Definition 0.0.1: Matrismetod i \mathbb{R}^3

Låt Hessianen vara:

$$H = \begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{xy} & f_{yy} & f_{yz} \\ f_{xz} & f_{yz} & f_{zz} \end{pmatrix}$$

..till f, och $D_1=f_{xx},\,D_2=f_{xx}f_{yy}-f_{xy}^2$ och $D_3=det(H).$ Då gäller följande:

- \bullet Om $D_1,D_2,D_3>0$ så är H positivt definit (min)
- \bullet Om $D_1<0,\,D_2>0$ och $D_3<0$ så är H negativt definit.
- \bullet Om $D_3\neq 0$ och varken 1) eller 2) så gäller det att Här indefinit (sadelpunkt).
- \bullet Om $D_3=0$ så kan vi inte dra några slutsatser (då måste vi bestämma manuellt de egenvärden)

En minneregel är genom att kolla på λI :

$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

$$D_1 = \lambda_1, D_2 = \lambda_1 \lambda_2, D_3 = \lambda_1 \lambda_2 \lambda_3$$