Is SOC Intrinsically Fragile?

Student: Ahmet Akman Supervisors: Luca Greco, Antoine Chaillet

Introduction

- In computational neuroscience, SOC is often hypothesized for brain driving itself towards a critical state, close to a qualitative behavior change.
- SOC is proposed as a mechanism for optimal information processing [1].
- There is an ongoing debate in neuroscience community about presence of SOC in brain.

Pros	Cons
Power law distributed avalanches are observed in brain which are compatible with theoretical framework.	It is possible to observe power law distributed avalanches without being at a critical point [2].

We study a model used in SOC analysis [3] [4] [5]

$$\dot{x} = (\mu - \mu^*)x - \mu x^2 \tag{1}$$

- Criticality is achieved when
 - x=0 $\mu=\mu^*$
- While *critical value* μ^* *is unknown*.
- Control laws to induce SOC.
 - **Robustness issue** is observed in simulation.
- Is this robustness issue an **intrinsic** property of SOC?

Two Different Control Strategies

> Observer based controller [6]

$$\dot{x} = (\mu - \mu^*)x - \mu x^2
\dot{\mu} = -\mu + \hat{\mu}^*
\dot{\hat{\xi}} = -\hat{\mu}^* + \mu(1 - x) - l_1(\hat{\xi} - \ln(x))
\dot{\hat{\mu}}^* = -l_2(\hat{\xi} - \ln(x))$$
(2)

Derivative based controller

Simulations: Lack of SOC

Intrinsic Obstruction to Robust SOC

Proposition 1 Assume that the following implication holds:

$$\begin{array}{ccc} h_1(x,\mu,z) &= 0\\ h_2(x,\mu,z) &= 0 \end{array} \Rightarrow x\mu = 0.$$

Then the controller:

$$\dot{\mu} = h_1(x, \mu, z)$$

$$\dot{z} = h_2(x, \mu, z)$$

does **NOT** ensure robustness to SOC for (1.1).

Observer Based Controller (2):

Holds the implication when $z = [\hat{\mu}^*, \hat{\xi}]^T$

$$\dot{\mu} = h_1(x, \mu, z) = 0$$

$$\dot{z} = h_2(x, \mu, z) = 0$$

Derivative Based Controller (3):

Holds the implication when $\dot{\mu} = h_1(x, \mu, z) = 0$

$$\dot{z} = h_2(x, \mu, z) = 0$$

Take Home Messages

- There are **no robust feedback methodology for SOC** yet.
- Transcritical bifurcations lose the criticality under nonzero perturbance.
- Our result could be an indication of a more fundamental obstruction of SOC.
- We studied *exact* SOC, self-organized quasi criticality (**SOqC**) can still be searched for.

References

[1] J. M. Beggs, "The criticality hypothesis: how local cortical networks might optimize information processing." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 366, Aug. 2008. [2] A. Destexhe and J. D. Touboul, "Is there sufficient evidence for criticality in cortical systems?" eneuro, vol.8, Mar. 2021 [3] J. Hesse, and T. Gross, "Self-organized criticality as a fundamental property of neural systems. *Frontiers in Systems* Neuroscience, vol.8 Sep. 2014

[4] G. Menesse, B. Marin, M. Girardi-Schappo ,and O. Kinouchi, "Homeostatic criticality in neuronal networks" *Chaos,* Solitons & Fractals vol.156 Mar. 2022.

[5] M. Girardi-Schappo, E.F. Galera, T.T.A. Carvalho, L. Brochini, N.L. Kamiji, A.C. Roque, and O. Kinouchi, "A unified theory

pf E/I synaptic balance, quasicritical neuronal avalanches and asynchronous irregular spiking" J. of Physics: Complexity, vol. 2, no. 4 Oct. 2010. [6] M.S. Perrin, L. Greco, A. Chaillet and A. Destexhe, "An observer-based approach to self-organized criticality", M2 CNN

Université Paris-Saclay 2024.