Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2010/2011 AL210 - Algebra 2 Esercitazione 2 (13 Ottobre 2010)

Esercizio 1. Sia $G := GL_3(\mathbb{Z}_2)$ il gruppo delle matrici invertibili 3×3 a coefficienti in \mathbb{Z}_2 .

(a) Si scrivano esplicitamente i seguenti sottogruppi di G e si stabilisca se sono normali in G:

$$SL_3(\mathbb{Z}_2), \quad \Lambda_3(\mathbb{Z}_2), \quad D_3(\mathbb{Z}_2), \quad T_3^+(\mathbb{Z}_2), \quad O_3(\mathbb{Z}_2).$$

(b) Determinare se esistono in G un sottogruppo di ordine 3 e uno di ordine 7. In caso affermativo fornirne un esempio.

Soluzione:

(a) I primi 3 sottogruppi richiesti sono banali, rispettivamente: $SL_3(\mathbb{Z}_2) = G$, mentre $\Lambda_3(\mathbb{Z}_2) = D_3(\mathbb{Z}_2) = \{I_3\}$. Non sono quindi sottogruppi normali propri.

Il sottogruppo $T_3^+(\mathbb{Z}_2)$ ha 8 elementi e non è normale, è formato dalle matrici della forma:

$$A := \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right),$$

al variare di $a, b, c \in \mathbb{Z}_2$.

Il sottogruppo delle matrici ortogonali è il seguente e non è normale:

$$\left\{I_3, A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, {}^tA, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right\}.$$

(b) Per il primo dei teoremi di Sylow esistono sia un sottogruppo di ordine 3 che uno di ordine 7. Entrambi sono chiaramente ciclici e sono generati rispettivamente da A e B, dove:

$$A := \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right), \quad B := \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right).$$

Esercizio 2. Sia G un gruppo, H un sottogruppo di G ed N un sottogruppo normale di G. Dimostrare che $H \cap N$ è un sottogruppo normale di H. Stabilire se $H \cap N$ è normale anche in N e/o in G.

Soluzione: Affinché $H \cap N$ sia normale in H si deve avere $h^{-1}(H \cap N)h = H \cap N$, per ogni $h \in H$ oppure, equivalentemente, $hxh^{-1} \in H \cap N$ per ogni $h \in H$ e $x \in H \cap N$. È subito visto che: $h^{-1}xh \in H$, in quanto prodotto di elementi di H che è un sottogruppo e $h^{-1}xh \in N$, essendo N normale in G.

Non è vero che $H \cap N$ è normale in N, basta prendere N = G ed H un sottogruppo non normale di G (e.g. $G = N = S_4$ ed $H = V_4$).

Non è vero che $H \cap N$ è normale in G, si può utilizzare il medesimo esempio di sopra, oppure scegliere $G = S_4$, $N = A_4$ ed $H = V_4$.

Esercizio 3. Siano G un gruppo e H, K sottogruppi di G. Dimostrare che:

- (a) $HK := \{hk : h \in H, k \in K\}$ è un sottogruppo di G se e solo se HK = KH;
- (b) se H è normale in G, allora HK è un sottogruppo di G;
- (c) se H e K sono normali in G allora HK è normale in G.

Soluzione:

(a) Supponiamo $HK \leq G$, allora $H, K \subseteq HK$ da cui $kh \in HK$ per ogni $k \in K$ e $h \in H$, ovvero $KH \subseteq HK$. Sia ora $x \in HK$, poiché HK è un gruppo anche $x^{-1} \in HK$, dunque se x = hk per certi $h \in H$ e $k \in K$, si ha che $x^{-1} = k^{-1}h^{-1} \in KH$. Poiché ciò vale per ogni $x \in HK$ si ha che $HK \subseteq KH$.

Supponiamo viceversa che HK = KH. $1 \in HK$ e se $x \in HK$, x = hk per un qualche $h \in H$ e $k \in K$. Ne segue che $y := k^{-1}h^{-1} \in KH = HK$ e xy = 1. Facciamo vedere che se $x, y \in HK$ anche $xy \in HK$; sia x = hk e $y = h_1k_1$, allora $xy = hkh_1k_1 = h(h'k')k_1$ dato che HK = KH, dunque $xy = (hh')(k'k_1) \in HK$.

- (b) Dal fatto che H è normale segue che HK = KH e dunque è un sottogruppo di G.
- (c) Se H e K sono normali in G si ha, per ogni $g \in G$:

$$gHK = HgK = HKg$$
.

Esercizio 4. Sia G un gruppo. Dati comunque due elementi $a,b \in G$ si definisca il commutatore di a e b come:

$$[a,b] := a^{-1}b^{-1}ab.$$

Si dimostri che il sottogruppo di G generato dall'insieme dei commutatori è un sottogruppo normale di G, detto derivato di G.

Soluzione: È sufficiente dimostrare che il coniugio porta generatori di G' in generatori di G', ovvero che il coniugato di un commutatore è ancora un commutatore. Dati comunque $x, a, b \in G$ si ha:

$$x^{-1}[a,b]x = [x^{-1}ax, x^{-1}bx],$$

che era quanto richiesto.

Esercizio 5. Si calcolino il centro di A_4 e del gruppo di Heisenberg $H_3(\mathbb{Z})$.

Soluzione: Il centro di A_4 è banale. Invece il centro del gruppo di Heisenberg è ciclico, generato dalla matrice:

$$A := \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right).$$

Esercizio 6. Siano N, M due sottogruppi normali di un gruppo G. Dimostrare che se $N \cap M = \{e_G\}$ allora per ogni $n \in N$ ed $m \in M$ si ha nm = mn.

Soluzione: Poiché M ed N sono normali, certamente NM = MN, inoltre, dati $n \in N$ ed $m \in M$, allora nm = m'n per qualche $m' \in M$, e anche nm = mn' per qualche $n' \in N$. Ne segue che m'n = mn', ovvero $m^{-1}m' = n'n^{-1} \in N \cap M = \{e_G\}$. E dunque m = m', n = n'.

Esercizio 7. Sia N un sottogruppo normale di G tale che |N|=2. Dimostrare che allora $N\subseteq Z(G)$.

Soluzione: Se N ha soli due elementi, necessariamente $N = \{e_G, x\}$, con $x \neq e_G$. Sia $g \in G \setminus N$, chiaramente $ge_G = e_G g = g$ ed essendo N normale si deve avere $gxg^{-1} \in N$. Il caso $gxg^{-1} = e_G$ è escluso perché altrimenti $x = e_G$, quindi gx = xg ed $N \subseteq Z(G)$.

Esercizio 8. Dato il gruppo $(\mathbb{Q}, +)$ si descriva il quoziente \mathbb{Q}/\mathbb{Z} . Stabilire inoltre se tale quoziente è un gruppo ciclico.

Soluzione: $\mathbb{Q}/\mathbb{Z} = \left\{ \frac{a}{b} + \mathbb{Z} : b > a > 0, \gcd(a, b) = 1 \right\}$. Ogni elemento $\frac{a}{b} + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$ ha ordine finito, infatti

$$(\frac{a}{b} + \mathbb{Z}) + \cdots + (\frac{a}{b} + \mathbb{Z}) = b\frac{a}{b} + \mathbb{Z} \in \mathbb{Z}.$$

Poiché \mathbb{Q}/\mathbb{Z} ha infiniti elementi ed ognuno di essi ha ordine finito, il gruppo non può essere ciclico.

Esercizio 9. Si consideri il sottogruppo $D_4 := <(1234), (12)(34) > \text{di } S_4.$

- (a) Stabilire quanti elementi ha D_4 .
- (b) Calcolare $Z(D_4)$.
- (c) Descrivere il quoziente $D_4/Z(D_4)$ e stabilire se è ciclico.

Soluzione:

(a) È noto che D_n ha 2n elementi.

(b) Sia $n \geq 3$, il gruppo diedrale D_n è generato da due elementi distinti ρ, σ tali che $o(\rho)=n, o(\sigma)=2$ e $\rho\sigma=\sigma\rho^{-1}$. Quindi

$$D_n = \{1, \rho, \rho^2, \dots, \rho^{n-1}, \sigma, \rho\sigma, \dots, \rho^{n-1}\sigma\}$$

e $x \in Z(D_n) \Leftrightarrow x$ commuta sia con ρ che con σ .

Determiniamo gli elementi di D_n che commutano con σ , ricercandoli

- (a) tra gli elementi del tipo ρ^k con $0 \le k \le n-1$;
- (b) tra gli elementi del tipo $\rho^k \sigma$ con $0 \le k \le n-1$.
- (a) $\rho^k\sigma=\sigma\rho^k\Leftrightarrow\rho^k=\rho^{-k}\Leftrightarrow\rho^{2k}=1\Leftrightarrow n|2k$. Perciò distinguiamo i seguenti due casi:
 - i. n dispari: allora $n|2k \Leftrightarrow n|k \Leftrightarrow k = 0$;
 - ii. n pari: allora $n|2k \Leftrightarrow n/2|k \Leftrightarrow k = 0, n/2$.
- (b) Analogamente a quanto appena visto possiamo distinguere i seguenti due casi:
 - i. n dispari: allora k = 0;
 - ii. n pari: allora k = 0, n/2.

Quindi, riassumendo: tutti e soli gli elementi di D_n che commutano con σ sono:

- i. n dispari: $1, \sigma$;
- ii. n pari: $1, \rho^{n/2}, \sigma, \rho^{n/2}\sigma$.

Tra questi elementi scegliamo quelli che commutano anche con ρ :

- i. n dispari: dato che $\rho\sigma = \sigma\rho \Leftrightarrow \rho^2 = 1$ e dato che $n \geq 3$ allora solo 1 commuta sia con ρ che con σ ;
- ii. n pari: $1, \rho^{n/2}$ commutano con σ e con ρ , mentre, come prima, si puó vedere che σ e $\rho^{n/2}\sigma$ non commutano con ρ .

Ricapitolando: se n è dispari allora $Z(D_n)=\{1\}$, mentre se n è pari $Z(D_n)=\{1,\rho^{n/2}\}$. Ad esempio: $D_4=\langle (1234),(12)(34)\rangle$ e $Z(D_4)=\{id,(13)(24)\}$.

(c) Il quoziente $D_4/Z(D_4)$ è isomorfo al gruppo di Klein V_4 . Ogni elemento diverso dall'elemento neutro ha ordine 2 e dunque non è ciclico.