

REDES NEURAIS & **DEEP LEARNING**

. REDES NEURAIS ARTIFICIAIS

TRADITIONAL MACHINE LEARNING

• • • • •

. PROBLEMAS **COMPLEXOS**

Técnicas de extração de características em imagens:

.

. PROBLEMAS **COMPLEXOS**

Poodle ou frango frito?

-

. PROBLEMAS **COMPLEXOS**

Cão ou rosca?

• • • • •

. PROBLEMAS **COMPLEXOS**

Chihuahua ou muffin?

٠

•

•

•

. PROBLEMAS **COMPLEXOS**

Frango cru ou Donald Trump?

. PROBLEMAS COMPLEXOS

Nós, humanos, após milhões de anos estamos começando a perder para as máquinas...

DEEP LEARNING - REDES NEURAIS CONVOLUCIONAIS

Arquitetura tradicional LeNet-5

Review: LeNet-5

(LeCun et al., 1998)

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

DEEP LEARNING - REDES NEURAIS CONVOLUCIONAIS

. DEEP LEARNING - REDES NEURAIS CONVOLUCIONAIS

. DEEP LEARNING - REDES NEURAIS CONVOLUCIONAIS

https://experience.huia.haus/

DEEP LEARNING - REDES NEURAIS CONVOLUCIONAIS

Arquitetura Geral

A ideia é que uma **convolução** (ou um detector de atributos de rede neural local) mapeia uma dada região de certa imagem para um "mapa de atributos".

A ideia é que uma **convolução** (ou um detector de atributos de rede neural local) mapeia uma dada região de certa imagem para um "mapa de atributos".

Image

Convolved Feature

CONVOLUÇÃO

 Imagem 32 x 32 x 3 → mantém a estrutura espacial preservada.

CONVOLUÇÃO

Filtro.

- · Convolve o filtro com a imagem.
- Por exemplo: "se desliza a imagem espacialmente, computando produtos escalares".

 Os filtros sempre estendem a profundidade total do volume de entrada.

 Convolve o filtro com a imagem. Por exemplo: "Se desliza a imagem espacialmente, computando produtos de pontos".

CONVOLUÇÃO

 1 número: pedaço de 5 x 5 x 3 da imagem (ou seja, 5 * 5 * 3 = produto escalar de 75 dimensões + bias).

$$w^Tx + b$$

- Por exemplo, se tivéssemos seis filtros 5 x 5, obteríamos seis mapas de ativação separados.
- Receberíamos uma "nova imagem" de tamanho 28 x 28 x 6!

 ConvNets, então, são uma sequência de camadas de convolução intercaladas com funções de ativação.

• ConvNets, então, são uma sequência de camadas de convolução intercaladas com funções de ativação.

. EXEMPLOS DE **CONVOLUÇÃO**

. EXEMPLOS DE **CONVOLUÇÃO**

Matriz de Entrada (imagem)

Kernel

Mapa de Ativação

. EXEMPLOS DE **CONVOLUÇÃO**

PADDING

Feature map size: 10×10

PADDING

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernel

0	-1	0
-1	5	-1
0	-1	0

114		

STRIDE

SUBAMOSTRAGEM

O que estamos fazendo com convolução e subamostragem?

Machine Learning

Deep Learning

REDES NEURAIS **CONVOLUCIONAIS**ARQUITETURA GERAL

REDES NEURAIS **CONVOLUCIONAIS**ARQUITETURA GERAL

• Mas como as CNNs calibram os Kernels (filtros) durante o treinamento?

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X_{23}
X ₃₁	X_{32}	X ₃₃

∂ h ₁₁	∂ h ₁₂
∂ h ₂₁	∂ h ₂₂

$$\partial W_{11} = X_{11} \partial h_{11} + X_{12} \partial h_{12} + X_{21} \partial h_{21} + X_{22} \partial h_{22}$$

$$\partial W_{12} = X_{12} \partial h_{11} + X_{13} \partial h_{12} + X_{22} \partial h_{21} + X_{23} \partial h_{22}$$

$$\partial W_{21} = X_{21} \partial h_{11} + X_{22} \partial h_{12} + X_{31} \partial h_{21} + X_{32} \partial h_{22}$$

$$\partial W_{22} = X_{22} \partial h_{11} + X_{23} \partial h_{12} + X_{32} \partial h_{21} + X_{33} \partial h_{22}$$

REDES NEURAIS **CONVOLUCIONAIS**ARQUITETURAS CONHECIDAS

• Número de parâmetros: 60 mil

LeNet - 5

• Número de parâmetros: 60 milhões

AlexNet

Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

- Número de parâmetros: 138 milhões
- VGG-16 from Very Deep Convolutional Networks for Large-Scale Image Recognition

• Número de parâmetros: 25 milhões (ResNet50)

ResNet - Deep Residual Learning for Image Recognition

$$z^{[l+2]} = W^{[l+2]} a^{[l+1]} + b^{[l+2]}$$

$$a^{[l+2]} = g^{[l+2]}(z^{[l+2]} + a^{[l]})$$

ResNet - Deep Residual Learning for Image Recognition

Inception

Inception - Google LeNet

• É possível realizar a convolução 1D?

- REDES NEURAIS CONVOLUCIONAIS
- Em que cenários é interessante utilizar Conv 1D?
- Para que tipos de problemas?

DISCUSSÃO

- REDES NEURAIS CONVOLUCIONAIS
 - Quando utilizar CNN?
 - Por onde começar a resolver o problema com cnn?

DISCUSSÃO

Estudo de caso: reconhecimento facial com CNN

CNN-based FR

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014

- Estudo de caso: problema OCR Notas Fiscais
- Deep Learning de alta capacidade para classificar caracteres com ruído e defeitos de impressão.

HANDS ON #4:

CLASSIFICAÇÃO DE IMAGENS COM KERAS + TENSORFLOW E DATASET MNIST

HANDS ON #5:

CLASSIFICAÇÃO DE IMAGENS COLORIDAS COM KERAS + TENSORFLOW E DATASET CIFAR10

OBRIGADO

Copyright © 2020 | Professor Felipe Gustavo Silva Teodoro

Todos os direitos reservados. A reprodução ou divulgação total ou parcial deste documento é expressamente proibida sem o consentimento formal, por escrito, do(a) professor(a)/autor(a).

+
+
+