Assignment 1 - Thomas Boyko - 30191728

- 1. For each of the following statements: if the statement is true, then give a proof; if the statement is false, then write out the negation and prove that.
 - (a) There exists an integer n, so that n^3-n is odd. The statement is false. The negation is: "For all integers n, n^3-n is even."

Proof: Let $n \in \mathbb{Z}$.

First we will consider the case when n is even.

So, n = 2k for some $k \in \mathbb{Z}$.

 $n^3 - n = (2k)^3 - 2k = 8k^3 - 2k = 2(4k^3 - k)$ where $(4k^3 - k) \in \mathbb{Z}$.

So, when n is even, $n^3 - n$ is always even.

Next is the case n is odd.

So, n = 2l + 1 for some $l \in \mathbb{Z}$.

 $n^3 - n = 8l^3 + 12l^2 + 4l = 2(4l^3 + 6l^2 + 2l)$ where $(4l^3 + 6l^2 + 2l) \in \mathbb{Z}$

So, when n is odd, $n^3 - n$ is always even.

Since integers can only be even or odd, n^3-n is odd for any integer n.

(b) $\sqrt{6}$ is irrational.

We will prove $\sqrt{6} \notin \mathbb{Q}$ by contradiction.

Proof: Suppose $\sqrt{6} \in \mathbb{Q}$.

So, $\sqrt{6} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and a, b have no common factors.

It follows that $6 = \frac{a^2}{b^2}$

Therefore, $6b^2 = a^2$.

We can show that $b^2|a^2 \implies b|a$

So a and b share a factor of b, but a and b have no common factors. (A contradiction!)

So $\sqrt{6} \notin \mathbb{Q}$.

(c) For all $a, b \in \mathbb{Z}$, if a > 1 and b > 1, then gcd(2a, 2b) = 2 gcd(a, b).

Proof: Suppose $a, b \in \mathbb{Z}$, a > 1, b > 1.

Let $c = \gcd(2a, 2b)$ where $c \in \mathbb{Z}$.

From Bezout's identity, we know that c = 2ax + 2by for some $x, y \in \mathbb{Z}$.

So, c = 2(ax + by).

Since $c = \gcd(2a, 2b)$ and $ax + by = \gcd(a, b)$,

 $\gcd(2a, 2b) = 2\gcd(a, b).$

- 2. Let Z + be the set of all positive integers.
 - (a) Use the Euclidean Algorithm to compute gcd(2023, 271) and use that to find integers x and y so that gcd(2023, 271) = 2023x + 271y.

First we find the gcd using the Euclidean Algorithm:

 $2023 = 271 \times 7 + 126$

 $271 = 126 \times 2 + 19$

 $126 = 19 \times 6 + 12$

 $19 = 12 \times 1 + 7$

 $\begin{array}{rcl}
12 & = & 7 \times 1 + 5 \\
7 & = & 5 \times 1 + 2
\end{array}$

 $5 = 2 \times 2 + 1$

 $\begin{array}{rcl}
3 & \equiv & 2 \times 2 + 1 \\
2 & = & 1 \times 2 + 0
\end{array}$

So, gcd(2023, 271) = 1

Next, we use the extended algorithm to find x, y.

19 -2 15

12 13 -97

7 -15 112

5 28 -209

2 -43 321

1 114 -851

So, $gcd(2023, 271) = 1 = 114 \times 2023 + -851 \times 271$.

(b) Find integers n, m so that gcd(2023, 271) = 2023m + 271n, but $n \neq x$ and $m \neq y$. Note that x and y are the integers that you found in part (a).

Consider x, y found in part (a). If we add x to n, and subtract y from n, we are able to find another linear combination that equals gcd(2023, 271). -385(2023) + -2874(271) = 1. So, m = 385, n = -2874.

(c) Is it true that: For all $a, b \in \mathbb{Z}^+$, if a > 1 and b > 1, then $gcd(a, b) < gcd(a^3, b^3)$? Prove your answer.

The statement is false.

The negation is as follows: " $\exists a, b \in \mathbb{Z}^+$ so that a > 1 and b > 1 but $\gcd(a^3, b^3) \leq \gcd(a, b)$.

 $\begin{aligned} &\textbf{Proof:} \ \ \text{Let} \ a,b \in \mathbb{Z} \\ &\text{Choose} \ a=2,\ b=3. \\ &a^3=8,\ b^3=27. \\ &\text{So,} \ \gcd(a,b)=\gcd(2,3)=1, \\ &\text{And} \ \gcd(a^3,b^3)=\gcd(8,27)=1. \\ &\text{So,} \ \gcd(a,b)=\gcd(a^3,b^3) \end{aligned}$

Therefore, There exists $a, b \in \mathbb{Z}^+$ so that a > 1 and b > 1 but $\gcd(a^3, b^3) \leq \gcd(a, b)$.

- 3. Let P be the statement: "For all a, b, c $\in \mathbb{Z}^+$, if gcd(a, b) = 1 and c divides a + b, then gcd(a, c) = 1 and gcd(b, c) = 1."
 - (a) Is P true? Prove your answer.

Proof: Suppose $a, b, c \in \mathbb{Z}$

Further suppose $c|a+b, \gcd(a,b) = 1$.

Let $d = \gcd(a, c)$ where d is a positive integer (according to the definition of gcd).

We now know that d divides a, c, and a + b.

Since d divides a and a + b, d must divide b.

By the definition of the greatest common denominator, d dividing a and b implies that $d \leq \gcd(a, b) = 1$. Since $1 \leq d \leq 1$:

 $d = \gcd(a, c) = 1.$

Since the order of a, b is irrelevant, this also proves that gcd(b, c) = 1.

So, if gcd(a, b) = 1 and c|a + b, then gcd(a, c) = 1 = gcd(b, c).

(b) Write out the converse of P. Is the converse of P true? Prove your answer.

The converse of P is: "For all $a,b,c\in\mathbb{Z}$, if $\gcd(a,c)=1$ and $\gcd(b,c)=1$, then c|a+b and $\gcd(a,b)=1$.

Proof: The statement is false. The negation is as follows:

"There exists $a, b, c \in \mathbb{Z}$ so that $\gcd(a, c) = \gcd(b, c) = 1$ but $c \nmid a + b$ or $\gcd(a, b) \neq 1$." Suppose $a, b, c \in \mathbb{Z}$. Choose a = 2, b = 4, c = 5.

Note that gcd(2,5) = gcd(4,5) = 1.

Also note that $5 \nmid 4 + 2$.

So, the converse of P is false.

(c) Write out the contrapositive of P. Is the contrapositive of P true? Explain.

The contrapositive of P is: "For all $a, b, c \in \mathbb{Z}$, $if \gcd(a, c) \neq 1$ or $\gcd(b, c) \neq 1$, then $a \nmid b + c$ or $\gcd(a, b) \neq 1$.

The contrapositive of P is true, since it is logically equivalent to P, and P is true.

(d) Write out the negation of P. Is the negation of P true? Explain.

The negation of P is: "There exists $a,b,c\in\mathbb{Z}$ so that $\gcd(a,c)=1$ and $\gcd(b,c)=1$ but c does not divide a+b or $\gcd(a,b)\neq 1$.

The negation of P is false, since it is logically opposite from P, and P is true.