Московский физико-технический институт

Лабораторная работа № 3.5.1. Изучение плазмы газового разряда в неоне.

Содержание

1	Подготовка к работе.	2					
	1.1 Экспериментальная установка	2					
2	Задача.	3					
	2.1 Предполагаемый ход выполнения	3					
	2.2 Заметки по теории	3					
	2.3 Формулы, которые могут понадобиться	4					
3	Результаты эксперимента и их обработка.	4					
4	4 Вывод.						
5	5 Вывол						

Цель работы: изучение вольт-амперной характеристики газового тлеющего разряда; изучение свойств плазмы методом зондовых характеристик.

В работе используется: стеклянная газоразрядная трубка, наполненная изотопом неона, высоковольтный источник питания, источник питания постоянного тока, делитель напряжения, резистор, потенциометр, амперметры, вольтметры, переключатель.

1 Подготовка к работе.

1.1 Экспериментальная установка.

Схема установки приведена на рисунке (1.1). Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и *геттерный узел* - стеклянный баллон, на внутреннюю поверхность которого напылена газопоглащающая пленка (*геттер*). Трубка наполнена изотопом неона ²²Ne при давлении 2 мм.рт.ст. Катод и один из аннодов (**I** или **II**) с помощью переключателя Π_1 подключаются через балластный резистор $R_6 \simeq 450$ кОм к регулярному высоковольтному источнику питания (ВИП) с выходным напряжением до 3 кВ.

Рис. 1: Схема установки для исследования газового разряда.

При подключении к ВИП аннода **I** между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром \mathbf{A}_1 , а падение напряжения на разрядной трубке – цифровым вольтметром \mathbf{V}_1 , подключенный к трубке через высокоомный (25 МОм) делитель напряжений с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП аннода \mathbf{II} разряд возникает между катодом и аннодом \mathbf{II} , где назодится двойной зонд, используемый для диагностики

плазмы положиетльного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2мм и имеют длину l=5.2мм. Они подключены к источнику питания через потенциометр \mathbf{R} . Переключатель $\mathbf{\Pi}_2$ позволяет изменять полярность напряжений на зондах. Величина напряжений на них изменяется с помощью дискретного переключателя « \mathbf{V} » выходного напряжения источника питания и потенциометра \mathbf{R} и измеряется вольтметром \mathbf{V}_2 . Для измерения зондового тока используется микроамперметр \mathbf{A}_2 .

Аннод-**III** в работе не используется.

2 Задача.

2.1 Предполагаемый ход выполнения.

В работе предлагается снять вольт-маперную характеристику тлеющего разряда и зондовые характеристики при разных токах разряда и по результатам измерений расчитать концентрацию и температуру электронов в плазме, степень ионизации, плазменную частоту и дебаевский радиус экранирования.

- 1. Снимем вольт-амперную характеристику разряда. Для этого: установим переключатель Π_1 в положение «Анод-I»; ручку регулировки входного напряжени ВИП на минимум; включим ВИП в сеть. Плавно увеличивая выходное напряжение ВИП, определим напряжение зажигания заряда, снимем зависимость напряжения U_1 на разрядной трубке от протекающего в ней тока I_p . Ток разряда изменяем в диапазон от 0.5 до 5 мА.
- 2. Снимем зондовые характеристики. Уменьшим напряжение ВИП до 0, переведем переключатель Π_1 в положение «Анод- Π » и будем плавно увеличивать напряжение ВИП до возникновения разряда. Установим разрядный ток $I_{\rm p}=1$ мА. Включим источник питания постоянного тока Б5-47 и снимем вольт-амперную характеристику двойного разряда I=f(U). Повторим измерения при другой полярности (переключатель Π_2).

Повторим измерения зондовых характеристик при токах разряда равных 2, 3, 4 и 5 мА.

2.2 Заметки по теории.

Дебаевский радиус характеризует жкранирование ионов электронами, в следствии чего потенциал исчисляется по формуле (1).

Плазмой называется ионизированный газ, дебаевский радиус которого r_D существенно меньше характерного размера l объема, занимаемого этим газом.

 N_D - число частиц в дебаевской сфере. Для плазмы газового разряда это примерно 10^4 . Формула (2).

Плазменная (**ленгмюровская**) частота получается из смещения электронов относительно ионов в воображаемом параллепипеде. **Это время отклика на флуктуацию заряда в плазме.** В таком случае дебаевская частота – это апмлитуда ленгмюровских колебаний плазмы.

2.3 Формулы, которые могут понадобиться.

$$\varphi = \frac{Ze}{r}e^{-r/r_D} \tag{1}$$

$$N_D \approx n \frac{4}{3} \pi r_D^3 \approx 0.1 \frac{(kT_e)^{3/2}}{n^{1/2} e^3}$$
 (2)

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}} \tag{3}$$

$$I_{iH} = 0.4n_e e S \sqrt{\frac{2kT_e}{m_i}} \tag{4}$$

$$\omega_p = \sqrt{\frac{n_e e^2}{\epsilon_0 m_e}} \tag{5}$$

Дебаевский радиус r_d

$$r_d = \sqrt{\frac{\epsilon_0 K T_i}{ne^2}} \tag{6}$$

3 Результаты эксперимента и их обработка.

Приведем таблицу зависимости вольт-амперной характеристики заряда

Таблица 1: Вольт-амперная характеристика разряда.

UB	30.93	30.59	30.35	30.25	30.42	30.31	31.46	34.19	36.71
ІмА	2.09	2.61	3.37	5.11	4.45	3.17	1.70	0.74	0.17

Рис. 2: Вольт-амперная характеристика разряда.

Рис. 3: Зондовые характеристики.

Рассчитаем температуру электронов в электрон-вольтах, концентрацию электронов, плазменную частоту колебаний, дебаевский радиус и число электронов в дебаевской сфере по формулам:

$$kT_e = \frac{1}{2} \cdot \frac{eI_{iH}}{\frac{\delta I}{\delta U}|_{U=0}} \qquad n_e = \frac{I_{iH}}{0.4eS} \sqrt{\frac{m_i}{2kT_e}} \qquad \omega_p = \sqrt{\frac{n_e e^2}{\varepsilon_0 m_e}}$$
 (7)

$$r_D = \sqrt{\frac{\varepsilon_0 k T_i}{ne^2}} \qquad N_D = \frac{4}{3} n \pi r_D^3 \tag{8}$$

Таблица 2: Рассчетные величины.

	$kT_e \cdot 10^{-6}$	$n_e \cdot 10^{-6}$	$\omega_p \cdot 10^{-4}$	$r_D \cdot 10^{12}$	$N_D \cdot 10^{-16}$
(1)	5.35	1.55	6.94	3.83	3.67
(2)	4.17	1.07	5.78	4.60	4.41
(3)	3.32	4.17	3.59	7.40	7.09

4 Вывод

Исследован спектр сигнала переодической последовательности прямоугольных импульсов, переодической последовательности цугов и сигнала, промодулированного по амплитуде. Установлены качественные изменения картин спектров при изменении параметров колебаний.