The Extended Reimann Integral

Thomas Cohn

11/7/18

Consider $f \in C(A^{\text{osso}\mathbb{R}^n}, \mathbb{R})$ (with f and/or A possibly unbounded). For now, assume $f \geq 0$.

Defn: We define the Extended Reimann Integral ext $\int_A f \stackrel{\text{def}}{=} \sup \left\{ \int_E f : E^{\text{cpt,rect}} \subset A \right\}$.

Lemma: $B^{\text{open}} \subset A^{\text{open}} \Rightarrow \operatorname{ext} \int_{B} f \leq \operatorname{ext} \int_{A} f$

What if A and f are bounded?

(i) The old $\int_A f$ may not exist. (It exists if A is rectifiable.)

(ii)
$$\int_{E} f = \int_{E} f \le \int_{A} f \stackrel{\text{def}}{=} \int_{Q} f_{A}$$
. So $\text{ext} \int_{A} f \le \int_{A} f$

(iii) Let
$$P$$
 be a partition of $Q^{\text{box}} \supset A$. Then $L(f_A, P) \leq \int_{\text{union of } P\text{-boxes}} f \leq \text{ext} \int_A f$

(iv) Thus,
$$\operatorname{ext} \int_A f = \int_{\overline{A}} f$$
. So $\int_{\overline{A}} f \leq \operatorname{ext} \int_A f$. So $\operatorname{ext} \int_A f = \operatorname{old} \int_A f$ if $\operatorname{old} \int_A f$ exists.

How do we compute?

Suppose we have an infinite sequence of compact rectifiable sets $E_1 \subset E_2 \subset E_3 \subset \cdots \subset A$, and

$$\bigcup_{j=1}^{\infty} \operatorname{Int} E_j = A. \text{ Then we claim ext } \int_A f = \lim_{j \to \infty} \int_{E_j} f$$

Ex:
$$E_j = [-j, 0] \cup [\frac{1}{j}, j]$$
. Then $\bigcup_{j=1}^{\infty} E_j = \mathbb{R}$, and $\bigcup_{j=1}^{\infty} \operatorname{Int} E_j = \mathbb{R} \setminus \{0\}$.

Proof of claim:
$$\int_{E_i} \le \operatorname{ext} \int_A f$$
, so $\lim_{j \to \infty} \int_{E_i} f \le \operatorname{ext} \int_A f$.

If $E \subset A$ is compact and rectifiable, then $E \subset E_j$ for some j. Thus, $\int_E f \leq \int_{E_j} f \leq \lim_{j \to \infty} \int_{E_j} f$.

Therefore, ext
$$\int_{E} f \leq \lim_{j \to \infty} \int_{E_{j}} f$$
. \square

Alternate proof (outline): Let E_j be the union of all closed (hyper) cubes with side length $\frac{1}{2^j}$, subsets of A, with each vertex having coords in $\mathbb{Z}/2^j \cap [-j,j]$.

Ex:
$$\int_{\mathbb{R}} \frac{1}{1+x^{2}}$$
Let $E_{j} = [-j, j]$. Then
$$\int_{\mathbb{R}} \frac{1}{1+x^{2}} = \lim_{j \to \infty} \int_{-j}^{j} \frac{1}{1+x^{2}} = \lim_{j \to \infty} [\arctan x]_{x=-j}^{x=j} = \lim_{j \to \infty} 2 \arctan j = \pi$$
Ex:
$$\int_{\mathbb{R}^{2}} \frac{1}{1+x^{2}+y^{2}} = \lim_{j \to \infty} \int_{-j}^{j} \int_{-j}^{j} \frac{1}{1+x^{2}+y^{2}} dx dy = \dots = \lim_{j \to \infty} \int_{-j}^{j} \frac{2 \arctan \frac{j}{\sqrt{1+y^{2}}}}{\sqrt{1+y^{2}}} dy$$
. Ew.
$$\int_{\mathbb{R}^{2}} \frac{1}{1+x^{2}+y^{2}} = \lim_{j \to \infty} \lim_{k \to \infty} \int_{-j \le y \le j}^{-k \le x \le k} \frac{1}{1+x^{2}+y^{2}} = \lim_{j \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \int_{-k}^{k} \frac{1}{1+x^{2}+y^{2}} dx dy = \lim_{j \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \pi \lim_{j \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{j \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{j \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{j \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{j \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{k \to \infty} \int_{-j}^{j} \frac{1}{\sqrt{1+y^{2}}} dy = \lim_{k \to \infty} \lim_{$$

We "computed" this extended integral.