# DATA2001 Practical Assignment: Viral Vulnerability Analysis

## **Dataset Description**

## **Data Sources**

Datasets were provided by the University of Sydney, obtained from the Australian Bureau of Statistics (ABS) as well as the central source of Australian open government data: Data.gov.au. Datasets from the ABS were primarily census-based datasets. The additional JSON dataset was obtained via a webservice API.

| Dataset                     | Rationale                                                                                                                                          |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| NSW_Postcodes.csv           | Postcodes in NSW with providing geographical information such as locality.                                                                         |  |
| StatisticalAreas.csv        | Regions of NSW divided into areas and subdivisions.                                                                                                |  |
| Neighbourhoods.csv          | Census data of NSW neighbourhoods providing demographical information such as population size, land area and number of dwellings in neighbourhood. |  |
| PopulationStats2016.csv     | Census data providing demographical information based on area. Includes total population, males, females and senior citizen population.            |  |
| HealthServices.csv          | Health service providers in NSW providing information such as hospital bed capacity and location of these providers.                               |  |
| SA2_2016_AUST.shp           | Provides geometries to be used for PostGIS relating to SA2 areas and their boundaries for spatial joins                                            |  |
| JSON "Journey to Work 2011" | Number of people commuting from an origin SA2 ID to a destination SA2 ID for work purposes.                                                        |  |

## Pre-processing

Firstly, after connecting to the PostgreSQL database from Python and verifying that no existing tables existed, we created schemas with appropriate domain types for each table corresponding to the relevant datasets (Section 2).

#### Data Cleaning

The datasets needed to be cleaned, removing rows that contained irrelevant or invalid values.

| Dataset                                                     | Cleaning Process                                                                                                                                                      |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NSW_Postcodes.csv                                           | Remove the row from the table if longitude or latitude values are 0                                                                                                   |
| PopulationStats2016.csv                                     | Remove row if total persons are 0. Concatenate values for persons aged 70 and over into one column called "over_seventy".                                             |
| HealthServices.csv                                          | Remove irrelevant columns such as website and comment                                                                                                                 |
| SA2_2016_AUST.shp                                           | Filtering for rows relevant to NSW and dropping rows where geometry values are empty/invalid                                                                          |
| COVID-19 Tests from data.gov.au                             | Filtering for rows that did not contain valid postcode and results that were in not a recognisable form. Removal of irrelevant columns; leaving postcodes and results |
| JSON Travel Information<br>(Provided additional<br>dataset) | Organised data into 3 bins; inter area departures, arrivals and intra area travel.                                                                                    |

#### Data Loading

Once the datasets were cleaned, they were added into PostgreSQL by connecting to the database and loading it into the corresponding schemas. Finally, connections to the database were closed. Manual inspection through PgAdmin4 was used to ensure data loading and cleaning was executed successfully.

# **Database Description**

## **Schemas**



## Indexes

We created four indexes to improve the database performance, to retrieve specific columns used frequently in our query.

| Index Name     | Rationale                                                                      |  |  |
|----------------|--------------------------------------------------------------------------------|--|--|
| sa2_areas_idx  | Spatial index to access sa2_areas geometries used.                             |  |  |
| lat_long_idx   | Index to access latitude and longitude coordinates together of                 |  |  |
|                | neighbourhoods in Sydney with relevant postcodes.                              |  |  |
| lat_long_2_idx | Index to access latitude and longitude coordinates together of health services |  |  |
|                | located in NSW.                                                                |  |  |
| result_idx     | Index to access COVID-19 test case results; positive or negative.              |  |  |

# Vulnerability Score Analysis

## Vulnerability Score Formula

 $vulnerability = S(z(population\_density) + z(population\_age) - z(healthservice\_density) \\ - z(hospitalbed\_density) + z(intratravel\_area) + z(netarea\_travel))$ 

| Measure               | Definition                                 | Risk | Data Source             |
|-----------------------|--------------------------------------------|------|-------------------------|
| population_density    | Population divided by neighbourhood's land | +    | Neighbourhoods.csv      |
|                       | area                                       |      |                         |
| population_age        | Percentage of a neighbourhood's population | +    | PopulationStats2016.csv |
|                       | aged 70 and over                           |      |                         |
| healthservice_density | Number of health services per suburb per   | _    | HealthServices.csv      |
|                       | 1000 people                                |      |                         |
| hospitalbed_density   | Number of hospital beds per suburb per     | _    | HealthServices.csv      |
|                       | 1000 people                                |      |                         |
| intra_area_travel     | Number of people travelling within a given | +    | JSON Travel Information |
|                       | area where the origin suburb is same as    |      |                         |

|                   | destination as proportion of total population in a given neighbourhood |   |                         |
|-------------------|------------------------------------------------------------------------|---|-------------------------|
| inter_area_travel | Net number of people travelling in minus                               | + | JSON Travel Information |
|                   | travelling out of a given area proportion of                           |   |                         |
|                   | total population in a given neighbourhood                              |   |                         |

## Formula Description

Increased population density in a neighbourhood can be associated with greater viral vulnerability due to greater transmission rates between individuals. Neighbourhoods with a higher proportion of senior citizens (aged 70 and over), are at greater risk due to reduced immunity of these elderly people. As access to health services and hospital beds within a neighbourhood increase, this reduces the vulnerability of viral infections through earlier diagnosis and greater capacity for treatment. Increased rates of intra and inter area travel increases the vulnerability of neighbourhoods due to higher possibility of community transmission from non-locally acquired cases of the virus. As such, strict travel restrictions in Australia have been implemented in conjunction with "social distancing" guidelines to minimise the spread of COVID-19 supporting our decision to include these factors in our vulnerability equation.

## Vulnerability Results: Five Most and Five Least Vulnerable Areas

|     | sa2_name16                | vulnerability_score |
|-----|---------------------------|---------------------|
| 70  | Port Botany Industrial    | 1.000000            |
| 88  | Centennial Park           | 0.999970            |
| 229 | Rookwood Cemetery         | 0.999965            |
| 287 | Wetherill Park Industrial | 0.999733            |
| 206 | Blue Mountains - North    | 0.996170            |

|     | sa2_name16        | vulnerability_score |
|-----|-------------------|---------------------|
| 71  | Sydney Airport    | 0.000001            |
| 130 | Kogarah           | 0.008946            |
| 291 | Liverpool         | 0.024085            |
| 112 | Bankstown - South | 0.027549            |
| 102 | Randwick - South  | 0.028969            |

## Graphical Representation – Heatmap

## COVID-19 Vulnerability Score by Greater Sydney Region



#### Vulnerability Analysis

In the calculation of the vulnerability score, one factor taken into account was the inter-area travel within a given region. In regions with high inter-area travel, such as industrial, agricultural or tourist centres within NSW, vulnerability scores would be higher as increased population travel is related to greater COVID-19 risk. This is confirmed graphically, with the heatmap indicating both Blue Mountains – North, a tourist hotspot, and Port Botany Industrial area have high vulnerability scores.

Similarly, another factor that affects vulnerability score calculation is the number hospital beds within a given region. Particularly, industrial and remote regions within NSW often do not possess the similar health service infrastructure as more populated suburban areas. Often, workers in these regions work in relatively close proximity and in conjunction with the lack of medical infrastructure, this significantly increases the vulnerability score.

Note: athough these factors *should* theoretically affect the vulnerability score of neighbourhoods, these may not often correlate to actual case numbers.

## **Correlation Analysis**

The coefficient of correlation ( $\rho$ ) measures the relative strength between two variables, in this case vulnerability score vs. the number of positive COVID-19 test cases as a proportion of total tests conducted in a given area. A value closer to +1 indicates a stronger positive linear relationship, whereas a value closer to -1 indicates a stronger negative linear relationship.

$$\rho = \frac{cov(X, Y)}{\sigma_X, \sigma_Y}$$

#### Correlation Analysis Summary

|                 | Vulnerability Score vs | Vulnerability   | Vulnerability Score vs        |
|-----------------|------------------------|-----------------|-------------------------------|
| Variables       | Conducted Tests        | Score vs        | Confirmed Cases as a          |
|                 |                        | Confirmed Cases | proportion of Conducted Tests |
| ρ               | -0.11149               | 0.00031         | 0.28256                       |
| Equation of     | y = -7692.3x + 12122.2 | y = 0.2x + 65.3 | y = 0.0x + 0.0                |
| regression line |                        |                 |                               |
| Correlation     | Very weak negative     | No correlation  | Weak positive correlation     |
|                 | correlation            |                 |                               |

#### Interpretation

Correlation analysis reveals there is a *weak negative* correlation between vulnerability score and number of tests conducted ( $\rho=-0.11149$ ). This suggests there is a weak negative linear relationship between vulnerability score and number of tests conducted in a neighbourhood. One example for this is due to duplicate postcode numbers associated with more than one suburb. For example, many neighbourhoods on the NSW Central Coast were associated with the postcode corresponding to Calga-Kulnura, making it an outlier. Non-distinct postcodes affected the accuracy of this correlation substantially.

For meaningful intents and purposes, there is *no correlation* between vulnerability and number of confirmed cases of COVID-19 within a given area. ( $\rho=0.00031$ ). This reveals there is no linear relationship between vulnerability and confirmed cases. These results initially appear counterintuitive as the vulnerability score is a measure of several factors which we assume to affect the spread of a virus within a community.

We conducted an additional correlation analysis between vulnerability score and the number of confirmed cases as a proportion of tests conducted (in a given neighbourhood). The results of this correlation indicate a weak *positive* linear relationship ( $\rho = 0.28256$ ).

We believe this correlation measure is more appropriate to gain an understanding of the viral vulnerability of different neighbourhoods in Sydney. By comparing vulnerability scores to the number of confirmed cases out of tests conducted, we can achieve a more standardised measure of vulnerability across neighbourhoods. For example, a rural town in remote NSW may conduct significantly less tests than a highly populated suburb in Sydney due to smaller population. Similarly, the number of confirmed cases varies with neighbourhood population size and intensity of testing. Therefore, determining the correlation between vulnerability scores and proportion of confirmed cases over tests done produces a more accurate linear relationship, assuming such relationship exists.



#### Limitations

Although correlation analysis can be used to identify a relationship between vulnerability score and test cases or vulnerability score and confirmed cases, it does not prove that one variable causes a change in another – causation. Similarly, we cannot determine whether increased testing rates or confirmed cases increased or decreased the viral vulnerability of a neighbourhoods. Additionally, external factors that were not considered in this viral vulnerability assessment may have influenced the outcome of correlation analysis. For example, in the context of COVID-19 the number of international arrivals into Sydney and whereabouts of these passengers would be a significant external factor to consider. Therefore, we must consider these limitations of correlation analysis when determining conclusions about the viral vulnerability of neighbourhoods.