Hierarchical Clustering

Tutorial ini adalah bagian dari mata kuliah Fundamental Sains Data, Prodi Sarjana Informatika, UII.

Data USArrests Pada contoh ini kita akan menggunakan sebuah data set USArrest, yang disediakan oleh package datasets. Data ini berisi statistik pengangkapan penjahat per 100.000 penduduk pada 50 negara bagian di U.S. pada tahun 1973, yang berdasarkan tiga jenis tindak kejahatan: penyerangan (Assault), pembunuhan (Murder), dan pemerkosaan (Rape), serta presentase penduduk yang tinggal di daerah urban.

Pertama, mari kita lihat lebih detail tentang data tersebut.

USArrests

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	-
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Delaware	5.9	238	72	15.8
##	Florida	15.4	335	80	31.9
##	Georgia	17.4	211	60	25.8
##	Hawaii	5.3	46	83	20.2
##	Idaho	2.6	120	54	14.2
##	Illinois	10.4	249	83	24.0
##	Indiana	7.2	113	65	21.0
##	Iowa	2.2	56	57	11.3
##	Kansas	6.0	115	66	18.0
##	Kentucky	9.7	109	52	16.3
##	Louisiana	15.4	249	66	22.2
##	Maine	2.1	83	51	7.8
##	Maryland	11.3	300	67	27.8
##	Massachusetts	4.4	149	85	16.3
##	Michigan	12.1	255	74	35.1
##	Minnesota	2.7	72	66	14.9
##	Mississippi	16.1	259	44	17.1
##	Missouri	9.0	178	70	28.2
##	Montana	6.0	109	53	16.4
##	Nebraska	4.3	102	62	16.5
##	Nevada	12.2	252	81	46.0
##	New Hampshire	2.1	57	56	9.5
##	New Jersey	7.4	159	89	18.8
##	New Mexico	11.4	285	70	
##	New York	11.1	254	86	26.1
##	North Carolina	13.0	337	45	16.1

```
44 7.3
## North Dakota
                      0.8
                               45
## Ohio
                      7.3
                              120
                                         75 21.4
## Oklahoma
                      6.6
                              151
                                         68 20.0
                      4.9
                                         67 29.3
## Oregon
                              159
## Pennsylvania
                      6.3
                              106
                                         72 14.9
## Rhode Island
                      3.4
                                         87 8.3
                              174
## South Carolina
                     14.4
                              279
                                         48 22.5
## South Dakota
                                         45 12.8
                      3.8
                               86
## Tennessee
                     13.2
                              188
                                         59 26.9
## Texas
                              201
                                         80 25.5
                     12.7
## Utah
                      3.2
                              120
                                         80 22.9
## Vermont
                      2.2
                               48
                                         32 11.2
## Virginia
                      8.5
                              156
                                         63 20.7
## Washington
                      4.0
                                         73 26.2
                              145
## West Virginia
                      5.7
                               81
                                         39 9.3
## Wisconsin
                      2.6
                               53
                                         66 10.8
## Wyoming
                      6.8
                              161
                                         60 15.6
```

summary(USArrests)

##	Murder	Assault	UrbanPop	Rape
##	Min. : 0.800	Min. : 45.0	Min. :32.00	Min. : 7.30
##	1st Qu.: 4.075	1st Qu.:109.0	1st Qu.:54.50	1st Qu.:15.07
##	Median : 7.250	Median :159.0	Median :66.00	Median :20.10
##	Mean : 7.788	Mean :170.8	Mean :65.54	Mean :21.23
##	3rd Qu.:11.250	3rd Qu.:249.0	3rd Qu.:77.75	3rd Qu.:26.18
##	Max. :17.400	Max. :337.0	Max. :91.00	Max. :46.00

Sebuah alternatif untuk mendapatkan visualisasi dari setiap variabel adalah dengan menggunakan barplot(). Baris 1 membuat sebuat data frame dari data set USArrest dan menambahkan satu kolom berisi nama negara bagian (state). Baris 2 untuk mengubah orientasi label pada sumbu vertikal sehingga daapt terbaca secara horizontal (lihat nama negara bagian), dan Baris 3 untuk mengatur margin, sehingga possi barplot lebih di tengah. Baris 4 membuat barplot untuk variabel Murder; baris-barise selanjutnya membuat barplot untuk variabel lain.

```
df <- data.frame(States=rownames(USArrests), USArrests)
par(las=2) # make label text perpendicular to axis
par(mar=c(5,8,4,2)) # increase y-axis margin.
barplot(df$Murder, names.arg = df$States, horiz = TRUE, cex.names = 0.5, xlab = "Murder Arrest per 100."</pre>
```


Murder Arrest per 100.000

barplot(df\$Assault, names.arg = df\$States, horiz = TRUE, cex.names = 0.5, xlab = "Assault Arrest per 10"

barplot(df\$Rape, names.arg = df\$States, horiz = TRUE, cex.names = 0.5, xlab = "Rape Arrest per 100.000"

barplot(df\$UrbanPop, names.arg = df\$States, horiz = TRUE, cex.names = 0.5, xlab = "Polulation in urban"

Perhatikan sebaran setiap variabel berdasarakan empat barplot di atas, untuk mendapatkan insight tentang data.

Hierarchical Clustering Di sini kita akan melakukan hierarchical clustering menggunakan fungsi hclust. Di sini kita hanya ingin menggunakan empat variabel (tanpa variabel States), maka kita hilangkan variabel tersebut lewat Baris 1. Fungsi hclust menerima matriks jarak (dissimilarity meassure dari setiap pasang variabel), maka kita menghitung matriks tersebut lewat Baris 2. Pada Baris 3, kita melakukan hiearchical clustering dengan metode complete linkage (lihat slide materi). Rekan-rekan bisa mencoba dengan single, average, dan metode lain (lihat ?hclust untuk lebih jelasnya). Baris 4 membuat plot dendrogram dari hasil clustering; parameter cex emngatur besar font untuk label pada sumbu x, hang mengatur posisi label terhadap sumbu y.

```
df <- scale(df[, 2:5])
d <- dist(df, method = "euclidean")
clusters <- hclust(d, method = "complete")
plot(clusters, cex = 0.6, hang = -1)</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

Kita dapat menggunakan fungsi rect.hclust() untuk menggambar kotak pada sejumlah klaster yang kita inginkan. Sebagai contoh, kita ingin melihat 4 klaster dari hasil clustering di atas. Maka kita set k=4. Parameter border mengatur warna kotak dari setiap klaster.

```
plot(clusters, cex = 0.6, hang = -1)
rect.hclust(clusters, k = 4, border = 2:5)
```

Cluster Dendrogram

d hclust (*, "complete")

Latihan Cobalah hiearchical clustering pada data USArrests menggunakan metode single dan average. Amati perubahannya. Kemudian dengan masing-masing metode, lihat 4 (atau ubah nilai ini) klaster menggunakan rect.hclust, dan bandingkan juga keanggotaan setiap klaster, dari masing-masing metode.