EXERCICE N°2

Au cours de l'hydrolyse alcaline du nitrobenzoate d'éthyle, se dégrade en nitrobenzoate et en éthanol. Dans le tableau suivant, on a mesuré en fonction du temps t, exprimé en minutes, la concentration C du nitrobenzoate d'éthyle, exprimé en millimoles par litre.

t_{i}	0	1	2	3	4	6	8	10
C_{i}	50	32,5	27,6	21,3	17,2	14,1	10	8,2

1) À l'aide de la calculatrice, représenter le nuage de points de cette série statistique. Un ajustement affine semble-t-il pertinent?

Les points du nuage ne semblent pas suffisamment alignés pour envisager un ajustement affine.

- 2) On pose $y = \frac{100}{C}$ On « redresse le nuage »
- Reproduire et compléter le tableau suivant en arrondissant si nécessaire les résultats à 2.a) 10^{-2}

10	pres.							
t_{i}	0	1	2	3	4	6	8	10
${\cal Y}_i$								

t_{i}	0	1	2	3	4	6	8	10
${\cal Y}_i$	2	3,08	3,62	4,69	5,81	7,09	10	12,2

Déterminer l'équation de la droite d'ajustement de y en t par la méthode des moindres carrés (arrondir les coefficients à 10⁻² près).

À l'aide la calculatrice, y = 1.01 x + 1.78

En déduire une expression de C en fonction de t.

Comme
$$y = \frac{100}{C}$$
, pour $C \neq 0$

et
$$1,01 x+1,78 \neq 0$$
 (i.e $x \neq \frac{-1,78}{1,01}$ mais comme $x \geqslant 0$...)
$$\frac{100}{C} = 1,01 x+1,78 \quad \text{d'où} \quad C = \frac{100}{1,01 x+1,78}$$

$$\frac{100}{C} = 1,01 x + 1,78$$
 d'où $C = \frac{100}{1,01 x + 1,78}$

Attention surtout pas C =

En utilisant ce modèle, estimer la concentration du nitrobenzoate d'éthyle au bout de 2.d) 8 minutes et 30 secondes (résultat arrondi à 10^{-1} près).

8 minutes et 30 secondes correspondent à 8,5 min

$$\frac{100}{1,01\times8,5+1,78}\approx 9,6$$

On peut estimer que la concentration du nitrobenzoate d'éthyle sera

d' environ 9,6 mmol·L au bout de 8 minutes et 30 secondes

Déterminer par le calcul à quel moment il restera 5 mmol·L de nitrobenzoate d'éthyle. On donnera un résultat arrondi à la minute près.

 $\frac{100}{1.01 \, x + 1.78} = 5 \quad \text{sur} \quad [0 ; +\infty[$ Il s'agît de résoudre l'équation

Or sur $[0;+\infty[$:

$$\frac{100}{1,01\,x+1,78} = 5 \Leftrightarrow 100 = 5(1,01\,x+1,78) \Leftrightarrow 20 = 1,01\,x+1,78 \Leftrightarrow x = \frac{18,22}{1,01} \approx 18$$

On en déduit qu'il faudra | 18 minutes |