Deepanshu Verma

Education

Doctor of Philosophy, Computational MathAug 2018 – Aug 2021George Mason University, Fairfax, VA, USAGPA: 4.0/4.0Advisor: Dr. Harbir Antil2015-2018Master of Science, Mathematics2015-2018Indian Institute of Technology, Bombay, IndiaCPI: 9.65/10Bachelor of Science, Mathematics2012-2015University of Delhi, New Delhi, IndiaPercent Grade: 95%

Professional Experience

Distinguished Visiting Assistant Professor

August 2021 - Present

Emory University, Atlanta, GA, USA

- Conduct innovative research in optimal control with a focus on using Neural Networks as function approximators under the guidance of Dr. Lars Ruthotto.
- Create Python packages for implementing deep learning techniques to solve high-dimensional Hamilton-Jacobi-Bellman problems.
- Collaborate with interdisciplinary teams to address complex scientific challenges, and present findings at national and international conferences.
- Provide mentorship and guidance to graduate and undergraduate students alongside the supervisor.
- Played an instrumental role in the REU/RET site, enhancing the research capabilities and reputation of the department.
- Active participation in departmental seminars, workshops, and other academic activities, contributing to the intellectual environment of the institution.
- Instruct two courses annually during the academic year.

Graduate Research Assistant

Aug 2018 - Aug 2021

Department of Mathematics, George Mason University, Fairfax, VA, USA

- Managed several applied and methodological research projects under supervision.
- Developed MATLAB packages for implementing machine learning and PDE-constrained optimization methods.
- Assisted in conducting literature reviews on advanced mathematical and machine learning techniques, preparing comprehensive reports with data analysis and visualization to support academic pursuits.

Summer Graduate Computing Student Intern

May 2021 - Aug 2021

Lawrence Livermore National Lab, Livermore, CA, USA

- Evaluated existing methods for approximating the Signed Distance Function (SDF) used to determine the distance of a point from the boundary of a surface.
- Developed an SDF solver in MFEM, a C++ library for finite element methods.

Research Projects

Deep Learning for Optimal Control

- Enhanced learning algorithms utilizing control theory to solve high-dimensional optimal control problems through the Hamilton-Jacobi-Bellman equation. This unsupervised learning method informs decision-making in deep brain simulations, finance, robotics, and more.
- Developed a novel learning algorithm combining HJB and finite element methods (FEM) to address PDE-constrained optimization in applications like contaminant containment and wildfire control.
- Demonstrated the superiority of the HJB approach over Reinforcement Learning for various applications.

Enhancing Deep Learning with Control Strategies

- Introduced the fractional-DNN method, employing fractional calculus to mitigate the vanishing/exploding gradient issue in deep learning.
- Utilized PDE-constrained optimization techniques in DL for dynamical data analysis and modeling.
- Designed deep learning algorithms to learn dynamics in stiff ODEs (chemical reactions), Navier-Stokes equations and Hamiltonian differential equations (Hamiltonian mechanics).

Optimal Control of Fractional PDEs

- Investigated external source identification problems within optimal control, including the development of functional analytic tools for solution existence and uniqueness.
- Conducted error analysis for FEM and created MATLAB packages for solving these problems efficiently.

Publications

- L. Ruthotto, **D. Verma**, N. Winovich, and B. v Bloemen Waanders. Amortized PDE control with HJB and Reinforcement Learning. *In preparation*.
- Z. Wang, R. Baptista, Y. Marzouk, L. Ruthotto and **D. Verma**. Neural Network approaches for conditional sampling and density estimation motivated by optimal transport. *In preparation*.

- (advised) E. Hayes, M. Heider and C. Vanty. HINNs: Hamiltonian Inspired Neural Networks. In preparation.
- M. Madondo, D. Verma, L. Ruthotto, and N. A. Yong (2023). Learning Control Policies of Hodgkin-Huxley Neuronal Dynamics. Submitted to ML4H. B. P. Lamichhane, N. Nataraj, and D. Verma. (2023) A mixed finite element method using a biorthogonal system for optimal control problems governed by a biharmonic equation. Accepted in ANZIAMJ 2023.
- H. Antil, H.C. Elman, A. Onwunta, and D. Verma. (2023) A deep neural network approach for parameterized PDEs and Bayesian inverse problems. Mach. Learn.: Sci. Technol. 4 035015. DOI: Link
- X. Li, D. Verma and L. Ruthotto. (2022) A Neural Network approach for Stochastic Optimal Control problems. arXiv
- H. Antil, T.S Brown, R. Löhner, F. Togashi, and **D. Verma**. (2022) Deep Neural Nets with Fixed Bias Configuration. Numer. Algebra Control Optim. DOI: Link
- T.S. Brown, H. Antil, R. Lohner, F. Togashi, and D. Verma. (2022) Parallel Deep ResNets for Chemically Reacting Flows. AIAA SciTech Forum. DOI: Link
- H. Antil, R. Khatri, R. Löhner and **D. Verma**. (2020) Fractional Deep Neural Network via Constrained Optimization. Machine Learning: Science and Technology 2020. DOI: Link
- H. Antil, T.S. Brown, D. Verma and M. Warma. (2021) Optimal Control of Fractional PDEs with State and Control Constraints. Accepted in Pure and Applied Functional Analysis. arXiv
- H. Antil, D. Verma and M. Warma. (2020) Optimal Control of Fractional Elliptic PDEs with State Constraints and Characterization of the dual of Fractional Order Sobolev Spaces. J Optim Theory Appl. DOI: Link
- H. Antil, D. Verma and M. Warma. (2020) External Optimal Control of Space-Time Fractional Parabolic PDEs. ESAIM: COCV 26 (2020) 20. DOI: Link

Awards and scholarships

George Mason University	
Dean's Graduate Award for Excellence	2019-2020
Presidential Merit Fellowship	2018-2021
 Presidential Scholar Summer Research Fellowship 	2020
Indian Institute of Technology, Bombay	
Institute Silver Medal	Aug 2017
Mrs. Rama Mathur Award	Aug 2017
 Prof. P.V. Sukhatme Memorial Prize Award 	Aug 2017
Institute Academic Prize	Aug 2016

Skills

- Research: Research methodology & design; machine learning; finite element methods; numerical optimization; written and oral presentation; communication and interpersonal skills
- Software: Proficient in FEniCS, PyTorch, Python, Matlab, MS office with Basic Proficiency in C++

• Executive Board member, Emory REU/RET Computational Mathematics for Data Science.

Research Interest

 Numerical Analysis 	 Optimization 	 Inverse Problems
 Scientific Computing 	Deep Learning	 Optimal Control

Me

Oliver Wang	Emory Honors Program	Summer 2022 - May2023
Current: Ph.D student in Aer	onautics and Aeronautics at MIT, August 2023	
 Sylvia Vincent 	Masters Thesis, IIT Bombay	August 2022 - May2023
Current: Ph.D student in Star	tistical Sciences at Duke University, August 2023	
 Emory REU Mentees 		Summer 2022
Emma Hayes	Carnegie Mellon University	
Mathias Heider	University of Delaware	
Current: Masters in CS at Un	iversity of Delaware	
Carrie Vanty	Middlebury College	

Leadership

Organized tutorials, seminars, professional development opportunities; designed the REU/RET	
schedule, deliverables; and support of logistics.	
Minisymposia co-organiser, various national and international conferences.	
• Executive Board member, SIAM GMU Student Chapter.	August 2019-2021
• Support Team Member & SIAM Representative, East Coast Optimization Meeting.	August 2019-2021
 Poster Judge, SIAM conference on Mathematics of Data Science, San Diego, CA. 	September 2022
• Student Coordinator, PDE-Control Seminar, George Mason University.	August 2019-2021
• Core Member of Public Relations Team, Mathematics Olympiad, IIT Bombay, India.	July 2016-2017
Conceptualized a mathematics talent search test for high school and under-graduate students.	

Summer 2022