INTRODUCCION A REDES NEURONALES ARTIFICIALES

Héctor Allende Octubre de 2005

Inteligencia Computacional? Computational Intelligence

AREA: Soft-Computing

Combinación:

- Ciencias de la Computación
- Neuro-Fisiología
- Teoría del conocimiento y lógica

Construcción Máquinas que aprendan según el Test de Turin

Corteza Cerebral Humana

- Aproximadamente 10¹¹ neuronas
- 1000 a 10.000 Synapsis por neurona
- Comunicación tren de impulsos electroquimicos (mensaje modulado)
- Proceso Cognitivo
 - → tiempo (milisegundos)
 - → Operación Masiva Paralela
 - ightarrow Secuencial en 100 Etapas

Célula Nerviosa

Soma:	Información Hereditaria + Plasma +
	Generación Señales
Dendritas:	Recepción Señales → Impulsos
Ax ón:	Transmisión de Señales
Sinapsis:	Interfaz Neuronal (Inhibitoria, Excitatoria)

Desarrollo Histórico

- 1943 W.McCulloch, W. Pitts: Modelo ANN (El Perceptrón)
- 1969 Minsky y Papert: El Perceptrón (limitaciones).
- 1982 J. Hopfield: Memoria Asociativa "Redes de Hopfield".
- 1984 T. Kohonen: Redes SOM (Self-Organizing Maps)
- 1986 Rumulhart, Hunton y Williams: redescubren el BPL algoritmo de "back-propagation learning" (Paul Werbor, 1974)
- 1989 K. Hornik, M. Stinchcombe, H. White: Multi-FANN y Aproximación Universal

Red neuronal artificial (ANN)

ANN: Es un sistema dinámico compuesto por redes paralelas y distribuidas de procesadores elementales, con la capacidad de aprender y almacenar "conocimiento"

- Arquitectura
- Interacción
- •Función de activación

Aplicaciones de las ANN

- Resolver problemas Complejos (Visión)
- Generalización (Máquinas de Inferencia)
- Establecer Relaciones no evidentes (PR)
- · Análisis de sistemas complejos
- Percepción
- · Comprensión y Aprendizaje
- · Generación de nuevo conocimiento
- Robótica

Aplicaciones de las ANN

- · Ciencias de la Tierra
- Astronomía
- Minería
- Energía
- Economía
- Medicina
- Sociología

Aplicaciones de las ANN

- · Clasificación; Clustering
- Pre-procesamiento de datos
- Reconocimiento de patrones
- · Aproximación de funciones
- Predicción de Series de Tiempo
- · Optimización Control
- Robótica

ANN y Neuronales Biológicas

Neurona y Conexiones Sinápticas

Procesador Elemental

Neuronas: El aprendizaje se produce mediante la variación de la efectividad de las sinapsis, de esta manera cambia la influencia que unas neuronas ejercen sobre otras.

ANN: La regla de aprendizaje usada indica como se ajustan los pesos de las conexiones en función del vector entrada

Analogías

Células Biológicas

Neuronas Conexiones Sinápticas

Efectividad de las Sinapsis

Efecto exitatorio o inhibitorio

Estimulo Total

Activación \rightarrow Tasa de disparo

Redes Neuronales Artificiales

Unidades de proceso

Conexiones Ponderadas Peso de las conexiones

Signo del Peso

Entrada total Ponderada

Función de Activación → Salida

Modelo Neuronal: Mc Culloch & Pitts 1943

$$X_{i}(t) = 1 \left[\begin{array}{cc} \sum_{i=1}^{n} w_{ij} X_{j}(t-1) - b_{i} \end{array} \right]$$

Procesador Elemental.

PE: Es una unidad básica de procesamiento la que posee múltiples entradas y solo una salida.

Cada entrada x_i es ponderada por un factor (peso) w_i y se calcula la suma ponderada de las entradas: $\sum w_i x_i = a = net a_i$

Luego es aplicada una transformación mediante la función de activación : salida = f(a)

Procesador elemental.

Procesador elemental.

- ANN Feedforward: Se construye colocando las neuronas en capas y conectando las salidas de una capa con las entradas de las neuronas de la próxima capa.
- · Capas de una red:
 - Capa de entrada Zona sensorial (S)
 - Capa de salida Zona de Respuesta (R)
 - Capas ocultas Zona de asociación (A)

ANN: Aprendizaje y Generalización

Tipos de Aprendizaje

Supervisado
No - Supervisado

Tipos de Arquitectura

FeedForward Single, Multiple Recurrentes

Tipos de Funci ón de Transici ón: deterministas, probabilistas Tipo de Algoritmo de Aprendizaje: BPL, PPL, LM, etc

17

Feedforward Neural Network

Redes Feedforward • FANN La capa 0 no realiza procesamiento alguno, solo distribuye las entradas a la capa siguiente

Neuronas y Redes Simples.

- ANN Recurrente: La salida de una neurona es la entrada de neuronas de capas anteriores (feedback).
- Feedback lateral: La salida de una neurona es la entrada de otra neurona en la misma capa.

Neuronas y Redes simples.

- Parámetros de la Red: Los pesos {w_i}.
- Aprendizaje o entrenamiento: Es el procedimiento mediante el cual los pesos son ajustados.
- Conjunto de entrenamiento: Conjunto de datos que consiste vectores de entrada asociado con vectores de salida deseada:{(x_i,y_i)}.

Neuronas como funciones

- Las neuronas transforman una entrada no acotada x(t) en el tiempo t en una señal de salida acotada f(x(t)).
- La función de activación o función de señal: f
- Velocidad de la señal: $\dot{f} = \frac{df}{da} \frac{da}{dt} = f'\dot{a}$

Funciones de activación

• Función de activación logística:

$$f(a) = \frac{1}{1 + e^{-ca}}$$

- Es monótamente creciente para c >0
- · Es derivable

$$f' \equiv \frac{df}{da} = cf(1-f) > 0$$

Funciones de activación

Funciones de activación

• Tangente hiperbólica:

$$f(a) = \tanh(ca) = \frac{e^{ca} - e^{-ca}}{e^{ca} + e^{-ca}}$$

donde c>0.

$$f'=c(1-f^2)>0$$

Preguntas Abiertas

- Tamaño de las muestras
- Cuántas Neuronas
- Cuantas Capas
- Tipo de Arquitectura
- Tipo de Aprendizaje
- Algoritmos de Aprendizaje
- ¿Cuándo usar ANN Modelador

Buenas Referencias

- C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
- FAQ NN: "ftp://ftp.sas.com/pub/neural/FAQ.html"
- B.D. Ripley: Pattern Recognition and Neural Network Cambridge University Press, 1996.
- J. Hertz, A. Krogh and R. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, 1991

Test de Turing:

"Un computador merece ser llamado inteligente si puede hacer pensar a un ser humano que es otro ser humano"

Introducción ANN Feedforward

PARTE 2
Backpropagation Learning

Estructura de la Red

- Capa de entrada: sensorial
 - También llamada capa sensorial (capa 0)
 - No existe procesamiento.
 - Su función es distribuir la entrada a la próxima capa del vector de entrada x.
- Capas Oculta: asociativa
 - Son las capas que están ubicadas entre la capa de entrada y salida.

Estructura de la Red

- Capa de salida: respuesta
 - Esta capa proporciona la salida de los datos procesados.
 - Entrega un vector de salida v
- Red Feedforward:
 - Cada neurona recibe como entrada las salidas de todas las neuronas de la capa anterior.

Notación

- w_{kj} es el peso por el cual la salida de la neurona j de la capa l-1 contribuye a la entrada de la neurona k de la capa l.
- x_p es la entrada de entrenamiento p
- $\mathbf{t}_{\mathbf{p}}(\mathbf{x}_{\mathbf{p}})$ es el destino (salida deseada) del vector $\mathbf{x}_{\mathbf{p}}$.
- z_{oi} o x_i es el componente i del vector de entrada.
- N_I número de neuronas de la capa I.
- z_{lk} es la salida de la neurona j de la capa l.
- L es el número de capas.
- P es el número de vectores de entrenamiento.
- {(x_p, t_p)}_{p=1,...P} es el conjunto de aprendizaje

Función de salida

• Función de activación logística:

$$f\left(a\right) = \frac{1}{1 + \exp(-ca)}; \quad f:\Re \to (0,1), c > 0, c \text{ constante}$$

$$\frac{df}{da} = \frac{c \exp(-ca)}{[1 + \exp(-ca)]^2} = cf(a)[1 - f(a)]$$

Ejecución de la Red

- Vector de salida de la capa anterior

$$z_{l-1}^{T} = (z_{l-1,1} \dots z_{l-1,N_{l-1}})$$

- Salida de la capa I

$$z_l^T = f(a_l^T) = (f(a_{Il}) \dots f(a_{IN_l}))$$

donde $a_l = W_l z_{l-1}$

Aprendizaje de la Red

- El proceso de aprendizaje de la red es supervisado. (Etapa Entrenamiento)
- El aprendizaje involucra ajustar los pesos de manera que el error sea minimizado.
- · Uso de los Datos Crudos

Aprendizaje de la Red

 Función de suma de los errores cuadráticos:

$$E(W) \equiv \frac{1}{2} \sum_{q=1}^{N_q} [z_{L_q}(x) - t_q(x)]^2$$

donde z_{L_a} es la salida de la neurona q de la capa de salida

- · Observaciones:
 - Suma total de la suma de los errores cuadráticos:

$$E_{tot}(W) \equiv \sum_{p=1}^{P} E(W)$$

Aprendizaje de la Red

- Los pesos de la red W se obtienen paso a paso.
- N_w es el número total de pesos, entonces la función de error: $F \cdot \Re^{N_w} \to \Re$

es una superficie en el espacio \Re^{N_w+1}

• El vector gradiente: $\vec{\nabla} E = \left\{ \frac{\partial E(W)}{\partial w_{iji}} \right\}$

muestra la dirección del máximo error cuadrático medio. ECM

Aprendizaje de la Red

 Los pesos son ajustados en tiempos discretos (usando la ReglaD):

$$w_{iji}(t+1) = w_{iji}(t) - \mathbf{m} \frac{\partial E(W)}{\partial w_{iji}} \bigg|_{W(t)}$$
$$= w_{iji}(t) - \mathbf{m} \sum_{p=1}^{p} \frac{\partial E_{p}(W)}{\partial w_{iji}} \bigg|_{W(t)}$$

donde m > 0 es la constante de aprendizaje.

Matricialmente:
$$W(t+1) = W(t) - m\nabla E$$

Elección del Parámetro µ

Elección del Parámetro µ

El algoritmo de Backpropagation

Previos

1.-Para cada capa (excepto la de entrada), una matriz del gradiente del error se construir ía de la siguiente manera:

$$(\nabla E)_{l} = \begin{pmatrix} \frac{\partial E}{\partial w_{l11}} & \cdots & \frac{\partial E}{\partial w_{l1N_{l-1}}} \\ \vdots & \ddots & \vdots \\ \frac{\partial E}{\partial w_{lN_{l}}} & \cdots & \frac{\partial E}{\partial w_{lN_{l}N_{l-1}}} \end{pmatrix}, \qquad l = 1, ..., L$$

El algoritmo de Backpropagation

2. Para cada capa, excepto la capa L, el gradiente del error con respecto a la salida neuronal se define como: $\nabla_{Z_i}E \equiv \left(\frac{\partial E}{\partial z_{l1}} \cdots \cdots \frac{\partial E}{\partial z_{N_i}}\right), \quad l=1,...,L-1$

 El gradiente del error con respecto a la salida de la red z_L es conocido y depende solo de la salida de la red {z_L(x_p)} y los targets {t_p(x_p)}:

$$\nabla_{Z_t} E = conocido$$

El algoritmo de Backpropagation

 Entonces considerando la función de error E y la función de activación f y su derivada f'se calcula el gradiente del error recursivamente

$$\nabla_z E = W_{H}^T [\nabla_{z,i} E \otimes f'(a_{H})]$$
 desde L-1 a 1.

$$(\nabla E)_l = [\nabla_{_{\! \mathcal{I}}} E \otimes f'(a_l)]_{\! \mathcal{I}}^T{}_{l\!-\!1} \quad \text{para las capas l=1..L}$$

donde $z_0 \equiv x$

Corolario

 Si la función de activación es la función logística

$$\nabla_{Z_L} E = Z_L(x) - t$$

$$\nabla_{z_{l}} E = c W_{l+1}^{T} [\nabla_{z_{l+1}} E \otimes Z_{l+1} \otimes (1 - Z_{l+1})],$$

$$(\nabla E)_l = c[\nabla_{z_l} E \otimes Z_l \otimes (1 - Z_l)] Z^T_{l-1}$$

donde z_o≡ x

Criterios de inicialización y parada

- Pesos son inicializados con valores aleatorios U (-1;1) y el proceso de ajuste continúa iterativamente.
- La parada del proceso se realiza por medio de uno de los siguientes criterios:
 - 1.- Elegir un número de pasos fijos.
 - 2.- El proceso de aprendizaje continua hasta que la cantidad: $\Delta w_{lji} = w_{lji(\, {\rm tiempo}\,\, {\rm t}+1)} w_{lji({\rm tiempo}\,\, {\rm t})}$

sea menor que algún valor específico.

 El algoritmo se detiene cuando el error total alcanza un mínimo en el conjunto de prueba.

El Algoritmo

El algoritmo en una aproximación de tiempo discreto. La funciones de error y de activación y la condición de parada se asume que son elegidos y fijos.

Procedimiento de ejecución de la Red

1.- La capa de entrada es inicilizada, es decir, la salida de la capa de igual a la entrada $x: z_0 \equiv x$ Para la capas, desde 1 hasta L, hacer: $z_j = f(W_{Z_{j-1}})$

2.- La salida final de la red es la salida de la última capa es decir , $y \equiv z_1$

El Algoritmo

Procedimiento de Aprendizaje de la red:

- 1.- Inicializar los pesos con valores aleatorios pequeños. U(-1; 1)
- 2.- Para el conjunto de entrenamiento (x_p,t_p),
 - (a) Correr la red para encontrar la activación para todas las neuronas a_i y luego sus derivadas f'(a_i). La salida de la red y_p=z_L(x_p)=f(a_i) es usada en el próximo paso.

El Algoritmo

- (b) Usando ($\mathbf{y}_{\mathbf{p}},\mathbf{t}_{\mathbf{p}}$), calcular para la capa L $\nabla_{z_{t}}E$
- (c) Calcular el gradiente del error, para $\nabla_{z_l} E$ usando b-c calcular $(\nabla E)_l$
- (d) Actualizar los pesos W de acuerdo a l regla delta
- (e) Chequear la condición de parada y parar si se cumple la condición.

SESGO (BIAS)

 Activación Neuronal:Algunos problemas no se pueden resolver con la BN, sin introducir un nuevo parámetro llamado sesgo w_{Ik0}

$$z_{lk} = f\left(w_{lk0} + \sum_{j=1}^{N_{l-1}} w_{lkj} z_{l-1,j}\right)$$

$$Bias$$

Sesgo (BIAS)

- Salida Neuronal: $\tilde{\boldsymbol{z}}_{l}^{T} = (1 \ \boldsymbol{z}_{l1} \ \cdots \ \boldsymbol{z}_{lN_{l}})$
- Matrices de Pesos:

$$\widetilde{W}_{l} = \begin{pmatrix} w_{l10} & w_{l11} \cdots w_{l1N_{l-1}} \\ \vdots & \vdots & \ddots & \vdots \\ w_{lN_{l}0} & w_{lN_{l}1} \cdots w_{lN_{l}N_{l-1}} \end{pmatrix}$$

$$\Rightarrow z_l = f(a_l) = f(\widetilde{W}_l \widetilde{z}_{l-1})$$

Sesgo (BIAS)

• Matriz del gradiente del error:

$$(\nabla E)_{l} = \begin{pmatrix} \frac{\partial E}{w_{l10}} & \frac{\partial E}{w_{l11}} \cdots \frac{\partial E}{w_{l1N_{l-1}}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial E}{w_{lN_{l}0}} & \frac{\partial E}{w_{lN_{l}1}} \cdots \frac{\partial E}{w_{lN_{l}N_{l-1}}} \end{pmatrix}$$

Backpropagation (+bias)

Si el gradiente del error con respecto a la salida neuronal $\nabla_{z_{\iota}}E$ es conocido, y depende sólo de la salida de la red $\{z_{l}(x_{p})\}$ y del target $\{t_{n}\}$

Entonces el gradiente del error $\nabla_{z_l} E$ se calcula recursivamente

$$\begin{split} \nabla_{z_{l}}E = W_{l+1}^{\quad T}[\nabla_{z_{l+1}}E \otimes f'(a_{l+1})] & \text{para L-1 hasta 1} \\ (\nabla E)_{l} = [\nabla_{z_{L}}E \otimes f'(a_{l})]\widetilde{z}_{l-1}^{\quad T} & \text{para las capas I hasta L} \\ & \text{donde } z_{0} \equiv x \end{split}$$

Algoritmo (Momentum)

Algoritmo (Momentum)

- El algoritmo BPL carece de robustez
- Un procedimiento alternativo que toma en cuenta los atractores en el proceso de aprendizaje es el algoritmo de momentum:

$$\Delta W(t) = W(t+1) - W(t) = -m\nabla E|_{W(t)} + a\Delta W(t-1)$$

donde $\alpha \in [0,1)$ es el parámetro de momentum.

 El procedimiento de aprendizaje y ejecución es equivalente al BPL clásico.

Algoritmo (Momentum)

 Otra mejora del algoritmo momentum es la eliminación de puntos planos, i.e. Si la superficie de error es muy plana, entonces ∇E ≈ 0 y, por lo tanto, ΔW ≈ 0

Para evitar el problema el calculo del gradiente es llevado de la siguiente manera:

$$\nabla_{z_i} E = W_{i+1}^T [\nabla_{z_{i+1}} E \otimes f'(a_{i+1})]$$
 desde L-1 hasta 1

$$(\nabla E)_{l,pseudo} = [\nabla_{z_l} E \otimes [f'(a_l) + c_f \hat{1}]]z^T_{l-1} \text{ desde } l=1,..,L$$

Algoritmo: Momentum

Eliminación de puntos planos:

- $-c_{\rm f}$ es la constante de eliminación de puntos planos.
- Los términos correspondientes de los pesos del gradiente del error cercanos a la capa de entrada son más pequeños que aquellos ubicados en la capa de salida. Por lo tanto un efecto de c_f es la aceleración de la adaptación de los pesos en capas cercanas a la entrada.

Algoritmo: Backpropagation Adaptivo

- · Ideas del algoritmo:
 - Si la pendiente de la superficie de error es suave, entonces un parámetro de aprendizaje grande puede ser usado para acelerar el aprendizaje en las áreas planas.
 - Si la pendiente de la superficie de error es abrupta, entonces un pequeño parámetro de aprendizaje debe ser usado para no saltar el mínimo.

Algoritmo: Backpropagation Adaptivo

- Se asignan valores de aprendizaje individual a cada peso basado en el comportamiento previo. Entonces la constante de aprendizaje μ se convierte en una matriz. w_{ii}
- La razón de aprendizaje aumenta si el gradiente en la mantiene su dirección en los últimos dos pasos, en caso contrario lo disminuye:

$$\boldsymbol{m}_{lji}(t) = \begin{cases} I_{\,\boldsymbol{m}_{\!\scriptscriptstyle [j]}}(t-1) & \text{si } \Delta w_{1ji}(t) \Delta w_{1ji}(t-1) \geq 0 \\ D_{\,\boldsymbol{m}_{\!\scriptscriptstyle [j]}}(t-1) & \text{si } \Delta w_{1ji}(t) \Delta w_{1ji}(t-1) < 0 \end{cases}$$

donde $l \ge 1$ es el factor de aumento y $D \in (0,1)$ es el factor de disminución.

Otras Mejoras del Algoritmo BPL

- SuperSAB (Super Self-Adapting Backpropagation):
 - Es una combinación entre momentum y backpropagation adaptivo.
 - Usa backpropagation adaptivo para los términos w_{iij} que continúan el movimiento en la misma dirección y momentum para las otras.

Algoritmo (Momentum)

- El algoritmo BPL carece de robustez
- Un procedimiento que toma en cuenta los atractores del proceso de aprendizaje es el algoritmo de momentum:

$$\Delta W(t) = W(t+1) - W(t) = - \min E \Big|_{W(t)} + \mathbf{a} \Delta W(t-1)$$

donde $\alpha \in [0,1)$ es el parámetro de momentum.

 El procedimiento de aprendizaje y ejecución es equivalente al BPL clásico la forma antes descrita.

Mejoras del Algoritmo (Super SAB)

• Si $\Delta w_{lji}(t)\Delta w_{lji}(t-1) \geq 0$ entonces:

$$\mathbf{m}_{jji}(t) = I\mathbf{m}_{jji}(t-1)$$

$$\Delta w_{lji}(t+1) = -\mathbf{m}_{jji}(t) \frac{\partial E}{\partial w_{lji}}$$

• Si $\Delta w_{lji}(t)\Delta w_{lji}(t-1) < 0$ entonces:

$$\mathbf{m}_{lji}(t) = D\mathbf{m}_{lji}(t-1)$$

$$\Delta w_{lji}(t+1) = -\mathbf{m}_{lji}(t) \frac{\partial E}{\partial w_{lji}} \Big|_{W(t)} -\mathbf{a} \Delta w_{lji}(t)$$

Mejoras del Algoritmo(Super SAB)

· En notación matricial:

$$\mathbf{m}(t) = \left\{ (I - D) sign \left[sign(\Delta W(t) \bullet \Delta W(t-1)) + \widetilde{1} \right] + D\widetilde{1} \right\} \bullet \mathbf{m}(t-1)$$

$$\Delta W(t+1) = -\textbf{\textit{m}}(t) \bullet \nabla E - \textbf{\textit{a}} \Delta W(t) \bullet \left\{\widetilde{1} - sig\left\{sig\left(\Delta W(t) \bullet \Delta W(t-1)\right) + \widetilde{1}\right\}\right\}$$

Algoritmo: Backpropagation Adaptivo

• En forma matricial:

$$\mathbf{m}(t) = \left\{ (I - D) sign \left[sign(\Delta W(t) \bullet \Delta W(t-1)) + \widetilde{1} \right] + D\widetilde{1} \right\} \bullet \mathbf{m}(t-1)$$