Limited-memory BFGS Method

with Cautious Update and Lewis-Overton Line Search

Zirui Zhang

Cheng Kar-Shun Robotics Institute
The Hong Kong University of Science and Technology

September 22, 2025

- Introduction
- 2 Quasi-Newton Methods
- **3** BFGS Method
- 4 L-BFGS Method

Unconstrained Optimization

Consider a smooth and twice-differentiable unconstrained optimization problem:

$$\min_{\mathbf{x}} f(\mathbf{x})$$

Descent methods provide an iterative solution:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \cdot \mathbf{d}^k$$

where \mathbf{d}^k is the direction, and α^k is the step size.

Introduction

Newton's Method

By second-order Taylor expansion,

$$f(\mathbf{x}) \approx f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^{\top} (\mathbf{x} - \mathbf{x}^k) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^k)^{\top} \nabla^2 f(\mathbf{x}^k) (\mathbf{x} - \mathbf{x}^k)$$

Minimizing quadratic approximation,

$$\nabla^2 f(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k) + \nabla f(\mathbf{x}^k) = 0$$

For
$$\nabla^2 f(\mathbf{x}^k) > 0$$
,

$$\mathbf{x}^{k+1} = \mathbf{x}^k - [\nabla^2 f(\mathbf{x}^k)]^{-1} \nabla f(\mathbf{x}^k)$$

Courtesy: Ardian Umam

September 22, 2025

Damped Newton Method

Introduction

For $\nabla^2 f(\mathbf{x}^k) \neq 0$, the direction \mathbf{d}^k cannot be directly solved from $\nabla^2 f(\mathbf{x}^k) \mathbf{d}^k = -\nabla f(\mathbf{x}^k)$. In such cases, a PD matrix \mathbf{M}^k must be constructed to approximate the Hessian.

If the function is convex, $\nabla^2 f(\mathbf{x}^k)$ may be singular. Adding a regularization term ensures positive definiteness:

$$\mathbf{M}^k = \nabla^2 f(\mathbf{x}^k) + \lambda \mathbf{I}$$

 $\lambda > 0$ starts small and grows until **Cholesky decomposition** works.

If the function is nonconvex, $\nabla^2 f(\mathbf{x}^k)$ may be indefinite. To handle this, the **Bunch-Kaufman decomposition** is applied to obtain $\mathbf{L}\tilde{\mathbf{D}}\mathbf{L}^{\mathsf{T}}$ and $\tilde{\mathbf{D}}$:

$$\mathbf{M}^k = \mathbf{L}\tilde{\mathbf{D}}\mathbf{L}^\top$$

Finally, direction is solved from $\mathbf{M}^k \mathbf{d}^k = -\nabla f(\mathbf{x}^k)$.

Practical Newton Method

Moreover, we can select α^k by backtracking line search to ensure sufficient decrease in the objective function, satisfying the **Armijo condition**:

$$f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) \le f(\mathbf{x}^k) + c_1 \cdot \alpha^k \nabla f(\mathbf{x}^k)^{\top} \mathbf{d}^k$$

where $c_1 \in (0, 1)$ is a small constant.

Courtesy: Cornell University

Newton's Method: Limitations

- **High Cost**: Computing the Hessian and its inverse requires $\mathcal{O}(n^3)$ operations, impractical for large problems.
- Indefinite Hessian: In nonconvex cases, the Hessian may lead to steps toward saddle points.
- **Ill-Conditioning**: Poorly conditioned Hessians amplify errors and hinder convergence.
- Inaccurate Model: Local quadratic approximations may fail for complex functions, causing inefficiency or divergence.

Quasi-Newton Approximation

Newton Approximation:

$$f(\mathbf{x}) \approx f(\mathbf{x}^k) + (\mathbf{x} - \mathbf{x}^k)^{\top} \mathbf{g}^k + \frac{1}{2} (\mathbf{x} - \mathbf{x}^k)^{\top} \mathbf{H}^k (\mathbf{x} - \mathbf{x}^k)$$
$$\mathbf{H}^k \mathbf{d}^k = -\mathbf{g}^k$$

Quasi-Newton Approximation:

$$f(\mathbf{x}) \approx f(\mathbf{x}^k) + (\mathbf{x} - \mathbf{x}^k)^{\top} \mathbf{g}^k + \frac{1}{2} (\mathbf{x} - \mathbf{x}^k)^{\top} \mathbf{B}^k (\mathbf{x} - \mathbf{x}^k)$$
$$\mathbf{B}^k \mathbf{d}^k = -\mathbf{g}^k$$

The matrix \mathbf{B}^k should:

- Avoid full second-order derivatives.
- Have a closed-form solution for linear equations.
- Retain first-order curvature information.
- Preserve the descent direction.

Descent Direction:

Search direction \mathbf{d}^k should make an acute angle with the negative gradient:

$$(\mathbf{g}^k)^{\top} \mathbf{d}^k = -(\mathbf{g}^k)^{\top} (\mathbf{B}^k)^{-1} \mathbf{g}^k < 0$$

 \mathbf{B}^k must be positive definite (PD) since for all non-negative \mathbf{g}^k , $(\mathbf{g}^k)^{\top}(\mathbf{B}^k)^{-1}\mathbf{g}^k > 0$.

Courtesy: Active Calculus

Curvature Information

At the point \mathbf{x}^{k+1} , the gradient is \mathbf{g}^{k+1} . We want \mathbf{B}^{k+1} to satisfy:

$$\mathbf{B}^{k+1}(\mathbf{x}^{k+1} - \mathbf{x}^k) \approx \mathbf{g}^{k+1} - \mathbf{g}^k$$

$$\mathbf{B}^{k+1}\mathbf{s}^k = \mathbf{y}^k$$

The Optimal \mathbf{B}^{k+1} ?

Infinitely many \mathbf{B}^{k+1} satisfy the secant condition. To choose the best one, we define the following weighted least square problem:

$$\min_{\mathbf{B}} \|\mathbf{B} - \mathbf{B}^k\|_{\mathbf{W}}^2 \quad \text{subject to} \quad \mathbf{B} = \mathbf{B}^\top, \mathbf{B}\mathbf{s}^k = \mathbf{y}^k$$

In BFGS, the weight matrix is selected as:

$$\mathbf{W} = \int_0^1 \nabla^2 f[(1-\tau)\mathbf{x}^k + \tau \mathbf{x}^{k+1}] d\tau$$

Closed-form Solution for \mathbf{B}^{k+1}

To derive the optimal \mathbf{B}^{k+1} , we construct the Lagrangian function:

$$\mathcal{L}(\mathbf{B}, \boldsymbol{\Lambda}) = \frac{1}{2} \|\mathbf{B} - \mathbf{B}^k\|_{\mathbf{W}}^2 + \operatorname{tr}\left[\boldsymbol{\Lambda}^\top \left(\mathbf{B}\mathbf{s}^k - \mathbf{y}^k\right)\right]$$

Taking the derivative of the Lagrangian with respect to **B** and setting it to zero gives:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{B}} = \mathbf{W}(\mathbf{B} - \mathbf{B}^k)\mathbf{W} + \mathbf{\Lambda}(\mathbf{s}^k)^{\top} = 0$$

Rearranging the terms, we express **B** as:

$$\mathbf{B} = \mathbf{B}^k - \mathbf{W}^{-1} \mathbf{\Lambda} (\mathbf{s}^k)^{\top} \mathbf{W}^{-1}$$

Closed-form Solution for \mathbf{B}^{k+1} (cont.)

Substituting this expression into the secant condition $\mathbf{Bs}^k = \mathbf{y}^k$, we obtain:

$$\left(\mathbf{B}^k - \mathbf{W}^{-1} \mathbf{\Lambda} (\mathbf{s}^k)^\top \right) \mathbf{s}^k = \mathbf{y}^k$$

Solving for Λ , we find:

$$\mathbf{\Lambda} = \mathbf{W} \left(\mathbf{y}^k - \mathbf{B}^k \mathbf{s}^k \right) \left((\mathbf{s}^k)^\top \mathbf{W}^{-1} \mathbf{s}^k \right)^{-1}$$

Finally, substituting Λ back, the closed-form solution for \mathbf{B}^{k+1} is:

$$\mathbf{B}^{k+1} = \mathbf{B}^k + \frac{\mathbf{y}^k(\mathbf{y}^k)^\top}{(\mathbf{s}^k)^\top \mathbf{y}^k} - \frac{\mathbf{B}^k \mathbf{s}^k (\mathbf{B}^k \mathbf{s}^k)^\top}{(\mathbf{s}^k)^\top \mathbf{B}^k \mathbf{s}^k}$$

13 / 22

BFGS Update Rules

Given the initial value $\mathbf{B}^0 = \mathbf{I}$, the updates are performed iteratively:

$$\mathbf{B}^{k+1} = \mathbf{B}^k + \frac{\mathbf{y}^k(\mathbf{y}^k)^\top}{(\mathbf{s}^k)^\top \mathbf{y}^k} - \frac{\mathbf{B}^k \mathbf{s}^k (\mathbf{B}^k \mathbf{s}^k)^\top}{(\mathbf{s}^k)^\top \mathbf{B}^k \mathbf{s}^k}$$

where:

$$\mathbf{s}^k = \mathbf{x}^{k+1} - \mathbf{x}^k, \quad \mathbf{y}^k = \mathbf{g}^{k+1} - \mathbf{g}^k$$

For computational efficiency, we often work with the inverse of \mathbf{B}^k directly:

$$\mathbf{C}^{k+1} = \left(I - \frac{\mathbf{s}^k(\mathbf{y}^k)^\top}{(\mathbf{s}^k)^\top \mathbf{y}^k}\right) \mathbf{C}^k \left(I - \frac{\mathbf{y}^k(\mathbf{s}^k)^\top}{(\mathbf{s}^k)^\top \mathbf{y}^k}\right) + \frac{\mathbf{s}^k(\mathbf{s}^k)^\top}{(\mathbf{s}^k)^\top \mathbf{y}^k}$$

Guaranteeing PD of \mathbf{B}^{k+1}

To ensure that \mathbf{B}^{k+1} remains positive definite (PD), the following curvature condition must hold:

$$(\mathbf{y}^k)^{\top}\mathbf{s}^k > 0$$

For any nonzero vector **z**, using the Cauchy-Schwarz inequality:

$$\mathbf{z}^{\top} \mathbf{B}^{k+1} \mathbf{z} = \mathbf{z}^{\top} \mathbf{B}^{k} \mathbf{z} + \frac{(\mathbf{z}^{\top} \mathbf{y}^{k})^{2}}{(\mathbf{y}^{k})^{\top} \mathbf{s}^{k}} - \frac{(\mathbf{z}^{\top} \mathbf{B}^{k} \mathbf{s}^{k})^{2}}{(\mathbf{s}^{k})^{\top} \mathbf{B}^{k} \mathbf{s}^{k}}$$
$$\geq \frac{\mathbf{z}^{\top} \mathbf{B}^{k} \mathbf{z} (\mathbf{s}^{k})^{\top} \mathbf{B}^{k} \mathbf{s}^{k} - (\mathbf{z}^{\top} \mathbf{B}^{k} \mathbf{s}^{k})^{2}}{(\mathbf{s}^{k})^{\top} \mathbf{B}^{k} \mathbf{s}^{k}} \geq 0$$

Equalities hold only when $\mathbf{z}^{\top}\mathbf{y}^{k} = 0$ and $\mathbf{z} \parallel \mathbf{s}^{k}$. Given that $(\mathbf{y}^{k})^{\top}\mathbf{s}^{k} > 0$, these conditions cannot hold simultaneously. Therefore, if $\mathbf{B}^{k} > 0$, it follows that $\mathbf{B}^{k+1} > 0$.

Guranteeing $(\mathbf{y}^k)^{\top}\mathbf{s}^k > 0$

Armijo Condition (AC) cannot gurantee curvature, we need curvature condition (CC):

$$(\mathbf{d}^k)^{\top} \nabla f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) \ge c_2 \cdot (\mathbf{d}^k)^{\top} \nabla f(\mathbf{x}^k)$$

Typically, $c_1 = 10^{-4}$, $c_2 = 0.9$.

Courtesy: Ján Kopačka

Lewis-Overton Line Search

The Lewis-Overton line search is a sophisticated backtracking line search designed specifically for quasi-Newton methods:

- **1** Given search direction \mathbf{d}^k , current point \mathbf{x}^k and gradient \mathbf{g}^k
- 2 Initialize trial step $\alpha := 1$, $\alpha_l := 0$, $\alpha_r := +\infty$
- Repeat
 - Update bounds:
 - If $AC(\alpha)$ fails, set $\alpha_r := \alpha$
 - Else if $CC(\alpha)$ fails, set $\alpha_l := \alpha$
 - Else, accept α and break
 - **2** Update α :
 - If $\alpha_r < +\infty$, set $\alpha := (\alpha_l + \alpha_r)/2$
 - Else, set $\alpha := 2 \cdot \alpha_1$
 - **3** Ensure $\alpha \in [\alpha_{\min}, \alpha_{\max}]$

Cautious Update

Sometimes, when line search is inexact or the function is poorly conditioned, $(\mathbf{y}^k)^{\top}\mathbf{s}^k > 0$ cannot gurantee. To ensure numerical stability and maintain the PD Hessian approximation, L-BFGS employs a cautious update strategy:

- **Skip Update**: If the curvature condition $(\mathbf{y}^k)^{\top} \mathbf{s}^k > \epsilon |\mathbf{s}^k|^2$ is not satisfied, where ϵ is a small positive constant (e.g., 10^{-6}), skip the update for this iteration: $\mathbf{B}^{k+1} = \mathbf{B}^k$.
- **Powell's Damping**: If the curvature condition $(\mathbf{y}^k)^{\top} \mathbf{s}^k \ge \eta(\mathbf{s}^k)^{\top} \mathbf{B}^k \mathbf{s}^k$ is not satisfied, where η is a small positive constant (e.g., 0.2 or 0.25),

$$\tilde{\mathbf{y}}^k = \theta \mathbf{y}^k + (1 - \theta) \mathbf{B}^k \mathbf{s}^k, \qquad \theta = \frac{(1 - \eta) \cdot (\mathbf{s}^k)^{\top} \mathbf{B}^k \mathbf{s}^k}{(\mathbf{s}^k)^{\top} \mathbf{B}^k \mathbf{s}^k - (\mathbf{y}^k)^{\top} \mathbf{s}^k}$$

Cautious updates guaranteed to have its iterates converge to a **critical point** if the function has bounded sublevel sets and a Lipschitz continuous gradient.

18 / 22

Two-Loop Recursion

L-BFGS uses a two-loop recursion to compute the search direction without explicitly forming the Hessian approximation. The algorithm maintains a history of the most recent m pairs $(\mathbf{s}^i, \mathbf{y}^i)_{i=k-m}^{k-1}$, where typically m is between 5 and 20.

- **1** Initialize an empty array \mathscr{A} of length m, $\mathbf{d} = \mathbf{g}^k$
- 2 For i = k-1, k-2, ..., k-m:

 - $\mathbf{d} := \mathbf{d} \mathscr{A}^{i+m-k} \mathbf{y}^i$
- $\mathbf{3} \ \mathbf{d} := \mathbf{d} \cdot \langle \mathbf{s}^{k-1}, \mathbf{y}^{k-1} \rangle / \langle \mathbf{y}^{k-1}, \mathbf{y}^{k-1} \rangle$
- 4 For i = k m, k m + 1, ..., k 1:

 - **2** $\mathbf{d} := \mathbf{d} + \mathbf{s}^{i} (\mathcal{A}^{i+m-k} a)$
- 6 Return d

This approach reduces the storage requirement from $\mathcal{O}(n^2)$ to $\mathcal{O}(mn)$ and the computational cost per iteration from $\mathcal{O}(n^2)$ to $\mathcal{O}(mn)$.

Algorithm Summary

The complete L-BFGS algorithm with cautious update and Lewis-Overton line search:

- Initialize \mathbf{x}^0 , $\mathbf{g}^0 := \nabla f(\mathbf{x}^0)$, choose m
- ② For $k = 0, 1, 2, \dots$ until convergence:
 - $oldsymbol{0}$ Compute search direction: \mathbf{d}^k using **L-BFGS two-loop recursion**
 - **2** Find step size α^k using **Lewis-Overton line search**
 - 3 Update: $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - Ompute $\mathbf{s}^k = \mathbf{x}^{k+1} \mathbf{x}^k$, $\mathbf{y}^k = \nabla f(\mathbf{x}^{k+1}) \nabla f(\mathbf{x}^k)$
 - **5** Apply cautious update to $(\{s^k\}, \{y^k\})$

Open Source Implementation

- https://github.com/chokkan/liblbfgs
- https://github.com/ZJU-FAST-Lab/LBFGS-Lite
- https://github.com/yixuan/LBFGSpp
- https://github.com/hjmshi/PyTorch-LBFGS

Thank you for listening!

Zirui Zhang

22 / 22