使用 Python 实现对数几率回归模型 计算机 1602 陈高欣 1611640212

一、问题描述

下载 Iris 数据集,并读懂数据集的相关说明,了解数据格式。编程实现对数几率回归模型,并对 Iris 数据集进行分类以验证模型的效能:

- (1). 将数据集的 50%作为训练集, 50%作为测试集, 检验模型在测试集上的分类正确率;
- (2). 将数据集的 70%作为训练集, 30%作为测试集, 检验模型在测试集上的分类正确率;
- (3). 将数据集的 90%作为训练集, 10%作为测试集, 检验模型在测试集上的分类正确率。

二、数据集描述

Iris 数据集包含 150 个数据集,每条数据共有 5 个属性,前 4 个属性依次为 & Sepal_Length (花萼长度), & Sepal_Width (花萼宽度), & Petal_Length (花瓣长度), Petal_Width (花瓣宽度), 单位均为厘米。最后一个属性& Species (种类)共有 3 类, 分别为 Iris Setosa (山鸢尾)、Iris Versicolour (杂色鸢尾), 以及 Iris Virginica (维吉尼亚鸢尾), 每类 50 个数据。

图 2.1、鸢尾花生物结构

	sepal_len	sepal_width	petal_len	petal_width	species
0	4.9	3.0	1.4	0.2	Iris-setosa
1	4.7	3.2	1.3	0.2	Iris-setosa
2	4.6	3.1	1.5	0.2	Iris-setosa
3	5.0	3.6	1.4	0.2	Iris-setosa
4	5.4	3.9	1.7	0.4	Iris-setosa

图 2.2、数据集前 5 行数据

图 2.3、matplotlib 数据分布可视化展示

三、实验结果

3.1、模型函数

已知常见的线性回归模型: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$

 $p = \frac{1}{1 + e^{-(\ell_0 + \ell_1 x_1 + \ell_2 x_2 + ... + \ell_n x_n)}}$ 推导变换得出:

 $P(y=1 \mid X,W,b) = \sigma(WX+b) = \frac{1}{1+e^{-(WX+b)}}$ 激活函数:

损失函数: $l = -\frac{1}{m} \sum_{i=1}^{m} (y(i) \log(\sigma(WX+b)) + (1-y(i)) \log(1-\sigma(WX+b)))$

图 3.1、绘制函数曲线

3.2、模型训练与测试

模型训练最大迭代次数为 2000, 学习率为 0.001, 依次将数据集的 50%作为训练集, 50%作为测试集, 训练后正确率为 66%; 70%作为训练集, 30%作为测试集, 训练后正确率为 82%; 90%作为训练集, 10%作为测试集, 训练后正确率为 88%。损失函数结果依次如下:

图 3.2、50%训练集时损失函数曲线图

图 3.4、90%训练集时损失函数曲线图

四、实验结果分析

由实验结果可以直观看到,当训练集在所有样本中所占比例越来越大时,其模型训练出来的准确率越来越高,该模型灵敏性较高,具有一定的推广能力。