Applied Linear Algebra in Data Analysis

Tutorial

Sivakumar Balasubramanian

CONTENTS

1	Concepts in Vector Spaces	2
2	Matrices	3
3	Solution to Linear Equations	4
4	Orthogonality	5
	4.1 Product of orthogonal matrices	5
	4.2 Orthogonal projections of vectors	5
5	Matrix Inverses	6

1 CONCEPTS IN VECTOR SPACES

2 MATRICES

3 SOLUTION TO LINEAR EQUATIONS

4 ORTHOGONALITY

Product of orthogonal matrices

Show that the product of a set of orthogonal matrices is orthogonal.

$$\mathbf{Q} = \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_1^\top$$

where, $\mathbf{Q}_i \in \mathbb{R}^{n \times n}$ and $\mathbf{Q}_i^{\top} \mathbf{Q}_i = \mathbf{I}$.

Proof: The matrix **Q** is orthogonal if and only if $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{Q}\mathbf{Q}^{\top} = \mathbf{I}$. We know that,

$$\begin{aligned} \mathbf{Q}^\top &= \left(\mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_l\right)^\top = \mathbf{Q}_l^\top \mathbf{Q}_{l-1}^\top \cdots \mathbf{Q}_2^\top \mathbf{Q}_1^\top \\ \Longrightarrow \mathbf{Q}^\top \mathbf{Q} &= \mathbf{Q}_l^\top \mathbf{Q}_{l-1}^\top \cdots \mathbf{Q}_2^\top \mathbf{Q}_1^\top \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_{l-1} \mathbf{Q}_l \end{aligned}$$

Since, $\mathbf{Q}_{i}^{\top}\mathbf{Q}_{i} = \mathbf{I}$, we have,

$$\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$$

We can similarly show that $\mathbf{Q}\mathbf{Q}^{\top} = \mathbf{I}$. Thus, the product of a set of orthogonal matrices is orthogonal. ■

Orthogonal projections of vectors

Let $\mathbf{u} \in \mathbf{R}^n$ be a unit vector. Show that the orthogonal projections on x – $\mathbf{x}_{\mathbf{u}} = (\mathbf{u}\mathbf{u}^{\top})\mathbf{x}$ and $\mathbf{x}_{\mathbf{u}^{\perp}} = (\mathbf{I} - \mathbf{u}\mathbf{u}^{\top})\mathbf{x}$ – are orthogonal complements.

The orthogonal projection matrices $\mathbf{u}\mathbf{u}^{\top}$ and $\mathbf{I} - \mathbf{u}\mathbf{u}^{\top}$ project any vector onto the $span\{u\}$ and the orthogonal complement of $span\{u\}$ respec-

Its easy that x_u and $x_{u^{\perp}}$ are complementary components of x,

$$\mathbf{x} = \mathbf{x}_{\mathbf{u}} + \mathbf{x}_{\mathbf{u}^{\perp}} = \left(\mathbf{u}\mathbf{u}^{\top}\right)\mathbf{x} + \left(\mathbf{I} - \mathbf{u}\mathbf{u}^{\top}\right)\mathbf{x}$$

They are also orthogonal complements because of the following,

$$\mathbf{x}_{\mathbf{u}}^{\top} \mathbf{x}_{\mathbf{u}^{\perp}} = \left(\mathbf{u} \mathbf{u}^{\top} \mathbf{x}\right)^{\top} \left(\left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}\right) \mathbf{x}\right)$$

$$= \mathbf{x}^{\top} \mathbf{u} \mathbf{u}^{\top} \left(\mathbf{I} - \mathbf{u} \mathbf{u}^{\top}\right) \mathbf{x}$$

$$= \mathbf{x}^{\top} \mathbf{u} \mathbf{u}^{\top} \mathbf{x} - \mathbf{x}^{\top} \mathbf{u} \left(\mathbf{u}^{\top} \mathbf{u}\right) \mathbf{u}^{\top} \mathbf{x}$$

$$= \mathbf{x}^{\top} \mathbf{u} \mathbf{u}^{\top} \mathbf{x} - \mathbf{x}^{\top} \mathbf{u} \mathbf{u}^{\top} \mathbf{x}$$

$$= 0$$

Using the fact that, $\mathbf{u}^{\top}\mathbf{u} = 1$,

$$\mathbf{x}_{\mathbf{u}}^{\top}\mathbf{x}_{\mathbf{u}^{\perp}} = \mathbf{x}^{\top}\mathbf{u}\mathbf{u}^{\top}\mathbf{x} - \mathbf{x}^{\top}\mathbf{u}\mathbf{u}^{\top}\mathbf{x} = 0$$

Thus, x_u and $x_{u^{\perp}}$ are orthogonal to each other.

5 MATRIX INVERSES