

INTÉGRALES IMPROPRES ET INTÉGRALE DÉPENDANT D'UN PARAMÈTRE

Exercice 3

Exercice 3

Pour $x \in \mathbb{R}$, on considère la fonction:

$$F(x) = \int_0^{+\infty} \cos(tx) e^{-t^2} dt$$

- ① Montrer que F est bien définie sur \mathbb{R} .
- 2 Montrer que F est paire.
- 3 Etudier la continuité de F.
- **4** Montrer que F est de classe C^1 sur \mathbb{R} .
- \bullet Exprimer la dérivée de F à l'aide d'une intégrale.

F est bien définie sur \mathbb{R}

• Pour tout x fixé de \mathbb{R} , on a:

$$\forall t \in [0, +\infty[, |\cos(tx)e^{-t^2}| \le e^{-t^2}]$$

• D'autre part,

$$\int_0^{+\infty} e^{-t^2} dt = \int_0^1 e^{-t^2} dt + \int_1^{+\infty} e^{-t^2} dt$$

F est bien définie sur \mathbb{R}

• Pour tout x fixé de \mathbb{R} , on a:

$$\forall t \in [0, +\infty[, |\cos(tx)e^{-t^2}| \le e^{-t^2}]$$

• D'autre part,

$$\int_0^{+\infty} e^{-t^2} dt = \int_0^1 e^{-t^2} dt + \int_1^{+\infty} e^{-t^2} dt$$

• $\int_0^1 e^{-t^2} dt$ converge, et

$$\forall t \in [1, +\infty[, 0 \le e^{-t^2} \le e^{-t} \text{ et } \int_1^{+\infty} e^{-t} dt \text{ converge}]$$

• $\int_{1}^{+\infty} e^{-t^2} dt$ converge.

F est bien définie sur $\mathbb R$

• Pour tout x fixé de \mathbb{R} , on a:

$$\forall t \in [0, +\infty[, |\cos(tx)e^{-t^2}| \le e^{-t^2}]$$

• D'autre part,

$$\int_0^{+\infty} e^{-t^2} dt = \int_0^1 e^{-t^2} dt + \int_1^{+\infty} e^{-t^2} dt$$

• $\int_0^1 e^{-t^2} dt$ converge, et

$$\forall t \in [1, +\infty[, 0 \le e^{-t^2} \le e^{-t} \text{ et } \int_1^{+\infty} e^{-t} dt \text{ converge}$$

• $\int_{1}^{+\infty} e^{-t^2} dt$ converge.

D'après le critère de comparaison, pour tout $x \in \mathbb{R}$

$$\int_0^{+\infty} \cos(tx) \, e^{-t^2} \, \mathrm{d}t \text{ est absolument convergente } \Rightarrow \int_0^{+\infty} \cos(tx) \, e^{-t^2} \, \mathrm{d}t \text{ converge}$$

F est bien définie sur \mathbb{R}

• Pour tout x fixé de \mathbb{R} , on a:

$$\forall t \in [0, +\infty[, |\cos(tx)e^{-t^2}| \le e^{-t^2}]$$

• D'autre part,

$$\int_0^{+\infty} e^{-t^2} dt = \int_0^1 e^{-t^2} dt + \int_1^{+\infty} e^{-t^2} dt$$

• $\int_0^1 e^{-t^2} dt$ converge, et

$$\forall t \in [1, +\infty[, 0 \le e^{-t^2} \le e^{-t} \text{ et } \int_1^{+\infty} e^{-t} dt \text{ converge}$$

• $\int_{1}^{+\infty} e^{-t^2} dt$ converge.

D'après le critère de comparaison, pour tout $x \in \mathbb{R}$

$$\int_0^{+\infty} \cos(tx) \, e^{-t^2} \, \mathrm{d}t \text{ est absolument convergente } \Rightarrow \int_0^{+\infty} \cos(tx) \, e^{-t^2} \, \mathrm{d}t \text{ converge}$$

 $\Rightarrow F$ est bien définie sur \mathbb{R}

F est paire

Rappel: Une fonction paire

Soit $f: I \to \mathbb{R}$ une fonction réelle. On dit qu'elle est paire si:

- $\bullet \ \forall x \in I, f(-x) = f(x).$
- L'intervalle I est symétrique, i.e. $\forall x \in I, \neg x \in I$.

F est paire

Rappel: Une fonction paire

Soit $f:I\to\mathbb{R}$ une fonction réelle. On dit qu'elle est paire si:

- $\bullet \ \forall x \in I, f(-x) = f(x).$
- L'intervalle I est symétrique, i.e. $\forall x \in I, -x \in I$.

Pour $x \in \mathbb{R}$, on a:

$$F(-x) = \int_0^{+\infty} \cos(-tx) e^{-t^2} dt = \int_0^{+\infty} \cos(tx) e^{-t^2} dt = F(x)$$

F est paire

Rappel: Une fonction paire

Soit $f:I\to\mathbb{R}$ une fonction réelle. On dit qu'elle est paire si:

- $\bullet \ \forall x \in I, f(-x) = f(x).$
- L'intervalle I est symétrique, i.e. $\forall x \in I, -x \in I$.

Pour $x \in \mathbb{R}$, on a:

$$F(-x) = \int_0^{+\infty} \cos(-tx) e^{-t^2} dt = \int_0^{+\infty} \cos(tx) e^{-t^2} dt = F(x)$$

 \Rightarrow F est paire

Théorème de continuité

Soit f une fonction définie sur $A \times I$, avec A et I sont deux intervalles de \mathbb{R} . On suppose que:

H1: Pour tout $x \in A$, la fonction $t \mapsto f(x, t)$ est continue sur I.

H2: Pour tout $t \in I$, la fonction $x \mapsto f(x,t)$ est continue sur A.

H3 : Il existe une fonction $\varphi: I \to \mathbb{R}$, continue et positive telle que:

- Pour tout $x \in A$ et $t \in I$, $|f(x,t)| \le \varphi(t)$.
- L'intégrale $\int_I \varphi(t) t$ est convergente.

Alors la fonction définie sur A par l'intégrale:

$$F(x) = \int_{I} f(x, t) \, \mathrm{d}t$$

est continue sur A.

 \bullet Vérification de l'hypothèse H1.

Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \cos(tx) e^{-t^2}$ est continue sur $[0, +\infty[$ comme étant le produit de deux fonctions continues.

 \bullet Vérification de l'hypothèse H1.

Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \cos(tx) e^{-t^2}$ est continue sur $[0, +\infty[$ comme étant le produit de deux fonctions continues.

 \bullet Vérification de l'hypothèse H2.

Pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \cos(tx) e^{-t^2}$ est continue sur \mathbb{R} , car la fonction $x \mapsto \cos(tx)$ l'est aussi.

 \bullet Vérification de l'hypothèse H1.

Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \cos(tx) e^{-t^2}$ est continue sur $[0, +\infty[$ comme étant le produit de deux fonctions continues.

- ullet Vérification de l'hypothèse H2.
 - Pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \cos(tx) e^{-t^2}$ est continue sur \mathbb{R} , car la fonction $x \mapsto \cos(tx)$ l'est aussi.
- \bullet Vérification de l'hypothèse H3.

Pour tout $x \in \mathbb{R}$ et $t \in [0, +\infty[$, on a:

$$|\cos(tx)e^{-t^2}| \le e^{-t^2}$$
 et $\int_0^{+\infty} e^{-t^2} dt$ converge

 \bullet Vérification de l'hypothèse H1.

Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \cos(tx) e^{-t^2}$ est continue sur $[0, +\infty[$ comme étant le produit de deux fonctions continues.

- \bullet Vérification de l'hypothèse H2.
 - Pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \cos(tx) e^{-t^2}$ est continue sur \mathbb{R} , car la fonction $x \mapsto \cos(tx)$ l'est aussi.
- \bullet Vérification de l'hypothèse H3.

Pour tout $x \in \mathbb{R}$ et $t \in [0, +\infty[$, on a:

$$|\cos(tx)e^{-t^2}| \le e^{-t^2}$$
 et $\int_0^{+\infty} e^{-t^2} dt$ converge

 \Rightarrow F est continue sur \mathbb{R}

Théorème de dérivation

Soit f une fonction définie sur $A \times I$, avec A et I sont deux intervalles de \mathbb{R} . On suppose que:

- H1 : Pour tout $x \in A$, la fonction $t \mapsto f(x,t)$ est continue sur I et l'intégrale $\int_I f(x,t) dt$ converge.
- **H2**: Pour tout $t \in I$, la fonction $x \mapsto f(x,t)$ est de classe C^1 sur A.
- **H3**: Pour tout $x \in A$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur I.
- **H4** : Il existe une fonction $\psi: I \to \mathbb{R}$, continue et positive telle que:
 - Pour tout $x \in A$ et $t \in I$, $\left| \frac{\partial f}{\partial x}(x,t) \right| \le \psi(t)$.
 - L'intégrale $\int_I \psi(t) t$ est convergente.

Alors la fonction définie sur A, $F(x) = \int_{I} f(x,t) t$ est de classe C^{1} sur A, avec:

$$F'(x) = \int_{I} \frac{\partial f}{\partial x}(x,t) dt$$

\bullet Vérification de l'hypothèse H1.

On a bien montré que, pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \cos(tx) e^{-t^2}$ est continue sur $[0, +\infty[$, ainsi que l'intégrale $_0^{+\infty} \cos(tx) e^{-t^2} dt$ converge.

\bullet Vérification de l'hypothèse H1.

On a bien montré que, pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \cos(tx) e^{-t^2}$ est continue sur $[0, +\infty[$, ainsi que l'intégrale $_0^{+\infty} \cos(tx) e^{-t^2} \operatorname{dt}$ converge.

\bullet Vérification de l'hypothèse H2.

Pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \cos(tx) e^{-t^2}$ est de classe C^1 sur \mathbb{R} , car la fonction $x \mapsto \cos(tx)$ l'est aussi et on a:

$$\forall t \in [0, +\infty[, \frac{\partial f}{\partial x}(x, t) = -t\sin(tx)e^{-t^2}]$$

continue sur \mathbb{R} .

\bullet Vérification de l'hypothèse H1.

On a bien montré que, pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \cos(tx) e^{-t^2}$ est continue sur $[0, +\infty[$, ainsi que l'intégrale $_0^{+\infty} \cos(tx) e^{-t^2} dt$ converge.

\bullet Vérification de l'hypothèse H2.

Pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \cos(tx) e^{-t^2}$ est de classe C^1 sur \mathbb{R} , car la fonction $x \mapsto \cos(tx)$ l'est aussi et on a:

$$\forall t \in [0, +\infty[, \frac{\partial f}{\partial x}(x, t) = -t\sin(tx)e^{-t^2}]$$

continue sur \mathbb{R} .

\bullet Vérification de l'hypothèse H3.

Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto -t\sin(tx) e^{-t^2}$ est continue sur $[0, +\infty[$ comme étant le produit de des fonctions continues.

 \bullet Vérification de l'hypothèse H4.

Pour tout $x \in \mathbb{R}$ et $t \in [0, +\infty[$, on a:

$$|-t\sin(tx)e^{-t^2}| \le te^{-t^2}$$

De plus, on a:

$$\lim_{t \to +\infty} \frac{te^{-t^2}}{\frac{1}{t^2}} = \lim_{t \to +\infty} t^2 t e^{-t^2} = \lim_{t \to +\infty} t^3 e^{-t^2} = 0$$

et $\int_{1}^{+\infty} \frac{1}{t^2} dt$ converge. Donc, d'après le critère de quotient,

$$\int_{1}^{+\infty} te^{-t^2} dt$$
 est convergente.

Comme $\int_0^1 te^{-t^2} dt$ est convergente donc

$$\int_0^{+\infty} t e^{-t^2} dt = \int_0^1 t e^{-t^2} dt + \int_1^{+\infty} t e^{-t^2} dt \text{ est convergente.}$$

Finalement, on en conclut que la fonction F est de classe C^1 sur \mathbb{R} , et on a:

$$F'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x, t) dt = -\int_0^{+\infty} t \sin(tx) e^{-t^2} dt, \quad \forall x \in \mathbb{R}$$