MATH 602 (HOMEWORK 5)

HIDENORI SHINOHARA

Exercise. (1) This can be proved using induction. The base case m = 1 is trivial. Suppose that the proposition has been shown for some $m \in \mathbb{N}$. We will show the (m + 1) case. By the definition of a determinant,

$$\Delta = \sum_{k=1}^{m+1} (-1)^{k+1} \det(M_{k,1})$$

where $M_{k,1}$ is the matrix obtained by deleting the kth row and 1st column. We can apply the inductive hypothesis to each $M_{k,1}$ because, for instance, when k = 1,

$$\det(M_{1,1}) = \det \begin{bmatrix} \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^m \\ & \ddots & & \\ \alpha_{m+1} & \alpha_{m+1}^2 & \cdots & \alpha_{m+1}^m \end{bmatrix}$$

$$= \alpha_2 \cdots \alpha_{m+1} \det \begin{bmatrix} 1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{m-1} \\ & \ddots & & \\ 1 & \alpha_{m+1} & \alpha_{m+1}^2 & \cdots & \alpha_{m+1}^{m-1} \end{bmatrix}$$

$$= \alpha_2 \cdots \alpha_{m+1} \prod_{2 \le i < j \le m} (\alpha_j - \alpha_i).$$

A similar argument can be applied to other cases and we obtain

$$\Delta = \sum_{k=1}^{m+1} (-1)^{k+1} (\alpha_1 \cdots \hat{\alpha_k} \cdots \alpha_m) \prod_{i < j, i \neq k, j \neq k} (\alpha_j - \alpha_i).$$

It can be observed that, for each $k = 1, \dots, m+1$, the kth term $(\alpha_1 \dots \hat{\alpha_k} \dots \alpha_m) \prod_{i < j, i \neq k, j \neq k} (\alpha_j - \alpha_i)$ does not contain any α_k . On the other hand, for any $l \neq k$, every term that we obtain when expanding the lth term contains α_k . Therefore, it suffices to show that, for each k, the sum of all the terms in $\prod_{1 \leq i < j \leq m+1} (\alpha_j - \alpha_i)$ that do not contain α_k is equal to the kth term in the above expression.

$$\prod_{1 \leq i < j \leq m+1} (\alpha_j - \alpha_i) = \prod_{k+1 \leq j} (\alpha_j - \alpha_k) \prod_{j \leq k-1} (\alpha_k - \alpha_j) \prod_{1 \leq i < j \leq m+1, i \neq k, j \neq k} (\alpha_j - \alpha_i)$$

$$= (-1)^{k-1} \prod_{j \neq k} (\alpha_j - \alpha_k) \prod_{1 \leq i < j \leq m+1, i \neq k, j \neq k} (\alpha_j - \alpha_i)$$

$$= (-1)^{k-1} (\alpha_1 \cdots \hat{\alpha_k} \cdots \alpha_{m+1}) \prod_{1 \leq i < j \leq m+1, i \neq k, j \neq k} (\alpha_j - \alpha_i) + \alpha_k F(\alpha_1, \cdots, \alpha_{m+1})$$

$$= (-1)^{k+1} (\alpha_1 \cdots \hat{\alpha_k} \cdots \alpha_{m+1}) \prod_{1 \leq i < j \leq m+1, i \neq k, j \neq k} (\alpha_j - \alpha_i) + \alpha_k F(\alpha_1, \cdots, \alpha_{m+1})$$

for some polynomial F.

 $\Delta^2 \neq \prod_{i \neq j} (\alpha_j - \alpha_i)$ in general. Let $\alpha_1 = 0, \alpha_2 = 1$. Then $\det(A)^2 = \det\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^2 = 1$. On the other hand, $\prod_{i \neq j} (\alpha_j - \alpha_i) = (0 - 1)(1 - 0) = -1$.

Exercise. (6) Let $ab \in \sqrt{q}$. Then $a^nb^n \in q$ for some $n \in \mathbb{N}$. Then $a^n \in q$ or $(b^n)^m \in q$ for some $m \in \mathbb{N}$. If $a^n \in q$, then $a \in \sqrt{q}$. If $b^{nm} \in q$, then $b \in \sqrt{q}$. Therefore, \sqrt{q} is prime.

Let $f: A \to B$ be given and q be a primary ideal of B. Let $ab \in f^{-1}(q)$. Then $f(a)f(b) \in q$, so $f(a) \in q$ or $(f(b))^m \in q$ for some $m \ge 1$. If $f(a) \in q$, then $a \in f^{-1}(q)$. If $f(b^m) \in q$, then $b^m \in f^{-1}(q)$. Therefore, $f^{-1}(q)$ is primary.

Exercise. (7) Since \sqrt{I} is maximal, $I \neq R$.

Let $x+I,y+I\in A/I$ be two nonzero elements such that (x+I)(y+I)=0. In other words, $xy\in I$. Since $I\subset \sqrt{I},\ (x+\sqrt{I})(y+\sqrt{I})=0$. Since \sqrt{I} is maximal, A/\sqrt{I} is a field. Therefore, $x+\sqrt{I}=0$ or $y+\sqrt{I}=0$. In other words, $x\in \sqrt{I}$ or $y\in \sqrt{I}$. If $x\in \sqrt{I}$, then x+I is nilpotent in A+I. Suppose $x\notin \sqrt{I}$. Since \sqrt{I} is maximal, $(x)+\sqrt{I}=(1)$. Therefore, ax+b=1 for some $a\in R$ and $b\in \sqrt{I}$. Since $b\in \sqrt{I}$, $b^n\in I$ for some $n\geq 1$. Therefore $1=((ax+b)+I)^n=(ax+b)^n+I=xc+I$ for some element c since $b^n+I=0$. However, this implies 0=(x+I)(y+I)(c+I)=y+I, which is a contradiction. Therefore, x+I must be nilpotent in A+I. By symmetry, y+I must be nilpotent in A+I.

We have shown that every zero divisor in A/I is nilpotent, which is precisely the definition of a primary ideal.

Exercise. (9) Let $x \in (q:b)$. Then $xb \in q$. Since $b \notin q$, $x^n \in q$ for some $n \geq 1$. However, this implies $x \in p$. Since $(q:b) \subset p$, $\sqrt{(q:b)} \subset \sqrt{p} = p$. Clearly, $q \subset (q:b)$, so $p = \sqrt{q} \subset \sqrt{(q:b)}$. Therefore, $p = \sqrt{(q:b)}$.

We will now show that $\sqrt{(q:b)}$ is primary. Let x,y be chosen such that $xy \in (q:b)$. If $y^n \in (q:b)$ for some $n \geq 1$, we are done. In other words, if $y \in \sqrt{(q:b)} = p$, then we are done. Suppose otherwise. Then $xyb \in q$, so $(xb)y \in q$. This implies $xb \in q$ because $y \notin \sqrt{q}$. This implies $x \in (q:b)$, and we are done.