Klassifikationsbaum-Methode

Mathis Kückens, Stefan Kersten MWSP WS03/04

Klassifikationsbaummethode

Gliederung

- Einleitung
- Motivation
- Die Methode
- Tools
- Zusammenfassung
- Übung

Einleitung 1

- Einsatzgebiete
 - Software-Tests
 - KI Classification & Regression Trees (CART)
 - Data Mining
 - Medizin
 - Philosophie
 - usw.

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

3

Klassifikationsbaummethode

Einleitung 2

im Bereich des Software-Testens:

1993 erstmals vorgestellt von

Klaus Grimm und Matthias Grochtmann

(Daimler-Benz-AG)

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

1

Einleitung 3

Anwendungsbeispiele

- Eingebettete Systeme
 - Elektronische Flugsteuerung
 - Motorelektronik
 - Mechatronische Systeme (Kfz-Elektronik)
 - ABS, Airbag, Servolenkung
- mechanische Systeme
 - Vorsortiersystem einer Briefverteilanlage
 - usw.

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

5

Klassifikationsbaummethode

Einleitung 4

Abgrenzung

- Dynamisches Verfahren
- Blackbox-Test (Funktionaler Test)
 - Testfälle anhand der Spezifikation und den Anforderungen
- eingegliedert in Systematischen Test

MWSP WS03/04 TU-Berlin

Systematischer Test: Ablauf

Klassifikationsbaummethode

Motivation 1

- Entwicklung eingebetteter Systeme
 - Codierung 20%
 - Testaufwand 80%
 - -> Systematischer Test
- keine leistungsfähigen Methoden und Werkzeuge für den funktionalen Test verfügbar

Motivation 2

Vorteile

- Systematik/Methodik
 - -> redundanzarme Testfälle
 - -> fehlerintensive Testfälle
- grafische Methode
 - -> kompakte Darstellung des Gesamttests
 - -> hierarchische Aufgliederung des Problembereichs
 - -> leichte Erlernbarkeit

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

9

Klassifikationsbaummethode

Motivation 3

Weitere Vorteile

- Werkzeugunterstützung (CTE/XL, TESSY)
 - -> Automatisierung von Testaktivitäten
 - -> intensive Anwendung der Methode
- parallel zum Programm entwickeln

MWSP WS03/04 TU-Berlin

Die Methode 1

Grundidee

- Eingabedatenbereich unter verschiedenen
 Gesichtspunkten/Aspekten betrachten, in denen sich das
 Testobjekt gleich verhält
- das Testobjekt in die Aspekte zerlegen
- durch Kombination dieser Zerlegungen zu Testfällen gelangen

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

11

Klassifikationsbaummethode

Vorgehensweise: K-Baum-Erstellung

MWSP WS03/04 TU-Berlin

Die Methode 3

Begriffe

- Klassifikationsbaum: besteht aus Wurzel und Knoten
- Wurzel: Testobjekt, Name des KB
- Knoten:
 - Klassifikation: Variable oder Parameter, erwartetes Ergebnis
 - Klasse: Wertebereich einer Klassifikation
 - Wichtig: Klassen dijunkt, Wertebereich der Klassifikation vollständig wiedergeben
- Blätter: Klassen ohne weitere Unterklassifikationen

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

13

Klassifikationsbaummethode

Systematischer Test: Ablauf

MWSP WS03/04 TU-Berlin

Testfallermittlung 1

Begriffe

Testfall

• allgemein:

Auswahl der Eingabevariablen und der erwarteten Ausgaben

in Bezug auf KB:

Auswahl einer bestimmten Kombination der Blätter des Baumes

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

15

Klassifikationsbaummethode

Testfallermittlung 2

Potentieller Testfall

 Klassen- bzw. Blätterauswahl, in der aus jeder Klassifikation genau eine Klasse ausgewählt wird

- Gültiger Testfall

 Potentieller Testfall, dessen Klassenauswahl konsistent mit der Spezifikation und der semantischen Bedeutung des Testobjektes ist

- Ungültiger Testfall

• Potentieller Testfall, der nicht gültig ist

MWSP WS03/04 TU-Berlin

Testfallermittlung 3

Maximale Anzahl der Testfälle:

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

17

Klassifikationsbaummethode

Testfallermittlung 4

MWSP WS03/04 TU-Berlin

Testfallermittlung 6

KBM liefert für jeden Testfall eine Testfallspezifikation:

Bsp:

Länge der Liste: > 1

Element enthalten: einmal

Sortierung: sortiert

semiformale textuelle Beschreibung der den Testfall konstituierenden Klassen und Klassifikationen -> automatisierbar (CTE)

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

19

Klassifikationsbaummethode

Testablauf: Überblick

MWSP WS03/04 TU-Berlin

Begriffe

- Testfall: Kombination unterschiedlicher Klassen des Klassifikationsbaums
- Testobjekt: zu testende Einheit (Methode, Motor, eingebettetes System)
- Testdaten: Eingabevektor für Testobjekt und Systemzustand
- Testpaket: Gruppe von Testfällen, die das gleiche Testobjekt unter gleichen Aspekten testen

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

21

Klassifikationsbaummethode

Testdatenauswahl 1

- Assoziation aller einen Testfall konstituierender Klassen mit konkreten Daten
- zugewiesenes Datum muss in allen Testfällen gleichen Wert besitzen
- Erzeugung weiterer Unterklassifikationen zum Testen spezieller Werte

MWSP WS03/04 TU-Berlin

Beispiel: count

Klassifikationsbaummethode

Testdatenauswahl 2

- Manuelle Bestimmung aus der Testfallspezifikation
- Problem:
 - Semantische Lücke zwischen Spezifikation und konkreten Testdaten
 - Keine Verwendung des Klassifikationsbaumes für Testautomatisierung
 - steigende Komplexität bei umfangreichen Klassifikationsbäumen

Testdatenauswahl 3

Klassifikationsbaummethode

Testdatenauswahl 4

- Attribute an den Testfällen
 - Verknüpfung der erforderlichen Daten mit jedem Testfall
 - Gemeinsames Dokument für Testfallerstellung und Testdatenbestimmung
 - keine Verwendung der Semantik des Klassifikationsbaumes

Beispiel: count

Klassifikationsbaummethode

Testdatenauswahl 5

- Attribute am Klassifikationsbaum
 - Klassen im Klassifikationsbaum werden mit notwendigen und relevanten Testdaten attributiert
- Erweiterungen
 - Vererbung und Überschreibung von Attributen
 - Ausdrücke in Attributen
 - Zusicherungen
 - Angabe der Solldaten

Solldatenbestimmung

- Grundlage: funktionale Spezifikation
- Attributierung des Klassifikationsbaumes
- Erweiterungen
 - Wertebereichstoleranzen
 - Iterationstoleranzen

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

29

Klassifikationsbaummethode

Beispiel: count

MWSP WS03/04 TU-Berlin

Testablauf: Überblick

Klassifikationsbaummethode

Testskriptgenerierung

MWSP WS03/04 TU-Berlin

Testausführung 1

- Ausführung des Testskriptes auf der Zielplattform
- Besonderheiten beim Test von eingebetteten Systemen
 - beschränkte Ressourcen
 - Schnittstelle zum Testobjekt (Target-Test)
 - Datenkonvertierung (z.B. Fließkomma -> Festkomma)

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

33

Klassifikationsbaummethode

Testausführung 2

Client-Server-Architektur

MWSP WS03/04 TU-Berlin

Testauswertung

- Vergleich von Ist- und Solldaten
- Berücksichtigung der Solltoleranzen

Klassifikationsbaummethode

Tool: CTE/XL

- Classification Tree Editor (eXtended Logics)
- graphisches Tool zum Erstellen von Klassifikationsbäumen
- Erweiterungen
 - Formulierung logischer Abhängigkeiten
 - Kombinationsregeln
 - Automatisierte Testfallerzeugung
 - hierarchische Gliederung umfangreicher K-Bäume

Testsystem: TESSY

- Integratives Unit-Test-System
- Einbettung in zyklischen Entwicklungs-/Testprozess
- Features
 - Klassifikationsbaum-Methode
 - Testfallermittlung
 - Test- und Solldateneingabe
 - Testdurchführung mit Monitoring
 - Testauswertung und -dokumentation

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

37

Klassifikationsbaummethode

Testsytem: TESSY

- Erweiterungen
 - Projekt- und Dokumentverwaltung
 - Schnittstellenerkennung, Targettest
 - White-Box-Test zur Qualitätsüberprüfung generierter Testfälle
 - evolutionäres Testen für Performancemessungen

MWSP WS03/04 TU-Berlin

Zusammenfassung

- Klassifikationsbaum-Methode unterstützt systematisches, strukturiertes Testen auch umfangreicher Systeme
- umfangreiche Toolunterstützung
- Anwendung und Erfahrungswerte in der Praxis
- intuitive Erzeugung konsistenter Testfälle
- erleichterte Pflege und Erweiterung von Testsuiten
- Einbindung in Softwarezyklus (Entwicklung, Wartung)

MWSP WS03/04 TU-Berlin

Mathis Kückens, Stefan Kersten

39

Klassifikationsbaummethode

Übung

Testobjekt

int anzahl_vokale(String s);

- Aufgabe
 - Erstelle den Klassifikationsbaum.
 - Trage die minimale Anzahl von Testfällen in die Kombinationstabelle ein.
 - Ermittle Test- und Solldaten für zwei Testfälle.

MWSP WS03/04 TU-Berlin

Klassifikationsbaum anzahl_vokale

