Dynamic Memory Allocation: Advanced Concepts

CSE4100: System Programming

Youngjae Kim (PhD)

https://sites.google.com/site/youkim/home

Distributed Computing and Operating Systems Laboratory (DISCOS)

https://discos.sogang.ac.kr

Office: R911, E-mail: youkim@sogang.ac.kr

Today

- Explicit free lists
- Segregated free lists
- **■** Garbage collection
- Memory-related perils and pitfalls

Keeping Track of Free Blocks

Method 1: Implicit free list using length—links all blocks

Method 2: Explicit free list among the free blocks using pointers

- Method 3: Segregated free list
 - Different free lists for different size classes
- Method 4: *Blocks sorted by size*
 - Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

Explicit Free Lists

Allocated (as before)

Free

■ Maintain list(s) of *free* blocks, not *all* blocks

- The "next" free block could be anywhere
 - So we need to store forward/back pointers, not just sizes
- Still need boundary tags for coalescing
- Luckily we track only free blocks, so we can use payload area

Explicit Free Lists

Logically:

■ Physically: blocks can be in any order

Allocating From Explicit Free Lists

Freeing With Explicit Free Lists

- Insertion policy: Where in the free list do you put a newly freed block?
- LIFO (last-in-first-out) policy
 - Insert freed block at the beginning of the free list
 - Pro: simple and constant time
 - Con: studies suggest fragmentation is worse than address ordered

Address-ordered policy

• Insert freed blocks so that free list blocks are always in address order:

```
addr(prev) < addr(curr) < addr(next)</pre>
```

- Con: requires search
- Pro: studies suggest fragmentation is lower than LIFO

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Insert the freed block at the root of the list

Freeing With a LIFO Policy (Case 2)

conceptual graphic

 Splice out successor block, coalesce both memory blocks and insert the new block at the root of the list

Freeing With a LIFO Policy (Case 3)

conceptual graphic

 Splice out predecessor block, coalesce both memory blocks, and insert the new block at the root of the list

Freeing With a LIFO Policy (Case 4)

conceptual graphic

 Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert the new block at the root of the list

Explicit List Summary

- Comparison to implicit list:
 - Allocate is linear time in number of free blocks instead of all blocks
 - Much faster when most of the memory is full
 - Slightly more complicated allocate and free since needs to splice blocks in and out of the list
 - Some extra space for the links (2 extra words needed for each block)
 - Does this increase internal fragmentation?
- Most common use of linked lists is in conjunction with segregated free lists
 - Keep multiple linked lists of different size classes, or possibly for different types of objects

Keeping Track of Free Blocks

Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers

- Method 3: *Segregated free list*
 - Different free lists for different size classes
- Method 4: *Blocks sorted by size*
 - Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

Today

- **Explicit free lists**
- Segregated free lists
- **■** Garbage collection
- Memory-related perils and pitfalls

Segregated List (Seglist) Allocators

Each size class of blocks has its own free list

- Often have separate classes for each small size
- For larger sizes: One class for each two-power size

Seglist Allocator

Given an array of free lists, each one for some size class

■ To allocate a block of size n:

- Search appropriate free list for block of size m > n
- If an appropriate block is found:
 - Split block and place fragment on appropriate list (optional)
- If no block is found, try next larger class
- Repeat until block is found

If no block is found:

- Request additional heap memory from OS (using sbrk ())
- Allocate block of n bytes from this new memory
- Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)

To free a block:

Coalesce and place on appropriate list

Advantages of seglist allocators

- Higher throughput
 - log time for power-of-two size classes
- Better memory utilization
 - First-fit search of segregated free list approximates a best-fit search of entire heap.
 - Extreme case: Giving each block its own size class is equivalent to best-fit.

More Info on Allocators

- D. Knuth, "The Art of Computer Programming", 2nd edition, Addison Wesley, 1973
 - The classic reference on dynamic storage allocation
- Wilson et al, "Dynamic Storage Allocation: A Survey and Critical Review", Proc. 1995 Int'l Workshop on Memory Management, Kinross, Scotland, Sept, 1995.
 - Comprehensive survey

Today

- **Explicit free lists**
- Segregated free lists
- Garbage collection
- Memory-related perils and pitfalls

Implicit Memory Management: Garbage Collection

■ **Garbage collection:** automatic reclamation of heapallocated storage—application never has to free

```
void foo() {
  int *p = malloc(128);
  return; /* p block is now garbage */
}
```

- Common in many dynamic languages:
 - Python, Ruby, Java, Perl, ML, Lisp, Mathematica
- Variants ("conservative" garbage collectors) exist for C and C++
 - However, cannot necessarily collect all garbage

Garbage Collection

- How does the memory manager know when memory can be freed?
 - In general we cannot know what is going to be used in the future since it depends on conditionals
 - But we can tell that certain blocks cannot be used if there are no pointers to them
- Must make certain assumptions about pointers
 - Memory manager can distinguish pointers from non-pointers
 - All pointers point to the start of a block
 - Cannot hide pointers
 (e.g., by coercing them to an int, and then back again)

Classical GC Algorithms

- Mark-and-sweep collection (McCarthy, 1960)
 - Does not move blocks (unless you also "compact")
- Reference counting (Collins, 1960)
 - Does not move blocks (not discussed)
- Copying collection (Minsky, 1963)
 - Moves blocks (not discussed)
- Generational Collectors (Lieberman and Hewitt, 1983)
 - Collection based on lifetimes
 - Most allocations become garbage very soon
 - So focus reclamation work on zones of memory recently allocated
- For more information:
 Jones and Lin, "Garbage Collection: Algorithms for Automatic Dynamic Memory", John Wiley & Sons, 1996.

Memory as a Graph

- We view memory as a directed graph
 - Each block is a node in the graph
 - Each pointer is an edge in the graph
 - Locations not in the heap that contain pointers into the heap are called root nodes (e.g. registers, locations on the stack, global variables)

A node (block) is *reachable* if there is a path from any root to that node.

Non-reachable nodes are *garbage* (cannot be needed by the application)

Mark and Sweep Collecting

- Can build on top of malloc/free package
 - Allocate using malloc until you "run out of space"
- When out of space:
 - Use extra mark bit in the head of each block
 - Mark: Start at roots and set mark bit on each reachable block
 - Sweep: Scan all blocks and free blocks that are not marked

Assumptions For a Simple Implementation

Application

- new(n): returns pointer to new block with all locations cleared
- read(b,i): read location i of block b into register
- write(b,i,v): write v into location i of block b

Each block will have a header word

- addressed as b[-1], for a block b
- Used for different purposes in different collectors

Instructions used by the Garbage Collector

- is_ptr(p): determines whether p is a pointer
- length (b): returns the length of block b, not including the header
- get_roots(): returns all the roots

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

```
ptr sweep(ptr p, ptr end) {
    while (p < end) {
        if markBitSet(p)
            clearMarkBit();
        else if (allocateBitSet(p))
            free(p);
        p += length(p);
}</pre>
```

Conservative Mark & Sweep in C

- A "conservative garbage collector" for C programs
 - is_ptr() determines if a word is a pointer by checking if it points to an allocated block of memory
 - But, in C pointers can point to the middle of a block

So how to find the beginning of the block?

- Can use a balanced binary tree to keep track of all allocated blocks (key is start-of-block)
- Balanced-tree pointers can be stored in header (use two additional

Left: smaller addresses

Right: larger addresses

Today

- **Explicit free lists**
- Segregated free lists
- **■** Garbage collection
- Memory-related perils and pitfalls

Memory-Related Perils and Pitfalls

- Dereferencing bad pointers
- Reading uninitialized memory
- Overwriting memory
- Referencing nonexistent variables
- Freeing blocks multiple times
- Referencing freed blocks
- Failing to free blocks

Dereferencing Bad Pointers

■ The classic scanf bug

```
int val;
...
scanf("%d", val);
```

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

```
/* return y = Ax */
int *matvec(int **A, int *x) {
   int *y = malloc(N*sizeof(int));
   int i, j;

for (i=0; i<N; i++)
   for (j=0; j<N; j++)
      y[i] += A[i][j]*x[j];
   return y;
}</pre>
```

Allocating the (possibly) wrong sized object

```
int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
   p[i] = malloc(M*sizeof(int));
}</pre>
```

Off-by-one error

```
int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
   p[i] = malloc(M*sizeof(int));
}</pre>
```

Not checking the max string size

```
char s[8];
int i;
gets(s); /* reads "123456789" from stdin */
```

Basis for classic buffer overflow attacks

■ Misunderstanding pointer arithmetic

```
int *search(int *p, int val) {
  while (*p && *p != val)
    p += sizeof(int);

return p;
}
```

Referencing a pointer instead of the object it points to

```
int *BinheapDelete(int **binheap, int *size) {
  int *packet;
  packet = binheap[0];
  binheap[0] = binheap[*size - 1];
  *size--;
  Heapify(binheap, *size, 0);
  return(packet);
}
```

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function returns

```
int *foo () {
   int val;

return &val;
}
```

Freeing Blocks Multiple Times

Nasty!

Referencing Freed Blocks

■ Evil!

```
x = malloc(N*sizeof(int));
  <manipulate x>
free(x);
    ...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++)
    y[i] = x[i]++;</pre>
```

Failing to Free Blocks (Memory Leaks)

Slow, long-term killer!

```
foo() {
   int *x = malloc(N*sizeof(int));
   ...
   return;
}
```

Failing to Free Blocks (Memory Leaks)

Freeing only part of a data structure

```
struct list {
   int val;
   struct list *next;
};
foo() {
   struct list *head = malloc(sizeof(struct list));
   head->val = 0;
   head->next = NULL;
   <create and manipulate the rest of the list>
   free (head) ;
   return;
```

Dealing With Memory Bugs

- Debugger: gdb
 - Good for finding bad pointer dereferences
 - Hard to detect the other memory bugs
- Data structure consistency checker
 - Runs silently, prints message only on error
 - Use as a probe to zero in on error
- Binary translator: valgrind
 - Powerful debugging and analysis technique
 - Rewrites text section of executable object file
 - Checks each individual reference at runtime
 - Bad pointers, overwrites, refs outside of allocated block
- glibc malloc contains checking code
 - setenv MALLOC_CHECK_ 3