Universidad Nacional Autónoma de Honduras

Maestría en Ingeniería Matemática Optimización Numérica Ejercicios de Repaso para el Parcial I

Profesor: Dr. Fredy Vides

- 1. Pruebe que cualquier operación elemental de tipo uno su puede realizar con cuatro operaciones de los otros tipos.
- 2. Considere el SEL Ax = b, donde $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^{n \times 1}$ y $b \in \mathbb{R}^{m \times 1}$. probar que el SEL tiene solución ssi $b \in \text{gen}\{A^{(1)}, \dots, A^{(n)}\}$. Demostrar que si $\{A^{(1)}, \dots, A^{(n)}\}$ es LI, entonces el SEL tiene a lo sumo una solución.
- 3. Una matriz A se dice antisimétrica cuando $A^{\top} = -A$. Demuestre que si A es antisimétrica entonces $x^{\top}Ax = 0$ para toda x.
- 4. Probar o refutar que toda matriz SPD es no singular.
- 5. Dada $A \in \mathbb{R}^{n \times n}$ simétrica, y dados $b \in \mathbb{R}^n, c \in \mathbb{R}$. Considere la función $Q : \mathbb{R}^n \to \mathbb{R}$ definida por la ecuación

$$Q(x) = c + b^{\mathsf{T}} x + \frac{1}{2} x^{\mathsf{T}} A x, \ x \in \mathbb{R}^n,$$

probar que:

- (a) Probar que $\nabla Q(x) = Ax + b$
- (b) Probar que $\mathbb{H}Q(x) = \mathbb{J}\nabla Q(x) = A$
- (c) Sea $U \in \mathbb{S}(n)$ determinada por:

$$u_{ij} = \begin{cases} a_{ij} & i = j \\ 2a_{ij} & i < j \\ 0 & i > j \end{cases}$$

Probar que:

$$Q(x) = c + b^{\mathsf{T}} x + \frac{1}{2} x^{\mathsf{T}} U x$$

(d) Probar que $\mathbb{H}Q(z)(x-z) = \nabla Q(x) - \nabla Q(z)$.