SysML/UML Diagrammes d'architecture

Diagrammes de composants

Utilisés essentiellement pour les applications de taille très importante. Permettent de préciser l'architecture de l'application en modules : fichiers d'entête, fichiers sources, exécutables, librairies etc. en précisant les relations de dépendance. Notation des modules :

SysML n'a pas repris les diagrammes de composants

Diagrammes de composants

Diagrammes de déploiement

- Peu utilisés en dehors des très grosses applications réparties, ils montrent :
 - Les ressources matérielles ou nœuds (stations, serveurs, terminaux...) sur lesquels se déroule l'application
 - Les liens entre nœuds avec précision possible des caractéristiques des communications
 - Eventuellement l'implantation des composants sur les nœuds
- Peuvent montrer des classes de matériels (diagrammes type diagrammes de classes avec indication de multiplicité) ou des instances (diagrammes type diagrammes d'objets)
- SysML n'a pas repris les diagrammes de déploiement

Diagrammes de déploiement

5

walter.schon@utc.fr

SysML: System Modeling Language

Diagrammes de paquetages (« packages »)

6

walter.schon@utc.fr

- UML permet d'organiser un modèle complexe en différents paquetages ou «packages».
- Représentés graphiquement comme des dossiers, les paquetages peuvent contenir tout type d'élément de modélisation UML (y compris d'autres paquetages sans limite de niveaux d'emboîtement).
- Des relations de dépendances ou de hiérarchie entre paquetages peuvent également être définies

Diagrammes de paquetages

7

walter.schon@utc.fr

- Les diagrammes de paquetages sont devenus des diagrammes standard UML 2.0
- Visent essentiellement à illustrer la structure (hiérarchie) des packages et les dépendances éventuelles (en les caractérisant et en cherchant à les minimiser). Ici des dépendances stéréotypées :

© Walter SCHÖN tous droits réservés

Diagrammes de paquetages particularités SysML

- Pratiquement aucune :
 - Possibilité de visualiser la hiérarchie d'inclusion par le même graphisme que dans les diagrammes d'exigences (liens avec croix entourée coté conteneur) : X
 - Définitions de certains stéréotypes de packages : <<model>> : racine d'une hiérarchie, <<view>> : vue particulière d'un système (sécurité, performances...), <<viewpoint>> : contenu d'une vue selon différents critères...

Diagrammes de structure composite

9

walter.schon@utc.fr

- Offrent la possibilité de décomposer une classe en une structure interne : attention ces parties ne sont pas des instances (donc nom non souligné)
- Il est possible de préciser une multiplicité pour chaque partie (exemple deux IHM en redondance)

Diagrammes de structure composite

10

 Incluent également la notion de port qui regroupent les interfaces réalisées et requises vis à vis de l'extérieur :

Diagrammes de structure composite

11

walter.schon@utc.fr

 Cette notation des interfaces (l'une des nouveautés majeures d'UML 2.0) permet de mettre en évidence les connexions d'interface entre classes

Diagrammes de bloc interne SysML

- Le diagramme de bloc interne (Internal Block Diagram : IBD) reprend le diagramme de structure composite pour les blocs SysML.
- Les composants à l'intérieur d'un bloc s'appellent ses parties (parts)
- Les liens entre parties (donc internes à un bloc) s'appellent connecteurs
- Les notions de ports et d'interfaces (donc externes à un bloc) sont reprises telles quelles.
- Les ports peuvent être de type standard ou flux (flux physique : matière, énergie...).
- Un port d'entrée seulement ou de sortie seulement peut être représenté avec seulement une flèche

Diagramme Paramétrique SysML

- SysML inclut une spécialisation du diagramme de bloc interne pour en faire le diagramme paramétrique.
 - Le diagramme paramétrique comprend des blocs stéréotypés <<Constraint>> représentant les contraintes.
 - Le bloc Constraint contient la contrainte (souvent une loi physique exprimée entre accolades comme en UML) et les paramètres de cette loi.

< <constraint>></constraint>
Loi de Newton
constraints {F=mγ}
Parameters
F force : N
m masse: kg
γ accélération : m/s²
•

< <constraint>></constraint>
Attraction terrestre
constraints {P=mg}
parameters
P Poids : N
m masse : kg
g accélération : m/s²

Diagramme Paramétrique SysML

- Ces blocs contraintes sont ensuite « instanciés », les paramètres figurant comme ports sur les « instances » qui sont figurés par des rectangles aux coins arrondis.
 - Les paramètres sont reliés entre eux (value binding) ce qui permet (paraît-il...) de supporter des analyses Simulink etc.

Moralité : la plume et l'enclume tombent avec la même accélération constante...

© Walter SCHÖN tous droits réservés