5. Лабораторная работа №5

5.1. Цель лабораторной работы

Лабораторная работа проверяет умение пользоваться многопоточным программированием для реализации метода Монте-Карло. В качестве тестовой задачи предлагается вычислить площадь области и значение двойного интеграла.

5.2. Задания

Пусть дана лемниската Бернулли, которая в полярных координатах (r,φ) задается уравнением:

$$r^2 = 2a^2 \cos 2\varphi,$$

где a — некоторый параметр. Найти площадь заштрихованной области, изображенной на рисунке 3.

Рис. 3: Часть лемнискаты вне круга радиуса а.

- О методе Монте-Карло для вычисления площадей смотрите в отдельном файле к лабораторной работе.
- Вычисление должно проходить в многопоточном режиме.
- С помощью замеров времени нужно показать, что ваша программа работает быстрее при увеличении количества потоков.
- Результат работы программы можно проверить, так как вычисление сводится к повторному интегралу:

$$2\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \mathrm{d}\varphi \int_{a}^{a\sqrt{2\cos 2\varphi}} r \mathrm{d}r = a^2 \frac{3\sqrt{3} - \pi}{3}.$$

• Визуализируйте результат бросания точек, как, например, это показано на рисунке 4.

Рис. 4: Результат бросания точек в две прямоугольные области. Серым цветом показаны точки, не попавший внутрь лемнискаты, а красным, наоборот, попавшие.

5.3. Аппроксимация кратных интегралов методом Монте-Карло

Если при вычислении однократных интегралов Римана можно применить различные эффективные детерминированные численные методы, то в случае необходимости аппроксимации кратных интегралов, зачастую единственным методом аппроксимации служит метод Монте-Карло. Рассмотрим, в чем он заключается на примере двумерного пространства.

Пусть требуется аппроксимировать кратный интеграл по области $\Omega \subset \mathbb{R}^2$

$$\mathcal{I} = \iint\limits_{\Omega} f(x, y) \mathrm{d}x \mathrm{d}y.$$

Метод Монте-Карло применительно к данной задаче, заключается в генерировании N равномерно распределенных случайных точек $(x_i, y_i) \in \Omega$, где i = 1, ..., N. Площадь области, как известно из курса математического анализа, также выражается через кратный интеграл:

$$S = \iint\limits_{\Omega} \mathrm{d}x \mathrm{d}y.$$

Тогда справедлива формула:

$$\mathcal{I} \approx I_N = S \frac{1}{N} \sum_{i=1}^N f(x_i, y_i) = S \cdot \mathbb{E}_N[f],$$

где $\mathbb{E}_N[f]$ — выборочное среднее (среднее арифметическое) значений функции f(x,y) на всем множестве точек (x_i,y_i) . Согласно закону больших чисел, справедливо соотношение

$$\lim_{N \to \infty} I_N = \mathcal{I}.$$

Оценка сходимости метода Монте-Карло основывается на центральной предельной теореме, которая позволяет дать оценку абсолютного значения отклонения выборочного среднего от математического ожидания. Оценка дается соотношением

$$\frac{S\sigma_N}{\sqrt{N}}$$

где σ_N является выборочной несмещенной дисперсией функции f(x,y):

$$\mathbb{D}_N[f] = \sigma_N = \frac{1}{N-1} \sum_{i=1}^N \left(f(x_i, y_i) - \langle f \rangle \right)^2.$$

Основной вклад вносит множитель $1/\sqrt{N}$. Он показывает, что точность аппроксимации интеграла методом Монте-Карло растет как квадратный корень от числа испытаний (сгенерированных точек). Например, чтобы получить точность 10^{-3} потребуется сгенерировать около 10^6 точек. В этом заключается существенный недостаток метода Монте-Карло. Однако следует отметить ряд преимуществ.

- 1. Погрешность метода не зависит от размерности интеграла.
- 2. Метод хорошо масштабируется и распараллеливается

5.4. Вычисление площадей методом Монте-Карло

Метод Монте-Карло можно использовать для нахождения площадей, объемов и гиперобъемов. Суть метода заключается в использовании геометрического определения вероятности. Рассмотрим метод на примере вычисления площади круга.

Рассмотрим некоторый круг с центром в начале декартовой системы координат $\Omega_{\circ} = \{x^2 + y^2 \leqslant a^2\}$ и некоторую прямоугольную область Ω_{\square} , полностью содержащую данный круг внутри себя. Оптимально, чтобы данная область была описанным вокруг круга квадратом (см. рис. 5), тогда погрешность метода будет минимально возможной. Поэтому положим $\Omega_{\square} = \{(x,y) : x \in [-a,a], y \in [-a,a]\}.$

Рассмотрим точку, координаты которой будут случайными равномерно распределенными числами из отрезка [-a,a]. По геометрическому определению вероятности, вероятность попадания этой случайной

Рис. 5: Вычисление площади круга методом Монте-Карло.

точки в область Ω_{\circ} (событие A) равна отношению площади окружности к площади описанного квадрата Ω_{\square} :

$$P(A) = \frac{S_{\circ}}{S_{\square}},$$

где S_{\circ} — площадь области Ω_{\circ} , а S_{\square} — площадь области Ω_{\square} .

Пусть мы сгенерировали всего N точек (x_i, y_i) из прямоугольной области Ω_{\square} и M из них попали в область Ω_{\circ} , тогда частота попадания точек в область Ω_{\circ} вычисляется по формуле:

$$\alpha = \frac{M}{N}.$$

Чем больше точек мы генерируем, тем ближе частота α будет к теоретической вероятности P(A):

$$\alpha \to \lim_{N \to \infty} \frac{M}{N} = P(A).$$

Следовательно, площадь области S_{\circ} можно аппроксимировать следующим образом:

$$S_{\circ} \approx \alpha S_{\square} = \alpha (2a)^2.$$

Данные формулы легко обобщаются на любую замкнутую область Ω (см. рис. 6). Если $[x_1,x_2]\ni x\in \Omega$ и $[y_1,y_2]\ni y\in \Omega$, то $\Omega_{\square}=[x_1,x_2]\times [y_1,y_2]$ и площадь произвольной области Ω вычисляется по формуле $S=\alpha S_{\square}$, где S_{\square} — площадь Ω_{\square} .

Разделим теперь задачу генерации чисел на n потоков. Пусть каждый поток самостоятельно генерирует $N_j,\ j=1,\dots,n$ чисел и находит соотношение M_j/N_j . По окончанию работы потоков получим набор чисел

$$\frac{M_1}{N_1} = \alpha_1, \frac{M_2}{N_2} = \alpha_2, \frac{M_3}{N_3} = \alpha_3, \dots, \frac{M_n}{N_n} = \alpha_n.$$

Рис. 6: Вычисление площади произвольной области Ω методом Монте-Карло.

$$\begin{split} M_1 + M_2 + \ldots + M_n &= \alpha_1 N_1 + \alpha_2 N_2 + \ldots + \alpha_n N_n, \\ S &\approx \frac{M_1 + M_2 + \ldots + M_n}{N_1 + N_2 + \ldots + N_n} &= \frac{\alpha_1 N_1 + \alpha_2 N_2 + \ldots + \alpha_n N_n}{N_1 + N_2 + \ldots + N_n}. \end{split}$$

Если потоки генерируют разное количество точек, то придется сохранять величины M_i и N_i для всех возможных i. Однако если число точек одинаковое, то достаточно сохранить α_i так как

$$\frac{\alpha_1 N + \alpha_2 N + \dots + \alpha_n N}{nN} = \frac{1}{n} \sum_{i=1}^n \alpha_i.$$

Таким образом, задачу вычисления площади методом Монте-Карло можно реализовать с помощью редукции величин α_i , что позволит сэкономить память.

5.5. Пример

В качестве примера рассмотрим следующий интеграл, который легко свести к повторному и вычислить аналитически:

$$\mathscr{I} = \iint_{\Omega} 3y^2 \sin^2 x \, dx dy, \quad \Omega = \{0 \leqslant x \leqslant \pi, 0 \leqslant y \leqslant \sin x\}.$$

Область Ω изображена на рисунке 7. Приближенная формула для вычисления интеграла по методу Монте-Карло будет иметь следующий вид:

$$y \xrightarrow{0} \Omega$$
 π

$$\mathscr{I} \approx \frac{S_{\Omega}}{M} \sum_{i=1}^{M} f(x_i, y_i),$$

Рис. 7: $\Omega = \{0 \leqslant x \leqslant \pi, 0 \leqslant y \leqslant \sin x\}$

где S_Ω — площадь области Ω , а M — количество точек, попавших в область $\Omega,\, f(x_i,y_i)=3y^2\sin^2x$

Из рисунка 6 видно, что площадь S_{Ω} это площадь, ограниченная графиком синуса сверху и осью абсцисс снизу, поэтому можно обойтись обыкновенным определенным интегралом:

$$S_{\Omega} = \int_{0}^{\pi} \sin x dx = -\cos x \Big|_{0}^{\pi} = 1 + 1 = 2.$$

Следовательно аппроксимирующая формула будет иметь следующий вид:

$$\mathscr{I} \approx \frac{2}{M} \sum_{i=1}^{M} 3y_i^2 \sin^2 x_i.$$

С другой стороны, сам интеграл можно вычислить аналитически, что позволяет использовать его для проверки корректности работы программы:

В случае, если площадь S_{Ω} аналитически не вычисляется, ее можно вычислить методом Монте-Карло, заодно вычисляя значения функции f(x,y).