

Agilent HLMP-CWxx T-1 ¾ (5mm) Extra Bright Precision Optical Performance White LED Lamps

Data Sheet

HLMP-CW11, HLMP-CW12, HLMP-CW26, HLMP-CW27, HLMP-CW36, HLMP-CW37

Description

These high intensity white LED lamps are based on InGaN material technology. A blue LED die is coated by phosphor to produce white. The typical resulting color is described by the coordinates x = 0.31, y = 0.31 using the 1931 CIE Chromaticity Diagram.

These T-1 ¾ lamps are untinted, non-diffused, and incorporate precise optics which produce well-defined spatial radiation patterns at specific viewing cone angle.

Features

- Well defined spatial radiation pattern
- High luminous white emission
- Viewing angle: 15°, 23° and 30°
- Standoff or non-standoff leads
- Superior resistance to moisture

Applications

- Electronic signs and signals
- Small area illumination
- Legend backlighting
- General purpose indicators

Benefit

 Reduced power consumption, higher reliability, and increased optical/mechanical design flexibility compared to incandescent bulbs and other alternative white light sources.

Caution: Devices are Class 1 ESD sensitive. Please observe appropriate precautions during handling and processing. Refer to Application Note AN-1142 for additional details.

Package Dimensions

Package Dimension A

5.00 ± 0.20 (0.197 ± 0.008) 1.14 ± 0.20 8.71 ± 0.20 (0.045 ± 0.008) (0.343 ± 0.008) 2.35 (0.093) MAX. 0.70 (0.028) MAX 31.60 (1.244) MIN. CATHODE LEAD

Package Dimension B

CATHODE

FLAT

 2.54 ± 0.38

 (0.100 ± 0.015)

(0.100 ± 0.015)

 0.50 ± 0.10 (0.020 ± 0.004) SQ. TYP.

5.80 ± 0.20 (0.228 ± 0.008)

2.54 ± 0.38

- Epoxy meniscus may extend about 1mm (0.040") down the leads.
- If heat-sinking application is required, the terminal for heat sink is anode.

Part Numbering System

1.00 MIN. (0.039)

CATHODE

FLAT

Device Selection Guide

	Typical Viewing Angle, 20 $\frac{1}{2}$	Intensity (mcd) at 20 mA		_	Package
Part Number	(Degree)	Min.	Max.	Standoff	Dimension
HLMP-CW11-WZ0xx	15	5500	16000	No	Α
HLMP-CW11-XY0xx	15	7200	12000	No	A
HLMP-CW12-WZ0xx	15	5500	16000	Yes	В
HLMP-CW12-XY0xx	15	7200	12000	Yes	В
HLMP-CW12-XYBxx	15	7200	12000	Yes	В
HLMP-CW26-UX0xx	23	3200	9300	No	A
HLMP-CW26-VW0xx	23	4200	7200	No	А
HLMP-CW27-UX0xx	23	3200	9300	Yes	В
HLMP-CW27-UX2xx	23	3200	9300	Yes	В
HLMP-CW27-VW0xx	23	4200	7200	Yes	В
HLMP-CW36-TW0xx	30	2500	7200	No	A
HLMP-CW36-UV0xx	30	3200	5500	No	A
HLMP-CW36-UVBxx	30	3200	5500	No	Α
HLMP-CW37-TW0xx	30	2500	7200	Yes	В
HLMP-CW37-UV0xx	30	3200	5500	Yes	В
HLMP-CW37-UVBxx	30	3200	5500	Yes	В

Notes:

- 1. Tolerance for luminous intensity measurement is $\pm -15\%$
- $2. \quad \text{The luminous intensity is measured on the mechanical axis of the lamp package}.$
- $3. \quad \text{The optical axis is closely aligned with the package mechanical axis.} \\$
- 4. LED light output is bright enough to cause injuries to the eyes. Precautions must be taken to prevent looking directly at the LED without proper safety equipment.
- 5. $2\theta_{1/2}$ is the off-axis angle where the luminous intensity is ½ the on axis intensity

Absolute Maximum Rating at $T_A = 25^{\circ}C$

Parameters	Value	Unit
DC forward current [1]	30	mA
Peak pulsed forward current [3]	100	mA
Power dissipation	105	mW
LED junction temperature	110	°C
Operating temperature range	-40 to +85	°C
Storage temperature range	-40 to +100	°C
Wave soldering temperature [2]	250 for 3 seconds	°C
Solder Dipping temperature [2]	260 for 5 seconds	°C

Notes

- 1. Derate linearly as shown in figure 2.
- 2. 1.59 mm (0.060 inch) below body
- 3. Duty factor 10%, frequency 1KHz

Electrical/Optical Characteristics $T_A = 25^{\circ}C$

Parameters	Symbol	Min	Тур	Max	Units	Test Condition
Forward voltage	V _F		3.2	4.0	V	I _F = 20 mA
Reverse Voltage [1]	V _R	5.0			V	Ι _R = 10 μΑ
Thermal resistance	$R\theta_{J\text{-PIN}}$		240		°C/W	LED Junction to anode lead
Chromaticity Coordinates [2]	Х		0.31			I _F = 20 mA
	Υ		0.31			
Capacitance	С		70			V _F =0, f=1MHz

Notas

- 1. The reverse voltage of the product is equivalent to the forward voltage of the protective chip at I_B = 10 μ A
- 2. The chromaticity coordinates are derived from the CIE 1931 Chromaticity Diagram and represent the perceived color of the device.

Figure 1. Relative Intensity vs. Wavelength

Figure 2. Forward Current vs. Ambient Temperature

Figure 3. Relative Intensity versus DC Forward Current

Figure 4. Chromaticity shift vs. Current
*Note: (x,y) values @ 20mA reference to (0,0)

Figure 5. Forward Current vs. Forward Voltage

Figure 6. Spatial Radiation Pattern for CW1x

Figure 7. Spatial Radiation Pattern for CW2x

Figure 8. Spatial Radiation Pattern for CW3x

Intensity Bin Limit Table

) mA	Bin		
	Max	Min	
	1500	1150	Q
	1900	1500	R
	2500	1900	S
	3200	2500	T
	4200	3200	U
	5500	4200	V
	7200	5500	W
	9300	7200	Χ
	12000	9300	Υ
	16000	12000	Z
	21000	16000	1
	7200 9300 12000 16000	5500 7200 9300 12000	W X Y Z

Tolerance for each bin limit is \pm 15%

Color Bin Limit Table

Rank	Limits (Chromaticity Coordinates)						
1	Χ	0.330	0.330	0.356	0.361		
	Υ	0.360	0.318	0.351	0.385		
2	Х	0.287	0.296	0.330	0.330		
	Υ	0.295	0.276	0.318	0.339		
3	Х	0.264	0.280	0.296	0.283		
	Υ	0.267	0.248	0.276	0.305		
4	Х	0.283	0.287	0.330	0.330		
	Υ	0.305	0.295	0.339	0.360		

Tolerance for each bin limit is ± 0.01

Note:

Bin categories are established for classification of products. Products may not be available in all bin categories. Please contact your Agilent representative for information on currently available bins.

Color Bin Limits with Respect to CIE 1931 Chromaticity Diagram

www.agilent.com/ semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (408) 654-8675

Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (+65) 6756 2394

India, Australia, New Zealand: (+65) 6755 1939 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)

Korea: (+65) 6755 1989

Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 2044

Taiwan: (+65) 6755 1843

Data subject to change.
Copyright © 2004-2005 Agilent Technologies, Inc.
Obsoletes 5989-3101EN
July 18, 2005
5989-3532EN

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com