OpenTURNS and its graphical interface

Michaël Baudin ¹ Thibault Delage ¹ Anne Dutfoy ¹
Anthony Geay ¹ Ovidiu Mircescu ¹ Aurélie Ladier ²
Julien Schueller ² Thierry Yalamas ²

¹EDF R&D. 6, quai Watier, 78401, Chatou Cedex - France, michael.baudin@edf.fr

²Phimeca Engineering. 18/20 boulevard de Reuilly, 75012 Paris - France, valamas@phimeca.com

25 June 2019, UNCECOMP 2019, Crete, Greece

Contents

Introduction

Sequential algorithms

PERSALYS, the graphical user interface

What's next?

OpenTURNS: www.openturns.org

OpenTURNS

An Open source initiative for the Treatment of Uncertainties, Risks'N Statistics

- Multivariate probabilistic modeling including dependence
- Numerical tools dedicated to the treatment of uncertainties
- Generic coupling to any type of physical model
- Open source, LGPL licensed, C++/Python library

OpenTURNS: www.openturns.org

AIRBUS

- Linux, Windows
- First release : 2007
- 5 full time developers
- ▶ Users \approx 1000, mainly in France (208 000 Total Conda downloads)
- ▶ Project size (2018) : 720 classes, more than 6000 services

OpenTURNS: content

Data analysis

Visual analysis: QQ-Plot, Cobweb Fitting tests: Kolmogorov, Chi2 Multivariate distribution: kernel smoothing (KDE), maximum likelihood

Process: covariance models, Welch and Whittle estimators

Bayesian calibration: Metropolis-Hastings,

Reliability, sensitivity

Sampling methods: Monte Carlo, LHS, low discrepancy sequences Variance reduction methods: importance sampling, subset sampling Approximation methods: FORM, SORM Indices: Spearman, Sobol, ANCOVA Importance factors: perturbation method, FORM Monte Carlo

Probabilistic modeling

Dependence modelling: elliptical, archimedian copulas. Univariate distribution: Normal, Weibull Multivariate distribution: Student, Dirichlet, Multinomial, User-defined

Process: Gaussian, ARMA, Random walk.

Covariance models: Matern, Exponential,
User-defined

Meta modeling

Functional basis methods: orthogonal basis (polynomials, Fourier, Haar, Soize Ghanem) Gaussian process regression:

General linear model (GLM), Kriging

Spectral methods: functional chaos (PCE),
Karhunen-Loeve, low-rank tensors

Functional modeling

Numerical functions: symbolic, Python-defined, user-defined Function operators: addition, product,

composition, gradients

Function transformation: linear combination,
aggregation, parametrization

Polynomials: orthogonal polynomial, algebra

Numerical methods

Integration: Gauss-Kronrod Optimization: NLopt, Cobyla, TNC Root finding: Brent, Bisection Linear algrebra: Matrix, HMat Interpolation: piecewise linear, piecewise Hermite

Least squares: SVD, QR, Cholesky

OpenTURNS: documentation

Flood model

```
We consider the test case of the overflow of a river:
It is considered that failure occurs when the difference between the dike height and the water level is positive:
Four independent random variables are considered:

    O (Flow rate) [m^3 s^-1]

    Ks (Strickler) [m^1/3 s^-1]

   . Zv (downstream height) # [m]
   · Zm (upstream height) # [m]
Stochastic model:

    Q ~ Gumbel(alpha=0.00179211, beta=1013), Q > 0

    Ks ~ Normal(mu=30.0, sigma=7.5), Ks > 0

    7v ~ Uniform(a=49, b=51)

    7m - Uniform(a=54 h=56)

In [52]: from __future__ import print_function
             import openturns as ot
In [53]: # Create the marginal distributions of the parameters
            dist 0 = ot.TruncatedDistribution(ot.Gumbel(1.7558., 1013.), 0, ot.TruncatedDistributiondist_Ks = ot.TruncatedDistribution(ot.Normal(30.0, 7.5), 0, ot.TruncatedDistribution.Li
             dist_Zv = ot.Uniform(49.0, 51.0
             dist_Zm = ot.Uniform(54.0, 56.0)
marginals = [dist_Q, dist_Ks, dist_Zv, dist_Zm]
In [54]: # Create the Copula
             RS = ot.CorrelationMatrix(4)
            R = ot.NormalCopula.GetCorrelationFromSpearmanCorrelation(RS)
```

OpenTURNS: estimate the mean sequentially

Two sequential algorithms based on asymptotic statistics: the mean and Sobol' sensitivity indices.

Part 1: Estimate the mean with an sequential algorithm.

- The "classical" way of estimating the mean : set the sample size n, then use the sample mean $\mu = (1/n) \sum_{i=1}^{n} y^{(j)}$.
- The sample mean is asymptotically gaussian:

$$\mu \to \mathcal{N}\left(E(Y), \frac{V(Y)}{n}\right).$$

- ► The absolute precision of the estimate μ can be evaluated based on the sample standard deviation of the estimator $\frac{s}{\sqrt{n}}$
- ▶ To set the relative precision, we can consider the coefficient of variation of the estimator (if $E(Y) \neq 0$).
- ► To get good performances on distributed supercomputers and multi-core workstations, the size of the sample increases by block.

OpenTURNS: estimate the mean sequentially

```
[... Define the Y RandomVector ...] algo = ot.ExpectationSimulationAlgorithm(Y) algo.setMaximumOuterSampling(1000) algo.setBlockSize(10) algo.setMaximumCoefficientOfVariation(0.001) algo.run() result = algo.getResult() expectation = result.getExpectationEstimate() print("Mean_{\square}_\square%f_{\square}" % expectation[0]) meanDistr = result.getExpectationDistribution() View(meanDistr.drawPDF())
```

Mean = -5.972516

Asymptotic distribution of the sample mean.

OpenTURNS: estimate Sobol' indices sequentially

Part 2 : Estimate Sobol' sensitivity indices with an incremental algorithm.

► Assume that the Sobol' estimator is

$$\overline{S} = \Psi\left(\overline{U}\right)$$

where Ψ is a multivariate function, U is a multivariate sample and \overline{U} is its sample mean.

- ▶ Each Sobol' estimator (e.g. Saltelli, Jansen, etc...) can be associated with a specific choice of function Ψ and vector U.
- Therefore, the multivariate delta method implies:

$$\sqrt{n}\left(\overline{U}-\mu\right) \to \mathcal{N}\left(0, \nabla \psi(\mu)^T \Gamma \nabla \psi(\mu)\right)$$

where μ is the expected value of the Sobol' indice, $\nabla \psi(\mu)$ is the gradient of the function Ψ and Γ is the covariance matrix of \overline{U} .

▶ An implementation of the exact gradient $\nabla \psi(\mu)$ was derived for all estimators in OpenTURNS.

OpenTURNS: estimate Sobol' indices sequentially

Part 2: Estimate Sobol' sensitivity indices with an incremental algorithm.

- Let us denote by Φ_k^F (resp. Φ_k^T) the cumulated distribution function of the gaussian distribution of the first (resp. total) order sensitivity indice of the k-th input variable.
- ▶ We set $\alpha \in [0,1]$ a quantile level and $\epsilon \in (0,1]$ a quantile precision.
- ► The algorithms stops when, on all components, first and total order indices haved been estimated with enough precision. The precision is said to be sufficient if

$$\Phi_k^F(1-\alpha) - \Phi_k^F(\alpha) \le \epsilon$$

and

$$\Phi_k^T(1-\alpha) - \Phi_k^T(\alpha) \le \epsilon$$

for $k = 1, ..., n_X$.

OpenTURNS: estimate Sobol' indices sequentially

```
[... Define the X Distribution, define the g Function...]
estimator = ot.SaltelliSensitivityAlgorithm()
estimator.setUseAsymptoticDistribution(True)
algo = ot.SobolSimulationAlgorithm(X, g, estimator)
algo.setMaximumOuterSampling(100) # number of iterations
algo.setBlockSize(50) # size of Sobol experiment at each iteration
algo.setBatchSize(16) # number of points evaluated simultaneously
# alpha, the confidence interval level
algo.setIndexQuantileLevel(0.1)
# epsilon, a quantile precision
algo.setIndexQuantileEpsilon(0.2)
algo.run()
```


Asymptotic distribution of the first order Sobol' indices for the first variable.

SALOME

- Integration platform for pre and post processing, and 2D/3D numerical simulation
- Features : geometry, mesh, distributed computing
- Visualization, data assimilation, uncertainty treatment
- Partners : EDF, CEA, Open Cascade
- ► Licence : LGPL
- Linux, Windows
- www.salome-platform.org

PERSALYS, the graphical user interface of OpenTURNS

- Main goal : provide a graphical interface of OpenTURNS in SALOME
- Features
 - Uncertainty quantification: definition of the probabilistic model (including dependence), distribution fitting (including copulas), central tendency, sensitivity analysis, probability estimate, meta-modeling (polynomial chaos, kriging), screening with Morris, optimization, design of experiments
 - Generic (not dedicated to a specific application)
 - ► GUI language : English, French
- Partners : EDF, Phiméca
- Licence : LGPL
- Schedule ·
 - ► Since summer 2016, one EDF release per year
 - ► On the internet (free): SALOME_EDF since 2018 on https://www.salome-platform.org

PERSALYS: define the dependence

- Dependence is defined using copulas
- Define arbitrary groups of dependent variables
- Available copulas (same as in OT): gaussian,
 Ali-Mikhail-Haq,
 Clayton, Farlie-Gumbel-Morgenstern, Frank,
 Gumbel

PERSALYS: estimate the parameters of the copulas

- Inference of the dependence of the multivariate sample
- Guided choice according to the BIC and Kendall plot

- Mesh definition and visualization
- Import from text or csv file

- Functional model definition and probabilistic model
- Python or symbolic

- Probabilistic model
- Uncertainty propagation with simple Monte-Carlo sampling

- BagChart and Functional Bagchart (from Paraview) based on High Density Regions.
- ➤ To do this, Paraview uses OpenTURNS to perform the Karhunen-Loève decomposition.
- Linked selections in the views

What's next?

PERSALYS Roadmap:

- Calibration
- ▶ 2D Fields, 3D Fields
- ► In-Situ fields based on the MELISSA library (with INRIA)

The end

Thanks!

Questions?

- Karhunen Loeve decomposition
- ▶ Show modes, eigenvalues and projection coefficients

Interactive uncertainty visualization with Paraview

Methodology

Software architecture

Two entry points:

- interactive,
- Python.

Advantages of the Python programming of the GUI:

- unit tests,
- going beyond the GUI

Symbolic physical model

Probabilistic model

Limit state study: definition of the threshold

Limit state study: algorithm parameters

Limit state study: summary

Summary	Histogram	Convergence graph

Output H

Number of simulations: 26

Estimate	Value	Confidence interval at 95%	
Estimate	value	Lower bound	Upper bound
Failure probability	0.807692	0.656203	0.959182
Coefficient of variation	0.0956949		

Limit state study: histogram

Central tendency: algorithm parameters

Central tendency: summary results

Estimate	Value	Confidence interval at 95%		
Estimate		Lower bound	Upper bound	
Mean	-11.0178	-11.0417	-10.9938	
Standard deviation	1.22309	1.20637	1.24028	
Skewness	0.20005			
Kurtosis	3.01907			
First quartile	-11.8721			
Third quartile	-10.2129			

Central tendency: summary results

Central tendency: scatter plots

Sensitivity analysis: Sobol' indices

OpenTURNS: estimate the mean

See the Jupyter Notebook.

```
from openturns. viewer import View
import openturns as ot
from math import sqrt
ot . Random Generator . Set Seed (0)
# 1. The function G
def functionCrue(X) :
    Q, Ks, Zv, Zm = X
    alpha = (Zm - Zv)/5.0e3
    H = (Q/(Ks*300.0*sqrt(alpha)))**(3.0/5.0)
    S = [H + Zv - (55.5 + 3.0)]
    return S
# Creation of the problem function
g = ot.PythonFunction(4, 1, functionCrue)
g = ot. MemoizeFunction(g)
```

OpenTURNS: estimate the mean

3. View the PDF

Q. set Description ([" $Q_{\sqcup}(m3/s)$ "]) View(Q. drawPDF()). show()

OpenTURNS: estimate the mean

```
# 4. Create the joint distribution function,
the output and the event.
X = ot.ComposedDistribution([Q, Ks, Zv, Zm])
Y = ot.RandomVector(g, ot.RandomVector(X))

# 5. Estimate expectation with simple Monte-Carlo
sampleSize = 10000
sampleX = X.getSample(sampleSize)
sampleY = g(sampleX)
sampleMean = sampleY.computeMean()
print("Mean=%f" % (sampleMean[0]))

Output:

Mean by MC = -5.937845
```

GUI: the demo

Demo time.

GUI: outline

- ► From scratch : 3 inputs, 2 outputs, sum, central dispersion study with default parameters
- ▶ Open axialStressedBeam-python.xml : central dispersion with sample size 1000, Threshold P(G<0) with CV=0.05
- ► Import crue-4vars-analytique.py : S.A. with sample size 1000, sort by size

UQ, the easy way

Main goal: make UQ easy to use

- classical user-friendly algorithms with a state-of-the-art implementation,
- default parameters of the algorithms whenever possible,
- an easy access to the HPC resources,
- an automated connection to the computer code.

Produce standard results:

- numerical results e.g. tables,
- classical graphics.

Overview (1/2)

Inputs from the user:

- Physical model : symbolic, Python code or SALOME component
- Probabilistic model : joint probability distribution function of the input.

Then:

- Central dispersion: estimates the central dispersion of the output Y (e.g. mean).
- ► Threshold probability: estimates the probability that the output exceeds a given threshold S.
- Sensitivity analysis: estimates the importance of the inputs to the variability of the output.

Overview (2/2)

Probabilistic modeling:

- Distribution fitting from a sample
- Dependence modeling (Gaussian copula)

Meta-modeling:

- ► Polynomial chaos (full or sparse)
- Kriging