

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 1/28

SUMMER – 2013 EXAMINATION MODEL ANSWER

Subject: BASIC MATHEMATICS

Subject Code: 17104

Important Instructions to examiners:

- The model answer shall be the complete solution for each and every question on the question paper.
- Numerical shall be completely solved in a step by step manner along with step marking.
- All alternative solutions shall be offered by the expert along with self-explanatory comments from the expert.
- In case of theoretical answers, the expert has to write the most acceptable answer and offer comments regarding marking scheme to the assessors.
- In should offer the most convincing figures / sketches / circuit diagrams / block diagrams / flow diagrams and offer comments for step marking to the assessors.
- In case of any missing data, the expert shall offer possible assumptions / options and the ensuing solutions along with comments to the assessors for effective assessment.
- In case of questions which are out of the scope of curricular requirement, the expert examiner shall solve the question and mention the marking scheme in the model answer. However, the experts are requested to submit their clear cut opinion about the scope of such question in the paper separately to the coordinator.
- Experts shall cross check the DTP of the final draft of the model answer prepared by them.

Subject Code: (17104) Summer 2013 Page No: 2/28

Que.	Sub.	M. 11	3.6.1	Total
No.	Que.	Model answers	Marks	Marks
1)		Attempt any ten of the following:		20
		Find k, if $\begin{vmatrix} 2 & -k & 7 \\ 3 & -4 & 13 \end{vmatrix} = 0$		
	(a)	Find k, if $\begin{vmatrix} 3 & -4 & 13 \\ 9 & 11 & 22 \end{vmatrix} = 0$		
	Ans.	$\begin{vmatrix} 8 & -11 & 33 \end{vmatrix}$		
		$\begin{vmatrix} 2 & -\kappa & 7 \\ 3 & -4 & 13 \end{vmatrix} = 0$		
		$\begin{vmatrix} 2 & -k & 7 \\ 3 & -4 & 13 \\ 8 & -11 & 33 \end{vmatrix} = 0$		
		$2(-4\times33+11\times13)+k(3\times33-13\times8)+7(-33+32)=0$	1	
		22+k(-5)-7=0		
		15 - 5k = 0	1/2	
		15 = 5k	1/	02
		k=3	1/2	
	(b)	Find A if, $2A+3\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 6 & 3 \end{bmatrix}$		
	Ans.	$ 2A+3\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 6 & 3 \end{bmatrix} $		
		$ 2A + \begin{bmatrix} 3 & 9 \\ 6 & 15 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 6 & 3 \end{bmatrix} $	1/2	
		$2A = \begin{bmatrix} 5 & 7 \\ 6 & 3 \end{bmatrix} - \begin{bmatrix} 3 & 9 \\ 6 & 15 \end{bmatrix}$		
		$2A = \begin{bmatrix} 2 & -2 \\ 0 & -12 \end{bmatrix}$	1	02
		$A = \begin{bmatrix} 1 & -1 \\ 0 & -6 \end{bmatrix}$	1/2	
	c)	Prove that the matrix $\begin{bmatrix} 1 & 4 \\ 6 & 9 \end{bmatrix}$ is non-singular matrix.		
	Ans.	Consider, $\begin{vmatrix} 1 & 4 \\ 6 & 9 \end{vmatrix}$		
		=9-24	2	02
		= -15 ≠ 0 ∴ Given matrix is non-singular matrix.		
	d)	If $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 5 \\ 2 & 3 \end{bmatrix}$ then show that $AB = AC$		
		$AB = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$		

Subject Code: (17104) Page No: 3/28 Summer 2013

Que.	Sub.	M 11	N/ 1	Total
No.	Que.	Model answers	Marks	Marks
1.	(e)	$= \begin{bmatrix} 12 & 16 \\ 12 & 16 \end{bmatrix}$ $AC = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ 2 & 3 \end{bmatrix}$ $= \begin{bmatrix} 12 & 16 \\ 12 & 16 \end{bmatrix}$ $\therefore AB = AC$ Resolve into partial fractions: $\frac{2x+3}{x^2-2x-3}$	1	02
	Ans.	$\frac{2x+3}{x^2-2x-3} = \frac{2x+3}{(x-3)(x+1)}$ Let, $\therefore \frac{2x+3}{(x-3)(x+1)} = \frac{A}{x-3} + \frac{B}{x+1}$ $2x+3 = (x+1)A + (x-3)B$ Put $x = -1$ $9 = 4A$ $A = \frac{9}{4}$ Put $x = 3$ $1 = -4B$	1/2	
		$B = \frac{-1}{4}$ $\frac{2x+3}{(x-3)(x+1)} = \frac{9/4}{x-3} + \frac{-1/4}{x+1} = \frac{1}{4} \left[\frac{9}{x-3} - \frac{1}{x+1} \right]$ OR $\frac{2x+3}{x^2 - 2x - 3} = \frac{2x+3}{(x-3)(x+1)}$ Let $\therefore \frac{2x+3}{(x-3)(x+1)} = \frac{A}{x-3} + \frac{B}{x+1}$	1/2	02
		$2x+3=(x+1)A+(x-3)B$ $2x+3=(A+B)x+A-3B$ By equating equal power coefficients $A+B=2 \qquad A-3B=3$ By solving above equations:		

Subject Code: (17104) Page No: 4/28 Summer 2013

Que.	Sub. Que.	Model answers	Marks	Total Marks
1.	Que.	Q	1/2	TVICTION
1.		$\therefore A = \frac{9}{4}$, 2	
		$\therefore B = \frac{-1}{4}$	1/2	
			1/2	02
		$\frac{2x+3}{(x-3)(x+1)} = \frac{9/4}{x-3} + \frac{-1/4}{x+1}$		
	(f)	Prove that $2\sin^2\theta = 1 - \cos 2\theta$		
	Ans.	$1 - \cos 2\theta = 1 - \cos(\theta + \theta)$	1	
		$=1-(\cos\theta.\cos\theta-\sin\theta.\sin\theta)$	1	
		$=1-\left(\cos^2\theta-\sin^2\theta\right)$		
		$=1-\cos^2\theta+\sin^2\theta$		
		$=\sin^2\theta+\sin^2\theta$	1/2	
		$=2\sin^2\theta$	1/2	02
	(g)	Define Allied Angles		
	Ans.	Allied Angle: Any two angles whose sum or difference is either zero	_	02
		or an integral multiple of $\frac{\pi}{2}$ are called as allied angle.	2	02
	(h)	If $2\cos 60^{\circ} \cdot \cos 10^{\circ} = \cos A + \cos B$, then find A and B		
	Ans.	$\cos 60^{\circ}.\cos 10^{\circ} = \cos A + \cos B$		
		$\cos(60^{0} + 10^{0}) + \cos(60^{0} - 10^{0}) = \cos A + \cos B$	1	
		$\cos 70^0 + \cos 50^0 = \cos A + \cos B$		
		$A = 70^{\circ} \text{ and } B = 50^{\circ}$	1	02
		OR		
		$2\cos 60^{\circ} \cdot \cos 10^{\circ} = \cos A + \cos B$		
		$2\cos 60^{\circ}.\cos 10^{\circ} = 2\cos \frac{A+B}{2}.\cos \frac{A-B}{2}$	1	
		$\frac{A+B}{2} = 60^{\circ}$ and $\frac{A-B}{2} = 10^{\circ}$	1/2	
		$A + B = 120^{\circ}$		
		$A - B = 20^{\circ}$		
		$A = 70^{\circ}$ and $B = 50^{\circ}$	1/2	02
	(i)	Evaluate without using calculator $\frac{\tan 85^{\circ} - \tan 40^{\circ}}{1 + \tan 85^{\circ} \cdot \tan 40^{\circ}}$		

Subject Code: (17104) Page No: 5/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	wioder answers	IVIAIKS	Marks
1.	Ans.	$\tan 85^{\circ} - \tan 40^{\circ}$	1	
		$1 + \tan 85^{\circ} \cdot \tan 40^{\circ}$	1/	
		$=\tan\left(85^{\circ}-40^{\circ}\right)$	1/2	
		$= \tan 45^{\circ}$		
		=1	1/2	02
	(j)	Prove that $\cos^{-1} x = \sec^{-1} \left(\frac{1}{x} \right)$		
	Ans.	Let $\cos^{-1} x = \theta$		
		$\therefore \cos \theta = x$	1/2	
		$\therefore \sec \theta = \frac{1}{2}$	1	
		x (1)	1	
		$\therefore \sec \theta = \frac{1}{x}$ $\theta = \sec^{-1} \left(\frac{1}{x} \right)$	1/2	02
		$\cos^{-1} x = \sec^{-1} \left(\frac{1}{x} \right)$		
		Find the perpendicular distance between the point $(3,4)$ and the line		
	(k)	3x + 4y = 5.		
	Ans.	Perpendicular distance= $\left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $		
		$= \left \frac{3(3) + 4(4) - 5}{\sqrt{3^2 + 4^2}} \right $	1	
		_ 20		
		_ 5	1	02
		=4 units	1	02
	(1)	Find the range of the following distribution:		
		3,6,10,1,15,16,21,19,18.		
	Ans.	Range =Largest value-Smallest value =21-1	1	
		=20	1	02
2.		Attempt any four of the following:		16
2.		The input any road of the ronowing.		16
	(a)	Solve the following equations by using Cramers rule:		
		x-y-2z=1, 2x+3y+4z=4, 3x-2y-6z=5		
	Ans.	$\begin{vmatrix} 1 & -1 & -2 \\ 2 & 2 & 4 \end{vmatrix}$		
	Alls.	Let $D = \begin{vmatrix} 1 & -1 & -2 \\ 2 & 3 & 4 \\ 3 & -2 & -6 \end{vmatrix}$		
		=1(-18+8)+1(-12-12)-2(-4-9)	1	
		=-8		

Subject C	Code: (17104)	Summer 2013	Page No: 6/28	-
2.	$D_{x} = \begin{vmatrix} 1 & -1 & -2 \\ 4 & 3 & 4 \\ 5 & -2 & -6 \end{vmatrix}$ $= 1(-18+8)+1(-24+1)$ $= -8$ $D_{y} = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 4 & 4 \\ 3 & 5 & -6 \end{vmatrix}$ $= 1(-24-20)-1(-3)$ $= -16$ $D_{y} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 3 & 4 \\ 3 & -2 & 5 \end{vmatrix}$ $= 1(15+8)+1(10-1)$ $= 8$ $x = \frac{D_{x}}{D} = \frac{-8}{-8} = 1$ $y = \frac{D_{y}}{D} = \frac{-16}{-8} = 2$ $z = \frac{D_{z}}{D} = \frac{8}{-8} = -1$	12-12)-2(10-12)	1/2 1/2 1/2 1/2 1/2	04
(b) Ans.	Find x and y if $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 2x-3 & -2 & 4-3y \\ x+5 & -1 & 2+5y \\ \therefore 2x-3=2x-3 \\ \text{and } x+5=x+5 \end{bmatrix}$		$\begin{bmatrix} y \\ y \end{bmatrix}$ 2	04
(c)	$\therefore \text{ it has no solution.}$ If $A = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 2 & 0 \\ 4 & 0 & 3 \end{bmatrix}$,	es finding the values of x and y are not $B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ ix D such that 2A-3B-D=C	possible.	

Subject Code: (17104) Page No: 7/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Wiodel allswers	Warks	Marks
2.	Ans.	Given, $2A - 3B - D = C$ D = 2A - 3B - C $\begin{bmatrix} 1 & 3 & 2 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$	1	
		$D = 2 \begin{bmatrix} 1 & 3 & 2 \\ -1 & 2 & 0 \\ 4 & 0 & 3 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} - \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ $D = \begin{bmatrix} 2 & 6 & 4 \\ -2 & 4 & 0 \\ 8 & 0 & 6 \end{bmatrix} - \begin{bmatrix} 3 & 0 & 0 \\ 3 & 6 & 0 \\ 3 & 0 & 9 \end{bmatrix} - \begin{bmatrix} 2 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$		
		$D = \begin{bmatrix} -2 & 4 & 0 \\ 8 & 0 & 6 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 3 & 0 & 9 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ $D = \begin{bmatrix} -3 & 5 & 2 \\ -7 & -4 & -1 \\ 4 & -2 & -5 \end{bmatrix}$	1	04
		$D = \begin{bmatrix} -7 & -4 & -1 \\ 4 & -2 & -5 \end{bmatrix}$ $\begin{bmatrix} -3 & 7 \\ 5 & 6 \end{bmatrix}$ $\begin{bmatrix} -3 & 7 \\ 5 & 6 \end{bmatrix}$	2	
		If $A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 7 \\ -5 & 6 \\ -4 & 4 \end{bmatrix}$, then show that $(AB)' = B'A'$		
	Ans.	Consider $AB = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} -3 & 7 \\ -5 & 6 \\ -4 & 4 \end{bmatrix}$ $AB \begin{bmatrix} -6 - 15 + 4 & 14 + 18 - 4 \end{bmatrix}$		
		$AB = \begin{bmatrix} -6 - 15 + 4 & 14 + 18 - 4 \\ -3 - 16 & 7 + 16 \end{bmatrix}$	1	
		$AB = \begin{bmatrix} -17 & 28 \\ -19 & 23 \end{bmatrix}$	1/2	
		$(AB)' = \begin{bmatrix} -17 & -19 \\ 28 & 23 \end{bmatrix}$	1/2	
		$B'A' = \begin{bmatrix} -3 & -5 & -4 \\ 7 & 6 & 4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}$	1	
		$B'A' = \begin{bmatrix} -17 & -19 \\ 28 & 23 \end{bmatrix}$ $\therefore (AB)' = B'A'$	1	04
		Resolve into partial fractions: $\frac{x}{x^2 + x - 2}$		
		$\frac{x}{x^2 + x - 2} = \frac{2x + 3}{(x + 2)(x - 1)}$		
		Let, $\therefore \frac{x}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}$	1	

Subject Code: (17104) Page No: 8/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Widder answers	Warks	Marks
No. 2.	(f)	$x = (x-1)A + (x+2)B$ Put $x = -2$ $-2 = A(-3)$ $A = \frac{2}{3}$ Put $x = 1$ $1 = 3B$ $B = \frac{1}{3}$ $\frac{x}{(x+2)(x-1)} = \frac{2/3}{x-3} + \frac{1/3}{x+1}$ Resolve into partial fractions: $\frac{9}{(x-1)(x+2)^2}$ $\frac{9}{(x-1)(x+2)^2} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$	1 1 1 1/2	Marks 04
		$9 = (x+2)^{2} A + (x+2)(x-1)B + (x-1)C$ Put $x = 1$ $9 = 9A$ $\therefore A = 1$ Put $x = -2$ $9 = -3C$ $\therefore C = -3$ Put $x = 0$ $9 = 4A - 2B - C$ $9 = 4(1) - 2B + 3$ $9 = 7 - 2B$ $2B = -2$ $\therefore B = -1$	1/2	
		$\frac{9}{(x-1)(x+2)^2} = \frac{1}{x-1} + \frac{-1}{x+2} + \frac{-3}{(x+2)^2}$	1	04
3.		Attempt any four of the following:		16
	(a)	Using matrix inversion method, solve the following equations: $x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6$		

Subject Code: (17104) Page No: 9/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Wiodel allsweis	IVIAIKS	Marks
3.	Ans.	Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$ Consider, $ A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix}$ = 1(18-12)-1(9-3)+1(4-2) = 6-6+2 $= 2 \neq 0$	1/2	
		$\therefore A^{-1}$ exists		
		Matrix of minors= $\begin{bmatrix} \begin{vmatrix} 2 & 3 & 1 & 3 & 1 & 2 \\ 4 & 9 & 1 & 9 & 1 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 4 & 9 & 1 & 9 & 1 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 2 & 3 & 1 & 3 & 1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 6 & 6 & 2 \\ 5 & 8 & 3 \\ 1 & 2 & 1 \end{bmatrix}$		
		matrix of cofactors = $\begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1 \end{bmatrix}$	1	
		$Adj.A = \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}$	1/2	
		$A^{-1} = \frac{1}{ A } \cdot adj \cdot A$ $= \frac{1}{2} \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix}$ $X = A^{-1}B$ $= \frac{1}{2} \begin{bmatrix} 6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 6 \end{bmatrix}$	1/2	

Subject Code: (17104) Page No: 10/28 Summer 2013

Que.	Sub.	M. 1.1	M 1	Total
No.	Que.	Model answers	Marks	Marks
3.	Que.	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 4 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ OR Matrix of cofactors can be evaluated by following method: $Matrix \ of \ cofactors = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$ $By \ c_{ij} = (-1)^{i+j} M_{ij}$ $c_{11} = (-1)^{i+1} \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix} = 6 \qquad c_{12} = (-1)^{i+2} \begin{vmatrix} 1 & 3 \\ 1 & 9 \end{vmatrix} = -6 \qquad c_{13} = (-1)^{i+3} \begin{vmatrix} 1 & 2 \\ 1 & 4 \end{vmatrix} = 2$ $c_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 1 \\ 4 & 9 \end{vmatrix} = -5 \qquad c_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 1 & 9 \end{vmatrix} = 8 \qquad c_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} = -3$ $c_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1 \qquad c_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = -2 \qquad c_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1$ $\therefore Matrix \ of \ cofactors = \begin{bmatrix} 6 & -6 & 2 \\ -5 & 8 & -3 \\ -5 & 8 & -3 \end{bmatrix}$	1	04
		Resolve into partial fractions: $\frac{x^3 + 2}{x^2 - 1}$ $x^2 - 1 \sqrt{x^3 + 2}$ $x^3 - x$ $\frac{- + \frac{1}{x + 2}}{x^2 - 1} = x + \frac{x + 2}{x^2 - 1}$ Consider, $\frac{x + 2}{x^2 - 1} = \frac{x + 2}{(x + 1)(x - 1)}$ $\therefore \frac{x + 2}{(x + 1)(x - 1)} = \frac{A}{x + 1} + \frac{B}{x - 1}$ $x + 2 = (x - 1)A + (x + 1)B$	1 1/2	

Subject Code: (17104) Page No: 11/28 Summer 2013

Que.	Sub.	M 11	N/ 1	Total
No.	Que.	Model answers	Marks	Marks
3.		Put $x = -1$		
		1 = -2A		
		$\therefore A = -\frac{1}{2}$	1	
		Put $x = 1$		
		3=2 <i>B</i>		
		$\therefore B = \frac{3}{2}$	1	
		$\therefore \frac{x+2}{(x+1)(x-1)} = \frac{-1/2}{x+1} + \frac{3/2}{x-1}$		
		$\therefore \frac{x^3 + 2}{x^2 - 1} = x + \frac{-1/2}{x + 1} + \frac{3/2}{x - 1}$	1/2	04
	(c)	Resolve into partial fractions: $\frac{e^x}{e^{2x} + 4e^x + 3}$		
	Ans.	put $e^x = t$		
		$\frac{t}{t^2+4t+3} = \frac{t}{(t+3)(t+1)}$	1/2	
			1/2	
		$\therefore \frac{t}{(t+3)(t+1)} = \frac{A}{t+3} + \frac{B}{t+1}$, -	
		$\therefore t = (t+1)A + (t+3)B$		
		put $t = -3$		
		-3=-2A		
		$\therefore A = \frac{3}{2}$	1	
		$\begin{array}{c} 2 \\ \text{put } t = -1 \end{array}$		
		-1=2B		
		$\therefore B = -\frac{1}{2}$	1	
		$\therefore \frac{t}{(t+3)(t+1)} = \frac{3/2}{t+3} + \frac{-1/2}{t+1}$	1/2	
		$\therefore \frac{e^x}{(e^x+3)(e^x+1)} = \frac{3/2}{e^x+3} + \frac{-1/2}{e^x+1}$	1/2	04

Subject Code: (17104) Page No: 12/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Woder answers	Warks	Marks
3.	(d)	In any $\triangle ABC$, prove that $\sin \frac{A+B-C}{2} + \sin \frac{B+C-A}{2} + \sin \frac{C+A-B}{2} = \cos A + \cos B + \cos C$		
	Ans.	$A+B+C=180$ $A+B=180-C$ $A+B-C=180-2C$ $\frac{A+B-C}{2}=90-C$ $\sin\left(\frac{A+B-C}{2}\right)=\sin\left(90-C\right)$	1	
		$\sin\left(\frac{A+B-C}{2}\right) = \cos C$	1	
		Similarly, $\sin\left(\frac{B+C-A}{2}\right) = \cos A$	1/2	
		$\sin\left(\frac{C+A-B}{2}\right) = \cos B$	1/2	
		$\therefore \sin\left(\frac{A+B-C}{2}\right) + \sin\left(\frac{B+C-A}{2}\right) + \sin\left(\frac{C+A-B}{2}\right)$ $= \cos A + \cos B + \cos C$	1	04
	(e)	If A and B are both obtuse angles and $\sin A = \frac{5}{13}$ and $\cos B = -\frac{4}{5}$, then find $\sin(A+B)$.		
	Ans.	Given $\sin A = \frac{5}{13}$ $\cos B = -\frac{4}{5}$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	

Subject Code: (17104) Page No:13/28 Summer 2013

Que.	Sub.	N. 11	36.1	Total
No.	Que.	Model answers	Marks	Marks
3.		∴ A and B are obtuse $\cos A = \frac{-12}{13} , \sin B = \frac{3}{5}$	1	
		$\therefore \sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$ $= \frac{5}{13} \cdot \frac{-4}{5} + \frac{-12}{13} \cdot \frac{3}{5}$ $= \frac{-56}{65}$	1 1	04
			1	04
		OR		
		Given $\sin A = \frac{5}{13}$		
		$\therefore \cos A = \pm \sqrt{1 - \sin^2 A}$		
		$=\pm\sqrt{1-\frac{25}{169}}$		
		$=\pm\frac{12}{13}$		
		A and B are obtuse		
		$\therefore \cos A = -\frac{12}{13}$		
		and $\cos B = \frac{-4}{5}$	1	
		$\sin B = \pm \sqrt{1 - \cos^2 B}$		
		$=\pm\sqrt{1-\frac{16}{25}}$		
		$=\pm\frac{3}{5}$		
		$\sin B = \frac{3}{5} \qquad \therefore \text{ B is obtuse}$	1	
		$\sin(A+B) = \sin A \cdot \cos B + \cos A \cdot \sin B$		
		$=\frac{5}{13}\cdot\frac{-4}{5}+\frac{-12}{13}\cdot\frac{3}{5}$	1	
		$=\frac{-56}{65}$	1	04
	(f)	Prove that $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{84}{85}$		

Subject Code: (17104) Page No: 14/28 Summer 2013

Que.	Sub.	Madalanana	Marilan	Total
No.	Que.	Model answers	Marks	Marks
3.	- Que.	$\sin A = \frac{4}{5}$ $\therefore \cos A = \sqrt{1 - \sin^2 A}$ $= \sqrt{1 - \frac{16}{25}}$ $= \frac{3}{5}$ and $\sin B = \frac{8}{17}$ $\therefore \cos B = \sqrt{1 - \cos^2 B}$ $= \sqrt{1 - \frac{64}{289}}$ $= \frac{15}{17}$ LHS=A + B RHS= $\sin^{-1} \frac{84}{85}$ Consider, $\sin(A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B$ $= \frac{4}{5} \cdot \frac{15}{17} + \frac{3}{5} \cdot \frac{8}{17} = \frac{84}{85}$	1 1	
		$A + B = \sin^{-1} \frac{4}{5} + \sin^{-1} \frac{8}{17} = \sin^{-1} \frac{84}{85} A + B = \sin^{-1} \frac{84}{85}$ OR Let $\sin^{-1} \frac{4}{5} = A$, $\sin^{-1} \frac{8}{17} = B$ $\therefore \sin A = \frac{4}{5}$, $\sin B = \frac{8}{17}$	1	04

Subject Code: (17104) Page No: 15/28 Summer 2013

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
3.		4 5 8 17 3 15	1	
		$\tan A = \frac{4}{3} \qquad , \qquad \tan B = \frac{8}{15}$ $A = \tan^{-1} \frac{4}{3} \qquad , \qquad B = \tan^{-1} \frac{8}{15}$ $\therefore \sin^{-1} \frac{4}{5} = \tan^{-1} \frac{4}{3} \qquad , \qquad \therefore \sin^{-1} \frac{8}{17} = \tan^{-1} \frac{8}{15}$ $LHS = \sin^{-1} \frac{4}{5} + \sin^{-1} \frac{8}{17}$	1	
		$5 \cdot \sin^{2} 5 \cdot \sin^{2} 17$ $= \tan^{-1} \frac{4}{3} + \tan^{-1} \frac{8}{15}$ $= \tan^{-1} \left(\frac{\frac{4}{5} + \frac{8}{15}}{1 - \frac{4}{5} \cdot \frac{8}{15}} \right)$ $= \tan^{-1} \left(\frac{\frac{60 + 24}{45}}{\frac{45 - 32}{45}} \right)$ $= \tan^{-1} \left(\frac{84}{13} \right)$	1 1/2	
		RHS= $\sin^{-1}\frac{84}{85}$ Let $\sin^{-1}\frac{84}{85} = C$ $\therefore \sin C = \frac{84}{85}$ 13		

Subject Code: (17104) Page No: 16/28 Summer 2013

Que.	Sub.	M 11	3.4.1	Total
No.	Que.	Model answers	Marks	Marks
3.		$\therefore \tan C = \frac{84}{13}$ $C = \tan^{-1} \frac{84}{13}$ $\therefore \sin^{-1} \frac{84}{85} = \tan^{-1} \frac{84}{13}$	1/2	04
4.		∴ RHS= $\tan^{-1}\frac{84}{13}$ LHS=RHS Attempt any four of the following:		16
	(a)	Prove that $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$		
	Ans.	$tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$	1/2	
		$= \frac{sinAcosB + cosAsinB}{cosAcosB - sinAsinB}$	2	
		$= \frac{\frac{sinAcosB}{cosAcosB} + \frac{cosAsinB}{cosAcosB}}{\frac{cosAcosB}{cosAcosB}} - \frac{sinAsinB}{cosAcosB}$	1	
		$=\frac{tanA + tanB}{1 - tanAtanB}$	1/2	04
	(b)	Prove that $cos3A=4cos^3A-3cosA$		
	Ans.	cos3A = cos(2A + A)		
		= cos2AcosA - sin2AsinA	1	
		$= (2\cos^2 A - 1)\cos A - 2\sin A\cos A\sin A$	1	
		$= 2\cos^3 A - \cos A - 2\sin^2 A \cos A$		
		$=2\cos^3 A - \cos A - 2\left(1 - \cos^2 A\right)\cos A$	1	
		$=2\cos^3 A - \cos A - 2\cos A + 2\cos^3 A$		
		$= 4\cos^3 A - 3\cos A$	1	04

Subject Code: (17104) Page No: 17/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.	Woder answers	Warks	Marks
4.	(c)	Without using calculator show that $\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 60^{\circ} \cdot \sin 80^{\circ} = \frac{3}{16}$		
	Ans.	$sin20^{\circ}. sin40^{\circ}. sin60^{\circ}. sin80^{\circ} = \frac{1}{2} sin20^{\circ} (2sin40^{\circ} sin80^{\circ}) sin60^{\circ}$		
		$=\frac{1}{2}sin20^{0}(sin40^{0}-sin120^{0})sin60^{0}$	1	
		$= \frac{1}{2} \sin 20^{\circ} \left(1 - 2 \sin^2 20^{\circ} - \left(-\frac{1}{2} \right) \right) \sin 60^{\circ}$	1	
		$=\frac{1}{2}\sin 20^{\circ}\left(\frac{3}{2}-2\sin^2 20^{\circ}\right)\sin 60^{\circ}$		
		$= \frac{1}{2} \sin 20^{\circ} \frac{1}{2} (3 - 4 \sin^2 20^{\circ}) \left(\frac{\sqrt{3}}{2} \right)$	1/2	
		$=\frac{\sqrt{3}}{8}\left(3\sin 20^{0}-4\sin^{3} 20^{0}\right)$		
		$=\frac{\sqrt{3}}{8}\sin(3\times20^{0})$	1/2	
		$=\frac{\sqrt{3}}{8}sin(60^{0})$		
		$=\frac{\sqrt{3}}{8}\frac{\sqrt{3}}{2}$		
		$=\frac{3}{16}$	1	04
		Note: give appropriate marks for another method.		
	(d)	Prove that		
		$\frac{\sin 8x - \sin 5x}{\cos 7x + \cos 6x} = \sin x + \cos x \cdot \tan \frac{x}{2}$		
	Ans.	$\frac{\sin 8x - \sin 5x}{\cos 7x + \cos 6x} = \sin x + \cos x \cdot \tan \frac{x}{2}$		
		$= \frac{2\cos\frac{8x+5x}{2}.\sin\frac{8x-5x}{2}}{2\cos\frac{7x+6x}{2}.\cos\frac{7x-6x}{2}}$	1	
		$= \frac{2\cos\frac{8x+5x}{2}.\sin\frac{8x-5x}{2}}{2\cos\frac{7x+6x}{2}.\cos\frac{7x-6x}{2}}$	1	

Subject Code: (17104) Page No: 18/28 Summer 2013

Que.	Sub.	Model energons	Montro	Total
No.	Que.	Model answers	Marks	Marks
4.		$\frac{2\cos\frac{13x}{2}.\sin\frac{3x}{2}}{2\cos\frac{13x}{2}.\cos\frac{x}{2}}$		
		$=\frac{\sin\frac{3x}{2}}{\cos\frac{x}{2}}$		
		$=\frac{\sin\left(x+\frac{x}{2}\right)}{\cos\frac{x}{2}}$	1	
		$= \frac{\sin x \cos \frac{x}{2} + \cos x \sin \frac{x}{2}}{\cos \frac{x}{2}}$	1	
		$= \sin x + \cos x \cdot \tan \frac{x}{2}$	1	04
	(e)	Prove that		
		$\tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{13} = \tan^{-1}\left(\frac{2}{9}\right)$		
	Ans.	$\tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{13} = \tan^{-1}\left(\frac{\frac{1}{7} + \frac{1}{13}}{1 - \frac{1}{7}\frac{1}{13}}\right)$	2	
		$= \tan^{-1} \left(\frac{\frac{13+7}{91}}{\frac{91-1}{91}} \right)$	1	
		$=\tan^{-1}\left(\frac{20}{90}\right)$	1/2	
		$= \tan^{-1}\left(\frac{2}{9}\right)$	1/2	04
	(f)	Prove that		
		$\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{5}{13} = \cos^{-1}\frac{56}{65}$		
	Ans.	Let $\sin^{-1}\frac{3}{5} = A$ $\cos^{-1}\frac{5}{13} = B$		
		$\therefore \sin A = \frac{3}{5} \qquad \qquad \therefore \cos A = \frac{5}{13}$		

Subject Code: (17104) Page No: 19/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
4.		$ cos A = \sqrt{1 - sin^2 A} $ $ sin A = \sqrt{1 - cos^2 A} $ $ = \sqrt{1 - \frac{9}{25}} $ $ = \sqrt{1 - \frac{25}{169}} $ $ = \frac{4}{5} $ $ = \frac{12}{13} $	2	
		L.H.S = A - B		
		$Consider \ cos(A-B) = cosAcosB + sinAsinB$		
		$=\frac{4}{5} \cdot \frac{5}{13} + \frac{3}{5} \cdot \frac{12}{13}$		
		$=\frac{20}{65}+\frac{36}{65}$		
		$\therefore \cos(A - B) = \frac{56}{65}$	1	
		$A - B = \cos^{-1}\left(\frac{56}{65}\right)$		
		$\therefore \sin^{-1}\frac{3}{5} - \cos^{-1}\frac{5}{13} = \cos^{-1}\frac{56}{65}$	1	04
		OR		
		Note: This example can be solved by another method, see question no.3 (f) on page.no.15.		
5.		Attempt any Four of the following:		
	(a)	Prove that		
		$\frac{sin4\theta + sin2\theta}{1 + cos2\theta + cos4\theta} = tan2\theta$		
	Ans.	$sin4\theta + sin2\theta$ $2sin2\theta cos2\theta + sin2\theta$	1	
		$\frac{1 + \cos 2\theta + \cos 4\theta}{1 + \cos 2\theta + \cos 2\theta} = \frac{1 + \cos 4\theta + \cos 2\theta}{2\sin 2\theta \cos 2\theta + \sin 2\theta}$	1	
		$=\frac{2\cos^2 2\theta + \cos 2\theta}{2\cos^2 2\theta + \cos 2\theta}$	1	
		$=\frac{\sin 2\theta(2\cos 2\theta+1)}{2\theta(2\cos 2\theta+1)}$	1	
		$cos2\theta(2cos2\theta + 1)$ $= tan2\theta$	1	04

Subject Code: (17104) Page No: 20/28 Summer 2013

Que.	Sub.	M 11	N/ 1	Total
No.	Que.	Model answers	Marks	Marks
5.	(b)	Prove that $cosC + cosD = 2cos\left(\frac{C+D}{2}\right)cos\left(\frac{C-D}{2}\right)$ Since $cos(A+B) + cos(A-B) = 2cosA.cosB$ - (1)	1	
		Put A+B=C A-B=D		
		solve simultaneously		
		$\therefore A = \frac{C + D}{2}$	1	
		$\therefore B = \frac{C - D}{2}$	1	
		From (1) $cosC + cosD = 2cos\left(\frac{C+D}{2}\right)cos\left(\frac{C-D}{2}\right)$	1	04
	(c)	If x and y are both positive , then show that		
		$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$		
	Ans.	Let $tan^{-1} x = A$ $tan^{-1} y = B$		
		$\therefore tanA = x \qquad tanB = y$	1	
		$\therefore \tan^{-1}\left(\frac{x-y}{1+xy}\right) = \tan^{-1}\left(\frac{\tan A - \tan B}{1 + \tan A \tan B}\right)$	1	
		$= \tan^{-1} \bigl(\tan(A - B) \bigr)$	1	
		=A-B		
		$= \tan^{-1} x - \tan^{-1} y$ from(1)	1	04
		$\therefore \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$		
	(d)	Show that the perpendicular distance between two parallel lines		
		$ax+by+c_1 = 0$ and $ax+by+c_2 = 0$ is $\left \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right $		

Subject Code: (17104) Page No: 21/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
5.	Ans.	Let L_1 =ax+by+ c_1 = 0 and L_2 =ax+by+ c_2 =0		
		Let (x_1, y_1) be a point on the line L_2 $ax_1 + by_1 + c_2 = 0$		
		$\therefore ax_1 + by_1 = -c_2$	1	
		Y-axis		
		$P(x_1,y_1)$		
		V autie		
	•	X-axis		
		L_1		
		now the perpendicular distance from (x_1, y_1) on L_1 is		
		$p = \left \frac{ax_1 + by_1 + c_1}{\sqrt{a^2 + b^2}} \right $	1	
		$= \left \frac{-c_2 + c_1}{\sqrt{a^2 + b^2}} \right $	1	
		$= = \left \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right OR = \left \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right $	1	04
	(e)	Find the acute angle between the lines $3x - y + 4 = 0$ and		
		2x+y-3=0		
	Ans.	For $3x - y + 4 = 0$		
		slope= $m_1 = \frac{-a}{b} = \frac{-3}{-1} = 3$	1	
		For $2x+y-3=0$		
		slope= $m_2 = \frac{-a}{b} = \frac{-2}{1} = -2$	1	

Subject Code: (17104) Page No: 22/28 Summer 2013

Que.	Sub.	Model answers	Marks	Total
No.	Que.			Marks
5.		$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $ $= \left \frac{3 + 2}{1 + 3 \cdot (-2)} \right $	1	
		= 1		
		$\theta = \tan^{-1} 1$		
		$\therefore \theta = 45^{\circ} \text{ or } \frac{\pi}{4}$	1	04
	(f)	Find the equation of line passing through the point of intersection		
		of lines $x + y = 0$ and $2x - y = 9$ and through the point $(2,5)$		
	Ans.	x + y = 0		
		2x - y = 9		
		3x = 9		
		$\therefore x = 3$	1	
		∴ y = -3	1	
		\therefore Point of intersection = $(3, -3)$		
		∴ equation is		
		$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$		
		$\therefore \frac{y-5}{-3-5} = \frac{x-2}{3-2}$		
		$\frac{1}{-3-5} = \frac{1}{3-2}$	1	
		$\therefore 8x + y - 21 = 0$	1	04
		OR		
		\therefore Point of intersection = $(3, -3)$	2	
		$\therefore \text{Slope=m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 5}{3 - 2} = -8$	1	
		$\therefore \text{ Equation is } y - y_1 = m(x - x_1)$		
		y - 5 = -8(x - 2)		

Subject Code: (17104) Page No: 23/28 Summer 2013

Que.	Sub.			Total
No.	Que.	Model answers	Marks	Marks
5.		$\therefore 8x + y - 21 = 0$	1	04
6.		Attempt any Four of the following:		
	(a)	If $m_1^{}$ and $m_2^{}$ are the slpes of the two lines , then prove that the		
		angle between two lines is $\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	Ans.	Let $\theta_1=$ Angle of inclination of L_1 $\theta_2=$ Angle of inclination of L_2 slope of L_1 is $m_1=\tan\theta_1$		
		slope of L_2 is $m_2 = \tan \theta_2$	1	
		from fig. $\theta = \theta_1 - \theta_2$	1	
		$\therefore \tan \theta = \tan(\theta_1 - \theta_2)$		
		$=\frac{\tan\theta_1-\tan\theta_2}{1+\tan\theta_1\tan\theta_2}$	1	
		$= \frac{m_1 - m_2}{1 + m_1 m_2}$		
		$\therefore \theta = \tan^{-1} \left(\frac{m_1 - m_2}{1 + m_1 m_2} \right)$		
		For angle to be acute.		
		$\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	1	04
	(b)	Find the equation of the lines passing through the point of		
		intersection of lines $2x + 3y = 13$ and $5x - y = 7$ and		
		perpendicular to the line $3x - y + 17 = 0$		
	Ans.	2x + 3y = 13 – (1)		
		$5x - y = 7 \qquad -(2)$		
			<u> </u>	

Subject Code: (17104) Page No: 24/28 Summer 2013

Que.	Sub.	Model answers								Marks	Total
No.	Que.										Marks
6.											
		2x + 3	2x + 3y = 13								
		<u> 15x – </u>	15x - 3y = 21								
		∴ 17 <i>x</i>	= 3	4							
			x = 2							1	
			y = 3							1	
		∴ poir	nt of int	ersectio	on=(2,3	3)					
		slope	of the li	ine 3 <i>x</i> -	-y + 1	7 = 0 is					
		$m_1 =$	$\frac{-a}{b} = \frac{-a}{-a}$	$\frac{-3}{-1} = 3$							
		∴ sloj	pe of th	e requii	red line	is,					
		m = -	$-\frac{1}{m_1} =$	$-\frac{1}{3}$						1/2	
			iation is								
		$y-y_1$	= m(x)	$(x-x_1)$							
		y - 3	$=-\frac{1}{3}($	(x - 2)						1	
		∴ x +	3y - 1	1 = 0						1/2	04
	(c)	Find the range	e and co	efficien	t of ran	ge of th	e follow	ing data	a:		
		Age	10-	20-	30-	40-	50-	60-	70-		
		(in years)	19	29	39	49	59	69	79		
		Frequency	03	61	223	137	53	19	04		
		Range=Upper	Range=Upper boundary of the last class — lower boundary of first class								
		= 79.5 - 9.5								1	
		= 70								1	

Subject Code: (17104) Page No: 25/28 Summer 2013

Que.	Sub.			3.6						3.5.1	Total
No.	Que.			Mo	odel	answer	'S			Marks	Marks
6.		coefficient o	of range =	=		Ra	nge				
		coefficient									
		=70	1								
		79.5 + 9.	5								
		$=\frac{70}{89}$ or 0	.787							1	04
	(d)	Find mean d						owing data:	:		
		Class	0-10	10-2	.0	20-3	0	30-40	40-50		
		interval									
		Freauency	5	8		15		16	6		
				_	T -		1				
	Ans.	Class	x_i	f_i	$f_i x$	i	D_i	$= x_i - \bar{x} $	f_iD_i		
		0-10	5	5	25		22		110		
		10-20	15	8	120)	12		96		
		20-30	25	15	37	5	2		30	1	
		30-40	35	16	560)	8		12		
		40-50	45	6	270)	18		108		
				50	13	50			472		
		$\bar{x} = \frac{\sum f_i x_i}{N} =$	$=\frac{1350}{50}=$	27					1	1	
		$M.D. = \frac{\sum f_i L}{N}$) <u>i</u>								
		$=\frac{472}{50}$								1	
		= 9.44								1	04

Subject Code: (17104) Page No: 26/28 Summer 2013

Que.	Sub.	Model enginers										Marks	Total		
No.	Que.	Model answers											Warks	Marks	
6.	e)	Find variance and coefficient of variance for the following data:													
		Class 0-			5-	5- 10- 15- 20- 25				25-	30)_	35-		
		 Interval		5	10	15	20	25		30	35	5	40		
						0	45	20		1.6	1.0		2		
		Frequency		3	5	9	15	20		16	10)	2		
		$ \begin{array}{c cc} \text{Class} & x_i \\ \hline 0.5 & 2.5 \\ \end{array} $		f_i	f_i		$f_i x_i$		x_i^2		$f_i x_i^2$				
	Ans.			5	3	3		7.5		6.25		18.75			
		5-10 7.		5	5		37.5		56.25			281.25			
		10-15 12		2.5	9		112.5		1	156.25		1406.25			
		15-20 17		7.5	15		262.5		3	306.25 45		459	3.75		
		20-25 22.		2.5	20		450		506.25			10125		1	
		25-30 27		27.5 16			440		7	756.25 121		121	.00		
		30-35 32		32.5		10		325		1056.25		10562.5			
		35-40 37		7.5	2		75		1	406.25	5	281	2.5		
				80		1710			419		000				
	Mean = $\frac{\sum f_i x_i}{N} = \frac{1710}{80} = 21.375$ S.D.= $\sqrt{\frac{\sum f_i x_i^2}{N} - \left(\frac{\sum f_i x_i}{N}\right)^2}$														
											`1				
		$= \sqrt{\frac{41900}{80} - \left(\frac{1710}{80}\right)^2}$ $= 8.177$													
										1					
	Coefficient of variance = $C.V. = \frac{S.D.}{Mean} \times 100$														
		∴ <i>C.V.</i> = 3	8.2	5										1	04
														1	

Subject Code: (17104) Page No: 27/28 Summer 2013

Que. No.	Sub. Que.		Marks	Total Marks							
6.		Class	x_i	f_i	d_i	$f_i d_i$	d_i^2	$f_i d_i^2$			
		0-5	2.5	3	-3	- 9	9	27			
		5-10	7.5	5	-2	-10	4	20			
		10-15	12.5	9	-1	-9	1	9			
		15-20	<u>17.5</u> a	15	0	0	0	0			
		20-25	22.5	20	1	20	1	20	1		
		25-30	27.5	16	2	32	4	64			
		30-35	32.5	10	3	30	9	90			
		35-40	37.5	2	4	8	16	32			
				80	4	62		262			
		Mean=a									
		$ar{d}=$ Mea									
		$\bar{d} = \frac{\sum f_i}{N}$									
		Mean=a	1								
		$\text{S.D.} = \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times h$									
		$= \sqrt{\frac{262}{80} - \left(\frac{62}{80}\right)^2} \times 5$									
		1									
			1	04							
										04	

Subject Code: (17104) Page No: 28/28 Summer 2013

Que.	Sub. Que.	Model answers	Marks	Total Marks
6.		Note: Students may take any another value for A in the above/below example. So the above table and corresponding values vary accordingly. But the final answer will be the same.		
	(f)	The two sets of observations are given below: Set-I Set-II $\overline{X} = 82.5$ $\overline{Y} = 48.75$ $\sigma_x = 7.3$ $\sigma_y = 8.35$		
		Which of the two sets is more consistent?		
		$C.V.(I) = \frac{\sigma}{\bar{x}} \times 100 = \frac{7.3}{82.5} \times 100 = 8.848$	1½	
		$C.V.(II) = \frac{\sigma}{\bar{x}} \times 100 = \frac{8.35}{48.75} \times 100 = 17.12$	1½	
		\therefore C.V.(I) < C.V.(II) Set I is more consistent	1	04
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.		