

What we built

Problem

Music recommendation systems lack emotional context

Solution

A fine-tuned LLM that interprets natural language mood descriptions and suggests corresponding music

Impact

Bridges emotion and sound to create personalised, mood-based music experiences

System Architecture

End-to-end workflow connecting data processing, model training, and user interaction

Data

We adapted a general-purpose language model to interpret emotional language contextually and generate structured, mood-based outputs for personalized music recommendations

Mood samples dataset:

- Custom dataset of ~520 samples
- List of sentences linked to an emotion

Field	Description
user_text	Natural language description of the user's mood or emotional state
mood_id	Target emotion label corresponding to one of the 12 moods

Mood catalogue dataset:

- 12 core emotional states defining the target mood taxonomy
- Each mood linked to curated audio references

Field	Description
mood_id	Unique mood identifier
file_uri	Path to the curated audio file in the Google Cloud Storage bucket

Model Adaptation

Base Model

- Phi-3-mini-4k-instruct
- Optimised for instruction following and multilingual understanding

LoRA adaptation

- Low rank fine tuning
- ~520 emotion pairs

Vertex Al pipeline

- Automated training workflow
- Data transformation evaluation
- Each component versioned and reusable for future retraining

Output

- Structured JSON soundscapes
- Semantic coherence and output consistency

Evaluation and Results

We evaluated the fine-tuned model's ability to generate structured and emotionally coherent outputs

Quantitative Metrics

Metric	Description	Result
BLEU	Measures precision how many predicted words match the reference	0.258
ROUGE	Measures recall how much of the reference content is captured	0.520

Outcomes

- The model captures the correct emotional meaning even when using different wording.
- Balanced BLEU and ROUGE scores show good emotional alignment with natural variation.
- Indicates the model is not memorizing it's generalizing emotional patterns correctly.

Demo

Next Steps

Expand and diversify the dataset

- Add more nuanced emotional expressions and mixed moods
- Collect multilingual examples to improve robustness

Enhance model capabilities

- Test larger base models for richer emotional mapping
- Improve fine-tuning quality through parameter optimisation

Application Development

- Implement real-time lighting synchronization, colour changes appear dynamically after each prompt
- Improve Chainlit interface design and responsiveness

Evaluation Improvements

- Introduce human evaluation for emotional alignment
- Develop a custom emotion consistency metric