CS 225 Spring 2019 :: TA Lecture Notes 3/13 B Tree Analysis + Hash

By Wenjie

- The height of a BTree determines maximum number of **disk/network/space seeks** possible when searching for data.
- The height of a BTree is $\log_m(n)$ where **m** is the order of the BTree.
- Therefore **seeks** <= log_m(n)

To prove the above property, we need to find a relationship between the number of keys \mathbf{n} and the height of the BTree \mathbf{h} . In other words: how is the height \mathbf{h} bounded by the keys \mathbf{n} ?

Minimum number of keys in a BTree of height **h** and order **m**:

Level by level analysis:

Let t = ceil(m/2)

Ecc c con(iii/ E)			
Level	Nodes	Keys	Children
Root	1	1	2
1	2	2*(t-1)	2*t
2	2*t	2*t*(t-1)	2*t^2
3	2*t^2	2*t^2*(t-1)	2*t^3
•••	***		••••
h	2*t^(h-1)	2*t^(h-1)*(t- 1)	0 (leaves)

Min total nodes =
$$1 + 2 + 2 * t + 2 * t^2 \dots + 2 * t^{(h-1)} = 1 + 2 * \sum_{i=0}^{h-1} t^i = 1 + 2 * \frac{t^{h-1+1}-1}{t-1} = 1 + 2 * \frac{t^{h}-1}{t-1}$$

Min total keys = $1 + 2 * \frac{t^{h}-1}{t-1} * (t-1) = 2 * celling (m/2)^k - 1 = 2 * t^h - 1$

Thus: $n \ge 2 * t^h - 1$ (for any BTree of height h and order m)

Solving for h: $\frac{n+1}{2} \ge t^h \implies \log_t(\frac{n+1}{2}) \ge h$

Since t = ceil(m/2) we can say: $log_t(\frac{n+1}{2}) \sim log_m(n)$

CS 225 Spring 2019 :: TA Lecture Notes 3/13 B Tree Analysis + Hash

By Wenjie

Thus we have:

$$h \le log_m(n) \implies seeks \le log_m(n)$$

Given m=101, a BTree of height h=4 has:

Minimum keys: $2 * t^h - 1 = 2 * ceil(101/2)^4 - 1 = 2 * (51)^4 \approx 12.5$ million

Maximum keys: //Practice problem

Hashing Introduction

As the high school locker number-to-student name, it is a one-to-one mapping:

Locker #	Name
103	Craig
92	Wade
330	•••
46	
124	

Keyspace = all possible locker numbers

There are **3 components** of Hash Tables:

- 1. The hash function: f(h) -> Integers
 - Choose a good hash function is tricky
 - Do not use self created hash function
- 2. The compression: Integer -> array
- 3. What happened in chaos

CS 225 Spring 2019 :: TA Lecture Notes 3/13 B Tree Analysis + Hash

By Wenjie

Ideally, a Perfect Hash Function is a **one-to-one** function, where for each **data / input**, the hash function produces a **unique output**.

Suppose we want to map the following (faculty, course) pairs into a hash table. Since no two faculty first names start with the same letter; we can define a perfect hash function

f:= (faculty, course) → first letter of first name ASCII index

A **good** hash function should be:

- 1. Computation time take O(1)
- 2. Deterministic
- 3. Satisfy the SUHA = simple uniform hashing assumption where p(f(k1)) = p(f(k2)) = 1/n