Table of Contents

Delivery report Pt 2
Deliverable 3ci
Deliverable 3cii
Part 3 Training a machine to understand emtion (The Sweep)
Part 3 ROC curves of each iteration
Part 4 Methods to reduce complexity
Part 5 Sweep ROC

clc; clear all; close all;

Delivery report Pt 2

This report contains the awnsers to questions posed in the Deliverable

Deliverable 3ci

- % The number of neurons that worked better for step 3 $% \left(1\right) =0$ was 400 for a sample
- % size of 9000. This number of neurons worked better because increasing the
- % number of neurons showed a decrese in accuracy and favorable readings
- % from the ROC (Receiver Operating Characteristic). This is most commanly
- % because of overfitting to the training set of the data.

Deliverable 3cii

%The extraction method that worked better was the one with less inputs and

%more information. The extraction of the frequency magnatude components

%showed an increased accuraccy at different levels of neurons in the sweep.

%This was because the features that were fed to the input had more %information in them for the neural network.

Part 3 Training a machine to understand emtion (The Sweep)

%Let it be known that the whole training dataset was not used in training

%this neural network. It was modified to only take 15,000 training
samples

%and use 9,000 of it to sweep for the number of hidden neurons.

```
image1 = imresize(imread('./Final/100.jpg'), 0.5);
image2 = imresize(imread('./Final/200.jpg'), 0.5);
image3 = imresize(imread('./Final/300.jpg'), 0.5);
image4 = imresize(imread('./Final/400.jpg'), 0.5);
image5 = imresize(imread('./Final/500.jpg'), 0.5);
image6 = imresize(imread('./Final/600.jpg'), 0.5);
image7 = imresize(imread('./Final/700.jpg'), 0.5);
image8 = imresize(imread('./Final/800.jpg'), 0.5);
image9 = imresize(imread('./Final/900.jpg'), 0.5);
image10 = imresize(imread('./Final/1000.jpg'), 0.5);
final = imread('./Final/1000.jpg');
plot = [image1 image2];
plot2 = [image3 image4];
plot3 = [image5 image6];
plot4 = [image7 image8];
plot5 = [image9 image10];
figure; imshow(plot); title('100 and 200 hidden neurons sweep');
figure; imshow(plot2); title('300 and 400 hidden neurons sweep');
figure; imshow(plot3); title('500 and 600 hidden neurons sweep');
figure; imshow(plot4); title('700 and 800 hidden neurons sweep');
figure; imshow(plot5); title('900 and 1000 hidden neurons sweep');
figure; imshow(final); title('Final System Accuracy');
Below shows each sweep iteration from 100 to 1000, incrementing by
 100
%each time. The fluctuation that we are seeing is due to
%the fact that the neural network is being trained with a different
% of neurons each iteration. As can be seen, the accuracy per neurons
%decreases until it reaches 400 where it spikes to a 25% accuracy and
%continues to decrease until the final iteration. This means that
 training
%the neural network with 400 neurons would give us the most accurate
%outputs. The final system accuracy is shown below also. As you can
%400 neurons is the most accurate in our sweep.
image_p = imread('./Final/percentage.jpg');
figure; imshow(image_p); title('Accuracy after percentage change');
%We also manipulated the percentage of data going to training and
 testing
% in the sweep iteration for loop in the hopes that we would correct
%overfitting more. However, the results yielded less accuracy as seen
%below.
```

100 and 200 hidden neurons sweep

300 and 400 hidden neurons sweep

500 and 600 hidden neurons sweep

700 and 800 hidden neurons sweep

900 and 1000 hidden neurons sweep

Accuracy after percentage change

Part 3 ROC curves of each iteration

```
image1_n = imresize(imread('./Final/100 neurons.jpg'), 0.5);
image2_n = imresize(imread('./Final/200 neurons.jpg'), 0.5);
image3_n = imresize(imread('./Final/300 neurons.jpg'), 0.5);
image4_n = imresize(imread('./Final/400 neurons.jpg'), 0.5);
image5_n = imresize(imread('./Final/500 neurons.jpg'), 0.5);
image6_n = imresize(imread('./Final/600 neurons.jpg'), 0.5);
image7_n = imresize(imread('./Final/700 neurons.jpg'), 0.5);
image8_n = imresize(imread('./Final/800 neurons.jpg'), 0.5);
image9_n = imresize(imread('./Final/900 neurons.jpg'), 0.5);
image10_n = imresize(imread('./Final/1000 neurons.jpg'), 0.5);
final_n = imread('./Final/ROC_sweep.jpg');
plot_n = [image1_n image2_n];
plot2_n = [image3_n image4_n];
plot3_n = [image5_n image6_n];
plot4_n = [image7_n image8_n];
plot5_n = [image9_n image10_n];
figure; imshow(plot_n); title('100 and 200 hidden neurons ROC curve');
figure; imshow(plot2_n); title('300 and 400 hidden neurons ROC
 curve');
figure; imshow(plot3_n); title('500 and 600 hidden neurons ROC
figure; imshow(plot4_n); title('700 and 800 hidden neurons ROC
 curve');
figure; imshow(plot5_n); title('900 and 1000 hidden neurons ROC
figure; imshow(final_n); title('Final ROC curve');
%Each of the ROC curves shown below represent the performance of the
%network when being trained with the specified number of hidden
 neurons.
Each emotion is represented by a class, as can be seen on each graph:
%(7=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral)
%What we are looking for is the ROC curve with the most classes
*located primarily in the upper left hand quadrant of the plot. This
%indiacte that the neural networks performance, with respect to each
%class, is good. It can be seen that the plot utilizing 400 hidden
 neurons
%shows the best ROC curve.
%The final ROC curve is the overall ROC curve for the neural network.
```

Warning: Image is too big to fit on screen; displaying at 67%

100 and 200 hidden neurons ROC curve

300 and 400 hidden neurons ROC curve

500 and 600 hidden neurons ROC curve

700 and 800 hidden neurons ROC curve

900 and 1000 hidden neurons ROC curve

Final ROC curve

Part 4 Methods to reduce complexity

```
Three different methods that could be used to reduce the complexity
of the
%system are:
%1. wavelet: using wavelet transform would take out a lot of the noise
%the images, allowing the neural network to grab better pixel values
from
%the data sets.
%2. frequency domain: by taking the frequency domain, we could take
%values of an image and create a more precise data set for training
and
%testing
%3. downsize image: downsizing an image would decrease the size of the
%dataset which could decrease the chance of overfitting the training
This could reduce the complexity of the training set and increase the
%accuracy.
%All three of the above methods would manipulate the input images and
%create a more precise training and testing set for the neural network
%be trained with. This would create a better performing and more
accurate
%neural network.
```

Part 5 Sweep ROC

```
sweep = [10, 10:10:250];
for i = 1:21
    formatSpec = "./Q5figSaves/N%dRoc";
    savefigpath = sprintf(formatSpec,sweep(i));
    openfig(savefigpath);
end
% close all
Error using openFigure
The value of 'Filename' is invalid. It must satisfy the function:
 ischar.
Error in openfig>localGetFileAndOptions (line 98)
ip.parse(args{:});
Error in openfig (line 37)
[filename, reuse, visibleAction] = localGetFileAndOptions(varargin);
Error in report2 (line 130)
    openfig(savefigpath);
```


Table of Contents

data formatting

fer2013.csv - training data test.csv - test data for submission

all data for training

```
%defining all arrays for the grabbing the data
pixels = [];
emotions =[];
trainingPixels = [];
testPixels = [];
testEmotions =[];
testingPixels = [];
%parse out training values for emotions and pixels
```

```
for i=1:15000
   pixels = [pixels; data{1,2}(i)];
                                                   %parsing all pixel
values
   emotions = [emotions; data{1,1}(i)];
                                                   %parsing all
emotion values
   stringPix = char(pixels{i,1});
                                                    %convert into
string
   parsePix = str2double(strsplit(stringPix));
                                                  %seperate each
pixel value
    trainingPixels = [trainingPixels; uint8(emotions(i,1)),
uint8(parsePix)]; %put all into new training array
end
```

all data for testing

```
%parse out testing data
for j=tr+1:fullSize
                                                        %parsing all
   testPixels = [testPixels; data{1,2}(j)];
    testEmotions = [testEmotions; data{1,1}(j)];
                                                        %parsing all
emotion values
end
%parse out each testing pixel we need
for k=1:testSize
    stringTestPix = char(testPixels{k,1});
                                                        %convert into
string
   parseTestPix = str2double(strsplit(stringTestPix)); %seperate each
pixel value
    testingPixels = [testingPixels; uint8(testEmotions(k,1)),
uint8(parseTestPix)]; %put all new values into a new testing array
end
disp('Loaded ....');
```

Reshape the data to Visualize example for the digits sample

```
figure
                                                              % plot
 images
colormap(gray)
                                                              % set to
grayscale
for i = 1:25
                                                              % preview
first 25 samples
    subplot(5,5,i)
                                                              % plot
them in 6 x 6 grid
    digit = reshape(trainingPixels(i, 2:end), [48,48])';
                                                             % row = 48
x 48 image
    imagesc(digit)
                                                              % show the
 image
```


The dataset stores samples in rows rather than in columns, so you need to

transpose it. Then you will partition the data so that you hold out 1/3 of the data for model evaluation, and you will only use 2/3 for training our artificial neural network model.

```
% number of samples
% n = size(trainingPixels, 1);
 in the dataset
n = 9000;
targets = double(trainingPixels(:,1));
                                                         % 1st column
 is |label|
targets(targets == 0) = 7;
                                                 % use '7' to present
 '0'
targetsd = dummyvar(targets);
                                                 % convert label into a
 dummy variable
% No need for the first column in the (trainingPixels) set any longer
inputs = double(trainingPixels(:,2:end));
                                                         % the rest of
 columns are predictors; have to double so all inputs are the same
inputs = inputs';
                                    % transpose input
```

partitioning the dataset based on random selection of indices

```
% for
rng(1);
reproducibility
patitionObject = cvpartition(n,'Holdout', uint8(n/3));  % hold out
1/3 of the dataset
for training
Ytrain = targetsd(:, training(patitionObject)); % 2/3 of the target
for training
Ytest = targets(test(patitionObject));
                              % 1/3 of the target
for testing
variable for testing
disp('Ready for NNstart...');
Ready for NNstart...
```

Time to Run the Neural Network GUI Application

% type NNstart on the command prompt

Computing the Categorization Accuracy

```
Ypred = myNNfun(Xtest);
                                % predicts probability for each
label
Ypred(:, 1:5)
                                % display the first 5 columns
[~, Ypred] = max(Ypred);
                                % find the indices of max
probabilities
sum(Ytest == Ypred) / length(Ytest); % compare the predicted vs.
actual
ans =
   0.0042
           0.0008 0.0000 0.0001
                                        0.0000
   0.0013 0.2113 0.9811 0.5026
                                        0.0001
   0.0008
           0.3507 0.0189 0.0056
                                       0.0001
                   0.0000 0.1572
   0.9607
           0.0002
                                       0.0000
```

0.0023	0.0410	0.0001	0.0007	0.0208
0.0268	0.0001	0.0000	0.3337	0.9790
0.0039	0.3958	0.0000	0.0001	0.0000

Sweep Code Block

Sweeping to choose different sizes for the hidden layer

```
sweep = [100, 100:100:1000];
                                     % parameter values to test
% we will use models to save the several neural network result from
% sweep and run loop
models = cell(length(sweep), 1);
                                  % pre-allocation
x = Xtrain;
                                  % inputs
t = Ytrain;
                                  % targets
trainFcn = 'trainscg';
                                  % scaled conjugate gradient
    figure
for i = 1:length(sweep)
   hiddenLayerSize = sweep(i);
                              % number of hidden layer
neurons
   net.divideParam.trainRatio = 70/100;% 70% of data for training
   net.divideParam.valRatio = 15/100; % 15% of data for validation
   net.divideParam.testRatio = 15/100; % 15% of data for testing
   net = train(net, x, t);
                                  % train the network
   net = train(net, x, t, 'useParallel', 'yes');
응
응
응
    simpleclusterOutputs = sim(net,x);
     % Ploting the ROC
   plotroc(t,simpleclusterOutputs,sprintf('%d Neurons' ,sweep(i)));
     formatSpec = "./Q5figSaves/N%dRoc";
     savefigpath = sprintf(formatSpec,sweep(i));
  pause();
   models{i} = net;
                                  % store the trained network
   p = net(Xtest);
                                  % predictions
                                  % predicted labels
   [\sim, p] = \max(p);
   scores(i) = sum(Ytest == p) /length(Ytest); % categorization
accuracy
```

```
% plot(sweep, scores, '.-')
% xlabel('number of hidden neurons')
% ylabel('categorization accuracy')
% title('Number of hidden neurons vs. accuracy')
% pause();

end
% Let's now plot how the categorization accuracy changes versus number of
% neurons in the hidden layer.

figure
plot(sweep, scores, '.-')
xlabel('number of hidden neurons')
ylabel('categorization accuracy')
title('Number of hidden neurons vs. accuracy')
```


Published with MATLAB® R2017a

Table of Contents

Feature Set Up	1
Load the data that was extracted form the csv file earlier.	1
Turn row data into a 48x48 img and resize	. 1
Frequency componenets from Nick submission	
Applying the filters on input images	. 2
Nuetralizing the Phase to display Magnitude only	
Inverse fft2	
Calculating plotting limits	
Extract lower frequencies by just cutting to 16 x 16	
Reshape to return to NN	
1	

Feature Set Up

This section will go throught the steps to extract some features that will be used to train our new NN. The one that dosen't "Blow Up" the cpu

```
clc; clear all; close all;
```

Load the data that was extracted form the csv file earlier.

```
load TestingPixels.mat
load TrainingPixels.mat
```

Turn row data into a 48x48 img and resize

Frequency components from Nick submission Applying the filters on input images

```
im1_fft = fft2(sfim);
gh = fftshift(im1_fft);
```

Nuetralizing the Phase to display Magnitude only

```
im1_M = abs(gh);
```

Inverse fft2

```
restoredP1 = log(abs(ifft2(im1_M*exp(li*0)))+1);
re = fftshift(restoredP1);
```

Calculating plotting limits

```
I_Mag_min = min(min(abs(restoredP1)));
I_Mag_max = max(max(abs(restoredP1)));
figure;
imshow(abs(re),[I_Mag_min I_Mag_max ]);
```


Extract lower frequencies by just cutting to 16 x 16

newRe = re(5:20,5:20);
figure; imagesc(newRe);

Reshape to return to NN

stuff = reshape(newRe, [1,256]);

Published with MATLAB® R2017b