

Этикетка

КСНЛ.431279.002 ЭТ

Микросхема 1564ЛН9Т1ЭП

Микросхема интегральная 1564ЛН9Т1ЭП

Функциональное назначение:

Шесть инверсных буферов с 3-мя состояниями и ТТЛ - входом

Таблица назначения выводов

№	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	1EZ	Вход управления	9	1Q3	Выход
2	1D0	Вход	10	1D3	Вход
3	1Q0	Выход	11	2Q0	Выход
4	1D1	Вход	12	2D0	Вход
5	1Q1	Выход	13	2Q1	Выход
6	1D2	Вход	14	2D1	Вход
7	1Q2	Выход	15	2EZ	Вход управления
8	0V	Общий	16	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

	Буквенное Норма			
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	Примечание
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при:				
U_{CC} =4,5 B, U_{IL} =0,8 B, U_{IH} =2,0 B I_{O} = 20 mkA	U _{OL max}	-	0,10	
U_{CC} =5,5 B, U_{IL} =0,8 B, U_{IH} =2,0 B, I_{O} = 20 MKA		ı	0,10	
при:				
U_{CC} =4,5 B, U_{IL} =0,8 B, U_{IH} =2,0 B, I_{O} =6,0 mA		-	0,26	
U_{CC} =5,5 B, U_{IL} =0,8 B, U_{IH} =2,0 B, I_{O} = 7,8 mA		-	0,26	
2. Минимальное выходное напряжение высокого уровня, В, при:				
U_{CC} =4,5 B, U_{IL} =0,8 B, I_{O} = 20 мкА	U_{OHmin}	4,4	-	
U_{CC} =5,5 B, U_{IL} =0,8 B, I_0 = 20 мкА		5,4	-	
при:				
$U_{CC}=4.5 \text{ B}, U_{IL}=0.8 \text{ B}, I_{O}=6.0 \text{ mA}$		3,98	-	
$U_{CC}=5,5 \text{ B}, U_{IL}=0,8 \text{ B}, I_{O}=7,8 \text{ MA}$		4,98	-	
3. Входной ток низкого уровня, мкА, при:				
$U_{CC} = 5.5 \text{ B}, U_{IL} = 0 \text{ B}$	I_{IL}	-	/-0,1/	
4. Входной ток высокого уровня, мкА, при:				
$U_{CC} = 5.5 \text{ B}, U_{IH} = U_{CC}$	$ m I_{IH}$	-	0,1	
5. Выходной ток в состоянии «Выключено», мкА, при:				$U_0=0$,
$U_{CC} = 5.5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{OZ}	-	0,5	$U_0=U_{CC}$
6. Ток потребления, мкА, при				
$U_{CC} = 5,5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}, I_{O} = 0$	I_{CC}	-	4,0	
				Для одного
$U_{CC} = 5.5 \text{ B}, U_{IL} = 0.4 \text{ B}, U_{IH} = 2.4 \text{ B}, I_0 = 0$		-	500	входа
7. Динамический ток потребления, мА, при:				
$U_{CC} = 5.5 \text{ B}, f = 10 \text{ M}\Gamma_{II}, C_L = 0, U_{IL} = 0, U_{IH} = U_{CC}$	I _{occ}	-	7,0	

8. Время задержки распространения сигнала, нс, при: $U_{\rm CC} = 4,5 \; B, \; C_{\rm L} = 50 \; п\Phi$ $U_{\rm IL} = 0 \; B, \; U_{\rm IH} = 3,0 \; B$	t _{PHL} t _{PLH}	-	30	
при: $U_{CC} = 4,5 \text{ B, } C_L = 150 \pi \Phi$ $U_{IL} = 0 \text{ B, } U_{IH} = 3,0 \text{ B}$		-	34	
8. Время задержки распространения сигнала, нс, при: $U_{CC}=4,5 \ B, \ C_L=50 \ п\Phi, \ R=1 к O M$ $U_{IL}=0 \ B, \ U_{IH}=3,0 \ B$	t _{PHZ} t _{PLZ}	-	44	
8. Время задержки распространения сигнала, нс, при: $U_{CC}=4,5 \ B, \ C_L=50 \ п\Phi, \ R=1 \kappa O M \\ U_{IL}=0 \ B, \ U_{IH}=3,0 \ B$	t _{PZH} t _{PZL}		48 53	
9. Время перехода при включении и выключении, нс, при: U_{CC} = 4,5 B, U_{IL} = 0 B, U_{IH} = 3,0 B	t _{THL} t _{TLH}	-	12	
10. Входная емкость, $\pi\Phi$, π при: $U_{CC} = 0$ В	C _I	-	10	

 $t_{PHL},\,t_{PLH}$ – время задержки распространения сигнала при включении и выключении, нс;

 $t_{\rm PZH}$, $t_{\rm PZL}$ – время задержки распространения сигнала при переходе из третьего состояния в состояние высокого и низкого уровня;

t_{PHZ}, t_{PLZ} – время задержки распространения сигнала при переходе из состояния высокого и низкого уровня в третье состояние.

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г.

серебро г.

в том числе:

золото г/мм на 16 выводах длиной мм.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при $\gamma = 99\%$ при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте $3И\Pi$, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-25ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛН9Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-25ТУ и признаны годными для эксплуатации.

Приняты по(извещение, а		_
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Пере	епроверка произведена	
Приняты по	ОТ	(дата)
(извещение Место для штампа ОТК	е, акт и др.) (дата)	Место лия штампа П

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание. Остальные указания по эксплуатации – в соответствии с AEЯР.431200.424 ТУ, AEЯР.431200.424-25.