RICERCA OPERATIVA

Prof. Marco Trubian 6 CFU

Luca Cappelletti

Lecture Notes Year 2017/2018

Magistrale Informatica Università di Milano Italy 17 febbraio 2018

Indice

1		iein di programmazione lineare	4
	1.2 1.3	Formulazione di un modello PL Modelli di pianificazione della produzione Modelli di miscelazione Modelli di flusso su rete 1.4.1 Problema di flusso a costo minimo	4 5 5
		1.4.2 Problema del cammino orientato di costo minimo	
		1.4.3 Problema del massimo flusso	
		1.4.4 Problema di trasporto	
		1.4.5 Problema dell'assegnamento	
	1.5	Modelli multi periodo	7
2	Mod	delli di programmazione intera	8
_		Modelli di taglio ottimo	
		Modelli dello zaino	
	2.3	Modelli di ottimizzazione con costi fissi di avviamento	9
	2.4	Modelli di localizzazione	9
		2.4.1 Capacitated Plant Location (CPL)	9
	2.5	Modello di caricamento di contenitori	
	2.6	Modelli di copertura, di riempimento e di partizionamento d'insieme	
		2.6.1 Modelli di copertura o set-covering	
		2.6.2 Modelli di riempimento d'insieme o set-packing	
		2.6.3 Modelli di posizionamento d'insieme o set-partitioning	11
3	Basi	i di programmazione lineare	12
		Geometria poliedrale	12
		3.1.1 Combinazione di vettori	12
		3.1.2 Poliedro	12
	3.2	Problema duale	12
		3.2.1 Regole di simmetria generali	
		3.2.2 Condizioni sufficienti di ottimalità	
		3.2.3 Relazioni tra primale e duale	
		3.2.4 Teorema degli scarti complementari	
	3.3	Analisi di Sensitività	
		3.3.1 Variazione di un costo	
		3.3.2 Variazione di una risorsa	
		3.3.3 Variazione di un vincolo	
		3.3.4 Ulteriore variabile	
	0.4	3.3.5 Ulteriore vincolo	
	3.4	Interpretazioni economiche della dualità	
	2.5	3.4.1 Prezzo ombra	
	3.5	Ÿ	
		3.5.1 Esercizio 2.6	
		3.5.3 Esercizio 2.7	
		3.5.4 Risoluzione esercizio 2.7	
		3.5.5 Esercizio 2.8	
		3.5.6 Risoluzione esercizio 2.8	
		3.5.7 Esercizio 2.9	
		3.5.8 Risoluzione esercizio 2.9	
			10
4	Teo	ria di programmazione lineare intera	19

INDICE INDICE

	4.1	Rilassamenti	20
		4.1.3 Problema lagrangiano duale	
5			21
	5.1	Branch & Bound	21
	5.2	Algoritmo dei piani di taglio	21
6	Prol	blema del massimo flusso	22
Ū		Algoritmo di Ford e Fulkerson	
		Taglio di capacità minima	
		Flusso massimo a costo minimo	
		Algoritmo di Prim	
_			
A			24
	A.1	Domande di teoria	
		A.1.1 Domande su Branch & Bound	
		A.1.2 Domande su problema duale	
		A.1.4 Domande su Analisi di sensitività	
		A.1.5 Domande varie	
			20
В		 	29
	B.1	Esame del 18/06/2014	
		B.1.1 Esercizio 1	
	D.O	B.1.2 Soluzione esercizio 1	
	В.2	Esame del 03/07/2014	
		B.2.1 Esercizio 1 Esercizio 1 B.2.2 Soluzione esercizio 1 Esercizio 1	
		B.2.3 Esercizio 4	
		B.2.4 Soluzione esercizio 4	
	B.3	Esame del 16/09/2014	
		B.3.1 Esercizio 1	
		B.3.2 Soluzione esercizio 1	
		B.3.3 Esercizio 3	38
		B.3.4 Soluzione esercizio 3	38
		B.3.5 Esercizio 4	40
		B.3.6 Soluzione esercizio 4	40
	B.4	Esame del 17/11/2014	
		B.4.1 Esercizio 1	
		B.4.2 Soluzione esercizio 1	
	B.5	Esame del 28/01/2015	
		B.5.1 Esercizio 1	
	D G	B.5.2 Soluzione esercizio 1	
	ь.о	B.6.1 Esercizio 1	
		B.6.2 Soluzione esercizio 1	
		B.6.3 Esercizio 2	
		B.6.4 Soluzione esercizio 2	
	B.7	Esame del 19/06/2015	
		B.7.1 Esercizio 1	50
		B.7.2 Soluzione esercizio 1	50
		B.7.3 Esercizio 4	52
		B.7.4 Soluzione esercizio 4	52
	B.8	Esame del 16/09/2015	54
		B.8.1 Esercizio 1	54
		B.8.2 Soluzione esercizio 1	
	B.9	Esame del 20/06/2016	
		B.9.1 Esercizio 1	
	D	B.9.2 Soluzione esercizio 1	
	В.10	Esame del 04/07/2016	59

INDICE INDICE

	B.10.1 Esercizio 1	. 59
	B.10.2 Soluzione esercizio 1	. 59
	B.10.3 Esercizio 2	. 62
	B.10.4 Soluzione esercizio 2	. 62
	B.10.5 Esercizio 3	. 63
	B.10.6 Risoluzione esercizio 3	. 63
	B.11 Esame del 05/09/2016	. 65
	B.11.1 Esercizio 1	. 65
	B.11.2 Soluzione esercizio 1	. 65
	B.12 Esame del 16/11/2016	. 67
	B.12.1 Esercizio 1	. 67
	B.12.2 Soluzione esercizio 1	. 67
	B.13 Esame del 24/01/2017	. 69
	B.13.1 Esercizio 1	. 69
	B.13.2 Soluzione esercizio 1	
	B.13.3 Esercizio 2	
	B.13.4 Soluzione esercizio 2	
	B.13.5 Esercizio 3	
	B.13.6 Soluzione esercizio 3	
	B.13.7 Esercizio 4	
	B.13.8 Soluzione esercizio 4	
	B.14 Esame del 23/01/2018	
	B.14.1 Esercizio 1	
	B.14.2 Soluzione esercizio 1	
	B.14.3 Esercizio 3	
	B.14.4 Soluzione esercizio 3	
	B.14.5 Esercizio 4	
	B.14.6 Soluzione esercizio 4	
	D.14.0 OOIUZIOIIC COCICIZIO 4	. 00
С	Teoria	82
	C.1 Teorema Minkowsky-Weyl	. 83
	C.2 Esistenza di un vertice ottimo	
	C.3 Teorema fondamentale della programmazione lineare	. 84
	C.4 Criterio di ottimalità della base	
	C.5 Regola di Bland	
	C.6 Teorema di convergenza del simplesso	
	C.7 Lemma di Farkas	
	C.8 Il duale del duale è il primale	. 87
	C.9 Teorema di dualità forte	
	C.10 Teorema di dualità debole	
	C.11 Condizioni di ottimalità	
	C.12 Matrici totalmente unimodulari	
	C.13 Caratterizzazione dei lati che appartengono ad alberi ricoprenti di costo minimo	
	C.14 Massimo flusso e taglio minimo	
	0	

1

Modelli di programmazione lineare

1.1 Formulazione di un modello PL

Un modello di programmazione lineare si ottiene assumendo che funzione obbiettivo e vincoli e viene espresso come:

$$\min x(x) = c_1 x_1 + \ldots + c_n x_n$$

$$a_{11} x_1 + \ldots + a_{1n} x_n \ge b_1$$

$$\vdots$$

$$a_{m1} x_1 + \ldots + a_{mn} x_n \ge b_m$$

Esso include anche i vincoli di non negatività delle variabili di decisione:

$$x_j \ge 0 \quad \forall j \in \{1, \dots, n\}$$

In forma matriciale (compatta) il modello di PL può essere formulato nel modo seguente:

$$\min z(x) = c^T x$$

$$Ax \ge b$$

$$x \ge 0$$

Dove $c \in \mathbb{R}^n$ è il vettore dei coefficienti della funzione obbiettivo mentre $b \in \mathbb{R}^m$ è il vettore dei termini noti dei vincoli ed A è la matrice dei coefficienti delle variabili di decisioni nei vincoli.

1.2 Modelli di pianificazione della produzione

Dato un numero di risorse m disponibile per la produzione di n prodotti, a_{ij} con $i \in \{1, ..., m\}$ e $j \in \{1, ..., m\}$ la quantità di risorsa i necessaria per produrre una unità di prodotto j, b_i la quantità della risorsa disponibile i e p_j il profitto lordo unitario ricavabile dalla vendita di un prodotto j, il modello PL è costituito come segue:

$$\max z(x) = \sum_{j=1}^{n} p_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \forall i \in \{1, ..., m\}$$

Figura 1.1: Modello di pianificazione della produzione

1.3 Modelli di miscelazione

Si supponga di avere a disposizione n ingredienti, ognuno dei quali contenente una certa quantità degli m componenti, a_{ij} la quantità di componente i presente nell'ingrediente j mentre b_i rappresenta la quantità minima di componente i richiesto nella miscela. Il costo unitario dell'ingrediente j è indicato con c_j .

$$\min z(x) = \sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad \forall i \in \{1, \dots, m\}$$

Figura 1.2: Modello di miscelazione

Ulteriori vincoli tipici potrebbero essere la presenza di un componente i minore di un valore d_i :

$$\sum_{j=1}^{n} a_{ij} x_j \le d_i$$

1.4 Modelli di flusso su rete

1.4.1 Problema di flusso a costo minimo

Dato un grafo orientato $\mathcal{D} = (\mathcal{N}, \mathcal{A})$ dove \mathcal{N} è l'insieme dei nodi, mentre \mathcal{A} è l'insieme degli archi, si indica con b_i con $i \in \mathcal{N}$ la fornitura (se positivo) o domanda (se negativo) del nodo i e con c_{ij} , l_{ij} e u_{ij} rispettivamente il costo, la capacità minima e massima dell'arco $(i, j), \forall (i, j) \in \mathcal{A}$. La sestupla $R = (\mathcal{N}, \mathcal{A}, b, c, l, u)$ si definisce **rete**.

Il vincolo afferma che la differenza tra la quantità di flusso entrante e la quantità uscente dal nodo deve essere uguale alla fornitura / domanda.

$$\min z(x) = \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}$$
$$\sum_{(i,j) \in \mathcal{A}} x_{ij} - \sum_{(j,i) \in \mathcal{A}} x_{ji} = b_i \quad \forall i \in \mathcal{N}$$

Figura 1.3: Problema di flusso a costo minimo

1.4.2 Problema del cammino orientato di costo minimo

Basandosi sul caso base visto nel **problema di flusso a costo minimo 1.4.1** aggiungiamo i nodi s (origine) e t (destinazione), considerando quindi $i \neq s \neq t$ e le forniture $b_i = 0$, $b_s = 1$ e $b_t = -1$:

$$\min z(x) = \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij}$$

$$\sum_{(s,j) \in \mathcal{A}} x_{sj} - \sum_{(j,s) \in \mathcal{A}} x_{js} = b_s = 1$$

$$\sum_{(i,j) \in \mathcal{A}} x_{ij} - \sum_{(j,i) \in \mathcal{A}} x_{ji} = b_i = 0 \quad \forall i \in \mathcal{N}$$

$$\sum_{(t,j) \in \mathcal{A}} x_{tj} - \sum_{(j,t) \in \mathcal{A}} x_{jt} = b_t = -1$$

Figura 1.4: Problema del cammino orientato di costo minimo

1.4.3 Problema del massimo flusso

Basandosi sempre sul caso base del **problema di flusso a costo minimo 1.4.1**, poniamo i costi c_{ij} , capacità minime l_{ij} e le forniture b_i a 0. L'obbiettivo posto è di inviare la massima quantità di flusso possibile da un nodo di ingresso s (detto sorgente) ed uno di uscita t (detto pozzo). Viene indicata con v la fornitura del nodo s (che non è un parametro ma una variabile dipendente dalle x_{ij} , rappresentante il flusso netto uscente da s)

$$\begin{aligned} \min z(x) &= v \\ \sum_{(s,j) \in \mathcal{A}} x_{sj} - \sum_{(j,s) \in \mathcal{A}} x_{js} &= b_s = v \\ \sum_{(i,j) \in \mathcal{A}} x_{ij} - \sum_{(j,i) \in \mathcal{A}} x_{ji} &= b_i = 0 \quad \forall i \in \mathcal{N} \\ \sum_{(t,j) \in \mathcal{A}} x_{tj} - \sum_{(j,t) \in \mathcal{A}} x_{jt} &= b_t = -v \\ x_{ij} &\leq u_{ij} \quad (i,j) \in \mathcal{A} \end{aligned}$$

Figura 1.5: Problema del massimo flusso

1.4.4 Problema di trasporto

Dati n nodi di origine (stabilimenti di produzione) con una produzione di a_i , $i \in \{1, ..., n\}$ e m nodi di destinazione (punti vendita), ciascuno caratterizzato da una domanda b_j , $j \in \{1, ..., m\}$ ed un costo unitario di trasporto c_{ij} . L'obbiettivo del problema è di determinare il quantitativo di prodotto da inviare da ciascuna origine verso ciascuna destinazione in modo tale da minimizzare il costo complessivo di trasporto rispettando i vincoli sulla quantità di prodotto disponibile in ciascuna origine e garantendo il soddisfacimento delle domande di ogni destinazione.

$$\min z(x) = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}$$

$$\sum_{j=1}^{m} x_{ij} \le a_i \quad \forall i$$

$$\sum_{i=1}^{n} x_{ij} = b_j \quad \forall j$$

Figura 1.6: Problema di trasporto

Per ricondursi al caso in cui vale il vincolo $\sum_{j=1}^{m} x_{ij} = a_i$ è sempre possibile aggiungere una destinazione fittizia m+1 che funge da discarica.

Una variante del problema di trasporto considera la possibilità di includere p nodi intermedi di transito, che possono scambiare il materiale anche tra loro. Questo porta il numero delle origini e destinazioni a divenire n + p e m + p (ogni origine può inviare a p nuovi nodi ed ogni destinazione può ricevere da p nuovi nodi). Diviene necessario aggiungere due vincoli ulteriori per modellare i

nodi p come intermedi, cioè che ogni punto di transito abbia un flusso entrante coincidente con il flusso uscente e che non ponga ulteriori limitazioni:

$$\min z(x) = \sum_{i=1}^{n+p} \sum_{j=1}^{m+p} c_{ij} x_{ij}$$

$$\sum_{j=1}^{m+p} x_{ij} \leq a_i \quad \forall i$$

$$\sum_{i=1}^{n+p} x_{ij} = b_j \quad \forall j$$

$$\sum_{j=1}^{m+p} x_{ij} = \sum_{j=1}^{m} b_j \quad \forall i$$

$$\sum_{i=1}^{n+p} x_{ij} = \sum_{j=1}^{m} b_j \quad \forall j$$

Figura 1.7: Problema di trasporto con p nodi intermedi

1.4.5 Problema dell'assegnamento

Supponiamo di avere n oggetti (per esempio lavoratori) ed altrettanti posti (per esempio postazioni di lavoro) associate da un costo di assegnamento c_{ij} . Il problema consiste nel determinare il modo più conveniente di assegnare ogni oggetto i ad uno e un solo posto j. Il problema è a variabili di tipo binario ($x_{ij} \in \{0,1\}$).

$$\min z(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i$$

$$\sum_{i=1}^{n} x_{ij} = 1 \quad \forall j$$

Figura 1.8: Problema dell'assegnamento

Varianti tipiche possono essere sull'assegnare un numero oggetti diverso dal numero di posti, che vanno a modificare i vincoli di uguaglianza a $\sum_{j=1}^{n} x_{ij} \le 1$.

1.5 Modelli multi periodo

Modelli in cui viene utilizzata un intervallo di tempo, con $t \in \{1, ..., T\}$ la generica frazione di tempo, genericamente utilizzata per la minimizzazione dei costi su un intervallo o massimizzazione di un'utilità.

Modelli di programmazione intera

In questi modelli tutte o alcune variabili di decisione sono vincolate ad assumere valori interi o binari. Talvolta è possibile svincolare dall'interezza tramite il rilassamento continuo, arrotondando poi i valori frazionari ottenuti, con un risultato trascurabile sul soddisfacimento dei vincoli.

2.1 Modelli di taglio ottimo

Obbiettivo: Minimizzare lo scarto di prodotto derivato dal taglio di moduli di materiale.

Nel caso base **monodimensionale** si assume di dover tagliare moduli di dimensione D in moduli di dimensioni d_i , $i \in \{1, ..., m\}$, in numero r_i , $i \in \{1, ..., m\}$ (per ogni dimensione d_i). Ogni modulo standard può essere tagliato in modo differente, considerando n possibili schemi di taglio: a_{ij} sarà il numero di moduli di dimensione d_i ottenuti da un modulo standard tagliato secondo lo schema j. Per minimizzare lo sfrido (scarto) sarà quindi sufficiente minimizzare il numero di moduli tagliati.

Chiamo x_i il numero di moduli tagliati secondo lo schema j.

$$\min z(x) = \sum_{j=1}^{n} x_{j}$$

$$\sum_{j=1}^{n} a_{ij}x_{j} \ge r_{i}, \forall i$$

$$x_{j} \ge 0, x_{j} \in \mathbb{N}, \forall j$$

Figura 2.1: Modello di taglio ottimo

Qualora i moduli avessero più dimensioni il problema diviene molto più difficile da risolvere.

2.2 Modelli dello zaino

Obbiettivo: Massimizzare il valore degli oggetti nello zaino.

Si ha un insieme di n oggetti, ciascuno con un valore c_i ed un peso p_i e uno zaino con un limite di capacità b.

Chiamo x_i la variabile binaria che indica se aggiungo o meno l'oggetto j - esimo nello zaino.

$$\min z(x) = \sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} p_j x_j \le b, \forall i$$
$$x_j \in \{0, \dots, 1\}, \forall j$$

Figura 2.2: Modello dello zaino

2.3 Modelli di ottimizzazione con costi fissi di avviamento

Obbiettivo: Minimizzare i costi di avvio e di produzione.

Avviando una nuova produzione si hanno costi fissi f_j e costi per unità prodotta c_j . Rappresentiamo con $x_j \ge 0$ il numero di prodotti che si decide di produrre, e introduciamo una variabile $y_j \in \{1,0\}$ che rappresenta se decidiamo o meno di produrre un prodotto j per eliminare la discontinuità all'origine causata dal costo fisso f_j . Per ogni prodotto, consideriamo una domanda b_j ed un vincolo di produzione massima M_j .

$$\min z(x, y) = \sum_{j=1}^{n} c_j x_j + \sum_{j=1}^{n} f_j y_j$$

$$\min z(x, y) = \sum_{j=1}^{n} b_j - x_j$$

$$x_j \le M_j \forall j$$

Figura 2.3: Modelli di ottimizzazione con costi fissi di avviamento

2.4 Modelli di localizzazione

Obbiettivo: Posizionare centri di servizio in modo da soddisfare la domanda e minimizzare una funzione di costo.

2.4.1 Capacitated Plant Location (CPL)

Posizionamento di impianti di produzione o immagazzinamento di prodotti da cui deve essere trasportato il prodotto a dei punti vendita. Viene modellato tramite un grafo $\mathscr{G}=(\mathscr{N}_1\cup\mathscr{N}_2,\mathscr{A})$, con \mathscr{N}_1 nodi rappresentanti i siti potenziali e \mathscr{N}_2 i nodi successori. Chiamiamo $d_j, j \in \mathscr{N}_2$ la domanda del nodo successore $j-esimo, q_i, i \in \mathscr{N}_1$ il massimo livello di attività del nodo sito candidato $i-esimo, k_{ij}$ il costo unitario di trasporto da nodo candidato i a nodo successore j, f_i il costo fisso di avviamento del nodo candidato i.

Chiamo $y_i \in \{0,1\}$ la variabile binaria rappresentante l'approvazione o meno del nodo candidato i-esimo e s_{ij} il flusso di prodotto dal nodo i a j.

$$\begin{aligned} \min z(s,y) &= \sum_{i \in \mathcal{N}_1} \sum_{j \in \mathcal{N}_2} k_{ij} s_{ij} + \sum_{i \in \mathcal{N}_1} f_i y_i \\ &\qquad \sum_{i \in \mathcal{N}_1} s_{ij} = d_j, \forall j \\ &\qquad \sum_{j \in \mathcal{N}_2} s_{ij} \leq q_i y_i, \forall i \end{aligned}$$

Figura 2.4: Capacitated Plant Location (CPL)

Modelli più completi considerano una soglia di attivazione minima per considerare l'approvazione di un nodo candidato.

2.5 Modello di caricamento di contenitori

Si tratta di una generalizzazione del problema dello zaino, in cui sono considerati *n* zaini o contenitori sempre di dimensione uguale *q*.

Obbiettivo: Utilizzare meno contenitori il possibile inserendo tutti gli oggetti.

Ogni oggetto ha un peso p_i , la variabile $x_{ij} \in \{0,1\}$ è vera quando l'oggetto i è inserito del contenitore j e $y_j \in \{0,1\}$ è vera quando il contenitore j è utilizzato.

$$\min z(x, y) \sum_{j=1}^{n} y_{j}$$

$$\sum_{j=1}^{n} x_{ij} = 1, \forall i$$

$$\sum_{i=1}^{m} p_{i} x_{ij} \leq q y_{j}, \forall j$$

Figura 2.5: Modello di caricamento di contenitori

Un'alternativa di modello è considerare le capacità dei contenitori diverse q_i ed assegnare ad ogni contenitore un costo c_i .

2.6 Modelli di copertura, di riempimento e di partizionamento d'insieme

Definito un insieme I di m elementi ed una collezione $C = \{C_1, ..., C_n\}$ di sottoinsiemi di I, ognuno dei quali con un valore c_j , e una sotto-collezione SC di C. Viene usata una matrice A di dimensione $m \times n$ detta di copertura il cui elemento $a_{ij} \in \{0,1\}$ assume valore 1 se $i \in C_j$.

Le variabili di decisione sono $x_i \in \{0, 1\}$ e sono vere se $C_i \in SC$.

2.6.1 Modelli di copertura o set-covering

Obbiettivo: Determinare una sotto-collezione *SC* di valore minimo, detta **copertura**, tale che ogni elemento di *I* appartenga ad almeno un sottoinsieme di *SC*.

$$\min z(x) = \sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} a_{ij} x_j \ge 1, \forall i$$

Figura 2.6: Modelli di copertura o set-covering

2.6.2 Modelli di riempimento d'insieme o set-packing

Obbiettivo: Determinare una sotto-collezione *SC* di valore massimo, detto **riempimento**, tale che ogni elemento di *I* appartenga ad al più una sotto-collezione di *SC*.

$$\min z(x) = \sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} a_{ij} x_j \le 1, \forall i$$

Figura 2.7: Modelli di riempimento d'insieme o set-packing

2.6.3 Modelli di posizionamento d'insieme o set-partitioning

Obbiettivo: Determinare una sotto-collezione *SC* di valore minimo, detta **partizione**, tale che ogni elemento di *I* appartenga esattamente ad una sotto-collezione di *SC*. Essa costituisce sia una **copertura** sia un **riempimento** di *I*.

$$\min z(x) = \sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} a_{ij} x_j = 1, \forall i$$

Figura 2.8: Modelli di posizionamento d'insieme o set-partitioning

Basi di programmazione lineare

3.1 Geometria poliedrale

3.1.1 Combinazione di vettori

Dati k vettori $v^{(1)},\dots,v^{(k)}\in\mathbb{R}^n$ e k scalati $\lambda_1,\dots,\lambda_k$, il vettore $v=\sum_{j=1}^k\lambda_jv^{(j)}\in\mathbb{R}^n$ si dice:

Combinazione affine se $\sum_{j=1}^{k} \lambda_j = 1$.

Combinazione conica se $\lambda_i \ge 0 \forall j$.

Combinazione convessa se è sia conica che affine.

3.1.2 Poliedro

Un poliedro P è intersezione di un numero finito di semispazi.

$$P = \{ x \in \mathbb{R}^n : Ax \le b \}$$

Se il poliedro definisce un'area limitata viene chiamato politopo.

3.2 Problema duale

Teorema 3.2.1 (Problema duale). Dato un problema P di PL in forma standard (funzione in forma di minimizzazione):

$$\min z(x) = c^T x$$

$$Ax = b$$

$$x \ge 0$$

ogni soluzione ammissibile \tilde{x} di P è tale che:

$$c^T \tilde{x} \ge b^T \tilde{v}$$

dove \tilde{y} è una soluzione ammissibile del seguente problema D (detto **duale** di P) di PL:

$$\max w(y) = b^T y$$
$$A^T y \le c$$

3.2.1 Regole di simmetria generali

- 1. A un vincolo di disuguaglianza primale corrisponde una variabile vincolata nel duale.
- 2. A una variabile vincolata in segno nel primale un vincolo di disuguaglianza nel duale.
- 3. A un vincolo di uguaglianza nel primale corrisponde una variabile libera in segno nel duale.
- 4. A una variabile libera in segno nel primale corrisponde un vincolo di uguaglianza nel duale.
- 5. Se la funzione del primale è in forma di minimo, nel duale sarà di massimo e viceversa.

Il duale del problema duale è il problema primale.

3.2.2 Condizioni sufficienti di ottimalità

Teorema 3.2.2 (Condizioni sufficienti di ottimalità). Date due soluzioni \tilde{x} e \tilde{y} ammissibili rispettivamente nel problema primale e duale. Se vale la relazione C.9.1:

$$c^T \tilde{x} = b^T \tilde{v}$$

Figura 3.1: Condizione sufficiente di ottimalità

allora \tilde{x} e \tilde{y} sono soluzioni ottime per i rispettivi problemi.

Una soluzione \tilde{x} è ottima se e solo se esiste una soluzione nel problema duale \tilde{y} che rispetti la relazione C.9.1. In tal caso, sia \tilde{x} che \tilde{y} sono ottime.

3.2.3 Relazioni tra primale e duale

Teorema 3.2.3 (Relazioni tra primale e duale). Dato un problema ed il suo duale, è vera esattamente una delle seguenti affermazioni:

- a) I due problemi ammettono soluzioni ottime finite, x^* e y^* rispettivamente, tali da rispettare la relazione C.9.1.
- b) Il problema primale è illimitato inferiormente ed il duale è inammissibile.
- c) Il problema duale è illimitato superiormente ed il primale è inammissibile.
- d) I problemi primale e duale sono entrambi inammissibili.

3.2.4 Teorema degli scarti complementari

Teorema 3.2.4 (**Teorema degli scarti complementari o condizioni di ortogonalità).** Date due soluzioni $\tilde{x} \in \mathbb{R}^n e \tilde{y} \in \mathbb{R}^m$, soluzioni ammissibili nel problema primale e duale rispettivamente ($a_{ij} \in A$, matrice dei coefficienti dei vincoli nei problemi), esse sono ottime se vale la relazione 3.2 (forma vettoriale di C.9.1):

$$(c_j - \sum_{i=1}^m a_{ij} \tilde{y}_i) \tilde{x}_j = 0 \quad \forall j$$

Figura 3.2: Condizioni Ortogonalità

3.3 Analisi di Sensitività

Si tratta di un'analisi svolta *dopo* aver identificato la soluzione ottima di un problema di PL volta a determinare la qualità del modello, attraverso la modifica di coefficienti di costo c_j , di risorse b_k , dei vincoli a_{ij} oppure introducendo ulteriori variabili e/o vincoli e osservando in che modo la soluzione ottima va a variare.

3.3.1 Variazione di un costo

Non modifica il poliedro del problema, la soluzione ottima precedente rimane ammissibile ma potrebbe non essere più ottima.

3.3.2 Variazione di una risorsa

Cambia il poliedro del problema (la regione ammissibile) per cui la soluzione ottima potrebbe non essere più ammissibile

3.3.3 Variazione di un vincolo

Va ad introdurre una variazione analoga alla variazione del costo, con l'aggiunta che la matrice A potrebbe diventare invertibile e quindi porterebbe la soluzione di base a non rispettare più le condizioni di ammissibilità o di ottimalità.

3.3.4 Ulteriore variabile

Viene inserita come fosse una variabile precedentemente esistente con costi e coefficienti dei vincoli nulli, che quindi vengono variati con le implicazioni viste nella sezione 3.3.1 e 3.3.3.

3.3.5 Ulteriore vincolo

Si procede analogamente all'aggiunta di variabile.

3.4 Interpretazioni economiche della dualità

Il problema duale può essere interpretato come il problema della determinazione del minimo prezzo a cui all'impresa produttrice converrebbe vendere in blocco le risorse disponibili piuttosto che utilizzarle ai fini produttivi.

3.4.1 Prezzo ombra

Definizione 3.4.1 (Prezzo ombra). Data una variazione δ di una risorsa b_h nel problema primale, con una rispettiva variazione dell'ottimo Δz^* , si definisce **prezzo ombra** la variabile y_h^* del problema duale tale per cui:

$$y_h^* = \frac{\Delta z^*}{\delta}$$

Figura 3.3: Prezzo ombra

Massimizzazione

In un problema in cui la funzione obbiettivo è da massimizzare , il prezzo ombra della risorsa h-esima sarà:

Non negativo nel caso in cui il vincolo h è del tipo \leq .

Non positivo nel caso in cui il vincolo h è del tipo \geq .

Minimizzazione

In un problema in cui la funzione obbiettivo è da minimizzare , il prezzo ombra della risorsa h-esima sarà:

Non negativo nel caso in cui il vincolo h è del tipo \ge .

Non positivo nel caso in cui il vincolo h è del tipo \leq .

3.5 Esercizi - Risoluzione grafica di PL

3.5.1 Esercizio 2.6

$$\min z = -x_1 + x_2$$

$$x_1 + 2x_2 \ge 10$$

$$3x_2 \le 6$$

$$3x_1 + 2x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

Figura 3.4: Esercizio 2.6

3.5.2 Risoluzione esercizio 2.6

Figura 3.5: Risoluzione esercizio 2.6

Il minimo della funzione risulta essere (inf,0) siccome la variabile x_1 non è vincolata. La soluzione quindi è illimitata.

3.5.3 Esercizio 2.7

$$\max z = 2x_1 + x_2$$

$$x_1 + x_2 \le 1$$

$$9x_1 + 3x_2 \le 6$$

$$3x_1 + 2x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

Figura 3.6: Esercizio 2.7

3.5.4 Risoluzione esercizio 2.7

Figura 3.7: Risoluzione esercizio 2.7

3.5.5 Esercizio 2.8

$$\min z = x_{2}$$

$$1x_{1} + 3x_{2} \le 8$$

$$x_{1} + 5x_{2} \le 3$$

$$2x_{1} - 2x_{2} \ge 7$$

$$3x_{1} + 3x_{2} \ge 8$$

$$x_{1}, x_{2} \ge 0$$

Figura 3.8: Esercizio 2.8

3.5.6 Risoluzione esercizio 2.8

a) I vincon dei problema neno spazio xi

Figura 3.9: Risoluzione esercizio 2.8

La regione ammissibile è vuota.

3.5.7 Esercizio 2.9

$$\min z = 2x_1 - 3x_2$$

$$2x_1 + x_2 \le 6$$

$$-x_1 + 4x_2 \le 10$$

$$2x_1 + 5x_2 \ge 6$$

$$8x_1 - 5x_2 \ge 2$$

$$x_1, x_2 \ge 0$$

Figura 3.10: Esercizio 2.9

3.5.8 Risoluzione esercizio 2.9

(b) I vincoli del problema nello spazio $x_1 - x_2$

Figura 3.11: Risoluzione esercizio 2.9

Il punto di minimo è l'angolo dove l'ordinata è massima e l'ascissa minima.

$$\begin{cases} 8x_1 - 5x_2 = 2 \\ 2x_1 + x_2 = 6 \end{cases} \Rightarrow \begin{cases} 8x_1 - 5(6 - 2x_1) = 2 \\ x_2 = 6 - 2x_1 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{16}{9} \\ x_2 = 6 - \frac{32}{9} = \frac{54 - 32}{9} = \frac{22}{9} \end{cases}$$

Il valore di minimo della funzione risulta min $z = \frac{32}{9} - \frac{66}{9} = \frac{34}{9}$.

4

Teoria di programmazione lineare intera

Definizione 4.0.1 (Matrice unimodulare (UM)). Una matrice quadrata M di dimensione m a elementi interi con det $M = \pm 1$ si dice **unimodulare (UM)**.

Definizione 4.0.2 (Matrice totalmente unimodulare (TUM)). Una matrice $A \in \mathbb{R}^{m \times n}$ è **totalmente unimodulare (TUM)** se tutte le sue sotto-matrici quadrate non singolari sono unimodulari.

Teorema 4.0.3 (Condizione necessaria e sufficiente per vertici a componenti intere). Sia $A \in \mathbb{R}^{m \times n}$, $m \le n$ a elementi interi e rango m. Condizione necessaria e sufficiente affinché il poliedro in forma standard P abbia tutti i vertici a componenti interi per qualsiasi $b \in \mathbb{R}^m$ a componenti intere è che ogni base sia **UM**.

Teorema 4.0.4 (Soluzione ottima con basi UM). Una SBA ottima del rilassamento lineare di P è ottima anche per P se ogni base ammissibile di A è **UM** e b è a componenti intere.

Sfortunatamente, determinare se tutte le basi ammissibili sono UM è un problema esponenziale.

Nel caso in cui A sia una TUM vale il seguente risultato.

Teorema 4.0.5 (Soluzione ottima con A TUM). Condizione sufficiente affinché il poliedro *P* abbia tutti i vertici a componenti intere, per qualsiasi *n* intera, è che *A* sia **TUM**.

Ne segue che una soluzione ottima del rilassamento continuo del poliedro P, se A è **TUM** sarà soluzione ottima anche per P.

Teorema 4.0.6 (Proprietà di una TUM). Una matrice A è TUM se:

- 1. Ogni colonna ha al più due elementi diversi da 0.
- 2. Risulta possibile partizionare gli indici di riga in due sotto
insiemi \mathcal{R}_1 ed \mathcal{R}_2 tali che:

Se una colonna j contiene due elementi non nulli dello stesso segno, allora le corrispondenti righe non appartengono allo stesso sottoinsieme.

Se una colonna i contiene due elementi non nulli di segno opposto, allora le corrispondenti righe appartengono allo stesso sottoinsieme.

Teorema 4.0.7. La matrice di incidenza di un grafo orientato (digrafo) o un grafo bipartito è TUM.

4.1 Rilassamenti

4.1.1 Rilassamento per eliminazione di vincoli

Banalmente si elimina uno o più dei vincoli di P estendendo la regione ammissibile.

4.1.2 Rilassamento lagrangiano

La soluzione ottima del rilassamento lagrangiano fornisce una limitazione inferiore sul valore ottimo della funzione obbiettivo del problema originario.

$$\min z(x) = c^{T} x \qquad \qquad \min_{x} L(\underline{\lambda}, x) = c^{T} x - \underline{\lambda}^{T} (\underline{A}x - b)$$

$$\underline{A}x \ge b \qquad \qquad \underline{C}x \ge d$$

$$\underline{C}x \ge d \qquad \qquad x \ge 0$$

$$x \ge 0 \qquad \qquad x \in \mathbb{Z}$$

$$x \in \mathbb{Z} \qquad \qquad \underline{\lambda} \ge \underline{0}$$
(a) Problema di PI (b) Rilassamento lagrangiano RL_{λ} di P

Teorema 4.1.1. In generale, la soluzione ottima identificata tramite un rilassamento lineare (RL) è sempre peggiore o uguale a quella identificata tramite rilassamento lagrangiano L.

$$z_{RL}^* \leq L^*$$

Teorema 4.1.2 (**Proprietà di integralità**). la soluzione ottima identificata tramite un rilassamento lineare (RL) è sempre uguale a quella identificata tramite rilassamento lagrangiano L (o meglio il rilassamento lagrangiano non può arrivare ad una approssimazione migliore) se vale la **proprietà di integralità**, cioè l'inviluppo convesso dei vincoli in P è uguale all'area ammissibile nel rilassamento continuo.

4.1.3 Problema lagrangiano duale

Il duale lagrangiano estende alla PI il concetto di dualità ma non garantisce che gli ottimi siano uguali tra il problema primale e duale.

Teorema 4.1.3. L'ottimo del problema lagrangiano duale coincide con il rilassamento continuo se il poliedro dei vincoli rimasti gode della **proprietà di integralità.**

Si risolve tramite un algoritmo iterativo, detto del **sottogradiente**, un'approssimazione dell'algoritmo del gradiente necessaria perchè $L^*(\lambda)$ è generalmente non differenziabile.

Definizione 4.1.4 (Sottogradiente). Per sottogradiente si intende il vettore:

$$s(\lambda) = -(Ax - b)$$

Metodi di programmazione lineare intera

5.1 Branch & Bound

Si tratta del metodo risolutivo per PI più comune, un po' come il simplesso per PL.

Si procede risolvendo molteplici rilassamenti continui di un problema LI usando il metodo del simplesso.

A ogni iterazione, può accadere che:

- 1. L'iterazione i esima è inammissibile.
- 2. Le variabili sono intere e pertanto non è necessario suddividere ulteriormente ma è stata identificata la soluzione ottima intera di questo ramo.
- 3. La soluzione continua identificata è inferiore alla soluzione intera identificata in un altro ramo e quindi non ha senso esplorare questa regione ulteriormente.
- 4. La soluzione intera ottenuta è abbastanza vicina alla soluzione continua ottima e si decide pertanto di interrompere l'algoritmo (per motivi di tempo).
- 5. Le variabili sono continue e quindi suddivideremo ulteriormente la regione in due sotto problemi, per esempio se la variabile intera fosse x = a andremmo a dividere tra $x \le \lfloor a \rfloor$ e $x \ge \lceil a \rceil$, quindi ripeteremo il calcolo della soluzione ottima con l'algoritmo del simplesso avendo aggiunti questi vincoli.

5.2 Algoritmo dei piani di taglio

Banalmente si applicano iterativamente tagli di Chvatal-Gomory alla regione del problema (che sebbene inizialmente molto efficaci lo divengono sempre meno) per eliminare soluzioni non accettabili dal problema discreto ma ottime per il rilassamento continuo.

Definizione 5.2.1 (Taglio di Gomory). Ogni soluzione ammissibile di *P* soddisfa la relazione:

$$x_h + \sum_{j \in \mathbb{N}} \left\lfloor a_{ij} \right\rfloor x_j \le \lfloor b_i \rfloor$$

Problema del massimo flusso

6.1 Algoritmo di Ford e Fulkerson

Si tratta di un algoritmo per calcolare il **massimo flusso** su un grafo da un nodo sorgente s ad un nodo destinazione t.

Definizione 6.1.1 (Cammino incrementante). Un **cammino incrementante** è un cammino che ha archi con direzione positiva non pieni o archi con direzione negativa non vuoti.

L'algoritmo procede nel modo seguente:

- 1. Si identifica un cammino aumentante.
- 2. Si identifica la capacità di strozzatura, cioè quella che su questo specifico cammino limita la capacità massima.
- 3. Si aumenta la capacità occupata di ogni arco ed il flusso totale della differenza, ciò significa che in un cammino inverso (con freccia nella direzione inversa del flusso) il valore di flusso cala.
- 4. Si ripete sino a che non è più possibile identificare un cammino aumentante.

6.2 Taglio di capacità minima

Si tratta dell'insieme di archi che va da un sottoinsieme di nodi \mathscr{P}_1 ad un secondo sottoinsieme \mathscr{P}_2 , con il totale dei nodi $\mathscr{P} = \mathscr{P}_1 \cup \mathscr{P}_2$ e $\mathscr{P}_1 \cap \mathscr{P}_2 = \emptyset$, cioè nessuno dei nodi in \mathscr{P}_1 si trova anche in \mathscr{P}_2 costruito in modo tale che esso limiti la capacità massima di flusso (insieme degli archi di strozzatura) che può andare dal nodo s a t.

Un bel sito web che risolve questo problema è https://bl.ocks.org/estk/9629395.

6.3 Flusso massimo a costo minimo

Si tratta di riportare ogni arco ij del digrafo tra un nodo i e j, definito come (u_{ij}, c_{ij}, x_{ij}) , dove u_{ij} è la massima capacità di flusso dell'arco, c_{ij} il costo per unità dell'arco e x_{ij} la quantità di flusso che effettivamente scorre sull'arco, ad una forma a due archi come segue:

(a) Arco con massima capacità u, costo c e flusso inviato x.

(b) Archi con flusso inviato e costo

Figura 6.1: Flusso massimo a costo minimo

Una volta sostituiti tutti gli archi (nei temi d'esame è possibile compilare degli archi forniti) è necessario identificare circuiti in cui la somma dei costi è negativa.

Se questi esistono, il costo non è minimo ed è possibile ridurlo re-instradando il flusso del circuito identificato.

6.4 Algoritmo di Prim

Nell'algoritmo di Prim si procede con un metodo greedy: dato un set di nodi iniziali (spesso solo uno), a ogni step si sceglie il nodo con distanza minima connesso a uno dei nodi del set, lo si aggiunge al set e si ripete sino ad ottenere un albero ricoprente.

Come è fatto il tema d'esame

Un tema d'esame di Ricerca Operativa risulta composto da 4/5 esercizi pratici e talvolta alcune domande di teoria.

1. Risolvere graficamento un problema di programmazione lineare a due variabili.

Riportare i valori ottenuti (ottimo, variabili, slack).

Caratteristiche della soluzione (degenere, multipla).

Valore della risorsa b_i per cui la base ottima non cambia.

Valore del costo c_i per cui la base ottima non cambia.

Risolvere mediante scarti complementari il problema duale.

2. Data una richiesta, formulare un modello di Programmazione Lineare.

Dato il modello realizzato, applicare una data estensione.

3. Applicare a un grafo l'algoritmo di Ford-Fulkerson.

Riportare tutti i cammini aumentati.

Calcolare il flusso massimo (quanto flusso arriva alla fine).

Determinare il taglio minimo (taglio minimo = insieme di archi che determina strozzatura in massimo flusso).

Determinare se il flusso è stato inviato a costo minimo (se esistono circuiti di costo negativo).

Si costruisca un reinstradamento che vada a ridurre il costo del flusso.

- 4. Applicare Branch & Bound al problema dello zaino
- 5. Problema di programmazione intera:

Verificare se una soluzione è ottima per il rilassamento lineare del problema.

Risolvere il rilassamento lagrangiano del problema.

Taglio di Gomory.

Risolvere il duale tramite scarti complementari.

A.1 Domande di teoria

A.1.1 Domande su Branch & Bound

Si consideri una generica iterazione di un algoritmo di Branch and Bound applicato ad un problema di programmazione lineare intera con funzione obiettivo da massimizzare. Vi sono tre nodi aperti (A, B, C) e la miglior soluzione ammissibile disponibile vale 100. L'upper bound associato al nodo A vale 110, mentre quelli associati ai nodi B e C valgono rispettivamente 99 e 100.2. Sapendo che l'albero viene esplorato utilizzando la strategia best bound first si indichi quale delle seguenti affermazioni è vera

a) il nodo A sarà il prossimo nodo espanso	
b) il nodo B sarà il prossimo nodo espanso	
c) il nodo A viene chiuso	
d) una tale situazione non si può mai verificare	
Si consideri una generica iterazione di un algoritmo di Branch and Bound a programmazione lineare intera con funzione obiettivo da minimizzare. Vi so Analizzando l'ultimo nodo chiuso l'algoritmo ha identificato la mig disponibile, di valore 100. Il lower bound associato al nodo A vale 90, mento C valgono rispettivamente 101 e 99.8. Sapendo che l'albero viene esplorato bound first si indichi quale delle seguenti affermazioni è vera	ono tre nodi aperti (A, B, C) dior soluzione ammissibile re quelli associati ai nodi B e
a) il nodo A sarà il prossimo nodo espanso	
b) il nodo B sarà il prossimo nodo espanso	
c) il nodo A viene chiuso	
d) una tale situazione non si può mai verificare	
Si consideri una generica iterazione di un algoritmo di Branch ar problema di programmazione lineare intera con funzione obiettivo di solo tre nodi ancora aperti (A, B, C) e l'attuale valore della miglior sol L'upper bound associato al nodo A vale 190.5, mentre quelli associa rispettivamente 120 e 97.2. Sapendo che l'albero viene esplorato utilizi first, si indichi quale delle seguenti affermazioni è vera:	da massimizzare. Vi sono uzione ammissibile è 120 ati ai nodi B e C valgono
a) si possono chiudere i nodi B e C	
b) solo il nodo C può essere chiuso	
c) il nodo B sarà il prossimo nodo visitato	
d) l'algoritmo si arresta	

A.1.2 Domande su problema duale

Sia P un problema di programmazione lineare continua e sia D il suo modello duale. Quale delle seguenti affermazioni è vera? :

a)	Se P è illimitato allora D è illimitato	
b)	Se D è illimitato allora P è inammissibile	
c)	Se D è inammissibile allora P può avere soluzione ottima finita	
d)	nessuna delle precedenti	
	a P un problema di programmazione lineare continua e sia D il suo modello duale. Quenti affermazioni è vera? :	Quale delle
a)	Se P è illimitato allora D è illimitato	
b)	Se D è illimitato allora P è inammissibile	
c)	Se D è inammissibile allora P può avere soluzione ottima finita	
d)	nessuna delle precedenti	
	Con riferimento al metodo a due fasi per la soluzione di problemi di PL consideri la risoluzione del problema ausiliario e si immagini che il valore ottinoblema risulti positivo ($z_{AUS}^* > 0$). Cosa si può dedurre con certezza per il du	no di tale
pr	oblema originale?	
a)	D è illimitato	
b)	D è limitato	
c)	D è o inammissibile, o illimitato	
d)	D è inammissibile	

A.1.3 Domande su rilassamento del problema lineare continuo

delle seguenti affermazioni è vera :	nuo PLC. Quale
a) esiste sempre almeno un taglio che consente di restringere la regione amm	nissibile di PLC
lasciando invariata quella di PLI	
b) esiste sempre un vertice intero di PLC	
c) se esiste un vertice intero di PLC, questo è un ottimo di PLI	
d) se esiste un vertice non intero di PLC, esiste un taglio valido per il problema d	i PLI
Si consideri un problema di programmazione lineare intera ed il suo rilasciamento delle seguenti affermazioni è falsa:	continuo. Quale
a) la soluzione ottima del rilassamento continuo, se arrotondata a valori in ammissibile per il problema intero	teri, può essere
 b) la soluzione ottima del rilassamento continuo, se arrotondata a valori interi, per per il problema intero 	uò essere ottima
 c) la soluzione ottima del rilassamento continuo, se arrotondata a valori in inammissibile per il problema intero 	teri, può essere
 d) la soluzione ottima del rilassamento continuo, nel caso sia intera, non è ammissibile per il problema intero 	necessariamente
Siano dati un problema P_I di programmazione lineare a numeri interi con fu da massimizzare ed il corrispondente rilassamento continuo P_C . È nota ammissibile x di P_I di valore w . Sia x_C la soluzione ottimale di P_C di valore z . Se $w=z$ se ne deduce che:	
a) la soluzione x_C ha coordinate intere	
b) la soluzione x è soluzione ottimale di P_I	=
c) tutte le soluzioni di base ammissibili di P_C hanno coordinate intere	_
d) le precedenti affermazioni non si possono dedurre con certezza	
-/ F F	

A.1.4 Domande su Analisi di sensitività

Si consideri un un problema di programmazione lineare continua con funzione obiettivo da massimizzare. Siano b_i e p_i il termine noto ed il prezzo ombra associati al vincolo i-esimo nella soluzione ottima, il cui valore è z. Dall'analisi di sensitività sappiamo che l'intervallo di variazione di b_i che lascia inalterata la base ottima vale $[\alpha,\beta]$. Se sommiamo la quantità $\delta>0$ al termine noto b_i , con $b_i + \delta=\beta$ il valore della funzione obiettivo diviene:

a)	Z	
b)	$z+\delta^*p_i$	
c)	$z-\delta^* p_i$	
d)	non si può dire con le informazioni a disposizione	
Si	consideri un problema di programmazione lineare continua con funzione obiettivo	vo da
mi	nimizzare. Se sommando la quantità $\delta>0$ al termine noto b_i del vincolo i-esimo il valore	della
fur	nzione obiettivo subisce una variazione ε<0 ne deduciamo che il vincolo era	
a)	di minore uguale	
b)	di maggiore uguale	
c)	di uguaglianza	

A.1.5 Domande varie

d) non si può dire con le informazioni a disposizione

Si riportino i modelli di PLI del problema del commesso viaggiatore (TSP) e dell'albero di supporto di costo minimo (MST) su grafo non orientato G=(N,E).

Si fornisca un modello di PLI per il problema di trovare nel grafo G sia un ciclo hamiltoniano, sia un albero di supporto. I lati scelti devono avere costo complessivo minimo e almeno metà di essi deve appartenere sia al ciclo, sia all'albero. (Suggerimento: si aggiunga una variabile per ogni lato che vale 1 se quel lato fa parte di entrambi gli alberi).

Si consideri un problema di "mix produttivo". Relativamente ai prodotti A, B, C e D, è necessario imporre la condizione che A e B vengano prodotti solo se C oppure D sono in produzione (cioè almeno uno fra C e D deve essere realizzato). Quale fra le seguenti alternative rappresenta l'insieme minimo di vincoli necessari alla corretta rappresentazione del problema come modello di programmazione lineare a numeri interi? (Se la variabile binaria y_i è uguale a 1 significa che il prodotto i è in produzione e se è uguale a 0 significa che non lo è).?

a)
$$y_C \ge y_A$$
; $y_D \ge y_A$; $y_C \ge y_B$; $y_D \ge y_B$

b) $y_A \le y_C + y_D$; $y_B \le y_C + y_D$

c) $2y_A \ge y_C + y_D$; $2y_B \ge y_C + y_D$

d) $y_C \le y_A$; $y_D \le y_A$; $y_C \le y_B$; $y_D \le y_B$

Temi d'esame risolti

B.1 Esame del 18/06/2014

B.1.1 Esercizio 1

Dato il seguente problema di PL:

$$\max z = -x_1 + 2x_2$$

$$x_1 + 2x_2 \le 12$$

$$x_1 \le 8$$

$$x_1 + x_2 \ge 3$$

$$-x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

Figura B.1: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello, comprese quelle di scarto.
- 2. Da quali variabili è composta la base associata al vertice dato dall'intersezione del vincolo III e l'asse delle x_1 ?
- 3. Si ricavi per via grafica per quali valori di b_4 , ora pari a 3, la **composizione** della base ottima non cambia.
- 4. Si risolva mediante gli scarti complementari il duale del problema.

B.1.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.2: Vertice ottimo del problema di minimo

Riporto variabili

$$z = 8$$
, $x_1 = 2$, $x_2 = 5$, $s_1 = 0$, $s_2 = 6$, $s_3 = 4$, $s_4 = 0$

Variabili di base

Nel vertice di intersezione tra il secondo vincolo $x_1 + x_2 \ge 3$ ed il terzo $x_2 \ge 0$ le variabili in base sono $B = \begin{bmatrix} x_1 & s_1 & s_2 & s_4 \end{bmatrix}$ e le variabili fuori base sono $F = \begin{bmatrix} x_2 & s_3 \end{bmatrix}$.

Analisi di sensitività

Posso variare b_4 tra -3 arrivando al vertice (3,0) e 6 al vertice (0,6).

Figura B.3: Analisi di sensitività

Costruisco problema duale

$$\min z_D = 12y_1 + 8y_2 + 3y_3 + 3y_4$$

$$y_1 + y_2 + y_3 - y_4 \ge -1$$

$$2y_1 + y_3 + y_4 \ge 2$$

$$y_1, y_2, y_4 \ge 0$$

$$y_3 \le 0$$

Scarti complementari

$$\begin{cases} x_1(y_1 + y_2 + y_3 - y_4 + 1) = 0 \\ x_2(2y_1 + y_3 + y_4 - 2) = 0 \\ y_1(x_1 + 2x_2 - 12) = 0 \\ y_2(x_1 - 8) = 0 \\ y_3(x_1 + x_2 - 3) = 0 \\ y_4(-x_1 + x_2 - 3) = 0 \end{cases} \Rightarrow \begin{cases} y_1 - y_4 + 1 = 0 \\ 2y_1 + y_4 - 2 = 0 \\ y_2 = 0 \\ y_3 = 0 \end{cases} \Rightarrow \begin{cases} y_1 = \frac{1}{3} \\ y_4 = \frac{4}{3} \\ y_2 = 0 \\ y_3 = 0 \end{cases}$$

La soluzione ottima del duale corrisponde a quella del primale: $z=z_D=8$

B.2 Esame del 03/07/2014

B.2.1 Esercizio 1

Dato il seguente problema di PL:

$$\max z = x_1 - 3x_2$$

$$x_1 + x_2 \le 7$$

$$x_2 \le 5$$

$$x_1 + 2x_2 \ge 2$$

$$x_1 - x_2 \le 0$$

$$x_1, x_2 \ge 0$$

Figura B.4: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello, comprese quelle di scarto.
- 2. Si ricavi per via grafica per quali valori di b_3 , ora pari a 2, la **composizione** della base ottima non cambia.
- 3. Si risolva mediante gli scarti complementari il duale del problema.

B.2.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.5: Vertice ottimo del problema di massimo

Riporto variabili

$$z = -\frac{4}{3}$$
, $x_1 = \frac{2}{3}$, $x_2 = \frac{2}{3}$, $s_1 = \frac{17}{3}$, $s_2 = \frac{13}{3}$, $s_3 = 0$, $s_4 = 0$

Analisi di sensitività

La variabile b_3 può variare tra 0, valore in cui il vincolo incrocia il vertice (0,0) e $\frac{21}{2}$, valore in cui incrocia il vertice in $(\frac{3}{2},\frac{3}{2})$.

Figura B.6: Analisi di sensitività

Costruisco problema duale

$$\min z_D = 7y_1 + 5y_2 + 2y_3$$

$$y_1 + y_3 + y_4 \ge 1$$

$$y_1 + y_2 + 2y_3 - y_4 \ge -3$$

$$y_1, y_2, y_4 \ge 0$$

$$y_3 \le 0$$

Scarti complementari

$$\begin{cases} x_1(y_1 + y_3 + y_4 - 1) = 0 \\ x_2(y_1 + y_2 + 2y_3 - y_4 + 3) = 0 \\ y_1(x_1 + x_2 - 7) = 0 \\ y_2(x_2 - 5) = 0 \\ y_3(x_1 + 2x_2 - 2) = 0 \\ y_4(x_1 - x_2 - 0) = 0 \end{cases} \Rightarrow \begin{cases} y_3 + y_4 - 1 = 0 \\ 2y_3 - y_4 + 3 = 0 \\ y_1 = 0 \\ y_2 = 0 \end{cases} \Rightarrow \begin{cases} y_3 = -\frac{2}{3} \\ y_4 = \frac{5}{3} \\ y_1 = 0 \\ y_2 = 0 \end{cases}$$

Verifico che la soluzione ottima del duale corrisponda a quella del primale: $z = z_D = -\frac{4}{3}$.

B.2.3 Esercizio 4

Si consideri la rete sottostante in cui i valori sugli archi rappresentano le loro capacita:

- a) Determinare il flusso massimo da **s** e **t** inviando nelle prime due iterazioni 5 unità lungo i percorsi *s*, 3, 4, 2, *t* e *s*, 3, 4, 1, 2, *t*.
- b) Riportare i cammini aumentanti ed il corrispondente aumento di flusso.
- c) SI riporti sulla figura il valore del flusso massimo.
- d) Determinare il taglio minimo.
- e) Scegliere un insieme di archi e gli si associ un costo unitario di flusso in modo che la soluzione trovata non sia a costo minimo.

B.2.4 Soluzione esercizio 4

Step preliminare

Invio 5 unità lungo i due percorsi indicati.

Figura B.7: Preparazione preliminare richiesta

Procedo con algoritmo

Dallo stato corrente, procedo come segue:

Figura B.8: Procedo con algoritmo

Flusso massimo

Il flusso massimo è di 45 unità.

Taglio minimo

Il taglio minimo è di 45 unità. I due gruppi che divide sono (4, t) e (s, 1, 2, 3)

Figura B.9: Taglio minimo

Soluzione non a costo minimo

È sufficiente scegliere costi in modo tale da creare un ciclo a costo negativo, per esempio assegnando come costi $s \rightarrow 3:1000, s \rightarrow 1:1, 3 \rightarrow 1:1.$

B.3 Esame del 16/09/2014

B.3.1 Esercizio 1

Dato il seguente problema di PL:

$$\max z = -x_1 + 2x_2$$

$$-2x_1 + 2x_2 \le 1$$

$$+x_1 - 2x_2 \le 2$$

$$2x_1 + 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

Figura B.10: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello, comprese quelle di scarto.
- 2. Si ricavi per via grafica per quali valori di c_2 , ora pari a 2, la **composizione** della base ottima non cambia.
- 3. Si risolva mediante gli scarti complementari il duale del problema.

B.3.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.11: Vertice ottimo del problema di minimo

Riporto variabili

$$z = 2$$
, $x_1 = 1$, $x_2 = \frac{3}{2}$, $s_1 = 0$, $s_2 = 4$, $s_3 = 0$

Analisi di sensitività

Figura B.12: Analisi di sensitività

Costruisco problema duale

$$\min z_D = y_1 + 2y_2 + 5y_3$$
$$-2y_1 + y_2 + 2y_3 \ge -1$$
$$2y_1 - 2y_2 + 2y_3 \ge 2$$
$$y_1, y_2, y_3 \ge 0$$

Scarti complementari

$$\begin{cases} x_1(-2y_1 + y_2 + 2y_3 + 1) = 0 \\ x_2(2y_1 - 2y_2 + 2y_3 - 2) = 0 \\ y_1(-2x_1 + 2x_2 - 1) = 0 \\ y_2(+x_1 - 2x_2 - 2) = 0 \\ y_3(2x_1 + 2x_2 - 5) = 0 \end{cases} \Rightarrow \begin{cases} -2y_1 + y_2 + 2y_3 + 1 = 0 \\ 2y_1 - 2y_2 + 2y_3 - 2 = 0 \\ y_2 = 0 \end{cases} \Rightarrow \begin{cases} y_1 = \frac{3}{4} \\ y_3 = \frac{1}{4} \\ y_2 = 0 \end{cases}$$

La soluzione ottima del problema duale corrisponde a quella del primale: $z=z_D=\frac{8}{2}=2.$

B.3.3 Esercizio 3

Dato il seguente problema di PLI:

$$\min z = x_1 + x_2$$

$$\frac{7}{2}x_1 - 2x_2 + x_3 = \frac{9}{2}$$

$$3x_1 + x_2 + x_4 = 3$$

$$x \in \mathbb{N}^4$$

Figura B.13: Esercizio 3

- 1. Si risolva il suo rilassamento continuo.
- 2. Se la soluzione ottima non è intera si trovi un opportuno taglio di Gomory in forma frazionaria, lo si aggiunga al tableau e si trovi l'elemento di pivot senza riottimizzare.
- 3. Si disegni il vincolo identificato.

B.3.4 Soluzione esercizio 3

Rilassamento continuo

Il valore minimo che la funzione obbiettivo può raggiungere, nel rilassamento continuo, visti i vincoli, è 0, con $x_1 = 0$, $x_2 = 0$, $x_3 = \frac{9}{2}$, $x_4 = 3$.

Verifico ottimalità

Verifico che la funzione ottenuta sia ottima mediante il metodo degli scarti complementari.

$$\max z_{D} = \frac{9}{2}y_{1} + 3y_{2}$$

$$\frac{7}{2}y_{1} + 3y_{2} \le 1$$

$$-2y_{1} + 1y_{2} \le 1$$

$$y_{1} \le 0$$

$$y_{2} \le 0$$

$$y_{1}, y_{2} \in \mathbb{R}$$

$$\begin{cases} x_{1}(\frac{7}{2}y_{1} + 3y_{2} - 1) = 0 \\ x_{2}(-2y_{1} + 1y_{2} - 1) = 0 \\ x_{3}y_{1} = 0 \\ x_{4}y_{2} = 0 \\ y_{1}(\frac{7}{2}x_{1} - 2x_{2} + x_{3} - \frac{9}{2}) = 0 \\ y_{2}(3x_{1} + x_{2} + x_{4} - 3) = 0 \end{cases} \Rightarrow \begin{cases} y_{1} = 0 \\ y_{2} = 0 \end{cases}$$

(a) Problema duale

(b) Scarti complementari

Figura B.14: Verifica soluzione ottima

La soluzione è confermata ottima $z = z_D = 0$.

Taglio di Gomory

La soluzione ottima comprende valori di x non interi, per cui procedo con il taglio di Gomory. Considerando come base $B = \begin{bmatrix} x_3, x_4 \end{bmatrix}$, il problema considerato è già posto in forma canonica:

x_3	x_4	x_1	x_2	\tilde{b}
0	0	1	1	0
1	0	⁷ / ₂	-2	9/2
0	1	3	1	3

Figura B.15: Tableau in forma canonica

Costruisco il taglio di Gomory sulla riga evidenziata in verde:

$$\sum (a_{ij} - \lfloor a_{ij} \rfloor) x_j \ge b_i - \lfloor b_i \rfloor$$

$$(1 - \lfloor 1 \rfloor) x_3 + 0x_4 + \left(\frac{7}{2} - \lfloor \frac{7}{2} \rfloor\right) x_1 + 0x_2 \ge \frac{9}{2} - \lfloor \frac{9}{2} \rfloor$$

$$\frac{1}{2} x_1 \ge \frac{1}{2}$$

$$x_1 \ge 1$$

Aggiungo il nuovo vincolo al tableau:

<i>x</i> ₃	x_4	x_1	x_2	\tilde{b}
0	0	1	1	0
1	0	⁷ / ₂	-2	9/2
0	1	3	1	3
0	0	1	0	1

Figura B.16: Tableau in forma canonica

A parità di coefficiente di costo ridotto, scelgo la colonna di x_1 essendo quella con i coefficienti maggiori. Per l'operazione di pivot posso scegliere sia il termine appena inserito, 1, sia 3 poichè il rapporto tra questi ed il rispettivo termine noto risulta uguale.

Disegnare il vincolo

Rappresento il vincolo sul piano $x_1 - x_2$:

B.3.5 Esercizio 4

Si consideri la rete sottostante in cui i valori sugli archi rappresentano le loro capacita:

- a) Determinare il flusso massimo da \mathbf{s} e \mathbf{t} inviando nelle prime due iterazioni 10 unità lungo il cammino s, 1, 3, 4, 2, t e 15 unità lungo s, 1, 2, 3, 4, t.
- b) Riportare i cammini aumentanti ed il corrispondente aumento di flusso.
- c) SI riporti sulla figura il valore del flusso massimo.
- d) Determinare il taglio minimo.
- e) Scegliere un insieme di archi e gli si associ un costo unitario di flusso in modo che la soluzione trovata non sia a costo minimo.

B.3.6 Soluzione esercizio 4

Step preliminare

Invio 5 unità lungo i due percorsi indicati.

Figura B.17: Preparazione preliminare richiesta

Procedo con algoritmo

Dallo stato corrente, procedo come segue:

Figura B.18: Procedo con algoritmo

Flusso massimo

Il flusso massimo è di 50 unità.

Taglio minimo

Il taglio minimo è di 50 unità. I due gruppi che divide sono (s,3) e (4,1,2,t)

Figura B.19: Taglio minimo

Soluzione non a costo minimo

È sufficiente scegliere costi in modo tale da creare un ciclo a costo negativo, per esempio assegnando come costi $s \rightarrow 1:1000$, $s \rightarrow 3:1$, $1 \rightarrow 3:1$.

B.4 Esame del 17/11/2014

B.4.1 Esercizio 1

Dato il seguente problema di PL:

$$\min z = x_1 - 2x_2$$

$$x_1 + 4x_2 \le 32$$

$$x_1 - 2x_2 \le 2$$

$$x_1 + x_2 \ge 5$$

$$-x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

Figura B.20: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello, comprese quelle di scarto.
- 2. Si ricavi per via grafica per quali valori di b_1 , ora pari a 32, la **composizione** della base ottima non cambia.
- 3. Si risolva mediante gli scarti complementari il duale del problema.

B.4.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.21: Vertice ottimo del problema di minimo

Riporto variabili

$$z = -10$$
, $x_1 = 4$, $x_2 = 7$, $s_1 = 0$, $s_2 = 8$, $s_3 = 6$, $s_4 = 0$

Analisi di sensitività

Riducendo il valore di b_1 sino a 17 la base ottima si sposta sino a (1,4). Non esiste un valore massimo per b_1 che modifica la base ottima.

Figura B.22: Analisi di sensitività

Costruisco problema duale

$$\begin{aligned} \max z_D &= 32y_1 + 2y_2 + 5y_3 + 3y_4 \\ y_1 + y_2 + y_3 - y_4 &\leq 1 \\ 4y_1 - 2y_2 + y_3 - y_4 &\leq -2 \\ y_1, y_2, y_4 &\leq 0 \\ y_3 &\geq 0 \end{aligned}$$

Scarti complementari

$$\begin{cases} x_1(y_1 + y_2 + y_3 - y_4 - 1) = 0 \\ x_2(4y_1 - 2y_2 + y_3 + y_4 + 2) = 0 \\ y_1(x_1 + 4x_2 - 32) = 0 \\ y_2(x_1 - 2x_2 - 2) = 0 \\ y_3(x_1 + x_2 - 5) = 0 \\ y_4(-x_1 + x_2 - 3) = 0 \end{cases} \Rightarrow \begin{cases} y_1 - y_4 - 1 = 0 \\ 4y_1 + y_4 + 2 = 0 \\ y_2 = 0 \\ y_3 = 0 \end{cases} \Rightarrow \begin{cases} y_4 = -\frac{6}{5} \\ y_1 = -\frac{1}{5} \\ y_2 = 0 \\ y_3 = 0 \end{cases}$$

La soluzione ottima del problema duale coincide con la soluzione ottima del problema primale: $z = z_D = -10$.

B.5 Esame del 28/01/2015

B.5.1 Esercizio 1

Dato il seguente problema di PL:

$$\min z = -2x_1 + x_2$$

$$-3x_1 + 10x_2 \ge 0$$

$$x_1 + x_2 \le 13$$

$$x_2 \le 5$$

$$-x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

Figura B.23: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello, comprese quelle di scarto.
- 2. Si risolva mediante gli scarti complementari il duale del problema.

B.5.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.24: Vertice ottimo del problema di minimo

Riporto variabili

$$z = -17$$
, $x_1 = 10$, $x_2 = 3$, $s_1 = 0$, $s_2 = 0$, $s_3 = 2$, $s_4 = 10$,

Costruisco il problema duale

$$\max z_D = 13y_2 + 5y_3 + 3y_4$$
$$-3y_1 + y_2 - y_4 \le -2$$
$$10y_1 + y_2 + y_3 + y_4 \le 1$$
$$y_1 \ge 0$$
$$y_2, y_3, y_4 \le 0$$

Scarti complementari

$$\begin{cases} x_1(-3y_1+y_2-y_4+2)=0\\ x_2(10y_1+y_2+y_3+y_4-1)=0\\ y_1(-3x_1+10x_2)=0\\ y_2(x_1+x_2-13)=0\\ y_3(x_2-5)=0\\ y_4(-x_1+x_2-3)=0 \end{cases} \Rightarrow \begin{cases} -3y_1+y_2+2=0\\ 10y_1+y_2-1=0\\ y_3=0\\ y_4=0 \end{cases} \Rightarrow \begin{cases} y_2=-2+3y_1\Rightarrow y_2=-\frac{17}{13}\\ y_1=\frac{3}{13}\\ y_3=0\\ y_4=0 \end{cases}$$

I valori ottenuti rispettano i vincoli di segno delle variabili.

Verifico che le soluzioni ottime coincidino: $z = z_D = -17$

B.6 Esame del 18/02/2015

B.6.1 Esercizio 1

Dato il seguente problema di PL:

$$\max z = 8x_1 - 16x_2 + 2x_3$$

$$3x_1 - 2x_2 - x_3 \le 3$$

$$x_1 - 4x_2 + 2x_3 \le 8$$

$$x_1 \le 0$$

$$x_2, x_3 \ge 0$$

Figura B.25: Esercizio 1

- 1. Si formuli il duale di tale problema e lo si risolva graficamente, evidenziando il valore ottimo della funzione obiettivo e delle variabili duali.
- 2. Sulla base dei risultati ottenuti nel problema duale, si determini anche la soluzione ottima del problema primale.

B.6.2 Soluzione esercizio 1

Formulo problema duale

$$\min z_D = 3y_1 + 8y_2$$

$$3y_1 + y_2 \le 8$$

$$-2y_1 - 4y_2 \ge -16$$

$$-y_1 + 2y_2 \ge 2$$

$$y_1, y_2 \ge 0$$

Identifico soluzione ottima

Figura B.26: Vertice ottimo del problema duale di minimo

Riporto variabili

$$z_D = 8$$
, $y_1 = 0$, $y_2 = 1$, $s_1 = 7$, $s_2 = 12$, $s_3 = 0$

Scarti complementari

$$\begin{cases} x_1(3y_1 + y_2 - 8) = 0 \\ x_2(-2y_1 - 4y_2 + 16) = 0 \\ x_3(-y_1 + 2y_2 - 2) = 0 \\ y_1(3x_1 - 2x_2 - x_3 - 3) = 0y_2(x_1 - 4x_2 + 2x_3 - 8) = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 4 \end{cases}$$

La soluzione ottima del problema primale si trova in $\underline{x} = \begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$, con $z = z_D = 8$.

B.6.3 Esercizio 2

Dato il seguente problema di PLI:

$$\min z = x_2$$

$$x_1 + x_2 \le 5$$

$$-x_1 + x_2 \le 0$$

$$\underline{x} \in \mathbb{N}^2$$

Figura B.27: Esercizio 2

- 1. Si ponga in forma canonica rispetto alla base formata dalle variabili x_1 e x_2 il rilassamento continuo del problema.
- 2. Dalla forma canonica si ricavi il taglio di Gomory.
- 3. Si disegni la regione ammissibile comprensiva del taglio.

B.6.4 Soluzione esercizio 2

Introduco due variabili di slack x_3 e x_4 :

$$x_1 + x_2 + x_3 = 5$$

 $-x_1 + x_2 + x_4 = 0$
 $x \in \mathbb{N}^{-1}$

Calcolo le matrici in base e fuori base pre moltiplicate

$$B = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \qquad B^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad \underline{\underline{\boldsymbol{b}}} = B^{-1}\underline{\boldsymbol{b}} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \frac{5}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \overline{F} = B^{-1}F = B^{-1}I = B^{-1}$$

Calcolo i coefficienti di costo ridotti:

$$c_0 = -\underline{\boldsymbol{c}}_B^T \boldsymbol{B}^{-1} \underline{\boldsymbol{b}} = -\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{pmatrix} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix} = -\frac{5}{2}$$

$$\underline{\boldsymbol{c}}^T = \underline{\boldsymbol{c}}^T - \underline{\boldsymbol{c}}_B^T \boldsymbol{B}^{-1} A = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{pmatrix} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

Ottengo il seguente rilassamento continuo in forma canonica:

$$\min z = -\frac{5}{2} - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

$$x_1 + \frac{1}{2}x_3 - \frac{1}{2}x_4 = \frac{5}{2}$$

$$x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4 = \frac{5}{2}$$

$$\underline{x} \in \mathbb{R}^4_{\geq 0}$$

Costruisco il taglio di gomory sul primo od il secondo vincolo, non cambia:

$$v_{\text{Gomory}} = (1 - \lfloor 1 \rfloor)x_2 + (\frac{1}{2} - \lfloor \frac{2}{2} \rfloor)x_3 + (\frac{1}{2} - \lfloor \frac{1}{2} \rfloor)x_4 \ge \frac{5}{2} - \lfloor \frac{5}{2} \rfloor \Rightarrow \frac{1}{2}x_3 + \frac{1}{2}x_4 \ge \frac{1}{2} \Rightarrow x_3 + x_4 \ge 1$$

Sostituisco nel taglio ottenuto i valori dei vincoli:

$$\begin{cases} x_1 + x_2 + x_3 &= 5 \\ -x_1 + x_2 + x_4 &= 0 \Rightarrow \begin{cases} x_3 &= 5 - x_1 - x_2 \\ x_4 &= x_1 - x_2 &\Rightarrow \begin{cases} x_3 &= 5 - x_1 - x_2 \\ x_4 &= x_1 - x_2 &\Rightarrow -2x_2 \geqslant -4 \Rightarrow x_2 \leqslant 2 \end{cases} \\ x_4 &= x_1 - x_2 &\Rightarrow -2x_2 \geqslant -4 \Rightarrow x_2 \leqslant 2 \end{cases}$$

B.7 Esame del 19/06/2015

B.7.1 Esercizio 1

Dato il seguente problema di PL:

$$\min z = -2x_1 + x_2$$

$$-3x_1 + 10x_2 \ge 0$$

$$x_1 + x_2 \le 13$$

$$x_2 \le 5$$

$$-x_1 + x_2 \le 3$$

$$x_1, x_2 \ge 0$$

Figura B.28: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello, comprese quelle di scarto.
- 2. Si ricavi per via grafica per quali valori di c_1 , ora pari a -2 la **composizione** della base ottima non cambia.
- 3. Si risolva mediante gli scarti complementari il duale del problema.

B.7.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.29: Vertice ottimo del problema di minimo

Riporto variabili

$$z = -17$$
, $x_1 = 10$, $x_2 = 3$, $s_1 = 0$, $s_2 = 0$, $s_3 = 2$, $s_4 = 10$,

Analisi di sensitività

Aumentando il valore di c_1 posso portare la base ottima in (0,0), mentre non esiste un valore minimo che modifica la base ottima.

Figura B.30: Analisi di sensitività

Costruisco il problema duale

$$\begin{aligned} \max z_D &= 13\,y_2 + 5\,y_3 + 3\,y_4 \\ &- 3\,y_1 + y_2 - y_4 \le -2 \\ 10\,y_1 + y_2 + y_3 + y_4 \le 1 \\ &y_1 \ge 0 \\ y_2, y_3, y_4 \le 0 \end{aligned}$$

Scarti complementari

$$\begin{cases} x_1(-3y_1+y_2-y_4+2)=0\\ x_2(10y_1+y_2+y_3+y_4-1)=0\\ y_1(-3x_1+10x_2)=0\\ y_2(x_1+x_2-13)=0\\ y_3(x_2-5)=0\\ y_4(-x_1+x_2-3)=0 \end{cases} \Rightarrow \begin{cases} -3y_1+y_2+2=0\\ 10y_1+y_2-1=0\\ y_3=0\\ y_4=0 \end{cases} \Rightarrow \begin{cases} y_2=-2+3y_1\Rightarrow y_2=-\frac{17}{13}\\ y_1=\frac{3}{13}\\ y_3=0\\ y_4=0 \end{cases}$$

I valori ottenuti rispettano i vincoli di segno delle variabili.

Verifico che le soluzioni ottime coincidino: $z = z_D = -17$

B.7.3 Esercizio 4

Dato il seguente problema di PLI:

$$\min z = -2x_1 + x_2$$

$$x_1 + x_2 \le 4$$

$$6x_1 - 4x_2 \le 9$$

$$x \in \mathbb{N}^2$$

Figura B.31: Esercizio 4

- 1. Si ricavi un taglio di Gomory dal primo vincolo.
- 2. Si disegni la regione ammissibile del rilassamento continuo del problema, i punti (piu significativi) a coordinate intere interni ad essa ed il taglio generato.
- 3. Si riporti il tableau dopo l'inserimento del nuovo vincolo e si indichi l'elemento di pivot individuato dal simplesso duale (non si richiede di effettuare il passo di pivot).

B.7.4 Soluzione esercizio 4

Taglio di gomory

$$(1 - \lfloor 1 \rfloor) x_1 + \left(\frac{2}{5} - \left\lfloor \frac{2}{5} \right\rfloor\right) x_3 + \left(\frac{1}{10} - \left\lfloor \frac{1}{10} \right\rfloor\right) x_4 \ge \left(\frac{1}{2} - \left\lfloor \frac{1}{2} \right\rfloor\right) \Rightarrow \frac{2}{5} x_3 + \frac{1}{10} x_4 \ge \frac{1}{2}$$

Regione ammissibile

$$\begin{cases} x_1 + x_2 + x_3 = 4 \\ 6x_1 - 4x_2 + x_4 = 9 \\ \frac{2}{5}x_3 + \frac{1}{10}x_4 \ge \frac{1}{2} \end{cases} \Rightarrow \begin{cases} x_3 = 4 - x_1 - x_2 \\ x_4 = 9 - 6x_1 + 4x_2 \\ \frac{2}{5}(4 - x_1 - x_2) + \frac{1}{10}(9 - 6x_1 + 4x_2) \ge \frac{1}{2} \end{cases} \Rightarrow x_1 \le 2$$

Il vincolo in funzione delle variabili in base risulta quindi:

$$x_1 \leq 2$$

Elemento di pivot

L'elemento scelto è $^{-2}/_5$, elemento tale per cui min $\left\{\frac{c_j}{|a_{hj}|}:a_{hj}<0\right\}$.

0	0		3/10		
1	0	² / ₅	$\frac{1}{10}$ $\frac{-1}{10}$ $\frac{-1}{10}$	0	5/2
0	1	³ / ₅	$^{-1}/_{10}$	0	3/2
0	0	-2/5	$-1/_{10}$	1	$-1/_{2}$

B.8 Esame del 16/09/2015

B.8.1 Esercizio 1

Dato il seguente problema di PL:

$$\max z = 2x_1 + x_2$$
$$3x_1 + 4x_2 \le 12$$
$$x_1 + x_2 \ge 1$$
$$-9x_1 + 4x_2 \le 0$$
$$3x_1 - 8x_2 \le 3$$
$$x_1, x_2 \ge 0$$

Figura B.32: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello, comprese quelle di scarto.
- 2. Da quali variabili è composta la base associata al vertice dato dall'intersezione del secondo e terzo vincolo?
- 3. Si ricavi per via grafica per quali valori di b_4 , ora pari a 3, la **composizione** della base ottima non cambia.
- 4. Si risolva mediante gli scarti complementari il duale del problema.

B.8.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.33: Vertice ottimo del problema di minimo

Riporto variabili

$$z = \frac{27}{4}$$
, $x_1 = 3$, $x_2 = \frac{3}{4}$, $s_1 = 0$, $s_2 = \frac{11}{4}$, $s_3 = 24$, $s_4 = 0$

Variabili di base

Nel vertice di intersezione tra il secondo vincolo $x_1 + x_2 \ge 1$ ed il terzo $-9x_1 + 4x_2 \le 0$ le variabili in base sono $B = \begin{bmatrix} x_1 & x_2 & s_1 & s_4 \end{bmatrix}$ e le variabili fuori base sono $F = \begin{bmatrix} s_2 & s_3 \end{bmatrix}$.

Analisi di sensitività

Il valore di b_4 può variare tra -15 e 12.

Figura B.34: Analisi di sensitività

Costruisco problema duale

$$\min z_D = 12y_1 + y_2 + 3y_4$$

$$3y_1 + y_2 - 9y_3 + 3y_4 \ge 2$$

$$4y_1 + y_2 + 4y_3 - 8y_4 \ge 1$$

$$y_1, y_3, y_4 \ge 0$$

$$y_2 \le 0$$

Scarti complementari

$$\begin{cases} x_{1}(3y_{1} + y_{2} - 9y_{3} + 3y_{4} - 2) = 0 \\ x_{2}(4y_{1} + y_{2} + 4y_{3} - 8y_{4} - 1) = 0 \\ y_{1}(3x_{1} + 4x_{2} - 12) = 0 \\ y_{2}(x_{1} + x_{2} - 1) = 0 \\ y_{3}(-9x_{1} + 4x_{2} - 0) = 0 \end{cases} \Rightarrow \begin{cases} 3y_{1} + 3y_{4} - 2 = 0 \\ 4y_{1} - 8y_{4} - 1 = 0 \\ y_{2} = 0 \\ y_{3} = 0 \end{cases} \Rightarrow \begin{cases} y_{1} = \frac{2}{3} - y_{4} \\ 4\left(\frac{2}{3} - y_{4}\right) - 8y_{4} - 1 = 0 \\ y_{2} = 0 \\ y_{3} = 0 \end{cases} \Rightarrow \begin{cases} y_{1} = \frac{19}{36} \\ y_{2} = 0 \\ y_{3} = 0 \end{cases}$$

Le soluzioni ottime coincidono: $z = z_D = \frac{27}{4}$.

B.9 Esame del 20/06/2016

B.9.1 Esercizio 1

Dato il seguente problema di PL:

$$\min z = 2x_1 - 3x_2$$

$$-3x_1 + 2x_2 \le 12$$

$$-x_1 + 2x_2 \ge 0$$

$$x_2 \le 5$$

$$5x_1 + 2x_2 \le 30$$

$$x_1 \in \mathbb{R}$$

$$x_2 \ge 0$$

Figura B.35: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello.
- 2. Si ricavi per via grafica per quali valori di c_1 , ora pari a 2, la **composizione** della base ottima non cambia.
- 3. Si risolva mediante gli scarti complementari il duale del problema.

B.9.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.36: Vertice ottimo del problema di minimo

Riporto variabili

$$z = -\frac{49}{3}$$
, $x_1 = -\frac{2}{3}$, $x_2 = 5$, $s_1 = 0$, $s_2 = \frac{28}{3}$, $s_3 = 0$, $s_4 = \frac{50}{3}$,

Determino il valore di c_1

Variare il valore di c_1 può portare la soluzione ottima in (-4,0) o in (4,5):

$$-\frac{2}{3}c_1 - 15 = -4c_1 \Rightarrow c_1 = \frac{9}{2}$$

(a) Determino il valore massimo del costo c_1

(b) Sostituendo $c_1 \ge \frac{9}{2}$ la soluzione ottima si sposta in $\underline{x} = (-4,0)$

(d) Sostituendo $c_1 \le 0$ la soluzione ottima si sposta in $\underline{x} = (4,5)$

Figura B.37: Analisi di sensitività

$$-\frac{2}{3}c_1 = 4c_1 \Rightarrow c_1 = 0$$

(c) Determino il valore minimo del costo c_1

Costruisco problema duale

$$\max 12y_1 + 5y_3 + 30y_4$$
$$-3y_1 - y_2 + 5y_4 = 2$$
$$2y_1 + 2y_2 + y_3 + 2y_4 \le -3$$
$$y_2 \ge 0$$
$$y_1, y_3, y_4 \le 0$$

Scarti complementari

$$\begin{cases} x_1(-3y_1 - y_2 + 5y_4 - 2) = 0 \\ x_2(2y_1 + 2y_2 + y_3 + 2y_4 + 3) = 0 \\ y_1(-3x_1 + 2x_2 - 12) = 0 \\ y_2(-x_1 + 2x_2) = 0 \\ y_3(x_2 - 5) = 0 \\ y_4(5x_1 + 2x_2 - 30) = 0 \end{cases} \Rightarrow \begin{cases} -3y_1 - 2 = 0 \\ 2y_1 + y_3 + 3 = 0 \\ y_2 = 0 \\ y_4 = 0 \end{cases} \Rightarrow \begin{cases} y_1 = -\frac{2}{3} \\ y_3 = -\frac{5}{3} \\ y_2 = 0 \\ y_4 = 0 \end{cases}$$

Sostituisco nella funzione obbiettivo e verifico che $z=z_D=-\frac{49}{3}$.

B.10 Esame del 04/07/2016

B.10.1 Esercizio 1

In figura B.38a sono rappresentati gli iperpiani di supporto della regione ammissibile di un modello di PL.

Si determini quale verso devono avere i vincoli in modo che i vertici della regione ammissibile siano individuati dai punti 6, 8 e 9.

Figura B.38: Esercizio 1

Si determini quindi il vertice ottimo e si riporti il valore di tutte le variabili del modello, incluso scarto e surplus.

Si ricavi per via grafica i valori di b_2 per cui la composizione della base ottima non cambia.

Si risolva il duale del problema tramite il metodo degli scarti complementari.

B.10.2 Soluzione esercizio 1

Determino il segno dei vincoli

$$\max z = x_1 - 2x_2$$
(I) $x_1 + x_2 \ge 16$
(II) $-x_1 + 3x_2 \le 32$
(III) $5x_1 + x_2 \le 64$
(IV) $x_1 - x_2 \ge 2$

(a) Problema con vincoli a disequazione

(b) Regione di definizione del problema

Figura B.39: Determino il segno dei vincoli

Determino soluzione ottima

Dalla funzione di ottimo data, bisogna identificare il punto con ascissa massima e ordinata minima. Il punto 9, intersezione tra i vincoli I e III, pari a (12,4) è evidentemente il punto ottimo: z=4.

$$z = 4$$
, x_1

$$= 12, x_2 = 4, s$$

$$= 12, \quad x_2 = 4, \quad s_1 \qquad \qquad = 0, \quad s_2 = -32, \quad s_3 \qquad \qquad = 0, \quad s_4 = 6$$

$$= 0, \quad s_4 = 6$$

Verifico soluzione ottima

Figura B.40: Il grafo conferma la soluzione ottima in (12,4)

Analisi di sensitività

Fino a che b_2 non tale per cui il vincolo II supera il punto di ottimo 9, quindi b_2 non modifica la base ottima sino a:

$$b_{2_{min}} = -1(12) + 3(4) = 0$$

Problema duale con scarti complementari

$$\min 16y_1 + 31y_2 + 64y_3 + 2y_4$$
$$y_1 - y_2 + 5y_3 + y_4 \ge 1$$
$$y_1 + 3y_2 + y_3 - y_4 \ge -2$$
$$y_1, y_2, y_3, y_4 \in \mathbb{R}$$

Figura B.41: Problema duale

Costruisco il sistema degli scarti complementari:

$$\begin{cases} y_1(x_1 + x_2 - 16) = 0 \\ y_2(-x_1 + 3x_2 - 32) = 0 \\ y_3(5x_1 + x_2 - 64) = 0 \\ y_4(x_1 - x_2 - 2) = 0 \\ x_1(y_1 - y_2 + 5y_3 + y_4 - 1) = 0 \\ x_2(y_1 + 3y_2 + y_3 - y_4 + 2) = 0 \end{cases} \Rightarrow \begin{cases} y_2 = 0 \\ y_4 = 0 \\ y_1 + 5y_3 - 1 = 0 \\ y_1 + 5y_3 - 1 = 0 \end{cases} \Rightarrow \begin{cases} y_2 = 0 \\ y_4 = 0 \\ y_1 = 1 - 5y_3 \Rightarrow y_1 = 1 - \frac{15}{4} \Rightarrow y_1 = -\frac{11}{4} \\ 1 - 5y_3 + y_3 + 2 = 0 \Rightarrow 4y_3 = 3 \Rightarrow y_3 = \frac{3}{4} \end{cases}$$

La soluzione ottima del problema duale risulta essere:

$$z = z_D = 4$$

$$y_1 = -\frac{11}{4}$$

$$y_2 = 0$$

$$y_3 = \frac{3}{4}$$

$$y_4 = 0$$

B.10.3 Esercizio 2

Si consideri il seguente tableau di minimo:

В	E	D	4	-1
0	-8	1	-1	4
1	\boldsymbol{A}	C	6	F

Tabella B.1: Tableau esercizio 2

- a) Si dica per quali valori dei parametri il tableau è in forma canonica.
- b) Per quali dei parametri rimanenti il tableau corrisponde a:

Un problema con ottimo finito.

Una soluzione non ottima e degenere.

Un problema illimitato.

B.10.4 Soluzione esercizio 2

Forma canonica

Le uniche colonne che possono essere variabili in base son quelle indicate dai parametri B e D, che devono quindi essere zero, e le colonne devono formare una matrice identità. La base scelta, quindi, per essere ammissibile, deve essere tale che $\tilde{b} = B^{-1}b \ge 0$, quindi $F \ge 0$.

0	E	0	4	-1
0	-8	1	-1	4
1	A	0	6	F

Tabella B.2: Forma canonica

Problema con ottimo finito

Un problema è limitato se non esistono variabili fuori base per cui coefficiente di costo e coefficienti sono negativi. Risulta quindi sufficiente dare valore non negativo a *E* o *A* od entrambi. In particolare, dando valore non negativo ad *E* si garantisce per il **criterio di ottimalità** che la soluzione data è ottima.

Soluzione non ottima e degenere

Una soluzione è degenere quando una dei termini del vettore \tilde{b} è pari a zero, quindi F=0. Non è possibile definire quando una base degenere è ottima.

Problema illimitato

Se, per una variabile fuori base x_k si ha \tilde{A}_k e coefficiente di costo ridotto per k negativo, allora il problema è illimitato inferiormente, per cui:

$$E < 0 \quad \land \quad A < 0$$

B.10.5 Esercizio 3

Si risolva mediante un algoritmo di Branch & Bound il problema di zaino definito dai seguenti dati:

$$\underline{\boldsymbol{p}} = \begin{bmatrix} 16 \\ 14 \\ 12 \\ 9 \\ 10 \end{bmatrix} \qquad \underline{\boldsymbol{w}} = \begin{bmatrix} 10 \\ 8 \\ 6 \\ 5 \\ 7 \end{bmatrix} \qquad b = 18$$
(c) Capacita

(a) Profitti

Si utilizzi come rilassamento quello lineare, risolto mediante un opportuno algoritmo. Si rinominino gli indici delle variabili in base allordinamento ricavato.

Si adotti una strategia di esplorazione Depth First e si esplori per primo, ad ogni livello, il ramo dellalbero di branching associato al vincolo xi = 1, dove la variabile di branching xi e quella che assume un valore frazionario nel rilassamento lineare.

Si noti inoltre che una variabile libera puo venir fissata a zero qualora la capacita residua dello zaino sia strettamente minore del suo peso.

Si riporti a fianco l'albero di branching. Per ogni nodo si riportino: il suo numero progressivo, i (partendo dal valore 0 del nodo radice), il valore UB_i ed il vettore con il corrispondente valore delle variabili.

B.10.6 Risoluzione esercizio 3

Costruisco modello

$$\max_{x} z = \underline{\boldsymbol{p}}^{T} \underline{\boldsymbol{x}}$$

$$\underline{\boldsymbol{w}}^{T} \underline{\boldsymbol{x}} \leq b$$

$$x_{i} \in \{0, 1\} \, \forall x$$

Figura B.43: Modello dello zaino

Rilassamento lineare del modello

$$\max_{x} z = \underline{\boldsymbol{p}}^{T} \underline{\boldsymbol{x}}$$

$$\underline{\boldsymbol{w}}^{T} \underline{\boldsymbol{x}} \leq b$$

$$x_{i} \in [0, 1] \ \forall x$$

Figura B.44: Rilassamento lineare

Inizio algoritmo di Branch & Bound

- 1. Ordino gli oggetti per valori non crescendi del rapporto $\frac{profitto}{volume}$
- 2. Associo all'oggetto j-esimo il livello j-esimo dell'albero.
- 3. Al livello *j* del ramo, genero due problemi figli:

Primo: impongo che l'oggetto j - esimo sia inserito.

Secondo: impongo che l'oggetto j - esimo non sia inserito.

4. La regola di esplorazione è deep-first

Prima di tutto calcolo la fitness per ogni oggetto:

$$f(x_{1}) = {}^{16}/{}_{10} = 1.6 \qquad x'_{1} = x_{3} \qquad \begin{bmatrix} 12 \\ 9 \\ 14 \\ 16 \\ 10 \end{bmatrix}$$

$$f(x_{2}) = {}^{14}/{}_{8} = 1.75 \qquad x'_{2} = x_{4} \qquad [9]{}_{14} \qquad [18]{}_{10} = [18]{}_{10} \qquad [18]{}_{10} = [18]{}_{1$$

Figura B.45: Riordino gli oggetti

Identifico **l'oggetto critico** al nodo radice, cioè l'oggetto il cui peso supera il limite massimo dello zaino: $6+5+8>b\rightarrow=3$. Identifico **l'upperbound di Dantzig** della radice, cioè il valore definito come:

$$U = \left| \sum_{j=1}^{s-1} p_j + \tilde{c} \frac{p_s}{w_s} \right|$$

Figura B.46: Upperbound di Danzig

In questo caso U = 33.

La soluzione ottima ottenuta risulta essere quindi: $\underline{x} = [1, 1, 0, 0, 1]$, con z = 31.

B.11 Esame del 05/09/2016

B.11.1 Esercizio 1

Dato il seguente problema di PL:

$$\max z = x_1 + x_2$$

$$x_1 - 3x_2 \le 9$$

$$-x_1 - 3x_2 \ge 6$$

$$x_1 - x_2 \ge 0$$

$$x_1 \le 1$$

$$x_1 \in \mathbb{R}$$

$$x_2 \le 0$$

Figura B.47: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello.
- 2. Si ricavi per via grafica per quali valori di c_1 , ora pari a 1, la **composizione** della base ottima non cambia.
- 3. Si risolva mediante gli scarti complementari il duale del problema.

B.11.2 Soluzione esercizio 1

Identifico soluzione ottima

Figura B.48: Vertice ottimo del problema

Riporto variabili

$$z = -\frac{4}{3}$$
, $x_1 = 1$, $x_2 = -\frac{7}{3}$, $s_1 = 1$, $s_2 = 0$, $s_3 = \frac{10}{3}$, $s_4 = 0$

Determino il valore di c_1

Il vertice verso cui posso spostarmi abbassando il valore di c_1 è quello identificato dall'intersezione di v_3 e v_2 .

Il vertice più "vicino" alla posizione ottima non potrebbe mai diventare soluzione ottima a sua volta perché la x_1 rimane costante a 1 mentre la x_2 peggiora.

Non esiste un limite superiore a cui posso portare c_1 che modifichi la soluzione ottima.

Costruisco quindi l'equazione per determinare il valore minimo a cui può variare c_1 :

$$c_1 - \frac{7}{3} = -\frac{3}{2}c_1 - \frac{3}{2} \Rightarrow c_1 = \frac{1}{3}$$

(a) Determino il valore massimo dell'utilità c_1

(b) Sostituendo $c_1 \le \frac{1}{3}$ la soluzione ottima si sposta in $\underline{x} = (-\frac{3}{2}, -\frac{3}{2})$

Figura B.49: Analisi di sensitività

Costruisco problema duale

$$\min 9y_1 + 6y_2 + y_4$$

$$y_1 - y_2 + y_3 + y_4 = 1$$

$$-3y_1 - 3y_2 - y_3 \le 0$$

$$y_1, y_4 \ge 0$$

$$y_2, y_3 \le 0$$

Scarti complementari

$$\begin{cases} y_1(x_1 - 3x_2 - 9) = 0 \\ y_2(6 + x_1 + 3x_2) = 0 \\ y_3(x_2 - x_1) = 0 \\ y_4(x_1 - 1) = 0 \\ x_1(y_1 - y_2 + y_3 + y_4 - 1) = 0 \\ x_2(-1 - 3y_1 - 3y_2 - y_3) = 0 \end{cases} \Rightarrow \begin{cases} y_1 = 0 \\ y_3 = 0 \\ -y_2 + y_4 - 1 = 0 \Rightarrow y_1 = 1 - \frac{1}{3} = \frac{2}{3} \\ y_2 = -\frac{1}{3} \end{cases}$$

Sostituisco nella funzione obbiettivo e verifico che $z = z_D = -\frac{4}{3}$.

B.12 Esame del 16/11/2016

B.12.1 Esercizio 1

Dato il seguente problema di PL, si risolva graficamente e si ottenga il valore della soluzione ottima e di tutte le variabili di scarto. Si ricavi, per via grafica, per quali valori di c_2 , inizialmente pari a -1, la **composizione** della base ottima non cambia.

$$\max z = 2x_1 - x_2$$

$$x_1 + 2x_2 \le 4$$

$$2x_1 + x_2 \ge 2$$

$$x_1 - 2x_2 \le 6$$

$$x_1 \ge 0$$

$$x_2 \in \mathbb{R}$$

Figura B.50: Esercizio 1

B.12.2 Soluzione esercizio 1

Disegno l'area di definizione del problema

(b) Regione di definizione del problema

Identifico il punto di massimo

Il punto di massimo si trova all'intersezione tra primo e terzo vincolo:

$$\begin{cases} x_1 + 2x_2 = 4 \\ x_1 - 2x_2 = 6 \end{cases} \Rightarrow \begin{cases} x_2 = -\frac{1}{2} \\ x_1 = 5 \end{cases}$$

$$z = \frac{21}{2}$$
, $x_1 = 5$, $x_2 = -\frac{1}{2}$, $s_1 = 0$, $s_2 = -\frac{15}{2}$, $s_3 = 0$

Analisi di sensitività

Al variare di c_2 posso spostare la soluzione ottima da $\left(5, -\frac{1}{2}\right)$ negli altri due vertici:

Sposto soluzione ottima in (2, -2):

$$2(2) + c_2(-2) = 2(5) + c_2(-\frac{1}{2}) \Rightarrow c_2 = -4$$

Sposto soluzione ottima in (0,2)**:**

Figura B.52: Analisi di Sensitività

Problema duale

$$\min z_D = 4y_1 + 2y_2 + 6y_3$$

$$y_1 + 2y_2 + y_3 \ge 2$$

$$2y_1 + y_2 - 2y_3 = -1$$

$$y_1, y_3 \ge 0$$

$$y_2 \le 0$$

Scarti complementari

$$\begin{cases} x_1(y_1 + 2y_2 + y_3 - 2) = 0 \\ x_2(2y_1 + y_2 - 2y_3 + 1) = 0 \\ y_1(x_1 + 2x_2 - 4) = 0 \\ y_2(2x_1 + x_2 - 2) = 0 \\ y_3(x_1 - 2x_2 - 6) = 0 \end{cases} \Rightarrow \begin{cases} y_1 + y_3 - 2 = 0 \\ 2y_1 - 2y_3 + 1 = 0 \\ y_2 = 0 \end{cases} \Rightarrow \begin{cases} y_1 = 2 - y_3 \\ 2(2 - y_3) - 2y_3 + 1 = 0 \\ y_2 = 0 \end{cases} \Rightarrow \begin{cases} y_1 = 2 - y_3 \Rightarrow \frac{3}{4} \\ y_2 = 0 \end{cases}$$

Verifico la soluzione ottima del duale: $z = z_D = \frac{21}{2}$

B.13 Esame del 24/01/2017

B.13.1 Esercizio 1

Dato il seguente problema di PL, si risolva graficamente e si ottenga il valore della soluzione ottima e di tutte le variabili di scarto.

Vi sono vertici ammissibili ai quali corrispondono basi degeneri?

Si ricavi, per via grafica, per quali valori di b_3 , inizialmente pari a -1, la **composizione** della base ottima non cambia.

$$\max -x_1 + x_2$$

$$-x_1 - x_2 \le -2$$

$$-x_1 + 3x_2 \le 6$$

$$-2x_1 + x_2 \le -1$$

$$4x_1 - x_2 \le 20$$

$$2x_1 + x_2 \le 16$$

$$x_1, x_2 \ge 0$$

Figura B.53: Esercizio 1

B.13.2 Soluzione esercizio 1

Disegno l'area di definizione del problema

(b) Regione di definizione del problema

Identifico la soluzione ottima

Dall'area di definizione e dalla composizione della funzione si intuisce che il vincolo ottimo sarà quello con x_1 minimo e x_2 massimo. Procedo quindi a calcolare il valore assunto da x_1 e x_2 nell'intersezione tra il vincolo 2 e 3:

$$\begin{cases} -x_1 + 3x_2 = 6 \\ -2x_1 + x_2 = -1 \end{cases} \Rightarrow \begin{cases} -x_1 + 3(2x_1 - 1) = 6 \\ x_2 = 2x_1 - 1 \end{cases} \Rightarrow \begin{cases} 5x_1 - 3 = 9 \Rightarrow x_1 = \frac{9}{5} \\ x_2 = 2x_1 - 1 \Rightarrow x_2 = \frac{18 - 5}{5} = \frac{13}{5} \end{cases}$$

La soluzione ottima si trova nel vertice tra il vincolo 2 e 3 in $(\frac{9}{5}, \frac{13}{5})$ ed ha valore $z = \frac{13}{5} - \frac{9}{5} = \frac{4}{5}$.

$$z = \frac{4}{4}$$
, $x_1 = \frac{9}{5}$, $x_2 = \frac{13}{5}$, $s_1 = \frac{12}{5}$, $s_2 = 0$, $s_3 = 0$, $s_4 = \frac{49}{5}$

Identifico basi degeneri

Una base è degenere quando in un vertice sono attivi più vincoli delle variabili esistenti. In questo caso, nel punto (6,4) sono attivi 3 vertici.

Analisi di sensitività

Modifica il valore di b_3 significa traslare il vincolo 3, che è uno dei due che definisce il punto di ottimo $(\frac{9}{5}, \frac{13}{5})$. Non è pertanto possibile alterare il valore di b_3 senza modificare il valore ottimo.

Per quanto riguarda la composizione della base ottima, essa rimane invariata tra $b_{3_{max}}$ dove il vincolo v_3 incontra il vincolo v_1 nel punto (0,2) e $b_{3_{min}}$ dove il vincolo v_3 incrocia v_4 nel punto (6,4). Per calcolare il valore assunto da b_3 nei due punti di interesse è sufficiente sostituire i punti nella disequazione del vincolo.

$$b_{3_{max}} = -2(0) + 1(2) = 2$$
 $b_{3_{min}} = -2(6) + 1(4) = -8$

B.13.3 Esercizio 2

Dato il seguente problema di PL, calcolare il duale, verificare mediante **scarti complementari** se $x = (0,0,3,\frac{1}{2})$ è ottima e riportare il vettore della soluzione duale corrispondente.

min
$$2x_1 + 5x_2 + x_3 + x_4$$

 $x_1 - x_2 + x_3 = 3$
 $x_1 + x_3 + 2x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Figura B.55: Esercizio 2

B.13.4 Soluzione esercizio 2

Problema duale

- 1. Pè un problema di minimo, quindi D sarà di massimo.
- 2. La z di P è in funzione di 4 variabili, quindi D avrà 4 vincoli.
- 3. P ha 2 vincoli di uguaglianza, per cui D avrà due variabili libere $\omega_1, \omega_2 \in \mathbb{R}$ in segno o 4 accoppiate positive $\omega_1 = y_1 y_2, \omega_2 = y_3 y_4, \operatorname{con} y_1, y_2, y_3, y_4 \ge 0$.

$$\begin{array}{llll} \max & 3\omega_1 + 4\omega_2 & \max & 3(y_1 - y_2) + 4(y_3 - y_4) \\ & \omega_1 + \omega_2 \leqslant 2 & (y_1 - y_2) + (y_3 - y_4) \leqslant 2 \\ & -\omega_1 \leqslant 5 & -(y_1 - y_2) \leqslant 5 \\ & \omega_1 + \omega_2 \leqslant 1 & (y_1 - y_2) + (y_3 - y_4) \leqslant 1 \\ & 2\omega_2 \leqslant 1 & 2(y_3 - y_4) \leqslant 1 \\ & \omega_1, \omega_2 \in \mathbb{R} & y_1, y_2, y_3, y_4 \geqslant 0 \end{array}$$

(a) Duale con variabili libere

(b) Duale con variabili positive

Figura B.56: Problema duale

Scarti complementari

$$\omega_{1}(x_{1}-x_{2}+x_{3}-3)=0$$

$$\omega_{2}(x_{1}+x_{3}+2x_{4}-4)=0$$

$$\omega_{2}(x_{1}+x_{3}+2x_{4}-4)=0$$

$$\omega_{2}(0+3+2\frac{1}{2}-4)=0$$

$$\omega_{1}(\omega_{1}+\omega_{2}-2)=0$$

$$\omega_{1}(\omega_{1}+\omega_{2}-2)=0$$

$$\omega_{1}(\omega_{1}+\omega_{2}-2)=0$$

$$\omega_{1}=\frac{1}{2}$$

$$\omega_{2}=\frac{1}{2}$$

$$\omega_{2}=\frac{1}{2}$$

$$\omega_{2}=\frac{1}{2}$$

$$\omega_{3}(\omega_{1}+\omega_{2}-1)=0$$

$$\omega_{4}(2\omega_{2}-1)=0$$
(c) Semplifico

(a) Imposto sistema

(b) Sostituisco i valori della soluzione

Figura B.57: Scarti complementari

Il sistema ha soluzione, per cui la soluzione proposta $x = (0,0,3,\frac{1}{2})$ è ottima.

Vettore della soluzione duale in corrisponsenza dell'ottimo

Indico le variabili di *slack* dei 4 vincoli come s_1 , s_2 , s_3 e s_4 :

$$\omega_1 = \frac{1}{2}$$

$$\omega_2 = \frac{1}{2}$$

$$s_1 = 1$$

$$s_2 = -\frac{9}{2}$$

$$s_3 = 0$$

$$s_4 = 0$$

Verifico le soluzioni ottenute

Non potendo plottare il grafico di ${\cal P}$ essendo in 4 variabili vado a disegnare il duale.

(a) La funzione z del problema D

Nel grafico duale appare $(\frac{1}{2},\frac{1}{2})$ come soluzione ottima.

B.13.5 Esercizio 3

Dato il seguente problema di PI e una base formata dalle variabili x_2 , x_3 , si ricavi il vettore dei coefficienti a costo ridotto delle variabili fuori base e si verifichi che la soluzione corrispondente alla base data è ottima per il rilassamento lineare del problema.

Si ricavi il taglio di Gomory relativo al primo vincolo.

$$\min z = 7x_1 + x_2 - 3x_3 - 4x_4$$
$$-3x_1 + 3x_3 + 2x_4 = 1$$
$$x_1 + x_2 + 2x_3 - x_4 = 1$$
$$\underline{x} \ge \underline{0}, \underline{x} \in \mathbb{Z}^4$$

Figura B.59: Esercizio 3

B.13.6 Soluzione esercizio 3

Calcolo i coefficienti di costo ridotto

$$B = \begin{bmatrix} 0 & 3 \\ 1 & 2 \end{bmatrix} \qquad F = \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$$
$$B^{-1} = \frac{1}{3} \begin{bmatrix} -2 & 3 \\ 1 & 0 \end{bmatrix}$$

Definizione B.13.1 (CCR fuori base). Il **vettore dei coefficienti di costo ridotto per le variabili fuori base** si calcola tramite il prodotto B.60, dove \underline{c}_F è il vettore dei costi fuori base, \underline{c}_B è il vettore dei costi in base, B è la base, B è la matrice dei vincoli restante tolta la base B.

$$CCR = \underline{\boldsymbol{c}}_F^T - \underline{\boldsymbol{c}}_B^T \boldsymbol{B}^{-1} F$$

Figura B.60: Vettore dei coefficienti di costo ridotto fuori base

Definizione B.13.2 (Base ottima). Una base B è **ottima** quando il vettore dei coefficienti di costo ridotto per le variabili fuori base è ≥ 0 nel caso di problemi di minimo o ≤ 0 nel caso di problemi di massimo.

$$CCR = \begin{bmatrix} 7 & -4 \end{bmatrix} - \begin{bmatrix} 1 & -3 \end{bmatrix} \begin{pmatrix} \frac{1}{3} \begin{bmatrix} -2 & 3 \\ 1 & 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{3} \end{bmatrix}$$

Si tratta di un problema di minimo, per cui controllo se il vettore dei coefficienti di costo per le variabili fuori base è maggiore del vettore $\underline{\mathbf{0}}$.

Tutti i valori sono positivi, pertanto la base è ottima.

Taglio di Gomory

Definizione B.13.3 (**Taglio di Gomory**). Si tratta di un metodo per determinare un piano di taglio per qualsiasi problema di PI a partire dalla soluzione ottima del corrispondente rilassamento lineare.

$$x_h + \sum \lfloor a_{ij} \rfloor x_j \le \lfloor b_i \rfloor \qquad \qquad \sum (a_{ij} - \lfloor a_{ij} \rfloor) x_j \ge b_i - \lfloor b_i \rfloor$$

(a) Taglio di Gomory con resto in variabile x_h

(b) Taglio di Gomory in forma di differenza (nota \geqslant) per vincolo i-esimo

Definizione B.13.4 (Forma canonica). Dato un problema di *PL*:

$$z = \underline{c}^T \underline{x}$$
$$Ax = \underline{b}$$

(a) Forma a equazioni del problema di PL

(b) Forma a tableau del problema di PL

Considerata una base B e partizionando A in due sottomatrici $A = \begin{bmatrix} B & F \end{bmatrix}$ viene chiamata forma canonica del problema di PL la forma B.63a ottenuta sostituendo $\underline{\boldsymbol{x}}_B$ (cioè le variabili in base) tramite l'equazione $\underline{\boldsymbol{x}}_B = \boldsymbol{B}^{-1}\underline{\boldsymbol{b}} - \boldsymbol{B}^{-1}F\underline{\boldsymbol{x}}_F$, cioè premoltiplicando per l'inversa della matrice di base B.

$$z = \underline{c}_B^T B^{-1} \underline{b} + (\underline{c}_F^T - \underline{C}_B^T B^{-1} F) \underline{x}_F$$
$$I \underline{x}_B + B^{-1} F \underline{x}_F = B^{-1} \underline{b}$$

<u>0</u>	$\underline{\boldsymbol{c}}_F^T - \underline{\boldsymbol{C}}_B^T \boldsymbol{B}^{-1} F$	$-\underline{\boldsymbol{c}}_{B}^{T}\boldsymbol{B}^{-1}\underline{\boldsymbol{b}}$
Ι	$B^{-1}F$	$B^{-1} \underline{m b}$

 $\begin{array}{|c|c|c|c|c|} \hline {\bf \underline{0}} & {\rm CCR \, fuori \, base} & \tilde{c}_{\underline{\bf 0}} \\ \hline \\ I & \tilde{F} & & \underline{\tilde{\bf b}} \\ \hline \end{array}$

(a) Forma a equazioni del problema di PL

(b) Forma a tableau del problema di PL

(c) Forma a tableau in termini canonici

Costruisco la forma canonica del sistema:

$$\tilde{c}_{\underline{0}} = -\underline{c}_{B}^{T} B^{-1} \underline{b} = -\begin{bmatrix} 1 & -3 \end{bmatrix} \begin{pmatrix} \frac{1}{3} \begin{bmatrix} -2 & 3 \\ 1 & 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{10}{3}$$

$$\tilde{F} = B^{-1} F = \frac{1}{3} \begin{bmatrix} -2 & 3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & -7 \\ -3 & 2 \end{bmatrix}$$

$$\tilde{b} = B^{-1} \underline{b} = \frac{1}{3} \begin{bmatrix} -2 & 3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \end{bmatrix}$$

$$\frac{x_{2} \quad x_{3} \quad x_{1} \quad x_{4} \quad \tilde{b}}{0 \quad 0 \quad 1 \quad 1/3 \quad 10/3}$$

$$\frac{x_{2} \quad x_{3} \quad x_{1} \quad x_{4} \quad \tilde{b}}{0 \quad 0 \quad 1 \quad 1/3 \quad 10/3}$$

$$\frac{x_{3} \quad x_{1} \quad x_{4} \quad \tilde{b}}{0 \quad 1 \quad -1 \quad 2/3 \quad 1/3}$$

Figura B.64: Tableau in forma canonica

Applico la formula del taglio di Gomory (formula B.61b) al primo vincolo, evidenziato in verde:

$$(1-1)x_2 + (0)x_3 + (\frac{4}{3} - 1)x_1 + (-\frac{7}{3} + 3)x_4 \ge \frac{1}{3} - \left\lfloor \frac{1}{3} \right\rfloor$$
$$\frac{1}{3}x_1 + \frac{2}{3}x_4 \ge \frac{1}{3}$$

Il taglio di Gomory risulta quindi:

$$\frac{1}{3}x_1 + \frac{2}{3}x_4 \ge \frac{1}{3}$$

(g) Quote produzione per prodotto

B.13.7 Esercizio 4

Un caseificio vuole pianificare la produzione settimanale di burro (B), ricotta (R), mozzarella (M), sapendo che la domanda massima è rispettivamente di 230, 150, 140Kg alla settimana e che il prezzo di vendita è rispettivamente di 3,5,8 $^{euro}/\kappa_g$.

In una settimana sono disponibili fino a 45 ore-macchina per la produzione e fino a 450 litri di latte, al costo di $0.5^{euro}/litro$. Per produrre 1Kg di burro, ricotta o mozzarella, servono rispettivamente 5,2,4Kg di latte, mentre le quote di produzione (il numero di Kg che sarebbe prodotto in un'ora se tutte le macchine fossero utilizzate per un solo tipo di prodotto) sono rispettivamente di 15,6,11Kg. Come deve produrre settimanalmente il caseificio per massimizzare i profitti?

Come cambia il modello se il caseificio deve scegliere in alternativa (o l'uno o l'altro) fra due tipi di mozzarella, quella sopra descritta, (M), e un tipo (M_1) caratterizzata da una domanda pari a 120Kg, un prezzo di vendita di $9^{euro}/\kappa_g$, una richiesta di 4,5Kg di latte per ogni Kg di prodotto finito ed una quota di produzione di 12Kg?

Si deve formulare (non risolvere) il problema, definendo le variabili, la funzione obiettivo, i vincoli.

(e) Prezzo di vendita

B.13.8 Soluzione esercizio 4

(d) Domanda dei prodotti

Identifico i dati

Figura B.65: Dati del problema

(f) Latte per kg di prodotto

Identifico le variabili

Le variabili sono le quantità di prodotto per questa settimana, in *Kg*:

$$\underline{\boldsymbol{x}} = \begin{bmatrix} x_{1=burro} \\ x_{2=ricotta} \\ x_{3=mozzarella} \end{bmatrix}, \quad \underline{\boldsymbol{x}} \in \mathbb{R}^3_{>0}$$

Identifico la funzione obbiettivo

Se si intende massimizzare i profitti, la funzione obbiettivo sarà il ricavato meno i costi:

$$\max_{\boldsymbol{x}} z = \underline{\boldsymbol{p}}^T \underline{\boldsymbol{x}} - c_l \underline{\boldsymbol{l}}^T \underline{\boldsymbol{x}}$$

Figura B.66: Funzione obbiettivo

Identifico i vincoli del problema

$$\sum_{i=1}^{\left\|\underline{x}\right\|} \frac{x_i}{q_i} \le T$$

$$\underline{\boldsymbol{l}}^T \underline{\boldsymbol{x}} \le L$$
 (b) Vincolo su latte totale (c) Vincolo su domanda (a) Vincolo ore macchina

Modello

$$\begin{aligned} \max_{\underline{x}} z &= \underline{\boldsymbol{p}}^T \underline{\boldsymbol{x}} - c_l \underline{\boldsymbol{l}}^T \underline{\boldsymbol{x}} \\ \text{s.v} & \sum_{i=1}^{\|\underline{x}\|} \frac{x_i}{q_i} \leq T \\ & \underline{\boldsymbol{l}}^T \underline{\boldsymbol{x}} \leq L \\ & \underline{\boldsymbol{x}} \leq \underline{\boldsymbol{d}} \end{aligned}$$

Modifiche al modello

Si aggiunge ad ogni vettore il rispettivo nuovo valore del prodotto M_1 e si aggiunge un vincolo di mutua esclusività, aggiungendo un vettore binario definito come:

$$y_i \in \underline{y}, \quad y_i : \begin{cases} 1 & x_i > 0 \\ 0 & \text{altr.} \end{cases}$$

$$y_3 + y_4 \le 1$$

Modello modificato

$$\max_{\underline{x}} z = \underline{\boldsymbol{p}}^T \underline{\boldsymbol{x}} - c_l \underline{\boldsymbol{l}}^T \underline{\boldsymbol{x}}$$
s.v
$$\sum_{i=1}^{\|\underline{x}\|} \frac{x_i}{q_i} \leq T$$

$$\underline{\boldsymbol{l}}^T \underline{\boldsymbol{x}} \leq L$$

$$\underline{\boldsymbol{x}} \leq \underline{\boldsymbol{d}}$$

$$y_3 + y_4 \leq 1$$

B.14 Esame del 23/01/2018

B.14.1 Esercizio 1

Dato il seguente problma di PL:

$$\max z = x_1 + x_2$$

$$x_1 + x_2 \le 7$$

$$x_1 - x_2 \ge 0$$

$$x_1 + 2x_2 \ge 2$$

$$x_1 \le 4$$

$$x_1, x_2 \ge 0$$

Figura B.68: Esercizio 1

- 1. Si disegni la regione ammissibile e si evidenzi il vertice ottimo per via grafica, riportando il valore di z e di tutte le variabili del modello.
- 2. Quale caratteristica ha la soluzione così ottenuta?
- 3. Si ricavi per via grafica per quali valori di b_3 , ora pari a 2, la **composizione** della base ottima non cambia.
- 4. Si risolva mediante gli scarti complementari il duale del problema.

B.14.2 Soluzione esercizio 1

Identifico soluzione ottima

(a) Tutti i punti sul vertice tra (3.5, 3.5) e (4, 3) sono ottimi

(b) Regione di ammissibilità del problema

Il piano $z = x_1 + x_2$ è inclinato come il vincolo $x_1 + x_2 \le 7$, per cui vi sono infinite soluzioni di massimo tra il vertice in (3.5, 3.5) ed il vertice in (4,3).

Posso scegliere quindi, **arbitrariamente**, uno dei vertici ottimi. Procedo scegliendo $\underline{x} = \begin{bmatrix} 4 & 3 \end{bmatrix}$.

Determino le variabili

N.B: Le variabili di slack non possono mai essere negative.

$$z = 7$$
, $x_1 = 4$, $x_2 = 3$, $s_1 = 0$, $s_2 = 1$, $s_3 = 8$, $s_4 = 0$

Caratteristiche della soluzione

La soluzione ha la caratteristiche di essere un ottimo multiplo, cioè sussistono più vertici ottimi nella regione ammissibile.

Valori di b_2

Per calcolare il valore di b_2 è sufficiente sostituire le coordinate del vertice ottimo considerato nel vincolo.

Considerando come vertice (4,3) si ottiene $b_2 = 10$ (figura B.70a) mentre considerando (3.5,3.5) si ottiene $b_2 = 10.5$ (figura B.70b).

Non esiste un valore inferiore di b_2 che va a variare la composizione della base ottima (figura B.70c).

Figura B.70: Regione ammissibile al variare di b_2

Scarti complementari

Costruisco il problema complementare:

$$\min z_D = 7y_1 + 2y_3 + 4y_4$$

$$y_1 + y_2 + y_3 + y_4 \ge 1$$

$$y_1 - y_2 + 2y_3 \ge 1$$

$$y_1, y_4 \ge 0$$

$$y_2, y_3 \le 0$$

Figura B.71: Problema complementare

Costruisco il problema degli scarti complementari:

$$\begin{cases} x_1(y_1 + y_2 + y_3 + y_4 - 1) = 0 \\ x_2(y_1 - y_2 + 2y_3 - 1) = 0 \\ y_1(x_1 + x_2 - 7) = 0 \\ y_2(x_1 - x_2) = 0 \\ y_3(x_1 + 2x_2 - 2) = 0 \\ y_4(x_1 - 4) = 0 \end{cases} \Rightarrow \begin{cases} y_1 = 1 \\ y_2 = 0 \\ y_3 = 0 \\ y_4 = 0 \end{cases}$$

La soluzione ottima del problema duale è $z=z_D=7$.

B.14.3 Esercizio 3

Risolvere il problema di programmazione intera con il rilassamento lagrangiano con moltiplicatori lagrangiani $\underline{\lambda} = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$

$$\max z = 15x_1 + 6x_2 + 16x_3$$

$$3x_1 + 2x_2 + 2x_3 \le 6$$

$$-x_1 + 3x_2 + 2x_3 \le 6$$

$$-x_1 + x_2 - 2x_3 \ge 1$$

$$x_1, x_2, x_3 \in \{0, 1\}$$

Figura B.72: Esercizio 3

B.14.4 Soluzione esercizio 3

$$L(\underline{x}) = \underline{c}^T \underline{x} - \underline{\lambda}^T (A\underline{x} - \underline{b})$$

$$L(\underline{x}) = 15x_1 + 6x_2 + 16x_3 - 2(3x_1 + 2x_2 + 2x_3 - 6) - 3(-x_1 + 3x_2 + 2x_3 - 6) + 4(-x_1 + x_2 - 2x_3 - 1)$$

$$= 8x_1 - 3x_2 - 2x_3 + 26$$

Il problema è di massimo e le variabili sono vincolate su $\underline{x} \in [0,1]$, quindi la soluzione ottima risulta $\underline{x} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, con $z_L = 34$.

B.14.5 Esercizio 4

Si consideri la rete sottostante in cui i valori sugli archi rappresentano le loro capacita:

- a) Determinare il flusso massimo da **s** e **t** inviando nelle prime due iterazioni 5 unità lungo i percorsi *s*, 3, 4, 2, *t* e *s*, 3, 4, 1, 2, *t*.
- b) Riportare i cammini aumentanti ed il corrispondente aumento di flusso.
- c) SI riporti sulla figura il valore del flusso massimo.
- d) Determinare il taglio minimo.
- e) Scegliere un insieme di archi e gli si associ un costo unitario di flusso in modo che la soluzione trovata non sia a costo minimo.

B.14.6 Soluzione esercizio 4

Step preliminare

Invio 5 unità lungo i due percorsi indicati.

Figura B.73: Preparazione preliminare richiesta

Procedo con algoritmo

Dallo stato corrente, procedo come segue:

Figura B.74: Procedo con algoritmo

Flusso massimo

Il flusso massimo è di 40 unità.

Taglio minimo

Il taglio minimo è di 40 unità. I due gruppi che divide sono (4, t) e (s, 1, 2, 3)

Figura B.75: Taglio minimo

Soluzione non a costo minimo

È sufficiente scegliere costi in modo tale da creare un ciclo a costo negativo, per esempio assegnando come costi $s \rightarrow 3:1000, s \rightarrow 1:1, 3 \rightarrow 1:1.$

Lista degli argomenti

Teorema Minkowsky-Weyl.			
Esistenza di un vertice ottimo.			
Teorema fondamentale della PL.			
Corollario: esistenza di soluzione ottima.			
Criterio di ottimalità della base.			
Regola di Bland.			
Teorema di convergenza del simplesso.			
Lemma di Farkas.			
Il duale del duale è primale.			
Teorema di dualità forte.			
Teorema di dualità debole.			
Condizioni di ottimalità.			
Matrici totalmente unimodulari.			
Definizione di TUM.			
Praticità di una TUM.			
Condizioni necessarie per TUM.			
Condizioni sufficienti per TUM.			
$Caratterizzazione \ dei \ lati \ di \ alberi \ ricoprenti \ di \ costo \ minimo.$			
Massimo flusso e taglio minimo.			
Arco saturo e scarico.			
Rete incrementale.			
Dualità debole per massimo flusso e taglio minimo.			
Dualità forte per massimo flusso e taglio minimo.			
Soluzione ottima per il massimo flusso.			

C.1 Teorema Minkowsky-Weyl

Teorema C.1.1 (Minkowsky-Weyl, forma sintetica). Ogni punto di un **politopo** si può ottenere come combinazione convessa dei suoi vertici.

C.2 Esistenza di un vertice ottimo

Teorema C.2.1 (Esistenza di un vertice ottimo). Se l'insieme P delle soluzioni ammissibili del problema di programmazione lineare min $\{\underline{c}^T\underline{x}:\underline{x}\in P\}$ è limitato, allora esiste almeno un vertice di P ottimo.

Sinossi: In ogni **politopo** con soluzione limitata esiste almeno un vertice ottimo.

 $Dimostrazione. \ \ \text{Siano} \ \underline{\boldsymbol{y}}_1, \dots, \underline{\boldsymbol{y}}_k \ \text{i vertici del politopo e sia} \ \boldsymbol{z}^* = \min \left\{\underline{\boldsymbol{c}}^T \underline{\boldsymbol{y}}_i, i = 1, \dots, k\right\}, \ \text{cioè il valore ottimo della funzione obbiettivo tra i vertici del politopo.}$

Per il **teorema di Minkowsky-Weil** (teorema C.1.1) posso descrivere $\underline{\boldsymbol{x}}$ come una combinazione convessa dei vertici $\underline{\boldsymbol{x}} = \sum_{i=1}^k \lambda_i \underline{\boldsymbol{y}}_i$

$$z = \underline{c}^{T} \underline{x}$$

$$z = \underline{c}^{T} \left(\sum_{i=1}^{k} \lambda_{i} \underline{y}_{i} \right)$$

$$z = \sum_{i=1}^{k} \lambda_{i} \underline{c}^{T} \underline{y}_{i}$$

$$\sum_{i=1}^{k} \lambda_{i} \underline{c}^{T} \underline{y}_{i} \ge \sum_{i=1}^{k} \lambda_{i} z^{*} = z^{*}$$

Iniziamo dalla funzione obbiettivo

Sostituisco a \underline{x} la comb. convessa equivalente

Sposto il coefficiente dei costi nella serie

 $\underline{\boldsymbol{c}}^T\underline{\boldsymbol{y}}$ è sempre maggiore o uguale alla soluzione ottima.

C.3 Teorema fondamentale della programmazione lineare

Teorema C.3.1 (**Teorema fondamentale della programmazione lineare**). Un punto \underline{x} è vertice di un **poliedro** non vuoto $P = \{\underline{x} \ge \underline{0} : A\underline{x} = \underline{b}\}$ se e solo se è anche una soluzione di base ammissibile del sistema $A\underline{x} = \underline{b}$.

$$\underline{x}$$
 vertice $\Leftrightarrow B^{-1}\underline{b} \ge 0$

C.s.: *Se un punto è SBA* \Rightarrow *è vertice.* Consideriamo una SBA \underline{x} con i primi $k \ge 0$ elementi positivi ed i successivi nulli. Queste prime k colonne di A, più eventuali altre nel caso di soluzione degenere, devono fare parte di B per l'ipotesi di SBA.

$$\underline{\boldsymbol{x}} = \begin{bmatrix} x_1, \dots, x_k, 0, \dots, 0 \end{bmatrix}^T$$

Supponiamo **per assurdo** che \underline{x} non sia un vertice. Allora è possibile costruire una combinazione convessa tra due punti distinti $y' \in P$ e $y'' \in P$, anch'essi con i primi k elementi positivi ed i successivi nulli:

$$\exists \underline{\boldsymbol{y}}' = \left[y_1', \dots, y_k', 0, \dots, 0\right]^T, \underline{\boldsymbol{y}}'' = \left[y_1'', \dots, y_k'', 0, \dots, 0\right]^T : \underline{\boldsymbol{x}} = \lambda \underline{\boldsymbol{y}}' + (1 - \lambda)\underline{\boldsymbol{y}}''$$

È possibile scrivere le equazioni:

$$\begin{cases} \mathbf{A}\underline{\mathbf{y}}' = \underline{\mathbf{b}} \\ \mathbf{A}\underline{\mathbf{y}}'' = \underline{\mathbf{b}} \end{cases} \Rightarrow \begin{cases} \underline{\mathbf{A}}_1 y_1' + \ldots + \underline{\mathbf{A}}_k y_k' = \underline{\mathbf{b}} \\ \underline{\mathbf{A}}_1 y_1'' + \ldots + \underline{\mathbf{A}}_k y_k'' = \underline{\mathbf{b}} \end{cases} \Rightarrow (y_1' - y_1'') \underline{\mathbf{A}}_1 + \ldots + (y_k' - y_k'') \underline{\mathbf{A}}_k = 0$$

Non tutte le coppie (y_i', y_i'') possono essere uguali, per cui, perché l'equazione sia pari a 0, le colonne $\underline{A}_1, \dots, \underline{A}_k$ devono essere linearmente dipendenti e non possono fare parte della base B, da cui l'assurdo.

C.n.: *Se un punto è vertice* \Rightarrow *è SBA*. Consideriamo un punto $x \in P$ vertice:

$$\underline{\boldsymbol{x}} = \begin{bmatrix} x_1, \dots, x_k, 0, \dots, 0 \end{bmatrix}^T$$

Supponiamo **per assurdo** che \underline{x} sia un vertice ma non una SBA. Allora le prime k colonne di A devono essere linearmente dipendenti. Ne segue che deve esistere una combinazione lineare tale che:

$$\sum_{i=1}^{k} \alpha_j \underline{\mathbf{A}}_j = 0$$

Allora è possibile scegliere uno scalare ϵ che consenta di costruire due punti distinti $y' \neq y''$ e ammissibili:

$$\exists \epsilon : \left\{ \frac{\underline{\boldsymbol{y}}' = \begin{bmatrix} x_1' + \epsilon \alpha_1, \dots, x_k' + \epsilon \alpha_k, 0, \dots, 0 \end{bmatrix}^T}{\underline{\boldsymbol{y}}'' = \begin{bmatrix} x_1' - \epsilon \alpha_1, \dots, x_k' - \epsilon \alpha_k, 0, \dots, 0 \end{bmatrix}^T} \quad \underline{\boldsymbol{y}}', \underline{\boldsymbol{y}}'' \in P \right\}$$

Ma questo significa che è possibile costruire il punto x come combinazione convessa di altri due punti appartenenti al poliedro:

$$\underline{\mathbf{x}} = \frac{1}{2}\underline{\mathbf{y}}' + \frac{1}{2}\underline{\mathbf{y}}''$$

Ma x, per ipotesi, è vertice, per cui non può essere ottenuto come combinazione di altri due punti del poliedro.

Corollario C.3.1.1 (Esistenza di soluzione ottima). Ogni problema di PL definito su un politopo non vuoto ha almeno una soluzione ottima che è soluzione di base ammissibile.

C.4 Criterio di ottimalità della base

Teorema C.4.1 (Criterio di ottimalità della base). Sia \boldsymbol{B} una base ammissibile. Se i coefficienti di costo ridotto (CCR) $\overline{\boldsymbol{c}}^T = \underline{\boldsymbol{c}}^T - \underline{\boldsymbol{c}}^T \boldsymbol{B}^{-1} \boldsymbol{A}$ sono *non negativi* allora la soluzione di base associata alla \boldsymbol{B} è *ottima*.

$$\underline{\overline{c}}^T \ge \underline{\mathbf{0}} \Rightarrow \underline{c}^T \underline{x} \ge \underline{c}_B^T B^{-1} \underline{b} \quad \forall \underline{x}$$

N.B. in presenza di degenerazione non è possibile fare affermazioni sull'ottimalità usando questo criterio.

Dimostrazione.

$$z = \underline{c}^{T} \underline{x}$$

$$\underline{c}^{T} \underline{x} = \overline{c}^{T} \underline{x} + \underline{c}_{B}^{T} B^{-1} A \underline{x}$$

$$\underline{c}^{T} \underline{x} = \overline{c}^{T} \underline{x} + \underline{c}_{B}^{T} B^{-1} \underline{b}$$

$$\underline{c}^{T} \underline{x} \geqslant \underline{c}_{B}^{T} B^{-1} \underline{b}$$

Inizio dalla funzione obbiettivo Sostituisco la definizione di CCR Sostituisco $A\underline{x} = \underline{b}$ Elimino $\overline{\underline{c}}^T$, termine positivo per ipotesi

C.5. REGOLA DI BLAND APPENDICE C. TEORIA

Regola di Bland

Teorema C.5.1 (Regola di Bland). Quando è lecito scegliere, preferire sempre la variabile x_i entrante o uscente con indice minimo (regola lessicografica).

Teorema di convergenza del simplesso

Teorema C.6.1 (Teorema di convergenza del simplesso). Usando la regola di Bland, l'algoritmo del simplesso converge in al più $\binom{n}{m}$ passi, cioè termina senza compiere cicli.

Dimostrazione. Per assurdo supponiamo che, applicando la regola di Bland, l'algoritmo compia dei cicli. Consideriamo il più piccolo tableau che genera una sequenza ciclica pur applicando la regola di Bland, cioè tutte le variabili, a turno, entrano ed escono di base: $B_1 \to B_2 \to \ldots \to B_k \to B_1$.

Consideriamo un tableau T e supponiamo che x_h entri in base e x_n esca. Perché questo avvenga deve essere valido che:

- 1. $\overline{\boldsymbol{b}} = \boldsymbol{0}$, altrimenti uscirei dal ciclo.
- 2. $\overline{c}_h < 0$, coefficiente che entra in base.
- 3. $\overline{c}_{B[i]}$, in base.
- 4. I rapporti $\left\{\frac{\overline{b}_j}{\overline{a}_{ih}}: \overline{a}_{ih} > 0\right\}$ sono tutti nulli, quindi uso la regola di Bland e scelgo il primo indice i tale per cui il coefficiente del vincolo \overline{a}_{ih} sia positivo.
- 5. $\overline{a}_{ih} \le 0$ e $\overline{a}_{th} > 0$ perché con la regola di Bland di scelga x_h .
 - (a) Le condizioni iniziali

	$x_{B[i]}$	x_h	x_n	
-z	0	\overline{c}_h	0	
	0	\overline{a}_{1h}	0	0
$x_{B[i]}$	1	\overline{a}_{ih}	0	0
$x_{B[t]=n}$	0	\overline{a}_{th}	1	0
	0	\overline{a}_{mh}	0	0

(b) Tableau iniziale T

Figura C.1: Condizioni iniziali di T

Considero ora \tilde{T} quando, dopo qualche iterazione, rientra in base x_n e quindi, siccome seguo la regola di Bland, \tilde{c}_n deve essere l'unico coefficiente di costo ridotto negativo.

La riga 0 di \tilde{T} è ottenibile come la riga 0 di T sommata a una combinazione lineare di righe di T (figura C.2a), quindi è possibile ottenere il coefficiente di costo ridotto \tilde{c}_n come una combinazione lineare dei coefficienti di vincolo (figura C.2b).

$$\tilde{T}_0 = T_0 + \sum_{i=1} \mu_i \, T_i$$

$$\tilde{c}_n = \overline{c}_n + \sum_{i=1}^m \mu_i \overline{a}_{in} = \overline{c}_n + \mu_t$$

$$\tilde{T}_0 = T_0 + \sum_{i=1}^m \mu_i T_i \qquad \qquad \tilde{c}_n = \overline{c}_n + \sum_{i=1}^m \mu_i \overline{a}_{in} = \overline{c}_n + \mu_t \qquad \qquad \tilde{c}_{B[i]} = \overline{c}_{B[i]} + \sum_{i=1}^m \mu_j a_{jB[i]} = \overline{c}_{B[i]} + \mu_i \operatorname{con} i \neq t$$

- (a) Comb. lin. della prima riga di \tilde{T}_0
- (b) Comb. lin. del CCN di base entrante \tilde{c}_n
- (c) Comb. lin. del CCN di base $\tilde{c}_{B[i]}$

Figura C.2: Combinazioni lineari

Ma \overline{c}_n in T è nullo e l'unico coefficiente di vincolo \overline{a}_{in} non nullo è \overline{a}_{in} che è pari a 1. Ne segue che il coefficiente della combinazione μ_t deve essere negativo se \tilde{c}_n deve essere negativo.

Anche i coefficienti di costo in base sono ottenibili tramite combinazioni lineari (figura C.2b).

Tutti i coefficienti $\tilde{c}_{B[i]}$, con $i \neq t$, devono essere non negativi poiché seguo la regola di Bland. $\overline{c}_{B[i]}$ è certamente nullo per la costruzione di T, in quanto è in base. Ne segue che μ_i deve essere non negativo.

Il coefficiente di costo ridotto della variabile x_h che viene rimossa dalla base deve essere positivo. Anche questo termine può essere ottenuto tramite una combinazione lineare di termini:

$$\tilde{c}_h = \overline{c}_h + \sum_{i=1, i \neq t}^m \mu_i \overline{a}_{ih} + \mu_t \overline{a}_{th}$$

Inizialmente avevamo scelto di inserire la variabile x_h in base poiché per la regola di Bland valeva che $\overline{a}_{ih} \le 0$, $i \ne t$, $\overline{a}_{th} > 0$ e $\overline{c}_h < 0$.

In base alle relazioni C.2b e C.2c, risulta che \tilde{c}_h deve essere strettamente negativo, mentre, siccome viene rimossa dalla base la variabile x_h , \tilde{c}_h dovrebbe essere non negativo, da cui l'assurdo.

C.7. LEMMA DI FARKAS APPENDICE C. TEORIA

C.7 Lemma di Farkas

Teorema C.7.1 (Lemma di Farkas). La disuguaglianza $\underline{c}^T\underline{x} \ge c_0$ è valida per il **poliedro** non vuoto $P = \{\underline{x} \ge \underline{\mathbf{0}} : A\underline{x} = \underline{\mathbf{b}}\}$ se e solo se esiste $\underline{u} \in \mathbb{R}^m$ tale che:

 $\underline{\boldsymbol{c}}^T\underline{\boldsymbol{x}} \geq c_0 \Leftrightarrow \exists \underline{\boldsymbol{u}} = \underline{\boldsymbol{c}}_B^T\boldsymbol{B}^{-1} \in \mathbb{R}^m : \underline{\boldsymbol{c}}^T \geq \underline{\boldsymbol{u}}^T\boldsymbol{A} \wedge \underline{\boldsymbol{u}}^T\underline{\boldsymbol{b}} \geq c_0$

Applicazione: Se un problema primale definito su un **poliedro** non vuoto ha soluzione limitata, allora il suo problema duale deve ammettere una soluzione limitata.

C.s.: Se il duale è limitato \Rightarrow il primale è limitato.

 $\underline{c}^{T} \ge \underline{u}^{T} A$ Iniziamo dalla regione ammissibile del duale $\underline{c}^{T} \underline{x} \ge \underline{u}^{T} A \underline{x}$ Moltiplichiamo ambo i termini per $\underline{x} \ge \underline{0}$ $\underline{c}^{T} \underline{x} \ge \underline{u}^{T} \underline{b} \ge c_{0}$ Sostituisco $A\underline{x} = \underline{b}$

C.n.: Se il primale è limitato \Rightarrow il duale è limitato. Dalle ipotesi il problema ha soluzione limitata, allora per il **teorema di convergenza del simplesso** esiste una SBA ottenibile in tempo finito con l'**algoritmo del simplesso**.

Chiamiamo *B* la base ottima e sia $u^T = c_B^T B^{-1}$. I costi ridotti, calcolati in corrispondenza della base ottima devono essere:

$$\underline{\overline{c}}^T = \underline{c}^T - \underline{c}_B^T B^{-1} A \ge \underline{0}^T \Rightarrow \underline{c}^T \ge \underline{u}^T A$$

Figura C.3: Dalla regola dei costi ridotti si ottiene la regione di ammissibilità del duale

Infine per ipotesi vale che $\underline{c}^T \underline{x} \ge c_0 \forall \underline{x} \in P$, da cui:

 $z^* = \underline{c}^T \underline{x}^* \ge c_0$ La z^* è data da x^* $= \underline{c}_B^T \underline{x}_B^* + \underline{c}_F^T \underline{x}_F^*$ Spezzo il vettore dei costi in base e fuori base $= \underline{c}_B^T B^{-1} \underline{b}$ La parte fuori base, \underline{x}_F^* è un vettore di zeri. $= \underline{u}^T \underline{b} \ge c_0$ Sostituisco la definizione di $\underline{u} = \underline{c}_B^T B^{-1}$

Figura C.4: Dalla funzione obbiettivo del primale si ottiene la funzione obbiettivo del duale, entrambe limitate

C.8 Il duale del duale è il primale

Teorema C.8.1. Il duale del problema duale è il problema primale.

Dimostrazione. Considero un problema P in forma canonica e procedo con le seguenti operazioni:

- 1. Trasformo P nel duale D.
- 2. Riscrivo D in modo da "assomigliare" a P.
- 3. Trasformo il D riscritto in P'.
- 4. Riscrivo P' ed esso coincide con P.

$$\begin{cases} \min \underline{c}^T \underline{x} \\ \underline{A}\underline{x} \ge \underline{b} \\ \underline{x} \ge \underline{0} \end{cases} \Rightarrow \begin{cases} \max \underline{u}^T \underline{b} \\ \underline{c}^T \ge \underline{u}^T \underline{A} \end{cases} \equiv \begin{cases} -\min(-\underline{b}^T)\underline{u} \\ (-\underline{A}^T)\underline{u} \ge -\underline{c} \end{cases} \Rightarrow \begin{cases} -\max \underline{y}^T (-\underline{c}) \\ -\underline{b}^T \ge \underline{y}^T (-\underline{A}^T) \end{cases} \equiv \begin{cases} \min \underline{c}^T \underline{y} \\ \underline{A}\underline{y} \ge \underline{b} \\ \underline{y} \ge \underline{0} \end{cases}$$

C.9 Teorema di dualità forte

Teorema C.9.1 (Dualità forte). Sia $P = \{x \ge 0 : Ax \ge b\} \ne \emptyset$ con min $\{c^Tx : x \in P\}$ finito. Vale allora:

$$\min \{ \underline{c}^T \underline{x} : A\underline{x} \ge \underline{b}, \underline{x} \ge \underline{0} \} = \max \{ \underline{u}^T \underline{b} : \underline{c}^T \ge \underline{u}^T A, \underline{u} \ge \underline{0} \}$$

Significato: Se la soluzione ottima del problema primale esiste ed è limitata allora coincide con la soluzione ottima del problema duale.

Dimostrazione. Segue direttamente dal lemma di Farkas (teorema C.7.1).

C.10 Teorema di dualità debole

Teorema C.10.1 (Dualità debole). Siano $P = \{\underline{x} \ge \underline{\mathbf{0}} : A\underline{x} \ge \underline{\mathbf{b}}\} \neq \emptyset$ e $D = \{\underline{u} \ge \underline{\mathbf{0}} : \underline{\mathbf{c}}^T \ge \underline{u}^T A\} \neq \emptyset$. Per ogni coppia di punti $\overline{\underline{x}} \in P$ e $\overline{u} \in D$ si ha che:

$$\underline{\overline{\boldsymbol{u}}}^T\underline{\boldsymbol{b}} \leq \underline{\boldsymbol{c}}^T\underline{\overline{\boldsymbol{x}}}$$

Significato: Una soluzione ammissibile del problema duale è sempre minore o uguale di una soluzione ammissibile del problema primale in forma canonica.

Dimostrazione. Dati due punti \underline{x} e y ammissibili rispettivamente nel primale e duale vale che:

$$\underline{\boldsymbol{u}}^{T} \boldsymbol{A} \leq \underline{\boldsymbol{c}}^{T} \qquad \text{Inizio dalla regione di ammissibilità del duale} \\
\underline{\boldsymbol{u}}^{T} \boldsymbol{A} \underline{\boldsymbol{x}} \leq \underline{\boldsymbol{c}}^{T} \underline{\boldsymbol{x}} \qquad \qquad \text{Moltiplico entrambi i termini per } \underline{\boldsymbol{x}} \geqslant \underline{\boldsymbol{0}} \\
\underline{\boldsymbol{u}}^{T} \boldsymbol{b} \leq \underline{\boldsymbol{c}}^{T} \underline{\boldsymbol{x}} \qquad \qquad \text{Sostituisco } \boldsymbol{A} \underline{\boldsymbol{x}} = \underline{\boldsymbol{b}}$$

Corollario C.10.1.1. Si consideri una coppia di problemi primale e duale. Sono possibili solo 4 casi:

- 1. Entrambi i problemi hanno ottimo finito, che coincide (da teorema di dualità forte C.9.1).
- 2. Il problema primale è illimitato ed il duale è impossibile (da teorema di dualità debole C.10.1).
- 3. Il problema duale è illimitato ed il primale è impossibile (da teorema di dualità debole C.10.1).
- 4. Entrambi i problemi sono impossibili (banalmente non è escluso da nessuna proprietà).

C.11 Condizioni di ottimalità

Teorema C.11.1 (Condizioni di ottimalità). I due vettori $\underline{x} \in \mathbb{R}^n$, $\underline{y} \in \mathbb{R}^m$ sono ottimi per i problemi primale P e duale D rispettivamente se valgono le seguenti proprietà:

$$A\underline{\overline{x}} \ge \underline{b}, \quad \underline{\overline{x}} \ge \underline{0}$$
 condizioni di ammissibilità primale $\underline{c}^T \ge \underline{\overline{y}}^T A, \quad \underline{\overline{y}} \ge \underline{0}$ condizioni di ammissibilità duale $\underline{c}^T \underline{\overline{x}} = \underline{\overline{y}}^T \underline{b}$ condizioni di ortogonalità

Dimostrazione. Segue dal teorema di dualità debole (teorema C.10.1)

C.12 Matrici totalmente unimodulari

Definizione C.12.1 (Matrice totalmente unimodulare). Una matrice $A \in \mathbb{R}^{m \times n}$ si dice **totalmente unimodulare** (TUM) se per ogni sua sotto-matrice quadrata Q vale che $det(Q) \in \{-1,0,1\}$.

Teorema C.12.2. Se A è TUM e b è intero, allora P ha solo vertici interi, cioè conv(x) = P.

Teorema C.12.3 (Condizioni necessarie per TUM). Se A è TUM, allora deve valere che:

- 1. Ogni termine $a_{i,i} \in \{-1,0,1\}$.
- 2. La trasposta di \mathbf{A} è TUM.
- 3. $\begin{bmatrix} A & I \end{bmatrix}$ è TUM.
- 4. Moltiplicando una riga o colonna per -1 A rimane TUM.
- 5. Scambiando righe o colonne A rimane TUM.
- 6. L'operazione di pivot lascia A TUM.

Teorema C.12.4 (Condizioni sufficienti per TUM). Sia A una matrice con termini $a_{ij} \in \{-1,0,1\}$. Condizione sufficiente perché A sia TUM è che valgano:

- 1. In ogni colonna vi siano al più due elementi non nulli.
- 2. Esiste una partizione $\begin{bmatrix} I_1 & I_2 \end{bmatrix}$ delle righe di A tale che ogni colonna con due elementi non nulli ha questi elementi su righe appartenenti ad insiemi I_1 e I_2 diversi se e solo se i due elementi sono concordi in segno.

Dimostrazione. Per dimostrare che A sia TUM è necessario dimostrare che il determinante di ogni sotto-matrice Q è $det(Q) \in \{-1,0,1\}$, con ordine k. Procediamo per induzione su k.

Se k = 1 allora $Q = a_{ij} \in \{-1, 0, 1\}.$

Supponiamo ora che $\det(Q') \in \{-1,0,1\}$ per ogni sotto-matrice Q' di ordine $k' \ge 1$, ove k' è un valore fissato. Consideriamo quindi una qualsiasi sotto-matrice Q di ordine k = k' + 1. Possono avvenire solo tre casi:

- 1. Q ha una colonna di zeri: in questo caso det(Q) = 0.
- 2. Q ha una colonna con un solo elemento diverso da zero: in questo caso, $\det(Q) = \pm \det(Q') \in \{-1,0,1\}$.
- 3. Ogni colonna di Q ha esattamente due elementi diversi da zero: in questo caso, le righe di Q risultano linearmente dipendenti e $\det(Q) = 0$.

C.13 Caratterizzazione dei lati che appartengono ad alberi ricoprenti di costo minimo

Teorema C.13.1 (Caratterizzazione dei lati che appartengono ad alberi ricoprenti di costo minimo). Un lato appartenente ad un albero a costo minimo è uno dei lati a costo minimo in un taglio tra due insiemi di nodi del grafo.

$$l \in T^* \Leftrightarrow \exists S \subset \mathcal{V} : l = \operatorname{argmin} \{c_f : f \in \delta(S)\}$$

C.s.: Se un arco è a costo minimo tra due insiemi di nodi \Rightarrow appartiene all'albero ricoprente minimo. **Per assurdo** sia $l \notin T^*$. Allora $T^* \cup \{l\}$ contiene un ciclo $C(T^*, l)$.

Sia $f \in C(T^*, l) \cap \delta(S) \Rightarrow T^* \cup \{l\} \setminus \{f\}$ è albero ricoprende.

Essendo T^* minimo e l = argmin c_f , allora $c_l \le c_f$, da cui l'assurdo.

C.n.: Se un arco appartiene all'albero ricoprende a costo minimo \Rightarrow è l'arco a costo minimo tra due insiemi di nodi. Dato $l \in T^*$, sia S uno degli insiemi di nodi di una delle componenti connesse in $G' = (\mathcal{N}, T \setminus \{l\})$.

Per assurdo $\exists f \in \delta(S) \setminus \{l\} \text{ con } c_f < c_l$.

Allora $T^* \cup \{f\} \setminus \{l\}$ costa meno di T^* , da cui l'assurdo.

C.14 Massimo flusso e taglio minimo

Definizione C.14.1 (Arco saturo). Sia \underline{x} un flusso ammissibile. Un arco (i, j) si dice saturo se $x_{ij} = k_{ij}$.

Definizione C.14.2 (Arco scarico). Sia x un flusso ammissibile. Un arco (i, j) si dice scarico se $x_{i,j} = 0$.

Definizione C.14.3 (Rete incrementale). Sia \underline{x} un flusso ammissibile. La **rete incrementale** $\overline{\mathcal{G}} = (\mathcal{V}, \overline{\mathcal{A}})$ associata \underline{x} è ottenuta dalla rete originale $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ sostituendo ogni arco $(i, j) \in \mathcal{A}$ con due archi:

- 1. Un **arco diretto** (i, j) di capacità residua $\overline{k}_{ij} = k_{ij} x_{ij} \ge 0$.
- 2. Un **arco inverso** (j,i) di capacità residua $\overline{k}_{ij} \ge 0$

ed eliminando alla fine gli archi con capacità residua nulla.

Teorema C.14.4 (Dualità debole per massimo flusso e taglio minimo). Per ogni flusso ammissibile \underline{x} e per ogni sezione (S, V S) si

$$\phi(S) \le k(S)$$

Dimostrazione.

$$\phi(s) = \sum_{(i,j) \in \delta^+(S)} x_{ij} - \sum_{(i,j) \in \delta^-(S)} x_{ij} \leq \sum_{(i,j) \in \delta^*(S)} k_{ij} = k(S)$$

Teorema C.14.5 (Dualità forte per massimo flusso e taglio minimo). Un flusso ammissibile \underline{x} è ottimo per il problema MAX-FLOW se e solo se esiste una sezione $(S^*, \mathcal{V}\S^*)$ con $\phi(S^*) = k(S^*)$. In questo caso $(S^*, \mathcal{V}\S^*)$ è una sezione di capacità minima nella rete considerata.

Significato: Un flusso ammissibile è ottimo per il problema di flusso massimo se esiste un taglio minimo con capacità pari al flusso.

Teorema C.14.6 (Soluzione ottima per massimo flusso). Un flusso ammissibile \underline{x} è ottimo per il problema di massimo flusso se e solo se il vertice t pozzo non è raggiungibile dal vertice s sorgente nella rete incrementale $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ associata ad \underline{x} .

Dimostrazione. Sia ϕ_0 il valore del flusso \underline{x} . Se t è raggiungibile da s in $\overline{\mathcal{G}}$, allora esiste un cammino aumentante P da s a t in $\overline{\mathcal{G}}$. Posto $\delta = \min\left\{\overline{k}_{uv}: (u,v) \in P\right\} > 0$, per ogni coppia $(u,v) \in P$ è possibile aggiornare $x_{uv} = x_{uv} + \delta$ se (u,v) è un arco diretto, $x_{uv} = x_{uv} - \delta$ se (u,v) è un arco inverso. È facile verificare che il nuovo vettore \underline{x} costituisce un flusso ammissibile di valore $\phi_0 + \delta$ nella rete originale, il che dimostra che la soluzione \underline{x} di partenza non era ottima per il problema di massimo flusso.

Supponiamo ora che t non sia raggiungibile da s in $\overline{\mathcal{G}}$. Esiste quindi una sezione $(S^*, V S^*)$ nella rete incrementale $\overline{\mathcal{G}}$ tale che $\delta_{\overline{\mathcal{G}}}^+(S^*) = \emptyset$. Per definizione di rete incrementale si ha allora che, nella rete originale \mathcal{G} :

- 1. Ogni arco $(i, j) \in \delta_{\frac{g}{q}}^+(S^*)$ è saturo.
- 2. Ogni arco $(i, j) \in \delta_{\overline{\mathcal{G}}}^-(S^*)$ è scarico.

Ne consegue che:

$$\phi(S^*) = \sum_{\delta_{(i,j) \in \overline{\mathcal{G}}}^+(S^*)} x_{ij} - \sum_{(i,j) \in \delta_{\overline{\mathcal{G}}}^-(S^*)} x_{ij} = \sum_{(i,j) \in \delta_{\overline{\mathcal{G}}}^-(S^*)} k_{ij} = k(S^*)$$

e quindi l'ottimalità di \underline{x} deriva dal teorema C.14.4 che garantisce inoltre che $(S^*, V S^*)$ è una sezione di capacità minima nella rete originale.