Using
$$X = X^i \partial i$$

 $\partial_X f = D_X f = df(X)$
 $= \partial_{X^i e_i} f$
 $= \partial_{Z^i X^i e_i} f$
 $= \partial_{Z^i X^i} \partial_{e_i} f$
 $= \partial_{Z^i X^i} \partial_{Z^i} \partial_{$

Brickly:

$$X = (2,0) = 2 dx$$

$$Y = (3,29) = y^2 dx + 29 dy$$

$$(2x) - 2y dx$$

$$= 2 dx (2x) - y^2 dx (2x) - 2y dy (2x)$$

$$= 2 dx (y^2 2x + 2y 2y +)$$

$$-y^2 2x (2x) - 2y 2y (2x 2x +)$$

$$= 2 y^2 2x^2 + 2y 2y + 2y 2y +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y + 2y 2x +$$

$$= (2x) 2y - y^2 2x + 2y 2y +$$

$$= (2x) 2y - y^2 2x + 2y 2y +$$

$$= (2x) 2y - y^2 2x + 2y 2y +$$

$$= (2x) 2y - y^2 2x + 2y 2y +$$

$$= (2x) 2y - y^2 2x + 2y 2y +$$

$$= (2x) 2y - y^2 2x +$$

$$= (2x) 2x +$$

LIE BLACKET EG $X = \frac{1}{2} \Im x \qquad X^2 = 0$ Y= zydx + y²dy $[x,\lambda] = (x;\beta;\lambda;-\lambda;\beta;\chi)$ j=1: X;9: Y' - Y;9: X' = X,9'A, + X3,9'A, - Y'D, X' - Y'D2 Y2 $= x \partial_x (xy) - xy \partial_x (x) - y^2 \partial_y (x)$ = xy - xy = 0?=5: X,9'A5 + X59'A3 - A,9'X3 - A,9'X5 $= \chi g \chi (\lambda_s) = 0$:. [x,x] = 0

NOTE: 3x3y4= 2y 0x4

Naturalit y

$$\partial_{x}(4, \varphi)(x) = df_{e(x)}d\varphi(x)$$

$$= \partial_{e(x)}f(\varphi(x))$$

$$\partial_{Y} (f \cdot e)(x) = \partial_{x} e(y) f(e(x))$$
Let $g = \partial_{x} e(y) f(e(x))$

$$\therefore \partial_{Y} (f \cdot e)(x) = g(e(x))$$

$$\therefore \partial_{X} \left[\partial_{x} e(y) + (e(x)) \right]$$

$$\partial_{X} \left[g \cdot e(x) \right]$$

$$\left[\partial_{x} e(x) + \partial_{y} e(x) \right]$$

TORSION

Swooth Families of Linear Maps

Given
$$X \in P(TS)$$
 $T(x) \in P(TS)$
 $T(x) \in C^{\infty}(S \rightarrow P^{3})$
 $T(x) (p) \in TpS$

Can define $T(p) : TpS \rightarrow TpS$
 C^{∞} finity $V \mapsto T(x)(p)$

where $V \in TpS$, $X \in P(TS)$

such that $X(p) = V$

Note: If X_{1}, X_{2} are s.f. $X_{1}(p) = Y_{2}(p)$

Hen $T(X_1)(p) = X_2(p)$ Hen $T(X_1)(p) = T(X_2)(p)$

Nok in general $T(Y_1) \neq T(Y_2)$ $\vdots \quad \nabla_X \left[T(Y_1)\right] \neq \nabla_X \left[T(Y_2)\right]$

$$D_{\partial z} \left[M \left(z e_{i} \right) \right] = \left[2 z y e_{i} \right]$$

$$\left[\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(x e_{i} \right) \right] = \left[\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(x e_{i} \right) \right] = \left[\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(x e_{i} \right) \right]$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left(e_{i} \right) \right)$$

$$= \left(\frac{1}{2} \sum_{i=1}^{N} M_{i} \left($$

$$D_{\partial x} M \int (xe_i) = D_{\partial x} [M(xe_i)]$$

$$- M(D_{\partial x}(xe_i))$$
Generalization
$$D_{erivatives} \text{ of vector}$$

$$4ields$$

$$d^24(X_1Y) + Q_Y(Q_X4)$$

$$d^2f = d(df)$$