NASA M X 63124

PROPULSIVE POTENTIAL OF RESIDUAL ROCKET MOTOR HEAT

GPO PRICE \$	
CFSTI PRICE(S) \$	JOSEPH L. ANSELL
Hard copy (HC) 36	
Microfiche (MF)	
ff 653 July 65	
ANNITETS 1975	MAR 1968 RECEIVED RACA STI FACILITY RIPUT LIRANGH RIPUT L
GSFC -	GREENBELT, MARYLAND
CILITY FORM 602	(ACCESSION JUMBER) (PAGES) (PAGES) (PAGES) (CATEGORY) (CATEGORY)

PROPULSIVE POTENTIAL OF RESIDUAL ROCKET MOTOR HEAT

Joseph L. Ansell Delta Project Office

February 1968

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

ABSTRACT

This paper presents an analytical study on how to use the residual motor heat of a solid-propellant rocket for propulsion purposes in full vacuum, through the introduction of an inert quenching fluid. Three fluids were considered: water, propane, and Freon 12, with Delta Launch Vehicle third stage rocket motors (X-258 or FW-4). The possibility of using this quenching technique to provide fine velocity control was explored. Water was found to be superior to the other fluids under the conditions assumed, and the method appears to be feasible for velocity-trim within 6 minutes after solid-propellant burnout. The study includes a computer program to predict the effect of introducing the quenching fluid at various times subsequent to the peak motor temperature.

CONTENTS

Abstract	ii
INTRODUCTION	1
ANALYSIS	2
COMPARISON WITH THEORETICAL RESULTS	4
Water as a Coolant and Propellant	4
Comparison of Water, Propane, and Freon-12	7
ANALYSIS OF SYSTEM	7
CONCLUSIONS AND RECOMMENDATIONS	8
ACKNOWLEDGMENTS	8
References	9
Appendix A—Calculation of Comparative Values for Water, Propane, and Freon-12, as Coolant and Propellant	11
Appendix B—Measurement of Maximum Motor Temperature After Firing	17
Appendix C-Effect of Specific Heat of Motor Shell on $\triangle V_3$ for Water	19
Appendix D—Program Listing	21
Appendix E-Equilibrium Calculations for Water, Propane, and Freon-12	25
Appendix F-Symbol List	41

PROPULSIVE POTENTIAL OF RESIDUAL ROCKET MOTOR HEAT

by Joseph Ansell Goddard Space Flight Center

INTRODUCTION

Critical injection missions require accurate control of the total impulse generated by the stages of a launch vehicle, especially the final stage. If an error occurs in the terminal injection velocity, the velocity can be corrected by a fine-trim control system. If the final stage is a solid-propellant motor, one method of fine velocity control is to inject a cold, inert fluid into the hot, expended motor (see Figure 1). While the motor is cooling and losing its energy, the inert fluid gains heat

energy from the motor. Allowing the fluid to vaporize and flow through the rocket nozzle provides an advantage by use of its residual propulsive potential. The velocity gain can be adjusted to ensure a fine control over final velocity. The fineness of the control is determined by choice of a velocity-sensing system and the system of valves that permit only the required amount of inert fluid to enter the hot motor shell.

This approach also mitigates outgassing (Reference 1), which often contributes to an error in total impulse. Outgassing causes two problems after the solid main grain burnout. First, the total impulse of the solid-propellant stage may be greater or less than that predicted on the basis of static tests (Reference 2). Second, any outgassing that occurs after separation of the motor from the payload may cause the final-stage motor to collide with the payload, possibly damaging it or changing its attitude or course. A method of quenching a hot motor with an inert fluid to eliminate outgassing has been successfully used in ground testing (Reference 2).

Figure 1—Schematic of a system for the injection of an inert fluid into a hot, solid-propellant motor at a constant injection pressure.

The purpose of this study is: (1) to find the weight penalty and velocity loss due to carrying an inert fluid velocity fine-trim system, (2) to find the potential velocity that can be recovered from using such a system, and (3) to compare the velocity loss with the velocity recovered. A trade-off comparison will show whether it is feasible to carry an inert-fluid, velocity-trim system on a space vehicle that requires close control of the injection velocity.

Appendix A gives the calculations of comparative values for three selected substances; Appendix B lists motor-temperature measurements; Appendix C lists required motor specific heats. Appendix D is a reproduction of a computer program to predict the effect of introducing the quenching fluid at various times. Appendix E gives the calculations of equilibrium conditions for the three substances. Appendix F is a symbol list.

ANALYSIS

A solid-fuel motor retains, after firing, an amount of heat energy Q_0 . Since no convection occurs in a vacuum, subtracting the amount of heat Q_{rad} radiated from the motor's surface gives the amount of heat energy available from the hot motor at the peak motor temperature.

$$H = Q_0 - Q_{rad}$$
 (1)

$$Q_0 = W_3 C_p (T - T_0)$$
 (2)

The heat radiated from the motor's surface per unit area per unit time is

$$Q_{rad} = \epsilon \sigma (T^4 - T_1^4)$$
 (3)

and the total heat radiated is:

$$Q_{rad} = \epsilon \sigma (T^4 - T_1^4) At .$$
(4)

Therefore, the heat remaining in the motor at time t after maximum motor temperature is reached is given by:

H =
$$W_3 C_p (T - T_0) - \epsilon \sigma A (T^4 - T_1^4) t$$
 (5)

and, since T₁ is very much smaller than T,

$$H = W_3 C_p (T - T_0) - \epsilon \sigma A T^4 t .$$
 (6)

Differentiating with respect to time (in order to obtain the time decay of heat from the motor) gives

$$dH/dt = -\epsilon \sigma A T^4 + (W_3 C_p - 4\epsilon \sigma A T^3 t) dT/dt .$$
 (7)

The heat remaining in the motor is now available for heating the inert propellant fluid; this heat, prior to the fluid flow through the hot motor, is

$$\overline{H} = H + \frac{dH}{dt} \times t$$
 (8)

$$\overline{H} = \left[W_3 C_p \left(T - T_0 \right) \right] - 2 \left[\epsilon \sigma A T^4 t \right] + \left[\left(W_3 C_p t - 4 \epsilon \sigma A T^3 t^2 \right) dT / dt \right]. \tag{9}$$

The drop in temperature caused by the flow of inert fluid may be found by equating the heat lost by the motor to the heat gained by the inert fluid:

$$\dot{W}(\triangle t)C_{p6}\left(T_{B}-T_{0}\right)+\dot{W}(\triangle t)\lambda+\dot{W}(\triangle t)C_{p7}\left\{\left[T+dT/dt-t+\frac{dT_{m}}{dt}\left(\triangle t\right)\right]-T_{B}\right\}=W_{3}C_{p}\left[-dT/dt-t-dT_{m}/dt(\triangle t)\right].$$

Solving for dT /dt gives

$$dT_{m}/dt = \frac{\dot{W}(\Delta t)C_{p6}(T_{B}-T_{0}) + \dot{W}(\Delta t)\lambda + W_{3}C_{p}dT/dt - t + \dot{W}(\Delta t)C_{p7}T + \dot{W}(\Delta t)C_{p7}dT/dt - t - \dot{W}(\Delta t)C_{p7}T_{B}}{-\dot{W}(\Delta t)^{2}C_{p7} - W_{3}C_{p}(\Delta t)}$$
(11)

To determine the heat available in the motor at any time for a given flow of inert fluid into it,

$$\overline{H} = W_3 C_p (T - T_0) - 2\epsilon \sigma A T^4 t + (W_3 C_p t - 4\epsilon \sigma A T^3 t^2) dT/dt + W_3 C_p \frac{dT_m}{dt} (\Delta t) .$$
(12)

For any given time of injection of fluid into the hot motor and at any flow rate, the time after maximum temperature when the available heat falls to zero may be determined from Equation 12. A computer program helped determine this value (see Appendix D). To find the amount of fluid that can be injected, multiply $t(\overline{H} = 0)$ by the fluid weight flow rate.

$$m = t(\overline{H} = 0)\dot{W}. \tag{13}$$

Equation 13 assumes immediate (flash) vaporization of the quenching fluid on entry into the motor chamber. This mass of inert fluid will supply a total impulse

$$I_{tot} = mI_{vac}$$
 (14)

and, since m and I_{vac} decrease with time, I_{tot} is a maximum when t = 0.

Velocity penalty and boost:

$$\Delta V_1 = gI_{\text{vaco}} \ln \frac{W_1 + W_2}{W_1 + W_3}$$
 (15)

$$\Delta V_2 = gI_{vaco} \ln \frac{W_1 + W_2 + W_4 + W_5}{W_1 + W_3 + W_4 + W_5}$$
 (16)

Velocity penalty =
$$\Delta V_p = \Delta V_1 - \Delta V_2$$
 (17)

$$\Delta V_3(t) = \text{velocity regained} = gI_{\text{vac}}(t) \ln \frac{W_1 + W_3 + W_4 + W_5}{W_1 + W_3 + W_4 + W_5 - m_0}$$
 (18)

 ΔV_3 is maximum at time t = 0.

COMPARISON WITH THEORETICAL RESULTS

An analysis of this type of quenching system was made with the X-258 and FW-4 Delta thirdstage solid rocket motors (References 3, 4, and 5). Actually, given the appropriate data, the derived relationships can be applied to any solid-fuel motor to which a quenching fluid is to be ap-

Figure 2—Allegheny Ballistics Laboratory X-258 B-1 rocket motor.

plied after burnout. For the X-258 (S/N RH-47) motor (Figure 2) using estimated values for specific heat, mass, maximum temperature, and motor surface area, the approximate values for incremental velocity increase have been calculated. In this study it is assumed that maximum motor temperature does not exceed chamber outer wall-temperature measurements. This gives conservative values, since the maximum inner wall temperature is considerably higher than that estimated from outer wall-temperature measurements.

The following results were obtained by calculating propulsive potential for three different inert quenching fluids. Carbon dioxide has previously been used experimentally (Reference 2) in simulated altitude tests for quenching, and water has been proposed repeatedly. Theoretical studies have provided criteria for the selection of a cold-gas propulsion system (Reference 6). Water, propane, and Freon-12 were selected for this study; the choice was dictated by their molecular weight, heat of vaporization, and specific impulse.

Water as a Coolant and Propellant

Water (References 7 and 8), with its low molecular weight and high specific impulse, is an excellent coolant and propellant in spite of its extremely high heat of vaporization. Also, it costs

nothing and is readily available (Reference 1). An analysis of a quenching system that uses water as the inert material with an X-258 (S/N RH-47) motor gave the following quantities for the derived relations (for constants and calculations, see Appendix A, part 1):

$$H(t = 0) = 7800Btu.$$

Figure 3 shows the heat radiation vs time from the motor. The maximum quenching fluid mass for water for the flow rates used was

$$W_5$$
 (t = 0) = 8.89 lbm for a flow rate of 0.6 lbm/sec.

Figure 4 shows the effect of water flow for flow rates of 0.03 to 0.6 lbm/sec. The maximum amount of fluid permits the total impulse recovery of

Figure 3—Heat radiation versus time.

Figure 4—Available H₂O mass versus time.

from specific impulses calculated by the method of References 9, 10, and 11. Figure 5 shows the total impulse recoverable with time for various water-flow rates. The velocity penalty for an X-258 motor carrying water in addition to a 300-lbm payload is obtained from Equation 17.

$$v_1 = 7362.80 \text{ ft/sec},$$

 $v_2 = 7218.46 \text{ ft/sec},$

 $v_{p} = 144.34 \text{ ft/sec},$

 $V_{a}(t = 0) = 113.94 \text{ ft/sec},$

Figure 6 shows the recoverable velocity as a function of time and flow rate, with the greatest velocity recovered at the highest flow rate. The above values show that the maximum attainable velocity occurs when no quenching system is carried. However, the recoverable-velocity

Figure 5—Total impulse available from H₂O versus time.

no water carried

water carried and not used, with a carrying structure equal to 20 percent of the fluid weight

velocity penalty

maximum recoverable velocity from the quenching fluid.

Figure 6—Recoverable velocity versus time and flow rate.

gain when a quenching system is carried and used incurs a relatively small loss (31 ft/sec in 7300 ft/sec or 0.4 percent of $\triangle V$); the control of total impulse error must be assessed against this loss when a mission requires very low injection-velocity error.

Comparison of Water, Propane, and Freon-12

Table 1 shows the values for the same calculations as water (above) for Freon-12 and propane. For constants and calculations, see Appendix A, parts 2 and 3. Of the three substances studied for this report, water proved to give the best velocity recovery; propane was a very close second. Both Freon-12 and propane had a higher specific impulse at the high initial temperature of the motor than is shown in Reference 8, a low temperature study. However, their specific-impulse values relative to each other agreed fairly well with the referenced literature.

 $\label{eq:Table 1*}$ Comparison of Three Different Materials for Theoretical Maximum Values at t = 0.

Measured Quantity	Water	Propane	Freon-12
H(t = 0) (Btu)	7800.00	7800.00	7800.00
M(t = 0) (1bm)	8.89	17.72	40.19
I_{tot} (t = 0) (lbf sec)	1261.49	2507.07	2655.59
$\triangle V_1$ (ft/sec)	7362.80	7362.80	7362.80
$\triangle V_2$ (ft/sec)	7218.46	7081.49	6753.61
ΔV_{p} (ft/sec)	144.34	281.31	609.19
$\triangle V_3$ (t = 0) (ft/sec)	113.94	222.62	226.17
$\Delta V_3 - V_p $ (ft/sec)	-30.40	-58.69	-363.02

[•]The last line $\left(\triangle V_3 - V_p \right)$ represents the net profit (+) or loss (-) in incremental velocity upon expending all the fluid. Zero corresponds to the break-even point.

ANALYSIS OF SYSTEM

In this study, it has been noted that the final attainable velocity depends mainly on the solid-propellant motor residual heat and the choice of a few important inert-fluid properties. When water is used as a quenching agent, its high heat of vaporization is a definite shortcoming. A substance with a low heat of vaporization gives more efficient use of the motor heat, but the molecular weight of the substance should not be high enough to give an unduly low $I_{\rm sp}$. Another factor required is high specific impulse for the available peak temperature. Appendix E lists theoretical rocket performances for equilibrium conditions, with these inert fluids. The specific heat of the motor shell must also be considered (see Appendix C). So must its mass; the higher the mass, the more energy

does it provide for a given maximum temperature and specific heat, but the more velocity penalty does it incur. The $\triangle T$, and therefore the maximum temperature of the motor, should be as great as possible. Insulation such as the foil used on the X-258 (S/N RH-47) works well for two reasons: it allows a high maximum temperature, and it retains the heat longer than without insulation. Surface area and emissivity of the motor shell have a slight (almost negligible) effect on heat leakage after time t=0; the smaller they are, the more slowly will the heat be radiated from the motor's surface.

Finally, the time that elapses following maximum temperature is very important; if a quenching fluid is not used quickly enough, the system may not allow the recovery of any velocity.

CONCLUSIONS AND RECOMMENDATIONS

The results of this study show that although the velocity lost by carrying the weight of an inert quenching fluid cannot be fully regained, the penalty is fairly small for water (30 ft/sec), somewhat higher for propane (59 ft/sec) and considerably higher for Freon 12 (363 ft/sec). From a theoretical standpoint, the residual rocket motor heat constitutes a feasible source of energy for potential application to a propulsive system. For those launch conditions that require close control of the injection velocity, injecting an inert fluid into the hot post-burnout combustion chamber should be a way to adjust the final velocity until the motor has lost its heat from radiation. The results are considered conservative because, for a slight increase in either the chamber temperature or the heat capacity, there might be a velocity gain instead of a penalty.

It would be advisable to follow this theoretical study by experimental measurements of: (1) the actual residual heat energy after firing, and (2) the effect of introducing an inert quenching fluid at various flow rates (using adequate thrust and pressure instrumentation). It should then be possible to establish the efficiency of the propulsive system under realistic conditions, to determine the resolution in fine velocity control with existing hardware, and to generate the criteria for selecting competitive velocity-correcting techniques.

ACKNOWLEDGMENTS

I wish to acknowledge the help of Mr. Stanley Halle who prepared the computer program and Mr. Daniel Dembrow who provided the reference and source material for this study.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, Maryland, December 12, 1967
492-11-00-05-51

REFERENCES

- 1. Koelle, H. H., "About the Economy of Steam Rockets as JATO Units," (In German), Report No. 2 of Research Institute for Physics and Jet Propulsion (1955).
- 2. Morris, J. A., "Summary of Solid Propellant Residual Thrust Studies," ARS Journal, Vol. 31, No. 9, September 1961, pp. 1283-85.
- 3. Nelius, M. A., and White, D. W., "Results of Testing the HPC-ABL X-258 B-1 (S/N RH-47) Solid-Propellant Rocket Motor Under the Combined Effects of Simulated Altitude and Rotational Spin," Arnold Engineering Development Center, March, 1964.
- 4. Nelius, M. A., and White, D. W., "Results of Testing Two HPC-ABL X-258 (S/N's RH-56 and RH-58) Solid-Propellant Rocket Motors Under the Combined Effects of Simulated Altitude and Rotational Spin," Arnold Engineering Development Center, May, 1964.
- 5. White, D. W., and Harris, I. E., "Results of Testing UTC XSR 57-UT-1 Solid-Propellant Rocket Motors Under the Combined Effects of Simulated Altitude and Rotational Spin (Preliminary Flight Rating Test) Phase II," Arnold Engineering Development Center, July, 1965.
- 6. Briscoe, H. M., "Choice of Propellant for a Cold Gas Propulsion System for a Satellite," J. British Interplan. Soc., May-June 1965, pp. 72-78.
- 7. Zigrang, D. J., "Water Rockets," Astronautics Mag., Dec. 1959, pp. 42, 43, 48.
- 8. Zigrang, D. J., and Widawsky, A., "Thermodynamics of the Steam Rocket," presented at American Rocket Society Propellant Thermodynamics and Handling Conference, Ohio State University, Columbus, Ohio, July 20-21, 1959.
- 9. Gordon, S., and Zeleznik, F. J., "A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants," NASA TN D-132, Oct. 1959.
- 10. Gordon, S., and Zeleznik, F. J., "A General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance and Chapman-Jouguet Detonations," NASA TN D-1454, Oct. 1962.
- Gordon, S., and Zeleznik, F. J., "A General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Composition, Rocket Performance, and Chapman-Jouguet Detonations. Supplement I.—Assigned Area-Ratio Performance," NASA TN D-1737, 1963.

APPENDIX A

CALCULATION OF COMPARATIVE VALUES FOR WATER, PROPANE, AND FREON-12, AS COOLANT AND PROPELLANT

- 1. X-258 (S/N RH-47) motor: water as coolant and propellant
 - (a) Constants:

$$w_a \approx 50 \text{ lbm}$$

$$T \approx 600^{\circ}F = 1060^{\circ}R = 590^{\circ}K$$

$$T_0 \approx 80^{\circ}F = 540^{\circ}R$$

$$\epsilon \approx 0.7$$

$$\sigma = 5.672 \times 10^{-5} \text{ erg/}^{\circ}\text{K}^{4} \text{ sec cm}^{2}$$

$$\sigma = 3.30 \times 10^{-15} \text{ Btu/}^{\circ} \text{R}^{4} \text{ sec in}^{2}$$

$$T_1 \approx 0$$
°K

$$A \approx 3700 \text{ in}^2$$

$$dT/dt \approx 0.25$$
°R/sec (see Figure A1)

$$C_{p_e} = 1 \text{ Btu/lbm}^{\circ} R$$

$$C_{p_s} = 0.48 \text{ Btu/lbm}^{\circ}\text{R}$$

$$\lambda = 540 \text{ Btu/lbm}$$

 $T_B = 212^{\circ}F = 672^{\circ}R$ (this assumes that the injection pressure is constant at 1 atmosphere)

$$I_{vac} = 142.1 \text{ lbf sec/lbm at t} = 0 (T = 590^{\circ}\text{K}, A_{E}/A_{T} = 53.2)$$

$$dI_{vac} = -0.0181 lbf/lbm (see Figure A2)$$

$$w_1 \approx 300 \text{ lbm}$$

$$W_2 \approx 550 \text{ lbm}$$

Figure A1—Radiant-body residual temperature versus time.

$$w_3 \approx 50 \text{ lbm}$$

$$W_4 = 0.2 W_5 \text{ (max.)}$$

$$w_5 = m(t)$$

Assumed: 20 percent of total fluid weight is needed for the structure, tankage, etc.,

Figure A2—l_{vac} versus temperature for chamber pressure of 100 psia.

When:

 $\dot{W}_1 = 0.03 \text{ lbm/sec then } dT_m/dt = -1.47^{\circ}R/sec$

 \dot{W}_{2} = 0.1 lbm/sec then dT_{m}/dt = -5.46°R/sec

 $\dot{W}_3 = 0.3 \text{ lbm/sec then } dT_m/dt = -16.7^{\circ}R/sec$

 $\dot{W}_4 = 0.6 \text{ lbm/sec then } dT_m/dt = -33.4^{\circ}R/sec$

 $I_{vaco} \approx 258 lbf sec/lbm$

(b) Calculations:

Total heat available:

 $\overline{H}(t = 0) = 50 \text{ lbm} \times 0.30 \text{ Btu/lbm}^{\circ} R \times 520^{\circ} R$

 $\overline{H}(t = 0) = 7800$ Btu (see other values in Figure 3)

Total possible mass:

 $m(t = 0, \dot{W} = 0.6) = 8.89$ lbm (see other values in Figure 4)

Total impulse:

 I_{tot} (t = 0, \dot{w} = 0.6) = 1261.49 lbf/sec (see other values in Figure 5)

Velocity penalty and boost:

$$\Delta V_1 = (32.174) (258) \text{ in } \frac{300 + 550}{300 + 50}$$

 $\Delta V_1 = 7362.80 \text{ ft/sec}$

$$\Delta V_2 = (32.174) (258) \ln \frac{300 + 550 + 1.78 + 8.89}{300 + 50 + 1.78 + 8.89}$$

$$\Delta V_2 = 7218.46 \text{ ft/sec}$$

$$\Delta V_p = 144.34 \text{ ft/sec}$$

$$\Delta V_3$$
 (t = 0) = (32.174)(142.1 - 0.0181 × 0.6) In $\frac{300 + 50 + 1.78 + 8.89}{300 + 50 + 1.78}$

$$\Delta V_3$$
 (t = 0) = 113.94 ft/sec

- 2. X-258 (S/N RH-47) motor: Freon-12 as coolant and propellant
 - (a) Constants:

$$C_{p5} = 0.22 \text{ Btu/lbm}^{\circ} R$$

$$C_{p6} = 0.15 \text{ Btu/lbm}^{\circ}\text{R}$$

$$\lambda = 60.5 \text{ Btu/lbm}$$

$$T_{\rm B} = 028^{\circ}\text{C} = -18.5^{\circ}\text{F} = 441.5^{\circ}\text{R} (6.72 \text{ atmosphere at } 80^{\circ}\text{F})$$

$$I_{vac}$$
 = 66.7 lbf sec/lbm at t = 0 (T = 590°K A_E/A_T = 53.2)

$$dI_{vac} = -0.0093 lbf/lbm$$

When:

$$\dot{w}_1 = 0.03 \text{ lbm/sec then } dT_m/dt = -0.07^{\circ}R/sec$$

$$\dot{W}_{2}$$
 = 0.1 lbm/sec then dT_{m}/dt = -0.82°R/sec

$$\dot{W}_3 = 0.3 \text{ lbm/sec then } dT_m/dt = -2.94^{\circ}R/\text{sec}$$

$$\dot{W}_4 = 0.6 \text{ lbm/sec then } dT_m/dt = -6.12^{\circ}R/sec$$

(b) Calculations:

Total possible mass:

$$m(t = 0, \dot{W} = 0.6) = 40.19 \text{ lbm}$$

Total impulse:

$$I_{tot}$$
 (t = 0, \dot{w} = 0.6) = 2655.59 lbf-sec

Velocity penalty and boost:

$$\Delta V_2 = (32.174) (258) \ln \frac{300 + 550 + (1.2 \times 40.19)}{300 + 50 + (1.2 \times 40.19)}$$

$$\Delta V_2 = 6753.61 \text{ ft/sec}$$

$$\Delta V_p = 609.19 \text{ ft/sec}$$

$$V_3 (t = 0) = (32.174) (66.7 - 0.0093 \times 0.6) \ln \frac{300 + 50 + (1.2 \times 40.19)}{300 + 50 + (0.2 \times 40.19)}$$

$$V_3 (t = 0) = 226.17 \text{ ft/sec}$$

3. X-258 (S/N RH-47) motor: Propane as coolant and propellant

(a) Constants:

$$C_{p5} = 0.58 \text{ Btu/lbm}^{\circ}R$$
 $C_{p6} = 0.40 \text{ Btu/lbm}^{\circ}R$
 $\lambda = 146 \text{ Btu/lbm}$
 $T_{B} = -42^{\circ}C = -43.5^{\circ}F = 416.5^{\circ}R \text{ (9.72 atmosphere at } 80^{\circ}F\text{)}$
 $I_{vac} = 142.2 \text{ lbf-sec/lbm at } t = 0 \text{ (T = 590}^{\circ}K \text{ A}_{E}/A_{T} = 53.2)$
 $dI_{vac}/dt = -0.0239 \text{ lbf/lbm}$

When:

$$\dot{w}_1$$
 = 0.03 lbm/sec then dT_m/dt = -0.57°R/sec \dot{w}_2 = 0.1 lbm/sec then dT_m/dt = -2.48°R/sec \dot{w}_3 = 0.3 lbm/sec then dT_m/dt = -5.01°R/sec \dot{w}_4 = 0.6 lbm/sec then dT_m/dt = -15.94°R/sec

(b) Calculations:

Total usable mass:

$$m(t = 0, \dot{w} = 0.6) = 17.72 \text{ lbm}$$

Total impulse:

$$I_{tot}$$
 (t = 0, \dot{w} = 0.6) = 2507.07 lbf/sec

Velocity penalty and boost:

$$\Delta V_2 = (32.174) (258) \ln \frac{300 + 550 + (1.2 \times 17.72)}{300 + 50 + (1.2 \times 17.72)}$$

$$\Delta V_2 = 7081.49 \text{ ft/sec}$$

$$V_p = 281.31 \text{ ft/sec}$$

$$V_3$$
 (t = 0) = (32.174)(142.2-0.0239×0.6) In $\frac{300+50+(1.2\times17.72)}{300+50+(0.2\times17.72)}$

$$V_3$$
 (t = 0) = 222.62 ft/sec

PRECEDING PAGE BLANK NOT FILMED.

APPENDIX B

MEASUREMENT OF MAXIMUM MOTOR TEMPERATURE AFTER FIRING

Maximum temperatures were measured at nine separate points around the motor shell during and after firing (Reference 3). The temperatures at all points were averaged at different times after ignition to give the time of maximum motor temperature and the temperature average at that time. (See Table B1.)

Table B1

Averages of Maximum Motor Temperatures* of the X-258 RH-47 Motor at Different Times After Ignition (Reference 3).

t, sec**	T, °F
200	576
250	596
300	603
350	602
400	599

^{*}Maximum average motor temperature: Approximately 600°F at 300 seconds after ignition.

Initial motor temperature = 80°F

T = 600°F - 80°F = 520°F

Change in temperature ($\triangle T$) is the difference between initial motor temperature and maximum temperature. Table B2 gives a comparison of maximum temperatures and $\triangle T$'s for different motors and insulation. Figure A1 gives values for the time decrease of heat from the motor's surface, plotted against temperature starting with a fixed temperature of $360^{\circ}F$.

Table B2

Maximum Motor Temperatures of Different Type Motors.

	Mote	or Type	
Measured Quantity	X-258 (References 3 and 4)	FW-4 (Re	ference 5)
Insulation	Foil	No Foil	No Foil
Max T, °F	570°, 600°	425°, 440°	340°, 390°
∆T, °F	490°, 520°	345°, 360°	265°, 315°

^{**}Note: This time should not be confused with the t used in developing the thermodynamic equations. That t is the number of seconds past maximum motor temperature. This t = 300 + x.

PRECEDING PAGE BLANK NOT FILMED.

APPENDIX C

EFFECT OF SPECIFIC HEAT OF MOTOR SHELL ON ΔV_3 FOR WATER

As can be seen from Appendix A, part 1, Figure 6, and Table C1, the specific heat C_p of 0.30 which was estimated for the motor shell

Figure C1— $\triangle V$ versus C_p at t=0.

C_p's of Motor Shell and Masses at H₂O Required for Certain Velocities.

Table C1

V ₃ , ft/sec	H ₂ O Mass Required (lbm)	Necessary Motor C _p (Btu/lbm °R)
113.94	8.89	0.30
144.34	11.35	0.37
160.00	12.33	0.41
180.00	14.11	0.46
200.00	15.89	0.52

will not provide the motor with enough heat energy to allow enough water to be used to recoup the velocity penalty for carrying the water. A separate study gives the relation between increase in C_p , increase in fluid mass, and consequently increase in ΔV_3 . The data from this study can be seen in Table C1, and Figure C1. It shows that to return just the velocity penalty at time t=0, a motor shell with a C_p of at least 0.37 Btu/lbm $^{\circ}$ R must be used.

APPENDIX D

PROGRAM LISTING

```
C
    WATER RECKET
    ENERGY REMAINING IN HOT MOTOR
    TOTAL MASS, IMPULSE, AND INCREMENTAL VELCCITY AVAILABLE HIGH TEMPERATURE PROGRAM
C
C
    FOR THOSE MATERIALS WHOSE BOILING POINTS ARE ABOVE STARTING TEMPERATURE
      DIMENSION F(14), AM(14), TIMP(14), VEL(14), T(14)
      CIMENSION DELT(14,14), TT(14), TTD(14), HH (14), HDUM(14,14)
      READ(5.76) NCASE
   76 FORMAT(15)
      DC 3 L=1.NCASE
      READ(5,77) SIG, EM, CP, TEM, TEMO, EP, AREA, DTCT
   77 FORMAT(8(F1C.5))
      READ(5,78) DIDT, DThDT, TEMB, CP1, CP2, ALAM, VACIO, G
   78 FORMAT(8(F10.4))
      READ(5.80) FLOW
   80 FORMAT(F1C.3)
     WRITE(6,79) L
   79 FORMAT(13H1CASE TUMBER, 15///110H
                                                        TIME
                                                                       CELTA
                ENERGY
                                  MASS
                                               IMPULSE
                                                               VELECTTY
           TEST H////)
     00 1 1=1,13
      T(1) = -30.
      CO 2 J=1,13
      T(J+1)=T(J)+3C.
      EE = I
      DELT(1,J)=T(J+1)-((30.*00)-30.)
      IF (DFLT(I,J)) 5,10,10
    5 DELT(1,J)=0.
   10 F1=(CM*CP*(TEM-TEMO))
     +2=(2.*EP*STG*AREA*(TEM**4)*T(J+1))
      HR=(EM#CP#T(J+1)#DTDT)
     F4=(4.*EP*SIG*AREA*(TEM**3)*DTDT*(T(J+1)**2))
     H5=(EM*CP*DT%DT*DELT(1,J))
      FCUM(I,J)=H1-H2+H3-H4+H5
      TF (HOUM(I,J)) 15,15,2
  15 VV=32.
     TT(!)=T(J+1)
     TTD(I)=DELI(1,J)
  18 VV=VV/2.
     F1=(EM*CP*(TEM+TEMO))
     +2=(2.*EP*S[G*AREA*(TEM**4)*TT(1)
     F3=(EM*CP*TT(I)*DTDT)
      H4=(4.*EP*SIG*AREA*(TEM**3)*DTDT*(TT(1)**2))
     +5=(FM*CP*DTwDT*TTD(I))
     FF(I)=F1-E2+H3-H4+H5
     IF (HF(I)) 30,17,32
  30 IF (HE(I)+.C1) 31,17,17
```

```
31 TT(1)=TT(1)-VV
   TTD(I)=TTD(I)+VV
   GO TO 18
32 IF (HF(I)-.C1) 17,17,33
33 TT(1)=TT(1)+VV
   TTD(I)=TTD(I)+VV
   00 TO 18
17 AM(I)=FLOW*TTO(I)
8 H(1)=AM(1)*(CP1*(TEM6-TEMC)+ALAM+CP2*(TEM+(CTCT*TT(1))+(CTWCT*TTC(
 11))-TEMB))
 9 TIMP(1)=AM(1)*(VACIC+(DIDT*TT(1)))
  V1=ALCG((350.+(1.2*AM(I)))/(35C.+(.2*AM(I))))
  VEL(I)=G*(VACIO+(DIDT*TT(I)))*V1
   CO TO 1
 2 CONTINUE
 1 CONTINUE
   wRITE(6,81)(TT(1),TTD(1),H(1),AM(1),TIMP(1),VEL(1),HH(1),I=1,13)
81 FORMAT(5X,7F15.3/)
3 CONTINUE
55 STOP
   END
```

TERM DEFINITIONS

۲	ENERGY REMAINING IN THE HOT MOTOR
AM	MASS OF WATER THAT CAN BE ADDED TO THE HCT MOTOR
TIMP	IMPULSE AVAILABLE FROM THE WATER
VEL	ACCITIONAL VELOCITY AVAILABLE FROM THE WATER
T	TIME ELAPSED SINCE MAXIMUM MOTOR TEMPERATURE
CELT	TIME ELAPSED FOR WATER FLOW
SIG	STEPHAN-BOLTZMANN CONSTANT
EM	TCTAL MOTOR MASS
CP	AVERAGE MOTOR SPECIFIC HEAT
TEM	MAXIMUM MOTOR TEMPERATURE
TEMO	INITIAL MOTOR TEMPERATURE
EP	MCTOR SHELL EMISSIVITY
AREA	MOTOR SURFACE AREA
CTCT	MOTOR TEMPERATURE LOSS PER TIME TO SPACE
DICT	IMPULSE LOSS PER TEMPERATURE FROM THE WATER
DTWDT	MOTOR TEMPERATURE LOSS PER TIME TO WATER
TEMB	ROILING POINT OF WATER AT ATMUSPHERIC PRESSURE
CP1	SPECIFIC HEAT OF WATER LIQUID
CP 2	SPECIFIC HEAT OF WATER VAPOR
ALAM	FEAT OF VAPORIZATION FOR WATER
VACIO	VACUUM SPECIFIC IMPULSE OF WATER AT THE MAXIMUM MOTOR TEMPERATURE
G	GRAVITY CONSTANT

APPENDIX E

EQUILIBRIUM CALCULATIONS FOR WATER, PROPANE, AND FREON-12

PRECEDING PAGE BLANK NOT FILMED.

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

WATER

					WAIER				
PARAMETERS									
PC/P P, ATM T, DEG K H, CAL/G S, CAL/G)(K)	CHAMBER 1,000 6,805 590 -3073,4 2,6052	THROAT 1,838 3,703 512 -3110,3	EXIT 40,200 0,1693 241 -3233,2 2,6052	EXIT 52,720 0,1291 225 -3240,2 2,6052	EXIT 100,000 0,0680 192 -3254,9 2,6052	EXIT 463.000 0.0147 131 -3281,8 2.6052	EXIT 1000,000 0,0068 -3292,0 2,6052	EXIT 10000,00 0,0007 -3312,9 2,6052	EXIT 100000,0 0,0001 35 -3324,8 2,6052
M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) SAMMA MACH NUMBER	18 a C L 7 0 2 -0 3 O C O O 0 a 4 E O O 1 2 2 4 B 4	18,017 0°,0000 0°,4686 1°,3078	18.017 0. -0.0000 0.4425 1.3320	18,017 0, -0,0000 0,4421 1,3325 3,174	18.017 0. -0.0000 0.4417 1.3329 3.586	18,017 0, -0,0000 0,4432 1,3314	18°017 0, -0,0000 0,4445 1,3300 5,247	18,017 0, -0,0000 0,4487 1,3250	18.017 00. -0.0000 0.4521 1.3227
CSTAR, FT/SEC CF AE/AT IVAC,LB-SEC/LB I, LB-SEC/LB		2563 0,712 1,000 100,0 56,7	2563 1,480 4,950 127,7	2563 1,512 5,939 129,4 120,5	2563 1•577 9°205 133°0 125°7	2563 1,690 27,13 136,3	2563 1.731 47.26 141.7 137.9	2563 1.812 255,8 146,4 144,4	2563 1.856 14213 1490 14739
DERIVATIVES (DLI/DLPC)PC/P (DLX/DLPC)PC/P	0,00000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0,00000	00000 0	00000,0	00000,0
(DLI/OHC)PC/P* (DLT/DHC)PC/P* (DLAR/DHC)PC/P* (DLCS/DHC)PC/P** (HC IN KCAL/G)	3,53104	1.78703 3.61665 0.	1,85064 3,83008 0,14983 1,82962			1,86609 3,82447 0,12876 1,82962	1,86811 3,81308 0,11536 1,82962	1,87094 3,77763 0,07707 1,82962	1.87114 3.74929 0.04855 1.82962
(OLI/OLPCP)S (OLI/OLPCP)S (OLAR/OLPCP)S,	-0,22979	0,76484 -0,23536 0,	0,08320 -0,24925 0,66755	0.07450 -0.24952 0.67597	0.05836 -0.24973 0.69191	0,03467 -0,24839 0,71644	0,02731 -0,24815 0,72455	0,01412 -0,24584 0,74004	0,00766 -0,24400 0,74835
MOLE FRACTIONS H201(G) 02(G)	0,39995 0,30005	0,99995	0,99995	0,99995	0,99995	0,99995 0,00005	0,99995	0,99995 0,00005	0,99994

01H1(G)

01(8)

H2(C)

(S) [H

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

WATER

PARAMETERS

PC/P P, ATM I, DEG K H, CAL/G S, CAL/(G)(K)	CHAMBER 1,000 34,02 590 -3073,4 2,4277	THROAT 1,838 18,51 512 -3110,3	EXIT 40°200 0,8463 -3233°2	EXIT 52,720 0,6454 -3240,2 2,4277	EXIT 100,000 0,3402 192 -3254,9 2,4277	EXIT 463.000 0.0735 -3281.8	EXIT 1000,000 0,0340 -3292,0 2,4277	EXIT 10000,00 0,0034 -3312,9 2,4277	EXIT 100000,0 0,0003 -3324,8 2,4276	
M, MOL WT (DLM/DLP) T (DLM/DLT) P CP, CAL/(G)(K) SAMMA MACH NUMBER	18,017 0,00000 -0,0000 0,4800 1,2984 0,	18,017 0,-0,0000 0,4686 1,3078 1,000	18,017 0,0000 0,4426 1,3320 3,004	18,017 0,0000 0,4422 1,3324 3,174	18,017 0. -0.0000 0,4417 1.3328 3.586	18,017 0. -0.0000 0.4431 1.3314 4,654	18,017 0, 0,0000 0,4446 1,3299 5,247	18,017 0,0000 0,4485 1,3252 7,309	18,017 0, -0,0000 0,4494 1,3253 9,927	
CSTAR, FT/SEC CF AE/AT IVAC, LB-SEC/LB I, LB-SEC/LB,		2563 0,712 1,000 100,0	2563 1,480 4,950 127,7 117,9	2563 1°512 5,940 129,4 120,5	2563 1,577 9,205 133,0 125,7	2563 1,690 27,14 139,3	2563 1, 731 47,27 141,7 137,9	2563 1,812 255,8 146,4 144,4	2563 1°856 1421, 149,0 147,9	
DERIVATIVES										
(OLI/OLPC)PC/P (OLT/OLPC)PC/P (OLAR/OLPC)PC/P (OLCS/OLPC)PC/P	0,00000	0,00000	0,00000	0,00000	000000 00000000000000000000000000000000	0,00000	0,00000	000000000000000000000000000000000000000	0,00000	
(DLI/DHC)PC/P* (DLAK/DHC)PC/P* (DLAK/DHC)PC/P* (DLCS/DHC)PC/P*	3,53108	1,79710 3,61662 0, 1,82952	1,85069 3,82966 0,14945 1,82952	1,85345 3,83308 0,15011 1,82952	1,85861 3,83704 0,14892 1,82952	1,86614 3,82479 0,12915 1,82952	1,86823 3,81207 0,11432 1,82952	1,87070 3,77927 0,07905 1,82952	1,87147 3,77156 0,07064 1,82952	
(DLI/DLPCP)S (DLT/DLPCP)S (DLAR/DLPCP)S,	-0,22979	0,76464 -0,23536 0,	0,08320 -0,24922 0,66757	0,07451 -0,24945 0,67604	0,05836 -0,24971 0,69193	0,03467 -0,24891 0,71642	0,02731 -0,24808 0,72461	0,01411 -0,24595 0,73994	0,00766 -0,24544 0,74689	
MOLE FRACTIONS										
H201(G) 02(G)	0,99995	0,99995 0,00005	0,99995	0,99995	0,99995 0,00005	0,99995 0,00005	0,99995 0,00005	50000,0	0,99995 0,00005	
ADDITIONAL PRODUCT	UCTS WHICH	111 67 U1 38	CONSIDERED	BUT WHOSE	MOLE F	RACTIONS WER	E LESS	THAN 0,000005	005 FOR ALL	ASSIGNED
н1(6)	H2(6)	01(6)	10	01H1(G)						

SUCITIONOS

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.000005 FOR ALL ASSIGNED CONDITIONS 01H1(G) 01(6) H2(6)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

		FROM AN	ASSIGNED TE	MPERATURE A	FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES	US CHAMBER	PRESSURES			
				W	WATER					
PARAMETERS										
PC/P P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	CHAMBEE. 1,000 68,05 590 -3073,4 2,3512	THROAT 1,838 37,02 37,02 512 -3110,4	EXIT 40.200 1.693 241 -3233.2 2.3512	EXIT 52,720 1,291 225 -3240,2 2,3512	EXIT 100,000 0,6805 192 -3254,9 2,3512	EXIT 463,000 0,1470 131 -3281,8 2,3512	EXIT 1000,000 0,0680 108 -3292,0 2,3512	EXIT 10000,00 0,0068 61 -3312,9 2,3512	EXIT 10000000 0.0007 35 -3324.8 2.3512	
M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MACH NUMBER	18,017 0,00000 -0,0000 0,4800 1,2994 0,	18,017 0,000 0,4686 1,3078	18.017 0, -0,0000 0,4425 1,3320 3,004	18.017 0. -0.0000 0.4421 1.3324 3.174	18.017 0. -0.0000 0.4417 1.3328	18° 017 0° -0° 0000 0° 4431 1° 3314 4° 654	18,017 0,0000 0,4446 1,3299 5,247	18.017 0, -0,000 0,4488 1,3259 7,310	18.017 0. -0.0000 0.4510 1.3237	
CSTAR, FT/SEC CF AE/AT IVAC,LB-SEC/LB I, LB-SEC/LB,		2563 0,712 1,000 100,0 56,7	2563 1,480 4,950 127,7	2563 1,512 5,939 129,4 120,5	2563 1°577 9°204 133°0 125°7	2563 1,690 27,13 139,3 134,7	2563 1.731 47.26 141.7 137.9	2563 1.812 255.8 146.4 144.4	2563 1.856 1421. 149.0 147.9	
DERIVATIVES										
(DLI/DLPC)PC/P (DLT/DLPC)PC/P (DLAR/DLPC)PC/P (DLCS/DLPC/PC/P	0,00000	0,00000	0,00000	-0,000000 0,000000 0,000000	000000 00000000000000000000000000000000	0,00000 0,00000 0,00000 -0,00000	000000 00000000000000000000000000000000	000000 00000000000000000000000000000000	000000 °0 000000 °0 0000001	
(DLI/DHC)PC/P* (DLT/DHC)PC/P* (OLAR/DHC)PC/P* (DLCS/DHC)PC/P*	3,53108	1,78725 3,61661 0, 1,82935	1,85077 3,83008 0,14996 1,82935	1,85333 3,83357 0,15089 1,82935	1,85864 3,83692 0,14893 1,82935	1,86620 3,82475 0,12921 1,82935	1,86821 3,81181 0,11424 1,82935	1,87075 3,77672 0,07664 1,82935	1,87106 3,75792 0,05757 1,82935	
(DLI/DLPCP)S (DLI/DLPCP)S (DLAR/DLPCP)S,	-0,22979	0,76466 -0,23536 0,	0,08321 -0,24925 0,66754	0,07451 -0,24948 0,67601	0.05836 -0.24970 0.69194	0,03467 -0,24891 0,71642	0,02731 -0,24806 0,72463	0,01412 -0,24578 0,74010	0.00766 -0.24456 0.74778	
MOLE FRACTIONS H201(G) 02(G)	0,99995	0,00005	0,09995 0,00005	0,99995	0°99995 0•0000\$	0,99995 0,00005	0,99995 0,00005	0°99995 0°00005	0°,99995 0°,00005	

H1(6)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

WATER

EXIT 100000.0 0.0010 35 -3324.8 2.3065	18.017 0.0000 0.4534 1.3214 9.941	2563 1.856 1421. 149.0 147.9		0,00000 -0,00000 -0,00000	1.87148 3.73799 0.03690 1.82959	0,00766 -0,24325 0,74909		0,99995 0,00005	FOR ALL ASSIGNED CONDITIONS
EXIT 10000,00 100 0,0102 6 -3312,9 -3	18,017 1 0,0000 0 0,4489 0 1,3257 1,7,310	2563 1.812 255,8 146,4		0,00000 0 0,00000 0 0,00000 0 0,00000 0	1,87074 1,877563 3,0,07530 0,1,82959 1,8	0,01411 0, -0,24571 -0, 0,74018 0,		0,99995 0, 0,00005 0,	THAN 0,000005
EXIT 1000,000 0,1021 108 -3292,0 2,3065	18,017 00,-0000 0,4445 10,3300 5,248	2563 1,731 47,26 141,7 137,9		000000 00000000000000000000000000000000	1,86801 3,81266 0,11506 1,82959	0,02730 -0,24812 0,72458		0,99995 0,00005	LESS
EXIT 463,000 0,2205 131 -3281,9 2,3065	18,017 0,0000 0,4432 1,3313 4,655	2563 1,690 27,13 139,3		000000 00000000000000000000000000000000	1,86603 3,82420 0,12857 1,82959	0,03467 -0,24887 0,71646		0,00005	FRACTIONS WERE
EXIT 100,000 1,021 192 -3254,9 2,3065	18,017 0,0000 0,4417 1,3328 3,586	2563 1,577 9,204 133,0		000000 00000000000000000000000000000000	1,85836 3,83685 0,14890 1,82959	0,05835 -0,24969 0,69195		0,99995	MOLE FRA
EXIT 52,720 1,936 -3240,2 2,3065	18,017 0, 0,000 0,4422 1,3324 3,174	2563 1.512 5.939 129.4 120.5		000000 00000000000000000000000000000000	1,85337 3,83312 0,15016 1,82959	0,07451 -0,24945 0,67604		0,99995	BUT WHOSE
EXIT 40,200 2,539 241 -3233,2 2,3065	18,017 0,00000 -0,0000 0,4425 1,3320 3,004	2563 1,480 4,950 127,7		000000 *0	1,85065 3,83015 0,14992 1,82959	0,08320 -0,24926 0,66754		0,99995 0,00005	CONSIDERED
T+ROAT 1, 838 55, 54 512 -3110, 3	18,017 0, -0,0000 0,4686 1,3078 1,000	2563 0,712 1,000 100,0		000000000000000000000000000000000000000	1,78706 3,61665 0,	0,76471 -0,23536 0,		0,99995 0,00005	uı
CHAMBER 1,000 102,1 590 -3073,4 2,3065	18,017 0, 0,000 0,480 1,2984 0,			00000.0-	3,53105	-0,22919		0,99995 0,00005	PRODUCTS WHICH WER
PC/P P, ATM T, DEG K H, CAL/G	M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MACH NUMBER	CSTAR, FT/SEC CF AE/AT IVAC, LB-SEC/LB I, LB-SEC/LB	DERIVATIVES	(DLI/DLPC)PC/P (DLI/DLPC)PC/P (DLAR/DLPC)PC/P (DLCS/DLPC)PC/P	(DLI/DHC)PC/P* (DLT/DHC)PC/P* (DLAR/DHC)PC/P* (DLCS/DHC)PC/P**	(OLI/DLPCP)S (OLI/OLPCP)S (OLAR/DLPCP)S,	MOLE FRACTIONS	H201(G) 02(S)	ADDITIONAL PROD

01H1(G)

(9)10

H2 (3)

H1 (G)

THEORETIC/L ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION IROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

WATER

PARAMETERS									
PC/P P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	CHAMBER 1.000 204.1 590 -3073.4 2.2330	THRDAT 1,838 111-1 512 -3110-3 2,2300	EXIT 40°200 5,078 241 -3233°2 2,2300	EXIT 52,720 3,872 225 -3240,2 2,2300	EXIT 100,000 2,041 192 -3254,9 2,2300	EXIT 463,000 0,4409 131 -3281,8	EXIT 1000,000 0,2041 -3292,0 2,2301	EXIT 10000.00 0.0234 -3312,9 2,2300	EXIT 1000000 0,0020 35 -3324,8 2,2300
M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) SAMMA MACH NUMBER	18,017 0. -0.0000 0.4800 1.2984 0.	18,017 0,00000 -0,0000 0,4686 1,3078	18,017 0, -0,0000 0,4426 1,3320 3,004	18,017 0, -0,0000 0,4422 1,3324 3,174	18,017 0. -0,0000 0,4417 1,329 3,585	18.017 0. -0.0000 0.4432 1.3313 4.655	18,017 0,00000 0,0000 0,4449 1,3297 5,248	18,017 0, -0,0000 0,4482 1,3264 7,309	18,017 0, -0,0000 0,4508 1,3240 9,932
CSTAR, FT/SEC CF AE/AT IVAC,LB-SEC/LB I, LB-SEC/LB		2563 0,712 1,000 1000 56,7	2563 15480 45950 127a7 117a9	2563 1,512 5,939 129,4 120,5	2563 1.5577 9,205 133,0 125,7	2563 1,690 27,13 139,3	2563 1,731 47,27 141,7	2563 1,812 255,8 146,4	2563 1,856 1421, 149,0
DERIVATIVES									
(DLI/DLPC)PC/P (DLI/DLPC)PC/P (DLAR/DLPC)PC/P (DLCS/DLPC)PC/P	0000000	0,00000	0,0000000000000000000000000000000000000	000000000000000000000000000000000000000	000000 00000000000000000000000000000000	0° 00000 0° 00000 0° 00000 0° 00000	0,0000000000000000000000000000000000000	0,0000000000000000000000000000000000000	0,00000 0,000000 0,000000 0,0000000 0,000000
(DLI/DHC)PC/P* (DLT/DHC)PC/P* (DLAR/DHC)PC/P* (DLCS/DHC)PC/P* *(HC IN KCAL/G)	3,531(18	1,78706 3,61664 0, 1,82958	1,85068 3,82970 0,14944 1,82958	1,85338 3,8331 0,15034 1,82958	1.85864 3.83745 0.14923 1.82958	1,86612 3,82394 0,12824 1,82958	1,86808 3,81004 0,11237 1,82958	1,87053 3,78166 0,08147 1,82958	1,87128 3,76008 0,05923 1,82958
(DLI/DLPCP)S (DLT/DLPCP)S (DLAR/DLPCP)S,	-0,22980	0,76464 -0,23536 0,	0,08320 -0,24923 0,66757	0,07451 -0,24946 0,67603	0,05836 -0,24973 0,69190	0,03467 -0,24885 0,71648	0,02731 -0,24795 0,72475	0,01411 -0,24610 0,73978	0,00766 -0,24470 0,74765
MOLE FRACTIONS									
H201(G) 02(G)	0,99995	0,00005	0,99995	0,99995	0° 99995 0° 000005	0,99995	0,99995	5000000	0,99994 0,00006

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

49 -904 ₀ 1 2,2650	22.049 0.0000 0.3425 1.3571 9.373 2442 2.001 1678. 153.2	014 439 765 1312 741 629 658	839 314 848 667 563	FOR ALL ASSIGNED COND C2H4(G) H1(G)
	0 0 0 0 0 0	1 1	0.00839 -0.26314 0.72848 0.66667 0.933333	
0.0007 90 -890.1 2.2650	22.048 0.0000 0.3439 1.3552 6.742 1.947 1.947 1.947	0.00027 -0.00437 -0.00776 0.00312 1.68554 4.92918 2.03706 1.20658	0.01623 -0.26212 0.72165 0.66667 0.33333	THAN 0.00
0.0068 164 -864.4 2.2650	22.049 0.00.00.3619 1.3317 4.793 2442 1.845 60.31 144-6	0.0054 -0.00415 -0.00782 0.00312 1.60283 1.87459 1.20658	0.03269 -0.24908 0.71823 0.66667 0.33333	WERE LESS 1 C1H3(G)
0.0147 197 -851.9 2.2650	22.049 0.00000 0.3758 1.3155 4.265 1.793 34669 14168	0.00070 -0.00400 -0.00781 0.00312 1.56196 4.51037 1.20658	0.04178 -0.23985 0.71837 0.66667 0.00000 0.33333	CTIONS
0.0680 280 -819.1 2.2650	22.048 0.00001 -0.0004 0.4219 1.2719 3.352 2442 1.650 11.550 1250	0.00116 -0.00347 -0.00312 0.00312 1.45826 4.01687 1.20658	0.06998 -0.21370 0.71625 0.66663 0.00003	
0. 1291 320 -801.8 2. 2650	22.045 0.00007 -0.0019 0.4517 1.2504 3.008 2442 1.569 7.308 119.6	0.00146 -0.00291 -0.00312 0.00312 1.40671 3.75222 1.16621	0.08838 -0.19995 0.71136 0.66645 0.00018	CONSIDERED BUT WHOSE
337 -793.8 2.2650	22.043 0.00012 -0.0034 0.4672 1.2409 2.867 2.442 1.529 6.029 1.16.1	0.00161 -0.00251 -0.00312 0.00312 1.38375 3.62796 1.04992 1.20658	0.09806 -0.19363 0.70778 0.66628 0.00033	INSIDERED C1
3-901 551 -667-9 2-2650	21, 78, 0.00599 -0.1074 0.8002 1.1545 1.000 2442 0.662 1.000 93.8	0.00388 0.01173 -0.00312 1.13901 2.11816 0.0	0.86620 -0.12625 0. 0.64810 0.01592	.H WERE CC
6-805 -538-9 2-2650	21.687 0.00819 -0.1387 0.8704 1.1472	0.01460	-0.11987 0.64131 0.02173	PRODUCTS WHICH WERE C2(6)
P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MACH NUMBER CSTAR, FT/SEC CF AE/AT IVAC,LB-SEC/LB	DERIVATIVES (DLI/OLPC)PC/P (DLT/DLPC)PC/P (DLAK/OLPC)PC/P (DLX/DLPC)PC/P (DLI/DHC)PC/P (DLI/DHC)PC/P (DLX/DHC)PC/P (DLX/DHC)PC/P (DLX/DHC)PC/P (DLX/DHC)PC/P (DLX/DHC)PC/P (DLX/DHC)PC/P (DLX/DHC)PC/P	(DLI/DLPCP)S (DLI/DLPCP)S (DLAR/DLPCP)S, MOLE FRACTIONS C1H4(G) H2(G) C1(S)	ADDITIONAL PROD

CONDITIONS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FR.)M AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

PARAMETERS

				ASSIGNED CONDITIONS
EXIT 1000000 0,0003 47 -904,9 2,1042	22.049 0. -0.0000 0.3425 1.3571 9.454 2426 1.986 16386 151.0	0.00006 -0.00196 -0.00349 0.00146	1,78516 4,94794 1,85081 1,31197 0,00824	2864 56667 13333 FOR ALL
EXIT 10000.00 0.0034 0.0034 -891.4 2.1042	22.04 0.0.000 0.343 1.355 6.80 242 242 1.943 308.	0.00012 -0.00196 -0.00354	1,74720 4,93545 1,87629 1,31197 0,01595	66667 0.66667 0.6 33333 0.33333 0.3 LESS THAN 0.000005
EXIT 1000,000 0,0340 157 -866,9 2,1042	22.049 0.0000 0.3594 1.03347 4.880 2.426 1.836 586.90	0.00024 -0.00187 -0.00187 0.00146	1.67188 4.71616 1.73231 1.31197 0.03212	
EXIT 463.000 0.0735 189 -854.9	22.048 0.00000 -0.0000 0.3722 1.3196 4.295 2426 1.783 33.91		1,63460 4,55430 1,60773 1,31197 0,04108	
EXIT 100.000 0.3402 270 -823.4 2.1042	22.048 0.00000 -0.0001 0.4147 1.2777 3.370 2426 1.6643 11.32.4	0.00051 -0.00160 -0.00358	1.54066 4.08676 1.23456 1.31197 0.06892	
EXIT 52.720 0.6454 309 -806.8 2.1042	22.048 0.00002 -0.0005 0.4408 1.2574 3.021 2426 1.563 7.180		1.49445 3.84544 1.04110 1.31197 0.08714	u.
EXIT 40.200 0.8463 326 -799.0 2.1042	22.047 0.00004 -0.0010 0.4536 1.2486 2.877 2426 1.525 5.929	0,00071 -0,00127 -0,00349	1.47391 3.73668 0.95447 1.31197	
THROAT 18.749 19.45 548 -676.0 2.1042	21,935 0,00257 -0,0462 0,6958 1,1627 1,000 2426 0,665 1,000 93,2		1.23657 2.43589 0. 1.31197 0.86002	770 698 444 E CC
CHAMBER 1.000 34.02 34.02 590 -647.2 2.1042	21.885 0.00370 -0.0626 0.7492 1.1536	0.00759		0.65519 0.00984 0.33497 UCTS WHIC
PC/P P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MACH NUMBER CSTAR, FT/SEC CF AE/AT	I, LB-SEC/LB, DERIVATIVES (DLI/DLPC)PC/P (DLT/DLPC)PC/P (DLAK/OLPC)PC/P (DLCS/DLPC)PC/P	(DLI/DHC)PC/P* (DLAK/DHC)PC/P* (DLAK/DHC)PC/P* (DLCS/DHC)PC/P* *(HC_IN_KCAL/G)	S. NS

C2H4(6)

C2H2(6)

C1H346)

C1H2(6)

C1H1(G)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

							ASSIGNED CONDÍTIONS) H1(G)
EXIT 1000000. 0.0007 47 -905.1 2.0380	22.049 0. -0.0000 0.3427 1.3569 9.473	2421 1,983 1628, 150,4 149,2	0.00004 -0.00139 -0.00247	0,00104 1,79934 4,94612 1,80679 1,33999	0.00821 -0.26302 0.72877	0.66667 0. 33333	FOR ALL
EXIT 10000,00 1 0,0068 85 -891,8 2,0380	22.049 0.0000 0.3433 1.3560 6.815	2421 1, 930 306, 6 147, 6 145, 3		1.76232 4.93672 1.83442 1.33999	0.01588 -0.26252 - 0.72160	0.66667 0. 0.33333	THAN 0.000005 C2H2(G)
EXIT 1000-000 0-0680 155 -867-5 2-0380	22.049 0. -0.0000 0.3588 1.3354 4.838	2421 1.831 58.58 142.2 137.8		1.68875 4.72337 1.69463 1.33999	0.03199 -0.25118 0.71684	0.66667 0. 0.33333	LESS
EXIT 463-000 0.1470 187 -855-6 2.0380	22.049 0.00000 -0.0000 0.3713 1.3205 4.302	2421 1. 781 33. 74 139.5 134.0		1.65235 4.56424 1.57190 1.33999	0.04091 -0.24271 0.71637	0.66667 0.00000 0.33333	CTIONS
EXIT 100,000 0,6805 267 -824,4	22.048 0.00000 -0.0001 0.4132 1.2791 3.374	2421 10 641 110 27 132 0 123 5		0.00104 1.56081 4.10235 1.20182	0.06868 -0.21817 0.71314	0.66666 0.00001 0.33333	MOLE CIH2
EXIT 52,720 1,291 306 -807,9	22.048 0.00001 -0.0003 0.4385 1.2589 3.024	2421 1.562 7.0151 127.7	0.00046 -0.00101 -0.00252	0.00104 1.51596 3.86512 1.01048	0.08685 -0.20561 0.70748	0.66663 0.00003 0.33334	CONSIDERED BUT WHOSE
EXIT 40.200 1.693 323 -800.2 2.0380	22.048 0.00002 -0.0006 0.4509 1.2502 2.880	2421 1.523 5.906 125.7 114.7	0.00050 -0.00092 -0.00249	0.00104 1.49608 3.75916 0.92544 1.33999	0.09643 -0.20004 0.70343	0.66660 0.00006 0.33334	INSTDERED C1
THROAT 1.751 38.86 547 -678.0 2.0380	21, 969 0, 00179 -0, 0323 0, 6720 1, 1650 1, 000	2421 0.665 1.000 93.1 50.1	0.00143 0.00413 -0.	0.00104 1.26370 2.52212 0. 1.33999	0.85836 -0.13896 0.	0.66109 0.00478 0.33413	WERE C3(G
CHAMBER 1.000 68.05 590 -649.2 2.0380	21.933 0.00262 -0.0444 0.7204 1.1555		0.00558	2.35267	-0.13135	0.65853 0.00698 0.33450	DUCTS WHIC
PC/P P, ATM T, DEG K H, CAL/G S, CAL/(G)(K)	M, MOL WT (DLM/OLP)T (DLM/OLT)P CP, CAL/(G)(K) GAMMA MACH NUMBER	CSTAR, FT/SEC CF AE/AT IVAC,LB-SEC/LB I, LB-SEC/LB	DERIVATIVES (DLI/DLPC)PC/P (DLT/DLPC)PC/P (DLAR/DLPC)PC/P	(DLCS/OLPC)PC/P+ (DLI/DHC)PC/P+ (DLT/OHC)PC/P+ (DLCS/DHC)PC/P+ (DLCS/DHC)PC/P++ (HC IN KCAL/G)	(OLI/OLPCP)S (DLT/OLPCP)S (OLAR/OLPCP)S,	MOLE FRACTIONS Cim4(G) H2(G) Ci(S)	ADDITIONAL PRODUCTS WHICH CIES)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FIOM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

PARAMETERS

				CONDITIONS
1.1.1000000000000000000000000000000000	0 1 1 1 1 1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4man 00-0	000	7 3 ALL ASSIGNED
EXIT 1000000 0,0010 46 -905,1 1,9998	22.049 0.0.000 0.3427 1.3568 9.481 2420 1.981 1624. 150.2	0.00004 -0.00113 -0.00202 0.00085 1.80569 4.94566 1.78717 1.35280	0.00820 -0.26300 0.72880	0. 66667 0. 0. 33333 005 FOR
EXIT 10000,00 0,0102 85 -891,9	22.048 0.00.03433 1.03560 6.0821 2420 1.929 305.8	0.00007 -0.00113 -0.00205 0.00085 1.76904 4.93728 1.81544 1.35280	0.01585 -0.26255 0.72160	0.66667 0.6666 0.0.3333 0.3333 THAN 0.000005 FOR
EXIT 1000,000 0,1021 154 -867,7 1,9998	22.049 0.000 0.3586 1.3357 4.842 2420 1.830 58.44 142.0	0.0014 -0.00108 -0.00207 0.00085 1.69629 4.72654 1.67745	0.03193 -0.25135 0.71673	7 0.66667 0 0.33333 3 0.33333 WERE LESS T
EXIT 463.000 0.2205 187 -855.9 1.9998	22.048 0.0000 -0.0000 0.3710 1.3209 4.305 2420 1.780 33.66 133.9	0.00018 -0.00104 -0.00207 0.00085 1.666027 4.56868 1.55562 1.35280	0.04084 -0.24295 0.71621	66 0.66667 00 0.00000 33 0.3333 FRACTIONS WE
EXIT 100,000 1,021 266 -824,9 1,9998	22.048 0.00000 -0.0000 0.4125 1.2796 3.376 2420 1.640 11.25 123.4	0.00029 -0.00093 -0.00208 0.00085 1.56981 4.10914 1.18674 1.35280	0.06858 -0.21852 0.71289	0.666 0.000 0.333 MOLE
EXIT 52, 720 1, 936 1, 936 -808, 4 1, 9998	22.048 0.00001 -0.0003 0.4376 1.2596 3.026 1.551 7.138 117.64	0.00037 -0.00083 -0.00206 0.00085 1.52559 3.87360 0.99624 1.35280	0.08673 -0.20605 0.70718	0.66664 0.00002 0.33334 BUT WHOSE
EXIT 40.200 2.539 322 -800.8 1.9998	22.048 0.00002 -0.0005 0.4497 1.2509 2.881 2.420 1.523 5.896 11556	0.00041 -0.00076 -0.00204 0.00085 1.50599 3.76878 0.91183	0.09630 -0.20052 0.70310	4 0.66661 8 0.00005 8 0.33334 CONSIDERED
THRDAT 1.751 58.28 547 -678.8	212984 0001464 0002638 006616 10000 10000 2420 00666 10000 9300	0.00118 0.00340 -0.00085 1.27629 2.55178 0.	0.85756 -0.14022 0.	
CHAMBER 1.000 102.1 590 -650.0 1.9998	21.954 0.00214 -0.0363 0.7077 1.1564 0.	0.00464	-0.13255	0.66001 0.00570 0.33428 UCTS WHIC
PC/P P, ATH T, DEG K H, CAL/G S, CAL/GG(K)	M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MACH NUMBER CSTAR, FT/SEC CF AE/AT IVGC+LB-SEC/LB	DERIVATIVES (DL1/DLPC)PC/P (DLT/DLPC)PC/P (DLAR/DLPC)PC/P (DLCS/DLPC)PC/P (DL1/DHC)PC/P* (DL1/DHC)PC/P* (DL7/DHC)PC/P* (DL5/DHC)PC/P* (DL5/DHC)PC/P* (DL5/DHC)PC/P*	(DLI/DLPCP)S (DLT/DLPCP)S (DLAR/DLPCP)S,	MOLE FRACTIONS C1H4(G) 0.6621 0.6621 H2(G) 0.00570 0.0031 C1(S) 0.334;8 0.333 ADDITIONAL PRODUCTS WHICH WERE

C2H4(G)

C2H2(6)

C1H3(G)

C1H2(G)

C1H1(G).

(3)(2)

C216)

(9)13

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

1865 5.078 3.872 2.041 0.4409 0.2041 0.0204 0.0020 116.5 5.078 3.872 2.041 0.4409 0.2041 0.0204 0.0020 546 321 303 2.65 186 153 85 46 679.9 -801.5 -809.1 -825.5 -856.3 -868.1 -892.1 -905.2 9352 1.9352 1.9352 1.9352 1.9352 1.9352 1.9352	0.03 22.048 22.048 22.048 22.048 22.049 22.049 0.102 0.00001 0.00000 0.0000 0.0000 0.0000 0.184 -0.0003 -0.0002 -0.0000 -0.0000 0.0000 0.0000 6482 0.4483 0.4363 0.4116 0.3705 0.3583 0.3432 0.3427 1675 1.2519 1.2605 1.2804 1.3214 1.3361 1.3561 1.3569 .000 2.883 3.027 3.378 4.309 4.847 6.828 9.491	2417 2417 2417 2417 2417 2417 2417 2417	0085 0.00029 0.00026 0.00021 0.00012 0.00010 0.00005 0.00002 0243 -0.00054 -0.00059 -0.00066 -0.00066 -0.00074 -0.00080 -0.00080 -0.000145 -0.00145 -0.00147 -0.00147 -0.00147 -0.00147 -0.00147 -0.00147 -0.00147 -0.00147 -0.00167 -0.00169 0.00060 0.00060	9327 1.51902 1.53821 1.58160 1.67068 1.70617 1.77791 1.81399 1483 3.78101 3.88443 4.11793 4.57437 4.73054 4.93801 4.94618 0.89342 0.97710 1.16666 1.53390 1.65457 1.79030 1.76240 6979 1.36979 1.36979 1.36979 1.36979 1.36979 1.36979 1.36979	5652 0.09613 0.08657 0.06844 0.04075 0.03186 0.01582 0.00818 4190 -0.20113 -0.20660 -0.21899 -0.24325 -0.25156 -0.26259 -0.26303 0.70268 0.70680 0.71256 0.71599 0.71659 0.72159 0.72879	6349 0.66663 0.66665 0.66666 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667 0.66667 0.9667 0.966	ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.000005 FOR ALL ASSIGNED C C1(G) C2H2(G) C2H4(G) C1H1(G) C1H2(G) C1H3(G) C2H2(G) C2H4(G) H1(G
			1 1		0.09613 0.20113 0.70268		ISIDERED BUT WE
116.5 546 -679.9 1.9352	22.003 0.00102 -0.0184 0.6482 1.1675	2417 0.666 1.000 92.9 50.1	0.00085 0.00243	1.29327 2.61483 0. 1.36979	0.85652 -0.14190 - 0.	0.66349 0.00272 0.33379	:H WERE CON
204e1 590 -651e2 1e9352	21.982 0.00152 -0.0257 0.6911 1.1575		0.00336	2,45253	-0.13417	0.66195 0.00404 0.33401	DUCTS WHIC
P. ATM T. DEG K H. CAL/G S. CAL/(G)(K)	M, MOL WT (DLM/DLP)T (DLM/DLT)P CP, CAL/(G)(K) GAMMA MACH NUMBER	CSTAR, FT/SEC CF AE/AT IVAC, LB-SEC/LB I, LB-SEC/LB	DERIVATIVES (DLI/DLPC)PC/P (DLT/DLPC)PC/P (DLAR/DLPC)PC/P (DLCS/DLPC)PC/P	(DLI/DHC)PC/P* (DLT/DHC)PC/P* (DLS/DHC)PC/P* (DLCS/DHC)PC/P*	(DLI/DLPCP)S (DLT/DLPCP)S (DLAR/DLPCP)S,	MOLE FRACTIONS CIH4(6) H2(6) CI(S)	ADDITIONAL PROD

CONDITIONS

3

THEORETICAL RUCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

FREON

													Andrew Control of the Control of the Control of Control											Martin De Carlos			The state of the s			COMPANY OF THE PARTY CONTRACTOR OF THE PARTY CONTRACTO
EXIT	10000.00	0.0007	231	-1012.5	0.6616	120.925	000000	-0.0000	0.1257	1,1504	5.254	1060	2.200	692.6	74.7	72.4	0.00037	-0.00154	-C.00368	C-00177	041	481	7	4.26562	0.03149	-0.13072	0.83779		0.50000	2000
EXI	1000.000	0.0068		02.	·~	120,923				1,1281	- 1	1060	2,007	100.		99	0.00059	05 TOO 0 -	-0.00366	i	·	~	2,64250	~~	. 50	113	0.83642		0.49997	077710
	4	0		866-	99•0	1					3.876	1060	1,924			63.4	0.0000	-0.00114	-0.00364	0.00177	7169	2	2396	56	5	108	0.83178		C.49987	******
EXIT	100.000	0.0680	166	86	v	120,864	U. 06025	-0.0082	0.1655	1,1120	3,220	1060	1,724	14,96	100	56.8	ω c	<u>ي</u>		_	5545	2409	1.50511	2656	6.47	1001	00		2.0	ハナハナ・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・
	52,720			85.	,661	120-80		ĭ	-		1	1060	1,622	8,929	59	53.4	6	140	2297	177		æ	1,20740	(7)	•	96	,7979		0.49802	1066400
EXIT	40.200	691	1	83	0,6616	123,770	0.000.64	ೆ	C. 1761	1.1967	2.819	1060	1.575	7,199	57.8	51.9	6.60119	6/0000	-0.0379	•	4.4597	9.6261	683	,2656	1137		7898	\$	4 4	107
THRCAT	٠ <u>۲</u> ٠	6	S	-957.3	0.6616	19,	0.00471	0	0.2212	1.6051	1.000	1060	0.642	1,000	4 04	21.1	9-00272	5		0.00177	.15918	7.662.2	. • ប	4.26562		-0.C8286	! !		0.48123	73067
CHAMBER	1.000	6.805	290	-952.2	0.6616	1.9.515	0.00579	-C.1229	0.2281	1.0942	0.							00876				7043070	٠			-0.08186			5,47695	0.000
	PC/P	P. ATP	T, DEG K	CAL	S. CAL/(G)(K)	F. FOL ET	K/DL	(OLY/DLT)P	CP. CAL/(6)(K)	GAMPA	MACH NUMBER	CSTAR, FT/SEC	CF.	AE/AT	IVAC. LB-SEC/LB	I, LB-SEC/LB,	(ULIZELPC)PCZP	1011/01/01/01/0	(OLAR/CLPC)PC/P	(DLCS/CLPC)PC/P	(DLI/DHC)PC/P*	(OLT/DEC) PC/P*	(DLAR/CHC)PC/P*	(DLCS/CHC)PC/P*	(DLIZDIPCP)S	i	S	MCLE FRACTIONS	C1C14(6)	(9)*17)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

FREON

PC/P 1. DEG K 1. DEG K 5. CAL/(G)(K) C (DLP/CL) F (DLP/CL) F	1.000 34.02 590	1,7:0	45,250	52°72°	' c	1		10000-00	
χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ	- 10				,	S S	3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ	200	15,50	0.40		0.3402	0.0735	C. 0343	0.0034	
(K) (K)	7 630	563	7 7 0 0	0	Ü	ים ט) 1	77	
(K)	45 6327	1,6327	0,6327	0,6327	0.6327	C.6327	C. 6327	0.6327	
(K)		120,420	125.867	120,881	20.	120,922	120.925	120.925	
(K)	0.01.263	0.002	0.00024	C. C. 118	6000000	0.00003	0000 100	0000000	
EC FC FC B s	10	-0.0464	-0.0012	-0,0055	3.0	-0.0004	-0.0001	-6.0000	
EC/LB	4	9561 0	30176	0,1672	J. 1618	C. 1496	C. 1435	0,1245	
EC.	in	1,0970	1,1088	1,1102	್	1,1235		1.1521	
FT/SEC B-SEC/LB SEC/LB	-	15.0 9	2.821	2,943	3,224	œ	4,217	5,269	
B-SEC/LB SEC/LB		10.56	•	1056	1356	1056	1056	1056	
8-SEC/LB sec/LB		7.642	יטי	,61	1.721	1,919	2,001	2.193	
SEC/LB SEC/LB		0	-	87	14,86	52,43	99.63	685,5	
SEC/LB ,		40.3	5	58	120	199	0.88	74.	
0.717.1		21.1	51.6	53.2	56,5	63.0	65.7	72.0	
(DLI/CLPC)PC/P	1	0.133.0	200000	0.00051	0,00044	0.00031	0.00026	0.00017	Commence of the commence of th
O	030450	0.00375	2,00023	0.0000	-4.00022	-0.00053	-0.0000	-0.00070	
(CLAR/CLPC)PC/P			-6.30139	-0.00147	-0,00159	-0.00170	-0.00170	-0,00170	
(DLCS/CLPC)PC/P		990000	50 10084	6,000.84	V3CC384	0.00084	0.00084	0.00084	
*0/38(343/110)		412	64811	4.67255	4-72944	4.87090		5.1715	
1	8,29305	8.48949	5.59591	10,13747	10.47773	11.33581	11.8	13,61901	
			94818	1.05064	£ > 30808	1.99336		3.9762	
(DLCS/CHC)PC/P* *(HC IN KCAL/G)		4.47119	•47119	4.47119	4.47119	4.47119	1 '	1 1	
(OLI/CLPCF)S		9114			386	0.05900	0.04979	0.03126	
(DLT/DLPCF)S -0.08	534	-0.08650 0.	-C.C9766 C.78859	-0.09888 0,79674	-0.10191 0.81151	-0.10991 0.831C6	-0.11453 0.83567	-0.13205 0.83669	
					1				
MOLE FRACTIONS		i							
C1CL4(6)		0.49168	6065403	664	L. 49964	9665400	, •	o	
	~	0.45584	0.49952	667	0.49982	0.49998	Ī	- 1	
3	1401000	0.03832	6.000.0	C. C.C.72	0.000.3	4000040		ဝီင	
0	0.00524		C. C.C.048	3	3	2000	Ì	0	

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 0.00005 FOR ALL ASSIGNED CONDITIONS

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FRCM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

FREON

	:											,		:		:							;													
FXIT	77		,	7 000-	0.6207	:	120,924	1000000			1,1238	1	.055	4 C	52.34	9,99	65.9		1	0.00022	-0.00038	-೧.0.121	09000 0		4,90875	11032/24	1,92636	4.52548	0580	-0.11015	0,83089	1	0.4998	0.49999	0,00003	0.00001
FXIT	100,000		386	900	0.6207	11	120,911	ر د د	•			3,225	1055	1.720	14.84		56.4	1		16000°0	-0.00017	-0.00114	09000*0	7	2777	1076	1,24865	5254	08430	-6.10228	v. 81129		3.49976	6.49988	C.CC024	C. 00012
FXIT	.72	1,29	, 4	4986.3	0,6207	4 7 m m m m m m m m m m m m m m m m m m	120,896	2100.00	=0,038	0.1660	101106	2,944	1055	1.619	, a	58	53.1		2000	0,000,00	0,0003	-0.0C196	0.00060				1.0290		0.10390		0.79647	:	0.49951	0,48976	S	0.00024
EXIT	40.200	1,693	421	-984.4	20		120.886	07:00:0	-0°0048	0.1682	1.1093	20822	1055	1.572	7,152	57.4	51.6		000	から ひつつ でし	0.00014	-0.00101	0900000	40503	10 07/23	0000000	06706	4.52548	6-11320	0.9819	0.78830	•	£,49936	6.49968	9.00064	C.00032
THRCAT	1,710	35, 80	563	0.655-	4		120.569	- TO - O	-0.0328	0,1946	100975	1°C0	1055	3,642	1.000	40.2	21.0		0.073	710000	0.00271		0,000,0	4497	2007			4.52548	91147	-0.08747	0				5.00587	- 1
CHAMBER	1.000	68.05	590	-95309	9		170.474	00100	5553°3-	0.1987	1.0963	0								,	1,000328	•			R 5007	200				-C.0863C	į				1	r.05372
		P, ATM		H, CAL/G	S. CAL/(6)(K)	Č	. ≥			CM CALVIGORY)		FACH NUMBER	CSTAR, FT/SEC	CF	AE/AT	LB-5	1, LB-SEC/LB ,	DERIVATIVES	(0) 1/1/ 00 100 /0	4/01/01/01/01/01	10117017077	(DLAK/CLPC)PC/P	IDECS/ELPCIPCIP	#0/34C3H3/110J	(D) T/DHC) DC / D +	# 0	* A COACOHOL STAN	*(HC IN KCAL/G)	(DLI/DLPCP)S	(OLT/CLPCP)S	S	MCLE FRACTIONS	_	•		C1(S)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

FREON

EXIT 1000.000 0.1021	-1033.4 -1033.4 C: 6138	120°925 0°00000 -0°0001 0°1431 1°1298 4°220	1054 2,001 99.43 68.8 65.6	C.CO015 -C.C.034 -0.C.106 (3.706) 4.99542 11.84751 2.29702 4.5581	0.04970 -0.11488 0.83541	0.5000 0.5000 0.5000 0.0001
EXIT 463.000 0.2205	-9999-5 0-6138	120.924 0.00001 -0.0002 0.1491 1.1240 3.886	1054 15919 52-34 66-6 62-9	0.00018 -0.00031 -0.00170 7.00050 4.92503 11.36988 11.869148	0.05890 -0.11027 0.83081	0,49998 0,49999 0,00072 0,00071
EXIT 100, C03 1.021	-99C.5 C.6138	120° 914 0° 00005 0° 0016 1° 1143 3° 226	1654 1654 1684 5654	1-0.00000000000000000000000000000000000	0.08625 -0.16243 0.81121	0.49981 0.49990 0.00 01019 0.00 01010
52.720 1.936	409 -986.4 0,6138	120°902 0°6010 0°1656 1°1108 2°944	1054 1,619 8,868 58.6 53.1	0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.000000	C.10389 -0.09958 0.79632	0.49961 0.49980 0.00039
40.200 2.539	420 -984.5 0.6138	126.894 0.0013 -0.0739 0.1677 1.1055 2.822	1654 7-572 7-153 57-6	C. C		0.49949 0.49944 0.00051 0.00026
1,709 55,72	563 -959,1 0.6138	120°635 0°00120 -0°0267 0°1924 1°0978 1°0078	1054 0°642 1°0′0 40,2 21:0	0.00060 0.00223 0.07757 4.45038 8.81062 0.00	911 3	0.49521 0.49761 0.67479 0.00239
CF AMBER 1.000 102.1	590 -954.0 0.6138	120.556 C.00152 -v.0323 0.1962 1.0965		C.0C271	-0.08674	0.49392 0.49696 0.49698 0.00304
	T, CEG K H, CAL/G S, CAL/G)(K)	P, PCL WT (DLM/DLP)T (DLM/DLT)F (CP, CAL/(C)(K) GAMMA MACH NLMBER	CSTAR, FT/SEC CF AE/AT IVAC, LB-SEC/LB I, LB-SEC/LB,	DERIVATIVES (DL 1/DLPC)PC/P (DL 1/DLPC)PC/P (DL 1/DLPC)PC/P (DL 1/DLC)PC/P (DL 1/DLC)PC/P (DL 1/DLC)PC/P* (DL 1/DLC)PC/P*	IN KCAL/G) rolpcp)s rolpcp)s,	HCLE FRACTIONS CICL4(G) CLF4(G) CL2(G) C1(S)

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE PRACTIONS WERE LESS THAN 0.000005 FOR ALL ASSIGNED CONDITIONS

0.49999 0.49999 0.60001 6.00001

0.49987 0.49993 0.000013

0.45973 0.49987 0.00027 0.00013

0.49965 0.4982 0.00035 0.00018

0.49569 0.45662 0.49765 0.45831 0.00431 0.00338 0.00235 0.00169

C1CL4(6) C1F4(6) CL2(6) C1(5)

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION FROM AN ASSIGNED TEMPERATURE AND AT VARIOUS CHAMBER PRESSURES

FREON

EXIT EXIT	2,041 0.	83	2006	€.6620 5.6020		C. GCCG3 0.00000	í	5 1.12	26	1054 1054	-	un"	610-2	:
EXIT	3,872	408					C. 1650	11	20945	1054	19	8	ιν ε Φ ((((1!
EXIT 40.20	5.00	419	984.	0.6620	120,903	60000 *0	0°167	1,1097	2-823	1054	1.572	7.145	57.3	
THREAT	7.6.1	17	-959a3	Ç• 6∂ 20	120,721	0,000.85	0.1895 0.1895	1.0981	1.00.0		0,642			
CHAMBER	20401	590	-95402	0.602 0	120.664	scc 108	-c.1929	8957.1	۲.		: !			

PRECEDING PAGE BLANK NOT FILMED.

APPENDIX F

SYMBOL LIST

A = surface area of solid-propellant rocket motor

 C_{p} = average specific heat of motor = $(M_{1} C_{p1} + M_{2} C_{p2} + M_{3} C_{p3} + M_{4} C_{p4} + M_{5} C_{p5})/W_{3}$

 $C_{n,1}$ = specific heat of outer wall of motor

 C_{p2} = specific heat of metal parts (ring and bolts attached to motor)

 C_{p3} = specific heat of graphite throat

 C_{n4} = specific heat of motor liner

 C_{p5} = specific heat of exit cone

 C_{n6} = specific heat of inert fluid

 $C_{n,r}$ = specific heat of inert fluid vapor

g = gravitational constant

H = total heat in motor at maximum temperature

 \overline{H} = available heat from motor at any time

I total impulse available from inert fluid

 I_{vac} = vacuum specific impulse of inert fluid at the maximum motor temperature

 I_{vaco} = vacuum specific impulse for solid-propellant rocket motor at t = 0

M, = weight of outer wall of motor

 M_2 = weight of metal parts (ring and bolts attached to motor)

 M_3 = weight of graphite throat

 M_4 = weight of inner motor liner

 M_s = weight of exit cone

m, = weight of fluid that can be injected into hot motor at any time

 m_0 = weight of fluid actually injected into hot motor

Q₀ = energy generated and retained by rocket motor after main grain burnout

Q_{rad} = energy radiated by motor's surface

°R = degrees Rankine

T = maximum temperature of motor shell after firing

 T_0 = temperature of motor shell before firing

T, = temperature of space outside motor

 T_{R} = boiling point of inert fluid at injection pressure

t = time elapsed after maximum temperature (T) is reached

 Δt = time elapsed for flow of fluid into hot motor

△V, = velocity increment provided by solid-propellant motor without quenching system

ΔV₂ = velocity increment provided by solid-propellant motor when carrying the injection system but not using it

 ΔV_3 = incremental velocity increase when using the system at any time

 $\Delta V_p = V_1 - V_2 = velocity penalty$

w = weight flow rate of inert fluid into hot motor

W, = weight of payload

W, = weight of motor

 W_3 = total weight of empty solid propellant motor = $M_1 + M_2 + M_3 + M_4 + M_5$

 W_{a} = weight of inert-fluid-carrying system without fluid

 W_s = weight of inert fluid to be used

dH/dt = loss of heat from motor with time

dI/dt = loss of specific impulse of inert fluid with time as temperature drops

dT/dT = temperature decay rate from hot motor to space surrounding motor

 dT_m/dt = temperature decay rate when inert fluid flows

 ϵ = emissivity of motor shell

 σ = Stephan-Boltzmann constant

 λ = heat of vaporization of inert fluid