CS 7616

HW 1

Student: Anisha Gartia

GTID: 903136557

For Wine Dataset

Description of method used:

Here we used SVD, eigen values, covariance, and Baye's theorem to implement PCA, LDA and Naïve Baye's theorems.

PCA is used for dimensionality reduction. It can also be used as pre processing as we used in MNIST dataset, as MNIST test matrix is a singular matrix.

LDA is a linear analysis method that separates the probability distribution functions of different classes by making them more closely related within each class, and father apart from each other.

Here we have used only Binary classes. For multiple classes, one can be considered as class1, and the others, class2. Then, within the other's class, we can have another binary classification. Thus finally we can classify between multiple classes. For LDA, we will need to use a higher dimension eigen vectors of we want to classify for more than 2 classes.

In MNIST dataset, we saw a stark difference in the classification accuracy of 0,1 and 3,5. This is so as 0 and 1 are geometrically quite different, where as 3 and 5 are more closer to look at. Thus their features(pixel wise) would be much closer to each other.

class 1 and 2, train set = five randomly chosen examples of each class

display the most important eigenvector and the 20th eigenvector

plot the sorted cumulative sum of eigenvalues

reconstruct a test example and show the reconstruction error

Reconstruction Error: 4.63651669365e-05

LDA

display the most important eigenve

ctor and the 20th eigenvector

plot the sorted cumulative sum of eigenvalues

reconstruct a test example and show the reconstruction error

A confusion matrix on the results of your algorithm on the test data.

Accuracy of LDA is 88.3333333333

An accuracy table that has all of your classification results

Naïve Baye's

A confusion matrix on the results of your algorithm on the test data.

An accuracy table that has all of your classi_cation results

class 1 and 2, train set = 50 randomly chosen examples of each class

PCA

display the most important eigenvector and the 20th eigenvector

•

plot the sorted cumulative sum of eigenvalues

reconstruct a test example and show the reconstruction error

Reconstruction Error is 0.000183439848386

display the most important eigenvector and the 20th eigenvector

• plot the sorted cumulative sum of eigenvalues

reconstruct a test example and show the reconstruction error

A confusion matrix on the results of your algorithm on the test data.

An accuracy table that has all of your classification results

Naïve Baye's

A confusion matrix on the results of your algorithm on the test data.

An accuracy table that has all of your classi_cation results

Accuracy percentage is 96.666666667

For MNIST Dataset

Train and test on just the numbers of 0 and 1.

PCA

display the most important eigenvector and the 20th eigenvector. Display as

reconstruct a test example and show the reconstruction error

• plot the sorted cumulative sum of eigenvalues

display the most important eigenvector and the 20th eigenvector. Display as

- display the most important eigenvector and the 20th eigenvector. Display as image
- plot the sorted cumulative sum of eigenvalues

reconstruct a test example and show the reconstruction error

A confusion matrix on the results of your algorithm on the test data.

An accuracy table that has all of your classi_cation results

Naïve Baye's

A confusion matrix on the results of your algorithm on the test data.

An accuracy table that has all of your classi_cation results

```
Accuracy percentage is 96.3593380615
```

Train and test on just the numbers of 3 and 5.

PCA

 display the most important eigenvector and the 20th eigenvector. show these as an image

plot the sorted cumulative sum of eigenvalues

reconstruct a test example and show the reconstruction error 0.730744247346

display the most important eigenvector and the 20th eigenvector show these as an image

plot the sorted cumulative sum of eigenvalues

reconstruct a test example and show the reconstruction error

A confusion matrix on the results of your algorithm on the test data.

conusion matrix is [[488 522] [531 361]]

An accuracy table that has all of your classi_cation results Accuracy of LDA is 44.6372239748

Naïve Baye's

• A confusion matrix on the results of your algorithm on the test data.

An accuracy table that has all of your classi_cation results

Accuracy percentage is 79.2849631966