Selecting eigenvectors by inspection

TOTAL POINTS 6

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$. the magenta vector $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

- - ✓ Correct

 This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles
 in size.
- - Correct

 This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.
- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 - This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles
- None of the above.
- Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

- $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
 - ✓ Correct

This eigenvector has eigenvalue 3, which means that it stays in the same direction but triples in size.

- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

✓ Correct

This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.

- None of the above.
- Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, respectively.

S

Which of the three original vectors are eigenvectors of the linear transformation T?

✓ Correct

Well done! This eigenvector has eigenvalue 1 - which means that it is unchanged by this transformation.

- $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- None of the above.
- Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

[1]

F11

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation,
stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear
transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, the magenta vector $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, respectively.

B

Which of the three original vectors are eigenvectors of the linear transformation T? Select all correct answers.

- $\begin{bmatrix}
 1 \\
 0
 \end{bmatrix}$
- LJ [IJ]

- \square $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- None of the above.
 - ✓ Correct

None of the three original vectors remain on the same span after the linear transformation. In fact, this linear transformation has no eigenvectors in the plane.

 Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, the magenta vector $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ and the orange vector $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

- 0
- $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

✓ Correct

This eigenvector has eigenvalue 1, which means that it reverses direction but has the same size.

- **V**
 - $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

✓ Correct

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

- - ./ Correct

This eigenvector has eigenvalue -1, which means that it reverses direction but has the same size.

- None of the above
- Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, the purple vector by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the brown vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

vector by $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

The transformation $T=\begin{bmatrix}2&1\\0&2\end{bmatrix}$ is applied, which sends the three vectors to the light green vector $\begin{bmatrix}2\\0\end{bmatrix}$, the magenta vector $\begin{bmatrix}3\\2\end{bmatrix}$ and the orange vector $\begin{bmatrix}1\\2\end{bmatrix}$, respectively.

B

Which of the three original vectors are eigenvectors of the linear transformation T?

- - Correct
 This eigenvector has eigenvalue 2, which means that it stays in the same direction but doubles in size.
- \Box $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- None of the above.