OpenMP

11/3/2019

Μπαγκής Ευάγγελος

Πίνακας 1 Αποτελέσματα της μεθόδου Liebmann

Number of threads	U(x/2, y/2)=U(0.5, 0.5)	Number of iterations	Time
		while	
1 Thread	4.332206	112605	6m12,432s
2 Threads	4.332130	112891	4m54,860s
4 Threads	4.332181	113089	3m27,791s
8 Threads	4.332204	113457	3m36,842s

Πίνακας 1 Αποτελέσματα της μεθόδου Successive Over Relaxation για ω=1, ω1.95, ω=1.99

Number of threads	w	U(x/2, y/2)=U(0.5, 0.5)	Number of iterations	Time
			while	
1 Thread	1	4.332203	112581	9m58,722s
2 Threads	1	4.33220	112581	6m11,897s
4 Threads	1	4.332203	112581	5m23,229s
8 Threads	1	4.332203	112581	5m13,679s
1 Thread	1.95	4.337011	3904	0m20,639s
2 Threads	1.95	4.337011	3904	0m12,982s
4 Threads	1.95	4.337011	3904	0m11,123s
8 Threads	1.95	4.336987	3904	0m10,842s
1 Thread	1.99	4.339143	785	0m4,181s
2 Threads	1.99	4.339143	785	0m2,621s
4 Threads	1.99	4.339143	785	0m2,293s
8 Threads	1.99	4.339175	785	0m2,231s

Πίνακας 3 Παράλληλη επιτάχυνση

Number of threads	Parallel speedup Liebmann	Parallel speedup SOR w=1	Parallel speedup SOR w=1.95	Parallel speedup SOR w=1.99
2 Threads	1.2631	1.6099	1.5898	1.5952
4 Threads	1.7923	1.8523	1.8555	1.8234
8 Threads	1.7175	1.9087	1.9036	1.8740

Πίνακας 4 Απόδοση παράλληλης επεξεργασίας

Number of threads	Parallel efficiency Liebmann	Parallel efficiency SOR w=1	Parallel efficiency SOR w=1.95	Parallel efficiency SOR w=1.99
	%	%	%	%
2 Threads	63.15	80.5	79.49	79.76
4 Threads	44.81	46.31	46.39	45.58
8 Threads	21.47	23.86	23.8	23.43

Σχήμα 1 Η λύση της ελλειπτικής διαφορικής εξίσωσης με την μέθοδο SOR ω =1.99.

Σχήμα 2 Λογαριθμικό διάγραμμα για την ακρίβεια των λύσεων σε σχέση με τον αριθμό των επαναλήψεων για τις 16 περιπτώσεις. Ο αριθμός μπροστά από τα ονόματα είναι τα νήματα.

Σχήμα 3 Παράλληλη επιτάχυνση σε σχέση με τον αριθμό των νημάτων

Σχήμα 4 Απόδοση παράλληλης επεξεργασίας

Σχόλια

Χρησιμοποιήθηκε επεξεργαστής Intel core I - 3 5005U με 2 φυσικούς πυρήνες.

Στο σχήμα 1 απεικονίζεται η λύση της διαφορικής εξίσωσης $\nabla^2 U = S(x,y) = -10(x^2 + y^2 + 5)$ με συνοριακές συνθήκες U(0,y) = 0, U(1,y) = 0, U(x,0) = 0, U(x,1) = 1 που σχεδιάστηκε με το πακέτο Matlab.

Από το σχήμα 2 παρατηρούμε ότι η tolerance για την μέθοδο Liebmann και για την SOR redblack με ω=1 (ουσιαστικά εφαρμόζουμε και πάλι την μέθοδο Liebmann σε 2 βήματα χρησιμοποιώντας τις νέες τιμές στα σημεία που έχουν ήδη υπολογιστεί) ακολουθεί την ίδια πορεία και ο αριθμός των επαναλήψεων είναι ο ίδιος (112000 περίπου). Ακόμα βλέπουμε ότι για ω=1.95 και ω=1.99 η tolerance ξεκινάει από υψηλότερες τιμές και αρχικά μοιάζουν να αποκλίνουν αλλά πολύ γρήγορα οι μέθοδοι συγκλίνουν και η tolerance τείνει πολύ γρηγορότερα στην ζητούμενη ακρίβεια (μετά από ~3900 και ~800 επαναλήψεις αντίστοιχα). Βλέπουμε λοιπόν ότι το ω μειώνει τον χρόνο εκτέλεσης κατά ένα τεράστιο ποσοστό. Ο αριθμός των νημάτων που χρησιμοποιούμε δεν παίζει κάποιο ρόλο στην tolerance και έτσι οι καμπύλες συμπίπτουν για την ίδια μέθοδο ανεξαρτήτως από τον αριθμό των νημάτων άρα φαίνονται μόνο 4 καμπύλες αντί για 16. Τέλος, αν η ζητούμενη ακρίβεια ήταν της τάξεως του 10^{-3} οι δύο πρώτες μέθοδοι θα συγκλίνουν γρηγορότερα από τις δύο τελευταίες.

Η παράλληλη επιτάχυνση για την μέθοδο Liebmann αρχικά αυξάνει για 2 και 4 νήματα όπου φτάνει και στο μέγιστο (σχήμα 3). Από εκεί και πέρα αρχίζει να φθίνει και πλέον ο συγχρονισμός των νημάτων επιβαρύνει τους υπολογισμούς περισσότερο από ότι τους βοηθάει. Για τις υπόλοιπες 3 μεθόδους οι καμπύλες ακολουθούν παρόμοια συμπεριφορά. Αρχικά παρατηρούμε μια ραγδαία αύξηση στην επιτάχυνση για 2 νήματα. Η αύξηση συνεχίζεται μέχρι να φτάσουμε στα 4 νήματα αλλά με μικρότερη κλίση. Από τα 4 νήματα και πάνω η επιτάχυνση συνεχίζει να έχει ανοδική πορεία αλλά η κλίση είναι πλέον πάρα πολύ μικρή και φτάνουμε σε κορεσμό.

Στο τελευταίο σχήμα (4) απεικονίζεται η απόδοση της παράλληλης επεξεργασίας που ακολουθεί παρόμοια συμπεριφορά και για τις 4 μεθόδους. Αρχικά για 1 νήμα η απόδοση είναι μηδέν αφού ο αλγόριθμος τρέχει σειριακά. Η απόδοση για 2 νήματα φτάνει το μέγιστο και αυτό είναι αποτέλεσμα του διπύρηνου επεξεργαστή. Από εκεί και πέρα η απόδοση μειώνεται αλλά παραμένει θετική. Αυτή η μείωση οφείλεται και πάλι στον χρόνο που σπαταλάει ο επεξεργαστής για να συγχρονίσει τα νήματα.

Συμπερασματικά η μέθοδος SOR red – black συγκλίνει γρηγορότερα από την μέθοδο Liebmann με όσα νήματα κι αν τρέξουμε τον κώδικα. Επίσης, η μέγιστη απόδοση επιτυγχάνεται για 2 νήματα στον συγκεκριμένο επεξεργαστή. Η επιτάχυνση είναι μονότονα αύξουσα για τον SOR αλλά για την Liebmann υπάρχει μέγιστο στα 4 νήματα. Τέλος, η παράμετρος (ω) μεταβάλει τους υπολογισμούς έτσι ώστε να υπάρχουν μεγάλες μεταβολές αρχικά αλλά τελικά η tolerance συγκλίνει πολύ πιο γρήγορα.