Calculus Exercise Week 4

Section 4.5

215,227,231-245

225.
$$f(x) = x^3 - 6x^2$$

Q.
$$f(x) = 3x^3 - 12x$$
 $f(x) = 0 \Rightarrow x = 0 \text{ or } 4$

b. minima X=4, maxima X=0

(-10, 1) concerne down, (2,+00) concave up

$$a.f(x)=||\chi|^0-60\chi^0$$
, $f(x)=0 \Rightarrow \chi=0$ or $\frac{60}{11}$

$$C.f'(x) = 10x^9 - 540x^8, f'(x) = 0 \Rightarrow X = 0 \text{ or } \frac{54}{11}$$

$$(-\infty, \frac{54}{11})$$
 concave down, $(\frac{54}{11}, f\infty)$ concave up

231-245

235.
$$f(x) = \frac{1}{1-X}, X \neq 1$$

a.
$$f(x) = -\frac{1}{(1-x)^2} = \frac{1}{(1-x)^2} > 0$$

b. DNE

$$C.f'(x) = -2\frac{1}{(1-x)^3}(-1) = \frac{2}{(1-x)^3}$$

(-6,1) concave up. (1,+10) concave down

d. DNE

$$\frac{1}{4\sqrt{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}} = \frac{1}{4} \frac{16^{\frac{1}{5}}}{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}}}$$

$$\frac{1}{4\sqrt{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}} = \frac{1}{4} \frac{16^{\frac{1}{5}}}{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}}$$

$$\frac{1}{4\sqrt{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}} = \frac{1}{4} \frac{1}{16^{\frac{1}{5}}}$$

$$\frac{1}{4\sqrt{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}} = \frac{1}{16^{\frac{1}{5}}}$$

$$\frac{1}{4\sqrt{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}} = \frac{1}{16^{\frac{1}{5}}}$$

$$\frac{1}{4\sqrt{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}} = \frac{1}{16^{\frac{1}{5}}}
}$$

$$\frac{1}{4\sqrt{16^{\frac{1}{5}}} + \frac{1}{16^{\frac{1}{5}}} = \frac{1}{16^{\frac{1}{5}}}}$$

$$\frac{1}{4\sqrt{16^{\frac{1}5}}} + \frac{1}{16^{\frac{1}5}} = \frac{1}{16^{\frac{1}5}}}$$

$$\frac{1}{4\sqrt{16^{\frac{1}5}}} + \frac{1}{16^{\frac{1}5}}} =$$

1 - 1 = 0

&[x=x]2

231-245

315 317 319 321

335 337

8 = X13

X= 8¹/₃

3764

S.t.
$$|X>0|$$
 $\Rightarrow 0 \le X \le 200$

man $A(x)$

A(x) = -2X + 200, $A(x) = 0 \Rightarrow X = |00|$

width = $|x|$, length = $|x|$

$$f(x) = (X + \frac{|x|}{|x|}) \times 2 = 2X + \frac{3200}{x}$$

S.t. $|X>0|$ $\Rightarrow X>0$

$$|\frac{|x|}{|x|} \Rightarrow |X| = 2 + \frac{3200}{x^2}$$

S.t. $|X>0|$ $\Rightarrow X>0$

$$|\frac{|x|}{|x|} \Rightarrow |X| = 2 + \frac{3200}{x^2}$$

S.t. $|X>0|$ $\Rightarrow X>0$

$$|\frac{|x|}{|x|} \Rightarrow |X| = 2 + \frac{3200}{x^2}$$

F(x) = $0 \Rightarrow X = \pm 40 \Rightarrow X = 40$

Width = 40 , length = 40

335. $2\pi y + 4x = 4 \Rightarrow y = \frac{2\cdot 2x}{\pi}$

A(x) = $\pi y^2 + x^2 = \pi (\frac{2\cdot 2x}{\pi})^2 + x^2 = \frac{4\pi x}{\pi} x^2 - \frac{8}{\pi} x + \frac{1}{\pi}$

man $A(x)$

S.t. $|0 \le 2\pi y \le 4 \Rightarrow 0 \le x \le 1$

$$|0 \le 4x| \le 4 \Rightarrow 0 \le x \le 1$$

$$|0 \le 4x| \le 4 \Rightarrow 0 \le x \le 1$$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi x}$

A(x) = $0 \Rightarrow x = \frac{4\pi x}{4\pi$

f = xy = x(10-x)=-x2+lox

S.t.
$$|X| \ge 0$$
 $\Rightarrow 0 \le x \le 10$
 $|f' = -2x + 10, f' = 0 \Rightarrow x = 5$
 $f_{max} = f(x) = 25$
 $f(0) = 0, f(0) = 0 \Rightarrow f_{min} = f(0) = f(0) = 0$