

015936-2.ST25.txt SEQUENCE LISTING

<110>	SAHIN, ERINC TARALP, ALPAY SAYERS, SEHRA	
<120>	CIRCULAR RECOMBINANT PLASMID DNA CONSTRUCTS AND THEIR PROTEIN PRODUCTS, METHODS OF PREPARATION AND IMMOBILISATION OF PROTEIN ON SUPPORT	IS
<130>	U015936-2	
<140> <141>	10/550226 2005-09-20	
<150> <151>	PCT/TR2003/000019 2003-03-20	
<160>	12	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1 733 DNA Aequorea victoria	
<220> <221> <222> <223>	gene (17)(733) GFP gene	
<400> ggtacc	1 ggta gaaaaaatga gtaaaggaga agaacttttc actggagttg tcccaattct	60
tgttga	atta gatggtgatg ttaatgggca caaattttct gtcagtggag agggtgaagg	120
tgatgc	aaca tacggaaaac ttacccttaa atttatttgc actactggaa aactacctgt	180
tccatg	gcca acacttgtca ctactttctc ttatggtgtt caatgctttt cccgttatcc	240
ggatca	tatg aaacggcatg actttttcaa gagtgccatg cccgaaggtt atgtacagga	300
acgcac	tata tctttcaaag atgacgggaa ctacaagacg cgtgctgaag tcaagtttga	360
aggtga	tacc cttgttaatc gtatcgagtt aaaaggtatt gattttaaag aagatggaaa	420
cattct	cgga cacaaactcg agtacaacta taactcacac aatgtataca tcacggcaga	480
caaaca	aaag aatggaatca aagctaactt caaaattcgc cacaacattg aagatggatc	540
cgttca	acta gcagaccatt atcaacaaaa tactccaatt ggcgatggcc ctgtcctttt	600
	caac cattacctgt cgacacaatc tgccctttcg aaagatccca acgaaaagcg	660
	catg gtccttcttg agtttgtaac tgctgctggg attacacatg gcatggatga	720
gctcta	caaa taa	733

<210> 2 <211> 6029

<212>	DNA		015936-2.S	T25.txt						
<213>	Artificial sequence									
<220> <223>	Empty PETM-11	plasmid								
<220> <221> <222> <223>	misc_feature (1)(6029) Empty PETM-11	plasmid								
<400> atccgg	2 atat agttcctcct	ttcagcaaaa	aacccctcaa	gacccgttta	gaggccccaa	60				
	atgc tagttattgc					120				
	cagc cggatctcag					180				
	agct cgaattcgga					240				
	gcag ctttattctc					300				
tctgca	tgct gccccgctcg	tcagagtcgc	tcacactgct	gctgctccag	tccagatcac	360				
ctgtga	gata gtccgtgctc	tccacgtcaa	cgtcgatttc	ttccctgtcg	gagtcggagc	420				
gctccg	agga gacggtggag	ccgatgctgt	ccatccggat	cctctcaatg	cccagcttct	480				
ccagct	gcct cttcaggtgt	cgctgctctc	gctgaagctg	gtcgatttgg	tgaacggctt	540				
ttctgt	caca atcttcaagt	ttctttatgt	gcaatttggc	ttttgttaat	aaactcaacg	600				
tagtgt	gtcg acttgattcg	ggtcccagtg	gcaccagccc	cttcaacttc	tccaggcaca	660				
agcgaa	gatg agcccgtcta	ttcttctcca	tttcattgtg	agttgatctg	ctactgctgt	720				
tattct	tttt ggatttgttc	ctccgtttta	aggcatctct	gtccttgttt	ttgtatggta	780				
acatgg	aggc ataaccatgt	tcagcttctc	tctcccgccg	ctccagatag	tcggccgcct	840				
ccagca	gcat ctggatgttc	atccgaaccg	ccgccgccat	ggcgccctga	aaataaagat	900				
tctcag	tagt ggggatgtcg	taatcgctca	tggggtgatg	gtgatggtga	tgtttcatgg	960				
tatatc	tcct tcttaaagtt	aaatcaaaat	tatttctaga	ggggaattgt	tatccgctca	1020				
caattc	ccct atagtgagtc	gtattaattt	cgcgggatcg	agatctcgat	cctctacgcc	1080				
ggacgc	atcg tggccggcat	caccggcgcc	acaggtgcgg	ttgctggcgc	ctatatcgcc	1140				
gacatc	accg atggggaaga	tcgggctcgc	cacttcgggc	tcatgagcgc	ttgtttcggc	1200				
gtgggt	atgg tggcaggccc	cgtggccggg	ggactgttgg	gcgccatctc	cttgcatgca	1260				
ccattc	cttg cggcggcggt	gctcaacggc	ctcaacctac	tactgggctg	cttcctaatg	1320				
caggag	tcgc ataagggaga	gcgtcgagat	cccggacacc	atcgaatggc	gcaaaacctt	1380				
tcgcgg	tatg gcatgatagc	gcccggaaga	gagtcaattc	agggtggtga	atgtgaaacc	1440				
agtaac	gtta tacgatgtcg	cagagtatgc	cggtgtctct	tatcagaccg	tttcccgcgt	1500				

ggtgaaccag	gccagccacg	tttctgcgaa	aacgcgggaa	aaagtggaag	cggcgatggc	1560
ggagctgaat	tacattccca	accgcgtggc	acaacaactg	gcgggcaaac	agtcgttgct	1620
gattggcgtt	gccacctcca	gtctggccct	gcacgcgccg	tcgcaaattg	tcgcggcgat	1680
taaatctcgc	gccgatcaac	tgggtgccag	cgtggtggtg	tcgatggtag	aacgaagcgg	1740
cgtcgaagcc	tgtaaagcgg	cggtgcacaa	tcttctcgcg	caacgcgtca	gtgggctgat	1800
cattaactat	ccgctggatg	accaggatgc	cattgctgtg	gaagctgcct	gcactaatgt	1860
tccggcgtta	tttcttgatg	tctctgacca	gacacccatc	aacagtatta	ttttctccca	1920
tgaagacggt	acgcgactgg	gcgtggagca	tctggtcgca	ttgggtcacc	agcaaatcgc	1980
gctgttagcg	ggcccattaa	gttctgtctc	ggcgcgtctg	cgtctggctg	gctggcataa	2040
atatctcact	cgcaatcaaa	ttcagccgat	agcggaacgg	gaaggcgact	ggagtgccat	2100
gtccggtttt	caacaaacca	tgcaaatgct	gaatgagggc	atcgttccca	ctgcgatgct	2160
ggttgccaac	gatcagatgg	cgctgggcgc	aatgcgcgcc	attaccgagt	ccgggctgcg	2220
cgttggtgcg	gatatctcgg	tagtgggata	cgacgatacc	gaagacagct	catgttatat	2280
cccgccgtta	accaccatca	aacaggattt	tcgcctgctg	gggcaaacca	gcgtggaccg	2340
cttgctgcaa	ctctctcagg	gccaggcggt	gaagggcaat	cagctgttgc	ccgtctcact	2400
ggtgaaaaga	aaaaccaccc	tggcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	2460
cgattcatta	atgcagctgg	cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	2520
acgcaattaa	tgtaagttag	ctcactcatt	aggcaccggg	atctcgaccg	atgcccttga	2580
gagccttcaa	cccagtcagc	tccttccggt	gggcgcgggg	catgactatc	gtcgccgcac	2640
ttatgactgt	cttctttatc	atgcaactcg	taggacaggt	gccggcagcg	ctctgggtca	2700
ttttcggcga	ggaccgcttt	cgctggagcg	cgacgatgat	cggcctgtcg	cttgcggtat	2760
tcggaatctt	gcacgccctc	gctcaagcct	tcgtcactgg	tcccgccacc	aaacgtttcg	2820
gcgagaagca	ggccattatc	gccggcatgg	cggccccacg	ggtgcgcatg	atcgtgctcc	2880
tgtcgttgag	gacccggcta	ggctggcggg	gttgccttac	tggttagcag	aatgaatcac	2940
cgatacgcga	gcgaacgtga	agcgactgct	gctgcaaaac	gtctgcgacc	tgagcaacaa	3000
catgaatggt	cttcggtttc	cgtgtttcgt	aaagtctgga	aacgcggaag	tcagcgccct	3060
gcaccattat	gttccggatc	tgcatcgcag	gatgctgctg	gctaccctgt	ggaacaccta	3120
catctgtatt	aacgaagcgc	tggcattgac	cctgagtgat	ttttctctgg	tcccgccgca	3180
tccataccgc	cagttgttta	ccctcacaac	gttccagtaa	ccgggcatgt	tcatcatcag	3240
taacccgtat	cgtgagcatc	ctctctcgtt	tcatcggtat	cattaccccc	atgaacagaa	3300
atcccctta	cacggaggca	tcagtgacca	aacaggaaaa	aaccgccctt	aacatggccc	3360
gctttatcag	aagccagaca	ttaacgcttc	tggagaaact Page		gacgcggatg	3420

aacaggcaga	catctgtgaa	tcgcttcacg	accacgctga	tgagctttac	cgcagctgcc	3480
tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	3540
cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	3600
ttggcgggtg	tcggggcgca	gccatgaccc	agtcacgtag	cgatagcgga	gtgtatactg	3660
gcttaactat	gcggcatcag	agcagattgt	actgagagtg	caccatatat	gcggtgtgaa	3720
ataccgcaca	gatgcgtaag	gagaaaatac	cgcatcaggc	gctcttccgc	ttcctcgctc	3780
actgactcgc	tgcgctcggt	cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	3840
gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	3900
cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	3960
cccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	4020
ctataaagat	accaggcgtt	tcccctgga	agctccctcg	tgcgctctcc	tgttccgacc	4080
ctgccgctta	ccggatacct	gtccgccttt	ctcccttcgg	gaagcgtggc	gctttctcat	4140
agctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	4200
cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	4260
aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	4320
gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	ggcctaacta	cggctacact	4380
agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	ttaccttcgg	aaaaagagtt	4440
ggtagctctt	gatccggcaa	acaaaccacc	gctggtagcg	gtggttttt	tgtttgcaag	4500
cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	ttctacgggg	4560
tctgacgctc	agtggaacga	aaactcacgt	taagggattt	tggtcatgaa	caataaaact	4620
gtctgcttac	ataaacagta	atacaagggg	tgttatgagc	catattcaac	gggaaacgtc	4680
ttgctctagg	ccgcgattaa	attccaacat	ggatgctgat	ttatatgggt	ataaatgggc	4740
tcgcgataat	gtcgggcaat	caggtgcgac	aatctatcga	ttgtatggga	agcccgatgc	4800
gccagagttg	tttctgaaac	atggcaaagg	tagcgttgcc	aatgatgtta	cagatgagat	4860
ggtcagacta	aactggctga	cggaatttat	gcctcttccg	accatcaagc	attttatccg	4920
tactcctgat	gatgcatggt	tactcaccac	tgcgatcccc	gggaaaacag	cattccaggt	4980
attagaagaa	tatcctgatt	caggtgaaaa	tattgttgat	gcgctggcag	tgttcctgcg	5040
ccggttgcat	tcgattcctg	tttgtaattg	tccttttaac	agcgatcgcg	tatttcgtct	5100
cgctcaggcg	caatcacgaa	tgaataacgg	tttggttgat	gcgagtgatt	ttgatgacga	5160
gcgtaatggc	tggcctgttg	aacaagtctg	gaaagaaatg	cataaacttt	tgccattctc	5220
accggattca	gtcgtcactc	atggtgattt	ctcacttgat	aaccttattt	ttgacgaggg	5280

015936-2.ST25.txt 5340 gaaattaata ggttgtattg atgttggacg agtcggaatc gcagaccgat accaggatct 5400 tgccatccta tggaactgcc tcggtgagtt ttctccttca ttacagaaac ggctttttca 5460 aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga 5520 gtttttctaa gaattaattc atgagcggat acatatttga atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa aagtgccacc tgaaattgta aacgttaata 5580 5640 ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac caataggccg 5700 aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc 5760 cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa 5820 ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt 5880 cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt agagcttgac 5940 ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 6000 gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg 6029 cgccgctaca gggcgcgtcc cattcgcca <210> 5369 Artificial sequence <220> <223> Intermediate pETM-adp plasmid, on way to pETM-GFP-Imm construct <400> catcaccatc accatcaccc catgagcgat tacgacatcc ccactactga gaatctttat 60 120 tttcagggcg ccatgggagg cacggtaccg gatccgaatt cgagctccgt cgacaagctt 180 gcggccgcac tcgagcacca ccaccaccac cactgagatc cggctgctaa caaagcccga 240 aaggaagctg agttggctgc tgccaccgct gagcaataac tagcataacc ccttggggcc tctaaacggg tcttgagggg ttttttgctg aaaggaggaa ctatatccgg attggcgaat 300 360 gggacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga 420 ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg 480 ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat 540 ttagtgcttt acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg 600 ggccatcgcc ctgatagacg gtttttcgcc ctttgacgtt ggagtccacg ttctttaata 660 gtggactctt gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat 720 ttaacgcgaa ttttaacaaa atattaacgt ttacaatttc aggtggcact tttcggggaa 780 840 atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca

Page 5

tgaattaatt	cttagaaaaa	ctcatcgagc	atcaaatgaa	actgcaattt	attcatatca	900
ggattatcaa	taccatattt	ttgaaaaagc	cgtttctgta	atgaaggaga	aaactcaccg	960
aggcagttcc	ataggatggc	aagatcctgg	tatcggtctg	cgattccgac	tcgtccaaca	1020
tcaatacaac	ctattaattt	ccctcgtca	aaaataaggt	tatcaagtga	gaaatcacca	1080
tgagtgacga	ctgaatccgg	tgagaatggc	aaaagtttat	gcatttcttt	ccagacttgt	1140
tcaacaggcc	agccattacg	ctcgtcatca	aaatcactcg	catcaaccaa	accgttattc	1200
attcgtgatt	gcgcctgagc	gagacgaaat	acgcgatcgc	tgttaaaagg	acaattacaa	1260
acaggaatcg	aatgcaaccg	gcgcaggaac	actgccagcg	catcaacaat	attttcacct	1320
gaatcaggat	attcttctaa	tacctggaat	gctgttttcc	cggggatcgc	agtggtgagt	1380
aaccatgcat	catcaggagt	acggataaaa	tgcttgatgg	tcggaagagg	cataaattcc	1440
gtcagccagt	ttagtctgac	catctcatct	gtaacatcat	tggcaacgct	acctttgcca	1500
tgtttcagaa	acaactctgg	cgcatcgggc	ttcccataca	atcgatagat	tgtcgcacct	1560
gattgcccga	cattatcgcg	agcccattta	tacccatata	aatcagcatc	catgttggaa	1620
tttaatcgcg	gcctagagca	agacgtttcc	cgttgaatat	ggctcataac	accccttgta	1680
ttactgttta	tgtaagcaga	cagttttatt	gttcatgacc	aaaatccctt	aacgtgagtt	1740
ttcgttccac	tgagcgtcag	accccgtaga	aaagatcaaa	ggatcttctt	gagatccttt	1800
ttttctgcgc	gtaatctgct	gcttgcaaac	aaaaaaacca	ccgctaccag	cggtggtttg	1860
tttgccggat	caagagctac	caactctttt	tccgaaggta	actggcttca	gcagagcgca	1920
gataccaaat	actgtccttc	tagtgtagcc	gtagttaggc	caccacttca	agaactctgt	1980
agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	gtggctgctg	ccagtggcga	2040
taagtcgtgt	cttaccgggt	tggactcaag	acgatagtta	ccggataagg	cgcagcggtc	2100
gggctgaacg	gggggttcgt	gcacacagcc	cagcttggag	cgaacgacct	acaccgaact	2160
gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	2220
caggtatccg	gtaagcggca	gggtcggaac	aggagagcgc	acgagggagc	ttccaggggg	2280
aaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	ctctgacttg	agcgtcgatt	2340
tttgtgatgc	tcgtcagggg	ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	2400
acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	tttcctgcgt	tatcccctga	2460
ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	accgctcgcc	gcagccgaac	2520
gaccgagcgc	agcgagtcag	tgagcgagga	agcggaagag	cgcctgatgc	ggtattttct	2580
ccttacgcat	ctgtgcggta	tttcacaccg	catatatggt	gcactctcag	tacaatctgc	2640
tctgatgccg	catagttaag	ccagtataca	ctccgctatc	gctacgtgac	tgggtcatgg	2700

ctgcgccccg	acacccgcca	acacccgctg	015936-2.S acgcgccctg		ctgctcccgg	2760
catccgctta	cagacaagct	gtgaccgtct	ccgggagctg	catgtgtcag	aggttttcac	2820
cgtcatcacc	gaaacgcgcg	aggcagctgc	ggtaaagctc	atcagcgtgg	tcgtgaagcg	2880
attcacagat	gtctgcctgt	tcatccgcgt	ccagctcgtt	gagtttctcc	agaagcgtta	2940
atgtctggct	tctgataaag	cgggccatgt	taagggcggt	tttttcctgt	ttggtcactg	3000
atgcctccgt	gtaaggggga	tttctgttca	tgggggtaat	gataccgatg	aaacgagaga	3060
ggatgctcac	gatacgggtt	actgatgatg	aacatgcccg	gttactggaa	cgttgtgagg	3120
gtaaacaact	ggcggtatgg	atgcggcggg	accagagaaa	aatcactcag	ggtcaatgcc	3180
agcgcttcgt	taatacagat	gtaggtgttc	cacagggtag	ccagcagcat	cctgcgatgc	3240
agatccggaa	cataatggtg	cagggcgctg	acttccgcgt	ttccagactt	tacgaaacac	3300
ggaaaccgaa	gaccattcat	gttgttgctc	aggtcgcaga	cgttttgcag	cagcagtcgc	3360
ttcacgttcg	ctcgcgtatc	ggtgattcat	tctgctaacc	agtaaggcaa	ccccgccagc	3420
ctagccgggt	cctcaacgac	aggagcacga	tcatgcgcac	ccgtggggcc	gccatgccgg	3480
cgataatggc	ctgcttctcg	ccgaaacgtt	tggtggcggg	accagtgacg	aaggcttgag	3540
cgagggcgtg	caagattccg	aataccgcaa	gcgacaggcc	gatcatcgtc	gcgctccagc	3600
gaaagcggtc	ctcgccgaaa	atgacccaga	gcgctgccgg	cacctgtcct	acgagttgca	3660
tgataaagaa	gacagtcata	agtgcggcga	cgatagtcat	gccccgcgcc	caccggaagg	3720
agctgactgg	gttgaaggct	ctcaagggca	tcggtcgaga	tcccggtgcc	taatgagtga	3780
gctaacttac	attaattgcg	ttgcgctcac	tgcccgcttt	ccagtcggga	aacctgtcgt	3840
gccagctgca	ttaatgaatc	ggccaacgcg	cggggagagg	cggtttgcgt	attgggcgcc	3900
agggtggttt	ttcttttcac	cagtgagacg	ggcaacagct	gattgccctt	caccgcctgg	3960
ccctgagaga	gttgcagcaa	gcggtccacg	ctggtttgcc	ccagcaggcg	aaaatcctgt	4020
ttgatggtgg	ttaacggcgg	gatataacat	gagctgtctt	cggtatcgtc	gtatcccact	4080
accgagatat	ccgcaccaac	gcgcagcccg	gactcggtaa	tggcgcgcat	tgcgcccagc	4140
gccatctgat	cgttggcaac	cagcatcgca	gtgggaacga	tgccctcatt	cagcatttgc	4200
atggtttgtt	gaaaaccgga	catggcactc	cagtcgcctt	cccgttccgc	tatcggctga	4260
atttgattgc	gagtgagata	tttatgccag	ccagccagac	gcagacgcgc	cgagacagaa	4320
cttaatgggc	ccgctaacag	cgcgatttgc	tggtgaccca	atgcgaccag	atgctccacg	4380
cccagtcgcg	taccgtcttc	atgggagaaa	ataatactgt	tgatgggtgt	ctggtcagag	4440
acatcaagaa	ataacgccgg	aacattagtg	caggcagctt	ccacagcaat	ggcatcctgg	4500
tcatccagcg	gatagttaat	gatcagccca	ctgacgcgtt	gcgcgagaag	attgtgcacc	4560
gccgctttac	aggcttcgac	gccgcttcgt	tctaccatcg Page	acaccaccac 7	gctggcaccc	4620

agttgatcgg cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg cagggccaga	4680
ctggaggtgg caacgccaat cagcaacgac tgtttgcccg ccagttgttg tgccacgcgg	4740
ttgggaatgt aattcagctc cgccatcgcc gcttccactt tttcccgcgt tttcgcagaa	4800
acgtggctgg cctggttcac cacgcgggaa acggtctgat aagagacacc ggcatactct	4860
gcgacatcgt ataacgttac tggtttcaca ttcaccaccc tgaattgact ctcttccggg	4920
cgctatcatg ccataccgcg aaaggttttg cgccattcga tggtgtccgg gatctcgacg	4980
ctctccctta tgcgactcct gcattaggaa gcagcccagt agtaggttga ggccgttgag	5040
caccgccgcc gcaaggaatg gtgcatgcaa ggagatggcg cccaacagtc ccccggccac	5100
ggggcctgcc accataccca cgccgaaaca agcgctcatg agcccgaagt ggcgagcccg	5160
atcttcccca tcggtgatgt cggcgatata ggcgccagca accgcacctg tggcgccggt	5220
gatgccggcc acgatgcgtc cggcgtagag gatcgagatc tcgatcccgc gaaattaata	5280
cgactcacta taggggaatt gtgagcggat aacaattccc ctctagaaat aattttgatt	5340
taactttaag aaggagatat accatgaaa	5369
<pre><210> 4 <211> 3337 <212> DNA <213> Artificial sequence <220> <223> pGFPuv plasmid coding for GFP from Aequorea victoria <220> <221> CDS <222> (286)(1014) <223> pGFPuv plasmid coding for GFP from Aequorea victoria</pre>	
<400> 4 agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc	60
acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc	120
tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa	180
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagcttg	240
catgcctgca ggtcgactct agaggatccc cgggtaccgg tagaa aaa atg agt aaa	297
Lys Met Ser Lys	
gga gaa gaa ctt ttc act gga gtt gtc cca att ctt gtt gaa tta gat Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp 5 10 15 20	345
ggt gat gtt aat ggg cac aaa ttt tct gtc agt gga gag ggt gaa ggt Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly 25 30 35	393

gat gca aca Asp Ala Thr	tac gga aaa Tyr Gly Lys	ctt acc Leu Thr	ctt aaa	ttt	Γ25.txt att tgc Ile Cys	act act Thr Thr	gga 441 Gly
	40		45			50	
aaa cta cct Lys Leu Pro 55							
gtt caa tgc Val Gln Cys 70				Met			
ttc aag agt Phe Lys Ser 85							
ttc aaa gat Phe Lys Asp	gac ggg aac Asp Gly Asn 105	tac aag Tyr Lys	acg cgt Thr Arg 110	gct Ala	gaa gtc Glu Val	aag ttt Lys Phe 115	gaa 633 Glu
ggt gat acc Gly Asp Thr	ctt gtt aat Leu Val Asn 120	cgt atc Arg Ile	gag tta Glu Leu 125	a aa Lys	ggt att Gly Ile	gat ttt Asp Phe 130	aaa 681 Lys
gaa gat gga Glu Asp Gly 135	aac att ctc Asn Ile Leu	gga cac Gly His 140	aaa ctc Lys Leu	gag Glu	tac aac Tyr Asn 145	tat aac Tyr Asn	tca 729 Ser
cac aat gta His Asn Val 150	tac atc acg Tyr Ile Thr	gca gac Ala Asp 155	aaa caa Lys Gln	Lys	aat gga Asn Gly 160	atc aaa Ile Lys	gct 777 Ala
aac ttc aaa Asn Phe Lys 165	att cgc cac Ile Arg His 170	aac att Asn Ile	gaa gat Glu Asp	gga Gly 175	tcc gtt Ser Val	caa cta Gln Leu	gca 825 Ala 180
gac cat tat Asp His Tyr	caa caa aat Gln Gln Asn 185	act cca Thr Pro	att ggc Ile Gly 190	gat Asp	ggc cct Gly Pro	gtc ctt Val Leu 195	tta 873 Leu
cca gac aac Pro Asp Asn	cat tac ctg His Tyr Leu 200	tcg aca Ser Thr	caa tct Gln Ser 205	gcc Ala	ctt tcg Leu Ser	aaa gat Lys Asp 210	ccc 921 Pro
aac gaa aag Asn Glu Lys 215	cgt gac cac Arg Asp His	atg gtc Met Val 220	ctt ctt Leu Leu	gag Glu	ttt gta Phe Val 225	act gct Thr Ala	gct 969 Ala
ggg att aca Gly Ile Thr 230	cat ggc atg His Gly Met	gat gag Asp Glu 235	ctc tac Leu Tyr	aaa Lys	taa tga	att cca Ile Pro 240	1014
actgagcgcc g	gtcgctacc a	ttaccaact	tgtctg	gtgt	caaaaat	aat aggc	ctacta 1074
gtcggccgta c	gggcccttt c	gtctcgcgd	gtttcg	gtga	tgacggt	gaa aacc	tctgac 1134
acatgcagct c	ccggagacg g	tcacagctt	gtctgta	aagc	ggatgcc	ggg agca	gacaag 1194
cccgtcaggg c	gcgtcagcg g	gtgttggcg	ggtgtc	9999	ctggctt	aac tatg	oggcat 1254
cagagcagat t	gtactgaga g	tgcaccata	a tgcggtg	gtga	aataccg	cac agat	gcgtaa 1314
ggagaaaata c	cgcatcagg c	ggccttaag		gtga Page		att ttta	taggtt 1374

aatgtcatga	taataatggt	ttcttagacg	tcaggtggca	cttttcgggg	aaatgtgcgc	1434
ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	1494
taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	1554
cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	1614
acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	1674
ctggatctca	acagcggtaa	gatccttgag	agttttcgcc	ccgaagaacg	ttttccaatg	1734
atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	cccgtattga	cgccgggcaa	1794
gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	1854
acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	1914
atgagtgata	acactgcggc	caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	1974
accgcttttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	2034
ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgtagc	aatggcaaca	2094
acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	2154
gactggatgg	aggcggataa	agttgcagga	ccacttctgc	gctcggccct	tccggctggc	2214
tggtttattg	ctgataaatc	tggagccggt	gagc g tg g gt	ctcgcggtat	cattgcagca	2274
ctggggccag	atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	2334
actatggatg	aacgaaatag	acagatcgct	gagataggtg	cctcactgat	taagcattgg	2394
taactgtcag	accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	2454
tttaaaagga	tctaggtgaa	gatccttttt	gataatctca	tgaccaaaat	cccttaacgt	2514
gagttttcgt	tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	ttcttgagat	2574
ccttttttc	tgcgcgtaat	ctgctgcttg	caaacaaaaa	aaccaccgct	accagcggtg	2634
gtttgtttgc	cggatcaaga	gctaccaact	ctttttccga	aggtaactgg	cttcagcaga	2694
gcgcagatac	caaatactgt	ccttctagtg	tagccgtagt	taggccacca	cttcaagaac	2754
tctgtagcac	cgcctacata	cctcgctctg	ctaatcctgt	taccagtggc	tgctgccagt	2814
ggcgataagt	cgtgtcttac	cgggttggac	tcaagacgat	agttaccgga	taaggcgcag	2874
cggtcgggct	gaacgggggg	ttcgtgcaca	cagcccagct	tggagcgaac	gacctacacc	2934
gaactgagat	acctacagcg	tgagctatga	gaaagcgcca	cgcttcccga	agggagaaag	2994
gcggacaggt	atccggtaag	cggcagggtc	ggaacaggag	agcgcacgag	ggagcttcca	3054
gggggaaacg	cctggtatct	ttatagtcct	gtcgggtttc	gccacctctg	acttgagcgt	3114
cgatttttgt	gatgctcgtc	aggggggcgg	agcctatgga	aaaacgccag	caacgcggcc	3174
tttttacggt	tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	tgcgttatcc	3234

cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc tcgccgcagc cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aag

32943337

<212> P	39 RT	al seque	nce									
<220> <223> S	yntheti	c Constr	uct									
<400> 5												
Lys Met 1	Ser Lys	Gly Glu 5	Glu	Leu	Phe	Thr 10	Gly	Val	val	Pro	Ile 15	Leu
Val Glu	Leu Asp 20	Gly Asp	val ,	Asn	Gly 25	His	Lys	Phe	Ser	val 30	Ser	Gly
Glu Gly	Glu Gly 35	Asp Ala		Tyr 40	Gly	Lys	Leu	Thr	Leu 45	Lys	Phe	Ile
Cys Thr 50	Thr Gly	Lys Leu	Pro '	۷al	Pro	Trp	Pro	Thr 60	Leu	val	Thr	Thr
Phe Ser 65	туr Gly	Val Gln 70	Cys	Phe	Ser	Arg	Tyr 75	Pro	Asp	His	Met	Lys 80
Arg His	Asp Phe	Phe Lys 85	Ser /	Ala	Met	Pro 90	Glu	Gly	Tyr	val	Gln 95	Glu
Arg Thr	Ile Ser 100		Asp /	Asp	Gly 105	Asn	Tyr	Lys	Thr	Arg 110	Ala	Glu
Val Lys	Phe Glu 115	Gly Asp		Leu 120	Val	Asn	Arg	Ile	Glu 125	Leu	Lys	Gly
Ile Asp 130	Phe Lys	Glu Asp	Gly . 135	Asn		Leu			Lys	Leu	Glu	Tyr
Asn Tyr 145	Asn Ser	His Asn 150		Tyr	Ile	Thr	Ala 155	Asp	Lys	Gln	Lys	Asn 160
Gly Ile	Lys Ala	Asn Phe 165	Lys	Ile	Arg	ніs 170	Asn	Ile	Glu	Asp	Gly 175	Ser
Val Gln	Leu Ala 180		Tyr	Gln	Gln 185	Asn	Thr	Pro	Ile	Gly 190	Asp	Gly

O15936-2.ST25.txt Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205	
Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 220	
Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 225 230 235	
<210> 6 <211> 6069 <212> DNA <213> Artificial sequence	
<220> <223> pETM-GFP-Imm plasmid containing Hisx6 tag, flexible joint	
as frame adapter, and A. victoria GFP gene	
<pre><220> <221> CDS <222> (1)(876) <223> pETM-GFP-Imm plasmid containing Hisx6 tag, flexible joint</pre>	
as frame adapter, and A. victoria GFP gene	
<pre><400> 6 atg aaa cat cac cat cac cat cac ccc atg agc gat tac gac atc ccc 4 Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro 1 5 10 15</pre>	48
act act gag aat ctt tat ttt cag ggc gcc atg gga ggc acg gta ccg Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro 20 25 30	96
gta gaa aaa atg agt aaa gga gaa ctt ttc act gga gtt gtc cca Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro 35 40 45	44
att ctt gtt gaa tta gat ggt gat gtt aat ggg cac aaa ttt tct gtc Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val 50 55 60	92
agt gga gag ggt gaa ggt gat gca aca tac gga aaa ctt acc ctt aaa 24 Ser Gly Glu Gly Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 65 70 75 80	40
ttt att tgc act act gga aaa cta cct gtt cca tgg cca aca ctt gtc Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 85 90 95	38
act act ttc tct tat ggt gtt caa tgc ttt tcc cgt tat ccg gat cat Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His 100 105 110	36
atg aaa cgg cat gac ttt ttc aag agt gcc atg ccc gaa ggt tat gta Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val 115 120 125	84

015936-2.ST25.txt	433
cag gaa cgc act ata tct ttc aaa gat gac ggg aac tac aag acg cgt Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg 130 135 140	432
gct gaa gtc aag ttt gaa ggt gat acc ctt gtt aat cgt atc gag tta Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu 145 150 155 160	480
aaa ggt att gat ttt aaa gaa gat gga aac att ctc gga cac aaa ctc Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu 165 170 175	528
gag tac aac tat aac tca cac aat gta tac atc acg gca gac aaa caa Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln 180 185 190	576
aag aat gga atc aaa gct aac ttc aaa att cgc cac aac att gaa gat Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp 195 200 205	624
gga tcc gtt caa cta gca gac cat tat caa caa aat act cca att ggc Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 210 215 220	672
gat ggc cct gtc ctt tta cca gac aac cat tac ctg tcg aca caa tct Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 235 230 235	720
gcc ctt tcg aaa gat ccc aac gaa aag cgt gac cac atg gtc ctt ctt Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 245 250 255	768
gag ttt gta act gct gct ggg att aca cat ggc atg gat gag ctc cgt Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg 260 265 270	816
cga caa gct tgc ggc cgc act cga gca cca cca cca cca cca ctg aga Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Pro Leu Arg 275 280 285	864
tcc ggc tgc taa caaagcccga aaggaagctg agttggctgc tgccaccgct Ser Gly Cys 290	916
gagcaataac tagcataacc ccttggggcc tctaaacggg tcttgagggg ttttttgctg	976
aaaggaggaa ctatatccgg attggcgaat gggacgcgcc ctgtagcggc gcattaagcg	1036
cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ctagcgcccg	1096
ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc	1156
taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa	1216
aacttgatta gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc	1276
ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac	1336
tcaaccctat ctcggtctat tcttttgatt tataagggat tttgccgatt tcggcctatt	1396
ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgt	1456
ttacaatttc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt Page 13	1516

tctaaataca	ttcaaatatg	tatccgctca	tgaattaatt	cttagaaaaa	ctcatcgagc	1576
atcaaatgaa	actgcaattt	attcatatca	ggattatcaa	taccatattt	ttgaaaaagc	1636
cgtttctgta	atgaaggaga	aaactcaccg	aggcagttcc	ataggatggc	aagatcctgg	1696
tatcggtctg	cgattccgac	tcgtccaaca	tcaatacaac	ctattaattt	cccctcgtca	1756
aaaataaggt	tatcaagtga	gaaatcacca	tgagtgacga	ctgaatccgg	tgagaatggc	1816
aaaagtttat	gcatttcttt	ccagacttgt	tcaacaggcc	agccattacg	ctcgtcatca	1876
aaatcactcg	catcaaccaa	accgttattc	attcgtgatt	gcgcctgagc	gagacgaaat	1936
acgcgatcgc	tgttaaaagg	acaattacaa	acaggaatcg	aatgcaaccg	gcgcaggaac	1996
actgccagcg	catcaacaat	attttcacct	gaatcaggat	attcttctaa	tacctggaat	2056
gctgttttcc	cggggatcgc	agtggtgagt	aaccatgcat	catcaggagt	acggataaaa	2116
tgcttgatgg	tcggaagagg	cataaattcc	gtcagccagt	ttagtctgac	catctcatct	2176
gtaacatcat	tggcaacgct	acctttgcca	tgtttcagaa	acaactctgg	cgcatcgggc	2236
ttcccataca	atcgatagat	tgtcgcacct	gattgcccga	cattatcgcg	agcccattta	2296
tacccatata	aatcagcatc	catgttggaa	tttaatcgcg	gcctagagca	agacgtttcc	2356
cgttgaatat	ggctcataac	accccttgta	ttactgttta	tgtaagcaga	cagttttatt	2416
gttcatgacc	aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	accccgtaga	2476
aaagatcaaa	ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	gcttgcaaac	2536
aaaaaaacca	ccgctaccag	cggtggtttg	tttgccggat	caagagctac	caactctttt	2596
tccgaaggta	actggcttca	gcagagcgca	gataccaaat	actgtccttc	tagtgtagcc	2656
gtagttaggc	caccacttca	agaactctgt	agcaccgcct	acatacctcg	ctctgctaat	2716
cctgttacca	gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	tggactcaag	2776
acgatagtta	ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	gcacacagcc	2836
cagcttggag	cgaacgacct	acaccgaact	gagataccta	cagcgtgagc	tatgagaaag	2896
cgccacgctt	cccgaaggga	gaaaggcgga	caggtatccg	gtaagcggca	gggtcggaac	2956
aggagagcgc	acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	gtcctgtcgg	3016
gtttcgccac	ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	ggcggagcct	3076
atggaaaaac	gccagcaacg	cggccttttt	acggttcctg	gccttttgct	ggccttttgc	3136
tcacatgttc	tttcctgcgt	tatcccctga	ttctgtggat	aaccgtatta	ccgcctttga	3196
gtgagctgat	accgctcgcc	gcagccgaac	gaccgagcgc	agcgagtcag	tgagcgagga	3256
agcggaagag	cgcctgatgc	ggtattttct	ccttacgcat	ctgtgcggta	tttcacaccg	3316
catatatggt	gcactctcag	tacaatctgc	tctgatgccg	catagttaag	ccagtataca	3376

ctccgctatc	gctacgtgac	tgggtcatgg	015936-2.s ctgcgccccg		acacccgctg	3436
acgcgccctg	acgggcttgt	ctgctcccgg	catccgctta	cagacaagct	gtgaccgtct	3496
ccgggagctg	catgtgtcag	aggttttcac	cgtcatcacc	gaaacgcgcg	aggcagctgc	3556
ggtaaagctc	atcagcgtgg	tcgtgaagcg	attcacagat	gtctgcctgt	tcatccgcgt	3616
ccagctcgtt	gagtttctcc	agaagcgtta	atgtctggct	tctgataaag	cgggccatgt	3676
taagggcggt	tttttcctgt	ttggtcactg	atgcctccgt	gtaaggggga	tttctgttca	3736
tgggggtaat	gataccgatg	aaacgagaga	ggatgctcac	gatacgggtt	actgatgatg	3796
aacatgcccg	gttactggaa	cgttgtgagg	gtaaacaact	ggcggtatgg	atgcggcggg	3856
accagagaaa	aatcactcag	ggtcaatgcc	agcgcttcgt	taatacagat	gtaggtgttc	3916
cacagggtag	ccagcagcat	cctgcgatgc	agatccggaa	cataatggtg	cagggcgctg	3976
acttccgcgt	ttccagactt	tacgaaacac	ggaaaccgaa	gaccattcat	gttgttgctc	4036
aggtcgcaga	cgttttgcag	cagcagtcgc	ttcacgttcg	ctcgcgtatc	ggtgattcat	4096
tctgctaacc	agtaaggcaa	ccccgccagc	ctagccgggt	cctcaacgac	aggagcacga	4156
tcatgcgcac	ccgtggggcc	gccatgccgg	cgataatggc	ctgcttctcg	ccgaaacgtt	4216
tggtggcggg	accagtgacg	aaggcttgag	cgagggcgtg	caagattccg	aataccgcaa	4276
gcgacaggcc	gatcatcgtc	gcgctccagc	gaaagcggtc	ctcgccgaaa	atgacccaga	4336
gcgctgccgg	cacctgtcct	acgagttgca	tgataaagaa	gacagtcata	agtgcggcga	4396
cgatagtcat	gccccgcgcc	caccggaagg	agctgactgg	gttgaaggct	ctcaagggca	4456
tcggtcgaga	tcccggtgcc	taatgagtga	gctaacttac	attaattgcg	ttgcgctcac	4516
tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	4576
cggggagagg	cggtttgcgt	attgggcgcc	agggtggttt	ttcttttcac	cagtgagacg	4636
ggcaacagct	gattgccctt	caccgcctgg	ccctgagaga	gttgcagcaa	gcggtccacg	4696
ctggtttgcc	ccagcaggcg	aaaatcctgt	ttgatggtgg	ttaacggcgg	gatataacat	4756
gagctgtctt	cggtatcgtc	gtatcccact	accgagatat	ccgcaccaac	gcgcagcccg	4816
gactcggtaa	tggcgcgcat	tgcgcccagc	gccatctgat	cgttggcaac	cagcatcgca	4876
gtgggaacga	tgccctcatt	cagcatttgc	atggtttgtt	gaaaaccgga	catggcactc	4936
cagtcgcctt	cccgttccgc	tatcggctga	atttgattgc	gagtgagata	tttatgccag	4996
ccagccagac	gcagacgcgc	cgagacagaa	cttaatgggc	ccgctaacag	cgcgatttgc	5056
tggtgaccca	atgcgaccag	atgctccacg	cccagtcgcg	taccgtcttc	atgggagaaa	5116
ataatactgt	tgatgggtgt	ctggtcagag	acatcaagaa	ataacgccgg	aacattagtg	5176
caggcagctt	ccacagcaat	ggcatcctgg	tcatccagcg	gatagttaat	gatcagccca	5236
ctgacgcgtt	gcgcgagaag	attgtgcacc	gccgctttac Page	aggcttcgac 15	gccgcttcgt	5296

tctaccatcg	acaccaccac	gctggcaccc	agttgatcgg	cgcgagattt	aatcgccgcg	5356
acaatttgcg	acggcgcgtg	cagggccaga	ctggaggtgg	caacgccaat	cagcaacgac	5416
tgtttgcccg	ccagttgttg	tgccacgcgg	ttgggaatgt	aattcagctc	cgccatcgcc	5476
gcttccactt	tttcccgcgt	tttcgcagaa	acgtggctgg	cctggttcac	cacgcgggaa	5536
acggtctgat	aagagacacc	ggcatactct	gcgacatcgt	ataacgttac	tggtttcaca	5596
ttcaccaccc	tgaattgact	ctcttccggg	cgctatcatg	ccataccgcg	aaaggttttg	5656
cgccattcga	tggtgtccgg	gatctcgacg	ctctccctta	tgcgactcct	gcattaggaa	5716
gcagcccagt	agtaggttga	ggccgttgag	caccgccgcc	gcaaggaatg	gtgcatgcaa	5776
ggagatggcg	cccaacagtc	ccccggccac	ggggcctgcc	accataccca	cgccgaaaca	5836
agcgctcatg	agcccgaagt	ggcgagcccg	atcttcccca	tcggtgatgt	cggcgatata	5896
ggcgccagca	accgcacctg	tggcgccggt	gatgccggcc	acgatgcgtc	cggcgtagag	5956
gatcgagatc	tcgatcccgc	gaaattaata	cgactcacta	taggggaatt	gtgagcggat	6016
aacaattccc	ctctagaaat	aattttgatt	taactttaag	aaggagatat	acc	6069

<210> 7 <211> 291

<212> PRT <213> Artificial sequence

<220> <223> Synthetic Construct

<400> 7

Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro $20 \\ 25 \\ 30$

Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro 35 40 45

Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val 50 60

Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 65 70 75 80

Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 85 90 95

Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Page 16

110

Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val 115 120 125

Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg 130 135 140

Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu 145 150 155 160

Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu 165 170 175

Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln 180 185 190

Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp 195 200 205

Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 210 215 220

Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 225 230 235 240

Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 245 250 255

Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg 260 265 270

Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Leu Arg 275 280 285

Ser Gly Cys 290

<210> 8 <211> 17

<212> DNA

<213> Artificial sequence

<220>
<223> Frame adapter used for prevention of frameshift mutation as a
 result of plasmid modification

<220>

```
<221> misc_feature
<222>
       (1)...(17)
       Frame adapter used for prevention of frameshift mutation as a
<223>
       result of plasmid modification
<400> 8
                                                                        17
catgggaggc acggtac
<210>
       9
<211>
       5
<212>
       PRT
      Artificial sequence
<213>
<220>
<223>
       Peptide design based on size and flexibility to act as a linker
       between the tag and GFP protein segments
<220>
<221>
       MISC_FEATURE
       Peptide design based on size and flexibility to act as a linker
<223>
       between the tag and GFP protein segments
<400> 9
Met Gly Gly Thr Val
<210>
       10
<211>
       6
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       Peptide design based on charge and shape to bind the
       expressed protein to a suitably interactive surface
<220>
<221>
       MISC_FEATURE
<223>
       Peptide design based on charge and shape to bind the
       expressed protein to a suitably interactive surface
<400>
      10
His His His His His
<210>
       11
<211>
       238
<212>
       PRT
<213>
      Aequorea victora
<220>
<221>
      MISC_FEATURE
      Green fluorescent peptide coded by pGFPuv plasmid, permitting
<223>
                                        Page 18
```

015936-2.ST25.txt easy visualisation and quantification based on fluorescence properties

<400> 11

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 60

Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly 145 150 155 160

Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 220

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 235 Page 19

<210 <211 <212 <213	l> 2>	12 291 PRT Arti	ficia	al se	equer	ıce									
<220> <223> Completed peptide based on Hisx6 tag, short physically linker and green fluorescent protein coded by pETM-GFP impart fluorescence properties, allowing easy immobili retention of bioactivity, visualisation and quantification.										FP-Imm to lisation with					
<pre><220> <221> MISC_FEATURE <223> Completed peptide based on Hisx6 tag, short physically flexible linker and green fluorescent protein coded by pETM-GFP-Imm to impart fluorescence properties, allowing easy immobilisation we retention of bioactivity, visualisation and quantification</pre>										ly flexible -P-Imm to lisation with cation					
<400)>	12													
Met 1	Lys	His	His	His 5	His	His	His	Pro	Met 10	Ser	Asp	Tyr	Asp	Ile 15	Pro
Thr	Thr	Glu	Asn 20	Leu	Tyr	Phe	Gln	G]y 25	Ala	Met	Gly	Gly	Thr 30	val	Pro
val	Glu	Lys 35	Met	Ser	Lys	Gly	Glu 40	Glu	Leu	Phe	Thr	G]y 45	val	Val	Pro
Ile	Leu 50	٧al	Glu	Leu	Asp	Gly 55	Asp	۷al	Asn	Gly	ніs 60	Lys	Phe	Ser	Val
Ser 65	Gly	Glu	Gly	Glu	Gly 70	Asp	Ala	Thr	Tyr	Gly 75	Lys	Leu	Thr	Leu	Lys 80
Phe	Ile	Cys	Thr	Thr 85	Gly	Lys	Leu	Pro	va1 90	Pro	Trp	Pro	Thr	Leu 95	Val
Thr	Thr	Phe	Ser 100	Tyr	Gly	٧a٦	Gln	Cys 105	Phe	Ser	Arg	Tyr	Pro 110	Asp	His
Met	Lys	Arg 115	His	Asp	Phe	Phe	Lys 120	Ser	Ala	Met	Pro	Glu 125	Gly	Tyr	val
Gln	Glu 130	Arg	Thr	Ile	Ser	Phe 135	Lys	Asp	Asp	Gly	Asn 140	Tyr	Lys	Thr	Arg
Ala 145	Glu	val	Lys	Phe	Glu 150	Gly	Asp	Thr	Leu	Val 155	Asn	Arg	Ile	Glu	Leu 160

015936-2.ST25.txt Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu 165 170 175 Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln 180 185 190 Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp 195 200 205 Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 210 215 220 Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 225 230 235 240 Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 245 250 255 Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg 260 265 270 Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Leu Arg 275 280 285 Ser Gly Cys 290 <210> 13 <211> 29 <212> DNA Artificial sequence <220> <223> Frame adapter

<400>

13

gtacgccatg ggaggcacgg taccttgtg

29