25.		if a write happens to a variable X with 1 1 he variable only with the updated value	5 1,6,9, 10,12
	(A) Sequential	(B) Release	
	(C) PRAM	(D) Strict	

	$PART - B (5 \times 10 = 50 Marks)$ Answer ALL Questions	Marks	BL	CO	PO
26. a.	Explain in your own words the concept of transparency in distributed system.	10	3	1	1,6,9, 10,12
	(OD)				190
b.	(OR) What are the main difference between a distributed operating system and network operating system, briefly elaborate?	10	3	1	1,6,9, 10,12
27. a.	Illustrate with neat diagram the concepts of RPC and steps involved.	10	4	2	1,6,9, 10,12
	(OR)				
b.	Write note on primitives		3	2	1,6,9,
٠.	(i) Buffered Vs unbuffered	5			10,12
	(ii) Reliable Vs unreliable	5			
			•	•	1.60
28. a.	Elaborate the algorithms for electing a coordinator in distributed system.	10	3	3	1,6,9, 10,12
	(OR)				
b.	Explain in detail about the strategies used to handle deadlock in distributed system.	10	3	3	1,6,9, 10,12
29. a.	Discuss about design issues for processor allocation algorithms.	10	3	4	1,6,9, 10,12
	(OR)				
b.	Explain in detail on, "A system is said to fail, when it does not meet its specification" – fault tolerance.	10	3	4	1,6,9, 10,12
			4	5	1,6,9,
30. a.	Write in detail on consistency model	5	7	3	10,12
	(i) Strict consistency	5			
	(ii) Weak consistency				
	(OR)				
h	Write a note on Amoeba servers.	10	3	5	1,6,9,
٠.					10,12

B.Tech. DEGREE EXAMINATION, MAY 2022

Fifth & Sixth Semester

	18CSE356T – DISTRIBUTED OPERATING SYSTEMS				
	(For the candidates admitted from the academic year 2018-2019 to 2019-2020))			
Note:					
(i)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet sho to hall invigilator at the end of 40 th minute.	ould b	e ha	nded	lov
(ii)	Part - B should be answered in answer booklet.				
Гіте:	2½ Hours	Лах.	Ma	rks:	75
	$PART - A (25 \times 1 = 25 Marks)$	Marks	BL	СО	P
	Answer ALL Questions				
	How many copies of the operating system are there in a distributed system having "n" machines?	1	1	1	1,6, 10,
	(A) n/2 (B) 1				
	(C) n (D) n/3				
	2. In type of kernel, both user services are kept in separate address space.	1	1	1	1,6, 10,
	(A) Nanokernel (B) Exokernel (C) Microkernel (D) Monolithic kernel				
	3. In the architecture for grid computing systems, layer deals with handling access to multiple resources and typically consists of services for resource discovery.	1	1	1	1,6 10,
	(A) Connectivity layer (B) Collective layer	2			
	(C) Resource layer (D) Application layer				
	4. A design consisting of snoopy write through cache is and to the programmer.	1	2	1	1,6 10,
	(A) Coherent and visible (B) Coherent and invisible				
	(C) Incoherent and visible (D) Incoherent and invisible		2		
	5. In a true distributed system, the user cannot tell where the hardware and software resources are called as	1	2	1	1,6 10,
	(A) Replication transparency(B) Concurrency transparency(C) Location transparency(D) Migration transparency				
	6. In OSI model, these layers are responsible for host to host layers?	1	1	2	1,6 10,
	(A) Physical, datalink, network and transport				
	(B) Datalink, network, transport and session				
	(C) Transport, session, presentation and application(D) Network, transport, session and presentation				

7	Identify the two fundamental modes of inter-process communication	1	2	2	1,6,9,		16	A processor pool, which can be dynamically allocated to users on demand,	1	2	4	1,6,9,
	(I) Shared memory (II) Message passing				10,12			considering input rate as "n\lambda" and the process rate as "n\mu". The mean				10,12
	(III) Independent (IV) Co-operating							response time will be				
	(A) I and II (B) II and III (C) III and IV (D) I and IV							(A) $T_1 = 1/(n\mu - n\lambda)$ (B) $T_0 = 1/(n\mu + n\lambda)$				
0		1	1	2	160			(C) $T_1 = 1/(n\mu + n\lambda)$ (D) $T_1 = 1/(n\mu * n\lambda)$				
8.	Head-of-line blocking mechanism occurs in	•		_	10,12		17	What happens, if a client sends a request to a server to do some work and	1	1	4	1,6,9,
	(A) ATM networks(B) Layered protocol(C) Client-server model(D) Remote procedure calls							crashes before the server replies? This unwanted computation is called as				10,12
0		1	2	2	1,6,9,			(A) A log entry (B) An orphan				
9.	In dynamic binding, the input call register follows the sequence of	1	2	2	10,12			(C) Grand parent (D) Blast protocol				
	(A) Name, version, handle, unique (B) Name, version, handle id						18	Receiver – initiated distributed heuristic algorithm takes the disadvantage	1	2	4	1,6,9,
	(C) Name, version, unique id (D) Name, version							of .				1,6,9, 10,12
10.	When the server crashes in RPC, the recovery procedure depends entirely	1	2	2	1,6,9,			(A) Do not put extra load on the system at critical time				
	on technique and guarantees that the RPC has to be carried out				10,12			(B) When the system is heavily loaded, the chance of a machine having insufficient work is small				
	(A) At least once semantics (B) At most once semantics	-						(C) Creates considerable proble traffic as all the unemployed machines				
	(C) Exactly once semantics (D) Not possible to recover							desperately hunt for work				
11.	In passive time server centralized algorithm, when the replay is received at	1	2	3	1,6,9, 10,12			(D) Do not create proble traffic as all the unemployed machines				
	the client node, its clock is readjusted to (A) $T_1 + (T_1 - T_0)/2$ (B) $T_0 + (T_2 - T_1)/2$							desperately hunt for work				
	(C) $T_2 + (T_1 - T_0)/2$ (D) $T + (T_1 - T_0)/2$						19.	The preferred model to run a simulation project or a big AI program is	1	1		1,6,9, 10,12
								(A) Client – server model (B) Workstation model				10,12
12.	Using the token – passing approach if a process wants to enter into a	1	2	3	1,6,9, 10,12			(C) Processor –pool model (D) Hybrid model				
	critical section, the maximum waiting time or the maximum number of message transfer happens in the network					,	20	One possible goal of processor allocation is to maximize the number of	1	1	4	1,6,9,
	(A) n (B) n-1							CPU cycles actually executed on behalf of user jobs per hour real time.				10,12
	(C) n+1 (D) 2n							This is referred as				
13.	In a distributed system, there may be unpredictable variation in the	1	2	3	1,6,9,			(A) CPU allocation (B) CPU utilization (C) CPU execution time.				
	message propagation time between two nodes. Choose from the following,				10,12			(C) CPU execution time (D) CPU computing power				
	which algorithm are given below address this issue (A) Cristian, Berkley, Global (B) Cristian, Local averaging,					2	21.	To keep atleast two CPUs from attempting to get to the memory	1	1		1,6,9, 10,12
	averaging Global averaging							simultaneously, some sort of is required.				10,12
	(C) Barkley, Local averaging, (D) Cristian, Barkely, Local							(A) Bus selection(B) Bus master election(C) Bus arbitration(D) Coordinator selection				
	Global averaging averaging							(b) Sub distribution				
14.	Drift rate is approximately, giving a difference of 1 second every 1,	1	2	3	1,6,9, 10,12	2	22.	The MEMNET block table consists of	1	1		1,6,9, 10,12
	000, 000 seconds or days. (A) 10 ⁶ , 11.5 days (B) 10 ⁶ , 11.6 days							(A) Valid, exclusive, home, (B) Valid, cached, dirty, location				
	(C) 10^6 , 10.5 days (D) 10^6 , 10.6 days							interrupt, location bits bits (C) Valid, uncached, dirty, (D) Valid, dirty, exclusive, location				
15	Which of the given statement is two recording deadlests requestion and	1	2	3	1,6,9,			interrupt, location bit bits				
13.	Which of the given statement is true regarding deadlock prevention and avoidance schemes?		_		10,12		22		1	2	-	1.60
	(A) Deadlock prevention is less restrictive than deadlock avoidance					2	23.	If event A is influenced by an earlier event A_0 , represents	1	2		1,6,9, 10,12
	(B) In a deadlock prevention, the request for resources are always granted,							(A) Strict consistency(B) Casual consistency(C) Weak consistency(D) PRAM consistency				
	if the resulting state is safe (C) In deadlock, avoidance does not require knowledge of resource							(D) I RAIVI CONSISTENCY				
	requirements a priori				12.		24.	The write once protocol supports the following three states	1	2		1,6,9, 10,12
	(D) In deadlock avoidance, the request for resources is always granted, if							(A) Valid, unclean, dirty (B) Invalid, uncached, dirty				,
	the resulting state is safe							(C) Invalid, clean, dirty (D) Uncached, clean, dirty				
Dogg 7 of	A	103.005	0 (100	CIDA =	(TD	70						