i) $\phi(\hat{p}') = \langle \hat{p}' | \lambda \rangle$, what is the momentum-wave function for the time-reversed state $\theta(\lambda)$,

日人>= 日路 | 予入市人>

一しとより「からし」

= 30 < 617 × 16 16 >

三岛印山*一声》

= 3p <-pla>* 1p>

Pa(-p)*

then < | 0 | 0 | 0 | = Bp < | 0 | | 0 | 0 | 0 | 0 |

=<-p' |<>*

(<p'/0/a> = \$\frac{\partial}{(-\bar{p}')}

3 Spin 1 system:
$$H = AS_z^2 + B(S_x^2 - S_y^2)$$

Find eigenvalue, eigenvectors. Is this H invariant under time reversal? How do eigenmectors transform under time reversal.

let H=
$$AS_{z}^{2} + B(S_{x}^{2} - S_{1}^{2}) = AS_{z}^{2} + B(S_{x}^{2} - (S^{2} - S_{x}^{2} - S_{z}^{2}))$$

 $H = (A+B)S_{z}^{2} - BS^{2} + 2BS_{x}^{2}$

For spin, S=1, m=-1,0,+1

We know
$$Sx_1/z$$
. for $s>in 1$ in the boss $[m]$, $m=0,\pm 1$ using relation $s^2(s=1,m)=\pm 1$ (1+1) $1s=1,m>=2t^2(s=1,m)$ $S_z(s=1,m)=\pm 1$ $s=1,m>=5$ $s=1,m>=5$ $s=1,m=1$ $s=1,m=1$ $s=1,m=1$ $s=1,m=1$ $s=1,m=1$

Quoting results from HW#12:

$$S_z = t_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $S_x = \frac{t_0}{12} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$, $S^2 = 2t_0 \begin{pmatrix} 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

$$S_{\gamma} = \frac{\tau_{1}}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

Then
$$S_z^2 = t^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $S_x^2 = \frac{t^2}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

then
$$H=(A+B)S_2^2-BS^2+2BS_2^2$$

$$= \frac{1}{10} + \frac{1}{10$$

$$H = h^{2} \begin{pmatrix} A & O & B \\ B & O & A \end{pmatrix}$$

Find eigenvalue:
$$t^2 \begin{pmatrix} A-\overline{E} & 0 & B \\ 0 & -\overline{E} & 0 \\ B & 0 & A-\overline{E} \end{pmatrix}$$

$$-k^{2} E \left[(A-E)^{2} - B^{2} \right] = -k^{2} E \left(E^{2} - 2AE + A^{2} - B^{2} \right) = 0$$

$$= -k^{2} E \left(E - (A+B) \right)^{2} \left(E - (A-B) \right)^{2}$$

then we see
$$[E = 0, (A+B)t^2]$$

When
$$E = (A+B)t^2$$

 $H-EI = t^2\begin{pmatrix} -B & O & B \\ O & O & O \end{pmatrix}\begin{pmatrix} E_1, \\ E_{+2} & = O \\ E_{+2} & = O \end{pmatrix}$

When E=(A-B)t2:

H-EI=
$$t^2$$
 $\begin{pmatrix} B & O & B \\ O & O & D \end{pmatrix} \begin{pmatrix} E_1 \\ E_2 \\ E_3 \end{pmatrix} = D$

When
$$E = 0$$
.

H-EI = h^2

B

D

A

D

E_{3,1}

E_{3,2}

=0

E_{3,2}

=0

then We have

	E	Eigenket in Im> basis
	(A+B) 42	(上)= 行(1) + 1-12)
I	(A-B)52	E+>= 佐(1>+ -1>) E->= 行(1>- -1>)
	0	E >= 10>

If H is invariant under time reversal, then

$$\Theta(ASz^{2} + B(S_{x}^{2} - S_{y}^{2})) = \Theta(ASz^{2} + B(S_{x}^{2} - S_{y}^{2}))\theta^{-1}\theta$$

$$= \left[\theta(ASz^{2})\theta^{-1} + \theta(BSz^{2})\theta^{-1} - \theta(BSy^{2})\theta^{-1}\right]\theta$$

Assume A and B are constant parameters,

and we know \vec{S} under gues $\theta S_i \theta^{-1} = -S_i$

then we have $\theta S_i S_i \theta^{-1} = \underbrace{\theta S_i \theta^{-1} \theta S_i \theta^{-1}}_{-S_i} = S_i^2$

So we see Si^2 is even under time reversal, so H is also even under time reversal, so LH, HJ=0

How does eigenket change under time reversal?

use property: 0/1,m>=(-1)m/1,-m>

$$\theta | E_t \rangle = \frac{1}{12} \left(\theta | m=1 \rangle + \theta | m=-1 \rangle \right) = -\frac{1}{12} \left(| -1 \rangle + | 1 \rangle \right) = -| E_t \rangle$$

$$\theta \mid E_0 \rangle = \theta \mid 0 \rangle = \mid E_0 \rangle$$

=) We see that $|E_0\rangle=|0\rangle$ is even under time reversal. While $|E_+\rangle=\frac{1}{12}\left(|1\rangle+|-1\rangle\right)$ are odd.