

Final Assessment Test - November 2019

Course: ECE1003 - Electromagnetic Field Theory

Class NBR(s): 0572 / 0575 / 0580 / 0586 / 0597 / 0599/ 6817 Slot: F1+TF1

Time: Three Hours Max. Marks: 100

KEEPING MOBILE PHONE/SMART WATCH, EVEN IN 'OFF' POSITION, IS EXAM MALPRACTICE

Answer ALL Questions

(10 X 10 = 100 Marks) 1. Let $\hat{A}=\rho\sin\phi\,\hat{a}_{\rho}+\rho^{2}\hat{a}_{\phi}$, Verify the Stokes's theorem for the contour given in the Figure 1.

[10]

Figure 1

Calculate \overrightarrow{D} in rectangular coordinates at point P(2,-3,6) produced by:

[10]

- i) a point charge of 55 mC at Q (-2,3,-6);
- ii) a uniform line charge of 20 mC/m on the x axis;
- iii) uniform surface charge density of 120 μ C/m² on the plane z = -5m.
- 3. a) If $V = 60 \sin \theta / r^2 V$ in free space and a point P located at r = 3m, $\theta = 60^\circ$, $\phi = 25^\circ$, Find
 - [5]

- i) V_p the potential at P, and
- ii) E, the electric field at P.
- b) Find the energy stored in free space for the region, $0 < \rho < a$, $0 < \phi < \pi$, 0 < z < 2, given the [5] potential field in volts, $V = \frac{V_0 \rho}{}$
- Given a potential $V = x^2yz + Ay^3z$. Find the value of A so that Laplace equation is satisfied at (2,-2,1). [10] Also find the electric field at this point.
- The interface between a dielectric medium having relative permittivity 4 and free space is marked by the y=0 plane. If the electric field in the free space region is given by $\vec{E} = 5\hat{a}_1 + 12\hat{a}_2 + \hat{a}_1 \, \text{V/m}$, determine:
 - i) The electric field on the other side of the interface,
 - ii) Angle made by \vec{E} with respect to normal to boundary.
- Conducting cylinders lie at $\rho = 3$ and 12mm; both extend from z=0 to z=1m. Perfect dielectrics occupy [10] the interior region: $E_i=1$ for $3mm<\rho<6$ mm, $E_i=4$ for $6<\rho<9$ mm, and $E_i=8$ for $9<\rho<12$ mm. Calculate the capacitance.

SPARCH VIT QUESTION PAPERS ON TELEGURAN YO JOIN

- An infinitely long conductor is bent into an L shape as shown in figure 2. If a direct current of 5A flows [10]
 in the conductor, find the magnetic field intensity at the points
 - (2,2,0)

(0,-2,0).

ii)

Figure 2

- The solenoid shown in Figure 3 contains 400 turns, carries a current I=5A, has a length of 8cm, and a [10] radius a=1.2 cm.
 - i. Find \vec{H} within the solenoid.
 - ii. If $V_m=0$ at the origin, specify $V_m(\rho,\phi,z)$ inside the solenoid.

Figure 3

- 9. a) The magnetic flux density in a region of free space is given by B = -3xâ_z + 5yâ_y 2zâ_z T. Find the total force on a rectangular loop which lies in the plane z=0 and is bounded by x=1, x=3, y=2, y=5 (all dimensions in cm) and which carries a current of 30 A.
 - b) Find the magnetic field intensity within a magnetic material where:

[4]

- i. M=150 A/m and µ=1.5x10-5 H/m
- ii. B=300 μT and χ_m=15
- 10. A plane wave in a nonmagnetic medium has $\vec{E} = 50\sin(10^3t + 2z)\hat{a}$, V/m. Find [10]
 - i. The direction of wave propagation
 - ii. λ, f, and ε, wavelength, frequency and relative permitivity.
 - iii. \vec{H} magnetic field