

School of Mechanical Engineering

Course Code: BME01T1001 Course Name: Engineer

Course Name: Engineering Graphics and Introduction to Digital Fabrication

Prerequisite/Recapitulations

- Basics of Engineering Graphics
- Drawing, Sketching

GALGOTIAS UNIVERSITY

Objectives

To acquire knowledge about:

- ❖Introduction to Projection
- **❖**Types of Projection
- **❖**View comparison
- Orthographic Projection
- Projection Systems
- Projection Symbols

Introduction to Projection

- Any kind of representation of an object on a paper, screen or similar surface by drawing or by photography is called the projection of that object.
- Or, when ray of sights (projectors) are drawn from the eyes of the observer and are extended to fall on a plane of projection the object is said to be projected the image obtained is called projection. The size of image depends upon the position of the plane with respect to the object.
- **PROJECTORS:** The imaginary line from block (object) to the plane is called projectors.
- **PLANE:** The flat surface (such as a sheet of paper) is a plane.
- **PLANE OF PROJECTION**: The plane which is used for the purpose of projection is called plane of projection.

Types of Projection

View comparison

Type		
Multi-view drawing	 Accurately presents object's details, i.e. size and shape. 	Require training to visualization.
Pictorial drawing	Easy to visualize.	Shape and angle distortion Circular hole becomes ellipse Right angle becomes obtuse angle.
Perspective drawing	Object looks more like what our eyes perceive.	Difficult to create Size and shape distortion Distorted width

Orthographic Projection

- □When projectors are parallel to each other and perpendicular to the plane is called orthographic projection
- □Or, Ortho means perpendicular right angles graphics means right angle drawing
- □a technical drawing in which different views of an object are projected on different reference planes observing perpendicular to respective reference plane

Orthographic Drawing

- A method used to show or represent the concept and design of a three dimensional object on a two dimensional piece of paper
- The orthographic projections drawn would be used to allow the actual design to be manufactured
- You draw the object in a minimum of three different angles in order to show or represent the object in real life

Isometric Drawing

2D Orthographic Projection

Reference Planes

- ☐ Horizontal Plane (HP)
- □ Vertical Plane (VP)
- ☐ Side or Profile Plane (PP)

Different Views & Notations

- Front View (FV) Projected on VP
- Top View (TV) Projected on HP
- Side View (SV) Projected on PP

OBJECT PO	OINT A	LINE AB
IT'S TOP VIEW	a	a b
IT'S FRONT VIEW	a*	a' b'
IT'S SIDE VIEW	a''	a′′ b′′

REFERENCE PLANE

UNDERSTAND QUADRANTS

Projection systems

- 1. First angle system (SETUP:-OBSERVER----OBJECT----PLANE OF PROJECTION)
 - European countries
 - ISO standard
- 2. Third angle system (SETUP:-OBSERVER----PLANE OF PROJECTION----OBJECT)
 - Canada, USA, Japan, Thailand

First Angle Projection

ROTATION OF PLANES:-

When the projection of an object has been made on the various planes they are brought together on a single sheet of paper by rotating the planes.

The standard practice of rotation of planes is to be keeping the VP fixed & to rotate the HP & PP in clock wise direction away from the object so that they may come in line with VP. The 1st & 3rd quadrant opened out while rotating the plane.

NOTE:-2ND & 4TH quadrant are not used since the FV & TV come(projected)on the same side of xy line & may overlap the view (FV & TV).so 2nd & 4th angles are not used In engineering drawing.

FIRST ANGLE PROJECTION

Third Angle Projection

THIRD ANGLE PROJECTION

First Angle vs. Third Angle Projection

1 ST ANGLE OF PROJECTION		3RD ANGLE OF PROJECTION	
>	The object is kept in the 1st	>	The object is assumed to
	quadrant.		keep in 3 rd quadrant.
>	The object lies in between	>	The plane of projection
	the observer & the Plane		lies between the observer
	of projection		and the object.
	The plane of projection is	>	The plane of projection is
	assumed to be Non-		assumed to be
	transparent		transparent
\triangleright	In this method, when the	>	In this method, when the
	views are drawn in their		views are drawn in their
	relative position, the plan		relative position, the plan
	comes below the		comes above the
	FV/elevation or the TV		elevation or TV is drawn
	drawn below the FV.		above the FV.
	The left side view is drawn	>	The left side view is drawn
	to the right side of the FV.		to the left side of the FV.
	The right side view is	>	The right side view is
	drawn to the left side of		drawn to the right side Of
	the FV.		the FV.
	This method of projection	>	This method of projection
	is used In European		is used In U.S.A & other
	Countries & bureau of		countries
	Indian standard is adopted		
	w.e.f. 1981.		

Projection Symbols

❖ The front view & side view of a frustum of cone are used to show the symbol for projection method

Summary

• A projection is defined as representation of an object on a two dimensional plane. The following are the elements to be considered while obtaining a projection.

The object

The plane of projection

The point of sight and

The ray of sight

When drawing the orthographic projection the following items should be invariable exist.

The object to be projected.

The projectors

The plane of projection

The observer's eye or station point

• 2ND & 4TH quadrant are not used since the FV & TV come(projected)on the same side of xy line & may overlap the view (FV & TV).so 2nd & 4th angles are not used In engineering drawing

Questions

- **❖ How do you explain Orthographic Projection?**
- **❖**Why second and fourth angle projections are not used?
- ❖ Differentiate first and third angle projection on the basis of placement of different views with respect to reference plane

GALGOTIAS UNIVERSITY

GALGOTIAS

References

- o Engineering Drawing by N. D. Bhatt and V. M. Panchal
- Engineering Graphics by K. C. John
- **ONPTEL**

GALGOTIAS UNIVERSITY

Thank You