INF 1771 Inteligência Artificial

CAIO VALENTE GABRIELLE BRANDEMBURG

CVRP
Problema de Roteamento de
Veículos Capacitados

29/04/2019

SUMÁRIO

I - Introdução

- I.1 Algoritmos escolhidos para o CVRP
- 1.2 Algoritmos de geração de solução inicial
- I.3 Estruturas da solução

II - Desenvolvimento do trabalho

- II.1 Simulated Annealing
- II.2 Busca Local Hill Climbing

III - Análise dos resultados (a definir)

- III.1 Resultados gerais
- III.2 Comparações gráficas

IV - Conclusão

I - Introdução

I.1 - Algoritmos escolhidos para o CVRP

Hill-climbing

- Relocate (1 elemento) (Inter-rota)
- 2-opt (Intra-rota)
- Best-first

Simulated Annealing

- Relocate (1 elemento)
- Inversão (~2-opt)
- Swap (1-1 elemento)
- Escolha aleatória de vizinhança
- Best-first

I.2 - Algoritmos de geração de solução inicial

Greedy

- Criação de rotas escolhendo o nó mais próximo do último nó inserido

Random

- Criação de rotas escolhendo o nós aleatórios que ainda não estão inseridos em nenhuma rota

I - Introdução

I.3 - Estrutura da solução

Hill-climbing

Simulated Annealing

II.1 - Simulated Annealing

```
simulated_annealing():
      solucao_inicial = gera_solucao_inicial()
      solucao_corrente = solucao_opt = solucao_inicial
      ENQUANTO T > TEMP_FINAL:
            ENQUANTO i < VIZINHANCA:</pre>
                  novo_vizinho = gera_vizinho(solucao_corrente)
                  SE novo_vizinho não é válido:
                        pula iteração
                  deltaC = custo(novo_vizinho) - custo(solucao_corrente)
                  SE deltaC < 0:
                        solucao_corrente = novo_vizinho
                        SE novo_vizinho é melhor do que solucao_opt:
                              solucao_opt = novo_vizinho
                  SE NÃO:
                        aceita novo_vizinho como solucao_corrente com uma probabilidade exp(deltaC/T)
                  i = i + 1
            T = T*FATOR T
      RETORNA solucao_opt
```

II.1 - Simulated Annealing

```
gera_vizinho(solucao):
    vizinho = aleatorio(swap(solucao), relocate(solucao), 2_opt(solucao))

swap(solucao_input):
    i,j = duas posições aleatórias de solucao_input
        novo_vizinho = troca nó da posição i com nó da posição j de solucao_input
    RETORNA novo_vizinho

relocate(solucao_input)
    i,j = duas posicoes aleatórias de solucao_input
        novo_vizinho = move nó da posicao i para a posicao j de solucao_input
    RETORNA novo_vizinho

reverse(solucao_input)
    i,j = duas posicoes aleatórias de solucao_input
    novo_vizinho = inverte a sequencia que vai de i até j de solucao input
    RETORNA novo_vizinho
```

II.1 - Simulated Annealing - Vizinhanças

II.1 - Simulated Annealing - Vizinhanças

INVERSÃO

II.2 - Busca Local Hill Climbing

II.2 - Busca Local Hill Climbing

II.2 - Busca Local Hill Climbing

RELOCATE

2-OPT

III.1 - Resultados gerais

X-n101-k25	RESULTADO	ERRO RELATIVO [%] (BKS)	TEMPO (s)
BKS	27591	-	-
HILL-CLIMBI NG (GREEDY)	40346	31.61	5.723
SA (GREEDY)	32375	14.78	2.715
HILL-CLIMBI NG (RANDOM)	45744	39.68	429.835
SA (RANDOM)	35179	21.57	2.380

X-n110-k13	RESULTADO	ERRO RELATIVO [%] (BKS)	TEMPO (s)
BKS	14971	-	-
HILL-CLIMB ING (GREEDY)	19139	21.78	4.275
SA (GREEDY)	17925	16.48	2.127
HILL-CLIMB ING (RANDOM)	34845	57.04	1931.241
SA (RANDOM)	24531	38.97	1.862

III.1 - Resultados gerais

X-n115-k10	RESULTAD O	ERRO RELATIVO [%] (BKS)	TEMPO (s)
BKS	12747	-	-
HILL-CLIMBI NG (GREEDY)	17172	25.77	22.261
SA (GREEDY)	16663	23.50	1.764
HILL-CLIMBI NG (RANDOM)	27422	53.52	2272.781
SA (RANDOM)	23719	46.26	1.564

X-n204-k19	RESULTADO	ERRO RELATIVO [%] (BKS)	TEMPO (s)
BKS	19565	-	-
HILL-CLIMBIN G (GREEDY)	23551	16.92	83.844
SA (GREEDY)	23328	16.13	4.896
HILL-CLIMBIN G (RANDOM)	55532	64.77	927.222
SA (RANDOM)	38295	48.91	5.009

III.2 - Comparações gráficas

X-n110-k13 (n=109, Q=66)

Custo da solução ótima: 14971 Custo da solução inicial: 19244

Annealing, Greedy, 100 times

Melhor solução estatística:

Custo: 17118

Tempo: 212.7 segundos

Solução média:

Custo: 17925

Tempo: 2.1 segundos

III.2 - Comparações gráficas

X-n110-k13 (n=109, Q=66)

Custo da solução ótima: 14971 Custo da solução inicial: 19244

Annealing, Greedy, 100 times, learning

Melhor solução com aprendizado:

Custo: 16092

Tempo: 170.1 segundos

Solução média: Custo: 16112

Tempo: 1.7 segundos

III.2 - Comparações gráficas

X-n115-k10 (n=114, Q=169) 500 0 250 500 750 1,000

Custo da solução ótima: 12747 Custo da solução inicial: 17711

Busca Local, Greedy, deterministico

Solução final: Custo: 17172

Tempo: 22.26 segundos

- Diferença grande em relação a BKS
- Possíveis melhorias:
 - Hill-climbing
 - Retornar melhor vizinho entre N primeiros melhores vizinhos
 - Geração de vizinhos mais discrepantes
 - Simulated Annealing
 - Cooling Schedule mais elaborada (taxa de queda dinâmica)
 - Aumentar a quantidade de iterações na vizinhança
 - Usar a mesma estrutura para a solução usada na HC