Table 1: Základní logické spojky

A	В	$A \wedge B$	$A \wedge B$	$A \Longrightarrow B$	$B \Longrightarrow A$	$A \Leftrightarrow$
1	1	1	1	1	1	1
1	0	0	1	0	1	0
0	1	0	1	1	0	0
0	0	0	0	1	1	1

1 Vyroky

Výrok je srozumitelné zdělení může být:

- pravda
- nepravda

značení: $A,\,B,\,V,\,\dots$ (výrokové proměné) pravdivostní hodnota výroku: $p(A)\in 0,1$

negace výrou V je výrok: není pravda, že V. (pět je větší než 0)' = ¿ pět je menší nebo rovno 0 znaceni: A', $\neg A\ A: x\in (2;3>A':x\in (-\infty;2>\cup(3;\infty)$

Kvantifikátor Slovní spojení, které vyjařuje počet nebo odhad počtu objektů, pro něž platí nějaký výrok (alespoň dvě židle ve třídě vržou) velký \forall pro vsechny malý \exists existuje alespon 1

- $[\forall x \in \mathbb{R} : x^2 > x]' \Leftrightarrow [\exists x \in \mathbb{R} : x^2 \le x]$
- $[A: \forall a, b \in \mathbb{R}: \exists x \in \mathbb{R}: ax+b=0]' \Leftrightarrow [A': \exists a, b \in \mathbb{R}: \forall x \in \mathbb{R}: ax+b \neq 0]$
- $[\forall x \in \mathbb{N} : \exists y \in \mathbb{N} : y > x]' \Leftrightarrow [\exists x \in \mathbb{N} : \forall y \in \mathbb{N} : y <= x]$
- $\bullet \ ({\rm Nikdo\ nic\ neni})' \Leftrightarrow {\rm V\check{z}dycky\ alespo\check{n}}$ jeden člověk něco ví

Vyroky Složené výroky

- konjunkce ∧
- disjunkce \wedge
- ekvivalence \Rightarrow
- \bullet implikace \Leftrightarrow

Tautologie je vždy pravdivý složený výrok - Morganovy zákony

- $(A \wedge B)' \Leftrightarrow (A' \wedge B')$
- $A \Leftrightarrow A$
- $\bullet \ A \wedge A'$
- $(A \wedge B)' \Leftrightarrow (A' \wedge B')$

A	В	\mathbf{C}	$A' \wedge B$	$B' \wedge C$	$(A' \wedge B) \implies (B' \wedge C)$	$[(A \land B) \implies (B' \land C)]'$
1	1	1	0	1	1	0
1	0	1	0	1	1	0
0	1	1	1	1	1	0
0	0	1	0	1	1	0
1	1	1	0	0	1	0
1	0	1	0	1	1	0
0	1	1	1	0	0	1
0	0	1	0	1	1	0

- $(A \Longrightarrow B) \Leftrightarrow (A \land B')$
- $(A \Leftrightarrow B)' \Leftrightarrow [(A \land B') \land (A' \land B)]$

Example 1.1. Kdy Platí: $[(A \wedge B) \implies (B' \wedge C)]'$ zadání $\Leftrightarrow (A' \wedge B \wedge C')$

$$(A\Longrightarrow B)\not\Leftrightarrow (B\Longrightarrow A)$$
 má jinou tabulku!! **Obměna** časté v důkazech $(A\Longrightarrow B)\Leftrightarrow (B'\Longrightarrow A')$ $x>1\Longrightarrow x^2>x$ obměna: $x^2\leq x\Longrightarrow x\leq 1$

Example 1.2. $(A \wedge B) \implies (C \wedge D)$

- neg: $(A \wedge B) \wedge (C' \wedge D')$
- obměna: $(C' \wedge D') \implies (A' \wedge B')$

1.1 minutovka