CPE/EE 323 Introduction to Embedded Computer Systems Homework I

1(25)	2(25)	3(25)	4 (25)	Total

Problem #1 (25 points) Address Space, Memory

Consider a hypothetical 24-bit processor called HYP24 with all registers, including PC and SP, being 24 bits long. The smallest addressable unit in memory is an 8-bit byte.

B. (6 points) Assume that first quarter of the address space is dedicated for HYP24's RAM memory and the upper half of the address space is reserved for HYP24's Flash memory. Give address ranges for the RAM and Flash memories. Fill in the table below. What is the size of the RAM memory and the Flash memory?

	Start byte address					
RAM memory	0000 0000 0000 0000	DOLL WILL HALL HALL				
,	0 0000 0000	ini to t				
Flash memory	0100 0000 0000 0000	FFFFFF				
	0.090 0000	Privit				

RAM memory size [Bytes/KB]: Flash memory size [bytes/KB]: 1024

The MSP430F20x is a microcontroller with 64 KB of address space divided between code memory (flash), RAM memory, and input/output peripherals. It has 1,024 Bytes of RAM memory starting at the address 0x0200, and 256 Bytes of address space reserved for special purpose registers and 8-bit input/output peripherals (starting at the address 0x0000) followed by 256 Bytes reserved for 16-bit input/output peripherals. The flash memory of 8 KB resides at the top of address space (highest addresses in the address space).

C. (8 points) Determine the address map by filling in the following table.

Address	Address	Sections in
	[hexadecimal]	address space
Last Flash address	OXFFFF	Flash Memory
First Flash address	0× E000	
Last RAM address	OXOSFF	RAM Memory
First RAM address	00200	
Last I/O address (16-bit per.)	OXOIFF	I/O address space
First I/O address (16-bit per.)	0× 0 1 00	
Last I/O address (8-bit per.)	OXOOFF	I/O address space
First I/O address (8-bit per.)	00000	

D. (7 points) What is the program stack (what is it, where is it located, and how we deal with it)? What is the maximum

stack size in the MSP430Fx described above? What should be the initial value of SP?
The program Stack, at the top of RAM is an area of the Stack to temporarily Store and preserve return addresses, procedure arguments, memory data, Flags and registers.

OMUS Stack Size: ON0200-7 by 05FF

o Instral Sp value : 0x 0200

Max Stalk Size = 1024B

* moves downin memory

Problem #2 (25 points) MSP430 Addressing Modes, Instruction Encoding

Consider the following instructions given in the table below. For each instruction determine its length (in words), the instruction words (in hexadecimal), source operand addressing mode, and the content of register R7 after execution of each instruction. Fill in the empty cells in the table. The initial content of memory is given below. Initial value of registers R5, R6, and R7 is as follows: R5=0xF002, R6=0xF00A, R7=0xFF88. Assume the starting conditions are the same for each question (i.e., always start from initial conditions in memory) and given register values. The format of the first word of double-operand instructions is shown below. (Note: Op-code for MOV is 0100).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Ор	-code			S-I	Reg		Ad	B/W		As		D-R	leg	

F009 09

	Instr. Address	Instruction	Instr. Length [words]	Instruction Word(s) [hex]	Source Operand Addressing Mode	R7=? [HEX]
(i)	0x1116	MOV R5, R7	1	0x4507	Register	0xF002
(ii)	0x1116	MOV.B R5, R7	1	0x4547	Register	0x0002
(a)	0x1116	MOV 6(R5), R7	2	0x4517 0x0006	Indexed	OX F014
(b)	0x1116	MOV.B 3(R5), R7	2	mx 4557 0x 000 3	Indexed	040006
(c)	0x1116	MOV.B -1(R6), R7	2	OX4657 OXFFFF	Indexed	0x0014
(d)	0x1116	MOV EDE, R7	2	OX 4017 OX DEFY	Symbolice	ONABBA
(e)	0x1116	MOV.B TONI, R7	2	DX 4057 OX DEED	Sym bolic	080006
(f)	0x1116	MOV &EDE, R7	2	0x4217 0x FOOL	Absolute	OX ABBA
(g)	0x1116	MOV.B @R6, R7	l	0×4667	In direct	0 70044
(h)	0x1116	MOV @R6+, R7	١	0X4637	Indirect auto	OX 2244
(i)	0x1116	MOV #41, R7	7	0x4237 6x0029	Immediate	0×0029
(j)	0x1116	MOV.B #27, R7	2	0x4277 0x001B	Immediate	070013

Or Charles of C

Label	Address [hex]	Memory[15:0] [hex]
	0xF000	0x0504
	0xF002	0xFFEE
TONI	0xF004	0xCC06
	0xF006	0x3304
	0xF008	0xF014
	0xF00A	0x2244
EDE	0xF00C	0xABBA
	0xF00E	0xEFDD

0100 0000, 0 1 00 0000,

No-rode Source Ad Blue As Destination

RS Foo 2+ FOO5 word in byte FOO6

C) R6-1 R76 M[F009]

0100_0110_0101_0111

1) R7 & M[EDE]

7 R7 & M[FOOC]

0100-0000-0001-0111

e) R76 M[F004] -> R76 0006

() R76 MEEDE]

g) MOV.B @ R6, R7 Ox FOOA

R76MERG] R762244 R76080044

h) MOV @RG+, R7 R7EM(RG]
0100_0010_0011_0111 RG->FOOL

i) mov #41, R7 R7641
0100-0000-0011-0111=74037

Mov. B #27, R7 R7627

Problem #3 (25 points) MSP430 Instructions, Addressing Modes
Consider the following instructions given in the table below. For
each instruction determine addressing modes of the source and
destination operands, source and destination addresses, and the
result of the operation. Fill in the empty cells in the table. The
initial content of memory is given in the table. The initial value of
registers R2, R5, and R6 is as follows: SR=R2=0x0000 (V=0, N=0,
Z=0, C=0), R5=0x0403, R6=0xC006. Assume the starting conditions
are the same for each question (i.e., always start from initial
conditions in memory) and given register values.

15	9	8	7							0
Reserved		٧	SCG1	SCG0	OSC OFF	CPU OFF	GIE	N	Z	С
										=
71.0										

Label	Address [hex]	Memory[15:0]
		[hex]
	0x0400	0xFEEE
	0x0402	0xA000
EDE	0x0404	0xA4BC
Label	Address [hex]	Memory[15:0]
		[hex]
	0xC000	0x0504
	0xC002	0xFEEE
TONI	0xC004	0xA8FA
	0xC006	0x33F4
	0xC008	0xF014
DEN	0xC00A	0x2244
	0xC00C	0xCDDA

Q2=0x0000 Q5=0x403 Q6=0xL006 OOOO VNZC

			rw-0					
Ú		Instruction	Instr. Size in Words	Source Operand Addressing Mode	Destination Operand Addressing Mode	Source Address	Dest. Address	Result (content of a memory location or a destination register; and new value of flags (C,V,Z, and N).
	(a)	ADD.B &TONI, R6 SOUTH OFF R66 M [TONI] R66 FA + D6	2	Absolute	Register	0አርመዛ	0x0006	C V Z N
	(b)	SUBC TONI, -3(R5) Q5 040400 Ox400 6	3	SymboliL	Indexed	0x (004	0x 040 0	C V 2 N 55 F4
	(c)	RRC.B @R5+	ſ	Indicect Auto încrement	N/A	0x0403	N/A	C V Z N 1 0 0 0 [25] = 0x0002 25 = 0x0404
	(d)	AND.W #0xAA55, EDE	Ŋ	Immediate mode	Symbolic	0x0000	Dxo404	C V Z N O O O ([EDE]= OXA014

Notes of setting flags: All instructions set N and Z flags as usual. Specific details for C and V are as follows: RRC (V=0, C is loaded with the shifted out bit).

0 0000 0000 0000 Vob Ox 0003 1010 IIIIレニト 0000 0000 0000 0110 0000 Noo 0000 6060 Z =0 0101 0161 1010 100 1016 AA55 1100 1011 0000 1010 1486 0100 0001 0000 lolo 4 l D A

Problem #4 (25 points) MSP430 Instructions

Consider the following instructions given in the table below. For each instruction determine changes in registers after its execution. Fill in the empty cells in the table. Initial value of registers R2, R5, and R7 is as follows: R2=0x0007 (Status register), R6=0xBB66, R7=0x40A9. Assume the starting conditions are the same for each instruction in the table (i.e., always start from the initial conditions in registers). Note: Format of the register R2 is shown below. For a detailed description of the instructions use the 5xx family user guide.

