Credibility Dynamics and Disinflation Plans

Rumen Kostadinov McMaster Francisco Roldán IMF

IMF Speed-date presentations event
May 2020

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

- Models
 - Commitment
 - Discretion
 - Hybrids
- This paper: rational-expectations theory of government credibility
 - · Insights from reputation
- Application: Inflation Targeting, disinflation plans
 - Model: stubborn types committed to inflation targets
 - Planner (very likely to not be stubborn) announces targets
 - · Anticipates reputation dynamics once plan in place, weighs against plan itself

- Models
 - Commitment
 - Discretion
 - Hybrids
 - This paper: rational-expectations theory of government credibility
 - · Insights from reputation
- Application: Inflation Targeting, disinflation plans
 - Model: stubborn types committed to inflation targets
 - Planner (very likely to not be stubborn) announces targets
 - · Anticipates reputation dynamics once plan in place, weighs against plan itself

- Models
 - Commitment
 - Discretion
 - Hybrids
 - This paper: rational-expectations theory of government credibility
 - · Insights from reputation
- Application: Inflation Targeting, disinflation plans
 - Model: stubborn types committed to inflation targets
 - Planner (very likely to not be stubborn) announces targets
 - · Anticipates reputation dynamics once plan in place, weighs against plan itself

- Models
 - · Commitment
 - Discretion

 X
 - Hybrids
 - This paper: rational-expectations theory of government credibility
 - · Insights from reputation
 - Application: Inflation Targeting, disinflation plans
 - Model: stubborn types committed to inflation targets
 - Planner (very likely to not be stubborn) announces targets
 - · Anticipates reputation dynamics once plan in place, weighs against plan itself

- Models
 - · Commitment X
 - Discretion
 - · Hybrids X
 - This paper: rational-expectations theory of government credibility
 - · Insights from reputation
 - Application: Inflation Targeting, disinflation plans
 - Model: stubborn types committed to inflation targets
 - · Planner (very likely to not be stubborn) announces targets
 - · Anticipates reputation dynamics once plan in place, weighs against plan itself

Main question: How are announcements of future policy able to affect beliefs?

- Models
 - Commitment
 - Discretion X
 - · Hybrids X
- This paper: rational-expectations theory of government credibility
 - · Insights from reputation

Application: Inflation Targeting, disinflation plans

- Model: stubborn types committed to inflation targets
- · Planner (very likely to not be stubborn) announces targets
- · Anticipates reputation dynamics once plan in place, weighs against plan itself

Main question: How are announcements of future policy able to affect beliefs?

- Models
 - Commitment
 - Discretion
 - · Hybrids X
- This paper: rational-expectations theory of government credibility
 - · Insights from reputation \checkmark

Application: Inflation Targeting, disinflation plans

- Model: stubborn types committed to inflation targets
- · Planner (very likely to not be stubborn) announces targets
- \cdot Anticipates reputation dynamics once plan in place, weighs against plan itself

- Models
 - Commitment
 - Discretion
 - · Hybrids X
- This paper: rational-expectations theory of government credibility
 - Insights from reputation
- Application: Inflation Targeting, disinflation plans
 - Model: stubborn types committed to inflation targets
 - · Planner (very likely to not be stubborn) announces targets
 - · Anticipates reputation dynamics once plan in place, weighs against plan itself

Main result: Planner picks a gradual disinflation

- Does not depend on inertia or 'real' effects, only incentives
- Story
 - \cdot CB values your belief that it follows the plan \implies has incentive to "keep the fiction alive"
 - Incentive does not require reputation to be high
- · Strength of incentive depends on the entire plar

Main result: Planner picks a gradual disinflation

· Does not depend on inertia or 'real' effects, only incentives

Story

CB values your belief that it follows the plan ⇒ has incentive to "keep the fiction alive
 Incentive does not require reputation to be high

Strength of incentive depends on the entire plar

Main result: Planner picks a gradual disinflation

- Does not depend on inertia or 'real' effects, only incentives
- Story
 - \cdot CB values your belief that it follows the plan \implies has incentive to "keep the fiction alive"
 - · Incentive does not require reputation to be high
- · Strength of incentive depends on the entire plan

Main result: Planner picks a gradual disinflation

- Does not depend on inertia or 'real' effects, only incentives
- Story
 - \cdot CB values your belief that it follows the plan \implies has incentive to "keep the fiction alive"
 - · Incentive does not require reputation to be high
- · Strength of incentive depends on the entire plan \implies gradualism

Gradualism (cont'd)

- · CB could always deviate, use shocks for cover
 - · (Technical but) Critical departure from literature, implies $p \in (0,1)$ continuously
 - ... rather than p = 0 after any deviation
 - Makes some plans more credible than others
- Initial reputation = actual proportion of stubborn types (rational expectations)
 - · Results hold in limit as $p \to 0$

Gradualism (cont'd)

- · CB could always deviate, use shocks for cover
 - · (Technical but) Critical departure from literature, implies $p \in (0,1)$ continuously
 - ... rather than p = 0 after any deviation
 - \cdot Makes some plans more credible than others \implies gradualism
 - Initial reputation = actual proportion of stubborn types (rational expectations
 - · Results hold in limit as $p \to 0$

Gradualism (cont'd)

- · CB could always deviate, use shocks for cover
 - · (Technical but) Critical departure from literature, implies $p \in (0,1)$ continuously
 - ... rather than p = 0 after any deviation
 - Makes some plans more credible than others \implies gradualism
- Initial reputation = actual proportion of stubborn types (rational expectations)
 - · Results hold in limit as $p \to 0$

Model

Framework

- A government dislikes inflation and output away from a target $y^\star>0$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

· A Phillips curve relates output to current and expected future inflation

$$\pi_t = \kappa \mathbf{y}_t + \beta \mathbb{E}_t \left[\pi_{t+1} \right]$$

- The government controls inflation only imperfectly (through g_t)

$$\pi_t = \mathbf{g}_t + \epsilon_t$$

with $\epsilon_{\mathsf{t}} \stackrel{\mathit{iid}}{\sim} \mathsf{F}_{\epsilon}$

Behavioral/Stubborn types

- What is the set C?
 - \cdots and associated possible ϕ_c functions
- Consider $\{a_t\}_t$ paths characterized by
 - Starting point a₀
 - Decay rate ω
 - Asymptote χ

$$a_t = \chi + (a_0 - \chi)e^{-\omega t}$$
$$\phi(a) = \chi + e^{-\omega}(a - \chi)$$

Behavioral/Stubborn types

- What is the set C?
 - \cdots and associated possible ϕ_c functions
- Consider $\{a_t\}_t$ paths characterized by
 - Starting point a₀
 - Decay rate ω
 - Asymptote χ

$$a_t = \chi + (a_0 - \chi)e^{-\omega t}$$
$$\phi(a) = \chi + e^{-\omega}(a - \chi)$$

Gameplay

- At t = 0, inflation targets are announced
 - Type $\mathbf{c} \in \mathcal{C}$ says \mathbf{c}
 - Rational type strategizes announces r possibly $\in \mathcal{C}$
 - At time $t \ge 0$, the government sets inflation
 - Behavioral type c ∈ C implements gt = at
 Rational type acts strategically

Gameplay

- At t = 0, inflation targets are announced
 - Type $\mathbf{c} \in \mathcal{C}$ says \mathbf{c}
 - Rational type strategizes announces r possibly $\in \mathcal{C}$
 - At time $t \ge 0$, the government sets inflation
 - Behavioral type $c \in C$ implements $g_t = a_t^c$
 - Rational type acts strategically
 - chooses $g_t \leqslant a_t^c$

Gameplay

- At t = 0, inflation targets are announced
 - Type $\mathbf{c} \in \mathcal{C}$ says \mathbf{c}
 - Rational type strategizes announces r possibly $\in \mathcal{C}$
- At time $t \ge 0$, the government sets inflation
 - Behavioral type $c \in C$ implements $g_t = a_t^c$
 - Rational type acts strategically

chooses $g_t \leq a_t^c$

Equilibrium distribution of announcements

Model solution yields a distribution of announcements

Equilibrium distribution of announcements

Model solution yields a distribution of announcements

- Gradualism: $\mathbb{P}(a_0 > \chi) = 71.3\%$. $\mathbb{P}(a_0 > 5\chi) = 18\%$. $\mathbb{P}(\text{decay} \le 10\%) = 6.17\%$.
- · Imperfect credibility: $\mathbb{P}(\chi = 0) = 0.73\%$.

· Model of reputation + imperfect control creates incentives for a gradual disinflation

Questions

- 1. Real sources of inertia how do they interact with gradualist incentives?
- 2. Quantitative version(s):
 - · Consumption and nominal rates
 - Investment and costs of monetary contraction
- 3. Flexible announcements: liftoff
- 4. Empirical validation of (1) + (2)

· Model of reputation + imperfect control creates incentives for a gradual disinflation

Questions:

- 1. Real sources of inertia how do they interact with gradualist incentives?
- 2. Quantitative version(s)
 - Consumption and nominal rates
 - Investment and costs of monetary contraction
- Flexible announcements: liftoff
- 4. Empirical validation of (1) + (2)

Model of reputation + imperfect control creates incentives for a gradual disinflation

Questions:

- 1. Real sources of inertia how do they interact with gradualist incentives?
- 2. Quantitative version(s):
 - Consumption and nominal rates
 - · Investment and costs of monetary contraction
- 3. Flexible announcements: liftoff
- 4. Empirical validation of (1) + (2)

· Model of reputation + imperfect control creates incentives for a gradual disinflation

Questions:

- 1. Real sources of inertia how do they interact with gradualist incentives?
- 2. Quantitative version(s):
 - Consumption and nominal rates
 - Investment and costs of monetary contraction
- 3. Flexible announcements: liftoff
- 4. Empirical validation of (1) + (2)

· Model of reputation + imperfect control creates incentives for a gradual disinflation

Questions:

- 1. Real sources of inertia how do they interact with gradualist incentives?
- 2. Quantitative version(s):
 - Consumption and nominal rates
 - · Investment and costs of monetary contraction
- 3. Flexible announcements: liftoff
- 4. Empirical validation of (1) + (2)

· Model of reputation + imperfect control creates incentives for a gradual disinflation

Questions:

- 1. Real sources of inertia how do they interact with gradualist incentives?
- 2. Quantitative version(s):
 - Consumption and nominal rates
 - Investment and costs of monetary contraction
- 3. Flexible announcements: liftoff
- 4. Empirical validation of (1) + (2)