

MNS Department **Summer Semester 2015 Final Examination** Course No: PHY 112

Course Title: Principles of Physics II

Time: 3 hours Total Marks: 90 Date: August 13, 2015

Insturctions:

- Answer any FIVE questions from Section A and TEN questions from Section B.
- Write your Name and ID# above and middle of the Section B.
- Answer Section A in the answer script.
- Circle the write answer in Section B in the question paper.

[Marks]

[4+6+6]

- [6+8+2]1. Figure-1 shows that four particles form a square of edge length a = 5.0 cm and have charges $q_1 = +10.0 \text{ nC}$, $q_2 = -20.0 \text{ nC}$, $q_3 = +20.0 \text{ nC}$ and $q_4 = -10.0 \text{ nC}$.
 - a. Calculate the net force on the charged particle q₂ due to all other charged particles in unit vector notation. -4.65×10⁻⁴ î -1.18×10⁻³ ĵ
 b. Find out the magnitude and direction of the electric field at the centre of the square. 1×10⁵ N/C ĵ

 - What force does an electron experience if it is placed at the centre of the square? 1.6 × 10-14

Figure-1

Figure-2

2. In Figure-2, the point P is at a distance of $d_1 = 4.00$ m from the particle 1 ($q_1 = -2e$) and distance $d_2 = 2.00$ m from particle 2 ($q_2 = +2e$), with both particles fixed in place.

Given that the value of $e = 1.6 \times 10^{-19}$ C.

a. What is the potential at the point P? 7.2 × 10

b. How much work has to be done to bring a particle of charge $q_3 = +2e$ from infinity to - 2.3×10-28 J point P by the applied force and the electric field?

What is the potential energy of the three-particle system?

3. The number of radioactive nuclei present at the start of an experiment is 4.60×10^{15} . The number present twenty days later is 8.14×10^{14} .

Find out the decay constant and half-life of the radionuclide. 8.66×10^{-2} day 1 Nuclei Colombia the activity of the radionuclide and t = 16.0 days? 2.06×10^{-4} Nuclei b.

Calculate the activity of the material at t = 16.0 days.

9.97×1013 Nuclei/day.

Figure-3

- 4. In Figure-3, the current in resistance 6 is $i_6 = 1.40$ A and the resistances are $R_1 = R_2 = R_3 = 2.00 \Omega$, [5+8+3] R_4 = 16.0 Ω , R_5 = 8.00 Ω and R_6 = 4.00 Ω .
 - a. Calculate the equivalent resistance of the circuit. 3.63 \sim
 - b. Find out the current through each resistor.
 - II = 13.3A, I2 = 2.45A, I3 = 10.85A, I4 = 1.05A c. What is the emf of the battery? Is=1.4A , I6=1.4A
 - 5. In Figure-4, a particle moves along a circle in a region of uniform magnetic field of magnitude B = 4.00 mT. The particle is either a proton or an electron which experiences a magnetic force of magnitude 3.2×10⁻¹⁵ N.
 - Which type of particle (proton or electron) is revolving around the circle? electron
 - 5×10 m/s. b. Calculate the speed of the particle.
 - Calculate the radius of the circle and also the radius if another type of particle is revolving around the circle. P = 13.05 m) $P_e = 7.1 \times 10^{-3} \text{ m}$ d. What are the frequencies of the electron and proton for their respective revolving circles?
 - Fp = 6,36×104 Hz.

Figure-4

Figure-5

- 6. Figure-5, shows the cross section of a long and strait wire 1, carries a current of 4.00 mA out of the page, and is at a distance $d_1 = 2.40$ cm from a surface. A second long and straight parallel wire 2 is at horizontal distance $d_2 = 5.00$ cm from wire 1 carrying a current of 6.80 mA into the page.
 - a. Calculate the x-component of magnetic field on wire 1 due to wire 2 and y-component of magnetic field on wire 2 due to wire 1. $B_{12} = 1.04 \times 10^{-8} \text{ T}$ 3 $B_{21} = 1.2 \times 10^{-8} \text{ T}$
 - b. Find out the magnitude of net magnetic field at the mid-point of the line connecting the wires 1 and 2. If a third parallel wire 3 is placed at the mid-point of the line connecting the two wires 1 and 2 which carries a current of 2.4 mA out of the page, find the force per unit length of the third wire.

$$F_3 = 4.8 \times 10^{-11} \text{ N}.$$

- The magnetic flux through the loop increases according to the relation $\phi_B = 6.0t^2 + 7.0t$, where ϕ_B is in milliwebers and t in seconds. The diameter of the circular loop is 10 cm formed from wire of diameter
 - 2.5 mm and resistivity $1.69 \times 10^{-8} \Omega$ -m. Calculate the change in magnetic field through the loop when t = 2.0 s. 4.84 Tesla [4+4+4+4]
 - What is the magnitude of induced emf in the loop when t = 2.0 s? 31 mV
 - What is flow of maximum current in the coil in t = 2.0 s? 28.7 \triangle
 - Calculate the self-inductance of the loop.

1.3 Henry

8.	a.	An astronaut is standing in a spacecraft parallel to its direction of more earth finds that the spacecraft's speed is 0.60c and the astronaut is 1.	[6+6- otion. An observer on the .3 m tall. What is the	+4]
		astronaut's height as measured in the spacecraft? 1.63 m.		
	b.	A proton and an electron, both at rest initially, combine to form a hy state. A single photon is emitted in this process. What is its wavelen	ydrogen atom in the ground ngth? 9,12×10 ⁻⁸ m	, .
	c.	Find the wavelength of the spectral line that corresponds to a transiti $n = 6$ state to $n = 3$ state. Rydberg constant, $R = 1.097 \times 10^7 \text{m}^{-1}$.	ion in hydrogen from 1.09 × 10 ⁻⁶ m.	
Stı	ident l	Name: Student ID:		
Sti	lucati			
			/10)
		Section B: Multiple Choice Questions		<u>.</u>
Foo	h awasi	stion in section B carries one mark:		
1.	Electri	ric charges A and B are attracted to each other. Electric charges B and C eld close together they will:	C attract each other too. If A ar	nd C
	a.	attract 6. repel	· · · · · · · · · · · · · · · · · · ·	#
	c.	d. more information is needed to g	give an answer	
2.	If a po	ositive test charge q moves towards an increasing electric potential energy	gy its velocity will:	F
	a.	n. increase b. decrease c. remain the same	d. none of these	
3.	A cert	rtain wire has resistivity ρ . Another wire, of the same material, has half rst wire. The resistivity of the second wire is:	the length and half the diamet	er of
		b. 2ρ c. 4ρ	d. ρ	o the
4.	Two p	particles (proton and electron) travel at the same speed (Figure-6) in a lar paths shown in the figure. Which particle follows the larger circles	ele and what is its direction	on of
	mótio	on?		
	a.	, (X)		
(b.	Proton and anticlockwise		of a
	c.	-	Figure 6	
	(d.	Proton and clockwise	Figure-6	

5.68 1.64409

S	tudent l	Name: Student ID:		
	ii.			
(5.)	out of	gure-7 shows four directions for the velocity vector of a positively particle moving through a uniform electric field which is directed the page and a uniform magnetic field directed in the leftward n. Which of the following ranking for net force on the proton is		
	a.	1>2>3>4 b. 2>4>1=3 c. 2>3>1>4 Figure-7	,	
	d.	4>2>1=3	بر	
6.	The dire	ection of induced emf can be found by: Gauss' law b. Kirchhoff's law c. Lenz's law d. Fleming's right hand rule	9	
7.	Beta pa	rticles from various radioactive sources all have:		
	a.	the same mass b. the same speed c the same charge		
	b.	the same energy in magnetic field		
8.	. A square loop of wire lies in the plane of the page. A decreasing magnetic field is directed into the page. T induced current in the loop is			
	a.	counterclockwise b. clockwise c. through the middle of the page d. zero		
9.	Which one of the following quantities will two observers always measure to be the same, regardless of the relative velocity between the observers?			
*	a.	The time interval between two events b. The length of an object		
	9.	The speed of light in a vacuum d. The relative speed between the observers		
10.	Above	Curie temperature the ferromagnetic material becomes:		
ū.	a.	diamagnetic c. ferrimagnetic d. none of these		
11.	What ty	pe of light would be emitted if an electron moves from $n = 4$ to $n = 2$ energy level?		
	. a.	Ultraviolet b. Infrared c. Visible d. Microwave		
12.	Accordi	ng to Bohr's atomic model the angular momentum of the electron in the n-th orbit is equal to:		
	a.	$h/2\pi$ b. $2\pi/h$ c $nh/2\pi$ d. nh/π		
13.	Most of	the energy produced by the sun is due to:		
		nuclear fission b. nuclear fusion c. chemical reaction d. gravitational collaps	se	

S. C. Carlotte .