Deep Learning for Computer Vision

Self-Supervised Learning

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

Unsupervised Learning

Clustering

Group the data into clusters to reveal something meaningful about the data

Dimensionality Reduction

Learn low-dimensional representations of data that are meaningful for a given task

Data Generation

Learn to generate data belonging to a given training distribution

Representation Learning

Learn a distribution that implicitly reveals data representation that helps a downstream task

Unsupervised Learning

Clustering

Group the data into clusters to reveal something meaningful about the data

Dimensionality Reduction

Learn low-dimensional representations of data that are meaningful for a given task

Data Generation

Learn to generate data belonging to a given training distribution

Representation Learning

Learn a distribution that implicitly reveals data representation that helps a downstream task

→ Self-Supervised Learning!

What is Self-Supervised Learning?

- Exploit unlabeled data to yield labels
- Design supervised tasks (called pretext/auxilliary tasks) that can learn meaningful representations for downstream tasks
- Analogous to filling in the blanks: predict certain part of input from any other part

Self-Supervised Learning

- Predict any part of the input from any other part.
- ► Predict the future from the past.
- ► Predict the future from the recent past.
- ▶ Predict the past from the present.
- ▶ Predict the top from the bottom.
- ▶ Predict the occluded from the visible
- ▶ Pretend there is a part of the input you don't know and predict that.

Why Self-Supervised Learning?

- Deep supervised learning works well when labeled data is abundant
- There is a plethora of unlabeled data available; how can we exploit it?
- Humans don't always need supervision to learn, we learn by observation and prediction

Self-Supervision In Computer Vision: Image Inpainting¹

- Context autoencoder trained to fill in missing parts of an image
- Mask of missing region could be of any shape
- Encoder derived from Alexnet architecture
- Model trained with a combination of L2 loss and adversarial loss

Vineeth N B (IIT-H) §12.2 Self-Supervised Learning

6/23

¹Pathak et al, Context Encoders: Feature Learning by Inpainting, CVPR 2016

Self-Supervision In Computer Vision: Image Inpainting²

(c) Context Encoder (L2 loss)

(d) Context Encoder (L2 + Adversarial loss)

 $^{^2\}mbox{Pathak}$ et al, Context Encoders: Feature Learning by Inpainting, CVPR 2016

Learning Image Representation by Solving Jigsaws³

- Used to teach a model that object is made of different parts
- Learns feature mapping of object parts and their spatial arrangement by solving a 9-tiled jigsaw puzzle

Vineeth N B (IIT-H) §12.2 Self-Supervised Learning

8 / 23

³Noroozi and Favaro, Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, ECCV 2016

Learning Image Representation by Solving Jigsaws⁴

- 9 tiles shuffled via a randomly chosen permutation from predefined permutation set are fed to network
- Predicts index of permutation applied
- Output vector gives probability of permutation indices used
- Cross entropy loss used for training

⁴Noroozi and Favaro, Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, ECCV 2016

Vineeth N B (IIT-H) §12.2 Self-Supervised Learning

9/23

Representation Learning by Predicting Rotations⁵

Learns high level object concepts such as their location in the image, their type, their pose etc.

⁵Gidaris et al, Unsupervised Representation Learning by Predicting Image Rotations, ICLR 2018

Representation Learning by Predicting Rotations⁶

- ullet K rotations are applied, and model outputs a probability distribution over all rotations
- Log loss is used for training
- ullet Loss for an image X is given by:

$$\mathcal{L}(X,\theta) = -\frac{1}{K} \sum_{y=1}^{K} \log(F(g(X|y)|\theta))$$

 $g(\cdot|y)$ is the y^{th} transformation function, F denotes the ConvNet

⁶Gidaris et al, Unsupervised Representation Learning by Predicting Image Rotations, ICLR 2018

Image Colorization⁷

- Predicts color of a grayscale input image in LAB space
- Maps image to a distribution over 313 AB pairs of quantized color value outputs

Cross-entropy loss of predicted probability distribution over binned color values used to train the network

⁷Zhang et al, Colorful Image Colorization, ECCV 2016

Contrastive Learning-Based SSL

• Learns representations by contrasting positive and negative samples; goal is to learn an encoder f such that:

$$score(f(x), f(x^+)) >> score(f(x), f(x^-))$$

 x^+ obtained from same image as x and x^- dissimilar to x; scores given by cosine similarity

Contrastive Learning-Based SSL

• Learns representations by contrasting positive and negative samples; goal is to learn an encoder f such that:

$$score(f(x), f(x^+)) >> score(f(x), f(x^-))$$

 x^+ obtained from same image as x and x^- dissimilar to x; scores given by cosine similarity

Softmax classifier used to classify positive and negative samples correctly

Contrastive Learning-Based SSL

 Learns representations by contrasting positive and negative samples; goal is to learn an encoder f such that:

$$score(f(x), f(x^+)) >> score(f(x), f(x^-))$$

 x^+ obtained from same image as x and x^- dissimilar to x; scores given by cosine similarity

- Softmax classifier used to classify positive and negative samples correctly
- General form of loss function given by:

$$\mathcal{L} = -\mathbb{E}\bigg[\log\frac{\exp(score(f(x), f(x^+))/\tau)}{\exp(score(f(x), f(x^+))/\tau) + \sum_{i=1}^{N-1} \exp(score(f(x), f(x_i^-))/\tau)}\bigg]$$

where τ is temperature hyperparameter

 Proposes unsupervised learning of visual representations as a dynamic dictionary look-up

⁸He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

- Proposes unsupervised learning of visual representations as a dynamic dictionary look-up
- Dictionary structured as a large FIFO queue of encoded representations of data samples

⁸He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

- Proposes unsupervised learning of visual representations as a dynamic dictionary look-up
- Dictionary structured as a large FIFO queue of encoded representations of data samples
- Given query sample x_q , query representation obtained using an encoder $q=f_q(x_q)$

⁸He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

- Proposes unsupervised learning of visual representations as a dynamic dictionary look-up
- Dictionary structured as a large FIFO queue of encoded representations of data samples
- \bullet Given query sample x_q , query representation obtained using an encoder $q=f_q(x_q)$
- Key samples encoded by a momentum encoder $k_i = f_k(x_{k_i})$ gives a set of key representations: $\{k_1, k_2, \cdots\}$ in dictionary

⁸He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

- Proposes unsupervised learning of visual representations as a dynamic dictionary look-up
- Dictionary structured as a large FIFO queue of encoded representations of data samples
- \bullet Given query sample x_q , query representation obtained using an encoder $q=f_q(x_q)$
- Key samples encoded by a momentum encoder $k_i = f_k(x_{k_i})$ gives a set of key representations: $\{k_1, k_2, \cdots\}$ in dictionary
- ullet Positive key k^+ in dictionary created using copy of x_q with different augmentation

⁸He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

- Proposes unsupervised learning of visual representations as a dynamic dictionary look-up
- Dictionary structured as a large FIFO queue of encoded representations of data samples
- \bullet Given query sample $x_q,$ query representation obtained using an encoder $q=f_q(x_q)$
- Key samples encoded by a momentum encoder $k_i = f_k(x_{k_i})$ gives a set of key representations: $\{k_1, k_2, \cdots\}$ in dictionary
- ullet Positive key k^+ in dictionary created using copy of x_q with different augmentation
- Loss on previous slide (contrastive loss) used to learn

⁸He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

Momentum Contrast

- Query and key encoders both updated based on loss
- Maintains dictionary as queue of data samples
- Allows reuse of encoded keys from immediate preceding mini-batches, decouples dictionary size from batch size
- Momentum-based update proposed to keep keys approximately consistent

⁹He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

Momentum Contrast

- Using queue as dictionary makes it difficult to update key encoder
- Can we just copy the key encoder from the query encoder?

¹⁰He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

Momentum Contrast

- Using queue as dictionary makes it difficult to update key encoder
- Can we just copy the key encoder from the query encoder? (No! Representation will not be consistent because of rapidly changing query encoder)
- Query encoder (f_q) is updated using backpropagation and key encoder (f_k) is updated using momentum as:

$$\theta_k = m\theta_k + (1 - m)\theta_q$$

¹⁰He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020

SimCLR: A Simple Framework for Contrastive Learning of Visual Representations¹¹

- Learns via maximizing agreement between differently augmented views of same data example in latent space
- Given n images, 2n samples obtained by 2 different augmentations. Given one positive pair, there exist 2(n-1) negative pairs
- Loss operates on top of an extra projection of the representation via g(.)

¹¹Chen et al, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020

 SimCLR Advantages: Strong data augmentation techniques, MLP projection over the representations

¹²Chen et al, Improved Baselines with Momentum Contrastive Learning, arXiv 2020

- SimCLR Advantages: Strong data augmentation techniques, MLP projection over the representations
 - **SimCLR Disadvantages:** Number of negative samples is limited by the batch size

¹²Chen et al, Improved Baselines with Momentum Contrastive Learning, arXiv 2020

- SimCLR Advantages: Strong data augmentation techniques, MLP projection over the representations
 - **SimCLR Disadvantages:** Number of negative samples is limited by the batch size
- MoCo Advantage: Decouples the batch size from the number of negatives

¹²Chen et al, Improved Baselines with Momentum Contrastive Learning, arXiv 2020

- SimCLR Advantages: Strong data augmentation techniques, MLP projection over the representations
 - **SimCLR Disadvantages:** Number of negative samples is limited by the batch size
- MoCo Advantage: Decouples the batch size from the number of negatives
- Chen et al combined advantages from these two methods in MoCoV2

¹²Chen et al, Improved Baselines with Momentum Contrastive Learning, arXiv 2020

Claims to achieve state-of-the-art results without dependency on negative samples

Vineeth N B (IIT-H) §12.2 Self-Supervised Learning

¹³Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, arXiv 2020

- Claims to achieve state-of-the-art results without dependency on negative samples
- Bootstraps outputs of a network to serve as targets

¹³Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, arXiv 2020

- Claims to achieve state-of-the-art results without dependency on negative samples
- Bootstraps outputs of a network to serve as targets
- Two networks: online and target, interact and learn from each other

¹³Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, arXiv 2020

- Claims to achieve state-of-the-art results without dependency on negative samples
- Bootstraps outputs of a network to serve as targets
- Two networks: online and target, interact and learn from each other
- Online network predicts target network's representation of another augmented view of same image

Vineeth N B (IIT-H) §12.2 Self-Supervised Learning

¹³Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, arXiv 2020

$$\bullet \ \mathcal{L}_{\theta}^{BYOL} = \left\| \bar{q}_{\theta}(z_{\theta}) - \bar{z}_{\xi}' \right\|_{2}^{2}$$

¹⁴Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, arXiv 2020

- $\bullet \ \mathcal{L}_{\theta}^{BYOL} = \left\| \bar{q}_{\theta}(z_{\theta}) \bar{z}_{\xi}' \right\|_{2}^{2}$
- ullet $ar{q}_{ heta}(z_{ heta})$ and $ar{z}_{ heta}^{'}$ are L_2 -normalized

Vineeth N B (IIT-H) §12.2 Self-Supervised Learning 20 / 23

¹⁴Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, arXiv 2020

- $\bullet \ \mathcal{L}_{\theta}^{BYOL} = \left\| \bar{q}_{\theta}(z_{\theta}) \bar{z}_{\xi}' \right\|_{2}^{2}$
- ullet $ar{q}_{ heta}(z_{ heta})$ and $ar{z}_{ heta}^{'}$ are L_2 -normalized
- $\bullet \ \bar{\mathcal{L}}_{\theta}^{BYOL} \ \text{obtained by switching} \ v' \ \text{and} \ v \\$

Vineeth N B (IIT-H) §12.2 Self-Supervised Learning

¹⁴Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, arXiv 2020

- $\bullet \ \mathcal{L}_{\theta}^{BYOL} = \left\| \bar{q}_{\theta}(z_{\theta}) \bar{z}_{\xi}' \right\|_{2}^{2}$
- ullet $ar{q}_{ heta}(z_{ heta})$ and $ar{z}_{\xi}^{'}$ are L_2 -normalized
- $\bullet \ \bar{\mathcal{L}}_{\theta}^{BYOL} \ \text{obtained by switching} \ v' \ \text{and} \ v \\$
- Final Loss: $\mathcal{L}_{final} = \mathcal{L}_{\theta}^{BYOL} + \bar{\mathcal{L}}_{\theta}^{BYOL}$

¹⁴Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, arXiv 2020

Homework

Readings

Lilian Weng, Self-Supervised Representation Learning

References I

Mehdi Noroozi and Paolo Favaro. "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles". In: Computer Vision – ECCV 2016. Ed. by Bastian Leibe et al. 2016.

Deepak Pathak et al. "Context Encoders: Feature Learning by Inpainting". In: 2016.

Richard Zhang, Phillip Isola, and Alexei A Efros. "Colorful Image Colorization". In: ECCV. 2016.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. "Unsupervised Representation Learning by Predicting Image Rotations". In: International Conference on Learning Representations. 2018.

Kaiming He et al. "Momentum Contrast for Unsupervised Visual Representation Learning". In: arXiv preprint arXiv:1911.05722 (2019).

Lilian Weng. "Self-Supervised Representation Learning". In: lilianweng.github.io/lil-log (2019).

Ankesh Anand. Contrastive Self-Supervised Learning. 2020.

References II

Ting Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations". In: arXiv preprint arXiv:2002.05709 (2020).

Jean-Bastien Grill et al. Bootstrap your own latent: A new approach to self-supervised Learning. 2020. arXiv: 2006.07733 [cs.LG].

Jeremy Howard. Self-supervised learning and computer vision. 2020.