关系理论

1、函数依赖

- (1) 非平凡的函数依赖: X→Y, Y∉X
- (2) 平凡的函数依赖: X→Y, Y∈X

无特殊说明下,均讨论非平凡的函数依赖。即X可以推出Y,但Y不是X的亏集。因为一般某个集合总能推出其亏集(这种情况就是平凡的函数依赖),没啥用。

- (3) 完全函数依赖: X→Y, 并且对于X的任意真方集X', 都有X→Y。则积Y完全函数依赖于X。论作XEY.
- (4) 部分函数依赖:Y不完全函数依赖于X。论作X户Y。例如A→C,又有AB→C,那么C就是部分函数依赖于AB的,这种情况会造成数据冗余。

2、码

(1) 候选码: 是一个属性组 (或者属性), 通过该属性组能推出所有的属性, 并且该属性组的任意 3 集都不能再推出所有属性 3。即在满足完全函数 依赖的前提下, 还得是最小的属性组。

求所有候选码的方法:

例:集合U=9A, B, C, D, E, GJ。函数依赖集F=9AB→C, CD→E, E→A, A→GJ

[Step 1]

找出一定属于候选码的属性,可能属于候选码的属性,以及不属于候选码的属性。方法如下:

一定属于候选码的属性: 只出现在左边, 或者左右都没出现

可能属于候选码的属性: 左右都出现

不属于候选码的属性: 只出现在石边

【例题分析】

只出现在左边的是B和D,没有左右都没出现的属性,所以BD一定是属于核选码的属性。

左右都出现的有A, C, E, 因此这三个是可能属于候选码的属性, 即待定的备选。

只出现在右边的有6、因此6是不属于候选码的属性,可以不管3。

[Step 2]

先对确定的属性求闭包, 若不能构成候选码, 再将确定的属性和待定的属性 进行组合, 做闭包运算, 直到得到的属性组能够推出全部的属性。

闭包运算:

若要求某属性组的闭包,首先设有集合X,令X=f该属性组3。

X的自身

X1°=X10中的属性所能推出的

当X"不等于X"时, X"= X"中的属性能所推出的

依次类推…直到 $X^{(n)}U$ 或者 $X^{(n)}$ 、 $X^{(n-1)}$ 就求得了属性组的闭包 $(X)_F^{\dagger}$ 。

ps.闭包运算还可用于判断X→Y是否成立: 当Y⊆(X广时, 有X→Y。

【例题分析】

根据stepl的分析,一定是候选码的为BD。可能是候选码的有A、C、E。

于是先对BD求闭包(这里可求得BD推不出全部的属性),因此再分别对BDA、BDC、BDE进行闭包运算,看其是否能得到全部属性。如若不能,再增加加BDAC、BDAE之类的组合,直到求出候选码为止。

以BDA为例:设X=铜DAi

X(0)=BDA

X(1)=BDACG

··X(") *X(") 有X(")=BDACGE

因此 (BDA)产为U, 所以 (BDA)产是该选码

全部进行完闭包运算后,可知集合U在F下的候选码为f(BDA), LBDC), LBDE)引

- (2) 超码: 能推出所有属性的属性组的集合, 根据概念可知, 候选码是极小的超码集, 是超码的专集
- (3) 主码: 与有多个候选码时 (如例题那样),挑出一个作为主码, 简称码
- (4) 主属性: 包含在任何一个候选码中的属性, 如例题中ABCDE 都是主属性
- (5) 非主属性: 不包含在任何一个候选码中的属性, 如例题中的G
- (b) 外码: 关系模式R中, 若有一个属性或属性组X, 它不是R的码, 但X是另一个关系模式S中的码, 积X是R的外码
- (7) 全码: 最极端情况下,整个属性组都是码, 称为全码

3、 港式

(1) INF: 所有属性都是不可分割的数据项

如果某个属性, 例如学校, 还可以继续拆分为高中和大学, 就不满足INF3。

INF是关系数据库需要满足的最低要求

(2) 2NF: 在满足INF的前提下,不包含非主属性对码的部分函数依赖(即每一个非主属性都完全函数依赖于码)

例如在关系R中,码是学号和班级,非主属性是姓名,因为通过学号就能直接推出姓名了,不需要班级,此处姓名就部分依赖于码了,不满足2NF

_传递函数依赖: 若X→Y,Y→Z,且Z≠Y,Y→X,有X→Z,此时积Z对X有传递函数 依赖。

例如在关系R中,码是客户姓名,非主属性是订单编号和订单负责人,通过客户姓名可以推出他的订单编号,再通过订单编号能推出订单负责人,这种情况下客户姓名和订单负责人是间接决定的,存在传递函数依赖,不满足3NF(4)BCNF:消除任何属性对候选码的传递依赖,即每一个决定因素都包含

码, 表现为在函数依赖集当中, 左边的都包含该洗码(整个属性组!)

(5) 4NF (应该不考这个): 不允许有非平凡且非函数依赖的多值依赖 多值依赖 (个人理解, 仅供参考, 我觉得不会细考): X, Y, Z属于集合U, 且Z=U-X-Y。 与给定一组 (α, 2) 值的时候, 可以确定一组Y的值, 但这组Y的 值仅仅取决于α, 此时有X→→Y。 其实这里就是存在了一对多的关系, 即一个α

和一组2有关, 但a并不能唯一确定一个2, 通过a和2能找到一组y, 但你只通过 a也能确定y。

平凡的多值依赖: 2是空集

非亚凡的多值依赖: 2不是空集

判断方法与分解方法:

R为1A, B, C, D3

<u>DNF</u> (没有部分函数依赖): 若码是AB, F中若为 (A→C, AB→D3, 对于C, 只需要A就能推出, 那么C部分函数依赖于码AB, 这种情况就不是2NF。

若要分解为2NF, 只需将不符合要求的拿出来, 即分为R,fA, B, Dj和R,fA, Cj

3NF (没有部分函数依赖与传递函数依赖): 若码是AB, F若为\AB→C, C→D\,

这里不存在部分函数依赖。但是对于D,需要AB推出C后才能间接推出D,那么D

传递函数依赖于AB,不满足3NF。

若要分解为3NF,同样将不符合要求的拿出来,即分为R,YA,B,C3和R YC,D3。

BCNF (没有部分函数依赖,同时每一个决定因素都包含码):

老R是 (A, B, C), P是fAC→B, AB→C, B→Cf, 恢选码则是AC和AB。这里不存在部分函数依赖, 但对于B→C来说, 决定因素B不包含码, 因此它不是BCNF。

4、最小函数依赖集

*最小函数依赖集的方法

step 1: 拆分右侧

例如将A→BC拆为A→B和A→C

step 2: 去除自身求闭包

若有有AB→C, BC→E, AE→G, 去除AB自身能推出的C, 基于剩余的依赖关系求AB的闭包, 若AB骟衬剩余的关系也能求出C, 那么删除AB→C这个依赖关系

step 3: 左侧最小化

例如目前保留的关系有ABC→D,观察左边的ABC与中,A是否能由BC推出,B是否能由AC推出,C是否能由AB推出。假设C能被AB推出,那么左侧去掉C,更

新为AB→D。

例:设F=9C→A, CG→BD, CE→A, ACD→BJ, 求最小函数依赖集。

step 1:

将CG→BD拆分为CG→B和CG→D。

step 2:

 $(C)_F^{\dagger} = C$,因此保留 $C \rightarrow A$ 。 $(CG)_F^{\dagger} = CGADB$,因此去掉 $CG \rightarrow B$ 。 $(CG)_F^{\dagger} = CGA$,因此保留 $CG \rightarrow D$ 。 $(CE)_F^{\dagger} = CEA$,因此去掉 $CE \rightarrow A$ 。 $(ACD)_F^{\dagger} = ACD$,因此保留 $ACD \rightarrow B$ 。

step 3:

C→A已经是最小。CG→D已经是最小。ACD当中、C可以推出A、去掉A、更新为CD→B。

因此,本题的最小函数依赖集为fC→A, CG→D, CD→B3.

5、模式分解 判断无损连接的方法

(1) 模式分解的准则:无振连接、保持函数依赖 (2) 无据连接: 分解后再次自然连接, 与分解前相同

step 1: 画表格。列表示所有的属性,有多少属性就画多少个属性列。行表示 分解后的关系,有几个关系就画几个关系行。

step 2: 根据每一行关系进行判断。找到关系中的每个属性对应第几列,并在

相应的位置上标为ai,下标i是表格里的列数。其余关系中不存在的属性则

标为的, 讨是表格对应的行数和列数。 step 3: 依次对函数依赖集里的各个依赖关系进行考察。例如有XY→Z。在属性列

中找到X和Y, 观察X和Y的行列上是否有相同的标论 (b的下标要相同)。 若有,

则查看它们对应在属性列2上的各个标记。其中若有ai,则将属性列上的这些 标记全部放为ai。 若没有ai, 则找到值最小的bii, 将这些标记全部改为bii。

step 4: 反复执行以上操作, 直到某一行全部变为a为止, 则表明具有无报连接 性。否则不具有无损连接性。

例: F=9A→C, C→D, B→C, DE→C, CE→A3。分解为R, LAD), R₂LAB), R₃LBC),

R. (COE), R. LAE)

step 1:画表格 step 3:更新表格

E

R, (a) bo bo

b., α_{φ} pis A+C, Rz (a) az biz R_2 a_1 a_2 pre

B

 α_1 α_2 α_3

b31 (a2) a3

Pr bis

b, b,

bzs b24 R3 b3/ a2 az b34 Ry by by az

P3C

Re a, box box box at

step 4:反复更新表格

a, bus

ay

Por DE→C

 R_{Σ}

Rs

α,

a,

a2

bu

Pr

ba ba Δz a,

α,

α,

a,

R3 b31 a2 a3

R4 b41 b42 a3

A b2CE→AR2 a, aφ

aκ

Ay

ab

bsc

a_r

as

D

a, bis

bzy

αψ

E

Rs (a) bus by buy as step 4: 反复更新表格 R, a, Pie

bzf C→D Rz a,

Rs b3 Rx by Rs- a1

P31

a,

Ri

bu (a3) pr (p3)

az az

(az)

bu

Pr

step 4: 反复更新表格

b, (b,

az (bz)

az (az)

ay step 4:反复更新表格

by Ь, az α,

au

Ay

ax

 R_{Σ}

R, a

		\rightarrow																		
	step 4	1:反	复	更新	f表*	2		ste	4 :1	反复	吏亲	F表程	<u> </u>		stej	4:1	又复	更新	表格	ī
	P	1	В	C	D	E			A	В	C	D	E			A	В	C	D	E
	R ₁ (a) t	7/12	az	ay	Pir		R,	۵,	bn	α,	ay	pir		R,	a,	b_{α}	a ₃	ay	pır
A→C	R ₂ (a) 0	λz	a ₃	Ay	Pre	<u>C >D</u>	R_{2}	α,	az	a ₃	Ay	P*2	ByC	R_{λ}	a,	az	Δ3	a_{φ}	Pre
	R3 b	3/ 0	λ	a,	Ay	Pic	没有	R3	P31	A ₂	az	α_{y}		没有		P31	az	a3	Ay	βiς
	Ry a) t	7 _{sa}	az	Ay	ar.	更新	R_{4}	۵,	bu	az	Ay	ar	更新	R4	۵,	Ьu	az	Aφ	۵r
	R ₅ (a) t	7sr	D3	ay	as		R_{s}	aı	Pr	az	ay	as		R_{Γ}	aı	Pr	Дz	ay	as
	step	4: 仅	复	吏亲	月表末	E		ste	p 4:	反复	更著	所表本	2		ste	p 4:	反复	更新	f表 ^末	8
		\	В	C	D	E			A	В	C	D	E	- 4.		A	В	C	D	E
	R, a	, ł	ار. ا	a3	ay	ρa		R,	a,	b_{α}	a ₃	a,	Ьıs	シ轮		a	b_{n}	a ₃	ay	Pr
D <u>E→C</u>	R_{2} a	, 0	λ	a3	Ay	P=2	CE-A	R ₂	α,	az	az	Aφ	bzs	扫描	, R2	a,	az	a3	a ₄	Psc
没有		3 6	λ	a,	Ay	b,€	没有	R,	P31	a,	α,	a,	b _s c	没有		P31	a ₂	az	Ay	Pic
更新	R ₄ a	, ł	b _{sa}	a ₃	Ay	ar	更新	R.	α,	byz	a ₃	Aψ	as	更新	R,	۵,	bu	a3	Ay	ar
	Rs a	, ł	5sz	Дz	ay	as		Rs	۵,	p2	az	ay	ar		R_{Γ}	aı	Pr	az	ay	as
	循环组	を止	- ,	没有	与出	见全	为a的	竹,	表	明该	公分官	解不」	具有	无报	连持	性				
	分解数																专)			
	设有人						-		模立	八分	解后	施得	刊	多个U	的	多集				
	step 1																			
	step 2																集台	; .		
	例如U																			
	step 3	: M	察	min,	若有	多多	个依束	负关	系自	白决	定区	素 し	RP)	左侧)	相	同,	则力	匀划	分到	
	同一	个集	合	中。	老法	是有	相同的	拧,	则作	又将	该位	×赖关	系	划分至	川同	一 1	`集·	合。		
	例如后	rin 中	有	A→B	, A-	C,	D→E,	则:	체숫	为出引	ABC3	和印	Ej							
	step 4	: 求	出	Fmin 19	自候生	抗码	, 若1	歧选	码者	K L.	述分	i 类中	出社	R, P	11单	独准	修	选码	分为	
	一类。																			_
	例如」	ジジ	Fmin	的作	炎选 る	马为	ADG,	可知	力其	末世	规	在各	分类	中,	图止	比再	划分	j -/	了集	
	台和DE	汨.																		
	由上並	术拳	131)	可欠	b, İ	其最	终的扩	奠式	分角	再为9	iG3 9	ABC3 9	id E3	1ADG	3					

关系语言

1、关系代数语言

(1) 集合运算符 (设有关系R和关系S)

并U:R并S,即由属于R或S的元组构成,同时去掉重复的元组

差-: R差S, 即由属于R但不属于S的元组构成

交∧: R交S, 即由胍属于R又属于S的元组构成

笛卡尔·· 即由R中的每个元组与S中的所有元组进行组合

(2) 关系运算符

选择 6: 得到表中的指定行, 写作 6条件(表名)

投影心: 得到表中的指定列, 写作心列名 (表名), 投影后要去除重复行

连接M:将两个表根据指定条件连接在一起,写作RMS

等值连接是指条件为属性R.A-S.B

自然连接是指条件为属性R.A-S.A, 并且要去掉重复列, 写作R Sw

悬涉元组是指自然连接时由于S中不匹配而在R中被舍弃的元组

外连接是指保留悬涉元组的连接, 不匹配的位置填NULL, 写作对

左外连接是指只保留R中悬涉元组的连接,写作™

石外连接是指只保留S中悬跨元组的连接, 写作区

除亡:设R和S除运算的结果为T,则T包含所有在R中但不在S中的属性和值,且

T的元组与S的元组经过组合均能出现在R中

例:

R

R÷ S

ABC BCD A

S

a, b, c2 b, c2 d, a,

as by c, bz c, d,

as by co be code

a, bz cz

 a_x b_x c_x a_z 中虽然也出现 3 S 中的 b_x c_3 ,但是 a_z 与 S 中其余的 b_x c_x 和 b_z c_x 的

(az bz cz) 7组合并没有出现在R中

as be co

关系代数解题方法

(1) 常规题 (求某几个属性特定值)

格式一般为TU (表名×表名))

(2) 除运算(求满足某属性全部值的其他属性)

这种题是指求是满足B表某属性全部值的在A表上的其他属性。这是除运算的特性,因此在出现"全部"二字时,需要用除运算完成。通常分别对A和B做投影运算,再对生成的专表进行除运算。

A中包含属性 α 和y,B中包含属性y,且B中属性y的值为全集且无重复,求全部y的 α 写作: $\Pi_{X,y}(A) \stackrel{.}{\leftarrow} \Pi_{y}(B)$

例如A表为学生选课表(属性包括学号和所选的课程),B表为课程信息表(属性包括课程),求选了全部课程的学生学号。全部课程只在B表出现,学号只在A表出现。于是先全选A表的学号字段和课程字段,再全选B表的课程字段,将二者相除:TL_{学号、课程}(A) ~ T_{课程}(B)

(3) 差运算

例:有学生表SC,包含属性姓名、成绩,求没有任何一门课程低于80分的学生的姓名。

忠路: 可以先求有课程低于80分的学生姓名, 再用全表相减。

Tung (SC)-Tung (6成绩 (80 (SC))

2、元组关系演算语言

- (2)原方公式
- 1、R(t) 表示t是关系R中的元组

- 2、tlijθuljj表示元组t的第i个分量和元组u的第i个分量满足比较关系θ
- 3、tlijdc或cdtlij表示元组t的第i个分量和常量c满足比较关系的
- (3) 运算符 (按优先级从高到低书写)
- 1、比较运算符: >><
- 2、量词运算符: 包括3和V。其中3的优先级大于H
- 3、逻辑运算符: 包括¬和Λ和V。其中¬的优先级大于Λ, Λ的优先级大于V

关系代数语言和元组演算语言的转换:

(1) 弁

RUS = 9 t | RLt) VS(t)3

(2) 交

 $RNS = 9 + 1 R(t) \Lambda S(t)$

(3) 差

 $R-S = 9 + 1 R(t) \wedge \neg S(t)$

(4) 笛卡尔积

 $R \times S = \{ t^{(n+m)} \mid (\exists u^{(n)}) \in U(n) \mid S(u) \land S(u) \land S(u) \land S(u) \mid

AtIn+m]=v[m] 3

其中R有n个属性, S有m个属性, 根据笛卡尔积的定义, t的目数为n+m (即有n+m个属性)

(5) 投影

 $TC_{i1,i2,\cdots,ik}(R) = 9 t^{(N)}(Jan)(R(n) \wedge t[J] = n[i] \wedge \cdots \wedge t[k] = n[ik]$

表示最终需要k列,因此t的目数为k。选取中间变量u,令u为R中的全部元组,令结果集t的第一列为R中需要的第一列(即il),最后一列k列为R中的

证列

(b) 选择

6= (R) = 9 t | R(t) AF' 3

F是选择条件, F'是F等价代换后的元组演算表达式

例题:

1、查询Student表中IS系的全体学生,其中学生所在系为第五列属性。

Sis = 9 t | Student(t) At[5]='IS']

- 上式表示设结果集为S_{IS}, 其中的元组t满足条件: t属于Student表且第五列为IS。
- 2、 查询Student表中学生的姓名和所在系, 其中姓名为第二列, 所在系为第五列。
- S, = 9 to (3 n) (Student(n) 1 []= n[2] 1 t[2] = n[5]) }

上式表示设结果集为S₁, 其中的元组t有两列属性,这两列属性满足条件: 设有元组u, n是Student表中的元组,结果集的第一列 (即tīl]) 为Stusent表的第二列 (即uīz]),结果集的第二列为Student表的第五列。

解题格式:

首先设结果集 (例如设为S), 令其中的元组为t。若题目中指明3需要哪些属性时,需要标注t的目数。当需要用量词运算符时,论得前后用括号括起来。各条件之间一般用交运算。在元组表达式中,论得首先要指出所设元组属于哪个关系。

如了方片了阳上了的生计划的出行人生计划 伊伊瓦姆地流的出户人地

S= 9 t 1 (量词运算) (指出元组所属的关系A元组需要满足的条件) }

M: 他个于	化九股天系	以时衣处式和	15 力安全表型	CI, M来取	的指胞积	力安全指
施						

事务调度

1、事务调度的准则

- (1) 一组事务的调度必须保证:
- 包含 5 所有事务的操作指令; 一个事务内部的指令顺序必须保持不变
- (2) 并行事务调度必须保证:

可导性化,将所有可能的串行调度结果推演一遍,对于某个具体的并行调度 再执行一遍,看是否能与某个串行调度的结果相同

(3) 判断可导性化的充分条件:冲突可导性化(冲突可导性化一定是可导性化调度,但可导性化调度不一定是冲突可导性化)

冲突操作:不同事务对同一数据分别进行读和写;不同事务对同一数据分别 进行写和写

冲突可导性化调度即不交换不同事务的冲突操作次序, 也不交换同一事务的 两个操作的次序。但可以交换不同事务对不同数据各种操作次序, 也可以交 换不同事务对同一数据的读取操作次序

2、封锁

(1) X锁: 写锁, 某事务对数据对象上锁后, 可读取和修改该数据对象, 其他事务不可再对该数据对象添加锁

表示方法: 上锁Xlock() 释放锁Unlock()

(2) S锁: 读锁, 某事务对数据对象上锁后, 可读取但不可修改该数据对

象,其他事务可以对该数据对象添加S锁,但不能添加X锁

表示方法: 上锁Slock() 释放锁Unlock()

(3) 封锁协议

一级封锁协议:写前加写锁,事务结束释放写锁; 可防止丢失修改

二级封锁协议: 写前加写锁, 读前加读锁, 读完释放读锁, 事务结束释放写

锁;可防止丢失修改和读脏数据

<mark>三级封锁协议(常用:支持一致性维护)</mark>:写前加写锁,读前加读锁,事务 结束辩放各锁;可防止丢失修改、读脏数据和不可重复读

如果所有事务均遵循三级封锁协议, 由于其隔离级别高, 那么这些事务无论

怎样交叉并行, 都是可导性化的调度

(4) 两段锁协议 (2PL)

シ	级	封	锁	协	议	可	以	保	证	并	发	操	17=	的	E	确	性	,	但	由	J	其	ス	ট্ৰ	严	苛	,	对:	并	发	度
有	负	面	影	哬		シ	级	封	锁	协	议	实	际	足	渶	段	锁	协	议	的	特	例	,	足	吏	严	格	的)为]	睃!	琐
协	议																														
洒	段	锁	协	议	要	求	:	事	务	在	对	任	何	数	据	竔	竹	读	写	蒯	,	需	要	萩	得	对	该	数	膳	的	封
																				教											
																												可有	能	发	ŧ
	锁					,,-			, ,				, .				•		•	•	1.0-		. ,	,,-						,	
	,,																														

数	掘	压	沒	ìŤ	
4 X	110	14	12	V 1	

	数 16 14 1文 11
Ι,	画E-R图 (概念结构设计)
	家体:
	关系:
	属性: 注意: 实体和关系都可以具有属性
	对 联系: 个A对应 个B
	时n联系: 个A对应n个B
	n对 n 联系: n 个A对应 m 个B n n
2.	E-R 图转换为关系模型(逻辑结构设计)
	第一步: 将各个家体的名字转换为各个关系模式的名字
	第二步: 实体的属性就是关系的属性, 实体的码就是关系的码
	第三步: 实体间联系的转换
	1对1联系: 在任意一方加入对方的主码并设为其外码, 并加入联系
	本身的属性
	1对n联系:将1方的主码加入n方作为外码,并同时将联系的属性加
	入n方
	n对m联系:将联系本身转换为一个关系模式,将联系双方的主码加
	入其中设为码,并将联系的属性也加入其中