UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Homework 10

Fall 2023

1. Reversibility of CTMCs

We say that a CTMC with transition rate matrix Q and distribution π is reversible if π and Q satisfy the detailed balance equations

$$\pi(i) \cdot q(i,j) = \pi(j) \cdot q(j,i) \quad \forall i, j \in S.$$

Show that if π is a reversible distribution for a CTMC, then π is also a stationary distribution for the chain, and moreover the embedded jump chain is also reversible. *Remark*: the converse is also true — the CTMC is reversible if and only if the embedded chain is reversible.

2. Jump Chain Stationary Distribution

Use properties of transient states and the jump chain to find the stationary distribution of this CTMC.

3. M/M/2 Queue

A queue has Poisson arrivals with rate λ and two servers with i.i.d. Exponential(μ) service times. The two servers work in parallel: when there are at least two customers in the queue, two are being served; when there is only one customer, only one server is active. Let X_t be the number of customers either in the queue or in service at time t.

- a. Argue that the process $(X_t)_{t\geq 0}$ is a Markov process, and draw its state transition diagram.
- b. Find the range of values of μ for which the Markov chain is positive recurrent. For this range of values, calculate the stationary distribution of the Markov chain.