KÌ THI OLYMPIC TOÁN SINH VIÊN 2010 (HUÉ, 07-12/4/2010) ĐỀ THI MÔN ĐẠI SỐ

Câu 1:

Cho A,B là các ma trân vuông cấp 2010 với hệ số thực sao cho $\det A = \det(A+B) = \det(A+2B) = ... = \det(A+2010B)$ a/ Chứng minh $\det(xA+yB) = 0$ với mọi $x,y \in \mathbb{R}$ b/ Tìm ví dụ chứng tỏ kết luận trên không còn đúng nếu chỉ có $\det A = \det(A+B) = \det(A+2B) = ... = \det(A+2009B)$

Câu 2.

Cho $\{u_n\}, \{v_n\}, \{w_n\}$ là các dãy số được xác định bởi: $u_0 = v_0 = w_0 = 1$ Và $u_{n+1} = -u_n - 7v_n + 5w_n$, $v_{n+1} = -2u_n - 8v_n + 6w_n$, $w_{n+1} = -4u_n - 16v_n + 12w_n$ Chứng minh $v_n - 2$ chia hết cho 2^n .

Câu 3.

a/ Chứng minh ứng với mỗi số nguyên dương n, biểu thức $x^n+y^n+z^n$ có thể biểu diễn được dưới dạng $P_n(s,p,q)$ bậc không quá n của các biến s=x+y+z, p=xy+yz+zx, q=xyz b/ Hãy tìm tổng hệ số của $P_{2010}(s,p,q)$

Câu 4.

Xác định đa thức thực P(x) thốa mãn $P(x)P(x^2) = P(x^3 + 2x)$

Câu 5. Tư chon:

5a/ Cho A là ma trận thực vuông cấp $n \ge 2$, có tổng các phần tử trên đường chéo bằng 10 và $\operatorname{rank} A = 1$. Tìm đa thức đặc trưng và đa thức tối tiểu của A.

5b/ Cho A, B, C là các ma trận thực, vuông cấp n, trong đó A khả nghịch và đồng thời giao hoán với B, C. Giả sử C(A+B)=B. Chứng minh B và C giao hoán với nhau.

KÌ THI OLYMPIC TOÁN SINH VIÊN 2010 (HUÉ, 07-12/4/2010) ĐỀ THI MÔN GIẢI TÍCH

Câu 1.

$$Cho f(x) = ln(x+1)$$

a/ Chứng minh với mọi x > 0, tồn tại duy nhất số thực c thõa mãn điều kiện f(x) = xf'(c) mà ta ký hiệu c(x).

b/ Tìm
$$\lim_{x\to 0^+} \frac{c(x)}{x}$$

Câu 2.

Cho dãy $\{x_n\}$ được xác định bởi $x_1=1$, $x_{n+1}=x_n(1+x_n^{2010})$, $n\geq 1$.

$$\lim_{\substack{1 \text{ Tim } n \to +\infty}} \frac{x_1^{2010}}{x_2} + \frac{x_2^{2010}}{x_3} + \ldots + \frac{x_n^{2010}}{x_{n+1}}$$

Câu 3.

Cho $a \in \mathbb{R}$ và hàm số f(x) khả vi trên $[0,+\infty)$ thõa mãn $f(0) \geq 0$, $f'(x) + af(x) \geq 0$, với mọi $x \in [0;+\infty)$. Chứng minh $f(x) \geq 0$ với mọi $x \geq 0$.

Câu 4.

Cho hàm f(x) khả vi liên tục trên [0,1]. Giả sử $\int_0^1 f(x)dx=\int_0^1 xf(x)dx=1$. Chứng minh tồn tại $c\in(0,1)$ sao cho f'(c)=0.

Câu 5.

Cho đa thức P(x) bậc n với hệ số thực sao cho $P(-1) \neq 0$ và $-\frac{P'(-1)}{P(-1)} \leq \frac{n}{2}$ Chứng minh P(x) có ít nhất một nghiệm x_0 với $|x_0| \geq 1$

Câu 6. Tư chon:

6a. Tìm tất cả hàm dương f(x) khả vi liên tục trên [0,1] thốa mãn f(1)=ef(0)

$$\underset{\text{Và}}{\int_{0}^{1} \left(\frac{f'(x)}{f(x)} \right)^{2} dx} \le 1$$

6b. Tìm tất cả hàm f(x) liên tục trên ${\mathbb R}$ thỏa mãn f(1)=2010

$$\overrightarrow{va} f(x+y) = 2010^x f(y) + 2010^y f(x) \overrightarrow{voi} \ \text{moi} \ x, y \in \mathbb{R}$$