

概述

.LTH7R 是恒流/恒压座充充电管理芯片,主要应用于单节锂电池充电。应用电路无需外接检测电阻,其内部为MOSFET 结构,因此也无需外接反向二极管。

.LTH7R 在大功率和高环境温度下可以自动调节充电电流以限制芯片温度。它的充电电压固定在 4.2V,充电电流可以通过外置一个电阻器进行调节。当达到浮充电压并且充电电流下降到设定电路的 1/10 时,.LTH7R 自动终止充电过程。当输入电压移开之后,.LTH7R 自动进入低电流模式,从电池吸取少于 5uA 的电流。当.LTH7R 进入待机模式时,供电电流小于 70uA。

.LTH7R 还可以监控充电电流,具有电压检测、自动循环充电的特性,并且具有一个指示管脚指示充电状态和输入电压状态。

产品特点

- ▶ 可达 500mA 的可编程充电电流
- ▶ 无需外接 MOSFET、检测电阻、反向二极管
- ▶ 恒流/恒压模式工作
- ▶ 具有热保护功能
- ▶ 可通过 USB 端口为锂电池充电
- ▶ 具有 1%精度的预设充电电压
- ▶ 待机模式下供电电流为 70uA
- ➤ 3.0V 涓流充电电压
- > 软启动限制了浪涌电流
- ➤ 采用 SOT23-5 封装

应用领域

- ▶ 手机、掌上电脑、MP3播放器
- ▶ 蓝牙耳机

封装形式

➤ SOT23-5

典型应用电路图

管脚说明

序号	符号	功能说明
1	CHRG	充电指示端
2	GND	地
3	BAT	充电电流输出端
4	VCC	电源输入端
5	PROG	外部编程充电电流设置端

绝对最大额定值

符号	参 数	最大额定值	单位
V _{cc}	输入电源电压	7	V
V _{PROG}	PROG 电压	VCC+0.3	V
V_{BAT}	BAT 电压	7	V
V_{CHRG}	CHRG 电压	7	V
	BAT 短路	Continuous	
θ_{JA}	热阻	250	°C/W
I _{BAT}	BAT 电流	500	mA
I _{PROG}	PROG 电流	800	μΑ
T_{J}	最高结温	110	°C
T _S	储藏温度	-65 to +125	°C
	焊接温度(5秒)	265	°C

[➤] 充电电流外部编程: PROG (引脚 5): 恒流充电电流设置端。从 PROG 管脚连接一个外部电阻到地端可以对充电电流进行设置。可根据如下公式来估算恒流充电电流:

Ibat=1100/Rprog(A)

Rprog 电阻和恒流充电电流 Ibat 对应表				
Rprog	Ibat			
11K	100mA			
5.6K	200mA			
3.6K	300mA			
2.7K	400mA			
2.2K	500mA			

电气特性 (注1, 2) (V_{IN}=5V; T_J=25℃, 除非另有说明)

符号	参数	条件	最小值	典型值	最大值	单位
V _{CC}	输入电源电压		4.5	5.0	5.5	V
I _{CC}	输入电源电流	充电模式 ^(注3) , R _{PROG} =10K		50	300	μΑ
		待机模式 (充电终止)		70		μΑ
		关断模式(R _{PROG} 未连接, VCC < VBAT,VCC < VUV)		45	100	μА
V _{FLOAT}	可调输出(浮充)电压	I _{BAT} =30 mA, I _{CHRG} =5 mA A: 4.2-4.28V; B: 4.16-4.205V	4.16	4.24	4.28	V
	BAT 端电流	R _{PROG} = 10k,电流模式	90	110	130	mA
		R _{PROG} = 2.2k,电流模式	465	500	535	mA
I_{BAT}		V _{BAT} =4.2V,待机模式		+/-3	+/-5	μА
		关断模式, R _{PROG} 未连接,VCC=3V		+/-0.5	+/-5	μΑ
		休眠模式,VCC=0V		+/-1		μА
I_{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}$, $R_{PROG} = 10k$		23		mA
V _{TRIKL}	涓流充电阈值电压	$R_{PROG} = 10k$, V_{BAT} Rising	2.9	3	3.1	V
V _{UV}	VCC 欠压锁定阈值	VCC 从低到高		3.9		V
V _{UVHYS}	VCC 欠压锁定滞后	VCC 从高到低		240		mV
V _{ASD}	VCC-Vbat 阈值电压	VCC-Vbat启动阈值(VCC 从低到高)		200		mV
		VCC-Vbat关断阈值(VCC 从高到低)		80		mV
Ţ	C/10Z 终止电流阈值	$R_{PROG} = 10k^{(\stackrel{?}{1}{1}4)}$		0.1		mA/mA
I _{TERM}		$R_{PROG} = 2.2k$		0.1		mA/mA
V _{PROG}	PROG 端电压	R _{PROG} = 10k,电流模式	0.95	1.05	1.15	V
$\Delta V_{ ext{RECHRG}}$	电池阈值电压	V _{FLOAT} - V _{RECHRG}		160		mV
T _{LIM}	热保护温度			150		°C

注 1: 超出最大工作范围可能会损坏芯片。

注 2: 超出器件工作参数极限,不保证其正常功能。

注 3: 电源电流包括 PROG 端电流(大约 100uA),不包括通过 BAT 端传输到电池的其他电流 。

注 4: 充电终止电流一般是设定充电电流的 0.1 倍。

典型应用电路图 Layout 示范

为了得到良好的滤波效果,VCC 滤波电容及 BAT 端滤波电容尽量靠近芯片引脚放置,滤波电容接地端到芯片 GND 铜皮应尽量宽和近。为了使芯片达到最佳的散热效果及最大充电电流的稳定,连接芯片 2 脚 GND 的铜皮面积应尽量加大,如果是双面板的 PCBA,可以在靠近芯片 GND 引脚位置放置几个过孔下底层更加利于芯片散热。

负载有功率马达应用电路参考

D1 及 CP3、CP4 构成马达消噪电路,CP4 为瓷片电容直接焊接到马达上的五金片两端上,D1、CP3 靠近 PCBA 上的马达接线焊盘并联贴片。因为电路中有功率马达负载,因此增加了 CP2 大容量滤波电容,CP2 可以跟据马达功率大小选择合适的电容量,马达功率越大 CP2 容量就相应增大,以保证负载电源的稳定性。

封装尺寸图

➤ SOT23-5

规格					
尺寸	英寸		毫米		
), v	最小值	最大值	最小值	最大值	
А	0.110	0.120	2.80	3.05	
В	0.059	0.070	1.50	1.75	
С	0.036	0.051	0.90	1.30	
D	0.014	0.020	0.35	0.50	
E	_	0.037	_	0.95	
F	_	0.075	_	1.90	
Н		0.006	_	0.15	
J	0.0035	0.008	0.090	0.20	
К	0.102	0.118	2.60	3.00	