CSC242: Introduction to Artificial Intelligence

Lecture 4.1

Please put away all electronic devices

Learning

Learning

Learning

- "gives computers the ability to learn without being explicitly programmed" (Samuel, 1959)
- "... agents that can improve their behavior through diligent study of their own experiences" (Russell & Norvig)
- Improving one's performance on future tasks based on observations

 Can't anticipate (or store) all possible situations that the agent might find themselves in

- Can't anticipate (or store) all possible situations that the agent might find themselves in
- Cannot anticipate (or store) all changes that might occur over time

- Can't anticipate (or store) all possible situations that the agent might find themselves in
- Cannot anticipate (or store) all changes that might occur over time
- Don't know how to program it other than by some kind of learning!

- Can't anticipate (or store) all possible situations that the agent might find themselves in
- Cannot anticipate (or store) all changes that might occur over time
- Don't know how to program it other than by some kind of learning!

Another tool in your toolbox

What To Learn?

What To Learn?

- Inferring properties of the world (state) from perceptions
- Choosing which action to do in a given state
- Results of possible actions
- How the world evolves in time
- Utilities of states

What To Learn?

- Inferring properties of the world (state) from perceptions
- Choosing which action to do in a given state
- Results of possible actions
- How the world evolves in time
- Utilities of states

Function Learning

$$y = f(\mathbf{x})$$

Function Learning

- There is some function $y = f(\mathbf{x})$
- We don't know f
- We want to learn a function h that approximates the true function f

Hypothesis

Function Learning

- There is some function y = f(x)
- ullet We don't know f
- ullet We want to learn a function h that approximates the true function f
- Learning is a search through the space of possible hypotheses for one that will perform well on the data

Unsupervised (no feedback)

Unsupervised (no feedback)

Supervised (labelled examples)

Unsupervised (no feedback)

Semi-supervised

Supervised (labelled examples)

Unsupervised (no feedback)

Semi-supervised

Supervised (labelled examples)

Reinforcement (feedback is reward)

classification | klasəfə kāSH(ə)n noun

the action or process of classifying something according to shared qualities or characteristics: the classification of disease according to symptoms.

a category into which something is put.

classify | 'klasə fī

verb (classifies, classifying, classified) [with object] arrange (a group of people or things) in classes or categories according to shared qualities or characteristics: mountain peaks are classified according to their shape.

• assign (someone or something) to a particular class or category: elements are usually classified as metals or nonmetals.

From Latin classis 'division.'

- Objects represented by set of attributes or features
 - Factored representation!
- ullet Input is vector ${f x}$ of values for the attributes
- Output $y = f(\mathbf{x})$ is one of a finite set of values (classes, categories, labels, ...)
 - Boolean classification: two values

Input:
$$\mathbf{x} = \langle x_1, x_2, x_3, ..., x_k \rangle$$

Output: $y = \{0, 1, 2, ..., 9\}$

Input: $\mathbf{x} = \langle x_1, x_2, x_3, ..., x_k \rangle$

Output: $y = \{ Teddy, Liberty, Satellite, ..., Face \}$

Input:
$$\mathbf{x} = \langle x_1, x_2, x_3, ..., x_k \rangle$$

Output: $y = \{ Yes, No \}$

Input: $\mathbf{x} = \langle x_1, x_2, x_3, ..., x_k \rangle$

Output: $y = \{ Buy, Hold, Sell \}$

- Output y = f(x) is one of a finite set of values (classes, categories, ...)
 - Boolean classification: yes/no or true/false
- Input is vector x of values for the attributes
 - Factored representation

AIMA Dining

- Going out to dinner in SF
- Restaurants often busy; sometimes have to wait for a table
- Decision: Given the current situation, do we wait or go somewhere else?
 - Can we automate this?

Attributes (Features)

Alternate: is there a suitable alternative nearby

Bar: does it have a comfy bar

FriSat: is it a Friday or Saturday

Hungry: are we hungry

Patrons: None, Some, Full

Price: \$,\$\$,\$\$\$

Raining: is it raining outside

Reservation: do we have a reservation

Type: French, Italian, Thai, burger, ...

WaitEstimate: 0-10, 10-30, 30-60, >60

Attributes (Features)

 $\mathbf{x} = \langle Alternate, Bar, FriSat, Hungry, Patrons, Price, \ Raining, Reservation, Type, WaitEstimate
angle$

 $\langle Yes, No, No, Yes, Some, \$\$\$, No, Yes, French, 0-10 \rangle$

AIMA Dining

- Going out to dinner in SF
- Restaurants often busy; sometimes have to wait for a table
- Decision: Given the current situation, do we wait or go somewhere else?
 - Can we automate this?

Wikimedia

Stuart Russell's Rules

- If the host/hostess says you'll have to wait:
 - Then if there's no one in the restaurant you don't want to be there either;
 - But if there are a few people but it's not full, then you should wait
 - Otherwise you need to consider how long he/she told you the wait would be

• ...

Decision Tree

- Each non-leaf node in the tree
 represents a test on a single attribute
- Children of the node are labelled with the possible values of the attribute
- Each path represents a series of tests, and the leaf node gives the value of the function when the input passes those tests

				In	put A	ttribut	es				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = no$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4{=}yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = no$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8{=}yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y_9 = no
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = no$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = no$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = yes$

Inducing Decision Trees From Examples

• Examples: (x,y) where x is a vector of values for the input attributes and y is a single Boolean value

				Ir	nput A	ttribut	es				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2{=}no$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4{=}yes$
\mathbf{X}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{X}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = no$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8{=}yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y_9 = no
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = no$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=no$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = yes$

Inducing Decision Trees From Examples

- Examples: (x,y)
- Want a shallow tree (short paths, fewer tests)
- Greedy algorithm (AIMA Fig 18.5)
 - Always test the most important attribute first
 - Because it makes the most difference to the classification of an example

				In	put A	ttribut	es				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = no$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4{=}yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = no$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8{=}yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y_9 = no
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = no$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = no$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = yes$

				In	nput A	ttribut	es				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = no$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4{=}yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = no$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8{=}yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y_9 = no
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = no$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	y_{11} $=$ no
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = yes$

- Positive
- Negative

				Ir	nput A	ttribut	es				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = no$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4{=}yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = no$
\mathbf{x}_8	No	No	No	Yes	Some	<i>\$\$</i>	Yes	Yes	Thai	0-10	$y_8{=}yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y_9 = no
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = no$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = no$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = yes$

				Ir	nput A	ttribut	es				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = no$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4{=}yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = no$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8{=}yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y_9 = no
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = no$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = no$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = yes$

				Ir	nput A	ttribut	es				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	<i>\$\$\$</i>	No	Yes	French	0-10	$y_1{=}yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2{=}no$
\mathbf{X}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4{=}yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = no$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8{=}yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y_9 = no
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = no$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11} = no$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = yes$

- Positive
- Negative

- Positive
- Negative

- Positive
- Negative

- Positive
- Negative

Keep splitting until...

- Positive
- Negative

Keep splitting until...

No examples left: Decision tree classifies perfectly

- Positive
- Negative

Keep splitting until...

No attributes left: Some examples have the same description (attribute values) but different classifications (outputs)

Sources of Error

- Examples have same description in terms of input attributes but different classification results
 - Error or noise in the data
 - Nondeterministic domain
 - We can't observe the attribute that would distinguish the examples

Learning lets the data speak for itself

Decision Trees

- Represent sequence of tests that lead to a decision
- Compact representation of how to make the decision
- Can be learned from examples
- Decision trees have explanatory power!

Types of Learning

Unsupervised (no feedback)

Semi-supervised

Supervised (labelled examples)

Reinforcement (feedback is reward)

1 18	1	1	98	Inp	out A	ttribu	ites				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = no$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5=no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7=no$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9=no$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y_{10} = no
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=no$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=ye$

• Given a training set of N example inputoutput pairs:

$$(\mathbf{x}_1,\ y_1),\ (\mathbf{x}_2,\ y_2),\ ...,\ (\mathbf{x}_N,\ y_N)$$
 Training where each $y_j=f(\mathbf{x}_j)$

- ullet Discover function h that approximates f
- Search through the space of possible hypotheses for one that will perform well

1.78	30			Inp	out A	ttribu	ites				Will
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_1 = yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = no$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5=no$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_6 = yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = no$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = no$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	y_{10} = no
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=no$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=ye$

Hypotheses: decision trees

• Given a training set of N example inputoutput pairs:

$$(\mathbf{x}_1,\ y_1),\ (\mathbf{x}_2,\ y_2),\ ...,\ (\mathbf{x}_N,\ y_N)$$
 where each $y_j=f(\mathbf{x}_j)$

- ullet Discover function h that approximates f
- Search through the space of possible hypotheses for one that will perform well

Hypothesis Space

Hypothesis Space

- Decision trees (Boolean formulas)
- Linear functions y = mx + b
- · Polynomials (of some degree)
- Java programs?
- Turing machines?

Hypothesis space:

$$y = mx + b$$

Hypothesis:

$$y = -0.4x + 3$$

Hypothesis space:

$$y = mx + b$$

Hypothesis:

$$y = -0.4x + 3$$

$$y = c_7 x^7 + c_6 x^6 + \dots + c_1 x + c_0$$

$$= \sum_{i=0}^{7} c_i x^i$$

$$y = c_6 x^6 + c_5 x^5 \dots + c_1 x + c_0$$

$$ax + b + c\sin(x)$$

Evaluating Hypotheses

- · Accuracy: fits the data
- Generalization: predicts outputs for unseen inputs
- Simplicity and "searchability"

Evaluating Accuracy

Evaluating Accuracy

- Training set: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- Test accuracy of h by comparing $h(\mathbf{x}_j)$ to y_j

Training Data

\mathbf{X}	y
1	3
2	6
4	12
5	15
7	21

$$h(\mathbf{x}) = ?$$

Testing Data

\mathbf{X}	y
2	6
7	21

$$f(\mathbf{x}) = y$$
 $h(\mathbf{x}) = y$?

$$h(\mathbf{x}) = y$$

Evaluating Accuracy

- Training set: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- Test accuracy of h by comparing $h(\mathbf{x}_j)$ to y_j

Generalization

• A hypothesis (function) generalizes well if it correctly predicts the value of y for novel examples \mathbf{x}

Cross-Validation

- Randomly split data into training and testing (in some proportion)
 - Hold out test data during training
- Doesn't use all data for training

k-Fold Cross-Validation

- \bullet Divide data into k equal subsets
- Perform k rounds of learning
 - Leave out 1 subset (1/k) of the data) each round; use for testing that round
- \bullet Average test scores over k rounds

Evaluating Hypotheses

- Accuracy: fits the data
- Generalization: predicts outputs for unseen inputs
- Simplicity and "searchability"

Simplicity

- Hypothesis space easier to search
- Less likely to memorize the data
- Easier to compute
 - During learning
 - During decision-making

Occam's Razor

William of Occam (or Ockham)

14th c.

Evaluating Hypotheses

- Accuracy: fits the data
- Generalization: predicts outputs for unseen inputs
- Simplicity and "searchability"

Hypothesis space:

$$y = mx + b$$

Hypothesis:

$$y = -0.4x + 3$$

$$y = c_7 x^7 + c_6 x^6 + \dots + c_1 x + c_0$$

$$= \sum_{i=0}^{7} c_i x^i$$

Hypothesis space:

$$y = mx + b$$

Hypothesis:

$$y = -0.4x + 3$$

$$y = c_7 x^7 + c_6 x^6 + \dots + c_1 x + c_0$$

$$= \sum_{i=0}^{7} c_i x^i$$

$$y = c_6 x^6 + c_5 x^5 \dots + c_1 x + c_0$$

$$y = mx + b$$

$$y = c_6 x^6 + c_5 x^5 \dots + c_1 x + c_0$$

$$ax + b + c\sin(x)$$

Evaluating Hypotheses

- Accuracy: fits the data
- Generalization: predicts outputs for unseen inputs
- Simplicity and "searchability"

Learning

- Unsupervised -> Supervised
 - Supervised: learn from examples
- Decision Tree Learning
- Hypothesis Space
- Evaluating Hypotheses
 - Accuracy, Generalization, Simplicity

For Next Time:

AIMA 18.6