# Crawling

# A small example





# This page is a new one?

- Check if the page has been parsed/downloaded before
  - URL match
  - Duplicate document match
  - Near-duplicate document match
- Some solutions:
  - Hashing on URLs
    - after 50 bln pages, we have "seen" over 500 bln URLs
    - each URL is at least 1000 bytes on average
    - Overall we have about 500.000 Tb (=500 Pb) for just the URLS
  - Disk access with caching (e.g. Altavista)
    - > 5 ms per URL check
    - $\bullet$  > 5 ms \* 5 \* 10<sup>11</sup> URL-checks => 80 years/1PC => 30gg/1000 PCs
  - Bloom Filter (Archive)
    - For 500 bln URLs  $\rightarrow$  about 500 Tbit = 50Tb [cfr. 1/1000 hashing]

# Is the page new? [Bloom Filter, 1970]

- Create a binary array B[1,m]
- Consider a family of k hash functions that map a key (URL) to a position (integer) in B



Pro: No need to store keys, less complex ≈ 50\*X bln bytes *versus* 50.000 bln chars/bytes

Cons: false positives

#### Example: searching B



|       | $h_1$ | $h_2$ | $h_3$ |
|-------|-------|-------|-------|
| ACG   | 3     | 6     | 4     |
| ATA   | (2)   | 11    | 10    |
| CGA   | 11    | 9     | 6     |
| TTA   | (1)   | 10    | 9     |
| TTT   | 6     | (2    | 1     |
| CGC   | 9     | 3     | 3     |
| AAA   | 4     | 1     | 2     |
| TCT   | 10    | 4     | 11    |
| • • • |       | ):    |       |

$$AAA \stackrel{?}{\in} S \rightarrow YES$$
  
 $false\ positive$ 

$$S = \{TTA, TCT, ATA\}$$

### Probability of a false positive

- assumption that hash are perfectly random
- after build

$$m/n = 30 bits$$

$$\varepsilon = 4 * 10^{-11}$$

$$\mathcal{P}(b_i=0)=\left(1-rac{1}{m}
ight)^{kn}pprox e^{-kn/m}=p$$

probability of a false positive is

$$= 0.62^{m/n}$$

Minimize prob. error for  $k = (m/n) \ln 2$ 

Advantageous when (m/n) « (key-length in bits + log n)

## Pattern Matching

A set of objects whose keys are complex and time-costly to be compared (e.g. URLs, matrices, MP3,...).

- Use BF to reduce the number of explicit comparisons.
- Effective in hierarchical memories.
- Example on Dictionary matching [Bloom '70].

The problem
Main idea
Mathematics
Compressed Bloom Filters
Spectral Bloom Filters
Some applications

#### Set Intersection

We have two machines  $M_A$  and  $M_B$  each storing a set of items A and B, respectively. We wish to compute  $A \cap B$  exchanging a small number of bits.

Typical applications: data replication check, distributed search engines.

# Solution?

## (Approximate) Set Difference

We have two machines  $M_A$  and  $M_B$  each storing a set of items A and B, respectively.

We wish to approximate B - A by exchanging few bits  $(|A| \log \log |B|)$ , time depending on |B - A|, and just 1 communication round.

The previous algorithm solves it (i.e. B-Q) in  $\Theta(|B|)$  time and false negatives at  $M_B$  (since  $Q \supseteq A \cap B$ ), or it can solve it exactly at  $M_A$  as  $A-(A \cap B)$  in  $\Theta(|A|)$  time.

#### **Scenario:**

- Bandwidth between  $M_A$  and  $M_B$  is small (IrDA, BT, ...);
- CPU of  $M_B$  may be slow (PDAs, Phones, ...).

## Patricia Tree over |U| = 64

Detect B - A without comparing all of B's items. PT splits the space [0,63] in half at every level (drops *unary* nodes).



#### An attempt

Given  $PT_A$  and  $PT_B$  at machine  $M_B$ , we proceed as follows:

- Visit  $PT_B$  top-down and compare a node of  $PT_B$  against the corresponding node in  $PT_A$ .
- If match (B's subset exists in A), the visit backtracks; otherwise proceeds to all children (A's subset  $\not\subset B$ ).
- If we reach a leaf, then the corresponding element of B is declared to be in B-A.

Main issue: How to encode the subsets at the tree nodes? HASH!!!

## Merkle Tree over |U| = 64

Merkle Tree = Patricia Tree plus Hashing.



We can *shuffle* data by hashing them onto  $(\max\{|A|,|B|\})^2$ . The resulting PT or MT are *balanced*!

The problem
Main idea
Mathematics
Compressed Bloom Filters
Spectral Bloom Filters
Some applications

## An approximate Algorithm: $|U| = h = 64 > |A|^2 = 49$



Use  $BF(MT_A)$  to send  $MT_A$  in less bits and no bookkeeping for its structure. But this introduces false-positive errors.

The problem
Main idea
Mathematics
Compressed Bloom Filters
Spectral Bloom Filters
Some applications

## The algorithm

Given  $BF(MT_A)$  and  $MT_B$ , the machine  $M_B$  proceeds as follows:

- Visits  $MT_B$  top-down and, for each node, check its *hash* in  $BF(MT_A)$ .
- If match (B's subset exists in A), the visit backtracks; otherwise proceeds to the children (A's subset  $\not\subset B$ ).
- If we reach a leaf, then the corresponding element of B is declared to be in B-A.

#### Time and communication costs

Let  $m_A = \Theta(|A| \log \log |B|)$  and the optimal  $k_A = \Theta(\log \log |B|)$ .

- We send  $m_A$  bits for the BF(A).
- $\epsilon_A = (1/2)^{k_A} = O(1/\log |B|)$  is the error of BF(A).
- Depth of (shuffled)  $MT_B$  is  $d = O(\log |B|)$ .
- Probability of success for a leaf is  $(1 \epsilon_A)^d = \Theta(1)$ . [Use boosting to increase it...]
- For each correct leaf, we visited its downward path of length  $\Theta(\log |B|)$  computing  $\Theta(\log \log |B|)$  hash functions per node.

This needs 1 round,  $O(|A| \log \log |B|)$  bits, and  $O(|B-A| \log |B| \log \log |B|)$  reconciliation time.

## Spectral Bloom Filters (SBF)

#### Definition

 $M = \langle S, f_{\times} \rangle$  is a multiset were

- *S* is a set
- $f_x$  is a function returning the #occurrences of x in M

Notice that a stream might be looked at as a multiset.

$$\underline{ex} \quad \text{Given } \{A, A, B, C, C\}$$
 We have  $S = \{A, B, C\}$  and  $f_A = f_C = 2$ ,  $f_B = 1$ 

#### Main features

- space usage is slightly larger, performance are better
- insertions/deletions are possible with some tricks
- can be built incrementally for streaming data

#### Applications:

- Iceberg query: Given x, check if  $f_x > T$  dynamic threshold
- Aggregate query: SELECT count(a1) FROM R WHERE a1=v

#### **SBF**

- B vector is replaced by a vector of counters  $C_1, C_2, \ldots, C_m$ 
  - $C_i$  is the sum of  $f_x$  values for elements  $x \in S$  mapping to i
- Approximations of  $f_x$  are stored into

$$C_{h_1(x)}, C_{h_2(x)}, \ldots, C_{h_k(x)}$$

• Due to conflicts, the  $C_i$  provide approximations...

#### The Minimum Selection



- $C_{i-1}$  is not a good approximation of  $f_x$  (neither of  $f_y$ )
- $C_i$  is an exact approximation of  $f_x$
- $C_{j+1}$  is an exact approximation of  $f_z$

#### Insertion and Deletion

- insertion is simple
  - increase each counter by 1

```
...
for each h in H do
    C[h(x)] = C[h(x)] + 1;
done
```

- deletion is simple
  - decrease each counter by 1
- search for an element x
  - return the *Minimum Selection* (MS) value  $m_X = \min\{C_{h_1(X)}, C_{h_2(X)}, \dots, C_{h_k(X)}\}$

#### On the error of SBF

The error is the same as for Bloom Filters

#### Theorem

For all x, it is  $f_x \leq m_x$ . Furthermore  $f_x \neq m_x$  with probability

$$E_{SBF} = \varepsilon \approx (1 - p)^k$$

#### Proof.

The case  $m_X < f_X$  cannot happen.

The event  $m_x > f_x$  is "all counters  $C_{h_i(x)}$  have a collision", that corresponds to a "false positive" event of classical BF.

The problem
Main idea
Mathematics
Compressed Bloom Filters
Spectral Bloom Filters
Some applications

## Implementing a SBF: challenges

#### Mainly two challenges

- allow insertion/deletion keeping low E<sub>SBF</sub>
- Quantity of description of description of description of description.

## Solving Problem 1 with Recurring Minimum(RM)

Strengthen the use of minimum, and support for ins/del!



- x has a Recurring Minimum (RM)
- z has a Single Minimum (SM)

"An element has a RM iff more than one of its counters has value equal to the minimum".

## Solving Problem 1 with Recurring Minimum(RM)

An item which is subject to a Bloom Error is typically less likely to have recurring minimum among its counters.

Basic idea: We operate as in MS but over two SBF

- For item x with RM we use  $m_x$  as estimator, which is highly probable to be correct: hence,  $E_{SBF_1} < \varepsilon$ .
- ② For items with a SM, we use a secondary SBF which is  $|SBF_2| \ll |SBF_1|$  and thus can guarantee  $E_{SBF_2} \ll \varepsilon$ .

We use more space, which could be used for enlarging the single BF, but experiments show that improvements may be remarkable!!!

#### Recurring Minimum: insertion and deletion

- insertion handles potential future errors
  - increase ALL counters of x in  $SBF_1$
  - ② if x has a RM in  $SBF_1$ , stop
  - $\odot$  otherwise, look for x in  $SBF_2$ 
    - ① if  $x \in SBF_2$ , increase ALL counters of x in  $SBF_2$
    - 2 else set x in  $SBF_2$  as its min value in  $SBF_1$
- deletion is the inverse of insertion
  - **1** decrease ALL counters of x in  $SBF_1$
  - ② if x has SM in  $SBF_1$ , decrease (if any) ALL counters of x in  $SBF_2$

#### Recurring Minimum: lookup

- lookup in both SBF, if needed.
  - if x has a RM in  $SBF_1$ , return it
  - 2 else, say  $m_x^2$  is value of x in  $SBF_2$ 
    - if  $m_x^2 > 0$ , return it
    - 2 else return min value of x in  $SBF_1$

Deletion can't create *false negatives*: 0 can be returned only from  $SBF_1$ , and we always add/delete *over all* counters of both  $SBF_3$ .

## Parallel Crawlers

Web is too big to be crawled by a single crawler, work should be divided avoiding duplication

#### Dynamic assignment

- Central coordinator dynamically assigns URLs to crawlers
- \* It needs communication bwt coordinator/crawl threads

#### Static assignment

- Web is statically partitioned and assigned to crawlers
- Crawler only crawls its part of the web, no need of coordinator and thus communication

# Two problems with static assignment

- Load balancing the #URLs assigned to cr
  - Static schemes based on hosts may fail
    - www.geocities.com/....
    - www.di.unipi.it/
  - Dynamic "relocation" schemes may be co

Let D be the number of crawlers.

hash(URL) maps an URL to {0,...,D-1}.

Crawler x manages the URLs U s.t. hash(U) = x

Which hash would you use/

- Managing the fault-tolerance:
  - What about the death of downloaders? D→D-1, new hash!!!
  - What about new downloaders ? D →D+1, new hash !!!

## A nice technique: Consistent Hashing

- A tool for:
  - Spidering
  - Web Cache
  - *P2P*
  - Routers Load Balance
  - Distributed FS

- Item and servers mapped to unit circle via hash function ID()
- Item K assigned to first server N such that ID(N) ≥ ID(K)
- What if a crawler goes down?
- What if a new crawler appears?



Each server gets replicated log S times

[monotone] adding a new server moves points between an old server to the new one, only.

[balance] Prob item goes to a server is  $\leq O(1)/S$ 

[load] any server gets  $\leq$  (I/S) log S items w.h.p

[scale] you can copy each server more times...

# Open Source

- Nutch (+ hadoop), also used by WikiSearch
  - http://nutch.apache.org/



# Compressed storage of the Web-graph

# Definition

Directed graph G = (V,E)

• V = URLs, E = (u,v) if u has an hyperlink to v

Isolated URLs are ignored (no IN & no OUT)

#### Three key properties:

Skewed distribution: Pb that a node has x links is  $1/x^{\alpha}$ ,  $\alpha \approx 2.1$ 

# The In-degree distribution



Altavista crawl, 1999



WebBase Crawl 2001

Indegree follows power law distribution

Pr[in - degree(u) = k] 
$$\propto \frac{1}{k^{\alpha}}$$

$$\alpha = 2.1$$

This is true also for: out-degree, size of CC and SCC,...

# Definition

Directed graph G = (V,E)

V = URLs, E = (u,v) if u has an hyperlink to v Isolated URLs are ignored (no IN, no OUT)

#### Three key properties:

- Skewed distribution: Pb that a node has x links is  $1/x^{\alpha}$ ,  $\alpha \approx 2.1$
- Locality: usually, most of the hyperlinks from URL u point to other URLs that are in the same host of u (about 80%).
- Similarity: if URLs u and v are close in lexicographic order, then they tend to share many hyperlinks

# A Picture of the Web Graph



21 millions of pages, 150millions of links

# **URL-sorting**

Berkeley



Stanford

# Copy-lists: Locality

Uncompressed adjacency list

| Node | Outdegree | Successors                                     |  |  |
|------|-----------|------------------------------------------------|--|--|
| ***  |           | ***                                            |  |  |
| 15   | 11        | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |  |  |
| 16   | 10        | 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041    |  |  |
| 17   | 0         |                                                |  |  |
| 18   | 5         | 13, 15, 16, 17, 50                             |  |  |
|      | ***       | ***                                            |  |  |

Locality: most of the hyperlinks from URL **u** point to other URLs that are in the same host of **u** (about 80%).

Hosts in the same domain → are close to each other in the lexicographically sorted order, and thus they get close docIDs

→ Compress them via gap-encoding and variable-length representations

Reference copy-back are small (e.g.  $\leq 8$ )

# Copy-lists: Locality & Similarity

Uncompressed adjacency list

| Node | Outdegree | Successors                                     |
|------|-----------|------------------------------------------------|
|      | ***       | ***                                            |
| 15   | 11        | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16   | 10        | 15, 16, 17, 22, 23, 24, 315, 316, 317, 3041    |
| 17   | 0         |                                                |
| 18   | 5         | 13, 15, 16, 17, 50                             |
|      | ***       | ***                                            |

(Similarity: if **u** and **v** are close in the lexicographic order, then they tend to share many hyperlinks)

| Node | Outd. | Ref. | Copy list   | Extra nodes                                    |
|------|-------|------|-------------|------------------------------------------------|
|      |       |      |             | (555)                                          |
| 15   | 11    | 0    |             | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16   | 10    | 1    | 01110011010 | 22, 316, 317, 3041                             |
| 17   | 0     |      |             | N2 22 765                                      |
| 18   | 5     | 3    | 11110000000 | 50                                             |
|      |       |      |             | 15.600                                         |

Each bit of the copy-list informs whether the corresponding successor of y is also a successor of the reference x;

The reference index is the one in [0,W] that gives the best compression.

# Copy-blocks = RLE(Copy-list)

Adjacency list with copy lists.

| Node | Outd. | Ref. | Copy list              | Extra nodes                                    |
|------|-------|------|------------------------|------------------------------------------------|
| 15   |       |      | ***                    | 12 15 16 17 18 10 22 24 202 215 1024           |
| 15   | 11    | 0    | O 1000 PG 1000 PG 1000 | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16   | 10    | 1    | 01110011010            | 22, 316, 317, 3041                             |
| 17   | 0     |      |                        | 912 415 60                                     |
| 18   | 5     | 3    | 11110000000            | 50                                             |
|      |       |      |                        | 16000                                          |

Adjacency list with copy blocks

(RLE on bit sequences)

| Nod | le Outd. | Ref. | # blocks | Copy blocks   | Extra nodes                                    |
|-----|----------|------|----------|---------------|------------------------------------------------|
|     |          |      | ***      |               | ***                                            |
| 15  | 11       | 0    |          |               | 13, 15, 16, 17, 18, 19, 23, 24, 203, 315, 1034 |
| 16  | 10       | 1    | 7        | 0,0 2,1,1,0,0 | 22, 316, 317, 3041                             |
| 17  | 0        |      |          |               | St 88 15                                       |
| 18  | 5        | 3    | 2        | 1,3           | 50                                             |
|     | ***      | 1.00 | ***      |               | ***                                            |

The first bit specifies the first copy block

Each RLE-length is decremented by one for all blocks

The last block is omitted (we know the length from *Outd*);

More on extra nodes, but not here!!

# What about other graphs?

A directed graph G = (V,E) not necessarily satisfy Web properties above







Apache Giraph is an iterative graph processing system built for high scalability. It is currently used at Facebook. Giraph originated as the open-source counterpart to *Pregel*, the graph processing architecture developed at Google (2010). Both systems are inspired by the <u>Bulk Synchronous Parallel</u> model of distributed computation.