Useful functions

These functions defines the system that will be studied.

Definition of the Atom states

```
There are 3 states: 1 - ground; 2 - excited; 3 - Rydberg.
In[1]:= AtomState = {"1", "2", "3"};
     SystemState[n_] := Flatten[Table[AtomState, {p, 1, n}]]
     SystemState[2]
Out[3]= \{1, 2, 3, 1, 2, 3\}
\ln[4]:= AvailableStates[n_] := Sort[Permutations[SystemState[n], {n, n}]]
    AvailableStates[2]
\texttt{Out} \texttt{[5]} = \{\{1,1\},\{1,2\},\{1,3\},\{2,1\},\{2,2\},\{2,3\},\{3,1\},\{3,2\},\{3,3\}\}
In[6]:= Anagram[n_] := Module[{liste = AvailableStates[n]},
       (* take the list of available states for n atoms *)
       Module[{counts = Table[Table[ (* make a table containing ... *)
             Count[i, State], {State, AtomState}]
            (* ... the number of times a "State" appears in ... *)
            , {i, liste}]}, (* ... each available configuration *)
        Table[(* make the output table containing ... *)
         First[Position[counts, j]][[1]] (* ... the position
           of the first occurance of an equivalent configuration *)
          , {j, counts}]
       ]
      ]
In[7]:= Anagram[2]
Out[7]= \{1, 2, 3, 2, 5, 6, 3, 6, 9\}
```

Density matrix

Then, one defines the density matrix of N atoms system.

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```

```
In[10]:= SymRules2[Num_] := Module[{anagram = Anagram[Num]},
           Flatten[
            SymRules2[1]
 \text{Out}[11] = \{ \rho[1, 1][t] \rightarrow \rho[1, 1][t], \, \rho[2, 1][t] \rightarrow \rho[2, 1][t], \, \rho[3, 1][t] \rightarrow \rho[3, 1][t] \}
         \rho[1, 2][t] \rightarrow \rho[1, 2][t], \rho[2, 2][t] \rightarrow \rho[2, 2][t], \rho[3, 2][t] \rightarrow \rho[3, 2][t],
         \rho[1, 3][t] \rightarrow \rho[1, 3][t], \rho[2, 3][t] \rightarrow \rho[2, 3][t], \rho[3, 3][t] \rightarrow \rho[3, 3][t]
  ln[12]:= Dens3Level[Num_] := Array[\rho, {3^{Num}, 3^{Num}}];
        Dens[Num_] := Block[{DensityMat},
           DensityMat = Array [\rho, \{3^{\text{Num}}, 3^{\text{Num}}\}];
           Table [DensityMat[[x, y]][t], \{x, 1, 3^{Num}\}, \{y, 1, 3^{Num}\}]
        Dens[1] // MatrixForm
Out[14]//MatrixForm=
         ^{\prime}
ho[1, 1][t] 
ho[1, 2][t] 
ho[1, 3][t] 
ho
         \rho[2, 1][t] \rho[2, 2][t] \rho[2, 3][t]
         \{\rho[3, 1][t] \ \rho[3, 2][t] \ \rho[3, 3][t] \}
```

Rydberg blockade

Here one evaluates the number of atomes in Rydberg states

```
In[15]:= FindStates[Num_, State_, Val_] := Block[{p, q},
          p = AvailableStates[Num];
          q = Length[p];
          Flatten[Position[Table[Count[p[[m]], State] == Val, {m, 1, q}], True]]]
\label{eq:continuity} \inf\{i \in \Pr[\operatorname{Num}_{-}, \operatorname{Nryd}_{-}] := \operatorname{Sum}[\rho[i, i][t], \{i, \operatorname{FindStates}[\operatorname{Num}, "3", \operatorname{Nryd}]\}];
       Pr[2, 0]
Out[17]= \rho[1, 1][t] + \rho[2, 2][t] + \rho[4, 4][t] + \rho[5, 5][t]
|n[i8]| = Px[Num_, Nryd_, state_] := Sum[\rho[i, i][t], \{i, FindStates[Num, state, Nryd]\}];
       FindStates[2, "2", 2][[1]]
       5
```

Liouville - von Neumann equation (Lindbald form)

In this section, we will write the master equation of Molmer's paper (equation (1) of 1302.0682v1 on ariv.org).

Matrix definition

The main part of this section is here, we compute the σ matrices defined in Molmer's paper. Then, we easly define the operators using these matices.

```
In[19]:= (* The famous \sigma_{uv}^{~k} matrix of Molmer's paper: transition operator for atom j *)
     \sigma\mu\nu[Num_, k_, mu_, nu_] := Table[
         If[
          i[[k]] == mu (* initial state *)
           j[[k]] = nu (* final state *)
           Drop[i, \{k\}] == Drop[j, \{k\}] (* the other atoms does not change *)
          , 1, 0], {i, AvailableStates[Num]}, {j, AvailableStates[Num]}];
```

Hamiltonian

```
\log 20 = H[Num] := Sum[\Omega 1 / 2 * (\sigma \mu \nu [Num, i, "1", "2"] + \sigma \mu \nu [Num, i, "2", "1"]) +
               \Omega^2/2*(\sigma\mu\nu[\text{Num}, i, "2", "3"] + \sigma\mu\nu[\text{Num}, i, "3", "2"]), \{i, \text{Num}\}];
```

Detunings

```
\log 1 = \omega 0 \text{ [Num]} := \text{Table} \left[ \text{Sum} \left[ \text{If} \left[ \text{AvailableStates} \left[ \text{Num} \right] \right] \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right] + \omega 0 \left[ \text{Num} \right] := "2", \delta 1, 0 \right[ \text{Num} \left[ \text{Num} \right[ \text{Num} \right[ \text{Num} \left[ \text{Num} \right[ \text{Num} \left[ \text{Num} \right[ \text{Num} \left[ \text{Num} \right] = \omega 0 
                                                                                                                                                                           If [AvailableStates[Num][[m, r]] == "3", \delta 1 + \delta 2, 0], {r, 1, Num}], {m, 1, 3<sup>Num</sup>}]
                                                                                    DiagonalMatrix[\omega0[2]] // MatrixForm
```

Out[22]//MatrixForm=

```
0 0
       0
                     0
       0
               0
                     0
                            0
0 δ1
            0
                                  0
0 0 \delta1 + \delta2 0
              0
      0 \delta 1 0
                           0
0 0
                     0
                                  0
                                           0
           0 2 δ1 0
0 0
       0
                           0
                                  0
0 0
       0 0 0 2 \delta1 + \delta2 0
                                  0
0 0 0 0 0 \delta 1 + \delta 2
                                  0
0 0 0 0 0
                          0 2 \delta1 + \delta2
                    0
1000
         0 0
                   0
                           0
                                 0
                                     2 \delta 1 + 2 \delta 2
```

Dipole - dipole interaction

```
ln[27]:= Vaa[Num] := \Delta * Sum[
              Sum[\sigma\mu\nu[Num, k1, "3", "3"].\sigma\mu\nu[Num, k2, "3", "3"], \{k1, 1, k2-1\}], \{k2, 1, Num\}];
        Vaa[2] // MatrixForm
Out[28]//MatrixForm=
```

```
^{\prime}000000000
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
```

Out[40]= 0

Liouvillian

```
In[37]:= (* We can notice that it requires a density matrix *)
          Leg[Dens_, Num_] :=
            1/2 * \text{Fge} * (\text{Sum}[2 * \sigma \mu \nu [\text{Num}, i, "1", "2"].\text{Dens}.\sigma \mu \nu [\text{Num}, i, "2", "1"] -
                    \sigma\mu\nu [Num, i, "2", "2"].Dens - Dens.\sigma\mu\nu [Num, i, "2", "2"], {i, 1, Num}])
          Lre[Dens_, Num_] := 1 / 2 * Fre *
               (Sum[2*\sigma\mu\nu[Num, i, "2", "3"].Dens.\sigma\mu\nu[Num, i, "3", "2"] -
                    \sigma\mu\nu [Num, i, "3", "3"].Dens - Dens.\sigma\mu\nu [Num, i, "3", "3"], {i, 1, Num}])
          Leg[Dens[1], 1] // MatrixForm
          Tr[Lre[Dens[2], 2]] // Simplify (* Must be zero, because by definition,
            the trace of the density should not change and be unitary *)
Out[39]//MatrixForm=
            \begin{pmatrix} \operatorname{\Gammage} \rho[2, 2][t] & -\frac{1}{2}\operatorname{\Gammage} \rho[1, 2][t] & 0 \\ -\frac{1}{2}\operatorname{\Gammage} \rho[2, 1][t] & -\operatorname{\Gammage} \rho[2, 2][t] & -\frac{1}{2}\operatorname{\Gammage} \rho[2, 3][t] \\ 0 & -\frac{1}{2}\operatorname{\Gammage} \rho[3, 2][t] & 0 \end{pmatrix}
```

Liouville - von Neumann equation

We are now ready to write the master equation.

```
In[41]:= (* This function outputs the Optical Bloch equations,
    one can specify Decay=(True or False) *)
    Equations[Num_, Decay_] := Block[Trans, DensityMat, Sym, Liouvillian, pdot],
       Sym = SymRules[Num];
       Trans = H[Num] + DiagonalMatrix[\omega0[Num]] + Vaa[Num];
       DensityMat = Dens[Num];
       Liouvillian = Leg[DensityMat, Num] + Lre[DensityMat, Num];
       ρdot = (-I * (Trans.DensityMat - DensityMat.Trans) +
            If[Decay, Liouvillian, DiagonalMatrix[Table[0, {m, 1, 3 Num}]]]) /. Sym;
       Table D[\rho[m, n][t], t] == \rho dot[[m, n]], \{m, 1, 3^{Num}\}, \{n, m\}] (*\rho[m, n]'[t]*)
     (* This code is optimized:
       For 3 atomes it takes 1sec, Ilya's program takes 7sec
       For 4 atomes it takes about 1min40, Ilya's program takes 5min *)
    Timing[Equations[1, True];][[1]]
    0.002886
    The complexity seems to be exponential
    DiscretePlot [Log [Timing [Equations [k, True];] [[1]]], {k,1,4}, Joined→True, PlotMarkers→
    Automatic, Axes → {False, True}]
```



```
OpticalBloch1Decay = Equations[1, True];
OpticalBloch2Decay = Equations[2, True];
OpticalBloch3Decay = Equations[3, True];
OpticalBloch1NoDecay = Equations[1, False];
OpticalBloch2NoDecay = Equations[2, False];
OpticalBloch3NoDecay = Equations[3, False];
(*OpticalBloch4NoDecay=Equations[4,True];
OpticalBloch4Decay=Equations[4,False];*)
```

Intitial conditions

```
Sigs[Num_] := Table[Table[KroneckerDelta[m, p] KroneckerDelta[n, q],
     \{p, 1, 3^{Num}\}, \{q, 1, 3^{Num}\}\}, \{m, 1, 3^{Num}\}, \{n, m\}\};
InitialConditions[Num_] := Table[Dens3Level[Num][[m, n]][0] ==
     If [(m == 1 && n == 1), KroneckerDelta[m, n], 0], \{m, 1, 3^{Num}\}, \{n, m\}];
InitialExcitedConditions[Num_] := Module[
    {AllExcited = FindStates[Num, "2", Num][[1]]}, Table[Dens3Level[Num][[m, n]][0] ==
      If [(m == AllExcited && n == m), KroneckerDelta[m, n], 0], \{m, 1, 3^{Num}\}, \{n, m\}];
Vars[Num_] := Flatten[Table[Dens3Level[Num][[m, n]][t], \{m, 1, 3^{Num}\}, \{n, m\}]];
InitialConditionsRydStates = Table[Dens3Level[2][[m, n]][0] ==
     If [(m == 9 && n == 9), 2 KroneckerDelta[m, n], 0], \{m, 1, 3^2\}, \{n, m\}];
InitialConditionsPStates = Table[Dens3Level[2][[m, n]][0] ==
     If [(m == 5 && n == 5), 2 KroneckerDelta[m, n], 0], \{m, 1, 3^2\}, \{n, m\}];
```

Experiments

Now, we can solve the master equation in several cases (with and without decay, changing the number of atoms)

Pulses

```
Ωge[t0_, σt_] := Ω0 * Exp\left[\frac{-(t-t0/2-σt)^2}{2σt^2}\right]
Ωer[t0_, σt_] := Ω0 * Exp[\frac{-(t-t0/2+σt)^2}{2 σt^2}]
Chirp[t0_, \sigmat_, \omega0_, \alphat_] :=
 \Omega 0 * \text{Exp} \left[ \frac{-(t-t0/2)^2}{2 \sigma t^2} \right] * \cos \left[ \omega 0 * (t-t0/2) + \alpha t * (t-t0/2) ^2 \right]
Gauss[t0_, \sigmat_] := \Omega0 * Exp\left[\frac{-(t-t0/2)^2}{2\sigma^2}\right]
SinSq[t0\_, \sigma t\_] := \Omega0 * Piecewise \left[ \left\{ \left\{ Cos \left[ \frac{\pi (t-t0)}{2 \sigma t} \right]^2, (t > t0 - \sigma t) & (t < t0 + \sigma t) \right\} \right\} \right]
\texttt{Step[t0\_, \sigmat\_]} := \Omega0 * \texttt{Piecewise[\{\{1, (t > t0 - \sigmat / 2) \&\& (t < t0 + \sigmat / 2)\}\}];}
With [\{tf = 30. * 10^{(-6)}\}, Plot[Evaluate]]
      Flatten[{Block[\Omega = 2 * Pi * 3.0 * 10^6, \sigma t = tf / 8, \omega = 1, \alpha t = 10^12, {\Omega = [tf, \sigma t],
              \Omegaer[tf, \sigmat], Gauss[tf, \sigmat], SinSq[tf/2, \sigmat], Step[tf/2, \sigmat]}]]], {t, 0, tf}]]
1.5 \times 10^{7}
1.0 \times 10^{7}
5.0 \times 10^{6}
                             0.00001
                                         0.000015
                                                      0.00002
                                                                  0.000025
                                                                              0.00003
                 5. \times 10^{-6}
```

STIRAP Experiments

n atoms function

```
STIRAPn[Numval_, equDecay_, equNoDecay_,
  \delta1val_, \delta2val_, \Deltaval_, \Omega0val_, tfval_, \Gammageval_, \Gammareval_] := (
  {s1, s2} = With[{ (* s1 is the solution with decayn, and s2 is without decay *)
      Num = Numval
     },{
      With[{
         tf = tfval
       },
       NDSolve[Flatten[{
           Block[{
```

```
\Omega 1 = \Omega ge[tf, \sigma t],
             \Omega 2 = \Omega er[tf, \sigma t],
             \sigma t = tf / 8,
             \Omega 0 = \Omega 0 \text{ val}
             rge = rgeval,
             Fre = Freval,
             \delta 1 = \delta 1 \text{val}
             \delta 2 = \delta 2 \text{val},
             \Delta = \Delta val
           }, equDecay], InitialConditions[Num]}],
       Vars[Num], \{t, 0, tf\}, MaxSteps \rightarrow 40000]],
    With[{
       tf = tfval
     }, NDSolve[Flatten[{
          Block[{
             \Omega 1 = \Omega ge[tf, \sigma t],
             \Omega 2 = \Omega er[tf, \sigma t],
             \sigma t = tf / 8,
             \Omega 0 = \Omega 0 \text{ val}
             rge = rgeval,
             Fre = Freval,
             \delta 1 = \delta 1 \text{val},
             \delta 2 = \delta 2 \text{val},
             \Delta = \Delta val
           }, equNoDecay], InitialConditions[Num]}],
       Vars[Num], \{t, 0, tf\}, MaxSteps \rightarrow 40000]]}];
With[{
  tf = tfval
 },
 Grid[{
    {
     Plot[{
        Pr[Numval, 0] /. s1, (*with decay*) (* this plots the probability of 0
          atom in Rydberg state for a Numval number of atoms system *)
        Pr[Numval, 1] /. s1 (* this plots the probability of 1 atom
          in Rydberg state for a Numval number of atoms system *)
       }, {t, 0, tf},
       ImageSize → Medium, PlotStyle → Thick,
       Frame → True,
       FrameLabel \rightarrow {{"Populations", None}, {"Time (s)", None}}, LabelStyle \rightarrow Bold,
       PlotRange → All],
     Plot[{
        Pr[Numval, 0] /. s2, (*without decay*)
        Pr[Numval, 1] /. s2
       }, {t, 0, tf},
       ImageSize → Medium, PlotStyle → Thick,
       Frame → True,
       FrameLabel → {{"Populations", None}, {"Time (s)", None}}, LabelStyle → Bold,
       PlotRange → All]}
```

```
, {"Decay", "No Decay"}
   }]
 ]
)
```

Experiments

```
Pr[2, 0]
Px[2, 2, "3"]
\rho[1, 1][t] + \rho[2, 2][t] + \rho[4, 4][t] + \rho[5, 5][t]
\rho[9, 9][t]
(* n atoms experiment *)
(* n=1 *)
With[{
  Num = 1, (* n=1 *)
   equDecay = OpticalBloch1Decay, (* n=1 *)
   equNoDecay = OpticalBloch1Decay, (* n=1 *)
   \delta 1 = 0,
   \delta 2 = 0,
   \Delta = 1 * 10 ^10,
   \Omega 0 = 2 * Pi * 3.0 * 10^6,
   tf = 30. * 10^{(-6)},
  \Gamma ge = 38.0 * 10^6,
  rre = 1 * 10 ^ 3
 }, STIRAPn[Num, equDecay, equNoDecay, \delta1, \delta2, \Delta, \Omega0, tf, Fge, Fre]]
   0.8
                                                                        0.8
Populations
   0.6
                                                                        0.6
                                                                     Populations
   0.2
                                                                        0.2
   0.0
                                                                        0.0
                                0.000015
                       0.00001
                                          0.00002
                                                                                                     0.000015
                                                                                                                0.00002
              5. \times 10^{-6}
                                                   0.000025
                                                             0.00003
                                                                                   5.\times10^{-6}
                                                                                             0.00001
                                 Time (s)
                                                                                                      Time (s)
                                                                                                 No Decay
                             Decay
```

```
(* n=2 *)
With[{
   Num = 2, (* n=2 *)
   equDecay = OpticalBloch2Decay, (* n=2 *)
   equNoDecay = OpticalBloch2NoDecay, (* n=2 *)
   \delta 1 = 0,
   \delta 2 = 0,
   \Delta = 1 * 10 ^10,
   \Omega 0 = 2 * Pi * 3.0 * 10^6,
   tf = 30. * 10^{(-6)},
   rge = 38.0 * 10^6,
   rre = 1 * 10 ^ 3
  }, STIRAPn[Num, equDecay, equNoDecay, \delta1, \delta2, \Delta, \Omega0, tf, Fge, Fre]]
   0.8
                                                                          0.8
Populations 0.6
                                                                      Populations
                                                                          0.6
   0.2
                                                                          0.2
                        0.00001
                                 0.000015
                                                                                                        0.000015
                                           0.00002
                                                     0.000025
                                                               0.00003
                                                                                    5. \times 10^{-6}
                                                                                              0.00001
                                                                                                                  0.00002
              5.\times10^{-6}
                                 Time (s)
                                                                                                        Time (s)
                              Decay
                                                                                                   No Decay
```

```
(* n=3 *)
With[{
   Num = 3, (* n=3 *)
   equDecay = OpticalBloch3Decay, (* n=3 *)
   equNoDecay = OpticalBloch3NoDecay, (* n=3 *)
   \delta 1 = 0,
   \delta 2 = 0,
   \Delta = 1 * 10 ^10,
   \Omega 0 = 2 * Pi * 3.0 * 10^6,
   tf = 30. * 10^(-5), (*adiabaticity violation*)
   \Gamma ge = 38.0 * 10^6,
   Tre = 1 * 10 ^ 3
 }, STIRAPn[Num, equDecay, equNoDecay, \delta1, \delta2, \Delta, \Omega0, tf, Fge, Fre]]
   1.0
                                                                         1.0
   0.8
                                                                         0.8
   0.6
                                                                         0.6
Populations
                                                                      Populations
   0.4
   0.2
                                                                         0.2
    0.00000
              0.00005
                        0.00010
                                 0.00015
                                           0.00020
                                                     0.00025
                                                              0.00030
                                                                           0.00000
                                                                                    0.00005
                                                                                              0.00010
                                                                                                       0.00015
                                                                                                                 0.00020
                                 Time (s)
                                                                                                       Time (s)
                              Decay
                                                                                                  No Decay
```

```
(* Press "Alt+," to abort,
Mathematica is too long to try to solve the equations for 4 atoms *)
With[{
  Num = 4,
  equDecay = OpticalBloch4Decay,
  equNoDecay = OpticalBloch4NoDecay,
  \Delta = 1 * 10 ^10,
  \Omega 0 = 2 * Pi * 3.0 * 10^6,
  tf = 30. * 10^{(-6)},
  \Gamma ge = 38.0 * 10^6,
  Tre = 1 * 10 ^ 3
 }, STIRAPn[Num, equDecay, equNoDecay, \Delta, \Omega0, tf, Fge, Fre]]
```

NDSolve::ndsdtc:

The time constraint of 1.` seconds was exceeded trying to solve for derivatives, so the system will be treated as a system of differential-algebraic equations. You can use Method->{"EquationSimplification"->"Solve"} to have the system solved as ordinary differential equations. \gg

NDSolve::mconly: For the method IDA, only machine real code is available.

Unable to continue with complex values or beyond floating–point exceptions. \gg

```
(* Tring to split the solving into time steps,
but "MaxSteps->1" seems to be already impossible for 4 atoms *)
s = With[{
      split = 2,
      tf = 30. * 10^{(-6)},
      Num = 1,
      Decay = True
    }, NDSolve[Flatten[{Block[{\Omega 1 = \Omega ge[tf, \sigma t], \Omega 2 = \Omega er[tf, \sigma t], \Omega }
            \Omega 0 = 2 * Pi * 3.0 * 10^6,
            \sigma t = tf / 8,
            \delta 1 = 0,
            \delta 2 = 0,
            \Delta = 1 * 10^10, (* \Delta = 1 * 10^6 is a critical value,
            before, there is no blockade, and after there is *)
            \Gamma ge = 38.0 * 10^6,
            Tre = 1 * 10 ^ 3
            }, OpticalBloch1NoDecay], InitialConditions[Num]}],
      Vars[Num], {t, 0, tf / split}, MaxSteps → Ceiling[40000 / split]]];
With[{
   split = 2,
   tf = 30. * 10^{(-6)},
  Num = 1
 }, Plot[{
    Pr[Num, 0] /. s,
    Pr[Num, 1] /. s
   }, {t, 0, tf / split}
   (*,PlotRange \rightarrow \{0,1\}*)
 ]]
1.0
0.8
0.6
0.4
0.2
       2.\times 10^{-6} \quad \  4.\times 10^{-6} \quad \  6.\times 10^{-6} \quad \  8.\times 10^{-6} \quad \  0.00001 \quad \  0.000012 \quad \  0.000014
```

Chirp Experiments

```
CHIRPn[Numval_, equDecay_, \Deltaval_, \deltaval_,
  \Omega0val_, \alphatval_, tfval_, \sigmatval_, \Gammageval_, \Gammareval_] := (
  s = With [{ (* s1 is the solution with decay, and s2 is without decay *)
      Num = Numval
     },
     With[{
        tf = tfval
       NDSolve[Flatten[{
           Block[{
             \Omega 1 = Gauss[tf, \sigma t] // Simplify,
             \Omega 2 = Gauss[tf, \sigma t] // Simplify,
             \Omega 0 = \Omega 0 \text{val},
             \sigma t = tf / 8,
             \alpha t = \alpha t val,
             Гge = Гgeval,
             Fre = Freval,
             \Delta = \Delta val,
             \delta 1 = \delta \text{val} + 2 \text{ Pi} * \alpha \text{tval} * (t - tf / 2) ^2,
             \delta 2 = -\delta 1
            }, equDecay], InitialConditions[Num]}],
        Vars[Num], \{t, 0, tf\}, MaxSteps \rightarrow 100000]]];
  With[{
     tf = tfval,
     Num = Numval
    },
    Plot[{
       Px[Num, 0, "3"] /.s, (* this plots the probability of 0
        atom in Rydberg state for a Numval number of atoms system *)
       Px[Num, 1, "3"] /. s, (* this plots the probability of 1 atom
        in Rydberg state for a Numval number of atoms system *)
       Px[Num, 2, "3"] /. s
     }, {t, 0, tf},
     ImageSize → Medium,
     PlotStyle → Thick,
     PlotRange → All]
  ])
Px[2, 2, "3"]
\rho[9, 9][t]
```

```
(* n=1 *)
With[{
    Num = 1, (* n=1 *)
    equDecay = OpticalBloch1Decay, (* n=1 *)
    \Delta = 0 * 10 ^10,
    \delta = 0 * 10 ^6,
    \Omega 0 = 2 * Pi * 6.0 * 10^6,
    \alpha t = 1 * 10^12,
    tf = 30. * 10^{(-6)},
    \Gamma ge = 38.0 * 10^6,
    Tre = 1 * 10 ^ 3
   }, CHIRPn[Num, equDecay, \Delta, \delta, \Omega0, \alphat, tf, Fge, Fre]];
(* n=2 *)
With[{
   Num = 2,
   equDecay = OpticalBloch2Decay,
   \Delta = 1 * 10 ^10,
   \delta = 1 \star 10 \,{}^{\wedge}4,
   \Omega 0 = 2 Pi * 6 * 10^6,
   \alpha t = 10 \wedge 12,
   tf = 30. * 10^{(-6)}
  \Gamma ge = 38.0 * 10^6,
   rre = 1 * 10 ^ 3
 }, CHIRPn[Num, equDecay, \Delta, \delta, \Omega0, \alphat, tf, 1, Fge, Fre]
]
1.0
0.8
0.6
0.4
0.2
```

Rabi oscillations

 $5.\times10^{-6}$

0.00001

0.000015

0.00002

2 level system

This subsection can reproduce the results of this document: http://www.ph.unimelb.edu.au/~part3/notes/Rabi.pdf using the previously made density matrix formalism. It checks the implementation of the detuning.

0.000025

$$\begin{split} & \mathsf{DSolve} \Big[\Big\{ \\ & \rho[1,\,1]'[t] = \frac{1}{2} \, \dot{\mathbf{n}} \, \Omega \mathbf{1} \, (\rho[1,\,2][t] - \rho[2,\,1][t]) \,, \\ & \rho[1,\,2]'[t] = \frac{1}{2} \, \dot{\mathbf{n}} \, (\Omega \mathbf{1} \, \rho[1,\,1][t] - \Omega \mathbf{1} \, \rho[2,\,2][t]) \,, \\ & \rho[2,\,1]'[t] = -\frac{1}{2} \, \dot{\mathbf{n}} \, (\Omega \mathbf{1} \, \rho[1,\,1][t] - \Omega \mathbf{1} \, \rho[2,\,2][t]) \,, \\ & \rho[2,\,2]'[t] = -\frac{1}{2} \, \dot{\mathbf{n}} \, (\Omega \mathbf{1} \, \rho[1,\,2][t] - \Omega \mathbf{1} \, \rho[2,\,2][t]) \,, \\ & \rho[1,\,1][0] = \mathbf{1} \,, \, \rho[1,\,2][0] = 0 \,, \, \rho[2,\,1][0] = 0 \,, \, \rho[2,\,2][0] = 0 \\ & \Big\} \,, \, \big\{ \rho[1,\,1][t] \,, \, \rho[1,\,2][t] \,, \, \rho[2,\,1][t] \,, \, \rho[2,\,2][t] \big\} \,, \, t \Big] \\ & \Big\{ \Big\{ \rho[1,\,1][t] \, \to \, \frac{1}{2} \, (1 + \mathsf{Cos}[t \, \Omega 1]) \,, \, \rho[1,\,2][t] \, \to \, \frac{1}{2} \, \dot{\mathbf{n}} \, \mathsf{Sin}[t \, \Omega 1] \,, \\ & \rho[2,\,1][t] \, \to \, -\frac{1}{2} \, \dot{\mathbf{n}} \, \mathsf{Sin}[t \, \Omega 1] \,, \, \rho[2,\,2][t] \, \to \, \frac{1}{2} \, (1 - \mathsf{Cos}[t \, \Omega 1]) \, \Big\} \Big\} \end{split}$$

```
s = With[{
      tf = 4 * Pi,
     Num = 1,
     Decay = True
    }, NDSolve[Flatten[{Block[{\Omega 1 = 1, \Omega 2 = 0,
           \Delta = 1 * 10 ^10,
           \delta 1 = 2, \delta 2 = 0,
           \Gamma ge = 0,
           re = 0
            }, OpticalBloch1Decay], InitialConditions[Num]}], Vars[Num], {t, 0, tf}]];
With[{
   tf = 4 * Pi,
  Num = 1
 }, Plot[{
    \rho[1, 1][t] /. s,
    \rho[2, 2][t] /. s
   }, {t, 0, tf}
   (*,PlotRange \rightarrow \{0,1\}*)
 ]]
1.0
0.8
0.6
0.4
0.2
```

Rydberg blocade criterion

Here we are trying to bring out Rydberg blocade using a parameter so called θ =1-p2/(p1+p2)^2, where p1 is the probability to have one excited atom and p2 is the one to have two atoms excited, for a 2 atoms system.

Indeed if the probability to excitate one single atom is given by p, then p2=p^2 and p1=p(1-p) (and p0=(1-p)^2). θ is then equal to zero. But if there is Rydberg blocade, p2 does not remain equal to p^2, that must change the value of θ and would be the desired criterion.

Spectra

```
Block[{
  n = 40, (* number of points in the spectrum *)
  scale = 5, (* zoom to the center of the spectrum *)
  tf = 4 Pi, (* final time of the experiment,
  this should be long enough because we are considering stationary solutions \star)
  Ωval = 1, (* Rabi frequency *)
  Treval = 1 (* decay value, if it's low, one should increase the final time *)
 },
 For [i = 0, i < n,
   (* the variable i will be used to sweep the detuning of the laser radiation *)
   {s = With[{
        Num = 2(* number of atoms *)
      },
      NDSolve[Flatten[{Block[\{\Omega 1 = 0, (* \text{ we are only considering the excited and } \}
              the Rydberg state, there is no interaction with the ground state *)
              \Omega 2 = \Omega val,
             \Delta = 3, (* !!!
                dipole-dipole interaction,
             CHANGE THIS VALUE to {1, 3, 5} to see Rdyberg blocade
                 !!! *)
             \delta 1 = 0, \delta 2 = (i - n / 2) / scale,
             \Gamma ge = 0,
             Γre = Γreval
              }, OpticalBloch2Decay (* for 2 atoms *)
          ], InitialExcitedConditions[Num]
           (* we should define new initial conditions, where the only populated
            state is the one where all the atoms are in the excited state *)
         }], Vars[Num], {t, 0, tf}]];
    \{\rho 55[i]\} = \text{Re}[\rho[5, 5][t] /. s /. t \rightarrow tf]; (* 2 atoms in excited state *)
    \{\rho 66[i]\} = \text{Re}[\rho[6, 6][t] /. s /. t \rightarrow tf];
    (* 1 atom in excited state and 1 in Rydberg state *)
    \{\rho 99[i]\} = \text{Re}[\rho[9, 9][t] /. s /. t \rightarrow tf]; (* 2 atoms in Rydberg state *)
  }; i++];
 \rho55Tab = Table[{(i-n/2)/scale, \rho55[i]}, {i, 0, n-1}];
 \rho66Tab = Table[{(i-n/2) / scale, \rho66[i]}, {i, 0, n-1}];
 \rho99Tab = Table[{(i-n/2) / scale, \rho99[i]}, {i, 0, n-1}];
 Plot[{(1 - \Omega val^2 / 2 / (\Omega val^2 + 2 \delta^2 + \Gamma reval^2 / 2))^2, (* (1-p)^2 *)
    (\Omega val^2 / 2 / (\Omega val^2 + 2 \delta^2 + \Gamma reval^2 / 2)) *
     (1 - \Omega val^2 / 2 / (\Omega val^2 + 2 \delta^2 + \Gamma val^2 / 2)), (* p(1-p) *)
    (\Omega val^2 / 2 / (\Omega val^2 + 2 \delta^2 + \Gamma reval^2 / 2))^2 (* p^2 *)
  }, \{\delta, -n / (2 * scale), n / (2 * scale)\},
  Epilog \rightarrow Map[Point, {\rho55Tab, \rho66Tab, \rho99Tab}],
  PlotRange \rightarrow \{-0.1, 1.1\}, Frame \rightarrow True, Axes \rightarrow False, ImageSize \rightarrow Medium,
  FrameLabel → {{"Population", None}, {"Detuning", None}}, LabelStyle → Bold]
1
```


Plotting θ with respect to Δ dipole-dipole interaction parameter

```
Logspace[a_, b_, n_] := 10.0 \land Range[a, b, (b-a) / (n-1)]
Linspace[a_{, b_{, n_{, l}}} := Range[a, b, (b-a) / (n-1)]
```

```
(* Semi-log plot *)
Block[\{n = 40, init = -1, final = 2, scale = 5, tf = 8 Pi, \Omega val = 1, \Gamma reval = 0.25\},
 ΔTab = Logspace[init, final, n];
 For [i = 1, i <= n,
   {s = With[{
         Num = 2,
         Decay = True
        }, NDSolve[Flatten[{Block[{\Omega 1 = 0, \Omega 2 = \Omega val,
               \Delta = \Delta Tab[[i]],
               \delta 1 = 0, \delta 2 = 0,
               \Gamma ge = 0,
               Γre = Γreval
                }, OpticalBloch2Decay], InitialExcitedConditions[Num]}],
         Vars[Num], {t, 0, tf}]];
     \{\rho 55[i]\} = Re[\rho[5, 5][t] /. s /. t \rightarrow tf];
     \{\rho 66[i]\} = Re[\rho[6, 6][t] /. s /. t \rightarrow tf];
     \{\rho 99[i]\} = \text{Re}[\rho[9, 9][t] /. s /. t \rightarrow tf];
     \{\theta[i]\} = \text{Re}[1 - (\rho[9, 9][t] / (\rho[9, 9][t] + \rho[6, 6][t])^2) /. s /. t \rightarrow tf];
   }; i++];
 \rho55Tab = Table[{init + i * (final - init) / n, \rho55[i]}, {i, 1, n}];
 \rho66Tab = Table[{init + i * (final - init) / n, \rho66[i]}, {i, 1, n}];
 \rho99Tab = Table[{init + i * (final - init) / n, \rho99[i]}, {i, 1, n}];
 \thetaTab = Table[{init + i * (final - init) / n, \theta[i]}, {i, 1, n}];
 ListPlot[\{\rho 55 \text{Tab}, \rho 66 \text{Tab}, \rho 99 \text{Tab}, \theta \text{Tab}\}, PlotRange \rightarrow \{-0.1, 1.1\},
   Joined \rightarrow False, PlotMarkers \rightarrow Automatic, Mesh \rightarrow All, Frame \rightarrow True,
   Axes \rightarrow False, ImageSize \rightarrow Medium, FrameLabel \rightarrow {{"Populations && \theta", None},
      {"Log[Dipole-Dipole interaction strength]", None}}, LabelStyle → Bold]
1
   1.0
   0.8
Populations && 9
   0.0
              -0.5
                                  0.5
                                             1.0
                                                       1.5
                      Log[Dipole-Dipole interaction strength]
```

```
(* Linear plot *)
Block[\{n = 40, init = 0, final = 10, scale = 5, tf = 4Pi, \Omega val = 1, \Gamma reval = 0.5\},
 ΔTab = Linspace[init, final, n];
 For[i = 1, i <= n,
   {s = With[{
        Num = 2
         Decay = True
       }, NDSolve[Flatten[{Block[\{\Omega 1 = 0, \Omega 2 = \Omega val, \Omega \}}]
               \Delta = \Delta Tab[[i]],
               \delta 1 = 0, \delta 2 = 0,
               \Gamma ge = 0,
               Fre = Freval
               }, OpticalBloch2Decay], InitialExcitedConditions[Num]}],
         Vars[Num], {t, 0, tf}]];
    \{\rho 55[i]\} = Re[\rho[5, 5][t] /. s /. t \rightarrow tf];
     \{\rho 66[i]\} = Re[\rho[6, 6][t] /. s /. t \rightarrow tf];
    \{\rho 99[i]\} = \text{Re}[\rho[9, 9][t] /. s /. t \rightarrow tf];
    \{\theta[i]\} = \text{Re}[1 - (\rho[9, 9][t] / (\rho[9, 9][t] + \rho[6, 6][t])^2) /. s /. t \rightarrow tf];
   }; i++];
 \rho55Tab = Table[{init + i * (final - init) / n, \rho55[i]}, {i, 1, n}];
 \rho66Tab = Table[{init + i * (final - init) / n, \rho66[i]}, {i, 1, n}];
 \rho99Tab = Table[{init + i * (final - init) / n, \rho99[i]}, {i, 1, n}];
 \thetaTab = Table[{init + i * (final - init) / n, \theta[i]}, {i, 1, n}];
 ListPlot[\{\rho 55Tab, \rho 66Tab, \rho 99Tab, \theta Tab\}, PlotRange \rightarrow \{-0.1, 1.1\},
   Joined → True, Mesh → All, Frame → True, Axes → False, ImageSize → Medium]
]
1.0
0.8
0.6
0.4
0.2
0.0
```

M.Saffman experiment

```
"For the single atom loading typical parameters currently are: Rb87
5 s-5 p3/2-97 d5/2
sigma + , sigma + coupling to m = 5/2
```

detuning from 5 p3/2, 1.8 GHz 780 nm Rabi frequency 68 MHz 480 nm Rabi frequency 19 MHz 2 - photon Rabi frequency 0.36 MHz

we load from 3–20 atoms into f = 2 and then pi pulse to | r > followed by pi pulse to f = 1.

Our best results are 65 % single atom in f = 1. Our latest data seem to show we actually have better single atom probability in

f = 1 but we have some loss during blow away of f = 2. We are checking this further. We have also done some adiabatic pulse sequences giving similar results with 65 % success rate."

```
Ω1test = 68 * 10^6; Ω2test = 19 * 10^6; δ1test = 1.8 * 10^9;
\Omega R = N[\Omega 1 test * \Omega 2 test / (2 * \delta 1 test)];
\Delta R = N[(\Omega 2 test^2 - \Omega 1 test^2) / (2 * 2 * \delta 1 test)];
T = Pi / Sqrt[\Omega R^2 + \Delta R^2];
s = With[{
     tf = T,
     Num = 1,
     Decay = True
    }, NDSolve[Flatten[{Block[{
            \Omega 1 = 68 * 10^6, \ \Omega 2 = 19 * 10^6,
            \Delta = 0,
            \delta 1 = 1.8 * 10^9, \ \delta 2 = -\delta 1,
            \Gamma ge = 0 * 38.0 * 10^6,
            re = 0 * 1 * 10^3
            }, OpticalBloch1Decay], InitialConditions[Num]}],
     Vars[Num], {t, 0, tf}, MaxSteps → Infinity]];
With[{
  tf = T,
  Num = 1
 }, Plot[{
    \rho[1, 1][t] /. s,
    \rho[3, 3][t] /. s
   }, {t, 0, tf},
  PlotRange \rightarrow \{0, 1\}
 ]]
```



```
\Omega1test = 68 * 10^6; \Omega2test = 19 * 10^6; \delta1test = 1.8 * 10^9;
\Omega R = N[\Omega 1 test * \Omega 2 test / (2 * \delta 1 test)];
\Delta \texttt{R} = \texttt{N[(\Omega2test^2 - \Omega1test^2) / (2*2*\delta1test)];}
T2 = Pi / Sqrt[\OmegaR^2 + \DeltaR^2];
s2 = With[{
       tf = T2,
      Num = 2,
      Decay = True
     }, NDSolve[Flatten[{Block[{
             \Omega 1 = 68 * 10^6, \ \Omega 2 = 19 * 10^6,
             \Delta = 0,
             \delta 1 = 1.8 * 10^9, \ \delta 2 = -\delta 1,
             \Gamma ge = 38.0 * 10^6,
             Tre = 1 * 10 ^ 3
              }, OpticalBloch2Decay], InitialConditions[Num]}],
      Vars[Num], {t, 0, tf}, MaxSteps \rightarrow Infinity]];
With[{
   tf = T2
  }, Plot[{
    \rho[1, 1][t] /. s2
   }, {t, 0, tf},
   PlotRange \rightarrow \{0, 1\}
 ]]
1.0
0.8
0.6
0.4
0.2
              1. \times 10^{-6}
                             2.\times10^{-6}
                                           3. \times 10^{-6}
                                                          4. \times 10^{-6}
```

```
\Omega1test = 68 * 10^6; \Omega2test = 19 * 10^6; \delta1test = 1.8 * 10^9;
\Omega R = N[\Omega 1 test * \Omega 2 test / (2 * \delta 1 test)];
\Delta \texttt{R} = \texttt{N[(\Omega2test^2 - \Omega1test^2) / (2*2*\delta1test)];}
T3 = Pi / Sqrt[\OmegaR^2 + \DeltaR^2];
s3 = With[{
       tf = T3,
      Num = 3,
      Decay = True
     }, NDSolve[Flatten[{Block[{
             \Omega 1 = 68 * 10^6, \ \Omega 2 = 19 * 10^6,
             \Delta = 0,
             \delta 1 = 1.8 * 10^9, \ \delta 2 = -\delta 1,
             \Gamma ge = 38.0 * 10^6,
             rre = 1 * 10 ^ 3
              }, OpticalBloch3Decay], InitialConditions[Num]}],
      Vars[Num], {t, 0, tf}, MaxSteps \rightarrow Infinity]];
With[{
   tf = T3
  }, Plot[{
    \rho[1, 1][t] /. s3
   }, {t, 0, tf},
   PlotRange \rightarrow \{0, 1\}
  ]]
1.0
0.8
0.6
0.4
0.2
  0
              1.\times 10^{-6}
                             2. \times 10^{-6}
                                            3. \times 10^{-6}
                                                          4.\times10^{-6}
```

```
With[{
   tf = T3
 }, Plot[{
     \rho[1, 1][t] /. s,
     \rho[1, 1][t] /. s2,
     \rho[1, 1][t] /. s3
   }, {t, 0, tf},
   PlotRange \rightarrow {0, 1}
 ]]
1.0
0.8
0.6
0.4
0.2
 0
               1. \times 10^{-6}
                                                              4. \times 10^{-6}
                              2. \times 10^{-6}
                                              3.\times10^{-6}
```