

21) We can state a "physical" criterion for accuracy of the WKB approxin in terms of



the de Broglie wavelength  $\lambda = 2\pi/k$  of the particle (mass m) described by  $\Psi$ . Recall that on  $\beta$ . 13 we found that  $\Psi$  could be continued throw a turning point by means of the Airy-for analysis if we joined up the WKB solutions to an appropriate Airy for in the asymptotic region  $|\xi|^{\frac{3}{2}} >> \frac{1}{2}$  (to left 4 right of turning  $\beta$ t  $\chi_1$  shown).

In fact, in that notation,  $|\xi|^{\frac{2}{2}}$  >>  $\frac{1}{2}$  was equivalent to the WKB "goodness" criterion  $|k'/k^2| << 1$ . This asymptotic condition can be converted to a statement about the Size of the well in units of  $\lambda$ .

Consider a "join-up point" (Airy > WKB) @  $x_1 + \Delta x$  as Shown. Compare the size of  $\Delta x$  with  $\lambda = 2\pi/k$ , where  $k = \sqrt{(2mF_1/\hbar^2)} \Delta x$  at that point. Then...

$$\left[\frac{\Delta x}{\lambda} = \frac{1}{2\pi} \left( \left( \frac{2mF_1/k^2}{\lambda} \right) \Delta x \right) \Delta x = \frac{1}{2\pi} \left[ \left( \frac{2mF_1}{k^2} \right)^{\frac{3}{3}} \Delta x \right]^{\frac{3}{2}} = \frac{1}{2\pi} \left[ \xi \right]^{\frac{3}{2}} >> 1. \quad (55)$$

We have recognized & by its definition in Eq. (33), p. 13 [note the there ]. This condition says that a successful Airy >>> WKB join-up can only occur when well is big anough so that there are allowed regions  $\Delta x >> \lambda$  on either side of a turning point. To the extent this condition is weakened, the WKB ap-

proxen to 4 will become less accurate.

In these terms, we can see immediately that for the bound state problem we have done,  $\overline{WKB}$  will be accurate only if the inergy E is high enough so that the distance between the turning points  $(x_2-x_1)>> \lambda$ . This condition is successively weakened as the particle sinks down to the bottom

of the well, since  $(x_z-x_1)$  decreases while  $\lambda$  increases. So WKB results here are expected to be  $\sim$  poor for the lowest lying states, but they improve as E increases.