Definition

- Heap wird auch Halde genannt
 - Definition (max-heap):

Eine Halde (Heap) ist ein **lineares Feld** A[0..n-1], wobei gilt: $A[i] \ge \max \{A[2i+1], A[2i+2]\}$, für $i=0,1,...,\lfloor n/2 \rfloor -1$ (Haldenbedingung)

- nicht automatisch absteigend sortiert
- Darstellung als Graph/Binärbaum
 - siehe [[Bäume & Spannbäume]] n=8

- \bullet Eigenschaften
 - -A[0] ist Maximum (Wurzel)
 - vollständiger Baum
 - $\ast\,$ letzte Ebene evtl. nicht komplett
 - jeder Teilbaum wieder Halde
 - $-h = |log_2(n)|$

Heapify

• Verhalde-Prozedur

Verhalden von Element A[i]

Voraussetzung: Die Teilbäume mit Wurzel LINKS(i) und RECHTS(i) sind Halden, aber Element i verletzt möglicherweise die

Haldenbedingung. $A[i] \ge \max \{A[2i+1], A[2i+2]\}$ VERHALDE(A,0)Haldenbedingung (HB)

VERHALDE(A, i)
//N...aktuelle Haldengröße
1: l ← LINKS(i), r ← RECHTS(i)
2: index ← i
3: IF l<N and A[l]>A[i] THEN index←l
4: IF r<N and A[r]>A[index] THEN index←r
5: IF i≠index THEN
6: vertausche A[i], A[index]
7: VERHALDE (A, index)

index: Index von

Laufzeit: T(n) = O(log n)

- Aufbau einer Halde mittel Heapify
 - gegeben lineares Feld in beliebiger Reihenfolge
 - Blätter (einzelnes Element) sind triviale Halden
 - Verhalde auf Eltern der Blätter (vorletzte Schicht) anwenden
 - Wiederholen für alle Knoten bis zur Wurzel

BAUE_HALDE(A)

1: FOR i ← [n/2]-1 DOWNTO 0

2: VERHALDE (A, i)

- Laufzeit

BAUE_HALDE(A)

1: **FOR** i ← [n/2]-1 **DOWNTO** 0

2: VERHALDE (A, i)

– Naive Analyse: n/2 * VERHALDE

Laufzeit: $T(n) \in \frac{n}{2}O(\log n) \in O(n\log n)$

- **Aber:** Element der Höhe h kann in O(h) Zeit verhaldet werden \Rightarrow Laufzeit $T(n) \in O(n)$

#Edmente $h = L ldn \int$ 2^{h-i} $n \ge 2^{h}$

 $T(n) \leq \sum_{j=0}^{k} i 2^{k-j} = \sum_{j=0}^{k} i \cdot \frac{2^k}{2^j} \leq n \cdot \sum_{j=0}^{k} i \cdot \left(\frac{1}{z}\right)^{i}$