Aluna: Nara Avila Moraes Nro. USP: 5716734

MAC5911/IME: Fundamentos de Estatística e Machine Learning. Prof.: Alexandre Galvão Patriota

Questão 01: Apresente um texto de no máximo duas páginas que introduza uma medida de possibilidade condicional, incluindo pelo menos um exemplo numérico e um teorema. Sugiro que leia o paper do Friedman e Halpern (1995) e busque referências adicionais sobre o assunto que estejam publicadas em revistas internacionais. Por exemplo, os autores Didier Dubois e Henry Prade estudaram o assunto em vários artigos.

Questão 02: Na discussão sobre 'The Dutch Book Argument', considere um jogador que não utiliza probabilidades e a banca escolhe uma configuração para explorar a perda certa que o jogador terá. Apresente:

- (2.1) Os valores numéricos de P(H,E) diferentes dos discutidos em sala para cada "H1", "H2", e "H1 U H2";
- (2.2) As apostas escolhidas pela banca para explorar a perda certa do jogador;
- (2.3) A tabela demonstrando que, em todas as possibilidades, o jogador perde para a banca;
- (2.4) Comentários sobre os resultados.

Resposta para o Questão 01

Introdução à Medida de Possibilidade Condicional

1. Para Além da Probabilidade: A Teoria da Possibilidade

No campo da modelagem da incerteza, a Teoria da Probabilidade é a ferramenta predominante, baseada numa axiomática aditiva que descreve a frequência de eventos. Contudo, em muitas situações do mundo real, especialmente em sistemas de inteligência artificial e raciocínio humano, a incerteza não provém da aleatoriedade, mas sim da incompletude ou da imprecisão da informação. Para lidar com este tipo de incerteza, a Teoria da Possibilidade, introduzida por L. A. Zadeh e extensivamente desenvolvida por Didier Dubois e Henri Prade, oferece um arcabouço matemático alternativo e complementar.

A teoria baseia-se em uma distribuição de possibilidade, $\pi: \Omega \to [0,1]$, que atribui a cada elemento ω do universo de discurso Ω um grau de possibilidade, onde $\pi(\omega) = 1$ significa que ω é totalmente possível e $\pi(\omega) = 0$ significa que é impossível. A partir de π , duas medidas duais são definidas para qualquer evento $A \subseteq \Omega$:

- Medida de Possibilidade (Π): Avalia o grau em que o evento A é consistente com a informação disponível. É definida como $\Pi(A) = \sup_{\omega \in A} \pi(\omega)$. Esta medida satisfaz a propriedade axiomática: $\Pi(A \cup B) = \max(\Pi(A), \Pi(B))$.
- Medida de Necessidade (N): Avalia o grau em que o evento A é certamente implicado pela informação. É definida como $N(A) = 1 - \Pi(A^c)$, onde A^c é o complementar de A.

A grande vantagem deste formalismo é a sua capacidade de distinguir entre a falta de crença e a descrença. Se N(A) = 0, não significa que A é falso, mas apenas que não há evidência que o torne necessário.

2. Condicionamento Possibilístico: Atualizando Crenças

Assim como a probabilidade condicional é essencial para a atualização de crenças no modelo probabilístico, a possibilidade condicional é crucial para a revisão de crenças possibilísticas quando uma nova informação, um evento B, é observada. O objetivo é definir $\Pi(A|B)$, o grau de possibilidade de um evento A dado que B ocorreu.

A relação fundamental é:

$$\Pi(A \cap B) = \min(\Pi(A|B), \Pi(B)).$$

Definição: A medida de possibilidade condicional de um evento A dado um evento B, com $\Pi(B) > 0$, é definida como:

 $\Pi(A|B) = \begin{cases} 1 & \text{se } \Pi(A \cap B) = \Pi(B), \\ \Pi(A \cap B) & \text{se } \Pi(A \cap B) < \Pi(B). \end{cases}$

3. Um Teorema Fundamental: A Lei da Possibilidade Total

De forma análoga à Lei da Probabilidade Total, existe um teorema correspondente na Teoria da Possibilidade:

Teorema (Lei da Possibilidade Total): Seja $\{B_1, B_2, \dots, B_n\}$ uma partição do universo Ω . Então, para qualquer evento $A \subseteq \Omega$, sua possibilidade incondicional pode ser calculada a partir das possibilidades condicionais:

$$\Pi(A) = \max_{i=1,\dots,n} \Pi(A \cap B_i) = \max_{i=1,\dots,n} \min(\Pi(A|B_i), \Pi(B_i)).$$

4. Exemplo Numérico: Diagnóstico Médico

Suponha que um paciente pode ter uma de três doenças mutuamente exclusivas: D_1 (Gripe), D_2 (Virose Comum) ou D_3 (Alergia). A distribuição inicial é:

$$\pi(D_1) = 1.0, \quad \pi(D_2) = 0.8, \quad \pi(D_3) = 0.4.$$

Um sintoma S (febre alta) é observado, com possibilidades condicionais:

$$\Pi(S|D_1) = 0.9$$
, $\Pi(S|D_2) = 0.5$, $\Pi(S|D_3) = 0.1$.

Passo 1: Calcular a possibilidade do sintoma S:

$$\Pi(S) = \max\{\min(0.9, 1.0), \min(0.5, 0.8), \min(0.1, 0.4)\} = \max\{0.9, 0.5, 0.1\} = 0.9.$$

Passo 2: Calcular as possibilidades atualizadas (posteriores):

- Para D_1 : $\Pi(D_1|S) = 1.0$.
- Para D_2 : $\Pi(D_2|S) = 0.5$.
- Para D_3 : $\Pi(D_3|S) = 0.1$.

Resultado: Após observar febre alta, a nova distribuição é:

$$\pi(D_1|S) = 1.0, \quad \pi(D_2|S) = 0.5, \quad \pi(D_3|S) = 0.1.$$

Resposta para o Ítem 2.1

Resposta para o Ítem 2.2

Resposta para o Ítem 2.3

Resposta para o Ítem 2.4

@inproceedingsfriedman1995plausibility, author = Nir Friedman and Joseph Y. Halpern, title = Plausibility Measures: A User's Guide, booktitle = Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI'95), year = 1995, pages = 249–258, publisher = Morgan Kaufmann Publishers Inc., address = San Francisco, CA, USA

@articledubois2006possibility, author = Didier Dubois and Henri Prade, title = Possibility Theory and its Applications: A Retrospective and Prospective View, journal = International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, year = 2006, volume = 14, number = 06, pages = 623–641, publisher = World Scientific Publishing Company

@articledubois1994survey, author = Didier Dubois and Henri Prade, title = A survey of belief revision and updating rules in various uncertainty models, journal = International Journal of Intelligent Systems, year = 1994, volume = 9, number = 7, pages = 611–644, publisher = Wiley

@articledubois2003stand, author = Didier Dubois and Henri Prade, title = Possibility theory and its applications: where do we stand?, journal = Fuzzy Sets and Systems, year = 2003, volume = 140, number = 2, pages = 223–252, publisher = Elsevier

@articledubois1991conditioning, author = Didier Dubois and Henri Prade, title = Conditioning in possibility and evidence theories — a logical viewpoint, journal = Artificial Intelligence, year = 1991, volume = 50, number = 3, pages = 365-379, publisher = Elsevier

@articlepuhalskii1997large, author = Anatolii A. Puhalskii, title = Large deviations of the long-term distribution of a non-Markov process, journal = Stochastic Processes and their Applications, year = 1997, volume = 68, number = 1, pages = 45–72, publisher = Elsevier