# Лабораторная работа №3

Интерполяция и среднеквадратичное приближение функций

Михалькевич Д.Н. гр. 221701

Вариант 8

## Задание 1.

```
In[1800]:=
        f[x_{]} = Exp\left[2x - \frac{2x^{2}}{1}\right] * ArcTan\left[\frac{3x^{2}}{1} + \frac{5}{6}\right];
In[1801]:=
          n = 6;
In[1802]:=
        a = 0;
        b = 6;
        data = N[Table[{a+ih, f[a+ih]}, {i, 0, n}]];
                _.. _таблица значений
In[1806]:=
        Grid[data, Frame → All]
        таблица рамка всё
Out[1806]=
         0. 0.694738
         1. 4.4902
         2. 18.0492
         3. 37.7209
         4. 41.3258
         5. 24.5617
             8.07549
In[1807]:=
        dataX = Table[data[i, 1], {i, n + 1}];
                 таблица значений
        dataY = Table[data[i, 2], {i, n + 1}];
                 таблица значений
```

#### а) построить интерполяционный многочлен Лагранжа

```
In[1809]:=
                          LagrangeInterpolation[dataX_, dataY_, n_] := \sum_{i=1}^{n} dataY[i] *
                                           Product[If[i \neq j, (x - dataX[j]) / (dataX[i] - dataX[j]), 1], \{j, 1, Length[dataX]\}];
                                          произв... условный оператор
                          Ln = LagrangeInterpolation[data[All, 1], data[All, 2], n + 1] // Simplify
Out[1810]=
                          0.694738 + 14.4989 \, x - 28.1172 \, x^2 + 23.8088 \, x^3 - 7.26886 \, x^4 + 0.914503 \, x^5 - 0.0407415 \, x^6 + 0.0407415 
In[1811]:=
                          graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{Red, Thickness[0.01]\}];
                                                                                                                                      _стиль графика _кр··· _толщина
                                                         график функции
                          graph2 = Plot[Ln, {x, a, b}, PlotStyle → Blue];
                                                         график функции
                                                                                                                                стиль граф… синий
                          graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                                                         диаграмма раз... стиль графика размер точки
                          Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Ln"}]]
                         с леген... показать
                                                                                                                                                                               легенда с к… кр… синий
Out[1814]=
                          40
                          30
                                                                                                                                                                                                                                                 f[x]
                          20
                                                                                                                                                                                                                                              - Ln
                           10
```

#### б) создать таблицу конечных разностей функции f (x)

```
In[1815]:=
       Array[diff, {n + 1, n + 1}, {0, 0}];
       массив
       For [k = 1, k \le n, k++,
       цикл ДЛЯ
              For [i = n, i \ge n - k, i - -, diff[i, k] = 0]];
       For [i = 0, i \le n, i++, diff[i, 0] = data[i+1, 2]];
       цикл ДЛЯ
       For [k = 1, k \le n, k++,
       цикл ДЛЯ
          For [i = 0, i \le n - k, i++,
         цикл ДЛЯ
           diff[i, k] = diff[i+1, k-1] - diff[i, k-1]]];
       tab = Array[diff, \{n+1, n+1\}, \{0, 0\}];
       Grid[tab, Frame → All]
       таблица рамка всё
```

Out[1820]=

| 0.694738 | 3.79546  | 9.76356  | -3.65092  | -18.5285 | 36.4057 | -29.3339 |
|----------|----------|----------|-----------|----------|---------|----------|
| 4.4902   | 13.559   | 6.11264  | - 22.1794 | 17.8772  | 7.07186 | 0        |
| 18.0492  | 19.6717  | -16.0668 | -4.3022   | 24.9491  | 0       | 0        |
| 37.7209  | 3.60489  | - 20.369 | 20.6469   | 0        | 0       | 0        |
| 41.3258  | -16.7641 | 0.277907 | 0         | 0        | 0       | 0        |
| 24.5617  | -16.4862 | 0        | 0         | 0        | 0       | 0        |
| 8.07549  | 0        | 0        | 0         | 0        | 0       | 0        |

#### в) построить второй интерполяционный многочлен Ньютона

In[1821]:=

findNewtonInter[dataX\_, dataY\_, deltaTab\_, h\_, n\_] :=

$$dataY[[n]] + \sum_{i=1}^{n-1} \left( \frac{\prod_{k=1}^{i} \left( \frac{x - dataX[[n]]}{h} + k - 1 \right)}{Factorial[i]} * deltaTab[[n-i, i+1]] \right);$$

Pn = findNewtonInter[dataX, dataY, tab, h, n + 1] // Simplify **УПРОСТИТЬ** 

Out[1822]=

 $0.694738 + 14.4989 \times -28.1172 \times^2 + 23.8088 \times^3 - 7.26886 \times^4 + 0.914503 \times^5 - 0.0407415 \times^6$ 

```
In[1823]:=
       graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                                        стиль графика кр⋯ толщина
       graph2 = Plot[Pn, {x, a, b}, PlotStyle → Blue];
                график функции
                                     стиль граф… синий
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                _диаграмма раз… _ стиль графика _размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Pn"}]]
       с леген... показать
                                                   легенда с к… кр… синий
Out[1826]=
       40
       30
                                                                      f[x]
       20
                                                                      Pn
       10
```

# г) построить интерполяционный многочлен Ньютона с помощью функции InterpolatingPolynomial

```
In[1829]:=
       graph1 = Plot[f[x], {x, a, b}, PlotStyle \rightarrow {Red, Thickness[0.01]}];
                                       стиль графика кр⋯ толщина
       graph2 = Plot[Np, {x, a, b}, PlotStyle → Blue];
                график функции
                                    стиль граф… синий
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                _диаграмма раз… _ стиль графика _размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Np"}]]
       с леген... показать
                                                 легенда с к… кр… синий
Out[1832]=
       40
       30
                                                                     f[x]
       20
                                                                     Np
       10
```

### д) вычислить значения функции и всех построенных интерполяционных членов

```
In[1833]:=
         f[2.4316]
         Ln /. x \rightarrow 2.4316
         Pn /. x \to 2.4316
         Np /. x \rightarrow 2.4316
Out[1833]=
         26.9215
Out[1834]=
         27.2092
Out[1835]=
         27.2092
Out[1836]=
         27.2092
```

#### е) построить график погрешности интерполирования многочленом Ньютона

```
In[1837]:=
        Rn = Abs[f[x] - Np];
             абсолютное значение
        graph1 = Plot[Rn, \{x, 0, 6\}, PlotStyle \rightarrow Blue];
                 график функции
                                       _стиль граф⋯ _синий
        Legended[Show[graph1], LineLegend[{Blue}, {"Rn"}]]
        с леген··· показать
                                   легенда с к⋯ синий
Out[1839]=
        1.0
                                                                          - Rn
        0.5
In[1840]:=
        FindMaximum[\{Rn, a \le x \le b\}, x]
        найти максимум
Out[1840]=
         \{1.86248, \{x \rightarrow 0.337594\}\}
In[1841]:=
        ClearAll;
        очистить всё
In[1842]:=
         n = 10;
In[1843]:=
        a = 0;
        b = 6;
        data = N[Table[{a+ih, f[a+ih]}, {i, 0, n}]];
               _.. _таблица значений
```

```
In[1847]:=
      Grid[data, Frame → All]
                 рамка всё
      таблица
Out[1847]=
        0. 0.694738
       0.6 2.21247
       1.2 6.22067
       1.8 14.3741
       2.4 26.256
        3. 37.7209
       3.6 42.947
       4.2
           39.0766
       4.8 28.5897
       5.4 16.8881
```

8.07549

In[1848]:=

#### а) построить интерполяционный многочлен Лагранжа

In[1850]:=

```
LagrangeInterpolation[dataX_, dataY_, n_] := \sum_{i=1}^{n} dataY[i] *
             Product[If[i \neq j, (x - dataX[j]) / (dataX[i] - dataX[j]), 1], \{j, 1, Length[dataX]\}];
            произв... условный оператор
        Ln = LagrangeInterpolation[data[All, 1], data[All, 2], n + 1] // Simplify
                                                                               упростить
Out[1851]=
        0.694738 + 2.76642 x - 5.25299 x^2 + 13.4646 x^3 - 12.8941 x^4 + 8.22999 x^5 -
         3.12782 x^6 + 0.678196 x^7 - 0.0824014 x^8 + 0.00519983 x^9 - 0.000131204 x^{10}
```

10

```
In[1852]:=
        graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                 график функции
                                          _стиль графика _кр⋯ _толщина
        graph2 = Plot[Ln, {x, a, b}, PlotStyle → Blue];
                 график функции
                                      стиль граф⋯ синий
        graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                 _диаграмма раз... _стиль графика _размер точки
        \label{lem:legended} Legended[Show[graph1, graph2, graph3], LineLegend[\{Red, Blue\}, \{"f[x]", "Ln"\}]]
                                                     легенда с к… кр… синий
       с леген... показать
Out[1855]=
        40
        30
                                                                          f[x]
        20
                                                                         - Ln
```

#### б) создать таблицу конечных разностей функции f (x)

```
In[1856]:=
       Array[diff, {n+1, n+1}, {0, 0}];
       массив
       For [k = 1, k \le n, k++,
       цикл ДЛЯ
               For [i = n, i \ge n - k, i - -, diff[i, k] = 0]];
       For [i = 0, i \le n, i++, diff[i, 0] = data[i+1, 2]];
       цикл ДЛЯ
       For [k = 1, k \le n, k++,
       цикл ДЛЯ
          For [i = 0, i \le n - k, i++,
         цикл ДЛЯ
           diff[i, k] = diff[i + 1, k - 1] - diff[i, k - 1]]];
       tab = Array[diff, \{n+1, n+1\}, \{0, 0\}];
       Grid[tab, Frame \rightarrow All]
       таблица рамка всё
```

Out[1861]=

| 0.694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |         |                 |         |                   |         |         |         |         |         |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------------|---------|-------------------|---------|---------|---------|---------|---------|------------------|
| 2.21247       4.00821       4.14527       -0.41 \ 685       -3.72 \ 863       2.05245       2.58755       -4.85 \ 35       2.32918       3.18191       0         6.22067       8.15348       3.72842       -4.14 \ 548       -1.67 \ 548       4.64       -2.26 \ 594       -2.52 \ 5.51109       0       0         14.3741       11.8819       -0.41 \ 75.82 \ 705 \ 165       2.96383       2.37406       -4.79 \ 026       2.98677       0       0       0         26.256       11.4648       -6.23 \ 783       -2.85 \ 5.33789       -2.41 \ 71.80 \ 62       0       0       0       0       0         37.7209       5.22613       -9.09 \ 2.48006       2.92169       -4.21 \ 969       0       0       0       0       0       0       0         42.947       -3.87 \ 66.61 \ 648       5.40175       -1.298       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 | 0.694   | 1.51773 | 2.49048         | 1.65479 | - 2 <b>.</b> 07 % | -1.65   | 3.70943 | -1.12   | -3.73%  | 6.06079 | - 2 <b>.87</b> % |
| 6.22067       8.15348       3.72842       -4.14       -1.67       4.64       -2.26       -2.52       5.51109       0       0         14.3741       11.8819       -0.41       -5.82       2.96383       2.37406       -4.79       2.98677       0       0       0         26.256       11.4648       -6.23       -2.85       5.33789       -2.41       -1.80       0       0       0       0         37.7209       5.22613       -9.09       2.48006       2.92169       -4.21       0       0       0       0       0         42.947       -3.87       -6.61       5.40175       -1.298       0       0       0       0       0       0         39.0766       -10.4       -1.21       4.10375       0       0       0       0       0       0       0         28.5897       -11.7       2.88902       0       0       0       0       0       0       0       0       0         16.8881       -8.81       0       0       0       0       0       0       0       0       0       0                                                                                                                                         | 738     |         |                 |         | 164               | 699     |         | 188     | 162     |         | 888              |
| 6.22067       8.15348       3.72842       -4.14       -1.67       4.64       -2.26       -2.52       5.51109       0         14.3741       11.8819       -0.41       -5.82       2.96383       2.37406       -4.79       2.98677       0       0       0         26.256       11.4648       -6.23       -2.85       5.33789       -2.41       -1.80       0       0       0       0         37.7209       5.22613       -9.09       2.48006       2.92169       -4.21       0       0       0       0       0         42.947       -3.87       -6.61       5.40175       -1.298       0       0       0       0       0       0         39.0766       -10.4       -1.21       4.10375       0       0       0       0       0       0       0         28.5897       -11.7       2.88902       0       0       0       0       0       0       0       0         16.8881       -8.81       0       0       0       0       0       0       0       0       0       0                                                                                                                                                         | 2.21247 | 4.00821 | 4.14527         | -0.41%  | -3.72 ·           | 2.05245 | 2.58755 | -4.85   | 2.32918 | 3.18191 | 0                |
| 14.3741       11.8819       -0.41 \ -5.82 \ 2.96383       2.37406       -4.79 \ 0.26       2.98677       0       0         26.256       11.4648       -6.23 \ 871       -2.85 \ 5.33789       -2.41 \ -1.80 \ 0       0       0       0         37.7209       5.22613       -9.09 \ 654       2.48006       2.92169       -4.21 \ 0       0       0       0       0         42.947       -3.87 \ 041       -6.61 \ 048       5.40175       -1.298       0       0       0       0       0       0         39.0766       -10.4 \ 041       -1.21 \ 04.10375       0       0       0       0       0       0       0       0         28.5897       -11.7 \ 046       2.88902       0       0       0       0       0       0       0       0       0       0         16.8881       -8.81 \ 026       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       <                                        |         |         |                 | 685     | 863               |         |         | 35      |         |         |                  |
| 14.3741       11.8819       -0.41 \ 75.82 \ 2.96383       2.37406       -4.79 \ 026       2.98677       0       0         26.256       11.4648       -6.23 \ 783       -2.85 \ 783       5.33789       -2.41 \ -1.80 \ 0       0       0       0         37.7209       5.22613       -9.09 \ 654       2.48006       2.92169       -4.21 \ 969       0       0       0       0         42.947       -3.87 \ 041       -6.61 \ 5.40175       -1.298       0       0       0       0       0       0         39.0766       -10.4 \ 041       -1.21 \ 04.10375       0       0       0       0       0       0       0       0         28.5897       -11.7 \ 02.88902       0       0       0       0       0       0       0       0       0       0         16.8881       -8.81 \ 026       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                        | 6.22067 | 8.15348 | 3.72842         | -4.14   | -1.67%            | 4.64    | -2.26%  | -2.52%  | 5.51109 | 0       | 0                |
| 705   165   026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |                 | 548     | 618               |         | 594     | 432     |         |         |                  |
| 26.256       11.4648       -6.23 \ 871       -2.85 \ 871       5.33789       -2.41 \ 62       -1.80 \ 96       0       0       0       0         37.7209       5.22613       -9.09 \ 654       2.48006       2.92169       -4.21 \ 969       0       0       0       0       0         42.947       -3.87 \ 941       -6.61 \ 648       5.40175       -1.298       0       0       0       0       0       0         39.0766       -10.4 \ 869       -121 \ 4.10375       0       0       0       0       0       0       0         28.5897       -11.7 \ 2.88902       0       0       0       0       0       0       0       0       0         16.8881       -8.81 \ 0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                   | 14.3741 | 11.8819 | -0.41           | -5.82%  | 2.96383           | 2.37406 | -4.79   | 2.98677 | 0       | 0       | 0                |
| 26.256       11.4648       -6.23 \ 871       -2.85 \ 783       5.33789       -2.41 \ 62       -1.80 \ 349       0       0       0       0         37.7209       5.22613       -9.09 \ 654       2.48006       2.92169       -4.21 \ 969       0       0       0       0       0         42.947       -3.87 \ 6461 \ 648       5.40175       -1.298       0       0       0       0       0       0         39.0766       -10.4 \ 869       -1.21 \ 4.10375       0       0       0       0       0       0       0         28.5897       -11.7 \ 016       2.88902       0       0       0       0       0       0       0       0         16.8881       -8.81 \ 26       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                         |         |         | 705 %           | 165     |                   |         | 026     |         |         |         |                  |
| 871       783       62       349         37.7209       5.22613       -9.09 \ 654       2.48006       2.92169       -4.21 \ 969       0       0       0       0       0         42.947       -3.87 \ 041       -6.61 \ 5.40175       -1.298       0       0       0       0       0       0       0         39.0766       -10.4 \ 041       -1.21 \ 04.10375       0       0       0       0       0       0       0       0         28.5897       -11.7 \ 016       2.88902       0       0       0       0       0       0       0       0       0         16.8881       -8.81 \ 0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         | 7               |         |                   |         |         |         |         |         |                  |
| 37.7209       5.22613       -9.09 \ 654       2.48006       2.92169       -4.21 \ 969       0       0       0       0       0       0         42.947       -3.87 \ 041       -6.61 \ 048       5.40175       -1.298       0       0       0       0       0       0       0         39.0766       -10.4 \ 048       -1.21 \ 040       4.10375       0       0       0       0       0       0       0         28.5897       -11.7 \ 040       2.88902       0       0       0       0       0       0       0       0       0         16.8881       -8.81 \ 0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.256  | 11.4648 | -6.23           | -2.85%  | 5.33789           | -2.41   | -1.80   | 0       | 0       | 0       | 0                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         | 871             | 783     |                   | 62      | 349     |         |         |         |                  |
| 42.947       -3.87 \ 041       -6.61 \ 048       5.40175       -1.298       0       0       0       0       0       0       0         39.0766       -10.4 \ 058       -1.21 \ 058       4.10375       0       0       0       0       0       0       0       0         28.5897       -11.7 \ 068       2.88902       0       0       0       0       0       0       0       0       0       0         16.8881       -8.81 \ 0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.7209 | 5.22613 | -9 <b>.</b> 09% | 2.48006 | 2.92169           | -4.21   | 0       | 0       | 0       | 0       | 0                |
| 041       648         39.0766       -10.4%       -1.21%       4.10375       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td></td><td></td><td>654</td><td></td><td></td><td>969</td><td></td><td></td><td></td><td></td><td></td></t<>              |         |         | 654             |         |                   | 969     |         |         |         |         |                  |
| 39.0766     -10.4 \ 869     -1.21 \ 4.10375     0     0     0     0     0     0     0       28.5897     -11.7 \ 016     2.88902     0     0     0     0     0     0     0     0       16.8881     -8.81 \ 26     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.947  | -3.87   | -6.61           | 5.40175 | -1.298            | 0       | 0       | 0       | 0       | 0       | 0                |
| 869     473       28.5897     -11.7     2.88902     0     0     0     0     0     0     0     0       16.8881     -8.81     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 041     | 648             |         |                   |         |         |         |         |         |                  |
| 28.5897     -11.7 \( \) 2.88902     0     0     0     0     0     0     0     0       16.8881     -8.81 \( \) 26     0     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39.0766 | -10.4   | -1.21           | 4.10375 | 0                 | 0       | 0       | 0       | 0       | 0       | 0                |
| 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 869     | 473             |         |                   |         |         |         |         |         |                  |
| 16.8881 -8.81 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.5897 | -11.7   | 2.88902         | 0       | 0                 | 0       | 0       | 0       | 0       | 0       | 0                |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 016     |                 |         |                   |         |         |         |         |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.8881 | -8.81   | 0               | 0       | 0                 | 0       | 0       | 0       | 0       | 0       | 0                |
| 8.07549 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 26      |                 |         |                   |         |         |         |         |         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.07549 | 0       | 0               | 0       | 0                 | 0       | 0       | 0       | 0       | 0       | 0                |

#### в) построить второй интерполяционный многочлен Ньютона

```
In[1862]:=
        findNewtonInter[dataX_, dataY_, deltaTab_, h_, n_] :=
           dataY[n] + \sum_{i=1}^{n-1} \left( \frac{\prod_{k=1}^{i} \left( \frac{x-datax[n]}{h} + k - 1 \right)}{Factorial[i]} * deltaTab[n-i, i+1] \right);
        Pn = findNewtonInter[dataX, dataY, tab, h, n + 1] // Simplify
                                                                      УПРОСТИТЬ
Out[1863]=
        0.694738 + 2.76642 x - 5.25299 x^2 + 13.4646 x^3 - 12.8941 x^4 + 8.22999 x^5 -
         3.12782 \, x^6 + 0.678196 \, x^7 - 0.0824014 \, x^8 + 0.00519983 \, x^9 - 0.000131204 \, x^{10}
In[1864]:=
        graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{Red, Thickness[0.01]\}];
                                          _стиль графика _кр⋯ _толщина
                  график функции
        graph2 = Plot[Pn, {x, a, b}, PlotStyle → Blue];
                  график функции
                                         стиль граф… синий
        graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                  диаграмма раз… _ стиль графика _ размер точки
        Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Pn"}]]
        с леген показать
                                                         легенда с к… кр… синий
Out[1867]=
        40
        30
                                                                              f[x]
        20
                                                                               Pn
        10
```

#### г) построить интерполяционный многочлен Ньютона с помощью функции InterpolatingPolynomial

```
In[1868]:=
        Np = InterpolatingPolynomial[data, x];
              интерполяционный многочлен
        Np = Simplify[Np]
              упростить
Out[1869]=
        0.694738 + 2.76642 \times -5.25299 \times^2 + 13.4646 \times^3 - 12.8941 \times^4 + 8.22999 \times^5 -
          3.12782 x^6 + 0.678196 x^7 - 0.0824014 x^8 + 0.00519983 x^9 - 0.000131204 x^{10}
```

```
In[1870]:=
       graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                                         стиль графика кр⋯ толщина
                 график функции
       graph2 = Plot[Np, \{x, a, b\}, PlotStyle \rightarrow Blue];
                 график функции
                                      стиль граф… синий
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                 _диаграмма раз… _ стиль графика _размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Np"}]]
                                                    _легенда с к⋯ _кр⋯ _синий
       с леген показать
Out[1873]=
       40
       30
                                                                        f[x]
       20
                                                                        Np
       10
```

#### д) вычислить значения функции и всех построенных интерполяционных членов

```
In[1874]:=
        Print["f[2.4316] = ", f[2.4316]]
        печатать
        Print["Ln[2.4316] = ", Ln /. x \rightarrow 2.4316]
        Print["Pn[2.4316] = ", Pn /. x \rightarrow 2.4316]
        печатать
        Print["Np[2.4316] = ", Np /. x \rightarrow 2.4316]
        печатать
        f[2.4316] = 26.9215
        Ln[2.4316] = 26.9217
        Pn[2.4316] = 26.9217
        Np[2.4316] = 26.9217
```

#### е) построить график погрешности интерполирования многочленом Ньютона

```
In[1878]:=
        Rn = Abs[f[x] - Np];
             абсолютное значение
        graph1 = Plot[Rn, \{x, 0, 6\}, PlotStyle \rightarrow Blue];
                  график функции
                                        стиль граф… синий
        Legended[Show[graph1], LineLegend[{Blue}, {"Rn"}]]
        с леген··· показать
                                    легенда с к… синий
Out[1880]=
        0.035
        0.030
        0.025
        0.020
                                                                             Rn
        0.015
        0.010
        0.005
In[1881]:=
        FindMaximum[\{Rn, a \le x \le b\}, x]
        найти максимум
Out[1881]=
          \{0.0139167, \{x \rightarrow 0.813098\}\}
```

ж) Увеличение количества узлов интерполяции привело к снижению погрешности интерполяции, что указывает на прямую зависимость точности интерполирования от числа узлов.

## Задание 2.

In[1882]:=

n = 6;

$$\begin{aligned} & \text{For} \left[ \text{$i=0$, $i\leq n$, $i++$, $t_i = \text{$Cos$} \left[ \frac{(\text{Pi}*(2*i+1))}{\text{$kocuhyc$}} \right]$;} \right] ; \end{aligned}$$

$$x_i = \frac{(a+b)}{2} + \frac{(b-a)}{2} * t_i;$$

data = 
$$N[Table[{x_i, f[x_i]}, {i, 0, n}]];$$

\_.. таблица значений

dataX = Table[data[i, 1], {i, n + 1}];

таблица значений

dataY = Table[data[i, 2], {i, n + 1}];

таблица значений

#### Grid[data, Frame → All]

рамка всё таблица

#### Out[1887]=

| 5.92478   | 8.96065  |
|-----------|----------|
| 5.34549   | 17.8712  |
| 4.30165   | 37.6296  |
| 3.        | 37.7209  |
| 1.69835   | 12.674   |
| 0.654506  | 2.44561  |
| 0.0752163 | 0.807045 |

#### а) создать таблицу разделенных разностей функции

```
In[1888]:=
       findDividedDiff[dataX_, dataY_, first_, last_] := If[first + 1 == last,
          (dataY[[last]] - dataY[[first]])
                                          , (findDividedDiff[dataX, dataY, first + 1, last] -
           dataX[[last]] - dataX[[first]]
              findDividedDiff[dataX, dataY, first, last - 1]) / (dataX[[last]] - dataX[[first]])
       Array[diff, \{n+1, n+1\}, \{0, 0\}];
       массив
       For [k = 1, k \le n, k++,
       цикл ДЛЯ
              For [i = n, i \ge n - k, i - -, diff[i, k] = 0]];
              цикл ДЛЯ
       For [i = 0, i \le n, i++, diff[i, 0] = data[i+1, 2]];
       цикл ДЛЯ
       For [k = 1, k \le n, k++,
       цикл ДЛЯ
          For [i = 0, i \le n - k, i++,
         цикл ДЛЯ
           diff[i, k] = findDividedDiff[dataX, dataY, i + 1, k + i + 1]]];
       tab = Array[diff, \{n+1, n+1\}, \{0, 0\}];
             массив
       Grid[tab, Frame → All]
       таблица рамка всё
Out[1894]=
```

| 8.96065  | -15.3819   | 2.18505  | 3.49609    | 0.867531  | 0.044576 | -0.0362799 |
|----------|------------|----------|------------|-----------|----------|------------|
| 17.8712  | -18.9285   | -8.04024 | -0.170478  | 0.632603  | 0.256798 | 0          |
| 37.6296  | -0.0701471 | -7.41849 | -3.13801   | -0.720794 | 0        | 0          |
| 37.7209  | 19.2424    | 4.0263   | -0.0916238 | 0         | 0        | 0          |
| 12.674   | 9.79875    | 4.29428  | 0          | 0         | 0        | 0          |
| 2.44561  | 2.82857    | 0        | 0          | 0         | 0        | 0          |
| 0.807045 | 0          | 0        | 0          | 0         | 0        | 0          |

In[1895]:= diffRes = Table[diff[i, k], {i, 0, n}, {k, 1, n}]; таблица значений

#### б) построить интерполяционный многочлен Ньютона

```
In[1896]:=
         findNewtonDividedDiff[dataX_, dataY_, n_, diff_] :=
          dataY[[1]] + \sum_{i=1}^{n} diff[[1, i]] * \prod_{k=1}^{n} (x - dataX[[k]])
In[1897]:=
         Pnr = findNewtonDividedDiff[dataX, dataY, n, diffRes] // Simplify
Out[1897]=
         0.146237 + 10.2329 \times -20.6896 \times^2 + 19.6905 \times^3 - 6.26444 \times^4 + 0.803726 \times^5 - 0.0362799 \times^6
```

```
In[1898]:=
       graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                график функции
                                        стиль графика кр⋯ толщина
       graph2 = Plot[Pnr, \{x, a, b\}, PlotStyle \rightarrow Blue];
                                      стиль граф… синий
                график функции
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                _диаграмма раз... _стиль графика _размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Pnr"}]]
       с леген показать
                                                  легенда с к… кр… синий
Out[1901]=
       40
       30
                                                                      f[x]
       20
                                                                      Pnr
       10
    в) построить интерполирующую функцию
In[1902]:=
       Intf = Interpolation[data];
              _интерполировать
In[1903]:=
       graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                график функции
                                        _стиль графика _кр⋯ _толщина
       graph2 = Plot[Intf[x], {x, dataX[n + 1], b}, PlotStyle → Blue];
                график функции
                                                      _стиль граф⋯ _синий
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                диаграмма раз... стиль графика размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Intf"}]]
       _с леген⋯ _показать
                                                   _легенда с к⋯ _кр⋯ _синий
Out[1906]=
       40
       30
                                                                      f[x]
       20
                                                                      Intf
       10
```

 $\{2.01529, \{x \rightarrow 3.63449\}\}$ 

#### г) вычислить значения функции и построенных интерполяционных многочленов

```
In[1907]:=
       Print["f[2.4316] = ", f[2.4316]];
       печатать
       Print["Pnr[2.4316] = ", Pnr /. x \rightarrow 2.4316];
       Print["Intf[2.4316] = ", Intf[2.4316]];
       печатать
       f[2.4316] = 26.9215
       Pnr[2.4316] = 27.6144
       Intf[2.4316] = 27.4296
    д) найти максимумы абсолютных погрешностей интерполирования
    функции
In[1910]:=
       AbsPnr[x_] := Abs[f[x] - Pnr];
                       _абсолютное значение
       Maximize[{AbsPnr[x], a \le x \le b}, x]
       максимизировать
Out[1911]=
         \{0.715443, \{x \rightarrow 2.32743\}\}
In[1912]:=
       AbsIntf[x_] := Abs[f[x] - Intf[x]];
                        абсолютное значение
       \label{eq:maximize} \texttt{Maximize[{AbsIntf[x], dataX[[n+1]] \le x \le dataX[[1]]}, x]}
       максимизировать
Out[1913]=
```

#### При n = 10

$$\begin{split} &\text{n = 10;} \\ &\text{For} \left[ \text{i = 0, i \le n, i++, t}_{\text{i}} = \text{Cos} \left[ \frac{(\text{Pi} * (2 * \text{i} + 1))}{\text{косинус}} \right]; \\ &\text{цикл ДЛЯ} \end{split} \right]$$

$$x_i = \frac{(a+b)}{2} + \frac{(b-a)}{2} * t_i;$$

data = N[Table[{x<sub>i</sub>, f[x<sub>i</sub>]}, {i, 0, n}]]; 
$$\lfloor \cdot \cdot \rfloor$$
таблица значений

dataY = Table[data[i, 2], {i, n + 1}]; \_таблица значений

Grid[data, Frame → All]

таблица рамка всё

Out[1919]=

| 5.96946   | 8.42713  |
|-----------|----------|
| 5.7289    | 11.5679  |
| 5.26725   | 19.3243  |
| 4.62192   | 32.0811  |
| 3.8452    | 42.4385  |
| 3.        | 37.7209  |
| 2.1548    | 21.1347  |
| 1.37808   | 8.16243  |
| 0.732751  | 2.81857  |
| 0.271104  | 1.18551  |
| 0.0305357 | 0.738418 |

#### а) создать таблицу разделенных разностей функции

In[1920]:=

```
findDividedDiff[dataX_, dataY_, first_, last_] := If[first + 1 == last,
                                               условный оператор
  findDividedDiff[dataX, dataY, first, last - 1]) / (dataX[[last]] - dataX[[first]])
Array[diff, {n + 1, n + 1}, {0, 0}];
массив
For [k = 1, k \le n, k++,
цикл ДЛЯ
      For [i = n, i \ge n - k, i - -, diff[i, k] = 0]];
      цикл ДЛЯ
For [i = 0, i \le n, i++, diff[i, 0] = data[i+1, 2]];
цикл ДЛЯ
For [k = 1, k \le n, k++,
цикл ДЛЯ
  For [i = 0, i \le n - k, i++,
 цикл ДЛЯ
   diff[i, k] = findDividedDiff[dataX, dataY, i + 1, k + i + 1]]];
tab = Array[diff, \{n+1, n+1\}, \{0, 0\}];
    массив
Grid[tab, Frame → All]
таблица рамка всё
```

Out[1926]=

| 8.42713 | -13.0           | 5.33429          | 1.96998 | -0.87%  | -0.37% | -0.01          | 0.022% | 0.006% | 0.000% | -0.00% |
|---------|-----------------|------------------|---------|---------|--------|----------------|--------|--------|--------|--------|
|         | 558             |                  |         | 283 %   | 727 %  | 079 ·          | 2605   | 46377  | 6566   | 011    |
|         |                 |                  |         | 9       | 2      | 19             |        |        | 88     | 170 %  |
|         |                 |                  |         |         |        |                |        |        |        | 5      |
| 11.5679 | -16.8%          | 2.67966          | 3.82412 | 0.247   | -0.33% | -0.11%         | -0.01% | 0.002% | 0.001% | 0      |
|         | 016             |                  |         | 458     | 610:   | 299 :          | 158    | 72173  | 3201   |        |
|         |                 |                  |         |         | 5      | 8              | 84     |        |        |        |
| 19.3243 | - <b>19.7</b> % | -4 <b>.</b> 52 % | 3.14883 | 1.44873 | 0.155  | -0.05%         | -0.02% | -0.00% | 0      | 0      |
|         | 679             | 383              |         |         | 531    | 5 <b>1</b> 0 : | 644 :  | 480    |        |        |
|         |                 |                  |         |         |        | <b>0</b> 9     | 3      | 065    |        |        |
| 32.0811 | -13.3           | -11.6            | -1.36%  | 0.843   | 0.405  | 0.077%         | -0.00% | 0      | 0      | 0      |
|         | 348             | 63               | 026     | 844     | 386    | 0123           | 130 %  |        |        |        |
|         |                 |                  |         |         |        |                | 339    |        |        |        |
| 42.4385 | 5.58173         | -8.30%           | -4.09·  | -0.73%  | 0.070% | 0.082%         | 0      | 0      | 0      | 0      |
|         |                 | 711              | 755     | 277     | 319    | 9967           |        |        |        |        |
| 37.7209 | 19.624          | 1.80205          | -1.81   | -0.98%  | -0.24  | 0              | 0      | 0      | 0      | 0      |
|         |                 |                  | 685     | 409 :   | 628 :  |                |        |        |        |        |
|         |                 |                  |         | 7       | 5      |                |        |        |        |        |
| 21.1347 | 16.7012         | 5.92129          | 0.868   | -0.25%  | 0      | 0              | 0      | 0      | 0      | 0      |
|         |                 |                  | 651     | 276 %   |        |                |        |        |        |        |
|         |                 |                  |         | 1       |        |                |        |        |        |        |
| 8.16243 | 8.28086         | 4.28502          | 1.40558 | 0       | 0      | 0              | 0      | 0      | 0      | 0      |
| 2.81857 | 3.53746         | 2.39094          | 0       | 0       | 0      | 0              | 0      | 0      | 0      | 0      |
| 1.18551 | 1.8585          | 0                | 0       | 0       | 0      | 0              | 0      | 0      | 0      | 0      |
| 0.738%  | 0               | 0                | 0       | 0       | 0      | 0              | 0      | 0      | 0      | 0      |
| 418     |                 |                  |         |         |        |                |        |        |        |        |

In[1927]:=

#### б) построить интерполяционный многочлен Ньютона

In[1928]:=

findNewtonDividedDiff[dataX\_, dataY\_, n\_, diff\_] := dataY[[1]] +  $\sum_{i=1}^{n}$  diff[[1, i]] \*  $\prod_{k=1}^{i}$  (x - dataX[[k]])

In[1929]:=

Pnr = findNewtonDividedDiff[dataX, dataY, n, diffRes] // Simplify упростить

Out[1929]=

 $0.685488 + 1.76152 \text{ x} - 1.12705 \text{ x}^2 + 6.95728 \text{ x}^3 - 7.53604 \text{ x}^4 + 5.64755 \text{ x}^5 2.36477 \, x^6 + 0.539365 \, x^7 - 0.0674256 \, x^8 + 0.00433954 \, x^9 - 0.000111705 \, x^{10}$  In[1930]:=

```
graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                график функции
                                       стиль графика кр⋯ толщина
       graph2 = Plot[Pnr, \{x, a, b\}, PlotStyle \rightarrow Blue];
                                      стиль граф… синий
                график функции
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                _диаграмма раз... _стиль графика _размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Pnr"}]]
       с леген показать
                                                  легенда с к… кр… синий
Out[1933]=
       40
       30
                                                                      f[x]
       20
                                                                      Pnr
       10
    в) построить интерполирующую функцию
In[1934]:=
       Intf = Interpolation[data];
              _интерполировать
In[1935]:=
       graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                                       _стиль графика _кр⋯ _толщина
                график функции
       graph2 = Plot[Intf[x], {x, dataX[n + 1], b}, PlotStyle → Blue];
                график функции
                                                      стиль граф… синий
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                диаграмма раз... стиль графика размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Intf"}]]
       с леген... показать
                                                  _легенда с к⋯ _кр⋯ _синий
Out[1938]=
       40
       30
                                                                     f[x]
       20
                                                                     Intf
       10
```

#### г) вычислить значения функции и построенных интерполяционных многочленов

```
In[1939]:=
       Print["f[2.4316] = ", f[2.4316]];
       печатать
       Print["Pnr[2.4316] = ", Pnr /. x \rightarrow 2.4316];
       Print["Intf[2.4316] = ", Intf[2.4316]];
       печатать
       f[2.4316] = 26.9215
       Pnr[2.4316] = 26.9306
       Intf[2.4316] = 26.9622
    д) найти максимумы абсолютных погрешностей интерполирования
    функции
In[1942]:=
       AbsPnr[x_] := Abs[f[x] - Pnr];
                       _абсолютное значение
       Maximize[{AbsPnr[x], a \le x \le b}, x]
       максимизировать
Out[1943]=
         \{0.0101214, \{x \rightarrow 1.03802\}\}
In[1944]:=
       AbsIntf[x_] := Abs[f[x] - Intf[x]];
                        абсолютное значение
       \label{eq:maximize} \texttt{Maximize[{AbsIntf[x], dataX[[n+1]] \le x \le dataX[[1]]}, x]}
       максимизировать
Out[1945]=
```

 $\{0.449978, \{x \rightarrow 3.42761\}\}$ 

## Задание 3.

По результатам 1 и 2 задания видно, что погрешность интерполирования зависит от числа узлов (чем больше узлов, тем выше точность) и от расположения их на отрезке (погрешность интерполирования многочленом степени п будет минимальной при использовании чебышевских узлов интерполяции по сравнению с равноотстоящими).

## Задание 4.

3.6 42.947 4.2 39.0766 4.8 28.5897 5.4 16.8881 6. 8.07549

```
In[1946]:=
       n = 10;
       data = N[Table[{ih, f[ih]}, {i, 0, n}]];
             ___ таблица значений
       Grid[data, Frame → All]
                 рамка всё
       таблица
Out[1949]=
        0. 0.694738
       0.6 2.21247
       1.2 6.22067
       1.8 14.3741
       2.4 26.256
        3. 37.7209
```

### б) выполнить интерполяцию сплайном с помощью функции Interpolation

```
In[1950]:=
       Sf = Interpolation[data, Method → "Spline"];
            интерполировать
                                   метод
       graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                график функции
                                        _стиль графика _кр⋯ _толщина
       graph2 = Plot[Intf[x], \{x, dataX[n+1], b\}, PlotStyle \rightarrow Blue];
                график функции
                                                       стиль граф⋯ синий
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                 диаграмма раз... стиль графика размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Sf"}]]
       с леген... показать
                                                   легенда с к… _кр… _синий
Out[1954]=
       40
       30
                                                                      - f[x]
       20
                                                                       Sf
       10
```

#### г) вычислить значения функции и построенных интерполяционных сплайнов

```
In[1955]:=
        f[2.4316]
        Sf[2.4316]
Out[1955]=
        26.9215
Out[1956]=
        26.9202
```

## Задание 5.

5.4 16.8881 8.07549

```
In[1957]:=
       n = 10;
       b = 6;
       data = N[Table[{ih, f[ih]}, {i, 0, n}]];
             _ таблица значений
       dataX = Table[data[i, 1], {i, n + 1}];
              таблица значений
       dataY = Table[data[i, 2], {i, n + 1}];
              таблица значений
       Grid[data, Frame \rightarrow All]
       таблица
                 рамка _всё
Out[1963]=
        0. 0.694738
       0.6 2.21247
       1.2 6.22067
       1.8 14.3741
       2.4 26.256
        3. 37.7209
       3.6 42.947
       4.2 39.0766
       4.8 28.5897
```

#### а) аппроксимировать с помощью метода наименьших квадратов функцию многочленом первой степени

In[1964]:=

res = LinearSolve [Table [Table [If [i + k == 0, 
$$\sum_{j=1}^{n+1} 1$$
,  $\sum_{j=1}^{n+1} dataX[[j]]^{i+k}]$ , {i, 0, 1}], {k, 0, 1}], [решить лин...

$$\begin{array}{l} \text{Table} \Big[ \text{If} \Big[ \textbf{i} = \textbf{0}, \sum_{j=1}^{n+1} \text{dataY[[j]]}, \sum_{j=1}^{n+1} \left( \text{dataY[[j]]} * \text{dataX[[j]]}^i \right) \Big], \{\textbf{i}, \textbf{0}, \textbf{1} \} \Big] \Big]; \\ \text{| таб···} \Big[ \text{условный ојытратор} \end{array}$$

polRes = 0; For 
$$[i = 0, i \le 1, i++, polRes = polRes + res  $[i + 1] * x^i]$ ;   
 Цикл ДЛЯ$$

Q1 = polRes

Out[1967]=

Out[1971]=



#### б) аппроксимировать с помощью метода наименьших квадратов функцию многочленом второй степени

```
In[1972]:=
       res = LinearSolve [Table [Table [If [i + k == 0, \sum_{j=1}^{n+1} 1, \sum_{j=1}^{n+1} dataX[[j]]^{i+k}], {i, 0, 2}], {k, 0, 2}], [решить лин...
          polRes = 0;
       For [i = 0, i \le 2, i++, polRes = polRes + res[i+1] * x^i];
       цикл ДЛЯ
       Q2 = polRes
       graph1 = Plot[f[x], \{x, a, b\}, PlotStyle \rightarrow \{\text{Red, Thickness}[0.01]\}];
                график функции
                                       стиль графика кр… толщина
       graph2 = Plot[Q2, {x, a, b}, PlotStyle → Blue];
                                   стиль граф… синий
                график функции
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                диаграмма раз... стиль графика размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Q2"}]]
       с леген... показать
                                                 легенда с к... кр... синий
Out[1975]=
       -9.51762 + 25.0168 x - 3.59167 x^{2}
Out[1979]=
       40
       30
                                                                    f[x]
       20
                                                                     Q2
       10
```

#### в) найти многочлены наилучшего среднеквадратичного приближения третьей и четвертой степеней

```
In[1980]:=
       Q3 = Fit [data, \{1, x, x^2, x^3\}, x]
       graph1 = Plot[f[x], {x, a, b}, PlotStyle \rightarrow {Red, Thickness[0.01]}];
                 график функции
                                         Стиль графика кр⋯ толщина
       graph2 = Plot[Q3, \{x, a, b\}, PlotStyle \rightarrow Blue];
                                     стиль граф⋯ синий
                 график функции
       graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                 _диаграмма раз… _ стиль графика _размер точки
       Legended[Show[graph1, graph2, graph3], LineLegend[{Red, Blue}, {"f[x]", "Q3"}]]
       [с леген⋯ [показать
                                                   легенда с к… кр… синий
Out[1980]=
       -1.40168 + 3.5246 x + 5.80178 x^{2} - 1.04372 x^{3}
Out[1984]=
       40
       30
                                                                        f[x]
       20
                                                                       Q3
       10
```

In[1985]:= Q4 = Fit [data,  $\{1, x, x^2, x^3, x^4\}, x$ ] graph1 = Plot[f[x],  $\{x, a, b\}$ , PlotStyle  $\rightarrow \{\text{Red, Thickness}[0.01]\}$ ]; **\_стиль графика \_кр**... **\_толщина** график функции graph2 = Plot[Q4,  $\{x, a, b\}$ , PlotStyle  $\rightarrow$  Blue]; график функции \_стиль граф⋯ \_синий graph3 = ListPlot[data, PlotStyle → {PointSize[0.015], Green}]; диаграмма раз… стиль графика размер точки зелёный  $\label{lem:legended} Legended[Show[graph1, graph2, graph3], LineLegend[\{Red, Blue\}, \{"f[x]", "Q4"\}]]$ с леген... показать легенда с к… кр… синий Out[1985]=  $2.35026 - 18.188 x + 23.8956 x^2 - 5.86874 x^3 + 0.402086 x^4$ Out[1989]= 40



#### д) вычислить значения функции и построенных многочленов

```
In[1990]:=
                            graph1 = Plot[Q1, {x, a, b}, PlotStyle → Orange];
                                                                                                                                     стиль граф⋯ _оранжевый
                                                            график функции
                            graph2 = Plot[Q2, {x, a, b}, PlotStyle → Red];
                                                            график функции
                                                                                                                                        стиль граф⋯ красный
                            graph3 = Plot[Q3, {x, a, b}, PlotStyle → Gray];
                                                            график функции
                                                                                                                                         стиль граф⋯ серый
                            graph4 = Plot[Q4, \{x, a, b\}, PlotStyle \rightarrow \{Blue, Thickness[0.01]\}];
                                                            график функции
                                                                                                                                        dots = ListPlot[data, PlotStyle → {PointSize[0.015], Green}];
                                                    _диаграмма раз… _ стиль графика _размер точки
                            Legended[Show[graph1, graph2, graph3, graph4, dots],
                           с леген... показать
                                \label{lineLegend} LineLegend \hbox{$\tt [\{Orange, Red, Gray, Blue\}, \{"Q_1[x]", "Q_2[x]", "Q_3[x]", "Q_4[x]"\}]]}
                              _легенда с к··· _ серый синий _ сини
Out[1995]=
                            30
                            25
                                                                                                                                                                                                                                                           - Q_1[x]
                                                                                                                                                                                                                                                          - Q_2[x]
                            20
                                                                                                                                                                                                                                                           - Q_3[x]
                                                                                                                                                                                                                                                         Q<sub>4</sub>[x]
                            15
```