

Map Reduce Continued

Example: Word Count

```
map (String key, String value):
     // key: document id
     // value: document contents
     for each word w in value:
           EmitIntermediate(w, "1");
reduce (String key, Iterator values):
     // key: a word
     // values: a list of counts
     int result = 0;
     for each v in values:
           result += ParseInt(v);
     Emit(key, AsString(result));
```

Map Reduce

SSSP - Dijkstra's Algorithm

Single-Source-Shortest-Path

SSSP in Map Reduce

- Can't run Dijkstra's algorithm directly
 - Can't have a global queue!
- Another way to do it: Parallel BFS
- Start by assuming all edge weights are equal
 - Will relax this later

Finding the Shortest Path

- Intuition: process all nodes at each step
- Some nodes have no information (distance = infinity)
 - So can't do much
- But other nodes do know something
 - E.g. source knows it is at distance 0
 - So can pass this fact on to its out-neighbors
 - Who now know they are at distance 1!
 - At the next iteration, these neighbors know they're at distance 1
 - ◆ So can tell *their* out-neighbors they're at distance 2.

Parallel BFS

From Intuition to Algorithm

Map	Reduce
(B,1)	(B,[1])
(C,1)	(C,[1])
(D,2)	(B,[1,2])
(B,2)	(C, [1])
(B,1)	(D, [1])
(C,1)	(D,[2])

- A map task receives
 - Key: node *n*
 - Value: D (distance from start), points-to (list of nodes reachable from n)
- ❖ $\forall p \in \text{points-to: emit } (p, D+1)$
- ❖ The reduce task gathers possible distances to a given p and selects the minimum one
- Possible through the magic of the "sort and shuffle" between Map and Reduce
 - Map processes node and updates distances of out-neighbors
 - Reduce processes node based on info from its in-neighbors

Multiple Iterations Needed

- Each Map Reduce task advances the "known frontier" by one hop
 - Subsequent iterations include more reachable nodes as frontier advances
 - Multiple iterations are needed to explore entire graph
 - Feed output back into the same MapReduce task

Multiple Iterations Needed

- Passing along the graph structure:
 - Next iteration of Map needs points-to list again
 - So need to "carry" it with us as we run the algorithm

Map

```
class Mapper

method Map(nid n, node N)

d \leftarrow N.\text{Distance}

Emit(nid n, N)

for all nodeid m \in N.\text{AdjacencyList do}

Emit(nid m, d + 1)
```

Reduce

```
class Reducer
     method Reduce(nid m, [d_1, d_2, ...])
          d_{min} \leftarrow \infty
          M \leftarrow \emptyset
          for all d \in \text{counts } [d_1, d_2, \ldots] \text{ do}
               if IsNode(d) then
                    M \leftarrow d
               else if d < d_{min} then
                    d_{min} \leftarrow d
          M.\text{Distance} \leftarrow d_{min}
          Eміт(nid m, node M)
```

Termination

- Eventually, all nodes will be discovered, all edges will be considered (in a connected graph)
- Stop when there are no nodes with a distance of infinity
 - Can be checked by the driver/harness/program that runs the outer loop and schedules each Map Reduce job

Weighted Edges

- Now add positive weights to the edges
- ❖ Simple change: points-to list in map task includes a weight w for each pointed-to node
 - emit $(p, D+w_p)$ instead of (p, D+1) for each node p
- Termination behavior different
 - Just because we've reached a node doesn't mean we've found the shortest path to it!

Node Exploration Process

Node Exploration Process

Termination

 When distances have not changed during an iteration, safe to stop

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At any step it only pursues edges from the minimum-cost path inside the frontier
 - Only processes each node once
- MapReduce explores all paths in parallel
 - Does a lot of recomputation
 - Not a bug, need it to handle situations where the "shortest" path contains more edges than another available path
 - But can be done in parallel

General Approach

- Graph algorithms with MapReduce:
 - Each map task receives a node and its outlinks
 - Map task compute some function of the link structure, emits value with target as the key
 - Reduce task collects keys (target nodes) and aggregates
- Iterate multiple MapReduce cycles until some termination condition

PageRank

- Google's famous algorithm for ranking Web Pages
 - A measure of "quality reputation" of a page
 - Useful for ranking/ordering search results

PageRank

- * Based on link structure (graph) of the web
- Intuition from <u>academic citation network</u>:
 - Lots of citations (incoming links) = probably a high quality paper
 - If a high quality paper cites your paper, your paper is probably of high quality too
 - Vice versa not necessarily true (just by citing a high quality paper you don't make your paper high quality ☺)

Random Surfer Model

- Another intuition for PageRank
- Imagine a surfer who starts on a randomly chosen page and then follows outgoing links at random
 - Markov process
- PageRank is probability that user will arrive at a given page during this random walk

A little more complex!

- Model assumes that surfer doesn't always follow a link, but sometimes e.g. bookmarks instead.
- Before each move, surfer flips a coin
 - With probability $\,1-lpha\,$, follows an out-link
 - With probability α , teleports to a (uniformly chosen) random page

PageRank Example

Computing PageRank

- Let's start with some simplifying assumptions
 - Assume all nodes have at least one outlink
 - And surfer never does a random restart using bookmarks
- Will talk about how to lift these assumptions soon

Simplified PageRank Intuition

- PågeRank of a page is based on the PageRank of the pages which link to it
- A page divides its PageRank equally among all its outgoing links

Somewhat more formally

$$P(n) = \sum_{m \in L(n)} \frac{P(m)}{C(m)}$$

❖ L(n) is the set of pages that link to n and C(m) is the number of out-neighbors of page m

Iterative computation of SPR

- How do we compute this?
- Various methods, but we are interested in Map Reduce
- * Idea:
 - Initialize everything to the same PageRank (1/ number of nodes)
 - "pass around" PageRank contributions from nodes to their out-neighbors

Example

Example

Reduce

```
 \begin{array}{l} \textbf{class} \; \text{Reduce} \\ \textbf{method} \; \text{Reduce} (\text{nid} \; m, [p_1, p_2, \ldots]) \\ M \leftarrow \emptyset \\ \textbf{for all} \; p \in \text{counts} \; [p_1, p_2, \ldots] \; \textbf{do} \\ \textbf{if} \; \text{IsNode} (p) \; \textbf{then} \\ M \leftarrow p \\ \textbf{else} \\ s \leftarrow s + p \\ \textbf{Sum incoming PageRank contributions} \\ M. \text{PageRank} \leftarrow s \\ \text{Emit} (\text{nid} \; m, \text{node} \; M) \\ \end{array}
```

Iterate

- Full algorithm is iterative
- Initialize the nodes to uniform distribution
- Run the two MR jobs described iteratively
- Until convergence (no change)

Now, back to dangling nodes

- If any PageRank is lost due to nodes with no out-neighbors, redistribute that PageRank uniformly throughout the graph for next iteration
- In the Map Reduce model: keep track of any lost PageRank
 - E.g. by using a special reserved intermediate key, or using a counter (i.e. storing it somewhere)

Solution

- After the MR task is done, do a cleanup pass
- Deal both with "missing mass" and with random restart factor

Cleanup pass

m:missing
G:number of all nodes

Adjust the PageRank of each node to be

$$p' = \alpha \left(\frac{1}{|G|}\right) + (1 - \alpha) \left(\frac{m}{|G|} + p\right)$$

- ❖ Where p is the current PageRank, m is the mass lost due to sinks, and |G| is the number of nodes in the graph
- This can be done using a map job (no reduce)

The full PageRank Algorithm

- Initialize the nodes to uniform distribution
- Run the two MR jobs described iteratively
- Until convergence (no change)

You can now start H4

- Available in CMS
- PageRank in Hadoop
 - And a second part on Neo4j (covered after break)
- Installation highly nontrivial
 - Consider starting over Spring Break if you are not experienced with command line Linux (or OS X)