以下是笔者的成绩排名:

本次的数据思维赛总共有两道题,分别是数据预测和命名实体识别,以下是作者 个人的 writeup:

对于第一道题家电能源预测,题目的训练集给了 28 个维度,测试集的数据给了 18 个维度,然后让我们根据测试集的 18 个维度预测其另外 8 个维度的数据。对于这种数据预测的任务,如果数据是符合时间序列特征的,那么 LSTM 模型是首选。但是这道题目的 18 个维度中不包含时间特征,所以只能用暴力的全连接层拟合。

dense (Dense)	 (None, 34)	612
dense_1 (Dense)	(None, 68)	2380
dense_2 (Dense)	(None, 136)	9384
dense_3 (Dense)	(None, 272)	37264
dense_4 (Dense)	(None, 546)	149058
dense_5 (Dense)	(None, 1092)	597324
dense_6 (Dense)	(None, 546)	596778
dense_7 (Dense)	(None, 272)	148784
dense_8 (Dense)	(None, 136)	37128
dense_9 (Dense)	(None, 68)	9316
dense_10 (Dense)	(None, 34)	2346
dense_11 (Dense)	(None, 17)	595
dense_12 (Dense)	(None, 8)	144
======================================		========

这是我采用的网络结构,采用的思想是每层全连接层参数都是前者的两倍,目的是为了提取更深层次的特征,所有的激活函数使用的都是 relu。当数据特征提到 1092 维度时,进行降维,每次降维的全连接层参数都是前者的二分之一,这样不至于出现特征消失的情况,由于题目的评估标准使用的是 MSE 平方损失函数,因而训练过程中采用的损失函数是 mse。

最终的损失函数值降到了2.8。

对于第二道题目,题目的本质其实是命名实体识别,目前已经有许多的优秀模型可以做命名实体识别的任务,常见的有 BiLstm+CRF,BERT,BERT+CRF 等等。笔者这边使用的是较为经典但效果不错的 BiLstm+CRF 模型。

对于 BiLstm 模型,它已经是老生常谈的模型了,这边不再做详细的介绍,主要来讲讲 CRF 条件随机场模型。

在介绍 CRF 条件随机场模型之前,先以一个具体的分词案例来介绍一下 HMM 隐马尔科夫模型。

这边首先定义几个标识符 B, M, E, S。

B表示词语的首个字,M表示词语的中间字,E表示词语的最后一个字,S表示单独的字。

举个例子: 我喜欢打篮球,分词之后为: 我 喜欢 打篮球。这边"我"就是独立的字,标识符为 S,"喜欢"是一个词语,表示符为 BE,"打篮球"是一个词组,标识符为 BME。所以整句句子分词之后的结果就是 SBEBME。

然后介绍一下隐马尔科夫模型的三个重要概念,初始矩阵,状态转移矩阵和发射 矩阵。

初始矩阵表示的是句子的第一个字符为 BMES 的概率,举个例子,现在有三句话: 今天 天气 真 不错 。

麻辣肥牛 好吃!

我喜欢吃好吃的!

观察这三句话的第一个字符,发现有两句句字的标签为 B, 一句句子为 S, 所以有:

В	M	S	E	В		M	S	E
2	0	- (0	0.6	67	0	0.333	O @RuiJie_Wang

上图中的右半部分即为初始矩阵。

转移矩阵即为知道前一个字符的标识符,推断后一个字符的标识符的概率矩阵。举个例子,用上面三句话做为语料,可以得知它们的标签为:

BEBESBES

BMMEBES

SBESBESS

那么统计词频可以得到:

上图的右边即为状态转移矩阵。

而发射矩阵就是一个字符对应为 BMES 的概率,还是以这三句话为例,那么它的发射矩阵为:

接着就可以做预测了,假设我们要将"今天的天气不错"这句句子分词,那么就可以转化为下图:

假设下图中绿色的那条为最优路径:

那么有:

将上面的所有路径的值都计算一遍,取最大路径那条作为输出。

当然,这边还可以采取维特比算法等优化算法,这边就不再介绍。

介绍完隐马尔科夫模型,接着来讲一下条件随机场模型:

CRF 将 BiLSTM 的输出结果当作发射矩阵作为输入,输出符合标注转移约束条件

的、最大可能的预测标注序列。

CRF 其实是一种特殊的隐马尔科夫模型,只不过里面的状态转移矩阵不是基于词频统计,而是通过反向传播梯度下降的方法获得。里面的发射矩阵也不是基于词频,而是用 BiLstm 模型的输出取代。

然后介绍一下本题中的网络安全空间的命名实体识别:

首先观察一下数据集,发现题目已经将句子分好了词,并且给每个词加上了标签,一共有 24 类标签,但 0~23 数字所对应的含义并没有告诉我们。

id	sentence_i	words	tag
0	0	Google	7
1	0	V8	0
2	0	before	3
3	0	3.14.5.3	4
4	0	as	0
5	0	used	0
6	0	in	0
7	0	Google	7
8	0	Chrome	5
9	0	before	3
10	0	24.0.1312.5	4
11	0	allows	1
12	0	remote	1
13	0	attackers	2
14	0	to	0
15	0	cause	0
16	0	а	0
17	0	denial	1
18	0	of	2
19	0	service	2
20	0	or	0
21	0	possibly	0
22	0	have	0
23	0	unspecified	0
24	0	other	0
25	0	impact	0
26	0	via	0
27	0	crafted	0

由于题目的要求是运用模型将测试集的所有数据打上标签,将标签文件上传系统,系统将自动评分并进行排名。而测试集中又包含一些训练集中不存在的词,所以我们要用〈UNK〉字符来表示这些词,观察数据集,会发现存在 3. 14. 5. 3 等版本号类似的词,所以我们规定用〈NUM〉标签来表示这些词。然后就可以进行命名实体识别了,这边将所的句子进行切分操作,规定句子的最大长度为 50,模型的结构如下:

Layer (type)	Output Shape	Param #	Connected to
input_ids (InputLayer)	[(None, 50)]	0	[]
embedding (Embedding)	(None, 50, 256)	1773312	['input_ids[0][0]']
bidirectional (Bidirectional)	(None, 50, 256)	394240	['embedding[0][0]']
<pre>bidirectional_1 (Bidirectional)</pre>	(None, 50, 128)	164352	['bidirectional[0][0]']
dense (Dense)	(None, 50, 24)	3096	['bidirectional_1[0][0]']
target_ids (InputLayer)	[(None, 50)]	0	[]
<pre>input_lens (InputLayer)</pre>	[(None,)]	0	[]
crf (CRF)	()	576	['dense[0][0]', 'target_ids[0][0]', 'input_lens[0][0]']
Total params: 2,335,576 Trainable params: 2,335,576 Non-trainable params: 0			

最终的损失值函数降到了22。