Tecnologías para la Web Semántica Resumen Parcial 1

Darién Julián Ramírez

Índice

1	Visión de la Web Semántica					
	1.1	¿Cómo funciona la Web hoy?				
	1.2	De la Web actual a la Web Semántica	3			
	1.3	¿Qué es la Web Semántica?	4			
2	Anotaciones Semánticas I - Metadatos					
	2.1	Continuidad Semántica	5			
		2.1.1 Semántica implícita	5			
		2.1.2 Semántica informal (explícita)	5			
		2.1.3 Semántica formal para procesamiento humano	5			
		2.1.4 Semántica Procesable por Máquinas	6			
		Web Semántica	6			
		Metadatos	6			
	2.4	¿Qué es un estándar?	7			
3	Anotaciones Semánticas II - Ontologías					
	3.1	¿Qué es una Ontología?				
	3.2	¿Para qué desarrollar una Ontología?	7			
	3.3	Tipos de Ontologías	8			
		3.3.1 Según la riqueza de su estructura interna	8			
		3.3.2 Según su profundidad de modelado	10			
	3.4	Componentes	10			
		3.4.1 Clases o términos	10			
		3 4 2 Propiedades	10			

		3.4.3	Individuos o instancias	11
		3.4.4	Axiomas	11
	3.5	Clasifie	cación	11
		3.5.1	Ontologías de Alto Nivel	11
		3.5.2	Ontologías de Dominio	11
		3.5.3	Ontologías de Tareas	11
		3.5.4	Ontologías de Aplicación	12
4	\mathbf{Arq}	uitectu	ıra	12
	4.1	Princip	pios	12
		4.1.1	Compatibilidad Descendente	12
		4.1.2	Compresión Parcial Hacia Arriba	12
	4.2	Capas		12
		4.2.1	Capa URI	12
		4.2.2	Capa XML	12
		4.2.3	Capa RDF	13
		4.2.4	Capa RDFS	15
		4.2.5	Capa OWL	16
		4.2.6	Capa Lógica	17
		4.2.7	Capa de Prueba	17
		4.2.8	Capa de Confianza	17
	4.3	Compo	onentes para una Web Semántica:	18

1. Visión de la Web Semántica

1.1. ¿Cómo funciona la Web hoy?

- Tráfico desde buscadores:
 - Miles de resultados con poca precisión.
 - Baja respuesta.
 - Resultados altamente sensibles al vocabulario.
 - Resultados inconexos, páginas en vez de sitios.
- Recuperación de información:
 - Intensiva en tiempo y trabajo del usuario.
 - Información no clasificada.
 - Informacion difícil de procesar.
- Aplicaciones aisladas.
- Buscadores de sitios.
- Ambigüedad (diferentes maneras de referirse a lo mismo) y falta de precisión (referencia a distintas entidades con el mismo término).
- Los datos no están inmediatamente disponibles para ser procesados por otro software.
- Los datos no están interconectados, cada sitio es una isla.
- No existe la capacidad de interpretar sentencias para extraer información útil.
- La mayor parte del contenido Web está diseñado para la lectura de humanos, no para que los programas puedan manipularlos significativamente.
- Un espacio de información global.
- Recursos enlazados a otros recursos.
- Representa la información usando lenguaje natural, gráficos, multimedia, diseños de las páginas.
- Los humanos pueden procesar esta información fácilmente, deducen hechos desde información parcial, crean asociaciones mentales y asimilan información desde distintos sentidos.

1.2. De la Web actual a la Web Semántica

- Hacer que las máquinas entiendan significados.
- Hacer los datos más inteligentes (W3C).
- El objetivo es que la semántica se convierta en la protagonista.
- La semántica es la parte de la lingüística que estudia la forma de las estructuras léxicas y los procesos mentales a través de los cuales los seres humanos damos sentido a las expresiones lingüísticas.

- Dotando de más semántica a la web, lo que se busca es resolver los problemas que en la actualidad causan los entornos digitales carentes de semántica, dificultando en ocasiones la búsqueda de información.
- Máquinas que comprendan significados.
- Interoperabilidad de la información.
- Búsquedas más eficientes: resultados precisos en menos tiempo.
- Usuario ocupado en la toma de decisiones y no en las tareas repetitivas.

1.3. ¿Qué es la Web Semántica?

- Una red de significados.
- Información clasificada.
- Jerarquía de datos.
- Una web semántica es una red de datos que pueden ser procesados directa o indirectamente por máquinas. Es una web extendida que permitirá a humanos y máquinas trabajar en cooperación mutua.
- Datos procesables por los humanos + datos procesables por las máquinas.
- Desarrollo de lenguajes para expresar meta-información comprensible por maquinas.
- Desarrollo de herramientas y arquitecturas que utilicen esos lenguajes.
- Desarrollo de aplicaciones que provean un nuevo nivel de servicios.
- La Web Semántica es una visión: La idea de tener datos en la Web definidos y vinculados de manera que puedan ser utilizados por máquinas no sólo con propósitos de muestra sino para automatización, integración y reutilización de datos entre diferentes aplicaciones.
- Persigue el establecimiento de una forma universal de representar las relaciones entre los datos y entre éstos y sus significados.
- La promesa es una enorme facilidad para encontrar información relevante de forma potencialmente sencilla.
- Uso de metadatos, estándares, ontologías, lógica, motores de inferencia y agentes inteligentes.

Semántica: entendida como, significado procesable por máquinas.

Metadatos: entendidos como contenedores de información semántica sobre los datos.

Estándares: entendidos como, especificaciones que regulan la realización de ciertos procesos para garantizar la interoperabilidad.

Ontologías: entendidas como, el conjunto de términos y relaciones entre ellos que describen un dominio de aplicación concreto.

Agente inteligente: Un agente inteligente, es una entidad capaz de percibir su entorno, procesar tales percepciones y responder o actuar en su entorno de manera racional, es decir, de manera correcta y tendiendo a maximizar un resultado esperado.

Buscador semántico: es aquél que realiza el rastreo atendiendo al significado del grupo de palabras que se escriben y no basándose en las actuales etiquetas. En pocas palabras, un buscador inteligente.

2. Anotaciones Semánticas I - Metadatos

2.1. Continuidad Semántica

2.1.1. Semántica implícita

- Entendimiento compartido derivado del consenso humano.
- Desventajas:
 - Ambigüedad.
 - Desacuerdos en el significado de un término.

2.1.2. Semántica informal (explícita)

- Semántica explícita y expresada de manera informal.
- Especificadas por humanos en lenguaje de trabajo.
- Especificaciones UML utilizadas para el desarrollo de herramientas.
- Desventajas:
 - Persistencia de ambigüedad.
 - Baja probabilidad que dos implementaciones sean consistentes y compatibles.
 - Problemas cuando se requiere interoperabilidad.
- Esfuerzos para crear semánticas formales.

2.1.3. Semántica formal para procesamiento humano

- Semántica explícita expresada en lenguaje formal sólo para procesamiento humano. Documentación formal.
- Axiomas y definiciones en Ontologías para empresas se crearon sin la expectativa de ser utilizadas para inferencia automatizada. El objetivo primario era ayudar a comunicar el significado pretendido a las personas.
- Desventaja: elimina la ambigüedad pero persiste la presencia de humanos en el ciclo.

2.1.4. Semántica Procesable por Máquinas

 Representar las semánticas formalmente y permitir a las máquinas procesarlas para dinámicamente descubrir qué significa el contenido y cómo se utiliza.

2.2. Web Semántica

¿Cómo puede una máquina (agente de software) aprender algo acerca del significado de un término que nunca antes había encontrado?

- Esta evolución tomorá lugar:
 - Trasladándose a través de la contunuidad semántica desde semántica implícita a semánticas formales procesables por máquinas.
 - Reduciendo el contenido Web semántico no especificado.
 - Desarrollando mapeos semánticos y capacidades de traducción donde las diferencias persistan.
- Frente a la semántica implícita, el crecimiento caótico de recursos, y la ausencia de una organización clara de la Web actual, la Web semántica aboga por clasificar, dotar de estructura y anotar los recursos con semántica explícita procesable por máquinas.
- Colocar datos en contexto mediante la adición de metadatos.

2.3. Metadatos

- Los metadatos son datos acerca de los datos.
- Datos acerca de los datos producidos por una institución y/o personas y de los servicios por ellas ofrecidos, proporcionados en forma estandarizada.
- Información estructurada que se crea específicamente para describir recursos.
- En diversos campos de la informática, como la recuperación de información o la Web Semántica, los metadatos en etiquetas son un enfoque importante para construir un puente sobre el intervalo semántico.
- Mecanismo para etiquetar, catalogar, describir y clasificar los recursos presentes en la World Wide Web con el fin de facilitar la posterior búsqueda y recuperación de la información.
- Dato estructurado sobre la información, o sea, información sobre información, datos sobre datos.
- Datos que se pueden guardar, intercambiar y procesar estructurados de tal forma que permiten ayudar a la identificación, descripción, clasificación y localización del contenido de un documento o recurso web y que sirven para su recuperación.
- Tienen función de localización, identificación y descripción de recursos, legibles e interpretables por máquina.

2.4. ¿Qué es un estándar?

Es una especificación que regula la realización de ciertos procesos o la fabricación de componentes para garantizar la interoperabilidad. Ejemplo: DublinCore.

3. Anotaciones Semánticas II - Ontologías

3.1. ¿Qué es una Ontología?

- Define los términos y relaciones básicos que comprenden el vocabulario de un área así como las reglas que combinan términos y relaciones para definir extensiones del vocabulario.
- Es una especificación explícita de una conceptualización.
- Es una especificación formal de una conceptualización compartida
- Puede tomar una variedad de formas, pero será necesario incluir un vocabulario de términos y algunas especificaciones sobre su significado. Esto incluye definiciones y una indicación de cómo se interrelacionan los conceptos, lo que colectivamente impone una estructura en el dominio y restringe la posible interpretación de los términos.
- Reutilizar: construir nuevas aplicaciones a partir de componentes existentes.
- Compartir: utilización del mismo componente por diferentes recursos.
- Usualmente se construyen en forma cooperativa por diferentes grupos de personas en diferentes ubicaciones.
- Una ontología es una 6-tupla que consiste en conceptos, relaciones, jerarquías, una función que relaciona conceptos no-taxonómicamente, un conjunto de axiomas, y un conjunto de reglas.

3.2. ¿Para qué desarrollar una Ontología?

- Para compartir entendimiento común de la estructura de la información entre personas o agentes de software.
- Para permitir la reutilización del conocimiento de un dominio.
- Para hacer explícitas las afirmaciones de un dominio.
- Para separar el dominio del conocimiento del dominio operacional.
- Para analizar el dominio del conocimiento.
- Apuntan a capturar conocimiento consensuado de un modo genérico, para que este pueda ser reutilizado y compartido a través de aplicaciones de software y por grupos de personas.

3.3. Tipos de Ontologías

3.3.1. Según la riqueza de su estructura interna

Catálogo:

Vocabularios controlados: lista finita de términos.

- Lista ordenada o clasificada sobre cualquier tipo de objetos (monedas, bienes a la venta, documentos, entre otros) o en su defecto personas.
- Conjunto de publicaciones u objetos que se encuentran clasificados normalmente para la venta.
- Publicación empresarial cuyo fin primero es el de la promoción de aquellos productos o servicios que una empresa ofrece.
- Está compuesto principalmente por imágenes de los productos o servicios que se ofrecen en la empresa y que pueden ir acompañadas de breves descripciones, precio o beneficios del producto.
- Es una comunicación visual de lo que se produce.
- Pueden utilizarse para presentaciones individuales y detalladas de un determinado producto que por ejemplo está recién saliendo a la venta.

Glosario:

Son listas de términos con sus significados expresados en lenguaje natural.

- Un glosario es un catálogo que contiene palabras pertenecientes a una misma disciplina o campo de estudio, apareciendo las mismas explicadas, definidas y comentadas.
- Puede ser un catálogo de palabras desusadas o del conjunto de comentarios y glosas sobre los textos de un autor determinado.
- Suele ser incluido al final o al comienzo de un libro o de una enciclopedia, con el objetivo de complementar la información que el mismo proporciona.
- Son elaborados por especialistas en los campos sobre los cuales se ocupan y apuntan a llegar más allá de aquellos interesados en la materia sobre la cual se ocupan.
- Ejemplos de glosarios:
 - o Glosario educativo.
 - o Glosario de términos.
 - o Glosario ambiental.
 - Glosario informático.
 - Glosario de salud.
 - o Glosario de términos médicos.

• Tesauro:

Proveen semánticas adicionales entre términos, por ejemplo, información referida a sinónimos.

• Vocabulario controlado para representar de manera unívoca el contenido de los documentos y de las preguntas, así como para ayudar al usuario en el tratamiento de la información.

8

- Diccionario que muestra la equivalencia entre los términos o expresiones del lenguaje natural y aquellos términos normalizados procedentes del lenguaje documental, así como las relaciones semánticas que existen entre los términos.
- Compilación de palabras y frases que muestran sus sinónimos, sus jerarquías y cuya función es suministrar un vocabulario normalizado para la recuperación y almacenamiento de la información.

• Norma ISO:

- Según su función un tesauro es un instrumento de control de la terminología que se utiliza mediante la transposición del lenguaje natural (utilizado por los usuarios, indexadores y en los documentos) a un lenguaje más estricto como es el documental.
- Según su estructura es un vocabulario controlado y dinámico de términos con relaciones semánticas entre ellos y que se aplican a campos temáticos particulares del conocimiento.
- En líneas generales, un tesauro comprende lo siguiente:
 - Un listado de términos preferidos, que se los ordena en forma alfabética, temática y jerárquicamente.
 - o Un listado de sinónimos de esos términos preferidos, llamados descriptores, con la leyenda "úsese (término preferido).º una indicación similar.
 - Una jerarquía o relaciones entre los términos. Esto se expresa con la identificación de *términos más generales* y *términos más restringidos*.
 - Las definiciones de los términos, para facilitar la selección de los mismos por parte del usuario.
 - o Un conjunto de reglas para usar el tesauro.

• $Es\ un$ - informal:

Las jerarquías informales *Es un*, son jerarquías de términos que no corresponden a una subclase estricta, por ejemplo, los términos **auto** de **alquiler** y **hotel** podrían ser modelados informalmente bajo la jerarquía **viaje** ya que se considerarían partes clave de un viaje.

Si **perfume** es subclase de **ropa**, heredaría la propiedad *estaHechoDe* y heredaría los valores de dicha propiedad.

■ Es un - estricta:

En este caso existe una relación estricta entre instancias de una clase y de las superclases correspondientes. Su objetivo es explotar el concepto de herencia.

Si B es subclase de A, entonces si un objeto es instancia de B, también es instancia de A. Las relaciones Es un estrictas son necesarias para la explotación de la herencia.

Marcos:

Son ontologías que incluyen tanto clases como sus propiedades, las cuales pueden ser heredadas por otras clases en los niveles mas bajos de una taxonomía formal *Es un*.

• Restricciones de valor:

Expresan restricciones de acuerdo al tipo de dato de una propiedad, por ejemplo, tipo: fecha.

Las clases incluyen información acerca de propiedades. Se determinan restricciones en los valores de una propiedad. Ejemplo: La propiedad precio puede estar restringida entre ciertos valores (rango) y estaHechoDe puede completarse seleccionando una lista de materiales.

Restricciones lógicas:

Expresan relaciones lógicas entre términos y otras relaciones mas detalladas, por ejemplo, la disyunción, relaciones inversas, etc. Son las ontologías más expresivas.

3.3.2. Según su profundidad de modelado

Ontologías livianas:

- Conceptos.
- Taxonomías de conceptos.
- Relaciones entre conceptos.
- Propiedades que describen relaciones.

Ontologías pesadas:

- Modelan un dominio de manera más profunda.
- Agregan axiomas y restricciones a las anteriores.

3.4. Componentes

Una ontología tiene los siguientes tipos de entidades:

3.4.1. Clases o términos

- Conjunto de individuos que tienen una característica común.
- Representa conceptos en un sentido amplio.
- Se organizan en taxonomías y se aplican mecanismos de herencia.
- Pueden representar conceptos abstractos o específicos.

Taxonomía: vocabulario controlado ordenado jerárquicamente. Una taxonomía define la clasificación de términos y los principios que rigen esa clasificación. Las relaciones de una taxonomía están dadas por $Es\ un$.

Vocabulario controlado: lista cerrada de términos definidos y únicos (sin ambigüedad).

3.4.2. Propiedades

- Enlazan individuos en parejas.
- Atributos que describen un objeto.
- Representa un tipo de asociación entre conceptos de un dominio (interacción).

3.4.3. Individuos o instancias

- Los objetos del dominio a representar.
- Representa miembros de una clase o concepto (objetos) indivisibles.

3.4.4. Axiomas

- Modelan sentencias que son siempre verdaderas.
- Representan conocimiento que no puede ser formalmente definido por los otros componentes.
- Se utilizan para verificar la consistencia del conocimiento almacenada en una base de conocimiento
- Permiten inferir nuevo conocimiento.

3.5. Clasificación

3.5.1. Ontologías de Alto Nivel

- Describen y proponen conceptos generales a los que todos lo términos en ontologías existentes deberían vincularse. Ejemplo: espacio, tiempo, materia, objeto.
- Los términos son los mismos a través de diferentes dominios de conocimiento.
- Son independientes de un dominio o problema particular.
- Su intención es unificar criterios entre grandes comunidades de usuarios.

3.5.2. Ontologías de Dominio

- Describen el vocabulario relacionado a un dominio genérico, por ejemplo, medicina, por medio de la especialización de los conceptos introducidos en las ontologías de alto nivel.
- Son reutilizables en un dominio especifico dado.
- Proveen vocabulario acerca de conceptos dentro de un dominio y sus relaciones, a las actividades que se realizan dentro del dominio y los principios que gobiernan el dominio.
- Los conceptos en las ontologías de dominio son usualmente especializaciones de conceptos ya definidos en la ontología de alto nivel. Lo mismo ocurre con las relaciones.

3.5.3. Ontologías de Tareas

- Describen el vocabulario relacionado a una tarea o actividad genérica, por ejemplo, de diagnóstico o de ventas, por medio de la especialización de los conceptos introducidos en las ontologías de alto nivel.
- Proporcionan un vocabulario sistemático de los términos utilizados para resolver los problemas relacionados con las tareas que pueden o no pertenecer al mismo dominio.

3.5.4. Ontologías de Aplicación

- Describen conceptos que pertenecen a la vez a un dominio y a una tarea particular, por medio de la especialización de los conceptos de las ontologías de dominio y de tareas.
- Generalmente corresponden a roles que juegan las entidades del dominio cuando ejecutan una actividad.
- Contienen todas las definiciones necesarias para modelar el conocimiento de una determinada aplicación.
- Ontologías de aplicación a menudo se extienden y se especializan en el vocabulario del dominio y de las ontologías de tareas para una aplicación dada.

4. Arquitectura

4.1. Principios

El desarrollo de la Web Semántica tiene lugar por pasos. Cada paso construye una capa encima de otra. Se logra consenso en pequeños pasos mas fácilmente.

4.1.1. Compatibilidad Descendente

Agentes con el conocimiento propio de una capa deberían también interpretar y usar información escrita en niveles inferiores (máximo provecho).

4.1.2. Compresión Parcial Hacia Arriba

Agentes con el conocimiento de una capa deberían ser capaces de tomar ventaja de información parcial de niveles superiores.

4.2. Capas

4.2.1. Capa URI

- Identificadores de recursos únicos, sin posibilidad de ambigüedad.
- Puede ser una localización (URL), un nombre (URN) o ambos.

4.2.2. Capa XML

- Un lenguaje de etiquetas debe especificar:
 - Las etiquetas permitidas.
 - Las etiquetas requeridas.
 - Cómo se distinguen las etiquetas del texto.
 - Qué significan las etiquetas.

- XML sólo especifica las tres primeras, la cuarta es especificada por DTD.
- Metalenguaje de etiquetas extensibles, se puede acomodar a las necesidades de cada uno.
- Esquemas que definen y restringen su estructura.
- Base sintáctica.
- Lenguaje que permite escribir documentos Web estructurados.
- Utiliza un vocabulario definido por el usuario.
- Establece relaciones básicas pero no una semántica.
- Es más fácilmente accesible para máquinas:
 - Se describe cada elemento de información.
 - Se definen las relaciones a través de la estructura anidada.
- Es un lenguaje de marcas tal como HTML.
- Fue diseñado para describir datos.
- Las etiquetas no están predefinidos.
- Usa un Document Type Definition (DTD) o un XML Schema para describir los datos.
- XML con un DTD o XML Schema fue diseñado para ser auto-descriptivo.
- Es recomendación de la W3C.
- Es un metalenguaje que no tiene un conjunto fijo de etiquetas pero permite al usuario definir sus propias etiquetas.
- Fue diseñado para describir datos.
- Reduce la complejidad de la interpretación de los datos.
- Mayor facilidad para expandir y actualizar un sistema.

4.2.3. Capa RDF

- Infraestructura para la Descripción de Recursos.
- Modelo de datos básico.
- Permite escribir sentencias simples acerca de recursos Web.
- No depende de XML pero tiene una sintaxis basada en XML.
- Recomendacion del W3C.
- Estandariza la definición y uso de metadatos (útil para la representación de datos).
- Usa la sintaxis de XML.
- Soluciona las carencias de XML, y agrega semántica.

- Lenguaje centrado en propiedades, no en recursos.
- Posee semántica formal.

Tripletas:

- Cada tripleta representa una declaración de una relación entre los elementos denotados por los vínculos.
- Cada tripleta tiene 3 partes:
 - Un sujeto.
 - Un objeto.
 - o Un predicado (también llamado propiedad) que denota una relación.
- La dirección del arco es significativa: siempre apunta hacia el objeto.
- Conjunto tripletas: Grafo.

• Recursos:

- Podemos ver una cosa o recurso sobre lo que queremos hacer referencia.
- Cada recurso tiene un URI (Universal Resource Identifier).
- Un URI puede ser:
 - o Una URL (dirección web).
 - o Otra clase de identificador único.
- Para nosotros una URI es el identificador de un recurso web.

Propiedades:

- Son una clase especial de recursos.
- Describen relaciones entre recursos.
- También se identifican por URI's.
- Brinda un esquema único y global para nombrar a las cosas.
- Reduce el problema del manejo de homónimos de la representación distribuida.
- Homónimos son aquellos términos o palabras que, aunque se escriben o pronuncian de manera similar, tienen diferente valor gramatical, como por ejemplo: más y mas.

Sentencias:

- Las sentencias establecen las propiedades de los recursos.
- Una sentencia es una tripleta del tipo objeto-atributo-valor.
- Consiste en un recurso, una propiedad y un valor.
- Los valores pueden ser recursos o literales (valores atómicos, strings).

Beneficios:

- RDF tiene suficiente poder expresivo, como base sobre la cual otras capas de la arquitectura de la Web Semántica se pueden construir.
- La Web Semántica no se va a programar en RDF pero si con herramientas que van a traducir en forma automática representaciones de más alto nivel en RDF.
- Con RDF la información se mapea sin ambigüedad a un modelo.

• Como RDF es un estándar, trabajar sobre RDF equivale a trabajar en HTM en los primeros tiempos de la Web.

Desventajas:

- RDF permite la afirmación de sentencias simples que consisten en sujeto- predicadoobjeto.
- No describe lo que estos elementos significan sino que describen las relaciones que existen entre ellos.

4.2.4. Capa RDFS

- Provee primitivas de modelado para la organización de recursos en jerarquías: clases, propiedades, relaciones de subclases y subpropiedades, y restricciones de dominio y rango.
- Está basado en RDF.
- Lenguaje primitivo para la definición de ontolgías.
- RDF + definición de un vocabulario.
- RDFS no provee clases ni propiedades particulares de una aplicación, sino que otorga un framework para describir esas clases y propiedades.
- Expresiones RDF SCHEMA son expresiones RDF válidas.
- Introduce conceptos ontológicos simples:
 - Introduce el concepto de clase.
 - Define cómo los recursos pueden describirse como pertenecientes a una o más clases.
 - Describe jerarquía de clases y propiedades.
 - Define dominio y rango de propiedades.
- Las clases en un RDF Schema son comparables a las clases en lenguajes de programación orientada a objetos.
- Los recursos pueden ser definidos como instancias de clases o subclases de clases.
- Una ontología en RDFS debe comenzar con un nodo raíz RDF donde se incluyen los namespaces para las ontologías RDF y RDFS (ontologías de representación del conocimiento).
- El uso de los namespaces permite utilizar los prefijos rdf y rdfs para las primitivas que pertenecen a RDF y RDFS.

Clase:

- Una clase representa una colección de recursos.
- Son recursos en si mismas identificados por URI's.
- Un recurso comienza a ser un miembro de una clase utilizando la propiedad rdf:type.
- Conceptos son clases y subclases en RDFS.
- Se referencian por nombre o URL a un recurso web.

• rdfs:subClassOf indica que una clase es subclase de otra.

Propiedades:

- Propiedades RDF son recursos.
- rdf:Property es la clase de todas las propiedades.
- Atributos de instancia de clases se definen como propiedades en RDFS.
- El dominio de estas propiedades es la clase a la que pertenece el atributo y el rango es el tipo del valor del atributo.
- No se definen restricciones de cardinalidad ni valores por omisión.
- Atributos de clase se representan de manera similar.
- El dominio de la propiedad se define como rdfs:class, y se incluye el valor de la propiedad en la definición de la clase.
- Una referencia URI o un literal utilizado como nodo, identifica lo que el nodo representa.
- Una referencia URI utilizada como predicado identifica una relación entre los elementos representados por los nodos que conecta.
- Una referencia URI predicado puede también ser un nodo en el grafo.

4.2.5. Capa OWL

- Necesidad de lenguajes de ontologías mas potentes que expandan RDF-S y que permitan la representación de relaciones mas complejas entre recursos web.
- Lenguaje para definir ontologías.
- Estándar web.
- Construido sobre RDF para procesar información en la web.
- Diseñado para ser interpretado por computadoras, no para ser leído por las personas.
- Utiliza sintaxis XML.
- OWL es similar a RDF pero:
 - Lenguaje más potente.
 - Provee mayor interoperabilidad.
 - Mayor vocabulario.
 - Mejor sintaxis.
- Limitaciones de RDFS:
 - Expresar la disyunción de clases.
 - Definir clases como combinación de otras (unión, intersección o complemento).
 - Expresar restricciones sobre la cardinalidad de propiedades.
 - Describir propiedades específicas de las propiedades.
- Requerimientos para lenguajes de representación de ontologías (extensión de RDFS):

- Una sintaxis bien definida: condición necesaria para información procesable por máquinas.
- Una semántica formal: prerequisito para soporte de razonamiento.
- Soporte de razonamiento: verificar la consistencia de la ontología.
- Suficiente poder expresivo.
- La información Web tiene un significado preciso.
- La información Web puede ser procesada por computadoras.
- Las computadoras pueden integrar la información de la web.
- OWL está diseñado para:
 - Proveer una forma común para procesar el contenido de la web en vez de mostrarlo.
 - Permitir la lectura por aplicaciones en vez de humanos.
- En una ontología OWL encontramos:
 - Clases + jerarquía de clases.
 - Propiedades (Slots) / values.
 - Relaciones. Relaciones entre clases (herencia, disyunción, equivalencia).
 - Restricciones. Restricciones sobre las propiedades (tipo, cardinalidad).
 - Características de propiedades (transitividad,...).
 - Anotaciones.
 - Individuos.
- Tareas de razonamiento: clasificación, chequeo de consistencia.

4.2.6. Capa Lógica

- Enfatizar lenguajes ontológicos.
- Desarrollo de aplicaciones específicas de conocimiento declarativo.

4.2.7. Capa de Prueba

• Generación de prueba, validación.

4.2.8. Capa de Confianza

- Firma digital.
- Recomendaciones, certificaciones.
- Seguridad y calidad en operaciones e información.

4.3. Componentes para una Web Semántica:

- XML nos da la sintaxis para documentos estructurados, pero no agrega semántica. Permite estructurar documentos según vocabularios definidos por el usuario.
- XML Schema restringe la estructura de documentos XML y extiende a XML con datatypes.
- RDF es un modelo de datos para objetos (recursos") y relaciones entre ellos. Provee semántica simple para este modelo de datos, y puede ser representado con sintaxis de XML. Proporciona un modelo para describir aserciones sobre recursos Web.
- RDF Schema es un vocabulario para describir clases y propiedades de recursos RDF, usando semántica para jerarquías generalizadas de esas propiedades y clases. Proporciona primitivas para organizar objetos en jerarquías (ontologías simples).
- OWL agrega vocabulario para describir propiedades y clases: entre otros, relaciones entre clases, cardinalidad, igualdad, características de propiedades, etc. Permite expresar relaciones más complejas entre objetos (ontologías complejas).