Zapoznałem się z symulatorem MIT: https://spinningnumbers.org/circuit-sandbox/

oraz symboliką:

Podeszliśmy do pierwszego zadania:

Polecenie:

W obwodzie przedstawionym na rysunku prąd I₂=2A.

Obliczyć rezystancję zastępczą obwodu i napięcie zasilające.

$$R_1=3\Omega$$
, $R_2=18\Omega$, $R_3=3\Omega$, $R_4=6\Omega$.

Obliczenia:

Wynik w symulatorze:

Następnie podeszliśmy do drugiego zadania: Polecenie:

Zad. 1 [1] Obwód zasilany jest z dwóch źródeł. Obliczyć natężenia prądów w poszczególnych gałęziach obwodu stosując metodę superpozycji.

Dane: E = 5 V, J = 1 A, $R_1 = R_3 = 2 \Omega$, $R_2 = R_4 = 3 \Omega$.

Uproszczenie:

Wyniki w symulatorze:

Dekompozycja:

Następnie podjeliśmy się zadania z głośnikami:

POŁĄCZENIE ??? (rysunek dla jednego kanału)

Obliczenia:

P = 1 · U. Rz = 1 . 4 2 PA= 4 1, P2 = 4.12 1, = 100 = 12, 5 4 12 = Run = 1000 = 16,6 A ROWNO LEGUE Pn = 12,8,100 = 1250 W P2 = 16, 6. 100 = 1860 W PC = 100. 23/1 = 29100 W STEREGONE un = 57,12 V u2 = 42,8 V P1 = 407,8 W Pg = 305, 6 W PC= 714 W

Wyniki w symulatorze:

