What is Javascript?

- a lightweight programming language ("scripting language")
 - used to make web pages interactive
 - insert dynamic text into HTML (ex: user name)
 - react to events (ex: page load user click)
 - get information about a user's computer (ex: browser type)
 - perform calculations on user's computer (ex: form validation)

What is Javascript?

- a web standard (but not supported identically by all browsers)
- NOT related to Java other than by name and some syntactic similarities

Linking to a JavaScript file: script

```
<script src="filename" type="text/javascript"></script>
HTML
```

- script tag should be placed in HTML page's head
- script code is stored in a separate .js file
- JS code can be placed directly in the HTML file's body or head (like CSS)
 - but this is bad style (should separate content, presentation, and behavior

Event-driven programming

Example 1: Add Two Numbers d

```
<html>
 ... 
<script>
    var num1, num2, sum
    num1 = prompt("Enter first number")
    num2 = prompt("Enter second number")
    sum = parseInt(num1) + parseInt(num2)
    alert("Sum = " + sum)
</script>
</html>
```

A JavaScript statement: alert

 a JS command that pops up a dialog box with a message

HTML

- button's text appears inside tag; can also contain images
- To make a responsive button or other UI control:
 - choose the control (e.g. button) and event (e.g. mouse 1. click) of interest
 - write a JavaScript function to run when the event occurs
 - attach the function to the event on the control

Event-driven programming

- you are used to programs start with a main method (or implicit main like in PHP)
- JavaScript programs instead wait for user actions called events and respond to them
- event-driven programming: writing programs driven by user events
- Let's write a page with a clickable button that pops up a "Hello, World" window...

JavaScript functions

```
function name() {
  statement;
  statement;
  ...
  statement;
}
```

```
function myFunction() {
    alert("Hello!");
    alert("How are you?");
}
```

- the above could be the contents of example.js linked to our HTML page
- statements placed into functions can be evaluated in response to user events

Event handlers

```
<element attributes onclick="function();">...
HTML
```

```
<button onclick="myFunction();">Click me!</button>
HTML
```

- JavaScript functions can be set as event handlers
 - when you interact with the element, the function will execute
- onclick is just one of many event HTML attributes we'll use
- but popping up an alert window is disruptive and annoying
- A better user experience would be to have the message appear on the page...

Example 2: Browser Events

```
<script type="text/JavaScript">
                                                    Mouse event causes
   function whichButton(event) {
                                                    page-defined function to
                                                    be called
     if (event.button==1) {
              alert("You clicked the left mouse button!") }
     else {
              alert("You clicked the right mouse button!")
</script>
<body onmousedown="whichButton(event)">
</body>
```

Other events: onLoad, onMouseMove, onKeyPress, onUnLoad

Document Object Model (DOM)

- most JS code manipulates elements on an HTML page
- we can examine elements' state
 - e.g. see whether a box is checked
- we can change state
 - e.g. insert some new text intoa div
- we can change styles
 - e.g. make a paragraph red

Preetify

```
function changeText() {
    //grab or initialize text here

    // font styles added by JS:
    text.style.fontSize = "13pt";
    text.style.fontFamily = "Comic Sans MS";
    text.style.color = "red"; // or pink?
}
```

DOM element objects

```
HTML
>
  Look at this octopus:
  <img src="octopus.jpg" alt="an octopus" id="icon01" />
  Cute, huh?
DOM Element Object
                              Value
                  Property
                  tagName
                              "IMG"
                              "octopus.jpg"
                  src
                  alt
                              "an octopus"
                              "icon01"
                  id
JavaScript
var icon = document.getElementById("icon01");
icon.src = "kitty.gif";
```

Accessing elements:

document.getElementById

```
var name = document.getElementById("id");
                                                         JS
<button onclick="changeText();">Click me!</button>
<span id="output">replace me</span>
<input id="textbox" type="text" />
                                                       HTMI
function changeText() {
      var span = document.getElementById("output");
      var textBox = document.getElementById("textbox");
       textbox.style.color = "red";
```

Accessing elements:

document.getElementById

- document.getElementById returns the DOM object for an element with a given id
- can change the text inside most elements by setting the innerHTML property
- can change the text in form controls by setting the value property

Changing element style:

element.style

Attribute	Property or style object
color	color
padding	padding
background-color	backgroundColor
border-top-width	borderTopWidth
Font size	fontSize
Font famiy	fontFamily

Example 3: Page Manipulation

slide 20

- Some possibilities
 - createElement(elementName)
 - createTextNode(text)
 - appendChild(newChild)
 - removeChild(node)
- Example: add a new list item

```
var list = document.getElementById('t1')
var newitem = document.createElement('li')
var newtext = document.createTextNode(text)
list.appendChild(newitem)
newitem.appendChild(newtext)
```

This uses the browser

Document Object Model
(DOM). We will focus on
JavaScript as a language,
not its use in the browser

Reading Properties with JavaScript

slide 22

Sample script

- 1. document.getElementById('t1').nodeName
- 2. document.getElementById('t1').nodeValue
- 3. document.getElementById('t1').firstChild.nodeName
- 4. document.getElementById('t1').firstChild.firstChild.nodeName
- 5. document.getElementById('t1').firstChild.firstChild.nodeValue
 - Example 1 returns "ul"
 - Example 2 returns "null"
 - Example 3 returns "li"
 - Example 4 returns "text"
 - A text node below the "li" which holds the actual text data as its value
 - Example 5 returns "Item 1 "

Sample HTML

```
ltem 1
```

Browser and Document Structure

slide 23

W3C standard differs from models supported in existing browsers

JavaScript Primitive Datatypes

slide 24

- Boolean: true and false
- Number: 64-bit floating point
 - Similar to Java double and Double
 - No integer type
 - Special values NaN (not a number) and Infinity
- String: sequence of zero or more Unicode chars
 - No separate character type (just strings of length 1)
 - Literal strings using 'or "characters (must match)
- Special objects: null and undefined

Variables

```
var name = expression;
```

```
var clientName = "Connie Client";
var age = 32;
var weight = 127.4;
```

- variables are declared with the var keyword (case sensitive)
- types are not specified, but JS does have types ("loosely typed")
 - Number, Boolean, String, Array, Object, Function, Null, Undefined
 - can find out a variable's type by calling typeof

Number type

```
var enrollment = 99;
var medianGrade = 2.8;
var credits = 5 + 4 + (2 * 3);

JS
```

- integers and real numbers are the same type (no int vs. double)
- same operators: + * / % ++ -- = += -= *= /=
 %=
- similar precedence to Java
- □ many operators auto-convert types: "2" * 3 is 6

Comments (same as Java)

```
// single-line comment
/* multi-line comment */

JS
```

- identical to Java's comment syntax
- □ recall: 4 comment syntaxes
 - HTML: <!-- comment -->
 - CSS/JS/PHP: /* comment */
 - Java/JS/PHP: // comment
 - □ PHP: # comment

Math object

```
var rand1to10 = Math.floor(Math.random() * 10 + 1);
var three = Math.floor(Math.PI);

JS
```

- methods: abs, ceil, cos, floor, log,
 max, min, pow, random, round, sin,
 sqrt, tan
- □ properties: E, PI

Logical operators

- □ > < >= <= && | | ! == != === !==
- most logical operators automatically convert types:
 - □ 5 < "7" is true
 - \square 42 == 42.0 is true
 - □ "5.0" == 5 is true
- === and !== are strict equality tests; checks both type and value
 - □ "5.0" === 5 is false

Boolean type

```
var iLike190M = true;
var ieIsGood = "IE6" > 0; // false
if ("web devevelopment is great") { /* true */ }
if (0) { /* false */ }
```

- any value can be used as a Boolean
 - "falsey" values: 0, 0.0, NaN, "", null, and undefined
 - "truthy" values: anything else
- converting a value into a Boolean explicitly:
 - var boolValue = Boolean(otherValue);
 - var boolValue = !!(otherValue);

if/else statement (same as Java)

```
if (condition) {
    statements;
} else if (condition) {
    statements;
} else {
    statements;
}
```

- identical structure to Java's if/else statement
- JavaScript allows almost anything as a condition

for loop (same as Java)

```
var sum = 0;
for (var i = 0; i < 100; i++) {
    sum = sum + i;
}</pre>
```

```
var s1 = "hello";
var s2 = "";
for (var i = 0; i < s.length; i++) {
        s2 += s1.charAt(i) + s1.charAt(i);
}
// s2 stores "hheelllloo"
</pre>
```

while loops (same as Java)

```
while (condition) {
    statements;
}
```

```
do {
   statements;
} while (condition);
```

 break and continue keywords also behave as in Java

Popup boxes

```
alert("message"); // message
confirm("message"); // returns true or false
prompt("message"); // returns user input string

JS
```


Arrays

```
var name = []; // empty array
var name = [value, value, ..., value]; // pre-filled
name[index] = value; // store element

JS
```

```
var ducks = ["Huey", "Dewey", "Louie"];
var stooges = []; // stooges.length is 0
stooges[0] = "Larry"; // stooges.length is 1
stooges[1] = "Moe"; // stooges.length is 2
stooges[4] = "Curly"; // stooges.length is 5
stooges[4] = "Shemp"; // stooges.length is 5
```

Array methods

```
var a = ["Stef", "Jason"]; // Stef, Jason
a.push("Brian"); // Stef, Jason, Brian
a.unshift("Kelly"); // Kelly, Stef, Jason, Brian
a.pop(); // Kelly, Stef, Jason
a.shift(); // Stef, Jason
a.sort(); // Jason, Stef
JS
```

- array serves as many data structures: list, queue, stack, ...
- □ methods: concat, join, pop, push, reverse, shift, slice, sort, splice, toString, unshift
 - push and pop add / remove from back
 - unshift and shift add / remove from front
 - shift and pop return the element that is removed

Splitting strings: split and join

```
var s = "the quick brown fox";
var a = s.split(" "); // ["the", "quick", "brown", "fox"]
a.reverse(); // ["fox", "brown", "quick", "the"]
s = a.join("!"); // "fox!brown!quick!the"

JS
```

- split breaks apart a string into an array using a delimiter
 - can also be used with regular expressions (seen later)
- join merges an array into a single string, placing a delimiter between them

String type

```
var s = "Connie Client";
var fName = s.substring(0, s.indexOf(" ")); // "Connie"
var len = s.length; // 13
var s2 = 'Melvin Merchant';

JS
```

- methods: charAt, charCodeAt, fromCharCode, indexOf, lastIndexOf, replace, split, substring, toLowerCase, toUpperCase
 - charAt returns a one-letter String (there is no char type)
- length property (not a method as in Java)
- Strings can be specified with "" or "
- concatenation with +:
 - □ 1 + 1 is 2, but "1" + 1 is "11"