Санкт-Петербургский политехнический университет имени Петра Великого

Физико-механический институт Высшая школа прикладной математики и физики

Отчет по лаборабороной работу №2 по дисциплине "Интервальный анализ"

Выполнил:

Студент: Зинякова Екатерина

Группа: 5030102/00201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1	Пос	тановка задачи	2
2	Теория		2
	2.1	Распознающий функционал	2
	2.2	Достижение разрешимости ИСЛАУ путём изменения правой части	2
	2.3	Достижение разрешимости ИСЛАУ путём изменения матрицы	3
	2.4	Оценки вариабельности решения	3
3	Результаты		
	3.1	Максимум распознающего функционала	4
	3.2	Достижение разрешимости за счёт коррекции правой части	4
		3.2.1 Равномерное уширение	4
		3.2.2 Неравномерное уширение	5
	3.3	Достижение разрешимости за счёт коррекции левой части	5
4	Вын	вод	6

1 Постановка задачи

Имеем ИСЛАУ:

$$\begin{cases} [2,4] * x_1 + [4,6] * x_2 = [5,9] \\ 3 * x_1 + [-6,-4] * x_2 = [-1,1] \\ [0.5,1.5] * x_1 = [1,3] \\ [0.5,1.5] * x_2 = [0,2] \end{cases}$$

Необходимо найти решения ЛЗД. Для этого нужно

- исследовать разрешимость ЛЗД (найти максимум распознающего функционала)
- коррекция ЛЗД
 - достижение разрешимости ИСЛАУ за счет коррекции правой части (равномерное/неравномерное)
 - достижение разрешимости ИСЛАУ за счет коррекции матрицы

2 Теория

2.1 Распознающий функционал

Разпознающим функционалом называется функция

$$\operatorname{Tol}(x) = \operatorname{Tol}(x, \mathbf{A}, \mathbf{b}) = \min_{1 \le i \le m} \left\{ \operatorname{rad}(\mathbf{b}_i) - \left| \operatorname{mid}(\mathbf{b}_i) - \sum_{j=1}^n \mathbf{a}_{ij} x_j \right| \right\}$$
(1)

Пусть

$$T = \max_{x \in \mathbb{R}^n} \text{Tol}(x, \mathbf{A}, \mathbf{b})$$
 (2)

и это значение достигается распознающим функционалом в некоторой точке $au \in \mathbb{R}^n$. Тогда

- если $T \ge 0$, то $\tau \in \Xi_{\text{tol}}(\mathbf{A}, \mathbf{b}) \ne \emptyset$, т.е. линейная задача о допусках для интервальной линейной системы $\mathbf{A}x = \mathbf{b}$ совместна и точка τ лежит в допусковом множестве решений.
- если T>0 то $\tau\in int\ \Xi_{\mathrm{tol}}(\mathbf{A},\mathbf{b})\neq\emptyset$, и принадлежность τ допусковому множеству решений устойчива к малым возмущениям данных матрицы и правой части.
- если T < 0 то $\Xi_{\text{tol}}(\mathbf{A}, \mathbf{b}) = \emptyset$, т.е. линейная задача о допусках для интервальной линейной системы $\mathbf{A}x = \mathbf{b}$ несовместна.

2.2 Достижение разрешимости ИСЛАУ путём изменения правой части

Равномерное уширение правой части ИСЛАУ

Расширение вектора **b** происходит путем его замены на вектор:

$$\mathbf{b} + K\mathbf{e}, \quad K \ge 0, \quad \mathbf{e} = ([-1, 1], ..., [-1, 1])^T$$
 (3)

Тогда

$$\max_{x \in \mathbb{R}^n} \operatorname{Tol}(x, \mathbf{A}, \mathbf{b} + K\mathbf{e}) = T + K \tag{4}$$

Но Arg max Tol - не изменится (положение точки Т)

Неравномерное уширение правой части ИСЛАУ

Если линейная задача о допусках с матрицей ${\bf A}$ и вектором правой части ${\bf b}$ первоначально не имела решений, то новая задача с той же матрицей ${\bf A}$ и уширенным вектором

$$(\mathbf{b}_i + K \cdot v_i \cdot [-1, 1])_{i=1}^m \tag{5}$$

в правой части становится разрешимой при $K \ge |T_v|$, где

$$T_v = \min_{1 \le i \le m} \left\{ v_i^{-1} \left(\operatorname{rad}(\mathbf{b}_i) - \left| \operatorname{mid}(\mathbf{b}_i) - \sum_{j=1}^n \mathbf{a}_{ij} x_j \right| \right) \right\}$$
 (6)

Значение Arg max Tol - изменится

2.3 Достижение разрешимости ИСЛАУ путём изменения матрицы

Общая схема равномерного метода заключается в том, что необходимо модифицировать матрицу **A** засчет ее замены на $\mathbf{A} \ominus \mathbf{E}$, где \mathbf{E} состоит из $\mathbf{e}_{ij} = [-e_{ij}, e_{ij}]$ Причем значения точечных величин \mathbf{e}_{ij} удовлетворяют двум условиям:

$$0 \le \mathbf{e}_{ij} \le rad \ \mathbf{a}_{ij} \tag{7}$$

$$\sum_{j=1}^{n} e_{ij}\tau = K, \quad i = 1, 2, ..., m, \quad K > 0$$
(8)

Если $K \geq |T|$, то тогда линейная задача о допусках с матрицей $\mathbf{A} \ominus \mathbf{E} = ([\underline{\mathbf{a}}_{ij} - \underline{\mathbf{e}}_{ij}, \overline{\mathbf{a}}_{ij} + \overline{\mathbf{e}}_{ij}])$ и правой частью \mathbf{b} становится разрешимой.

2.4 Оценки вариабельности решения

Абсолютной вариабельностью оценки называется величина

$$ive(\mathbf{A}, \mathbf{b}) = \min_{A \in \mathbf{A}} \operatorname{cond} A \cdot ||\operatorname{Tol}(x)|| \frac{\max_{x \in \mathbb{R}^n} \operatorname{Tol}(x)}{||\mathbf{b}||}$$
(9)

Относительной вариабельностью оценки называется величина

$$rve(\mathbf{A}, \mathbf{b}) = \min_{A \in \mathbf{A}} \operatorname{cond} A \cdot \max_{x \in \mathbb{R}^n} \operatorname{Tol}(x)$$
(10)

3 Результаты

3.1 Максимум распознающего функционала

Рис. 1: Расположение максимума распознающего функционала

Максимум со значением T = -0.333 расположен в точке $\tau = (1.333, 0.6667)$.

3.2 Достижение разрешимости за счёт коррекции правой части

3.2.1 Равномерное уширение

Положим K=1. Получается максимум со значением T=0.6667 расположен в точке $\tau=(1.333,0.6667)$. При этом видим, что точка максимума осталась прежней.

Рис. 2: Допусковое множество решений с равномерным уширением правой части

На данном рисунке черный квадрат имеет сторону $2 \cdot ive$, а фиолетовый - $2 \cdot rve$. Область обведенная черной линией - допусковое множество

ive: 0.1473502 rve: 0.726363348

3.2.2 Неравномерное уширение

Выберем произвольный вектор v=[0.5,0.1,1,0.5] и постоянную K=3. Получается максимум со значением T=0.724 расположен в точке $\tau=(0.96,0.576)$. При этом видим, что точка максимума сдвинулась.

Рис. 3: Допусковое множество решений с неравномерным уширением правой части

На данном рисунке черный квадрат имеет сторону $2 \cdot ive$, а фиолетовый - $2 \cdot rve$. Область обведенная черной линией - допусковое множество

ive: 0.106272696 rve: 0.69755409

3.3 Достижение разрешимости за счёт коррекции левой части

Для построения интервальной матрицы \mathbf{E} с уравновешанными интервальными элементами $\mathbf{e}_{ij} = [-e_{ij}, e_{ij}]$ выбираем такие \mathbf{e}_{ij} , что:

$$\begin{cases} 0 \le \mathbf{e} \le 1 = \text{rad}(\mathbf{a}_{11}), \text{rad}(\mathbf{a}_{12}), \text{rad}(\mathbf{a}_{22}) \\ 0 \le \mathbf{e} \le 0.5 = \text{rad}(\mathbf{a}_{31}), \text{rad}(\mathbf{a}_{42}) & \Rightarrow 0.1666 \le \mathbf{e} \le 0.5 \\ 1.333 * \mathbf{e} + 0.666 * \mathbf{e} = K \ge |T| = 0.333 \end{cases}$$

сформируем матрицу

$$E = \begin{pmatrix} [-0.5, 0.5] & [-0.4, 0.4] \\ [-0.3, 0.3] & [-0.5, 0.5] \\ [-0.5, 0.5] & 0 \\ 0 & [-0.3, 0.3] \end{pmatrix}$$
(11)

Рис. 4: Допусковое множество решений со скоректированной матрицей

На данном рисунке черный квадрат имеет сторону $2 \cdot ive$, а фиолетовый - $2 \cdot rve$. Область обведенная черной линией - допусковое множество

ive: 0.068321425 rve: 0.3444088

Рис. 5: Допусковое множество решений со скоректированной матрицей

4 Вывод

- 1. После корекции правой части равномерным уширением вектора ${\bf b}$ безусловный максимум распознающего функционала Tol=0.667 в точке $(1.333,\,0.667)$, а форма поверхности распознающего функционала Tol не изменилась. Для нерасномерного уширения видно, что формы поверхности и положения безусловных максимумов распознающего функционала Tol до и после неравномерного уширения вектора ${\bf b}$ не совпадают.
- 2. Сравнивая данные коррекции можно сказать, что неравномерное уширение дает меньшие значения вариабельности по сравнению с равномерным.

