01.1 - Introdução à Complexidade de Algoritmos

BCC - Estruturas de Dados

Prof. Dr. Paulo César Rodacki Gomes paulo.gomes@ifc.edu.br

Blumenau, 2022

Campus Blumenau

Catarinense

Roteiro

- I. Algoritmos
- 2. Ordens Assintóticas de Complexidade
- 3. Recursividade e Análise de Algoritmos Recursivos
- 4. Considerações Finais

l:Algoritmos

• Algoritmo: qualquer método especial para resolver um certo tipo de problema

 Algoritmo: seqüência de passos computacionais não ambíguos que transforma a entrada em saída

Escolha de um algoritmo

- simplicidade: mais fácil de implementar, menor probabilidade de erros
- clareza: clareza no código fonte. Algorimtos mais simples tender a levar a códigos mais legíveis e mais fáceis de manter
- •eficiência: tempo que um algoritmo leva para resolver uma instância do problema

Análise de Algoritmos

- estimar a quantidade de recursos requeridos pelo algoritmo, em especial o **tempo** necessário para solucionar um problema.
- Em geral, ao se analizar vários algoritmos que solucionam um determinado problema, o mais eficiente é identificado.
- Além disso, esta análise pode indicar mais de um candidato e apontar vários algoritmos inferiores que devem ser descartados.

Análise de Algoritmos

Modelo computacional RAM (Cormen et al., 2002):

- operações simples (+, -, etc) consomem uma unidade de tempo para serem executadas
- laços e chamadas a sub-rotinas não são considerados operações simples
- cada operação de acesso a memória consome uma unidade de tempo
- operações são executadas seqüencialmente, sem processos concorrentes

Análise de Algoritmos

Abordagem por benchmarking

- os algoritmos precisam ser implementados a priori
- certos algoritmos são intratáveis computacionalmente, seu tempo para produzir uma resposta é impraticável
- é melhor fazer análise teórica da complexidade de um algoritmo
- instâncias diferentes podem produzir tempos diferentes
- diferentes tamanhos de problemas, idem.

Tamanho de entrada

- Depende do problema:
 - para ordenação o tamanho pode ser a quantidade de valores a ordenar
 - para sistemas de n equações e n incógnitas, o tamanho pode ser n
 - grafos: vertices + arestas

• O tempo de execução será uma função do tamanho de entrada: T(n) = c.f(n)

1 Algoritmo: SelectionSort(A)

```
2 para i \leftarrow 1 até n-1 faça

3 menor \leftarrow i;

4 para j \leftarrow i+1 até n faça

5 se A[j] < A[menor] então

6 menor \leftarrow j;
```

Exemplo

Cálculo do tempo de execução

- verificar quantas vezes a k-ésima linha, de custo ck, é executada
- t_i: quantidade de vezes que o laço da linha 4 é executado

```
1 Algoritmo: SelectionSort(A)

2 para i \leftarrow 1 até n-1 faça

3 | menor \leftarrow i;

4 | para j \leftarrow i+1 até n faça

5 | se A[j] < A[menor] então

6 | \lfloor menor \leftarrow j;

7 | temp \leftarrow A[menor];

8 | A[menor] \leftarrow A[i];

9 | A[i] \leftarrow temp;
```

$$T(n) = an^2 + bn + c_1$$

Tabela 1.1: Custo do SelectionSort							
linha	custo	n.º de execuções					
2	$ c_2 $	n					
3	$ c_3 $	n-1					
4	$ c_4 $						
5	$ c_5$	$\sum_{i=1}^{n-1} (t_i - 1)$					
6	$ c_6 $	$\sum_{i=1}^{n-1} (t_i - 1)$					
7	$ c_7 $	n-1					
8	$ c_8 $	n-1					
9	$ c_9 $	n-1					

Ordem de Crescimento

• Tempo de execução:

$$T(n) = an^2 + bn + c$$

- As constantes a, b e c dependem dos custos ci
- Nós ignoramos os custos c_{i...}
- O que nos interessa é a taxa de crescimento ou ordem de crescimento dos tempos de execução de algoritmos
- Quando observamos tamanhos de entrada suficientemente grandes, somente a taxa de crescimento é relevante → eficiência assintótica

Taxa de Crescimento de Funções

n	$\xi = \log n$	$\frac{}{\mid n}$	$n \log n$	n^2	2^n	n!
$\frac{}{10}$	$0.003 \ \mu s$	$0.01~\mu \mathrm{s}$	$0.033~\mu s$	$0.1~\mu \mathrm{s}$	$1 \mu s$	$3.63 \mathrm{ms}$
$\begin{array}{c c} 20 \end{array}$	$0.004 \ \mu s$	$0.01~\mu \mathrm{s}$ $0.02~\mu \mathrm{s}$	$0.086~\mu \mathrm{s}$	$0.1~\mu \mathrm{s}$ $0.4~\mu \mathrm{s}$	1 ms	77.1 anos
30	$0.005~\mu \mathrm{s}$	$0.03~\mu \mathrm{s}$	$0.147~\mu \mathrm{s}$	$0.9~\mu \mathrm{s}$	$1 \mathrm{\ s}$	$10^{15}anos$
40	$0.005~\mu\mathrm{s}$	$0.04~\mu \mathrm{s}$	$0.213~\mu \mathrm{s}$	$1.6~\mu \mathrm{s}$	18.3 min	
50	$0.006 \ \mu s$	$0.05~\mu \mathrm{s}$	$0.282~\mu { m s}$	$2.5~\mu \mathrm{s}$	13 dias	
$\frac{10^2}{10^2}$	$0.007 \; \mu s$	$0.10 \; \mu s$	$0.644 \ \mu s$	$10 \ \mu s$	$8 \times 10^{13} \text{ anos}$	
10^{3}	$0.010~\mu \mathrm{s}$	$1 \mu s$	$9.966~\mu { m s}$	$1 \mathrm{\ ms}$		
10^{4}	$0.013~\mu { m s}$	$10~\mu \mathrm{s}$	$130~\mu\mathrm{s}$	$100 \mathrm{\ ms}$		
10^{5}	$0.017 \; \mu { m s}$	$0.1~\mathrm{ms}$	$1.67~\mathrm{ms}$	10 s		
10^{6}	$0.020 \; \mu { m s}$	$1 \mathrm{ms}$	$19.93 \mathrm{\ ms}$	16.7 min		
10^{7}	$0.023~\mu\mathrm{s}$	$0.01 \mathrm{\ s}$	$0.23~\mathrm{s}$	1.16 dias		
10^{8}	$0.027~\mu\mathrm{s}$	0.10 s	$2.66 \mathrm{\ s}$	115.7 dias		
10^9	$0.030 \; \mu s$	1 s	29.90 s	31.7 anos		

2: Ordens assintóticas de complexidade

Análise assintótica de algoritmos:

- avaliação da tendência de crescimento do tempo de execução de algoritmos à medida que o tamanho de entrada do problema tende a um limite
- complexidade do algoritmo: quantidade de "trabalho" requerido pelo algoritmo
- ordens assintóticas de complexidade seguem notações assintóticas definidas como funções no domínio dos números naturais

Notações assintóticas

- ordens assintóticas de complexidade seguem notações assintóticas definidas como funções no domínio dos números naturais
- as notações são usadas para descrever o tempo de execução assintótico de um algoritmo
- notações básicas:
 - O, limite superior
 - \bullet θ , limite restrito
 - \bullet Ω , limite inferior

Notação O

Para uma dada função g(n) (com $n \in \mathbb{N}$), denotamos por O(g(n)) o conjunto de funções

$$O(g(n)) = \{f(n) : \text{ existem constants positivas } c \in n_0 \text{ tais que}$$

 $0 \le f(n) \le cg(n) \text{ para todos } n \ge n_0\}.$

Notação O

Princípios gerais:

• Fatores constantes não importam:

Para qualquer constante d>0 e qualquer função f(n), f(n) é O(df(n))

• Termos de menor ordem podem ser desprezados

Para
$$f(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_2 n^2 + a_1 n + a_0$$
,
se $a_k > 0$, então $f(n) = O(n^k)$

Notação 0

Para uma dada função g(n) (com $n \in \mathbb{N}$), denotamos por $\Theta(g(n))$ o conjunto de funções

$$\Theta(g(n)) = \{f(n) : \text{ existem constants positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ para todos } n \ge n_0 \}.$$

Notação Ω

Para uma dada função g(n) (com $n \in \mathbb{N}$), denotamos por $\Omega(g(n))$ o conjunto de funções

$$\Omega(g(n)) = \{f(n) : \text{ existem constants positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n) \text{ para todos } n \ge n_0\}.$$

Exemplo: BubbleSort

25	37	12	48	57	92	33	86	25 x 37
25	37	12	48	57	92	33	86	37 x 12 troca
25	12	37	48	57	92	33	86	37 x 48
25	12	37	48	57	92	33	86	48 x 57
25	12	37	48	57	92	33	86	57 x 92
25 25		37 37						57 x 92 92 x 33 troca
	12			57	92	33	86	

25	12	37	48	57	33	86	<u>92</u>	25 x 12 troca
12	25	37	48	57	33	86	92	57 x 37
12	25	37	48	57	33	86	<u>92</u>	37 x 48
12	25	37	48	57	33	86	92	48 x 57
12	25	37	48	57	33	86	<u>92</u>	57 x 33 troca
12	25	37	48	33	57	86	92	57 x 86 troca
12	25	37	48	33	57	<u>86</u>	92	final da 2 ^a passada

25 37 48 33 57 <u>86</u> 12 x 25 25 x 37 33 57 <u>86</u> 48 57 <u>86</u> 37 x 48 33 <u>86</u> <u>92</u> 48 x 33 troca 37 48 57 33 48 <u>86</u> <u>92</u> 48 x 57 troca 37 57 final da 3^a passada 37 33 <u>86</u> 48


```
1 Algoritmo: BubbleSort(A)
 \mathbf{2} int i, j;
 3 para i \leftarrow n até 1 faça
        boolean\ troca \leftarrow falso;
       para j \leftarrow 1 até (i-1) faça
            se A[j] > A[j+1] então
                 int temp \leftarrow A[j];
                A[j] \leftarrow A[j+1];
                A[j+1] \leftarrow temp;
                troca \leftarrow verdadeiro;
10
11
```

Cálculo do tempo de execução

se $troca \neq verdadeiro$ então retorna

Tabela 2.1: Custo do BubbleSort n.º de execuções linha custo c_2 n+1 C_3 4 c_4 \mathbf{n} $\sum_{i=1}^{n} t_i$ 5 C_5 $\sum_{i=1}^{n} (t_i - 1)$ 6, 7, 8, 9, 10 | $c_6, c_7, c_8, c_9, c_{10}$ 11 C_{11} \mathbf{n}

$$T(n) = c_2 + c_3(n+1) + c_4n + c_5 \sum_{i=1}^{n} t_i + (c_6 + c_7 + c_8 + c_9 + c_{10}) \sum_{i=i}^{n} (t_i - 1) + c_{11}n.$$

$$T(n) = c_2 + c_3 + c_4 + c_5 n + c_6 (n-1) + c_{11}$$
:

$$T(n) = (c_5 + c_6)n + (c_2 + c_3 + c_4 + -c_6 + c_{11}).$$

$$T(n) = an + b$$

O tempo de execução do BubbleSort é linear no melhor caso e quadrático no pior, portanto podemos dizer que é $\Omega(n)$ e $O(n^2)$.

Comparações assintóticas

Muitas propriedades relacionais que se aplicariam a números, tambem se aplicam a notações assintóticas

- transitividade
- reflexividade
- simetria

Transitividade

"se
$$A \leq B$$
 e $B \leq C$, então $A \leq C$ ".

- se $f(n) = \Theta(g(n))$ e $g(n) = \Theta(h(n))$, então $f(n) = \Theta(h(n))$;
- se f(n) = O(g(n)) e g(n) = O(h(n)), então f(n) = O(h(n));
- se $f(n) = \Omega(g(n))$ e $g(n) = \Omega(h(n))$, então $f(n) = \Omega(h(n))$.

Reflexividade

- $f(n) = \Theta(f(n));$
- $\bullet \ f(n) = O(f(n));$
- $f(n) = \Omega(f(n))$.

Simetria

- Simetria: $f(n) = \Theta(g(n))$ se e somente se $g(n) = \Theta(f(n))$;
- Simetria transposta: f(n) = O(g(n)) se e somente se $g(n) = \Omega(f(n))$.

3: Recursividade

Definições recursivas:

- A. Uma ou mais regras-base nas quais objetos simples ou elementares são definidos, e
- B. Uma ou mais regras indutivas, pelas quais objetos maiores são definidos em termos de objetos menores pertencentes à coleção de objetos definidos.

Exemplo: função fatorial

$$n! = \begin{cases} 1, & \text{se } n \in \{0, 1\} \text{ (regra-base);} \\ n(n-1)!, & \text{se } n > 1 \text{ (regra indutiva).} \end{cases}$$

Algoritmos recursivos

Geralmente utilizam uma estratégia de divisão e conquista para resolver o problema

- A. Divisão: dividir o problema em sub-problemas menores
- B. Conquista: feita pela resolução de sub-problemas elementares
- C. Combinação: sub-problemas resolvidos são combinados para constituirem a solução de um sub-problema maior

$$T(n) = \begin{cases} \Theta(1), & \text{se } n \leq c; \\ aT(n/b) + D(n) + C(n), & \text{caso contrário.} \end{cases}$$

Análise de complexidade de Algoritmos Recursivos

- A. Método da árvore de recorrência: consiste em expandir a árvore de recorrência e expressar a soma de seus termos em função de n e de certas condições iniciais
- B. Método de resolução por substituição: inicialmente estima-se uma solução hipotética para o problema e utiliza-se indução matemática para determinação das constantes envolvidas e provar corretude da solução
- C. Teorema geral: método geral para resolução de equações de recorrência na forma T(n) = aT(n/b) + f(n), onde a≥1, b>1 e f(n) é assintoticamente positiva

<u>Método da Árvore de Recorrência</u>

Exemplo: MergeSort

$$T(n) = \begin{cases} \Theta(1), & \text{se } n \leq c; \\ aT(n/b) + D(n) + C(n), & \text{caso contrário.} \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{se } n = 1; \\ 2T(n/2) + \Theta(n), & \text{se } n > 1. \end{cases}$$

$$T(n) = \begin{cases} \Theta(1), & \text{se } n = 1; \\ 2T(n/2) + \Theta(n), & \text{se } n > 1. \end{cases}$$

$$T(n) = \begin{cases} c, & \text{se } n = 1; \\ 2T(n/2) + cn, & \text{se } n > 1. \end{cases}$$

 $MergeSort \in \Theta(n \log n)$

Método da Árvore de Recorrência

Estimativa inicial: $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ é $T(n) = O(n^2)$.

Prova: queremos provar que $T(n) \leq dn^2$ para alguma constante d > 0.

$$T(n) \le 3T(\lfloor n/4 \rfloor) + cn^2 : T(n) \le 3d\lfloor n/4 \rfloor^2 + cn^2$$

$$T(n) \le 3d(n/4)^2 + cn^2 : T(n) = \frac{3}{16}dn^2 + cn^2 : T(n) \le dn^2.$$

Onde $T(n) \leq dn^2$ é satisfeito com $d \geq (16/13)c$.

Teorema geral

Teorema Geral

Sejam as constante a e b onde $a \ge 1$ e b > 1. Seja f(n) uma função e seja T(n) definida no domínio dos inteiros não negativos pela equação de recorrência T(n) = aT(n/b) + f(n), onde n/b pode ser interpretado tanto por $\lfloor n/b \rfloor$ quanto por $\lfloor n/b \rfloor$. Então T(n) pode ser limitada assintoticamente da seguinte forma:

- 1. se $f(n) = O(n^{\log_b a \varepsilon})$ para uma constante $\varepsilon > 0$, então $T(n) = \Theta(n^{\log_b a})$;
- 2. se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log n)$;
- 3. se $f(n) = \Omega(n^{\log_b a + \varepsilon})$, para uma constante $\varepsilon > 0$ e se $af(n/b) \le cf(n)$ para uma constante c < 1 e para todos n suficientemente grandes, então $T(n) = \Theta(f(n))$.

Considerações finais

- Introdução à Análise de Algoritmos como parte dos requisitos para avaliação da eficiência das estruturas de dados a serem implementadas na disciplina
- Conteúdo dividido em 3 partes:
 - 1) Algoritmos,
 - 2) Ordens Assintóticas de Complexidade, e
 - 3) Recusividade
- Devido à extensão do tema (Complexidade de Algoritmos), apenas conceitos iniciais foram apresentados.

Obrigado!

Prof. Paulo C. Rodacki Gomes

