1.8-1.9 Matrices and Linear Transformations

Jeremy Teitelbaum

Linear Transformations and Matrices

If A is an $n \times m$ matrix, and x is any vector in \mathbf{R}^m , then Ax is a vector in \mathbf{R}^n .

So we can define a function $T: \mathbf{R}^m \to \mathbf{R}^n$ by

$$T(x) = Ax$$
.

For example if

$$A = \begin{bmatrix} 0 & -4 \\ 4 & 1 \\ 3 & 3 \end{bmatrix} \text{ and } v = \begin{bmatrix} x \\ y \end{bmatrix}$$

then

$$T(v) = Av = \begin{bmatrix} -4y \\ 4x + y \\ 3x + 3y \end{bmatrix}$$

Function terminology

In general if $f:X\to Y$ is a function then f is a "rule" that associates exactly one element $y\in Y$ to each element $x\in X$. The y corresponding to x is called f(x). Furthermore:

- ightharpoonup X is called the domain of f
- ightharpoonup Y is called the codomain of f
- ▶ the set of $y \in Y$ so that there is an $x \in X$ with f(x) = y is called the *range* of f.
- ightharpoonup if f(x)=y, then y is called the *image* of x under f.

If A is an $n \times m$ matrix, then the domain of f(x) = Ax is \mathbf{R}^m and the codomain is \mathbf{R}^n .

Examples of matrix transformations

lf

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

is called a *projection*, in this case onto the xy-plane.

Rotations in 2d

lf

$$A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

then

$$A(\theta) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$

rotates the vector (x,y) through an angle θ counterclockwise.

To see this, write $x = r \cos \phi$ and $y = r \sin \phi$. Then:

$$r\cos\phi\cos\theta - r\sin\phi\sin\theta = r\cos(\phi + \theta)$$

$$r\cos\phi\sin\theta + r\sin\phi\cos\theta = r\sin(\phi + \theta)$$

Linear Transformations

Let $T: \mathbf{R}^m \to \mathbf{R}^n$ be a function. Then T is called a *linear transformation* if

- ightharpoonup T(ax) = aT(x) for every scalar a, and
- ightharpoonup T(x+y) = T(x) + T(y) for any two vectors $x,y \in \mathbf{R}^m$.

Any matrix transformation T(x) = Ax, where A is $n \times m$, is linear.

If T is linear, then T(0) = 0 (because T(0x) = 0T(x) = 0.)

Linear Transformations

Let

$$T(x) = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{bmatrix} x.$$

Find a vector x so that T(x) = b and determine if this x is unique.

Hint: The rref form for the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$ is

$$\begin{bmatrix}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{bmatrix}$$

Another problem

Let

$$T(x) = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} x.$$

Find a vector x so that T(x) = b and determine if this x is unique.

Hint: The rref form for the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$ is

$$\begin{bmatrix} 1 & 0 & 3 & 7 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Linear Transformations

If $T: \mathbf{R}^m \to \mathbf{R}^n \$$ is linear, and v_1, \dots, v_k are vectors in \mathbf{R}^m , then if you know

$$T(v_1), \dots, T(v_k)$$

you know

$$T(a_1v_1 + \dots + a_kv_k)$$

for any constants $a_i.$ In other words, you can compute T for any vector in the span of $v_1,\dots,v_k.$

Linear Transformations

In particular if

$$T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = \begin{bmatrix} a \\ b \end{bmatrix}$$

and

$$T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} c \\ d \end{bmatrix}$$

then

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = T(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}) = xT(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) + yT(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = \begin{bmatrix} ax + cy \\ bx + dy \end{bmatrix}$$

and T(x) = Ax where

$$A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Matrices and Linear Transformations

We have seen that, given a matrix A, then T(x)=Ax is a linear transformation.

Now suppose $T: \mathbf{R}^m \to \mathbf{R}^n$ is a linear transformation.

Let $e_i \in \mathbf{R}^m$ be the vector

$$e_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

where the 1 is in row i of e_i .

Matrices and Linear Transformations

Let

$$A(T) = \begin{bmatrix} T(e_1) & T(e_2) \cdots T(e_m) \end{bmatrix}$$

whose columns are the $T(e_i)$. This is an $n \times m$ matrix because each $T(e_i) \in \mathbf{R}^n$.

Notice that $Ae_i=T(e_i)$ for $i=1,\ldots,m.$ As a result, by linearlity, Av=T(v) for any vector $v\in\mathbf{R}^m.$

Therefore every linear transformation comes from multiplication by a matrix.

The identity map

The map $T: \mathbf{R}^m \to \mathbf{R}^m$ given by Tx = x is called the identity map.

Since $T(e_i)=e_i$ for $i=1,\dots,m$ the matrix of T is the $m\times m$ matrix with 1's on the diagonal and zeros elsewhere.

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

Matrices and Linear Transformations

If $T: \mathbf{R}^m \to \mathbf{R}^n$ is linear, then T is determined by what it does to the standard basis vectors e_i .

For example, if m=n=2, and T is the reflection map T(x,y)=(y,x), then $T(e_1)=e_2$ and $T(e_2)=e_1$ and therefore Tx=Ax where

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Reflections

Figure 1: reflections

Shears

TABLE 3 Shears
Transformation

Image of the Unit Square

Standard Matrix

Horizontal shear x_2 $k = \begin{bmatrix} k \\ 1 \end{bmatrix}$ k < 0

Vertical shear

 $\left[\begin{array}{cc} 1 & 0 \\ k & 1 \end{array}\right]$

Figure 2: shears

Contractions/Expansions

TABLE 2 Contractions and Expansions

Transformation	Image of	the Unit Square	Standard Matrix
Horizontal contraction and expansion	$\begin{bmatrix} x_2 \\ 1 \end{bmatrix}$ $\begin{bmatrix} k \\ 0 \end{bmatrix}$ $0 < k < 1$	$ \begin{array}{c c} x_2 \\ \hline 0 \\ 1 \end{array} $ $ \begin{array}{c} k \\ 0 \end{array} $ $ k > 1 $	$\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$
Vertical contraction and expansion	$\begin{bmatrix} x_2 \\ k \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $0 < k < 1$	$\begin{bmatrix} x_2 \\ k \end{bmatrix}$ $\begin{bmatrix} 0 \\ k \end{bmatrix}$ $k > 1$	$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$

Figure 3: contractions and expansions

Projections

TABLE 4 Projections

Transformation	Image of the Unit Square	Standard Matrix
Projection onto the x_1 -axis	x ₂	$\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]$
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 \\ 0 \end{bmatrix}} x_1$	
Projection onto the x_2 -axis	x ₂	$\left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$
	11 x ₁	

Figure 4: projections

One-to-one and onto maps

A function $T:A\to B$ is one-to-one if the only way that T(x)=T(y) is if x=y.

Eg the function $f(x)=x^2$ is *not* one-to-one, because f(-1)=f(1) even though $-1\neq 1$. But the function f(x)=3x is one-to-one, because if 3x=3y then x and y must be equal.

A function $T:A\to B$ is *onto* if, for any $b\in B$, there is an $a\in A$ so that T(a)=b.

The function $f(x)=x^2$ is not *onto*, because the equation $-1=x^2$ does not have a solution (at least in real numbers.) The function f(x)=3x is *onto*, because the equation y=3x always has a solution (x=y/3).

One-to-one linear maps

If T is linear, then T(x)=T(y) if and only if T(x)-T(y)=T(x-y)=0. So T is one-to-one if the only solution to T(v)=0 is v=0.

Since T comes from a matrix A, the map is one-to-one if and only if the matrix equation Ax=0 has only zero as its solution.

This happens if and only if the columns of A are linearly independent.

Onto linear maps

If $T: \mathbf{R}^m \to \mathbf{R}^n$ is linear, then T(x) is onto if only if T(x) = b has a solution for any $b \in \mathbf{R}^n$. This means that the matrix equation

$$Ax = b$$

has a solution for any $b \in \mathbf{R}^n$.

Since Ax is a linear combination of the columns of A, every equation Ax = b has a solution only if every b is a linear combination of the columns of A. In other words, A is onto if and only if the columns of A span \mathbf{R}^n .

Theorem 12

Theorem 12 in the book summarizes these two key facts.

Theorem: Let T(x) = Ax be a linear map from \mathbf{R}^m to \mathbf{R}^n , where A is an $n \times m$ matrix.

- 1. T is one-to-one if and only if the columns of A are linearly independent vectors in \mathbf{R}^n .
- 2. T is onto if and only if the columns of A span \mathbf{R}^n .

Algebraic version

Algebraically:

- 1. T(x) = Ax is one-to-one if and only if the rref of A has no free variables in other words, if every column has a pivot.
- 2. T(x) = Ax is onto if and only if every row of A has a pivot.

Note that if A is an $n \times m$ matrix, then:

- \blacktriangleright if m > n, the map cannot be one-to-one.
- ightharpoonup if n > m, the map cannot be onto.