Coursera 16-2 Content Based Recommendations

https://www.coursera.org/learn/machine-learning/lecture/uG59z/content-based-recommendations

Content-base	ed recomr	nende	r systems	Nu = 4	, nm=5	CX X	1= [0.9]
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	$\begin{array}{c c} x_1 \\ x_1 \\ \text{(romance)} \end{array}$	(action)	[0]
X Dove at last	5	5	0	0	→ 0.9	-> 0	
Romance forever 2	5	?	?	0	-> 1.0	-> 0.01	
Cute puppies of love	(74.95	4	0	?	0.99	-> 0	
Nonstop car chases 4	0	0	5	4	0.1	→ 1.0	
Swords vs. karate 5	0	0	5	?	→ 0	→ 0.9	n=2
\Rightarrow For each user i, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user i as rating							

movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

$$\chi^{(3)} = \begin{bmatrix} 1 \\ \frac{0}{0} \end{bmatrix} \longrightarrow \Theta^{(1)} = \begin{bmatrix} 0 \\ \frac{5}{0} \end{bmatrix} \quad (\Theta^{(1)})^{T} \chi^{(3)} = 5 \times 0.99$$

$$= 4.95$$

- 영화의 특성에 따라 x1, x2로 측정, 예를들어 Love at last의 경우 romance적 요소가 많이 포함 되어있다. 반면 Sword vs karate는 action요소가 포함되어있다.
- x0 = 1라는 절편 값을 이용하여 X(1)의 백터를 만들어준다. 나머지 X(2), X(3)...도 같은 방법으로 만들어준다.
- $heta^{i} \in \mathbb{R}^{n+1}$, n=2, 세타값은 사용자에 따라 각각 다르다. 여기서는 세타1이 주어져있다고 가정 $(heta^{(i)})^T\!x^{(i)}$ 계산을 하면 Alice가 평가한 Cute puppies of love는 4.95가 나오는 것을 확인 할 수 있다.

Problem formulation

- $\rightarrow r(i, j) = 1$ if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- $\Rightarrow x^{(i)}$ = feature vector for movie i
- \Rightarrow For user j, movie i, predicted rating: $\underbrace{(\theta^{(j)})^T(x^{(i)})}_{}$ $\underbrace{\Diamond^{(j)} \in \mathbb{R}^{n+1}}_{}$
- $\rightarrow m^{(j)}$ = no. of movies rated by user jTo learn $\theta^{(j)}$:

$$\min_{(i,j)} \frac{1}{2^{\log 2}} = \frac{1}{((Q_{(i)})_{1}(X_{(i)}) - Q_{(i,j)})_{5}} + \frac{1}{2^{\log 2}} = \frac{1}{(Q_{(i)})_{5}}$$

- -예측된 값이 Trainig set의 값과 원자료의 값이 비슷할 수 있도록 세타j를 선택해준다.
- -선형회귀의 최소제곱법을 이용하여 식을 만들어준다. 그 후 Regularization항을 넣어준다.
- -추천시스템은 위에 식을 조금 변형한 형태이다.

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

-한 명의 유저의 최소화 세타 값을 구하고 싶으면 1번식, 여러 명의 유저의 최소화 세타 값을 구하고 싶으면 2번 (질문필수)

Optimization algorithm: $\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1}^{n_u} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta^{(j)}_k)^2$ Gradient descent update: $\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1}^{n_u} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$ $\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1}^{n_u} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$

- 선형회귀와 유일한 차이점은 1/m을 사용하지 않는다는 점이다
- 배운 알고리즘을 이용하여 좀더 발전된 최적화 알고리즘을 사용할 수 있다. Ex) conjugate gradient, LBFGS

Subtract : 추출하다, 빼다

for all of whatever : 어쨌든, 뭐든간에