Homework 2 Report - Income Prediction

學號:b04502031 系級:電機二 姓名:施力維

1. (1%) 請比較你實作的 generative model、logistic regression 的準確率,何者較佳?

這次手刻的 generative model 與 logistic model 在 Kaggle 上的準確率如下表所示,其中 feature 都有經過 normalize,也有做第二題(1)(2)的 Preprocessing:

	Public	Private
Generative	0.8456	0.8420
Logistic	0.8576	0.8462

就這個結果看來·Logistic 的準確度大約比 Generative 1%左右·然而 Generative 也足以過 Simple Base Line·表現的也還算不差。Generative 表現較差的原因可能是因為它的實作方式是猜測資料會呈現 Gaussian Distribution 的樣子·然而實際上我們並無法得知資料的分佈是否平均,或是在取得管道上有不小心讓某些群體的佔有比例增加,這些因素都會使得 Predict 的結果不準。反之·Logistic model 的彈性較大,並沒有做這樣的假設,只要參數 tune 好就能夠有好的 performance。

2. (1%) 請說明你實作的 best model, 其訓練方式和準確率為何?

這次的 best model 是使用 sklearn.LogisticRegression 的套件實作,為單純的 LogisticRegression model。

Feature 的部分(1)扣除 education_num · 因為此部分跟 education 的資料是相互對應的 · 如下圖所示:

Educ_num	1	2	3	4	5	6	7	8	9	10	
Education	Preschool	1st-4th	5th-6th	7th-8th	9th	10th	11th	12th	HS-grad	Some-college	
Educ_num	11	11 12		13 14		14	15			16	
Education	Assoc-voc	Assoc-voc Assoc-acdr		Bachelors Masters		Prof	-scho	ool E	Octorate		

- (2) 並將"country_?"合併到"country_USA"·"workclass_?"合併到"workclass_private"·將 缺失的資料補成比例較高的類別(兩者都有 95%UP)。
- (3) "fnlwgt"、"age"、"capital_gain"、"capital_loss"、"work_hours"加上二到六次的項。
 Training 的部分使用 L1 的 regulization · λ設為 1 · solver 則是使用「liblinear」。
 Training data 的準確率為 0.8617 · 其中切出 10%的 Validation data · 其準確率為 0.8606 · 上傳至 Kaggle 上的分數為(Public, Private)=(0.8624, 0.8603)。
- 3. (1%) 請實作輸入特徵標準化(feature normalization)·並討論其對於你的模型準確率的影響。(有關 normalization 請參考:https://goo.gl/XBM3aE)

本次實作的 feature scaling 是一般的標準化,使得資料平均為 0,標準差為 1,在這邊分別對 logistic、generative、best 三種 model 進行測試,資料皆有做過第三題(1)(2)的 Preprocessing,測試結果如下表:

	Un-nori	malized	Normalized		
	Public Private		Public	Private	
Logistic	0.8523	0.8410	0.8576	0.8462	
Generative	0.8456	0.8420	0.8456	0.8420	
Best	0.8611	0.8523	0.8624	0.8603	

可以發現對於 Generative 而言,有沒有 Normalize 並沒有差別,然而對於 Logistic 跟 Best 都有明顯的影響,這是因為 Generative model 是計算模型的機率,在轉換成 Gaussian Distribution 時就已經有把 data 的標準差、平均等因素考量進去,以作出適合的 model。而 Logistic 是透過 gradient decent 來實踐,不同維度之間若是 scale 差距太大,會嚴重影響到 gradient decent 的成效。

4. (1%) 請實作 logistic regression 的正規化(regularization),並討論其對於你的模型準確率的影響。(有關 regularization 請參考:https://goo.gl/SSWGhf P.35)

這邊使用 hw2_best 的 model 來進行測試,分別對不同的 λ 進行 training,做出來的結果如下表:

λ	0.001	0.01	0.1	1	10	100	1000	
No	0.8605							
regularization								
L1	0.8606	0.8614	0.8613	0.8616	0.8593	0.8524	0.7910	

根據這個實驗結果,regularization 對於準確度的影響並不會很大,有沒有加上的差別大約是 0.1%,只有少數影響,這可能是因為大部份 feature 都是 1 次,而且都只有 1 或 0 兩個數字,不太能夠 overfitting,因此加上 regularization 並不會影響太多。

5. (1%) 請討論你認為哪個 attribute 對結果影響最大?

這邊使用 hw2_best 的 model 來進行測試,測試方式分別為拿掉其中一個 attribute,並看哪項使得準確率下降最多(education num 皆已拿掉)。

	all	age	fnlwgt	education	marital_status	occupation	relationship	
	0.8617	0.8598	0.8617	0.8542	0.8620	0.8562	0.8604	
Γ	race	sex	capital_gain	capital_loss	hours_per_week	native_country	workclass	
Ī	0.8617	0.8616	0.8589	0.8606	0.8612	0.8611	0.8586	

從上表可以觀察到,attribute 影響最多前三名分別是「education」、「occupation」、「workclass」,跟直觀上的結果相似。