Gems

Джизъса има N скъпоценни камъка. Всеки от неговите камъни има стойност V_i и тегло W_i . Обаче, жената на Джизъса - Зелената Златка решила да го разори и Джизъса почти фалирал. Той решил да продаде част от своите скъпоценни камъни, но Зелената Златка разкрила "спасителния му план" и решила да запази K от най-добрите диаманта за себе си.

Златка иска да вземе за себе си K диаманта такива че $\frac{S_K(V)}{S_K(W)}$ (съотношението между цена и тегло) да е максимално. Където $S_K(V)$ е сумата $\sum_{i=1}^K V_i$ на заделените от нея K диаманти, а $S_K(W)$ е сумата $\sum_{i=1}^K W_i$ от теглата им.

Входен формат

Като вход получавате 2 числа N и K (брой на камъните и размера на търсеното множество) Следват N реда с 2 числа на всеки ред $V_i, W_i, i=\overline{i,N}$.

Ограничения

 $K \le N \le 1,000,000$ $V_i \le 10,000,000$ $W_i \le 10,000,000$

Изходен формат

За намереното множество от K диаманта такива че $P = \frac{\sum_{i=1}^K V_i}{\sum_{i=1}^K W_i}$ е максимално (възможно

е да има няколко такива максимални K множества), затова от вас се иска да изведете само максималното $S_K(V_i)$ сред всички възможни P множества.

Примерен вход	Очакван изход	Пояснения
2 1 1 1 1 4	1	Всички възможни $P=\frac{\sum_{i=1}^K V_i}{\sum_{i=1}^K W_i}$ ($K=1$) са: $1/1=1,\ 1/4=0.25.$ Следователно $P=\{(1,1)\}$ е оптималното и единствено, затова изваждаме сумата от цените на елементите в случая: $1.$

github.com/andy489