

Programowanie sieciowe

Wykład 1 Techniki programowania z wykorzystaniem gniazd

Literatura

- R. Stevens: *UNIX Programowanie usług sieciowych* TOM 1, 2002
- R. Blum: *C# Network Programming*, Sybex, 2002
- Microsoft: Network Programming in the .NET Framework https://msdn.microsoft.com/en-us/library/4as0wz7t(v=vs.110).aspx https://msdn.microsoft.com/en-us/library/b6xa24z5(v=vs.110).aspx
- C# sockets code examples https://msdn.microsoft.com/en-us/library/w89fhyex(v=vs.110).aspx
- Oracle: All about sockets http://docs.oracle.com/javase/tutorial/networking/sockets/

Aplikacji/ zastosowań

Prezentacji

Sesji

Transportowa

Sieciowa

Łącza danych/ kanałowa

Fizyczna

Warstwa aplikacji

- Komunikacja z użytkownikiem,
- Wyświetlanie grafiki, tekstu (przeglądarka WWW, gry multiplayer),
- Zapis/odczyt danych z dysku,

Aplikacji/ zastosowań

Prezentacji

Sesji

Transportowa

Sieciowa

Łącza danych/ kanałowa

Fizyczna

Warstwa prezentacji

- Przygotowanie danych do wysłania
 - Kompresja,
 - Szyfrowanie,
 - Serializacja obiektów binarnych do np. formatu XML,
- Ustalenie kolejności bajtów do tzw. sieciowej kolejności bajtów (network byte order).
 - Pierwszeństwo bajtu bardziej znaczącego (big-endian).
 - 0xCAFFE001 -> CA, FF, E0, 01,
 - htons(unsigned short), htonl(unsigned long),
 - ntohs (unsigned short),
 - ntohl (unsigned long),

Aplikacji/ zastosowań Prezentacji Sesji Transportowa Sieciowa Łącza danych/ kanałowa Fizyczna

Warstwa sesji

- Odpowiada za nadzorowanie połączenia, monitorowanie jego stanu,
- W przypadku zerwania połączenia program nadzorcy może ponawiać połączenie, np. n razy, po czym poinformować warstwę wyższą o błędzie
- Ukrycie gniazd przed warstwą prezentacji

Aplikacji/ zastosowań

Prezentacji

Sesji

Transportowa

Sieciowa

Łącza danych/ kanałowa

Fizyczna

Warstwa transportowa

- Wykorzystywana najczęściej przez protokół TCP (Transmission Control Protocol) lub UDP (User Datagram Protocol).
- Można pominąć warstwę transportową i komunikować się bezpośrednio przy pomocy oprogramowania IPV4 oraz IPv6.
 - Służą do tego gniazda surowe (raw sockets)
 - Można tworzyć własne protokoły komunikacji
- Przyjmuje **strumień danych**,

Aplikacji/ zastosowań

Prezentacji

Sesji

Transportowa

Sieciowa

Łącza danych/ kanałowa

Fizyczna

Warstwa sieciowa

- Przesyłanie
- Obsługiwana przez oprogramowanie protokołów IPv4 oraz IPv6.
- Przyjmuje pakiety, generuje datagramy IP.

Aplikacji/ zastosowań

Prezentacji

Sesji

Transportowa

Sieciowa

Łącza danych/ kanałowa

Fizyczna

Warstwa łącza danych

- Sterowniki dostarczane przez producenta sprzętu lub systemu operacyjnego,
- Ograniczenie wielkości segmentu do 1500 bajtów, MTU (*Maximum Transfer Units*)
- Przyjmuje datagramy, generuje ramki.

Aplikacji/ zastosowań

Prezentacji

Sesji

Transportowa

Sieciowa

Łącza danych/ kanałowa

Fizyczna

Warstwa fizyczna

- sprzęt
 - Karta sieciowa
 - Konwertery medium
 - Kable
- Informacje przesyłane jako strumień bitów (110101010101110111001 ...)

Model OSI - przepływ danych

Model OSI vs Model TCP/IP

Model OSI

Aplikacji/ zastosowań

Prezentacji

Sesji

Transportowa

Sieciowa

Łącza danych/ kanałowa

Fizyczna

Model TCP/IP

Aplikacji/ zastosowań

Transportowa

Internetu

Dostępu do sieci

Generalizacja dla rodziny protokołów Internetu

Zastosowań

TCP RAW UDP

IPv4 / IPv6

Sterowniki
+
sprzęt

Aplikacji/ zastosowań

Transportowa

Internetu

Dostępu do sieci

Warstwa aplikacji

- Kontakt z użytkownikiem lub procesem (GUI, Video)
- Transformacja danych do jednolitego formatu
- Dialog między aplikacjami zdalnymi, pracującymi wg założonego protokołu (np. FTP, HTTP)

Aplikacji/ zastosowań

Transportowa

Internetu

Dostępu do sieci

Warstwa transportowa

- Przesyłanie danych między aplikacjami (określanych na podstawie <u>unikalnych</u> par numer ip:port)
- Obsługa wielu aplikacji jednocześnie; para numer_ip:port może być przyporządkowana tylko do jednego procesu
- W modelu OSI to tutaj znajduje się oprogramowanie TCP

Aplikacji/ zastosowań

Transportowa

Internetu

Dostępu do sieci

Warstwa Internetu

- Protokół IPv4 lub IPv6,
- Bazuje na adresie IP

Aplikacji/ zastosowań

Transportowa

Internetu

Dostępu do sieci

Warstwa dostępu

 Przekazywanie informacji przez fizyczne połączenie (nadawanie/odbiór)

Enkapsulacja danych w Modelu TCP/IP

Standardowe protokoły transportowe

- TCP (Transmission Control Protocol)
- UDP (User Datagram Protocol)

TCP - Transmission Control Protocol

- Protokół zorientowany na połączenia,
- Potwierdzenia odbioru danych przesyłane do nadawcy
 - W przypadku błędu przesyłu następuje retransmisja lub zerwanie połączenia
- Kontrola poprawności przesyłania danych,
- Odebrane dane przed przekazaniem do warstwy wyższej układane są w odpowiedniej kolejności
- Większy narzut transmisji,
- Wysoki stopień niezawodności,
- Komunikacja na dużych odległościach

UDP - User Datagram Protocol

- Brak mechanizmu połączeń,
 - Serwer może przyjąć datagramy od kilku różnych hostów na tym samym porcie,
- Brak kontroli zgubienia pakietu,
 - Poprawność transmisji określana jest na podstawie jedynie sumy kontrolnej datagramu,
 - Brak potwierdzenia otrzymania danych,
- Datagramy mogą zostać odebrane w różnej kolejności,
- Mniejszy narzut na transmisję,
- Pomimo swoich wad dobrze sprawdzają się w sieci lokalnej (gdzie niezawodność połączenia fizycznego jest wysoka)

Wybrane zagadnienia z programowania sieciowego (wszechobecne)

- Adres IP
- Numer portu,
- Para gniazdowa,
- Konwersja danych,
- Co to jest uchwyt?

- identyfikacja hosta,
- identyfikacja aplikacji,
- identyfikacja połączenia,

Adres IP (dla IPv4)

- Liczba całkowita, 32-bitowa bez znaku; w języku C unsigned long, zakres: 0x0000000 0xFFFFFFFF (0 4,294,967,295),
- Umożliwia identyfikację komputera w sieci Internet
 - Przypadkiem szczególnym jest współdzielenie łącza (NAT/Maskarada)
- Dla użytkownika przewidziana jest postać "A.B.C.D", gdzie litery to liczby 8-bitowe bez znaku.

Przykład:

```
0x7F000001 = 7F.00.00.01 = 127.0.0.1

0xC0A81401 = C0.A8.14.01 = 192.168.20.1
```

A jeśli programy **A** i **B** na hoście **M** będą chciały skomunikować się z odpowiednio programami **A** i **B** na hoście **N**?

Numer portu

- Liczba całkowita, 16-bitowa bez znaku; w języku C unsigned short, zakres: 0x0000 0xFFFF (0 65535),
- Ten sam numer (wartość) portu może być wykorzystana dla protokołu TCP i UDP,
- Umożliwia identyfikację połączenia dla danego numeru IP,
- Dany port może być przypisany tylko do jednej aplikacji,
- Para uporządkowana (numer_ip:port) jednoznacznie określa hosta oraz aplikację, z którą to połączenie jest nawiązane,

- SSH

Przykłady portów:

```
53 - DNS,
80 - Serwer HTTP, 8080 - najczęściej serwer proxy,
21, 21 - Serwer FTP,
25 - SMTP (poczta wychodząca)
110 - POP3 (poczta przychodząca),
```

Konwersja danych

Liczba 3735928559 (0xDEADBEEF) zapisana dane w formacie:

Little-endian (najmniej znaczący bajt jako pierwszy):

EF BE AD DE

Procesory z rodziny x86 (Intel)

Big-endian (najbardziej znaczący bajt jako pierwszy):

DE AD BE EF

Procesory 68000 Motorola

Format sieciowy (*Network Byte Order*): big endian

Uchwyt (deskryptor)

- Uchwyt jest formą wskaźnika do struktury systemowej opisującej dany zasób,
- W przeciwieństwie do wskaźnika, uchwyt umożliwia weryfikacje istnienia informacji, na którą wskazuje

Co to są gniazda – sockets?

- Gniazda dostarczają interfejsu wielu protokołom komunikacji sieciowej
- są uchwytem (deskryptorem)
- Służą do ustalenia połączenia pomiędzy komputerami dla potrzeb wysyłania i odbierania danych.
- Gniazda gwarantują jednoczesne istnienie wielu połączeń klienckich z jednym serwerem.

Logiczna struktura gniazda

Para gniazdowa

- Cztery elementy definiujące dwa punkty końcowe połączenia:
 - Adres IP lokalny,
 - Port lokalny,
 - Adres IP zdalny,
 - Port zdalny
- Ta Czwórka umożliwia **jednoznaczną** identyfikację danego połączenia TCP w sieci.
- W przypadku protokołu UDP czwórka jednoznacznie określa źródło i cel datagramu znajdującego się w sieci.

Połączenia między komputerami

Serwer-klient – najczęściej spotykana relacja

- Jeden serwer może obsługiwać wiele klientów jednocześnie (np. komunikatory, serwery WWW)
- Komputer-komputer (P2P, Peer to peer) – bezpośrednie połączenie między komputerami

Techniki transmisji danych

Transmisja jeden-do-jednego (ang. unicast), w których pojedynczy pakiet danych przesyłany jest od nadawcy do jednego odbiorcy, dokładnie pod jeden adres

- **TCP**
- **UDP**

Techniki transmisji danych

Transmisja jeden-do-wielu (ang. multicast) składa się z pojedynczego pakietu danych, który adresowany jest do grupy odbiorców, przy czym router docelowy może wysyłać pakiety nie tylko do użytkowników końcowych, ale także do innych routerów

UDP

Techniki transmisji danych

- Transmisje rozgłoszeniowe (ang. broadcast) składają się z pojedynczego pakietu danych, kopiowanego i przesyłanego do wszystkich węzłów sieciowych.
- Pakiet jest adresowany przez węzeł źródłowy specjalnym adresem rozsyłającym, a następnie przesyłany do sieci, która tworzy kopie pakietu i wysyła je do każdego węzła sieci.
- **UDP**

Funkcje gniazd

- Istnieje kilka trybów pracy gniazd.
 - Najpowszechniejszym trybem jest tryb słuchania (ang. Listener), który realizuje oczekiwanie żądania połączenia na dowolnym porcie.
 - Gdy nadejdzie takie żądanie od aplikacji klienta, Słuchacz tworzy nowy wątek, a w nim nowe gniazdo w trybie serwera na innym porcie.
 - Od tego czasu klient i serwer mogą na tym nowym porcie komunikować się. Jeden wysyła dane, a drugi je odbiera.
 - W międzyczasie Słuchacz wraca do słuchania na zdefiniowanym dla siebie porcie.

Gniazdo Klienta, Serwera i Słuchacza

Transfer danych z użyciem gniazd

- Gniazdo "odbierające" (klienta lub serwera) posiada bufor, w którym przechowuje dane do czasu, kiedy wątek aplikacji odbiorcy je przeczyta.
 - Jeżeli bufor odbierania przepełni się, wątek wysyłania zostaje zblokowany do czasu, aż odbiorca przeczyta dane z bufora i go wyczyści.
 - To właśnie z tego powodu dobrą praktyką jest przydzielenie zadania opróżniania bufora i kolejkowania danych do oddzielnego wątku (odbiór danych może zablokować tylko jeden wątek a nie całą aplikacje).
 - Jeżeli z kolei bufor ulegnie przepełnieniu w trakcie wysyłania danych, do nadawcy wróci żądanie ponownego wysłania mniejszej porcji danych.
 - Jeżeli bufor odbierający jest pusty, odbieranie danych również blokuje aplikację.
 - Jeżeli bufor posiada jakieś dane, ale w ilości mniejszej niż oczekiwana do przeczytania, polecenie czytania zwróci liczbę faktycznie odebranych danych.

Długość wysyłanych danych

- Problem jest wtedy, gdy odbiorca nie będzie znał faktycznej długości wysłanych do niego danych.
 - Rozwiązuje się to poprzez wprowadzenie specjalnych ograniczników, komunikatów o stałej długości lub nagłówków (metadanych).

Zestawienie funkcji interfejsu gniazd Berkeley

Typ funkcji	Nazwa funkcji	Opis funkcji
Przydzielanie zasobów	socket	Tworzy gniazdo komunikacyjne i zwraca jego deskryptor
Zwalnianie zasobów i	closesocket	Zamyka połączenie i likwiduje gniazdo komunikacyjne
zamykanie połączenia	shutdown	Zamyka połączenie w jednym lub obydwu kierunkach
	connect	Inicjuje połączenie
Nawiązywanie połączenia	bind	Związuje gniazdo z określonym portem i numerem IP
	listen	Wprowadza lokalny port w bierny tryb pracy
	accept	przyjmuje zgłoszone połączenie
	send	wysyła datagram
Wysyłanie danych	sendto	wysyła datagram pod wskazany adres docelowy
	sendmsg	wysyła datagram
	write	wysyła dane przez połączenie
	read	odczytuje dane z połączenia
Odbieranie danych	recv	pobiera kolejny datagram
	recvfrom	odbiera datagram i zapamiętuje adres adawcy
	recvmsg	pobiera kolejny datagram
	getpeername	podaje adres komputera zdalnego z którym nawiązano połączenie
Funkcje informacyjne i	getsockopt	Pobranie i ustawienie opcji gniazda
konfiguracyjne	setsockopt	

Funkcje gniazd a rozmowa telefoniczna

Nazwa funkcji	Porównanie Porównanie
socket	Otrzymanie numeru telefonu od operatora
bind	Poinformowania innych o naszym numerze telefonu, pod który mogą oni zadzwonić
listen	Włączenie telefonu, aby mógł oczekiwać na połączenie
connect	Wybranie numeru telefonu i zainicjowanie połączenia
accept	Odebranie rozmowy. Numer dzwoniącego tym razem znany dopiero po odebraniu
send/recv	Prowadzenie rozmowy mówienie/słuchanie
DNS	Szukanie abonenta w książce telefonicznej
close	Rozłączenie połączenia

Wymiana pakietów przez połączenie TCP uzgodnienie trójfazowe

Kolejność wykonywania funkcji gniazdowych klienta TCP

Serwer TCP

socket()