1.3 - PROPOSITIONAL EQUIVALENCES

Example 1: Determine the truth values of

- (a) $p \leftrightarrow p$
- (b) $\neg (p \lor q) \leftrightarrow \neg p \land \neg q$.

Definition:

- (i) A tautology is a compound proposition that is always true.
- (ii) A contradiction is a compound proposition that is always false.
- (iii) Any compound proposition not satisfying (i) or (ii) is called a contingency.

Let P and Q be compound propositions. If $P \leftrightarrow Q$ is a tautology, then P and Q are *logically equivalent*, written $P \equiv Q$. (This is sometimes written as $P \Leftrightarrow Q$.)

Notes:

- If *P* and *Q* are logically equivalent, then *P* and *Q* have the exact same truth values.
- $P \equiv Q$ is not a proposition! As such, the symbol ' \equiv ' should not appear in any proposition.

Logical Equivalences involving \neg , \wedge **and** \vee :

Let p, q and r be propositions.

Double negation law: $\neg (\neg p) \equiv p$

Identity laws: $p \vee \mathbf{F} \equiv p, \quad p \wedge \mathbf{T} \equiv p$

Domination laws: $p \vee \mathbf{T} \equiv \mathbf{T}, p \wedge \mathbf{F} \equiv \mathbf{F}$

Negation laws: $p \lor \neg p \equiv \mathbf{T}, \quad p \land \neg p \equiv \mathbf{F}$

Idempotent laws: $p \lor p \equiv p$, $p \land p \equiv p$

Commutative laws: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$

Associative laws: $p \lor (q \lor r) \equiv (p \lor q) \lor r$,

 $p \land (q \land r) \equiv (p \land q) \land r$

Distributive laws: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r),$

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Absorption laws: $p \lor (p \land q) \equiv p, \quad p \land (p \lor q) \equiv p$

DeMorgan's laws: $\neg (p \lor q) \equiv \neg p \land \neg q$,

 $\neg (p \land q) \equiv \neg p \lor \neg q$

Example 2: Show that $p \rightarrow q$ is logically equivalent to its contrapositive.

Logical Equivalences involving \rightarrow

1.
$$p \rightarrow q \equiv \neg p \lor q$$

2.
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

3.
$$p \lor q \equiv \neg p \rightarrow q$$

4.
$$p \land q \equiv \neg(p \rightarrow \neg q)$$

5.
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

6.
$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

7.
$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

8.
$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

9.
$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

Logical Equivalences involving \leftrightarrow

10.
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

11.
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

12.
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

13.
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Example 3: Simplify the proposition

$$[a \land (a \rightarrow b)] \rightarrow b$$

using the laws of logical equivalences. Be sure to cite each law whenever used.

Example 4: Simplify the proposition

$$[\neg p \land (\neg p \rightarrow (q \rightarrow r))] \rightarrow (q \rightarrow r)$$

using the laws of logical equivalences.

NORMAL FORMS

A collection of logical operators is called *functionally complete* if every compound proposition is logically equivalent to a compound proposition involving only these logical expressions.

Example 5: Show that $\{\neg, \land, \lor\}$ form a functionally complete collection of logical operators.

A logical expression is in

- *disjunctive normal form* (DNF) if it is written as a disjunction of the the conjunctions of the variables or their negations.
- *conjunctive normal form* (CNF) if it is written as a conjunction of the the disjunctions of the variables or their negations.

SECTION 1.3 – PROPOSITIONAL EQUIVALENCES

Example 1: Determine the truth values of (a) $p \leftrightarrow p$ and (b) $\neg (p \lor q) \leftrightarrow \neg p \land \neg q$.

Definition:

- (i) A tautology is a compound proposition that is always true.
- (ii) A contradiction is a compound proposition that is always false.
- (iii) Any compound proposition not satisfying (i) or (ii) is called a *contingency*.

Let P and Q be compound propositions. If $P \leftrightarrow Q$ is a tautology, then P and Q are *logically equivalent*, written $P \equiv Q$. (This is sometimes written as $P \Leftrightarrow Q$.)

Notes:

- If P and Q are logically equivalent, then P and Q have the exact same truth values.
- $P \equiv Q$ is not a proposition! As such, the symbol ' \equiv ' should not appear in any proposition.

Class Notes for Discrete Math I (Rosen)

Logical Equivalences involving \neg , \wedge **and** \vee : Let p, q and r be propositions.

Double negation law: $\neg (\neg p) \equiv p$

Identity laws: $p \vee \mathbf{F} \equiv p$ $p \wedge \mathbf{T} \equiv p$

Domination laws: $p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$

Negation laws: $p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$

Idempotent laws: $p \lor p \equiv p$ $p \land p \equiv p$

Commutative laws: $p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$

Associative laws: $p \lor (q \lor r) \equiv (p \lor q) \lor r$ $p \land (q \land r) \equiv (p \land q) \land r$

Distributive laws: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Absorption laws: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

DeMorgan's laws: $\neg (p \lor q) \equiv \neg p \land \neg q$ $\neg (p \land q) \equiv \neg p \lor \neg q$

Example 2: Show that $p \rightarrow q$ is logically equivalent to its contrapositive.

Logical Equivalences involving \rightarrow

1.
$$p \rightarrow q \equiv \neg p \lor q$$

2.
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$
 (Contrapositive)

3.
$$p \lor q \equiv \neg p \rightarrow q$$

4.
$$p \land q \equiv \neg(p \rightarrow \neg q)$$

5.
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

6.
$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

7.
$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

8.
$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

9.
$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

$Logical\ Equivalences\ involving \leftrightarrow$

10.
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

11.
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

12.
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

13.
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Example 3: Simplify the proposition $[a \land (a \rightarrow b)] \rightarrow \neg b$ using the laws of logical equivalences. Be sure to cite each law whenever used.

Example 4: Simplify the proposition $[\neg p \land (\neg p \rightarrow (q \rightarrow r))] \rightarrow (q \rightarrow r)$ using the laws of logical equivalences.

Class Notes for Discrete Math I (Rosen)

NORMAL FORMS

A collection of logical operators is called *functionally complete* if every compound proposition is logically equivalent to a compound proposition involving only these logical expressions.

Example 5: Show that $\{\neg, \land, \lor\}$ form a functionally complete collection of logical operators.

A logical expression is in

- *disjunctive normal form* (DNF) if it is written as a disjunction of the conjunctions of the variables or their negations.
- *conjunctive normal form* (CNF) if it is written as a conjunction of the disjunctions of the variables or their negations.

Class Notes for Discrete Math I (Rosen)

LOGICAL EQUIVALENCES

Double negation law:
$$\neg (\neg p) \equiv p$$

Identity laws:
$$p \vee \mathbf{F} \equiv p$$
, $p \wedge \mathbf{T} \equiv p$

Domination laws:
$$p \vee \mathbf{T} \equiv \mathbf{T}$$
, $p \wedge \mathbf{F} \equiv \mathbf{F}$

Negation laws:
$$p \lor \neg p \equiv \mathbf{T}$$
, $p \land \neg p \equiv \mathbf{F}$

Idempotent laws:
$$p \lor p \equiv p$$
, $p \land p \equiv p$

Commutative laws:
$$p \lor q \equiv q \lor p$$
, $p \land q \equiv q \land p$

Associative laws:
$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$
, $p \land (q \land r) \equiv (p \land q) \land r$

Distributive laws:
$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r), p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

Absorption laws:
$$p \lor (p \land q) \equiv p$$
, $p \land (p \lor q) \equiv p$

DeMorgan's laws:
$$\neg (p \lor q) \equiv \neg p \land \neg q$$
, $\neg (p \land q) \equiv \neg p \lor \neg q$

1.
$$p \rightarrow q \equiv \neg p \lor q$$

2.
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

3.
$$p \lor q \equiv \neg p \rightarrow q$$

4.
$$p \land q \equiv \neg(p \rightarrow \neg q)$$

5.
$$\neg (p \rightarrow q) \equiv p \land \neg q$$

6.
$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

7.
$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

8.
$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

9.
$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

10.
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

11.
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

12.
$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

13.
$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$