

Instituto Superior de Ciências de Saúde

Física das Radiações para o Curso de Licenciatura em Radiologia

2022-AP # 02- Noções da Física Moderna

- 1. Em mamografia são usados raios-x de 26 keV de energia. Qual é a frequência e o comprimento de onda (em nanômetros) desta radiação?
- 2. Qual é a energia (em eV) equivalente a um electrão? ($m_e = 9.109 \times 10^{-31} \text{ kg}$)
- 3. Determine as energias e os comprimentos de onda para a primeira e terceira linhas do espectro de hidrogênio nas seguintes séries: i) Balmer, ii) Lyman e iii) Paschen.
- 4. Sabe-se que para um ião de He⁺, a diferença dos comprimentos de ondas entre primeiras riscas das séries de Balmer e de Lyman é $\Delta\lambda = 1337 \,\text{Å}$. Determine a constante de Rydberg em cm⁻¹.
- 5. Determine o número quântico principal "n" que corresponde ao estado excitado do ião de He⁺, sabendo que na transição para o estado principal, ele emitiu 2 fótons com $\lambda_1 = 1085$ Å e $\lambda_2 = 304$ Å
- 6. Mostre que, consoante o Modelo Planetar do átomo, o espectro de radiação emitido pelo átomo de Hidrogênio deveria ser contínuo, contrariamente ao que se verifica experimentalmente.
- 7. Um feixe de luz monocromática con $\lambda = 4 \times 10^{-7}$ m incide sobre um metal cuja função de trabalho é de 2 eV. Determine a velocidade do fotoelectrão.
- 8. Que luz incidiu sobre o Césio (ϕ = 1.89 eV), se para cessar a emissão de fotoelectrões foi necessário aplicar-se uma voltagem retardadora de 1.75 V?
- 9. Um estudante do ISCISA de curso de Radiologia realizou uma experiência referente ao efeito fotoe-léctrico usando Sódio. Durante a sua experiência, ele verificou que fazendo incidir uma radiação de comprimento de onda $\lambda = 300$ nm, a voltagem retardadora é de 1.85 V e, para $\lambda = 400$ nm, a voltagem retardadora é de 0.820 V. Com base nestes dados, determine, i) a constante de Planck (h), ii) a função trabalho para o Sódio e, iii) o comprimento de onda de corte (λ_0).
- 10. No efeito Compton, determine a razão $\frac{\Delta\lambda}{\lambda_o}$ sendo que o comprimento de onda da radiação incidente é de $\lambda_o=0.5$ nm e o ângulo de dispersão do fóton é $\theta=\pi$
- 11. Usando a ideia de de Broglie que uma micropartícula lívre não relativística pode ser comparada com uma onda plana na forma $\psi(x,t) = Ae^{-i(\omega t \kappa x)}$, escreva a equação de Schrödinger para um caso unidimensional.
- 12. Achar os erros mínimos com que se pode determinar as velocidades do electrão, protão e de uma bola de 10^{-3} g de massa, se as coordenadas das partículas (electrão e protão) e da bola são estabelecidas com uma incerteza de $\Delta x = 1~\mu m$.