# Базовые понятия теории формальных языков

Теория формальных языков  $2022 \ z$ .



## Формальные языки

#### Традиционный подход

Формальный язык — это множество  $\mathcal M$  слов над алфавитом  $\Sigma$  (обозначается  $\mathcal M\subseteq \Sigma^*$ , здесь знак  $^*$  — итерация Клини). Обычно подразумевает наличие формальных правил, определяющих корректность формы (т.е. синтаксиса) слов из  $\mathcal M$ .

### Теоретико-категорный подход

Формальный язык — это категория (т.е. способ задания объектов и их взаимосвязей в форме направленного графа). Отличие от теоретико-множественного подхода — способ описания не синтаксиса слов, а отношения между ними.

Классический пример: A man saw a dog with a telescope.



## Перечислимость и разрешимость

- Язык М разрешимый ⇔ для любого слова w существует алгоритм проверки принадлежности w к М (всегда завершающийся и дающий точный, либо положительный, либо отрицательный ответ).
- Язык  $\mathcal{M}$  перечислимый  $\Leftrightarrow$  для любого слова w существует алгоритм, положительно отвечающий на вопрос принадлежности w к  $\mathcal{M}$  за конечное время (но, возможно, зацикливающийся, если  $w \notin \mathcal{M}$ ).

Перечислимый, но не разрешимый: язык программ, завершающихся на входе 0 (на любом достаточно мощном ЯП). Далее разрешимые языки можно классифицировать по минимально необходимой сложности разрешающего алгоритма (Р-разрешимые, ExpTime-разрешимые...)



## Примеры формальных языков

- $\{\underbrace{aa...a}_{n \text{ раз}} \underbrace{bb...b}_{n \cdot 3 \text{ раз}} \}$  (сокращаем до  $\{a^n b^{3n}\}$ );
- палиндромы чётной длины в русском языке;
- правильно записанные арифметические выражения с ·,
   + над натуральными числами;
- правильные скобочные последовательности;
- язык тождественно истинных формул логики предикатов;
- язык правильно типизированных программ на ЯП со статическими типами;
- язык, описывающий все разрешимые за линейное время формальные языки.



# Представления формальных языков

- Свёртки множеств
- Системы переписывания термов
- Распознающие / порождающие машины
- Алгебраические выражения
- Алгебраические структуры
- Формулы логики предикатов



# Пример представления

Язык слов в алфавите  $\{a, b\}$  с чётным количеством букв a.

- Свёртка:  $\{w \in \{a, b\}^* \mid 2$  делит  $|w|_a\}$ .  $|w|_t$  количество вхождений терма t в слово w.
- Система переписывания термов:

$$S \rightarrow "a" ++T \quad S \rightarrow "b" ++S \quad S \rightarrow \varepsilon$$
  
 $T \rightarrow "a" ++S \quad T \rightarrow "b" ++T$ 

А можно и по-другому:

$$S \rightarrow "a" ++S ++"a"$$
  $S \rightarrow "b" ++S$   
 $S \rightarrow S ++"b"$   $S \rightarrow \varepsilon$ 

Здесь и далее  $\varepsilon$  — стандартное обозначения для пустого слова (строки нулевой длины). Поскольку структура данных — слова, то кавычки и знак конкатенации ++ дальше опускаются.



## Пример представления

Язык слов в алфавите { а, b} с чётным количеством букв а.

• Распознающие машины:



А можно иначе:





## Пример представления

Язык слов в алфавите  $\{a, b\}$  с чётным количеством букв a.

• Алгебраические выражения:

 $(b^*\alpha b^*\alpha b^*)^*$ 

А можно и так:

 $(b^*ab^*a)^*b^*$ 

- Алгебраические структуры: Класс эквивалентности слова  $\varepsilon$  в полугруппе с соотношениями  $\mathfrak{a}\mathfrak{a} \to \varepsilon$ ,  $\mathfrak{b} \to \varepsilon$ .
- Формулы логики предикатов: без введения считающих предикатов не выразима в логике предикатов первого порядка (но выразима в логике одноместных предикатов второго порядка).



## Анализ свойств языков

Проверить, действительно ли данная система переписывания термов порождает язык  $\{w\,|\,|w|_{\mathfrak{a}}$  делится на  $2\}$ , если начальным состоянием является S.

$$S \rightarrow a S a \quad S \rightarrow b S \quad S \rightarrow S b \quad S \rightarrow \epsilon$$

- Необходимо доказать, что все указанные слова порождаются системой (например, по индукции).
- А также что никакие другие не порождаются.

Предположим, что система порождает слова с нечётным числом букв  $\alpha$ . Выберем из них такое, которое выводится из S за самое малое число шагов. Покажем, что каким бы ни был предпоследний шаг вывода, его можно поменять на  $S \to \epsilon$  и получится слово с нечётным числом букв  $\alpha$ , вывод которого ещё короче.



## Области применения





# Структура курса

- Два рубежных контроля × 15 баллов.
- Пять лабораторных работ  $\times$  8 баллов.
  - Java, Python, Go, JS без бонуса
  - С/С++, Kotlin, TypeScript бонус +1 балл
  - Rust, Dart, все лиспы, Scala бонус +2 балла
  - Lua, Haskell, Erlang, Рефал бонус +3 балла
  - Agda, Idris (с доказательствами) 5 баллов за курс
- С момента выдачи лабораторной работы:
  - 0-14 дней сдача за полный балл
  - 15-21 день сдача со штрафом -1 балл
  - 22-28 дней сдача со штрафом -2 балла
  - 29-∞ сдача со штрафом -3 балла



## Системы переписывания термов

### Определение

Сигнатура — множество пар  $\langle f, n \rangle$  из имени конструктора f и его местности n.

#### Определение

Пусть V — множество переменных, F — множество конструкторов; множество термов  $\mathsf{T}(\mathsf{F})$  над F определяется рекурсивно:

- все элементы V термы;
- если  $\langle f, n \rangle$  конструктор и  $t_1, \ldots, t_n$  термы, то  $f(t_1, \ldots, t_n)$  терм;
- других термов нет.



# **Term Rewriting Systems**

Пусть V — множество переменных, F — множество конструкторов (сигнатура); T(F) — множество термов над множеством конструкторов F. TRS — набор правил переписывания вида  $\Phi_i \to \Psi_i$ , где  $\Phi_i$ ,  $\Psi_i$  — термы в T(F). Правило переписывания  $\Phi_i \to \Psi_i$  применимо к терму t, если t содержит подтерм, который можно сопоставить (унифицировать) с  $\Phi_i$ .

Если к терму t не применимо ни одно правило переписывания TRS, терм называется нормализованным.

Имея правила переписывания вида  $f(g(x)) \to g(g(f(x)))$  и  $g(g(x)) \to f(x)$ , каждое из них можно применить к терму f(g(g(f(g(g(Z)))))))) тремя разными способами.



## Конфлюэнтность

### Определение

TRS называется конфлюэнтной, если для любых двух термов t, s, которые получаются переписыванием одного и того же терма u, существует терм v такой, что t, s оба переписываются в v.

Формально:

$$\forall u, t, s(u \rightarrow^* t \& u \rightarrow^* s \Rightarrow \exists v(t \rightarrow^* v \& s \rightarrow^* v))$$

Конфлюэнтные системы поддаются распараллеливанию и легко оптимизируются.

- $\rightarrow$  переписывание за 1 шаг;
- $\to^*$  переписывание за произвольное число шагов, начиная с 0.



- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.



- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.

## Пример Хетта

$$f(x, x) \rightarrow a$$
  
 $f(x, g(x)) \rightarrow b$   
 $c \rightarrow g(c)$ 

Терм, где нарушается конфлюэнтность?



- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.

### Пример Клопа

 $A \rightarrow CA$ 

 $Cz \rightarrow Dz(Cz)$ 

 $Dzz \rightarrow E$ 

Способы преобразовать А?



- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.

## Пример Тойямы

• TRS 1:

$$f(0, 1, x) \rightarrow f(x, x, x)$$

• TRS 2:

$$g(x, y) \rightarrow x$$

$$g(x, y) \rightarrow y$$

Как можно вычислить f(g(0,1), g(0,1), g(0,1))?



## Фундированность

### Определение

Частичный порядок  $\leq$  является фундированным (wfo) на множестве M, если в M не существует бесконечных нисходящих цепочек относительно  $\leq$  (говоря о множестве термов, иногда такой  $\leq$  называют нётеровым).

Частичный порядок  $\preceq$  является монотонным в алгебре A, если  $\forall f, t_1, ..., t_n, s, s' (s <math>\preceq s' \Rightarrow f(t_1, ..., s, ..., t_n) \preceq f(t_1, ..., s', ..., t_n))$  (строго монотонным, если при этом неверно обратное).



## Завершаемость

#### Определение

Фундированная монотонная алгебра (ФуМА) над множеством функциональных символов F — это фундированное множество  $\langle A, > \rangle$  такое, что для каждого функционального символа  $f \in F$  существует функция  $f_A : A^n \to A$ , строго монотонная по каждому из аргументов.

Определим расширение произвольного отображения о из множества переменных в A следующим образом:

- $[x, \sigma] = \sigma(x)$ ;
- $[f(t_1,\ldots,t_n),\sigma]=f_A([t_1,\sigma],\ldots,[t_n,\sigma]).$



## Завершаемостн

#### Совместность

TRS  $\{l_i \to r_i\}$  совместна с ФуМА  $A \Leftrightarrow$  для всех i и для всех  $\sigma$  выполняется условие  $[l_i, \sigma] > [r_i, \sigma]$ .

### Теорема

TRS не порождает бесконечных вычислений (завершается), если и только если существует совместная с ней ФуМА.



# ФуМА, совместные с TRS

## Стандартные способы определения f<sub>A</sub>:

- лексикографический порядок на множестве имён F + отношение подтерма;
- построение монотонно возрастающей (по каждому аргументу) числовой функции, соответствующей f<sub>A</sub>.

Оба случая подразумевают, что в построенной модели целое больше части, т.е. всегда выполняется f(t)>t.



## **Лексикографический порядок** > lo

#### Определение

 $f(t_1,\ldots,t_n)>_{lo}g(\mathfrak{u}_1,\ldots,\mathfrak{u}_m)$  (этот порядок также называют порядком Кнута–Бендикса) если и только если выполнено одно из условий:

- $\exists i (1 \leqslant i \leqslant n \& t_i = g(u_1, \ldots, u_m));$
- $\exists i (1 \leqslant i \leqslant n \& t_i >_{lo} g(u_1, \ldots, u_m));$
- $\label{eq:state_equation} \textbf{3} \ (f>g) \ \& \ \forall i (1\leqslant i\leqslant m \Rightarrow f(t_1,\ldots,t_n)>_{lo} u_i);$
- (f = g) &  $\forall i (1 \le i \le n \Rightarrow f(t_1, ..., t_n) >_{lo} u_i)$  и n-ка  $(t_1, ..., t_n)$  лексикографически больше, чем  $(u_1, ..., u_n)$  (т.е. первый её не совпадающий с  $u_i$  элемент  $t_i$  удовлетворяет условию  $t_i >_{lo} u_i$ ).

### Примеры

Проверить завершаемость TRS методом  $>_{lo}$ :

$$f(g(x)) \to g(h(x, x))$$
$$g(f(x)) \to h(g(x), x)$$

- Первое правило переписывания вынуждает либо  $g(x)>_{lo}g(h(x,x))$  (по условию 1 или 2) что невозможно, потому что x должно лексикографически оказаться больше h(x,x) (по условию 4); либо f>g и f(g(x))>h(x,x) (по условию 3). В этом случае можно взять также f>h. Неравенство f(g(x))>x выполняется тривиально.
- Второе правило переписывания удовлетворяет условию завершаемости по условию 2, например, если показать, что  $f(x) >_{lo} h(g(x), x)$ . Уже имеем f > h, поэтому достаточно показать  $f(x) >_{lo} g(x)$  и  $f(x) >_{lo} x$ . Оба условия тривиально выполняются из допущений выше.

### Примеры

Проверить завершаемость TRS методом построения монотонной функции:

$$f(g(x,y)) \rightarrow g(h(y),x)$$
  
 $h(f(x)) \rightarrow f(x).$ 

- Завершаемость по второму правилу переписывания автоматически выполняется по свойству подтерма. Поэтому то, что функция f стоит на двух его сторонах, не дает никаких указаний относительно того, стоит ли делать f<sub>A</sub> быстро растущей или медленно. Все подсказки содержатся только в первом правиле переписывания.
- По первому правилу переписывания видно, что  $f_A$  надо делать большой (f стоит только слева), а  $h_A$  нет (h есть только справа). Положим  $f_A(x) = 10 \cdot (x+1)$ ,  $h_A(x) = x+1$ . Тогда должно выполняться  $10 \cdot (g_A(x,y)+1) > g_A(y+1,x)$ . Этому неравенству удовлетворяет, например,  $g_A(x,y) = x+y$ .



# Общие комментарии

- Не обязательно добиваться выполнения неравенства на образах  $f_A$  на всём множестве  $\mathbb{N}$ . Поскольку любой отрезок  $\mathbb{N}$  от k и до бесконечности фундирован, а все образы  $f_A$  монотонны, они замкнуты на этом отрезке. Поэтому, если неравенство не выполняется для нескольких первых чисел натурального ряда, этим можно пренебречь.
- Если не получается применить  $>_{lo}$  или подобрать числовую функцию, это ещё не значит, что TRS не завершается. См. пример Зантемы:  $f(g(x)) \rightarrow g(f(f(x)))$ .



## Терминалы и нетерминалы

Если TRS определена над алфавитом  $\Sigma$ , а нас интересует порождаемый ею язык в  $\Sigma' \subset \Sigma$ , то элементы  $\Sigma'$  обычно называются терминалами, а элементы  $\Sigma \setminus \Sigma'$  — нетерминалами.

В этом случае значащие (порождающие) нетерминалы обязательно должны встречаться хотя бы в одной левой части правила переписывания (иначе такой нетерминал не сможет быть переписан в слово над  $\Sigma'$ ).

Терминалы также могут встречаться в левых частях правил (это не так только для некоторых классов систем переписывания термов).



## Грамматики

### Определение

Грамматика — это четвёрка  $G = \langle N, \Sigma, P, S \rangle$ , где:

- N алфавит нетерминалов;
- Σ алфавит терминалов;
- Р множество правил переписывания  $\alpha \to \beta$  типа  $\langle (N \cup \Sigma)^+ \times (N \cup \Sigma)^* \rangle;$
- $\bullet$   $S \in N$  начальный символ.

$$\alpha \Rightarrow \beta$$
, если  $\alpha = \gamma_1 \alpha' \gamma_2$ ,  $\beta = \gamma_1 \beta' \gamma_2$ , и  $\alpha' \to \beta' \in P$ .  $\Rightarrow^*$  — рефлексивное транзитивное замыкание  $\Rightarrow$ .

### Определение

Язык L(G), порождаемый G — множество  $\{u \mid u \in \Sigma^* \& S \Rightarrow^* u\}$ .



# α-преобразование

### По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.



## α-преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

Для любой инъективной переименовки  $\sigma$  применение  $\sigma$  к правилам грамматики/trs для переменных и нетерминалов также называется  $\alpha$ -преобразованием.

- α-преобразование не меняет терминальный язык;
- обычно термы различаются с точностью до  $\alpha$ -преобразования.



## α-преобразование

По-разному воспринимают переименовку:

- Переменные vs конструкторы в TRS;
- Нетерминалы vs терминалы в грамматиках.

Для любой инъективной переименовки  $\sigma$  применение  $\sigma$  к правилам грамматики/trs для переменных и нетерминалов также называется  $\alpha$ -преобразованием.

- α-преобразование не меняет терминальный язык;
- обычно термы различаются с точностью до  $\alpha$ -преобразования.

Неформально: контейнеры определяются не именем, а содержимым (см. экстенсиональность в логике).



# Иерархия Хомского без ε-правил

A, B  $\in$  N,  $\alpha \in \Sigma^*$ ,  $\alpha$ ,  $\beta \in (N \cup \Sigma)^*$ ,  $\gamma \in (N \cup \Sigma)^+$ 

### Иерархия грамматик

| Тип О | Рекурсивно-перечислимые | $\forall$                                                                 |
|-------|-------------------------|---------------------------------------------------------------------------|
| Тип 1 | Контекстно-зависимые    | $\alpha A \beta \rightarrow \alpha \gamma \beta, \gamma \neq \varepsilon$ |

Тип 2 Контекстно-свободные  $A \to \gamma$  Тип 3 Праволинейные (регулярные)  $A \to a, A \to aB$ 



## Иерархия Хомского без ε-правил

A, B  $\in$  N,  $\alpha \in \Sigma^*$ ,  $\alpha$ ,  $\beta \in (N \cup \Sigma)^*$ ,  $\gamma \in (N \cup \Sigma)^+$ 

### Иерархия грамматик

Тип 0 Рекурсивно-перечислимые ∀

Тип 1 Контекстно-зависимые  $\alpha A \beta \to \alpha \gamma \beta, \gamma \neq \epsilon$ 

Тип 2 Контекстно-свободные  $A o \gamma$ 

Тип 3 Праволинейные (регулярные)  $A \to a, A \to aB$ 

### Примеры языков

Тип 0  $\{u \mid L(u) = L(r)\}$ , r — фикс. regex, u — regex;

Тип 1  $\{ww \mid w \in \Sigma^+\}$ 

Тип 2 непустые палиндромы в алфавите {a, b}

Тип 3  $\{w \mid w = aw_1 \& (w_1 = a^{2k} \lor w = a^{3k} \lor w_1 \neq a^{5k})\}$ 



## Иерархия Хомского с ε-правилами

A, B  $\in$  N,  $\alpha \in \Sigma^*$ ,  $\alpha$ ,  $\beta \in (N \cup \Sigma)^*$ ,  $\gamma \in (N \cup \Sigma)^+$ .

### Иерархия грамматик

Тип 0 Рекурсивно-перечислимые  $\forall$  Тип 1 Контекстно-зависимые  $\alpha A\beta \to \alpha \gamma \beta, \gamma \neq \epsilon$ 

 $\vee S \rightarrow \varepsilon \& \forall p : \alpha \rightarrow \beta \in P \forall \beta_1, \beta_2 (\beta \neq \beta_1 S \beta_2)$ 

Тип 2 Контекстно-свободные  $A o \alpha$ 

Тип 3 Регулярные  $A o a, A o aB, A o \epsilon$