Moce zbiorów

Materiały pomocnicze do wykładu

uczelnia: PJWSTK

przedmiot: Matematyka Dyskretna 1

wykładowca: dr Magdalena Kacprzak

Równoliczność

Intuicje

Rozważmy zbiór liczb naturalnych i zbiór liczb naturalnych, z którego wyrzuciliśmy pierwszych 100 elementów.

Czy te zbiory mają, czy nie mają "tyle samo elementów"?

Intuicje

Rozważmy zbiór liczb naturalnych i zbiór liczb rzeczywistych?

Czy te zbiory mają, czy nie mają "tyle samo elementów"?

Definicja

Jeśli liczba elementów w zbiorze wynosi n, gdzie n jest liczbą naturalną, to mówimy, że jest to zbiór

skończony.

O dwóch zbiorach skończonych powiemy, że są

równoliczne

gdy mają tyle samo elementów.

Definicja

Dwa zbiory nazywamy

równolicznymi

wttw istnieje funkcja różnowartościowa odwzorowująca jeden zbiór na drugi.

Fakt, że dwa zbiory A i B są równoliczne oznaczamy

 $A \sim B$.

Rozważmy 2 zbiory

Czy są to zbiory równoliczne?

Rozważmy 2 zbiory

Funkcja f ustala równoliczność tych zbiorów.

Rozważmy zbiór N liczb naturalnych i zbiór A liczb całkowitych, nieujemnych podzielnych przez 3. Oczywiście zbiór A jest właściwym podzbiorem zbioru N.

Czy zbiory te są równoliczne?

Funkcja

$$f(x) = 3x$$

jest wzajemnie jednoznacznym odwzorowaniem zbioru N na zbiór A.

Funkcja ta ustala więc równoliczność tych zbiorów.

Czy zbiory N i N $\{0,1,2,3,...,100\}$ są równoliczne?

Czy zbiory N i N\ $\{0,1,2,3,...,100\}$ są równoliczne? TAK Funkcja f(x)=x+101 ustala równoliczność tych zbiorów.

Czy przedział otwarty ($-\pi/2$, $\pi/2$) i zbiór R są równoliczne?

Czy przedział otwarty $(-\pi/2, \pi/2)$ i zbiór R są równoliczne? TAK Funkcja f(x)=tgx ustala równoliczność tych

zbiorów. y † j

Lemat

Dla dowolnych zbiorów A, B, C,

(1) jeśli A \sim B, to B \sim A,

(2) jeśli A \sim B i B \sim C, to A \sim C.

Dowód

Ad(1)

Jeśli A~B, to istnieje funkcja różnowartościowa odwzorowująca A na B. Zatem istnieje funkcja odwrotna do niej, która jest różnowartościowym odwzorowaniem B na A, czyli B ~ A.

Dowód

Ad(2)

Jeśli A~B, to istnieje bijekcja $f:A\rightarrow B$. Jeśli B~C, to istnieje bijekcja $g:B\rightarrow C$. Ponieważ złożenie tych funkcji $f^\circ g$ też jest bijekcją i odwzorowuje zbiór A na C, to A ~ C.

Lemat

Dowolny (niepusty) przedział otwarty zbioru liczb rzeczywistych jest równoliczny ze zbiorem liczb rzeczywistych.

Zbiory przeliczalne

Definicja

Każdy zbiór równoliczny ze zbiorem liczb naturalnych nazywamy przeliczalnym.

Zbiory skończone lub przeliczalne nazywamy

co najwyżej przeliczalnymi.

Uwaga

Wprost z definicji wynika, że zbiór jest co najwyżej przeliczalny, jeżeli wszystkie jego elementy można ustawić w ciąg, w którym każdy element występuje tylko raz.

Zbiór liczb parzystych nieujemnych P jest przeliczalny.

Funkcja f(x)=2x ustala równoliczność zbiorów P i N.

Zbiór liczb nieparzystych nieujemnych NP jest przeliczalny. Funkcja f(x) = 2x+1 jest bijekcją odwzorowującą zbiór liczb naturalnych N na zbiór liczb nieparzystych.

Zbiór liczb całkowitych jest przeliczalny, bo funkcja f określona jako

f(x) = 2x-1 dla x>0 i f(x) = -2x dla $x\le 0$ jest odwzorowaniem różnowartościowym zbioru liczb całkowitych na zbiór liczb naturalnych

Lemat 1

Podzbiór zbioru co najwyżej przeliczalnego jest co najwyżej przeliczalny.

Wniosek

Przecięcie zbiorów co najwyżej przeliczalnych jest zbiorem co najwyżej przeliczalnym.

Lemat 2

- (1) Suma dwóch zbiorów co najwyżej przeliczalnych jest zbiorem co najwyżej przeliczalnym.
- (2) Suma przeliczalnej rodziny zbiorów co najwyżej przeliczalnych jest zbiorem co najwyżej przeliczalnym.

Lemat 3

Produkt kartezjański dwóch zbiorów przeliczalnych jest zbiorem przeliczalnym.

Czy zbiór liczb wymiernych jest zbiorem przeliczalnym?

Czy zbiór liczb wymiernych jest zbiorem przeliczalnym?

Przypomnijmy, że

$$Q=\{a/b: a,b\in Z \mid b\neq 0\}$$

Zatem Q \sim Z×Z\{0}. Ponieważ Z jest zbiorem przeliczalnym, to z Lematu 3 wynika, że Q również jest zbiorem przeliczalnym.

Paradoks Hilberta

(infinite hotel paradox)

Jeżeli hotel z nieskończoną liczbą pokoi jest pełny i przybędzie jeszcze jeden gość, może on być zakwaterowany w następujący sposób. Każdy gość przenosi się do pokoju o jeden numer większego niż ten, który zajmuje. W ten sposób pokój numer jeden pozostanie wolny dla nowoprzybyłego gościa.

Paradoks Hilberta

(infinite hotel paradox)

Jeśli przybędzie nieskończenie wiele nowych gości, mogą oni być zakwaterowani w następujący sposób. Każdy gość przenosi się do pokoju o numerze dwa razy większym niż ten, który zajmuje. W ten sposób nieskończona liczba pokoi o numerach nieparzystych pozostanie wolna dla nowoprzybyłych gości.

Zbiory nieprzeliczalne

Definicja

Zbiory, które nie są co najwyżej przeliczalne nazywają się

nieprzeliczalnymi.

Lemat

Zbiór liczb rzeczywistych z przedziału (0,1) jest nieprzeliczalny.

Dowód

Zastosujemy metodę przekątniową

Gdyby zbiór liczb rzeczywistych z przedziału (0,1) był przeliczalny, wtedy moglibyśmy ustawić te liczby w ciąg $d=(d_i)_{i=1,2,...,}$ dla $0< d_i<1$.

Kolejne cyfry po przecinku w normalnej dziesiętnej reprezentacji liczby d_i oznaczmy przez

Skonstruujemy liczbę

$$c = 0, c_1 c_2 c_3 \dots,$$

w której i-ta cyfra po przecinku została oznaczona przez c_i i określona następująco:

$$c_{i} = 7$$
, gdy $d_{ii} = 5$,

 $c_i = 5$ w przeciwnym przypadku.

Oczywiście liczba c jest różna od liczby d_1 , bo gdy pierwszą cyfrą po przecinku w liczbie c jest 7, to w liczbie d pierwszą cyfrą jest 5, jeśli natomiast pierwszą cyfrą w c jest 5, to w d_1 nie jest to cyfra 5.

Analogicznie dla wszystkich liczb z ciągu $d_1, d_2, d_3,...$:

liczba d_i różni się od c na i-tym miejscu po przecinku. Zatem c, chociaż jest to liczba należąca do przedziału (0,1), a jej rozwinięcie dziesiętne jest normalne, nie występuje w ciągu d.

Uzyskana sprzeczność dowodzi, że zbiór liczb z przedziału (0,1) nie jest przeliczalny.

```
\begin{aligned} d_1 &= 0, d_{11} d_{12} d_{13} d_{14} d_{15} \dots \\ d_2 &= 0, d_{21} d_{22} d_{23} d_{24} d_{25} \dots \\ d_3 &= 0, d_{31} d_{32} d_{33} d_{34} d_{35} \dots \\ d_4 &= 0, d_{41} d_{42} d_{43} d_{44} d_{45} \dots \end{aligned}
```

 $c=0, c_1c_2c_3c_4...$ Ponieważ $c_i\neq d_{ii}$, to $c\neq d_i$ dla i=1,2,3,...

Lemat

Zbiór 2^N wszystkich funkcji $f: N \rightarrow \{0,1\}$ jest nieprzeliczalny.

Zamiast mówić o funkcjach, możemy mówić o nieskończonych ciągach zerojedynkowych.

Gdyby zbiór 2^N był przeliczalny, wtedy moglibyśmy ustawić wszystkie ciągi zerojedynkowe z tego zbioru w ciąg.

Oznaczmy go przez

$$(c_i)_{i\in\mathbb{N}}$$

a kolejne elementy i-tego ciągu przez

$$C_{i0}$$
, C_{i1} C_{i2} , ...

Konstruujemy ciąg

$$d = (d_0, d_1 d_2, ...)$$

w taki sposób, by różnił się on i-tym wyrazem od i-tego wyrazu ciągu c_i

$$d_i = 0$$
, gdy $c_{ii} = 1$,
 $d_i = 1$, gdy $c_{ii} = 0$.

Ciąg d składa się tylko z zer i jedynek i jest rzeczywiście różny od wszystkich ciągów c_i, bo na i-tej pozycji ma 0 tylko wtedy, gdy w ciągu c_i na i-tej pozycji jest jedynka. Sprzeczność.

```
0,0,0,0,0,0,0,0,......
0,1,0,0,0,0,0,0,......
1,0,0,1,0,0,0,0,......
1,0,0,1,1,0,0,0,......
```

d=1,0,1,0... Ponieważ $d_i\neq c_{ii}$, to $d\neq c_i$ dla i=1,2,3,...

Pytanie

Czy zbiór wszystkich podzbiorów zbioru N jest przeliczalny?

Pytanie

Czy zbiór wszystkich podzbiorów zbioru N jest przeliczalny? NIE

Zauważmy, że

 $P(N)\sim 2^N$

gdzie 2^N jest zbiorem wszystkich funkcji $f: N \rightarrow \{0,1\}.$

Lemat

Każdy nadzbiór zbioru nieprzeliczalnego jest nieprzeliczalny.

Przykład

Czy zbiór liczb rzeczywistych jest przeliczalny?

Przykład

Czy zbiór liczb rzeczywistych jest przeliczalny? NIE

Zbiór liczb rzeczywistych jest nadzbiorem zbioru (0,1), który jest nieprzeliczalny.

Liczby kardynalne

Definicja

Liczba kardynalna

zbioru, czyli

moc

zbioru, jest cechą przypisaną zbiorowi w taki sposób, że

- (1) liczba kardynalna zbioru pustego to 0,
- (2) liczba kardynalna dowolnego zbioru skończonego, to liczba jego elementów,
- (3) dwa zbiory mają przypisaną tę samą cechę wtedy i tylko wtedy, gdy są równoliczne.

Oznaczenie

Przyjmiemy oznaczenie:

liczba kardynalna X = moc zbioru X = |X|.

Zgodnie z definicją, jeśli $X \sim Y$, to |X| = |Y|.

Przykład

Zbiór A = $\{x \in R: x^2-2x+1=0\}$ ma moc 1.

Rzeczywiście $x^2-2x+1=(x-1)^2$, czyli $A=\{1\}$, a stąd |A|=1.

Przykład

Dla dowolnych zbiorów X i Y,

jeżeli |X| = |Y|, to |P(X)| = |P(Y)|.

Dla dowodu, załóżmy, że f jest funkcją ustalającą równoliczność zbiorów X i Y i niech g: $P(X) \rightarrow P(Y)$ w taki sposób, że $g(A)=^{df}\{y\in Y:f(x)=y \text{ dla pewnego }x\in A\}$ dla wszystkich podzbiorów A zbioru X.

Funkcja g jest różnowartościowa. Rzeczywiście, jeśli $A \neq A'$, $A, A' \in P(X)$, to istnieje element a należący do jednego zbioru np. $a \in A$ i nie należący do drugiego, $a \notin A'$.

Niech b=f(a). Wtedy b \in g(A), ale b \notin g(A') (gdyż w przeciwnym przypadku istniałby element a' \in A', taki że f(a')=b, czyli f nie byłaby różnowartościowa). Zatem g(A) \neq g(A').

Funkcja g jest odwzorowaniem na P(Y), bo dla dowolnego $B \in P(Y)$, zbiór $f^{-1}(B) \subseteq X$, oraz $g(f^{-1}(B)) = B$.

Wynika stąd, że g ustala wzajemnie jednoznaczną odpowiedniość między P(X) i P(Y), czyli |P(X)| = |P(Y)|.

Alef zero i continuum

Moc zbioru liczb naturalnych przyjęto oznaczać pierwszą literą alfabetu hebrajskiego $alef_0$ (\aleph_0), a moc zbioru liczb rzeczywistych literą gotycką \boldsymbol{c} (continuum).

$$|N| = \aleph_0$$
 (alef₀) oraz $|R| = c$.

Alef zero i continuum

Na mocy przeprowadzonych rozważań i przyjętych definicji zbiór liczb naturalnych jest przeliczalny, a zbiór liczb rzeczywistych jest nieprzeliczalny. Stąd wniosek

$$c \neq \aleph_0$$
.

Porównywanie liczb kardynalnych

Definicja

Powiemy, że liczba kardynalna m jest mniejsza lub równa liczbie kardynalnej n, m \leq n wtedy i tylko wtedy gdy istnieją zbiory X i Y, takie że X \subseteq Y oraz |X| = m, |Y| = n.

Powiemy, że liczba kardynalna m jest **mniejsza** niż liczba kardynalna n, co zapisujemy w postaci m<n, wtedy i tylko wtedy gdy m≤n oraz n≠m.

Wniosek

Ponieważ zbiór liczb naturalnych N jest podzbiorem zbioru R, zatem

$$\aleph_0 \leq C$$
.

Lemat

```
Dla dowolnych liczb kardynalnych
n, m, u,
(1) n ≤ n
(2) jeśli m ≤ n i n ≤ u , to m ≤ u,
(3) jeśli m ≤ n i n ≤ m, to n= m
(Twierdzenie Cantora-Bernsteina).
```

Lemat

Jeśli istnieje funkcja odwzorowująca A na B, to $|B| \le |A|$.

Przykład

Zbiór punktów płaszczyzny R^2 zawartych w kwadracie $(0,1)\times(0,1)$ ma moc c, bo

$$c = |(0,1)| \le |(0,1) \times (0,1)| \le |R^2| = c$$
.

Twierdzenie Cantora

Intuicje

Czy są jeszcze inne liczby kardynalne niż alef₀ i c?

Odpowiedź na to pytanie daje następujące twierdzenie Cantora.

Twierdzenie Cantora

Dla każdego zbioru X,

$$|X| < |2^{X}|$$
.

Jeśli X jest zbiorem pustym, to twierdzenie jest oczywiście prawdziwe, bo

$$|X|=0$$
, a $|2^{X}|=1$.

Oczywiście $|X| \le |2^x|$, bo funkcja $g(x) = \{x\}$ odwzorowuje X na podzbiór zbioru potęgowego P(X), a mianowicie na rodzinę zbiorów jednoelementowych $\{\{x\}: x \in X\}$.

Wystarczy zatem pokazać, że żaden podzbiór zbioru X nie jest równoliczny z 2^X . Przypuśćmy przeciwnie, że dla pewnego $A \subseteq X$, istnieje bijekcja $f:A \to 2^X$. Czyli dla każdego $a \in A$, $f(a) \subseteq X$. Niech $Z = \{a \in A: a \notin f(a)\}$. Oczywiście $Z \subseteq A \subseteq X$. Ponieważ funkcja f jest odwzorowaniem A na zbiór wszystkich podzbiorów X, więc dla pewnego $a_0 \in A$, $f(a_0) = Z$.

Dowód

Rozważymy dwa możliwe przypadki:

I przypadek $a_0 \in Z$,

II przypadek a₀ ∉ Z

W pierwszym przypadku, z założenia $a_0 \in Z$ i na mocy definicji zbioru Z mamy $a_0 \notin f(a_0)$, czyli $a_0 \notin Z$. Sprzeczność.

Dowód

W drugim przypadku, gdyby $a_0 \notin Z$, to ponieważ $f(a_0) = Z$, więc $a_0 \notin f(a_0)$. Stąd i na mocy definicji zbioru Z mamy $a_0 \in Z$. Sprzeczność.

Ponieważ oba wykluczające się przypadki prowadzą do sprzeczności, więc zbiór Z nie może istnieć, i w konsekwencji, nie może istnieć funkcja f odwzorowująca A wzajemnie jednoznacznie na 2^X.

Wnioski

Twierdzenie Cantora daje metodę konstrukcji nieskończonego ciągu różnych liczb kardynalnych. Zbiory

$$X, 2^{X}, 2^{2^{X}}, 2^{2^{X}}, \dots$$

mają wszystkie różne moce. W szczególności wynika stąd również, że $|N| < |2^N|$.

Wnioski

Inną konsekwencją twierdzenia Cantora jest nieistnienie zbioru wszystkich zbiorów.

Z założenia, że istnieje zbiór wszystkich zbiorów X wynika, że zbiór wszystkich podzbiorów jakiegokolwiek zbioru A jest podzbiorem zbioru X, czyli $P(A) \subseteq X$. W szczególności $P(X) \subseteq X$. Zatem $|P(X)| \le |X|$, czyli $|2^X| \le |X|$ co jest sprzeczne z twierdzeniem Cantora.

Zadania

- zbiór liczb naturalnych,
- zbiór liczb całkowitych,
- zbiór liczb parzystych,
- zbiór liczb nieparzystych,
- zbiór liczb wymiernych,
- zbiór liczb wymiernych dodatnich,
- zbiór liczb wymiernych ujemnych.

- zbiór liczb rzeczywistych,
- zbiór liczb rzeczywistych dodatnich,
- zbiór liczb rzeczywistych ujemnych,
- zbiór liczb niewymiernych.

```
- zbiór wszystkich funkcji f: N \rightarrow \{0,1\},
```

- zbiór wszystkich funkcji f: $N \rightarrow \{0,1,2\}$,
- zbiór wszystkich funkcji f: N → N,
- zbiór wszystkich funkcji ze zbioru liczb parzystych w zbiór {0,1,2},
- zbiór wszystkich nieskończonych ciągów zer i jedynek,
- zbiór wszystkich podzbiorów zbioru N,
- przedziały (0,1), [2,3], (3,4],
- zbiór $\{0,1\}$. $|\{0,1\}|=2$

- zbiór wszystkich słów nad pięcioliterowym alfabetem,
- zbiór wszystkich słów utworzonych z liter skończonego alfabetu,
- zbiór wszystkich słów utworzonych z liter przeliczalnego alfabetu.

Jaką moc mają poniższe zbiory?

- zbiór odcinków na prostej, o końcach w punktach o współrzędnych wymiernych,
- zbiór wszystkich okręgów na płaszczyźnie, których środki leżą w punktach o współrzędnych wymiernych, a promienie są liczbami naturalnymi różnymi od zera,
- zbiór wszystkich okręgów na płaszczyźnie o środkach w punktach o współrzędnych całkowitych.

C

- zbiór wszystkich podzbiorów skończonych zbioru liczb naturalnych,
- zbiór wszystkich formuł rachunku zdań, w których wykorzystujemy tylko trzy ustalone zmienne.

Czy podane zbiory są równoliczne? Jeśli tak podaj przekształcenie wzajemnie jednoznaczne jednego zbioru na drugi.

(a)
$$(0,1]$$
 i $[0,1)$

$$f(x)=1-x$$

(b)
$$(0,1)$$
 i $(1,+\infty)$

$$f(x)=1/x$$

(c) R i
$$(1, +\infty)$$

$$f(x) = 1 + 2^x$$

Rozwinięcie dziesiętne liczby rzeczywistej

Definicja rozwinięcia dziesiętnego liczby rzeczywistej. Niech $x \in \mathbb{R}, x \neq 0$. Przedstawienie

$$(5.30) x = \operatorname{sgn}(x) \sum_{n=k}^{\infty} \frac{\alpha_n}{10^n},$$

gdzie $k \in \mathbb{Z}$, $k \leq 0$, $\alpha_n \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ dla n = k, k + 1, ... (przy czym $\alpha_k \neq 0$, gdy $|x| \geq 1$ oraz k = 0 i $\alpha_k = 0$, gdy |x| < 1), nazywamy rozwinięciem dziesiętnym liczby x i piszemy

$$x = \alpha_k ... \alpha_0, \alpha_1 \alpha_2 ...,$$
 gdy $x > 0$

oraz

$$x = -\alpha_k...\alpha_0, \alpha_1\alpha_2...,$$
 gdy $x < 0.$

Dodatkowo przyjmujemy 0 = 0, 0...

Rozwinięcie (5.30) nazywamy normalnym, gdy zbiór $\{n \in \mathbb{Z} : n \ge k \land \alpha_n \ne 9\}$ jest nieskończony.

Rozwinięcie dziesiętne liczby 0,5

Rozwinięcie normalne 0,5=0,500000(0)

Rozważmy teraz nieskończony ciąg geometryczny taki, że a1=0,09 oraz q=0,1. Policzmy sumę tego ciągu S=a1/(1-q)=0,09/(1-0,1)=0,09/0,9=0,1 Zatem 0,5=0,4+0,1=0,4+0,09+0,009+...=0,499(9)

Rozwinięcie dziesiętne liczby 1

Rozwinięcie normalne 1=1,00000(0)

Rozważmy teraz nieskończony ciąg geometryczny, taki, że a1=0,9 oraz q=0,1. Policzmy sumę tego ciągu S=a1/(1-q)=0,9/(1-0,1)=0,9/0,9=1 Zatem 1=0,9+0,09+0,009+....=0,9999(9)