Теория случайных процессов

Владимир Панов

Высшая Школа Экономики

Департамент статистики и анализа данных Лаборатория стохастического анализа и его приложений Москва, 109028, Покровский бульвар, д. 11, комн. S-432 e-mail: vpanov@hse.ru

Аннотация: Данный файл представляет собой конспект лекций по курсу "Случайные процессы", прочитанного автором в 2019 году на факультете экономических наук НИУ Высшая Школа Экономики.

Содержание

1	Определение случайного процесса. Классификация случайных про-	
	цессов	2
	I Процессы с дискретным временем	3
2	Процесс восстановления	3
	2.1 Процесс Бернулли	3
	2.2 Определение процесса восстановления. Считающий процесс .	4
	2.3 Тождество Вальда	6
	2.4 Предельные теоремы для процессов восстановления	8
	2.5 Процесс восстановления с вознаграждением	9
	2.6 Процесс времени ожидания	10
3	Процесс Пуассона	11
4	Неоднородные процессы Пуассона	14
5	Составные процессы Пуассона	15
6	Цепи Маркова	17
	6.1 Определение. Примеры	18
	6.2 Классификация состояний	20
	6.3 Матричное представление цепи Маркова	24
	6.4 Эргодическая теорема	27
	6.5 Момент первого достижения	30
	II Процессы с непрерывным временем	33
7	22 22podecesi e nempepsisiin spemenem	33
1	Гауссовские процессы. Броуновское движение. Стационарность 7.1 Гауссовский вектор	33
	7.1 Гауссовский вектор	
8	Винеровский процесс	39
0		39 39
	8.1 Определение	99

	8.2 Непрерывность траекторий	41
	8.3 Вариация и квадратическая вариация	42
	8.4 Принцип отражения	43
	III C-2828	45
0	III Свойства случайных процессов	45
9	Стационарность	45
10	I	48
11	Стохастическое интегрирование	52
	11.1 Интегралы вида $\int_{0}^{\infty} X_{t} dt$	53
	11.2 Интегралы вида $\int_{c}^{c} f(t)dW_{t}$	56
	11.3 Интегралы вида $\int_{\mathcal{A}} X_t dW_t$	59
	11.4 Интегралы вида $\int H_t dX_t$. Формула Ито	63
	11.5 Вычисление стохастических интегралов при помощи форму-	
	лы Ито	64
	11.6 Применение формулы Ито к стохастическому моделированию	65
	IV Придожение	67
Λ	IV Приложение	67
A	Свёртка функций	67
В	Свёртка функций	67 68
ВС	Свёртка функций	67 68 69
B C D	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции	67 68 69 70
ВС	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей	67 68 69 70 72
B C D	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей Е.1 Закон больших чисел	67 68 69 70 72 72
B C D E	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей Е.1 Закон больших чисел Е.2 Центральная предельная теорема	67 68 69 70 72 72 73
B C D E	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей Е.1 Закон больших чисел Е.2 Центральная предельная теорема Отношение эквивалентности	67 68 69 70 72 72 73 73
B C D E	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей Е.1 Закон больших чисел Е.2 Центральная предельная теорема Отношение эквивалентности Виды сходимости случайных величин	67 68 69 70 72 72 73 73 74
B C D E F G H	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей Е.1 Закон больших чисел Е.2 Центральная предельная теорема Отношение эквивалентности Виды сходимости случайных величин Свойства симметричных матриц	67 68 69 70 72 72 73 73 74 76
B C D E F G H	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей Е.1 Закон больших чисел Е.2 Центральная предельная теорема Отношение эквивалентности Виды сходимости случайных величин	67 68 69 70 72 72 73 73 74
B C D E F G H	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей Е.1 Закон больших чисел Е.2 Центральная предельная теорема Отношение эквивалентности Виды сходимости случайных величин Свойства симметричных матриц	67 68 69 70 72 72 73 73 74 76
B C D E F G H	Свёртка функций Преобразование Лапласа Производящие функции Характеристические функции Две предельные теоремы теории вероятностей Е.1 Закон больших чисел Е.2 Центральная предельная теорема Отношение эквивалентности Виды сходимости случайных величин Свойства симметричных матриц	67 68 69 70 72 72 73 73 74 76

случайных процессов.

Литература по теме: [11], [5]

Определение 1.1. Пусть T - произвольное множество, $(\Omega,\mathscr{F},\mathbb{P})$ - вероятностное пространство. Тогда отображение

$$X:\ T\times\Omega\to\mathbb{R}$$

называется случайной функцией, если для любого $t \in T$ функция

$$X(t,\omega) =: X_t(\omega) = X_t, \qquad w \in \Omega,$$

является случайной величиной на $(\Omega, \mathscr{F}, \mathbb{P}).$

Наиболее важные виды случайных функций:

- 1. случайные процессы (stochastic processes, random processes): $T \subset \mathbb{R}$;
 - случайные процессы с дискретным временем: $T = \mathbb{Z}_+$ (иногда $T = \mathbb{Z}$);
 - случайные процессы с непрерывным временем: $T = [0, +\infty)$ (иногда $T = \mathbb{R}$);
- 2. случайные поля: $T \subset \mathbb{R}^k$, $k \geq 2$.

Определение 1.2. Траекторией случайного процесса X_t называется отображение $t \to X_t(\omega)$ при фиксированном ω . Конечномерным распределением случайного процесса X_t называется распределение вектора $(X_{t_1}, X_{t_2}, ..., X_{t_n})$ для фиксированного набора моментов времени $t_1, t_2, ..., t_n$.

Часть I

Процессы с дискретным временем

2. Процесс восстановления

Литература по теме: [4], [5], [8], [14]

2.1. Процесс Бернулли

Простым примером случайного процесса с дискретным временем является процесс Бернулли, определённый для $t=1,2,\dots$ следующим образом:

$$N_t = \sum_{i=1}^t \eta_i,$$

где η_1,η_2,\dots - последовательность независимых бернуллиевских случайных величин, то есть $\eta_i=1$ с вероятностью $p\in(0,1)$ и $\eta_i=0$ с вероятностью 1-p.

Данный процесс можно определить и другим образом. Обозначим через ξ_i время ожидания i—го успеха в схеме Бернулли. Величины ξ_i имеют геометрическое распределение,

$$\mathbb{P}\left\{\xi_i = k\right\} = p(1-p)^{k-1}, \quad k = 1, 2, \dots$$

Тогда моменты i-го успеха могут быть получены по рекурсивным формулам

$$S_0 = 0,$$
 $S_n = S_{n-1} + \xi_n,$ $n = 1, 2, ...,$

а процесс Бернулли можно определить как

$$N_t := \max \left\{ k : S_k \le t \right\}.$$

Процессы восстановления, определённые в следующем подразделе, являются обобщением этой модели на случай, когда ξ_i имеют любое распределение на \mathbb{R}_+ .

2.2. Определение процесса восстановления. Считающий процесс

Определение 2.1. Процесс восстановления (renewal process) - это случайный процесс $S_n,\ n=0,1,2,...,$ задаваемый следующим образом:

$$S_0 = 0, S_n = S_{n-1} + \xi_n, n = 1, 2, ...,$$
 (1)

где ξ_1, ξ_2, \dots - последовательность независимых, одинаково распределённых, п.н. положительных случайных величин.

В дальнейшем мы будем обозначать функцию распределения величины ξ_1 через $F(\cdot)$. Согласно данному выше определению, F(0) = 0.

По любому процессу восстановления можно определить считающий процесс (counting process) N_t :

$$N_t := \max\left\{k : \ S_k \le t\right\}.$$

Из определения считающего процесса следует свойство

$$\{S_n > t\} = \{N_t < n\}.$$
 (2)

Примерами процесса восстановления являются моменты возвращения в начальное состояние марковской цепи, а также процесс Пуассона.

Утверждение 2.2. (i) Ряд

$$U(t) = \sum_{n=1}^{\infty} F^{n*}(t),$$

где F^{n*} - свёртка n функций распределений F (см. Приложение A), сходится для любого t и любой функции распределения F положительной случайной величины.

(ii) Математическое ожидание количества моментов восстановления κ моменту времени t (т.е. математическое ожидание процесса N_t) задаётся формулой

$$\mathbb{E}\left[N_t\right] = \sum_{n=1}^{\infty} F^{n*}(t). \tag{3}$$

Доказательство. (i*) 1 Операция свёртки (см. приложение A) обладает свойством

$$F^{n*}(t) \le F^n(t)$$
.

Значит, положительный ряд U(t) мажорируется рядом $\sum_{n=1}^{\infty} F^n(t)$, который сходится для любого t такого, что F(t) < 1. Поэтому по теореме сравнения положительных рядов, ряд U(t) сходится для всех таких t. Пусть теперь существует точка t° такая, что $F(t^{\circ}) = 1$. Так как по условию F(0) = 0, распределение с.в. сосредоточено на некотором конечном интервале $I \subset [0,t]$. Следовательно, сумма r с.в. с таким распределением будет сосредоточена на интервале rI, и найдётся такое $r \in \mathbb{Z}$, что $F^{r*}(t^{\circ}) < 1$. Обозначим через $\tilde{U}(t^{\circ})$ ряд, состоящий из членов ряда $U(t^{\circ})$ с номерами $r, 2r, 3r, \dots$ Этот ряд имеет вид

$$\tilde{U}(t^{\circ}) = \sum_{n=1}^{\infty} G^{n*}(t^{\circ}),$$
 где $G(t^{\circ}) = F^{r*}(t^{\circ}) < 1.$

Применяя ещё раз теорему сравнения, мы получаем, что ряд $\tilde{U}(t^\circ)$ сходится. Но члены исходного ряда U(t) монотонны, т.к.

$$F^{n*}(t) > F^{(n+1)*}(t), \qquad \forall t,$$

и поэтому $U(t^\circ) \leq \sum_{n=1}^{r-1} F^{n*}(t^\circ) + r\tilde{U}(t^\circ)$, и ряд $U(t^\circ)$ сходится. (ii) Первый способ.

$$\mathbb{E}[N_t] = \mathbb{E}\left[\sharp \left\{n: S_n \le t\right\}\right] = \mathbb{E}\left[\sum_{n=1}^{\infty} \mathbb{I}\left\{S_n \le t\right\}\right]$$
$$= \sum_{n=1}^{\infty} \mathbb{E}\left[\mathbb{I}\left\{S_n \le t\right\}\right] = \sum_{n=1}^{\infty} \mathbb{P}\left\{S_n \le t\right\}.$$

Остаётся отметить, что $S_n = \xi_1 + ... + \xi_n$, и поэтому функция распределения S_n равна $F^{n*}(\cdot)$.

Второй способ. Отметим, что

$$\{N_t = n\} = \{S_n \le t\} \cap \{S_{n+1} > t\} = \{S_n \le t\} \setminus \{S_{n+1} \le t\},$$

где последнее равенство следует из того, что для любых событий A и B выполнено $A \cap B = A/B^c$ (B^c - дополнение к множеству B). Поскольку в нашем случае $\{S_{n+1} \leq t\} \subset \{S_n \leq t\}$, то

$$\mathbb{P}\{N_t = n\} = \mathbb{P}\{S_n \le t\} - \mathbb{P}\{S_{n+1} \le t\} = G_n(t) - G_{n+1}(t),$$

 $^{^1 \}mbox{Здесь}$ и далее звёздочкой помечены те элементы теории, которые не войдут в итоговую контрольную работу.

где $G_n(t)$ - функция распределения S_n . Формула (3) теперь получается при непосредственном подсчёте математического ожидания N_t :

$$\mathbb{E}[N_t] = \sum_{n=0}^{\infty} n \, \mathbb{P}\{N_t = n\} = \sum_{n=0}^{\infty} n \, \left(G_n(t) - G_{n+1}(t)\right) = \sum_{n=1}^{\infty} \, G_n(t).$$

Остаётся только ещё раз заметить, что $G_n(t) = F^{n*}(t)$.

Из сходимости ряда U(t) следует, что

$$U = F + F * U. (4)$$

Действительно, согласно Утверждению 2.2,

$$U(t) = \sum_{n=1}^{\infty} F^{n*}(t) = F(t) + \sum_{n=2}^{\infty} F^{n*}(t) = F(t) + \left[F * \sum_{n=1}^{\infty} F^{n*} \right] (t).$$

Равенство (4) может быть эффективно использовано для нахождения математического ожидания моментов восстановления на (0,t] (совпадающего с функцией U(t)) по плотности распределения одного прыжка p(x). Действительно, воспользуемся свойствами преобразования Лапласа (см. приложение В) и возьмём преобразование Лапласа от левой и правых частей (4):

$$\mathscr{L}_U(s) = \frac{\mathscr{L}_p(s)}{s} + \mathscr{L}_U(s)\mathscr{L}_p(s),$$

где $\mathscr{L}_U(s)$ - преобразование Лапласа функции $U,\,\mathscr{L}_p(s)$ - преобразование Лапласа функции р. Мы приходим к равенству

$$\mathcal{L}_{U}(s) = \frac{\mathcal{L}_{p}(s)}{s\left(1 - \mathcal{L}_{p}(s)\right)},\tag{5}$$

которое можно использовать следующим образом:

- 1. по p(x), вычислить $\mathcal{L}_p(s)=\int_0^\infty e^{-sx}p(x)dx;$ 2. по $\mathcal{L}_p(s)$, вычислить $\mathcal{L}_U(s)$ по формуле (5);
- 3. по $\mathscr{L}_U(s)$, восстановить U(x).

2.3. Тождество Вальда

Определение 2.3. Пусть задана некоторая последовательность величин X_1, X_2, \dots (возможно, зависимых и разнораспределённых). Дискретный момент остановки (discrete stopping time, stopping trial) τ - это случайная величина, принимающая значения 1, 2, 3, ..., такая, что для любого $n \in \mathbb{N}$, $\mathbb{I}\left\{ \tau = n \right\}$ является детерминированной функцией от $X_1, X_2, ..., X_n$.

Пример 2.4. Несколько игроков передвигают фишки по игровому полю в соответствии с подбрасыванием кубика. Пусть $X_1, X_2, ...$ - это результаты поочерёдных подбрасываний кубика, то есть i.i.d. случайные величины, имеющие равномерное распределение на $\{1,...,6\}$. Тогда случайная величина "количество ходов до окончания игры" является моментом остановки.

Теорема 2.5. (Тождество Вальда, Wald's equality) Пусть X_1, X_2, \ldots - i.i.d. случайные величины, $\mathbb{E} X_1 < \infty$. Пусть $\tau-$ момент остановки, $\mathbb{E} \tau < \infty$. Тогда

$$\mathbb{E}[X_1 + \dots + X_{\tau}] = \mathbb{E}X_1 \cdot \mathbb{E}\tau. \tag{6}$$

Доказательство. Запишем математическое ожидание в следующем виде:

$$\mathbb{E}[X_1 + \dots + X_{\tau}] = \mathbb{E}\left[\sum_{n=1}^{\infty} X_n \mathbb{I}\{\tau \ge n\}\right]. \tag{7}$$

Покажем, что для любого $n \in \mathbb{N}$, случайные величины X_n и $\mathbb{I}\{\tau \geq n\}$ являются независимыми. Действительно,

$$\mathbb{I}\{\tau \ge n\} = 1 - \mathbb{I}\{\tau = 1\} - \dots - \mathbb{I}\{\tau = n - 1\}. \tag{8}$$

По определению момента остановки, для любого $k=1..(n-1), \mathbb{I}\left\{\tau=k\right\}$ является детерминированной функцией от $X_1,...,X_k$, и поэтому левая и правая части (8) являются функцией от $X_1,...,X_{n-1}$. Значит, X_n и $\mathbb{I}\left\{\tau\geq n\right\}$ независимы. Продолжим равенство в (7):

$$\begin{split} \mathbb{E}\big[X_1+\ldots+X_\tau\big] &= \sum_{n=1}^\infty \mathbb{E} X_n \cdot \mathbb{E}\big[\mathbb{I}\big\{\tau \geq n\big\}\big] \\ &= \mathbb{E} X_n \cdot \sum_{n=1}^\infty \mathbb{P}\big\{\tau \geq n\big\} = \mathbb{E} X_1 \cdot \mathbb{E} \tau. \end{split}$$

Теперь применим Теорему 2.5 к процессу восстановления. В качестве последовательности величин возьмём $\xi_1,\xi_2,...$. Важно отметить, что N_t не является моментом остановки: для любого натурального n, по $\xi_1,...,\xi_n$ нельзя определить, выполнено ли $N_t=n$. Действительно, если $t>\xi_1+...+\xi_n$, то события $N_t=n$ может быть выполнено (если $t<\xi_1+...+\xi_n+\xi_{n+1}$), а

Однако (N_t+1) является моментом остановки: если $t \geq \xi_1+..+\xi_n$ или $t < \xi_1+..+\xi_{n-1}$, то $\left\{N_t=n-1\right\}$ не выполнено, а если $\xi_1+..+\xi_{n-1} \leq t < \xi_1+..+\xi_n$, то выполнено.

Таким образом, из Теоремы 2.5 следует такое утверждение.

может быть не выполнено.

Следствие 2.6. Пусть задан процесс восстановления $S_n = S_{n-1} + \xi_n$, где ξ_1, ξ_2, \dots -i.i.d., $\mathbb{E}\xi_1 < \infty$. Обозначим через N_t соответствующий считающий процесс. Тогда

$$\mathbb{E}[S_{N_t+1}] = \mathbb{E}[\xi_1] \cdot (\mathbb{E}[N_t] + 1).$$

Замечание 2.7. Если случайная величина τ , принимающая натуральные значения, и X_1, X_2, \dots независимы, то тождество (6) может быть доказано более простым способом. Действительно, в этом случае

$$\mathbb{E}[X_1 + \dots + X_{\tau}] = \sum_{n=1}^{\infty} \mathbb{E}[X_1 + \dots + X_n | \tau = n] \mathbb{P}\{\tau = n\}$$
$$= \mathbb{E}X_1 \cdot \sum_{n=1}^{\infty} n \mathbb{P}\{\tau = n\} = \mathbb{E}X_1 \cdot \mathbb{E}\tau.$$

2.4. Предельные теоремы для процессов восстановления

Формулировки и доказательства классических предельных теорем теории вероятностей приведены в Приложении E.

Теорема 2.8 (закон больших чисел для процессов восстановления). *Рассмотрим процесс* (1) $c \ \mu := \mathbb{E}[\xi_n] < \infty$. *Тогда*

$$\left[\lim_{t\to\infty} \left[\frac{N_t}{t}\right] = \frac{1}{\mu} \qquad n. \mu.\right]$$

$$S_{N_t} \leq t \leq S_{N_t+1}$$
,

и, следовательно,

$$\frac{N_t}{S_{N_t+1}} \le \frac{N_t}{t} \le \frac{N_t}{S_{N_t}}.$$

Можно показать (см. [5], Lemma 5.3.2), что $\lim_{t\to +\infty} N_t = +\infty$. Отсюда следует, что

$$\lim_{t\to\infty}\frac{N_t}{S_{N_t}}=\lim_{n\to\infty}\frac{n}{S_n}=\lim_{n\to\infty}\frac{n}{\xi_1+\ldots+\xi_n}=\frac{1}{\mu},$$

где последнее равенство следует из усиленного ЗБЧ. Аналогичным образом,

$$\lim_{t\to\infty}\frac{N_t}{S_{N_t+1}}=\lim_{t\to\infty}\frac{N_t}{N_t+1}\cdot\frac{N_t+1}{S_{N_t+1}}=\lim_{t\to\infty}\frac{N_t}{N_t+1}\cdot\lim_{n\to\infty}\frac{n+1}{S_{n+1}}=\frac{1}{\mu}.$$

Применение леммы о двух милиционерах завершает доказательство.

Теорема 2.9 (центральная предельная теорема для процессов восстановления). *Рассмотрим процесс* (1) $c \mu := \mathbb{E}[\xi_n], \ \sigma^2 := \mathbb{D}[\xi_n] < \infty$. *Тогда*

$$\boxed{\frac{N_t - \frac{t}{\mu}}{\frac{\sigma\sqrt{t}}{\mu^{3/2}}} \xrightarrow[t \to +\infty]{\text{Law}} \mathcal{N}(0, 1).}$$

Доказательство. Применим ЦПТ к сумме i.i.d. с.в. ξ_i ,

$$\frac{S_n - \mu n}{\sigma \sqrt{n}} \xrightarrow[t \to +\infty]{Law} \mathcal{N}(0, 1),$$

что по определению сходимости по распределению означает, для любого $\alpha \in \mathbb{R}.$

$$\mathbb{P}\bigg\{S_n \le \alpha \sigma \sqrt{n} + \mu n\bigg\} = \mathbb{P}\left\{\frac{S_n - \mu n}{\sigma \sqrt{n}} \le \alpha\right\} \xrightarrow[t \to +\infty]{} \Phi(\alpha),$$

где $\Phi(\cdot)$ - функция распределения стандартной нормальной с.в. По свойству (2), $\{S_n \leq t\} = \{N_t \geq n\}$, $\forall n \in \mathbb{N}, \ \forall t \in \mathbb{R}_+, \ и, \ \text{следовательно}$,

$$\mathbb{P}\left\{S_n \leq \alpha \sigma \sqrt{n} + \mu n\right\} = \mathbb{P}\left\{N_t \geq n\right\}, \quad \text{где} \quad t := \alpha \sigma \sqrt{n} + \mu n.$$

Выразим n через t:

$$n = \frac{t}{\mu} - \frac{\alpha \sigma \sqrt{n}}{\mu} \approx \frac{t}{\mu} - \frac{\alpha \sigma \sqrt{t}}{\mu^{3/2}},$$

где последнее (нестрогое) равенство мотивировано тем, что $n\approx t/\mu$. Таким образом,

$$\mathbb{P}\left\{N_t \ge \frac{t}{\mu} - \frac{\alpha\sigma\sqrt{t}}{\mu^{3/2}}\right\} \xrightarrow[t \to +\infty]{} \Phi(\alpha),$$

или

$$\mathbb{P}\left\{Z_t \geq -\alpha\right\} \xrightarrow[t \to +\infty]{} \Phi(\alpha), \qquad$$
 где $Z_t = \frac{N_t - \frac{t}{\mu}}{\frac{\sigma\sqrt{t}}{\mu^{3/2}}}.$

Осталось заметить, что

$$\mathbb{P}\left\{Z_t \leq \alpha\right\} = 1 - \mathbb{P}\left\{Z_t \geq \alpha\right\} + \mathbb{P}\left\{Z_t = \alpha\right\} \xrightarrow[t \to +\infty]{} 1 - \Phi(-\alpha) = \Phi(\alpha).$$

2.5. Процесс восстановления с вознаграждением

Определение 2.10. Пусть $S_n = S_{n-1} + \xi_n$ - процесс восстановления и пусть задана последовательность случайных величин (вознаграждений) $R_1, R_2, ...,$ независимая от процесса восстановления. Тогда

$$Y_t := \sum_{i=1}^{N_t} R_i$$

(суммарное вознаграждение к моменту времени t) называется процессом восстановления с вознаграждением (renewal-reward process).

Утверждение 2.11. Пусть задан процесс восстановления с вознаграждением, причём $\mathbb{E}\xi_1 < \infty$, $\mathbb{E}|R_1| < \infty$. Тогда

$$\left| \lim_{t \to \infty} \left[\frac{Y_t}{t} \right] = \frac{\mathbb{E}R_1}{\mathbb{E}\xi_1} \qquad n.n.$$

Доказательство.

$$\frac{Y_t}{t} = \frac{\sum_{i=1}^{N_t} R_i}{N_t} \cdot \frac{N_t}{t},$$

причём по закону больших чисел

$$\lim_{t \to \infty} \frac{\sum_{i=1}^{N_t} R_i}{N_t} = \lim_{n \to \infty} \frac{\sum_{i=1}^n R_i}{n} = \mathbb{E}R_1,$$

а по Теореме 2.8

$$\lim_{t \to \infty} \frac{N_t}{t} = \frac{1}{\mathbb{E}\xi_1}.$$

2.6. Процесс времени ожидания

Случайный процесс

$$Y_t := S_{N_t+1} - t, \qquad t \ge 0$$

называется процессом времени ожидания. Среднее время ожидания за интервал времени [0,t] обычно вычисляется как $t^{-1}\int_0^t Y_u du$.

Теорема 2.12. Рассмотрим процесс (1) с $\mu:=\mathbb{E}[\xi_n],\ \sigma^2=\mathbb{D}[\xi_n].$ Тогда

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t Y_u du = \frac{\mathbb{E}[\xi^2]}{2\mathbb{E}[\xi]}.$$

Доказательство. Исходя из геометрических соображений, легко видеть, что

$$\frac{1}{2} \sum_{k=1}^{N_t} \xi_k^2 \leq \int_0^t Y_u du \leq \frac{1}{2} \sum_{k=1}^{N_t+1} \xi_k^2.$$

Разделим все части последнего неравенства на t,

$$\frac{1}{2t} \sum_{k=1}^{N_t} \xi_k^2 \le \frac{1}{t} \int_0^t Y_u du \le \frac{1}{2t} \sum_{k=1}^{N_t+1} \xi_k^2, \tag{9}$$

и найдём пределы левых и правых частей. Начнём с левой части:

$$\lim_{t\to\infty}\frac{1}{2t}\sum_{k=1}^{N_t}\xi_k^2=\frac{1}{2}\lim_{t\to\infty}\left[\frac{N_t}{t}\cdot\frac{\sum_{k=1}^{N_t}\xi_k^2}{N_t}\right]=\frac{\mathbb{E}[\xi^2]}{2\mathbb{E}[\xi]},$$

т.к. $N_t/t \to 1/\mathbb{E}\xi$ по теореме 2.8, и

$$\lim_{t\to\infty}\sum_{k=1}^{N_t}\xi_k^2/N(t)=\lim_{n\to\infty}\sum_{k=1}^n\xi_k^2/n=\mathbb{E}\xi^2$$

по УЗБЧ. Теперь рассмотрим правую часть:

$$\lim_{t \to \infty} \frac{1}{2t} \sum_{k=1}^{N_t+1} \xi_k^2 = \frac{1}{2} \lim_{t \to \infty} \left[\frac{N_t}{t} \cdot \frac{\sum_{k=1}^{N_t+1} \xi_k^2}{N_t+1} \cdot \frac{N_t+1}{N_t} \right] = \frac{\mathbb{E}[\xi^2]}{2\mathbb{E}[\xi]},$$

где в последнем равенстве мы использовали те же аргументы, что и при рассмотрении левой части, и, кроме того, воспользовались равенством

$$\lim_{t \to \infty} (N_t + 1)/N_t = \lim_{n \to \infty} (n+1)/n = 1.$$

Следовательно, левая и правая части (9) имеют один и тот же предел.

3. Процесс Пуассона

Литература по теме: [5], [8], [14]

Определение 3.1. Процесс Пуассона (пуассоновский процесс, Poisson process) - это процесс восстановления $S_n = S_{n-1} + \xi_n$, где $\xi_1, ..., \xi_n$ - независимые с.в. с экспоненциальным распределением, имеющим плотность

$$p(x) = \lambda e^{-\lambda x} \cdot \mathbb{I}\{x > 0\}$$

с параметром $\lambda > 0$.

Считающий процесс, определённый по процессу Пуассона,

$$N_t := \max\left\{k : S_k \le t\right\},\,$$

также называется (считающим) процессом Пуассона.

Важным отличием процесса Пуассона от большинства процессов восстановления является возможность выписать распределение S_n и N_t в явном виде.

Теорема 3.2. 1. Процесса $S_n, n = 1, 2, ...$ имеет распределение Эрланга с параметрами n и λ . Плотность распределения процесса S_n имеет вид

$$p_{S_n}(x) = \lambda \frac{(\lambda x)^{n-1}}{(n-1)!} e^{-\lambda x} \cdot \mathbb{I}\{x > 0\}, \qquad n = 1, 2, ...,$$

а функция распределения равна

$$F_{S_n}(x) = \begin{cases} 1 - e^{-\lambda x} \sum_{k=0}^{n-1} \frac{(\lambda x)^k}{k!}, & x \ge 0\\ 0, & x < 0. \end{cases}$$

2. Для любого t, считающий процесс N_t имеет распределение Пуассона c параметром λt , то есть

$$\mathbb{P}\{N_t = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}, \qquad n = 0, 1, 2, \dots$$

Доказательство. 1. Докажем формулу для плотности по индукции. Для n=1 формула верна, т.к. $S_1=\xi_1$ и $p_{\xi_1}(x)=\lambda e^{-\lambda x}\cdot \mathbb{I}\{x>0\}$. Предположим теперь, что формула верна для n и покажем, что она верна и для n+1. Действительно, плотность суммы двух независимых случайных величин S_n и ξ_{n+1} для любого x>0 вычисляется по формуле свёртки

$$p_{S_{n+1}}(x) = \int_0^x p_{S_n}(x-y)p_{\xi_{n+1}}(y)dy$$

$$= \int_0^x \lambda \frac{(\lambda(x-y))^{n-1}}{(n-1)!} e^{-\lambda(x-y)} \cdot \lambda e^{-\lambda y} dy$$

$$= \frac{\lambda^{n+1}}{(n-1)!} e^{-\lambda x} \int_0^x (x-y)^{n-1} dy$$

$$= \frac{\lambda^{n+1}x^n}{n!} e^{-\lambda x}.$$

2. Ранее было доказано, что

$$\mathbb{P}\left\{N_t = n\right\} = \mathbb{P}\left\{S_n \le t\right\} - \mathbb{P}\left\{S_{n+1} \le t\right\},\,$$

см. второй способ доказательства утверждения 2.2(ii). Следовательно,

$$\mathbb{P}\left\{N_{t}=n\right\} = \left(1 - e^{-\lambda t} \sum_{k=0}^{n-1} \frac{(\lambda t)^{k}}{k!}\right) - \left(1 - e^{-\lambda t} \sum_{k=0}^{n} \frac{(\lambda t)^{k}}{k!}\right)$$
$$= e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}.$$

Определение 3.3. Говорят, что положительная случайная величина обладает свойством отсутствия памяти (memoryless property, absence of memory), если для любых положительных u, v:

$$\left| \mathbb{P} \left\{ X > u + v \right\} = \mathbb{P} \left\{ X > u \right\} \cdot \mathbb{P} \left\{ X > v \right\}. \right| \tag{10}$$

Отметим, что если v выбрано так, что $\mathbb{P}\{X>v\}>0$, то данное определение можно переписать в следующем виде

$$\mathbb{P}\left\{X > u + v | X > v\right\} = \mathbb{P}\left\{X > u\right\}. \tag{11}$$

Утверждение 3.4. С.в. X с плотностью p(x) обладает свойством отсутствия памяти тогда и только тогда, когда $p(x) = \lambda e^{-\lambda x} \cdot \mathbb{I}\{x > 0\}$ для некоторого $\lambda > 0$ (т.е. X имеет экспоненциальное распределение $\operatorname{Exp}(\lambda)$).

Доказательство. (i) $Exp(\lambda) \Rightarrow memoryless$. Равенство (10) очевидно, т.к. и левая, и правая части равны $e^{-\lambda(u+v)}$.

(ii*) Memoryless \Rightarrow Exp(λ). Введём обозначение $h(x) = \ln \mathbb{P}\{X > x\}$. Согласно свойству (10),

$$h(u+v) = h(u) + h(v), \qquad u, v \in \mathbb{R}_+. \tag{12}$$

Покажем, что из последнего равенства и из того, что h-монотонно убывающая функция, следует, что $h(x) = \lambda x$ для некоторого $\lambda < 0$. Действительно, итеративно применяя (12), получаем

$$h(u_1 + \dots + u_k) = h(u_1) + \dots + h(u_k)$$
(13)

для любого $k \in \mathbb{Z}$. Подставляя в последнее равенство $u_1 = \ldots = u_k = a$ с некоторым $a \in \mathbb{R}$, получаем, что $h(ka) = kh(a), \ \forall k \in \mathbb{Z}$. Подставляя в (13) $u_1 = \ldots = u_k = a/k$, мы получаем, что $h(a/k) = h(a)/k, \ k \in \mathbb{Z}$. Поэтому h(x) = xh(1) для любого $x \in \mathbb{Q}$.

Покажем теперь, что h(x) = xh(1) для любого $x \in \mathbb{R}$. Возьмём $x \in \mathbb{R}/\mathbb{Q}$. Как известно, любое иррациональное число можно сколько угодно точно приблизить рациональным, т.е.

$$\forall \varepsilon > 0 \quad \exists q_1(\varepsilon) \in \mathbb{Q} : \quad |q_1(\varepsilon) - x| < \varepsilon.$$

Так как

$$q_1(\varepsilon) - \varepsilon < x < q_1(\varepsilon) + \varepsilon$$

и функция h(x) монотонно убывает, мы получаем

$$h(q_1(\varepsilon) + \varepsilon) \le h(x) \le h(q_1(\varepsilon) - \varepsilon).$$

Выберем теперь $\varepsilon \in \mathbb{Q}$. Отметим, что аргументы функции h в левой и правой частях являются рациональными. По уже доказанному,

$$(q_1(\varepsilon) + \varepsilon) h(1) \le h(x) \le (q_1(\varepsilon) - \varepsilon) h(1).$$

Применение леммы о двух миллиционерах завершает доказательство:

$$h(x) = \left[\lim_{\varepsilon \to 0} q_1(\varepsilon)\right] h(1) = xh(1).$$

Замечание 3.5. Неформально рассмотрим несколько ситуаций, в которых процесс Пуассона не может быть использован для моделирования.

- 1. Допустим, что автобусы приезжают на остановку каждые 20 ± 2 минуты. Тогда для случайной величины X времени между двумя последовательными автобусами нарушено свойство (11). Действительно, выберем v=18, u=5. Тогда в левой части равенства (11) стоит 0: если автобуса не было более 18 минут, то он скоро приедет (ждать осталось не более 4 минут), и тогда вероятность ожидания более 23 минут равна 0. Однако в правой части (11) стоит 1: вероятность того, что ждать более 5 минут, равна 1.
- 2. Другая ситуация: пусть автобусы приезжают в соответствии с некоторым распределением (возможно, экспоненциальным), в среднем каждые 20 минут. Известно, что автобусы иногда ломаются, и тогда соответствующие рейсы отменяют. В такой ситуации, свойство (11) также нарушено, причём в качестве примера можно также взять v = 18, u = 5. Условная вероятность в левой части не равна 1 может быть, автобус сломался. А в правой части вероятность равна (или близка) к 1.

Ниже приведены 2 альтернативных определения процесса Пуассона.

Определение 3.6. Целочисленный процесс $N_t, t \ge 0$ называется процессом Пуассона с интенсивностью λ , если

- 0. $N_0 = 0$ п.н.
- 1. N_t имеет независимые приращения, т.е. для любого набора моментов времени $0 \le t_0 < t_1 < ... < t_n$ случайные величины

$$N_{t_1} - N_{t_0}, N_{t_2} - N_{t_1}, ..., N_{t_n} - N_{t_{n-1}}$$

являются независимыми.

2. N_t имеет стационарные приращения, т.е. для любых моментов времени t_1, t_2 и любого h>0 выполнено

$$N_{t_2+h} - N_{t_1+h} \stackrel{d}{=} N_{t_2} - N_{t_1}.$$

3. Для любых моментов времени t и s,

$$N_t - N_s \sim \text{Pois} (\lambda(t-s))$$
.

Замечание 3.7. Отметим, что Определение 3.6 избыточно - если выполнено свойство 3, то автоматически выполнено и свойство 2. Данное определение подчёркивает тот факт, что по приращениям процесса можно сказать, является ли процесс пуассоновским.

4. Неоднородные процессы Пуассона

Литература по теме: [5], [8].

Одним из недостатков процесса Пуассона, которого мы теперь будем называть однородным процессом Пуассона, является тот факт, что его математическое ожидание линейно по времени, $\mathbb{E}N_t = \lambda t$. В данном разделе мы обсудим неоднородные процессы Пуассона, математическое ожидание которых может быть любой возврастающей положительной функцией от времени.

Определение 4.1. Пусть $\Lambda(t)$ - некоторая дифференцируемая монотонновозрастающая функция такая, что $\Lambda(0) = 0$. Неоднородный процесс Пуассона с функцией интенсивности $\lambda(t) := \Lambda'(t)$ - это целочисленный неубывающий процесс $N_t,\ t\geq 0$ ("неубывающий процесс" означает, что $N_{t+h}-N_t\geq$ 0 п.н., $\forall t \geq 0, \ \forall h > 0$), такой что

- 0. $N_0 = 0$ п.н.;
- 1. N_t имеет независимые приращения; 2. $(N_{t+h}-N_t)$ имеет распределение Пуассона с параметром $(\Lambda(t+h)-1)$

Утверждение 4.2. Если функция интенсивности неоднородного процесса N_t равна константе, то N_t на самом деле является однородным процессом Пуассона.

Доказательство. Сравнивая определение 4.1 неоднородного процесса Пуассона с определением 3.6, мы приходим к выводу, что для доказательства этого факта достаточно показать стационарность приращений. Но для любых положительных t_1, t_2, h , приращение $N_{t_2+h} - N_{t_1+h}$ имеет распределение Пуассона с параметром $\Lambda(t_2 + h) - \Lambda(t_1 + h) = \lambda(t_2 - t_1)$, которое совпадает с распределением $N_{t_2} - N_{t_1}$.

Пример 4.3. Типичным выбором функции интенсивности является функция $\lambda(t)=\alpha\beta t^{\beta-1}$, где $\alpha,\beta>0$. Такой выбор параметризации обусловлен тем, что $\mathbb{E}[N_t] = \int_0^t \lambda(u) du = \alpha t^{\beta}$, см. ниже.

5. Составные процессы Пуассона

Литература по теме: [8].

Определение 5.1. Составным процессом Пуассона (compound Poisson process - СРР) называется случайный процесс вида

$$X_t = \sum_{k=1}^{N_t} Y_k,$$

где

- 1. Y_1, Y_2, \dots независимые и одинаково распределённые с.в.;
- 2. N_t однородный процесс Пуассона с параметром λ ;

3. $Y_1, Y_2, ...$ и N_t независимы.

Составной процесс Пуассона является процессом восстановления с вознаграждением, при построении которого в качестве процесса восстановления используется однородный процесс Пуассона (см. главу 2.5).

Теорема 5.2. Составной процесс Пуассона имеет стационарные и независимые приращения, и кроме того, для любого t > s,

$$\phi_{X_t - X_s}(u) = e^{\lambda(t - s)(\phi_Y(u) - 1)}, \qquad (14)$$

еде $\phi_{X_t-X_s}(u)$ - характеристическая функция приращения X_t-X_s , а $\phi_Y(u)$ - характеристическая функция с.в. $Y_1,Y_2,...$ (см приложение D).

Доказательство. Распишем характеристическую функция приращения X_t-X_s следующим образом:

$$\mathbb{E}\left[e^{\mathrm{i}(X_{t}-X_{s})u}\right] = \sum_{k=0}^{\infty} \mathbb{E}\left[e^{\mathrm{i}u(X_{t}-X_{s})}|N_{t}-N_{s}=k\right] \mathbb{P}\left\{N_{t}-N_{s}=k\right\}$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[e^{\mathrm{i}u(Y_{1}+...+Y_{k})}|N_{t}-N_{s}=k\right] \mathbb{P}\left\{N_{t}-N_{s}=k\right\}$$

$$= \sum_{k=0}^{\infty} \mathbb{E}\left[e^{\mathrm{i}u(Y_{1}+...+Y_{k})}\right] \mathbb{P}\left\{N_{t}-N_{s}=k\right\}$$

$$= \sum_{k=0}^{\infty} (\phi_{Y}(u))^{k} \mathbb{P}\left\{N_{t}-N_{s}=k\right\}$$

$$= \sum_{k=0}^{\infty} (\phi_{Y}(u))^{k} e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{k}}{k!}$$

$$= e^{-\lambda(t-s)} \sum_{k=0}^{\infty} \frac{(\phi_{Y}(u)\lambda(t-s))^{k}}{k!} = e^{\lambda(t-s)(\phi_{Y}(u)-1)},$$

где первое равенство следует из свойств условного математического ожидания, второе - из формы составного процесса Пуассона, третье - из независимости Y_1, Y_2, \dots и N_t , четвёртое - из независимости Y_1, Y_2, \dots и свойства 2 хар. функций (см приложение D), пятое - из определения 3.6 однородного процесса Пуассона.

Следствие 5.3. Сумма двух независимых однородных процессов Пуассона $N_t^{(1)}$ и $N_t^{(2)}$ является однородным процессом Пуассона. При этом интенсивность процесса $N_t^{(1)} + N_t^{(2)}$ равна сумме интенсивностей процессов $N_t^{(1)}$ и $N_t^{(2)}$.

 $\begin{subarray}{ll} \mathcal{A} оказательства Следует, что для доказательства следствия достаточно показать \end{subarray}$

$$N_t^{(1)} + N_t^{(2)} - N_s^{(1)} - N_s^{(2)} \sim Pois((\lambda_1 + \lambda_2)(t - s)), \quad \forall t > s \ge 0,$$

где λ_1, λ_2 - интенсивности процессов $N_t^{(1)}, N_t^{(2)}$. По предыдущей теореме,

$$\phi_{N_{\star}^{(j)}-N_{\star}^{(j)}}(u) = e^{\lambda_{j}(t-s)(e^{iu}-1)}, \qquad j=1,2,$$

поскольку процесс Пуассона можно рассматривать как составной процесс Пуассона, у которого все слагаемые тождественно равны 1. Поскольку $N_t^{(1)} - N_s^{(1)}$ и $N_t^{(2)} - N_s^{(2)}$ независимы, хар. функция их суммы равна произведению соответствующих хар. функций, т.е.

$$\phi_{N_{\star}^{(1)}-N_{s}^{(1)}+N_{\star}^{(2)}-N_{s}^{(2)}}(u)=e^{(\lambda_{1}+\lambda_{2})(t-s)\left(e^{\mathrm{i}u}-1\right)}, \qquad j=1,2$$

Хар. функция в правой части последнего равенства есть хар. функция распределения Пуассона с параметром $(\lambda_1 + \lambda_2)(t-s)$.

Следствие 5.4. Для математического ожидания и дисперсии составного процесса Пуассона верны следующие формулы:

$$\mathbb{E}[X_t] = \lambda t \cdot \mathbb{E}[Y], \qquad \mathbb{D}[X_t] = \lambda t \cdot \mathbb{E}[Y^2].$$

Доказательство. Положим в формуле (14) s = 0:

$$\phi_{X_t}(u) = e^{\lambda t(\phi_Y(u) - 1)},$$

Согласно свойству 5 хар. функций (см приложение D),

$$\mathbb{E}[X_t] = \frac{1}{\mathbf{i}} \phi'_{X_t}(0) = \lambda t \cdot \frac{1}{\mathbf{i}} \phi'_Y(u) e^{\lambda t (\phi_Y(u) - 1)}|_{u = 0} = \lambda t \cdot \mathbb{E}[Y],$$

т.к. любая хар. функция в нуле равна 1. Аналогично вычисляется второй момент процесса X_t ,

$$\begin{split} \mathbb{E}[X_t^2] &= -\phi_{X_t}''(0) &= -(\lambda t)^2 \left(\phi_Y'(u)\right)^2 e^{\lambda t (\phi_Y(u) - 1)}|_{u = 0} \\ &- \lambda t \phi_Y''(u) e^{\lambda t (\phi_Y(u) - 1)}|_{u = 0} \\ &= -(\lambda t)^2 \left(\phi_Y'(0)\right)^2 - \lambda t \phi_Y''(0) \\ &= (\lambda t \mathbb{E}[Y])^2 + \lambda t \mathbb{E}[Y^2]. \end{split}$$

Следовательно,

$$\mathbb{D}[X_t] = \mathbb{E}[X_t^2] - (\mathbb{E}[X_t])^2 = \lambda t \mathbb{E}[Y^2].$$

Отметим, в заключение данного раздела, что формула для математического ожидания может быть также получена из тождества Вальда, см. Замечание 2.7.

6. Цепи Маркова

Литература по теме: [5], [10], [13]

6.1. Определение. Примеры.

Определение 6.1. Марковская цепь - это процесс X_n с дискретным временем n=0,1,2,... и со значениями в счётном множестве S, для которого выполнено марковское свойство:

$$\mathbb{P}\left\{X_n = j \mid X_{n-1} = i_{n-1}, ..., X_0 = i_0\right\} = \mathbb{P}\left\{X_n = j \mid X_{n-1} = i_{n-1}\right\}$$

для любого $n \in \mathbb{N}$ и для любых наборов $j, i_{n-1}, ..., i_0 \in S$ таких, что

$$\mathbb{P}\left\{X_{n-1}=i_{n-1},...,X_0=i_0\right\}\neq 0.$$

Смысл марковского свойства: положение в каждый момент времени зависит от положения в ближайший предыдущий момент времени и не зависит от более далёкого прошлого.

Так как S - счётное множество, мы будем обозначать его элементы натуральными числами (1,2,3...).

Мы будем изучать однородные цепи Маркова - такие, что вероятности

$$\mathbb{P}\{X_n = j \mid X_{n-1} = i\} = p_{ij}$$

не зависят от n для любых $i, j \in S$.

Для любой цепи Маркова справедлива формула

$$\mathbb{P}\left\{X_{n} = j, X_{n-1} = i_{n-1}, \dots X_{0} = i_{0}\right\} \\
= \mathbb{P}\left\{X_{n} = j \mid X_{n-1} = i_{n-1}\right\} \cdot \mathbb{P}\left\{X_{n-1} = i_{n-1} \mid X_{n-2} = i_{n-2}\right\} \cdot \dots \cdot \mathbb{P}\left\{X_{1} = i_{1} \mid X_{0} = i_{0}\right\} \cdot \mathbb{P}\left\{X_{0} = i_{0}\right\},$$

показывающая, что завимость, выраженная марковским свойством, является обобщением понятия независимости.

Пример 6.2. Случайное блуждание:

$$S_0 = 0,$$
 $S_n = S_{n-1} + \xi_n,$ $n = 1, 2, ...,$

где ξ_1, ξ_2, \dots - i.i.d. с.в., принимающие значение 1 с вероятностью р и -1 с вероятностью (1-р). Случайное блуждание является цепью Маркова, т.к. значение в данный момент времени определяется значением в предыдущий:

$$\mathbb{P}\left\{S_n = j \mid S_{n-1} = i\right\} = \begin{cases} p, & \text{если } j = i+1, \\ 1-p, & \text{если } j = i-1, \\ 0, & \text{иначе.} \end{cases}$$

Пример 6.3. Опишем построение процесса Гальтона-Ватсона - классического примера ветвящего процесса (branching process). Пусть в момент времени 0 есть одна частица. В момент времени 1 эта частица погибает, но производит ξ потомков, причём

$$\mathbb{P}\{\xi = k\} = p_k \ge 0, \qquad k = 1, 2, ..., \tag{15}$$

где $p_1 + p_2 + ... = 1$. Каждая из новорожденных частиц $\xi_1^{(1)}, ..., \xi_1^{(k)}$ погибает в момент времени 2, и в конце жизни производит (независимо от других частиц) некоторое (случайное) количество потомков в соответствии с распределением (15). Процесс продолжается далее с новыми частицами.

Если обозначить через X_n количество частиц в момент времени n, то получается, что

$$\mathbb{P}\left\{X_n = j | X_{n-1} = i\right\} = \sum_{j_1 + \dots + j_k = j} p_1^{j_1} \dots p_k^{j_k}, \qquad i = 1, 2, \dots,$$

и $\mathbb{P}\left\{X_n=j|X_{n-1}=0\right\}=\mathbb{I}\left\{j=0\right\}$. Поэтому процесс X_n является марковской ценью.

Пример 6.4. На стоянку такси в аэропорту прибывают машины, по одной в каждый момент времени. Если машина подъехала, а в очереди нет ни одного человека, то машина сразу уезжает, а если есть - то в машину садится только 1 человек. Пусть X_k - длина очереди в момент времени k а Y_k - число прибывших в момент времени k (k=0,1,2,...). Тогда

$$X_k = Y_k + (X_{k-1} - 1)^+ = egin{cases} Y_k + (X_{k-1} - 1), & \text{если } X_{k-1} \geq 1; \\ Y_k, & \text{если } X_{k-1} = 0. \end{cases}$$

 X_k является цепью Маркова.

Пример 6.5. * Некоторые процессы можно свести к процессам Маркова. Для примера предположим, что значения некоторого процесса Z_n определяются значениями в m предыдущих моментов времени, т.е.

$$\mathbb{P}\left\{Z_{n} = j \mid Z_{n-1} = i_{n-1}, ..., Z_{0} = i_{0}\right\} \\
= \mathbb{P}\left\{Z_{n} = j \mid Z_{n-1} = i_{n-1}, ..., Z_{n-m} = i_{n-m}\right\} (16)$$

для некоторого фиксированного $m \in \mathbb{N}$, для любого $n \in \mathbb{N}$ и для любых наборов $j, i_{n-1}, ..., i_0 \in S$. Сам процесс Z_n не является марковским, но процесс

$$X_n := (Z_n, ..., Z_{n-m+1}), \quad n = (m-1), m, ...$$

марковским является. Действительно, используя сокращённые записи вида

$$\mathbb{P}\left\{Z_n \mid Z_{n-1}, ..., Z_0\right\} := \mathbb{P}\left\{Z_n = j \mid Z_{n-1} = i_{n-1}, ..., Z_0 = i_0\right\},\,$$

можно переписать левую часть (16) в виде

$$\begin{split} \mathbb{P}\left\{Z_{n} \mid Z_{n-1},...,Z_{0}\right\} &= \frac{\mathbb{P}\left\{Z_{n},Z_{n-1},...,Z_{0}\right\}}{\mathbb{P}\left\{Z_{n-1},...,Z_{0}\right\}} \\ &= \frac{\mathbb{P}\left\{(Z_{n},...,Z_{n-m+1}),(Z_{n-1},...,Z_{n-m}),...,(Z_{m-1},...,Z_{0})\right\}}{\mathbb{P}\left\{(Z_{n-1},...,Z_{n-m}),...,(Z_{m-1},...,Z_{0})\right\}} \\ &= \frac{\mathbb{P}\left\{X_{n},X_{n-1},...,X_{m-1}\right\}}{\mathbb{P}\left\{X_{n-1},...,X_{m-1}\right\}} = \mathbb{P}\left\{X_{n} \mid X_{n-1},...,X_{m-1}\right\}. \end{split}$$

Аналогично можно переписать правую часть:

$$\begin{split} \mathbb{P}\left\{Z_{n} \mid Z_{n-1},...,Z_{n-m}\right\} &= \frac{\mathbb{P}\left\{Z_{n},Z_{n-1},...,Z_{n-m}\right\}}{\mathbb{P}\left\{Z_{n-1},...,Z_{n-m}\right\}} \\ &= \frac{\mathbb{P}\left\{(Z_{n},...,Z_{n-m+1}),(Z_{n-1},...,Z_{n-m})\right\}}{\mathbb{P}\left\{(Z_{n-1},...,Z_{n-m})\right\}} \\ &= \frac{\mathbb{P}\left\{X_{n},X_{n-1}\right\}}{\mathbb{P}\left\{X_{n-1}\right\}} = \mathbb{P}\left\{X_{n} \mid X_{n-1}\right\}. \end{split}$$

Таким образом, мы показали, что для процесса X_n выполнено марковское свойство:

$$\mathbb{P}\left\{X_n \mid X_{n-1}, ..., X_{m-1}\right\} = \mathbb{P}\left\{X_n \mid X_{n-1}\right\}.$$

6.2. Классификация состояний

В данном разделе мы используем графическое представление цепи Маркова (transition diagrams). Каждый узел графа представляет собой некоторое состояние. Узлы графа і в ј соединены ориентированным ребром (из і в ј), если вероятность p_{ij} перехода цепи Маркова из состояния і в состояние ј больше 0.

Под маршрутом мы пониманием конечную последовательность вершин, в котором каждая вершина (кроме последней) соединена со следующей вершины ориентированным ребром.

Определение 6.6. Состояние ј достижимо из состояния і (обозначение: $i \to j$), если существует маршрут из і в ј. Состояния і и ј называются сообщающимися (обозначение: $i \leftrightarrow j$), если $i \to j$, $j \to i$.

На множестве состояний конечной цепи Маркова можно определить классы эквивалентности $B_1, B_2, ...$ (см приложение F) следующим образом. Каждый класс B_i характеризуется тем, что

$$\forall j \in B_i, \quad \forall k \neq j : \begin{cases} k \in B_i \Leftrightarrow k \leftrightarrow j; \\ k \notin B_i \Leftrightarrow k \not \leftrightarrow j. \end{cases}$$

Существенные/несущественные состояния.

Определение 6.7. Состояние і называется несущественным (transient), если существует состояние ј такое, что $i \to j, \ j \not\to i$ (можно уйти так, что обратно вернуться не получится). Состояние і называется существенным (recurrent), если для любого состояния ј такого, что $i \to j$, выполнено также $j \to i$ (в какое бы состояния цепь не перешла, можно с положительной вероятностью вернуться обратно).

Утверждение 6.8. В классе эквивалентности либо все состояния существенные, либо все несущественные.

Доказательство. Выберем несущественное состояние і. По определению, существует состояние ј такое, что $i \to j, j \not\to i$.

Выберем теперь другое состояние k из того же класса, что i и покажем, что k - тоже несущественное состояние. Действительно, j достижимо из k, т.к. $k \to i, \ i \to j \Rightarrow k \to j$. Вместе с этим, k не достижимо из j, т.к. иначе $j \to k, \ k \to i \Rightarrow j \to i,$ а мы знаем, что $j \not\to i$. Утверждение доказано.

Утверждение 6.9. (i) Любая конечная цепь Маркова имеет хотя бы одно существенное состояние.

- (ii) Из существенного состояния можно перейти только в существенное состояние.
- (iii) Все существенные состояния, в которые можно перейти из заданного существенного состояния, образуют один класс эквивалентности.

Доказательство. Доказательство первого факта будет приведено позднее, в то время как 2 и 3 непосредственно следуют из определения и предыдущего утверждения. □

Период состояния.

Определение 6.10. Период состояния і (обозначение: d(i)) - это наименьшее натуральное число, обладающее свойством $p_{ii}(m) = 0$ для всех m не кратных d(i). Эквивалентно можно сказать, что d(i) - наибольший общий делительно всех чисел m таких, что $p_{ii}(m) \neq 0$.

Если d(i) = 1, то состояние i называется непериодическим; если $d(i) \ge 2$, то состояние i называется периодическим.

Теорема 6.11. Все состояния в одном классе эквивалентности имеют одинаковый период.

Доказательство. Возьмём 2 элемента i,j из одного класса. Обозначим длину маршрута из i в j через n, а длину маршрута из j в i через m. Из i в i можно попасть за n+m шагов, поэтому n+m делится на d(i).

Возьмём теперь произвольное k такое, что $p_{jj}(k) > 0$. Это означает, что существует маршрут из j в j длиной k. Таким образом, можно попасть из i в i за n+m+k шагов $(i \to j \to j \to i)$, поэтому n+m+k делится на d(i). Значит, k делится на d(i). Но k - произвольное число такое, что $p_{jj}(k) > 0$, и, следовательно, d(i) является общим делителем чисел k таких, что $p_{jj}(k) > 0$. Так как d(j) - наибольший общий делитель всех таких k, то d(j) делится на d(i). Аналогично доказывается, что d(i) делится на d(j). В итоге получаем, что d(i) = d(j).

Возвратные/невозвратные состояния.

Определение 6.12. Состояние i цепи Маркова называется возвратным, если

$$\mathbb{P}\{\exists n > 0 : X_n = i | X_0 = i\} = 1.$$

Иначе состояние называется невозвратным.

Утверждение 6.13. (i) Состояние і является возвратным тогда и только тогда, когда

$$\sum_{n=1}^{\infty} f_{ii}(n) = 1,$$

где через $f_{ii}(n)$ обозначена вероятность возвращения в i-ое состояние на n-ом шаге в первый раз.

(ii) Состояние і является возвратным тогда и только тогда, когда

$$\sum_{n=1}^{\infty} p_{ii}(n) = \infty,$$

где $p_{ii}(n)$ - вероятность перехода из состояния i в состояние i за n шагов.

- (iii) B классе эквивалентности либо все элементы возвратны, либо все невозвратны.
- (iv) В любой конечной цепи Маркова есть хотя бы одно возвратное состояние.
- (v) В конечной цепи Маркова состояние является возвратным тогда и только тогда, когда оно является существенным.

Доказательство. * (i) Очевидно.

- (ii) Доказательство состоит из двух этапов.
- **1.** Рассмотрим события

$$A_i^{(k)} = \{$$
 цепь впервые возвращается в состояние i на k -ом шаге $\}$ = $\{X_k=i, X_{k-1} \neq i, ... X_1 \neq i, X_0=i\}$.

В наших обозначениях, $\mathbb{P}\{A_i^{(k)}\} = f_{ii}(k)$. Тогда

$$p_{ii}(n) = \mathbb{P}\{X_n = i | X_0 = i\} = \sum_{k=1}^n \mathbb{P}\left\{X_n = i | A_i^{(k)}, X_0 = i\right\} \mathbb{P}\left\{A_i^{(k)}\right\}.$$

По марковскому свойству,

$$\mathbb{P}\left\{X_{n} = i | A_{i}^{(k)}, X_{0} = i\right\} = \mathbb{P}\left\{X_{n} = i | X_{k} = i\right\} = p_{ii}(n - k),$$

где первое равенство следует из следующего общего факта:

$$\begin{split} \mathbb{P}\left\{X_{n} = i \middle| X_{k} = i_{k}, ..., X_{0} = i_{0}\right\} \\ &= \sum_{i_{n-1}, ..., i_{k+1}} \mathbb{P}\left\{X_{n} = i, X_{n-1} = i_{n-1}, ..., X_{k+1} = i_{k+1} \middle| X_{k} = i_{k}, ..., X_{0} = i_{0}\right\} \\ &= \sum_{i_{n-1}, ..., i_{k+1}} \mathbb{P}\left\{X_{n} = i, X_{n-1} = i_{n-1}, ..., X_{k+1} = i_{k+1} \middle| X_{k} = i_{k}\right\} \\ &= \mathbb{P}\left\{X_{n} = i \middle| X_{k} = i_{k}\right\}. \end{split}$$

Поэтому

$$p_{ii}(n) = \sum_{k=1}^{n} p_{ii}(n-k) f_{ii}(k).$$

Отсюда следует, что

$$\sum_{n=1}^{\infty} p_{ii}(n) = \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} p_{ii}(n-k) f_{ii}(k) \right] = \sum_{k=1}^{\infty} f_{ii}(k) \left[\sum_{n=k}^{\infty} p_{ii}(n-k) \right]$$
$$= \left[\sum_{k=1}^{\infty} f_{ii}(k) \right] \cdot \left[\sum_{n=0}^{\infty} p_{ii}(n) \right] = \left[\sum_{k=1}^{\infty} f_{ii}(k) \right] \cdot \left[1 + \sum_{n=1}^{\infty} p_{ii}(n) \right].$$

Поэтому если $\sum_{n=1}^{\infty} p_{ii}(n) < \infty$, то состояние не является возвратным, так как

$$\sum_{k=1}^{\infty} f_{ii}(k) = \frac{\sum_{n=1}^{\infty} p_{ii}(n)}{1 + \sum_{n=1}^{\infty} p_{ii}(n)} < 1.$$

2. Наоборот, пусть $\sum_{n=1}^{\infty} p_{ii}(n) = \infty$. Аналогично первому пункту, получаем, что для любого фиксированного натурального N,

$$\sum_{n=1}^{N} p_{ii}(n) = \sum_{n=1}^{N} \left[\sum_{k=1}^{n} p_{ii}(n-k) f_{ii}(k) \right] = \sum_{k=1}^{N} f_{ii}(k) \left[\sum_{n=k}^{N} p_{ii}(n-k) \right]$$

$$\leq \left[\sum_{k=1}^{N} f_{ii}(k) \right] \cdot \left[\sum_{n=0}^{N} p_{ii}(n) \right].$$

Следовательно,

$$\sum_{k=1}^{N} f_{ii}(k) \ge \frac{\sum_{n=1}^{N} p_{ii}(n)}{1 + \sum_{n=1}^{N} p_{ii}(n)} \to 1, \qquad N \to \infty.$$

 $\underline{\text{(iv)}}$ Аналогично (ii), этап 2, можно показать, что если состояние j невозвратно, то $\sum_{n=1}^{\infty} p_{ij}(n) < \infty$ для любого i.

Отсюда следует, что в любой конечной цепи Маркова есть хотя бы одно возвратное состояние. Действительно, для любых i,j,

$$\sum_{i=1}^{M} p_{ij}(n) = 1$$

и поэтому найдётся хотя бы один индекс j такой, что $\lim_{n\to\infty} p_{ij}(n)\neq 0$. Но для этого индекса ряд $\sum_{n=1}^\infty p_{ij}(n)$ расходится, и поэтому состояние j не является возвратным.

(v) Теперь предположим, что состояние i в конечной цепи Маркова является несущественным. Тогда найдётся такое индекс j, что для некоторого n, $p_{ij}(n) > 0$ и для любого k $p_{ji}(k) = 0$. Получается, что

$$\mathbb{P}$$
 {цепь вернулась в состояние i } = \mathbb{P} {цепь не переходила из i в j }
$$= 1 - \mathbb{P}$$
 {цепь переходила из i в j }
$$\leq 1 - \mathbb{P}$$
 {цепь переходила из i в j за n шагов} $\leq 1 - p_{ij}(n) < 1$,

и поэтому цепь не является возвратной.

С другой стороны, если состояние i существенно, то возможно 2 варианта.

- 1) Состояние i не сообщается ни с одним другим состоянием. Тогда оно является возвратным по определению.
- 2) Состояние i сообщается с состояниями $i_1, ..., i_m$. Тогда можно ограничить цепь только на данный класс. По доказанному выше (см. (iv)), в этой цепи будет хотя бы одно возвратное состояние. Значит, по п. (iii), все состояния в этом классе будут возвратными.

Замечание 6.14. Доказательство утверждения 6.9(i) непосредственно вытекает из n. (iv), (v) предыдущего утверждения.

6.3. Матричное представление цепи Маркова

В первом разделе мы ввели обозначение p_{ij} - вероятность перехода из i в j за 1 шаг. Матрица $P=(p_{ij})$ называется матрицей переходных вероятностей. Обозначим вероятность перехода из состояния i в состояние j за m шагов через $p_{ij}(m)$. Аналогично можно определить матрицу перехода за m шагов $P^{(m)}:=(p_{ij}(m))$.

Теорема 6.15. Для конечной цепи Маркова (т.е. для цепи Маркова с конечным количеством состояний), имеет место равенство

$$P^{(m)} = P^m.$$

Доказательство. Распишем $p_{ij}(m)$ по формуле полной вероятности:

$$p_{ij}(m) = \mathbb{P} \{ X_{n+m} = j \mid X_n = i \}$$

$$= \sum_{k \in S} \mathbb{P} \{ X_{n+m} = j \mid X_n = i, X_{n+m-1} = k \} \mathbb{P} \{ X_{n+m-1} = k \mid X_n = i \}$$

$$= \sum_{k \in S} \mathbb{P} \{ X_{n+m} = j \mid X_{n+m-1} = k \} \mathbb{P} \{ X_{n+m-1} = k \mid X_n = i \}$$

$$= \sum_{k \in S} p_{kj} \cdot p_{ik}(m-1).$$

Следовательно, $P^{(m)} = P^{(m-1)}P$. Итеративно применяя доказанное равенство, мы получаем

$$P^{(m)} = P^{(m-1)}P = P^{(m-2)}P^2 = P^{(1)}P^{m-1} = P^m$$

где последнее равенство следует из того, что $P^{(1)} = P$.

Следствие 6.16. Из последней теоремы непосредственно следует уравнение Колмогорова-Чепмена:

$$P^{(n+m)} = P^{(n)}P^{(m)}, \qquad \forall n, m \in \mathbb{N}.$$

Обозначим количество элементов в конечной цепи Маркова через M. Обозначим распределение цепи Маркова на k-ом шаге (k=0,1,2,...) через $\vec{\pi}^{(k)}=\left(\pi_1^{(k)},...,\pi_M^{(k)}\right)$, т.е.

$$\mathbb{P}\left\{X_k = j\right\} = \pi_i^{(k)}, \quad j = 1..M, \quad k = 0, 1, 2, ...$$

Отметим, что

$$\mathbb{P}\left\{X_{k} = j\right\} = \sum_{i=1}^{M} \mathbb{P}\left\{X_{k} = j \mid X_{k-1} = i\right\} \cdot \mathbb{P}\left\{X_{k-1} = i\right\} = \left(\vec{\pi}^{(k-1)}P\right)_{j},$$

то есть

$$\vec{\pi}^{(k)} = \vec{\pi}^{(k-1)} P,$$
 $k = 1, 2, \dots$

Итеративно применяя последнее равенство, получаем

$$\vec{\pi}^{(k)} = \vec{\pi}^{(0)} P^k, \qquad k = 1, 2, \dots$$

Определение 6.17. Распределение $\vec{\pi}$ на множестве состояний цепи Маркова с матрицей переходных вероятностей P называется стационарным, если $\vec{\pi}P=\vec{\pi}.$

Отметим, что если в начальный момент времени распределение $\vec{\pi}^{(0)}$ является стационарным, то для момента времени k, $\vec{\pi}^{(k)} = \vec{\pi}^{(0)}$.

Утверждение 6.18. У конечной цепи Маркова есть хотя бы одно стационарное состояние, причём если состояние не единственное, то таких состояний бесконечно много.

Доказательство. * Как известно из курса линейной алгебры, уравнение $\vec{\pi}P=\vec{\pi}$ (относительно $\vec{\pi}=(\pi_1,...\pi_M)$) может иметь либо не иметь решений, либо иметь одно решение, либо бесконечно много решений. Покажем, что поскольку P- стохастическая матрица, это уравнение всегда имеет хотя бы одно решение такое, что $\sum_{k=1}^{M} \pi_k = 1$ и все $\pi_k, k = 1..M$ положительны.

Согласно утверждению 6.9 (i), любая конечная цепь Маркова имеет хотя бы одно существенное состояние. Переобозначим состояния - пусть состояние номер 1 является существенным. Обозначим количество состояний, в которое можно перейти из этого состояния, через K - без ограничения общности можно считать, что это состояния 1, ..., K. По утверждению 6.9 (iii),

все эти состояния существенны и относятся к одному классу эквивалентности, и матрица P имеет вид

$$P = \begin{pmatrix} p_{11} & \dots & p_{1K} & 0 & \dots & 0 \\ p_{21} & \dots & p_{2K} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ p_{K1} & \dots & p_{KK} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}.$$

Покажем, что стационарное состояние может быть найдено среди состояний, у которых $\pi_{K+1} = ... = \pi_M = 0$. Действительно, на таких состояниях задача может быть переформулирована: требуется найти стационарное состояние цепи Маркова с матрицей перехода за 1 шаг

$$P^{\circ} = \begin{pmatrix} p_{11} & \dots & p_{1K} \\ p_{21} & \dots & p_{2K} \\ \dots & \dots & \dots \\ p_{K1} & \dots & p_{KK} \end{pmatrix}.$$

Некоторые элементы этой матрицы могут быть равны 0, но для любых индексов i,j существует натуральное число m такое, что (i,j)-ый элемент матрицы $P^{\circ m}$ строго положителен. Тогда по теореме Фробениуса -Перрона для неотрицательных матриц (Perron–Frobenius theorem for irreducible matrices), максимальное собственное значение r матрицы P° удовлетворяет неравенствам

$$\min_{i} \sum_{j=1}^{K} p_{ij}^{\circ} \le r \le \max_{i} \sum_{j=1}^{K} p_{ij}^{\circ},$$

то есть равно 1, и для этого собственного значения существует левый собственный вектор \vec{v} (т.е. $\vec{v}P^\circ = \vec{v}$) со строго положительными компонентами. Для завершения доказательства осталось отметить, что собственный вектор определён с точностью до множителя, поэтому всегда можно подобрать вектор с суммой компонент равной 1.

Замечание 6.19. На практике при решении системы

$$\vec{\pi}P = \vec{\pi}, \qquad \sum_{k=1}^{M} \pi_k = 1$$

(M+1) уравнение с M неизвестными) удобно отбросить M-ое уравнение. Действительно, M-ое уравнение следует из всех остальных уравнений:

$$\sum_{i=1}^{M} \pi_i p_{iM} = \sum_{i=1}^{M} \pi_i \left(1 - \sum_{j=1}^{M-1} p_{ij} \right)$$

$$= 1 - \sum_{j=1}^{M-1} \left(\sum_{i=1}^{M} \pi_i p_{ij} \right) = 1 - \sum_{j=1}^{M-1} \pi_j = \pi_M.$$

Поэтому исходная система эквивалентна системе

$$(\pi_1 \quad \dots \quad \pi_M) \begin{pmatrix} p_{11} & \dots & p_{1(M-1)} & 1 \\ \dots & \dots & \dots & \dots \\ p_{M1} & \dots & p_{M(M-1)} & 1 \end{pmatrix} = (\pi_1 \quad \dots \quad \pi_{M-1} \quad 1) .$$
 (17)

6.4. Эргодическая теорема

В рамках данной главы все цепи Маркова предполагаются конечными. Количество состояний цепи обозначено через M.

Определение 6.20. Эргодический класс состояний - класс, все элементы которого существенны и непериодичны. Цепь, состоящая из одного эргодического класса называется эргодической цепью.

Отметим, что если цепь состоит из 1 класса, то все состояния существенны. Действительно, хотя бы 1 состояние является существенным (утверждение 6.9 (i)), и поэтому все элементы являются существенными (утверждение 6.8).

Утверждение 6.21. Цепь Маркова является эргодической тогда и только тогда, когда

$$\exists m \in \mathbb{N} : \quad p_{ij}(m) > 0 \quad \forall i, j.$$
 (18)

Кроме того, если цепь эргодическая, то (18) выполнено для любого $m \ge (M-1)^2+1$.

Теорема 6.22. Для эргодической цепи существуют пределы

$$\left[\lim_{n\to\infty} p_{ij}(n) = \pi_j^*,\right]$$
(19)

причём π_j^* не зависят от i и, кроме того, $\pi_j^* > 0$, $\forall j = 1..M$, $u \sum_{j=1}^M \pi_j^* = 1$.

Замечание 6.23. Отметим, что свойство (19) не может быть выполнено для неэргодической цепи Маркова. Действительно, если в цепи есть хотя бы одно несущественное состояние j, то найдется такое состояние i, что $p_{ij}(n) = 0$ для любого $n \in \mathbb{N}$. Но тогда $\lim_{n \to \infty} p_{ij}(n) = 0$.

Если же цепь состоит из нескольких классов, но все элементы этих классов являются существенными, то состояния из разных классов не сообщаются друг с другом. Это значит, что предельные значения в (18) зависят от i.

Доказательство. Обозначим $s_i(n) = \min_i p_{ij}(n), S_i(n) = \max_i p_{ij}(n), j =$

1..*М*. Последовательность $s_j(n)$ возрастает по n для любого j=1..M:

$$s_{j}(n) = \min_{i} p_{ij}(n) = \min_{i} \left[\sum_{k=1}^{M} p_{ik} p_{kj}(n-1) \right]$$

$$\geq \min_{i} \left[\sum_{k=1}^{M} p_{ik} \right] \cdot \min_{k} \left[p_{kj}(n-1) \right] = s_{j}(n-1). \quad (20)$$

Аналогично, $S_j(n)$ убывает по n для любого j=1..M, и поэтому разность $S_j(n)-s_j(n)$ также монотонно убывает. Докажем, что эта разность стремится к нулю.

Выберем $m \in \mathbb{N}$: $p_{ij}(m) > 0$, $\forall i, j$ (см. Утверждение 6.21), и обозначим $\varepsilon := \min_{i,j} p_{ij}(m) > 0$. Рассмотрим для произвольных $i, j = 1..M, n \in \mathbb{N}$, вероятность перехода из i в j за m+n шагов:

$$p_{ij}(m+n) = \sum_{k=1}^{M} p_{ik}(m) p_{kj}(n)$$

$$= \sum_{k=1}^{M} (p_{ik}(m) - \varepsilon p_{jk}(n)) p_{kj}(n) + \varepsilon \sum_{k=1}^{M} p_{jk}(n) p_{kj}(n).$$

Поскольку $p_{ik}(m) \ge \varepsilon$ и $1 \ge p_{jk}(n), \forall i, j, k$, то $p_{ik}(m) - \varepsilon p_{jk}(n) \ge 0$. Значит,

$$\sum_{k=1}^{M} (p_{ik}(m) - \varepsilon p_{jk}(n)) p_{kj}(n) \geq s_j(n) \cdot \sum_{k=1}^{M} (p_{ik}(m) - \varepsilon p_{jk}(n))$$

$$\geq s_j(n) \cdot \left(\sum_{k=1}^{M} p_{ik}(m) - \varepsilon \sum_{k=1}^{M} p_{jk}(n)\right)$$

$$= (1 - \varepsilon) s_j(n).$$

Принимая во внимание, что $\sum_{k=1}^{M} p_{jk}(n) p_{kj}(n) = p_{jj}(2n)$, получаем, что

$$p_{ij}(m+n) \geq (1-\varepsilon)s_i(n) + \varepsilon p_{ij}(2n).$$

Поэтому

$$s_j(m+n) \ge (1-\varepsilon)s_j(n) + \varepsilon p_{jj}(2n),$$

и, аналогично,

$$S_j(m+n) \le (1-\varepsilon)S_j(n) + \varepsilon p_{jj}(2n),$$

Наконец, мы заключаем, что

$$S_i(m+n) - s_i(m+n) \le (1-\varepsilon) \left(S_i(n) - s_i(n) \right).$$

Значит, можно выбрать подпоследовательность $n_k := m + nk, \ k \in \mathbb{N}$ такую, что

$$S_{i}(n_{k}) - s_{i}(n_{k}) \le (1 - \varepsilon)^{k} (S_{i}(0) - s_{i}(0)) \to 0, \quad k \to \infty$$

(в этом месте ключевую роль играет тот факт, что $\varepsilon \in (0,1)$). Но по уже доказанному, $(S_j(n)-s_j(n))$ - монотонная последовательность, поэтому $S_j(n)-s_j(n) \to 0, n \to \infty$.

Для любого j=1..M и любого n>m выполнено

$$\min_{i} p_{ij}(n) \ge \min_{i} p_{ij}(m) \ge \varepsilon > 0,$$

см. (20), и поэтому

$$\pi_j^* = \lim_{n \to \infty} p_{ij}(n) \ge \varepsilon > 0.$$

Наконец,

$$\sum_{j=1}^{M} \pi_j^* = \sum_{j=1}^{M} \lim_{n \to \infty} \pi_{ij}(n) = \lim_{n \to \infty} \sum_{j=1}^{M} \pi_{ij}(n) = 1.$$
 (21)

Утверждение 6.24. Если распределение $\vec{\pi}^* = (\pi_1^*, ..., \pi_M^*)$ получено по формуле (19), то

- (i) $\vec{\pi}^*$ является единственным стационарным распределением для цепи Маркова с переходной матрицей P;
- (ii) $\pi_j^* = \lim_{n \to \infty} \pi_j^{(n)}, \ j = 1..M,$ независимо от того, какое распределение было в начальный момент времени.

Доказательство. (і) Действительно,

$$(\vec{\pi}^* P)_i = \sum_{j=1}^M \pi_j^* p_{ji} = \sum_{j=1}^M \left(\lim_{n \to \infty} p_{kj}(n) \right) p_{ji},$$

где k - произвольное целое число от 1 до M. Далее,

$$(\vec{\pi}^* P)_i = \sum_{j=1}^M \left(\lim_{n \to \infty} p_{kj}(n) \right) p_{ji} = \lim_{n \to \infty} \left(\sum_{j=1}^M p_{kj}(n) p_{ji} \right)$$
$$= \lim_{n \to \infty} \left(P^{(n)} P \right)_{ki} = \lim_{n \to \infty} \left(P^{(n+1)} \right)_{ki},$$

где последнее равенство следует из Теоремы 6.15. Осталось заметить, что

$$(\vec{\pi}^*P)_i = \lim_{n \to \infty} \left(P^{(n+1)}\right)_{ki} = \lim_{n \to \infty} p_{ki}(n+1) = \pi_i^*,$$

то есть $\vec{\pi}^*P = \vec{\pi}^*$. Таким образом, мы показали, что распределение $\vec{\pi}^*$ является стационарным.

Покажем теперь, что других стационарных распределений нет. Пусть $\vec{\pi}^{\circ}$ - стационарное распределение, $\vec{\pi}^{\circ} = \vec{\pi}^{\circ} P$. Тогда $\vec{\pi}^{\circ} = \vec{\pi}^{\circ} P^n$ для любого $n\in\mathbb{N},$ и, значит, $\vec{\pi}^{\circ}=\lim_{n\to\infty}\vec{\pi}^{\circ}P^n.$ Поэтому для любого j=1..M,

$$\pi_{j}^{\circ} = \lim_{n \to \infty} \sum_{i=1}^{M} \pi_{i}^{\circ} p_{ij}(n) = \sum_{i=1}^{M} \pi_{i}^{\circ} \left[\lim_{n \to \infty} p_{ij}(n) \right] = \sum_{i=1}^{M} \pi_{i}^{\circ} \pi_{j}^{*} = \pi_{j}^{*},$$

и, следовательно, $\vec{\pi}^\circ = \vec{\pi}^*$. (ii) Поскольку $\vec{\pi}^{(n)} = \vec{\pi}^{(0)} P^{(n)}$, то для любого j=1..M имеют место равенства

$$\lim_{n \to \infty} \pi_j^{(n)} = \lim_{n \to \infty} \left[\sum_{k=1}^M \pi_k^{(0)} p_{kj}(n) \right] = \sum_{k=1}^M \pi_k^{(0)} \lim_{n \to \infty} \left[p_{kj}(n) \right]$$
$$= \pi_j^* \cdot \left[\sum_{k=1}^M \pi_k^{(0)} \right] = \pi_j^*.$$

6.5. Момент первого достижения

1. Обозначим момент первого достижения (hitting time) состояния j

$$\tau_i = \inf \{ n \ge 0 : X_n = j \}.$$

Событие "цепь когда-либо перейдёт в состояние j" совпадает с событием " $\tau_j < \infty$ ". Введём обозначение

$$h_{i,i} := \mathbb{P}\left\{\tau_i < \infty \mid X_0 = i\right\}$$

- вероятность когда-либо перейти в состояние j, если цепь стартует из состояния i. Очевидно, что $h_{ii} = 1$.

Утверждение 6.25. Для любых $i, j \in S, i \neq j$, имеет место равенство

$$h_{ij} := \sum_{k \in S} p_{ik} h_{kj}. \tag{22}$$

Доказательство.

$$h_{ij} = \mathbb{P}\{\tau_j < \infty | X_0 = i\} = \sum_k \mathbb{P}\{\tau_j < \infty, X_1 = k | X_0 = i\}$$
$$= \sum_k \mathbb{P}\{\tau_j < \infty | X_1 = k, X_0 = i\} \mathbb{P}\{X_1 = k | X_0 = i\}.$$
(23)

Заметим, что

$$\mathbb{P}\left\{\tau_{j} < \infty | X_{1} = k, X_{0} = i\right\} = \mathbb{P}\left\{\tau_{j} < \infty | X_{1} = k\right\}, \qquad \forall i, j, k, \ i \neq j. \tag{24}$$

Действительно, если j=k, то обе части равенства равны 1. Если $j\neq k$, то равенство следует из марковского свойства. Подставляя (57) в (56), получаем (22).

Пример 6.26. Цепь Маркова задана матрицей переходных вероятностей за $1~{\rm mar}$

$$P = \begin{pmatrix} 0 & 0 & 1/2 & 0 & 0 & 1/2 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 & 0 \\ 1/3 & 0 & 1/3 & 0 & 0 & 1/3 \\ 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1/4 & 0 & 1/2 & 0 & 0 & 1/4 \end{pmatrix}.$$

Найдите вероятность того, что цепь когда-либо будет находиться в состоянии 6, если

- (i) цепь стартует из детерминированного состояния (то есть начальное распределение вероятностей вырожденное, равное 1 для одного состояния и 0 для всех остальных);
- (ii) начальное распределение вероятностей произвольное.

В первом пункте задачи нас просят найти $h_{16},h_{26},..,h_{66}.$ Очевидно, что $h_{66}=1.$

В данной цепи Маркова 3 класса - $\{1,3,6\},\{2,4\},\{5\}$. По графическому представлению сразу делаем вывод, что $h_{56}=0$.

Отметим, что состояния $\{1,3,6\}$ - существенные. Справедливо такое утверждение: вероятность когда-либо перейти в существенное состояние j из любого состояния, входящего в один класс эквивалентности с j, равна 1. Действительно, пусть j состоит в одном классе с состояниями $i_1,...,i_n \in S$. Тогда соответствующие уравнения (22) объединяются в систему уравнений

$$h_{i_k j} = p_{i_k i_1} h_{i_1 j} + \dots + p_{i_k i_n} h_{i_n j}, \qquad k = 1..n,$$

решением которой является $h_{i_1j}=\ldots=h_{i_nj}=1$. Поэтому $h_{16}=h_{36}=1$. Записывая (22) для i=2,j=6 и i=4,j=6, получаем уравнения

$$h_{26} = \frac{1}{5}h_{26} + \frac{1}{5}h_{46} + \frac{2}{5},$$

$$h_{46} = \frac{1}{6}h_{26} + \frac{1}{6}h_{46} + \frac{1}{2},$$

решая которые получаем $h_{26} = 13/19, h_{46} = 14/19.$

Второй пункт задачи:

$$\mathbb{P}\big\{\tau_6 < \infty\big\} = \sum_{i=1}^6 \mathbb{P}\left\{\tau_6 < \infty \mid X_0 = i\right\} \mathbb{P}\big\{X_0 = i\big\} = \sum_{k=1}^6 h_{i6} \mathbb{P}\big\{X_0 = i\big\}.$$

2. Обозначим через ν_{ij} математическое ожидание количества шагов до перехода в состояние j, если цепь изначально находилась в состоянии i,

$$\nu_{ij} := \mathbb{E}\left[\tau_i \mid X_0 = i\right].$$

Очевидно, что $\nu_{ii} = 0$.

Утверждение 6.27. Для любых $i, j \in S, i \neq j$, справедливы соотношения

$$\nu_{ij} = 1 + \sum_{k} p_{ik} \nu_{kj}.$$

Доказательство. Аналогично доказательству утверждения 6.25, имеем

$$\nu_{ij} = \sum_{k} \mathbb{E}[\tau_j | X_1 = k] \mathbb{P}\{X_1 = k | X_0 = i\}.$$

Заметим, что для j=k, то $\mathbb{E}[\tau_i|X_1=k]=1$, а если $j\neq k$, то

$$\mathbb{E}[\tau_i|X_1=k] = \mathbb{E}[1+\tau_i|X_0=k].$$

Значит.

$$\begin{array}{rcl} \nu_{ij} & = & \sum_{k} \mathbb{P} \big\{ X_1 = k | X_0 = i \big\} + \sum_{k \neq j} \mathbb{E} \big[\tau_j | X_1 = k \big] \mathbb{P} \big\{ X_1 = k | X_0 = i \big\} \\ & = & 1 + \sum_{k \neq j} \nu_{kj} p_{ik} = 1 + \sum_{k} \nu_{kj} p_{ik}, \end{array}$$

где последнее равенство верно, поскольку $\nu_{ij} = 0$.

Пример 6.28. Цепь Маркова задана матрицей переходных вероятностей за $1~{\rm mar}$

$$P = \begin{pmatrix} 4/5 & 1/5 \\ 3/5 & 2/5 \end{pmatrix}.$$

Спрашивается, чему равно математическое ожидание количества шагов до перехода в состояние 1, если в начальный момент времени цепь находилась в состоянии 2.

Имеем

$$\nu_{21} = 1 + p_{22}\nu_{21} = 1 + (2/5)\nu_{21}$$

Поэтому $\nu_{21} = 5/3$.

Часть II

Процессы с непрерывным временем

 Гауссовские процессы. Броуновское движение. Стационарность.

Литература по теме: [11], [5].

7.1. Гауссовский вектор

В данном разделе удобно дополнить определение одномерной нормальной с.в. следующим образом. Мы будем говорить, что одномерная с.в. X имеет нормальное распределение с параметрами μ и σ^2 (об. $\mathbb{N}(\mu,\sigma^2)$), если её плотность равна

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}, \quad \sigma > 0,$$

или же

$$\mathbb{P}\left\{X = \mu\right\} = 1, \qquad \sigma = 0.$$

Определение 7.1. Вектор $\vec{X} = (X_1, ..., X_n)$ называется гауссовским, если для любого набора коэффициентов $(\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$ с.в. $Y := \sum_{k=1}^n \lambda_k X_k$ имеет нормальное распределение.

Утверждение 7.2. Вектор \vec{X} является гауссовским тогда и только тогда, когда выполнено любое из следующих свойств:

(i) характеристическая функция вектора $ec{X}$ представима в виде

$$\phi_{\vec{X}}(\vec{u}) = \exp\left\{i\left(\vec{u}, \vec{\mu}\right) - \frac{1}{2}\vec{u}^T \Sigma \vec{u}\right\},\tag{25}$$

где $\mu \in \mathbb{R}^n$ и Σ - симметричная неотрицательно определённая матрица размера $n \times n$;

(ii) вектор \vec{X} представим в виде

$$\vec{X} = A\vec{X}^{\circ} + \vec{\mu}, \tag{26}$$

где $\vec{\mu} \in \mathbb{R}^n$, $A \in \mathrm{Matr}(n,n)$ и $\vec{X}^\circ \in \mathbb{R}^n$ - стандартный нормальный вектор, т.е. все компоненты этого вектора независимы в совокупности и распределены по закону $\mathbb{N}(0,1)$.

Замечание 7.3. Из доказательства данного утверждения следует, что

ullet вектор $ec{\mu}$ является вектором средних значений, то есть

$$\vec{\mu} = (\mathbb{E}X_1, ..., \mathbb{E}X_n);$$

- матрица $\Sigma = (\Sigma_{jk})_{j,k=1}^n$ является ковариационной матрицей вектора \vec{X} , то есть $\Sigma_{jk} = \text{cov}(X_j, X_k)$;
- матрицу А можно выбрать такой, что

$$AA = AA^{\top} = \Sigma$$
.

и поэтому в дальнейшем будет использовано обозначение $A = \Sigma^{1/2}$, см. Приложение H.

Доказательство. Опр. 7.1 ⇒ (i). По определению хар. функции

$$\phi_{\vec{X}}(\vec{u}) = \mathbb{E}\left[e^{\mathrm{i}(u_1X_1 + \dots + u_nX_n)}\right], \qquad \vec{u} \in \mathbb{R},$$

где выражение в правой части можно трактовать как значение хар. функции одномерной нормальной случайной величины $Y=u_1X_1+\ldots+u_nX_n$ в точке 1. Таким образом,

$$\phi_{\vec{X}}(\vec{u}) = e^{i\mu_Y - \sigma_Y^2/2}.$$

где

$$\mu_Y = \mathbb{E}Y = \sum_{k=1}^n u_k \cdot \mathbb{E}X_k = (\vec{u}, \vec{\mu}), \qquad \vec{\mu} := (\mathbb{E}X_1, ..., \mathbb{E}X_n),$$

$$\sigma_Y^2 = \mathbb{D}Y = \mathbb{D}\left[\sum_{k=1}^n u_k X_k\right] = \sum_k u_k u_k \operatorname{cov}(X_k, X_k) = \vec{u}^T \Sigma \vec{u},$$

при этом матрица ковариаций $(\Sigma)_{k,s} := \text{cov}(X_k, X_s)$ является симметричной (т.к. $\text{cov}(X_k, X_s) = \text{cov}(X_s, X_k)$) и неотрицательно определённой, т.к. для любого вектора $\vec{u} \in \mathbb{R}^n$ имеет место представление

$$\vec{u}^T \Sigma \vec{u} = \operatorname{cov}\left(\sum_{k=1}^n u_k X_k, \sum_{s=1}^n u_s X_s\right) = \mathbb{D}\left(\sum_{k=1}^n u_k X_k\right) \ge 0.$$

 $(i) \Rightarrow$ опр. 7.1. Этот факт следует из взаимноодназначного соответствия хар. функций и распределений случайных величин.

 $(ii) \Rightarrow (i).$ Покажем теперь, что хар. функция с.в. $\vec{X} = A\vec{X}^\circ + \vec{\mu}$ имеет вид (25). Действительно, по уже доказанному, хар. функция вектора \vec{X}° имеет вид

$$\phi_{\vec{X}^{\circ}}(\vec{u}) = \exp\left\{-\frac{1}{2}\vec{u}^T\vec{u}\right\},$$

а по свойству (55),

$$\phi_{\vec{X}}(\vec{u}) = e^{\mathrm{i}(\vec{\mu},\vec{u})}\phi_{\vec{X}^{\circ}}(A^{\top}\vec{u}) = \exp\left\{\mathrm{i}\left(\vec{u},\vec{\mu}\right) - \frac{1}{2}\vec{u}^T\Sigma\vec{u}\right\},$$

где $\Sigma = AA^T$.

 $\underline{(i)} \Rightarrow \underline{(ii)}$. Так как матрица Σ является симметричной неотрицательно определённой, то найдётся матрица $\Sigma^{1/2}$, , см Приложение H.

По уже доказанному, хар. функция вектора $\Sigma^{1/2} \vec{X}^{\circ} + \vec{\mu}$ имеет вид (25), и значит, всилу взаимнооднозначности, вектор \vec{X} представим в виде (26).

Утверждение 7.4. Если матрица ковариаций вектора \vec{X} невырождена $(m.e. \det(\Sigma) \neq 0)$, то распределение вектора \vec{X} имеет плотность, равную

$$p_{\vec{X}}(\vec{u}) = \frac{1}{\sqrt{(2\pi)^n \det(\Sigma)}} e^{-\frac{1}{2}(\vec{u} - \vec{\mu})^\top \Sigma^{-1}(\vec{u} - \vec{\mu})}.$$

В данном случае используется обозначение $\mathcal{N}(\vec{\mu}, \Sigma)$ по аналогии с одномерным нормальным распределением.

Утверждение 7.5. Носителем двумерного гауссовского вектора является либо вся плоскость \mathbb{R}^2 , либо прямая, либо точка.

Доказательство. Отметим, что если $\det(\Sigma) \neq 0$, то распределение вектора \vec{X} имеет плотность, равную

$$p_{\vec{X}}(\vec{u}) = \frac{1}{2\pi\sqrt{\det(\Sigma)}}e^{-\frac{1}{2}(\vec{u}-\vec{\mu})^{\top}\Sigma^{-1}(\vec{u}-\vec{\mu})},$$

и носителем вектора \vec{X} является всё пространство \mathbb{R}^2 . Если же $\det(\Sigma) = 0$, то $\det(\Sigma^{1/2}) = 0$. Отсюда следует, что система строчек матрицы $A = \Sigma^{1/2}$ зависима, то есть найдутся b_1, b_2 (не равные одновременно нулю), что

$$b_1 a_{11} + b_2 a_{21} = 0,$$
 $b_1 a_{12} + b_2 a_{22} = 0.$

Поэтому из представления $\vec{X} = A\vec{X}^{\circ} + \mu$ получаем, что

$$b_1 X_1 + b_2 X_2 = b_1 (a_{11} X_1^{\circ} + a_{12} X_2^{\circ} + \mu_1) + b_2 (a_{21} X_1^{\circ} + a_{22} X_2^{\circ} + \mu_2)$$

$$= (b_1 a_{11} + b_2 a_{21}) X_1^{\circ} + (b_1 a_{12} + b_2 a_{22}) X_2^{\circ} + (b_1 \mu_1 + b_2 \mu_2)$$

$$= b_1 \mu_1 + b_2 \mu_2 =: c.$$

Значит, в этом случае носителем вектора (X_1,X_2) является либо прямая, либо точка. \square

- **Утверждение 7.6.** (i) Если 2 некоррелированные случайные величины ξ , η имеют нормальное распределение, u, **кроме того, вектор** (ξ, η) **является гауссовским**, то ξ и η независимы.
 - (ii) Если 2 независимые случайные величины ξ , η имеют нормальное распределение, то вектор (ξ, η) является гауссовским.
- (iii) Существуют 2 зависимые некоррелированные случайные величины, имеющие стандартное нормальное распределение.

Доказательство. (i) Отметим, что если $\xi \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $\eta \sim \mathcal{N}(\mu_2, \sigma_2^2)$, причём ξ, η некоррелированы, то матрица ковариаций гауссовского вектора (ξ, η) имеет вид

$$\Sigma = \operatorname{diag}(\sigma_1^2, \sigma_2^2) := \begin{pmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{pmatrix}.$$

Из доказательства утверждения 7.2 (i) \Rightarrow (ii) следует, что

$$(\xi, \eta)^{\top} = \Sigma^{1/2} (\xi^{\circ}, \eta^{\circ})^{\top} + \vec{\mu},$$

где $\Sigma^{1/2} = \mathrm{diag}(\sigma_1, \sigma_2)$, $\vec{\mu} = (\mu_1, \mu_2)$, а вектор $(\xi^{\circ}, \eta^{\circ})$ является стандартным гауссовским вектором. Следовательно, случайные величины

$$\xi = \sigma_1 \xi^{\circ} + \mu_1$$
 и $\eta = \sigma_2 \eta^{\circ} + \mu_2$

являются независимыми как функции от независимых с.в. ξ° и η° .

- (ii) Действительно, ввиду независимости ξ и η , для любых чисел u_1 и u_2 с.в. $u_1\xi + u_2\eta$ имеет нормальное распределение, и значит, вектор (ξ, η) является гауссовским по определению.
- (ііі) Рассмотрим с.в. $X \sim \mathcal{N}(0,1)$ и с.в. $Y = |X| \cdot Z$, где с.в. Z принимает значения 1 и -1 с вероятностями 1/2. Заметим, что
 - $Y \sim \mathcal{N}(0,1)$, т.к. для любого x > 0,

$$\begin{split} \mathbb{P}\left\{Y < x\right\} &= \mathbb{P}\left\{|X| < x\right\} \mathbb{P}\left\{Z = 1\right\} + \mathbb{P}\left\{|X| > -x\right\} \mathbb{P}\left\{Z = -1\right\} \\ &= \frac{1}{2} \left(\mathbb{P}\left\{|X| < x\right\} + 1\right) = \mathbb{P}\left\{X < x\right\}. \end{split}$$

Аналогичные рассуждения верны для любого x < 0.

 \bullet С.в. X и Y некоррелированы, т.к.

$$\begin{array}{rcl} \mathbb{E}[XY] & = & \mathbb{E}[X\cdot|X|\cdot Z] = \mathbb{E}[X\cdot|X|]\cdot \mathbb{E}[Z] = 0 \\ \mathbb{E}[X]\cdot \mathbb{E}[Y] & = & 0, \end{array}$$

и, следовательно, $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

• Докажем, что с.в. X и Y зависимы методом от противного. Допустим, что они независимы - значит, по пункту (ii), вектор (X,Y) является гауссовским, и, значит, любая комбинация комбинент этого вектора имеет нормальное распределение - в частности, с.в. $\xi = X - Y = X - |X|Z$ имеет нормальное распределение. Отметим, что

$$\mathbb{P}\{\xi > 0\} \ge \mathbb{P}\{X > 0, \ Z < 0\} = \mathbb{P}\{X > 0\} \cdot \mathbb{P}\{Z < 0\} = \frac{1}{4},$$
$$\mathbb{P}\{\xi = 0\} \ge \mathbb{P}\{X > 0, \ Z > 0\} = \mathbb{P}\{X > 0\} \cdot \mathbb{P}\{Z > 0\} = \frac{1}{4}.$$

Мы пришли к противоречию, т.к. с.в. с нормальным распределением равна 0 либо с вероятностью 0 (если $\sigma > 0$), либо 1 (если $\sigma = 0$, $\mu = 0$).

Отметим, что последнее утверждение эквивалентно следующему факту.

Утверждение 7.7. Пусть $\xi, \eta-2$ некоррелированные гауссовские случайные величины. Эти величины независимы тогда и только тогда, когда вектор (ξ, η) является гауссовским.

7.2. Определение гауссовского процесса. Ковариационная функция

Определение 7.8. Случайный процесс X_t называется гауссовским, если все его конечномерные распределения являются гауссовскими векторами, т.е. для любого набора положительных чисел $t_1,...,t_n$ вектор $(X_{t_1},...,X_{t_n})$ является гауссовским.

С любом процессом (не обязательно гауссовским) связаны следующие функции:

- $m(t) := \mathbb{E} X_t$ математическое ожидание;
- $K(s,t):=\mathrm{cov}(X_s,X_t)=\mathbb{E}\left[(X_s-\mathbb{E}X_s)(X_t-\mathbb{E}X_t)\right]$ ковариационная функция.

Любая ковариационная функция обладает следующими свойствами:

- симметричность: K(s,t) = K(t,s);
- неотрицательная определённость (positive semidefinite function): для любого набора моментов времени $t_1,..,t_n$ и для любых вещественных чисел $u_1,...,u_n$ выполнено

$$\sum_{j,k=1}^{n} u_j u_k K(t_j, t_k) \ge 0$$

Действительно,

$$\sum_{j,k=1}^{n} u_j u_k K(t_j, t_k) = \sum_{j,k=1}^{n} u_j u_k \operatorname{cov}(X_{t_j}, X_{t_k})$$

$$= \operatorname{cov}(\sum_j u_j X_{t_j}, \sum_k u_k X_{t_k})$$

$$= \mathbb{D}[\sum_j u_j X_{t_j}] \ge 0. \tag{27}$$

Более общее определение (верное и для комплекснозначных процессов $X_t: \mathbb{R} \times \Omega \to \mathbb{C}$): для любого набора моментов времени $t_1,..,t_n$ и для любых вещественных чисел $z_1,...,z_n$ выполнено

$$\sum_{j,k=1}^{n} z_j \bar{z}_k K(t_j, t_k) \ge 0,$$

где \bar{z} — комплексно-сопряженное число к z. Доказательство этого свойства такое же, только нужно учесть, что

$$cov(X_t, X_s) = \mathbb{E}\left[(X_t - \mathbb{E}X_t) \overline{(X_s - \mathbb{E}X_s)} \right].$$

Отметим, что функция является положительно определённой тогда и только тогда, когда для для любого n определитель матрицы

$$\mathcal{K}_n = \begin{pmatrix} K(t_1, t_1) & \dots & K(t_1, t_n) \\ \dots & \dots & \dots \\ K(t_n, t_1) & \dots & K(t_n, t_n) \end{pmatrix}$$

положителен (критерий Сильвестра)

• $K(t,t) = \mathbb{D}[X_t].$

Теорема 7.9. Для любых вещественнозначных функций m(t) и K(s,t), где K(s,t) обладает свойствами симметричности и неотрицательной определённости, существует гауссовский случайный процесс X_t , такой что $\mathbb{E}X_t = m(t) \ u \ \text{cov}(X_s, X_t) = K(s, t).$

Доказательство. Зафиксируем произвольные $\vec{t} = (t_1, ..., t_n)$ и определим матрицу $\Sigma_{\vec{t}} \in \mathrm{Matr}(n,n): (\Sigma_{\vec{t}})_{k,s} = K(t_k,t_s)$. Как уже было показано выше,

- матрица $\Sigma_{\vec{t}}$ является неотрицательно определённой, см. (27),
- существует матрица $A=\Sigma_{\vec{t}}^{1/2},$ т.е. такая матрица, что $A\cdot A=\Sigma_{\vec{t}},$ см. доказательство Утверждения 7.2.

Отметим, что случайный вектор $\vec{X}_{\vec{t}} = \Sigma_{\vec{t}}^{1/2} \vec{X}^{\circ}$, где \vec{X}° -стандартный гауссовский вектор, имеет математическое ожидание m(t) и ковариационную матрицу $\Sigma_{\vec{t}}$, т.к.

$$\begin{split} \mathbb{E} \vec{X}_{\vec{t}} &= \Sigma_{\vec{t}}^{1/2} \cdot \mathbb{E} \vec{X}^{\circ} = 0, \\ \operatorname{cov}(X_{t_k}, X_{t_s}) &= \left(\Sigma_{\vec{t}}^{1/2} \cdot \mathbb{E} \left[\vec{X}^{\circ} (\vec{X}^{\circ})^{\top} \right] \Sigma_{\vec{t}}^{1/2} \right)_{ks} = (\Sigma_{\vec{t}})_{ks} \,. \end{split}$$

Осталось доказать, что найдётся случайный процесс, у которого все конечномерные распределения совпадают с распределением $X_{\vec{t}}$. Доказательство этого факта не входит в данный курс.

Пример 7.10. Теорему 7.9 можно использовать для построения примеров неотрицательных функций, которые не являются неотрицательно определёнными. Например, такой функцией является K(t,s) = |t-s|.

Действительно, если бы эта функция была неотрицательно определённой, то существовал бы гауссовский процесс X_t такой, что

$$cov(X_t, X_s) = |t - s|, \quad \forall t, s \ge 0.$$

Тогда $\operatorname{Var} X_t = 0$ для любого $t \geq 0$, и поэтому X_t является для любого tпочти наверное постоянной величиной. Но в этом случае

$$cov(X_t, X_s) = \mathbb{E}[X_t X_s] - \mathbb{E}[X_t] \mathbb{E}[X_s] = X_t X_s - X_t X_s = 0 \neq |t - s|,$$

и мы приходим к противоречию.

Пример 7.11. Покажем, что существует гауссовский процесс с математическим ожиданием m(t)=0 и ковариационной функцией $K(s,t)=\min(s,t)$. Симметричность функции K(s,t) очевидна. Для того, чтобы показать её неотрицательную определённость, введём функцию $f_s(x)=\mathbb{I}_{[0,s]}(x)$ и заметим, что

$$\min(s,t) = \int_0^\infty f_s(x) f_t(x) dx.$$

Следовательно, для любого набора моментов времени $t_1,..,t_n$ и для любых вещественных чисел $u_1,...,u_n$ выполнено

$$\sum_{j,k=1}^{n} u_{j} u_{k} K(t_{j}, t_{k}) = \sum_{j,k=1}^{n} u_{j} u_{k} \min(t_{j}, t_{k}) = \sum_{j,k=1}^{n} u_{j} u_{k} \int_{0}^{\infty} f_{t_{j}}(x) f_{t_{k}}(x) dx$$

$$= \int_{0}^{\infty} \left(\sum_{j=1}^{n} u_{j} f_{t_{j}}(x) \right) \left(\sum_{k=1}^{n} u_{k} f_{t_{k}}(x) \right) dx$$

$$= \int_{0}^{\infty} \left(\sum_{j=1}^{n} u_{j} f_{t_{j}}(x) \right)^{2} dx \ge 0.$$

Значит, функция K(s,t) является неотрицательно определённой и условия Теоремы 7.9 выполнены.

8. Винеровский процесс

Литература по теме: [7],[9],[11].

8.1. Определение

В данном подразделе под мы определим понятие одномерного винеровского процесса. В рамках данного конспекта, термин "винеровский процесс" используется для одномерного процесса.

Определение 8.1. Винеровский процесс (броуновское движение) - это гауссовский процесс W_t с математическим ожиданием m(t)=0 и ковариационной функцией $K(s,t)=\min(s,t)$.

Определение 8.2. Винеровский процесс (броуновское движение) - это случайный процесс W_t , такой что:

- 1. $W_0 = 0$ п.н.;
- 2. W_t имеет независимые приращения;

3. $W_t - W_s \sim \mathcal{N}(0, t - s)$, для любых $t > s \ge 0$.

Теорема 8.3. Определения 8.1 и 8.2 эквивалентны.

Доказательство. Опр. $8.1 \Rightarrow$ Опр. 8.2.

- 1. Отметим, что $\mathbb{E}W_0=m(0)=0$ и $\mathbb{D}W_0=K(0,0)=0$. Следовательно, $W_0=0$ п.н.
- 2. Зафиксируем произвольный набор чисел $0 \le a < b < c < d$ и рассмотрим 2 приращения $W_d W_c$ и $W_b W_a$. Заметим, что эти приращения некоррелированы,

$$cov ((W_d - W_c)(W_b - W_a))$$
= $cov(W_d, W_b) - cov(W_d, W_a) - cov(W_c, W_b) + cov(W_c, W_a)$
= $min(d, b) - min(d, a) - min(c, b) + min(c, a)$
= $b - a - b + a = 0$.

Кроме того, вектор (W_d-W_c,W_b-W_a) является гауссовским, т.к. любая комбинация компонент этого вектора $u_1(W_d-W_c)+u_2(W_b-W_a),\ u_1,u_2\in\mathbb{R}$ является комбинацией значений гауссовского процесса W в точках a,b,c,d и потому имеет нормальное распределение. Значит, по утверждению 7.6(i), приращения W_d-W_c и W_b-W_a являются независимыми. Аналогично доказывается, что любого набора моментов времени $0\leq t_1 < t_2 < ... < t_n$, приращения

$$W_{t_2} - W_{t_1}, ..., W_{t_n} - W_{t_{n-1}}$$

являются независимыми.

3. Из того, что процесс W_t является гауссовским, непосредственно следует, что приращение $W_t - W_s$ имеет нормальное распределение как комбинация значений гауссовского процесса W_t в точках t,s с коэффициентами 1 и -1. Математическое ожидание и дисперсия этого приращения вычисляются следующим образом:

$$\begin{split} \mathbb{E}[W_t - W_s] &= \mathbb{E}[W_t] - \mathbb{E}[W_s] = m(t) - m(s) = 0, \\ \mathbb{D}[W_t - W_s] &= \cos(W_t - W_s, W_t - W_s) \\ &= K(t, t) - K(t, s) - K(s, t) + K(s, s) \\ &= t - s - s + s = t - s. \end{split}$$

Опр. $8.2 \Rightarrow$ Опр. 8.1. Покажем, что процесс W_t является гауссовским. Зафиксируем произвольные моменты времени $t_1,...,t_n$ и произвольные числа $u_1,...,u_n$ и рассмотрим линейную комбинацию значений процесса W_t :

$$\sum_{k=1}^{n} u_k W_{t_k} = u_n (W_{t_n} - W_{t_{n-1}}) + (u_n + u_{n-1}) W_{t_{n-1}} + \sum_{k=1}^{n-2} u_k W_{t_k}$$
$$= \dots = \sum_{k=1}^{n} d_k (W_{t_k} - W_{t_{k-1}}),$$

где $t_0=0$, и $d_1,d_2,...d_n$ - некоторые числа. Таким образом, любая линейная комбинация значений процесса W_t является линейной комбинаций приращений $W_{t_k}-W_{t_{k-1}}, k=1..n$, которые являются независимыми и нормально распределёнными. Следовательно, любая линейная комбинация значений процесса W_t имеет нормальное распределение, и поэтому процесс W_t является гауссовским.

Из п.1 и 3 определения 8.2 следует, что $W_t \sim \mathcal{N}(0,t), \ \forall t,$ и, следовательно, $m(t) = \mathbb{E}W_t = 0$. Кроме того, для любых t > s,

$$cov(W_t, W_s) = \mathbb{E} [(W_t - \mathbb{E}W_t)(W_s - \mathbb{E}W_s)]$$

$$= \mathbb{E}[W_t W_s] = \mathbb{E} [W_s(W_t - W_s)] + \mathbb{E}W_s^2$$

$$= \mathbb{E} [W_s] \cdot \mathbb{E} [W_t - W_s] + \mathbb{E}W_s^2 = s = \min(t, s).$$

8.2. Непрерывность траекторий

Определение 8.4. Говорят, что процесс X_t стохастически эквивалентен процессу Y_t , $(X_t$ - модификация Y_t), если

$$\mathbb{P}\left\{X_t = Y_t\right\} = 1, \qquad \forall t.$$

Следует отметить, что траектории случайных процессов могут существенно отличаться. Например, рассмотрим процесс $\xi_t=0$ и процесс $\eta_t=\mathbb{I}\{t\neq\tau\}$, где τ - непрерывная случайная величина. Процесс ξ_t и η_t стохастически эквивалентны, но все траектории ξ_t являются непрерывными (тождественно равными 0), а все траектории η_t разрывны.

Теорема 8.5 (теорема Колмогорова о непрерывных траекториях). *Пусть* имеется процесс X_t , $t \in [a,b]$, и существуют константы $C, \alpha, \beta > 0$ такие, что для любых $s, t \in [a,b]$ выполнено:

$$\mathbb{E} |X_t - X_s|^{\alpha} \le C |t - s|^{1+\beta}.$$
(28)

Тогда процесс X_t имеет непрерывную модификацию, т.е. существует процесс Y_t , у которого все траектории непрерывны и который стохастически эквивалентен процессу X_t .

Пример 8.6. Броуновское движение обладает непрерывной модификацией. Действительно, условие (28) выполнено с $\alpha = 4, \beta = 1, C = 3$:

$$\mathbb{E}\left[|W_t - W_s|^4\right] = \mathbb{E}\left[\xi^4\right] \cdot (t - s)^2 = 3(t - s)^2,$$

где ξ - стандартная нормальная случайная величина. Зачастую в определение Броуновского движения (как 8.1, так и 8.2) добавляется условие, что процесс обладает непрерывными траекториями.

8.3. Вариация и квадратическая вариация

Утверждение 8.7. (i) Квадратичная вариация Броуновского движения на отрезке [0,t] равна t, то есть

$$\lim_{n \to \infty} \sum_{i=1}^{n} (W_{t_i} - W_{t_{i-1}})^2 = t,$$

где разбиение отрезка $0 = t_0 < t_1 < \dots < t_n = t$ измельчается с ростом n так, что $\max(t_i - t_{i-1}) \to 0$, а сходимость понимается в смысле среднего квадратического.

(іі) Броуновское движение - процесс неограниченной вариации, то есть

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left| W_{t_i} - W_{t_{i-1}} \right| = \infty,$$

 $e\partial e \max(t_i - t_{i-1}) \to 0 \ npu \ n \to \infty.$

Доказательство. (i) Обозначим $\Delta W_i := W_{t_i} - W_{t_{i-1}}, \ \Delta t_i = t_i - t_{i-1}.$ Тогда

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} \Delta W_i^2 - t\right)^2\right] = \mathbb{E}\left[\left(\sum_{i=1}^{n} \Delta W_i^2 - \sum_{i=1}^{n} (t_i - t_{i-1})\right)^2\right]$$
$$= \mathbb{D}\left[\sum_{i=1}^{n} \Delta W_i^2\right] = \sum_{i=1}^{n} \mathbb{D}\left[\Delta W_i^2\right],$$

где последнее равенство следует из независимости $W_i, i=1..n.$ Следовательно,

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} \Delta W_{i}^{2} - t\right)^{2}\right] = \sum_{i=1}^{n} \left(\mathbb{E}\left[\Delta W_{i}^{4}\right] - \left(\mathbb{E}\left[\Delta W_{i}^{2}\right]\right)^{2}\right)$$

$$= \sum_{i=1}^{n} \left(3(\Delta t_{i})^{2} - (\Delta t_{i})^{2}\right) = 2\sum_{i=1}^{n} (\Delta t_{i})^{2}$$

$$\leq 2\max(\Delta t_{i}) \cdot \sum_{i=1}^{n} \Delta t_{i} \to 0,$$

и утверждение доказано.

(ii) Так как последовательность $\xi_n := \sum_{i=1}^n (\Delta W_i)^2$ сходится в среднем квадратическом к числу t (следовательно, и по вероятности), то по теореме Рисса, найдётся подпоследовательность ξ_{n_k} , сходящаяся к t почти наверное. Кроме того, справедливо неравенство

$$\sum_{i=1}^{n_k} (\Delta W_i)^2 \le \max_i |\Delta W_i| \cdot \sum_{i=1}^{n_k} |\Delta W_i|.$$

При устремлении диаметра разбиения к нулю, $\max_i |\Delta W_i|$ также стремится к нулю всилу непрерывности Броуновского движения. Осталось заметить, что если бы последовательность $\sum_{i=1}^n |\Delta W_i|$ была бы ограниченной, то и последовательность $\sum_{i=1}^{n_k} |\Delta W_i|$ являлась бы ограниченной, и, следовательно, $\sum_{i=1}^{n_k} (\Delta W_i)^2 \to 0$ при $k \to \infty$. Полученное противоречие показывает, что Броуновское движение имеет неограниченную вариацию.

8.4. Принцип отражения

Фильтрация - это семейство σ - алгебр \mathscr{F}_t , определенных на вероятностном пространстве $(\Omega, \mathscr{F}, \mathbb{P})$, такое, что

$$\mathscr{F}_s \subset \mathscr{F}_t \subset \mathscr{F}, \qquad \forall s \leq t.$$

С любым случайным процессом X_t связана фильтрация \mathscr{F}_t , порождённая случайными величинами $\{X_s,\ s\in [0,t]\}.$

Определение 8.8. Случайная величина τ называется моментом остановки, если для любого момента времени t, событие $\{\tau \leq t\}$ включено в сигму-алгебру \mathscr{F}_t .

Напомним, что дискретный момент остановки был введён в разделе 2.3. Классический пример момента остановки - это момент первого достижения фиксированного уровня $a \in \mathbb{R}$,

$$\tau_a := \inf\{t \ge 0: \ W_t = a\}.$$
(29)

Теорема 8.9. Пусть W_t - Броуновское движение, τ — момент остановки, причём $\tau < \infty$ п.н. Тогда выполнены следующие 2 свойства.

(i) Строгое Марковское свойство (strong Markov property): процесс

$$W_{\tau+t} - W_{\tau}, \qquad t \ge 0$$

является Броуновским движением, независимым от сигма-алгебры $\{A \cap \{\tau < t\}, \ A \in \mathscr{F}_t\};$

(ii) Принцип отражения: процесс, полученный отражением Броуновского движения в момент времени τ относительно горизонтальной прямой $y=W_{\tau},$

$$W_t^* = W_t \cdot \mathbb{I}\{t \le \tau\} + (2W_\tau - W_t) \cdot \mathbb{I}\{t > \tau\},$$

является Броуновским движением.

Доказательство дано в главе 2 книги [7]. \Box

Следствие 8.10. Для любого $t \ge 0$ и для любого a > 0,

$$\mathbb{P}\{\max_{0 \le s \le t} W_s > a\} = 2\mathbb{P}\{W_t > a\}.$$

Доказательство.

$$\left\{\max_{0\leq s\leq t}W_s>a\right\}=\left\{\max_{0\leq s\leq t}W_s>a,\ W_t>a\right\}\sqcup\left\{\max_{0\leq s\leq t}W_s>a,\ W_t\leq a\right\}.$$

Первое событие есть

$$\left\{ \max_{0 \le s \le t} W_s > a, \ W_t > a \right\} = \left\{ W_t > a \right\}. \tag{30}$$

Для анализа второго события вспомним, что (29) является моментом остановки. Обозначим через W_t^* процесс, полученный отражением в момент времени τ_a ,

$$\left\{ \max_{0 \le s \le t} W_s > a, \ W_t \le a \right\} = \left\{ W_t^* \ge a \right\}. \tag{31}$$

Поскольку W_t^* — Броуновское движение, мы получаем что вероятность этого события также равна $\{W_t > a\}$. Для завершения доказательства осталось заметить, что события (30) и (31) не пересекаются.

Часть ІІІ

Свойства случайных процессов

9. Стационарность

Литература по теме: [5], [8], [11].

Определение 9.1. Случайный процесс X_t называется стационарным (stationary, стационарным в узком смысле), если все его конечномерные распределения инвариантны относительно сдвигов, т.е. для любых наборов моментов времени $t_1, ..., t_n$, любых вещественных $x_1, ..., x_n$ и любого h > 0,

$$\mathbb{P}\left\{X_{t_1} \leq x_1, ..., X_{t_n} \leq x_n\right\} = \mathbb{P}\left\{X_{t_1+h} \leq x_1, ..., X_{t_n+h} \leq x_n\right\}.$$

Определение 9.2. Случайный процесс X_t называется стационарным в широком смысле (wide sense stationary, weakly stationary, covariance stationary, second-order stationary), если m(t) является постоянной величиной (не зависящей от t), и кроме того, для любых $h>0,\ s,t\in\mathbb{R}$ выполнено

$$K(t+h,s+h) = K(t,s).$$
(32)

Другими словами, процесс с постоянным математическим ожиданием является стационарным в широком смысле тогда и только тогда, когда существует функция $\gamma:\mathbb{R}\to\mathbb{R}$ такая, что $K(t,s)=\gamma(t-s)$ для любых t,s. Функция $\gamma(\cdot)$ называется автоковариационной функцией (autocovariance function) и обладает следующими свойствами.

Утверждение 9.3. Пусть $\gamma-$ автоковариационная функция некоторого стационарного в широком смысле случайного процесса. Тогда

- (i) $\gamma(0) = \operatorname{Var} X_t \geq 0$, u, кроме того, $|\gamma(u)| \leq \gamma(0)$.
- (ii) γ является чётной функцией.

Доказательство. (i) Для любого $t, \gamma(0) = K(t,t) = \gamma_0 = \mathrm{Var}(X_t) \geq 0.$ Вторая часть утверждения следует из неравенства Коши-Буняковского:

$$|\gamma(u)| = |\operatorname{cov}(X_{t+u}, X_t)| \le \sqrt{\operatorname{Var} X_{t+u}} \sqrt{\operatorname{Var} X_t} = \sqrt{\gamma(0)} \sqrt{\gamma(0)} = \gamma(0),$$

где t- произвольный момент времени.

(ii) Для любого $u \in \mathbb{R}$

$$\gamma(u) = \text{cov}(X_{t+u}, X_t) = \text{cov}(X_t, X_{t+u}) = \gamma(-u),$$

где t- произвольный момент времени.

Отметим, что

- (i) если процесс стационарен в узком смысле и у него в любой момент времени t конечен второй момент (т.е. существуют мат. ожидание и дисперсия), то он является стационарным и в широком смысле;
- (ii) для гауссовских процессов стационарность в узком и в широком смыслах есть одно и то же.

Приведём несколько примеров.

Пример 9.4. Процесс белого шума (white noise process) $X_t,\ t=0,1,2,...$ (иногда рассматриваются и отрицательные целочисленные моменты времени, т.е. $t=0,\pm 1,\pm 2...$) - последовательность некоррелированных случайных величин:

$$\mathbb{E}X_t = \mu$$
, $\operatorname{Var}X_t = \sigma^2$, $K(t, s) = 0 \ \forall t \neq s$,

причём обычно $\mu = 0$. Процесс обозначается как $WN(0, \sigma^2)$.

Таким образом, мат. ожидание этого процесса является константой, а ковариационная функция равна

$$K(t,s) = \sigma^2 \mathbb{I} \left\{ t = s \right\},\,$$

и поэтому процесс является стационарным в широком смысле с автоковариационной функцией

$$\gamma(x) = \sigma^2 \mathbb{I} \left\{ x = 0 \right\}.$$

В общем случае, $WN(0,\sigma^2)$ нестационарен в узком смысле. Некоторые частные случаи, когда процесс стационарен в узком смысле:

- 1. X_1, X_2, \dots последовательность i.i.d. случайных величин (X_t i.i.d. white noise).
- 2. X_t гауссовский процесс.

Приведём примеры ситуаций, в которых процесс белого шума не является стационарным.

1. Пусть $\xi_t, t=0,1,2,\dots$ - последовательность i.i.d. стандартных нормальных случайных величин. Тогда последовательность

$$X_t = \begin{cases} \xi_t, & t \neq 0, \\ (\xi_t^2 - 1)/\sqrt{2}, & t = 0, \end{cases}$$

является белым шумом WN(0,1). Однако, последовательность не является стационарной в узком (и в широком) смысле, поскольку X_0 и X_0 имеют разные распределения.

2. Много примеров можно построить, исходя из разложения Вольда (см. главу 2.6 в [2]):

$$X_t = \sum_{i=0}^{\infty} a_i Y_i, \tag{33}$$

где $a_0=1,\sum_{j=0}^\infty a_j^2<\infty,$ и Y_t - $WN(0,\sigma^2)$. Действительно, данный процесс является стационарным в широком смысле, но может быть нестационарным в узком.

Пример 9.5. Случайное блуждание (см. пример 6.2). В этом случае $S_n = \xi_1 + ... + \xi_n$, и поэтому

$$\mathbb{E}S_n = n\mathbb{E}\xi_1 = n(2p-1).$$

Поэтому если $p \neq 1/2$, то процесс не стационарен в широком (и, значит, и в узком) смысле. Однако если p=1/2, то процесс тоже не стационарен, поскольку для любого m < n

$$K(n,m) = \cos(S_m + \xi_{m+1} + \dots + \xi_n, S_m)$$

= $\cos(S_m, S_m) + \cos(\xi_{m+1} + \dots + \xi_n, S_m)$
= $\operatorname{Var}(S_m) = m \operatorname{Var}(\xi_1) = m,$

и поэтому

$$K(n,m) = \min(n,m),$$

свойство (32) не выполнено.

Более простой способ доказательства, что этот процесс не является стационарным - обратить внимание на непостоянство дисперсии, $Var(S_n) = n \, Var(\xi_1)$. Действительно, для стационарного в широком смысле процесса дисперсия не зависит от момента времени и равна $\gamma(0)$.

Пример 9.6. Броуновское движение W_t также не стационарно ни в узком, ни в широком смыслах. Этот факт можно показать например так: если бы W_t был стационарным процессом, то существовала бы автоковариационная функция γ , и дисперсия W_t не зависела бы от t:

$$Var W_t = cov(W_t, W_t) = \gamma(0).$$

Пример 9.7. Процесс скользящего среднего MA(q) (MA - moving average):

$$X_t = Y_t + a_1 Y_{t-1} + \dots + a_q Y_{t-q}, \qquad t = 0, \pm 1, \pm 2, \dots$$

где Y_t - $WN(0,\sigma^2), (a_1,...,a_q) \in \mathbb{R}^q$. Этот процесс является частным случаем разложения Вольда 33. Математическое ожидание X_t равно 0, а ковариационная функция равна

$$K(t,s) = \operatorname{cov}\left(\sum_{j=0}^{q} a_j Y_{t-j}, \sum_{k=0}^{q} a_k Y_{t-k}\right)$$
$$= \sum_{j,k=0}^{q} a_j a_k \sigma^2 \mathbb{I}\left\{t - s = j - k\right\},$$

где $a_0 = 1$. Поэтому процесс является стационарным в широком смысле. Например, автоковариационная функция процесса MA(1) равна

$$\gamma(x) = \begin{cases} 0, & |x| > 1, \\ a_1 \sigma^2, & |x| = 1, \\ (a_1^2 + 1) \sigma^2, & x = 0. \end{cases}$$

Пример 9.8. Авторегрессионная модель AR(p)

$$X_t = b_1 X_{t-1} + \dots + b_p X_{t-p} + \varepsilon_t, \qquad t = 0, \pm 1, \pm 2, \dots$$

где ε_t - $WN(0,\sigma^2)$, $\mathrm{cov}(\varepsilon_t,X_s)=0$ при t>s, и $(b_1,...,b_p)\in\mathbb{R}^p$. Решение этого уравнения не единственное. Например, если p=1, одним из решений уравнения

$$X_t = bX_{t-1} + \varepsilon_t, \qquad t = 0, \pm 1, \pm 2, \dots$$

является процесс

$$X_t = \sum_{j=0}^{\infty} b^j \varepsilon_{t-j}.$$

Аналогично Примеру 9.7, математическое ожидание равно 0, а ковариационная функция есть

$$\operatorname{cov}(X_t, X_s) = \sum_{j,k=0}^{\infty} b^{j+k} \sigma^2 \mathbb{I} \Big\{ t - s = j - k \Big\}.$$

Ряд в правой части сходится для любого значения t-s тогда и только тогда, когда |b|<1. Поэтому при таком ограничении на параметр b процесс является стационарным в широком смысле.

Более общий результат: процесс AR(p) является стационарным в широком смысле тогда и только тогда, когда все комплексные корни уравнения

$$z^p - \sum_{i=1}^p b_i z^{p-i} = 0$$

лежат внутри единичного круга, то есть их модули меньше 1.

10. Эргодичность

Литература по теме: [8]

Понятие эргодичности мотивировано законом больших чисел. Рассмотрим процесс X_t , наблюдаемый в дискретные моменты времени t=1,2,...,T и зададимся вопросом, сходится ли процесс

$$M_T := \frac{1}{T} \sum_{t=1}^{T} X_t$$

при устремлении горизонта времени T к бесконечности.

Определение 10.1. Процесс X_t с дискретным временем t=1,2,... называется эргодическим, если

$$M_T \xrightarrow{\mathbb{P}} c, \quad \text{при} \quad T \to \infty,$$

где c - некоторая константа.

Отметим, что в данном случае сходимость по вероятности эквивалентна сходимости по распределению (см. Приложение G).

Пример 10.2. Разберём несколько простых примеров.

- 1. $X_t = \xi, \ t = 1, 2, ..., \ где \ \xi$ стандартная нормальная величина. Этот процесс является стационарным, $m(t) = 0, \ K(s,t) \equiv 1$, но не является эргодическим, т.к. $M_T = \xi \not\to c$.
- 2. $X_t = \varepsilon_t + a\cos(\pi t/6)$, t = 1, 2, ... где $\varepsilon_1, \varepsilon_2, ...$ последовательность i.i.d. стандартных нормальных с.в., $\alpha \neq 0$ некоторая константа. В данной модели t обычно ассоциируется с месяцами, а сама модель используется для описания сезонных колебаний (в этой связи отметим, что случайный процесс как функция от t имеет период 12). Отметим, что

$$X_t \sim \mathcal{N}(a\cos(\pi t/6), 1), \quad t = 1, 2, ...,$$

и эти случайные величины являются независимыми. Отсюда следует, что процесс не является стационарным, т.к. функция среднего $m(t) = \alpha \cos{(\pi t/6)}$ не равна константе. Вместе с этим, процесс является эргодическим, т.к.

$$M_T = \frac{1}{T} \sum_{t=1}^{T} X_t \sim \mathcal{N}\left(\frac{a}{T} \sum_{t=1}^{T} \cos(\pi t/6), \frac{1}{T}\right), \quad T = 1, 2, ...,$$

и математическое ожидание $|\mathbb{E}[M_T]| \leq 3a/T$, как и дисперсия $\mathbb{D}[M_T] = 1/T$, стремятся к нулю при $T \to \infty$.

В следующей теореме сформулирован критерий, при котором $\mathbb{D}[M_T]$ стремится к нулю при $T \to \infty$. Сразу после теоремы даны пояснения, как этот критерий может быть использован для доказательства эргодичности случайного процесса.

Теорема 10.3. Пусть X_t - случайный процесс с дискретным временем, причём ковариационная функция K(s,t) является ограниченной, т.е.

$$\exists \alpha : |K(s,t)| \le \alpha, \quad \forall s, t.$$
 (34)

Обозначим ковариацию между последним наблюдением и средним значением по предыдущим наблюдениям через C(T),

$$C(T) := \operatorname{cov}(X_T, M_T)$$
.

Tог ∂a

$$\lim_{T \to \infty} \mathbb{D}[M_T] = 0 \qquad \Longleftrightarrow \qquad \lim_{T \to \infty} C(T) = 0.$$

Замечание 10.4. Отметим, что условие (34) эквивалентно условию

$$\mathbb{D}\left[X_t\right] \le \alpha, \qquad \forall t. \tag{35}$$

Действительно, из (34) очевидно следует (35) (подстановка s=t). Наоборот, из (35) следует (34) из неравенства Коши-Буняковского,

$$|K(s,t)| \le \sqrt{\mathbb{D}X_s} \cdot \sqrt{\mathbb{D}X_t} \le \alpha \quad \forall s, t.$$

Следствие 10.5. (i) Стационарный в широком смысле процесс является эргодическим, если

$$\lim_{T \to \infty} \frac{1}{T} \sum_{r=0}^{T-1} \gamma(r) = 0,$$
(36)

 $\operatorname{rde}\gamma(r)$ - такая функция, что $K(t,s)=\gamma(t-s)$ для любых t,s.

(ii) Свойство (36) выполнено, если $\gamma(r) o 0$ при $r o \infty$

Доказательство следствия. (i) Отметим, что для любого случайного процесса X_t ,

$$C(T) = \cos(X_T, M_T) = \cos\left(X_T, \frac{1}{T} \sum_{t=1}^T X_t\right)$$
$$= \frac{1}{T} \sum_{t=1}^T \cos(X_T, X_t) = \frac{1}{T} \sum_{t=1}^T K(T, t).$$

Для стационарных процессов последнее выражение может быть переписано следующим образом:

$$C(T) = \frac{1}{T} \sum_{t=1}^{T} \gamma(T-t) = \frac{1}{T} \sum_{r=0}^{T-1} \gamma(r).$$

По теореме 10.3, из того, что $C(T) \to 0$ следует, что $\mathbb{D}M_T \to 0$ при $T \to \infty$. Отметим также, что сходимость $\mathbb{D}M_T \to 0$ есть в точности сходимость $M_T \to \mathbb{E}[M_T]$ в среднем квадратическом. Так как для стационарных процессов m(t)=c (математическое ожидание есть некоторая константа), то $\mathbb{E}[M_T]=c$, и $M_T \to c$ при $T \to \infty$ в среднем квадратическом. Осталось заметить, что из сходимости в среднем квадратическом следует сходимость по вероятности, и поэтому процесс является эргодическим.

(ii) Напомним теорему Штольца из мат.анализа: если a_n, b_n - две последовательности, причём b_n - положительная неограниченная возрастающая последовательность, и существует предел

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} =: q.$$

Тогда существует предел $\lim_{n\to\infty}(a_n/b_n)$, и он тоже равен q. Воспользуемся теперь теоремой Штольца с $a_n=\sum_{r=0}^{n-1}\gamma(r)$ и $b_n=n$. Все условия теоремы выполнены, и кроме того

$$\lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} \gamma(n) = 0,$$

и поэтому

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{n-1} \gamma(r) = 0.$$

Пример 10.6. Применим следствие 10.5 к процессу

$$X_t = N_{t+p} - N_t,$$

где N_t - однородный считающий процесс Пуассона с интенсивностью λ , а p>0 - фиксированное число. Данный процесс является стационарным в широком смысле, т.к. $m(t)=\lambda p$ и

$$K(s,t) = \begin{cases} \lambda \left(p - |t-s| \right) &, & |t-s| \le p \\ 0 &, & |t-s| > p. \end{cases}$$

Следовательно,

$$\gamma(r) = \begin{cases} \lambda \left(p - |r| \right) &, & |r| \leq p \\ 0 &, & |r| > p. \end{cases}$$

Отметим, что $\gamma(r) \to 0$ при $r \to \infty$, и поэтому процесс X_t является эргодическим.

Доказательство теоремы 10.3. (i) $[\lim_{T\to\infty} \mathbb{D}M_T = 0] \Longrightarrow [\lim_{T\to\infty} C(T) = 0.]$. Это утверждение напрямую следует из неравенства Коши-Буняковского,

$$|C(T)|^2 = |\operatorname{cov}(X_T, M_T)|^2 \le \mathbb{D}X_T \cdot \mathbb{D}M_T \le \alpha \cdot \mathbb{D}M_T,$$

где в последнем неравенстве мы воспользовались замечанием 10.4.

(ii)
$$[\lim_{T\to\infty} C(T)=0] \Longrightarrow [\lim_{T\to\infty} \mathbb{D} M_T=0]$$
 Докажем сначала такую формулу:

$$\mathbb{D}[M_T] = -\frac{1}{T^2} \sum_{t=1}^{T} \mathbb{D}[X_t] + \frac{2}{T^2} \sum_{t=1}^{T} tC(t).$$
 (37)

Действительно,

$$\mathbb{D}[M_T] = \mathbb{D}\left[\frac{1}{T}\sum_{t=1}^{T} X_t\right] = \frac{1}{T^2} \mathbb{D}\left[\sum_{t=1}^{T} X_t\right] \\
= \frac{1}{T^2} \left(\sum_{t=1}^{T} \mathbb{D}[X_t] + 2\sum_{t>s} \text{cov}(X_t, X_s)\right) \\
= \frac{1}{T^2} \left(-\sum_{t=1}^{T} \mathbb{D}[X_t] + 2\left(\sum_{t=1}^{T} \mathbb{D}[X_t] + \sum_{t>s} \text{cov}(X_t, X_s)\right)\right) \\
= \frac{1}{T^2} \left(-\sum_{t=1}^{T} \mathbb{D}[X_t] + 2\sum_{t\geq s} \text{cov}(X_t, X_s)\right) \\
= \frac{1}{T^2} \left(-\sum_{t=1}^{T} \mathbb{D}[X_t] + 2\sum_{t=1}^{T} t \text{cov}\left(X_t, \frac{1}{t}\sum_{s=1}^{t} X_s\right)\right) \\
= -\frac{1}{T^2} \sum_{t=1}^{T} \mathbb{D}[X_t] + \frac{2}{T^2} \sum_{t=1}^{T} t C(t),$$

и формула (37) доказана. Осталось заметить, что оба слагаемых стремятся к нулю при $T \to \infty$:

• первое слагаемое:

$$\frac{1}{T^2} \sum_{t=1}^T \mathbb{D}\left[X_t\right] \le \frac{1}{T} \alpha \to 0, \quad \text{при} \quad T \to \infty,$$

т.к. дисперсия X_t ограничена числом α ;

• второе слагаемое:

$$\left| \frac{2}{T^2} \left| \sum_{t=1}^T t C(t) \right| \leq \frac{2}{T^2} \sum_{t=1}^T t \left| C(t) \right| \leq \frac{2}{T} \sum_{t=1}^T \left| C(t) \right| \to 0,$$

так как $C(t) \to 0$ и доказательство следствия 10.5 (ii) может быть применено и к данной ситуации.

11. Стохастическое интегрирование

Литература по теме: [1], [6], [8]

11.1. Интегралы вида $\int X_t dt$

В данном разделе мы определим интеграл $\int_0^T X_t dt$, который естественным образом возникает при обобщении понятия среднего значения процесса за интервал [0,T], определённого в предыдущем разделе как $T^{-1}\sum_{t=1}^T X_t$, на непрерывный случай:

$$M_T = \frac{1}{T} \int_0^T X_t dt.$$

Отметим также, что этот объект уже возникал в разделе 2.6.

Определение 11.1. Для любого отрезка [a,b], интеграл процесса X_t по этому отрезку определяется следующим образом:

$$\int_{a}^{b} X_{t} dt = \lim_{\substack{\max_{i} |t_{i} - t_{i-1}| \to 0 \\ a = t_{0} < t_{1} < \dots < t_{n} = b}} \quad \sum_{k=1}^{n} X_{t_{k-1}} (t_{k} - t_{k-1}),$$

где предел понимается в среднем квадратическом, т.е.

$$\mathbb{E}\left[\left(\sum_{k=1}^{n} X_{t_{k-1}} \left(t_{k} - t_{k-1}\right) - \int_{a}^{b} X_{t} dt\right)^{2}\right] \xrightarrow{\max_{i} |t_{i} - t_{i-1}| \to 0} 0.$$

Утверждение 11.2. Пусть X_t - процесс с непрерывным временем u с конечным вторым моментом, причём функция $m(t) = \mathbb{E}[X_t]$ является непрерывной функцией от t, а $K(t,s) = \text{cov}(X_t, X_s)$ является непрерывной функцией от t, s. Тогда $\int_a^b X_t dt$ существует.

Свойство непрерывности ковариационной функции тесно связано с непрерывностью самого процесса в среднем квадратическом.

Утверждение 11.3. Пусть X_t - случайный процесс с нулевым математическим ожиданием и ковариационной функцией K(t,s).

(i) Если K(t,s) непрерывна в точке (t_0,t_0) , то процесс X_t непрерывен в точке t_0 в смысле среднего квадратического, то есть

$$\mathbb{E}\left[\left(X_t - X_{t_0}\right)^2\right] \to 0 \quad npu \quad t \to t_0.$$

(ii) Если процесс X_t непрерывен в точках t_0 и s_0 в смысле среднего квадратического, то ковариационная функция K(t,s) непрерывна в точке (t_0,s_0) .

Доказательство. Действительно, пункт (i) следует из представления

$$\mathbb{E}\left[\left(X_{t} - X_{t_{0}}\right)^{2}\right] = K(t, t) - 2K(t, t_{0}) + K(t_{0}, t_{0}) \to 0 \quad \text{при} \quad t \to t_{0}.$$

Пункт (ii) является следствием неравенства Коши-Буняковского:

$$K(t,s) - K(t_0,s_0) = K(t,s) - K(t_0,s) + K(t_0,s) - K(t_0,s_0)$$

= $\mathbb{E}\left[(X_t - X_{t_0}) X_s \right] + \mathbb{E}\left[X_{t_0} (X_s - X_{s_0}) \right] \to 0,$
при $t \to t_0, s \to s_0,$

так как
$$|\mathbb{E}\left[\left(X_{t}-X_{t_{0}}\right)X_{s}\right]| \leq \sqrt{\mathbb{D}\left(X_{t}-X_{t_{0}}\right)}\sqrt{\mathbb{D}\left[X_{s}\right]} \to 0.$$

Из предыдущего утверждения вытекает следующее любопытное следствие.

Следствие 11.4. Ковариационная функция K(t,s) непрерывна во всех точках (t,s), где $t,s \ge 0$, тогда и только тогда, когда эта функция непрерывна во всех точках вида (t,t), $t \ge 0$ (как говорят в таких случаях, ковариационная функция непрерывна на диагонали).

Это следствие особенно эффективно при рассмотрении стационарных в широком смысле процессов, поскольку проверка непрерывности ковариационной функции сводится к проверке непрерывности автоковариационной функции в нуле. Так, например, процесс белого шума (см. пример 9.4) имеет автоковариационную функцию, разрывную в нуле, и поэтому для него утверждение 9.4 не применимо.

Свойства стохастического интеграла:

1. знаки математического ожидания и интеграла можно менять местами:

$$\mathbb{E}\left[\int_{a}^{b} X_{t} dt\right] = \int_{a}^{b} \mathbb{E}\left[X_{t}\right] dt;$$

2. для вычисления второго момента можно использовать следующую формулу:

$$\mathbb{E}\left[\left(\int_{a}^{b} X_{t} dt\right)^{2}\right] = \mathbb{E}\left[\left(\int_{a}^{b} X_{t} dt\right) \left(\int_{a}^{b} X_{s} ds\right)\right]$$
$$= \int_{a}^{b} \int_{a}^{b} \mathbb{E}\left[X_{t} X_{s}\right] ds dt;$$

3. из последних двух пунктов следует, что

$$\mathbb{D}\left[\int_{a}^{b} X_{t} dt\right] = \mathbb{E}\left[\left(\int_{a}^{b} X_{t} dt\right)^{2}\right] - \left(\mathbb{E}\left[\int_{a}^{b} X_{t} dt\right]\right)^{2}$$
$$= \int_{a}^{b} \int_{a}^{b} K(t, s) ds dt = 2 \int_{a}^{b} \int_{a}^{t} K(t, s) ds dt,$$

где в последнем равенстве используется свойство симметричности ковариационной функции;

4. для любых отрезков [a,b] и [c,d] справедливо равенство

$$\operatorname{cov}\left(\int_{a}^{b} X_{t} dt, \int_{c}^{d} X_{t} dt\right) = \int_{a}^{b} \int_{c}^{d} \operatorname{cov}\left(X_{t}, X_{s}\right) ds dt.$$

Пример 11.5. Для примера вычислим математическое ожидание, дисперсию и ковариацию случайного процесса

$$X_T = \int_0^T W_t dt,$$

называемого интегрированным винеровским процессом (integrated Wiener process). По свойству 1,

$$\mathbb{E}\left[X_T\right] = \int_0^T \mathbb{E}\left[W_t\right] dt = 0.$$

Для вычисления дисперсии воспользуемся последним равенством из свойства 3:

$$\mathbb{D}[X_T] = 2 \int_0^T \int_0^t \min(t, s) ds dt = 2 \int_0^T \int_0^t s \, ds dt = \int_0^T t^2 \, dt = \frac{1}{3} T^3.$$

Наконец, ковариационная функция процесса X_T может быть вычислена при помощи свойства 4 стохастического интеграла. Для $T_1 < T_2$ выполнено:

$$cov (X_{T_1}, X_{T_2}) = \int_0^{T_1} \int_0^{T_2} cov (W_t, W_s) ds dt
= \int_0^{T_1} \left(\int_0^t cov (W_t, W_s) ds + \int_t^{T_2} cov (W_t, W_s) ds \right) dt
= \int_0^{T_1} \left(\int_0^t s ds + \int_t^{T_2} t ds \right) dt
= \int_0^{T_1} \left(\frac{1}{2} t^2 + t(T_2 - t) \right) dt = -\frac{1}{6} T_1^3 + \frac{1}{2} T_2 T_1^2.$$

Отметим, что такое же выражение для ковариационной функции можно получить исходя из несколько других соображений. Действительно, представим X_{T_2} в виде

$$X_{T_2} = X_{T_1} + \int_{T_1}^{T_2} (W_t - W_{T_1}) dt + (T_2 - T_1) W_{T_1}$$

и распишем ковариационную функцию процесса X_T следующим образом:

$$cov (X_{T_1}, X_{T_2}) = \mathbb{E} [X_{T_1} X_{T_2}]$$

$$= \mathbb{E} [X_{T_1}^2] + \int_0^{T_1} \int_{T_1}^{T_2} \mathbb{E} [(W_t - W_{T_1}) W_s] dt ds + (T_2 - T_1) \mathbb{E} [X_{T_1} W_{T_1}]$$

$$= \mathbb{E} [X_{T_1}^2] + (T_2 - T_1) \mathbb{E} [X_{T_1} W_{T_1}],$$

где последнее равенство следует из наблюдения, что приращения $\{W_t-W_{T_1},\ t>T_1\}$ и $\{W_s-W_0,s< T_1\}$ независимы. Осталось заметить, что

$$\mathbb{E}\left[X_{T_1} W_{T_1}\right] = \mathbb{E}\left[\int_0^{T_1} W_t dt \cdot W_{T_1}\right] = \int_0^{T_1} \mathbb{E}\left[W_t \cdot W_{T_1}\right] dt = \frac{1}{2}T_1^2.$$

11.2. Интегралы вида $\int f(t)dW_t$

В данной секции мы определим интегралы вида

$$I(f) := \int_{a}^{b} f(t)dW_{t},$$

где f(t)— детерминированная функция из пространства $L^2([a,b])$. Интегралы такого типа называются винеровскими интегралами (Wiener integrals). Определение состоит из двух этапов.

Этап 1. Для ступенчатой функции f(t) (step function), то есть для функции вида

$$f(t) = \sum_{i=1}^{m} \alpha_i \cdot \mathbb{I} \left\{ t \in [t_{i-1}, t_i) \right\},\,$$

где $a = t_0 < t_1 < ... < t_m = b$ и $\alpha_1, ..., \alpha_m$ - фиксированные числа, определим интеграл I(f) следующим образом:

$$I(f) = \sum_{i=1}^{m} \alpha_i \cdot (W_{t_i} - W_{t_{i-1}}).$$
(38)

Пример 11.6. Рассмотрим функцию

$$f(t) = \begin{cases} 1, & t \in [0, 1), \\ 10, & t \in [1, 2), \\ 0, & t \ge 2. \end{cases}$$

Для такой функции интеграл $\int_0^T f(t)dW_t$ равен

$$\int_{0}^{T} f(t)dW_{t} = \begin{cases} W_{T}, & T \leq 1, \\ W_{1} + 10 (W_{T} - W_{1}), & T \in [1, 2), \\ W_{1} + 10 (W_{2} - W_{1}), & T \geq 2. \end{cases}$$

Утверждение 11.7. Для любой ступенчатой функции f, стохастический интеграл I(f) имеет нормальное распределение со средним 0 и дисперсией $\int_a^b f^2(t)dt$.

Доказательство. Из определения (38) непосредственно следует, что I(f) является суммой независимых нормально распределенных случайных величин. Поэтому I(f) имеет нормальное распределение со средним значением

$$\mathbb{E}[I(f)] = \sum_{i=1}^{m} \alpha_i \cdot \mathbb{E}\left[W_{t_i} - W_{t_{i-1}}\right] = 0$$

и дисперсией

$$\mathbb{D}[I(f)] = \sum_{i=1}^{m} \alpha_i^2 \cdot \mathbb{D}\left[W_{t_i} - W_{t_{i-1}}\right] = \sum_{i=1}^{m} \alpha_i^2 \cdot (t_i - t_{i-1}) = \int_a^b f^2(t) dt.$$

<u>Этап 2.</u> Теперь определим интеграл I(f) для любой функции f из пространства $L^2([a,b])$. Выберем последовательность ступенчатых функций f(t) таких, что $f_n \to f$ в пространстве $L^2([a,b])$, то есть

$$\int_a^b (f_n(t) - f(t))^2 dt \to 0, \quad \text{при} \quad n \to \infty.$$

Тогла

$$I(f) = \int_a^b f(t)dW_t := \lim_{n \to \infty} \int_a^b f_n(t)dW_t = \lim_{n \to \infty} I(f_n),$$

где предел понимается в смысле среднего квадратического, то есть

$$\mathbb{E}\left[\left(I(f_n) - I(f)\right)^2\right] \to 0.$$

Следующее утверждение показывает, что данное определение не зависит от выбора последовательности фукнций f_n и поэтому является корректным.

Утверждение 11.8. Для любых двух последовательностей функций f_n и \tilde{f}_n таких, что $f_n \to f$ и $\tilde{f}_n \to f$ при $n \to \infty$ в пространстве $L^2([a,b])$ выполнено

$$\lim_{n \to \infty} \int_a^b f_n(t) dW_t = \lim_{n \to \infty} \int_a^b \tilde{f}_n(t) dW_t,$$

где пределы понимаются в смысле среднего квадратического.

Доказательство. Заметим сначала, что

$$\mathbb{E}\left[\left(I(f_n) - I(\tilde{f}_n)\right)^2\right] = \mathbb{E}\left[\left(I(f_n - \tilde{f}_n)\right)^2\right] = \int_a^b \left(f_n(t) - \tilde{f}_n(t)\right)^2 dt,$$

где последнее равенство следует из утверждения 11.7 и того факта, что разница двух ступенчатых функций сама является ступенчатой функцией. Осталось показать, что последний интеграл стремится к нулю при $n \to \infty$. В самом деле,

$$\int_{a}^{b} \left(f_{n}(t) - \tilde{f}_{n}(t) \right)^{2} dt = \int_{a}^{b} \left(\left(f_{n}(t) - f(t) \right) - \left(\tilde{f}_{n}(t) - f(t) \right) \right)^{2} dt \\
\leq 2 \int_{a}^{b} \left(f_{n}(t) - f(t) \right)^{2} dt + 2 \int_{a}^{b} \left(\tilde{f}_{n}(t) - f(t) \right)^{2} dt \to 0,$$

где мы воспользовались тривиальным неравенством $(a-b)^2 \le 2a^2 + 2b^2$. \square

Утверждение 11.9. Для любой функции f из пространства $L^2([a,b])$, стохастический интеграл I(f) имеет нормальное распределение со средним 0 и дисперсией $\int_a^b f^2(t)dt$.

Доказательство. Для ступенчатых функций f это утверждение уже было доказано, см. утверждение 11.7. В общем случае, достаточно отметить, что предел последовательности нормальных случайных величин с параметрами (μ_n, σ_n^2) является нормальной случайной величиной с математическим ожиданием $\mu := \lim_{n \to \infty} \mu_n$ и дисперсией $\sigma^2 := \lim_{n \to \infty} \sigma_n^2$.

Докажем так же свойство изометрии стохастического интеграла I(f).

Утверждение 11.10. Для любых двух функций $f,g \in L^2([a,b])$ выполнено

$$\mathbb{E}\left[I(f)I(g)\right] = \int_{a}^{b} f(t)g(t)dt. \tag{39}$$

Доказательство. Распишем $\mathbb{E}\left[\left(I(f)+I(g)\right)^2\right]$ двумя способами. С одной стороны,

$$\mathbb{E}\left[(I(f) + I(g))^{2} \right] = \mathbb{E}\left[(I(f))^{2} \right] + 2 \,\mathbb{E}\left[I(f)I(g) \right] + \mathbb{E}\left[(I(g))^{2} \right]. \tag{40}$$

С другой стороны, согласно предыдущему утверждению,

$$\mathbb{E}\left[(I(f) + I(g))^{2} \right] = \int_{a}^{b} (f(t) + g(t))^{2} dt$$

$$= \int_{a}^{b} (f(t))^{2} dt + 2 \int_{a}^{b} f(t)g(t)dt + \int_{a}^{b} (g(t))^{2} dt$$

$$= \mathbb{E}\left[(I(f))^{2} \right] + 2 \int_{a}^{b} f(t)g(t)dt + \mathbb{E}\left[(I(g))^{2} \right]. \tag{41}$$

Сравнивая (40) с (41), мы приходим к искомому равенству.

Из утверждения 11.10 следует, что если функции f(t) и g(t) ортогональны в пространстве $L^2([a,b])$, то соответствующие интегралы I(f) и I(g) будут независимы. Действительно, согласно формуле (39), I(f) и I(g) являются некоррелированными случайными величины. Кроме того. вектор (I(f),I(g)) является гауссовским по определению, т.к. для любых констант λ_1 и λ_2 комбинация компонент этого вектора $\lambda_1 I(f) + \lambda_2 I(g) = I(\lambda_1 f + \lambda_2 g)$ имеет нормальное распределение по утверждению 11.9. Осталось воспользоваться утверждением 7.6 (i).

В заключении этого раздела приведём формулу для вычисления интеграла Винера при выборе базиса пространства $L^2([a,b])$.

Утверждение 11.11. Пусть в пространстве $L^2([a,b])$ выбран некоторый ортонормированный базис $g_1,g_2,...$ Тогда для любой функции $f \in L^2([a,b])$ справедлива формула

$$\int_{a}^{b} f(t)dW_{t} = \sum_{n=1}^{\infty} \left[\langle f, g_{n} \rangle \int_{a}^{b} g_{n}(t)dW_{t} \right],$$

где треугольные скобки обозначают скалярное произведение в пространстве $L^2([a,b])$, то есть $\langle f,g_n\rangle=\int_a^b f(t)g_n(t)dt$.

Доказательство. Действительно, разложим функцию f(t) по базису $g_1, g_2,$ При этом имеет место тождество Парсеваля

$$\int_{a}^{b} f^{2}(t)dt = \sum_{n=1}^{\infty} \langle f, g_{n} \rangle^{2}.$$
 (42)

Покажем, что

$$G_N := \mathbb{E}\left[\left(I(f) - \sum_{n=1}^N \langle f, g_n \rangle I(g_n) \right)^2
ight] o 0,$$
 при $N o \infty.$

Представим G_N в следующем виде

$$G_N = \mathbb{E}\left[\left(I(f)\right)^2\right] - 2\sum_{n=1}^N \langle f, g_n \rangle \mathbb{E}\left[I(f)I(g_n)\right] + \sum_{n=1}^N \langle f, g_n \rangle^2 \mathbb{E}\left[\left(I(g_n)\right)^2\right],$$

где мы использовали свойство независимости $I(g_n)$ и $I(g_m)$ при $n \neq m$. Кроме того, по формуле (39),

$$\mathbb{E}\left[I(f)I(g_n)\right] = \langle f, g_n \rangle$$
 и $\mathbb{E}\left[\left(I(g_n)\right)^2\right] = \|g_n\|^2 = 1$

всилу ортонормальности базиса. Следовательно,

$$G_N = \mathbb{E}\left[\left(I(f)\right)^2\right] - \sum_{n=1}^N \langle f, g_n \rangle^2,$$

причём правая часть стремится к нулю при $n \to \infty$ всилу тождества Парсеваля (42). Значит, $G_N \to 0$, и утверждение доказано.

11.3. Интегралы вида $\int X_t dW_t$

В данном разделе, мы дадим нестрогое определение интеграла $I(X_t) = \int X_t dW_t$, где X_t принадлежит некоторому классу интегрируемых случайных процессов. Также, как и в предыдущем разделе, определение состоит из двух этапов.

Этап 1. Для ступенчатого случайного процесса X_t (step stochastic process), то есть для процессов вида

$$X_{t} = \sum_{i=1}^{m} \xi_{i} \cdot \mathbb{I} \{ t \in [t_{i-1}, t_{i}) \},$$

где $a = t_0 < t_1 < ... < t_m = b$ и $\xi_1, ..., \xi_m$ - случайные величины, определим интеграл $I(X_t)$ следующим образом:

$$I(X_t) = \sum_{i=1}^{m} \xi_i \cdot (W_{t_i} - W_{t_{i-1}}). \tag{43}$$

<u>Этап 2.</u> В общем случае предположим, что существует последовательность ступенчатых случайных процессов $X_t^{(1)}, X_t^{(2)}, \dots$ такая, что

$$\lim_{n \to \infty} \int_{a}^{b} \mathbb{E}\left[\left(X_{t}^{(n)} - X_{t}\right)^{2}\right] dt = 0. \tag{44}$$

Тогда интеграл $I(X_t)$ определяется как

$$I(X_t) = \int_a^b X_t dW_t := \lim_{n \to \infty} \int_a^b X_t^{(n)} dW_t = \lim_{n \to \infty} I(X_t^{(n)}),$$

где предел понимается в смысле среднего квадратического, то есть

$$\mathbb{E}\left[\left(I(X_t^{(n)}) - I(X_t)\right)^2\right] \to 0.$$

Рассмотрим более подробно частный случай, с которым мы уже сталкивались в разделе 11.1: предположим, что случайный процесс X_t имеет непрерывное математическое ожидание m(t) и непрерывную ковариационную функцию K(t,s). Покажем, что в данном случае в качестве последовательности ступенчатых стохастических процессов можно выбрать

$$\widetilde{X}_{t}^{(n)} = \sum_{i=1}^{m} X_{t_{i-1}} \cdot \mathbb{I} \left\{ t \in [t_{i-1}, t_i) \right\},$$

где разбиение отрезка $a=t_0 < t_1 < ... < t_m = b$ измельчается с ростом n так, что $\max(t_i-t_{i-1}) \to 0$.

Утверждение 11.12. Если случайный процесс X_t имеет непрерывное математическое ожидание m(t) и непрерывную ковариационную функцию K(t,s), то

$$\lim_{n \to \infty} \int_{a}^{b} \mathbb{E}\left[\left(\widetilde{X}_{t}^{(n)} - X_{t}\right)^{2}\right] dt = 0. \tag{45}$$

Доказательство. Отметим сначала, что функция

$$\mathbb{E}[X_t X_s] = K(t, s) + m(t)m(s)$$

также является непрерывной, и, кроме того, процесс X_t является непрерывным в среднем квадратическом, так как

$$\mathbb{E}\left[\left(X_t - X_s\right)^2\right] = \mathbb{E}\left[X_t^2\right] - 2\mathbb{E}[X_t X_s] + \mathbb{E}\left[X_s^2\right] \to 0, \quad \text{при} \quad s \to t.$$

Следовательно, для любого $t \ge 0$

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\widetilde{X}_t^{(n)} - X_t\right)^2\right] = 0,$$

и для обоснования (45) достаточно обосновать возможность поменять местами интеграл и предел, то есть достаточно доказать, что

$$\int_a^b \left[\lim_{n \to \infty} \mathbb{E}\left[\left(\widetilde{X}_t^{(n)} - X_t \right)^2 \right] \right] dt = \lim_{n \to \infty} \int_a^b \left[\mathbb{E}\left[\left(\widetilde{X}_t^{(n)} - X_t \right)^2 \right] \right] dt.$$

Последнее равенство следует из теоремы Лебега о мажорируемой сходимости, так как

$$\mathbb{E}\left[\left(\widetilde{X}_t^{(n)} - X_t\right)^2\right] \leq 2\mathbb{E}\left[\left(\widetilde{X}_t^{(n)}\right)^2\right] + 2\mathbb{E}\left[\left(X_t\right)^2\right] \leq 4 \sup_{t \in [a,b]} \mathbb{E}\left[\left(X_t\right)^2\right],$$

где супремум в правой части конечен ввиду непрерывности функции $\mathbb{D}[X_t]$.

Пример 11.13. Для примера вычислим интеграл $\int_0^t W_s dW_s$. Отметим, что процесс W_t удовлетворяет условиям утверждения 11.12, и поэтому

$$\int_0^t W_s \ dW_s = \lim_{n \to \infty} \sum_{i=1}^n W_{t_{i-1}} \left(W_{t_i} - W_{t_{i-1}} \right).$$

Отметим, что выражение в правой части может быть представлено в следующем виде

$$\sum_{i=1}^{n} W_{t_{i-1}} \left(W_{t_{i}} - W_{t_{i-1}} \right) = -\frac{1}{2} \sum_{i=1}^{n} \left(W_{t_{i}} - W_{t_{i-1}} \right)^{2} + \frac{1}{2} \sum_{i=1}^{n} \left(W_{t_{i}}^{2} - W_{t_{i-1}}^{2} \right)$$
$$= -\frac{1}{2} \sum_{i=1}^{n} \left(W_{t_{i}} - W_{t_{i-1}} \right)^{2} + \frac{1}{2} W_{t}^{2}.$$

Осталось отметить, что квадратическая вариация процесса W_t равна t (см. утверждение 8.7), и поэтому

$$\int_0^t W_s dW_s = -\frac{1}{2}t + \frac{1}{2}W_t^2.$$

Замечание 11.14. * Для строгого определения интегралов вида $\int_a^b X_t dW_t$, необходимо сначала ввести понятие фильтрации.

Фильтрация - это семейство σ - алгебр \mathscr{F}_t , определенных на вероятностном пространстве $(\Omega,\mathscr{F},\mathbb{P})$, такое, что

$$\mathscr{F}_s \subset \mathscr{F}_t \subset \mathscr{F}, \qquad \forall s \leq t.$$

Случайный процесс Y_t называется согласованным c фильтрацией \mathcal{F}_t , если Y_t измерим относительно σ -алгебры \mathcal{F}_t для любого $t \geq 0$.

Зафиксируем теперь некоторую фильтрацию \mathscr{F}_t вместе с вероятностным пространством $(\Omega,\mathscr{F},\mathbb{P})$. Определение интеграла $\int_a^b X_t dW_t$, данное выше, корректно при одновременном выполнении следующих свойств:

- 1. процесс W_t является \mathscr{F}_t Броуновским движением, то есть,
 - (i) процесс W_t согласован с фильтрацией \mathscr{F}_t , и кроме того,
 - (ii) для любых $s \leq t$, случайная величина $W_t W_s$ независима от σ -алгебры \mathscr{F}_s ;
- 2. X_t согласован c фильтрацией \mathscr{F}_t , $u \int_a^b \mathbb{E}\left[X_t^2\right] dt < \infty$.

Кроме того, при определении интеграла от ступенчатого процесса, необходимо предположить, что ξ_i измеримы относительно $\mathscr{F}_{t_{i-1}}$ для любого i=1,2,...

Для решения задач часто пригождается следующее свойство стохастических интегралов.

Пемма 11.15. Пусть X_t - случайный процесс с непрерывным математическим ожиданием и непрерывной ковариационной функцией. Пусть ξ – некоторая случайная величина (возможно, зависимая с X_t), причём случайный процесс ξX_t также имеет непрерывное математическое ожидание и непрерывную ковариационную функцию. Тогда

$$\xi \int_a^b X_s dW_s = \int_a^b (\xi X_s) dW_s.$$

Доказательство. По утверждению 11.12 и определению стохастического интеграла,

$$\int_{a}^{b} X_{s} dW_{s} = \lim_{\max|t_{i}-t_{i-1}|\to 0} \sum_{i=1}^{\infty} X_{t_{i-1}} (W_{t_{i}} - W_{t_{i-1}}),$$

где предел понимается в смысле среднего квадратического. Тогда для доказательства леммы нам достаточно показать, что

$$\mathbb{E}\left[\xi^{2}\left(\sum_{i=1}^{\infty}X_{t_{i-1}}(W_{t_{i}}-W_{t_{i-1}})-\int_{a}^{b}X_{s}dW_{s}\right)^{2}\right]\to0$$

Действительно, последовательность

$$\eta_n := \sum_{i=1}^{\infty} X_{t_{i-1}} (W_{t_i} - W_{t_{i-1}}) - \int_a^b X_s dW_s$$

сходится к нулю в среднем квадратическом, значит сходится к нулю и по вероятности. В то же время, ξ сходится к самому себе в любом смысле, в том числе, и по распределению. Значит, по лемме Слуцкого, последовательность $\xi\eta_n$ сходится к нулю по распределению. Поэтому если $\xi\eta_n$ имеет предел в среднем квадратическом, то этот предел равен также 0. Но $\xi\eta_n$ действительно имеет предел, поскольку по условию леммы, математическое ожидание и ковариационная функция этого процесса непрерывны.

11.4. Интегралы вида $\int H_t dX_t$. Формула Ито.

В данном разделе мы рассмотрим интегралы вида $\int_a^b H_t dX_t$, где X_t - пропесс Ито.

Определение 11.16. Назовём процессами Ито процессы X_t , задаваемые в виде

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s, \tag{46}$$

где W_t - Броуновское движение, и b_s, σ_s - случайные процессы. Вместо равенства (46) зачастую пишут

$$dX_t = b_t dt + \sigma_t dW_t$$

что по определению является просто сокращенной записью равенства (46).

Определение 11.17. Пусть X_t - процесс Ито, и H_t - случайный процесс такой, что $\int_a^b \left(|H_s b_s| + H_s^2 \sigma_s^2\right) ds < \infty$. Тогда стохастическим интегралом от процесса H_t по процессу X_t называется процесс

$$\int_a^b H_s dX_s := \int_a^b H_s b_s ds + \int_a^b H_s \sigma_s dW_s.$$

Замечание 11.18. * Более строго, в Определение 11.16 необходимо добавить, что

- (i) W_t является \mathscr{F}_t Броуновским движением (см. Замечание 11.14);
- (ii) процессы b_t и σ_t согласованы с фильтрацией \mathscr{F}_t ;
- (iii) случайная величина X_0 измерима относительно σ -алгебры \mathscr{F}_0 .

В Определение 11.17 следует добавить, что H_t - согласованный с фильтрацией \mathcal{F}_t процесс.

Теорема 11.19. Пусть X_t - процесс Ито вида (46). Пусть $f: \mathbb{R}^2 \to \mathbb{R}$ - дважды непрерывно-дифференцируемая функция. Тогда $f(t, X_t)$ также процесс Ито, и кроме того,

$$f(t, X_t) = f(0, X_0) + \int_0^t f_1'(s, X_s) ds + \int_0^t f_2'(s, X_s) dX_s + \frac{1}{2} \int_0^t f_{22}''(s, X_s) \sigma_s^2 ds,$$

где через $f_i', f_{ij}'', i=1,2, j=1,2$ - обозначены производные по i - ой переменной и вторые производные по i- и j- ой переменной. Данная формула называется формулой Ито и может быть сокращенно записана как

$$df = f_1'dt + f_2'dX_t + \frac{1}{2}f_{22}''\sigma_t^2dt.$$
(47)

Доказательство. * Ниже приведены некоторые нестрогие рассуждения, являющиеся мотивацией формулы (47). Идея доказательства формулы Ито основана на разложении функции f в ряд Тейлора с точностью до второго члена:

$$df \approx f(t + \Delta t, X_t + \Delta X_t) - f(t, X_t)$$

$$\approx f'_1 dt + f'_2 dX_t + \frac{1}{2} \left(f''_{11} (dt)^2 + 2f''_{12} dt dX_t + f''_{22} (dX_t)^2 \right). \tag{48}$$

Отметим, что первые 2 члена этого разложения есть и в формуле (47). Далее,

$$(dt)^{2} \approx \sum_{i=1}^{n} (\Delta t_{i})^{2} \leq \max(\Delta t_{i}) \cdot \sum_{i=1}^{n} \Delta t_{i} \to 0;$$

$$dt dX_{t} = dt \left(b_{t} dt + \sigma_{t} dW_{t}\right) = \sigma_{t} dt dW_{t}$$

$$\approx \sigma_{t} \sum_{i=1}^{n} \Delta t_{i} \Delta W_{t_{i}} \leq \sigma_{t} \cdot \max(\Delta t_{i}) \cdot \sum_{i=1}^{n} \Delta W_{t_{i}} \to 0;$$

$$(dX_{t})^{2} = \left(b_{t} dt + \sigma_{t} dW_{t}\right)^{2} = \sigma_{t}^{2} dW_{t}^{2} \approx \sigma_{t}^{2} \sum (\Delta W_{t_{i}})^{2} \to \sigma_{t}^{2} t,$$

где в последней строчке используется тот факт, что квадратическая вариация процесса W_t равна t (см. утверждение 8.7). Подставляя все "полученные" формулы в (48), мы приходим к формуле (47).

11.5. Вычисление стохастических интегралов при помощи формулы Ито

При помощи формулы Ито можно вычислять интегралы вида $\int_a^b f(t,W_t)dW_t$. Действительно, пусть f(t,x) - дифференцируемая по второй переменной функция. Обозначим через F(t,x) - первообразную этой функции по второй переменной, и применим к F(t,x) формулу Ито для процесса Ито $X_t=W_t$:

$$F(t, W_t) = F(0, 0) + \int_0^t F_1'(s, W_s) ds + \int_0^t F_2'(s, W_s) dW_s + \frac{1}{2} \int_0^t F_{22}''(s, W_s) ds.$$

Так как справедливы равенства

$$F_2'(t,x) = f(t,x), \quad \text{и} \quad F_{22}''(t,x) = f_2'(t,x),$$

мы приходим к следующему представлению стохастического интеграла

$$\int_0^t f(s, W_s) dW_s = F(t, W_t) - F(0, 0) - \int_0^t \left(F_1'(s, W_s) + \frac{1}{2} f_2'(s, W_s) \right) ds.$$
 (49)

Из последней формулы в частности следует, что

$$\int_{a}^{b} f(s, W_{s}) dW_{s} = \int_{0}^{b} f(s, W_{s}) dW_{s} - \int_{0}^{a} f(s, W_{s}) dW_{s}$$

$$= F(b, W_{b}) - F(a, W_{a}) - \int_{a}^{b} \left(F'_{1}(s, W_{s}) + \frac{1}{2} f'_{2}(s, W_{s}) \right) ds.$$
(50)

Пример 11.20. Вычислим при помощи формулы (49) интеграл $\int_0^t W_s dW_s$, уже рассмотренный нами в примере 11.13. Для этого примера, f(t,x)=x и $F(t,x)=x^2/2$. Поэтому

$$\int_0^t W_s dW_s = \frac{1}{2}W_t^2 - \int_0^t \frac{1}{2}ds = \frac{1}{2}W_t^2 - \frac{1}{2}t.$$

Пример 11.21. Формула (49) позволяет также доказать формулу интегрирования по частям для винеровских интегралов:

$$\int_a^b g(s)dW_s = g(b)W_b - g(a)W_a - \int_a^b g'(s)W_s ds.$$

Действительно, эта формула получается при применении (50) к функции f(t,x)=g(t) и её первообразной F(t,x)=g(t)x.

11.6. Применение формулы Ито к стохастическому моделированию

В данном разделе мы рассмотрим несколько стохастических моделей, широко применяемых при описании динамики цен.

Модель Блэка-Шоулза (геометрическое Броуновское движение). В данной модели цена финансового инструмента описается как решение стохастического дифференциального уравнения (СДУ)

$$dX_t = X_t \mu \ dt + X_t \sigma \ dW_t, \tag{51}$$

где $\mu \in \mathbb{R}, \sigma > 0$. Напомним, что такое СДУ является просто сокращенной записью

$$X_t = X_0 + \mu \int_0^t X_s ds + \sigma \int_0^t X_s dW_s.$$

При помощи формулы Ито процесс X_t может быть найден в явном виде. Для этого воспользуемся формулой (47) для функции $f(t,x) = \ln(x)$ и про-

цесса Ито X_t :

$$d(\ln X_t) = \frac{1}{X_t} dX_t + \frac{1}{2} \left(-\frac{1}{X_t^2} \right) (X_t \sigma)^2 dt$$
$$= \frac{1}{X_t} (X_t \mu dt + X_t \sigma dW_t) - \frac{\sigma^2}{2} dt$$
$$= \left(\mu - \frac{\sigma^2}{2} \right) dt + \sigma dW_t.$$

Следовательно,

$$\ln(X_t) - \ln(X_0) = \int_0^t \left(\mu - \frac{\sigma^2}{2}\right) ds + \int_0^t \sigma \ dW_s = \left(\mu - \frac{\sigma^2}{2}\right) t + \sigma W_t,$$

и решением СДУ (51) является процесс

$$X_t = X_0 \exp\left\{ \left(\mu - \frac{\sigma^2}{2} \right) t + \sigma W_t \right\}$$

$$dX_t = (a - bX_t) dt + c dW_t, (52)$$

где $a\in\mathbb{R},b,c>0$. Для нахождения решения данного СДУ, воспользуемся формулой Ито (47) для функции $f(t,x)=xe^{bt}$ и процесса Ито X_t :

$$d(X_t e^{bt}) = bX_t e^{bt} dt + e^{bt} dX_t$$
$$= e^{bt} (a dt + c dW_t).$$

Значит, решением СДУ (52) является процесс

$$X_t = e^{-bt}X_0 + \frac{a}{b}(1 - e^{-bt}) + c\int_0^t e^{b(s-t)}dW_s.$$

Модель Кокса-Ингерсолла-Росса (CIR - Cox-Ingersoll-Ross) похожа на модель Васичека (52),

$$dX_t = (a - bX_t) dt + c \sqrt{X_t} dW_t.$$
(53)

Модели (52) и (53) обладают свойством "возвращения к среднему" (meanreverting models). Кроме того, процесс, задаваемый СДУ (53), строго положителен, если $2a \ge \sigma^2$. Применяя формулу Ито с $f(t,x) = xe^{bt}$ (как для модели Васичека), приходим к равенству

$$X_t = e^{-bt}X_0 + \frac{a}{b}(1 - e^{-bt}) + c\int_0^t e^{b(s-t)}\sqrt{X_s}dW_s.$$

Пользоваться этой формулой затруднительно из-за интегрирования $\sqrt{X_s}$ в правой части.

Процесс Орнштейна-Уленбека является частным случаем модели Васичека. В классической записи, он задаётся как решение СДУ

$$m dX_t = -\lambda X_t dt + dW_t, (54)$$

где $m, \lambda > 0$. Физический смысл этого уравнения: X_t задаёт скорость частицы массы m в некоторой среде с коэффициентом трения λ . Решая уравнение также, как и в случае модели Васичека, приходим к равенству

$$X_t = e^{-(\lambda/m)t} \left(X_0 + \frac{1}{m} \int_0^t e^{(\lambda/m)s} dW_s \right).$$

Если теперь дополнительно предположить, что $X_0 \sim \mathcal{N}(0,1/(2\lambda m)),\ X_0$ независим от W_t , то процесс X_t является гауссовским с нулевым мат. ожиданием и ковариационной функцией

$$K(t_1, t_2) = \frac{1}{2\lambda m} e^{-(\lambda/m) \cdot |t_1 - t_2|}.$$

Часть IV

Приложение

Приложение А: Свёртка функций

В теории вероятности понятие свёртки возникает в следующих двух (близких) смыслах.

1. В смысле свёртки функций распределений: если случайные величины X и Y независимы, то функция распределения их суммы вычисляется по формуле

$$F_{X+Y}(x) = \int_{\mathbb{R}} F_X(x-y) F_Y(dy),$$

где $F_X(\cdot)$ - функция распределения $X,\,F_Y(\cdot)$ - функция распределения Y. Операция с функциями F_1 и F_2 в правой части называется свёрткой и обозначается F_1*F_2 .

2. В смысле свёртки плотностей распределений: если случайные величины X и Y независимы, X имеет плотность p_X , Y имеет плотность p_Y , то плотность их суммы вычисляется по формуле

$$p_{X+Y}(x) = \int_{\mathbb{R}} p_X(x-y)p_Y(y)dy.$$

Операция с функциями p_X и p_Y в правой части также называется свёрткой и обозначается $p_X * p_Y$.

Перечислим некоторые свойства свёртки функции распределения:

1. Если F(0) = 0, то для любого $n \in \mathbb{N}$,

$$F^{n*}(x) \le F^n(x),$$

где в левой части стоит свёртка функции распределения F(x) сама с собой n раз (т.е. функция распределения с.в., представляющей собой сумму n i.i.d. с.в. с функцией распределения F(x)), а в правой части - функция F(x) в n -ой степени.

2. Если F(0) = 0, то для любого $n \in \mathbb{N}$,

$$F^{n*}(x) \ge F^{(n+1)*}(x).$$

3. Свойство коммутативности: для любых функций распределения F_1 и F_2 ,

$$F_1 * F_2 = F_2 * F_1.$$

4. Свойство ассоциативности: для любых функций распределения $F_1,\,F_2,\,F_3,\,$

$$F_1 * (F_2 * F_3) = (F_1 * F_2) * F_3.$$

Приложение В: Преобразование Лапласа

Литература по теме: [4]

Определение В.1. Преобразование Лапласа функции $f: \mathbb{R}_+ \to \mathbb{R}$ называется функция

$$\mathscr{L}_f(s) := \int_0^\infty f(x)e^{-sx}dx, \qquad s \ge 0.$$

Перечислим наиболее важные свойства преобразования Лапласа

- 1. Если f(x) является функцией плотности некоторой случайной величины ξ , то $\mathscr{L}_f(s)=\mathbb{E}[e^{-s\xi}].$
- 2. Для любых функций f_1 и f_2 ,

$$\mathscr{L}_{f_1*f_2}(s) = \mathscr{L}_{f_1}(s) \cdot \mathscr{L}_{f_2}(s),$$

где свёртка в левой части подразумевается как свёртка плотностей, т.е.

$$(f_1 * f_2)(x) = \int_0^x f_1(x - y) f_2(y) dy.$$

Действительно,

$$\mathcal{L}_{f_1*f_2}(s) = \int_0^\infty e^{-sx} \left[\int_0^\infty f_1(x-y) f_2(y) dy \right] dx$$

$$= \int_0^\infty f_2(y) \left[\int_0^\infty f_1(x-y) e^{-sx} dx \right] dy$$

$$= \int_0^\infty f_2(y) \left[\int_0^\infty f_1(u) e^{-s(u+y)} du \right] dy$$

$$= \left[\int_0^\infty f_2(y) e^{-sy} dy \right] \left[\int_0^\infty f_1(u) e^{-su} du \right]$$

$$= \mathcal{L}_{f_1}(s) \cdot \mathcal{L}_{f_2}(s).$$

3. Если F(x) - функция распределения некоторой положительной с.в. (т.е. F(0)=0), а p(x) - её плотность, то

$$\mathscr{L}_F(s) = \mathscr{L}_p(s)/s.$$

Действительно,

$$\mathcal{L}_{F}(s) = \int_{\mathbb{R}_{+}} e^{-sx} F(x) dx = -\int_{\mathbb{R}_{+}} F(x) d(e^{-sx}/s)$$
$$= -F(x) \frac{e^{-sx}}{s} \Big|_{0}^{\infty} + \int_{\mathbb{R}_{+}} p(x) \frac{e^{-sx}}{s} dx = \mathcal{L}_{p}(s)/s.$$

Аналогично, если функция f(x) такая, что $\int_{\mathbb{R}_+} f(x) dx < \infty$, то

- $\mathscr{L}_{\int_0^x f(u)du}(s) = \mathscr{L}_f(s)/s$, где s > 0,
- $\mathscr{L}_{\int_x^\infty f(u)du}(s) = (\mathscr{L}_f(0) \mathscr{L}_f(s))/s$, где s > 0.
- 4. Следующие формулы верны, если преобразования Лапласа, которые входят в эти формулы, существуют:
 - $\mathscr{L}_{x^m}(s) = \Gamma(m+1)/s^{m+1}$, где m > -1 и s > 0,
 - $\mathcal{L}_{f'}(s) = s \cdot \mathcal{L}_f(s) f(0),$
 - $\mathscr{L}_{f^{(r)}}(s) = s^r \cdot \mathscr{L}_f(s) s^{r-1}f(0) s^{r-2}f'(0) \dots f^{(r-1)}(0),$

Приложение С: Производящие функции

Определение С.1. Проиводящей функцией целочисленной неотрицательной случайной величины X называется функция

$$\varphi_X(u) = \mathbb{E}\left[u^X\right] = \sum_{k=0}^{+\infty} u^k \cdot \mathbb{P}\left\{X = k\right\}, \quad |u| < 1.$$

Для примера вычислим производящую функцию пуассоновской с.в. с параметром λ :

$$\varphi_X(u) = \sum_{k=0}^{+\infty} u^k e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{+\infty} \frac{(\lambda u)^k}{k!} = e^{\lambda(u-1)}.$$

Важные свойства производящей функции:

1. для независимых с.в. X и Y,

$$\varphi_{X+Y}(u) = \mathbb{E}\left[u^{X+Y}\right] = \mathbb{E}[u^X] \cdot \mathbb{E}[u^Y] = \varphi_X(u)\varphi_Y(u);$$

2. существует взаимнооднозначное соответствие между производящими функциями и распределениями целочисленных неотрицательных с.в., т.к.

$$\mathbb{P}\{X = k\} = \frac{1}{k!} \varphi_X^{(k)}(0), \qquad k = 0, 1, 2, \dots$$

Приложение D: Характеристические функции

Определение D.1. Характеристической функцией одномерной случайной величины X называется

$$\phi_X(u) = \mathbb{E}\left[e^{\mathrm{i}uX}\right], \qquad u \in \mathbb{R}.$$

Любая характеристическая функция обладает следующими свойствами:

- 1. $\phi_X(0) = 1$, $|\phi_X(u)| \le 1$, $\forall u \in \mathbb{R}$;
- 2. если с.в. X и Y независимы, то $\phi_{X+Y}(u) = \phi_X(u)\phi_Y(u)$;
- 3. $\phi_{aX+b}(u) = e^{ibu}\phi_X(au)$, где a, b константы;
- 4. Любая характеристическая функция является равномерно непрерывной на всей числовой прямой. Действительно,

$$\sup_{u} |\phi(u+h) - \phi(u)| = \sup_{u} \left| \mathbb{E} \left(e^{i(u+h)\xi} - e^{iu\xi} \right) \right| \\
\leq \sup_{u} \mathbb{E} \left[\left| e^{iu\xi} \right| \cdot \left| e^{ih\xi} - 1 \right| \right] \\
= \mathbb{E} \left[\left| e^{ih\xi} - 1 \right| \right] \to 0,$$

т.к. функция $|e^{\mathrm{i}h\xi}-1|$ ограничена сверху числом 2, и поэтому можно применить теорему Лебега о мажорируемой сходимости.

5. Любая функция распределения однозначно определяется своей характеристической функцией. Это является следствием формулы

$$F(x_1) - F(x_2) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-iux_2} - e^{-iux_1}}{iu} \phi(u) du,$$

где F(x) -функция распределения с.в. ξ , а x_1, x_2 - точки непрерывности функции F(x).

6. Если у распределения ξ существует r-ый момент, то существует r-ая производная хар. функции в нуле, и кроме того

$$\phi^{(k)}(0) = i^k \mathbb{E}[\xi^k], \quad k = 0, 1...r.$$

Действительно, если существует 1- ый момент, то

$$|\phi'(u)| = \left| i \int x e^{iux} dF(x) \right| \le \int |x| dF(x) = \mathbb{E}|\xi|,$$

и поэтому первая производная хар. функции существует. Аналогично (по индукции) доказывается для любого целого r. Из этого свойства следует формула Тейлора для хар. функций: если существует r— ый момент распределения, то в окрестности нуля имеет место формула

$$\phi(u) = 1 + \sum_{i=1}^{k} \frac{(iu)^{j}}{j!} \mathbb{E}\xi^{j} + o(|u|^{r}).$$

7. Функция $\phi(u): \mathbb{R} \to \mathbb{C}$ является характеристической функции некоторой случайной величины тогда и только тогда, когда ϕ непрерывна и положительно определена (теорема Бохнера). Функция называется положительно определённой, если $\forall s_1,...,s_n \in \mathbb{R}, \ \forall z_1,...,z_n \in \mathbb{C}$ выполнено $\sum_{j,k=1}^n \phi(s_j-s_k)z_j\bar{z}_k \geq 0$.

Пример D.2. Найдём характеристическую функцию стандартной нормальной величины. Имеем

$$\phi(u) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\mathrm{i}ux - x^2/2} dx.$$

Производная характеристической функции по u равна

$$\phi'(u) = \frac{i}{\sqrt{2\pi}} \int_{\mathbb{R}} x e^{iux - x^2/2} dx$$
$$= \frac{i}{\sqrt{2\pi}} \left[-e^{iux - x^2/2} \Big|_{-\infty}^{\infty} + \int_{\mathbb{R}} iu e^{iux - x^2/2} dx \right] = -u\phi(u).$$

где во второй строчке мы воспользовались формулой интегрирования по частям для функций $-e^{-x^2/2}$ и $e^{\mathrm{i}ux}$. Решая полученное дифференциальное уравнение с начальным условием $\phi(0)=1$, приходим к выводу, что

$$\phi(u) = e^{-u^2/2}.$$

По свойству 3, отсюда следует, что характеристическая функция с.в. $X \sim \mathcal{N}(\mu, \sigma^2)$ равна

$$\phi_X(u) = e^{\mathrm{i}u\mu - \sigma^2 u^2/2}.$$

Аналогично можно определить характеристическую функцию многомерной случайной величины \vec{X} :

$$\phi_{\vec{X}}(\vec{u}) = \mathbb{E}\left[e^{\mathrm{i}(\vec{u},\vec{X})}\right], \qquad u \in \mathbb{R}.$$

Все свойства характеристической функции распространяются на многомерный случай. В частности, свойство 3 можно переписать как

$$\phi_{A\vec{X}+\vec{\mu}}(\vec{u}) = e^{\mathrm{i}(\vec{\mu},\vec{u})}\phi_{\vec{X}}(A^{\top}\vec{u}), \tag{55}$$

где $A \in Matr(n \times n), \vec{\mu} \in \mathbb{R}^n$.

Приложение Е: Две предельные теоремы теории вероятностей

Е.1. Закон больших чисел

ЗБЧ, Law of large numbers (LLN).

Теорема Е.1. 1. "Классическая" формулировка: ξ_1, ξ_2, \dots - последовательность i.i.d. сл.вел., $\mathbb{E}[\xi_1^2] < \infty$. Тогда

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow{\mathbb{P}} \mathbb{E}[\xi_1], \qquad npu \quad n \to \infty.$$

2. В форме Хинчина: ξ_1, ξ_2, \dots - последовательность i.i.d. сл.вел., $\mathbb{E}[\xi_1] < \infty$. Тогда

$$\frac{\xi_1+\ldots+\xi_n}{n} \xrightarrow{\mathbb{P}} \mathbb{E}[\xi_1], \qquad npu \quad n\to\infty.$$

3. Усиленный ЗБЧ (strong LLN): ξ_1, ξ_2, \dots - последовательность i.i.d. сл.вел., $\mathbb{E}[\xi_1] < \infty$. Тогда

$$\frac{\xi_1 + \dots + \xi_n}{n} \xrightarrow{a.s.} \mathbb{E}[\xi_1], \qquad npu \quad n \to \infty.$$

Доказательство. Докажем в форме Хинчина. Обозначим $\eta_i = \xi_i - \mathbb{E}[\xi_i]$. Поскольку $\mathbb{E}[\eta_i] = 0$, хар.функция η_i может быть представлена в следующем виде

$$\eta_i(u) = 1 + o(|u|), \quad u \to 0.$$

Поэтому

$$\phi_{(\sum_{i=1}^n \eta_i)/n}(u) = \phi_{\sum \eta_i}(u/n) = (\phi_{\eta_1}(u/n))^n = (1 + o(u/n))^n \to 1, \quad n \to \infty.$$

Таким образом, последовательность хар. функций с.в. $(\sum_{i=1}^n \eta_i)/n$ сходится к функции, непрерывной в нуле (и соответствующей нулевой константе) - значит, по утверждению G.4, $(\sum_{i=1}^n \eta_i)/n \stackrel{d}{\to} 0$ и по утверждению G.2, $(\sum_{i=1}^n \eta_i)/n \stackrel{\mathbb{P}}{\to} 0$. Теорема доказана.

Е.2. Центральная предельная теорема

ЦПТ, Central limit theorem (CLT).

Теорема Е.2. Пусть $\xi_1, \xi_2, ...$ - последовательность i.i.d. сл.вел., $\mathbb{E}[\xi_1^2] < \infty$. Тогда

$$\frac{\sum_{i=1}^{n} \xi_i - n\mu}{\sigma \sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1), \qquad n \to \infty,$$

where $\mu = \mathbb{E}[\xi_1] \ u \ \sigma^2 = \mathbb{D}[\xi_1].$

3БЧ в классической форме непосредственно следует из ЦПТ. Действительно, воспользуемся Теоремой G.3 с

$$X_n = \frac{\sum_{i=1}^n \xi_i - n\mu}{\sigma\sqrt{n}}, \qquad Y_n = \frac{\sigma}{\sqrt{n}}.$$

Имеем $X_n \xrightarrow{d} \mathcal{N}(0,1), Y_n \xrightarrow{\mathbb{P}} 0$. Значит,

$$X_n Y_n = \frac{S_n}{n} - \mu \xrightarrow{d} 0.$$

Отсюда следует, что $(S_n/n) - \mu \xrightarrow{\mathbb{P}} 0$, то есть закон больших чисел в классической форме выполнен.

Доказательство. В общем случае, обозначим $\eta_i = \xi_i - \mu$, i = 1..n. Очевидно, $\mathbb{E}[\eta_i] = 0$, $\mathbb{D}[\eta_i] = \sigma^2$. Разложим хар. функцию η_i в ряд Тейлора в окрестности нуля:

$$\phi_{\eta_i}(u) = 1 - \frac{1}{2}u^2\sigma^2 + o(u^2), \qquad u \to 0.$$

Значит,

$$\phi_{\left(\sum_{i=1}^{n} \eta_{i}\right)/\left(\sigma\sqrt{n}\right)}(u) = \left(\phi_{\eta_{1}}\left(\frac{u}{\sigma\sqrt{n}}\right)\right)^{n} = \left(1 - \frac{u^{2}}{2n} + o\left(\frac{u^{2}}{2n}\right)\right)^{n} \to e^{-u^{2}/2}.$$

Осталось заметить, что по утверждению G.4, $(\sum_{i=1}^n \eta_i)/(\sigma\sqrt{n}) \stackrel{d}{\to} \mathcal{N}(0,1)$.

Приложение F: Отношение эквивалентности

Пусть задано некоторое конечное множество A, и на нём определено отношение \sim . Это отношение называется отношением эквивалентности, если оно обладает следующими свойствами:

- 1. рефлексивность: $a \sim a, \forall a \in A;$
- 2. симметричность: $a \sim b$, $\Rightarrow b \sim a$, $\forall a, b \in A$;

3. транзитивность: $a \sim b, \ b \sim c \ \Rightarrow \ a \sim c, \ \forall a,b,c \in A.$

Любое отношение эквивалентности задаёт разбиение на классы эквивалентности, т.е. на непересекающиеся подмножества $B_1, B_2, ...$, объединение которых есть всё A. Обратное утверждение также верно - для любого разбиения на классы эксивалентности, можно определить отношение эквивалентности: $a \sim b \Leftrightarrow a, b$ лежат в одном классе.

Приложение G: Виды сходимости случайных величин

1. Говорят, что последовательность ξ_n случайных величин сходится к с.в. ξ normu наверное ($\xi_n \xrightarrow{a.s.} \xi$, almost sure convergence), если

$$\mathbb{P}\left\{\omega:\xi_n(\omega)\to\xi(\omega)\right\}=1;$$

2. Говорят, что последовательность ξ_n случайных величин сходится к с.в. ξ по вероятности ($\xi_n \stackrel{\mathbb{P}}{\to} \xi$, convergence in probability), если

$$\forall \varepsilon > 0 \quad \mathbb{P}\left\{ |\xi_n - \xi| > \varepsilon \right\} \to 0;$$

Утверждение G.1. (i)
$$\left[\xi_n \xrightarrow{a.s.} \xi\right] \implies \left[\xi_n \xrightarrow{\mathbb{P}} \xi\right]$$
. (ii) $\left[\xi_n \xrightarrow{\mathbb{P}} \xi\right], \xi_n$ — монотонная $\implies \left[\xi_n \xrightarrow{a.s} \xi\right]$.

3. Говорят, что последовательность ξ_n случайных величин сходится к с.в. ξ в среднем квадратическом ($\xi_n \xrightarrow{\text{ср.кв.}} \xi$, convergence in mean square), если

$$\mathbb{E}\left[\left(\xi_n - \xi\right)^2\right] \to 0;$$

Из сходимости в среднем квадратическом следует сходимость по вероятности - этот факт вытекает из неравенства Чебышева:

$$\mathbb{P}\left\{\left|\xi_{n}-\xi\right| \geq \varepsilon\right\} = \mathbb{P}\left\{\left|\xi_{n}-\xi\right|^{2} \geq \varepsilon^{2}\right\} \leq \frac{\mathbb{E}\left[\left|\xi_{n}-\xi\right|^{2}\right]}{\varepsilon^{2}} \to 0, \quad \forall \varepsilon > 0.$$

- 4. Говорят, что последовательность функций распределений F_{ξ_n} случайных величин ξ_n слабо сходится к фукнции распределения с.в. ξ ($F_{\xi_n} \stackrel{w}{\to} F_{\xi}$, weak convergence, $\xi_n \stackrel{d}{\to} \xi$, convergence in distribution, $\xi_n \stackrel{Law}{\longrightarrow} \xi$, convergence in law), если выполнено любое из следующих (эквивалентных) условий:
 - 1. $F_{\xi_n}(x) \to F_{\xi}(x)$ для любой точки x, являющейся точкой непрерывности $F_{\xi}(x)$.
 - 2. Для любой непрерывной и ограниченной функции g,

$$\int g(x)dF_n(x) \to \int g(x)dF(x),$$

T.e.
$$\mathbb{E}\left[g(\xi_n)\right] \to \mathbb{E}\left[g(\xi)\right]$$
.

Утверждение G.2. 1.
$$\left[\xi_n \xrightarrow{\mathbb{P}} \xi\right] \implies \left[F_{\xi_n} \xrightarrow{w} F(\xi)\right]$$
.
2. $\left[F_{\xi_n} \xrightarrow{w} F(\xi)\right], \left[\xi = c \ a.s.\right] \implies \left[\xi_n \xrightarrow{\mathbb{P}} \xi\right]$.

Теорема G.3. (Теорема Слуикого):

$$\left[X_n \xrightarrow{d} X\right], \ \left[Y_n \xrightarrow{\mathbb{P}} c\right] \quad \Longrightarrow \quad \left[X_n Y_n \xrightarrow{d} c X\right], \ \left[X_n + Y_n \xrightarrow{d} X + c\right].$$

5. Сходимость характеристических функций - сходимость функций из $\mathbb{R} \to \mathbb{C}.$

Утверждение G.4. (i)
$$\left[F_{\xi_n} \xrightarrow{w} F_{\xi}\right] \Longrightarrow \left[\phi_{\xi_n} \xrightarrow{w} \phi_{\xi}\right].$$
 (ii) Если последовательность хар. функций $\phi_n(\cdot)$ сходится к функции

(ii) Если последовательность хар. функций $\phi_n(\cdot)$ сходится к функции $\phi(\cdot)$, непрерывной в нуле, то функция $\phi(\cdot)$ сама является характеристической. При этом последовательность функций распределений F_n , соответствующие хар. функциям $\phi_n(\cdot)$ слабо сходится к функции распределения, соответствующей хар.функции $\phi(\cdot)$.

В заключении приведём несколько примеров, показывающих связь между сходимостью по вероятности и сходимостью почти наверное.

Пример G.5. Пусть ξ_n (n=1,2,...) - случайная величина, принимающая значение n с вероятностью 1/n и значение 0 с вероятностью (1-1/n). Тогда $\xi_n \stackrel{\mathbb{P}}{\to} 0$, поскольку для любого $\varepsilon > 0$ и достаточно большого n

$$\mathbb{P}\left\{|\xi_n| \ge \varepsilon\right\} = \mathbb{P}\left\{|\xi_n| = n\right\} = 1/n \to 0.$$

Вместе с этим, $\mathbb{E}\xi_n=1$ не сходится к 0. Более того, если бы ξ_n принимала значение n^2 вместо n, то мат. ожидание стремилось бы к бесконечности при $n\to\infty$.

Про сходимость в смысле п.н. можно говорить, только если известно вероятностное пространство, и известно, на каких элементах пространства элементарных событий ξ_n принимает ненулевые значения. Допустим, что $\Omega=[0,1]$, вероятностная мера является Лебеговой мерой на [0,1], а $\xi_n(\omega)=\mathbb{I}\left\{\omega\in[1-1/n,1]\right\}$ (отметим, что при таком определении ξ_n , эти случайные величины являются зависимыми). Тогда для любого $\omega\in[0,1]$, $\xi_n(\omega)=0$ для всех достаточно больших n, и поэтому предел в смысле почти наверное также равен 0.

Пример G.6. На пространстве состояний $\Omega = [0,1]$ с Лебеговой мерой, определим последовательность случайных величин, принимающих значения 0 и 1, следующим образом. Первые 2 величины равны

$$\xi_{11}(w) = \begin{cases} 1, & \omega \in [0, 1/2], \\ 0, & \omega \in (1/2, 1], \end{cases} \qquad \xi_{12}(w) = \begin{cases} 0, & \omega \in [0, 1/2], \\ 1, & \omega \in (1/2, 1]. \end{cases}$$

Случайные величины $\xi_{21}, \xi_{22}, \xi_{23}, \xi_{24}$ получены делением отрезка [0,1] на 4 части - каждая из величин принимает значение 1 на одном отрезке длины

1/4 и значение 0 на всех остальных. Продолжая аналогичным образом, приходим к последовательности случайных величин ξ_{kn} , таких что величина из k- ой группы принимает значение 1 с вероятностью 2^{-k} и 0 с вероятностью $(1-2^{-k})$. Последовательность величин $\xi_{11}, \xi_{12}, \xi_{21}, \dots$ стремится к 0 по вероятности:

$$\mathbb{P}\left\{|\xi_{kn}| > \varepsilon\right\} = \mathbb{P}\left\{|\xi_{kn}| = 1\right\} = 2^{-k} \to 0,$$

для любого $\varepsilon \in (0,1]$ (для $\varepsilon > 1$) вероятность в левой части тождественно равна 0. С другой стороны, $\xi_{kn}(\omega)$ не имеет предела в смысле почти наверное, посколько для любого ω эта последовательность содержит бесконечно много единиц и бесконечно много нулей.

Приложение Н: Свойства симметричных матриц

Утверждение Н.1. (i) Все собственные значения симметричной вещественны.

(ii) Все жордановы клетки симметричной вещественной матрицы имеют размер 1.

Доказательство. Пусть $\Sigma-$ симметричная вещественная матрица.

(i). Пусть λ — некоторое собственное значение, v— соответствующий собственный вектор, $\Sigma v = \lambda v$. Умножим обе части равенства справа на вектор \bar{v}^{\top} (транспонированный и комплексно-сопряженный к v):

$$\bar{v}^{\top} \Sigma v = \lambda \bar{v}^{\top} v. \tag{56}$$

Теперь транспонируем обе части этого равенства:

$$v^{\top} \Sigma \bar{v} = \lambda v^{\top} \bar{v}$$
.

и берём комплексное сопряжение:

$$\bar{v}^{\top} \Sigma v = \bar{\lambda} \bar{v}^{\top} v. \tag{57}$$

Сравнивая (56) и (57), получаем, что $\lambda = \bar{\lambda}$, то есть $\lambda \in \mathbb{R}$.

(ii). Если жорданова клетка имеет размер более 1, то существуют обобщенные собственные значения порядка 2 или больше. То есть, найдется собственное значение λ и вектор v такие, что

$$(\Sigma - \lambda I) v \neq 0, \qquad (\Sigma - \lambda I)^2 v = 0.$$

Но из последнего равенства следует, что

$$\bar{\boldsymbol{v}}^T \left(\boldsymbol{\Sigma} - \lambda \boldsymbol{I} \right)^2 \boldsymbol{v} = \| \left(\boldsymbol{\Sigma} - \lambda \boldsymbol{I} \right) \boldsymbol{v} \|^2 = 0,$$

а это невозможно, если $(\Sigma - \lambda I) v \neq 0$. Получаем противоречие.

Из этого утверждения следует, что матрица Σ диагонализируема, то есть существует диагональная матрица D и ортогональная матрица U (т.е. такая матрица U, что $U^{-1} = U^{\top}$), такие что

$$\Sigma = U^{\top}DU$$
.

причём диагональ матрицы D состоит из собственных значений $\lambda_1,...,\lambda_n$. Если дополнительно потребовать, что матрица Σ - неотрицательно определенная, то все элементы на диагонали матрицы D будут неотрицательными, поскольку из равенства $\Sigma v = \lambda v$ следует, что

$$\lambda = \frac{v^{\top} \Sigma v}{v^{\top} v} \ge 0.$$

Поэтому для любой симметричной неотрицательно определенной матрицы Σ существует матрицу $\Sigma^{1/2}$, обладающая свойством $\Sigma^{1/2}\Sigma^{1/2}=\Sigma$:

$$\Sigma^{1/2} := U^{\top} \operatorname{diag}(\sqrt{\lambda_1}, .., \sqrt{\lambda_n}) U.$$

Список литературы

- [1] APPLEBAUM, D. (2009). Lévy processes and stochastic calculus. Cambridge University Press.
- [2] Brockwell, P. and Davis, R. (2013). Time series: theory and methods. Springer Science & Business Media.
- [3] Cont, R. and Tankov, P. (2004). Financial modelling with jump process. Chapman & Hall, CRC Press UK.
- [4] Cox, D. R. (1962). Renewal theory. Methuen Co. Ltd.
- [5] Gallager, R. G. (2013). Stochastic processes: theory for applications. Cambridge University Press.
- [6] Kuo, H.-H. (2006). Introduction to stochastic integration. Springer.
- [7] MÖRTERS, P., AND PERES, Y. (2010). Brownian motion **30**. Cambridge University Press.
- [8] Parzen, E. (1999). Stochastic processes. SIAM, Philadelphia.
- [9] Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press.
- [10] Shiryaev, A. N. (1996). Probability. Springer-Verlag, New York.
- [11] Курс лекций по случайным процессам (2005). Лектор-Б.М.Гуревич. http://dmvn.mexmat.net/ptms.php.
- [12] Волков, И. К. , Зуев, С. М. , Цветкова, Г. М. (1999). Случайные процессы. Издательство МГТУ им. Баумана.
- [13] ПРОХОРОВ, А. В., УШАКОВ, В. Г., УШАКОВ, Н. Г. (1986). Задачи по теории вероятностей: основные понятия, предельные теоремы, случайные процессы. Москва: Наука.
- [14] ФЕЛЛЕР, В. (1984). Введение в теорию вероятностей и её приложения, том 2. Москва: Мир.