

ImageNet is the new MNIST

Chris Ying

Research SWE @ Google Brain g.co/brain

on behalf of many people across Google

Goal: "Interactive ML supercomputing"

Hardware

- Cloud TPUs
- TPU pods

Software

- TensorFlow Datasets, Layers, and Estimator APIs (open-source)
- XLA compiler (open-source) with TPU backend

Research

- Understanding of generalization gap
- Large-batch training advances

(what's happening now)

(our vision of the future) x 1000

ImageNet is the new MNIST

MNIST: 60,000 B&W images

ImageNet: 1,281,167 color images

Motivating results

ResNet-50-v2 on ImageNet

# of TPU devices	Batch size	Time to 90 epochs	Accuracy
1	256	23 hours 22 minutes	76.6%
4	1024	5 hours 48 minutes	76.3%
16	4096	1 hour 30 minutes	76.5%
32	8192	45 minutes	76.1%
64	16384	22 minutes	75.0%

Only change between different runs is batch size (linearly scale LR) and hardware, no model changes or hyperparameter re-tuning!

Cloud TPU

180 TFLOPS of computation, 64 GB of HBM memory, 2400 GB/s mem BW

Cloud TPU

TPUv2 Chip

- 45 TFLOPS
- 16 GB of HBM
- 600 GB/s mem BW
- Vector unit: float32
- Scalar unit: float32
- Matrix unit (MXU): float32 input/output, reduced precision multiplication

TPUv2 Chip

HBM 8 GB

Matrix Unit

- 128x128 systolic array
- 60 float32 results*
- Scalar unit: 32b float
- MXU: 32b float

* reduced precision multiplication reduced precision

for multipliers

45 TFLOPS

Computing y = Wx

Toy example: 3x3 systolic array W = 3x3 matrix batch size(x) = 3

Computing y = Wx with W = 3x3, batch_size(x) = 3

inputs X_{33} X_{32} X_{23} X_{22} X₁₃ X₃₁ W_{11} Matrix Unit (MXU) W_{13} X₂₁ weights W_{21} W_{22} W_{23} W_{31} W_{32} W_{33} accumulation

Matrix Unit Systolic Array

Computing y = Wxwith W = 3x3, batch_size(x) = 3

inputs X_{33} X_{32} X_{23} $W_{12}X_{22}$ W₁₃X₁₃ W_{11} Matrix Unit (MXU) X₃₁ weights $\boldsymbol{W}_{22}\boldsymbol{X}_{12}$ W_{21} W_{23} W_{31} W_{32} W_{33} X₁₁ accumulation

Matrix Unit Systolic Array

Computing y = Wxwith W = 3x3, batch_size(x) = 3

Computing y = Wx with W = 3x3, batch_size(x) = 3

Computing y = Wx

with W = 3x3, batch_size(x) = 3

Computing y = Wx with W = 3x3, batch_size(x) = 3

Computing y = Wxwith W = 3x3, batch_size(x) = 3

Computing y = Wx

with W = 3x3, batch_size(x) = 3

accumulation

Accelerated Linear Algebra (XLA)

- JIT / AOT compiler for linear algebra
- Targets multiple backends, e.g. CPUs, GPUs, and TPUs
- Compiler, runtime, and accelerator-specific optimizer

The life of a neural network:

Accelerated Linear Algebra (XLA)

- JIT / AOT compiler for linear algebra
- Targets multiple backends, e.g. CPUs, GPUs, and TPUs
- Compiler, runtime, and accelerator-specific optimizer

The life of a neural network:

Large batch training

- Understanding generalization gap (2016 N. Keskar et. al., 2017 E. Hoffer et. al.)
- Relationship of batch size and noise scale (2018 S. Smith et. al.)
- Learning rate scaling and schedule (2017 P. Goyal et. al.)
- New optimizers
 - K-FAC*: approximate Fisher information matrix (2015 J. Martens)
 - Neumann*: approximate inverse Hessian (2018 S. Krishnan et. al.)
 - LARS: per-layer learning rate (2018 Y. You et. al.)

^{*} stick around after this talk to hear more about these!

Experiments

Experiments

Experiments

# of TPU devices	Batch size	Time to 90 epochs	Accuracy
32	8192	44.9 minutes	76.1%
64	8192	29.8 minutes	75.7%
64	16384	22.3 minutes	75.0%
64	65536	17.5 minutes	65.4%
64	8192 → 16384 ^[1]	29.5 minutes	76.1%

Only change between different runs is batch size (linearly scale LR) and hardware, no model changes or hyperparameter re-tuning!

More than just ImageNet

Transformer model from "Attention is All You Need" (2017 A. Vaswani et. al.)

WMT'14 English-German translation task

Adam optimizer - same learning rate schedule across configurations

Implications

- Faster training enables neural architecture search
 - Reinforcement learning architectures beat existing models
 in accuracy and cost [1]

Implications

- Faster training enables neural architecture search
 - Reinforcement learning architectures beat existing models in accuracy and cost [1]

- What's the "new ImageNet"?
 - Full ImageNet (14M), Open Images (9M), YouTube-8M
 - Performance increases logarithmically with data [2]

10

No Fine-tuning

Number of examples (in millions) \rightarrow

Thank you! chrisying@google.com

g.co/brain
g.co/tpusignup

