Lösungen zu Übungsaufgaben 04 $_{\rm Gruppe:\ Mi\ 08-10\ SR\ 2,\ Barbara\ Rieß}$

Linus Keiser

23. November 2023

Aufgabe 13

(a) Binärdarstellung von 101 ist 1100101:

$$101/2 = 50$$
 Rest 1
 $50/2 = 25$ Rest 0
 $25/2 = 12$ Rest 1
 $12/2 = 6$ Rest 0
 $6/2 = 3$ Rest 0
 $3/2 = 1$ Rest 1
 $1/2 = 0$ Rest 1

(b) Hexadezimaldarstellung von 107470 ist 1A3C6:

$$107470/16 = 6716$$
 Rest 6
 $6716/16 = 419$ Rest 12
 $419/16 = 26$ Rest 3
 $26/16 = 1$ Rest 10
 $1/16 = 0$ Rest 1

(c) Oktaldarstellung von 95 ist 137:

$$95/8 = 11$$
 Rest 7
 $11/8 = 1$ Rest 3
 $1/8 = 0$ Rest 1

Aufgabe 15

a):
$$M := \mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

• Nach unten beschränkt: Die Menge \mathbb{N}_0 ist nach unten beschränkt, da alle Elemente in dieser Menge größer oder gleich 0 sind. Also ist 0 eine untere Schranke.

- Nach oben beschränkt: Die Menge \mathbb{N}_0 ist nicht nach oben beschränkt. Dies liegt daran, dass es in den natürlichen Zahlen kein größtes Element gibt; für jede natürliche Zahl n gibt es eine größere Zahl n+1.
- Minimum: Das Minimum von N₀ ist 0, da es das kleinste Element in der Menge ist.
- Maximum: Es gibt kein Maximum, da die Menge nach oben nicht beschränkt ist.
- Infimum: Das Infimum ist ebenfalls 0, da es keine kleinere Zahl in \mathbb{Q} gibt, die noch eine Schranke für \mathbb{N}_0 ist.
- **Supremum:** Das Supremum existiert nicht in \mathbb{Q} , da die Menge nach oben unbegrenzt ist.

b): $M := \mathbb{Z}$

- Nach unten beschränkt: Die Menge \mathbb{Z} ist nicht nach unten beschränkt, da für jede Zahl in \mathbb{Z} eine noch kleinere Zahl existiert.
- Nach oben beschränkt: \mathbb{Z} ist auch nicht nach oben beschränkt, da es zu jeder Zahl in \mathbb{Z} eine größere Zahl gibt.
- Minimum: Es gibt kein Minimum, da es keine kleinste ganze Zahl gibt.
- Maximum: Ebenso gibt es kein Maximum, da es keine größte ganze Zahl gibt.
- Infimum: Das Infimum existiert nicht in \mathbb{Q} , da es keine größte untere Schranke gibt. Jede Zahl, die man als Infimum betrachten könnte, hätte eine noch kleinere Zahl als untere Schranke.
- Supremum: Das gleiche gilt für das Supremum es gibt keine kleinste obere Schranke in \mathbb{Q} .

c):
$$M := \{x \in \mathbb{Z} \mid 8 < x^2 < 50\}$$

Elemente in M

- Die Ungleichung $x^2 > 8$ ist erfüllt für ganzzahlige x, deren Betrag größer als $\sqrt{8}$ ist. Da $\sqrt{8}$ ungefähr 2,83 ist, bedeutet dies, dass |x| > 2 sein muss.
- Die Ungleichung $x^2 < 50$ ist erfüllt für ganzzahlige x, deren Betrag kleiner als $\sqrt{50}$ ist. Da $\sqrt{50}$ ungefähr 7,07 ist, bedeutet dies, dass |x| < 7.

Daraus folgt, dass die ganzen Zahlen x in M die
jenigen sind, für die $3 \le |x| \le 7$. Das bedeutet, x kann -7, -6, -5, -4, -3, 3, 4, 5, 6 oder 7 sein.

• Nach unten beschränkt: Da -7 die kleinste Zahl in M ist, ist M nach unten beschränkt.

- Nach oben beschränkt: Da 7 die größte Zahl in M ist, ist M nach oben beschränkt.
- Minimum: Das Minimum von *M* ist -7, da es das kleinste Element in der Menge ist.
- Maximum: Das Maximum von M ist 7, da es das größte Element in der Menge ist.
- Infimum: Das Infimum von M ist ebenfalls -7, da es die größte Zahl in \mathbb{Q} ist, die kleiner oder gleich allen Elementen von M ist.
- Supremum: Das Supremum von M ist 7, da es die kleinste Zahl in \mathbb{Q} ist, die größer oder gleich allen Elementen von M ist.

d):
$$M := \{x \in \mathbb{Q} \mid 2 < x^2 < 4\}$$

Elemente in M

- Die Ungleichung $x^2 > 2$ ist erfüllt für x, dessen Betrag größer als $\sqrt{2}$ ist. Da $\sqrt{2}$ ungefähr 1,41 ist, bedeutet dies, dass $|x| > \sqrt{2}$.
- Die Ungleichung $x^2 < 4$ ist erfüllt für x, dessen Betrag kleiner als 2 ist.

Somit umfasst die Menge M alle rationalen Zahlen x, für die $\sqrt{2} < |x| < 2$.

- Nach unten beschränkt: Da es keine rationale Zahl in M gibt, die kleiner als $-\sqrt{2}$ ist, ist M nach unten beschränkt.
- Nach oben beschränkt: Ebenso gibt es keine rationale Zahl in M größer als $\sqrt{2}$, daher ist M nach oben beschränkt.
- Minimum: Es gibt kein Minimum in M, da für jede rationale Zahl x in M eine kleinere rationale Zahl x' existiert, so dass $\sqrt{2} < x'^2 < x^2 < 4$.
- Maximum: Ebenso gibt es kein Maximum in M, da für jede rationale Zahl x in M eine größere rationale Zahl x' existiert, so dass $2 < x^2 < x'^2 < 4$.
- Infimum: Das Infimum von M ist $-\sqrt{2}$, da es die größte Zahl in \mathbb{Q} ist, die kleiner als alle Elemente von M ist (obwohl $-\sqrt{2}$ selbst nicht rational und somit nicht in M ist).
- Supremum: Das Supremum von M ist $\sqrt{2}$, da es die kleinste Zahl in \mathbb{Q} ist, die größer als alle Elemente von M ist (obwohl $\sqrt{2}$ selbst nicht rational und somit nicht in M ist).

- e): $M := \left\{ x \in \mathbb{Q} \mid x = \frac{2}{3n+1} \text{ für ein } n \in \mathbb{N}_0 \right\}.$
 - Nach unten beschränkt: Da sowohl der Zähler (2) als auch der Nenner (3n+1) immer positiv sind, sind alle Werte in M positiv. Daher ist die Menge nach unten beschränkt durch die untere Schranke 0.
 - Nach oben beschränkt: Der größte Wert in M tritt auf, wenn n=0, was zu x=2 führt. Daher ist die Menge nach oben beschränkt durch 2.
 - Minimum: Es gibt kein Minimum, da es keine kleinste positive rationale Zahl gibt. Für jedes $x \in M$ kann ein kleineres positives x' in M gefunden werden, indem ein größeres n gewählt wird.
 - Maximum: Das Maximum der Menge ist 2, erreicht für n = 0.
 - Infimum: Das Infimum von M ist 0, da es die größte Zahl in \mathbb{Q} ist, die kleiner als alle Elemente von M ist, obwohl 0 selbst nicht in M ist.
 - Supremum: Das Supremum von M ist 2, was der kleinste Wert in \mathbb{Q} ist, der größer oder gleich allen Elementen von M ist.

Aufgabe 16

Teil (a): Konvergenz der Folge (a_n)

Satz. Die Folge $(a_n)_{n\in\mathbb{N}}$ mit $a_n=\frac{4n^3+n^2}{5n^3}$ konvergiert gegen den Grenzwert $\frac{4}{5}$.

Beweis. Wir zeigen durch Anwendung der Definition 5.2 der Grenzwertkonvergenz, dass die Folge (a_n) gegen $\frac{4}{5}$ konvergiert.

1. Zunächst vereinfachen wir den Ausdruck a_n :

$$a_n = \frac{4n^3 + n^2}{5n^3} = \frac{n^2(4n+1)}{5n^3} = \frac{4n+1}{5n}$$

2. Nun betrachten den Abstand zwischen a_n und dem Grenzwert $\frac{4}{5}$:

$$|a_n - \frac{4}{5}| = \left| \frac{4n+1}{5n} - \frac{4}{5} \right| = \left| \frac{4n+1-4n}{5n} \right| = \left| \frac{1}{5n} \right|$$

Da n positiv ist, können wir den Absolutbetrag weglassen:

$$|a_n - \frac{4}{5}| = \frac{1}{5n}$$

3. Für jedes $\varepsilon > 0$ finden wir ein $N(\varepsilon)$, sodass für alle $n \ge N(\varepsilon)$ gilt $|a_n - \frac{4}{5}| < \varepsilon$. Dies ist gleichbedeutend damit, dass $\frac{1}{5n} < \varepsilon$ sein muss. Daraus folgt $n > \frac{1}{5\varepsilon}$ und somit setzen wir $N(\varepsilon) = \left\lceil \frac{1}{5\varepsilon} \right\rceil$.

Wir haben damit bestätigt, dass die Folge (a_n) den Konvergenzkriterien entspricht und gegen $\frac{4}{5}$ konvergiert.

Teil (b): Divergenz der Folgen (b_n) und (c_n)

Satz. Die Folgen $(b_n)_{n\in\mathbb{N}}$ mit $b_n=(-1)^n$ und $(c_n)_{n\in\mathbb{N}}$ mit $c_n=2^n$ sind divergent.

Beweis. Wir führen einen direkten Beweis, um zu zeigen, dass beide Folgen die Bedingungen der Konvergenz nicht erfüllen und somit divergent sind.

- 1. Die Folge $b_n=(-1)^n$ alterniert zwischen -1 und 1. Für ungerade n ist $b_n=-1$ und für gerade n ist $b_n=1$. Diese ständige Oszillation zwischen zwei Werten bedeutet, dass für jeden angenommenen Grenzwert a und für jedes $\varepsilon>0$, das kleiner ist als min —a 1—, —a + 1—, kein $N(\varepsilon)$ existiert, sodass $|b_n-a|<\varepsilon$ für alle $n\geq N(\varepsilon)$ gilt. Daher kann kein Grenzwert a gefunden werden, der die Konvergenzbedingung erfüllt, und somit ist (b_n) divergent.
- 2. Die Folge $c_n=2^n$ wächst unbeschränkt. Für jeden potenziellen Grenzwert a und für jedes $\varepsilon>0$ gibt es immer ein n, sodass $|c_n-a|$ nicht kleiner als ε ist. Daher ist (c_n) divergent.

Wir haben damit gezeigt, dass sowohl (b_n) als auch (c_n) nicht divergieren.