ld	3	D,	20	23	۰,

Oct 30, 2023. Welfare Evaluations.			
	Welfare Evaluations		
_			
	e change: p°→ p¹		
v($(p', m) - V(p^0, m)$		
อิฟ	linal nature of utility makes his problematic"		
Wa	liral nature of utility makes this problematic " ut a "standardized" welfare measure		
Mon	come (arbitrary) base P		
- Fix	some (arbitrary) base p		
A	$I(\bar{p}; p', m) = e(\bar{p}, v(p', m))$		
<u> </u>	$-(\bar{p}; p', m) = e(\bar{p}, v(p', m))$		
	$1\omega = \mu(\bar{p}; p^1, m) - \mu(\bar{p}, p^0, m)$		
H2	ill requires reference prices p		
M	sof natural choices:		
6	quivalent variation (EV): $\bar{p} = p^{\circ}$		
(mpencating variation (CV): = p		
ı	$u^{\circ} = V(p^{\circ}, m)$ $u' = V(p', m)$		
(T) EV	· ,		
ANT	(ρ°; ρ', m) - u (ρ°; ρ°, m) e(ρ°, u') - e(ρ°, w) e(ρ°, u') - m		
	$e(x^0, y^1) - e(x^0, y^0)$		
-	$e(2^{\circ}u') - m$		
	-(p) a y		

	COMMENTS:
	Many chaires at will the man could make by wellows
2)	Many choices of utility of we could use for welfare EV & CV are 2 most natural
3)	In general, CV 7 EV but will always have some sign. In principle, Observable if we know Marshalliam demand (Integrability)
4)	In principle, Observable if we know Morshalliam demand (integrability
	Another way to view EV, CV (b consumer Curplus)
	$\Re x p^0 = p^1 = \overline{p}_1 \forall i \neq j$ Recall,
	$c(p^{\circ}, u^{\circ}) = c(p', u') = m$
	EV =

	Consumer Curplus:
	$\Delta c = \int_{P_1}^{P_1} \times_1(\widetilde{P}_1, \overline{P}_{-1}, m) d\widetilde{P}_1$
	CV & ACR & FV in picture -> holds for normal goods
	EV < DCS < CV -> for inferior goods
	CV € ACE € EV in picture → holds for normal goods EV € ACE € CV → for inferior goods CV = ACS = EV → for quantineous goods.
_	
Exampl	<u>e'</u>
	GovT wants to raise &T tax revenue
(1)	Linear tax on good 1 $p^0 = (p^0, p^0) \rightarrow (p^0 + \tau, p^0) = p^1$
2	$lampsum + m \times T = T \times_1(p', m)$
	what are the welfare comparisons 6/0 (1) 8(2)?
	Answer by calculating for of the lump sym tax
	What are the welfare comparisons b/ω (1) b (2)? Answer by calculating EV of the lump sum tax If $EV = c(p^o, u^o) - rm < -T$, cons is worse off under (1)
	DWL = -EV - T
	$= e(p', u') - e(p', u') - T$ $= x_1(p', m)$
	$= e(p', u') - e(p', u') - T$ $= \int_{0}^{1/4} \int_{0}^{1/4} \left(p_{1} p_{2}^{0}, u' \right) d\hat{p}_{1} - \mathcal{E}h_{1}(p_{1}^{0} + \mathcal{T}, p_{2}^{0}, u')$ $= \int_{0}^{1/4} \int_{0}^{1/4} \left(p_{1}^{0} + \mathcal{T}, p_{2}^{0}, u' \right) - h_{1}(p_{1}^{0} + \mathcal{T}, p_{2}^{0}, u') d\hat{p}_{1}^{0} + \mathcal{T}_{2}(p', m)$
	fite -
	$=\int_{0}^{\pi} \left[h_{1}(\vec{p}_{1}, \vec{p}_{2}^{o}, u') - h_{1}(\vec{p}_{1}^{o} + \vec{r}_{1}, \vec{p}_{2}^{o}, u') \right] d\vec{p}_{1} \geq 0$
	1
	h, (prc)
	Pio Pot T

