Ejercicio 4

Consigna

Sea la siguiente propiedad:

Para toda φ subfórmula de ψ , φ ocurre en cualquier secuencia de formación para ψ .

Dé una prueba inductiva de la misma.

Resolución

Premisa

Para resolver este ejercicio demos algo de notación para poder formalizar la proposición y ver como aplicar inducción:

- Llamemos $secFORM_{\psi}$ al conjunto de todas las secuencias de formación para $\psi.$
- $s \in secFORM_{\eta b}$, |s| es la longitud de la secuencia s.
- $s \in secFORM_{\psi}$, $\psi \in PROP$; $\psi \in s$ significa que ψ ocurre en s

Con esto podemos describir más formalmente la propiedad que queremos probar de la siguiente forma.

```
(\forall \psi \in PROP)(\forall \varphi \in PROP)(\varphi \text{ subfórmula } \psi \Rightarrow (\forall s \in secFORM_{\psi})(\varphi \in s))
```

Esto nos da las herramientas necesarias para poder aplicar inducción.

Recordatorio (PIP para PROP)

Sea \mathcal{P} una propiedad sobre las palabras de PROP que cumple:

```
\begin{array}{l} \textit{BASE1: } \mathcal{P}(p) \text{ para todo } p \in \textit{P BASE2: Se cumple } \mathcal{P}(\bot) \textit{ IND1: Para todo } * \in \textit{C}_2 \text{ y } \alpha, \beta \in \textit{PROP} \text{ que cumplen } \mathcal{P}(\alpha) \text{ y } \mathcal{P}(\beta), \text{ se cumple } \mathcal{P}((\alpha*\beta)) \textit{ IND2: Para todo } \alpha \in \textit{PROP} \text{ que cumple } \mathcal{P}(\alpha), \text{ se cumple } \mathcal{P}((\neg \alpha)) \end{array}
```

Entonces, \mathcal{P} se cumple para todas las palabras de PROP.

Comienzo del ejercicio

Observemos que para aplicar inducción tenemos que primero llevar a la propiedad a una forma más adecuada para probarla con el PIP de PROP. Determinemos sobre cuál de las dos proposiciones (ψ, φ) queremos aplicar el PIP:

- Si fijamos φ , no podemos decir casi nada sobre ψ , esto porque estaríamos trabajando con una subfórmula de una proposición arbitraria.
- En cambio si fijamos ψ , podemos decir algo sobre todas las subfórmulas de ψ , especialmente en los casos más triviales donde ψ es una variable proposicional o una constante lógica.

Por lo tanto, fijaremos ψ y aplicaremos inducción sobre la estructura de ψ , la propiedad que queremos probar se convierte en:

$$P(\psi): (\forall \varphi \in PROP)(\varphi \text{ subfórmula } \psi \Rightarrow (\forall s \in secFORM_{\psi})(\varphi \in s))$$

PASO BASE

$$\textbf{PARTE 1} \quad P(p_i): (\forall \varphi \in PROP)(\varphi \text{ subfórmula } p_i \Rightarrow (\forall s \in secFORM_{p_s})(\varphi \in s))$$

Para este caso, como $p_i \in AT$ sabemos que su única subfórmula es si misma. Por otra parte, cualquier secuencia de formación para p_i debe terminar en si misma por construcción, por lo que $\varphi \in s \quad \forall \varphi \in \{p_i\}.$

$$\mathbf{PARTE\ 2} \quad P(\bot): (\forall \varphi \in PROP)(\varphi \text{ subfórmula } \bot \Rightarrow (\forall s \in secFORM_\bot)(\varphi \in s))$$

Para este caso, como $\bot \in AT$ sabemos que su única subfórmula es si misma. Por otra parte, cualquier secuencia de formación para \bot debe terminar en \bot por construcción, por lo que $\varphi \in s \quad \forall \varphi \in \{\bot\}$.

PASO INDUCTIVO

(H)
$$P(\psi): (\forall \varphi \in PROP)(\varphi \text{ subfórmula } \psi \Rightarrow (\forall s \in secFORM_{\psi})(\varphi \in s))$$

PARTE 1

$$\text{(T)}\ \ P(\neg \psi): (\forall \varphi \in PROP)(\varphi \ \text{subf\'ormula}\ (\neg \psi) \Rightarrow (\forall s \in secFORM_{(\neg \psi)})(\varphi \in s))$$

Vayamos con lo primero, para que φ sea subfórmula de $(\neg \psi)$, tiene que cumplir uno de lo siguientes:

- $\varphi = (\neg \psi)$
- φ es subfórmula de ψ

Si $\varphi = (\neg \psi)$, la propiedad se cumple porque $(\neg \psi)$ tiene que estar al final de todas las secuencias de formación para $(\neg \psi)$ por construcción.

Si φ es subfórmula de ψ , nos veríamos muy tentados de usar la hipótesis inductiva, pero esta se cumple para $secFORM_{\psi}$, no para $secFORM_{(\neg\psi)}$. Por lo que no podemos aplicarla directamente, para esto introducimos el siguiente lema:

LEMA

El prefijo de una secuencia de formación para $(\neg \psi)$ es una secuencia de formación para ψ .

Demostración:

Sea $s \in secFORM_{(\neg \psi)}$, entonces s tiene la forma:

$$s = \{p_1, p_2, \dots, p_n, \alpha, \dots, \psi, \beta, \dots, (\neg \psi)\}$$

Sabemos que s es una secuencia de formación, por lo tanto si quitamos elementos de s del lado derecho (es decir que ningún elemento depende de ellos), seguiremos teniendo una secuencia de formación. Mantengamos el siguiente conjunto:

$$s' = \{p_1, p_2, \dots, p_n, \alpha, \dots, \psi\}$$

Por la forma en la que quitamos elementos, s' sigue siendo una secuencia de formación, y como su último elemento es ψ , s' es una secuencia de formación para ψ .

Continuación Ahora, usando la hipótesis tenemos que:

$$P(\psi): (\forall \varphi \in PROP)(\varphi \text{ subfórmula } \psi \Rightarrow (\forall s \in secFORM_{\psi})(\varphi \in s))$$

Entonces, como nosotros sabemos que φ es subfórmula de ψ , podemos decir que $(\forall s \in secFORM_{\eta_b})(\varphi \in s)$.

Observemos que para cualquier secuencia de formación $s \in secFORM_{(\neg \psi)}$ podemos tomar su prefijo $s' \in secFORM_{\psi}$ que es una secuencia de formación para ψ , por lo que $\varphi \in s'$, y como s' es prefijo de $s, \varphi \in s$.

Esto prueba la propiedad para $(\neg \psi)$.

PARTE 2

$$\text{(T)} \ \ P((\alpha * \beta)) : (\forall \varphi \in PROP)(\varphi \ \text{subfórmula} \ (\alpha * \beta) \Rightarrow (\forall s \in secFORM_{(\alpha * \beta)})(\varphi \in s))$$

En primer lugar, para que φ sea subfórmula de $(\alpha * \beta)$, tiene que cumplir uno de lo siguientes:

- $\varphi = (\alpha * \beta)$
- φ es subfórmula de α
- φ es subfórmula de β

Si $\varphi = (\alpha * \beta)$, la propiedad se cumple porque $(\alpha * \beta)$ tiene que estar al final de todas las secuencias de formación para $(\alpha * \beta)$ por construcción.

Para los otros dos casos, podemos aplicar la hipótesis inductiva, ya que φ es subfórmula de α o β , y por lo tanto $\varphi \in s \quad \forall s \in secFORM_{\alpha}$, o $\varphi \in s \quad \forall s \in secFORM_{\beta}$.

Pero si s está en la secuencia de formación de α o β , también está en la secuencia de formación de $(\alpha * \beta)$ por construcción, por lo que $\varphi \in s \quad \forall s \in secFORM_{(\alpha * \beta)}$.

Esto prueba la propiedad para $(\alpha * \beta)$, y termina la prueba total.

Conclusión

Entiendo que la segunda parte del paso inductivo no necesita un lema, pero lo que estamos dando por entendido es que si φ es subfórmula de α o β , entonces φ es subfórmula de $(\alpha*\beta)$. Me da la sensación que esto es directo de la definición de subfórmula, pero no estoy seguro.