Lecture 1

$$6x + 1$$
 (a) $64 = (1000 \cdot 10)$, (b) $1 = (1000 \cdot 111)$, (c) $19 = (100 \cdot 1111)$, (d) $1 = (100 \cdot 1111)$, (e) $\frac{3}{16} = (10 \cdot 000 \cdot 1)$, (e) $\frac{3}{16} = (10 \cdot 000 \cdot 1)$, (f) $\frac{3}{16} = (10 \cdot 000 \cdot 1)$, (e) $\frac{3}{16} = (10 \cdot 000 \cdot 1)$, (f) $\frac{3}{16} = (10 \cdot 000 \cdot 1)$, $\frac{2}{16} = (100 \cdot 100 \cdot 100 \cdot 1)$, $\frac{2}{16} = (100 \cdot 100 \cdot 100 \cdot 1)$, $\frac{2}{16} = (100 \cdot 100 \cdot 100 \cdot 1)$, $\frac{2}{16} = (100 \cdot 100 \cdot 10$

$$\frac{E \times 19}{1 - sec_{X}} = \frac{1 - as_{X}}{1 - as_{X}} = \frac{as_{X} - as_{X}}{sa_{X} - as_{X}} = \frac{(as_{X} -) s_{A} \times - as_{X}}{1 - so_{X} \times - as_{X} \times - as_{X}} = \frac{(as_{X} -) s_{A} \times - as_{X}}{1 - so_{X} \times - as_{X}} = \frac{(as_{X} -) s_{A} \times - as_{X}}{1 - so_{X} \times - as_{X}} = \frac{(as_{X} -) s_{A} \times - as_{X}}{1 - so_{X}} = \frac{1 - c_{X} - as_{X}}{1 - so_{X}} = \frac{1 - c_{X} - as_{X}}{1 - c_{X} - as_{X}} = \frac{1 - c_{X} - as$$

 $= 1 + \times (1 - \times (1 - \times (1 + 2 \times)))$

 $(c) \beta(x) = (+x(1-x+x^2+2x^3) = (+x(1-x(1-x-2x^2)))$

((< x \(\frac{1}{2} + \times (\frac{1}{2} + \times (\frac{1} + \times (\frac{1}{2} + \times (\frac{1}{2} + \ti