Métodos Numéricos II

Tema 3: Métodos Numéricos para resolver PVI

Teresa E. Pérez y Miguel Piñar

Departamento de Matemática Aplicada Facultad de Ciencias Universidad de Granada

18 de mayo de 2015

- 1 Introducción
- Problema de Cauchy para una EDO
 - Problema de valores iniciales
 - Interpretación geométrica: campo de pendientes
 - Existencia y unicidad de soluciones
- El método de Euler
- Métodos de discretización
- Métodos de un paso
 - Métodos de Taylor
 - Métodos de Runge-Kutta
 - Métodos de un paso generales
- Métodos multipaso
 - Orden y consistencia de los métodos multipaso
 - Estabilidad de los métodos multipaso
 - Convergencia de los métodos de varios pasos

Introducción

Ecuación algebraica

Igualdad en la que intervienen una o más incógnitas.

Ejemplo:
$$x^2 - 2x + 1 = 0$$

Introducción

Ecuación algebraica

Igualdad en la que intervienen una o más incógnitas.

Ejemplo:
$$x^2 - 2x + 1 = 0$$

Solución

Valor particular de la(s) incógnita(s) de una ecuación, que la satisfacen.

Ejemplo:
$$x = 1$$

Ecuación diferencial ordinaria (e.d.o.)

Ecuación funcional en la que intervienen la función incógnita y sus derivadas.

$$F(t, x(t), x'(t), \dots, x^{(n)}(t)) = 0$$

- t variable independiente
- x = x(t) variable dependiente
- n orden de la ecuación

Ejemplo: E.d.o. de orden n = 1:

$$x(t)^2 + x'(t)^2 = 1.$$

Solución de la ecuación diferencial

Función $x = \phi(t)$, con $\phi : I \longrightarrow \mathbb{R}$ que verifica

$$F(t,\phi(t),\phi'(t),\ldots,\phi^{(n)}(t))=0$$

para todo *t* en el intervalo *l*.

Observación

Para que la función $\phi(t)$ sea solución debe verificar

$$\phi(t) \in \mathcal{C}^n(I)$$
.

Ejemplo: $x(t) = \sin t$ es una solución de $x(t)^2 + x'(t)^2 = 1$ pues

$$\sin^2 t + \cos^2 t = 1$$

Solución de la ecuación diferencial

Función $x = \phi(t)$, con $\phi : I \longrightarrow \mathbb{R}$ que verifica

$$F(t,\phi(t),\phi'(t),\ldots,\phi^{(n)}(t))=0$$

para todo *t* en el intervalo *l*.

Observación

Para que la función $\phi(t)$ sea solución debe verificar

$$\phi(t) \in \mathcal{C}^n(I)$$
.

Ejemplo: $x(t) = \sin t$ es una solución de $x(t)^2 + x'(t)^2 = 1$ pues

$$\sin^2 t + \cos^2 t = 1$$

Definiciones:

 Una ecuación diferencial se dice autónoma si no depende explícitamente de t

$$F(x,x',\ldots,x^{(n)})=0$$

(pero siempre x = x(t))

- Una ecuación diferencial se dice lineal si la función F es lineal en $x, x', \dots, x^{(n)}$
- Una ecuación diferencial se dice que está en forma normal si la derivada $x^{(n)}$ está despejada

$$x^{(n)} = f(t, x, x', \dots, x^{(n-1)}).$$

Ejemplo

Dada la ecuación diferencial

$$x'=x$$
,

las funciones $x(t) = C e^t$, para $C \in \mathbb{R}$, son soluciones de la ecuación.

Ejemplo

Observamos que por cada punto del plano pasa una única curva solución. La curva queda determinada por su valor en el punto t=0.

Problema de Cauchy para una EDO

Un problema de Cauchy (también llamado problema de valor inicial o PVI) consiste en resolver una EDO sujeta a unas ciertas condiciones iniciales.

De ahora en adelante supondremos una ecuación diferencial de primer orden en forma normal

Problema de Cauchy o de valores iniciales (PVI)

$$\begin{cases}
 x' = f(t, x), & t \in I \\
 x(t_0) = x_0
\end{cases}$$
(1)

Primeros ejemplos

Ejemplo 1

La función $x(t) = 500 e^t$ es una solución del problema de Cauchy de primer orden

$$\begin{cases} x' = x, & t \in \mathbb{R} \\ x(0) = 500 \end{cases}$$

Primeros ejemplos

Ejemplo 1

La función $x(t) = 500 e^t$ es una solución del problema de Cauchy de primer orden

$$\begin{cases} x' = x, & t \in \mathbb{R} \\ x(0) = 500 \end{cases}$$

Ejemplo 2

Consideremos la e.d.o.

$$x' = \frac{1}{3}(tx - 2t + x).$$

A partir de la ecuación, para cada punto $t \in [-4, 4]$, $x \in [0, 6]$, podemos calcular x'. La representación en el plano se llama campo de direcciones o campo de pendientes.

Interpretación geométrica: campo de pendientes

Interpretación geométrica: campo de pendientes

Interpretación geométrica: campo de pendientes

Problema de Cauchy para el ejemplo 2

Podemos considerar el PVI

$$\begin{cases} x' = \frac{1}{3}(tx - 2t + x), & t \in [-4, 4], \\ x(0) = 1 \end{cases}$$

Una solución será la curva del campo de pendientes que pase por el punto (0, 1).

Existencia y unicidad de soluciones

Teorema (local de Picard-Lindelöf)

Sea $f(t,x):\Omega\subseteq\mathbb{R}\times\mathbb{R}^n\longrightarrow\mathbb{R}^n$, donde Ω es un conjunto abierto, una función continua y localmente Lipschitziana respecto de x. Entonces, dado $(t_0,x_0)\in\Omega$, podemos encontrar un intervalo cerrado $I_{\alpha}=[t_0-\alpha,t_0+\alpha]\subset\mathbb{R}, \alpha\in\mathbb{R}$ donde existe una única solución del siguiente problema de Cauchy

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

que cumple que los pares $(t, x(t)) \in \Omega, \forall t \in I_{\alpha}$.

Existencia y unicidad de soluciones

Teorema (global de Picard-Lindelöf)

Si f y $\partial f/\partial x$ son continuas en el rectángulo centrado en (t_0, x_0)

$$D = \{(t, x) \in \mathbb{R} \times \mathbb{R}^n / |t - t_0| \le \alpha, \quad \|x - x_0\| \le \beta\},\$$

entonces el p.v.i. tiene una única solución x(t) definida en el intervalo $|t-t_0|<\min\{\alpha,\beta/M\}$, donde M es el máximo de la función |f(t,x)| en el rectángulo D.

Deducción del método de Euler

$$x(t+h) = x(t) + x'(t)h + x''(\xi)\frac{h^2}{2} = x(t) + hf(t,x(t)) + x''(\xi)\frac{h^2}{2}$$

Partición del intervalo $[t_0, t_0 + a]$ en N partes iguales

$$t_n=t_0+nh,\ h=rac{a}{N},\ n=0,\ldots,N$$

Partición del intervalo $[t_0, t_0 + a]$ en N partes iguales

$$t_n = t_0 + nh, \ h = \frac{a}{N}, \ n = 0, \dots, N$$

Notaremos

- $x(t_n)$ el valor exacto de la solución
- x_n el valor aproximado en t_n

Partición del intervalo $[t_0, t_0 + a]$ en N partes iguales

$$t_n = t_0 + nh, \ h = \frac{a}{N}, \ n = 0, \dots, N$$

Notaremos

- $x(t_n)$ el valor exacto de la solución
- x_n el valor aproximado en t_n

Generamos

$$x(t_1) = x(t_0 + h) \approx x(t_0) + x'(t_0)h = x(t_0) + hf(t_0, x(t_0)) = x_0 + hf(t_0, x_0)$$

esto es

$$x(t_1)\approx x_1=x_0+hf(t_0,x_0)$$

Método de Euler

$$x_0 = x(t_0)$$

 $x_{n+1} = x_n + hf(t_n, x_n), \quad n = 0, 1, 2, ...$

Acumulación de errores en el método de Euler

El método de Euler, h=0.4

El método de Euler, h=0.4, h=0.2, h=0.1

Convergencia del método de Euler

Lema 1

Sean $x \ge -1$ y $m \ge 0$ entonces $0 \le (1 + x)^m \le e^{mx}$.

Lema 2

Sean t,s dos números positivos y $\{a_i\}_{i\in\mathbb{N}}$ una sucesión que verifica $a_0>-t/s$, y $a_{i+1}\leq (1+s)a_i+t$, $\forall i\geq 0$, entonces

$$a_{i+1} \leq e^{(i+1)s}\left(a_0 + \frac{t}{s}\right) - \frac{t}{s}, \quad \forall i \geq 0.$$

Convergencia del método de Euler

Teorema (Convergencia del método de Euler)

Supongamos que f es continua y verifica una condición de Lipschitz (uniforme en t) de constante L en la variable x,

$$|f(t,x)-f(t,x^*)| \leq L|x-x^*|, \quad \forall x,x^*$$

y supongamos que existe una constante M tal que

$$|x''(t)| < M, \quad \forall t \in [t_0, t_0 + a],$$

entonces se verifica

$$|x(t_i)-x_i|\leq \frac{hM}{2L}\left[e^{L(t_i-t_0)}-1\right].$$

Partición del intervalo $[t_0, t_0 + a]$ en N partes iguales

$$t_n=t_0+nh,\ h=rac{a}{N},\ n=0,\ldots,N$$

Partición del intervalo $[t_0, t_0 + a]$ en N partes iguales

$$t_n = t_0 + nh, \ h = \frac{a}{N}, \ n = 0, \dots, N$$

Notaremos

- x(t_n) el valor exacto de la solución
- x_n el valor aproximado en t_n

Partición del intervalo $[t_0, t_0 + a]$ en N partes iguales

$$t_n = t_0 + nh, \ h = \frac{a}{N}, \ n = 0, \dots, N$$

Notaremos

- x(t_n) el valor exacto de la solución
- x_n el valor aproximado en t_n

Métodos iterativos de k pasos:

utilizan x_{n-k+1}, \ldots, x_n para obtener x_{n+1} , partiendo de x_0, \ldots, x_{k-1} .

Partición del intervalo $[t_0, t_0 + a]$ en N partes iguales

$$t_n=t_0+nh,\ h=rac{a}{N},\ n=0,\ldots,N$$

Notaremos

- x(t_n) el valor exacto de la solución
- x_n el valor aproximado en t_n

Métodos iterativos de k pasos:

utilizan x_{n-k+1}, \ldots, x_n para obtener x_{n+1} , partiendo de x_0, \ldots, x_{k-1} .

Explícitos: $x_{n+1} = F(x_{n-k+1}, \ldots, x_n);$

Implícitos: $F(x_{n-k+1},...,x_n,x_{n+1})=0$ (resolviendo la ecuación)

Métodos de Taylor

Métodos de Taylor de orden *r*:

Métodos de 1 paso, explícitos

$$x_{n+1} = x_n + hf^{(0)}(t_n, x_n) + \frac{h^2}{2!}f^{(1)}(t_n, x_n) + \cdots + \frac{h^r}{r!}f^{(r-1)}(t_n, x_n)$$

donde

$$f^{(0)}(t,x) = f(t,x)$$

$$f^{(k+1)}(t,x) = \frac{\partial f^{(k)}(t,x)}{\partial t} + \frac{\partial f^{(k)}(t,x)}{\partial x} f(t,x)$$

Métodos de Taylor

Método de Taylor de orden 1: Método de Euler

$$x_{n+1} = x_n + hf(t_n, x_n)$$

Métodos de Taylor

Método de Taylor de orden 1: Método de Euler

$$x_{n+1} = x_n + hf(t_n, x_n)$$

Método de Taylor de orden 2:

$$x_{n+1} = x_n + hf(t_n, x_n) + \frac{h^2}{2!} \left(\frac{\partial f(t_n, x_n)}{\partial t} + \frac{\partial f(t_n, x_n)}{\partial x} f(t_n, x_n) \right)$$

Métodos de Taylor

Método de Taylor de orden 1: Método de Euler

$$x_{n+1} = x_n + hf(t_n, x_n)$$

Método de Taylor de orden 2:

$$x_{n+1} = x_n + hf(t_n, x_n) + \frac{h^2}{2!} \left(\frac{\partial f(t_n, x_n)}{\partial t} + \frac{\partial f(t_n, x_n)}{\partial x} f(t_n, x_n) \right)$$

Inconveniente Mayor precisión, pero hay que evaluar derivadas de f.

Métodos de Taylor

Métodos de Runge-Kutta

Métodos de Runge-Kutta con R evaluaciones:

Son métodos de 1 paso, explícitos

$$x_{n+1} = x_n + h \sum_{r=1}^{R} c_r K_r,$$
 $K_1 = f(t_n, x_n)$
 $K_r = f\left(t_n + ha_r, x_n + h \sum_{s=1}^{r-1} b_{rs} K_s\right), r = 2, 3, ..., R$

donde
$$\sum_{r=1}^{R} c_r = 1$$
, $a_r = \sum_{s=1}^{r-1} b_{rs}$, $r = 2, 3, ..., R$

Métodos de Runge-Kutta con R evaluaciones:

Tabla de Butcher

Runge-Kutta con 1 o 2 evaluaciones

Runge-Kutta con 1 evaluación: Método de Euler

$$x_{n+1} = x_n + hf(t_n, x_n)$$

Método de Heun

$$x_{n+1} = x_n + \frac{h}{2}f(t_n, x_n) + \frac{h}{2}f(t_n + h, x_n + hf(t_n, x_n))$$

Método de Euler modificado:

$$x_{n+1} = x_n + hf(t_n + \frac{h}{2}, x_n + \frac{h}{2}f(t_n, x_n))$$

Método de Heun

Método de Euler modificado

Método de Runge-Kutta con 4 evaluaciones:

Método de Runge-Kutta clásico

$$x_{n+1} = x_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

$$K_1 = f(t_n, x_n)$$

$$K_2 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}K_1)$$

$$K_3 = f(t_n + \frac{h}{2}, x_n + \frac{h}{2}K_2)$$

$$K_4 = f(t_n + h, x_n + hK_3)$$

Método de Runge-Kutta con 4 evaluaciones:

Métodos de un paso generales

Forma general

$$x_{n+1} = x_n + h\Phi(t_n, x_n, h)$$

Métodos de un paso generales

Forma general

$$x_{n+1} = x_n + h\Phi(t_n, x_n, h)$$

• El error local de discretización en el punto t_{n+1} se define como la cantidad

$$\mathcal{E}_{n+1}(h) = \frac{1}{h} \big(x(t_{n+1}) - x(t_n) - h\Phi\big(t_n, x(t_n), h\big) \big)$$

Métodos de un paso generales

Forma general

$$x_{n+1} = x_n + h\Phi(t_n, x_n, h)$$

• El *error local de discretización* en el punto t_{n+1} se define como la cantidad

$$\mathcal{E}_{n+1}(h) = \frac{1}{h} \big(x(t_{n+1}) - x(t_n) - h\Phi\big(t_n, x(t_n), h\big) \big)$$

• El *error global* se define como $e_{n+1} = x(t_{n+1}) - x_{n+1}$

Orden de los métodos de un paso

Orden de un método

Un método es de orden *p* si es *p* el mayor entero para el cual se verifica

$$\mathcal{E}(h) = \frac{1}{h} \big(x(t+h) - x(t) - h\Phi\big(t, x(t), h\big) \big) = O(h^p),$$

donde x(t) es la solución teórica del problema de valores iniciales

Orden de los métodos de un paso

Orden de un método

Un método es de orden *p* si es *p* el mayor entero para el cual se verifica

$$\mathcal{E}(h) = \frac{1}{h} \big(x(t+h) - x(t) - h\Phi\big(t, x(t), h\big) \big) = O(h^p),$$

donde x(t) es la solución teórica del problema de valores iniciales

- El método de Euler es orden 1.
- El método de Taylor de orden p es, realmente, orden p.
- Los métodos de Heun y de Euler Modificado son de orden 2.
- El método de Runge-Kutta clásico es orden 4.

Desarrollo de Taylor en dos variables

Supongamos que f(t,x) y todas sus derivadas parciales de orden $\leq n+1$ existen y son continuas en $D=\{(t,x)/a\leq t\leq b,\ c\leq x\leq d\}$, y sean $h_1>0$ y $h_2>0$. Para todo $(t,x)\in D$ existen ξ entre t y $t+h_1$, y μ entre x y $x+h_2$ tales que

$$f(t+h_1,x+h_2)=P_n(t+h_1,x+h_2)+R_n(t+h_1,x+h_2),$$

donde

$$P_{n}(t + h_{1}, x + h_{2}) = f(t, x) + \left[h_{1} \frac{\partial f}{\partial t}(t, x) + h_{2} \frac{\partial f}{\partial x}(t, x) \right]$$

$$+ \frac{1}{2} \left[h_{1}^{2} \frac{\partial^{2} f}{\partial t^{2}}(t, x) + 2 h_{1} h_{2} \frac{\partial^{2} f}{\partial t \partial x}(t, x) \right]$$

$$+ h_{2}^{2} \frac{\partial^{2} f}{\partial x^{2}}(t, x) + 2 h_{1} h_{2} \frac{\partial^{2} f}{\partial t \partial x}(t, x)$$

$$+ h_{2}^{2} \frac{\partial^{2} f}{\partial x^{2}}(t, x) + 2 h_{1} h_{2} \frac{\partial^{2} f}{\partial t \partial x}(t, x)$$

$$+ \frac{1}{n!} \left[\sum_{i=0}^{n} \binom{n}{i} h_{1}^{n-i} h_{2}^{i} \frac{\partial^{n} f}{\partial t^{n-i} \partial x^{i}}(t, x) \right],$$

$$R_{n}(t + h_{1}, x + h_{2}) = \frac{1}{(n+1)!} \sum_{i=0}^{n+1} \binom{n+1}{i} h_{1}^{n+1-i} h_{2}^{i} \frac{\partial^{n+1} f}{\partial t^{n+1-i} \partial x^{i}}(\xi, \mu).$$

Consistencia de los métodos de un paso

Consistencia

Se dice que un método es consistente con el problema de valores iniciales si

$$\lim_{h\to 0}\frac{1}{h}\big(x(t+h)-x(t)-h\Phi\big(t,x(t),h\big)\big)=0$$

Consistencia de los métodos de un paso

Consistencia

Se dice que un método es consistente con el problema de valores iniciales si

$$\lim_{h\to 0}\frac{1}{h}\big(x(t+h)-x(t)-h\Phi\big(t,x(t),h\big)\big)=0$$

En este caso el orden será $p \ge 1$

Consistencia de los métodos de un paso

Consistencia

Se dice que un método es consistente con el problema de valores iniciales si

$$\lim_{h\to 0}\frac{1}{h}\big(x(t+h)-x(t)-h\Phi\big(t,x(t),h\big)\big)=0$$

En este caso el orden será $p \ge 1$

Teorema

Un método es consistente si y sólo si

$$\lim_{h\to 0} \Phi(t, x(t), h) = f(t, x(t))$$

Estabilidad de los métodos de un paso

Estabilidad

Se dice que el método es estable si, cuando $\{x_n\}$ y $\{z_n\}$ son las soluciones de

$$\begin{array}{rcl} x_{n+1} &=& x_n + h\Phi(t_n,x_n,h), & \text{con } x_0 \text{ dado,} \\ z_{n+1} &=& z_n + h \big[\Phi(t_n,z_n,h) + \varepsilon_n\big], & \text{con } z_0 \text{ dado,} \end{array}$$

se tiene

$$\max_{1\leq n\leq N}|x_n-z_n|\leq M_1|x_0-z_0|+M_2\max_{0\leq n\leq N-1}|\varepsilon_n|$$

donde M_1 y M_2 son constantes que no dependen de h.

Estabilidad de los métodos de un paso

Estabilidad

Se dice que el método es estable si, cuando $\{x_n\}$ y $\{z_n\}$ son las soluciones de

$$\begin{array}{rcl} x_{n+1} &=& x_n + h\Phi(t_n,x_n,h), & \text{con } x_0 \text{ dado,} \\ z_{n+1} &=& z_n + h \big[\Phi(t_n,z_n,h) + \varepsilon_n\big], & \text{con } z_0 \text{ dado,} \end{array}$$

se tiene

$$\max_{1\leq n\leq N}|x_n-z_n|\leq M_1|x_0-z_0|+M_2\max_{0\leq n\leq N-1}|\varepsilon_n|$$

donde M_1 y M_2 son constantes que no dependen de h.

Basta con que $\Phi(t, x, h)$ verifique una condición de Lipschitz en la variable x

Convergencia de los métodos de un paso

Convergencia

Se dice que un método de un paso es convergente si

$$\lim_{\substack{h\to 0\\ nh=t-t_0}} x_n = x(t)$$

para todo $x \in [t_0, t_0 + a]$ y para toda solución

$$x_{n+1} = x_n + h\Phi(t_n, x_n, h)$$

Convergencia de los métodos de un paso

Convergencia

Se dice que un método de un paso es convergente si

$$\lim_{\substack{h\to 0\\ nh=t-t_0}} x_n = x(t)$$

para todo $x \in [t_0, t_0 + a]$ y para toda solución

$$x_{n+1} = x_n + h\Phi(t_n, x_n, h)$$

Teorema

Todo método de un paso consistente y estable es convergente

Métodos lineales multipaso

Un método lineal de k pasos tiene la forma

$$\sum_{i=0}^k \alpha_i x_{n+i} = h \sum_{i=0}^k \beta_i f_{n+i}, \quad \text{siendo } f_{n+i} = f(t_{n+i}, x_{n+i})$$

donde $\alpha_k = 1$, $|\alpha_0| + |\beta_0| > 0$.

El método será explícito si $\beta_k = 0$, e implícito en otro caso.

Construcción de los métodos multipaso

Mediante integración numérica: integramos la ecuación diferencial x'(t) = f(t, x(t)) en el intervalo $[t_{n+r}, t_{n+k}]$ $(0 \le r < k)$ y usando la igualdad:

$$x(t_{n+k}) - x(t_{n+r}) = \int_{t_{n+r}}^{t_{n+k}} x'(x) dt, \quad k > r$$

llegamos a

$$x(t_{n+k}) - x(t_{n+r}) = \int_{t_{n+r}}^{t_{n+k}} f(t, x(t)) dt, \quad k > r$$

y se sustituye la integral por una fórmula de cuadratura con nodos: $t_{n+k}, t_{n+k-1}, \ldots, t_n$

Métodos de Adams-Bashforth

Métodos de Adams-Bashforth: se parte de la siguiente identidad:

$$x(t_{n+k}) - x(t_{n+k-1}) = \int_{t_{n+k-1}}^{t_{n+k}} x'(x) dt,$$

es decir

$$x(t_{n+k})-x(t_{n+k-1})=\int_{t_{n+k-1}}^{t_{n+k}}f(t,x(t))dt,$$

y se sustituye la integral por una fórmula de cuadratura con nodos: $t_n, t_{n+1}, \ldots, t_{n+k-1}$

Métodos de Adams-Bashforth

Son, pues, métodos explícitos de *k* pasos de la forma:

$$x_{n+k} - x_{n+k-1} = h(\beta_{k-1}f_{n+k-1} + \ldots + \beta_0f_n)$$

k	β_0	eta_{1}	β_2	β_3	β_{4}	
1	1					
2	$-\frac{1}{2}$	$\frac{3}{2}$				
3	5 12 9	$-\frac{\frac{3}{2}}{\frac{16}{12}}$	23 12			
4	$-\frac{74}{24}$	$-\frac{37}{24}$	$-\frac{59}{24}$	55 24 1387		
5	2 <u>51</u> 720	$-\frac{24}{637}$ $-\frac{637}{360}$	$ \begin{array}{r} 23 \\ 12 \\ -59 \\ 24 \\ 109 \\ \hline 30 \end{array} $	$-\frac{13\overline{87}}{360}$	1901 720	

Métodos de Adams-Moulton

Métodos de Adams-Moulton: se parte de la siguiente identidad:

$$x(t_{n+k}) - x(t_{n+k-1}) = \int_{t_{n+k-1}}^{t_{n+k}} x'(x) dt,$$

es decir

$$x(t_{n+k})-x(t_{n+k-1})=\int_{t_{n+k-1}}^{t_{n+k}}f(t,x(t))dt,$$

y se sustituye la integral por una fórmula de cuadratura con nodos: $t_n, t_{n+1}, \ldots, t_{n+k-1}, t_{n+k}$

Métodos de Adams-Moulton

Son, pues, métodos implícitos de *k* pasos de la forma:

$$x_{n+k} - x_{n+k-1} = h(\beta_k f_{n+k} + \beta_{k-1} f_{n+k-1} + \ldots + \beta_0 f_n)$$

k	β_0	eta_1	eta_{2}	β_3	β_4
1	$-\frac{\frac{1}{2}}{\frac{1}{12}}$	1 8 12	<u>5</u> 12	0	
3 4	$-\frac{\frac{1}{24}}{\frac{19}{720}}$	$-\frac{5}{24}$ $\frac{106}{720}$	$-\frac{\frac{19}{24}}{720}$	9 24 646 720	251 720

Construcción de los métodos multipaso

Mediante derivación numérica: aproximamos la derivada en la ecuación diferencial x'(t) = f(t, x(t)) mediante una fórmula de derivación numérica con nodos: $t_{n+k}, t_{n+k-1}, \ldots, t_n$. Los métodos así obtenidos se denominan BDF (*backward differentiation formulas*) y son métodos de k pasos implícitos de la forma

$$x_{n+k} + \alpha_{k-1}x_{n+k-1} + \ldots + \alpha_0x_n = h\beta f_{n+k}$$

k	β	α_{0}	$lpha_{ extsf{1}}$	α_2	α_3	
1	1	-1				
2	2 <u> 3</u>	<u>1</u>	$-\frac{4}{3}$			
3	6 11	$-\frac{2}{11}$	9 11	$-\frac{18}{11}$		
4	<u>12</u> 25	3 25	$-\frac{16}{25}$	<u>36</u> 25	$-\frac{48}{25}$	

Error de truncatura local

Dado un método lineal de *k* pasos definimos el *Error de truncatura local* mediante

$$\tau(h) = \frac{1}{h} \sum_{j=0}^{k} \left[\alpha_j x(t+jh) - h\beta_j x'(t+jh) \right]$$

para x(t) una función de clase C^1 solución del PVI.

Error de truncatura local

Dado un método lineal de *k* pasos definimos el *Error de truncatura local* mediante

$$\tau(h) = \frac{1}{h} \sum_{j=0}^{k} \left[\alpha_j x(t+jh) - h\beta_j x'(t+jh) \right]$$

para x(t) una función de clase C^1 solución del PVI.

Un método será consistente si

$$\lim_{h\to 0}\tau(h)=0.$$

Al método lineal de k pasos anterior le asociamos el operador lineal en diferencias $\mathcal L$ definido por

$$\mathcal{L}(x(t);h) = \sum_{j=0}^{k} \left[\alpha_j x(t+jh) - h\beta_j x'(t+jh) \right]$$

donde x es una función de clase C^1 en [a,b]

Si x(t) es suficientemente regular, entonces desarrollando x(t+jh), x'(t+jh), $j=0,\ldots,k$ entorno a t, se tiene

$$\mathcal{L}(x(t);h) = C_0x(t) + C_1hx'(t) + \cdots + C_qh^qx^{(q)}(t) + \cdots$$

donde C_0, \ldots, C_q, \ldots , son constantes.

Orden de un método

El método lineal de k pasos se dice que es de orden p si

$$\emph{C}_0 = \emph{C}_1 = \cdots = \emph{C}_{p} = 0, \, \text{y} \, \, \emph{C}_{p+1}
eq 0;$$

Orden de un método

El método lineal de k pasos se dice que es de orden p si

$$C_0 = C_1 = \cdots = C_p = 0$$
, y $C_{p+1} \neq 0$;

Teorema

El método lineal de *k* pasos es de orden *p* si los coeficientes verifican el sistema de ecuaciones

$$\alpha_{0} + \cdots + \alpha_{k} = 0$$

$$\alpha_{1} + 2\alpha_{2} + \cdots + k\alpha_{k} = \beta_{0} + \cdots + \beta_{k}$$

$$\vdots \qquad \vdots$$

$$\frac{1}{p!}(\alpha_{1} + 2^{p}\alpha_{2} + \cdots + k^{p}\alpha_{k}) = \frac{1}{(p-1)!}(\beta_{1} + 2^{p-1}\beta_{2} + \cdots + k^{p-1}\beta_{k})$$

Consistencia de los métodos multipaso

Consistencia

El método lineal de k pasos es consistente si y sólo si $C_0 = C_1 = 0$. Por tanto el método es consistente si y sólo si

$$\sum_{j=0}^k \alpha_j = 0; \quad \sum_{j=0}^k j\alpha_j = \sum_{j=0}^k \beta_j.$$

Consistencia de los métodos multipaso

Consistencia

El método lineal de k pasos es consistente si y sólo si $C_0 = C_1 = 0$. Por tanto el método es consistente si y sólo si

$$\sum_{j=0}^k \alpha_j = 0; \quad \sum_{j=0}^k j \alpha_j = \sum_{j=0}^k \beta_j.$$

En este caso el orden será $p \ge 1$

Estabilidad de los métodos multipaso

Introducimos ahora los polinomios

$$\rho(\lambda) = \sum_{j=0}^{k} \alpha_j \lambda^j; \quad \sigma(\lambda) = \sum_{j=0}^{k} \beta_j \lambda^j$$

llamados primer y segundo polinomio característico asociado al método.

Estabilidad de los métodos multipaso

Introducimos ahora los polinomios

$$\rho(\lambda) = \sum_{j=0}^{k} \alpha_j \lambda^j; \quad \sigma(\lambda) = \sum_{j=0}^{k} \beta_j \lambda^j$$

llamados primer y segundo polinomio característico asociado al método.

Polinomio estable

Un polinomio $\rho(\lambda)$ se dice que es estable (o que verifica la *condición de estabilidad*) si

- ninguna raíz de $\rho(\lambda)$ tiene módulo mayor que 1,
- las raíces que tienen módulo igual a 1 son simples.

Convergencia de los métodos de varios pasos

Convergencia

Se dice que un método de k pasos es convergente si

$$\lim_{\substack{h\to 0\\ nh=t-t_0}} x_n = x(t)$$

para todo $t \in [t_0, t_0 + a]$ y para toda solución de

$$\sum_{i=0}^{k} \alpha_i \mathbf{x}_{n+i} = h \sum_{i=0}^{k} \beta_i f_{n+i},$$

que verifique las condiciones iniciales:

$$x_j=\mu_j(h), \quad j=0,\ldots,k-1, \quad ext{donde } \lim_{h o 0}\mu_j(h)=x_0.$$

Convergencia de los métodos multipaso

Teorema de Dahlquist

Todo método lineal multipaso es convergente si y sólo si se verifican las siguientes condiciones

- $\rho(1) = 0$
- **2** $\rho'(1) = \sigma(1)$

