ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский университет ИТМО»

Факультет безопасности информационных технологий

Дисциплина:

«Теория надежности»

Лабораторные работы №1

Вариант 27

Выполнил:

Студент гр. N33472 Шарифов Ф. Р.

Проверил:

Кузнецов А. Ю.

Санкт-Петербург 2021 г.

Цель работы:

- изучение методов определения основных показателей надежности изделий на основе экспериментальных данных;
- разработка программного обеспечения обработки статистических данных по отказам изделий в процессе испытаний на надежность или в процессе их эксплуатации.

Ход работы:

Используемые формулы:

Вероятность безотказной работы
$$p = 1 - \frac{r}{N}$$
 (1)

Частота отказов
$$a_i = \frac{\Delta ri}{N*\Delta t}$$
 (2)

Интенсивность отказов
$$\lambda(t) = \frac{\Delta ri}{(N-r(i-1))\Delta t}$$
 (3)

Средняя наработка до отказа:
$$T = \frac{1}{N} \sum_{k=1}^{N} t_k$$
 (4)

 Δr_i - количество изделий, отказавших в период Δt_i

Общее числа отказов наблюдаемых изделий в интервале времени $(0,t_{i-1})$ вычисляется с помощью соотношения вида:

$$r(i-1) = \sum_{j=0}^{i-1} \Delta r(j)$$

В процессе испытаний находилось N=100 однотипных изделий, работающих до первого отказа. Моменты времени выхода из строя вследствие наступления отказов всех рассматриваемых изделий обозначим через t_1 , t_2 , ..., t_{N-1} , t_N . Разделим весь диапазон времени безотказной работы всех N изделий на n интервалов времени.

Для определения показателей надежности была написана программа на языке C++, следовательно ниже представлено алгоритм, для расчета показателей надежности:

Рисунок 1. Блок-схема

Данный алгоритм, получает на вход файл с данными и п. Далее разделяет весь диапазон времени без отказной работы, на п частей, и вычисляет показатели надежности использую формулы, для всех п диапазонов.

Пример работы программы при п: 5, 10, 20

Интервалы	Кол-во	Интенсивность	Плотность	Функция	Контроль
	отказов	отказов	распределения	надежности	
(t_{i},t_{i-1})	Δr_i	λ* _i	<i>a</i> *i	p*i	$\lambda *_i p*_i - a*_i$
0 - 203,612	20	0,000982	0,000982	0,8	
203,612 -					
407,224	22	0,001351	0,00108	0,58	
407,224 -					
610,836	9	0,000762	0,000442	0,49	
610,836 -					
814,448	23	0,002305	0,00113	0,26	
814,448 -					
1018,06	26	0,004911	0,001277	0	

Таблица 1. При п = 5

Интервалы	Кол-во	Интенсивность	Плотность	Функция	Контроль
	отказов	отказов	распределения	надежности	
(t_i, t_{i-1})	Δr_i	λ*i	$a*_{\mathbf{i}}$	p*i	$\lambda *_i p*_i - a*_i$
0 - 101,806	5	0,000491	0,000491	0,95	
101,806 -					
203,612	15	0,001551	0,001473	0,8	
203,612 -					
305,418	12	0,001473	0,001179	0,68	
305,418 -					
407,224	10	0,001445	0,000982	0,58	
407,224 -					
509,03	3	0,000508	0,000295	0,55	
509,03 -					
610,836	6	0,001072	0,000589	0,49	
610,836 -					
712,642	15	0,003007	0,001473	0,34	
712,642 -					
814,448	8	0,002311	0,000786	0,26	
814,448 -					
916,254	17	0,006422	0,00167	0,09	
916,254 -					
1018,06	9	0,009823	0,000884	0	

Таблица 2. При n = 10

Интервалы	Кол-во	Интенсивность	Плотность	Функция	Контроль
Timephanin	отказов	отказов	распределения	надежности	Контроль
(t_i, t_{i-1})	Δr_i	λ* _i	$a^*_{\mathbf{i}}$	p*i	$\lambda *_i p*_i - a*_i$
0 - 50,903	0	0	0	1	
50,903 -	5	0,000982	0,000982	0,95	
101,806	3	0,000302	0,000382	0,55	
101,806 -	5	0,001034	0,000982	0,9	
152,709					
152,709 -	10	0,002183	0,001965	0,8	
203,612					
203,612-	8	0,001965	0,001572	0,72	
254,515					
254,515 -	4	0,001091	0,000786	0,68	
305,418	•		-,	,	
305,418 -	4	0,001156	0,000786	0,64	
356,321					
356,321 - 407,224	6	0,001842	0,001179	0,58	
407,224			0	0,58	
458,127	0	0			
458,127 -	3		0,000589	0,55	
509,03		0,001016			
509,03 -	2	0,000714	0,000393	0,53	
559,933					
559,933-	_			0.40	
610,836	4	0,001483	0,000786	0,49	
610,836 -	_	0.004.303	0.000500	0.46	
661,739	3	0,001203	0,000589	0,46	
661,739 -	12	0,005125	0,002357	0,34	
712,642	12				
712,642 -	5	0,002889	0,000982	0,29	
763,545					
763,545 -	3	0,002032	0,000589	0,26	
814,448	3	0,002032	0,000363	0,20	
814,448-	8	0,006045	0,001572	0,18	
865,351		-,	-,	, -	
865,351 -	9	0,009823	0,001768	0,09	
916,254					
916,254 -	1	0,002183	0,000196	0,08	
967,157					
967,157-	8	0,019645	0,001572	0	
1018,06		T. C	, д		

Таблица 2. При n = 20

Графики функции, $\Delta r_i(t_i)$, $\lambda^*_i(t_i)$, $a^*_i(t_i)$, $p^*_i(t_i)$, при n=5

Графики функции, $\Delta r_i(t_i)$, $\lambda^*_i(t_i)$, $a^*_i(t_i)$, $p^*_i(t_i)$, при n=10.

Графики функции, $\Delta r_i(t_i)$, $\lambda^*_i(t_i)$, $a^*_i(t_i)$, $p^*_i(t_i)$, при n=20

Вывод

В ходе Лабораторной работы были определены основные показатели надежности, такие как частота отказов, вероятность безотказной работы, интенсивность отказов и средняя наработка на отказ. И еще были построены графики четырех функций $\Delta r_i(t_i)$, $\lambda^*_i(t_i)$, $a^*_i(t_i)$, $p^*_i(t_i)$, с различными интервалами, $n=\{5,10,20\}$.

Код программы:

#include <iostream>

#include <fstream>

#include <string>

#include <stdlib.h>

```
#include <vector>
#include <bits/stdc++.h>
using namespace std;
vector <double> t; // Array for product uptime.
vector <double> range;
double t_max=0.0, Dt, M;
int N=100, n;
// Replacing commas with points
void coma_to_point( string &s)
{
  int k=0;
  int i=0;
  while (k!=-1)
  {
     k=s.find(',');
     if (k!=-1)
       s.replace(k,1, ".");
  }
}
//Adding to array and finding Max element.
void Add_to_Array(string text)
{
  int pos=0;
  text+= " ";
  double summ=0.0;//
  while(pos !=-1)
  {
     pos = text.find(" ");
     if (pos != -1)
```

```
double temp1;
       string temp;
       temp=text.substr(0,pos+1);
       temp1 = atof(temp.c_str());
       t.push_back(temp1);
       summ+=temp1;
       if (temp1 > t_max) t_max = temp1;
       text.replace(0,pos+1,"");
     }
  }
  M=summ/N;// Mean time between failures
}
void parsing(string file)
{
  ifstream fff(file.c_str());
  while (!fff.eof())
  {
    string data;
    getline(fff,data);
    coma_to_point(data);
     Add_to_Array(data);
  }
  fff.close();
}
void show(int* mass, int n)
{
  for (int i=0; i<n;i++)
    cout<<mass[i]<<" ";
```

```
cout << "\n";
}
void computation()
  //range table
  ofstream file("DataInrvl20.csv");
  file <<"ti-ti_1 "<<"Dr "<<"Lambda "<<"*a "<<"*p \n";
  double counter=0.0;
  while (counter< t_max)
    counter+=Dt;
    range.push_back(counter);
  }
  int r=0;
  for (int i=1;i<range.size();i++)
  {
    int dr=0;
    double lambda, a;
    long double p;
    for (int j=0;j<t.size();j++)
    {
      if(t[j]>range[i-1] \&\& t[j] \le range[i])
        dr++;
    }
    lambda= dr/(double(N-r)*Dt);
    r+=dr;
    a=dr/(N*Dt);
    p=1-(double(r)/double(N));
    cout<<"("<<setw(7)<<range[i]<<")";
cout<<setw(3)<<dr<<setw(15)<<lambda*p
-a<<"\n";
    file<<range[i]<<"; "<<dr<<"; "<<lambda<<"; "<<a<<"; "<<p<<"\n";
```

```
}
int main()
{
    cout<<"Number of intervals:";
    cin>>n;
    parsing("L1_out.txt");
    range.push_back(0.0);
    sort(t.begin() , t.end());
    Dt = t_max/n;
    cout<<" Dt = "<<Dt<<"\n";
    computation();
</pre>
```

}