Universidade Federal de Santa Catarina Prof. Rafael Heleno Campos

rafaelcampos.fsc@gmail.com - tinyurl.com/profrafaelcampos FSC7118 - Lista de exercícios 1 - Medidas Físicas, Vetores (v1.5.2)

1. Para a tabela a seguir, aponte o número de **algarismos significativos** para cada medida e reescreva-as obedecendo as regras da notação científica, com as unidades apropriadas do S.I.:

	Medida	A.S.	Not.	Científica
a	$0,062 { m m}$			
b	0,00153 kg			
\mathbf{c}	$3,475 \mathrm{cm}$			
d	42,625g			
e	4.2s			
f	$_{2,3\mathrm{m}}$			
g	300 minutos			

- 2. Para os itens da tabela anterior, efetue as operações a seguir, obedecendo as regras de operações com medidas e de arredondamento:
 - (a) a.b.c
 - (b) $\frac{a}{b}$
 - (c) $\frac{a}{e^2} = \frac{a}{e.e}$
 - (d) b+d
- 3. A população da Terra, em 2011, era de $7,0\times10^9$ habitantes, sendo que dobrou em pouco menos de 50 anos. Considerando um crescimento populacional onde dobre a cada 50anos, estime a população mundial no ano de 3011.
- 4. Em seu tratado "Cálculos com Areia", Arquimedes inventou uma notação para exprimir números muito grandes e usou-a para estimar o número de grãos de areia que caberiam no "Universo" da sua época, cujo raio era identificado como a distância da Terra ao Sol. O número que encontrou, em notação moderna, seria inferior a 10^{51} . Verifique a estimativa de Arquimedes considerando o grão de areia com $1.0mm^3$ e a distância Terra-Sol como $1U.A. = 15\bar{0}000000km$
- 5. Calcule o módulo, a direção e o sentido dos seguintes vetores:
 - (a) $\vec{v} = 3\hat{i} + 4\hat{j}$
 - (b) $\vec{v} = 2\hat{i} \sqrt{2}\hat{j}$
 - (c) $\vec{v} = 5\hat{i}$
 - (d) $\vec{v} = -4\hat{i} 3\hat{j}$

(Dica para a resolução, faça o gráfico!)

- 6. Faça a soma gráfica e algébrica para os seguintes vetores:
 - (a) $\vec{a} = 3\hat{i} + 2\hat{j} \in \vec{b} = -\hat{i} + 2\hat{j}$
 - (b) $\vec{a} = 2\hat{i} + 3\hat{j} \ e \ \vec{b} = 4\hat{i} 5\hat{j}$

Subtração gráfica e algébrica:

- (c) $\vec{a} = \hat{i} + 3\hat{j} \in \vec{b} = 3\hat{i} 2\hat{j}$
- (d) $\vec{a} = 4\hat{i} 2\hat{j} \ e \ \vec{b} = 5\hat{i} + \hat{j}$
- 7. Calcule θ_{ab} e então o produto escalar entre \vec{a} e \vec{b} utilizando:

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot cos(\theta_{ab})$$

- (a) $\vec{a} = 3\hat{i} + 3\hat{j} \ e \ \vec{b} = 2\hat{i} 2\hat{j}$
- (b) $\vec{a} = 3\hat{i} + 3\hat{j} \ e \ \vec{b} = -2\hat{i} + 2\hat{j}$
- (c) $\vec{a} = \hat{i} + 2\hat{j} \in \vec{b} = 2\hat{i} + \hat{j}$
- 8. Calcule o produto escalar e o produto vetorial para os seguintes vetores tridimensionais:

1

- (a) $\vec{a} = 3\hat{i} + 2\hat{j} + \hat{k} \ e \ \vec{b} = -\hat{i} + 3\hat{j} 4\hat{k}$
- (b) $\vec{a} = 6\hat{i} + 2\hat{j} 3\hat{k} \ e \ \vec{b} = -4\hat{i} + 2\hat{j} + \hat{k}$
- (c) $\vec{a} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{k} \in \vec{b} = \frac{1}{\sqrt{2}}\hat{j} \frac{1}{\sqrt{2}}\hat{k}$
- 9. Calcule o módulo dos vetores resultantes (no produto vetorial) no exercício anterior.
- 10. Um vetor \vec{a} tem módulo de 10,0 unidades e sentido de Oeste para Leste. Um vetor \vec{b} tem módulo de 20,0 unidades e sentido de Sul para Norte. Determine o módulo dos seguintes vetores:
 - (a) $\vec{a} + \vec{b}$
 - (b) $\vec{a} \vec{b}$
 - (c) $\vec{a} + 2.\vec{b}$
 - (d) $-3.\vec{a} + 2.\vec{b}$
- 11. Dados dois vetores $\vec{a} = 2, 0\hat{i} 1, 0\hat{j}$ e $\vec{b} = 1, 0\hat{i} + 2, 0\hat{j}$, determine o módulo e a direção de:
 - (a) \bar{a}
 - (b) \vec{b}
 - (c) $\vec{a} + \vec{b}$
 - (d) $\vec{a} \vec{b}$
 - (e) $\vec{a} + 2\vec{b}$
- 12. A resultante de uma soma vetorial de dois vetores possui módulo igual a 4,0m. O módulo de um dos vetores componentes é igual a 2,0m e o ângulo entre os dois vetores componentes é igual a 60° . Calcule o módulo do outro vetor componente. Dica: lei dos cossenos.

Respostas

		Medida	A.S.	Not. Científica
1.	a	$0,062 \mathrm{m}$	2	$6,2\times 10^{-2}m$
	b	0,00153 kg	3	$1,53 \times 10^{-3} kg$
	\mathbf{c}	$3,475 \mathrm{cm}$	4	$3,475\times 10^{-2}m$
	d	42,625g	5	$4,2625 \times 10^{-2} kg$
	e	4.2s	2	$4,2 \times 10^{0} s$
	f	$_{2,3\mathrm{m}}$	2	$2,3 \times 10^{0} m$
	g	300 minutos	3	$1,80 \times 10^4 s$

- 2. (a) $3, 3 \times 10^{-6} m^2 \cdot kg$
 - (b) $4.1 \times 10^{1} m/kq$
 - (c) $3.5 \times 10^{-3} m/s^2$
 - (d) $4,42 \times 10^{-2} kg$
- 3. $7,3 \times 10^{15}$
- 4. $n = 1, 4 \times 10^{43}$

Arquimedes errou feio, errou rude.

- 5. (a) $|\vec{v}| = 5$, o vetor \vec{v} faz um ângulo de 53^o acima do eixo x, sentido p/direita
 - (b) $|\vec{v}|=2,45,$ o vetor \vec{v} faz um ângulo de 35^o abaixo do eixo x, sentido p/direita
 - (c) $|\vec{v}| = 5$, o vetor \vec{v} tem a direção do eixo y, sentido p/cima
 - (d) $|\vec{v}| = 5$, o vetor \vec{v} faz um ângulo de 37^o abaixo do eixo -x, sentido p/esquerda
- 6. (a) $\vec{a} + \vec{b} = 2\hat{i} + 4\hat{j}$

(b)
$$\vec{a} + \vec{b} = 6\hat{i} - 2\hat{j}$$

(c)
$$\vec{a} - \vec{b} = -2\hat{i} + 5\hat{j}$$

(d)
$$\vec{a} - \vec{b} = -\hat{i} - 3\hat{j}$$

7. (a)
$$\theta_{ab} = 90^{\circ}, \vec{a} \cdot \vec{b} = 0$$

(b)
$$\theta_{ab} = 90^{\circ}, \ \vec{a} \cdot \vec{b} = 0$$

(c)
$$\theta_{ab} = 36, 7^{\circ}, \vec{a} \cdot \vec{b} = 4$$

8. (a)
$$\vec{a} \cdot \vec{b} = -1$$
, $\vec{a} \times \vec{b} = -11\hat{i} + 11\hat{j} + 11\hat{k}$

(b)
$$\vec{a} \cdot \vec{b} = -23$$
, $\vec{a} \times \vec{b} = 8\hat{i} + 6\hat{j} + 20\hat{k}$

(c)
$$\vec{a} \cdot \vec{b} = 1/2$$
, $\vec{a} \times \vec{b} = -1/2\hat{i} + 1/2\hat{j} + 1/2\hat{k}$

- 9. (a) $|\vec{v}| = 19$
 - (b) $|\vec{v}| = 22$
 - (c) $|\vec{v}| = 0.86 = \sqrt{3}/2$
- 10. (a) 22,4 unidades
 - (b) 22,4 unidades
 - (c) 41,2 unidades
 - (d) 50,0 unidades
- 11. (a) $|\vec{a}| = 2, 2$, o vetor \vec{a} faz um ângulo de 27^o com o eixo $x \in 63^o$ com o eixo -y.
 - (b) $|\vec{b}| = 2, 2$, o vetor \vec{a} faz um ângulo de 63° com o eixo x e 27° com o eixo y.
 - (c) $|\vec{a} + \vec{b}| = 3, 2$, o vetor $(\vec{a} + \vec{b})$ faz um ân-

- gulo de 18^o com o eixo x e 72^o com o eixo y.
- (d) $|\vec{a} \vec{b}| = 3, 2$, o vetor $(\vec{a} \vec{b})$ faz um ângulo de 18^o com o eixo x e 72^o com o eixo -y.
- (e) $|\vec{a} + 2\vec{b}| = 5, 0$, o vetor $(\vec{a} + 2\vec{b})$ faz um ângulo de 37^o com o eixo x e 53^o com o eixo y.
- 12. 2,6m

Referências

- 1. Piacentini J. J., Grandi B. C. S., Hofmann M. P., Lima F. R. R. e Zimmermann E. *INTRODUÇÃO AO LABORATÓRIO DE FÍSICA* (5a edição), Florianópolis, Editora da UFSC, 2013.
- 2. CHAVES A. Física Básica, Rio de Janeiro, Livros Técnicos e Científicos, 2007. Volume I
- 3. HALLIDAY D., RESNICK R. e WALKER J. Fundamentos de Física, (8a. edição), Rio de Janeiro: Livros Técnicos e Científicos, 2009. Volume I