5 A motor is used to move bricks vertically upwards, as shown in Fig. 5.1.

Fig. 5.1

The bricks start from rest and accelerate for 2.0s. The bricks then travel at a constant speed of 0.64 m s⁻¹ for 25 s. Finally the bricks are brought to rest in a further 3.0s.

The total mass of the bricks is 25 kg.

- (a) Determine the change in kinetic energy of the bricks
 - (i) in the first 2.0s,

(ii) in the next 25s,

(iii) in the final 3.0 s.

(b)	The bricks are in a container. The weight of the container and bricks is 350 N.	
	Calculate, for the lifting of the bricks and container when travelling at constant speed,	
	(i)	the gain in potential energy,
		energy gain = J [3]
	(ii)	the power required.
		NA FOL
		power = W [2]