Estimation of single-cell and tissue perturbation effect in spatial transcriptomics via Spatial Causal Disentanglement

Stathis Megas*, Daniel Chen*, ... & Sarah Teichmann

14.10.2025

Clemence Reda

Background

- 1. Spatial transcriptomics
- 2. Causal disentanglement
- 3. K-hop Graph Neural Networks

Spatial transcriptomics a high-throughput technology which captures gene expression and position of cell

Get transcriptomic and morphological information at the single-cell level

[1] https://sites.dartmouth.edu/cqb/2020/11/24/new-services-sample-multiplexing-spatial-transcriptomics-and-multiomics/

Spatial transcriptomics a high-throughput technology which captures gene expression and position of cell

Get transcriptomic and morphological information at the single-cell level

For sequencing-based ST

- (a) Glass slide is arrayed with barcoded spots
- (b) Frozen tissue is laid onto the slide
- (c) Spatially-marked cDNA is synthesized
- (d) Deconvolution (assignation of an expression value to a spot and a gene)

Oligo(dT) initiates synthesis of cDNA from mRNA

Uniquely identifies the x,y coordinates of the spot

increases coverage of transcriptome in combination with Oligo(dT)

- + amplification handle
- + UMI (specific to transcript)
- [1] https://sites.dartmouth.edu/cqb/2020/11/24/new-services-sample-multiplexing-spatial-transcriptomics-and-multiomics/
- [2] https://en.wikipedia.org/wiki/Spatial_transcriptomics

Causal disentanglement inference of the intra- and cross-cell interactions explaining spatial transcriptomics

Causal inference reconstruct from data the causal diagram of independent and identifiable actions between variables which accounts for the observations disentanglement

Causal disentanglement inference of the intra- and cross-cell interactions explaining spatial transcriptomics

Objective learn the distribution of spatial omics by recovering variable-variable interaction matrices H' (intra-node) and H (cross-node)

+ identifiability: there are unique matrices that correspond to a given data set

- Nodes are (single-cell) spots
- Variables are HVGs

K-hop Graph Neural Networks aggregate information from neighbors at distance = K for node representations

[3]
https://wandb.ai/yashkotadia/benchmarking-gnns/reports/Part-2-Comparing-Message-Passing-Based-GNN-Architectures--VmlldzoyMTk4OTA

K-hop Graph Neural Networks aggregate information from neighbors at distance ≤ K for node representations

Content of the paper

"Celcomen [...] a novel framework of causal structure learning for feature interaction in graph data, such as [...] gene regulation inference"

Specific issues:

- Extend seamlessly learning intracell regulations to cell communication
- Identifiable model (leading to interpretation)
- Produce perturbation counterfactuals

Prior approaches:

- Manual modeling of PPI/GRN
- Deep learning without strong guarantees

Content of the paper

- "Celcomen [...] a novel framework of causal structure learning for feature interaction in graph data, such as [...] gene regulation inference"
- 1. Assumptions for the distribution on spatial omics
- 2. Simplified loss function for the k-hop GNN
- 3. Identifiability guarantees
- 4. Synthesis of spatial omics with Simcomen
- 5. Experimental results

Assumptions for the distribution on spatial omics to derive properties of Celcomen (inference module)

```
P: distribution on spatial omics data sets with N(=500) genes and M(=2,500) spots O_c^{\alpha}: observed normalized gene expression value for gene \alpha and spot c S_c^{\alpha}: normalized gene expression value for gene \alpha and spot c under distribution P maximize the enthropy h(P) under (A1) for all genes \alpha and \beta, for all spot c, O_c^{\alpha} \times O_d^{\beta} = E_{S_c^{\alpha}}[S_c^{\alpha} \times S_d^{\beta}] (intra-spot gene-gene correlations) (A2) for all genes \alpha and \beta, for all 1-hop neighboring spots c and d, O_c^{\alpha} \times O_d^{\beta} = E_{S_c^{\alpha}}[S_c^{\alpha} \times S_d^{\beta}] (cross-spot) (A3) no batch effect, same cell type, steady state, monotonic interactions (e.g., no synergy)
```

Assumptions for the distribution on spatial omics to derive properties of Celcomen (inference module)

P: distribution on spatial omics data sets with N(=500) genes and S(=2,500) spots

 o^{α}_{c} : observed normalized gene expression value for gene α and spot c

 s_c^{α} : normalized gene expression value for gene α and spot c under distribution P

Loss function with symmetric Lagrangian multipliers H and H' in R^{N×N} (A3) where ① Hadamard product, A adjacency matrix of node neighborhood graph A_{cd}=1 iff (c,d) exists, otherwise =0

$$cross-spot (\mathbf{A2}) \qquad intra-spot (\mathbf{A1}) \qquad interactions$$

$$Loss(P, H, H') = -h(P) - \sum_{\alpha,\beta} (H \odot E_{S^{\sim P}}[sAs^{\mathsf{T}} - oAo^{\mathsf{T}}] + H' \odot E_{S^{\sim P}}[ss^{\mathsf{T}} - oo^{\mathsf{T}}])_{\alpha,\beta}$$

$$(H \odot sAs^{\mathsf{T}})_{\alpha,\beta} = H_{\alpha,\beta} \sum_{c,d < S} s_{c}^{\alpha} \times A_{c,d} \times s_{d}^{\beta}$$

Optimization over all possible P is untractable!

Simplified loss function for the k-hop GNN

(1) extremization over P

```
Problem (\bigstar) with symmetric Lagrangian multipliers H and H' in R<sup>N×N</sup> min<sub>P</sub> Loss(P, H, H') = - h(P) - \sum_{\alpha,\beta} (H \odot E<sub>S~P</sub>[sAs<sup>T</sup>-oAo<sup>T</sup>] + H' \odot E<sub>S~P</sub>[ss<sup>T</sup>-oo<sup>T</sup>])<sub>\alpha,\beta</sub> = G(o;H,H')

Problem (1) max<sub>H,H'</sub> Extr(H, H') = log(Z) - \sum_{\alpha,\beta} (H \odot (oAo<sup>T</sup>) + H' \odot (oo<sup>T</sup>))<sub>\alpha,\beta</sub> where Z = \int_{s} exp(G(s;H,H'))ds

No more optimization on P!
```

Theorem 1 (1) is equivalent to (*)

Simplified loss function for the k-hop GNN

(1) extremization over P

```
<u>Problem (\star)</u> with symmetric Lagrangian multipliers H and H' in R<sup>N×N</sup>
           \min_{P} \operatorname{Loss}(P, H, H') = -h(P) - \sum_{\alpha,\beta} (H \odot E_{S^{-P}}[sAs^{T} - oAo^{T}] + H' \odot E_{S^{-P}}[ss^{T} - oo^{T}])_{\alpha,\beta}
Problem (1) \max_{H,H'} \text{Extr}(H, H') = \log(Z) - \sum_{\alpha,\beta} (H \odot (OAO^T) + H' \odot (OO^T))_{\alpha,\beta}
where Z = \int_{S} \exp(G(s;H,H'))ds
                                                                    No more optimization on P!
Theorem 1 (1) is equivalent to (\star)
Proof Under the Karush–Kuhn–Tucker (KKT) conditions,
(P^*, H^*, H^{\prime *}) is a saddle point of Loss with respect to P \Leftrightarrow P^* is an optimal point for (\bigstar)
Then P* satisfies \nabla_P \text{Loss}(P, H, H') = 0 \Rightarrow P^*(s) = \exp(G(s; H, H'))/Z_{\text{(stationarity condition)}}
Since H*, H'* \neq 0, E_{S^{\sim P}}[sAs^{T}] = oAo^{T} and E_{S^{\sim P}}[ss^{T}] = oo^{T} (primal feasibility)
                                                                                                                \Rightarrow Loss(P*, H*, H'*)
                                                                                                                    = Extr(H^*, H'^*)
Then min<sub>H,H'</sub> Extr(H, H') is the dual problem of (\star) and (H*,H'*) are dual-optimal
```

Simplified loss function for the k-hop GNN

(1) extremization over P + (2) mean-field theory approx.

```
\begin{array}{l} \underline{\text{Problem }(\bigstar)} \text{ with symmetric Lagrangian multipliers H and H' in } R^{N\times N} \\ & \text{min}_{P} \text{ Loss}(P, H, H') = - h(P) - \sum_{\alpha,\beta} \left( H \odot E_{S^{\sim}P}[sAs^{T}\text{-}oAo^{T}] + H' \odot E_{S^{\sim}P}[ss^{T}\text{-}oo^{T}] \right)_{\alpha,\beta} \\ & = G(o;H,H') \\ \underline{Problem (1)} \quad \text{max}_{H,H'} \text{ Extr}(H, H') = \log(Z) - \sum_{\alpha,\beta} \left( H \odot (oAo^{T}) + H' \odot (oo^{T}) \right)_{\alpha,\beta} \\ \text{where } Z = \int_{S} \exp(G(s;H,H')) ds \\ \hline \\ \underline{\mathbb{P}} \text{ Computation of Z unfeasible} \end{array}
```

```
<u>Problem (2)</u> \max_{H,H'} ExtrMFT(H, H') = log(Z') - G(o;H,H') where Z \approx Z' = \int_s \exp(G'(s;H,H'))ds and G'(s;H,H') = O(s^{\alpha}_c)
```

MFT approximation for all gene α and spot c, $s^{\alpha}_{c} = m^{\alpha} + \delta s^{\alpha}_{c}$, where $\delta s^{\alpha}_{c} \ll m^{\alpha}$

Z' can be turned into a simple closed-form expression

Identifiability of the Lagrange multipliers

i.e., the intra/cross-spot gene-gene interaction matrices

Problem (
$$\bigstar$$
) with symmetric Lagrangian multipliers H and H' in R^{N×N} min_P Loss(P, H, H') = - h(P) - $\sum_{\alpha,\beta}$ (H \odot E_{S~P}[sAs^T-oAo^T] + H' \odot E_{S~P}[ss^T-oo^T]) _{α,β} = $G(o;H,H')$

Problem (1) max_{H,H'} Extr(H, H') = log(Z) - $\sum_{\alpha,\beta}$ (H \odot (oAo^T) + H' \odot (oo^T)) _{α,β} where Z = \int_{S} exp($G(s;H,H')$)ds

Theorem 2 If Extr(H, H') = Extr(K, K'), then H=K and H'=K'

Proof Extr is quadratic in o (the observed spatial omics matrix) For each pair of genes (α,β) ,

- taking the second derivative with respect to spot o_i leads to $(H')_{\alpha,\beta}=(K')_{\alpha,\beta}$
- taking the second derivative with respect to spot o_i and neighboring o_j leads to $H_{\alpha,\beta}$ = $K_{\alpha,\beta}$

Synthesis of spatial omics with Simcomen Generate spatial omics matrices according to learned P(S)

Training Adversarial process between Celcomen and Simcomen

Counterfactual perturbations
Generate the most likely S

Synthetic data generation

Experimental results Identifiability on synthetic data, disentanglement on real-life data, counterfactual KO

Experimental results Identifiability on synthetic data, disentanglement on real-life data, counterfactual KO

Disentanglement on real-life data

H, H' ← Celcomen(O) observed data Compare for each pair of genes the relative intra/cross-spot score

< 0 : mostly active inside a spot > 0 : mostly active across spots

Experimental results Identifiability on synthetic data, disentanglement on real-life data, counterfactual KO

Counterfactual KO

H, H' \leftarrow Celcomen(O) observed data $S_{KO} \leftarrow$ Simcomen(H, H' + interferon KO) scores \leftarrow DiffAnalysis(S_{KO} , O) Enrichments \leftarrow GSEA(scores)

Enrichment = group of genes Enrichment score = strength > 0 : very upregulated in KO < 0 : very downregulated in KO

Intro to GSEA: https://recess-eu-project.github.io/flash%20lecture/pathway-enrichment-2/

Perspectives

- 1. Comments on the paper
- 2. Why is it interesting for BioComp?

My comments on the paper

Strengths:

- The framework is elegant (once you've understood it)
- Lots of meaningful experiments on real-life data (including on Perturb-Map)
- Open-source: https://github.com/Teichlab/celcomen/

Weaknesses:

- The math is awful (sorry)
- (A3) no batch effect, same cell type, steady state, monotonic undirected interactions
- Results of the experiment on identifiability are not so great (I think)
- No morphological features (but not so easy to integrate I guess)

Your comments?

Why is it interesting for BioComp?

Counterfactual perturbations on spatial omics: Virtual Cells VS Virtual Tissues

Perspective

How to build the virtual cell with artificial intelligence: Priorities and opportunities

Charlotte Bunne, 1,2,3,4,50 Yusuf Roohani,1,3,5,50 Yanay Rosen,1,3,50 Ankit Gupta,3,6 Xikun Zha Theo Alexandrov,8,9 Mohammed AlQuraishi,9 Patricia Brennan,3 Daniel B. Burkhardt,11 And

¹Department of Computer Science, Stanford University, Stanford, CA, USA ²Genentech, South San Francisco, CA, USA ³Chan Zuglesberg Initiative, Reduced City, CA, USA

Our events Abo

Home / Our events / Conferences / Al x BIO

AI x BIO

23-25 June 2025

Wellcome Genome Campus, UK and online

Enter the era of AI in Biology

