Association Rules Discovery

Discovering Knowledge in Data: An Introduction to Data Mining, By Daniel T. Larose. Copyright 2014 John Wiley & Sons, Inc.

Affinity Analysis and Market Basket Analysis

- Affinity Analysis studies characteristics or attributes that "go together"
- Affinity Analysis also known as <u>Market Basket Analysis</u>
- Seeks to uncover associations between attributes
- Rules quantify relationship between two or more attributes
- Association Rules have form:

IF antecedent THEN consequent

- Rules include measure of <u>Support</u> and <u>Confidence</u>
- For example, of 1,000 customers shopping, 200 bought diapers. In addition, of the 200 buying diapers, 50 bought beer
- Thus, the rule "If buy diapers, then buy beer" has support = 5% and confidence = 25%

Remember

- SUPPORT
 - The relative frequency where both left and right hand side of the association are found in the database
 - A low level of support may indicate that the pattern is not significant
 - Normally expressed as % or decimal e.g. A=>B

No. of transactions containing both A and B

Total no. of transactions

- CONFIDENCE
 - Given the occurrence condition A (antecedent), how often does condition B occur(consequent)

No. of transactions containing both A and B

No. of transaction containing A

• LIFT (Apriori in Weka) Lift is Confidence divided by the proportion of all examples that are covered by the consequence. This is a measure of the importance of the association that is independent of support

Confidence of Rule

(No. of transaction containing B/Total no. of transactions)

Affinity Analysis and Market Basket Analysis

- Algorithms seeking to mine association rules confronted with "curse of dimensionality"
 - Number of rules grows exponentially with number of attributes
- With k binary attributes, and only positive cases considered, there are $k \times 2^{k-1}$ possible association rules
- Typical applications of Market Basket Analysis may have thousands of attributes
 - Buy ITEM1, and ITEM2, and ..., and ITEM1000?
- For example, suppose store sells only 100 different items
 - Customer may buy, or not buy, any combination of 100 items
 - This equals $100 \times 2^{99} = \sim 6.4 \times 10^{31}$ possible rules to interpret!
- Task searching for possible rules appears hopeless...

Market Basket Analysis Example using the A Priori Algorithm

- A Priori Algorithm reduces search problem to manageable size
- Leverages rule structure to its advantage

Example

- Suppose farmer sells crops at roadside stand
- Seven items available for purchase in set
- *I* = {asparagus, beans, broccoli, corn, green peppers, squash, tomatoes}
- Customers purchase different subsets of I
- Each customer transaction tracked, showing which items purchased

Market Basket Analysis using the A Priori Algorithm

• Example Table shows transactions made at roadside stand, one particular day

Transaction	Items Purchased
1	Broccoli, green peppers, corn
2	Asparagus, squash, corn
3	Corn, tomatoes, beans, squash
4	Green peppers, corn, tomatoes, beans
5	Beans, asparagus, broccoli
6	Squash, asparagus, beans, tomatoes
7	Tomatoes, corn
8	Broccoli, tomatoes, green peppers
9	Squash, asparagus, beans
10	Beans, corn
11	Green peppers, broccoli, beans, squash
12	Asparagus, beans, squash
13	Squash, corn, asparagus, beans
14	Corn, green peppers, tomatoes, beans, broccoli

A Priori Algorithm Data Representation

Data Representation

- Market Basket Analysis data <u>must be</u> represented in <u>Transactional or Tabular</u> format
- Transactional Format
 - Requires two fields: *ID* and *Content*
 - Each record represents single item
- Tabular Format
 - Each record represents separate transaction
 - Items are flagged as 0 (not purchased) or 1 (purchased)
 - Only represents whether item purchased, <u>not number of items purchased</u>

Transaction ID	Item
1	Broccoli
1	Green peppers
1	Corn
2	Asparagus
2	Squash
2	Corn
3	Corn
3	Tomatoes

Trans	Aspara gus	Beans	Broccoli	Corn	Green Peppers	Squash	Toma -toes
1	0	0	1	1	1	0	0
2	1	0	0	1	0	1	0
3	0	1	0	1	0	1	1

Association Rule

- Let $D = \text{set of transactions } \{T1, T2, ..., T14\}$ in Example Table
- Each *T* represents set of items contained in *I*
- Suppose set of items $A = \{beans, squash\}$ and $B = \{asparagus\}$
- Association Rule has the form:

IF A THEN B

 $A \rightarrow B$

IF {beans, squash} THEN {asparagus}

- A and B proper subsets of I
- A and B are mutually exclusive
 - Therefore, by definition, rules such as IF {beans, squash} THEN {beans} excluded
- SUPPORT and CONFIDENCE of Rule will also be calculated

Frequent Itemsets

- <u>Itemset</u> is set of items contained in *I*
- <u>k-itemset</u> contains k items
- For example, {beans, squash} = 2-itemset, from roadside stand set *I*
- <u>Itemset Frequency</u> is number of transactions containing specific itemset
- <u>Frequent Itemset</u> occurrence greater than or equal to minimum threshold

A frequent itemset has itemset frequency $\geq \phi$, where

 ϕ = Minimum Threshold

Set of frequent k-itemsets denoted as F_k

Mining for Rules and the *A Priori* Property

- Mining Association Rules
 - Two-step process
 - (1) Find all frequent itemsets, where (itemset frequency $\geq \phi$)
 - (2) From list of frequent itemsets, generate association rules satisfying minimum support and confidence criteria

• A Priori Property

If itemset Z not frequent, then for any item A, Z U A not frequent

- In other words, no superset of Z (itemset containing Z) will be frequent
- A Priori algorithm uses this property to significantly reduce the search space

Generating Frequent Itemset F1

- Let $\phi = 4$
- Recall set of transactions *D* in Example Table
- First find F1, frequent 1-itemsets, where itemset frequency >= 4
- Calculating totals for each column determines all 1-itemsets are <u>frequent</u>
- Therefore, F1 = {asparagus, beans, broccoli, corn, green peppers, squash, tomatoes}

Generating Frequent Itemset F2

- A Priori derives Fk by constructing a set of candidate k-itemsets Ck, by joining Fk-1 with itself
- Next, Ck is pruned using the A Priori property
- Remaining itemsets in Ck form Fk
- Table shows all candidate 2-itemsets C2

Combination	Count	Combination	Count
Asparagus, beans	5	Broccoli, corn	2
Asparagus, broccoli	1	Broccoli, green peppers	4
Asparagus, corn	2	Broccoli, squash	1
Asparagus, green peppers	0	Broccoli, tomatoes	2
Asparagus, squash	5	Corn, green peppers	3
Asparagus, tomatoes	1	Corn, squash	3
Beans, broccoli	3	Corn, tomatoes	4
Beans, corn	5	Green peppers, squash	1
Beans, green peppers	3	Green peppers, tomatoes	3
Beans, squash	6	Squash, tomatoes	2
Beans, tomatoes	4		

F2 = {{asparagus, beans}, {asparagus, squash}, {beans, corn}, {beans, squash}, {beans, tomatoes}, {broccoli, green peppers}, {corn, tomatoes}}

Generating Frequent Itemset F3

Next, frequent itemsets F2 used to generate C3 candidate 3-itemsets

- F2 joined with itself, where itemsets joined having first k-1 items in common (alphabetically /lexicographic order)
 - For example, {asparagus, beans} joined with {asparagus, squash}
- Have first k 1 = 1 items (asparagus) in common
- New candidate formed, {asparagus, beans, squash}
- Remaining candidate 3-itemsets generated
 - C3 = {{asparagus, beans, squash}, {beans, corn, squash}, {beans, corn, tomatoes}, {bean, squash, tomatoes}}

- Finally, C3 is pruned using the A Priori Property
- For each itemset s in C3, its k-1 subsets examined
- If <u>any</u> subsets not frequent, then s not frequent and pruned
 - For example, let $s = \{asparagus, beans, squash\}$
 - Subsets k 1 = 2 are {asparagus, beans}, {asparagus, squash}, and {beans, squash}
- Therefore $s = \{asparagus, beans, squash\}$ not pruned according to A Priori Property
- Examine the other Candidate-3 itemsets in the same way
 - Now, C3 = {{asparagus, beans, squash}, {beans, corn, tomatoes}}

 Process continues, A Priori Property applied to remaining C3 candidate 3itemsets

$$\phi = 4$$

- C3 = {{asparagus, beans, squash}, {beans, corn, tomatoes}}
- Itemset {asparagus, beans, squash} occurs 4 times; however, {beans, corn, tomatoes} occurs in 3 transactions and is <u>pruned</u>
- Therefore F3 = {asparagus, beans, squash}

A Priori Algorithm Part 2 - Generating Association Rules

- Generating Association Rules
 - Association Rules generated from Frequent Itemsets
 - Two-step process
 - (1) For each frequent itemset *s*

Generate all subsets of s

- Let ss represent non-empty subset of s
- (2) For each subset ss

Consider Association Rule $R: ss \rightarrow (s - ss)$

 Association Rule R generated, if R fulfills minimum confidence criterion

Note: single-item consequent desired for simplicity

A Priori Algorithm Part 2 - Generating Association Rules

- For example, recall $F3 = \{asparagus, beans, squash\}$
- Let $ss = \{asparagus, beans\}$; it follows $(s ss) = \{squash\}$
- Consider R: if {asparagus, beans} then {squash}
- Table shows R support = 28.6% and confidence = 80%

If Antecedent then Consequent	Support	Confidence
If buy asparagus and beans, then buy squash	4/14 = 28.6%	4/5 = 80%
If buy asparagus and squash, then buy beans	4/14 = 28.6%	4/5 = 80%
If buy beans and squash, then buy asparagus	4/14 = 28.6%	4/6 = 66.7%

- Recall, support is proportion of transactions where both {asparagus, beans} and {squash} occur = 4/14
- For confidence, {asparagus, beans} occurs in 5 transactions, of which 4 <u>also</u> contain $\{squash\} = 4/5$
- Note, additional rules in Table generated similarly

A Priori Algorithm Part 2 - Generating Association Rules

- Next, single-antecedent/consequent rules evaluated
- Itemsets in F2 used for association rule generation
- Candidate association rules generated from F2 shown below

If Antecedent then Consequent	Support	Confidence
If buy asparagus, then buy beans	5/14 = 35.7%	5/6 = 83.3%
If buy beans, then buy asparagus	5/14 = 35.7%	5/10 = 50%
If buy asparagus, then buy squash	5/14 = 35.7%	5/6 = 83.3%
If buy squash, then buy asparagus	5/14 = 35.7%	5/7 = 71.4%
If buy beans, then buy corn	5/14 = 35.7%	5/10 = 50%
If buy corn, then buy beans	5/14 = 35.7%	5/8 = 62.5%
If buy beans, then buy squash	6/14 = 42.9%	6/10 = 60%
If buy squash, then buy beans	6/14 = 42.9%	6/7 = 85.7%
If buy beans, then buy tomatoes	4/14 = 28.6%	4/10 = 40%
If buy tomatoes, then buy beans	4/14 = 28.6%	4/6 = 66.7%
If buy broccoli, then buy green peppers	4/14 = 28.6%	4/5 = 80%
If buy green peppers, then buy broccoli	4/14 = 28.6%	4/5 = 80%
If buy corn, then buy tomatoes	4/14 = 28.6%	4/8 = 50%
If buy tomatoes, then buy corn	4/14 = 28.6%	4/6 = 66.7%

Association Rules Supervised or Unsupervised Learning?

- Recall most data mining methods represent supervised learning
 - (1) Target \Response variable specified
 - (2) Algorithm provided examples, and learns relationships between predictor and target variables
- In contrast, unsupervised methods search for patterns and structure among all variables
- Association rule mining either supervised or unsupervised
- For example, in market basket analysis NO target/ response
 variable specified => Unsupervised Learning Approach
- Simply interested in "which items purchased together"

Association Rules Supervised or Unsupervised Learning? (cont'd)

- Conversely, some data sets naturally structured, with one attribute particularly suited as consequent
- For example, political pollsters collect demographic exit poll data
 - Each subject's voting preference also collected
 - Association rule mining uses demographic attributes as antecedents, and voting preference as single consequent
 - Supervised Learning Approach
 - i.e. antecedent **predictor variables** and consequent **target variable/response variable**
- Rules may uncover (classify) voting preferences, according to certain demographic characteristics