



# Refractory carbides for hydrogen erosion resistance in carbon tubes for nuclear thermal propulsion

William C. Tucker<sup>a</sup>, Charles W. Bauschlicher, Jr.<sup>b</sup>, Jaehyun Cho<sup>a</sup>, Justin B. Haskins<sup>b</sup>

<sup>a</sup>AMA Inc., Thermal Protection Materials Branch, NASA Ames Research Center

<sup>b</sup>Thermal Protection Materials Branch, NASA Ames Research Center

CMS2023 – Jan 26<sup>th</sup>, 2023

DISTRIBUTION LEVEL A (UNRESTRICTED)

# Background

- Space Nuclear Propulsion (SNP) is an enabling technology for crewed travel to Mars
  - Nuclear Thermal Propulsion (NTP) or a Chemical/Nuclear Electric Propulsion (NEP) hybrid setup
  - In NTP, cryogenically stored H<sub>2</sub> propellant passes from tanks through a turbo, is used to cool the exhaust thruster, then passes through another turbo stage and finally enters the cold end of the nuclear core. After heating to a few thousand degrees, the hydrogen is allowed to exhaust via the thruster and conservation of momentum does the rest



# Background

- Space Nuclear Propulsion (SNP) is an enabling technology for crewed travel to Mars
  - Nuclear Thermal Propulsion (NTP) or a Chemical/Nuclear Electric Propulsion (NEP) hybrid setup
  - In NTP, cryogenically stored H<sub>2</sub> propellant passes from tanks through a turbo, is used to cool the exhaust thruster, then passes through another turbo stage and finally enters the cold end of the nuclear core. After heating to a few thousand degrees, the hydrogen is allowed to exhaust via the thruster and conservation of momentum does the rest



*Illustration of relevant carbide-hydrogen interactions speculated from Lyon<sup>1</sup>*

<sup>1</sup>Performance of (U,Zr)C-Graphite (Composite) and of (U,Zr)C (Carbide) Fuel Elements in the Nuclear Furnace 1 Test Reactor 3

# Background/Motivation



- Carbide coatings used to protect carbon tubes from hydrogen attack (low diffusion/erosion)
- Outcomes of carbide coated tube performance from NERVA<sup>1</sup>:
  - Mid-range erosion noted in cooler regions due to CTE mismatch
  - Mass loss suspected to be driven by carbon loss through the coating
  - Role of carbon loss on hydrogen migration through the coating not clear
  - Other studies<sup>2</sup> show that single carbides are unsuitable for various reasons
  - Neutronic considerations exclude Hf, probably Ta as well
  - End goal is probably solid solution Nb/Zr carbide – but at what ratio and carbon depletion level?
  - Methods: mostly Density Functional Theory simulations, other techniques as needed



<sup>1</sup>Performance of (U,Zr)C-Graphite (Composite) and of (U,Zr)C (Carbide) Fuel Elements in the Nuclear Furnace 1 Test Reactor  
L. Lyon. LA-5398-MS. LANL, 1973; <https://www.osti.gov/biblio/4419566>

<sup>2</sup>Comparison of carbide coatings for graphite based fuel elements  
L. Cadoff. WANL-TME-1275. Westinghouse, Astronuclear Lab, 1965; <https://www.osti.gov/biblio/4174466>



# Carbon Depletion Effects

- Carbides can become carbon deficient at the surface through hydrogen reactions up to a critical carbon to metal ratio ( $x$ )
- ZrC shows best resistance to preferential carbon loss

Carbon Hydrogen Reaction (2100K)



# Carbon Uptake



- Carbon lost from the carbide surface can be readily taken from solid carbon (e.g., C/C tubes)
- Free energy of filling vacancies in depleted carbides shows they all readily accept carbon

Carbon Uptake from Carbon/Carbon



# Mixing Effects

- Mixing carbides has a large, nonlinear influence on stability and free energetics
  - Internal database developed for  $Zr_xNb_{1-x}C$ ,  $Zr_xTa_{1-x}C$ , and  $Nb_xTa_{1-x}C$  ( $T=298-3500\text{ K}$  and  $x=0.0-1.0$ )

Mixing carbides into binaries results in a chemical stabilization as demonstrated by the mixture free energy



Non-linear vaporization behavior of mixed carbides as demonstrated by the vaporization free energy



# ZrC & ZrNbC: Hydrogen diffusion



- Hydrogen diffusion in carbides
  - Transition state theory
  - ZrC H diffusion slightly higher than predicted by others<sup>1</sup>
  - ZrNbC H diffusion slightly higher than ZrC
  - In substoichiometric ZrC, saturation of vacancies with H slows diffusion through bulk by ~10x



<sup>1</sup>Wang et al., The structure stability, diffusion behavior and elastic properties of stoichiometric ZrC bulk with interstitial hydrogen defect: A first-principles study. 2019. <https://doi.org/10.1016/j.jnucmat.2019.04.041>

# Mechanical Properties - DFT



- High temperature thermal expansion of carbides
  - Experimental values compare favorably with a mixture of stoichiometries for ZrC
  - ZrC ratio plot to right shows presence of vacancies lead to reduced thermal expansion, and hydrogen causes slight swelling
  - ZrNbC ratio plot below again shows reduced thermal expansion from vacancies and hydrogen swelling



<sup>1</sup>Y.S. Touloukian, C.Y. Ho, Thermophysical Properties of Selected Aerospace Materials.,

Thermophysical Properties of Seven Materials, Thermophysical and Electronic Properties Information Analysis Center, Lafayette, IN, 1977

Ratio of thermal expansion to Zr:C  
1:1 stoichiometry



.. to ZrNb:C 1:1



# Mechanical Properties - DFT

- High temperature bulk modulus:
  - Experimental slope compares favorably with a mixture of stoichiometries, their PR was a bit high
  - The presence of vacancies also leads to reduced elastic constants
  - H in vacancies softens both materials around 2500K



# ZrNbC Mechanical Properties - DFT



| Material          | Young E | Sigma | Pugh ratio |
|-------------------|---------|-------|------------|
| Zr1Nb0C0.97       | 385     | 0.203 | 1.35       |
| Zr0.87Nb0.13C0.97 | 391     | 0.209 | 1.39       |
| Zr0.5Nb0.5C0.97   | 425     | 0.214 | 1.42       |
| Zr0.5Nb0.5C0.97H  | 427     | 0.211 | 1.41       |
| Zr0.13Nb0.87C0.97 | 502     | 0.202 | 1.35       |
| Nb0.5Ta0.5C0.97   | 506     | 0.217 | 1.43       |
| Zr0.5Ta0.5C0.97   | 443     | 0.217 | 1.44       |

<sup>1</sup>Brown HL, Kempfer CP. Elastic properties of zirconium carbide. physica status solidi (b) 1966;18:K21–K23. doi: 10.1002/pssb.19660180150

<sup>2</sup>Cuppari MGDV, Santos SF. Physical Properties of the NbC Carbide. Metals. 2016; 6(10):250. <https://doi.org/10.3390/met6100250>

# MD for mechanical properties



- **SNAP<sup>1</sup>** (Spectral Neighbor Analysis Potentials) developed at Sandia National Laboratories:
  - Geometric description using bispectrum
  - Energy (and force) fitting using linear regression



<sup>1</sup>Extending the accuracy of the SNAP interatomic potential form

# MD for mechanical properties



# Conclusions



Main findings:

- Calculations indicate ZrC is less likely to lose carbon than NbC or TaC – could explain heritage NERVA data on ZrC vs NbC mass loss performance
- Binary mixtures show compositions that are more stable than their end-member counterparts
- H diffusion in stoichiometric ZrC found to be slightly higher than previously theorized, but hydrogen saturation of carbon vacancies will hinder further hydrogen diffusion through the bulk. H diffusion in ZrNbC is slightly enhanced over ZrC.
- As carbon is depleted, deformation mechanism of ZrC changes from brittle to ductile

Remaining questions:

- Can mixing carbides prevent carbon loss?
- How quickly does coating carbon loss occur, and do we expect carbon/carbon loss from migration through the coating?
- How do vacancies and grain boundaries influence hydrogen migration through the coatings?
- How do vacancies and hydrogen influence the fracture toughness of (mixed) carbides?



# Questions/comments?

[william.c.tucker@nasa.gov](mailto:william.c.tucker@nasa.gov)

**Space Technology Mission Directorate  
Technology Demonstration Mission Program  
Space Nuclear Propulsion Project**

National Aeronautics and Space  
Administration



Ames Research Center  
Entry Systems and Technology Division