Introduction O OO Verification

Introduction

00 000000 0000

Objectives

You should be able to ...

Hoare Semantics

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

- Explain the syntax of Hoare triples and relate them to small step semantics.
- ▶ Use a Hoare triple to show the correctness of a simple program.
- Explain the properties of the weakest precondition.

Introduction

Verification

Introduction

O

O

Review of Language Syntax

The Language

$$S := skip$$
 $| u := t$
 $| S_1; S_2$
 $| if B then S_1 else S_2 fi$
 $| while B do S_1 od$

- ► The else branch can be left off if the subexpression is simply a skip.
- \triangleright var(S) is the set of variable names appearing in S.
- ightharpoonup change(S) is the set of variables appearing on the LHS of :=.

Definition of \rightarrow

Skip and Assignment

$$\begin{array}{l} E; S \equiv S \\ < \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi} , \sigma > \to < S_1, \sigma > \text{ where } \sigma \models B \\ < \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi} , \sigma > \to < S_2, \sigma > \text{ where } \sigma \models \neg B \\ < \text{ while } B \text{ do } S_1 \text{ od }, \sigma > \to < S_1; \text{ while } B \text{ do } S_1 \text{ od }, \sigma > \text{ where } \sigma \models B \\ < \text{ while } B \text{ do } S_1 \text{ od }, \sigma > \to < E, \sigma > \text{ where } \sigma \models \neg B \end{array}$$

Hoare Triples

- ightharpoonup The ightharpoonup semantics gives us exact transformations, but sometimes we want something more general.
- ▶ Define $\{p\}S\{q\}$, where p and q are assertions, and S is a program:
 - $ightharpoonup \models \{p\}S\{q\}$ if p is true before the program runs, q will be true afterwards; if the program terminates. "Partial Correctness"
 - ightharpoonup | ightharpoo

 $\{p\}$ skip $\{p\}$

▶ These are sometimes called *correctness formulas*.

Examples

- $| \{x = 0\}x := x + 1\{x = 1\}$
- $| \{x = 0\}x := x + 1\{true\}$

False formulas ...

- $| \{x = 0\}x := x + 1\{x = 2\}$
- $| \{x = 0\}x := x + 1\{x < 0\}$

What does this one mean? $\{x = 0\}x := x + 1\{false\}$

Verification
○○
○●○○○○

Introduction V	Verification	Introduction
	00 ●00000 0000	0 00

Axiom 1: Skip

Axiom 2: Assignment

$$\{p[u:=t]\}u:=t\{p\}$$

► Is this what you expected?

$$\{y > 10\}x := y\{x > 10\}$$

Introduction	Verification	Introduction	Verification
0 00	00 00 00 00 00	o oo	00 000•00 0000
	0000		0000

Rule 3: Composition

Rule 4: Conditional

$$\frac{\{p\}S_1\{r\},\{r\}S_2\{q\}}{\{p\}S_1;S_2\{q\}}$$

$$\frac{\{p \land B\}S_1\{q\},\{p \land \neg B\}S_2\{q\}}{\{p\} \mathtt{if} \ B \mathtt{then} \ S_1 \mathtt{else} \ S_2\mathtt{fi} \ \{q\}}$$

► See Dijkstra's paper EWD 264.

4 D > 4 B > 4 E > 4 E > E 990

Introduction	Verification	Introduction	Verification
0	00		00
00	000000	00	000000
	0000		0000

Rule 5: Loop

$\frac{\{p \wedge B\}S\{p\}}{\{p\} \mathtt{while} \ B \ \mathtt{do} \ S \ \mathtt{od} \ \{p \wedge \neg B\}}$

Rule 6: Consequence

► This one you will use a *lot*.

$$\frac{p \to p_1, \{p_1\} S\{q_1\}, q_1 \to q}{\{p\} S\{q\}}$$

Skip, Assignment, and Sequence

If, Consequence

$\{p\}$ skip $\{p\}$

$$\{p[u:=t]\}u:=t\{p\}$$

$$\frac{\{p\}S_1^*\{r\},\{r\}S_2^*\{q\}}{\{p\}S_1^*;\{r\}S_2^*\{q\}}$$

$$\{y = 20, x = 10\}$$

$$t := x;$$

$$\{y = 20, t = 10\}$$

$$x := y;$$

$$\{x = 20, t = 10\}$$

$$y := t$$

$$\{x = 20, y = 10\}$$

$$\begin{split} \frac{\{p \land B\}S_1^*\{q\}, \{p \land \neg B\}S_2^*\{q\}}{\{p\} \texttt{if } B \texttt{ then } \{p \land B\}S_1^*\{q\} \texttt{ else } \{p \land \neg B\}S_2^*\{q\} \texttt{ fi } \{q\}}{} \\ \frac{p \to p_1, \{p_1\}S^*\{q_1\}, q_1 \to q}{\{p\}\{p_1\}S^*\{q_1\}\{q\}} \end{split}$$

4□ > 4₫ > 4분 > 4분 > 분 90

Introduction	Verification	Introduction	Verification
0	00		00
00	000000 00 0 0		000000 0000
	0000		000

Activity

The Verification

Try to verify the following program.

{true} if
$$x > y$$
 then $m := x$ fi; $\{m = max(x,y)\}$ if $x < y$ then $m := y$ fi

(Hint: actually, it's not true!)

 Introduction
 Verification
 Introduction
 Verification
 Verification
 Verification
 Verification
 Verification
 OO
 OO

The Verification

```
{true} if x > y then m := x fi; if x < y then \{y = max(x, y)\}m := y\{m = max(x, y)\} else \{m = max(x, y)\} skip \{m = max(x, y)\} fi \{m = max(x, y)\}
```

The Verification

```
{true} if x > y then m := x fi ; {P \equiv x < y \land y = max(x,y) \lor x > y \land m = max(x,y)} if x < y then \{y = max(x,y)\}m := y\{m = max(x,y)\} else \{m = max(x,y)\} skip \{m = max(x,y)\} fi \{m = max(x,y)\}
```


Introduction	Verification	Introduction	Verification
0	00	0	00
00	000000 0000	00	000000
	0000		000

The Verification

The Verification

```
{true}  \{x > y \land x = \max(x, y) \lor x < y \land y = \max(x, y) \lor x = y \land m = \max(x, y)\}  if x > y then \{P[x = \max(x, y)]\}m := x\{P\} else \{P\}skip \{P\} fi;  \{P \equiv x < y \land y = \max(x, y) \lor x \ge y \land m = \max(x, y)\}  if x < y then \{y = \max(x, y)\}m := y\{m = \max(x, y)\}  else \{m = \max(x, y)\} skip \{m = \max(x, y)\} fi \{m = \max(x, y)\}
```


