Created: 19/02/19 07:21 **Updated:** 19/02/19 09:00

error analysis

- manually examining mistakes
 - process
 - randomly get some mislabeled examples from dev set.
 - count up what kind of mistake took place. (use a spreadsheet to help)
 - find the largest proportion one to fix next

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats
- Fix great cats (lions, panthers, etc..) being misrecognized

Andrew Ng

- clean up incorrectly labeled data
 - if in the training set
 - random mistake: let it go
 - DL algorithm is quite robust to random errors.
 - systematic mistake: carefully check and correct it.
 - if in the dev/test set
 - add a "mislabeled" column to error analysis spreadsheet to see its influence.

Image	Dog	Great Cats	blurry	Mislabeled	Comments
1	✓				
2	✓		✓		
3					
4		✓			
••••					
% totals	8%	43%	61%	6%	

guidelines

- 1. apply same process to dev and test set to make sure they still come from same distribution.
- 2. it could be OK for a train set come from slightly different distribution.
- build your first system quickly, then iterate

EX.

. mismatched training and dev/test set

- why: **the hunger for more data**. Sometimes we don't have enough data that exactly match our task. We may use other data to expand our data set. (like data by crawling from internet)
- how to split data set:

- use our original task data as dev/test set, then take some of the dev/test set examples and add them to the training set.
 - Advantages: the distribution you care about is your **target** now.
 - Disadvantage: the distributions in training and dev/test sets are different. But you will get a better performance over a long time.
- bias and variance with mismatched data distributions
 - analysis
 - create a new set called train-dev set as a random subset of the training set (so it has the same distribution)
 - use it to detect whether variance was caused by mismatched data or not.

More general formulation

Reason Milror

Conclusions:

- Human-level error (proxy for Bayes error)
- Train error
 - Calculate avoidable bias = training error human level error
 - If difference is big then it is **Avoidable bias** problem.
- Train-dev error
 - Calculate variance = training-dev error training error
 - If difference is big then it is high **variance** problem.
- Dev error
 - Calculate data mismatch = dev error train-dev error
 - If difference is much bigger then train-dev error its **Data mismatch** problem.
- Test error
 - Calculate degree of overfitting to dev set = test error dev error
 - Is the difference is big (positive) then maybe you need to find a bigger dev set (dev set and test set come from the same distribution, so the only way for there to be a huge gap here, for it to do much better on the dev set than the test set, is if you somehow managed to overfit the dev set).

address data mismatch

- unfortunately, there is no systematic way to solve it.
- guideline
 - using error analysis to understand the difference between training and dev/test sets.
 - Make training data more similar, or collect more data similar to dev/test sets.
 - Ex. artificial data synthesis.

. Transfer learning

Andrew Ng

To do transfer learning, delete the last layer of NN and it's weights and:

i. Option 1 fine-tuning:

- 1. if you have a small data set keep all the other weights as a fixed weights.
- 2. Add a new last layer(-s) and initialize the new layer weights.
- 3. feed the new data to the NN and learn the new weights.

ii. Option 2 pretraining:

1. if you have **enough data** you can **retrain** all the weights.

When transfer learning makes sense

- Task A and B have the same input x.
- You have a lot more data for $\underbrace{Task\ A}_{\uparrow}$ than $\underbrace{Task\ B}_{\downarrow}$.
- Low level features from A could be helpful for learning B.

. multi-task learning

o not like softmax regression, multi-task learning recognize several things at the same time.

Ex.

Simplified autonomous driving example

Neural network architecture

- Multi-task learning makes sense:
 - i. Training on a set of tasks that could benefit from having shared lower-level features.
 - ii. Usually, amount of data you have for each task is quite similar.
 - iii. Can train a big enough network to do well on all the tasks.
- If you can train a big enough NN, the performance of the multi-task learning compared to splitting the tasks is better
- Today transfer learning is used more often than multi-task learning.

End-to-end learning

What is end-to-end learning?

Speech recognition example

Pros

0

- Let the data speak. NN learning input from X to Y capture whatever statistics are in the data, rather than being forced to reflect human preconceptions.
- Less hand-designing of components needed.
- Cons
 - need a large amount of data.
 - Excludes potentially useful hand-design components (it helps more on the smaller dataset).
- Applying
 - Key question: Do you have **sufficient data** to learn a function of the **complexity** needed to map x to y?
 - Use ML/DL to learn some **individual** components.
 - When applying supervised learning you should carefully choose what types of X to Y **mappings** you want to learn depending on what task you can get data for.