EECS 151/251A Discussion 9

Zhaokai Liu

Agenda

Adders

- Single-bit Full Adder
- Ripple-carry Adder
- Carry-bypass Adder
- Carry-lookahead Adder
- CLA Trees

Multipliers

- Array Multiplier w/o and w/ CSA
- Wallace Tree
- Booth Recording
- o Baugh-Wooley Multiplication

Adders

Single-bit Full Adder

$$S = A \oplus B \oplus C_i$$

$$S = A \overline{B} \overline{C_i} + \overline{A} B \overline{C_i} + \overline{A} \overline{B} C_i + A B C_i$$

$$C_o = AB + BC_i + AC_i$$

a b c _i	C _{i+1}	s
000	0	0
001	0	1_
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

- A full adder implements a single-bit adder with carry in
- A half adder doesn't have a carry in, but still has a carry out
- The full adder is the primitive used in many adder topologies

Static CMOS Full Adder

Direct mapping of logic function

→ A better structure: The mirror adder

Ripple-carry Adder

For a 1-bit added, assume: t_sum > t_carrier

What's the critical path here?

Carry-bypass Adder

N inputs/M bits in each block

What's the critical path here?

M bits

Carry-select Adder (1/2)

N inputs/M bits in each block

What's the critical path here?

Carry-select Adder (1/2)

N inputs/M bits in the first stage, P stages

What's the critical path here?

Quick Aside: Associativity

- An operator, #, is associative iff: (a # b) # c = a # (b # c)
- Addition*, multiplication, AND, OR, XOR, are associative
- Allows for tree computation
- Ex. a + b + c + d + e + f + g + h

- Problem: carry logic not associative -> linear FA chain
- Solution: re-define FAs to generate 2 new signals
 - o **g** (Generate): True if adder is guaranteed to **generate a carry**

$$g_i = a_i \cdot b_i$$

o **p** (Propagate): True if carry-out equals carry-in (**propagate carry-in**)

Both g & p have no dependence on carry-in (c_i)

- Sum & carry-out of FA defined in terms of these new signals
 - Sum is true if:
 - A single input is true, carry-in is false
 - o Inputs are both 0 or 1, carry-in is true

- Carry-out is true if:
- Carry generate is true
- Propagate is true and carry-in is true

$$c_{i+1} = g_i + p_i \cdot c_i$$

However, sum and carry-out depend on carry-in

- Problem: carry logic not associative -> linear FA chain
- Solution: re-define FAs to generate 2 new signals
 - o **g** (Generate): True if adder is guaranteed to **generate a carry**

$$g_i = a_i \cdot b_i$$

o **p** (Propagate): True if carry-out equals carry-in (**propagate carry-in**)

Both g & p have no dependence on carry-in (c_i)

- Sum & carry-out of FA defined in terms of these new signals
 - Sum is true if:
 - A single input is true, carry-in is false
 - o Inputs are both 0 or 1, carry-in is true

- Carry-out is true if:
- Carry generate is true
- Propagate is true and carry-in is true

$$c_{i+1} = g_i + p_i \cdot c_i$$

However, sum and carry-out depend on carry-in

CLA: Tree Structure

- Smallest blocks are modified full adders
- Calculate g and p immediately
- Wait for carry-in to compute sum bit
- Some FAs are required to create carry-out

CLA: Grouping

- Group together adders and create P & G for higher levels of the hierarchy.
 - P = entire group propagates a carry
 - G = entire group generates a carry
 - o P & G can be computed without carry-in
- Carry-in required to generate carry-out
 - \circ P = P_A•P_B
 - \circ G = G_B + G_A•P_B
 - \circ C_{out} = G + C_{in}-P

Parallel Prefix Adder

- Remaining problem: CLA as described still ripples carry through groups in first layer of tree
- Solution: unroll the expression for the carry bit

```
o c_0 = 0 (unsigned)

o c_1 = g_0 + p_0 \cdot c_0 = g_0

o c_2 = g_1 + p_1 \cdot c_1 = g_1 + p_1 g_0

o c_3 = g_2 + p_2 \cdot c_2 = g_2 + p_2 g_1 + p_2 p_1 g_0

o c_4 = g_3 + p_3 \cdot c_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0

o Recall p's and g's can be computed in parallel (not dependent on carry-in)

o These operations are associative -> "prefix tree" (parallel) computation!
```

Overall flow:

Break into group of bits -> Precalculate P_i, G_i in each group -> combine the groups in a tree structure-> calculate carries in parallel -> simple full adder to generate sum

Prefix Tree Adder Graphs: 3-bit Koggle-Stone adder

Prefix Tree Adder Graphs

Min. critical path & fanout Cost: more logic resources

Tradeoff logic reuse w/ critical path

Most reuse (min. area) Cost: longest critical path

"A Taxonomy of Parallel Prefix Networks", Harris [2003]

Multipliers

Unsigned Multiplication Example

- Partial Products can be generated in parallel
- Challenge: improve the addition of partial products

What's the critical path here?

Carry-Save Addition

- When we generate a carry in a given column, add it to the 2 values in the next column.
 - S_i = A_i ^ B_i ^ C_i
 - C_{o, i+1} = A_i B_i + A_i C_i + B_i C_i
 - Delay adding carry bits until the end
- Basis of CSA:
 - Takes in a, b, c_{in} (multi-bit)
 - Produces a sum and c_{out} (multi-bit)
- Benefits:
 - CSAs have no carry ripple => small & fast!
 - Only 1 standard CLA/PPA at end
 - Addition is associative => trees!

Array Multiplier w/ CSA

Wallace Tree Multiplier

Method to construct Wallace Tree:

- Draw a dot diagram where each column has as many dots as number of partial products
- 2. Group dots in the same column by 2 (half adder) or 3 (full adder)
- Propagate carries and sum by adding one dot in the grouped column and one dot in the next column

Radix and Multiplication

- Binary multiplication -> N partial products! Can we reduce this?
 - Yes! Let's use a larger radix (think: base)
- E.g. 2 bits at a time (radix 4) -> halve number of partial products

B Digit	Partial Product	Partial Product (Rewritten)
0	0*A	0
1	1*A	A
2	2*A	4*A - 2*A
3	3*A	4*A - A

- Recall: Multiplications by powers of 2 are left shifts
 - Let's use this property!

Booth Recoding

- 4*A = A << 2
- 2*A = A << 1
- Recall: radix 4 multiplication => shift left by 2 positions for next partial product
- Therefore, any 4*A term can be handled in the next partial product!
 - Multiplier looks a 3 (rather than just 2) bits
 - Extra bit is MSB of the previous

B Digit		Partial Product (Rewritten)
0	0*A	0
1	1*A	A
2	2*A	4*A - 2*A
3	3*A	4*A - A

Booth Recoding

B _{i+1}	B _i	B _{i-1}	Action	Comment
0	0	0	Add 0	
0	0	1	Add A	Includes +4*A from previous radix 4 digit = +A in this position due to left shift by 2
0	1	0	Add A	
0	1	1	Add 2*A	Includes +4*A from previous round (+A in this position). *2 is implemented as a left shift by 1
1	0	0	Sub 2*A	4*A will be added in when handling next radix 4 digit. *2 is implemented as a left shift by 1
1	0	1	Sub A	4*A will be added in when handling next radix 4 digit. Includes +4*A from previous radix 4 digit (+A in this position)
1	1	0	Sub A	4*A will be added in when handling next radix 4 digit.
1	1	1	Add 0	4*A will be added in when handling next radix 4 digit. Includes +4*A from previous radix 4 digit (+A in this position)

Booth Recoding Example (Unsigned)

```
6 * 7
```

•
$$B_{-1} = 0$$

Signed Multiplication: Baugh-Wooley

- Recall: 2's complement MSB has negative weight
- Nominally:
 - 1. Subtract last partial product
 - Sign-extend the rest of the partial products
- Recall 2's complement negation: -A = ~A + 1
 - Add ~A + 1 instead! Result: basically same hardware as unsigned mult.
 - o Implementation: invert some bits, insert a 1 left of the first & last partial products