Homework-11

November 28, 2024

Remember, the most important thing is to understand how to solve these problems, not just to know their answers. When assigning homework, I won't change these questions. However, while you're working on them, always think about how you would solve the problem if I were to change some numbers or conditions?

- 1. Find Irr(a, F):
- (1). $a = \sqrt{2} + \sqrt{3}$, $F = \mathbb{Q}(\sqrt{6})$;
- (2). $a = \sqrt{2} + \sqrt{3}$, $F = \mathbb{Q}(\sqrt{2})$; (3). $a = \sqrt{2} + \sqrt{3}$, $F = \mathbb{Q}$.
- 2. Let K/F be an extension of feilds.
- (1). Let $a \in K$, if $a \in F(a^m)$ where m > 1. Prove a is algebraic over F;
- (2). If $a \in K$ is a algebraic element over F of odd degree. Prove $F(a) = F(a^2)$.
- 3. Let *u* be a real root of $x^3 6x^2 + 9x + 3$.
- (1). Prove $[\mathbb{Q}(u) : \mathbb{Q}] = 3;$
- (2). Represent u^4 , $(u+1)^{-1}$, $(u^2-6u+8)^{-1}$ as \mathbb{Q} -linear combination of $\{1, u, u^2\}$.
- 4. Let K be a field. If $x^n a \in K[x]$ is irreducible, prove for any positive factor m of n, $x^m - a$ is also irreducible in K[x].
- 5. Let K be a field, x is transcendental over $K, u \in K(x), u \notin K$. Prove x is algebraic over K(u).
- 6. Prove Aut(\mathbb{R}) = {id}. i.e. If σ is a field automorphism of \mathbb{R} then $\sigma = id$.
- 7. Let L/F be a field extension. E, K be two intermediate fields of this extension, prove:
- (1). [EK : F] is finite iff [E : F] and [K : F] are all finite;
- (2). $[EK : F] \leq [E : F][K : F];$
- (3). If [E : F] and [K : F] are coprime, then [EK : F] = [E : F][K : F].
- 8. Construct a finite field with 8 elements and write out its addition table and multiplication table.
- 9. Let $f(x) = x^2 + 1$ and $g(x) = x^2 x 1$.
- (1). Prove f, q are all irreducible in GF(3)[x];
- (2). Let α, β denote a root of f(x) and g(x) in GF(9) respectively. Provide an isomorphism from $GF(3)(\alpha)$ to $GF(3)(\beta)$.
- 10. (1). Prove $GF(p^m) \subseteq GF(p^n)$ iff $m \mid n$;
- (2). In GF(p)[x], prove $x^{p^m} x \mid x^{p^n} x$ iff $m \mid n$.