Siruri:

138. Teorema lui Weierstrass: Orice șir monoton și mărginit este convergent.

139. Criteriul cleştelui:

Fie $(a_n)_n$, $(b_n)_n$, $(x_n)_n$ şiruri de numere reale. Dacă $a_n \le x_n \le b_n$, $(\forall) n \ge n_0$ şi dacă $(\exists) \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = l \in R$, atunci $\lim_{n \to \infty} x_n = l$.

140. Criteriul raportului:

Fie $(a_n)_n$ cu $a_n > 0$, $(\forall)n$. Presupunând că există $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$ atunci:

- i) $\operatorname{dac} \tilde{a} \quad l < 1 \Longrightarrow \lim_{n \to \infty} a_n = 0,$
- ii) dacă $l > 1 \Rightarrow \lim_{n \to \infty} a_n = \infty$,
- iii) dacă $l=1 \Rightarrow$ nu ne putem pronunța asupra limitei șirului $(a_n)_n$.

141. Criteriul Cesaro – Stolz:

Fie şirul $(a_n)_n$ şi şirul $(b_n)_n$ strict crescător şi nemărginit cu $b_n > 0$, $(\forall) n$. Dacă există $\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = l$ (finită sau infinită), atunci, există $\lim_{n \to \infty} \frac{a_n}{b_n}$ şi în plus $\lim_{n \to \infty} \frac{a_n}{b_n} = l$.

142. Criteriul radicalului:

Fie $(a_n)_n$ cu $a_n > 0$, $(\forall)n$ și $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$, finită sau infinită. Atunci șirul $(\sqrt[n]{a_n})$ are limită și $\lim_{n \to \infty} \sqrt[n]{a_n} = l$.

143. Limite remarcabile: Dacă $\lim_{n\to\infty} x_n = 0$ și $x_n \neq 0, (\forall) n \in \mathbb{N}$ atunci:

$$\lim_{n\to\infty} \frac{\sin x_n}{x_n} = 1, \qquad \lim_{n\to\infty} \frac{tg \ x_n}{x_n} = 1, \qquad \lim_{n\to\infty} \frac{\arcsin x_n}{x_n} = 1, \qquad \lim_{n\to\infty} \frac{\arctan x_n}{x_n} = 1,$$

$$\lim_{n\to\infty} \left(1 + x_n\right)^{\frac{1}{x_n}} = e, \qquad \lim_{n\to\infty} \frac{\ln\left(1 + x_n\right)}{x_n} = 1, \qquad \lim_{n\to\infty} \frac{arc\sin x_n}{x_n} = 1, \qquad \lim_{n\to\infty} \frac{arctg \ x_n}{x_n} = 1,$$

$$\lim_{n\to\infty} \frac{1}{x_n} \left(1 + x_n\right)^{\frac{1}{x_n}} = e, \qquad \lim_{n\to\infty} \frac{1}{x_n} \left(1 + x_n\right)^{\frac{1}{x_n}} = 1, \qquad \lim_{n\to\infty} \frac{arc\sin x_n}{x_n} = 1,$$

$$\lim_{n\to\infty} \frac{1}{x_n} \left(1 + x_n\right)^{\frac{1}{x_n}} = e, \qquad \lim_{n\to\infty} \frac{1}{x_n} \left(1 + x_n\right)^{\frac{1}{x_n}} = 1, \qquad \lim_{n\to\infty} \frac{arctg \ x_n}{x_n} = 1.$$

Limite de funcții:

144. Teoremă (Heine): Fie $f: D \to R, a \in D'$ și $l \in \overline{R}$, atunci:

 $\lim_{x\to a} f(x) = l \text{ dacă și numai dacă } (\forall)(x_n)_n \subset D \setminus \{a\}, \text{ cu } \lim_{n\to\infty} x_n = a \Rightarrow \text{ există } \lim_{n\to\infty} f(x_n) \text{ și este egală cu } l.$

145. Limite remarcabile:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{tg \ x}{x} = 1, \quad \lim_{x \to 0} \frac{\arcsin x}{x} = 1, \quad \lim_{x \to 0} \frac{\arctan x}{x} = 1, \quad \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e,$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x} = e, \quad \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1, \quad \lim_{x \to 0} \frac{a^{x} - 1}{x} = \ln a, \quad a > 0, a \neq 1, \quad \lim_{x \to 0} \frac{(1+x)^{x} - 1}{x} = r.$$

Permutări:

146. Perechea (i, j), cu $i, j \in \{1, 2, ..., n\}$, i < j, se numește inversiune a permutării $\sigma \in S_n$ dacă $\sigma(i) > \sigma(j)$. Numărul de inversiuni se notează cu $m(\sigma)$.

147. Semnul unei permutări $\sigma \in S_n$ este $\varepsilon(\sigma) = (-1)^{m(\sigma)}$.

148. O permutare $\sigma \in S_n$ se numește permutare pară dacă $\varepsilon(\sigma) = +1$ permutare impară dacă $\varepsilon(\sigma) = -1$

149. Dacă $\sigma, \tau \in S_n$, oarecare, atunci $\varepsilon(\sigma \cdot \tau) = \varepsilon(\sigma)\varepsilon(\tau)$

Matrice:

- 150. Orice matrice $A \in M_2(R)$, verifică relația : $A^2 tr(A)A + \det(A)I_2 = O_2$.
- 151. O matrice pătratică A, este inversabilă (nesingulară) dacă $\det(A) \neq 0$.

152. Dacă
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, atunci $A^T = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$.

153. $A^{-1} = \frac{1}{\det A} \cdot A^{\bullet}$, unde A^{\bullet} este formată din complemenții algebrici ai elementelor matricei A^{T} .

Determinanti:

154. Regula lui Sarrus (valabilă doar la determinanți de ordin 3)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$$

155. Regula minorilor: (valabilă la determinanți de orice ordin)

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \left(-1\right)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \left(-1\right)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \left(-1\right)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Proprietățile determinanților

156. det $A^T = \det A$, $(\forall) A \in M_n(C)$

157. $\det(\lambda A) = \lambda^n \det A$, $(\forall) A \in \mathbf{M}_n(C)$, $(\forall) \lambda \in C^{\bullet}$

158. $\det(A \cdot B) = \det A \cdot \det B$, $(\forall) A, B \in M_n(C)$

PROFESOR ARHIRE FELIX

159. Dacă la una din liniile (coloanele) unui determinant se adună o altă linie (coloană) înmulțită eventual cu un număr , valoarea determinantului nu se schimbă.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \xrightarrow{C_1 = C_1 + mC_3} \begin{vmatrix} a_{11} + ma_{13} & a_{12} & a_{13} \\ a_{21} + ma_{23} & a_{22} & a_{23} \\ a_{31} + ma_{33} & a_{32} & a_{33} \end{vmatrix}$$

- 160. Dacă într-un determinant inter-schimbăm două linii (coloane) valoarea determinantului se înmulteste cu -1.
- 161. Un determinant poate fi scris ca sumă de alți doi determinanți:

$$\begin{vmatrix} A_1 + B_1 & A_2 + B_2 & A_3 + B_3 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} A_1 & A_2 & A_3 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} B_1 & B_2 & B_3 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Aplicații ale determinanților în geometrie:

162. Aria unui triunghi cu $A(x_A,y_A)$, $B(x_B,y_B)$, $C(x_C,y_C)$ (în plan) este:

$$S = \frac{1}{2} \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$$

163. Condiția de coliniaritate a trei puncte $A(x_A, y_A)$, $B(x_B, y_B)$, $C(x_C, y_C)$ în plan:

$$\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0$$

Sisteme liniare:

164. Def. Fie $A \in M_{m,n}(C)$; un număr natural $r \le \min(m,n)$ se numește $rangul \ matricei \ A$ dacă cel puțin un determinant (minor) de ordin r este nenul, iar toți minorii de ordin mai mare decât r sunt nuli.

compatibil
$$rang A = rang \overline{A}$$
 incompatibil $rang A \neq rang \overline{A}$ incompatibil $rang A \neq rang \overline{A}$

.

Asimptote:

166. Asimptotă verticală:

Dacă x_0 este un punct de acumulare finit ce nu aparține domeniului unei funcții f , în care

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = \pm \infty \text{ sau } \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = \pm \infty \text{ atunci dreapta}$$

 $x = x_0$ este asimptotă verticală pentru funcția f.

167. Asimptotă orizontală:

Dacă $\lim_{x\to\infty} f(x) = a$ și a este finit, atunci dreapta y = a este asimptotă orizontală spre $+\infty$ la graficul funcției (analog spre $-\infty$).

168. Asimptotă oblică:

Dacă dreapta y = mx + n este asimptotă a funcției f spre $+\infty$ atunci

$$m = \lim_{x \to \infty} \frac{f(x)}{x}, \quad n = \lim_{x \to \infty} \left[f(x) - mx \right].$$
(analog spre $-\infty$)

Funcții continue:

169. Teoremă: : Fie $E \subset R$, $f: E \to R$, $x_0 \in E \cap E'$, atunci f este continuă în x_0 dacă și numai dacă $(\exists) \lim_{x \to x_0} f(x) = f(x_0)$.

170. Teorema lui Weierstrass de mărginire: Dacă $f:[a,b] \to R$ este o funcție continuă, atunci: a) f este mărginită, $((\exists)m, M \in \mathbb{R}$ astfel încât $m \le f(x) \le M$)

b) își atinge marginile ($(\exists)x_1, x_2 \in [a,b]$ astfel încât $f(x_1) = m$, și $f(x_2) = M$)

171. Teoremă: Dacă $f:[a,b] \to R$ este o funcție continuă și , f(a) și f(b) au semne contrare, atunci există $c \in [a,b]$ astfel încât f(c) = 0.

Funcții derivabile:

172. Def. Fie $f: D \subseteq R \to R$ și $x_0 \in D \cap D'$. Spunem că f are derivată în punctul x_0 dacă există limita $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \stackrel{not.}{=} f'(x_0) \in \overline{R}$. ($f'(x_0)$ – este numită derivata funcției f în punctul x_0 .

173. Def. Funcția f este derivabilă în punctul x_0 dacă are derivată, $f'(x_0)$, iar aceasta este un număr real (finit).

174. Ecuația tangentei la graficul unei funcții, f, într-un punct $M(x_0, f(x_0))$ este:

$$y - f(x_0) = f'(x_0)(x - x_0)$$

175. Teorema: Dacă funcția $f: I \to R$, I interval, este derivabilă în $x_0 \in I$ atunci f este continuă în x_0

176. Punctul $M(x_0, f(x_0))$ se numește *punct de întoarcere* pentru G_f dacă:

$$f'(x_0), f'(x_0) \in \{-\infty, +\infty\} \text{ si } f'(x_0) \neq f'_d(x_0).$$

Ex:
$$\frac{f_s'(x_0) = -\infty}{f_d'(x_0) = +\infty}$$

$$f(x_0) = +\infty$$

$$f(x_0) = +\infty$$

177. Punctul $M(x_0, f(x_0))$ se numește *punct unghiular* dacă $f'_s(x_0) \neq f'_d(x_0)$ și cel puțin una dintre ele este finită..

178. Punctul $M(x_0, f(x_0))$ se numește punct de inflexiune dacă:

i) f este continuă în x_0 , iar $f'_s(x_0) = f'_d(x_0) \in \{-\infty, +\infty\}$

Ex:
$$f_s'(x_0) = +\infty$$
$$f_d'(x_0) = +\infty$$

$$f_s(x_0) = -\infty$$
$$f_d'(x_0) = -\infty$$

sau

ii) $f: I \to R$ de două ori derivabilă pe I, $f''(x_0) = 0$, iar pentru $x \in I, x < x_0, f''(x) < 0$ și pentru $x \in I, x > x_0, f''(x) > 0$ sau invers

Ex:
$$f''(x) > 0$$
, $x < x_0$

$$f''(x) < 0, x < x_0$$

$$f''(x) < 0, x > x_0$$

179. Operații cu funcții derivabile: Fie f, g derivabile pe D, atunci:

$$(f\pm g)'=f'\pm g';$$

$$(f \pm g)' = f' \pm g';$$
 $(c \cdot f)' = c \cdot f', c$ -o constantă reală;

$$(f \cdot g)' = f' \cdot g + f \cdot g';$$

$$(f \cdot g)' = f' \cdot g + f \cdot g';$$
 $\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}, \ g(x) \neq 0, (\forall) x \in D.$

- 180. Derivabilitatea funcției compuse: Dacă $f: D \to E$ și $g: E \to R$ sunt derivabile atunci funcția compusă $g \circ f : D \to R$ este derivabilă și $(g \circ f)'(x) = g'(f(x)) \cdot f'(x), \ (\forall) x \in D$.
- 181. Derivabilitatea funcției inverse: Fie $I, J \subset R$ două intervale și $f: I \to J$ o funcție strict monotonă cu f(I) = J. Dacă f este derivabilă în $x_0 \in I$ și $f'(x_0) \neq 0$, atunci funcția inversă $f^{-1}: J \to I$ este derivabilă în $y_0 = f(x_0)$ și $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

182. Derivatele funcțiilor elementare (definite pe domeniul maxim de derivabilitate):

$$c' = 0$$
, c-constant $x' = 1$

183.
$$(x^{\alpha})' = \alpha \cdot x^{\alpha - 1}, \quad \alpha \in \mathbb{R}^*$$

184.
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

185.
$$(a^x)' = a^x \cdot \ln a$$
, $a > 0$, $a \ne 1$, caz particular $(e^x)' = e^x$.

186.
$$(\log_a x)' = \frac{1}{x \cdot \ln a}, \ a > 0, a \ne 1, \ \text{caz particular } (\ln x)' = \frac{1}{x}.$$

187.
$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$

188.
$$(tgx)' = \frac{1}{\cos^2 x}$$
$$(ctgx)' = -\frac{1}{\sin^2 x}$$

189.
$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

 $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$

190
$$\left(arctgx\right)' = \frac{1}{1+x^2}$$

 $\left(arcctgx\right)' = -\frac{1}{1+x^2}$

191 Formula lui Leibniz: Fie $f,g:D\to R$ de n ori derivabile, atunci

$$(f \cdot g)^{(n)} = C_n^0 f^{(n)} g^{(0)} + C_n^1 f^{(n-1)} g^{(1)} + C_n^0 f^{(n-2)} g^{(2)} + \dots + C_n^n f^{(0)} g^{(n)}.$$

- 192 Teorema lui Fermat Fie $I \subset R$ un interval și $f: I \to R$ o funcție derivabilă într-un punct de extrem local x_0 din interiorul intervalului $I(x_0 \in I$ și nu este capăt al intervalului); atunci $f'(x_0) = 0$.
- 193. Teorema lui Rolle: Fie $f:[a,b] \to R$ o funcție cu următoarele proprietăți:
 - i) f este continuă pe [a,b],
 - ii) f este derivabilă pe (a,b),
 - iii) f(a) = f(b).

Atunci: $(\exists)c \in (a,b)$ astfel încât f'(c) = 0

- 194. Consecințele teoremei lui Rolle:
 - C. 1. Între două zerouri consecutive ale funcției se află cel puțin un zero al derivatei.
 - C. 2. Între două zerouri consecutive ale derivatei se află cel mult un zero al funcției.

195. Teorema lui Lagrange: Fie $f:[a,b] \to R$ o funcție cu următoarele proprietăți:

- i) f este continuă pe [a,b],
- ii) f este derivabilă pe (a,b).

Atunci: $(\exists)c \in (a,b)$ astfel încât $\frac{f(b)-f(a)}{b-a} = f'(c)$.

196. Consecinta 1. (funcția constantă)

Fie $I \subseteq R$ un interval şi fie $f, g: I \to R$ două funcții derivabile, atunci:

- a) Funcția f este constantă dacă și numai dacă $f'(x) = 0, (\forall)x \in I$
- b) Funcțiile f și g diferă printr-o constantă (adică $(\exists)c \in R$ astfel încât f(x) = g(x) + c, $(\forall)x \in I$) dacă și numai dacă f'(x) = g'(x), $(\forall)x \in I$.
- 197 Consecința 2. (monotonia funcțiilor derivabile)

Fie $I \subseteq R$ un interval și fie $f: I \to R$ două funcție derivabilă, atunci

- a) f este crescătoare dacă și numai dacă $f'(x) \ge 0, (\forall) x \in I$
- b) f este descrescătoare dacă şi numai dacă $f'(x) \le 0$, $(\forall) x \in I$.

Ex:

198. O funcție $f: I \to R$ este a) convexă pe I ("ține apa") dacă f''(x) > 0, $(\forall) x \in I$.

b) concavă pe I ("nu ține apa") dacă f''(x) < 0, $(\forall) x \in I$

