

d 13

13. 61-142744, Jun. 30, 1986, ETCHING GAS AND ETCHING METHOD USING SAID GAS
SHINGO KADOMURA, H01L 21*302; C23F 1*00

=> d ab 13

17 JUN 93 12:55:37

U.S. Patent & Trademark Office

P017

61-142744

L29: 13 of 18

ABSTRACT:

PURPOSE: To obtain a high selecting ratio, by using a gas, in which CO_{sub.2} is excessively mixed in a gas having a small ratio of fluorine and carbon as an etching gas when silicon nitride and the like on SiO_{sub.2} are etched.

CONSTITUTION: As a gas having a small ratio of F/C, e.g., CH_{sub.2}F_{sub.2} is used. CO_{sub.2} is mixed to said gas at a flow rate ratio of 30.approx.70%. Thus an etching gas is obtained. Said etching gas can be effectively used in etching silicon nitride on SiO_{sub.2} selectively. CO_{sub.2} is excessively mixed to the gas having the small F/C ratio, and F* is removed as COF. Yield of CF_{sup.+sub.3} due to

17 JUN 93 12:55:47

U.S. Patent & Trademark Office

P018

61-142744

L29: 13 of 18

recombination of F* is suppressed. Then the etching speed of SiO_{sub.2}, which is readily etched by CF_{sup.+sub.3}, is decreased. Meanwhile, etching of Si_{sub.3}N_{sub.4} is sufficiently progressed by ions and radical other than CF_{sup.+sub.3}. Therefore, the selection ratio of Si_{sub.3}N_{sub.4}/SiO_{sub.2} is increased, and the selective etching is effectively achieved.

=>

③ 公開特許公報 (A)

昭61-142744

④ Int.Cl.
H 01 L 21/302
C 23 F 1/00

識別記号 庁内整理番号
F-8223-5F
6793-4K

⑤ 公開 昭和61年(1986)6月30日

審査請求 未請求 発明の数 1 (全10頁)

⑥ 発明の名称 エッチングガス及びこれを用いたエッチング方法

⑦ 特 許 昭59-265577

⑧ 出 願 昭59(1984)12月17日

⑨ 発明者 門村 新吾 東京都品川区北品川6丁目7番35号 ソニー株式会社内
⑩ 出願人 ソニー株式会社 東京都品川区北品川6丁目7番35号

⑪ 代理人 弁理士 高月 亨

明細書

1 発明の名称

エッチングガス及びこれを用いたエッチング方法

2 発明の詳細な説明

1. 炭素とフッ素とを構成元素として少なくとも有するガスを含有して成るエッチングガスであって、炭素/フッ素比の小さいガスに、CO₂を過剰に混合したものである、エッチングガス。

2. Cl₂, F₂にCO₂を流量比30~70%混合したものである特許請求の範囲第1項記載のエッチングガス。

3. SiO₂上のSi_xN_yを選択的にエッチングする場合に、炭素とフッ素とを構成元素として少なくとも有するエッチングガスを用い、該エッチングガスとして炭素/フッ素比の小さいガスにCO₂を過剰に混合したものを用いることを特徴とするエッチング方法。

3 発明の詳細な説明

(実業上の利用分野)

本発明はエッチングガス及び該エッチングガス

を使用したエッチング方法に関する。この種の技術は、例えば半導体の製造プロセスなどにおいて利用される。

(従来の技術)

従来のこの種の技術にあっては、例えば半導体の製造過程でSiO₂膜上のSi_xN_y膜をドライエッチングする場合、CF₄にCl₂を混合したガス、あるいはCF₄にCl₂及びArを混合したガスなどをエッチングガスとして用い、トンネル型のプラズマエッチャーや、平行平板型アーノードカッティング方式のプラズマエッチャーや、放電室分離型のCCS等の装置により、エッチングが実用化されている。

これらの装置を用いると、Si_xN_y膜を下地のSiO₂膜とある程度の選択性(約5倍度)をもってエッチングすることが可能である。しかし、エッチング装置に起因する反応メカニズム、特にCF₄が解離して生ずるイオンが各々の膜をアタックする反応メカニズムから、上記各エッチングはいずれも等方性エッチングであり、Selectionエッチングと同様、マスクの下にナイトエッチを生ずる。と

ところが、最近の半導体電子の微細化に伴って、 Si_3N_4 膜に關しても上記のような等方性エッティングでは、要求を満たすことができなくなっている。よって、 Si_3N_4 による、マスクの寸法どおりの異方性エッティングが必要不可欠となってきた。ところが Si_3N_4 膜を Si_3N_4 によりエッティングする場合でも、従来は、 Si_3N_4 膜に対するのと同じエッティングガスを使用してのエッティングしかできなかった。使って、下地の Si_3N_4 膜との間に選択性をもたせるることは困難であった。

例えば、 Si_3N_4 の $Etch$ に用いる Si_3N_4 用エッティングガスとして、 CF_4 , 40 SCCMに、 O_2 を7 SCCM添加したガスがあるが、これを用いて0.06 Torr 400W($0.20V/cm^2$)の条件でエッティングを行うと、エッティング速度は Si_3N_4 に対しては980A/min., Si_3N_4 に対しては810A/min.で、それ程の差は出ない。エッティングの形状はアンダーカットの無い異方性となるが、 Si_3N_4 / Si_3N_4 選択性はわずかに1.2である。これでは、下地 Si_3N_4 との選択性を要求されるプロセスには、制御性を考慮すると使用不可能で

ある。例えば、薄いパット SiO_2 上の選択性化マスク用 Si_3N_4 のエッティング等の場合には、使用できない。

ところで最近、 Si_3N_4 と SiO_2 との間に高選択性を得ることが可能なエッティングガスが発表され、上記問題点を解決できるものとして注目を集めた。これはフロン32(CH_2F_2)を用いたエッティングガスである(International Electric Device Meeting, 1983, "VLSI Device Fabrication Using a Unique, Highly-Selective Si_3N_4 Dry Etching" 参照)。

しかし、このエッティングガスは、実用化のためには未だ問題が残されている。即ちこのガスを選択性が高い条件で用いると、エッティング後の表面に致密でなく、重合膜が生成したり、エッティング速度が発生したりする。従ってこのエッティングガスを実用に供するのは未だ困難である。

この問題につき更に説明すると次の通りである。第2図は、 CH_2F_2 をエッティングガスとした場合の、 Si_3N_4 と SiO_2 のエッティング速度の CH_2F_2 流量依存性を調べたグラフである。第2図から明らかなるよ

うに、 CH_2F_2 ガスの流量(グラフの横軸)の増加とともに、 SiO_2 のエッティング速度は急激に低下し、 CH_2F_2 流量30SCCM(値しこのグラフのデータはいずれもRFパワー350W, RFパワー密度0.28W/cm², 壓力5Pa)のときに、 Si_3N_4 / SiO_2 選択性比は約30にも達する。このように、条件によっては Si_3N_4 / SiO_2 選択性を高くすることができる。なお図中Ⅲは Si_3N_4 のエッティング速度である。エッティング装置は平行平板型 $Etch$ 、下部電極被覆材は石英を使用した。

しかし CH_2F_2 は、従来 Si_3N_4 のエッティングに用されていた CF_4 や CH_2ClF_2 に比べ、C/P比が小さく、かつI₂が分子中にとりこまれた形のガスであるため、プラズマ中で非常にカーボンリッチになり、C-P系重合膜を生成しやすい。特に、上記した場合高選択性が得られる条件では、エッティング後の表面に重合膜がデポジットし、これが何らかの後処理を施しても取り除けなかったり、またこの重合膜の堆積が原因と思われるエッティング速度が、エッティング後の基板表面に発生したりする。かつ、

エッチャーチューブ内への上記のような重合物の堆積も激しく、再現性のある安定したエッティングが行えないという問題がある。

このように、 CH_2F_2 を使用する場合、このガス单独で実用的な $Etch$ を行うのは大変困難である。

従来より、これらのC-P系ポリマーの生成を防ぐ技術として、ガス中に O_2 または CO_2 等をわずかに、つまり5%程度、多くても10%程度添加する方法が良く知られている。これは、プラズマ中ににおいて、添加されたガスにより酸式ラジカルが発生し、これがカーボンを CO や CO_2 として排出するため、プラズマ中のC/P比が大きくなり、ポリマーのディポジションを防止し得るというものである。またこれによりエッティング速度も速くなるが、 SiO_2 上の Si_3N_4 のエッティングに用いる場合には、ポリマーの生成を抑えた結果ポリマーによって阻止されていた下地のエッティング速度も高くなり、選択性がそれなくなるという問題が生じる。

この効果が O_2 ほど顕著ではない CO_2 を添加しても、結局同じことで、抜本的な解決にはならない。

(発明の目的)

本発明は、上記従来技術の問題点を解決すべくなされたもので、その目的はS10_x上のS1_xF_yなどエッティングする場合でもその選択性を高くとれるとともに、しかもエラシック生成などの実用上の難点のないエッティングガスを提供すること、及びこのようなエッティングガスの有効な使用方法を提供することにある。

(発明の構成及び作用)

本発明のエッティングガスは、炭素とフッ素とを構成元素として少なくとも有するガスを含有し、かつこれは、C/P比の小さいガスに、CO₂を過剰に混合して成るものである。

ここで、C/P比の小さいガスとは、CF₄やCF₂Hの如くカーボンリッチになってC/P比が大きくなるものに対し、例えばCF₃F₂やCF₃Hの如くC/P比の小さいものを指す。また、CO₂を過剰に混合するというのは、従来のポリマー生成抑制のために少量のCO₂を加えるのに対し、F⁺をCF₄として除去することにより、F⁺の再結合によるCP_x⁺(S10_x

本発明におけるCO₂の大量添加は、従来から知られているCO₂添加とは技術的に全く異質のものであり、従来技術とは全く無関係であり、初歩従来技術から想到され得るものでもない。

即ち、従来から知られているO₂やCO₂の添加は、アラズマ中のカーボンの捕捉及び被エッティング物のエッティング速度の増加が目的である。例えば、シングル-SIやボリ-SIのエッティングに用いられるCF₄+O₂系では、O₂を5%程度添加することにより、SI表面に残りつるカーボンがマスクとなってSI表面が荒れるのが防止される。かつ、C/P比が大きくなるためSIやボリ-SIのエッティング速度が上昇する。一方、S10_xではCF₄+CO₂の系を用いるのは、前述の如くポリマーの生成を防ぎたいが、O₂の添加ではカーボンが捕捉されすぎて下地のSIとの選択性がとれなくなってしまうので、O₂ほど顕著な効果は無いCO₂を微量(多くとも10%以下)添加する次である。

このように、従来のガス系におけるCO₂添加と本発明でのCO₂の過剰の添加とはその技術的意味

エッチャントとして作用する)の発生を抑制できる程度に混合することを意味する。

例えば、本発明の好ましい実施の態様にあっては、C/P比の小さいガスとしてCF₃F₂を用い、これにCO₂を質量比で30~70%混合して、エッティングガスを得る。

上記した本発明のエッティングガスは、S10_x上のS1_xF_yを過剰的にエッティングする場合に、有効に使用できる。

即ち、C/P比の小さいガスにCO₂を過剰に混合して、F⁺をCF₄として除去することによりF⁺の再結合によるCP_x⁺の発生を抑えようすると、CP_x⁺によりエッティングがされ易いS10_xのエッティング速度は低下するが、一方S1_xF_yは、CF₄以外のイオン、ラジカルで充分エッティングが進行するので、S1_xF_y/S10_xの選択性比が高まり、その選択性エッティングが効果的に達成されるわけである。しかも、CF₄、F₂单独使用の従来技術に比し、ポリマー堆積などの不都合は生じず、実用的なエッティングが可能となる。

を異にする。かつてそればかりでなく、従来のガス系に本発明の如くCO₂を大量に添加しても、C/P比の小さいガス例えばCF₃F₂に添加した時のような効果は期待できない。というのは、C/P比の小さいCF₃F₂ガスはエラズマ中での再結合によってしかS10_xのエッチャントであるCP_x⁺を生成しないが、CF₄やCF₂Hはその解離の大部分がCF₃⁺となるため、CO₂がフリートーのF⁺を捕捉して再結合によるエッチャントの生成を減少させても、大きな影響は無い。従ってこのCO₂大量添加の効果があるのは、C/P比の小さいガス(CF₃F₂、CF₃H等)についてということになる。

上述の通り、本発明におけるCO₂の混合は従来技術とは全く意味が異なり、考え方が全く異なるものであって、また、従来技術から想到され得るものでもない。

(発明の実施例)

以下、本発明の一実施例について説明する。但し、以下述べる実施例は本発明を例証するものではあるが、当然のことながらこれにより本発明は

限定されない。

本実施例は、C/P 比の小さいガスとして CH_3F を用い、これに CO_2 をその流量を変えて混合して、これらをエッティングガスとした場合の SiO_2 及び Si_3N_4 のエッティングレートの変化を確認することにより、 CO_2 を大量に混合したときの効果を見たものである。

第1図を参照する。第1図は、圧力 3Pa, 2P パワーワー 300W, 2P パワーダイオード 0.24W/cm² の条件下で、 CH_3F 20 SCCM に CO_2 を添加していった時の、 Si_3N_4 と SiO_2 のエッティング速度を示したグラフである。横軸に CO_2 の添加量(流量%)をとり、たて軸(左)にエッティング速度(A/min.)、たて軸(右)に選択比(及び後記する均一性)(%)をとって示す。

このグラフから明らかのように、 CO_2 流量 20% 前後までは SiO_2 のエッティング速度 I は上昇するが、30% 程度を境にして SiO_2 のエッティング速度が低下し、 $\text{Si}_3\text{N}_4/\text{SiO}_2$ 選択比 V が高くなる。(図中 V が Si_3N_4 のエッティング速度である)。 CO_2 70% では、

という再結合反応による SiO_2 エッチャントが生成しにくくなる。これに対し Si_3N_4 は、

$\text{Si} - \text{O} = 80 \text{kcal/mole}$ よりも結合エネルギーが小さいため、 CP_3^+ 以外のイオン、ラジカルで充分 SiO_2 エッチャントが進行する事から $\text{Si}_3\text{N}_4/\text{SiO}_2$ の選択エッティングが達成されるものと考えられる。

なお CO_2 流量 20% 前後まで SiO_2 のエッティング速度 I が上昇するのは、このあたりでは

の O° がプラズマ中のカーボンを除去する、従来の添加ガスとしての効果の方が CO° による F° 捕獲効果よりも大きいためと思われる。

第1図には、ウェーハの均一性 IV (たて軸右に示す) も示す。これは Si_3N_4 のエッティングの均一性を表すが、 CO_2 が 70% を超えると、この均一性 IV が劣るようになる。

また、 CO_2 が 20% を下回る領域、つまり第1図の符号 V で示す領域は、ポリマーのデポジションが生じ、この例の条件では実用に供しにくくなっ

Si_3N_4 のエッティング速度 I が 600 A/min., SiO_2 のエッティング速度 I が 85 A/min. で、 $\text{Si}_3\text{N}_4/\text{SiO}_2$ 選択比が 7 という、良好な結果が得られた。

このように、 CH_3F を用い、これに CO_2 を 30~70% 混合した本実施例にあっては、 $\text{Si}_3\text{N}_4/\text{SiO}_2$ 選択比が高くとれ、しかも、ポリマーの堆積などに伴う不純物も生じない。

これは CH_3F に CO_2 を通常よりも過剰に混合した結果、CP 系ポリマーの生成を抑えつつ、かつ下地 SiO_2 膜との間に高選択比を取れるようになったためと考えられる。

即ち、 CH_3F に CO_2 をその流量比が 30~70% となるように、混合すると、プラズマ中での

の解離によって生成した CO° が

等の反応で生成した F° を

という形で捕捉するため、プラズマ中で F° が不足し $\text{CP}_3^+ + \text{F}^\circ \rightarrow \text{CF}_3^+$

ている。

なお、図中 V はレジストの 1 層である OPPR 800 のエッティング速度を示す。このデータから、レジストによるテーパ形成により、選択比をとれること、即ちテーパエッチしながら選択比をとれることができわかる。これは、 0° ラジカルによるエッティングによる。

(発明の効果)

上述の如く、本発明によれば SiO_2 上の Si_3N_4 などをエッティングする場合でも、その選択比を高くとれるとともに、しかも重合膜生成などの実用上の弊点がないという効果を有する。

4 図面の簡単な説明

第1図は本発明の実施例の効果を説明するためのグラフである。第2図は従来例を説明するためのグラフである。

I— SiO_2 エッティング速度、II— Si_3N_4 エッティング速度、III— $\text{Si}_3\text{N}_4/\text{SiO}_2$ 選択比。

図 1

図 2

特許請求の範囲

昭和60年2月15日

特許請求の範囲

1. 発明の名称

昭和59年特許第366877号

2. 発明の名前 エッティングガス及びこれを用いたエッティング方法

3. 著者する者

著者と同様 特許出願人

住所 昭和59年特許第366877号

氏名(略称) (210) ソニー株式会社

(210) 大賀 典雄

4. 代理人

住所 T100 昭和59年特許第366877号
三信ビル 321号
電話 (03) 4395

氏名 0307 外理士 高月 幸

5. 認定令の日付

自免

00.2.15

6. 認定の状況

自免

7. 認定の方法

方式
等差

特許の主な特徴
特許請求の範囲に記載する本発明の特徴は、
1. 炭素とフッ素とを構成元素として少なくとも有するガスを含有して成るエッティングガスであ
って、フッ素/炭素比の小さいガスに、CO₂を過剰に混合したものである。エッティングガス。

明細書(補正)

1. 発明の名称

エッティングガス及びこれを用いたエッティング方法

2. 発明の詳細な説明

1. 炭素とフッ素とを構成元素として少なくとも有するガスを含有して成るエッティングガスであ
って、フッ素/炭素比の小さいガスに、CO₂を過剰に混合したものである。エッティングガス。

2. S10_x上のシリコンナイトライドを選択的にエッティングする場合に、炭素とフッ素とを構成元素として少なくとも有するエッティングガスを用い、該エッティングガスとしてフッ素/炭素比の小さいガスにCO₂を過剰に混合したものを用いることを特徴とするエッティング方法。

3. 発明の詳細な説明

(直接上の利用分野)

本発明はエッティングガス及び該エッティングガスを使用したエッティング方法に関する。この種の技術は、例えば半導体の製造プロセスなどにおいて利用される。

特許請求の範囲(補正)

昭和60年2月15日

特許請求の範囲

1. 発明の名称

昭和59年特許第366877号

2. 発明の名前

エッティングガス及びこれを用いたエッティング方法

3. 著者する者

特許との同様 特許出願人

住所 昭和59年特許第366877号

氏名(略称) (210) ソニー株式会社

(210) 大賀 典雄

4. 代理人

T100 昭和59年特許第366877号
三信ビル 321号
電話 (03) 4395

氏名 0307 外理士 高月 幸

5. 認定令の日付

自免

00.2.15

6. 認定の方法

特許全文、及び特許登録簿

7. 認定の内容

(1) 本件のとなり特許全文を認定する。

(2) 特許登録のとなり、第2回を認定する。

【従来の技術】

従来のこの種の技術にあっては、例えば半導体の製造過程でSiO_x膜上のSi_xN_y膜等のシリコンナイトライドをドライエッティングする場合、CF₄にO₂を混合したガス、あるいはCF₄にO₂及びArを混合したガスなどをエッティングガスとして用い、トンネル型のプラズマエッチャーや、平行平板型アーノードカッピング方式のプラズマエッチャーや、放電室分離型のCO₂等の装置により、エッティングが実用化されている。

これらの装置を用いると、SiO_x膜を下地のSiO_x膜とある程度の選択性(約5程度)をもってエッティングすることが可能である。しかし、エッティング装置に起因する反応メカニズム、特にCF₄が解離して生ずるラジカルが各々の膜をアタックする反応メカニズムから、上記各エッティング方式はいずれも等方性エッティングであり、掩蔽エッティングと同様、マスクの下にサイドエッチを生ずる。ところが、最近の半導体電子の微細化に伴って、SiO_x膜に關しても上記のような等方性エッテン

では、要求を満たすことができなくなっている。よって、BIB による、マスクの寸法どおりの両方種エッティングが必要不可欠となってしまっている。ところが Si_xN_y 層を BIB によりエッティングする場合でも、従来は、SiO₂ 層に対するのと同じエッティングガスを使用してのエッティングしかできなかつた。使って、下地の SiO₂ 層との間に選択性をもたせるることは困難であった。

例えば、SiO₂ の BIB に用いる SiO₂ 用エッティングガスとして知られる CEP_xF_y を CEP_xF_y/O₂=40/72CCM の割合で増加して、0.06 Torr, 400W(0.20W/cm²) の条件でエッティングを行うと、エッティング速度は Si_xN_y に対しては 880Å/min. 、 SiO₂ に対しては 1,510Å/min. で、それ程の差は出ない。エッティングの形状はアンダーカットの無い両方性となるが、Si_xN_y/SiO₂ 選択性はわずかに 1.9 である。これでは、下地 SiO₂ の選択性を要求されるプロセスには、選択性を考慮すると使用不可能である。例えば、薄いバッフル SiO₂ 上の選択性化マスク用 Si_xN_y のエッティング等の場合には、使用できない。

Si_xN_y と SiO₂ のエッティング速度の CEP_xF_y 流量依存性を調べたグラフである。第2図から明らかのように、CEP_xF_y ガスの流量（グラフの横軸）の増加とともに、SiO₂ のエッティング速度は急激に低下し、CEP_xF_y 流量 158CCM（但しこのグラフのデータはいずれも RF パワー 350W, RF パワー密度 0.28W/cm², 壓力 0Pa のときに、Si_xN_y/SiO₂ 選択性比は約 30 にも達する。このように、条件によっては Si_xN_y/SiO₂ 選択性比を高くすることができる。なお図中 3 は Si_xN_y のエッティング速度である。エッティング装置は平行平板型 BIB 、下部電極被覆材は石英を使用した。

しかし CEP_xF_y は、従来 Si_xN_y のエッティングに使われていた CEP_x や CEP_x に比べ、F/C 比が小さく、かつ F₁ が分子中にとりこまれた形のガスであるため、プラズマ中で非常にカーボンリッチになり、C-C 系高分子を生成し易い。特に、上記した如き高選択性が得られる条件では、エッティング後の表面に高分子がデポジットし、これが何らかの後処理を施しても取り除けなかったり、またこの高分子

ところで最近、Si_xN_y と SiO₂ との間に高選択性を得ることが可能なエッティングガスが発表され、上記問題点を解決できるものとして注目を集めた。これはフロン 32(CCl₂F₂) を用いたエッティングガスである（インターナショナル・エレクトリック・デバイス・ミーティング：1983、「VLSI・デバイス・ファブリケーション・ユーニング・ア・ユニット・ハイドロセレクティブ・Si_xN_y・ドライエッティング」 International Electric Device Meeting, 1983, "VLSI Device Fabrication Using a Unique, Highly-Selective Si_xN_y Dry Etching" 参照）。

しかし、このエッティングガスは、実用化のためにはまだ問題が残されている。即ちこのガスを選択性が高い条件で用いると、エッティング後の表面に陥没しにくい高分子が生成したり、エッティング環境が発生したりする。使ってこのエッティングガスを実用に供するのはまだ困難である。

この問題につき更に説明すると次の通りである。第2図は、CEP_xF_y をエッティングガスとした場合の、

膜の堆積が原因と思われるエッティング環境がエッティング後の基板表面に発生したりする。かつ、エッチャードのチュンバー内への上記のような高分子の堆積も激しく、再現性のある安定したエッティングが行えないという問題がある。

このように、CEP_xF_y を使用する場合、このガス单独で実用的な BIB を行うのは大変困難である。

従来より、これらの C-C 系ポリマーの生成を抑える技術として、ガス中に Si_xN_y または CO₂ 等をわずかに、つまり 5%程度、多くても 10%程度添加する方法が良く知られている。これは、プラズマ中において、添加されたガスにより酸素ラジカルが発生し、これがカーボンを CO₂ として除去するため、プラズマ中の P/C 比が大きくなり、ポリマーのディポジションを防止し得るというものである。またこれによりエッティング速度も速くなるが、SiO₂ 上の Si_xN_y のエッティングに用いる場合には、ポリマーの生成を抑えた結果ポリマーによって阻止されていた下地のエッティング速度も高くなり、選択性がどれなくなるという問題が生じる。

この効果がO₂ほど顕著ではないCO₂を添加しても、結局同じことで、根本的な解決にはならない。

(発明の目的)

本発明は、上記既存技術の問題点を解決すべくなされたもので、その目的はSiO₂上のSi_xN_y（あるいはその他のシリコンナイトライド）などをエッチングする場合でもその選択性を高くとれるとともに、しかも重合物生成などの実用上の観点のないエッティングガスを提供すること、及びこのようないエッティングガスの有効な使用方法を提供することにある。

(発明の構成及び作用)

本発明のエッティングガスは、炭素とフッ素とを構成元素として少なくとも有するガスを含有し、かつこれは、P/C比の小さいガスに、CO₂を過剰に混合して成るものである。

ここで、P/C比の小さいガスとは、CF₄やCF₃Fの如くP/Cが4:1や3:1の如くフッ素リッチになってP/C比が大きくなっているものに対し、例えばCH₂F₂やCH₃Fの如くP/C比が2:1や1:1

オノ、ラジカルで充分エッティングが進行するので、Si_xN_y/SiO₂の選択性が高まり、その選択性エッティングが効果的に達成されるわけである。しかも、CF₃F単独使用の既存技術に比し、ポリマー堆積などの不都合は生じず、実用的なエッティングが可能となる。

本発明におけるCO₂の大量添加は、従来から知られているCO₂添加とは技術的に全く異質のものであり、従来技術とは全く無関係であり、勿論従来技術から想到され得るものでもない。

厚ち、従来から知られているO₂やCO₂の添加は、プラズマ中のカーボンの捕捉及び被エッティング物のエッティング速度の増加が目的である。例えば、シングル-Siやシリ-Siのエッティングに用いられるCF₄+O₂系では、O₂を5%程度添加することにより、Si表面に残りつもるカーボンがマスクとなってSi表面が荒れるのが防止される。かつ、P/C比が大きくなるためSiやシリ-Siのエッティング速度が上昇する。一方、SiO₂/SiでCF₃F+CO₂の系を用いるのは、前述の如くポリマーの生成を防ぎ

のようにそのP/C比が小さいものを除する。また、CO₂を過剰に混合するというのは、従来のポリマー生成抑制のために少量のCO₂を加えるのに対し、F⁺をCO₂として除去することにより、F⁺の再結合によるCF₃⁺(SiO₂エッチャントとして作用する)の発生を抑制できる程度に混合することを意味する。

例えば、本発明の好ましい実施の態様にあっては、P/C比の小さいガスとしてCH₂F₂を用い、これにCO₂を流量比で30~70%混合して、エッティングガスを得る。(但し、流量比はこれに限らず、装置や条件によって適宜設定する)。

上記した本発明のエッティングガスは、SiO₂上のシリコンナイトライドを選択的にエッティングする場合に、有効に使用できる。

厚ち、P/C比の小さいガスにCO₂を過剰に混合して、F⁺をCO₂として除去することによりF⁺の再結合によるCF₃⁺の発生を抑えるようになると、CF₃⁺によりエッティングされ易いSiO₂のエッティング速度は低下するが、一方Si_xN_yは、CF₃⁺以外のイ

たいが、O₂の添加ではカーボンが捕捉されすぎて下地のSiとの選択性がとれなくなってしまうので、O₂ほど顕著な効果は無いCO₂を微量(多くとも10%以下)添加する状である。

このように、従来のガス系におけるCO₂添加と、再結合によるSiO₂エッチャントの生成を抑制する本発明でのCO₂の過剰の添加とはその技術的意味を異にする。かつそればかりでなく、従来のガス系に本発明の如くCO₂を大量に添加しても、P/C比の小さいガス例えばCH₂F₂に添加した時のような効果は期待できない。というのは、P/C比の小さいCH₂F₂ガスはプラズマ中での再結合によってしかSiO₂の主なエッチャントであるCF₃⁺を生成しないが、CF₄やCF₃Fはその解離の大部分がCF₃⁺となるため、CO₂がフリーのF⁺を捕捉して再結合によるエッチャントの生成を減少させても、大きな影響は無い。従ってこのCO₂大量添加の効果があるのは、P/C比の小さいガス(CH₂F₂、CH₃F等)についてということになる。

上述の通り、本発明におけるCO₂の混合は従来

技術とは全く意味が異なる考え方があるものであって、また、従来技術から想到されるものでもない。

(発明の実施例)

以下、本発明の一実施例について説明する。但し、以下述べる実施例は本発明を制限するものではあるが、当然のことながらこれにより本発明は限定されない。

本実施例は、P/C 比の小さいガスとして CH_3F を用い、これに CO_2 をその流量を変えて混合して、これらをエッティングガスとした場合の SiO_2 及び Si_3N_4 のエッティングレートの変化を確認することにより、 CO_2 を大量に混合したときの効果を見たものである。

第1図を参照する。第1図は、圧力 5 Pa, 2P パワー 300W, RF パワー密度 0.24W/cm² の条件下で、 CH_3F : 10 SCCM に CO_2 を添加していった時の、 Si_3N_4 と SiO_2 のエッティング速度を示したグラフである。横軸に CO_2 の添加量(流量 %)をとり、たて軸(左)にエッティング速度(Å/min.)、たて軸(右)に

選択比(及び後述する均一性(X))をとって示す。

このグラフから明らかのように、 CO_2 流量 20% 前後までは SiO_2 のエッティング速度は上昇するが、30% 程度を境にして SiO_2 のエッティング速度が低下し、 Si_3N_4 / SiO_2 選択比が高くなる。(図中 V が Si_3N_4 のエッティング速度である)。 CO_2 70% では、 Si_3N_4 のエッティング速度が 600 Å/min.、 SiO_2 のエッティング速度が 85 Å/min. で、 Si_3N_4 / SiO_2 選択比が 7 という、良好な結果が得られた。

このように、 CH_3F を用い、これに CO_2 を 30~70% 混合した本実施例にあっては、 Si_3N_4 / SiO_2 選択比が高くとれ、しかも、ポリマーの増殖などに伴う不都合も生じない。

これは CH_3F に CO_2 を通常よりも過剰に混合した結果、CP 系ポリマーの生成を抑えつつ、かつ下地 SiO_2 膜との間に高選択比を取りやすくなつたためと考えられる。

即ち、 CH_3F に CO_2 をその流量比が 30~70% となるように、混合すると、プラズマ中の

$\text{CO}_2 \rightarrow \text{CO}^\circ + \text{O}^\circ$
の解離によって生成した CO° が

$\text{CH}_3\text{F} \rightarrow \text{CH}_3\text{F}^\circ + \text{F}^\circ$
等の反応で生成した F° を

$\text{CO}^\circ + \text{F}^\circ \rightarrow \text{COF}$

という形で捕捉するためプラズマ中で F° が不足し
 $\text{CF}_3^\circ + \text{F}^\circ \rightarrow \text{CF}_2^\circ$

という再結合反応による SiO_2 エッチャントが生成しにくくなる。これに対し Si_3N_4 は、

$\text{Si} - \text{N} = 50 \text{kcal/sole}$ と

$\text{Si} - \text{O} = 80 \text{kcal/sole}$ よりも結合エネルギーが小さいため、 CF_2° 以外のイオン、ラジカルで充分エッティングが進行する事から Si_3N_4 / SiO_2 の選択エッティングが達成されるものと考えられる。

なお CO_2 流量 20% 前後まで SiO_2 のエッティング速度が上昇するのは、このあたりでは

$\text{CO}_2 \rightarrow \text{CO}^\circ + \text{O}^\circ$

の O° がプラズマ中のカーボンを除去する、従来の 添加ガスとしての効果の方が CO° による F° 捕捉効果よりも大きいものと思われる。

第1図には、ウェハの均一性 X(たて軸右に X で示す) も示す。これに Si_3N_4 のエッティングの均一性を表すが、 CO_2 が 70% を超えると、この均一性 X が劣るようになる。

また、 CO_2 が 20% を下回る領域、つまり第1図の符号 V で示す領域は、ポリマーのデポジションが生じ、この例の条件では実用に供しにくくなっている。

なお、図中 V はレジストの 1 種である OFPR 800 のエッティング速度を示す。このデータから、レジストにあらかじめチーバーをつけておく事により Si_3N_4 /PR の選択比が低い事を利用した Si_3N_4 チーバーエッチが、下地となる SiO_2 との間に選択比をとりながら達成できることがわかる。ここで PR のエッティング速度の上昇は、 CO_2 からの O° の影響である。

(発明の効果)

上述の如く、本発明によれば SiO_2 上の Si_3N_4 などをエッティングする場合でも、その選択比を高くとれるとともに、しかも露合膜生成などの実用上

の臨点がないという効果を有する。

4. 図面の簡単な説明

第1図は本発明の実施例の結果を説明するためのグラフである。第2図は従来例を説明するためのグラフである。

I-SiO₂エッチング速度、II-Si₃N₄エッテン
速度、III-Si₃N₄/SiO₂選択比。

特許出願人 ソニー株式会社
代理人弁理士 高月 幸

補正図四

第2図

