REMARKS

Claims 1-10, 121 and 123-130 are pending. The amendments to claims 1, 3, 6 and 125 are editorial and would not narrow the scope of the amended claim recitations. No new matter has been added.

Rejections Under 35 U.S.C. §103

I. Applicants respectfully traverse the obviousness rejections of claims 6-9 over Kumar (WO 00/71124) in view of one of the following secondary references:

Hackh's Chemical Dictionary (pp. 693-694),

Lieberman (*Pharmaceutical Dosage Forms*, Volume 2, Second Edition, pp. 110-111, edited by Lieberman et al., 1990, Marcel Dekker Inc.),

Sekiguchi (CA 98:221701, abstract of Yakugaku Zasshi (1983) 103(2), 213-224), or Leucuta (CA 98:113586, abstract of Clujul Medical (1982), 55(1), 60-66).

Kumar differs from claims 6-9 at least in not triturating a crude product comprising fexonfenadine hydrochloride in an ether or saturated hydrocarbon to obtain amorphous fexofenadine hydrochloride.

The Office Action relies on Examples 1-5 of Kumar. However, Examples 4 and 5 of Kumar started with fexofenadine free base instead of fexofenadine hydrochloride as recited in claims 6-9. The Office Action has not explained how and why the difference in the starting material would have been obvious.

Examples 1-3 of Kumar discloses a process for preparing amorphous fexofenadine hydrochloride by dissolving fexofenadine hydrochloride in methanol, ethylacetate/methanol or acetone/methanol to obtain a clear solution; spray drying the solution with a spray dryer (Buchi Model 190) to isolate the amorphous fexofenadine hydrochloride. Examples 1-3 of Kumar differ from claims 6-9 at least in not triturating, in an ether or saturated hydrocarbon, the crude product obtained after solvent removal to obtain the amorphous fexofenadine hydrochloride. As explained below, Kumar in view of Hackh's, Lieberman et al., Sekiguchi et al. or Leucuta et al. fails to render obvious claims 6-9 because Hackh's, Lieberman et al., Sekiguchi et al. or Leucuta et al. does not cure the deficiency of Kumar.

Hackh's defines "triturate" as "to grind or rub to a powder (usually with a liquid) in a mortar". The Office Action relies on Lieberman for teaching "that size reduction in pharmaceutics is desirable since the smaller particle size will have formulation advantages" (pp. 110-111). But Lieberman cautions in page 110 that: "It must be noted, however, that active ingredients reduced in particle size to gain the advantage of increased surface area, may not retain all of this advantage after being incorporated into a wet or dry granulation mix, and compressed into tablets." Lieberman also discloses that increasing the surface area

may enhance an active ingredient's dissolution rate and hence, its bioavailability, which is particularly important with slightly soluble compounds, presumably in aqueous bodily media (p. 110). However, fexofenadine hydrochloride is not a slightly soluble compound in aqueous bodily media. Sekiguchi for disclosing advantages of doing wet milling for size reduction of pharmaceutics. Leucuta discloses that the in vitro dissolution rate of diazepam was increased when particles were highly dispersed or when the particle size was reduced by triturations in a motar or ball mill.

Nevertheless, applicants contend that Hackh's, Lieberman, Sekiguich or Leucuta does not provide any motivation to modify the process of Kumar by triturating, in an ether or saturated hydrocarbon, the product of the spray drying step of Kumar to obtain amorphous fexofenadine hydrochloride. This is because a person of ordinary skill would have understood that the spray drying process of Kumar produces very fine powder of amorphous fexofenadine hydrochloride in very small size. Kumar used Buchi Model 190 as the spray drier. Eljamal (US 6,136,346 B1, issued on October 24, 2000, is prior art) discloses that using Buchi Model 190 as the spray drier to spray dry pharmaceuticals produced powder having a mass median diameter of 2.0 to 2.6 µm, wherein at least 60% of the particles in the powder had a diameter of 5 µm or less (see Tables 2 and 3 in columns 21 and 22). Lieberman discloses that a fine powder of phenacetin had better bioavailability than medium or coarse powder of phenacetin, wherein the fine powder was a powder having a particle size less than 75 μm, the medium powder had a particle size ranging from 150 to 180 μm, and the coarse powder had a particle size greater than 250 µm (see Figure 2, page 111, Lieberman). Because the powder of amorphous fexofenadine hydrochloride produced by Kumar's process is expected to be a very fine powder (being an order of magnitude smaller than 75 µm) based on the experience of Eljamal with Buchi Model 190 dry sprayer, the person of ordinary skill in the art would have no motivation or desirable reason for modifying the process of Kumar by triturating the very fine powder of amorphous fexonfenadine hydrochloride produced by the spray drying process of Kumar. Thus, despite the disclosures of Hackh's, Lieberman, Sekiguich or Leucuta, it would not have been obvious to modify the spray drying process of Kumar to arrive at the processes of claims 6-9.

II. The Examiner maintained the rejections of claims 1-10 and 121-131 as obvious over Kumar in view of Okabe (Chemical Abstract, CA 114:54120, 1991) or Williams (US 6,862,890). Applicants respectfully traverse the rejections.

(A) Concerning claims 1-5:

Kumar differs from claims 1-5 at least in not performing the following steps:

- a) preparing a solution of fexofenadine hydrochloride in THF;
- b) removing a portion of THF from the solution;

- c) adding a C₅ to C₁₂ saturated hydrocarbon to the remaining THF to form an upper layer and a lower layer;
- d) separating the upper layer from the lower layer; and
- e) drying the lower layer to obtain the amorphous fexofenadine hydrochloride.

In the spray drying process of Kumar, fexofenadine hydrochloride is dissolved in a suitable solvent, wherein the term "suitable solvent" means lower alkanol or combination of lower alkanol, ester, ketone, chlorinated solvent and mixtures thereof (page 4, lines 15-16). All the working examples of Kumar used methanol or methanol in combination with another polar organic solvent. Kumar does not disclose using any ether, let alone THF, as the suitable solvent. The Office Actions rely on Williams for the disclosure that THF and methanol are equivalent as solvents. However, as explained below, applicants contend that Williams does not provide sufficient guidance to THF and methanol as equivalent solvents for dissolving fexofenadine hydrochloride.

Williams discloses a spray freezing process for preparing microparticles or nanoparticles of an effective ingredient, comprising dissolving the effective ingredient in a suitable solvent, spraying the solution under a cryogenic liquid to generate frozen particles containing the solvent and the effective ingredient, and drying the frozen particles to remove the solvent to obtain microparticles or nanoparticles of the effective ingredient. Williams' list of "effective ingredient" includes a huge number of substances:

"Non-limiting examples of effective ingredients are pharmaceuticals, peptides, nucleic acids, proteins, antibiotics, gene therapy agents, catalysts, adsorbents, pigments, coatings, personal care products, abrasives, particles for sensors, metals, alloys, ceramics, membrane materials, nutritional substances, anti-cancer agents, as well as, chemicals used in the agriculture industries such as fertilizers, pesticides and herbicides. It will be appreciated that this list is not exhaustive and is for demonstrative purposes only. It will be further appreciated that it is possible for one compound to be included in more than one class of effective ingredients, for example, peptides and pharmaceuticals.

Examples of pharmaceuticals include, but are not limited to, antibiotics, analgesics, anticonvulsants; antidiabetic agents, antifungal agents, antineoplastic agents, antiparkinsonian agents, antirheumatic agents, appetite suppressants, biological response modifiers, cardiovascular agents, central nervous system stimulants, contraceptive agents, diagnostic agents, dopamine receptor agonists, erectile dysfunction agents, fertility agents,

gastrointestinal agents, hormones, immunomodulators, antihypercalcemia agents, mast cell stabilizers, muscle relaxants, nutritional agents, ophthalmic agents, osteoporosis agents, psychotherapeutic agents, parasympathomimetic agents, parasympatholytic agents, respiratory agents, sedative hypnotic agents, skin and mucous membrane agents, smoking cessation agents, steroids, sympatholytic agents, urinary tract agents, uterine relaxants, vaginal agents, vasodilator, anti-hypertensive, hyperthyroids, anti-hyperthyroids, anti-asthmatics and vertigo agents."

In claim 3, Williams discloses that the pharmaceutical can be "proteins, peptides, albuterol sulfate, terbutaline sulfate, diphenhydramine hydrochloride, chlorpheniramine maleate, loratidine hydrochloride, fexofenadine hydrochloride, phenylbutazone, nifedipine, carbamazepine, naproxen, cyclosporin, betamethosone, danazol, dexamethasone, prednisone, hydrocortisone, 17 beta-estradiol, ketoconazole, mefenamic acid, beclomethasone, alprazolam, midazolam, miconazole, ibuprofen, ketoprofen, prednisolone, methylprednisone, phenytoin, testosterone, flunisolide, diflunisal, budesonide, fluticasone; insulin, glucagon-like peptide, C-Peptide, erythropoietin, calcitonin, human growth hormone, luteinizing hormone, prolactin, adrenocorticotropic hormone, leuprolide, interferon alpha-2b, interferon beta-1a, sargramostim, aldesleukin, interferon alpha-2a, interferon alpha-n3alpha, proteinase inhibitor; etidronate, nafarelin, chorionic gonadotropin, prostaglandin E2, epoprostenol, acarbose, metformin, or desmopressin, cyclodextrin, antibiotics; and the pharmacologically acceptable organic and inorganic salts or metal complex thereof." As seen above, the list of pharmaceuticals in claim 3 of Williams is rather broad (much more than 62 pharmaceuticals because "proteins", "peptides", "proteinase inhibitor" and "antibiotics" can be a large number of pharmaceutical entities).

The list of solvents that can be used in the process of Williams is extremely broad: "an aqueous such as water, one or more organic solvents, or a combination thereof. When used, the organic solvents can be water soluble or non-water soluble. Suitable organic solvents include but are not limited to ethanol., methanol, tetrahydrofuran, acetonitrile, acetone, tert-butyl alcohol, dimethyl sulfoxide, N,N-dimethyl formamide, diethyl ether, methylene chloride, ethyl acetate, isopropyl acetate, butyl acetate, propyl acetate, toluene, hexanes, heptane, pentane, and combinations thereof." The examples of suitable organic solvents include polar and non-polar organic solvents. The solvent list includes just about any solvents with divergent or, in some case, opposite properties (aqueous solvents and organic solvents can be the solvents; water soluble organic solvents, non-water soluble organic solvents, polar organic solvents and non-polar organic solvents can also be the

solvents). Thus, Williams discloses that any solvents can be used to dissolve the effective ingredient in its spraying method to obtain nanoparticles or microparticles of the effective ingredient. A person of ordinary skill in the art would understand why Williams is not selective in the solvents used because the list of effective ingredients is also extremely broad. So Williams uses an extremely broad list solvents for dissolving an extremely broad list of effective ingredients. With this universal list of solvents, coupled with the large number of effective ingredients disclosed by Williams, applicants submit that a person of ordinary skill in the art would not have selected THF as a solvent equivalent to methanol for fexofenadine hydrochloride based on the disclosures of Williams because Williams does not provide any guidance toward selecting THF or methanol from the universal list of solvents and selecting fexofenadine hydrochloride from the extremely long list of effective ingredients.

The other secondary reference, i.e., Okabe (CA 114:54120) relied upon by the Office Actions also does not provide any guidance of replacing methanol in the spray drying process of Kumar with THF. This is because Okabe merely discloses a process for manufacturing oxide ceramics comprising (1) adding aqueous ammonia to a solution containing at least nitrates and/or hydrides of mono- or divalent metals and divalent to hexavalent metals; (2) removing the solvent by using a spray dryer; (3) drying, presintering, and mixing with an oxide; and (4) sintering to form the oxide ceramic. Okabe is silent on fexofenadine hydrochloride and THF. Thus, in view of Okabe or Williams, applicants contend that it would not have been obvious to modify the spray drying process of Kumar by dissolving fexofenadine hydrochloride in THF instead of "lower alkanol or combination of lower alkanol, ester, ketone, chlorinated solvent and mixtures thereof."

Even if, for argument purposes, it is assumed that the person of ordinary skill in the art were to use THF as the solvent to dissolve fexofenadine hydrochloride in the spray drying process of Kumar, Okabe or Williams relied upon by the Office Actions would not have provided any motivation to the person of ordinary skill in the art to modify the spray drying process of Kumar by adding the following steps:

- b) removing a portion of THF from the solution;
- c) adding a C_5 to C_{12} saturated hydrocarbon to the remaining THF to form an upper layer and a lower layer; and
- d) separating the upper layer from the lower layer, because Okabe or Williams are silent on performing steps b), c) and/or d).

After dissolving the fexofenadine hydrochloride in THF, the person of ordinary skill would directly put the fexofenadine hydrochloride THF solution in the Buchi Model 190 spray drier to generate the amorphous fexofenadine hydrochloride ultrafine powder. There would have been no valid reason to incur extra time and cost by removing a portion of THF from the solution; adding the saturated hydrocarbon to the remaining solution to form an

upper layer and a lower layer; and separating the upper layer from the lower layer. The Office Action states that 'adding another immiscible solvent to form two layer forms to separate the lower layer is clearly known in the chemical art as "extraction" process. Please note that whether the fexofenadine hydrochloride is dissolved in one solvent or extracted into another solvent, such steps are the preparation step of solution making conventional in the chemical art.' Applicants respectfully disagree. THF is denser than any of the C_5 to C_{12} saturated hydrocarbon (e.g., the specific gravity of n-pentane is 0.63; n-octane is 0.70, n-decane is 0.73 and n-dodecane is 0.75, while the specific gravity of THF is 0.89), so the THF is in the lower layer. The addition of the C_5 to C_{12} saturated hydrocarbon is not an extraction process because the fexofenadine hydrochloride is not dissolved in the C_5 to C_{12} saturated hydrocarbon. The fexofenadine hydrochloride remains in the THF lower layer in the process of claims 1-5. There is no extraction of fexofenadine hydrochloride into the C_5 to C_{12} saturated hydrocarbon.

Withdrawal of the obviousness rejections of claims 1-5 is requested.

(B) Concerning claims 6-10, 121 and 123-130:

Claims 6-10, 121 and 123-130 differ from Kumar at least in that Kumar does not triturate the product of the spray drying in ether or saturated hydrocarbon to form the amorphous fexofenadine hydrochloride. Okabe or Williams does not provide any motivation to modify the spray drying process of Kumar by adding the triturating step. As explained above, the powder of amorphous fexofenadine hydrochloride prepared by the spray drying process of Kumar is already very fine and need no further particle size reduction by trituration. In addition, Okabe or Williams is silent on trituration.

Withdrawal of the obviousness rejections of claims 6-10, 121 and 123-130 over Kumar in view of Okabe or Williams is requested.

III. Applicants respectfully traverse the obviousness rejections of claims 1-10, 121 and 123-130 over one of these primary references:

Carr '129 (US 4,254,129),

Carr '957 (US 4,285,957),

WO 95/31437 (hereinafter "Henton") or

Woosley (US 5,375,693),

in view of the following secondary references:

Lieberman (*Pharmaceutical Dosage Forms*, Volume 2, Second Edition, pp. 110-111, edited by Lieberman et al., 1990, Marcel Dekker Inc.),

Suzuki (Chemical Abstract, CA 91:44479, abstract of Chemical & Pharmaceutical Bulletin (1979), 27(5), 1214-1222),

Corrigan (Chemical Abstract, CA 98:166814, abstract of Drug Development and Industrial Pharmacy (1983), 9 (1-2), 1-20),

Nuernberg (Chemical Abstract, CA 86:8603, abstract of Progress in Colloid & Polymer Science (1976), 59, 55-69),

Sato (Chemical Abstract, CA 110:179429, abstract of Yakuzaigaku (1988), 48(4), 296-304), supplemented with

US '127 (US 5,990,127)

for the reasons of record.

(A) Rejections Based on Carr '129 or Carr '957 as Primary Reference:

Because Carr '957 is a division of Carr '129, the following discussion will use Carr '129 as the representative. The previous Office Action dated December 16, 2005 alleges that Carr '129 discloses fexofenadine hydrochloride in column 13, Example 3. However, applicants note that Example 3 of Carr '129 prepared fexofenadine free base, not fexofenadine hydrochloride (see column 13, lines 36-37). In addition, Example 3 of Carr '129 prepared the crystals of fexofenadine free base by recrystallization of the free base from methanol-butanone (column 13, lines 34-35).

Carr '129 differs from claims 1-5 at least in not disclosing a process for preparing amorphous fexofenadine hydrochloride comprising the following steps:

- a) preparing a solution of fexofenadine hydrochloride in THF;
- b) removing a portion of THF from the solution;
- c) adding a C₅ to C₁₂ saturated hydrocarbon to the remaining THF to form an upper layer and a lower layer;
- d) separating the upper layer from the lower layer; and
- e) drying the lower layer to obtain the amorphous fexofenadine hydrochloride.

Lieberman discloses that size reduction of solid pharmaceuticals may offer certain advantages in tablet formula development such as (1) an increase in surface area may enhance an active ingredient's dissolution rate, but this advantage may not be retained after being incorporated into a granulation mix and compressed into tablets, and (2) improved tablet content uniformity due to more particles of the active ingredient available (see page 110). Suzuki discloses that the freeze drying of griseofulvin in a benzene system resulted in a solvate powder having an average size in the submicron level, and upon the addition of surfactants to the freeze drying process, micronized particles were obtained with improved dissolution rate of griseofulvin. Corrigan discloses that spray drying phenobarbital or hydroflumethiazide with 10% Plasdone C-15 (PVP) resulted in amorphous phenobarbital or hydroflumethiazide, respectively, having increased solubility than crystalline phenobarbital or hydroflumethiazide. Nuernberg discloses that spray dried drugs were more soluble than

the crystalline forms of the drugs due to production of amorphous forms. Sato discloses that freeze drying a solution of 9,3"-diacetylmidecamycin in dioxane produced a pure amorphous solid of 9,3"-diacetylmidecamycin, while grinding in a vibration mill up to 20 hours failed to produce a pure amorphous solid, and the solubility of the freeze dried amorphous 9,3"diacetylmidecamycin was almost the same as the spray dried amorphous 9,3"diacetylmidecamycin reported before. US '127 discloses a process of preparing fexofenadine free base by incubating a phosphorylated derivative of the fexofenadine free base dissolved in DMF or ethanol with certain strains of Cunninghamella fungus; treating an aliquot of the culture with 50% methanol to obtain a suspension; centrifugating the suspension at 10,000 g to obtain a clear supernatant; and analyzing the clear supernatant with HPLC to obtain the fexofenadine free base (see Examples 4 and 5 in columns 5-6). Thus, Lieberman, Suzuki, Corrigan, Nuernberg, Sato and US '127 do not disclose steps a) to e) of claim 1. In fact, Lieberman, Suzuki, Corrigan, Nuernberg, Sato and US '127 do not even disclose the preparation of amorphous fexofenadine hydrochloride. As a result, Lieberman, Suzuki, Corrigan, Nuernberg, Sato and US '127 fail to cure the deficiencies of Carr '129 concerning claims 1-5. Claims 1-5 would not have been obvious over Carr '129 or Carr '957 in view of Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127.

Carr '129 discloses the preparation of crystalline fexofenadine free base, not amorphous fexofenadine hydrochloride (Example 3 in column 13). Carr '129 differs from claims 6-10, 121 and 123-130 at least in not teaching

- a) preparing a solution of fexofenadine hydrochloride in an organic solvent, such as methanol, ethanol, isopropanol and/or acetone; and
- b) removing the solvent from the solution to obtain a crude product; and
- c) triturating the crude product in an ether or saturated hydrocarbon to obtain the amorphous fexofenadine hydrochloride.

Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 do not disclose any process to prepare amorphous fexofenadine hydrochloride. Thus, Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 fail to remedy the deficencies of Car '129. Claims 6-10, 121 and 123-120 would not have been obvious over Carr '129 or Carr '957 in view of Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127.

(B) Rejections Based on WO 95/31437 (Henton) as Primary Reference

Henton discloses 4 crystalline forms of fexofenadine hydrochloride (anhydrous Forms I and III; hydrated Forms II and IV; see page 5 line 1 to page 8, line 15) prepared by recrystallization from suitable solvents. Henton is silent on amorphous fexofenadine hydrochloride. Henton differs from claims 1-5 at least in not disclosing:

a) preparing a solution of fexofenadine hydrochloride in THF;

- b) removing a portion of THF from the solution;
- c) adding a C₅ to C₁₂ saturated hydrocarbon to the remaining THF to form an upper layer and a lower layer;
- d) separating the upper layer from the lower layer; and
- e) drying the lower layer to obtain the amorphous fexofenadine hydrochloride.

Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 do not disclose any process to prepare amorphous fexofenadine hydrochloride. Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 are silent as to steps a)-e) of claim 1. Thus, Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 fail to remedy the deficencies of Henton. Claims 1-5 would not have been obvious over Henton in view of Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127.

Henton differs from claims 6-10, 121 and 123-130 at least in not disclosing triturating a crude produce comprising fexofenadine hydrochloride in an ether or saturated hydrocarbon to obtain amorphous fexofenadine hydrochloride. Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 do not disclose any process to prepare amorphous fexofenadine hydrochloride. Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 are silent as to step c) of claim 6 or 125. Thus, Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 fail to remedy the deficencies of Henton. Claims 6-10, 121 and 123-130 would not have been obvious over Henton in view of Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127.

(C) Rejections Based on Woosley (US 5,375,693) as Primary Reference

Woosley discloses terfenadine, i.e., methyl 4-[1-hydroxy-4-(4-hydroxydiphenylmethyl-1-piperidinyl)-butyl]- α , α -dimethylbenzeneacetate, useful as an antihistamine (column 3, lines 25-34). Woosley is totally silent on fexofenadine, let alone amorphous fexonfenadine hydrochloride. Woosley differs from claims 1-5 at least in not disclosing

- a) preparing a solution of fexofenadine hydrochloride in THF;
- b) removing a portion of THF from the solution;
- c) adding a C₅ to C₁₂ saturated hydrocarbon to the remaining THF to form an upper layer and a lower layer;
- d) separating the upper layer from the lower layer; and
- e) drying the lower layer to obtain the amorphous fexofenadine hydrochloride.

Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 do not disclose any process to prepare amorphous fexofenadine hydrochloride. Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 are silent as to steps a)-e) of claim 1. Thus, Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 fail to remedy the deficencies of Woosley. Claims 1-5 would not have been obvious over Woosley in view of Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127.

Woosley differs from claims 6-10, 121 and 123-130 at least in not disclosing:

- a) preparing a solution of fexofenadine hydrochloride in an organic solvent, such as methanol, ethanol, isopropanol and/or acetone; and
- b) removing the solvent from the solution to obtain a crude product; and
- c) triturating the crude product in an ether or saturated hydrocarbon to obtain the amorphous fexofenadine hydrochloride.

Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 do not disclose any process to prepare amorphous fexofenadine hydrochloride. Thus, Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127 fail to remedy the deficencies of Woosley. Claims 6-10, 121 and 123-120 would not have been obvious over Woosley in view of Lieberman, Suzuki, Corrigan, Nuernberg, and Sato supplemented with US '127.

In view of the reasons above, withdrawal of all the obviousness rejections is requested.

Rejections under 35 U.S.C. §102(e) or (g)

Applicants respectfully traverse the provisional anticipatory rejections of claims 1-10, 121 and 123-130 under 35 U.S.C. 102(e) or (g) over US 2005/0165056 (hereinafter referred to as "Kirsch").

Claims 1-10, 121 and 123-130 are not anticipated by Kirsch under 35 U.S.C. 102(e) because Kirsch is not prior art under 35 U.S.C. 102(e). Since Kirsch is a U.S. national phase application of a PCT application not published in English, the effective prior art date of Kirsch under 35 U.S.C. 102(e) is March 24, 2005, i.e., its date satisfying all the requirements of 35 U.S.C. 371. The present application, Serial No. 10/661,259 is a division of U.S. Application Serial No. 10/118,807 filed on April 8, 2002. Thus, the filing date of the parent application predates the effective prior art date of Kirsch. As a result, the provisional anticipatory rejection of claims 1-10, 121 and 123-130 under 35 U.S.C. 102(e) over Kirsch should be withdrawn.

With regard to the provisional anticipation rejection under 35 U.S.C. 102(g), applicants do not acquiescence to whether an interference would establish that Kirsch invented the claimed processes before applicants without abandonment, suppression or

concealment. However, the provisional anticipatory rejection of claims 1-10, 121 and 123-130 under 35 U.S.C. 102(g) over Kirsch should be withdrawn because Kirsch fails to claim every limitations of claims 1-10, 121 and 123-130. Kirsch discloses a process for preparing amorphous, non-hydrated fexofenadine hydrochloride by:

suspending fexofenadine free base in a lower alkane, di(lower alkyl) ether or a lower alkyl ester of a lower alkanecarboxylic acid;

adding a solution of hydrogen chloride in a lower alkanol, di(lower alkyl) ether or a lower alkyl ester of a lower alkanecarboxylic acid to form a mixture;

heating the mixture;

cooling the heated mixture; and

isolating the amorphous, non-hydrated fexofenadine hydrochloride from the cooled mixture (see claims 15-19).

Kirsch differs from claims 1-5 at least in not claiming a process with the following steps:

- a) preparing a solution of fexofenadine hydrochloride in THF;
- b) removing a portion of THF from the solution;
- c) adding a C₅ to C₁₂ saturated hydrocarbon to the remaining THF to form an upper layer and a lower layer;
- d) separating the upper layer from the lower layer; and
- e) drying the lower layer to obtain the amorphous fexofenadine hydrochloride.

Thus, Kirsch fails to provisionally anticipate claims 1-5.

Kirsch also differs from claims 6-10, 121 and 123-130 at lest in not claiming process with the following steps:

- b) removing the solvent such as methanol, ethanol, isopropanol and/or acetone from the solution of fexofenadine hydrochloride in the solvent to obtain a crude product; and
- c) triturating the crude product in an ether or saturated hydrocarbon to obtain the amorphous fexofenadine hydrochloride.

Thus, Kirsch also fails to provisionally anticipate claims 6-10, 121 and 123-130.

Due to at least the above reasons, withdrawal of the provisional anticipatory rejections of claims 1-10, 121 and 123-130 over Kirsch is requested.

Conclusion

Applicants submit that the application is in condition for allowance. If there remains any minor issues that can be resolved via a telephone interview, the Examiner is urged to call the undersigned to expedite the allowance of the application.

Respectfully submitted,

KENYON & KENYON LLP

Dated: March 7, 2007

By: <u>/King L. Wong/</u>

King L. Wong

Reg. No. 37,500

One Broadway
New York, New York 10004
(212) 425-7200 (telephone)
(212) 425-5288 (facsimile)

CUSTOMER NUMBER 26646