

Clustering

Ali Ridho Barakbah, Entin Martiana

Knowledge Engineering Laboratory

Department of Information and Computer Engineering

Politeknik Elektronika Negeri Surabaya

What is cluster?

a collection of objects which are "similar" between them and are "dissimilar" to the objects belonging to other clusters

http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/index.html

What is clustering?

the process of organizing objects into groups whose members are similar in some way

http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/index.html

Similaritas berdasarkan warna

Similaritas berdasarkan bentuk

Similaritas berdasarkan jarak

Clustering vs Classification

	Classification	Clustering
Data	supervised	unsupervised
Label	Ya	Tidak
Analisa hasil	Error ratio	Variance

Classification (kasus sederhana)

Data penyakit hipertensi

Umur	Kegemukan	Hipertensi
muda	gemuk	Tidak label
muda	sangat gemuk	Tidak
paruh baya	gemuk	Tidak
paruh baya	terlalu gemuk	Ya
tua	terlalu gemuk	Ya

Supervised data

Clustering (kasus sederhana)

Data penyakit hipertensi

Umur	Kegemukan
muda	gemuk
muda	sangat gemuk
paruh baya	gemuk
paruh baya	terlalu gemuk
tua	terlalu gemuk

tidak ada label

Unsupervised data

Clustering (kasus sederhana)

Karakteristik clustering

- Partitioning clustering
- Hierarchical clustering
- Overlapping clustering
- Hybrid

Partitioning clustering

- Disebut juga exclusive clustering
- Setiap data harus termasuk ke cluster tertentu
- Memungkinkan bagi setiap data yang termasuk cluster tertentu pada suatu tahapan proses, pada tahapan berikutnya berpindah ke cluster yang lain
- Contoh: K-means, residual analysis

Hierarchical clustering

- Setiap data harus termasuk ke cluster tertentu
- Suatu data yang termasuk ke cluster tertentu pada suatu tahapan proses, tidak dapat berpindah ke cluster lain
- Contoh: Single Linkage, Centroid Linkage,
 Complete Linkage, Average Centroid

Overlapping clustering

- Setiap data memungkinkan termasuk ke beberapa cluster
- Data mempunyai nilai keanggotaan (membership) pada beberapa cluster
- Contoh: Fuzzy C-means, Gaussian Mixture

Hybrid

Mengawinkan karakteristik dari partitioning, overlapping dan hierarchical

Algoritma-algoritma clustering

- K-means
- Single Linkage
- Centroid Linkage
- Complete Linkage
- Average Linkage
- dll

K-means

- Termasuk partitioning clustering yang memisahkan data ke k daerah bagian yang terpisah
- K-means algorithm sangat terkenal karena kemudahan dan kemampuannya untuk mengklaster data besar dan data outlier dengan sangat cepat
- Setiap data harus termasuk ke cluster tertentu
- Memungkinkan bagi setiap data yang termasuk cluster tertentu pada suatu tahapan proses, pada tahapan berikutnya berpindah ke cluster yang lain

Algoritma K-means

- 1. Tentukan *k* sebagai jumlah cluster yang ingin dibentuk
- Bangkitkan k centroids (titik pusat cluster) awal secara random
- 3. Hitung jarak setiap data ke masing-masing centroids
- 4. Setiap data memilih centroids yang terdekat
- Tentukan posisi centroids baru dengan cara menghitung nilai rata-rata dari data-data yang memilih pada centroid yang sama
- 6. Kembali ke langkah 3 jika posisi centroids baru dengan centroids lama tidak sama.

Algoritma K-means

K-means Algorithm

Karakteristik K-means

- K-means sangat cepat dalam proses clustering
- K-means sangat sensitif pada pembangkitan centroids awal secara random
- Memungkinkan suatu cluster tidak mempunyai anggota
- Hasil clustering dengan K-means bersifat tidak unik (selalu berubah-ubah) - terkadang baik, terkadang jelek.
- K-means sangat sulit untuk mencapai global optimum

Ilustasi kelemahan K-means

Politeknik Elektronika

Negeri Surabaya

Kelemahan K-means

Hierarchical clustering

- Single Linkage
- Centroid Linkage
- Complete Linkage
- Average Linkage

Direction of hierarchy

- Divisive
 - 1 cluster to k clusters
 - Top to down division
- Agglomerative
 - n clusters to k clusters
 - Down to top merge

Algoritma Hierarchical clustering

- 1. Tentukan *k* sebagai jumlah cluster yang ingin dibentuk
- Setiap data dianggap sebagai cluster. Kalau
 n=jumlah data dan nc=jumlah cluster, berarti ada
 nc=n.
- 3. Hitung jarak antar cluster
- Cari 2 cluster yang mempunyai jarak antar cluster yang paling minimal dan gabungkan (berarti nc berkurang)
- 5. Jika *nc>k*, kembali ke langkah 3

Algoritma Hierarchical clustering

Politeknik Elektronika

Negeri Surabaya

Similarity between clusters?

- Single Linkage
 - → Minimum distance between cluster
- Centroid Linkage
 - → Centroid distance between cluster
- Complete Linkage
 - → Maximum distance between cluster
- Average Linkage
 - → Average distance between cluster

Pengukuran jarak

Single Linkage

Jarak cluster 1 ke cluster 2

Jarak data 3 ke data 4

Centroid Linkage

Complete Linkage

Jarak cluster 1 ke cluster 2

=

Jarak data 1 ke data 6

Average Linkage

Hierarchical Clustering & Dataset

Single Linkage

Metode ini sangat cocok untuk dipakai pada kasus shape independent clustering, karena kemampuannya untuk membentuk pattern tertentu dari cluster. Untuk kasus condensed clustering, metode ini tidak bagus.

Centroid Linkage

Metode ini baik untuk kasus clustering dengan normal data set distribution. Akan tetapi, metode ini tidak cocok untuk data yang mengandung outlier.

Complete Linkage

Metode ini sangat ampuh untuk memperkecil variance within cluster karena melibatkan centroid pada saat penggabungan antar cluster. Metode ini juga baik untuk data yang mengandung outlier.

Average Linkage

Metode ini relatif yang terbaik dari metode-metode hierarchical. Namun, ini harus dibayar dengan waktu komputasi yang paling tinggi dibandingkan dengan metode-metode hierarchical yang lain.

