

Implémentez un modèle de scoring

David Marchand – Apprenant OpenClassrooms

Rappel de la problématique

- Mise en œuvre d'un outil de « scoring crédit »
- Développement d'un algorithme de classification sur le défaut / réussite de remboursement de crédit
 - Traitement dans le cadre d'un dataset déséquilibré
- Développement d'un dashboard interactif s'appuyant sur de la transparence (algorithme, utilisation et interprétabilité des données)
- Mise en production de la solution développée

Présentation du jeu de données

 Jeu de données proposé à l'occasion de la compétition Kaggle « Home Credit Default Risk »

- Séparation en multiples .csv :
 - application_{train|test}.csv
 - bureau.csv
 - bureau_balance.csv
 - POS_CASH_balance.csv
 - credit card balance.csv
 - previous_applications.csv
 - installments_payments.csv

Vue générale

Pré-traitement (fusion .csv)

Séparation initiale selon la présence de la cible

Pré-traitement

- Fusion de la majorité des .csv sur la base de liens entre fichiers
- Obtention d'un dataframe de 356251 lignes x 793 colonnes
- Taux variable de valeurs manquantes (25 % en moyenne)
- Séparation en deux dataframes selon la présence ou non d'une valeur sur la colonne cible

Feature Engineering

- Raffinement du dataframe via Feature Engineering
- Passage à un dataframe de 307507 lignes x
 20 colonnes via Feature Importance
- 18 variables initiales retenues
- Création de nouvelles variables
 (3 variables initiales exploitées) :
 - AMT_CREDIT_TO_ANNUITY_RATIO
 - AMT GOODS PRICE TO ANNUITY RATIO
 - AMT_CREDIT_GOODS_PRICE_DIFF
 - GOODS_PRICE_FAIL_RATIO
 - CREDIT_FAIL_RATIO

Data Leakage - Analyse de corrélation entre variables

- Faibles corrélation avec la variable cible (TARGET)
- Prévention du Data Leakage
- Plusieurs variables possédant de multiples corrélations :
 - EXT_SOURCE_1
 - EXT_SOURCE_3
 - DAYS_REGISTRATION
 - DAYS_ID_PUBLISH

Recherche des meilleurs hyperparamètres

- Création d'un pipeline gérant le déséquilibre de classes :
- Entraînement du modèle sur le jeu d'entraînement (déséquilibré)
- Validation croisée sur un jeu de validation équilibré (oversampling via la méthode SMOTE)
- Scoring sur le « score métier » et le Fbeta-score
- Score métier :
 - Détection des faux positifs / faux négatifs
 - Pondération sur la valeur associée à l'état faux positif / faux négatif

Fine Tuning du meilleur modèle

- Utilisation d'un pipeline similaire à la recherche des meilleurs hyperparamètres
- Approximation bayesienne du résultat obtenu pour un ensemble donné d'hyperparamètres
- Possibilité de cribler un plus large spectre de valeurs pour un coût computationnel moindre
- Idéal dans une approche de Fine Tuning

Résultats

Tableau récapitulatif

	ROC AUC	Fbeta Score	Score Métier	Accuracy	Temps d'entraînement
Dummy (Baseline)	0,5	0,31	508840	0,08	2 s (CPU)
Logistic Regression	0,52	0,31	457881	0,17	6,3 s (CPU)
XGBoost	0,65	0,38	183409	0,64	1,4 s (GPU)
LightGBM	0,68	0,42	149111	0,71	6,2 s (CPU)
Fine-Tuned XGBoost	0,68	0,42	150017	0,7	1,5 s (GPU)

- LightGBM meilleur modèle global, mais empiriquement retrouvé « instable »
- Fine-Tuned XGBoost modèle final retenu (quasi aussi performant que LightGBM mais empiriquement bien plus « stable »)

Tracking des expérimentations

MLFlow

Courte démonstration

Pipeline de déploiement

Git, Github / Gitlab, tests unitaires

- Utilisation de PyTest pour réalisation de tests unitaires
- Gestion du projet via la plate-forme
 Github / Gitlab :
 - Basés sur Git
 - Complets (fonctionnalités de wiki, système de suivi de bugs, CI/CD, tracking de vulnérabilités, etc.)
- Exploitation de PyTest pour la réalisation de tests CI/CD sur Github / Gitlab

Data Drift

Analyse via Evidently Al

- Train_df vs test_df
- Train_df vs score_df
- Train_df vs newclients_df
- Résultats positifs pour test_df et score_df
- Résultat négatif pour newclients_df
- newclients_df issu du fichier .csv« test » du dataset initial

train_df vs test_df

Data Drift

Analyse via Evidently Al

- Train df vs test df
- Train_df vs score_df
- Train_df vs newclients_df
- Résultats positifs pour test_df et score_df
- Résultat négatif pour newclients_df
- newclients_df issu du fichier .csv« test » du dataset initial

train_df vs score_df

Data Drift

Analyse via Evidently Al

- Analyse du Data Drift sur les datasets :
 - Train_df vs test_df
 - Train_df vs score_df
 - Train_df vs newclients_df
- Résultats positifs pour test_df et score_df
- Résultat négatif pour newclients_df
- newclients_df issu du fichier .csv« test » du dataset initial

train_df vs newclients_df

Dashboard

Présentation de l'architecture générale

- Séparation de l'architecture du dashboard en Frontend (partie visuelle) et Backend (partie traitement)
- Frontend développé autour du package
 Streamlit
- Envoi des requêtes faites sur le Dashboard vers le Backend via une API développée via le package FastAPI
- Utilisation de Docker Compose pour empaquetage de l'application
- Envoi temporaire sur Hostinger (VPS)
- Projection pour envoi sur Azure Web Apps

Dashboard

Démonstration

Un peu plus longue que la précédente!

Conclusion

Limites et améliorations

Limites

- Quantité encore importante de faux négatifs
- Choix du modèle (« instabilité » de LightGBM)
- Scalabilité actuelle de la plate-forme d'hébérgement (contournement possible via Azure Web Apps, Amazon EC2 App Runner ou Heroku)

Améliorations

- Echantillonnage (passage à de l'oversampling + undersampling ?)
- Raffinement du modèle (Feature Engineering + augmentation du nombre d'hyperparamètres)
- Augmentation de l'interactivité du dashboard (transition vers Plotly)
- Amélioration globale du code
- Stabilisation de l'API

Merci de votre attention!