Лабораторная работа №7

Эффективность рекламы

Монастырская Кристина Владимировна

Содержание

Цель работы	3
Задание	4
Вариант 23	4
Теоретическое введение	5
Выполнение лабораторной работы	8
Haписание программного кода в OpenModelica для создания модели: .	8
Построение графиков распространения рекламы:	9
1 Случай:	9
2 Случай:	10
3 Случай:	11
Нахождение максимальной скорости для 2 случая	11
Выводы	15

Цель работы

Построить графики распространения рекламы, используя средства OpenModelica

Задание

Вариант 23

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.51 + 0.000099n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000019 + 0.99n(t))(N - n(t))$$

$$\begin{array}{l} \text{2. } \frac{dn}{dt} = (0.000019 + 0.99n(t))(N-n(t)) \\ \text{3. } \frac{dn}{dt} = (0.99t + 0.3cos(4t)n(t))(N-n(t)) \end{array}$$

При этом объем аудитории N=945, в начальный момент о товаре знает 13 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Теоретическое введение

рганизуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ – скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t – время, прошедшее с начала рекламной кампании, n(t) – число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $a_1(t)(N-n(t))$, где N – общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ – характеризует интенсивность рекламной кампа-

нии (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\tfrac{dn}{dt} = (a_1(t) + a_2(t)n(t))(N - n(t)) \text{(1)}$$

При $a_1(t) >> a_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид

Рис. 1: График решения уравнения модели Мальтуса

В обратном случае, при $a_1(t) << a_2(t)$ получаем уравнение логистической кривой:

Рис. 2: График логистической кривой

Выполнение лабораторной работы

Написание программного кода в OpenModelica для создания модели:

```
🖶 🚜 🧧 🕦 Доступный на запись | Model | Вид Текст | Lab7 | C:/Users/krist/2021-2022/math_mod/Laboratory7/Lab7.mo
  1 model Lab7
       Real n(start = 13);
       Real N;
  4 equation
       N = 945;
      // Случай 1
       // der(n) = (0.51 + 0.000099*n)*(N - n);
  9
      // Случай 2
 10
 11
       // der(n) = (0.000019 + 0.99*n)*(N - n);
 13
       // Случай 3
      der(n) = (0.99*time + 0.3*cos(4*time)*n)*(N - n);
 14
 15
 16 end Lab7;
```

Рис. 1: Программный код

Построение графиков распространения рекламы:

1 Случай:

Рис. 2: Модель. Случай 1

2 Случай:

Рис. 3: Модель. Случай 1

3 Случай:

Рис. 4: Модель. Случай 1

Нахождение максимальной скорости для 2 случая.

Скорость распространения рекламы равна $\frac{dn}{dt}$. Таким образом, добавив в программу модели дополнительную переменную y(t) = der(n(t)), я получила график, наивысшая точка которого и является точкой максимальной скорости распространения рекламы.

Максимальной скорости распространения $\max(y(t))$ реклама достигает в момент времени t = 0.0046 с.

```
model Lab7
 2
     Real n(start = 13);
 3
 4
      Real N, y;
 5
    equation
 6
     N = 945;
 7
     // Случай 1
 9
      // der(n) = (0.51 + 0.000099*n)*(N - n);
10
11
     // Случай 2
12
     der(n) = (0.000019 + 0.99*n)*(N - n);
13
    y = der(n);
14
15
     // Случай 3
16
      // der(n) = (0.99*time + 0.3*cos(4*time)*n)*(N - n);
17
18
    end Lab7;
```

Рис. 5: Модифицированный программный код

Рис. 6: График скорости распространения рекламы

Рис. 7: Точка максимальной скорости распространения рекламы

Выводы

Я научилась строить модель распространения рекламы.