PH6151	ENGINEERING PHYSICS	L	Т	Р	EL	CREDITS
		3	0	2	3	5

Prerequisites for the course: None

OBJECTIVES:

- To introduce the basic concepts of physics.
- To develop critical thinking through problem solving related to physics
- To identify, analyze and implement possible applications with the goal of achieving the most efficient and effective usage of conceptual physics.

MODULE I:	L	Т	Р	EL
	3	0	2	3

Elasticity – Stress-strain diagram – cantilever – bending moment – Young's modulus determination – twisting couple.

SUGGESTED ACTIVITIES:

- In Class activity: Simple harmonic motion
- Practical Nonuniform bending: Determination of Young's modulus.
- EL: Cantilever, Torsional pendulum, Simple harmonic oscillations

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE II:	L	Т	Р	EL
	3	0	2	3

Torsional pendulum - rigidity modulus - moment of inertia - simple harmonic motion - Wave equation - waves on a string - wave power & intensity - sound waves - decibels.

SUGGESTED ACTIVITIES:

- Flipped classroom and activity
- In class activity: Derivation and Simplification
- EL Practical Problems Waves Resonance Doppler effect of sound standing waves in a string
- Practical Torsional Pendulum: Determination of rigidity modulus of wire and moment of inertia of disc.

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE III:	L	Т	Р	EL
	3	0	2	3

Noise in physical systems – noise mechanisms – ultrasonics: production – magnetostriction and piezoelectric methods – detection of ultrasonic waves– acoustic grating – ultrasonic interferometer.

SUGGESTED ACTIVITIES:

- EL: Piezoelectric effect, acoustic grating
- In class activity: Ultrasonic oscillator construction
- Practical Ultrasonic interferometer: Determination of velocity of sound and compressibility of liquids.

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IV:	L	Т	Р	EL
	3	0	2	3

Thermal expansion – thermal stress – bimetals – heat transfer in solids & thermal conductivity - compound media – Forbe's and Lee's disc method: theory and experiment.

SUGGESTED ACTIVITIES:

- Flipped Class room
- EL: Thermal expansion, bimetals, Compound media, Thermal conductivity
- Practical Lee's disc: Determination of thermal conductivity of a bad conductor.

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE V:	L	Т	Р	EL
	3	0	2	3

Double and multiple slits interference – diffraction gratings – thin films – antireflection coating – Newton's rings, air-wedge and their applications – Michelson interferometer – The diffraction limit.

SUGGESTED ACTIVITIES:

- Applications in class discussion
- EL Thin films, antireflection coating, Air-wedge, Interferometry
- Practical Air-wedge: Determination of thickness of thin sheet/wire.

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VI:	L	Т	Р	EL
	3	0	2	3

Lasers – Principles and applications – Einstein's coefficients – laser resonator - semiconductor laser

SUGGESTED ACTIVITIES:

- Introduction in class
- EL: Laser theory, principles, industrial applications, fiber optics
- Flipped Classroom for further study
- Practical Compact disc: Determination of width of groove using laser

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VII:	Г	Т	Р	EL
	3	0	2	3

Optical fibers – propagation of light in optical fibers – acceptance angle – numerical aperture – fiber optical communication system – fiber optic sensors.

SUGGESTED ACTIVITIES:

- Combinations of in Class & Flipped class rooms
- Practical: Optical fiber: Determination of numerical aperture and acceptance angle.
- EL: Fiber optics & sensors

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VIII:	L	T	Р	EL
	3	0	0	3

Wave - particle duality - The Schrodinger equation - time dependent and independent equations - expectation values - particle in a box.

SUGGESTED ACTIVITIES:

- Illustration of potential wells and tunneling phenomena in class
- Flipped classroom
- EL Wave particle duality, Schrodinger equation, Particle in a box problem (1D, 2D, 3D)

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IX:	L	Т	Р	EL
	3	0	2	3

Crystal structures and packing factor (SC, BCC, FCC, Diamond) – Bragg's law – determination of crystal structures.

SUGGESTED ACTIVITIES:

- Mostly in Class
- EL Mini project for constructing crystal structures using softballs, Crystal structure parameters
- Practical: Crystal structures: Classification and packing factor, Modelling of Diamond crystal structure

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Project demonstration and presentation (crystal structures)

MODULE X:	L	T	Р	EL
	3	0	4	3

Density of states – Fermi-Dirac statistics – Population of the conduction and valence bands - Fermi level – single crystal growth – epitaxy - process of integrated circuit production.

SUGGESTED ACTIVITIES:

- Combination of in class & Flipped
- EL Crystal growth techniques and IC process
- Practical: Post office box: Determination of band gap of a semiconductor
- Practical: Solution growth of crystal

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

REFERENCE BOOKS:

- 1. Richard Wolfson, "Essential University Physics", Second Edition, Addision-Wesley, 2012
- 2. Narciso Garcia and Arthur Damask, "Physics for Computer Science Students", Springer-Verlag, 1991.
- 3. Neil Gershenfeld, "The Physics of Information Technology", Cambridge University Press. 2000.
- 4. Harris Benson, "University Physics", Wiley India, 2004.
- 5. P.A. Tipler and G.P. Mosca, "Physics for Scientists and Engineers with Modern Physics, W.H. Freeman, 2007.

OUTCOMES:

Upon completion of the course, the students will be able to:

- Apply appropriate concepts of physics to solve problems.
- Acquire knowledge on the basics of properties of matter, optics, lasers, crystals.

 Appreciate the importance of physics of materials for various engineering applications.

EVALUATION METHOD TO BE USED:

SI. no	Category of Courses	Continuous Assessment	Mid – Semester Assessment	End Semester		
1.	Theory Integrated with Practical	15(T) + 25 (P)	20	40		

MA6151	MATHEMATICS	L	Т	Р	EL	CREDITS
-		3	1	0	3	5

OBJECTIVES:

- To gain proficiency in calculus computations.
- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To familiarize the student with functions of several variables.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

MODULE I	SINGLE VARIABLE FUNCTIONS	L	Т	Р	EL
		3	1	0	3

Representation of functions - New functions from old functions - Limit of a function - Limits at infinity -Continuity.

SUGGESTED ACTIVITIES:

Problem solving sessions

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE II	DIFFERENTIALCALCULUS	L	T	Р	EL
		3	1	0	3

Derivatives - Differentiation rules - intermediate theorem - Rolle's theorem- Maxima and Minima of functions of one variable.

SUGGESTED ACTIVITIES:

- Problem solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

Tutorial problems