Interro 2 le 20/09/2021.

Ouestion 1. Voir cours.

Question 2. Voir cours.

Exercice 1. Le terme prépondérant de u_n au voisinage de $+\infty$ est n^3 et celui de v_n est $-2n^2$.

On va donc montrer que $v_n = \underset{n \to +\infty}{o}(u_n)$.

Pour tout $n \ge 2$, $u_n \ne 0$ et

$$\frac{v_n}{u_n} = \frac{-2n^2 \left(1 - \frac{\ln(n)}{2n^2}\right)}{n^3 \left(1 - \frac{\sqrt{n^2 + 1}}{n^3}\right)} = \frac{-2}{n} \underbrace{\frac{1 - \frac{\ln(n)}{2n^2}}{1 - \frac{\sqrt{n^2 + 1}}{n^3}}}_{n \to +\infty}.$$

Ainsi: $\lim_{n \to +\infty} \frac{v_n}{u_n} = 0.$ Donc $v_n = \mathop{o}_{n \to +\infty} (u_n).$

Exercice 2. Pour tout $n \in \mathbb{N}^*$, on a

$$u_n = \frac{5\ln n\left(1 + \frac{2}{\ln(n)}\right)}{3^n\left(\frac{2n}{3^n} + \frac{1}{3^n} + 1\right)} = \frac{5\ln(n)}{3^n} \underbrace{\frac{1 + \frac{2}{\ln(n)}}{\frac{2n}{3^n} + \frac{1}{3^n} + 1}}_{n \to +\infty}.$$

Ainsi

$$u_n \underset{n \to +\infty}{\sim} \frac{5 \ln (n)}{3^n}.$$

Nom : Prénom :

Interro 2 le 20/09/2021.

Ouestion 1. Voir cours.

Question 2. Voir cours.

Exercice 1. Pour tout $n \ge 2$, $u_n \ne 0$ et

$$\frac{v_n}{u_n} = \frac{\ln(n) - 2n^3}{n^3 - \sqrt{n^2 + 1}} = \frac{-2n^3}{n^3} \frac{1 - \frac{\ln(n)}{2n^3}}{1 - \frac{\sqrt{n^2 + 1}}{n^3}} = -2 \underbrace{\frac{1 - \frac{\ln(n)}{2n^3}}{1 - \frac{\sqrt{n^2 + 1}}{n^3}}}_{n \to +\infty}.$$

Ainsi : $\lim_{n \to +\infty} \frac{v_n}{u_n} = -2 \neq 1$.

Donc $(v_n)_{n\in\mathbb{N}}$ et $(u_n)_{n\in\mathbb{N}}$ ne sont pas équivalentes au voisinage de $+\infty$.

Exercice 2. On sait que : $\lim_{n \to +\infty} \frac{3}{n\sqrt{n}} = 0$.

Donc par équivalent usuel :

$$u_n \underset{n \to +\infty}{\sim} \frac{3}{2n\sqrt{n}}.$$