20hors

Name:

Math 314/814 Matrix Theory Final Exam

Show all work. Include all steps necessary to arrive at an answer unaided by a mechanical computational device. The steps you take to your answer are just as important, if not more important, than the answer itself. If you think it, write it!

1. (20 pts.) Find bases for the column space and row space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 0 & 6 & 2 \\ 2 & -2 & 12 & -14 \\ -1 & -2 & 1 & -9 \end{pmatrix}$$

$$\begin{pmatrix} 1121 \\ 2062 \\ 2 - 212 - 14 \\ -1 & -2 & 1 & -9 \end{pmatrix} \rightarrow \begin{pmatrix} 1121 \\ 01 - 10 \\ 00 + 4 - 16 \\ 0 & 2 - 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1121 \\ 01 - 10 \\ 00 & 1 - 4 \\ 0000 \end{pmatrix}$$

$$\begin{pmatrix} 1031 \\ 01710 \\ 001710 \\ 0000 \end{pmatrix} \rightarrow \begin{pmatrix} 10013 \\ 0 & 0 & -4 \\ 0000 \end{pmatrix} \rightarrow \begin{pmatrix} 10013 \\ 0 & 1 - 4 \\ 0000 \end{pmatrix}$$

$$\begin{pmatrix} 1031 \\ 01710 \\ 0000 \end{pmatrix} \rightarrow \begin{pmatrix} 10013 \\ 0 & 0 & -4 \\ 0000 \end{pmatrix} \rightarrow \begin{pmatrix} 2 \\ 6 \\ 12 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 6 \\ 12 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 6 \\ 12 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 6 \\ 12 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 6 \\ 12 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 6 \\ 12 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 1 \\ 0 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \\ 13 \\ -4 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \\ 0 \\ -4 \end{pmatrix}$$

2. (25 pts.) Find a basis for \mathbb{R}^3 which includes, among its vectors, a basis for the nullspace of

$$A = \begin{pmatrix} 3 & 1 & 3 \\ 2 & 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix}
313 \\
222
\end{pmatrix} \rightarrow \begin{pmatrix}
111 \\
313
\end{pmatrix} \rightarrow \begin{pmatrix}
0-20
\end{pmatrix} \rightarrow \begin{pmatrix}
111 \\
010
\end{pmatrix} \rightarrow \begin{pmatrix}
101 \\
010
\end{pmatrix}$$

$$\begin{cases}
x+2=0 \\
y=0
\end{cases} x=-2 \quad basis for All(A) : \begin{pmatrix}
0 \\
1 \\
1
\end{cases} free$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

So
$$\begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 one a basis for \mathbb{R}^3 has for null(A).

3. (20 pts.) Find the inverse of the matrix
$$A = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}$$
.

4. (25 pts.) For the matrix
$$A = \begin{bmatrix} 9 & -4 \\ 20 & -9 \end{bmatrix}$$
, what is A^{2008} ?

(Hint: knowing its eigenvalues might help...)

$$det(A-\lambda I) = \begin{vmatrix} 9-\lambda & -4 \\ 20 & -9-\lambda \end{vmatrix} = (9-\lambda)(-9-\lambda) - (-4)(20)$$

$$= \lambda^2 - 9\lambda + 9\lambda - 81 + 80 = \lambda^2 - 1$$

$$= (\lambda - 1)(\lambda + 1)$$

So e-value one
$$\lambda = 1$$
, $\lambda = -1$

A is diagonalizable!

The loss $AP = PD = P(0-1)$ for some invertible $P(0-1) = P(0-1) = P(0-1$

$$\lambda = 1: \begin{bmatrix} 8 & -4 \\ 20 & -10 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -11 \\ 20 & -10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1/2 \\ 0 & 0 \end{bmatrix}$$

$$\times 2 + 2 + 2 = 4$$

$$\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = -basic.$$

$$\chi=-1: \begin{bmatrix} 10 & -47 \\ 20 & -8 \end{bmatrix} \longrightarrow \begin{bmatrix} 5-27 \\ 0 & 0 \end{bmatrix}$$
 $5x=2y$ $\begin{bmatrix} 27 \\ 5 \end{bmatrix}$

$$SAP=PD=P\begin{bmatrix}10\\0-1\end{bmatrix}$$

$$SP=\begin{bmatrix}1\\2\\5\end{bmatrix}$$

$$SdtP=S-4=1$$

$$A = PDP^{-1}$$
, so $A = \begin{bmatrix} 5 - 27 \\ -2 \end{bmatrix}$

$$\begin{bmatrix} 127 \begin{bmatrix} 107 \\ -2 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 5 - 27 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 27 \\ -2 \end{bmatrix} \begin{bmatrix} 1 & -27 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 27 \\ -2 \end{bmatrix} \begin{bmatrix} 1 & -27 \\ -2 \end{bmatrix}$$

5. (25 pts.) The vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ are linearly independent (you need not verify this).

$$AA = \begin{pmatrix}
10 & 1 & 1 \\
20 & -1 & 0 \\
-10 & 10
\end{pmatrix}
\begin{pmatrix}
1 & 2 & -1 \\
0 & 0 & 0 \\
1 & -1 & 1 \\
1 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
3 & 10 \\
1 & 5 & -3 \\
0 & -3 & 2
\end{pmatrix}$$

$$A^{\uparrow}b = \begin{pmatrix} 1011 \\ 20710 \\ -1010 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 14 \\ 21 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix}
310 & 14 \\
15-3 & 1 \\
0-14 & 9 & 11 \\
0-32 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
15-3 & 1 \\
0-14 & 9 & 11 \\
0-32 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
15-3 & 1 \\
0-14 & 9 & 11 \\
0-14 & 9 & 11
\end{pmatrix}$$

$$\begin{pmatrix}
15-3 & 1 \\
0-14 & 9 & 11 \\
0-14 & 9 & 11
\end{pmatrix}$$

$$\begin{pmatrix}
15-3 & 1 \\
0-14 & 9 & 11
\end{pmatrix}$$

$$\begin{pmatrix}
15-3 & 1 \\
0-14 & 9 & 11
\end{pmatrix}$$

$$\begin{pmatrix}
15-3 & 1 \\
0-14 & 9 & 11
\end{pmatrix}$$

$$\begin{pmatrix}
15-3 & 1 \\
0-14 & 9 & 11
\end{pmatrix}$$

6. (20 pts.) Find the line y = ax + b that best approximates the data points $\{(-2,3),(0,5),(1,7)\}$.

$$A = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 \\ 6 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ 15 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 15 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 15 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 15 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 15 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 15 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 15 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 11 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 15 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 \\ 15 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 15 &$$

7. (15 pts.) Show that if A, B are a pair of $m \times n$ matrices, then the collection of vectors $W = \{ \vec{v} \in \mathbb{R}^n : A\vec{v} = B\vec{v} \}$

is a subspace of \mathbb{R}^m .

OEW: AZ=Z=BZ.√

f v, v then AT = BD, AN = BD, 0

A(V+W)=AV+AV=BX+BV=B(V+W)) 18 かる FW.

of tiew, CER, then ATERS &

A(a) = cAV = cBV = B(cv) & deW.

So Wis does de adtition on realer mitteplication,

20 W 15 a whapale. M

Show all work. How you get your answer is just as important, if not more important, than the answer itself. If you think it, write it!

Use Gram-Schmidt orthogonalization, starting with the basis

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

for \mathbb{R}^3 , to build an orthogonal basis for \mathbb{R}^3 .

Starting with the vectors $\vec{w}_1, \vec{w}_2, \vec{w}_3$ above, we construct:

$$ec{v}_1 = ec{w}_1 = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}$$

$$\vec{v}_2 = \vec{w}_2 - \left(\frac{\langle \vec{w}_2, \vec{v}_1 \rangle}{\langle \vec{v}_1, \vec{v}_1 \rangle} \vec{v}_1\right) = \begin{bmatrix} 1\\1\\2 \end{bmatrix} - \frac{4}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} -1/3\\-1/3\\2/3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1\\-1\\2 \end{bmatrix}$$

$$\vec{v}_{3} = \vec{w}_{3} - \left(\frac{\langle \vec{w}_{3}, \vec{v}_{1} \rangle}{\langle \vec{v}_{1}, \vec{v}_{1} \rangle} \vec{v}_{1} + \frac{\langle \vec{w}_{3}, \vec{v}_{2} \rangle}{\langle \vec{v}_{2}, \vec{v}_{2} \rangle} \vec{v}_{2}\right) = \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \left(\frac{6}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \frac{\frac{1}{3}3}{(\frac{1}{3})^{2}(6)} (\frac{1}{3}) \begin{bmatrix} -1\\-1\\2 \end{bmatrix}\right)$$

$$= \begin{bmatrix} 1\\2\\3 \end{bmatrix} - \left(2 \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \right) = \begin{bmatrix} 1-2+1/2\\2-2+1/2\\3-2-1 \end{bmatrix} = \begin{bmatrix} -1/2\\1/2\\0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

So our orthogonal basis is $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\frac{1}{3}\begin{bmatrix} -1\\-1\\2 \end{bmatrix}$, $\frac{1}{2}\begin{bmatrix} -1\\1\\0 \end{bmatrix}$.

Show all work. How you get your answer is just as important, if not more important, than the answer itself. If you think it, write it!

For what values of x is the matrix

$$A = \begin{pmatrix} x & 1 & 3 \\ 3 & 1 & x \\ 0 & -1 & x \end{pmatrix}$$

invertible?

A is invertible precisely when its determinant is non-zero. So we compute

$$\begin{split} \det(A) &= x \cdot \det \begin{pmatrix} 1 & x \\ -1 & x \end{pmatrix} - 3 \cdot \det \begin{pmatrix} 1 & 3 \\ -1 & x \end{pmatrix} + 0 \cdot \det \begin{pmatrix} 1 & 3 \\ 1 & x \end{pmatrix} \\ &= x(x - (-x)) - 3(x - (-3)) + 0(x - 3) = 2x^2 - 3x - 9 \ . \end{split}$$

To find out where it is non-zero, we find out where it is zero:

$$2x^2 - 3x - 9 = 0 \text{ for } x = \frac{3 \pm \sqrt{9 + 4 \cdot 2 \cdot 9}}{2 \cdot 2} = \frac{3 \pm \sqrt{81}}{4} \text{ ,}$$
 so $x = (3+9)/4 = 3 \text{ or } x = (3-9)/4 = -3/2$

So, for $x \neq -3/2, 3$, A is invertible.

Quiz number 7 solutions

Show all work. How you get your answer is just as important, if not more important, than the answer itself. If you think it, write it!

Find the eigenvalues of the matrix

Ю.

$$A = \begin{pmatrix} 2 & 3 \\ 4 & 3 \end{pmatrix}$$

and, for each eigenvalue, find a basis for its eigenspace.

To find the eigenvalues, we solve the equation

$$(2 - \lambda)(3 - \lambda) - (3)(4) = 0 = \lambda^2 - 5\lambda + 6 - 12 = \lambda^2 - 5\lambda - 6 = (\lambda - 6)(\lambda + 1),$$

so $\lambda = 6$ or $\lambda = -1$. These are our eigenvalues.

To find bases for the eigenspaces we find bases for the nullspaces of A-6I and A-(-1)I=A+I, by row reducing:

$$A - 6I = \begin{pmatrix} 2 - 6 & 3 \\ 4 & 3 - 6 \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 4 & -3 \end{pmatrix} \to \begin{pmatrix} 1 & -3/4 \\ 4 & -3 \end{pmatrix} \to \begin{pmatrix} 1 & -3/4 \\ 0 & 0 \end{pmatrix}$$

so the second variable is free and we have x - (3/4)y = 0 so x = (3/4)y.

So E_6 has basis $\begin{bmatrix} 3/4 \\ 1 \end{bmatrix}$ (or any non-zero multiple of this).

$$A+I=\begin{pmatrix}2+1&3\\4&+1\end{pmatrix}=\begin{pmatrix}3&3\\4&4\end{pmatrix}\rightarrow\begin{pmatrix}1&1\\4&4\end{pmatrix}\rightarrow\begin{pmatrix}1&1\\0&0\end{pmatrix}$$

so the second variable is again free and we have x + y = 0 so x = -y.

So E_{-1} has basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ (or any non-zero multiple of this).

We can check these answers:

$$A\begin{bmatrix} 3/4 \\ 1 \end{bmatrix} = \begin{bmatrix} 2(3/4) + 3(1) \\ 4(3/4) + 3(1) \end{bmatrix} = \begin{bmatrix} 9/2 \\ 6 \end{bmatrix} = 6\begin{bmatrix} 3/4 \\ 1 \end{bmatrix}$$
, and

$$A\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 2(-1) + 3(1)\\4(-1) + 3(1) \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix} = (-1) \begin{bmatrix} -1\\1 \end{bmatrix}, \text{ as desired.}$$

Quiz number 6 Solutions

Show all work. How you get your answer is just as important, if not more important, than the answer itself. If you think it, write it!

1. Explain why the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x,y) = (x-y,x^2+y^2)$

is not a linear transformation.

$$f((x,y)+(a,b)) = f(x+a,y+b) = ((x+a)-(y+b),(x+a)^2+(y+b)^2)$$

$$= ((x-y)+(a-b),(x^2+y^2)+(a^2+b^2)+(2ax+2yb))$$

$$= (x-y,x^2+y^2)+(a-b,a^2+b^2)+(0,2ax+2yb)=f(x,y)+f(a,b)+(0,2ax+2yb),$$
which does **not** equal $f(x,y)+f(a,b)$ in general, e.g. for $x=y=a=b=1$.

Alternatively, $f(c(x,y)) = f(cx,cy) = (cx - cy,(cx)^2 + (cy)^2) = (cx - cy,c^2x^2 + c^2y^2)$, while

 $cf(x,y) = c(x-y,x^2+y^2) = (cx-cy,cx^2+cy^2)$, which does **not** equal f(c(x,y)) in general, since

 $c^{2}x^{2} + c^{2}y^{2} \neq cx^{2} + cy^{2}$ in general, e.g. for x = y = 1 and c = 672.

2. Find the matrix A so that $T = T_A$, where $T : \mathbf{R}^2 \to \mathbf{R}^2$ is the linear transformation which given a vector $[x \ y]^T$ returns the vector $[y \ x]^T$. Geometrically, what does this transformation do?

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix} = \begin{bmatrix} 0 \cdot x + 1 \cdot y \\ 1 \cdot x + 0 \cdot y \end{bmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

So
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Geometrically, the transformation sends (0,1) to (1,0) and sends (0,1) to (1,0); in general, the transformation swaps the x- and y-coordinates, which can be accomplished by reflecting the vector across the line y = x. So T is reflection across the line y = x.

Quiz number 5 Solutions

Show all work. How you get your answer is just as important, if not more important, than the answer itself. If you think it, write it!

Find bases for the column space of the matrix $A = \begin{pmatrix} 2 & 3 & 4 \\ 5 & 7 & 9 \\ 1 & 4 & 7 \end{pmatrix}$, by

- (a) row reducing the matrix A,
- (b) row reducing the transpose A^T of the matrix \boldsymbol{A} .

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 5 & 7 & 9 \\ 1 & 4 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 2 & 3 & 4 \\ 1 & 4 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & -5 & -10 \\ 0 & -13 & -26 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & -13 & -26 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

The REF has pivots in the first two columns, so the first two columns of A form a basis for col(A).

$$basis = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$$

13.

$$A^{T} = \begin{pmatrix} 2 & 5 & 1 \\ 3 & 7 & 4 \\ 4 & 8 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 5/2 & 1/2 \\ 3 & 7 & 4 \\ 4 & 8 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 5/2 & 1/2 \\ 0 & -1/2 & 5/2 \\ 0 & -1 & 5 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 5/2 & 1/2 \\ 0 & 1 & -5 \\ 0 & -1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 13 \\ 0 & 1 & -5 \\ 0 & 0 & 0 \end{pmatrix}$$

The non-zero rows, $\begin{bmatrix} 1 & 0 & 13 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 & -5 \end{bmatrix}$, form a basis for row (A^T) . So their transposes,

$$\begin{bmatrix} 1 \\ 0 \\ 13 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix} \text{ , form a basis for } \operatorname{col}(A) \text{ .}$$

3. (15 pts.) Find the value of Ax closest to b, where

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 0 & 1 \end{pmatrix} \qquad \text{and} \qquad b = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

$$AA = \begin{pmatrix} 110 \\ 211 \end{pmatrix} \begin{pmatrix} 12 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 23 \\ 36 \end{pmatrix}$$

$$Ab = \begin{pmatrix} 110 \\ 211 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ 6 \end{pmatrix}$$

$$- \left(\begin{array}{c|c} 1 & 2 & 2 \\ 0 & -1 & -1 \end{array} \right) \rightarrow \left(\begin{array}{c|c} 1 & 0 & 0 \\ 0 & 1 & 1 \end{array} \right) \qquad \begin{array}{c} \chi_1 = 0 \\ \chi_2 = 1 \end{array}$$

$$A\vec{x} = \begin{pmatrix} 12 \\ 11 \\ 01 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$(A^{T}A^{T}) = \frac{1}{3}(-32)$$
 $A(A^{T}A)^{T}A^{T}$

$$=\frac{1}{3}\begin{pmatrix} 12\\ 12\\ 11 \end{pmatrix}\begin{pmatrix} 6-3\\ -32\end{pmatrix}\begin{pmatrix} 110\\ 211 \end{pmatrix}=\frac{1}{3}\begin{pmatrix} 12\\ 11\\ 01 \end{pmatrix}\begin{pmatrix} 03-3\\ 1-12 \end{pmatrix}$$

$$=\frac{1}{3}\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \qquad ()b = \frac{1}{3}\begin{pmatrix} 6 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 1 \\ 1 \end{pmatrix}$$

20

4. (pts.) Find the determinant of the matrix

$$A = \begin{pmatrix} 1 & 2 & -7 \\ 1 & 0 & -3 \\ 3 & 1 & 3 \end{pmatrix}$$

Based on this, find the determinants of the matrices $B=A^{-1}$, $C=A^T$, and $D=A^TA$. (Hint: you don't need to compute these matrices....)

$$ddA = 1(0+3) - 1(6+7) + 3(-6-0)$$

$$= 3 - 13 - 18 = 3 - 31 = -28$$

$$det(B) = \frac{1}{det t} = \frac{-28}{1}$$

$$dd(c) = dd(A^T) = -20$$

$$dd(D) = dd(A^T) dd(A) = (-28)^2$$

20

a boas for

7. (5 pts.) Find the orthogonal complement of the subspace W of R^4 spanned by the vectors

$$\begin{pmatrix} 1 \\ -1 \\ 0 \\ 2 \end{pmatrix} \qquad \text{and} \qquad \begin{pmatrix} -1 \\ 1 \\ 1 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

$$M_T = N(V_{\perp})$$

$$\vec{A} = \begin{pmatrix} 1 - 1 & 0 & 2 \\ -1 & 1 & 1 & 2 \end{pmatrix} \rightarrow$$

$$Y_1 = x_2 - 2x_4$$

 $x_3 = -4x_4$

Soltins

Name:

Math 314 Matrix Theory Final Exam

Show all work. Include all steps necessary to arrive at an answer unaided by a mechanical computational device. The steps you take to your answer are just as important, if not more important, than the answer itself. If you think it, write it!

1. (25 pts.) Find bases for the column space, row space, and nullspace of the matrix

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 2 \\ 1 & 5 & -2 \end{bmatrix}.$$

$$\begin{pmatrix}
1 & -1 & 2 \\
2 & 1 & 2 \\
1 & 5 & -2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 6 & -4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
3 & -2 \\
2 & 3
\end{pmatrix}$$

$$\Rightarrow \begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 2 \\
0 &$$

2. (20 pts.) Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 2 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$
.

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
1 & 2 & 2 & | & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 3 & -1 & | & -1 & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & 3 & | & 1 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 3 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 3 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 3 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 3 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 3 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 3 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & -1 & 3 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1
\end{pmatrix}$$

3. (20 pts.) For which value(s) of x do the vectors

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \text{ span } \mathbb{R}^{3}?$$

$$\begin{bmatrix} 1 & -1 & \times \\ 1 & \times & 2 \\ 1 & 2 & 2 \end{bmatrix} \longrightarrow \begin{pmatrix} 0 & \times & \times & \times \\ 0 & \times & \times & \times \\ 0 & 3 & 2 \times \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & \times & 2 & \times \\ 0 & 3 & 2 \times \\ 0 & 3 & 2 \times \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & \times & 2 & \times \\ 0 & 3 & 2 \times \\ 0 & 3 & 2 \times \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 & \times \\ 0 & 1 & 0 \\ 0 & 0 & 2 \times \\ 0 & 0 & 2 \times \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 0 & 3 & 2 \times \\ 0 & 1 & 0 \\ 0 & 0 & 3 & 2 \times \\ 0 & 0 & 3 & 2 \times \\ 0 & 0 & 3 & 2 \times \\ 0 & 0 & 3 & 2 \times \\ 0 & 0 & 0 &$$

x=23=) dot=0=) not (notable=) columns

don't span.

4. (20 pts.) Use the Gram-Schmidt orthogonalization process to construct an orthogonal set from the (you may assume linearly independent) vectors

$$\vec{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ \vec{w}_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ \vec{w}_3 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}.$$

$$v_1 = \omega_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{2}{4} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \frac{(\omega_3, V_1)}{V_1 \cdot V_1} - \frac{(\omega_3, V_2)}{V_2 \cdot V_2} V_2$$

$$= \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \end{pmatrix} = \begin{pmatrix} 1/3 \\ -1/2 \\ -1/2 \\ -1/2 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ -1/2 \\ -1/3 \\ -1/3 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 2/3 \\ -1/2 \\ -1/2 \\ -1/2 \end{pmatrix}$$

$$\mathcal{L} = \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \left(\begin{array}{c}$$

5. (25 pts.) Find the orthogonal projection of the vector
$$\vec{v} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 onto the column space of the matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

$$A^{T}A = \begin{bmatrix} 1 & 27 & 1 \\ -11 & 1 \end{bmatrix} \begin{bmatrix} 1 & -17 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 27 \\ 2 & 3 \end{bmatrix}$$

$$\begin{pmatrix} 6 & 2 & | 7 \\ 2 & 3 & | 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & | 0 \\ 6 & 2 & | 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & | 0 \\ 0 & -7 & | 7 \end{pmatrix}$$

$$P^{5}G(A) = A\overline{x} = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 32 \\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Check!
$$\nabla - A\vec{x} = \begin{pmatrix} x_2 \\ 3/2 \end{pmatrix}$$
 is $\perp \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

6. (20 pts.) Find the line y = ax + b that gives the least squares best fit to the data points

$$(-1,3)$$
 , $(0,2)$, $(1,0)$, $(2,1)$.

closest soln to

$$A\begin{pmatrix} 9 \\ b \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 9 \\ b \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 0 \\ 1 \end{pmatrix} = \overrightarrow{V}$$

$$A^{7} = \begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 2 & | -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 4 & | 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & | 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 &$$

$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 u

$$ATA(g)=ATV$$
 $ATA=\begin{pmatrix} -1 & 0 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 6 & 2 \\ 2 & 4 \end{pmatrix}$$

7. (20 pts.) Find the eigenvalues, and associated eigenbases, for the matrix

$$A = \begin{pmatrix} 0 & 2 \\ 3 & 1 \end{pmatrix}.$$

$$det(A-AI) = \begin{pmatrix} -\lambda & 2 \\ 3 & +\lambda \end{pmatrix} = (-\lambda X + \lambda) - 6$$
$$= \begin{pmatrix} 2 & -\lambda & 2 \\ -\lambda & +\delta & = (\lambda - 3)(\lambda + 2) \end{pmatrix}$$

$$13: \text{ ABS} = A - 3I = \begin{pmatrix} -3 & 2 \\ 3 - 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 - \frac{2}{3} \\ 3 \end{pmatrix}$$

$$\times -\frac{2}{3}y = 0 \quad \times = \frac{2}{3} \quad \begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} \frac{2}{3} \\ y \end{pmatrix}$$

$$x-\frac{1}{3}y=0 \quad x=\frac{1}{3} \quad \left(\frac{x}{4}\right)=y\left(\frac{2}{3}\right)$$

$$A = -2$$
 $A - (-21) = A + 21 = \begin{pmatrix} 2 & 2 \\ 3 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 11 \\ 33 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$xy = 0 \quad x = y \quad \begin{pmatrix} x \\ y \end{pmatrix} = y \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$