latex-math Macros

compiled: 2021-12-11

Latex macros like $\frac{\#1}{\#2}$ with arguments are displayed as $\frac{\#1}{\#2}$.

Note that macro declarations may only span a single line to be displayed correctly in the below tables.

Contents

basic-math	2
basic-ml	4
ml-ensembles	8
ml-eval	9
ml-feature-sel	11
ml-gp	12
ml-hpo	13
ml-infotheory	14
ml-interpretable	15
ml-nn	16
ml-survival	17
ml-svm	18
ml-trees	19

basic-math

Macro	Notation	Comment
	Notation	
\N \7	\mathbb{Z}	N, naturals
\Z \Q	\mathbb{Q}	Z, integers Q, rationals
\Q \R	\mathbb{R}	R, reals
\C	C	C, complex
\continuous	\mathcal{C}	C, space of continuous functions
\M	\mathcal{M}	machine numbers
\epsm	ϵ_m	maximum error
\setzo	$\{0,1\}$	set 0, 1
\setmp	$\{-1,+1\}$	
\unitint	[0,1]	unit interval
\xt	$ ilde{ ilde{x}}$	x tilde
\argmax	argmax	argmax
\argmin	arg min	argmin
\argminlim	$\mathop{ m argmin}$	argmax with limits
\argmaxlim	arg max	argmin with limits
\sign	sign	sign, signum
\I	I	I, indicator
\order	0	O, order
\pd	$\frac{\partial \#1}{\partial \#2}$	partial derivative
\floorlr	[#1]	floor
\ceillr	$\lceil \#1 \rceil$	ceiling
\sumin	$\sum_{i=1}^{n}$	summation from $i=1$ to n
\sumim	$\sum_{i=1}^{m}$	summation from $i=1$ to m
\sumjn	$\sum_{j=1}^{n}$	summation from $j=1$ to p
\sumjp	$\sum_{i=1}^{n} \sum_{m=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{p} \sum_{k=1}^{k} \sum_{k=1}^{g} \sum_{g} \sum_{g$	summation from $j=1$ to p
\sumik	$\sum_{i=1}^{k}$	summation from $i=1$ to k
\sumkg	$\sum_{k=1}^{g}$	summation from k=1 to g
\sumjg	j=1	summation from $j=1$ to g
\meanin	$\frac{1}{n} \sum_{i=1}^{n}$	mean from $i=1$ to n
\meanim	$\frac{1}{m} \sum_{i=1}^{m}$	mean from $i=1$ to n
\meankg	$\frac{1}{g} \sum_{k=1}^{g}$	mean from $k=1$ to g

\prodin	$\prod_{i=1}^{n}$	product from $i=1$ to n
\prodkg	$\prod_{k=1}^{i=1}$	product from $k=1$ to g
\prodjp	$\prod_{j=1}^{p}$	product from $j=1$ to p
\one	$oldsymbol{1}$	1, unitvector
\zero	0	0-vector
\id	I	I, identity
\diag	diag	diag, diagonal
\trace	tr	tr, trace
\spn	span	span
\scp	$\langle \#1, \#2 \rangle$	<.,.>, scalarproduct
\mat	(#1)	short pmatrix command
\Amat	\mathbf{A}	matrix A
\Deltab	Δ	error term for vectors
\ P	\mathbb{P}	P, probability
\E	${ m I}\!{ m E}$	E, expectation
\var	Var	Var, variance
\cov	Cov	Cov, covariance
\corr	Corr	Corr, correlation
\normal	\mathcal{N}	N of the normal distribution
\iid	$\overset{i.i.d}{\sim}$	dist with i.i.d superscript
\distas	#1 ~	is distributed as

basic-ml

Macro	Notation	Comment
\Xspace	\mathcal{X}	X, input space
\Yspace	\mathcal{Y}	Y, output space
\nset	$\{1,\ldots,n\}$	set from 1 to n
\pset	$\{1,\ldots,p\}$	set from 1 to p
\gset	$\{1,\ldots,g\}$	set from 1 to g
\Pxy	\mathbb{P}_{xy}	P_xy
\Exy	\mathbb{E}_{xy}	E_xy: Expectation over random variables xy
\xv	x	vector x (bold)
\xtil	$ ilde{\mathbf{x}}$	vector x-tilde (bold)
\yv	\mathbf{y}	vector y (bold)
\xy	(\mathbf{x}, y)	observation (x, y)
\xvec	$(x_1,\ldots,x_p)^T$	(x1,, xp)
\Xmat	X	Design matrix
\allDatasets	\mathbb{D}	The set of all datasets
\allDatasetsn	\mathbb{D}_n	The set of all datasets of size n
\D	${\cal D}$	D, data
\Dn	${\cal D}_n$	D_n, data of size n
\Dtrain	$\mathcal{D}_{ ext{train}}$	D_train, training set
\Dtest	$\mathcal{D}_{ ext{test}}$	D_test, test set
\xyi	$(\mathbf{x}^{(\#1)}, y^{(\#1)})$	(x^i, y^i) , i-th observation
\Dset	$\left(\left(\mathbf{x}^{(1)}, y^{(1)}\right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)}\right)\right)$	$\{(x1,y1)\},, (xn,yn)\}, data$
\defAllDatasetsn	$(\mathcal{X} \times \mathcal{Y})^n$	Def. of the set of all datasets of size n
\defAllDatasets	$\bigcup_{n\in\mathbb{N}}(\mathcal{X} imes\mathcal{Y})^n$	Def. of the set of all datasets
\xdat	$egin{aligned} igcup_{n \in \mathbb{N}} (\mathcal{X} imes \mathcal{Y})^n \ ig\{ \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)} ig\} \ ig(y^{(1)}, \dots, y^{(n)} ig)^T \end{aligned}$	$\{x1,, xn\}$, input data
\yvec	$(y^{(1)},\ldots,y^{(n)})^T$	(y1,, yn), vector of outcomes
\xi	$\mathbf{X}^{(\#1)}$	x^i, i-th observed value of x
\yi	$y^{(\#1)}$	y^i, i-th observed value of y
\xivec	$\left(x_1^{(i)},\ldots,x_p^{(i)}\right)^T$	$(x1^i,, xp^i)$, i-th observation vector
\xj		x_j , j-th feature
\xjvec	$\begin{pmatrix} x_j \\ \left(x_j^{(1)}, \dots, x_j^{(n)}\right)^T \end{pmatrix}$	$(x^1_j,, x^n_j)$, j-th feature vector
\phiv	ϕ	Basis transformation function phi
\phixi	$\phi^{(i)}$	Basis transformation of xi: $phi^i := phi(xi)$
\lamv	λ	lambda vector, hyperconfiguration vector
\Lam	$oldsymbol{\Lambda}$	Lambda, space of all hpos
\preimageInducer	$\left(igcup_{n\in\mathbb{N}}(\mathcal{X} imes\mathcal{Y})^n ight) imesoldsymbol{\Lambda}$	Set of all datasets times the hyperparameter space
$\verb \preimageInducerShort \\$	$\mathbb{D} imes oldsymbol{\Lambda}$	Set of all datasets times the hyperparameter space
\ind	${\cal I}$	Inducer, inducing algorithm, learning algorithm
\ftrue	$f_{ m true}$	True underlying function (if a statistical model is assumed)
\ftruex	$f_{ m true}({f x})$	True underlying function (if a statistical model is assumed)
\fx	$f(\mathbf{x})$	f(x), continuous prediction function
\fdomains	$f:\mathcal{X} o \mathbb{R}^g$	f with domain and co-domain

\Hspace	${\cal H}$	hypothesis space where f is from
\fbayes	f^*	Bayes-optimal model
\fxbayes	$f^*(\mathbf{x})$	Bayes-optimal model
\fkx		$f_{\underline{j}}(x)$, discriminant component function
\fh	$f_{\#1}(\mathbf{x}) \ \hat{f}$	f hat, estimated prediction function
\fxh	$\hat{f}(\mathbf{x})$	fhat(x)
\fxt	$f(\mathbf{x} \mid \boldsymbol{\theta})$	$f(x \mid theta)$
\fxi	$f(\mathbf{x}^{(i)})$	$f(x^{}(i))$
\fxih	$\hat{f}\left(\mathbf{x}^{(i)}\right)$	$f(x^{(i)})$
\fxit	$f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)$	$f(\mathbf{x}^{(i)} \mid \text{theta})$
\fhD	$\hat{f}_{\mathcal{D}}$	fhat D, estimate of f based on D
\fhDtrain	$\hat{f}_{\mathcal{D}_{ ext{train}}}^{\mathcal{D}}$	fhat_Dtrain, estimate of f based on D
\fhDnlam		model learned on Dn with hp lambda
\fhDlam	$f_{\mathcal{D}_n, \boldsymbol{\lambda}}$	model learned on D with hp lambda
	$f_{\mathcal{D}, \boldsymbol{\lambda}}$	model learned on D with optimal hp lambda
\fhDnlams	$f_{\mathcal{D}_n, oldsymbol{\lambda}^*}$	
\fhDlams	$f_{\mathcal{D}, \boldsymbol{\lambda}^*}$	model learned on D with optimal hp lambda
\hx	$egin{aligned} h(\mathbf{x}) \ \hat{h} \end{aligned}$	h(x), discrete prediction function
\hh		h hat
\hxh	$\hat{h}(\mathbf{x})$	hhat(x)
\hxt	$h(\mathbf{x} \boldsymbol{\theta})$	$h(x \mid theta)$
\hxi	$h\left(\mathbf{x}^{(i)}\right)$	$h(x^{\circ}(i))$
\hxit	$h\left(\mathbf{x}^{(i)}\mid\boldsymbol{ heta} ight)$	$h(x^{(i)} \mid theta)$
\hbayes	h* h*()	Bayes-optimal classification model
\hxbayes	$h^*(\mathbf{x})$	Bayes-optimal classification model
\yh	$\hat{y} \ \hat{y}^{(i)}$	yhat for prediction of target
\yih		yhat^(i) for prediction of ith targiet
\resi	$egin{array}{c} y^{(i)} - \hat{y}^{(i)} \ \hat{ heta} \end{array}$	41 4 1 4
\thetah		theta hat
\thetab	heta	theta vector
\thetabh	ô	theta vector hat
\thetat	6 [#1]	theta [*] [t] in optimization
\thetatn	θ ^[#1+1]	theta ^[t+1] in optimization
\thetahDnlam	$\hat{oldsymbol{ heta}}_{\mathcal{D}_n,oldsymbol{\lambda}}$	theta learned on Dn with hp lambda
\thetahDlam	$\hat{ heta}_{\mathcal{D}, oldsymbol{\lambda}}$	theta learned on D with hp lambda
\mint	$\min_{oldsymbol{ heta} \in \Theta}$	min problem theta
\argmint	$rg \min_{oldsymbol{ heta} \in \Theta}$	argmin theta
\pdf	p	p
\pdfx	$p(\mathbf{x})$	p(x)
\pixt	$\pi(\mathbf{x} \mid \boldsymbol{\theta})$	pi(x theta), pdf of x given theta
\pixit	$\pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)$	pi(x^i theta), pdf of x given theta
\pixii	$\pi\left(\mathbf{x}^{(i)}\right)$	pi(x^i), pdf of i-th x
\pdfxy	$p(\mathbf{x}, y)$	p(x, y)
\pdfxyt	$p(\mathbf{x}, y \mid \boldsymbol{\theta})$	$p(x, y \mid \text{theta})$
\pdfxyit	$p\left(\mathbf{x}^{(i)}, y^{(i)} \mid \boldsymbol{\theta}\right)$	$p(x^(i), y^(i) \mid theta)$

\pdfxyk	$p(\mathbf{x} y=\#1)$	$p(x \mid y = k)$
\lpdfxyk	$\log p(\mathbf{x} y=\#1)$	$\log p(x \mid y = k)$
\pdfxiyk	$p\left(\mathbf{x}^{(i)} y=\#1\right)$	$p(x^i \mid y = k)$
\pik	$\pi_{\#1}$	pi_k, prior
\lpik	$\log \pi_{\#1}$	log pi_k, log of the prior
\pit	$\pi(oldsymbol{ heta})$	Prior probability of parameter theta
\post	$\mathbb{P}(y=1\mid \mathbf{x})$	$P(y = 1 \mid x)$, post. prob for y=1
\postk	$\mathbb{P}(y = \#1 \mid \mathbf{x})$	$P(y = k \mid y)$, post. prob for y=k
\pidomains	$\pi: \mathcal{X} \to [0,1]$	pi with domain and co-domain
\pibayes	π^*	Bayes-optimal classification model
\pixbayes	$\pi^*(\mathbf{x})$	Bayes-optimal classification model
\pix	$\pi(\mathbf{x})$	$pi(x), P(y = 1 \mid x)$
\pikx	$\pi_{\#1}(\mathbf{x})$	$pi_k(x), P(y = k \mid x)$
\pikxt	$\pi_{\#1}(\mathbf{x} \mid \boldsymbol{\theta})$	$pi_k(x \mid theta), P(y = k \mid x, theta)$
\pixh	$\hat{\pi}(\mathbf{x})$	$pi(x)$ hat, $P(y = 1 \mid x)$ hat
\pikxh	$\hat{\pi}_{\#1}(\mathbf{x})$	$pi_k(x)$ hat, $P(y = k \mid x)$ hat
\pixih	$\hat{\pi}(\mathbf{x}^{(i)})$	$pi(x^{(i)})$ with hat
\pikxih	$\hat{\pi}_{\#1}(\mathbf{x}^{(i)})$	$pi_k(x^(i))$ with hat
\pdfygxt	$p(y \mid \mathbf{x}, \boldsymbol{\theta})$	$p(y \mid x, theta)$
\pdfyigxit	$p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}\right)$	$p(y^i x^i, theta)$
\lpdfygxt	$\log p(y \mid \mathbf{x}, \boldsymbol{\theta})$	$\log p(y \mid x, \text{theta})$
\lpdfyigxit	$\log p\left(y^{(i)} \mid \mathbf{x}^{(i)}, oldsymbol{ heta} ight)$	$\log p(y^i x^i, theta)$
\bayesrulek	$\frac{\mathbb{P}(\mathbf{x} y=\#1)\mathbb{P}(y=\#1)}{\mathbb{P}(\mathbf{x})}$	Bayes rule
\muk	$\mu_{m{k}}$	mean vector of class-k Gaussian (discr analysis)
\eps	ϵ	residual, stochastic
\epsi	$\epsilon^{(i)}$	epsilon ⁱ , residual, stochastic
\epsh	$\hat{\epsilon}$	residual, estimated
\yf	$yf(\mathbf{x})$	y f(x), margin
\yfi	$y^{(i)}f(\mathbf{x}^{(i)})$	y^i f(x^i), margin
\Sigmah	$y^{(i)}f\left(\mathbf{x}^{(i)} ight) \ \hat{\Sigma} \ \hat{\Sigma}_{j}$	estimated covariance matrix
\Sigmahj	$\hat{\Sigma}_i$	estimated covariance matrix for the j-th class
\Lyf	$\stackrel{-J}{L}(y,f)$	L(y, f), loss function
\Lxy	$L(y, f(\mathbf{x}))$	L(y, f(x)), loss function
\Lxyi	$L\left(y^{(i)},f\left(\mathbf{x}^{(i)} ight) ight)$	loss of observation
\Lxyt	$L(y, f(\mathbf{x} \mid \boldsymbol{\theta}))$	loss with f parameterized
\Lxyit	$L\left(v^{(i)}, f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$	loss of observation with f parameterized
\Lxym	$egin{aligned} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta} ight) ight) \ L\left(y^{(i)}, f\left(ilde{oldsymbol{x}}^{(i)} \mid oldsymbol{ heta} ight) ight) \end{aligned}$	loss of observation with f parameterized
\Lpixy	$L(y, \pi(\mathbf{x}))$	loss in classification
\Lpixyi	$L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)}\right)\right)$	loss of observation in classification
\Lpixyt	$L\left(y,\pi(\mathbf{x}\mid\boldsymbol{\theta})\right)$	loss with pi parameterized
\Lpixyit	$L\left(y^{(i)}, \pi\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta} ight) ight)$	loss of observation with pi parameterized
\Lhxy	$L(y, h(\mathbf{x}))$	L(y, h(x)), loss function on discrete classes
\Lr	L(r)	L(r), loss defined on residual (reg) / margin (classif)
\lone	$ y-f(\mathbf{x}) $	L1 loss
\ltwo	$(y-f(\mathbf{x}))^2$	L2 loss
/ ± 2 w O	(y = J(x))	1000

\lbernoullimp	$\ln(1 + \exp(-y \cdot f(\mathbf{x})))$	Bernoulli loss for -1, +1 encoding
\lbernoullizo	$-y \cdot f(\mathbf{x}) + \log(1 + \exp(f(\mathbf{x})))$	Bernoulli loss for 0, 1 encoding
\lcrossent	$-y \log (\pi(\mathbf{x})) - (1-y) \log (1-\pi(\mathbf{x}))$ $(\pi(\mathbf{x}) - y)^2$	cross-entropy loss
\lbrier	$(\pi(\mathbf{x}) - y)^2$	Brier score
\risk	\mathcal{R}	R, risk
\riskbayes	\mathcal{R}^*	,
\riskf	$\mathcal{R}(f)$	R(f), risk
\riskdef	$\mathbb{E}_{y \mathbf{x}}\left(L\left(y,f(\mathbf{x})\right)\right)$	risk def (expected loss)
\riskt	$\mathcal{R}(oldsymbol{ heta})$	R(theta), risk
\riske	$\mathcal{R}_{ ext{emp}}$	R_emp, empirical risk w/o factor 1 / n
\riskeb	$ar{\mathcal{R}}_{ ext{emp}}$	R_emp, empirical risk w/ factor 1 / n
\riskef	$\mathcal{R}_{ ext{emp}}^{ ext{cmp}}(f)$	$R_{emp}(f)$
\risket	$\mathcal{R}_{ ext{emp}}^{ ext{c}}(oldsymbol{ heta})$	R_emp(theta)
\riskr	$\mathcal{R}_{ ext{reg}}$	R_reg, regularized risk
\riskrt	$\mathcal{R}_{ ext{reg}}(oldsymbol{ heta})$	R_reg(theta)
\riskrf	$\mathcal{R}_{ ext{reg}}(f)$	$R_{reg}(f)$
\riskrth	$\hat{\mathcal{R}}_{ ext{reg}}(oldsymbol{ heta})$	hat R_reg(theta)
\risketh	$\hat{\mathcal{R}}_{ ext{emp}}^{ ext{con}}(oldsymbol{ heta})$	hat R emp(theta)
\LL	\mathcal{L}°	L, likelihood
\LLt	$\mathcal{L}(oldsymbol{ heta})$	L(theta), likelihood
\LLtx	$\mathcal{L}(\hat{m{ heta}} \mathbf{x})$	L(theta x), likelihood
\log1	ℓ	l, log-likelihood
\loglt	$\ell(oldsymbol{ heta})$	l(theta), log-likelihood
\logltx	$\ell(oldsymbol{ heta} \mathbf{x})$	l(theta x), log-likelihood
\errtrain	$\operatorname{err}_{\operatorname{train}}$	training error
\errtest	$\mathrm{err}_{\mathrm{test}}$	test error
\errexp	$\overline{\mathrm{err}_{\mathrm{test}}}$	avg training error
\thx	$oldsymbol{ heta}^T\mathbf{x}$	linear model
\olsest	$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$	OLS estimator in LM

ml-ensembles

Macro	Notation	Comment
\bl	$b^{[\#1]}$	baselearner, default m
\blh	$\hat{b}^{[\#1]}$	estimated base learner, default m
\blx	$b^{[\#1]}({f x})$	baselearner, default m
\fM	$f^{[M]}(\mathbf{x})$	ensembled predictor
\fMh	$\hat{f}^{[M]}(\mathbf{x})$	estimated ensembled predictor
\ambifM	$\Delta\left(f^{[M]}(\mathbf{x})\right)$	ambiguity/instability of ensemble
\betam	$\beta^{[mu]1}$	weight of basemodel m
\betamh	$\hat{eta}^{[\#1]}$	weight of basemodel m with hat
\betaM	$\beta^{[M]}$	last baselearner
\fm	$f^{[\#1]}$	prediction in iteration m
\fmh	$\hat{f}^{[\#1]}$	prediction in iteration m
\fmd	$f^{[\#1-1]}$	prediction m-1
\fmdh	$\hat{f}^{[\#1-1]}$	prediction m-1
\errm	$\mathrm{err}^{[\#1]}$	weighted in-sample misclassification rate
\wm	$w^{[\#1]}$	weight vector of basemodel m
\wmi	$w^{[\#1](i)}$	weight of obs i of basemodel m
\thetam	$oldsymbol{ heta}^{[\#1]}$	parameters of basemodel m
\thetamh	$\hat{m{ heta}}^{[\#1]}$	parameters of basemodel m with hat
\blxt	$b(\mathbf{x}, \boldsymbol{\theta}^{[\#1]})$	baselearner, default m
\ens	$\sum_{\tilde{r}[\#1]}^{M} \beta^{[m]} b(\mathbf{x}, \boldsymbol{\theta}^{[m]})$	ensemble
\rmm	$\overline{\widetilde{r}}[\#1]$	pseudo residuals
\rmi	$\widetilde{r}^{[\#1](i)}$	pseudo residuals
\Rtm	$R_t^{[\#1]}$	terminal-region
\Tm	$T^{[\#1]}$	terminal-region
\ctm	$c_t^{[\#1]}$	mean, terminal-regions
\ctmh	$c_t^{[\#1]} \ \hat{c}_t^{[\#1]} \ \tilde{c}_t^{[\#1]}$	mean, terminal-regions with hat
\ctmt	$ ilde{c}_t^{[\#1]}$	mean, terminal-regions
\Lp	L'	-
\Ldp	L''	
\L pleft	$L'_{ m left}$	

ml-eval

Macro	Notation	Comment
\ntest	$n_{ m test}$	size of the test set
\ntrain	$n_{ m train}$	size of the train set
\ntesti	$n_{ m test,\#1}$	size of the i-th test set
\ntraini	$n_{ m train,\#1}$	size of the i-th train set
\Jtrain	$J_{ m train}$	index vector train data
\Jtest	$J_{ m test}$	index vector test data
\Jtraini	$J_{ m train,\#1}$	index vector i-th train dataset
\Jtesti	$J_{ m test,\#1}$	index vector i-th test dataset
\Dtraini	$\mathcal{D}_{ ext{train},\#1}$	D_train,i, i-th training set
\Dtesti	$\mathcal{D}_{ ext{test,\#1}}$	D_test,i, i-th test set
\JSpace	$\{1,\ldots,n\}^{\#1}$	space of train indices of size n_train
\JtrainSpace	$\{1,\ldots,n\}^{n_{\mathrm{train}}}$	space of train indices of size n_train
\JtestSpace	$\{1,\ldots,n\}^{n_{\mathrm{test}}}$	space of train indices of size n_test
\уЈ	$\mathbf{y}_{\#1}$	output vector associated to index J
\yJDef	$\left(y^{(J^{(1)})}, \dots, y^{(J^{(m)})}\right)$	def of the output vector associated to index J
\ JJ	$\dot{\mathcal{J}}$	cali-J, set of all splits
\JJset	$((J_{\text{train},1},J_{\text{test},1}),\ldots,(J_{\text{train},B},J_{\text{test},B}))$	$(Jtrain_1,Jtest_1) \dots (Jtrain_B,Jtest_B)$
\Itrainlam	$\mathcal{I}(\mathcal{D}_{ ext{train}},oldsymbol{\lambda})$	
\GE	GE	GE
\GEh	$\widehat{ ext{GE}}$	GE-hat
\GEfull	$\mathrm{GE}(\mathcal{I}, \boldsymbol{\lambda}, \#1, ho)$	GE full
\GEhholdout	$\widehat{\operatorname{GE}}_{J_{ ext{train}},J_{ ext{test}}}(\mathcal{I},oldsymbol{\lambda}, J_{ ext{train}} , ho)$	GE hat holdout
\GEhholdouti	$\widehat{\operatorname{GE}}_{J_{ ext{train},\#1},J_{ ext{test},\#1}}(\mathcal{I},oldsymbol{\lambda}, J_{ ext{train},\#1} , ho)$	GE hat holdout i-th set
\GEhlam	$\widehat{\mathrm{GE}}(\pmb{\lambda})$	GE-hat(lam)
\GEhlamsubIJrho	$\widehat{\operatorname{GE}}_{\mathcal{I},\mathcal{J}, ho}(oldsymbol{\lambda})$	GE-hat_I,J,rho(lam)
\GEhresa	$\widehat{\mathrm{GE}}(\mathcal{I},\mathcal{J}, ho,oldsymbol{\lambda})$	GE-hat_I,J,rho(lam)
\GErhoDef	$\lim_{n_{ ext{test}} o \infty} \mathbb{E}_{\mathcal{D}_{ ext{train}}, \mathcal{D}_{ ext{test}} \sim \mathbb{P}_{xy}} \left[ho \left(\mathbf{y}_{J_{ ext{test}}}, \mathbf{F}_{J_{ ext{test}}, \mathcal{I}(\mathcal{D}_{ ext{train}}, \boldsymbol{\lambda})} \right) \right]$	GE formal def
\agr	$\underset{\text{agr}}{\text{agr}} \longrightarrow \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{test}} \sim xy \left[P \left(J \text{ J}_{\text{test}}, \mathcal{D}_{\text{train}}, A \right) \right) \right]$	aggregate function
\GEf	$\operatorname{GE}\left(\hat{f}\right)$	GE of a fitted model
\GEfL	$\operatorname{GE}\left(\widehat{f},L ight)$	GE of a fitted model wrt loss L
(GEIL	. \ /.	
\Lyfhx	$L\left(y,\hat{f}(\mathbf{x})\right)$	pointwise loss of fitted model
\GEnf	$GE_n\left(\hat{f}_{\#1}\right)$	GE of a fitted model
\GEind	$GE_n(\mathcal{I}_{L,O})$	GE of inducer
\GED	$\mathrm{GE}_{\mathcal{D}}$	GE indexed with data
\EGEn	EGE_n	expected GE
\EDn	$\mathbb{E}_{ D =n}$	expectation wrt data of size n
\rhoL	$ ho_L$	perf. measure derived from pointwise loss
\F	F_{\perp}	matrix of prediction scores
\Fi	$oldsymbol{F}^{(\#1)}$	i-th row vector of the predscore mat
\FJ	$oldsymbol{F}_{\#1}$	predscore mat idxvec J

\FJf	$oldsymbol{F}_{J,f}$	predscore mat idxvec J and model f
\FJtestfh	$F_{J_{ ext{test}},\hat{f}}$	predscore mat idxvec Jtest and model f hat
\FJ testftrain	$oldsymbol{F}_{J_{ ext{test}},\mathcal{I}(\mathcal{D}_{ ext{train}},oldsymbol{\lambda})}$	predscore mat idxvec Jtest and model f
\FJtestftraini	$oldsymbol{F_{J_{ ext{test.}\#1},\mathcal{I}(\mathcal{D}_{ ext{train.}\#1},oldsymbol{\lambda})}}$	predscore mat i-th idxvec Jtest and model f
\FJfDef	$\left(f(\mathbf{x}^{(J^{(1)})}), \dots, f(\mathbf{x}^{(J^{(m)})})\right)$ $\bigcup_{m \in \mathbb{N}} (\mathcal{Y}^m \times \mathbb{R}^{m \times g})$	def of predscore mat idxvec J and model f
\preimageRho	$\bigcup_{m\in\mathbb{N}}\left(\mathcal{Y}^{m} imes\mathbb{R}^{m imes g} ight)$	Set of all datasets times HP space
\np	n_{+}	no. of positive instances
\nn	n_{-}	no. of negative instances
\rn	π	proportion negative instances
\rp	π_+	proportion negative instances
\tp	#TP	true pos
\fap	#FP	false pos (fp taken for partial derivs)
\tn	#TN	true neg
\fan	#FN	false neg

ml-feature-sel

$egin{array}{llll} & x_{j_0} \\ ext{xjEins} & x_{j_1} \\ ext{xl} & \mathbf{x}_l \\ ext{pushcode} \end{array}$	Macro	Notation	Comment
\mathbf{x}_l	\xjNull	x_{j_0}	
	\xjEins	x_{j_1}	
\pushcode	\xl	\mathbf{x}_l	
'I' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	\pushcode		

ml-gp

Macro	Notation	Comment
\fvec	Notation $ \begin{bmatrix} f\left(\mathbf{x}^{(1)}\right), \dots, f\left(\mathbf{x}^{(n)}\right) \end{bmatrix} $ f	function vector
\fv	f	function vector
\kv	k	cov matrix partition
\kxxp	$k\left(\mathbf{x},\mathbf{x}'\right)$	cov of x, x'
\kxij	$k\left(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}\right)$	$cov of x_i, x_j$
\mv	m	GP mean vector
\Kmat	K	GP cov matrix
\gaussmk	$\mathcal{N}(\mathbf{m}, \mathbf{K})$	Gaussian w/ mean vec, cov mat
\gp	$\mathcal{GP}\left(m(\mathbf{x}), k\left(\mathbf{x}, \mathbf{x}'\right)\right)$	Gaussian Process Definition
\ls	ℓ	length-scale
\sqexpkernel	$\exp\left(-\frac{\ \mathbf{x}-\mathbf{x}'\ ^2}{2\ell^2}\right)$	squared exponential kernel
\fstarvec	$\left[f\left(\mathbf{x}_{*}^{(1)} ight),\ldots,f\left(\mathbf{x}_{*}^{(m)} ight) ight]$	pred function vector
\kstar	\mathbf{k}_*	cov of new obs with x
\kstarstar	\mathbf{k}_{**}	cov of new obs
\Kstar	\mathbf{K}_*	cov mat of new obs with x
\Kstarstar	\mathbf{K}_{**}	cov mat of new obs
\preddistsingle	$f_* \mid \mathbf{x}_*, \mathbf{X}, \mathbf{f}$	predictive distribution for single pred
\preddistdefsingle	$\mathcal{N}(\mathbf{k}_*^T\mathbf{K}^{-1}\mathbf{f},\mathbf{k}_{**}-\mathbf{k}_*^T\mathbf{K}^{-1}\mathbf{k}_*)$	Gaussian distribution for single pred
\preddist	$f_* \mid \mathbf{X}_*, \mathbf{X}, \mathbf{f}$	predictive distribution
\preddistdef	$\mathcal{N}(\mathbf{K}_*^T\mathbf{K}^{-1}\mathbf{f},\mathbf{K}_{**}-\mathbf{K}_*^T\mathbf{K}^{-1}\mathbf{K}_*)$	Gaussian predictive distribution

ml-hpo

Macro	Notation	Comment
\Ilam	$\mathcal{I}_{\boldsymbol{\lambda}}$	inducer with HP
\LamS	$rac{{\cal I}_{oldsymbol{\lambda}}}{ ilde{oldsymbol{\Lambda}}}$	search space
\lami	$oldsymbol{\lambda}^{(\#1)}$	lambda i
\clam	$c(\boldsymbol{\lambda})$	c(lambda)
\clamh	$c(\hat{\boldsymbol{\lambda}})$	c(lambda-hat)
\lams	$c(\hat{oldsymbol{\lambda}}) \ oldsymbol{\lambda}^* \ \hat{oldsymbol{\lambda}}$	theoretical min of c
\lamh	$\hat{oldsymbol{\lambda}}$	returned lambda of HPO
\label{lamp}	λ^+	proposed lambda
\clamp	$egin{aligned} c(oldsymbol{\lambda}^+) \ \mathcal{A} \end{aligned}$	c of proposed lambda
\archive	\mathcal{A}	archive
\archivet	$\mathcal{A}^{[\#1]}$	archive at time step t
\tuner	${\mathcal T}$	tuner
\tunerfull	$\mathcal{T}_{\mathcal{I}, ilde{m{\Lambda}}, ho,\mathcal{J}}$	tuner with inducer, search space, perf measure, resampling strategy
\chlam	$\hat{c}(oldsymbol{\lambda})$	post mean of SM
\shlam	$\hat{\sigma}(oldsymbol{\lambda})$	post sd of SM
$\$ vhlam	$\hat{\sigma}^2(oldsymbol{\lambda})$	post var of SM
\ulam	$u(\boldsymbol{\lambda})$	acquisition function
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	λ^*	minimum of the black box function Psi
\metadata	$\left\{\left(oldsymbol{\lambda}^{(i)},\Psi^{[i]} ight) ight\}$	metadata for the Gaussian process
\lamvec	$(\lambda^{[1]},\ldots,\lambda^{[m_{\mathrm{init}}]})$	vector of different inputs
\minit	$m_{ m init}$	size of the initial design
\lambu	$\lambda_{ m budget}$	single lambda_budget component HP
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lambda_{ m fid}$	single lambda fidelity
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\lambda_{ ext{fid}}^{ ext{low}}$	single lambda fidelity lower
\lamfidu	$\lambda_{ m fid}^{ m upp}$	single lambda fidelity upper
\etahb	$\eta_{ m HB}$	HB multiplier eta
\costs	\mathcal{C}	costs
\Celite	$oldsymbol{ heta}^*$	elite configurations
\instances	\mathcal{I}	sequence of instances
\budget	\mathcal{B}	computational budget

ml-infotheory

Macro	Notation	Comment
\entx	$-\sum_{x\in\mathcal{X}}p(x)\cdot\log p(x)$	entropy of x
\dentx	$-\int_{\mathcal{X}} \widetilde{f}(x) \cdot \log f(x) dx$	diff entropy of x
\jentxy	$-\sum_{x\in\mathcal{X}}p(x,y)\cdot\log p(x,y)$	joint entropy of x, y
\jdentxy	$-\int_{\mathcal{X},\mathcal{Y}} f(x,y) \cdot \log f(x,y) dx dy$	joint diff entropy of x, y
\centyx	$-\sum_{x\in\mathcal{X}}^{\mathcal{X}} p(x) \sum_{y\in\mathcal{Y}} p(y x) \cdot \log p(y x)$	cond entropy $y x$
\cdentyx	$-\int_{\mathcal{X},\mathcal{Y}} f(x,y) \cdot \log f(y x) dx dy$	cond diff entropy $y x$
\xentpq	$-\sum_{x\in\mathcal{X}}^{n} p(x) \cdot \log q(x)$	cross-entropy of p, q
\kldpq	$D_{KL}(p\ q)$	KLD between p and q
\kldpqt	$D_{KL}(p\ q_{m{ heta}})$	KLD divergence between p and parameterized q
\explogpq	$\mathbb{E}_p\left[\log\frac{p(X)}{q(X)}\right]$	expected LLR of p, q (def KLD)
\sumlogpq	$\sum_{x \in \mathcal{X}} p(x) \cdot \log \frac{p(x)}{q(x)}$	expected LLR of p, q (def KLD)

ml-interpretable

Macro	Notation	Comment
\pert	$\tilde{\#1}^{\#2 \#3}$	command to express that for #1 the subset #2 was perturbed given subset #3
\fj	f_{j}	marginal function f_j, depending on feature j
\fnj	f_{-j}	marginal function f_{-j}, depending on all features but j
\fS	f_S	marginal function f_S depending on feature set S
\fC	f_C	marginal function f_C depending on feature set C
\fhj	\hat{f}_j	marginal function fh_j, depending on feature j
\fhnj	$egin{aligned} &f_C\ \hat{f}_j\ \hat{f}_{-j}\ \hat{f}_S\ &\hat{f}_C \end{aligned}$	marginal function fh_{-j} , depending on all features but j
\fhS	\hat{f}_S	marginal function fh_S depending on feature set S
\fhC	\hat{f}_C	marginal function fh_C depending on feature set C
\XSmat	\mathbf{X}_S	Design matrix subset
\XCmat	\mathbf{X}_C	Design matrix subset
\Xnj	\mathbf{X}_{-j}	Design matrix subset $-j = \{1,, j-1, j+1,, p\}$
\Scupj	$S \cup \{j\}$	coalition S but without player j
\Scupk	$S \cup \{k\}$	coalition S but without player k
\SsubP	$S \subseteq P$	coalition S subset of P
\SsubPnoj	$S \subseteq P \setminus \{j\}$	coalition S subset of P without player j
\SsubPnojk	$S \subseteq P \setminus \{j, k\}$	coalition S subset of P without player k
\phiij	$\hat{\phi}_{j}^{(i)}$ \mathcal{G}	Shapley value for feature j and observation i
\Gspace	$\mathcal{G}^{'}$	Hypothesis space for surrogate model
\neigh	$\phi_{\mathbf{x}}$	Proximity measure
\zv	\mathbf{z}	Sampled datapoints for surrogate
\Zspace	${\mathcal Z}$	Space of sampled datapoints
\Gower	d_G	Gower distance

ml-nn

Macro	Notation	Comment
\neurons	z_1,\ldots,z_M	vector of neurons
\hidz	${f z}$	vector of hidden activations
\biasb	b	bias vector
\biasc	c	bias in output
\wtw	\mathbf{w}	weight vector (general)
\Wmat	\mathbf{W}	weight vector (general)
\wtu	u	weight vector of output neuron
\Oreg	$R_{reg}(\theta X,y)$	regularized objective function
\Ounreg	$R_{emp}(\theta X,y)$	unconstrained objective function
\Pen	$\Omega(\theta)$	penalty
\Oregweight	$R_{reg}(w X,y)$	regularized objective function with weight
\Oweight	$R_{emp}(w X,y)$	unconstrained objective function with weight
\Oweighti	$R_{emp}(w_i X,y)$	unconstrained objective function with weight w_i
\Oweightopt	$J(w^* X,y)$	unconstrained objective function withoptimal weight
\Oopt	$\hat{J}(\theta X,y)$	optimal objective function
\Odropout	$J(\theta, \mu X, y)$	dropout objective function
\Loss	$L(y, f(\mathbf{x}, \boldsymbol{\theta}))$	
\Lmomentumnest	$L(y^{(i)}, f(x^{(i)}, \boldsymbol{\theta} + \varphi \boldsymbol{\nu}))$	momentum risk
\Lmomentumtilde	$L(y^{(i)}, f(x^{(i)}, \tilde{\boldsymbol{\theta}}))$	Nesterov momentum risk
\Lmomentum	$L(y^{(i)}, f(x^{(i)}, \theta))$	
\Hess	H	
\nub	ν	
\uauto	L(x, g(f(x)))	undercomplete autoencoder objective function
\dauto	$L(x, g(f(\tilde{x})))$	denoising autoencoder objective function
\deltab	δ	
\Lossdeltai	$L(y^{(i)}, f(\mathbf{x}^{(i)} + \boldsymbol{\delta} \boldsymbol{\theta}))$	
\Lossdelta	$L(y, f(\mathbf{x} + \boldsymbol{\delta} \boldsymbol{\theta}))$	

ml-survival

Macro	Notation	Comment
\Ti	$T^{(\#1)}$??
\Ci	$C^{(\#1)}$??
\oi	$o^{(\#1)}$??
\ti	$t^{(\#1)}$??
\deltai	$\delta^{(\#1)}$	
\Lxdi	$L\left(\boldsymbol{\delta}, f(\mathbf{x})\right)$	

ml-svm

Macro	Notation	Comment
\sv	SV	supportvectors
\sl	ζ	slack variable
\slvec	$\begin{pmatrix} \zeta^{(1)}, \zeta^{(n)} \\ \zeta^{(\#1)} \end{pmatrix}$	slack variable vector
\sli	3	i-th slack variable
\scptxi	$\left\langle oldsymbol{ heta},\mathbf{x}^{(i)} ight angle$	scalar prodct of theta and xi
\svmhplane	$\hat{y}^{(i)}\left(\langle \boldsymbol{ heta}, \mathbf{x}^{(i)} \rangle + \theta_0\right)$	SVM hyperplane (normalized)
\alphah	$\hat{\alpha}$	alpha-hat (basis fun coefficients)
\alphav	lpha	vector alpha (bold) (basis fun coefficients)
\alphavh	$\hat{m{lpha}}$	vector alpha-hat (basis fun coefficients)
\dualobj	$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle$	min objective in lin svm dual
\HS	Φ	H, hilbertspace
\phix	$\phi(\mathbf{x})$	feature map x
\phixt	$\phi(ilde{\mathbf{x}})$	feature map x tilde
\kxxt	$k(\mathbf{x}, ilde{\mathbf{x}})$	kernel fun x, x tilde
\scptxifm	$\left\langle oldsymbol{ heta}, \phi(\mathbf{x}^{(i)}) ight angle$	scalar prodct of theta and xi

ml-trees

Macro	Notation	Comment
\Np	\mathcal{N}	(Parent) node N
\Npk	\mathcal{N}_k	node N_k
\N1	\mathcal{N}_1	Left node N_1
\Nr	\mathcal{N}_2	Right node N_2
\pikN	$\pi_{\#1}^{(\mathcal{N})}$	class probability node N
\pikNh	$\hat{\pi}_{\#1}^{(\mathcal{N})}$ $\hat{\pi}(\mathcal{N}_1)$	estimated class probability node N
\pikNlh	"#1	estimated class probability left node
\pikNrh	$\hat{\pi}_{\#1}^{(\mathcal{N}_2)}$	estimated class probability right node