0.1 Дизъюнктивная и конъюнктивная нормальные формы (ДНФ и $KH\Phi$)

Определение 1. Литерал - это формула, в которой есть либо переменная, либо отрицание переменной.

$$x^{\sigma} \leftrightharpoons \begin{cases} x_i, \text{ если } \sigma = 1 \\ \overline{x_i}, \text{ если } \sigma = 0 \end{cases}$$

Обозначение $\widetilde{x_i}$ - это возможное отрицание.

Определение 2. Элементарная конъюнкция - это конъюнкция каких-то литералов.

$$\widetilde{x_{i_1}}\widetilde{x_{i_2}}\ldots\widetilde{x_{ik}}$$

Определение 3. ДНФ - это $k_1 \lor k_2 \lor \ldots \lor k_m$ от x_1, x_2, \ldots, x_3 , где k_i - элементарная конъюнкция.

Определение 4. В СДНФ в каждую элементарную конъюнкцию входит каждый из x_1, x_2, \dots, x_n либо сам, либо как отрицание.

ДНФ:
$$\{x_1, x_2, x_3\}$$
: $\overline{x_1}x_2 \lor x_2 \lor x_1\overline{x_2}x_3$
СДНФ: $\{x_1, x_2, x_3\}$: $x_1x_2x_3 \lor x_1\overline{x_2}x_3 \lor \overline{x_1}x_2x_3$

Определение 5. Элементарная дизъюнкция - это дизъюнкция каких-то литералов.

Определение 6. КНФ от $x_1, x_2, ..., x_n$: $D_1 * D_2 * ... * D_m, m \ge 1$

Определение 7. В СКНФ в каждую элементарную дизъюнкцию входит каждый из x_1, x_2, \dots, x_n либо сам, либо как отрицание.

Теорема 0.1. Любая функция, отличная от константы 0, может быть представлена в виде ДНФ. Любая функция, отличная от константы 1, может быть представлена в виде $KH\Phi$.

Доказательство. 1) Так как $f \not\equiv 0$, то $\exists \widetilde{\alpha} \in \{0,1\}^n : f(\widetilde{\alpha}) = 1$ - называется это конституента 1 функции f. Тогда

$$C_f^1 \leftrightharpoons \{\widetilde{\alpha} : f(\widetilde{\alpha}) = 1\} \neq \emptyset, \widetilde{\alpha} = (\alpha_1, \dots, \alpha_n).$$

$$K_{\widetilde{lpha}}=x_1^{lpha_1}x_2^{lpha_2}\dots x_n^{lpha_n}$$
 Заметим, что

$$K_{\widetilde{\alpha}}(\widetilde{\beta}) = 1 \Longleftrightarrow \widetilde{\beta} = \widetilde{\alpha}$$

Отсюда получаем:

$$f(x_1, \dots, x_n) = \bigvee_{\mathcal{Z} \in C_f^1} K_{\widetilde{\alpha}}$$

Заметим, что если

$$f(x_1, \dots, x_m) = 1 \implies (\exists \widetilde{\alpha} \in C_f^1)(f(\widetilde{\alpha}) = 1) \implies k_{\widetilde{\alpha}} = 1 \implies \underset{\mathcal{Z} \in C_f^1}{\Longrightarrow} k_{\widetilde{\alpha}} = 1,$$

то есть $f(\widetilde{\alpha}) = 1$. Аналогично для КНФ.

Следствие. Любая булевая функция может быть представлена некоторой формулой над стандартным базисом. То есть стандартным базисом является полным множеством булевых функций.

0.2 Полином Жегалкина

$$\mathcal{F}_1=\{\oplus,*,1\}$$

Отсюда $\overline{x}=x\oplus 1$ и $x_1\vee x_2=x_1x_2\oplus x_1\oplus x_2.$

Определение 8. Полиномом Жегалкина является

$$P(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n} (mod 2) a_{i_1 i_2 \dots i_k} x_{i_1} x_{i_2} \dots x_{i_k}, \quad \{i_1, i_2, \dots, i_k\} \subseteq \{1, 2, \dots, n\}.$$

Здесь 2^n слагаемых. $a_{i_1 i_2 ... i_k} \in \{0, 1\}$

Общий вид полинома Жегалкина от двух переменных:

$$P(x_1, x_2) = a_{12}x_1x_2 \oplus a_1x_1 \oplus a_2x_2 \oplus a_0$$

Общий вид от трех:

$$P(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{13}x_1x_3 \oplus a_{23}x_2x_3 \oplus a_1x_1 \oplus x_2x_2 \oplus a_3x_3 \oplus a_0$$

Теорема 0.2. Каждая булева функция однозначно представима в виде полинома Жегалкина.

Метод неопределенных коэффициентов.

```
\begin{split} f &= (00010111) \\ f(0,0,0) &= a_0 = 0 \\ f(1,0,0) &= a_1 \oplus a_0 = 0 \implies a_1 = 0 \\ f(0,1,0) &= a_2 \oplus a_0 = 0 \implies a_2 = 0 \\ f(0,0,1) &= a_3 \oplus a_0 = 0 \implies a_3 = 0 \\ f(1,1,0) &= a_{12} \oplus a_2 \oplus a_1 \oplus a_0 = 1 \implies a_{12} = 1 \\ f(1,0,1) &= a_{13} \oplus a_1 \oplus a_3 \oplus a_0 \implies a_{13} = 1 \\ f(0,1,1) &= a_{23} \oplus a_2 \oplus a_3 \oplus 3 \implies a_{23} = 1 \\ f(1,1,1) &= a_{123} \oplus a_{12} \oplus a_{13} \oplus a_{23} \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_0 = 1 \implies a_{123} \oplus 1 = 1 \implies a_{123} = 0 \end{split}
```

Определение 9. Булева функция называется линейной, если она может быть представлена полиномом Жегалкина первой степени.

$$f \in L \leftrightharpoons f(x_1, \dots, x_n) = \sum_{i=1}^n (mod 2) a_i x_i \oplus a_0$$