Property 1. The union of two regular set is regular.

Proof -

Let us take two regular expressions

 $RE_1 = a(aa)^*$ and $RE_2 = (aa)^*$

So, $L_1 = \{a, aaa, aaaaa,....\}$ (Strings of odd length excluding Null)

and L_2 ={ ϵ , aa, aaaaa, aaaaaa,......} (Strings of even length including Null)

 $L_1 \cup L_2 = \{ \epsilon, a, aa, aaa, aaaa, aaaaa, aaaaaa,\}$

(Strings of all possible lengths including Null)

RE $(L_1 \cup L_2) = a^*$ (which is a regular expression itself)

Hence, proved.

Property 2. The intersection of two regular set is regular.

Proof -

Let us take two regular expressions

 $RE_1 = a(a^*)$ and $RE_2 = (aa)^*$

So, $L_1 = \{ a,aa, aaa, aaaa, \}$ (Strings of all possible lengths excluding Null)

 L_2 = { ϵ , aa, aaaa, aaaaaa,......} (Strings of even length including Null)

 $L_1 \cap L_2 = \{ aa, aaaaa, aaaaaa,.....\}$ (Strings of even length excluding Null)

RE $(L_1 \cap L_2)$ = aa(aa)* which is a regular expression itself.

Hence, proved.

Property 3. The complement of a regular set is regular.

Proof -

Let us take a regular expression -

$$RE = (aa)^*$$

So, L = $\{\epsilon$, aa, aaaaa, aaaaaa, $\}$ (Strings of even length including Null)

Complement of L is all the strings that is not in L.

So, L' = {a, aaa, aaaaa,} (Strings of odd length excluding Null)

RE (L') = $a(aa)^*$ which is a regular expression itself.

Hence, proved.

Property 4. The difference of two regular set is regular.

Proof -

Let us take two regular expressions -

 $RE_1 = a (a^*) \text{ and } RE_2 = (aa)^*$

So, $L_1 = \{a, aa, aaa, aaaa,\}$ (Strings of all possible lengths excluding Null)

 L_2 = { ϵ , aa, aaaa, aaaaaa,......} (Strings of even length including Null)

 $L_1 - L_2 = \{a, aaa, aaaaaa, aaaaaaa,\}$

(Strings of all odd lengths excluding Null)

RE $(L_1 - L_2) = a$ (aa)* which is a regular expression.

Hence, proved.

Property 5. The reversal of a regular set is regular.

Proof -

We have to prove L^{R} is also regular if L is a regular set.

Let,
$$L = \{01, 10, 11, 10\}$$

$$RE(L) = 01 + 10 + 11 + 10$$

$$L^{R} = \{10, 01, 11, 01\}$$

RE (L^R) = 01 + 10 + 11 + 10 which is regular

Hence, proved.

Property 6. The closure of a regular set is regular.

Proof -

If $L = \{a, aaa, aaaaa,\}$ (Strings of odd length excluding Null) i.e., RE (L) = a (aa)*

L* = {a, aa, aaa, aaaa, aaaaa,.....} (Strings of all lengths excluding Null)

 $RE (L^*) = a (a)^*$

Hence, proved.

Property 7. The concatenation of two regular sets is regular.

Proof -

Let $RE_1 = (0+1)*0$ and $RE_2 = 01(0+1)*$

Here, $L_1 = \{0, 00, 10, 000, 010, \dots \}$ (Set of strings ending in 0) and $L_2 = \{01, 010, 011, \dots \}$ (Set of strings beginning with 01)

Then, L_1 L_2 = {001,0010,0011,0001,00010,00011,1001,10010,....}

Set of strings containing 001 as a substring which can be represented by an RE -(0 + 1)*001(0 + 1)*

Hence, proved.