Additive properties of product sets in an arbitrary finite field.*

Alexey Glibichuk

Abstract

It is proved that for any two subsets A and B of an arbitrary finite field \mathbb{F}_q such that |A||B|>q the identity $16AB=\mathbb{F}_q$ holds. Moreover, it is established that for every subsets $X,Y\subset\mathbb{F}_q$ with the property $|X||Y|\geqslant 2q$ the equality $8XY=\mathbb{F}_q$ holds.

1 Introduction.

Let p be a prime, m be a natural number, \mathbb{F}_q be the finite field of order $q=p^m$, and \mathbb{F}_q^* be the multiplicative group of \mathbb{F}_q , so that $\mathbb{F}_q^*=\mathbb{F}_q\setminus\{0\}$. For sets $X\subset\mathbb{F}_q$, $Y\subset\mathbb{F}_q$, and for a (possibly, partial) binary operation $*:\mathbb{F}_q\times\mathbb{F}_q\to\mathbb{F}_q$ we let

$$X * Y = \{x * y : x \in X, y \in Y\}.$$

We will write XY instead of X * Y if * is multiplication in the field; and, for an element $\lambda \in \mathbb{F}_q$, we write

$$\lambda * A = \{\lambda\}A$$

$$-A = (-1) * A = \{-a : a \in A\}.$$

For a set $X \subset \mathbb{F}_q$ and $k \in \mathbb{N}$ let

$$kX = \{x_1 + \dots + x_k : x_1, \dots, x_k \in X\},\$$

 $^{^{*}\}mathrm{This}$ paper was supported by National Science Foundation grant under agreement No. DMS-0635607.

$$X^k = \{x_1 \dots x_k : x_1, \dots, x_k \in X\}.$$

Let also denote the cardinality of the given set X as |X|. For given natural numbers N the notation NXY should be understood as N-fold sum of the product set XY. Let us consider the following definitions.

Definition 1 The set X is said to be **symmetric** if X = -X.

Definition 2 The set X is said to be **antisymmetric** if $X \cap (-X) = \emptyset$.

A set A is called an (additive) basis of order k (for \mathbb{F}_q) if $kA = \mathbb{F}_q$. Observe that any basis of order k is also a basis of any order k' > k. The general problem that will be discussed in this paper is whether, for given integers t < q, N and two sets A and B, the set AB is a basis of order N if $|A||B| \ge t$?

The first machinery, allowing one to prove sum-product results on finite fields was developed in the paper of J. Bourgain, N. Katz and T. Tao([1]).

The author of this paper proved the following two statements([2], Theorems 1 and 2).

Theorem 1 Let A and B be subsets of the field \mathbb{F}_p for some prime p. If the set B is antisymmetric and |A||B| > p then $8AB = \mathbb{F}_p$.

Theorem 2 Let A and B be subsets of the field \mathbb{F}_p for some prime p. If the set B is symmetric and |A||B| > p then $8AB = \mathbb{F}_p$.

In the joint paper with S.V. Konyagin([3], Lemmas 2.1 and 2.2)we established the following two results.

Theorem 3 If $A \subset \mathbb{F}_p$, $B \subset \mathbb{F}_p$ for some prime p, and $|A| \cdot \lceil |B|/2 \rceil > p$ then $8AB = \mathbb{F}_p$.

Theorem 4 If $A \subset \mathbb{F}_p$, $B \subset \mathbb{F}_p$ for some prime p, and |A||B| > p then $16AB = \mathbb{F}_p$.

In this paper extensions of Theorems 1-4 will be obtained. We shall establish the following four theorems.

Theorem 7 If $A \subset \mathbb{F}_q$ and $B \subset \mathbb{F}_q$ are such that B is antisymmetric and |A||B| > q then $8AB = \mathbb{F}_q$.

Theorem 8 Assume that $A \subset \mathbb{F}_q$ and $B \subset \mathbb{F}_q$ are such that B is symmetric. If also |A||B| > q then $8AB = \mathbb{F}_q$.

Theorem 9 Let $A, B \subset \mathbb{F}_q$ be arbitrary subsets with |A||B| > q. Then we have $16AB = \mathbb{F}_q$.

Theorem 10 Let $A, B \subset \mathbb{F}_q$ be arbitrary subsets with $|A||B| \geqslant 2q$. Then we have $8AB = \mathbb{F}_q$.

Constant 16 in the Theorem 9 is most likely not best possible, it is demonstrated by Theorem 10 and recent result of D. Hart and A. Iosevich([4]). They established that

Theorem 5 For every subset $A \subset \mathbb{F}_q$ such that $|A| \geq Cq^{\frac{1}{2} + \frac{1}{2d}}$ for C sufficiently large the identity $dA^2 = \mathbb{F}_q^*$ holds.

Applying Theorem 5 with d=1 we see that the constant in the Theorem 9 can be significantly improved when A=B and $|A|>Cq^{\frac{3}{4}}$. D. Hart and A. Iosevich in the same paper have conjectured that if $|A|>C_{\varepsilon}q^{\frac{1}{2}+\varepsilon}$ for some constant C_{ε} and $\varepsilon>0$ then $2A^2=\mathbb{F}_q$. However, condition |A||B|>q in the Theorem 9 is sharp. Indeed, if |A||B|=q then result similar to the Theorem 9 cannot hold. It is sufficient to consider sets $A=\mathbb{F}_q, B=\{0\}$ or make A=B to be a subfield of order \sqrt{q} when $q=p^m$ and m is even, to verify this statement. To construct a less trivial counterexample let us consider two natural numbers k and l such that k+l=m. Let us take a primitive element $\xi\in\mathbb{F}_q^*$ and consider sets

$$A = \{x_0 + x_1 \xi + \ldots + x_{k-1} \xi^{k-1} : (x_0, \ldots, x_{k-1}) \in \underbrace{\mathbb{F}_p \times \ldots \times \mathbb{F}_p}_{k} := \mathbb{F}_p^k \},$$

$$B = \{x_0 + x_1 \xi + \ldots + x_{l-1} \xi^{l-1} : (x_0, x_1, \ldots, x_{l-1}) \in \mathbb{F}_p^l\}$$

and

$$C = \{x_0 + x_1 \xi + \ldots + x_{m-2} \xi^{m-2} : (x_0, x_1, \ldots, x_{m-2}) \in \mathbb{F}_p^{m-1}\}$$

where $\mathbb{F}_p \subset \mathbb{F}_q$ is a subfield of \mathbb{F}_q of cardinality p. Then one can obviously observe that |A||B| = q, $AB \subset C \neq \mathbb{F}_q$ and C is closed under addition.

2 Preliminary results.

Lemmas 1, 2, 3 are extensions of Lemmas 1, 2, 3 from [2]. Their proofs are due to arguments used in corresponding lemmas.

Lemma 1 Let $A \subset \mathbb{F}_q$, $B \subset \mathbb{F}_q$ be arbitrary nonempty subsets. Then there is an element $\xi \in \mathbb{F}_q^*$ such that

$$|A + \xi B| \geqslant \frac{|A||B|(q-1)}{|A||B| - (|A| + |B|) + q} \tag{1}$$

and

$$|A - \xi B| \geqslant \frac{|A||B|(q-1)}{|A||B| - (|A| + |B|) + q}.$$
 (2)

Proof. Let us consider an arbitrary elements $\xi \in \mathbb{F}_q^*$ and $s \in \mathbb{F}_q$. Denote

$$f_{\xi}^{+}(s) = |\{(a,b) \in A \times B : a+b\xi = s\}|,$$

$$f_{\xi}^{-}(s) = |\{(a,b) \in A \times B : a - b\xi = s\}|.$$

It obviously follows that

$$\sum_{s \in \mathbb{F}_q} (f_{\xi}^+(s))^2 = |\{(a_1, b_1, a_2, b_2) \in A \times B \times A \times B : a_1 + b_1 \xi = a_2 + b_2 \xi\}|$$

$$= |A||B| + |\{(a_1, b_1, a_2, b_2) \in A \times B \times A \times B : a_1 \neq a_2, a_1 + b_1 \xi = a_2 + b_2 \xi\}|,$$

$$\sum_{s \in \mathbb{F}_q} (f_{\xi}^-(s))^2 = |\{(a_1, b_1, a_2, b_2) \in A \times B \times A \times B : a_1 - b_1 \xi = a_2 - b_2 \xi\}|$$

$$= |A||B| + |\{(a_1, b_1, a_2, b_2) \in A \times B \times A \times B : a_1 \neq a_2, a_1 - b_1 \xi = a_2 - b_2 \xi\}|.$$

Therefore, $\sum_{s\in\mathbb{F}_q}(f_{\xi}^+(s))^2=\sum_{s\in\mathbb{F}_q}(f_{\xi}^-(s))^2$, and it is enough to consider only sum with values of $f_{\xi}^+(s)$. It is easy to see that for every $a_1,a_2\in A$ and $b_1,b_2\in B$ with $a_1\neq a_2$ there is only one element $\eta\neq 0$ such that $a_1+b_1\eta=a_2+b_2\eta$. Thus,

$$\sum_{\xi \in \mathbb{F}_q^*} \sum_{s \in \mathbb{F}_q} (f_{\xi}^+(s))^2 = |A||B|(q-1) + |A||B|(|A|-1)(|B|-1).$$

Therefore, there is $\xi \in \mathbb{F}_q^*$ such that

$$\sum_{s \in \mathbb{F}_q} (f_{\xi}^+(s))^2 \le |A||B| + \frac{|A||B|(|A|-1)(|B|-1)}{q-1}.$$
 (3)

By Cauchy-Schwartz

$$\left(\sum_{s \in \mathbb{F}_q} f_{\xi}^+(s)\right)^2 \le |A + \xi B| \sum_{s \in \mathbb{F}_q} (f_{\xi}^+(s))^2, \tag{4}$$

$$\left(\sum_{s \in \mathbb{F}_q} f_{\xi}^{-}(s)\right)^2 \le |A - \xi B| \sum_{s \in \mathbb{F}_q} (f_{\xi}^{-}(s))^2.$$
 (5)

Moreover, it obviously follows that

$$\sum_{s \in \mathbb{F}_a} f_{\xi}^+(s) = |A||B|,$$

$$\sum_{s \in \mathbb{F}_q} f_{\xi}^-(s) = |A||B|.$$

Now from (3), (4) and (5) one can deduce a desired inequality:

$$|A + \xi B| \ge \frac{|A|^2 |B|^2}{|A||B| + \frac{|A||B|(|A|-1)(|B|-1)}{q-1}} = \frac{|A||B|(q-1)}{|A||B| - (|A|+|B|) + q}$$

and

$$|A - \xi B| \ge \frac{|A||B|(q-1)}{|A||B| - (|A| + |B|) + q}.$$

Lemma 1 is proved. ■

Lemma 2 Let A and B be subsets of field \mathbb{F}_q with |A||B| > q. Then there is $\xi \in \mathbb{F}_q^*$ such that

$$|A + \xi B| > \frac{q}{2} \tag{6}$$

and

$$|A - \xi B| > \frac{q}{2}.\tag{7}$$

Proof. Let us apply Lemma 1. It states that there is $\xi \in \mathbb{F}_q^*$ such that (1) and (2) hold. Clearly, we have

$$\frac{|A||B|(q-1)}{|A||B| - (|A| + |B|) + q} \geqslant \frac{|A||B|(q-1)}{|A||B| + (q-2)}.$$

Let us consider the difference

$$s = \frac{|A||B|(q-1)}{|A||B| + (q-2)} - \frac{q}{2} = \frac{(q-2)(|A||B| - q)}{2(|A||B| + (q-2))}.$$

It is clear that s > 0 when |A||B| > q and $q \neq 2$. If q = 2 then the condition |A||B| > q implies that at least one of the subsets A or B is equal to \mathbb{F}_q . Lemma 2 is proved.

Definition 3 For two subsets $A \subset \mathbb{F}_q$, $B \subset \mathbb{F}_q$ denote

$$I(A,B) = \{(b_1 - b_2) \cdot a_1 + (a_2 - a_3) \cdot b_3 : a_1, a_2, a_3 \in A, b_1, b_2, b_3 \in B\}.$$

Lemma 3 Consider two subsets $A \subset \mathbb{F}_q$ and $B \subset \mathbb{F}_q$. If for some $\xi \in \mathbb{F}_q^*$

$$|A + \xi B| < |A||B|$$

then

$$|I(A,B)| \geqslant |A + \xi B|$$
.

Proof. If $|A+\xi B| < |A||B|$ then there are elements $a_1, a_2 \in A$ and $b_1, b_2 \in B$ such that $(a_1, b_1) \neq (a_2, b_2)$ and

$$(a_1 - a_2) + (b_1 - b_2) \cdot \xi = 0.$$
 (8)

It is clear that $b_1 \neq b_2$. Let us consider the set

$$S = (b_1 - b_2) \cdot (A + \xi B) = \{ (b_1 - b_2) \cdot b : b \in A + \xi B \}.$$

It is obviously follows that $|S| = |A + \xi B|$ and every element of S can be rewritten in the form

$$s = (b_1 - b_2) \cdot a + (b_1 - b_2) \cdot b\xi$$

with $a \in A$ and $b \in B$. From (8) one can easily deduce that

$$s = (b_1 - b_2) \cdot a + (a_2 - a_1) \cdot b.$$

Therefore, $S \subset I(A, B)$ and lemma follows.

Lemma 4 Assume that $X \subset \mathbb{F}_q$ with $|X| > \frac{q}{2}$, then $X + X = \mathbb{F}_q$.

Proof. Let us take an arbitrary element $x \in \mathbb{F}_q$ and consider a set x - X. From $|x - X| = |X| > \frac{q}{2}$ one can obviously prove that sets x - X and X have nonempty intersection, so there are elements $x_1, x_2 \in X$ such that $x - x_1 = x_2 \Leftrightarrow x = x_1 + x_2$. Lemma now follows.

Lemma 5 Let A be any subset of \mathbb{F}_q . If $|A| \not\equiv 2 \pmod{3}$ then there is a symmetric or antisymmetric subset $S \subset A$ with $|S| \geqslant \frac{2}{3}|A|$. If $|A| \equiv 2 \pmod{3}$ then one can find either symmetric or antisymmetric subset $S \subset A$ with $|S| \geqslant \frac{2}{3}|A| - \frac{1}{3}$.

Proof. Let us define a set $A_1 = \{x \in A : -x \notin A\}$. It is an antisymmetric subset of A. Consider a set of subsets $S = \{\{a_1, a_2\} : a_1 \in A, a_2 \in A, a_1 = -a_2\}$. It is clear that one can choose one element from each of the sets from S and form a new set A_2 from those elements. It is easy to observe that $A_2 \cap A_1 = \emptyset$, $0 \in A_2$ if $0 \in A$ and $A_2 \setminus \{0\}$ is antisymmetric. Let us define a subset $A_3 = A \setminus (A_1 \sqcup A_2)$. It is an antisymmetric subset of A with cardinality $|A_3| = |A_2| - 1$ if $0 \in A$ and $|A_3| = |A_2|$ otherwise, such that $0 \notin A_3$ and $A_2 \sqcup A_3$ is the maximal symmetric subset of A. We have split the set A into three nonintersecting parts: $A = A_1 \sqcup A_2 \sqcup A_3$.

If $|A_1| < \frac{1}{3}|A|$ then $|A_2 \sqcup A_3| \geqslant \frac{2}{3}|A|$ and Lemma 5 follows with symmetric $S = A_2 \sqcup A_3$.

If $0 \notin A$ and $|A_1| \ge \frac{1}{3}|A|$ then $|A_2| = |A_3|$ and $|A_3| < \frac{1}{3}|A|$. Assuming S to be an antisymmetric subset $A_1 \sqcup A_2$ we complete the proof of Lemma 5.

Assume that $|A_1| \geqslant \frac{1}{3}|A|$ and $0 \in A$. If $|A_3| \geqslant \frac{1}{3}|A|$ then $|A_1 \sqcup A_3| \geqslant \frac{2}{3}|A|$ and Lemma 5 is proved by letting S to be antisymmetric subset $A_1 \sqcup A_3$.

It is left to prove Lemma 5 when

$$|A_1| \geqslant \frac{1}{3}|A|,\tag{9}$$

$$|A_3| < \frac{1}{3}|A| \tag{10}$$

and $0 \in A$. Let us consider three cases.

Case 1. |A| = 3k for some natural k. Taking into account (9) and (10) one can see that $|A_3| \leq k - 1$ and therefore $|A_1 \sqcup A_2| \geq 2k + 1$. By defining $S = (A_1 \sqcup A_2) \setminus \{0\}$ (S is antisymmetric) we complete the proof of Lemma 5.

Case 2. |A| = 3k + 1 for some natural k. Again, using (9) and (10) one can deduce that $|A_3| \leq k$. If $|A_3| \leq k - 1$ then assuming $S = (A_1 \sqcup A_2) \setminus \{0\}$

we get a required antisymmetric subset. If $|A_3| = k$ then $|A_2| = k + 1$ and $|A_1| = k$. Note that the identity $|A_1| = k$ contradicts inequality (9). We are done.

Case 3. |A| = 3k + 2 for some natural k. Using (9) and (10) one can easily deduce that $|A_3| \leq k$ and $|A_1| \geq k + 1$. If $|A_3| \leq k - 1$ then $|A_1 \sqcup A_2| = |A \setminus A_3| \geq 2k + 3$. Letting S to be an antisymmetric subset $(A_1 \sqcup A_2) \setminus \{0\}$ we observe that $|S| \geq 2k + 2 > \frac{1}{3}|A|$ and we are done with better bound on |S|. In case when $|A_3| = k$ it is easy to see that $|A_2| = k + 1$ and $|A_1| = k + 1$. Assuming S to be a symmetric subset $A_2 \sqcup A_3$ we complete the proof of Lemma 5. \blacksquare

Definition 4 For every subset $X \subset \mathbb{F}_q$ its **symmetry group** (it is denoted as $Sym_1(X)$) is defined by the identity

$$Sym_1(X) = \{h : \{h\} + X = X\}.$$

We shall use the following theorem (see [6], theorem 5.5 or [5]).

Theorem 6 (Kneser) For every subsets $X, Y \subset \mathbb{F}_q$ we have

$$|X + Y| \ge |X + Sym_1(X + Y)| + |Y + Sym_1(X + Y)| - |Sym_1(X + Y)| \ge$$

 $\ge |X| + |Y| - |Sym_1(X + Y)|.$

Lemma 6 Given a subset $X \subset \mathbb{F}_q$. Let us take any subgroup G of the group $Sym_1(X)$. Then X is a union of additive cosets of G.

Proof. One can easily observe that $Sym_1(X)$ is an additive subgroup. It is sufficient to prove that every coset of the subgroup G either is a subset of X or has an empty intersection with X. Suppose that some coset x+G has nonempty intersection with X. Let us take an arbitrary element $y \in X \cap (x+G)$. By definition of y a coset y+G=x+G, but from symmetry of X it follows that $y+G \subset X$. Lemma 6 is proved.

Lemma 7 Let B be an arbitrary subset of \mathbb{F}_q such that $|B| \ge 2$. Then one of the following two alternatives holds

- (i) $|B + B| \geqslant \frac{3}{2}|B|$,
- (ii) there is an additive subgroup $G \subset \mathbb{F}_q$ such that $B \subset b + G$ for some $b \in B$ and $|B| > \frac{2}{3}|G|$. Moreover, in this case B + B = 2b + G.

Proof. Application of Theorem 6 for sets X = Y = B implies

$$|B+B| \ge 2|B+Sym_1(B+B)| - |Sym_1(B+B)| \ge 2|B| - |Sym_1(B+B)|.$$
 (11)

Since $Sym_1(B+B)$ is an additive subgroup of \mathbb{F}_q then there is an integer $0 \leq l \leq n$ such that $|Sym_1(B+B)| = p^l$. Observe that $Sym_1(B+B) \subset Sym_1(B+Sym_1(B+B))$. Now from Lemma 6 clearly follows that $|B+Sym_1(B+B)| = mp^l$ for some natural m. Again, using (11) we can see that

$$|B+B| \geqslant (2m-1)p^l. \tag{12}$$

Assume that the inequality $|B+B| < \frac{3}{2}|B|$ holds. Then we deduce from (11) that

$$\frac{3}{2}|B| > 2|B| - |Sym_1(B+B)| \Leftrightarrow |B| < 2p^l$$

and therefore $|B+B| < \frac{3}{2} \cdot 2p^l = 3p^l$. Combining the last inequality with (12) we obtain the condition 2m-1 < 3 and therefore m can take on one value: m=1. When m=1 one can observe that $|B+Sym_1(B+B)| = |Sym_1(B+B)| = p^l$. Take an arbitrary element $b \in B$ and consider the set B'=B-b. It is clear, that $B'+Sym_1(B+B)=Sym_1(B+B)$ and therefore $B' \subset Sym_1(B+B)$. Recalling definition of B' we obtain a relation $B \subset b+Sym_1(B+B)$. By (12) one can deduce the inequality $|B+B| \geqslant p^l$. Observing that $B+B \subset 2b+Sym_1(B+B)$ we can obtain the relation $|B+B|=|Sym_1(B+B)|=p^l$. Now it is clear that if $|B|\leqslant \frac{2}{3}p^l$ then the inequality $|B+B|\geqslant \frac{3}{2}|B|$ holds, otherwise we get the alternative (ii). To finish the proof of the Lemma 7 we need to observe that according to Lemma $4B+B=2b+Sym_1(B+B)$ when $|B|>\frac{2}{3}p^l$. Lemma 7 now follows.

3 Proofs of theorems 7-10.

Theorem 7 If $A \subset \mathbb{F}_q$ and $B \subset \mathbb{F}_q$ are such that B is antisymmetric and |A||B| > q then $8AB = \mathbb{F}_q$.

Proof. Let us apply Lemma 2. It states that there is an element $\xi \in \mathbb{F}_q^*$ such that (6) and (7) hold. From (6) one can easily derive that $(A + \xi b) \cap (-A - \xi B) \neq \emptyset$ and, therefore, there are elements $a_1, a_2 \in A, b_1, b_2 \in B$ with $a_1 + b_1 \xi = -(a_2 + b_2 \xi)$. Thus,

$$\xi = -\frac{a_1 + a_2}{b_1 + b_2}. (13)$$

The expression (13) is correct because $B \cap (-B) = \emptyset$ and denominator of the fraction in this formula is not equal to zero. From (7) it follows that

$$\left| \left\{ a_3 + \frac{a_1 + a_2}{b_1 + b_2} b_3 : a_3 \in A, b_3 \in B \right\} \right| > \frac{q}{2} \Leftrightarrow$$

$$|\{a_3(b_1+b_2)+b_3(a_1+a_2): a_3 \in A, b_3 \in B\}| > \frac{q}{2}.$$

Therefore, $|4AB| > \frac{q}{2}$ and Lemma 4 gives us the desired statement.

Theorem 8 Assume that $A \subset \mathbb{F}_q$ and $B \subset \mathbb{F}_q$ are such that B is symmetric. If also |A||B| > q then $8AB = \mathbb{F}_q$.

Proof. Applying Lemma 2 one can find an element $\xi \in \mathbb{F}_q^*$ such that $|A + \xi B| > \frac{q}{2}$. Moreover, from restrictions on sets A and B one can see that $|A + \xi B| \leq q < |A||B|$ and we can apply Lemma 3 that gives us the following:

$$|I(A,B)| \geqslant |A + \xi B| > \frac{q}{2}.$$

Taking into account that B = -B one can derive that $I(A, B) \subset 4AB$ and $|4AB| > \frac{q}{2}$. Now Theorem 8 follows from Lemma 4.

Theorem 9 Let $A, B \subset \mathbb{F}_q$ be arbitrary subsets with |A||B| > q. Then we have $16AB = \mathbb{F}_q$.

Proof. Let us apply Lemma 7 for the set B. If (ii) holds then B+B=2b+G for some $b \in B$ and an additive subgroup $G \subset \mathbb{F}_q$. It is easy to see that every coset of an additive subgroup is an antisymmetric or a symmetric subset. Then application of Theorem 7 or Theorem 8 for sets A and B+B gives us Theorem 9.

Assume now that

$$|B+B| \geqslant \frac{3}{2}|B|\tag{14}$$

i. e. alternative (i) holds. If $|B+B| \not\equiv 2 \pmod{3}$ then application of Lemma 5 gives us a subset $S \subset B+B$ such that $|S| \geqslant \frac{2}{3}|B+B|$ and S is either symmetric or antisymmetric. By (14) we observe that $|S| \geqslant |B|$. Application of Theorem 7 or Theorem 8 for sets A and S allows one deduce Theorem 9.

It is left to consider the case when $|B+B| \equiv 2 \pmod{3}$ and the inequality (14) holds. Assume that |B+B| = 3k + 2 for some natural k. Lemma 5

states that there is either symmetric or antisymmetric subset $S \subset B+B$ with $|S| \geqslant \frac{2}{3}|B+B|-\frac{1}{3}=2k+1$. Moreover, by (14) we can deduce that $2k+1 \geqslant |B|-\frac{1}{3}$ and, therefore $|B| \leqslant 2k+1$. Now it is easy to see that $|S| \geqslant 2k+1 \geqslant |B|$. Using Theorem 7 or Theorem 8 for sets A and S we complete the proof of Theorem 9.

Theorem 10 Let $A, B \subset \mathbb{F}_q$ be arbitrary subsets with $|A||B| \geqslant 2q$. Then we have $8AB = \mathbb{F}_q$.

Proof. Our aim is to extract from the set B a sufficiently large symmetric or antisymmetric subset $S \subset B$. Lemma 5 states that there is a symmetric or antisymmetric subset $S \subset B$ with $|S| \geqslant \frac{2}{3}|B| - \frac{1}{3}$. Let us notice that the equality |B| = 2 holds when |A||B| = 2q and, therefore, $A = \mathbb{F}_q$, so we can assume that |B| > 2. Observe that in this case $\frac{2}{3}|B| - \frac{1}{3} > \frac{1}{2}|B|$ and we have $|A||S| > \frac{1}{2}|A||B| \geqslant q$ and Theorem 10 now follows from Theorems 7 and 8.

References

- [1] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields and their applications, Geom and Funct. Anal., 14 (2004), 27–57.
- [2] A. A. Glibichuk, Combinational properties of sets of residues modulo a prime and the Erdős-Graham problem, Mat. Zametki, **79** (2006), 384–395; translation in: Math. Notes, **79** (2006), 356–365.
- [3] A. A. Glibichuk, S.V. Konyagin, Additive properties of product sets in fields of prime order, Centre de Recherches Mathématiques Proceedings and Lecture Notes, vol. 43, pp. 279-286.
- [4] D.Hart, A. Iosevich, Sums and products in finite fields: an integral geometric viewpoint, preprint.
- [5] M. Kneser, Abschätzungen der asymptotischen Dichte von Summenmengen, Math. Z, vol. 58, 1953, pp. 459–484.
- [6] T. Tao, V. Vu, *Additive combinatorics*, Cambridge Univ. Press, Cambridge, 2006.