通信工学 演習レポート

氏名: 関川 謙人 学籍番号:2022531033

2024年6月5日

問 1

11 10 00 10 11 10 に最も近いグラフは (b) である。

問 2

 $(1) p_A = p_B = p_C = p_D = 0.25$ である。 このことから

$$I(p_A) = I(p_B) = I(p_C) = I(p_D)$$

= $-\log_2 \frac{1}{4} = 2$

エントロピー H(X) は

$$H(X) = -(4(0.25 \cdot \log_2 \frac{1}{4}))$$

= 2

 $(2) \ p_A = 0.5 \ p_B = p_C = 0.125 \ p_D = 0.25$ であるので

$$I(p_A) = -\log_2 \frac{1}{2} = 1$$

$$I(p_B) = I(p_C) = -\log_2 \frac{1}{8} = 3$$

$$I(p_D) = -\log_2 \frac{1}{4} = 2$$

以上より、エントロピーH(X)は

$$H(X) = -((0.5 \cdot \log_2 \frac{1}{2}) + (0.25 \cdot \log_2 \frac{1}{4}) + 2(0.125 \cdot \log_2 \frac{1}{8}))$$
= 1.75

問3

(1) 各アルファベットの出現頻度から以下の二分木を構成した

(2) 符号語と符号長を組み合わせた表は以下の通りである

文字	頻度	符号語	符号長
A	8	0	1
В	4	10	2
С	1	1110	4
D	1	1111	4
Е	2	110	3

(3) 固定符号長であるため、平均は各々の符号長に一致する。よって $l_1=3$ ハフマン符号の平均符号長は

$$l_2 = \frac{8+8+8+6}{16} = \frac{15}{8}$$
$$= 3.75$$

このことからハフマン符号のエントロピーHは、

$$H = -\left(\left(\frac{1}{2} \cdot \log_2 \frac{1}{2}\right) + \left(\frac{1}{4} \cdot \log_2 \frac{1}{4}\right) + \left(\frac{1}{8} \cdot \log_2 \frac{1}{8}\right) + 2 \cdot \left(\frac{1}{16} \cdot \log_2 \frac{1}{16}\right)\right)$$

= 3.75

以上のことからハフマン符号のエントロピーと平均符号長は等しいことがわかる。

問 4

- (1) 表にすると以下のようになる
- (2) パリティ検査符号について、ハミング重みと誤り検出の可否は以下のようになっている。

	1	2	3	4	5
$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}$	0	1	1	1	1
x_2	1	0	0	1	0
x_3	1	0	1	1	1
x_4	0	1	0	1	0

偶数パリティ検査符号

	1	2	3	4	5
$ \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array} $	0	0	0	1	0
x_2	1	0	0	1	1
x_3	1	0	1	1	0
x_4	0	1	0	1	1

奇数パリティ検査符号

(1) パリティ検査符号

信号	ハミング重み $w_H(y)$	誤り検出	信号	ハミング重み $w_H(y)$	誤り検出
y_1	1	可	y_1	2	可
y_2	3	可	y_2	2	可
y_3	4	不可	y_3	3	不可
y_4	3	可	y_4	4	可

偶数パリティ検査符号

奇数パリティ検査符号

(2) パリティ検査符号のハミング重みと誤り検出の可否

(3) 奇数パリティビットではハミング重みが奇数の時 0、偶数の時 1 を返す。 y_5 の 4 列目の要素がこの法則に反するため誤りは 4 列目にある。また y_3 の 5 列目がこの法則に反している。以上のことから誤り箇所は y_3 の 4 番目の要素といえる。