M 361K Homework 1

Ishan Shah

September 15, 2022

Section 2.1

Let $a, b \in \mathbb{R}$. Prove the following theorems:

1a. If a + b = 0, then b = -a.

Proof.

$$a + b = 0$$

 $a + (-a) + b = 0 + (-a)$ (A4)
 $0 + b = 0 + (-a)$
 $b = -a$

2b. (-a) * (-b) = a * b.

Proof.

$$(-a) * (-b) = a * b$$

$$(-1 * a) * (-1 * b) = 1 * a * 1 * b$$

$$(-1 * -1) * (a * b) = (1 * 1) * (a * b)$$

$$1 * (a * b) = 1 * (a * b)$$

$$= a * b$$

2c. 1/(-a) = -(1/a).

Proof. We can use the proof from **2b** to simplify the negative signs.

$$1/(-a) = -(1/a)$$
$$1 = (-a) * (-1/a)$$
$$1 = a * (1/a)$$

$$1 = 1$$
$$1/(-a) = -(1/a)$$

5. If $a \neq 0$ and $b \neq 0$, 1/(ab) = (1/a)(1/b).

Proof. We need to show that (1/a)(1/b)*(ab) = 1 and (ab)*(1/a)(1/b) = 1.

$$(1/a)(1/b) * (ab) = (1/a)(1/b) * (ab)$$

$$= (1/a) * (1/b) * (a * b)$$

$$= (1/a * a) * (1/b * b) (M4)$$

$$= 1 * 1$$

$$= 1$$

$$(ab) * (1/a)(1/b) = (ab) * (1/a)(1/b)$$

$$= (a * b) * (1/a) * (1/b)$$

$$= (a * 1/a) * (b * 1/b) (M4)$$

$$= 1 * 1$$

$$= 1$$

Using the existence of reciprocals property,

$$1/(ab) = (1/a)(1/b)$$

18. If for every $\epsilon > 0$ we have $a \le b + \epsilon$, then $a \le b$.

Proof. Suppose not. Suppose that b < a. Then, 0 < a - b. Let $\epsilon = \frac{a - b}{2}$. Then,

$$a \le b + \frac{a-b}{2}$$

$$a \le \frac{a+b}{2}$$

$$2a \le a+b$$

$$a < b$$

We have that $a \leq b$ and b < a, which is a contradiction. Therefore, $a \leq b$.

Section 2.3

- 5. Find the infimum and supremum, if they exist, of each of the following sets:
 - (a) $A := \{x \in \mathbb{R} : 2x + 5 > 0\}$

$$2x + 5 > 0$$
$$2x > -5$$
$$x > -\frac{5}{2}$$

- Infimum: $-\frac{5}{2}$
- Supremum: DNE
- (b) $B := \{x \in \mathbb{R} : x + 2 \ge x^2\}$

$$x + 2 \ge x^{2}$$

$$x^{2} - x - 2 \le 0$$

$$(x + 1)(x - 2) \le 0$$

We have that $-1 \le x \le 2$.

- Infimum: −1
- Supremum: 2
- (c) $C := \{x \in \mathbb{R} : x < 1/x\}$

$$x < \frac{1}{x}$$

$$x - \frac{1}{x} < 0$$

$$\frac{x^2 - 1}{x} < 0$$

$$\frac{(x+1)(x-1)}{x} < 0$$

This is upper bounded by 1.

- Infimum: DNE
- Supremum: 1
- (d) $D := \{x \in \mathbb{R} : x^2 2x 5 < 0\}$

$$x^{2} - 2x - 5 < 0$$
$$(x - (1 + \sqrt{6}))(x - (1 - \sqrt{6})) < 0$$

We have that $1 - \sqrt{6} < x < 1 + \sqrt{6}$.

- Infimum: $1 \sqrt{6}$
- Supremum: $1+\sqrt{6}$

7. If a set $S \subseteq \mathbb{R}$ contains one of its upper bounds, show that this upper bound is the supremum of S .
<i>Proof.</i> Let S be any nonempty subset of R with some upper bound u . By the completeness
axiom, there exists some least upper bound sup S. Then, sup $S \leq u$ by the definition of
supremum. Since S contains u, we have that $u \leq \sup S$. Therefore, $\sup S = u$.

10. Show that if A and B are bounded subsets of \mathbb{R} , then $A \cup B$ is a bounded set. Show that $\sup(A \cup B) = \sup\{\sup A, \sup B\}$

Proof. Let $a = \sup A$, $b = \sup B$, and $c = \sup\{a, b\}$. Then, c is an upper bound of $A \cup B$. That is, $\forall x \in A, x \leq a \leq c$ and $\forall x \in B, x \leq b \leq c$. Let d be any upper bound of $A \cup B$. Then, $a \leq d$ and $b \leq d$. Therefore, $c \leq d$. Therefore, $c \in d$ is the supremum of $A \cup B$ and $\sup(A \cup B) = \sup\{\sup A, \sup B\}$.

Section 2.5

2. If $S \subseteq \mathbb{R}$ is nonempty, show that S is bounded if and only if there exists a closed, bounded interval I such that $S \subseteq I$.

Proof. Suppose S is bounded. Then, S has an lower bound a and a upper bound b. That is, $\forall x \in S, a \leq x \leq b$, so $x \in [a,b]$. Therefore, $S \subseteq I$ where I = [a,b].

Suppose there exist a closed, bounded interval I = [a, b] such that $S \subseteq I$. Then, $\forall x \in S, x \in I$, so $a \le x \le b$. Therefore, S is bounded above and below.

Section 3.1

4. For any $b \in \mathbb{R}$, prove that $\lim(b/n) = 0$.

Proof. If b=0, the limit is obviously 0. When $b\neq 0$, we have that for any $\epsilon>0$, $\frac{\epsilon}{|b|}>0$. We know \exists some n_0 such that $\frac{1}{n_0}<\frac{\epsilon}{|b|}$. $\forall n\geq n_0, \frac{1}{n}<\frac{\epsilon}{|b|}$, so $|\frac{b}{n}-0|<\epsilon, \forall n\geq n_0$. Therefore, $\lim(b/n)=0$.

8. Prove that $\lim(x_n) = 0$ if and only if $\lim(|x_n|) = 0$. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n) .

Proof. $|x_n - 0| = ||x_n| - 0|$. Thus, for $\epsilon > 0$, $|x_n - 0| < \epsilon$ if and only if $||x_n| - 0| < \epsilon$. This implies that $\lim_{n \to \infty} (x_n) = 0$ if and only if $\lim_{n \to \infty} (|x_n|) = 0$.

An example of this is the sequence $x_n = \{1, -1, 1, -1, \dots\}$. This sequence is not convergent, but $|x_n| = \{1, 1, 1, 1, \dots\}$ is convergent.

13. Show that $\lim_{n \to \infty} (1/3^n) = 0$.

Proof. Since $n \leq 3^n \iff \frac{1}{3^n} \leq \frac{1}{n}$, we have that

$$\left|\frac{1}{3^n} - 0\right| \le \frac{1}{n}$$

Because we know that $\lim_{n \to \infty} \frac{1}{n} = 0$, we have that $\lim_{n \to \infty} \frac{1}{3^n} = 0$.

Section 3.2

- **2.** Give an example of two divergent sequences X and Y such that:
 - (a) Their sum X + Y converges.
 - (b) Their product XY converges.

Proof. Let
$$X = \{1, 0, 1, 0, 1, ...\}$$
 and $Y = \{0, 1, 0, 1, 0, ...\}$. Then, $X + Y = \{1, 1, 1, 1, 1, ...\}$ and $XY = \{0, 0, 0, 0, 0, ...\}$. Thus, both $X + Y$ and XY converge.

7. If (b_n) is a bounded sequence and $\lim(a_n) = 0$, show that $\lim(a_n b_n) = 0$. Explain why **Theorem 3.2.3** cannot be used.

Proof. Suppose that (b_n) is a bounded sequence and $\lim(a_n) = 0$. Now, let $|b_n| \leq M$ for some $M \geq 0$. Then, $|a_n b_n - 0| = |a_n b_n| = |a_n||b_n| \leq M|a_n|$. Since $\lim(a_n) = 0$, we have that $\lim(a_n b_n) = 0$.

Remark. Theorem 3.2.3 cannot be used here because it only applies when both sequences converge. We know that a_n is convergent, but b_n is not necessarily convergent since not all bounded sequences converge.

22. Suppose that (x_n) is a convergent sequence and (y_n) is such that for any $\epsilon > 0$ there exists M such that $|x_n - y_n| < \epsilon$ for all $n \ge M$. Does it follow that (y_n) is convergent?

Proof. We have that $|x_n - y_n| < \epsilon = |(y_n - x_n) - 0| < \epsilon$. This means that $\lim(y_n - x_n) = 0$. We also know that $y_n = (y_n - x_n) + x_n$. Because x_n is convergent, this means that $|(y_n - x_n) + x_n| < \epsilon \implies |y_n| < \epsilon$ so (y_n) is convergent.