Physik für B-TI – 1. Semester

Dozentin: Dr. Barbara Sandow, barbara.sandow@fu-berlin.de

Zusammenfassung 9. SU – 2.12.2019

2. MECHANIK

Gedämpfte Schwingungen: zeitliche Abnahme der Amplitude

Fig: zeitlicher Verlauf der Auslenkung einer gedämpften harmonischen Schwingung

z. B. Federschwinger: Annahme - Dämpfung durch eine Reibungskraft – F_R = - α v mit α Reibungskoeffizient

Bewegungsgleichung:
$$F_R + F_D = m \ a = m\ddot{x}$$

Differentialgleichung:

$$\ddot{x} + \frac{\alpha}{m}\dot{x} + \frac{D}{m}x = 0$$

mit $\omega_0 = \sqrt{\frac{D}{m}} \rightarrow$ der Kreisfrequenz der ungedämpften Schwingung, ergibt sich die Diffentialgleichung:

$$\ddot{x} + \frac{\alpha}{m}\dot{x} + \omega_0^2 x = 0$$

Lösung der Differentialgleichung:

$$x(t) = A_0 e^{-\pi} \cos(\omega t + \varphi_0)$$

$$\text{mit} \quad \tau = \frac{1}{2} \frac{\alpha}{m} \quad \text{Dämpfungszeit} \quad \text{und} \quad \text{der Kreisfrequenz} \quad \omega = \sqrt{\omega_0 - \tau^2} \quad \text{, eine}$$
 periodische Bewegung mit der

Amplitude:
$$A(t) = A_0 e^{-\tau t}$$

Siehe auch Tabelle: Vergleich von verschiedenen Oszillatoren (schwingungsfähigen Systemen).

Überlagerungen von Schwingungen: Interferenz

- konstruktive Interferenz entspricht einer Verstärkung
- destruktive Interferenz entspricht einer Auslöschung

Wellen

Eine Welle ist eine periodische Änderung einer physikalischen Größe mit der Zeit und am Ort (eine Schwingung, die sich auf den Weg gemacht hat).

Wellenarten:

Die klassischen Wellenarten sind *Longitudinal*- und *Transversalwellen*. **Longitudinalwellen** schwingen *parallel* zur Ausbreitungsrichtung. **Transversalwellen** schwingen *senkrecht* zur Ausbreitungsrichtung.

Eigenschaften

• **Amplitude**: Die Amplitude y_0 beschreibt die maximale Auslenkung der Schwingungen der Welle, also dort wo der Wellenberg am höchsten ist.