2.4 Prirodna dedukcija u iskaznoj logici

U iskaznom računu Ł glavnu ulogu u generisanju izvodjenja imaju:

- pravilo modus ponens $\frac{\alpha \quad \alpha \Rightarrow \beta}{\beta}$, koje odredjuje kako u izvodjenjima da koristimo implikacije, tj. formule čiji je glavni znak \Rightarrow i
- stav dedukcije Γ , $\alpha \vdash \beta$ akko $\Gamma \vdash \alpha \Rightarrow \beta$; Stav dedukcije utvrdjuje kako da dokazujemo implikacije: da bismo dokazali $\Gamma \vdash \alpha \Rightarrow \beta$, dovoljno je dokazati $\Gamma, \alpha \vdash \beta$.

Ova zapažanja veoma su bliska idejama na kojima je zasnovan jedan od najpoznatijih formalnih teorija koje karakterišu iskaznu logiku – prirodna dedukcija⁴². Skup aksioma ovog formalnog sistema je prazan dok su pravila izvodjenja data sledećim shemama (u smislu da α , β i γ mogu biti proizvoljne formule):

⁴² Račun prirodne dedukcije uveo je, godine, Gerhard Gencen s namerom da prirodnije opiše uobičajeno zaključivanje matematičara

$$\frac{\alpha}{\alpha \wedge \beta} (\wedge_{\mathsf{U}})$$

Uvodjenje konjunkcije (\wedge_U): iz pretpostavki α , β (direktno) zaključujemo $\alpha \wedge \beta$. Možemo razmišljati i ovako: da bismo dokazali $\alpha \wedge \beta$ potrebno je da dokažemo svaki konjunkt pojedinačno, i α i β . Drugim rečima dokaz za $\alpha \wedge \beta$ dobijamo spajanjem dokaza za α i dokaza za β .

$$\frac{\alpha \wedge \beta}{\alpha} \ (\wedge_{E}^{L})$$

Eliminacija konjunkcije: iz pretpostavke $\alpha \wedge \beta$ zaključujemo α (odn.

 $\frac{\alpha \wedge \beta}{\beta} \; (\wedge^D_E)$ β) primenom pravila ($\wedge_{\rm F}^{\rm L}$) (odn. ($\wedge_{\rm F}^{\rm D}$)).

Primer 20. Dokažimo sekvent $(p \land q) \land s, r \land t \vdash t \land q$.

- $(p \land q) \land s$ pretpostavka
- $r \wedge t$ pretpostavka
- $\wedge_{\underline{F}}^{\underline{L}}$, 1 [formula $p \wedge q$ je dobijena primenom pravila $\wedge_{\underline{F}}^{\underline{L}}$ na 1.] 3.
- 5.
- $t \wedge q$ ^u, 5, 4

Navedeni dokaz možemo prikazati i na sledeći način.

$$\frac{\frac{r \wedge t}{t} \wedge_{\mathrm{E}}^{\mathrm{D}} \quad \frac{\frac{(p \wedge q) \wedge s}{p \wedge q} \wedge_{\mathrm{E}}^{\mathrm{L}}}{q} \wedge_{\mathrm{E}}^{\mathrm{D}}}{t \wedge q} \wedge_{\mathrm{E}}^{\mathrm{D}}$$

Uvodna razmatranja najavljuju pravila uvodjenja i eliminacije implikacije.

$$\frac{\alpha \Rightarrow \beta \quad \alpha}{\beta} \ (\Rightarrow_{\rm E})$$

Eliminacija implikacije (odn. modus ponens) (\Rightarrow_E) opisuje kako se u dokaz- $\frac{\alpha \Rightarrow \beta}{\beta} \stackrel{\alpha}{(\Rightarrow_E)}$ ima koriste tvrdnje formulisane u obliku imlikacije.

$$\begin{vmatrix} \alpha \\ \vdots \\ \beta \\ \alpha \Rightarrow \beta \end{vmatrix} (\Rightarrow_{\mathbf{U}})$$

Uvodjenje implikacije (\Rightarrow_U) : da bismo dokazali implikaciju $\alpha \Rightarrow \beta$ treba uvesti dodatnu (privremenu) pretpostavku α i dokazati β , pri čemu je u tom dokazu dozvoljeno koristiti α , sve ostale pretpostavke i medjuzaključke koje smo već izveli. Dokaz formule β nakon uvodjenja dodatne pretpostavke α ističemo vertikalnom crtom i nazivamo poddokazom. Neposredno ispod završetka vertikalne linije navodimo zaključak $\alpha \Rightarrow \beta$, oznaku pravila (\Rightarrow_U) i brojeve kojima su numerisani koraci poddokaza.

Primer 21. Dokažimo $p \Rightarrow q, p \Rightarrow r \vdash p \Rightarrow q \land r$

1.	$p \Rightarrow q$	pretpostavka
----	-------------------	--------------

2.
$$p \Rightarrow r$$
 pretpostavka

4.
$$q \Rightarrow_{\mathrm{E}}, 1, 3$$

5.
$$r \Rightarrow_{E}, 2, 3$$

6.
$$q \wedge r \wedge_{U}$$
, 4, 5

7.
$$p \Rightarrow q \land r \Rightarrow_{\mathsf{U}}$$
, 3-6

∴ Kada želimo da dokažemo
$$\alpha \Rightarrow \beta$$
:

 j . α uvodimo dodatnu pretpostavku α
∴ ∴ i nastojimo da dokažemo β .

 k . β Kada uspemo,

 $k+1$. $\alpha \Rightarrow \beta \Rightarrow_{II}, j-k$ izvodimo željeni zaključak.

$$\frac{\alpha \quad \neg \alpha}{\mid} (\neg_E)$$

Eliminacija negacije (\neg_E): iz pretpostavki α , $\neg \alpha$ izvodimo kontradikciju.

$$\begin{vmatrix} \alpha \\ \vdots \\ \bot \\ \neg \alpha \end{vmatrix} (\neg_U)$$

Uvodjenje negacije (\neg_U) : ako iz α dokažemo kontradikciju, onda zaključujemo $\neg \alpha$.

$$\begin{vmatrix} \neg \alpha \\ \vdots \\ \bot \\ \alpha \end{vmatrix} (\bot_{c})$$

Pravilo (\bot_c) : da bismo dokazali α , u klasičnoj logici, dovoljno je izvesti kontradikciju iz $\neg \alpha$.

$$\frac{\alpha}{\alpha \vee \beta} \; (\vee^L_U) \quad \frac{\beta}{\alpha \vee \beta} \; (\vee^D_U)$$

Uvodjenje disjunkcije: iz α (ako smo dokazali α) izvodimo zaključak $\alpha \vee \beta$), za bilo koju formulu β , primenom pravila $(\vee_{\mathbf{U}}^{\mathbf{L}})$; na isti način, iz β izvodimo zaključak $\alpha \vee \beta$, za bilo koju formulu α , primenom pravila $(\vee_{\mathbf{U}}^{\mathbf{D}})$.

Eliminacija disjunkcije (\vee_E) opisuje na koji način u dokazima koristimo formule oblika $\alpha \vee \beta$? Zamislimo da želimo da dokažemo γ pretpostavljajući $\alpha \vee \beta$. Budući da ne znamo koja je od formula α , β tačna (a jedna mora biti), moramo sprovesti dva odvojena dokaza:

$$\frac{\begin{array}{c|c}
\alpha & \beta \\
\vdots & \vdots \\
\gamma & \gamma
\end{array}}{\gamma}(\vee_{E})$$

- Najpre, pretpostavljamo da je α tačno i dokazujemo γ .
- Zatim, pretpostavljamo da je β tačno i dokazujemo γ .

Na osnovu ova dva dokaza i pretpostavke $\alpha \vee \beta$ zaključujemo γ , jer dva poddokaza pokrivaju obe mogućnosti.

Ekvivalencija dva iskaza $\alpha \Leftrightarrow \beta$ jeste zapravo konjunkcija dve obratne implikacije $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$, pa se pravila **uvodjenja** i **eliminacije ekvivalencije** sama nameću.

$$\frac{\alpha \Rightarrow \beta \quad \beta \Rightarrow \alpha}{\alpha \Leftrightarrow \beta} (\Leftrightarrow_{U}) \qquad \frac{\alpha \Leftrightarrow \beta}{\alpha \Rightarrow \beta} (\Leftrightarrow_{E}^{LD}) \qquad \frac{\alpha \Leftrightarrow \beta}{\beta \Rightarrow \alpha} (\Leftrightarrow_{E}^{DL})$$

Navedena pravila karakterišu dokazivost tzv. sekvenata

$$\varphi_1,\ldots,\varphi_k\vdash\psi$$

(tj. dokazivost da iz pretpostavki $\varphi_1, \ldots, \varphi_k$ sledi ψ). Sekvente dokazujemo tako što formiramo niz koji čine pretpostavke $\varphi_1, \ldots, \varphi_k$ i (medju)zaključci dobijeni primenom pravila dedukcije na već navedene formule. Postupak završavamo kada dobijemo željeni zaključak ψ , a formirani niz nazivamo dokazom formule ψ iz pretpostavki $\varphi_1, \ldots, \varphi_k$, odn. dokazom odgovarajućeg sekventa.

```
PRIMER 22. Dokazati \vdash (p \Rightarrow q) \lor (p \Rightarrow r) \Rightarrow (p \Rightarrow q \lor r).
           (p \Rightarrow q) \lor (p \Rightarrow r)
                                                                        dodatna pretpostavka
 2.
           p \Rightarrow q
                                                                        dodatna pretpostavka
                                                                        dodatna pretpostavka
 3.
                                                                        \RightarrowE, 2, 3
 4.
 5.
           q \vee r
                                                                        V<sub>II</sub>, 4
         p \Rightarrow (q \lor r)
                                                                        \Rightarrow_U, 3-5
           p \Rightarrow r
                                                                        dodatna pretpostavka
 7.
 8.
                                                                        dodatna pretpostavka
                                                                        \Rightarrow_{E}, 7, 8
 9.
                                                                        \vee_{\mathrm{II}}^{\mathrm{D}}, 9
 10.
         \parallel \mid q \lor r
        || p \Rightarrow (q \lor r)
                                                                        \Rightarrow_U, 7-10
 11.
 12. p \Rightarrow (q \lor r)
                                                                        \vee_{E}, 1, 2-6, 7-11
 13. (p \Rightarrow q) \lor (p \Rightarrow r) \Rightarrow (p \Rightarrow q \lor r) \Rightarrow_{U}, 1-12
```

Teorema 11. $\Gamma \vdash_{\mathbb{L}} \varphi$ akko $\Gamma \vdash \varphi$ (je dokaziv sekvent primenom pravila prirodne dedukcije).

Specijalno, formula φ je teorema u računu prirodne dedkucije, ako je dokaziv sekvent $\vdash \varphi$ (sa praznim skupom pretpostavki). Iz prethodne teoreme i teoreme potpunosti zaključujemo da se pravilima prirodne dedukcije mogu dokazati sve tautologije, i samo tautologije.

Da bismo pojednostavili dokazivanje sekvanata, spisak pravila proširujemo još nekim **izvedenim pravilima**, čija se upotreba, naravno, jednostavno može eliminisati iz svakog dokaza.

$$\frac{\alpha \Rightarrow \beta \quad \neg \beta}{\neg \alpha} \text{ (MT)}$$

Pravilo modus tolens (MT) može biti veoma korisno pri upotrebi tvrdnji u obliku implikacije.

- 1. $\alpha \Rightarrow \beta$ pretpostavka
- 2. $\neg \beta$ pretpostavka
- 3. α dodatna pret.
- 4. $\beta \Rightarrow_{\mathrm{E}}$, 1, 3
- 5. \perp \neg_E , 2, 4
- 6. $\neg \alpha \quad \neg_U$, 3-5

$$\frac{\neg \neg \alpha}{\alpha} (\neg \neg_{E})$$

$$\frac{\alpha}{\neg \neg \alpha} (\neg \neg_{U})$$

Pravilo $(\neg \neg_E)$ nam dozvoljava da obrišemo dva znaka negacije. Nasuprot tome, pravilo $(\neg \neg_U)$ dozvoljava da se ispred svake formule dopišu dva znaka negacije.

 $\overline{\text{Opravdavamo}}$ samo pravilo $\neg \neg_{\text{U}}$.

- 1. α pretpostavka
- 2. $\neg \alpha$ dodatna pret.
- 3. $\perp \neg_E$, 1, 2
- 4. $\neg \neg \alpha \neg U$, 2-3

PRIMER 23. Primenu izvedenih pravila jednostavno možemo eliminisati iz svakog dokaza. To ilustrujemo dokazom sekventa $p \Rightarrow \neg q, q \vdash \neg p$.

- 1. $p \Rightarrow \neg q$ pretpostavka
- 2. *q* pretpostavka
- 3. ¬¬*q* ¬¬_U, 2
- 4. $\neg p$ MT, 1, 3

Bez pravila $\neg \neg_U$ i MT dati sekvent bismo dokazali na sledeći način.

- 1. $p \Rightarrow \neg q$ pretpostavka
- 2. *q* pretpostavka
- 3. $\neg q$ dodatna pretpostavka
- 4. \perp \neg_{E} , 2, 3
- 5. ¬¬q ¬u, 3-4
- 6. *p* dodatna pretpostavka
- 7. $\neg q \Rightarrow_{\mathrm{E}}, 1, 6$
- 8. \perp \neg_E , 2, 7
- 9. $\neg p$ $\neg U$, 6-8

Disjunktivni silogizmi					
$\frac{\alpha \vee \beta \neg \alpha}{\beta} $ (DS)	$\frac{\alpha \vee \beta}{\alpha}$	$\frac{\neg \beta}{}$ (DS)			

Oba pravila označavamo na isti način jer će uvek biti očigledno koje od ova dva pravila koristimo.

- 1. $\alpha \vee \beta$ pretpostavka
- 2. ¬α pretpostavka
- 3. α dodatna pretpostavka
- 4. $\perp \neg_E$, 2, 3
- 5. $\beta \perp_{\rm E}$, 4
- 6. β dodatna pretpostavka
- 7. β \forall_{E} , 1, 3-5, 6

Analogno se dokazuje i sekvent $\alpha \vee \beta$, $\neg \beta \vdash \alpha$, za bilo koje formule α , β .

Tranzitivnost implikacije	Zakoni kontrapozicije		
$\frac{\alpha \Rightarrow \beta \beta \Rightarrow \gamma}{\alpha \Rightarrow \gamma} $ (T)	$\frac{\alpha \Rightarrow \beta}{\neg \beta \Rightarrow \neg \alpha} (K) \frac{\neg \alpha \Rightarrow \neg \beta}{\beta \Rightarrow \alpha} (K)$		

1.
$$\alpha \Rightarrow \beta$$
pretpostavka1. $\alpha \Rightarrow \beta$ pretpostavka2. $\beta \Rightarrow \gamma$ pretpostavka2. $\neg \beta$ dodatna pret.3. α dodatna pret.3. $\neg \alpha$ MT, 1, 24. β \Rightarrow_E , 1, 34. $\neg \beta \Rightarrow \neg \alpha$ \Rightarrow_U , 2-35. γ \Rightarrow_E , 2, 4 \Rightarrow_U , 3-5

Zakon isključenja trećeg (tertium non datur)

$$\frac{1}{\alpha \vee \neg \alpha}$$
 (TND)

Prema zakonu isključenja trećeg, u dokazima možemo koristiti kao pretpostavku $\alpha \vee \neg \alpha$, za bilo koju formulu α .

5.
$$\neg \alpha \qquad \neg_{U}, 2-4$$
6. $\alpha \vee \neg \alpha \qquad \vee_{U}^{D}, 5$

7.
$$\perp$$
 \neg_{E} , 1, 6

8.
$$\neg\neg(\alpha \lor \neg\alpha) \quad \neg_{U}$$
, 1-7

9.
$$\alpha \vee \neg \alpha \qquad \neg \neg_{E}$$
, 8

De Morganovi zakoni					
$\frac{\neg \alpha \lor \neg \beta}{\neg (\alpha \land \beta)} (DM)$	$\frac{\neg \alpha \wedge \neg \beta}{\neg (\alpha \vee \beta)} $ (DM)	$\frac{\neg(\alpha \lor \beta)}{\neg\alpha \land \neg\beta} \; (DM)$	$\frac{\neg(\alpha \land \beta)}{\neg \alpha \lor \neg \beta} \text{ (DM)}$		

Svako od ova četiri pravila nazvaćemo De Morganovim zakonom, jer prilikom primene neće biti zabune.

	, , 1	1			
1.	$\neg \alpha \lor \neg \beta$	pretpostavka	1.	$\neg \alpha \wedge \neg \beta$	pretpostavka
2.	$\alpha \wedge \beta$	dodatna pret.	2.	$\neg \alpha$	$\wedge_{\mathrm{E}}^{\mathrm{L}}$, 1
3.	α	$\wedge_{\mathrm{E}}^{\mathrm{L}}$, 2	3.	$\neg eta$	$\wedge_{\mathrm{E}}^{\mathrm{D}}$, 1
4.	$\neg \neg \alpha$	$\neg \neg U$,	4.	$\alpha \vee \beta$	dodatna pret.
5.	$\neg \beta$	DS, 1, 4	5.	β	DS, 2, 4
6.	β	$\wedge_{\mathrm{E}}^{\mathrm{D}}$, 2	6.	\perp	¬E, 3, 5
7.		\neg_{E} , 5, 6	7.	$\neg(\alpha \lor \beta)$	¬ _U , 2-6
8.	$\neg(\alpha \land \beta)$	¬ _U , 2-7			

1.	$\neg(\alpha \lor \beta)$	pretpostavka	1.	$\neg(\alpha \land \beta)$	pretpostavka
2.	α	dodatna pret.	2.	α	dodatna pret.
3.	$\alpha \vee \beta$	$\vee^{\mathrm{L}}_{\mathrm{U}}$, 2	3.	β	dodatna pret.
4.		\neg_{E} , 1, 3	4.	$\ \alpha \wedge \beta$	\wedge_{U} , 2, 3
5.	$\neg \alpha$	¬ _U , 2-4	5.		¬ _E , 1, 4
6.	β	dodatna pret.	6.	$\neg \beta$	¬ບ, 3-5
7.	$\alpha \vee \beta$	∨ _U , 6	7.	$\neg \alpha \lor \neg \beta$	∨ _U , 6
8.		¬ _E , 1, 7			
9.	$\neg \beta$	¬ _U , 6-8	8.	$-\alpha$	dodatna pret.
10.	$\neg \alpha \wedge \neg \beta$	^u, 5, 9	9.	$\neg \alpha \lor \neg \beta$	$\vee^{\mathrm{L}}_{\mathrm{U}}$, 8
			10.	$\alpha \vee \neg \alpha$	TND
			11.	$\neg \alpha \lor \neg \beta$	∨ _E , 10, 2-7, 8-9