Лабораторная работа №3

"Реализация алгоритма с использованием технологии OpenMP"

Выполнил студент группы Б20-505 Сорочан Илья

1 Рабочая среда

Технические характеристики:

CPU: 6-core AMD Ryzen 5 4500U Kernel: 5.15.85-1-MANJARO x86_64

Mem: 7303.9 MiB

Используется:

Компилятор: *GCC 12.2.0*

OpenMP: 4.5

2 Сортировка Шелла

2.1 Принцип работы

При сортировке Шелла сначала сравниваются и сортируются между собой значения, стоящие один от другого на некотором расстоянии d. После этого процедура повторяется для некоторых меньших значений d, а завершается сортировка Шелла упорядочиванием элементов при d=1 (то есть обычной сортировкой вставками). Эффективность сортировки Шелла в определённых случаях обеспечивается тем, что элементы «быстрее» встают на свои места (в простых методах сортировки, например, пузырьковой, каждая перестановка двух элементов уменьшает количество инверсий в списке максимум на 1, а при сортировке Шелла это число может быть больше).

Для определённости будет рассматриваться классический вариант, когда изначально $d = \frac{n}{2}$ и уменьшается по закону $d_{i+1} = \frac{d_i}{2}$, пока не достигнет 1. Здесь n обозначает длину сортируемого массива.

Тогда в худшем случае сортировка займет $O(n^2)$.

2.2 Параллелизация

Как и в предыдущих лабораторных, в первую очередь следует попробовать сделать параллельным цикл.

Задаем число потоков и общие переменные через *omp parallel*. Однозначно общими должны быть массив и его длинна.

Так как внутренний цикл по і по сути затрагивает только d-е элементы относительно i-го, то:

```
#pragma omp parallel num_threads(THREADS) shared(array, count) default(none) for (int d = count / 2; d > 0; d /= 2) {
```

```
const int cd = d;
#pragma omp for
for (int i = cd; i < count; ++i) {
    for (int j = i - cd; j >= 0 && array[j] > array[j + cd]; j -= cd) {
        int temp = array[j];
        array[j] = array[j + cd];
        array[j + cd] = temp;
    }
}
```

Здесь так же видно, что d вынесена в константу cd. Это сделано для того, что бы OpenMP не принял меры предосторожности в цикле по i. Он может это сделать так как d меняется во внешнем цикле, но он не знает меняется ли во внутреннем.

3 Экспериментальные данные

На каждое число потоков отводилось 10 запусков. Так же число элементов в массиве было уменьшено с 10000000 до 1000000.

3.1 Время выполнения

Для начала я решил взглянуть не только на среднюю скорость выполнения, но и на крайние варианты:

Крайне заметно, что многопоточная программа работает куда быстрее обычной. При этом уже с 2-х потоков виден прирост практически в 2 раза. Однако далее он становится все незначительнее.

Рассмотрим теперь данные с оптимизацией:

Как видно на графике выше, повышение числа потоков лишь увеличивает среднее время исполнения. При этом заметна общая тенденция: максимальная эффективность достигается при 6-ти потоках:

3.2 Прирост производительности

В целом с увеличением числа потоков производительность растет. Рассмотрим ускорение многопоточной программы относительно однопоточной. Для не оптимизированной сборки:

Для оптимизированной сборки:

4 Заключение

В данной работе было исследовано ускорение, получаемое при использовании нескольких потоков в задании о сортировке массива сортировкой Шелла. Была усовершенствована предоставленная программа и собранны данные. Так же был написан скрипт, подсчитывающий прирост производительности относительно одного потока. Оформлен отчет.

В ходе работы было выяснено, что в применение нескольких потоков крайне положительно влияет на итоговую производительность. Из 30 многопоточных сборок только 2 превосходили обычную менее чем в 2 раза. При этом наблюдался прирост вплоть до 5-ти раз.

Приложение А

Использованные программные коды

Для проверки версии *OpenMP* использовался следующий код:

// Print openmp version #include <stdio.h> #if OPENMP == 200505 #define _OPENMP_VERSION "2.5" #elif OPENMP = 200805 #define _OPENMP_VERSION " 3.0" #elif OPENMP == 201107 #define _OPENMP_VERSION "3.1" #elif OPENMP == 201307 #define OPENMP VERSION "4.0" #elif OPENMP == 201511 #define OPENMP VERSION "4.5" #elif OPENMP == 201811 #define OPENMP VERSION "5.0" #elif OPENMP = 202011 #define _OPENMP_VERSION "5.1" #else #define OPENMP VERSION "unknown" #endif int main(int argc, char** argv) { printf("OpenMP_Version: _%s\n", _OPENMP_VERSION); return 0; } Для измерения времени исполнения алгоритма использовался следующий код (выводит csvв стандартный вывод): #include <stdio.h> #include <stdlib.h>
#include <stdlib.h>
#include <time.h>
#include <omp.h> $\begin{array}{lll} \textbf{const} & \textbf{int} & N = 1000000; \\ \textbf{const} & \textbf{int} & MAX_THREADS = 16; \\ \textbf{const} & \textbf{int} & RUNS_PER_THREAD = 10; \\ \end{array}$ void randArr(int *array, int size) {
 for (int i = 0; i < size; ++i)
 array[i] = rand();</pre> // run algo and return time elapsed double run(const int threads, int *array, const int size) { double start = omp_get_wtime(); for (int d = size / 2; d > 0; d /= 2) { const int cd = d; } array[k + cd] = key;} }

Для вычисления эффективности многопоточной программы по отношению к однопоточной использовался следующий скрипт:

```
import csv, sys
if len(sys.argv) < 3:
    exit(1)
filein = open(sys.argv[1], "r")
fileout = open(sys.argv[2], "w")
reader = csv.reader(filein)
writer = csv.writer(fileout)
\# skip header
header = reader.__next__()
writer.writerow([header[0], "Efficiency"])
\# get first one
first\_avg = reader.\_next\_()[-1]
# writer.writerow(["1", "100"])
first avg = float (first avg)
for row in reader:
    avg = float(row[-1])
    relative = \{:.3f\}. format(100 * first_avg / avg)
    writer.writerow([row[0], relative])
filein.close()
fileout.close()
```

Приложение Б

Таблицы с практическими результатами

Таблица без оптимизаций:

Worst (ms)	Best (ms)	Avg (ms)
499.25	431.22	459.21
257.23	237.46	245.03
180.53	165.43	168.21
148.19	115.99	133.36
129.55	73.6	85.25
104.41	65.31	71.46
158.26	110.94	129.59
133.37	105.69	117.99
142.63	105.5	121.62
165.88	107.84	133.22
129.33	110.56	122.17
142.85	107.34	123.32
142.94	105.46	120.24
124.71	98.1	112.52
138.81	104.56	117.81
140.99	103.91	121.05
	499.25 257.23 180.53 148.19 129.55 104.41 158.26 133.37 142.63 165.88 129.33 142.85 142.94 124.71 138.81	499.25 431.22 257.23 237.46 180.53 165.43 148.19 115.99 129.55 73.6 104.41 65.31 158.26 110.94 133.37 105.69 142.63 105.5 165.88 107.84 129.33 110.56 142.85 107.34 142.94 105.46 124.71 98.1 138.81 104.56

Таблица с оптимизациями:

Threads	Worst (ms)	Best (ms)	Avg (ms)
1	235.99	199.27	228.59
2	122.15	103.07	108.91
3	88.02	74.75	78.04
4	112.99	60.07	69.4
5	67.88	52.23	55.41
6	63.1	46.78	50.31
7	90.16	71.58	80.15
8	91.35	72.97	81.11
9	89.57	72.8	78.94
10	86.76	66.95	77.47
11	69.99	58.72	64.94
12	70.17	57.87	63.94
13	71.98	61.44	65.67
14	74.24	59.84	66.37
15	77.94	60.94	68.07
16	80.31	54.88	68.96

Таблица сравнений без оптимизаций:

Threads	Efficiency
2	188.44
3	263
4	336.1
5	405.25
6	498.01
7	255.4
8	290.64
9	321.27
10	349.35
11	342.52
12	252.03
13	253.49
14	260.62
15	276.27
16	280.81

Таблица сравнений с оптимизациями:

Threads	Efficiency
2	184.69
3	254.19
4	327.09
5	391.79
6	489.4
7	240.54
8	270.3
9	297.17
10	241.51
11	261.07
12	230.51
13	239.68
14	252.59
15	261.27
16	258.34