Introduction to Experimental Design

Chapter 2

Timothée Bonnet and Terry Neeman May 12, 2019

Relevant for

 \bullet Designing lab / field manipulative experiments

- Designing lab / field manipulative experiments
 - Isolate the process of interest

- Designing lab / field manipulative experiments
 - Isolate the process of interest
 - Avoid problems with confounding variables

- Designing lab / field manipulative experiments
 - Isolate the process of interest
 - Avoid problems with confounding variables
- Collecting any kind of data

- Designing lab / field manipulative experiments
 - Isolate the process of interest
 - Avoid problems with confounding variables
- · Collecting any kind of data
 - Isolate the process of interest

- Designing lab / field manipulative experiments
 - Isolate the process of interest
 - Avoid problems with confounding variables
- · Collecting any kind of data
 - · Isolate the process of interest
 - Avoid problems with confounding variables

- Designing lab / field manipulative experiments
 - · Isolate the process of interest
 - · Avoid problems with confounding variables
- · Collecting any kind of data
 - · Isolate the process of interest
 - Avoid problems with confounding variables
- Analyzing any kind of data (even if you do not design the experiment or data collection)

- Designing lab / field manipulative experiments
 - · Isolate the process of interest
 - · Avoid problems with confounding variables
- · Collecting any kind of data
 - · Isolate the process of interest
 - · Avoid problems with confounding variables
- Analyzing any kind of data (even if you do not design the experiment or data collection)
 - Understand data structure

- Designing lab / field manipulative experiments
 - · Isolate the process of interest
 - · Avoid problems with confounding variables
- · Collecting any kind of data
 - · Isolate the process of interest
 - Avoid problems with confounding variables
- Analyzing any kind of data (even if you do not design the experiment or data collection)
 - Understand data structure
 - Fit models appropriate for data structure and experimental design

- Designing lab / field manipulative experiments
 - · Isolate the process of interest
 - Avoid problems with confounding variables
- · Collecting any kind of data
 - · Isolate the process of interest
 - · Avoid problems with confounding variables
- Analyzing any kind of data (even if you do not design the experiment or data collection)
 - Understand data structure
 - · Fit models appropriate for data structure and experimental design
 - · Detect confounding and statistically correct for it if possible

- Controls
- Replication
- Blocking
- Randomisation
- Blinding

- Controls
 - Direct comparison with a known standard or no treatment.
 - Tested under identical conditions to experimental treatment.
- Replication
- Blocking
- Randomisation
- Blinding

- Controls
- Replication repeating experiment on different samples to:
 - 1. Increase precision of treatment effect
 - 2. Make result more generalisable
- Blocking
- Randomisation
- Blinding

- Controls
- Replication
- Blocking
 - Grouping together similar experimental units
 - Comparing treatments within homogeneous groups
- Randomisation
- Blinding

- Controls
- Replication
- Blocking
- Randomisation
 - · probabilistic process of assigning treatment
 - randomising order of testing
- Blinding

- Controls
- Replication
- Blocking
- Randomisation
- Blinding Masking treatment assignment
 - Allocation blinded
 - Evaluator blinded

Example: Converging on an experimental design using these key principles

Research context:

- What are the essential elements of chloroquine transporters in malaria parasites?
- Methods: oocyte system, radiotracer assay
- Treatments: 5 mutant transporters plus wild type

Experimental design: chloroquine transporters

Experimental design: chloroquine transporters

Experimental design: chloroquine transporters

What is wrong with this design?

What is wrong with this design?

- CONTROLS: not tested under identical conditions
- REPLICATION: only pseudo-replication
- BLOCKING: none
- RANDOMISATION: NA

What is wrong with this design?

- CONTROLS: not tested under identical conditions
- REPLICATION: only pseudo-replication
- BLOCKING: none
- RANDOMISATION: NA

Experiment is useless

How about this design

How about this design

What is wrong with this design?

What is wrong with this design?

- CONTROLS: just okay, can compare control to each mutant; not between mutants
- BLOCKING: frog=block, not all treatments for each block
- REPLICATION: no replication of any comparison
- RANDOMISATION: could randomise tubes within day

Also, half the eggs were used for control treatment: is this the most efficient use of resources?

How about this design

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
Wild-type	Wild-type	Wild-type	Wild-type	Wild-type	Wild-type
Mutant 1					
Mutant 2					
Mutant 5					
5 eggs/tube					
X 12	x 12	x 12		x 12	x 12

A good design

- CONTROLS: yes, can compare control to each mutant, and each mutant to every other
- BLOCKING: frog=block, complete randomised design
- REPLICATION: each block is a replicate
- RANDOMISATION: could randomise tubes within day

How can the design of this experiment (control + 2 treatments) be improved?

What are the possible sources of variation on a plate for a PCR / cell viability plate / plant experiment

Cochrane et al. Oikos (2014)

Research context

- How is seedling emergence (in Banksia) influenced by temperature and moisture?
- Set up: 12 shelters, 2 garden beds per shelter, 24 pots per bed.
- Experimental factors:
 - Temperature (2 levels)
 - Water (3 levels)
 - Species (4 levels)
 - Populations (6 per species = 24)

How to distribute treatments across 12 shelters?

Hot temperature in orange, cold in turquoise

21

How to distribute treatments across 12 shelters?

Hot temperature in orange, cold in turquoise

What's wrong with this design?

How to distribute treatments across 12 shelters? How about this design?

- Hot temperature in top shelters, cold in bottom shelters
- repeat A/B/C/D in each shelter

How to distribute treatments across 12 shelters? How about this design?

- Hot and cold temperatures by bed (randomized left/right)
- repeat A/B/C/D in each shelter

How to distribute treatments across 12 shelters? How about this design?

- Hot and cold temperatures by bed (randomized left/right)
- repeat A/B/C/D in each row (randomized within row)
- Humidity in each bed (randomized among columns)

x12

Reading

- Chapter 3, Statistical methods in biology, Welham et al
- Kilkenny et al ARRIVE guidelines
- Ten Simple Rules for Effective Statistical Practice