Project2

Student ID: 311512019 Name: 江柏霖

```
a. Source codes
    %% Clear the environment and the command line
    clc;
    close all;
    clear;
    %% read image
    kid_img = imread('kid.tif');
    fruit_img = imread('fruit.tif');
    [m,n] = size(kid_img);
    %% processing
    %padded image size 2m*2n
    GLPF = zeros(2*m,2*n);
    kid_img2 = zeros(2*m,2*n);
    fruit_img2 = zeros(2*m,2*n);
    % cutoff frequency
    d0 = 100*2;
    %set Gaussian LPF and HPF
    for i = 1:2*m
         for j = 1:2*n
              d = (i-m).^2+(j-n).^2;
              GLPF(i,j) = exp(-d/2/d0/d0);
              if(i \le m \&\& j \le n)
                   kid img2(i,j) = kid img(i,j);
                   fruit_img2(i,j) = fruit_img(i,j);
              end
         end
    end
    GHPF = 1-GLPF;
    % centering processing
    % multiply(-1)^(x+y)
    for i = 1:2*m
```

```
for j = 1:2*n
          kid img2(i,j) = kid_img2(i,j)*((-1)^(i+j-2));
          fruit img2(i,j) = fruit img2(i,j)*((-1)^(i+j-2));
     end
end
%use DFT of the image to multiply LPF or HPF
kid_dft_img = fft2(kid_img2);
fruit_dft_img = fft2(fruit_img2);
kid lpf img = kid_dft_img.*GLPF;
kid hpf img = kid dft img.*GHPF;
fruit_lpf_img = fruit_dft_img.*GLPF;
fruit hpf img = fruit dft img.*GHPF;
%the result is (-1)^(x+y)*Re{IDFT(result after LPF or HPF)}
kid lpf idft = real(ifft2(kid lpf img));
kid_hpf_idft = real(ifft2(kid_hpf_img));
fruit lpf idft = real(ifft2(fruit lpf img));
fruit_hpf_idft = real(ifft2(fruit_hpf_img));
% crop M*N image
kid_final_lpf_img = zeros(m,n);
kid_final_hpf_img = zeros(m,n);
fruit final lpf img = zeros(m,n);
fruit final hpf img = zeros(m,n);
for i = 1:m
     for j = 1:n
          kid final lpf img(i,j) = kid lpf idft(i,j)*((-1)^(i+j-2));
          kid final hpf img(i,j) = kid hpf idft(i,j)*((-1)^(i+j-2));
          fruit final lpf img(i,j) = fruit lpf idft(i,j)*((-1)^(i+j-2));
          fruit final hpf img(i,j) = fruit hpf idft(i,j)*((-1)^(i+j-2));
     end
end
```

```
kid_mag = abs(fftshift(fft2(kid_img)));
sortlist_kid = zeros(m,n/2);
kid_top25_freq_pair = zeros(25,2);
fruit_mag = abs(fftshift(fft2(fruit_img)));
sortlist_fruit = zeros(m,n/2);
fruit_top25_freq_pair = zeros(25,2);
for i = 1:m
     for j = 1:n/2
          sortlist_kid(i,j) = kid_mag(i,j);
          sortlist_fruit(i,j) = fruit_mag(i,j);
     end
end
[vk,indexk] = sort(sortlist kid(:),"descend");
[vf,indexf] = sort(sortlist fruit(:),"descend");
for i = 1:25
     if(mod(indexk(i),m)==0)
          rowk = m;
     else
          rowk = mod(indexk(i),m);
     end
     colk = ceil(indexk(i)/m);
     kid_top25_freq_pair(i,:) = [rowk,colk];
     if(mod(indexf(i),m)==0)
          rowf = m;
     else
          rowf = mod(indexf(i),m);
     end
     colf = ceil(indexf(i)/m);
     fruit top25 freq pair(i,:) = [rowf,colf];
end
%% output
figure(1);
imshow(kid_img,[]);
figure(2);
```

```
imshow(fruit_img,[]);
kid log FM = log(1+abs(fftshift(fft2(kid img))));
figure(3);
imshow((kid_log_FM),[]);
fig= gcf;
exportgraphics(fig, 'kid magnitude spectra.png', 'Resolution', 150);
fruit_log_FM = log(1+abs(fftshift(fft2(fruit_img))));
figure(4);
imshow((fruit log FM),[]);
fig= gcf;
exportgraphics(fig, 'fruit magnitude spectra.png', 'Resolution', 150);
figure(5);
imshow(GLPF,[]);
fig= gcf;
exportgraphics(fig, 'Magnitude responses of Gaussian LPF.png', 'Resolution', 150);
figure(6);
imshow(GHPF,[]);
f= gcf;
exportgraphics(fig, 'Magnitude responses of Gaussian HPF.png', 'Resolution', 150);
figure(7);
imshow(kid_final_lpf_img,[]);
fig= gcf;
exportgraphics(fig, 'kid after Gaussian LPF.png', 'Resolution', 150);
figure(8);
imshow(kid final hpf img,[]);
fig= gcf;
exportgraphics(fig, 'kid after Gaussian HPF.png', 'Resolution', 150);
figure(9);
imshow(fruit final lpf img,[]);
fig= gcf;
exportgraphics(fig, 'fruit after Gaussian LPF.png', 'Resolution', 150);
figure(10);
imshow(fruit final hpf img,[]);
fig= gcf;
```

exportgraphics(fig,'fruit after Gaussian HPF.png','Resolution',150);

b. Fourier magnitude spectra (in Log scale)

c. Magnitude response of Gaussian LPF and HPF

d. Output image

1. kid.tiff

2. fruit.tiff

e. Tables of top 25 GFT frequencies (u, v) in b)

1. kid.tiff top 25 GFT frequencies

	u	V
1	302	300
2	301	300
3	300	300
4	299	300
5	298	300
6	300	298
7	303	299
8	299	299
9	299	295
10	303	300
11	303	297
12	300	299
13	305	299
14	317	299
15	300	295
16	302	297
17	318	299
18	297	297
19	297	299
20	317	298
21	301	295
22	299	293
23	298	297
24	299	298
25	302	298

2. fruit.tiff top 25 GFT frequencies

	u	V
1	301	300
2	302	298
3	301	299
4	297	300
5	304	298
6	301	298
7	300	300
8	296	300
9	303	298
10	298	299
11	302	295
12	299	300
13	301	296
14	303	300
15	305	300
16	304	300
17	297	295
18	300	299
19	304	299
20	300	297
21	297	297
22	307	300
23	298	297
24	300	298
25	303	296