Quiz 2 (Section 1)

Started: Mar 3 at 4:48pm

Quiz Instructions

Question 1	ots
If v_1,v_2 are in the same connected component C_1 and v_3,v_4 are in the same connected component C_2 . Which c_1 the following is an impossible combination for the postlist?	of
$\bigcirc \ \ (v_1, v_3, v_4, v_2)$	
$ullet$ (v_1,v_3,v_2,v_4)	
$\bigcirc \hspace{0.1cm} (v_1,v_2,v_3,v_4)$	
$\bigcirc \hspace{0.1cm} (v_3,v_1,v_2,v_4)$	

Question 2 1 pts

We are in the middle of running Dijkstra's algorithm on the graph given below starting from s: the first 4 vertices that are closest to s are marked as R_4 . Which one will be the 5-th closest vertex from s?

- o vertex h
- o vertex b
- vertex j
- o vertex c

Question 3 1 pts

How many linearization does this graph have?

- 0 10
- 0 6
- 0 16
- 0 8

Question 4 1 pts

Let G^R be the reverse graph of directed graph G. Which one of the following is NOT true?

- igcup If $m{G}$ is a DAG then $m{G^R}$ is also a DAG.
- \bigcirc The reverse graph of G^R is G.
- ullet The meta-graph of G is also the meta-graph of G^R .
- O If u can reach v in G^R and u can reach v in G, then G^R is not a DAG.

Question 5 1 pts

How many vertices are in the meta-graph of the following graph?

- \bigcirc 2
- \bigcirc 1
- 3
- 0 4

Question 6 1 pts

Let G be a directed graph with positive edge length and let p be one shortest path from u to v. (A). If we increase the length of every edge by 2, then p is still one shortest path from u to v. (B). If we multiply the length of every edge by 2, then p is still one shortest path from u to v.

- (A) is false and (B) is false.
- (A) is true and (B) is false.
- (A) is true and (B) is true.
- o (A) is false and (B) is true.

Question 7	1 pts
Assume we have a directed graph G . Would the algorithm below give us all connected components correctly 1, run DFS with timing on G to get postlist; Step 2, run DFS on G_R with ordering of above postlist. False True	? Step
Question 8	1 pts

Let G be a directed graph possibly with negative edge length but without negative cycle. Let $v_1 \to v_2 \to v_3 \to v_4 \to v_5$ be one shortest path from v_1 to v_2 . Which one of the following is NOT true?

- $distance(v_1, v_5) \geq distance(v_2, v_4)$.
- \bigcirc $distance(v_1, v_3) + distance(v_3, v_5) = distance(v_1, v_5).$
- On The path $v_1
 ightarrow v_2
 ightarrow v_3$ is one shortest path from v_1 to v_3 .
- ${}^{\frown}$ The path $v_2 o v_3 o v_4$ is one shortest path from v_2 to v_4 .

Question 9 1 pts

Let s be a source vertex and let t be a sink of of a DAG G. Then there must exist a linearization of G in which s is the first vertex and t is the last vertex.

- False
- True

Question 10 1 pts

How many connected components in the graph of the adjacency matrix below?

- 3
- 0 4
- 0 1
- 0 2

Quiz saved at 4:49pm

Submit Quiz

CMPSC 465 Spring 2022 Data Structures & Algorithms Chunhao Wang and Mingfu Shao

Quiz 2 (Section 1)

1

1. (1 pts.) There are 3 possibilities: C_1 can reach C_2 , or C_2 can reach C_1 , or neither of them. For the third case, the two components are independent, so the post values will be either $(v_1/v_2, v_3/v_4)$ or $(v_3/v_4, v_1/v_2)$. This case includes (c). Specifically, if we run DFS in the order of (v_3, v_4, v_1, v_2) on the graph below, we can get the postlist (v_1, v_2, v_3, v_4) .

For the first case, we know that the vertex with largest post value must be in C_1 ; statements (a) and (b) fall in this case. Running DFS on the graph given below starting from v_1 , and when exploring v_1 it visits v_2 first, gives postlist (v_1, v_3, v_4, v_2) .

Statement (b) is not possible.

For the second case, we know that the vertex with largest post value must be in C_2 ; statement (d) falls in this case. Running DFS on the graph given below starting from v_3 , and when exploring v_3 it visits v_4 first, gives postlist (v_3, v_1, v_2, v_4) .

- **2.** (1 pts.) With respect to R_4 , we have $dist[b] = min\{6 + 8, 3 + 10\} = 13$, dist[c] = 9 + 5 = 14, dist[h] = 9 + 8 = 17, dist[j] = 9 + 3 = 12. So vertex j is the 5-th closest vertex from s.
- **3.** (1 pts.) Notice that there is a path $a \to b \to f \to e$. So the relative positions of these 4 vertices are fixed.

Vertex c can be either between a and b, or between b and f; in either case, which gives a list of 5 vertices, d can be placed in any of the 4 spaces in between. So, the total number of distinct linearization is 8.

- **4.** (1 pts.) Statement (c) is not correct: the two meta-graphs have the same set of vertices but the direction of all edges are opposite.
- **5.** (1 pts.) Three connected components in the graph, corresponding to three vertices in the meta-graph.

6. (1 pts.) Statement (A) is false. The key is that the number of edges in shortest paths may be different. Counter-example: $p = \{e_1 = 1, e_2 = 1\}$ is the shortest path from u to v, and we have another path $p' = \{e_3 = 3\}$ from u to v. If we increase the length of every edge by 2, the length of p becomes 6, the length of p' becomes 5, then p is no longer the shortest path from u to v.

Statement (B) is true. The key is that the length of *every* path is halved. So their relationship remains.

- 7. (1 pts.) We know that G and G_R have the same collection of connected components. The given algorithm is to find connected component of G_R .
- **8.** (1 pts.) Statement (a) is false, as edge length may be negative. All other three statements are direct consequence of the optimal substructure property.
- **9.** (1 pts.) Let X be a linearization of G. We can always modify X by moving s to the front and moving t to the end. The resulting ordering will be also a linearization of G. (The proof is to check for every edge (u, v), u will also be before v in the new ordering.)
- **10.** (1 pts.) The corresponding graph is as the following. So, the number of connected components is 3.

