Integrating Inference and Experimental Design for Contextual Behavioral Model Learning (Supplemental Material)

Gongtao Zhou, Haoran Yu

A Derivation of EIG

We derive Expected Information Gain (EIG) and its approximation. Recall that Information Gain (IG) is defined as follows:

$$\begin{aligned} \mathrm{IG}(\boldsymbol{d}, \boldsymbol{y}) &\triangleq H[p(\boldsymbol{\theta})] - H[p(\boldsymbol{\theta}|\boldsymbol{X}, \boldsymbol{y}, \boldsymbol{d})] \\ &= \int p(\boldsymbol{\theta}|\boldsymbol{X}, \boldsymbol{y}, \boldsymbol{d}) \log p(\boldsymbol{\theta}|\boldsymbol{X}, \boldsymbol{y}, \boldsymbol{d}) d\boldsymbol{\theta} - \int p(\boldsymbol{\theta}) \log p(\boldsymbol{\theta}) d\boldsymbol{\theta}. \end{aligned}$$

Information Gain captures the change in information entropy under the conditions where the platform selects d and the investor chooses y. The investor's choice y is determined by the context X and the design d. Given X and d, its distribution is given by $p(y|X,d) = \mathbb{E}_{p(\theta)}[p(y|X,d,\theta)]$. We can further take the expectation of $\mathrm{IG}(d,y)$ with respect to the uncertainty of y to obtain EIG:

$$\begin{split} & \operatorname{EIG}(\boldsymbol{d}) \triangleq \mathbb{E}_{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})}[\operatorname{IG}(\boldsymbol{d},\boldsymbol{y})] \\ & = \sum_{\boldsymbol{y}} \int p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y},\boldsymbol{d})\log p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y},\boldsymbol{d})d\boldsymbol{\theta} \\ & - \sum_{\boldsymbol{y}} p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d}) \int p(\boldsymbol{\theta})\log p(\boldsymbol{\theta})d\boldsymbol{\theta} \\ & = \sum_{\boldsymbol{y}} \int p(\boldsymbol{\theta},\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})\log p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y},\boldsymbol{d})d\boldsymbol{\theta} - \int p(\boldsymbol{\theta})\log p(\boldsymbol{\theta})d\boldsymbol{\theta} \\ & = \sum_{\boldsymbol{y}} \int p(\boldsymbol{\theta},\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})\log p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y},\boldsymbol{d})d\boldsymbol{\theta} - \sum_{\boldsymbol{y}} \int p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta},\boldsymbol{d})p(\boldsymbol{\theta})\log p(\boldsymbol{\theta})d\boldsymbol{\theta} \\ & \stackrel{(a)}{=} \sum_{\boldsymbol{y}} \int p(\boldsymbol{\theta},\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})\log \frac{p(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{y},\boldsymbol{d})}{p(\boldsymbol{\theta})}d\boldsymbol{\theta} \\ & \stackrel{(b)}{=} \sum_{\boldsymbol{y}} \int p(\boldsymbol{\theta},\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})\log \frac{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta},\boldsymbol{d})}{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})}d\boldsymbol{\theta} \\ & = \sum_{\boldsymbol{y}} \int p(\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta},\boldsymbol{d})\log \frac{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta},\boldsymbol{d})}{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})}d\boldsymbol{\theta} \\ & = \sum_{\boldsymbol{y}} \int p(\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta},\boldsymbol{d})\log \frac{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta},\boldsymbol{d})}{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{d})}d\boldsymbol{\theta}. \end{split}$$

We use the fact that θ is independent of X and d (i.e., $p(\theta) = p(\theta|X, d)$) to derive equation (a), and use Bayes' theorem to derive equation (b).

Since there is no closed-form solution for $p(y|X, \theta, d)$ and p(y|X, d), obtaining the exact computation of the EIG is intractable. Therefore, we approximate the value using the nested Monte Carlo method:

$$\mathrm{EIG}(\boldsymbol{d}) \approx \widehat{\mathrm{EIG}}(\boldsymbol{d}) = \frac{1}{I} \sum_{i=1}^{I} \log \frac{p(\boldsymbol{y}^i | \boldsymbol{X}, \boldsymbol{d}, \boldsymbol{\theta}^{i,0})}{\frac{1}{J} \sum_{j=1}^{J} p(\boldsymbol{y}^i | \boldsymbol{X}, \boldsymbol{d}, \boldsymbol{\theta}^{i,j})},$$

where $\boldsymbol{\theta}^{i,0} \sim p(\boldsymbol{\theta})$, $\boldsymbol{y}^i \sim p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\theta} = \boldsymbol{\theta}^{i,0}, \boldsymbol{d})$, $\boldsymbol{\theta}^{i,j} \sim p(\boldsymbol{\theta})$. The outer sampling estimates $p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\theta}, \boldsymbol{d})$ and the inner sampling estimates $p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{d})$. Parameters I and J denote the number of samples of the outer and inner loops.

B Updating ϕ^{τ} in Iterative Optimization

We introduce the optimization of ϕ^{τ} in the iterative optimization of our **I-ID-LP** method.

$$\phi^{\tau} = \arg \max_{\phi} \int q(\boldsymbol{\theta}|\boldsymbol{\phi}) \log \frac{p(\boldsymbol{\theta}|\mathcal{H}_{t-1})g(\boldsymbol{\theta}, \boldsymbol{d}_{t}^{\tau-1})}{q(\boldsymbol{\theta}|\boldsymbol{\phi})} d\boldsymbol{\theta}$$

$$= \arg \min_{\phi} \int q(\boldsymbol{\theta}|\boldsymbol{\phi}) \log \frac{q(\boldsymbol{\theta}|\boldsymbol{\phi})}{p(\boldsymbol{\theta}|\mathcal{H}_{t-1})g(\boldsymbol{\theta}, \boldsymbol{d}_{t}^{\tau-1})} d\boldsymbol{\theta}$$

$$\stackrel{(a)}{=} \arg \min_{\phi} \int q(\boldsymbol{\theta}|\boldsymbol{\phi}) \log \frac{q(\boldsymbol{\theta}|\boldsymbol{\phi})p(\mathcal{H}_{t-1})}{p(\mathcal{H}_{t-1}|\boldsymbol{\theta})p(\boldsymbol{\theta})} d\boldsymbol{\theta} - \int q(\boldsymbol{\theta}|\boldsymbol{\phi}) \log g(\boldsymbol{\theta}, \boldsymbol{d}_{t}^{\tau-1}) d\boldsymbol{\theta}$$

$$\stackrel{(b)}{=} \arg \min_{\phi} \int q(\boldsymbol{\theta}|\boldsymbol{\phi}) \log \frac{q(\boldsymbol{\theta}|\boldsymbol{\phi})}{p(\boldsymbol{\theta})} d\boldsymbol{\theta} - \int q(\boldsymbol{\theta}|\boldsymbol{\phi}) \log p(\mathcal{H}_{t-1}|\boldsymbol{\theta}) d\boldsymbol{\theta}$$

$$- \int q(\boldsymbol{\theta}|\boldsymbol{\phi}) \log g(\boldsymbol{\theta}, \boldsymbol{d}_{t}^{\tau-1}) d\boldsymbol{\theta}$$

$$= \arg \min_{\phi} \operatorname{KL}[q(\boldsymbol{\theta}|\boldsymbol{\phi})||p(\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}[\log p(\mathcal{H}_{t-1}|\boldsymbol{\theta})] - \mathbb{E}_{q(\boldsymbol{\theta}|\boldsymbol{\phi})}[\log g(\boldsymbol{\theta}, \boldsymbol{d}_{t}^{\tau-1})].$$

We use the fact that $p(\boldsymbol{\theta}|\mathcal{H}_{t-1}) = \frac{p(\mathcal{H}_{t-1}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathcal{H}_{t-1})}$ to derive equation (a), and the fact that $p(\mathcal{H}_{t-1})$ is independent of $\boldsymbol{\theta}$ to derive equation (b).

C Data Settings

We introduce the remaining four data settings.

Setting B: We use a three-layer neural network to generate data. Specifically, we compute

$$(\bar{\lambda}(\boldsymbol{x}); \bar{r}(\boldsymbol{x})) = \operatorname{Sigmoid}(\boldsymbol{w}_3^T \operatorname{Sigmoid}(\boldsymbol{w}_2^T \operatorname{Sigmoid}(\boldsymbol{w}_1^T \boldsymbol{x} + \boldsymbol{b}_1) + \boldsymbol{b}_2) + \boldsymbol{b}_3),$$

where $\boldsymbol{w}_1 \in \mathbb{R}^{16\times 6}$, $\boldsymbol{w}_2 \in \mathbb{R}^{6\times 4}$, $\boldsymbol{w}_3 \in \mathbb{R}^{4\times 2}$ and $\boldsymbol{b}_1 \in \mathbb{R}^6$, $\boldsymbol{b}_2 \in \mathbb{R}^4$, $\boldsymbol{b}_3 \in \mathbb{R}^2$ are randomly chosen. Then, we normalize $\bar{r}(\boldsymbol{x}), \bar{\lambda}(\boldsymbol{x})$ across all data to get $r(\boldsymbol{x}), \lambda(\boldsymbol{x})$.

Setting C: We use a two-layer network to generate data. We compute

$$(\bar{\lambda}(\boldsymbol{x}); \bar{r}(\boldsymbol{x})) = \text{Sigmoid}(\boldsymbol{w}_1^T (\text{Sigmoid}(\boldsymbol{w}_1^T \boldsymbol{x}) + \boldsymbol{b}_1) + \boldsymbol{b}_2 + \boldsymbol{\epsilon}),$$

where $\boldsymbol{w}_1 \in \mathbb{R}^{16 \times 16}$, $\boldsymbol{w}_2 \in \mathbb{R}^{16 \times 2}$ and $\boldsymbol{b}_1 \in \mathbb{R}^{16}$, $\boldsymbol{b}_2 \in \mathbb{R}^2$ are randomly chosen. $\boldsymbol{\epsilon} \in \mathbb{R}^2$ represents the noise vector. We normalize $\bar{r}(\boldsymbol{x}), \bar{\lambda}(\boldsymbol{x})$ across all data to get $r(\boldsymbol{x}), \lambda(\boldsymbol{x})$.

Setting D: Setting D employs the same network structure as Setting C to generate data. The difference is that setting D normalizes the values of $\bar{\lambda}(\mathbf{x})$ to a smaller range to get $\lambda(\mathbf{x})$. Table 1 in the paper shows that our methods can more accurately predict investor behavior, compared with Setting C.

Setting E: We generate data according to

$$(\bar{\lambda}(\boldsymbol{x}); \bar{r}(\boldsymbol{x})) = \operatorname{Sigmoid}(\boldsymbol{w}_{1}^{T}(\operatorname{Sigmoid}(\boldsymbol{w}_{1}^{T}\boldsymbol{x}) + \boldsymbol{b}_{1}) + \boldsymbol{b}_{2}),$$

where $\boldsymbol{w}_1 \in \mathbb{R}^{16 \times 16}$, $\boldsymbol{w}_2 \in \mathbb{R}^{16 \times 2}$ and $\boldsymbol{b}_1 \in \mathbb{R}^{16}$, $\boldsymbol{b}_2 \in \mathbb{R}^2$ are randomly chosen. Then, we normalize $\bar{r}(\boldsymbol{x}), \bar{\lambda}(\boldsymbol{x})$ across all data to get $r(\boldsymbol{x}), \lambda(\boldsymbol{x})$. Compared with Setting D, Setting E does not include any noise in the data generation.

D Comparison of ID Methods

We show the comparison of ID methods under data settings $C{\sim}E$ as follows.

${f E}$ Mean Squared Errors of Predicted r and λ

We evaluate the performance of predicting r and λ based on the mean squared errors (MSEs). We show the MSEs achieved by different methods under settings $A \sim E$ as follows.

Figure 4: Mean Squared Errors of Predicted r and λ Under Setting A.

Figure 5: Mean Squared Errors of Predicted r and λ Under Setting B.

Figure 6: Mean Squared Errors of Predicted r and λ Under Setting C.

