Számítógépes alkalmazások Alapok

Soós Sándor

SOPRON, 2015.

Tartalomjegyzék.

Tartalomjegyzék

1.	Bev	ezetês	1
2.	Ala	pfogalmak	1
	2.1.	Kettes számrendszer	1
	2.2.	Logikai és aritmetikai műveletek	2
	2.3.	A rendszerszemlélet	5
3.	A sz	zámítógép működése	6
	3.1.	Kódolás, kódrendszerek	7
	3.2.	Számok kódolása	8
4.	Bef	ejezés	14

1. Bevezetés

Miről lesz szó a mai órán?.

- A számítógépek működésének alapjai
- ullet Kettes számrendszer
- Logikai alapműveletek
- ullet A rendszer fogalma, rendszerszemlélet
- Kódolás, kódrendszerek, számok kódolása

2. Alapfogalmak

2.1. Kettes számrendszer

Kettes számrendszer.

- Mi az a kettes számrendszer?
- Miért jó, ha ezt használjuk a számítógép működésének alapjául?
- Két számjegy (0, 1) ⇔ Kétállapotú jelenségek (áram, mágnesség)
- Az áramkörök modellezhetők a matematikai logika elméletével

Bináris számjegy	$ m \acute{A}ram$	Mágnesség
0	nincs áram (0V)	pozitív
1	van áram (5V, 3V)	negatív

2.2. Logikai és aritmetikai műveletek

Logikai műveletek igazságtáblája.

1. Negáció – NOT (egyváltozós) ellentettjére változtatja a logikai értéket

A	$\neg A$
0	1
1	0

2. És – AND (kétváltozós) igaz, ha mindkét operandus igaz

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

3. Vagy – OR (kétváltozós) igaz, ha valamelyik operandus igaz

A	В	$A \lor B$
0	0	0
0	1	1
1	0	1
1	1	1

4. Kizáró vagy – XOR (kétváltozós) igaz, ha pontosan az egyik operandus igaz

A	B	A xor B
0	0	0
0	1	1
1	0	1
1	1	0

Aritmetikai műveletek.

1. Egybites szorzás kettes számrendszerben

A	B	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

2. Egybites összeadás kettes számrendszerben

A	B	A+B	
0	0	00	
0	1	01	
1	0	01	
1	1	10	

Kapcsolat a logikai és az aritmetikai műveletek között.

- 1. A szorzás műveleti táblája megegyezik az És $-\,\mathrm{AND}$ művelet igazságtáblájával
- 2. Az össze
adás felső bitjét az És AND, az alsó bitjét a Kizáró vagy XOR igazságtáblája szolgál
tatja
- $3.\ A$ több-bites aritmetikai műveleteket hasonlóképpen összerakhatjuk a logikai műveletekből
- 4. A logikai műveletek könnyen megvalósíthatók elektronikai alkatrészekkel (ÉS-kapu, VAGY-kapu, stb.)
- 5. Így tudunk számolni elektronikus áramkörökkel
- 6. A processzor logikai kapuk hálózatából épül fel

2.3. A rendszerszemlélet

A rendszer fogalma.

- Rendszernek nevezzük alkotóelemek és ezek kapcsolatainak olyan együttesét, amelyek az adott vizsgálat szempontjából összetartoznak
- A rendszerek kisebb alrendszerekből, és tovább nem bontható alapelemekből épülnek fel
- Alapelemnek nevezzük a rendszer azon alkotóelemeit, amelyeket az aktuális vizsgálatban nem bontunk tovább kisebb elemekre
- Példák: autó, számítógép, ember
- Vizsgáljuk meg ezeket a rendszereket!
- Rendszerszemlélet

A rendszerek bonyolultsága.

- Bonyolultság szempontjából két csoportba oszthatjuk a rendszereket:
 - 1. egyszerű rendszer:
 - kisszámú alapelemből felépülő rendszer
 - könnyen áttekinthető, vizsgálható
 - 2. összetett rendszer:
 - $-\,$ nagyszámú alkotóelemből és/vagy alrendszerekből felépülő rendszere
 - a rendszer vizsgálatához célszerű részrendszerekre bontani
- A mérnöki rendszerek vizsgálatának alapvető módszere a részekre bontás
- Minden rendszer vizsgálható ezzel a módszerrel?

A rendszerek bonyolultsága.

- A rendszer nem egyenlő a részeinek összegével!
- $\bullet\,$ Minél összetettebb egy rendszer, annál nagyobb a különbség a kettő között
- Mi a különbség?
- Kapcsolatok!!!
- Hogyan vizsgálhatók az összetett rendszerek?
 - Modellezés

- Absztrakció
- Kiválasztjuk a rendszer azon jellemzőit, amelyek a vizsgálat szempontjából fontosak
- Felépítünk egy másik rendszert (modell), ami egyszerűbb a vizsgált rendszernél, de a kiválasztott jellemzőkben megegyezik azzal
- Ha jól választottuk ki a fontos jellemzőket, és jól építjük fel a modellt, akkor annak vizsgálatával fontos információkat szerezhetünk a vizsgált rendszerről

3. A számítógép működése

A számítógép, mint rendszer.

- A számítógép alkotóelemeit két nagy csoportba soroljuk:
- Hardver:
 - hardware: kemény áru
 - a számítógépet alkotó kézzel fogható alkatrészek összefoglaló neve
 - elektronikus áramkörök, mechanikus eszközök, kábelek, perifériák,
 stb
 - önmagában működésképtelen
- Szoftver:
 - software: lágy áru
 - a számítógépen futó algoritmusok, programok és adatok összessége
 - a szoftver működteti a számítógép hardver eszközeit
- Ebben a tárgyban általában a szoftverrel fogunk foglalkozni

Analóg-digitális technika.

- Analógnak nevezzük azokat az eszközöket, eljárásokat, amelyek folytonos mennyiségekkel dolgoznak
- **Digitális**nak nevezzük azokat az eszközöket, eljárásokat, amelyek az adatokat diszkrét (nem folytonos) értékekkel, véges sok számjeggyel közelítik
- Digitális ábrázolás valamely változó értékének diszkrét ábrázolása véges sok számjeggyel
- A természetben az adatok általában analóg formában vannak jelen, hőmérséklet, áramerősség, feszültség, színek (a fény hullámhossza)
- A számítógépben általában digitális adatokkal dolgozunk
- Szükség van az adatok átalakítására

Adatok átalakítása.

- 1. Analóg-digitális (A/D) átalakítás, A/D konverter:
 - mintavételezés: a folytonos jelből véges sok helyen mintát veszünk
 - kvantálás: a minta értéktartományát diszkrét intervallumokra osztjuk és minden intervallumot egy kijelölt elemével reprezentálunk
- 2. Digitális-analóg (D/A) átalakítás, D/A konverter:
 - a digitális jelből analóg (folytonos) jelet állít elő
- 3. Hol használunk minden nap analóg-digitális átalakítást mindkét irányban?
 - Modem, kábelmodem
 - A telefon és a kábeltévé analóg jelet továbbít

3.1. Kódolás, kódrendszerek

Kódolás, kódrendszerek.

- Az adatok feldolgozásához szükség van arra, hogy a számítógép számára érthető formára hozzuk azokat
- Ezt a folyamatot nevezzük kódolásnak
- Általában olyan kódolásokat használunk, amikor az adat és a kódja között kölcsönösen egyértelmű megfeleltetés áll fenn
- Ismerünk olyan kódrendszert, ami nem kölcsönösen egyértelmű?
 - természetes nyelvek
 - természetes nyelvek fordítása
 - -többek között ezért sem tudunk beszéddel kommunikálni a számítógépekkel
 - veszteséges tömörítés, pl. JPEG képformátum
- Milyen kódrendszereket ismerünk?

Elterjedt karakterkódolási rendszerek.

1. ASCII:

- 8 bites kódrendszer
- $2^8 = 256$ jelet tud megkülönböztetni
- eredetileg 7 bites volt, az első 128 jel szabványos, egységes
- a második 128 karakterre több különböző kódkiosztás létezik

2. UNICODE:

- 16 bites kódrendszer
- $2^{16} = 65536$ jelet tud megkülönböztetni
- "minden" nyelv összes jele elfér benne

3. UTF8:

- Általános kódolási rendszer
- Minden karaktert képes kódolni 1-4 byte hosszan
- Változó hosszúságú kódokat használ
- A kódolás leírása: http://en.wikipedia.org/wiki/UTF-8
- Az UTF-8 kódok: http://www.utf8-chartable.de/

Karakterosztályok.

- alfabetikus: az angol ábécé kis és nagybetűi (a, b, c, ..., A, B, C, ...)
- numerikus: számjegyek: (0, 1, 2, ..., 9)
- alfanumerikus: alfabetikus vagy numerikus, időnként beleértünk néhány írásjelet is, pl.
- egyéb jelek: írásjelek, nemzeti karakterek, stb.

3.2. Számok kódolása

Számok kódolása.

- Kettes számrendszer (bináris)
- Tizenhatos számrendszer (hexadecimális)
- Átváltás kettes, tízes és tizenhatos számrendszer között
- BCD (Binary Coded Decimal/binárisan kódolt decimális)

Kettes számrendszer használata.

Egész számok átalakítása tízes-ről kettes számrendszerre.

128	64	32	16	8	4	2	1		10-es számrendszer
0	1	0	0	0	1	0	0	=	$1 \times 64 + 1 \times 4 = 68_{(10)}$
0	0	0	0	0	0	0	1	=	$1 \times 1 = 1_{(10)}$
0	0	0	0	0	0	1	0	=	$1 \times 2 = 2_{(10)}$
0	0	0	0	0	0	1	1	=	$1 \times 2 + 1 \times 1 = 3_{(10)}$
0	0	0	0	0	1	0	0	=	$1 \times 4 = 4_{(10)}$
1	1	1	1	1	1	0	0	=	$252_{(10)}$
1	1	1	1	1	1	0	1	=	$253_{(10)}$
1	1	1	1	1	1	1	0	=	254(10)
1	1	1	1	1	1	1	1	=	255(10)

- az egész számot addig osztjuk 2-vel, amíg a hányados 0 nem lesz
- a hányadost írjuk a bal oldali oszlopba
- ullet a maradékot a jobb oldaliba
- az eredményt a jobb oldali oszlopban kapjuk alulról felfelé

$$73_{(10)} = 1001001_{(2)}$$

A törtrész átalakítása.

- a törtrészt addig szorozzuk 2-vel, amíg a szorzat 1,0 nem lesz
- ha ez nem következik be, akkor a kívánt pontosságig folytatjuk a szorzást
- a szorzat egészrészét írjuk a bal oldali oszlopba
- a törtrészt a jobb oldaliba
- az eredményt a bal oldali oszlopban kapjuk felülről lefelé

$$0,125_{(10)} = 0,001_{(2)}$$

Átalakítás bináris, oktális és hexadecimális számrendszer között.

 $\bullet\,$ korábban láttuk, hogy a számítógép számára a kettes szám
rendszer a legalkalmasabb

- a bináris számok leírása nagyon hosszú, ezért körülményesen használhatók
- az átalakítás tízes számrendszerről elég körülményes
- ezen a problémán segít a 8-as (oktális) és a 16-os (hexadecimális) számrendszer használata
- Miért?
 - vegyük észre, hogy $8_{(10)} = 1000_{(2)}$ és $16_{(10)} = 10000_{(2)}$, azaz a 8 és a 16 "kerek" számok kettes számrendszerben, ahogyan a tízes számrendszerben a száz, az ezer, vagy a millió
 - Hogyan írnánk át egy számot tízes számrendszerből ezresbe?

Ezres tagolás.

• tízes számrendszerben így szoktuk leírni a nagy számokat:

 ha a háromjegyű számcsoportokat egy-egy számjegynek tekintjük, akkor ezzel átírtuk a számot ezres számrendszerbe:

$$[123] [456] [789]_{(1000)}$$

• ha ugyanezt megtesszük a bináris számokkal, akkor ugyanilyen egyszerűen átírhatunk számokat oktális, vagy hexadecinális számrendszerbe

Bináris-oktális átalakítás.

- Nyolcas számrendszerben 8 számjegyre van szükségünk, ezért használhatjuk a megszokott számjegyeket 0-tól 7-ig
- például:

- decimális: 42₍₁₀₎

- bináris: 101 010₍₂₎

oktális: 52₍₈₎

Bináris-hexadecimális átalakítás.

- $\bullet\,$ Tizenhatos számrendszerben 16 számjegyre van szükség 0-tól 15-ig
- 10-től 15-ig az ábécé első 6 betűjét használjuk (A-F)

Bináris-hexadecimális átalakítás.

decimális	42(10)
bináris	$00101010_{(2)}$
bináris tagolva	$0010 1010_{(2)}$
hexadecimális tagolva	$2 A_{(16)}$
hexadecimális	$2A_{(16)}$

- Melyiket használjuk az oktális, vagy a hexadecimális számrendszert?
- A ma használatos számítógépek 8 bites szervezésűek, ezért a hexadecimális írásmód a legcélszerűbb
- Egy bájtnyi (8 bit) adatot két hexadecimális számjeggyel írunk le

BCD - Binary Coded Decimal.

- Binárisan kódolt decimális számábrázolás
- az előző ötletet alkalmazhatjuk bináris és decimális számrendszerek között is

decimális		178	$89_{(10)}$	
decimális tagolva	1	7	8	$9_{(10)}$
bináris tagolva	0001	0111	1000	1001(2)

- ez egy kicsit pazarló ábrázolás, mert a 4 biten elérhető 16 lehetőség közül csak 10-et használunk fel
- Pakolt BCD kód esetén két-két BCD számjegy 1 bájtba kerül
- Zónázott BCD kód esetén minden számjegyet külön bájtban tárolunk, ez tovább csökkenti a kód tömörségét, de egyszerűbbé teszi az aritmetikát

Negatív számok kezelése.

- az eddig tárgyalt módszerekkel tetszőleges pozitív egész számokat tudunk kezelni
- a használt bitek száma meghatározza az ábrázolható számok méretét, de bármekkora számokat megvalósíthatunk

- Mit tegyünk a negatív számokkal?
 - 1. minden számhoz külön tároljuk az előjelét
 - minden alkalommal, amikor használni akarjuk a számot, meg kell vizsgálni az előjelet, és attól függően kell használni az értéket
 - 2. építsük be az előjelet a számok ábrázolásába, lehetőleg úgy, hogy jól működjön az aritmetika
 - a számok ábrázolásához felhasználható bitek közül egyet lefoglalunk (általában a legmagasabb helyiértékűt), és ezen tároljuk az előjelet, 0: pozitív, 1: negatív
 - az ábrázolható számok abszolútértékét ezzel megfeleztük
 - pl. $0, \ldots, +255$ helyett $-128, \ldots, +127$

Komplemensképzés.

- ezzel a módszerrel úgy ábrázoljuk a negatív számokat, hogy azokkal ugyanúgy végezhessünk műveleteket, mint a pozitív számokkal
- komplemens: az a szám, amelyik az ábrázolható legnagyobb számnál eggyel nagyobbra egészíti ki az adott számot
- jele: \overline{x}
 - ha tízes számrendszerben háromjegyű számokkal dolgozunk
 - $-\,$ a legnagyobb ábrázolható szám: 999
 - egy a szám komplemense: $\overline{a} = 1000 a$
 - $pl. \overline{196} = 1000 196 = 804$

Kettes komplemens.

- Kettes számrendszerben a következőképpen képezhetjük a kettes komplemenst:
 - 1. a legkisebb helyiértéktől indulva, végigmegyünk a biteken
 - 2. amíg 0 biteket találunk, azokat változatlanul leírjuk
 - 3. amikor 1-est találunk, azt még szintén leírjuk, de a további biteket invertáljuk
- Egyes komplemens: a bináris szám bitenkénti negáltja, azaz minden bitjét az ellenkezőjére állítjuk
- ha az egyes komplemenshez egyet hozzáadunk, megkapjuk a kettes komplemenst

${\bf P\'elda~komplemensk\'epz\'esre.}$

• Például 8 bites számokkal dolgozunk,

$$11111111_{(2)} + 1 = 100000000_{(2)} = 256_{(10)}$$

-ra kell kiegészíteni

x	$10111000_{(2)}$	184(10)
\overline{x}	$01001000_{(2)}$	$72_{(10)}$
x egyes komplemense	$01000111_{(2)}$	71 ₍₁₀₎
x egyes kompl. $+1$	$01001000_{(2)}$	$72_{(10)}$
$x + \overline{x}$	$100000000_{(2)}$	$256_{(10)}$

Előjeles számok ábrázolása kettes komplemens kódban .

• vegyünk egy kétbájtos számot

 \bullet a legmagasabb helyiértékű biten (16.) tároljuk az előjelet, 0: pozitív, 1: negatív

 \bullet a legnagyobb ábrázolható szám: $N_{max}=2^{15}-1=32767$

	16.	15.	14.	 6.	5.	4.	3.	2.	1.	
ĺ	0	0	0	 1	1	0	1	0	0	$=52_{(10)}$
ĺ	1	1	1	 0	0	1	0	1	1	egyes kompl.
ĺ	0	0	0	 0	0	0	0	0	1	+1
ĺ	1	1	1	 0	0	1	1	0	0	−52 kódolva

Számolás kettes komplemens kódban .

16.	15.	14.	 6.	5.	4.	3.	2.	1.	
1	1	1	 0	0	1	1	0	0	$-52_{(10)}$
0	0	0	 1	1	0	1	1	1	$+55_{(10)}$
0	0	0	 0	0	0	0	1	1	-52 + 55 = 3

4. Befejezés

Befejezés.

Köszönöm a figyelmet!