Large Sample Theory: WLLN and CLT

Zeyang (Arthur) Yu

Princeton University

October 31, 2024

- Large Sample Theory: Motivation
- Probability Simulations in R
- Weak Law of Large Numbers
- 4 Central Limit Theorem

- Large Sample Theory: Motivation
- 2 Probability Simulations in R
- 3 Weak Law of Large Numbers
- 4 Central Limit Theorem

Large Sample Approximation: Motivation

Recall: three canonical problems in mathematical statistics

- Sample: $\{X_i\}_{i=1}^n$ distributed according to *P* (population *dist*.)
- "Learn" some "features" of P (e.g., a param. $\theta(P)$) from the data
- E.g., $\theta(P) = E(X_i)$
- Provides a "best guess" $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ for $\theta(P)$
- Test a hypothesis about $\theta(P)$
- E.g., $\theta(P) = E(X_i) = 100$?
- Construct a confidence region for $\theta(P)$

To Solve the Problems, Collect Plenty of Data

- Weak Law of Large Numbers
 - A tool for finding a good guess for $\theta(P)$
- 2 Central Limit Theorem
 - A tool for hypothesis testing and creating a confidence region

- Large Sample Theory: Motivation
- Probability Simulations in R
- 3 Weak Law of Large Numbers
- 4 Central Limit Theorem

Simulations in R

Probability simulations in R: motivation

- Simulations in R is a powerful tool to understand theorems
- Visualize and calculate under the assumptions in theorems
- Simulations might help us develop new statistical methodologies
- Simulations might give us some intuitions on how things work

Probability simulations in R

- It can be used to simulate theorem without having real data
- R can generate random numbers that follow certain *dist*.
- E.g., Bernoulli, Poisson, normal, etc.
- Make up "fake" data set that satisfies assumptions in theorem
- E.g., if we assume $X_i \sim N(0, 1)$, R can give data follows this *dist*.
- E.g., if we assume $E(X_i)$ exists, R has plenty of options

- Large Sample Theory: Motivation
- 2 Probability Simulations in R
- Weak Law of Large Numbers
- 4 Central Limit Theorem

Large Sample Theory: Weak Law of Large Numbers

Weak Law of Large Numbers

Let $\{X_i\}_{i=1}^n$ be a sequence of *iid* random variables on \mathbb{R} with distribution P. Suppose that $E(X_i)$ exists, then:

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} E(X_i).$$

Weak Law of Large Numbers: Remarks

- $\{X_i\}_{i=1}^n$ being *iid*: $P(X_1, ..., X_n) = P(X_1) \times ... P(X_n) = P^n$
- iid: independent and identically distributed
 Across i, there is independence (SRS can give you this)
 All i is from the same population gives identically distributed
- $\stackrel{P}{\rightarrow}$: converge in probability
- Sample size \uparrow , sample average being close to $E(X_i)$ w. \uparrow prob.

Weak Law of Large Numbers: Simulations

Simulation Setup

• $\{X_i\}_{i=1}^5$ is an *iid* sample from Ber(0.5)

- Each dot: $\frac{\sum_{i=1}^{n} X_i}{5}$

- 1000 dots: 1000 simulations (draw $\{X_i\}_{i=1}^5$ 1000 times)

Simulation Setup

• $\{X_i\}_{i=1}^{30}$ is an *iid* sample from Ber(0.5)

Simulation Setup

• $\{X_i\}_{i=1}^{50}$ is an *iid* sample from Ber(0.5)

Simulation Setup

• $\{X_i\}_{i=1}^{100}$ is an *iid* sample from Ber(0.5)

Simulation Setup

• $\{X_i\}_{i=1}^{1000}$ is an *iid* sample from Ber(0.5)

Simulation Setup

• $\{X_i\}_{i=1}^{5000}$ is an *iid* sample from Ber(0.5)

- Large Sample Theory: Motivation
- 2 Probability Simulations in R
- 3 Weak Law of Large Numbers
- 4 Central Limit Theorem

Large Sample Theory: Central Limit Theorem

Central Limit Theorem

Let $\{X_i\}_{i=1}^n$ be a sequence of *iid* random variables on \mathbb{R} with distribution P. Suppose that $\sigma^2(P)$ exists, then:

$$\sqrt{n}\left(\overline{X}_n - E(X_i)\right) \xrightarrow{\mathcal{D}} N\left(0, \sigma^2(P)\right).$$

Central Limit Theorem: Remarks

• Recall that $\sigma^2(P)$ is the variance of the random variable:

$$\sigma^{2}(P) = E\left((X_{i} - E(X_{i}))^{2}\right) = E(X_{i}^{2}) - E(X_{i})^{2}$$

- Notation (*P*): emphasize that the distribution is *P*
- $\xrightarrow{\mathcal{D}}$: converge in distribution (subtle point: convergence of CDFs)
- Sample size \uparrow , dist. of $\sqrt{n} \left(\overline{X}_n E(X_i) \right)$ goes closer to $N \left(0, \sigma^2(P) \right)$

Central Limit Theorem: Simulations

Simulation Setup

- $\{X_i\}_{i=1}^5$ is an *iid* sample from Ber(0.5)
- Therefore, $E(X_i) = 0.5$, $\sigma^2(P) = 0.25$
- 10000 simulations for: calculating $\sqrt{n}(\overline{X}_n E(X_i))$ from $\{X_i\}_{i=1}^5$

Yu (Princeton) WLLN and CLT October 31, 2024

Simulation Setup

• $\{X_i\}_{i=1}^{30}$ is an *iid* sample from Ber(0.5)

Simulation Setup

• $\{X_i\}_{i=1}^{50}$ is an *iid* sample from Ber(0.5)

Simulation Setup

• $\{X_i\}_{i=1}^{100}$ is an *iid* sample from Ber(0.5)

Simulation Setup

• $\{X_i\}_{i=1}^{1000}$ is an *iid* sample from Ber(0.5)

Simulation Setup

• $\{X_i\}_{i=1}^{5000}$ is an *iid* sample from Ber(0.5)

Large Sample Theory: Central Limit Theorem (Conti.)

Two Other Forms of the Central Limit Theorem

1 Rescale by $\sigma(P)$

$$\sqrt{n} \frac{\left(\overline{X}_n - E(X_i)\right)}{\sigma(P)} \xrightarrow{\mathcal{D}} N(0,1)$$

- N(0,1): standard normal distribution
- **2** Rescale by estimated $\sigma(P)$

$$\sqrt{n} \frac{\left(\overline{X}_n - E(X_i)\right)}{\frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2} \xrightarrow{\mathcal{D}} N(0,1)$$

- An estimated $\sigma(P) = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2$

Learning Goals: WLLN and CLT

Students will be able to:

- Understand R can simulate *r.v.* that follow some distributions
- Understand the statement of the WLLN
- Know the assumptions in WLLN
- Explain the WLLN in plain language
- Understand the statement of the CLT
- Know the assumptions in CLT
- Explain the CLT in plain language
- Simulate WLLN in R
- Simulate CLT in R
- Simulate three versions of CLT in R