CC7711

Inteligência Artificial e Robótica

Prof. Dr. Flavio Tonidandel

Aprendizado

Por que aprender ?

- Capacidade de aprender é parte fundamental do conceito de inteligência.
- Um agente aprendiz é mais flexível
 - aprendizado permite lidar com situações novas (mundo é dinâmico).
 - Dá autonomia ao agente.
- Aprendizado facilita tarefa do projetista → programar apenas o essencial e deixa o sistema aprender o resto sozinho
- Para permitir adaptabilidade do sistema
 - ambiente dinâmico
 - reatividade!!

Paradigmas de Aprendizado

Aprendizagem supervisionada:

 Dado um conjunto de exemplos pré-classificados, aprender uma descrição geral que encapsula a informação contida nesses exemplos e que pode ser usada para prever casos futuros

Aprendizagem não-supervisionada:

• Dada uma coleção de dados não classificados obtidos de sensores ou por outros meios, agrupa-os por regularidades (criar clusters de informação) e deles extrai informações relevantes.

Aprendizagem por reforço:

• Trabalha por recompensa e punição

Aprendizado Indutivo

• Dado um conjunto de exemplos pré-classificados

Dia	Tempo	Temperatura	Umidade	Vento	Partida					
1	Sol	Quente	Alta	Fraco	NÃO					
. 2	Sol	Quente	Alta	Forte	NÃO					
3	Nublado	Quente	Alta	Fraco	SIM					
4	Chuva	Momo	Alta	Fraco	SIM					
5	Chuva	Frio	Normal	Fraco	SIM					
6	Chuva	Frio	Normal	Forte	NÃO					
7	Nublado	Frio	Normal	Forte	SIM					
8	Sol	Momo	Alta	Fraco	NÃO					
9	Sol	Frio	Normal	Fraco	SIM				1	
10	Chuva	Momo	Normal	Fraco	SIM			Tempo		
11	Sol	Momo	Normal	Forte	SIM		Sol		Chuva	
12	Nublado	Momo	Alta	Forte	SIM			Nublado	Chuva	
13	Nublado	Quente	Normal	Fraco	SIM	TI	dade		Vento	
14	Chuva	Momo	Alta	Forte	NÃO	Umi	dade		vento	
						Alta NÃO	Normal SIM	SIM	Forte Frac	SIM

... gerar uma árvore de decisão.

Aprendizado Indutivo

Paradigma: aprendizado supervisionado.

• Características:

- Inferência de uma regra geral (hipótese) a partir de exemplos particulares (Exemplos de Treinamento)
- Precisão diretamente proporcional à quantidade de exemplos.

Métodos:

- simbólicos (ex:ID3 e C4.5);
- não-simbólicos (ex:Redes Neurais).

Aprendizado: Sistema ID3

- O ID3 é aplicado para GENERALIZAÇÕES
- Classifica instâncias alocando-as de cima para baixo em uma árvore de decisão
- Instância = par atributo-valor.
 - Ex: Temperatura = {quente,frio,morno} onde Temperatura é um *atributo* e {quente,frio,morno} são *valores*
- O ID3 constrói uma árvore de decisão tentando sempre responder a seguinte pergunta?
 - Qual a melhor instância para alocar em cada nó da árvore ?

ID3 - Árvore de Decisão

- Vamos entender o ID3 por meio de um exemplo...
- Suponha que se queira decidir se haverá, dependendo das condições do dia, uma partida de tênis.
- Tem-se uma quantidade de observações dos dias que ocorreram ou não uma partida de tênis
- Queremos criar regras gerais (em forma de árvore de decisão) que permite o sistema decidir se haverá ou não uma partida de tênis
- Temos as seguintes instâncias:
 - **Temperatura** = {Quente, Frio, Morno}
 - **Umidade** = {Alta,Normal}
 - **Vento** = {Forte, Fraco}
 - **Tempo** = {Sol, Nublado,Chuva}

Observando os dias que deveriam ou tiveram partidas de tênis

(conjunto ou exemplos de treinamento):

Dia	Tempo	Temperatura	Umidade	Vento	Partida
1	Sol	Quente	Alta	Fraco	NÃO
2	Sol	Quente	Alta	Forte	NÃO
3	Nublado	Quente	Alta	Fraco	SIM
4	Chuva	Morno	Alta	Fraco	SIM
5	Chuva	Frio	Normal	Fraco	SIM
6	Chuva	Frio	Normal	Forte	NÃO
7	Nublado	Frio	Normal	Forte	SIM
8	Sol	Morno	Alta	Fraco	NÃO
9	Sol	Frio	Normal	Fraco	SIM
10	Chuva	Morno	Normal	Fraco	SIM
11	Sol	Morno	Normal	Forte	SIM
12	Nublado	Morno	Alta	Forte	SIM
13	Nublado	Quente	Normal	Fraco	SIM
14	Chuva	Morno	Alta	Forte	NÃO

 Considerando o conjunto de treinamento, o algoritmo ID3 irá gerar a seguinte árvore de decisão automaticamente:

- Regras: if (Tempo=Sol) & (Umidade=Alta) then partida_tênis=NÃO;
 if (Tempo=Sol) & (Umidade=Normal) then partida_tênis=SIM;
 ...
- Pode-se observar que:
 - A árvore acima é consistente com os exemplos de treinamento

Como construir uma árvore de decisão?

Necessita-se:

- Ter uma regra que determine qual atributo deve ser considerado em cada nível da árvore.
- Usar processo de busca para definir a árvore, onde cada estado é uma árvore de decisão parcial (hipótese de uma árvore de decisão)

• O ID3:

- Usa um regra chamada ganho
- Usa uma busca gulosa (onde o atributo de maior ganho é escolhido) que assemelha-se a busca Steepest Hill-Climbing, onde cada estado (nó) é uma árvore de decisão.

Função Ganho de Informação (Gain)

$$Gain(S, A) = Entropia(S) - \sum_{v \in valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

Onde S é o conjunto de treinamento inicial, A é o atributo que irá classificar S, e Sv é o conjunto de treinamento (sub-conjunto de S) quando o atributo A tem valor igual a v

O que a Função Ganho mede?

Gain
$$(S, A) = Entropia(S) - \sum_{v \in valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

- redução esperada da entropia devido a "classificação" de acordo com o atributo A
- Entropia: quanto mais puro for o conjunto, menor é a entropia
 - Conjuntos mais puros: os que possuem só positivos ou só negativos
- O ganho será maior para o Atributo que dividir melhor o conjunto de treinamento em positivos e negativos.
 - A soma das entropias será manor que a entropia original.

O que é essa tal de Entropia ???

Dado um conjunto de treinamento S, contendo exemplos negativos e positivos, tem a seguinte entropia:

Entropia (S) =
$$-p_{\oplus}\log_2 p_{\oplus} - p_{\theta}\log_2 p_{\theta}$$

 p_{\oplus} = proporção de ex. positivos em S e p_{θ} = proporção de ex. negativos em S

Se a saída não for booleana, então Entropia(S) =
$$\sum_{i=0}^{n}$$
 - pi \log_2 pi para n saídas não-booleanas

Entropia mede a "impureza" de S!!

Para p+ (proporção de positivos)

Entropia = 0 quando tem só positivos

Entropia = 1 quando a proporção é igual

Obs.: $0.\log_2 0 = 0$

Aplicando a Entropia no Exemplo do jogo de tênis:

S é uma coleção de 14 exemplos da tabela de jogo de tênis, com 9 positivos e 5 negativos Notação: [9+,5-]

A entropia de S em relação a esta classificação booleana é dada por:

$$Entropia([9+,5-]) = -(9/14)\log_2(9/14) - (5/14)\log_2(5/14) = 0.940$$

Se considerarmos apenas o atributo TEMPO com valor SOL, teríamos:

$$v = Sol, A = TEMPO e Sv com 2 + e 3 -$$

Entropia (Sv) = Entropia (
$$[2+,3-]$$
)

Como gerar uma árvore de decisão?

Dia	Tempo	Temperatura	Umidade	Vento	Partida
1	Sol	Quente	Alta	Fraco	NÃO
2	Sol	Quente	Alta	Forte	NÃO
3	Nublado	Quente	Alta	Fraco	SIM
4	Chuva	Momo	Alta	Fraco	SIM
5	Chuva	Frio	Normal	Fraco	SIM
6	Chuva	Frio	Normal	Forte	NÃO
7	Nublado	Frio	Normal	Forte	SIM
8	Sol	Momo	Alta	Fraco	NÃO
9	Sol	Frio	Normal	Fraco	SIM
10	Chuva	Momo	Normal	Fraco	SIM
11	Sol	Momo	Normal	Forte	SIM
12	Nublado	Momo	Alta	Forte	SIM
13	Nublado	Quente	Normal	Fraco	SIM
14	Chuva	Momo	Alta	Forte	NÃO

Gain
$$(S, A) = Entropia(S) - \sum_{v \in valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

Como gerar uma árvore de decisão?

Dia	Tempo	Temperatura	Umidade	Vento	Partida
1	Sol	Quente	Alta	Fraco	NÃO
2	Sol	Quente	Alta	Forte	NÃO
3	Nublado	Quente	Alta	Fraco	SIM
4	Chuva	Momo	Alta	Fraco	SIM
5	Chuva	Frio	Normal	Fraco	SIM
6	Chuva	Frio	Normal	Forte	NÃO
7	Nublado	Frio	Normal	Forte	SIM
8	Sol	Momo	Alta	Fraco	NÃO
9	Sol	Frio	Normal	Fraco	SIM
10	Chuva	Momo	Normal	Fraco	SIM
11	Sol	Momo	Normal	Forte	SIM
12	Nublado	Momo	Alta	Forte	SIM
13	Nublado	Quente	Normal	Fraco	SIM
14	Chuva	Momo	Alta	Forte	NÃO

Ganho(S,TEMPO) = 0.940 - (5/14) *0.970 - (4/14) *0 - (5/14) *0.970 = 0.247

Gain (S, A) = Entropia (S)
$$-\sum_{v \in valores(A)} \frac{|Sv|}{|S|}$$
 Entropia(Sv)

ID3 - Árvore de Decisão

Cálculo do Ganho para os Atributos

- O valor calculado pelo Ganho mostra o quanto cada atributo consegue melhorar a classificação entre positivos e negativos do conjunto original
- Cálculos de todos os ganhos:
 - Gain(S,Tempo) = 0.247
 - Gain(S,Umidade) = 0.151
 - Gain(S,Vento) = 0.048
 - Gain(S,Temperatura) = 0.029
- Assim, o ID3 escolherá o atributo que oferece maior ganho para cada conjunto de exemplos. Assim, para S, o atributo Tempo será escolhido.

ID3 - Árvore de Decisão

Construindo recursivamente a árvore para a partida de tênis

Em cada '?' o ID3 escolhe qual atributo oferece o melhor ganho com relação aos exemplos já classificados

Como achar o resto da árvore?

□ O ID3 usa um sistema de busca tipo *Subida da Encosta pelo caminho + ingreme*, onde a heurística é a função ganho.

ID3 - Árvore de Decisão

Criando, por fim, a seguinte árvore de decisão:

• Ela é uma boa generalização dos exemplos anteriores ?

ID3 - Árvore de Decisão

- A generalização descrita pela árvore de decisão deve ser consistente com o conjunto de treinamento, ou seja, deve satisfazer todas as instâncias, sejam elas positivas ou negativas.
- Problemas com o conjunto de treinamento (problema da indução):
- Se Amostragem for ruim pode gerar uma árvore de decisão errada.
 - Ex: Se a amostragem for feita somente pelos dias 6,7,9,11 e 14, pode-se concluir:
 - Quando Tempo = {Sol ou Nublado} -> há partida de tênis
 - Quando Tempo = {Chuva} -> não há partida de tênis.
 - O que está errado, não seria CONSISTENTE com outros possíveis exemplos
- Se amostragem contiver erro (chamado ruído) ?
 - Pode-se criar uma árvore errada (NÃO-CONSISTENTE) para outros exemplos além da amostragem
 - Pode-se, inclusive, n\u00e3o conseguir criar a \u00e1rvore !!!

Como sabemos se aprendizagem funciona?

 Como sabemos se nossa hipótese (árvore) h está próxima da função desejada f se não conhecemos f?

Qualquer hipótese seriamente errada, irá ser desmascarada logo após poucos exemplos. Qualquer hipótese consistente com uma quantidade grande de exemplos, terá pouca probabilidade de estar seriamente errada.

 A hipótese h será provavelmente aproximadamente correta: aprendizagem PAC

Quantos exemplos precisamos ter?

- Vamos fazer uma análise. Consideraremos:
 - f a função verdadeira (a árvore ótima)
 - H o conjunto de hipóteses (árvores) possíveis
 - N o conjunto de exemplos de treinamento
- A função f, é um elemento de H.
- Uma hipótese h é dita aproximadamente correta se erro(h) com relação a f seja menor que um ε

Quantidade de exemplos necessários

Mostra-se que:

$$N \ge \frac{1}{\varepsilon} \left(\ln \frac{1}{\delta} + \ln |H| \right)$$

- Onde δ é um número pequeno.
- Conseguiremos, portanto, uma hipótese h abaixo do erro ϵ se o algoritmo ver N exemplos de treinamento.
- Mas como estimar H?
 - H para n atributos booleanos: 2²n
 - Mas H é muito grande... Teríamos que ler um número muito grande de N!!!
- Para escapar disso: mesmo lendo menos exemplos que o necessário, manteremos hipóteses mais simples (e genéricas)
 Occam´s razor = prefira a hipótese mais simples possível

Erro da Hipóstese

- Erro e precisão
 - Taxa de erro de uma árvore

$$err(h) = \frac{1}{n} \sum_{i=1}^{n} ||yi \neq h(xi)||$$

Precisão: acc(h) = 1 - err(h)

Onde:

- •h = classificador
- •n = numero de exemplos
- •yi é a saída correta do exemplo xi
- | | E | | = 1 se yi = h(xi) 0 se yi \neq h(xi)

Para cada Classe Cj ∈ T

Overfitting – Hiper-especialização

Problema de todos algoritmos de aprendizagem!!

 Definição: dado um espaço de hipóteses H, uma hipótese h ∈ H overfits os dados de treinamento se existir uma outra hipótese h' ∈ H, tal que h tem menor erro que h' no conjunto de treinamento, mas h' tem um menor erro que h sobre a distribuição total de instâncias.

Como solucionar o problema: deixar a árvore o mais simples possível (Occam´s razor)

Solucionando o Overfitting

1a. Solução:

Parar de crescer a árvore antes de alcançar o ponto de classificação perfeita dos exemplos de treinamento. Mas, quando parar?

- Validação cruzada: tenta estimar quão bem a hipótese corrente irá predizer dados ainda não recebidos ("vistos"). Segue os seguintes passos:
 - 1. Divide-se o conjunto de treinamento em dois conjuntos: Conjunto de Treinamento (CT) e Conjunto de Validação (CV)
 - 2. Cria-se a árvore de decisão a partir de CT e usa CV para verificar a percentagem de erro.
 - Repete-se os passos 1 e 2 para diversos CT e CV's diferentes e aleatórios
- Com isso, determina-se a melhor árvore para ser usada.

Solucionando Overfitting

2a. Solução

Abordagens que provoquem o overfitting e depois podam a árvore (post-pruning)

Método do Erro Reduzido:

- Considera-se cada nó como candidato à folha da árvore (elimina sub-árvore abaixo dele);
- o nó se torna folha (nova árvore) sempre que a precisão da classificação não diminuir em relação à árvore original
- Usa-se os exemplos de treinamento para inferir uma amostragem estatística, extraindo intervalo de confiança e variância. Use esta amostragem para definir taxas de erros para ramos e sub-ramos da árvore.

Além do ID3...

O ID3 tem alguns problemas e limitações:

- O atributo com mais valores tende a obter o maior ganho
 - Isso causa problemas, pois nem sempre este é o melhor atributo de separação.
 - E.g.: Imagine Data=12.7.1996 como atributo distribuídos em subconjuntos de 1 dia ?

Além desse problema, o ID3 tem algumas limitações

- Não trabalha com atributos numéricos
- Não aceita informação incompleta
- Não trabalha com atributos com custos

Melhorando o ID3.....

Regra de Ganho

Gain
$$(S, A) = Entropia(S) - \sum_{v \in valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

Para resolver a tendência de um Atributo A ter o maior ganho apenas porque possui mais valores, a regra ganho pode ser normalizada pela quantidade de valores de um atributo (Razão de Ganho):

Gain (S, A) =
$$\frac{Entropia(S) - \sum_{v \in valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)}{-\sum_{v \in valores(A)} \frac{|Sv|}{|S|} \log_2 \frac{|Sv|}{|S|}}$$

Atributos com custos

Por exemplo:

• Diagnóstico Médico: teste de sangue custa 1000 reais

Como aprender uma árvore consistente com baixo custo estimado ?

Propostas de modificação da regra Ganho:

Gain²(S,A)/Cost(A) [Tan, Schimmer 1990]

Atributos Numéricos

- ☐ Método Padrão: Separação Binária (Ex: temp < 45)
- ☐ Todo atributo numérico tem diversos pontos de separação.
- ☐ Solução:
 - Calcule o ganho para cada ponto de separação
 - Escolha o o melhor ponto de separação (o que dá maior ganho)
 - O ganho desse melhor ponto será o valor de ganho do atributo

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes No Yes Yes No
```

- Ex: temperatura < 71.5: yes/4, no/2 temperatura ≥ 71.5 : yes/5, no/3
- ☐ Computacionalmente muito caro !!!!
 - ☐ Testa todas as possibilidades de separação para escolher o maior ganho

Atributos Numéricos

Podemos calcular os pontos de separação mais rapidamente:

- Os pontos de separação só precisam ser calculados nos pontos entre classes diferentes (Fayyad & Irani, 1992)
- Pontos intermediários às pontos de separação acima nunca serão pontos de separação ótimos (nunca terão o maior ganho)

Informação Incompleta

- ... E se alguns valores de atributos estão faltando ?
- 1a solução
 - Usando os exemplos de treinamento
 - Se o nó n testa o atributo A, atribua ao valor que falta o valor mais comum de A entre todos os exemplos escolhidos para o nó n.
 - Por exemplo, MORNO para o atributo TEMPERATURA no ex. Jogo de tênis. São 6 em 14 exemplos.

Dia	Tempo	Temperatura	Umidade	Vento	Partida
1	Sol	Quente	Alta	Fraco	NÃO
2	Sol	Quente	Alta	Forte	NÃO
3	Nublado	Quente	Alta	Fraco	SIM
4	Chuva	Momo	Alta	Fraco	SIM
5	Chuva	Frio	Normal	Fraco	SIM
6	Chuva	Frio	Normal	Forte	NÃO
7	Nublado	Frio	Normal	Forte	SIM
8	Sol	Momo	Alta	Fraco	NÃO
9	Sol	Frio	Normal	Fraco	SIM
10	Chuva	Momo	Normal	Fraco	SIM
11	Sol	Momo	Normal	Forte	SIM
12	Nublado	Momo	Alta	Forte	SIM
13	Nublado	Quente	Normal	Fraco	SIM
14	Chuva		Alta	Forte	NÃO

Dia	Tempo	Temperatura	Umidade	Vento	Partida
1	Sol	Quente	Alta	Fraco	NÃO
2	Sol	Quente	Alta	Forte	NÃO
3	Nublado	Quente	Alta	Fraco	SIM
4	Chuva	Momo	Alta	Fraco	SIM
5	Chuva	Frio	Normal	Fraco	SIM
	Chuva	Frio	Normal	Forte	NÃO
	Nublado	Frio	Normal	Forte	SIM
	Sol	Momo	Alta	Fraco	NÃO
9	Sol	Frio	Normal	Fraco	SIM
10	Chuva	Momo	Normal	Fraco	SIM
11	Sol	Momo	Normal	Forte	SIM
12	Nublado	Momo	Alta	Forte	SIM
13	Nublado	Quente	Normal	Fraco	SIM
14	Chuva	Morno	Alta	Forte	NÃO

Informação Incompleta

2a. Solução possível

- Também com o uso dos exemplos de treinamento
- Atribua ao valor que está faltando o valor mais comum de A usados em outros exemplos que tenham o mesmo resultado.
 - Valor ALTA para o atributo UMIDADE para as partidas em que NÃO ocorreram partida de tênis.

Dia	Tempo	Temperatura	Umidade	Vento	Partida
1	Sol	Quente	Alta	Fraco	NÃO
2	Sol	Quente	Alta	Forte	NÃO
3	Nublado	Quente	Alta	Fraco	SIM
4	Chuva	Momo	Alta	Fraco	SIM
5	Chuva	Frio	Normal	Fraco	SIM
6	Chuva	Frio	Normal	Forte	NÃO
7	Nublado	Frio	Normal	Forte	SIM
8	Sol	Momo	Alta	Fraco	NÃO
9	Sol	Frio	Normal	Fraco	SIM
10	Chuva	Momo	Normal	Fraco	SIM
11	Sol	Momo	Normal	Forte	SIM
12	Nublado	Momo	Alta	Forte	SIM
13	Nublado	Quente	Normal	Fraco	SIM
14	Chuva	Momo		Forte	NÃO

Dia	Tempo	Temperatura	Umidade	Vento	Partida
1	Sol	Quente	Alta	Fraco	NÃO
2	Sol	Quente	Alta	Forte	NÃO
3	Nublado	Quente	Alta	Fraco	SIM
4	Chuva	Momo	Alta	Fraco	SIM
5	Chuva	Frio	Normal	Fraco	SIM
	Chuva	Frio	Normal	Forte	NÃO
	Nublado	Frio	Normal	Forte	SIM
3	Sol	Momo	Alta	Fraco	NÃO
9	Sol	Frio	Normal	Fraco	SIM
10	Chuva	Momo	Normal	Fraco	SIM
11	Sol	Momo	Normal	Forte	SIM
12	Nublado	Momo	Alta	Forte	SIM
13	Nublado	Quente	Normal	Fraco	SIM
14	Chuva	Momo	Alta	Forte	NÃO

Informação Incompleta

3a. Solução possível

- Também com o uso dos exemplos de treinamento
- Atribua probabilidade pi para cada possível valor de A. Use uma fração dos valores de A conforme pi ao avançar na árvore.
- Em um valor de temperatura faltando, considere:
 - 0,36 para SOL, 0,36 para CHUVA e 0,28 para NUBLADO

Dia	Tempo	Temperatura	Umidade	Vento	Partida
1	Sol	Quente	Alta	Fraco	NÃO
2	Sol	Quente	Alta	Forte	NÃO
3	Nublado	Quente	Alta	Fraco	SIM
4	Chuva	Momo	Alta	Fraco	SIM
5	Chuva	Frio	Normal	Fraco	SIM
6	Chuva	Frio	Normal	Forte	NÃO
7	Nublado	Frio	Normal	Forte	SIM
8	Sol	Momo	Alta	Fraco	NÃO
9	Sol	Frio	Normal	Fraco	SIM
10	Chuva	Momo	Normal	Fraco	SIM
11	Sol	Momo	Normal	Forte	SIM
12	Nublado	Momo	Alta	Forte	SIM
13	Nublado	Quente	Normal	Fraco	SIM
14	Chuva		Alta	Forte	NÃO

C4.5 e C5.0

- C4.5 é uma extensão do ID3.
- Algumas características adicionais:
 - Trabalha com atributos com números contínuos
 - Resolve o problema da regra de Ganho usando Razão_de_Ganho
 - Pós-poda baseada no conjunto de treinamento visando a diminuição do *overfitting* e conseqüente aumento da precisão.
 - C4.5 pode lidar com informação incompleta (falta de algum atributo, por exemplo)
- Versão C5.0 comercial: mais precisa e mais veloz (usa outras técnicas mais modernas)

Quinlan, J. Ross (ID3 e C4.5)

Aplicações de Aprendizado Indutivo

- Automação Residencial Inteligente
 - Sistema aprende regras com o Habitante
 - Aprende comportamentos
- Controle de SPAM
 - Aprende automaticamente as características de SPAMs
 - Valida constantemente as regras anti-SPAM
- Automóvel Inteligente
 - Aprende o modo de dirigir do motorista

Bibliografia desta aula

aprofundamento nos assuntos desta aula, segue a seguinte referência bibliográfica

- Rich, E. (Inteligência Artificial)
 - Capítulo 17 (Aprendizado)
- Russel & Norvig (Artificial Intelligence)
 - Capítulo 18 (Aprendizado)
- Rezende, Solange (Sistemas Inteligentes)
 - Caps. 4 e 5 (Aprendizado)
- Alguns slides desta aula foram baseados no slides:
- Anna Reali Costa: "Aprendizado: ID3", Poli-USP.
- Slides Machine Learning 2D5362 Lecture 3 Decision Tree Learning
- Joost N. Kok: "Machine Learning in Real World: C4.5", Leiden University Holanda