

Complete listing of claims:

Claim 1 (cancelled).

Claim 2 (previously presented) A compound according to claim 18 wherein R¹ is C₁-C₆ alkyl which may optionally be substituted with one hydroxy, fluoro, CF₃, or C₁-C₄ alkoxy group and may optionally contain one double or triple bond provided that at least two carbons are present in the C₁-C₆ alkyl group; and R² is benzyl, C₁-C₆ alkyl, which may optionally contain one double or triple bond provided that at least two carbons are present, where said C₁-C₆ alkyl and the phenyl moiety of said benzyl may optionally be substituted with one fluoro CF₃, or C₁-C₂ alkyl, C₁-C₂ alkoxy or chloro group.

Claim 3 (previously presented) A compound according to claim 18 wherein: R³ is methyl, ethyl, chloro or methoxy; R⁴ is methyl or ethyl, G is hydrogen, methyl, ethyl, or E=G is C=O or C=S and R⁵ is phenyl, pyridyl, or pyrimidyl which is substituted with more than two substituents which are independently selected from C₁-C₄ alkyl and -O(C₁-C₄ alkyl), (C₁-C₄ alkyl)-O-(C₁-C₂ alkyl), CF₃, OCF₃, -CHO, (C₁-C₄ alkyl)-OH, CN, Cl, F, Br, I and NO₂, wherein one of the carbon-carbon single bonds of each of the foregoing (C₁-C₄)alkyl, groups having at least two carbons may optionally be replaced by a carbon-carbon double or triple bond.

Claim 4 (cancelled)

Claims 5, 6 and 7 (cancelled).

Claim 8 (previously presented) A compound according to claim 18 wherein F is NR⁴.

Claim 9 (previously presented) A compound as claimed in claim 18 wherein F is CHR⁴.

Claim 10 (cancelled)

Claim 11 (cancelled).

Claim 12 (previously presented) A compound according to claim 18 wherein E is carbon.

Claim 13 (previously presented) A compound according to claim 18 wherein E is nitrogen.

Claim 14 (cancelled)

Claims 15, 16 and 17 (cancelled).

Claim 18 (currently amended)

A compound of the formula

wherein the dashed lines represent optional double bonds;

B is $-NR^1R^2$, $-CR^1R^2R^{10}$, $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR^4 or NR^4 ; provided that either 1) exactly one of D or E is nitrogen and F is CHR^4 or 2) F is NR^4 and neither D nor E is nitrogen;

G, when single bonded to E is hydrogen, C_1-C_4 alkyl, $-S(C_1-C_4$ alkyl), $-O(C_1-C_4$ alkyl), NH_2 , $-NH(C_1-C_4$ alkyl) or $-N(C_1-C_2$ alkyl)(C_1-C_4 alkyl) wherein each of the C_1-C_4 alkyl groups of G may optionally be substituted by one hydroxy, $-O(C_1-C_2$ alkyl) or fluoro group; and G when double bonded to E is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

R^1 is hydrogen, C_1-C_6 alkyl optionally substituted with one or two substituents R^8 independently selected from hydroxy, fluoro, chloro, bromo, iodo, C_1-C_4 alkoxy, CF_3 , $-C(=O)O-$ (C_1-C_4)alkyl, $-OC(=O)(C_1-C_4)$ alkyl, $OC(=O)N(C_1-C_4$ alkyl)(C_1-C_2 alkyl), $-NHCO(C_1-C_4$ alkyl), $-C00H$, $-COO(C_1-C_4$ alkyl), $-CONH(C_1-C_4$ alkyl), $-CON(C_1-C_4$ alkyl)(C_1-C_2 alkyl), $-S(C_1-C_4$ alkyl), $-CN$, NO_2 , $-SO(C_1-C_4$ alkyl), $-S0_2(C_1-C_4$ alkyl), $-SO_2NH(C_1-C_4$ alkyl), $SO_2N(C_1-C_4$ alkyl)(C_1-C_2 alkyl), wherein a carbon-carbon single bond of each of the C_1-C_4 alkyl groups in the foregoing R^1 groups having at least two carbons may optionally be replaced with a carbon-carbon double or triple bond, and one or two carbon-carbon single bonds of each of the C_1-C_4 alkyl groups in the foregoing R^1 groups having four carbon atoms may optionally be replaced with a carbon-carbon double or triple bond; R^2 is C_1-C_{12} alkyl wherein one carbon-carbon single bond of any said alkyl group having at least two carbons, one or two carbon-carbon single bonds of any alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond; or R^2 is aryl or (C_1-C_4 alkylene)aryl, wherein said aryl and the aryl moiety of said (C_1-C_4 alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R^2 is C_3-C_8 cycloalkyl or (C_1-C_6 alkylene)(C_3-C_8 cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C_1-C_6 alkylene)(C_3-C_8 cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ^2 wherein Z^2 is selected from hydrogen, C_1-C_4 alkyl, benzyl and C_1-C_4 alkanoyl, and wherein each of the foregoing R^2 groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C_1-C_4 alkyl, or with one substituent selected from bromo, iodo, C_1-C_6 alkoxy, $-OC(=O)(C_1-C_6$ alkyl), $OC(=O)N(C_1-C_4$ alkyl)(C_1-C_2 alkyl), $-S(C_1-C_6$ alkyl), amino, $-NH(C_1-C_2$ alkyl), $-N(C_1-C_2$ alkyl)(C_1-C_4 alkyl), $-N(C_1-C_4$ alkyl)-CO-(C_1-C_4 alkyl), $-NHCO(C_1-C_4$ alkyl), $-COOH$,

- COO(C₁-C₄ alkyl), -CONH(C₁-C₄ alkyl), CON(C₁-C₄ alkyl)(C₁-C₂ alkyl), -SH, -CN, -NO₂, -SO(C₁-C₄ alkyl), -S0₂(C₁-C₄ alkyl), -SO₂NH(C₁-C₄ alkyl) and -SO₂N (C₁-C₄ alkyl)(C₁-C₂ alkyl);

-NR¹R² may form a 3 to 8 membered ring, said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z³ is hydrogen, C₁-C₄ alkyl, benzyl and C₁C₄ alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

or -CR¹R²R¹⁰ may form a 3 to 8 membered carbocyclic ring, said ring consisting of single bonds, wherein from one to three of the single bonds of such a 3 to 8 membered ring may each optionally be replaced by a double bond;

R³ is hydrogen, C₁-C₄ alkyl, O(C₁-C₄ alkyl), chloro, fluoro, bromo, iodo, -CN, -S(C₁-C₄ alkyl) or -S0₂(C₁-C₄ alkyl) wherein each of the (C₁-C₄ alkyl) moieties in the foregoing R³ groups may optionally be substituted with one substituent R⁹ selected from hydroxy, fluoro and (C₁-C₂ alkoxy);

each of R⁴ is, independently hydrogen, (C₁-C₆ alkyl), fluoro, chloro, bromo, iodo, hydroxy, cyano, amino, nitro, -O(C₁-C₄ alkyl), N (C₁-C₄ alkyl)(C₁-C₂ alkyl), -S(C₁-C₄ alkyl), -SO(C₁-C₄ alkyl), -SO₂(C₁-C₄ alkyl), -CO(C₁-C₄ alkyl), -C(=O)H or C(=O)O (C₁-C₄ alkyl), wherein one or two of the carbon-carbon single bonds in each of the (C₁-C₆ alkyl) and (C₁-C₄ alkyl) moieties in the foregoing R⁴ groups may optionally be replaced with a carbon-carbon double or triple bond and wherein each of said (C₁-C₆ alkyl) and (C₁-C₄ alkyl) moieties may optionally be substituted with one or two substituents independently selected from hydroxy, amino, C₁-C₃ alkoxy, dimethylamino, methylamino, ethylamino, -NHC(=O)CH₃, fluoro, chloro, -CN, -C00H, -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl) and NO₂;

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ⁴ wherein N⁴ is hydrogen, C₁-C₄ is alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₂ alkyl)(C₁-C₆ alkyl), -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl), -COOH, -S0₂NH(C₁-C₄ alkyl), -S0₂N (C₁-C₂ alkyl) (C₁-C₄ alkyl), -SO₂NH₂, NHSO₂ (C₁-C₄ alkyl), -S(C₁-C₆ alkyl) and -SO₂ (C₁-C₆ alkyl), and wherein each of the C₁-C₄ alkyl and C₁-C₆ alkyl, moieties in the foregoing R⁵ groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl; and furthermore

wherein when R⁵ is phenyl or pyridyl substituted with three substituents, said substituents can further be selected from (C₁-C₄ alkyl)O(C₁-C₄ alkyl), OCF₃, and fluoro, and one carbon-carbon single bond of each (C₁-C₄) alkyl group of said substituents having between two and four carbon atoms may be optionally replaced with a carbon-carbon double or triple bond; or R⁵ is pyrimidyl substituted by three substituents independently selected from C₁-C₄ alkyl, -O(C₁-C₄ alkyl), CF₃, OCF₃, -CHO, (C₁-C₄ alkyl)-OH, CN, Cl, F, Br, I and NO₂, wherein a carbon-carbon single bond of said (C₁-C₄) alkyl groups having between two and four carbon atoms may optionally be replaced by a carbon-carbon double or triple bond;

R⁷ is hydrogen, C₁-C₄ alkyl, halo, cyano, hydroxy, O(C₁-C₄ alkyl) -C(=O)(C₁-C₄ alkyl), -C(=O)O(C₁-C₄ alkyl), -OCF₃, -CF₃, -CH₂-OH, -CH₂O(C₁-C₄ alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R¹¹ is hydrogen or C₁-C₄ alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it is not halo, cyano or nitro; and (b) ~~one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;~~

Z is NH, oxygen, sulfur, -N(C₁-C₄ alkyl), -NC(=O)(C₁-C₂ alkyl), NC(-O)(=O)O(C₁-C₂ alkyl) or CR¹³R¹⁴ wherein R¹³ and R¹⁴ are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R¹³ and R¹⁴ can be cyano;

or a pharmaceutically acceptable salt of such compound.

Claims 19 - 24 (cancelled)

Claim 25 (currently amended) A compound of the formula

wherein the dashed lines represent optional double bonds;

B is -NR¹R², -CR¹R²R¹⁰, -C(=CR²R¹¹)R¹, -NHCR¹R²R¹⁰, -OCR¹R²R¹⁰, -SCR¹R²R¹⁰, CR²R¹⁰NHR¹, -CR²R¹⁰OR¹, -CR²R¹⁰SR¹ or -COR²;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴; provided that either 1) exactly one of D or E is nitrogen and F is CHR⁴ or 2) F is NR⁴ and neither D nor E is nitrogen;

G, when single bonded to E is hydrogen, C₁-C₄ alkyl, -S(C₁-C₄ alkyl), -O(C₁-C₄ alkyl), NH₂, -NH(C₁-C₄ alkyl) or -N(C₁-C₂ alkyl)(C₁-C₄ alkyl) wherein each of the C₁-C₄ alkyl groups of G may optionally be substituted by one hydroxy, -O(C₁-C₂ alkyl) or fluoro group; and G when double bonded to E is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

R¹ is hydrogen, C₁-C₆ alkyl optionally substituted with one or two substituents R⁸ independently selected from hydroxy, fluoro, chloro, bromo, iodo, C₁-C₄ alkoxy, CF₃, -C(=O)O-(C(=O)O-(C₁-C₄) alkyl, -OC(=O)(C₁-C₄) alkyl, OC(=O)N(C₁-C₄ alkyl)(C₁-C₂ alkyl), -NHCO(C₁-C₄ alkyl), -COOH, -COO(C₁-C₄ alkyl), -CONH(C₁-C₄ alkyl), -CON(C₁-C₄ alkyl)(C₁-C₂ alkyl), -S(C₁-C₄ alkyl), -CN, NO₂, -SO(C₁-C₄ alkyl), -SO₂(C₁-C₄ alkyl), -SO₂NH(C₁-C₄ alkyl), SO₂N(C₁-C₄ alkyl)(C₁-C₂ alkyl), wherein a carbon-carbon single bond of each of the C₁-C₄ alkyl groups in the foregoing R¹ groups having at least two carbons may optionally be replaced with a carbon-carbon double or triple bond, and one or two carbon-carbon single bonds of each of the C₁-C₄ alkyl groups in the foregoing R¹ groups having four carbon atoms may optionally be replaced with a carbon-carbon double or triple bond; R² is C₁-C₁₂ alkyl wherein one carbon-carbon single bond of any said alkyl group having at least two carbons, one or two carbon-carbon single bonds of any alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any said alkyl having at least six carbons may optionally be replaced with a carbon-carbon double or triple bond; or R² is aryl or (C₁-C₄ alkylene)aryl, wherein said aryl and the aryl moiety of said (C₁-C₄ alkylene)aryl is selected from phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R² is C₃-C₈ cycloalkyl or (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C₁-C₆ alkylene)(C₃-C₈ cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ² wherein Z² is selected from hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein each of the foregoing R² groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C₁-C₄ alkyl, or with one substituent selected from bromo, iodo, C₁-C₆ alkoxy, -OC(=O)(C₁-C₆ alkyl), OC(=O)N(C₁-C₄ alkyl)(C₁-C₂ alkyl), -S(C₁-C₆ alkyl), amino, -NH(C₁-C₂ alkyl), -N(C₁-C₂ alkyl)(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)-CO-(C₁-C₄ alkyl), -NHCO(C₁-C₄ alkyl), -COOH, -COO(C₁-C₄ alkyl), -CONH(C₁-C₄ alkyl), CON(C₁-C₄ alkyl)(C₁-C₂ alkyl), -SH, -CN, -NO₂, -SO(C₁-C₄ alkyl), -SO₂(C₁-C₄ alkyl), -SO₂NH(C₁-C₄ alkyl) and -SO₂N(C₁-C₄ alkyl)(C₁-C₂ alkyl); NR¹R² may form a 3 to 8 membered ring, said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z³ is hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein from one to three of the

single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

or $-CR^1R^2R^{10}$ may form a 3 to 8 membered carbocyclic ring, said ring consisting of single bonds, wherein from one to three of the single bonds of such a 3 to 8 membered ring may each optionally be replaced by a double bond;

R^3 is hydrogen, C_1-C_4 alkyl, $O(C_1-C_4$ alkyl), chloro, fluoro, bromo, iodo, $-CN$, $-S(C_1-C_4$ alkyl) or $-SO_2(C_1-C_4$ alkyl) wherein each of the $(C_1-C_4$ alkyl) moieties in the foregoing R^3 groups may optionally be substituted with one substituent R^9 selected from hydroxy, fluoro and $(C_1-C_2$ alkoxy);

each of R^4 is, independently hydrogen, $(C_1-C_6$ alkyl), fluoro, chloro, bromo, iodo, hydroxy, cyano, amino, nitro, $-O(C_1-C_4$ alkyl), $N(C_1-C_4$ alkyl) $(C_1-C_2$ alkyl), $-S(C_1-C_4$ alkyl), $-SO(C_1-C_4$ alkyl), $-SO_2(C_1-C_4$ alkyl), $-CO(C_1-C_4$ alkyl), $-C(=O)H$ or $C(=O)O(C_1-C_4$ alkyl), wherein one or two of the carbon-carbon single bonds in each of the $(C_1-C_6$ alkyl) and $(C_1-C_4$ alkyl) moieties in the foregoing R^4 groups may optionally be replaced with a carbon-carbon double or triple bond and wherein each of said $(C_1-C_6$ alkyl) and $(C_1-C_4$ alkyl) moieties may optionally be substituted with one or two substituents independently selected from hydroxy, amino, C_1-C_3 alkoxy, dimethylamino, methylamino, ethylamino, $-NHC(=O)CH_3$, fluoro, chloro, $-CN$, $-COOH$, $-C(=O)O(C_1-C_4$ alkyl), $-C(=O)(C_1-C_4$ alkyl) and NO_2 ;

R^5 is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C_3-C_8 cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ^4 wherein N^4 is hydrogen, C_1-C_4 is alkyl or benzyl; and wherein each of the foregoing R^5 groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C_1-C_6 alkyl and $-O(C_1-C_6$ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, $-CN$, $-CF_3$, $-NO_2$, $-NH_2$, $-NH(C_1-C_4$ alkyl), $-N(C_1-C_2$ alkyl) $(C_1-C_6$ alkyl), $-C(=O)O(C_1-C_4$ alkyl), $-C(=O)(C_1-C_4$ alkyl), $-COOH$, $-SO_2NH(C_1-C_4$ alkyl), $-SO_2N(C_1-C_2$ alkyl) $(C_1-C_4$ alkyl), $-SO_2NH_2$, $NHSO_2(C_1-C_4$ alkyl), $S(C_1-C_6$ alkyl) and $-SO_2(C_1-C_6$ alkyl), and wherein each of the C_1-C_4 alkyl and C_1-C_6 alkyl, moieties in the foregoing R^5 groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl;

R^7 is hydrogen, C_1-C_4 alkyl, halo, cyano, hydroxy, $-O(C_1-C_4$ alkyl), $-C(=O)(C_1-C_4$ alkyl), $-C(=O)O(C_1-C_4$ alkyl), $-OCF_3$, $-CF_3$, $-CH_2OH$, $-CH_2O(C_1-C_4$ alkyl);

R^{10} is hydrogen, hydroxy, methoxy or fluoro;

R^{11} is hydrogen or C_1-C_4 alkyl; and

with the proviso that: (a) when R⁴ is attached to nitrogen, it is not halo, cyano or nitro; and
~~(b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;~~

Z is NH, oxygen, sulfur, -N(C₁-C₄ alkyl), -NC(=O)(C₁-C₂ alkyl), NC(-O)(=O)O(C₁-C₂ alkyl) or CR¹³R¹⁴ wherein R¹³ and R¹⁴ are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R¹³ and R¹⁴ can be cyano;

or a pharmaceutically acceptable salt of such compound.

Claim 26-27 (cancelled)

Claim 28 (currently amended) A compound of the formula

wherein the dashed lines represent optional double bonds;

B is -NR¹R², -CR¹R²R¹⁰, -C(=CR²R¹¹)R¹, -NHCR¹R²R¹⁰, -OCR¹R²R¹⁰, -SCR¹R²R¹⁰, CR²R¹⁰NHR¹, -CR²R¹⁰OR¹, -CR²R¹⁰SR¹ or -COR²;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR⁴ or NR⁴, provided that either 1) exactly one of D or E is nitrogen and F is CHR⁴ or 2) F is NR⁴ and neither D nor E is nitrogen

G, when single bonded to E is hydrogen, C₁-C₄ alkyl, -S(C₁-C₄ alkyl), -O(C₁-C₄ alkyl), NH₂, -NH(C₁-C₄ alkyl) or -N(C₁-C₂ alkyl)(C₁-C₂ alkyl) wherein each of the C₁-C₄ alkyl groups of G may optionally be substituted by one hydroxy, -O(C₁-C₂ alkyl) or fluoro group; and G when double bonded to E is oxygen, sulfur or NH; and G, when E is nitrogen and double bonded to D, is absent;

R¹ is C₁-C₆ alkyl optionally substituted with one substituent selected from hydroxy, fluoro, CF₃, or C₁₋₄ alkoxy wherein a carbon-carbon single bond of each of the C₁-C₄ alkyl groups in the foregoing R₁ groups having at least two carbons may optionally be replaced with a carbon-carbon double or triple bond, R² is benzyl or C₁₋₆ alkyl which may optionally contain one double or triple bond and wherein said C₁₋₆ alkyl and the phenyl moiety of said benzyl may optionally be substituted with one fluoro, Cf₃, C₁-C₂ alkyl, C₁-C₂ alkoxy or chloro group.;

-NR¹R² may form a 3 to 8 membered ring, said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8

membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ³ wherein Z³ is hydrogen, C₁-C₄ alkyl, benzyl and C₁-C₄ alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

or -CR¹R²R¹⁰ may form a 3 to 8 membered carbocyclic ring, said ring consisting of single bonds, wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

R³ is hydrogen, C₁-C₄ alkyl, O(C₁-C₄ alkyl), chloro, fluoro, bromo, iodo, -CN, -S(C₁-C₄ alkyl) or -SO₂(C₁-C₄ alkyl) wherein each of the (C₁-C₄ alkyl) moieties in the foregoing R³ groups may optionally be substituted with one substituent R⁹ selected from hydroxy, fluoro and (C₁-C₂ alkoxy);

each of R⁴ is, independently hydrogen, (C₁-C₆ alkyl), fluoro, chloro, bromo, iodo, hydroxy, cyano, amino, nitro, -O(C₁-C₄ alkyl), N (C₁-C₄ alkyl)(C₁-C₂ alkyl), -S(C₁-C₄ alkyl), -SO(C₁-C₄ alkyl), -SO₂(C₁-C₄ alkyl), -CO(C₁-C₄ alkyl), -C(=O)H or C(=O)O (C₁-C₄ alkyl), wherein one or two of the carbon-carbon single bonds in each of the (C₁-C₆ alkyl) and (C₁-C₄ alkyl) moieties in the foregoing R⁴ groups may optionally be replaced with a carbon-carbon double or triple bond and wherein each of said (C₁-C₆ alkyl) and (C₁-C₄ alkyl) moieties may optionally be substituted with one or two substituents independently selected from hydroxy, amino, C₁-C₃ alkoxy, dimethylamino, methylamino, ethylamino, -NHC(=O)CH₃, fluoro, chloro, -CN, -COOH, -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl) and NO₂;

R⁵ is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, benzoxazolyl or C₃-C₈ cycloalkyl wherein one or two of the carbon atoms of said cycloalkyl rings that contain at least 5 ring members may optionally and independently be replaced by an oxygen or sulfur atom or by NZ⁴ wherein N⁴ is hydrogen, C₁-C₄ is alkyl or benzyl; and wherein each of the foregoing R⁵ groups is substituted with from one to four substituents wherein one to three of said substituents may be selected, independently, from chloro, C₁-C₆ alkyl and -O(C₁-C₆ alkyl) and one of said substituents may be selected from bromo, iodo, formyl, -CN, -CF₃, -NO₂, -NH₂, -NH(C₁-C₄ alkyl), -N(C₁-C₂ alkyl)(C₁-C₆ alkyl), -C(=O)O(C₁-C₄ alkyl), -C(=O)(C₁-C₄ alkyl), -COOH, -SO₂NH(C₁-C₄ alkyl), -SO₂N (C₁-C₂ alkyl) (C₁-C₄ alkyl), -SO₂NH₂, NHSO₂ (C₁-C₄ alkyl), -S(C₁-C₆ alkyl) and -SO₂ (C₁-C₆ alkyl), and wherein each of the C₁-C₄ alkyl and C₁-C₆ alkyl, moieties in the foregoing R⁵ groups may optionally be substituted with one or two substituents independently selected from fluoro, hydroxy, amino, methylamino, dimethylamino and acetyl;

R⁷ is hydrogen, C₁-C₄ alkyl, halo, cyano, hydroxy, -O(C₁-C₄ alkyl) -C(=O)(C₁-C₄ alkyl), -C(=O)O(C₁-C₄ alkyl), -OCF₃, -CF₃, -CH₂OH, -CH₂O(C₁-C₄ alkyl);

R¹⁰ is hydrogen, hydroxy, methoxy or fluoro;

R^{11} is hydrogen or C_1 - C_4 alkyl; and

with the proviso that: (a) when R^4 is attached to nitrogen, it is not halo, cyano or nitro; and
~~(b) one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;~~

Z is NH, oxygen, sulfur, $-N(C_1-C_4\text{ alkyl})$, $-NC(=O)(C_1-C_2\text{ alkyl})$, $NC(-O)(=O)O(C_1-C_2\text{ alkyl})$ or $CR^{13}R^{14}$ wherein R^{13} and R^{14} are independently selected from hydrogen, trifluoromethyl and methyl with the exception that one of R^{13} and R^{14} can be cyano;

or a pharmaceutically acceptable salt of such compound.

Claim 29 (currently amended) A compound of the formula

wherein the dashed lines represent optional double bonds;

B is $-NR^1R^2$, $-CR^1R^2R^{10}$, $-C(=CR^2R^{11})R^1$, $-NHCR^1R^2R^{10}$, $-OCR^1R^2R^{10}$, $-SCR^1R^2R^{10}$, $CR^2R^{10}NHR^1$, $-CR^2R^{10}OR^1$, $-CR^2R^{10}SR^1$ or $-COR^2$;

E is nitrogen, CH or carbon;

D is nitrogen and is single bonded to all atoms to which it is attached, or D is carbon and is double bonded to E, or D is CH and is single bonded to E;

F is CHR^4 or NR^4 ; provided that either 1) exactly one of D or E is nitrogen and F is CHR^4 or 2) F is NR^4 and neither D nor E is nitrogen;

G is hydrogen, methyl or ethyl or E=G is C=O or C=S;

R^1 is hydrogen, C_1 - C_6 alkyl optionally substituted with one or two substituents R^8 independently selected from hydroxy, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, CF_3 , $-C(=O)O(C_1-C_4)\text{alkyl}$, $-OC(=O)(C_1-C_4)\text{alkyl}$, $OC(=O)N(C_1-C_4\text{ alkyl})(C_1-C_2\text{ alkyl})$, $-NHCO(C_1-C_4\text{ alkyl})$, $-COOH$, $-COO(C_1-C_4\text{ alkyl})$, $-CONH(C_1-C_4\text{ alkyl})$, $-CON(C_1-C_4\text{ alkyl})(C_1-C_2\text{ alkyl})$, $-S(C_1-C_4\text{ alkyl})$, $-CN$, NO_2 , $-SO(C_1-C_4\text{ alkyl})$, $-SO_2(C_1-C_4\text{ alkyl})$, $-SO_2NH(C_1-C_4\text{ alkyl})$, $SO_2N(C_1-C_4\text{ alkyl})(C_1-C_2\text{ alkyl})$, wherein a carbon-carbon single bond of each of the C_1 - C_4 alkyl groups in the foregoing R^1 groups having at least two carbons may optionally be replaced with a carbon-carbon double or triple bond, and one or two carbon-carbon single bonds of each of the C_1 - C_4 alkyl groups in the foregoing R^1 groups having four carbon atoms may optionally be replaced with a carbon-carbon double or triple bond; R^2 is C_1 - C_{12} alkyl wherein one carbon-carbon single bond of any said alkyl group having at least two carbons, one or two carbon-carbon single bonds of any alkyl having at least four carbons, and from one to three carbon-carbon single bonds of any said alkyl having at

least six carbons may optionally be replaced with a carbon-carbon double or triple bond; or R^2 is aryl or (C_1 - C_4 alkylene)aryl, wherein said aryl and the aryl moiety of said (C_1 - C_4 alkylene)aryl is selected from phenyl, naphthyl, thiienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidinyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, indolyl, pyrrolopyridyl, oxazolyl and benzoxazolyl; or R^2 is C_3 - C_8 cycloalkyl or (C_1 - C_6 alkylene)(C_3 - C_8 cycloalkyl), wherein one or two of the carbon atoms of said cycloalkyl and the 5 to 8 membered cycloalkyl moieties of said (C_1 - C_6 alkylene)(C_3 - C_8 cycloalkyl) may optionally and independently be replaced by an oxygen or sulfur atom or by NZ^2 wherein Z^2 is selected from hydrogen, C_1 - C_4 alkyl, benzyl and C_1 - C_4 alkanoyl, and wherein each of the foregoing R^2 groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, hydroxy and C_1 - C_4 alkyl, or with one substituent selected from bromo, iodo, C_1 - C_6 alkoxy, - $OC(=O)(C_1$ - C_6 alkyl), $OC(=O)N(C_1$ - C_4 alkyl)(C_1 - C_2 alkyl), - $S(C_1$ - C_6 alkyl), amino, - $NH(C_1$ - C_2 alkyl), - $N(C_1$ - C_2 alkyl)(C_1 - C_4 alkyl), - $N(C_1$ - C_4 alkyl)-CO-(C_1 - C_4 alkyl), - $NHCO(C_1$ - C_4 alkyl), - $COOH$, - $COO(C_1$ - C_4 alkyl), - $CONH(C_1$ - C_4 alkyl), $CON(C_1$ - C_4 alkyl)(C_1 - C_2 alkyl), - SH , - CN , - NO_2 , - $SO(C_1$ - C_4 alkyl), - $S_2(C_1$ - C_4 alkyl), - $SO_2NH(C_1$ - C_4 alkyl) and - $SO_2N(C_1$ - C_4 alkyl)(C_1 - C_2 alkyl);

- NR^1R^2 may form a 3 to 8 membered ring, said ring consisting of single bonds, wherein, when said ring has from 5 to 8 members, one or two of the ring carbon atoms of such a 5 to 8 membered ring may optionally and independently be replaced by an oxygen or sulfur atom or by NZ^3 wherein Z^3 is hydrogen, C_1 - C_4 alkyl, benzyl and C_1 - C_4 alkanoyl, and wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

or - $CR^1R^2R^{10}$ may form a 3 to 8 membered carbocyclic ring, said ring consisting of single bonds, wherein from one to three of the single bonds of such a 3 to 8 membered ring that are carbon-carbon or carbon-nitrogen single bonds may each optionally be replaced by a double bond;

R^3 is methyl, ethyl, chloro or methoxy;

each of R^4 is methyl, ethyl or trifluoro methyl;

R^5 is phenyl or pyridyl,

R^7 is hydrogen, C_1 - C_4 alkyl, halo, cyano, hydroxy, - $O(C_1$ - C_4 alkyl) - $C(=O)(C_1$ - C_4 alkyl), - $C(=O)O(C_1$ - C_4 alkyl), - OCF_3 , - CF_3 , - CH_2OH , - $CH_2O(C_1$ - C_4 alkyl);

R^{10} is hydrogen, hydroxy, methoxy or fluoro;

R_{11} is hydrogen or C_1 - C_4 alkyl; and

with the proviso that: (a) when R^4 is attached to nitrogen, it not halo, cyano or nitro; and (b) ~~one of E, D and F must be nitrogen or substituted nitrogen, and only one of E, D and F can be nitrogen or substituted nitrogen;~~

Z is NH, oxygen, sulfur, -N(C₁-C₄ alkyl), -NC(=O)(C₁-C₂ alkyl), NC(-O)(=O)O(C₁-C₂ alkyl)
or CR¹³ R¹⁴ wherein R¹³ and R¹⁴ are independently selected from hydrogen, trifluoromethyl and
methyl with the exception that one of R¹³ and R¹⁴ can be cyano;
or a pharmaceutically acceptable salt of such compound.