Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks

Name 김윤서

Email diakys2@navere.com

Study Group vision

2024/03/19

Contents

- VLP(Vision-language pre-trained models) background
- OSCAR intro
- OSCAR Pre-training
- input/pre-training objective/pre-training corpus/implementation details
- Experiments

VLP Background

(1) (1) (2)	3	
VL-PTM	Text encoder	Vision encoder	Fusion scheme	Pre-training tasks	Multimodal datasets for pre-trainin
Fusion Encoder		111 1112221112			171.70
VisualBERT [2019]	BERT	Faster R-CNN	Single stream	MLM+ITM	COCO
Uniter [2020]	BERT	Faster R-CNN	Single stream	MLM+ITM+WRA+MRFR+MRC	CC+COCO+VG+SBU
OSCAR [2020c]	BERT	Faster R-CNN	Single stream	MLM+ITM	CC+COCO+SBU+Flickr30k+VQ
InterBert [2020]	BERT	Faster R-CNN	Single stream	MLM+MRC+ITM	CC+COCO+SBU
Vil.BERT [2019]	BERT	Faster R-CNN	Dual stream	MLM+MRC+ITM	CC
LXMERT [2019]	BERT	Faster R-CNN	Dual stream	MLM+ITM+MRC+MRFR+VQA	COCO+VG+VQA
VL-BERT [2019]	BERT	Faster R-CNN+ ResNet	Single stream	MLM+MRC	CC
Pixel-BERT [2020]	BERT	ResNet	Single stream	MLM+ITM	COCO+VG
Unified VLP [2020]	UniLM	Faster R-CNN	Single stream	MLM+seq2seq LM	CC
UNIMO [2020b]	BERT, RoBERTa	Faster R-CNN	Single stream	MLM+seq2seq LM+MRC+MRFR+CMCL	COCO+CC+VG+SBU
SOHO [2021]	BERT	ResNet + Visual Dictionary	Single stream	MLM+MVM+ITM	COCO+VG
VL-T5 [2021]	T5, BART	Faster R-CNN	Single stream	MLM+VQA+ITM+VG+GC	COCO+VG
XGPT [2021]	transformer	Faster R-CNN	Single stream	IC+MLM+DAE+MRFR	CC
Visual Parsing [2021]	BERT	Faster R-CNN + Swin transformer	Dual stream	MLM+ITM+MFR	COCO+VG
ALBEF [202]al	BERT	ViT	Dual stream	MLM+ITM+CMCL	CC+COCO+VG+SBU
SimVLM [2021b]	ViT	ViT	Single stream	PrefixLM	C4+ALIGN
WenLan [2021]	RoBERTa	Faster R-CNN + EffcientNet	Dual stream	CMCL	RUC-CAS-WenLan
ViLT [2021]	ViT	Linear Projection	Single stream	MLM+ITM	CC+COCO+VG+SBU
Dual Encoder	Performen				(200 10a 10a 20
CLIP [2021]	GPT2	ViT, ResNet		CMCL	self-collected
ALIGN [2021]	BERT	EffcientNet		CMCL	self-collected
DeCLIP [2021b]	GPT2, BERT	ViT, ResNet, RegNetY-64GF		CMCL+MLM+CL	CC+self-collected
Fusion Encoder+ Dual Encoder	nere				
VLOTO (2021a)	BERT	ViT	Single stream	MLM+ITM+CMCL	CC+COCO+VG+SBU
FLAVA [2021]	ViT	ViT	Single stream	MMM+ITM+CMCL	CC+COCO+VG+SBU+RedCaps

^{*} A Survey of Vision-Language Pre-Trained Models(2022) https://arxiv.org/abs/2202.10936

1) 텍스트, 이미지 각각 인코딩 -> 2) 두 모달의 상호작용을 표현할 수 있는 구조 설계 -> 3) 사전학습

-> 4) task에 맞게 fine-tuned

VLP Background

② 두 모달 간 상호작용을 모델링하는 구조 설계

- 1) Fusion Encoder: input으로 텍스트 임베딩과 이미지 임베딩을 동시에(concat) + special embedding
- single stream : 단일 트랜스포머 인코더 + 자체 attention ex) visualBERT, V-L BERT, OSCAR
- dual stream: cross attention(Q/K,V) ex) ViL-BERT, LXMERT, ALBEF
- 2) Dual Encoder: 두 개의 단일 인코더 사용
- Attention layer 또는 dot product 같은 직관적인 방법사용 -> 동일 의미 공간 투영 -> 유사성 점수 계산
- 3) Combination of <u>fusion Encoder</u> & <u>dual Encoder</u>

VLP Background

③ 사전학습 방법

- 1) Cross-modal Masked language modeling(MLM)
- : BERT와 유사한 텍스트 마스킹 기법. 마스킹되지 않은 텍스트 토큰과 이미지를 기반으로 마스킹 토큰 예측

$$L_{\text{MLM}} = -\mathbb{E}_{(W,V)\in\mathcal{D}}\log P_{\theta}\left(w_m|w_{\backslash m},V\right),\,$$

- 2) Cross-modal masked Region prediction (MRP)
- : 일부 ROI(features)을 0으로 마스킹, 다른 이미지 특징을 기반으로 이를 예측
- Masked Region classification (MRC): 마스킹 영역의 의미 클래스 예측(분류 task)
- Masked Region Feature Regression(MRFR): 마스킹 영역특징을 원래 영역 특징으로 회귀시킴
- 3) Image-text matching(ITM)
- : 이미지-텍스트가 상관관계 학습. 이미지-텍스트가 일치하는지 여부로 학습

$$\mathcal{L}_{\text{ITM}} = -\mathbb{E}_{(W,V)\in\mathcal{D}} \left[y \log s_{\theta} \left(\boldsymbol{h}_{w_{[\text{CLS}]}}, \boldsymbol{h}_{v_{[\text{IMG}]}} \right) + (1 - y) \log \left(1 - s_{\theta} \left(\boldsymbol{h}_{w_{[\text{CLS}]}}, \boldsymbol{h}_{v_{[\text{IMG}]}} \right) \right) \right]$$

4) Cross-modal(contrastive learning CMCL)

-♬ 일치하는 이미지-텍스트 쌍의 임베딩을 함께 이동, 일치안하는건 멀리 이동시킴.

OSCAR Intro

- OSCAR은 Fusion Encoder (단일 인코더) 계열 모델임.
- OSCAR은 단일 인코더와 단순 attention 메커니즘을 사용하는 것의 문제점을 개선하고자 한다. <P>
- 1) 이미지 영역과 텍스트 간의 명시적인 정렬 정보 부재(레이블이 따로 지정X-> weakly-supervised learning problem)
- 2) 시각적인 영역은 종종 over-sampling 되어, 노이즈가 많고 모호함(이미지가 서로 겹치면 특징애매)
- OSCAR은 이미지에서 감지된 객체 태그를 도입하여 시각과 언어 간의 의미적인 정렬 학습을 용이하게 함
- 훈련 샘플을 1) word sequence 2) a set of object tags 3) set of image region features로 구성된 트리플로 새로 정의 (보통 V-L 데이터셋은 이미지-텍스트 쌍임)

A dog is sitting on a couch

(a) Image-text pair

(b) Objects as anchor points

(c) Semantics spaces

OSCAR Intro

- 650만쌍으로구성된 대규모 V+L 데이터셋에서 사전훈련
- 7개의 V+L 이해 및 생성 작업에서 fine-tuning
- Anchor point가 VLP를 위한 alignment modeling(정렬모델링)에서 사용되는 건 처음이라고함
- * Alignment modeling: 두 가지 다른 모달 데이터 관계를 모델링하는 과정(언어-언어, 이미지-텍스트 등)

OSCAR: learn representation that capture channel-invariant (or modality-invariant) factors at the semantic level.

- -> 의미적인 수준에서 채널의 독립적인 요소를 포착하는 표현을 학습하기 위한 것..
- -> 인간은 여러 채널을 통해 세상을 인지한다.. 개별 채널이 불완전하거나 노이지하더라도 여러 채널 간의 공유를 통해 중요한 요소는 여전히 인지 가능하다...

1) Input

Word-tag-Image 트리플(W,Q,V)로 표현

W: 텍스트의 단어 임베딩 시퀀스

Q: 이미지에서 감지된 객체 태그(텍스트형식)의 단어 임베딩 시퀀스

V: 이미지의 영역 벡터 집합

* Q 도입이 다른 모델과 큰 차이점

Image -> Faster R-CNN -> 객체태그 탐지(Q생성)

Visual semantic(V',Z)

V': region feature (2048차원)

linear projection(W와 같은 차원으로)

Z: region position

2) Pre-training Objective

OSCAR의 인풋은 두가지 관점으로볼 수 있음

- 1) modality view(x): text와 image 사이의 representation을 구분한다.
- 2) dictionary view(x'): 두 개의 다른 semantic space를 구분하는 것

$$x \triangleq [\underbrace{w}_{\text{language}}, \underbrace{q, v}_{\text{image}}] = [\underbrace{w, q}_{\text{language}}, \underbrace{v}_{\text{image}}] \triangleq x'$$

$$\mathcal{L}_{Pre-training} = \mathcal{L}_{MTL} + \mathcal{L}_{C}$$
.

2) Pre-training Objective

1) modality view(x): text와 image 사이의 representation을 구분한다.

$$oldsymbol{h}' riangleq egin{bmatrix} oldsymbol{q}, oldsymbol{v} \end{bmatrix} & oldsymbol{x} riangleq egin{bmatrix} oldsymbol{w} & oldsymbol{x} & oldsymbol{q}, oldsymbol{v} \\ oldsymbol{anguage} & oldsymbol{margina} \end{bmatrix}$$

- q, v 를 이미지, w를 언어 모달리티로 간주
- q(태그)를 무작위로 샘플링한 다른 태그 시퀀스로 50% 확률로 교체하여 polluted 이미지 표현
- [CLS]의 인코더 출력은 feud vision-language 의 표현으로 (h',w)이고, 마지막에 FC layer을 넣어 이 쌍이 원래 이미지 표현 (y=1)을 포함하는지 또는 오염된 이미지 표현(y=0)을 포함하는지를 예측.

2) Pre-training Objective

2) dictionary view(x'): 두 개의 다른 semantic space를 구분하는 것

$$\boldsymbol{h} \triangleq [\boldsymbol{w}, \boldsymbol{q}]$$
 $[\underbrace{\boldsymbol{w}, \boldsymbol{q}}_{\text{language}}, \underbrace{\boldsymbol{v}}_{\text{image}}] \triangleq \boldsymbol{x}'$

- q,w를 언어, v를 이미지 모달로 간주
- 사전 훈련을 위해 Masked Token Loss(MTL)사용
- H의 각 입력 토큰을 15%의 확률로 무작위로 가리고, 가려진 토큰 h_i를 [mask] 토큰으로 대체
- 모든 이미지 특징 v를 기반으로 Negative log-likelihood 최소화

3) pre-training Corpus/ Implementation Details

- 기존 V+L 데이터셋을 기반으로 사전 훈련 말뭉치 구축
 (COCO, Conceptual Captions, SBU captions, filcker, QA)
- 총 410만개의 고유이미지, 말뭉치는 650만개의 (텍스트-태그-이미지) 트리플

* OSCAR B, OSCAR L -> 각각 BERT base(h=768), BERT large(h=1024) 파라미터는 Bert의 기본 파라미터와, linear projection을 위한 행렬 W

$$\boldsymbol{\theta} = \{ \boldsymbol{\theta}_{\mathrm{BERT}}, \mathbf{W} \}$$

*Optimizer Adamw.

Oscar B는 최소 100만 단계까지 학습. Ir=5e-5, batch_size=768 OscarL은 최소 90만 단계까지 학습, Ir=1e-5, batch_size=512

Experiments

						-								
Task						ieval R@10			aptioni C	ng S	NoC C		VQA test-std	
$SoTA_S$	39.2	68.0	81.3	56.6	84.5	92.0	38.9	29.2	129.8	22.4	61.5	9.2	70.90	53.50
$SoTA_B$	48.4	76.7	85.9	63.3	87.0	93.1	39.5	29.3	129.3	23.2	73.1	11.2	72.54	78.87
$SoTA_L$												_	73.40	79.50
OSCARB	54.0	80.8	88.5	70.0	91.1	95.5	40.5	29.7	137.6	22.8	78.8	11.7	73.44	78.36
OSCARL	57.5	82.8	89.8	73.5	92.2	96.0	41.7	30.6	140.0	24.5	80.9	11.3	73.82	80.37
Δ	5.8 ↑	4.4 ↑	2.9 ↑	6.9 ↑	2.8 ↑	1.7↑	2.2 ↑	1.3 ↑	10.7 ↑	1.3 ↑	7.8 ↑	0.5 ↑	0.42 ↑	0.87 ↑

- S는 트랜스포머 based 이전 VLP 모델
- B는 BERT base와 비슷한 크기의 VLP
- L은 BERT large와 비슷한 크기의 VLP

*Image Captioning : 이미지 내용에 대한 텍스트 생성

*NoCaps: Novel object Captioning

*VQA : 이미지 기반으로 자연어 질문에 대답 요구

* NLVR2 : 이미지 쌍과 텍스트를 취하여, 자연어 진술이 이미지 쌍에 대해

참인지 여부를 결정

- * B@4: BLEU-4(4-gram BLEU)
- * M : METEOR (비교 일치)
- * C: CIDEr(Consensus-based Image Description Evaluation) 단어 중요성으로 유사성 측정
- * S : SPICE(Semantic Propositional Image Caption Evaluation) 의미론적일치 평가

Experiments

Qualitative Studies

- T-SNE를 이용해 COCO 테스트 세트의 이미지-텍스트 쌍의 학습된 의미적 특성 공간을 2D로 시각화
- 각이미지 영역과 단어 토큰에 대해 모델을 통과시키고, 마지막 레이어 출력을 사용
- 1) Oscar을 사용하면 두 모달 간 동일한 객체의 거리가 상당히 줄어듬 ex) 사람, 얼룩말
- 2) Oscar을 사용하면, 관련 의미의 객체 클래스들이 더 가까워짐.
- -> 정렬학습에서 객체 태그의 중요성

