IFT2015 :: hiver 2020

Cours de structures de données, Université de Montréal

FÉVRIER 11, 2020FÉVRIER 11, 2020 by CSUROSM

Algorithmes de tri interne: exercices

- EXERCICES
- LAISSER UN COMMENTAIRE

t.1 Tri bébé

- **a.** Quel est le minimum de comparaisons pour trier trois éléments? Donner un algorithme pour trier trois éléments a, b, c avec ce nombre minimum de comparaisons.
- **b.** Quel est le minimum de comparaisons pour trier quatre éléments? Donner un algorithme pour trier quatre éléments a, b, c, d avec ce nombre minimum de comparaisons.

t.2 Séquence bitonique

Le tableau $A[0 \dots n-1]$ est appellé **bitonique** s'il existe un indice $i \in \{0, 1 \dots, n-1\}$ tel que $A[0] \le A[1] \le \dots \le A[i]$ et $A[i] \ge A[i+1] \ge A[i+2] \ge \dots \ge A[n-1]$. Donner un algorithme pour trier A dans l'ordre croissant en temps linéaire au pire.

Indice. Utiliser un tableau auxiliaire.

t.3 Tri local

On veut trier un tableau A[0..n-1]. Le tri correspond à une permutation π des indices $0,\ldots,n-1$ telle que $A\big[\pi(0)\big] \leq A\big[\pi(1)\big] \leq \cdots \leq A\big[\pi(n-1)\big]$. Supposons qu'on sait que le tableau est «presque trié» dans le sens qu'il existe une constante Δ avec $\big|k-\pi(k)\big| \leq \Delta$ pour tout k. Dans d'autres mots, le tri déplace chaque élément par tout au plus Δ position. Il n'est pas difficile de voir que le tri par insertion prend $O(n\Delta)$ temps sur un tel tableau presque trié. a. Modifier le tri par sélection pour qu'il prenne $O(n\Delta)$ temps quand Δ est fourni comme argument.

b. Développer un algorithme de tri qui prend le «désordre» Δ comme argument pour trier le tableau en $O(n\log\Delta)$ temps. L'algorithme ne doit utiliser que $O(\Delta)$ espace de travail. **Indice.** Employez une file à priorités de Δ éléments au plus, en liaison avec une fenêtre de taille Δ glissant au long du tableau.

t.4 Vis-écrou

On a un ensemble de n vis et n écrous. On sait que les vis sont de tailles différentes, et qu'il existe exactement un écrou pour chaque vis. On ne peut comparer qu'un écrou E à une vis V à la fois (donc pas de comparaisons écrou-écrou ou vis-vis), pour vérifier que soit E<V, soit E=V, ou bien E>V.

a. Donner un algorithme pour ranger n=2, et un autre pour n=3 paires de vis-écrou.

b. Donner un algorithme pour trouver l'écrou à chaque vis avec O(n log n) comparaisons *en moyenne*.

Indice. Aadaptez l'astuce de partition par pivotage dans Quicksort.

c. Quel est le nombre minimal de comparaisons vis-écrou qu'un algorithme de tri déterministe doit faire?

Indice. Analysez la hauteur de l'arbre de décision: attention, le résultat d'une comparaison entre vis et écrou est ternaire.

Remarque. Il est très difficile de trouver un algorithme déterministe pour ce problème avec temps linéarithmique. En fait, c'est un problème ouvert de recherche!

t.6 Megafusion

Dans le tri par fusion, on fusionne deux listes en un temps linéaire. Donner un algorithme pour fusionner k listes triées dans un temps O(n log k) quand la longueur totale des listes est n (donc n est la longueur du résultat).

Indice. Utilisez un tas de taille k, ou développez une solution récursive (par k)

Publicités