種数2の超楕円曲線の2冪ねじれ点の計算アルゴリズムの改良

小崎 俊二(情報セキュリティ大学院大学 M2) 松尾和人(情報セキュリティ大学院大学)

2007年3月3日

大標数の定義体上の種数2の超楕円曲線の位数計算

暗号利用可能な超楕円曲線の構成を目的

- P. Gaudry and R. Harley, 2000
 Schoof アルゴリズムを基本とし、63bit の素体上の位数計算
 2⁸ねじれ点を利用
- P. Gaudry and É. Schost, 2004
 多くの改良を行ない80bitの素体上の位数計算を1週間/曲線で実現
 2冪ねじれ点計算に現れる 16次多項式の根を求める アルゴリズムを改良
 2¹⁰ねじれ点を利用

超楕円曲線の位数計算

 \bullet p: 奇素数、 \mathbb{F}_p 上定義された種数2の超楕円曲線

$$C:Y^2=F(X),\ F\in\mathbb{F}_p[X]:$$
 monic, $\deg F=5,$ 重根をもたない $\mathbb{J}_C(\mathbb{F}_p)$ が素位数 $\Rightarrow F$ は \mathbb{F}_p 上既約

- ullet p乗 Frobenius 写像 $\phi_p: \mathbb{J}_C o \mathbb{J}_C$ 、 ϕ_p の特性多項式 χ $\sharp \mathbb{J}_C(\mathbb{F}_p) = \chi(1)$
- ullet χ の整数係数を決定するために、 $k\in\mathbb{N}$ に対し、

$$[\chi(\phi_p) \bmod 2^k] \mathcal{D}_k = 0$$
, for $\forall \mathcal{D}_k \in \mathbb{J}_C[2^k]$

を満足する $\chi \mod 2^k$ の係数を利用 2^k ねじれ点を具体的に計算する必要

GaudryとHarleyの2冪ねじれ点の計算アルゴリズム

2ねじれ点を初期値として2等分点計算を繰り返す

$$\mathcal{D}_1 \in \mathbb{J}_C[2] \to \cdots$$
 $\mathcal{D}_i \in \mathbb{J}_C[2^i] \to \underline{\mathcal{D}_{i+1}} \text{ s.t. } [2] \underline{\mathcal{D}_{i+1}} = \underline{\mathcal{D}_i} \cdots \to \mathcal{D}_k \in \mathbb{J}_C[2^k]$

\mathcal{D}_i の2等分点計算

$$\mathcal{D}_i = (X^2 + u_1 X + u_0, v_1 X + v_0), \ u_1, u_0, v_1, v_0 \in \mathbb{F}_q$$
$$[2](X^2 + U_1 X + U_0, V_1 X + V_0) = \mathcal{D}_i$$

変数 U_1 , U_0 , V_1 , V_0 の条件

辞書式順序 $U_1 \prec U_0 \prec V_1 \prec V_0$ Gröbner基底

$$M_1(U_1) = 0$$
, $U_0 = M_0(U_1)$, $V_1 = L_1(U_1)$, $V_0 = L_0(U_1)$, $M_1, M_0, L_1, L_0 \in \mathbb{F}_q[U_1]$, $\deg M_0, \deg L_1, \deg L_0 < \deg M_1 = 16$

$$M_1(\alpha) = 0$$

$$\Leftrightarrow \left(X^2 + \alpha X + M_0(\alpha), L_1(\alpha) + L_0(\alpha)\right) \in \{\mathcal{D} \mid [2]\mathcal{D} = \mathcal{D}_i\}$$

iの増加 \mathbb{F}_q の拡大次数増加 16次多項式 M_1 の根の計算時間増加

GaudryとSchost の M_1 の根の計算アルゴリズム

 M_0 , L_1 , L_0 及び \mathbb{J}_C [2]の作用を利用し M_1 の根を計算

$$\mathbf{D}_0 := (X^2 + U_1 X + M_0(U_1), L_1(U_1) X + L_0(U_1)), \ g \in \mathbb{J}_C[2]$$
 $\rightarrow \mathbf{D}_0 + g = (X^2 + \underline{U_1^{(g)}(U_1)}X + \underline{U_0^{(g)}(U_1)}, V_1^{(g)}(U_1)X + V_0^{(g)}(U_1))$
 $U_1^{(g)} \in \mathbb{F}_q[U_1]/(M_1)$ は、 g の作用による M_1 の根の置換

に対し、

$$s_{G_j}(U_1) := \sum_{g \in G_j} U_1^{(g)}(U_1) \in \mathbb{F}_q[U_1]/(M_1)$$

 G_j の元の作用で置換される M_1 の根の部分和 $s_{G_j}(U_1)$ の \mathbb{F}_q 上の最小多項式の次数は、 $[\mathbb{J}_C[2]:G_j]$

GaudryとSchost の M_1 の根の計算アルゴリズム

 $s_{G_3}(U_1)$ の $\underline{\mathbb{F}_q}$ 上の最小多項式 2次多項式 $\underline{T_3}$ の根 $lpha_3$ $s_{G_2}(U_1)$ の $\underline{\mathbb{F}_q}(lpha_3)$ 上の最小多項式 2次多項式 $\underline{T_2}$ の根 $lpha_2$ $s_{G_1}(U_1)$ の $\underline{\mathbb{F}_q}(lpha_3,lpha_2)$ 上の最小多項式 2次多項式 $\underline{T_1}$ の根 $lpha_1$ $s_{G_0}(U_1)$ の $\underline{\mathbb{F}_q}(lpha_3,lpha_2,lpha_1)$ 上の最小多項式 2次多項式 $\underline{T_0}$ の根 $lpha_0$ $lpha_0$ は M_1 の根

4つの2次多項式 T_3 , T_2 , T_1 , T_0 を順次解き M_1 の根を得る

 T_2 , T_1 , T_0 の係数体は、 \mathbb{F}_q の拡大体 となる可能性 M_1 の根の計算時間に影響

 T_3 , T_2 , T_1 , T_0 を構成する G_3 , G_2 , G_1 の選び方は?

本研究の概要

2006年12月 JANT第16回研究集会

計算実験より、

- \bullet M_1 の既約因子パターン すべて1次、またはすべて2次のみ
- M_1 の根の共役写像を与える 2 ねじれ点 冪指数に依存せず同一適切な G_3 , G_2 , G_1 を構成し T_3 , T_2 , T_1 , T_0 の根の計算を効率化 Gaudry \mathcal{E} Schost の M_1 の根を求めるアルゴリズムを改良

- \bullet Fが \mathbb{F}_p 上既約であるとき、2冪ねじれ点の2等分点の性質より上記事実を証明
- ullet T_3 , T_2 , T_1 , T_0 の既約判定を省略 M_1 の根を求めるアルゴリズムを高速化
- 改良アルゴリズムの実装実験

M_1 の根の定義される体

命題 $\mathbf{1}$ $M_1 \in \mathbb{F}_q[U_1]$ の根は、 \mathbb{F}_q の高々2次の拡大体上に存在

$$i \in \mathbb{N}$$
, $\mathcal{D}_i \in \mathbb{J}_C[2^i] \setminus \mathbb{J}_C[2^{i-1}]$, $\mathcal{D}_i^{p^j} := \phi_{p^j}(\mathcal{D}_i)$, $0 \le j \le 3$
 $F: \mathbb{F}_p$ 上既約 $\Rightarrow \mathbb{J}_C[2^i] = \langle \mathcal{D}_i, \mathcal{D}_i^p, \mathcal{D}_i^{p^2}, \mathcal{D}_i^{p^3} \rangle$

 \mathbb{F}_q : \mathcal{D}_i の定義される最小の体 \Rightarrow $\mathbb{J}_C[2] \subset \mathbb{J}_C[2^i] \subset \mathbb{J}_C(\mathbb{F}_q)$

$$\mathbb{J}_C[2]\subset\mathbb{J}_C(\mathbb{F}_q)$$
のとき、 $[2]\mathcal{D}=\mathcal{D}_i\Rightarrow\mathcal{D}^{q^2}=\mathcal{D}$

$$\{\mathcal{D} \mid [2]\mathcal{D} = \mathcal{D}_i\} = \{(X^2 + \alpha X + M_0(\alpha), L_1(\alpha) + L_0(\alpha)) \mid M_1(\alpha) = 0\}$$

M_1 の既約因子の次数

命題 2 $M_1 \in \mathbb{F}_q[U_1]$ の \mathbb{F}_q 上の既約因子は、すべて同じ次数

$$i \in \mathbb{N}$$
, $\mathcal{D}_i \in \mathbb{J}_C[2^i] \setminus \mathbb{J}_C[2^{i-1}]$, \mathcal{D}_{i+1} s.t. $[2]\mathcal{D}_{i+1} = \mathcal{D}_i$, $g \in \mathbb{J}_C[2]$,

$$\mathbb{J}_C[2]\subset \mathbb{J}_C(\mathbb{F}_q)\Rightarrow \mathcal{D}_{i+1}$$
と $\mathcal{D}_{i+1}+g$ の定義される最小の体は同一

$$\{\mathcal{D}_{i+1} + g \mid g \in \mathbb{J}_C[2]\} = \{\mathcal{D} \mid [2]\mathcal{D} = \mathcal{D}_i\}$$

$$= \{ (X^2 + \alpha X + M_0(\alpha), L_1(\alpha) + L_0(\alpha)) \mid M_1(\alpha) = 0 \}$$

命題1, 命題2より

$$M_1 = (X - a_1)(X - a_2) \cdots (X - a_{15})(X - a_{16})$$

$$8$$

$$\sharp \hbar \text{ if } (X^2 + a_1X + a_0) \cdots (X^2 + h_1X + h_0)$$

2冪ねじれ点の2等分点の定義される体

 $M_1\in \mathbb{F}_q[U_1]$ が2次の既約因子を持つ場合、 T_3,T_2,T_1 : 可約、 T_0 : 既約 効率的に M_1 の根を計算

T_0 を既約とする G_3 , G_2 , G_1 の構成

 T_0 が \mathbb{F}_q 上既約 $\Rightarrow T_1$ の根 $lpha_1 \in \mathbb{F}_q \Rightarrow s_{G_1}(U_1)$ が M_1 の共役根の和

$$\mathbb{J}_C[2] = \langle g_1, g_2, g_3, g_4 \rangle$$

$$G_1 = \langle g_1 \rangle \subsetneq G_2 = \langle g_1, g_2 \rangle \subsetneq G_3 = \langle g_1, g_2, g_3 \rangle$$

$$U_1^{(\hat{\mathcal{D}})}(U_1) = U_1^q \mod M_1(U_1)$$

を満足する $\widehat{\mathcal{D}}\in\mathbb{J}_C$ [2]を探索 $g_1:=\widehat{\mathcal{D}}$

冪指数の増加に伴い、 $U_1^q \bmod M_1(U_1)$ の計算時間増加

冪指数に依らず、同一の $\widehat{\mathcal{D}}$ G_3 , G_2 , G_1 の構成は1回行なえばよい

2冪ねじれ点の2等分点の共役写像を与える2ねじれ点

2冪ねじれ点の2等分点に作用する2ねじれ点の性質

$$\mathcal{D}_i$$
の2等分点 $\mathbf{D}_{i+1} := (X^2 + U_1 X + M_0^{(i+1)}, L_1^{(i+1)} X + L_0^{(i+1)})$ \mathcal{D}_{i+1} の2等分点 $\mathbf{D}_{i+2} := (X^2 + U_1 X + M_0^{(i+2)}, L_1^{(i+2)} X + L_0^{(i+2)})$

命題 3 i>1、 $\mathcal{D}_i\in\mathbb{J}_C[2^i]\setminus\mathbb{J}_C[2^{i-1}]$ 、 \mathbb{F}_q : \mathcal{D}_i の定義される最小の体、 $[2]\mathcal{D}_{i+1}=\mathcal{D}_i$, $\mathcal{D}_{i+1}\in\mathbb{J}_C(\mathbb{F}_{q^2})\setminus\mathbb{J}_C(\mathbb{F}_q)$ のとき、

$$\exists \widehat{\mathcal{D}} \in \mathbb{J}_C[2] \setminus \{0\} : \mathbf{D}_{i+1} + \widehat{\mathcal{D}} = \mathbf{D}_{i+1}^q$$

この $\widehat{\mathcal{D}}$ は、

$$D_{i+2} + \widehat{\mathcal{D}} = D_{i+2}^{q^2}$$

を満足する.

$$i > 1 \Rightarrow \mathbb{J}_C[4] \subset \mathbb{J}_C[2^i] \subset \mathbb{J}_C(\mathbb{F}_q) \Rightarrow \mathcal{D}_{i+1}^q - \mathcal{D}_{i+1} = \mathcal{D}_{i+2}^{q^2} - \mathcal{D}_{i+2}$$

ある冪指数i以上で、常に T_3 , T_2 , T_1 は可約、 T_0 は既約 T_3 , T_2 , T_1 , T_0 の既約判定を省略し高速化

2等分計算過程における定義体の拡大

実装実験

- CPU: Athlon64 2.4GHz, Magma V2.12-22
- $p = 5 \times 10^{24} + 8503491$, C: Gaudry と Schost の示した曲線
- \bullet 同一の $\mathcal{D}_2 \in \mathbb{J}_C[4]$ を初期値として2等分点を計算

 2^i ねじれ点 \mathcal{D}_i の計算時間 $(3 \leq i \leq 10)$ (単位 秒)

	\mathcal{D}_3	\mathcal{D}_4	\mathcal{D}_5	\mathcal{D}_6	\mathcal{D}_7	\mathcal{D}_8	\mathcal{D}_9	\mathcal{D}_{10}
G_j の再構成なし	39	92	354	684	4062	17716	65665	367387
前回JANT発表	45	55	288	326	921	4950	21648	89978
今回改良	44	52	260	275	719	3162	13061	42215

2冪ねじれ点計算における T_j の根の計算時間

	\mathcal{D}_3	\mathcal{D}_4	\mathcal{D}_5	\mathcal{D}_6	\mathcal{D}_7	\mathcal{D}_8	\mathcal{D}_9	\mathcal{D}_{10}
T_3	0	1	1	3	14	57	279	1669
	0	1	7	13	72	746	2329	10676
	0	1	7	24	73	490	3539	13295
T_2	1	9	13	71	484	2906	10678	82808
	1	1	7	21	59	610	5354	21498
	1	1	10	16	58	735	4154	10294
T_1	1	7	15	148	1377	2306	13592	54902
	1	1	9	18	59	617	2362	10619
	1	1	7	13	86	743	2347	10426
T_{0}	1	7	13	58	483	5317	10849	83371
	1	1	1	3	14	59	288	1671
	1	0	1	3	14	58	284	1644
$U_{f 1}^q$ mod $M_{f 1}$	_	_	-	-	_	_	-	-
	5	_	_	-	_	_	_	_
	5	-	-	-	_	-		-

上段: G_j の再構成なし、中段:前回JANT、下段:今回改良、単位 秒

2冪ねじれ点計算における T_j の既約判定計算時間

	\mathcal{D}_3	\mathcal{D}_4	\mathcal{D}_5	\mathcal{D}_6	\mathcal{D}_7	\mathcal{D}_8	\mathcal{D}_9	\mathcal{D}_{10}
T_3	0	1	11	20	90	717	3432	15694
	0	0	5	10	46	359	1717	7866
	0	0	0	0	0	0	0	0
T_2	0	5	10	45	354	1694	7815	40140
	0	0	5	10	45	351	1699	7642
	0	0	0	0	0	0	0	0
T_1	0	5	10	45	352	1698	7866	40614
	0	0	5	10	46	356	1727	7765
	0	0	0	0	0	0	0	0
T_0	0	5	10	45	353	1700	7938	40383
	0	1	11	20	92	714	3439	15604
	0	0	0	0	0	0	0	0

上段: G_j の再構成なし、中段:前回JANT、下段:今回改良、単位 秒

Algorithm 1 2 冪ねじれ点計算の改良アルゴリズム

```
Input: C: Y^2 = F(X), F は \mathbb{F}_p 上既約なモニック 5 次多項式, 自然数 m \geq 3
Output: \mathcal{D}_m \in \mathbb{J}_C[2^m] \setminus \mathbb{J}_C[2^{m-1}]
   1: \mathcal{D}_1 \in \mathbb{J}_C[2]及び\mathcal{D}_2 \in \mathbb{J}_C[4]を計算
  2: G_0 \leftarrow \{0\}, G_1 \leftarrow \langle \mathcal{D}_1 \rangle, G_2 \leftarrow \langle \mathcal{D}_1, \mathcal{D}_1^p \rangle, G_3 \leftarrow \langle \mathcal{D}_1, \mathcal{D}_1^p, \mathcal{D}_1^{p^2} \rangle
  3: flag \leftarrow false
  4: for i = 2 to m - 1 do
            \mathcal{D}_iの2等分点の条件より、M_1, M_0, L_1, L_0を計算
           if flag=false then
  6:
                 M_0, L_1, L_0及びG_iを用いて、M_1の根\alphaを計算
  7:
               if \alpha \notin \mathbb{F}_q then
  8:
                     flag ← ture
  9:
                     U_1^{(\widehat{\mathcal{D}})}(U_1) = U_1^q \bmod M_1を満足する2ねじれ点\widehat{\mathcal{D}}を探索
 10:
                     G_1 \leftarrow \langle \hat{\mathcal{D}} \rangle, G_2 \leftarrow \langle \hat{\mathcal{D}}, \hat{\mathcal{D}}^p \rangle, G_3 \leftarrow \langle \hat{\mathcal{D}}, \hat{\mathcal{D}}^p, \hat{\mathcal{D}}^{p^2} \rangle
 11:
            else
 12:
                 M_0, L_1, L_0及びG_iを用いて、M_1の根\alphaを計算(T_iの既約判定省略)
 13:
            \mathcal{D}_{i+1} \leftarrow (X^2 + \alpha X + M_0(\alpha), L_1(\alpha)X + L_0(\alpha))
 14:
        return \mathcal{D}_m
```