

Le fréquentiste cherche l'estimateur T qui minimise:

 $\max_{\mathbf{Q}} \mathcal{R}(T, \boldsymbol{\theta}) = \max_{\mathbf{Q}} \mathbb{E}_X \left[\mathcal{L}(T(X), \boldsymbol{\theta}) \right]$

Que devrait-être le critère du Bayésien ?

 $\int \mathcal{R}(T, \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} = \int \left(\mathbb{E}_X \left[\mathcal{L}(T(X), \boldsymbol{\theta}) \right] \right) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$

Le Bayésien ne maximise pas, il "moyenne" avec la loi a priori:

$$= \mathbb{E}_{\boldsymbol{\theta} \sim \pi} \left(\mathbb{E}_{X} \left[\mathcal{L}(T(X), \boldsymbol{\theta}) \right] \right)$$

$\mathcal{R}_{\pi}(T) \stackrel{\mathrm{def}}{=}$ Risque de Bayes pour la loi a priori π

Le Bayésien cherche l'estimateur T qui minimise: $\,\mathcal{R}_{\pi}(T)$

Un tel estimateur est dit: "Estimateur de Bayes"

Qu'obtient-on si on intègre la perte par rapport a la loi a-posteriori?

$$\int \mathcal{L}(T(X), \boldsymbol{\theta}) d\mathbb{P}(\boldsymbol{\theta}|X)$$

On intègre par rapport à θ uniquement, ce risque dépend des données !

 def

 $\rho_{\pi}(T,X)$

Et si on le minimise par rapport à T, on obtient une fonction en X: un estimateur !

Théorème _

L'estimateur: $\arg\min_T \rho_{\pi}(T,X)$, s'il existe, est un estimateur de Bayes: il minimise $\mathcal{R}_{\pi}(T)$ pour la même perte \mathcal{L} .

Preuve facile: appliquer le théorème de Bayes puis changer l'ordre de l'intégrale double avec le théorème de Fubini (notes UPMC)

Risque bayésien et risque a posteriori

Risque bayésien et risque a posteriori

Le fréquentiste cherche l'estimateur T qui minimise:

$$\max_{\boldsymbol{\theta}} \mathcal{R}(T, \boldsymbol{\theta}) = \max_{\boldsymbol{\theta}} \mathbb{E}_X \left[\mathcal{L}(T(X), \boldsymbol{\theta}) \right]$$

Que devrait-être le critère du Bayésien ?

Le Bayésien ne maximise pas, il "moyenne" avec la loi a priori:

$$\mathcal{R}_{\pi}(T) \stackrel{\text{def}}{=} \int \mathcal{R}(T, \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} = \int \left(\mathbb{E}_{X} \left[\mathcal{L}(\boldsymbol{T}(X), \boldsymbol{\theta}) \right] \right) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta} = \mathbb{E}_{\boldsymbol{\theta} \sim \pi} \left(\mathbb{E}_{X} \left[\mathcal{L}(\boldsymbol{T}(X), \boldsymbol{\theta}) \right] \right)$$

Risque de Bayes pour la loi a priori $\,\pi\,$

Le Bayésien cherche l'estimateur T qui minimise: $\,\mathcal{R}_\pi(T)\,$ Un tel estimateur est dit: "Estimateur de Bayes"

Qu'obtient-on si on intègre la perte par rapport a la loi a-posteriori?

$$\rho_{\pi}(T,X) \stackrel{\text{def}}{=} \int \mathcal{L}(T(X),\theta) d\mathbb{P}(\theta|X) \quad \text{On intègre par rapport à θ uniquement, ce risque dépend des données !}$$

Risque a posteriori

Et si on le minimise par rapport à T, on obtient une fonction en X: un estimateur !

Théorème

L'estimateur: $\arg\min_T \rho_{\pi}(T, X)$, s'il existe, est un estimateur de Bayes: il minimise $\mathcal{R}_{\pi}(T)$ pour la même perte \mathcal{L} .

Preuve facile: appliquer le théorème de Bayes puis changer l'ordre de l'intégrale double avec le théorème de Fubini (notes UPMC)

- 1. Introduction
- 2. Les Bayésiens vs Les fréquentistes
- 3. Rappels de probabilités (exemples)
- 4. Loi a posteriori et modèles conjugués
- 5. Estimateur de Bayes

Estimateur de Bayes

