

Crop Module 4 Interpreting AquaCrop outputs

Jorge Alvar-Beltrán (2023)

Content

Day 1

- ➤ How do crop models work?
- > AquaCrop interface
- > AquaCrop: climate, crop, management and soil modules (AquaCrop modules 1 and 2)
- > Run simulations and interpret results

Day 2

- > Input requirements
- Create/import climatic files on AquaCrop
- > Create a crop file
- > Run simulations for wheat in Badin

Day 3

- ➤ Interpreting the AquaCrop outputs for wheat in Badin
- Calibrating and validating the AquaCrop model

Interpreting AquaCrop outputs: climate info.

Legend

Step 1. Open **AquaCrop** desktop folders and click on **OUTP** (outputs)

DATA	02/12/2022 19:02	Carpeta de archivos	
IMPORT	01/12/2022 8:49	Carpeta de archivos	
OBS	01/12/2022 8:49	Carpeta de archivos	_
OUTP	02/12/2022 19:28	Carpeta de archivos	
SIMUL	03/12/2022 9:33	Carpeta de archivos	
	01/12/2022 8:49	Archivo ISR	1 KB
	01/12/2022 8:49	Extensión de la ap	40 KB
🙏 AquaCrop	01/12/2022 8:49	Aplicación	16.459 KB
🙏 AquaCrop	01/12/2022 8:49	Icono	2 KB
DelsL1.isu	01/12/2022 8:49	Archivo ISU	10 KB

Step 3. Visualize the **climatic** outputs

* *	Run	number Month		DAP	Stage	Rain mm	ETO mm	Tmin °C	Tavg °C	Tmax °C 35.1	CO2 ppm
	2	11	2010	2	1	0.0	4.2	20.0	26.9	33.9	390.74
	3	11	2010	3	1	0.0	4.1	18.7	25.8	32.8	390.74
	4	11	2010	4	1	0.0	4.0	17.6	24.8	32.0	390.74
	5	11	2010	5	2	0.0	4.1	17.5	25.0	32.5	390.74
	6	11	2010	6	2	0.0	4.2	17.7	25.4	33.1	390.74
	7	11	2010	7	2	0.0	4.2	17.9	25.6	33.4	390.74
	8	11	2010	8	2	0.0	4.1	17.9	25.4	33.0	390.74
	9	11	2010	9	2	0.0	4.0	18.4	25.6	32.9	390.74
	10	11	2010	10	2	0.0	3.9	18.5	25.6	32.6	390.74
	11	11	2010	11	2	0.0	3.8	18.6	25.4	32.3	390.74
	12	11	2010	12	2	0.0	3.8	19.0	25.8	32.6	390.74
	13	11	2010	13	2	0.0	3.8	18.3	25.3	32.2	390.74

Step 2. Open the file

OS (C:) > FAO > Pakistan > GUI_AC71 > AquaCropV71No13102023 > OUTP

lome	Ultima modifica	Tipo	Dimensione
Wheat_BadinClim.OUT	28/11/2023 17:20	File OUT	14 KB
Wheat_BadinCompEC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCompWC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCrop.OUT	28/11/2023 17:20	File OUT	35 KB
Wheat_BadinHarvest.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinInet.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinProf.OUT	28/11/2023 17:20	File OUT	20 KB
☑ Wheat_BadinRun.OUT	28/11/2023 17:20	File OUT	4 KB
Wheat_BadinSalt.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat_BadinWabal.OUT	28/11/2023 17:20	File OUT	27 KB

DAP : Days after planting
Stage : 0: before/after planting
Stage : 1: emergence or transplant recovery
Stage : 2: vegetative stage
Stage : 3: flowering
Stage : 4: yield formation and ripening
Rain : Rainfall

Stage : 3: flowering
Stage : 4: yield formation and ripenin
Rain : Rainfall
ETo : Reference evapotranspiration
Tmin : Minimum air temperature
Tavg : Average air temperature
Tmax : Maximum air temperature
CO2 : Atmospheric CO2 concentration

At the bottom of the txt. file you will find the legend!

Interpreting AquaCrop outputs: soil water content

Legend

Step 1. Open the file **Wheat_BadinCompWC**

OS (C:) > FAO > Pakistan > GUI_AC71 > AquaCropV71No13102023 > OUTP

Nome	Ultima modifica	Tipo	Dimensione
Wheat_BadinClim.OUT	28/11/2023 17:20	File OUT	14 KB
Wheat_BadinCompEC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat BadinCompWC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCrop.OUT	28/11/2023 17:20	File OUT	35 KB
Wheat_BadinHarvest.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinInet.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinProf.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat_BadinRun.OUT	28/11/2023 17:20	File OUT	4 KB
Wheat_BadinSalt.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat_BadinWabal.OUT	28/11/2023 17:20	File OUT	27 KB

At the bottom of the txt. file you will find the legend for each variable!

DAP : Days after planting
Stage : 0: before/after planting

Stage : 1: emergence or transplant recovery

Stage : 2: vegetative stage

Stage : 3: flowering

Stage : 4: yield formation and ripening

Step 2. Visualize the water content outputs

4 ;	** Pun	number	. 1											
5			at	depth	(m):	0.05	0.15	0.25	0.35	0.45	0.55	0.67	0.82	0.97
6	Day N	Month	Year	DAP :	Stage	WC1 (vol%)	WC2 (vol%)	WC3 (vol%)	WC4 (vol%)	WC5 (vol%)	WC6 (vol%)	WC7 (vol%)	WC8 (vol%)	WC9 (vol%)
	1	11	2010	-	-	19.1	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
8	2	11	2010	2	1	18.1	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
9	3	11	2010	3	1	17.1	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
10	4	11	2010	4	1	16.1	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
11	5	11	2010	5	2	15.1	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
12	6	11	2010	6	2	14.5	20.7	21.0	21.0	21.0	21.0	21.0	21.0	21.0
13	7	11	2010	7	2	21.7	20.7	21.0	21.0	21.0	21.0	21.0	21.0	21.0
14	8	11	2010	8	2	18.2	20.7	21.0	21.0	21.0	21.0	21.0	21.0	21.0
15	9	11	2010	9	2	17.1	20.7	21.0	21.0	21.0	21.0	21.0	21.0	21.0

Interpreting AquaCrop outputs: crop info.

Step 1. Open the file Wheat_BadinCrop

OS (C:) > FAO > Pakistan > GUI_AC71 > AquaCropV71No13102023 > OUTP

Nome	Ultima modifica	Tipo	Dimensione
Wheat_BadinClim.OUT	28/11/2023 17:20	File OUT	14 KB
Wheat_BadinCompEC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCompWC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCrop.OUT	28/11/2023 17:20	File OUT	35 KB
Wheat_BadinHarvest.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinInet.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinProf.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat_BadinRun.OUT	28/11/2023 17:20	File OUT	4 KB
Wheat_BadinSalt.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat_BadinWabal.OUT	28/11/2023 17:20	File OUT	27 KB

Step 2. Visualize the **stress** and **canopy development** outputs

DAP : Days after planting Stage : 0: before/after planting Stage : 1: emergence or transplant recovery Stage : 2: vegetative stage Stage : 3: flowering	
Stage : 4: yield formation and ripening GD : Growing degrees Z : Effective rooting depth	nansion
StSto : Percent water stress inducing stomata StSen : Percent water stress triggering early StSalt : Percent salinity stress	l closure
StWeed : Relative cover of weeds CC : Green total Canopy Cover of crop and CCW : Green crop Canopy Cover in weed infes StTr : Percent temperature stress affecting Kc(Tr) : Crop coefficient for transpiration Trx : Maximum total transpiration of crop a	ted field crop transpiration

_ 2	Cro	p dev	elopm	ent and	d pro	duction	n													
3 4	* *	Run n	umber	: 1																
5		Day M	onth	Year	DAP	Stage	GD	Z	StExp	StSto	StSen	StSalt	StWeed	CC	CCw	StTr	Kc(Tr)	Trx	Tr	\mathtt{TrW}
6							°C-day	m	8	ક	ક	ક	ક	8	8	8	-	mm	mm	mm
7		1	11	2010	1	1	23.0	0.30	9	9	9	0	9	0.0	0.0	0	9.00	0.0	0.0	0.0
8		2	11	2010	2	1	23.0	0.30	- 9	- 9	- 9	0	- 9	0.0	0.0	0	-9.00	0.0	0.0	0.0
9		3	11	2010	3	1	22.4	0.39	- 9	- 9	- 9	0	- 9	0.0	0.0	0	-9.00	0.0	0.0	0.0
10		4	11	2010	4	1	21.8	0.46	- 9	4	0	0	0	3.4	3.4	0	0.06	0.3	0.2	0.2
11		5	11	2010	5	2	21.8	0.53	- 9	6	0	0	0	4.0	4.0	0	0.07	0.3	0.3	0.3
12		6	11	2010	6	2	21.9	0.58	100	8	0	0	0	4.0	4.0	0	0.07	0.3	0.3	0.3
13		7	11	2010	7	2	21.9	0.63	2	0	0	0	0	4.6	4.6	0	0.08	0.4	0.4	0.4
14		8	11	2010	8	2	21.9	0.68	35	0	0	0	0	5.0	5.0	0	0.09	0.4	0.4	0.4
15		9	11	2010	9	2	22.2	0.73	76	0	0	0	0	5.2	5.2	0	0.09	0.4	0.4	0.4
16		10	11	2010	10	2	22.3	0.78	81	0	0	0	0	5.3	5.3	0	0.10	0.4	0.4	0.4

Interpreting AquaCrop outputs: crop info.

Step 3. Continue visualizing **crop production** outputs

Tr/Trx	WP g/m2	Biomass ton/ha	HI %	Y(dry) ton/ha	Y(fresh) ton/ha	Brelative %	WPet kg/m3	Bin ton/ha	Bout ton/ha
100	15.8	0.000	- 9.9	0.000	-9.000	- 9	0.00	0.000	0.000
100	15.8	0.000	- 9.9	0.000	-9.000	- 9	0.00	0.000	0.000
100	15.8	0.000	- 9.9	0.000	-9.000	- 9	0.00	0.000	0.000
96	15.8	0.010	- 9.9	0.000	-9.000	96	0.00	0.000	0.000
94	15.8	0.020	- 9.9	0.000	-9.000	95	0.00	0.000	0.000
92	15.8	0.031	-9.9	0.000	-9.000	89	0.00	0.000	0.000
100	15.8	0.044	-9.9	0.000	-9.000	88	0.00	0.000	0.000
100	15.8	0.059	-9.9	0.000	-9.000	87	0.00	0.000	0.000
100	15.8	0.074	-9.9	0.000	-9.000	84	0.00	0.000	0.000
100	15.8	0.089	-9.9	0.000	-9.000	80	0.00	0.000	0.000
1 0 0	4 5 0	0 405	0 0	0 000	0 000	7.6	0 00	0 000	0 000

Legend

Trx : Maximum total transpiration of crop and weeds

Tr : Total transpiration of crop and weeds
TrW : Crop transpiration in weed infested field

Tr/Trx : Relative total transpiration of crop and weeds (100 Tr/Trx)

WP : Crop water productivity adjusted for CO2, soil fertility and products synthesized

Biomass : Total above-ground dry biomass

HI : Harvest Index adjusted for failure of pollination, inadequate photosynthesis and water stress

Y(dry) : Dry crop yield (HI x Biomass)

Y(fresh) : Fresh crop yield

Brelative : Relative biomass (Reference: no water, no soil fertility, no soil salinity stress, no weed infestation)

WPet : ET Water productivity for yield part (kg yield produced per m3 water evapotranspired)

Bin : Daily mass of assimilates mobilized from root system at start of season

Bout : Daily mass of assimilates stored in root system at end of season

Interpreting AquaCrop outputs: harvest info.

Step 1. Open the file **Wheat_BadinHarvest**

OS (C:) > FAO > Pakistan > GUI_AC71 > AquaCropV71No13102023 > OUTP

Nome	Ultima modifica	Tipo	Dimensione
Wheat_BadinClim.OUT	28/11/2023 17:20	File OUT	14 KB
Wheat_BadinCompEC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCompWC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCrop.OUT	28/11/2023 17:20	File OUT	35 KB
Wheat_BadinHarvest.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinInet.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinProf.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat_BadinRun.OUT	28/11/2023 17:20	File OUT	4 KB
Wheat_BadinSalt.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat_BadinWabal.OUT	28/11/2023 17:20	File OUT	27 KB

Step 2. Visualize values at harvest (dry yield and biomass)

```
Biomass and Yield at Multiple cuttings
    ** Run number: 1
             Day Month Year
                                                                 Dry-Yield Sum(Y) Fresh-Yield
                               DAP Interval Biomass
                                                        Sum(B)
                                                                                               Sum (Y)
                                     days
                                              ton/ha
                                                        ton/ha
                                                                  ton/ha
                                                                            ton/ha
                                                                                      ton/ha
                                                                                                ton/ha
         0
                    11 2010
                                                         0.000
                                                                            0.000
                                                         7.272
                   3 2011
                                                                            2.869
8
      9999
9
10
    Legend
11
                 : Days after planting
    DAP
                 : Number of days between events
                 : At start of season
    Nr = 1 to n : Harvest event
                : At end of season
```

Interpreting AquaCrop outputs: water balance info.

Step 1. Open the file Wheat_BadinWbal

OS (C:) > FAO > Pakistan > GUI_AC71 > AquaCropV71No13102023 > OUTP

Nome	Ultima modifica	Tipo	Dimensione
Wheat_BadinClim.OUT	28/11/2023 17:20	File OUT	14 KB
Wheat_BadinCompEC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCompWC.OUT	28/11/2023 17:20	File OUT	26 KB
Wheat_BadinCrop.OUT	28/11/2023 17:20	File OUT	35 KB
Wheat_BadinHarvest.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinInet.OUT	28/11/2023 17:20	File OUT	1 KB
Wheat_BadinProf.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat_BadinRun.OUT	28/11/2023 17:20	File OUT	4 KB
Wheat_BadinSalt.OUT	28/11/2023 17:20	File OUT	20 KB
Wheat BadinWabal.OUT	28/11/2023 17:20	File OUT	27 KB

Legend

Tr

ETx

ET/ETX

Tr/Trx

DAP : Days after planting Stage : 0: before/after planting Stage : 1: emergence or transplant recovery : 2: vegetative stage Stage : 3: flowering Stage : 4: yield formation and ripening Stage : Water content in total soil profile WCTot Rain : Rainfall : Water applied by irrigation Irri Surf : Stored water on soil surface between bunds Infilt : Infiltrated water in soil profile : Surface runoff Drain : Water drained out of the soil profile : Water moved upward by capillary rise Zgwt : Depth of the groundwater table (-9.90 if absent) : Maximum soil evaporation : Soil evaporation E E/Ex : Relative soil evaporation (100 E/Ex) Trx : Maximum crop transpiration

: Total transpiration of crop and weeds

: Evapotranspiration relative (100 ET/ETx)

: Relative transpiration (100 Tr/Trx)

: Evapotranspiration maximale: Evapotranspiration

2	Soil Wa	ter ba	lance															
4 5 6		numbei Month	1 Year	DAP :	Stage	WCTot mm	Rain mm	Irri mm	Surf mm	Infilt mm	RO mm	Drain mm	CR mm	Zgwt m	Ex mm	E mm	E/Ex %	Trx mm
7	1	11	2010	1	1	323.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 9.90	4.7	1.6	34	0.0
8	2	11	2010	2	1	322.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	4.6	1.3	27	0.0
9	3	11	2010	3	1	321.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	4.5	1.0	23	0.0
10	4	11	2010	4	1	320.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	4.1	0.8	19	0.3
11	5	11	2010	5	2	319.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	4.2	0.7	16	0.3
12	6	11	2010	6	2	318.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	4.3	0.6	14	0.3
13	7	11	2010	7	2	325.9	0.0	11.0	0.0	11.0	0.0	0.0	0.0	-9.90	3.4	3.4	100	0.4
14	8	11	2010	8	2	322.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	3.4	3.1	92	0.4
15	9	11	2010	9	2	321.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	3.2	0.7	23	0.4
16	10	11	2010	10	2	320.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	3.1	0.6	19	0.4
17	11	11	2010	11	2	319.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	3.0	0.5	16	0.4
18	12	11	2010	12	2	318.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-9.90	3.0	0.4	14	0.4

Crop Module 4 Calibrating & Validating the AquaCrop model

Jorge Alvar-Beltrán (2023)

Calibration and validation of AquaCrop model

- > The calibration and validation is a critical step towards achieving meaningful modelling outputs.
- > 5 to 10 years of historical yield data (for a specific location) are necessary to compare observed and simulated yields values.
- > To test the performance of the AquaCrop model against observed values in the field, different statistical indicators are used.
- For example, while the **root-mean square error** (RMSE, Eq. 1) is useful for testing the differences between predicted and observed values, the **normalized-RMSE** (NRMSE, Eq. 2) provides relevant information about the average of the measured data ranges.
- AquaCrop findings are considered highly performant when the differences between observed and simulated NRMSE values are below 5%, and good when ranging between 6 to 15%.
- ➤ Willmott's index of agreement (d, Eq. 3) provides a measure of the agreement of the deviation of modelled and observed values from the observed mean, where 0 indicates disagreement and 1 perfect agreement between simulated and observed values.

Calibration and validation of AquaCrop model

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (0i - Pi)^2}$$

$$ightharpoonup NRMSE = (\frac{RMSE}{\hat{o}}) \times 100$$

$$ightharpoonup d = 1 - \frac{\sum_{i=1}^{n} (Oi - Pi)^2}{\sum_{i=1}^{n} (P'_i + O'_i)^2}$$

Where O_i and P_i corresponds to the observed and simulated values, respectively, and n to the number of observations. While the RMSE has the same units as that of the variable being simulated (t/ha), NRMSE units are displayed as a percentage. In addition, $O'_i = [O_i - \widehat{O}]$ and $P'_i = [P_i - \widehat{P}]$ shows the differences between observed and simulated values, with \widehat{O} and \widehat{P} as the observed and simulated means, respectively.

Calibration and validation of AquaCrop model

Step 1. You first calibrate in one location (Badin)

CALIBRATION (Badin)

Here we introduce the observed values in the field and the simulated values from AquaCrop!

				Badin (SOUTH) -CALIBRATION									
		OBSERVED	SIMULATED	RMSE	MAE	EF	I Pi-Oave I	I Oi-Oave I	d	MAPE	Difference		
	2011	2,965	2,869	0,01	0,10	0,00	0,11	0,02		0,03	0,01		
	2012	2,738	2,999	0,07	0,26	0,06	0,02	0,11		0,10	0,07		
	2013	3,067	2,874	0,04	0,19	0,01	0,10	0,02		0,06	0,04		
	2014	3,039	2,996	0,00	0,04	0,00	0,02	0,10		0,01	0,00		
	2015	3,065	2,722	0,12	0,34	0,01	0,25	0,17		0,11	0,12		
		2,975		0,22	0,19	-2,04	0,50	0,42	0,73	3,17	0,23		
											0,22	-	
										NRMSE (as %)	7,28		
									_	(40 70)	1,20		

Step 2. You **validate** against one other location (Multan) **VALIDATION** (Multan)

	OBSERVED	SIMULATED	RMSE	MAE	EF	l Pi-Oave I	l Oi-Oave I	d	MAPE	Difference
2011	2,811	2,567	0,06	0,24	0,03	0,41	0,33		0,09	0,06
2012	2,600	2,761	0,03	0,16	0,14	0,21	0,13		0,06	0,03
2013	2,907	3,130	0,05	0,22	0,00	0,16	0,24		0,08	0,05
2014	2,953	3,079	0,02	0,13	0,00	0,10	0,19		0,04	0,02
2015	3,022	2,856	0,03	0,17	0,00	0,12	0,04		0,05	0,03
	2,859		0,19	0,18	-0,02	1,00	0,92	0,95	3,23	0,18
										0,19
									NRMSE (as %)	6,61

Thank you!

Contact details: jorge.alvarbeltran@fao.org riccardo.soldan@fao.org