495

直列

合成抵抗Rは、

$$R = R_1 + R_2$$
 より、
 $R = 20 + 30$
 $= 50\Omega$
 $I = \frac{V}{R}$ より、
 $V = 60V$, $R = 50\Omega$
を代入して、
 $I = \frac{60}{50} = 1.2A$

よって、各抵抗
$$R_1$$
, R_2 にかかる電圧 V_1 , V_2 は、

$$V = IR$$
 LD,
 $V_1 = 1.2 \cdot 20 = 24V$
 $V_2 = 1.2 \cdot 30 = 36V$

並列

並列接続なので、各抵抗には60Vの電圧がかかる。

各抵抗 R_1 , R_2 に流れる電流 I_1 , I_2 は、

$$I = \frac{V}{R} \text{ LD},$$

 $I_1 = \frac{60}{20} = 3.0A$
 $I_2 = \frac{60}{30} = 2.0A$

(別解)

直列

分圧するので、各抵抗 R_1 , R_2 にかかる電圧 V_1 , V_2 は、

$$R_1: R_2 = V_1: V_2 = 2:3$$
 となる。
よって、
 $V_1 = \frac{2}{5} \cdot 60V = 24V$
 $V_2 = \frac{3}{5} \cdot 60V = 36V$

並列

分流するので各抵抗 R_1 , R_2 に流れる電流 I_1 , I_2 は、

$$R_1: R_2 = I_2: I_1 = 3:2$$
 となる。

全電流Iは、

$$I = \frac{V}{R} \, \text{LD}$$

$$V = 60V$$
 , $R = \frac{20 \cdot 30}{20 + 30} = 12\Omega$

を代入して、
$$I = \frac{60}{12} = 5.0A$$

$$I_1 = \frac{3}{5} \cdot 5.0A = 3.0A$$

$$I_1 = \frac{3}{5} \cdot 5.0A = 3.0A$$

 $I_2 = \frac{2}{5} \cdot 5.0A = 2.0A$