N70-20277 CR-108894

N 70/14480 NASA CRIU742

ORNL-4455 UC-34 - Physics

TABULATED CROSS SECTIONS FOR HYDROGEN
AND HELIUM PARTICLES PRODUCED BY

62-MeV AND 29-MeV PROTONS ON ²⁷AI

F. E. Bertrand R. W. Peelle

OAK RIDGE NATIONAL LABORATORY

operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

Printed in the United States of America: Available from Clearinghouse for Federal
Scientific and Technical Information, National Bureau of Standards,
U.S. Department of Commerce, Springfield, Virginia 22151
Price: Printed Copy \$3.00; Microfiche \$0.65

- LEGAL NOTICE -

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Contract No. W-7405-eng-26
Neutron Physics Division

TABULATED CROSS SECTIONS FOR HYDROGEN AND HELIUM PARTICLES PRODUCED BY 62-MeV AND 29-MeV PROTONS ON 27 Al

F. E. Bertrand^a and R. W. Peelle

NOTE:

This Work Partially Funded By
NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION
Under Order L-12,186

NOVEMBER 1969

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

^aOn leave from the Department of Physics, University of Southern California, Los Angeles, California.

TABULATED CROSS SECTIONS FOR HYDROGEN AND HELIUM PARTICLES PRODUCED BY 62-MeV AND 29-MeV PROTONS ON 27A1

F. E. Bertrand and R. W. Peelle

ABSTRACT

Tabulated differential cross sections are presented for the production of proton, deuteron, triton, helium-3, and alpha particles from ²⁷Al bombarded by 62- and 29-MeV protons. At 62 MeV, continuum cross sections are listed at 18 angles from 12 deg through 160 deg, while at 29 MeV data are given at only three angles. The low-energy cut-offs on the spectra range from 3 to 6 MeV. Angular distributions are given for excitation by 62 MeV protons of states at 0, 2.2, 2.7, and 3.0 MeV in ²⁷Al, and at 0, 1.06, 2.07, and 4.7 MeV in ²⁶Al.

The differential cross sections for the production of proton, deuteron, triton, helium-3, and alpha particles produced by bombardment of targets by 62-, 39-, and 29-MeV protons were measured over a secondary energy range from ~ 3 to 62 MeV. The details of the experimental system and data analysis have been reported elsewhere. This report gives the tabulated cross sections for the secondary charged particles from 27 Al bombardment by 61.5- and 28.8-MeV protons.

The incident protons were accelerated by the Oak Ridge Isochronous Cyclotron, momentum analyzed in a 153-deg magnet and focused on the target in a spot of approximately 8-mm diameter. The reaction particles from the target were detected in an all solid-state, three-counter telescope utilizing lithium-drifted germanium as the total absorption detector. The overall energy resolution attained by the spectrometer was approximately 180 keV (FWHM) for most of the data reported here. The secondary-particle type was determined by a combination of ΔE vs E and flight time vs E methods which permitted unambiguous identification over the whole reported energy range. Data were obtained from four ADC's for each event, processed in an on-line PDP-8 computer, and written on magnetic tape. The data were analyzed on the ORNL IBM-360 and CDC-1604 computers and on the PDP-8.

Three aluminum targets were used and in each case the targets were commercially available aluminum foil. The thicknesses and nonuniformities of the three foils are listed in Table 1, along with experimental parameters and estimated uncertainties. The thickness of the target was the limiting factor for the low-energy cutoff of the alpha spectra while the other particle spectra were limited by experimental factors shown in Table 2. A list of the factors by which counts are multiplied to give millibarns (steradian) 1 (laboratory system) are given for each angle in Table 3.

The data tabulated in this report have been corrected for the effects of: nuclear reactions in the germanium detector, "dead" layer in the path of the scattered particles, multiple scattering of the secondary protons by the ΔE detectors, energy loss from the scattered particles in the target, the effective narrowing of the collimator aperture by the beam spot size and alignment, and collimator edge penetration by the scattered particles. These corrections are described in refs. 1 and 2.

The magnitudes of the "tail" corrections for nuclear reactions in the germanium detector and for collimator edge penetration are both dependent upon the number and spectral distribution of recorded counts. corrections are significant only for protons at scattering angles less than about 30 deg, where the spectra are dominated by strong elastic scattering, and generally fall rapidly with angle within that range. The uncertainty in the correction for collimator penetration is taken as 20% of the correction, which is approximately proportional to pulse height. This uncertainty is significant only at 12 deg, as shown in the table below. The uncertainty in the reaction tail correction is taken as 25% of the correction, which rises from zero to its full value between 35 and 45 MeV and then remains roughly constant up to the elastic peak. The cross section uncertainty in the standard correction is tabulated below for the runs in which it is significant. These uncertainties must be combined with the overall uncertainties of Table 1 and with statistical uncertainties.

an apparent continuum (presumably consisting of many weakly excited and unresolved levels) was subtracted from the data. For example, in Fig. 1, a smooth continuum with magnitude varying from ~ 1 to 0.5 mb/sr/MeV would be subtracted from the peaks between 50 and 55 MeV. Tables 4-7 give the elastic scattering cross sections and the differential cross sections for the 2.21-, 2.73-, and 3.03 MeV levels obtained from the 27 Al data. From the $^{27}A1(p,d)^{26}A1$ reaction the differential cross sections for the ground state (Q = -10.83 MeV), 1.06-, 2.07-, and 4.73-MeV levels in 26 A1 were obtained. These cross sections are listed in Tables 8-11. values given for the levels listed are those values obtained in the experiment and are uncertain by ± 0.02 MeV. The energies of the observed low lying levels are in good agreement with known levels. Although levels are seen in the triton and helium-3 plots, differential cross sections for the observed levels have not been extracted. It should be noted that the errors shown on the cross sections listed in Tables 4-11 and on other data tables to be discussed below are based on counting statistics only and must be used with the systematic uncertainties (5% overall) in Table 1.

Since data were obtained at only three angles for incident 28.8 MeV protons, differential cross sections for the peaks observed were not extracted. However, the elastic-scattering cross sections for the three angles are listed in Table 12. Integrals over angle are not presented in the report for 28.8-MeV protons due to the small number of data angles.

Table 13 is a list of the binned cross sections integrated over angle for each particle type, for 62-MeV incident protons, in units of millibarns/MeV, and the energy listed is for the lower edge of each bin. Table 14 shows the energy integrated laboratory cross sections at each angle in units of millibarns/steradian, and the average energies in MeV, for both 62- and 28.8-MeV incident protons. This table also lists the low-energy cutoff for each particle type at each angle. The total cross sections, in millibarns, average energies in MeV and average forward momenta in MeV/c, for the observed proton, deuteron, triton, helium-3, and alpha particles are listed in Table 15 for 62-MeV incident protons. The secondary proton cross sections listed in the tables do not include

Angle	Uncertainty from reaction tail correction at 45 MeV	Uncertainty from collimator edge penetration at 45 MeV
	62 MeV	
12 deg	\pm .45 mb (ster-MeV) ⁻¹	\pm 0.09 mb (ster-MeV) ⁻¹
15 deg	± .30	
30 deg	± .01	
	29 MeV	
11 deg	± .36	
30 deg	± .04	

A large amount of tail, uncompensated by the standard tail corrections, has been found in the 62-MeV, 25-deg data. Presumably it was caused by detector malalignment. To correct for the extra tail, $0.38 \pm .25 \text{ mb(ster-MeV)}^{-1}$ was subtracted from the 25 deg proton data between energies of 45 and 62 MeV, and a decreasing amount was subtracted in the region between 35 and 45 MeV. The peak cross sections at 25 deg were correspondingly increased by $12\% \pm 8\%$. The uncertainties on these excess reaction tails have been included in the tabulated data.

Figures 1-10 show the proton, deuteron, triton, helium-3, and alpha spectra from aluminum at 30 deg for both 62- and 29-MeV incident protons. This data was taken using the thinnest of the aluminum targets, the only target thin enough to allow observation of the evaporation peak in the alpha spectrum.

The spectrum of protons, deuterons, tritons, and helium-3's at 62 MeV show the presence of a number of closely spaced peaks from excitation of levels in the residual nuclei. This is particularly the case for the inelastic proton spectrum where only a few of the many levels observed in Fig. 1 appear to be due primarily to excitation of a single state. Differential cross sections were obtained for those particle groups whose pulse-height resolution appeared consistent with that expected from a single level (150 to 200 keV) and which could be separated from nearby groups. In some cases, in order to obtain the peak cross sections,

the elastic scattering cross section, while the cross sections for the other secondary particles include all observed events.

Tables 16-20 list for each angle the laboratory cross sections for proton, deuteron, triton, helium-3, and alpha particle production from 62-MeV incident protons on ²⁷Al, binned in 0.4-MeV wide bins at low energies and 1-MeV wide bins elsewhere, in units of millibarns (steradian) -1 (MeV) -1. The bin energies listed are the center of the bins. Tables 21-25 list the cross sections for the above particles produced by 28.8-MeV incident protons. Cross sections are listed for energies above the cutoffs listed in Table 14.

ACKNOWLEDGEMENT

The authors would like to acknowledge the help of T. A. Love, N. W. Hill, and W. R. Burrus, who shared the development of the data acquisition and analysis system, and the long hours of experimental runs; P. M. Aebersold and D. I. Putzulu for work on data analysis programs; and J. D. Drischler for help rendered in the compilation of the data.

REFERENCES

- 1. F. E. Bertrand et al., Differential Cross Sections for the Charged Particles Produced by 60-MeV Protons on Carbon, Iron, and Bismuth, ORNL-4274 (1968).
- 2. F. E. Bertrand and R. W. Peelle, <u>Tabulated Cross Sections for the Hydrogen and Helium Particles Produced by 62-MeV Protons on 89 Y</u>, ORNL-4450 (1969).
- 3. F. E. Bertrand et al., "A Total Absorption Detector for 60-MeV Protons Using Lithium-Drifted Germanium," Proceedings of Ninth Scintillation and Semi-Conductor Symposium, June, 1966, p. 279.

Table 1. Experimental Parameters and Uncertainties

27 Al Targets

~'Al Targets				
62-MeV				
Thicknesses Nonuniformities	5.20 ± 0.0 ± 1%	052; 3.80 <u>+</u> ±	0.038; 1.23 1%	<u>+</u> 0.012 mg/cm ² ± 1.5%
<u>29-MeV</u>				
Thickness Nonuniformities	1.23 ± 0.0 ± 1.5			
Beam Energies				
0100 runs 2000 runs 7000 runs 0000 runs	61.50 ± 0. 61.89 ± 0. 60.86 ± 0. 28.81 ± 0.	1 MeV 1 MeV		
Collimators Used:	Material	Thickness	Area(±1.5%)	Distance(±1
0100 runs 0000 runs 2000 runs 7000 runs	Ta Ta Ni Ni	0.432 cm 0.013 cm 0.653 cm 0.653 cm	0.522 cm ²	45.8 45.8 46.2 46.4
Detector Angle	+ 0.5 deg			
Zero Angle	<u>+</u> 0.5 deg			
Angular Resolution	<u>+</u> 1.2 deg			
Target Angle	+ 0.5 deg			
Beam Spot Diameter	0.8 cm			
Beam Spot "Walk"	\pm 0.4 cm			
Collimator misalignment at chamber center	± 0.5 cm			
K (for Collimator Scattering Correction)	0100 - 2.2 0000 - 2.2 7000 - 3.2 2000 - 4.2			
Uncertainty in various corre	ctions to d	ata ± 1%		
Uncertainty in number of Protarget	tons striki	ng ± 1%		

Uncertainty in dead time measurement

± 2%

Table 2. 27 Al Low-Energy Data Cutoffs

Particle Type	Cutoff	Reason
	62	MeV
Proton	2.8-3.4 MeV	TOF "fold over"
Deuteron	2.3-2.9 MeV	TOF "fold over"
Triton	6.2-6.6 MeV	Mass 3 ambiguity and target thickness
Helium-3	6.6 MeV	Mass 3 ambiguity and target thickness
	13.1 MeV	Lack of TOF data
Alpha	2.8-5.7 MeV	Target thickness
	14.5 MeV	Lack of TOF data
	<u>29 N</u>	<u>MeV</u>
Proton	1.8 MeV	Target thickness
Deuteron	1.7 MeV	Target thickness
Triton	6.2 MeV	Mass-3 ambiguity
Helium-3	6.6 MeV	Mass-3 ambiguity
Alpha	2.5 MeV	Target thickness

Table 3. List of Angles, Run Numbers, and Factors

Lab Angle (deg)	Run Number	Factor ^a
	62 MeV	
12 15 25 30 35 40 45 50 55 60 65 70 75 82 90 110 135 160	0117 0116 2047 7106 2004 2035 7101 2040 2043 0104 2046 2030 2021 2025 0110 0107 2065 2066	5.245(-3) ^b 8.440(-3) 1.253(-3) 2.920(-4) 5.557(-4) 4.411(-4) 2.522(-4) 3.792(-4) 3.748(-4) 6.980(-4) 3.500(-4) 1.310(-4) 1.748(-4) 2.783(-4) 2.369(-3) 1.126(-3)
	28.8 MeV	
11 30 60	0033 0026 0034	1.496(-2) 2.210(-3) 9.598(-4)

a) Number by which counts are multiplied to give laboratory system millibarns/steradian.

b) read as 5.245×10^{-3}

Table 4. Tabulated Differential Cross Sections $^{27}\text{Al}(p,p)^{27}\text{Al}$ $\text{E}_p = 62 \text{ MeV}$

Elastic Scattering

Lab Angle (deg)	C.M. Angle (deg)	Cross Section (Lab) (mb/sr)	Cross Section (C.M.) (mb/sr)	Statistical Uncertainty (+ %)
12	12.5	2002.1	1858.0	0.1
15	15.6	1463.7	1358.8	0.2
20.8	21.6	334.1	310.8	0.5
25	25.9	136.62	127.32	0.8
30	31.0	49.26	37•67	0.2
35	36.3	26.82	25.17	0.4
40	41.5	22.74	21.52	0.4
45	46.5	21.63	20.47	0.3
50	51.6	6.71	6.39	0.7
55	56.7	2.98	2.85	1.1
60	61.9	2.33	2.25	1.7
65	66.9	1.49	1.44	1.5
70	72.1	1.05	1.03	1.8
75	77.1	0.523	0.513	1.6
82	84.1	0.221	0.229	2.8
90	92.3	0.136	0.136	5 .1
110	117.2	0.046	0.047	8.0

Table 5. Tabulated Differential Cross Sections $^{27} \text{Al}(p,p^{\,\text{!`}})^{27} \text{Al}$ $E_p = 62 \text{ MeV}$ Q = -2.21 MeV

Lab Angle (deg)	C.M. Angle (deg)	Cross Section (Lab) (mb/sr)	Cross Section (C.M.) (mb/sr)	Statistical Uncertainty (<u>+</u> %)
15	15.6	3.66	3•39	7.5
20.8	21.6	3.26	3.03	7.0
25	26.0	3. 97	3. 70	8.0
30	31.1	3.13	2.92	1.0
35	36.3	1.12	1.05	2.3
40	41.4	0• 1+31+	0.409	3.6
45	46.5	0.478	0.452	2.4
50	51.6	0.414	0.394	3.2
55	56.8	0.312	0.298	3.5
60	61.9	0.269	0.258	5.1
65	67.0	0.136	0.131	5.2
70	72.1	0.116	0.113	5.7
75	77.2	0.085	0.083	4.3
82	84.2	0.063	0.063	5.5
90	92.3	0.024	0.024	12.9
110	112.2	0.0075	0.0077	21.2

Table 6. Tabulated Differential Cross Sections $E_{p} = 62 \text{ MeV}$ Q = -2.73 MeV

Lab Angle (deg)	C.M. Angle (deg)	Cross Section (Lab) (mb/sr)	Cross Section (C.M.) (mb/sr)	Statistical Uncertainty (<u>+</u> %)
1 5	15.6	2.40	2.22	11.6
25	26.0	1.04	0.97	8.0
30	31.1	0.40	0.374	4.5
35	36.3	0.377	0.353	5.1
40	41.5	0.235	0.222	5.8
45	46.5	0.164	0 .1 55	4.8
50	51.6	0.143	0.140	5.6
55	56.8	0.103	0.099	6.8
60	61.9	0.091	0.088	9.2
65	67.0	0.042	0.040	10.3
70	72.1	0.026	0.025	14.5
75	77.2	0.023	0.022	8.3
82	84.2	0.012	0.012	16.0
90	92.3	0.0047	0.0047	33•5
110	112.2	0.0023	0.0023	37•0

Table 7. Tabulated Differential Cross Sections $^{27}\text{Al}(p,p')^{27}\text{Al}$ $E_p = 62 \text{ MeV}$ Q = -3.03 MeV

Lab Angle (deg)	C.M. Angle (deg)	Cross Section (Lab) (mb/sr)	Cross Section (C.M.) (mb/sr)	Statistical Uncertainty (+ %)
15	15.6	1.28	1.19	20.9
20.8	21.6	3.51	3.26	7•3
25	26.0	4.50	4.19	8.0
30	31.0	3•31	3.10	1.0
35	36.3	1.34	1.26	2.6
40	41.5	0.491	0.463	3.0
45	46.5	0.578	0.546	2.1
50	51.7	0.478	0.455	3.2
55	56.8	0.374	0.358	3.1
60	61.9	0.253	0.243	6.6
65	67.0	0.140	0.136	6.0
70	72.1	0.082	0.080	6.8
75	77.2	0.078	0.076	4.7
82	84.2	0.050	0.049	6.9
90	92.3	0.039	0.039	10.4
110	112.2	0.0052	0.0054	23.3

Tabulated Differential Cross Sections Table 8. $E_p = 62 \text{ MeV}$ $E_p = 62 \text{ MeV}$ $E_p = 63 \text{ MeV}$ $E_p = 10.83 \text{ MeV}$ Ground State

		Ground State		
Lab Angle (deg)	C.M. Angle (deg)	Cross Section (Lab) (mb/sr)	Cross Section (C.M.) (mb/sr)	Statistical Uncertainty (<u>+</u> %)
1 5	16.0	3 . 67	3•27	5.0
20.8	22.0	1.44	1.28	8.8
25	26.4	1.34	1.21	3.2
30	31.7	1.20	1.08	1.6
35	37•0	1.04	0.943	2.3
40	42.3	0.642	0.587	2.7
45	47.4	0.547	0.503	2.1
50	52.6	0.313	0.290	3.5
55	57.8	0.219	0.205	4.1
60	63.0	0.191	0.180	6.2
65	68.1	0.107	0.102	5.9
70	73•2	0.073	0.070	7•3
75	78.3	0.047	0.046	5.5
82	85.4	0.037	0.036	7.1
90	93•5	0.017	0.017	15.2
110	113.3	0.0030	0.0031	35.7

Table 9. Tabulated Differential Cross Sections

27 Al(p,d)²⁶ Al E = 62 MeV Q = -11.89 MeV 1.06-MeV State

Lab Angle (deg)	C.M. Angle (deg)	Cross Section (Lab) (mb/sr)	Cross Section (C.M.) (mb/sr)	Statistical Uncertainty (+ %)
1 5	16.0	0.985	0.878	10.7
20.8	22.1	0.494	0.441	16.0
25	26.4	0.410	0.367	6.0
30	31.7	0•339	0.305	3.1
35	37•0	0.310	0.281	4. 4
40	42.3	0.183	0.167	5.3
45	47•4	0.136	0.125	9.5
50	52.6	0.075	0.069	7.9
55	57.8	0.067	0.063	7•9
60	63.0	0.053	0.050	11.9
65	68.1	0.030	0.029	12.2
70	73.2	0.019	0.018	15.5
75	78.3	0.015	0.014	10.8
82	85.4	0.013	0.013	12.1
90	93.5	0.0035	0.0035	36.7
110	113.3	0.0024	0.0025	35.1

Table 10. Tabulated Differential Cross Sections

 27 Al(p,d) 26 Al E = 62 MeV Q = -12.90 MeV 2.07-MeV State

Lab Angle (deg)	C.M. Angle (deg)	Cross Section (Lab) (mb/sr)	Cross Section (C.M.) (mb/sr)	Statistical Uncertainty (<u>+</u> %)
3.5	16.0	7 70	0.001	77 (
15	TO• 0	1.12	0.994	11.6
20.8	22.1	1.206	1.07	9•9
25	26.4	0.603	0.540	4.9
30	31.7	0.464	0.417	3.1
35	37.0	0•397	0.360	4.1
40	42.3	0.293	0.267	4.0
50	52.6	0.145	0.135	5.8
55	57.9	0.099	0.092	6.5
60	63.0	0.099	0.093	8.7
65	68.1	0.073	0.069	8.0
70	73•3	0.042	0.040	12.7
75	78.3	0.015	0.014	15.2

Table 11. Tabulated Differential Cross Sections

 $E_{p} = 62 \text{ MeV}$ Q = -15.56 MeV Q = -3.56 MeV

Lab Angle (deg)	C.M. Angle (deg)	Cross Section (Lab) (mb/sr)	Cross Section (C.M.) (mb/sr)	Statistical Uncertainty (+ %)
7.5	360	0.050	0.01.0	76.0
15	16.0	0.952	0.843	16.2
20.8	22.1	0.758	0.674	17.3
25	26.4	0.642	0.573	6.5
30	31.8	0.575	0.516	2.3
35	37.2	0.487	0.439	5.0
40	42.3	0.368	0.334	4.8
45	47.5	0.269	0.246	4.9
50	52.7	0.198	0.183	6.3
55	58.0	0.11	0.103	9.7
60	63.1	0.134	0.126	9.5
65	68.3	0.106	0.100	7.6
70	73.4	0.045	0.043	13.2
75	78.3	0.036	0.035	9•7
82	85.4	0.025	0.025	12.7
90	93.5	0.015	0.015	21.9

Table 12. 22 Al(p,p) 27 Al $_{p}$ = 28.8 MeV Elastic Scattering

Lab Angle	Cross Section (Lab) (mb/sr)	Statistical Error $(\frac{+}{2} \text{ mb/sr})$
11	3240	6.97
30	169	0.61
60	38.0	0.19

Table 13. Angle-Integrated Cross Sections

Cross Sec	stion	Error	Bin Energy	27A1 Cross Section	Error	Bin Energy	Cross Section	Error
/MeV) (mb/MeV)			(MeV)	(mb/MeV	(mb/Mev)	(MeV)	(mb/MeV)	
			50.00	09.4	190.0	28.00	1.11	
65.53 0.995	0.995		52.00	4.63	\$0.0°	30•00	1.06	o o
	00 117.0		54.00	シュ シュ	0.002	32,00	00 .	•
	0.582		54.00	ري. د ور	290.0	34.00	† C	5 6
	0.240		22.00	2.78	0.07/5	30.00	TOT	0.0
	0.524		%°%	2,45	0.105	38.00	1,12	0.0
	0.495		60.93			00.04	7. 49	20.0
	0.469					42.00	1.61	0.02
	0.455					00.44	2.26	0.028
	0.436			Deuteron		00 ° 9†	1.88	0.026
	0.419				,	00°84	o. 6	0.02
	701.0		7. c	e P	0. TG/	50°00	ر ا ا	0.06/
	0.128		, v.	7. 50 1. 50	960.0	C + + C	Triton	
	0.118			4.50	0.095			
	0.110		4.05	4.74	960.0	6.21	202.0	0.10
	0.103		4.45	48 .4	0.101	6.61	0.561	0.018
	0.098		4.85	h•77	TOTO	7.62	0.581	0.01
	0.093		5.26	h•10	0.084	8,63	884.0	0.01
	0.088		5.66	4 . 08	0.085	9•63	0• #20	0.0I
	0.085		90.9	4.05	0.085	10.64	0.416	0.01
	0.081		94.9	3.81 81	0,000	11.64	0.398	0.01
	620.0		6.87	3,46	240.0	12.65	0.379	0.01
	0.068		Ĭ8•Ĭ	3.13	0.045	13.66	0•316	0.0
	0.052		88.88 8.88	2 . 86	0.042	14.66	0.283	0.0
	0.050		88	2.63	0.039	15.67	0.268	0.01
	0,048		10.89	5. 18	0.038	16.67	0.266	0.01
	0.047		11.90	1.94	0.034	17.68	0.243	0.01
	9,0,0		12.90	1.82	0.031	18.69	0.227	õ •
	††o.0		13.91	1.69	0.030	20.00	0.206	0
	0.약3		14.91	1.62	0.029	25.00	0.195	000
	0.043		15.92	1.53	0.028	24.00	0.180	0.00
	0.040		16.93	1. 47	0.028	36 . 00	0.166	0.0
	0.047		17.93	1.45	0.027	28.00	0.159	00.0
	0.057		18,94	1,38	0.025	30.00	0.158	ō.
	0.062		20.00	1.33	0.018	32.00	0.163	0.00
	990.0		22.00	1.27	0.017	34.00	0.162	0.006
5.12 0.005	0.065		24.00	1.20	0.016	9,90	0.139	3 6
	(O) • 0		20.00	07.7	0.010	30.00	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	•

a. Bin energy listed is the low-energy edge of the bin. The highest bin energy listed is the upper edge of the last bin.

	Error (mb/MeV)	0.008	0.00	900.0	900.0	0.005	0.003	200.0	0.00	0.00	1																											
	Cross Section (mb/MeV)	0.212	0.157	660.0	0.083	0.052	0.022	0000	0000	500																												
	Bin Energy (MeV)	38.00	00°74	16.00	γ°, 00	50.00	22,00	00.44°	9.00		60.89	•																										
	Error (mb/MeV)		0.343	0.310	0-313	0.316	0.310	0.30T	0.253	650°C	0.204	0.195	0,183	0.173	0.161	0.157	0.148	0.084	0.075	0.000	0.00	100.0	0.036	0.030	620.0	0.024	0.016	0.014	0.013	0.011	0T0.0	000	600	0.007	-			
Table 15. (Cont.)	Cross Section (mb/MeV)	Alpha	16.898	21.106	21.961	22.316	21.791	210.12	350	17. OF 1	17 202	15.857	14.449	13.088	11.735	10.896	969.6	8,043	6.362	5.150		3.000 3.000	200.50 LIO.50	1,653	1.410	1.178	0.954	0.723	0.599	0.498	0. 411 0.001	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.000	0.193				
Tab	Bin Energy (MeV)		2,85	3.65	4.05	94.	h. 86	5.26	5.67)0°0	, v	4 0	88	80.00	8.49	8.89	62.6	69.6	10.70	11.77	12.72	7).67	14. (3	16.74	17.75	18.76	20.00	22.00	24.00	26.00	28.00	30.00	34.00	36.00				
	Error (mb/MeV)	400.00	0.005					0.145	0.099	0,000	001.0	0.00	0.050	0.046	0.033	0.028	0.027	0.022	0.017	0.015	0.015	0.0L5	0.013	0.00 0.00	900	0.007	0.007	900.0	900.0	900.0	900.0	0.006	0.007	000	0.004	0.004	0.003	
	Cross Section (Mb/MeV)	0.055	0.052			Helium-3		1,007	0,830	0.761	0,819	0.733	0000	0.636	0.607	0,564	0,516	0,455	00+1.0	0.348	0,383	0,326	0 0	0.500	0.000	951.0	0,183	0.173	0.164	0,158	0.139	0.138	0° T 10	0.104	0,051	0,053	0.020	
	Bin Energy (MeV)	00.04	00.44	45. CV				6.65	7.05	7•45	7.85	ο α	3 %	9.10	9.86	10.86	11.86	12.87	13.87	14.87	15.88	16.88	17.00	To-03	00.00	00.92	26.00	28.00	30.00	32.00	34.00	36.00	38.00	90.00	00.477	16.00	18.00	50.03

Table 14. Energy Integrated Total Differential Cross Sections and Average Energy for $^{27}\mathrm{Al}$

	COE (MeV)		6.29	6.57	6. 6. 7.	38	6. 58	6.54	6.59 6.59	474	6.64	9.6	0.74	6.43 6.43		6.23 6.23 6.24
Triton	Ē (MeV)		98.6	25.00 0.00 0.00 0.00	₽.7 7.4	8 8 8	19.6	18.3	16.9	16.5	15.5	14.8	L5.5	11.7		10.9 11.0 10.2
Iri	$\sigma \pm \Delta \sigma$ (mb/sr)		3.50 + 0.14	-I+ <u>1</u> 2	+1+1	-1+ 38	12 12	+1+	139 ⊦I+	1+1	+1 약	+ I·	+1	1+1+		1.08 + 0.1 0.81 + 0.04 0.32 + 0.02
	COE (MeV)		25.67	2.84 2.84	2.84	2.8 8.8 80	2.79	2.95	2°49	2,85	2.87	2°.88	7.7	2. 45 2. 45		4.22 1.71 1.51
Deuteron	E (MeV)	MeV	35.5	88.1	27.9		23.2	8 8 8 8 8	18.7	17.4	15.9	14.5	1. 0.4.	7.9	MeV	13.5 12.4 9.5
Deut	σ± Δσ (mb/sr)	62	40.65 + 0.5	+1+	1+1-	-1+	1+1	+1-	+1+	1+1	+1	+1	+1	+1 + 1	28.8	14.5 + 0.5 10.8 + 0.2 4.3 + 0.1
	COE ^C		2.82	3.44		3.5 4.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	3.04	86	1.5	3.04	3.07	8, 8,	29.2	2. 2.91		1.81 1.81 1.61
Proton	Eb (MeV)		90.00	0 0 0 0 0 0	26.9	25.5	21.5	18.5	15.2	15.4	14.2	13.0	11.2	9.1 8.6		14.5
Pro	σ ± Δσ (mb/sr)		249.6 + 1.2 ^d 223.2 + 1.5	+ +	1+1-	+1+	1+1	+1-	+1+	1+	+1	+1	+1	+ +		213 + 1.9 95.4 + 0.5 62.6 + 0.3
	Lab Angle deg		122													683

 $^{^{}m a)}$ does not include elastic scattering

b) average energy

c)_{low-energy cutoff}

d)statistical error

e)error includes uncertainty in tail correction - see text

Table 14. (continued)

	COE (MeV)		2.87	3.02	6.33	3.01	5.41	14.45	14.48	14.47	2.86	6.44	14.52	5,58	5.71	2.92	2.72	3.40	3• 42		2.51	다. 다.	7° 27
a	Ē (MeV)		13.4	13.6	14.7	11.9	13.0	23.0	23.7	25.6	9.5	11.7	9. 13	10.3	10.1	7.5	9.0	6. 8	6. 4		8.9	 	7.6
Alpha	$\sigma \pm \Delta \sigma$ (mb/sr)	62 меV	27.17 + 0.4	+	+	+	1+1	+	1+1	+	1+	+	1+	1+	1+	1+	+	+	1+1	28.8 MeV	27.3 ± 0.6	23.3 + 0.2	+1
	COE (MeV)	62	6.65	6 • 9	8.13	8.12	8.19	13.05	13.08	13.08	6.62	8.14	13.13	8.25	8.29	6.74	6.64	6,95	12.45	28.	6.63	†9.°	6. 64
m-3	E (MeV)		28.9	27.9	26.3	25.3	24.2	26.7	25.8	o• †ö	17.8	19.1	22.7	17.4	16.7	14.7	12.8	12.1	16.6		14.2	14.6	ν. Ο
Helium-3	σ ± Δσ (mb/sr)		3.71 + 0.4	+1	+	+	+	+	+	+	+	+	+	+	1+	1+	1+	+	i + 1		20.0 + 44/2.0	+1-	+1
	Lab Angle deg		12																Ū		111 (

Table 15. Total Cross Sections
²⁷Al 62-MeV Incident Protons

Particle	σ ± Δσ (mb)	Ea (MeV)	pc b (MeV)	Lower Energy Limit (MeV)
Proton ^c	705.6 ± 1.0	18.9	82.1	2.4
Deuteron	88.7 ± 0.3	22.5	154.6	2.4
Triton	8.88 ± 0.1	19.4	185.7	6.2
Helium-3	11.04 ± 0.2	19.7	166.5	6.7
A1pha	165.0 ± 0.5	9.0	68.6	2.9

a) average energy

b) average forward momentum

 $^{^{\}mathrm{c}})_{\mathrm{the}}$ proton cross section does not include elastic scattering

Proton Spectrum from 27A1 at 30° 61.5-MeV Protons Incident

Triton Spectrum from 27Al at 30° 61.5-MeV Protons Incident

Helium-3 Spectrum from 27Al at 30° 61.5-MeV Protons Incident Fig. 4.

Deuteron Spectrum from 27A1 at 30° 28.8-MeV Protons Incident Fig. 7.

Triton Spectrum from 27A1 at 30° 28.8-MeV Protons Incident Fig. 8.

Helium-3 Spectrum from 27A1 at 30° 28.8-MeV Protons Incident Fig. 9.

Fig. 10. Alpha Spectrum from 27Al at 30° 28.8-MeV Protons Incident

TABLE 16

	40	ERROR MEV)	60	0.09	80	80 8	80.	80.	.04	\$ 6	4 6	9	03	0.03	.03	60	5.5	96	8	.03	•03	.03	6	6.0	60.5	9 6	60.	.03	.03	86	5 6	56	8	.03	•03	6.6	0 6	69	.03	60	5 6	60.	.03	•03	600	9 6	6	0.03	4.6	50.03	024	.03	.03	.05	0	•
	RUN 2004	SIGMA EI	200	57 0	23	70.	47	34 0	92	96	200	43 0	13	000	68	83	200	200	12	0 69	0 +9	73	63	89	26	1 6	49	67 0	,72	2,0	26	9	64	73 0	71	9,4	200	78	78	۰ د د	2 4	68	52 0	56 0	25	2 6			_		065	.62	57	212		0
	DEG -	⊽÷,	ě u	้เก้	เก๋	N, 4	F ∢F	4	m .	กัก	กัก	7 ~		~	_		-i -	-		ä	-	<u>-</u>	, i	. ·	, i	-	-	Ä	-	<u>.</u>	-					ď,	-	-	-	<u>.</u>	-	-	-	ä	.i.	-i -	-	_	rv •	_ `	_		- (_	• •	ŏ
	35 0	ENERGY (MEV)	2,4	4.0.4	4.47	4.88	5.68	60.9	64.4	02.	2.0	10.23	11.24	12.25	13.26	14.28	7.01	17.31	18.32	19,33	20.34	21.35	22.36	23.37	24.38	26.40	27.41	28.42	29.44	30.45	31.40	33.48	34.49	35.50	36.51	37.52	30.54	40.55	41.56	42.57	45.50	45.61	46.62	47.63	48.64	50.64	51.67	52.68	53.69	56.7	56.72	57.73	58.74	60.39	90	0.0
	7106	-MEV)	9 6	0.0	90.0	90.0	90.0	90.0	0.03	0.03	000	0.03	0.03	0.02	0.02	0.02	200	20.0	0.02	0.02	0.02	0.02	0.05	2000	20.0	20.0	0.02	0.02	0.02	0.00	200	200	0.02	0.02	0.02	0.0	000	0.03	0.03	0.03		0.02	0.02	0.02	0.02	200	0.02	0.03	0.05	20.0	0.033	0.03	0.02		0	0.0
.s	- RUN	SIGMA (MB/SR-	0 6	5.85	5.67	5,33	4.78	4.48	4.05	5;	200	2.31	2.20	5.04	1.92	1.89	99	1.86	1.84	1.82	1.83	1.87	1.88	1.85	96	1 8 7	1.89	1.89	1.91	1.86	1.04	2.00	2.00	2.06	2.11	2.19	2.23	2.27	2.20	2.19	61.2	1.76	1.83	2.01	2.03	70.1	1.99	3.11	1.49	1.27	3.629	3.54	2.06	0.0	0.0	0.0
PROTONS	DEG						0	20	619	٠. ح	, a		11	11	- 1	9:	0 4	12	14	14	14	13	13	2.5	21.	1.	; , ,	10	10	50	2 0	. «	80	10	20	90	0 0	0.0	05	4.	1 1	. 60	03	02	25		10	00	88	66 0	6 6	86	8 1			٥
MEV. P	30	ENERGY (MEV)	ก๋ง	4	4	ı, ı,		Ġ	٠,	÷ (, ,	11.	12.1	13.	14.		• •		19.	20.	21.	22.	23	24.	25.1	27.	28.	29.	30.	31.	32.	3.0	35	36	37.	0	0 4	4	42.	ę,	,	46.	47.	48	64		52	53	4,	4 4	56.	57.98	58,98	. 0	ö	•
62 M		œ																																																_				,		
ED BY	2047	m ± c		0.15	0.15	41.	0.13	0.13	0.13	0.13	20.0	0.07	90.0	90.0	90.0	900	900	90.0	90.0	90.0	90.0	90.0	0.05	0.00	0.0		0.05	0.05	0.35	0.0	0 0	0.00	0.05	0.05	0.05	0.0	0	0.12	0.15	0.17	0.27	0.23	0.25	0.25	0.25		0.25	0.25	0.25	2.0	0.25	0.25	0.25	2,42	0.25	0.25
BOMBARDED BY	RUN	SIGMA (MB/SR-	- 6	46.9	.72	6.18	52.	5.51	25	7.5	17.	57	13	.17	88	9	0 1	5.7	63	.41	• 45	-4.	E 6	m .	400	28	2.29	.27	-20	53	2 6	;=	14.	.23	.31	37	2 2	49	-62	7.4	164	7.	.63	.67	•29	24.	28	.25	.93	81.0	870		•30	26.6	049	.500
27 BO	DEG -							•	ru r	A 4	* 4		m			N (, ~		2	2					-		-					1 60	~	2		9 4	. ~	••	2	4 ^	1 ~	~	~	~ .			2			·		~ .	 		3
# 4	52	ENERGY (MEV)		100	4	4.56	5.3	5.7	- 1	0.0		9.6	10.2	11.2	12.2	13.2	7 4 1	16.2	17.2	18.2	19.2	20.2	21.2	22.2	25.2	25.2	26.20	27.1	28.1	29.1	300	32.1	33.1	34.1	35.1	36.1	38.1	39.1	40.1	14	43.1	4	45.1	46.1	47.1	0.7	50.1	51.13	52.17	56.	55.1	56.1	57.1	59.1	0.09	60.7
FROM																																																•								
PROTON	116	ERROR -MEV)	200	0.35	0.37	0.37	0.35	0.37	0.35	900	2.0	0.18	0.19	0.18	0.18	0.17	1	18	0.16	0.17	0.17	0.17	9.16	8 1	1.0	7.0	0.17	0.18		9.18		110	0.18	0.17	0.18	1.0	1.0	0.18	0.19	0.21		0.18	0.18	0.16	41.		0.15	0.16	• 1.	1.0	0.117	0.12	0.11	0.23	0.342	0.0
ā.	RUN	SIGMA (MB/SR-	0 4	6	43	0 6	8	44	86.	1.5		96	43	.81	5		0.6	55	.0.	45	49	52	61,	6	4.6	. 40	28	99	99	193	, ,	1 9	5	50	69	9:	1 5	06	25	16	r ic	. 95	-84	25	4 t		61	.91	-4-	216	631	-72	35	100	9.765	o.
	DEG -				· 0	0 10	เห้	٠ ٥ ٠	ທີ່ພ	ň «	* w	, (U)	4	m	m i	m t	ሳለ	, tu	, tu	m	m	en i	m i	m r	יו רי	יי ר	m	m	m	m c	n r	u un	m	(C)	m (m r	חמי) eri	4	ın «	1 4	, tu	m	m	~ (,,	1 0	~	~ (N 6	٠.		⊶ °	0 4	6	ŏ
	15	ENERGY (MEV)	2.10	3.60	9	4.40	5.21	5.61	6.01	10	21.8	6.13	10.14	11.14	12.15	13.15	15.17	16.17	17.18	18,18	19,19	20.20	21.20	22.21	25.21	75.23	26.23	27.24	28.24	29.25	31.26	32.27	33.27	34.28	35.29	36.29	38.30	39.31	40.32	41.32	44.33	44.34	45.35	46.35	47.36	40.37	50.38	51.38	52,39	52.59	55.41	56.41	57.42	59.43	60.28	0.0
	117	ERROR -MEV)	0.30	0.29	0.30	0.28	0.28	0.29	0.27		1.0	0.16	0.15	0.15	0.16	5	21.0	0.14	0.14	0.14	0.15	0.14	41.	0.15		0.15	0.16	0.15	0.3	61.0		0.15	0.15	0.16	0.16	0.15		0.15	0.17	0.17	0.16	0.15	0.15	0.14	0.13	7	0.12	0.13	0.12	11.0	0.100	60.0	0.14	0.340	0.0	0.0
	- RUN	SIGMA E	6.87	6.50	6.84	6.74	5.83	08.9	5.79	200	5.81	4.83	4.48	4.51	4.66	1.4	17.6	3.87	3.81	3.83	4.05	3.87	00.	4.12	4.30	4.21	4.78	4.48	4.48	4.42	4.10	4.54	4.18	69.4	4.71	4.30	97.4	4.13	5.34	3.55	6.8	4.55	4.39	3.51	3,38				2.88	2.007	1.935	1.69	3.65	8.77	0.0	0.0
	DEG				23		41	82	25	700	טינ. טיני	4	33																																								•	-		
	12	ENERGY (MEV)		ัด	•	a m	ľ	5	9	0 1	α	o	10	11.	7.5		t u	9	17.	18.	10.4	20.42	27	22.44	24.4	25.4	26.4	27.4	28.	56	2 6	32	33	34.1	35	36		39.56	0,0	7 5	7 4	44	45.6	46.	47.	7.04	50.	51.6	52.4	25	25	56.68	57.	7.05	0.0	0

TABLE 16 (cont.)

	104	ERROR MEV)	0.10	0.09	0.09	60.0	80.0	90.0	0.08	200	0.0	0.03	0.03	0.03	0.0	60.0	0.03	0.03	0.03	0.025	0.023	0.024	0.024	0.024	0.023	0.023	0.023	0.022	0.022	0.021	0.021	0.021	0.021	0.020	0.019	0.020	610.0	0.019	0.019	0.018				0.017	0.016		0.016	0.017	0.011	0.015	0.007	0.016	0.014	0.0	0.0
	- RUN	SIGMA (MB/SR-	5.37	5.06	4.54	4.51	3.76	3.81	3.29	20.0	2.40	1.70	1.69	1.50	1.15	1:13	1.07	1.04	0.99	688	0.0	0.848	0.817	0.804	0.783	0,753	0.727	902.0	0.666	0.630	0.651	0.649	200	0.588	0.542	0.564	0.543	0.505	0.493	0.468	264.0	0.405	0.365	0.404	0.351	0.374	0.240	0.429	0.162	0.322	0.076	0.356	0.217	0.0	0.0
	60 DEG	ENERGY (MEV)	2.93	3.74	4.14	4.54	5.34	5.74	6.15	7.25	8.25	9.26	10.26	11.26	13.27	14.27	15.27	16.28	17.28	18.28	20.29	21.29	22,30	23.30	24.30	25.31	27.31	28.32	29.32	30.32	31.33	32,33	36.36	35.34	36,34	37.35	20.00	40.36	41.36	42,36	43.37	45.37	46.38	47.38	48.38	49.39	51,39	52.40	53.40	54.40	55.41	56.41	58.32	0.0	000
	2043	ERROR (-MEV)		0.0		0.07			20.0	900	90.0	0.04	0.03	0.03	000	0.02	0.02	0.02	0.02	0.022	0.02	0.020	0.020	0.019	0.020	0.020	0.019	0.019	0.019	0.019	0.018	810.0	0.010	0.017	0.017	0.017	710.0	0.017	0.016	0.016				0.01	0.0	50	0.013	0.014	0.013	0.012	0.014	0.009	90000	0.014	0.011
NS.	- RUN	SIGMA (MB/SR-	4.04	4.51	5.23	5.56 2.56	4.88	4.80	4.54	200	3.5	3.35	2.98	2.35	1,73	1.57	1.51	1.37	1.29	1.255	1.15	1.108	1.083	1.011	1.091	1.027	0.931	0.966	0.927	0.912	0.867	0.849	900	0.799	0.791	0.781	736	0.730	0.707	0.671	0.00	0.611	0.655	0.552	0.546	0.539	0.469	0.493	0.434	0.387	0.522	0.202	0.106	0.509	0.312
MEV. PROTONS.	55 DEG	ENERGY (MEV)	2.07	2.87	3.27	3.67	4.4	4.87	5.27	90.0	6.46	7.16	8.16	9.16	11.15	12.15	13.15	14.15	15.15	16.15	18.14	19,14	20.14	21.14	22.14	23.13	25.13	26.13	27.13	28.12	29.12	30.12	32.12	33.12	34.11	35.11	37.11	38.11	39.10	40.10	41.10	43,10	44.10	45.09	46.09	47.09	49.09	50.08	51.08	52.08	53.08	54.08	56.07	57.07	58.07 58.99
62	2040	ERROR 1-MEV)	0.05	0.0	2.07	0.07	90.0	90.0	90.0	100	0.03	0.03	0.03	0.03	20.0																																0.015					0.014		0	
BOMBARDED BY	- RUN	SIGMA (MB/SR-	2.86	5.59	5.28	4.95	4.6	4.01	3.77		2.59	2.03	1.92	1.70	4.5	1.45	1.34	1,35	1.32	1.296	1.21	1.207	1.226	1.160	1.171	1,138	1.059	1.028	1.063	1.007	1.032	9999	0.976	0.951	0.917	0.898	0.87	0.898	0.874	0.851	70+7	0.738	0.711	0.681	0.646	0.739	0.580	0.741	0.391	0.376	0.465	0.539	0.285	0.217	000
M A = 27	50 DEG	ENERGY (MEV)	3.22	4.01	4.41	4.81	5.61	6.01	6.41	110	9.10	10.10	11.09	12.09	14.09	15.08	16.08	17.08	18.07	19.07	21.07	22.06	23.06	24.06	25.05	26.05	28.05	29.04	30.04	31.04	32.04	33.03	35,03	36.02	37.02	38.02	59.02	41.01	42.01	43.00	200	46.00	46.99	41.99	48.99	49.98	51.98	52.98	53.97	54.97	55.97	56.97	58.96	59.63	00
PROTON FROM	71017	ERROR R-MEV)	0.06	90.0	0.06	90.0	0.00	0.05	0.03	0 6	0.03	0.02	0.02	0.02	20.0	0.02	20.0	0.02	0.02	0.020	0.02	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.018	0.019	5.018	0.019	0.0	0.019	0.018	0.019	0.00	0.017	0.017	0.017											0.016	0.007	0.0	0.0	000
_	- RUN	- IA	285	5.91	5.45	5.46	4.55	4.28	3.88	24.0	2.56	2.16	1.93	1.65	1.66	1.58	1.56	1.49	1.51	1.511	1.48	1.467	1.449	1.484	1.444	1.409	1.413	1.384	1.338	1.362	1.348	1.356	1.357	1.360	1,338	1.356	1.219	1.195	1,162	1.192	1.044	1.026	0.998	1.090	0.873	0.870	0.696	0.498	0.843	0.328	1.013	0.171	0.0	0.0	00
	45 DEG	ENERGY (MEV)	3.62	4.02	4.82	5.22	6.02	6.41	7.11	0.11	10.11	11.11	12.11	13.10	15.10	16.10	17.10	18.10	19.09	50.09	22.09	23.09	24.09	25.08	26.08	27.08	20.08	30.08	31.08	32.07	33.07	34.07	36.07	37.07	38.06	39.06	40.08	42.06	43.06	44.05	46.05	47.05	48.05	49.05	50.04	51.04	53.04	54.04	55.04	56.04	57.03	58.03	0.0	0.0	000
	2035	ERROR MEV)	60.0	80.0	80.0	80.0	20.0	0.07	20.0	100	40.0	0.03	0.03	0.03		0.03		0	0	5 C		0	0.026	0	0	0.026	0	0	0	0	0	0.026) C	0	0	0.026											0.021					0.020			0.0
	- RUN	SIGMA (MB/SR	7.01	5.98	5.55	5.41	4.65	4.38	4.33 E 2.33		2.78	2,35	2.24	1.92	3 8 6	1.79	1.63	1.73	1.67	1.662	1.56	1.647	1.544	1.537	1.573	1.473	1.507	1.526	1.476	1.509	1.453	084.	1.464	1.477	1.441	1.510	1.531	1.535	1.476	1.428	427	1,334	1,249	1.271	1.247	1.301	1.018	1.373	1.489	0.637	0.925	0.264	0.501	0.584	000
	40 DEG	ENERGY (MEV)	3,36	4.16	4.56	4.96 24	5.75	6.15	6.55	C7 . 4	9.54	10.24	11.23	13.23	14.22	15.22	16.22	17.21	18.21	19.21	21.20	22.19	23.19	24.19	25.18	26.18	28.17	29.17	30.17	31.16	32.16	33.10	35.15	36.14	37.14	38.14	60.13	41.13	42.12	43.12	44-12	46.11	47.10	48.10	49.10	50.09	52.09	53.08	54.08	55.08	56.07	58.07	90.65	59.88	000

TABLE 16 (cont.)

	110	ERROR MEV) 0.07	0.07	90.0	0.06	0.05	0.05	0.05	0.03	0.03	0.021	0.019	0.017	0.016	0.015	0.014	0.013	0.013	0.012	110	0.011	0.011	0.010	0.00	600.0	0.00	0.00	0.008	0.008	0.00	0.00	0.007	900.0	9000	0.00	0.005	0.00	400.0	0.004	400.0	0.004	0.002	0.003	0.00	0.002	0.004	0.0	0.0	0.0	0.0
	- RUN	SIGMA (MB/SR-)	5.47	4.16	3.69	3.25	3.02	2.56	2.22	1.382	1.318	1.087	0.807	0.738	0.652	0.532	0.485	0.464	0.421	0.359	0.332	0.328	0.287	0.257	0.235	0.238	0.189	0.184	0.179	0.154	0.138	0.125	0.115	0.095	0.036	990.0	0.061	0.05	0.046	0.036	0.039	0.018	0.018	0000	0.016	0.034	0.0	000	0	0.0
	90 DEG	ENERGY (MEV) 2.79	3.19	4.00	4.40	5.21	5.61	6.41	7.12	9.13	10.14	11.14	13.16	14.16	15.17	17.18	18.19	19.19	20.20	22.21	23.22	24.23	26.24	27.24	28.25	30.26	31.27	32.28	33.28	35.29	36.30	37.31	39.32	40.33	42.34	43.34	44.35	46.36	47.37	48.37	50.39	51.39	52.40	53.41	55.42	56.25	0.0	900	0.0	o *c
	2025	ERROR -MEV) 0.05	0.05	0.04	40.0	0.04	900	0.02	0.02	0.015	0.015	0.014	0.012	0.012	0.011	0.010	0.010	0.010	0.010	600-0																	4000	0.00	0.004	9000	400.0	0.003	0.003	0.003	400.0	0.002	4000	, o	0	0.0
NS.	- RGN	SIGMA (MB/SR-1		4	4 W		3,30						0.879	0.798	0.737	0.622	0.612	0.556	0.523	0.470	0.441	0.427	0.358	0.348	0.328	0.300	0.282	0.259	0.255	0.223	0.216	0.191	0.174	0.155	0.146	0.117	0.112	960.0	0.085	0.070	0.080	0.042	0.042	0.038	0.082	0.035	0.024	200	0.0	0.0
62 MEV. PROTONS.	82 DEG	ENERGY (MEV) 3.25	3.65	4.44	5.23	5.63	6.03	7.12	8.11	10.10	11.09	12.08	14.07	15.06	16.05	18.04	19.03	20.02	21.01	23.00	23.99	24.98	26.97	27.96	28.95	30.95	31.93	32.92	33.92	35.90	36.89	38.88	39.87	40.86	42.85	43.84	44.83	46.82	47.81	48.80	50.79	51.78	52.77	53.76	55.75	56.74	57.36	0	0	0.0
	2021	ERROR -MEV) 0.05	40.0	0.04	0.0 40.0	0.03	0.03	50.0	0.02	0.01	0.013	0.012	0.011	0.011	0.00	600-0	0.009	0.000	600.0	0000	0.008	0.008	0.00	700.0	0.007	700.0	0.007	0.007	9000	900.0	9000	9000	900.0	0.005	0.00	0.005	0.00	400.0	0.004	400.0	0.004	0.003	0.003	0.003	400.0	0.003	0.010	• •	0.0	0.0
BOMBARDED BY	G - RUN		5.55							1.45	-	~-	- 0	0	0	50		٠.	0 6	9 0		0 0	90		0 .	0.38	0.35	0	0.3	.0	0 (50	0.24		0.19	0	00	0.13	0		0.12	0.052	6	ş	0.132	90	0.035	000	0.0	0.0
M A = 27	75 DE	ENERGY (MEV) 3.24	8.0° 8.0° 8.0°	4.45	5.25	5.66	6.06 6.46	7.17	8.17	10.18	11.19	12.19	14.20	15.21	16.22	18,23	19.23	20.24	21.24	23.25	24.26	25.27	27.28	28.28	29.29	31.39	32.31	33.31	34.32	36.33	37,33	30.04	40.35	41.36	43.37	44.37	45.38	47.39	48.40	49.40	51.41	52.42	53.42	54.43	56.44	57.45	57.97	000	0.0	0.0
PROTON FROM	2030	ERROR R-MEV) 0.07		0	00	0	00	0	0 0	00	0	00	0.019	0.01	0.018		0.01	5.0	0.0		0.01	0.0	0.014	0.01	0.01	0.0	0.013	0.013	0.012	0.011	0.012	0.012	0.011	0.011	0.010	0.010	600	0.00	0.008	800	0.007	0.008	0.005	0.00	0.00	0.007	0.005	0.0	0.0	0.0
	- RUN	SIGMA (MB/S 6.38																									0	0	0 C	0	0	5 C	0	00	0	0	0 0	0	0	00	0	0	0	0 0	0	0	0.075	9	0	•
	70 DEG	ENERGY (MEV) 3.22	3.62	4.42	5.22	5.61	6.41	7.11	 	10.11	11.10	12.10	14.10	15.10	16.10	18.09	19.09	20.09	22.09	23.08	24.08	25.08	27.08	28.07	29.07	31.07	32.07	33.06	34.06	36.06	37.06	39,05	40.05	41.05	43.05	44.04	45.04	47.04	48.04	49.03	51.03	52.03	53.03	54.03	56.02	57.02	57.97	200	0.0	0.0
	2046	ERROR (-MEV)	0.07	80.0	0.0	0.07	90.0	90.0	90.0																																								900.0	0.011
	s - RUN	SIGMA (MB/SR- 5.23	5.48	6.30	5.41	4.78	4.4	3,83	3.56	2.968	2.616	2.103	1.518	1,365	1.256	1.092	0.994	1.002	0.932	0.845	0.853	0.759	0.700	0.719	0.664	0.658	0.608	0.564	0.557	0.530	0.521	0.499	0.464	0.472	0.431	0.381	0.393	0.368	0.326	0.320	0.285	0.273	0.232	0.233	0.124	0.159	0.165	0.165	0.092	0.035
	65 DEG	ENERGY (MEV) 2.07	2.47	3.27	4.07	4.47	5.27	5.67	6.07	7.16	8.16	9.16	11.16	12.16	13.16	15,15	16.15	17-15	18.15	: -		22.14	24.14	25.14	26.14	28-13	29.13	30.13	31.13	33.13	34.13	36.13	37.12	38.12	40.12	41.12	42.12	44.11	45.11	46.11	48.11	49.11	50.10	51.10	53.10	54.10	55.10	56.10	58.09	58.64

TABLE 16 (cont.)

		FRACA STANDARD STANDA
		SIGMA ERROR (MB/SR-MEV)
		ENERGY THE CAMERON TO THE CAMERON TH
NS.		SIGMA ERROR
27 BOMBARDED BY 62 MEV. PROTONS		ENERGY (#EV.)
ED BY 62		(MB/SR-MEV)
BOMBARD		C MB/SS
ıı		ENERGY CARENCY
PROTON FROM A	5066	SIGNA FRRDR [HB/S 8-HEV] 5-59 (HB/S 8-HEV) 5-59 (HZ 8-HEV) 5-59 (HZ 8-HEV) 6-59 (HZ 8-HEV) 6-5
	- RUN	NEW HEAT AND ADDRESS OF COLUMN AND ADDRESS O
	160 DEG	ENRE GENERAL STREET STR
	101	E R R R R R R R R R R R R R R R R R R R
	- RUN	RAMANA WARRAN WA
	110 DEG	TO TO THE PROPERTY OF THE PROP

TABLE 17

2004	ERROR - MEVI	0.020	0.021	0.024	0.023	0.03	0.024	0.03	0.03	0.03		0.015	0.015	0.015	0.011	0.013	0.013	0.013	0.013	0.013	0.013	6,013	0.00	0.013	0.012	0.013	0.013	0.013	0.012	0.013	210.0	0.012	0.012	0.012	0.013	2000	0.013	0.012	0.014	0.014	0.016	0.013	410.0	0.025	0.018	0.017	0.015	0.023	0.003	0.0
r SG SG	SIGMA E	0.305	0.336	0.436	0.455	0.20	0.430	0.46	0.52	0.48	0.420	304	0.392	0.454	0.239	0.314	0.330	0.308	0.294	662.0	262.0	162.0		0.300	0.284	0.303	908.0	0.301	0.261	0.286	0.277	0.261	0.267	0.279	0.285	147.0	0.289	0.262	0.359	0.334	0.489	0.330	0.359	0.417	0.557	0.516	0.415	0.963	0.010	000
35 DEG	ENERGY	3.01	3.41	3.82	4.62	5.03	5.43	5.84		6.65		9.37	10.38	11.40	12.41	13.42	14.43	15.44	16.45	01.	18.4	19.40	21.5	22.51	23.52	24.53	25.54	26.56	27.57	28.58	30.60	31.61	32.62	33.63	34.64	36.65	37.67	38.68	39.69	40.70	41.71	42.73	43.74	45.76	46.77	47.78	48.79	49.80	20.00	00
7106	ERROR -MEV)	0.015	0.016	0.019	0.020	0.02	0.019	0.02	0.02	0.02	2100	0.011	0.011	0.011	0.011	0.011	0.010	0.010	0.010	0.00		0.00		0.010	0.010	0.010	0.010	0.010	0.010	010-0	0.00	0.010	0.010	0.010	0.010		0.010	0.010	0.011	0.011	0.014	0.011	10.0	0.01	0.014	0.013	0.012	0.019	6000	00
INS.	SIGMA F	0.315	0.347	0.469	0.48	0.57	0.507	0.55	0.51	0.53	0.440	0.445	0.434	0.420	0.388	0.396	0.356	0.335	0.342	0.00	726.0	200	0.000	0.350	0.346	0.357	0.341	0.366	0.355	0.331	0.333	0.315	0.319	0.326	0.320	0.312	0.342	0.310	0.428	0.410	0.623	265.0	1.114	0.537	0.661	0.617	0.507	1.209	000	0
62 MEV. PROTONS. 30 DEG -	ENERGY	3.01	3,41	3.81	4.61	5.00	5.40	5.80	6.20	0.00	, c,	9.29	10.28	11.28	12.27	13.27	14.26	15.26	16.25	10.25	10 24	20.00	21.24	22,23	23.23	24.22	25.22	26.21	27.21	7 8 7 C	30.20	31.19	32.19	33.19	34.18	36.17	37.17	38.16	39.16	40.16	41.15	42.15	43.14	45.13	46.13	47.13	48.12	49.12	27.64	00
	ERROR	0.044	0.041	0.039	640.0	40.0	0.041	0.04	0.04	40.0	0.00	0.024					0.020		0.019							0.021					0.021					0.020						0.029	0.024	0.039	0.031	9.025	0.037	0.025	440.0	0.0
BOMBARDED BY	SIGMA E	0.636	0.528	0.481	2,58	0.57	0.536	0.59	0.52	0.76	444	0.491	0.477	0.449	0.359	0.317	0.319	0.313	462.0	0000	470.0	0.00	0.330	0.351	0.327	0.355	0.410	0.385	0.356	792	0.355	0.366	0.335	0.297	0.380	0.40	0.344	0.337	0.323	0.395	0.507	0.663	0.537	195	0.743	0.510	1.105	0.517	766-1	10.0
M A = 27 E 25 DEG	ENERGY									0.60	000	06.90	10.29	11,29	12.29	13.28	14.28	15.28	16.28	17.17	19.21	20.00	21.26	22.26	23.25	24.25	25.25	26.24	27.24	7 8 ° C ° C ° C ° C ° C ° C ° C ° C ° C °	30.23	31.23	32.23	33.22	34.22	36.21	37.21	38.21	39.20	40.20	41.20	02.24	45.19	45.19	46.18	47.18	48.18	49.17	71.00	0.0
DEUTERON FROM UN 116	ERROR -MFV)				0.10				11:0	100.0			0.067	0.059	0.054	0.058	0.059	0.00	2000	0.00	6000	7.00	0.00	0.058	0.059	0.057	0.053	0.062	8 0 0	190.0	0.063	0.056	0.068	0.059	0.065	0.04	0.00	0.063	0.072	0.068	0.098	660.0	0.1.0	0.101	0.172	0.108	0.144	0.117	730	0.023
ez I	SIGMA	0.278	0.429	0.631	0.62	0.39	0.728	0.34	0.56	96.0	0.415	0.493	0.534	0.421	0.354	0.400	9.416	0.322	56.6	000	0.000	1000	30.0	0.399	0.410	0.388	0.336	0.462	0.550		0.468	0.377	0.544	0.422	0.498	0.642	0.587	0.473	0.613	0.545	1.143	1.159	7 8 30	1.210	3,513	1,402	2.464	1.624	200	0.025
15 DEG	ENERGY (MFV)	2.64	3.04	4.0	4.00	4.65	5.05	5.46	3,86	07.0	7.47	8 37	9.38	10.39	11.39	12.40	13.40	14.41	24.61	10.42	C++-1	19.44	20.65	21.45	22.46	23.46	24.47	25.48	24.02	64.17	29.50	30.51	31.51	32.52	33.52	35,54	36.54	37,55	38.55	39.56	40.57	20.14	47.00	44.59	45.60	46.60	47.61	48.61	49.02	51.33
117	ERROR -MFV)	0.061	190.0	0.071	0.07	0.07	0.075	60.0	0.07	\$0.0 0.0	4000	0.049	0.051	0.048	0.045	0.052	0.048	150.0	140.0	2000	0.0	740	740-0	0.043	0.050	0.048	0.044	0.046	0.053	0.051	0.053	0.061	0.056	0.052	0.058	0.00	0.059	690*0	0.064	0.086	0.087	0.095	180.0	0.131	0.087	0.107	0.103	0.113	77170	0
- RUN	SIGMA E	0.284	0.344	0.384	0.33	0.34	0.433	0.56	0.37	0.26	0.00	0.460	0.498	0.439	0.380	0.524	0.439	0000	2000	000	0.00	0.470	0.432	0.359	0.472	0.451	0.370	0.409	0.241	0.440	0.549	9.714	9.605	0.526	0.653	6.0	0.679	0.923	0.782	1.420	1.438	1.736	1.353	3.302	1.460	2.208	2.034	2.473	000	00
12 DEG	ENERGY (MEV)	2.85	3.25	3.65	444	4.86	5.26	5.67	6.07	10.4	- a	61.6	10.20	11.21	12.21	13.22	14.23	15.23	10.24	70 01	10.24	20.27	21.28	22.28	23.29	24.30	25.31	26.31	26.12	20.03	30.34	31,35	32.36	33,36	34.37	36.39	37,39	38.40	39.41	40.41	41.42	64.24	44.44	45.45	46.46	47.46	48.47	49.48	20.49	0.0

TABLE 17 (cont.)

	104	ERROR-MEV)	0.020	0.023	0.03	6.0	000	0.025	0.024	0.023	0.015	0.014	0.014	0.013	0.011	0.012	0.012	0.011	0.010	0.010	0.011	0.010	0.010	0.010	600.0	6000	0.00	0.00	0.00	600	0.009	6000	0.00	0.008	9000	600.0	0.009	0.00	0.010	0.00	0.012	9000	0.012	0.0
	- RUN	SIGMA E	0.241	0.315	0.39	0.40	0 40	0.350	0.335	0.312	0.323	0.291	0.265	0.227	0.178	0.195	0.192	9.1.0	0.138	0.147	0.161	0.139	0.140	0.145	0.121	0.115	0.118	0.117	0.115	0.110	0.105	0.112	0.111	960.0	480.0	0.126	0.106	0.079	0.152	0.088	0.201	0.054	0.221	0.0
	990 DEG	ENERGY	2.63	3.03	3.84	4.24	40.4	5.44	5.84	62.65	7.35	8.35	9.36	11.36	12,37	13.37	14.37	15.38	17.48	18.39	19.39	20.39	21.39	23.40	24.40	25.41	27.41	28.42	29.42	31.43	32.43	33,43	35.44	36.44	37.45	39.45	40.46	41.46	42.46	44.47	45.47	46.48	•	0.0
	2043	ERROR -MFV!	0.015		0.02				0.019	6.01	0.01	0.011			0		800.0	800.0	800	0	0									0.007			0		0.007		200.0		06	0.00	0.008	0.00	0.010	0.0
NS.	- RUN	SIGMA	0.239	0.265	0.40	24.0	0.39	0.410	0.392	0.369	0.343	0.311	0.307	0.224	0.217	0.195	0.190	0.182	0.174	0.165	0.185	0.171	0.159	0.162	0.157	0.136	0.144	0.151	0.121	0.125	0.123	0.128	0.126	0.110	0.125	0.163	0.126	0.120	0.309	0.139	0.165	960.0	0.257	0.0
62 MEV. PROTONS.	55 DEG	ENERGY	3.12	9.00	4.32	4.72	5.12	5.91	6.31	0° (I	8.41	9.41	10.41	12.40	13.40	14.40	15.40	16.40	18.39	19,39	20.39	21.39	22.38	24.38	25.38	26.38	28.37	29.37	30.37	32.37	33,36	34,36	36.36	37.36	38,36	40.35	41.35	42.35	43.35	45.34	46.34	47.34	48.34	0.0
	2040	SIGMA ERROR	0.011	0.012	0.01	0.02	20.0								0.00		_		600-0				0.00			0.008		_			0.007	800.0	0.007	0.007	.00.0	0.00	9.000	0.007		0.008			0 (0.0
BOMBARDED BY	- RUN	SIGMA	0.131	0.144	0.16	6,33	0.00	0.442	0.445	204.0	0.358	0.358	0.337	0.252	0.225	0.201	0.220	0.211	0.200	0.234	0.184	0.189	0.179	0.184	0.161	0.150	0.172	0.163	0.150	0.140	0.146	0.150	0.130	0.145	0.123	0.166	0.189	0.116	0.139	0.185	0.269	0.131	0.255	0.0
A = 27	50 DEG	ENERGY			4.16	4.56	4.40	5.76	6.16	0.00	8.25	9.25	10.25	12.24	13.24	14.24	15.23	16.23	18.22	19.22	20.22	21.22	22.21	24.21	25.20	26.20	28.20	29.19	30.19	32.18	33.18	34.18	36.17	37.17	38.17	40.16	41.16	42.16	43.15	45.15	46.15	47.14	48.14	0.0
DEUTERON FROM	RUN 7101	ERROR R-MFV1	0.014	0.016	0.02	0.02	20.0	0.017	0.018		0.010	0.010	0.010	0.00	0.00	600.0	9000	9000	800.0	0.008	0.008	0.008	800	900.0	0.008	3.008	0.00	100.0	7000	0.00	100.0	0.007	0.007	0.007	0.001	600	100.0	0.007	2.00	0.00	0.00	0.007	0.012	30.0
DEU	1	SIGMA	0.312	0.389	0.56	0.46	0.4	0.455	0.484	74.0	0.420	0.404	0.374	0.322	0.352	0.295	0.284	0.255	0.256	0.252	0.253	0.247	0.241	0.234	0.244	0.222	0.229	0.216	0.204	0.20	0.200	0.204	0.199	0.172	0.205	0.316	0.194	0.210	0.535	0.251	0.320	0.215	0.530	0.0
	45 DEG	ENERGY	2.97	3.37	4.17	4.57	4.0.4 7.4.4	5.77	6-17	0.26	8.26	9.26	10.26	12.26	13,25	14.25	15.25	16.25	18.25	19.24	20.24	21.24	22.24	24.24	25.23	26.23	28.23	29.23	30.23	32.22	33.22	34.22	36.22	37.22	38.21	40.21	41.21	42.21	43.21	45.20	46.20	47.20	48.20	0.0
	RUN 2035	ERROR -MEV 1	0.021		0.02						0.013	0.013	0.014	0.01	0.011	0.010	0.010	0.011	0.011	0.010	0.010	0.010	0.010	0.010	0.010	0.011	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.009	0.010	0.011	0.012	0.011	600-0	0.016	0.010	0.016	0.010	0.001
	1	SIGMA	0.393	0.392	0.49	0.52	0.00	0.478	0.498	4.4.0	0.407	0.405	0.422	0.205	0.269	0.249	0.247	0.263	0.251	0.244	0.248	0.239	0.259	0.229	0.229	0.258	0.227	0.213	0.220	0.220	0.228	0.215	0.234	0.204	0.233	0.269	0.322	0.257	0.200	0.568	0.245	0.569	0.207	0.002
	40 DEG	ENERGY									8.39	66.6	10.39	12.28	13.38	14.37	15.37	16.37	18,36	19,36	20.35	21.35	22.34	24.34	25.33	26.33	28.32	29.32	30.32	32,31	33,30	34,30	36.29	37.29	38.29	40.28	41.28	42.27	43.27	45.26	46.26	47.25	48.25	49.97

TABLE 17 (cont.)

		æ	,	ın	rvi 4	۰,	•	•	ויי	ņ	مه ب	, Kn	6	œ <u>r</u>			و	•	9	91	υń	D M	, ič	, io	ž.	ē.	4 (2 4	1 4	m	4	m ·	<u>س</u> ر	ט ני	ū	N	5	<u></u>	<u>m</u> (Ņ	N 6	20	, m	. =	Ē.		
	110		X-X-X	0.01	0.01		0.016	0.0	000	5 6	0	0.015	9	000		0	0	0.00	0.0	0.0	00.0	300	0	0.00	0.00	0.00	0.00				0.00	0.0	0.00		0.003	0.0	0.0	0	9	9	36	0.00	0.0	0.0	0.00	0.0	0.0
	- RUN	GMA	0.205	0.244	0.266	0.341	0.302	0.308	0.267	0.255	0.278	0.251	0.214	0.185	145	0.147	0.107	0.107	0.100	0.087	000	960	0.068	0.071	0.065	0.058	0.040	0.033	0.040	0.034	0.035	0.033	0.028	0.00	0.019	0.017	0.022	0.021	0.025	0.012	1000	0.015	0.024	0.004	0.025	0.0	0.0
	930 06	ENERGY	(MEV)	2.69	9.09	3.90	4.30	4.70	5.11	5.91	6.31	6.72	7.42	8.43	10.44	11.45	12.45	13.46	14.46	15.47	10.40	18.40	19,50	20.50	21.51	22.51	23.52	24.53	26.54	27.55	28.55	29.56	30.56	32,58	33.58	34.59	35.60	36.60	37.61	19.85	37.02	41.63	42.64	43.65	44.65	45.56	0.0
	2025	ERROR	0.012	0.012	0.013	0.014	0.014	0.012	0.012	0.011	0.007	0.007	900.0	9000	200	0000	0.004	0.004	0.004	400	2000	400	400.0	0.00	0.004	0.00	0.003	000	00.0	0.00	0.003	0.003	0000	200	0.002	0.002	0.003	0.002	2000	7000		0.00	0.002	0.002	0.003	0.0	0.0
NS.	- RUN	NERGY SIGMA ERROR	AB/3K	0.344	0.367	0.467	0.416	0.341	0.326	0.203	0.281	0.241	0.216	0.198	0.128	0.122	0.112	0.106	0.101	0.091		700	0.076										0.038														
MEV. PROTONS.	82 DEG	ENERGY	3,05	3.45	3,00	4.64	5.04	5.43	50.0	62.0	7.32	8.31	9.30	10.30	12.28	13.27	14.27	15.26	16.25	17.24	10.24	20.23	21,21	22.20	23.20	24.19	25.18	27.17	28.16	29.15	30.14	31.14	32.13	34.11	35,11	36.10	37.09	38.08	39.08	20.00	42.05	43.05	40.44	45.03	46.00	0.0	0.0
8Y 62	2021	ERROR	0.010	0.011	0.011	0.011	0.011	0.011	110.0	0.010	900.0	9000	90000	0.005	400	400.0	0.00	0.004	0.004	4000	1000	100	0.003	0.003	0.003	0.003	8000	0.003	0.03	0.003	0.003	0.003	0000	700.0	0.002	200.0	0.003	0.003	2005	7000	0.00	0.002	0.002	0.002	0.003	000.0	0.0
BOMBARDED	- RUN	SIGMA	0.338	0.341	0.380	0.392	0.360	0.361	0.00	0.322	0.298	0.255	0.237	0.232	0.13	0.125	0.116	0.117	0.108	0.106			0.084	0.079	0.084	0.079	6000	0.00	0.063	0.057	0.053	0.059	0.050	0 0	0.042	0.039	0.050	0.052	0.00	0 0	440	0.033	940-0	0.030	0.053	0.030	0.0
IM A = 27	75 DEG	ENERGY	3.04	3.44	3,85	4.65	5.05	5.46	0.4 4	99.9	7.37	8.37	9.38	10.38	12,39	13.40	14.41	15.41	16.42	17.42	10.40	20.44	21.44	22.45	23.46	24.46	25.47	27.48	28.48	29.49	30.50	31.50	32.51	34.57	35.52	36.53	37.53	38.54	39.55	40.00	42.56	43.57	44.57	45.58	46.59	47.41	0.0
DEUTERON FROM	2030	ERROR	0.016	0.017	0.019	0.017	0.018	0.018	9.0	0.017	0.011	0.010	600.0	600.0	0.00	2.00	0.007	100.0	2.007	0.007	200	0.00	9000	900.0	900.0	0.006	900	0000	0.005	0.005	0.005	0.005	0.005	0.005	0.00	0.004	0.005	0-004	5000	100	900	0.005	0.005	0.004	0.004	0.005	0.0
DEF	n N N	SIGMA	0.295	0.345	0.400	0.348	0.388	0.375	26.0	0.334	0,315	0.266	0.244	0.245	18.0	0.154	0.148	0.130	0.132	0.132	1010	0.10	0.103	0.100	0.103	0.097	7600	0.082	0.083	0.086	0.076	0.068	0.072	0,060	0.066	0.052	0.064	0.054	0.066	960	100	0.061	0.063	0.052	0.053	990.0	0.0
	70 DEG	ENERGY	3.02	3.42	3.82	4.62	5.02	5.42	5.81	6.61	7.31	8.31	9.31	10.31	12,30	13,30	14.30	15,30	16.29	17.29	67.01	20.79	21.29	22.28	23.28	24.28	87.67	27.07	28.27	29.27	30.27	31.27	32.27	34.26	35.26	36.26	37.26	38.25	39.25	40.62	42.25	43.25	44.24	45.24	46.24	47.24	47.81
	2046	ERROR	0.017	0.018	8 0	0.020	0.019	0.019	0.01	0.017	0.011	0.010	0.010	0.010	0.00	0.007	0.007	0.007	2000	0.007	2000	2000	0.007	90000	0.007	0.007	900-0	900	0.00	900.0	0.005	0.005	5000	0.005	0.005	0.005	0.005	900-0	9000	9000	0.00	0.007	0.005	0.007	0.004	0.007	0.0
	G - RUN	SIGMA	0.307	0.364	0.364	0.434	0.411	0.381	166.0	0.332	0.340	0.294	0.279	0.257	0.188	0.153	0.151	0.155	0.146	0.141	1000	0.125	0.121	9.116	0.130	0.119	0.108	0000	960.0	0.095	0.082	0.078	0.082	0.078	0.064	0.078	0.074	0.085	260.0	920	000	0.151	0.073	0.124	0.040	0.140	0.0
	65 DEG	ENERGY	2.97	3.37	3.77	4.57	4.97	5.37	7.00	6.57	7.26	8.26	9.26	11.26	12.26	13.26	14.25	15.25	16.25	17.25	10.01	20.25	21.24	22.24	23.24	24.24	22.54	77.74	28.23	29.23	30.23	31.23	32.23	34.23	35.22	36.22	37,22	38.22	39.22	40.66	42.21	43.21	44.21	45.21	46.21	47.21	48.03

TABLE 17 (cont.)

110 DEG - RUN	107 N	160 DEG	3 - RUN 2066	2066						
-	A ERROR	ENERGY	SIGMA	ERROR	ENERGY	SIGMA ERROR	ENERGY	SIGMA ERROR	ENERGY	SIGMA ERROR
(MEV) (MB/	4	(MEV)	(MB/SR-MEV)	R-MEV!	(MEV)	(MB/SR-MEV)	(MEV)	(MB/SR-MEV)	(MEV)	(MB/SR-MEV)
	0.0	2.63	0.30	0.03						
2 24 6.30		3.04	0.32	500						
		יי מיי מיי		000						
4.05 0.37	0.02	4.26	0.34	0.03						
		4.67	0.45	0.04						
		5.08	0.42	0.03						
		5.48	0.23	0.03						
		5.89	0.24	0.03						
		6.30	0.24	0.03						
6.46 0.253	3 0.013	6.71	0.201	0.024						
		74.0	0.103	610.0						
	, ,	44.0	116	10.0						
		10.68	0.091	0.0						
	2 0.006	11,51	0.101							
12,20 0,088		12.53	0.072							
		13.55	0.035							
		14.57	0.037							
		15.59	0.034							
		16.61	0.034							
		17.63	0.033							
18.23 0.052		18.65	0.019							
		19.67	0.023							
20.24 0.032	6000	50.05	710.0	\$ 00°0						
		22.73	0.014	1						
		23.75	0.016							
		24.77	0.00							
		25.79	600.0							
		26.81	0.002							
		27.83	0.002							
28.29 0.018		28.85	0.002	200						
		30.89	0.003							
		31.91	0.003							
		32.93	0.001							
		33.95	0.001							
		34.97	0.00							
		35.99	0.001							
30.34 0.003	7000	20.02	0 0							
		39.06	00.0							
		40.08	0.001							
40.36 0.005		41.10	0.0							
		41.84	0							
42.37 0.00		0.0	0.0							
	1 0.001	0.0	0.0	0.0						
	•	•	•							

TABLE 18

2004	ERROR	- FC	0.00	0.007	0.007	0.007	900.0	0.007	900.0	90000	900.0	900.0	900.0	0.006	900.0	0.005	0.005	0.005	0.005	900.0	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.00	0.004	0.00	0.003	0.003	0.003	0.004	0.003	0.0	0.0	0.0	0.0
- RUN	SIGMA	CMB/SR	0.085	0.077	0.088	0.080	990.0	0.080	0.058	0.064	0.069	0.062	0.073	0.069	0.056	0.049	0.053	0.050	0.040	0.056	0.046	0.048	0.050	0.050	0.041	0.041	0.045	0.047	0.038	0.042	0.058	0.035	0.034	0.018	0.022	0.015	0.028	0.017	0.0	0.0	0.0	0.0
35 DEG	ENERGY	(MEV)	8.16	9.17	10.18	11.19	12.20	13.21	14.23	15.24	16.25	17.26	18.27	19.28	20.29	21.30	22.31	23.32	24.33	25.34	26.35	27.36	28.37	29.38	30.40	31.41	32.42	33.43	34.44	35,45	36.46	37.47	38.48	39.49	40.50	41.51	42.52	43.53	44.52	••	0.0	0.0
7106	ERROR	7.	0.005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-		-	_	_		_	_	_	_
- RUN	SIGMA	(MB/S	0.095	0.098	0.00	0.094	0.092	0.083	0.081	0.080	0.081	0.075	0.072	0.065	0.070	0.073	0.061	0.058	0.058	0.066	0.059	0.062	0.065	0.066	0.052	0.057	0.056	0.059	0.059	0.081	0.087	0.042	0.070	0.038	0.025	0.023	0.035	0.007	0.098	0.0	0.0	0.0
30 DEG	ENERGY	(MEV)	7.44	8.44	9.44	10.43	11.43	12,42	13.42	14.41	15.41	16.41	17.40	18.40	19,39	20.39	21.38	22,38	23,38	24.37	25.37	26.36	27.36	28,36	29.35	30.35	31.34	32.34	33,33	34.33	35,33	36,32	37.32	38.31	39,31	40.30	41.30	42.30	43.29	44.01	0.0	0.0
2047	ERROR	C-MEV)	0.012	0.012	0.011	0.011	0.011	0.012	0.010	600.0	0.010	0.009	600.0	600*0	0.011	0.011	0.010	0.010	800.0	600.0	0.010	0.008	600.0	0.010	0.009	900.0	0.008	0.009	600°C	0.009	0.011	600.0	0.010	60000	900.0	0.005	900.0	0.005	0.007	0.012	0.0	0.0
- RUN	SIGMA	1 MB/ S	0.107	0.137	0.094	0.094	0.098	0.105	0.086	0.061	0.079	0.071	0.059	0.069	0.092	680.0	0.074	0.072	0.051	0.071	0.073	0.055	0.063	0.073	0.062	0.056	0.055	0.055	0.064	0.060	660.0	0.053	0.082	0.071	0.053	0.023	0.031	0.017	0.036	0.118	0.0	0.0
25 DEG	ENERGY	(MEV)	7.45	8.45	9.45	10.44	11.44	12.44	13,43	14.43	15,43	16.42	17.42	18,42	19.42	20.41	21.41	22.41	23.40	24.40	25.40	26.39	27.39	28.39	29.38	30.38	31,38	32,38	33,37	34.37	35,37	36.36	37.36	38.36	39.35	40,35	41.35	42.35	43.34	44.34	44.91	0.0
116	ERROR	-MEV.	0.028	0.031	0.025	0.022	0.027	0.026	0.027	0.024	0.026	0.025	0.032	0.022	0.017	0.028	0.022	0.029	0.032	0.023	0.022	0.022	0.029	0.024	0.023	0.023	0.030	0.030	0.030	0.027	0.032	0.015	0.033	0.028	920.0	0.017	0.019	0.027	0.031	0.039	0.0	0.0
- RUN	SIGMA	0.124	0.092	0.118	0.075	0.056	0.086	0.083	0.085	0.068	0.083	0.077	0.124	0.059	0.034	0.092	0.060	0.098	0.122	0.064	0.059	0.058	0.102	0.066	0.065	0.063	0.106	0.107	0.109	0.088	0.126	0.025	0.129	0.092	0.079	0.034	0.042	0.089	0.112	0.178	0.0	0.0
15 DEG	ENERGY	(MEV)	7.12	8.12	9.13	10.14	11.14	12.15	13.15	14.16	15.16	16.17	17.18	18.18	19.19	20.19	21.20	22.21	23.21	24.22	25.22	26.23	27.24	28.24	29.25	30.25	31.26	32.27	33.27	34.28	35.28	36.29	37.30	38.30	39,31	40.31	41.32	42.33	43.33	44.34	45.34	45.90
117	ERROR	-MEV	0.021	0.023	0.016	0.020	0.019	0.019	0.022	0.018	0.020	0.022	0.021	0.023	0.020	0.023	0.021	0.023	0.024	0.022	0.022	0.019	0.021	0.019	0.019	0.024	0.019	0.019	0.022	0.022	0.022	0.027	0.026	0.022	0.026	0.012	0.021	0.020	0.020	0.034	0.0	0.0
- RUN	SIGMA	(MB/ SF	0.087	0.099	0.052	0.080	0.067	0.067	0.095	0.064	0.078	960.0	0.083	0.103	0.079	0.099	0.083	0.101	0.112	0.091	0.093	0.073	0.083	0.068	0.071	0.113	0.072	0.069	960.0	0.092	0.089	0.141	0.127	0.090	0.129	0.026	0.083	0.077	0.080	0.219	0.0	0.0
12 DEG	ENERGY	(MEV)	7.13	8,13	9.14	10.15	11,15	12.16	13,17	14.18	15.18	16.19	17.20	18.21	19.21	20.22	21.23	22.23	23,24	24.25	25.26	26.26	27.27	28.28	29.28	30 • 29	31,30	32.31	33,31	34.32	35.33	36.33	37.34	38,35	39.36	40.36	41.37	42.38	43.39	44.39	44.97	0.0

TABLE 18 (cont.)

		_	11	10	90	90	90	90	05	05	05	05	0.5	9	40	0.5	40	40	40	03	03	40	03	03	03	03	03	03	93	40	60	03	03	03	02	02	02	0.1	02	
104	-	ī	_	~	_	_	_	_	_	Ŭ	~	Ŭ	_	~	~	~	_	_	_	_	_	~	_	_	_	_	_	_	_	_	_	~	_	Ŭ	_	_	_	0.001	_	_
- RUN	SIGMA	(MB/S	0.065	0.053	0.054	0.046	0.047	0.046	0.037	0.039	0.036	0.031	0.039	0.039	0.023	0.029	0.023	0.022	0.018	0.016	0.014	0.021	0.014	0.010	0.009	0.014	0.014	0.014	0.016	0.019	0.010	0.010	0.012	0.00	0.005	0.004	0.007	0.001	0.007	0.0
DEG		5	6	80	20	50	51	51	51	25	52	52	53	53	53	54	54	54	55	55	55	56	26	56	57	57	57	57	28	58	58	59	59	59	9	9	9	40.61	61	33
9	ENER	£	ø	ė	۲.	æ	6	10.	11.	12.	13,	14.	15	16.	17.	18.	19	20.	21,	22.	23.	24.	25	5	27.	28.	29	8	Ë	35.	Ě	34.	32	36.	37.	38	39	ģ.	41.	45.
	<u>«</u>	_	6	5	5	4	4	4	4	4	33	2	4	4	6	5	<u></u>	Ē	5	33	5	33	3	6	Ē	2	2	5	5	2	~	2	2	~	=	=	=	=	2	
2043	ERRC	-MEVI	0	ŏ	0.0	0.0	٠. د	0	0	0	0.0	0	9.0	ŏ	0.0	9.0	0.0	0	0.0	0	0	0.0	0.0	ŏ	0.0	0.0	0	0.0	0	o ŏ	ě	9.0	0	0.0	9	0	0.0	0.001	ŏ	0.0
S. - RUN	SIGMA	(MB/SI	0.079	0.065	0.064	0.054	0.048	0.051	0.048	0.045	0.029	0.031	0.035	0.037	0.027	0.030	0.020	0.023	0.027	0.022	0.020	0.020	0.018	0.020	0.020	0.016	0.012	0.017	0.019	0.016	0.016	0.012	0.013	0.013	0.004	0.004	0.005	0.003	0.008	0.0
PROTON 55 DEG	.6	5	71	41	41	41	41	40	40	40	9	40	40	39	39	39	39	39	38	38	38	38	38	38	37	37	37	37	37	36	36	36	36	36	36	35	35	35	35	92
EV. P	ENER	₩.	Ġ	ŗ.	æ	6	20	11.	12.	13.	14.	15	16.	17.	18.	19.	20.	21.	22	23.	24.	25.	26.	27.	28.	29.	30	31.	32.	93	34.	33	36.	37.	38.	39	, 0,	41,35	45.	45.
E 29	œ		8	5	5	5	5	5	5	4	4	4	5	4	4	4	2	5	ē	5	ñ	3	<u>ت</u>	3	Ē	<u>س</u>	m	<u>س</u>	ED.	<u>~</u>	9	<u>ق</u>	2	2	2	=	=	=	5	=
2040	ERR	N-MEV	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.00	0.0	0	0.0	0	0.0	0	0.0	0	0	0.0	0.0	0.0	0.00	0.001	0.0	0.0
OMBARC - RUN	SIGMA	(MB/SF	0.059	990.0	0.068	0.357	0.063	0.055	0.064	0.051	0.042	0.043	0.030	0.033	0.034	0.040	0.025	0.030	0.025	0.021	0.024	0.024	0.023	0.024	0.022	0.024	0.031	0.021	0.018	0.023	0.030	0.326	0.013	0.029	100.0	0.004	0.003	9.005	0.022	100.0
27 B		5	16	45	£.	45	45	44	44	44	43	43	43	43	45	45	45	41	41	-	41	40	- 0 7	40	40	36	30	9.0	38		30	38	37	37	37	36	36	36	36	28
A = 50	ENER	E .	ė.	۴	œ	6	10.	11.	12.	13.	14.	15.	16.	17.	18	19	20.	21.	22.	23	24.	25.	26.	27.	28	29	30.	31.	32	93	34	35	36.	37.	38	33	40	41.36	45	43
FROM	∝		_	ır.	4	4	4	4	4	4	4	4	4	4	60	e.	60	<u>س</u>	0	6	<u>س</u>	<u>.</u>	eo.	m	Ē	m	Ē.	i.	<u>-</u>	4	<u></u>	Ņ	E.	2		-	Ñ	_	ر م	
7101	ERRO	R-MEV)	0.0	0.0	0.0	0.0	9	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	000	0	000	0	0	0.0	0.0	0.0	0.0	0.001	0.0	0.0
RUN N	SIGMA	(MB/S1	0.075	0.088	0.075	9.016	90.0	0.070	5.074	3.065	0.055	0.073	0.049	3.053	0.043	0.043	0.042	0.038	0.042	0.039	0.036	0.039	0.037	0.040	0.035	0.036	0.038	037	6699	0.058	3.038	0.023	0.042	0.016	900.0	0.005	0.00	0.00	0.023	••
45 DEG .		5	92	46	46	46 (46	46	46	45	45	45	45	45	45	44	4	4	44	4	44	£3	43	43	43	£.	ψ.	2	2	245	42	42	42	42	41	41	4	41	, (1)	90
4	ENER	(ME)	•	۲.	œ	6	20	11.	12.	13	14.	15.	16.	17.	18	19	8	21.	22	23	24.	22	26.	27.	28	8	R	2	35	66	, ,	32	36.	37.	38	39	40	41.41	45	43
	≅		•	ş	æ	ې	īv	īύ	و	۰	J.	ī	5	ۍ.	4	ស	4	4	4	4	4	4	4	4	4	4	4	4	.	ED 1	ī.	į,	ω.	4	2	,	2	m	_	Ñ
2035	ERRO	(-MEV)	0	0.0	0.0	0.0	0	0.0	0	000	0.0	0.0	0.00	0.0	00.0	0.0	9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.00	0	200	00.0	000	00.0	0.0	0.0	0.0	0.0	0.0	0.03	0.00	0.0
- RUN	SIGMA	MB/SP	0.019	.083	0.072	9.016	9.065	0.062	.072	1.011	.051	0.049	0.053	040	0.041	9.048	.037	0.033	0.038	046	0.041	0.041	034	3.032	0.039	036	041	0.029	031	120.0	0.020	0.053	0.050	3.036	0.013	0.013	2001	0.017	.003	•000
40 DEG -			_	_		_			_		_		_	_	_	_	-	_	_	_	_	_	_	_	_	_	_		_			_	_	_	_	_	_	_	_	-
40	ENER	(ME)	7	60	0	10	11.	12.	13.	14.	15	16.	17.	18.	0	20	21.	22	23.(24.1	25.(26.1	27.1	28.	29.(8	31.	32	33	4.	35	36	37.	38.	39.0	40.	41	42.02	43.	44

TABLE 18 (cont.)

		æ	_	9	5	4	33	23	2	m.	m	2	2	2	2	2	2	2	=	=	Ħ	=	덛	=	듯	=	<u> </u>	Ξ.	=	=	=	=	0	9	õ	2				
	110	ERRO	- MEV	ô	Ö	9	9	ò	0.0	0.00	ô	•	0.0	ö	0	0	0	ö	0.0	õ	ô	•	ö	ö	°.	0	0.001	ò	°	0.	ö	•	ŏ	0.0	ö	ő	000	0	0.0	0.0
	- RUN	SIGMA	(MB/SR	0.044	0.030	0.041	0.027	0.026	0.016	0.020	0.019	0.015	0.011	0.012	0.010	0.008	0.008	0.009	0.005	0.004	0.005	0.005	0.004	0.004	0.003	0.004	0.00	0.002	0.003	0.002	0.004	0.001	0.00	0.001	0.00	0.00	0.0	0:0	0.0	0.0
	90 06	ENERGY	(MEV)	6.41	7.12	8.13	9.13	10.14	11.14	12,15	13,16	14.16	15,17	16.18	17.18	18.19	19,19	20.20	21.21	22.21	23.22	24.23	25.23	26.24	27.24	28.25	29.26	30°56	31.27	32.28	33.28	34.29	35.29	36.30	37.31	38,31	39.19	0.0	0.0	0.0
	2025	ERROR	-MEV)	0.005	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0000	0.001	0.00	00000	0.00	0000	00000	0.0	0.0	0.0
NS.	- RUN	SIGMA	(MB/SR	0.048	0.043	0.038	0.033	0.032	0.028	0.024	0.027	0.018	0.014	0.012	0.014	600.0	0.009	0.010	0.007	0.008	0.009	0.008	0.00	0.00	0.005	0.004	0.008	0.002	0.005	0.005	0.001	0.004	0.001	000	0.001	0000	0.001	0.0	0.0	0.0
MEV. PROTONS	82 DEG	ENERGY	(MEV)	6.77	7.47	8.46	9.45	10.45	11.44	12.43	13,42	14.41	15.41	16.40	17.39	18.38	19.38	20.37	21.36	22,35	23,35	24.34	25,33	26.32	27.32	28.31	29.30	30.29	31.29	32.28	33.27	34.26	35.26	36.25	37.24	38.23	39.22	39.97	0.0	0.0
ED 8Y 62	2021	ERROR	-MEV)	0.002	0.002	0.002	0.002	0.002	200.0	2000	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.00	0000	0000	0000	00000	0.0	0.0	0.0
BOMBARDED	- RUN	SIGMA	(MB/SR	0.047	0.047	0.041	0.035	0.029	0.031	0.027	0.018	0.018	0.015	0.014	0.016	0.014	0.014	0.011	0.009	0.008	0.008	0.307	0.008	0.007	2000	0.006	0.005	0.006	100.0	0.00	0.004	0.304	0.001	0.001	0.001	0.000	0.001	0.0	0.0	0.0
M A = 27	75 DEG	ENERGY	(MEV)	7.11	8.12	9.13	10.13	11.14	12.14	13,15	14.15	15.16	16.17	17.17	18.18	19.18	20.19	21.19	22.20	23.20	24,21	25.22	26.22	27.23	28.23	29.24	30.24	31.25	32.26	33.26	34.27	35.27	36.28	37.28	38.29	39.29	40.30	41.18	0.0	0.0
RITON FROM	2030	ERROR	F-MEV)	0.004	400.0	0.004	9.004	0.004	0.004	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.0	0.0
_	- RGN	SIGMA	(MB/S	0.050	0.047	0.041	0.043	0.043	0.039	0.027	0.031	0.025	0.022	0.017	0.018	0.015	0.013	0.011	0.016	0.013	0.012	0.011	0.011	0.011	0.009	0.009	0.010	0.005	0.010	0.010	0.004	0.00	0.005	0.002	0.001	0.002	0.001	0.001	0.0	0.0
	70 DEG	ENERGY	(MEV)	7.21	8.21	9.21	10.21	11.20	12.20	13.20	14.20	15.20	16.20	17.19	18.19	19.19	20.19	21.19	22.18	23.18	24.18	25.18	26.18	27.18	28.17	29.17	30.17	31.17	32.17	33.17	34.16	35.16	36.16	37.16	38.16	39.15	40.15	41.15	41.70	0.0
	2046	ERROR	-MEV)	0.007	0.004	0.004	0.004	0.004	0.004	0.004	400.0	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.003	0.002	0.002	0.002	0.002	200.0	0.002	0.002	0.002	0.002	0.002	200.0	0.002	0.002	0.001	0.001	0.001	0.001	0.00.0	0.001	0.0
	- RUN	SIGMA	(MB/SR	0.052	0.051	0.049	0.049	0.039	0.039	0.041	0.040	0.022	0.023	0.021	0.020	0.020	0.013	0.015	0.015	0.020	0.013	0.014	0.010	0.012	0.012	0.00	0.012	0.013	60000	0.013	0.012	0.007	0.007	0.004	0.001	0.002	400-0	0.000	0.002	0.0
	65 DEG	ENERGY	(MEV)	6.77	7.46	8.46	9.46	10.46	11.46	12.46	13,46	14.45	15.45	16.45	17.45	18.45	19.45	20.45	21.44	22.44	23.44	24.44	25.44	26.44	27.44	28.43	29.43	30.43	31.43	32.43	33.43	34.43	35.42	36.42	37.42	38.42	39.42	40.42	41.42	42.12

TABLE 18 (cont.)

		SIGMA ERROR (MB/SR-MEV)
		CHE CY
NS.		SIGMA EROR
MEV. PROTO		ENERGY (MEV)
27 BOMBARDED BY 62 MEV. PROTONS.		SIGMA EROR (MB/SR-MEV)
		CHERGY (HEV)
TRITON FROM A =	2066	100 100 100 100 100 100 100 100 100 100
	- RUN	0.015
	160 DEG - RUN 2066	FREGY 6.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
	107	######################################
	- RUN	FIGNA FERRICA
	110 DEG - RUN	REGION OF THE PROPERTY OF THE

TABLE 19

4000	*00	ERROR	0.010	0.012	0.012	0.007	0.007	0.007	9000	000	9000	9000	900*0	0.006	0.005	0000	0.005	0.005	0.005	0.004	0.00	0.00	000	0.005	0.00	0.005	0000	000	0.00	0.004	0.005	0000	9000	0.003	0.004	0.003	7000	0.0	0.0	0.0	0.0	00	•
2		SIGMA ERROR	0.079	0.098	0.111	0.094	0.00	0.080	0.069		0.059	0.060	0.060	0.064	0.052	0.00	0.045	0.052	0.043	0.033	0.049	0.047	960.0	0.042	0.018	0.038	0.0	1 6	0.039	0.033	440	0.0	0.061	0.017	0.023	0.021	0000	0.0	0.0	0.0	0	0.0	•
35 750		ENERGY	8.46	8.87	9.27	10.38	11.39	12.41	13.42	14.40	16.45	17.46	18.47	19.48	20.49	22.51	23.52	24.53	25.54	26.55	27.56	28.57	20.60	31.61	32.62	33.63	34.64	34.46	37.67	38.68	39.69	27.17	42.72	43.73	44.74	45.75	40.47	48.79	49.47	0.0	0.0	000	•
106	901	ERROR	0.008	900.0	600.0	0.005	0.005	0.005	0.005	0000	0.00	0.005	0.005	0.005	0.004	400	0.004	0.004	0.004	0.004	0.004	400	400	400.0	400.0	0.004	400.0	900	00.0	0.004	0.005	0000	0.003	0.003	0.002	0.003			0	0.0	0	0 0	•
2	2	SIGMA	0.081	0.080	0.107	0.088	0.095	0.071	0.075		0.068	0.072	0.077	0.074	0.065	200	0.068	0.061	0.055	0.051	0.057	4000	2000	0.057	0.050	990.0	0.063	0.0	0.053	0.058	0.080	2000	0.037	0.026	0.017	0.026	200	0.0	0	0.0	0.0	00	•
62 MEV. PROTONS.	000	ENERGY	8.39	8.79	9.19	10.28	11.28	12.27	13.27	07:41	16.26	17.25	18.25	19.24	20.24	22.23	23,23	24.22	25.22	26.21	27.21	28.21	20.20	31.19	32.19	33.19	34.18	35.10	37-17	38.16	39.16	10.14	42.15	43.14	44.14	45.13	40.13	47.95	0	0.0	0.0	0.0	•
	. + 0.2	ERROR	0.018	0.017	0.020	0.02	0.011	0.011	0.010	010.0	0.00	0.010	0.010	0.008	0.010	010	9.00	600*0	600.0	0.008	600.0	6000	600	0.010	600-0	600-0	0.010	600	0.008	600-0	600-0	2000	0.008	0.011	0.005	9000		800.0	90000	0.0	o.	0.0	•
BOMBARDED BY		SIGMA	0.108	0.087	0.123	0.111	0.089	0.094	0.086	6600	0.054	0.084	0.077	0.056	0.030	0.0	0.061	0.067	0.062	0.055	0.058	0,00	7000	0.086	0.362	0.064	470.0	000	0.055	0.067	0.061	2000	0.048	0.103	0.022	0.033	1 4	0.053	0.011	0.0	0	0 0	•
M A = 27 E		ENERGY	8.35	8.75	9.15	10.24	11.24	12.24	13.24	14.63	15.23	17.22	18.22	19.22	20.21	22.21	23.21	24.20	25.20	26.20	27.19	28.19	20.19	31.18	32.18	33.18	34.17	34.17	37.16	38,16	39.16	40-13	42.15	43.15	44.14	45.14	40.14	48.13	48.83	0.0	0.	•	>
HELIUM-3 FROM	011	ERROR	0.048	0.046	0.036	0.052	0.064	0.063	0.036	220	0.024	0.030	0.023	0.018	0.028	0.025	0.012	0.028	0.024	0.020	0.028	720.0	620.0	0.024	0.018	0.023	0.023	0.023	0.031	0.019	0.025	0.00	0.033	0.025	0.029	0.036	200	0.017	0.015	0.022	0.017	0.021	•
ة – ا		SIGMA	0.111	0.099	0.063	0.127	0.197	0.188	0.061	200	0.129	0.106	0.061	0.037	0.093	0.00	0.018	960.0	0.071	0.049	0.092	880.0	701.0	0.069	0.039	0.061	0.063	0000	0.117	0.042	0.072	0.100	0.128	0.076	0.098	0.158		0.034	0.025	0.058	0.034	0.050	•
	12 05	ENERGY	6.82	7.22	7.62	8.43	8.83	9.23	9.63	10.34	12,35	13,35	14.36	15.37	16.37	18.38	19.39	20.40	21.40	22.41	23.41	24.42	24.02	27.44	28.44	29.45	30.46	22 67	33.47	34.48	35.49	37.50	38.50	39.51	40.52	41.52	44.57	44.54	45.55	46.55	47.56	48.55	10.64
1) 11	ERROR	0.030	0.028	0.038	8000	0.038	0.029	0.031	77000	0.021	0.022	0.019	0.021	0.017	120.0	0.024	0.021	0.017	0.017	0.025	0.021	070	0.018	0.021	0.018	0.023	710.0	0.029	0.022	0.022	0.010	0.026	0.032	0.034	0.028	0.00	0.014	0.019	0.025	0.014	0.020	•
1 1	ı	SIGMA	٠	0.060	0.111	0.062	0.109	0.065	0.075	6000	0.085	960.0	0.072	0.084	0.055	100.0	0.114	0.088	0.057	0.056	0.117	0.081	200	0.064	0.085	990.0	0.103	2000	0.158	0.093	0.089	0.049	0.127	0.191	0.223	0.145	11.0	0.036	990.0	0.122	0.037	9.04	•
230 61		ENERGY	6.82	7.23	7.63	8.00	8.84	9.24	49.64	00.00	12,36	13.37	14.38	15,38	16.39	18.41	19.41	20.42	21.43	22.44	23.44	24.45	24.44	27.47	28.48	29.49	30.49	31,500	33.51	34.52	35.53	30.04	38,55	39.56	40.56	41.57	42.00	44.50	45.60	46.61	47.62	48.62	DC • A &

TABLE 19 (cont.)

-Ò	ERROR	5	0.008	200	2 0	0000	2	500	2 0	\$ 6	1	2 6	500	ŝ	600	603	603	903	003	003	003	903	200	003	200	002	200	003	005	200	200	200*0	200	250	100	2 6	200	38		36		3,	0.0	0 (٠,	0
JN 2046		٠.																																										0.0		0.0
G - RUN	SIGMA	(MB/	0.065	ŏ	0.00	0.000	•	0.00	5 6	0.034	0.036	4000	0.032	0.030	0.026	0.019	0	0	0.0	0	0.0	0.0	0.0	0.020	0.017	0.0	0.013	0.019	0.009	0.012	0.010	0	900.0	5 6	900	5 6	0	\$ c	100.0	; 0	5 6	5 c	0.0	0.0	9	0.0
65 DEG	ENERGY	(MEV)	8.46	8.86	9.50	90.00	0000	11.30	00.21	13.30		2000	10.37	11.33	18.37	19.35	20.35	21,35	22,34	23.34	24.34	25,34	26.34	27.34	28.34	29,33	30,33	31,33	32,33	33,33	34,33	35,33	36.32	70.00	76.06	20.60	20.04	41.06	42.32	10.01	44.03	10.01	45.91	0.0	٠ •	•
	ū									•											•••					•••															•		•			
104	ERROR		0.012	0.012	11000	210.0	1000	710.0	110.0	0.010	0000	2000	9000	0000	9000	0000	0.00	0.004	0.005	0.004	0.004	0.004	0.004	0.005	0.004	0.003	0.003	0.003	0.004	0.003	0.003	0.003	200.0					200	0000		700	100	2000	0.001	0.0	0.001
RUN	IGMA	MB/SR-	0.076	8.0	0.00	9.0	2 6		* .	000	4	200	64.0	5	940	1.037	.023	•057	0.034	•027	•027	•026	•023	0.031	•010	-017	•016	•016	-019	0.015	515	•014 614	900	100	100	775	100	5 5	100.0	1 6	96	35	400	200	•	-002
60 DEG -	S		_												٠.			_									•	0	0		_			,					_		5 6	2 0	9	0	٠ د	
6.0	ENERGY	(MEV	9	- 5		200	0	000	9.62	•	2 .		17.30	0	4	5	16.3	17.3	18,3	19,3	20.3	21,3	22,4	23.4	24.4	25.4	26.4	27.4	28.4	29.4	30.4	31.4	35.	000	* 4		37.4		30.43		† «	7 7 7	7.	43.4	*	45.47
															_																															
2043	ERROR	-MEV)	400.0	9000	000	400		200	1000	000	0.00	000	0000		0.003	0000	0.00	0.003	0.003	0.003	0.003	0.002	0.003	0.002	2,002	0.002	0.002	0.002	0.002	0.002	0.002	0.001			200		9 0) c	2 6) C		2 0	0	0.0		•
P.C.	SIGMA ERROR	MB/SR	0.050	0.041	240	140.0	7 1	0.030	100	2000	120.0	670	920	770.0	420.0	620	.021	0.327	•023	0.021	•020	0.014	019	0.013	010	.012	0.008	.113	0.008	0.010	-02	200	4000	200	9	200	9 6		200	ء د	200	٠,	0,0	o,	٠,	0.0
DEG -																																							> c	, c	> <	> c	> <	0 0	٠ د	0
55 [ENERGY	(MEV)	13.5		6	10.33		10.04	17.0	20.04	71.	66.22	25.23	24.23	20.03	20.0	27.5	28.52	29.52	30.52	31.52	32.52	33,5]	34,51	35,53	36.51	37.51	38.51	39.5	40.50	41.5	42.5	50.00	N+*++	4.04		9 0	•	200		9 6		2 0	0 0	3	0.0
	~		. +		٠.		٠.	٠.	٠.	٠.		۰.	•	•	•	•	~	~	•	•	•	•	•	•	•	•	•	~	۸,	•					N	_										
1017	ERROR	-MEV)	0.00	0.0	0000	400.0		00.0	200	9	0000	2000	0000	3	0.003	00	0	0.003	0.00	0.0	0.00	0.0	000	0.00	000	000	0.00	9	0.0	0.003	9	000	00.0	3 6	200	3		•	90) c	•) c	0	0.0	0	•
- RUN 7101	SIGMA	MB/SR-MEV)	0.055	0.058	860.0	200	7000	5600	000	5 6	1 1	9 6	5000	8000	200	0.035	.034	0.034	.033	.028	.031	0.032	.043	0.032	.028	060*	0.028	.034	0.021	0.033	800.0	2000	9000		610	200		2 0	90	> <	200	200	٠ •	0.0	2	0.0
. 9 <u>3</u> 0	-																																													_
45	ENERGY	(MFV)	13.55	14.55	10.01	16.03		20 5		3 2	21.5	277	23.5	40.47	20.03	20.5	27.53	28.53	29.5	30.5	31.5	32,52	33.5	34.52	35.5	36.52	37.51	38.51	39.51	40.51	41.51	42.51	43.51		40.00			•	9 0		50	> 0	0.0	0	0	•
	OR	_	0.5	ie i	٠ ا م	5 6	0		n 1	60	2 2	* L	60	†	a .	4	40	4	40	40	40	40	40	93	40	40	40	40	40	40	و	40	200	و د	25	2 6	7		_						_	_
RUN 2035	IGMA ERROR	Ţ		-		0000		0000					_		400.0		_	_	0.004	0.0	0.0	_		_	_	_	_	0.004	_	0.004	_	_	200.0		700) C) C	200	000	0	0	0.0	0
- 1	SIGMA	(MB/SI	0.065	0.067	0.028	2000	200.0	0.05	0000	200	20.0	0.0	4000	1+0	0.036	440.0	0.042	0.035	0.040	0.041	0.043	0.031	0.045	0.022	0.029	0.029	0.030	0.032	0.034	0.029	0.027	0.042	0000	1 6		200		, c) c	٠ د د	•	0	0.0	0.0	0
40 DEG	NERGY	(MEV)	13.53	14.52	15.52	16.52	10.71	18.51	06.61	20.20	21.50	64.77	23.49	64.47	25.48	26.48	27.48	28.47	29.47	30.46	31.46	32.46	33,45	34.45	35.45	36.44	37.44	38.44	39.43	40.43	41.43	42.42	24.64	***	40.47	10.00	(t - 04	040	5 C	•	ء د	200	0.0	0.0	0.0	0.0

TABLE 19 (cont.)

		×		~	9	<u>ج</u>	9	ĕ	ī	2	'n	m		ū	2	2		2		į		: :		1 -		-		1 :				9	=	9	=	=		2							
	107	ERRC	(2里)	0	_	_	•	~	_	_	-	_	_	_	-	_	-	_	•	•	•	•	•	- •	•		٠,	-		•	0.00	_	~	_	_	_	_	_	~	•	_	•	_	_	_
	RUN	1 GMA	MB/SR	1.067	.044	.042	.045	.042	.037	.037	0.041	020	.024	400	0.018	710	410-	210				200	3	200	9	56	200	5 6	500	000	0.002	0001	.002	.001	.001	.001	0.	000	0:	0:0	0:	0.	0.0	•	9
	110 DEG -																																												
	110	ENERGY	Œ	\$	-	2.	8	8.47	8	6	6	10	-	12.1	13.4	14.4	15.4	16.4	17.			200	210		22	2.00	2 2 2	25.	27.0	200	29.50	30	31.5	32.	33.5	34.5	35.	36.5	37.5	38.	39.5	40.	41.1	•	6
		~			_	_	_	_	٠,	•	L.C					. "	. ~							u c		u c		v -		٠.				_	_	_	_	_	_	_	_	_			
	110	ERRO	-MEV)	0.0	0	000	0.0	00.0	00.0	00.0	00.0	0000	0	0.00	00.0	0	00.0	0						200		9 6					0.00	00.0	0.00	0.00	0.00	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0,	0	0.
•	RUN	IGMA	MB/SR	• 040	.051	•054	.055	•053	•046	.045	.034	.035	.037	400	.026	.021	018	7	410	5	7 6			110	100	200		200		100	400.0	.003	.002	• 003	• 003	•003	•003	.001	.001	.001	.001	.001	0	0:	•
PROTONS	- 930 06	-		_	•	-	_	_	_	_	_	_	_	_	_	_		_	_													_	_	_	_	_	Ī	_	_	•	_	Ī	_	-	_
MEV. PR	90	ENERGY	ME (9		7:7	8.1	8	8.9	9,3	6	10.4	11.5	12.5	13.5	14.5	15.5	16.9	7		9 0	200	, ,	22.0	200	2 4 4 5	2 4 6		200	2 8 6	29.6	30.6	31.6	32.6	33.6	34.6	35.6	36.6	37.6	38,6	39.6	40.6	41.6	45.6	43.2
62 ME		~						~	_	•	•					. ~	•									•								_		_	_	_	_	_					
ED 8	2025	ERRO	-MEV)	0	0.20	00.0	0.0	0.00	00.0	000	0.00	0.00	0.00	00.0	0.000	0.0	00.0	00.0	0												0.001	0.00	0.00	0.00	0.00	0.00	0000	0.00	0000	0.00	0	0	0	0	0
BOMBARDED	NO.	IGMA	MB/SR	020	.045	•056	-044	440.	.041	.038	.030	028	720	.022	.021	610	010	5	1		100	100			1 1	- 1		200		100	0.003	•004	.002	.003	•005	.002	000	000	•001	.300	•	٥.	e.	o.	c.
27 80	DEG -																																									9	0	0	٥
1) V	85	ENERGY	(MEV	8	6	9.4	9.8	10.4	11.4	12.4	13.4	14.4	15.4	16.4	17.4	18.4	19.4	20.4	21.4	22.4	22.0	26.76	35.2	2000	0.46	200	9 6	20.0			33.32	34.3	35.3	36.3	37.2	38.2	39.2	40.2	41.2	42.2	43.2	43.8	0.0	0.0	0
F ROM									_	_	_						_																				_	_	_	_	_				
4E L I UM-3	2021	ERROR	·MEV)	00.0	0.00	0.004	0.004	0.002	0.002	0.002	0.002	0.002	0.00	0.00	9.002	0.002	0.00	00.0	00.0												0.001	0.001	0.001	0.001	0.001	0.001	0000	0000	0.000	0.000	0000	0.0	0.0	0.0	0.0
HEL	RUN	SIGMA	4B/SR-	057	950	050	054	940	946	644	038	031	028	023	026	022	010	910	8	2.0	1	1				100			90	200	200	400	•004	,00	.003	.003	000	.001	001	100	901	•	o.	o.	o.
	DEG -			_	_	_	_	_	_	_	_	_	_	_			_	_		•	•	, .	, .	-	•	•	•		•	, .	, .	_	_	_	Ü	_	_	~	٠	_	_	_	_	_	_
	75	ENERG	(MEV	80	8	9	9.7	10.4	11.4	12.4	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20.5	21.5	200	200	24.5	200	2,40	1 0		200	20.00	2 4	100	33.61	34.6	35.6	36.6	37.6	38.6	39.6	40.6	41.6	45.6	43.6	44.5	0.0	0.0	0.0
					_	_	_								_	_		_					_										_	_	_										
	2030	ERROR	-MEV)	0.00	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.00	0.003	0.002	0.002	0.002	0.002	0.002	0.002			000				200	200		200	000	0.001	0.001	0.00	0.000	0.00	0.0	٥.	0.0	0.0	ن 0	0.0	0.0	0.0	0.0	0.0
	RUN 2	GMA	48/SR-	040	033	926	030	.029	.024	920	018	020	810	015	014	016	015	13		2 2		25	9 0	000		200	2 6	9 6	200	200	0.001	005	,001	.001	000	0.	ó	ó	ó	ó	ó	ó	•	•	o.
	DEG -																																									ŏ	Ö	ö	ŏ
	70	ENERG	(MEV	13.6	14.6	15.6	16.6	17.5	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5	20.5	000	, ,			20.00	3,4	2 2	3 4 5	0 0			40.55	41.5	42.5	43.5	44.5	45.3	0	0.0	0.0	0	0.0	0	0.0	0.0	0

TABLE 19 (cont.)

		RGY SIGMA ERROR																																						
•		SIGMA ERROR ENERGY																																						
Z MEV. PRUIUNS		ENERGY S																																						
HELIUM-3 FKUM A = 27 BUMBAKUEU BY 62 MEV. PKUIUNS.		SIGMA ERROR	(MB/SR-MEV)																																					
KUM A = 21		ENERGY	(MEV)																																					
L108-3 F	5066	SIGMA ERROR	R-MEV)	0.004	0.00	0.003	0.003	0.003	0.002	200.0	0.002	0.001	0.002	0.002	0.0	0.0	0.0	0.002	0.0	0.0	0.0	0.001	0.0	0.0	0.0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
분	G - RUN	SIGMA	(MB/S	0.014	0.018	0.007	90000	0.007	0.005	0.004	0.004	0.001	0.004	0.002	0.0	0.0	0.0	0.002	0.0	0.0	0.0	0.001	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
	160 DEG	ENERGY	(MEV)	12.93	13.95	14.97	15.99	17.02	18.04	19.06	20.08	21.10	22.12	23.14	24.16	25.18	26.20	27.22	28.24	29.26	30.28	31.30	32,32	33,34	34.36	35,38	36.40	37.42	38,26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2065	ERROR	-MEV)	0.020	0.019	0.016	910.0	0.015	0.014	0.012	0.010	0.008	0.007	800.0	0.007	900.0	0.005	0.005	400.0	0.005	0.004	0.002	0.0	0.003	0.0	0.0	0.002	0.002	0.0	0.002	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٥•٥	0.0	0.0
	- RUN	SIGMA ERROR	(MB/SR	0.069	0.063	0.046	0.041	0.039	0.031	0.023	0.039	0.025	0.021	0.029	0.019	0.013	0.011	0.012	0.007	630.0	0.007	0.002	0.0	0.005	0.0	0.0	0.002	0.002	0.0	0.002	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٠.	0
	135 DEG	ENERGY	(MEV)	7.17	1601	7.97	8.37	8.77	9.17	9.57	10.27	11,27	12.27	13.27	14.27	15.27	16.27	17.27	18.27	19.27	20.27	21.27	22.27	23.27	24.27	25.27	26.27	27.27	28.27	29.27	30.27	31.27	32.27	33.27	34.27	35.27	36.27	37.27	38.27	38.97

TABLE 20

2004	######################################
- RUN	NO 00 00 00 00 00 00 00 00 00 00 00 00 00
35 DEG	REAL REAL REAL REAL REAL REAL REAL REAL
101	A T T T T T T T T T T T T T T T T T T T
NS.	KRV AR KRV AR
MEV. PROTONS 30 DEG -	E E E E E E E E E E E E E E E E E E E
BY 62	ERVER A CONTRACT OF CONTRACT O
30MBARD	N - 4/3/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/
OM A = 27 1	E. C.
ALPHA FROM 116	### FE R R R R R R R R R R R R R R R R R R
I SUN	NOTE TO SERVICE TO SER
15 DEG	E E E E E E E E E E E E E E E E E E E
117	##C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r RUN	10.00000000000000000000000000000000000
12 DEG	THE THE RESERVENCE OF THE PROPERTY OF THE PROP

TABLE 20 (cont.)

	2046	ERROR -MEV)	40.0	0.04	40.0	0.03	0.03	0.03	0.015	0.013	0.012	0.010	600.0	0.00	8	900.0	9000	900	0.00	0.005	0.004	0.004	0000	0.004	0.003	0.003	5000	0.00	0.002	0.002	0.002	0.002	0.002	2005	0.00	0.001	200.0	900	0.001	0.001	00.0	0.001	0.0	0.0	0000	200	0.0	0.0	0.0	.0.	0.0	00
	- RUN	SIGMA E	1.71	1.60	4,48	1.19	1.14	00.0	0.634	0.483	0.422	0.294	0.246	0.171	0.131	0.107	960.0	980	0.00	0.000	0.043	0.049	440	0.035	0.032	0.023	620.0	0.015	0.017	0.016	0.015	0.015	0.012	800.0	0.00	0.005	2000	0.00	0.002	0.00		0.00	0	0.0	000		0.0	0.0	000	0	0.0	0.0
	65 DEG	ENERGY (MEV)	7.02	7.41	7.81	8.61	9.01	9.41	11.11	12,11	13.11	14.10	15.10	17.10	18.10	19.10	20.10	22.09	23.09	24.09	25.09	26.09	28.09	29.08	30.08	31.08	37.08	34.08	35.08	36.07	38.07	39.07	40.07	41.07	43.06	44.06	45.06	47.06	48.06	49.06	30.03	52.05	53.05	54.05	55.05	56.57	0.0	0.0	0 0		0	00
	104	ERROR -MEV)	1000	0.05	90.0	90.0	90.0	0.06	0.055	0.056	0.053	0.051	0.049	0.045	0.042	0.025	0.022	0.020	0.015	0.013	0.012	0.011	0.010	0.00	0.008	0.007	200	9000	0.007	0.006	0.005	0.005	0.004	0.004	0.005	0.004	0.003	400	0.004	0.003	500	0.002	0.003	0.003	0.00	0.001	0.001	0.0	0.0	0.0	0.0	0.00
NS.	- RUN	U, -,	-	1.59			-			-	-	-		-1	_	968.0	0.681	0.552	200	0.244	0.206	0.184	0.131	0.107	0.091	0.072	0.0	0.057	0.064	0.046	0.041	0.031	0.028	0.028	0.031	0.022	0.013	0.023	0.021	0.017	710.0	0.00	0.010	0.00	400	0.00	0.001	0.0	0.0	0.0	0.0	0.0
62 MEV. PROTONS.	990 DEG	ENERGY (MEV)	3.03	3.84	4.24	5.04	5.44	5.84	6.65	7.05	7.45	7.85	8.25	9.05	9.46	10.16	11.16	12.16	14.17	15.17	16.18	17.18	18.18	20.19	21.19	22.20	24.20	25.21	26.21	27.21	28.22	30.22	31.23	32,23	34.24	35.24	36.24	38.25	39.25	40.26	41.20	43.27	44.27	45.27	46.28	48.28	49.29	50.29	51.29	53.30	54.30	55.31
	2043	ERROR -MEV)	1000	0.01	0.01	10.0		0.01	9000	0.005	0.005	0.005	400	400.0	0.004	:	∴.	:.	2000	0.003	0.003	0.003	500.0	0.332	0.002	0.002	2000	0.002	0.001	0.001	0.001	0.0	:		100.0	0.0	0.0		0.0	0.0	0.0	000	0.0	0.0	0.0	200	0.0	0.0	0.0	200	0.0	00
BOMBARDED BY	NO.	SIGMA E	0.35	0.20	0.23	0.15	0.11	0.10	0.091	0.078	0.079	0.054	0.053	0.045	0.039	0.038	0.036	670.0	0.00	0.017	0.029	0.317	120.0	0.015	0.014	0.011	000	0.00	0.004	0.031	0.003	0	0.001	0 0	0.00	0.0							0		7 0	9	•	o.	9.5		0	00
1 A = 27	55 DEG	ENERGY (MEV)	15.95	16.94	17.94	10.94	20.94	21.94	23.93	24.93	25.93	26.93	27.92	29.92	30.92	31.92	32.92	20.00	35.91	36.91	37.91	38.90	39.90	41.90	42.90	43.90	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	46.89	47.89	48.89	50.89	51.88	52.88	53.88	55.87	56.87	57.62		0.0	0.0		0	0.0	0.0	000		0.0	0.0	000	?0	0.0	00
ALPHA FROM	7101	ERROR R-MEV)	10.0	0.01	0.01	500	0.01	0.01	9000	9000	0.005	3.00.5	0.005	0.00	0.004	0.004	400.0	*****	400.0	0.003	0.004	0.004	400.0	0.003	0.003	0.003	2005	0.002	0.002	0.001	0.00	0.001	0.00	0000	0.001	000.0	0.0	000	0.0	0,0	000	0	0.0	0.0	0.0	000	0.0	0.0	00	200	0.0	0.0
	- RUN	SIGMA (MB/S																																														0.0	0.0	200	0.0	0.0
	45 DEG	ENERGY (MEV)	14.45	16.95	17.95	19.94	20.94	21.94	23.94	24.94	25.93	26.93	27.93	29.93	30.93	31.92	32.92	33.92	35.02	36.92	37.91	38.91	39.91	41.91	42.91	43.90	96.44	46.90	47.90	48.90	50.89	51.89	52.89	53.89	55.89	56.88	57.68	000	0.0	0		0	0.0	0,0	0 0		0.0	0.0	0 0	0	0.0	000
	2035	ERROR -MEV!	10.0	0.01	0.01	0.0	0.01	0.01	820.0	0.008	2000	0.007	7000	900-0	90000	900.0	0.005	0000	0000	400.0	0.005	0.005	0.004	400.0	0.004	400.0	*00.0	0.003	0.004	500°0	0.002	20.0	0.0	0.0	000	0.0	0.0		0.0	0.0	0.0	000	0.0	0.0	0.0		0.0	0.0	0.0	200	0.0	0.0
	- RUN	SIGMA (MB/SR-	0.40	0.34	3.31	0.27	0.19	0.18	0.150	0.144	0.121	0.116	0.099	0.093	0.092	0.075	0.068	690.0	000	0.041	0.059	0.050	0.034	0.035	0.034	0.037	1 0 0	0.017	0.030	0.014	0.012	0.0	0.0	0 0	0	0.0	0.0	0.0	0.0	0.0	000	0	0.0	0.0	0	0.0	0.0	0.0	0,0	0	0.0	000
	4r DEG	ENERGY (MEV)	15.92	16.91	17.91	19.91	20.90	21.90	23.89	24.89	25.88	26.88	27.87	20.87	30.86	31.86	32.86	33.63	25.00	36.84	37.84	38.83	39.83	41.82	42.82	43.82	44.81	46.81	47.80	48.80	50.64	0.0	0	0.0		0.0	0.0	0	0.0	o (0.0	0.0	0.0		0.0	0.0	0 0	0	0.0	00

TABLE 20 (cont.)

	107	ERROR-MEV)	0.03	0.04	0.0	0.03	0.03	0.03	0.03	0.03	0.024	0.022	0,020	0.018	0.017	600.0	0.008	9000	0.005	0.004	0.004	0000	0.00	0.003	0.002	200	0.002	0.002	0000	0.001	0.001	0.001	0.001	0.001	0.00	0000	0.00	0000		0.0	0.0	000			0.0	0.0	0,0	000	0.0
	- RUN	SIGMA (MB/SR-	1.57	1.82	1.83	1.65	1.62	1.30	1.14	1.00	0.80	0.695	0.582	0.476	0.394	0.320	0.244	0.128	0.088	0.064	0.056	440	0.029	0.023	0.017	0.00	0.00	0.010	0.00	9000	0.003	0.00	0.003	0.001	200.0	0.001	0.001	500		0.0	0.0	0.0	9 0	0	0.0	0.0	0 0	0	0.0
	110 DEG	ENERGY (MEV)	3.29	3.70	4.50	4.90	5.31	6.11	6.51	6.92	7.72	8.12	9.52	000	9.73	10.44	11.44	13,45	14.46	15.46	16.47	84.7	19.49	20.49	21.50	23.53	24.52	25.52	27.53	28.54	29.55	30.55	32.56	33.57	34.18	36.59	37.59	38.60	40.61	41.62	45.62	43.63	44.00	46.65	47.65	48.66	49.66	0.0	0.0
	110	ERROR MEV)	0.03	40.0	0.0	0.04	0.0	0.03	0.03	0.03	0.028	0.027	0.025	0.022	0.012	0.011	0.010	0.00	900.0	900*0	0.005	5000			0.003					0.002	0.002	0.00	0.001	0.001	100	0.001	0.001	0.001	0.001	0.001	0.001	0.0		0000	0.0	0.0	0.0	000	0.0
NS.	- RUN	SIGMA (MB/SR-	1.40	1.63	1.73	1.7	1.60	1.38	1.24	1.14	0.918	0.828	6690	0.556	0.448	0.347	8/20	0.155	0.106	0.089	0.072	0.00	0.036	0.040	0.024	0.020	0.011	0.014	0.013	0.011	0.012	0.00	0000	9000	900	0.005	0.00	0.001	0.00	0.00	0.001	0 0		000	0.0	0.0	000	0	0.0
62 MEV. PROTONS.	90 DEG	ENERGY (MEV)	3,09	3.90	4.30	5.11	5.51	6.31	6.72	7.12	7.97	8.33	8.73	9,19	10.24	11.24	12.25	14.26	15.27	16.28	17.28	16.29	20.30	21.31	22.31	26.32	25.33	26.34	28.35	29.36	30.36	31.37	90,00	34.39	35.59	37.41	38.41	39.42	40.43	45.44	43.44	4.40	40.44	47.47	48.48	49.48	50.49	52.50	53.03
	2025	ERROR MEV)	0.03	0.03	0.02	0.02	2.02	5.02	0.02	0.01	0.008	0.007	9000	0.005	0.004	0.034	6000	0.003	0.003	0.002	0.002	200	0.002	0.002	0.002	200.0	0.001	0.001	100.0	0.001	0.001	0.001	0.001	0.001	100.0	000-0	0000	0000		6.0	0.0	0.0	000		0.0	0.0	0.0	0	0.0
BOMBARDED BY	- RUN	SIGMA E	1.58	1.49	1.37	1.39	00.0	0.83	0.73	0.55	0.328	0.289	0.201	0.119	0.097	0.083	0.056	0.053	0.042	0.030	0.030	0.020	0.021	0.017	0.018	0.0	0.011	0.039	0.008	600.0	0.335	00.00	0.03	0.003	0000	0.001	0.001	0000		9	0.0		9 0	0	0.0	0.0	0 0	0	0.0
A = 27	82 DEG	ENERGY (MEV)	5.88	6.67	7.07	7.86	8.26	90.6	9.45	10.15	12.13	13.12	14.12	16.10	17.09	18.09	19.08	21.06	22.06	23.05	24.04	22.03	27.02	28.01	29.00	00.00	31.98	32.97	34.96	35.95	36.94	37.93	39.92	40.91	41.90	43.89	44.88	45.87	0.0	0.0	0.0	0.0			0.0	0.0	00	0	0.0
ALPHA FROM	2021	ERROR	0.02	0.02	20.0	0.02	0.02	0.02	0.02	0.02	600.0	0.007	9000	0.00	0.004	0.004	400	0.003	0.003	0.002	0.002	200.0	200.0	0.002	0.002	0.00	0.001	0.001	0.001	0.001	0.001	0000	0.001	0.001	1000	0.001	0.000	000	0000	0.0	0.0				0.0	0.0	0.0	0	0.0
	r NON	S			1.36					0.70) C	0	0 6	0.170	0	0	0 0	090	0	0	0	9 6	0	0	0.024	o c	. 0	0 (90	0.012	0	00	0	0.004	5 C	. 0	0	0 0	90	0	0	0 () C	0	0	0.0	0 0	0	0.0
	75 DEG	ENERGY (MEV)	5.76	6.56	7.37	7.77	8.17	86.98	9.38	9.78	11.49	12.49	13.50	15.51	16.52	17.52	18653	20.54	21.55	22,55	23.56	24.50	26.57	27.58	28,58	30.60	31.60	32.61	34.62	35.62	36.63	37.64	39.65	40.65	41.00	43.67	44.67	45.68	47.59	0	0.0	50		0	0.0	0.0	0 0	0	0.0
	2030	ERROR 1-MEV)	10.0	0.01	0.01	0.01	0.01	000	0.00	000	00.0	0.003	0.00	0.003	0.003	6000	0.003	0.002	0.002	0.002	2000	200.0													200	0.0	0.0	0.0	900	0	0.0	0,0	000	.0	0.0	0.0	0.0	000	0.0
	G - RUN	SIGMA (MB/SR	0.20	0.15	0.12	0.10	0.04	0.05	0.05	0.05	20.0	0.033	0.024	0.023	0.020	0.019	0.019	910.0	0.00	0.011	0.007	500	0.005	0.004	0.003	0000	0.002	0.002	0	0.001	0.0	0.0	0	0.0	0 0	0.0	0.0	0 0	000	0	0.0	0 0		0	0.0	0.0	0.0	0	0.0
	70 DEG	ENERGY (MEV)	15.00	16.99	18.99	19.99	20.09	22.98	23.98	24.98	26.98		28.07	30.97	31.97	32.97	33.96	35.96	36.96	37.96	38.95	39.95	41.95	42.95	43.95	45.04	46.94	47.94	46.94	50.93	51.93	52.93	54.93	55.62) c	0	0	00	90	0	0	0.0	0	0	0.0	0.0	00	0	0.0

TABLE 20 (cont.)

		SIGMA ERROR (MB/SR-MEV)																																											
		ENERGY (MEV)																																											
NS.		SIGMA ERROR (MB/SR-MEV)																																											
62 MEV. PROTONS.		ENERGY (MEV)																																											
BOMBARDED BY 62		SIGMA ERROR (MB/SR-MEV)																																											
= 27		ENERGY (MEV)																																											
ALPHA FROM A	RUN 2066	S ERROR SR-MEV)	0.07	0.07	90.0	90.0	0.05	0.05	0.00	0.0	0.04	0.03	000	0.03	0.014	0.012	0.010	0.010	0.000	900	0.005	400.0	0.005	0.004	0.00	0.003	0.002	0.002	2000	0.002	000	2.001	0.0	0,0	000	0.0	0.0	0.0	000	0.0	0.0	0.0		0.0	0.0
	- 1	SIGMA (MB/SF	1.78	1.71	1.36	1.14	0.98	0.88	0.64	0.56	0.46	4.0	200	2.0	0.183	0.125	0.089	0.086	6,00	0.07	0.024	0.012	0.019	0.014	0.005	0.006	0.004	0.005	0.0	0.002	0.00	0.001	0.0	0,0	000	0	0.0		900			00			
	160 DEG	ENERGY (MEV)	4.01	4.41	5.23	5.64	6,05	6.45	7.27	7.68	8.09	8.49	0.40	9.72	10.43	11.45	12.47	13.49	14.52	16.54	17.58	18.60	19.62	20.64	22.68	23.70	24.72	25.74	27.78	28.80	29.82	31.86	32.88	33.90	35.94	36.96	37.98	39,00	40.03	42.07	43.09	44-11	46.15	46.73	0.0
	2065	SIGMA ERROR (MB/SR-MEV)	0.11	11.0	0.10	60.0	60.0	0.08	2000	0.07	90.0	90.0	0.0	0.00	0.026	0.023	0.022	0.018	0.0	0.010	0.008	600.0	800.0	0.006	900.0	400.0	900.0	0,003	0.002	0.002	0.0	000	0.0	0.003	200.0	0.0	0.0	0.0	90	0,0	0.0	0.0	0	0.0	0.0
	- RUN 2065	SIGMA (MB/SR	1.94	1.86	1.59	1.39	1,33	1.04	0.0	0.76	0.63	0.57	44.0	3 6	0.286	0.224	0.200	0.139	2000	0.0	0.027	0.034	0.026	0.016	9.0.0	0.007	0.015	0.00	0.002	9.002	0.0	0.0	0.0	0.00		0	0.0	0,0	0 0		0.0	00	0	0.0	0.0
	135 066	ENERGY (MEV)	3.97	4.37	5.17	5.57	2.97	6.37	7.17	7.57	7.97	8.37		9.57	10.27	11.27	12.27	13.27	14.27	15.27	17.27	18.27	19.27	20.27	25.27	23.27	24.27	25.27	27.27	28.27	29.27	31.27	32.27	33.27	25.27	36.27	37.27	38.27	12.66	41.27	42.27	43.27	45.27	46.27	47.15

TABLE 21

	SIGMA ERROR																																		
	ENERGY																																		
	SIGMA ERROR																																		
	ENERGY (MEV)	: !																																	
34	ERROR -MEV)																						0.03												
R.G.	SIGMA (WB/SR	5.54	6.57	7.34	8.33	7.79	7.09	6.58	6.37	5.12	5.27	40.4	4.41	4.13	3.68	3.12	2,23	2.22	1.89	1.62	1.39	1.23	1.18	1.29	1.27	0.95	1.15	1.55	0.78	0.633	0.80	1.24	1.32	0.75	
60 DEG	ENERGY (MEV)	1.79	2.19	2.59	5.99	3,39	3.80	4.20	4.60	2.00	5.41	5.81	6.21	6.61	7.32	8.32	9,33	10.33	11.34	12,35	13,35	14.36	15.36	16.37	17.38	18.38	19.39	20.39	21.40	22.40	23.41	24.42	25.42	26,43	
56	ERROR -MEV)	0.19	0.21	0.22	0.23	0.22	0.21	0.20	0.20	0.20	0.18	0.18	0.18	0.11	0.10	60.0	60.0	90.0	80.0	70.0	0.07	0.07	20.0	10.0	2.07	90.0	0.07	0.08	90.0	0.058	90.0	0.10	0.10	0.08	
r N	SIGMA ERROR	6.45	8.00	8.77	96.6	8.62	8.09	7.65	7.38	7.07	6.02	5.93	5.85	5.06	4.29	3,37	3.39	2 • 80	2.63	2.49	2.15	2.03	2.20	2.29	2.20	1.90	1.94	3.06	1.47	1.536	1.55	4.76	4.69	2.79	
30 056	ENERGY (MEV)	1.99	2.39	2.79	3.19	3.59	4.00	4.40	4.80	5.20	5.61	6.01	6.41	7.11	8.12	9.13	10.13	11.14	12,14	13,15	14.15	15.16	16.16	17.17	18.18	19.18	20.19	21.19	22.20	23.20	24.21	25.21	26.22	27.23	
33	ERROR MEV.)	0.49	0.55	0.57	0.64	99.0	0.67	0.63	0.59	0.63	0.64	0.63	0.61	0.39	0.37	0.34	0.36	0.35	0.34	0.33	0.32	0.31	0.31	0.32	0.31	0.29	0.28	0.32	0.28	0.273	0.26	0.33	0.54	0.25	
11 DEG - RUN	SIGMA (MB/SR-	6.35	8.18	8.18	11.15	11.87	11.99	10.80	9.34	10.63	10.95	10.79	16.6	10.01	9.02	7.63	8.87	80.8	7.62	7.53	6.95	6.56	6.55	6.93	6.35	5.74	5,38	6.75	5.12	4.990	4.49	7.41	19.65	4.23	
11 DEC	ENERGY (MEV)	2.03	2.44	2.84	3.24	3,64	40.4	4.45	4.85	5.25	5.65	6.05	6.45	7.16	8.16	9.17	10.17	11.18	12.18	13.19	14.19	15.19	16.20	17.20	18.21	19.21	20.22	21.22	22.23	23,23	24.24	25.24	26.25	27.25	

TABLE 22

		SIGMA ERROR (MB/SR-MEV)
		ENERGY (MEV)
NS.		SIGMA EROR (MB/SR-MEV)
MEV. PROTO		CHEV)
ED 8Y 29	34	A T T T T T T T T T T T T T T T T T T T
OMBARD	- RUN	N N N N N N N N N N N N N N N N N N N
DEUTERON FROM A = 27 BOMBARDED BY 29 MEV. PROTONS.	930 09	FNERGY 1 1-66 K 1 1-66 K 2 2-09 8 2 2-89 9 2 2-89 9 2 2-89 9 4 4-10 6 4 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 6
TERON FRO	56	SIGMA ERRUR (MB/S R-MEV) 10108 2 - 201189 0 - 0.350 0 - 0.045 0 -
05.0	- RUN	SIGMA (MB/S R (MB/S R (0.181 (0.183 (0.330 (0.537 (0.54 (0.458 (0
	30 DEG	ENERGY (MEV! 2.239 2.239 2.209 3.049 3
	33	F E R R C R R R C R R R C R R R C R R R C R R R C R C R C R C
	- RUN	SIGNA (M84/SR 00.487 00.487 00.5487 00
	11 066	FN R R G C C C C C C C C C C C C C C C C C

TABLE 23

V. PROTONS.		ENERGY SIGMA ERROR ENERGY SIGMA ERROR	(MB/SR-MEV) (MEV)									
ED BY 29 M	34	ERROR	-MEV)	600.0	9.304	0.005	0.003	200.0	0.014	0.03	0.0	•
BOMBARD	60 DEG - RUN 34	SIGMA	(MB/SR	0.031	110.0	0.031	0.011	0.045	0.198	0.003	0.0	•
FROM A = 27 BOMBARDED BY 29 MEV.	60 DEG	ENERGY	(MEV)	6.41	7.12	8.12	9.13	10.13	11.14	11.82	0.0	c
TRITON FRO	56	ERROR	-MEV)	0.017	0.010	0.011	0.010	600.0	0.014	0.033	0.0	٥
F	30 DEG - RUN										0.0	
	30 DEG	ENERGY	(MEV)	6.41	7.11	8.12	9.13	10.13	11.14	12.14	13.07	c
	33	ERROR	-MEV)	0.094	0.036	0.021	0.015	0.033	0.047	0.089	0.034	74.0
	- RUN	SIGMA	(MB/SR-	0.237	0.085	0.030	0.015	0.074	0.149	0.531	0.080	220
	11 DEG - RUN	ENERGY	(MEV)	6.40	7.11	8.11	9.12	10.12	11.13	12.13	13.13	12 74

42

•

TABLE 24

		SIGMA ERROR (MB/SR-MEV)
		ENERGY (MEV)
.svc		SIGMA ERROR (MB/SR-MEV)
MEV. PROTO		ENERGY (HEV)
ED BY 29	34	ERROR O 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000 0 0000
BOMBARD	DEG - RUN	SIGMA (MB/SR)) (MB/SR (MB/SR (MB/SR)) (MB/SR (MB/SR)) (MB/SR (MB/SR)) (MB/SR (MB/SR)) (MB/SR (MB/SR)) (MB/SR (MB/SR)) (MB/SR (MB/SR)) (MB/SR)) (MB/SR) (MB/SR)) (MB/SR) (MB/SR)) (MB/SR) (MB/SR) (MB/SR)) (MB/SR) (MB/SR)) (MB/SR) (MB/SR)) (MB/SR) (MB/SR) (MB/SR)) (MB/SR) (MB/SR) (MB/SR)) (MB/SR) (MB/SR) (MB/SR)) (MB/SR) (MB/SR) (MB/SR) (MB/SR)) (MB/SR) (MB/SR) (MB/SR) (MB/SR) (MB/SR) (MB/SR)) (MB/SR) (MB/SR) (MB/SR) (MB/SR) (MB/SR) (MB/SR)) (MB/SR) (MB/SR) (MB/SR) (MB/SR) (MB/SR) (MB/SR) (MB/SR) (MB/SR)
HELIUM-3 FROM A = 27 BOMBARDED BY 29 MEV. PROTONS.	990 09	ENERGY MEV 1 7 2 8 4 7 7 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 111 2 4 0 112 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IUM-3 FRO	56	ERROR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
무	P. RUN	S1GMA (MB/SR (MB/SR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
	30 DEG -	ENERGY (MEV) 6.86 7.27 7.27 7.67 7.67 7.67 7.67 8.40 110.38 112.39 112.39 112.39 115.40 115.40 115.41 117.30
	33	ERROR ERROR OCCUPANT
	- RUN	S1GMA (HB/SR- 0.0 0.0 0.0 0.0 0.0 0.0 0.10 0.140 0.140 0.169 0.129
	11 DEG - RUN	MEV) (MEV) (A6V) (

TABLE 25

	SIGMA ERROR	(MB/SR-MEV)																																							
	ENERGY	(MEV)																																							
•	SIGMA ERROR	(MB/SR-MEV)																																							
27 BUMBAKDED BY 29 MEV. PKULUNS. DEG - RUN 34	ENERGY	(AEA)																																							
ED 8Y 29 34	ERROR	-MEV)	0.04	-							-																											0.03			
BUMBAKU RUN	SIGMA	(MB/SR-	0.64	0.85	1.17	1.62	2.01	2.30	2.41	5.44	2.49	2.44	2.23	2.09	1.87	1.76	1.55	1.34	1.25	1.13	0.91	0.622	0.481	0.306	0.221	0.213	0.165	0.155	0.104	0.063	0.045	400.0	0.005	0.029	100.0	0.012	900.0	0.008	0.0	0.0	0.0
	ENERGY	(MEV)	5,69	3.09	3.50	3.90	4.30	4.70	5.10	5.51	5.91	6.31	6.71	7.12	7.52	7.92	8.32	8.73	9.13	9.53	10.23	11.24	12.25	13.25	14.26	15.26	16.27	17.27	18.28	19.29	20.29	21.30	22.30	23.31	24,32	25,32	26.33	27.33	27.91	0.0	0.0
ALPHA FRUM A ≅ 26 60	ERROR	-MEV)	0.05	90.0	0.07	0.08	0.10	0.11	0.12	0.12	0.13	0.13	0.13	0.13	0.13	0.13	0.12	0.12	0.11	0.10	90.0	0.053	0.045	0.037	0.033	0.029	0.026	0.021	0.027	0.020	0.020	0.019	0.002	900.0	0.011	0.0	0.002	0.013	0.008	0.0	0.0
- RUN	SIGMA	(MB/SR	0.51	69.0	0.0	1.31	1.76	2.13	2.43	2.70	2.96	3.27	3.25	2.96	3.28	3.31	2.67	2.47	2.17	1.96	1.58	1.266	0.938	0.626	0.507	0.389	0.312	0.200	0.325	0.189	0.184	0.163	0.001	0.014	0.059	0.0	0.002	0.072	0.026	0.0	0.0
30 DEG	ENERGY	(MEV)	5.69	3.09	3.49	3.90	4.30	4.70	5.10	5.51	5.91	6.31	6.71	7.11	7.52	7.92	8.32	8.72	9.13	9.53	10.23	11.24	12.24	13.25	14.25	15.26	16.26	17.27	18.28	19.28	20.29	21.29	22.30	23,30	24.31	25.31	26.32	27.33	28.33	29.24	0.0
e B	ERROR	-MEV)	0.18	0.21	0.22	0.24	0.28	0.31	0.32	0.33	0.33	0.36	0.38	0,35	0.30	0.34	0,33	0.31	0.32	0.32	0.18	0.147	0.141	0.110	260.0	0.083	0.072	0.083	0.073	0.069	0.064	0.047	0.030	0.026	0.0	0.026	0.0	0.033	0.030	0.0	0.0
P RUN	SIGMA	ġ	0.88																		2.23							0.458										0.075			
11 DEG	ENERGY	(MEV)	5.69	3.09	3.49	3.89	4.29	4.70	5.10	5.50	5.90	6.30	6.71	7.11	7.51	7.91	8.31	8.71	9.12	9.52	10.22	11,23	12.23	13.24	14.24	15.24	16.25	17.25	18.26	19.26	20.27	21.27	22,28	23,28	24.29	25.29	26.29	27.30	28.30	29.31	29.91

.

ORNL-4455 UC-34 - Physics

INTERNAL DISTRIBUTION

	Biology Library	71. W. H. Jordan
2-4.	Central Research Library	72. H. G. MacPherson
5 - 6.	ORNL - Y-12 Technical Library	73-74. F. C. Maienschein
	Document Reference Section	75-124. R. W. Peelle
7-56.	Laboratory Records Department	125. F. J. Perey
57.	Laboratory Records, ORNL R.C.	126. R. T. Santoro
58.	L. S. Abbott	127. A. F. Shinn
59.	R. G. Alsmiller, Jr.	128. M. J. Skinner
60.	T. W. Armstrong	129. D. A. Sundberg
61.	H. W. Bertini	130. J. W. Webster
62-66.	F. E. Bertrand	131. A. M. Weinberg
67.	J. K. Dickens	132. E. R. Cohen (consultant)
68.	P. B. Dunaway	133. B. C. Divén (consultant)
69.	K. Farrell	134. H. Feshbach (consultant)
70.	R. F. Hibbs	135. H. Goldstein (consultant)

EXTERNAL DISTRIBUTION

- 136-230. Given Space Shielding Distribution (updated 9/21/69)
 231. Laboratory and University Division, AEC, ORO
 232-491. Given distribution as shown in TID-4500 under Physics category (25 copies CFSTI)