Design Engineers Handbook

Bulletin 0224-B1

theoretical push and pull forces for cylinders

CUSTOMARY U.S. UNITS

Cyl. Bore or Piston Rod. Dia.	Cyl. Bore Size	Area (sq. in.)		CYL	INDER AT			KE FOR			DS		Displacement per inch of Stroke
(in.)	(φ mm)	(34. 111./	50	80	100	500	750	1000	1500	2000	2500	3000	(gallons)
5/8	15.9	.307	15	25	31	154	230	307	461	614	768	921	
1	25.4	.785	39	65	79	392	588	785	1,177	1,570	1,962	2,355	1
1-3/8	34.9	1.490	75	119	149	745	1,118	1,490	2,235	2,980	3,725	4,470	1
1-1/2	38.1	1.767	88	142	177	885	1,325	1,770	2,651	3,540	4,425	5,310	I I
1-3/4	44.5	2.410	121	193	241	1,205	1,808	2,410	3,615	4,820	6,025	7,230	
2	50.8	3.140	157	251	314	1,570	2,357	3,140	4,713	6,280	7,850	9,420	
2-1/2	63.5	4.910	245	245 393 491 2,455 3,682 4,910 7,364 9,820 12,275 14,354 354 566 707 3,535 3,502 7,070 10,604 14,140 17,675 21,275					14,730	.0213			
3	76.2	7.070	354	64 566 707 3,535 3,502 7,070 10,604 14,140 17,675 21,2 15 664 830 4,150 6,225 8,300 12,450 16,600 20,750 24,9					21,210				
3-1/4	82.6	8.300	415	664	830	4,150	6,225	8,300	12,450	16,600	20,750	24,900	1 1
3-1/2	88.9	9.620	481	770	962	4,810	7,215	9,620	14,430	19,240	24,050	28,860	l .
4	101.6	12.570	628	1,006	1,257	6,285	9,428	12,570	18,856	25,140	31,425	37,710	.0544
5	127.0	19.640	982	1,571	1,964	9,820	14,730	19,640	29,460	39,280	49,100	58,920	ı .
5-1/2	139.7	23.760	1,188	1,901	2,376	11,880	17,820	23,760	35,640	47,520	59,400	71,280	1 1
6	152.4	28.270	1,414	2,262	2,827	14,135	21,203	28,270	42,406	56,540	70,675	84,810	
7	177.8	38.490	1,924	3,079	3,849	19,245	28,868	38,490	57,736	76,980	96,225	115,470	1 1
8	203.2	50.270	2,513	4,022	5,027	25,135	37,703	50,270			125,675	150,810	1
8-1/2	215.9	56.750	2,838	4,540	5,675	28,375	42,563	56,750		113,500		l '	1 1
10	254.0	78.540	3,927	6,283	7,854	39,270	58,905	78,540		157,080	1	ı	1
12	304.8	113.100	5,655	9,048	11,310	56,550	84,825	113,100	169,650		282,750		.4896

table b-1

NOTE: Deduct Force of Poston Rod Size from Bore Size for Pull Applications.

SI (METRIC) UNITS

Cyl. Bore or Piston Rod Dia.	Size in	Area in						ORCE I			*		Displacement for 1 MM of Stroke
(in.)	MM	Sq. MM	4	6.3	10	16	25	40	63	100	160	200	(Cu. MM)
5/8	15.87	197.9	79	125	198	317	495	792	1247	1979	3167	3959	197.9
1	25.40	506.7	203	319	507	811	1267	2027	3192	5067	8107	10134	
1-3/8	34.93	958.0	383	604	958	1533	2395	3832	6035	9580	15328	19160	!
1-1/2	38.10	1140.1	456	718	1140	1824	2850	4560	7183	11401	18242	22802	l .
1-3/4	44.45	1551.8	621	978	1552	2483	3879	6207	9776	15518	24829	31036	
2	50.80	2026.9	811	1277	2027	3243	5067	8107	12769	20268	32429	40537	
2-1/2	63.50	3166.9	1267	1995	3167	5067	7917	12668	19952	31669	50671	63339	1
3	76.20	4560.4	1824	2873	4560	7297	11401	18242	28730	45604	72966	91208	
3-1/4	82.55	5352.1	2141	3372	5352	8563	13380	21408	33718	53521	85634	ì	
3-1/2	88.90	6207.2	2483	3911	6207	9931	15518	24829	39105	62072	99315		
4	101.60	8107.3	3243	5108	8107	12972	20268	32429	51076	81073	129717	1	1
5	127.00	12667.7	5067	7981	12668	20268	31669	50671	79807	126677	202683		
5-1/2	139.70	15327.9	6131	9657	15328	24525	38320	61312		153279	245247		<u> </u>
6	152.40	18241.5	7297	11492	18242	29186	45604	72966	i	182415	291864	l .	
7	177.80	24828.1	9931	15642	24829	39726	62072	99315		248287	397260	1	
8	203.20	32429.4	12972	20430	32429	51887	81073	129717		324294	518870	ļ	1
8-1/2	215.90	36609.7	14644	23064	36610	58576	91524	146439	1	366097	585755		l .
10	254.00	50670.9	20268	31923	50671	81073	126677	202683		506709		1013417	
12	304.80	72966.0	29186	45968	72966	116746	182415	291864	459686	729660	1167457	1459321	72966.0

table b-2

REF. 1 $\#_f$ = 4.448 NEWTONS (N)

1 BAR = 14.504 PSI

mounting styles

In addition to the standard mountings shown the following information covers other mountings and mounting ideas that may prove helpful in your applications. When needed, special heads, caps, flanges or intermediate mountings can

be provided. Sketches of your requirements, together with specifications relative to the application and forces involved should be submitted to the manufacturer.

Clevis Mountings — Cylinders should be pivoted at both ends, with the customer's pin in the piston rod knuckle parallel to the pivot pin supplied with the clevis.

Flange Mountings — Cylinders can be located by centering from the pilot diameter of the gland, or the alin-a-groove on the body. The flanges may be drilled for pins or dowels to prevent shifting after alignment has been obtained.

Lug and Side Tapped Mountings — Cylinders should be fixed at one end using fitted bolts, pins in the mounting lugs or shear keys so located as to resist the major load, whether push or pull.

Thrust Key Mountings — Thrust key mountings, of the integral key type eliminate the need of using fitted bolts or external keys on side mounted cylinders.

Tie Rod Mountings — Cylinders with tie rod mountings are recommended for applications where mounting space is limited.

Note: If the tie rod nuts are removed during installation, be certain to retorque to manufacturer's specifications.

In addition to the standard mountings shown the following information covers other mountings and mounting ideas that may prove helpful in your applications. When needed, special heads, caps, flanges or intermediate mountings can be provided. Sketches of your requirements, together with specifications relative to the application and forces involved should be submitted to the manufacturer.

Trunnion Mountings — Cylinders require lubricated pillow blocks with minimum bearing clearances. Pillow blocks should be carefully aligned and rigidly mounted so the trunnions will not be subjected to bending moments. The rod end connection should also be pivoted, with the customer's pin in the piston rod knuckle parallel to the trunnions. Trunnion pins are usually hard chrome plated.

Mounting Bolts — High tensile socket head screws are recommended for all mounting styles. Use 1/16" smaller than hole size.

illustration b-1

*NFPA Syles conform to ANSI Standard, 1393.15-1971

mounting accessories

A complete range of cylinder accessories are available from most manufacturers to give versatility to present or future cylinder applications. These include ① Eye Bracket, ② Rod Clevis, ③ Pivot Pins, ④ Clevis Bracket and ⑤ Knuckle.

PH Industrial Cylinder with Accessories illustration b-2

mounting classes

Standard mountings for power cylinders fall into two basic classes and three groups. The two classes can be summarized as follows:

Class 1 — Straight Line Force Transfer (Group 1 and 3).

Class 2 — Pivot Force Transfer (Group 2). Pivot mountings permit a cylinder to change its alignment in one plane.

Because a cylinder's mounting directly affects the maximum pressure at which the cylinder can be used, table b-3 (page b-4) should be helpful in the selection of the proper mounting for your application. Stroke length, piston rod connection to load, extra piston rod length over standard, etc., should be considered for thrust loads. Alloy steel mounting bolts are recommended for all mounting styles, and thrust keys are recommended for Group 3.

CYLINDER MOUNTING CLASSES FOR CYLINDERS THAT ARE RECOMMENDED TO 3000 PSI WORKING AND 5000 PSI NON SHOCK SERVICE

	CLASS 1 - GROUP 1	CLASS 2 - GROUP 2	CLASS 1 — GROUP 3
	FIXED MOUNTS which absorb force on cylinder centerline.	PIVOT MOUNTS which absorb force on cylinder centerline.	FIXED MOUNTS which do not absorb force on the centerline.
HEAVY-DUTY SERVICE For Thrust Loads — For Tension Loads —	Mtg. Styles HB, TC, E Mtg. Styles JB, TB, E	Mtg. Styles DD, D, DB, BB Mtg. Styles BB, DD, D, DB	Mtg. Styles C, CP Mtg. Styles C, CP
MEDIUM-DUTY SERVICE For Thrust Loads — For Tension Loads —	Mtg. Styles H, JB Mtg. Styles J, HB	<u>-</u> -	Mtg. Styles G, GP, F, FP Mtg. Styles G, GP, F, FP
LIGHT-DUTY SERVICE For Thrust Loads — For Tension Loads —	Mtg. Style J Mtg. Style H	<u>-</u>	Mtg. Styles CBP, CB * Mtg. Styles CBP, CB *

Mounting style CB recommended for maximum pressure of 500 p.s.i. in short stroke applications (to 5"). Longer strokes permit higher
pressures. The use of a thrust key is recommended with this mounting. For more detailed information see manufacturer's product catalog.
 table b-3

cylinder stroke considerations

Long Strokes — When considering the use of long stroke cylinders, it is necessary that the rod diameter be of such dimension so as to provide the necessary column strength. For tension (pully loads, a correct rod size is easily.

selected by specifying cylinders with standard rod diameters, and using them at rated or lower pressures.

For compression (push) loads, the column

cylinder stroke considerations continued

strength must be carefully considered. This involves the stroke length, the length of the piston rod extension, the support received from the rod end connection and gland and piston bearings, the style of mounting and the mounting attitude. It is also necessary to consider the bearing loads on pistons and glands, and to keep bearing pressures within proper limits by increasing the distance between piston and gland bearings. This is economically accomplished by various means. Commonly, separation of the bearings is effected with a stop tube on the piston rod much like a large diameter spacer sleeve. Other designs are provided according to the application requirements. The Stroke Selection Graph b-1, page b-6, printed in this handbook will guide you where requirements call for unusually long strokes, used in push applications.

When specifying cylinders with long stroke and stop tube, be sure to call out the net

stroke and the length of the stop tube. Machine design can be continued without delay by laying in a cylinder equivalent in length to the **Net Stroke Plus Stop Tube Length**, which is referred to as **Gross Stroke**.

piston rod compared to stroke How to Use the Table

The selection of a piston rod for thrust (push) conditions requires the following steps:

- 1. Determine the types of cylinder mounting style and rod end connection to be used. Then consult the **table 4** [page b-5] and find the "stroke factor" that corresponds to the conditions used.
- 2. Using this stroke factor, determine the "basic length" from the equation:

 $\frac{\text{Basic}}{\text{Length}} = \frac{\text{Actual}}{\text{Stroke}} \times \frac{\text{Stroke}}{\text{Factor}}$

piston rod — stroke selection table

RECOMMENDED MOUNTING STYLES FOR MAXIMUM STROKE AND THRUST LOADS	ROD END CONNECTION		CASE	STROKE FACTOR
CLASS 1 — GROUPS 1 OR 3 Long stroke cylinders for thrust loads should be mounted using a heavy-duty mounting style at one end, firmly fixed	FIXED AND RIGIDLY GUIDED.	1		.50
and aligned to take the principle force. Additional mount- ing should be specified at the opposite end, which should be used for alignment and support. An intermediate sup-	PIVOTED AND RIGIDLY GUIDED	11		.70
port may also be desirable for long stroke cylinders mount- ed horizontally. Machine mounting pads can be adjustable for support mountings to achieve proper alignment.	SUPPORTED BUT NOT RIGIDLY GUIDED	111		2.00
CLASS 2 — GROUP 2 Style — Trunnion on Head	PIVOTED AND RIGIDLY GUIDED	IV		1.00
Style — Intermediate Trunnion	PIVOTED AND RIGIDLY GUIDED	V		1.50
Style — Trunnion on Cap or Style — Clevis on Cap	PIVOTED AND RIGIDLY GUIDED	١٧		2.00

table b-4

Graph b-1, page b-6, is prepared for standard rod extensions beyond the face of the gland retainers. For rod extensions greater than standard, add the increase to the actual stroke in arriving at the "basic length."

- 3. Find the load imposed for the thrust application by multiplying the full bore area of the cylinder by the system pressure.
- 4. Enter the graph along the values of "basic

length" and "thrust" as found above and note the point of intersection:

- a. The correct piston rod size is read from the diagonally curved line labeled "Rod Diameter" next **above** the point of intersection.
- b. The required length of stop tube is read from the right of the graph by following the shaded band in which the point of intersection lies.

cylinder stroke considerations continued

5. If required length of stop tube is in the region labeled "consult factory," submit the following information for an individual analysis:

a. Cylinder mounting style.

b. Rod end connection and method of guiding load.

c. Bore, required stroke, length of rod extension if greater than standard, and series of cylinder used.

d. Mounting position of cylinder.

Note: If at an angle or vertical, specify direction of piston rod.

e. Operating pressure of cylinder.

determining acceleration and deceleration force for hydraulic cylinders

The Uniform Acceleration Force Factor Graph and the accompanying formula can be used to rapidly determine the forces required to accelerate and decelerate a cylinder load. To determine these forces, the following factors must be known; total weight to be moved, maximum piston speed, distance available to start or stop the weight (load), direction of movement i.e. horizontal or vertical, and load friction. By use of the known factors and the "g" factor from graph 2, the force necessary to accelerate or decelerate a cylinder load may be found by solving the formula (as shown in graph on page b-7) applicable to given set of conditions.

Nomenclature

V = Velocity in feet per minute

S = Distance in inches

F = Force in pounds

W = Weight of load in pounds

g = Force factor

f = Friction of load on machine ways in pounds

To determine the force factor "g" from the graph, locate the intersection of the maximum piston velocity line and the line representing the available distance. Project downward to locate "g" on the horizontal axis. To calculate the "g" factor for distances and velocities exceeding those shown on the chart, this formula can be used:

$$g = \frac{V^2}{S} \times .0000517$$

Example: Horizontal motion of a free moving 6,000 pound load is required with a distance of 1/2" to a maximum speed of 120 feet per minute. Formula (1) F = Wg should be used.

F = 6,000 pounds X1.50 (from table)= 9,000 pounds (page b-7)

Assuming a maximum available pump pressure of 1,000 p.s.i., a 4" bore cylinder should be selected, operating on push stroke at approximately 750 p.s.i. pressure at the cylinder to allow for pressure losses from the pump to the cylinder.

determining forces continued

Assume the same load to be sliding on ways with a coefficient of friction of 0.15. The resultant friction load would be $6,000 \times 0.15 = 900$ pounds. Formula (2) F = Wg + f should be used.

F =6,000 lbs. $\times 1.5$ (from table)+ 900 =9,900 lbs. (page b-7)

Again allowing 750 p.s.i. pressure at the cylinder, a 5" bore cylinder is indicated.

Example: Horizontal deceleration of a 6,000 pound load is required by using a 1" long cushion in a 5" bore cylinder having a 2" diameter piston rod. Cylinder bore area (19.64 Sq. In.) minus the rod area (3.14 Sq. In.) results in a minor area of 16.5 Sq. In. at head end of cylinder. A 1,000 p.s.i. pump delivering 750 p.s.i. at the cylinder is being used to push the load at 120 feet per minute. Friction coefficient is 0.15 or 900 pounds.

In this example, the total deceleration force isthe sum of the force needed to decelerate 6,000 pound load, and the force required to counteract the thrust produced by the pump. W = Load in pounds = 6,000

S = Deceleration distance in inches = 1"

V = Maximum piston speed in feet per minute = 120

g = .74 (from table)

 $\tilde{f} = 900 \text{ pounds}$

Use formula (3) F = Wg - f

$$(F = Wg - f) = (F = 6,000 \times .74 - 900) = 3,540 lbs.$$

The pump is delivering 750 p.s.i. acting on the 19.64 Sq. In. piston area producing a force (F_2) of 14,730 pounds. This force must be included in our calculations. Thus $F + F_2 = 3,540 + 14,730 = 18,270$ pounds total force to be decelerated.

The total deceleration force is developed by the fluid trapped between the piston and the head. The fluid pressure is equal to the force (18,270 pounds) divided by the minor area (16.5 Sq. In.) equals 1107 p.s.i. This pressure should not exceed the non-shock rating of the cylinder.

graph b-2

pronh h.o

hydraulic cylinder port sizes and piston speed

One of the factors involved in determining the speed of a hydraulic cylinder piston is fluid flow in connecting lines, generally measured in gallons per minute, introduced to, or expelled from, cap end cylinder port. (Due to piston rod displacement, the flow at head end port will be less than at cap end.) Fluid velocity, however, is measured in feet per second. In connecting lines this velocity should generally be limited to 15 feet per second to minimize fluid turbulence, pressure loss and hydraulic shock.

Piston speed for cylinders can be calculated from data shown in **table b-5** and **b-6**. The table shows fluid velocity flow fo major cylinder area as well as for the net area at the rod end for cylinders 1" through 14" bore size.

If desired piston speed results in fluid flow in excess of 15 feet per second in connecting lines, consider the use of larger lines up to cylinder port, using either oversized ports or two ports per cap.

ES		TON OD		FLU	1			±-1		,				
CYLINDER BORE-INCHES	DIAINCHES	AREA SQ. IN.	CYLINDER NET AREA SQ. IN.	AT 10 PER MI PIST VELO	FT. NUTE ON		THROUG	FLUID VE H EXTRA					SPEED.	
	à			G.P.M.	C.F.M.	1/4	3/8	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2
	0	0	0.785	0.41	0.054	1.82	0.92	0.56	0.30	0.183	0.102	0.074	0.045	
1	1/2	0.196	0.589	0.30	0.041	1.33	0.68	0.41	0.21	0.134	0.075	0.055	0.033	
	5/8	0.307	0.478	0.16	0.033	0.71	0.36	0.22	0.12	0.071	0.040	0.029	0.017	
	0	0	1.77	0.92	0.123	4.09	2.09	1.259	0.680	0.410	0.230	0.167	0.100	·
1 1/2	5/8	0.307	1.46	0.76	0.101	3.38	1.73	1.040	0.562	0.338	0.190	0.138	0.082	
	1	0.785	0.98	0.51	0.068	2.27	1.16	0.699	0.378	0.228	0.128	0.093	0.055	
	0	0	3.14	1.63	0.218	7.27	3.71	2.238	1.209	0.728	0.408	0.296	0.177	
2	5/8	0.307	2.84	1.48	0.197	6.56	3.35	2.019	1.091	0.657	0.368	0.267	0.160	
_	1	0.785	2.36	1.23	0.164	5.45	2.79	1.678	0.907	0.546	0.306	0.222	0.133	
	1-3/8	1.485	1.66	0.86	0.115	3.84	1.96	1.180	0.638	0.384	0.215	0.156	0.094	
	0	0	4.91	2.55	0.341	11.36	5.80	3.496	1.890	1.138	0.638	0.463	0.277	
_	5/8	0.307	4.60	2,39	0.319	10.65	5.44	3.278	1.771	1.067	0.598	0.434	0.260	
2 ½	1 8	0.785	4.12	2.14	0.286	9.54	4.87	2.937	1.587	0.956	0.536	0.389	0.233	• • • • •
	1-3/8	1.485	3.42	1.78	0.237	7.93	4.05	2.439	1.318	0.794	0.445	0.323	0.193	
	1-3/4	2,405	2.50	1.30	0.174	5.96	2.96	1.783	0.963	0.580	0.325	0.236	0.141	• • • • •
	0	0	8.30	4.31	0.576	19.20	9.81	5.909	3.193	1.923	1,078	0.783	0.468	
	1	0.785	7.51	3.90	0.521	17.38	8.88	5.349	2.891	1.741	0.976	0.708	0.424	
31/4	1-3/8	1.485	6.81	3.54	0.473	15.77	8.05	4.851	2.622	1.579	0.885	0.642	0.384	
	1-3/4	2.405	5.89	3.06	0.409	13.64	6.96	4.196	2.268	1.366	0.765	0.556	0.333	
	2	3.142	5.15	2.68	0.357	11.93	6.09	3.671	1.984	1.195	0.670	0.486	0.291	
	0	0	12.57	6.53	0.872	29.09	14.85	8.95	4.84	2.91	1.63	1.19	0.709	• • • • •
	1	0.785	11.78	6.12	0.818	27.27	13,93	8.39	4.54	2.73	1.53	1.11	0.665	
4	1-3/8	1.485	11.08	5.76	0.769	25.65	13.10	7.89	4.27	2.57	1.44	1.05	0.625	
4	1-3/4	2.405	10.16	5.28	0.705	23.52	12.01	7.24	3.91	2.36	1.32	0.96	0.574	
	2	3.142	9,42	4.89	0.654	21.82	11.14	6.71	3.63	2.19	1.22	0.89	0.532	
	2-1/2	4.909	7.66	3.98	0.532	17.73	9.05	5.45	2.95	1.78	1.00	0.72	0.432	
	0	0	19.64	10.20	1.363	45.45	23.21	13.99	7.56	4.55	2.55	1.85	1.108	
	1	0.785	18.85	9.79	1.308	43.64	22.28	13.43	7.26	4.37	2.45	1.78	1.064	
	1-3/8	1.485	18.15	9.43	1.260	42.01	21.45	12.93	6.99	4.21	2.36	1.71	1.024	
_	1-3/4	2.405	17.23	8.95	1.196	39.88	20.37	12.27	6.63	3.99	2.24	1.63	0.973	
5	2	3.142	16.49	8.57	1.144	38.18	19.50	11.75	6.35	3.82	2.14	1.56	0.931	
	2-1/2	4.909	14.73	7.65	1.022	34.09	17.41	10.49	5.67	3.41	1.91	1.39	0.831	
	3	7.069	12.57	6.53	0.872	29.09	14.85	8.95	4.84	2.91	1.63	1.19	0.709	
	3-1/2	9.621	10.01	5.21	0.695	23.18	11.84	7.13	3.86	2.32	1.30	0.95	0.565	
	0	0	28.27	14.69	1.962	65.45	33.42	20.14	10.88	6.55	3.67	2.67	1.596	
	1-3/8	1.485	26.79	13.92	1.859	62.01	31.67	19.08	10.31	6.21	3.48	2.53	1.512	
	1-3/4	2.405	25.87	13.44	1.795	59.88	30.58	18.43	9.96	5.60	3.36	2.44	1.460	
6	2	3.142	25.13	13.06	1.744	58.18	29.71	17.90	9.67	5.83	3.27	2.37	1.418	
J 20 1	2-1/2	4.909	23.37	12.14	1.622	54.1	27.6	16.64	8.99	5.42	3.04	2.20	1.32	
	3	7.069	21.21	11.02	1.472	49.1	25.1	15.10	8.16	4.92	2.76	2.00	1.20	
	3-1/2	9.621	18.65	9.69	1.294	43.2	22.1	13.29	7.18	4.32	2.42	1.76	1.05	
	4	12.566	15.71	8.16	1.090	36.4	18.6	11.19	6.05	3.64	2.04	1.48	0.89	

table b-5

hydraulic cylinder port sizes and piston speed

	0	0	38.49	20.00	2.671	89.1	45.5	27.41	14.81	8.92	5.00	3.63	2.17	T
	1-3/8	1.485	37.00	19.22	2.568	85.7	43.7	26.35	14.24	8.58	4.81	3.49	2.09	
	1-3/4	2.405	36.08	18.74	2.504	83.5	42.7	25.70	13.89	8.36	4.69	3.40	2.04	
1	2	3.142	35.34	18.36	2.453	81.8	41.8	25.17	13.60	8.19	4.59	3.33	 	····
	2-1/2	4.909	33.58	17.44	2.330	77.7	39.7					+	2.00	
7	3	7.069			- -		+	23.92	12.92	7.78	4.36	3.17	1.90	
			31.42	16.32	2.181	72.7	37.1	22.38	12.09	7.28	4.08	2.96	1.77	
	3-1/2	9.621	28.86	14.99	2.003	66.8	34.1	20.56	11.11	6.69	3.75	2.72	1.63	
	4	12.566	25.92	13.47	1.799	60.0	30.6	18.46	9.98	6.01	3.37	2.45	1.46	
	4-1/2	15.904	22.58	11.73	1.567	52.3	26.7	16.08	8.69	5.23	2.93	2.12	1.28	
	5	19.635	18.85	9.79	1.308	43,6	22.3	13.43	7.26	4.37	2.45	1.78	1.06	
	0	0	50.27	26.12	3.489	116.4	59.4	35.80	19.35	11.65	6.53	4.74	2.84	1.977
	1-3/8	1.485	48.78	25.34	3.385	112.9	57.7	34.74	18.78	11.31	6.34	4.60	2.75	1.918
	1-3/4	2.405	47.86	24.86	3.321	110.8	56.6	34.09	18.42	11.09	6.22	4.51	2.70	1.882
	2	3.142	47.12	24.48	3.270	109.1	55.7	33.56	18.14	10.92	6.12	+	-	
	2-1/2	4.909	45.36	23.57	3.149	105.0		 	 			4.45	2.66	1.853
8	3	-				-	53.61	32.31	17.46	10.51	5.892	4.278	2.560	1.784
		7.069	43,20	22.44	2.998	100.0	51.06	30.77	16.63	10.01	5.612	4.074	2.438	1.699
İ	3-1/2	9.621	40.65	21.12	2.821	94.1	48.04	28.95	15.65	9.42	5.279	3.834	2.294	1.598
	4	12.566	37.70	19.59	2.616	87.3	44.56	26.85	14.51	8.74	4.897	3.556	2.128	1.483
	4-1/2	15.904	34.36	17.85	2.385	79.5	40.62	24.47	13.23	8.20	4.464	3.241	1.939	1.351
	5	19.635	30.63	15.91	2.126	70.9	36.21	21.82	11.79	7.10	3.979	2.889	1.729	1.205
	5-1/2	23.758	26.51	13.77	1.840	61.4	31.33	18.88	10.20	6.15	3.444	2.500	1.496	1.043
	0	0	78.54	40.80	5.451	181.8	92.84	55.94	30.23	18.21	10.203	7.408	4.433	3.089
	1-3/4	2.405	76.14	39.56	5.284	176.2	89.99	54.23	29.31	17.65	9.890	7.181	4.297	2.994
	2	3.142	75.40	39.17	5.233	174.5	89.12	53.70	29.02	17.48	9.795	7.112	4.255	2.965
	2-1/2	4.909	73.63	38.25	5.110	170.4	87.03	52.44	28.34	17.07	9.565	6.945	4.156	2.896
	3	7.069	71.47	37.13	4.960	165.4	84.48	50.91	27.51	16.57	9.284		 	
	3-1/2	9.621	68.92	35.80	4.783	159.5	81.47	49.09	+		 	6.741	4.034	2.811
10	4	12.566	65.97	34.27			 	 	26.53	15.98	8.953	6.501	3.890	2.710
	4-1/2	15.904	 		4.578	152.7	77.98	46.99	25.39	15.29	8.570	6.223	3.724	2.595
			62.64	32.54	4.347	145.0	74.04	44.61	24.11	14.52	8.137	5.908	3.535	2.463
	5	19.635	58.91	30.60	4.088	136.4	69.63	41.96	22.67	13.65	7.652	5.556	3.325	2.317
	5-1/2	23.758	54.78	28.46	3.802	126.8	64.75	39.02	21.09	12.70	7.116	5.167	3.092	2.154
	6	28.274	50.27	26.12	3.489	116.4	59.42	35.80	19.35	11.65	6.530	4.741	2.837	1.977
	6-1/2	33.183	45.36	23.57	3.148	105.0	53.6	32.31	17.46	10.52	5.89	4.278	2.560	1.784
	7	38.485	40.06	20.81	2.780	92.7	47.4	28.53	15.42	9.29	5.20	3.778	2.261	1.575
	0	0	113.10	58.76	7.849	261.8	133.7	80.55	43.53	26.22	14.69	10.668	6.383	4.448
	2	3.142	109.96	57.12	7.631	254.5	130.0	78.32	42.32	25.49	14.28	10.371	6.206	4.324
	2-1/2	4,909	108.19	56.21	7.508	250.4	127.9	77.06	41.64	25.08	14.05	10.205	6.106	4.255
	3	7.069	106.03	55.08	7.359	245.4	125.3	75.52	40.81	24.58	13.77	10.001	5.984	4.170
	3-1/2	9.621	103.48	53.76	7.182	239.5	122.3	73.70	39.83	23.99	13.44			
	4	12.566	100.53	52.23	6.977	232.7		-			-	9.760	5.840	4.069
			1		-		118.8	71.60	38.70	23.30	13.06	9.482	5.674	3.954
12	4-1/2	15.904	97.19	50.49	6.745	225.0	114.9	69.23	37.41	22.53	12.63	9.168	5.486	3.822
12	5	19.635	93.46	48.55	6.486	216.4	110.5	66.57	35.98	21.67	12.14	8.816	5.275	3.676
	5-1/2	23.758	89.34	46.41	6.200	206.8	105.6	63.63	34.39	20.71	11.61	8.427	5.042	3.513
	6	28.274	84.82	44.06	5.887	196.4	100.3	60.42	32.65	19.66	11.02	8.001	4.787	3.336
	6-1/2	33.183	79.92	41.52	5.547	185.0	94.5	56.92	30.76	18.53	10.38	7.538	4.510	3.143
	7	38.485	74.61	38.77	5.179	172.7	88.2	53.14	28.72	17.30	9.69	7.038	4.211	2.934
	7-1/2	44.179	68.92	35.80	4.783	159.5	81.5	49.09	26.53	15.98	8.95	6.501	3.890	2.710
	8	50.266	62.83	32.64	4.360	145.4	74.3	44.75	24.19	14.57	8.16	5.926	3.546	2.471
	8-1/2	56.745	56.35	29.27	3.911	130.5	66.6	40.14	21.69	13.06	7.32	5.315	3.181	2.216
	0	0	153.94	79.97	10.683	356.3	182.0	109.6	59.25	35.68	20.00	14.52	8.688	6.054
	2-1/2	4.909	149.03	77.42	10.343	345.0	176.2	106.2	57.36	34.55	19.36	14.06	8.411	5.861
	3	7.069	146.87	76.30	10.193	340.0	173.6	104.6	56.53	34.05	19.08	13.85	8.289	5.776
	3-1/2	9.621	144.32	74.97	10.016	334.1	170.6	102.8	55.55	33.45				
14	4	12.566	141.37								18.75	13.61	8.145	5.676
				73.44	9.811	327.3	167.1	100.7	54.42	32.77	18.37	13.33	7.979	5.560
	4-1/2	15.904	138.03	71.71	9.579	319.5	163.2	98.3	53.13	32.00	17.93	13.02	7.791	5.428
	5	19.635	134.30	69.77	9.320	310.9	158.8	95.7	51.70	31.13	17.45	12.67	7.580	5.282
	5-1/2	23.758	130.18	67.63	9.035	301.3	153.9	92.7	50.11	30.18	16.91	12.28	7.347	5.120

table b-5 (cont.)

applications of cylinders for providing a variety of fundamental mechanical motions.

illustration b-10

Toggle Mechanism

For operations such as coining and marking requiring exact depth control, and requiring extremely high force for a very short distance, the toggle lever system can be useful.

In illustration b-11, cylinder thrust is horizontal and toggle force is taken off vertically. Bearings at each end of the toggle lever must be closely fitted and heavy enough to carry the full toggle thrust.

A calculation of toggle force can be made with the following formula, with T and F in the same units, and A and B in the same units. Note that dimension A is not the lever length, but for high leverage toggle calculations it can be used for lever length, with only small error, since the lever is nearly vertical.

T (Toggle Force) =
$$\frac{F \text{ (Cylinder Thrust)} \times A}{2B}$$

Example: Find the toggle force from a cylinder thrust of 8300 lbs., if the toggle lever is 14 inches long and is 1/2 inch from vertical (Distance B).

electric motor horsepower

ELECTRIC MOTOR HORSEPOWER REQUIRED TO DRIVE A HYDRAULIC PUMP

	LLLO	1110 111	O TOR I					*****	4050	1500	2000	2500	3000
GPM	100 PSI	200 PSI	250 PSI	300 PSI	400 PSI	500 PSI	750 PSI	1000 PSI	1250 PSI	PSI	PSI	PSI	PSI
		07	.09	.11	.14	.18	.26	.35	.44	.53	.70	.88	1.10
1/2	.04	.07	.18	.21	.28	.35	.52	.70	.88	1.05	1.40	1.76	1.92
1 1	.07	.14		.31	.41	.52	.77	1.03	1.29	1.55	2.06	2.58	3.09
1-1/2	.10	.21	.26		1				1		2.80	3.53	4.20
2	.14	.28	.35	.42	.56	.70	1.04	1.40	1.76	2.10	3.44	4.30	5.14
2-1/2	.17	.34	.43	.51	.69	.86	1.29	1.72	2.15	2.58	4.20	5.28	6.30
3	.21	.42	.53	.63	.84	1.05	1.56	2.10	2.64	3.15	<u> </u>	i i	
I - I		.48	.60	.72	.96	1.20	1.80	2.40	3.00	3.60	4.80	6.00	7.20
3-1/2	.24		.70	.84	1.12	1.40	2.08	2.80	3.52	4.20	5.60	7.04	8.40
4	.28	.56	.88	1.05	1.40	1.75	2.60	3.50	4.40	5.25	7.00	8.80	10.50
5	.35	.70		l l					5.28	6.30	8.40	10.56	12.60
6	.42	.84	1.05	1.26	1.68	2.10	3.12	4.20	6.16	7.35	9.80	12.32	14.70
1 7	.49	.98	1.23	1.47	1.96	2.45	3.64	4.90			11.20	14.08	16.80
8	.56	1.12	1.40	1.68	2.24	2.80	4.16	5.60	7.04	8.40			
1	1	1.24	1.55	1.86	2.48	3.10	4.65	6.18	7.73	9.28	12.40	15.56	18.58
9	.62		1.75	2.10	2.80	3.50	5.20	7.00	8.80	10.50	14.00	17.60	21.00
10	.70	1.40	1.93	2.31	3.08	3.85	5.72	7.70	9.68	11.50	15.40	19.36	23.10
11	.77	1.54							10.50	12.60	16:80	21.00	25.20
12	.84	1.68	2.10	2.52	3.36	4.20	6.24	8.40	11.20	13.40	17.80	22.40	26.72
13	.89	1.78	2.23	2.67	3.56	4.45	6.68	8.92			19.20	24.00	28.80
14	.96	1.92	2.40	2.88	3.84	4.80	7.20	9.60	12.00	14.40			
1		2.10	2.63	3.15	4.20	5.25	7.80	10.50	13.20	15.70	21.00	26.40	31.50
15	1.05	2.10	2.75	3.30	4.40	5.50	8.25	11.00	13.80	16.50	22.00	27.60	33.00
16	1.10	2.20	2.73	3.51	4.68	5.85	8.78	11.70	14.60	17.60	23.40	29.20	35.10
17	1.17	i e	1				9.35	12.60	15.80	18.90	25.20	31.60	37.80
18	1.26	2.52	3.15	3.78	5.04	6.30		13.00	16.30	19.50	26.00	32.60	39.00
19	1.30	2.60	3.25	3.90	5.20	6.50	9.75	14.00	17.60	21.00	28.00	35.20	42.00
20	1.40	2.80	3.50	4.20	5.60	7.00	10.40	1	1	1		ļ	1
25	1.75	3.50	4.38	5.25	7.00	8.75	13.10	17.50	21.90	26.20	35.00	43.80	52.50
30	2.10	4.20	5.25	6.30	8.40	10.50	15.60	21.00	26.40	31.50	42.00	52.80	63.00
35	2.45	4.90	6.13	7.35	9.80	12.20	18.40	24.50	30.60	36.70	49.00	61.20	73.50
			1			1	20.80	28.00	35.20	42.00	56.00	70.40	84.00
40	2.80	5.60	7.00	8.40	11.20	14.00		31.50	39.40	47.30	63.00	78.80	94.50
45	3.15	6.30	7.87	9.45	12.60	15.80	23.60	35.00	44.00	52.50	70.00	88.00	105.00
50	3.50	7.00	8.75	10.50	14.00	17.50	26.00		1				
55	3.85	7.70	9.63	11.60	15.40	19.30	28.60	38.50	48.40	57.80	77.00	96.80	115.50
60	4.20	8.40	10.50	12.60	16.80	21.00	31.20	42.00	52.80	63.00	84.00	105.60	126.00
65	4.55	9.10	11.40	13.60	18.20	22.80	33.80	45.50	57.20	68.20	90.00	114.40	136.50
	7.00	1	1	1	<u></u>		<u> </u>						

table = c-1

The **table c-1**, above is based on a pump efficiency of 85%, and is calculated from the formula:

 $HP = GPM \times PSI \div (1714 \times .85)$

As horsepower varies directly with flow or pressure, multiply proportionately to determine values not shown. For example, at 4000 PSI, multiply 2000 PSI values by 2.

DIMENSIONS FOR FOOT-MOUNTED A-C MOTORS WITH SINGLE STRAIGHT SHAFT EXTENSION

													- 1	
Frame Number	A Max.	B Max.	D*	Ε	F	ВА	Н	N-W	U	V Min.	Key Width	Key Thickness	Key Length	AA, Min. Conduit Size
42 48 56 66			2-5/8 3 3-1/2 4-1/8	1-3/4 2-1/8 2-7/16 2-15/16	27/32 1-3/8 1-1/2 2-1/2	2-1/16 2-1/2 2-3/4 3-1/8	9/32 slot 11/32 slot 11/32 slot 13/32 slot	1-1/2	5/8		3/16 3/16	3/64 flat 3/64 flat 3/16 3/16	 1-3/8† 1-7/8†	
182 184 213 215	9 9 10-1/2 10-1/2	6-1/2 7-1/2 7-1/2 9	4-1/2 4-1/2 5-1/4 5-1/4	3-3/4 3-3/4 4-1/4 4-1/4	2-1/4 2-3/4 2-3/4 3-1/4	2-3/4 2-3/4 3-1/2 3-1/2	13/32 13/32 13/32 13/32	2-1/4 2-1/4 3 3	7/8 7/8 1-1/8 1-1/8	2 2 2-3/4 2-3/4	3/16 3/16 1/4 1/4	3/16 3/16 1/4 1/4	1-3/8 1-3/8 2 2	3/4 3/4 3/4 3/4
254U 256U 284U 286U	12-1/2 12-1/2 14 14	10-3/4 12-1/2 12-1/2 14	6-1/4 6-1/4 7 7	5 5 5-1/2 5-1/2	4-1/8 5 4-3/4 5-1/2	4-1/4 4-1/4 4-3/4 4-3/4	17/32 17/32 17/32 17/32	3-3/4 3-3/4 4-7/8 4-7/8	1-3/8 1-3/8 1-5/8 1-5/8	3-1/2 3-1/2 4-5/8 4-5/8	5/16 3/8	5/16 5/16 3/8 3/8	2-3/4 2-3/4 3-3/4 3-3/4	1 1 1-1/4 1-1/4
324U 324S 326U 326S	16 16 16 16	14 14 15-1/2 15-1/2	8 8 8	6-1/4 6-1/4 6-1/4 6-1/4	5-1/4 5-1/4 6 6	5-1/4 5-1/4 5-1/4 5-1/4	21/32 21/32 21/32 21/32	5-5/8 3-1/4 5-5/8 3-1/4	1-7/8 1-5/8 1-7/8 1-5/8	5-3/8	1/2 3/8 1/2 3/8	1/2 3/8 1/2 3/8	4-1/4 1-7/8 4-1/4 1-7/8	1-1/2 1-1/2 1-1/2 1-1/2
364U 364US 365U 365US	18 18 18 18	15-1/4 15-1/4 16-1/4 16-1/4	9 9 9	7 7 7 7	5-5/8 5-5/8 6-1/8 6-1/8	5-7/8 5-7/8 5-7/8 5-7/8	21/32 21/32 21/32 21/32	3-3/4 6-3/8	2-1/8 1-7/8 2-1/8 1-7/8	3-1/2 6-1/8	1/2 1/2 1/2 1/2	1/2 1/2 1/2 1/2	5 2 5 2	2 2 2 2
404U 404US 405U 405US	20 20 20 20	16-1/4 16-1/4 17-3/4 17-3/4	10 10 10 10	8 8 8 8	6-1/8 6-1/8 6-7/8 6-7/8	6-5/8 6-5/8 6-5/8 6-5/8	13/16 13/16 13/16 13/16	7-1/8	2-3/8 2-1/8 2-3/8 2-1/8		5/8 1/2 5/8 1/2	5/8 1/2 5/8 1/2	5-1/2 2-3/4 5-1/2 2-3/4	2 2 2 2
444U 444US 445U 445US	22 22 22 22	18-1/2 18-1/2 20-1/2 20-1/2	11 11 11 11	9 9 9 9	7-1/4 7-1/4 8-1/4 8-1/4	7-1/2 7-1/2 7-1/2 7-1/2	13/16 13/16 13/16 13/16	4-1/4 8-5/8	2-7/8 2-1/8 2-7/8 2-1/8	4 8-3/8	3/4 1/2 3/4 1/2	3/4 1/2 3/4 1/2	7 2-3/4 7 2-3/4	2-1/2 2-1/2 2-1/2 2-1/2
504U 504S 505 505S able c-2	25 25 25 25	21 21 23 23	12-1/2 12-1/2 12-1/2 12-1/2	10 10 10 10	8 8 8	8-1/2 8-1/2 8-1/2 8-1/2	15/16 15/16 15/16 15/16	4-1/4 8-5/8	2-7/8 2-1/8 2-7/8 2-1/8	4 8-3/8	3/4 1/2 3/4 1/2	3/4 1/2 3/4 1/2	7-1/4 2-3/4 7-1/4 2-3/4	2-1/2 2-1/2 2-1/2 2-1/2

*Dimension D will never be greater than the values listed, but it may be less so that shims are usually required for coupled or geared machines. When exact dimension is required, shims up to 1/32 in. may be necessary on frame sizes whose dimension D is 8 in. and less; on larger frames, shims up to 1/16 in. may be necessary.

†Effective length of keyway.

standard enclosures for electric motors

Open

The open motor is one having ventilating openings which permit passage of external cooling air over and around the windings.

Drip-Proof

The drip-proof motor is an open motor in which ventilating openings are so constructed that drops of liquid or solids falling on the machine at any angle not greater than 15 degrees from the vertical cannot enter the machine.

Guarded

A guarded motor is an open motor in which ventilating openings are limited to specified size and shape to prevent insertion of fingers or rods to avoid accidental contact with rotating or electrical parts.

Splash-Proof

A splash-proof motor is an open motor in which ventilating openings are so constructed that drops of liquid or solid particles falling on the machine or coming toward the machine in a straight line at any angle not greater than 100 degrees from the vertical cannot enter the machine.

Totally-Enclosed

A totally-enclosed motor is a motor so enclosed as to prevent the free exchange of air between the inside and outside of the case, but not airtight.

Totally-Enclosed
Nonventilated (TENV)

A totally-enclosed nonventilated (TENV) motor is a totally-enclosed motor which is not equipped for cooling by means external to the enclosing parts.

Totally-Enclosed Fan-Cooled (TEFC)

A totally-enclosed fan-cooled (TEFC) motor is a totally enclosed motor with a fan to blow cooling air across the external frame. It is a popular motor for use in dusty, dirty, and corrosive atmospheres.

Encapsulated

Encapsulated motor is an open motor in which the windings are covered with a heavy coating of material to protect them from moisture, dirt, abrasion, etc. Some encapsulated motors have only the coil noses coated. In others, the encapsulation material impregnates the windings even in the coil slots. With this complete protection, the motors can often be used in applications which formerly demand totally enclosed motors.

Explosion-Proof

An explosion-proof motor is a totally enclosed motor designed and built to withstand an explosion of gas or vapor within it, and to prevent ignition of gas or vapor surrounding the machine by sparks, flashes or explosions which may occur within the machine casing.

three-phase motor design

Design "B" — A Design "B" motor is a 3-phase squirrel-cage motor designed to withstand full-voltage starting and developing lock-rotor and breakdown torques adequate for general application.

Design "C" — A Design "C" motor is a 3-phase squirrel-cage motor designed to withstand full-

voltage starting, developing locked-rotor torque for special high torque applications.

Design "D" — A Design "D" motor is a 3-phase squirrel-cage motor designed to withstand full-voltage starting, developing 275 percent locked-rotor torque (generally referred to as a "high slip" motor).

⊕ The full load currents shown are average values.

motor starter, conduit and wire size

					S TH	PHASE		NO LOW	N N	ARTER	I N										
MOTOR H.P. 3 Ø	1/2	<u> </u>	3/4	-		-	1-1/2	2		(C)		5		7	7.1/2	100		15		2	
VOLTAGE	220 440	40 %	220 44	440 2	220 44	440 2	220 4	440 2	220 4	440 2	220 44	440 2	220 44	440 2	1 -	440 220	0 440	+	0 440	220	440
Nema Starter Size	8	8	00	_		_		-	_	-		0		┼		1 2		╀		╁	[
⊕ Full Load Current	5.0	<u></u>	1.8	_	_	_		_	r.	-			·	_							ץ נ
Fires _ Amns { Std. N.E.C.	7 5	15	15	15 1		_		_	0	_								-		_	9 6
" \Dual Element	വ	4		_		_		_	6			_								_	2 5
Circuit Breaker Max. Amps.	15	15 1	15			_										_		_	-	_	40
Minimum Wing Cine / R, RW, T, TW	14	14	1	14 1				_	4	_						_			•		2
- HH	14	14	14 1	-	14	14	14	14	14	14 1/	14	1 7	12	1 5		2 5	7 5	2 0	2 5	4 0	∞ 0
Always specify voltage and frequency.		_				_		_		-		_		_							×

				••	3 РНА	SEN	10TO	R ST	PHASE MOTOR STARTERS	ERS	<u> </u>									
25 TO 200 H.P. MOTOR H.P. 3 ø	25		30		40		50		8		75		100		125		150		200	
VOLTAGE	220 440	ᄝ	220	440	220 4	440	220	440		440	220	440	220	440	220	440	220	440	220	440
Nema Starter Size # Fuil Load Current Fuses — Amps { Dual Element Circuit Breaker Max. Amps. Minimum Wire Sizes { R, RW, T, TW	3 64 3 175 8 100 5 125 5	2888888	3 78 200 1125 1 100	33 30 00 00 00 00 00 00 00 00 00 00 00 0	4 104 300 175 175 100	25.2 80.2 80.4 90.2 90.2 90.2 90.2 90.2 90.2 90.2 90.2	125 350 200 200 000	3 63 175 100 125 3	5 150 400 225 225 0000	4 75 200 125 125 3	5500 300 300 300	93 250 150 150 0	5 246 600 400 500 360	4 123 350 200 200 000	6 310 - - - 0	250 250 250 250	360	180 450 300 300 300	6 480 1	500 500 500 500 500
Always specify voltage and frequency.		,		,		•	3	•				-	2	3		3	ŀ	3	ı	000

		230	28 90 70 8
	ភេ	115	. I I .
		230	12867
	س	115	34 100 100 6
		230	12 40 30 14
	2	115	24 80 70 10
		230	10 30 14
	1.1/2	115	20 60 50 10
		230	8 25 20 14
ERS	-	115	16 50 40 12
STARTERS	8	230	6.9 25 20 14
	3/4	115	13.8 45 40 12
MOTOR		230	4.9 15 15
	1/2	115	9.8 30 14
PHASE		230	3.6 15 14
SINGLE	1/3	115	7.2 25 15 14
S		230	2.9 15 15
	1/4	115	5.8 20 15 14
		230	2.2 15 15 14
	1/6	115	4.4 15 15
	1/6 TO 5 H.P. MOTOR H.P. 1 ø	VOLTAGE	# Full Load Current Fuses — Amps. Std. N.E.C. Circuit Breaker Max. Amps. Min. Wire Sizes — R, RH, RW, T, TW
	1/6 1		Min.

				₹	WIRE & CONDUIT SIZES	CON		SIZ	ES										
WIRE SIZE AWG or MCM	14	12	9		9	E .	2	-	ľ	8	8	0000	00 250	300	350	400	Ę	750	1005
MAXIMUM Wire Capacity (R-RW-T-TW Amps.	15	2	30	40	55	70 8	6 03	5		1					36		32		45.F
3 WIRES IN THE STREET AMPS.	<u>र</u>	20	30	45		35	00	15 1		150 175	200				310	22E	200	776	777
CONDUIT CONDUIT SIZE - Inches	1/2	1/2	3/4	3/4		1-1/4 1	1.1/4 1	1-1/4	1-1/2 2			2.1/2	72 2-17	7 2.17		?	٥ د	2,1/2	
Volte Deep Dee America (1 Dhara Valta	4300	2000	.000	220,	2000			1							<u>,</u>	,	,	3/15	
Voits Diop ref Ampere Friase Voits	79/4	.3125	136	.125U	.0833	1. 8640	1431	-	1323 .0	269 .02	22 .01		61 .01	:10: 71	31 .012	1 .011			0081
Per IVU Ft 80% P.F. (3 Phase Volts	.4167	.2632	.1677	.1087	.2632 .1677 .1087 .0714 .0463 .0	0463 .1	3379	.0323 .0	0.8720.	.0231 .01	.0196 .0	.0163 .0139	39 .013	28 01	0128 0114 0106	6 0091	0088	0066	0061
			,	,	ĺ			l								5			.000
Capacity of conductors in conduit based on room temperature of 30 C. (86, F.)	emperati	re of 30	, C. (8	5° F.)									# H	e full l	and curr	ents sho	wn are	The full load currents shown are average values.	values

table j (c-3)