CS3230 Lecture 4 (revised)

"A Review of Sorting, Quicksort Analysis, and Augmenting Data Structures"

- ☐ Lecture Topics and Readings
 - **❖** (Quick Review) of Sorting Methods [CLRS]-C?
 - **❖ Quicksort and Randomized QS** [CLRS]-C7
 - **❖** Augmenting Data Structures [CLRS]-C14

Creative View of Sorting Methods
Quicksort (only 40% sub-optimal)
Be more aware of augmenting Data Structure

Hon Wai Leong, NUS

© Leong Hon Wai, 2003--

(CS3230 Outline) Page 1

[CLRS]...

Sabbatical leave at NUS Computer Science Dept 1995/96

[CLRS]

&

Charles Leiserson.

Hon Wai Leong, NUS

(CS3230 Outline) Page 2

© Leong Hon Wai, 2003--

[CLRS] @500K

[CLRS]-90, [CLRS]-01, [CLRS]-09 Celebrating 500,000 copies sold

(CS3230 Outline) Page 3

Hon Wai Leong, NUS

© Leong Hon Wai, 2003--

[HH2013]... 3rd edition

Steven Halim

Felix Halim

[HH13] *Competitive Programming*, (3rd edition) by Steven Halim and Felix Halim, 2013.

Hon Wai Leong, NUS © Leong Hon Wai, 2003--

(CS3230 Outline) Page 4

Antony Hoare (1934 –)

Invented Quicksort (at age 26)

Developed Hoare's Logic (for program correctness)

Developed CSP (including dining philisophers' problem)

Quote: (about difficulties of creating software systems)

"There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult."

- Turing Award, 1980
- · Knighted, 2000

Hon Wai Leong, NUS

© Leong Hon Wai, 2003--

(CS3230 Outline) Page 5

"A Review of Sorting, Lower Bounds, and **Sorting in Linear Time**"

□ Lecture Topics and Readings

CS3230 Lecture 4

- (Quick Review) of Sorting Methods [CLRS]-C?
- **❖ Ouicksort and Randomized OS** [CLRS]-C7
- ***** Lower Bound for Sorting [CLRS]-C8
- **Sorting in Linear Time**

[CLRS]-C8

Creative Review of Sorting, Lower Bound and Optimal Sorting, **Busting the Lower Bound**

(CS3230 Review of Sorting) Page 1

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Thank you.

School of Computing

(CS3230 Outline) Page 6

Hon Wai Leong, NUS

© Leong Hon Wai, 2003--

Sorting Animation: by Steven Halim & students

http://www.comp.nus.edu.sg/~stevenha/visualization/sorting.html

Hon Wai Leong, NUS

(CS3230 Review of Sorting) Page 2

The problem of sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \le a'_2 \le \cdots \le a'_n$.

Example: *Input:* 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Sorting Animation: by Steven Halim & students

http://www.comp.nus.edu.sg/~stevenha/visualization/sorting.html

Slides from [CLRS]

Introduction to Algorithms

Page 3

Start with Selection Sort (CS3230 Review of Sorting) Page 5 (Deong Hon Wai, 2007--

Sorting: Problem and Algorithms

Problem: Sorting

Given a list of *n* numbers, sort them

Algorithms:

- ❖ Selection Sort $\Theta(n^2)$
- ❖ Insertion Sort $\Theta(n^2)$
- ❖ Bubble Sort $\Theta(n^2)$
- ❖ Merge Sort $\Theta(n \lg n)$
- ❖ Quicksort $\Theta(n \lg n)^*$

* average case

(CS3230 Review of Sorting) Page 4

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Selection Sort Algorithm oc

Recall from
Lecture 2

A[m] is largest among A[1..i]

Recursive Selection Sort

```
SELECTION-SORT-R (A, n) \triangleright A[1 ... n]

if n = 1 then return

m \leftarrow \text{Find-Max}(A, n)

Swap (A[m], A[n])

SELECTION-SORT-R (A, n-1)
```

A[m] is largest among A[1..n]

Next consider Jnsertion Sort (CS3230 Review of Sorting) Page 9 Hon Wai Leong, NUS © Leong Hon Wai, 2007--

Recursive Selection Sort

SELECTION-SORT-R
$$(A, n) \triangleright A[1 ... n]$$

if $n = 1$ then return
 $m \leftarrow \text{Find-Max } (A, n)$
Swap $(A[m], A[n])$
SELECTION-SORT-R $(A, n-1)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ T(n-1) + \Theta(n) & \text{if } n > 1. \end{cases}$$

Hon Wai Leong, NUS

(CS3230 Review of Sorting) Page 8

© Leong Hon Wai, 2007--

Slides from [CLRS]

Introduction to Algorithms

Insertion sort

• Recursive Insertion sort

INSERTION-SORT-R $(A, n) \triangleright A[1 ... n]$ if n = 1 then return INSERTION-SORT-R (A, n-1)insert A[n] into sorted A[1 ... n-1]

Recursive Insertion sort

INSERTION-SORT-R
$$(A, n) \triangleright A[1 ... n]$$

if $n = 1$ **then return**
INSERTION-SORT-R $(A, n-1)$
insert $A[n]$ into sorted $A[1 ... n-1]$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ T(n-1) + \Theta(n) & \text{if } n > 1. \end{cases}$$

Slides from [CLRS]

Introduction to Algorithms

Recursive Bubble Sort

BUBBLE-SORT-R
$$(A, n) \triangleright A[1 ... n]$$

if $n = 1$ **then return**
One bubble-phase on $A[1 ... n]$
BUBBLE-SORT-R $(A, n-1)$

Hon Wai Leong, NUS

(CS3230 Review of Sorting) Page 15

© Leong Hon Wai, 2007--

Recursive Bubble Sort

BUBBLE-SORT-R
$$(A, n) \triangleright A[1 ... n]$$

if $n = 1$ **then return**
One bubble-phase on $A[1 ... n]$
BUBBLE-SORT-R $(A, n-1)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ T(n-1) + \Theta(n) & \text{if } n > 1. \end{cases}$$

Hon Wai Leong, NUS

(CS3230 Review of Sorting) Page 16

© Leong Hon Wai, 2007--

All have the *same* recurrence

Selection Sort, Insertion Sort, Bubble Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ T(n-1) + \Theta(n) & \text{if } n > 1. \end{cases}$$

$$(n-1) \downarrow 0$$
Extreme imbalance

All have the *same* recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ T(n-1) + \Theta(n) & \text{if } n > 1. \end{cases}$$

How to "solve" this recurrence

Answer: Use TELESCOPING

© Leong Hon Wai, 2007--

(CS3230 Review of Sorting) Page 17

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Hon Wai Leong, NUS

(CS3230 Review of Sorting) Page 18

How to "solve" this recurrence

Answer: Use TELESCOPING

$$T(n) = cn + T(n-1)$$

$$= cn + c(n-1) + T(n-2)$$

$$= cn + c(n-1) + c(n-2) + T(n-3)$$

$$= cn + c(n-1) + c(n-2) + \dots + c^{2} + T(1)$$

$$= cn + c(n-1) + c(n-2) + \dots + c^{2} + c$$

$$= c(n + (n-1) + (n-2) + \dots + c^{2} + 1)$$

(CS3230 Review of Sorting) Page 19

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

How about Perfect Balance

(CS3230 Review of Sorting) Page 21

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Observation:

Selection Sort, Insertion Sort, Bubble Sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ T(n-1) + \Theta(n) & \text{if } n > 1. \end{cases}$$

They all have running time: $T(n) = \Theta(n^2)$

Imbalance in Divide & Conquer algorithms produces inefficient algorithms

Hon Wai Leong, NUS

(CS3230 Review of Sorting) Page 20

© Leong Hon Wai, 2007--

Merge sort (Perfect balance)

MERGE-SORT A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort A[1..[n/2]] and A[[n/2]+1..n].
- 3. "Merge" the 2 sorted lists.

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

M-Thm:
$$a = 2$$
, $b = 2 \Rightarrow n^{\log_b a} = n^{\log_2 2} = n$
 \Rightarrow Case 2 $(k = 0) \Rightarrow T(n) = \Theta(n \lg n)$.

S3230 Review of Sorting) Page 22

Hon Wai Leong, NUS

What about Heapsort, Quicksort

Heapsort $\Theta(n \lg n)$ builds a data structure – Heap $\Theta(n)$ sort efficiently using the Heap $\Theta(n \lg n)$

Quicksort

Hon Wai Leong, NUS

Partitions array about a pivot $\Theta(n)$ Recursively sort each partition O(??)

How balanced is QuickSort?
(We'll see in next section)

Decoration

Page 23

CS3230 Lecture 4

"A Review of Sorting, Lower Bounds, and Sorting in Linear Time"

- □ Lecture Topics and Readings
 - **❖** (Quick Review) of Sorting Methods [CLRS]-C?
 - **❖ Quicksort and Randomized QS** [CLRS]-C7
 - Lower Bound for Sorting

[CLRS]-C8

Sorting in Linear Time

[CLRS]-C8

Creative Review of Sorting,
Lower Bound and Optimal Sorting,
Busting the Lower Bound

(CS3230 Quicksort Analysis) Page 1

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Thank you.

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

(CS3230 Review of Sorting) Page 24

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).

Slides from [CLRS]

Introduction to Algorithms

Divide and conquer

Quicksort an *n*-element array:

1.Divide: Partition the array into two subarrays around a **pivot** x such that elements in lower subarray $\le x \le$ elements in upper subarray.

2.*Conquer:* Recursively sort the two subarrays.

3. Combine: Trivial.

Key: *Linear-time partitioning subroutine.*

Slides from [CLRS]

Introduction to Algorithms

Page 3

Partitioning subroutine

Example of partitioning

Example of partitioning

Slides from [CLRS]

Introduction to Algorithms

Page 5

Slides from [CLRS]

Introduction to Algorithms

Example of partitioning

Slides from [CLRS]

Introduction to Algorithms

Page 7

ALGORITHMS

Example of partitioning

Slides from [CLRS]

Introduction to Algorithms

Page 8

Example of partitioning

ALGORITHMS

Example of partitioning

Slides from [CLRS]

Introduction to Algorithms

Page 9

Slides from [CLRS]

Introduction to Algorithms

Example of partitioning

Slides from [CLRS]

Introduction to Algorithms

Page 11

Example of partitioning

Slides from [CLRS]

Introduction to Algorithms

Page 12

Example of partitioning

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
$\longrightarrow i$						j	

Slides from [CLRS]

Introduction to Algorithms

Page 13

ALGORITHMS

Example of partitioning

6	10	13	5	8	3	2	11
6	5	13	10	8	3	2	11
6	5	3	10	8	13	2	11
6	5	3	2	8	13	10	11
	i					•	→ j

Slides from [CLRS]

Introduction to Algorithms

Example of partitioning

Slides from [CLRS]

Introduction to Algorithms

Page 15

ALGORITHMS

Example of partitioning

Slides from [CLRS]

Introduction to Algorithms

Page 16

Page 18

Pseudocode for quicksort

Quicksort(
$$A$$
, p , r)

if $p < r$

then $q \leftarrow \text{Partition}(A, p, r)$

Quicksort(A , p , q -1)

Quicksort(A , q +1, r)

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let T(n) = worst-case running time on an array of n elements.

Slides from [CLRS] Introduction to Algorithms Page 17

Slides from [CLRS] Introduction to Algorithms

Algorithms

Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) \qquad (arithmetic series)$$

Slides from [CLRS]

Introduction to Algorithms

Page 19

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$

Slides from [CLRS]

Introduction to Algorithms

Page 20

Page 22

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$
$$T(n)$$

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0)$$
 $T(n-1)$

Slides from [CLRS] Introduction to Algorithms Page 21 Slides from [CLRS] Introduction to Algorithms

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$

Slides from [CLRS]

Introduction to Algorithms

Page 23

ALGORITHMS

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$

Slides from [CLRS]

Introduction to Algorithms

Page 24

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$

$$T(0) \quad c(n-1) \qquad \Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2)$$

$$T(0) \quad c(n-2) \qquad \vdots$$

$$\Theta(1)$$

Slides from [CLRS]

Introduction to Algorithms

Page 25

Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$

$$\Theta(1) \quad c(n-1) \qquad \Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^2)$$

$$h = n \qquad T(n) = \Theta(n) + \Theta(n^2)$$

$$\Theta(1) \qquad \Theta(1)$$

Slides from [CLRS]

Introduction to Algorithms

Best-case analysis (For intuition only!)

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$

= $\Theta(n \lg n)$ (same as merge sort)

What if the split is always $\frac{1}{10}$: $\frac{9}{10}$?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$

What is the solution to this recurrence?

Slides from [CLRS]

Introduction to Algorithms

Page 27

Analysis of "almost-best" case

T(n)

Slides from [CLRS]

Introduction to Algorithms

Page 28

Analysis of "almost-best" case

Analysis of "almost-best" case

Slides from [CLRS] Introduction to Algorithms Page 29 Slides from [CLRS]

Introduction to Algorithms

Analysis of "almost-best" case

Slides from [CLRS]

Introduction to Algorithms

Page 31

More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

$$L(n) = 2U(n/2) + \Theta(n)$$
 lucky
 $U(n) = L(n-1) + \Theta(n)$ unlucky

Solving:

$$L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$$

$$= 2L(n/2 - 1) + \Theta(n)$$

$$= \Theta(n \lg n)$$
 Lucky!

How can we make sure we are usually lucky?

Randomized quicksort

IDEA: Partition around a *random* element.

- Running time is independent of the input order.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the output of a random-number generator.

Slides from [CLRS] Introduction to Algorithms Page 33

Slides from [CLRS] Introduction to Algorithms Page 34

Analysis of Randomized Quicksort

Let T(n) = the *average* time taken to sort an array of size n using Quicksort

If pivot x ends up in position k,

then
$$T(n) = T(k-1) + T(n-k) + (n+1)$$

Prob(pivot is at pos k) = 1/n for all k

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

(CS3230 Quicksort Analysis) Page 35

Analysis of Randomized Quicksort

Then, we have the following recurrence:

$$T(n) = \sum_{k=1}^{n} \frac{1}{n} \cdot \left[T(k-1) + T(n-k) + (n+1) \right]$$

→ Expand the summations

Analysis of Randomized Quicksort

Then, we have

$$T(n) = \begin{cases} T(0) + T(n-1) + (n+1) & \text{if } 0 : n-1 \text{ split} \\ T(1) + T(n-2) + (n+1) & \text{if } 1 : n-2 \text{ split} \\ T(2) + T(n-3) + (n+1) & \text{if } 2 : n-3 \text{ split} \\ \vdots & \vdots & \vdots \\ T(n-1) + T(0) + (n+1) & \text{if } n-1 : 0 \text{ split} \end{cases}$$

Prob(pivot is at pos k) = 1/n for all k

$$T(n) = \sum_{k=1}^{n} \frac{1}{n} \cdot \left[T(k-1) + T(n-k) + (n+1) \right]$$

Hon Wai Leong, NUS

(CS3230 Quicksort Analysis) Page 36

© Leong Hon Wai, 2007--

Analysis of Randomized Quicksort

Then, we have the following recurrence:

$$T(n) = \sum_{k=1}^{n} \frac{1}{n} \cdot \left[T(k-1) + T(n-k) + (n+1) \right]$$

$$nT(n) = 2\sum_{k=0}^{n-1} T(k) + n(n+1)$$

$$nT(n) = 2(T(0) + T(1) + ... + T(n-1)) + n(n+1)$$

→ Get rid of dependence on "full history"

© Leong Hon Wai, 2007--

(CS3230 Quicksort Analysis) Page 37

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Hon Wai Leong, NUS

(CS3230 Quicksort Analysis) Page 38

Analysis of Randomized Quicksort

Then, we get rid of "full history":

$$T(n) = \sum_{k=1}^{n} \frac{1}{n} \cdot \left[T(k-1) + T(n-k) + (n+1) \right]$$

$$nT(n) = 2[T(0) + T(1) + \dots + T(n-2) + T(n-1)] + n(n+1)$$

$$(n-1)T(n-1) = 2[T(0) + T(1) + \dots + T(n-2)] + (n-1)n$$

$$nT(n) = (n+1)T(n-1) + 2n$$

 \rightarrow *Divide by n(n+1)...* (make it telescopic)

Hon Wai Leong, NUS

(CS3230 Quicksort Analysis) Page 39

© Leong Hon Wai, 2007--

Analysis of Randomized Quicksort

Divide by n(n+1)... (make it telescopic)

$$T(n) = \sum_{k=1}^{n} \frac{1}{n} \cdot \left[T(k-1) + T(n-k) + (n+1) \right]$$

$$nT(n) = (n+1)T(n-1) + 2n$$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2}{n+1}$$

→ Now "telescope"...

Hon Wai Leong, NUS

(CS3230 Quicksort Analysis) Page 40

NUS |

© Leong Hon Wai, 2007--

Analysis of Randomized Quicksort

Now, telescope...

$$\frac{T(n)}{(n+1)} = \frac{2}{(n+1)} + \frac{T(n-1)}{(n)}$$

$$= \frac{2}{(n+1)} + \frac{2}{(n)} + \frac{T(n-2)}{(n-1)}$$

$$= \frac{2}{(n+1)} + \frac{2}{(n)} + \frac{2}{(n-1)} + \frac{T(n-3)}{(n-2)}$$

$$= \frac{2}{(n+1)} + \frac{2}{(n)} + \frac{2}{(n-1)} + \dots + \frac{2}{(3)} + \frac{T(1)}{(2)}$$

$$\frac{T(n)}{(n+1)} = \frac{T(1)}{(2)} + 2 \left[\frac{1}{(n+1)} + \frac{1}{(n)} + \frac{1}{(n-1)} + \dots + \frac{1}{(3)} \right]$$

(CS3230 Quicksort Analysis) Page 41

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Analysis of Randomized Quicksort

Then, we have the following recurrence:

$$T(n) = \sum_{k=1}^{n} \frac{1}{n} \cdot \left[T(k-1) + T(n-k) + (n+1) \right]$$

$$\frac{T(n)}{(n+1)} = \frac{T(1)}{(2)} + 2\left[\frac{1}{(n+1)} + \frac{1}{(n)} + \frac{1}{(n-1)} + \dots + \frac{1}{(3)}\right]$$

$$T(n) = 2(n+1)H(n+1) + O(n)$$

$$H(n) = \sum_{k=1}^{n} \frac{1}{k}$$
 is the Harmonic series

(CS3230 Quicksort Analysis) Page 42

Hon Wai Leong, NUS

Analysis of Randomized Quicksort

Avg running time of Randomized Quicksort:

$$T(n) = 2(n+1)H(n+1) + O(n)$$

$$H(n) = \ln n + O(1)$$
 [CLRS] - App.A

$$T(n) = 2(n+1)\ln n + O(n)$$

$$T(n) = 1.386n \lg n + O(n)$$

Recap: The Key Steps

Randomized Quicksort is only 38.6% from optimal.

Optimal sorting is $T^*(n) = (n \lg n)$ [See L.B. for Sorting]

Hon Wai Leong, NUS

(CS3230 Ouicksort Analysis) Page 43

© Leong Hon Wai, 2007--

Recap...

Beautiful analysis of Randomized Quicksort to get...

$$T(n) = 1.386n \lg n + O(n)$$

Not that difficult, *right*?

Where are the key steps?

- ❖ Get rid of full history
- **❖** Telescope

Hon Wai Leong, NUS

(CS3230 Ouicksort Analysis) Page 44

This recurrence depends on full history

$$n \cdot T(n) = 2\sum_{k=0}^{n} T(k) + n(n+1)$$

Step 1: Get rid of full history... to get

$$n \cdot T(n) = (n+1)T(n-1) + 2n$$

Step 2: Get to a form that can *telescope*...

$$\frac{T(n)}{(n+1)} = \frac{T(n-1)}{(n)} + \frac{2}{(n+1)}$$

(CS3230 Quicksort Analysis) Page 45

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Using the result...

Using a similar analysis, we can show...

© Leong Hon Wai, 2007--

 \Box For a randomly built *n*-node BST (binary search tree), the expected height is

❖ 1.386 lg *n*

□ Try it out yourself... Or read [CLRS]-C12.4

(CS3230 Quicksort Analysis) Page 46

Hon Wai Leong, NUS

Randomized quicksort analysis [by CLRS]

[CLRS] uses a slightly different analysis ...

Let T(n) = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For k = 0, 1, ..., n-1, define the *indicator* random variable

Slides from [CLRS]

Introduction to Algorithms

Page 47

(CS3230 Quicksort Analysis) Page 49

Hon Wai Leong, NUS © Leong Hon Wai, 2007--

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from code tuning.
- Quicksort behaves well even with caching and virtual memory.

Slides from [CLRS]

Introduction to Algorithms

Page 48

CS3230 Lecture 4 (revised)

"A Review of Sorting, Quicksort Analysis, and **Augmenting Data Structures**"

- ☐ Lecture Topics and Readings
 - **❖** (Quick Review) of Sorting Methods [CLRS]-C?
 - ***** Ouicksort and Randomized OS [CLRS]-C7
 - ***** Augmenting Data Structures

[CLRS]-C14

Creative View of Sorting Methods Quicksort (only 40% sub-optimal) Be more aware of augmenting Data Structure

© Leong Hon Wai, 2007--

Hon Wai Leong, NUS

(CS3230, AugmentingDS) Page 1

Augmenting Data Structures

- □ Why augment a data structure?
 - ❖ When "standard" data structures are not adequate
 - * Need to support *more* operations *efficiently*
- □ Readings: [CLRS]-C14

Note: For CS3230 Spring 2014, we use AVL tree (instead of the Red-Black tree) as our balanced BST.

> So, when reading the notes and textbook, replace all references to "Red-Black tree" with "AVI tree".

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

(CS3230, AugmentingDS) Page 2

Example of an OS-tree

$$size[x] = size[left[x]] + size[right[x]] + 1$$

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

(CS3230, AugmentingDS) Page 4

Dynamic order statistics

OS-SELECT(i, S): returns the *i*th smallest element

in the dynamic set S.

returns the rank of $x \in S$ in the OS-RANK(x, S):

sorted order of S's elements

IDEA: Use an AVL tree for the set S, but keep subtree sizes in the nodes

Notation for each node: & balance (not shown)

(CS3230, AugmentingDS) Page 3

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Selection

Implementation trick: Use a sentinel (dummy record) for NIL such that size[NIL] = 0.

OS-SELECT $(x, i) \rightarrow i$ th smallest element in the subtree rooted at x

 $k \leftarrow size[left[x]] + 1 \quad \triangleright k = rank(x)$ if i = k then return x

if i < k

then return OS-SELECT(left[x], i) else return OS-SELECT(right[x], i-k)

(OS-RANK is in the textbook.)

Hon Wai Leong, NUS

(CS3230, AugmentingDS) Page 5 © Leong Hon Wai, 2007--

Example

OS-SELECT(root, 5)

Running time = $O(h) = O(\lg n)$ for AVL trees.

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

(CS3230, AugmentingDS) Page 6

Example of insertion

Data structure maintenance

- **Q.** Why not keep the ranks themselves in the nodes instead of subtree sizes?
- **A.** They are hard to maintain when the AVI tree is modified

Modifying operations: Insert and Delete.

Strategy: Update subtree sizes when inserting or deleting.

© Leong Hon Wai, 2007--

Hon Wai Leong, NUS

(CS3230, AugmentingDS) Page 7

Handling rebalancing (updated)

Don't forget that AVL-INSERT and AVL-DELETE may also need to modify the AVL tree in order to maintain AVL tree size & balance.

• *Rotations*: fix up subtree sizes in O(1) time & update balance of nodes affected

Hon Wai Leong, NUS

Data-structure augmentation

Methodology: (e.g., order-statistics trees)

- 1. Choose an underlying data structure (*AVL* trees).
- 2. Determine additional information to be stored in the data structure (*subtree sizes*).
- 3. Verify that this information can be maintained for modifying operations (*AVL-INSERT*, *AVL-DELETE don't forget rotations*).
- 4. Develop new dynamic-set operations that use the information (*OS-SELECT and OS-RANK*).

These steps are *guidelines*, not rigid rules.

(CS3230, AugmentingDS) Page 10

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Thank you. 9 & A

(CS3230, AugmentingDS) Page 12

Hon Wai Leong, NUS

© Leong Hon Wai, 2007--

Augmenting Data Structures

□ Optional Readings:

* Read up [CLRS] C14.3 Interval Trees

☐ Homework:

Try R-problem: [CLRS] Ex 14.1-1, 14.1-2

Hon Wai Leong, NUS

(CS3230, AugmentingDS) Page 11