Nombre: Jorge Arévalo

Docente: Ing. Diego Quisi

Materia: Simulación

In [119]:

```
# Importar las librerias para el analasis
import pandas as pd
import numpy as np
from datetime import datetime,timedelta
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
from scipy.optimize import fsolve
from sklearn import linear_model
import matplotlib.pyplot as plt
matplotlib inline
```

In [120]:

```
1 # Actualizar los datos (URL)
2
3 #url = 'http://cowid.netlify.com/data/full_data.csv'
4 #url = 'Casos_Covid.csv'
5 url = 'Covid-19.csv'
6 df = pd.read_csv(url)
7 df
```

Out[120]:

	iso_code	continent	location	date	total_cases	new_cases	new_cases_smoothed
0	ABW	North America	Aruba	2020- 03-13	2.0	2.0	NaN
1	ABW	North America	Aruba	2020- 03-19	NaN	NaN	0.286
2	ABW	North America	Aruba	2020- 03-20	4.0	2.0	0.286
3	ABW	North America	Aruba	2020- 03-21	NaN	NaN	0.286
4	ABW	North America	Aruba	2020- 03-22	NaN	NaN	0.286
54385	NaN	NaN	International	2020- 10-30	696.0	NaN	NaN
54386	NaN	NaN	International	2020- 10-31	696.0	NaN	NaN
54387	NaN	NaN	International	2020- 11-01	696.0	NaN	NaN
54388	NaN	NaN	International	2020- 11-02	696.0	NaN	NaN
54389	NaN	NaN	International	2020- 11-03	696.0	NaN	NaN

54390 rows × 49 columns

Gráfica de datos de casos nuevos de Covid-19 en el Ecuador

In [115]:

```
df = df[df['location'].isin(['Ecuador'])] #Filtro la Informacion solo para Ecuador
   df = df.loc[:,['date','new_cases','total_deaths']] #Selecciono Las columnas de analasis
   # Expresar las fechas en numero de dias desde el 01 Enero
 4
   FMT = '\%Y - \%m - \%d'
   #FMT = '%m/%d/%Y'
 5
   date = df['date']
   df['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2020-1
 7
 8
9
   #df
10
11
12
```

In [116]:

```
1 df.plot(x ='date', y='new_cases')
```

Out[116]:

<matplotlib.axes._subplots.AxesSubplot at 0x203a9738bc8>

Gráfica de datos de un total de muertes por Covid-19 en el Ecuador.

In [121]:

```
df = df[df['location'].isin(['Ecuador'])] #Filtro la Informacion solo para Ecuador
df = df.loc[:,['date','total_deaths']] #Selecciono las columnas de analasis

# Expresar las fechas en numero de dias desde el 01 Enero

FMT = '%Y-%m-%d'

#FMT = '%m/%d/%Y'
date = df['date']
df['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2020-1994))

#df

#df
```

In [122]:

```
1 df.plot(x ='date', y='total_deaths')
```

Out[122]:

<matplotlib.axes._subplots.AxesSubplot at 0x203ac30d108>

Gráfica de casos nuevos y de muertes en el Ecuador

Regresión Lineal usando datos de casos nuevos de contagios por el COVID-19

In [3]:

```
import numpy as np
   import matplotlib.pyplot as plt
   from sklearn.linear_model import LinearRegression
 4 import pandas as pd
 5
   from datetime import datetime,timedelta
   import matplotlib.pyplot as plt
   %matplotlib inline
 7
 8
 9
   def f(x):
10
       np.random.seed(42)
11
       y = 0.1*x + 1.25 + 0.2*np.random.randn(x.shape[0])
12
       return y
13
   df = pd.read_csv('Covid-19.csv').fillna(0)
14
   ndf= df.loc[(df['location'] == 'Ecuador') & (df['total_cases'] != 0)]
15
   ndf1=ndf[['date','new_cases','total_deaths']]
16
17
   x=np.arange(1,len(ndf1)+1,1)
18
   y=np.array(ndf1.values[:,1])
19
20
   z=np.array(ndf1.values[:,2])
21
22
23
   plt.figure(figsize=(8, 8))
24
   plt.scatter(x,y,label='Número de casos nuevos', color='Blue')
25
   plt.scatter(x,z,label='Número de muertes', color='Red')
   plt.grid(True)
26
27
   plt.legend()
   plt.title('Gráfica de casos nuevos y de muertes en el Ecuador');
28
29
```


In [4]:

```
1 # Creamos el objeto de Regresión Lineal
 2 regr = LinearRegression()
 3 # Entrenamos nuestro modelo
4 #regr.fit(np.array(x).reshape(-1, 1) ,y)
 5
   regr.fit(x.reshape((-1, 1)),y)
   #pred = regr.predict(np.array(x).reshape(-1, 1))
7
   pred = regr.predict(x.reshape((-1, 1)))
9 plt.figure(figsize=(10, 10))
10 plt.scatter(x,y,color='black')
11 plt.grid(True)
   plt.title('Regresión Lineal de casos nuevos');
12
   plt.scatter(x,pred,color='yellow')
13
14 #plt.legend()
15 plt.show()
16
   if (regr.intercept < 0):</pre>
17
18
       ecua='y = {}x {}'
19
   else:
20
       ecua='y = {}x + {}'
21
   print('Ecuación: ',ecua.format(regr.coef_[0],regr.intercept_))
22
23
   #Número del dia de la cuantos contagiados hay por el covid
24
   num = 150
25
   new = np.array([int(num)])
   prediccion = regr.predict(new.reshape(-1,1))
26
   print("La predicción de",num, "es: " , prediccion[0])
27
28
```


Ecuación: y = 3.218138497075408x + 305.1731115872529

La predicción de 150 es: 787.8938861485641

Regresión Lineal usando datos de muertes de contagios por el COVID-19

In [5]:

```
1 # Creamos el objeto de Regresión Lineal
 2 regr = LinearRegression()
 3 # Entrenamos nuestro modelo
4 #regr.fit(np.array(x).reshape(-1, 1) ,y)
 5
   regr.fit(x.reshape((-1, 1)),z)
   #pred = regr.predict(np.array(x).reshape(-1, 1))
7
   pred = regr.predict(x.reshape((-1, 1)))
9 plt.figure(figsize=(10, 10))
10 plt.scatter(x,z,color='black')
11 plt.grid(True)
   plt.title('Regresión Lineal de casos nuevos');
12
   plt.scatter(x,pred,color='yellow')
13
14 #plt.legend()
15 plt.show()
16
   if (regr.intercept < 0):</pre>
17
18
       ecua='y = {}x {}'
19
   else:
20
       ecua='y = {}x + {}'
21
   print('Ecuación: ',ecua.format(regr.coef_[0],regr.intercept_))
22
23
   #Número del dia de la cuantos contagiados hay por el covid
24
   num = 200
25
   new = np.array([int(num)])
   prediccion = regr.predict(new.reshape(-1,1))
26
   print("La predicción de",num, "es: " , prediccion[0])
27
28
```


Ecuación: y = 57.822256343865895x -1818.9531340339436

La predicción de 200 es: 9745.498134739235

----- Regresión Logarítmica

Usando datos de casos nuevos de contagios por el COVID-19

In [7]:

```
from scipy.optimize import curve_fit
   from sklearn.linear_model import LogisticRegression
   def modelo_logistico(x,a,b):
 4
       return a+b*np.log(x)
 5
   exp_fit = curve_fit(modelo_logistico,x,y)
 6
 7
   exp_fit1 = curve_fit(modelo_logistico,x,z)
8
9
   print(exp_fit)
  print(" ")
10
11 print(exp_fit1)
```

```
(array([-446.45387554, 253.81600502]), array([[104244.84312108, -22124.2513
417],
       [-22124.2513417 , 4907.61524206]]))
(array([-10481.82124408, 3486.39542592]), array([[ 604709.26516529, -12833
9.5842676 ],
      [-128339.5842676 , 28468.36684504]]))
```

In [10]:

```
pred_x = list(range(min(x), max(x) + 50)) # Predecir 50 dias mas
  plt.rcParams['figure.figsize'] = [15, 15]
  plt.rc('font', size=14)
  # Real data
  plt.scatter(x,y,label="Datos Reales",color="red")
  plt.plot(pred_x, [modelo_logistico(i,exp_fit[0][0],exp_fit[0][1]) for i in pred_x], lat
7
  plt.legend()
  plt.xlabel("Desde el 1 Marzo 2020")
  plt.ylabel("Total de casos nuevos del COVID-19")
  plt.ylim(0, max(y)*2)
 plt.show()
```


Usando datos de muertes por contagios de COVID-19

In [13]:

```
plt.scatter(x,z,label="Datos Reales Muertes",color="red")
plt.plot(pred_x, [modelo_logistico(i,exp_fit1[0][0],exp_fit1[0][1]) for i in pred_x],
plt.legend()
plt.xlabel("Desde el 1 Marzo 2020")
plt.ylabel("Total de personas muertas por el COVID-19")
plt.ylim(0,max(z)*2) # Definir Los Limites de Y
plt.show()
```


Análisis

Con el análisis de los datos pudimos observar la cantidad de casos nuevos y el total de muertes provocados por el virus en el Ecuador, se ve como esta en la actualidad el país con los contagios del COVID-19.

Conclusión

- Se implemento la regresión lineal para los casos nuevos y total de muertes por el contagio del COVID-19 la cual se predice los casos nuevos y el total de muertos dentro de un tiempo.
- Para hacer la regresión lineal se descargo un dataset de los datos del COVID-19 donde mediante el filtrado recuperamos solo los datos del Ecuador.

Criterio personal

Político

Se debe tener presente las medidas de prevención contra el virus ya que así podremos evitar que se aumente los contagios en el país.

Económico

Este virus ha afectado a varias empresas ya que por evitar el contagio deben cerrarse la cual, tambien en algunas empresas despedían a empleados por lo que estaba en stop el negocio y no generaban ingresos. El país presente grandes desequilibrios en dinero ya que por las restricciones se tiene una diferente manera de trabajar

Social

Mediante este análisis podemos ver en qué estado se encuentra el país por lo que debemos seguir con las medidas de prevención contra el COVID-19 para así evitar contagios ya que en las gráficas se puede observar altos índices de casos nuevos y de numerosas muertes en el Ecuador.