Circuit mobile dans un champ magnétique stationnaire

Généralisation

Couplage électromécanique

La force de Laplace et les phénomènes d'induction permettent la *conversion* d'énergie entre les formes *mécanique* et *électrique*. Lors du déplacement d'un conducteur dans un champ magnétique *stationnaire*, La somme de la puissance de la force de Laplace et de la puissance fournie par la force électromotrice d'*induction* est nulle :

$$\mathscr{P}(\overrightarrow{F_{\mathscr{L}a}}) + e_{\mathrm{ind}}i = 0$$

Le fonctionnement du dispositif sera :

moteur pour $\mathscr{P}(\overrightarrow{F_{\mathscr{L}a}}) > 0$, soit $e_{\text{ind}}i < 0$,

générateur pour $e_{\text{ind}}i > 0$, soit $\mathscr{P}(\overrightarrow{F_{\mathscr{L}a}}) < 0$.

Énoncé

On reprend le dispositif précédent, avec $E = \text{cste} \neq 0$, $R \neq 0$ et $\overrightarrow{F_{\text{ext}}}$ une force de frottement solide, de norme F constante. La barre est initialement immobile, sa vitesse sera donc toujours dirigée selon $+\overrightarrow{e_x}$.

- 1. Établir les équations différentielles couplées mécanique et électrique vérifiées par i et x, en déduire l'expression de i en fonction de \dot{x}
- 2. Commenter les variations de $\|\overrightarrow{F_{\mathcal{L}a}}\|$ avec \dot{x} .
- 3. Comparer l'expression et le signe des puissances :
 - de la force de Laplace
 - fournie par la force électromotrice d'induction
 - fournie par le générateur
- 4. Déterminer la solution pour $\dot{x}(t)$ vérifiant la condition initiales $\dot{x}(0) = 0$ et celle de $\dot{t}(t)$.
- 5. Estimer des ordres de grandeur de la vitesse atteinte dans l'expérience et de l'intensité maximale i_0 . On prendra $B_0=10\,\mathrm{mT}$. Commenter. Estimer également la vitesse asymptotique v_∞ en négligeant le frottement solide.
- Estimer l'ordre de grandeur du champ magnétique propre Bp. En déduire la pertinence des approximations.

Indispensable

Indispensable

- établissement des équations couplées
- relation $\mathscr{P}(\overrightarrow{F_{\mathscr{L}a}}) + e_{\text{ind}}i = 0$ (en convention générateur)
- interprétations qualitatives des exemples
- bilans énergétiques