Let G be a finite graph with vertex set V which may not necessarily be loopless. For each $v \in V$, let $\alpha_v \in \mathbf{F}_2^V$ be the map which takes value 1 on $w \in V$ if and only if there is an edge between v and w in G; let \mathcal{T}_v be the linear map on \mathbf{F}_2^V that sends $x \in \mathbf{F}_2^V$ to itself if x(v) = 0 and sends $x \in \mathbf{F}_2^V$ to $x + \alpha_v$ if x(v) = 1. Note that \mathcal{T}_v is a transvection when v is not a loop in G while \mathcal{T}_v is an idempotent when v is a loop in G. We consider the digraph Γ with vertex set \mathbf{F}_2^V and arc set $\{(x, \mathcal{T}_v(x) : x \in \mathbf{F}_2^V, v \in V\}$, which is the phase space of the lit-only σ -game on G.

We determine the reachability relation for the digraph Γ . A surprising corollary of this work is that, for $\alpha, \beta \in \mathbf{F}_2^V$, basically, α can reach β in Γ if and only if $\alpha - \beta$ lies in the binary linear subspace spanned by $\{\alpha_v : v \in V\}$.

An important step of our work is to define the line graph of a multigraph and to provide a forbidden subgraph characterization. If the graph G is loopless, as an application of our knowledge of the corresponding digraph Γ , we are able to determine the multiplicative group generated by $\{\mathcal{T}_v : v \in V\}$. We also indicate possible approaches on extending the work here to the general case of G being a digraph.