A Principled Approach for Learning Task Similarity in Multitask Learning

Changjian Shui 1,* , Mahdieh Abbasi 1 , Louis-Émile Robitaille 1 , Boyu Wang 2 , Christian Gagné 1

* changjian.shui.1@ulaval.ca; 1 Université Laval, 2 University of Pennsylvania

Introduction

- MTL: Learning a set of related tasks by exploiting the shared knowledge
- Intuition: Tasks that are alike should be treated alike
- Explicit similarity: minimize a weighted sum of loss, similar tasks are assigned higher weights [1]
- *Implicit* similarity: minimizing the distribution divergence between the tasks by constructing shared features [2]

Contributions

Understanding the **fundamental implica- tions** of incorporating task similarity information in MTL algorithms:

- Why should we combine explicit and implicit similarity knowledge in the MTL framework
- How can we use it for the practice

Problem Setup

- Find T hypothesis $\{h_t\}_{t=1}^T$ from observed tasks $\{\hat{\mathcal{D}}_t := (x_i, y_i)_{i=1}^m\}_{t=1}^T$
- Generalization error: $\frac{1}{T} \sum_{t=1}^{T} R_t(h_t)$ with $R_t(h_t) = \mathbb{E}_{(x,y) \sim \mathcal{D}_t} \ell(h_t(\mathbf{x}), y)$
- Relation coefficients: $\{\alpha_t\}_{t=1}^T$, each α_t is T simplex
- Empirical weighted loss for each task t: $\hat{R}_{\alpha_t}(h) = \sum_{i=1}^{T} \alpha_t[i]\hat{R}_i(h)$ with $\hat{R}_i(h) = \frac{1}{m}\sum_{(x,y)\sim\hat{D}_i}\ell(h(x),y)$
- \bullet Metrics for measuring task similarity: ${\cal H}$ divergence and Wasserstein-1 distance

Theoretical Results

Theorem 1 (Informal) Supposing the transport cost in the Wasserstein distance is $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2$, with high probability $\geq 1 - \delta$, we have:

$$\frac{1}{T} \sum_{t=1}^{T} R_t(h_t) \leq \underbrace{\frac{1}{T} \sum_{t=1}^{T} \hat{R}_{\boldsymbol{\alpha}_t}(h_t)}_{\text{Weighted empirical loss}} + \underbrace{C_1 \sum_{t=1}^{T} \|\boldsymbol{\alpha}_t\|_2}_{\text{Coefficient regularization}}$$

$$+ \underbrace{\frac{2K}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_t[i] W_1(\hat{D}_t, \hat{D}_i)}_{\text{Empirical distribution distance}} + \underbrace{C_2 + \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T} \boldsymbol{\alpha}_t[i] \lambda_{t,i}}_{\text{Complexity and optimal expected loss}}$$

 C_1 and C_2 constants related with Lipschtiz constant K, pseudo-dim d, m, T and δ .

Training Algorithm

Using the theoretical results in training adversarial multitask neural network (AMTNN)

- Neural networks parameters θ^f ; θ^h ; θ^d
- ullet Relation coefficients $oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_T$
- Alternative optimization over two kinds of parameters at each training epoch:

Step 1: Neural net parameter updating

$$\min_{\boldsymbol{\theta}^f, \boldsymbol{\theta}_1^h, \dots, \boldsymbol{\theta}_t^h} \max_{\boldsymbol{\theta}_{t,i}^d} \sum_{t=1}^T \hat{R}_{\boldsymbol{\alpha}_t}(\boldsymbol{\theta}^f, \boldsymbol{\theta}_t^h) + \rho \sum_{i,t=1}^T \boldsymbol{\alpha}_t[i] \hat{E}_{t,i}(\boldsymbol{\theta}^f, \boldsymbol{\theta}_{t,i}^d)$$

Step 2: Relation coefficient updating

$$\min_{\boldsymbol{\alpha}_{1},...,\boldsymbol{\alpha}_{T}} \sum_{t=1}^{T} \hat{R}_{\boldsymbol{\alpha}_{t}}(\boldsymbol{\theta}^{f},\boldsymbol{\theta}_{t}^{h}) + \kappa_{1} \sum_{t=1}^{T} \|\boldsymbol{\alpha}_{t}\|_{2}$$

$$+ \kappa_{2} \sum_{i,t=1}^{T} \boldsymbol{\alpha}_{t}[i] \hat{d}_{t,i}(\boldsymbol{\theta}^{f},\boldsymbol{\theta}_{t,i}^{d}),$$
s.t. $\|\boldsymbol{\alpha}_{t}\|_{1} = 1$, $\boldsymbol{\alpha}_{t}[i] \geq 0 \quad \forall t, i,$

Robust Relation Coefficient

Figure 1: Estimated task relation coefficients matrix $\{\alpha_t\}_{t=1}^3$ with training set of 8K instances.

- Robust to the similarity metric
- Asymmetric relation coefficients (e.g., task SVHN is not helpful for task MNIST)

Role of Weighted Sum

Similar task naturally extends the decision boundary of the original task.

Figure 2: t-SNE in the feature space of task MNIST in AMTNN_W 8K. Red: MNIST; Blue: MNIST_M; Green: SVHN.

Empirical Results

	3K				5 K				8K			
Approach	MNIST	MNIST_M	SVHN	Average	MNIST	MNIST_M	SVHN	Average	MNIST	MNIST_M	SVHN	Average
MTL_uni	93.23	76.85	57.20	75.76	97.41	77.72	67.86	81.00	97.73	83.05	71.19	83.99
MTL_weighted	89.09	73.69	68.63	77.13	91.43	74.07	73.81	79.77	92.01	76.69	73.77	80.82
MTL_disH	89.91	81.13	70.31	80.45	91.92	82.68	73.27	82.62	92.96	85.04	78.50	85.50
MTL_disW	96.77	80.38	68.40	81.85	95.47	83.48	72.66	83.87	98.09	84.13	74.37	85.53
AMTNN_H	97.47	77.87	71.26	82.20	97.94	76.28	76.06	83.43	98.28	82.75	76.63	85.89
AMTNN_W	97.20	80.70	76.93	84.95	97.67	82.50	76.36	85.51	98.01	82.53	79.97	86.84

Table 1: Average test accuracy (in %) of MTL algorithms on the digits datasets.

	1000						1600					
Approach	Book	DVDs	Kitchen	Elec	Average	Book	DVDs	Kitchen	Elec	Average		
MTL_uni	81.31	78.44	87.07	84.57	82.85	81.35	80.14	86.54	87.50	83.88		
MTL_weighted	81.88	79.02	86.91	85.31	83.28	80.72	81.20	87.60	88.12	84.41		
MTL_disH	81.23	78.12	87.34	84.82	82.88	81.92	79.86	87.79	87.31	84.22		
MTL_disW	81.13	78.38	87.11	84.82	82.86	81.88	79.81	87.07	87.69	84.11		
AMTNN_H	82.36	79.24	87.42	85.53	83.64	80.82	81.54	88.27	88.17	84.70		
AMTNN_W	81.68	79.38	87.27	85.66	83.50	81.20	80.38	87.69	88.46	84.44		

Table 2: Average test accuracy (in %) of MTL algorithms in the sentiment dataset.

References

- [1] Keerthiram Murugesan, Hanxiao Liu, Jaime Carbonell, and Yiming Yang. Adaptive smoothed online multi-task learning. In *Advances in Neural Information Processing Systems*, pages 4296–4304, 2016.
- [2] Yitong Li, David E Carlson, et al. Extracting relationships by multi-domain matching. In *Advances in Neural Information Processing Systems*, pages 6799–6810, 2018.

Full paper with details and proofs: https://arxiv.org/abs/1903.09109