Comparative Analysis on GatorTronGPT in Healthcare

GROUP 10

Nur Hidayah Binti Ahmad Shafil (22120931), Then Dao Qing (23057608), Choon Yue Hua (17152027), Low Meng Fei (23063305), Syaidatul Salmah Nurbalqis Binti Saiful (17140336)

Introduction

The healthcare industry is experiencing a transformative moment with the emergence of Large Language Models (LLMs). **GatorTronGPT** is specifically designed to handle medical terminology and clinical contexts. It bridges general language understanding and specialized medical knowledge, excelling in clinical documentation, patient-doctor dialogue summarization, and medical information processing.

Problem Statement

- 1. Domain-Specific LLM Development: Difficulty in creating LLMs capable of understanding and generating clinically relevant content.
- 2. Clinical Documentation Burden: High computational and time burden on healthcare providers for clinical documentation.
- 3. **Summarization Efficiency**: Need for accurate and efficient automatic summarization of doctor-patient encounters.

Methodologies

Peng et al., 2023	Lyu et al,. 2024
MTS-DIALOG dataset with 1701 doctor-patient dialogues data is used for data training, validation and testing.	Train from scratch with 82 billion words of clinical narratives from University of Florida (UF) Health and 195 billion of diverse English words from the Pile dataset.
Models used are T5 model by Google Research with finetuned using Huggingface fine-tuning pipeline, GatorTronGPT 5B and GatorTronGPT 20B by University of Florida's academic Health.	Models used are GatorTronGPT 5B and GatorTronGPT 20B by University of Florida's academic Health.
"soft prompts" is initialized by Long Short-Term Memory networks and Multi-Layer Perceptron using Nvidia NeMo package based on Python.	Synthetic clinical text generation was tested, producing 20 billion words to train synthetic NLP models, named GatorTronS.
Adam optimizer was used for prompt tuning and CosineAnnealing scheduler was used to adjust the learning rate of the modelling.	Prompt-tuning algorithms is formulated and applied using Adam optimizer.

Strengths and Weaknesses

	Strengths	Weaknesses
Model:	Scalability: Handles summarization tasks with fewer parameter updates	High Computational Cost: Large LLMs (e.g., GatorTronGPT-20B) still
GatorTronGPT	compared to traditional fine-tuning.	demand significant resources and are time-intensive, even with prompt-
with prompt-tuning	Accuracy: Outperforms T5 in clinical benchmarks and captures more	tuning.
algorithms	critical information across various scenarios.	Data Privacy Concerns: Larger LLMs even with de-identified data remain
(Lyu et al,. 2024)	Flexibility: Summarized doctor-patient dialogues with limited data via few-	sensitive to handling clinical data.
(=) = = = = = = = = = = = = = = = = = =	shot learning and prompt-tuning without modifying core parameters.	Implementation Complexity: Prompt design and tuning require expertise
	Adaptability: Strong performance in low-resource settings due to few-shot	for task optimization.
	learning setups.	Hallucinations: Occasionally missed critical details in summaries will
	Training Efficiency: Requires only 2–4 hours for training compared to 9+	affect reliability.
	hours for T5 fine-tuning.	
	Implementation Simplicity: Avoids parameters updates which reduces	
	hardware requirements.	
Model:	Scalability: Handles large-scale datasets (277 billion words).	High Computational Cost: Requires high computational resources (e.g.,
GatorTronGPT	Accuracy: State-of-the-art performance in biomedical NLP tasks.	560 GPUs) for training and deployment.
using GPT-3	Flexibility: Generate diverse and synthetic clinical text that outperforms	Data Privacy Concerns: Synthetic data may replicate biases or sensitive
architecture	real-world text-trained models in specific tasks and supports scalable	patterns inherent in original datasets.
(Peng et al., 2023)	pipelines biomedical pipelines.	Implementation Complexity: Synthetic text generation pipelines and
	Adaptability: Adapts to new tasks with minimal data via strong few-shot	hyperparameter tuning require expertise.
	learning capabilities.	Hallucinations: Risks of clinically misleading information, especially in
	Data Augmentation: Generates synthetic text to augment data in low-	sensitive healthcare applications.
	resource scenarios.	Interpretability Challenges: Operates as a "black box," limiting insight
		into model decision-making.

Findings and Best Practices

Findings	Peng et al., 2023	Lyu et al., 2024
The studies utilized different	GatorTronGPT used GPT-3	Pretrained GatorTronGPT
GatorTronGPT training	architecture with a custom	with GPT-3-based model with
approaches for model	depth-to-width ratio, training	277B words of texts.
generalizability.	from scratch 5B and 20B	
	parameter models.	
Both studies evaluated the	Turing test showed no	GatorTronGPT summaries
model for human-likeness to significant difference		were more precise in
ensure it analyses and	between GPT-written notes	capturing critical
produces outputs	and physician-written notes	information like patient
comparable to human	in linguistic readability	demographics to specific
expertise.	(p=0.22) and clinical	clinical conditions than T5
	relevance and consistency	summaries when compared
	(p=0.91).	to gold-standard summaries.

Both studies highlighted the efficiency of **soft prompts** compared to hard prompts as they reduce computation costs and enable task-specific customization by finetuning during training.

⊠ Best Practices

Future Directions

Based on the papers' findings, several key areas need further research:

1. Clinical Safety and Validation

• Use evaluation frameworks to assess the clinical accuracy of healthcare LLMs. Standardized testing protocols should be established to ensure the reliability of these models in healthcare settings.

2. Technical Improvements

• Advancements in few-shot learning capabilities are critical for improving the adaptability of healthcare LLMs. Reinforcement learning from human feedback (RLHF) should be integrated to enhance model performance.

3. Practical Applications

• Integration with existing Electronic Health Record (EHR) systems will enhance workflow efficiency. Real-time clinical decision-support tools should also be created to assist healthcare providers.

References

- Lyu, M., Peng, C., Li, X., Balian, P., Bian, J., & Wu, Y. (2024). Automatic Summarization of Doctor-Patient Encounter Dialogues Using Large Language Model through Prompt Tuning. arXiv preprint arXiv:2403.13089.
- Peng, C., Yang, X., Chen, A., Smith, K. E., PourNejatian, N., Costa, A. B., ... & Wu, Y. (2023). A study of generative large language model for medical research and healthcare. NPJ digital medicine, 6(1), 210.