Package 'LTBIscreeningproject'

January 16, 2019

```
Type Package
Title LTBI screening cost-effectiveness analysis
Version 0.1.0.9000
Maintainer Nathan Green <nathan.green@imperial.ac.uk>
Description Decision tree and competing risks individual level model.
License MIT + file LICENSE
LazyData TRUE
Imports QALY,
      readr,
      ggplot2,
     readxl,
      data.tree,
      data.table,
      treeSimR,
      cmprsk,
      reshape,
      GGally,
      BCEA,
      purrr,
      plyr,
      dplyr,
     reshape2,
      magrittr,
      purrr,
      logging,
      arm,
      parallel,
      ggtern,
      miscUtilities,
      crayon,
      tibble,
      withr,
      assertr,
      devtools,
      lattice,
     here
```

2 R topics documented:

```
Suggests knitr,
rmarkdown,
testthat,
assertthat,
denstrip,
plotCostEffectiveness,
memoise,
directlabels,
cowplot,
gridExtra,
covr,
ggridges,
lattice,
grid
```

VignetteBuilder knitr

R topics documented:

activetb_qaly_cost	4
append_scenario_num	6
assign_LTBI_status	6
base_filled_contour_grid	6
bayeslm_wtp	7
bayes_predict	7
bcea_incremental	7
bcea_to_plotdata	8
boxplot_INMB	8
branch_unif_params	8
calc.ICER	9
calc.INMB	9
calc_num_active_tb	10
calc_QALY_tb	10
care_cascade_prob	11
cbind_all_subsets	11
	12
ceac_plot_and_save	
ceplane_plot_and_save	12
ce_boundary_line_plot	13
ce_boundary_points_plot	13
ce_default	13
CE_plane_trajectories	14
ce_plane_with_annotations	14
coefficient_plots	14
combine_cost_and_p_xlsheets	15
combine_freq_tables	15
combine_popmod_dectree_res	16
costeff_stats	16
cost_tb_notif	17
count_comprsk_events	17
cp_in_data_to_out_dir	18
create_and_save_policies	18

create_and_save_scenarios
create_avoid_tb_list
create_pred_newdata
decision_tree_cluster
dectree_to_dataframe
design_matrix
diroutput
expected_cost_QALY
freq_table_for_publication
gg_care_cascade
handle_try_error
histogram_INMB
hist_progression_times
IMPUTED_sample
inmb_from_bcea
inmb_levelplot
insert_dectree_cost
integerLHS
interv_constructor
is.death
leaf_df_by_name
list_to_BCEA
lm_list_to_df
lm_multi_wtp
make_ce0
make_ce1
make_incremental_ce
make_wide_INMB
my_ceac_plot
my_ToDataFrameTable
my_ToDataFrameTypeCol
net_benefit_list
nmb_contour_plot
nmb matrix
nmb_multi_regn
nmb_predictions
nmb scenarios
num_subset_dectree
num subset tb
num_subset_tb_wide
oneway_matrix
optimal_thresholds
parallel_decision_tree
plots_and_tables_policies
plots_and_tables_scenarios
plot_CE_contours
plot_QALY_cost_distns_by_scenario
policy_cohort
policy_interv
predict_nmb_wtp
prioritise_events
prob_ce_gridplot

4 activetb_qaly_cost

	prob_from_cum_incidence	40
	prob_subset_dectree	41
	remove_cols_constant_vars	41
	ridgeslineplot_INMB	42
	rows_first_n_ids	
	run_final_message	
	run_model	
	run_policy	
	sample_subset_pop_dectree	
	sample_tb	
	sample_tb_year	
	save_session_info	
	scenario_cost	
	scenario_QALY	
	scenario_QALYloss	
	screened_cohort_cost	
	screened_cohort_QALYs	
	screen_discount	
	setup_folders	
	set_branch_uniform_params	
	sim_tb_times	
	split_time_intervals	
	stan_predict	
	-1	
	stan_predictions	
	strat_pop_year	
	subpop_by_exituk_year	
	subset_dectree	
	subset_pop_dectree	
	subset_pop_dectree_TEST	
	table_costeffectiveness	
	table_tb_avoided	
	table_tb_avoided_wide	
	TB_burden_countries	
	test	
	tornado_plot_ICER	
	tornado_plot_INMB	
	tornado_sim_plot	56
	WHO_incid_by_country_all_years	57
X		58

Description

For the Population model, calculate various QALYs and costs accounting for active TB progression in non-cured cohort subset.

Usage

```
activetb_qaly_cost(dectree_res, interv, cohort, folders = NA)
```

activetb_qaly_cost 5

Arguments

dectree_res Output of parallel_decision_tree(). This contains the probability of being

cured of LTBI via screening.

interv list of fixed model run parameter values

cohort dataframe of individual level

folders list of strings

Value

 QALY.statusquo: For each scenario a vector of total QALYs without screening programme, length number of sims. These are all the same because population QALYs are not varied for the cohort.

- QALY.screened: For each scenario a vector of total QALYs with screening programme, length number of sims.
- E_cost_screened: For each scenario single expected cost with screening programme.
- cost.screened_person: For each scenario a vector of QALYs per person with screening programme, length number of sims.
- cost.statusquo_person: For each scenario a vector of costs per person without screening programme, length number of sims.
- cost_incur: For each scenario a vector of incurred costs by screening programme, length number of sims.
- cost.statusquo: For each scenario a vector of total costs without screening programme, length number of sims. The are not identical because TB costs are randomly sampled.
- cost.screened: For each scenario a vector of total costs with screening programme, length number of sims.
- E_QALY_screened: For each scenario single expected QALYs with screening programme.
- QALY.screened_person: For each scenario a vector of QALYs per person with screening programme, length number of sims.
- QALY.statusquo_person: For each scenario a vector of QALYs per person without screening programme, length number of sims. These are all the same.
- QALYgain: For each scenario a vector of total QALYs gained with screening programme as the difference between screening and status-quo, length number of sims.
- cost_incur_person: For each scenario a vector of total costs incured per person with screening programme as the difference between screening and status-quo, length number of sims.
- E_cost_incur: For each scenario the expectedd total cost incured with screening programme as the difference between screening and status-quo.
- E_cost_incur_person: For each scenario the expected total cost incured per person with screening programme as the difference between screening and status-quo.
- QALYgain_person: For each scenario a vector of total QALY gained per person with screening programme as the difference between screening and status-quo.
- E_QALYgain: For each scenario the expected total QALY gained with screening programme as the difference between screening and status-quo.
- E_QALYgain_person: For each scenario the expected total QALy gained per person with screening programme as the difference between screening and status-quo.

```
append_scenario_num append_scenario_num
```

Description

```
append_scenario_num
```

Usage

```
append_scenario_num(dat, i, excluded_cols = c("year", "discount"))
```

Arguments

excluded_cols

assign_LTBI_status

Assign LTBI status from country of origin

Description

Assign LTBI status from country of origin

Usage

```
assign_LTBI_status(IMPUTED_sample, pLatentTB.who)
```

Arguments

 ${\tt pLatentTB.who}$

```
base\_filled\_contour\_grid \\ base\_filled\_contour\_grid
```

Description

```
base_filled_contour_grid
```

Usage

```
base_filled_contour_grid(plot_data, folders)
```

Arguments

folders

bayeslm_wtp 7

bayeslm_wtp

Partial Bayesian linear regression function

Description

Partial Bayesian linear regression function

Usage

```
bayeslm_wtp(nmb_mat, formula)
```

Arguments

. . .

bayes_predict

bayes_predict

Description

bayes_predict

Usage

```
bayes_predict(model_fit, newdata, n_sim = 100)
```

Arguments

newdata

 ${\tt bcea_incremental}$

 $bcea_incremental$

Description

bcea_incremental

Usage

```
bcea_incremental(ce_incr)
```

Arguments

ce_incr

8 branch_unif_params

bcea_to_plotdata

bcea_to_plotdata

Description

to use in mash, contour plotting functions

Usage

```
bcea_to_plotdata(bcea, folders, wtp_threshold = "20000")
```

Arguments

bcea BCEA package object

folders list

wtp_threshold default: 20000

boxplot_INMB

boxplot_INMB

Description

boxplot_INMB

Usage

```
boxplot_INMB(bcea, ...)
## S3 method for class 'bcea'
boxplot_INMB(bcea, folders = NA, wtp_threshold = 20000,
    oneway = FALSE)
```

Arguments

. . .

branch_unif_params

branch_unif_params constructor

Description

branch_unif_params constructor

Usage

```
branch_unif_params(pmin, pmax, name)
```

Arguments

name

calc.ICER 9

calc.ICER

Incremental Cost Effectiveness Ratio

Description

Differences are 'intervention' - 'status-quo'.

Usage

```
calc.ICER(e, c, ref = 1)
```

Arguments

e Effectiveness i.e. health e.g. QALYs

c Costs

ref Reference column. Defaults: 1

calc.INMB

Incremental Net (Monetary) Benefit

Description

Differences are 'intervention' - 'status-quo'.

Usage

```
calc.INMB(e, c, ref = 1, wtp = 20000)
```

Arguments

e Effectiveness i.e. health e.g. QALYs

c Costs

ref Reference column. Default: 1 wtp Willingness to pay threshold

Value

Vector

10 calc_QALY_tb

calc_num_active_tb

Calculate Numbers of Active TB Cases using Hazards

Description

Calculate the number tb_uk (extrapolated) using yearly hazards.

Usage

```
calc_num_active_tb(strat_pop, hazard)
```

Arguments

hazard

Details

##TODO: make dependent on different LTBI probs

calc_QALY_tb

Calculate QALYs for active TB cases

Description

Calculate the QALYs for each active TB individuals for each of 3 alternatives:

Usage

```
calc_QALY_tb(intervals = NA, utility, age, start_delay = NA,
    discount_rate = 0.035, ...)
```

Arguments

intervals Time intervals for each utility

utility (list) Utility value of non-diseased individual e.g. 1. Utility value of diseased

individual

age Ages in years

start_delay What time delay to time origin, to shift discounting to smaller values

discount_rate default 3.5%

... Additional arguments

Details

- diseasefree: to all-cause death
- fatality: case-fatality 12 months from notification
- · cured: successfully treated

Assume that death if it happens is within the first year of active TB. Assume that active TB cases when treated and survive first year are ~~fully cured~~.

Consider person-perspective (death) or NHS-perspective (exit uk) by defining the particular time-to-event end point.

care_cascade_prob 11

Value

list of diseasefree, death, cured QALYs

care_cascade_prob

Plot care cascade

Description

Plot care cascade

Usage

```
care_cascade_prob(...)
care_cascade_num(...)
plot_care_cascade(data_folder, plots_folder, prob_or_num, file_name)
```

Arguments

```
data_folder string
plots_folder string
prob_or_num Probabilities or absolute numbers
file_name
```

Examples

cbind_all_subsets

cbind_all_subsets

Description

```
cbind_all_subsets
```

Usage

```
cbind_all_subsets(read_folder, write_folder = read_folder)
```

Arguments

```
read_folder text string write_folder text string
```

cc_lot_kernel

 cc_lot_kernel

Description

```
cc_lot_kernel
```

Usage

```
cc_lot_kernel(boxplot, dat)
```

Arguments

dat

ceac_plot_and_save

Cost-effectiveness acceptability curve (CEAC) plot and save

Description

Cost-effectiveness acceptability curve (CEAC) plot and save

Usage

```
ceac_plot_and_save(bcea, ...)
## S3 method for class 'bcea'
ceac_plot_and_save(bcea, folders, ...)
```

Arguments

. . .

```
ceplane\_plot\_and\_save \quad \textit{ceplane\_plot\_and\_save}
```

Description

```
ceplane_plot_and_save
```

Usage

```
ceplane_plot_and_save(bcea, ...)
## S3 method for class 'bcea'
ceplane_plot_and_save(bcea, folders, ...)
```

Arguments

. . .

ce_boundary_line_plot 13

Description

```
ce_boundary_line_plot
```

Usage

```
ce_boundary_line_plot(plot_data, folders = NA,
    x_var = "Start_Treatment_p", y_var = "Complete_Treatment_p")
```

Arguments

```
plot_data
```

```
\label{eq:ceboundary_points_plot} ce\_boundary\_points\_plot
```

Description

```
ce\_boundary\_points\_plot
```

Usage

```
ce\_boundary\_points\_plot(plot\_data, \ folders)
```

Arguments

folders

ce_default

ce_default

Description

Uses the first column of the status-quo matrices for all status-quo comparisons.

Usage

```
ce_default(ce0, ce1)
```

Arguments

ce1

14 coefficient_plots

```
{\tt CE\_plane\_trajectories} \quad \textit{CE\_plane\_trajectories}
```

Description

```
CE_plane_trajectories
```

Usage

```
CE_plane_trajectories(bcea, folders)
```

Arguments

folders

```
\label{eq:ceplane_with_annotations} ce\_plane\_with\_annotations
```

Description

```
ce_plane_with_annotations
```

Usage

```
ce_plane_with_annotations()
```

```
coefficient\_plots \qquad \textit{coefficient\_plots}
```

Description

```
coefficient_plots
```

Usage

```
coefficient_plots(folders)
```

Arguments

folders

```
combine\_cost\_and\_p\_xlsheets \\ combine\_cost\_and\_p\_xlsheets
```

Description

```
combine\_cost\_and\_p\_xlsheets
```

Usage

```
combine_cost_and_p_xlsheets(parameter_p, parameter_cost)
```

Arguments

```
parameter_cost
```

```
combine_freq_tables
```

Description

```
combine_freq_tables
```

Usage

```
combine_freq_tables(data_folder, file_name)
```

Arguments

file_name

Examples

16 costeff_stats

Description

```
combine_popmod_dectree_res
```

Usage

```
combine_popmod_dectree_res(cohort, interv, popmod_res, dectree_res,
  folders = NA)
```

Arguments

folders

Value

- ce0: marginal status-quo
- ce1: marginal intervention
- ce_default: non_incremental cost-effectiveness
- ce_incr: incremental cost-effectivness

 $costeff_stats$

Cost-effectiveness Statistics

Description

Cost-effectiveness Statistics

Usage

```
costeff_stats(scenario_dat, interv_QALY, interv_cost, pop_year)
```

Arguments

```
scenario_dat list
pop_year
```

Value

list

cost_tb_notif

cost_tb_notif

Total costs of first and secondary active TB cases

Description

Total costs of first and secondary active TB cases

Usage

```
cost_tb_notif(num_sec_inf, unit_cost, notif_discounts,
   secondary_inf_discounts)
```

Arguments

num_sec_inf Number of secondary infections for each index TB case; vector of integer (0 or

1)

unit_cost Single value

notif_discounts

for each index TB case; vector

secondary_inf_discounts

for each index TB case; vector

```
count_comprsk_events
```

Description

Counts competing risk events over time. Replaces a (deprecated) previous rewritten version. Tied times are prioritised according to their named order.

Usage

```
count_comprsk_events(event_times)
```

Arguments

```
event_times List; tb, (fup), exit_uk, death
```

Value

data.frame

cp_in_data_to_out_dir Copy input data to output folder

Description

Copy input data to output folder

Usage

```
cp_in_data_to_out_dir(file_names, to_dir)
```

Arguments

to_dir

Description

```
create\_and\_save\_policies
```

Usage

```
create_and_save_policies(incidence_list, endpoints, LTBI_test, treatment)
```

Arguments

treatment

```
create_and_save_scenarios
```

Create and save scenarios

Description

Long flat array

Usage

```
create_and_save_scenarios(file_tag)
```

Arguments

Value

none (save to project data folder)

create_avoid_tb_list 19

Description

Numbers of individuals who avoid getting TB due to screening

Usage

```
create_avoid_tb_list(scenario_res, n_all_tb, n_uk_tb)
```

Arguments

```
n_uk_tb
```

Value

list

Description

This can be a super set of values because the prediction function just picks the ones that are in the fitted model. Although for a fine grid on some parameter this may result in a very large array.

Usage

```
create_pred_newdata(grid_min = NA, grid_max = NA, step_size = NA,
  agree = NA, sens = NA, spec = NA, start = NA, complete = NA,
  effective = NA, cost = NA)
```

Arguments

Examples

```
create_pred_newdata(sens = 0.9,

spec = 0.85,

#start = c(0.5, 1),

#complete = c(0.5, 1),

cost = 50)
```

20 dectree_to_dataframe

```
{\tt decision\_tree\_cluster} \ \ \textit{Decision tree}
```

Description

Calculate decision tree expected costs and QALY loss for N simulations.

Usage

```
decision_tree_cluster(params, N.mc = 2,
  cost_dectree = "osNode_cost_2009.Rds",
  health_dectree = "osNode_health_2009.Rds", out_datatree = FALSE)
```

Arguments

params long format array

N.mc integer

cost_dectree Rds file names (string) health_dectree Rds file names (string)

out_datatree Output full datatree object? Default: FALSE

Value

list

```
dectree_to_dataframe dectree_to_dataframe
```

Description

```
TODO: change data.tree:: to output _all_ nodes
```

Usage

```
{\tt dectree\_to\_dataframe(osNode)}
```

Arguments

osNode

design_matrix 21

design_matrix

 $design_matrix$

Description

Create a flat array from scenario inputs.

Usage

```
design_matrix(params)
```

Arguments

params

Value

dataframe

Examples

```
scenario_params_df %>%
design_matrix()
```

diroutput

form name of output folder

Description

form name of output folder

Usage

```
diroutput(policy_name, interv)
```

Arguments

interv

22 gg_care_cascade

```
expected_cost_QALY
expected_cost_QALY
```

Description

```
expected_cost_QALY
```

Usage

```
expected_cost_QALY(cohort, means)
```

Arguments

means

```
freq\_table\_for\_publication \\ freq\_table\_for\_publication
```

Description

 $https://stackoverflow.com/questions/34587317/using-dplyr-to-create-summary-proportion-table-with-several-categorical-factor-v?utm_medium=organic\&utm_source=google_rich_qa\&utm_campaign=google_rich_qa$

Usage

```
freq_table_for_publication(wide_df, row_vars, col_var)
```

Arguments

col_var

gg_care_cascade

gg_care_cascade

Description

```
gg_care_cascade
```

Usage

```
gg_care_cascade(dat, plots_folder = NA, prob_or_num = "prob",
policy_name = NA, grp = NA, box_plot = FALSE)
```

Arguments

```
box_plot
```

handle_try_error 23

handle_try_error

handle_try_error

Description

```
handle_try_error
```

Usage

```
handle_try_error(try_out)
```

Arguments

try_out

 $histogram_INMB$

 $histogram_INMB$

Description

```
histogram\_INMB
```

Usage

```
histogram_INMB(bcea, ...)
## S3 method for class 'bcea'
histogram_INMB(bcea, folders = NA,
   wtp_threshold = 20000)
## S3 method for class 'bcea'
ridgeslineplot_INMB(bcea, folders = NA,
   wtp_threshold = 20000)
```

Arguments

. . .

24 IMPUTED_sample

```
hist_progression_times
```

hist_progression_times

Description

hist_progression_times

Usage

```
hist_progression_times(dat)
```

Arguments

dat

Individual level cohort data

Examples

hist_progression_times(cohort)

IMPUTED_sample

Cohort used in model after data cleaning and prep

Description

Cohort used in model after data cleaning and prep

Usage

IMPUTED_sample

Format

A data frame with xxx rows and xxx variables:

rNotificationDate_issdt Time in days from entry to active TB for original data
notif_issdt.years Time in years from entry to active TB for original data
all_tb_issdt Simulated time in years from entry to active TB
notif_issdt.years Simulated time in years from entry to active TB in EWNI
exituk_tb.years Simulated time in years from entry to active TB after exit ...

inmb_from_bcea 25

inmb_from_bcea

inmb_from_bcea

Description

Using data from simulation (not regression predictions).

Usage

```
inmb_from_bcea(bcea, folders, wtp_threshold = c(10000, 20000, 30000))
```

Arguments

wtp_threshold

Value

list by wtp

 $inmb_levelplot$

inmb_levelplot

Description

```
inmb\_levelplot
```

Usage

```
inmb_levelplot(plot_data, formula = as.formula(INMB ~ Start_Treatment_p *
   Complete_Treatment_p), start = NA, complete = NA,
   levels_range = seq(-70, 50, by = 5), folders = NA,
   plot_type = "base")
```

Arguments

```
formula \\ Default: INMB ~ Start\_Treatment\_p * Complete\_Treatment\_p \\
```

plot_type base or ggplot2

26 integerLHS

Description

```
##TODO: use for prep script
```

Usage

```
insert_dectree_cost(names, costs, osNode)
```

Arguments

names node labels

osNode

integerLHS integerLHS

Description

```
https://stat.ethz.ch/pipermail/r-help/2007-January/124143.html
```

Usage

```
integerLHS(n, intGroups)
```

Arguments

intGroups

Examples

```
integerLHS(10, list(1:10, 31:40))
integerLHS(5, list(1:10, 31:40))
integerLHS(2, list(1:10, 31:40))
integerLHS(5, list(1:20, 31:60, 101:115))
integerLHS(5, list(seq(2,20,2), 31:60, 101:115))
```

interv_constructor 27

interv_constructor interv_constructor

Description

interv constructor

Usage

```
interv_constructor(N.mc = 1, cluster = FALSE, use_discount = TRUE,
no_students = FALSE, force_everyone_stays = FALSE,
screen_with_delay = TRUE, MAX_SCREEN_DELAY = 5, FUP_MAX_YEAR = 100,
screen_age_range = 18:35, year_cohort = "2009",
incidence_grps_screen = c("(0,50]", "(50,150]", "(150,250]",
    "(250,350]", "(350,1e+05]"), min_screen_length_of_stay = 0,
ENDPOINT_cost = "death", ENDPOINT_QALY = "death")
```

Arguments

N.mc Global fixed constant; default 1

use_discount Global fixed constant

screen_with_delay

Rather than screen _everyone_ on entry screen at random 0-5 years from entry

FUP_MAX_YEAR Time horizon for active TB progression

year_cohort year_cohort = '2012' is most recent complete year; largest cohort, corresponds

with Pareek () LTBI risk

incidence_grps_screen

Modified in the deterministic sensitivity analysis but set default values

min_screen_length_of_stay

Modified in the deterministic sensitivity analysis but set default values

ENDPOINT_cost Modified in the deterministic sensitivity analysis but set default values ENDPOINT_QALY Modified in the deterministic sensitivity analysis but set default values

is.death

Is Follow-up Time a Time of Death

Description

Create event-type indicators

Usage

```
is.death(imputation_num, data, fup_limit = 19723)
```

Arguments

fup_limit

Details

fup_limit <- 19723 is days from 1960-01-01 TODO is.exit_uk, is.fup_limit

lm_list_to_df

leaf_df_by_name

leaf_df_by_name

Description

Subset to dataframe of terminal nodes by name.

Usage

```
leaf_df_by_name(osNode, node_name)
```

Arguments

node_name

Text string

dectree_df

 $my_ToDataFrameTypeCol()\ output$

Value

dataframe of subset

list_to_BCEA

list_to_BCEA

Description

transform to BCEA package input format

Usage

```
list_to_BCEA(scenario_list, discount = 1)
list_to_BCEA_incr(scenario_list, discount = 1)
```

Arguments

discount

lm_list_to_df

lm_list_to_df

Description

Create wide output table using broom.

Usage

```
lm_list_to_df(fit)
```

Arguments

fit

lm_multi_wtp 29

lm_multi_wtp

Linear multivariate regression varying willingness to pay

Description

Linear multivariate regression varying willingness to pay

Usage

```
lm_multi_wtp(nmb_formula, nmb_mat, f_lm = lm, folders = NA)
```

Arguments

nmb_mat

list by wtp

 $f_1 \text{m}$

function type of regression; bayeslm_wtp, lm; default: lm

folders

make_ce0

 $make_ce0$

Description

make_ce0

Usage

```
make_ce0(popmod_res)
```

Arguments

popmod_res

make_ce1

make_ce1

Description

make_ce1

Usage

```
make_ce1(popmod_res, t_dectree, sdiscount)
```

Arguments

sdiscount

30 my_ceac_plot

Description

```
make_incremental_ce
```

Usage

```
make_incremental_ce(popmod_res, t_dectree, sdiscount, folders = NA)
```

Arguments

folders

make_wide_INMB

make wide INMB array from predictions

Description

reshape

Usage

```
make_wide_INMB(pred, newdata)
```

Arguments

newdata

my_ceac_plot

my_ceac_plot

Description

```
my_ceac_plot
```

Usage

```
my\_ceac\_plot(he, comparison = NULL, pos = c(1, 0), graph = c("base", "ggplot2"))
```

Arguments

graph

my_ToDataFrameTable

```
\verb|my_ToDataFrameTable| my_ToDataFrameTable|
```

Description

This is the same as the same named function in data. tree except it is not filtered by leaf.

Usage

```
my_ToDataFrameTable(x, ..., pruneFun = NULL)
```

Arguments

pruneFun

See Also

ToDataFrameTable

```
\verb|my_ToDataFrameTypeCol| my_ToDataFrameTypeCol|
```

Description

This is the same as the same named function in data. tree except it is not filtered by leaf.

Usage

```
my_ToDataFrameTypeCol(x, ..., type = "level", prefix = type, pruneFun = NULL)
```

Arguments

pruneFun

See Also

ToDataFrameTypeCol

32 nmb_contour_plot

net_benefit_list

Net benefit on c and e lists

Description

Net benefit on c and e lists

Usage

```
net_benefit_list(e_list, c_list, wtp_threshold)
```

Arguments

wtp_threshold

nmb_contour_plot

nmb_contour_plot

Description

Single or multiple contour plot.

Usage

```
nmb_contour_plot(plot_data, folders, x_var = "Start_Treatment_p",
    y_var = "Complete_Treatment_p", facet_vars = c("Agree_to_Screen_p",
    "Effective_p"))
```

Arguments

folders List

x_var string

y_var string

facet_vars Vector of strings

nmb_matrix 33

nmb_matrix

Net monetary benefit matrix

Description

Create input data for regressions.

Usage

```
nmb_matrix(ce1, ce0, folders = NA, design_mat = NA, wtp_min = 10000,
  wtp_max = 30000)
```

Arguments

ce1 interventions
ce0 status-quo
folders list of strings

wtp_min, wtp_max

Willingness-to-pay limits; numeric

Details

This is _not_ incremental benefit.

Value

list of data.frames by wtp

nmb_multi_regn

nmb_multi_regn

Description

Fit regression

Usage

```
nmb_multi_regn(nmb_mat, folders = NA, f_lm = lm, interactions = NA,
  centre_p = 90)
```

Arguments

nmb_mat list by wtp

f_lm lm or bayeslm_wtp; default: lm

centre default: 90

34 num_subset_dectree

nmb_predictions

Net monetary benefit regression predictions

Description

High-level create desing matrix, fit model & predict.

Usage

```
nmb_predictions(ce_res, folders, use_newdata = TRUE)
```

Arguments

ce_res from combine_popmod_dectree_res()

use_newdata default TRUE

Value

Array of regression predictions.

nmb_scenarios

Net monetary benefit over scenarios

Description

Create long array over multiple wtp.

Usage

```
nmb_scenarios(e0, c0, e1, c1, wtp)
```

Arguments

wtp

num_subset_dectree

num_subset_dectree

Description

```
num\_subset\_dectree
```

Usage

```
num_subset_dectree(cohort, dectree_res, diroutput = NA)
```

Arguments

diroutput

num_subset_tb 35

 ${\tt num_subset_tb}$

num_subset_tb

Description

Uses dectree subset_pop output instead of separate montecarlo()

Usage

```
num_subset_tb(cohort, dectree_res, folder = NA)
```

Arguments

folder

name text string

num_subset_tb_wide

num_subset_tb_wide

Description

Uses dectree subset_pop output instead of separate montecarlo()

Usage

```
num_subset_tb_wide(cohort, dectree_res, folder)
```

Arguments

folder

text string

Value

tibble

oneway_matrix

Generate One-Way Model Matrix

Description

Otherwise known as one-factor-at-a-time. For full-factorial design use expand.grid.

Usage

```
oneway_matrix(mid, high, low)
```

Arguments

mid	Vector of middle values
high	Vector of high values
low	Vector of low values

Value

matrix

Examples

```
mid <- c(2,3,4,10)
high <- c(4,5,6,100)
low <- c(0,1,2,-2)
oneway_matrix(mid, high, low)
```

optimal_thresholds

Find optimal thresholds

Description

Find optimal thresholds

Usage

```
optimal_thresholds(lm_multi, covar, centre)
```

Arguments

centre

```
parallel_decision_tree
```

Parallel cost-effectiveness decision tree

Description

the output is also saved in Q:/R/cluster-LTBI-decision-tree because the alternative way of running is on the DIDE cluster so all of the results are in the same place

Usage

```
parallel_decision_tree(scenario_params, interv, folders,
  out_datatree = FALSE)
```

Arguments

scenario_params

list of dataframes

interv list of policy parameters

folders list

out_datatree default:FALSE

Details

```
Based on code here: https://www.r-bloggers.com/how-to-go-parallel-in-r-basics-tips/
```

Value

List of decision_tree_cluster outputs for each scenario

Description

```
plots_and_tables_policies
```

Usage

```
plots_and_tables_policies()
```

Description

Multiple types of figures and tables.

Usage

```
plots_and_tables_scenarios(cohort, dectree_res, popmod_res, ce_res,
    folders)
```

Arguments

folders list of input/output folders

Value

Side effects only

plot_CE_contours plot_CE_contours

Description

```
plot_CE_contours
```

Usage

```
plot_CE_contours(dat_INMB, folders)
```

Arguments

dat_INMB from nmb_predictions()

folders list

 $plot_QALY_cost_distns_by_scenario \\ plot_QALY_cost_distns_by_scenario$

Description

QALY gains and cost incurred histograms for each scenario

Usage

```
plot_QALY_cost_distns_by_scenario(aTB_CE_stats, folders)
```

Arguments

folders

Examples

load("C:/Users/ngreen1/Dropbox/TB/LTBI/R/LTBIscreeningproject/ext-data/18_to_35_in_2009/programme_level_screeningproject/ext-data/18_to_35_in_2009/progra

policy_cohort 39

policy_cohort

Create policy cohort

Description

Filter individuals by policy definition.

Usage

```
policy_cohort(cohort_in, policy_name, interv)
```

Arguments

cohort_in total sample interv list of conditions

Value

cohort

policy_interv

policy_interv

Description

Set the intervention parameter values within an evinonment.

Usage

```
policy_interv(policy_name, interv)
```

Arguments

policy_name string interv list

predict_nmb_wtp

Predict from a list of fitted regressions

Description

Predict from a list of fitted regressions

Usage

```
predict_nmb_wtp(fits_list, newdata = NA)
```

Arguments

newdata

Description

Replace same-year events with NA make sure that tb is always counted as priority

Usage

```
prioritise_events(times_dat)
```

Arguments

times_dat

prob_ce_gridplot

prob_ce_gridplot

Description

```
prob_ce_gridplot
```

Usage

```
prob_ce_gridplot(out_sim, formula = as.formula(prob_CE ~
    Start_Treatment_p * Complete_Treatment_p), folders = NA,
    plot_type = "base")
```

Arguments

folders list

plot_type base or ggplot2

prob_from_cum_incidence

Calculate Jump Probabilities from Cumulative Incidence Functions

Description

```
see Jackson ()
```

Usage

```
prob_from_cum_incidence(cum_incidence_event, cum_incidence_comprisks)
```

prob_subset_dectree 41

Arguments

```
cum_incidence_event

Cumulative incidence for the event of interest

cum_incidence_comprisks

List of cumulative incidence for the other competing risk events
```

Value

Discrete probabilities

```
prob_subset_dectree
```

Description

```
prob_subset_dectree
```

Usage

```
prob_subset_dectree(cohort, dectree_res, diroutput = NA,
   LTBI_to_TB = 0.1)
```

Arguments

diroutput

```
remove\_cols\_constant\_vars \\ remove\_cols\_constant\_vars
```

Description

```
remove_cols_constant_vars
```

Usage

```
{\tt remove\_cols\_constant\_vars(nmb\_mat)}
```

Arguments

```
nmb_mat
```

42 run_final_message

Description

ridges line plot INMB

Usage

```
ridgeslineplot_INMB(bcea, ...)
```

Arguments

. . .

```
rows_first_n_ids
```

rows_first_n_ids

Description

Finds the rows corresponding to the first n individuals by ascending id numbers.

Usage

```
rows_first_n_ids(id_avoid, prop_avoid)
```

Arguments

```
id_avoid IDs, may have gaps/missing numbers prop_avoid
```

Value

logical vector

```
run_final_message
```

 $run_final_message$

Description

```
run_final_message
```

Usage

```
run_final_message(run)
```

Arguments

run

run_model 43

run_model

Run model

Description

Run model

Usage

```
run_model(cohort_data = NA, make_plots = TRUE, sink_out = FALSE)
```

Arguments

sink_out

output to file? Default: FALSE

run_policy

run_policy

Description

A single policy simulation

Usage

```
run_policy(cohort = NA, make_plots = TRUE)
```

Arguments

 $cohort_data$

```
sample\_subset\_pop\_dectree
```

sample_subset_pop_dectree

Description

Iteratively randomly samples probabilities and then calculates subset sizes

Usage

```
sample_subset_pop_dectree(osNode, n = 1, sample_p = TRUE)
```

Arguments

osNode data.tree object n Sample size

sample_p Random sample TRUE/FALSE

Value

matrix

44 sample_tb_year

sample_tb

Sample (Updated) Active TB Status for Active TB Cases

Description

Sample (Updated) Active TB Status for Active TB Cases

Usage

```
sample_tb(prob, is.tb = NA)
```

Arguments

prob probability of success (e.g. completing treatment) for all cohort; i.e. probability

of FALSE/0.

is.tb is individual active TB case (logical)

Value

(counterfactual) TB status for active TB cases

sample_tb_year

Sample active TB progression time

Description

Given that an individual progresses then this approach samples active TB times.

Usage

```
sample_tb_year(fup_issdt, death_issdt, prob)
```

Arguments

fup_issdt Time to follow-up/exit EWNI

death_issdt Time to all-cause death (competing risk)

prob Incidence density of progression

Details

Two-step mixture model for tb sampling:

- 1. Do they progress?
- 2. Sample TB time after follow-up

Value

Notification time

save_session_info 45

save_session_info Save session info

Description

Save session info

Usage

```
save_session_info(file)
```

Arguments

file string

Description

Calculate total cost of a scenario

Usage

```
scenario_cost(endpoint, unit_cost, probs_contact, cohort, prop_avoided)
```

Arguments

endpoint death or exit uk

unit_cost Diagnosis and treatment cost distributions

probs_contact Proportions of individuals in subsets

cohort nrow total number of tb cases in EWNI and after exit

 $prop_avoided \qquad p_LTBI_to_cured$

Value

list statusquo' and screened

46 scenario_QALYloss

scenario_QALY

Calculate total QALYs of a scenario

Description

Calculate total QALYs of a scenario

Usage

```
scenario_QALY(prop_avoided, endpoint, cohort, ordered = TRUE)
```

Arguments

prop_avoided probability

endpoint 'death' or 'exit uk'
cohort Individual data

ordered Should individuals have a fixed order when avoiding tb; default: TRUE

Value

list of status-quo and screened life-time QALYs

scenario_QALYloss

 $scenario_QALYloss$

Description

Splits output also into due to morbidity and mortality.

Usage

```
scenario_QALYloss(prop_avoided, endpoint, cohort)
```

Arguments

cohort

screened_cohort_cost 47

Description

Substract the avoided cost of those successfully screened from status-quo cost.

Usage

```
screened_cohort_cost(n.diseasefree, cost.statusquo, unit_cost_case)
```

Arguments

```
n.diseasefree Number of disease-free individuals
cost.statusquo Cost under status-quo
unit_cost_case Unit cost of detect and treat an active TB case
```

Value

Total cost for potentially screened cohort

See Also

```
screened_cohort_QALYs
```

```
screened_cohort_QALYs Calculate Potentially Screened Cohort QALYs
```

Description

Calculate Potentially Screened Cohort QALYs

Usage

```
screened_cohort_QALYs(n.diseasefree, QALY)
```

Arguments

n.diseasefree Number of disease-free individuals

QALY List of QALYs for total cohort status-quo (assumed treated and cured), death, or

all treated to disease-free

Value

Total QALYs for potentially screened cohort

See Also

```
screened_cohort_cost
```

48 setup_folders

screen_discount

screen_discount

Description

Discount cost and QALYs in decision tree due to delayed start of screening from entry

Usage

```
screen_discount(cohort, discount_rate = 0.035)
```

Arguments

cohort individual level data

discount_rate default: 3.5%

setup_folders

Setup folders

Description

Setup folders

Usage

```
setup_folders(policy_name, interv)
```

Arguments

policy_name String

interv List of model run constants

Value

List of folder locations

```
set_branch_uniform_params
set_branch_uniform_params
```

Description

```
set_branch_uniform_params
```

Usage

```
set_branch_uniform_params(vals, osNode)
## Default S3 method:
set_branch_uniform_params(vals, osNode)
## S3 method for class 'branch_unif_params'
set_branch_uniform_params(vals, osNode)
## S3 method for class 'test'
set_branch_uniform_params(vals, osNode)
```

Arguments

osNode

sim_tb_times

Simulate TB progression times

Description

Simulate TB progression times

Usage

```
sim_tb_times(data, prob)
```

Arguments

prob

50 stan_predictions

```
{\tt split\_time\_intervals} \quad \textit{split\_time\_intervals}
```

Description

```
split_time_intervals
```

Usage

```
split_time_intervals(cohort, Tx_interval = 0.5)
```

Arguments

Tx_interval

stan_predict

stan_predict

Description

stan_predict

Usage

```
stan_predict(stan_fit, newdata, n_draws)
```

Arguments

n_draws

stan_predictions

 $stan_predictions$

Description

```
stan_predictions
```

Usage

```
stan_predictions(ce_res, folders, use_newdata = TRUE)
```

Arguments

use_newdata

strat_pop_year 51

strat_pop_year

strat_pop_year

Description

```
strat_pop_year
```

Usage

```
strat_pop_year(cohort, dectree_res, prop_avoid, folders)
```

Arguments

folders

```
\verb|subpop_by_exituk_year| subpop_by_exituk_year|
```

Description

Count number deaths & active TB cases in each exit uk year group

Usage

```
subpop_by_exituk_year(data)
```

Arguments

data

Individual-level sample?

 $subset_dectree$

num_subset_dectree

Description

Counts or proportion frequency of subset sizes along screening pathway.

Usage

```
subset_dectree(cohort, subset_pop, num_screen = 1)
```

Arguments

cohort

individual level data

subset_pop

part of output of decision_tree_cluster()

num_screen

Value

tibble

subset_pop_dectree

Subset populations of decision tree

Description

Specific to the LTBI screening model, this gives the total probabilities of particular state on the pathway by summing across nodes, using pathprobs.

Usage

```
subset_pop_dectree(osNode)
```

Arguments

osNode

data.tree object

Value

data.frame of probabilities

```
subset_pop_dectree_TEST
```

Subset populations of decision tree TEST

Description

THIS FUNCTION IS SLOW BUT CAN BE USED TO TEST AGAINST ALTERNATIVE VERSION subset_pop_dectree.

Usage

```
subset_pop_dectree_TEST(osNode)
```

Arguments

osNode

data.tree object

Details

Specific to the LTBI screening model, this gives the total probabilities of particular state on the pathway by summing across nodes, using pathprobs.

Value

data.frame of probabilities

table_costeffectiveness 53

```
table_costeffectiveness
```

Table of cost-effectiveness statistics

Description

Take BCEA package object as input and creates a policy summary table over scenarios.

Usage

```
table_costeffectiveness(bcea, ...)
## S3 method for class 'bcea'
table_costeffectiveness(bcea_out, wtp_threshold = 20000,
    ncohort = 1000, folder = NA)
```

Arguments

bcea_out Pre-calculated output from BCEA package wtp_threshold Willingness to pay; Default: B#20,000

ncohort hypothetical cohort size. This scales up small values to something more mean-

ingful.

folder text string save location

Value

data.frame with columns:

- Cost
- QALY
- Incremental_cost
- Incremental_QALY
- ICER
- INB
- ceac_WTP20k
- ceac_WTP25k
- ceac_WTP30k

Examples

54 table_tb_avoided_wide

table_tb_avoided

table_tb_avoided

Description

table_tb_avoided

Usage

```
table_tb_avoided(dectree_res, folder = NA)
```

Arguments

folder

text string

Value

EWNI and total 5

```
{\tt table\_tb\_avoided\_wide} \ \ \textit{table\_tb\_avoided\_wide}
```

Description

```
table_tb_avoided_wide
```

Usage

```
table_tb_avoided_wide(dectree_res, folder = NA)
```

Arguments

folder

text string

Value

EWNI and total 5

TB_burden_countries 55

TB_burden_countries

TB incidence in country from WHO 2017 report

Description

2016 data

Usage

TB_burden_countries

Format

data.frame

Source

http://www.who.int/tb/country/data/download/en/

test

test constructor

Description

test constructor

Usage

```
test(sens, spec)
```

Arguments

spec

tornado_plot_ICER

tornado_plot_ICER

Description

```
tornado_plot_ICER
```

Usage

```
tornado_plot_ICER(bcea, ...)
## S3 method for class 'bcea'
tornado_plot_ICER(bcea, folders)
```

Arguments

. . .

56 tornado_sim_plot

tornado_plot_INMB

tornado_plot_INMB

Description

```
tornado_plot_INMB
```

Usage

```
tornado_plot_INMB(bcea, ...)
## S3 method for class 'bcea'
tornado_plot_INMB(bcea, folders)
```

Arguments

. . .

tornado_sim_plot

tornado_sim_plot

Description

```
tornado\_sim\_plot
```

Usage

```
tornado_sim_plot(ce_res, folders)
```

Arguments

```
folders List
```

Value

ggplot object

WHO_incid_by_country_all_years

TB incidence in country from WHO all years up to 2016

Description

 $see also \ https://www.gov.uk/government/publications/tuberculosis-tb-by-country-rates-per-100000-perceate_prev_inc_country_array.R$

Usage

WHO_incid_by_country_all_years

Format

data.frame

Source

http://apps.who.int/gho/data/node.main.1320?lang=en

Index

```
*Topic datasets
                                                 create_prev_inc_country_array.R, 57
    IMPUTED_sample, 24
                                                 decision_tree_cluster, 20
    TB_burden_countries, 55
                                                 dectree_to_dataframe, 20
    WHO_incid_by_country_all_years, 57
                                                 design_matrix, 21
activetb_galy_cost, 4
                                                 diroutput, 21
append_scenario_num, 6
                                                 expected_cost_QALY, 22
assign_LTBI_status, 6
                                                 freq_table_for_publication, 22
base_filled_contour_grid, 6
bayes_predict, 7
                                                 gg_care_cascade, 22
bayeslm_wtp, 7
bcea_incremental, 7
                                                 handle_try_error, 23
bcea_to_plotdata, 8
                                                 hist_progression_times, 24
boxplot_INMB, 8
                                                 histogram_INMB, 23
branch_unif_params, 8
                                                 IMPUTED_sample, 24
calc.ICER, 9
                                                 inmb_from_bcea, 25
calc.INMB, 9
                                                 inmb_levelplot, 25
calc_num_active_tb, 10
                                                 insert\_dectree\_cost, 26
calc_QALY_tb, 10
                                                 integerLHS, 26
care_cascade_num (care_cascade_prob), 11
                                                 interv_constructor, 27
care_cascade_prob, 11
                                                 is.death, 27
cbind_all_subsets, 11
cc_lot_kernel, 12
                                                 leaf_df_by_name, 28
ce_boundary_line_plot, 13
                                                 list_to_BCEA, 28
ce\_boundary\_points\_plot, 13
                                                 list_to_BCEA_incr (list_to_BCEA), 28
ce_default, 13
                                                 lm\_list\_to\_df, 28
CE_plane_trajectories, 14
                                                 lm_multi_wtp, 29
ce_plane_with_annotations, 14
ceac_plot_and_save, 12
                                                 make_ce0, 29
ceplane_plot_and_save, 12
                                                 make_ce1, 29
coefficient_plots, 14
                                                 {\sf make\_incremental\_ce}, 30
combine_cost_and_p_xlsheets, 15
                                                 make_wide_INMB, 30
combine_freq_tables, 15
                                                 my_ceac_plot, 30
combine_popmod_dectree_res, 16
                                                 my_ToDataFrameTable, 31
cost_tb_notif, 17
                                                 my_ToDataFrameTypeCol, 31
costeff_stats, 16
                                                 net\_benefit\_list, 32
count_comprsk_events, 17
                                                 \verb|nmb_contour_plot|, 32|
cp_in_data_to_out_dir, 18
create_and_save_policies, 18
                                                 nmb_matrix, 33
create_and_save_scenarios, 18
                                                 nmb_multi_regn, 33
create_avoid_tb_list, 19
                                                 nmb_predictions, 34
create_pred_newdata, 19
                                                 nmb_scenarios, 34
```

INDEX 59

num_subset_dectree, 34	subset_pop_dectree_TEST, 52
num_subset_tb, 35	table_costeffectiveness, 53
num_subset_tb_wide, 35	table_tb_avoided, 54
oneway_matrix, 35	table_tb_avoided_wide, 54
optimal_thresholds, 36	TB_burden_countries, 55
optimal_thresholds, 50	test, 55
parallel_decision_tree, 36	ToDataFrameTable, 31
plot_care_cascade (care_cascade_prob),	ToDataFrameTypeCol, 31
11	tornado_plot_ICER, 55
plot_CE_contours, 38	tornado_plot_INMB, 56
plot_QALY_cost_distns_by_scenario, 38	tornado_sim_plot, 56
plots_and_tables_policies, 37	
plots_and_tables_scenarios, 37	<pre>WHO_incid_by_country_all_years, 57</pre>
policy_cohort, 39	
policy_interv, 39	
predict_nmb_wtp, 39	
prioritise_events, 40	
prob_ce_gridplot, 40	
prob_from_cum_incidence, 40	
prob_subset_dectree, 41	
Q:/R/clusterLTBI-decision-tree, 36	
remove_cols_constant_vars, 41	
ridgeslineplot_INMB, 42	
ridgeslineplot_INMB.bcea	
(histogram_INMB), 23	
rows_first_n_ids, 42	
run_final_message, 42	
run_model, 43 run_policy, 43	
run_porrcy, 43	
<pre>sample_subset_pop_dectree, 43</pre>	
sample_tb, 44	
<pre>sample_tb_year, 44</pre>	
save_session_info,45	
scenario_cost, 45	
scenario_QALY,46	
scenario_QALYloss,46	
screen_discount, 48	
screened_cohort_cost, 47, 47	
screened_cohort_QALYs, 47, 47	
set_branch_uniform_params, 49	
setup_folders, 48	
sim_tb_times, 49	
split_time_intervals, 50	
stan_predict, 50	
stan_predictions, 50	
strat_pop_year, 51	
subpop_by_exituk_year, 51	
subset_dectree, 51	
subset_pop_dectree, 52	