MAP 552 exercice B6 Peng-Wei Chen

Soient $b, \sigma, f : \mathbb{R} \to \mathbb{R}$ des fonctions continues telles que b, σ et $\sigma \times f$ sont des fonctions lipschitziennes. Soit W un mouvement brownien standard et $x \in \mathbb{R}$. On pose

$$X_t = x_0 + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s$$
$$X_t' = x_0 + \int_0^t b(X_s') + \sigma(X_s')f(X_s')ds + \int_0^t \sigma(X_s')dW_s$$

On note $L_b, L_\sigma, L_{\sigma \times f}$ les constantes telles que b (resp. $\sigma, \sigma \times f$) soient L_b (resp. $L_\sigma, L_{\sigma \times f}$)-lipschitziennes.

Question 1

Montrer que les processus X et X' sont bien définis.

Preuve:

On utilise le théorème 8.3. Fixons $T \in \mathbb{R}_+$. On prend $b' : (\mathbb{R} \times \mathbb{R}) \to \mathbb{R}$ telle que b'(t,x) = b(x) et $\sigma' : (\mathbb{R} \times \mathbb{R}) \to \mathbb{R}$ telle que $\sigma'(t,x) = \sigma(x)$. Alors, |b'(t,0)| et $|\sigma'(t,0)|$ sont dans $\mathbb{L}^2([0,T])$ (bornées sur le compact [0,T]), et pour $t \in [0,T], x,y \in \mathbb{R}$, on a

$$|b'(t,x) - b'(t,y)| + |\sigma'(t,x) - \sigma'(t,y)| = |b(x) - b(y)| + |\sigma(x) - \sigma(y)| \le (L_b + L_\sigma)|x - y|$$

En même temps, x_0 est indépendant de W. Ainsi, il existe une unique solution forte pour X_t , X_t est donc bien défini.

En définissant $b'(t,x) = b(x) + \sigma(x)f(x)$ et $\sigma'(t,x) = \sigma(x)$, on a :

- $|b'(t,0)|et|\sigma'(t,0)|$ sont dans $\mathbb{L}^2([0,T])$ (Bornées sur le compact [0,T]).
- Pour $t \in [0, T], x, y \in \mathbb{R}$, on a $|b'(t, x) b'(t, y)| + |\sigma'(t, x) \sigma'(t, y)| \le (L_b + L_{\sigma \times f} + L_{\sigma})|x y|$.

 x_0 est toujours indépendant de W. X'_t est donc bien défini.

On définit pour $L > |x_0|$,

$$\mathcal{E}_t = \exp\left(\int_0^t f(X_s)dW_s - \frac{1}{2}\int_0^t f^2(X_s)ds\right), \\ \mathcal{E}_t^L = \exp\left(\int_0^t f(\pi^L(X_s))dW_s - \frac{1}{2}\int_0^t f^2(\pi^L(X_s))ds\right), \\ \text{où } \pi^L(x) = (x \wedge L) \vee (-L) \text{ (autrement dit, } \pi^L(x) = x \text{ si } x \in [-L, L], \\ \pi^L(x) = -L \text{ si } x < -L).$$

Question 2

Soit T > 0. Montrer que $\mathbb{E}[\mathcal{E}_T] \leq 1$ et $\mathbb{E}[\mathcal{E}_T^L] = 1$.

Preuve:

On applique la formule d'Itô à $\mathcal{E}_t = f(t, X_t)$. On a

$$d\mathcal{E}_t = \mathcal{E}_t f(X_t) dW_t$$

Donc \mathcal{E}_t est une martingale locale. En plus $\mathbb{E}[\mathcal{E}_0] = 1$ et $\mathcal{E}_t > 0$, c'est donc une surmartingale et on a $\mathbb{E}[\mathcal{E}_t] \leq 1 \forall t$.

Pour $\mathcal{E}_{\mathcal{T}}^{\mathcal{L}}$, on utilise le critère de Novikov. Considérons $\mathbb{E}[e^{\frac{1}{2}\int_0^T |f(\pi^L(X_s)|^2 ds}]$. Or $\pi^L(X_s) \in [-L, L]$, donc l'espérance est finie. D'où $\boxed{\mathbb{E}[\mathcal{E}_t^L] = 1 \forall t]}$.

Question 3

On pose $\frac{d\mathbb{P}^L}{d\mathbb{P}} = \mathcal{E}_T^L$. Montrer que pour $t \in [0,T], dW_t^L = dW_t - f(\pi^L(X_t))dt$ définit un mouvement brownien sous \mathbb{P}^L et donner la dynamique de X à l'aide de W^L (c'est à dire exprimer dX_t à l'aide de dW_t^L).

Preuve:

On sait par Question 2 que $\mathbb{E}[\mathcal{E}_t^L] = 1$. C'est donc simplement une application du théorème de Girsanov, $W_t^L = W_t - \int_0^t f(\pi^L(X_t))dt$ définit donc un mouvement brownien sous \mathbb{P}^L . Pour dX_t , on écrit :

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

= $(b(X_t) + \sigma(X_t)f(\pi^L(X_t)))dt + \sigma(X_t)dW_t^L$

On a
$$dX_t = (b(X_t) + \sigma(X_t)f(\pi^L(X_t)))dt + \sigma(X_t)dW_t^L$$
.

Question 4

On pose $\tau_L = \inf\{t \geq 0, |X_t| \geq L\}$ et $\tau'_L = \inf\{t \geq 0, |X'_t| \geq L\}$. Montrer que $\mathbb{E}[\mathcal{E}_T] = \mathbb{E}[\mathcal{E}_T \mathbb{1}_{\tau^L \leq T}] + \mathbb{P}(\tau'_L > T)$. Conclure que $\mathbb{E}[\mathcal{E}_T] = 1$.

Preuve:

Par la linéarité, on a $\mathbb{E}[\mathcal{E}_T] = \mathbb{E}[\mathcal{E}_T \mathbb{1}_{\tau_L \geq T}] + \mathbb{E}[\mathcal{E}_T \mathbb{1}_{\tau_L > T}]$. Considérons donc $\mathbb{E}[\mathcal{E}_T \mathbb{1}_{\tau_L > T}]$. Le fait que $\tau_L > T$ est équivalent à $\forall t < T, |X_t| < L$. Ainsi,

$$\begin{split} \mathbb{E}[\mathcal{E}_T \mathbb{1}_{\tau_L > T}] &= \mathbb{E}[\mathcal{E}_T^L \mathbb{1}_{\tau_L > T}] \\ &= \mathbb{E}^L [\mathbb{1}_{\tau_L > T}] \\ &= \mathbb{E}^L [\mathbb{1}_{|X_t| < L \forall t \in [0, T]}] \end{split}$$

Or, on sait que sous \mathbb{P}^L , $dX_t = b(X_t)dt + \sigma(X_t)dW_t' + \sigma(X_t)f(\pi^L(X_t))dt$. Donc sachant que $|X_t| < L$, on a X_t sous $\mathbb{P}^L = X_t'$ sous \mathbb{P} en loi.

$$= \mathbb{E}[\mathbb{1}_{|X_t'| < L \forall t \in [0,T]}] = \mathbb{P}(\tau_L' > T)$$

D'où $\mathbb{E}[\mathcal{E}_T] = \mathbb{E}[\mathcal{E}_T \mathbb{1}_{\tau_L \leq T}] + \mathbb{P}(\tau_L' > T).$

Prenons L tend vers $+\infty$. Vu que $\mathcal{E}_T \mathbb{1}_{\tau_L \leq T} \leq \mathcal{E}_T$ et que $\mathbb{E}[\mathcal{E}_T] \leq 1$, par la convergence dominée on a $\mathbb{E}[\mathcal{E}_T \mathbb{1}_{\tau_L \leq T}] \to 0$. Nous avons aussi $\mathbb{P}(\tau_L' > T) \to 1$ car X' est une solution forte telle que $\int_0^T (|b(t, X_t)| + |\sigma'(t, X_t)|^2) dt < \infty$ p.s. D'où $\mathbb{E}[\mathcal{E}_T] = 1$.