TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND

Rakendustarkvara: TeX praktikumitöö

Rauno Viskus MatStat, 3.

1 Ülesanne 2.

1.1

Tõestame teoreemi kahe teguri korrutise kohta, millest järeldub teoreemi kehtivus. Olgu $\log_a b_1 = x_1$ ja $\log_a b_2 = x_2$, siis $b_1 = a^{x_1}$ ja $b_2 = a^{x_2}$. Leiame arvude b_1 ja b_2 korrutise: $b_1b_2 = a^{x_1}a^{x_2}$ ehk $b_1b_2 = a^{x_1+x_2}$. Logaritmi definitsiooni järgi saame viimasest võrdusest, et $\log_a(b_1b_2) = x_1 + x_2$. Asendades x_1 ja x_2 vastavate logaritmidega, saame:

$$\log_a(b_1b_2) = \log_a b_1 + \log_a b_2 \tag{1}$$

1.2

Kahe nurga vahe ja summa tangensi valemite tuletamiseks kasutame ühe ja sama nurga trigonomeetriliste funktsioonide vahelisi põhiseoseid ja eespool saadud valemeid:

$$\tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\sin\alpha\cos\beta - \cos\beta\sin\alpha}{\cos\alpha\cos\beta + \sin\alpha\sin\beta}$$
 (2)

1.3

Lahenda võrrandisüsteem

$$\begin{array}{rclrcl}
 x & + & 2y & + & z = & 5, \\
 4x & - & y & + & 2z = & -3, \\
 2x & + & 3y & + & 4z = & 3.
 \end{array}$$
(3)

Lahendus.

$$D = \begin{vmatrix} 1 & 2 & 1 \\ 4 & -1 & 2 \\ 2 & 3 & 4 \end{vmatrix} = -4 + 12 + 8 + 2 - 32 - 6 = -20.$$
 (4)

$\mathbf{2}$ Ülesanne $\mathbf{3}$.

2.1

Esimesed	Viimased kolm tähte							
kaks tähte	aaa	aab	aba	abb	baa	bba	bab	bbb
aa	2	2	2	2	5	7	5	7
ab	3	4	4	4	1	2	0	2
ba	0	1	0	0	3	5	3	5
bb	5	6	6	6	2	2	2	2

2.2

$$f(x + \Delta x) = 3(x + \Delta x)^{2} + 2$$

$$f(x) = 3x^{2} + 2$$

$$f(x + \Delta x) - f(x) = 3(x + \Delta x)^{2} + 2 - (3x^{2} + 2).$$