COMP9020 Week 7 Functions

1 Introduction to Functions

A function is a relation from a domain A to a codomain B such that:

- Each input in A is mapped to exactly one output in B.
- Every element in A is assigned a value in B (totality).

Notation: $f: A \to B$, f(a) = b for $a \in A$, $b \in B$ Range: $\{f(a): a \in A\} \subseteq B$

2 Examples

- $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ Range: $[0, \infty)$ (not surjective over \mathbb{R})
- $f: \{1, 2, 3, 4\} \to \{a, b, c, d\}$ with mappings: - f(1) = a, f(2) = c, f(3) = b, f(4) = d

Injective and Surjective \Rightarrow Bijective

- $f: \mathbb{N} \to \mathbb{N}$, f(n) = 2nInjective but not surjective (odd numbers not in range)
- $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x 2Surjective and Injective \Rightarrow Bijective
- $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$ Not injective (e.g., f(-2) = f(2)) and not surjective (odd integers not squares)

3 Function Properties

- Injective (one-to-one): $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- Surjective (onto): $\forall b \in B, \exists a \in A \text{ such that } f(a) = b$
- Bijective: both injective and surjective

4 Function Operations

- Composition: $(g \circ f)(a) = g(f(a))$
- Iteration: $f^n(x) = f(f^{n-1}(x))$
- Identity function: $Id_S(x) = x$
- \bullet Inverse function: only defined if f is bijective

5 Reversibility

- Function equality: $f = g \iff f(x) = g(x)$ for all x in domain
- Reverse is a function \iff f is injective

6 Summary Table

Property	Description
Functional	$\forall a \in A, \exists \leq 1 \ b \in B$
Total	$\forall a \in A, \exists \geq 1 \ b \in B$
Injective	$\forall b \in B, \exists \leq 1 \ a \in A$
Surjective	$\forall b \in B, \exists \geq 1 \ a \in A$
Bijective	Injective and Surjective

7 Exam-Style Questions with Solutions

Q1. Determine if $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2 + 3$ is surjective.

Solution:

To be surjective, every $y \in \mathbb{Z}$ must have some $x \in \mathbb{Z}$ such that f(x) = y. But $f(x) \geq 3$ for all x, so integers like 2, 0, -5 are not in the range.

Conclusion: Not surjective.

Q2. Is the function f(x) = 2x from $\mathbb{Z} \to \mathbb{Z}$ bijective?

Solution:

- Injective: $f(x_1) = f(x_2) \Rightarrow 2x_1 = 2x_2 \Rightarrow x_1 = x_2$
- Surjective: Not all integers are even not surjective

Conclusion: Injective but not bijective.

Q3. Let $f : \mathbb{R} \to \mathbb{R}$ with f(x) = x + 1, and $g : \mathbb{R} \to \mathbb{R}$ with g(x) = 2x. Find $g \circ f$ and $f \circ g$.

Solution:

$$(g \circ f)(x) = g(f(x)) = g(x+1) = 2(x+1) = 2x + 2$$
$$(f \circ g)(x) = f(g(x)) = f(2x) = 2x + 1$$

Conclusion: $g \circ f \neq f \circ g$

Q4. Prove or disprove: If $f \circ g$ is injective, then g is injective.

Solution:

Assume $f \circ g$ is injective, but g is not. Then $\exists x_1 \neq x_2$ such that $g(x_1) = g(x_2)$ $\Rightarrow f(g(x_1)) = f(g(x_2)) \Rightarrow f \circ g(x_1) = f \circ g(x_2)$ contradiction.

Conclusion: If $f \circ g$ is injective, g must be injective.