Definition of Monoid

A monoid is a triple $(A, \otimes, \overline{1})$

 $1. \otimes$ is closed associative binary operator on the set A

 $2.\overline{1}$ is identity element for \oplus

 $\forall a, b, c \in A$

 $a \otimes b \otimes c = a \otimes (b \otimes c)$

 $a \otimes \overline{1} = \overline{1} \otimes a = a$

fə'nɛtıks

Definition of Ring

Let a, b, $c \in \mathbb{R}$

There are addition and multiplication operations and satisfy associative and distributive laws a*b*c = a*(b*c) and a*(b+c) = a*b+a*c

There are additive identity 0 and multiplicative identity 1

0 + a = a and 1 * a = a

There exists additive inverse -a such that a + (-a) = 0

Definition of Ring

let a, b, $c \in \mathbb{R}$

There are two binary operations addition and multiplication and satisfy

Associative Law

$$a \times b \times c = a \times (b \times c)$$

Distritutive Law

$$a \times (b+c) = a \times b + a \times c$$

Additive inverse

For all a in \mathbb{R} , there exists -a such that

$$a + (-a) = 0$$

Multiplicative identity

For all a in \mathbb{R} , there exist 1 such that

1a = a

Group homomorphism(operation preserving)

Given group (G1, +) and (G2, *), for all $a_1, a_2 \in G1$ and $b_1, b_2 \in G2$, if $\phi(a_1 + a_2) = \phi(b_1) * \phi(b_2)$, then ϕ is group homomorphism

Given $G(\mathbb{R},+)$ and $(\mathbb{R},*)$, then $\phi(x)=e^x$ is homomorphism

Let $a_1, b_1 \in \mathbb{R}$ and $a_2, b_2 \in \mathbb{R}$

$$\phi(a_1 + b_1) = e^{a_1 + b_1} \text{ and } \phi(a_2) * \phi(b_2) = e^{a_2} * e^{b_2} = e^{a_2 + b_2}$$

$$\Rightarrow \phi(a_1 + b_1) = \phi(a_2) * \phi(b_2)$$