

Rotation-invariant Mixed Graphical Model Network for 2D Hand Pose Estimation

Deying Kong¹, Haoyu Ma¹, Yifei Chen², and Xiaohui Xie¹

Department of Computer Science, University of California at Irvine

² Tencent Hippocrates Research Lab

Introduction

- Objective: 2D hand pose estimation (keypoint detection)
- **Application**: AR/VR, gesture recognition, basic for 3D task.
- Challenge: self-occlusion due to articulation, viewpoint and object.
- Current Approach:
- Deep convolutional neural network (DCNN): Convolutional Pose Machines (CPM) is commonly used in 2D hand pose estimation, however, it only captures pose structure information implicitly.
- *Graphical Model (GM)*: Spatial constrains among body parts can be modeled explicitly, however, studies usually apply a GM with fixed parameters, which limits its ability to model a variety of pose.
- Our Contributions:
- We propose a new model named R-MGMN which combines graphical model and deep convolutional neural network efficiently.
- R-MGMN has several independent graphical models which can be selected softly based on image, instead of only one GM.

Mixed Graphical Model for Hand Pose

• Basic graphical model:
$$P^{basic}(X|I_{rt}) = \prod_{v_i \in V} \phi_l(xi|I_{rt}) \prod_{(j,k) \in \varepsilon} \psi(xj,xk|I_{rt})$$
 unary function pairwise function

 $V = \{v_1, v_2, ..., vk\}$ denote the set of hand keypoints, each of which is associate with a variable x_i representing its 2D position

• Mixed graphical model:
$$P(X|I_{rt}) = \sum_{l=1}^{L} w_l \prod_{v_i \in V} \phi_l(xi|I_{rt}) \prod_{(j,k) \in \varepsilon} \psi(xj,xk|I_{rt})$$

Marginal probability could be calculated by summing up the marginal probabilities of each individual graphical models, which could be calculated using message passing. L

$$P(x_i|I_{rt}) = \sum_{l=1}^{L} w_l P_l(x_i|I_{rt})$$

Methodology

• Network Architecture:

- Unary Branch: Apply deep neural network to the rotated image and output a set of heatmaps
- Rotation Net: Regress a rotation degree to make hands upwards
- Soft Classifier: Classify images by gestures and output a weight with Softmax
- Pool of Graphical Model: Each of the graphical model shares the same structure, but every single GM is associated with different parameters. Marginal probabilities are inferred on each GM, and then aggregated via a weight vector which comes from the soft classifier.

• Learning:

- Generate the ground truth rotation degree from hand keypoints, then train the Rotation Net (ResNet-18).
- Train unary branch (CPM) on rotated image
- Generate hand gestures classification labels by applying K-means algorithm to rotated images based on relative position of keypoints, and train the Soft Classifier (ResNet-152)
- Keep unary branch and soft classifier frozen, train the parameters of mixed graphical model
- Jointly train all the parameters

Results

- Quantitative Results:
- Probability of Correct Keypoint (PCK) curve on CMU panoptic dataset and Large-scale Multiview 3D hand pose dataset

	CM	U Panopt	tic Hand	Dataset								
CPM Baseline (%)	22.60	55.69	70.06	77.01	81.30	84.36	65.17					
Ours	23.67	60.12	76.28	83.14	86.91	89.47	69.93					
Improvement	1.07	4.43	6.22	6.13	5.61	5.11	4.76					
Large-scale Multiview 3D Hand Pose Dataset												
CPM Baseline (%)	38.27	81.78	91.54	94.84	96.39	97.27	83.35					
0	41 71	05.05	00.71	06.22	07.51	00 17	85.53					
Ours	41.51	85.97	93.71	96.33	97.51	98.17	83.33					

Qualitative Results

Ablation study

Threshold of PCK, σ	0.01	0.02	0.03	0.04	0.05	0.06	mPCK	improvement
CPM Baseline (%)	22.60	55.69	70.06	77.01	81.30	84.36	65.17	-
CPM + Single GM	22.58	55.78	70.14	77.05	81.34	84.41	65.21	0.04
CPM + Mixture of GMs	23.39	57.53	71.95	78.49	82.28	85.02	66.44	1.27
Rotaion + CPM ¹	22.70	57.91	72.95	79.94	83.90	86.71	67.35	2.18
Rotaion + CPM ²	21.97	57.59	74.53	81.98	86.21	88.83	68.52	3.35
R-MGMN	23.67	60.12	76.28	83.14	86.91	89.47	69.93	4.76