6. Random matrices and covariance estimation

担当:みーとみ

2021年6月30日,7月7日

Table of Contents

6.1 Some preliminaries

6.2 Wishart matrices and their behavior

6.3 Covariance matrices from sub-Gaussian ensembles

6.1 Some preliminaries

・Notation とこの章で使う preliminary results の説明から.

6.1.1 Notation and basic facts

・行列 $A \in \mathbb{R}^{n \times m}$ with $n \geq m$ に対し, (順序付き) 特異値を

$$\sigma_{\max}(A) = \sigma_1(A) \ge \sigma_2(A) \ge \cdots \ge \sigma_m(A) = \sigma_{\min}(A) \ge 0$$

と書く.

・最小・最大特異値は次のように characterize される:

$$\sigma_{\max}(A) = \max_{v \in \mathbb{S}^{m-1}} ||Av||_2 \quad \text{and} \quad \sigma_{\min}(A) = \min_{v \in \mathbb{S}^{m-1}} ||Av||_2,$$
 (6.1)

ただし $\mathbb{S}^{d-1}:=\left\{v\in\mathbb{R}^d\mid\|v\|_2=1
ight\}$ は \mathbb{R}^d 上の Euclidean unit sphere.

・また次の同値性が成り立つ: $|||A|||_2 = \sigma_{\max}(A)$.

・対称行列の集合を $\mathcal{S}^{d imes d}:=\left\{Q\in\mathbb{R}^{d imes d}\mid Q=Q^{\mathrm{T}}
ight\}$ とし, その半正定値行列からなる部分集合を

$$\mathcal{S}_{+}^{d \times d} := \left\{ Q \in \mathcal{S}^{d \times d} \mid Q \succeq 0 \right\} \tag{6.2}$$

と書く.

・任意の対称行列 $Q \in \mathcal{S}^{d imes d}$ は対角化可能であり, その固有値を

$$\gamma_{\max}(Q) = \gamma_1(Q) \ge \gamma_2 \ge \dots \ge \gamma_d(Q) = \gamma_{\min}(Q)$$

とする.

・このとき, $Q \succeq 0 \Leftrightarrow \gamma_{\min}(Q) \geq 0$.

・最小・最大固有値の "Rayleigh – Ritz variational characterization":

$$\gamma_{\max}(Q) = \max_{v \in \mathbb{S}^{d-1}} v^{\mathrm{T}} Q v \quad \text{and} \quad \gamma_{\min}(Q) = \min_{v \in \mathbb{S}^{d-1}} v^{\mathrm{T}} Q v.$$
(6.3)

・任意の対称行列 Q に対し, その ℓ_2 -operator norm は,

$$|||Q|||_2 = \max\{\gamma_{\max}(Q), |\gamma_{\min}(Q)|\} = \max_{v \in \mathbb{S}^{d-1}} |v^{\mathrm{T}}Qv|.$$
 (6.4)

・最後に, 行列 $A\in\mathbb{R}^{n\times m}$ with $n\geq m$ に対し, m-次元対称行列 $R:=A^{\mathrm{T}}A$ を考えると,

$$\gamma_j(R) = (\sigma_j(A))^2$$
 for $j = 1, \dots, m$.

6.1.2 Set-up of covariance estimation

- ・ $\{x_1,\ldots,x_m\}$ は, \mathbb{R}^d 上の zero-mean・covariance $\Sigma=\mathrm{cov}(x_1)\in\mathbb{S}^{d\times d}_+$ なる分布 からの n 個の i.i.d. サンプルとする.
- ・ Σ の standard estimator は、次の sample covariance matrix である:

$$\widehat{\Sigma} := \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathrm{T}}.$$
(6.5)

- ・各 x_i は zero-mean なので $\mathbb{E}[x_ix_i^{\mathrm{T}}] = \Sigma$ であり, $\widehat{\Sigma}$ は Σ の unbiased estimator.
- ・したがって $\widehat{\Sigma} = \Sigma$ は期待値ゼロとなり, その ℓ_2 -operator norm によって測った error の bound を求めることがこの章の goal となる.

・(6.4) の ℓ_2 -operator norm の表現より, $|||\widehat{\Sigma} - \Sigma|||_2 \le \epsilon$ は以下と同値:

$$\max_{v \in \mathbb{S}^{d-1}} \left| \frac{1}{n} \sum_{i=1}^{n} \langle x_i, v_i \rangle^2 - v^{\mathrm{T}} \Sigma v \right| \le \epsilon.$$
 (6.6)

・つまり, $|||\hat{\Sigma} - \Sigma|||_2$ をコントロールすることは, v で indexed された関数クラス $x\mapsto \langle x,v\rangle^2$ の uniform law of large numbers を示すことと同値になる.

・その ℓ_2 -operator norm をコントロールすることは, $\widehat{\Sigma}$ の固有値の一様収束も意味する: Weyl's theorem の corollary より,

$$\max_{j=1,\dots,d} \left| \gamma_j(\widehat{\Sigma}) - \gamma_j(\Sigma) \right| \le |||\widehat{\Sigma} - \Sigma|||_2. \tag{6.7}$$

・また最後に, ランダム行列 $X \in \mathbb{R}^{n \times d}$ が, 第 i 行に x_i^{T} を持つものとする

$$X = \begin{pmatrix} x_1^{\mathrm{T}} \\ \vdots \\ x_n^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{n \times d}$$

と,

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathrm{T}} = \frac{1}{n} X^{\mathrm{T}} X$$

なので, $\widehat{\Sigma}$ の固有値は X/\sqrt{n} の特異値の 2 乗となる.

6.2 Wishart matrices and their behavior

- ・サンプル x_i は, d-次元正規分布 $\mathcal{N}(0,\Sigma)$ から i.i.d. で引かれるとする.
- ・このとき,

$$X = \begin{pmatrix} x_1^{\mathrm{T}} \\ \vdots \\ x_n^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{n \times d}$$

は, Σ -Gaussian ensemble から引かれると言う.

・ Sample covariance $\widehat{\Sigma} = \frac{1}{n} X^{\mathrm{T}} X$ は, a multivariate Wishart distribution に従う.

Theorem 6.1

 $X \in \mathbb{R}^{n \times d}$ は Σ -Gaussian ensemble から引かれるとする. このとき, 任意の $\delta > 0$ に対し, 最大特異値 $\sigma_{\max}(X)$ は以下の upper deviation inequality を満たす:

$$\mathbb{P}\left[\frac{\sigma_{\max}(X)}{\sqrt{n}} \ge \gamma_{\max}\left(\sqrt{\Sigma}\right)(1+\delta) + \sqrt{\frac{\operatorname{tr}(\Sigma)}{n}}\right] \le \exp\left(-\frac{n\delta^2}{2}\right). \tag{6.8}$$

さらに $n \geq d$ なら, 最小特異値 $\sigma_{\min}(X)$ は以下の lower deviation inequality を満たす:

$$\mathbb{P}\left[\frac{\sigma_{\min}(X)}{\sqrt{n}} \le \gamma_{\min}\left(\sqrt{\Sigma}\right)(1-\delta) - \sqrt{\frac{\operatorname{tr}(\Sigma)}{n}}\right] \le \exp\left(-\frac{n\delta^2}{2}\right). \tag{6.9}$$

Example 6.2 (Operator norm bounds for the standard Gaussian ensemble)

- ・ $W \in \mathbb{R}^{n \times d}$ は各成分が $\mathcal{N}(0,1)$ i.i.d. で引かれる random matrix とする $(\Sigma = I_d)$.
- ・Thm 6.1 より, $n \geq d$ なら, 確率 $1 2\exp\left(-\frac{n\delta^2}{2}\right)$ 以上で

$$\frac{\sigma_{\max}(W)}{\sqrt{n}} \le 1 + \delta + \sqrt{\frac{d}{n}} \quad \text{and} \quad \frac{\sigma_{\min}(W)}{\sqrt{n}} \ge 1 - \delta - \sqrt{\frac{d}{n}}$$
 (6.10)

となる.

・よって、同じ確率で

$$\left\| \frac{1}{n} W^{\mathrm{T}} W - I_d \right\|_{2} \le 2\epsilon + \epsilon^2, \quad \text{where} \epsilon = \sqrt{\frac{d}{n}} + \delta. \tag{6.11}$$

・したがって, $d/n \to 0$ なら, sample covariance $\widehat{\Sigma} = \frac{1}{n} W^{\mathrm{T}} W$ は identity matrix I_d の一致推定量となる.

Example 6.3 (Gaussian covariance estimation)

- ・ $X \in \mathbb{R}^{n \times d}$ は Σ -Gaussian ensemble からの random matrix とする.
- ・このとき $X=W\sqrt{\Sigma}$ と書ける($W\in\mathbb{R}^{n\times d}$ は standard Gaussian random matrix)ので、

$$\left| \left| \left| \frac{1}{n} X^{\mathrm{T}} X - \Sigma \right| \right| \right|_{2} = \left| \left| \left| \sqrt{\Sigma} \left(\frac{1}{n} W^{\mathrm{T}} W - I_{d} \right) \right| \right| \right|_{2} \leq |||\Sigma|||_{2} \left| \left| \left| \frac{1}{n} W^{\mathrm{T}} W - I_{d} \right| \right| \right|_{2}.$$

・したがって (6.11) より, 任意の $\delta>0$ に対して確率 $1-2\exp\left(-\frac{n\delta^2}{2}\right)$ で

$$\frac{|||\widehat{\Sigma} - \Sigma|||_2}{|||\Sigma|||_2} \le 2\sqrt{\frac{d}{n}} + 2\delta + \left(\sqrt{\frac{d}{n}} + \delta\right)^2. \tag{6.12}$$

・よって, $|||\widehat{\Sigma} - \Sigma|||_2/|||\Sigma|||_2$ は $d/n \to 0$ である限り 0 に収束する.

Example 6.4 (Faster rates under trace constraints)

- ・ $\{\gamma_i(\Sigma)\}_{i=1}^d$ は Σ の固有値列で, $\gamma_1(\Sigma)$ がそのうち最大のもの.
- ・ Σ は、次元に対して独立な定数 C に対し、次の "trace constraint" を満たすとする:

$$\frac{\operatorname{tr}(\Sigma)}{|||\Sigma|||_2} = \frac{\sum_{j=1}^d \gamma_j(\Sigma)}{\gamma_1(\Sigma)} \le C. \tag{6.13}$$

- ・ C は Σ の(実質的な)rank と見なせる (\cdot : (6.13) は $C = \operatorname{rank}(\Sigma)$ では常に成立.)
- ・パラメータ $q \in [0,1]$ と半径 $R_q > 0$ の the Schatten q-"balls" を, 以下で定義する:

$$\mathbb{B}_q(R_q) := \left\{ \Sigma \in S^{d \times d} \middle| \sum_{j=1}^d |\gamma_j(\Sigma)|^q \le R_q \right\}. \tag{6.14}$$

- ・ q=0 なら, rank R_q 以下の対称行列の集合.
- ・ q=1 なら, trace constraint になる.
- ・任意の非零行列 $\Sigma \in \mathbb{B}_q(R_q)$ は, (6.13) を $C = R_q/(\gamma_1(\Sigma))^q$ で満たす.

・(6.13) を満たす任意の Σ に対し, Thm 6.1 は高確率で X の最大特異値が次のように抑えられることを保証する:

$$\frac{\sigma_{\max}(X)}{\sqrt{n}} \le \gamma_{\max}(\sqrt{\Sigma}) \left(1 + \delta + \sqrt{\frac{C}{n}}\right). \tag{6.15}$$

・ $\Sigma = I_d$ のときの bound (6.10) と比べると, C が d に置き換わって "実行的なrank" となっている.

Proof of Theorem 6.1.

- Notation: $\overline{\sigma}_{\max} = \gamma_{\max}(\sqrt{\Sigma}), \ \overline{\sigma}_{\min} = \gamma_{\min}(\sqrt{\Sigma}).$
- ・最大/最小特異値の upper/lower bound ともに以下の 2 段階で示す:
 - 1. 高確率で特異値が期待値に近いことを concentration inequality から示す (Ch.2)
 - 2. その期待値の bound の導出に Gaussian comparison inequality を用いる(Ch.5)
- ・ここでは最大特異値の upper bound のみを示す. (最小特異値の lower bound は 大体似た方針で示せるがよりテクニカルなので Appendix (Section 6.6) にま わす.)

- ・ $X = W\sqrt{\Sigma}$ と書ける, ただし $W \in \mathbb{R}^{n \times d}$ は i.i.d. $\mathcal{N}(0,1)$ entries をもつ.
- ・ $W\mapsto rac{\sigma_{\max}(W\sqrt{\Sigma})}{\sqrt{n}}$ を \mathbb{R}^{nd} 上の実数値写像とみると, これは $L=\overline{\sigma}_{\max}/\sqrt{n}$ で Lipschitz w.r.t. Euclidean norm. (cf. Example 2.32)
- ・Gaussian r.v. に対する Lipschitz 関数の concentration inequality (Thm 2.26) より,

$$\mathbb{P}\left[\sigma_{\max}(X) \ge \mathbb{E}[\sigma_{\max}(X)] + \sqrt{n}\overline{\sigma}_{\max}\delta\right] \le \exp\left(-\frac{n\delta^2}{2}\right).$$

・したがって, あとは以下を示せれば良い:

$$\mathbb{E}[\sigma_{\max}(X)] \le \sqrt{n}\overline{\sigma}_{\max} + \sqrt{\operatorname{tr}(\Sigma)}.$$
(6.16)

・ $\sigma_{\max}(X)=\max_{v'\in\mathbb{S}^{d-1}}\|Xv'\|_2$ で, $X=W\sqrt{\Sigma},\ v=\sqrt{\Sigma}v'$ とすると次のように書ける:

$$\sigma_{\max}(X) = \max_{v \in \mathbb{S}^{d-1}(\Sigma^{-1})} \|Wv\|_2 = \max_{u \in \mathbb{S}^{d-1}} \max_{v \in \mathbb{S}^{d-1}(\Sigma^{-1})} \underbrace{u^{\mathsf{T}}Wv}_{Z_{u,v}},$$

ただし $\mathbb{S}^{d-1}(\Sigma^{-1}) := \{ v \in \mathbb{R}^d \mid \|\Sigma^{-\frac{1}{2}}v\|_2 = 1 \}.$

- ・ $\{Z_{u,v}, (u,v) \in \mathbb{T}\}$ where $\mathbb{T} := \mathbb{S}^{d-1} \times \mathbb{S}^{d-1}(\Sigma^{-1})$ は zero-mean Gaussian process とみなせる.
- ・別の Gaussian process $\{Y_{u,v}, (u,v) \in \mathbb{T}\}$ で $\mathbb{E}[(Z_{u,v} Z_{\tilde{u}\tilde{v}})^2] \leq \mathbb{E}[(Y_{u,v} Y_{\tilde{u}\tilde{v}})^2]$ for all $(u,v), (u',v') \in \mathbb{T}$ となるようなものを construct することを考える.
- ・すると Sudakov-Fernique comparison (Thm. 5.27) から以下が言える:

$$\mathbb{E}[\sigma_{\max}(X)] = \mathbb{E}\left[\max_{(u,v)\in\mathbb{T}} Z_{u,v}\right] \le \mathbb{E}\left[\max_{(u,v)\in\mathbb{T}} Y_{u,v}\right]. \tag{6.17}$$

- ・ $(u,v),(\tilde{u},\tilde{v})\in\mathbb{T}$ を given とし, $\|v\|_2\leq \|\tilde{v}\|_2$ とする.
- ・まず $Z_{u,v} = u^{\mathrm{T}}Wv = \langle \langle W, uv^{\mathrm{T}} \rangle \rangle$ となる, where $\langle \langle A, B \rangle \rangle := \sum_{i=1}^{n} \sum_{k=1}^{d} A_{jk} B_{jk}$.
- ・W は i.i.d. $\mathcal{N}(0,1)$ entries をもつので,

$$\mathbb{E}\left[(Z_{u,v} - Z_{\tilde{u}\tilde{v}})^2\right] = \mathbb{E}\left[\langle\langle W, uv^{\mathrm{T}} - \tilde{u}\tilde{v}^{\mathrm{T}}\rangle\rangle^2\right] = |||uv^{\mathrm{T}} - \tilde{u}\tilde{v}^{\mathrm{T}}|||_F^2.$$

· Frobenius norm を変形すると,

$$\begin{aligned} &|||uv^{\mathrm{T}} - \tilde{u}\tilde{v}^{\mathrm{T}}|||_{F}^{2} \\ &= |||u(v - \tilde{v})^{\mathrm{T}} - (u - \tilde{u})\tilde{v}^{\mathrm{T}}|||_{F}^{2} \\ &= |||(u - \tilde{u})\tilde{v}^{\mathrm{T}}|||_{F}^{2} + |||u(v - \tilde{v}) - \mathrm{T}|||_{F}^{2} + 2\langle\langle u(v - \tilde{v})^{\mathrm{T}}, (u - \tilde{u})\tilde{v}^{\mathrm{T}}\rangle\rangle\\ &\leq ||\tilde{v}||_{2}^{2}||u - \tilde{u}||_{2}^{2} + ||u||_{2}^{2}||v - \tilde{v}||_{2}^{2} + 2(||u||_{2}^{2} - \langle u, \tilde{u}\rangle)(\langle v, \tilde{v}\rangle - ||\tilde{v}||_{2}^{2}). \end{aligned}$$

- ・ ここで, $||u||_2 = ||\tilde{u}||_2 = 1$ より $||u||_2^2 \langle u, \tilde{u} \rangle \ge 0$.
- ・一方, Cauchy-Schwarz と仮定 $\|v\|_2 \leq \|\tilde{v}\|_2$ より, $|\langle v, \tilde{v} \rangle| \leq \|v\|_2 \|\tilde{v}\|_2 \leq \|\tilde{v}\|_2^2$.
- ・ したがって,

$$|||uv^{\mathrm{T}} - \tilde{u}\tilde{v}^{\mathrm{T}}|||_F^2 \le ||\tilde{v}||_2^2 ||u - \tilde{u}||_2^2 + ||v - \tilde{v}||_2^2.$$

・ $\mathbb{S}^{d-1}(\Sigma^{-1})$ の定義より、 $\|\tilde{v}\|_2 \leq \overline{\sigma} = \gamma_{\max}(\sqrt{\Sigma})$ なので、

$$\mathbb{E}[(Z_{u,v} - Z_{\tilde{u},\tilde{v}})^2] \le \overline{\sigma}_{\max}^2 ||u - \tilde{u}||_2^2 + ||v - \tilde{v}||_2^2.$$

・Gaussian process $Y_{u,v} := \overline{\sigma}_{\max} \langle g, u \rangle + \langle h, v \rangle$ を定義する(ただし $g \in \mathbb{R}^n, h \in \mathbb{R}^d$ は standard Gaussian rv's)と、

$$E[(Y_{u,v} - Y_{\tilde{u},\tilde{v}})^2] = \overline{\sigma}_{\max}^2 ||u - \tilde{u}||_2^2 + ||v - \tilde{v}||_2^2.$$

・よって Sudakov-Fernique bound (6.17) より,

$$\mathbb{E}[\sigma_{\max}(X)] \leq \mathbb{E}\left[\sup_{(u,v)\in\mathbb{T}} Y_{u,v}\right] = \overline{\sigma}_{\max}\mathbb{E}\left[\sup_{u\in\mathbb{S}^{d-1}} \langle g,u\rangle\right] + \mathbb{E}\left[\sup_{v\in\mathbb{S}^{d-1}(\Sigma^{-1})} \langle h,v\rangle\right]$$
$$= \overline{\sigma}_{\max}\mathbb{E}[\|g\|_2] + \mathbb{E}[\|\sqrt{\Sigma}h\|_2].$$

・ Jensen's inequality から, $\mathbb{E}[\|g\|_2] \leq \sqrt{n}$ ans $\mathbb{E}[\|\sqrt{\Sigma}h\|_2] \leq \sqrt{\mathbb{E}[h^T\Sigma h]} = \sqrt{\mathrm{tr}(\Sigma)}$ となり, (6.16) が示された.

6.3 Covariance matrices from sub-Gaussian ensembles

•