Xindi Wang

Email: xindi.w1993@gmail.com; Website: http://www.wangxindi.org

EDUCATION

Ph.D in Network Science, Northeastern University, Boston, MA

2015-2021

- GPA: 4.0/4.0; Advisor: Prof. Albert-László Barabási and Prof. Tina Eliassi-Rad
- Coursework: Data Mining Techniques, Computational Statistics, Bayesian & Network Statistics, Complex Networks and Application, Dynamic Processes on Complex Networks, Network Science Data

B.Eng, University of Electronic Science and Technology of China (UESTC), Chengdu, China

2011-2015

• Electronic Engineering and Computer Science. GPA: 3.93/4.0

SKILLS

- Machine Learning: Natural Language Processing, Learning to Rank, Deep learning, Graph Machine Learning
- Data mining and analysis, Statistics, Experience with large scale data, Extensive experience with graph data
- Programming Languages: Python (primer language), R, C, Matlab

EXPERIENCE

Applied Scientist II, Alexa AI, Amazon, Boston, MA

October 2021 - November 2022

- Projects: Ranker-based Entity Exploration Model for Entity Resolution, Graph-based Data Augmentation for Entity Resolution
- Skills involved: Natural Language Processing, Deep learning, Learning to Rank, Graph mining, Tensorflow, Python

Applied Scientist Intern, Alexa AI, Amazon, Boston, MA

Fall 2020

- Project: Cross-query ranker on ASR N-best
- Skills involved: Natural Language Processing, Deep learning, Learning to Rank, Python

Applied Scientist Intern, Search, Amazon, Boston, MA

Summer 2019

- Project: Entity linking on customer reviews and queries
- Skills involved: Natural Language Processing, Learning to Rank, Information Retrieval, Spark, Python

Research Assistant, CCNR, Northeastern University, Boston, MA

2015-Present

- Projects: Success of Books and Authors, Gender Inequality in Visual Art, Fairness in Machine Learning
- Skills involved: Machine Learning, Data Mining, Algorithm Design, Graph Mining, Statistics, Python

SELECTED PROJECTS

Ranker-based Entity Exploration Model for Entity Resolution

- Lead, design and develop a ranker-based entity exploration model for entity resolution
- Applied the model on a use case with more than 500K weekly traffic. Through online A/B test and offline analysis, demonstrate an improvement of 5.04% comparing to the current production system

Graph-based Data Augmentation for Entity Resolution

- Design and develop graph-based data augmentation method for entity resolution for a use-cases with more than 500K traffic weekly to improve robustness to upstream ASR (Automatic Speech Recognition) error.
- Experiment achieves 5.19% improvement on accuracy overall, and 27.86% improvement on harder cases.

Cross-query Ranker on ASR N-best for Entity Resolution

- Develop a machine learning ranker to leverage results from upstream ASR (Automatic Speech Recognition) to make the Entity Resolution result robust to ASR errors
- Experiment the ranker on two use-cases with 100k examples and 1 million examples separately, and achieved about 10% gain in accuracy.

Entity linking on Customer Reviews and Queries

- Using natural language processing and learning to rank method, developed an entity linking system using wikipedia data on customer queries and reviews.
- Designed evaluation method on both wikipedia data and collected Mechanical Turk labeled data, and achieved about 20% improvement comparing to baseline.

Success of Books and Authors

- Using various datasource, utilizing machine learning and data mining techniques to understand how books and authors become successful (more than 20,000 books involved)
- Developed a machine learning algorithm *Learning to Place* for heavy-tailed attribute data prediction to predict the book sales prior to its publication, outperformed traditional algorithm such as linear regression by about 20% for high-selling books

Quantifying Systemic Gender Inequality in Visual Art

• Using artist exhibition and auction data, revealing gender inequality and explaining causes of gender inequality in the art world with statistical method and machine learning

Information Access Equality on Generative Models of Complex Networks

• Developed network generative models to understand information access equality of nodes with simulation. Revealed key features of the network that would promote or harm equality.

PUBLICATIONS AND TALKS

- Wang, Xindi, Onur Varol, and Tina Eliassi-Rad. "Information access equality on generative models of complex networks." *Applied Network Science* 7, no. 1 (2022): 1-20.
- Marton, Rebecca M., Xindi Wang, Albert-László Barabási, and John Ioannidis. "Science, advocacy, and quackery in nutritional books: an analysis of conflicting advice and purported claims of nutritional best-sellers." *Palgrave* Communications 6, no. 1 (2020): 1-6.
- Wang, Xindi, Burcu Yucesoy, Onur Varol, Tina Eliassi-Rad, and Albert-László Barabási. "Success in books: predicting book sales before publication." *EPJ Data Science* 8, no. 1 (2019): 1-20.
- Wang, Xindi, Onur Varol, and Tina Eliassi-Rad. "L2P: an algorithm for estimating heavy-tailed outcomes." *arXiv* preprint arXiv:1908.04628 (2019).
- Yucesoy, Burcu, Xindi Wang, Junming Huang, and Albert-László Barabási. "Success in books: a big data approach to bestsellers." *EPJ Data Science* 7 (2018): 1-25.
- Wang, Xindi, Alex J. Gates, and Albert-László Barabási, "Quantifying systemic gender inequality in visual art."
 Nature Communications (Under review).

TALKS

- Quantifying data bias in U.S. justice system with affinity networks, International Conference on Network Science, 2019
- Learning to place objects, International Conference on Complex Networks, 2018
- Success of books and authors, The Central Winter Conference on Network Science, 2018

HONORS AND AWARDS

 Best Project Award of Computational Social Science Summer School '18 	2018
 Outstanding Student of University of Electronic Science and Technology of China Top 10 out of 5500 senior students of UESTC 	2014
National Scholarship	2014
• Honorable Mention of Interdisciplinary Contest in Modeling	2014
 Tang Lixin Scholarship Top 50 out of 25000 undergraduate and graduate students of UESTC 	2013
• First Prize in Contemporary Undergraduate Mathematical Contest in Modeling	2013