||y_0 - x||^2 + 2tRe(y_0 - y_0) + t(y_0 - y_0)||_{C}$

 $x|y-y_0| + t^2||y-y_0||^2. \ \phi(0) = d^2 \le \phi(t) \ \forall t \in (0,1] \Rightarrow \phi'(0) \ge 0. \ \phi'(t) = 2Re(y_0 - x|y - y_0) + 2t||y-y_0||^2. \ \phi'(0) \le 0 \Rightarrow 2Re(y_0 - x|y - y_0) \le 0 \Rightarrow (i).$

Theorem 2 (corollaire). Soit F un sous-espace FERMÉ de H alors : $H = F \bigoplus F^{\perp}$.

Démonstration. — F est convexe puisque $\forall \alpha, \beta \in \mathbb{C} \forall x, y \in F \ \alpha x + \beta y \in F \Rightarrow$ Celaeitvnai.. $\alpha = t, \ \beta = 1 - t \ t \in [0, 1]$.

On peut lu applieuer le Thm 1 :

— On a tanga. $F + F^{\perp} \subset H$ et $F + F^{\perp} = F \bigoplus F^{\perp}$ onu si $x \in F \cap F^{\perp} \Rightarrow (x|x) = 0 = ||x||^2 \Rightarrow x = 0_H$

Soit $x \in H$, et $y_0 \in F$ sa projection an Thegerale : $\forall d \in \mathbb{C}, y \in F, y_0 + dy \in F$ et donc $Re(x - y_0|y_0 + dy - y_0) \le 0 \Rightarrow Re(x - y_0|dy) \le 0$

 $d = (x - y_0|y) \Rightarrow (x - y_0) \dots$

Conclusion $Re(x - y_0|dy)$.. donc $H = F \bigoplus F^{\perp}$.

Définition 1. Dans ces condition, l'application $P: x \in H, x = x_1 + x_2, x_1 \in F. x_2 \in F^{\perp} \stackrel{P}{\mapsto} x_1 \in F.$ est le Projection Orthogonal sur F.

Exemple 1.1.1. Montrer que P est linéaire continue et satisfait $P^2 = P$.

Définition 2. Une partie A de H est dite TOTALE si le plus petit sous espace fermé contenant A et H.

H est Séparable si H admet une famille totale dénombrable.

Exemple 2. $H = l^2(\mathbb{N}) : \mathcal{F} = \{e_0, e_1, ...\}$ avec $e_j(i) = \delta_{ij} \to (0, 0, ..., 0, 1, 0, ...0)$. \mathcal{F} est totale. Elle est dénombrable, l2n est séparable.

Theorem 3. Soit H un espace de Hilbert et $A \subset H$:

- 1. $\overline{vect(A)} = (A^{\perp})^{\perp}$
- 2. A est on sous-espace alors $(A^{\perp})^{\perp} = \bar{A}$
- 3. A est totale $\Leftrightarrow A^{\perp} = \{0_H\}$

1.2 Séries dans un espace vectoriel normé

Soit $(E, ||\cdot||_E)$ un espace vectoriel normé (e.v.n).

Définition 3. On appelle SÉRIE de terme général $u_n \in E$ la suite $(S_N)_{N \in \mathbb{N}}$ de E t.q. $S_N = \sum_{n=0}^N u_n$. La série est Convergente dans $(E, ||\cdot||_E)$ si le suite $(S_N)_{N \in \mathbb{N}}$ admet une limite dans E: S — toute la somme de la somme la série.

Définition 4. Une série $\sum u_n$ est dite Absolument Convergente (AC) si la série $\sum ||u_n||_E$ est convergente dans \mathbb{R}^+ .

Theorem 4. Si E est complet (espace de Banach/Hilbert) Alors toute série AC est convergente et $||\sum_{n=0}^{\infty}|| \le \sum_{n=0}^{\infty}||u_n||$.!?

Démonstration.
$$J_n = \sum_{n=0}^{N} ||u_n||$$
 et convergente $\Leftrightarrow (J_n)_{N \in \mathbb{N}}$ est de Cauchy $\forall \varepsilon > 0 \; \exists K \; t.q. \; \forall N > 0 \; \exists K \; t.q$

$$P \geq K \Rightarrow |J_n - J_p| \leq \varepsilon$$
. $\sum_{j=p+1}^N ||u_j|| \leq \varepsilon$. meus $||S_n - S_p|| = ||\sum_{j=p+1}^N u_j|| \leq \sum_{j=p+1}^N ||u_j||$ Tnegalite trianguler.

 $\Rightarrow N > p \le K \Rightarrow ||S_N - S_P|| \le \varepsilon \Leftrightarrow (S_N)_{N \in \mathbb{N}}$ est de Cauchy dans E et donc convergente.

D'au the peut $||S_n|| = ||\sum_{j=0}^n u_j|| \le \sum_{j=0}^n \le \sum_{j=0} ||u_j|| \Rightarrow ||\sum_{j=0} u_j|| \le \sum_{j=0} ||u_j||$. Cqfd.

Définition 5. Une suite $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ de H est dite Orthogonal si $(x_i|x_j)=0$ $\forall i\neq j$.

Theorem 5. Soit $(a_n)_{n\in\mathbb{Z}}$ une suite orthogonal dans un espace de Hilbert H. Alors le série $\sum x_n$ est convergente $\iff \sum_{n\geq 0} ||x_n||_H^2$ est convergente et

$$||\sum_{n>0} x_n||_H^2 = \sum_{n>0} ||x_n||_H^2.$$

Démonstration. $\forall l > p$ on a $||\sum_{n=l}^p||^2 = (\sum_n = e^p x_n | \sum_n = e^p x_n) = \sum_n, n' = l(x_n | x'_n) = \sum_n = l^p ||x_n||^2$ Alors $(x_n)_{n \in \mathbb{N}} n \in \mathbb{N}$ est de Cauchy $\Leftrightarrow (||x_n||^2)_{n \in \mathbb{N}}$ est de Couchy dens \mathbb{P}

Couchy dans \mathbb{R} . D'aute peut $S_N = \sum_{n\geq 0}^N x_n \Rightarrow ||S_N||^2 = \sum_{n\geq 0}^N ||x_n||^2$. Alors $S = \lim S_N = \sum x_n ||S||^2 = ||\lim NS_N||^2 = \lim ||S_N||^2$ par continite de la $||\cdot||$ et donc $||S||^2 = \lim ||S_N||^2 = \sum_{n\geq 0} ||x_n||^2 = \sum_{n\geq 0} ||x_n||^2$

1.3 Bases Hilbertiennes

Définition 6. On appelle BASE HILBERTIENNE, une suite de vecteur $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ telle que

- 1. $\forall n, m(x_n|x_m) = \delta_{nm}$,
- 2. $\operatorname{vect}\{(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}\}=H\Leftrightarrow\operatorname{vect}(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}^\perp=\{0_H\}\Leftrightarrow(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ est totale.

Theorem 6 (Inégalité de Bessel). Soit (x_n) une suite orthonormale $(\forall n, m(x_n|x_m) = \delta_{nm})$ dans H. Alors $\forall x \in H \sum_{n\geq 0} |(x|x_n)|^2$ est convergente et $\sum_{n\geq 0} |(x|x_n)|^2 \leq ||x||^2$.

Exemple: $H = l^2(\mathbb{N})$. $(e_n|e_m) = \sum_{k\geq 0} e_n(k) e_m(k) = \sum_{k\geq 0} \delta_{nk} \delta_{mk} = \delta_{nm}$. En fait on montre que $\sum_{n\geq 0} |(e_n|x)|^2 = ||x||^2$ c'est une base Hilbertienne.

Démonstration. Sait $x \in H$ on pose $y_i = (x|e_i)e_i$ et $Y_N = \sum_1^N y_i, Z_N = X - Y_N$. Alors: $(Z_N|y_i) = (X - Y_N|y_i) = (X|y_i) - (Y_N|y_i)$. $(x|y) = (x|(x|e_i)e_i) = \overline{(x|e_i)}(x|e_i) = |(x|e_j)|^2$. $(Y_N|y_i) = \sum_{j=1}^N (y_j|y_j)$ mais $y_j \perp y_i \Rightarrow (Y_N|y_i) = ||y_i||^2$ si $N \geq i$. (autrement =0)

Dans ces conditions puisque $||y_i||^2 = |(x|e_i)|^2$. Alors $(Z_n|y_i) = 0 \Rightarrow (Z_N|Y_N) = 0$ cas $Y_n = \sum_{i=0}^N y_i \Rightarrow ||x||^2 = ||Z_n||^2 + ||Z_N||^2$ $(x = Z_n + Y_n) + ||Y_n||^2 = \sum ||y_n||^2 \le ||x||^2$

La seuie $\sum_{n\geq 0}^N ||y_n||^2$ est positive, majorée donc convergente et par passage à la limite : $\sum_{n\geq 0} ||y_n||^2 = \sum |(x|e_n)|^2 \le ||x||^2$. QED

Theorem 7 (Egalité de Parseval). Soit (e_n) une base Hilbertienne de H alors

- 1. La série $\sum_{n\geq 0} |(x|e_n)|^2$ est convergente et $||X||^2 = \sum_{n\geq 0} |(x|e_n)|^2$,
- 2. Ls série $\sum_{n\geq 0}^{-} (x|e_i)e_i$ est convergente dans H et $\sum_{i\geq 0}^{-} (x|e_i)e_i = x$.

Démonstration. En utilisant le théorème précédent alors $\sum |(x|e_i)|^2$ est convergent on utilise l'identité de la médiane : $\sum (x|e_i)e_i$ et convergente dans $H(||(x|e_i)e_i||^2 = |(x|e_i)|^2)$. On pose $y = \sum |(x|e_i)e_i|$ alors $||y||^2 = \sum |(x|e_i)|^2$ mais $|y|e_i| = |\sum |(x|e_i)e_i|$.

On pose $y = \sum_{i \geq 0} (x|e_i)e_i$ alors $||y||^2 = \sum_{i \geq 0} |(x|e_i)|^2$ mais $(y|e_j) = (\sum (x|e_i)e_i|^2) = \sum (x|e_i)(e_i|e_j) = (x|e_j) = (x|$

Remarque. $Si\ (e_n)_{n\in\mathbb{N}}$ est une suite orthonormal telle que $\forall x\in Hx=\sum_{i\geq 0}(x|e_i)e_i$: $x=\lim_N\sum_{i\geq 0}^N a_ie_i$ où $a_i=(x|e_i)\in\mathbb{C}$ $\in \mathrm{vect}\{(e_n)_n\in\mathbb{N}\}; a_i=(x|e_i)\Rightarrow \mathrm{vect}\{(e_n)_n\in\mathbb{N}\}=H.\ (e_n)_n\in\mathbb{N}\ \text{est une base Hilbertienne.}$ ii)» $(e_n)_n\in\mathbb{N}\ \text{est base Hilbertienne de }H\Leftrightarrow \forall x\in H:\sum (x|e_i)e_i=x$ $\sum (x|e_i)e_i=x\Leftrightarrow \sum |(x|e_i)|^2=||x||^2i>>(e_n)\ \text{est une base Hilbertienne de }H\Leftrightarrow$

Exemple (suite): $H = l^2(\mathbb{N})$. $(e_n)_{n \in \mathbb{N}} t.q.e_n(k) = \delta_{nk}$. $u \in H \Leftrightarrow \sum_{n \geq 0} |u(n)|^2 = ||u||^2$ mais $u(n) = (u|e_n) = \sum u(k)e_n(k) \Leftrightarrow \sum_n \geq 0 |(u|e_n)|^2 = ||u||^2$, \Rightarrow c'est une base Hilbertienne.!?

1.4 Dual d'un espace de Hilbert

On rappelle que si S est un e.v.n. une FORME LINIÈRE sur X — une application linière de X dans \mathbb{C} soit $l: X \to \mathbb{C}: \forall d \in \mathbb{C} \ \forall x, y \in X l(x+dy) = l(x) + dl(y)$. L'ensemble des formes linéaires de X: est un espace vectoriel X^* . On considère X' dual topologique: c'est l'espace vectoriel des formes linéaires continues sur X: $\{l: (X, ||\cdot||_X) \to (\mathbb{C}, |\cdot|)\}$.

Exercice 1. l est continue \Leftrightarrow

 $\sum |(x|e_i)|^2 = ||x||^2 \forall x \in H$

$$\exists C > 0 \ x \forall x \in X, |l(x)| \le C||x|| \tag{*}$$

On définit $l \in X'$, $||l|| = \inf\{C > 0 \text{ t.q. (*) est satisfait}\} = \sup\{|l(x)| \mid ||x|| = 1\}$. $(X', ||\cdot||)$ est un espace de Banach (un e.v.n. complet)

Theorem 8 (Théorème de représentation de Riez). . Soit H est un espace de Hilbert H' son dual topologique. On définit $I: H \to H$ par $\forall x \in HI(x) = (\cdot|x)$. Alors I set un isomorphisme isométrique de $H \to H'$.

Remarque. $H = \mathbb{C}^n$, une forme linéaire sur \mathbb{C}^n : l. $l(x_1, ..., x_n) = \sum_{i=1}^n a_i x_i$, $a_i \in \mathbb{C}$ $|l(x)| = |\sum_{i=1}^n a_i x_i| \le \sup\{a_i|\} \cdot ||x||_{\mathbb{R}^n}$. Ici $X^* = X'$!?

$$l(x) = (a_1, a_2, \dots, a_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 $=(\bar{a}|x)\forall x\in\mathbb{C}^n\ \forall l\in X',\ \exists a\in\mathbb{C}:\ l(x)=(x|\bar{a})\ G\'{e}n\'{e}ralisation\ \grave{a}\ la\ dimension$ quelconque c'est le th\'{e}or\`{e}me de Riez: $\forall l\in H'\ \exists a\in H\ \forall x\in H:\ l(x)=(x|a)|$

Démonstration. Soit $l \in H'$ $l \neq 0'_b \Leftrightarrow$

Remarque. Si l est anti-linéaire : $\forall d \in \mathbb{C} \ \forall x, y \in H \ l(x+dy) = l(x) + \bar{d}l(y)$ et $\exists u \ t.q.$ $\forall x \in H : \ l(x) = (u|x)$

1.5 Convergence faible dans les espaces de Hilbert

1.5.1 Définition et premières propriétés

Définition 7. Soit H un espace de Hilbert. Une $\mathrm{suit}(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ de H est dit Converge Faiblement vers $X\in H$ si $\forall y\in H(x_n|y)->(x|y)$. On notera $x_n\rightharpoonup x$, x est dite limite faible de $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$.

Exp. $H = l^2(\mathbb{N}), x_n \in l^2(\mathbb{N}^*)$ t.q. $x_n(j) = \delta_{nj}$.

 $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ est une base hilbertienne de H. On regarde la convergence faible. Soit $y\in l^2(\mathbb{N}^*)$ on doit calculer $\lim_{n\to+\infty}(x_n|y),\ (x_n|y)=\sum_j x_n(j)\overline{y(j)}=\overline{y(n)}.\ |(x_n|y)|\leq |y(n)|$ on sait $\sum_j |y(j)|^2<+\infty=>|y(j)|\to 0$ qd $j\to+\infty$ et donc $|(x_n|y)|=|y(n)|\to 0$ qd $n\to+\infty$. On ercit $0=(0_H|y)$ alors $\lim_n(x_n|y)=(0_H|y).\ 0_H$ est une limite de la suite $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ (On montrera la limite faible est unique). $\|x_n\|^2=\sum_j |x_n(j)|^2=1$ $=>x_n\not\to 0$ puisque $\lim_n\|x_n-0_H\|=\lim_n\|x_n\|=1\not\to 0.$ 0_H n'est pas limite de la suite $(x_n)_{n\in\mathbb{N}}$.

Proposition 1. La limite faible, si elle existe elle est unique.

Démonstration. Supposons que $\forall y \in H(x_n|y) \to (x|y)$ et $(x_n|y) \to (x'|y), \ x, x' \in H$. Supposons $x \neq x' <=> x - x' \neq 0_H => \exists y \in H \text{ t.q. } (x|y) \neq (x'|y) \text{ (*)}$

Remarque. On suppose (*) faux : $\forall y \in H(x|y) = (x'|y) <=> (x - x'|y) = 0 => x - x' \perp H => x - x' = 0_H$ c'est Absurde.

On pose $u_n = (x_n|y)$ u = (x|y) u' = (x'|y) $u_n \to u$: $\forall \varepsilon > 0 \ \exists N \ \text{t.q.} \ \forall n \geq N |u_n - u| \leq \varepsilon$. On choisit $\varepsilon < |u - u'|$ alors on a toujours si $n \geq N |u_n - u'| = |u_n - u + u - u'| = ||u - u'| - |u_n - u|| \geq |u - u'| - \varepsilon \geq \frac{|u - u'|}{2} = > \forall n \geq N |u_n - u'| \geq \frac{|u - u'|}{2} = > |u_n - u'| \not\to 0 < > u_n \not\to u' \ \text{QED}.$

Dans l'exemple précédent 0_H est la limite unique de la suite $(x_n)_{n\in\mathbb{N}}$ Exemple. $H=L^2(\mathbb{R})$. Soit $H_0\in C_c^\infty(\mathbb{R})$ On pose $\forall n\in\mathbb{N},\, \varphi_n(x)=\varphi_0(x-n)\,\,x\in\mathbb{R}$.

Rappel. $C_c^{\infty}(\mathbb{R})$ ensemble des fonctions $f: \mathbb{R}|-> \mathbb{C}$.

```
* support f compact : borne et ferme.
```

*
$$f \in C^n(\mathbb{R})$$
 <=> $f \in C^\infty_X(\mathbb{R})$ support $f = \overline{\{x \in \mathbb{R}, f(x) \neq 0\}}$

$$L^{2}(\mathbb{R}) = \overline{C_{x}^{\infty}(\mathbb{R})}|_{\|\cdot\|_{L^{2}(\mathbb{R})}}$$

$$\varphi_0 \in C_C^{\infty}(\mathbb{R}), \forall n \in \mathbb{N} \varphi_n(x) = \varphi_0(x-n).$$

$$\forall \psi \in L^{2}(\mathbb{R}) : (\varphi_{n}|\psi) \to 0 = (0_{H}|\psi) \ (\varphi_{n}|\psi) = \int_{\mathbb{R}} dx \ \varphi_{n}(x) \overline{\psi(x)} = \int_{n-1}^{n+1} dx \ \varphi_{0}(x-n) \overline{\psi}(x). \ |(.|.)|_{L^{2}((n-1,n+1))} \le ||.|||.||.||.|.|.|.|.|.| > \int_{n-1}^{n+1} |\varphi_{0}(x-n)|^{2} dx = \int_{-1}^{+1} |\varphi_{0}(t)|^{2} dt = 1 = > \int_{n-1}^{n+1} |\varphi_{0}(x-n)|^{2} dx$$

$$|(\varphi_n|\psi)| \le (\int_{n-1}^{n+1} |\psi(x)|^2 dx)^{\frac{1}{2}}$$

 $\psi \in L^2(\mathbb{R}) = \int_{n-1}^{n+1} |\psi(t)|^2 dt \to 0 \text{ quand } n \to +\infty. \ \|\psi\| = \sum_n \int_{n-1}^{n+1} |\psi|^2 dt < \infty.$

Proposition 2. 1. soit $(x_n)_{n\in\mathbb{N}}$ t.q. $x_n \rightharpoonup x \in Halors\ (x_{k(n)})_{n\in\mathbb{N}}$ Converge faiblement et $x_{k(n)} \rightharpoonup x$

2. $si(x_n)_n \in \mathbb{N}$ et $(y_n)_{n \in \mathbb{N}}$ sait deux suites t.q. $x_n \rightharpoonup x$ et $y_n \rightharpoonup y$ alors $x_n + y_n \rightharpoonup x + y$

3. $si \ x_n \rightharpoonup x \ et \ soit \ (d_n)_{n \in \mathbb{N}} \ une \ suite \ des \ \mathbb{C} \ t.q. \ d_n \rightarrow d \in \mathbb{C} \ => d_n x_n \rightharpoonup dx.$

Démonstration. 1. i est évident $\forall y \in H$ si $u_n = (y|x_n) => u = (y|x) => u_{k(n)} \to u$ => i)

2. $\forall y \in H(y|x_n + z_n) = (y|x_n) + (y|x_n) \to (y|x) + (y|z) = (y|x+z).$

3. On suppose $\forall y \in H(x_n|y) \to (x|y)$ et $d_n \to d$. $(d_n x_n - dx|y) = (d_n x_n - dx_n + dx_n - dx|y) = (d_n - d)(x_n|y) + d(x_n - x|y) = > |(d_n x_n - dx|y)| \le |d_n - d||(x_n|y)| + |d||(x_n - x|y)|$

(a) $(x_n|y) \to (x|y) => \exists M \text{ t.q. } |(x_n|y)| \leq M \ \forall n \in \mathbb{N} => |d_n - d||(x_n|x)| \leq |d_n - d|M \to 0 q dn \to +\infty. \ |(x_n - x|y)| \to 0 q dn \to +\infty \text{ par (*) la proposition est démontrer.}$

Remarque. On a toujours que $|(x_n - x|y)| \le ||x_n - x||_H ||y||_H$. Si $\lim_n ||x_n - x|| = 0$ $<=> \lim_n x_n = x => x_n \rightarrow x!$ l'inverse est faux en général.

Proposition 3. Si $x_n \rightharpoonup x$ dans H alors $\lim_{n \to +\infty} \inf \|x_n\| \ge \|x\|$.

 $\lim_{n} \sup \|x - x_n\|^2 = \lim_{n} \inf \|x - x_n\|^2 = \lim_{n} \|x\|$

Remarque. $Si(x_n)_{n\in\mathbb{N}}$ converge $\exists x\in H$ et $\lim_{n\to+\infty}\|x_n-x\|=0$ alors par $|\|x\|-\|x_n\||\leq \|x-x_n\|=>\lim_{n\to\infty}\|x_n\|=\|x\|$. Mais si on a que $x_n\to x$ on ne sait pas que la suite $\|x_n\|$ converge, c.a.d. que la limite existe par contre $\lim_n\inf\|x_n\|=\lim_{n\to\infty}\inf\{\|x_k\|,k\geq n\}$ et $\lim_n\sup\|x_n\|-\lim_{n\to+\infty}\sup\{\|x_k\|,k\geq n\}$ existe toujours.

Démonstration. Puisque $x_n \rightharpoonup x$, alors $(x_n|x) \rightarrow (x|x) = ||x||^2$ en utilisant Cauchy Schwartz $|(x_n|x)| \le ||x_n||x| = > ||x||^2 \le ||x_n|| ||x|| < > > ||x|| \le ||x_n|| = > ||x|| \le \lim_{n \to \infty} \inf ||x_n||$.

Proposition 4. Soit $(x_n)_{n\in\mathbb{N}}$ une suite dans H. Alors $x_n \to x <=> x_n \rightharpoonup x$ et $\lim_n \sup \|x_n\| \le \|x\|$

Démonstration. (=>) $x_n \to x => x_n \rightharpoonup x_n$ et $||x_n|| \to ||x||$ (<=) $||x - x_n||^2 = ||x||^2 + ||x_n||^2 - 2\operatorname{Re}(x|x_n)\lim_n \sup ||x - x_n||^2 \le ||x||^2 + \lim_n \sup ||x_n||^2 - 2||x||^2 \cdot \lim_n \sup ||x - x_n||^2 \le \lim_n \sup ||x - x_n||^2 = 0 \ge \lim_n \inf ||x - x_n||^2 \ge 0 =>$

Exemple 1. Soit $(x_n)_{n\in\mathbb{N}}$ une suite bornée de H. Soit $D\subset H$ dense $(\bar{D}=H)$. Alors $x_n\rightharpoonup x$ sur $H<=>(x_n|y)\rightarrow (x|y)\ \forall y\in D$.