Jean Baptiste Joseph Fourier (1768-1830)

- Teve uma ideia maluca em 1807: qualquer função univariada pode ser reescrita como uma soma ponderada de senos e cossenos de diferentes frequências.
- Mas é essencialmente verdade - Série de Fourier!

$$A * sen(\omega t + \varphi)$$

Basta adicionar quantidade suficiente para conseguir qualquer sinal (f(x)) que se queira!

Série de Fourier

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{i\frac{2\pi n}{T}t}$$

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-i\frac{2\pi n}{T}t} dt$$
, $n = 0, \pm 1, \pm 2, ...$

• A TF nada mais é do que a Série de Fourier no limite em que a frequência fundamental (f_0) vai a zero;

- Para funções não-periódicas, considera-se o limite para quando a frequência fundamental (f_0) vai a zero;
- A medida que f₀ diminui, o espaçamento entre os períodos da função no domínio do tempo aumentam;
- Consequentemente, o espaçamento entre os harmônicos da série de Fourier diminui, tendendo à zero (função contínua no domínio da frequência - integral);

- Seja f(t) uma função contínua de uma variável real t;
- A Transformada de Fourier de f(t) é definida por:

$$\mathfrak{F}{f(t)} = F(u) = \int_{-\infty}^{\infty} f(t)e^{-i2\pi ut}dt$$

• A Transformada Inversa de Fourier de F(u) é definida por:

$$\mathfrak{F}^{-1}{F(u)} = f(t) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ut}du$$

• A variável (u) é denominada variável de frequência.

TF de uma função contínua simples

Periodicidade da TF

- Seja f(x, y) uma função contínua de duas variáveis real x e y;
- A Transformada de Fourier de f(x, y) é definida por:

$$\mathfrak{F}{f(x,y)} = F(u,v) = \int_{-\infty}^{\infty} f(x,y)e^{-i2\pi(ux+vy)}dxdy$$

• A Transformada Inversa de Fourier de F(u, v) é definida por:

$$\mathfrak{F}^{-1}{F(u,v)} = f(x,y) = \int_{-\infty}^{\infty} F(u,v)e^{i2\pi(ux+vy)}dudv$$

• As variáveis (u e v) são denominadas variáveis de frequência.

TF de uma função contínua simples (2D)

Espectro de Fourier

TF de uma função contínua simples (2D)

Espectro como uma Imagem de Intensidades

Espectro de um retângulo

Espectro de um retângulo

