

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2023/24

Paula Reichert, Siddhant Das

Lineare Algebra (Informatik) Übungsblatt 7

Aufgabe 1 (Eigenschaften linearer Abbildungen)

- (i) Seien U, V und W K-Vektorräume. Seien $f: V \to W$ und $g: U \to V$ lineare Abbildungen. Zeigen Sie, dass die Funktionsverkettung $f \circ g: U \to W$ auch eine lineare Abbildung ist.
- (ii) Seien V, W K-Vektorräume und sei $f: V \to W$ eine lineare Abbildung. Zeigen Sie, dass gilt:

$$f \text{ injektiv} \Leftrightarrow \operatorname{Kern} f = \{0\}$$

Lösung

(i) Since f and g are linear maps, according to Bemerkung 4.2.1., $\forall \lambda \in K, \forall u, v \in V$:

$$f(\lambda u + v) = \lambda f(u) + f(v). \tag{1}$$

Also, $\forall \lambda \in K, \forall u, v \in U$:

$$g(\lambda u + v) = \lambda g(u) + g(v). \tag{2}$$

Now, $\forall \lambda \in K$, $u, v \in U$, consider

$$(f \circ g)(\lambda u + v) = f(g(\lambda u + v)) \stackrel{(2)}{=} f(\lambda g(u) + g(v)) \stackrel{(1)}{=} \lambda f(g(u)) + f(g(v))$$
$$= \lambda (f \circ g)(u) + (f \circ g)(v).$$

Therefore, $f \circ g$ is a linear map.

(ii) " \Rightarrow ": f injektiv, d.h. $\forall v, v' \in V : f(v) = f(v') \Rightarrow v = v'$. Nun ist $v \in \text{Kern } f \Leftrightarrow f(v) = 0 \Leftrightarrow f(v) = f(0)$, wobei die letzte Äquivalenz gilt, weil f linear. Daraus folgt, weil f injektiv: v = 0.

" \Leftarrow ": Betrachte $v, v' \in V$ mit f(v) = f(v'), also f(v) - f(v') = 0. Weil f linear, folgt daraus: f(v - v') = 0, d.h. $v - v' \in \text{Kern } V$. Weil Kern $f = \{0\}$, folgt: $v - v' = 0 \Leftrightarrow v = v'$.

Aufgabe 2 (Lineare Abbildungen)

Welche der folgenden Abbildungen sind linear, welche nicht linear? Begründen Sie jeweils Ihre Aussage.

- (i) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (3x + 2y, x)$
- (ii) $q: \mathbb{R} \to \mathbb{R}, x \mapsto 2x + 5$
- (iii) $h: \mathbb{C} \to \mathbb{C}, z \mapsto \bar{z}$
- (iv) $\phi: \text{Abb}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, f \mapsto f(1)$

Lösung

(i) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (3x+2y,x)$ ist linear, denn $\forall u := (x,y) \in \mathbb{R}^2$, $v := (x',y') \in \mathbb{R}^2$ und $\forall \lambda \in \mathbb{R}$:

$$f(\lambda u + v) = f(\lambda (x, y) + (x', y')) = f((\lambda x, \lambda y) + (x', y')) = f(\lambda x + x', \lambda y + y')$$

$$= (3(\lambda x + x') + 2(\lambda y + y'), \lambda x + x') = (3\lambda x + 3x' + 2\lambda y + 2y', \lambda x + x')$$

$$= ((3\lambda x + 2\lambda y) + (3x' + 2y'), \lambda x + x') = (3\lambda x + 2\lambda y, \lambda x) + (3x' + 2y', x')$$

$$= \lambda (3x + 2y, x) + (3x' + 2y', x') = \lambda f(u) + f(v).$$

- (ii) The map g is not linear since $g(0) = 2 \cdot 0 + 5 = 5 \neq 0$ (see, Bemerkung 4.2.4).
- (iii) The map h is not linear because $\forall z_1, z_2 \in \mathbb{C}$:

$$h(i z_1 + z_2) = \overline{i z_1 + z_2} \stackrel{\text{Satz 3.3.2.}}{=} \overline{i z_1} + \overline{z_2} \stackrel{\text{Satz 3.3.2.}}{=} \overline{i} \overline{z_1} + \overline{z_2} = -i \overline{z_1} + \overline{z_2}$$
$$= -i h(z_1) + h(z_2) \neq i h(z_1) + h(z_2).$$

Remark: If \mathbb{C} is considered as a \mathbb{R} -vector space, then $h: \mathbb{C} \to \mathbb{C}$ with $h(z) = \overline{z}$ is indeed a linear map, because $\forall z_1, z_2 \in \mathbb{C}$, and $\lambda \in \mathbb{R} : h(\lambda z_1 + z_2) = \overline{\lambda} \overline{z_1 + z_2} = \overline{\lambda} \overline{z_1} + \overline{z_2} = \overline{\lambda} \overline{z_1} + \overline{z_2} = \lambda \overline{z_1} + \overline{z$

(iv) $\phi: Abb(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, f \mapsto f(1)$ ist linear, denn $\forall f, g \in Abb(\mathbb{R}, \mathbb{R})$ und $\forall \lambda \in \mathbb{R}$:

$$\phi(\lambda f + g) = (\lambda f + g)(1) \stackrel{\text{Satz 4.1.2.}}{=} (\lambda f)(1) + g(1) \stackrel{\text{Satz 4.1.2.}}{=} \lambda f(1) + g(1) = \lambda \phi(f) + \phi(g).$$

Aufgabe 3 (Untervektorräume)

Welche der folgenden Mengen sind Untervektorräume der angegebenen Vektorräume?

- (i) $\{(x, y, z) \in \mathbb{R}^3 | 3x + 2y + z = 0\} \subset \mathbb{R}^3$
- (ii) $\{(x, y, z) \in \mathbb{R}^3 | 3x + 2y + z = 1\} \subset \mathbb{R}^3$
- (iii) $\{(\mu + \lambda, \lambda^2) | \mu, \lambda \in \mathbb{R}\} \subset \mathbb{R}^2$
- (iv) $\{(x, y, z) \in \mathbb{R}^3 | x < y\} \subset \mathbb{R}^3$
- (v) $\{f \in Abb(\mathbb{R}, \mathbb{R}) | f(x) = f(-x) \, \forall x \in \mathbb{R} \} \subset Abb(\mathbb{R}, \mathbb{R})$

Lösing

- (i) $U := \{(x, y, z) \in \mathbb{R}^3 | 3x + 2y + z = 0\} \subset \mathbb{R}^3$ is a subspace of the \mathbb{R} -vector space \mathbb{R}^3 . First, note that $(0,0,0) \in U$ because $3 \cdot 0 + 2 \cdot 0 + 0 = 0$. Next, consider $(x_1,y_1,z_1), (x_2,y_2,z_2) \in U; \lambda \in \mathbb{R}$. That is, $3x_n + 2y_n + z_n = 0, n = 1,2$. It follows that $(x_1,y_1,z_1) + (x_2,y_2,z_2) = (x_1 + x_2,y_1 + y_2,z_1 + z_2)$ and $\lambda(x_1,y_1,z_1) = (\lambda x_1,\lambda y_1,\lambda z_1)$. Note that $3(x_1+x_2) + 2(y_1+y_2) + (z_1+z_2) = (3x_1+2y_1+z_1) + (3x_2+2y_2+z_2) = 0 + 0 = 0 \Rightarrow (x_1+x_2,y_1+y_2,z_1+z_2) \in U$. Also, $3\lambda x_1 + 2\lambda y_1 + \lambda z_1 = \lambda(3x_1+2y_1+z_1) = \lambda \cdot 0 = 0 \Rightarrow (\lambda x_1,\lambda y_1,\lambda z_1) \in U$. Therefore, U is a sub-vector-space (or subspace) of \mathbb{R}^3 applying Definition 4.3.1.
- (ii) $U := \{(x, y, z) \in \mathbb{R}^3 | 3x + 2y + z = 1\} \subset \mathbb{R}^3$ is not a subspace of \mathbb{R}^3 because $(0, 0, 0) \notin U$, as $3 \cdot 0 + 2 \cdot 0 + 0 = 0 \neq 1$; see Bemerkung 4.3.1.
- (iii) $U := \{(\mu + \lambda, \lambda^2) | \mu, \lambda \in \mathbb{R}\} \subset \mathbb{R}^2$ is not a subspace of \mathbb{R}^2 because $(1, 1) \in U$ (letting $\mu = 0, \lambda = 1$), but for $\lambda = -1 \in \mathbb{R}$, $\lambda(1, 1) = (-1, -1) \notin U$.
- (iv) $U:=\{(x,y,z)\in\mathbb{R}^3|x\leq y\}\subset\mathbb{R}^3 \text{ is not a subspace of }\mathbb{R}^3 \text{ because }(1,0,0)\in U \text{ but for }\lambda=-1\in\mathbb{R},\,\lambda(1,0,0)=(-1,0,0)\notin U.$
- (v) $U := \{ f \in Abb(\mathbb{R}, \mathbb{R}) | f(x) = f(-x) \, \forall x \in \mathbb{R} \} \subset Abb(\mathbb{R}, \mathbb{R}) \text{ is a subspace of the } \mathbb{R}\text{-vector space } Abb(\mathbb{R}, \mathbb{R}) \text{ because } \forall f, g \in U \text{ (i.e., } \forall x \in \mathbb{R} : f(x) = f(-x) \text{ and } g(x) = g(-x)) \text{ and } \lambda \in \mathbb{R}\text{:}$

1)
$$(f+g)(x) = f(x) + g(x) = f(-x) + g(-x) = (f+g)(-x) \Rightarrow f+g \in U$$
, and

2)
$$(\lambda f)(x) = \lambda f(x) = \lambda f(-x) = (\lambda f)(-x) \Rightarrow \lambda f \in U$$
.

Aufgabe 4 (Graphen)

Gegeben seien Funktionen f, g, h und k von \mathbb{R}^2 nach \mathbb{R} .

(i)
$$f(x_1, x_2) = 1$$

(ii)
$$g(x_1, x_2) = x_1 + 2$$

(iii)
$$h(x_1, x_2) = -(x_1)^2 - (x_2)^2 + 2$$

(iv)
$$k(x_1, x_2) = (x_1)^2 - (x_2)^2$$

Skizzieren Sie jeweils den Graphen der Funktion, d.h. zeichnen Sie G_f , G_g , G_h und G_k . Ist eine der skizzierten Flächen ein Untervektorraum von \mathbb{R}^3 ? Begründen Sie Ihre Antwort.

Hinweis: Sei $f: X \to Y$. Der Graph einer Funktion f ist definiert als

$$G_f := \{(x, f(x)) \in X \times Y | x \in X\}.$$

D.h. für $x = (x_1, x_2) \in \mathbb{R}^2$ und $f(x_1, x_2) \in \mathbb{R}$ ist $G_f = \{(x_1, x_2, f(x_1, x_2)) \in \mathbb{R}^2 \times \mathbb{R} | (x_1, x_2) \in \mathbb{R}^2 \}$.

Lösung:

 $G_f \subset \mathbb{R}^3$ is not a subspace of \mathbb{R}^3 because $(0,0,0) \neq (0,0,f(0,0)) = (0,0,1) \Rightarrow (0,0,0) \neq G_f$. The same holds for G_g , G_h . On the other hand, G_k is not a subspace of \mathbb{R}^3 even though $(0,0,0) \in G_k$. This is because, $(2,1,3) = (2,1,2^2-1^2) \in G_k$ but $-1 \cdot (2,1,3) = (-2,-1,-3) \notin G_k$ since $(-2,-1,-3) \neq (-2,-1,(-2)^2-(-1)^2) = (-2,-1,3)$.