Exercício 01

Renan Salles de Freitas CPE 723 - Otimização Natural

11 de março de 2018

Exercício 1.a.

$$\int xe^{-x}dx = \int -xd(e^{-x}) = -xe^{-x} + \int e^{-x}dx$$
$$\int xe^{-x}dx = -xe^{-x} - e^{-x} = -e^{-x}(x+1)$$
$$\int_0^1 xe^{-x}dx = \frac{e-2}{e} = \approx 0.26424$$

Exercício 1.b. Segue o código fonte do exercício, em Matlab:

```
% Exercicio 1.1.b
   x = rand(10,1);
    = sum(x.*exp(-x))/length(x);
5
   x = [0.5228;
          0.0987;
6
          0.5349;
7
          0.9142;
8
          0.4430;
9
          0.3181;
10
          0.1843;
11
          0.8165;
12
          0.6085;
13
          0.7067];
14
15
  s = 0.2789;
16
```

Exercício 2. Considere:

$$f(x,y) = \begin{cases} 1 & x^2 + y^2 \le 1\\ 0 & x^2 + y^2 \ge 1 \end{cases}$$

E considere o domínio $D = [-1, 1] \times [-1, 1]$. Temos que:

$$\int_{D} f(x, y) dx dy = \pi$$

Podemos estimar o valor de π pelo método de integração de Monte Carlo, escolhendo N números de maneira aleatória em D:

$$\pi \approx \frac{4}{N} \sum_{i=1}^{N} f(x_i, y_i)$$

Usando N=20, obtivemos como resultado $\pi=2.8$. Usando N=1.000.000, obtivemos $\pi=3.1411$. O resultado se aproxima cada vez mais de π quanto maior for o valor de N. Esse resultado é provado pela lei dos grandes números: quanto mais tentativas são realizadas, mais a probabilidade da média aritmética dos resultados observados irá se aproximar da probabilidade real.

Exercício 3.a. Segue o código fonte do exercício, em Matlab:

```
% Exercicio 03
   clear all
   clc
4
5
   x0 = 2;
   number_of_iteration = 100000;
   epsilon = 0.1;
8
   x = zeros(number_of_iteration, 1);
10
11
   x(1) = x0;
12
   J = @(n) n.^2;
13
14
   T = 0.1;
15
   B = O(n) \exp(-n/T);
16
17
   counter = 1;
18
19
   while counter < number_of_iteration</pre>
       r = 2 * rand - 1;
20
       xk = x(counter) + epsilon * r;
21
       dJ = J(xk) - J(x(counter));
22
       counter = counter + 1;
^{23}
```

```
if dJ < 0
^{24}
           x(counter) = xk;
^{25}
26
       else
           a = rand;
27
           if B(dJ) > a
28
                x(counter) = xk;
^{29}
           else
30
                x(counter) = x(counter - 1);
31
           end
32
       end
  end
34
35
  figure
36
  plot(1:length(x),x)
37
38 title('Graph of states')
39 | xlabel('iteration')
  ylabel('states')
  path_e0 = strcat('../figs/ex3_','states','.eps');
  print(path_e0,'-depsc2','-painters')
42
43
  figure
44
45 | plot(1:length(x),J(x))
46 title('Graph of cost function (J)')
47 | xlabel('iteration')
  ylabel('J')
  path_e0 = strcat('../figs/ex3_','j','.eps');
  print(path_e0,'-depsc2','-painters')
```


Exercício 3.b. Resolução de dez iterações do algoritmo:

$$x_0 = 2$$

$$r = -0.9091$$

$$x_1 = x_0 + 0.1 * (-0.9091) = 1.9091$$

$$\Delta J = x_1^2 - x_0^2 = -0.3554 < 0$$

$$x_1 = 1.9091$$
(1)

$$x_{1} = 1.9091$$

$$r = -0.3739$$

$$x_{2} = x_{1} + 0.1 * (-0.9975) = 1.8717$$

$$\Delta J = x_{2}^{2} - x_{1}^{2} = -0.1414 < 0$$

$$x_{2} = 1.8717$$
(2)

X_k	\mathbf{r}	\hat{X}	ΔJ	$e^{-\frac{\Delta J}{T}}$	a	X_{k+1}
2	-0.9091	1.9091	-0.3554	-	-	1.9091
1.9091	-0.3739	1.8717	-0.1414	-	-	1.8717
1.8717	0.8264	1.9543	0.3162	0.0424	0.5054	1.8717
1.8717	0.8098	1.9527	0.3097	0.0452	0.1342	1.8717
1.8717	-0.3808	1.8336	-0.1411	-	-	1.8336
1.8336	-0.4297	1.7906	-0.1557	-	-	1.7906
1.7906	0.2195	1.8126	0.0791	0.4535	0.4008	1.8126
1.8126	0.2301	1.8356	0.0839	0.4320	0.9469	1.8126
1.8126	0.6654	1.8791	0.2456	0.0857	0.4103	1.8126
1.8126	0.0788	1.8205	0.0286	0.7509	0.0656	1.8205

Exercício 4. A função custo (J) pode ser vista na figura 1. Segue o código fonte do exercício, em Matlab:

```
% Exercicio 04.b
  clear all
3
  clc
4
5
6 \times 0 = 0;
  number_of_iteration = 100;
  number_of_temperature_iteration = 8;
  epsilon = 0.1;
  TO = 1;
10
  T = T0;
11
12
13 x = zeros(number_of_iteration * number_of_temperature_iteration, 1);
```

```
x(1) = x0;
14
15
   J = Q(n) - n + 100 * (n - 0.2).^2 .* (n - 0.8).^2;
16
17
  B = Q(n,t) \exp(-n/t);
18
19
   counter = 1;
20
   counter_temperatures = 1;
21
   Jmin = J(x(counter));
   xmin = x(counter);
   while counter_temperatures <= number_of_temperature_iteration</pre>
^{24}
       while counter < number_of_iteration * counter_temperatures</pre>
25
            r = randn;
26
            xk = x(counter) + epsilon * r;
27
            Jxk = J(xk);
28
            dJ = Jxk - J(x(counter));
29
            counter = counter + 1;
30
            if dJ < 0
31
                x(counter) = xk;
32
            else
33
                a = rand;
34
                if B(dJ,T) > a
35
                     x(counter) = xk;
36
37
                else
                     x(counter) = x(counter - 1);
38
                end
39
            end
40
            if Jxk < Jmin
41
                Jmin = Jxk;
42
                xmin = xk;
43
            end
44
45
       end
       counter_temperatures = counter_temperatures + 1;
46
       T = T0 / log2(counter_temperatures + 1);
47
   end
48
49
  figure
50
  plot(1:length(x),x)
51
  title('Graph of states')
  xlabel('iteration')
   ylabel('states')
54
   path_e0 = strcat('../figs/ex4b_', 'states', '.eps');
55
   print(path_e0,'-depsc2','-painters')
56
57
58 | figure
  plot(1:length(x),J(x))
60 title ('Graph of cost function (J)')
```

```
klabel('iteration')
| xlabel('jteration') |
| ylabel('J') |
| path_e0 = strcat('../figs/ex4b_','j','eps');
| print(path_e0,'-depsc2','-painters')
```


Figura 1: Gráfico da função J

Obtivemos $x_{\min}=0.8135$ e $J(x_{\min})=-0.8066$. Calculando as primeiras iterações para T=1 e $x_0=0$

X_k	\mathbf{r}	\hat{X}	ΔJ	$e^{-\frac{\Delta J}{T}}$	a	X_{k+1}
0	-0.6576	-0.0658	2.7998	0.0608	0.1627	0
0	-0.7593	-0.0759	3.3574	0.0348	0.6375	0
0	0.8124	0.0812	-1.9126	-	-	0.0812
0.0812	0.0695	0.0882	-0.1023	-	-	0.0882
0.0882	-1.8337	-0.0952	6.5316	0.0015	0.8828	0.0882
0.0882	1.8274	0.2709	-0.6752	-	-	0.2709
0.2709	0.6541	0.3363	0.1934	0.8242	0.2174	0.3363
0.3363	-1.5448	0.1818	-0.2324	-	-	0.1818
0.1818	-0.3751	0.1443	0.1583	0.8536	0.7199	0.1443
0.1443	0.2077	0.1651	-0.1050	-	-	0.1651

Vale observar como o algoritmo oscila no mínimo local, mas pode alcançar o mínimo global, como na iteração 8.

Exercício 5. A função que queremos minimizar é a Rosenbrock function, descrita com:

$$f(x,y) = (1-x)^2 + 100(y-x^2)^2$$

O mínimo da função se encontra em (x,y) = (1,1) e f(x,y) = 0. Modificamos o algoritmo SA para vetores de duas dimensões, como pode ser visto abaixo:

```
% Exercicio 05
2
  clear all
3
  clc
4
  x0 = [0, 0];
   number_of_iteration = 100;
  number_of_temperature_iteration = 10;
   epsilon = 0.1;
9
  T0 = 1;
10
   T = TO;
11
12
   x = zeros(number_of_iteration * number_of_temperature_iteration, 2);
13
   x(1,:) = x0;
14
15
   J = Q(n) (1 - n(:,1)).^2 + 100 * (n(:,2) - n(:,1).^2).^2;
16
17
   B = 0(n,t) \exp(-n/t);
18
19
20
   counter = 1;
   counter_temperatures = 1;
21
   Jmin = J(x(counter,:));
^{22}
   xmin = x(counter,:);
23
   while counter_temperatures <= number_of_temperature_iteration</pre>
24
       while counter < number_of_iteration * counter_temperatures</pre>
25
            r = 2 * rand(1,2) - 1;
26
            xk = x(counter,:) + epsilon * r;
27
            Jxk = J(xk);
28
            dJ = Jxk - J(x(counter,:));
29
            counter = counter + 1;
30
            if dJ < 0
31
                x(counter,:) = xk;
32
            else
33
                a = rand;
34
                if B(dJ,T) > a
35
                     x(counter,:) = xk;
36
                else
37
                     x(counter,:) = x(counter - 1,:);
38
                end
39
            end
40
            if Jxk < Jmin
41
                Jmin = Jxk;
42
```

```
xmin = xk;
43
           end
44
45
       end
       counter_temperatures = counter_temperatures + 1;
46
       T = T0 / log2(counter_temperatures + 1);
47
   end
48
49
   figure
50
  plot(1:length(x),x)
51
   title('Graph of states')
   xlabel('iteration')
53
   ylabel('states')
54
   path_e0 = strcat('../figs/ex5_','states','.eps');
55
  print(path_e0,'-depsc2','-painters')
56
57
  figure
58
  plot(1:length(x),J(x))
  title('Graph of cost function (J)')
  xlabel('iteration')
61
   ylabel('J')
62
  path_e0 = strcat('../figs/ex5_','j','.eps');
63
  print(path_e0,'-depsc2','-painters')
```


Obtivemos $x_{\min} = (1.0168, 1.0311) e J(x_{\min}) = 0.001.$