

MA0301 Elementary discrete mathematics Spring 2018

Norwegian University of Science and Technology Department of Mathematics

Exercise 3

 $\boxed{7} \ \text{Use a truth table to show that } \Big((a \wedge b) \longrightarrow c\Big) \Leftrightarrow \Big((a \longrightarrow c) \vee (b \longrightarrow c)\Big).$

Section 3.1

 $\boxed{6}$ Consider the following six subsets of \mathbb{Z} .

$$A = \{2m + 1 \mid m \in \mathbb{Z}\}\$$

$$C = \{2p - 3 \mid p \in \mathbb{Z}\}\$$

$$E = \{3s + 1 \mid s \in \mathbb{Z}\}\$$

$$B = \{2n + 3 \mid n \in \mathbb{Z}\}$$

$$D = \{2r + 1 \mid r \in \mathbb{Z}\}$$

$$F = \{3t - 2 \mid t \in \mathbb{Z}\}$$

Which of the following statements are true, and which are false?

a)
$$A = B$$

$$\mathbf{b)} \ A = C$$

c)
$$B = C$$

$$\mathbf{d)} \ D = E$$

e)
$$D = F$$

$$f) E = F$$

Section 3.2

[6] Prove each of the following results without using Venn diagrams or membership tables.

a) If $A \subseteq B$ and $C \subseteq D$, then $A \cap C \subseteq B \cap D$ and $A \cup C \subseteq B \cup D$.

[7] Prove or disprove each of the following:

b) For sets
$$A, B, C \subseteq \mathcal{U}, A \cup C = B \cup C \implies A = B$$
.

d) For sets
$$A, B, C \subseteq \mathcal{U}$$
, $A \Delta C = B \Delta C \implies A = B$.

16 Provide the justifications for the steps that are needed to simplify the set

$$(A \cap B) \cup [B \cap ((C \cap D) \cup (C \cap \overline{D}))]$$

where $A, B, C, D \subseteq \mathcal{U}$.

Steps $(A \cap B) \cup [B \cap ((C \cap D) \cup (C \cap \overline{D}))]$ $= (A \cap B) \cup [B \cap (C \cap (D \cup \overline{D}))]$ $= (A \cap B) \cup [B \cap (C \cap \mathscr{U})]$ $= (A \cap B) \cup (B \cap C)$ $= (B \cap A) \cup (B \cap C)$ $= B \cap (A \cup C)$

Section 2.5

8 a) Let p(x), q(x) be open statements in the variable x, with a given universe. Prove that

$$\forall x \ p(x) \lor \forall x \ q(x) \implies \forall x [p(x) \lor q(x)]$$

- **b)** Find a counterexample to the converse in part **a)**. That is, find open statements p(x), q(x), and a universe such that $\forall x[p(x) \lor q(x)]$ is true, while $\forall x \ p(x) \lor \forall x \ q(x)$ is false.
- 10 Provide the missing reasons for the steps verifying the following argument:

$$\forall x [p(x) \lor q(x)]$$

$$\exists x \neg p(x)$$

$$\forall x [\neg q(x) \lor r(x)]$$

$$\forall x [s(x) \to \neg r(x)]$$

$$\therefore \exists x \neg s(x)$$

Steps

- 1) $\forall x [p(x) \lor q(x)]$
- $2) \quad \exists \, x \, \neg p(x)$
- 3) $\neg p(a)$

Reasons

Premisse

Premisse

Step (2) and the definition of truth for $\exists x \ p(x)$. The reason for this step is also referred to as the *Rule of Existential Specification*

- **4)** $p(a) \vee q(a)$
- **5)** q(a)
- **6)** $\forall x [\neg q(x) \lor r(x)]$
- 7) $\neg q(a) \lor r(a)$
- 8) $q(a) \rightarrow r(a)$
- **9)** r(a)
- **10)** $\forall x [s(x) \rightarrow \neg r(x)]$
- 11) $s(a) \rightarrow \neg r(a)$
- **12)** $r(a) \rightarrow \neg s(a)$
- **13)** $\neg s(a)$
- **14)** $\therefore \exists x \neg s(x)$

Step (13) and the definition of the truth for $\exists x \neg s(x)$. The reason for this step is also referred to as the *Rule of Existential Generalization*.