

Chiffrement et Codes Correcteurs : Évaluation Sommative 1

Nasko Karamanov, Ludovic Perret, Loie Rouquette

Exercices

Question 0-1 Cet exercice est à rédiger sur la feuille donnée, dans la zone Exercice 1.

Le mode opératoire CFB (cipher feedback) est décrit sur le schéma suivant :

cfb

Soit $c_0 = IV$ le vecteur d'initialisation et K la clé de chiffrement et $m_1, m_2, ...m_n$ les blocs de messages. Ainsi d'après le schéma

 $c_i = m_i \oplus Enc_K(c_{i-1})$

Questions

- a) Donner la formule que permet de récupérer les blocks m_i à partir des blocs chiffrés c_i et la clé K.
- b) Une erreur s'est produit dans la transmission de c_2 et c_4 . Quels sont les blocs de messages impactés lors du déchiffrement? Justifier.
- c) Le chiffrement de Even-Mansour est défini ainsi : on choisit une permutation de bits $P: \{0,1\}^n \to \{0,1\}^n$ et deux clés k_1 et k_2 de longueur n. Alors un bloc de message de longueur n bits est chiffré par $Enc_{k_1,k_2}(x) = P(x \oplus k_1) \oplus k_2$.
 - On décide de combiner le mode opératoire CFB avec le chiffrement Even-Mansour en choisissant deux clés et en remplaçant $Enc_K(c_{i-1})$ par $Enc_{k_1,k_2}(c_{i-1})$
 - On choisit la permutation P qui décale les bits à gauche : $P(a_3a_2a_1a_0) = a_2a_1a_0a_3$. Par exemple P(0110) = 1100,

Déterminer c_1 si $k_1 = 1010 \ k_2 = 0110$, IV = 1101 et $m_1 = 0100$.

Cipher Feedback (CFB) mode encryption

This exercise is to be completed on the provided sheet, in the "Exercise 1" area.

The CFB (Cipher Feedback) mode of operation is described by the following diagram:

Let $c_0 = IV$ be the initialization vector, K the encryption key, and $m_1, m_2, ..., m_n$ the message blocks. According to the diagram (see above):

$$c_i = m_i \oplus Enc_K(c_{i-1})$$

Questions:

- a) Provide the formula to recover the message blocks m_i from the encrypted blocks c_i and the key K.
- b) An error occurred during the transmission of c_2 and c_4 . Which message blocks will be affected during decryption? Justify your answer.
- c) The Even-Mansour encryption is defined as follows: A bit permutation $P: \{0,1\}^n \to \{0,1\}^n$ and two keys k_1 and k_2 of length n are chosen. Then, a message block of length n bits is encrypted by $Enc_{k_1,k_2}(x) = P(x \oplus k_1) \oplus k_2$. We decide to combine the CFB mode with the Even-Mansour encryption by choosing two keys and replacing $Enc_K(c_{i-1})$ with $Enc_{k_1,k_2}(c_{i-1})$.

We choose the permutation P that shifts the bits to the left : $P(a_3a_2a_1a_0) = a_2a_1a_0a_3$. For example, P(0110) = 1100

Determine c_1 if $k_1 = 1010$, $k_2 = 0110$, IV = 1101, and $m_1 = 0100$.

Solution 0-1

a) Formule de déchiffrement :

On a la formule de chiffrement :

$$c_i = m_i \oplus Enc_K(c_{i-1})$$

En appliquant un XOR des deux côtés avec $Enc_K(c_{i-1})$, on obtient :

$$m_i = c_i \oplus Enc_K(c_{i-1})$$

b) **Propagation des erreurs :**

L'erreur dans c_2 va impacter :

- directement $m_2 = c_2 \oplus Enc_K(c_1)$, donc m_2 sera incorrect.
- et également $m_3 = c_3 \oplus Enc_K(c_2)$, car le chiffrement de c_2 est utilisé. Donc m_3 sera aussi affecté.
- mais m_4 dépend de c_3 , et non plus de c_2 , donc l'erreur ne se propage pas au-delà.

De même, une erreur dans c_4 affectera :

- $m_4 = c_4 \oplus Enc_K(c_3)$: donc m_4 est incorrect.
- $m_5 = c_5 \oplus Enc_K(c_4)$: donc m_5 est aussi incorrect.
- Les blocs suivants ne sont pas impactés.

Ainsi, chaque erreur dans un bloc c_i corrompt deux blocs de messages : m_i et m_{i+1} .

c) Chiffrement Even-Mansour combiné avec le mode CFB :

Données:

$$k_1 = 1010$$
, $k_2 = 0110$, $IV = 1101$, $m_1 = 0100$

Étapes du chiffrement :

1.
$$IV \oplus k_1 = 1101 \oplus 1010 = 0111$$

2. P(0111): On applique la permutation de bits à gauche $a_3a_2a_1a_0 \rightarrow a_2a_1a_0a_3$, donc :

$$P(0111) = 1110$$

3. On applique ensuite le XOR avec k_2 :

$$Enc_{k_1,k_2}(IV) = P(IV \oplus k_1) \oplus k_2 = 1110 \oplus 0110 = 1000$$

4. Enfin, on calcule $c_1 = m_1 \oplus Enc_{k_1,k_2}(IV) = 0100 \oplus 1000 = 1100$

Résultat : $c_1 = \boxed{1100}$

Question 0-2 Alice et Bob ont crée leur propre cryptosystem Shifted Power comme suit :

Génération de Clés:

Choix des Paramètres :

Choisir p premier, g générateur de $\mathbb{Z}/p\mathbb{Z}^{\times}$

Choisir un entier secret b (la clé privée), où 1 < b < p - 1

Choisir un entier de décalage 1 < s < p - 1

Calcul de la Clé Publique : $K_b = g^b \mod p$.

La clé publique est (p, g, K_b, s) .

La clé privée est b.

Chiffrement:

Le message M doit être un entier tel que $1 \le M \le p-1$

Choisir un entier aléatoire a

$$C_1 = g^a \mod p$$

$$C_2 = (M+s) \cdot K_b^a \mod p$$

Le chiffré est $C = (C_1, C_2)$

Déchiffrement :

 $M = (C_1^b)^{-1}C_2 - s \mod p$ La clé publique de Bob est (17, 3, 15, 2).

- a) Alice veut chiffrer le message M = 10 avec a = 3. Quel est le message chiffré C?
- b) Bob a perdu sa clé privé. Pour ceci il a appliqué l'algorithme de Shank et obtient les listes suivantes : $L_1 = 1, 3, 9, 10$ et $L_2 = 15, 9, 2, 8$. Quelle sa clé privée ? Justifier.

Goal: Solution of $g^x = b$

This is a collision algorithm ; two lists of elements of are created, and we look for an element that appears in both lists (collision).

- Step 1 : choose $n>\sqrt{p},$ for example $n=1+\lfloor\sqrt{p}\rfloor$
- Step 2 : generate lists:
 - First list (baby-steps) ; 1, $g,\ g^2,\dots,\ g^{n-1}$
 - Second list (giant-steps) : b, $bg^{-n},\ bg^{-2n},\ \dots,\ bg^{(n-1)n}$
- Step 3 : find a collision (same element in both lists) $g^r = b g^{-qn}$
- Step 4: then $g^{qn+r} = b$, thus x = qn + r

Alice and Bob created their own Shifted Power cryptosystem as follows:

Key Generation:

Parameter Selection:

Choose p prime, g generator of $\mathbb{Z}/p\mathbb{Z}^{\times}$ Choose a secret integer b (the private key), where 1 < b < p - 1Choose a shift integer 1 < s < p - 1

Public Key Calculation:

$$K_b = g^b \mod p$$

The public key is $p, g, (K_b), s$.
The private key is b .

Encryption:

The message M must be an integer such that $1 \le M \le p-1$

Choose a random integer a

$$C_1 = g^a \mod p$$

$$C_2 = (M+s) \cdot K_b^a \mod p$$

The ciphertext is $C = (C_1, C_2)$

Decryption:

$$M = (C_1^b)^{-1}C_2 - s \mod p$$

Bob's public key is $(17, 3, 15, 2)$.

- a) Alice wants to encrypt the message M = 10 with a = 3. What is the encrypted message C?
- b) Bob lost his private key. For this, he applied Shank's algorithm (see above) and obtained the following lists: $L_1 = 1, 3, 9, 10$ and $L_2 = 15, 9, 2, 8$. What is his private key? Justify.

Solution 0-2

- a) Chiffrement du message M = 10 avec a = 3
 - Paramètres publics : p = 17, g = 3, $K_b = 15$, s = 2
 - On calcule:

$$C_1 = g^a \mod p = 3^3 \mod 17 = 27 \mod 17 = 10$$

$$C_2 = (M+s) \cdot K_b^a \mod p = (10+2) \cdot 15^3 \mod 17$$

D'abord, $15^3 = 3375$. Calculons 3375 mod 17 :

$$3375 \div 17 \approx 198.53 \Rightarrow 17 \cdot 198 = 3366, \quad 3375 - 3366 = 9 \Rightarrow 15^3 \mod 17 = 9$$

Donc:

$$C_2 = 12 \cdot 9 \mod 17 = 108 \mod 17 = 6 \pmod{17 \cdot 6} = 102, \ 108 - 102 = 6$$

Résultat : C = (10, 6)

b) Retrouver la clé privée b via l'algorithme de Shank

On cherche b tel que $g^b \equiv K_b \mod p$, c'est-à-dire :

$$3^b \equiv 15 \mod 17$$

D'après l'algorithme de Shank (Baby-Step Giant-Step), on a deux listes :

$$L_1 = \{1, 3, 9, 10\} = \{g^j \mod p\} \text{ pour } j = 0, 1, 2, 3$$

-
$$L_2 = \{15, 9, 2, 8\} = \{K_b \cdot g^{-im} \mod p\} \text{ pour } i = 0, 1, 2, 3$$

On cherche une collision entre L_1 et L_2 . Ici :

$$9 \in L_1 \cap L_2$$

Dans L_1 , $3^2 \equiv 9 \mod 17 \Rightarrow j = 2$

Dans L_2 , i = 1 car $9 = 15 \cdot g^{-1 \cdot m} \mod 17$

Sachant que le dernier exposant de la premier liste est n-1 on a n=4 donc

$$b = i \cdot n + j = 1 \cdot 4 + 2 = \boxed{6}$$

NB : ceux qui ont calculé n avec la formule du algorithme obtiennent n=5 et b=7, la réponse est aussi acceptée.

Question 0-3 Alice et Bob utilisent le cryptosysteme RSA avec la clé publique (n,e)=(65,11).

Quelle est la clé privée de Bob?

Alice and Bob use the RSA cryptosystem with the public key (n,e)=(65,11). What is Bob's private key?"

Solution 0-3 Données:

$$(n,e) = (65,11)$$

Étape 1 : Factoriser n = 65

On remarque que:

$$65 = 5 \times 13$$

Donc:

$$p = 5, q = 13$$

Étape 2 : Calcul de $\varphi(n)$

$$\varphi(n) = (p-1)(q-1) = (5-1)(13-1) = 4 \times 12 = 48$$

Étape 3 : Calcul de l'inverse de $e = 11 \mod \varphi(n) = 48$

On cherche d tel que :

$$e \cdot d \equiv 1 \mod 48$$

Autrement dit, $11d \equiv 1 \mod 48$

On utilise l'algorithme d'Euclide étendu pour cela :

$$gcd(48,11) = 148 = 4 \cdot 11 + 411 = 2 \cdot 4 + 34 = 1 \cdot 3 + 13 = 3 \cdot 1 + 0$$

Remontée:

$$1 = 4 - 1 \cdot 3 = 4 - 1(11 - 2 \cdot 4) = 3 \cdot 4 - 1 \cdot 11 = 3(48 - 4 \cdot 11) - 1 \cdot 11 = 3 \cdot 48 - 13 \cdot 11$$

Donc:

$$1 = 3 \cdot 48 - 13 \cdot 11 \Rightarrow -13 \cdot 11 \equiv 1 \mod 48 \Rightarrow d = -13 \equiv 35 \mod 48$$

Résultat : La clé privée est $d = \boxed{35}$

Question 0-4 Dans le mode opératoire Counter, un compteur est ajouté (concaténé) au vecteur d'initialisation (appelé "nonce" dans ce mode). A chaque nouveau bloc le compteur augmente de 1, comme sur le schéma suivant. Une erreur de transmission s'est produit sur le message chiffré c_2 . Combien de blocs de messages claires seront impactés lors du déchiffrement?

Counter (CTR) mode encryption

In Counter mode, a counter is added (concatenated) to the initialization vector (called "nonce" in this mode). For each new block, the counter increases by 1, as shown in the diagram above. A transmission error occurred on the ciphertext c_2 . How many plaintext blocks will be impacted during decryption?"

Solution 0-4

Les blocs sont chiffrés de manières indépendantes l'un de l'autre. Conclusion :

Un seul bloc de message est impacté : m_2

Question 0-5 Vous avez reçu le message "aWxlc3Rjb29sY2V0ZXhhbQo=" écrit en base 64.

Le message était chiffré avec le cryptosystem AES, le mode opératoire CBC en 128 bit, en utilisant les paramètres suivants :

clé en hexadécimale: K=cdee6ff703f5b4aac9cf61efd0397766

vecteur d'initialisation en hexadécimale : iv=654f344d1dd5c4abc514546e4c2cf590 Quel est le message d'origine ? (rajouter -base64 à la fin de votre instuction openssl)

......

The message you received, "aWxlc3Rjb29sY2V0ZXhhbQo=", is encoded in Base64. It was encrypted using the AES cryptosystem in CBC mode with 128-bit keys, and the following parameters:

Key in hexadecimal: K=cdee6ff703f5b4aac9cf61efd0397766

Initialization vector in hexadecimal: iv=654f344d1dd5c4abc514546e4c2cf590

What is the plaintext message (add -base64 at the end of your openssl instruciton)

Cipher Block Chaining (CBC) mode encryption

Solution 0-5 Sauvegarder le message base64 dans un fichier, par exemple : echo "aWxlc3Rjb29sY2V0ZXhhbQo=" > message.b64 Lancer la commande OpenSSL : openssl enc -d -aes-128-cbc -K cdee6ff703f5b4aac9cf61efd0397766 -iv 654f344d1dd5c4abc514546e4c2cf590 -base64 -in message.b64

Résultat du déchiffrement :

ilestcoolcetexam

