Čtvrtá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Čtvrtá přednáška

Program

- úvod do tablo metody
- tablo důkaz
- korektnost a úplnost

Materiály

Zápisky z přednášky, Sekce 4.1-4.6 z Kapitoly 4

Kapitola 4: Metoda analytického tabla

4.1 Formální dokazovací systémy

Formální dokazovací systém

chceme zjistit, zda výrok platí $[T \models \varphi]$, a to čistě syntakticky, aniž bychom se zabývali sémantikou: najít (formální) důkaz $[T \vdash \varphi]$ důkaz je konečný syntaktický objekt vycházející z φ a axiomů T

dokazování lze dělat algoritmicky (pokud máme algoritmický přístup k axiomům \mathcal{T} , která může být nekonečná), a lze rychle algoritmicky ověřit, zda je daný objekt opravdu korektní důkaz

korektnost: "co dokážu, platí"

 $T \vdash \varphi \Rightarrow T \models \varphi$

úplnost: "dokážu vše, co platí"

 $T \models \varphi \Rightarrow T \vdash \varphi$

(korektnost je nutná, úplnost ne: rychlý dokazovací systém může být praktický i když není úplný)

ukážeme si: *tablo metodu*, *hilbertovský kalkulus*, *rezoluční metodu* nutný předpoklad: jazyk musí být spočetný (potom i *T* je spočetná)

4.2 Úvod do tablo metody

Tablo metoda neformálně

nejprve případ $T=\emptyset$, tedy dokazujeme, že φ platí v logice

tablo je strom představující hledání protipříkladu (modelu $v \not\models \varphi$), když všechny větve selžou, máme důkaz (sporem)

labely: položky $\mathrm{T}\psi,\mathrm{F}\psi$ (určují, zda na dané větvi platí výrok $\psi)$

kořen $\mathbf{F}\varphi$, dále rozvíjíme redukcí položek (podle struktury výroků v nich), aby platil invariant:

Každý model, který se *shoduje* s položkou v kořeni (tj. ve kterém neplatí φ), se musí *shodovat* i s některou větví tabla (tj. splňovat všechny požadavky vyjádřené položkami na této větvi).

je-li na větvi $\mathbf{T}\psi$ a zároveň $\mathbf{F}\psi$, potom selhala (je sporná), pokud všechny větve selhaly, je tablo sporné, je to důkaz $\mathcal{T} \vdash \varphi$

pokud nějaká větev neselhala a je dokončená (vše na ní zredukované), lze z ní zkonstruovat model, ve kterém φ neplatí

Příklad: tablo důkaz $((p \rightarrow q) \rightarrow p) \rightarrow p$

- důkaz sporem: v koření příznak F
- redukujeme položku tvaru $F\varphi_1 \rightarrow \varphi_2$:
- pokud $v \not\models \varphi_1 \rightarrow \varphi_2$, nutně $v \models \varphi_1$ a zároveň $v \not\models p$
- proto na větev připojíme položky $T(p \rightarrow q) \rightarrow p$ a Fp, invariant platí
- redukce položky $\mathbf{T}(p \to q) \to p$: model se shoduje s $\mathbf{F}(p \to q)$ nebo s $\mathbf{T}p$, rozvětvi!
- redukce $F(p \rightarrow q)$: připoj Tp a Fq
- všechny větve sporné, protipříklad neexistuje, tedy máme tablo důkaz, píšeme: ⊢ ((p → q) → p) → p

Příklad: tablo pro $F(\neg q \lor p) \rightarrow p$

- tablo je dokončené, ale není sporné
- tedy nejde o důkaz
- levá větev dává protipříklad: model v = (0,0) ve kterém výrok neplatí
- invariant říká, že existuje-li protipříklad, shoduje se s některou větví
- tato větev nemůže být sporná
- tak se dokáže korektnost tablo metody

Poznámky

- Jak redukujeme položky?
 - Připojíme příslušné atomické tablo (viz následující slide) na konec všech bezesporných větví procházejících vrcholem.
- Co když dokazujeme v nějaké teorii T?
 - Připojíme položky $T\alpha$ pro (všechny) axiomy $\alpha \in T$.
- Co když je T nekonečná?
 - Tablo může být nekonečné.
 - Ale vyjde-li sporné, lze sestrojit jiné, které je konečné a také sporné. ("Existuje-li důkaz, existuje konečný důkaz.")

Atomická tabla

	_ ¬	^	\ \ \	\rightarrow	\leftrightarrow
True	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	$egin{array}{c c} Tarphi \wedge \psi & & & \\ Tarphi & & \\ T\psi & & & \\ \hline T\psi & & & \\ \end{array}$	$\begin{array}{c c} & \mathrm{T}\varphi\vee\psi\\ & \diagup & \diagdown\\ & \mathrm{T}\varphi & \mathrm{T}\psi \end{array}$	$ \begin{array}{c c} & T\varphi \to \psi \\ & / & \\ & F\varphi & T\psi \end{array} $	$\begin{array}{c c} T\varphi \leftrightarrow \psi \\ \hline / \\ T\varphi & F\varphi \\ \hline \\ T\psi & F\psi \\ \end{array}$
False	$F \neg \varphi$ $ $ $T \varphi$	$\begin{array}{c c} F\varphi \wedge \psi \\ & / & \\ F\varphi & F\psi \end{array}$	$ \begin{array}{c c} F\varphi \lor \psi \\ & \\ F\varphi \\ & \\ F\psi \end{array} $	$ \begin{array}{c c} & F\varphi \to \psi \\ & \\ & T\varphi \\ & \\ & F\psi \end{array} $	$\begin{array}{c c} F\varphi \leftrightarrow \psi \\ \hline / \\ T\varphi & F\varphi \\ \hline & \\ F\psi & T\psi \\ \end{array}$

Konstrukce tabel z příkladů

konvence: kořeny atomických tabel (modře) nezakreslujeme

O stromech

- strom je T ≠ ∅ s částečným uspořádáním <_T, které má nejmenší prvek (kořen) a množina předků libovolného vrcholu je dobře uspořádaná (každá její neprázdná podmnožina má nejmenší prvek, to zakáže nekonečné klesající řetězce předků)
- větev je maximální lineárně uspořádaná podmnožina T.
- uspořádaný strom má navíc lineární uspořádání <_L množiny synů každého vrcholu (říkáme mu pravolevé, <_T je stromové)
- označkovaný strom má navíc funkci label: $T \to \text{Labels}$

Königovo lemma: Nekonečný, konečně větvící strom má nekonečnou větev.

4.3 Tablo důkaz

Formální definice tabla

- položka je nápis $T\varphi$ nebo $F\varphi$, kde φ je nějaký výrok
- konečné tablo z teorie T je uspořádaný, položkami označkovaný strom zkonstruovaný aplikací konečně mnoha následujících pravidel:
 - jednoprvkový strom s libovolnou položkou je tablo z teorie T
 - pro libovolnou položku P na libovolné větvi V můžeme a konec větve V připojit atomické tablo pro položku P
 - na konec libovolné větve můžeme připojit položku ${\rm T}\alpha$ pro libovolný axiom $\alpha\in {\cal T}$
- tablo z teorie T je buď konečné, nebo i nekonečné: v tom případě je spočetné a definujeme ho jako $\tau = \bigcup_{i \geq 0} \tau_i$, kde:
 - au_i jsou konečná tabla z T
 - au_0 je jednoprvkové tablo
 - τ_{i+1} vzniklo z τ_i v jednom kroku
- tablo pro položku P je tablo, které má položku P v kořeni

Dokončené a sporné tablo

- Tablo je sporné, pokud je každá jeho větev sporná.
- Větev je sporná, pokud obsahuje položky $T\psi$ a $F\psi$ pro nějaký výrok ψ , jinak je bezesporná.
- Tablo je dokončené, pokud je každá jeho větev dokončená.
- Větev je dokončená, pokud je sporná, nebo
 - každá její položka je na této větvi redukovaná,
 - a zároveň obsahuje položku $T\alpha$ pro každý axiom $\alpha \in \mathcal{T}.$
- Položka P je redukovaná na větvi V procházející touto položkou, pokud
 - lacktriangle je tvaru $\mathrm{T} p$ resp. $\mathrm{F} p$ pro nějaký prvovýrok $p \in \mathbb{P}$,
 - nebo při konstrukci tabla již došlo k jejímu rozvoji na V, tj. vyskytuje se na V jako kořen atomického tabla (byť ho podle konvence nezakreslujeme).

Tablo důkaz a tablo zamítnutí

- tablo důkaz výroku φ z teorie T je sporné tablo z teorie T s položkou $\mathcal{F}\varphi$ v kořeni
- pokud existuje, je φ (tablo) dokazatelný z T, píšeme $T \vdash \varphi$
- podobně, tablo zamítnutí je sporné tablo s $T \varphi$ v kořeni
- existuje-li, je φ (tablo) zamítnutelný z T, tj. platí $T \vdash \neg \varphi$

Příklad: tablo důkaz

- tablo důkaz výroku ψ z $T = \{\varphi, \varphi \to \psi\}$
- položky vycházející z axiomů jsou modře
- ukázali jsme tedy $T \vdash \psi$
- φ, ψ jsou libovolné pevně dané výroky
- tím jsme dokázali tzv. větu o dedukci

Příklad: dokončené tablo, které není sporné

- dokončené tablo pro výrok p_0 z teorie $T = \{p_{n+1} \rightarrow p_n \mid n \in \mathbb{N}\}.$
- nejlevější větev je dokončená a bezesporná
- sestává z položek $\mathrm{T} p_{i+1} o p_i$ a $\mathrm{F} p_i$ pro všechna $i \in \mathbb{N}$
- shoduje se s modelem v = (0, 0, ...), tj. $v : \mathbb{P} \to \{0, 1\}$ kde $v(p_i) = 0$ pro vš. i
- máme protipříklad ukazující, že $T \not\models p_0$

4.4 Konečnost a systematičnost

důkazů

Konečnost a systematičnost důkazů

Dokážeme:

- existuje-li tablo důkaz, existuje i konečný tablo důkaz
- existuje algoritmus, který umí vždy zkonstruovat dokončené tablo, tzv. systematické tablo
- tento algoritmus tedy zkonstruuje tablo důkaz, pokud existuje
 (zde potřebujeme korektnost a úplnost, ty dokážeme později)
 (pokud tablo důkaz neexistuje, algoritmus se nemusí zastavit)

Dokončení tabla: v čem je problém?

Pro konečnou T je snadné zkonstruovat dokončené tablo:

- na začátku použijeme všechny axiomy
- při redukci položek se výroky v nich zkracují
- stačí nedělat zbytečné kroky

Pro nekonečnou T bychom ale mohli zkonstruovat nekonečné tablo, a přitom:

- nikdy nepoužít některý axiom, nebo
- nikdy se nedostat k redukci některé položky

Myšlenka systematického tabla: na všechny se dostane, střídáme

- přidání následujícího axiomu na všechny bezesporné větve (T
 je spočetná, axiomy libovolně očíslujeme)
- redukce následující položky (po úrovních, zleva doprava) na všech bezesporných větvích, které jí procházejí

Definice systematického tabla

Systematické tablo z teorie $T = \{\alpha_1, \alpha_2, \dots\}$ pro položku R je tablo $\tau = \bigcup_{i \geq 0} \tau_i$, kde τ_0 je jednoprvkové tablo s položkou R, a pro každé $i \geq 0$:

- buď P nejlevější položka v co nejmenší úrovni, která není redukovaná na nějaké bezesporné větvi procházející P
- nejprve definujeme τ_i' jako tablo vzniklé z τ_i připojením atomického tabla pro P na každou bezespornou větev procházející P
- pokud taková položka P neexistuje, potom $au_i' = au_i$
- tablo au_{i+1} vznikne z au_i' připojením $\mathrm{T}lpha_{i+1}$ na každou bezespornou větev
- to v případě, že i < |T|, jinak (je-li T konečná a už jsme použili všechny axiomy) definujeme $\tau_{i+1} = \tau_i'$

Dokončenost systematického tabla

Lemma: Systematické tablo je dokončené.

Důkaz: Jsou všechny větve dokončené?

- Sporné větve jsou dokončené z definice.
- Bezesporná větev:
 - obsahuje $T\alpha_i$ pro všechna i (připojeno v i-tém kroku)
 - každá položka je na ní zredukovaná (leží-li v hloubce d, dostali jsme se k ní nejdéle v kroku $i=2^{d+1}-1$)
- Tedy i všechny bezesporné větve jsou dokončené.

Konečnost sporu

Věta (Konečnost sporu): Je-li $\tau = \bigcup_{i \geq 0} \tau_i$ sporné tablo, potom existuje $n \in \mathbb{N}$ takové, že τ_n je sporné konečné tablo.

Důkaz: Buď S množina všech vrcholů, nad kterými (ve stromovém uspořádání) není spor, tj. dvojice položek $T\psi$, $F\psi$.

- Kdyby byla S nekonečná: Podle Königova lemmatu pro podstrom τ na množině S máme nekonečnou, bezespornou větev v S. To ale dává i bezespornou větev v τ, což je spor.
- Množina S je tedy konečná, celá leží v hloubce ≤ d pro nějaké d ∈ N. Každý vrchol na úrovni d + 1 už má nad sebou spor.
- Zvolme n tak, že τ_n už obsahuje všechny vrcholy τ z prvních d+1 úrovní. Potom každá větev tabla τ_n je sporná.

Důsledky konečnosti sporu

Důsledek: Pokud neprodlužujeme už sporné větve (např. pro systematické tablo), potom sporné tablo je konečné.

Důkaz: Platí $\tau = \tau_n$, neboť sporné tablo už neměníme.

Důsledek (Konečnost důkazů): Pokud $T \vdash \varphi$, potom existuje i konečný tablo důkaz φ z T.

Důkaz: Platí $\tau = \tau_n$, neboť sporné tablo už neměníme.

Důsledek (Systematičnost důkazů): Pokud $T \vdash \varphi$, potom systematické tablo je (konečným) tablo důkazem φ z T.

Důkaz bude až v příští sekci, chybí nám dvě fakta:

- je-li φ dokazatelná z T, potom v T platí (Věta o korektnosti)
- pokud by systematické tablo mělo bezespornou větev, šel by z ní vyrobit protipříklad (to je klíč km důkazu Věty o úplnosti)1

4.5 Korektnost a úplnost