Solucions comentades

1. Sigui *a* un nombre real. Demostra per inducció que si 1 + a > 0 aleshores

$$(1+a)^n \geqslant 1+na$$

per tot nombre natural

Sigui a un nombre real tal que (1+a)>0. Demostrem per inducció sobre n (n natural) que per tot $n\in\mathbb{N}$, $(1+a)^n\geqslant 1+na$.

Primer provarem la base de la inducció, (la propietat pel cas inicial) és a dir, demostrarem la propietat pel primer natural que verifica la propietat. En aquest cas com que es verifica per a tots el naturals, el primer serà n=0. I podem veure que en efecte, per a n=0 tenim

$$(1+a)^n = (1+a)^0 = 1 \ge 1 = 1+0 \cdot a = 1+na.$$

Ara farem el pas d'inducció. Suposem que la propietat és certa per algun nombre natural n=k, $k\in\mathbb{N}$ (hipotesi d'inducció), es a dir $(1+a)^k\geqslant 1+ka$ i demostrem que aleshores la propietat és certa per al successor, k+1: Per hipòtesi d'inducció tenim que $(1+a)^k\geqslant 1+ka$, com que (1+a)>0, podem multiplicar cada terme de la desigualtat anterior, obtenint $(1+a)^k\cdot (1+a)\geqslant (1+ka)\cdot (1+a)$. Operant, això es el mateix que $(1+a)^{k+1}\geqslant 1+a+ka+ka^2$. Ara, com $a^2\geqslant 0$ i $k\geqslant 0$ tenim que $ka^2\geqslant 0$ i per tant $1+a+ka+ka^2\geqslant 1+a+ka$. Finalment, reescrivint la cadena de desigualtats obtenim $(1+a)^{k+1}\geqslant 1+a+ka+ka^2\geqslant 1+a+ka=1+(k+1)a$, és a dir, hem provat que la desigualtat es verifica per a n=k+1.

2. Sigui X un conjunt, i A, B, $C \subseteq X$. Suposa que $(X \setminus A) \cap B = (X \setminus A) \cap C$ i que $A \cap B = A \cap C$. Demostra que B = C.

Per demostrar B = C, n'hi ha prou en demostrar les dues inclusions $B \subseteq C$ i $C \subseteq B$.

Per demostrar $B \subseteq C$. Sigui $b \in B$ arbitrari. Com que b pot pertànyer a A o no pertànyer a A, farem la demostració per casos ($b \in A$ o $b \notin A$).

- Si $b \in A$, com que $b \in B$, aleshores $b \in A \cap B = A \cap C$ i per tant $b \in C$.
- Si $b \notin A$, com que $b \in B \subseteq X$, aleshores $b \in (X \setminus A) \cap B = (X \setminus A) \cap C$ i per tant $b \in C$.

Com que en tots dos casos $b \in C$, hem demostrat que per tot b, si $b \in B$, aleshores $b \in C$, és a dir $B \subseteq C$.

Anàlogament demostrarem $C \subseteq B$. Sigui $c \in C$ arbitrari.

- Si $c \in A$, com que $c \in B$, aleshores $c \in A \cap C = A \cap B$ i per tant $c \in B$.
- Si $c \notin A$, com que $c \in C \subseteq X$, aleshores $c \in (X \setminus A) \cap C = (X \setminus A) \cap B$ i per tant $c \in B$.

Com que en tots dos casos $c \in B$, hem demostrat $C \subseteq B$.

3. Considera els següents conjunts:

$$A = \left\{ x \in \mathbb{Q} : \exists y \in \mathbb{Z}(x = 3^y) \right\},$$

$$B = \left\{ x \in \mathbb{R} : |x - 5| \leqslant \frac{19}{4} \right\},$$

$$C = \left\{ 0, \frac{1}{4}, 9, \left\{ \frac{1}{4}, \frac{39}{4} \right\}, \frac{1}{3}, \left\{ \frac{1}{4} \right\}, 1, \left\{ \frac{1}{3} \right\} \right\}.$$

(a) Expressa *B* com un interval.

Distinguim els dos següents casos:

(1) Si x < 5, tenim que

$$x \in B \iff |x - 5| = 5 - x \leqslant \frac{19}{4} \iff x \geqslant \frac{1}{4}.$$

(2) Si $x \ge 5$, tenim que

$$x \in B \iff |x - 5| = x - 5 \leqslant \frac{19}{4} \iff x \leqslant \frac{39}{4}.$$

Per tant,

$$B = \{x \in B : x < 5\} \cup \{x \in B : x \geqslant 5\} = \left[\frac{1}{4}, 5\right) \cup \left[5, \frac{39}{4}\right] = \left[\frac{1}{4}, \frac{39}{4}\right].$$

(b) Troba $A \cap B$, $C \setminus A$ i $C \setminus B$.

$$A \cap B = \left\{ \frac{1}{3}, 1, 3, 9 \right\}.$$

$$C \setminus A = \left\{ 0, \frac{1}{4}, \left\{ \frac{1}{4}, \frac{39}{4} \right\}, \left\{ \frac{1}{4} \right\}, \left\{ \frac{1}{3} \right\} \right\}.$$

$$C \setminus B = \left\{ 0, \left\{ \frac{1}{4}, \frac{39}{4} \right\}, \left\{ \frac{1}{4} \right\}, \left\{ \frac{1}{3} \right\} \right\}.$$

(c) Expressa $B \setminus A$ com una unió d'intervals.

Tenim que

$$B \setminus A = \left[\frac{1}{4}, \frac{39}{4}\right] \setminus \left\{\frac{1}{3}, 1, 3, 9\right\}.$$

Per tant,

$$B \setminus A = \left[\frac{1}{4}, \frac{1}{3}\right) \cup \left(\frac{1}{3}, 1\right) \cup (1, 3) \cup (3, 9) \cup (9, \frac{39}{4}].$$

Digues raonadament si són certes o falses les següents afirmacions:

(d) $\left\{\frac{1}{3}\right\} \subseteq C$.

La propietat és certa, perquè $\frac{1}{3}$ és a la llista de elements que apareixen al conjunt C.

(e) $\{\{\frac{1}{3}\}\}\subseteq C$.

La propietat és certa, perquè $\{\frac{1}{3}\}$ és a la llista de elements que apareixen al conjunt C

(f) $\left\{\left\{\frac{1}{3}\right\}\right\} \subseteq A$.

Com que A és un conjunt de nombres racionals, $\{\frac{1}{3}\}$ no pertany al conjunt A, i per tant la propietat és falsa.

 $(g) \mid \forall x \in A \ \exists y \in A \ (y < x \ \land \ 0 < y).$

La propietat és certa. Per demostrar-ho, suposem que $x \in A$. Per definició del conjunt A, existeix un nombre enter p tal que $x = 3^p$. Aleshores, $y = 3^{p-1}$ és un element del conjunt A tal que 0 < y i y < x. Per tant, és cert que per tot $x \in A$ hi ha un $y \in A$ tal que y < x i 0 < y.

(h) $\frac{39}{4} \in C$.

La propietat és falsa, perquè $\frac{39}{4}$ no apareix a la llista dels elements del conjunt C.