b.	Using Newton's forward interpolation, find the value of y at $x=43$.	12	3	2	2	
	x 40 50 60 70 80 90					
	y 184 204 226 250 276 304					
30. a.	Find the first, second and third derivatives of the function tabulated below at	12	4	3	2	
	the point $x=1.5$					
	x 1.5 2 2.5 3 3.5 4					
	y 3.375 7.0 13.625 24.0 38.875 59.0					
	(OE)					
b.	(OR) The velocity V of a particle at distances from a point on its path is given by	12	6	3	2	
	the table.					
	S (feet) 0 10 20 30 40 50 60					
	V (feet/sec) 47 58 64 65 61 52 38 Estimate the time taken to travel 60 feet by using Simpson's 1/3rd rule.					
	Compare the result with Simpson's 3/8 th rule.					
31.a.	Given $\frac{dy}{dx} = x^2y - 1$ and $y(0) = 1$ find the value of $y(0.1)$ using Taylor series	12	4	4	2	
	method.					
	(OR)					
b.	Given $y'' + xy' + y = 0$, $y(0) = 1$, $y'(0) = 0$ find the value of $y(0.1)$ by using	12	4	4	2	
	Runge-Kutta method of fourth order where h=0.1.					
32. a.	2	12	3	5	2	
32. a.	Solve the equation $\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$, $0 \le x \le 12$, $0 \le t \le 12$ with boundary and					
	initial conditions. Of $2 \partial x^2$					
	$u(x,0) = \frac{1}{4}x(15-x), 0 \le x \le 12$					
	$u(0,t) = 0, u(12,t) = 9, 0 \le t \le 12$					
	Using Schmidt relation.					
	(OD)					
b.	(OR) Solve by Crank Nicholson's method	12	3	5	2	
	$\sim 1.0^2$					

$\partial t = 2 \partial x^2$			
initial conditions.			
$u(x,0) = \frac{1}{4}x(15-x), 0 \le x \le 12$			
$u(0,t) = 0, u(12,t) = 9, 0 \le t \le 12$			
Using Schmidt relation.			
Solve by Crank Nicholson's method $\frac{\partial u}{\partial x} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} = \frac{1}{2} \frac{\partial^2 u}{\partial x$	12	3	5
$\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}, 0 < x < 1, t > 0, u(x, 0) = 0, u(0, t) = 0, u(1, t) = 100t$			
Compute u for one step with h=1/4.			
* * * * *			

Reg. No.		
8		

B.Tech. DEGREE EXAMINATION, MAY 2023

Fourth Semester

18MAB206T - NUMERICAL METHODS AND ANALYSIS

	(For the candidates ad	imitted from the academic year 2018-2019 to 202	1-2022)			
Note:	75	*				
(i)	Part - A should be answered over to hall invigilator at the	I in OMR sheet within first 40 minutes and OMI end of 40 th minute.	R sheet shoul	ld be	: han	ded
(ii)	Part - B & Part - C should b	e answered in answer booklet.				
Γime: 3	hours	·	Max. N	Mar	ks: 1	00
		v				
	PART - A	$A (20 \times 1 = 20 \text{ Marks})$	Marks	BL	CO	PO
	Answ	er ALL Questions				
1	Newton - Raphson method	l is also known as the method of	1	1	1	1
	(A) Tangents	(B) Chords				

2. The condition of convergence for iterative methods of solving a system of simultaneous linear equations is stated that the coefficient matrix should be

(D) Trapezoid

- (A) Upper triangular (B) Diagonally dominant (C) Conditionally convergent (D) Lower triangular
- 3. The convergence in the Gauss-Seidel method is roughly as faster
- as in Jacobi method. (A) 3 times (B) 6 times
 - (C) 4 times (D) 2 times

(C) Diameter

- 1 1 1 1 4. To find the inverse of matrix A, we use
 - (A) Gauss elimination method (B) Gauss - Seidel method (C) Gauss – Jacobi method (D) Newton - Raphson method
- 1 1 2 1 5. The forward difference operator Δ is defined by
 - (A) $\Delta y_x = y_{x+1}$ (B) $\Delta y_x = y_{x+1} - y_{2x-1}$
 - (D) $\Delta y_x = 2y_{x+1}$ (C) $\Delta y_x = y_{x+1} - y_x$
- 6. The first divided difference of f(x) for the arguments x_0 and x_1 is defined as
 - (A) $f(x_0, x_1) = \frac{x_1 x_0}{f(x_1)}$ (B) $f(x_0,x_1) = x_1 - f(x_0) - x_2$
 - (C) $f(x_0, x_1) = \frac{f(x_1) f(x_0)}{x_1 x_0}$ (D) $f(x_0, x_1) = \frac{f(x_1) f'(x_0)}{x_1 x_0}$
- 1 1 2 1 7. The differences $\Delta y_0, \Delta^2 y_0, \Delta^3 y_0$... are called the _
 - (A) Leading (B) Diagonal
 - (C) Numerical (D) Differential

Q	Lagrange's interpolation formula i	s used for intervals.	1	1	2	1	20	The nature of the partial differential equation $f_{xy} - f_x = 0$ is	1	1	5 1	l
0.	(A) Equal(C) Both equal and unequal	(B) Unequal (D) Neither equal nor unequal					20.	(A) Elliptic (B) Parabolic				
								(C) Hyperbolic (D) Laplace equation				
9.		one-third rule is obtained when h is	1	i	3	1		$PART - B (5 \times 4 = 20 Marks)$				
	(A) Small(C) Infinity	(B) Large (D) Greater						Answer ANY FIVE Questions Ma	arks f		O PC	
	(C) illimity	(D) Greater					21.	Evaluate $\sqrt{12}$ to four decimal places by Newton's-Raphson's method.	4	6	1 2	٠
10.	Trapezoidal rule approximates the	integral by sum of n	1	1	3	i	22		1	2	1 2	>
	(A) Rhombus	(B) Circle					22.	Solve the system of equations by Gauss elimination method:	*)	<u>ئە</u> ،	
	(C) Triangle	(D) Trapezoids						x+2y+z=3, $2x+3y+3z=10$, $3x-y+2z=13$.				
11	Simpson's one-third rule is also ca	lled	1	1	3	1	23.	Express $x^3 + x^2 + x + 1$ in factorial polynomial and get their successive	4	2	2 2	
11,	(A) Hyperbolic rule	(B) Elliptic rule						forward differences taking h=1.				
	(C) Parabolic rule	(D) Trapezoid rule						8				
							24.	Find the missing term in the following table.	ŧ ,	4 2	2 2	
12.	Simpson's three-eight rule can be a		1	1	3	1		x 1 2 3 4 5 6 7				
	(A) Odd	(B) Even						y 2 4 8 - 32 64 128				
	(C) Prime	(D) Multiple of 3					2.5				3 2	
13.	Taylor's series method is		1	1	4	1	25.	Evaluate the integral $I = \int_{0}^{3.2} \log_e^x dx$ using Trapezoidal rule.		0 2	. 2	
	(A) Single step method	(B) Multi step method						Evaluate the integral $I = \int_{1}^{\infty} \log_e ax$ using Trapezoidal rule.				
	(C) Iterative method	(D) Error method						4				
1.4	The improved Euler method is base	ad on the exercise of	ĵ	1	4	1	26.	Compute y at $x=0.25$ by Modified-Euler method given $y'=2xy$, $y(0)=1$.	1 :	3 4	2	
17,	(A) Points	(B) Slopes										
	(C) Curves	(D) Errors					27.	Classify the following partial differential equation 4	ļ 2	4 5	5 2	
								(i) $xf_{xx} + yf_{yy} = 0, x > 0, y > 0$				
15.	Consider the function $y = f(x)$ s	such that $f(1)=5$ and $f(3)=11$. The	; I	2	3	1		(ii) $f_{xx} - 2f_{xy} = 0, x > 0, y > 0$				
	estimated value of $\int_{1}^{3} f(x) dx$ with h	=2 using Trapezoidal rule is										
	(A) 4	(B) 8						$PART - C (5 \times 12 = 60 \text{ Marks})$	rks B		o ne	
	(C) 12	(D) 16					28 a	Allswei ALL Questions	2 3		. 2	
						_	20. a.	correct to 3 decimal places				
16.	Which of the following is a method f	_	1	1	3	2		8x - 3y + 2z = 20				
	(A) Euler's method(C) Simpson's one-third rule	(B) Tangent method(D) Jacobi method						4x+11y-z=33				
	(c) Empson 5 one unitariate	(b) success message						6x + 3y + 12z = 35				
17.	If $B^2 - 4AC < 0$, then the second o	rder PDE is known as	1	1	5	1		(OR)				
	(A) Elliptic	(B) Parabolic					ь.	` '	2 3	3 1	2	
	(C) Hyperbolic	(D) Wave equation						28x + 4y - z = 32				
18.	-2 -2		1	1	5	ì		x+3y+10z=24				
10.	The equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$	is known as						2x + 17y + 4z = 35				
							20 2		2 3	3 2	. 2	
	(A) Elliptic	(B) Laplace equation					47. a.	$\begin{bmatrix} x & 0 & 1 & 3 & 4 \end{bmatrix}$				
	(C) Poisson equation	(D) Wave equation						y -12 0 6 12				
19.	The error in the diagonal formula i	stimes the error in the standard	1	1	5	1		(OR)				
	formula.	(D) T										
	(A) One (C) Three	(B) Two (D) Four										
Page 2 of 4	` '		29MA4-1	8MAB	206T		Page 3 of 4	. 29 MA	A4-18N	AAB20	юT	