PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-206360

(43)Date of publication of application: 16.08.1990

(51)Int.CI.

H02M 1/14 H04N 5/63

(21)Application number: 01-022217

(71)Applicant: SONY CORP

(22)Date of filing:

31.01.1989

(72)Inventor: IMAMURA NORITOSHI

OTA HIROYASU

(54) FILTER CIRCUIT

(57)Abstract:

PURPOSE: To miniaturize a power circuit by using a pair of coils constituted from magnetically coupled two coil parts.

CONSTITUTION: The title apparatus is provided with a first coil 71, in which magnetically coupled first and second coil parts 71A, 71B are connected in series, and with a second coil 72, in which magnetically coupled third and fourth coil parts 72A, 72B are connected in series. Then, the first and second coils 71 and 72 are inserted in lines L1 and L2 respectively, and a junction between the first and second coil parts 71A and 71B and that between the third and fourth coil parts 72A and 72B are connected by a capacitor 81.

⑩日本国特許庁(JP)

① 特許出願公開

⑫ 公 開 特 許 公 報 (A) 平2-206360

@Int. Cl. 5

識別配号

庁内整理番号

@公開 平成2年(1990)8月16日

H 02 M H 04 N 1/14 5/63

Z

8325-5H 6957-5C

審査請求 未請求 請求項の数 4 (全8頁)

フイルタ回路 60発明の名称

> 頭 平1-22217 创特

頭 平1(1989)1月31日 @出

典 俊 Ħ @発 明 者

東京都品川区北品川6丁目5番6号 ソニー・マグネ・ブ

ロダクツ株式会社内

@発 明 老 太田 康 東京都品川区北品川6丁目5番6号 ソニー・マグネ・ブ

ロダクツ株式会社内

ソニー株式会社 の出 頭

東京都品川区北品川6丁目7番35号

弁理士 田辺 恵基 60代 理 人

1. 発明の名称

フィルタ回路

2.特許請求の範囲

(1) 磁気的に結合した第1及び第2のコイル部分 を直列接続した第1のコイルと、

磁気的に結合した第3及び第4のコイル部分を 直列接続した第2のコイルと

を有し、

上記第1及び第2のコイルを線路に介押し、

上記第1及び第2のコイル部分の接続点と、上 記第3及び第4のコイル部分の接続点との間をコ ンデンサで接続するようにした

ことを特徴とするノーマルモードノイズ用のフ イルタ団路。

(2) 磁気的に結合した第1及び第2のコイル部分 を直列接続した第1のコイルと、

磁気的に結合した第3及び第4のコイル部分を

直列接続した第2のコイルと

を有し、

上配第1及び第2のコイルを線路に介押し、

上記第1及び第2のコイル部分の接続点を第1 のコンデンサで接地すると共に、

上配第3及び第4のコイル部分の接続点を第2 のコンデンサで接地するようにした

ことを特徴とするコモンモードノイズ用のフィ ルタ団路。

(3) 磁気的に結合した第1及び第2のコイル部分 を直列接続した第1のコイルと、

磁気的に結合した第3及び第4のコイル部分を 直列接続した第2のコイルと

を有し、

上記第1及び第3のコイル部分を線路に介押し、 上記第2及び第4のコイル部分をコンデンサで 接続して、上記第1及び第2のコイル部分の接続 点から、上記第2のコイル部分、上記コンデンサ、 上配第4のコイル部分を介して、上配第3及び第 4のコイル部分の接続点に至る側路を形成するよ

うにした

ことを特徴とするノーマルモードノイズ用のフィルタ回路。

(4) 磁気的に結合した第1及び第2のコイル部分を直列接続した第1のコイルと、

磁気的に結合した第3及び第4のコイル部分を 直列接続した第2のコイルと

を有し、

上記第1及び第3のコイル部分を線路に介押し、 上記第2のコイル部分を第1のコンデンサで接 地すると共に、上記第4のコイル部分を第2のコ ンデンサで接地して、

上記第1及び第2のコイル部分の接続点から、 上記第2のコイル部分及び上記第1のコンデンサ を介して接地する第1の側路と、上記第3及び第 4のコイル部分の接続点から、上記第4のコイル 部分及び上記第2のコンデンサを介して接地する 第2の倒路とを形成するようにした

ことを特徴とするコモンモードノイズ用のフィルタ回路。

B発明の概要

本発明は、フィルタ回路において、磁気的に結合した2つのコイル部分で構成された1対のコイルを用いてフィルタ回路を構成することにより、 小型形状のフィルタ回路を得ることができる。

C従来の技術

従来、この種のフィルタ回路においては電源回路等の不要輻射を抑圧するために、種々のフィルタ回路が提案されている(実公昭63-38608号公報)。

すなわち第7図において、1は全体として電源 回路を示し、第1及び第2のフィルタ回路2及び 3を介して、商用電源をスイッチングレギュレー 夕回路4に与える。

スイツチングレギュレータ回路4においては、 ダイオードブロック6で商用電源を全波整流した 後、平滑コンデンサ7で平滑する。

これに対してスイッチングトランス 8 は、平滑された電源を 1 次巻線の一端に受けると共に、当

3.発明の詳細な説明

以下の順序で本発明を説明する。

A産業上の利用分野

B発明の概要

C 従来の技術 (第7図)

D発明が解決しようとする問題点 (第7図)

E問題点を解決するための手段(第1図及び第6図)

F作用(第1図及び第6図)

C実施例(第1図~第6図)

(G1)第1の実施例(第1図~第4図)

(G2)第2の実施例(第5図及び第6図)

(G3)他の実施例

H発明の効果

A産業上の利用分野

本発明は、例えばスイッチングレギュレータ回 路を用いた電源回路、テレビジョン受像機等に適 用して好適なものである。

該 1 次巻線の他端を電界効果型トランジスタ 9 に 接続するようになされ、これにより電界効果型ト ランジスタ 9 のオンオフ動作に応動して 1 次電流 が流れるようになされている。

従つてスイツチングトランス8においては、2 次巻線に2次電圧が誘起され、当該2次電圧をダイオード12で整流した後、平滑コンデンサ13 及びリツブルフィルタ14を介して出力するようになされている。

これに対して電源制御回路 1 5 は、リップルフィルタ 1 4 の協子電圧に応じて出力信号のパルス 幅を制御するようになされたパルス幅変調回路 6 5 の出力信号に基づいて電界効果型トランジスタ 9 をオンオフ制 することにより、当該スイッチングレギュレータ 回路 4 の出力電圧を所定電圧に保持するようになされている。

かくしてスイツチングレギュレータ回路 4 においては、電界効果型トランジスタ 9 をオンオフ制御してスイツチングトラシス 8 の 1 次電流を切り

換えることから、その切り換えに伴いノイズが発生し、当該ノイズが電源線路 L 1 及び L 2 に<u>出力</u>されて不要輻射が生じる。

従って電源線路し1及びし2に出力されるノイズのうち、第2のフィルタ回路3において同相のノイズ(すなわちコモンモードノイズでなる)を 抑圧した後、第1のフィルタ回路2において逆相のノイズ(すなわちノーマルモードノイズでなる)を 抑圧することにより、全体として電源線路し1及びし2に出力されるノイズを抑圧して、不要 輻射を低減するようになされている。

すなわち第2のフィルタ回路3においては、磁気回路で結合するようになされた1対のコイル2 0及び21を、それぞれ電源線路L1及びL2に介押し、当該コイル20及び21のスイッチングレギュレータ回路4倒端子を、コンデンサ22及び23で接地するようになされ、これによりコモンモードノイズに対してローパスフィルタ回路を構成するようになされている。

これに対して第1のフィルタ回路2においては、

電源線路し1及びし2に独立した1対のコイル2 5及び25を介持し、当はコイル25及び26間 をコンデンサ28で結ぶようになされ、これによりノーマルモードノイズに対してローパスフィル 夕回路を構成するようになされている。

かくしてコイル20、21、25、26のインダクタンス及び直流抵抗、コンデンサ22、23、28の容量を選定して、スイツチングレギュレータ回路4のオンオフ動作の繰り返し周波数に対して十分な抑圧比を得ると共に實用電源の電圧降下を有効に回避するようにすれば、電源線路し1及びし2から出力される不要輻射を十分に抑圧して所望の出力電圧を得ることができる。

D発明が解決しようとする問題点

ところで、この種の電源回路1において、フィルタ回路2及び3を小型化することができれば、その分電源回路1全体を小型化することができる。 本発明は以上の点を考慮してなされたもので、 不要輻射を十分に抑圧して、電源回路を小型化す

· ることができるフィルタ回路を提案しようとする ものである。

B問題点を解決するための手段

かかる問題点を解決するため第1の発明においては、磁気的に結合した第1及び第2のコイル部分71A及び71Bを直列接続した第1のコイル71と、磁気的に結合した第3及び第4のコイル部分72A及び72Bを直列接続した第2のコイル71及び72を線路し1、L2に介押し、第1及び第2のコイル部分71A及び71Bの接続点と、第3及び第4のコイル部分72A及び72Bの接続点との間をコンデンサ81で接続する。

第2の発明においては、磁気的に結合した第1 及び第2のコイル部分73A及び73Bを直列接続した第1のコイル73と、磁気的に結合した第 3及び第4のコイル部分74A及び74Bを直列 接続した第2のコイル74とを有し、第1及び第 2のコイル73及び74を線路し1、L2に介持 し、第1及び第2のコイル部分73A及び73Bの接続点を第1のコンデンサ85で接地すると共に、第3及び第4のコイル部分74A及び74Bの接続点を第2のコンデンサ86で接地する。

第3の発明においては、磁気的に結合した第1 及び第2のコイル部分37A及び37Bを直列接続した第1のコイル37と、磁気的に結合した第3及び第4のコイル部分38とを有し、第1及び第3のコイル部分37A及び38Aを線路し1、し2に介押し、第2及び第4のコイル部分37B及び37Bの接続して、第1及び第2のコイル部分37B、コンデンサ40、第4のコイル部分38Bを介して、第3及び第4のコイル部分38Bを介して、第3及び第4のコイル部分38A及び38Bの接続点に至る側路を形成する。

第4の発明においては、磁気的に結合した第1 及び第2のコイル部分57A及び57Bを直列接 続した第1のコイル57と、磁気的に結合した第 3 及び第 4 のコイル部分 5 8 A 及び 5 8 B を直列 接続した第 2 のコイル 5 8 とを育し、第 1 及び 第 3 のコイル部分 5 7 A 及び 5 8 A を線路し1 、 し 2 に介押し、第 2 のコイル部分 5 7 B を第 1 のコイル部分 5 7 B を第 1 のコイル部分 5 7 B 及び 5 7 B のコイル部分 5 7 A 及び 5 7 B のほん で接地すると共に、第 4 のコイル部分 5 7 B 及び 5 7 B の接続 とから、第 2 のコイル部分 5 7 B 及び 5 7 B の接続 ンデンサ 5 9 を介して接地する第 1 の 側路 と、第 3 及び 第 4 のコイル部分 5 8 B 及び 第 2 のコイル 6 0 を介して接地する第 2 の倒路とを形成する。

F作用

第1の発明によれば、磁気的に結合した第1及び第2のコイル部分71A及び71Bを直列接続した第1のコイル71と、磁気的に結合した第3及び第4のコイル部分72A及び72Bを直列接続した第2のコイル72とをコンデンサ81で接

続すれば、ノーマルモードノイズに対して減衰率が急速に増加して極大値を備えたローパスフィルタ回路を構成することができ、これにより小型形状で減衰率の大きなノーマルモードノイズ用のフィルタ回路を得ることができる。

第2の発明によれば、磁気的に結合した第1及び第2のコイル部分73A及び73Bを直列接続した第1のコイル73と、磁気的に結合した第3及び第4のコイル部分74A及び74Bを直列接続した第2のコイル74とを、コンデンサ85及び86でそれぞれ接地すれば、コモンモードノイズに対して減衰率が急激に増加して極大値を確えたローパスフィルタ回路を構成することができる。ドノイズ用のフィルタ回路を得ることができる。

さらに第3及び第4の発明によれば、コイル部分37A及び38A、57A及び58Aを線路し1、L2に介持するようにしても、波袞率が急激に増加して極大値を値えたノーマルモードノイズ用又はコモンモードノイズ用のローパスフィルタ

回路を得ることができる。

C実施例

以下図面について、本発明の一実施例を詳述する。

(G1) 第1の実施例

第7図との対応部分に同一符号を付して示す第1図において、30は全体として電源回路を示し、フィルタ回路2及び3に代えて第1及び第2のフィルタ回路31及び32を用いて不要輻射を低波するようになされている。

すなわち第1のフィルタ回路31においては、 1つのコアに2つの巻線を挽回することにより、 磁気的に結合した2つの巻線(以下コイル部分と 呼ぶ)37A、37B、38A、38Bでそれぞ れコイル37及び38が形成されるようになされ

コイル37及び38は、2つのコイル部分37 A、37B、38A、38Bが直列接続された状態で、1つのコイル部分37A、38Aが電源線 路し1及びし2に介押されると共に、残りのコイル部分37B、38Bをコンデンサ40で接続し、これによりコイル部分37B、コンデンサ40、コイル部分38Bで、コイル37及び38の接続点を結ぶ側路を形成するようになされている。

かくして第2図及び第3図に示すように、従来のフィルタ回路においては、コイル41及びコンデンサ42で構成されたローバスフィルタ回路43を基本にして構成されるのに対して、第1のフィルタ回路31においては、2つのコイル部分44A及び44Bに分割されたコイル44及びコンデンサ45で構成されたローパスフィルタ回路46を基本にして構成されるようになされている。

実際上第4図に示すように、ローパスフィルタ 回路43においては、コイル41のインダクタン スをL,、コンデンサ42の容量をC,とおくと、 次式

$$f_{+1} = \frac{1}{2\pi} \cdot (L_r C_r)^{1/2} \dots \dots (1)$$

でカットオフ周波数(o.が表され、徐々に彼衰率 が増加する。

これに対し、2つのコイル部分44A及び44 Bで構成されたローパスフイルタ回路46においては、コンデンサ45の容量をC。、コンデンサ45の容量をC。、コンデンサ45に接続されたコイル部分44Bのインダクタンスをし、、接回数をN。、残りのコイル部分44Aのインダクタンスをし、、接回数をN。とおくと

$$f_{*2} = \frac{1}{2\pi} \cdot (L_* C_*)^{1/2} \cdots \cdots (2)$$

でカットオフ周波数 forが表され、急激に波衰率 が増加し、このとき、次式

$$n = \frac{N_F}{N_S} \qquad \cdots \cdots (3)$$

$$f_{H} = (\frac{n}{n-1})^{1/2} \cdot f_{02} \cdots \cdots (4)$$

で衷される周波数(n で波袞率が極大になる。

して、フイルタ回路 3 1 全体を小型化することが できる。

かくして、ノーマルモードノイズを十分に即圧 する小型形状のフィルタ回路 3 1 を得ることがで き、これにより電源回路 3 0 全体の構成を小型化 することができる。

これに対して第2のフィルタ回路32においては、フィルタ回路31と同様にコイル部分57A、57B、58A、58Bに分割されたコイル57、58をコンデンサ60、61で接地し、コモンモードノイズを抑圧するようになされている。

従つて第2のフィルタ回路32においても、フィルタ回路31と同様に小型形状に構成して、コモンモードノイズを十分に抑圧することができ、かくして全体として小型形状の電源回路30を得ることができる。

以上の構成によれば、磁気的に結合した2つのコイル部分37A、37B、38A、38B、57A、57B、58A、58Bを直列接続し、そのうちの1つを電源線路し1及びし2に介押する

使つて、スイツチングレギュレータ回路4のオンオフ動作の繰り返し周波数になるように、自該 周波数1mを選定すれば、自該電源回路30の不 要辐射を従来に比して格段的に低波することができる。

実際上、この種のスイツチングレギュレータ回路もから出力されるノイズは、電界効果型トランジスタ9の繰り返し周波数を基本彼にしてなる高調波信号でなり、高調波の次数が高くなればその信号レベルも徐々に低下する特性を有する。

従つて、不要輻射を十分に低減するためには、 基本波成分に対して最も大きな減衰率が必要にな り、この実施例においては減衰率が極大になる周 波数! a を基本放成分の周波数に選定することに より、十分に不要輻射を低減することができる。

さらに、このように周波数 (n を基本波成分の 周波数に選定すれば、従来に比してカットオフ周 波数 (o n を高い周波数に選定することができる。

従つて、その分当該フイルタ回路31を構成するコイル37、38及びコンデンサ40を小型化

と共に、残りをコンデンサで接続、又は接地する ことにより、急激に波袞率を増加させると共に極 大値を得ることができる。

従つてその分、フィルタ国路31及び32を小型化し得、電源国路30全体を小型化することができる。

(G2)第2の実施例

第5 図に示すようにこの実施例においては、コイル37、38、57、58に代えて、円柱形状のコア70に巻線したコイル71、72、73、74を用いるようにする。

すなわちコイル71~74においては、コア7 0に所定回数だけ被援網線を推回するようになされ、亀線の途中に引出し線73を設けるようになされている。

これにより第6図に示すように、コイル71、72、73、74においては、磁気的に結合した2つのコイル部分71A、71B、72A、72B、73A、73B、74A、74Bが、それぞ

れ直列接続されて形成されるようになされている。

これに対して第1のフィルタ回路80においては、コイル71及び72が電源線路L1及びL2に介押され、コイル71及び72の引き出し線間をコンデンサ81で接続するようになされている。

実際上、第1図のフィルタ回路31の構成に代えて、コイル71及び72の引き出し線間をコンデンサ81で接続するようにしても、減衰率が急激に増加して減衰率の極大値を形成することができる。

従つて、この実施例においても、第1の実施例と同様に減衰率が大きく、小型形状のノーマルモードノイズ用のフィルタ回路80を得ることができる。

同様に第2のフィルタ回路83においては、コィル73及び74が電源線路L1及びL2に介撑され、コイル73及び74の引き出し線間をそれぞれコンデンサ85及び86で接地するようになされている。

かくして、第1のフィルタ回路80と同様に、

小型形状で減衰率の大きなコモンモードノイズ用 のフィルタ回路83を得ることができる。

第5図の構成によれば、1つのコイルの途中から引出し線を引き出し、当該コイルを2つのコイル部分に分割するようにしてフイルタ回路を構成しても、第1の実施例と同様の効果を得ることができる。

(G3)他の実施例

なお上述の実施例においては、ノーマルモード ノイズ用及びコモンモードノイズ用のフィルタ回路を電源線路 L 1 及び L 2 に介押した場合につい て述べたが、本発明はこれに限らず、必要に応じ てノーマルモードノイズ用又はコモンモードノイ ズ用のフィルタ回路の一方だけを電源線路 L 1、 L 2 に介押するようにしてもよい。

さらに上述の実施例においては、スイツチング 」 レギユレータ回路の電源線路 L 1、 L 2 にフイル タ回路を介押する場合について述べたが、本発明 はスイツチングレギュレータ回路に限らず、種々

の電子回路の不要輻射を低減するフィルタ回路に 広く連用することができる。

さらに上述の実施例においては、電源線路 L 1、 L 2 に介押して不要輻射を低波する場合について 述べたが、本発明は電源線路に限らず、種々の入 出力線路に介押して不要輻射を抑圧する場合に広 く適用することができる。

H発明の効果

上述のように本発明によれば、磁気的に結合した2つのコイル部分を直列接続してコイルを形成し、当該コイルでフイルタ回路を構成したことにより、減衰率が大きく、小型形状のフイルタ回路を得ることができる。

4. 図面の簡単な説明

第1図は本発明の一実施例による電源回路を示す接続図、第2図及び第3図はその動作に説明に 供するフィルタ回路の基本構成を示す接続図、第 4図はその動作の説明に供する特性曲線図、第5 図は第2の実施例によるコイルを示す斜視図、第6回はそのコイルを用いた電源国路を示す接続図、第7図は従来の電源回路を示す接続図である。

1、30……電源国路、 2、3、31、32、 80、81……フィルタ国路、7、13、22、 23、28、40、59、60、81、85、8 6……コンデンサ、14、20、21、25、2 6、37、38、57、58、71、72、73、 74……コイル、37A、37B、38A、38 B、57A、57B、58A、58B、71A、 71B、72A、72B、73A、73B、74

代理人 田辺恵基

ローパスフィルタ 日 路 第 2 因

ローパスフィルタ 日路 第 3 因

9 4 A 第 5 图

