Wykład 3 Funkcje wymierne i ułamki proste

Definicja 1 Funkcją wymierną względem ciała \mathbb{K} nazywamy funkcję postaci $\frac{f(x)}{g(x)}$, gdzie $f,g \in \mathbb{K}[x]$, st g > 0.

Funkcję wymierną nazywamy właściwą, jeśli st f < st g.

Uwaga. Dowolną funkcję wymierną można przedstawić jako sumę wielomianu i funkcji wymiernej właściwej:

$$\frac{f(x)}{g(x)} = \frac{p(x) \cdot g(x) + r(x)}{g(x)} = p(x) + \frac{r(x)}{g(x)}, \quad \text{st } r < \text{st } g.$$

Definicja 2 Funkcję wymierną właściwą względem ciała \mathbb{K} nazywamy **ułamkiem prostym** względem \mathbb{K} , gdy jest postaci: $\frac{f(x)}{(h(x))^k}$, gdzie st f < st h, $k \in \mathbb{N}$ oraz h(x) jest wielomianem nierozkładalnym w $\mathbb{K}[x]$.

Ułamki proste względem ciała \mathbb{C} : $\frac{A}{(x-z_0)^k}$, $A, z_0 \in \mathbb{C}$

Ułamki proste względem ciała ℝ:

- 1. pierwszego rodzaju: $\frac{A}{(x-a)^k}$, $A, a \in \mathbb{R}$
- 2. drugiego rodzaju: $\frac{Ax+B}{(x^2+px+q)^k}$, $A,B,p,q\in\mathbb{R}$, $p^2-4q<0$.

Twierdzenie 1 Każdą funkcję wymierną właściwą można przedstawić jako sumę ułamków prostych i rozkład ten jest jednoznaczny.

Uwaga. Jeżeli w mianowniku funkcji wymiernej występuje czynnik $(x-a)^k$, k>1, to w poszukiwanym rozkładzie odpowiada mu suma k składników:

$$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_k}{(x-a)^k}$$

Jeżeli w mianowniku funkcji wymiernej występuje czynnik $(x^2 + px + q)^k$, k > 1, to w poszukiwanym rozkładzie odpowiada mu suma k składników:

$$\frac{A_1x + B_1}{x^2 + px + q} + \frac{A_2x + B_2}{(x^2 + px + q)^2} + \dots + \frac{A_kx + B_k}{(x^2 + px + q)^k}.$$

Metoda współczynników nieoznaczonych

- 1. Piszemy rozkład na sumę ułamków prostych przy czym liczniki ułamków są nieoznaczone (nieznane współczynniki, niewiadome).
- 2. Sprowadzamy wszystkie ułamki do wspólnego mianownika i dodajemy je.
- 3. Licznik powstałego w ten sposób ułamka (z niewiadomymi współczynnikami) przyrównujemy do licznika rozkładanego ułamka \Rightarrow współczynniki przy odpowiednich potęgach muszą być równe.

4. Rozwiazujemy powstały układ równań.

Uwaga. W szczególnym przypadku, gdy mamy rozkład

$$\frac{f(x)}{g(x)} = \frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \dots + \frac{A_k}{x - a_k},$$

to

$$f(x) = A_1(x - a_2) \cdots (x - a_k) + A_2(x - a_1)(x - a_3) \cdots (x - a_k) + \cdots + A_k(x - a_1) \cdots (x - a_{k-1}).$$

Wstawiając do f(x) kolejne wartości a_i otrzymujemy $A_1,..,A_k$.

Przestrzenie liniowe

Definicja 3 Przestrzenią liniową (wektorową) nad ciałem K nazywamy zbiór V z odwzorowaniami:

$$+: V \times V \to V, \ (u, v) \mapsto u + v \ (dodawanie \ wektorów),$$

 $\cdot: \mathbb{K} \times V \to V, \ (a, v) \mapsto a \cdot v \ (mnożenie \ wektora \ przez \ skalar),$

oraz z wyróżnionym elementem zbioru V zwanym **wektorem zerowym**, ozn. $\mathbf{0}_V$, jeśli spełnione są następujące warunki (**aksjomaty przestrzeni liniowej**): $\forall u, v, w \in V$ i $\forall a, b \in \mathbb{K}$

- 1. u + (v + w) = (u + v) + w laczność dodawania wektorów;
- 2. u + v = v + u przemienność dodawania wektorów;
- 3. $u + \mathbf{0}_V = u \mathbf{0}_V$ jest elementem neutralnym dodawania wektorów;
- 4. $\forall u \in V \ \exists v \in V \ u + v = \mathbf{0}_V$ istnienie elementu odwrotnego w dodawaniu wektorów;
- 5. $a \cdot (b \cdot u) = (a \cdot b) \cdot u$ łączność mnożenia przez skalary;
- 6. $a \cdot (u + v) = a \cdot u + a \cdot v$ rozdzielność mnożenia przez skalar względem dodawania wektorów;
- 7. $(a+b) \cdot u = a \cdot u + b \cdot v$ rozdzielność mnożenia względem dodawania skalarów;
- 8. $1 \cdot u = u 1 \in \mathbb{K}$ jest elementem neutralnym mnożenia wektora przez skalar;

Elementy zbioru V nazywamy wektorami, elementy ciała \mathbb{K} nazywamy skalarami.

Oznaczenie. Element odwrotny (przeciwny) do $u \in V$ w dodawaniu wektorów ozn. -u, u-v:=u+(-v) - różnica wektorów.

Podprzestrzenie liniowe

Definicja 4 Podzbiór $W \subset V$, gdzie (V, +) jest przestrzenią liniową nad \mathbb{K} , nazywamy podprzestrzenią liniową przestrzeni V, jeśli $(W, +|_W)$ jest przestrzenią liniową nad \mathbb{K} .

Uwaga. $W \subset V$, (V, +) - przestrzeń liniowa nad \mathbb{K} , W jest podprzestrzenią liniową przestrzeni $V \Leftrightarrow$

- 1. $\forall u, v \in W \quad u + v \in W$
- $2. \ \forall \ a \in \mathbb{K} \ \forall \ u \in W \quad a \cdot u \in W$

lub równoważnie:

$$\forall a \in \mathbb{K} \ \forall u, v \in W \ u + a \cdot v \in W.$$

Kombinacje liniowe wektorów

Niech (V,+) - przestrzeń liniowa nad ciałem \mathbb{K} . Niech $\alpha_1,\alpha_2,\ldots,\alpha_k\in\mathbb{K},\,v_1,v_2,\ldots,v_k\in V$.

Definicja 5 Wektor $\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \cdots + \alpha_k \cdot v_k$ nazywamy **kombinacją liniową** wektorów v_1, v_2, \ldots, v_k o współczynnikach $\alpha_1, \alpha_2, \ldots, \alpha_k$.

Zbiór wszystkich kombinacji liniowych wektorów v_1, v_2, \dots, v_k oznaczamy przez

$$\operatorname{Lin}(v_1, v_2, \dots, v_k) := \{\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \dots + \alpha_k \cdot v_k : \alpha_1, \dots, \alpha_k \in \mathbb{K}\}.$$

Uwaga. Dla dowolnego układu wektorów $v_1, v_2, \ldots, v_k \in V$ zbiór $\operatorname{Lin}(v_1, v_2, \ldots, v_k)$ jest podprzestrzenią liniową przestrzenią (V, +). Nazywamy ją **podprzestrzenią rozpiętą na wektorach** v_1, v_2, \ldots, v_k lub **podprzestrzenią generowaną** przez układ wektorów v_1, v_2, \ldots, v_k .