Relacje

2024-10-15

Poprzednia: Algebra - 3

Następna: Algebra - 5

Zadania: Algebra - relacje

#relacje #algebra

Relacje

Def.

Uporządkowaną trójkę R=(X,grR,Y) gdzie X,Y są zbiorami, a $grR\subset X\times Y$, nazywamy relacjq (dwuargumentową) określoną między elementami zbiorów X i Y (lub w zbiorze X, gdy Y=X):

- X nazywamy naddziedziną
- Y nazywamy zapasem
- grR nazywamy wykresem relacji Elementy $x \in X, \ y \in Y$ są ze sobą w relacji $R : \leftrightarrow (x,y) \in grR$ co zapisujemy xRy

 ${\it Dziedzina}$ relacji R nazywamy zbiór:

$$D_R := \{x \in X : \exists y \in Y : xRy\}$$

Przeciwdziedziną relacji R nazywamy zbiór:

$$D_R^{-1}:=\{y\in Y:\exists x\in X:xRy\}$$

Prz.

$$X=[1,3],\ Y=[1,3],\ grR=\{(x,y)\in X imes Y: x\leq y\}$$

Prz. 2 $S=(\mathbb{R},grS,\mathbb{R}),\ grS=\{(x,y)\in\mathbb{R}^2:y\geq x^2\}$

Tutaj dziedziną będzie $D_S=\mathbb{R}$, a przeciwdziedziną $D_S^{-1}=[0,+\infty].$

Def.

Relacją odwrotną do relacji R=(X,grR,Y) nazywamy relację $R^{-1}=(Y,grR^{-1},X)$, gdzie: $grR^{-1}:=\{(x,y)\in Y\times X: (y,x)\in grR\}$.

Prz.

$$S^{-1}=(\mathbb{R},grS^{-1},\mathbb{R})$$
 $grS^{-1}=\{(x,y)\in\mathbb{R}^2:(y,x)\in grS\}=\{(x,y)\in\mathbb{R}^2:x\geq y^2\}$ (x nam się zamienił z y -wcześniej warunek był $y\geq x^2$ a teraz $x\geq y^2$).

Jest to ten sam wykres co przy S ale odbity względem prostej y=x.

Innymi słowy:

Jeżeli mamy jakąś relacje T gdzie grT mówi nam o tym że x jest dzieckiem y to: relacja T^{-1} czyli relacja odwrotna ma takie grT^{-1} że y jest dzieckiem x (x jest rodzicem y).

Złożenie relacji:

Def.

Złożeniem relacji R=(X,grR,Y) z relacją S=(Y,grS,Z) nazywamy relację:

$$S\circ R:=(X,gr(S\circ R),Z)$$

gdzie:

$$gr(S\circ R):=\{(x,z)\in X imes Z:\exists y\in Y:xRy\wedge ySz\}$$

Prz.

$$egin{aligned} R &= (\mathbb{N}, grR, \mathbb{N}) \ grR &= \{(2,1), (3,1), (4,2), (4,5), (5,3)\} \end{aligned}$$

$$S = (\mathbb{N}, grS, \mathbb{N}) \ grS = \{(1,3), (4,1), (3,6), (6,8), (6,7)\}$$

$$S\circ R=(\mathbb{N},gr(S\circ R),\mathbb{N}) \ gr(S\circ R)=\{(2,3),(3,3),(5,6)\}$$

Relacja równoważności:

Ozn.

Przez (X,R) oznaczamy zbiór X z relacją R, gdzie R=(X,grR,X).

Def.

Relację R = (X, grR, X) nazywamy relacją równoważności, gdy:

- 1. R jest zwrotna: $\leftrightarrow \forall x \in X : xRx$ (wszystkie elementy z X występują w parze)
- 2. R jest symetryczna: $\leftrightarrow \forall x,y \in X: xRy \implies yRx$
- 3. R jest przechodnia: $\leftrightarrow \forall x, y, z \in X : xRy \land yRz \implies xRz$

Prz.

$$X=\mathbb{R}^2: (x_1,y_1)R(x_2,y_2): \leftrightarrow x_1^2+y_1^2=x_2^2+y_2^2$$

(W tym przykładzie naszą naddziedziną a zarazem zapasem jest płaszczyzna \mathbb{R}^2 , zatem relacje mamy pomiędzy punktami a nie np: x,y)

Ten przykład jest idealnym przykładem relacji równoważności, mówi nam o tym że tworzymy relacje między punktami których odległość od środka układu współrzędnych jest taka sama. Czyli na tym przykładowym kole każdy punkt jest z każdym innym w relacji zatem:

- 1. R jest zwrotna bo punkt jest sam ze sobą w relacji.
- 2. R jest symetryczna bo jeżeli (x_1,y_1) jest w relacji z (x_2,y_2) to (x_2,y_2) jest w relacji z (x_1,y_1) .
- 3. R jest przechodnia, bo jeżeli (x_1,y_1) jest w relacji z (x_2,y_2) a (x_2,y_2) jest w relacji z (x_3,y_3) to punkt (x_1,y_1) musi być w relacji także z punktem (x_3,y_3) . (tworzy się nam

Klasa równoważności

Def.

Jeżeli (X,R) jest zbiorem z relacją równoważności i $x \in X$, to *klasą równoważności / abstrakcji* elementu x nazywamy zbiór:

$$[x] := \{ y \in X : xRy \}$$

Zbiór wszystkich y w których x jest w relacji.

Każdy element $y \in [x]$ nazywamy *reprezentantem* tej klasy.

(Czyli dla powyższego przykładu klasą równoważności punktu np (x_1,y_1) jest cały tamten okrąg)

Zbiór ilorazowy

Def.

Zbiór klas równoważności relacji R nazywamy *zbiorem ilorazowym* i oznaczamy $X/_R$. Zatem $X/_R:=\{[x]:x\in X\}$

Twierdzenie.

 Z : (X,R) - zbiór. z relacją równoważności

- 1. $\forall x \in X: [x] \neq \emptyset$ (wynika z <u>zwrotności</u> tzn. [x] musi zawierać przynajmniej samego siebie)
- 2. $\forall x,y,z\in X:y\in [x] \wedge z\in [x] \implies yRz$ wynika z przechodniości
- 3. $orall x,y\in X:[x]
 eq [y]\leftrightarrow [x]\cap [y]=\emptyset$ wynika z $ext{symetryczności}$
- 4. $X-\bigcup_{x\in X}[x]$ oczywiście po dodaniu każdej klasy abstrakcji dostaniemy całą naddziedzinę bo dla każdego x klasa abstrakcji to co najmniej $\{x\}$

Czyli klasy abstrakcji dzielą nam zbiór X na podzbiory niepuste, rozłączne, dające w sumie cały zbiór X.

Zbiory uporządkowane

Def. Dla danego zbioru z relacją (X,R), mówimy że:

4. R jest antysymetryczna: $\leftrightarrow \forall x,y \in X: xRy \land yRx \implies x=y$

- 5. R jest asymetryczna $\leftrightarrow \forall x,y \in X: xRy \implies \sim yRx$
- 6. R jest spójna: $\leftrightarrow \forall x,y \in X: xRy \lor yRx \lor x=y$

 ${\it Def.}$ Relacja ${\it R}$ określona w zbiorze ${\it X}$ nazywana jest ${\it porządkiem}$ lub relacją ${\it słabego}$ ${\it porządku}$ (${\it częściowego}$), jeżeli jest ${\it zwrotna}$, ${\it antysymetryczna}$ i ${\it przechodnia}$. Wówczas ${\it X}$ nazywamy zbiorem (${\it częściowo}$) uporządkowanym (${\it przez}$ ${\it R}$). Jeżeli ${\it R}$ jest dodatkowo ${\it spójna}$, to nazywamy ją relacją porządku ${\it totalnego}$ albo ${\it liniowego}$, a zbiór ${\it X}$ nazywamy uporządkowanym totalnie (liniowo).

Dodatkowo jeżeli (X, \leq) - zbiór uporządkowany:

 $\forall x,y\in X:x\leq y:\leftrightarrow (x\leq y\wedge x\neq y)$ Czyli elementy nie mogą być w relacji z samymi sobą - Relacja ta jest nazywana *silnym porządkiem* w X (jest asymetryczna i przechodnia).

Elementy $x,y\in X$ nazywamy *porównywalnymi*, jeżeli: $xRy\vee yRx$.

 $\emph{Uw.}$ Jeżeli relacja R porządkuje X i $A\subset X$ to zbiór A jest również uporządkowany przez R. $(R|_{A\times A})$

Przykład takiego porządku to po prostu taka relacja (R,\leq) która przyporządkowuje każdemu elementowi mniejsze bądź równe elementy.

"Bądź równe" - zatem jest zwrotność.

Antysymetryczność również tu działa $a \leq b \land b \leq a \Leftrightarrow a = b$.

Przechodnia oczywiście też bo jeśli $a \leq b \land b \leq c \implies a \leq c$

No i spójność bo w ten sposób można porównać każdą liczbę.

Zatem jest to relacja liniowego porządku.

Inny popularny przykład to $(2^{R^2}, \subset)$ gdzie 2^{R^2} oznacza zbiór podzbiorów płaszczyzny. *Ale nie będzie to wtedy porządek liniowy* bo możemy mieć takie podzbiory które się w sobie nie zawierają (ani pierwszy w drugim ani drugi w pierwszym, zatem nie ma relacji pomiędzy każdym elementem).

Rysunek dla zwizualizowania:

Elementy wyróżnione zbioru uporządkowanego

Elementy max/min, najw/najm

Def. (X, \leq) - zbiór uporządkowany (nieoficjalny zapis tylko po to żeby go teraz użyć)

- 1. Element $\overline{M} \in X$ nazywamy *elementem największym* zbioru $X : \leftrightarrow orall x \in X : x \leq \overline{M}$.
- 2. Element $\overline{m} \in X$ nazywamy *elementem najmniejszym* zbioru X: $\leftrightarrow \forall x \in X : \overline{m} \leq x$.
- 3. Element $M_{max} \in X$ nazywamy *elementem maksymalnym* zb. X: $\leftrightarrow \forall x \in X: (M_{max} \leq x) \implies (M_{max} = x)$.
- 4. Element $m_{min} \in X$ nazywamy *elementem minimalnym* zb. X: $\leftrightarrow orall x \in X: (x \leq m_{min}) \implies (m_{min} = x).$

Innymi słowy element największy/najmniejszy to taki który jest w relacji z *każdym* elementem bądź *każdy* element jest w relacji z nim.

A element maksymalny/minimalny to taki dla którego nie jest w relacji z *żadnym* innym elementem poza sobą lub *żaden* nie jest z nim poza sobą.

Łańcuch

Podzbiór $C\subset X$ nazywamy *łańcuchem*, jeżeli $(C,R|_{C\times C})$ jest zbiorem liniowo uporządkowanym.

(np.
$$C = \{1, 2, 4, 8\}) \subset B, \; gdzie \; B = \{1, 2, 3, 4, 5, 6, 7, 8\}, \; grB: \forall x, y \in B: x \leq y$$
)

Czyli po prostu dowolny poukładany podzbiór zbioru, poukładany według tej samej techniki (wykresu grB).

Majoranty i minoranty

- 1. Element $M \in X$ nazywamy *majorantą* zbioru $A: \leftrightarrow \forall x \in A: x \leq M$.
- 2. Element $m \in X$ nazywamy *minorantą* zbioru $A: \leftrightarrow \forall x \in A: m \leq x$.

gdzie: (X,\leq) - zbiór uporządkowany $A\subset X$

 $W\!A\dot{Z}N\!E$ - zauważ że majoranta/minoranta należy do X ale jest sprawdzana (\leq) tylko dla tego podzbioru (A). Zatem tych majorant/minorant może być nieskończenie wiele. Tak dla zobrazowania to jest coś w stylu jak ograniczenie ciągu, nad/pod granicą można również ustawić "granice".

 $egin{aligned} \emph{Def.} \end{aligned} \emph{Def.} \end{aligned} \emph{Jeżeli zbiór } \emph{A} \end{aligned} \end{aligned} \end{aligned} \emph{posiada co najmniej jedną majorantę (minorantę), to mówimy, że jest on ograniczony od góry (lub od dołu). Jeżeli ma i minorante i majorantę, mówimy że jest ograniczony. } \end{aligned}$

Kres górny i dolny

- 1. Kresem górnym zbioru A (w zbiorze X) nazywamy, o ile istnieje element najmniejszy zbioru majorant i oznaczamy to: sup A.
- 2. Kresem dolnym zbioru A (w zbiorze X) nazywamy, o ile istnieje element największy zbioru minorant i oznaczamy jako: infA.

Prz.
$$(\mathbb{R}, \leq), \ A = [-1, 5)$$

Funkcja jako przykład relacji:

 $\it Funkcja$ przekształcająca zbiór. $\it X$ w zbiór. $\it Y$ definiowana jest jako relacja $\it (X, grR, Y)$, która jest prawostronnie jednoznaczna, to znaczy:

$$orall x \in X \ \ orall y, z \in Y: \ (xRy \wedge xRz) \implies y = z$$

Innymi słowy jednemu argumentowi (x) możemy przypisać tylko jedną wartość (y). Ale nie na odwrót to znaczy z powyższego nie wynika że (y) może mieć tylko jednego (x).

Wówczas możemy sobie normalnie napisać f(x) = y, zamiast xRy.