

ACCUTEST Southeast

Reissue #1 05/19/17

SGS ACCUTEST IS PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

e-Hardcopy 2.0
Automated Report

Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX

SGS Accutest Job Number: FA42152

Sampling Dates: 03/15/17 - 03/16/17

Cape Environmental Mangement Inc.

wvermeychuk@cape-inc.com chemistrysvcs@cape-inc.com; tammy.chang@parsons.com ATTN: (b) (6)

Total number of pages in report: 383

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: (b) (6)

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(L-A-B L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, GA, IA, KY, MA, NV, OK, OR, UT, WA

This report shall not be reproduced, except in its entirety, without the written approval of SGS Accutest. Test results relate only to samples analyzed.

April 8, 2017

The final report for job number FA42152 has been edited to reflect requested corrections. These edits have been incorporated into the revised report.

The report has been changed to the DL/LOD/LOQ format.

SGS Accutest apologies for any inconvenience this may have caused. Please feel free to contact us if we can be of further assistance.

Sincerely,

SGS Accutest Orlando

Florida ♦ 4405 Vineland Road ♦ Suite C-15 ♦ Orlando, FL 32811 ♦ tel: 407 425-6700 ♦ fax: 407 425-0707 ♦ http://www.sgs.com

. .

ယ

U

σ

∞		
	Ľ	×

_

<u>い</u>

C

Table of Contents

-1-

Section 1: Sample Summary	5
Section 2: Case Narrative/Conformance Summary	7
Section 3: Summary of Hits	9
Section 4: Sample Results	12
4.1: FA42152-1: OBOD1-SU08-SS-01	13
4.2: FA42152-1A: OBOD1-SU08-SS-01	16
4.3: FA42152-2: OBOD1-SU08-SS-02	17
4.4: FA42152-2A: OBOD1-SU08-SS-02	20
4.5: FA42152-3: OBOD1-SU08-SS-03	21
4.6: FA42152-3A: OBOD1-SU08-SS-03	24
4.7: FA42152-4: OB2-SU01-SS-01	25
4.8: FA42152-5: OB2-SU01-SS-02	26
4.9: FA42152-6: OB2-SU01-SS-03	27
4.10: FA42152-7: OB2-SU02-SS-01	28
4.11: FA42152-8: OB2-SU03-SS-01	29
4.12: FA42152-9: OBOD1-SU09-SS-01	30
4.13: FA42152-9A: OBOD1-SU09-SS-01	33
Section 5: Misc. Forms	34
5.1: Chain of Custody	35
5.2: QC Evaluation: DOD QSM5 Limits	
Section 6: GC/MS Semi-volatiles - QC Data Summaries	
6.1: Method Blank Summary	
6.2: Blank Spike Summary	45
6.3: Matrix Spike/Matrix Spike Duplicate Summary	46
6.4: Instrument Performance Checks (DFTPP)	
6.5: Internal Standard Area Summaries	
6.6: Surrogate Recovery Summaries	53
6.7: Initial and Continuing Calibration Summaries	54
Section 7: GC/MS Semi-volatiles - Raw Data	
7.1: Samples	63
7.2: Method Blanks	120
7.3: Blank Spikes	122
7.4: Matrix Spike/Matrix Spike Duplicates	124
7.5: Instrument Performance Checks (DFTPP)	128
7.6: Initial and Continuing Calibrations	130
7.7: Instrument Run Logs	152
7.8: Prep Logs	156
Section 8: GC Semi-volatiles - QC Data Summaries	157
8.1: Method Blank Summary	158
8.2: Blank Spike Summary	159
8.3: Laboratory Control Sample Summary	160
8.4: Matrix Spike/Matrix Spike Duplicate Summary	161

Sections:

Table of Contents

-2-

	8.5: Duplicate Summary	162
	8.6: Surrogate Recovery Summaries	164
	8.7: GC Surrogate Retention Time Summaries	165
	8.8: Initial and Continuing Calibration Summaries	168
Se	ction 9: GC Semi-volatiles - Raw Data	190
	9.1: Samples	191
	9.2: Method Blanks	199
	9.3: Blank Spikes	201
	9.4: Laboratory Control Samples	204
	9.5: Matrix Spike/Matrix Spike Duplicates	207
		213
	9.7: Initial and Continuing Calibrations	217
	9.8: Instrument Run Logs	281
	9.9: Prep Logs	292
Se	ction 10: Metals Analysis - QC Data Summaries	293
	10.1: Inst QC MA13933: Al,Sb,Cu,Pb,Zn	294
	10.2: Prep QC MP31871: Al,Sb,Cu,Pb,Zn	318
	10.3: IDL and Linear Range Summaries	322
Se	ction 11: Metals Analysis - Raw Data	324
	11.1: Raw Data MA13933	325
	11.2: Prep Logs	379
Se	ction 12: General Chemistry - QC Data Summaries	380
	12.1: Duplicate Results Summary	381
Se	ction 13: General Chemistry - Raw Data	382
	13.1: Raw Data GN74604: pH	383

_

Sample Summary

Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX

Job No: FA42152

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
FA42152-1	03/15/17	09:00 BBDC	03/17/17	SO	Soil	OBOD1-SU08-SS-01
FA42152-1A	03/15/17	09:00 BBDC	03/17/17	SO	Soil	OBOD1-SU08-SS-01
FA42152-2	03/15/17	09:00 BBDC	03/17/17	SO	Soil	OBOD1-SU08-SS-02
FA42152-2A	03/15/17	09:00 BBDC	03/17/17	SO	Soil	OBOD1-SU08-SS-02
FA42152-3	03/15/17	09:00 BBDC	03/17/17	SO	Soil	OBOD1-SU08-SS-03
FA42152-3A	03/15/17	09:00 BBDC	03/17/17	SO	Soil	OBOD1-SU08-SS-03
FA42152-4	03/16/17	08:30 BBDC	03/17/17	SO	Soil	OB2-SU01-SS-01
FA42152-5	03/16/17	08:30 BBDC	03/17/17	SO	Soil	OB2-SU01-SS-02
FA42152-6	03/16/17	08:30 BBDC	03/17/17	SO	Soil	OB2-SU01-SS-03
FA42152-7		10:20 BBDC			Soil	OB2-SU02-SS-01
FA42152-8		13:30 BBDC			Soil	OB2-SU03-SS-01
FA42152-8D					Soil Dup/MSD	OB2-SU03-SS-01
FA42152-8S	03/16/17	13:30 BBDC	03/17/17	SO	Soil Matrix Spike	OB2-SU03-SS-01

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary

(continued)

Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX

Job	No:	FA42152

Sample	Collected		Matrix		ix	Client
Number	Date	Time By	Received	Code	Туре	Sample ID
FA42152-9	03/16/17	14:50 BBDC	03/17/17	so	Soil	OBOD1-SU09-SS-01
FA42152-9A	03/16/17	14:50 BBDC	03/17/17	SO	Soil	OBOD1-SU09-SS-01

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Cape Environmental Management Inc. Job No: FA42152

Site: OB/OD Site I, OB Site II, Fort Bliss, TX Report Date: 5/19/2017 9:54:53

9 Sample(s) were collected on 03/15/2017 and 03/16/2017 and were received at SGS Accutest Southeast (SASE) on 03/17/2017 properly preserved, at 4.4 Deg. C and intact. These Samples received an SASE job number of FA42152. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

FA42152-1, FA42152-2, FA42152-3, FA42152-4, FA42152-5, FA42152-6, FA42152-7, FA42152-8, FA42152-9: Samples air dried prior to analysis; percent solids reported as 100%.

Extractables by GCMS By Method SW846 8270D BY SIM

Matrix: SO Batch ID: OP64367

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA42152-8MS, FA42152-8MSD were used as the QC samples indicated.

Blank Spike Recovery(s) for Anthracene are outside lab control limits. % Recovery was within DOD QSM control limits.

FA42152-1 for Terphenyl-d14: Outside DoD QSM control limits.

FA42152-2 for Terphenyl-d14: Outside DoD QSM control limits.

FA42152-3 for Terphenyl-d14: Outside DoD QSM control limits.

FA42152-4 for Terphenyl-d14: Outside DoD QSM control limits.

FA42152-5 for Terphenyl-d14: Outside DoD QSM control limits.

FA42152-6 for Terphenyl-d14: Outside DoD QSM control limits.

Extractables by GC By Method SW846 8330B

Matrix: SO Batch ID: OP64396

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA42152-1MS, FA42152-1MSD, FA42152-3DUP were used as the QC samples indicated.

LCS Recovery(s) for 2,4,6-Trinitrotoluene, 4-amino-2,6-Dinitrotoluene, Tetryl are outside control limits.

Matrix Spike Recovery(s) for 1,3,5-Trinitrobenzene, Tetryl, 2,4,6-Trinitrotoluene are outside DOD QSM control limits. Probable cause is due to matrix interference. % RPD was within control limits for MS/MSD.

Sample(s) OP64396-PT1 shows surrogate outside control limits. The surrogate was not added.

OP64396-MS and OP64396-MSD for Tetryl: Outside DoD QSM control limits.

OP64396-MS and OP64396-MSD for 1,3,5-Trinitrobenzene: Outside DoD QSM control limits.

OP64396-MS and OP64396-MSD for 2,4,6-Trinitrotoluene: Outside DoD QSM control limits.

FA42152-1 for Tetryl: Associated LCS and MS/MSD recovery outside DOD QSM control limits.

FA42152-1 for 1,3,5-Trinitrobenzene: Associated MS/MSD recovery outside DOD QSM control limits.

FA42152-1 for 2,4,6-Trinitrotoluene: Associated LCS and MS/MSD recovery outside DOD QSM control limits.

FA42152-1 for 4-amino-2,6-Dinitrotoluene: Associated LCS recovery outside DOD QSM control limits.

FA42152-2 for 2,4,6-Trinitrotoluene: associated LCS recovery outside DOD QSM control limits.

FA42152-2 for 4-amino-2,6-Dinitrotoluene: Associated LCS recovery outside DOD QSM control limits.

FA42152-2 for Tetryl: Associated LCS recovery outside DOD QSM control limits.

Friday, May 19, 2017 Page 1 of 2

Extractables by GC By Method SW846 8330B

Matrix: SO Batch ID: OP64396

FA42152-3 for 2,4,6-Trinitrotoluene: associated LCS recovery outside DOD QSM control limits.

FA42152-3 for 4-amino-2,6-Dinitrotoluene: Associated LCS recovery outside DOD QSM control limits.

FA42152-3 for Tetryl: Associated LCS recovery outside DOD QSM control limits.

FA42152-9 for Tetryl: Associated LCS recovery outside DOD QSM control limits.

FA42152-9 for 4-amino-2,6-Dinitrotoluene: Associated LCS recovery outside DOD QSM control limits.

FA42152-9 for 2,4,6-Trinitrotoluene: associated LCS recovery outside DOD QSM control limits.

Metals By Method SW846 6010C

Matrix: SO Batch ID: MP31871

All samples were digested within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SW846 9045D

Matrix: SO Batch ID: GN74604 Sample(s) FA42152-1ADUP were used as the QC samples for pH.

SGS Accutest (SASE) certifies that this report meets the project requirements for analytical data produced for the samples as received at SASE and as stated on the COC. SASE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the SASE Quality Manual except as noted above. This report is to be used in its entirety. SASE is not responsible for any assumptions of data quality if partial data packages are used.

Date: May 19, 2017

Friday, May 19, 2017 Page 2 of 2 **Summary of Hits Job Number:** FA42152

Account: Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Collected: 03/15/17 thru 03/16/17

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	LOQ	LOD	Units	Method			
FA42152-1	OBOD1-SU08-SS-01								
3enzo(b)fluorant	hene	4.4 J	13	6.7	ug/kg	SW846 8270D BY SIM			
Aluminum		4130	8.2	2.0	mg/kg	SW846 6010C			
Antimony		0.053 J	0.82	0.20	mg/kg	SW846 6010C			
Copper		6.3	1.0	0.082	mg/kg	SW846 6010C			
∠ead		9.4	0.82	0.16	mg/kg	SW846 6010C			
inc		15.3	0.82	0.20	mg/kg	SW846 6010C			
FA42152-1A	OBOD1-SU08-SS-	01							
Н		8.18		а	su	SW846 9045D			
FA42152-2	OBOD1-SU08-SS-	02							
Benzo(b)fluorant	hene	3.5 J	13	6.6	ug/kg	SW846 8270D BY SIM			
Aluminum		4060	9.3	2.3	mg/kg	SW846 6010C			
Copper		5.8	1.2	0.093	mg/kg	SW846 6010C			
ead		8.9	0.93	0.19	mg/kg	SW846 6010C			
Zinc		14.8	0.93	0.23	mg/kg	SW846 6010C			
A42152-2A	OBOD1-SU08-SS-	02							
Н		8.22		а	su	SW846 9045D			
FA42152-3	OBOD1-SU08-SS-	03							
3enzo(b)fluorant		3.8 J	13	6.6	ug/kg	SW846 8270D BY SIM			
Benzo(k)fluorant	hene	3.9 J	13	6.6	ug/kg	SW846 8270D BY SIM			
Aluminum		3950	7.1	1.8	mg/kg	SW846 6010C			
Antimony		0.050 J	0.71	0.18	mg/kg	SW846 6010C			
Copper		5.9	0.89	0.071	mg/kg	SW846 6010C			
ead		9.5	0.71	0.14	mg/kg	SW846 6010C			
Cinc		14.7	0.71	0.18	mg/kg	SW846 6010C			
FA42152-3A	OBOD1-SU08-SS-	03							
Н		8.22		а	su	SW846 9045D			
FA42152-4	OB2-SU01-SS-01								
Benzo(a)anthrace	ene	3.5 J	13	6.6	ug/kg	SW846 8270D BY SIM			
Benzo(a)pyrene		4.6 J	13	6.6	ug/kg	SW846 8270D BY SIM			
Benzo(b)fluorant	hene	8.0 J	13	6.6	ug/kg	SW846 8270D BY SIM			
Benzo(g,h,i)pery	Person	4.3 J	13	6.6	ug/kg	SW846 8270D BY SIM			

Summary of Hits Job Number: FA42152

Account: Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Collected: 03/15/17 thru 03/16/17

Lab Sample ID Client Sample ID Analyte	Result/ Qual	LOQ	LOD	Units	Method
Chrysene	5.5 J	13	6.6	ug/kg	SW846 8270D BY SIM
Indeno(1,2,3-cd)pyrene	4.8 J	13	6.6	ug/kg	SW846 8270D BY SIM
FA42152-5 OB2-SU01-SS-02					
Benzo(a)pyrene	4.2 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(b)fluoranthene	7.3 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(g,h,i)perylene	3.6 J	13	6.7	ug/kg	SW846 8270D BY SIM
Chrysene	4.6 J	13	6.7	ug/kg	SW846 8270D BY SIM
Indeno(1,2,3-cd)pyrene	3.6 J	13	6.7	ug/kg	SW846 8270D BY SIM
FA42152-6 OB2-SU01-SS-03					
Benzo(a)pyrene	3.8 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(b)fluoranthene	6.6 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(g,h,i)perylene	3.4 J	13	6.7	ug/kg	SW846 8270D BY SIM
Chrysene	4.5 J	13	6.7	ug/kg	SW846 8270D BY SIM
Indeno(1,2,3-cd)pyrene	3.7 J	13	6.7	ug/kg	SW846 8270D BY SIM
FA42152-7 OB2-SU02-SS-01					
Benzo(a)anthracene	3.5 J	13	6.6	ug/kg	SW846 8270D BY SIM
Benzo(a)pyrene	4.5 J	13	6.6	ug/kg	SW846 8270D BY SIM
Benzo(b)fluoranthene	8.3 J	13	6.6	ug/kg	SW846 8270D BY SIM
Benzo(g,h,i)perylene	4.7 J	13	6.6	ug/kg	SW846 8270D BY SIM
Chrysene	5.4 J	13	6.6	ug/kg	SW846 8270D BY SIM
Indeno(1,2,3-cd)pyrene	5.1 J	13	6.6	ug/kg	SW846 8270D BY SIM
FA42152-8 OB2-SU03-SS-01					
Benzo(a)anthracene	3.4 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(a)pyrene	5.7 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(b)fluoranthene	10.0 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(g,h,i)perylene	5.2 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(k)fluoranthene	3.3 J	13	6.7	ug/kg	SW846 8270D BY SIM
Chrysene	6.6 J	13	6.7	ug/kg	SW846 8270D BY SIM
Indeno(1,2,3-cd)pyrene	5.7 J	13	6.7	ug/kg	SW846 8270D BY SIM
FA42152-9 OBOD1-SU09-SS-0	01				
Benzo(a)pyrene	4.4 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(b)fluoranthene	8.1 J	13	6.7	ug/kg	SW846 8270D BY SIM
Benzo(g,h,i)perylene	8.5 J	13	6.7	ug/kg	SW846 8270D BY SIM
Chrysene	4.5 J	13	6.7	ug/kg	SW846 8270D BY SIM
Indeno(1,2,3-cd)pyrene	4.6 J	13	6.7	ug/kg	SW846 8270D BY SIM

Summary of Hits Job Number: FA42152

Account: Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Collected: 03/15/17 thru 03/16/17

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	LOQ	LOD	Units	Method
Aluminum Antimony Copper Lead Zinc		4330 0.071 J 7.5 12.7 16.9	8.8 0.88 1.1 0.88 0.88	2.2 0.22 0.088 0.18 0.22	mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010C SW846 6010C SW846 6010C SW846 6010C SW846 6010C
FA42152-9A OBOD1-SU09-SS-01						
pH		8. 29		a	su	SW846 9045D

(a) Value reported is laboratory DL (MDL).

Section 4

Sample Results	
Report of Analysis	

Page 1 of 1

SGS Accutest

Report of Analysis

Client Sample ID: OBOD 1-SU08-SS-01

Lab Sample ID: FA42152-1 Date Sampled: 03/15/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date W098391.D 1 FS 03/28/17 OP64367 SW4369 Run #1 03/29/17

Run #2

Initial Weight Final Volume $15.0\,\mathrm{g}$ Run #1 1.0 ml Run #2

BN PAH List

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	67	33	27	ug/kg	
208-96-8	Acenaphthylene	33 U	67	33	27	ug/kg	
120-12-7	Anthracene	33 U	67	33	17	ug/kg	
56-55-3	Benzo(a)anthracene	6.7 U	13	6.7	3. 3	ug/kg	
50-32-8	Benzo(a)pyrene	6.7 U	13	6.7	3.3	ug/kg	
205-99-2	Benzo(b)fluoranthene	4.4	13	6.7	3.3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	6.7 U	13	6.7	3.3	ug/kg	
207-08-9	Benzo(k)fluoranthene	6.7 T	13	6.7	3.3	ug/kg	
218-01-9	Chrysene	6.7 T	13	6.7	3.3	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	6.7 U	13	6.7	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	67	33	17	ug/kg	
86-73-7	Fluorene	33 U	67	33	27	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	6.7 U	13	6.7	3.3	ug/kg	
90-12-0	1-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-20-3	Naphthal ene	33 U	67	33	27	ug/kg	
85-01-8	Phenanthrene	33 U	67	33	17	ug/kg	
129-00-0	Pyrene	33 U	67	33	17	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	iits		
4165-60-0	Nitrobenzene-d5	55%		40-1	105%		
321-60-8	2-Fluorobiphenyl	58%		43-1	107%		
1718-51-0	Terphenyl-d14	53% b	45-119%				

⁽a) Sample air dried prior to analysis; percent solids reported as 100%.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

⁽b) Outside DoD QSM control limits.

Page 1 of 1

Report of Analysis

Client Sample ID: OBOD 1-SU08-SS-01

Lab Sample ID: FA42152-1 Date Sampled: 03/15/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8330B SW846 8330B Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

50.0 ml

	File ID	\mathbf{DF}	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BB053979.D	1	03/31/17	EM	03/29/17	OP64396	GBB1567
Run #2							

Initial Weight Final Volume

 $10.1\,\mathrm{g}$

Run #1 Run #2

CAS No.

610-39-9

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
2691-41-0	HMX	74 U	99	74	5 0	ug/kg	
121-82-4	RDX	74 U	99	74	5 0	ug/kg	
99-65-0	1,3-Dinitrobenzene	74 U	99	74	5 0	ug/kg	
606-20-2	2,6-Dinitrotoluene	74 U	99	74	5 0	ug/kg	
121-14-2	2,4-Dinitrotoluene	74 U	99	74	5 0	ug/kg	
35572-78-2	2-amino-4,6-Dinitrotoluene	74 U	99	74	50	ug/kg	
19406-51-0	4-amino-2,6-Dinitrotoluene b	74 U	99	74	5 0	ug/kg	
98-95-3	Nitrobenzene	74 U	99	74	50	ug/kg	
88-72-2	o-Nitrotoluene	74 U	99	74	5 0	ug/kg	
99-08-1	m-Nitrotoluene	74 U	99	74	50	ug/kg	
99-99-0	p-Nitrotoluene	74 U	99	74	50	ug/kg	
479-45-8	Tetryl ^C	74 UJ	99	74	50	ug/kg	J
99-35-4	1,3,5-Trinitrobenzene d	74 UJ	99	74	50	ug/kg	J
118-96-7	2,4,6-Trinitrotoluene ^C	74 UJ	99	74	50	ug/kg	J
55-63-0	Nitroglycerine	500 U	990	5 00	250	ug/kg	
78-11-5	PETN	500 T	990	500	250	ug/kg	

Run#1

81%

Run#2

Limits

69-134%

- (a) Sample air dried prior to analysis; percent solids reported as 100%.
- (b) Associated LCS recovery outside DOD QSM control limits.

Surrogate Recoveries

3,4-Dinitrotoluene

- (c) Associated LCS and MS/MSD recovery outside DOD QSM control limits.
- (d) Associated MS/MSD recovery outside DOD QSM control limits.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation

DL = Detection Limit

J = Indicates an estimated value

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ACCUTEST

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU08-SS-01

Lab Sample ID: FA42152-1 Date Sampled: 03/15/17 SO - Soil Matrix: Date Received: 03/17/17 Percent Solids: n/a a

OB/OD Site I, OB Site II, Fort Bliss, TXProject:

Metals Analysis

Analyte	Result	LOQ	LOD	\mathbf{DL}	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4130	8.2	2.0	1.4	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	¹ SW846 3050B ²
Antimony	0.053 J	0.82	0.20	0.053	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	$^{1}\mathrm{SW846~3050B}^{2}$
Copper	6.3	1.0	0.082	0.041	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	$^{1}\mathrm{SW846~3050B}^{2}$
Lead	9.4	0.82	0.16	0.041	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	$^{1}\mathrm{SW8463050B}^{2}$
Zinc	15.3	0.82	0.20	0. 12	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	$^{1}\mathrm{SW846}3050\mathrm{B}^{2}$

(1) Instrument QC Batch: MA13933

(2) Prep QC Batch: MP31871

(a) Sample air dried prior to analysis; percent solids reported as 100%.

LOQ = Limit of Quantitation

DL = Detection Limit

U = Indicates a result < LOD

LOD = Limit of Detection B = Analyte found in associated blank J = Indicates a result > = DL (MDL) but < LOQ

4

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU08-SS-01

 Lab Sample ID:
 FA42152-1A
 Date Sampled:
 03/15/17

 Matrix:
 SO - Soil
 Date Received:
 03/17/17

 Percent Solids:
 n/a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

General Chemistry

Analyte	Result	RL	Units	\mathbf{DF}	Analyzed	Вý	Method
pН	8.18		su	1	03/31/17 16:45	VK	SW846 9045D

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU08-SS-02

Lab Sample ID: FA42152-2 Date Sampled: 03/15/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date W098392.D FS 03/28/17 OP64367 SW4369 Run #1 1 03/29/17

Run #2

Initial Weight Final Volume $15.2\,\mathrm{g}$ Run #1 1.0 ml Run #2

BN PAH List

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	66	33	26	ug/kg	
208-96-8	Acenaphthylene	33 U	66	33	26	ug/kg	
120-12-7	Anthracene	33 U	66	33	16	ug/kg	
56-55-3	Benzo(a)anthracene	6.6 U	13	6, 6	3. 3	ug/kg	
50-32-8	Benzo(a)pyrene	6.6 U	13	6.6	3.3	ug/kg	
205-99-2	Benzo(b)fluoranthene	3.5	13	6.6	3. 3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	6.6 U	13	6, 6	3.3	ug/kg	
207-08-9	Benzo(k)fluoranthene	6.6 T	13	6.6	3.3	ug/kg	
218-01-9	Chrysene	6.6 U	13	6, 6	3. 3	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	6.6 U	13	6.6	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	66	33	16	ug/kg	
86-73-7	Fluorene	33 U	66	33	26	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	6.6 U	13	6.6	3.3	ug/kg	
90-12-0	1-Methylnaphthalene	33 U	66	33	26	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	66	33	26	ug/kg	
91-20-3	Naphthal ene	33 U	66	33	26	ug/kg	
85-01-8	Phenanthrene	33 U	66	33	16	ug/kg	
129-00-0	Pyrene	33 U	66	33	16	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	iits		
4165-60-0	Nitrobenzene-d5	58%	40-105%				
321-60-8	2-Fluorobiphenyl	68%		43-1	107%		
1718-51-0	Terphenyl-d14	55% b		45-1	119%		

⁽a) Sample air dried prior to analysis; percent solids reported as 100%.

(b) Outside DoD QSM control limits.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU08-SS-02

Lab Sample ID: FA42152-2 Date Sampled: 03/15/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8330B SW846 8330B Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date BB053982.D 03/29/17 OP64396 GBB1567 Run #1 1 03/31/17 EM Run #2

Initial Weight Final Volume $10.0\,\mathrm{g}$ Run #1 50.0 ml

Run #2

610-39-9

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
2691-41-0	HMX	75 U	100	75	51	ug/kg	
121-82-4	RDX	75 T	100	75	50	ug/kg	
99-65-0	1,3-Dinitrobenzene	75 U	100	75	50	ug/kg	
606-20-2	2,6-Dinitrotoluene	75 U	100	75	50	ug/kg	
121-14-2	2,4-Dinitrotoluene	75 U	100	75	50	ug/kg	
35572-78-2	2-amino-4,6-Dinitrotoluene	75 U	100	75	50	ug/kg	
19406-51-0	4-amino-2,6-Dinitrotoluene b	75 U	100	75	51	ug/kg	
98-95-3	Nitrobenzene	75 U	100	75	5 0	ug/kg	
88-72-2	o-Nitrotoluene	75 U	100	75	5 0	ug/kg	
99-08-1	m-Nitrotoluene	75 U	100	75	50	ug/kg	
99-99-0	p-Nitrotoluene	75 U	100	75	5 0	ug/kg	
479-45-8	Tetryl ^b	75 U	100	75	50	ug/kg	
99-35-4	1,3,5-Trinitrobenzene	75 U	100	75	50	ug/kg	
118-96-7	2,4,6-Trinitrotoluene b	75 U	100	75	50	ug/kg	
55-63-0	Nitroglycerine	500 U	1000	500	250	ug/kg	
78-11-5	PETN	500 U	1000	5 00	250	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its		

81%

- (a) Sample air dried prior to analysis; percent solids reported as 100%.
- (b) Associated LCS recovery outside DOD QSM control limits.

3,4-Dinitrotoluene

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

69-134%

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU08-SS-02

Lab Sample ID: FA42152-2 Date Sampled: 03/15/17 Matrix: SO - Soil Date Received: 03/17/17 Percent Solids: n/a a

OB/OD Site I, OB Site II, Fort Bliss, TXProject:

Metals Analysis

Analyte	Result	LOQ	LOD	DL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4060	9.3	2.3	1. 6	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	¹ SW846 3050B ²
Antimony	0.23 U	0.93	0.23	0.060	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	¹ SW846 3050B ²
Соррег	5.8	1.2	0.093	0.046	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	¹ SW846 3050B ²
Lead	8.9	0.93	0.19	0.046	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	¹ SW846 3050B ²
Zinc	14.8	0.93	0.23	0. 14	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	¹ SW846 3050B ²

(1) Instrument QC Batch: MA13933

(2) Prep QC Batch: MP31871

(a) Sample air dried prior to analysis; percent solids reported as 100%.

LOQ = Limit of Quantitation

DL = Detection Limit

U = Indicates a result < LOD

LOD = Limit of Detection B = Analyte found in associated blank J = Indicates a result > = DL (MDL) but < LOQ

4

Page 1 of 1

Report of Analysis

Client Sample ID: OBOD 1-SU08-SS-02

 Lab Sample ID:
 FA42152-2A
 Date Sampled:
 03/15/17

 Matrix:
 SO - Soil
 Date Received:
 03/17/17

 Percent Solids:
 n/a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

General Chemistry

Analyte	Result	RL	Units	\mathbf{DF}	Analyzed	Вý	Method
pН	8.22		su	1	03/31/17 16:45	VK	SW846 9045D

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU08-SS-03

Lab Sample ID: FA42152-3 Date Sampled: 03/15/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch **Analytical Batch** Analyzed By Prep Date W098393.D FS 03/28/17 OP64367 SW4369 Run #1 1 03/29/17

Run #2

Initial Weight Final Volume 15.1 g Run #1 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	66	33	26	ug/kg	
208-96-8	Acenaphthylene	33 U	66	33	26	ug/kg	
120-12-7	Anthracene	33 U	66	33	17	ug/kg	
56-55-3	Benzo(a)anthracene	6.6 U	13	6.6	3. 3	ug/kg	
50-32-8	Benzo(a)pyrene	6.6 U	13	6.6	3.3	ug/kg	
205-99-2	Benzo(b)fluoranthene	3.8	13	6.6	3. 3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	6.6 U	13	6.6	3.3	ug/kg	
207-08-9	Benzo(k)fluoranthene	3.9	13	6.6	3. 3	ug/kg	J
218-01-9	Chrysene	6.6 U	13	6.6	3.3	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	6.6 U	13	6.6	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	66	33	17	ug/kg	
86-73-7	Fluorene	33 U	66	33	26	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	6.6 U	13	6.6	3.3	ug/kg	
90-12-0	1-Methylnaphthalene	33 U	66	33	26	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	66	33	26	ug/kg	
91-20-3	Naphthal ene	33 U	66	33	26	ug/kg	
85-01-8	Phenanthrene	33 U	66	33	17	ug/kg	
129-00-0	Pyrene	33 U	66	33	17	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	iits		
4165-60-0	Nitrobenzene-d5	53%	40-105%				
321-60-8	2-Fluorobiphenyl	65%		43-1	10 7%		
1718-51-0	Terphenyl-d14	54% b		45-1	119%		

- (a) Sample air dried prior to analysis; percent solids reported as 100%.
- (b) Outside DoD QSM control limits.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU08-SS-03

Lab Sample ID: FA42152-3 Date Sampled: 03/15/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8330B SW846 8330B Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

	File ID	\mathbf{DF}	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BB053983.D	1	03/31/17	EM	03/29/17	OP64396	GBB1567

Run #2

CAS No.	Compound	Result	rod	LOD	DL	Units	Q
2691-41-0	HMX	75 U	100	75	51	ug/kg	
121-82-4	RDX	75 U	100	75	50	ug/kg	
99-65-0	1,3-Dinitrobenzene	75 U	100	75	50	ug/kg	
606-20-2	2,6-Dinitrotoluene	75 U	100	75	50	ug/kg	
121-14-2	2,4-Dinitrotoluene	75 U	100	75	50	ug/kg	
35572-78-2	2-amino-4,6-Dinitrotoluene	75 U	100	75	50	ug/kg	
19406-51-0	4-amino-2,6-Dinitrotoluene b	75 U	100	75	51	ug/kg	
98-95-3	Nitrobenzene	75 U	100	75	50	ug/kg	
88-72-2	o-Nitrotoluene	75 U	100	75	50	ug/kg	
99-08-1	m-Nitrotoluene	75 U	100	75	50	ug/kg	
99-99-0	p-Nitrotoluene	75 U	100	75	50	ug/kg	
479-45-8	Tetryl ^b	75 U	100	75	50	ug/kg	
99-35-4	1,3,5-Trinitrobenzene	75 U	100	75	50	ug/kg	
118-96-7	2,4,6-Trinitrotoluene b	75 U	100	75	50	ug/kg	
55-63-0	Nitroglycerine	500 U	1000	500	250	ug/kg	
78-11-5	PETN	500 U	1000	500	250	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its		
610-39-9	3,4-Dinitrotoluene	84%		69-1	34%		

⁽a) Sample air dried prior to analysis; percent solids reported as 100%.

U = Not detectedLOD = Limit of Detection LOQ = Limit of Quantitation

E = Indicates value exceeds calibration range

DL = Detection Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ bl \ ank$ N = Indicates presumptive evidence of a compound

⁽b) Associated LCS recovery outside DOD QSM control limits.

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU08-SS-03

 Lab Sample ID:
 FA42152-3
 Date Sampled:
 03/15/17

 Matrix:
 SO - Soil
 Date Received:
 03/17/17

 Percent Solids:
 n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Metals Analysis

Analyte	Result	LOQ	LOD	\mathbf{DL}	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	3950	7.1	1.8	1. 3	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	¹ SW846 3050B ²
Antimony	0.050 J	0.71	0.18	0.046	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	$^{1}\mathrm{SW846~3050B}^{2}$
Copper	5.9	0.89	0.071	0.036	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	$^{1}\mathrm{SW846~3050B}^{2}$
Lead	9.5	0.71	0.14	0.036	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	$^{1}\mathrm{SW8463050B}^{2}$
Zinc	14.7	0.71	0.18	0. 11	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C	$^{1}\mathrm{SW846~3050B}^{2}$

(1) Instrument QC Batch: MA13933

(2) Prep QC Batch: MP31871

(a) Sample air dried prior to analysis; percent solids reported as 100%.

LOQ = Limit of Quantitation DL = Detection Limit

= Detection Limit U = Indicates a result < LOD

LOD = Limit of Detection B = Analyte found in associated blank J = Indicates a result > = DL (MDL) but < LOQ

4

Page 1 of 1

Report of Analysis

Client Sample ID: OBOD 1-SU08-SS-03

 Lab Sample ID:
 FA42152-3A
 Date Sampled:
 03/15/17

 Matrix:
 SO - Soil
 Date Received:
 03/17/17

 Percent Solids:
 n/a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

General Chemistry

Analyte	Result	RL	Units	\mathbf{DF}	Analyzed	Вý	Method
pН	8.22		su	1	03/31/17 16:45	VK	SW846 9045D

Report of Analysis

Page 1 of 1

Client Sample ID: OB2-SU01-SS-01 Lab Sample ID: FA42152-4

Date Sampled: 03/16/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date W098394.D FS 03/28/17 OP64367 SW4369 Run #1 1 03/29/17

Run #2

Initial Weight Final Volume 15.1 g Run #1 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	66	33	26	ug/kg	
208-96-8	Acenaphthylene	33 U	66	33	26	ug/kg	
120-12-7	Anthracene	33 U	66	33	17	ug/kg	
56-55-3	Benzo(a)anthracene	3.5	13	6.6	3. 3	ug/kg	J
50-32-8	Benzo(a)pyrene	4.6	13	6.6	3.3	ug/kg	J
205-99-2	Benzo(b)fluoranthene	8.0	13	6.6	3. 3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	4.3	13	6.6	3.3	ug/kg	J
207-08-9	Benzo(k)fluoranthene	6.6 U	13	6.6	3. 3	ug/kg	
218-01-9	Chrysene	5.5	13	6.6	3.3	ug/kg	J
53-70-3	Dibenzo(a,h)anthracene	6.6 U	13	6.6	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	66	33	17	ug/kg	
86-73-7	Fluorene	33 U	66	33	26	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	4.8	13	6.6	3.3	ug/kg	J
90-12-0	1-Methylnaphthalene	33 U	66	33	26	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	66	33	26	ug/kg	
91-20-3	Naphthal ene	33 U	66	33	26	ug/kg	
85-01-8	Phenanthrene	33 U	66	33	17	ug/kg	
129-00-0	Pyrene	33 U	66	33	17	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	iits		
4165-60-0	Nitrobenzene-d5	54%		40-1	105%		
321-60-8	2-Fluorobiphenyl	61%		43-1	107%		
1718-51-0	Terphenyl-d14	54% b		45-1	119%		

- (a) Sample air dried prior to analysis; percent solids reported as 100%.
- (b) Outside DoD QSM control limits.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

ACCUTEST

Report of Analysis

Page 1 of 1

Client Sample ID: OB2-SU01-SS-02

Lab Sample ID: FA42152-5 Date Sampled: 03/16/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date W098395.D FS 03/28/17 OP64367 SW4369 Run #1 1 03/29/17

Run #2

Initial Weight Final Volume $15.0\,\mathrm{g}$ Run #1 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	67	33	27	ug/kg	
208-96-8	Acenaphthylene	33 U	67	33	27	ug/kg	
120-12-7	Anthracene	33 U	67	33	17	ug/kg	
56-55-3	Benzo(a)anthracene	6.7 U	13	6.7	3. 3	ug/kg	
50-32-8	Benzo(a)pyrene	4.2	13	6.7	3.3	ug/kg	J
205-99-2	Benzo(b)fluoranthene	7.3	13	6.7	3. 3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	3.6	13	6.7	3.3	ug/kg	J
207-08-9	Benzo(k)fluoranthene	6.7 U	13	6.7	3. 3	ug/kg	
218-01-9	Chrysene	4.6	13	6.7	3.3	ug/kg	J
53-70-3	Dibenzo(a,h)anthracene	6.7 U	13	6.7	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	67	33	17	ug/kg	
86-73-7	Fluorene	33 U	67	33	27	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	3.6	13	6.7	3.3	ug/kg	J
90-12-0	1-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-20-3	Naphthal ene	33 U	67	33	27	ug/kg	
85-01-8	Phenanthrene	33 U	67	33	17	ug/kg	
129-00-0	Pyrene	33 U	67	33	17	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	iits		
4165-60-0	Nitrobenzene-d5	57%		40-	105%		
321-60-8	2-Fluorobiphenyl	65%		43-	107%		
1718-51-0	Terphenyl-d14	53% b		45-	119%		

⁽a) Sample air dried prior to analysis; percent solids reported as 100%.

(b) Outside DoD QSM control limits.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: OB2-SU01-SS-03

Lab Sample ID: FA42152-6 Date Sampled: 03/16/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date W098396.D FS 03/28/17 OP64367 SW4369 Run #1 1 03/29/17

Run #2

Initial Weight Final Volume $15.0\,\mathrm{g}$ Run #1 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	67	33	27	ug/kg	
208-96-8	Acenaphthylene	33 U	67	33	27	ug/kg	
120-12-7	Anthracene	33 U	67	33	17	ug/kg	
56-55-3	Benzo(a)anthracene	6.7 U	13	6.7	3. 3	ug/kg	
50-32-8	Benzo(a)pyrene	3.8	13	6.7	3.3	ug/kg	J
205-99-2	Benzo(b)fluoranthene	6,6	13	6.7	3. 3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	3.4	13	6.7	3.3	ug/kg	J
207-08-9	Benzo(k)fluoranthene	6.7 U	13	6.7	3. 3	ug/kg	
218-01-9	Chrysene	4.5	13	6.7	3.3	ug/kg	J
53-70-3	Dibenzo(a,h)anthracene	6.7 U	13	6.7	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	67	33	17	ug/kg	
86-73-7	Fluorene	33 U	67	33	27	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	3.7	13	6.7	3.3	ug/kg	J
90-12-0	1-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-20-3	Naphthal ene	33 U	67	33	27	ug/kg	
85-01-8	Phenanthrene	33 U	67	33	17	ug/kg	
129-00-0	Pyrene	33 U	67	33	17	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	iits		
4165-60-0	Nitrobenzene-d5	63%		40-1	105%		
321-60-8	2-Fluorobiphenyl	74%		43-1	107%		
1718-51-0	Terphenyl-d14	57% b		45-1	119%		

- (a) Sample air dried prior to analysis; percent solids reported as 100%.
- (b) Outside DoD QSM control limits.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: OB2-SU02-SS-01

Lab Sample ID: FA42152-7 Date Sampled: 03/16/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch **Analytical Batch** Analyzed By Prep Date Run #1 W098397.D 1 FS 03/28/17 OP64367 SW4369 03/29/17

Run #2

Initial Weight Final Volume $15.2\,\mathrm{g}$ Run #1 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	66	33	26	ug/kg	
208-96-8	Acenaphthylene	33 U	66	33	26	ug/kg	
120-12-7	Anthracene	33 U	66	33	16	ug/kg	
56-55-3	Benzo(a)anthracene	3.5	13	6.6	3. 3	ug/kg	J
50-32-8	Benzo(a)pyrene	4.5	13	6.6	3.3	ug/kg	J
205-99-2	Benzo(b)fluoranthene	8.3	13	6.6	3. 3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	4.7	13	6.6	3.3	ug/kg	J
207-08-9	Benzo(k)fluoranthene	6.6 U	13	6.6	3. 3	ug/kg	
218-01-9	Chrysene	5.4	13	6.6	3.3	ug/kg	J
53-70-3	Dibenzo(a,h)anthracene	6.6 U	13	6.6	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	66	33	16	ug/kg	
86-73-7	Fluorene	33 U	66	33	26	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	5.1	13	6.6	3.3	ug/kg	J
90-12-0	1-Methylnaphthalene	33 U	66	33	26	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	66	33	26	ug/kg	
91-20-3	Naphthal ene	33 U	66	33	26	ug/kg	
85-01-8	Phenanthrene	33 U	66	33	16	ug/kg	
129-00-0	Pyrene	33 U	66	33	16	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	iits		
4165-60-0	Nitrobenzene-d5	59%		40-1	105%		
321-60-8	2-Fluorobiphenyl	71%		43-1	10 7%		
1718-51-0	Terphenyl-d14	63%		45-1	119%		

⁽a) Sample air dried prior to analysis; percent solids reported as 100%.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation

J = Indicates an estimated value

B = Indicates analyte found in associated method blank DL = Detection Limit E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Date Sampled: 03/16/17

Date Received: 03/17/17

Percent Solids: n/a a

Client Sample ID: OB2-SU03-SS-01 Lab Sample ID: FA42152-8

Matrix: SO - Soil Method: SW846 8270D BY SIM SW846 3546

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date Run #1 W098398.D 1 FS 03/28/17 OP64367 SW4369 03/29/17

Run #2

Initial Weight Final Volume $15.0\,\mathrm{g}$ Run #1 1.0 ml

Run #2

BN PAH List

CAS No.	Compound	Result	LOQ	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	67	33	27	ug/kg	
208-96-8	Acenaphthylene	33 U	67	33	27	ug/kg	
120-12-7	Anthracene	33 U	67	33	17	ug/kg	
56-55-3	Benzo(a)anthracene	3.4	13	6.7	3. 3	ug/kg	J
50-32-8	Benzo(a)pyrene	5.7	13	6.7	3.3	ug/kg	J
205-99-2	Benzo(b)fluoranthene	10.0	13	6.7	3.3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	5.2	13	6.7	3.3	ug/kg	J
207-08-9	Benzo(k)fluoranthene	3.3	13	6.7	3.3	ug/kg	J
218-01-9	Chrysene	6.6	13	6.7	3.3	ug/kg	J
53-70-3	Dibenzo(a,h)anthracene	6.7 U	13	6.7	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	67	33	17	ug/kg	
86-73-7	Fluorene	33 U	67	33	27	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	5.7	13	6.7	3.3	ug/kg	J
90-12-0	1-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-20-3	Naphthal ene	33 U	67	33	27	ug/kg	
85-01-8	Phenanthrene	33 U	67	33	17	ug/kg	
129-00-0	Pyrene	33 U	67	33	17	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	iits		
4165-60-0	Nitrobenzene-d5	62%		40-1	105%		
321-60-8	2-Fluorobiphenyl	69%		43-1	107%		
1718-51-0	Terphenyl-d14	61%		45-1	119%		

⁽a) Sample air dried prior to analysis; percent solids reported as 100%.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit J = Indicates an estimated value

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU09-SS-01

Lab Sample ID: FA42152-9 Date Sampled: 03/16/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8270D BY SIM SW846 3546 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date Run #1 W098401.D 1 FS 03/28/17 OP64367 SW4369 03/29/17

Run #2

Initial Weight Final Volume $15.0\,\mathrm{g}$ Run #1 1.0 ml Run #2

BN PAH List

CAS No.	Compound	Result	roó	LOD	DL	Units	Q
83-32-9	Acenaphthene	33 U	67	33	27	ug/kg	
208-96-8	Acenaphthylene	33 U	67	33	27	ug/kg	
120-12-7	Anthracene	33 U	67	33	17	ug/kg	
56-55-3	Benzo(a)anthracene	6.7 U	13	6.7	3. 3	ug/kg	
50-32-8	Benzo(a)pyrene	4.4	13	6.7	3.3	ug/kg	J
205-99-2	Benzo(b)fluoranthene	8.1	13	6.7	3.3	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	8.5	13	6.7	3.3	ug/kg	J
207-08-9	Benzo(k)fluoranthene	6.7 U	13	6.7	3.3	ug/kg	
218-01-9	Chrysene	4.5	13	6.7	3.3	ug/kg	J
53-70-3	Dibenzo(a,h)anthracene	6.7 U	13	6.7	3.3	ug/kg	
206-44-0	Fluoranthene	33 U	67	33	17	ug/kg	
86-73-7	Fluorene	33 U	67	33	27	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	4.6	13	6.7	3.3	ug/kg	J
90-12-0	1-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-57-6	2-Methylnaphthalene	33 U	67	33	27	ug/kg	
91-20-3	Naphthal ene	33 U	67	33	27	ug/kg	
85-01-8	Phenanthrene	33 U	67	33	17	ug/kg	
129-00-0	Pyrene	33 U	67	33	17	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its		
4165-60-0	Nitrobenzene-d5	62%		40-1	105%		
321-60-8	2-Fluorobiphenyl	70%		43-	107%		
1718-51-0	Terphenyl-d14	61%		45-1	119%		

⁽a) Sample air dried prior to analysis; percent solids reported as 100%.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation DL = Detection Limit J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

ACCUTEST

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU09-SS-01

Lab Sample ID: FA42152-9 Date Sampled: 03/16/17 Matrix: SO - Soil Date Received: 03/17/17 Method: SW846 8330B SW846 8330B Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID DF Prep Batch Analytical Batch Analyzed By Prep Date Run #1 BB053986.D 03/29/17 OP64396 GBB1567 1 03/31/17 EM Run #2

(3)	Initial Weight	Final Volume
Run #1	10.1 g	50.0 ml
Run #2		

CAS No.	Compound	Result	rod	LOD	DL	Units	Q
2691-41-0	HMX	74 U	99	74	5 0	ug/kg	
121-82-4	RDX	74 U	99	74	50	ug/kg	
99-65-0	1,3-Dinitrobenzene	74 U	99	74	50	ug/kg	
606-20-2	2,6-Dinitrotoluene	74 U	99	74	50	ug/kg	
121-14-2	2,4-Dinitrotoluene	74 U	99	74	50	ug/kg	
35572-78-2	2-amino-4,6-Dinitrotoluene	74 U	99	74	50	ug/kg	
19406-51-0	4-amino-2,6-Dinitrotoluene b	74 U	99	74	50	ug/kg	
98-95-3	Nitrobenzene	74 U	99	74	50	ug/kg	
88-72-2	o-Nitrotoluene	74 U	99	74	50	ug/kg	
99-08-1	m-Nitrotoluene	74 U	99	74	50	ug/kg	
99-99-0	p-Nitrotoluene	74 U	99	74	50	ug/kg	
479-45-8	Tetryl ^b	74 U	99	74	50	ug/kg	
99-35-4	1,3,5-Trinitrobenzene	74 U	99	74	50	ug/kg	
118-96-7	2,4,6-Trinitrotoluene b	74 U	99	74	50	ug/kg	
55-63-0	Nitroglycerine	500 U	990	500	250	ug/kg	
78-11-5	PETN	500 U	990	500	250	ug/kg	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its		
610-39-9	3,4-Dinitrotoluene	84%		69-1	34%		

⁽a) Sample air dried prior to analysis; percent solids reported as 100%.

U = Not detected LOD = Limit of Detection LOQ = Limit of Quantitation E = Indicates value exceeds calibration range

DL = Detection Limit

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ bl \ ank$ N = Indicates presumptive evidence of a compound

⁽b) Associated LCS recovery outside DOD QSM control limits.

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU09-SS-01

Lab Sample ID: FA42152-9 Date Sampled: 03/16/17 Matrix: SO - Soil Date Received: 03/17/17 Percent Solids: n/a a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Metals Analysis

Analyte	Result	LOQ	LOD	DL	Units	DF	Prep	Analyzed By	Method Prep Method	
Aluminum	4330	8.8	2.2	1.5	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C ¹ SW846 3050B ²	
Antimony	0.071J	0.88	0.22	0.058	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C ¹ SW846 3050B ²	
Соррег	7.5	1.1	0.088	0.044	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C ¹ SW846 3050B ²	
Lead	12.7	0.88	0.18	0.044	mg/kg	1	03/28/17	03/28/17 LM	SW846 6010C ¹ SW846 3050B ²	
Zinc	16.9	0.88	0.22	0.13	me/ke	1	03/28/17	03/28/17 LM	SW846 6010C ¹ SW846 3050B ²	

(1) Instrument QC Batch: MA13933

(2) Prep QC Batch: MP31871

(a) Sample air dried prior to analysis; percent solids reported as 100%.

LOQ = Limit of Quantitation

DL = Detection Limit

U = Indicates a result < LOD

LOD = Limit of Detection B = Analyte found in associated blank J = Indicates a result > = DL (MDL) but < LOQ

Report of Analysis

Page 1 of 1

Client Sample ID: OBOD 1-SU09-SS-01

 Lab Sample ID:
 FA42152-9A
 Date Sampled:
 03/16/17

 Matrix:
 SO - Soil
 Date Received:
 03/17/17

 Percent Solids:
 n/a

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
pH	8.29		Su	1	03/31/17 16:45	VK	SW846 9045D

Section 5

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- QC Evaluation: DOD QSM5 Limits

SGS ACCUTEST	_	S Accutest So		200.44	FAI	42152 PAGE OF 1
ACCUTEST		Chain of Cust O5 Vineland Road, Suite C-15 Orlan TEL. 407-425-6700 FAX: 407-4 www.accutest.com	do, Fl 32811		CCUTEST JOB # :	PAGE / OF /
Client / Reporting Information	POTENTIAL PROPERTY.	Project Informat	ion		Analytical	Information Matrix Codes
ress: Caran Control of A	Project No.	ame: FORT BL	ISS			DW - Drinking Water
1985: 8000 CENTRE PARK DE STATE TO STATE	K	GIALCE	State -	4		GW - Ground Water WW - Water
ect Contact	9754 City	EL PASO	State TX	4.19		SW - Surface
(D) (b)	roject #			747		Water SO - Soil
ne#: 51 471 5042	Fax #					SL- Sludge
npler(D) (D)	Client Pur	chase Order # 109 04	(CADE)			01-01
npler	CAPE		$(U \cap U)$. ₹	101	LIQ - Other Liquid
gs T	COLLECTION	CONTAI	NER-INFORMATION	- 2	AAH MS MS	AIR - Air
utest Field ID / Point of Collection		SAMPLED OF BY: MATRIX BOTTLES	IONE INCOME INCO		\$ Z 2	
Pield ID / Point of Collection	3 15 17 PAOD		Q			LAB USE ONLY
<u> </u>	21. 1.1 0 100	BB 50 1	 	XX	XX	
03001-5408-55-02	3/15/17 0900	35 50 1		XX	XX	
01300 i - 5408 - 55-03	31517 0900	BB 50 1		$\times X$	XX	
OB1- SUOJ- 55-01	316/17 0830	BB 50 1			X	
082 - Suol - 68 - 02	3/16/17 0830	BB SO 1			X	
OB2-SU01-#-03	3/16/17 0830	BB 50 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
082-5402-55-01	3/16/17 1020	BB 50 1				
082-5403-55-01	3/16/17/13/30	BB 50 1	 	+ +		
0BODT 5409 - 55 - 01	3/16/17/450	86 SO 1	 	Y X		 - - -
	7.07.7	00 20 1	 	 ^ ~	 X X 	+
			- 	+	 	+
			 	┼╼┼	 - -	+ + - +
Turnaround Time (Business days)		Data Deliverat	ple Information			omments / Remarks
10 Day (Business) Approve	ed By: / Date:	COMMERCIAL "A" (RESI			*154-0R)	(L ST S ING
(7 Day)		COMMERCIAL "B" (RESI	JLTS PLUS QC)			
5 Day		REDT1 (EPA LEVEL 3)	•		MAN HAVE	ALTOHOT ACKE DAY
3 Day RUSH		FULLT1 (EPA LEVEL 4)			TH INFO	ALTQUOT BEFOR DRY
2 Day RUSH		EDD'S			5251E	PROCESS ASAP
1 Day RUSH						
Other Bush T/A Data Available VIA Email or La	Litera.					
Sar	onne ople Custody must be de	ocumented below each time	samples change pocession	on Includi-	o courles dell'inn	
Continue Day Title.	ceived By/Affiliation	sadii titile	Relinquished By/Affiliati	ion	Date Time:	R(b) (6)
3/16 1706 2	realx		3 Fedox	•	3/17/17 18	
tion Date Time: Re	eceived By/Affiliation		Relinquished By/Affiliati	ion	Date Time:	R

4,4

FA42152: Chain of Custody Page 1 of 3

Lab Use Only: Cooler Temperature (s) Celsius:

	and the control of th
SGS ACCUTEST - ORLANDO	SAMPLE RECEIPT CONFIRMATION
SGS ACCUTEST'S JOB NUMBER: <u>FA 42152</u> CLIEN	T: Parsons PROJECT: FORT BLISS
DATE/TIME RECEIVED: 3/17/17 1000 (MM/DD/Y)	
METHOD OF DELIVERY: (FEDEX) UPS ACCUT	TEST COURIER DELIVERY OTHER:
AIRBILL NUMBERS: 7859 3027 8305	
COOLER INFORMATION	TEMPERATURE INFORMATION
CUSTODY SEAL NOT PRESENT OR NOT INTACT	χ ir therm id $1R \# 1$ corr. factor ± 0.4
CHAIN OF CUSTODY NOT RECEIVED (COC)	OBSERVED TEMPS: 4.0
ANALYSIS REQUESTED IS UNCLEAR OR MISSING	CORRECTED TEMPS: 4.4 (USED FOR LIMS)
SAMPLE DATES OR TIMES UNCLEAR OR MISSING	SAMPLE INFORMATION
TEMPERATURE CRITERIA NOT MET	INCORRECT NUMBER OF CONTAINERS USED
TRIB DI ANIZINICADEZATZANI	SAMPLE RECEIVED IMPROPERLY PRESERVED
TRIP BLANK INFORMATION TRIP BLANK PROVIDED	INSUFFICIENT VOLUME FOR ANALYSIS
TRIP BLANK NOT PROVIDED	DATES/TIMES ON COC DO NOT MATCH SAMPLE LABEL
TRIP BLANK NOT ON COC	ID'S ON COC DO NOT MATCH LABEL
TRIP BLANK INTACT	VOC VIALS HAVE HEADSPACE (MACRO BUBBLES) BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED
TRIP BLANK NOT INTACT	NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED
RECEIVED WATER TRIP BLANK	UNCLEAR FILTERING OR COMPOSITING INSTRUCTIONS
RECEIVED SOIL TRIP BLANK	SAMPLE CONTAINER(S) RECEIVED BROKEN
	5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS
MISC. INFORMATION	BULK VOA SOIL JARS NOT RECEIVED WITHIN 48 HOURS
NUMBER OF ENCORES ? 25-GRAM 5-GRAM	% SOLIDS JAR NOT RECEIVED
NUMBER OF 5035 FIELD KITS ?	RESIDUAL CHLORINE PRESENT LOT#
NUMBER OF LAB FILTERED METALS?	[APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS]
TEST STRIP LOT#s pH 0-3 230315 pH 16	0-12OTHER (specify)
CHRENE LIPS CASE CASE AND CASE	
	TO A SECURE OF THE SECURE OF T
	(b) (6)
(b) (6)	
TECHNICIAN SIGNATURE/D	REVIEWER SIGNATURE/DATE_
	confirmation 020116 xls

FA42152: Chain of Custody Page 2 of 3

FA42152: Chain of Custody Page 3 of 3

5.2

QC Evaluation: DOD QSM5 Limits

Job Number: FA42152

Account: Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Sample ID	CAS#	Analyte	Sampl Type	e Result Type	Result Units		s Limits	
OP64367	SW846 8270	D BY SIM						
OP64367-BS	83-32-9	Acenaphthene	BSP	REC	61	%	44-111	
OP64367-BS	208-96-8	Acenaphthylene	BSP	REC	65	%	39-116	
OP64367-BS	120-12-7	Anthracene	BSP	REC	58 a	%	50-114	
OP64367-BS	56-55-3	Benzo(a)anthracene	BSP	REC	66	%	54-122	
OP64367-BS	50-32-8	Benzo(a)pyrene	BSP	REC	61	%	50-125	
OP64367-BS	205-99-2	Benzo(b)fluoranthene	BSP	REC	68	%	53-128	
OP64367-BS	191-24-2	Benzo(g,h,i)perylene	BSP	REC	61	%	49-12 7	
OP64367-BS	207-08-9	Benzo(k)fluoranthene	BSP	REC	64	%	56-123	
OP64367-BS	218-01-9	Chrysene	BSP	REC	70	%	57-118	
OP64367-BS	53-70-3	Dibenzo(a,h)anthracene	BSP	REC	61	%	50-129	
OP64367-BS	206-44-0	Fluoranthene	BSP	REC	73	%	55-119	
OP64367-BS	86-73-7	Fluorene	BSP	REC	6 7	%	47-114	
OP64367-BS	193-39-5	Indeno(1, 2, 3-cd)pyrene	BSP	REC	64	%	49-130	
OP64367-BS	90-12-0	1-Methylnaphthalene	BSP	REC	59	%	43-111	
OP64367-BS	91-57-6	2-Methylnaphthalene	BSP	REC	55	%	39-114	
OP64367-BS	91-20-3	Naphthalene	BSP	REC	56	%	38-111	
OP64367-BS	85-01-8	Phenanthrene	BSP	REC	63	%	49-113	
OP64367-BS	129-00-0	Pyrene	BSP	REC	61	%	55-117	
OP64367-BS	4165-60-0	Nitrobenzene-d5	BSP	SURR	6 7	%	44-125	
OP64367-BS	321-60-8	2-Fluorobiphenyl	BSP	SURR	7 9	%	46-115	
OP64367-BS	1718-51-0	Terphenyl-d14	BSP	SURR	65	%	58-133	
OP64367-MS	83-32-9	Acenaphthene	MS	REC	71	%	44-111	
OP64367-MS	208-96-8	Acenaphthylene	MS	REC	71	%	39-116	
OP64367-MS	120-12-7	Anthracene	MS	REC	66	%	50-114	
OP64367-MS	56-55-3	Benzo(a)anthracene	MS	REC	72	%	54-122	
OP64367-MS	50-32-8	Benzo(a)pyrene	MS	REC	69	%	50-125	
OP64367-MS	205-99-2	Benzo(b)fluoranthene	MS	REC	74	%	53-128	
OP64367-MS	191-24-2	Benzo(g,h,i)perylene	MS	REC	6 7	%	49-12 7	
OP64367-MS	207-08-9	Benzo(k)fluoranthene	MS	REC	71	%	56-123	
OP64367-MS	218-01-9	Chrysene	MS	REC	74	%	57-118	
OP64367-MS	53-70-3	Dibenzo(a,h)anthracene	MS	REC	66	%	50-129	
OP64367-MS	206-44-0	Fluoranthene	MS	REC	81	%	55-119	
OP64367-MS	86-73-7	Fluorene	MS	REC	75	%	47-114	
OP64367-MS	193-39-5	Indeno(1,2,3-cd)pyrene	MS	REC	72	%	49-130	
OP64367-MS	90-12-0	1-Methylnaphthalene	MS	REC	63	%	43-111	
OP64367-MS	91-57-6	2-Methylnaphthalene	MS	REC	61	%	39-114	
OP64367-MS	91-20-3	Naphthalene	MS	REC	62	%	38-111	
OP64367-MS	85-01-8	Phenanthrene	MS	REC	72	%	49-113	
OP64367-MS	129-00-0	Pyrene	MS	REC	65	%	55-117	
OP64367-MS	4165-60-0	Nitrobenzene-d5	MS	SURR		%	44-125	
OP64367-MS	321-60-8	2-Fluorobiphenyl	MS	SURR		%	46-115	
OP64367-MS	1718-51-0	Terphenyl-d14	MS	SURR		%	58-133	

^{*} Sample used for QC is not from job FA42152

Page 2 of 5

QC Evaluation: DOD QSM5 Limits

Job Number: FA42152

Account: Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Sample ID	CAS#	Analyte	_		Result	Unit	s Limits
			Туре	Туре			
OP64367-MSD	83-32-9	Acenaphthene	MSD	REC	73	%	44-111
OP64367-MSD	83-32-9	Acenaphthene	MSD	RPD	2	%	20
OP64367-MSD	208-96-8	Acenaphthylene	MSD	REC	74	%	39-116
OP64367-MSD	208-96-8	Acenaphthylene	MSD	RPD	0	%	20
OP64367-MSD	120-12-7	Anthracene	MSD	REC	6 7	%	50-114
OP64367-MSD	120-12-7	Anthracene	MSD	RPD	2	%	20
OP64367-MSD	56-55-3	Benzo(a)anthracene	MSD	REC	77	%	54-122
OP64367-MSD	56-55-3	Benzo(a)anthracene	MSD	RPD	2	%	20
OP64367-MSD	50-32-8	Benzo(a)pyrene	MSD	REC	72	%	50-125
OP64367-MSD	50-32-8	Benzo(a)pyrene	MSD	RPD	0	%	20
OP64367-MSD	205-99-2	Benzo(b)fluoranthene	MSD	REC	76	%	53-128
OP64367-MSD	205-99-2	Benzo(b)fluoranthene	MSD	RPD	2	%	20
OP64367-MSD	191-24-2	Benzo(g,h,i)perylene	MSD	REC	69	%	49-127
OP64367-MSD	191-24-2	Benzo(g,h,i)perylene	MSD	RPD	1	%	20
OP64367-MSD	207-08-9	Benzo(k)fluoranthene	MSD	REC	75	%	56-123
OP64367-MSD	207-08-9	Benzo(k)fluoranthene	MSD	RPD	2	%	20
OP64367-MSD	218-01-9	Chrysene	MSD	REC	81	%	57-118
OP64367-MSD	218-01-9	Chrysene	MSD	RPD	5	%	20
OP64367-MSD	53-70-3	Dibenzo(a, h)anthracene	MSD	REC	71	%	50-129
OP64367-MSD	53-70-3	Dibenzo(a, h)anthracene	MSD	RPD	3	%	20
OP64367-MSD	206-44-0	Fluoranthene	MSD	REC	84	%	55-119
OP64367-MSD	206-44-0	Fluoranthene	MSD	RPD	1	%	20
OP64367-MSD	86-73-7	Fluorene	MSD	REC	82	%	47-114
OP64367-MSD	86-73-7	Fluorene	MSD	RPD	4	%	20
OP64367-MSD	193-39-5	Indeno(1, 2, 3-cd)pyrene	MSD	REC	75	%	49-130
OP64367-MSD	193-39-5	Indeno(1, 2, 3-cd)pyrene	MSD	RPD	0	%	20
OP64367-MSD	90-12-0	1-Methylnaphthalene	MSD	REC	65	%	43-111
OP64367-MSD	90-12-0	1-Methylnaphthalene	MSD	RPD	0	%	20
OP64367-MSD	91-57-6	2-Methylnaphthalene	MSD	REC	63	%	39-114
OP64367-MSD	91-57-6	2-Methylnaphthalene	MSD	RPD	1	%	20
OP64367-MSD	91-20-3	Naphthalene	MSD	REC	64	%	38-111
OP64367-MSD	91-20-3	Naphthalene	MSD	RPD	1	%	20
OP64367-MSD	85-01-8	Phenanthrene	MSD	REC	75	%	49-113
OP64367-MSD	85-01-8	Phenanthrene	MSD	RPD	0	%	20
OP64367-MSD	129-00-0	Pyrene	MSD	REC	69	%	55-117
OP64367-MSD	129-00-0	Pyrene	MSD	RPD	1	%	20
OP64367-MSD	4165-60-0	Nitrobenzene-d5	MSD	SURR	77	%	44-125
OP64367-MSD	321-60-8	2-Fluorobiphenyl	MSD	SURR	88	%	46-115
OP64367-MSD	1718-51-0	Terphenyl-d14	MSD	SURR	70	%	58-133
OP64367-MB	4165-60-0	Nitrobenzene-d5	MB	SURR	71	%	44-125
OP64367-MB	321-60-8	2-Fluorobiphenyl	MB	SURR	78	%	46-115
OP64367-MB	1718-51-0	Terphenyl-d14	MB	SURR		%	58-133
FA42152-1	4165-60-0	Nitrobenzene-d5	SAMP	SURR	55	%	44-125
FA42152-1	321-60-8	2-Fluorobiphenyl	SAMP	SURR	58	%	46-115
FA42152-1	1718-51-0	Terphenyl-d14	SAMP	SURR	53 b	%	58-133
	1.10010	P	D. 2.11			/ 0	20 100

^{*} Sample used for QC is not from job FA42152

Page 3 of 5

QC Evaluation: DOD QSM5 Limits

Job Number: FA42152

Account: Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Sample ID	CAS#	Analyte	Sample Type	Result Type	Result	Units Limits		
FA42152-2	4165-60-0	Nitrobenzene-d5	SAMP	SURR	58	%	44-125	
FA42152-2	321-60-8	2-Fluorobiphenyl	SAMP	SURR	68	%	46-115	
FA42152-2	1718-51-0	Terphenyl-d14	SAMP	SURR	55 b	%	58-133	
FA42152-3	4165-60-0	Nitrobenzene-d5	SAMP	SURR	53	%	44-125	
FA42152-3	321-60-8	2-Fluorobiphenyl	SAMP	SURR	65	%	46-115	
FA42152-3	1718-51-0	Terphenyl-d14	SAMP	SURR	54 b	%	58-133	
FA42152-4	4165-60-0	Nitrobenzene-d5	SAMP	SURR	54	%	44-125	
FA42152-4	321-60-8	2-Fluorobiphenyl	SAMP	SURR	61	%	46-115	
FA42152-4	1718-51-0	Terphenyl-d14	SAMP	SURR	54 b	%	58-133	
FA42152-5	4165-60-0	Nitrobenzene-d5	SAMP	SURR	57	%	44-125	
FA42152-5	321-60-8	2-Fluorobiphenyl	SAMP	SURR	65	%	46-115	
FA42152-5	1718-51-0	Terphenyl-d14	SAMP	SURR	53 b	%	58-133	
FA42152-6	4165-60-0	Nitrobenzene-d5	SAMP	SURR	63	%	44-125	
FA42152-6	321-60-8	2-Fluorobiphenyl	SAMP	SURR	74	%	46-115	
FA42152-6	1718-51-0	Terphenyl-d14	SAMP	SURR	57 b	%	58-133	
FA42152-7	4165-60-0	Nitrobenzene-d5	SAMP	SURR		%	44-125	
FA42152-7	321-60-8	2-Fluorobiphenyl	SAMP	SURR	71	%	46-115	
FA42152-7	1718-51-0	Terphenyl-d14	SAMP	SURR	63	%	58-133	
FA42152-8	4165-60-0	Nitrobenzene-d5	SAMP	SURR	62	%	44-125	
FA42152-8	321-60-8	2-Fluorobiphenyl	SAMP	SURR	69	%	46-115	
FA42152-8	1718-51-0	Terphenyl-d14	SAMP	SURR		%	58-133	
FA42152-9	4165-60-0	Nitrobenzene-d5	SAMP	SURR	62	%	44-125	
FA42152-9	321-60-8	2-Fluorobiphenyl	SAMP	SURR	70	%	46-115	
FA42152-9	1718-51-0	Terphenyl-d14	SAMP	SURR		%	58-133	
1 A-2132-7	1710-51-0	1 of phonyr-a14	JAIVII .	BOILL	01	70	30-133	
OP64396	SW846 8330I	3						
OP64396-BS	2691-41-0	HMX	BSP	REC	98	%	74-124	
OP64396-BS	121-82-4	RDX	BSP	REC	79	%	67-129	
OP64396-BS	99-65-0	1,3-Dinitrobenzene	BSP	REC	82	%	73-119	
OP64396-BS	606-20-2	2,6-Dinitrotoluene	BSP	REC	86	%	79-117	
OP64396-BS	121-14-2	2,4-Dinitrotoluene	BSP	REC	84	%	75-121	
OP64396-BS	35572-78-2	2-amino-4,6-Dinitrotoluene	BSP	REC	90	%	71-123	
OP64396-BS	19406-51-0	4-amino-2,6-Dinitrotoluene	BSP	REC	81	%	64-127	
OP64396-BS	98-95-3	Nitrobenzene	BSP	REC	92	%	67-129	
OP64396-BS	88-72-2	o-Nitrotoluene	BSP	REC	92	%	70-124	
OP64396-BS	99-08-1	m-Nitrotoluene	BSP	REC	106	%	67-129	
OP64396-BS	99-99-0	p-Nitrotoluene	BSP	REC	92	%	71-124	
OP64396-BS	479-45-8	Tetryl	BSP	REC	92 79	70 %	68-135	
		1,3,5-Trinitrobenzene	BSP	REC	85	%	80-116	
OP64396-BS OP64396-BS	99-35-4	2,4,6-Trinitrotoluene	BSP	REC	71	%	71-120	
	118-96-7	* *						
OP64396-BS	55 -63-0	Nitroglycerine	BSP	REC	96 04	%	73-124	
OP64396-BS	78-11-5	PETN	BSP	REC	94	%	72-128	
OP64396-MS	2691-41-0	HMX	MS	REC	81	%	74-124	
OP64396-MS	121-82-4	RDX	MS	REC	75	%	67-129	

^{*} Sample used for QC is not from job FA42152

Page 4 of 5

QC Evaluation: DOD QSM5 Limits

Job Number: FA42152

Account: Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Sample ID	CAS#	Analyte	Sample Type	e Result Type	Result	Unit	ts Limits
OP64396-MS	99-65-0	1,3-Dinitrobenzene	MS	REC	75	%	73-119
OP64396-MS	606-20-2	2,6-Dinitrotoluene	MS	REC	7 9	%	7 9-11 7
OP64396-MS	121-14-2	2,4-Dinitrotoluene	MS	REC	80	%	75-121
OP64396-MS	35572-78-2	2-amino-4,6-Dinitrotoluene	MS	REC	83	%	71-123
OP64396-MS	19406-51-0	4-amino-2,6-Dinitrotoluene	MS	REC	80	%	64-127
OP64396-MS	98-95-3	Nitrobenzene	MS	REC	82	%	67-129
OP64396-MS	88-72-2	o-Nitrotoluene	MS	REC	81	%	70-124
OP64396-MS	99-08-1	m-Nitrotoluene	MS	REC	80	%	67-129
OP64396-MS	99-99-0	p-Nitrotoluene	MS	REC	83	%	71-124
OP64396-MS	479-45-8	Tetryl	MS	REC	143 ^b	%	68-135
OP64396-MS	99-35-4	1,3,5-Trinitrobenzene	MS	REC	68 b	%	80-116
OP64396-MS	118-96-7	2,4,6-Trinitrotoluene	MS	REC	123 b	%	71-120
OP64396-MS	55-63-0	Nitroglycerine	MS	REC	90	%	73-124
OP64396-MS	7 8-11- 5	PETN	MS	REC	95	%	72-128
OP64396-MSD	2691-41-0	HMX	MSD	REC	78	%	74-124
OP64396-MSD	2691-41-0	HMX	MSD	RPD	4	%	20
OP64396-MSD	121-82-4	RDX	MSD	REC	80	%	67-129
OP64396-MSD	121-82-4	RDX	MSD	RPD	7	%	20
OP64396-MSD	99-65-0	1,3-Dinitrobenzene	MSD	REC	77	%	73-119
OP64396-MSD	99-65-0	1,3-Dinitrobenzene	MSD	RPD	3	%	20
OP64396-MSD	606-20-2	2, 6-Dinitrotoluene	MSD	REC	81	%	7 9-11 7
OP64396-MSD	606-20-2	2, 6-Dinitrotoluene	MSD	RPD	2	%	20
OP64396-MSD	121-14-2	2,4-Dinitrotoluene	MSD	REC	82	%	75-121
OP64396-MSD	121-14-2	2,4-Dinitrotoluene	MSD	RPD	2	%	20
OP64396-MSD	35572-78-2	2-amino-4,6-Dinitrotoluene	MSD	REC	84	%	71-123
OP64396-MSD	35572-78-2	2-amino-4,6-Dinitrotoluene	MSD	RPD	2	%	20
OP64396-MSD	19406-51-0	4-amino-2,6-Dinitrotoluene	MSD	REC	82	%	64-12 7
OP64396-MSD	19406-51-0	4-amino-2,6-Dinitrotoluene	MSD	RPD	2	%	20
OP64396-MSD	98-95-3	Nitrobenzene	MSD	REC	83	%	67-129
OP64396-MSD	98-95-3	Nitrobenzene	MSD	RPD	1	%	20
OP64396-MSD	88-72-2	o-Nitrotoluene	MSD	REC	84	%	70-124
OP64396-MSD	88-72-2	o-Nitrotoluene	MSD	RPD	3	%	20
OP64396-MSD	99-08-1	m-Nitrotoluene	MSD	REC	82	%	67-129
OP64396-MSD	99-08-1	m-Nitrotoluene	MSD	RPD	3	%	20
OP64396-MSD	99-99-0	p-Nitrotoluene	MSD	REC	85	%	71-124
OP64396-MSD	99-99-0	p-Nitrotoluene	MSD	RPD	2	%	20
OP64396-MSD	479-45-8	Tetryl	MSD	REC	146 b	%	68-135
OP64396-MSD	479-45-8	Tetryl	MSD	RPD	2	%	20
OP64396-MSD	99-35-4	1,3,5-Trinitrobenzene	MSD	REC	69 b	%	80-116
OP64396-MSD	99-35-4	1,3,5-Trinitrobenzene	MSD	RPD	2	%	20
OP64396-MSD	118-96-7	2,4,6-Trinitrotoluene	MSD	REC	124 b	%	71-120
OP64396-MSD	118-96-7	2,4,6-Trinitrotoluene	MSD	RPD	1	%	20
OP64396-MSD	55-63-0	Nitroglycerine	MSD	REC	91	%	73-124
OP64396-MSD	55-63-0	Nitroglycerine	MSD	RPD	2	%	20
OP64396-MSD	7 8-11- 5	PETN	MSD	REC	96	%	72-128

^{*} Sample used for QC is not from job FA42152

Page 5 of 5

QC Evaluation: DOD QSM5 Limits

Job Number: FA42152

Account: Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Sample ID	CAS#	Analyte	Sampl Type	e Result Type	Result	Unit	s Limits
OP64396-MSD	78-11-5	PETN	MSD	RPD	1	%	20
OP64396-DUP	2691-41-0	HMX	DUP	RPD	0	%	20
OP64396-DUP	121-82-4	RDX	DUP	RPD	0	%	20
OP64396-DUP	99-65-0	1,3-Dinitrobenzene	DUP	RPD	0	%	20
OP64396-DUP	606-20-2	2,6-Dinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP	121-14-2	2,4-Dinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP	35572-78-2	2-amino-4,6-Dinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP	19406-51-0	4-amino-2,6-Dinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP	98-95-3	Nitrobenzene	DUP	RPD	0	%	20
OP64396-DUP	88-72-2	o-Nitrotoluene	DUP	RPD	0	%	20
OP64396-DUP	99-08-1	m-Nitrotoluene	DUP	RPD	0	%	20
OP64396-DUP	99-99-0	p-Nitrotoluene	DUP	RPD	0	%	20
OP64396-DUP	479-45-8	Tetryl	DUP	RPD	0	%	20
OP64396-DUP	99-35-4	1,3,5-Trinitrobenzene	DUP	RPD	0	%	20
OP64396-DUP	118-96-7	2,4,6-Trinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP	55-63-0	Nitroglycerine	DUP	RPD	0	%	20
OP64396-DUP	7 8-11- 5	PETN	DUP	RPD	0	%	20
OP64396-DUP2	2691-41-0	HMX	DUP	RPD	0	%	20
OP64396-DUP2	121-82-4	RDX	DUP	RPD	0	%	20
OP64396-DUP2	99-65-0	1,3-Dinitrobenzene	DUP	RPD	0	%	20
OP64396-DUP2	606-20-2	2, 6-Dinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP2	121-14-2	2,4-Dinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP2	35572-78-2	2-amino-4,6-Dinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP2	19406-51-0	4-amino-2,6-Dinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP2	98-95-3	Nitrobenzene	DUP	RPD	0	%	20
OP64396-DUP2	88-72-2	o-Nitrotoluene	DUP	RPD	0	%	20
OP64396-DUP2	99-08-1	m-Nitrotoluene	DUP	RPD	0	%	20
OP64396-DUP2	99-99-0	p-Nitrotoluene	DUP	RPD	0	%	20
OP64396-DUP2	479-45-8	Tetryl	DUP	RPD	0	%	20
OP64396-DUP2	99-35-4	1,3,5-Trinitrobenzene	DUP	RPD	0	%	20
OP64396-DUP2	118-96- 7	2,4,6-Trinitrotoluene	DUP	RPD	0	%	20
OP64396-DUP2	55-63-0	Nitroglycerine	DUP	RPD	0	%	20
OP64396-DUP2	7 8-11- 5	PETN	DUP	RPD	0	%	20
MP31871	SW846 60100						
MP31871-B1	7429-90-5	Aluminum	BSP	REC	99.3	%	74-119
MP31871-B1	7440-36-0	Antimony	BSP	REC	98.8	%	79-114
MP31871-B1	7440-50-8	Copper	BSP	REC	100	%	81-117
MP31871-B1	7439-92-1	Lead	BSP	REC	95.2	%	81-112
MP31871-B1	7440-66-6	Zinc	BSP	REC	98.8	%	82-113

⁽a) Sporadic marginal failure.

⁽b) Outside DoD QSM control limits.

^{*} Sample used for QC is not from job FA42152

Section 6

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- · Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (DFTPP)
- Internal Standard Area Summaries
- · Surrogate Recovery Summaries
- · Initial and Continuing Calibration Summaries

Method: SW846 8270D BY SIM

Method Blank Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Sample	File ID	\mathbf{DF}	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP64367-MB	W098389.D	1	03/29/17	FS	03/28/17	OP64367	SW4369

The QC reported here applies to the following samples:

FA42152-1, FA42152-2, FA42152-3, FA42152-4, FA42152-5, FA42152-6, FA42152-7, FA42152-8, FA42152-9

CAS No.	Compound	Result	\mathbf{RL}	MDL	Units Q
83-32-9	Acenaphthene	ND	67	27	ug/kg
208-96-8	Acenaphthylene	ND	67	27	ug/kg
120-12-7	Anthracene	ND	67	17	ug/kg
56-55-3	Benzo(a)anthracene	ND	13	3.3	ug/kg
50-32-8	Benzo(a)pyrene	ND	13	3.3	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	13	3.3	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	13	3.3	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	13	3.3	ug/kg
218-01-9	Chrysene	ND	13	3.3	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	13	3.3	ug/kg
206-44-0	Fluoranthene	ND	67	17	ug/kg
86-73-7	Fluorene	ND	67	27	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	13	3.3	ug/kg
90-12-0	1-Methylnaphthalene	ND	67	27	ug/kg
91-57-6	2-Methylnaphthalene	ND	67	27	ug/kg
91-20-3	Naphthalene	ND	67	27	ug/kg
85-01-8	Phenanthrene	ND	67	17	ug/kg
129-00-0	Pyrene	ND	67	17	ug/kg

CAS No.	Surrogate Recoveries	Limits	
4165-60-0	Nitrobenzene-d5	71%	40-105%
321-60-8	2-Fluorobiphenyl	78%	43-107%
1718-51-0	Terphenyl-d14	61%	45-119%

Method: SW846 8270D BY SIM

Blank Spike Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Sample OP64367-BS	File ID W098390.D	DF 1	Analyzed 03/29/17	By FS	Prep Date 03/28/17	Prep Batch OP64367	Analytical Batch SW4369

The QC reported here applies to the following samples:

FA42152-1, FA42152-2, FA42152-3, FA42152-4, FA42152-5, FA42152-6, FA42152-7, FA42152-8, FA42152-9

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
83-32-9	Acenaphthene	667	407	61	53-100
208-96-8	Acenaphthylene	66 7	436	65	51-100
120-12-7	Anthracene	333	195	58* a	60-102
56-55-3	Benzo(a)anthracene	333	220	66	60-106
50-32-8	Benzo(a)pyrene	333	205	61	58-105
205-99-2	Benzo(b)fluoranthene	333	227	68	59-112
191-24-2	Benzo(g,h,i)perylene	333	204	61	56-109
207-08-9	Benzo(k)fluoranthene	333	215	64	58-109
218-01-9	Chrysene	333	232	70	62-104
53-70-3	Dibenzo(a,h)anthracene	333	202	61	55-110
206-44-0	Fluoranthene	667	487	73	59-109
86-73-7	Fluorene	667	445	6 7	56-104
193-39-5	Indeno(1,2,3-cd)pyrene	333	214	64	54-110
90-12-0	1-Methylnaphthalene	667	392	59	50-101
91-57-6	2-Methylnaphthalene	667	367	55	49-100
91-20-3	Naphthalene	667	372	56	49-101
85-01-8	Phenanthrene	667	420	63	57-104
129-00-0	Pyrene	667	404	61	58-106

CAS No.	Surrogate Recoveries	BSP	Limits
4165-60-0	Nitrobenzene-d5	67%	40-105%
321-60-8	2-Fluorobiphenyl	79%	43-107%
1718-51-0	Terphenyl-d14	65%	45-119%

(a) Sporadic marginal failure.

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP64367-MS	W098399.D	1	03/29/17	FS	03/28/17	OP64367	SW4369
OP64367-MSD	W098400.D	1	03/29/17	FS	03/28/17	OP64367	SW4369
FA42152-8	W098398.D	1	03/29/17	FS	03/28/17	OP64367	SW4369

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

FA42152-1, FA42152-2, FA42152-3, FA42152-4, FA42152-5, FA42152-6, FA42152-7, FA42152-8, FA42152-9

	FA4215	2-8	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/kg	Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%	RPD	Rec/RPD
Acenaphthene	67 U		667	475	71	641	466	73	2	53-100/28
Acenaphthylene	6 7 U		66 7	4 72	71	641	474	74	0	51-100/25
Anthracene	67 U		333	220	66	321	216	67	2	60-102/29
Benzo(a)anthracene	3.4	J	333	244	72	321	250	77	2	60-106/30
Benzo(a)pyrene	5.7	J	333	235	69	321	235	72	0	58-105/30
Benzo(b)fluoranthene	10.0	J	333	258	74	321	254	76	2	59-112/33
Benzo(g,h,i)perylene	5.2	J	333	229	6 7	321	227	69	1	56-109/31
Benzo(k)fluoranthene	3.3	J	333	240	71	321	244	75	2	58-109/33
Chrysene	6.6	J	333	253	74	321	265	81	5	62-104/30
Dibenzo(a,h)anthracene	13 U		333	220	66	321	226	71	3	55-110/31
Fluoranthene	67 U		667	543	81	641	536	84	1	59-109/29
Fluorene	67 U		66 7	503	75	641	524	82	4	56-104/27
Indeno(1,2,3-cd)pyrene	5.7	J	333	247	72	321	247	75	0	54-110/32
1-Methylnaphthalene	6 7 U		667	41 7	63	641	415	65	0	50-101/30
2-Methylnaphthalene	6 7 U		66 7	408	61	641	405	63	1	49-100/26
Naphthalene	67 U		667	414	62	641	408	64	1	49-101/28
Phenanthrene	6 7 U		66 7	480	72	641	482	75	0	57-104/27
Pyrene	67 U		667	436	65	641	442	69	1	58-106/29
Surrogate Recoveries	MS		MSD	$\mathbf{F}A$	42152-8	Limits				
_										
Nitrobenzene-d5	69%		77%	62	%	40-105%	6			
2-Fluorobiphenyl	82%		88%	69	%	43-107%	6			
Terphenyl-d14	64%		70%	61	%	45-119%	6			
AAAEEEECCEFFG12NFF	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h, i)perylene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a,h)anthracene Bluoranthene Bluoranthene Fluoranthene Fluoranthene -Methylnaphthalene -Methylnaphthalene Benanthrene Phenanthrene Phenanthrene Burrogate Recoveries Witrobenzene-d5 -Fluorobiphenyl	Compound ug/kg Acenaphthene 67 U Acenaphthylene 67 U Anthracene 67 U Benzo(a)anthracene 3.4 Benzo(a)pyrene 5.7 Benzo(b)fluoranthene 10.0 Benzo(g,h,i)perylene 5.2 Benzo(k)fluoranthene 3.3 Chrysene 6.6 Dibenzo(a,h)anthracene 13 U Fluoranthene 67 U Fluorene 67 U Indeno(1,2,3-cd)pyrene 5.7 -Methylnaphthalene 67 U Japhthalene 67 U	Compound ug/kg Q Acenaphthene 67 U Acenaphthylene 67 U Anthracene 67 U Benzo(a)anthracene 3.4 J Benzo(b)fluoranthene 10.0 J Benzo(b)fluoranthene 5.2 J Benzo(k)fluoranthene 3.3 J Benzo(k)fluoranthene 6.6 J Benzo(a, h)anthracene 6.6 J Chrysene 6.6 J Chrysene 6.7 U Chuoranthene 67 U Chuoranthene 67 U Chuoranthene 67 U Chuoranthylnaphthalene 67 U Chuoranthrene 67 U Chuoranthene 67 U Chuoranthrene 67 U Chuoranthr	Compound Ug/kg Q Ug/kg	Compound ug/kg Q ug/kg ug/kg Acenaphthene 67 U 667 475 Acenaphthylene 67 U 667 472 Anthracene 67 U 333 220 Benzo(a)anthracene 3.4 J 333 244 Benzo(a)pyrene 5.7 J 333 235 Benzo(b)fluoranthene 10.0 J 333 258 Benzo(g,h,i)perylene 5.2 J 333 229 Benzo(k)fluoranthene 3.3 J 333 240 Chrysene 6.6 J 333 253 Dibenzo(a, h)anthracene 13 U 333 220 Eluoranthene 67 U 667 543 Fluoranthene 67 U 667 503 Indeno(1,2,3-cd)pyrene 5.7 J 333 247 -Methylnaphthalene 67 U 667 408 Waphthalene 67 U 667 480 Prenamthrene 67 U 667 480 Acroused	Compound Compound	Sempound Sempound	Compound Compound	Local Compound Loca	Sempound Sempound

* =	Outside	of Co	ontro1	Limite
-1- —	CHRSTOE	ni ur	THE TOTAL	1.11111118

Instrument Performance Check (DFTPP)

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Sample: SW4339-DFTPP **Injection Date:** 02/13/17Lab File ID: W097282.D Injection Time: 18:34

Instrument ID: GCMSW

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abunda		Pass/Fail
51	30.0 - 60.0% of mass 198	135535	44.8		Pass
68	Less than 2.0% of mass 69	0	0.00	(0.00) a	Pass
69	Mass 69 relative abundance	120820	39.9		Pass
70	Less than 2.0% of mass 69	290	0.10	(0.24) a	Pass
127	40.0 - 60.0% of mass 198	140221	46.4		Pass
197	Less than 1.0% of mass 198	0	0.00		Pass
198	Base peak, 100% relative abundance	302442	100.0		Pass
199	5.0 - 9.0% of mass 198	20920	6.92		Pass
275	10.0 - 30.0% of mass 198	74467	24.6		Pass
365	1.0 - 100.0% of mass 198	5711	1.89		Pass
441	Present, but less than mass 443	25594	8.46	(82.5) b	Pass
442	40.0 - 100.0% of mass 198	161074	53.3		Pass
443	17.0 - 23.0% of mass 442	31036	10.3	(19.3) °	Pass

⁽a) Value is % of mass 69

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
SW4339-IC4339	W097284.D	02/13/17	19:10	00:36	Initial cal 1
SW4339-IC4339	W097285.D	02/13/17	19:33	00:59	Initial cal 2
SW4339-IC4339	W097286.D	02/13/17	19:55	01:21	Initial cal 3
SW4339-ICC4339	W097287.D	02/13/17	20:18	01:44	Initial cal 4
SW4339-IC4339	W097288.D	02/13/17	20:41	02:07	Initial cal 5
SW4339-IC4339	W097289.D	02/13/17	21:04	02:30	Initial cal 6
SW4339-IC4339	W097290.D	02/13/17	21:27	02:53	Initial cal 7
SW4339-ICV4339	W097291.D	02/13/17	21:49	03:15	Initial cal verification 4
OP63693-MB	W097292.D	02/13/17	22:12	03:38	Method Blank
ZZZZZZ	W097293.D	02/13/17	22:35	04:01	(unrelated sample)
ZZZZZZ	W097294.D	02/13/17	22:58	04:24	(unrelated sample)
ZZZZZZ	W097295.D	02/13/17	23:20	04:46	(unrelated sample)
ZZZZZZ	W097296.D	02/13/17	23:43	05:09	(unrelated sample)
ZZZZZZ	W097297.D	02/14/17	00:06	05:32	(unrelated sample)
ZZZZZZ	W097298.D	02/14/17	00:29	05:55	(unrelated sample)
ZZZZZZ	W097299.D	02/14/17	00:51	06:17	(unrelated sample)
ZZZZZZ	W097300.D	02/14/17	01:14	06:40	(unrelated sample)
ZZZZZZ	W097301.D	02/14/17	01:37	07:03	(unrelated sample)
ZZZZZZ	W097302.D	02/14/17	01:59	07:25	(unrelated sample)

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Page 2 of 2

Instrument Performance Check (DFTPP)

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Sample:SW4339-DFTPPInjection Date:02/13/17Lab File ID:W097282.DInjection Time:18:34

Instrument ID: GCMSW

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
ZZZZZZ	W097303.D	02/14/17	02:22	07:48	(unrelated sample)
ZZZZZZ	W097304.D	02/14/17	02:45	08:11	(unrelated sample)
ZZZZZZ	W097305.D	02/14/17	03:07	08:33	(unrelated sample) (unrelated sample)
ZZZZZZ	W097306.D	02/14/17	03:30	08:56	
SW4339-ECC4339	W097300.D W097307.D	02/14/17	08:01	13:27	Ending cal 4

Instrument Performance Check (DFTPP)

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Sample: SW4369-DFTPP **Injection Date:** 03/29/17 Lab File ID: W098383.D Injection Time: 09:01

Instrument ID: GCMSW

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abunda		Pass/Fail
51	30.0 - 60.0% of mass 198	103809	44.1		Pass
68	Less than 2.0% of mass 69	0	0.00	(0.00) a	Pass
69	Mass 69 relative abundance	91907	39.0		Pass
70	Less than 2.0% of mass 69	429	0.18	(0.47) a	Pass
127	40.0 - 60.0% of mass 198	110321	46.9		Pass
197	Less than 1.0% of mass 198	0	0.00		Pass
198	Base peak, 100% relative abundance	235477	100.0		Pass
199	5.0 - 9.0% of mass 198	17021	7.23		Pass
275	10.0 - 30.0% of mass 198	58170	24.7		Pass
365	1.0 - 100.0% of mass 198	6703	2.85		Pass
441	Present, but less than mass 443	20141	8.55	(76.4) ^b	Pass
442	40.0 - 100.0% of mass 198	134874	57.3		Pass
443	17.0 - 23.0% of mass 442	26346	11.2	(19.5) °	Pass

⁽a) Value is % of mass 69

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
SW4369-CC4339	W098384.D	03/29/17	09:40	00:39	Continuing cal 4
OP64355-BS	W098385.D	03/29/17	10:03	01:02	Blank Spike
OP64356-BS	W098386.D	03/29/17	10:26	01:25	Blank Spike
OP64357-MB	W098387.D	03/29/17	10:49	01:48	Method Blank
OP64357-BS	W098388.D	03/29/17	11:12	02:11	Blank Spike
OP64367-MB	W098389.D	03/29/17	11:35	02:34	Method Blank
OP64367-BS	W098390.D	03/29/17	11:57	02:56	Blank Spike
FA42152-1	W098391.D	03/29/17	12:20	03:19	OBOD1-SU08-SS-01
FA42152-2	W098392.D	03/29/17	12:43	03:42	OBOD1-SU08-SS-02
FA42152-3	W098393.D	03/29/17	13:06	04:05	OBOD1-SU08-SS-03
FA42152-4	W098394.D	03/29/17	13:29	04:28	OB2-SU01-SS-01
FA42152-5	W098395.D	03/29/17	13:52	04:51	OB2-SU01-SS-02
FA42152-6	W098396.D	03/29/17	14:14	05:13	OB2-SU01-SS-03
FA42152-7	W098397.D	03/29/17	14:37	05:36	OB2-SU02-SS-01
FA42152-8	W098398.D	03/29/17	15:00	05:59	OB2-SU03-SS-01
OP64367-MS	W098399.D	03/29/17	15:23	06:22	Matrix Spike
OP64367-MSD	W098400.D	03/29/17	15:47	06:46	Matrix Spike Duplicate
FA42152-9	W098401.D	03/29/17	16:10	07:09	OBOD1-SU09-SS-01
ZZZZZZ	W098402.D	03/29/17	16:33	07:32	(unrelated sample)

⁽b) Value is % of mass 443

⁽c) Value is % of mass 442

Page 2 of 2

Instrument Performance Check (DFTPP)

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Sample:SW4369-DFTPPInjection Date:03/29/17Lab File ID:W098383.DInjection Time:09:01

Instrument ID: GCMSW

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
•		·	·	•	•
ZZZZZZ	W098403.D	03/29/17	16:56	07:55	(unrelated sample)
ZZZZZZ	W098404.D	03/29/17	17:19	08:18	(unrelated sample)
ZZZZZZ	W098405.D	03/29/17	17:42	08:41	(unrelated sample)
ZZZZZZ	W098406.D	03/29/17	18:05	09:04	(unrelated sample)
ZZZZZZ	W098407.D	03/29/17	18:28	09:27	(unrelated sample)
FA41394-15R	W098410.D	03/29/17	19:37	10:36	(used for QC only; not part of job FA42152)
OP64357-MS	W098411.D	03/29/17	20:00	10:59	Matrix Spike
OP64357-MSD	W098412.D	03/29/17	20:23	11:22	Matrix Spike Duplicate
ZZZZZZ	W098413.D	03/29/17	20:46	11:45	(unrelated sample)
SW4369-ECC4339	W098415.D	03/29/17	21:32	12:31	Ending cal 4

Semivolatile Internal Standard Area Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Check Std: SW4369-CC4339 **Injection Date:** 03/29/17 W098384.D Lab File ID: Injection Time: 09:40

Instrument ID: GCMSW Method: SW846 8270D BY SIM

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Initial Cal ^a	134355	5.59	79791	7.14	127548	8.46	100499	11.27	91230	13.73
Check Std b	111403	5.53	62852	7.09	104586	8.41	79334		71183	13.64
Upper Limit c	222806	6.03	125704	7.59	209172	8.91	158668		142366	14.14
Lower Limit d	55702	5.03	31426	6.59	52293	7.91	39667	10.69	35592	13.14
Lab	IS 1		IS 2		IS 3		IS 4		IS 5	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
OP64355-BS ^e	95146	5.53	50864	7.09	81858	8.41	63266	11.19	59150	13.63
OP64356-BS ^e	97288	5.53	52154	7.08	87060	8.40	67608	11.19	60245	13.63
OP64357-MB	78674	5.53	44480	7.08	73391	8.40	63780	11.19		13.63
OP64357-BS	88745	5.54	48139	7.08	77339	8.40	60720	11.19		13.63
OP64367-MB	87052	5.53	48874	7.08	73943	8.40	65969		61647	13.63
OP64367-BS	101119	5.53	52060	7.08	78631	8.40	65021		64640	13.63
FA42152-1	100777	5.53	58464	7.08	86952	8.40	76248	11.19		13.63
FA42152-2	95770	5.53	50942	7.08	83458	8.40	72003		67222	13.63
FA42152-3	97837	5.53	50701	7.08	81544	8.40	72799		64910	13.63
FA42152-4	96589	5.53	55859	7.08	83315	8.40	71454		67062	13.63
FA42152-5	90329	5.53	49648	7.08	79863	8.40	69325		64338	13.62
FA42152-6	85224	5.53	46044	7.08	72108	8.40	62163		59364	13.63
FA42152-7	84623	5.53	45459	7.08	71065	8.40	62452		55940	13.63
FA42152-8	81834	5.53	45384	7.08	68968	8.40	60956		58355	13.62
OP64367-MS	81326	5.54	42430	7.08	63815	8.40	54095		53798	13.62
OP64367-MSD	78501	5.53	40542	7.08	63165	8.40	52970		52432	13.62
FA42152-9	79338	5.53	42898	7.08	66620	8.40	57335		54546	13.62
ZZZZZZ	77382	5.53	42661	7.08	67645	8.40	59979	11.18		13.62
ZZZZZZ	77918	5.53	43084	7.08	6486 7	8.40	59371		55847	13.62
ZZZZZZ	76004	5.53	41994	7.08	65267	8.40	57719		57008	13.62
ZZZZZZ	75398	5.53	41109	7.08	63579	8.40	56844		54030	13.62
ZZZZZZ	74755	5.53	42255	7.08	64661	8.40	53823		53005	13.63
ZZZZZZ	75896	5.53	42256	7.08	65050	8.40	57077		54236	13.62
FA41394-15R	72163	5.53	40576	7.08	68110	8.40	57887		52211	13.62
OP64357-MS	91681	5.53	41872	7.08	67307	8.40	54482		54000	13.62
OP64357-MSD	89556	5.53	41456	7.08	65886	8.40	51739		52711	13.62
ZZZZZZ	78483	5.53	43831	7.08	70517	8.40	61982		57284	13.62
SW4369-ECC433	39103068	5.53	57818	7.08	94138	8.40	73470	11.18	70722	13.63

= Naphthalene-d8 IS 1 = Acenaphthene-d10 IS 2 = Phenanthrene-d10 IS 3 **IS 4** = Chrysene-d12

6.5.1

Page 2 of 2

σ

Semivolatile Internal Standard Area Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

 Check Std:
 SW4369-CC4339
 Injection Date:
 03/29/17

 Lab File ID:
 W098384.D
 Injection Time:
 09:40

Instrument ID: GCMSW **Method:** SW846 8270D BY SIM

Lab IS 1 IS 2 IS 3 IS 4 **IS 5** RT Sample ID **AREA** RT AREA RT AREA RT **AREA** RT **AREA**

IS 5 = Perylene-d12

(a) Initial Cal is: SW4339-ICC4339 W097287.D 02/13/17 20:18

(b) Check Std Limit = -50 to + 100% of initial cal area.

- (c) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.
- (d) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.
- (e) Spike recoveries corrected for actual spike amount.

Semivolatile Surrogate Recovery Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Method: SW846 8270D BY SIM Matrix: SO

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	S1	S2	S3
FA42152-1	W098391.D	55	58	53 a
FA42152-2	W098392.D	58	68	55 a
FA42152-3	W098393.D	53	65	54 a
FA42152-4	W098394.D	54	61	54 a
FA42152-5	W098395.D	57	65	53 a
FA42152-6	W098396.D	63	74	57 a
FA42152-7	W098397.D	59	71	63
FA42152-8	W098398.D	62	69	61
FA42152-9	W098401.D	62	70	61
OP64367-BS	W098390.D	67	79	65
OP64367-MB	W098389.D	71	78	61
OP64367-MS	W098399.D	69	82	64
OP64367-MSD	W098400.D	77	88	70

Surrogate Recovery Compounds Limits

S1 = Nitrobenzene-d5	40-105%
S2 = 2-Fluorobiphenyl	43-107%
S3 = Terphenyl-d14	45-119%

(a) Outside DoD QSM control limits.

Sample:

Lab FileID:

SW4339-ICC4339

W097287.D

Page 1 of 2

Initial Calibration Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Response Factor Report MSBNA01

Method : C:\msdchem\1\METHODS\simpahf.m (RTE Integrator)
Title : PAH's by 8270 SIM

Last Update : Tue Feb 14 08:14:18 2017 Response via : Initial Calibration

Calibration Files

L1 = W097284.D L2 = W097285.D L3 = W097286.D L4 = W097287.D

L5 =W097288.D L6 =W097289.D L7 =W097290.D

Compound L1 L2 L3 L4 L5 L6 L7 Avg %RSD

- 1) I Naphthalene-d8 -----ISTD-----ISTD-----
- 2)S Nitrobenzene-d5 0.312 0.302 0.291 0.293 0.282 0.277 0.243 0.286 7.78 3)P Naphthalene 1.183 1.094 0.963 0.982 0.927 0.867 0.776 0.970 14.00
- 4)P 2-Methylnaphthale 0.870 0.863 0.749 0.734 0.648 0.644 0.560 0.724 15.99 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9991 Response Ratio = $0.00000 + 0.73819 *A + -0.01788 *A^2$
- 5)P 1-Methylnaphthale 0.783 0.743 0.665 0.656 0.587 0.589 0.535 0.651 13.65
- 6) I Acenaphthene-d10 -----ISTD-----ISTD-----
- 7)S 2-Fluorobiphenyl 1.763 1.389 1.279 1.257 1.189 1.116 1.048 1.291 18.26 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9994Response Ratio = $0.00000 + 1.25819 *A + -0.02133 *A^2$
- 8) 1,1'-Biphenyl 1.923 1.415 1.372 1.332 1.287 1.234 1.164 1.390 17.97 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9998 Response Ratio = $0.00000 + 1.35063 *A + -0.01882 *A^2$
- 9) P Acenaphthylene 2.824 2.272 2.029 1.937 1.761 1.729 1.570 2.017 20.94 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9994 Response Ratio = $0.00000 + 1.94331 *A + -0.03769 *A^2$
- 10)P Acenaphthene 1.490 1.251 1.165 1.112 0.991 0.991 0.940 1.134 16.90 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9984Response Ratio = $0.00000 + 1.12796 *A + -0.02023 *A^2$
- 2.111 1.823 1.684 1.521 1.423 1.318 1.260 1.591 19.03 11) Dibenzofuran ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9984 Response Ratio = $0.00000 + 1.50991 *A + -0.02563 *A^2$
- 1.807 1.578 1.473 1.349 1.190 1.207 1.108 1.387 17.91 12)P Fluorene ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9987 Response Ratio = $0.00000 + 1.33192 *A + -0.02267 *A^2$
- 13) I Phenanthrene-d10 -----ISTD-----14)S 2,4,6-Tribromophe 0.080 0.074 0.071 0.076 0.077 0.071 0.067 0.074
- 15)P Pentachlorophenol 0.054 0.068 0.082 0.104 0.112 0.112 0.123 0.093 27.61 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9992 Response Ratio = $0.00000 + 0.09919 *A + 0.00095 *A^2$
- 16)P Phenanthrene1.450 1.217 1.128 1.109 1.036 1.026 0.954 1.132 14.4817)P Anthracene1.547 1.366 1.193 1.261 1.149 1.111 1.047 1.239 13.7918) Carbazole1.428 1.328 1.235 1.225 1.094 1.049 0.966 1.189 13.64
- 19) P Fluoranthene 1.770 1.561 1.363 1.296 1.169 1.136 1.097 1.342 18.41 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9988

Initial Calibration Summary Job Number: FA42152

Page 2 of 2 mple: SW4339-ICC4339

Job Number: FA42152 Sample: SW4339-ICC433
Account: CAPEGAA Cape Environmental Management Inc. Lab FileID: W097287.D

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Response Ratio = $0.00000 + 1.25146 *A + -0.01586 *A^2$

20) I Chrysene-d12					ISTD				
21)P Pyrene	2.219	1.957	1.764	1.719	1.627	1.594	1.492	1.767	14.01
22)S Terphenyl-d14	1.011	0.901	0.814	0.824	0.745	0.772	0.723	0.827	12.07
23)P Benzo[a]anthracen	1.845	1.614	1.558	1.592	1.449	1.469	1.360	1.555	10.02
24)P Chrysene	1.567	1.406	1.398	1.374	1.330	1.347	1.247	1.381	7.08
25) I Perylene-d12					ISTD				
26)P Benzo[b]fluoranth	1.794	1.670	1.554	1.454	1.387	1.320	1.213	1.485	13.65
27)P Benzo[k]fluoranth	1.794	1.611	1.415	1.385	1.276	1.334	1.206	1.431	14.28
28)P Benzo[a]pyrene	1.630	1.595	1.408	1.413	1.330	1.351	1.195	1.417	10.71
29) P Indeno[1,2,3-cd]p	1.314	1.218	1.140	1.117	1.174	1.147	1.040	1.164	7.36
30)P Dibenz[a,h]anthra	1.287	1.159	1.072	1.082	1.071	1.100	1.007	1.111	8.05
31)P Benzo[g,h,i]peryl	1.599	1.359	1.289	1.250	1.293	1.284	1.142	1.317	10.69
/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									

(#) = Out of Range

simpahf.m Tue Feb 14 15:58:37 2017

Initial Calibration Verification

SW4339-ICV4339 **Job Number:** FA42152 Sample:

W097291.D CAPEGAA Cape Environmental Management Inc. Lab FileID: Account:

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\SW4338\W097291.D Vial: 93 Acq On : 13 Feb 2017 9:49 pm Operator: fouads Sample : icv4339-4 Misc : op63755,sw4339,14.9,,,1,1,soil Inst : MSBNA01 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\msdchem\1\METHODS\simpahf.m (RTE Integrator)

Title : PAH's by 8270 SIM

Last Update : Tue Feb 14 08:14:18 2017 Response via: Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

	Compound	Amount	Calc.	%Drift	Area	b Dev(n	min)R.T.
1 I 2 S	Naphthalene-d8 Nitrobenzene-d5	4.000	4.000	0.0 NA	105		5.59
3 P	Naphthalene	10.000	8.761				5.61
		Amount		%Drift			
4 P	2-Methylnaphthalene	10.000	8.453	15.5	84	0.00	6.21
5 P	1-Methylnaphthalene	10.000	9.108	8.9	95	-0.02	6.30
6 I	Acenaphthene-d10	4.000	4.000	0.0	97	0.00	7.14
7 S		Amount		%Drift NA			
7 S 8	2-Fluorobiphenyl 1,1'-Biphenyl			NA			
9 P	Acenaphthylene	10.000	9.630				7.01
10 P	Acenaphthene	10.000	9.223	7.8		0.00	7.16
11	Dibenzofuran	10.000	10.202	-2.0		0.00	7.32
12 P	Fluorene	10.000	9.649	3.5	89	0.00	7.63
		Amount					
13 I	Phenanthrene-d10	4.000	4.000	0.0		0.00	8.46
14 S	2,4,6-Tribromophenol			NA		-	
				%Drift			
15 P	Pentachlorophenol	20.000	17.358	13.2	66	0.00	8.29
		Amount		%Drift			
16 P	Phenanthrene	10.000	8.720	12.8			8.48
17 P	Anthracene	5.000	4.218	15.6			8.52
18	Carbazole	5.000	4.526	9.5	83	0.00	8.67
		Amount	Calc.	%Drift			
19 P	Fluoranthene	10.000	9.620	3.8	85	-0.02	9.56
		Amount	Calc.	%Drift			
20 I	Chrysene-d12	4.000	4.000	0.0		-0.01	11.27
21 P	Pyrene	10.000	8.904	11.0		0.02	9.78
22 S 23 P	Terphenyl-d14 Benzo[a]anthracene	5.000	4.638	7.2	79		11.25

Initial Calibration Verification Page 2 of 2 **Job Number:** FA42152 SW4339-ICV4339 Sample: CAPEGAA Cape Environmental Management Inc. W097291.D Account: Lab FileID: OB/OD Site I, OB Site II, Fort Bliss, TX **Project:** 24 P Chrysene 5.000 4.798 4.0 84 -0.01 11.31 25 I Perylene-d12 4.000 4.000 0.0 91 -0.01 13.72 26 P Benzo[b]fluoranthene 5.000 4.422 11.6 82 0.00 13.02 Benzo[k]fluoranthene 4.266 27 P 5.000 14.7 80 -0.01 13.07 28 P Benzo[a]pyrene 5.000 4.403 11.9 80 -0.02 13.61 Indeno[1,2,3-cd]pyrene 5.000 4.660 Dibenz[a,h]anthracene 5.000 4.372 Benzo[g,h,i]perylene 5.000 4.283 29 P 6.8 88 0.00 15.89 30 P 12.6 82 -0.02 15.95

5.000 4.283

31 P

(#) = Out of Range SPCC's out = 0 CCC's W097287.D simpahf.m Tue Feb 14 16:28:27 2017 SPCC's out = 0 CCC's out = 0

14.3 82 0.00 16.33

^{(#) =} Out of Range

Continuing Calibration Summary

Job Number: FA42152 SW4369-CC4339 Sample: W098384.D Lab FileID:

CAPEGAA Cape Environmental Management Inc. Account:

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\SW4369\W098384.D Vial: 2 : 29 Mar 2017 9:40 am Operator: fouads Acq On : cc4339-4 : op64229,sw4369,15.0,,,1,1,soil Inst : MSBNA01 Sample Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\msdchem\1\METHODS\simpahf.m (RTE Integrator)

: PAH's by 8270 SIM Title

Last Update : Thu Mar 02 08:24:54 2017 Response via: Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(m	ln)R.T.
1 I 2 S 3 P	Naphthalene-d8 Nitrobenzene-d5 Naphthalene	1.000 0.286 0.970	1.000 0.254 0.831	0.0 11.2 14.3	83 72 70	0.00 0.00 0.00	5.53 4.92 5.55
3 F				%Drift			
4 P	2-Methylnaphthalene	10.000	9.154	8.5	72	0.00	6.16
5 P	1-Methylnaphthalene	0.651	CCRF 0.561	%Dev 13.8	71	0.00	6.24
6 I	Acenaphthene-d10	1.000	1.000	0.0	79	0.00	7.09
		Amount		%Drift			
7 S	2-Fluorobiphenyl	10.000	9.477	5.2		-0.02	6.47
8	1,1'-Biphenyl	10.000	9.074	9.3	70		6.56
9 P	Acenaphthylene	10.000	9.410	5.9	71		6.95
10 P	Acenaphthene	10.000	9.205	7.9		-0.01	7.11
11 12 P	Dibenzofuran Fluorene	10.000 10.000	9.324 9.625	6.8 3.8	70	0.00 -0.01	7.27 7.57
13 I 14 S	Phenanthrene-d10 2,4,6-Tribromophenol	AvgRF 1.000 0.074	CCRF 1.000 0.069	%Dev 0.0 6.8		0.00	8.41
		7 mount	Calc.	%Drift			
15 P	Pentachlorophenol	25.000	23.797	4.8	79	0.00	8.24
		AvgRF	CCRF	%Dev			
16 P	Phenanthrene	1.132	1.021	9.8	75	0.00	8.43
17 P	Anthracene	1.239	1.103	11.0	72	0.00	8.47
18	Carbazole	1.189	1.100	7.5	74	0.00	8.62
				%Drift			
19 P	Fluoranthene	10.000	10.104	-1.0	77	-0.01	9.50
		AvaRF	CCRF	%Dev			
20 I	Chrysene-d12	1.000	1.000	0.0	79	0.00	11.19
21 P	Pyrene	1.767	1.619	8.4	74		9.72
22 S	Terphenyl-d14	0.827	0.753	8.9	72	0.00	9.88
23 P	Benzo[a]anthracene	1.555	1.470	5.5	73	0.00	11.17
				٠.٠	. •		,_,

Continu Job Numbe Account: Project:	ing Calibration Summary FA42152 CAPEGAA Cape Environmenta OB/OD Site I, OB Site II, Fort	Sample: SW4369 al Management Inc. Lab FileID: W09838					Page 2 of 2 59-CC4339 84.D		
24 P	Chrysene	1.381	1.321	4.3	76	0.00	11.23		
26 P 27 P 28 P 29 P 30 P	Perylene-d12 Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene	1.000 1.485 1.431 1.417 1.164 1.111	1.000 1.346 1.315 1.292 1.012 0.967 1.118	0.0 9.4 8.1 8.8 13.1 13.0	78 72 74 71 71 70	0.00 0.00 0.01 0.00 0.03 0.02	13.64 12.93 12.99 13.53 15.81 15.86 16.25		

SPCC's out = 0 CCC's out = 0

^{(#) =} Out of Range W097287.D simpahf.m Thu Mar 30 16:43:41 2017

Continuing Calibration Summary Job Number: FA42152

Page 1 of 2 SW4369-ECC4339 Sample:

Account:

W098415.D CAPEGAA Cape Environmental Management Inc. Lab FileID:

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\SW4369\W098415.D Vial: 2 : 29 Mar 2017 9:32 pm Operator: fouads Acq On : ecc4339-4 : op64357,sw4369,30.3,,,1,2,soil Inst : MSBNA01 Sample Misc Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\msdchem\1\METHODS\simpahf.m (RTE Integrator)

: PAH's by 8270 SIM Title

Last Update : Thu Mar 02 08:24:54 2017 Response via: Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 50% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev A	rea%	Dev(m	in)R.T.
1 I 2 S 3 P	Naphthalene-d8 Nitrobenzene-d5 Naphthalene	1.000 0.286 0.970	1.000 0.276 0.849	0.0 3.5 12.5	77 72 66	0.00 -0.02 0.00	4.92
4 P	2-Methylnaphthalene	10.000	Calc. 9.305	%Drift 7.0	 68	-0.01	6.15
5 P	1-Methylnaphthalene	AvgRF 0.651	CCRF 0.586	%Dev 10.0		-0.01	
6 I	Acenaphthene-d10	1.000	1.000	0.0	72	-0.01	7.08
7 S 8 9 P 10 P 11 12 P	2-Fluorobiphenyl 1,1'-Biphenyl Acenaphthylene Acenaphthene Dibenzofuran Fluorene	Amount 10.000 10.000 10.000 10.000 10.000	Calc. 9.428 9.297 9.389 9.198 9.745 9.940	%Drift 5.7 7.0 6.1 8.0 2.6 0.6	66 66 65	0.00	6.47
13 I 14 S	Phenanthrene-d10 2,4,6-Tribromophenol	1.000	CCRF 1.000 0.074	%Dev 0.0 0.0	74	-0.01 -0.01	8.40
15 P	Pentachlorophenol	Amount 25.000	Calc. 23.312	%Drift 6.8		-0.01	
16 P 17 P 18	Phenanthrene Anthracene Carbazole	1.132 1.239 1.189	CCRF 1.003 1.110 1.076	%Dev 11.4 10.4 9.5		-0.01 0.00 0.00	8.47
19 P	Fluoranthene	Amount 10.000	Calc. 9.581	%Drift 4.2		-0.02	
20 I 21 P 22 S 23 P	Chrysene-d12 Pyrene Terphenyl-d14 Benzo[a]anthracene	AvgRF 1.000 1.767 0.827 1.555	CCRF 1.000 1.496 0.733 1.439	%Dev 0.0 15.3 11.4 7.5	73 64 65	-0.01 0.00 0.00 -0.01	11.18 9.72 9.88

Continuin Job Number: Account: Project:	ount: CAPEGAA Cape Environmental Management Inc.		t Inc.	Sample: Lab FileID:		4369-ECC4 98415.D	Page 2 of 2 339
24 P Ch	rysene	1.381	1.313	4.9	70	-0.01	11.22
26 P Be 27 P Be 28 P Be 29 P Ir 30 P Di	erylene-d12 enzo[b]fluoranthene enzo[k]fluoranthene enzo[a]pyrene edeno[1,2,3-cd]pyrene ebenz[a,h]anthracene enzo[g,h,i]perylene	1.000 1.485 1.431 1.417 1.164 1.111 1.317	1.000 1.340 1.327 1.292 1.001 0.956 1.045	0.0 9.8 7.3 8.8 14.0 14.0	78 71 74 71 69 69	0.00 0.00 0.00 0.00 0.01 0.00 0.02	13.63 12.92 12.98 13.52 15.80 15.85 16.25

SPCC's out = 0 CCC's out = 0

^{(#) =} Out of Range W097287.D simpahf.m Thu Mar 30 16:47:07 2017

Section 7

Raw Data		

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098391.D

Acq On : 29 Mar 2017 12:20 pm Operator : fouads

Sample : fa42152-1 Inst : MSBNA01

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 9 Sample Multiplier: 1

Quant Time: Mar 29 14:44:19 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.534	136	100777	4.00	ppm	0.00
6) Acenaphthene-d10		164		4.00	ppm	-0.01
13) Phenanthrene-d10	8.400	188	86952	4.00	ppm	-0.01
	11.188				ppm	-0.01
25) Perylene-d12	13.627				ppm	0.00
System Monitoring Compounds						
2) Nitrobenzene-d5			39509			
Spiked Amount 10.000	Range 40	- 105	Recove			
7) 2-Fluorobiphenyl	6.473	172	104634	5.83	ppm	-0.02
Spiked Amount 10.000			Recove			
14) 2,4,6-Tribromophenol			21371			
Spiked Amount 20.000			Recove			
22) Terphenyl-d14		244	83487	5.30	ppm	0.00
Spiked Amount 10.000	Range 45	- 119	Recove	ry =	53	.00%
Target Compounds						Qvalue
16) Phenanthrene	8.424	178	1397	0.06		
19) Fluoranthene	9.496	202	3057	0.11	ppm	97
21) Pyrene	9.722	202	2491	0.07	ppm	96
24) Chrysene	11.223	228	1190	0.05	ppm	87
26) Benzo[b]fluoranthene	12.929	252	1761	0.07	ppm	85
28) Benzo[a]pyrene	13.519	252	1003	0.04	ppm	84
29) Indeno[1,2,3-cd]pyrene	15.801	276	821	0.04	ppm	80

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098391.D

Acq On : 29 Mar 2017 12:20 pm

Operator : fouads

: fa42152-1 Sample Inst : MSBNA01

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 9 Sample Multiplier: 1

Quant Time: Mar 29 14:44:19 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update: Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:02 2017

64 of 383 **ACCUTEST**

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098392.D

Acq On : 29 Mar 2017 12:43 pm Operator : fouads

Operator : fouads
Sample : fa42152-2

Sample : fa42152-2 Inst : MSBNA01

Misc : op64367,sw4369,15.2,,,1,1,soil ALS Vial : 10 Sample Multiplier: 1

Quant Time: Mar 29 14:45:05 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc Ur	nits Dev(Min)
Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10	5.534 7.081	136 164			ppm 0.00 ppm -0.01
13) Phenanthrene-d10 20) Chrysene-d12 25) Perylene-d12	8.400 11.184 13.625	240	72003	4.00	ppm -0.01 ppm -0.01 ppm 0.00
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 10.000 7) 2-Fluorobiphenyl Spiked Amount 10.000 14) 2,4,6-Tribromophenol Spiked Amount 20.000 22) Terphenyl-d14 Spiked Amount 10.000	Range 40 6.473 Range 43 7.787 Range 42 9.876	- 105 172 - 107 330 - 108 244	Recover 106044 Recover 21221 Recover	6.81 6y = 13.78 6y = 5.51	ppm -0.01 68.90% ppm 0.00
	9.723	202		0.05	Qvalue ppm 96 ppm 98 ppm 88

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098392.D

Acq On : 29 Mar 2017 12:43 pm

Operator : fouads

Sample : fa42152-2 Inst : MSBNA01

Misc : op64367, sw4369, 15.2, , , 1, 1, soil

ALS Vial : 10 Sample Multiplier: 1

Quant Time: Mar 29 14:45:05 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:04 2017

SGS

Page: 2

ACCUTEST

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098393.D

Acq On : 29 Mar 2017 1:06 pm Operator : fouads

Sample : fa42152-3 Inst : MSBNA01

: op64367,sw4369,15.1,,,1,1,soil Misc ALS Vial : 11 Sample Multiplier: 1

Quant Time: Mar 29 14:45:56 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 13) Phenanthrene-d10 20) Chrysene-d12 25) Perylene-d12	7.080 8.401	188 240	50701 81544 72799		ppm ppm	-0.01 -0.01 -0.02
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 10.000 7) 2-Fluorobiphenyl Spiked Amount 10.000 14) 2,4,6-Tribromophenol Spiked Amount 20.000 22) Terphenyl-d14 Spiked Amount 10.000	Range 40 6.474 Range 43 7.786 Range 42 9.875	- 105 172 - 107 330 - 108 244	101262 Recover 20289 Recover	ry = 6.53 ry = 13.48 ry = 5.40	53 ppm 65 ppm 67 ppm	.30% -0.02 .30% -0.01 .40%
Target Compounds 19) Fluoranthene 21) Pyrene 26) Benzo[b]fluoranthene 27) Benzo[k]fluoranthene 29) Indeno[1,2,3-cd]pyrene	12.928	202 252 252	1405 1378 1378	0.06	ppm ppm	Qvalue 95 94 95 95 68

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098393.D

: 29 Mar 2017 Acq On 1:06 pm

Operator : fouads

: fa42152-3 Sample Inst : MSBNA01

: op64367,sw4369,15.1,,,1,1,soil Misc

ALS Vial : 11 Sample Multiplier: 1

Quant Time: Mar 29 14:45:56 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:06 2017

Page: 2 74 of 383

77 of 383
ACCUTEST
FA42152

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098394.D

Acq On : 29 Mar 2017 1:29 pm Operator : fouads

Sample : fa42152-4 Inst : MSBNA01

: op64367,sw4369,15.1,,,1,1,soil Misc ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 29 14:46:16 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.535	136	96589	4.00	mag	0.00
6) Acenaphthene-d10	7.080			4.00		
13) Phenanthrene-d10	8.401			4.00		
20) Chrysene-d12			71454			
25) Perylene-d12	13.626	264	67062	4.00	ppm	0.00
System Monitoring Compounds						
2) Nitrobenzene-d5	4.922	82	37455	5.43	ppm	0.00
Spiked Amount 10.000	Range 40	- 105	Recove	ry =	54	.30%
7) 2-Fluorobiphenyl	6.473	172	104527	6.11	ppm	-0.02
Spiked Amount 10.000	Range 43	- 107	Recove	ry =	61	.10%
14) 2,4,6-Tribromophenol	7.786					-0.01
Spiked Amount 20.000			Recove			
22) Terphenyl-d14	9.877					0.00
Spiked Amount 10.000	Range 45	- 119	Recove	ry =	53	.60%
Target Compounds						Qvalue
16) Phenanthrene	8.421	178	1392	0.06	ppm	96
19) Fluoranthene	9.498	202	4592	0.18	ppm	94
21) Pyrene	9.719	202	4048	0.13	ppm	92
23) Benzo[a]anthracene	11.175			0.05	ppm	
24) Chrysene	11.224			0.08		
<pre>26) Benzo[b]fluoranthene</pre>	12.927			0.12		
<pre>27) Benzo[k]fluoranthene</pre>			943			87
28) Benzo[a]pyrene			1637	0.07		
29) Indeno[1,2,3-cd]pyrene			1421	0.07		
<pre>31) Benzo[g,h,i]perylene</pre>	16.243	276	1420	0.06	ppm	94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098394.D

: 29 Mar 2017 Acq On 1:29 pm

Operator : fouads

: fa42152-4 Inst Sample : MSBNA01

Quantitation Report

: op64367,sw4369,15.1,,,1,1,soil Misc

ALS Vial : 12 Sample Multiplier: 1

Quant Time: Mar 29 14:46:16 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:08 2017

Page: 2

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098395.D

Acq On : 29 Mar 2017 1:52 pm Operator : fouads

: fa42152-5

Inst : MSBNA01 Sample

: op64367,sw4369,15.0,,,1,1,soil Misc ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 30 07:49:46 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits !	Dev(Min)
Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 13) Phenanthrene-d10 20) Chrysene-d12 25) Perylene-d12	5.535 7.079 8.401 11.185 13.621	164 188 240	49648 79863 69325	4.00 4.00 4.00	ppm ppm ppm ppm	
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 10.000 7) 2-Fluorobiphenyl Spiked Amount 10.000 14) 2,4,6-Tribromophenol Spiked Amount 20.000 22) Terphenyl-d14 Spiked Amount 10.000	Range 40 6.473 Range 43 7.786 Range 42 9.876	172 - 107 330 - 108 244	Recove 98121 Recove 19816 Recove	ry = 6.46 ry = 13.44 ry = 5.28	57.0 ppm 64.0 ppm 67.2 ppm	-0.02 60% -0.01 20% 0.00
Target Compounds 19) Fluoranthene 21) Pyrene 23) Benzo[a]anthracene 24) Chrysene 26) Benzo[b]fluoranthene 28) Benzo[a]pyrene 29) Indeno[1,2,3-cd]pyrene 31) Benzo[g,h,i]perylene	9.498 9.719 11.170 11.224 12.928 13.523 15.805 16.253	202 228 228 252 252	3415 1261 1653 2624 1447	0.11 0.05 0.07 0.11 0.06	ppm ppm ppm ppm ppm ppm	Qvalue 92 95 90 97 92 61 83 82

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098395.D

: 29 Mar 2017 Acq On 1:52 pm

Operator : fouads

: fa42152-5 Inst Sample : MSBNA01

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 30 07:49:46 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:10 2017

Page: 2

Quantitation Report (Qedit)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098395.D

: 29 Mar 2017 Acq On 1:52 pm

Operator : fouads

Sample : fa42152-5 Inst : MSBNA01

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 29 14:39:10 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

Page: 1

Quantitation Report (Qedit)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098395.D

Acq On : 29 Mar 2017 1:52 pm

Operator : fouads

Sample : fa42152-5 Inst : MSBNA01

Misc : op64367,sw4369,15.0,,,1,1,soil

ALS Vial : 13 Sample Multiplier: 1

Quant Time: Mar 29 14:39:10 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098396.D

Acq On : 29 Mar 2017 2:14 pm Operator : fouads

Operator : fouads
Sample : fa42152-6

Sample : fa42152-6 Inst : MSBNA01

Misc : op64367,sw4369,15.0,,,1,1,soil ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 29 14:47:53 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update: Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.534	136	85224	4.00	ppm	0.00
6) Acenaphthene-d10	7.079				ppm	-0.01
13) Phenanthrene-d10	8.401	188	72108	4.00	ppm	-0.01
20) Chrysene-d12			62163	4.00	ppm	-0.01
25) Perylene-d12	13.626	264	59364	4.00	ppm	0.00
System Monitoring Compounds						
2) Nitrobenzene-d5	4.922	82	38439	6.32	ppm	0.00
Spiked Amount 10.000	Range 40	- 105	Recove	ry =	63	.20%
7) 2-Fluorobiphenyl						-0.02
Spiked Amount 10.000	Range 43	- 107	Recove	ry =	73	.60%
14) 2,4,6-Tribromophenol						
Spiked Amount 20.000	Range 42	- 108	Recove	ry =	74	.80%
22) Terphenyl-d14 Spiked Amount 10.000	9.876					
Spiked Amount 10.000	Range 45	- 119	Recove	ry =	57	.30%
Target Compounds						Qvalue
16) Phenanthrene	8.421					
19) Fluoranthene			3104			92
21) Pyrene	9.719					94
23) Benzo[a]anthracene				0.04		
24) Chrysene			1440			94
<pre>26) Benzo[b]fluoranthene</pre>						98
28) Benzo[a]pyrene	13.517			0.06		
29) Indeno[1,2,3-cd]pyrene			952			
31) Benzo[g,h,i]perylene	16.243	276 	1011	0.05	ppm	94

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098396.D

: 29 Mar 2017 Acq On 2:14 pm

Operator : fouads

: fa42152-6 Inst Sample : MSBNA01

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 14 Sample Multiplier: 1

Quant Time: Mar 29 14:47:53 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:12 2017

94 of 383

ACCUTEST

ACCUTEST

99 of 383
ACCUTEST
FA42152

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098397.D

Acq On : 29 Mar 2017 2:37 pm Operator : fouads

Operator : fouads
Sample : fa42152-7

Sample : fa42152-7 Inst : MSBNA01

Misc : op64367,sw4369,15.2,,,1,1,soil ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 30 08:42:30 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.534	136	84623	4.00	ppm	0.00
	7.080	164	45459	4.00	ppm	-0.01
13) Phenanthrene-d10	8.400	188	71065	4.00	ppm	-0.01
20) Chrysene-d12	11.184	240	62452	4.00	ppm	-0.01
25) Perylene-d12	13.627	264	55940	4.00	ppm	0.00
System Monitoring Compounds						
2) Nitrobenzene-d5	4.921	82	35624	5.90	ppm	0.00
Spiked Amount 10.000	Range 40	- 105				
7) 2-Fluorobiphenyl	6.473	172				-0.02
Spiked Amount 10.000	Range 43	- 107	Recove			
14) 2,4,6-Tribromophenol	7.787	330	19800	15.10	ppm	-0.01
Spiked Amount 20.000	Range 42	- 108	Recove			
22) Terphenyl-d14	9.875	244	80943	6.27	ppm	0.00
Spiked Amount 10.000	Range 45	- 119	Recove	ery =	62.	.70%
Target Compounds						Qvalue
19) Fluoranthene	9.497	202	3845	0.17	ppm	93
, 2	9.718	202	3491			95
23) Benzo[a]anthracene	11.169	228	1281	0.05	ppm	78
24) Chrysene	11.223	228	1781	0.08	ppm	94
<pre>26) Benzo[b] fluoranthene</pre>	12.928	252	2616	0.13	ppm	92
<pre>27) Benzo[k]fluoranthene</pre>			750	0.04	ppm	8 4
28) Benzo[a]pyrene			1341			91
29) Indeno[1,2,3-cd]pyrene			1259			
31) Benzo[g,h,i]perylene	16.249	276	1306	0.07	ppm	95

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098397.D

: 29 Mar 2017 Acq On 2:37 pm

Operator : fouads

: fa42152-7 Inst Sample : MSBNA01

: op64367,sw4369,15.2,,,1,1,soil Misc

ALS Vial : 15 Sample Multiplier: 1

Quant Time: Mar 30 08:42:30 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:14 2017

ACCUTEST

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098398.D

Acq On : 29 Mar 2017 3:00 pm Operator : fouads

: fa42152-8

Inst : MSBNA01 Sample

: op64367,sw4369,15.0,,,1,1,soil Misc ALS Vial : 16 Sample Multiplier: 1

Quant Time: Mar 30 07:50:36 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.534	136	81834	4.00	ppm	0.00
6) Acenaphthene-d10	7.080	164	45384	4.00	ppm	-0.01
13) Phenanthrene-d10	8.400	188	68968	4.00	ppm	-0.01
20) Chrysene-d12	11.184	240	60956	4.00	ppm	-0.01
25) Perylene-d12	13.622	264	58355	4.00	ppm	0.00
System Monitoring Compounds						
2) Nitrobenzene-d5	4.921	82	36227	6.20	ppm	0.00
Spiked Amount 10.000	Range 40	- 105	Recove			
7) 2-Fluorobiphenyl	6.473	172	95725	6.91	ppm	-0.02
Spiked Amount 10.000	Range 43	- 107				
14) 2,4,6-Tribromophenol	7.787	330	19511	15.33	ppm	-0.01
Spiked Amount 20.000				ery =		
22) Terphenyl-d14		244	76588	6.08	ppm	0.00
Spiked Amount 10.000	Range 45	- 119	Recove	ery =	60	.80%
Target Compounds						Qvalue
19) Fluoranthene	9.497	202	5122	0.24	ppm	93
21) Pyrene	9.719	202	4446	0.17		
23) Benzo[a]anthracene	11.174	228	1214	0.05	ppm	94
24) Chrysene	11.224			0.10	ppm	
26) Benzo[b]fluoranthene	12.928			0.15		
<pre>27) Benzo[k]fluoranthene</pre>	12.977			0.05		
28) Benzo[a]pyrene	13.514			0.09		
29) Indeno[1,2,3-cd]pyrene	15.796	276	1447	0.09	ppm	88
<pre>31) Benzo[g,h,i]perylene</pre>	16.249	276	1488	0.08	ppm	88

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098398.D

Acq On : 29 Mar 2017 3:00 pm

Operator : fouads

Sample : fa42152-8 Inst : MSBNA01

Misc : op64367,sw4369,15.0,,,1,1,soil

ALS Vial : 16 Sample Multiplier: 1

Quant Time: Mar 30 07:50:36 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:16 2017

SGS

Page: 2

ACCUTEST

SGS 113 of 383
ACCUTEST
FA42152

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098401.D

4:10 pm

Acq On : 29 Mar 2017 Operator : fouads : fa42152-9

Inst : MSBNA01 Sample

: op64367,sw4369,15.0,,,1,1,soil Misc ALS Vial: 19 Sample Multiplier: 1

Quant Time: Mar 30 07:54:23 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.535	136	79338	4.00	mqq	0.00
	7.080					
	8.399			4.00	mqq	-0.01
20) Chrysene-d12	11.183	240	57335	4.00	ppm	-0.02
25) Perylene-d12			54546		ppm	0.00
System Monitoring Compounds						
2) Nitrobenzene-d5	4.922	82	34991	6.18	ppm	0.00
Spiked Amount 10.000						
7) 2-Fluorobiphenyl	6.473	172	91448	6.98	ppm	-0.02
Spiked Amount 10.000	Range 43	- 107	Recove	ery =	69	.80%
14) 2,4,6-Tribromophenol	7.786	330	18853	15.33	ppm	-0.01
Spiked Amount 20.000	Range 42	- 108				
22) Terphenyl-d14	9.875	244	72866	6.15	ppm	0.00
Spiked Amount 10.000	Range 45	- 119	Recove	ery =	61	.50%
Target Compounds						Qvalue
	9.496			0.12	ppm	95
21) Pyrene	9.722					91
23) Benzo[a]anthracene	11.168				ppm	86
24) Chrysene			1349			95
26) Benzo[b]fluoranthene						99
28) Benzo[a]pyrene						90
29) Indeno[1,2,3-cd]pyrene						87
31) Benzo[g,h,i]perylene	16.239	276 	2300 	0.13		99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098401.D

: 29 Mar 2017 Acq On 4:10 pm

Operator : fouads

: fa42152-9 Inst Sample : MSBNA01

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 19 Sample Multiplier: 1

Quant Time: Mar 30 07:54:23 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update: Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:18 2017

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098389.D

Acq On : 29 Mar 2017 11:35 am Operator : fouads

Sample : op64367-mb Misc : op64367,sw4369,15.0,,,1,1,soil Inst : MSBNA01

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Mar 29 14:38:58 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T. QIO	n Response Conc	Units Dev(Min)
6) Acenaphthene-d10 13) Phenanthrene-d10		64 48874 4.0 68 73943 4.0 60 65969 4.0	00 ppm -0.01 00 ppm -0.01 00 ppm -0.01 00 ppm -0.01 00 ppm 0.00
	Range 40 - 1 6.476 17 Range 43 - 1 7.786 33 Range 42 - 1 9.875 24	05 Recovery = 116483 7.8 07 Recovery = 21706 15.9 08 Recovery = 4 82948 6.0	70.50% 84 ppm -0.02 = 78.40% 90 ppm -0.01 = 79.50% 08 ppm 0.00
Spiked Amount 10.000 Target Compounds		19 Recovery =	9value

(#) = qualifier out of range (m) = manual integration (+) = signals summed

simpahf.m Thu Mar 30 17:26:00 2017

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098389.D

Acq On : 29 Mar 2017 11:35 am

Operator : fouads

Sample : op64367-mb Inst : MSBNA01

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 7 Sample Multiplier: 1

Quant Time: Mar 29 14:38:58 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update: Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:26:00 2017

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098390.D

Acq On : 29 Mar 2017 11:57 am Operator : fouads

: op64367-bs Inst : MSBNA01 Sample

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Mar 29 14:39:00 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Internal Standards 1) Naphthalene-d8	Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
6) Acenaphthene-d10	Internal Standards						
6) Acenaphthene-d10	1) Naphthalene-d8	5.534	136	101119	4.00	mqq	0.00
13) Phenanthrene-d10		7.080			4.00	ppm	-0.01
System Monitoring Compounds 2	13) Phenanthrene-d10	8.405	188	78631			
System Monitoring Compounds 2	20) Chrysene-d12	11.189	240	65021	4.00	ppm	0.00
A	25) Perylene-d12	13.627	264	64640			
A	System Monitoring Compounds						
7) 2-Fluorobiphenyl	2) Nitrobenzene-d5	4.921	82	48419	6.71	ppm	0.00
7) 2-Fluorobiphenyl	Spiked Amount 10.000	Range 40	- 105	Recove	ery =	67	.10%
Spiked Amount 10.000 Range 43 - 107 Recovery = 79.10% 14) 2,4,6-Tribromophenol 7.787 330 22092 15.22 ppm -0.01 Spiked Amount 20.000 Range 42 - 108 Recovery = 76.10% 22) Terphenyl-d14 9.876 244 87606 6.52 ppm 0.00 Spiked Amount 10.000 Range 45 - 119 Recovery = 65.20% Target Compounds 3) Naphthalene 5.553 128 136832 5.58 ppm 99 4) 2-Methylnaphthalene 6.153 142 99319 5.51 ppm 89 5) 1-Methylnaphthalene 6.245 142 99670 5.87 ppm 92 9) Acenaphthylene 6.956 152 160088 6.54 ppm 100 10) Acenaphthene 7.108 153 87127 6.10 ppm 98 11) Dibenzofuran 7.267 168 129238 6.77 ppm 95 12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238							
14) 2,4,6-Tribromophenol Spiked Amount 20.000 Range 42 - 108 Recovery = 76.10% 22) Terphenyl-d14 9.876 244 87606 6.52 ppm 0.00 Spiked Amount 10.000 Range 45 - 119 Recovery = 65.20% Target Compounds		Range 43	- 107	Recove	ery =	79	.10%
Target Compounds 3) Naphthalene 45 - 119 3) Naphthalene 5	14) 2,4,6-Tribromophenol	7.787	330	22092	15.22	ppm	-0.01
Target Compounds 3) Naphthalene 45 - 119 3) Naphthalene 5	Spiked Amount 20.000	Range 42	- 108	Recove	ery =	76	.10%
Target Compounds 3) Naphthalene 45 - 119 3) Naphthalene 5	22) Terphenyl-d14	9.876	244	87606	6.52	ppm	0.00
3) Naphthalene 5.553 128 136832 5.58 ppm 99 4) 2-Methylnaphthalene 6.153 142 99319 5.51 ppm 89 5) 1-Methylnaphthalene 6.245 142 96670 5.87 ppm 92 9) Acenaphthylene 6.956 152 160088 6.54 ppm 100 10) Acenaphthene 7.108 153 87127 6.10 ppm 98 11) Dibenzofuran 7.267 168 129238 6.77 ppm 95 12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238 266 28472 14.12 ppm 96 16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	Spiked Amount 10.000	Range 45	- 119	Recove	ery =	65	.20%
3) Naphthalene 5.553 128 136832 5.58 ppm 99 4) 2-Methylnaphthalene 6.153 142 99319 5.51 ppm 89 5) 1-Methylnaphthalene 6.245 142 96670 5.87 ppm 92 9) Acenaphthylene 6.956 152 160088 6.54 ppm 100 10) Acenaphthene 7.108 153 87127 6.10 ppm 98 11) Dibenzofuran 7.267 168 129238 6.77 ppm 95 12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238 266 28472 14.12 ppm 96 16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	Target Compounds						Ovalue
4) 2-Methylnaphthalene 6.153 142 99319 5.51 ppm 89 5) 1-Methylnaphthalene 6.245 142 96670 5.87 ppm 92 9) Acenaphthylene 6.956 152 160088 6.54 ppm 100 10) Acenaphthene 7.108 153 87127 6.10 ppm 98 11) Dibenzofuran 7.267 168 129238 6.77 ppm 95 12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238 266 28472 14.12 ppm 96 16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.223 228 77999 3.47 ppm 99		5.553	128	136832	5.58	mqq	
5) 1-Methylnaphthalene 6.245 142 96670 5.87 ppm 92 9) Acenaphthylene 6.956 152 160088 6.54 ppm 100 10) Acenaphthene 7.108 153 87127 6.10 ppm 98 11) Dibenzofuran 7.267 168 129238 6.77 ppm 95 12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238 266 28472 14.12 ppm 96 16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26)							
9) Acenaphthylene 6.956 152 160088 6.54 ppm 100 10) Acenaphthene 7.108 153 87127 6.10 ppm 98 11) Dibenzofuran 7.267 168 129238 6.77 ppm 95 12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238 266 28472 14.12 ppm 96 16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95		6.245	142	96670			
11) Dibenzofuran 7.267 168 129238 6.77 ppm 95 12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238 266 28472 14.12 ppm 96 16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95		6.956					
11) Dibenzofuran 7.267 168 129238 6.77 ppm 95 12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238 266 28472 14.12 ppm 96 16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95		7.108	153	87127	6.10		
12) Fluorene 7.572 166 112330 6.67 ppm 99 15) Pentachlorophenol 8.238 266 28472 14.12 ppm 96 16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	11) Dibenzofuran	7.267	168	129238	6.77	ppm	95
16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	12) Fluorene	7.572	166	112330			
16) Phenanthrene 8.425 178 140226 6.30 ppm 99 17) Anthracene 8.469 178 71159 2.92 ppm 99 18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	15) Pentachlorophenol		266	28472	14.12	ppm	96
18) Carbazole 8.617 167 80512 3.44 ppm 98 19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	16) Phenanthrene		178	140226	6.30	ppm	99
19) Fluoranthene 9.497 202 175465 7.30 ppm 97 21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	17) Anthracene	8.469	178	71159			
21) Pyrene 9.718 202 174031 6.06 ppm 98 23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	18) Carbazole				3.44	ppm	
23) Benzo[a]anthracene 11.169 228 83411 3.30 ppm 99 24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	19) Fluoranthene	9.497	202	175465	7.30	ppm	
24) Chrysene 11.223 228 77999 3.47 ppm 99 26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95		9.718	202	174031			
26) Benzo[b]fluoranthene 12.924 252 81617 3.40 ppm 99 27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95					3.30	ppm	99
27) Benzo[k]fluoranthene 12.973 252 74650 3.23 ppm 98 28) Benzo[a]pyrene 13.519 252 70467 3.08 ppm 99 29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95		11.223	228	77999			
29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95	<pre>26) Benzo[b] fluoranthene</pre>	12.924	252	81617	3.40	ppm	
29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95		12.973	252	74650			
29) Indeno[1,2,3-cd]pyrene 15.797 276 60486 3.21 ppm 95		13.519	252	70467			
20) Dibong (a blanthragono 15 056 270 54201 2 02 ~~~ 00		15.797	276	60486			
	30) Dibenz[a,h]anthracene	15.856	278	54391			
31) Benzo[g,h,i]perylene 16.249 276 65253 3.07 ppm 96	31) Benzo[g,h,i]perylene	16.249	276	65253	3.07	ppm	96

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098390.D

Acq On : 29 Mar 2017 11:57 am

Operator : fouads

Sample : op64367-bs Inst : MSBNA01

Misc : op64367,sw4369,15.0,,,1,1,soil

ALS Vial : 8 Sample Multiplier: 1

Quant Time: Mar 29 14:39:00 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:11:23 2017

SGS

123 of 383

ACCUTEST

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098399.D

3:23 pm

Acq On : 29 Mar 2017 Operator : fouads

: op64367-ms Inst : MSBNA01 Sample

: op64367,sw4369,15.0,,,1,1,soil Misc ALS Vial: 17 Sample Multiplier: 1

Quant Time: Mar 30 07:42:43 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
<pre>Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 13) Phenanthrene-d10 20) Chrysene-d12 25) Perylene-d12</pre>	5.535 7.080 8.400 11.183 13.621	164 188 240	42430 63815	4.00 4.00 4.00 4.00 4.00	ppm ppm	-0.01 -0.01 -0.01
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 10.000 7) 2-Fluorobiphenyl Spiked Amount 10.000 14) 2,4,6-Tribromophenol Spiked Amount 20.000 22) Terphenyl-d14 Spiked Amount 10.000	Range 40	- 105 172 - 107 330 - 108 244	105351 Recove 19446 Recove 71484	ery = 8.18 ery = 16.51 ery = 6.39	69 ppm 81 ppm 82	.00% -0.02 .80% -0.01 .55%
Target Compounds 3) Naphthalene 4) 2-Methylnaphthalene 5) 1-Methylnaphthalene 9) Acenaphthylene 10) Acenaphthene 11) Dibenzofuran 12) Fluorene 15) Pentachlorophenol 16) Phenanthrene 17) Anthracene 18) Carbazole 19) Fluoranthene 21) Pyrene 23) Benzo[a]anthracene 24) Chrysene 26) Benzo[b]fluoranthene 27) Benzo[k]fluoranthene 28) Benzo[a]pyrene 29) Indeno[1,2,3-cd]pyrene 30) Dibenz[a,h]anthracene 31) Benzo[g,h,i]perylene	5.548 6.155 6.240 6.955 7.108 7.267 7.572 8.237 8.424 8.468 8.611 9.496 9.718 11.169 11.223 12.923 12.923 12.972 13.513 15.796 15.850 16.243	152 153 168 166 266 178 167 202 202 228 228 252 252 252 276	67173	6.20 6.12 6.25 7.09 7.13 7.94 7.54 13.26 7.19 3.30 3.78 8.15 6.54 3.66 3.79 3.87 3.60 3.52 3.70 3.30	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	100 99 95 99 97 99 100 99 98

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4369\

Data File: W098399.D

: 29 Mar 2017 Acq On 3:23 pm

Operator : fouads

Inst Sample : op64367-ms : MSBNA01

: op64367,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 17 Sample Multiplier: 1

Quant Time: Mar 30 07:42:43 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update: Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:11:25 2017

125 of 383 **ACCUTEST**

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098400.D

Acq On : 29 Mar 2017 Operator : fouads 3:47 pm

: op64367-msd Inst : MSBNA01 Sample

: op64367,sw4369,15.6,,,1,1,soil Misc ALS Vial: 18 Sample Multiplier: 1

Quant Time: Mar 30 07:42:45 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.534			4.00	ppm	0.00
6) Acenaphthene-d10	7.080	164	40542	4.00		
13) Phenanthrene-d10	8.400	188	63165	4.00	ppm	-0.01
20) Chrysene-d12	11.184	240	52970	4.00	ppm	-0.01
25) Perylene-d12	13.622	264	52432	4.00	ppm	0.00
System Monitoring Compounds						
2) Nitrobenzene-d5	4.921	82	43136	7.70	ppm	0.00
Spiked Amount 10.000	Range 40	- 105	Recove	ery =	77	.00%
7) 2-Fluorobiphenyl	6.472	172	107867	8.79	ppm	-0.02
Spiked Amount 10.000	Range 43			ery =	87	.90%
14) 2,4,6-Tribromophenol	7.787	330	20694	17.75	ppm	-0.01
Spiked Amount 20.000	Range 42 9.876	- 108	Recove	ery =	88	.75%
22) Terphenyl-d14						
Spiked Amount 10.000	Range 45	- 119	Recove	ery =	70	.10%
Target Compounds						Qvalue
3) Naphthalene	5.553	128	121157	6.36	ppm	99
4) 2-Methylnaphthalene	6.153	142	87983	6.31		
5) 1-Methylnaphthalene	6.244	142	82670	6.47		
9) Acenaphthylene	6.955	152		7.40	ppm	100
10) Acenaphthene	7.108	153	80454	7.27	ppm	98
11) Dibenzofuran	7.267	168	119522	8.09		
12) Fluorene	7.572	166	106512	8.17		
15) Pentachlorophenol	8.237	266	23712	14.62	ppm	98
16) Phenanthrene	8.424	178	134246	7.51	ppm	
17) Anthracene	8.469	178	66076	3.38		
18) Carbazole	8.611	167	69857	3.72	ppm	
19) Fluoranthene	9.497		160964	8.37		
21) Pyrene	9.718		161222	6.89		
23) Benzo[a]anthracene	11.169		80274	3.90		
24) Chrysene	11.223		75738	4.14	ppm	
<pre>26) Benzo[b]fluoranthene</pre>	12.923		77165	3.97	ppm	
<pre>27) Benzo[k]fluoranthene</pre>	12.973	252	71350	3.80		
28) Benzo[a]pyrene	13.514	252	68096	3.67		
29) Indeno[1,2,3-cd]pyrene	15.796	276	58710	3.85		
30) Dibenz[a,h]anthracene	15.850		51259	3.52		
31) Benzo[g,h,i]perylene	16.244	276	61164	3.54	ppm	99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098400.D

Acq On : 29 Mar 2017 3:47 pm

Operator : fouads

Sample : op64367-msd Inst : MSBNA01

Misc : op64367,sw4369,15.6,,,1,1,soil

ALS Vial : 18 Sample Multiplier: 1

Quant Time: Mar 30 07:42:45 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:11:27 2017

SGS

Page: 2
127 of 383

ACCUTEST

SW-846 Method 8270

Data File : C:\msdchem\1\DATA\SW4338\W097282.D Vial: 1

: 13 Feb 2017 6:34 pm Operator: fouads Acq On Sample : dftpp Inst : MSBNA01 : op63461,sw4338,15.0,,,1,1,soil Multiplr: 1.00 Misc

MS Integration Params: RTEINT.P

: C:\msdchem\1\METHODS\dftpp.m (RTE Integrator)

Title : Tune Evaluation

AutoFind: Scans 448, 449, 450; Background Corrected with Scan 440

1	Target Mass		Rel. to	1	Lower Limit%		Upper Limit%		Rel. Abn%		Raw Abn		Result Pass/Fail	
1	51		198		30	1	60		44.8		135535	·	PASS	
İ	68	İ	69	İ	0.00	ĺ	2	Ì	0.0	İ	0	İ	PASS	ĺ
	69	-	198	-	0.00		100		39.9		120820		PASS	
	70	-	69	-	0.00		2		0.2		290		PASS	
	127		198		40		60		46.4		140221		PASS	
	197		198		0.00		1		0.0		0		PASS	
	198		198		100		100		100.0		302442		PASS	
	199		198		5		9		6.9		20920		PASS	
	275		198		10		30		24.6		74467		PASS	
	365		198		1		100		1.9		5711		PASS	
	441		443		0.01		100		82.5		25594		PASS	
	442		198		40		100		53.3		161074		PASS	
	443		442	-	17		23		19.3	-	31036	-	PASS	

W097282.D dftpp.m Tue Feb 14 11:03:56 2017

SW-846 Method 8270

Data File : C:\msdchem\1\DATA\SW4369\W098383.D Vial: 1

MS Integration Params: RTEINT.P

Method : C:\msdchem\1\METHODS\dftpp.m (RTE Integrator)

Title : Tune Evaluation

AutoFind: Scans 437, 438, 439; Background Corrected with Scan 428

	Target Mass	 	Rel. to Mass		Lower Limit%	1	Upper Limit%		Rel. Abn%		Raw Abn		Result Pass/Fail	
1	51		198		30		60	·	44.1		103809		PASS	
1	68	-	69		0.00		2		0.0		0		PASS	
	69		198		0.00		100		39.0		91907		PASS	
	70		69		0.00		2		0.5		429		PASS	
	127		198		40		60		46.9		110321		PASS	
	197		198		0.00		1		0.0		0		PASS	
	198		198		100		100		100.0		235477		PASS	
	199		198		5		9		7.2		17021		PASS	
	275		198		10		30		24.7		58170		PASS	
	365		198		1		100		2.8		6703		PASS	
	441		443		0.01		100		76.4		20141		PASS	
	442		198		40		100		57.3	- 1	134874		PASS	
1	443		442		17		23	-	19.5	-	26346		PASS	

W098383.D dftpp.m Thu Mar 30 16:51:01 2017

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097284.D

Acq On : 13 Feb 2017 7:10 pm Operator : fouads

: ic4338-1 Inst : MSBNA01 Sample

: op63755,sw4338,14.9,,,1,1,soil Misc ALS Vial : 100 Sample Multiplier: 1

Quant Time: Feb 14 08:01:29 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017

Compound	R.T.	QIon	Response C	onc U	nits	Dev(Min)
Internal Standards						
 Naphthalene-d8 	5.587			4.00	ppm	0.00
6) Acenaphthene-d10	7.135		79818	4.00	ppm	0.00
13) Phenanthrene-d10	8.460			4.00	ppm	0.00
20) Chrysene-d12	11.268	240	95805	4.00	ppm	0.00
25) Perylene-d12	13.724	264	86945	4.00	ppm	-0.01
System Monitoring Compounds						
2) Nitrobenzene-d5	4.967	82	4853	0.29	ppm	0.01
Spiked Amount 10.000	Range 40	- 105	Recovery			.90%#
7) 2-Fluorobiphenyl	6.525		14072	0.62	mqq	0.00
Spiked Amount 10.000	Range 43	- 107		=	6	.20%#
14) 2,4,6-Tribromophenol	7.841	330	1870	0.86	mag	0.01
Spiked Amount 20.000	Range 42	- 108		=	4	.30%#
22) Terphenyl-d14			9682	0.47	mqq	0.01
Spiked Amount 10.000	Range 45	- 119	Recovery	=	4	.70%#
Target Compounds						Qvalue
3) Naphthalene	5.606	128	18391	0.48	mqq	
4) 2-Methylnaphthalene	6.212	142		0.48		
5) 1-Methylnaphthalene	6.297	142	12176	0.51		
8) 1,1'-Biphenyl	6.617	154		0.61		
9) Acenaphthylene	7.010			0.66		
10) Acenaphthene	7.163	152 153 168	11890	0.57		
11) Dibenzofuran	7.322	168	16849	0.60	mqq	90
12) Fluorene	7.627			0.56		
15) Pentachlorophenol	8.297	266	1564	0.51	ppm	87
16) Phenanthrene	8.480	178	16856	0.57		
17) Anthracene	8.524	178		0.26		
18) Carbazole	8.667	167	8300	0.26	ppm	96
19) Fluoranthene	9.557	202	20573	0.53		
21) Pyrene	9.783	202	21261	0.50	ppm	95
23) Benzo[a]anthracene	11.253	228	8840	0.23		
24) Chrysene	11.308	228	7507	0.22	ppm	96
26) Benzo[b]fluoranthene	13.021	252	7800	0.24	ppm	91
27) Benzo[k]fluoranthene	13.070	252	7798	0.25		
28) Benzo[a]pyrene	13.611	252	7085	0.23		
29) Indeno[1,2,3-cd]pyrene	15.889	276	5713	0.24		
30) Dibenz[a,h]anthracene	15.953	278	5594	0.25		
31) Benzo[g,h,i]perylene	16.332	276	6953	0.24	ppm	88

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4338\

Data File: W097284.D

Acq On : 13 Feb 2017 7:10 pm

Operator : fouads

: ic4338-1 Sample Inst : MSBNA01

: op63755, sw4338, 14.9, , , 1, 1, soil Misc ALS Vial : 100 Sample Multiplier: 1

Quant Time: Feb 14 08:01:29 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017 Response via : Initial Calibration

Page: 2

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097285.D

Acq On : 13 Feb 2017 7:33 pm Operator : fouads

Inst : MSBNA01

Sample : ic4338-2
Misc : op63755,sw4338,14.9,,,1,1,soil
ALS Vial : 99 Sample Multiplier: 1

Quant Time: Feb 14 08:01:31 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017

Compound	R.T.	QIon	Response C	onc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.588			4.00	ppm	0.00
6) Acenaphthene-d10	7.136		80758	4.00	ppm	0.00
13) Phenanthrene-d10	8.459	188	133515	4.00		
20) Chrysene-d12	11.267	240	112040	4.00	ppm	-0.01
25) Perylene-d12	13.729	264	93949	4.00	ppm	0.00
System Monitoring Compounds						
2) Nitrobenzene-d5	4.968	82	20343	1.39	ppm	0.01
Spiked Amount 10.000	Range 40	- 105	Recovery	=	13	.90%#
7) 2-Fluorobiphenyl	6.527		56085	2.44	ppm	0.00
Spiked Amount 10.000	Range 43	- 107	Recovery	=	24	.40%#
14) 2,4,6-Tribromophenol	7.842	330	9944	3.99	mag	0.01
Spiked Amount 20.000	Range 42	- 108	Recovery	=	19	.95%#
22) Terphenyl-d14		244				
Spiked Amount 10.000			Recovery			
Target Compounds						Qvalue
3) Naphthalene	5.607	128	73820	2.23	mqq	98
4) 2-Methylnaphthalene	6.207	142	58230	2.44		
5) 1-Methylnaphthalene	6.298	142	50113	2.44	mqq	96
8) 1,1'-Biphenyl	6.618	154	57135	2.23		
9) Acenaphthylene	7.011			2.66		
10) Acenaphthene	7.163	152 153 168	50529	2.39		
11) Dibenzofuran	7.323	168	73606	2.62	mqq	97
12) Fluorene	7.627	166		2.48		
15) Pentachlorophenol	8.291	266	11395	3.23		
16) Phenanthrene	8.478		81262	2.39		
17) Anthracene	8.523	178	45605	1.16	ppm	98
18) Carbazole	8.665	167	44324	1.22	ppm	96
19) Fluoranthene	9.555	202	104214	2.39		
21) Pyrene	9.782	202	109654	2.23	ppm	97
23) Benzo[a]anthracene	11.252	228	45196	1.00	ppm	97
24) Chrysene	11.306	228	39380	0.99		
26) Benzo[b]fluoranthene	11.306 13.021	252	39219	1.10		
27) Benzo[k]fluoranthene	13.070	202	3/030	1.12		
28) Benzo[a]pyrene	13.616	252	37461	1.13	ppm	94
29) Indeno[1,2,3-cd]pyrene	15.884	276	28611	1.12		
30) Dibenz[a,h]anthracene	13.616 15.884 15.953	278	27217	1.13		
31) Benzo[g,h,i]perylene	16.327			1.04	ppm	89

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4338\

Data File: W097285.D

: 13 Feb 2017 Acq On 7:33 pm

Operator : fouads

: ic4338-2 Inst Sample : MSBNA01

: op63755, sw4338, 14.9, , , 1, 1, soil Misc

ALS Vial : 99 Sample Multiplier: 1

Quant Time: Feb 14 08:01:31 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017 Response via : Initial Calibration

simpahf.m Tue Feb 14 08:33:33 2017

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097286.D

Acq On : 13 Feb 2017 7:55 pm Operator : fouads

Sample : ic4338-3 Misc : op63755,sw4338,14.9,,,1,1,soil Inst : MSBNA01

ALS Vial : 98 Sample Multiplier: 1

Quant Time: Feb 14 08:01:33 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response C	onc U	nits	Dev(Min)
Internal Standards						
 Naphthalene-d8 	5.587			4.00		
6) Acenaphthene-d10	7.135		79947	4.00		
13) Phenanthrene-d10	8.460			4.00		
20) Chrysene-d12			106587	4.00		
25) Perylene-d12	13.724	264	93501	4.00	ppm	-0.01
System Monitoring Compounds						
2) Nitrobenzene-d5		82		3.35		
Spiked Amount 10.000			Recovery			.50%#
7) 2-Fluorobiphenyl		172		5.64		
Spiked Amount 10.000	Range 43	- 107	Recovery 24494	· =		.40%
14) 2,4,6-Tribromophenol						
Spiked Amount 20.000			Recovery			.70%
22) Terphenyl-d14		244				
Spiked Amount 10.000	Range 45	- 119	Recovery	=	48	.30%
Target Compounds						Qvalue
Naphthalene	5.606	128	168526	4.91	ppm	99
4) 2-Methylnaphthalene	6.206	142	131027	5.40	ppm	94
5) 1-Methylnaphthalene	6.297	142	116306	5.55	ppm	97
8) 1,1'-Biphenyl	6.617	154	137066	5.40	ppm	97
9) Acenaphthylene	7.010	152	202779	6.01	ppm	97
10) Acenaphthene	7.162		116415	5.57	ppm	94
11) Dibenzofuran	7.322	168	168281	6.13	ppm	93
12) Fluorene	7.626	166	147245	5.85	ppm	99
15) Pentachlorophenol	8.292	266	35056	9.65	ppm	
16) Phenanthrene	8.479		193792	5.55	ppm	
17) Anthracene	8.524		102437	2.57	ppm	
18) Carbazole	8.666	167	106063	2.92		
19) Fluoranthene	9.557		234083	5.36		98
21) Pyrene	9.783		234984	5.07		97
23) Benzo[a]anthracene	11.253		103768	2.42		98
24) Chrysene	11.303	228	93133	2.46	ppm	98
26) Benzo[b]fluoranthene	13.016	252	90804	2.56		
27) Benzo[k]fluoranthene	13.070	252	82666	2.45	ppm	94
28) Benzo[a]pyrene	13.611	252	82282	2.48		
29) Indeno[1,2,3-cd]pyrene	15.884 15.953	276	66591	2.61		
30) Dibenz[a,h]anthracene				2.62		93
31) Benzo[g,h,i]perylene	16.327	276	75327	2.47	ppm	88

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4338\

Data File: W097286.D

Acq On : 13 Feb 2017 7:55 pm

Operator : fouads

Sample : ic4338-3 Inst : MSBNA01

Misc : op63755, sw4338, 14.9, , , 1, 1, soil

ALS Vial : 98 Sample Multiplier: 1

Quant Time: Feb 14 08:01:33 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017 Response via : Initial Calibration

simpahf.m Tue Feb 14 08:33:38 2017

Page: 2

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097287.D

Acq On : 13 Feb 2017 8:18 pm Operator : fouads

Operator : fouads
Sample : icc4338-4

Sample : icc4338-4 Inst : MSBNA01

Misc : op63755,sw4338,14.9,,,1,1,soil
ALS Vial : 97 Sample Multiplier: 1

Quant Time: Feb 14 08:01:35 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.586	136	134355	4.00	mqq	0.00
6) Acenaphthene-d10	7.135	164	79791	4.00		0.00
13) Phenanthrene-d10	8.459	188	127548	4.00	ppm	0.00
20) Chrysene-d12	11.267	240	100499	4.00	ppm	-0.01
25) Perylene-d12	13.725	264	91230	4.00	ppm	-0.01
System Monitoring Compounds						
2) Nitrobenzene-d5	4.966	82	98498	6.77	ppm	0.01
Spiked Amount 10.000	Range 40	- 105	Recove			.70%
7) 2-Fluorobiphenyl	6.531		250672	11.13	ppm	0.00
Spiked Amount 10.000	Range 43	- 107	Recove	ery =	111.	.30%#
14) 2,4,6-Tribromophenol	7.842	330	48219	20.23	ppm	0.01
Spiked Amount 20.000	Range 42	- 108	Recove			.15%
22) Terphenyl-d14	9.944	244	206919	9.93	ppm	0.02
Spiked Amount 10.000	Range 45	- 119	Recove	ery =	99.	.30%
Target Compounds						Qvalue
3) Naphthalene	5.605	128	329814	10.02	ppm	99
4) 2-Methylnaphthalene	6.212	142	246592	11.04		92
5) 1-Methylnaphthalene	6.296	142	220361	11.34		95
8) 1,1'-Biphenyl	6.616	154	265708	10.48	ppm	97
9) Acenaphthylene	7.011	152	386432	11.70	ppm	98
10) Acenaphthene	7.163	153	221857	10.64		96
11) Dibenzofuran	7.322	168	303452	11.27	ppm	94
12) Fluorene	7.627	166	269071	10.91	ppm	98
15) Pentachlorophenol	8.292	266	82534	24.47	ppm	
16) Phenanthrene	8.479	178	353722	10.91	ppm	99
17) Anthracene	8.523	178	201123	5.67	ppm	98
18) Carbazole	8.666	167	195347	6.10		96
19) Fluoranthene	9.556	202	413204	10.68		97
21) Pyrene	9.787	202	431770	10.04		98
23) Benzo[a]anthracene	11.253	228	199968	4.95	ppm	
24) Chrysene	11.307	228	172638	4.84		99
<pre>26) Benzo[b] fluoranthene</pre>	13.017	252	165853	4.80		95
<pre>27) Benzo[k]fluoranthene</pre>	13.066	252	157888	4.80		95
28) Benzo[a]pyrene	13.617		161131	4.99		96
29) Indeno[1,2,3-cd]pyrene	15.885	276	127435	5.12		92
30) Dibenz[a,h]anthracene	15.954		123341	5.28		94
31) Benzo[g,h,i]perylene	16.328	276	142576	4.78	ppm	86

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097287.D

Acq On : 13 Feb 2017 8:18 pm

Operator : fouads

Sample : icc4338-4 Inst : MSBNA01

Misc : op63755,sw4338,14.9,,,1,1,soil

ALS Vial : 97 Sample Multiplier: 1

Quant Time: Feb 14 08:01:35 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017 Response via : Initial Calibration

simpahf.m Tue Feb 14 08:33:43 2017

SGS

Quantitation Report (Qedit)

Data Path : C:\msdchem\1\DATA\SW4338\

Data File: W097287.D

: 13 Feb 2017 8:18 pm Acq On

: fouads Operator

Sample : icc4338-4 Inst : MSBNA01

: op63755, sw4338, 14.9, , , 1, 1, soil Misc

ALS Vial : 97 Sample Multiplier: 1

Quant Time: Feb 14 08:01:35 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017 Response via : Initial Calibration

138 of 383 **ACCUTEST**

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097288.D

Acq On : 13 Feb 2017 8:41 pm Operator : fouads

Operator : fouads
Sample : ic4338-5

Sample : ic4338-5 Inst : MSBNA01

Misc : op63755,sw4338,14.9,,,1,1,soil ALS Vial : 96 Sample Multiplier: 1

Quant Time: Feb 14 08:01:37 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.588	136	154493	4.00	mqq	0.00
6) Acenaphthene-d10	7.136	164	84735	4.00		0.00
13) Phenanthrene-d10	8.459	188	120114	4.00	mag	0.00
20) Chrysene-d12	11.268	240	89208	4.00		
25) Perylene-d12	13.725		84562	4.00		
System Monitoring Compounds						
2) Nitrobenzene-d5	4.969	82	163308	9.76	maa	0.01
Spiked Amount 10.000	Range 40					.60%
7) 2-Fluorobiphenyl	_	172		15.85		
Spiked Amount 10.000	Range 43		Recove			.50%#
14) 2,4,6-Tribromophenol	7.842	330		30.78		
Spiked Amount 20.000	Range 42		Recove			.90%#
22) Terphenyl-d14	9.944		249391	13.64	mqq	0.02
Spiked Amount 10.000	Range 45	- 119	Recove			.40%#
Target Compounds						Qvalue
3) Naphthalene	5.601	128	537184	14.19	mqq	98
4) 2-Methylnaphthalene	6.208	142	375329	15.06		97
5) 1-Methylnaphthalene	6.299	142	340058	15.61		96
8) 1,1'-Biphenyl	6.618	154	408912	15.19	ppm	97
9) Acenaphthylene	7.011	152	559645	16.21	ppm	98
10) Acenaphthene	7.163	153	314951	14.22	ppm	96
11) Dibenzofuran	7.322	168	452271	16.08	ppm	95
12) Fluorene	7.627	166	378147	14.64	ppm	98
15) Pentachlorophenol	8.292	266	126003	39.68	ppm	
16) Phenanthrene	8.479	178	466660	15.28	ppm	99
17) Anthracene	8.523	178	258693	8.00	ppm	99
18) Carbazole	8.666	167	246451	8.51		96
19) Fluoranthene	9.556	202	526442	15.04		97
21) Pyrene	9.782	202	544407	14.46		96
23) Benzo[a]anthracene	11.253		242320	6.75		
24) Chrysene	11.307		222391	7.03		
<pre>26) Benzo[b]fluoranthene</pre>	13.022	252	219886	6.86		95
<pre>27) Benzo[k]fluoranthene</pre>	13.066		202266	6.63		
28) Benzo[a]pyrene	13.612		210822	7.04		95
29) Indeno[1,2,3-cd]pyrene	15.890	276	186142	8.06		97
30) Dibenz[a,h]anthracene	15.954		169838	7.84		93
31) Benzo[g,h,i]perylene	16.328	276	204963	7.42	ppm	84

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Cal Report:

W097288.D

(QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4338\

Data File: W097288.D

Acq On : 13 Feb 2017 8:41 pm

Operator : fouads

: ic4338-5 Sample Inst : MSBNA01

Quantitation Report

: op63755, sw4338, 14.9, , , 1, 1, soil Misc

Sample Multiplier: 1 ALS Vial : 96

Quant Time: Feb 14 08:01:37 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update: Mon Feb 13 16:39:13 2017 Response via : Initial Calibration

simpahf.m Tue Feb 14 08:33:47 2017

140 of 383 SGS **ACCUTEST**

Page: 2

7.6.5

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097289.D

Acq On : 13 Feb 2017 9:04 pm Operator : fouads

Operator : fouads
Sample : ic4338-6

Sample : ic4338-6 Inst : MSBNA01

Misc : op63755,sw4338,14.9,,,1,1,soil ALS Vial : 95 Sample Multiplier: 1

Quant Time: Feb 14 08:01:39 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
<pre>Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 13) Phenanthrene-d10 20) Chrysene-d12 25) Perylene-d12</pre>	5.587 7.135 8.460 11.268 13.724	240	149144 84778 124750 88447 81699	4.00 4.00 4.00 4.00 4.00	ppm ppm	0.00 0.00 0.00
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 10.000 7) 2-Fluorobiphenyl Spiked Amount 10.000 14) 2,4,6-Tribromophenol Spiked Amount 20.000 22) Terphenyl-d14 Spiked Amount 10.000	Range 43 7.841	- 105 172 - 107 330 - 108 244	473272 Recove 88527 Recove	ery = 19.92 ery = 37.98 ery = 19.15	127 ppm 199 ppm 189 ppm	.90%# 0.01 .20%# 0.01
Target Compounds 3) Naphthalene 4) 2-Methylnaphthalene 5) 1-Methylnaphthalene 8) 1,1'-Biphenyl 9) Acenaphthylene 10) Acenaphthene 11) Dibenzofuran 12) Fluorene 15) Pentachlorophenol 16) Phenanthrene 17) Anthracene 18) Carbazole 19) Fluoranthene 21) Pyrene 23) Benzo[a]anthracene 24) Chrysene 26) Benzo[b]fluoranthene 27) Benzo[b]fluoranthene 28) Benzo[a]pyrene 29) Indeno[1,2,3-cd]pyrene 30) Dibenz[a,h]anthracene 31) Benzo[g,h,i]perylene	5.606 6.213 6.297 6.617 7.010 7.162 7.322 7.626 8.293 8.480 8.524 8.667 9.557 9.783 11.254 11.308 13.070 13.616 15.893 15.952 16.326	142 142 154 152 153 168 166 266 178 167 202 202 228 228 252 252 276	479965 439465 523235 732740 419986 558518 511676 174639 639918 346526 327199 708690 704841 324712 297927 269641 272402	17.68 20.89 21.70 19.43 21.62 18.95 20.14 20.22 52.95 20.17 10.74 11.46 20.57 19.18 9.13 9.50 8.71 9.25 9.54 10.74 9.83	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	94 88

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

W097289.D Cal Report:

> Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4338\

Data File: W097289.D

: 13 Feb 2017 Acq On 9:04 pm

Operator : fouads

: ic4338-6 Sample Inst : MSBNA01

: op63755, sw4338, 14.9, , , 1, 1, soil Misc

ALS Vial : 95 Sample Multiplier: 1

Quant Time: Feb 14 08:01:39 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Mon Feb 13 16:39:13 2017 Response via : Initial Calibration

simpahf.m Tue Feb 14 08:33:53 2017

142 of 383 **ACCUTEST**

7.6.6

Page: 2

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097290.D

Acq On : 13 Feb 2017 9:27 pm Operator : fouads

operator : fouads
Sample : ic4338-7

Sample : ic4338-7 Inst : MSBNA01

Misc : op63755,sw4338,14.9,,,1,1,soil
ALS Vial : 94 Sample Multiplier: 1

Quant Time: Feb 14 08:09:40 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Tue Feb 14 08:09:11 2017

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
<pre>Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 13) Phenanthrene-d10 20) Chrysene-d12 25) Perylene-d12</pre>	5.586 7.135 8.460 11.273 13.724	240	140616 76981 125724 94901 87235	4.00 4.00 4.00 4.00 4.00	ppm ppm	0.00 0.00 0.00
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 10.000 7) 2-Fluorobiphenyl Spiked Amount 10.000 14) 2,4,6-Tribromophenol Spiked Amount 20.000 22) Terphenyl-d14 Spiked Amount 10.000	Range 43 7.848 Range 42 9.945	- 105 172 - 107 330 - 108	806570 Recov 169287 Recov	33.51 ery = 72.06 ery = 33.00	224 ppm 335 ppm 360 ppm	.00%# 0.01 .10%# 0.02
Target Compounds 3) Naphthalene 4) 2-Methylnaphthalene 5) 1-Methylnaphthalene 8) 1,1'-Biphenyl 9) Acenaphthylene 10) Acenaphthene 11) Dibenzofuran 12) Fluorene 15) Pentachlorophenol 16) Phenanthrene 17) Anthracene 18) Carbazole 19) Fluoranthene 21) Pyrene 23) Benzo[a]anthracene 24) Chrysene 26) Benzo[b]fluoranthene 27) Benzo[k]fluoranthene 28) Benzo[a]pyrene 29) Indeno[1,2,3-cd]pyrene 30) Dibenz[a,h]anthracene 31) Benzo[g,h,i]perylene	13.621	142 142 154 152 153 168 166 266 178 167 202 202 228 228 252 252 276	1208723 723386 969602 853067 386054	31.68 31.80 33.85 36.65 34.96 35.95 35.07 33.35 116.14 37.51 18.59 18.88 34.66 32.11 16.92 17.58 16.00 16.72 16.86 19.05 19.65 17.48	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	92 88 98 97 98 80 96 95 99 97

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Cal Report: W097290.D

> Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\SW4338\

Data File: W097290.D

Acq On : 13 Feb 2017 9:27 pm

: fouads Operator

: ic4338-7 Sample Inst : MSBNA01

: op63755, sw4338, 14.9, , , 1, 1, soil Misc

ALS Vial : 94 Sample Multiplier: 1

Quant Time: Feb 14 08:09:40 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update: Tue Feb 14 08:09:11 2017 Response via : Initial Calibration

simpahf.m Tue Feb 14 08:34:00 2017

SGS

Page: 2

144 of 383 **ACCUTEST**

7.6.7

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097291.D

Acq On : 13 Feb 2017 9:49 pm Operator : fouads

Operator : fouads
Sample : icv4338-4

Sample : icv4338-4 Inst : MSBNA01

Misc : op63755,sw4338,14.9,,,1,1,soil ALS Vial : 93 Sample Multiplier: 1

Quant Time: Feb 14 08:14:58 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Tue Feb 14 08:14:18 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards 1) Naphthalene-d8 6) Acenaphthene-d10 13) Phenanthrene-d10 20) Chrysene-d12 25) Perylene-d12	5.586 7.136 8.459 11.268 13.725	164 188 240	140501 77715 120707 87460 82840	4.00 4.00 4.00 4.00 4.00	ppm ppm	0.00 0.00 -0.01
System Monitoring Compounds 2) Nitrobenzene-d5 Spiked Amount 10.000 7) 2-Fluorobiphenyl Spiked Amount 10.000 14) 2,4,6-Tribromophenol Spiked Amount 20.000 22) Terphenyl-d14 Spiked Amount 10.000	Range 40 0.000 Range 43 0.000 Range 42	172 - 107 330 - 108 244		0.00 y = 0.00 y = 0.00	0 ppm 0 ppm 0 ppm	.00%#
Target Compounds 3) Naphthalene 4) 2-Methylnaphthalene 5) 1-Methylnaphthalene 9) Acenaphthylene 10) Acenaphthene 11) Dibenzofuran 12) Fluorene 15) Pentachlorophenol 16) Phenanthrene 17) Anthracene 18) Carbazole 19) Fluoranthene 21) Pyrene 23) Benzo[a]anthracene 24) Chrysene 26) Benzo[b]fluoranthene 27) Benzo[k]fluoranthene 28) Benzo[a]pyrene 29) Indeno[1,2,3-cd]pyrene 30) Dibenz[a,h]anthracene 31) Benzo[g,h,i]perylene	5.605 6.212 6.297 7.011 7.163 7.323 7.627 8.291 8.479 8.523 8.666 9.556 9.783 11.253 11.307 13.022 13.066 13.612 15.889 15.948 16.327	142 142 152 153 168 166 266 178 167 202 202 228 228 252 252	298625 207951 208314 346610 193759 286328 239430 54129 297750 157737 162446 352219 344107 157704 144897 135954 126441 129255 112372 100617 116781	8.76 8.45 9.11 9.63 9.22 10.20 9.65 17.36 8.72 4.22 4.53 9.62 8.90 4.64 4.80 4.42 4.27 4.40 4.66 4.37 4.28	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	99 100 100 99 97 100 98 99 100 99 99 98 99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4338\

Data File : W097291.D

Acq On : 13 Feb 2017 9:49 pm

Operator : fouads

Sample : icv4338-4 Inst : MSBNA01

Misc : op63755,sw4338,14.9,,,1,1,soil

ALS Vial : 93 Sample Multiplier: 1

Quant Time: Feb 14 08:14:58 2017

Quant Method: C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Tue Feb 14 08:14:18 2017 Response via : Initial Calibration

simpahf.m Tue Feb 14 08:34:06 2017

SGS

Page: 2

146 of 383 ACCUTEST

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098384.D

Acq On : 29 Mar 2017 9:40 am Operator : fouads

Sample : cc4339-4 Inst : MSBNA01

: op64229,sw4369,15.0,,,1,1,soil Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 29 09:59:18 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Compound	R.T.	QIon	Response	Conc U	nits	Dev(Min)
Internal Standards						
1) Naphthalene-d8	5.534	136	111403	4.00	maga	0.00
6) Acenaphthene-d10	7.086		62852	4.00		0.00
13) Phenanthrene-d10	8.406		104586	4.00		
20) Chrysene-d12	11.195		79334	4.00		
25) Perylene-d12	13.636		71183	4.00		0.00
System Monitoring Compounds						
2) Nitrobenzene-d5	4.921	82	70778	8.90	nnm	0.00
Spiked Amount 10.000	Range 40				89.	
7) 2-Fluorobiphenyl	_	172		9.48		-0.02
Spiked Amount 10.000	Range 43					.80%
14) 2,4,6-Tribromophenol	7.792			18.73		0.00
Spiked Amount 20.000	Range 42					.65%
22) Terphenyl-d14	9.881	244		9.10		0.00
Spiked Amount 10.000		- 119				.00%
-				- 1		
Target Compounds						Qvalue
3) Naphthalene	5.554		231569	8.57		100
4) 2-Methylnaphthalene	6.160		177772	9.15		98
5) 1-Methylnaphthalene	6.245		156219	8.61		96
8) 1,1'-Biphenyl	6.564		186490	9.07		95
Acenaphthylene	6.954		274229	9.41		98
10) Acenaphthene	7.107		156414	9.21		96
11) Dibenzofuran	7.266		212454	9.32		
12) Fluorene	7.571		193190	9.63		97
15) Pentachlorophenol	8.243		65254	23.80	ppm	99
16) Phenanthrene	8.425		266845	9.02		99
17) Anthracene	8.470		144175	4.45		99
18) Carbazole	8.617		143773	4.62	ppm	97
19) Fluoranthene	9.498		320041	10.10		100
21) Pyrene	9.724		321172	9.16	ppm	99
23) Benzo[a]anthracene	11.175	228	145753	4.73	ppm	99
24) Chrysene	11.229		131025	4.78	ppm	99
<pre>26) Benzo[b]fluoranthene</pre>	12.932	252	119787	4.53	ppm	99
<pre>27) Benzo[k]fluoranthene</pre>	12.987		116969	4.59	ppm	97
28) Benzo[a]pyrene	13.528		114993	4.56	ppm	99
29) Indeno[1,2,3-cd]pyrene	15.810		90022	4.34		94
30) Dibenz[a,h]anthracene	15.864	278	86001	4.35	ppm	97
31) Benzo[g,h,i]perylene	16.253	276	99489	4.25	ppm	99

(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098384.D

Acq On : 29 Mar 2017 9:40 am

Operator : fouads

Sample : cc4339-4 Inst : MSBNA01

Misc : op64229,sw4369,15.0,,,1,1,soil

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 29 09:59:18 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:11:15 2017

SGS

Quantitation Report (Qedit)

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098384.D

Acq On : 29 Mar 2017 9:40 am

Operator : fouads

Sample : cc4339-4 Inst : MSBNA01

Misc : op64229, sw4369, 15.0, , , 1, 1, soil

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 29 09:59:18 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 14:15:27 2017

SGS

Page: 1

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098415.D

Acq On : 29 Mar 2017 9:32 pm Operator : fouads

: ecc4339-4 Inst : MSBNA01 Sample

: op64357,sw4369,30.3,,,1,2,soil Misc

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 30 09:25:37 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017

Response via : Initial Calibration

Internal Standards 1) Naphthalene-d8						
6) Acenaphthene-d10 13) Phenanthrene-d10 20) Chrysene-d12 25) Perylene-d12	5.535 7.079 8.401 11.185 13.626	188 240		4.00 4.00 4.00 4.00 4.00	ppm ppm	-0.01 -0.01
7) 2-Fluorobiphenyl Spiked Amount 10.000 R 14) 2,4,6-Tribromophenol	ange 43 7.786	- 105 172 - 107 330 - 108	Recover 34844 Recover	9.43 ry = 20.05	96 ppm 94 ppm 100	.70% -0.02 .30% -0.01
Spiked Amount 10.000 R	9.077 ange 45		Recove			.60% Qvalue
Target Compounds 3) Naphthalene 4) 2-Methylnaphthalene 5) 1-Methylnaphthalene 8) 1,1'-Biphenyl 9) Acenaphthylene 10) Acenaphthene 11) Dibenzofuran 12) Fluorene 15) Pentachlorophenol 16) Phenanthrene 17) Anthracene 18) Carbazole 19) Fluoranthene 21) Pyrene 23) Benzo[a]anthracene 24) Chrysene 26) Benzo[b]fluoranthene 27) Benzo[k]fluoranthene 28) Benzo[a]pyrene 29) Indeno[1,2,3-cd]pyrene 30) Dibenz[a,h]anthracene	5.548 6.154 6.239 6.565 6.955 7.107 7.266 7.571 8.239 8.421 8.470 8.613 9.719 11.170 11.224 12.927 13.518 15.795 15.854	142 142 154 152 153 168 166 266 178 167 202 202 228 228 252 252 276	88510	8.75 9.30 9.00 9.39 9.20 9.74 9.94 23.31 8.86 4.48 4.52 9.58 8.46 4.63 4.75 4.63 4.51 4.63 4.30	ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	98 91 97 98 99 99 93 98 100 99 99 99 99 99 99 99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path : C:\msdchem\1\DATA\SW4369\

Data File : W098415.D

Acq On : 29 Mar 2017 9:32 pm

Operator : fouads

Sample : ecc4339-4 Inst : MSBNA01

Misc : op64357, sw4369, 30.3,,,1,2, soil

ALS Vial : 2 Sample Multiplier: 1

Quant Time: Mar 30 09:25:37 2017

Quant Method : C:\msdchem\1\METHODS\simpahf.m

Quant Title : PAH's by 8270 SIM

QLast Update : Thu Mar 02 08:24:54 2017 Response via : Initial Calibration

simpahf.m Thu Mar 30 17:11:33 2017

SGS

S 151 of 383 ACCUTEST

38 of 100

		-	≪	ا الادر ال																				
2881,176 8188 651 0515	COMMENTS		Town Office	12		V faw / most 2 225	N.A.						,	TUNE PARTY	ecv payled				> CONRPARE				(0) (1	<u>(</u> 6)
ANALYST: F: S MECL2 LOT #: 1.6 DFTPP RESPONSE: EM VOLTAGE: 2.1	MANUALLY INTEGRATED PEAKS RATIONALE, PEAK #				in a second seco																	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	kaseline, BR Baseline F	Analyst's Signatur
MS BNA01-W ANALYSIS LOG ODS: 8270 SIM ON H WETHOD: FMF-04H-5 .METHOD: SIM ON H DATE: 01-224-17-0214 ATCH: SW 4338-14-17-17-0214 ATCH: SW 4338-14-17-0214 ATCH: SW 4388-14-17-0214 ATCH: SW 4488-14-17-0214 ATCH: SW 4488-14-17-0214 ATCH: SW 4488-14-17-0214 ATCH: SW 4488-14-17-0214 ATCH: S	DF MANUALLY RAT			Bo +300		カメ									180132	136 17.	20 +380	056705	oet+	05,105)	200120	7	eak, PDB Poorly Defined B list the reason for correctio	
W HAS	ОР Г ВАТСН	x &	<u> </u>		7 64	*	1	529			9,			- j.	·		10%	36	7 <u>8</u>	T	200		SP Split Pe	
BNA01-V S: 82.2 THOD: ETHOD: ATE: CH: SW		3555	->	38603	647.90	1	1	52955					1	1278	50955	52605							oing Peak	
METHODS: 8-2 ACQ. METHOD: PROC. METHOD: CALIB. DATE: RUN BATCH: SV	SAMPLE METHOD	AFTINP	-	60£ 28	_			457AP	1	dC2.6	dFT.	, ,		Δ	otr8								OP Overlaps t due to a tra	
OD 2 W-1	SAMPLE ID	4FTOP	de top	4324.4	19-2636910	640943-5'	Alle	dFTR.D	゛゛	h-h78h 22	OFTOP	, ,		SETOP	n-125h 27	104338-1	2-828171	5-888ho!	h- \$52h 22!	5 - 655h71	9- 85471	E-85h7?	Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline, BR Baseline FAII strikeouts must be initialed and dated. If correction was not due to a transcription error, then list the reason for correction.	06/16
SBNA01	ALS #	1	,	2	u	Ч	ķ	1	1	2													onale SO itialed an	ME rev.
SGS ACCUTEST-ORLANDO DATE: el 19 13 COLUMN TYPE: 91207 AMOUNT INJECTED: INSTRUMENT: MSBNA01-W	DATA FILE	P 97 60	0£	16	16	73	74	76	C	St.	6¢	08	16	28	92	p 8	85	98	47	88	36	36	ual Integration Ratic rikeouts must be ini	msbna01_w_log.xls ME rev. 06/16
SGS A DATE COLUI NSTR		≥	3	≥	≥	≷	≥	>	≥	8	>	≥	≥	≥	≥	≥	≥	≥	≥	₹,	彡	>	Mant. All sti	-

152 of 383
ACCUTEST
FA42152

SGS ACCUTEST-ORLANDO DATE: 0ン/13/17 COLUMN TYPE: 8ンシのAMOUNT INJECTED:	1.0RLA 3//2 82 TED	7	METHODS: \$1.0 ACQ. METHOD: PROC. METHOD:	N S S	MALYSIS I		ANALYST: F-5 MECL2 LOT #: 16 DFTPP RESPONSE:	5140	
INSTRUMENT MSBNA01-W	MSBNA		CALIB. DAT	E:	37.7	4329 1	EM VOLTAGE: 18 ISTD Lot #: 55657	78	
DATA FILE	ALS #	SAMPLE ID	SAMPLE METHOD	OP 1 BATCH	OF	MANUALLY II RATIO	MANUALLY INTEGRATED PEAKS RATIONALE PFAK#	COMMENTS	
W 097291	93	4-8584VS		I 🔨	diret C			A111 0 Min	
2b M	2 3	063643.00						. _	
W 43	3 4	L'40483.40r		7	マス			10404	
W SH	~	1-290/h.2		5566900	204	į		1 Olles Out Motors	+ ingly
W 95		F-41062-4			107			- Sout of 20ter	
W 96		6.41062-6			hx			7	7
W & 3		6-		1	280		Yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i yan i ya	7	
W	8	F.40887-3		2196960		- Pranticular		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
W ag		1-58,04-1			- 1			\	
west too w	=	h-			_			\	
W W	12	9-							
W 02	12	1-138 03:1							
w 83	14	2,							
W	7	-3	-				The state of the s	\	
W BS		4				·			
W		2		1					
W	4	eu 43.19 - 4	- }	50955	Je + 320			March	
X		3	-						
W				<i>y</i>					
M				17/100	6	Tallian and the state of the st			
M	\prod								
Manual Integration FA	tationale S initialed	Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline, BR Baseline All strikeouts must be initialed and dated. If correction was not due to a transcription error then list the reason for correction	DP Overlapping due to a transc	y Peak, SP Spli	it Peak, PDE	3 Poorly Defined Basel	line, BR Baseline		(b) (
msbna01_w_log.xls ME rev. 06/16	.xls ME re	ı. 06/16				4	Analyst's Signat		6)
					39 of 100				

Analyst's Sig

7 of 100

_			METHODS:		ここと	WINALIOI. Y	
'PE:	977.8	2	ACQ. METHOD:	類	Fork S	MECL2 LOT # (6	5 14 O
AMOUNT INJECTED INSTRUMENT: MSB	AMOUNT INJECTED: NSTRUMENT: MSBNA01-W	-W	CALIB. DATE:	HOU: GA	2/12/13	EM VOLTAGE: 1	
			RUN BATCH:	h MS	69.5	ISTD Lot #: << 6 4 9	
DATA FILE	ALS #	SAMPLE ID	SAMPLE METHOD	OP BATCH	DF	MANUALLY INTEGRATED PEAKS RATIONALE, PEAK #	COMMENTS
383	-	dFT OP	deTap	5475	7*		Tune for
7	2	4-126477	220	>>955	180 130		cc/ page
35	~	59-555 H9do	_	ssihada	o/x		,
30	5	0964356-85		0/14356	c/x		1
93	` ~	8m. F254300		£ 55 490 a) 7		NS
88	a	- 65		7	d×	- Long to	\
20	4	ON64367-MB		£ 984940	17		CN
05	80	197		1		A design of the second	(
- 8	s'	1-251 249					
25	٥	2-				in the state of th	
25	11	67					
84	5	<i>b</i> -					
25	13	3)
36	<u>></u>	9				The state of the s)
2	<u>\</u>	4					\
88	9)	8,				is the second se)
65	<u>ۍ</u>	- MS)
08 H	13	OSM-					
0	19	- 8					
20	ળ	F-42306-1					NN V
4	ス	7/			,		NO

msbna01_w_log.xls ME rev. 06/16

SGS ACCUTEST-ORLANDO	JRLAN		MS B	MS BNA01-W ANALYSIS LOG	ALYSIS L	500		
DATE: 03/29	4		METHODS: ACO METHOD:	100 EM	NAME OF THE PARTY	MECL2 LOT #: 16	0 h/ S	
AMOUNT INJECTED	₹ 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7	PROC. METHOD	اداً	X 8200	DFTPP RESPONSE:	23 ch 252	
INSTRUMENT: MSBNA01-W	SBNA01		CALIB. DAT	ٳ		EM VOLTAGE: 13	28	
		-	KUN BAIC	AND T	765	ISTOCIAL STATE		
DATA FILE	ALS	SAMPLE ID	SAMPLE	dO	ЭG	MANUALLY INTEGRATED PEAKS	COMMENTS	
	#		METHOD	ВАТСН		RATIONALE, PEAK #		
404 8 POW	22	F-42306-3	get ye	£95h7do	~ ×		L	
w 05	n	F42323-1					`	
	7.0	7						
TO W	گ	1-062 74-7					l	
	22	1-10524-7					RENSY MAR	ţ
w 09	4	7,		1	1			7
0) M	ري ر	F.41384-15/L		ON4357	λ×		L	
×	25	/W/		. ,				
7. W	οĆ	Om-					\	
(3) W	1,4	791-						
> -	125	711-			_			
× ~	7	41. 939.4	-	32905	130132			1
>								
>					U			
M					12			
8								
W					63/	17		
8								
>						in the state of th		
M						August engage and a second and a second and a second and a second and a second and a second and a second and a		
\ >								
Manual Integration Rat	tionale S(Manual Integration Rationale SOP QA029: MP Missed Peak,		ng Peak, SP Sp	olit Peak, Pt	OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline, BR Baseline Ripple, PII Poor Instrument Integration	or Instrument Integration	

Analyst's Signature: Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorty Defined Base All strikeouts must be initialed and dated. If correction was not due to a transcription error, then list the reason for correction.

msbna01_w_log.xls ME rev. 06/16

8 of 100

155 of 383 ACCUTEST FA42152 SGS

SGS ACCUTEST - O						AMPLE PREP REPORT	
Date/Time: 03/28// Started {mm/dd/yy 24:	+ 08	:30			Prep Metho	d: (3550C) 3580A or Method (circle)	
Date/Time <u>63 /28 //</u> Finished (mm/dd/yy 24)	يم : 100: يم 00}	Batch#: <u>0</u> P	6436	7_	Analytical M	d: 3550C 3580A or Method (circle)	
Ехт. Ву:	Conc. B	y: AE	Via	led By:	9E	Balance ID: <u>ADVPYc</u> &	
Sample ID OP 64367 MB	Bottle Number		Surrogate Amount	Spike Amount	Final Volume (ml)	Comments	
OP 64767 BS	X	15.0	10.1ml	osne	1.oul	**************************************	-
FA42152-1		1510					
- 2	 	15.2					-
-4		15.1				1771786	1
- \$	1	15.0					
- 6		15.0	+		 		-
- S	1	15.0	1-1-			MS/MSD	
<u>-9</u>		15.0					
FA42306-1	٧٧ ر	15.1 15.2	 				-
- 3	<u>5</u>	15.5					
FA42323-1	8	12,4					
FA42290-1	9	15.3 15.4				ROCKS	- x
2							= 3/2014
FA 42301-1	6	15.2 15.2	O.Inl		1-ouel		- '
	3	7.6	- W		\ <u>\</u>	NAME:	
FA42152- 8 MS	1	15.0	Oilm	ash	1.0 jul		
_ ਨਿ MSD		15.6	V	Į,			
DUP			<u> </u>	<u> </u>			
Comments:		· · · · · · · · · · · · · · · · · · ·		1		5.4.4	7
Surr. ID: <u>E5840-H</u> Co Spk. ID: <u>E5789A</u> Co						Yer. By BAA Ver. By BAA	
Initial Bath Temp (Therm I	D):	711 H	102	Exchange	Bath/N-Eva	p Temp (Therm ID):	_
Observed Temp ℃: 45				_		Corr. Temp ℃:	
							_
CH2CL2 Lot #170232			kane Lot #_ thanol Lot #		_	Na2SO4 Lot# <u>SS2203</u> Acetone Lot#	
Syringe Filter Lot#			er Paper # <u>-</u>		9	Reagent #	
Copper Lot #		f Sulfur Clean				-	-
(b) (6)		Canar Glean	ing to porte	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.17010110 (00	/ /2	
Relinquisl						Date: <u>03</u> /28/17 Date: <u>3</u> /28/17	
Accepted						Date: 3/28/1/	
						<i>t</i> •	

extsolid 020116.xls

NE 02/16

Section 8

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- · Blank Spike Summaries
- · Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries
- GC Surrogate Retention Time Summaries
- · Initial and Continuing Calibration Summaries

Method: SW846 8330B

Method Blank Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX Project:

Sample OP64396-MB	File ID BB053976.D	DF 1	Analyzed 03/31/17	By EM	Prep Date 03/29/17	Prep Batch OP64396	Analytical Batch GBB1567

The QC reported here applies to the following samples:

FA42152-1, FA42152-2, FA42152-3, FA42152-9

CAS No.	Compound	Result	\mathbf{RL}	MDL	Units Q
2691-41-0	HMX	ND	100	51	ug/kg
121-82-4	RDX	ND	100	50	ug/kg
99-65-0	1,3-Dinitrobenzene	ND	100	50	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	100	50	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	100	50	ug/kg
35572-78-2	2-amino-4, 6-Dinitrotoluene	ND	100	50	ug/kg
19406-51-0	4-amino-2, 6-Dinitrotoluene	ND	100	51	ug/kg
98-95-3	Nitrobenzene	ND	100	50	ug/kg
88-72-2	o-Nitrotoluene	ND	100	50	ug/kg
99-08-1	m-Nitrotoluene	ND	100	50	ug/kg
99-99-0	p-Nitrotoluene	ND	100	50	ug/kg
479-45-8	Tetryl	ND	100	50	ug/kg
99-35-4	1,3,5-Trinitrobenzene	ND	100	50	ug/kg
118-96- 7	2,4,6-Trinitrotoluene	ND	100	50	ug/kg
55-63-0	Nitroglycerine	ND	1000	250	ug/kg
7 8-11- 5	PETN	ND	1000	250	ug/kg

CAS No.	Surrogate Recoveries
---------	----------------------

610-39-9 3,4-Dinitrotoluene Limits

81% 69-134%

ACCUTEST

0.7

Page 1 of 1

Method: SW846 8330B

Blank Spike Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Sample OP64396-BS	File ID BB054004.D	DF 1	Analyzed 04/03/17	By EM	Prep Date 03/29/17	Prep Batch OP64396	Analytical Batch GBB1569

The QC reported here applies to the following samples:

FA42152-1, FA42152-2, FA42152-3, FA42152-9

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
0.001 41 0		0.000	0.440	00	65 146
2691-41-0	HMX	2500	2440	98	75-147
121-82-4	RDX	2500	1970	79	79-126
99-65-0	1,3-Dinitrobenzene	2500	2040	82	77-131
606-20-2	2,6-Dinitrotoluene	2500	2140	86	81-134
121-14-2	2,4-Dinitrotoluene	2500	2110	84	81-128
35572-78-2	2-amino-4, 6-Dinitrotoluene	2500	2260	90	81-127
19406-51-0	4-amino-2, 6-Dinitrotoluene	2500	2030	81	74-125
98-95-3	Nitrobenzene	2500	2290	92	79-135
88-72-2	o-Nitrotoluene	2500	2290	92	79-130
99-08-1	m-Nitrotoluene	2500	2640	106	79-132
99-99-0	p-Nitrotoluene	2500	2310	92	79-134
479-45-8	Tetryl	2500	1980	79	67-130
99-35-4	1,3,5-Trinitrobenzene	2500	2120	85	79-134
118-96- 7	2,4,6-Trinitrotoluene	2500	1770	71	70-123
55-63-0	Nitroglycerine	12500	12000	96	73-121
7 8-11- 5	PETN	12500	11700	94	74-140

CAS No.	Surrogate Recoveries	BSP	Limits
610-39-9	3,4-Dinitrotoluene	87%	69-134%

^{* =} Outside of Control Limits.

Method: SW846 8330B

Laboratory Control Sample Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX Project:

Sample	File ID	DF	Analyzed 04/03/17	By	Prep Date	Prep Batch	Analytical Batch
OP64396-PT1	BB054005.D	1		EM	03/29/17	OP64396	GBB1569

The QC reported here applies to the following samples:

FA42152-1, FA42152-2, FA42152-3, FA42152-9

		Spike	LCS	LCS	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
2691-41-0	HMX	620	530	85	74-124
121-82-4	RDX	5 8 7	40 7	69	67-129
99-65-0	1,3-Dinitrobenzene	1010	838	83	73-119
606-20-2	2,6-Dinitrotoluene	1320	1100	83	7 9-11 7
121-14-2	2,4-Dinitrotoluene	638	486	76	75-121
35572-78-2	2-amino-4, 6-Dinitrotoluene	650	476	73	71-123
19406-51-0	4-amino-2, 6-Dinitrotoluene	94 7	511	54*	64-1 27
98-95-3	Nitrobenzene	1400	1060	76	67-129
88-72-2	o-Nitrotoluene	1460	1090	75	70-124
99-08-1	m-Nitrotoluene	1020	1140	112	67-129
99-99-0	p-Nitrotoluene	1830	1570	86	71-124
479-45-8	Tetryl	2000	372	19*	68-135
99-35-4	1,3,5-Trinitrobenzene	701	591	84	80-116
118-96- 7	2,4,6-Trinitrotoluene	808	515	64*	71-120
55-63-0	Nitroglycerine	1000	807	81	73-124
78-11-5	PETN	1000	989	99	72-128

CAS No.	Surrogate Recoveries	BSP	Limits
610-39-9	3,4-Dinitrotoluene	0%* a	69-134%

(a) Not added.

^{* =} Outside of Control Limits.

Method: SW846 8330B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX Project:

File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
3B053980.D	1	03/31/17	EM	03/29/17	OP64396	GBB1567
3B053981.D	1	03/31/17	EM	03/29/17	OP64396	GBB1567
3B053979.D	1	03/31/17	EM	03/29/17	OP64396	GBB1567
	BB053980.D BB053981.D	BB053980.D 1 BB053981.D 1	BB053980.D 1 03/31/17 BB053981.D 1 03/31/17	BB053980.D 1 03/31/17 EM BB053981.D 1 03/31/17 EM	BB053980.D 1 03/31/17 EM 03/29/17 BB053981.D 1 03/31/17 EM 03/29/17	BB053980.D 1 03/31/17 EM 03/29/17 OP64396 BB053981.D 1 03/31/17 EM 03/29/17 OP64396

The QC reported here applies to the following samples:

FA42152-1, FA42152-2, FA42152-3, FA42152-9

		FA4215	52-1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/kg	Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%	RPD	Rec/RPD
2691-41-0	HMX	99 U		2500	2030	81	2500	1950	78	4	75-147/22
121-82-4	RDX	99 U		2500	1870	75*	2500	2000	80	7	79-126/21
99-65-0	1,3-Dinitrobenzene	99 U		2500	1880	75*	2500	1930	77	3	77-131/15
606-20-2	2, 6-Dinitrotoluene	99 U		2500	1980	79*	2500	2020	81	2	81-134/20
121-14-2	2,4-Dinitrotoluene	99 U		2500	1990	80*	2500	2040	82	2	81-128/17
35572-78-2	2-amino-4,6-Dinitrotoluene	99 U		2500	2070	83	2500	2110	84	2	81-127/15
	4-amino-2,6-Dinitrotoluene	99 U		2500	2000	80	2500	2040	82	2	74-125/23
98-95-3	Nitrobenzene	99 U		2500	2050	82	2500	2070	83	1	79-135/16
88-72-2	o-Nitrotoluene	99 U		2500	2030	81	2500	2100	84	3	79-130/17
99-08-1	m-Nitrotoluene	99 U		2500	2000	80	2500	2060	82	3	79-132/20
99-99-0	p-Nitrotoluene	99 U		2500	2070	83	2500	2120	85	2	79-134/22
479-45-8	Tetryl	99 UJ	J	2500	3570	143* a	2500	3640	146* a	2	67-130/19
99-35-4	1,3,5-Trinitrobenzene	99 UJ	J	2500	1690	68* a	2500	1730	69* a	2	79-134/17
118-96-7	2,4,6-Trinitrotoluene	99 UJ	J	2500	3070	123 a	2500	3110	124* a	1	70-123/16
55-63-0	Nitroglycerine	990 U		12500	11200	90	12500	11400	91	2	73-121/15
7 8-11- 5	PETN	990 U		12500	11900	95	12500	12000	96	1	74-140/16
CAS No.	Surrogate Recoveries	MS		MSD	FA	42152-1	Limits				

87%

81%

69-134%

87%

3,4-Dinitrotoluene

610-39-9

⁽a) Outside DoD QSM control limits.

^{* =} Outside of Control Limits.

Method: SW846 8330B

Duplicate Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX Project:

Sample	File ID	DF	Analyzed 03/31/17 03/31/17	By	Prep Date	Prep Batch	Analytical Batch
OP64396-DUP	BB053984.D	1		EM	03/29/17	OP64396	GBB1567
FA42152-3	BB053983.D	1		EM	03/29/17	OP64396	GBB1567

The QC reported here applies to the following samples:

FA42152-1, FA42152-2, FA42152-3, FA42152-9

		FA42152-3	DUP		
CAS No.	Compound	ug/kg Q	ug/kg Q	RPD I	Limits
2691-41-0	HMX	100 U	ND	nc 2	22
121-82-4	RDX	100 U	ND		21
99-65-0	1,3-Dinitrobenzene	$100~\mathrm{U}$	ND	nc 1	.5
606-20-2	2,6-Dinitrotoluene	$100~\mathrm{U}$	ND	nc 2	20
121-14-2	2,4-Dinitrotoluene	$100~\mathrm{U}$	ND	nc 1	.7
3 5572-7 8 -2	2-amino-4, 6-Dinitrotoluene	$100~\mathrm{U}$	ND	nc 1	.5
19406-51-0	4-amino-2, 6-Dinitrotoluene	100 U	ND	nc 2	23
98-95-3	Nitrobenzene	$100~\mathrm{U}$	ND	nc 1	.6
88-72-2	o-Nitrotoluene	100 U	ND	nc 1	.7
99-08-1	m-Nitrotoluene	$100~\mathrm{U}$	ND	nc 2	0.9
99-99-0	p-Nitrotoluene	$100~\mathrm{U}$	ND	nc 2	22
479-45-8	Tetryl	100 U	ND	nc 1	.9
99-35-4	1,3,5-Trinitrobenzene	$100~\mathrm{U}$	ND	nc 1	.7
118-96- 7	2,4,6-Trinitrotoluene	$100~\mathrm{U}$	ND	nc 1	.6
55-63-0	Nitroglycerine	1000 U	ND	nc 1	.5
7 8-11- 5	PETN	1000 U	ND	nc 1	.6
CAS No.	Surrogate Recoveries	DUP	FA42152-3	Limits	
610-39-9	3,4-Dinitrotoluene	85%	84%	69-134%	

^{* =} Outside of Control Limits.

Method: SW846 8330B

Duplicate Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX Project:

Sample	File ID	DF 1 1	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP64396-DUP2	BB053985.D		03/31/17	EM	03/29/17	OP64396	GBB1567
FA42152-3	BB053983.D		03/31/17	EM	03/29/17	OP64396	GBB1567

The QC reported here applies to the following samples:

FA42152-1, FA42152-2, FA42152-3, FA42152-9

		FA42152-3	DUP		
CAS No.	Compound	ug/kg Q	ug/kg Q	RPD	Limits
2691-41-0	HMX	$100~\mathrm{U}$	ND	nc	22
121-82-4	RDX	$100~\mathrm{U}$	ND	nc	21
99-65-0	1,3-Dinitrobenzene	$100~\mathrm{U}$	ND	nc	15
606-20-2	2,6-Dinitrotoluene	100 U	ND	nc	20
121-14-2	2,4-Dinitrotoluene	$100~\mathrm{U}$	ND	nc	17
35572-78-2	2-amino-4, 6-Dinitrotoluene	$100~\mathrm{U}$	ND	nc	15
19406-51-0	4-amino-2, 6-Dinitrotoluene	100 U	ND	nc	23
98-95-3	Nitrobenzene	$100~\mathrm{U}$	ND	nc	16
88-72-2	o-Nitrotoluene	100 U	ND	nc	17
99-08-1	m-Nitrotoluene	$100~\mathrm{U}$	ND	nc	20
99-99-0	p-Nitrotoluene	100 U	ND	nc	22
479-45-8	Tetryl	100 U	ND	nc	19
99-35-4	1,3,5-Trinitrobenzene	$100~\mathrm{U}$	ND	nc	17
118-96- 7	2,4,6-Trinitrotoluene	100 U	ND	nc	16
55-63-0	Nitroglycerine	1000 U	ND	nc	15
7 8-11- 5	PETN	1000 U	ND	nc	16
CAS No.	Surrogate Recoveries	DUP	FA42152-3	Limits	
610-39-9	3,4-Dinitrotoluene	82%	84%	69-134	%

^{* =} Outside of Control Limits.

Semivolatile Surrogate Recovery Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Method: SW846 8330B Matrix: SO

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1 ^a
FA42152-1	BB053979. D	81
FA42152-2	BB053982. D	81
FA42152-3	BB053983. D	84
FA42152-9	BB053986. D	84
OP64396-BS	BB054004. D	87
OP64396-DUP	BB053984. D	85
OP64396-DUP2	BB053985. D	82
OP64396-MB	BB053976. D	81
OP64396-MS	BB053980.D	87
OP64396-MSD	BB053981.D	87
OP64396-PT1	BB054005.D	0* ^b

Surrogate Recovery Compounds Limits

S1 = 3,4-Dinitrotoluene 69-134%

(a) Recovery from GC signal #1

(b) Not added.

SGS

GC Surrogate Retention Time Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

 Check Std:
 GBB1567-CC1564
 Injection Date:
 03/30/17

 Lab File ID:
 BB053965.D
 Injection Time:
 20:27

Instrument ID: GCBB Method: SW846 8330B

S1 a RT

Lab					
	Lab	Date	Time	S1 ^a	

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	S1 ^a RT
OP64400-BS	BB053969.D	03/30/17	22:27	11.15
OP64400-MB	BB053970.D	03/30/17	22:57	11.15
FA42448-1	BB053971.D	03/30/17	23:27	11.15
OP64400-MS	BB053972.D	03/30/17	23:57	11.14
OP64400-MSD	BB053973.D	03/31/17	00:27	11.13
OP64396-MB	BB053976.D	03/31/17	01:57	11.14

Surrogate Compounds

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #1

SGS 165 of 383
ACCUTEST
FA42152

GC Surrogate Retention Time Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

 Check Std:
 GBB1567-CC1564
 Injection Date:
 03/31/17

 Lab File ID:
 BB053977.D
 Injection Time:
 02:27

03/31/17

03/31/17

06:57

09:03

Instrument ID: GCBB Method: SW846 8330B

S1 a S1 b RT RT

11.12

11.11 11.11

Check Std				11.11	11.11
Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	S1 a RT	S1 ^b RT
FA42152-1	BB053979.D	03/31/17	03:27		11.13
OP64396-MS	BB053980.D	03/31/17	03:57		11.12
OP64396-MSD	BB053981.D	03/31/17	04:27		11.12
FA42152-2	BB053982.D	03/31/17	04:57		11.12
FA42152-3	BB053983.D	03/31/17	05:27		11.12
OP64396-DUP	BB053984.D	03/31/17	05:57		11.12
OP64396-DUP2	BB053985.D	03/31/17	06:27		11.12

Surrogate Compounds

FA42152-9

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #2

GBB1567-ECC156BB053989.D

BB053986.D

(b) Retention time from GC signal #1

GC Surrogate Retention Time Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

 Check Std:
 GBB1569-CC1568
 Injection Date:
 04/03/17

 Lab File ID:
 BB054003.D
 Injection Time:
 08:40

Instrument ID: GCBB Method: SW846 8330B

S1 a RT

Lah	Lah	Date	Time	C1 a	
Check Std				11.07	

Lab	Lab	Date	Time	S1 a
Sample ID	File ID	Analyzed	Analyzed	RT
OP64396-BS	BB054004.D	04/03/17	09:22	11.10
OP64396-PT1	BB054005.D	04/03/17	09:52	0.00

Surrogate Compounds

S1 = 3,4-Dinitrotoluene

(a) Retention time from GC signal #1

SGS 167 of 383
ACCUTEST
FA42152

Sample:

20 50 100 200 500 1000 2000 Avg %RSD

Lab FileID:

GBB1564-ICC1564

BB053784.D

Page 1 of 2

Initial Calibration Summary

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Response Factor Report G1315B

Method : D:\MSDCHEM\1\METHODS\8330B_0324PLUS.M (Chemstation Integrator)
Title : Explosives by 8330A,8330B,8332

Last Update : Mon Mar 27 10:20:22 2017 Response via : Initial Calibration

Calibration Files

Compound

20 =BB053780.D 50 =BB053781.D 100 =BB053782.D 200 =BB053783.D

500 =BB053784.D 1000=BB053785.D 2000=BB053786.D

1)	TNX	2.991	3.172	3.288	3.385	3.254	3.355	3.355	3.257	E3	4.24
2)	HMX	1.953	1.945	1.886	1.957	1.750	1.746	1.809	1.864	E3	5.07
3)	DNX	2.949	2.993	3.051	3.027	2.824	2.842	2.928	2.945	E3	2.98
4)	MNX	2.143	2.116	2.365	2.325	2.323	2.326	2.369	2.281	E3	4.62
5)	RDX								2.014		5.97
6)	1,3,5-Trinitroben										2.48
7)	1,3-Dinitrobenzen										3.21
8)	3,5-Dinitroanilin										31.95
0,	Quadra										31.30
	Response	Ratio	= 0.0	0000 +	4257.	05486	*A + 0	.01852	*A^2		
0.1	2711	2 402	2 625	0 554	2 422	2 060	2 222	2 222	2 402		2 00
9)	Nitrobenzene	3.403	3.635	3.554	3.433	3.268	3.339	3.329	3.423		3.82
10)	Nitroglycerin			4 560	4 650	4 504		4	0.000		
11)	Tetryl								1.586		5.60
12)	2,4,6-Trinitrotol										11.09
13)	2-Amino-4,6-Dinit										4.69
14)	4-Amino-2,6-Dinit										8.28
	3,4-Dinitrotoluen										6.99
16)	2,4-Dinitrotoluen										6.02
17)	2,6-Dinitrotoluen										7.70
18)	o-Nitrotoluene	2.992	2.384	2.430	2.400	2.302	2.366	2.370	2.464	EЗ	9.59
19)	p-Nitrotoluene										4.33
20)	m-Nitrotoluene	3.953	3.659	3.752	3.704	3.474	3.562	3.568	3.667	EЗ	4.29
21)	PETN								0.000	-1	.00
Signal	1 #2										
1)	TNX	5 103	5 062	5 200	5 264	5 068	5 213	5 100	5.172	타 3	1.49
2)	HMX								5.640		23.10
۷)	Quadra										23.10
	Response									9 /	
	Kesponse	Natio	- 0.0	0000 +	4/00.	33119	-A + 0	.07500	"A Z		
3)	DNX								4.795		5.97
4)	MNX	3.494	3.482	3.761	3.724	3.616	3.641	3.714	3.633	EЗ	3.06
5)	RDX								3.182		3.08
6)	1,3,5-Trinitroben	0.964	0.957	0.979	1.003	0.951	0.969	0.990	0.973	E4	1.89
7)	1,3-Dinitrobenzen										3.31
8)	3,5-Dinitroanilin										34.04
- ,	Quadra										
	Response										
9)	Nitrobenzene	3.097	2.856	3.257	3.303	3.076	3.166	3.421	3.168	E.3	5.78
10)									1.287		2.81
11)	Tetrvl								2.340		11.50
12)	2,4,6-Trinitrotol										5.45
13)	2-Amino-4, 6-Dinit										5.43
14)	4-Amino-2, 6-Dinit										14.59
1 J	4 WILLIO 2,0 DILLC	J.JJJ	J. JJZ	7.JIZ	- · JUZ	7.002	¥ J J Z	J.120	7.525	رن	17.00

Initial Calibration Summary Page 2 of 2

Job Number: FA42152 Sample: GBB1564-ICC1564 CAPEGAA Cape Environmental Management Inc. Lab FileID: BB053784.D Account:

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

15)S 3,4-Dinitrotoluen 2.551 0.920 3.672 4.039 3.992 4.064 4.199 3.348 E3 36.10 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9997 Response Ratio = $0.00000 + 3909.57711 *A + 0.14524 *A^2$ 16) 2,4-Dinitrotoluen 2.792 3.017 3.221 3.335 3.225 3.265 3.348 3.172 E3 6.30 6.04 17) 2,6-Dinitrotoluen 3.187 3.520 3.696 3.870 3.601 3.677 3.749 3.614 E3 o-Nitrotoluene 3.520 3.253 3.200 3.368 3.100 3.237 3.250 3.275 E3 4.09 18) 19) p-Nitrotoluene 2.588 2.392 2.529 2.739 2.749 2.896 3.043 2.705 E3 8.22 20) m-Nitrotoluene 3.648 3.084 4.102 3.974 4.114 4.245 4.200 3.909 E3 10.60 21) PETN 1.285 1.211 1.290 1.367 1.324 1.338 1.369 1.312 E3 4.23

(#) = Out of Range

8330B_0324PLUS.M Wed Mar 29 11:27:29 2017

Page 1 of 2

GBB1564-ICV1564 Job Number: FA42152 Sample: BB053787.D

CAPEGAA Cape Environmental Management Inc. Lab FileID: Account:

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Evaluate Continuing Calibration Report

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053787.D\dad1B.ch Vial: 49

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053787.D\dad1A.ch

: 24-Mar-2017, 15:29:05 Acq On Operator: evitam : icv1564-500 Sample Inst : G1315B Misc : op64214,gbb1564,10.0,,,50,1,soil Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

: D:\MSDCHEM\1\METHODS\8330B_0324PLUS.M (Chemstation Integrator) Method

: Explosives by 8330A,8330B,8332 Title Last Update : Mon Mar 27 10:20:22 2017

Response via: Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 15% Max. Rel. Area: 200%

	Compound	Amount Calc.	%Drift Area%	Dev(min)RT Window
1 2 3 4 5	TNX HMX DNX MNX RDX	500.000 513.112 500.000 481.462 500.000 483.804 500.000 521.596 500.000 476.203	-2.6 103 3.7 103 3.2 101 -4.3 102 4.8 102	0.00 1.16-1.76 0.00 1.30-1.90 0.00 1.57-2.17 0.00 2.20-2.80 0.00 2.75-3.55
6 7	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene		9.0 95	
8		Amount Calc. 500.000 531.440	%Drift	
9 10	Nitrobenzene Nitroglycerin	Amount Calc. 500.000 476.096	%Drift 4.8 100	0.00 7.34-8.14
11 12 13 14	Tetryl 2,4,6-Trinitrotoluene 2-Amino-4,6-Dinitrotol 4-Amino-2,6-Dinitrotol	500.000 866.868 500.000 744.635 500.000 492.630 500.000 519.654	-73.4# 180 -48.9# 151 1.5 102 -3.9 108	0.01 9.26-10.06 0.00 9.70-10.50 0.00 10.15-10.95 0.00 10.64-11.44
15 S 16 17 18 19 20 21	3,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene o-Nitrotoluene p-Nitrotoluene m-Nitrotoluene PETN	500.000 473.812 500.000 467.241 500.000 473.271 500.000 489.225 500.000 467.692	5.2 100 6.6 102 5.3 101 2.2 101 6.5 99	0.00 11.58-12.38 0.00 12.02-12.82 0.01 14.99-15.87 0.01 15.49-16.49 0.01 16.35-17.35
****	Signal #2 ****			
1	TNX	500.000 501.911	-0.4 102	0.00 1.16- 1.76
2	нмх	Amount Calc. 500.000 519.056	%Drift -3.8 104	0.00 1.30- 1.90
3 4 5 6	DNX MNX RDX 1,3,5-Trinitrobenzene	Amount Calc. 500.000 477.088 500.000 508.157 500.000 479.305	%Drift 4.6 101 -1.6 102 4.1 100	0.00 1.57- 2.17 0.00 2.20- 2.80 0.00 2.75- 3.55
7	1,3-Dinitrobenzene	500.000 454.488	9.1 93	0.00 5.82- 6.62
		Amount Calc.	%Drift	

Initial Cali	bration Verification		Page 2 of 2
Job Number:	FA42152	Sample:	GBB1564-ICV1564
Account:	CAPEGAA Cape Environmental Management Inc.	Lab FileID:	BB053787.D
Project.	OR/OD Site I OR Site II Fort Bliss TX		

Project:	OB/OD Site I, OB Site II	, Fort Bliss, TX			
8	3,5-Dinitroaniline	500.000 527.274	-5.5 106	0.00	6.25- 7.05

8	3,5-Dinitroaniline	500.000 527.274	-5.5 106	0.00 6.25- 7.05
		Amount Calc.	%Drift	
9	Nitrobenzene	500.000 489.161	2.2 101	0.00 7.34-8.14
10	Nitroglycerin	2500.000 2614.825	-4.6 110	0.01 8.84- 9.84
11	Tetryl	500.000 963.498	-92.7# 197	0.00 9.26-10.06
12	2,4,6-Trinitrotoluene	500.000 635.178	-27.0# 126	0.00 9.71-10.51
13	2-Amino-4,6-Dinitrotol	500.000 495.552	0.9 98	0.00 10.15-10.95
14	4-Amino-2,6-Dinitrotol	500.000 565.896	-13.2 105	0.00 10.64-11.44
15 S	3,4-Dinitrotoluene	Amount Calc.	ODITIC	
		Amount Calc.	%Drift	
16	2,4-Dinitrotoluene	500.000 514.328	-2.9 101	0.00 11.58-12.38
17	2,6-Dinitrotoluene	500.000 512.716	-2.5 103	0.00 12.02-12.82
18	o-Nitrotoluene	500.000 475.339	4.9 100	0.01 14.87-15.87
19	p-Nitrotoluene	500.000 502.135	-0.4 99	0.02 15.49-16.49
20	m-Nitrotoluene	500.000 518.297	-3.7 99	0.01 16.36-17.36
2.1	PETN	2500.000 2954.885	-18.2# 117	0.00 18.31-19.51

(#) = Out of Range SPCC's out = 0 CCC's out = 0 BB053784.D 8330B_0324PLUS.M Wed Mar 29 11:27:18 2017

^{(#) =} Out of Range

Page 1 of 2

Job Number: FA42152 GBB1564-ICV1564 Sample:

Account: CAPEGAA Cape Environmental Management Inc. Lab FileID: BB053788.D

OB/OD Site I, OB Site II, Fort Bliss, TX Project:

```
Evaluate Continuing Calibration Report
```

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053788.D\dad1B.ch Vial: 50

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053788.D\dad1A.ch

Acq On : 24-Mar-2017, 15:59:05 Operator: evitam Sample : icv1564-500,b Inst : G1315B Misc : op64214,gbb1564,10.0,,,50,1,soil Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

: D:\MSDCHEM\1\METHODS\8330B_0324PLUS.M (Chemstation Integrator) Method

: Explosives by 8330A,8330B,8332 Title

Last Update : Mon Mar 27 10:20:22 2017 Response via: Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 15% Max. Rel. Area: 200%

	Compound	Amount	Calc.	%Drift	Area%	Dev(min)R7	Window
1	TNX			NA			
2	HMX			NA			
3	DNX			NA			
4	MNX			NA			
5	RDX			NA			
6	1,3,5-Trinitrobenzene	500.000 4	64.252	7.1	76	0.00 4.	56- 5.36
7	1,3-Dinitrobenzene			NA			
		Amount	Calc.				
8	3,5-Dinitroaniline			NA			
		Amount					
9	Nitrobenzene			NA			
10	Nitroglycerin			NA			
11	Tetryl			NA			
12	2,4,6-Trinitrotoluene	1		NA			
13	2-Amino-4,6-Dinitroto			NA			
14	4-Amino-2,6-Dinitroto	Luen		NA			
15 S	3,4-Dinitrotoluene			NA			
16 17	2,4-Dinitrotoluene 2,6-Dinitrotoluene			NA			
18	o-Nitrotoluene			NA			
19	p-Nitrotoluene			NA			
20	m-Nitrotoluene			NA			
21	PETN			NA			
****	Signal #2 ****						
1	TNX			NA			
_	11477						
		Amount	Calc.				
2	HMX			NA			
		Amount					
3	DNX			NA			
4	MNX			NA			
5	RDX	F00 000 4		NA			F.C. F. 3.C
6 7	1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	500.000 4		11.6 NA			56- 5.36
	· 	Amount	Calc.	%Drift			

Page 2 of 2 **Job Number:** FA42152 Sample: GBB1564-ICV1564 Lab FileID: BB053788.D

CAPEGAA Cape Environmental Management Inc. Account: **Project:** OB/OD Site I, OB Site II, Fort Bliss, TX

8	3,5-Dinitroaniline	NA
	Amount	Calc. %Drift
9	Nitrobenzene	NA
L 0	Nitroglycerin	NA
11	Tetryl	NA
12	2,4,6-Trinitrotoluene	NA
13	2-Amino-4,6-Dinitrotoluen	NA
14	4-Amino-2,6-Dinitrotoluen	NA
	Amount	Calc. %Drift
.5 S	3,4-Dinitrotoluene	NA
	Amount	Calc. %Drift
6	2,4-Dinitrotoluene	NA
. 7	2,6-Dinitrotoluene	NA
.8	o-Nitrotoluene	NA
9	p-Nitrotoluene	NA
0	m-Nitrotoluene	NA
2.1	PETN	NA

(#) = Out of Range BB053784.D 8330B_0324PLUS.M SPCC's out = 0 CCC's out = 0 Wed Mar 29 11:27:19 2017

Continuing Calibration Summary

GBB1567-CC1564 Sample: BB053965.D Lab FileID:

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Evaluate Continuing Calibration Report

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053965.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053965.D\dad1A.ch

Acq On : 30-Mar-2017, 20:27:38 Operator: evitam : cc1564-1000 Sample Inst : G1315B Misc : op64321,gbb1567,10.0,,,50,1,water Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

: D:\MSDCHEM\1\METHODS\8330B_0324PLUS.M (Chemstation Integrator) Method

: Explosives by 8330A,8330B,8332 Title Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 15% Max. Rel. Area: 200%

	Compound	Amount	Calc.	%Drift	Area%	Dev(min)RT Window
1 2 3 4 5 6 7	TNX HMX DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	1000.000	1007.864 944.308 963.864	-0.3 8.9 1.1 -0.8 5.6 3.6 3.7	97 102	0.00 0.00 0.00 0.00	1.14- 1.74 1.27- 1.87 1.54- 2.14 2.15- 2.75 2.69- 3.49 4.46- 5.26 5.71- 6.51
8	3,5-Dinitroaniline	Amount 1000.000	Calc. 982.309	%Drift 1.8	99	0.00	6.13- 6.93
9	Nitrobenzene	Amount 1000.000	949.692	%Drift 5.0	97	0.01	7.25- 8.05
10 11 12 13 14 15 S 16 17 18 19 20 21	Nitroglycerin Tetryl 2,4,6-Trinitrotoluene 2-Amino-4,6-Dinitrotol 4-Amino-2,6-Dinitrotol 3,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene o-Nitrotoluene p-Nitrotoluene m-Nitrotoluene PETN		951.768 972.152 974.897 998.280 921.716 957.049 923.459 929.700 976.302 939.085		98 98 99 101 98 99 97 97	0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.03	9.05- 9.85 9.49-10.29 9.94-10.74 10.42-11.22 10.71-11.51 11.35-12.15 11.81-12.61 14.84-15.72 15.32-16.32 16.22-17.22
1	Signal #2 ***** TNX	1000.000	974.176	2.6	97	0.00	1.14- 1.74
2	НМХ	1000.000		%Drift 3.2	98	0.00	 1.27- 1.87
3 4 5 6 7	DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	Amount 1000.000 1000.000 1000.000 1000.000	980.124 998.706 964.392 979.806	%Drift 2.0 0.1 3.6 2.0 4.2	103 100 100 98 98	0.00 0.00 0.00 0.01 0.00	1.54- 2.14 2.15- 2.75 2.69- 3.49 4.46- 5.26 5.71- 6.51

----- Amount Calc.

%Drift -----

Page 2 of 2

Continuing Calibration Summary

Job Numb Account: Project:	OB/OD Site I, OB Site II, F			Sample: Lab FileID		BB1567-C0 3053965.D	
8	3,5-Dinitroaniline	1000.000	964.390	3.6	97	0.00	6.13- 6.93
		Amount	Calc.	%Drift			
9	Nitrobenzene	1000.000	991.396	0.9	99	0.01	7.25- 8.05
10	Nitroglycerin	5000.000	4791.650	4.2	96	0.02	8.67- 9.67
11	Tetryl	1000.000	1089.015	-8.9	101	0.02	9.05- 9.85
12	2,4,6-Trinitrotoluene	1000.000	1003.955	-0.4	100	0.03	9.49-10.29
13	2-Amino-4,6-Dinitrotol	1000.000	1025.492	-2.5	100	0.02	9.94-10.74
14	4-Amino-2,6-Dinitrotol	1000.000	1144.457	-14.4	104	0.02	10.42-11.22
		Amount	Calc.	%Drift			
15 S	3,4-Dinitrotoluene	1000.000	985.108	1.5	98	0.03	10.71-11.51
		Amount	Calc.	%Drift			
16	2,4-Dinitrotoluene	1000.000	1027.852	-2.8	100	0.03	11.36-12.16
17	2,6-Dinitrotoluene	1000.000	1015.383	-1.5	100	0.03	11.81-12.61
18	o-Nitrotoluene	1000.000	963.972	3.6	98	0.03	14.72-15.72
19	p-Nitrotoluene	1000.000	1076.327	-7.6	101	0.03	15.32-16.32
20	m-Nitrotoluene	1000.000	1043.767	-4.4	96	0.02	16.22-17.22
21	PETN	5000.000	5133.299	-2.7	101	0.02	18.18-19.38

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 0 BB053785.D 8330B_0324PLUS.M Fri Mar 31 10:17:08 2017 (#) = Out of Range

Continuing Calibration Summary

Page 1 of 2 GBB1567-CC1564 Sample: BB053977.D

Lab FileID:

Job Number: FA42152

CAPEGAA Cape Environmental Management Inc. Account:

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Evaluate Continuing Calibration Report

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053977.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053977.D\dad1A.ch

Acq On : 31-Mar-2017, 02:27:29 Operator: evitam : cc1564-1000 Sample Inst : G1315B Misc : op64396,gbb1567,10.0,,,10,1,SOIL Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

: D:\MSDCHEM\1\METHODS\8330B_0324PLUS.M (Chemstation Integrator) Method

: Explosives by 8330A,8330B,8332 Title Last Update : Fri Mar 31 10:06:47 2017 Response via: Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound	Amount	Calc.	%Drift	Area%	Dev(min)RT Window
1 2 3 4 5 6 7	TNX HMX DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	1000.000 1000.000 1000.000 1000.000 1000.000 1000.000 1000.000	877.878 992.256 1013.532 927.027 963.838	0.6 12.2 0.8 -1.4 7.3 3.6 3.6	98	0.00 0.00 0.00 0.00 0.00 0.00	1.14- 1.74 1.27- 1.87 1.54- 2.14 2.15- 2.75 2.69- 3.49 4.46- 5.26 5.71- 6.51
8	3,5-Dinitroaniline	Amount 1000.000	Calc. 968.735	%Drift 3.1	98	0.00	6.13- 6.93
9	Nitrobenzene	Amount 1000.000	937.055	%Drift 6.3			7.25- 8.05
10 11 12 13 14 15 S 16 17 18 19 20 21	Nitroglycerin Tetryl 2,4,6-Trinitrotoluene 2-Amino-4,6-Dinitrotol 4-Amino-2,6-Dinitrotol 3,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene o-Nitrotoluene p-Nitrotoluene m-Nitrotoluene PETN	1000.000 1000.000 1000.000 1000.000	954.336 969.341 965.621 971.471 920.156 958.659 929.973 919.877 963.643 927.266	4.6 3.1 3.4 2.9 8.0 4.1 7.0 8.0 3.6 7.3	98 97 98 98 98 99 100 96 96	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.05- 9.85 9.49-10.29 9.94-10.74 10.42-11.22 10.71-11.51 11.35-12.15 11.81-12.61 14.84-15.72 15.32-16.32 16.22-17.22
****	Signal #2 *****						
1	TNX	1000.000	965.676	3.4	96	0.00	1.14- 1.74
2	НМХ	Amount 1000.000	Calc. 946.712	%Drift 5.3	96	0.00	1.27- 1.87
3 4 5 6 7	DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	Amount 1000.000 1000.000 1000.000 1000.000	962.351 985.355 952.823 969.826	%Drift 3.8 1.5 4.7 3.0 2.2	101 98 99 97 100	0.00 0.00 0.00 0.00 0.00	1.54- 2.14 2.15- 2.75 2.69- 3.49 4.46- 5.26 5.71- 6.51

----- Amount Calc.

%Drift -----

Page 2 of 2

Continuing Calibration Summary

Job Number: FA42152 Sample: GBB1567-CC1564 CAPEGAA Cape Environmental Management Inc. Lab FileID: BB053977.D Account: OB/OD Site I, OB Site II, Fort Bliss, TX **Project:** 3,5-Dinitroaniline 1000.000 943.879 5.6 95 0.00 6.13-6.93 9 10 11 12 13

15 S	3,4-Dinitrotoluene					
		Amount	Calc	%Drift	 	

2,4-Dinitrotoluene 1000.000 1028.045 -2.8 100 0.00 11.36-12.16 2,6-Dinitrotoluene 1000.000 1019.977 -2.0 100 0.00 11.81-12.61 o-Nitrotoluene 1000.000 924.495 7.6 94 0.00 14.72-15.72 p-Nitrotoluene 1000.000 1062.072 -6.2 99 0.00 15.32-16.32 m-Nitrotoluene 1000.000 1024.971 -2.5 94 0.00 16.22-17.22 PETN 5000.000 5201.749 -4.0 102 0.00 18.18-19.38 18 19 20 21

17

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 0 BB053785.D 8330B_0324PLUS.M Fri Mar 31 10:17:09 2017 (#) = Out of Range

Continuing Calibration Summary

Page 1 of 2

Job Number: FA42152 Sample: GBB1567-ECC1564 Lab FileID: BB053989.D

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

Evaluate Continuing Calibration Report

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053989.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053989.D\dad1A.ch

Acq On : 31-Mar-2017, 09:03:03 Operator: evitam : ecc1564-1000 Sample Inst : G1315B Misc : op64396,gbb1567,10.0,,,10,1,SOIL Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

: D:\MSDCHEM\1\METHODS\8330B_0324PLUS.M (Chemstation Integrator) Method

: Explosives by 8330A,8330B,8332 Title Last Update : Fri Mar 31 10:06:47 2017

Response via: Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 15% Max. Rel. Area: 200%

Compound		Amount	%Drift Area% Dev(min)RT Window					
1 2 3 4 5 6 7	TNX HMX DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	1000.000	1004.887 928.614 960.545	-0.3 12.2 0.5 -0.5 7.1 3.9 3.4	94 103 99 98	0.00 0.00 0.00 0.00	1.14- 1.74 1.27- 1.87 1.54- 2.14 2.15- 2.75 2.69- 3.49 4.46- 5.26 5.71- 6.51	
8	3,5-Dinitroaniline		Calc. 973.232	%Drift 2.7	98	0.00	6.13- 6.93	
9 10	Nitrobenzene Nitroglycerin	Amount 1000.000	934.666	%Drift 6.5 NA	96	0.00	7.25- 8.05	
11 12 13	Tetryl 2,4,6-Trinitrotoluene 2-Amino-4,6-Dinitrotol		975.313 975.108	3.4 2.5 2.5	99 98 99	0.00	9.05- 9.85 9.49-10.29 9.94-10.74	
14 15 S 16 17	4-Amino-2,6-Dinitrotol 3,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene	1000.000 1000.000 1000.000	933.711 965.904	2.4 6.6 3.4 6.9	99 99 100 100	0.00 0.00 0.00	10.42-11.22 10.71-11.51 11.35-12.15 11.81-12.61	
18 19 20 21	o-Nitrotoluene p-Nitrotoluene m-Nitrotoluene PETN	1000.000 1000.000 1000.000	955.875 911.799	9.3 4.4 8.8		0.00 0.00 0.00	14.84-15.72 15.32-16.32 16.22-17.22	
****	Signal #2 ****							
1	TNX	1000.000	968.427	3.2	96	0.00	1.14- 1.74	
2	нмх	Amount 1000.000	Calc. 936.618	%Drift 6.3	95	0.00	1.27- 1.87	
3 4 5 6 7	DNX MNX RDX 1,3,5-Trinitrobenzene 1,3-Dinitrobenzene	Amount 1000.000 1000.000 1000.000 1000.000	981.248 955.293 977.754	%Drift 3.7 1.9 4.5 2.2 0.6	 102 98 99 98 101	0.00 0.00 0.00 0.00 0.00	1.54- 2.14 2.15- 2.75 2.69- 3.49 4.46- 5.26 5.71- 6.51	
		Amount	Calc.	%Drift				

Continuing Calibration Summary Job Number: FA42152 Page 2 of 2 Sample: GBB1567-ECC1564

Account: Project:	CAPEGAA Cape Environm OB/OD Site I, OB Site II, F	Lab FileID	: B	B053989.D			
8	3,5-Dinitroaniline	1000.000	959.881	4.0	97	0.00	6.13- 6.93
		Amount	Calc.	%Drift			
9	Nitrobenzene	1000.000	966.367	3.4	97	0.00	7.25- 8.05
10	Nitroglycerin	5000.000	4935.032	1.3	98	0.00	8.67- 9.67
11	Tetryl	1000.000	1029.484	-2.9	95	0.00	9.05- 9.85
12	2,4,6-Trinitrotoluene	1000.000	966.130	3.4	96	0.00	9.49-10.29
13	2-Amino-4,6-Dinitrotol	1000.000	1001.345	-0.1	98	0.00	9.94-10.74
14	4-Amino-2,6-Dinitrotol	1000.000	1086.055	-8.6	98	0.00	10.42-11.22
		Amount	Calc.	%Drift -			
15 S	3,4-Dinitrotoluene	1000.000	987.322	1.3	99	0.00	10.71-11.51
		Amount	Calc.	%Drift			
16	2,4-Dinitrotoluene	1000.000	1036.117	-3.6	101	0.00	11.36-12.16
17	2,6-Dinitrotoluene	1000.000	1017.587	-1.8	100	0.00	11.81-12.61
18	o-Nitrotoluene	1000.000	937.457	6.3	95	0.00	14.72-15.72
19	p-Nitrotoluene	1000.000	1054.413	-5.4	98	0.00	15.32-16.32
20	m-Nitrotoluene	1000.000	995.168	0.5	92	0.00	16.22-17.22
21	PETN	5000.000	5135.074	-2.7	101	0.00	18.18-19.38

^{(#) =} Out of Range SPCC's out = 0 CCC's out = 0 BB053785.D 8330B_0324PLUS.M Fri Mar 31 10:17:10 2017 (#) = Out of Range

Initial Calibration Summary

Page 1 of 2 **Job Number:** FA42152 Sample: GBB1568-ICC1568

CAPEGAA Cape Environmental Management Inc. Lab FileID: BB053995.D Account:

OB/OD Site I, OB Site II, Fort Bliss, TX **Project:**

```
Response Factor Report G1315B
```

: D:\MSDCHEM\1\METHODS\8330B_0331PLUS.M (Chemstation Integrator) Method

Title : Explosives by 8330A,8330B,8332

Last Update : Fri Mar 31 15:52:11 2017 Response via : Initial Calibration

Calibration Files

20 =BB053991.D 50 =BB053992.D 100 =BB053993.D 200 =BB053994.D

Compound 20 50 100 200 500 1000 2000 Avg %RSD		=BB053991.D 50 =BB053995.D 1000					=BB05	3994	. D		
2) HMX	(Compound	20 50	100	200	500	1000	2000	Avg	%F	RSD
Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 2913.06643 *A + -0.08075 *A^2 4) MNX	,	HMX Quadr	2.404 2.907 atic regr., I	1.938 Force(0	1.871 1. (),0)	678 1. Coef	651 ficien	t =	2.075 0.998	EЗ	
5) RDX	3)	Quadr	atic regr., I	Force((0,0)	Coef	ficien	t =	0.999		12.82
15)S 3,4-Dinitrotoluen 3.541 3.356 2.818 2.540 2.325 2.259	5) 6) 7) 8) 9) 10) 11) 12)	RDX 1,3,5-Trinitroben 1,3-Dinitrobenzen 3,5-Dinitroanilin Nitrobenzene Nitroglycerin Tetryl 2,4,6-Trinitrotol 2-Amino-4,6-Dinit Quadr	2.254 2.727 4.753 5.360 5.997 6.337 5.483 5.327 3.697 3.705 2.901 4.002 4.229 4.761 4.755 4.556 atic regr., I	2.102 4.242 5.611 4.853 3.293 3.273 4.279 3.755 Force ((2.045 1. 4.175 4. 5.589 5. 4.761 4. 3.297 2. 3.199 2. 4.013 3. 3.638 3. 0,0)	942 1. 011 3. 421 5. 421 4. 418 3. 947 2. 810 3. 352 3. Coef	845 957 346 332 094 908 750 317 ficien	t =	2.153 4.416 5.717 4.863 3.251 0.000 3.205 4.140 3.895 0.999	E3 E3 E3 E3 -1. E3 E3	14.60 12.27 6.62 9.59 14.61 00 13.15 8.97
17) 2,6-Dinitrotoluen 2.702 3.823 3.074 2.960 2.821 2.781 3.027 E3 13.62 18) o-Nitrotoluene 2.402 2.683 2.300 2.329 1.846 2.172 2.289 E3 12.03 19) p-Nitrotoluene 3.293 3.774 3.453 3.522 2.737 3.376 3.359 E3 10.31 20) m-Nitrotoluene 4.087 3.836 3.550 3.479 2.505 3.269 3.454 E3 15.81 Quadratic regr., Force(0,0) Coefficient = 0.9919 Response Ratio = 0.00000 + 2437.29083 *A + 0.79856 *A^2 21) PETN 0.000 -1.00 Signal #2 1) TNX 4.455 5.843 5.171 5.284 5.055 5.043 5.142 E3 8.71 2.91		3,4-Dinitrotoluen Quadr	3.541 3.356 atic regr., I	2.818 Force(0	2.540 2.	325 2. Coef	259 ficien	t =	2.807 0.999	EЗ	
Signal #2 1) TNX	17) 18) 19)	2,6-Dinitrotoluen o-Nitrotoluene p-Nitrotoluene m-Nitrotoluene Quadr	2.702 3.823 2.402 2.683 3.293 3.774 4.087 3.836 atic regr., I	3.074 2.300 3.453 3.550 Force (0	2.960 2. 2.329 1. 3.522 2. 3.479 2. 0,0)	821 2. 846 2. 737 3. 505 3. Coef	781 172 376 269 ficien	t =	3.027 2.289 3.359 3.454 0.991	E3 E3 E3	13.62 12.03 10.31
1) TNX	21)	PETN							0.000	-1.	00
2) HMX 8.023 8.827 5.747 5.544 4.674 4.566 6.230 E3 28.58 Quadratic regr., Force(0,0) Coefficient = 0.9976 Response Ratio = 0.00000 + 5259.04707 *A + -0.71652 *A^2 3) DNX 5.473 6.474 5.015 5.066 4.590 4.544 5.194 E3 13.76 4) MNX 3.209 4.084 3.661 3.725 3.598 3.568 3.641 E3 7.74 5) RDX 3.951 3.929 3.284 3.228 3.027 2.958 3.396 E3 12.91	Signal	1 #2									
4) MNX 3.209 4.084 3.661 3.725 3.598 3.568 3.641 E3 7.74 5) RDX 3.951 3.929 3.284 3.228 3.027 2.958 3.396 E3 12.91		HMX Quadr	8.023 8.827 atic regr., B	5.747 Force(0	5.544 4. 0,0)	674 4. Coef	566 ficien	t =	6.230 0.99	EЗ	
	4)	MNX	3.209 4.084	3.661	3.725 3.	598 3.	568		3.641	EЗ	7.74 12.91

Page 2 of 2

Initial Calibration Summary Job Number: FA42152 Sample: GBB1568-ICC1568 CAPEGAA Cape Environmental Management Inc. OB/OD Site I, OB Site II, Fort Bliss, TX Lab FileID: BB053995.D Account:

Project:

6)	1,3,5-Trinitroben	0.977 1.011 0.828 0.830 0.781 0.777 0.867 E	4 11.67
7)	1,3-Dinitrobenzen	3.549 4.549 3.924 3.896 3.730 3.715 3.894 E	3 8.96
8)	3,5-Dinitroanilin	8.513 8.835 8.010 8.040 7.345 7.336 8.013 E	3 7.55
9)	Nitrobenzene	3.150 3.474 3.245 3.187 2.273 2.966 3.049 E	3 13.58
10)	Nitroglycerin	1.159 1.355 1.211 1.222 1.203 1.204 1.226 E	3 5.46
11)	Tetryl	5.974 5.549 4.934 5.021 4.841 4.827 5.191 E	3 9.00
12)	2,4,6-Trinitrotol	4.923 5.559 4.614 4.603 4.568 4.553 4.803 E	3 8.22
13)	2-Amino-4,6-Dinit	7.166 5.951 4.863 5.163 4.955 4.950 5.508 E	3 16.44
	Quadr	atic regr., Force $(0,0)$ Coefficient = 0.9998	
	Response	Ratio = $0.00000 + 5053.88441 *A + -0.10887 *A^2$	
	-		
14)	4-Amino-2,6-Dinit	5.535 5.518 4.672 5.087 4.768 4.781 5.060 E	3 7.65
15):	S 3,4-Dinitrotoluen	3.941 4.468 3.988 4.123 3.972 3.957 4.075 E	3 4.99
16)	2,4-Dinitrotoluen	2.863 3.743 3.377 3.257 3.191 3.169 3.266 E	3 8.85
17)	2,6-Dinitrotoluen	3.785 4.216 3.813 3.690 3.581 3.573 3.776 E	3 6.29
18)	o-Nitrotoluene	4.473 3.609 3.198 3.016 2.156 2.952 3.234 E	3 23.83
	Quadr	atic regr., Force $(0,0)$ Coefficient = 0.9909	
	Response	Ratio = 0.00000 + 2032.77145 *A + 0.88646 *A^2	
	-		
19)	p-Nitrotoluene	1.854 2.587 2.672 2.647 2.138 2.759 2.443 E	3 14.81
20)	m-Nitrotoluene	4.118 3.724 3.537 3.912 2.961 3.869 3.687 E	3 10.99
21)	PETN	1.259 1.505 1.313 1.421 1.300 1.319 1.353 E	3 6.78

(#) = Out of Range

8330B_0331PLUS.M Mon Apr 03 07:12:44 2017

Initial Calibration Verification

Page 1 of 2

Job Number: FA42152 GBB1568-ICV1568 Sample: Lab FileID: BB053998.D

Account: CAPEGAA Cape Environmental Management Inc.

OB/OD Site I, OB Site II, Fort Bliss, TX Project:

Evaluate Continuing Calibration Report

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053998.D\dad1B.ch Vial: 38

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053998.D\dad1A.ch

Acq On : 31-Mar-2017, 14:22:19 Operator: evitam : ICV1568-500 Sample Inst : G1315B Misc : op64321,gbb1568,10.0,,,50,1,water Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

: D:\MSDCHEM\1\METHODS\8330B_0331PLUS.M (Chemstation Integrator) Method

Title : Explosives by 8330A,8330B,8332 Last Update : Fri Mar 31 15:52:11 2017 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 15% Max. Rel. Area: 200%

	Compound	Amount	Calc.	%Drift	Area%	Dev(mi	n)RT Window
1	TNX	500.000 5	00.879	-0.2	100	0.00	1.14- 1.74
		Amount	Calc	%Drift			
2	HMX	500.000 5		-4.2			1.27- 1.87
3	DNX	500.000 4		0.7	100		1.54- 2.14
		Amount	Calc.	%Drift			
4	MNX	500.000 5		-0.5	101	0.00	2.15- 2.75
5	RDX	500.000 4		13.5	96		2.69- 3.49
6	1,3,5-Trinitrobenzene			9.6	100	0.00	4.46- 5.26
7	1,3-Dinitrobenzene	500.000 4	25.847	14.8	90	0.00	4.46- 5.26 5.71- 6.51
8	3,5-Dinitroaniline	500.000 4	37.349	12.5	96	0.00	6.13- 6.93
9	Nitrobenzene	500.000 4	77.350	4.5	128	0.00	7.25- 8.05
10	Nitroglycerin			NA			
11	Tetryl	500.000 4	31.831	13.6	94	0.01	9.05- 9.85
12	2,4,6-Trinitrotoluene	500.000 3	77.070	24.6#	82	0.00	9.49-10.29
		Amount	Calc.	%Drift			
13	2-Amino-4,6-Dinitrotol	500.000 4	89.433	2.1	100	0.00	9.94-10.74
14	4-Amino-2,6-Dinitrotol	500.000 4	80.327	3.9	108	0.00	10.42-11.22
		Amount					
15 S	3,4-Dinitrotoluene			NA			
16	2,4-Dinitrotoluene					0.00	
17	2,6-Dinitrotoluene	500.000 4	51.778	9.6	97	0.00	
18	o-Nitrotoluene	500.000 4			121	0.00	
19	p-Nitrotoluene	500.000 4	95.686	0.9	122	0.00	15.32-16.32
	m-Nitrotoluene	Amount	Calc.	%Drift			
20	m-Nitrotoluene	500.000 5	66.949	-13.4	131	0.00	16.22-17.22
		Amount					
21	PETN			NA			
****	Signal #2 *****						
1	TNX	500.000 4	93.502	1.3	100	0.00	1.14- 1.74

Initial Calibration Verification

Page 2 of 2 **Job Number:** FA42152 GBB1568-ICV1568 Sample:

CAPEGAA Cape Environmental Management Inc. Lab FileID: BB053998.D Account: Project: OB/OD Site I, OB Site II, Fort Bliss, TX

			0- 15:	
2	HMX	Amount Calc. 500.000 515.772	%Drift -3.2 108	0.00 1.27- 1.87
		Amount Calc.	%Drift	
3	DNX	500.000 444.947		0.00 1.54- 2.14
4	MNX	500.000 499.123		0.00 2.15- 2.75
5	RDX	500.000 442.504	11.5 99	0.00 2.69- 3.49
6	1,3,5-Trinitrobenzene	500.000 443.444		0.00 4.46- 5.26
7	1,3-Dinitrobenzene	500.000 435.557		0.00 5.71- 6.51
8	3,5-Dinitroaniline	500.000 446.650	10.7 97	0.00 6.13- 6.93
9	, Nitrobenzene	500.000 496.419	0.7 133	0.00 7.25- 8.05
10		2500.000 2644.337		0.02 8.67- 9.67
11		500.000 436.446	12.7 94	0.00 9.05- 9.85
12	2,4,6-Trinitrotoluene	500.000 406.244	18.8# 85	0.00 9.49-10.29
		Amount Calc.	%Drift	
13	2-Amino-4,6-Dinitrotol			
		Amount Calc.	%Drift	
14	4-Amino-2,6-Dinitrotol	500.000 501.799	-0.4 107	0.00 10.42-11.22
15 S	3,4-Dinitrotoluene		NA	
16	2,4-Dinitrotoluene	500.000 467.234	6.6 96	0.01 11.36-12.15
17		500.000 466.538		
		Amount Calc.	%Drift	
18				0.00 14.72-15.72
		Amount Colo	&D~; f+	
19	p-Nitrotoluene	Amount Calc. 500.000 541.212	-0 2 124	0 00 15 32-16 32
20	m-Nitrotoluene	500.000 541.212		
21	PETN			0.00 18.18-19.38

(#) = Out of Range

(#) = Out of Range SPCC's out = 0 CCC's out = 0 BB053995.D 8330B_0331PLUS.M Mon Apr 03 07:12:31 2017

183 of 383

Initial Calibration Verification

Compound

Page 1 of 2

Job Number: FA42152 Sample: GBB1568-ICV1568 Account: Lab FileID: BB053999.D CAPEGAA Cape Environmental Management Inc.

Project:

OB/OD Site I, OB Site II, Fort Bliss, TX

Evaluate Continuing Calibration Report

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053999.D\dad1B.ch Vial: 39

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053999.D\dad1A.ch

Acq On : 31-Mar-2017, 14:52:20 Operator: evitam : G1315B : ICV1568-500,B Sample Inst Misc : op64321,gbb1568,10.0,,,50,1,water Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

: D:\MSDCHEM\1\METHODS\8330B_0331PLUS.M (Chemstation Integrator) Method

Amount Calc. %Drift Area% Dev(min)RT Window

: Explosives by 8330A,8330B,8332 Title Last Update : Fri Mar 31 15:52:11 2017

Response via: Multiple Level Calibration

0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

1	TNX			NA			
		Amount					
2	HMX			NA			
3	DNX			NA			
		Amount					
4	MNX			NA			
5	RDX			NA			
6	1,3,5-Trinitrobenzene			NA			
7	1,3-Dinitrobenzene			NA			
8	3,5-Dinitroaniline			NA			
9	Nitrobenzene			NA			
10	Nitroglycerin			NA			
11	Tetryl			NA			
12	2,4,6-Trinitrotoluene 5	00.000 4	15.731	16.9#	90	0.00	9.49-10.29
		Amount	Calc.	%Drift			
13	2-Amino-4,6-Dinitrotolue	en		NA			
		Amount	Calc.	%Drift			
14	4-Amino-2,6-Dinitrotolue	en		NA			
		Amount	Calc.	%Drift			
15 S	3,4-Dinitrotoluene			NA			
		Amount		%Drift			
16	2,4-Dinitrotoluene			NA			
17	2,6-Dinitrotoluene			NA			
18	o-Nitrotoluene			NA			
19	p-Nitrotoluene			NA			
		Amount	Calc.	%Drift			
20	m-Nitrotoluene			NA			
		Amount	Calc.	%Drift			
0.4	PETN 2	500.000	0.000	100.0#	0	-0.07	18.68-18.88
21							
21 ****	Signal #2 ****						

Page 2 of 2

Job Number: FA42152 Sample: GBB1568-ICV1568 Lab FileID: BB053999.D

CAPEGAA Cape Environmental Management Inc. Account:

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

		Amount	Calc.	%Drift			
2	HMX			NA-			
		Amount					
3	DNX			NA-			
4	MNX			NA-			
5	RDX			NA-			
6	1,3,5-Trinitrobenzene			NA-			
7	1,3-Dinitrobenzene			NA-			
8	3,5-Dinitroaniline			NA-			
9	Nitrobenzene			NA-			
10	Nitroglycerin			NA-			
11	Tetryl			NA-			
12	2,4,6-Trinitrotoluene 50	0.000 4	79.242	4.2	101	0.00	9.49-10.29
		Amount	Calc.	%Drift			
13	2-Amino-4,6-Dinitrotoluen			NA-			
		Amount					
14	4-Amino-2,6-Dinitrotoluen			NA-			
15 S	3,4-Dinitrotoluene			NA-			
16	2,4-Dinitrotoluene			NA-			
17	2,6-Dinitrotoluene			NA-			
		Amount	Calc.	%Drift			
18	o-Nitrotoluene			NA-			
		Amount	Calc.	%Drift			
19	p-Nitrotoluene			NA-			
20	m-Nitrotoluene			NA-			
21	PETN			NA-			

(#) = Out of Range BB053995.D 8330B_0331PLUS.M SPCC's out = 0 CCC's out = 0 Mon Apr 03 08:51:19 2017

Continuing Calibration Summary

Page 1 of 2 GBB1569-CC1568 Sample:

Job Number: FA42152 CAPEGAA Cape Environmental Management Inc. Lab FileID: BB054003.D Account:

OB/OD Site I, OB Site II, Fort Bliss, TX Project:

Evaluate Continuing Calibration Report

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054003.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054003.D\dad1A.ch

: 03-Apr-2017, 08:40:52 Acq On Operator: evitam Sample : cc1568-1000,b Inst : G1315B : op64321,gbb1569,10.0,,,50,1,water Misc Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

: D:\MSDCHEM\1\METHODS\8330B_0331PLUS.M (Chemstation Integrator) Method

: Explosives by 8330A,8330B,8332 Title Last Update : Fri Mar 31 15:52:11 2017 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 15% Max. Rel. Area: 200%

	Compound	Amount		%Drift Area% Dev(min)RT Windo	W
1	TNX	1000.000		-0.1 100 0.00 1.14-	1.74
				%Drift	
2	HMX			0.3 99 0.00 1.27- 1	
3	DNX	1000.000	1014.472	-1.4 101 0.00 1.54-	2.14
				%Drift	
4	MNX	1000.000	1015.454	-1.5 102 0.00 2.15-	2.75
5	RDX	1000.000	871.287	12.9 102 0.00 2.69-3	3.49
6	1,3,5-Trinitrobenzene	1000.000	913.283	12.9 102 0.00 2.69-3 8.7 102 -0.01 4.46-5 6.1 100 -0.01 5.71-6	5.26
7	1,3-Dinitrobenzene	1000.000	939.300	6.1 100 -0.01 5.71 - 6	5.51
8	3,5-Dinitroaniline		915.974		.93
9	Nitrobenzene	1000.000	994.079		3.05
10	Nitroglycerin Tetryl	1000 000		NA	0.5
11	Tetryl			4.3 105 -0.03 9.05-9	
12	2,4,6-Trinitrotoluene				1.29
13	2-Amino-4,6-Dinitrotol	1000.000	1023.929	-2.4 102 -0.03 9.94-1	.0.74
14	4-Amino-2,6-Dinitrotol	1000.000	896.280	10.4 102 -0.03 10.42-11	.22
				%Drift	
15 S	3,4-Dinitrotoluene	1000.000	1000.014	-0.0 100 -0.03 10.71-1	1.51
		Amount	Calc.	%Drift	
16	2,4-Dinitrotoluene	1000.000	917.080	8.3 100 -0.03 11.35-12 8.9 99 -0.03 11.81-12	2.15
17	2,6-Dinitrotoluene	1000.000	911.026	8.9 99 -0.03 11.81-12	2.61
18				1.7 104 -0.03 14.84-15	
19	p-Nitrotoluene	1000.000	1034.239	-3.4 103 -0.04 15.32-1	16.32
				%Drift	
20	m-Nitrotoluene	1000.000	1039.364	-3.9 104 -0.03 16.22-1	.7.22
		Amount		%Drift	
21	PETN			NA	
****	Signal #2 ****				
1					

Page 2 of 2

Continuing Calibration Summary Job Number: FA42152 Sample: GBB1569-CC1568 CAPEGAA Cape Environmental Management Inc. BB054003.D Account: Lab FileID:

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

		Amount	Calc.	%Drift
2	HMX	1000.000	994.774	0.5 99 0.00 1.27-1.87
			Calc.	%Drift
3	DNX	1000.000		12.2 100 0.00 1.54-2.14
4	MNX		1007.448	-0.7 103 0.00 2.15- 2.75
5	RDX		883.329	11.7 101 0.00 2.69-3.49
6	1,3,5-Trinitrobenzene		911.729	8.8 102 -0.01 4.46- 5.26
7	1,3-Dinitrobenzene		952.561	4.7 100 -0.02 5.71- 6.51
8	3,5-Dinitroaniline		938.485	6.2 103 -0.02 6.13- 6.93
9	Nitrobenzene	1000.000	1021.512	-2.2 105 -0.02 7.25-8.05
10	Nitroglycerin	5000.000	4736.918	5.3 96 -0.02 8.67- 9.67
11	Tetryl	1000.000	957.598	4.2 103 -0.03 9.05- 9.85
12	2,4,6-Trinitrotoluene	1000.000	952.733	4.7 101 -0.04 9.49-10.29
			Calc.	
13	2-Amino-4,6-Dinitrotol	1000.000	1042.603	-4.3 104 -0.03 9.94-10.74
				0-15:
		Amount	Calc.	%Drift
14	4-Amino-2,6-Dinitrotol			1.5 104 -0.03 10.42-11.22
15 S	3,4-Dinitrotoluene		983.129	1.7 101 -0.03 10.71-11.51
16	2,4-Dinitrotoluene		976.626	
17	2,6-Dinitrotoluene	1000.000	945.801	5.4 100 -0.03 11.81-12.61
		70	G 1	0.0. 1.61
1.0		Amount		%Drift
18	o-Nitrotoluene	1000.000	1048.175	-4.8 105 -0.03 14.72-15.72
		Amount	Calc.	2Drift
19	p-Nitrotoluene			-18.5# 105 -0.03 15.32-16.32
20	m-Nitrotoluene			-7.9 103 -0.04 16.22-17.22
21	PETN		5107.875	-2.2 105 -0.04 18.18-19.38
	T TI TIN			2.2 103 0.04 10.10-19.30

(#) = Out of Range

(#) = Out of Range SPCC's out = 0 CCC's out = 0 BB053996.D 8330B_0331PLUS.M Mon Apr 03 13:03:50 2017

Continuing Calibration Summary

Page 1 of 2 GBB1569-CC1568

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc. Lab FileID: BB054009.D

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Evaluate Continuing Calibration Report

Sample:

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054009.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054009.D\dad1A.ch

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Method : D:\MSDCHEM\1\METHODS\8330B_0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332 Last Update : Fri Mar 31 15:52:11 2017 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 15% Max. Rel. Area : 200%

	Compound		Calc.	%Drift Area%	Dev(min)RT Window
1	TNX		1002.550	-0.3 101	0.00	1.14- 1.74
2	HMX			%Drift 0.5 99	0.00	
3	DNX			-1.7 102		
4	MNX		Calc. 1007.893	021110	0 00	 2.15- 2.75
5	RDX		865.834			2.69- 3.49
6	1,3,5-Trinitrobenzene	1000.000	909.029	9.1 101	0.00	4.46- 5.26
7	1,3-Dinitrobenzene		934.183		0.00	
8	3,5-Dinitroaniline	1000.000	914.658	8.5 103	0.00	6.13- 6.93
9	Nitrobenzene	1000.000	914.658 986.309	1.4 104	0.01	6.13- 6.93 7.25- 8.05
10	Nitroglycerin			NA		
11	Tetrul	1000.000	934.086	6.6 103	0.00	9.05- 9.85
12	2,4,6-Trinitrotoluene	1000.000	908.081	6.6 103 9.2 100	0.00	9.49-10.29
		Amount	Calc.	%Drift		
13	2-Amino-4,6-Dinitrotol				0.00	9.94-10.74
				ODITIC		
14	4-Amino-2,6-Dinitrotol	1000.000	894.183	10.6 102	0.01	10.42-11.22
		Amount	Calc.	%Drift		
15 S	3,4-Dinitrotoluene				0.03	10.71-11.51
		Amount	Calc.	%Drift		
16	2,4-Dinitrotoluene 2,6-Dinitrotoluene o-Nitrotoluene	1000.000	911.364	8.9 99	0.02	11.35-12.15
17	2,6-Dinitrotoluene	1000.000	906.748	9.3 99	0.02	11.81-12.61
18						
19	p-Nitrotoluene	1000.000	1028.184	-2.8 102	0.02	15.32-16.32
		Amount	Calc.	%Drift		
20	m-Nitrotoluene	1000.000	1040.650	-4.1 104	0.02	16.22-17.22
		Amount				
21	PETN			NA		
****	Signal #2 ****					
1	TNX	1000.000	992.434	0.8 101	0.00	1.14- 1.74

Page 2 of 2

Continuing Calibration Summary Job Number: FA42152

Sample: GBB1569-CC1568 CAPEGAA Cape Environmental Management Inc. BB054009.D Account: Lab FileID:

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

		Amount	Calc.	%Drift		
2	HMX	1000.000	991.962	0.8 99	0.00	1.27- 1.87
		Amount	Calc.	%Drift		
3	DNX	1000.000	879.879	12.0 101	0.00	1.54- 2.14
4	MNX	1000.000	1011.270	-1.1 10	3 0.00	2.15- 2.75
5	RDX	1000.000	887.648	11.2 102	0.00	2.69- 3.49
6	1,3,5-Trinitrobenzene	1000.000	908.362	9.2 101	0.00	4.46- 5.26
7	1,3-Dinitrobenzene	1000.000	956.541	4.3 100	0.00	5.71- 6.51
8	3,5-Dinitroaniline	1000.000	937.341	6.3 102	0.00	6.13- 6.93
9	Nitrobenzene	1000.000	1000.957	-0.1 10	3 0.01	7.25- 8.05
10	Nitroglycerin	5000.000	4891.335	2.2 10	0 0.02	8.67- 9.67
11	Tetryl	1000.000	952.087	4.8 102	0.01	9.05- 9.85
12	2,4,6-Trinitrotoluene		940.910		0.00	9.49-10.29
		Amount	Calc.	%Drift		
13	2-Amino-4,6-Dinitrotol				1 0.00	9.94-10.74
		Amount	Calc	%Drift		
14	4-Amino-2,6-Dinitrotol				0 01	10.42-11.22
15 S	3,4-Dinitrotoluene	1000.000		4.4 98		
16	2,4-Dinitrotoluene	1000.000		2.9 100		
17	2,6-Dinitrotoluene	1000.000		4.9 101		
± /	z, o biniciocorucne	1000.000	901.025	1.9 101	0.02	11.01 12.01
		Amount	Calc.	%Drift		
18	o-Nitrotoluene	1000.000	1036.387	-3.6 10	4 0.03	14.72-15.72
		Amount	Calc.	%Drift		
19	p-Nitrotoluene				1 0.02	15.32-16.32
20	m-Nitrotoluene					16.22-17.22
21	PETN		4981.042		2 -0.01	

(#) = Out of Range

(#) = Out of Range SPCC's out = 0 CCC's out = 0 BB053996.D 8330B_0331PLUS.M Mon Apr 03 12:57:25 2017

Section 9

<i>5</i>		
Raw Data		

21)

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053979.D\dad1B.ch Vial: 11

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053979.D\dad1A.ch

Operator: evitam Acq On : 31-Mar-2017, 03:27:22 Inst : G1315B

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09:29 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound

System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.13 11.13 992541 1722126 404.243 432.392 Spiked Amount 500.000 Range 69 - 134 Recovery = 80.85% 86.48% Target Compounds 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 16) 17) 18) 19) 20)

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

Page 1 191 of 383 **ACCUTEST**

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053979.D\dad1B.ch Vial: 11

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053979.D\dad1A.ch

Acq On : 31-Mar-2017, 03:27:22 Operator: evitam Sample : FA42152-1 Inst : op64396,gbb1567,10.1,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul


```
Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053982.D\dad1B.ch Vial: 14
Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053982.D\dad1A.ch
```

Operator: evitam Inst : G1315B

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09:32 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb ppb Compound

	System Monitoring Co	mpounds	3				
15) \$	2	-		992266 1724	470	404.131	432.972
Spi	ked Amount 500.00	0 Range	e 69 - 1	34 Recovery	=	80.83%	86.59%
_		_		_			
	Target Compounds						
1)	TNX	0.00	0.00	0	0	N.D. d	N.D. d
2)	HMX	0.00	0.00	0	0	N.D. d	N.D. d
3)	DNX	0.00	0.00	0	0	N.D. d	N.D. d
4)	MNX	0.00	0.00	0	0	N.D. d	N.D. d
5)	RDX	0.00	0.00	0	0	N.D. d	N.D. d
6)	1,3,5-Trinitrobe	0.00	0.00	0	0	N.D. d	N.D. d
7)	1,3-Dinitrobenze	0.00	0.00	0	0	N.D. d	N.D. d
8)	3,5-Dinitroanili	0.00	0.00	0	0	N.D. d	N.D. d
9)	Nitrobenzene	0.00	0.00	0	0	N.D. d	N.D. d
10)	Nitroglycerin	0.00	0.00	0	0	N.D. d	N.D. d
11)	Tetryl	0.00	0.00	0	0	N.D. d	N.D. d
12)	2,4,6-Trinitroto	0.00	0.00	0	0	N.D. d	N.D. d
13)	2-Amino-4,6-Dini	0.00	0.00	0	0	N.D. d	N.D. d
14)	4-Amino-2,6-Dini	0.00	0.00	0	0	N.D. d	N.D. d
16)	2,4-Dinitrotolue	0.00	0.00	0	0	N.D. d	N.D. d
17)	2,6-Dinitrotolue	0.00	0.00	0	0	N.D. d	N.D. d
18)	o-Nitrotoluene	0.00	0.00	0	0	N.D. d	N.D. d
19)	p-Nitrotoluene	0.00	0.00	0	0	N.D. d	N.D. d
20)	m-Nitrotoluene	0.00	0.00	0	0	N.D. d	N.D. d
21)	PETN	0.00	0.00	0	0	N.D. d	N.D. d

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB053982.D 8330B 0331PLUS.M Mon Apr 03 11:46:49 2017

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053982.D\dad1B.ch Vial: 14

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053982.D\dad1A.ch

Acq On : 31-Mar-2017, 04:57:16 Operator: evitam Sample : FA42152-2 Inst : op64396,gbb1567,10.0,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 31 10:12 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

: 100ul Volume Inj.

21)

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053983.D\dad1B.ch Vial: 15

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053983.D\dad1A.ch

Acq On : 31-Mar-2017, 05:27:17 Operator: evitam Inst : G1315B

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09:33 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound

System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.12 11.12 1028903 1753694 419.052 440.199 Spiked Amount 500.000 Range 69 - 134 Recovery = 83.81% 88.04% Target Compounds 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 16) 17) 18) 19) 20)

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

BB053983.D 8330B 0331PLUS.M Mon Apr 03 11:46:50 2017

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053983.D\dad1B.ch Vial: 15

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053983.D\dad1A.ch

Acq On : 31-Mar-2017, 05:27:17 Operator: evitam Sample : FA42152-3 Inst : op64396,gbb1567,10.0,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e

Quant Time: Mar 31 10:12 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 10:06:47 2017

Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

: 100ul Volume Inj.

17) 18) 19) 20) 21) Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053986.D\dad1B.ch Vial: 18

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053986.D\dad1A.ch

Acq On : 31-Mar-2017, 06:57:11 Operator: evitam Inst : G1315B

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09:36 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound

System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.12 11.12 1034287 1788208 421.245 448.730 Spiked Amount 500.000 Range 69 - 134 Recovery = 84.25% 89.75% Target Compounds 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 16)

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053986.D\dad1B.ch Vial: 18

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053986.D\dad1A.ch

Acq On : 31-Mar-2017, 06:57:11 Operator: evitam Sample : FA42152-9 Inst : op64396,gbb1567,10.1,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e

Quant Time: Mar 31 10:14 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053976.D\dad1B.ch Vial: 10 Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053976.D\dad1A.ch

Operator: evitam Acq On : 31-Mar-2017, 01:57:26 Sample : OP64396-MB Inst : G131 Misc : op64396,gbb1567,10.0,,,50,1,SOIL Multiplr: 1.00 Inst : G1315B

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 09:04:05 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 10:20:22 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound

System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.14 11.14 995158 1729417 405.309 434.196 Spiked Amount 500.000 Range 69 - 134 Recovery = 81.06% 86.84% Target Compounds 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 16) 17) 18) 19) 20)

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

BB053976.D 8330B 0324PLUS.M Fri Mar 31 10:49:24 2017

21)

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053976.D\dad1B.ch Vial: 10

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053976.D\dad1A.ch

game rime, and of refer for the family formation and refer for the family formation and refer for the family formation and refer for the family formation and refer for the family formation and refer for the family formation and refer for the family formation and refer for the family formation and refer for the family formation and refer for the family for the fami

Quant Method : D:\MSDCHEM\1...\8330B_0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332
Last Update : Mon Mar 27 10:20:22 2017
Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Manual Integrations
APPROVED
(compounds with "m" flag)
(b) (6)
04/03/17 18:47

```
Quantitation Report (Q1 Reviewed
```

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054004.D\dad1B.ch Vial: 8

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054004.D\dad1A.ch

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Apr 03 11:19:40 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 15:52:11 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Compound RT#1 RT#2 Resp#1 Resp#2 ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.10 11.10 1047374 1802185 435.766 442.264 Spiked Amount 500.000 Range 69 - 134 Recovery = 87.15% 88.45%

	Target Compounds						
1)	TNX	0.00	0.00	0	0	N.D. d	N.D. d
2)	HMX	1.57	1.57	846306	2303828	487.840	467.898
3)	DNX	0.00	0.00	0	0	N.D.	N.D.
4)	MNX	0.00	0.00	0	0	N.D.	N.D.
5)	RDX	3.09	3.09	849303	1379416	394.542	406.194
6)	1,3,5-Trinitrobe	4.85	4.85	1869391	3629111	423.286	418.569
7)	1,3-Dinitrobenze	6.11	6.11	2329723	1609988	407.529	413.469m
8)	3,5-Dinitroanili	6.52	6.52	1871352	3147992	384.838	392.855m
9)	Nitrobenzene	7.64	7.64	1486761	1405796	457.356	461.051m
10)	Nitroglycerin	0.00	9.19	0	2947069	N.D. d	2404.213
11)	Tetryl	9.45	9.45	1266949	2065054	395.340	397.812
12)	2,4,6-Trinitroto	9.88	9.88	1464155	1776465	353.631	369.841
13)	2-Amino-4,6-Dini	10.32	10.32	1555292	2337018	452.253	467.121
14)	4-Amino-2,6-Dini	10.81	10.81	1092486	2181430	405.480	431.096
16)	2,4-Dinitrotolue	11.74	11.74	2227873	1467612	422.576	449.292
17)	2,6-Dinitrotolue	12.21	12.20	1294444	1689758	427.675	447.485
18)	o-Nitrotoluene	15.20	15.20	1046376	1393878	457.210	552.558m
19)	p-Nitrotoluene	15.80	15.80	1553705	1236683	462.506	506.223
20)	m-Nitrotoluene	16.70	16.70	1511512	1776286	528.608	481.809m
21)	PETN	0.00	18.75	0	3171112	N.D. d	2343.899m

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054004.D\dad1B.ch Vial: 8

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054004.D\dad1A.ch

: 03-Apr-2017, 09:22:26 Acq On Operator: evitam Sample : OP64396-BS Inst : G1315B : op64396,gbb1569,10.0,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e

Quant Time: Apr 3 11:20 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 15:52:11 2017

Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Manual Integration Approval Summary

 Sample Number:
 OP64396-BS
 Method:
 SW846 8330B

 Lab FileID:
 BB054004.D
 Analyst approved:
 04/03/17 11:22

Injection Time: 04/03/17 09:22 **Supervisor approved:** 04/03/17 18:47

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.52	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.64	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.20	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.70	Poorly defined baseline
PETN	78-11-5	2	18.75	Poorly defined baseline

20)

21)

PETN

Manual Integrations APPROVED (compounds with "m" flag) 04/03/17 18:47

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054005.D\dad1B.ch Vial: 9

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054005.D\dad1A.ch

Acq On : 03-Apr-2017, 09:52:19 Sample : OP64396-PT1 Misc : op64396,gbb1569,10.0,,,50,1,SOIL Operator: evitam Inst : G1315B Multiplr: 1.00

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Apr 03 11:20:29 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 15:52:11 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound ppb

15) S	stem Monitoring Co 3,4-Dinitrotolue d Amount 500.00	0.00	0.00	0 134 Reco	0 very =	N.D. d 0.00%#	N.D. d 0.00%#
Та	rget Compounds						
1)	TNX	0.00	0.00	0	0	N.D. d	N.D. d
2)	HMX	1.57	1.57	191082	525303	106.058	101.283
3)	DNX	0.00	0.00	0	0	N.D.	N.D.
4)	MNX	0.00	0.00	0	0	N.D.	N.D.
5)	RDX	3.08	3.08	175351	272321	81.459	80.190
6)	1,3,5-Trinitrobe	4.85	4.85	490201	973866	110.996m	112.322
7)	1,3-Dinitrobenze	6.11	6.11	932808	649011	163.172m	166.676m
8)	3,5-Dinitroanili	6.52	6.52	1288914	2248345	265.062m	280.583m
9)	Nitrobenzene	7.64	7.64	689954	658049	212.243	215.817m
10)	Nitroglycerin	0.00	9.19	0	197775	N.D. d	161.344
11)	Tetryl	9.44	9.45	238558	404425	74.440	77.908
12)	2,4,6-Trinitroto	9.87	9.88	426783	487582	103.079	101.509
13)	2-Amino-4,6-Dini	10.33	10.32	335459	490849	95.198	97.327
14)	4-Amino-2,6-Dini	10.82	10.81	275357	582343	102.200	115.083
16)	2,4-Dinitrotolue	11.74	11.74	512469	323940	97.203	99.171
17)	2,6-Dinitrotolue	12.20	12.21	663255	852718	219.135	225.819
18)	o-Nitrotoluene	15.22	15.22	500643	710283	218.754	308.037 #
19)	p-Nitrotoluene	15.81	15.82	1052861	871579	313.415	356.772

m-Nitrotoluene 16.70 16.72 599306 739666 228.746 200.631m

0 267489 N.D. d 197.712m

0.00 18.76

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB054005.D 8330B 0331PLUS.M Mon Apr 03 13:05:14 2017

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054005.D\dad1B.ch Vial: 9

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054005.D\dad1A.ch

: 03-Apr-2017, 09:52:19 Acq On Operator: evitam Sample : OP64396-PT1 Inst : G1315B : op64396,gbb1569,10.0,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Apr 3 13:05 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 15:52:11 2017

Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Manual Integration Approval Summary

 Sample Number:
 OP64396-PT1

 Lab FileID:
 BB054005.D

 Injection Time:
 04/03/17 09:52

 Method:
 SW846 8330B

 Analyst approved:
 04/03/17 11:22

Supervisor approved: 04/03/17 18:47

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.52	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.64	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.76	Poorly defined baseline

Manual Integrations
APPROVED
(compounds with "m" flag)
(b) (6)
04/03/17 18:49

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053980.D\dad1B.ch Vial: 12

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053980.D\dad1A.ch

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09:30 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, 8330B, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Compound RT#1 RT#2 Resp#1 Resp#2 ppb ppb

System Monitoring Compounds

Target Compounds

15) S 3,4-Dinitrotolue 11.12 11.12 1064658 1782565 433.615 447.336 Spiked Amount 500.000 Range 69 - 134 Recovery = 86.72% 89.47%

	rargee compounds						
1)	TNX	0.00	0.00	0	0	N.D. d	N.D. d
2)	HMX	1.57	1.57	755777	2098522	405.521	435.441m
3)	DNX	0.00	0.00	0	0	N.D.	N.D.
4)	MNX	0.00	0.00	0	0	N.D.	N.D.
5)	RDX	3.09	3.09	752164	1204758	373.552	378.619
6)	1,3,5-Trinitrobe	4.86	4.86	1705605	3388735	338.218	348.132
7)	1,3-Dinitrobenze	6.12	6.11	2141444	1448891	376.206	371.464m
8)	3,5-Dinitroanili	6.54	6.53	1748165	2884734	409.920	400.754m
9)	Nitrobenzene	7.65	7.64	1400660	1410079	409.189	445.132m
10)	Nitroglycerin	0.00	9.20	0	2875775	N.D. d	2233.913
11)	Tetryl	9.47	9.47	1131508	1873892	713.628	800.853
12)	2,4,6-Trinitroto	9.90	9.90	1357715	1631878	614.532	493.319
13)	2-Amino-4,6-Dini	10.35	10.35	1444374	2130759	414.001	421.356
14)	4-Amino-2,6-Dini	10.84	10.84	998440	1969048	400.072	435.341
16)	2,4-Dinitrotolue	11.77	11.77	2052602	1315063	397.544	414.606
17)	2,6-Dinitrotolue	12.23	12.23	1212153	1545509	395.177	427.588
18)	o-Nitrotoluene	15.23	15.22	998606	1339555	405.361	408.976
19)	p-Nitrotoluene	15.83	15.82	1496551	1166831	413.034	431.353
20)	m-Nitrotoluene	16.72	16.72	1466244	1725881	399.798	441.475m
21)	PETN	0.00	18.77	0	3118377	N.D. d	2377.178m

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053980.D\dad1B.ch Vial: 12

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053980.D\dad1A.ch

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, 8330B, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Manual Integration Approval Summary

Sample Number: OP64396-MS **Lab FileID:** BB053980.D **Injection Time:** 03/31/17 03:57

Method: SW846 8330B **Analyst approved:** 04/03/17 07:30

Supervisor approved: 04/03/17 18:49

Parameter	CAS	Sig#	R.T. (min.)	Reason
HMX	2691-41-0	2	1.57	Poorly defined baseline
1,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.64	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

Manual Integrations APPROVED (compounds with "m" flag) 04/03/17 18:49

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053981.D\dad1B.ch Vial: 13

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053981.D\dad1A.ch

Acq On : 31-Mar-2017, 04:27:20 Operator: evitam : OP64396-MSD : op64396,gbb1567,10.0,,,50,1,SOIL Sample Inst : G1315B Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09:31 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #2 Phase: Extend C-18 Signal #1 Phase : Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.12 11.12 1064003 1824470 433.348 457.688 Spiked Amount 500.000 Range 69 - 134 Recovery = 86.67% 91.54%

-		_			-		
	Target Compounds						
1)	TNX	0.00	0.00	0	0	N.D. d	N.D. d
2)	HMX	1.57	1.57	728608	2077042	390.944	431.014
3)	DNX	0.00	0.00	0	0	N.D.	N.D.
4)	MNX	0.00	0.00	0	0	N.D.	N.D.
5)	RDX	3.09	3.09	806014	1253359	400.296	393.892
6)	1,3,5-Trinitrobe	4.86	4.86	1747124	3449412	346.451	354.365
7)	1,3-Dinitrobenze	6.12	6.11	2199185	1500295	386.350	384.643m
8)	3,5-Dinitroanili	6.53	6.53	1761754	2926467	413.101	406.477m
9)	Nitrobenzene	7.65	7.64	1415968	1337919	413.661	422.352m
10)	Nitroglycerin	0.00	9.19	0	2947845	N.D. d	2289.897m
11)	Tetryl	9.47	9.46	1153461	1925644	727.473	822.970m
12)	2,4,6-Trinitroto	9.90	9.90	1374035	1640937	621.919	496.058m
13)	2-Amino-4,6-Dini	10.35	10.34	1474665	2160083	422.683	427.155m
14)	4-Amino-2,6-Dini	10.84	10.83	1018953	2050636	408.291	453.380
16)	2,4-Dinitrotolue	11.77	11.77	2102404	1354698	407.190	427.102
17)	2,6-Dinitrotolue	12.23	12.23	1237850	1562755	403.554	432.359
18)	o-Nitrotoluene	15.22	15.22	1036655	1361044	420.806	415.537m
19)	p-Nitrotoluene	15.82	15.83	1535966	1195947	423.912	442.117
20)	m-Nitrotoluene	16.72	16.72	1513777	1716254	412.759	439.013m
21)	PETN	0.00	18.77	0	3154705	N.D. d	2404.871m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

BB053981.D 8330B 0324PLUS.M

Fri Mar 31 10:49:27 2017

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053981.D\dad1B.ch Vial: 13

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053981.D\dad1A.ch

: 31-Mar-2017, 04:27:20 Acq On Operator: evitam Sample : OP64396-MSD Inst : G1315B : op64396,gbb1567,10.0,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 31 10:12 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Manual Integration Approval Summary

 Sample Number:
 OP64396-MSD

 Lab FileID:
 BB053981.D

 Injection Time:
 03/31/17 04:27

 Method:
 SW846 8330B

 Analyst approved:
 04/03/17 07:30

 Supervisor approved:
 04/03/17 18:49

07:30 (b) (6) 18:49 (b) (6)

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.64	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.19	Poorly defined baseline
Tetryl	479-45-8	2	9.46	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	2	9.90	Poorly defined baseline
2-amino-4, 6-Dinitrotoluene	35572-78-2	2	10.34	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.22	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053984.D\dad1B.ch Vial: 16

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053984.D\dad1A.ch

Acq On : 31-Mar-2017, 05:57:14 Operator: evitam Inst : G1315B

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09:34 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

System Monitoring Compounds

14) 16) 17) 18) 19) 20) 21) Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound

15) S 3,4-Dinitrotolue 11.12 11.12 1038786 1770851 423.077 444.441 Spiked Amount 500.000 Range 69 - 134 Recovery = 84.62% 88.89% Target Compounds 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13)

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

BB053984.D 8330B 0324PLUS.M Fri Mar 31 10:49:30 2017

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053984.D\dad1B.ch Vial: 16

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053984.D\dad1A.ch

Acq On : 31-Mar-2017, 05:57:14 Operator: evitam Sample : OP64396-DUP Inst : op64396,gbb1567,10.1,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 31 10:13 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Operator: evitam Inst : G1315B

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053985.D\dad1B.ch Vial: 17

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053985.D\dad1A.ch

Quant Time: Mar 31 10:09:35 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb ppb Compound

15)	System Monitoring Co S 3,4-Dinitrotolue	-		1010927 1792	532	411.731	449.798
Sp	•	0 Range			=	82.35%	89.96%
				_			
	Target Compounds						
1)	TNX	0.00	0.00	0	0	N.D. d	N.D. d
2)	HMX	0.00	0.00	0	0	N.D. d	N.D. d
3)	DNX	0.00	0.00	0	0	N.D. d	N.D. d
4)	MNX	0.00	0.00	0	0	N.D. d	N.D. d
5)	RDX	0.00	0.00	0	0	N.D. d	N.D. d
6)	1,3,5-Trinitrobe	0.00	0.00	0	0	N.D. d	N.D. d
7)	1,3-Dinitrobenze	0.00	0.00	0	0	N.D. d	N.D. d
8)	3,5-Dinitroanili	0.00	0.00	0	0	N.D. d	N.D. d
9)	Nitrobenzene	0.00	0.00	0	0	N.D. d	N.D. d
10)	Nitroglycerin	0.00	0.00	0	0	N.D. d	N.D. d
11)	Tetryl	0.00	0.00	0	0	N.D. d	N.D. d
12)	2,4,6-Trinitroto	0.00	0.00	0	0	N.D. d	N.D. d
13)	2-Amino-4,6-Dini	0.00	0.00	0	0	N.D. d	N.D. d
14)	4-Amino-2,6-Dini	0.00	0.00	0	0	N.D. d	N.D. d
16)	2,4-Dinitrotolue	0.00	0.00	0	0	N.D. d	N.D. d
17)	2,6-Dinitrotolue	0.00	0.00	0	0	N.D. d	N.D. d
18)	o-Nitrotoluene	0.00	0.00	0	0	N.D. d	N.D. d
19)	p-Nitrotoluene	0.00	0.00	0	0	N.D. d	N.D. d
20)	m-Nitrotoluene	0.00	0.00	0	0	N.D. d	N.D. d
21)	PETN	0.00	0.00	0	0	N.D. d	N.D. d

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053985.D\dad1B.ch Vial: 17

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053985.D\dad1A.ch

Acq On : 31-Mar-2017, 06:27:13 Operator: evitam Sample : OP64396-DUP2 Inst : G1315B : op64396,gbb1567,10.1,,,50,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 31 10:13 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 10:06:47 2017

Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

: 100ul Volume Inj.

PETN

Manual Integrations APPROVED (compounds with "m" flag)

03/29/17 14:53

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053780.D\dad1B.ch Vial: 42

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053780.D\dad1A.ch

: 24-Mar-2017, 11:59:24 Acq On Operator: evitam : ic1564-20 Sample Inst : G1315B : op64214,gbb1564,10.0,,,50,1,soil Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 09:56:12 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, 8330B, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Posn#1 Posn#2

	Compound	RT#1	RT#2	Resp#1	Resp#2	ppb	ppb			
System Monitoring Compounds										
	S 3,4-Dinitrotolue					21.988m				
Sp	iked Amount 500.00	00 Rang	e 69 -	134 Recov	very =	4.40%#	2.79%#			
	Target Compounds									
1)	TNX	1.46	1.46	59823	103868	19.327	21.435			
2)	HMX	1.60	1.60	39063	169879	24.287m	36.144m#			
3)	DNX	1.87	1.87	58971	106155	21.313m	21.256m			
4)	MNX	2.50	2.50	42859	69872	19.543m	20.368m			
5)	RDX	3.15	3.15	43723	65343	23.415	22.121m			
6)	1,3,5-Trinitrobe	4.95	4.95	102641	192746	25.721m	24.135m			
7)	1,3-Dinitrobenze	6.21	6.21	113335	81870	21.891	21.161m			
8)	3,5-Dinitroanili	6.64	6.64	176569	307158	44.876m	46.377m			
9)		7.72	7.72	68052	61932	21.226	20.856m			
10)	Nitroglycerin	0.00	9.33	0	129911	N.D. d	109.915m			
11)	Tetryl	9.63	9.61	30478	35527	14.806m	11.600m			
12)	2,4,6-Trinitroto	10.06	10.08	33957	64038	10.952m	16.439 #			
13)	2-Amino-4,6-Dini	10.51	10.52	64178	102007	19.688m	21.180			
14)	4-Amino-2,6-Dini	10.94	11.01	42259	66650	18.643m	14.042			
16)	2,4-Dinitrotolue	11.93	11.96	97362	55848	20.652m	18.380			
17)	2,6-Dinitrotolue	12.35	12.38	69448	63745	25.763m	18.325			
18)	o-Nitrotoluene	15.35	15.52	59841	70405	26.677	23.967m			
19)	p-Nitrotoluene	15.94	16.18	76388	51761	22.767	19.880m			
20)	m-Nitrotoluene	16.80	16.85	79068	72953	23.577	18.615m			

0 128514 N.D. d 98.729m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB053780.D 8330B 0324PLUS.M Tue Mar 28 08:28:43 2017

0.00 18.88

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053780.D\dad1B.ch Vial: 42

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053780.D\dad1A.ch

: 24-Mar-2017, 11:59:24 Acq On Operator: evitam Sample : ic1564-20 Inst : op64214,gbb1564,10.0,,,50,1,soil Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 27 9:59 2017 Quant Results File: 8330B 0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Mon Mar 27 09:45:21 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #2 Info : DAD 235/214nm Signal #1 Info : DAD 254/270nm

Sample Number: GBB1564-IC1564 Lab FileID: BB053780.D **Injection Time:** 03/24/17 11:59

Method: SW846 8330B Analyst approved: 03/27/17 14:02 **Supervisor approved:** 03/29/17 14:53

Parameter	CAS	Sig#	R.T. (min.)	Reason
HMX	2691-41-0	1	1.60	Poorly defined baseline
HMX	2691-41-0	2	1.60	Poorly defined baseline
DNX		1	1.87	Poorly defined baseline
DNX		2	1.87	Poorly defined baseline
MNX		1	2.50	Poorly defined baseline
MNX		2	2.50	Poorly defined baseline
RDX	121-82-4	2	3.15	Poorly defined baseline
1,3,5-Trinitrobenzene	99-35-4	1	4.95	Poorly defined baseline
1,3,5-Trinitrobenzene	99-35-4	2	4.95	Poorly defined baseline
1,3-Dinitrobenzene	99-65-0	2	6.21	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	1	6.64	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.64	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.72	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.33	Poorly defined baseline
Tetryl	479-45-8	2	9.61	Poorly defined baseline
Tetryl	479-45-8	1	9.63	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	1	10.06	Poorly defined baseline
2-amino-4,6-Dinitrotoluene	35572-78-2	1	10.51	Poorly defined baseline
4-amino-2,6-Dinitrotoluene	19406-51-0	1	10.94	Poorly defined baseline
3,4-Dinitrotoluene	610-39-9	1	11.24	Poorly defined baseline
3,4-Dinitrotoluene	610-39-9	2	11.29	Poorly defined baseline
2,4-Dinitrotoluene	121-14-2	1	11.93	Poorly defined baseline
2,6-Dinitrotoluene	606-20-2	1	12.35	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.52	Poorly defined baseline
p-Nitrotoluene	99-99-0	2	16.18	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.85	Poorly defined baseline
PETN	78-11-5	2	18.88	Poorly defined baseline

PETN

Manual Integrations APPROVED (compounds with "m" flag) 03/29/17 14:53

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053781.D\dad1B.ch Vial: 43

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053781.D\dad1A.ch

: 24-Mar-2017, 12:29:21 Acq On Operator: evitam : ic1564-50 Sample Inst : G1315B : op64214,gbb1564,10.0,,,50,1,soil Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 09:56:13 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, 8330B, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Posn#1 Posn#2

System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.27 11.27 136819 161025 63.696 43.	918m 78%#
15) S 3.4-Dinitrotolue 11.27 11.27 136819 161025 63.696 43.	
10, 0 0, 1 2111101000140 11.0, 11.0, 10.0019 10.000	78%#
Spiked Amount 500.000 Range 69 - 134 Recovery = 12.74%# 8.	
Target Compounds	
1) TNX 1.46 1.46 158579 253102 51.232 52.	
2) HMX 1.60 1.59 97234 262990 60.453 55.	937m
3) DNX 1.87 1.87 149668 228538 54.092 45.	762m
4) MNX 2.50 2.49 105801 174082 48.145 50.	637m
5) RDX 3.15 3.15 106422 161439 56.991 54.	652
6) 1,3,5-Trinitrobe 4.95 4.95 246858 478694 61.861 59.	801
7) 1,3-Dinitrobenze 6.20 6.20 295398 187235 57.057 48.	395m
8) 3,5-Dinitroanili 6.64 6.64 257621 390330 65.475 58.	935m
9) Nitrobenzene 7.72 7.72 181748 142793 56.624 47.	993m
10) Nitroglycerin 0.00 9.33 0 313987 N.D. d 265.	244m
	791m
12) 2,4,6-Trinitroto 10.06 10.06 120291 165083 38.798 42.	378m
13) 2-Amino-4,6-Dini 10.53 10.53 184455 233619 56.587 48.	400m
14) 4-Amino-2,6-Dini 11.01 11.01 135491 196594 59.773 41.	327m
16) 2,4-Dinitrotolue 11.94 11.92 285284 150836 60.368 49.	642m
	599
18) o-Nitrotoluene 15.34 15.34 119223 162625 53.090 55.	260m
· ·	816m
· · · · · · · · · · · · · · · · · · ·	347m

0 302674 N.D. d 231.982m

0.00 18.88

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053781.D\dad1B.ch Vial: 43

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053781.D\dad1A.ch

Acq On : 24-Mar-2017, 12:29:21 Operator: evitam Sample : ic1564-50 Inst : op64214,gbb1564,10.0,,,50,1,soil Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 27 10:19 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Mon Mar 27 09:45:21 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #2 Info : DAD 235/214nm Signal #1 Info : DAD 254/270nm

 Sample Number:
 GBB1564-IC1564

 Lab FileID:
 BB053781.D

 Injection Time:
 03/24/17 12:29

 Method:
 SW846 8330B

 Analyst approved:
 03/27/17 14:02

 Supervisor approved:
 03/29/17 14:53

Parameter	CAS	Sig#	R.T. (min.)	Reason
T ut utilicites	C/15	515 //	(111111)	reason
HMX	2691-41-0	2	1.59	Poorly defined baseline
DNX		2	1.87	Poorly defined baseline
MNX		2	2.49	Poorly defined baseline
1,3-Dinitrobenzene	99-65-0	2	6.20	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.64	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.72	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.33	Poorly defined baseline
Tetryl	479-45-8	2	9.63	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	2	10.06	Poorly defined baseline
2-amino-4,6-Dinitrotoluene	35572-78-2	2	10.53	Poorly defined baseline
4-amino-2,6-Dinitrotoluene	19406-51-0	2	11.01	Poorly defined baseline
3,4-Dinitrotoluene	610-39-9	2	11.27	Poorly defined baseline
2,4-Dinitrotoluene	121-14-2	2	11.92	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.34	Poorly defined baseline
p-Nitrotoluene	99-99-0	2	15.98	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.86	Poorly defined baseline
PETN	78-11-5	2	18.88	Poorly defined baseline

PETN

Manual Integrations APPROVED (compounds with "m" flag) 03/29/17 14:53

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053782.D\dad1B.ch Vial: 44

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053782.D\dad1A.ch

Acq On : 24-Mar-2017, 12:59:18 Operator: evitam Sample : ic1564-100 Inst : op64214,gbb1564,10.0,,,50,1,soil Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 09:56:14 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Compound RT#1 RT#2 Resp#1 Resp#2 ppb ppb

		" -	" -			I- I	I- I
15) S	System Monitoring Co 3,4-Dinitrotolue ked Amount 500.0	11.28	11.28			122.210	
r	Target Compounds						
1)	TNX	1.46	1.46	328812	520909	106.228	106.721
2)	HMX	1.60	1.60	188577	557786	117.243	118.514
3)	DNX	1.87	1.87	305131	496104	110.279	99.338
4)	MNX	2.50	2.50	236485	376079	107.166	108.946
5)	RDX	3.15	3.15	209651	331356	112.273	112.175
6)	1,3,5-Trinitrobe	4.96	4.96	509119	978883	127.582	121.796
7)	1,3-Dinitrobenze	6.21	6.21	590118	382556	113.982	98.881m
8)	3,5-Dinitroanili	6.65	6.64	475674	777182	120.895	117.345m
9)	Nitrobenzene	7.73	7.73	355438	325719	110.541	108.997m
10)	Nitroglycerin	0.00	9.33	0	649863	N.D. d	547.424
11)	Tetryl		9.64	176001	234282	85.499	76.497
12)	2,4,6-Trinitroto		10.08	239852	301023	77.361	77.275
13)	2-Amino-4,6-Dini		10.53	356783	468692	109.454	96.728
14)	4-Amino-2,6-Dini		11.02	271060	451175	119.579	94.431
16)	2,4-Dinitrotolue		11.95	541905	322069	114.295	105.998m
17)	2,6-Dinitrotolue		12.40	314342	369648	116.024	106.264m
18)		15.35	15.35	243033	319988	107.972	108.402m
19)	p-Nitrotoluene		15.96	365065	252884	108.248	96.384m
20)	m-Nitrotoluene	16.83	16.84	375195	410204	111.876	104.668m

644907 N.D. d 492.049m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

BB053782.D 8330B 0324PLUS.M Tue Mar 28 08:28:45 2017

0.00 18.89

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053782.D\dad1B.ch Vial: 44

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053782.D\dad1A.ch

Acq On : 24-Mar-2017, 12:59:18 Operator: evitam Sample : ic1564-100 Inst : op64214,gbb1564,10.0,,,50,1,soil Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 27 10:01 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #2 Info : DAD 235/214nm Signal #1 Info : DAD 254/270nm

Sample Number: GBB1564-IC1564 **Lab FileID:** BB053782.D **Injection Time:** 03/24/17 12:59

 Method:
 SW846 8330B

 Analyst approved:
 03/27/17 14:02

 Supervisor approved:
 03/29/17 14:53

(b) (6) (b) (6)

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.21	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.64	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.73	Poorly defined baseline
2,4-Dinitrotoluene	121-14-2	2	11.95	Poorly defined baseline
2,6-Dinitrotoluene	606-20-2	2	12.40	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.35	Poorly defined baseline
p-Nitrotoluene	99-99-0	2	15.96	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.84	Poorly defined baseline
PETN	78-11-5	2	18.89	Poorly defined baseline

(compounds with "m" flag) (b) (6) 03/29/17 14:53

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053783.D\dad1B.ch Vial: 45

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053783.D\dad1A.ch

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 09:56:15 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, 8330B, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Compound RT#1 RT#2 Resp#1 Resp#2 ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.31 11.31 499241 807799 230.145 217.048

Spiked Amount 500.000 Range 69 - 134 Recovery = 46.03%# 43.41%#

	Target Compounds						
1)	TNX	1.46	1.46	677075	1052781	218.740	213.748
2)	HMX	1.60	1.60	391422	1120126	243.357	237.522
3)	DNX	1.87	1.87	605448	987329	218.818	197.700
4)	MNX	2.50	2.50	465031	744874	209.228	214.197
5)	RDX	3.16	3.16	391061	641347	209.421	217.117
6)	1,3,5-Trinitrobe	4.96	4.96	1047443	2005531	262.483	247.521
7)	1,3-Dinitrobenze	6.22	6.21	1157663	802386	223.604	207.395m
8)	3,5-Dinitroanili	6.65	6.65	929552	1551407	236.249	234.244m
9)	Nitrobenzene	7.74	7.73	686514	660511	212.793	219.306m
10)	Nitroglycerin	0.00	9.34	0	1341942	N.D. d	1123.913m
11)	Tetryl	9.66	9.65	330539	523600	160.573	170.964m
12)	2,4,6-Trinitroto	10.09	10.10	472269	721235	152.323	185.146
13)	2-Amino-4,6-Dini	10.54	10.55	727060	1066444	223.048	217.984
14)	4-Amino-2,6-Dini	11.03	11.03	516341	980498	227.786	203.406
16)	2,4-Dinitrotolue	11.96	11.96	1048539	667074	219.744	219.544
17)	2,6-Dinitrotolue	12.41	12.41	614934	774023	225.598	222.511
18)	o-Nitrotoluene	15.35	15.36	479918	673516	212.279	226.634m
19)	p-Nitrotoluene	15.98	15.98	747473	547842	220.156	206.531m
20)	m-Nitrotoluene	16.85	16.85	740741	794710	220.876	202.779m
21)	PETN	0.00	18.90	0	1366757	N.D. d	1033.090m

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053783.D\dad1B.ch Vial: 45

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053783.D\dad1A.ch

Quant Method : D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, 8330B, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1564-IC1564 **Lab FileID:** BB053783.D **Injection Time:** 03/24/17 13:29

 Method:
 SW846 8330B

 Analyst approved:
 03/27/17 14:02

 Supervisor approved:
 03/29/17 14:53

Parameter	CAS	Sig#	R.T. (min.)	Reason
,3-Dinitrobenzene	99-65-0	2	6.21	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.65	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.73	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.34	Poorly defined baseline
Γetryl	479-45-8	2	9.65	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.36	Poorly defined baseline
o-Nitrotoluene	99-99-0	2	15.98	Poorly defined baseline
n-Nitrotoluene	99-08-1	2	16.85	Poorly defined baseline
PETN	78-11-5	2	18.90	Poorly defined baseline

PETN

0 3310289 N.D. d 2442.847m

Manual Integrations APPROVED (compounds with "m" flag) 03/29/17 14:53

```
Quantitation Report (QT Reviewed)
```

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053784.D\dad1B.ch Vial: 46

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053784.D\dad1A.ch

Acq On : 24-Mar-2017, 13:59:14 Operator: evitam : icc1564-500 Inst : G131 : op64214,gbb1564,10.0,,,50,1,soil Multiplr: 1.00 Sample Inst : G1315B Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 09:56:16 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb

System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.32 11.32 1154243 1996008 523.076 522.607 Spiked Amount 500.000 Range 69 - 134 Recovery = 104.62% 104.52% Target Compounds 1626946 2534126 525.611 874931 2405296 543.967 1411886 2275106 510.276 1161300 1808219 511.661 1.46 1.46 1.60 1.60 1.87 1.87 1) TNX 502.321 507.744 2) HMX 3) 455.560 DNX 1.87 1.87 2.50 2.50 4) MNX 509.475 5) 3.16 3.16 944575 1532250 505.840 RDX 518.716 574.940 1,3,5-Trinitrobe 4.97 4.97 2442008 4756346 611.953 6) 7) 1,3-Dinitrobenze 6.22 6.22 2719230 1827427 525.223 472.341m 8) 3,5-Dinitroanili 6.66 6.66 2111569 3607352 536.664 544.668m Nitrobenzene 7.74 7.74 1633896 1537837 501.710 500.635m Nitroglycerin 0.00 9.35 0 3069839 N.D. d 2535.401m Tetryl 9.67 9.66 761976 1142793 370.160 373.140m 2,4,6-Trinitroto 10.11 10.11 1089528 1666780 351.412 427.874 2-Amino-4,6-Dini 10.56 10.56 1688830 2547402 518.100 509.001 4-Amino-2,6-Dini 11.04 11.04 1200766 2431158 529.723 492.785 2,4-Dinitrotolue 11.98 11.98 2443280 1612378 503.429 530.658 2,6-Dinitrotolue 12.42 12.43 1411632 1800568 509.859 517.616 9) 10) 11) 12) 13) 14) 16) 17) o-Nitrotoluene 15.38 15.38 1151101 1549965 503.022 18) 513.200 p-Nitrotoluene 15.99 15.99 1762554 1374262 510.286 19) 503.317 20) m-Nitrotoluene 16.86 16.86 1736939 2056797 517.924 524.813m

0.00 18.91

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

Page 1 229 of 383 **ACCUTEST**

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053784.D\dad1B.ch Vial: 46

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053784.D\dad1A.ch

Quant Time: Mar 28 8:24 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by $8330A, 8\overline{3}30B, 8332$ Last Update : Mon Mar 27 09:45:21 2017

Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

 Sample Number:
 GBB1564-ICC1564

 Lab FileID:
 BB053784.D

 Injection Time:
 03/24/17 13:59

 Method:
 SW846 8330B

 Analyst approved:
 03/27/17 14:02

 Supervisor approved:
 03/29/17 14:53

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.22	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.66	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.74	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.35	Poorly defined baseline
Tetryl	479-45-8	2	9.66	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.86	Poorly defined baseline
PETN	78-11-5	2	18.91	Poorly defined baseline

Quantitation Report (QT Reviewed)

Manual Integrations APPROVED (compounds with "m" flag) 03/29/17 14:53

```
Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053785.D\dad1B.ch Vial: 47
```

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053785.D\dad1A.ch

Acq On : 24-Mar-2017, 14:29:10 Operator: evitam : ic1564-1000 : op64214,gbb1564,10.0,,,50,1,soil Sample Inst : G1315B Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 09:56:17 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

```
System Monitoring Compounds
```

15) S 3,4-Dinitrotolue 11.32 11.32 2316166 4064380 1020.282 1021.544 Spiked Amount 500.000 Range 69 - 134 Recovery = 204.06%# 204.31%#

	Target Compounds						
1)	TNX	1.46	1.46	3354684	5212626	1083.784	993.238
2)	HMX	1.60	1.60	1746265	4789459	1085.697	1002.755
3)	DNX	1.87	1.87	2841528	4551261	1026.968	911.330
4)	MNX	2.50	2.50	2325659	3641035	992.002	993.041
5)	RDX	3.16	3.16	1906779	3067269	1021.120	1038.369
6)	1,3,5-Trinitrobe	4.97	4.97	4950265	9693483	1240.507	1132.077
7)	1,3-Dinitrobenze	6.22	6.22	5514344	3734001	1065.103	965.140m
8)	3,5-Dinitroanili	6.66	6.65	4246466	7115578	1079.257	1074.370m
9)	Nitrobenzene	7.74	7.74	3339327	3166036	1008.831	996.415m
10)	Nitroglycerin	0.00	9.34	0	6201866	N.D. d	5000.956m
11)	Tetryl	9.66	9.66	1541500	2407797	748.845	786.185m
12)	2,4,6-Trinitroto	10.11	10.11	2200652	3201264	709.789	821.786m
13)	2-Amino-4,6-Dini	10.56	10.55	3445367	5055536	1056.972	975.079m
14)	4-Amino-2,6-Dini	11.04	11.04	2462712	4809071	1086.435	941.328m
16)	2,4-Dinitrotolue	11.98	11.98	4976816	3265044	996.336	1074.575
17)	2,6-Dinitrotolue	12.43	12.43	2851836	3676910	1003.087	1057.015
18)	o-Nitrotoluene	15.38	15.37	2365677	3237083	1012.403	1041.091m
19)	p-Nitrotoluene	15.99	15.99	3638552	2895785	1022.639	1011.242
20)	m-Nitrotoluene	16.86	16.86	3561822	4244803	1062.071	1083.105m

0 6687661 N.D. d 4750.863m

0.00 18.91

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053785.D\dad1B.ch Vial: 47

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053785.D\dad1A.ch

: 24-Mar-2017, 14:29:10 Acq On Operator: evitam Sample : ic1564-1000 Inst : G1315B : op64214,gbb1564,10.0,,,50,1,soil Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e

Quant Time: Mar 28 8:26 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332 Last Update : Mon Mar 27 09:45:21 2017

Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

 Sample Number:
 GBB1564-IC1564

 Lab FileID:
 BB053785.D

 Injection Time:
 03/24/17 14:29

 Method:
 SW846 8330B

 Analyst approved:
 03/27/17 14:02

 Supervisor approved:
 03/29/17 14:53

(b) (6) (b) (6)

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.22	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.65	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.74	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.37	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.86	Poorly defined baseline
PETN	78-11-5	2	18.91	Poorly defined baseline

Manual Integrations APPROVED (compounds with "m" flag)

03/29/17 14:53

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053786.D\dad1B.ch Vial: 48

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053786.D\dad1A.ch

Acq On : 24-Mar-2017, 14:59:08 Operator: evitam : ic1564-2000 : op64214,gbb1564,10.0,,,50,1,soil Sample Inst : G1315B Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 09:56:18 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.33 11.33 4680214 8397373 1958.338 1962.405 Spiked Amount 500.000 Range 69 - 134 Recovery = 391.67%# 392.48%#

	Target Compounds						
1)	TNX	1.46	1.46	6709460	10396178	2167.597	1854.843
2)	HMX	1.60	1.60	3618304	9892104	2249.591	2036.296
3)	DNX	1.87	1.87	5855997	9373823	2116.440	1876.985
4)	MNX	2.50	2.50	4738228	7428814	1905.537	1910.141
5)	RDX	3.15	3.15	3864961	6251786	2069.767	2116.430
6)	1,3,5-Trinitrobe	4.97	4.97	10137004	19809170	2540.274	2175.558
7)	1,3-Dinitrobenze	6.22	6.22	11256941	7563827	2174.293	1955.047m
8)	3,5-Dinitroanili	6.65	6.65	8595893	14541011	2184.682	2195.524m
9)	Nitrobenzene	7.74	7.73	6658885	6352983	1952.985	1886.746m
10)	Nitroglycerin	0.00	9.34	0	12969933	N.D. d	9981.370m
11)	Tetryl	9.67	9.66	3104542	5184283	1508.154	1692.752m
12)	2,4,6-Trinitroto	10.11	10.11	4444400	6690075	1433.477	1717.387m
13)	2-Amino-4,6-Dini	10.55	10.55	6995158	10537067	2145.980	1901.149m
14)	4-Amino-2,6-Dini	11.04	11.04	4980522	10255137	2197.177	1873.691
16)	2,4-Dinitrotolue	11.98	11.98	10087082	6695732	1917.610	2203.666
17)	2,6-Dinitrotolue	12.43	12.43	5763489	7498505	1932.007	2155.622
18)	o-Nitrotoluene	15.38	15.38	4740424	6500960	1953.989	1988.512
19)	p-Nitrotoluene	15.99	15.99	7317346	6085852	1952.985	1956.033
20)	m-Nitrotoluene	16.86	16.86	7136828	8399495	2128.072	2143.218
21)	PETN	0.00	18.91	0	13685288	N.D. d	9084.753m

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053786.D\dad1B.ch Vial: 48

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053786.D\dad1A.ch

Quant Time: Mar 28 8:28 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332 Last Update : Mon Mar 27 09:45:21 2017

Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

03/24/17 14:59

Sample Number: GBB1564-IC1564 Lab FileID: BB053786.D

Injection Time:

Method: SW846 8330B Analyst approved:

03/27/17 14:02 **Supervisor approved:** 03/29/17 14:53

Parameter	CAS	Sig#	R.T. (min.)	Reason
PETN	78-11-5	2	18.91	Poorly defined baseline

18)

19)

20)

21)

PETN

Manual Integrations APPROVED (compounds with "m" flag) 03/29/17 14:53

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053787.D\dad1B.ch Vial: 49

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053787.D\dad1A.ch

Acq On : 24-Mar-2017, 15:29:05 Operator: evitam : icv1564-500 : op64214,gbb1564,10.0,,,50,1,soil Sample Inst : G1315B Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 10:08:29 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 10:08:20 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound ppb

4.5.	System Monitoring Co	-		•			
15)			0.00	0	0	N.D. d	N.D. d
Sp	iked Amount 500.00)0 Range	69 -	134 Reco	very =	0.00%#	0.00%#
	Target Compounds						
1)	TNX	1.46	1.46	1671247	2596129	513.112	501.911
2)	HMX	1.60	1.60	897308	2504773	481.462	519.056
3)	DNX	1.87	1.87	1424717	2287610	483.804	477.088
4)	MNX	2.50	2.50	1189713	1846229	521.596	508.157
5)	RDX	3.15	3.15	958856	1525142	476.203	479.305
6)	1,3,5-Trinitrobe	0.00	0.00	0	0	N.D. d	N.D. d
7)	1,3-Dinitrobenze	6.22	6.22	2589492	1772725	454.918	454.488m
8)	3,5-Dinitroanili	6.66	6.65	2267602	3810995	531.440	527.274m
9)	Nitrobenzene	7.74	7.74	1629684	1549554	476.096	489.161m
10)	Nitroglycerin	0.00	9.36	0	3366133	N.D. d	2614.825m
11)	Tetrvl	9.67	9.67	1374481	2254461	866.868	963.498m
12)	2,4,6-Trinitroto	10.11	10.11	1645156	2101142	744.635	635.178m
13)	2-Amino-4,6-Dini		10.56	1718695	2505960	492.630	495.552m
14)	4-Amino-2,6-Dini		11.04	1296875	2559545	519.654	565.896
16)	2,4-Dinitrotolue		11.99	2446387	1631364	473.812	514.328
17)	2,6-Dinitrotolue		12.43	1433199	1853204	467.241	512.716
10)	2,0 2111202000200		1 - 20	1165005	1556010		475 220

o-Nitrotoluene 15.38 15.39 1165905 1556919 473.271 p-Nitrotoluene 16.00 16.00 1772614 1358298 489.225

m-Nitrotoluene 16.87 16.87 1715241 2026203 467.692

0.00 18.92

475.339

518.297m

502.135

0 3876212 N.D. d 2954.885m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB053787.D 8330B 0324PLUS.M Wed Mar 29 11:27:02 2017

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053787.D\dad1B.ch Vial: 49

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053787.D\dad1A.ch

game rime. That is interested for several control of the control o

Quant Method : D:\MSDCHEM\1...\8330B_0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332
Last Update : Mon Mar 27 10:08:20 2017
Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

 Sample Number:
 GBB1564-ICV1564

 Lab FileID:
 BB053787.D

 Injection Time:
 03/24/17 15:29

Method:SW846 8330BAnalyst approved:03/29/17 11:28Supervisor approved:03/29/17 14:53

Parameter	CAS	Sig#	R.T.	Reason
1,3-Dinitrobenzene	99-65-0	2	6.22	Doorly defined becaling
,	618-87-1	2		Poorly defined baseline
3,5-Dinitroaniline		_	6.65	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.74	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.36	Poorly defined baseline
Tetryl	479-45-8	2	9.67	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	2	10.11	Poorly defined baseline
2-amino-4,6-Dinitrotoluene	35572-78-2	2	10.56	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.87	Poorly defined baseline
PETN	78-11-5	2	18.92	Poorly defined baseline

SGS

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053788.D\dad1B.ch Vial: 50

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053788.D\dad1A.ch

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 27 09:55:43 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 09:45:21 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound System Monitoring Compounds 15) S 3,4-Dinitrotolue 0.00 0.00 0 N.D. d N.D. d Spiked Amount 500.000 Range 69 - 134 Recovery = 0.00%# 0.00%# Target Compounds

 0.00
 0.00
 0
 N.D. d
 N.D. d

 0.00
 0.00
 0
 N.D. d
 N.D. d

 0.00
 0.00
 0
 N.D. d
 N.D. d

 0.00
 0.00
 0
 N.D. d
 N.D. d

 0.00
 0.00
 0
 N.D. d
 N.D. d

 0.00
 0.00
 0
 N.D. d
 N.D. d

 N.D. d N.D. d N.D. d TNX 1) 2) HMX 3) DNX MNX 4) RDX 0.00 0.00 0 0 N.D. d N.D. d 1,3,5-Trinitrobe 4.97 4.97 1852605 3624900 464.252 441.870 1,3-Dinitrobenze 0.00 0.00 0 N.D. d N.D. d 3,5-Dinitroanili 0.00 0.00 0 N.D. d N.D. d N.D. d Nitrobenzene 0.00 0.00 0 N.D. d N.D. d N.D. d Nitroglycerin 0.00 0.00 0 N.D. d N.D. 5) RDX 6) 7) 8) 9) 10) 11) 12) 13) 14) 16) 17) 18) 19) 20)

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

BB053788.D 8330B 0324PLUS.M Wed Mar 29 11:27:03 2017

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0324BPL\BB053788.D\dad1B.ch Vial: 50

Signal #2 : C:\HPCHEM\1\DATA\0324BPL\BB053788.D\dad1A.ch

Acq On : 24-Mar-2017, 15:59:05 Operator: evitam Sample : icv1564-500,b Inst : G1315B : op64214,gbb1564,10.0,,,50,1,soil Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e

Quant Time: Mar 29 11:26 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Mon Mar 27 09:45:21 2017 Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

03/31/17 13:58

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053965.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053965.D\dad1A.ch

Acq On : 30-Mar-2017, 20:27:38 Operator: evitam : cc1564-1000 Inst : G131 : op64321,gbb1567,10.0,,,50,1,water Multiplr: 1.00 Sample Inst : G1315B Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 09:03:54 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 10:20:22 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.14 11.14 2263097 3998622 921.716 985.108 Spiked Amount 500.000 Range 70 - 136 Recovery = 184.34%# 197.02%#

	Target Compounds						
1)	TNX	1.44	1.44	3266887	5038911	1003.012	974.176
2)	HMX	1.57	1.57	1696996	4704326	910.544	968.048
3)	DNX	1.85	1.85	2911128	4699639	988.559	980.124
4)	MNX	2.46	2.46	2298846	3628481	1007.864	998.706
5)	RDX	3.10	3.10	1901407	3068680	944.308	964.392
6)	1,3,5-Trinitrobe	4.87	4.87	4860688	9537494	963.864	979.806
7)	1,3-Dinitrobenze	6.13	6.12	5480989	3736568	962.893	957.974m
8)	3,5-Dinitroanili	6.54	6.54	4199616	7068545	982.309	964.390m
9)	Nitrobenzene	7.66	7.66	3250808	3140522	949.692	991.396m
10)	Nitroglycerin	0.00	9.19	0	6299668	N.D. d	4893.606m
11)	Tetryl	9.48	9.48	1509096	2548154	951.768	1089.015
12)	2,4,6-Trinitroto	9.92	9.92	2147821	3321039	972.152	1003.955
13)	2-Amino-4,6-Dini	10.36	10.36	3401239	5185821	974.897	1025.492
14)	4-Amino-2,6-Dini	10.84	10.84	2306787	4884305	924.322m	1079.882m
16)	2,4-Dinitrotolue	11.78	11.78	4941439	3260176	957.049	1027.852
17)	2,6-Dinitrotolue	12.24	12.24	2832589	3670089	923.459	1015.383
18)	o-Nitrotoluene	15.25	15.25	2290317	3157382	929.700	963.972
19)	p-Nitrotoluene	15.85	15.85	3537446	2911515	976.302	1076.327
20)	m-Nitrotoluene	16.74	16.74	3444059	4080453	939.085	1043.767m
21)	PETN	0.00	18.80	0	6733852	N.D. d	5133.299m

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053965.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053965.D\dad1A.ch

: 30-Mar-2017, 20:27:38 Acq On Operator: evitam Sample : cc1564-1000 Inst : G1315B : op64321,gbb1567,10.0,,,50,1,water Misc Multiplr: 1.00 IntFile Signal #2: events2.e IntFile Signal #1: events.e Quant Time: Mar 31 11:05 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Mon Mar 27 10:20:22 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1567-CC1564 Lab FileID: BB053965.D **Injection Time:** 03/30/17 20:27

Method: SW846 8330B Analyst approved: 03/31/17 10:33

Supervisor approved: 03/31/17 13:58

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.12	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.54	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.66	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.19	Poorly defined baseline
1-amino-2,6-Dinitrotoluene	19406-51-0	1	10.84	Poorly defined baseline
4-amino-2, 6-Dinitrotoluene	19406-51-0	2	10.84	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.74	Poorly defined baseline
PETN	78-11-5	2	18.80	Poorly defined baseline

ACCUTEST

Manual Integrations APPROVED (compounds with "m" flag)

03/31/17 13:58

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053977.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053977.D\dad1A.ch

Acq On : 31-Mar-2017, 02:27:29 Operator: evitam : cc1564-1000 : op64396,gbb1567,10.0,,,10,1,SOIL Sample Inst : G1315B Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:06:54 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds

21)

15) S 3,4-Dinitrotolue 11.11 11.11 2259268 3984172 920.156 981.664 Spiked Amount 500.000 Range 69 - 134 Recovery = 184.03%# 196.33%#

	Target Compounds						
1)	TNX	1.44	1.44	3237507	4994949	993.991	965.676
2)	HMX	1.57	1.57	1636116	4599114	877.878	946.712
3)	DNX	1.84	1.84	2922016	4614416	992.256	962.351
4)	MNX	2.46	2.46	2311773	3579975	1013.532	985.355
5)	RDX	3.09	3.09	1866612	3031868	927.027	952.823
6)	1,3,5-Trinitrobe	4.86	4.86	4860556	9440341	963.838	969.826
7)	1,3-Dinitrobenze	6.12	6.12	5488476	3816334	964.208	978.424
8)	3,5-Dinitroanili	6.54	6.53	4141339	6913699	968.735	943.879m
9)	Nitrobenzene	7.65	7.65	3207551	3070830	937.055	969.395
10)	Nitroglycerin	0.00	9.17	0	6322996	N.D. d	4911.727
11)	Tetryl	9.46	9.46	1513168	2423536	954.336	1035.756
12)	2,4,6-Trinitroto	9.89	9.89	2141611	3191749	969.341	964.871
13)	2-Amino-4,6-Dini	10.34	10.34	3368875	5046595	965.621	997.961
14)	4-Amino-2,6-Dini	10.83	10.83	2424455	4904512	971.471	1084.350
16)	2,4-Dinitrotolue	11.76	11.76	4949754	3260789	958.659	1028.045
17)	2,6-Dinitrotolue	12.22	12.22	2852570	3686692	929.973	1019.977
18)	o-Nitrotoluene	15.22	15.22	2266118	3028080	919.877	924.495
19)	p-Nitrotoluene	15.82	15.82	3491579	2872955	963.643	1062.072
20)	m-Nitrotoluene	16.72	16.72	3400712	4006972	927.266	1024.971m
				_		_	

0 6823644 N.D. d 5201.749m

0.00 18.78

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB053977.D 8330B 0324PLUS.M Fri Mar 31 10:15:50 2017

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053977.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053977.D\dad1A.ch

: 31-Mar-2017, 02:27:29 Acq On Operator: evitam Sample : cc1564-1000 Inst : G1315B : op64396,gbb1567,10.0,,,10,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 31 10:07 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332 Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1567-CC1564 **Lab FileID:** BB053977.D **Injection Time:** 03/31/17 02:27 **Method:** SW846 8330B **Analyst approved:** 03/31/17 10:33

Supervisor approved: 03/31/17 13:58

Parameter	CAS	Sig#	R.T. (min.)	Reason
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline Poorly defined baseline Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	
PETN	78-11-5	2	18.78	

(compounds with "m" flag)
(b) (6)
03/31/17 13:58

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053989.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053989.D\dad1A.ch

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 10:09:39 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Compound RT#1 RT#2 Resp#1 Resp#2 ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.11 11.11 2292549 4007908 933.711 987.322 Spiked Amount 500.000 Range 69 - 134 Recovery = 186.74%# 197.46%#

	Target Compounds						
1)	TNX	1.44	1.44	3266808	5009179	1002.987	968.427
2)	HMX	1.57	1.57	1636210	4549364	877.928	936.618
3)	DNX	1.85	1.85	2929821	4619644	994.906	963.441
4)	MNX	2.46	2.46	2292055	3565055	1004.887	981.248
5)	RDX	3.10	3.10	1869807	3039727	928.614	955.293
6)	1,3,5-Trinitrobe	4.87	4.87	4843948	9517516	960.545	977.754
7)	1,3-Dinitrobenze	6.12	6.12	5498424	3875766	965.956	993.661
8)	3,5-Dinitroanili	6.54	6.54	4160645	7034482	973.232	959.881m
9)	Nitrobenzene	7.65	7.65	3199374	3061236	934.666	966.367
10)	Nitroglycerin	0.00	9.17	0	6352997	N.D. d	4935.032
11)	Tetryl	9.46	9.45	1532128	2408860	966.294	1029.484
12)	2,4,6-Trinitroto	9.89	9.89	2154806	3195915	975.313	966.130
13)	2-Amino-4,6-Dini	10.34	10.34	3401973	5063712	975.108	1001.345
14)	4-Amino-2,6-Dini	10.82	10.82	2435476	4912225	975.888	1086.055
16)	2,4-Dinitrotolue	11.75	11.75	4987163	3286391	965.904	1036.117
17)	2,6-Dinitrotolue	12.21	12.21	2857010	3678055	931.421	1017.587
18)	o-Nitrotoluene	15.22	15.22	2235602	3070536	907.490	937.457
19)	p-Nitrotoluene	15.82	15.82	3463433	2852239	955.875	1054.413
20)	m-Nitrotoluene	16.72	16.71	3343989	3890460	911.799	995.168m
21)	PETN	0.00	18.77	0	6736180	N.D. d	5135.074m

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0329BPL\BB053989.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0329BPL\BB053989.D\dad1A.ch

: 31-Mar-2017, 09:03:03 Acq On Operator: evitam Sample : ecc1564-1000 Inst : G1315B : op64396,gbb1567,10.0,,,10,1,SOIL Misc Multiplr: 1.00 IntFile Signal #1: events.e IntFile Signal #2: events2.e Quant Time: Mar 31 10:15 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332 Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1567-ECC1564 **Lab FileID:** BB053989.D

Injection Time: BB053989.D 03/31/17 09:03

Method: SW846 8330B

Analyst approved: 03/31/17 10:33

Supervisor approved: 03/31/17 13:58

Parameter	CAS	Sig#	R.T. (min.)	Reason
3,5-Dinitroaniline	618-87-1	2	6.54	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.71	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

SGS

Manual Integrations APPROVED (compounds with "m" flag) 04/03/17 08:54

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053991.D\dad1B.ch Vial: 31

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053991.D\dad1A.ch

Acq On : 31-Mar-2017, 10:52:29 Operator: evitam : IC1568-20 Sample Inst : op64321,gbb1568,10.0,,,50,1,water Multiplr: 1.00 Misc

Quant Time: Mar 31 12:48:01 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Compound RT#1 RT#2 Resp#1 Resp#2 ppb ppb

ystem Monitoring Co 3,4-Dinitrotolue ed Amount 500.00	11.12					
•			70823	78827	28.845m	20.079m
ed Amount 500.00					5.77%#	
	JU Kang	e /u -	130 Keco	very -	J. //5#	4.025#
arget Compounds						
TNX	1.43	1.44	57401	89091	17.624m	17.224m
HMX	1.57	1.57	48072	160466	25.794m	33.508m
DNX	1.84	1.84	47021	109456	15.968m	22.827m#
MNX	2.45	2.45	37457	64187	16.422m	17.667m
RDX	3.09	3.09	45079	79017	22.388m	24.833m
		4.86	95060	195362	18.850	20.070m
•					21.072m	18.197m
3,5-Dinitroanili	6.52	6.53	109665	170258	25.758m	23.945m
Nitrobenzene	7.64	7.63	73941	63003	21.601	19.889m
		9.18	0	115877	N.D. d	90.014m
						51.066m
2,4,6-Trinitroto	9.88	9.88	84578	98460	38.282m	29.765m
2-Amino-4,6-Dini	10.37	10.34	95091	143326	27.256	28.343m
4-Amino-2,6-Dini	10.83	10.83	60425	110692	24.212m	24.473m
2,4-Dinitrotolue	11.75	11.80	102841		19.918m	18.050m
2,6-Dinitrotolue	12.21	12.22	54036	75701	17.616m	20.944
o-Nitrotoluene	15.23	15.23		89466	19.499	27.315 #
p-Nitrotoluene	15.84	15.87	65869	37086	18.179	13.710m
m-Nitrotoluene	16.71	16.75	81749	82370	22.290	21.070m
PETN	0.00	18.79	0	125867	N.D. d	95.950m
	TNX HMX DNX MNX RDX 1,3,5-Trinitrobe 1,3-Dinitrobenze 3,5-Dinitroanili Nitrobenzene Nitroglycerin Tetryl 2,4,6-Trinitroto 2-Amino-4,6-Dini 4-Amino-2,6-Dini 2,4-Dinitrotolue 2,6-Dinitrotolue p-Nitrotoluene m-Nitrotoluene	TNX 1.43 HMX 1.57 DNX 1.84 MNX 2.45 RDX 3.09 1,3,5-Trinitrobe 4.86 1,3-Dinitrobenze 6.11 3,5-Dinitroanili 6.52 Nitrobenzene 7.64 Nitroglycerin 0.00 Tetryl 9.45 2,4,6-Trinitroto 9.88 2-Amino-4,6-Dini 10.37 4-Amino-2,6-Dini 10.83 2,4-Dinitrotolue 11.75 2,6-Dinitrotolue 12.21 o-Nitrotoluene 15.23 p-Nitrotoluene 15.84 m-Nitrotoluene 16.71	TNX 1.43 1.44 HMX 1.57 1.57 DNX 1.84 1.84 MNX 2.45 2.45 RDX 3.09 3.09 1,3,5-Trinitrobe 4.86 4.86 1,3-Dinitrobenze 6.11 6.11 3,5-Dinitroanili 6.52 6.53 Nitrobenzene 7.64 7.63 Nitroglycerin 0.00 9.18 Tetryl 9.45 9.44 2,4,6-Trinitroto 9.88 9.88 2-Amino-4,6-Dini 10.37 10.34 4-Amino-2,6-Dini 10.83 10.83 2,4-Dinitrotolue 11.75 11.80 2,6-Dinitrotolue 12.21 12.22 o-Nitrotoluene 15.23 15.23 p-Nitrotoluene 15.84 15.87 m-Nitrotoluene 16.71 16.75	TNX	TNX	TNX

Quantitation Report (QT Reviewed)

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053991.D\dad1A.ch

: 31-Mar-2017, 10:52:29 Acq On Operator: evitam Sample : IC1568-20 Inst : op64321,gbb1568,10.0,,,50,1,water Misc Multiplr: 1.00 IntFile Signal #2: events2.e IntFile Signal #1: events.e Quant Time: Mar 31 15:13 2017 Quant Results File: 8330B 0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332Last Update : Fri Mar 31 10:06:47 2017

Response via : Multiple Level Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #2 Info : DAD 235/214nm Signal #1 Info : DAD 254/270nm

"

Manual Integration Approval Summary

 Sample Number:
 GBB1568-IC1568
 Method:
 SW846 8330B

 Lab FileID:
 BB053991.D
 Analyst approved:
 04/03/17 07:14

Injection Time: 03/31/17 10:52 **Supervisor approved:** 04/03/17 08:54

Parameter	CAS	Sig#	R.T. (min.)	Reason
TNIX		1		D 1 1 C 11 1
TNX		1	1.43	Poorly defined baseline
TNX	2601 41 0	2	1.44	Poorly defined baseline
HMX	2691-41-0	1	1.57	Poorly defined baseline
HMX	2691-41-0	2	1.57	Poorly defined baseline
DNX		1	1.84	Poorly defined baseline
ONX		2	1.84	Poorly defined baseline
MNX		1	2.45	Poorly defined baseline
MNX		2	2.45	Poorly defined baseline
RDX	121-82-4	1	3.09	Poorly defined baseline
RDX	121-82-4	2	3.09	Poorly defined baseline
,3,5-Trinitrobenzene	99-35-4	2	4.86	Poorly defined baseline
,3-Dinitrobenzene	99-65-0	1	6.11	Poorly defined baseline
,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
,5-Dinitroaniline	618-87-1	1	6.52	Poorly defined baseline
,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
litrobenzene	98-95-3	2	7.63	Poorly defined baseline
Vitroglycerine	55-63-0	2	9.18	Poorly defined baseline
etryl	479-45-8	2	9.44	Poorly defined baseline
Tetryl	479-45-8	1	9.45	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	1	9.88	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	2	9.88	Poorly defined baseline
2-amino-4,6-Dinitrotoluene	35572-78-2	2	10.34	Poorly defined baseline
4-amino-2,6-Dinitrotoluene	19406-51-0	1	10.83	Poorly defined baseline
4-amino-2,6-Dinitrotoluene	19406-51-0	2	10.83	Poorly defined baseline
3,4-Dinitrotoluene	610-39-9	2	11.07	Poorly defined baseline
3,4-Dinitrotoluene	610-39-9	1	11.12	Poorly defined baseline
2,4-Dinitrotoluene	121-14-2	1	11.75	Poorly defined baseline
2,4-Dinitrotoluene	121-14-2	2	11.80	Poorly defined baseline
,6-Dinitrotoluene	606-20-2	1	12.21	Poorly defined baseline
-Nitrotoluene	99-99-0	2	15.87	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.75	Poorly defined baseline
ETN	78-11-5	2	18.79	Poorly defined baseline

21)

PETN

Quantitation Report (QT Reviewed)

Manual Integrations **APPROVED** (compounds with "m" flag) 04/03/17 08:54

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053992.D\dad1B.ch Vial: 32

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053992.D\dad1A.ch

Acq On : 31-Mar-2017, 11:22:26 Operator: evitam Sample Inst : G1315B Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 12:48:02 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #2 Phase: Extend C-18 Signal #1 Phase : Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.13 11.09 167789 223399 68.337 56.831m Spiked Amount 500.000 Range 70 - 136 Recovery = 13.67%# 11.37%# Target Compounds 183933 1) TNX 1.44 1.44 292143 56.472m 56.480m 441332 77.987m 323708 59.707 2) HMX 1.57 1.57 145346 92.072m 175827 3) 67.510 DNX 1.84 1.84 56.197 2.46 2.45 128270 204176 56.237 4) MNX 3.09 3.09 136374 196449 67.728 5) 61.738 RDX 1,3,5-Trinitrobe 4.86 4.86 268022 505330 53.148 51.914 6) 1,3-Dinitrobenze 6.11 6.11 316826 227452 55.660m 58.314m 7) 3,5-Dinitroanili 6.53 6.53 266327 441740 62.544m 62.048m 8) Nitrobenzene 7.65 7.65 185262 173688 54.122 54.830m
Nitroglycerin 0.00 9.18 0 338758 N.D. d 263.148m
Tetryl 9.46 9.46 200092 277454 126.195 118.576m
2,4,6-Trinitroto 9.89 9.89 238041 277960 107.743 84.028m
2-Amino-4,6-Dini 10.34 10.34 227804 297560 65.296 58.842m
4-Amino-2,6-Dini 10.81 10.82 155680 275890 62.381 60.997m
2,4-Dinitrotolue 11.76 11.76 313981 187156 60.811 59.006m
2,6-Dinitrotolue 12.21 12.22 191160 62.321 58.318m 9) 10) 11) 12) 13) 155666 313981 191160 14) 16) 210791 17) o-Nitrotoluene 15.23 15.22 191160 210791 62.321 o-Nitrotoluene 15.23 15.22 134131 180454 54.447 p-Nitrotoluene 15.82 15.82 188716 129357 52.084 m-Nitrotoluene 16.71 16.72 191776 186201 52.291 18) 55.094m 19) 47.821 20) 47.630m

0 376177 N.D.

286.765m#

0.00 18.77

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB053992.D 8330B 0331PLUS.M Mon Apr 03 07:11:39 2017

BB053992.D: 06/03/308 Initial Calibration (50) page 1 of 2

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053992.D\dad1B.ch Vial: 32

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053992.D\dad1A.ch

_

Quant Method : D:\MSDCHEM\1...\8330B_0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332 Last Update : Fri Mar 31 10:06:47 2017

Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

 Sample Number:
 GBB1568-IC1568
 Method:
 SW846 8330B

 Lab EtlaD:
 PR052002 D
 Analysis approved:
 04/02/17 07:1/2

 Lab FileID:
 BB053992.D
 Analyst approved:
 04/03/17 07:14

 Injection Time:
 03/31/17 11:22
 Supervisor approved:
 04/03/17 08:54

Parameter	CAS	Sig#	R.T. (min.)	Reason
TNX		1	1.44	Poorly defined baseline
TNX		2	1.44	Poorly defined baseline
HMX	2691-41-0	1	1.57	Poorly defined baseline
HMX	2691-41-0	2	1.57	Poorly defined baseline
1,3-Dinitrobenzene	99-65-0	1	6.11	Poorly defined baseline
1,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	1	6.53	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.65	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.18	Poorly defined baseline
Γetryl	479-45-8	2	9.46	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	2	9.89	Poorly defined baseline
2-amino-4,6-Dinitrotoluene	35572-78-2	2	10.34	Poorly defined baseline
4-amino-2,6-Dinitrotoluene	19406-51-0	2	10.82	Poorly defined baseline
3,4-Dinitrotoluene	610-39-9	2	11.09	Poorly defined baseline
2,4-Dinitrotoluene	121-14-2	2	11.76	Poorly defined baseline
2,6-Dinitrotoluene	606-20-2	2	12.22	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.22	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

(compounds with "m" flag) 04/03/17 08:54

APPROVED

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053993.D\dad1B.ch Vial: 33

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053993.D\dad1A.ch

Acq On : 31-Mar-2017, 11:52:28 Operator: evitam Sample Inst : G1315B Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 12:48:03 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #2 Phase: Extend C-18 Signal #1 Phase : Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds 15) S 3,4-Dinitrotolue 11.10 11.11 281827 398776 114.783 101.287 Spiked Amount 500.000 Range 70 - 136 Recovery = 22.96%# 20.26%#

	Target Compounds						
1)	TNX	1.44	1.44	326370	517067	100.203	99.965
2)	HMX	1.57	1.57	193833	574688	104.003	119.841
3)	DNX	1.84	1.84	291401	501461	98.954m	104.581
4)	MNX	2.45	2.45	242809	366064	106.453	100.756
5)	RDX	3.09	3.09	210165	328356	104.375	103.192
6)	1,3,5-Trinitrobe	4.86	4.86	424180	827508	84.114	85.012
7)	1,3-Dinitrobenze	6.12	6.11	561088	392428	98.571	100.610m
8)	3,5-Dinitroanili	6.53	6.53	485294	800989	113.941	112.324m
9)	Nitrobenzene	7.65	7.65	329331	324516	96.211	102.443
10)	Nitroglycerin	0.00	9.19	0	605725	N.D. d	470.529
11)	Tetryl	9.45	9.45	327269	493370	206.404	210.853
12)	2,4,6-Trinitroto	9.89	9.89	427874	461364	193.665	139.471
13)	2-Amino-4,6-Dini	10.33	10.33	375477	486296	107.623	96.165
14)	4-Amino-2,6-Dini	10.83	10.82	272316	467221	109.116	103.299
16)	2,4-Dinitrotolue	11.75	11.75	536792	337692	103.965	106.466
17)	2,6-Dinitrotolue	12.22	12.22	307351	381292	100.200	105.490
18)	o-Nitrotoluene	15.21	15.22	230008	319800	93.366	97.637
19)	p-Nitrotoluene	15.81	15.82	345285	267228	95.295	98.788
20)	m-Nitrotoluene	16.72	16.72	355009	353658	96.800	90.465m
21)	PETN	0.00	18.77	0	656630	N.D. d	500.557m

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053993.D\dad1B.ch Vial: 33

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053993.D\dad1A.ch

Quant Method : D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1568-IC1568 Method:

Lab FileID: BB053993.D Analyst approved: **Injection Time:** 03/31/17 11:52

SW846 8330B

Parameter	CAS	Sig#	R.T. (min.)	Reason
DNX		1	1.84	Poorly defined baseline
1,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

04/03/17 08:54

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053994.D\dad1B.ch Vial: 34

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053994.D\dad1A.ch

Acq On : 31-Mar-2017, 12:22:25 Operator: evitam Sample Inst : G1315B Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 12:48:04 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/2149 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.11 11.11 508004 824663 206.900 208.675 Spiked Amount 500.000 Range 70 - 136 Recovery = 41.38%# 41.73%#

	Target Compounds						
1)	TNX	1.44	1.44	668026	1056727	205.100	204.298
2)	HMX	1.57	1.57	374227	1108748	200.796	230.806
3)	DNX	1.84	1.84	593311	1013225	201.476	211.311
4)	MNX	2.45	2.45	482590	745055	211.578	205.069
5)	RDX	3.09	3.09	409003	645535	203.126	202.872
6)	1,3,5-Trinitrobe	4.86	4.86	835012	1659117	165.581	170.444
7)	1,3-Dinitrobenze	6.11	6.11	1117701	779231	196.356	199.778m
8)	3,5-Dinitroanili	6.53	6.53	952119	1608037	223.440	224.673m
9)	Nitrobenzene	7.65	7.65	659365	637305	192.627	201.184m
10)	Nitroglycerin	0.00	9.18	0	1222376	N.D. d	949.547m
11)	Tetryl	9.45	9.45	639754	1004118	403.485	429.134m
12)	2,4,6-Trinitroto	9.89	9.89	802658	920637	363.301	278.310m
13)	2-Amino-4,6-Dini	10.34	10.34	727627	1032695	208.560	204.215m
14)	4-Amino-2,6-Dini	10.82	10.82	508236	1017484	203.649	224.958
16)	2,4-Dinitrotolue	11.76	11.75	1025427	651321	198.603	205.345
17)	2,6-Dinitrotolue	12.22	12.22	591928	737916	192.976	204.155
18)	o-Nitrotoluene	15.22	15.22	465752	603148	189.061	184.145
19)	p-Nitrotoluene	15.82	15.83	704474	529330	194.428	195.682
20)	m-Nitrotoluene	16.72	16.72	695846	782303	189.735	200.111m
21)	PETN	0.00	18.77	0	1421204	N.D. d	1083.402m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053994.D\dad1B.ch Vial: 34

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053994.D\dad1A.ch

Quant Time: Mar 31 15:19 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method : D:\MSDCHEM\1...\8330B_0324PLUS.M (Chemstation Integrator)

Title : Explosives by $8330A, 8\overline{3}30B, 8332$ Last Update : Fri Mar 31 10:06:47 2017

Response via: Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

 Sample Number:
 GBB1568-IC1568
 Method:
 SW846 8330B

 Lab EilalD:
 PR053004 D
 Analyst approved:
 04/03/17 07:14

 Lab FileID:
 BB053994.D
 Analyst approved:
 04/03/17 07:14

 Injection Time:
 03/31/17 12:22
 Supervisor approved:
 04/03/17 08:54

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.11	Doorly defined hegeline
,				Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.65	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.18	Poorly defined baseline
Tetryl	479-45-8	2	9.45	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	2	9.89	Poorly defined baseline
2-amino-4,6-Dinitrotoluene	35572-78-2	2	10.34	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

21)

PETN

0 3251017 N.D. d 2478.290m

Manual Integrations APPROVED (compounds with "m" flag) 04/03/17 08:54

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053995.D\dad1B.ch Vial: 35

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053995.D\dad1A.ch

: 31-Mar-2017, 12:52:24 Acq On Operator: evitam : ICC1568-500 Sample Inst : op64321,gbb1568,10.0,,,50,1,water Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 13:39:38 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Compound Resp#1 Resp#2 daa nnh

Compound	1/1 # 1	1(1 # 2	иезрат	Kesp#2	ppb	ppb
System Monitoring Co	ompound	.S				
S 3,4-Dinitrotolue	11.12	11.12	1162402	1986092	473.424	497.546
iked Amount 500.00	00 Rang	e 70 -	136 Reco	very =	94.68%	99.51%
3						
TNX						488.625
HMX	1.57		839131	2336878	450.246	484.526
DNX	1.84	1.84	1422215	2295175	482.955	478.666
MNX	2.46	2.46	1152204	1799195	505.152	495.212
RDX	3.09	3.09	971176	1513284	482.321	475.579
1,3,5-Trinitrobe	4.86	4.86	2005402	3904865	397.667	401.155
1,3-Dinitrobenze	6.12	6.11	2710475	1865081	476.173	478.166m
3,5-Dinitroanili	6.53	6.53	2210442	3672570	518.074	508.431m
Nitrobenzene	7.65	7.65	1208891	1136626	353.166	358.809m
Nitroglycerin	0.00	9.19	0	3007716	N.D. d	2336.405
Tetryl	9.46	9.46	1473273	2420730	929.175	1034.557
2,4,6-Trinitroto	9.89	9.90	1905123	2283923	862.301	690.433
2-Amino-4,6-Dini	10.35	10.34	1676041	2477499	480.404	489.924
4-Amino-2,6-Dini	10.83	10.83	1199200	2383894	480.515	527.061
2,4-Dinitrotolue	11.76	11.76	2432891	1595584	471.198	503.048
2,6-Dinitrotolue	12.22	12.23	1410649	1790342	459.889	495.324
o-Nitrotoluene	15.22	15.23	798528	1077765	324.144m	329.049m
p-Nitrotoluene	15.83	15.83	1368498	1069020	377.692	395.194
m-Nitrotoluene	16.72	16.72	1252709	1480544	341.574	378.719m
	System Monitoring Co S 3,4-Dinitrotolue iked Amount 500.00 Target Compounds TNX HMX DNX MNX RDX 1,3,5-Trinitrobe 1,3-Dinitrobenze 3,5-Dinitroanili Nitrobenzene Nitroglycerin Tetryl 2,4,6-Trinitroto 2-Amino-4,6-Dini 4-Amino-2,6-Dini 2,4-Dinitrotolue 2,6-Dinitrotolue o-Nitrotoluene p-Nitrotoluene	System Monitoring Compounds 3,4-Dinitrotolue 11.12 iked Amount 500.000 Rang Target Compounds TNX 1.44 HMX 1.57 DNX 1.84 MNX 2.46 RDX 3.09 1,3,5-Trinitrobe 4.86 1,3-Dinitrobenze 6.12 3,5-Dinitroanili 6.53 Nitrobenzene 7.65 Nitroglycerin 0.00 Tetryl 9.46 2,4,6-Trinitroto 9.89 2-Amino-4,6-Dini 10.35 4-Amino-2,6-Dini 10.83 2,4-Dinitrotolue 11.76 2,6-Dinitrotolue 12.22 o-Nitrotoluene 15.22 p-Nitrotoluene 15.83	System Monitoring Compounds S	System Monitoring Compounds S	System Monitoring Compounds S	System Monitoring Compounds S

0.00 18.77

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

264 of 383 **ACCUTEST**

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053995.D\dad1B.ch Vial: 35

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053995.D\dad1A.ch

Quant Time: Mar 31 15:27 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, 8330B, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1568-ICC1568 Method: SW846 8330B

 Lab FileID:
 BB053995.D
 Analyst approved:
 04/03/17 07:14

 Injection Time:
 03/31/17 12:52
 Supervisor approved:
 04/03/17 08:54

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.65	Poorly defined baseline
o-Nitrotoluene	88-72-2	1	15.22	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.23	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

04/03/17 08:54

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053996.D\dad1B.ch Vial: 36

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053996.D\dad1A.ch

Acq On : 31-Mar-2017, 13:22:21 Operator: evitam Sample Inst : G1315B Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Mar 31 13:55:34 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 10:06:47 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.12 11.12 2259090 3956832 920.084 975.143 Spiked Amount 500.000 Range 70 - 136 Recovery = 184.02%# 195.03%#

	Target Compounds						
1)	TNX	1.44	1.44	3271849	5042887	1004.535	974.944
2)	HMX	1.57	1.57	1650925	4566445	885.824	940.084
3)	DNX	1.84	1.84	2835211	4543538	962.779	947.569
4)	MNX	2.46	2.46	2315531	3567980	1015.179	982.054
5)	RDX	3.09	3.09	1845354	2958085	916.470	929.635
6)	1,3,5-Trinitrobe	4.86	4.86	3957150	7766647	784.695	797.884
7)	1,3-Dinitrobenze	6.12	6.12	5345910	3714715	939.163	952.371
8)	3,5-Dinitroanili	6.53	6.53	4331989	7335824	1013.136	999.733m
9)	Nitrobenzene	7.65	7.65	3094422	2965837	904.005	936.252
10)	Nitroglycerin	0.00	9.19	0	6020239	N.D. d	4676.545
11)	Tetryl	9.46	9.46	2907673	4826928	1833.833	2062.903
12)	2,4,6-Trinitroto	9.90	9.90	3750071	4553011	1697.366	1376.382
13)	2-Amino-4,6-Dini	10.34	10.34	3316844	4949569	950.707	978.774
14)	4-Amino-2,6-Dini	10.83	10.83	2368236	4781401	948.945	1057.131
16)	2,4-Dinitrotolue	11.76	11.76	4850267	3168565	939.391	998.969
17)	2,6-Dinitrotolue	12.23	12.23	2780770	3572668	906.565	988.430
18)	o-Nitrotoluene	15.23	15.23	2172472	2951557	881.864	901.132
19)	p-Nitrotoluene	15.82	15.82	3375926	2759352	931.724	1020.075
20)	m-Nitrotoluene	16.72	16.72	3268975	3868508	891.345	989.553m
21)	PETN	0.00	18.77	0	6596406	N.D. d	5028.523m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB053996.D 8330B 0331PLUS.M Mon Apr 03 07:11:43 2017

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053996.D\dad1B.ch Vial: 36

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053996.D\dad1A.ch

Quant Time: Mar 31 15:28 2017 Quant Results File: 8330B_0324PLUS.RES

Quant Method : D:\MSDCHEM\1...\8330B_0324PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332 Last Update : Fri Mar 31 10:06:47 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1568-IC1568 Lab FileID: BB053996.D

Injection Time: 03/31/17 13:22 Method: SW846 8330B

Analyst approved: 04/03/17 07:14

Supervisor approved: 04/03/17 08:54

Parameter	CAS	Sig#	R.T. (min.)	Reason
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

18)

19)

20)

21)

PETN

1120204 1476085 489.468

0 3679541 N.D. d 2719.699m

579.632m

541.212

506.586m

Manual Integrations APPROVED (compounds with "m" flag) 04/03/17 08:54

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053998.D\dad1B.ch Vial: 38

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053998.D\dad1A.ch

Acq On : 31-Mar-2017, 14:22:19 Operator: evitam : ICV1568-500 : op64321,gbb1568,10.0,,,50,1,water Sample Inst : G1315B Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Apr 03 06:58:35 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 15:52:11 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

o-Nitrotoluene 15.23 15.23

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound ppb

	System Monitoring Co	ompounds					
15)	S 3,4-Dinitrotolue	0.00	0.00	0	0	N.D. d	N.D.
Sp	iked Amount 500.00	00 Range	70 -	136 Reco	very =	0.00%#	0.00%#
-		_			-		
	Target Compounds						
1)	TNX	1.44	1.44	1644603	2537373	500.879	493.502
2)	HMX	1.57	1.57	900611	2521857	520.881	515.772
3)	DNX	1.84	1.84	1425957	2310879	496.332	444.947
4)	MNX	2.45	2.45	1163972	1817236	502.461	499.123
5)	RDX	3.09	3.09	931101	1502724	432.540	442.504
6)	1,3,5-Trinitrobe	4.86	4.86	1996997	3844785	452.180	443.444
7)	1,3-Dinitrobenze	6.11	6.11	2434440	1695995	425.847m	435.557m
8)	3,5-Dinitroanili	6.53	6.53	2126697	3579061	437.349m	446.650m
9)	Nitrobenzene	7.65	7.64	1551756	1513638	477.350	496.419m
10)	Nitroglycerin	0.00	9.19	0	3241413	N.D. d	2644.337m
11)	Tetryl	9.46	9.46	1383895	2265603	431.831	436.446m
12)	2,4,6-Trinitroto	0.00	0.00	0	0	N.D. d	N.D. d
13)	2-Amino-4,6-Dini	10.34	10.34	1678834	2557691	489.433	511.725m
14)	4-Amino-2,6-Dini	10.83	10.83	1294146	2539201	480.327	501.799
16)	2,4-Dinitrotolue	11.76	11.77	2319048	1526218	439.869	467.234
17)	2,6-Dinitrotolue	12.22	12.23	1367395	1761704	451.778	466.538
101	AT 2 H	1 5 0 2	1 = 00	1100001	1476005	100 100	E70 (22-

p-Nitrotoluene 15.82 15.83 1665166 1322160 495.686

m-Nitrotoluene 16.72 16.72 1638504 1867631 566.949

0.00 18.77

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053998.D\dad1B.ch Vial: 38

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053998.D\dad1A.ch

: 31-Mar-2017, 14:22:19 Acq On Operator: evitam Sample : ICV1568-500 Inst : G1315B : op64321,gbb1568,10.0,,,50,1,water Misc Multiplr: 1.00 IntFile Signal #2: events2.e IntFile Signal #1: events.e

Quant Time: Apr 3 8:51 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

: Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 15:52:11 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1568-ICV1568 Method: SW846 8330B

 Lab FileID:
 BB053998.D
 Analyst approved:
 04/03/17 07:14 (b)

 Injection Time:
 03/31/17 14:22
 Supervisor approved:
 04/03/17 08:54 (b)

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	1	6.11	Poorly defined baseline
1,3-Dinitrobenzene	99-65-0	2	6.11	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	1	6.53	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.64	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.19	Poorly defined baseline
Tetryl	479-45-8	2	9.46	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	2	9.89	Poorly defined baseline
2-amino-4, 6-Dinitrotoluene	35572-78-2	2	10.34	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.23	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.72	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

SGS 272 of 383
ACCUTEST

21)

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053999.D\dad1B.ch Vial: 39

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053999.D\dad1A.ch

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Apr 03 08:50:21 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 15:52:11 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 ppb Compound System Monitoring Compounds 15) S 3,4-Dinitrotolue 0.00 0.00 0 N.D. d N.D. d Spiked Amount 500.000 Range 70 - 136 Recovery = 0.00%# 0.00%# Target Compounds 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 16) 17) 18) 19) 20)

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int.

Page 1 273 of 383 **ACCUTEST**

Signal #1 : C:\HPCHEM\1\DATA\0331BPL\BB053999.D\dad1B.ch Vial: 39

Signal #2 : C:\HPCHEM\1\DATA\0331BPL\BB053999.D\dad1A.ch

Quant Time: Apr 3 8:50 2017 Quant Results File: 8330B_0331PLUS.RES

guant Time. Apr 5 0.50 2017 Quant Results Title. 0550b_05511B05.NB0

Quant Method : D:\MSDCHEM\1...\8330B_0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332
Last Update : Fri Mar 31 15:52:11 2017
Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Manual Integrations APPROVED (compounds with "m" flag) 04/03/17 18:47

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054003.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054003.D\dad1A.ch

Acq On : 03-Apr-2017, 08:40:52 Operator: evitam : cc1568-1000,b Inst : G131 : op64321,gbb1569,10.0,,,50,1,water Multiplr: 1.00 Sample Inst : G1315B Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Apr 03 09:19:43 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

: Explosives by 8330A, 8330B, 8332

Last Update : Fri Mar 31 15:52:11 2017 Response via : Initial Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.07 11.07 2252455 4006162 1000.014 983.129 Spiked Amount 500.000 Range 70 - 136 Recovery = 200.00%# 196.63%#

Target	Compounds
TNX	

	Target Compounds						
1)	TNX	1.44	1.44	3286328	5099338	1000.882	991.786
2)	HMX	1.57	1.57	1640742	4522507	997.044	994.774
3)	DNX	1.84	1.84	2872120	4560427	1014.472	878.086
4)	MNX	2.45	2.45	2352341	3667972	1015.454	1007.448
5)	RDX	3.09	3.09	1875562	2999747	871.287	883.329
6)	1,3,5-Trinitrobe	4.85	4.85	4033402	7904955	913.283	911.729
7)	1,3-Dinitrobenze	6.10	6.10	5369697	3709136	939.300	952.561m
8)	3,5-Dinitroanili	6.52	6.52	4454104	7520190	915.974	938.485m
9)	Nitrobenzene	7.63	7.63	3231523	3114705	994.079	1021.512m
10)	Nitroglycerin	0.00	9.15	0	5806485	N.D. d	4736.918m
11)	Tetryl	9.43	9.42	3067118	4970923	957.066	957.598m
12)	2,4,6-Trinitroto	9.85	9.85	3799352	4576278	917.642	952.733m
13)	2-Amino-4,6-Dini	10.31	10.30	3382240	5150852	1023.929	1042.603m
14)	4-Amino-2,6-Dini	10.79	10.79	2414848	4982392	896.280	984.624
16)	2,4-Dinitrotolue	11.72	11.72	4834961	3190143	917.080	976.626
17)	2,6-Dinitrotolue	12.18	12.18	2757404	3571459	911.026	945.801
18)	o-Nitrotoluene	15.19	15.19	2250113	3104627	983.177	1048.175m
19)	p-Nitrotoluene	15.78	15.78	3474336	2894825	1034.239	1184.965
20)	m-Nitrotoluene	16.68	16.68	3395901	3979671	1039.364	1079.467m
21)	PETN	0.00	18.74	0	6910557	N.D. d	5107.875m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB054003.D 8330B 0331PLUS.M Mon Apr 03 13:03:42 2017

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054003.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054003.D\dad1A.ch

Quant Time: Apr 3 13:03 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method : D:\MSDCHEM\1...\8330B_0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332 Last Update : Fri Mar 31 15:52:11 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1569-CC1568 **Lab FileID:** BB054003.D

Lab FileID: BB054003.D **Injection Time:** 04/03/17 08:40

Method: SW846 8330B Analyst approved: 04/03/17 13:04

Supervisor approved: 04/03/17 18:47

Parameter	CAS	Sig#	R.T.	Reason
1,3-Dinitrobenzene	99-65-0	2	6.10	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.52	Poorly defined baseline
Nitrobenzene	98-95-3	2	7.63	Poorly defined baseline
Nitroglycerine	55-63-0	2	9.15	Poorly defined baseline
Tetryl	479-45-8	2	9.42	Poorly defined baseline
2,4,6-Trinitrotoluene	118-96-7	2	9.85	Poorly defined baseline
2-amino-4,6-Dinitrotoluene	35572-78-2	2	10.30	Poorly defined baseline
o-Nitrotoluene	88-72-2	2	15.19	Poorly defined baseline
m-Nitrotoluene	99-08-1	2	16.68	Poorly defined baseline
PETN	78-11-5	2	18.74	Poorly defined baseline

SGS

04/03/17 18:47

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054009.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054009.D\dad1A.ch

Acq On : 03-Apr-2017, 11:52:12 Operator: evitam : CC1568-1000 : op64396,gbb1569,10.0,,,50,1,SOIL Sample Inst : G1315B Multiplr: 1.00 Misc

IntFile Signal #1: events.e
IntFile Signal #2: events2.e

Quant Time: Apr 03 12:56:11 2017 Quant Results File: 8330B_0331PLUS.RES

Quant Method: D:\MSDCHEM\1...\8330B 0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A, $8\overline{3}30B$, 8332

Last Update : Fri Mar 31 15:52:11 2017 Response via : Initial Calibration

DataAcq Meth: 8330B.M

Volume Inj. : 100ul

Signal #1 Phase : Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

RT#1 RT#2 Resp#1 Resp#2 Compound ppb ppb

System Monitoring Compounds

15) S 3,4-Dinitrotolue 11.13 11.13 2213527 3894901 980.451 955.825 Spiked Amount 500.000 Range 69 - 134 Recovery = 196.09%# 191.17%#

	Target Compounds						
1)	TNX	1.44	1.44	3291807	5102671	1002.550	992.434
2)	HMX	1.57	1.57	1637404	4511723	994.775	991.962
3)	DNX	1.84	1.84	2877895	4569743	1016.573	879.879
4)	MNX	2.46	2.46	2334827	3681890	1007.893	1011.270
5)	RDX	3.09	3.09	1863824	3014411	865.834	887.648
6)	1,3,5-Trinitrobe	4.86	4.86	4014616	7875760	909.029	908.362
7)	1,3-Dinitrobenze	6.12	6.12	5340443	3724635	934.183	956.541m
8)	3,5-Dinitroanili	6.53	6.53	4447707	7511029	914.658	937.341m
9)	Nitrobenzene	7.66	7.66	3206264	3052032	986.309	1000.957
10)	Nitroglycerin	0.00	9.19	0	5995769	N.D. d	4891.335
11)	Tetryl	9.46	9.46	2993477	4942310	934.086	952.087
12)	2,4,6-Trinitroto	9.90	9.90	3759769	4519491	908.081	940.910
13)	2-Amino-4,6-Dini	10.35	10.34	3359253	5022578	1016.421	1016.044
14)	4-Amino-2,6-Dini	10.84	10.84	2409198	4886925	894.183	965.757
16)	2,4-Dinitrotolue	11.77	11.77	4804825	3171063	911.364	970.785
17)	2,6-Dinitrotolue	12.24	12.24	2744456	3591174	906.748	951.023
18)	o-Nitrotoluene	15.25	15.25	2263076	3058882	988.841	1036.387
19)	p-Nitrotoluene	15.84	15.84	3453995	2794658	1028.184	1143.963
20)	m-Nitrotoluene	16.74	16.73	3401175	3994494	1040.650	1083.488m
21)	PETN	0.00	18.77	0	6738962	N.D. d	4981.042m

(f)=RT Delta > 1/2 Window (#)=Amounts differ by > 40% (m)=manual int. BB054009.D 8330B 0331PLUS.M Mon Apr 03 12:57:08 2017

Quantitation Report (QT Reviewed)

Signal #1 : C:\HPCHEM\1\DATA\0403BPL\BB054009.D\dad1B.ch Vial: 2

Signal #2 : C:\HPCHEM\1\DATA\0403BPL\BB054009.D\dad1A.ch

Quant Method: D:\MSDCHEM\1...\8330B_0331PLUS.M (Chemstation Integrator)

Title : Explosives by 8330A,8330B,8332 Last Update : Fri Mar 31 15:52:11 2017 Response via : Multiple Level Calibration

DataAcq Meth : 8330B.M

Volume Inj. : 100ul

Signal #1 Phase: Extend C-18 Signal #2 Phase: Extend C-18 Signal #1 Info : DAD 254/270nm Signal #2 Info : DAD 235/214nm

Sample Number: GBB1569-CC1568 Lab FileID: BB054009.D

Injection Time:

04/03/17 11:52

Method: SW846 8330B

Analyst approved: 04/03/17 13:01 **Supervisor approved:** 04/03/17 18:47

Parameter	CAS	Sig#	R.T. (min.)	Reason
1,3-Dinitrobenzene	99-65-0	2	6.12	Poorly defined baseline
3,5-Dinitroaniline	618-87-1	2	6.53	Poorly defined baseline
n-Nitrotoluene	99-08-1	2	16.73	Poorly defined baseline
PETN	78-11-5	2	18.77	Poorly defined baseline

ACCUTEST

Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline, BR Baseline Ripple, PII Poor Instrument Integration All strikeouts must be initialed and dated. If correction was not due to a transcription error, then list the reason for correction.

hplc5_bb_log.xls NF rev. 06/16

Analys

10/03/2018

SGS ACC DATE: COLUMN	SGS ACCUTEST-ORLANDO DATE: 3/3/1/3 COLUMN TYPE: EX	ORLA!	000		HP METHODS ACO MET	HPLC5-BB ANALYSIS LOG DS: 333つ かし FTHOD: まるおった	ALYSIS LO	1.7515 LOG	ANALYST: CAL	क जामा १	-
AMOUN	AMOUNT INJECTED: INSTRUMENT: HPLC5-BB	ED: PLC5-E	8 3	5	PROC. METHOD: CALIB. DATE: RUN BATCH: GBB	THOD: TE: H: GBB	1935 1935	3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ACE I ONITRILE LOT #; MEOH LOT #; HEAD PRESSURE:	\$335 1674 235	
DA	DATA FILE	ALS #		SAMPLE ID	SAMPLE	ОР	PF	11	MANUALLY INTEGRATED PEAKS	COMMENTS	
BB	111530	2	Ceb		822	1		2	RATIONALE, PEAK #		
88	28	7	3			'		!		2	
88	24	3	ic Island	Q(-)79.	-	Lazz	8				
88	çç	3		2		7000	8	1.70		CUMA PART	
88	18	3		es	-		9	-			
88	Zs	hr		8,			1, 20				
88	23	۲Ł	->	077-			0.1				
88	Zo.	ş	721	~-500			+ + -				
88	8.5	4	رد	300			-	117			
88	98	S.	1)	307-		 	×	1			
88	t		ر الا الا	350		E\$2% 55%	25	La Limb		er signal tetral 2.4 is	76.1.5
88	£	امد	ر اد	dors /		£58/2	18		7		野心
88	Ŕ	8	300	Oppy 12		21/201/25	\X		2	\sim	
88	2	Q	>	-ms						という 10分	
BB	σ	7	D 3	a 31578-4			-				
88	46	8		£,							
88	22	5	-) 	65			 				
88	7	9	not a	Syr-SS7hot0						3.1	
88	35	-	ا ارد	DSW _							
88	101/	7	103	93127910 V	9)	1				

hplc5_bb_log.xls NF rev. 06/16

27 of 100

282 of 383 ACCUTEST FA42152

10/03/2018

33	COMMENTS	QN	and	7	3	NO SUICE	Q	2D	ND ND	OF THE STREET	an an	97	97	2/30	92	7		Ð	97	9	Qr.v	oor Instrument Integration	
	MANUALLY INTEGRATED PEAKS RATIONALE, PEAK #																					Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline, BR Baseline Ripple, PII Poor Instrument Integration Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline, BR Baseline Ripple, PII Poor Instrument Integration Manual Integration Manual Integration Manual Integration Manual Manua	Analysť
10000 L	DF MANU		1:1	<i>></i>		į į a	>	įįo			>	-		1.101.1		X	1-					lit Peak, PDB Poorly De hen list the reason for α	34 of 100
HPLC5-BB ANALYSIS LOG DS: \$520 PL ETHOD: \$330 METHOD: \$230 SATE: 3 DALLI TCH: GBB LCH: CR	OP BATCH	1	C(33	US MISO	-								>	6287		(4)05	<u> </u>				>	ing Peak, SP Spl nscription error, tl	
HPLC5-B METHODS: ACQ. METHOD: PROC. METHOD CALIB. DATE: RUN BATCH: GI	SAMPLE	SEE &										-									>	ak, OP Overlapp not due to a trai	
0 C(3)	SAMPLE ID	97)	C(5/4/00)	SOT 165 Ma	5m	16.	F942067-1	7-	4	00/10-1561000	न प		カー スク7 5 - 1	0001-Nolo1 20	10 P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TO(82)	\$-10000000			Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Bas Manual Integration Rationale SOP QA029: If correction was not due to a transcription error, then list the reason for correction.	06/16
ICS-BB	ALS #	<u> </u>	ŗ	1 42	3	3	5	_	5	\$	3 3	, B	+-	7	1	+	3	र र	3	+	4-	ationale SC initialed a	ds NF rev.
SGS ACCUTEST-ORLANDO DATE: 30-4 1-4 COLUMN TYPE: -x-4 AMOUNT INJECTED: INSTRUMENT: HPLC5-BB	DATA FILE	でいるが不	25	\$ 3	8	8	85	C	5/8	3 5	3 6	3/	3 8	35	7	ξ ? 	2 3	2) ?	,	14	1	I Integration Rekeouts must be	hpic5_bb_log.xls NF rev. 06/16
SGS A DATE: COLUN AMOUI	/d			0 8		3 %	3 %		0 a	3 8	2 2	20 0	20 2	2 2	2	88	88	99				Manue All strii	
				Ť	R.	,																	

283 of 383 ACCUTEST FA42152

10/03/2018

LOT #: 32.53 LOT #: 72.53 RE: 5.56	PAS SAWS WE STAND SAWS PASS SAW
ANALYST: CONTRILE LO MEOH LOT #: HEAD PRESSURE: HEAD PRESSURE: MANUALLY INTEGRATED PEAKS	
BB ANALYSIS LOG (3 30 0) (3 30 0) (6 8 0) (6 8 0)	DATA FILE A15 SAMPLE ID METHOD BATCH METHOD BATCH METHOD CARBO II. 1 POPULOS SAMPLE ID METHOD CARBO II. 1 POPULOS SAMPLE ID METHOD CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE ID CARBO II. 1 POPULOS SAMPLE II. 1 POPULOS SAMPLE II. 1 POPULOS SAMPLE II. 1 POPULOS SAMPLE II. 1 POPULOS SAMPLE II. 1 POPULOS SAMPLE II. 1 POPULOS SAMPLE II. 1 POPULOS SAMPLE II. 1 POPULOS SAMPLE II. 1 POPULOS Analysi Analy
METHO ACO. IN PROC. CALIB. RUN B.	SAMPLE ID METHOD CLOSUL (CD)
8	BB

10/03/2018

2353 14/20 256 COMMENTS		Z Z Z IX				>	01/22	S	DR & IX								>	202	Ch.	pingle Door Instrument Integration		
ACETONITRILE LOT #: ACETONITRILE LOT #: MEOH LOT #: HEAD PRESSURE:	RATIONALE, PEAK #			31379.8	100	4	110 000													9	rection.	Analysťs
BB ANALYSIS LOG 8,330 ALA BROOD D: 3,141,13 GBB ISOT	1	02 64355 (100) CX		16 A 7			000 - 12 2			OpenCat) /whomps							<u> </u>	7 623	++	Je Chord BDB Poorly Defi	Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, DP Correction. Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, DP Correction.	
METHODS: ACQ. METHOD: PROC. METHOD CALIB. DATE: RUN BATCH: G	SAMPLE ID SAMPLE METHOD	A 31379-5 8330	9	4	15	4	SCISIUL WA	-66-	CCB	10 3 67 d- 114	-15	9),		8/-	- (2,5	77.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CC1564-1000	SCB	P QA029: MP Missed Peak, OP Overlised Peak, OP Overlised It correction was not due to a	
SGS ACCUTEST-ORLANDO DATE: 3 2 1 1 COLUMN TYPE: X+ AMOUNT INJECTED: INSTRUMENT: HPLC5-BB	DATA FILE ALS	1 61 8 9630 88	36	BB 37	BB	-	166 In	-	BB C	0% Jy) BB	S	9	BB (C) &	BB (M&4				8	BB / 532	BB \ \S(1)	Manual Integration Rationale SO	All strikeouts must be unuaned on
				4/1/4		きょ	~	ን														

36 of 100

285 of 383 ACCUTEST FA42152 SGS

10/03/2018

hplc5_bb_log.xls NF rev. 06/16

Analy

37 of 100

ANALYST: 674 ACETONITRILE LOT #: 3323 MEOH LOT #: HEAD PRESSURE: 256 COMMENTS	MANUALLY IN IEGRATED FEATO RATIONALE, PEAK#	3	REEK									00)	XISTO		Di) (a) 1000		<i>CUD</i>	7		Ra John Colera	Poor Instrument Integration	Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline (No. 16) (6) (6) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
2000 CO	占	1 depropria OEES		XComploi							→	17.88	A L	X9-1-100 015-1-000)	To XI popular				> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A laterate	Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Bas Manual Integration Rationale SOP CA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Bas Manual Integration Representation was not due to a transcription error, then list the reason for correction.
	ALS SAMPLE ID S	1 Optivities Los	gw- \ Ω5	91 (03/379-13		43	87- 76	47- 55	87	15	08 - 30	2 acisa4-100	_	99 GARBILANS	7) 00/ 0	3 oplando	<i>h</i>	5 F 20m8-143	6 CHRUMOS	6	1 8 opensyer	Rationale SOP QA029: MP Missed Peak,
SGS ACCUTEST-ORLANDO DATE: 3D-9[1] COLUMN TYPE: Ext (AMOUNT INJECTED: 10	DATA FILE	88 653955	98 SU	BB 57	BB SB	88 59	BB 40		-		-	-		BB (c)		 	SB 70	1, BB	<u> </u>	BB 73	BB \A	Manual Integration F

10/03/2018

hplc5_bb_log.xls NF rev. 06/16

SASSANAENTS COMMENTS COMM	(Catacatan)
# 10 iii	
MANUALLY INTEGRATED PEAKS MANUALLY INTEGRATED PEAKS RATIONALE, PEAK # PI) PI) PI) PI) PI) PI) PI) PI	seline, (<mark>D) (6)</mark> I. Analys
MANUALLY IN RATION POLICY	Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorty Defined Baseline, Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorty Defined Baseline, Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorty Defined Baseline, Manual Integration Rational Rational Peak, OP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorty Defined Baseline, Manual Integration Rational Peak, OP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorty Defined Baseline, Manual Integration Rational Peak, OP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorty Defined Baseline, Analysis and Poorty Defined Peak, OP Overlapping Peak, SP Split Peak, PDB Poorty Defined Baseline, PDB Poorty
MALYSIS LOG MALYS	P Split Peak, PDE
A CS-BB S S S S S S S S S S S S S S S S S S	ariapping Peak, SI
SOUND WELL BOUND WITH THE BOUND WELL BOUND WITH BOUND WELL BOUND W	ed Peak, OP Ove
SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID OPENCAPE + 1 COUNTY SEL-1 COUNTY SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 CONTY SAMPLE ID COPENCAPE + 1 COPE	QA029: MP Miss
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	tion Rationale SOI ust be initialed an
SGS ACCUTEST-ORLANDO DATE: 32041-1 COLUMIN TYPE: FX+ AMOUNT INJECTED: FX+ FX+ AMOUNT INJECTED: FX+ FX+ BB INSTRUMENT: HPLC5-BB # BB BB NO O	BB Manual Integral

38 of 100

10/03/2018

hplc5_bb_log.xls NF rev. 06/16

SGS ACCUTEST-ORLANDO	ARIA T	og		HPI METHODS:	HPLC5-BB ANALYSIS LOG	ALYSIS L	98 4	ANALYST:	
TYPE:	ğ	S CON		ACQ. METHOD:		8330 8		ACETONITR	1#: 2353
AMOUNT INJECTED	ij	In COV		PROC. METHOD:	:dc	8330	0 03 3/W	W.J MEOH LOT #:	14483
뉟	INSTRUMENT: HPLC5-BB	æ		CALIB. DATE:		3131110		HEAD PRESSURE:	222
				RUN BATCH:	GBB	STOX			
DATA FILE	ALS.	SAMPLE ID	QI 3	SAMPLE	ОР	PF	MANUA	MANUALLY INTEGRATED PEAKS	COMMENTS
	*			METHOD	ВАТСН			RATIONALE, PEAK #	
053970	- (CR		E	Ì				QN
16	<u>ا</u> ر	1 C 1803 20	R		(ES)	37.59	110		C CIVE DOD
75	78		-50			25/31		79 TATOLOGY	
怒	B	•	8			St h+50			
24	る		₩7-			So tella			
95	35	ìαc	200			/se t305			
Z	£,	ار	082)			2004500	3		>
64	3.4		CD0€-			×			AND level
S	8	121/15	025-		65 724 CT 10 25:15 INC	19.5 S	2 / In C	7.	10w 2,4, thhi
7	B	〉	8005-		Essss	10 (400 LOX	-) V9		grand only 2, 4, 6 this
000 7	+	58-58000 do	·-85		SEALEND	¥		- Carlotter - Carl	28 machille stin
								7	
									And a second sec

10/03/2018

hplc5_bb_log.xls NF rev. 06/16

Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Spiti Peak, PDB Poorly Defined Baseline, BR Baseline Ripple, PII Poor Instrument Integration All strikeouts must be initialed and dated. If correction was not due to a transcription error, then list the reason for correction.

Analys

39 of 100

ANALYST	ACETONITRI FLOT#	# 31 1 ← 31	HEAD PRESSURE: 252		MANUALLY INTEGRATED PEAKS COMMENTS	GN	Off can low	Sev S		7				5282	NO	NO	7	7	9	2	3	Q	, QN	3	مر
C5-BB AN	\$500 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	×	911/6/2	뜅	DF	PAICH	1:1 8880		X 950 450	つ	SOMMOST	renardo)	CN33 1:1 V		X Shehota									うつつ
HPL	METHODS:	ACC. METHOD:	CALIB. DATE:	RUN BATCH:	SAMPLE	MEI HOU	200)
					SAMPLE ID	45	C 648-1000	(cop)	D PURCHE-BS	11d	S& SEMPA OF	20 1168 Jago	11d -	CXX 1288 1 CXX	900	1931379-1	SUN-SUBUS AUS	J. JMSQ	la 3/3/9-2	1 -3	ナー	1	1	F -	7
RLANI					ALS.	# _	. 7	7	8	9-	y	1	٩	7	_	Q	=	7	2	Z	3	2	t:/	8/	2
SGS ACCUTEST-ORLANDO	DATE: 4373	COLUMN TYPE: C	INSTRUMENT: HPLC5-BB	+	DATA FILE	1 (2)	BB 00460'	3 8	3	\B	8	Q	8	క	į) > 	4	3	71	4	9/	4	2	6)	100
SGS A	DATE	COLU	INSTR		Ó	2	0 2	3 8	3 8	BB	88	88	88	BB	BB	88	88	88	88	88	BB	88	88	88	88

Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline, BR Baseline, BR Baseline, PI Poor Instrument Integration All strikeouts must be initialed and dated. If correction was not due to a transcription error, then list the reason for correction.

hplc5_bb_log.xls NF rev. 06/16

40 of 100

289 of 383 ACCUTEST FA42152

C

# 3353 (5783) 251-	COMMENTS	2 nitrot Masignel	CO	9	75	₹,							>	p-nitro T 2ndscapol	94	3							
ANALYST: ELOT ACETONITRILE LOT MEOH LOT #: HEAD PRESSURE:	MANUALLY INTEGRATED PEAKS RATIONALE, PEAK #				Team; Parties of the		Liver was a second or the seco					- Linguis - Ling								The state of the s		ifined Baseline(<mark>(b) (6)</mark> orrection.	Analy
S S S S S S S S S S S S S S S S S S S	MAN).(c	-	l l	. ja	_								Ā								DB Poorly De e reason for cc	00
1332 332 332 332 332 332 332 332 332 332	DF	1:1	١	노	_								>	::	(스		_			>	olit Peak, F then list th	41 of 100
HPLC5-BB ANALYSIS LOG DS: \$3-50 H & ETHOD: \$3-20 C30 NETHOD: \$3-30 C30 C30 C30 C30 C30 C30 C30 C30 C30 C	ОР ВАТСН	LC833	1	shehat	_			_					-)	1833		SUSUACO	う	Dyet346		_	7	g Peak, SP Sp cription error, 1	
HPLC5-B METHODS: ACQ. METHOD: PROC. METHOD: CALIB. DATE: RUN BATCH: GE	SAMPLE	8330	}																		>	OP Overlapping	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	SAMPLE ID	Colsina	600	1931379-9	715	6)-	44	2,	<u>e</u>	-13	-18	4:	J -120	CC 1548-1000	ccb	a 31379-11	132	< 7-	<i>517</i>	-75	J . 26	Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baseline (D) All strikeouts must be initialed and dated. If correction was not due to a transcription error, then list the reason for correction.	16/16
ORLANDC	ALS #	╅┈	_	2	7	7	23	ガ	25	*	t ^z	32	52	ہ		} 08	7	4	67	75	Ŕ	onale SOF	NF rev. 0
SGS ACCUTEST-ORLANDO DATE: 49164 COLUMN TYPE: 64 () AMOUNT INJECTED: K INSTRUMENT: HPLC5-BB			77	2	×		26		^	73	æ	3/	37	B	∱દ		8	F	%	ř	g/	ntegration Ratik outs must be in	hplc5_bb_log.xls NF rev. 06/16
SGS AC DATE: COLUM AMOUN INSTRU	DAT	8865 #D	BB	BB	88	BB	BB	BB	BB	BB	BB	BB	BB	88	88	88	BB	BB	BB	BB	BB	Manual I All strike	Ē

10/03/2018

2nd signed p-nitroft and signed COMMENTS STUD 252 9 ACETONITRILE LOT #:09 HEAD PRESSURE MANUALLY INTEGRATED PEAKS ANALYST: MEOH LOT #: RATIONALE, PEAK# Manual Integration Rationale SOP QA029: MP Missed Peak, OP Overlapping Peak, SP Split Peak, PDB Poorly Defined Baselj All strikeouts must be initialed and dated. If correction was not due to a transcription error, then list the reason for correction. **'** ' ' . ت)e|@ 7 늄 <u>.</u> ሃ 30000 the safe 6833 BATCH 2693 g RUN BATCH: GBB PROC. METHOD ACQ. METHOD CALIB. DATE: METHODS: METHOD SAMPLE 8380 GSA. 1 29 a31379-27 28 30 OCUTER-1000 CC 1568-10CD SAMPLE ID INSTRUMENT: HPLC5-BB + ALS 争 8 # S 4 AMOUNT INJECTED Y B ક <u>\</u> 5 BB BB BB DATA FILE COLUMN TYP DATE: 88 BB BB 8 8 88 BB 88 BB BB BB BB BB 88 BB BB BB

Ł

42 of 100

hplc5_bb_log.xls NF rev. 06/16

10/03/2018

HPLC5-BB ANALYSIS LOG

SGS ACCUTEST-ORLANDO

SGS ACCUTEST - ORI	- 1					SAMPLE PREP REPORT
	7	thod: 8330A, <u>L</u> Yのひ	8332 (83:			or Other (circle) Corr. Factor (±°C): :/ {obs/corr}
Date/Time: 03/30//3 Finished (mm/dd/yy 24:00)	708	20		Ultrasonic	Bath ID (83	130A or 8332): 0B):
Batch#: 0164391	6	Ext. By:	MB	Vialed	ву: <u>ъ</u>	Balance ID: METTLER /
	Bottle umber	Amount Extracted (g)	Surrogate Amount	Spike Amount	Final Volume (ml)	Comments
OP 64396 BS /	X	10.0	1.25~1	12341254	50.0 m	
-3	4	10.1 10.0				
-3	/	10.1	1			
CAKINDING BLANK	B	10,0			_}_	
	+					
	-					
	+					
0864396 PT-1	\Box	10.0				
FAY2152-1 MS -1 MSD	1	10,0	1.2521	WS+19820 1.25ml	50	
FAY2/52-3 DUP -3 TRP	#	12.1		<u>+</u>		
Comments:	1 1	10.1			-	1000
Surr. ID: E57454 Cond	: 0	gom Exp	Date: 0	4/30/17	 _Inj. By:	MB Ver. By NB
Spk.1 ID: <u>F > 8 / 3</u> Cond	C: /00 C: /00	pin Exp	. Date:_ <i>0</i> . Date:_ <i>0</i>	7 127/13	<mark>?</mark> _lnj. By: \$ lnj. By:	MB Ver. By MB
		J				
Acetonitrile Lot #) [Meth	anol Lot#	$\frac{1}{CS}$		Water Lot#
(b) (d)						Reagent #
Relinq						Date: 03/30//~)
, 1000р				''		Date: 05-30-17
NF 05/16			extsolid_	ехр 051616	6.xis	

Section 10

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- · Instrument Runlogs
- Initial and Continuing Calibration Blanks
- · Initial and Continuing Calibration Checks
- · High and Low Check Standards
- · Interfering Element Check Standards
- · Method Blank Summaries
- · Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- · Serial Dilution Summaries
- · IDL and Linear Range Summaries

Login Number: FA42152

Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Analyst: LM

Date Analyzed: 03/28/17 Run ID: MA13933

Methods: SW846 6010C

	yst: LM meters: Al,Sb,Cu	ı,Pb,Zn	Run ID: MA13933
Time	Sample Description	Dilution PS Factor Recov	Comments
08:17	MA13933-STD1	1	STDA
08:25	MA13933-STD2	1	STDB
08:29	MA13933-STD3	1	STDC
08:33	MA13933-STD4	1	STDD
08:38	MA13933-HSTD1	1	
08:45	MA13933-ICV1	1	
08:54	MA13933-ICB1	1	
09:08	MA13933-CRIA1	1	
09:15	MA13933-ICSA1	1	
09:20	MA13933-ICSAB1	1	
09:27	MA13933-CCV1	1	
09:36	MA13933-CCB1	1	
09:45	MP31862-MB1	1	
09:49	MP31862-B1	1	
09:53	FA42136-1	1	(sample used for QC only; not part of login FA42152)
09:57	MP31862-D1	1	
10:01	MP31862-SD1	5	
10:05	MP31862-PS1	1	
10:09	MP31862-S1	1	
10:13	MP31862-S2	1	
10:17	ZZZZZZ	5	
10:21	MA13933-CCV2	1	
10:25	MA13933-CCB2	1	
10:30	ZZZZZZ	4	
10:34	ZZZZZZ	4	
10:38	ZZZZZZ	4	
10:42	ZZZZZZ	4	
10:46	ZZZZZZ	4	
10:50	ZZZZZZ	4	
10:55	ZZZZZZ	25	
11:03	ZZZZZZ	1	
11:07	ZZZZZZ	4	
11:11	MA13933-CCV3	1	

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyze

Analyst: LM Parameters: Al,Sb,Cu,Pb,Zn

Date Analyzed: 03/28/17 Run ID: MA13933

: 03/28/17 Methods: SW846 6010C

		Dilution PS Factor Recov	Comments
1:15	MA13933-CCB3	1	
1:20	ZZZZZZ	1	
1:25	ZZZZZZ	1	
1:29	ZZZZZZ	1	
1:33	ZZZZZZ	1	
1:38	ZZZZZZ	1	
1:42	ZZZZZZ	1	
1:46	ZZZZZZ	1	
1:50	ZZZZZZ	1	
1:54	ZZZZZZ	1	
1:59	ZZZZZZ	1	
2:03	MA13933-CCV4	1	
2:07	MA13933-CCB4	1	
2:11	ZZZZZZ	1	
2:15	ZZZZZZ	1	
2:19	ZZZZZZ	1	
2:24	ZZZZZZ	1	
2:28	ZZZZZZ	1	
2:32	ZZZZZZ	1	
2:36	ZZZZZZ	1	
2:40	ZZZZZZ	1	
2:44	ZZZZZZ	1	
2:48	MP31869-MB1	1	
2:53	MA13933-CCV5	1	
2:57	MA13933-CCB5	1	
	MP31869-B1	1	
3:05	FA42308-1F	1	(sample used for QC only; not part of login FA42152)
3:09	MP31869-D1	1	
3:13	MP31869-SD1	5	
3:18	MP31869-PS1	1	
	MP31869-S1		
3:26	MP31869-S2	1	
3:30	ZZZZZZ	1	

Page 2

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP

Date Analyzed: 03/28/17 Run ID: MA13933

Methods: SW846 6010C

Analyst: LM Parameters: Al,Sb,Cu,Pb,Zn

10/03/2018

Time	Sample Description	Dilution PS Factor Recov	Comments
13:34	ZZZZZZ	1	
13:38	ZZZZZZ	1	
13:42	MA13933-CCV6	1	
13:46	MA13933-CCB6	1	
13:50	ZZZZZZ	1	
13:54	ZZZZZZ	1	
13:59	ZZZZZZ	1	
14:03	ZZZZZZ	1	
14:07	ZZZZZZ	2	
14:11	ZZZZZZ	1	
14:15	ZZZZZZ	1	
14:20	ZZZZZZ	1	
14:28	ZZZZZZ	1	
14:32	ZZZZZZ	5	
14:41	MA13933-CCV7	1	
14:45	MA13933-CCB7	1	
14:49	ZZZZZZ	1	
14:53	MP31871-D1	1	
14:58	ZZZZZZ	1	
15:02	ZZZZZZ	1	
15:06	ZZZZZZ	1	
15:10	ZZZZZZ	1	
15:14	ZZZZZZ	1	
15:19	MP31869-MB2A	1	
15:23	MP31869-MB3A	1	
15:27	MP31871-MB1	1	
15:32	MA13933-CCV8	1	
15:35	MA13933-CCB8	1	
16:03	MA13933-ICV2	1	
16:11	MA13933-CCV9	1	
16:19	MA13933-CCB9	1	
16:24	MP31871-B1	1	
16:28	FA42067-5	1	(sample used for QC only; not part of login FA42152)

Page 3

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Date Analyzed: 03/28/17 Methods: SW846 6010C Run ID: MA13933 File ID: SB032817M1.ICP

Analyst: LM
Parameters: Al,Sb,Cu,Pb,Zn

Para	meters: Al,Sb,Cu	,Pb,Zn		
Time	Sample Description	Dilution Factor		Comments
16:32	MP31871-SD1	5		
16:36	MP31871-PS1	1		
16:40	MP31871-S1	1		
16:45	MP31871-S2	1		
16:49	MP31871-D2	1		
16:53	ZZZZZZ	1		
16:57	ZZZZZZ	1		
17:01	ZZZZZZ	1		
17:06	MA13933-CCV10	1		
17:10	MA13933-CCB10	1		
17:14	ZZZZZZ	1		
17:18	ZZZZZZ	1		
17:22	ZZZZZZ	1		
17:26	FA42152-1	1		
17:30	FA42152-3	1		
17:34	FA42152-9	1		
Last r	FA42152-2 reportable sample MP31872-MB1	1 /prep for 1	job FA42	152
17:47	MP31872-B1	1		
17:51	FA42279-8	1		(sample used for QC only; not part of login FA42152)
17:55	MA13933-CCV11	1		
17:59	MA13933-CCB11	1		
18:03	MP31872-D1	1		
18:08	MP31872-SD1	5		
18:12	MP31872-S1	1		
18:16	MP31872-S2	1		
18:20	FA42279-4	1		(sample used for QC only; not part of login FA42152)
18:24	ZZZZZZ	1		
18:29	ZZZZZZ	1		
18:33	MP31872-D2	1		
18:37	MP31872-MB2	1		
18:42	MP31872-B2	1		
18:46	MA13933-CCV12	1		

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Date Analyzed: 03/28/17 Run ID: MA13933 File ID: SB032817M1.ICP Methods: SW846 6010C

Analyst: LM

Parameters: Al,Sb,Cu,Pb,Zn

Time	Sample Description	
18:50	MA13933-CCB12	
19:35	MA13933-CCV13	
19:39	MA13933-CCB13	
19:43	MA13933-CCV14	
19:47	MA13933-CCB14	
20:26	MA13933-CCV15	
20:30	MA13933-CCB15	
20:35	MA13933-CRIA2	
20:39	MA13933-ICSA2	
20:43	MA13933-ICSAB2	
20:47	MA13933-CCV16	
Last r	MA13933-CCB16 eportable CCB fo	

Login Number: FA42152
Account: CAPEGAA - Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP

Date Analyzed: 03/28/17 Run ID: MA13933

Methods: SW846 6010C

Analyst: LM Parameters: Al,Sb,Cu,Pb,Zn

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
08:17	MA13933-STD1	6350	47575	5948	2834
08:25	MA13933-STD2	6163	45863	5935	2610
08:29	MA13933-STD3	5970	44067	5844	2401
08:33	MA13933-STD4	5630	42231	5852	2209
08:38	MA13933-HSTD1	5663	42642	5930	2230
08:45	MA13933-ICV1	6014	44755	5936	2422
08:54	MA13933-ICB1	6169 R	46778 R	5970 R	2802 R
09:08	MA13933-CRIA1	6028	46285	5962	2667
09:15	MA13933-ICSA1	5397	40369	5758	2099
09:20	MA13933-ICSAB1	5395	40261	5734	2060
09:27	MA13933-CCV1	5911	44077	5886	2385
09:36	MA13933-CCB1	5963	46850	5982	2758
09:45	MP31862-MB1	6042	47356	6004	2757
09:49	MP31862-B1	5968	45559	5910	2511
09:53	FA42136-1	5723	43978	5762	2466
09:57	MP31862-D1	5789	44128	5906	2490
10:01	MP31862-SD1	6035	46177	5999	2681
10:05	MP31862-PS1	5790	44794	5898	2460
10:09	MP31862-S1	5734	43770	5824	2338
10:13	MP31862-S2	5751	44117	5786	2342
10:17	ZZZZZZ	6073	46018	5929	2630
10:21	MA13933-CCV2	5808	43671	5828	2355
10:25	MA13933-CCB2	6192	46972	5963	2800
10:30	ZZZZZZ	6005	45325	5879	2618
10:34	ZZZZZZ	6012	45499	5907	2621
10:38	ZZZZZZ	5949	45317	5908	2580
10:42	ZZZZZZ	5910	45164	5867	2574
10:46	ZZZZZZ	5929	45011	5992	2530
10:50	ZZZZZZ	6105	46623	6043	2686
10:55	ZZZZZZ	6045	46400	5936	2721
11:03	ZZZZZZ	5885	45893	5945	2608
11:07	ZZZZZZ	7037	53877	6910	2685
11:11	MA13933-CCV3	5761	43492	5709	2346

SGS 299 of 383

Page 1

Login Number: FA42152
Account: CAPEGAA - Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP

Date Analyzed: 03/28/17 Run ID: MA13933

Methods: SW846 6010C

Analyst: LM Parameters: Al,Sb,Cu,Pb,Zn

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
11:15	MA13933-CCB3	6078	46665	5889	2768
11:20	ZZZZZZ	6064	46938	5934	2752
11:25	ZZZZZZ	5309	40768	5709	2180
11:29	ZZZZZZ	5291	40281	5602	2163
11:33	ZZZZZZ	5206	39819	5581	2139
11:38	ZZZZZZ	5937	46968	5923	2728
11:42	ZZZZZZ	5785	45566	5898	2559
11:46	ZZZZZZ	5897	46602	5948	2630
11:50	ZZZZZZ	5885	45847	5815	2611
11:54	ZZZZZZ	5831	45343	5840	2587
11:59	ZZZZZZ	6022	47134	6024	2665
12:03	MA13933-CCV4	5816	44331	5873	2388
12:07	MA13933-CCB4	6123	46905	5913	2780
12:11	ZZZZZZ	5936	45796	5927	2607
12:15	ZZZZZZ	5905	45981	5921	2618
12:19	ZZZZZZ	5945	45936	5886	2639
12:24	ZZZZZZ	5883	45424	5920	2572
12:28	ZZZZZZ	5909	45761	5889	2600
12:32	ZZZZZZ	5950	46207	5892	2638
12:36	ZZZZZZ	5892	46040	5934	2617
12:40	ZZZZZZ	5808	45313	5949	2559
12:44	ZZZZZZ	5753	44785	5801	2511
12:48	MP31869-MB1	6048	47252	5878	2757
12:53	MA13933-CCV5	5763	43792	5758	2359
12:57	MA13933-CCB5	6136	47259	5907	2777
13:01	MP31869-B1	5845	45191	5921	2470
13:05	FA42308-1F	5753	44612	5815	2506
13:09	MP31869-D1	5791	44740	5848	2515
13:13	MP31869-SD1	5931	45470	5808	2640
13:18	MP31869-PS1	5786	44433	5760	2465
13:22	MP31869-S1	5838	43898	5768	2370
13:26	MP31869-S2	5852	44138	5819	2373
13:30	ZZZZZZ	5824	44909	5801	2560

SGS 300 of 383

Page 2

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C Run ID: MA13933

Analyst: LM

Para	ameters: Al,Sb,	Cu,Pb,Zn			
Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
13:34	ZZZZZZ	5792	44865	5802	2557
13:38	ZZZZZZ	5762	44811	5872	2487
13:42	MA13933-CCV6	5793	44422	5848	2387
13:46	MA13933-CCB6	5988	46338	5845	2732
13:50	ZZZZZZ	5808	44913	5820	2537
13:54	ZZZZZZ	5856	44775	5798	2553
13:59	ZZZZZZ	5819	44677	5861	2513
14:03	ZZZZZZ	5991	46562	5867	2678
14:07	ZZZZZZ	5822	44793	5868	2511
14:11	ZZZZZZ	5955	45400	5853	2625
14:15	ZZZZZZ	5941	45680	5829	2630
14:20	ZZZZZZ	5884	45261	5811	2534
14:28	ZZZZZZ	5863	45192	5832	2544
14:32	ZZZZZZ	6021	45726	5958	2622
14:41	MA13933-CCV7	5598	42613	5723	2302
14:45	MA13933-CCB7	6084	46694	5889	2763
14:49	ZZZZZZ	6034	46699	5898	2719
14:53	MP31871-D1	7067	53486	7089	2334
14:58	ZZZZZZ	6039	45960	5862	2695
15:02	ZZZZZZ	5983	45919	5909	2690
15:06	ZZZZZZ	5998	46403	5892	2713
15:10	ZZZZZZ	6020	46264	5955	2711
15:14	ZZZZZZ	5956	46079	5870	2697
15:19	MP31869-MB2A	6019	46651	5851	2726
15 : 23	MP31869-MB3A	6099	47111	5903	2760
15 : 27	MP31871-MB1	6100	47275	5948	2773
15 : 32	MA13933-CCV8	5804	43435	5818	2351
15 : 35	MA13933-CCB8	6111	46179	5904	2748
16:03	MA13933-ICV2	5722	43267	5786	2334
16:11	MA13933-CCV9	5744	43269	5807	2346
16:19	MA13933-CCB9	5986	45649	5803	2701
16:24	MP31871-B1	5957	45483	5995	2502
16:28	FA42067-5	7114	53071	7121	2363

301 of 383 ACCUTEST

Page 3

Login Number: FA42152
Account: CAPEGAA - Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP

Date Analyzed: 03/28/17 Run ID: MA13933

Methods: SW846 6010C

Analyst: LM

Parameters: Al,Sb,Cu,Pb,Zn

Para	Parameters: Al,Sb,Cu,Pb,Zn							
Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4			
16:32	MP31871-SD1	6183	46962	6111	2530			
16:36	MP31871-PS1	6923	51943	7039	2284			
16:40	MP31871-S1	7109	53473	7223	2232			
16:45	MP31871-S2	7012	52628	7018	2241			
16:49	MP31871-D2	6973	51997	6893	2337			
16:53	ZZZZZZ	7309	54431	7300	2352			
16:57	ZZZZZZ	7363	55232	7329	2346			
17:01	ZZZZZZ	7404	55320	7428	2304			
17:06	MA13933-CCV10	5747	42952	5684	2330			
17:10	MA13933-CCB10	6081	45730	5857	2737			
17:14	ZZZZZZ	7323	54893	7203	2400			
17:18	ZZZZZZ	7121	53516	7049	2446			
17 : 22	ZZZZZZ	7233	54354	7088	2445			
17:26	FA42152-1	7225	53970	7086	2412			
17:30	FA42152-3	7337	54489	7122	2376			
17:34	FA42152-9	7146	52989	6915	2397			
17:38	FA42152-2	7006	51629	6721	2413			
17:42	MP31872-MB1	6135	45949	5728	2726			
17:47	MP31872-B1	5969	44480	5761	2460			
17:51	FA42279-8	5885	43288	5688	2435			
17:55	MA13933-CCV11	5854	42870	5505	2344			
17:59	MA13933-CCB11	6182	45674	5653	2732			
18:03	MP31872-D1	5874	42793	5515	2416			
18:08	MP31872-SD1	6116	44302	5623	2597			
18:12	MP31872-S1	5878	42477	5481	2315			
18:16	MP31872-S2	5948	43136	5579	2343			
18:20	FA42279-4	5882	42725	5636	2398			
18:24	ZZZZZZ	5909	42742	5572	2406			
18:29	ZZZZZZ	5918	43107	5549	2420			
18:33	MP31872-D2	5876	42075	5503	2390			
18:37	MP31872-MB2	6014	43244	5657	2483			
18:42	MP31872-B2	5977	43220	5560	2358			
18:46	MA13933-CCV12	5946	42687	5472	2354			

SGS 302 of 383

Page 4

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Date Analyzed: 03/28/17 Methods: SW846 6010C File ID: SB032817M1.ICP Run ID: MA13933

Analyst: LM

Parameters: Al, Sb, Cu, Pb, Zn

rara	Tarameters. Mr. 65/64/15/201									
Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4					
18:50	MA13933-CCB12	6262	45264	5565	2739					
19:35	MA13933-CCV13	6022	42901	5468	2373					
19:39	MA13933-CCB13	6304	45683	5538	2759					
19:43	MA13933-CCV14	6070	43831	5493	2395					
19:47	MA13933-CCB14	6320	45866	5559	2763					
20:26	MA13933-CCV15	5816	42204	5306	2319					
20:30	MA13933-CCB15	6213	45239	5446	2735					
20:35	MA13933-CRIA2	6107	44372	5413	2620					
20:39	MA13933-ICSA2	5520	39453	5271	2106					
20:43	MA13933-ICSAB2	5514	39282	5210	2058					
20:47	MA13933-CCV16	5934	42644	5380	2358					
20:51	MA13933-CCB16	6179	44971	5390	2726					

R = Reference for ISTD limits. ! = Outside limits.

LEGEND:

Istd#	Paramete	er	Limits	
Istd#1	Yttrium	(2243)	60-125	왕
Istd#2	Yttrium	(3600)	60-125	용
Istd#3	Yttrium	(3710)	60-125	용
Te+ 0#1	Indium		60-125	2-

303 of 383 ACCUTEST

Login Number: FA42152

Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 QC Limits: result < RL Run ID: MA13933

Methods: SW846 6010C Units: ug/l

*										
Time: Sample ID: Metal	RL	IDL	08:54 ICB1 raw	final	09:36 CCB1 raw	final	10:25 CCB2 raw	final	11:15 CCB3 raw	final
Aluminum	200	14	8.4	<200	17.0	<200	12.2	<200	4.6	<200
Antimony	6.0	1	-0.10	<20	-0.20	<20	0.0	<6.0	0.20	<6.0
Arsenic	10	1.3	anr							
Barium	200	1	anr							
Beryllium	4.0	.2	anr							
Cadmium	4.0	.2	anr							
Calcium	1000	50	anr							
Chromium	10	1	anr							
Cobalt	50	.2	anr							
Copper	25	1	0.30	<25	1.2	<25	0.70	<25	0.40	<25
Iron	300	17	anr							
Lead	5.0	1	0.30	<20	0.90	<20	0.20	<5.0	0.10	<5.0
Magnesium	5000	35	anr							
Manganese	15	. 5	anr							
Molybdenum	50	.3	anr							
Nickel	40	. 4	anr							
Potassium	10000	200	anr							
Selenium	10	2.4	anr							
Silver	10	.7	anr							
Sodium	10000	500	anr							
Strontium	10	.5	anr							
Thallium	10	1.1	anr							
Tin	50	. 9	anr							
Titanium	10	. 5	anr							
Vanadium	50	. 5	anr							
Zinc	20	3	0.10	<20	0.30	<20	0.20	<20	0.10	<20

Login Number: FA42152

Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C Run ID: MA13933 QC Limits: result < RL $\,$ Units: ug/l

**										
Time: Sample ID: Metal	RL	IDL	12:07 CCB4 raw	final	12:57 CCB5 raw	final	13:46 CCB6 raw	final	14:45 CCB7 raw	final
Aluminum	200	14	-1.5	<200	4.2	<200	2.3	<200	8.0	<200
Antimony	6.0	1	-0.20	<6.0	-0.90	<6.0	0.0	<6.0	-0.90	<6.0
Arsenic	10	1.3	anr	1070	0.750	1075	0.0	1075	0.750	1070
	200	1								
Barium			anr							
Beryllium	4.0	.2	anr							
Cadmium	4.0	.2	anr							
Calcium	1000	50	anr							
Chromium	10	1	anr							
Cobalt	50	.2	anr							
Copper	25	1	0.40	<25	0.20	<25	0.50	<25	0.50	<25
Iron	300	17	anr							
Lead	5.0	1	0.50	<5.0	0.50	<5.0	0.50	<5.0	0.50	< 5.0
Magnesium	5000	35	anr							
Manganese	15	. 5	anr							
Molybdenum	50	.3	anr							
Nickel	40	. 4	anr							
Potassium	10000	200	anr							
Selenium	10	2.4	anr							
Silver	10	.7	anr							
Sodium	10000	500	anr							
Strontium	10	. 5								
Thallium	10	1.1	anr							
Tin	50	. 9								
Titanium	10	.5								
Vanadium	50	.5	anr							
Zinc	20	3	0.10	<20	0.10	<20	0.10	<20	0.10	<20
Ditte	20	_	0.10	-20	0.10	-20	0.10	-20	0.10	-20

^(*) Outside of QC limits (anr) Analyte not requested

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Date Analyzed: 03/28/17 Run ID: MA13933 File ID: SB032817M1.ICP Methods: SW846 6010C QC Limits: result < RL $\,$ Units: ug/l

QC LIMITES: TESUIC C RE				Kuti	.D: MAI39.	,,	onics: ug/i				
Time: Sample ID: Metal	RL	IDL	15:35 CCB8 raw	final	16:19 CCB9 raw	final	17:10 CCB10 raw	final	17:59 CCB11 raw	final	
Aluminum	200	14	6.3	<200	-1.9	<200	13.7	<200	6.8	<200	
Antimony	6.0	1	-0.40	< 6.0	0.70	<6.0	1.5	<6.0	1.4	<6.0	
Arsenic	10	1.3	anr								
Barium	200	1	anr								
Beryllium	4.0	.2	anr								
Cadmium	4.0	.2	anr								
Calcium	1000	50	anr								
Chromium	10	1	anr								
Cobalt	50	.2	anr								
Copper	25	1	0.0	<25	0.60	<25	0.70	<25	0.70	<25	
Iron	300	17	anr								
Lead	5.0	1	0.40	<5.0	0.20	<5.0	0.40	<5.0	1.1	<5.0	
Magnesium	5000	35	anr								
Manganese	15	. 5	anr								
Molybdenum	50	.3	anr								
Nickel	40	. 4	anr								
Potassium	10000	200	anr								
Selenium	10	2.4	anr								
Silver	10	.7	anr								
Sodium	10000	500	anr								
Strontium	10	. 5									
Thallium	10	1.1	anr								
Tin	50	. 9									
Titanium	10	.5									
Vanadium	50	. 5	anr								
Zinc	20	3	0.0	<20	0.10	<20	0.30	<20	0.20	<20	

^(*) Outside of QC limits (anr) Analyte not requested

Login Number: FA42152

Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Date Analyzed: 03/28/17 Run ID: MA13933 File ID: SB032817M1.ICP Methods: SW846 6010C QC Limits: result < RL Units: ug/l

QC LIMICS: TESUIC (KL				Kuti 1	.D: MAI393		Offics: ug/1			
Time: Sample ID: Metal	RL	IDL	18:50 CCB12 raw	final	19:39 CCB13 raw	final	19:47 CCB14 raw	final	20:30 CCB15 raw	final
Aluminum	200	14	7.2	<200	5.9	<200	0.10	<200	13.0	<200
Antimony	6.0	1	1.0	<6.0	1.0	<6.0	1.1	<6.0	1.5	<6.0
Arsenic	10	1.3	anr							
Barium	200	1	anr							
Beryllium	4.0	.2	anr							
Cadmium	4.0	.2	anr							
Calcium	1000	50	anr							
Chromium	10	1	anr							
Cobalt	50	.2	anr							
Copper	25	1	0.20	<25	0.60	<25	0.20	<25	0.50	<25
Iron	300	17	anr							
Lead	5.0	1	0.40	< 5.0	-0.10	<5.0	0.70	<5.0	0.50	<5.0
Magnesium	5000	35	anr							
Manganese	15	.5	anr							
Molybdenum	50	.3	anr							
Nickel	40	. 4	anr							
Potassium	10000	200	anr							
Selenium	10	2.4	anr							
Silver	10	.7	anr							
Sodium	10000	500	anr							
Strontium	10	.5								
Thallium	10	1.1	anr							
Tin	50	. 9								
Titanium	10	. 5								
Vanadium	50	. 5	anr							
Zinc	20	3	0.20	<20	0.30	<20	0.10	<20	0.30	<20

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Date Analyzed: 03/28/17 Run ID: MA13933 File ID: SB032817M1.ICP Methods: SW846 6010C QC Limits: result < RL Units: ug/l

QC Limits: les		Kuti 1		
Time: Sample ID: Metal	RL	IDL	20:51 CCB16 raw	final
Aluminum	200	14	13.9	<200
Antimony	6.0	1	0.50	<6.0
Arsenic	10	1.3	anr	
Barium	200	1	anr	
Beryllium	4.0	.2	anr	
Cadmium	4.0	.2	anr	
Calcium	1000	50	anr	
Chromium	10	1	anr	
Cobalt	50	.2	anr	
Copper	25	1	0.40	<25
Iron	300	17	anr	
Lead	5.0	1	0.10	<5.0
Magnesium	5000	35	anr	
Manganese	15	.5	anr	
Molybdenum	50	.3	anr	
Nickel	40	. 4	anr	
Potassium	10000	200	anr	
Selenium	10	2.4	anr	
Silver	10	.7	anr	
Sodium	10000	500	anr	
Strontium	10	.5		
Thallium	10	1.1	anr	
Tin	50	. 9		
Titanium	10	.5		
Vanadium	50	.5	anr	
Zinc	20	3	0.20	<20

^(*) Outside of QC limits (anr) Analyte not requested

308 of 383 **ACCUTEST**

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C QC Limits: 90 to 110 % Recovery Run ID: MA13933 Units: ug/1

QC LIMITES: 90	CO 110 4	Recovery		Kuti	.D: MAI393	-				
Time: Sample ID: Metal	ICV True	08:45 ICV1 Results	% Rec	CCV True	09:27 CCV1 Results	% Rec	CCV True	10:21 CCV2 Results	% Rec	
Aluminum	40000	41300	103.3	40000	39300	98.3	40000	40000	100.0	
Antimony	2000	1960	98.0	2000	1990	99.5	2000	2030	101.5	
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Cadmium	anr									
Calcium	anr									
Chromium	anr									
Cobalt	anr									
Copper	2000	1960	98.0	2000	2000	100.0	2000	2010	100.5	
Iron	anr									
Lead	2000	1960	98.0	2000	1980	99.0	2000	2010	100.5	
Magnesium	anr									
Manganese	anr									
Molybdenum	anr									
Nickel	anr									
Potassium	anr									
Selenium	anr									
Silver	anr									
Sodium	anr									
Strontium	anr									
Thallium	anr									
Tin	anr									
Titanium	anr									
Vanadium	anr									
Zinc	2000	1970	98.5	2000	2010	100.5	2000	2040	102.0	

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C QC Limits: 90 to 110 % Recovery Run ID: MA13933 Units: ug/1

QC LIMITCS: 90	00 110 %	Kecovery		Kuti 1	.D: MAI393	-	onics: uç	37 1		
Time: Sample ID: Metal	CCV True	11:11 CCV3 Results	% Rec	CCV True	12:03 CCV4 Results	% Rec	CCV True	12:53 CCV5 Results	% Rec	
Aluminum	40000	40500	101.3	40000	39900	99.8	40000	40600	101.5	
Antimony	2000	2030	101.5	2000	2010	100.5	2000	2040	102.0	
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Cadmium	anr									
Calcium	anr									
Chromium	anr									
Cobalt	anr									
Copper	2000	2020	101.0	2000	1970	98.5	2000	2000	100.0	
Iron	anr									
Lead	2000	2000	100.0	2000	1950	97.5	2000	2000	100.0	
Magnesium	anr									
Manganese	anr									
Molybdenum	anr									
Nickel	anr									
Potassium	anr									
Selenium	anr									
Silver	anr									
Sodium	anr									
Strontium										
Thallium	anr									
Tin										
Titanium										
Vanadium	anr									
Zinc	2000	2040	102.0	2000	2020	101.0	2000	2050	102.5	

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C QC Limits: 90 to 110 % Recovery Run ID: MA13933 Units: ug/1

QC Limits: 90	CO 110 8	recovery		Kuti 1	D: MAIJ93	_	onics: ug/i			
Time: Sample ID: Metal	CCV True	13:42 CCV6 Results	% Rec	CCV True	14:41 CCV7 Results	% Rec	CCV True	15:32 CCV8 Results	% Rec	
Aluminum	40000	40000	100.0	40000	41200	103.0	40000	40200	100.5	
Antimony	2000	2020	101.0	2000	2090	104.5	2000	2030	101.5	
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Cadmium	anr									
Calcium	anr									
Chromium	anr									
Cobalt	anr									
Copper	2000	1970	98.5	2000	2040	102.0	2000	2020	101.0	
Iron	anr									
Lead	2000	1950	97.5	2000	2020	101.0	2000	2010	100.5	
Magnesium	anr									
Manganese	anr									
Molybdenum	anr									
Nickel	anr									
Potassium	anr									
Selenium	anr									
Silver	anr									
Sodium	anr									
Strontium										
Thallium	anr									
Tin										
Titanium										
Vanadium	anr									
Zinc	2000	2020	101.0	2000	2080	104.0	2000	2050	102.5	

Login Number: FA42152

Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C QC Limits: 90 to 110 % Recovery Run ID: MA13933 Units: ug/l

g				_					
Time: Sample ID: Metal		16:03 ICV2 Results	% Rec	CCV True	16:11 CCV9 Results	% Rec	CCV True	17:06 CCV10 Results	% Rec
Aluminum	40000	41500	103.8	40000	39100	97.8	40000	39500	98.8
Antimony	2000	1990	99.5	2000	1980	99.0	2000	1990	99.5
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	2000	1960	98.0	2000	1960	98.0	2000	1990	99.5
Iron	anr								
Lead	2000	1960	98.0	2000	1950	97.5	2000	1990	99.5
Magnesium	anr								
Manganese	anr								
Molybdenum	anr								
Nickel	anr								
Potassium	anr								
Selenium	anr								
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium									
Vanadium	anr								
Zinc	2000	1990	99.5	2000	2000	100.0	2000	2030	101.5

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C QC Limits: 90 to 110 % Recovery Run ID: MA13933 Units: ug/1

go Limitor su								· ·	
Time: Sample ID: Metal	CCV True	17:55 CCV11 Results	% Rec	CCV True	18:46 CCV12 Results	% Rec	CCV True	19:35 CCV13 Results	% Rec
Aluminum	40000	39700	99.3	40000	39300	98.3	40000	39400	98.5
Antimony	2000	1970	98.5	2000	1950	97.5	2000	1940	97.0
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	2000	2010	100.5	2000	2020	101.0	2000	2030	101.5
Iron	anr								
Lead	2000	2030	101.5	2000	2050	102.5	2000	2070	103.5
Magnesium	anr								
Manganese	anr								
Molybdenum	anr								
Nickel	anr								
Potassium	anr								
Selenium	anr								
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium									
Vanadium	anr								
Zinc	2000	2040	102.0	2000	2040	102.0	2000	2050	102.5

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C QC Limits: 90 to 110 % Recovery Run ID: MA13933 Units: ug/1

go managar sa								· ·	
Time: Sample ID: Metal	CCV True	19:43 CCV14 Results	% Rec	CCV True	20:26 CCV15 Results	% Rec	CCV True	20:47 CCV16 Results	% Rec
Aluminum	40000	38700	96.8	40000	40300	100.8	40000	39500	98.8
Antimony	2000	1910	95.5	2000	1990	99.5	2000	1940	97.0
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	2000	1980	99.0	2000	2030	101.5	2000	2010	100.5
Iron	anr								
Lead	2000	2030	101.5	2000	2090	104.5	2000	2050	102.5
Magnesium	anr								
Manganese	anr								
Molybdenum	anr								
Nickel	anr								
Potassium	anr								
Selenium	anr								
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium									
Vanadium	anr								
Zinc	2000	2010	100.5	2000	2090	104.5	2000	2050	102.5

HIGH STANDARD CHECK SUMMARY

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C

QC Limits: 95	to 105 %	Recovery		Run ID: MA13933	Units: ug/l
Time: Sample ID: Metal	HSTD True	08:38 HSTD1 Results	% Rec		
Aluminum	80000	78700	98.4		
Antimony	4000	3970	99.3		
Arsenic	anr				
Barium	anr				
Beryllium	anr				
Cadmium	anr				
Calcium	anr				
Chromium	anr				
Cobalt	anr				
Copper	4000	3920	98.0		
Iron	anr				
Lead	4000	3930	98.3		
Magnesium	anr				
Manganese	anr				
Molybdenum	anr				
Nickel	anr				
Potassium	anr				
Selenium	anr				
Silver	anr				
Sodium	anr				
Strontium	anr				
Thallium	anr				
Tin	anr				
Titanium	anr				
Vanadium	anr				
Zinc	4000	3900	97.5		

(*) Outside of QC limits (anr) Analyte not requested

SGS 315 of 383
ACCUTEST
FA42152

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

File ID: SB032817M1.ICP Date Analyzed: 03/28/17 Methods: SW846 6010C QC Limits: CRI 70-130% CRIA 70-130% Run ID: MA13933 Units: ug/l

QC Limits: CRI	1 /0-130%	CRIA 70-	-13U%	Run I	D: MA1393	13
Time: Sample ID: Metal	CRI True	CRIA True	09:08 CRIA1 Results	% Rec	20:35 CRIA2 Results	% Rec
Aluminum	400	200	196	98.0	206	103.0
Antimony	10	5.0	4.5	90.0	6.2	124.0
Arsenic	20	10	anr			
Barium	400	200	anr			
Beryllium	10	5.0	anr			
Cadmium	10	5.0	anr			
Calcium	2000	1000	anr			
Chromium	20	10	anr			
Cobalt	100	50	anr			
Copper	50	25	25.9	103.6	26.8	107.2
Iron	600	300	anr			
Lead	10	5.0	5.1	102.0	5.4	108.0
Magnesium	10000	5000	anr			
Manganese	30	15	anr			
Molybdenum	100	50	anr			
Nickel	80	40	anr			
Potassium	20000	10000	anr			
Selenium	20	10	anr			
Silver	20	10	anr			
Sodium	20000	10000	anr			
Strontium	20	10	anr			
Thallium	20	10	anr			
Tin	100	50	anr			
Titanium	20	10	anr			
Vanadium	100	50	anr			
Zinc	40	20	21.3	106.5	21.7	108.5

^(*) Outside of QC limits (anr) Analyte not requested

SGS 316 of 383

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Date Analyzed: 03/28/17 Run ID: MA13933 File ID: SB032817M1.ICP Methods: SW846 6010C QC Limits: 80 to 120 % Recovery Units: ug/l

Time: Sample ID: Metal		ICSAB True	09:15 ICSA1 Results	% Rec	09:20 ICSAB1 Results	% Rec	20:39 ICSA2 Results	% Rec	20:43 ICSAB2 Results	% Rec
Aluminum	500000	500000	500000	100.0	499000	99.8	490000	98.0	494000	98.8
Antimony		1000	-0.90		1010	101.0	-0.60		958	95.8
Arsenic		1000	0.40		1080	108.0	3.0		1030	103.0
Barium		500	-0.50		502	100.4	-0.20		509	101.8
Beryllium		500	-0.10		485	97.0	0.10		493	98.6
Cadmium		1000	-0.40		942	94.2	-1.3		875	87.5
Calcium	500000	500000	480000	96.0	474000	94.8	474000	94.8	462000	92.4
Chromium		500	0.50		496	99.2	0.80		484	96.8
Cobalt		500	0.20		472	94.4	0.10		438	87.6
Copper		500	-0.20		517	103.4	0.10		513	102.6
Iron	200000	200000	182000	91.0	178000	89.0	183000	91.5	180000	90.0
Lead		1000	0.0		954	95.4	2.7		971	97.1
Magnesium	500000	500000	495000	99.0	498000	99.6	501000	100.2	505000	101.0
Manganese		500	0.20		485	97.0	0.10		495	99.0
Molybdenum		1000	-0.20		9 90	99.0	1.0		956	95.6
Nickel		1000	-0.20		944	94.4	0.70		904	90.4
Potassium			69.1		75.7		178		104	
Selenium		1000	0.20		1000	100.0	-0.40		952	95.2
Silver		1000	0.10		931	93.1	0.20		903	90.3
Sodium			163		180		296		227	
Strontium		1000	-0.10		1010	101.0	1.4		1030	103.0
Thallium		1000	0.80		951	95.1	-1.9		951	95.1
Tin		1000	2.6 (a)		938	93.8	3.6		893	89.3
Titanium		1000	-0.60		986	98.6	-0.30		982	98.2
Vanadium		500	-0.20		475	95.0	0.0		467	93.4
Zinc		1000	1.6		938	93.8	1.6		935	93.5

^(*) Outside of QC limits (anr) Analyte not requested
(a) Verified trace level impurity.

ACCUTEST

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA42152

Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Batch ID: MP31871 Matrix Type: SOLID Methods: SW846 6010C Units: mg/kg

Prep Date:

03/28/17

L					
Metal	RL	IDL	MDL	MB raw	final
Aluminum	10	.7	1.8	0.54	< 10
Antimony	1.0	.05	.065	-0.035	<1.0
Arsenic	0.50	.065	.1		
Barium	10	.05	.05		
Beryllium	0.25	.01	.025		
Cadmium	0.20	.01	.025		
Calcium	250	2.5	2.5		
Chromium	0.50	.05	.05		
Cobalt	2.5	.01	.025		
Copper	1.3	.05	.05	0.020	<1.3
Iron	15	.85	.85		
Lead	1.0	.05	.05	0.020	<1.0
Magnesium	250	1.8	1.8		
Manganese	0.75	.025	.025		
Molybdenum	2.5	.015	.025		
Nickel	2.0	.02	.025		
Potassium	500	10	10		
Selenium	1.0	.12	.12		
Silver	0.50	.035	.041		
Sodium	500	25	25		
Strontium	0.50	.025	.025		
Thallium	0.50	.055	.055		
Tin	2.5	.045	.045		
Titanium	0.50	.025	.025		
Vanadium	2.5	.025	.025		
Zinc	1.0	.15	.15	0.11	<1.0

Associated samples MP31871: FA42152-1, FA42152-2, FA42152-3, FA42152-9

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA42152
Account: CAPEGAA - Cape Environmental Management Inc.
Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Batch ID: MP31871 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date:

03/28/17

Metal	BSP Result	Spikelot MPFLICP2		QC Limits
Aluminum	1340	1350	99.3	80-120
Antimony	24.7	25	98.8	80-120
Arsenic				
Barium				
Beryllium				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper	12.5	12.5	100.0	80-120
Iron				
Lead	23.8	25	95.2	80-120
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	24.7	25	98.8	80-120

Associated samples MP31871: FA42152-1, FA42152-2, FA42152-3, FA42152-9

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SGS 319 of 383

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Batch ID: MP31871 Methods: SW846 6010C

Matrix Type: SOLID Units: ug/l

03/28/17 Prep Date:

Metal	FA42067- Original	5 SDL 1:5	%DIF	QC Limits
Aluminum	107000	122000	13.7*(a)	0-10
Antimony	1.60	5.90	268.8(b)	0-10
Arsenic				
Barium				
Beryllium				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper	179	206	15.3*(a)	0-10
Iron				
Lead	232	236	1.4	0-10
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	373	460	23.2*(a)	0-10

Associated samples MP31871: FA42152-1, FA42152-2, FA42152-3, FA42152-9

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Serial dilution indicates possible matrix interference. Outside DoD QSM control limits. (b) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

320 of 383 **ACCUTEST**

POST DIGESTATE SPIKE SUMMARY

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

QC Batch ID: MP31871 Methods: SW846 6010C Matrix Type: SOLID Units: ug/l

Prep Date: 03/28/17

Metal	Sample ml	Final ml	FA42067- Raw	-5 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum	9.8	10	107200	105056	109500	0.2	125	2500	177.8*(a	80-120
Antimony	9.8	10	1.6	1.568	88.3	0.2	5	100	86.7	80-120
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper	9.8	10	178.8	175.224	265.6	0.2	5	100	90.4	80-120
Iron										
Lead	9.8	10	232.3	227.654	284.2	0.2	2.5	50	113.1	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc	9.8	10	373.4	365.932	574.4	0.2	12.5	250	83.4	80-120

Associated samples MP31871: FA42152-1, FA42152-2, FA42152-3, FA42152-9

Results < IDL are shown as zero for calculation purposes

(**) Corr. sample result = Raw * (sample volume / final volume)

(anr) Analyte not requested

(a) Spike recovery indicates matrix interference and/or outside control limits due to high level in sample relative to spike amount. Outsid DoD QSM control limits.

SGS 321 of 383

Page 1 of 1

Instrument Detection Limits

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Instrument ID: SSTRACE2 Effective Date: 01/27/15

Analyte	IDL ug/l
Aluminum	14
Antimony	1
Arsenic	1.3
Barium	1
Beryllium	.2
Cadmium	.2
Calcium	50
Chromium	1
Cobalt	.2
Copper	1
Iron	17
Lead	1
Magnesium	35
Manganese	.5
Molybdenum	.3
Nickel	.4
Potassium	200
Selenium	2.4
Silicon	5
Silver	.7
Sodium	500
Strontium	.5
Sulfur	5
Thallium	1.1
Tin	.9
Titanium	.5
Vanadium	.5
Zinc	3

The above applies to the following instrument runs: MA13933

SGS

Page 1 of 1

Instrument Linear Ranges

Job Number: FA42152

Account: CAPEGAA Cape Environmental Management Inc.

Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Instrument ID: SSTRACE2 Effective Date: 10/22/10

Analyte	Linear Range ug/l
Aluminum	500000
Antimony	10000
Arsenic	10000
Barium	10000
Beryllium	10000
Cadmium	10000
Calcium	500000
Chromium	10000
Cobalt	10000
Copper	10000
ron	500000
Lead	10000
Magnesium	500000
Manganese	10000
Molybdenum	10000
Nickel	10000
Potassium	80000
Selenium	10000
Silver	1000
Sodium	80000
Strontium	10000
Γhallium	10000
Γin	10000
Γitanium	10000
Vanadium	10000
Zinc	10000

The above applies to the following instrument runs: MA13933

Section 11

Metais	Analysis	•		
Raw Da	ta			

									Zoom Ir Zoom Oi
Comple Nor	o: Plank	Anguire	4.0/00/004	7 0-17-00	Tune: C	`al			
Sample Nam			1: 3/28/201		Type: C				
Method: 601	_	. ,	Mode:		rr. Factor:				
Jser: admin	SST	RACE02:	Cus	tom ID2:	Cust	tom ID3:			
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
Jnits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.0006	0042	0002	.0170	.0005	.0048	0009	.0002	.0002
Stddev	.0001	.0009	.0000	.0004	.0007	.0004	.0001	.0002	.0002
%RSD	13.54	21.43	14.68	2.081	144.8	9.237	13.65	119.7	92.88
±1	.0005	0037	0002	.0171	.0012	.0051	0007	.0001	.0004
2	.0007	0052	0002	.0167	.0006	.0043	0009	.0005	.0000
‡ 3	.0007	0036	0002	.0174	0003	.0051	0010	.0000	.0002
lem	Cu3247	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
Inits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
vg	.0034	.0018	0031	0002	.0002	.0012	0133	0008	.0011
Stddev	.0001	.0007	.0016	.0003	.0002	.0002	.0025	.0004	.0004
6RSD	1.685	37.89	51.64	144.8	98.35	19.38	19.12	51.90	41.01
÷1	.0034	.0024	0039	0001	.0000	.0014	0152	0011	.0013
2	.0034	.0011	0042	.0000	.0003	.0012	0104	0003	.0014
3	.0035	.0019	0013	0005	.0002	.0010	0143	0010	.0006
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Jnits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.0002	0013	.0036	.0004	0002	.0018	0033	0001	.0026
Stddev	.0001	.0002	.0001	.0001	.0008	.0001	.0004	.0001	.0001
6RSD	60.31	11.89	2.795	19.39	432.4	7.986	10.80	84.24	2.351
:1	.0002	0012	.0035	.0003	0006	.0020	0029	0002	.0026
2	.0001	0013	.0037	.0004	.0008	.0018	0035	0001	.0025
3	.0004	0015	.0036	.0005	0008	.0018	0035	.0000	.0026
nt. Std.	In2306	Y_2243	Y_3600	Y_3710					
Jnits	Cts/S	Cts/S	Cts/S	Cts/S					
Avg	2833.6	6349.7	47575.	5947.6					
Stddev	3.5	17.3	255.	33.4					
%RSD	.12321	.27268	.53521	.56156					
#1	2835.6	6367.5	47865.	5914.0					
‡2	2835.7	6348.6	47389.	5948.0					
#3	2829.6	6332.9	47472.	5980.8					

User: admiı Comment:	n 88	TRACE02	,	ode: IR Custom ID		ctor: 1.000 Custom I				
50	00			0000011112		0 0000111 11				
Elem Units Avg Stddev %RSD	Ag3280 Cts/S .0299 .0000 .1203	Al3961 Cts/S 1.655 .014 .8486	As1890 Cts/S .1137 .0005 .4706	Ba4554 Cts/S 5.084 .033 .6449	Be3130 Cts/S 4.228 .023 .5491	Ca3179 Cts/S 2.920 .014 .4918	Cd2265 Cts/S 2.624 .009 .3424	Co2286 Cts/S 1.253 .004 .3457	Cr2677 Cts/S .2396 .0010 .4352	Cu3247 Cts/S .3504 .0006
#1 #2 #3	.0299 .0299 .0299	1.671 1.646 1.649	.1132 .1137 .1142	5.122 5.063 5.067	4.253 4.206 4.226	2.936 2.909 2.915	2.614 2.632 2.624	1.248 1.257 1.252	.2385 .2405 .2397	.3509 .3505 .3498
Elem Units Avg Stddev %RSD	Fe2599 Cts/S 1.845 .008 .4536	K_7664 Cts/S 1.259 .008 .6179	Mg2790 Cts/S .2962 .0018 .6067	Mn2576 Cts/S 1.331 .001 .0427	Mo2020 Cts/S .5701 .0018 .3102	Na5895 Cts/S 4.260 .024 .5674	Ni2316 Cts/S .7667 .0033 .4255	Pb2203 Cts/S .5631 .0015 .2649	Sb2068 Cts/S .1289 .0004 .2867	Se1960 Cts/S .0804 .0003 .3270
#1 #2 #3	1.854 1.838 1.844	1.267 1.251 1.259	.2972 .2941 .2973	1.331 1.332 1.331	.5682 .5716 .5707	4.288 4.247 4.245	.7636 .7701 .7664	.5619 .5648 .5626	.1287 .1294 .1288	.0801 .0807 .0804
Elem Units Avg Stddev %RSD	Si2124 Cts/S .2365 .0006 .2559	Sn1899 Cts/S .2850 .0012 .4351	Sr4077 Cts/S 7.400 .038 .5108	Ti3349 Cts/S .7868 .0035 .4449	TI1908 Cts/S .2537 .0010 .3991	V_2924 Cts/S .3354 .0009 .2674	Zn2062 Cts/S 1.584 .006 .3975			
#1 #2 #3	.2360 .2372 .2362	.2835 .2857 .2857	7.441 7.368 7.390	.7859 .7907 .7839	.2540 .2546 .2526	.3344 .3360 .3358	1.577 1.588 1.586			
Int. Std. Units Avg Stddev %RSD	In2306 Cts/S 2610.1 7.1 .27167	Y_2243 Cts/S 6162.6 20.8 .33757	Y_3600 Cts/S 45863. 117. .25498	Y_3710 Cts/S 5934.8 31.2 .52646						
#1 #2 #3	2614.1 2601.9 2614.2	6186.3 6147.0 6154.6	45986. 45753. 45850.	5934.0 5966.4 5903.9						

Raw Data MA13933 page 1 of 198

										∢ Zoom In ▶
										Zoom Out
Sample N	Name: MidSt	d Acc	uired: 3/2	8/2017 8:2	9:58	Type: Cal				
	60102007_0			ode: IR		ctor: 1.000	000			
User: adı	_	TRACE02		Custom ID)2:	Custom I	D3:			
Commen										
00	•••									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.1185	6.107	.4462	19.79	16.25	10.64	9.920	4.720	.9187	1.358
Stddev	.0003	.004	.0008	.04	.02	.01	.006	.005	.0007	.006
%RSD	.2878	.0725	.1864	.2093	.1217	.1327	.0590	.1175	.0815	.4197
#1	.1187	6.109	.4453	19.84	16.24	10.63	9.913	4.714	.9196	1.363
#2	.1181	6.110	.4462	19.78	16.28	10.66	9.925	4.720	.9181	1.352
#3	.1187	6.102	.4470	19.76	16.24	10.64	9.922	4.725	.9185	1.360
Elem	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	6.516	4.667	1.087	5.146	2.161	15.62	2.907	2.225	.5022	.3172
Stddev	.011	.012	.001	.004	.001	.01	.000	.005	.0012	.0003
%RSD	.1731	.2465	.1135	.0761	.0599	.0655	.0138	.2425	.2406	.1064
#1	6.513	4.680	1.086	5.150	2.159	15.63	2.906	2.231	.5010	.3169
#2	6.528	4.663	1.087	5.144	2.161	15.62	2.907	2.225	.5034	.3172
#3	6.506	4.658	1.088	5.143	2.162	15.61	2.907	2.220	.5023	.3175
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062			
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	.7180	1.094	28.93	3.114	.9986	1.313	6.019			
Stddev %RSD	.0007 .1008	.000	.07 .2453	.009	.0026	.002 .1651	.002			
%H3D	.1008	.0346	.2453	.2947	.2576	.1651	.0274			
#1	.7172	1.094	28.99	3.125	1.001	1.315	6.021			
#2	.7187	1.094	28.95	3.107	.9982	1.311	6.018			
#3	.7182	1.094	28.85	3.112	.9963	1.312	6.020			
Int. Std.	In2306	Y_2243	Y_3600	Y_3710						
Units	Cts/S	Cts/S	Cts/S	Cts/S						
Avg	2400.5	5969.9	44067.	5844.2						
Stddev	.6	9.6	136.	45.5						
%RSD	.02575	.16010	.30926	.77880						
#1	2400.4	5980.3	44018.	5878.5						
#2	2400.0	5967.8	43962.	5861.5						
#3	2401.2	5961.6	44221.	5792.6						

										◀ Zoom In I
										Zoom Out
	lame: HighS			28/2017 8:		Type: Cal				
	60102007_0		,	ode: IR		ctor: 1.000				
Jser: adn		TRACE02	2:	Custom ID	12:	Custom I	D3:			
Comment	t:									
lem	Ag3280	Al3961	As1890					Co2286		
Jnits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg Stddev	.2389	12.37	.9091 .0005	39.29 .08	31.79 .12	21.27	19.93 .04	9.519 .019	1.819	2.706
%RSD	.2250	.2458	.0524	.1973	.3715	.1241	.2185	.1991	.1458	.0801
0.102		.2.100	.002		.07.10		.2.00			.0001
#1	.2383	12.40	.9086	39.35	31.87	21.29	19.89	9.499	1.817	2.707
2	.2389	12.36	.9093	39.31	31.85	21.28	19.92	9.519	1.817	2.703
t 3	.2394	12.34	.9095	39.20	31.66	21.24	19.97	9.537	1.822	2.707
lem	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Jnits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
vg	12.81	9.400	2.165	9.939	4.210	31.34	5.772	4.460	1.023	.6450
Stddev	.04	.018	.004	.044	.003	.03	.007	.002	.001	.0007
6RSD	.3021	.1959	.1755	.4436	.0634	.1075	.1188	.0453	.0823	.1022
1	12.85	9.418	2.169	9.889	4.211	31.38	5.770	4.462	1.024	.6446
2	12.81	9.402	2.164	9.971	4.207	31.32	5.767	4.458		.6448
ŧ3	12.77	9.381	2.162	9.957	4.212	31.32	5.780	4.460	1.022	.6458
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
Jnits	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	1.391	2.170	55.79	6.041	1.979	2.568	11.81			
Stddev	.001	.004	.84	.051	.005	.003	.03			
%RSD	.0952	.1755	1.513	.8363	.2338	.1272	.2310			
#1	1.390	2.169	55.49	6.018	1.982	2.568	11.82			
2	1.392	2.167	56.75	6.099	1.974	2.564	11.78			
3	1.390	2.174	55.14	6.006	1.981	2.571	11.84			
nt. Std.	In2306	Y 2243	Y 3600	Y 3710						
II. Siu. Inits	Cts/S	Cts/S	Cts/S	Cts/S						
Avg	2208.5	5629.5	42231.	5852.0						
Stddev	3.3	9.4	168.	23.9						
6RSD	.14750	.16674	.39888	.40852						
±1	2212.0	5636.2	42396.	5832.1						
‡2	2207.6	5633.4	42237.	5878.5						
‡3	2205.7	5618.8	42059.	5845.2						

Raw Data MA13933 page 4 of 198

Raw Data MA13933 page 3 of 198

Raw Data MA13933 page 5 of 198

Sample Name: ICV Acquired: 3/28/2017 8:45:48 Type: QC

▼ Zoom In **▶** Zoom Out

Sample Name: HS Method: 60102007 User: admin S Comment:	041712(v6 STRACE0	2:	3/2017 8:3 ode: CON Custom II	IC Co	Type: QC rr. Factor: Custom				Zoom O
Method: 60102007_ User: admin	041712(v6 STRACE0	07) M 2:	ode: CON	IC Co	rr. Factor:				
Method: 60102007 User: admin	041712(v6 STRACE0	07) M 2:	ode: CON	IC Co	rr. Factor:				
User: admin	STRACE0 Al3961	2:							
) Al3961		Custom II	D2:	Custom	ID3:			
Comment:		Ac1800							
		Ac1890							
		Ac1890							
Elem Ag328	mqq				Ca3179				Cu3247
Units ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg .4978		3.978	3.891	3.834	78.31	3.971	3.977	3.939	3.918
Stddev .001		.002	.005	.011	.23	.007	.005	.006	.012
%RSD .295	.2500	.0598	.1320	.2763	.2943	.1824	.1381	.1496	.2980
#1 .497	78.53	3.976	3.895	3.824	78.05	3.966	3.973	3.932	3.921
#2 .496		3.981	3.885	3.834	78.38	3.968	3.974	3.942	3.905
#3 .499	78.91	3.977	3.893	3.845	78.49	3.980	3.983	3.943	3.928
Check ? Chk Pas	sChk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass	Chk Pass(Chk Pass	Chk Pass
Value Range									
Elem Fe259		Mg2790					Pb2203		
Units ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg 76.66		77.68	3.845	3.899	78.14	3.933	3.932	3.972	3.967
Stddev .10		.49	.021	.004	.22	.004	.003	.002	.009
%RSD .205	.1832	.6343	.5464	.1116	.2832	.0901	.0835	.0423	.2227
#1 76.5	77.49	77.12	3.857	3.894	77.90	3.930	3.933	3.972	3.975
#2 76.60	77.34	77.86	3.857	3.900	78.19	3.933	3.934	3.973	3.958
#3 76.8	77.63	78.06	3.821	3.902	78.33	3.937	3.928	3.970	3.970
	sChk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass	Chk Pass(Chk Pass	Chk Pass
Value Range									
Elem Si212	Sn1899	Sr4077	Ti3349	TI1908	V 2924	7n2062			
Units ppm		ppm	ppm	ppm	ppm	ppm			
Avg 3.824		3.854	3.886	3.913	3.911	3.898			
Stddev .004		.033	.020	.011	.009	.011			
%RSD .114		.8520	.5257	.2844	.2268	.2899			
#1 3.82	3.940	3.886	3.905	3.912	3.903	3.888			
#2 3.82		3.820	3.888	3.924	3.909	3.895			
#3 3.82		3.856	3.864	3.902	3.920	3.910			
Check ? None	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass			
Range									

▼ Zoom In ▶
Zoom Out

Method: 6	0102007 0	41712(v6	07) M	ode: CON	IC Co	rr. Factor:	1 000000				
User: adn	_	TRACEO:	,	Custom II		Custom					
Commen		77101020		Oustoni ii	<i>D</i> 2.	Oustoni	100.				
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.2462	41.32	1.966	1.965	1.984	42.43	1.962	1.962	1.961	1.956	
Stddev	.0004	.10	.001	.007	.010	.10	.007	.005	.004	.006	
%RSD	.1511	.2458	.0552	.3360	.5260	.2301	.3551	.2607	.1929	.2892	
#1	.2462	41.21	1.966	1.957	1.972	42.32	1.970	1.968	1.957	1.950	
#2	.2467	41.41	1.966	1.969	1.992	42.51	1.961	1.961	1.964	1.959	
#3	.2459	41.34	1.964	1.969	1.988	42.45	1.956	1.958	1.962	1.961	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass	
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	40.53	41.47	42.10	1.988	2.033	41.27	1.967	1.956	1.964	1.963	
Stddev	.19	.15	.12	.007	.002	.07	.004	.006	.001	.002	
%RSD	.4570	.3547	.2939	.3591	.1197	.1765	.2107	.2888	.0705	.0742	
#1	40.34	41.31	41.96	1.980	2.036	41.20	1.971	1.960	1.965	1.964	
#2	40.70	41.53	42.14	1.991	2.031	41.34	1.965	1.958	1.965	1.965	
#3	40.55	41.59	42.20	1.993	2.032	41.28	1.964	1.949	1.963	1.962	
Check ? Value Range	Chk Pass0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass	
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062				
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm				
Avg	.3185	1.984	1.991	2.012	2.038	2.023	1.968				
Stddev	.0013	.006	.011	.006	.007	.004	.005				
%RSD	.4185	.3066	.5742	.3138	.3273	.2214	.2448				
#1	.3194	1.989	1.978	2.005	2.044	2.018	1.974				
#2	.3190	1.986	1.999	2.017	2.038	2.026	1.966				
#3	.3169	1.978	1.995	2.015	2.031	2.025	1.965				

None Chk PassChk PassChk PassChk PassChk PassChk PassChk

Raw Data MA13933 page 6 of 198

Sample Name: ICV Acquired: 3/28/2017 8:45:48 Type: QC Method: 60102007_041712(v607) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment:

Sample Name: HSTD Acquired: 3/28/2017 8:38:30 Type: QC | Method: 60102007_041712(v607) | Mode: CONC | Corr. Factor: 1.000000 | User: admin | SSTRACE02: | Custom ID2: | Custom ID3:

| 102306 | Y_2243 | Y_3600 | Y_3710 | Cts/S | Cts/S | Cts/S | Cts/S | 2229.5 | 5662.5 | 42642. | 5929.6 | 4.5 | 7.4 | 117. | 30.9 |

.27485

.52192

5962.8 5924.6 5901.5

.12996

2227.9 5671.0 42745. 2226.0 5658.7 42667. 2234.5 5657.8 42514.

Comment:

.20055

Units Avg Stddev %RSD

 In2306
 Y_2243
 Y_3600
 Y_3710

 Cts/S
 Cts/S
 Cts/S
 Cts/S

 2421.6
 6014.3
 44755.
 5936.0

 4.6
 13.3
 154.
 11.6

 .19122
 .22163
 .34455
 .19585
 Int. Std. Units Avg Stddev %RSD 2416.4 6000.1 44927. 2423.4 6026.6 44629. 5925.8 2425.1 6016.2 44710. 5933.6

Raw Data MA13933 page 8 of 198

Raw Data MA13933 page 7 of 198

Check ? Value

Range

SSTRACE02:

Acquired: 3/28/2017 8:54:50

Mode: CONC

Custom ID2:

Method: 60102007_041712(v607)

Sample Name: ICB

User: admin

Comment

■ Zoom In ■ Zoom Out

Int. Std.

Units

Avg

#1

Stddev

%RSD

Sample Name: ICB Acquired: 3/28/2017 8:54:50 Method: 60102007_041712(v607) Mode: CONC User: admin SSTRACE02: Custom ID2:

Y_2243

6169.3

.16077

6180.1

6160.5

6167.5

Cts/S

9.9

Y_3600 Cts/S

46778

153

.32600

46866

46867

46602

ln2306

Cts/S

2802.3

.19036

2803.6

2796.5

2806.9

Type: QC

Y_3710

5970.3 53.7

.89865

6032.2

5941.1

5937.6

Cts/S

Corr. Factor: 1.000000

Custom ID3:

Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 ppm .0084 ppm .0000 ppm .0018 ppm 0001 ppm .0003

Type: QC

Corr. Factor: 1.000000

Custom ID3:

ppm .0004 .0009 ppm .0002 .0000 ppm .0001 .0001 ppm .0002 .0002 Units ppm -.0002 Avg Stddev .0001 .0001 .0133 .0001 .0003 .0024 %RSD 133.3 157.5 221.7 254.3 10.45 138.5 48.94 57.96 110.5 26.76 .0179 .0002 .0003 .0004 #1 .0000 .0002 .0001 .0000 .0002 .0001 .0002 .0005 .0067 .0001 .0001 .0002 .0007 .0001 .0002 .0004 -.0001 .0141 -.0014 .0002 .0046 .0001 .0000 .0001 -.0001

Check? Chk Pass Chk High Limit Low Limit

Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 ppm -.0007 ppm .0301 .0210 ppm .0002 ppm .0002 ppm 0001 Units ppm .0010 ppm .0135 ppm .0003 ppm .0001 ppm .0006 Stddev .0001 .0001 .0009 .0024 .0083 .0000 .0023 .0003 .0003 %BSD 355.0 69.66 817.3 10.43 53.78 16.95 112.2 109.0 265 1 147.8 -.0012 .0541 -.000 .0131 .0016 .0067 .0002 .0002 .0003 .0002 .0020 #2 #3 .0155 .0098 .0002 .0003 .0160 .0000 0006 0002 .0001 .0001 .0002 -.0003 .0001 .0000 -.0004 .0003 .0207 .0114

Check? Chk Pass Chk High Limit Low Limit

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0007 ppm .0000 ppm .0002 ppm .0001 ppm .0003 ppm .0001 ppm -.0004 Ava Stddev 0002 000 0001 0001 0006 0001 0000 361.9 .0005 .0001 0003 .0001 .0002 .0001 .0001 .0007 .0002 .0002 .0002 .0005 .0003 .0002 #3 .0008 .0000 .0003 -.0001 -.0010 .0002 .0001

Check? None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Raw Data MA13933 page 9 of 198

✓ Zoom In ►
Zoom Out

Comment:

#3

Raw Data MA13933 page 10 of 198

Sample Name: CRIA Acquired: 3/28/2017 9:08:54 Type: QC Method: 60102007_041712(v607) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3

46315.

5879.3

Y_2243 Cts/S Y_3600 Cts/S Y_3710 Cts/S Int Std In2306 Cts/S Units Avg Stddev 2667.2 6028.0 46285 5961.5 %RSD .22447 .16461 .07130 1.2217 2671.4 6038.5 46250. 6017.8 #2 2660.4 6026.5 46291. 5987.4

6018.8

2669.9

Sample Name: CRIA Acquired: 3/28/2017 9:08:54 Type: QC Method: 60102007_041712(v607) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment Elom Ag3280 AI3961 As1890 Ra4554 Be3130 Ca3179 Cd2265 Cn2286 Cr2677 Units ppm F.0080 ppm 1960 ppm .0097 ppm 2032 ppm .0050 ppm 1.041 ppm .0053 ppm .0540 ppm .0104 .0004 .006 .0009 %RSD 4.555 4.083 2.003 .4361 .7498 .5346 1.523 .3018 4.219 .0081 .2032 .0050 1.037 .0538 .0102 #2 .0076 .1991 .0096 .2023 .0049 1.038 .0054 .0539 .0102 .0083 .0099 .2040 .0050 1.047 .0053 .0541 .0109 Check ? Chk Fail Chk Pass Chk -20.00% Range Elem Cu3247 Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 ppm .0259 ppm .3076 ppm 10.17 ppm 5.169 ppm .0527 ppm 0425 Units ppm .0157 ppm 10.41 ppm .0051 Avg Stddev .0004 .0026 .02 .021 .0000 .0000 .03 .0002 .0005 %RSD 1.576 8562 .1688 .4076 0477 .0701 2748 .4026 9.401 #1 .0263 .3097 10.17 .0157 .0527 10.42 .0427 .0056 5.164 .0260 .3084 .3046 10.16 10.19 5.192 0157 .0527 10.38 0423 .0049 .0255 5.150 .0157 .0527 10.43 .0425 .0047 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Value Range Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0045 ppm .0056 ppm .0101 ppm .0099 ppm .0086 ppm .0499 ppm .0105 ppm .0213 Avg Stddev .0001 .0019 .0002 .0002 .0002 .0001 .0003 .0002 .0000 %RSD 1.600 .2252 .0046 .0097 .0054 .0556 .0100 .0101 0084 .0499 .0213

.0100

.0103

.0098

None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

.0089

.0496

.0214

Raw Data MA13933 page 11 of 198

.0043

Chk Pass Chk Pass

.0127

.0056

.0561

#3

Check ? Value

Range

Raw Data MA13933 page 12 of 198

✓ Zoom In ►
Zoom Out

									▼ Zoom I Zoom O
Sample Nar	no: ICSA	Acquiro	d: 3/28/201	7 0:15:50	Type: (nc .			
Method: 601				: CONC		ctor: 1.000	000		
	_	. ,					000		
User: admir	i SST	RACE02:	Cu	stom ID2:	Cus	stom ID3:			
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0001	500.2	.0004	0005	0001	480.4	0004	.0002	.0005
Stddev	.0005	8.0	.0002	.0002	.0001	8.6	.0000	.0001	.0002
%RSD	391.4	1.589	56.55	44.62	62.74	1.785	5.196	71.71	31.46
#1	.0007	494.1	.0002	0008		477.3	0004	.0003	.0004
#2	0001	509.2	.0002	0004	0001	490.1	0004	.0002	.0005
#3	0002	497.3	.0006	0004	0001	473.8	0003	.0000	.0007
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cu3247	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0002	181.6	.0691	494.8	.0002	0002	.1634	0002	.0000
Stddev	.0003	.5	.0449	1.3	.0000	.0006	.0067	.0001	.0033
%RSD	118.5	.2602	64.93	.2638	16.26	323.1	4.074	42.69	7424.
#1	0001	181.2	.0300	493.7	.0001	0001	.1583	0001	.0010
#2	0001	181.5	.0592	494.3	.0002	0008	.1608	0002	0036
#3	0005	182.2	.1181	496.2	.0002	.0004	.1709	0003	.0028
Check ? High Limit Low Limit	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0009	.0002	.0127	F.0026	0001	0006	.0008	0002	.0016
Stddev	.0013	.0030	.0009	.0005	.0009	.0001	.0018	.0002	.0000
%RSD	144.6	1511.	6.835	17.85	962.7	17.98	239.1	110.8	2.941
#1	0015	.0023	.0122	.0028	.0000	0005	.0009	0001	.0016
#2	0019	0033	.0122	.0030	0010	0007	.0025	0005	.0016
#3	.0006	.0016	.0137	.0021	.0008	0007	0011	.0000	.0017
Check ? High Limit Low Limit	Chk Pass	Chk Pass	None	Chk Fail .0010 0010	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA13933 page 14 of 198

▼ Zoom In **▶** Zoom Out

Raw Data MA13933 page 13 of 198 **∢** Zoom In ► Zoom Out

			,	8/2017 9:2 ode: CON Custom II	IC Co	Type: QC rr. Factor: Custom	1.000000				
Elem Units Avg Stddev %RSD	Ag3280 ppm .9312 .0058 .6253	Al3961 ppm 499.4 12.7 2.549	As1890 ppm 1.075 .001 .1301	Ba4554 ppm .5019 .0016 .3202	Be3130 ppm .4849 .0009 .1894	Ca3179 ppm 474.4 1.4 .2862	Cd2265 ppm .9416 .0020 .2153	Co2286 ppm .4720 .0015 .3280	Cr2677 ppm .4957 .0004 .0797	Cu3247 ppm .5171 .0012 .2318	
#1 #2 #3	.9367 .9318 .9251	512.5 498.5 487.1	1.076 1.077 1.074	.5004 .5018 .5036	.4839 .4852 .4857	475.8 473.2 474.2	.9437 .9416 .9396	.4729 .4729 .4702	.4953 .4956 .4961	.5179 .5176 .5157	
Check ? Value Range	Chk Pass(Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Fe2599 ppm 178.1 .2 .0849	K_7664 ppm .0757 .0071 9.396	Mg2790 ppm 497.8 .3 .0611	Mn2576 ppm .4854 .0015 .3047	Mo2020 ppm .9900 .0015 .1506	Na5895 ppm .1804 .0141 7.795	Ni2316 ppm .9440 .0018 .1873	Pb2203 ppm .9541 .0011 .1140	Sb2068 ppm 1.006 .001 .0676	Se1960 ppm .9999 .0048 .4823	
#1 #2 #3	177.9 178.1 178.2	.0811 .0677 .0784	497.5 498.1 497.8	.4850 .4842 .4870	.9903 .9912 .9883	.1698 .1751 .1964	.9455 .9446 .9420	.9528 .9550 .9544	1.007 1.006 1.005	1.004 1.001 .9947	
Check ? Value Range	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass	None (Chk Pass(Chk Pass(Chk Pass	Chk Pass	
Elem Units Avg Stddev %RSD	Si2124 ppm .0753 .0010 1.342	Sn1899 ppm .9383 .0023 .2478	Sr4077 ppm 1.010 .002 .2179	Ti3349 ppm .9859 .0047 .4750	TI1908 ppm .9508 .0037 .3840	V_2924 ppm .4748 .0011 .2218	Zn2062 ppm .9380 .0005 .0521				
#1 #2 #3	.0743 .0752 .0763	.9369 .9409 .9369	1.008 1.010 1.012	.9910 .9847 .9819	.9469 .9541 .9515	.4742 .4760 .4741	.9375 .9385 .9381				
Check ? Value	None (Chk Pass	None	None (Chk Pass	Chk Pass(Chk Pass				

Sample Name: ICSAB Acquired: 3/28/2017 9:20:49 Type: QC User: admin SSTRACE02: Custom ID2: Custom ID3: Comment: Int. Std. Units Avg Stddev %RSD
 In2306
 Y_2243
 Y_3600
 Y_3710

 Cts/S
 Cts/S
 Cts/S
 Cts/S

 2060.3
 5395.4
 40261.
 5733.5

 1.8
 8.5
 139.
 11.0

 .08609
 .15824
 .34512
 .19264
 2059.2 5388.3 40266. 5725.0 2059.4 5393.0 40398. 5746.0 2062.4 5404.9 40120. 5729.5

 Sample Name: ICSA
 Acquired: 3/28/2017 9:15:59
 Type: QC

 Method: 60102007_041712(v608)
 Mode: CONC
 Corr. Factor: 1.000000

 User: admin
 SSTRACE02:
 Custom ID2:
 Custom ID3:

.20887

40315.

40327. 40466.

Y_3710 Cts/S 5758.0 30.2

.52444

5789.4

5729.2 5755.5

In2306 Y_2243 Y_3600 Cts/S Cts/S Cts/S 2099.2 5397.0 40369. 3.6 5.6 84.

.10450

5402.5 5391.2 5397.2

Cts/S 2099.2 3.6

.16914

2103.3 2097.2 2097.1

Comment:

Units Avg Stddev %RSD

Raw Data MA13933 page 16 of 198

Raw Data MA13933 page 15 of 198

Range

⋖ Zoom In ▶ Zoom Out

	г	
_		

▼ Zoom In **▶** Zoom Out

										▼ Zoom In Zoom Ou
Sample Nan			red: 3/28/			ype: QC				
Method: 601	_	,	,	ode: CON	C Co	rr. Factor:				
User: admin	SS	TRACE02	2:	Custom II	02:	Custom	ID3:			
Comment:										
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm								
Avg	.2488	39.33	1.980	2.001	2.005	39.47	2.003	2.002	2.003	1.997
Stddev	.0005	.11	.004	.000	.004	.10	.005	.005	.002	.002
%RSD	.1825	.2847	.1914	.0099	.2183	.2427	.2363	.2633	.1213	.1223
#1	.2485	39.20	1.980	2.001	2.001	39.36	1.999	1.999	2.003	1.997
#2	.2486	39.35	1.977	2.001	2.009	39.54	2.002	1.999	2.001	1.995
#3	.2493	39.42	1.984	2.002	2.005	39.51	2.009	2.008	2.006	1.999
Check? C Value Range	hk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass
Elem	Fe2599	V 7664	Ma2700	Mn0E76	Mo2020	NoEgoe	Nicosic	Dhaana	Sb2068	Co1060
Units	ppm	ppm								
Avg	39.78	39.59	39.41	2.024	2.033	39.72	2.010	1.981	1.986	1.983
Stddev	.11	.14	.19	.001	.002	.04	.003	.003	.005	.004
%RSD	.2796	.3468	.4744	.0589	.1180	.1084	.1429	.1447	.2543	.1979
#1	39.67	39.47	39.20	2.024	2.033	39.67	2.009	1.984	1.984	1.982
#2	39.89	39.74	39.55	2.023	2.031	39.73	2.007	1.981	1.983	1.980
#3	39.79	39.57	39.48	2.025	2.035	39.75	2.013	1.979	1.992	1.988
Check? C Value Range	hk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062			
Units	ppm									
Avg	2.004	2.014	2.042	2.036	2.008	2.024	2.005			
Stddev	.004	.006	.004	.002	.003	.002	.001			
%RSD	.2010	.2935	.2086	.0849	.1348	.1047	.0488			
#1	2.003	2.011	2.039	2.036	2.007	2.021	2.005			
#2 #3	2.000 2.008	2.010 2.021	2.047 2.041	2.035 2.038	2.005 2.010	2.024 2.026	2.004 2.006			
Check ? Value Range	None (Chk Pass(Chk Pass(Chk Pass	Chk Pass(Chk Pass(Chk Pass			

naw Data WA 13933	page 17 01 196	

Sample Na	me: CCB	Acquir	ed: 3/28/2	017 9:36:4	7 Typ	e: QC				
Method: 60	102007_0	41712(v60	8) Mo	de: CONC	Corr	Factor: 1.	000000			
User: admi	in SS	TRACE02	: 0	Custom ID:	2:	Custom ID	3:			
Comment:										
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0003	.0170	0003	.0005	.0006	.0137	.0003	.0004	.0005	.0012
Stddev	.0001	.0078	.0000	.0002	.0000	.0021	.0001	.0001	.0001	.0000
%RSD	46.06	45.91	10.74	47.16	3.675	15.29	40.98	34.17	10.58	4.112
#1	.0004	.0253	0003	.0003	.0006	.0125	.0005	.0006	.0006	.0012
#2	.0002	.0098	0003	.0007	.0006	.0124	.0003	.0003	.0005	.0011
#3	.0003	.0159	0003	.0004	.0006	.0161	.0002	.0003	.0004	.0012
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0087	.0165	.0048	.0006	0002	.0325	.0003	.0009	0002	.0004
Stddev	.0015	.0059	.0044	.0001	.0001	.0061	.0003	.0001	.0002	.0003
%RSD	17.55	35.66	91.72	10.39	67.82	18.82	111.1	7.484	106.0	86.10
#1	.0096	.0199	0003	.0006	0001	.0390	.0005	.0010	.0000	.0000
#2	.0070	.0097	.0075	.0007	0002	.0316	.0002	.0009	0002	.0006
#3	.0096	.0198	.0071	.0005	0003	.0269	.0000	.0009	0005	.0004

Check? Chk Pass Chk P

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0012	.0003	.0007	.0003	0005	.0007	.0003
Stddev	.0004	.0001	.0001	.0001	.0013	.0000	.0001
%RSD	32.79	22.32	14.29	39.77	275.8	6.814	39.60
#1	.0008	.0003	.0007	.0004	.0010	.0008	.0005
#2	.0013	.0002	.0008	.0004	0009	.0007	.0003
#3	.0016	.0003	.0006	.0002	0014	.0007	.0002

Check ? High Limit Low Limit None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Raw Data MA13933 page 19 of 198

Sample Nar Method: 60 ⁻¹ User: admir Comment:	102007_0		08) M	2017 9:27:40 ode: CONC Custom ID2	Corr. Factor: 1.000000
Int. Std. Units Avg Stddev %RSD	In2306 Cts/S 2385.2 4.5 .18842	Y_2243 Cts/S 5911.4 8.3 .14079	- 10	Y_3710 Cts/S 5885.6 67.2 1.1423	
#1 #2 #3	2384.7 2381.0 2390.0	5920.4 5909.6 5904.0		5959.8 5828.8 5868.2	

Raw Data MA13933 page 18 of 198

Sample Name: CCB Acquired: 3/28/2017 9:36:47 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment:

Int. Std.	In2306	Y_2243	Y_3600	Y_3710
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	2757.8	5962.9	46850.	5981.9
Stddev	4.3	4.7	225.	71.0
%RSD	.15451	.07881	.47978	1.1876
#1	2753.0	5957.5	46869.	6050.9
#2	2761.2	5965.7	47065.	5985.8
#3	2759.2	5965.4	46616.	5909.0

Raw Data MA13933 page 20 of 198

▼ Zoom In **▶** Zoom Out

										Zoom In Zoom Ou
										Zoom Ot
Sample N	ame: DI CH	ECK A	Acquired: 3	3/28/2017	9:40:50	Type: Q	С			
Method: 6	0102007 04	1712(v60	3) Mo	de: CONC	Corr.	Factor: 1.	000000			
User: adm	_	TRACE02	,	Sustom ID2		Custom ID				
Comment		I NACEUZ		ustom iD2	<u>.</u> '	oustoili id	J.			
Comment										
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu32
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pp
Avg	.0000	0016	0006	0003	0001	0037	.0000	0001	.0000	.000
Stddev	.000	.0098	.0005	.0002	.0001	.0007	.0001	.0000	.000	.000
%RSD	6875.	600.9	91.77	72.77	74.88	19.55	564.2	44.51	1402.	50.4
#1	.0003	.0060	0009	0005	0001	0037	.0001	.0000	.0001	.000
#2	.0000	.0018	.0000	0002	0002	0029	0001	0001	.0001	.000
#3	0003	0127	0009	0001	.0000	0043	.0000	0001	0002	.000
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pa
High Limit Low Limit										
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se19
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pp
Avg	0092	.0094	.0250	.0000	0011	.0074	.0000	.0004	0010	.001
Stddev	.0020	.0231	.0040	.0000	.0001	.0050	.0002	.0005	.0009	.00
%RSD	21.93	245.4	16.16	84.54	8.086	68.23	1035.	134.1	89.83	25.0
#1	0087	.0193	.0296	.0000	0010	.0121	.0002	.0009	0020	.00
#2	0115	0170	.0220	.0000	0011	.0079	.0000	.0002	0006	.00
#3	0075	.0259	.0234	.0001	0012	.0021	0002	.0000	0004	.00
Check ? High Limit Low Limit	Chk Pass (Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pa
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	0015	0004	.0001	0004	.0009	.0000	0005			
Stddev	.0006	.0001	.0001	.0001	.0004	.000	.0001			
%RSD	42.02	31.93	79.61	13.14	44.61	746.2	20.25			
#1	0020	0003	.0001	0005	.0012	.0001	0004			
#2	0018	0006	.0000	0004	.0005	0001	0006			
#3	0008	0005	.0001	0004	.0010	.0000	0006			
Check ? High Limit Low Limit		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

Raw Data MA13933 page 22 of 198

Sample Name: MP31862-MB1 Acquired: 3/28/2017 9:45:03 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment:

Sample Name: DI CHECK Acquired: 3/28/2017 9:40:50 Type: QC

Y_3600 Cts/S

47758. 194

.40628

47941.

47779. 47555.

Custom ID2:

Y_3710 Cts/S

6237.2 57.6

.92381

6296.8

6233.0 6181.8

Custom ID3:

SSTRACE02:

Y_2243 Cts/S

6110.3 29.4

.48098

6144.1

6096.6 6090.4

ln2306

Cts/S 2854.4 16.5

.57828

2872.1

2851.7 2839.4

User: admin

Comment: Int. Std.

Units Avg Stddev

%RSD

Int. Std.	In2306	Y_2243	Y_3600	Y_3710
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	2757.0	6041.8	47356.	6003.6
Stddev	3.9	2.2	208.	37.1
%RSD	.14323	.03600	.44019	.61856
#1	2757.6	6043.7	47379.	6035.9
#2	2752.8	6042.3	47137.	6011.9
#3	2760.6	6039.5	47552.	5963.0

Raw Data MA13933 page 21 of 198

%RSD

#1

50.46

-.0052

149.8

.0463

3579.

-.0100

39.01

.0000

										Zoom In D Zoom Out
Sample Na	ame: MP318	362-MB1	Acquir	ed: 3/28/2	017 9:45:0	3 Type	e: QC			
	102007 04			de: CONC		Factor: 1.				
User: adm	_	TRACE02	,	ustom ID2		Custom ID	3.			
Comment:	00					ouotom ib	·			
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg Stddev	.0000	0013 .0082	0011 .0004	0003 .0002	0001 .0001	.0067	0001 .0000	0001 .0000	0001 .0002	.0003
%RSD	545.9	618.6	39.54	57.06	42.70	30.22	14.52	26.39	155.8	75.27
76N3D	343.9	010.0	39.34	37.00	42.70	30.22	14.52	20.39	155.6	75.27
#1	0002	0094	0013	0004	0002	.0076	0001	0001	0003	.000
#2	0002	.0071	0013	0001	0002	.0044	0001	0001	.0001	.0004
#3	.0002	0017	0006	0005	0001	.0081	0001	0001	0001	.0008
Check ? High Limit Low Limit	Chk Pass (Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass (Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0038	.0234	0002	.0000	0007	.0228	.0001	.0003	0003	.0012
Stddev	.0019	.0350	.0087	.000	.0000	.0122	.0002	.0001	.0005	.0010

-.0047 -.0016 -.0169 .0408 .0065 .0000 -.0007 -.0008 .0106 -.0001 .0000 .0003 -.0008 .0023 Check? Chk Pass Chk High Limit Low Limit Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 Zn2062 V 2924 Units ppm .0039 ppm -.0002 ppm .0000 ppm -.0003 ppm -.0015 ppm -.0001 ppm .0002 Avg Stddev %RSD .0001 .0002 .000 .0000 .0012 .0000 .0000 60.63 9.359 -.0003 -.0028 .0002 .0039 -.0004 .0000 -.0001 #2 #3 .0040 -.0003 -.0001 -.0001 -.0003 -.0003 -.0011 -.0001 .0000 -.0005 Check ? High Limit Low Limit None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

3.923

-.0008

53.45

.0350

320.4

.0002

55.83

.0004

152.6

-.0004

84.51

.0004

Raw Data MA13933 page 23 of 198

Raw Data MA13933 page 24 of 198

 In2306
 Y_2243
 Y_3600
 Y_3710

 Cts/S
 Cts/S
 Cts/S
 Cts/S

 2511.2
 5967.9
 45559.
 5910.2

 5.6
 3.8
 212.
 23.3

 .22208
 .06367
 .46604
 .39426

2505.1 5972.3 45481. 5923.0 2516.1 5966.1 45396. 5883.3 2512.3 5965.4 45799. 5924.2

Comment:

Int. Std. Units Avg Stddev %RSD

 Sample Name: MP31862-B1
 Acquired: 3/28/2017 9:49:17
 Type: QC

 Method: 60102007_041712(v608)
 Mode: CONC
 Corr. Factor: 1.000000

 User: admin
 SSTRACE02:
 Custom ID2:
 Custom ID3:

5923.0

										▼ Zoom In I
Method: 6	lame: MP31 60102007_0	41712(v6	08) M	ode: CON		rr. Factor:				
User: adn		TRACE0	2:	Custom II	D2:	Custom	ID3:			
Elem Units Avg Stddev %RSD	Ag3280 ppm .0454 .0002 .5045	Al3961 ppm 27.23 .10 .3740	As1890 ppm 1.973 .003 .1422	Ba4554 ppm 2.028 .010 .5035	Be3130 ppm .0503 .0003 .5526	Ca3179 ppm 25.57 .11 .4105	Cd2265 ppm .0502 .0000 .0528	Co2286 ppm .5003 .0004 .0895	Cr2677 ppm .1975 .0014 .7026	Cu3247 ppm .2472 .0008 .3242
#1 #2 #3	.0457 .0454 .0452	27.19 27.35 27.16	1.972 1.976 1.971	2.019 2.039 2.025	.0500 .0504 .0506	25.48 25.69 25.54	.0502 .0502 .0502	.4999 .5008 .5002	.1985 .1981 .1959	.2474 .2464 .2479
Check ? Value Range	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass				
Elem Units Avg Stddev %RSD	Fe2599 ppm 25.84 .09 .3638	K_7664 ppm 25.15 .13 .5087	Mg2790 ppm 24.66 .09 .3778	Mn2576 ppm .4941 .0008 .1607	Mo2020 ppm .5632 .0007 .1204	Na5895 ppm 25.47 .11 .4448	Ni2316 ppm .5011 .0002 .0446	Pb2203 ppm .4701 .0020 .4255	Sb2068 ppm .4959 .0016 .3250	Se1960 ppm 1.953 .004 .1861
#1 #2 #3	25.73 25.91 25.87	25.01 25.27 25.15	24.55 24.69 24.73	.4947 .4944 .4932	.5628 .5640 .5629	25.39 25.60 25.42	.5009 .5013 .5010	.4720 .4680 .4704	.4966 .4970 .4941	1.956 1.955 1.949
Check ? Value Range	Chk Pass(Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Si2124 ppm .0128 .0033 25.71	Sn1899 ppm .5534 .0005 .0934	Sr4077 ppm .5457 .0020 .3666	Ti3349 ppm .5325 .0013 .2389	TI1908 ppm 1.929 .005 .2473	V_2924 ppm .4840 .0011 .2221	Zn2062 ppm .4894 .0012 .2393			
#1 #2 #3	.0108 .0111 .0167	.5533 .5530 .5540	.5436 .5476 .5459	.5324 .5338 .5312		.4849 .4842 .4828	.4882 .4895 .4905			
Check ? Value Range	None (Chk Pass	None	None (Chk Pass	Chk Pass(Chk Pass			

Pow Data MA12022	mana 00 at 100

Raw Data MA13933 page 28 of 198

									•	▼ Zoom In ▶
										Zoom Out
Sample I	Name: MP31	862-D1	Acquire	d: 3/28/20	17 9:57:23	Туре	: Unk			
Method:	60102007_0	41712(v60	08) Mc	de: CONC	Corr	. Factor: 1	.000000			
User: ad	min SS	TRACE02	2: (Custom ID	2:	Custom II	03:			
Commer										
Commic										
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Co2170	Cd2265	Canne	Cr2677	Cu3247
IS Ref				(Y_3710)						
Avg	0001	.0058	0003	.0736	0001	121.5	0001	0003	.0001	.0008
Stddev	.0001		.0004		.0000	.2		.0001	.0001	.0002
%RSD	72.44									
,,,,,,					•••••					
#1	0002	.0057	0005	.0736	0001	121.5	0001	0004	.0003	.0007
#2	0002	.0109	0006	.0734	0001	121.3	0002	0003	.0000	.0008
#3	.0000	.0008	.0001	.0738	.0000	121.8	0002	0002	.0002	.0010
Elem	Fe2599			Mn2576						
IS Ref		(Y_3/10) 2.290		(Y_3600)						
Avg Stddev	0008 8000.		49.05 .07	.0001	.0006	7.539	0002 .0000	.0032	0002 .0001	.0036
%RSD	107.0									
76N3D	107.0	1.332	.1336	19.19	20.07	.11/2	3.960	14.41	70.32	34.00
#1	.0000	2.312	48.98	.0001	.0005	7.541	0002	.0038	.0000	.0049
#2	0016	2.255	49.11	.0002	.0005	7.529	0002	.0030	0002	.0024
#3	0007	2.304	49.07	.0001	.0008	7.546	0002	.0030	0003	.0035
Elem	Si2124					V_2924				
IS Ref				(Y_3600)			(Y_2243)			
Avg	7.339 .007	0002 .0001	.4282	.0013	0005 .0011	.0015	.0002			
Stddev %RSD	.007				214.1	9.361	19.37			
76N3D	.0974	49.99	.3079	2.329	214.1	9.301	19.57			
#1	7.331	0002	.4281	.0012	0004	.0013	.0002			
#2	7.340									
#3	7.346				.0005					
Int. Std.	In2306									
Avg	2489.7	5789.1	44128.	5905.6						
Stddev	9.7									
%RSD	.38906	.28923	.38491	.53485						
#1	2489.1	5801.3	43951.	5922.4						
#1	2469.1									
#3	2480.3									
#0	2400.5	5770.0	++203.	5525.5						

Raw Data MA13933 page 25 of 198

									•	€ Zoom In ▶
										Zoom Out
	Name: FA42			3/28/2017		Type: L				
	60102007_0		,	de: CONC		. Factor: 1				
User: ad	min SS	TRACE02	2: (Custom ID	2:	Custom II	03:			
Commer	nt:									
Elem	Ag3280					Ca3179				Cu3247
IS Ref				(Y_3710)						
Avg	0001	.0065	0001	.0744	0001	122.8	0002	0001	.0003	.0008
Stddev %RSD	.0003 443.0		.0005 346.2		.0000			.0001 97.20	.0003 92.99	.0001 11.25
/611GD	443.0	70.07	340.2	.2750	30.33	.1000	14.55	37.20	32.33	11.25
#1	.0000	.0031	.0002	.0742	0001	122.9	0002	.0000	.0004	.0009
#2	0004									.0007
#3	.0002	.0118	.0001	.0745	0001	122.9	0002	.0000	.0000	.0008
Elem	Fe2599	K 7664	Ma2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref				(Y_3600)					(Y 2243)	
Avg	.0034	2.318	49.59	.0002	.0009	7.594	.0000	.0032	0012	.0057
Stddev	.0019	.030	.21	.0000	.0002	.019	.000	.0007	.0001	.0015
%RSD	57.37	1.298	.4299	14.43	24.94	.2501	484.9	22.13	10.74	25.92
#1	.0047	2.283	49.70	.0002	.0012	7.612	.0002	.0025	0013	.0042
#2	.0047									
#3	.0012									
	0:0101	0 1000	0 10==	T:00.10						
Elem IS Ref	Si2124			Ti3349 (Y 3600)		V_2924 (Y 3600)				
Ava	7.371	0002	.4308	.0015	0006	.0014	.0003			
Stddev	.004			.0000	.0011	.0001	.0000			
%RSD	.0590				181.1	9.030				
#1 #2	7.374 7.366									
#2	7.374				0004					
#5	7.574	0003	.4300	.0013	0017	.0013	.0003			
Int. Std.	In2306									
Avg	2466.2		43978.	5761.6						
Stddev	5.1									
%RSD	.20748	.06285	.35865	.80111						
#1	2466.9	5720.6	44018.	5716.6						
#2	2470.9			5808.8						
#3	2460.8	5720.9	43804.	5759.3						
1										

Raw Data MA13933 page 27 of 198

Stradev .0016 .0472 .0017 .0001 .0005 .1 .0000 .0003 .0014 .0018										•	Zoom In Zoom Out
IS Ref	Method: User: ad	60102007_0 min SS	41712(v60	8) Mo	de: CONC	Corr	. Factor: 5	.000000			
#2	IS Ref Avg Stddev	(Y_3600) 0002 .0016	(Y_3710) .0105 .0472	(Y_2243) 0039 .0017	(Y_3710) .0713 .0001	(Y_3710) 0005 .0005	(Y_3710) 120.7 .1	(Y_2243) 0003 .0000	(Y_2243) 0003 .0003	(Y_3600) .0005 .0014	.001 .000
IS Ref	#2	0001	.0621	0059	.0714	0010	120.8	0003	0003	.0022	.001
#2	IS Ref Avg Stddev	(Y_3710) 0408 .0068	(Y_3710) 2.292 .126	(Y_3710) 48.88 .05	(Y_3600) .0000 .0002	(Y_2243) 0045 .0009	(Y_3710) 7.419 .011	(Y_2243) 0008 .0009	(ln2306) .0046 .0024	(Y_2243) 0058 .0030	.008 .006
IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) (Y_3710) (Y_3600) (Y_2243) (Y_3710) (Y_3600) (Y_2243) (Y_3600) (Y_36	#2	0331	2.311	48.92	0001	0055	7.432	0012	.0023	0024	.005
#2 7.1040009 4151 .0038 .0010 .0012 .0003 #3 7.1340002 .4160 .0042 .0027 .0012 .0005 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2680.8 6034.5 46177. 5999.1 Stddev 6.6 17.7 201. 32.9 %RSD .24518 .29298 .43607 .54896 #1 2673.5 6042.8 45990. 6031.5	IS Ref Avg Stddev	(Y_2243) 7.109 .023	(Y_2243) 0006 .0004	(Y_3710) .4161 .0011	(Y_3600) .0040 .0002	(In2306) .0005 .0025	(Y_3600) .0013 .0001	(Y_2243) .0003 .0002			
Avg 2680.8 6034.5 46177. 599.1 Stiddev 6.6 17.7 201. 32.9 %RSD .24518 .29298 .43607 .54896 #1 2673.5 6042.8 45990. 6031.5	#2	7.104	0009	.4151	.0038	.0010	.0012	.0003			
	Avg Stddev	2680.8 6.6	6034.5 17.7	46177. 201.	5999.1 32.9						
#3 2682.7 6014.2 46152. 6000.3	#2	2686.3	6046.5	46390.	5965.7						

Paw Data MA13033 - page 30 of 108

Raw Data MA13933 page 32 of 198

Sample Name: MP31862-PS1 Acquired: 3/28/2017 10:05:46 Type: Unk

.8354

.1076

.1094

16

.3024

52.22

52.39

52.53

Sr4077

0012

.4607

.4621

Y 3600

44794. 111. .24717

44911.

44691.

.3518

.3418

.3413 .3436

.0001

.0523

.0521

.0521

Ti3349

0006

.1065

.1066

Y_3710

5897.5 44.2

.74879

5897.5

5853.4

 Ag3280
 Al3961
 As1890
 Ba4554
 Be3130
 Ca3179
 Cd2265
 Co2286
 Cr2677
 Cu3247

 (Y_3600)
 (Y_3710)
 (Y_3710)
 (Y_3710)
 (Y_2243)
 (Y_2243)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)

.1692

123.1

123.0 123.4

02

17.91

17.86

17.89

V 2924

0003

0529

.0524

.0530

(In2306) (Y_3600) (Y_2243) .0972 .0528 .2586

.1639

.0530

.0529

.0003

.1035

.1028

.1030

Zn2062

0004

.2591

.2585

.2295

.0528

.0529

.0006

1.176

.0506

.0509

.0517

.5364

.0527

.0522

.0005

.4836

.1099

.1099

.1108

.4238

.1062

.1053 .1059

.0008 .7737

.1080

.1080

.1066

.1057

.0517

.0517

.0001

.1172

.1129

.1126

.1126

TI1908

0005

.0978

.0971

.0968

Comment:

.8056

.0452

.0446

004

.1198

3.077

3.081

3.085

Si2124

012

7.126

7.103

7.109

In2306

2460.1

.07965

2458.3

2462.2

2459.7

.3894

2.653

2.669 2.672

07

.5705

12.60

12.65

12.74

0004

.0523

.0516

.0516

Y_2243

5789.9 12.5

.21550

5802.8

5788.9

(Y_2243) (Y_2243) (Y_3710) (Y_3600) 7.112 .0518 .4609 .1062

Sn1899

IS Ref %RSD

#1

#3

#3

Elem

#1

#3

Int. Std.

%RSD

#2

IS Ref Avg Stddev

Elem IS Ref Avg Stddev %RSD

Striction Stri	Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: C											◀ Zoo
Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000	Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment: Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 C IS Ref (Y_3600) (Y_3710) (Y_2243) (Y_3710) (Y_3710) (Y_3710) (Y_3710) (Y_2243) (Y_2243) (Y_2243) (Y_3600) (Y_370) Avg .0460 27.86 2.027 2.132 .0507 147.6 .0497 .4949 .1970 Stddev .0004 .05 .003 .002 .0001 .4 .0000 .0008 .0005 %RSD .8396 .1741 .1332 .0922 .1494 2422 .0887 .1539 .2664 #1 .0464 27.87 2.0247 2.130 .0508 147.8 .0498 .4951 .1974 #2 .0460 27.91 2.030 2.132 .0507 147.2 .0497 .4941 .1964<											Zoo
User: admin	User: admin	Sample I	Name: MP3	1862-S2	Acquire	ed: 3/28/2	017 10:13	:43 T	ype: Unk			
Elem	Comment: Elem	Method:	60102007_0	41712(v6	08) M	ode: CON	IC Co	rr. Factor	: 1.000000)		
Ellem	Elem	User: ad	min SS	STRACE0	2:	Custom I	D2:	Custom	1D3:			
IS Ref	IS Ref (Y_3600) (Y_3710) (Y_2243) (Y_3710) (Y_3710) (Y_3710) (Y_2243) (Y_2243) (Y_3600) (Y_370) (Y_3700) (Y_2243) (Y_2243) (Y_3600) (Y_370) (Y_3700	Commer	nt:									
Avg 0.460 27.86 2.027 2.132 .0507 147.6 .0497 .4949 .1970 Siddev .0004 .05 .003 .002 .0001 4 .0000 .0008 .0002 .0001 4 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000 .0008 .0000	Avg O460 27.86 2.027 2.132 .0507 147.6 .0497 .4949 .1970 Siddev .0004 .05 .003 .002 .0001 4 .0000 .0008 .0005 %RSD .8396 .1741 .1332 .0922 .1494 .2422 .0887 .1539 .2664 #1 .0464 27.87 2.027 2.130 .0508 147.8 .0498 .4951 .1974 #2 .0460 27.91 2.030 2.134 .0507 147.8 .0498 .4956 .1971 #3 .0456 27.81 2.024 2.132 .0507 147.8 .0498 .4956 .1971 #3 .0456 27.81 2.024 2.132 .0507 147.2 .0497 .4941 .1964 #13 .0466 27.81 2.024 2.132 .0507 147.2 .0497 .4941 .1964 #14 2.2594 28.31	Elem										
Siddev .0004 .05 .003 .002 .0011 .4 .0000 .0008 .0005 %RSD .8396 .1741 .1332 .0922 .1494 .2422 .0887 .1539 .2664 #1 .0464 27.87 2.027 .2130 .0508 147.8 .0498 .4951 .1974 #2 .0460 27.81 2.020 .2134 .0507 147.2 .0497 .4941 .1964 Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Si IS Ref (Y_3710) (Y_3710) (Y_3710) (Y_3710) (Y_3600) (Y_2243) (Y_3710) (Y_2243) .1336 .4933 .4786 5078 Siddev .01 .08 .29 .0010 .0014 .03 .0004 .0006 .0023 %RSD .0445 .2741 .3915 .2070 .2560 .0825 .0902 .1309 .4598 #1 2.596 28.32 </td <td>Stödev .0004 .05 .003 .002 .0001 .4 .0000 .0008 .0005 %RSD .8396 .1741 .1332 .0922 .1494 .2422 .0887 .1539 .2664 #1 .0464 27.87 2.027 2.130 .0508 147.8 .0498 .4951 .1974 #2 .0460 27.91 2.030 2.134 .0507 147.8 .0498 .4951 .1974 #3 .0456 27.81 2.024 2.132 .0507 147.2 .0497 .4941 .1964 Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 S IS Ref (Y_3710) (Y_3710) (Y_3710) (Y_3600) (Y_2243) (Y_2341) Y_3740) (Y_2243) (Y_2343) Y_3710) (Y_2243) Y_3710) (Y_2243) (Y_2343) Y_3710) (Y_2243) Y_3710) (Y_2243) Y_3710) (Y_2243) Y_3710) (Y_3600) (Y_2243) Y_3710 Y_3710 Y_3710 Y_3710 Y_3710 Y_3710 Y_3710</td> <td></td>	Stödev .0004 .05 .003 .002 .0001 .4 .0000 .0008 .0005 %RSD .8396 .1741 .1332 .0922 .1494 .2422 .0887 .1539 .2664 #1 .0464 27.87 2.027 2.130 .0508 147.8 .0498 .4951 .1974 #2 .0460 27.91 2.030 2.134 .0507 147.8 .0498 .4951 .1974 #3 .0456 27.81 2.024 2.132 .0507 147.2 .0497 .4941 .1964 Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 S IS Ref (Y_3710) (Y_3710) (Y_3710) (Y_3600) (Y_2243) (Y_2341) Y_3740) (Y_2243) (Y_2343) Y_3710) (Y_2243) Y_3710) (Y_2243) (Y_2343) Y_3710) (Y_2243) Y_3710) (Y_2243) Y_3710) (Y_2243) Y_3710) (Y_3600) (Y_2243) Y_3710 Y_3710 Y_3710 Y_3710 Y_3710 Y_3710 Y_3710											
%RSD	%RSD											
#1	#1											
#2	#2	%RSD	.8396	.1/41	.1332	.0922	.1494	.2422	.0887	.1539	.2664	.20
#3	#3						.0508	147.8				
Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Nl2316 Pb2203 Sb2068 S IS Ref (Y_3710) (Y_3710) (Y_3710) (Y_3800) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_3800) (Y_2243) (Y_3800	Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 S IS Ref (Y_3710) (Y_3710) (Y_3710) (Y_3600) (Y_2243) (Y_3710) (Y_2243) (H2306) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_3600) (Y_2243) (Y_3710) (Y_3600) (Y_3600) (Y_3600) (Y_2243) (Y_3710) (Y_3600) (Y_3600) (Y_243) (Y_2243) (Y_3710) (Y_3600) (Y_3600) (Y_3600) (Y_243) (Y_2243) (Y_3710) (Y_3600) (Y_3600) (Y_3600) (Y_2243) (Y_3600) (
IS Ref	IS Ref	#3	.0456	27.81	2.024	2.132	.0507	147.2	.0497	.4941	.1964	.250
Avg 25.94 28.31 73.95 4951 5597 33.60 4933 4786 5078 Stddev .01 .08 .29 .0010 .0014 .03 .0004 .0006 .0023 %RSD .0445 .2741 .3915 .2070 .2560 .0825 .0902 .1309 .4598 #1 25.96 28.32 74.19 .4959 .5590 33.59 .4934 .4779 .5097 #2 25.94 28.38 74.04 .4940 .5613 33.63 .4937 .4790 .5086 #3 25.94 28.189 Sr4077 Ti3349 Ti1908 V_2924 Zn2006 IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) Avg 7.330 .5421 .9677 .5296 1.939 .4901 .4825 Stddev .017 .0007 .0019 .0009 .001 .0008 .0007 %RSD .2309 .1352 .1966	Avg 25.94 28.31 73.95 4951 .5597 33.60 4933 4786 5078 Siddev 01 0.08 29 .0010 .0014 03 .0004 .0006 .0023 %RSD .0445 .2741 .3915 .2070 .2560 .0825 .0902 .1309 .4598 #1 25.96 28.32 74.19 .4959 .5590 33.59 .4934 .4779 .5097 #2 25.94 28.23 73.63 .4955 .5588 33.57 .4990 .5052 Elem Si2124 Sn1889 Sr4077 Ti3349 Ti1908 V_2924 Zn2062 IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) .4825 .4848 Avg 7.330 .5421 .9677 .5296 1.939 .4901 .4825 %RSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344	Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se196
Stddev	Stddev	IS Ref	(Y_3710)	(Y_3710)	(Y_3710)	(Y_3600)	(Y_2243)	(Y_3710)	(Y_2243)	(In2306)	(Y_2243)	(Y_224
%RSD	%RSD											
#1 25.96 28.32 74.19 .4959 .5590 33.59 .4934 .4779 .5097 #2 25.94 28.38 74.04 .4940 .5613 33.63 .4937 .4790 .5086 #3 25.94 28.23 73.63 .4955 .5588 33.57 .4929 .4790 .5052 Elem Si2124 Sn1899 Sr4077 Ti3349 Ti1908 V_2924 Zn2062 IS Ref (Y_2243) (Y_2243) (Y_23710) (Y_3600) (In2306) (Y_3600) (Y_2243) Avg 7.330 .5421 .9677 .5296 1.939 .4901 .4825 Slddev .017 .0007 .0019 .0009 .001 .0008 .0007 WRSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117 .5786.1 Stddev .5 8.8 182 .77.8 %RSD .01951 .15348 .41224 1.3447	#1 25.96 28.32 74.19 .4959 .5590 33.59 .4934 .4779 .5097 #2 25.94 28.38 74.04 .4940 .5613 33.63 .4937 .4790 .5086 #3 25.94 28.23 73.63 .4955 .5588 33.57 .4929 .4790 .5052 Elem Si2124 Sn1899 Sr4077 Ti3349 Ti1908 V_2924 Zn2062 IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_22243) Avg 7.330 .5421 .9677 .5296 1.939 .4901 .4825 Stddev .017 .0007 .0019 .0009 .001 .0008 .0007 %RSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std1n2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117 .5786.1 Stddev .5 8.8 182 .77.8											
#2	#2	%RSD	.0445	.2741	.3915	.2070	.2560	.0825	.0902	.1309	.4598	.350
#3	#3											
Elem Si2124 Sn1899 Sr4077 Ti3349 Ti1908 V_2924 Zn2062 IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) Avg 7.330 5421 9677 5296 1.939 4901 4825 Stddev 0.17 0.007 0.019 0.009 0.01 0.008 0.007 %RSD 2.309 1.352 1.966 1.785 0.302 1.545 1.440 #1 7.344 5429 9673 5.297 1.939 4.910 4.831 #2 7.335 5.420 9660 5.304 1.939 4.899 4.827 #3 7.311 5.414 9.698 5.285 1.940 4.895 4.818 Int. Std. Inc.	Elem Si2124 Sn1899 Sr4077 Ti3349 Ti1908 V_2924 Zn2062 IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) Avg 7.330 5.421 9677 5296 1.939 4901 4825 Stddev .017 .0007 .0019 .0009 .001 .0008 .0007 %RSD .2309 .1352 1.966 1.785 .0302 .1545 1.440 #1 7.344 5.429 .9673 .5297 1.939 .4910 4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8											
IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) (Y_3600) (Y_36	IS Ref	#3	25.94	28.23	73.63	.4955	.5588	33.57	.4929	.4790	.5052	1.98
Avg 7.330 5.421 9677 5296 1.939 4901 .4825 Siddev .017 .0007 .0019 .0009 .001 .0008 .0007 %RSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	Avg 7.330 5.5421 9677 5296 1.939 4901 4825 Stddev .017 .0007 .0019 .0009 .001 .0008 .0007 %RSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 .5751.3 .44117. .5786.1 Stddev .5 8.8 182. .77.8											
Stddev .017 .0007 .0019 .0009 .001 .0008 .0007 %RSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.9399 .4899 .4827 #3 7.311 .5414 .9688 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	Stddev .017 .0007 .0019 .0009 .001 .0008 .0007 %RSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117 5786.1 Stddev .5 8.8 182.7 77.8											
%RSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	%RSD .2309 .1352 .1966 .1785 .0302 .1545 .1440 #1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8											
#1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	#1 7.344 .5429 .9673 .5297 1.939 .4910 .4831 #2 7.335 .5420 .9660 .5304 1.939 .4899 .4827 #3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117 .5786.1 Stddev .5 8.8 182. 77.8											
#2 7.335 5.420 9.660 5.504 1.939 4899 4827 #3 7.311 .5414 9.6698 5.285 1.940 4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	#2 7.335 5.420 9.660 5.304 1.939 4.899 4.827 #3 7.311 5.414 9.698 5.285 1.940 4.895 4.818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev 5 8.8 182. 77.8	%RSD	.2309	.1352	.1966	.1785	.0302	.1545	.1440			
#3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	#3 7.311 .5414 .9698 .5285 1.940 .4895 .4818 Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8											
Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8											
Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	Avg 2342.4 5751.3 44117. 5786.1 Stddev .5 8.8 182. 77.8	#3	7.311	.5414	.9698	.5285	1.940	.4895	.4818			
Stddev 5 8.8 182. 77.8 %RSD .01951 .15348 .41224 1.3447	Stddev .5 8.8 182. 77.8											
%RSD .01951 .15348 .41224 1.3447												
	%HSD .01951 .15348 .41224 1.3447											
		%RSD	.01951	.15348	.41224	1.3447						
	#1 2342.5 5741.6 43954. 5703.6											
#2 2342.0 5753.3 44313. 5796.4												
#3 2342.9 5758.9 44086. 5858.2	#3 2342.9 5758.9 44086. 5858.2	#3	2342.9	5758.9	44086.	5858.2						

Raw Data MA13933 page 29 of 198

										▼ Zoom In ▶
										Zoom Out
Sample N	ame: MP31	1862-S1	Acquire	ed: 3/28/2	017 10:09	:47 Tv	ype: Unk			
	0102007 0			ode: CON			1.000000	,		
User: adn	_	TRACEO	,	Custom II		Custom				
Comment		71111020		Oustoni ii	<i>D</i> <u>2</u> .	Odstoni	100.			
Elem	Ag3280						Cd2265			Cu3247
IS Ref Ava	(Y_3600) .0481	28.57	2.105	2.211	.0527	150.6	.0521	.5172	.2058	.2603
Stddev	.0008	.09	.001	.010	.0002	.4	.0000	.0005	.0006	.0010
%RSD	1.631	.3221	.0307	.4471	.3735	.2484	.0905	.0984	.3084	.4018
#1	.0473	28.47	2.105		.0525			.5167		.2592
#2	.0487	28.61	2.106	2.220	.0529	150.9		.5170	.2059	.2603
#3	.0484	28.64	2.105	2.212	.0526	150.6	.0520	.5177	.2064	.2613
Elem			Mg2790						Sb2068	
IS Ref	(Y_3710)									
Avg Stddev	26.53	28.85	75.25 .08	.5143	.5774	34.44	.5119	.4936	.5271	2.070 .002
%RSD	.2026	.2244	.1015	.1579	.0746					
#1	26.52		75.21	.5135	.5777					2.072
#2	26.59 26.49	28.92 28.85	75.21 75.34	.5143 .5151	.5776 .5769	34.50 34.43		.4933	.5274	2.070 2.068
#5	20.43	20.00	73.34	.5151	.5703	34.43	.5115	.4320	.5203	2.000
Elem		Sn1899					Zn2062			
IS Ref Ava	(Y_2243) 7.472	(Y_2243) .5633	(Y_3/10) .9946	(Y_3600) .5512	(In2306) 2.005	(Y_3600) .5105	(Y_2243) .4984			
Stddev	.006	.0004	.0036	.0012	.007	.0017	.0008			
%RSD	.0826	.0631	.3592	.2260	.3617		.1515			
#1	7.468	.5629	.9911	.5498	2.012	.5090	.4992			
#2	7.479	.5633	.9983	.5517	2.012		.4977			
#3	7.469	.5636	.9944	.5522	1.998	.5124	.4984			
Int. Std.	In2306	V 2243	Y 3600	V 3710						
Avg	2337.6	5733.8	43770.	5823.9						
Stddev	4.0		167.	29.1						
%RSD	.17291	.11614	.38248	.50007						
#1	2333.4	5734.4	43917.	5795.1						
#2	2338.0			5853.3						
#3	2341.5	5740.1	43588.	5823.2						

Raw Data MA13933 page 31 of 198

Cu3247

ppm 2.011

.005

.2484

2.010

2.006

2.016

Se1960

.003

.1669

2.017

2 014

2.020

Co2286

ppm 2.047

.003

.1533

2.045

2.045

2.050

ppm 2.008

.006

3002

2.001

2 000

2.013

ppm 2.049

.004

.2197

2.046

2.046

2.054

ppm 2.046

.2137

2.045

2 0/12

2.051

ppm 2.042

005

2.040

2.038

2.048

.004

Cr2677

ppm 2.032

.003

.1359

2.032

2.029

2.035

Sb2068

.006

2928

2.020

2.025

2.032

■ Zoom In ▶

■ Zoom In ■ Zoom Out

Raw Data MA13933 page 33 of 198

✓ Zoom In ►
Zoom Out

Value Range

Sample Name: CCV Acquired: 3/28/2017 10:21:52 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment Y 2243 Y 3710 Int. Std In2306

Y_3600 Cts/S Cts/S Cts/S Units Cts/S Avg Stdde 2355.2 5808 1 43671 5827.5 35.5 %RSD .44484 .31917 .17363 .60883 2365.3 5814.3 #2 2355.8 5822.8 43740. 5850.5 2344.4 5787.3 43590

Raw Data MA13933 page 34 of 198

Sample Name: CCB Acquired: 3/28/2017 10:25:47 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment:

Cd2265 Flor Ag3280 AI3961 As1890 Ba4554 Be3130 Ca3179 Cn2286 Cr2677 Units ppm .0002 ppm .0122 ppm .0002 ppm 0005 ppm .0006 ppm .0115 ppm .0003 ppm .0003 ppm .0006 0002 .0005 %RSD 67.94 33.46 240.9 27.95 5.445 6.969 26.74 6.280 22.65 -.0003 .0168 .0004 .0006 .0111 .0003 .0003 .0008 #2 -.0003 .0109 -.0004 .0006 .0006 .0109 .0002 .0003 .0005 .0000 .0006 #3 .0089 -.0007 .0004 .0006 .0124 .0002 .0003

Check ? Chk Pass Chk High Limit Low Limit

Cu3247 Fe2599 Mg2790 Mn2576 Mo2020 Ni2316 Pb2203 Elem K_7664 Na5895 ppm .0003 ppm .0007 ppm .0168 ppm .0420 ppm .0221 ppm .0006 Units ppm F.0010 ppm 0444 ppm .0002 Avg Stddev .0001 .0057 .0129 .0078 .0000 .0005 .0086 .0001 .0002 %RSD 13.17 34.12 30.63 35 43 7 524 48 31 19 38 17.59 107.7 .0007 .0135 .0565 .0217 .0006 .0015 .0537 .0004 .0001 #1 กกกล 0234 0322 .0144 nnne 0010 0426 0003 0000 .0006 .0135 .0301 .0005 #3 .0371 .0005 .0368 .0003 .0004

Check ? Chk Pass Chk Pass Chk Pass Chk Pass Chk Fail Chk Pass Chk Pass Chk Pass High Limit .0010 Low Limit -.0010

Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0000 ppm .0014 ppm .0012 ppm .0002 ppm .0007 ppm .0005 ppm .0006 ppm .0005 ppm .0002 Avg Stddev .000 .0014 .0002 .0001 .0001 .0002 .0004 .0001 .0001 %RSD 1260 38.85 63.62 31.13 .0004 .0024 .0014 .0003 .0007 0007 .0011 .0006 .0003 .0002 .0002 .0005 .0001 .0004 #3 -.0003 .0019 .0009 .0003 .0007 .0003 .0005 .0003 .0001

Check ? High Limit Chk Pass Chk Pass None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Low Limit

Raw Data MA13933 page 36 of 198

Raw Data MA13933 page 35 of 198

SSTRACE02:

Y_2243

6191.6

.15951

6198.3

6196.3

6180.3

Cts/S

Acquired: 3/28/2017 10:25:47

Cts/S

45956

47009

47167

46740

46972. 216

Custom ID2:

Y 3710

5962.5 26.1

43777

5954.8

5941.0

Cts/S

Type: QC

Custom ID3:

Mode: CONC Corr. Factor: 1.000000

Sample Name: CCB

User: admin Comment

Int. Std

Units

Avg Stddev

%RSD

Method: 60102007_041712(v608)

In2306

Cts/S

2800.3

.27921

2805.4

2791.3

2804.3

Al3961

K 7664

Se1960

Cd2265

Ni2316

.0020

Pb2203

Sb2068

Acquired: 3/28/2017 10:30:01 Sample Name: FA42249-3 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 4.000000 Custom ID3: User: admin SSTRACE02: Custom ID2:

Comment:

Elem

#3

Fe2599

Ag3280 As1890 Ba4554 Be3130 Co2286 (Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600) IS Ref -.0013 2458 -.0014 1046 .0002 9.013 .0002 .0000 .0011 0012 .0168 .0008 .0007 .0029 .0024 .0006 .0003 .029 .0001 .000 %RSD 217.7 6.823 173.3 .5538 130.7 .3179 27.95 3754 69.29 59.12 -.0029 .0004 -.0044 .2627 .1047 -.0006 8.983 -.0002 .0002 .0020 #1 .0015 .2292 .0028 .1052 .0000 9.016 -.0001 .0003 0005 .0018 -.0011 .0014 -.0001 .0008 .0015 #3 .1040 9.040 -.0002 .0000

Ca3179

Na5895

.0019

IS Ref (Y_3710) 3.545 (Y 3710) (Y_3710) 5.722 (Y_3600) (Y_2243) (Y .0081 -.0026 3710) 127.2 2243) (ln2306) (Y_2243) .0013 -.0012 2243) 1.803 Ava .0005 .0045 022 053 079 0002 0002 0003 0012 0027 0039 233.3 2.938 .0591 %RSD .6125 1.386 2.377 65.38 93.22 85.97 8.696 3.540 1.744 5.655 .0083 .0026 127.1 .0009 .0026 .0014 .0044 3.569 1.817 5.810 .0080 .0028 127.2 -.0004 .0007 .0039 .0007 #3 3.526 1.847 5.702 0080 - 0024 127 2 -.0002 0005 - 0009 0084

Mo2020

Elem Si2124 Sr4077 V 2924 Sn1899 Ti3349 TI1908 Zn2062 IS Ref (Y_2243) 4.653 (Y_2243) -.0009 _3710) .0769 (ln2306) -.0017 _3600) 3600) _2243) .0022 .0017 .0018 Avg Stddev 009 0003 0004 0006 0018 0004 0002 #1 4 658 - 0009 0765 0023 0038 0013 0024 .0023 .0007 4.659 -.0006 .0773 .0011 .0020

.0771

.0020

-.0007

Mg2790

Mn2576

Int. Std. In2306 2243 3710 3600 2617.7 4.6 6004.9 45325 5879.2 .17463 .05998 %RSD .15227 .35223

-.0012

4.643

5887.7 #2 2622.9 6008.7 45338 5894.2 2615.7 6004.6 45387 5855.5

Raw Data MA13933 page 38 of 198

Raw Data MA13933 page 37 of 198

Method: 60102007_041712(v608) Mode: CONC

AI3961

0596

.0120

20.15

.0565

.0729

.0495

7664

3710)

057

1.803

3.120

3.107

3.211

Sn1899

2243)

.0008

.0008

91.86

-.0003

.0005

2243

12.4

.20678

5997.6

6017.7

6020.4

6011.9

-.0017

3.146

(Y_3600) (Y_3710) (Y_2243)

As1890

0006

231.4

.0006

-.0003

-.0022

3710)

10.64

.3973

10.60

10.69

10.64

Sr4077

3710)

.0004

.1844

1843

.1836

3600

45499

.23503

45617

45472

45408

Ma2790

SSTRACE02:

Acquired: 3/28/2017 10:34:14

Custom ID2:

Ba4554

1933

.2797

.1927

.1938

.1934

3600)

.0001

.3641

.0223

.0223

0221

Ti3349

3600)

.0012

.0003

.0013

.0009

_3710

5907.4

.70127

5874.4

5953.9

.0222

Mn2576

(Y_3710) (Y_3710)

Be3130

0005

57.20

.0007

-.0003

-.0003

2243)

0003

6.153

.0045

-.0040

-.0041

TI1908

(In2306)

.0026

.0012

.0031

-.0021

.0042

Mo2020

Type: Unk

Ca3179 Cd2265 Co2286

(Y_3710) (Y_2243) (Y_2243)

0003

32.25

.0003

-.0002

.0002

Ni2316

2243)

.0003

0002

60.94

.0001

-.0004

-.0005

Zn2062

2243) .0157

.0003

1.701

.0157

.0159

0001

251.4

.0000

.0003

Ph2203

(In2306)

.0039

0038

96.82

0045

-.0001

.0074

Corr. Factor: 4.000000

Custom ID3:

26.17

.1159

26.17

Na5895

_3710)

125.0

.1072

124.8

125.1

125.0

V 2924

3600)

.0010

.0002

.0007

.0010

.0012

Sample Name: FA42249-5

Ag3280

0012

161.8

-.0028

.0009

.0016

Fe2599

2.542

022

.8703

2.566

2.523

2.537

Si2124

2243)

5.699

.009

.1560

5.693

5.709

5.695

In2306

2621.4

.30447

2612.2

2625.1

2626.8

(Y_3710)

User: admin

Comment

Elom

IS Ref

%RSD

#2

Flem

IS Ref

Stddev

%RSD

Ava

#2

#3

Elem

Avg

#3

Int. Std.

%RSD

#2

IS Rof

Stddev

%RSD

✓ Zoom In ►
Zoom Out

Cu3247

0019

24.16

.0015

.0018

Se1960

.0040

0016

40.86

.0040

.0050

.0021

#2

#3

#2

7.214

7.251

(_3600) (Y_3600)

Elom

Cr2677

0004

224.0

.0000

.0002

.0015

Sh2068

Y_2243)

.0027

0015

55.63

0022

-.0015

-.0044

Sample Name: FA42249-8 Acquired: 3/28/2017 10:38:25 Type: Unk Method: 60102007_041712(v608) Corr. Factor: 4.000000 Mode: CONC User: admin SSTRACE02: Custom ID2: Custom ID3:

AI3961

Comment:

As1890 Ba4554 Be3130

Ag3280 (Y_3600) IS Ref (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_2243) Y_3710) (Y_3710) Y_3600) (Y_3600) 0009 1.371 0051 1306 0001 37.05 0002 0010 กกกล 0017 %RSD 77.34 1.290 6.890 1.065 290.1 .1921 13.19 31.70 79.92 84.60 .0014 1.354 .0050 -.0001 37.12 .0002 .0014 #2 .0012 1.370 -.0055 .1312 .0002 36.98 -.0003 .0009 .0011 .0004 #3 .0001 .0048 37.06 -.0002 .0008 .0032 .0001 .000 Flem Fe2599 K 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) Y_3710) 3710) 2243) 3710) 2243) (In2306) Y_2243) 3600) Ava 7.218 .3925 12.50 .0275 .0046 184.5 .0016 .0050 .0025 .0023 031 1011 05 0001 0001 0002 0032 0008 0027 .4341 .3976 .1618 %RSD 25.76 .2137 3.026 10.20 63.54 31.81 114.7 7.189 4650 12.46 .0275 .0044 184.3 .0014 .0047 .0019 0005

-.0046

-.0047

Ca3179

184.3

184.8

Cd2265

.0017

.0015

C02286

.0020

0083

Cr2677

-.0022

- 0034

Si2124 Elem Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 IS Ref (Y_2243) 12.36 _2243) -.0009 3710) 3600) (In2306) 3600) 2243 .0028 .0010 Avg Stddev .02 .0001 .0004 .0005 .0017 .0001 .0002 %RSD .1758 12.07 1997 29.24

.0275

.0276

12.49

12.56

#1 12.34 -.0009 .1752 .0022 -.0010 .0010 .0447 .0008 .0443 #3 12.38 -.0010 .1757 .0016 -.0030 .0009 .0444 Int. Std. In2306 2243 3600 _3710

Avg Stddev 2580.2 5948.7 45317 5907.5 37.2 %RSD .16492 .19809 .50595 .62888 2579.4 5893.5

.4343

.2771

5943.1 2584.8 5962.3 45417 5949.6 5940.8 45480 5879.3

Raw Data MA13933 page 39 of 198

Raw Data MA13933 page 40 of 198

334 of 383 **ACCUTEST**

10/03/20	118

■ Zoom In ▶

Cu3247

.0054

.0011

∢ Zoom In ▶

										■ Zoom In ■
										Zoom Out
	lame: FA42		Acquired:							
Method: 6	60102007_0	41712(v60	18) Mc	de: CONO	C Corr	. Factor: 4	.000000			
User: adr	nin SS	TRACE02	2: (Custom ID	2:	Custom II	03:			
Commen	t:									
Elem	Ag3280				Be3130					Cu324
IS Ref Ava	0002	(Y_3710) .6400	.0058	.0554	0004			0001		.0028
Stddev	.0002				.0004					
%RSD	445.9									
701102			00.07	.00.10	07.110	.00 12	OL.L.	110.7	10.10	27.00
#1	.0006									
#2	0002 0009									
#3	0009	.6396	.0037	.0548	0006	37.21	0006	.0004	.0025	.0018
Elem		K_7664						Pb2203		
IS Ref		(Y_3710)								
Avg	21.30	.8448	6.076	.0159	0047		0001	.0024	0051	.0048
Stddev %RSD	.09 .4326				.0004 8.519					
%RSD	.4326	0.904	./949	.6970	6.519	.1923	749.6	15.60	90.74	0.040
#1	21.19									
#2	21.36									
#3	21.34	.7617	6.027	.0158	0048	163.2	.0004	.0028	0013	.0050
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062			
IS Ref		(Y_2243)								
Avg	15.63		.1256	.0038	0015		.0442			
Stddev	.01									
%RSD	.0395	262.3	.3566	17.62	378.7	9.164	.2080			
#1	15.64	0008	.1261	.0038	.0044	.0084	.0442			
#2	15.62									
#3	15.63	.0007	.1252	.0031	0017	.0092	.0442			
Int. Std.	In2306	Y 2243	Y 3600	Y 3710						
Avg	2573.7									
Stddev	2.4									
%RSD	.09344	.08492	.16392	1.1323						
#1	2576.3	5915.3	45250.	5924.9						
#2	2571.6	5905.4	45127.	5794.3						
#3	2573.3	5908.9	45117.	5880.9						

Elem	Ag3280								Cr2677	
IS Ref			(Y_2243)							
Avg	0011	.0807	.0276	.0717	0005	406.0	0005	0016	.0060	.0025
Stddev	.0008		.0009		.0002		.0002			.0003
%RSD	69.81	36.82	3.318	.2904	31.11	.0891	32.33	20.33	13.01	10.23
#1	0011		.0276	.0715	0006					
#2	0019		.0267	.0717	0006					.0027
#3	0004	.0574	.0286	.0719	0003	406.3	0004	0013	.0064	.0022
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref	(Y_3710)	(Y_3710)	(Y_3710)	(Y_3600)	(Y_2243)	(Y_3710)	(Y_2243)	(ln2306)	(Y_2243)	(Y_2243)
Avg	65.79	2.940	15.61	.0606	.0193	188.9	0006	.0050	0041	.0069
Stddev	.17	.103	.13	.0003	.0001	.3	.0006	.0021	.0030	.0027
%RSD	.2522	3.509	.8201	.5228	.7543	.1413	96.57	42.00	73.33	39.17
#1	65.96	3.000	15.69	.0610	.0194	188.6	0006	.0028	0039	.0093
#2	65.63	3.000	15.47	.0605	.0191	189.0	.0000	.0069	0072	.0075
#3	65.77	2.821	15.69	.0604	.0194	189.0	0012	.0052	0012	.0040
Elem	Si2124		Sr4077		TI1908					
IS Ref			(Y_3710)							
Avg	8.346	0012	1.015	.0068	.0019	.0033	0008			
Stddev	.012		.004	.0004	.0008	.0010	.0002			
%RSD	.1376	39.16	.3559	5.349	43.14	30.56	19.42			
#1	8.333	0015	1.016	.0069	.0027	.0037	0006			
#2	8.348	0007	1.012	.0064	.0019	.0022	0009			
#3	8.356	0016	1.019	.0072	.0011	.0041	0009			
Int. Std.	In2306	V 2243	Y 3600	Y 3710						
Avg	2530.0	5929.1	45011.	5991.8						
Stddev	3.5		179.							
%RSD	.13653		.39821	.20960						
701 10D	.13033	.13371	.03021	.20300						
#1	2531.4	5933.5	44877.	6002.2						
#2	2532.4	5937.7	44941.	5995.3						
#3	2526.0	5916.0	45215.	5977.8						

Sample Name: FA42054-5 Acquired: 3/28/2017 10:46:44 Type: Unk | Method: 60102007_041712(v608) | Mode: CONC | Corr. Factor: 4.000000 | User: admin | STRACE02: | Custom ID2: | Custom ID3:

Raw Data MA13933 page 41 of 198

										Zoom Out
										200111 Out
Sample	Name: FA42	390-5	Acquired:	3/28/2017	10:50:53	Type:	Unk			
Method:	60102007_0	41712(v60	08) Mc	de: CONO	C Corr	. Factor: 4	.000000			
User: ad	_	TRACE02		Custom ID	2:	Custom II	03:			
Comme			-							
Comme										
Elem	Ag3280						Cd2265			
IS Ref									(Y_3600)	
Avg	.0002	47.89	.0121	.0403	0001	.5942				.9653
Stddev %RSD	.0006 248.2				.0002 186.1					
%หอบ	246.2	.1106	24.16	.8704	100.1	./280	11.03	3.109	./952	.5743
#1	0002									
#2	.0001	47.91			0003					
#3	.0008	47.83	.0126	.0407	.0000	.5895	0007	0031	.0795	.9649
Elem	Fe2599		Mg2790							
IS Ref									(Y_2243)	
Avg	91.65	1.467	.7444	.2026	.0053	.2140	.0072	8.411		.0102
Stddev	.12									
%RSD	.1323	2.547	5.753	.2055	4.826	5.361	7.708	.0847	3.264	18.66
#1	91.62									
#2	91.79				.0051					
#3	91.55	1.510	.7756	.2027	.0051	.2252	.0078	8.404	.0731	.0080
Elem	Si2124				TI1908					
IS Ref			(Y_3710)							
Avg	3.206	.0206	.0117	2.131	0001	.1033	.0426			
Stddev	.019				.0011 1685.		.0003			
%RSD	.5907	4.140	2.052	1.822	1685.	.1226	.6910			
#1	3.216				0005					
#2	3.217				.0012					
#3	3.184	.0215	.0116	2.110	0008	.1033	.0429			
Int. Std.	In2306									
Avg	2686.4	6104.7								
Stddev	3.0									
%RSD	.11111	.33684	.47907	.85607						
#1	2686.6									
#2	2683.3									
#3	2689.3	6084.1	46372.	5997.6						

Raw Data MA13933 page 42 of 198

	lame: FA42		Acquired:							
User: adr Commen		41712(V60 TRACE02	,	ode: CONC Custom ID		: Factor: 2 Custom II				
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0297 .0116 39.14	(Y_3710) 85.61 .42	(Y_2243) .0282 .0199	(Y_3710) .0681 .0057	(Y_3710) 0026 .0013	(Y_3710) 1.954 .018	0014 .0017	(Y_2243) 0008 .0000	(Y_3600) .1617 .0036	(Y_3600) 4.884 .006
#1 #2 #3	.0200 .0426 .0265	85.96 85.14 85.74	.0240	.0615		1.955	.0005	0007	.1592	4.889
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 142.3 .5 .3502	(Y_3710) 1.778	2.406	(Y_3600) .2871 .0016	(Y_2243) 0087 .0017	(Y_3710) .4630 .2743	(Y_2243) .0225 .0040	(ln2306) 42.14 .03	.0045	(Y_2243) .0231 .0311
#1 #2 #3	142.3 141.9 142.9	1.206 1.760 2.368	2.466	.2858	0098 0067 0095	.5120	.0212		.3175	.0561
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 2.387 .028 1.187	(Y_2243) .0496 .0037	(Y_3710) .0139 .0023	1.628 .058	(In2306) 0068 .0175	(Y_3600) .2048 .0080	.3169 .0004			
#1 #2 #3	2.369 2.373 2.420	.0479 .0539 .0471	.0163	1.589	0125 .0129 0207	.1978	.3165			
Int. Std. Avg Stddev %RSD	In2306 2720.9 3.3 .12091	6044.8	192.	5936.1 13.6						
#1 #2 #3	2717.6 2721.0 2724.2	6039.6 6056.8 6037.9	46314.	5942.7						

Raw Data MA13933 page 44 of 198

SGS 335 of 383

Raw Data MA13933 page 43 of 198

SSTRACE02:

Al3961

125.2

.0794

125.1

125.3

125.2

7664

025

1.270

1.975

1.939

1.987

Sn1899

_2243) .0154

0002

0156

.0154

.0153

2243

7754.1 11.7

.15050

7766.9

7744.1

(Y_3710) (Y_3710) (Y 14.42 1.967

As1890

.0124

2.450

.0127

.0124

1g2790

3710)

055

.7969

6.901

6.903

6.807

Sr4077

_3710) 2.846

005

2 842

2.851

2.847

3600

398

.67291

59601

58821

59165

6.870

Sample Name: FA42259-4

User: admin

Comment

IS Ref

Stddev

%RSD

Elem

IS Ref

Stddev %RSD

#3

Elem

Avg

#1

#3

Int. Std

%RSD

IS Ref

Stddev

Method: 60102007_041712(v608)

Ag3280

.0004

.0003

82.74

-.0008

-.0001

-.0003

Fe2599

06

.4359

14.45

14.47

14.35

Si2124

006

3.725

3.714

In2306

2591.2 4.4

.16963

2592.3

2595.0

2586.4

(Y_2243) 3.718

Acquired: 3/28/2017 10:59:09

Custom ID2:

Ba4554

1.041

.001

.1013

1.041

1.043

1.041

Mn2576

_3600) (Y .0512

.0002

.2972

.0514

.0511

0512

Ti3349

3600)

0002

1798

1797

.1794

Y 3710

7629.6

44.8

.58751

7591.9

7679.2

.1796

Be3130

0046

.0001

1.694

.0045

.0047

.0046

Mo2020

2243)

.0020

0001

3.460

.0020

.0019

0020

TI1908

n2306) -.0041

0012

0054

.0034

-.0034

(Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600)

Mode: CONC

Type: Unk

Corr. Factor: 2.000000

Custom ID3:

Ca3179

34.62

.2388

34.66

34.68

Na5895

3710)

.6453

0071

1.095

.6424

.6533

6401

2924

3600)

.1454

0004

1456

1450

.1456

.08

Cd2265

.0006

.0001

12.62

.0007

.0006

.0006

Ni2316

_2243) .0362

0003

.8782

.0359

.0361

0365

Zn2062

.0218

0001

.0218

.0217

.0220

Co2286

0062

.0000

.0891

.0062

.0062

.0062

Pb2203

(In2306)

1164

0009

.7764

.1174

.1162

1156

1863

.0011

.6036

.1860

1854

.1876

Sb2068

(Y 2243)

.0004

0015

400.3

.0015

-.0011

0014

Zoom Out

Acquired: 3/28/2017 11:03:16 Sample Name: FA41932-5 Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: User: admin

Comment:

■ Zoom In ■ Zoom Out

0120

.0000

.2489

.0120

.0120

Se1960

Y_2243) .0065

.0021

32.66

.0079

.0041

.0076

#3

Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 IS Ref (Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600) .0001 .0004 0041 .0002 71.24 .0002 0003 0005 Avg 0025 .0110 .0003 .0003 .0000 .0000 .0000 .0001 .0001 .0002 %RSD 362.2 1.328 75.03 1.195 7.675 .0613 9.872 19.50 3.220 31.77 -.0004 .8183 -.0008 .0041 -.0002 71.20 -.0002 .0024 .0004 #1 -.0003 .0001 .8377 .0003 .0040 -.0001 71.22 .0002 -.0003 0025 .0004 .0001 .8192 .0002 -.0002 71.28 -.0002 -.0004 .0006 #3 .0041 .0026

Type: Unk

Custom ID3:

Elem Fe2599 K 7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Se1960 Sb2068 IS Ref (Y_3710) (Y 3710) (Y 3710) (Y_3600) (Y_2243) .0012 .0000 3710) 4.656 _2243) (ln2306) .0032 Y_2243) -.0004 2243) Ava .2198 2694 4786 .0002 .0004 .0015 .0005 0321 0160 0000 0001 013 .0002 0006 0006 .2698 %RSD 3.345 378.6 .2407 11.91 1.223 75.05 344.0 165.4 19.17 .2193 .2467 .4610 .0012 .0004 .0028 .0010 .0009 .0000 4.641 .2198 .3061 .4922 .0012 .0001 4.664 .0002 .0039 .0019 .0003 #3 2203 2552 4827 .0012 0002 4.662 0001 0028 - 0003 .0005

-.0003

.0018

.0020

V 2924 Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 Zn2062 IS Ref (Y_2243) -.0002 _3710) .0516 (In2306) -.0008 (Y_2243) 1.397 3600) 3600) _2243) .0021 .0018 1002 Avg Stddev 021 0003 0001 0019 0005 0001 0001 1.886 #1 1.411 - 0005 .0515 0981 0013 0017 0021 .0021 .0517 .1019 .0008 .0001 .0018

.1006

.0516

In2306 3710 Int. Std. 2243 3600 2607.6 5885 0 45893 5944.7 .18807 .07291 %RSD .04942 .16928 5881.9 5949.6 #2 2611.1 5887.7 45943 5943.4 5885.2 45804 5941.3 2609.8

.0000

1.372

Raw Data MA13933 page 45 of 198

✓ Zoom In ►
Zoom Out

Sample Name: FA42259-4 Acquired: 3/28/2017 11:07:28 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 4.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment

AI3961 Elom Ag3280 As1890 Ba4554 Be3130 Ca3179 Cd2265 C02286 Cr2677 Cu3247 IS Ref 3710) (Y_3710) (Y_3600) 3710) (Y_2243) (Y_3710) (Y_2243) (Y_2243) (_3600) Y_3600) 0009 144.0 0163 1 178 0049 39.57 0006 0069 2146 0132 .000 %RSD 93.23 .1273 1.714 .1697 2.210 .2454 35.56 3.305 .2986 5,449 -.0006 143.8 .0164 1.180 .0048 39.50 .0008 .0069 .0125 #2 -.0003 143.9 .0160 1.176 .0050 39.53 .0004 .0067 .2148 .0140 .0019 .0166 .0131 144.2 .0048 39.68 .0007 .0072 .2152 Flem Fe2599 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) 3710) 3710) 3600) _3710) 2243) (ln2306) (_2243) Ava 16.70 2.260 7.886 .0591 .0003 .7205 .0415 1133 .0034 .0093 .0026 Stddev 048 0005 0249 0005 0015 0053 089 0002 2.143 3.456 %RSD .1622 1.130 .2715 78.47 57.73 180.2 1.299 1.286 2.290 .7488 16.69 7.905 .0592 .000 .0410 .1117 .0064 #2 16.73 2.204 7.964 .0590 .0001 .7020 .0416 .1138 -.0017 .0059 #3 16.68 2 286 7 789 0593 .0009 .7106 .0420 .1145 -.0020 .0065

Elem Si2124 Sr4077 TI1908 Sn1899 Ti3349 V 2924 Zn2062 3600) IS Rof 2243) 9.741 2243) 3710) 3600) In2306) 2243 .0178 3.215 .0022 Avg Stddev .077 .0007 .002 .0029 .0020 .0010 .0002 7958 .0551 %RSD 4.073 9.701 .0180 3.217 4089 -.0043 1661 .0239 9.830 .0170 3.215 .0019 1667

.4146

-.0004

.1681

3.214

Int. Std. ln2306 2243 _3710 3600 2685.1 7037.0 53877 6910.3 12.6 120 .30314 17917 .22187 %RSD .60369 2694.5 6951.2 #2 2680.2 7030.8 53981 6911.9

.0184

9.691

2680.6

#3

53904

.0240

Raw Data MA13933 page 47 of 198

Raw Data MA13933 page 46 of 198

■ Zoom In ▶

Acquired: 3/28/2017 11:11:34 Sample Name: CCV Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment:

Ag3280 As1890 Flor Al3961 Ba4554 Be3130 Ca3179 Cd2265 Cn2286 Cr2677 Cu3247 Units ppm 2517 ppm ppm ppm ppm ppm 40.59 ppm ppm 2.076 ppm ppm 2.017 40 54 2 035 2.063 2 025 2 080 2 046 .003 .0014 .004 .002 2123 %RSD .5440 .0374 .1740 .1565 .1713 .0933 .0824 .3214 .1000 2.032 2.021 2.082 2.076 2.019 #2 .2518 40.53 2.036 2.066 2.026 40.53 2.078 2.074 2.053 2.018 2.039 2.028 #3 .2529 40.55 2.063 40.68 2.080 2.015 Check ? Chk PassChk Pa

Range

Fe2599 Mg2790 Mn2576 Na5895 Ni2316 Elem K_7664 Mo2020 Pb2203 Sb2068 Se1960 ppm 40.60 Units ppm 40.06 ppm 40.04 ppm 2.052 ppm 2.070 ppm 40.94 ppm 2.057 ppm 2.000 ppm 2.030 ppm 2.030 Avg Stddev .03 .01 .16 .004 .003 .04 .002 .001 .004 .004 1764 %RSD .0781 0234 .4009 .2012 .1361 0854 1126 0440 1992 2.070 #1 40.05 40.60 40.07 2.049 40.90 2.059 2.001 2.030 2.026 40 04 40 59 39.87 2.056 2.068 40 96 2.055 2 027 2.029 40.10 40.61 40.19 2.050 2.074 40.96 2.057 2.000 2.034 2.034 #3

Check? Chk PassChk Pa √alue Range

Elem Si2124 Sr4077 Ti3349 TI1908 Sn1899 V 2924 Zn2062 Units ppm 2.075 ppm 2.060 ppm 2.045 ppm 2.021 ppm 2.058 ppm 2.043 ppm 2.053 Avg Stddev .003 .002 .006 .001 .003 .005 .004 .1705 %RSD .1251 .0757 .2866 .0432 .2696 .1728 2.051 2.076 2.053 2.046 2.018 2.053 2.046 2.039 #3 2.056 2.076 2.061 2.045 2.021 2.059 2.042

None Chk PassChk PassChk PassChk PassChk PassChk PassChk Check? Value Range

Raw Data MA13933 page 48 of 198

◀ Zoom In ▶

Sample Na Method: 60 User: admi Comment:	0102007_0 in SS		08) M	2017 11:11:34 ode: CONC Custom ID2:	Type: QC Corr. Factor: 1.000000 Custom ID3:
Int. Std.	In2306	Y_2243	Y_3600	Y_3710	
Units	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	2345.6	5760.7	43492.	5708.8	
Stddev	2.0	10.7	160.	31.7	
%RSD	.08627	.18516	.36877	.55492	
#1	2343.8	5753.5	43596.	5690.6	
#2	2347.8	5773.0	43307.	5745.4	
#3	2345.0	5755.6	43572.	5690.5	

Raw Data MA13933 page 49 of 198

2772.9

2766.4

2763.6

#2

6082.0

6079.9

6071.1

Sample Name: CCB Acquired: 3/28/2017 11:15:31 Type: QC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: User: admin Custom ID3: Comment: Y_2243 Cts/S Y_3600 Cts/S Y_3710 Cts/S Int. Std. In2306 Cts/S Units Avg Stddev 2767.6 6077.7 46665. 5889.1 %RSD .17279 .09528 .11189 .57857

46617

46657.

5851.3

5917.5

Sample Name: CCB Acquired: 3/28/2017 11:15:31 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment: Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 ppm .0046 .0033 71.95 ppm .0003 .0001 ppm .0002 .0000 Units ppm .0002 ppm -.0001 ppm .0002 ppm .0071 ppm .0001 ppm .0004 ppm .0004 Avg .0002 .0003 .0001 .0001 .0006 .0022 .0001 %RSD 118.2 555.2 105.2 21.41 30.65 6.117 70.39 38.15 36.09 .0001 .0008 .0005 .0000 .0003 .0070 .0002 .0001 .0004 .0002 #1 .0000 -.0005 -.0003 .0066 .0005 .0003 .0050 .0002 .0000 .0002 .0005 .0064 .0002 .0002 .0005 .0004 Check? Chk Pass Chk High Limit Low Limit Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Elem Sb2068 Se1960 ppm .0069 .0044 ppm .0426 ppm .0002 ppm .0003 ppm .0007 ppm .0299 ppm .0000 ppm .0001 ppm .0002 Units Avg .0036 .0004 .0089 .0001 .0004 .0006 .0006 Stddev .0133 .0000 %RSD 63.89 8 555 8700 18.62 61.10 29.62 347 6 479.7 264.5 3633. .0120 .0465 -.0141 .0002 .0011 .0200 .0002 .0004 .0009 .0008 #1 .0042 .0421 .0123 .0006 .0002 .0000 .0003 0327 .0001 .0004 #3 .0002 .0370 -.0001 -.0003 Check? Chk Pass Chk High Limit Low Limit Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0010 ppm .0003 ppm .0003 ppm .0002 ppm -.0001 ppm .0004 ppm .0001 Ava 0003 0002 0000 0001 0005 0001 0000 %RSD #1 .0011 .0005 .0003 .0003 -.0006 .0005 .0001 .0006 .0002 .0003 .0002 .0002 .0004 .0000 #3 .0013 .0001 .0003 .0002 .0002 .0004 .0001

Raw Data MA13933 page 50 of 198

Check?

Zoom In ▶
 Zoom Out

High Limit Low Limit

Sample Name: FA42136-2 Acquired: 3/28/2017 11:20:50 Type: Unk Mode: CONC Corr. Factor: 1.000000

None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Method: 60102007_041712(v608) SSTRACE02: User: admin Custom ID2: Custom ID3:

Comment.										
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) 0002 .0003 144.8	(Y_3710) .0086 .0029	As1890 (Y_2243) 0012 .0004 31.64		Be3130 (Y_3710) 0001 .0000 54.28			Co2286 (Y_2243) .0000 .000 7669.		(Y_3600) .0007 .0002
#1 #2 #3	0003 0005 .0001		0016 0010 0009	0001 0001 0005	0001 .0000 0001	.0868 .0831 .0861	0001 0001 0001	.0001 .0000 0001	0001 .0001 .0001	.0005 .0009 .0007
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 0029 .0023 82.17	(Y_3710) .0135 .0086	(Y_3710) .0015 .0040		Mo2020 (Y_2243) 0005 .0001 21.46		(Y_2243) 0001 .0002	Pb2203 (ln2306) .0004 .0004 99.51	Sb2068 (Y_2243) 0015 .0007 45.43	(Y_2243) .0009 .0010
#1 #2 #3	0008 0054 0024	.0197	.0009 0021 .0059	.0000 .0001 .0001	0004 0006 0006	.0293 .0227 .0356	.0002 0002 0003	.0008 .0004 .0000	0022 0014 0009	.0021
Avg Stddev %RSD	.9409 .0031 .3319	(Y_2243) .0000 .000 739.1	Sr4077 (Y_3710) .0001 .0001 133.8	0002 .0001 23.73	0018 .0012 66.38	V_2924 (Y_3600) 0002 .0003 130.0	(Y_2243) .0013 .0001 3.942			
#1 #2 #3	.9399 .9383 .9443	.0000 0001	.0002 .0000 .0001	0002 0003 0003	0029 0005 0019	.0000 0001 0006	.0012 .0013 .0013			
Int. Std.	In2306	Y_2243	Y_3600	Y_3710						

Avg Stddev %RSD 2752.1 5.0 35.2 .18152 .07951 .59361 .39308 2757.6 5899.5 #2 2747.8 6068.5 47142 5933.1 2750.9 6058.9 46784. 5969.9

6064.0

46938

5934.2

Raw Data MA13933 page 52 of 198

Raw Data MA13933 page 51 of 198

▼ Zoom In **▶** Zoom Out

									Zoom Out
Sample Na	FA 4011	000 4	cquired: 3/2	00/0017 11	OF-02	Type: Unk			
				: CONC		tor: 1.000	200		
Method: 60	_	. ,					J00		
User: admir	1 551	RACE02:	Cus	stom ID2:	Cus	tom ID3:			
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
IS Ref	(Y_3600)	(Y_3710)	(Y_2243)	(Y_3710)	(Y_3710)	(Y_3710)	(Y_2243)	(Y_2243)	(Y_3600)
Avg	0003	.0317	.0108	.2325	0001	249.0	0002	0003	.0009
Stddev	.0004	.0031	.0009	.0012	.0000	1.5	.0000	.0001	.0004
%RSD	119.0	9.649	8.082	.5364	9.520	.5989	16.58	25.38	43.07
#1	0002	.0282	.0117	.2339		247.9			
#2	.0000	.0334	.0104	.2319	0001	250.7	0002		.0006
#3	0007	.0336	.0101	.2316	0002	248.3	0002	0002	.0008
Elem	Cu3247		K_7664		Mn2576		Na5895	Ni2316	Pb2203
IS Ref			(Y_3710)						(In2306)
Avg	.0030	.1172	29.89	142.6	.0412	.0031	F291.0	.0031	.0047
Stddev	.0004	.0052	.15	.7	.0002	.0001	3.5	.0001	.0002
%RSD	14.27	4.476	.5103	.4632	.3860	2.050	1.211	4.158	3.919
#1	.0028	.1191	30.07	143.4	.0410	.0030			
#2	.0035	.1212	29.81	142.3	.0413	.0031	287.5	.0032	.0045
#3	.0026	.1112	29.79	142.1	.0414	.0031	291.1	.0032	.0048
Elem	Sb2068						TI1908	V_2924	
IS Ref			(Y_2243)					(Y_3600)	
Avg	0015	.0073	25.46 .05	0004 .0001	.9021	.0015	0013 .0011	.0086	.0973
Stddev %RSD	.0005 32.80	4.874	.1770		.6509	.0001 8.105	80.49	2.406	.0002 .2229
%หอบ	32.00	4.674	.1770	27.02	.6509	8.105	80.49	2.406	.2229
#1	0018	.0076	25.42		.9083	.0014	0023	.0084	
#2	0017	.0072	25.45		.8967	.0017	0002	.0085	.0974
#3	0009	.0069	25.50	0005	.9013	.0015	0015	.0088	.0975
Int. Std.	ln2306								
Avg	2180.4	5308.9	40768.	5708.8					
Stddev	10.1	12.3	206.	28.4					
%RSD	.46246	.23146	.50470	.49781					
#1	2191.9								
#2	2173.5	5308.6	40754.	5680.4					
#3	2175.7	5296.7	40569.	5737.2					

User: admin Comment:	SST	RACE02:	Cus	stom ID2:	Cus	tom ID3:				
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) 0003 .0001 19.37		As1890 (Y_2243) .0122 .0006 4.584		Be3130 (Y_3710) 0001 .0000 40.28		Cd2265 (Y_2243) 0002 .0000 9.460		Cr2677 (Y_3600) .0011 .0004 37.01	
#1 #2 #3	0003 0003 0004	0044 0017 .0059	.0128 .0116 .0123	.1883 .1891 .1877	0001 0001 .0000	237.5 235.7 239.9	0002 0002 0002	0002 0001 0003	.0007 .0011 .0015	
Elem IS Ref Avg Stddev %RSD	Cu3247 (Y_3600) .0027 .0003 9.293		K_7664 (Y_3710) 36.64 .00 .0085		Mn2576 (Y_3600) .2588 .0002 .0909		Na5895 (Y_3710) F317.9 4.6 1.440	Ni2316 (Y_2243) .0053 .0002 3.726	Pb2203 (ln2306) .0045 .0009 19.49	
#1 #2 #3	.0026 .0030 .0025	.0061 .0084 .0083	36.64 36.64 36.64	147.2 146.3 147.2	.2589 .2585 .2589	.0047 .0048 .0044	316.3 323.1 314.3	.0054 .0051 .0054	.0043 .0037 .0055	
Elem IS Ref Avg Stddev %RSD	Sb2068 (Y_2243) 0008 .0009 114.6	Se1960 (Y_2243) .0074 .0001 1.062	Si2124 (Y_2243) 27.17 .03 .0962	Sn1899 (Y_2243) 0007 .0001 17.35	Sr4077 (Y_3710) .7885 .0020 .2530	Ti3349 (Y_3600) .0008 .0001 10.32	Tl1908 (ln2306) 0013 .0004 28.21	V_2924 (Y_3600) .0092 .0002 1.904	Zn2062 (Y_2243) .0152 .0001 .3448	
#1 #2 #3	0009 0016 .0002	.0074 .0075 .0074	27.19 27.14 27.18	0006 0007 0009	.7890 .7903 .7864	.0008 .0008 .0009	0009 0015 0016	.0091 .0094 .0091	.0152 .0153 .0152	
Int. Std. Avg Stddev %RSD	In2306 2162.8 1.6 .07591	Y_2243 5290.6 4.0 .07595	Y_3600 40281. 95. .23497	Y_3710 5601.9 39.0 .69667						
#1 #2 #3	2163.1 2161.1 2164.3	5295.0 5289.6 5287.1	40291. 40370. 40181.	5604.7 5639.4 5561.5						

Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000

Raw Data MA13933 page 53 of 198

Sample Na				28/2017 11		Type: Unk			
Method: 60	_	. ,		: CONC	Corr. Fa	ctor: 1.000	000		
User: admi	n SST	RACE02:	Cu	stom ID2:	Cus	tom ID3:			
Comment:									
Elem	Ag3280		As1890		Be3130	Ca3179	Cd2265		Cr2677
IS Ref		(Y_3710)							
Avg Stddev	.0001	.0318	.0123	.1905	0001 .0001	244.9 4.3	0002 .0000	0001 .0001	.0012
%RSD	285.4	.0055 17.13	3.178	.1033	65.77	1.768	15.13	67.93	11.97
76N3D	200.4	17.13	3.170	.1033	03.77	1.700	13.13	07.93	11.97
#1	.0003	.0255	.0120	.1904	0001	245.2	0002	.0000	.0013
#2	.0001	.0348	.0121	.1907	0002	249.0	0002		.0010
#3	0002	.0351	.0128	.1903	.0000	240.4	0002	0001	.0013
Elem	Cu3247	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
IS Ref	(Y_3600)	(Y_3710)	(Y_3710)						(In2306)
Avg	.0029	.0568	37.54	151.2	.2669	.0046	F322.4	.0057	.0051
Stddev	.0001	.0011	.07	.4	.0002	.0002	3.8	.0000	.0006
%RSD	3.647	2.021	.1903	.2827	.0713	4.718	1.192	.2018	12.34
#1	.0028	.0555	37.48	150.8	.2671	.0044	318.6	.0057	.0044
#2	.0029	.0572	37.62	151.7	.2668	.0048	322.3	.0057	.0052
#3	.0030	.0577	37.51	151.1	.2669	.0046	326.3	.0057	.0056
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
IS Ref	(Y_2243)	(Y_2243)					(In2306)	(Y_3600)	
Avg	0024	.0079	28.26	0002	.8094	.0018	0009	.0098	.0144
Stddev	.0004		.07	.0002	.0034	.0001	.0013	.0002	.0001
%RSD	18.67	19.16	.2568	115.7	.4152	4.110	143.5	2.515	.5805
#1	0025	.0064	28.20	.0000	.8115	.0019	.0006	.0098	.0144
#2	0028	.0079	28.24	0005	.8111	.0017	0018	.0100	.0143
#3	0019	.0094	28.34	0002	.8055	.0019	0016	.0095	.0145
Int. Std.	ln2306	Y 2243	Y 3600	Y 3710					
Avg	2138.9	5205.9	39819.	5580.6					
Stddev	4.4		80.	37.5					
%RSD	.20618	.43758	.20144	.67262					
#1	2140.5	5223.0	39910.	5620.8					
#2	2142.3	5214.8	39758.	5546.5					
#3	2133.9	5180.1	39789.	5574.4					

Raw Data MA13933 page 54 of 198

◀ Zoom In ▶

⋖ Zoom In ▶ Zoom Out

Sample Name: FA42136-6 Acquired: 3/28/2017 11:38:15 Type: Unk SSTRACE02: Custom ID2:

User: admin Comment: Elem IS Rof

Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) 0001 .0003 534.3	Al3961 (Y_3710) 0006 .0041 630.4	As1890 (Y_2243) 0014 .0001 3.706	(Y_3710) 0002 .0001	(Y_3710) 0001 .0001	Ca3179 (Y_3710) .0601 .0005 .8518	.0000				
#1 #2 #3	.0003 0002 0003	0052 .0027 .0005	0014	0003	0001	.0600 .0607 .0597	.0000 .0000 0001	0002 0002 0002	0001 .0001 0002	.0009 .0005 .0004	
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 0058 .0019 32.88	K_7664 (Y_3710) .0667 .0108 16.22	(Y_3710) .0062 .0074	.0000	(Y_2243) 0010 .0001	Na5895 (Y_3710) .1705 .0129 7.594	(Y_2243) 0001 .0001	Pb2203 (ln2306) .0008 .0001 14.50	Sb2068 (Y_2243) 0013 .0007 53.35	Se1960 (Y_2243) .0010 .0008 86.68	
#1 #2 #3	0065 0073 0037	.0786 .0641 .0575	.0015 .0024 .0147	.0000 .0000	0009	.1847 .1674 .1594	.0000 0001 0002	.0008 .0010 .0008	0016 0005 0019	.0015 .0000 .0014	
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) .6171 .0026 .4224	Sn1899 (Y_2243) 0001 .0002 235.7	.0000		0018 .0004	V_2924 (Y_3600) 0002 .0002 68.43	(Y_2243) .0011 .0001				
#1 #2 #3	.6197 .6145 .6173	0003 0002 .0002	.0001 .0000 .0001	0004 0004 0004	0014		.0012 .0011 .0011				
Int. Std. Avg Stddev %RSD	In2306 2728.2 7.0 .25511	Y_2243 5936.9 6.7 .11239	Y_3600 46968. 125. .26511	5923.1							
#1 #2 #3	2721.1 2728.6 2735.0	5929.4 5942.0 5939.5	46942. 47103. 46858.								

Raw Data MA13933 page 56 of 198

Raw Data MA13933 page 55 of 198

.0005

30.02

.0004

.0005

0008

64.10

.0003

.0016

.0017

Type: Unk

Custom ID3:

Ca3179

39.48 .19

.4780

39.29

39.67 39.47

.008

3.452

3,467

3,462

V 2924

_3600) (Y _2243)

0002

.0004

.0001

.0004

(Y_3600) (Y_3710) (Y_2243) (Y_3710) (Y_3710) (Y_3710) (Y_2243) (Y_2243) (Y_3600) (Y_3600)

-.0001 .0001

74.58

-.0002

.0000

.0002

12.90

-.0011

-.0013

-.0014

TI1908

(ln2306) (Y_ -.0006

.0004

-.0008

-.0009

-.0001

Cd2265 Co2286

-.0001

.0001

63.96

-.0001

-.0001 -.0002

0006

19.43

.0034

.0023

.0027

.0005

46.89

.0005

.0002

Pb2203 Sb2068 Se1960 (ln2306) (Y_2243) (Y_2243) .0028 .0000 .0012

370600.

.0007

.0005

.0003

-.0007

-.0001 .0000

47.29

-.0001

-.0002

-.0001

.0001

189.2

-.0001

.0001

.0001

Zn2062

0000

.0008

.0008

.0007

										Zoom In
										Zoom Out
	Name: FA42		Acquired:	3/28/2017		Type:				
Method:	60102007_0	41712(v60	08) Mc	de: CONO	C Corr	. Factor: 1	.000000			
User: adı	min SS	TRACE02	2: (Custom ID	2:	Custom ID	03:			
Commen	t:									
Elem	Ag3280					Ca3179				Cu324
IS Ref						(Y_3710)				
Avg	.0002	.0048	0010	.0342	0001	65.20	0001	0001	.0002	.0007
Stddev %RSD	.0004 159.9	.0048		.0001	.0000 26.62	.15	.0000 30.15	.0001 87.81	.0001 76.10	.000
#1	0001	.0012					0001			
#2	.0007					65.35	0001	0001	.0000	
#3	.0002	.0103	0006	.0342	0001	65.05	0001	.0000	.0002	.0007
Elem IS Ref	Fe2599					Na5895 (Y 3710)	Ni2316			
Avg	.3536	4.622	11.33	.0812	.0002	13.49	.0000	.0057	(Y_2243) 0008	.0017
Stddev	.0027	.013		.0000		.03	.000	.0008	.0013	.0017
%RSD	.7698					.2555	400.6	14.51	151.0	
#1	.3567	4.618	11.38	.0813	.0001	13.52	0001	.0050	.0001	.002
#2	.3517					13.51	.0000	.0066	0022	
#3	.3523	4.612	11.28	.0812	.0002	13.45	.0000	.0056	0004	.0030
Elem	Si2124					V_2924				
IS Ref						(Y_3600)				
Avg	.9283	0004	.1159	.0015	0007	.0013	.0023			
Stddev	.0016	.0003 78.72		.0002		.0002	.0000			
%RSD	.1686	10.12	.0765	10.55	58.98	17.49	.0888			
#1	.9301	0001					.0023			
#2	.9277	0007		.0015			.0023			
#3	.9271	0004	.1159	.0017	0006	.0014	.0023			
Int. Std.	In2306									
Avg	2558.7	5785.2	45566.	5897.5						
Stddev	1.8									
%RSD	.07142	.13405	.36108	.37673						
#1	2559.2									
#2	2556.7 2560.2									
#3		5790.5	45727.	5905.0						

Raw Data MA13933	page 58 of 198
------------------	----------------

Sample Name: FA42275-2 Acquired: 3/28/2017 11:46:37

Al3961

.0073

30.93

.0085

.0047

.044 1.157

3.724

3.810

3.756

Sn1899

(Y_2243) -.0001

0002

.0000

.0000

-.0003

Y_2243

5896.5 5.0 .08515

5895.2

5892.3

User: admin SSTRACE02:

Ag3280

.0001

362.6

.0002

-.0003

.0026

.9323

.9346

.9375

Si2124

(Y_2243) .8183

.0015

.8183 .8199

.8168

In2306

2629.9 4.2 .16114

2634.3

2629.6

2625.8

Comment:

IS Ref

%RSD

#1

#3

Elem IS Ref Avg Stddev

%RSD

#3

#1

#3

Int. Std.

Avg Stddev %RSD

#2

Elem

IS Ref Avg

Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000

-.0003

.0006

190.5

-.0010

-.0001 .0002

.014

5.087

5.112

5.110

Sr4077

0003

.0479

.0483

Y 3600

46602. 287. .61530

46549.

46912.

(Y_3710) .0483

Custom ID2:

As1890 Ba4554 Be3130

.0090

.9944

.0091

.0089

.0005

.3937

.1368

.1363

.1357

Ti3349

0000

.0012

.0012

.0011

Y_3710

5947.5 54.1 .91021

6007.8

5903.2

5931.5

(Y_3600) .0011

										◀ Zoom In
										Zoom Out
Sample N	Name: FA42	275-4	Acquired:	3/28/2017	11:54:58	Type:	Unk			
Method:	60102007 0	41712(v60)8) Mc	de: CONC	Corr	. Factor: 1	.000000			
User: adı	_	TRACE02	,	Custom ID	2:	Custom II	03:			
Commen	it:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu324
IS Ref				(Y_3710)						
Avg	.0001	.0076	0014	.0222	0002	47.50	.0000	0002	.0003	.000
Stddev	.0001	.0131	.0012		.0000		.000	.0000		
%RSD	220.7	172.2	86.25	1.037	30.53	.1246	205.9	13.27	60.81	54.2
#1	0001	.0157								
#2	.0000									
#3	.0002	.0147	0004	.0220	0001	47.57	.0000	0002	.0001	.000
Elem	Fe2599			Mn2576						
IS Ref				(Y_3600)						
Avg	0011	4.475	4.751	.0119	.0010	8.565	0001	.0018	0004	.007
Stddev	.0011	.004	.011	.0001	.0001	.009	.0001	.0002	.0016	
%RSD	98.95	.0775	.2260	.8177	8.519	.1111	139.4	11.43	357.9	22.5
#1	.0002		4.741							
#2	0017									
#3	0017	4.475	4.762	.0119	.0010	8.565	0003	.0016	0021	.009
Elem	Si2124				TI1908	V_2924				
IS Ref				(Y_3600)						
Avg	.6159	0004	.0933	.0012	0004	.0011	.0004			
Stddev	.0015				.0011		.0000			
%RSD	.2451	36.50	.3007	13.09	253.0	8.608	8.668			
#1	.6159				0015					
#2	.6144	0005			0004					
#3	.6174	0003	.0935	.0014	.0006	.0010	.0004			
Int. Std.	In2306									
Avg	2586.8	5831.0	45343.	5839.6						
Stddev	5.2									
%RSD	.20110	.20251	.21882	.36139						
#1	2592.7									
#2	2582.8									
#3	2584.8	5824.7	45357.	5837.7						

Raw Data MA13933 page 57 of 198

										Zoom In ▶
										Zoom Out
_						_				
	Name: FA42			3/28/2017		Type:				
	60102007_0		,	de: CONC		. Factor: 1				
User: ad	lmin SS	TRACE02	2: (Custom ID	2:	Custom II	03:			
Commer	nt:									
Elem	Ag3280						Cd2265			
IS Ref		(Y_3710)								
Avg	0002	.0149	0001	.0100	0001	29.73	0001	0001	.0003	.0003
Stddev	.0004		.0006	.0000	.0000		.0000	.0001	.0003	.0001
%RSD	244.9	34.20	442.6	.2266	28.88	.2927	33.28	95.06	100.5	45.17
#1	0005	.0203	0008	.0100	0001	29.63	0001	0001	.0004	.0002
#2	0001	.0103	.0000	.0100	0001	29.79	0001	0003	.0000	.0004
#3	.0002	.0139	.0004	.0100	0001	29.77	0001	.0000	.0006	.0002
Elem	Fe2599	K 7664	Mg2790	Mn2576	Magaga	Nassos	Ni2316	Dhaana	Sb2068	Se1960
IS Ref		(Y 3710)							(Y_2243)	
Ava	1.772	2.375	5.219	.1157	0012	4.549	0002	.0132	0004	.0019
Stddev	.006	.012			.0000			.0001	.0004	
%RSD	.3631									
7011OD	.0001	.0005	.1237	.1750	2.200	.0411	55.00	.0000	100.2	44.07
#1	1.778									
#2	1.774									
#3	1.765	2.388	5.214	.1159	0012	4.566	0001	.0132	0004	.0026
Elem	Si2124				TI1908					
IS Ref	(Y_2243)	(Y_2243)	(Y_3710)	(Y_3600)	(In2306)	(Y_3600)	(Y_2243)			
Avg	.9764	0004	.0425	.0012	0014	.0002	0003			
Stddev	.0016	.0000	.0001	.0002		.0002	.0001			
%RSD	.1627	13.15	.2996	15.38	49.20	134.9	23.06			
#1	.9779	0004	.0424	.0013	0022	.0000	0003			
#2	.9765				0008					
#3	.9748	0003	.0426	.0013	0013	.0004	0002			
Int. Std.	In2306	V 2242	Y 3600	Y 3710						
Avg	2611.4	5884.6	45847.	5814.7						
Stddev	2.4									
%RSD	.09229									
701 TOD	.03223	.12/09	.40003	.77175						
#1	2609.3	5876.8	45990.	5866.3						
#2	2614.0	5891.7	45950.	5784.4						
#3	2610.8	5885.3	45602.	5793.5						

Raw Data MA13933 page 60 of 198

339 of 383 **ACCUTEST**

Raw Data MA13933 page 59 of 198

									Zoom In ►
									Zoom Out
ame: FA42	275-5	Acquired:	3/28/2017	11:59:09	Type:	Unk			
_		,							
Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
(Y_3600)			(Y_3710)						
.0001			.0066						.0015
487.1	.6897	48.90	2.116	133.2	.6779	55.21	6.870	1.142	15.48
.0000	.8556	0006	.0065	.0000	28.29	.0002	.0004	.0042	.0015
.0004									
0002	.8574	0005	.0066	.0000	28.48	.0001	.0004	.0043	.0017
Fe2599	K 7664	Ma2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
(Y_3710)	(Y_3710)	(Y_3710)	(Y_3600)	(Y_2243)	(Y_3710)	(Y_2243)	(ln2306)	(Y_2243)	(Y_2243)
.1968	1.519	3.510				.0006	.0019	.0001	0004
									.0005
1.4/9	.9831	1.276	1.969	10.41	.6195	30.83	22.80	1387.	103.5
.1939							.0023	0003	0008
.1997	1.509	3.492	.0017	0008	2.404	.0004	.0018	0008	0006
Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
(Y_2243)	(Y_2243)	(Y_3710)	(Y_3600)	(In2306)	(Y_3600)	(Y_2243)			
1.932	0004	.0301	.0233	0003	.0066	.0004			
./309	56.50	1.048	1.335	75.85	1.218	9.417			
1.917	0007	.0297	.0235	0006	.0067	.0004			
1.944	0002	.0303	.0233	0004	.0065	.0004			
In2306	Y_2243	Y_3600	Y_3710						
2664.8			6024.4						
.49377	.48017	.58930	.37677						
			6028.3						
2666.6									
2650.8	5990.1	46814.	6044.9						
	0102007_0 in SS Ag3280 (Y_3600) .0001 .0003 .0004 .0002 .0004 .0002 Fe2599 (Y_3710) .1968 .0029 1.479 .1939 .1968 .1997 Si2124 (Y_2243) 1.932 .014 .7309 1.934 1.934 1.934 1.934 1.934 1.934 1.937 1.934 1.934 1.937	0102007_041712(v60 in SSTRACE02	Ag3280 Al3961 As1890 (Y_3600) (Y_3710) (Y_2243) (0003 .0059 .0004 487.1 .6897 4.0002 .8574 .0005 .0004 .3616 .0002 .8574 .0005 .0004 .0001 .1297 .1598 .1519 .0516 .0008 .1519 .0008 .1519 .0009	Ag3280 Al3961 As1890 Ba4554 (Y_3600) (Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_3710) (0001 .8531 .0006 .0005 .0004 .0001 .0001 .8574 .0005 .0006 .0005 .0004 .848.4 .0012 .0088 .0006 .0002 .8574 .0005 .0006 .0005 .0006 .0005 .0004 .8464 .0012 .0088 .0002 .8574 .0005 .0006 .0065 .0004 .8464 .0012 .0088 .0002 .8574 .0005 .0006 .0065 .0004 .8464 .0012 .0088 .0002 .8574 .0005 .0006 .0065 .0004 .8464 .0012 .0088 .0001 .0001 .0003 .0003 .0009 .015 .045 .0000 .005 .0066 .0005 .0009 .015 .0005 .0006 .0005 .0006 .0005 .0006 .0005 .0006 .0005 .0006 .0005 .0006 .0005 .0006 .0006 .0005 .0006	Ag3280	Ag3280	Ag3280	Ag3280	Ag3280

Raw Data MA13933	page 61 of 198	

%RSD

#2

.14191

2385.1

2391.9

.20999

5814.7

5828.1

5803.7

Zoom In ▶
 Zoom Out

#2

#3

Sample Name: CCV Acquired: 3/28/2017 12:03:20 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3: Comment: Y_2243 Cts/S Y_3600 Cts/S Y_3710 Cts/S Int. Std. In2306 Cts/S Units Avg Stddev 2388.4 5815.5 44331 5872.7

.24027

44374.

44408.

44209.

.26457

5890.6

5862.4

5865.0

Acquired: 3/28/2017 12:03:20 Sample Name: CCV Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment: Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 ppm 2.016 .004 ppm 2.022 .001 ppm 2.076 .003 ppm 2.019 .003 ppm 1.967 .004 Units ppm 2462 ppm 39.88 ppm 1.971 ppm 39.94 ppm 2.069 Avg .0007 .004 Stddev .02 .002 %RSD .2764 .0441 .2076 .0699 .1929 .1172 .1435 .0868 .1550 .2253 .2465 39.88 2.018 1.971 39.89 2.077 2.070 2.022 2.020 1.968 #1 39.90 39.87 2.012 2.020 1.975 1.967 39.99 39.93 1.971 1.963 2467 2.072 2.067 2.016 2.078 2.022 Check? Chk PassChk Pa Value Range Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Elem Sb2068 Se1960 ppm 38.98 ppm 39.71 ppm 39.07 ppm 2.007 ppm 2.042 ppm 40.36 ppm 2.037 ppm 1.953 Units ppm 2.010 Avg .005 Stddev .06 .05 .03 .003 .004 .07 .003 .007 .003 %RSD 1456 .1160 0753 1523 2222 1739 1558 2652 .3681 .1671 38.97 39.73 2.040 2.039 2.009 39.03 2.005 40.38 1.954 2.006 39 04 39 74 39.09 2 005 2 038 40 42 2 034 1 948 2 006 2 011 2.010 40.28 2.039 2.019 2.016 #3 38.92 39.65 39.08 2.047 1.958 Check ? Chk PassChk Pa Value Range Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm 2.063 ppm 2.006 ppm 1.990 ppm 2.023 ppm 2.032 ppm 1.975 ppm 2.015 Ava 005 004 005 004 007 003 007 %RSD .3515 2.031 2.064 2.003 1.994 1.975 2.021 2.016 2.058 2.028 2.011 1.991 1.969 2.022 2.008 #3 2.038 2.067 2.003 1.987 1.983 2.026 2.022 Check? None Chk PassChk PassChk PassChk PassChk PassChk Pass Value Range

Raw Data MA13933 page 62 of 198

-.0005

.0002

-.0054

-.0016

.0005

-.0009

■ Zoom In ▶

Cu3247

ppm .0004

.0002

51.60

.0003

.0003

.0007

Sample Name: CCB Acquired: 3/28/2017 12:07:16 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3: Comment: As1890 Flem Ag3280 Al3961 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Units ppm -.0003 .0015 ppm -.0003 ppm .0001 ppm .0003 ppm .0070 ppm .0002 ppm .0001 ppm .0004 %RSD 62.20 266.7 303.4 162.9 22.00 28.25 44.62 81.07 36.61 -.0002 .0065 .0002

.0000

.0002

Check ? Chk Pass Chk High Limit Low Limit

.0003

.0002

.0053

.0092

.0002

.0001

.0002

.0003

.0003

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.0071	0050	.0268	.0003	.0007	.0346	.0002	.0005	0002	.0014	
Stddev	.0023	.0261	.0062	.0000	.0005	.0035	.0001	.0001	.0012	.0011	
%RSD	31.85	522.6	22.97	7.193	67.91	10.19	48.52	19.42	551.2	75.66	
#1	.0090	0279	.0317	.0003	.0012	.0337	.0002	.0005	0009	.0009	
#2	.0046	0105	.0199	.0003	.0007	.0317	.0001	.0005	.0012	.0027	
#3	.0078	.0234	.0288	.0003	.0002	.0385	.0002	.0007	0010	.0008	

Chk Pass Chk High Limit Low Limit

Elem	Si2124	Sn1899	Sr4077	Ti3349	111908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0009	0001	.0004	.0004	0004	.0002	.0001
Stddev	.0003	.0001	.0000	.0001	.0005	.0002	.0000
%RSD	32.54	151.7	5.501	35.06	127.8	102.5	10.19
#1	.0011	.0000	.0004	.0005	0001	.0002	.0001
#2	.0009	0002	.0004	.0005	0009	.0004	.0001
#3	.0006	.0000	.0003	.0002	0001	.0000	.0001

Check ? High Limit None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Low Limit

Raw Data MA13933 page 64 of 198

Raw Data MA13933 page 63 of 198

■ Zoom In ▶

Cu3247

C02286

Cr2677

Acquired: 3/28/2017 12:11:31 Sample Name: FA42275-6 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000

As1890

SSTRACE02: User: admin Al3961

Ag3280

Custom ID2: Custom ID3:

Ba4554 Be3130

Comment:

#3

IS Ref (Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600) .0001 3299 .0008 0162 .0001 38.40 .0001 .0001 0006 0007 .0002 .0021 .0003 .0001 .0001 .0000 .0001 .0001 .0002 %RSD 166.7 .6363 39.00 4759 69.23 .2066 12.94 68.04 20.51 22.70 -.0003 -.0011 .0007 .0008 .3318 .0163 .0000 38.48 -.0001 -.0001 #1 38.33 38.39 .0001 .3276 .0006 .0161 -.0002 .0000 -.0001 0007 .0008 -.0001 .0006 -.0001 .0000 .0005 .0005 #3 .3303 .0161 -.000 Elem Fe2599 K 7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960

Ca3179

Cd2265

Co2286

IS Ref (Y_3710) (Y_3710) 2.733 (Y_3710) 4.256 (Y_3600) (Y_2243) .0937 -.0007 3710) 8.501 2243) (In2306) (Y_2243) -.0005 2243) .0122 Ava 1.935 .0001 .0016 011 024 0.31 0002 0001 009 0000 0002 0008 0011 .5576 .7197 20.36 %RSD .8792 45.97 1.362 161.0 70.79 .1826 .1081 1.946 2.705 4.277 .0936 .0006 8.507 .0000 .0122 .0015 .0019 .0000 1.924 2.748 4.221 .0935 .0009 8.506 -.0001 .0120 .0025 #3 1.933 2 746 4 269 0939 - 0007 8.491 -.0001 0123 - 0001 0003

-.0008

.0001

.0004

Elem Si2124 Sr4077 Ti3349 V 2924 Sn1899 TI1908 Zn2062 IS Ref (Y_2243) 1.024 (Y_2243) -.0001 _3710) .0487 _3600) .0035 (In2306) -.0006 _3600) .0002 _2243) Avg Stddev 003 0002 0002 0003 0010 0001 0001 #1 1 020 - 0002 0487 0033 0005 0003 0003 .0485 .0014 .0003 1.025 .0033 .0003 .0002

.0038

.0489

Int. Std. In2306 Y 2243 3710 3600 2607.3 5936.1 3.5 45796 5927.1 28.6 .27886 .05962 %RSD .63532 .48210 5905.5 2601.9 5940.0

-.0002

1.027

#2 2615.6 5934.9 46129 5916.1 2604.5 5933.3 45589 5959.5

Raw Data MA13933 page 66 of 198

✓ Zoom In ►
Zoom Out

Cu3247

Y_3600)

0003

56.20

.0003

Cr2677

(_3600)

0002

29.93

.0002

0001

27.42

.0001

Sample Name: FA42275-8 Acquired: 3/28/2017 12:19:51 Type: Unk Corr. Factor: 1.000000 Method: 60102007_041712(v608) Mode: CONC User: admin SSTRACE02: Custom ID2: Custom ID3:

Comment: Flor AI3961 As1890 Ba4554 Be3130 Ca3179 Cd2265

Ag3280 (Y_3600) IS Ref 2243) (Y 2243) (Y_3710) (Y_2243) Y_3710) (Y_3710) Y_3600) ((Y_3710) (Y Y_3600) - 0001 2016 0017 0047 0002 43.47 0001 0001 0005 0006 %RSD 137.3 5.331 15.33 3.476 78.91 .3008 57.46 86.09 61.99 23.09 .0001 .2098 .0016 .0047 .0000 -.0001 .0001 .0007 .0007 #2 -.0001 .2056 -.0020 .0049 -.0003 43.39 -.0001 -.0001 .0002 .0005 #3 .0000 .1894 .0015 .0045 -.0002 .0002 .0005 .0005 43.62 .0000 Flem Fe2599 K 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) _3710) 3710) 3600) 2243) 3710) (In2306) 2243) Ava .0107 1.211 2.675 .0188 .0009 3.761 .0006 .0016 .0002 .0003 0024 026 0.30 0001 0000 013 0001 0003 0011 0013 %RSD 2.183 22.62 1.123 .3830 2.280 .3435 18.17 11.89 364.7 2.654 .0134 1.241 .0188 .0009 3.748 .0007 .0016 .0009 0005 #2 .0098 1.197 2.661 .0187 .0009 3.762 .0006 .0019 .0013 .0018 #3 .0088 1.194 2.709 .0188 -.0009 3.773 .0006 .0013 0001 -.0003 Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Elem

IS Ref (Y_2243) (Y_2243) -.0003 3710) 3600) (In2306) 3600) 2243 .0006 .0003 .0003 .0058 Avg Stddev .0009 .0001 .0003 .0003 .0010 .0001 .0000 %RSD #1 .6863 -.0002 .0723 .0060 -.0012 .0002 .0003 .0003 .0055 #3 .6862 -.0004 .0729 .0058 -.0012 .0003 .0003

Int. Std. In2306 2243 3600 _3710 Avg Stddev 2638.6 5944.9 45936 5886.0 42. .26672 %RSD .12589 .71469 .33354

5926.6 2632.4 5936.6 #2 2646.3 5951.1 45837 5888.9 2637.2 5947.1 45859 5842.6

#2

Raw Data MA13933 page 68 of 198

Type: QC

Acquired: 3/28/2017 12:07:16 Sample Name: CCB Method: 60102007_041712(v608) Mode: CONC SSTRACE02: Custom ID2: User: admin Comment:

Corr. Factor: 1.000000 Custom ID3:

Y_2243 Y_3600 Y_3710 Cts/S Cts/S Cts/S 6123.0 46905. 113. 5912.6 35.2

.05320 .13204 .24023 .59478 5873.4 2779.4 6131.5 47026 2781.9 6115.4 46802 5941.4 6122.3 46888 5922.9

%RSD

In2306

Cts/S

2780.2

Int. Std

Units

Avg Stddev

Raw Data MA13933 page 65 of 198

Sample Name: FA42275-7 Acquired: 3/28/2017 12:15:40 Method: 60102007_041712(v608) User: admin SSTRACE02: Comment

Mode: CONC Corr. Factor: 1.000000 Custom ID2: Custom ID3:

Type: Unk

AI3961 Elom Ag3280 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 IS Ref (Y_3710) (Y_2243) 3710) (Y_3710) (Y_3600) (Y_3710) (Y_2243) (Y_2243) 0002 0143 0005 0060 0002 44.55 0001 .0002 %RSD 79.68 19.55 84.43 4.053 4.790 .1995 68.95 -.0003 .0111 .0003 .0057 -.0002 .0001

#2 -.0004 .0156 .0010 .0061 -.0002 44.48 .0000 -.0001 .0003 .0005 .0000 .0163 .0002 .0061 -.0002 .0001 -.0001 .0003 .0002 44.65 Flem Fe2599 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) 3710) 3710) 3600) _3710) 2243) (ln2306) (_2243) Ava .0073 1.433 2.054 .0169 .0008 3.189 .0001 .0046 .0001 .0018 .0001 .7167 Stddev 0011 010 009 000 0001 0002 0003 0026 .4506 .1257 %RSD 14.57 .7284 9.907 79.09 5.466 531.7 143.3 2.062 2.055 .0041 0083 1.421 .0170 .0007 3.185 .0000 .0048 0004 #2 .0074 1,442 .0168 -.0009 3.190 .0003 .0045 -.0002 .0024 #3 .0062 1.435 2.044 .0170 -.0008 3.193 .0002 0043 -.0001 -.0010 Elem Si2124 Sr4077 Sn1899 Ti3349 TI1908 V 2924 Zn2062

IS Rof (Y 2243) 2243) 3710) 3600) (In2306) 3600) 2243 .3661 .0533 .0013 .0008 .0004 .0001 .0008 Avg Stddev .0016 .0002 .0002 .0001 .0007 .0001 .0000 %RSD 11.88

.3645 .0001 .0530 .0013 -.0001 .0007 -.0005 3660 .0003 .0534 .0016 .0008 -.0004 .3677 .0534 #3 -.0002 .0013 -.0007 .0009

Int. Std. In2306 2243 3600 _3710 2617.7 5905.0 22.1 45981 5920.7 10.4 225 30.1 .39559 .37457 .50917 %RSD .49013

5927.1 2627.0 45894 5919.6 2619.5 5904.9 46237 5951.5 2606.6 5882.9 45812 5891.2

Raw Data MA13933 page 67 of 198

									•	Zoom In Zoom Out
			,	3/28/2017 ode: CONC Custom ID	C Corr	Type: . Factor: 1 Custom II	.000000			
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0001 .0003 341.2	(Y_3710) .0070 .0043	(Y_2243) .0003 .0008	(Y_3710) .0132 .0000	(Y_3710) 0001 .0001	60.80 .15	(Y_2243) 0001 .0000	(Y_2243) 0002 .0000	(Y_3600) .0001 .0001	.0012 .000
#1 #2 #3	0002 .0001 .0004	.0077	0004	.0133	0001	60.92	.0000	0001	.0001	
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) .0023 .0013 55.48	(Y_3710) 1.438 .026		(Y_3600) .0034 .0000	(Y_2243) .0018 .0001	(Y_3710) 6.141 .011	(Y_2243) 0001 .0001	(ln2306) .0022 .0006	(Y_2243) 0004 .0002	.0018 .0018
#1 #2 #3	.0008 .0029 .0032	1.412 1.463 1.439	17.05	.0034	.0017 .0019 .0017	6.148	0002	.0022	0006	.003
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 2.229 .009 .4092		(Y_3710) .0516 .0001	(Y_3600) .0014 .0001	0018 .0003	(Y_3600) .0055 .0002	(Y_2243) .0005 .0001			
#1 #2 #3	2.238 2.229 2.219	.0000 0005 .0000	.0516	.0013	0020	.0055	.0005			
Int. Std. Avg Stddev %RSD	In2306 2571.7 4.3 .16620	Y_2243 5883.2 6.7 .11332	76.	5919.6 48.6						
#1 #2 #3	2573.9 2574.4 2566.8		45344.	5888.0						

Method: 6	0102007_0	41712(v60	(8) Mc	de: CONC	Corr	. Factor: 1	.000000			
User: adn Commen		TRACE02	: (Custom ID	2:	Custom II	03:			
Avg Stddev	Ag3280 (Y_3600) 0001 .0002 273.0	(Y_3710) .0059 .0045	(Y_2243)	(Y_3710) .0077 .0000		(Y_3710) 56.45 .19	(Y_2243) 0001 .0000	(Y_2243) 0001 .0001	(Y_3600) .0003 .0001	.0003
#1 #2 #3	0003 0002 .0002	.0111	.0000 0017 0014	.0078		56.59	0001	0001	.0001	.000
Elem IS Ref Avg Stddev %RSD	.4529	(Y_3710) 2.597 .009	(Y_3710) 7.912 .032	(Y_3600) .1184 .0003	(Y_2243) 0012 .0002	(Y_3710) 4.398	(Y_2243) .0000 .0001	(ln2306) .0030 .0002		(Y_2243 .0012 .0002
#1 #2 #3	.4588 .4515 .4484	2.588	7.882 7.946 7.906	.1185	0012	4.385 4.415 4.394	.0000		0016	.001
	Si2124 (Y_2243) .3771 .0005 .1451	(Y_2243) 0006 .0001	(Y 3710)	(Y_3600) .0011 .0002	(ln2306) 0011	(Y_3600) .0000 .000	(Y_2243) .0014 .0000			
#1 #2 #3	.3765 .3776 .3772	0006	.1173	.0013	0005 0014 0014	0001	.0014			
Avg Stddev	In2306 2599.9 1.7 .06703	5908.9 9.2	45761. 193.	5888.6 57.2						
#1 #2 #3	2597.9 2600.6 2601.2	5899.7	45714. 45596. 45974.	5850.5						

Sample Name: FA42275-10 Acquired: 3/28/2017 12:28:11 Type: Unk

Raw Data MA13933 page 69 of 198

									•	■ Zoom In ▶
										Zoom Out
Sample N	lame: FA42	282-3	Acquired:	3/28/2017	12:32:21	Type:	link			
	0102007 0			de: CONC		. Factor: 1				
User: adn	_	TRACE02	,	Custom ID		Custom II				
Commen				o doto ib		O doto is				
	•									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
IS Ref									(Y_3600)	
Avg	0003 .0002	.1043	.0006	.0032	0001 .0000	48.20 .17	0002 .0000	0003 .0001	.0004	.0003
Stddev %RSD	70.12				30.36			42.53		
701102	70.12	1.000	70.10		00.00	.0 .22	10.70	12.00	20.00	.00.0
#1	0003									.0000
#2	0004 0001				0001 0001		0002 0001	0002 0004		.0001
#3	0001	.1067	.0001	.0032	0001	48.01	0001	0004	.0004	.0006
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref									(Y_2243)	
Avg Stddev	3.934	.2573	1.805 .014	.0131	.0012	.6628	0001 .0001	.0013	0012 .0002	.0013
%RSD	.4526				6.170					
701102	. 1020	20	., 00 .	., 002	0.170	.0002	10.00	21.00	.00	0.0
#1	3.916									
#2	3.952 3.934				.0011	.6606 .6599	0002 0002			
#3	3.934	.2090	1.007	.0132	.0013	.0599	0002	.0010	0012	0002
Elem	Si2124				TI1908	V_2924				
IS Ref				(Y_3600)		(Y_3600)				
Avg Stddev	.8048	0003 .0002	.0550	.0028	0005 .0007	.0010	.0273			
%RSD	.1313				147.6					
#1	.8038				0008		.0272			
#2	.8047 .8059				.0003		.0273			
#5	.0003	0003	.0330	.0027	0010	.0013	.0274			
Int. Std.	ln2306									
Avg	2637.8	5950.2	46207.	5891.7						
Stddev %RSD	6.7 .25214									
701100	.20214	.00220	.55000	.55011						
#1	2642.0									
#2	2641.4 2630.2									
#3	2030.2	5929.5	40973.	5954.4						

Raw Data MA13933	page 70 of 198

									•	Zoom In Zoom Out
				3/28/2017 ode: CONC Custom ID	Corr	Type: Factor: 1 Custom II	.000000			
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) 0002 .0002 90.85	(Y_3710) .0533 .0081	(Y_2243) .0140 .0010	.0112		(Y_3710) 58.66 .04		(Y_2243) 0003 .0000	(Y_3600) .0001 .0000	.0004
#1 #2 #3	0003 0004 .0000	.0613	.0140	.0111	0002 0001 0002	58.70	.0000	0003	.0001	.0003 .0005 .0005
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 4.683 .017 .3650	(Y_3710) .7090 .0250	1.675	(Y_3600) .0795 .0002		(Y_3710) 1.092 .011	(Y_2243) 0002 .0001	(ln2306) .0012 .0003	(Y_2243) 0002 .0011	.0013 .0014
#1 #2 #3	4.693 4.693 4.663	.6808		.0798	.0038 .0037 .0038	1.101	0001	.0008	0014	.0001
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 1.627 .001 .0779	(Y_2243) 0002 .0002	(Y_3710) .0793 .0001	(Y_3600) .0019 .0001	TI1908 (In2306) 0013 .0007 54.95	(Y_3600) .0006 .0001	(Y_2243) .0009 .0001			
#1 #2 #3	1.628 1.628 1.626	0003	.0793	.0020	0022 0011 0008	.0005	.0008			
Int. Std. Avg Stddev %RSD	In2306 2616.5 5.3 .20441	5892.1	46040. 171.	5933.5 22.4						
#1 #2 #3	2612.1 2622.5 2615.1	5891.2	45965.	5957.2						

Raw Data MA13933 page 72 of 198

Raw Data MA13933 page 71 of 198

										Zoom Out
Comple I	Name: FA42	100 1	Acquired:	2/20/2017	12:40:40	Type:	Link			
	60102007 0			de: CONC		. Factor: 1				
	_		,							
User: ad		TRACE02	:: (Custom ID	2:	Custom II)3:			
Commer	nt:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
IS Ref		(Y_3710)								
Avg	.0002	.0214	0015	.0305	0001	43.61	0001	0001	.0004	.0080
Stddev %RSD	.0002		.0001	.0001	.0000	.06	.0000	.0000	.0001	.0001
%H5D	129.2	36.03	9.690	.1810	69.63	.1404	34.06	31.23	33.83	1.490
#1	.0001	.0140	0016	.0306	.0000	43.68	0001	0001	.0003	.0079
#2	.0005		0013		0001			0001	.0003	
#3	.0000	.0208	0015	.0305	0001	43.58	0001	0001	.0005	.0080
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref		(Y_3710)								(Y_2243)
Avg	.0585	9.591	9.042	.0029	0009	24.95	.0000	.0018	0012	.0003
Stddev	.0017		.045	.0000	.0001	.01	.0001	.0004	.0004	
%RSD	2.977	.1976	.4938	1.004	11.44	.0336	341.7	20.04	32.70	401.0
#1	.0568		9.093	.0028	0009		.0000	.0019	0008	
#2	.0603		9.015	.0029	0010		.0000	.0021	0013	
#3	.0584	9.574	9.017	.0029	0008	24.95	.0001	.0014	0015	0008
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
IS Ref		(Y_2243)				(Y_3600)				
Avg	5.007	.0000	1.065	.0050	0011	.0001	.0153			
Stddev	.008		.002	.0010	.0005		.0001			
%RSD	.1626	23910.	.1701	19.57	46.08	33.74	.7352			
#1	5.008		1.064	.0046	0014		.0152			
#2	5.014		1.067	.0061	0005		.0153			
#3	4.998	0001	1.063	.0043	0013	.0002	.0154			
Int. Std.	In2306	Y_2243	Y_3600	Y_3710						
Avg	2559.3	5807.6	45313.	5948.9						
Stddev	5.2		319.	42.6						
%RSD	.20368	.04412	.70377	.71681						

Sample Na	me: FA4213	35-1 A	equired: 3/2	28/2017 12	:44:51	Type: Unk			
Method: 60	102007_04	1712(v608)	Mode	: CONC	Corr. Fa	ctor: 1.0000	000		
User: admi	n SST	RACE02:	Cus	stom ID2:	Cus	tom ID3:			
Comment:									
Elem	Ag3280			Ba4554					
IS Ref					(Y_3710)				
Avg	.0000	2.844	.0000	.2509	0001	53.50	.0003	.0000	.0055
Stddev	.000	.022	.000	.0002					.0001
%RSD	2338.	.7633	1699.	.0902	47.69	.1891	15.98	90.01	2.508
#1	.0000	2.853	.0001	.2510	0001	53.43	.0003	.0000	.0054
#2	0003	2.860	0002	.2506	0002	53.62	.0002	0001	.0057
#3	.0003	2.819	.0000	.2509	0001	53.46	.0003	0001	.0055
Elem	Cu3247	Fe2599	K 7664	Ma2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
IS Ref					(Y 3600)				
Avg	F6.421	.5617	.4709	.7380	.0053	.0546	39.00	.0032	0003
Stddev	.007	.0050	.0134	.0198	.0000	.0002	.01	.0002	.0002
%RSD	.1128	.8956	2.835	2.688	.4820	.3251	.0378	6.410	75.25
#1	6,418	.5594	.4562	.7389	.0053	.0544	39.01	.0034	0003
#2	6.415	.5674				.0546			
#3	6.429	.5581	.4823	.7574		.0548	39.01	.0031	0005
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062
IS Ref	(Y 2243)	(Y 2243)	(Y 2243)	(Y 2243)	(Y 3710)	(Y 3600)	(In2306)	(Y 3600)	(Y 2243)
Avg	0006	.0008	2.267	.0013	.4867	.0756	0017	.0186	.2725
Stddev	.0002	.0018	.006	.0002	.0013	.0003	.0008	.0003	.0009
%RSD	29.14	222.8	.2746	11.94	.2584	.4223	47.40	1.382	.3219
#1	0007	.0003	2.262	.0014	.4853	.0753	0027	.0185	.2715
#2	0004	.0029	2.264	.0012	.4869	.0758	0013	.0185	.2728
#3	0007	0007	2.274	.0014	.4878	.0758	0012	.0189	.2732
Int. Std.	ln2306	Y 2243	Y 3600	Y 3710					
Avg	2511.2	5753.3	44785.	5801.3					
Stddev	6.5	17.2	111.	27.4					
%RSD	.25992	.29929	.24730	.47218					
#1	2518.8	5770.2	44753.	5797.6					
#2	2507.3			5775.9					
#3	2507.7	5735.8	44908.	5830.4					

Raw Data MA13933 page 73 of 198

Sample Name: MP31869-MB1

User: admin

Comment:

2565.3 2556.9 2555.7

5809.1 5804.7

5809.1

45059.

45209

5963.8

5982.2

◀ Zoom In ▶ Zoom Out

Int Std

quired: 3/28/2017	12:48:58	Type: QC
Mode: CONC	Corr. Factor:	1.000000

Method: 60102007_041712(v608) SSTRACE02: Custom ID2: Custom ID3:

Elem Units Avg Stddev %RSD	Ag3280 ppm 0001 .0004 383.1	Al3961 ppm 0068 .0020 29.20	As1890 ppm 0016 .0004 23.59	Ba4554 ppm 0003 .0001 35.70	Be3130 ppm 0001 .0001 47.18	Ca3179 ppm .0134 .0020 15.15	Cd2265 ppm 0001 .0001 40.12	Co2286 ppm 0001 .0000 22.21	Cr2677 ppm 0001 .0001 50.76	Cu3247 ppm .0009 .0002 26.41	
#1 #2 #3	.0003 0002 0005	0045 0080 0080	0018 0012 0019	0003 0002 0003	0001 0002 0001	.0113 .0135 .0154	0001 0001 0002	0002 0002 0001	0002 0001 0002	.0010 .0006 .0010	

Check? Chk Pass Chk P

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0074	.0054	0019	.0000	0011	.0435	.0000	.0001	0001	.0014
Stddev	.0021	.0235	.0125	.0000	.0000	.0010	.0001	.0007	.0004	.0014
%RSD	27.76	435.2	657.8	132.0	3.915	2.244	172.4	788.5	601.2	99.44
#1	0097	0217	.0080	.0000	0011	.0425	.0000	0005	.0001	.0022
#2	0058	.0177	.0022	.0000	0012	.0434	.0001	.0008	.0002	.0024
#3	0067	.0202	0159	.0000	0011	.0445	.0000	0001	0005	0002

Check ? High Limit Low Limit Chk Pass Chk

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0056	0002	0001	0003	0020	0002	.0006
Stddev	.0002	.0002	.0001	.0001	.0005	.0001	.0000
%RSD	3.160	122.6	109.7	16.92	23.16	69.37	4.132
#1 #2 #3	.0058 .0057 .0054	0004 .0000 0001	0001 .0000 .0000	0003 0002 0003	0024 0020 0015	0003 0003	

Check ? High Limit Low Limit None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Raw Data MA13933 page 75 of 198

Raw Data MA13933 page 74 of 198

▼ Zoom In **▶** Zoom Out

Sample Name: MP31869-MB1 Acquired: 3/28/2017 12:48:58 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment:

In2206 V 2243 V 3600 V 3710

IIII. Olu.	1112300	1_2243	1_3000	1_3/10
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	2757.0	6048.2	47252.	5877.9
Stddev	4.2	14.3	108.	64.5
%RSD	.15110	.23666	.22929	1.0976
#1	2759.8	6057.0	47128.	5808.6
#2	2758.9	6055.8	47328.	5889.0
#3	2752.2	6031.7	47301.	5936.2

Raw Data MA13933 page 76 of 198

Sample Name: CCV

In2306

Cts/S 2358.8 4.0

.16847

2354.2

2360.2 2361.8

User: admin Comment:

Int. Std.

Units Avg Stddev %RSD

#1 #2 #3

SSTRACE02:

Y_2243 Cts/S 5762.6 6.8

.11751

5769.8

5756.3 5761.8

Acquired: 3/28/2017 12:53:13

Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000

Y_3600 Cts/S 43792. 232.

.52956

43895.

43954.

Custom ID2:

Y_3710 Cts/S

5758.4 62.9

1.0920

5776.2

5810.6 5688.6

Type: QC

Custom ID3:

Sample Nar	me: CCV	Acqui	red: 3/28/	2017 12:5	3:13	Type: QC		
Method: 601	102007_04	1712(v60	08) M	ode: CON	C Co	rr. Factor:	1.000000	
User: admir	TRACE02	2: Custom ID2:			Custom ID3:			
Comment:								
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.2501	40.59	2.052	2.064	2.005	40.66	2.108	
Stddev	.0003	.08	.002	.002	.002	.06	.004	

Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.2501	40.59	2.052	2.064	2.005	40.66	2.108	2.104	2.054	2.001
Stddev	.0003	.08	.002	.002	.002	.06	.004	.004	.004	.002
%RSD	.1304	.1883	.1164	.0971	.1147	.1425	.1793	.1775	.1925	.0981
#1	.2501	40.56	2.051	2.061	2.003	40.65	2.105	2.100	2.052	2.003
#2	.2498	40.54	2.055	2.065	2.004	40.61	2.112	2.108	2.052	2.002
#3	.2504	40.68	2.051	2.065	2.007	40.73	2.107	2.103	2.059	1.999

Check? Chk PassChk Pas

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	39.60	40.52	39.76	2.047	2.076	41.13	2.072	1.995	2.042	2.049
Stddev	.07	.07	.19	.004	.006	.08	.003	.003	.003	.008
%RSD	.1718	.1620	.4711	.1704	.2874	.2031	.1657	.1533	.1630	.4078
#1	39.59	40.46	39.70	2.047	2.069	41.21	2.068	1.999	2.039	2.042
#2	39.53	40.53	39.61	2.044	2.081	41.04	2.075	1.993	2.046	2.059
#3	39.67	40.59	39.97	2.051	2.078	41.14	2.071	1.995	2.043	2.048

Check? Chk PassChk Pas Range

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	2.066	2.096	2.042	2.020	2.013	2.057	2.050
Stddev	.005	.003	.002	.004	.003	.002	.003
%RSD	.2565	.1265	.0810	.1778	.1449	.1067	.1395
#1	2.061	2.093	2.043	2.023	2.014	2.057	2.048
#2	2.072	2.098	2.041	2.016	2.015	2.055	2.054
#3	2.064	2.096	2.044	2.023	2.010	2.060	2.049

Check ? Value Range None Chk PassChk PassChk PassChk PassChk PassChk PassChk

Raw Data MA13933 page 77 of 198

•	z	0	0	m	П	r
- 2	Zo	c	n	n	o	ı

Int Std

Sample Na	me: CCB	Acquire	ed: 3/28/20	017 12:57:	08 Ty	pe: QC				
Method: 60	102007_04	1712(v608	B) Mod	de: CONC	Corr.	Factor: 1.	000000			
User: admir	n SST	RACE02:	C	ustom ID2	2:	Custom ID	3:			
Comment:										
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0000	.0042	0010	0002	.0001	.0023	.0001	.0000	.0001	.0002
Stddev	.000	.0115	.0005	.0000	.0001	.0020	.0000	.0001	.0002	.0002
%RSD	3881.	276.4	44.53	24.70	74.23	87.94	32.36	662.4	138.8	120.9
#1	.0000	.0100	0011	0001	.0002	.0044	.0001	.0002	0001	.0003
#2	.0002	.0116	0015	0002	.0001	.0019	.0001	0001	.0003	.0003
#3	0002	0091	0005	0002	.0000	.0005	.0001	.0000	.0002	0001

High Limit Low Limit	CIIK Pass	GIIK Pass	Offic Pass	Offic Pass	Clik Pass	GIIK PASS	JIK Pass	GIIK Pass	JIIK Pass	OTIK Past
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0050	.0094	0086	.0001	.0007	.0192	.0002	.0005	0009	.0004
Stddev	.0021	.0145	.0055	.0000	.0004	.0022	.0001	.0004	.0007	.0013
%RSD	42.99	154.2	64.10	24.73	60.00	11.45	93.62	89.75	73.92	285.3
#1	.0067	0044	0030	.0001	.0012	.0191	.0002	.0006	0015	0007
#2	0056	0081	- 0088	0002	0006	0215	0000	0000	- 0002	0018

Chk Pass Chk High Limit Low Limit

.0171

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0012	0002	.0001	.0001	.0014	.0001	.0001
Stddev	.0003	.0004	.0001	.0000	.0005	.0001	.0001
%RSD	24.54	220.3	74.00	38.34	39.15	73.49	100.6
#1	.0015	.0003	.0002	.0002	.0020	.0001	.0000
#2	.0010	0003	.0000	.0001	.0011	.0000	.0002
#3	.0011	0005	.0002	.0001	.0010	.0001	.0002

Check ? High Limit Low Limit None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Raw Data MA13933 page 79 of 198

Raw Data MA13933 page 78 of 198

▼ Zoom In **▶** Zoom Out

Sample Name: CCI	B Acquired: 3	3/28/2017 12:57:08	Type: QC
Method: 60102007_	_041712(v608)	Mode: CONC	Corr. Factor: 1.000000
User: admin S	SSTRACE02:	Custom ID2:	Custom ID3:
Comment:			

iiit. Ota.	1112300	1_2243	1_3000	1_3/10
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	2776.8	6136.1	47259.	5907.2
Stddev	4.3	7.8	144.	12.7
%RSD	.15477	.12706	.30573	.21577
#1	2781.8	6144.9	47373.	5899.9
#2	2774.1	6133.5	47307.	5899.9
#3	2774.7	6130.0	47096.	5921.9

In2306 V 2243 V 3600 V 3710

Raw Data MA13933 page 80 of 198

Type: QC

Corr. Factor: 1.000000

Custom ID3:

Acquired: 3/28/2017 13:01:22

Custom ID2:

Mode: CONC

Y 3710

5920.9

.15743

5924.9

5910.2

5927.5

Cts/S

Sample Name: MP31869-B1 Acquired: 3/28/2017 13:01:22 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3:

User: admin Comment Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179

Cd2265 Co2286 Cr2677 Cu3247 ppm 2.089 .006 ppm 2.099 .009 Units ppm .0470 ppm 27.78 ppm .0516 ppm 25.99 ppm .0532 ppm 5298 ppm .2041 .0009 ppm 2552 Avg Stddev .0005 .0017 .0009 .10 .0003 .10 .0001 %RSD 1.044 .3722 .2877 4248 4946 .3683 .2587 .3150 4626 .3710 .0470 #1 27.67 2.084 2.089 .0513 25.89 .0531 .5288 .2031 .2542 27.80 27.87 2.102 2.106 .0517 .0465 2.088 26.01 .0531 5290 .2050 .2555 26.08 2.096

Check? Chk PassChk Pa Value

Range

Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 Elem ppm 26.18 Units ppm 25.90 ppm 24.90 ppm .5119 ppm 5841 ppm 26.06 ppm .5278 ppm 4936 Stddev .06 .08 .10 .0018 .0017 .07 .0016 .0020 .0020 .007 %BSD 2314 3064 4074 3583 2828 2769 2948 4038 3853 3216 2.062 26.14 25.81 24.82 .5099 .5822 25.99 .5262 .4915 .5262 .5122 25 93 25.02 5852 26.06 5278 4938 5236 2 066 24.88 25.96 .5850 .5293 .4954 .5275 2.075 #3 26.15 .5135 26.13

Check? Chk PassChk Pa Value

Range

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0126 ppm .5763 ppm .5005 ppm .5541 ppm .5408 ppm 2.016 ppm .5148 Ava Stddev 0001 0019 0020 0015 010 0007 0017 .0125 5748 .5519 5391 2.006 4997 .5129

.5152 .0124 5757 5558 5412 2.025 .5012 #3 .0127 .5785 .5547 .5420 2.018 .5007 .5162 Check? None Chk Pass None Chk PassChk PassChk Pass None

Value Range

Raw Data MA13933 page 81 of 198

✓ Zoom In ►
Zoom Out

■ Zoom In ■ Zoom Out

Sample Name: MP31869-B1

User: admin Comment:

Int. Std.

Units

Avg

%RSD

Method: 60102007_041712(v608)

In2306

Cts/S

2469.9

.18893

2474.7

2465.4

2469.7

SSTRACE02:

Y_2243

5845.4

Cts/S

10.4

.17743

5853.1

5849.6

5833.6

Y_3600

45191

Cts/S

128

.28413

45160

45332

45081

Sample Name: FA42308-1F Acquired: 3/28/2017 13:05:22 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin

Comment Elom AI3961 As1890 Ba4554 Be3130

Co2286 Ag3280 Ca3179 Cd2265 Cr2677 Cu3247 IS Ref Y_3710) (Y_2243) (Y_3710) (Y_3710) (Y_3600) (Y_3710) (Y_2243) (Y_2243) _3600) Y_3600) 0000 0526 0029 0173 0001 96.39 0001 0001 0006 0017 .0079 %RSD 380.8 15.12 28.61 1.262 33.30 .3629 19.65 95.76 53.32 17.00 .0001 .0615 .0039 .0171 .0001 96.13 .0001 .0000 .0008 .0019 #2 .0001 .0500 .0025 .0175 -.0001 96.25 -.0001 .0001 .0008 .0014 .0001 .0462 .0024 .0172 -.0001 96.79 .0001 -.0001 .0002 .0019 Flem Fe2599 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) 3710) 3710) 3600) 2243) _3710) 2243) (ln2306) (_2243) Ava .0165 10.94 1.995 .0014 .0018 17.60 .0006 .0039 .0136 .0022 .0000 Stddev 0.3 .013 0002 0001 0003 0010 0008 0020 .2397 .3676 7.140 %RSD 11.85 .6665 1.056 9.148 8.260 35.01 13.26 1.980 2.005 .0013 .0186 10.91 .0014 .0020 17.55 .0007 .0037 .0125 #2 .0148 10.96 .0014 .0018 17.58 .0005 .0043 .0140 .0025 #3 .0161 10.95 2.001 .0014 .0016 17.67 .0006 0038 0143 .0027 Sr4077 Elem Si2124 Sn1899 Ti3349 TI1908 V 2924 Zn2062 IS Rof 2243 2243) 3710) 3600) (In2306) _3600) 2243) .0063 2.126 .0025 .0000 .6753 .0014 .0042 Avg Stddev .011 .000 .0017 .0001 .0010 .0004 .0001 .5049 370.8 4.77 %RSD 2.114 -.0002 .6733 .0025 .0024 .0046 .0062 2.129 .0001 .0024 .0063 #3 2.135 .0000 .6757 .0026 .0015 .0043 .0064 Int. Std. In2306 2243 3600 3710 2505.5 5752.9 44612 5815.3 5.7 15.1 53.1

Raw Data MA13933 page 83 of 198

.22634

2510.6

2499.4

2506.5

%RSD

#2

Raw Data MA13933 page 82 of 198

Sample Name: MP31869-D1 Acquired: 3/28/2017 13:09:33 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000

User: admin SSTRACE02: Custom ID2: Custom ID3 Comment:

#2

Ag3280 (Y_3600) Flor AI3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Cn2286 Cr2677 Cu3247 IS Ref (Y_3710) 2243) (Y_2243) (Y_2243) Y_3710) (Y_3710) (_3600) Y_3600) _3710) (Y - 0001 0478 0019 0171 0001 95.68 0001 0002 0004 0018 %RSD 378.5 18.45 33.69 1.005 31.87 .3363 44.06 71.54 27.52 16.76 .0002 .0501 .0015 .0171 .0002 95.35 -.0001 .0001 .0003 .0016 #2 .0006 .0381 .0026 .0169 -.0001 95.99 -.0001 -.0001 .0003 .0022 #3 .0000 .0553 .0015 -.0001 .0002 .0003 .0017 .0172 .0005 Flem Fe2599 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) 3710) 3710) 3600) 2243) 3710) (In2306) Y_2243) Ava .0052 10.90 2.019 .0013 .0013 17.45 .0004 .0027 .0130 .0016 0015 0.3 015 0000 000 05 0001 0007 0014 0003 %RSD .2600 .2617 28.27 .7383 1.858 8.983 21.11 89.90 11.16 5.612

.0014

.0011

17.42

17.50

.0003

.0004

.0026

.0025

.0134

.0121

.0133

.0031

.0013

.0003

#3 .0045 10.92 2.003 .0013 .0013 17.43 .0004 .0031 Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Elem IS Ref (Y_2243) 2.108 _2243) -.0002 _3710) .6727 3600) (ln2306) .0004 3600) .0042 _2243) .0057 .0022 Avg Stddev .003 .0003 .0018 .0001 .0008 .0001 .0000

.0013

.0013

2.032

2.022

%RSD 5.051 2.126 2.111 -.0002 .6736 .0021 .0008 .0041 .0057 .0004 6739 .0023 .0005 #3 2.105 .6707 .0023 .0009 .0042 .0057

Int. Std. In2306 2243 _3710 3600 Avg Stddev 2515.4 5790.7 44740 5847.6 3.9 %RSD .15443 .13090 .58961 1.2450

10.87

10.92

.0068

.0042

2518.8 5792.2 44508 5925.2 #2 2516.2 5782.5 44686 5780.9 5797.5 45027 5836.6

Raw Data MA13933 page 84 of 198

■ Zoom In ▶

.11723

44573

44591

44671

.26193

5769.4

5749.2

5740.0

.91303

5789.8

5876.3

5779.7

.1851

.1079

.1080 .1076

0010

.9736

.1052 .1072

.1060

									•	■ Zoom In ■
										Zoom Out
Sample N	Name: MP31	860-SD1	Acquir	red: 3/28/2	017 12:12	·46 Tv	pe: Unk			
	60102007_0		,	de: CONC		. Factor: 5				
User: adr	nin SS	TRACE02	: (Custom ID	2:	Custom II	03:			
Commen	t:									
Elem	Ag3280			Ba4554						Cu324
IS Ref		(Y_3710)								
Avg	.0004	.0162	0017	.0170	0004	97.50	0002	0006	.0013	.0028
Stddev	.0015		.0002		.0001					
%RSD	333.8	190.6	9.203	3.990	32.76	.1208	119.6	20.48	148.2	29.45
#1	.0009	.0051	0018	.0170	0003	97.41	0004	0004	.0029	.0027
#2	.0017	.0512	0016	.0177	0003	97.45	0001	0006	0009	.0020
#3	0012	0076	0019	.0164	0005	97.63	.0000	0006	.0020	.0036
Elem	Fe2599	K 7664	Ma2790	Mn2576	Magaga	Nassos	Ni2316	Phaana	Sb2068	Se1960
IS Ref		(Y 3710)								
Ava	0301	11.10	2.174	.0031	0041	17.80	0005	.0045	.0112	.0107
Stddev	.0038	.08	.059	.0003	.0007	.04	.0004	.0024	.0030	.0041
%RSD	12.58	.7415	2.731	8.039	16.20	.1984	84.60	54.49	26.44	38.30
#1	0337	11.05	2.233	.0033	0044	17.77	0007	.0022	.0141	.0109
#2	0261				0033					
#3	0306	11.06	2.176	.0033	0045	17.84	0008	.0070	.0081	.0147
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
IS Ref		(Y 2243)								
Avg	2.117	0008	.6807	.0051	.0018	.0037	.0092			
Stddev	.008	.0006	.0010	.0005	.0020	.0010	.0002			
%RSD	.3886	73.05	.1454	10.30	111.8	27.12	2.153			
#1	2,126	0013	.6797	.0048	0001	.0036	.0093			
#2	2.115				.0039					
#3	2.110	0002	.6808	.0048	.0017	.0048	.0089			
Int. Std.	In2306	Y 2243	Y 3600	Y 3710						
Avg	2639.8	5930.6	45470.	5808.3						
Stddev	7.2									
%RSD	.27308	.09258	.46341	.60576						
#1	2632.7	5926.2	45599.	5842.3						
#2	2647.1									
#3	2639.6		45584.							

Raw Data MA13933 page 86 of 198

Sample Name: MP31869-PS1 Acquired: 3/28/2017 13:18:00 Type: Unk | Method: 60102007_041712(v608) | Mode: CONC | Corr. Factor: 1.000000 | User: admin | STRACE02: | Custom ID2: | Custom ID3:

.3540

.1116

.1124 .1119

.034

7.121

7.182

7.126

Sr4077

0010

.7213

.7233

Y_3600

44433. 138.

.31115

44498.

.3282

.2924

.2937

0000

.0784

.0544 .0544

.0544

Ti3349

0003

.1092

.1088

Y_3710

5759.8 53.9

.93519

5706.1

5759.3

 Ag3280
 Al3961
 As1890
 Ba4554
 Be3130
 Ca3179
 Cd2265
 Co2286
 Cr2677
 Cu3247

 (Y_3800)
 (Y_3710)
 (Y_2710)
 (Y_2243)
 (Y_2243)
 (Y_2300)
 (Y_2300)
 (Y_2300)
 (Y_2300)
 (Y_2300)
 (Y_2300)
 (Y_2300)
 (Y_2300)
 (Y_3000)
 .0993

.0529

.0529 .0528

.0002

.1809

.1157

.1153

TI1908

0008

.0992

.0977

.0979

 Fe2599
 K_7664
 Mg2790
 Mn2576
 Mo2020
 Na5895
 Ni2316
 Pb2203
 Sb2068
 Se1960

 (Y_3710)
 (Y_3710)
 (Y_3710)
 (Y_3700)
 (Y_2243)
 (Y_3710)
 (Y_2243)
 (Y_2243)
 (In2306)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)
 (Y_2243)

.0766

99.84

99.95 99.99

02 .0002

27.88

27.88

27.92

V 2924

0001

0569

.0568

.0568

(In2306) (Y_3600) (Y_2243) .0983 .0568 .2688

.2681

.0534

.0531

.1811

.1059

.1059

.1062

Zn2062

0006

2694

.2686

.2684

.0549

.0536

.0535

.0011 2.120

.0533

.0511

.0523

.4203

.0532

.0536 .0536

.0012 .9739

.1254

.1240

.1265

Comment:

IS Ref

%RSD

#1

#3

Elem IS Ref Avg Stddev

%RSD

#3

Elem

#1

#3

Int. Std.

%RSD

#2

Zoom In ▶
 Zoom Out

IS Ref Avg Stddev 1.321

.0448

.0460 .0454

010

.3229

3.146

3.164

3.164

Si2124

006

2.122

2.121

2.132

In2306

2464.8 8.4

.34176

2455.4

2467.4

2471.7

.6016

2.711

2.722 2.743

04

.1731

21.39

21,44

21.46

Sn1899

.0004

.0528

.0527

.0521

Y_2243

5785.9 11.0

.18941

5791.1

5793.2 44527.

(Y_2243) (Y_2243) (Y_3710) (Y_3600) 2.125 .0525 .7221 .1092

										◀ Zoon
										Zoom
Sample N	Name: MP3	1869-S2	Acquir	ed: 3/28/2	2017 13:26	3:02 T	ype: Unk			
Method: (60102007_0	41712(v6	08) N	Node: CON	NC C	orr. Factor	: 1.000000)		
User: adr	min SS	STRACE0	2:	Custom	ID2:	Custom	1D3:			
Commen	it:									
Elem							Cd2265			
IS Ref	(Y_3600)									
Avg	.0474	27.93	2.054					.5037		
Stddev %RSD	.0004 .8537	.07 .2650	.004					.0010		
#1	.0475									
#2 #3	.0477		2.052 2.053							
#3	.0469	27.97	2.053	2.144	.0533	118.7	.0505	.5043	.2020	.2591
Elem	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref	(Y_3710)	(Y_3710)	(Y_3710)	(Y_3600)	(Y_2243)	(Y_3710)	(Y_2243)	(In2306)	(Y_2243)	(Y_2243
Avg	26.45	36.82		.5147				.4962		2.034
Stddev	.05	.10								
%RSD	.1780	.2739	.0276	.1760	.2856	.2032	.0977	.2901	.2950	.0968
#1	26.42		26.70							
#2	26.42									
ŧ3	26.51	36.85	26.71	.5137	.5749	42.77	.5081	.4951	.5270	2.034
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062			
IS Ref	(Y_2243)						(Y_2243)			
Avg	2.084	.5532	1.239	.5537			.5041			
Stddev	.006									
%RSD	.2772	.2643	.3255	.4010	.1715	.2592	.1505			
#1	2.089									
#2	2.078									
#3	2.085	.5526	1.244	.5524	2.002	.5061	.5037			
Int. Std.	In2306	Y 2243	Y 3600	Y 3710						
Avg	2372.7		44138.							
Stddev	2.5	8.9	256.	57.5						
%RSD	.10574	.15268	.58033	.98796						
#1	2370.4	5842.2	43850.	5774.2						
# 2	2372.4			5798.8						
#3	2375.4	5854.6	44341.	5883.7						

Raw Data MA13933 page 85 of 198

Sample Name: MP	31869-S1 A	cquired: 3/28/2017	13:22:04 T	ype: Unk
Method: 60102007_	_041712(v608)	Mode: CONC	Corr. Factor	: 1.000000
User: admin S	STRACE02:	Custom ID2:	Custom	1 ID3:
Comment:				
Elem Ag328	0 Al3961 As1	1890 Ba4554 Be	3130 Ca3179	Cd2265 C
IS Ref (Y_3600) (Y_3710) (Y_2	243) (Y_3710) (Y_3	3710) (Y_3710)	(Y_2243) (Y_
Avg .0478	28.43 2.	082 2.167 .0	0535 117.3	.0510

Method: 60102007_041712(V608)		08) IVI	Mode: CONC Corr. Factor: 1.000000								
User: adn	User: admin SSTRACE02:		2:	Custom I	D2:	Custom	ID3:				
Comment	t:										
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	
IS Ref	(Y_3600)	(Y_3710)	(Y_2243)	(Y_3710)	(Y_3710)	(Y_3710)	(Y_2243)	(Y_2243)	(Y_3600)	(Y_3600)	
Avg	.0478	28.43	2.082	2.167			.0510		.2060	.2624	
Stddev	.0002										
%RSD	.5005	.0673	.0392	.1277	.0728	.1142	.0848	.0138	.3059	.2282	
#1	.0481	28,41	2.082	2.165	.0534	117.1	.0511	.5095	.2066	.2623	
#2	.0461				.0534						
#3	.0477		2.082				.0510				
#10	.0477	20.40	2.002	2.107	.0000	117.0	.0010	.5050	.2000	.2010	
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960	
IS Ref	(Y_3710)										
Avg	26.98	37.11		.5218			.5149		.5358	2.055	
Stddev	.04	.06	.02						.0009		
%RSD	.1302	.1581	.0640	.3481	.0775	.0434	.0809	.2095	.1705	.1984	
#1	26.99	37.08	27.16	5236	.5809	42.98	.5154	.5028	.5348	2.052	
#2	27.00				.5811						
#3	26.94										
Elem						V_2924					
IS Ref Ava	(Y_2243) 2.060	.5581	1.228	.5573			.5123				
Stddev	.001	.0007					.0004				
%RSD	.0697										
701100	.0007	.1240	.1040	.0007	.1120	.4002	.0700				
#1	2.058										
#2	2.061										
#3	2.061	.5573	1.226	.5548	2.033	.5124	.5127				
Int. Std.	In2306	Y 2243	Y 3600	Y 3710							
Avg	2369.8	5837.7	43898.	5768.2							
Stddev	2.0										
%RSD	.08600	.07664	.48808	.15131							
#1	2369.9	5837.5	43673.	5758.2							
#1	2369.9		43920.								
#3	2371.8										
#0	2071.0	5542.5	 100.	5174.5							

Raw Data MA13933 page 87 of 198

346 of 383 **ACCUTEST**

Raw Data MA13933 page 88 of 198

▼ Zoom In **▶** Zoom Out

	Zoom Out	Zoom Out
		Sample Name: FA42308-3F Acquired: 3/28/2017 13:34:10 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment: Comment: Comment: Custom ID3:
Elem IS Ref Avg Stddev %RSD	Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 (Y_3600) (Y_3710) (Y_22710) (Y_23710) (Y_2243) (Y_2243) (Y_3600) (Y_3600) 0001 .0238 .0006 .0109 0002 6.024 0001 .0000 .0000 .0004 .0026 .0002 .0000 .37 .0000 .0000 .0001 .553.0 11.08 40.34 1.979 31.45 .5907 21.90 26.11 66.57 17.05	Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 IS Ref (Y_3600) (Y_3710) (Y_2243) (Y_3710) (Y_3710) (Y_3710) (Y_243) (Y_2243) (Y_2243) (Y_3600) (Y_3600) Avg .0000 .0295 0003 .0108 0001 64.94 0001 0003 .0003 .0001 Stddev .0004 .0063 .0008 .0003 .0000 .14 .0000 .0001 .0002 .0002 %RSD 12360 21.46 292.7 2.374 18.60 .2154 16.58 105.4 75.34 5.459
#1 #2 #3	0005 .0267 .0009 .0111 0002 61.82 0001 0002 .0004 .0009 .0003 .0215 .0004 .0110 0001 62.51 0001 0001 .0005 .0008 .0000 .0233 .0006 .0107 0002 62.40 0001 0001 .0001 .0001 .0006	#1
Elem IS Ref Avg Stddev %RSD	Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 (Y_3710) (Y_3710) (Y_3710) (Y_3710) (Y_3710) (Y_2243) (Y_2243)	Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 IS Ref (Y_3710) (Y_3710) (Y_3710) (Y_3710) (Y_3710) (Y_2243) (Y_2243) (Y_2243) (N2243) (Y_2243) (N2243) (Y_2243) (Y_2
#1 #2 #3	.0361 1.987 1.067 .0022 .0074 7.354 .0000 .0023 .0086 .0026 .0349 1.973 1.111 .0023 .0074 7.435 .0001 .0021 .0090 .0015 .0311 1.969 1.071 .0023 .0071 7.402 .0000 .0028 .0087 .0021	#1 0.002 3.266 1.706 0.091 0.029 8.630 0.002 0.029 0.078 0.005 #20019 3.276 1.724 0.092 0.028 8.6470001 0.029 0.066 0.037 #3 0.016 3.265 1.722 0.093 0.027 8.664 0.002 0.020 0.078 0.020
Elem IS Ref Avg Stddev %RSD	Si2124 Sn1899 Sr4077 Ti3349 TI1908 V_2924 Zn2062 (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) 1.765 0002 .3923 .0019 .0016 .0012 .0052 .001 .0001 .0007 .0001 .0001 .0001 .0603 73.07 .3861 4.392 44.93 5.161 1.348	Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V_2924 Zn2062 IS Ref (Y_2243) (Y_2740) (Y_3600) (In2306) (Y_3600) (Y_2243) Avg 3.1120003 .4890 .0017 .0003 .0031 .0040 Stddev .004 .0003 .0017 .0001 .0001 .0002 .0001 .0002 .0001 .0002 .0001 .0002 .0001 .0002 .0001 .0002 .0001
#1 #2 #3	1.765 0003 .3905 .0019 .0025 .0011 .0053 1.763 0001 .3930 .0019 .0012 .0012 .0051 1.765 0001 .3933 .0020 .0013 .0013 .0052	#1 3.1140002 .4880 .0016 .0003 .0032 .0040 #2 3.108 .0000 .4880 .0017 .0005 .0033 .0040 #3 3.1140006 .4910 .0018 .0003 .0029 .0039
Int. Std. Avg Stddev %RSD	In2306 Y_2243 Y_3600 Y_3710 2559.5 5824.0 44909. 5801.4 7.4 12.0 149. 66.7 .28885 .20667 .33106 1.1503	Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2556.7 5792.2 44865. 5802.4 Stddev 5.7 8.2 329. 24.5 %RSD .22211 .14208 .73281 .42222
#1 #2 #3	2553.6 5826.6 44997. 5826.6 2557.2 5810.9 44738. 5725.7 2567.8 5834.6 44993. 5851.9	#1 2563.3 5801.8 45245. 5808.4 #2 2553.5 5787.3 44661. 5775.5 #3 2553.3 5787.7 44690. 5823.3

∢ Zoom In ▶

▼ Zoom In ▶

Raw Data MA13933 page 89 of 198

										4 200III III P
										Zoom Out
Sample	Name: FA42	308-1	Acquired:	3/28/2017	13-38-22	Type:	link			
	60102007 0			de: CON		. Factor: 1				
User: ad	_	TRACE02	,	Custom ID		Custom II				
		THACEUZ	<u>.</u> '	oustoili id	۷.	Gustoiii ii	J3.			
Comme	nt:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
IS Ref	(Y_3600)		(Y_2243)	(Y_3710)					(Y_3600)	(Y_3600)
Avg	.0002	1.798	.0022	.0192	0001	108.1	0001	.0000	.0053	.0025
Stddev	.0002				.0000	.7		.000		.0001
%RSD	101.1	.2474	30.67	1.480	40.66	.6603	25.86	371.1	3.062	5.078
#1	.0002				0002			.0001		.0025
#2	.0000				0001	108.2		0001		
#3	.0003	1.803	.0018	.0194	0001	108.7	0001	0001	.0055	.0025
Elem	Fe2599		Mg2790							
IS Ref			(Y_3710)							
Avg	.4886	11.00	2.111	.0037	.0009	17.94	.0018	.0119	.0133	.0019
Stddev	.0048	.07			.0001	.08		.0008		.0011
%RSD	.9808	.6149	1.664	1.178	5.388	.4308	6.297	6.435	8.448	56.31
#1	.4854	10.93		.0036	.0010					
#2	.4862				.0009					
#3	.4941	11.04	2.126	.0037	.0009	18.02	.0017	.0122	.0127	.0008
Elem	Si2124				TI1908	V_2924				
IS Ref			(Y_3710)				(Y_2243)			
Avg	3.685	.0002	.7860	.0767	0002	.0065	.0113			
Stddev	.019				.0011	.0001				
%RSD	.5216	124.2	.4973	7.285	482.3	1.926	1.379			
#1	3.700	0001			0014					
#2	3.663	.0004			.0007					
#3	3.691	.0003	.7894	.0795	.0001	.0065	.0112			
Int. Std.	In2306									
Avg	2486.6	5762.1	44811.	5871.5						
Stddev	6.5									
%RSD	.26177	.13320	.26467	1.2064						
#1	2493.9									
#2	2481.2									
#3	2484.8	5753.3	44834.	5837.5						

Raw Data MA13933 page 90 of 198

Acquired: 3/28/2017 13:42:31

Sample Name: CCV

Method: 6	0102007_0			ode: CON		rr. Factor:	1.000000			
User: adn Comment		TRACE02	2:	Custom II	D2:	Custom	ID3:			
Elem Units Avg Stddev %RSD	Ag3280 ppm .2463 .0006 .2366	Al3961 ppm 40.01 .03 .0832	As1890 ppm 2.034 .003 .1487	Ba4554 ppm 2.029 .002 .0757	Be3130 ppm 1.962 .003 .1338	Ca3179 ppm 40.09 .07 .1851	Cd2265 ppm 2.102 .002 .0995	Co2286 ppm 2.097 .002 .0881	Cr2677 ppm 2.027 .007 .3707	Cu3247 ppm 1.968 .007 .3825
#1 #2 #3	.2465 .2457 .2469	40.00 39.99 40.05	2.032 2.037 2.032	2.029 2.031 2.028	1.960 1.962 1.965	40.09 40.01 40.16	2.103 2.102 2.099	2.099 2.097 2.095	2.027 2.020 2.035	1.972 1.959 1.972
Check ? Value Range	Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Fe2599 ppm 38.87 .12 .3047	K_7664 ppm 39.78 .02 .0570	Mg2790 ppm 39.05 .11 .2837	Mn2576 ppm 2.009 .004 .2129	Mo2020 ppm 2.054 .002 .0871	Na5895 ppm 40.69 .11 .2629	Ni2316 ppm 2.054 .002 .0811	Pb2203 ppm 1.953 .005 .2738	Sb2068 ppm 2.024 .000 .0133	Se1960 ppm 2.032 .004 .2168
#1 #2 #3	38.84 38.78 39.01	39.76 39.78 39.81	39.04 38.94 39.17	2.010 2.004 2.012	2.054 2.052 2.055	40.79 40.58 40.72	2.055 2.053 2.052	1.951 1.959 1.949	2.024 2.024 2.024	2.031 2.037 2.028
Check ? Value Range	Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Si2124 ppm 2.047 .002 .0745	Sn1899 ppm 2.081 .003 .1430	Sr4077 ppm 2.000 .003 .1384	Ti3349 ppm 1.984 .006 .3204	TI1908 ppm 1.977 .004 .2064	V_2924 ppm 2.029 .007 .3571	Zn2062 ppm 2.019 .001 .0377			

1.976 1.981 1.973

2.029 2.022 2.036

2.019 2.019 2.020

Type: QC

Raw Data MA13933 page 92 of 198

2.049 2.084 2.048 2.079 2.046 2.079

2.001 1.988 2.002 1.977 1.996 1.987

None Chk PassChk PassChk PassChk PassChk PassChk Pass

#1 #2 #3

Check ? Value

Range

347 of 383 **ACCUTEST**

Raw Data MA13933 page 91 of 198

In2306 V 2243 V 3600 V 3710

✓ Zoom In ► Zoom Out

Sample Name: C	CCV Acquired: 3	/28/2017 13:42:31	Type: QC
Method: 6010200	07_041712(v608)	Mode: CONC	Corr. Factor: 1.000000
User: admin	SSTRACE02:	Custom ID2:	Custom ID3:
Comment:			

Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	2386.9	5793.1	44422.	5847.8
Stddev	8.6	9.6	198.	48.6
%RSD	.36143	.16511	.44470	.83164
#1	2395.6	5804.0	44515.	5865.9
#2	2378.3	5789.2	44556.	5884.9
#3	2386.9	5786.1	44195.	5792.8

Sample Name: 0 Method: 6010200	CCB Acquired: 3 07_041712(v608)	3/28/2017 13:46:26 Mode: CONC	Type: QC Corr. Factor: 1.000000
User: admin Comment:	SSTRACE02:	Custom ID2:	Custom ID3:

Elelli	Ay3200	AISSOI	AS 1030	Da4554	De3130	Gas1/9	Gu2203	002200	012077	Gu3247	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	0001	.0023	0003	0001	.0001	.0041	.0001	.0000	.0000	.0005	
Stddev	.0002	.0049	.0007	.0003	.0001	.0037	.0000	.0000	.000	.0002	
%RSD	185.7	212.6	202.3	206.2	62.97	90.03	29.15	72.52	603.5	39.64	
#1	.0001	.0039	0011	0003	.0002	.0065	.0001	.0000	.0001	.0003	
#2	0003	.0063	0002	0003	.0001	.0058	.0001	.0000	.0000	.0006	
#3	0001	0032	.0003	.0002	.0001	0001	.0001	.0001	0003	.0006	

Check? Chk Pass Chk P

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0089	.0124	.0013	.0002	.0007	.0290	.0001	.0005	.0000	.0007
Stddev	.0045	.0152	.0112	.0000	.0003	.0078	.0001	.0002	.0012	.0003
%RSD	50.90	122.3	864.7	7.915	38.32	26.98	41.57	52.10	2489.	44.41
#1	.0127	.0127	.0067	.0002	.0009	.0250	.0001	.0004	.0013	.0004
#2	.0100	.0275	.0088	.0002	.0007	.0380	.0002	.0007	.0001	.0009
#3	.0039	0029	0116	.0002	.0004	.0239	.0001	.0003	0012	.0009

Check? Chk Pass Chk P

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0011	.0002	.0002	.0002	.0006	.0002	.0001
Stddev	.0002	.0001	.0000	.0001	.0003	.0001	.0001
%RSD	14.22	50.00	17.79	47.68	42.71	81.92	102.8
#1	.0013	.0001	.0001	.0003	.0009	.0000	.0000
#2	.0011	.0003	.0002	.0001	.0005	.0002	.0000
#3	.0010	.0003	.0002	.0003	.0004	.0003	.0001

Check ? None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Raw Data MA13933 page 93 of 198

✓ Zoom In ►
Zoom Out

٧.	oon	n I	ın	Į,
Zc	om	C)u	t

Elem

Sample Name Method: 6010 User: admin Comment:	2007_0417		: 3/28/2017 13:46:26 Mode: CONC Custom ID2:	Type: QC Corr. Factor: 1.000000 Custom ID3:
Int Ctd	I=0000 \	/ 0040 N	/ 2000 V 2710	

Units	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	2731.5	5988.3	46338.	5844.5	
Stddev	8.4	3.2	164.	27.4	
%RSD	.30571	.05311	.35301	.46936	
#1	2729.4	5991.3	46220.	5815.0	
#2	2740.7	5985.0	46525.	5869.2	
#3	2724.5	5988.7	46269.	5849.3	

Raw Data MA13933 page 94 of 198

▼ Zoom In **▶** Zoom Out

Sample Name: F	A42308-2	Acquir	ed: 3/28/2017	13:50:40	Type: Unk
Method: 6010200	7_041712(v60	08)	Mode: CONC	Corr	Factor: 1.000000
User: admin	SSTRACE02	2:	Custom ID:	2:	Custom ID3:
Comment:					

Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
IS Ref	(Y_3600)	(Y_3710)	(Y_2243)	(Y_3710)	(Y_3710)	(Y_3710)	(Y_2243)	(Y_2243)	(Y_3600)	(Y_3600)
Avg	.0000	.4654	.0013	.0125	0001	86.61	0001	0002	.0023	.0009
Stddev	.000	.0018	.0004	.0002	.0000	.20	.0000	.0001	.0002	.0001
%RSD	2016.	.3811	31.12	1.443	39.01	.2328	24.11	36.98	8.974	12.03
#1	.0003	.4653	.0013	.0126	0001	86.45	0001	0001	.0023	.0010
#2	0004	.4637	.0009	.0125	0001	86.55	0001	0002	.0025	.0009
#3	.0001	.4672	.0017	.0123	0001	86.84	0001	0002	.0021	.0007
Elem	Fe2599	K 7664	Ma2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960

Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) .4134 .0023 .5560	(Y_3710) 2.045 .026			Mo2020 (Y_2243) .0073 .0002 2.898			Pb2203 (ln2306) .0032 .0001 2.709	Sb2068 (Y_2243) .0059 .0005 8.451	Se1960 (Y_2243) .0028 .0014 50.16
#1	.4108	2.070	1.145	.0031	.0076	7.812	.0007	.0032	.0059	.0044
#2	.4141	2.017	1.149	.0032	.0074	7.795	.0003	.0031	.0064	.0016
#3	.4152	2.047	1.158	.0031	.0071	7.827	.0006	.0032	.0054	.0025

IS Ref	(Y_2243)	(Y_2243)	(Y_3710)	(Y_3600)	(In2306)	(Y_3600)	(Y_2243)
Avg	2.355	0001	.7284	.0188	0007	.0025	.0010
Stddev	.007	.0002	.0022	.0026	.0004	.0003	.0000
%RSD	.2943	261.2	.2961	13.79	52.60	10.55	3.456
#1	2.351	0003	.7295	.0206	0011	.0022	.0010
#2	2.363	.0002	.7259	.0158	0004	.0026	.0011
#3	2.352	0001	.7298	.0199	0006	.0028	.0011

Si2124 Sn1899 Sr4077 Ti3349 Tl1908 V_2924 Zn2062

Int. Std.	In2306	Y_2243	Y_3600	Y_3710
Avg	2537.3	5807.9	44913.	5820.4
Stddev	3.3	10.3	271.	39.8
%RSD	.12992	.17677	.60318	.68464
#1	2540.6	5796 1	44665	5847 4

#1 #2 #3 5847.4 5839.1 5774.6 44665. 45202. 2537.3 5812.9 5814.7

Raw Data MA13933 page 96 of 198

Raw Data MA13933 page 95 of 198

▼ Zoom In **▶** Zoom Out

mot de	,	VIA 100	00						■ Zoom In ▶
									Zoom Out
Namo: EA42	308-3	Acquired:	3/28/2017	12:51:52	Type:	Link			
_		,							
	TRACE02	2: (Sustom ID	2:	Custom IL	03:			
nt:									
Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
									.0035
									.0001
34.01	1.645	596.9	1.063	20.26	.3086	41.40	50.18	28.30	3.288
0005	.2901			0001				.0016	.0033
									.0036
0004	.2975	.0006	.0122	0001	72.82	0001	0003	.0010	.0035
Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
									.0019
									.0004
4.994	.5446	1.100	.2913	4.215	.3009	45.59	15.90	10.00	22.04
.0793	3.534	1.797	.0100	.0032	9.279			.0078	.0023
.0746								.0074	.0016
.0718	3.572	1.814	.0100	.0030	9.301	.0002	.0032	.0063	.0017
Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062			
	0003			0004		.0020			
.0494	45.96	.4592	40.24	82.59	5.264	1.008			
3.501			.0204	0003	.0034	.0020			
3.501	0004	.5849	.0112	0007	.0034	.0020			
In2306									
.05273	.04420	.39446	.78014						
	Name: FA42 60102007_0 min SS nt: Ag3280 (Y_3600) -,0004 -,0001 34.01 -,0005 -,0004 -,0004 Fe2599 (Y_3710) -,0752 -,0038 -,004 -,0004 -,0005 -,0004 -,0004 -,0006 -	Name: FA42308-3 60102007_041712(v66 min SSTRACE02 it: Ag3280 Al3961 (Y_3600) (Y_3710) -0004 .2920 0001 .0048 34.01 1.6450005 .29010002 .28840004 .2975 Fe2599 K_7664 (Y_3710) (Y_3710) .0752 3.551 .0038 .019 4.994 .5448 .0793 3.534 .0746 3.546 .0718 3.572 Si2124 Sn1899 (Y_2243) (Y_2243) 3.502 .0003 .002 .0001 .0494 45.96 3.501 .0004 3.501 .0004 3.501 .0004 3.501 .0004 3.501 .0004 1.0004 1.0004 1.0004 1.0004 1.0006 1.0006 1.0006 1.0007 .0006 1.0007 1.00	Name: FA42308-3 Acquired: 60102007_041712(v608) Mc min SSTRACE02: (Ag3280 Al3961 As1890 (Y_3600) (Y_3710) (Y_2243)0004 .29200002 0.0001 .0048 .0010 34.01 1.645 596.9 0005 .2901 .00030002 .288400140004 .2975 .0006 Fe2599 K_7664 Mg2790 (Y_3710) (Y_3710) (Y_3710) .0752 3.551 1.817 .0038 .019 .022 4.994 .5448 1.188 .0793 3.534 1.797 .0746 3.534 1.897 .0746 3.534 1.897 .0746 3.534 1.891 .0793 3.534 1.797 .0746 3.546 1.840 .0718 3.572 1.814 Si2124 Sn1899 Sr4077 (Y_2243) (Y_2243) (Y_3710) 3.502 .0003 .5836 .002 .0001 .0027 .0494 45.96 .4592 3.5040004 .5853 3.5010004 .5853 3.5010004 .5859 ln2306 Y_2243 Y_3600 2553.3 5855.7 44775. 1.3 2.66 177.	Name: FA42308-3	Name: FA42308-3	Name: FA42308-3	Name: FA42308-3	Name: FA42308-3	Name: FA42308-3

5761.9 5848.7 5783.4

			,	3/28/2017 ode: CONC Custom ID	C Corr	Type: . Factor: 1 Custom II	.000000			
Elem IS Ref Avg Stddev %RSD	0001	(Y_3710) .1510 .0092	(Y_2243) .0085	(Y_3710) .0096 .0003	(Y_3710) 0001 .0000	(Y_3710) 101.0 .5	0001 .0000	(Y_2243) .0001 .0002	(Y_3600) .0006 .0001	(Y_3600) .0014 .0001
#1 #2 #3	0001 0002 .0001	.1416	.0084	.0095	0001		0001	.0003 0001 .0000		.0014
Elem IS Ref Avg Stddev %RSD	.1814	(Y_3710) 4.363 .007	5.613	(Y_3600) .0097 .0000	(Y_2243) .0012 .0002	(Y_3710) 19.67 .06	(Y_2243) .0005 .0001	.0024	(Y_2243) 0006 .0003	(Y_2243) .0022 .0006
#1 #2 #3	.1830 .1807 .1805	4.364	5.621	.0098	.0014	19.64	.0003			.0028
Elem IS Ref Avg Stddev %RSD	4.232	(Y_2243) 0001 .0001	(Y_3710) .2932	(Y_3600) .0042 .0002	0012 .0005	(Y_3600) .0004 .0002	(Y_2243) .0024 .0000			
#1 #2 #3	4.220 4.237 4.239	0002	.2925	.0043	0015	.0002	.0024			
Int. Std. Avg Stddev %RSD	In2306 2513.2 8.3 .33033	5818.6 10.7	35.	5860.9 76.5						
#1 #2 #3	2519.0 2503.7 2517.0	5806.7	44646.	5825.9						

Raw Data MA13933 page 97 of 198

2551.8 2553.6 2554.4

5857.6 5856.8 5852.8

44612. 44963. 44749.

Haw Data MA 13933	page 96 or	190

									•	Zoom In
										Zoom Out
)8) Mc	3/28/2017 de: CONC Custom ID	Corr	Type: . Factor: 1 Custom II	.000000			
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0000 .0003 13090.	(Y_3710) .0756 .0020	(Y_2243) 0002 .0007		(Y_3710) 0001 .0000	(Y_3710) 4.602 .002	0001 .0000		(Y_3600) .0001 .0002	.0025 .0001
#1 #2 #3	0001 0002 .0003	.0774	0001	.0193		4.603 4.600 4.603		.0001 .0000 .0001	.0001 0001 .0003	.0024 .0025 .0025
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 3.992 .014 .3498		(Y_3710) 3.584		(Y_2243) 0009 .0001	(Y_3710) .6629 .0076	.0019 .0002		(Y_2243) 0002 .0004	
#1 #2 #3	3.976 3.999 4.002	4.945 4.917	3.558 3.620	.1395 .1396	0010 0008	.6553 .6631	.0021 .0019	0008 .0002 0004	0001	.0009 0009 .0011
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 1.926 .002 .1223	(Y_2243) 0002 .0001	(Y_3710) .0176 .0000	(Y_3600) .0015 .0001	TI1908 (In2306) 0014 .0007 47.28					
#1 #2 #3	1.923 1.928 1.926	0003	.0177	.0015		.0006	.0070 .0070 .0069			
Int. Std. Avg Stddev %RSD	In2306 2678.1 2.1 .07757	5990.7 6.8	46562. 93.	5867.0 34.3						
#1 #2 #3	2678.0 2680.2 2676.0	5995.1	46455.	5888.1						

Sample Na Method: 60 User: admi Comment:	0102007_0- in SS		(8) Mo	3/28/2017 ide: CONC Custom ID:	Corr	Type: . Factor: 2 Custom IE	.000000			
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0000 .0000 958.6	(Y_3710) .0004 .0071	As1890 (Y_2243) 0028 .0009 32.83	(Y_3710) .1048 .0006		(Y_3710) 97.08 .22	0001 .0001	(Y_2243) 0005 .0000		
#1 #2 #3	.0000 .0000 .0000	.0019	0038 0020 0025	.1042	0003 0002 0003	96.87	0002 0001 .0000			.0000 .0012 .0014
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) .1339 .0023 1.694	(Y_3710) 4.440 .047		.0387		(Y_3710) 78.98 .22	Ni2316 (Y_2243) 0002 .0002 96.92	(ln2306) .0047 .0014		Se1960 (Y_2243) .0046 .0029 62.50
#1 #2 #3	.1329 .1323 .1365	4.426	13.15 13.20 13.24	.0384 .0385 .0390	0029 0029 0027	78.73	0004 0002 .0000	.0058 .0031 .0053	0023 0021 .0001	.0070 .0014 .0054
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 12.75 .02 .1813	(Y_2243) 0005 .0003	Sr4077 (Y_3710) .3772 .0006 .1545	Ti3349 (Y_3600) .0033 .0008 24.05	Tl1908 (ln2306) 0012 .0005 39.68	(Y_3600) .0000 .001				
#1 #2 #3	12.78 12.74 12.74	0008	.3774 .3766 .3777	.0041 .0033 .0025	0012 0007 0017	.0001	.0025 .0027 .0028			
Int. Std. Avg Stddev %RSD	In2306 2511.0 7.3 .29038	5822.1 8.6	Y_3600 44793. 200. .44669	Y_3710 5867.9 39.0 .66524						
#1 #2 #3	2515.0 2515.5 2502.6	5821.5	44912. 44906. 44562.	5904.8 5871.9 5827.0						

Raw Data MA13933 page 100 of 198

Raw Data MA13933 page 99 of 198

Al3961

Zoom Out

0015

.0001

8.674

.0016

.0015

.0014

Se1960

_2243) .0017

0005

31.49

.0023

.0014

.0014

■ Zoom In ▶

Cu3247

.0018

0025

Sample Name: FA42384-3 Acquired: 3/28/2017 14:11:39 Sample Name: FA42384-4 Type: Unk Method: 60102007_041712(v608) Mode: CONC Method: 60102007_041712(v608) Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin

Ca3179

Cd2265

User: admin

Comment

Int. Std

Elom

#3

#2

Ag3280 Co2286 IS Ref (Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600) .0001 .0616 .0027 .0009 .0146 .0001 31.59 .0001 0003 .0008 .0003 .0001 Stddev .0002 .0003 .0000 10 .0000 .000 .0003 %RSD 116.5 4.326 39.88 2.016 19.83 .3072 41.20 43.49 35.73 6.719 -.0003 .0598 -.0012 .0149 -.0001 31.49 -.0001 -.0004 .0009 .0008 .0008 .0000 .0603 -.0005 .0145 .000 31.68 .0002 .0002 0005 -.0001 -.0008 .000 31.60 .0001 -.0002 .0011 .0009 .0647 .0144 Se1960

Be3130

Ba4554

Elem Fe2599 7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 IS Ref (Y_3710) (Y_3710) (Y_3710) 7.114 3.658 3600) (Y 2243) _3710) .8715 .0006 (ln2306) .0009 (Y 2243) Y 2243) .2896 .0343 .0010 .0005 .0013 Stddev %RSD .0001 .0008 0015 031 045 0001 0093 .0001 0003 0017 .4344 1.238 .3308 11.16 1.065 25.33 30.46 131.6 .5185 181.2 .2880 7.132 3.615 .0342 .0009 .8611 .0007 .0010 .0002 .0001 .2910 7.132 3.655 .0342 -.0011 .8790 .0006 .0006 -.0002 .0032 #3 2898 7.078 3 705 0344 -.001 8743 0004 0012 - 0014 0005

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 IS Ref _2243) .0002 _3710) .0823 ln2306) -.0008 (Y_2243) 1.116 3600) 3600) .0007 .0011 .0020 Avg Stddev 004 0003 0004 0002 0012 0001 0000 #1 1.113 0004 0823 0018 - 0002 0011 0007 .0828 .0022 .0012 .0001 .0020 .0007 #3 1.120 .0001 .0820 .0021 -.0001 .0011 .0008

3600

Y 3710

2625.4 5955.3 45400 5853.4 136 .05321 .08785 %RSD .29972 1.2842 5933.2 #2 2625.2 5952.7 45548 5843.0 2626.9 5951.8 45280 5783.9

2243

In2306

Raw Data MA13933 page 101 of 198

AI3961

✓ Zoom In ►
Zoom Out

Cu3247

Flor

#2

0020

2.044

■ Zoom In ■ Zoom Out

Comment:

IS Ref

%RSD

#1

#3

Elem

Ava

#3

Elem

Avg

#1

#3

Int. Std.

%RSD

#2

IS Ref

Stddev

IS Ref

%RSD

Sample Name: FA42384-5 Acquired: 3/28/2017 14:20:05 Type: Unk Mode: CONC Method: 60102007 041712(v608) Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment

Ba4554

As1890

Ag3280 IS Ref (Y_3710) (Y_3710) (Y_3600) Y_3710) (Y_2243) (Y_3710) (Y_2243) (Y_2243) (_3600) Y_3600) 0002 0391 0015 0177 0002 72.55 0002 0002 0003 0007 %RSD 124.3 30.06 28.50 .2457 25.10 .1509 9.374 34 35 63.79 36.43 .0004 .0510 -.0019 .0178 .0002 72.64 .0001 .0002 .0002 .0007 #2 .0001 .0386 -.0011 .0177 -.0001 72.58 -.0002 -.0003 .0006 .0010 .0276 .0002 72.43 .0002 -.0001 .0005 .0000 -.0014 .0177 .0002 Flem Fe2599 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) 3710) 3710) 2243) 3710) 2243) (In2306) (_2243) 2243) 3600) Ava .1558 3.014 7.593 .0296 .0011 14.47 .0002 .0033 .0007 .0021 .0000 Stddev 038 0002 0001 000 0013 023 000 01 0004 .7720 .0710 %RSD .8368 .5019 7.151 76.54 53.26 4.205 .1656 4.071 1544 .0021 3.001 7.622 .0296 .0010 14.48 .0003 .0031 0007 #2 .1560 3.001 7.607 .0297 -.0011 14.47 .0000 .0034 -.0010 .0021

-.001

.0012

-.0021

Be3130

Ca3179

14.46

.0007

.0003

.0023

.0024

0033

Cd2265

C02286

Cr2677

-.0003

Elem Si2124 Sr4077 TI1908 V 2924 Sn1899 Ti3349 Zn2062 3600) IS Rof 2243) 2243) 3710) .2459 3600) (In2306) 2243 10.39 .0003 .0025 .0016 .0008 Avg Stddev .03 .0002 .0006 .0001 .0005 .0001 .0001 .3193 %RSD 64.56 10.37 -.0002 .2463 .0026 -.0016 .0007 .0024

0296

.0024

7 550

2461

#3 10.42 -.0004 .2452 .0024 Int. Std. In2306 2243 3710 3600 2534.3 5884.4 45261 5810.9 18.0 27.9 .31148 .30650 %RSD .35271 .48086

.0001

3.041

.1570

10.37

2543.3 5902.3 45352 5779.1 2528.3 5884.5 45076 5831.5 2531.4 5866.2 45353

Raw Data MA13933 page 103 of 198

Raw Data MA13933 page 102 of 198

Sample Name: FA42384-6 Acquired: 3/28/2017 14:28:16 Type: Unk Mode: CONC Corr. Factor: 1.000000 Method: 60102007_041712(v608)

Acquired: 3/28/2017 14:15:53

Custom ID2:

Ba4554

0168

.0002

1.211

.0166

.0170

.0169

Mn2576

0001

.5252

.0118

.0119

.0117

Ti3349

3600)

.0012

0000

0012

.0012

.0012

3710

87.

1.4938

5918.3

5744.4

5823.5

5828.7

SSTRACE02:

Al3961

1721

.0073

4.263

.1712

1799

.1653

K 7664

(Y_3710) 5.757

030

.5194

5.732

5.750

5 790

Sn1899

(Y_2243) -.0003

0001

0004

-.0002

-.0002

Y 2243

.40696

5939.6

5916.8

5965.1

AI3961

7.872

5940 5

As1890

.0013

.0003

26.94

-.0010

.0012

.0017

Mg2790

(Y_3710) 2.365

0.31

1.322

2.333

2.396

2 365

Sr4077

_3710) .0521

0002

0522

.0519

.0522

3600

.41180

45809

45767

45680

Ag3280

0002

.0004

176.6

-.0002

.0002

.0007

Fe2599

(Y_3710)

.2903

0018

.6102

.2887

.2901

2922

Si2124

006

1.383

1.393

1.384

In2306

.31774

2622.4

2638.8

2629.7

(Y_2243) 1.387

Type: Unk

Custom ID3:

Ca3179

19.81

4065

19.72

19.88

19.83

Na5895

3710) 2.340

.7845

2.331

2.362

2 329

V 2924

3600)

.0008

0002

0009

.0009

.0005

018

Cd2265

.0001

.0000

58.05

.0000

.0001

-.0001

Ni2316

2243)

.0006

.0000

6.766

.0006

.0006

0006

Zn2062

_2243) .0034

0000

0034

.0034

.0035

Co2286

.0001

.0000

43.09

-.0001

-.0001

-.0001

Pb2203

(In2306)

.0010

0003

34.54

.0013

.0009

0007

0002

.0002

77.29

.0001

0002

.0004

Sb2068

'_2243) -.0001

.0006

.0003

.0001

0008

Mode: CONC Corr. Factor: 1.000000

Be3130

.0001

.0001

88.15

-.0001

-.0001

.0000

0002

14.85

.0010

.0013

-.0010

TI1908

(In2306) .0000

0007

0003

.0008

.0004

Mo2020

(Y_3600) (Y_2243) (Y .0118 -.0011

(Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600)

User: admin SSTRACE02: Custom ID2 Custom ID3:

As1890

Comment:

Ag3280 (Y_3600) IS Ref 2243) (Y 2243) (Y_3710) (Y_2243) Y_3710) (Y_3710) (Y_3710) (Y _3600) (Y_3600) 0000 0779 0015 0283 0001 57.87 0001 0002 0011 0004 %RSD 656.8 3.484 43.67 .4585 16.13 .2508 41.59 14.34 7.359 51.53 .0003 .0752 .0008 .0001 57.72 .0001 .0002 .0002 #2 .0000 .0806 .0021 .0284 -.0001 57.89 -.0001 .0002 .0011 .0006 #3 .0778 .0016 .0283 .0002 .0003 .0002 58.01 .0002 .0002 .001 Flem Fe2599 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) 3710) 3710) 3600) 2243) 3710) (In2306) Y_2243) Ava 2.036 7.838 6.733 .0447 .0013 12.53 .0003 .0019 .0014 .0011 017 046 0000 0002 02 0001 0001 0018 033 0006 .4254 .1811 %RSD .8380 .6879 .0420 11.72 25.08 33.66 8.510 159.1 2.016 7.805 6.690 .0447 .0015 12.51 .0002 .0019 .0013 0009

.0012

Ba4554 Be3130

Ca3179

12.52

Cd2265

.0003

.0026

C02286

Cr2677

-.0015

-.0015

#3 2.047 7.837 6.782 0446 -.0012 12.55 .0002 .0013 Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Elem IS Ref (Y_2243) 8.659 _2243) 3710) 3600) (In2306) 3600) _2243) .0017 .0011 .0010 Avg .0020 Stddev .017 .0002 .0008 .0001 .0006 .0003 .0000 %RSD 1947 27.35 112.7 4059 2.723

6.725

.0447

8.657 -.0003 .1972 .0020 -.0018 .0013 .0017 .0000 .0008 0007 .0017 #3 8.677 -.0001 .1987 .0019 -.0008 .0010 .0018 Int. Std. In2306 2243 _3710 3600

Avg Stdde 2544.3 5863.3 45192 5832.2 10.8 39.6 .21888 %RSD .18355 .08694 .67835 2545.1 5864.0 5869.5 #2 2549.4 5873.7 45162 5836.4 2538.3 5852.3 45176

Raw Data MA13933 page 104 of 198

									•	▼ Zoom In ▶
										Zoom Out
Sample N	lame: FA42	384-7	Acquired:	3/28/2017	14:32:28	Type:	Unk			
Method: 6	60102007_0	41712(v60	(8) Mc	de: CONO	C Corr	. Factor: 5	.000000			
User: adr	nin SS	TRACE02	2: (Custom ID	2:	Custom II	03:			
Commen	t:									
Elem	Ag3280	Al3961	As1890	Ra4554	Be3130	Ca3179	Cd2265	Cn2286	Cr2677	Cu3247
IS Ref					(Y 3710)					
Avg	0008	0001	0061	.0460	0005	75.49	0003	0009	0003	.0008
Stddev	.0014	.0384	.0027	.0010	.0001	.24	.0003	.0004	.0010	.0005
%RSD	181.7	45050.	44.87	2.149	18.62	.3241	110.5	44.24	352.1	67.06
#1	0023									
#2	.0006									
#3	0007	.0156	0000	.0464	0006	75.21	0006	0013	.0000	.0005
Elem	Fe2599	K 7664	Ma2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref					(Y 2243)				(Y 2243)	(Y 2243)
Avg	.5320	3.459	11.24	.0228	0068	132.0	0009	.0059	0003	.0066
Stddev	.0043		.15							
%RSD	.8159	1.474	1.301	1.009	8.810	.2394	38.53	34.05	1232.	50.81
#1	.5270	3.497	11.39	.0225	0068	132.1	0012	.0065	.0036	.0033
#2	.5336	3.401	11.22	.0227	0074	132.3	0006	.0036	0020	.0066
#3	.5352	3.477	11.10	.0230	0062	131.7	0009	.0074	0024	.0101
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
IS Ref					(In2306)					
Avg	10.24		.6603	.0029	0042		.0020			
Stddev	.03	.0007	.0018	.0004	.0022	.0014	.0004			
%RSD	.3243	39.67	.2801	15.61	53.71	701.5	18.25			
#1	10.23	0024	.6620	.0033	0058	.0000	.0016			
#2	10.21	0013	.6606	.0024	0016	0017	.0020			
#3	10.27	0012	.6583	.0029	0051	.0011	.0024			
Int. Std.	In2306	V 2243	Y 3600	Y 3710						
Avg	2621.7	6021.0	45726.	5958.4						
Stddev	11.5									
%RSD	.44027	.29539	.21620	.44398						
#1	2635.0	6035.7	45738.	5988.6						
#2	2614.0									
#3	2616.1	6001.3								
	_0.0	2301.0	.5021.	2300.0						

Raw Data MA13933 page 105 of 198

2305.6

2299.9

2301.2

#2

5600.4

5595.9

5598.9

▼ Zoom In **▶** Zoom Out

Sample Name: CCV Acquired: 3/28/2017 14:41:30 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment: Y_2243 Y_3600 Y_3710 Cts/S Cts/S Cts/S Int. Std. In2306 Cts/S 2302.2 Units 5722.7 43.8 .76515 Avg Stddev 5598.4 42613. .12889 %RSD .04152 .36575

42515.

42792.

5674.2

5759.3

			,	2017 14:4 ode: CON Custom II	IC Co	Type: QC rr. Factor: Custom				
Elem Units Avg Stddev %RSD	Ag3280 ppm .2560 .0011 .4323	Al3961 ppm 41.18 .07 .1617	As1890 ppm 2.088 .004 .1913	Ba4554 ppm 2.091 .005 .2410	Be3130 ppm 2.029 .005 .2382	Ca3179 ppm 41.15 .11 .2634	Cd2265 ppm 2.151 .002 .1005	Co2286 ppm 2.150 .002 .0853	Cr2677 ppm 2.095 .006 .2922	Cu3247 ppm 2.037 .003 .1259
#1 #2 #3	.2571 .2561 .2549	41.22 41.23 41.11	2.084 2.092 2.088	2.097 2.089 2.087	2.032 2.031 2.023	41.18 41.24 41.03	2.150 2.154 2.150	2.149 2.152 2.150	2.097 2.100 2.088	2.037 2.039 2.034
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass	Ohk Pass
Elem Units Avg Stddev %RSD	Fe2599 ppm 40.10 .13 .3160	K_7664 ppm 40.93 .15 .3709	Mg2790 ppm 40.11 .17 .4158	Mn2576 ppm 2.078 .005 .2449	Mo2020 ppm 2.116 .003 .1519	Na5895 ppm 41.77 .12 .2792	Ni2316 ppm 2.112 .003 .1320	Pb2203 ppm 2.016 .003 .1553	Sb2068 ppm 2.088 .004 .1865	Se1960 ppm 2.086 .001 .0234
#1 #2 #3	40.12 40.22 39.97	41.03 41.01 40.76	40.06 40.30 39.97	2.080 2.082 2.072	2.113 2.119 2.117	41.79 41.87 41.64	2.111 2.115 2.110	2.015 2.020 2.014	2.084 2.090 2.091	2.086 2.086 2.087
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass	Ohk Pass
Elem Units Avg Stddev %RSD	Si2124 ppm 2.105 .003 .1535	Sn1899 ppm 2.136 .002 .1106	Sr4077 ppm 2.073 .006 .3109	Ti3349 ppm 2.067 .004 .2157	TI1908 ppm 2.041 .002 .1027	V_2924 ppm 2.097 .004 .1665	Zn2062 ppm 2.079 .004 .2149			
#1 #2 #3	2.102 2.105 2.109	2.134 2.138 2.135	2.078 2.074 2.066	2.072 2.066 2.064	2.043 2.041 2.039	2.100 2.098 2.093	2.080 2.082 2.074			
Check ? Value Range	None (Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass			

Raw Data MA13933 page 106 of 198

Sample Name: CCB

Zoom In ▶
 Zoom Out

Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment: Flem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Units ppm .0000 ppm 0800. ppm -.0005 ppm .0003 ppm .0003 ppm .0052 ppm .0002 ppm .0001 ppm .0005 ppm .0005 .000 .0001 .0001 %RSD 48.54 44.87 22.44 21.82 35.82 67.98 25.57 18.81 .0000 -.0007 .0003 .0003 .0003 #2 -.0002 .0100 -.0003 .0002 .0073 .0001 .0001 .0005 .0005 #3 .0001 -.0005 .0004 .0004 .0042 .0001 .0001 .0003 .0004 Check? Chk Pass Chk P High Limit Low Limit

Type: QC

Acquired: 3/28/2017 14:45:26

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0091	.0301	.0068	.0003	.0006	.0233	.0003	.0005	0009	.0013
Stddev	.0021	.0236	.0225	.0001	.0004	.0108	.0001	.0003	.0003	.0006
%RSD	23.07	78.36	332.8	16.89	61.21	46.60	48.37	73.98	35.99	44.98
#1	.0114	.0540	.0320	.0003	.0011	.0161	.0004	.0001	0005	.0006
#2	.0084	.0295	0111	.0003	.0006	.0357	.0002	.0004	0012	.0016
#3	.0074	.0068	0006	.0004	.0003	.0179	.0002	.0008	0010	.0017

Check? Chk Pass Chk High Limit Low Limit

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0012	.0001	.0003	.0004	0004	.0004	.0001
Stddev	.0005	.0002	.0000	.0001	.0006	.0002	.0000
%RSD	45.02	252.7	8.629	13.68	145.0	48.63	63.28
#1	.0017	.0001	.0003	.0005	.0001	.0002	.0001
#2	.0011	0001	.0004	.0004	0010	.0006	.0000
#3	.0007	.0002	.0003	.0004	0003	.0004	.0000

Check ? High Limit Low Limit None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Raw Data MA13933 page 108 of 198

351 of 383 **ACCUTEST**

Raw Data MA13933 page 107 of 198

SSTRACE02:

Y_2243

6083.7

.18659

6095.2

6072.5

6083.6

Cts/S

Sample Name: CCB

User: admin

Comment: Int. Std

Units

Avg Stddev

%RSD

Method: 60102007_041712(v608)

In2306

Cts/S

2762.7

.24113

2769.1

2755.8

2763.3

Mode: CONC

Custom ID2:

Y 3710

5889.3

Cts/S

.15045

5889.8

5880.2

5897.9

Type: QC

Corr. Factor: 1.000000

Custom ID3:

Acquired: 3/28/2017 14:45:26

Y_3600

46694. 211

.45145

46810

46821

46451

Cts/S

■ Zoom In ■ Zoom Out

Acquired: 3/28/2017 14:49:42 Type: Unk

Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000

SSTRACE02: User: admin Al3961

Custom ID2: Custom ID3:

Ca3179

Comment:

#3

Sample Name: FA42117-6FA

Ag3280 As1890 Ba4554 Be3130 Cd2265 Co2286 IS Ref (Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600) .0000 .0163 .0008 0040 .0001 3.545 .0001 .0011 .0001 0018 .0073 .0002 .0002 .0000 .018 .0000 .0003 .0002 %RSD 783.0 44.69 27.94 4.155 46.81 .5149 28.90 5.937 298.7 9.942 .0000 .0079 -.0011 .0011 .0016 .0040 -.0001 3.539 .0001 .0005 #1 .0004 0203 .0006 .0038 -.0002 3.565 .0001 .0012 .0000 .0019 .0003 .0007 -.0001 3.531 .0001 .0010 .0001 .0020 #3 .0206 .0041 Fe2599 Elem K 7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960

IS Ref (Y_3710) (Y_3710) .0231 .6312 (Y_3710) .3448 (Y_3600) (Y_2243) .0351 -.0004 3710) (_2243) .0009 (ln2306) .0008 Y_2243) -.0009 _2243) .0012 Ava 1.791 0021 0036 0081 0001 0001 016 0000 0002 0005 0004 %RSD .8809 .5764 2.363 30.55 5.511 30.38 60.36 34.29 9.145 .1655 .0248 .6303 3354 .0351 .0004 1.793 .0009 .0007 .0012 .0009 -.0003 .0237 .6281 .3501 .0352 -.0003 1.805 .0010 .0010 .0010 #3 0207 6352 3488 0351 - 0006 1.774 0009 0006 - 0012 .0016

Elem Si2124 Sr4077 Ti3349 V 2924 Sn1899 TI1908 Zn2062 IS Ref (Y_2243) 4.238 (Y_2243) -.0002 _3710) .0265 _3600) .0005 (ln2306) -.0011 _3600) .0000 _2243) Avg Stddev 006 0002 0000 0000 0009 0002 0001 10.07 #1 4 232 0000 0265 0005 0003 0000 0049 .0049 -.0003 .0265 .0005 .0021 .0002

.0266

.0004

-.0010

.0002

.0050

Int. Std. In2306 Y 3710 2243 3600 6033.6 12.5 2718.8 46699 5897 9 .31438 %RSD .20756 .48088 .41622

-.0003

4.244

2724.3 6040.8 5869.7 #2 6040.8 46443. 5909.8 2709.0 6019.1 46791 5914.2

Raw Data MA13933 page 109 of 198

✓ Zoom In ►
Zoom Out

Sample Name: MP31871-D1 Acquired: 3/28/2017 14:53:54 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment

Elom Ag3280 AI3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 C02286 Cr2677 Cu3247 IS Ref 3710) (Y_2243) 3710) (Y_3710) (Y_3600) (Y_3710) (Y_2243) (Y_2243) (_3600) Y_3600) 0019 114.1 0539 1 070 0060 190.7 0033 0368 1044 1891 .005 %RSD 10.14 .2801 1.187 .4798 .8177 1.670 .4949 .3911 .4897 .2254 .0021 1.064 .0059 192.4 .0033 .0370 .1891 #2 .0018 114.4 .0541 1.073 .0060 192.7 .0033 .0367 1039 .1887 .0017 .0532 .0060 .0033 .0369 114.1 1.073 187.0 .1049 .1896 Flem Fe2599 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) 3710) 3710) 2243) _3710) 2243) (In2306) (_2243) 2243) 3600) .0055 Ava 121.8 29.98 39.35 1.708 .0026 .5993 .0922 .2380 .0000 Stddev 07 004 0000 0023 0002 0012 0020 0004 .2537 .2484 .3751 %RSD .2619 1.549 .2635 .5137 209000 8.148 121.7 29.90 39.37 1.713 .0026 .6015 .0921 2392 0023 .0052 #2 122.2 30.05 39.48 1.707 .0026 .5969 .0921 .2368 .0012 .0060 #3 121.6 29.98 39.19 1.705 .0026 5994 .0925 2379 .0012 .0052

Elem Sr4077 Si2124 Sn1899 Ti3349 TI1908 V 2924 Zn2062 IS Rof 2243) _2243) .0207 _3710) .7238 3600) (In2306) 3600) _2243) .3924 1.389 .0016 .2088 Avg Stddev .000 .0003 .0023 .002 .0014 .0003 .0013 .0186 .1124 %RSD 1.237 .3240 1.389 .0210 .7211 1.490 .0000 .2090 3936 .0206 7251 .0023 .3909 #3 1.389 .0205 .7251 1.491 -.0024 .2090 .3927

Int. Std. In2306 2243 3600 _3710 2333.6 7067.4 53486 7088.6 151 53.4 .15933 .06835 .28314 .75324 %RSD 2329.3 7068.8 #2

2336.3 7067.3 53644 7048.0 2335.1 53471 7149.1

Raw Data MA13933 page 111 of 198

Raw Data MA13933 page 110 of 198

Sample Name: FA42117-7FA Acquired: 3/28/2017 14:58:06 Type: Unk Mode: CONC Corr. Factor: 1.000000

Elem

Si2124

Method: 60102007_041712(v608) SSTRACE02: Custom ID2: Custom ID3

User: admin Comment: Ag3280 (Y_3600) Flor AI3961 As1890 Ba4554 Be3130 Ca3179 Cd2265

IS Ref 2243) (Y_2243) (Y_3710) (Y_2243) Y_3710) (Y_3710) Y_3600) (Y_3600) (Y_3710) - 0001 0166 0012 0057 0001 7 9 1 5 0000 0002 0001 0008 %RSD 196.0 22.80 41.56 .5885 48.33 .2526 110.7 12.17 263.9 48.11 .0001 .0018 .0057 .0000 7.900 .0000 .0002 .0001 .0012 #2 -.0001 .0194 -.0008 .0056 -.0001 7.908 .0001 -.0002 .0003 .0004 #3 .0001 .0182 .0011 .0057 -.0001 -.0001 .0002 .0000 .0008 7.938 Flem Fe2599 K 7664 Ma2790 Mn2576 Mo2020 Na5895 Ni2316 Ph2203 Sh2068 Se1960 IS Ref (Y_3710) Y_3710) 3710) 2243) 3710) (In2306) Y_2243) 3600) Ava .0219 .5580 .6302 .0067 .0009 2.764 .0004 .0008 .0009 .0006 0089 0119 0098 0001 0001 009 0001 0003 0008 0006 %RSD 2.137 1.551 .3251 40.65 .8851 13.09 21.93 41.48 85.08 95.10 .0312 5445 .6372 .0067 .0008 2.755 .0003 .0007 .0008 .0007 #2 .0211 .5625 .6344 .0067 -.0011 2.764 .0005 .0005 -.0002 .0012 #3 .0134 .5670 .6191 .0066 -.0009 2 773 .0004 .0011 -.0018 .0000

TI1908

V 2924

Zn2062

Sr4077 IS Ref (Y_2243) 3.805 _2243) -.0002 3710) 3600 (In2306) 3600) 2243 .0011 .0001 Avg Stddev .006 .0004 .0001 .0001 .0005 .0001 .0000 %RSD .1556 160.1 9.420 158.6 #1 3.809 .0002 .0409 .0007 -.0016 .0002 .0025 3.798 .0003 .0008 .0011 0000 .0025 #3 3.808 -.0006 .0412 .0007 -.0007 .0000 .0025

Ti3349

Int. Std. In2306 2243 3600 _3710 Avg Stddev 2694.6 6038.5 45960 5861.8 280 52.0 .35624 %RSD .11213 .60964 .88681

Sn1899

2688.3 6032.9 46087 5805.2 #2 2689.8 6036.6 45639 5872.5 2705.6 6046.1 46154 5907.5

Raw Data MA13933 page 112 of 198

■ Zoom In ▶

Cu3247

C02286

Cr2677

▼ Zoom In ► Zoom Out

										Zoom Out												Zoom Out
			8) Mo	ed: 3/28/20 de: CONO Custom ID:		20 Typ . Factor: 1. Custom ID					Meth User	ple Name: nod: 60102 :: admin iment:	007_04		8) Mo	ed: 3/28/20 de: CONC Custom ID2	Corr.	2 Typ Factor: 1. Custom ID				
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) 0002 .0001 73.38	.0023 .0059 254.0	(Y_2243) 0011 .0005 47.27	(Y_3710) .0065 .0004 5.490	(Y_3710) 0001 .0002 213.4	3.796 .011 .2829	(Y_2243) 0001 .0001 91.24	(Y_2243) 0002 .0000 21.27	(Y_3600) .0001 .0001 197.9	(Y_3600) .0007 .0003 46.95	Elem IS Re Avg Stdd	ef (Y_ ev SD	.0003 .0003 100.6	.0037 .0135 366.2	(Y_2243) 0011 .0009 78.65	Ba4554 (Y_3710) .0110 .0001 .9433	(Y_3710) 0001 .0000 54.05	(Y_3710) 4.205 .003 .0590	(Y_2243) 0001 .0000 29.90	0002 .0001 30.36	(Y_3600) 0001 .0000 30.97	.0002 .0004 181.1
#1 #2 #3	0001 0001 0003	0007 0014 .0091	0008 0018 0008	.0066 .0061 .0067	0002 0002 .0001	3.792 3.808 3.788	.0000 0001 .0000	0002 0003 0002	0001 .0001 .0002	.0007 .0003 .0010	#1 #2 #3		0006 0004 .0000	0110 .0157 .0064	0018 0001 0013	.0111 .0109 .0109	0001 0001 0001	4.205 4.208 4.203	0001 0001 0001	0002 0002 0001	0001 0001 0001	.0006 0002 .0003
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 0031 .0021 69.15	K_7664 (Y_3710) .9658 .0130 1.347	Mg2790 (Y_3710) .2954 .0204 6.899		Mo2020 (Y_2243) 0010 .0001 8.413		Ni2316 (Y_2243) .0006 .0001 21.55	Pb2203 (ln2306) .0005 .0001 11.89		(Y_2243) .0016 .0017	Elem IS Re Avg Stdd %RS	ef (Y_				Mn2576 (Y_3600) .0018 .0000 .2697		Na5895 (Y_3710) 1.705 .016 .9169	Ni2316 (Y_2243) 0001 .0001 95.55	Pb2203 (ln2306) .0009 .0004 49.53	Sb2068 (Y_2243) 0001 .0006 997.4	Se1960 (Y_2243) .0015 .0010 68.76
#1 #2 #3	0006 0046 0041	.9802 .9549 .9622	.2820 .3189 .2853	.0038 .0039 .0037	0010 0011 0009	1.693 1.694 1.686	.0008 .0005 .0005	.0006 .0005 .0004	0006 0011 0011	0003	#1 #2 #3		0009 .0035 .0021	.5905 .6269 .5853	.3024 .3008 .2850	.0018 .0018 .0018	0009 0009 0009	1.722 1.692 1.701	0002 .0000 0001	.0014 .0006 .0006	.0001 .0004 0007	.0011 .0027 .0008
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 4.385 .017 .3922	Sn1899 (Y_2243) 0003 .0001 39.54	Sr4077 (Y_3710) .0459 .0002 .4913	Ti3349 (Y_3600) .0001 .0000 32.10	TI1908 (In2306) 0006 .0005 87.13	V_2924 (Y_3600) .0001 .0001 175.2	Zn2062 (Y_2243) .0035 .0000 1.190				Elem IS Re Avg Stdd	ef (Y_		Sn1899 Y_2243) 0002 .0002 96.68	Sr4077 (Y_3710) .0340 .0003 .8727	Ti3349 (Y_3600) .0000 .0001 188.6	TI1908 (ln2306) 0008 .0003 31.91	V_2924 (Y_3600) 0001 .0002 187.2	Zn2062 (Y_2243) .0011 .0001 6.103			
#1 #2 #3	4.405 4.376 4.374	0002 0002 0004	.0458 .0461 .0457	.0002 .0001 .0002	0009 0008 .0000	.0000 .0000 .0002	.0035 .0035 .0035				#1 #2 #3		3.764 3.752 3.761	0004 .0000 0001	.0343 .0337 .0340	.0001 .0000 .0000	0011 0006 0007	.0001 0001 0003	.0011 .0010 .0012			
Int. Std. Avg Stddev %RSD	In2306 2690.4 1.6 .05930	Y_2243 5982.6 10.2 .17097	Y_3600 45919. 174. .37811	Y_3710 5908.6 59.8 1.0119							Int. S Avg Stdd %RS	ev 2	n2306 713.4 7.5 27725	Y_2243 5998.4 12.3 .20534	Y_3600 46403. 207. .44533	Y_3710 5891.8 43.6 .74032						
#1 #2 #3	2690.8 2688.6 2691.8	5989.5 5987.5 5970.9	45735. 45942. 46080.	5856.4 5895.6 5973.9							#1 #2 #3	2	2710.3 2721.9 2707.9	5987.4 6011.7 5996.1	46599. 46424. 46187.	5902.9 5843.7 5928.7						
1																						

◀ Zoom In ▶

Raw Data MA13933 page 113 of 198

4	Zo	om	l

										■ Zoom In ■
										Zoom Out
0		447.4054			2017 15:10					
	Name: FA42				2017 15:10	-	/pe: Unk			
	60102007_0		,	de: CONO		. Factor: 1				
User: ad		TRACE02	:: (Custom ID	2:	Custom II	03:			
Commer	nt:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu324
IS Ref		(Y_3710)	(Y_2243)	(Y_3710)	(Y_3710)	(Y_3710)	(Y_2243)	(Y_2243)	(Y_3600)	(Y_3600
Avg	0001	.0067	0013	.0103	0001	4.048	0001	0001	.0001	.0002
Stddev	.0002		.0006		.0000		.0000	.0000		
%RSD	169.1	66.78	47.41	1.471	27.65	.3029	32.84	14.82	172.5	158.3
#1	0003									
#2	.0001				0001			0001		
#3	0002	.0082	0017	.0102	0001	4.058	0001	0001	.0001	.0007
Elem	Fe2599				Mo2020				Sb2068	Se1960
IS Ref		(Y_3710)							(Y_2243)	
Avg	0024	.6209	.2806	.0020	0011	1.665	.0003	.0009	0006	
Stddev	.0020		.0051		.0002		.0002	.0002		
%RSD	83.95	4.253	1.808	1.477	18.26	.3468	58.65	19.63	202.5	38.92
#1	0023				0012			.0010		
#2	0005		.2847					.0007		
#3	0045	.6376	.2820	.0020	0012	1.669	.0004	.0009	0017	.0014
Elem	Si2124				TI1908					
IS Ref		(Y_2243)								
Avg	3.649	0003	.0325	.0001	0013	.0001	.0022			
Stddev	.011	.0001	.0002		.0008		.0000			
%RSD	.3130	32.16	.6315	145.0	66.27	61.35	1.943			
#1	3.657				0010					
#2	3.653	0004	.0324		0006					
#3	3.636	0003	.0327	.0000	0022	.0001	.0022			
Int. Std.	In2306	Y_2243	Y_3600	Y_3710						
Avg	2710.8	6019.6	46264.	5954.7						
Stddev	5.6									
%RSD	.20800	.42529	.22846	.88926						
#1	2708.9	6004.8								
#2	2706.2									
#3	2717.1	6049.1	46142.	5934.4						

Int. Std.

Avg Stddev %RSD

#1 #2 #3

In2306

2696.7 9.4 .34736

2687.6

2696.1 2706.3

Y_2243

5956.3 18.2

.30526

5937.8

5956.8 5974.2

Raw Data MA13933 page 114 of 198

Sample Name: FA42117-12FA

		(-,								
User: admin	SS	TRACE02	: (Custom ID:	2:	Custom II	03:				
Comment:											
Avg Stddev	0002			(Y_3710) .0001 .0001		(Y_3710) .0447	(Y_2243) 0001 .0000	(Y_2243) 0001 .0000	Cr2677 (Y_3600) .0001 .0002 155.5		
#1 #2 #3	.0002 0004 0003	0011 0010 0011	0014 0026 0010	.0002	0001 0001 0001	.0438 .0478 .0424	0001	0002 0001 0002	.0001	.0027 .0026 .0031	
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 0059 .0011 17.98		.0182	(Y_3600) .0005 .0000		(Y_3710)	(Y_2243) 0003 .0001	.0002	(Y_2243) 0006 .0012	(Y_2243) .0010	
#1 #2 #3	0062 0047 0068	.0397 .0003 .0130	.0186 0034 .0394		0010 0011 0011		0003		0017	.0015 0011 .0027	
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) .0186 .0010 5.621	Sn1899 (Y_2243) .0002 .0000 26.42	Sr4077 (Y_3710) .0001 .0001 72.13	(Y_3600) 0004 .0001		0001 .0000	(Y_2243) .0003 .0001				
#1 #2 #3	.0193 .0192 .0174	.0002 .0001 .0002	.0001 .0001 .0000	0003 0005 0003	0013 0012 0037	0001	.0003 .0002 .0003				

Acquired: 3/28/2017 15:14:58 Type: Unk

Y_3600 46079. 155.

.33729

46095. 46226. 45916.

Y_3710

5870.3 54.4 .92698

5911.6

5890.6 5808.6

353 of 383 **ACCUTEST**

Raw Data MA13933 page 115 of 198

Raw Data MA13933 page 117 of 198

	nst QC		IA139.						•	Zoom Ir
										Zoom O
_										
Sample Na					2017 15:1		ype: QC			
Method: 60	_	,	,	de: CONC		Factor: 1.				
User: admi	n SS	TRACE02	: C	custom ID:	2:	Custom ID	3:			
Comment:										
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu32
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pp
Avg	0002	0003	0009	0001	0001	.0135	0001	0002	.0000	.00
Stddev	.0001	.0052	.0006	.0000	.0000	.0012	.0000	.0000	.000	.00
%RSD	59.73	1851.	69.52	15.00	24.47	8.986	40.86	18.65	910.8	24.
#1	0001	0029	0007	0001	0001	.0148	0001	0003	0002	.00
#2	0003	0037	0004	0001	0001	.0130	0001	0002	.0000	.00
#3	0003	.0057	0017	0001	0001	.0126	0002	0003	.0001	.00
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk P
Elem	Fe2599	K_7664		Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se19
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	p
Avg	0061	.0424	.0152	.0044	0011	.0510	0002	.0001	.0003	.00
Stddev	.0010	.0256	.0080	.0000	.0001	.0038	.0001	.0001	.0006	.00
%RSD	15.84	60.32	52.69	.9331	11.31	7.407	38.27	238.7	204.6	61
#1	0051	.0529	.0078	.0045	0012	.0544	0003	.0002	0002	.00
#2	0061	.0133	.0237	.0044	0011	.0469	0001	0001	.0009	.00
#3	0070	.0611	.0140	.0044	0010	.0515	0002	.0000	.0002	.00
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk P
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062			
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	.0050	0002	.0000	0003	0023	0002	.0098			
Stddev	.0005	.0000	.0000	.0000	.0010	.0001	.0001			
%RSD	10.19	17.05	171.3	11.32	45.04	62.45	.9598			
#1	.0056	0002	.0000	0003	0027	0003	.0099			
#2	.0048	0002	.0000	0002	0011	0001	.0097			
#3	.0047	0002	.0001	0003	0030	0002	.0098			
Check ? High Limit Low Limit	None	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass			

									■ Zoom Ir
									Zoom Ou
Sample Na	me: MP318	69-MB3A	Acquire	ed: 3/28/20	17 15:23:29	9 Type	. 00		
	102007_04			: CONC		ctor: 1.000			
User: admi	_	RACE02:		stom ID2:		stom ID3:	000		
Comment:	001	TIMOLOZ.	Ou.	Stom IDE.	Out	otom ibo.			
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0005	.0028	0013	0003	0001	.0271	0001	0002	0001
Stddev	.0001	.0019	.0005	.0002	.0000	.0025	.0000	.0001	.0000
%RSD	18.26	68.67	38.24	45.91	35.83	9.211	49.55	63.22	11.36
#1	0005	.0049	0019	0004	0001	.0243	.0000	0004	0001
#2	0006	.0024	0011	0002	0001	.0291	0001	0001	0001
#3	0004	.0011	0010	0005	0001	.0280	0001	0002	0001
Check ?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Hiah Limit									
Low Limit									
Elem	Cu3247	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0003	0058	.0300	.0040	.0001	0011	.0979	0001	.0003
Stddev	.0003	.0009	.0107	.0045	.0000	.0001	.0032	.0001	.0004
%RSD	129.5	16.17	35.47	113.0	46.83	4.762	3.221	76.87	139.1
#1	.0002	0068	.0182	0010	.0001	0010	.0973	0001	.0006
#2	0001	0050	.0389	.0054	.0001	0011	.1013	0003	.0005
#3	.0006	0055	.0330	.0077	.0001	0011	.0951	0001	0002
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0004	.0014	.0046	0002	.0009	0004	0016	0001	F.0141
Stddev	.0004	.0011	.0004	.0001	.0000	.0001	.0003	.0001	.0001
%RSD	108.9	79.15	8.193	60.87	2.731	14.32	16.07	97.18	.4616
#1	0002	.0001	.0043	0001	.0009	0005	0015	0002	.0142
#2	0001	.0019	.0050	0002	.0009	0004	0015	0001	.0142
#3	0009	.0021	.0046	0003	.0009	0004	0019	.0000	.0141
Check ? High Limit Low Limit	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail .0100 0100

Samnle Nar	me: MP3186	59-MB3A	Acquire	d· 3/28/20·	17 15:23:29	Type: QC	
	102007_041		Mode:	CONC tom ID2:	Corr. Factor: Custom	1.000000	
nt. Std. Jnits Avg Stddev %RSD	In2306 Cts/S 2759.6 11.4 .41441	Y_2243 Cts/S 6098.7 11.9 .19590	Y_3600 Cts/S 47111. 180. .38129	Y_3710 Cts/S 5903.1 41.3 .69964			
†1 ‡2 ‡3	2748.0 2759.8 2770.9	6091.7	47175. 46908. 47249.	5947.5			

 Sample Name: MP31869-MB2A
 Acquired: 3/28/2017 15:19:13
 Type: QC

 Method: 60102007_041712(v608)
 Mode: CONC
 Corr. Factor: 1.000000

 User: admin
 SSTRACE02:
 Custom ID2:
 Custom ID3:

46845. 46537. 46572.

5871.6 5846.0 5836.3

2720.2 6005.0 2732.2 6031.4 2724.3 6021.1

Comment:

Int. Std. Units Avg Stddev %RSD

Raw Data MA13933 page 120 of 198

Raw Data MA13933 page 119 of 198

Sample Nam			- 4-	ed: 3/28/20		- ,	pe: QC	
Method: 601	02007_04	1/12(v608	Mod	de: CONC	Corr.	Factor: 1.	000000	
User: admin	SST	RACE02:	С	ustom ID2	2: (Custom ID	3:	
Comment:								
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286
Units	ppm	ppm	mqq	mqq	ppm	ppm	ppm	ppm
Avg	0003	.0108	0013	.0000	0001	.0305	0001	0002
Stddev	.0002	.0046	.0004	.0003	.0001	.0061	.0000	.0000
%RSD	49.28	42.85	31.39	887.8	96.72	19.87	4.037	20.47
#1	0005	.0091	0016	0002	.0000	.0340	0001	0002
#2	0003	.0072	0016	0001	0001	.0339	0001	0002

-.0009

Chk Pass Chk High Limit Low Limit

-.0001

.0003

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.0084	.0256	0003	.0002	0009	.0387	.0002	.0004	0007	.0004	
Stddev	.0016	.0147	.0021	.0000	.0001	.0123	.0002	.0002	.0012	.0003	
%RSD	19.32	57.58	748.6	6.917	9.632	31.94	88.98	53.35	182.8	72.94	
#1	.0099	.0106	.0000	.0002	0008	.0475	.0004	.0005	.0006	.0002	
#2	.0067	.0260	0025	.0002	0010	.0439	.0001	.0006	0018	.0007	
#3	.0087	.0400	.0017	.0002	0009	.0246	.0001	.0002	0008	.0002	

Chk Pass Chk High Limit Low Limit

-.0021

-.0003

.0022

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0121 ppm .0221 ppm .0002 ppm -.0026 ppm -.0003 ppm .0022 ppm -.0001 Avg Stddev 0005 0002 0000 0000 0008 0001 0000 .0121 .0223 -.0001 .0002 -.0034 -.0004 .0023 .0219 -.0001 .0001 -.0021 .0002 .0022

Check? None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

.0002

-.0001

.0126

.0220

#3

✓ Zoom In ► Zoom Out

✓ Zoom In ► Zoom Out

Cu3247

ppm .0004 .0001

20.07

.0004

.0004

Cr2677

ppm .0004 .0002

69.52

.0004

.0001

-.0002

Sample Name: MP31871-MB1

User: admin Comment:

Int. Std.

Units

Avg Stddev

%RSD

#1

Method: 60102007_041712(v608)

ln2306

Cts/S 2772.7 3.8

.13884

2776.1

2773.4 2768.5

SSTRACE02:

Y_2243

6099.5 12.3

.20132

6085.5

6108.2 6104.8

Cts/S

Y_3600 Cts/S

47275. 213

.45011

47039.

47452

47333.

Acquired: 3/28/2017 15:27:43

Custom ID2:

Y_3710

5948.4 82.1

1.3798

5926.9

6039.0 5879.2

Cts/S

Mode: CONC Corr. Factor: 1.000000

Type: QC

Custom ID3:

Sample Name: CCV Acquired: 3/28/2017 15:32:00 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: User: admin Custom ID3: Comment:

Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.2521	40.23	2.030	2.070	2.030	40.19	2.051	2.055	2.040	2.022
Stddev	.0012	.07	.007	.006	.004	.04	.004	.005	.001	.002
%RSD	.4742	.1674	.3505	.2764	.1946	.1024	.2022	.2630	.0388	.1184
#1	.2507	40.18	2.022	2.063	2.026	40.16	2.048	2.049	2.039	2.024
#2	.2530	40.31	2.036	2.073	2.034	40.24	2.056	2.060	2.041	2.020
#3	.2525	40.20	2.031	2.073	2.029	40.18	2.051	2.055	2.040	2.024

Check ? Chk PassChk Pa Value Range

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	40.07	40.88	39.72	2.063	2.082	40.97	2.057	2.014	2.034	2.035
Stddev	.10	.05	.08	.002	.005	.07	.004	.003	.009	.007
%RSD	.2478	.1268	.1915	.0989	.2411	.1750	.1856	.1484	.4172	.3558
#1	40.02	40.85	39.80	2.065	2.077	40.92	2.053	2.014	2.030	2.031
#2	40.18	40.94	39.72	2.061	2.087	41.05	2.061	2.012	2.044	2.044
#3	40.01	40.85	39.64	2.062	2.083	40.92	2.057	2.018	2.029	2.032

Chk PassChk Pa Value Range

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	2.053	2.055	2.083	2.062	2.042	2.066	2.045
Stddev	.006	.004	.007	.004	.002	.003	.002
%RSD	.3162	.1962	.3187	.1743	.0765	.1551	.0936
#1	2.048	2.051	2.076	2.058	2.042	2.063	2.043
#2	2.060	2.059	2.089	2.065	2.040	2.065	2.046
#3	2.051	2.055	2.083	2.062	2.043	2.070	2.046

Check ? Value None Chk PassChk PassChk PassChk PassChk PassChk Pass

Range

Raw Data MA13933 page 123 of 198

Raw Data MA13933 page 122 of 198

▼ Zoom In **▶** Zoom Out

Sample Name: CCV Acquired: 3/28/2017 15:32:00 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID3: User: admin Custom ID2: Comment:

Int. Std.	In2306	Y_2243	Y_3600	Y_3710
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	2351.4	5804.0	43435.	5818.1
Stddev	5.4	13.1	103.	20.2
%RSD	.22876	.22567	.23613	.34730
#1	2353.8	5818.8	43500.	5802.6
#2	2355.3	5799.1	43317.	5810.7
#3	2345.3	5794.0	43488.	5841.0

Raw Data MA13933 page 124 of 198

.0002

Type: QC

Corr. Factor: 1.000000

Custom ID3:

Acquired: 3/28/2017 15:35:58

Y_3600 Cts/S

46179. 49

.10594

46132

46176

46230.

Mode: CONC

Custom ID2:

Y_3710

5903.6

Cts/S

65.1

1.1030

5976.5

5851.3

5882.8

Sample Name: CCB Acquired: 3/28/2017 15:35:58 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3:

-.0012

User: admin Comment

.0057

Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 ppm .0063 .0018 ppm .0006 .0005 ppm .0000 .000 ppm .0001 .0001 ppm .0002 .0003 ppm .0000 Units ppm .0000 ppm .0001 ppm .0005 ppm 0000 Avg Stddev .0001 .0002 .0001 .0008 %RSD 1178. 28.66 76.14 103.8 581.3 145.7 327.6 214.6 130.1 346.0 .0001 -.0001 .0001 .0000 #1 .0001 .0083 -.0005 -.0003 .0000 .0003 .0001 .0002 .0048 -.0002 .0000 .0000 -.0011 .0000 0000 .0001

.0000

-.0009

.0001

Check? Chk Pass Chk High Limit Low Limit

-.0001

Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 ppm .0036 ppm .0249 ppm .0000 ppm .0007 ppm 0000 ppm .0004 ppm .0008 .0007 Units ppm .0147 ppm .0182 ppm 0004 Stddev .0088 .0000 .0038 .0035 .0000 .0004 .0086 .0006 .0004 %BSD 105.0 35.44 23 78 80.83 47 13 96.75 171.1 93.11 97 14 .0161 .0112 .0011 .0005 .0080 .0001 .0274 .0001 .0002 -.0001 .0015 .0182 #2 #3 .0000 .0007 0169 .0000 .0010 0009 .0249 .0001 .0003 .0104 .0001 -.0004 .0002 .0002

Check? Chk Pass Chk High Limit Low Limit

.0003

.0000

.0000

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0013 ppm .0000 ppm .0002 ppm .0000 ppm .0001 ppm .0000 ppm .0001 Ava Stddev 0002 000 0000 0000 001 0002 000 12.45 640.9 2095 109.4 .0012 .0001 .0001 .0002 -.0008 .0003 .0000 .0012 .0001 .0001 .0002 .0004 .0000 .0001

.0001 Check? None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

.0001

Raw Data MA13933 page 125 of 198

.0015

-.0001

#3

✓ Zoom In ►
Zoom Out

Int. Std.

■ Zoom In ■ Zoom Out

.0006

.0001

Sample Name: CCB

User: admin

Int. Std.

Units

Avg

#1

Stddev

%RSD

Method: 60102007_041712(v608)

ln2306

Cts/S

3.5

2748.3

.12823

2751.3

2744.4

2749.2

SSTRACE02:

Y_2243

6110.5

.20375

6123.9

6099.3

6108.2

Cts/S

Sample Name: ICV Acquired: 3/28/2017 16:03:10 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment

Ag3280 Elom Al3961 As1890 Ra4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 Units ppm .2471 ppm 41.49 ppm 2.005 ppm 1.969 ppm 1.988 ppm 42.71 ppm 2.017 ppm 2.013 ppm 1.983 ppm 1.959 .0010 .002 .005 .004 .00 .007 %RSD .4003 .1637 .0984 .2478 .2070 .1854 .0385 .0461 .1504 .3520 2.006 1.975 1.992 42.80 1.964 #2 .2474 41.43 2.005 1.966 1.984 42.68 2.017 2.014 1.980 1.963 .2460 41.49 2.003 1.967 1.989 42.65 2.018 2.013 1.951

Check ? Chk PassChk Pa Range

Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Se1960 Sb2068 ppm 40.70 ppm 41.72 ppm 42.43 ppm 2.002 ppm 2.055 ppm 41.66 ppm 2.000 Units ppm 1.959 ppm 1.990 ppm 2.000 Avg Stddev .07 .06 .03 .002 .001 .07 .000 .005 .006 .001 %RSD .1733 .1552 .0795 .1096 .0700 .1641 0144 2769 3228 .0661 40.74 #1 42.45 2.054 41.73 1.957 41.80 2.004 2.001 1.989 1.999 40.62 41.69 42.39 2.000 2.055 2.057 41.67 2.001 955 997 2 001 40.75 41.68 42.44 2.001 41.59 2.000 2.001 1.965

Check? Chk PassChk Pa Value Range

2.034

2.033

1.993

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 Zn2062 V 2924 Units ppm .3229 ppm 2.026 ppm 1.984 ppm 2.029 ppm 2.038 ppm 2.035 ppm 1.992 Avg Stddev .0009 .001 .004 .009 .006 .004 .002 %RSD .0444 .1780 .2788 .0939 3227 2.027 1.987 2.040 2.035 2.039 1.992 2.026 2.025 2.032

1.985 Check ? Value None Chk PassChk PassChk PassChk PassChk PassChk PassChk

2.022

Range

#3

Raw Data MA13933 page 127 of 198

2.026

.3239

Raw Data MA13933 page 126 of 198

✓ Zoom In ►
Zoom Out

Type: QC Sample Name: ICV Acquired: 3/28/2017 16:03:10 Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3 Comment:

3600

Y_2243 Cts/S Y_3710 Cts/S Cts/S Units Cts/S Avg Stddev 2333.8 5722.3 43267 5786.3 131 %RSD .16606 .00853 .30198 .49247 2334.5 5722.0 43122 #2 2337.3 5722.9 43376 5754.5 #3 2329.6 5722.1 43304

In2306

Raw Data MA13933 page 128 of 198

										▼ Zoom I Zoom C
										200 0
Sample N	lame: CCV	Acqui	ired: 3/28/	2017 16:1	1:49	Type: QC				
Method: 6	0102007_0	41712(v6	08) M	ode: CON	IC Co	rr. Factor:	1.000000			
User: adn	_	TRACE0		Custom I	D2:	Custom	ID3:			
Commen	t:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.2469	39.12	1.983	1.975	1.972	39.37	2.027	2.018	2.001	1.961
Stddev	.0004	.07	.002	.007	.004	.10	.002	.003	.003	.005
%RSD	.1772	.1753	.1232	.3397	.2192	.2631	.0799	.1537	.1350	.2324
#1	.2465	39.18	1.980	1.977	1.969		2.028	2.019	2.001	1.956
[‡] 2	.2470	39.05	1.983	1.967	1.969	39.26	2.025	2.014	2.004	1.963
#3	.2473	39.13	1.985	1.980	1.977	39.44	2.028	2.020	1.999	1.964
Check ? Value	Chk Pass(Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass
Range										
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	39.18	39.09	39.01	2.008	2.014	39.53	2.005	1.951	1.975	1.986
Stddev	.05	.05	.12	.005	.001	.16	.002	.000	.004	.001
6RSD	.1261	.1381	.3052	.2636	.0509	.4017	.1099	.0060	.1883	.0400
<i>‡</i> 1	39.21	39.12	39.11	2.011	2.015	39.67	2.007	1.951	1.979	1.987
‡2	39.12	39.02	39.04	2.012	2.015	39.36	2.003	1.952	1.973	1.985
‡ 3	39.21	39.12	38.88	2.002	2.013	39.57	2.006	1.952	1.972	1.986
Check ? /alue Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	1.997	2.020	1.985	2.011	1.972	2.009	1.995			
Stddev	.002	.000	.005	.004	.004	.004	.001			
%RSD	.0878	.0182	.2453	.2133	.1924	.2092	.0723			
‡1	1.999	2.020	1.981	2.010	1.972	2.007	1.996			
‡2	1.995	2.020	1.983	2.016	1.969	2.013	1.993			
#3	1.997	2.019	1.991	2.007	1.976	2.006	1.994			
Check ? Value Range	None (Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass			

Raw Data MA13933 page 129 of 198

									4	Zoom In ▶
										Zoom Out
Sample Na Method: 60 User: admi Comment:	102007_04		B) Mo	017 16:19: de: CONC custom ID2	Corr.	pe: QC Factor: 1. Custom ID				
Elem Units Avg Stddev %RSD	Ag3280 ppm 0002 .0003 146.6	Al3961 ppm 0019 .0093 486.9	As1890 ppm 0003 .0005 179.8	Ba4554 ppm .0003 .0002 44.11	Be3130 ppm .0005 .0001 11.84	Ca3179 ppm .0068 .0009 13.87	Cd2265 ppm .0001 .0000 31.83	Co2286 ppm .0001 .0001 56.85	Cr2677 ppm .0006 .0001 11.55	Cu3247 ppm .0006 .0002 25.90
#1 #2 #3	0003 0005 .0001	.0087 0090 0054	0004 0007 .0003	.0004 .0002 .0004	.0004 .0005 .0005	.0063 .0063 .0079	.0002 .0001 .0002	.0002 .0001 .0002	.0005 .0005 .0006	.0007 .0007 .0004
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass (Chk Pass	Chk Pass (Chk Pass (Chk Pass (Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Fe2599 ppm .0113 .0022 19.08	K_7664 ppm 0010 .0157 1547.	Mg2790 ppm .0118 .0105 89.42	Mn2576 ppm .0004 .0001 21.15	Mo2020 ppm .0006 .0002 25.59	Na5895 ppm .0075 .0016 21.66	Ni2316 ppm .0000 .0001 240.3	Pb2203 ppm .0002 .0005 192.8	Sb2068 ppm .0007 .0004 57.99	Se1960 ppm .0001 .0012 2428.
#1 #2 #3	.0093 .0112 .0136	.0131 0179 .0018	.0018 .0107 .0227	.0005 .0003 .0003	.0007 .0007 .0004	.0089 .0057 .0079	.0000 .0000 .0001	0001 .0008 .0001	.0009 .0010 .0002	0003 .0014 0010
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass (Chk Pass	Chk Pass (Chk Pass (Chk Pass (Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Si2124 ppm .0006 .0003 54.80	Sn1899 ppm .0004 .0001 29.72	Sr4077 ppm .0004 .0000 5.322	Ti3349 ppm .0006 .0001 19.33	TI1908 ppm .0000 .001 2685.	V_2924 ppm .0004 .0001 22.02	Zn2062 ppm .0001 .0000 17.44			
#1 #2 #3	.0009 .0007 .0002	.0004 .0002 .0004	.0004 .0004 .0004	.0005 .0007 .0005	.0011 0012 .0000	.0003 .0005 .0004	.0002 .0002 .0001			

None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Raw Data MA13933	page 130 of 198

▼ Zoom In **▶** Zoom Out

Sample Name: CCB Acquired: 3/28/2017 16:19:58 Type: QC User: admin SSTRACE02: Custom ID2: Custom ID3: Comment:

 Sample Name: CCV
 Acquired: 3/28/2017 16:11:49
 Type: QC

 Method: 60102007_041712(v608)
 Mode: CONC
 Corr. Factor: 1.000000

 User: admin
 SSTRACE02:
 Custom ID2:
 Custom ID3:

.44156

| 102306 | Y_2243 | Y_3600 | Y_3710 | Cts/S | Cts/S | Cts/S | Cts/S | 2345.8 | 5744.1 | 43269. | 5807.4 | 5.0 | 5.9 | 191. | 25.6 |

2350.1 5750.8 43181. 5811.3 2347.0 5741.7 43138. 5780.1 2340.3 5739.9 43488. 5830.9

.21325 .10200 .44116

Comment:

Units Avg Stddev %RSD

Int. Std.	In2306	Y_2243	Y_3600	Y_3710	
Units	Cts/S	Cts/S	Cts/S	Cts/S	
Avg	2701.0	5986.3	45649.	5803.0	
Stddev	4.0	2.5	178.	31.1	
%RSD	.14670	.04182	.39073	.53593	
#1	2700.1	5985.0	45754.	5838.3	
#2	2705.3	5989.2	45750.	5779.7	
#3	2697.6	5984.7	45443	5791.1	

Raw Data MA13933 page 132 of 198

Raw Data MA13933 page 131 of 198

Check ? High Limit Low Limit

										◀ Zoom I
										Zoom O
0 1 - •	MPa	074 D4		l- 0/00 /2	047.40.01					
	ame: MP31				017 16:24	,	pe: QC			
Method: 6	0102007_0	,	,	ode: CON	IC Co	rr. Factor:				
User: adn	nin SS	TRACE0	2:	Custom I	D2:	Custom	ID3:			
Comment	:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0457	26.76	1.975	2.020	.0512	25.18	.0498	.4969	.1980	.2507
Stddev	.0003	.12	.005	.006	.0002	.07	.0002	.0015	.0005	.0005
%RSD	.6939	.4383	.2429	.3144	.2983	.2964	.3658	.2988	.2644	.1804
#1	.0455	26.64	1.972	2.013			.0497	.4957	.1975	.2503
#2	.0455	26.88	1.973	2.023	.0512	25.23	.0498	.4963	.1980	.2512
#3	.0461	26.76	1.981	2.025	.0510	25.22	.0500	.4986	.1986	.2505
Check ? Value Range	Chk Pass0	Chk Pass	Chk Pass(Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	25.99	25.09	24.50	.5021	.5602	25.01	.5029	.4762	.4948	1.952
Stddev	.01	.04	.09	.0014	.0013	.08	.0010	.0007	.0020	.008
%RSD	.0327	.1757	.3796	.2846	.2254	.3010	.2073	.1427	.4037	.3929
#1	25.99	25.10	24.42	.5005			.5022	.4767	.4927	1.947
#2	25.98	25.05	24.60	.5025	.5598	25.09	.5023	.4765	.4951	1.948
#3	26.00	25.13	24.47	.5033	.5616	25.01	.5041	.4755	.4966	1.961
Check ? Value Range	Chk Pass0	Chk Pass	Chk Pass(Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass	Chk Pass	Chk Pass
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Avg	.0134	.5637	.5430	.5373	1.948	.4875	.4943			
Stddev	.0003	.0014	.0004	.0005	.005	.0007	.0012			
%RSD	2.127	.2457	.0740	.0991	.2456	.1361	.2336			
#1	.0131	.5622	.5434	.5367		.4873	.4929			
#2	.0134	.5640	.5429	.5377	1.943	.4882	.4950			
#3	.0137	.5649	.5426	.5375	1.953	.4870	.4948			
Check ? Value Range	None (Chk Pass	None	None	Chk Pass	Chk Pass(Chk Pass			

Raw Data MA13933	page 134 of 198
------------------	-----------------

Raw Data MA13933 page 136 of 198

 Sample Name: MP31871-B1
 Acquired: 3/28/2017 16:24:21
 Type: QC

 Method: 60102007_041712(v608)
 Mode: CONC
 Corr. Factor: 1.000000

 User: admin
 SSTRACE02:
 Custom ID2:
 Custom ID3:

2500.7 5957.8 45606. 6006.5 2501.1 5952.6 45507. 5996.5 2505.0 5961.3 45336. 5981.1

Comment:

Int. Std. Units Avg Stddev %RSD

										▼ Zoom
										Zoom C
Sample I	Name: MP3	1871-SD1	Acqu	uired: 3/28	/2017 16:	32:32	Type: Unk	:		
Method:	60102007)41712(v6	08) N	lode: CON	IC C	orr. Factor	: 5.000000			
User: ad	min SS	STRACE0	2:	Custom I	D2:	Custon	1D3:			
Commer	nt:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
IS Ref							(Y_2243)			
Avg	.0026	121.9	.0647	1.071	.0071	240.7	.0036	.0422		.2062
Stddev %RSD	.0014 51.61	.2 .1692			.0001 1.957	.5 2219.		.0004 1.010		
/61 TOD	31.01	.1032	2.131	.1042	1.557	.2213	7.037	1.010	1.022	.4003
#1	.0024				.0073			.0420		
#2	.0014	122.2			.0071			.0419		
#3	.0041	121.9	.0657	1.071	.0070	241.1	.0039	.0427	.1204	.2058
Elem	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref	(Y_3710)	(Y_3710)	(Y_3710)	(Y_3600)	(Y_2243)	(Y_3710)	(Y_2243)	(In2306)	(Y_2243)	(Y_2243)
Avg	140.4	31.91	45.18	1.929	.0028			.2355	.0059	.0122
Stddev %RSD	.4 .2730		.22 .4855		.0003 9.452			.0040 1.716		
%RSD	.2/30	.6204	.4655	.0653	9.452	5.294	.7060	1.716	66.46	31.04
#1	140.0	31.77	44.94	1.927	.0030	.7326	.1051	.2398	.0065	.0082
#2	140.4				.0029			.2350		
#3	140.8	32.14	45.37	1.929	.0025	.7983	.1038	.2318	.0017	.0160
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
IS Ref	(Y_2243)	(Y_2243)	(Y_3710)	(Y_3600)	(In2306)	(Y_3600)	(Y_2243)			
Avg	1.736	.0251	.8484	1.618	.0022	.2336	.4601			
Stddev	.004				.0041					
%RSD	.2446	3.229	.3649	.3371	186.0	.9020	.0845			
#1	1.732	.0246	.8454	1.612	.0026	.2319	.4598			
#2	1.735									
#3	1.740	.0247	.8516	1.623	0021	.2359	.4598			
Int. Std.	In2306	Y 2243	Y 3600	Y 3710						
Avg	2529.6	6182.9								
Stddev	2.9									
%RSD	.11517	.04801	.40860	.50806						
#1	2527.2	6184.0	47169.	6139.0						
#2	2528.8	6185.1	46791.	6117.0						
#3	2532.9	6179.5	46925.	6077.7						

Raw Data MA13933 page 133 of 198

Raw Dat	a MA139	აა pag	e 133 of	198						
										€ Zoom In ►
										Zoom Out
Sample Na	ame: FA42	067-5	Acquired:	3/28/2017	16:28:19	Type:	Unk			
Method: 60	102007_0	41712(v60	8) Mo	de: CONC	Corr	. Factor: 1	.000000			
User: adm	in SS	TRACE02	· (Custom ID	2:	Custom ID	03:			
Comment:										
Comment.										
Elem	Ag3280	Al3961	Ac1890	Ba4554	Be3130	Ca3170	Cd2265	C02286	Cr2677	Cu3247
IS Ref									(Y 3600)	
Avg	.0017	107.2	.0546	.9446	.0060	204.6	.0030	.0344	.1008	.1788
Stddev	.0001	.1	.0002	.0010	.0001	2.0		.0000	.0001	.0003
%RSD	6.401	.1392	.4168	.1016	1.445	.9850		.1171	.1278	.1801
#1	.0017	107.4	.0543	.9457		205.9				.1788
#2	.0018	107.2	.0547	.9444		202.3	.0030		.1008	.1791
#3	.0016	107.1	.0547	.9438	.0059	205.7	.0030	.0344	.1008	.1784
Elem	Fe2599	V 7664	Mg2790	Mp2E76	Magngo	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref		(Y 3710)							(Y 2243)	
Avg	119.0	28.13	38.31	1.643	.0038	.5410	.0868	.2323	.0016	.0044
Stddev	.3	.04	.14	.003	.0001	.0048	.0003	.0019	.0007	.0006
%RSD	.2160	.1525	.3725	.1826	2.786	.8911	.3743		44.19	13.38
#1	119.3	28.18	38.44	1.643		.5393	.0870		.0016	.0041
#2	118.8	28.11	38.16	1.647	.0038	.5464	.0864	.2305	.0024	.0051
#3	118.9	28.10	38.32	1.641	.0038	.5373	.0870	.2343	.0009	.0042
	0:0104	C=1000	0-4077	T:0040	TI1000	V 0004	Zn2062			
Elem IS Ref	Si2124	Sn1899 (Y 2243)	Sr4077		TI1908	V_2924				
Ava	1.484	.0205	.7445	1.415	0022	.2030	.3734			
Stddev	.003	.0002	.0011	.001	.0010	.0007	.0005			
%RSD	.1705	.7785	.1507	.0585	44.29	.3248				
701105				.0000		.02.10				
#1	1.486	.0206	.7457	1.414	0014	.2034	.3733			
#2	1.481	.0203	.7445	1.415	0032	.2033	.3729			
#3	1.486	.0204	.7434	1.415	0018	.2022	.3740			
Int. Std.	In2306		Y_3600	Y_3710						
Avg Stddev	2362.5	7114.3 16.1	53071. 160.	7121.4 39.9						
%RSD	6.6 .28035	.22699	.30209	.56058						
76N3D	.20033	.22099	.30209	.50056						
#1	2361.9	7112.4	53160.	7078.9						
#2	2369.3	7131.3	52886.	7158.1						
#3	2356.1	7099.1	53167.	7127.3						

Raw Data MA13933 page 135 of 198

358 of 383 SGS 358 of 383

Sample N	lame: MP3	1871-PS1	Acqu	ired: 3/28/	2017 16:3	36:38	Type: Unk	(
Method: 6	60102007)41712(v6	(80) M	lode: CON	ic co	orr. Factor	1.000000)		
User: adn	_	STRACE0		Custom I		Custom				
Commen		JIIIAOLO	۷.	Ouston	DZ.	Ouston	100.			
Commen	i.									
Elem	Ag3280	Al3961	As1890				Cd2265		Cr2677	
IS Ref									(Y_3600)	
Avg	.0392	109.5	.1401	1.165	.0482	208.0	.0431	.0746	.1423	.2656
Stddev	.0002	.4	.0007	.004	.0002	1.8	.0001	.0001	.0005	.0008
%RSD	.4994	.3292	.4928	.2976	.3474	.8724	.2702	.0893	.3762	.2841
#1	.0391	109.7	.1404	1,168	.0484	206.0	.0432	.0745	.1421	.2662
#2	.0394	109.0	.1406	1.161	.0483	208.4	.0430	.0746	.1419	.2647
#3	.0390	109.6	.1393	1.166	.0480	209.5	.0430	.0746	.1429	.2657
""	.0000	100.0		11100	.0 .00	200.0	.0.00	.07.10		.2007
Elem	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref	(Y 3710)	(Y 3710)	(Y 3710)	(Y 3600)	(Y 2243)	(Y 3710)	(Y 2243)	(In2306)	(Y 2243)	(Y 2243)
Avg	121.4	36.52	42.32	1.680	.0906	9.194	.1662	.2842	.0883	.0840
Stddev	.4	.11	.22	.006	.0001	.034	.0002	.0009	.0013	.0008
%RSD	.2962	.2939	.5107	.3453	.1139	.3652	.1111	.3309	1.515	.9036
#1	121.7	36.64	42.50	1.678	.0907	9.229	.1664	.2844		.0843
#2	121.0	36.43	42.08	1.676	.0905	9.163	.1662	.2832	.0881	.0832
#3	121.4	36.49	42.38	1.687	.0907	9.189	.1661	.2850	.0871	.0847
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
IS Ref		(Y 2243)				(Y 3600)				
Avg	1.492	.0601	.7881	1.498	.0931	.2440	.5744			
Stddev	.002	.0003	.0010	.004	.0003	.0006	.0006			
%RSD	.1330	.4419	.1233	.2620	.3727	.2601	.0984			
			50							
#1	1.493	.0599	.7888	1.500	.0933	.2439	.5743			
#2	1.493	.0604	.7870	1.493	.0927	.2435	.5750			
#3	1.490	.0599	.7886	1.500	.0934	.2447	.5739			

	Name: MP3			ed: 3/28/2			ype: Unk			
Method: (60102007_0)41712(v6	,	lode: CON			: 1.000000	1		
User: adr	min SS	STRACE0	2:	Custom I	D2:	Custom	1D3:			
Commen	it:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
IS Ref							(Y_2243)			
Avg	.0394				.0479		.0411			
Stddev	.0005	.3	.001	.003	.0002	1.6	.0001	.0004	.0008	.0011
%RSD	1.241	.1585	.0484	.0912	.4529	.6949	.3588	.0856	.2863	.2588
#1	.0389	165.8	1.604	2.779	.0478	234.6	.0412	.4123	.2714	.4192
#2	.0396		1.605		.0482	231.3	.0409	.4119	.2729	.4171
#3	.0399	165.6	1.604	2.784	.0479	232.8	.0411	.4116	.2723	.4176
Elem	Fe2599									
IS Ref	(Y_3710)		(Y_3710)	(Y_3600)			(Y_2243)	(In2306)		
Avg	158.2		65.37		.3561	21.32	.4830			
Stddev	.6									
%RSD	.3953	.2214	.6011	.1523	.1890	.2368	.1207	.2588	.4310	.1116
#1	157.9									
#2	159.0			2.250						
#3	157.8	55.06	65.08	2.244	.3562	21.27	.4827	.7451	.1241	1.516
Elem				Ti3349			Zn2062			
IS Ref	(Y_2243)	(Y_2243)	(Y_3710)				(Y_2243)			
Avg	1.810		1.259		1.875		.8178			
Stddev	.001		.003							
%RSD	.0774	.1812	.2282	.1190	.1057	.3936	.1605			
#1	1.809									
#2	1.810		1.262							
#3	1.811	.4095	1.258	2.264	1.876	.6069	.8179			
Int. Std.		Y_2243								
Avg	2232.4									
Stddev	2.5									
%RSD	.11328	.10758	.35451	.96537						
#1		7116.8								
#2	2234.6									
#3	2232.9	7109.1	53339.	7266.8						

Raw Data MA13933 page 137 of 198

In2306 2283.5 4.4 .19385

2278.6 2287.3 2284.5

Int. Std. Avg Stddev %RSD

Y_2243 6923.0 14.7 .21186

6909.8 6920.5 6938.8

Y_3600 51943. 202. .38919

51998. 52112. 51719.

Y_3710

7039.4 75.9 1.0780

6959.5 7110.5 7048.2

- ◀	Zoom	lr
_	700m	ς.

▼ Zoom In **▶** Zoom Out

In ►		
Out		

Raw Data MA13933 page 138 of 198

▼ Zoom In **▶** Zoom Out

			(80)	ed: 3/28/2 lode: CON Custom I	IC Co	i:00 Ty orr. Factor Custom)			
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0402 .0003 .6288	Al3961 (Y_3710) 155.6 .5 .3183	(Y_2243) 1.632 .002	(Y_3710) 2.724 .008		216.0 .7	(Y_2243) .0411 .0001	(Y_2243) .4161 .0006	(Y_3600) .2687 .0011	Cu3247 (Y_3600) .4089 .0009 .2222	
#1 #2 #3	.0402 .0404 .0399	156.1 155.3 155.3	1.631 1.634 1.630	2.719	.0486	215.2			.2698	.4097 .4079 .4090	
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 151.1 .3 .1962		(Y_3710) 62.90 .25	(Y_3600) 2.130 .013	(Y_2243) .3684 .0003	21.67	(Y_2243) .4829 .0004	(In2306) .7234 .0010	(Y_2243) .1291 .0006		
#1 #2 #3	151.5 151.0 151.0	53.35 53.13 52.93		2.144	.3682	21.65	.4829		.1297	1.542 1.542 1.543	
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 1.313 .003 .2068	Sn1899 (Y_2243) .4206 .0009 .2197	(Y_3710) 1.205 .004	(Y_3600) 2.063 .001	(In2306) 1.878 .003	.5969					
#1 #2 #3	1.313 1.316 1.310	.4212 .4195 .4210	1.209 1.202 1.203	2.063		.5988	.8011 .7985 .7987				
Int. Std. Avg Stddev %RSD	In2306 2241.4 4.4 .19785	Y_2243 7012.3 12.0 .17066		7018.0 39.0							
#1 #2 #3	2236.3 2244.5 2243.3	6999.1 7015.4 7022.4		7025.1							

)8) Mc	d: 3/28/20 de: CONC Custom ID		6 Typ . Factor: 1 Custom II				
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0016 .0001 9.086	(Y_3710) 97.17 .36	(Y_2243) .0532 .0002	.9204	(Y_3710) .0057 .0000	(Y_3710) 181.4 .5	.0028	(Y_2243) .0328 .0003	(Y_3600) .0983 .0005	.1720
#1 #2 #3	.0017 .0016 .0014	97.11	.0533	.9197		181.0	.0028	.0327	.0977	.1719
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 113.6 .4 .3493	(Y_3710) 26.46 .07		(Y_3600) 1.636 .003		(Y_3710) .5416 .0027	(Y_2243) .0832 .0003	(ln2306) .2146 .0016	(Y_2243) .0014 .0004	.0054 .0014
#1 #2 #3	114.0 113.3 113.4	26.45	36.03	1.632	.0033	.5428	.0831	.2133 .2141 .2163	.0017	.0038
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 1.645 .002 .1288	(Y_2243) .0195 .0002	(Y_3710) .6804 .0031	(Y_3600) 1.397 .007	(In2306) 0005 .0011	(Y_3600) .1917 .0005	(Y_2243) .3579 .0009			
#1 #2 #3	1.643 1.645 1.647	.0198	.6792	1.391	0011	.1912	.3581			
Int. Std. Avg Stddev %RSD	In2306 2337.3 2.1 .09128	6973.2 5.1	51997. 160.							
#1 #2 #3	2339.5 2335.3 2337.1	6971.1	52181.	6916.3						

Raw Data MA13933 page 140 of 198

Raw Data MA13933 page 139 of 198

.3761

.2383

.2398

Se1960

0022

60.82

.0029

.0019

.0061

									Zoom Out
Sample Name: FA	10007 1	A	3/28/2017	10.50.00	Type:	Llak			
Method: 6010200	_ `	,	de: CONO		. Factor: 1				
User: admin	SSTRACE	02:	Custom ID	2:	Custom II	03:			
Comment:									
Elem Ag32	280 Al396	1 As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
	00) (Y 3710								
Avg .00	16 111.	0 .0529	.8760	.0063	149.5	.0042	.0370	.1075	.2304
Stddev .00	001 .	3 .0006	.0012	.0001	.2	.0000	.0000	.0001	.0004
%RSD 7.5	.303	5 1.197	.1364	1.549	.1653	.9225	.0542	.1276	.1846
#1 .00	110.	9 .0527	.8760	.0062	149.3	.0042	.0370	.1074	.2306
#2 .00	111.	3 .0525	.8772	.0063	149.8	.0043	.0370	.1076	.2307
#3 .00	110.	7 .0537	.8748	.0064	149.5	.0042	.0370	.1075	.2299
	599 K_766							Sb2068	
	10) (Y_3710								
Avg 126			1.777	.0037		.0953	.2302		.0049
Stddev	.3 .0								.0005
%RSD .23	.218	0 .4601	.2079	3.883	.8910	.3254	.5069	50.14	11.07
	6.2 29.1								
	6.7 29.3								
#3 12	6.1 29.2	4 34.35	1.781	.0037	.5164	.0956	.2301	.0030	.0044
	24 Sn189				V_2924				
	43) (Y_2243								
	42 .020		1.632	0018	.2087	.4406			
	.000								
%RSD .11	56 1.67	6 .1173	.3334	30.78	.1098	.2265			
	.020								
	.021								
#3 1.8	.020	7 .4950	1.638	0023	.2089	.4400			
Int. Std. In23		3 Y_3600							
Avg 235									
	1.5 13								
%RSD .062	277 .1826	4 .19101	.60337						
#1 235									
#2 235									
#3 235	0.2 7315	5 54328.	7291.5						

Raw Data MA13933	page 142 of 198
------------------	-----------------

Raw Data MA13933 page 144 of 198

 Wethod: 60102007_041712(v608)
 Mode: CONC
 Corr. Factor: 1.000000

 User: admin
 SSTRACE02:
 Custom ID2:
 Custom ID3:

.9086

.0572

.0562

02

.0405

37.81

37.79

37.79

Sr4077

0019

.4012

.4017

Y 3600

55232.

.25380

55372.

55233.

(Y_3710) .4025

.3336

.8832

.8891 .8855

010

.5130

2.034

2.013

2.020

Ti3349

002

1.740

1.739

Y_3710

7328.6 32.7

.44558

7318.7

7365.1

7302.1

(Y_3600) 1.738

.2454

128.5

129.1 128.7

.3181

35.51

35.74

35.65

Sn1899

0001

.0230

.0228

.0230

Y_2243

7363.1 3.1

.04196

7366.3

7360.1

3.677

.0022

.0020

.3192

144.7

145.6

145.0

Si2124

002

1.718

1.723

In2306

2345.7 4.0 .16883

2341.9

2345.3

2349.8

(Y_2243) (Y_2243) 1.721 .0229

 Оруголи
 А13890
 Ba4554
 Be3130
 Ca3179
 Cd2265
 Co2286
 Cr2677
 Cu3247

 (Y_3600)
 (Y_3710)
 (Y_3710)
 (Y_3710)
 (Y_2243)
 (Y_2243)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)
 (Y_3600)

.6585

.0073

.0072

0002

5.537

.0045

.0047

.0042

TI1908

0006

-.0019

-.0017

-.0028

.1789

88.71

89.01 88.77

.0022

.5787

.5829

.5795

V 2924

(ln2306) (Y_3600) (Y_2243) -.0021 .2429 .5235

0004

.2433

.2428

2.016

.0042

.0042

.0001 .0825

.1059

.1059

.1057

Zn2062

0003

.5233

.5233

.5238

.2473

.0414

.0416

Pb2203

0016

.5632

.2865

2854

.2398

.1251

Sb2068

(ln2306) (Y_2243) (Y_2243) .2868 .0019 .0036

0007

38.97

.0015

.0013

.0027

Comment:

IS Ref

%RSD

#1

#3

Elem IS Ref

Avg Stddev %RSD

#3

Elem

#1

#3

#2

Int. Std.

Avg Stddev %RSD

IS Ref Avg

										◀ Zoom I Zoom O	
										200111 0	١
Sample N	Name: CCV	Acqu	ired: 3/28/	2017 17:0	6:10	Type: QC					
Method: 6	60102007_0	41712(v6	08) M	ode: CON	IC Co	rr. Factor:	1.000000	1			
User: adr	min SS	TRACE0	2:	Custom I	D2:	Custom	ID3:				
Commen	t:										
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.0009	39.46	1.994	2.010	2.005	39.68	2.015	2.009	2.016	1.987	
Stddev %RSD	.3679	.12	.1051	.1650	.3266	.16 .4037	.0680	.002	.1600	.0713	
#1	.2489	39.42	1.992	2.011	2.003	39.63	2.014	2.009	2.014	1.987	
#2 #3	.2471 .2478	39.59 39.38	1.996 1.995	2.013	2.013	39.86 39.56	2.015 2.017	2.008	2.019	1.986 1.989	
Check ? Value	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass	Chk Pass	
Range											
Elem	Fageno	V 7664	Ma2700	Mn0E76	Mo2020	Na5895	Nicose	Pb2203	Sb2068	Se1960	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	39.88	39.86	39.59	2.046	2.037	40.06	2.019	1.994	1.989	1.998	
Stddev	.13	.18	.21	.002	.002	.15	.002	.005	.002	.002	
%RSD	.3325	.4433	.5240	.1017	.1179	.3706	.1125	.2389	.1146	.1070	
#1	39.87	39.83	39.52	2.044	2.034	40.03	2.017	1.993	1.987	2.001	
#2	40.02	40.05	39.82	2.048	2.037	40.22	2.018	1.990	1.989	1.997	
#3	39.76	39.70	39.42	2.045	2.039	39.93	2.021	1.999	1.992	1.997	
Check ?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	
Value Range											
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062				
Units	ppm	ppm	ppm	ppm	ppm	v_2924 ppm	ppm				
Avg	2.006	2.025	2.030	2.042	2.009	2.029	2.027				
Stddev	.002	.001	.005	.004	.003	.003	.002				
%RSD	.0969	.0433	.2246	.1813	.1503	.1635	.1048				
#1	2.004	2.024	2.030	2.042	2.008	2.029	2.025				
#2	2.006	2.026	2.035	2.045	2.007	2.033	2.028				
#3	2.008	2.026	2.025	2.038	2.013	2.027	2.029				
Check ?	None (Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Value Range											
90											

Raw Data MA13933 page 141 of 198

		1-3								
									•	▼ Zoom In ► Zoom Out
										200III Out
Sample	Name: FA42	067-3	Acquired:	3/28/2017	17:01:50	Type:	link			
	60102007_0			de: CONO		Factor: 1				
User: ad		TRACE02		Custom ID		Custom II				
Commer		TITACLUZ	. '	oustoili ib	۷.	Oustoin it	55.			
Comme	it.									
Elem	Ag3280	Al3961	Δc1890	Ba4554	Be3130	Ca3179	Cd2265	Cn2286	Cr2677	Cu3247
IS Ref				(Y 3710)						
Avg	.0020	129.8	.0608	1.025	.0073	173.2	.0044	.0427	.1207	.3510
Stddev	.0002									
%RSD	10.96	.5557	1.091	.6873	1.361	.4174	1.529	.3243	.4719	.2507
#1	.0021	129.3	.0603	1.021	.0072	173.9	.0044	.0426	.1201	.3512
#2	.0021	130.7	.0615	1.033	.0074	173.1	.0043	.0428		
#3	.0017	129.6	.0605	1.021	.0073	172.5	.0044	.0426	.1207	.3518
Elem	Fe2599	K 7664	Ma2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
IS Ref				(Y_3600)						
Avg	141.5	33.82	39.71	2.008	.0043	.5713	.1103	.2897	.0023	.0052
Stddev	.8				.0002					
%RSD	.5457	.6288	.5612	.7213	4.040	.3941	.3440	.2744	19.97	21.94
#1	140.9	33.63	39.49		.0041			.2889	.0023	.0046
#2	142.4				.0044					
#3	141.3	33.78	39.71	2.013	.0045	.5709	.1108	.2900	.0018	.0045
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
IS Ref	(Y_2243)	(Y_2243)	(Y_3710)	(Y_3600)	(In2306)	(Y_3600)	(Y_2243)			
Avg	1.548	.0222	.5659		0035	.2293	.5413			
Stddev	.002									
%RSD	.1121	.3758	.3777	.1320	24.13	.1510	.1970			
#1	1.546	.0223	.5645	1.562	0030	.2292	.5404			
#2	1.548									
#3	1.549	.0223	.5648	1.560	0044	.2297	.5425			
Int. Std.	In2306	Y_2243	Y_3600	Y_3710						
Avg	2304.1	7404.4	55320.	7427.5						
Stddev	4.9									
%RSD	.21333	.17543	.17666	1.0105						
#1	2309.1	7406.0	55213.							
#2	2304.1									
#3	2299.3	7390.7	55404.	7396.3						

Raw Data MA13933 page 143 of 198

Sample Name: CCV Acquired: 3/28/2017 17:06:10 Sample Name: CCB Acquired: 3/28/2017 17:10:06 Type: QC Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: SSTRACE02: Custom ID2: Custom ID3: User: admin User: admin Comment: Comment: Int. Std. In2306 Y_2243 Y_3600 Y_3710 Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 ppm .0001 .0002 ppm .0137 .0042 ppm .0000 .000 ppm .0206 .0031 ppm .0006 .0001 Units Cts/S Cts/S Cts/S Cts/S Units mqq 8000. ppm .0008 ppm .0003 ppm .0001 Avg Stddev 2330.0 5747.2 42952. 5683.5 44.5 Avg .0001 .0001 .0001 4.8 .0001 %RSD .20695 .10180 .27528 .78281 %RSD 237.2 30.97 948.6 13.15 9.144 15.20 54.65 85.22 8.166 5753.6 5685.1 .0003 .0176 .0004 .0006 .0007 .0180 .0004 .0002 .0007 2333.7 43062. #1 5745.8 5742.1 .0008 8000. .0198 #2 #3 2331.7 42827 5638.3 .0002 .0142 -.0004 .0008 .0002 .0000 .0007 5727.2 .0002 .0092 -.0001 .0008 .0001 .0001 .0006 2324.5 42968. Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Cu3247 Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Elem ppm .0007 ppm .0295 .0013 ppm .0603 .0282 ppm .0083 ppm .0007 ppm .0195 ppm .0001 Units Avg .0234 .0001 .0002 .0002 Stddev .0001 .0004 .0074 %RSD 14 25 4 386 46.72 283.6 9.780 25.32 37 65 146 6 52.99 .0007 .0309 .0928 .0353 .0008 .0114 .0003 .0003 #1 .0022 .0008 .0421 -.0040 -.0065 .0016 .0003 0294 .0007 0000 #3 .0284 .0000 .0007 .0257 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Fail Chk Pass Chk Pass Chk Pass High Limit .0010 Low Limit -.0010

Elem

Units

Ava

#3

%RSD

Check?

High Limit Low Limit

Raw Data MA13933 page 145 of 198

.39057

2732.7

2748.7

2728.5

.19318

6075.2

6095.0

6074.1

%RSD

#2

✓ Zoom In ►
Zoom Out

000

Sample Name: CCB Acquired: 3/28/2017 17:10:06 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3: Comment: Y_2243 Cts/S Y_3600 Cts/S Y_3710 Cts/S Int. Std. In2306 Units Cts/S Avg Stddev 2736.6 6081.4 45730. 5857.0

.27952

45584.

45781.

.48975

5865.9

5880.2

Raw Data MA13933 page 146 of 198

Sb2068

ppm .0015

0007

.0007

.0020

.0017

Chk Pass Chk Pass

Se1960

ppm .0007

0005

.0006

.0012

.0003

Si2124

ppm .0005

0006

.0012

.0005

-.0001

Sn1899

ppm .0005

0001

.0005

.0006

.0004

Sr4077

ppm .0007

0000

.0007

.0008

.0008

Ti3349

ppm .0011

0001

.0012

.0010

.0009

None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

TI1908

ppm -.0008

0002

-.0005

.0010

-.0007

V 2924

ppm .0004

0004

.0007

.0005

.0000

Zn2062

ppm .0003

0002

.0004

.0002

.0001

◀ Zoom In ▶ Zoom Out

 Sample Name: FA42067-4
 Acquired: 3/28/2017 17:14:22
 Type: Unk

 Method: 60102007_041712(v608)
 Mode: CONC
 Corr. Factor: 1.000000

 User: admin
 SSTRACE02:
 Custom ID2:
 Custom ID3:

 Comment:
 Comment:
 Comment:
 Comment:

Comment:										
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0030 .0001 2.173		As1890 (Y_2243) .0568 .0004 .6509		Be3130 (Y_3710) .0063 .0000 .4197	Ca3179 (Y_3710) 73.48 .18 .2435				Cu3247 (Y_3600) .2276 .0003 .1415
#1 #2 #3	.0030 .0031 .0029	104.5 104.5 104.8	.0565 .0572 .0566	.7668 .7676 .7685	.0063 .0063 .0063	73.37 73.38 73.68	.0045 .0045 .0045	.0385 .0384 .0387	.1169 .1171 .1176	.2279 .2278 .2273
Elem IS Ref Avg Stddev %RSD	Fe2599 (Y_3710) 141.0 .1 .0667		Mg2790 (Y_3710) 32.60 .10 .2978			Na5895 (Y_3710) .5339 .0027 .5020	Ni2316 (Y_2243) .0933 .0003 .2733	Pb2203 (ln2306) .2679 .0008 .3149	Sb2068 (Y_2243) .0016 .0007 41.48	Se1960 (Y_2243) .0051 .0005 9.842
#1 #2 #3	141.0 140.9 141.1	29.61 29.65 29.71	32.53 32.55 32.71	1.849 1.853 1.881	.0047 .0046 .0046	.5316 .5331 .5368	.0935 .0930 .0934	.2689 .2674 .2675	.0016 .0023 .0010	.0045 .0055 .0053
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 1.729 .001 .0746		Sr4077 (Y_3710) .3512 .0001 .0274	Ti3349 (Y_3600) 1.767 .002 .1025	TI1908 (In2306) 0021 .0009 44.27	V_2924 (Y_3600) .2427 .0003 .1423	Zn2062 (Y_2243) .4890 .0004 .0763			
#1 #2 #3	1.730 1.728 1.728	.0209 .0209 .0205	.3513 .3512 .3511	1.769 1.766 1.766	0031 0018 0014	.2423 .2428 .2429	.4894 .4888 .4888			

Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg Stddev 2399.5 7322.9 54893 7203.1 26.0 .35942 %RSD .36041 .15639 .29623 2391.7 7212.1 #2 2398.1 7328.6 54977. 7223.4 2408.7 7330.4 54705

Raw Data MA13933 page 148 of 198

Raw Data MA13933 page 147 of 198

∢ Zoom In ▶ Zoom Out

	▼ Zoom In ► Zoom Out	
067-7 Acquired: 3/28/2017 17:22:35 Type: Unk 41712(v608) Mode: CONC Corr. Factor: 1.000000 TRACE02: Custom ID2: Custom ID3:		Sample Name: FA42067-6 Acquired: 3/28/2017 17:18:31 Type: Unk Method: 6010207_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3:
		Comment:

Comment:	Comment:
Elem	Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247 IS Ref (Y_3600) (Y_3710) (Y_2243) (Y_3710) (Y_3710) (Y_2243) (Y_2243) (Y_3600) (Y
#1 .0015 90.41 .0457 .6425 .0054 65.87 .0030 .0311 .0934 .1292	#1 .0017 94.13 .0640 .7331 .0058 86.31 .0028 .0352 .1007 .1513 #2 .0011 94.44 .0629 .7332 .0057 86.49 .0028 .0350 .0995 .1517 #3 .0018 94.26 .0642 .7322 .0057 86.39 .0028 .0351 .1001 .1497
Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 IS Ref (Y_3710) (Y_3710) (Y_3710) (Y_3600) (Y_2243) (Y_3710) (Y_2243) (In2306) (Y_2243) (Y	Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 IS Ref (Y_3710) (Y_3710) (Y_3710) (Y_3700) (Y_3700) (Y_2243) (Y
#1 111.5 25.88 27.89 1.519 .0034 .4122 .0782 .2153 .0014 .0037 #2 111.4 25.77 27.83 1.514 .0036 .4146 .0783 .2129 .0026 .0054 #3 111.4 25.75 28.03 1.520 .0034 .4063 .0783 .2160 .0021 .0041	#1 121.1 26.47 30.05 1.635 .0042 .4314 .0858 .2076 .0009 .0042
Elem Si2124 Sn1899 Sr4077 Ti3349 Tl1908 V_2924 Zn2062 IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (ln2306) (Y_3600) (Y_2243) Avg 1.755 .0202 .2914 1.398 0016 .1837 .3729 Stddev .002 .0001 .009 .003 .0016 .0002 .0006 %RSD .1301 .6364 .3090 .2299 95.15 .0882 .1652	Elem Si2124 Sn1899 Sr4077 Ti3349 Ti1908 V_2924 Zn2062 IS Ref (Y_2243) (Y_2243) (Y_3710) (Y_3600) (In2306) (Y_3600) (Y_2243) Avg 1.568 .0197 .3537 1.320 .0010 .022 .022 .3455 Stddev .003 .0001 .002 .0003 .0003 .0001 %RSD .2082 .5197 .2981 .1334 26.60 .1339 .0256
#1 1.755 .0201 .2925 1.3950005 .1837 .3727 #2 1.753 .0201 .2911 1.4000034 .1835 .3724 #3 1.757 .0203 .2908 1.4000010 .1838 .3736	#1 1.566 .0197 .3535 1.3190011 .2022 .3454 #2 1.566 .0197 .3548 1.3220007 .2019 .3456 #3 1.572 .0195 .3527 1.3190011 .2024 .3456
Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2445.7 7121.2 53516. 7049.0 Stddev 7.9 12.1 160. 30.7 %RSD .32278 .17028 .29923 .43503	Int. Std. In2306 Y_2243 Y_3600 Y_3710 Avg 2444.5 7233.1 54354. 7088.3 Stddev 3.1 5.1 158. 49.8 %RSD .12773 .07020 .29061 .70237
#1 2439.5 7115.2 53487. 7084.1 #2 2454.6 7135.2 53688. 7036.2 #3 2443.0 7113.3 53372. 7026.9	#1 2442.3 7228.1 54326. 7141.0 #2 2448.1 7238.3 54523. 7042.0 #3 2443.1 7232.8 54211. 7082.0

Raw Data MA13933 page 150 of 198

Raw Data MA13933 page 149 of 198

▼Zoom In ▶	
Zoom Out	
Sample Name: FA42152-1 Acquired: 3/28/2017 17:26:39 Type: Unk	Sample Name: FA42152-3 Acquired: 3/28/2017 17:30:44 Type: Unk
Method: 60102007_041712(v608)	Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.00000
User: admin SSTRACE02: Custom ID2: Custom ID3:	User: admin SSTRACE02: Custom ID2: Custom ID3:
Comment:	Comment:
Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 Cu3247	Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd22

50102007_0	41712(v60	18) Mo	de: CONC	Corr	. Factor: 1	.000000			
min SS	TRACE02	2: (Custom ID	2:	Custom ID	03:			
t:									
(Y_3600) .0016 .0002	(Y_3710) 100.7 .4	(Y_2243) .0551 .0008	(Y_3710) .7873 .0002	(Y_3710) .0061 .0001	(Y_3710) 99.52 .40	(Y_2243) .0031 .0001	(Y_2243) .0346 .0001	(Y_3600) .1034 .0002	.1548
.0018 .0016 .0015		.0556	.7874	.0062	99.78	.0030	.0345	.1033	
(Y_3710) 122.8 .6	(Y_3710) 27.58 .04		(Y_3600) 1.638 .006	(Y_2243) .0040 .0001	(Y_3710) .4928 .0033	(Y_2243) .0848 .0003	(In2306) .2304 .0001	(Y_2243) .0013 .0008	(Y_2243) .0042 .0014
122.0 123.1 123.2	27.60	32.17	1.635		.4928	.0846	.2303	.0013	.0058 .0037 .0030
	(Y_2243) .0201 .0004	(Y_3710) .4275 .0013	(Y_3600) 1.571 .005	(ln2306) 0018 .0008	(Y_3600) .2099 .0006	(Y_2243) .3721 .0002			
1.419 1.412 1.414	.0198	.4277	1.568	0021	.2091	.3721			
2412.1	7225.2 10.5	53970. 365.	7085.8 68.3						
2409.1 2413.5 2413.8	7234.4	54147.	7020.6						
1	min SS t: Ag3280 (Y 3600)	min SSTRACE02 t: Ag3280 Al3961 (Y_3600) (Y_3710) .0016 100.7 .0002 4 10.95 .3761 .0018 100.2 .0016 100.8 .0015 101.0 Fe2599 K_7664 (Y_3710) (Y_3710) 122.8 27.58 .6 .04 .5105 .1407 122.0 27.53 123.1 27.60 123.2 27.60 S21243 (Y_2243) (Y_2243) (Y_2243) 1.415 .0201 .004 .0004 .2674 1.839 1.419 .0200 1.412 .0188 1.414 .0205 In2306 Y_2243 2412.1 7225.2 2.7 10.5 .11052 .14550 .2409.1 7213.7 2419.5 7234.4	min SSTRACE02: (1) Ag3280 Al3961 As1890 (Y 3600) (Y 3710) (Y 2243) 0.0016 100.7 .0551 0.002 4 .0008 10.95 .3761 1.387 0.018 100.2 .0542 0.016 100.8 .0556 0.015 101.0 .0555 Fe2599 K 7664 Mg2790 (Y 3710) (Y 3710) (Y 3710) (Y 3710) 122.8 27.58 32.04 6 .04 1.7 .5315 122.0 27.53 31.85 123.1 27.60 32.17 123.2 27.60 32.17 123.2 27.60 32.10 Si2124 Sn1899 Sr4077 (Y 2243) (Y 2374) (Y 2374) (Y 2374) (Y 2374) (Y 2374) (Y 2374) (Y 2475 1.415 .0201 .4275 .004 .0004 .0013 .2674 1.839 .3101 1.419 .0200 .4261 1.412 .0198 .4277 1.414 .0205 .4287 1.414 .0205 .4287 1.415 .0201 .4287 1.416 .0205 .4287 1.417 .0205 .4287 1.4189 .0200 .4261 1.419 .0205 .4287 1.419 .0205 .4287 1.4105 .365. 1.1055 .11550 .67555 2409.1 7213.7 54213. 2413.5 7234.4 541147.	min SSTRACE02: Custom ID t: t. Ag3280 Al3961 As1890 Ba4554 (Y,3600) (Y,3710) (Y,2243) (Y,3710) 0016 100.7 .0551 .7873 .0002 .4 .0008 .0002 10.95 .3761 1.387 .0290 .0018 100.2 .0542 .7870 .0015 101.0 .0556 .7874 .0015 101.0 .0555 .7874 .0015 101.0 .0555 .7874 .03 2.753 32.04 1.638 .6 .04 .17 .006 .5105 .1407 .5315 .3881 122.0 27.53 31.85 1.633 123.1 27.60 32.17 1.635 123.2 27.60 32.17 1.635 (Y_2243) (Y_2360) Y_23710 (Y_3760) (Y_2243) (Y_3770) (Y_3770) (Y	Name	min SSTRACE02: Custom ID2: Custom ID t: t: Custom ID2: Custom ID2: Custom ID2: Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 (Y,3600) (Y,3710) (Y,3710) (Y,3710) (Y,3710) (Y,3710) (Y,3710) (Y,3710) (Y,3710) (Y,3710) 000 199.52 0002 .0001 99.52 0002 .0001 40 10.95 .3761 1.387 .0290 1.069 .4044 .0018 100.2 .0542 .7870 .0061 99.78 .0015 .0016 100.8 .0556 .7874 .0060 99.78 .0015 101.0 .0555 .7874 .0060 99.73 .027 .0060 99.73 .027 .0060 99.73 .0015 .0015 .0017 .0555 .7874 .0060 99.73 .0060 99.73 .0060 .09220 Na5895 .004 .03200 .022430 (Y,3710) .03200 .022430 (Y,3710)	min SSTRACE02: Custom ID2: Custom ID3: t: t: Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 (Y.3600) (Y.3710) (Y.273710) (Y.2743) .0011 .0011 .0011 .0011 .0018 .0012 .0061 .0062 .0014 .0011 .0018 .0012 .0542 .7870 .0061 .99.78 .0030 .0015 .0015 .011.0 .0556 .7874 .0060 .99.73 .0031 .0015 .0015 .011.0 .0556 .7874 .0060 .99.73 .0031 .0015 .0015 .011.0 .0555 .7874 .0060 .99.73 .0031 .0013 .0014 .928 .0031 .0013 .0020 Na5895 NI2316 (Y.3710) (Y.3710)	Name	Name

Raw Data MA13933 page 151 of 198

Method: 6 User: adm Comment:		41712(v60 TRACE02				. Factor: 1 Custom II				
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0016 .0001 5.275	Al3961 (Y_3710) 110.5 .3 .2688	.0600 .0006	.9038 .0026	(Y_3710) .0066 .0001	(Y_3710) 115.4 .2	(Y_2243) .0033 .0000	(Y_2243) .0376 .0001	(Y_3600) .1157 .0004	.1645 .0007
#1 #2 #3	.0016 .0017 .0017	110.6 110.8 110.2	.0594	.9067		115.5	.0033	.0375	.1153	.1637
Elem IS Ref Avg Stddev %RSD		K_7664 (Y_3710) 30.73 .08 .2712	(Y_3710) 35.77 .14	(Y_3600) 1.856 .015		(Y_3710) .5362 .0054	(Y_2243) .0953 .0002	(In2306) .2648 .0027	.0014	(Y_2243) .0044 .0011
#1 #2 #3	134.2 133.5 133.3	30.76 30.79 30.63		1.839	.0048 .0042 .0043	.5421	.0952	.2637 .2629 .2678	.0017	.0056
Elem IS Ref Avg Stddev %RSD	Si2124 (Y_2243) 1.245 .002 .1176	Sn1899 (Y_2243) .0211 .0002 .8717	(Y_3710) .4952 .0015	(Y_3600) 1.464 .001	TI1908 (In2306) 0033 .0008 24.67	(Y_3600) .2186 .0001	(Y_2243) .4108 .0013			
#1 #2 #3	1.244 1.246 1.244	.0211 .0210 .0213		1.465	0039 0024 0035	.2188	.4093			
Int. Std. Avg Stddev %RSD	In2306 2375.9 2.3 .09842	7336.8		7121.8 42.9						
#1 #2 #3	2375.3 2378.5 2373.9	7347.4	54570.	7141.2						

Sample Name: FA42152-2

User: admin

IS Ref

%RSD

Avg

#1

#3

Elem

Ava

#2

#3

Elem

Avg

#1

#3

Int. Std.

%RSD

#2

IS Ref

Stddev

IS Ref

%RSD

Method: 60102007_041712(v608)

Ag3280

.0015

.0001

6.063

.0015

.0016

Fe2599

(Y_3710) 108.6

.0505

108.6

108.6

108.7

Si2124

001

1.441

1,443

In2306

2412.5

.26882

2420.0

2408.3

6.5

(Y_2243) 1.442

SSTRACE02:

Al3961

87.76

.1255

87.81

87.85

87.64

K 7664

(Y_3710) 24.38

0.3

.1321

24.38

24.41

24.34

Sn1899

(_2243) .0200

0004

0200

.0196

.0205

2243

7005.9

.05646

7008.5

7001.3

7007.8

As1890

0494

.0002

.3121

.0494

.0496

.0493

Mg2790

3710)

.3673

28.41

28.51

28.30

Sr4077

_3710) .3846

0001

3845

.3846

Y 3600

184

.35715

51835

51573

51629

28.41

⋖ Zoom I	n▶
Zoom O	ut

.0001

.1096

.1248

1246

.1249

Se1960

2243)

.0034

0007

22.12

.0041

.0026

.0034

Sample Name: FA42152-9 Acquired: 3/28/2017 17:34:51 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: User: admin Custom ID3: Comment

Ag3280 Al3961 Ba4554 Be3130 Ca3179 Cd2265 Co2286 IS Ref (Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600) .0015 97.81 .0491 7226 0055 108.4 .0034 0304 0949 Stddev .0001 .0005 .0006 .0001 .0023 .0000 .0001 %RSD 8.186 .1887 .9641 .3185 .3751 .1978 2.371 .2518 .5528 .3783 .0017 97.66 .0490 .7208 .0056 108.2 .0035 .0305 .0954 .1686 .0014 98.02 0487 7252 .0055 108.6 .0033 .0303 0944 1692 .0016 97.75 .7217 .0055 108.3 .0033 .0304 .0950 .1699

Elem Fe2599 _7664 g2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 IS Ref (Y_3710) 112.4 _3710) (Y 27.92 3710) 30.30 _3600) (Y 1.578 _2243) _3710) .4915 _2243) .0794 (In2306) (2243) Y_2243) .0054 .0032 2863 .0016 Stddev %RSD .0036 .0001 09 005 0000 0000 0009 0008 .3146 .2957 .0941 .3370 48.10 1.528 .7319 .0384 .3185 112.4 27.87 30.26 1.580 .0033 4901 .0794 .0025 .0055 .2872 .0013 .0053 112.5 28.03 30.41 1.573 .0032 4955 .0794 .2854 #3 112.3 27 87 30.24 1.582 0032 4887 .0794 2864 0010 0053

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 2924 Zn2062 (Y_2243) 1.855 _2243) .0218 _3710) .4002 _3600) 1.522 n2306) -.0021 _2243) .3810 IS Ref 3600) .1858 Avg Stddev 001 0001 0005 003 0006 0007 0003 #1 1.856 0217 4005 1 521 - 0014 1865 3813 1852 1.853 .0216 .4005 .0021 .3809 #3 1.856 .0219 .3996 1.525 -.0027 .1856 .3807 Y 3710 Int. Std In2306 2243 3600 7145.7 2396.5 52989 6915.4 358

.13834 .11262 %RSD .67495 .37203 2397.0 2399.5 7154.1 53388 6894.4 2392.9 7144.9 52881 6907.6

Raw Data MA13933 page 153 of 198

✓ Zoom In ►
Zoom Out

Sample Name: MP31872-MB1 Acquired: 3/28/2017 17:42:58 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment

Al3961 Elom Ag3280 As1890 Ba4554 Be3130 Ca3179 Cd2265 Cn2286 Cr2677 Cu3247 Units .0003 ppm .0221 ppm .0005 ppm .0004 ppm .0001 ppm .0299 ppm ppm .0000 ppm .0001 ppm .0004 0000 .000 .007 .000 %RSD 145.8 33.65 71.42 33.79 90.41 18.76 89.14 172.9 137.5 55.57 .0001 .0004 .0003 .0000 .0000 .0000 .0002 #2 .0009 .0223 -.0002 .0005 .0001 .0301 .0000 .0000 .0000 .0003 .0002 .0001 .0354 .0146 -.0008 .0003 .0001 .000

Check ? Chk Pass Chk High Limit Low Limit

Fe2599 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Se1960 Elem K_7664 Sb2068 ppm .0001 ppm .0489 ppm .0401 ppm .0242 ppm .0004 ppm .0002 ppm .0001 ppm .0002 Units ppm .0012 ppm .0007 Stddev .0012 .0113 .0180 .0000 .0001 .0019 .0001 .0003 .0010 .0008 %RSD 2.487 28.18 74 34 7 290 63 70 151.8 133.4 401.7 470.7 125.5 #1 .0499 .0505 -.0002 -.0024 -.0001 .0008 .0060 .0004 .0003 -.0004 0493 0281 0419 0004 กกกว กกวว 0000 0001 0014 .0002 .0418 .0245 .0000 .0000 -.0002 .0014 .0004 .0009 -.0003

Check? Chk Pass Chk High Limit Low Limit

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 Zn2062 V 2924 Units ppm .0024 ppm .0002 ppm .0001 ppm .0008 ppm -.0012 ppm -.0001 ppm .0001 Avg Stddev .0004 .0002 .0001 .0001 .0007 .0002 .0000 %RSD 0026 .0001 0000 0008 -.0020 .0001 .0001 .0001 .000 .0001 #3 .0019 .0004 .0001 .0008 -.0010 -.0003 .0001

Check ? High Limit None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Low Limit

Raw Data MA13933 page 155 of 198

Raw Data MA13933 page 154 of 198

■ Zoom In ▶

Sample Name: MP31872-MB1 Acquired: 3/28/2017 17:42:58 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3 User: admin Comment:

Acquired: 3/28/2017 17:38:54

Mode: CONC

Custom ID2:

Ba4554

7053

.0013

.1870

.7051

.7068

.7042

Mn2576

003

.2089

1.437

1.432

1.437

Ti3349

_3600) 1.565

001

1.566

1.564

1.565

Y 3710

.42218

6700.6

6709.9

6753.7

6721.4 28.4

Be3130

0052

.0000

.7161

.0052

0052

Mo2020

0001

4.769

.0031

.0028

0030

TI1908

(ln2306) -.0018

0010

0011

.0013

-.0029

_3600) (Y_2243) 1.435 .0029

(Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) (Y 3600)

Type: Unk

Corr. Factor: 1.000000

Custom ID3:

Ca3179

90.75

.0647

90.73

90.82

90.70

Na5895

3710)

.4610

0115

2.487

4653

.4481

4698

3600)

0002

1888

1888

.1891

.1889

V 2924

.06

Cd2265

.0022

.0000

1.511

.0022

.0021

.0022

Ni2316

_2243) .0730

.0003

.3761

.0727

.0731

0733

Zn2062

_2243) .3204

0003 .1038

3204

.3201

.3208

Co2286

.0280

.0000

1289

.0280

028

.0280

Pb2203

(In2306)

.1920

0008

.4070

1929

1916

.1915

.0000

.0526

.0883

0884

.0883

Y_2243) .0012

0012

101.6

.0002

.0019

0018

Y 2243 Y_3710 Cts/S Int Std In2306 3600 _3000 Cts/S Cts/S Units Cts/S Avg Stddev 2726.3 6135.3 45949 5727.6 %RSD .14544 .14123 .26727 1.6518 2723.1 6129.4 5784.3 #2 2725.1 6145.3 45814. 5780.2 #3 2730.8 6131.4 45978

Raw Data MA13933 page 156 of 198

SSTRACE02:

Al3961

As1890

Sample Name: MP31872-B1

User: admin

Comment:

Units

Method: 60102007_041712(v608)

Ag3280

Sample Name: MP31872-B1 Acquired: 3/28/2017 17:47:13 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3:

Comment:

■ Zoom In ■ Zoom Out

Cu3247

Int. Std. In2306 Y_2243 Y_3600 Y_3710 Cts/S 2460.2 7.7 Units Cts/S 5968.5 Cts/S Cts/S 44480 5760.8 7.5 Avg 19.9 311 %RSD .31201 .33408 .69977 .12962 2467.7 5752.4 5991.4 44819. 2452.4 5955.0 44415 5766.6 2460.6 5959.0 44207

ppm 2.006 .007 ppm 2.051 .007 ppm .0468 ppm 27.19 ppm .0522 ppm 25.51 ppm .0495 ppm 4909 ppm 1990 ppm 2526 Avg Stddev .0003 .0013 .0010 .0001 .0002 .0016 .02 %RSD .6882 .3124 .3497 .3292 .1117 .0852 .3266 .3339 .6739 .4153 .0522 .0493 .4890 .2520 #1 .0466 27.22 1.998 2.043 25.53 .1980 .0471 .0466 27.25 27.09 .0523 25.50 25.49 .2520 .2538 2.009 2.057 .0496 4916 1984 2.011 2.051 .4920

Be3130

Mode: CONC Corr. Factor: 1.000000

Acquired: 3/28/2017 17:47:13

Custom ID2:

Ba4554

Type: QC

Cd2265

Co2286

Cr2677

Custom ID3:

Ca3179

Check? Chk PassChk Pa Value

Range

Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Sb2068 Se1960 ppm 26.67 ppm 26.09 ppm 25.24 ppm .5062 ppm .4980 Units ppm .5143 ppm 25.53 ppm .5029 ppm 2.003 Stddev .08 .0020 .04 .05 .0020 .0027 .06 .0011 .0018 .009 %RSD .1553 .1792 .3212 3952 4858 2300 2183 .3999 3538 4733 26.72 25.33 .5126 .5588 25.52 .5013 1.993 26.04 .5050 .4965 26.11 26.12 .5138 .5166 .5626 .5641 #2 #3 25.59 .5071 5002 5048 2 011 25.21 .5066 2.006 26.66 .5026 25.48 .4971

Check ? Chk PassChk Pa Value Range

2.041

4919

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0082 ppm .5505 ppm .5582 ppm .5454 ppm .4903 ppm 2.040 ppm .5092 Ava Stddev 0005 0015 0011 0024 002 0027 0023 .0077 5488 .5571 5429 2.038 4872 .5066 .0087 2.041 .4920 .5100 .5110

.5582 Check? None Chk Pass None Chk PassChk PassChk Pass None Value

.5477

Range

#3

Raw Data MA13933 page 157 of 198

.5515

.0082

Zoom In ►
 Zoom Out

Sample Name: FA42279-8 Acquired: 3/28/2017 17:51:13 Type: Unk Method: 60102007_041712(v608) Corr. Factor: 1.000000 Mode: CONC SSTRACE02: User: admin Custom ID2: Custom ID3: Comment:

IS Ref Avg Stddev %RSD	.0002 .0003 137.1	(Y_3710) 0028 .0016 59.23	.0002 .0006 392.6	.0592 .0002 .3644	.0001 .0001 48.42	(Y_3710) 30.77 .09 .2777	.0000 .000 .000 116.3	.0001 .0001 160.2	.0001 .0003 184.4	
#1 #2 #3	0001 .0002 .0006	0041 0009 0033	0002 .0009 0002	.0593 .0594 .0590	.0002 .0001 .0001	30.84 30.80 30.68	.0000 0001 .0000	.0000 .0001 .0003	.0002 0001 .0004	
Elem IS Ref Avg Stddev %RSD	Cu3247 (Y_3600) .0006 .0002 35.12	Fe2599 (Y_3710) .0106 .0050 47.18	K_7664 (Y_3710) .3585 .0166 4.618	Mg2790 (Y_3710) 1.766 .018 1.046	Mn2576 (Y_3600) .5272 .0018 .3352	Mo2020 (Y_2243) 0001 .0001 87.19	Na5895 (Y_3710) F146.1 1.6 1.097	Ni2316 (Y_2243) .0002 .0003 172.6	Pb2203 (ln2306) .0018 .0004 20.53	
#1 #2 #3	.0008 .0005 .0005	.0151 .0115 .0052	.3436 .3556 .3764	1.786 1.750 1.762	.5268 .5292 .5257	.0000 0001 0001	147.9 145.5 144.8	.0005 .0000 .0000	.0021 .0014 .0019	
Elem IS Ref Avg Stddev %RSD	Sb2068 (Y_2243) .0000 .001 13200.	Se1960 (Y_2243) .0005 .0004 77.09	Si2124 (Y_2243) .1472 .0016 1.086	Sn1899 (Y_2243) .0003 .0004 132.6	Sr4077 (Y_3710) .0324 .0001 .2613	Ti3349 (Y_3600) .0017 .0000 2.432	TI1908 (ln2306) 0004 .0004 105.0	V_2924 (Y_3600) .0002 .0000 9.889	Zn2062 (Y_2243) .0090 .0000 .5524	
#1 #2 #3	.0015 0006 0010	.0009 .0004 .0001	.1463 .1463 .1491	.0007 0001 .0003	.0325 .0325 .0323	.0017 .0017 .0017	0004 .0000 0008	.0002 .0002 .0002	.0090 .0089 .0090	
Int. Std.	ln2306	Y_2243	Y_3600	Y_3710						

Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677

Raw Data MA13933 page 159 of 198

2435.1

.17725

2435.9

2430.4

2438.9

%RSD

5885.2

20.3

.34535

5863.9

5887.3

5904.4

43288

.36988

43122

43442

5687.8

28.2

.49539

5661.2

5717.3

5685.0

Raw Data MA13933 page 158 of 198

▼ Zoom In **▶** Zoom Out

Sample Name: CCV Acquired: 3/28/2017 17:55:35 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3: Comment:

Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.2475	39.70	1.971	2.055	2.061	39.91	1.950	1.946	2.002	2.013
Stddev	.0002	.08	.002	.007	.003	.13	.002	.001	.005	.002
%RSD	.0799	.1894	.0766	.3449	.1627	.3315	.1093	.0602	.2294	.1106
#1	.2473	39.72	1.970	2.052	2.061	40.00	1.951	1.947	2.004	2.016
#2	.2475	39.61	1.972	2.051	2.057	39.76	1.948	1.944	2.005	2.013
#3	.2477	39.76	1.973	2.064	2.063	39.96	1.952	1.946	1.997	2.012
Check 2	Chk PassC	hk Pace(Chk Pace(Chk Pacci	Chk Pacci	Chk Pace(Chk Pacci	Chk Pass(hk Pace	Chk Page

Range

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	40.73	41.19	40.43	2.077	2.024	40.06	1.993	2.026	1.967	1.968
Stddev	.07	.10	.11	.005	.002	.12	.001	.007	.003	.002
%RSD	.1731	.2319	.2761	.2242	.0782	.3017	.0601	.3263	.1555	.0820
#1	40.72	41.25	40.48	2.081	2.023	40.15	1.994	2.030	1.967	1.966
#2	40.66	41.08	40.30	2.079	2.023	39.92	1.991	2.018	1.964	1.969
#3	40.80	41.24	40.50	2.072	2.026	40.10	1.993	2.029	1.970	1.970

Chk PassChk Pa Value Range

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	1.980	1.987	2.091	2.057	2.034	2.031	2.035	
Stddev	.002	.001	.003	.007	.007	.006	.001	
%RSD	.0857	.0598	.1524	.3354	.3417	.2787	.0346	
#1	1.981	1.987	2.091	2.065	2.040	2.037	2.036	
#2	1.978	1.986	2.088	2.055	2.027	2.031	2.035	
#3	1.980	1.988	2.095	2.052	2.034	2.025	2.035	

Check ? None Chk PassChk PassChk PassChk PassChk PassChk Pass Range

Raw Data MA13933 page 160 of 198

Method: 60102007_041712(v608) Mode: CONC

SSTRACE02:

Y_2243

5854.1

.06610

5849.7

5855.4

5857.1

Cts/S

Acquired: 3/28/2017 17:55:35

Y_3600

42870.

.43445

42666.

42915

43030.

Cts/S

Custom ID2:

Y_3710

Cts/S

5504.7 43.2

.78520

5493.8

5552.3

Type: QC

Corr. Factor: 1.000000

Custom ID3:

Sample Name: CCV

In2306

Cts/S

2343.7 7.6

.32400

2337.4

2352.1

User: admin

Comment:

Int. Std.

Units

Avg Stddev

%RSD

#2 #3

Method: 60102007_041712(v608)

Ag3280

ppm .0002 .0002

78.66

.0000

.0003

-.0003

Cu3247

ppm .0007

.0001

11.63

.0006

.0007

Sb2068

ppm .0014

0006

.0017

SSTRACE02:

Al3961

ppm .0068

.0038

55.73

.0036

.0109

.0057

Fe2599

ppm .0257 .0038

14.61

.0292

.0263

Se1960

ppm .0003

0006

-.0004

Acquired: 3/28/2017 17:59:32

As1890

ppm -.0001

.0002

217.0

.0001

-.0004

-.0001

K_7664

ppm .0557

.0065

11.74

.0484

.0610

.0576

Chk Pass Chk Pass Chk Pass Chk Pass

Si2124

ppm .0009

0001

.0009

Custom ID2:

Type: QC

Custom ID3:

Mode: CONC Corr. Factor: 1.000000

Sample Name: CCB

User: admin

Comment:

Elem

Units

Avg

#1

%RSD

Check?

Elem

Units Avg

Stddev

%RSD

#1

#3

Check?

High Limit

Low Limit

Elem

Units

Ava

#1

%RSD

Low Limit

High Limit Low Limit

Chk Fail Chk Pass Chk Pass

TI1908

ppm -.0001

0006

.0004

V 2924

ppm .0005

0001

.0004

.0010

-.0010

Ti3349

ppm .0009

0001

.0010

Zoom In Zoom Out

.0010

-.0010

Zn2062

ppm .0002

0001

44.34

.0003

▼ Zoom In **▶** Zoom Out

.0018 .0007 .0008 .0006 .0007 .0009 .0001 .0006 .0002 #3 .0006 .0005 .0010 .0005 .0006 .0007 -.0008 .0005 .0001 Check? Chk Pass Chk Pass None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit

Sn1899

ppm .0006

0001

.0006

Sr4077

ppm .0006

0002

.0004

Raw Data MA13933 page 161 of 198

Zoom In ►
 Zoom Out

Sample Name: CCB Acquired: 3/28/2017 17:59:32 Type: QC Method: 60102007_041712(v608) Corr. Factor: 1.000000 Mode: CONC SSTRACE02: Custom ID2: User: admin Custom ID3: Comment: Int. Std. In2306

Y_2243 Cts/S Y_3600 Cts/S Y_3710 Cts/S Cts/S 2731.7 Units Avg Stddev 6182.1 45674. 5653.3 43.8 %RSD .17344 .16625 .28706 .77558 2736.9 6193.6 45822. 5698.8 #2 2727.6 6173.8 45627. 5649.7 2730.5 6179.0 45573.

Raw Data MA13933 page 162 of 198

Sample Nar	ne: MP318	72-D1	Acquired:	3/28/2017	18:03:47	Type: Ui	nk		
Method: 601	02007_04	1712(v608)	Mode	: CONC	Corr. Fa	ctor: 1.000	000		
User: admin	SST	RACE02:	Cus	stom ID2:	Cus	tom ID3:			
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
IS Ref				(Y_3710)	(Y_3710)	(Y_3710)	(Y_2243)	(Y_2243)	(Y_3600)
Avg	0003	.0063	.0001	.0600	.0002	31.12	.0000	.0000	.0002
Stddev	.0001	.0023	.0004	.0006	.0000	.35	.0000	.0000	.0002
%RSD	40.68	36.20	405.1	.9582	15.01	1.131	188.7	91.08	92.65
#1	0002	.0089	0001	.0607	.0002	31.49	.0000	.0001	.0002
#2	0002	.0050	.0005	.0597	.0002	30.79	.0000	.0000	.0004
#3	0004	.0049	0001	.0596	.0001	31.09	.0000	.0000	.0000
Elem	Cu3247	Fe2599	K_7664	Mg2790		Mo2020	Na5895	Ni2316	Pb2203
IS Ref Avg	.0004	.0034	(Y_3710) .2861	1.824	.5345	.0000	(Y_3710) F149.3	.0001	(ln2306) .0021
Stddev	.0004	.0034	.0386	.034	.0004	.0002	2.4	.0001	.0003
%RSD	7.568	55.97	13.49	1.871	.0786	898.1	1.636	70.88	14.53
751152									
#1	.0004	.0014	.2579	1.855	.5348	.0002	150.1	.0003	.0025
#2	.0004	.0036	.2703	1.787	.5341	.0001	146.5	.0001	.0018
#3	.0004	.0051	.3301	1.828	.5348	0002	151.2	.0001	.0021
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062
IS Ref					(Y_3710)			(Y_3600)	
Avg	0001	.0008	.1450	.0003	.0330	.0016	0011	.0004	.0087
Stddev	.0005	.0010	.0011	.0002	.0003	.0001	.0011	.0001	.0001
%RSD	552.0	130.8	.7443	57.15	.9934	4.071	101.9	26.22	.6051
#1	.0001	.0019	.1453	.0001	.0333	.0017	0002	.0005	.0087
#2	0007	0001	.1438	.0005	.0326	.0016	0023	.0003	.0087
#3	.0003	.0006	.1459	.0002	.0331	.0016	0007	.0004	.0088
Int. Std.	ln2306	Y 2243	Y 3600	Y 3710					
Avg	2416.1	5874.1	42793.	5514.7					
Stddev	5.3	10.6	78.	36.3					
%RSD	.21848	.18075	.18118	.65907					

Raw Data MA13933 page 164 of 198

2420.5

2417.4

2410.2

#2

5886.0

5870.8

5865.6

42707.

42816.

5507.3

5554.1

5482.5

Raw Data MA13933 page 163 of 198

∢ Zoom In ▶

										Zoom In Zoom Out
Sample Na	ame: MP31	872-SD1	Acquir	ed: 3/28/2	017 18:08	:07 Ty	pe: Unk			
Method: 60	0102007_0	41712(v60	8) Mo	de: CONO	Corr	. Factor: 5	.000000			
User: adm	in SS	TRACE02	: (Custom ID	2:	Custom ID	03:			
Comment:										
E1	4 - 0000	A10004	1-1000	D- 4554	D-0400	0-0470	0.40005	0-0000	0.0077	0004
Elem IS Ref	Ag3280				Be3130 (Y_3710)					Cu324
Ava	0010	0168	0011	.0634	.0004	32.71	.0001	.0000	.0006	.000
Stddev	.0011	.0490	.0017	.0009	.0002			.001	.0005	.000
%RSD	106.9			1.461	45.18					
#1	.0000	0568	.0005	.0634	.0004	32.81	.0001	.0006	.0005	.001
#2	0009									
#3	0021	0315			.0007			0001		.000
Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se196
IS Ref					(Y_2243)				(Y_2243)	
Avg	.0092	.4682	1.935	.5609	0006	160.8	0002	.0038	.0049	.0019
Stddev	.0074		.038	.0012						.003
%RSD	80.30	19.20	1.969	.2192	56.05	.2397	201.9	75.45	93.28	165.
#1	.0174	.4901	1.891							001
#2	.0069	.3694		.5597						.004
#3	.0032	.5452	1.963	.5621	0010	161.0	.0001	.0029	.0019	.002
Elem	Si2124				TI1908					
IS Ref					(In2306)					
Avg	.1551	.0006	.0341	.0034	0032	0006	.0100			
Stddev %RSD	.0090	.0012 187.0	.0005	.0002	.0016					
%RSD	5.821	167.0	1.605	5.029	50.51	206.7	3.781			
#1	.1507	.0006			0045					
#2	.1655	.0018								
#3	.1492	0005	.0343	.0033	0014	.0006	.0097			
Int. Std.	In2306		Y_3600							
Avg	2597.4	6115.8	44302.	5622.8						
Stddev	4.3	4.2								
%RSD	.16443	.06881	.38116	.63784						
#1	2600.6									
#2	2599.1	6111.0								
#3	2592.6	6118.8	44193.	5662.1						

Sample Nar Method: 601 User: admir Comment:	02007_04		Mode	3/28/2017 1 : CONC stom ID2:	Corr. Fa	Type: Ur ctor: 1.0000 ctom ID3:			
Elem IS Ref Avg Stddev %RSD	Ag3280 (Y_3600) .0484 .0004 .8407	Al3961 (Y_3710) 27.66 .08 .2887			(Y_3710) .0546		Cd2265 (Y_2243) .0482 .0001 .1048	(Y_2243) .4765 .0009	
#1 #2 #3	.0481 .0482 .0488	27.72 27.69 27.57		2.174 2.179 2.162		55.88 55.97 55.72		.4771	.2010 .2016 .2025
Elem IS Ref Avg Stddev %RSD	Cu3247 (Y_3600) .2611 .0002 .0857	27.61			Mn2576 (Y_3600) 1.048 .003 .2588			(Y_2243) .5010 .0012	
#1 #2 #3	.2608 .2612 .2612	27.58 27.65 27.60	27.40	27.63 27.71 27.55	1.049 1.045 1.051	.5721 .5740 .5747	166.9 165.6 167.9	.5020	.5217
Elem IS Ref Avg Stddev %RSD	Sb2068 (Y_2243) .5109 .0016 .3178	Se1960 (Y_2243) 2.071 .009 .4461	(Y_2243) .1497 .0026	Sn1899 (Y_2243) .5441 .0003 .0571	(Y_3710) .6185 .0016	Ti3349 (Y_3600) .5699 .0011 .1981		(Y_3600) .5042 .0013	(Y_2243) .5266 .0003
#1 #2 #3	.5118 .5090 .5119	2.061 2.073 2.079	.1503	.5437 .5442 .5444		.5688 .5699 .5710		.5045	.5269
Int. Std. Avg Stddev %RSD	In2306 2314.9 4.0 .17154	Y_2243 5877.7 4.0 .06732	42477. 86.	Y_3710 5481.3 6.6 .12071					
#1 #2 #3	2319.5 2312.8 2312.5	5881.7 5873.8 5877.6	42563.	5485.5 5473.6 5484.6					

Raw Data MA13933 page 165 of 198

	me: MP318			3/28/2017		Type: Ur			
Method: 60	102007_04	. ,	Mode	: CONC	Corr. Fa	ctor: 1.000	000		
User: admi	n SST	RACE02:	Cu	stom ID2:	Cus	tom ID3:			
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
IS Ref		(Y_3710)							
Avg Stddev	.0475	27.08	2.007	2.126	.0535	55.93 .13	.0470	.4653	.1959 .0002
%RSD	.8924	.3704	.3620	.1874	.2517	.2346	.4236	.3601	.1227
701100	.0024	.0704	.0020	.1074	.2017	.2040	.4200	.0001	.1227
#1	.0475	26.97	1.999	2.121	.0533	55.79	.0468	.4634	.1957
#2	.0480	27.13	2.011	2.126	.0535	56.05	.0471	.4664	.1961
#3	.0471	27.15	2.012	2.129	.0536	55.94	.0472	.4662	.1961
Elem	Cu3247	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
IS Ref		(Y 3710)							
Avg	.2544	27.10	26.76	27.02	1.043	.5555	F167.3	.4884	.5079
Stddev	.0004	.07	.05	.12	.002	.0023	.7	.0018	.0023
%RSD	.1585	.2495	.1812	.4450	.1491	.4111	.4319	.3743	.4471
#1	.2544	27.03	26.71	26.92	1.042	.5529	166.5	.4864	.5056
#2	.2541	27.15	26.80	27.15	1.043	.5568	168.0	.4890	.5101
#3	.2549	27.13	26.77	27.00	1.045	.5568	167.3	.4899	.5079
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062
IS Ref	(Y_2243)	(Y_2243)	(Y_2243)	(Y_2243)	(Y_3710)	(Y_3600)	(In2306)	(Y_3600)	(Y_2243)
Avg	.4985	2.017	.1540	.5272	.6056	.5519	2.026	.4909	.5149
Stddev	.0021	.007	.0011	.0030	.0022	.0001	.004	.0009	.0016
%RSD	.4260	.3509	.7237	.5643	.3555	.0247	.1976	.1910	.3098
#1	.4967	2.009	.1527	.5238	.6032	.5518	2.022	.4899	.5130
#2	.5009	2.022	.1549	.5287	.6074	.5521	2.030	.4912	.5157
#3	.4980	2.019	.1543	.5292	.6061	.5519	2.026	.4917	.5159
Int. Std.	ln2306	Y 2243	Y 3600	Y 3710					
Ava	2342.8	5948.2	43136.	5578.6					
Stddev	2.4	16.1	217.	7.5					
%RSD	.10437	.27053	.50290	.13457					
#1	2345.6	5966.3	43198.	5573.9					
#2	2341.9	5942.9	43316.	5574.7					
#3	2341.0	5935.5	42895.	5587.3					

Raw Data MA13933 page 166 of 198

∢ Zoom In ▶ Zoom Out

									Zoom Out
0 l - N	FA 400°	70.4	d 0 //	20/2017 10	.00.04	T			
	ame: FA422 0102007 04		cquired: 3/2	28/2017 18 :: CONC		Type: Unk ctor: 1.000	200		
User: adm	_	RACE02:		stom ID2:		stom ID3:	500		
Comment			ou.	0.0	000				
Elem	Ag3280	Al3961	As1890		Be3130	Ca3179	Cd2265	Co2286	Cr2677
IS Ref Avq	.0000	.0006	.0003	.0931	.0001	(Y_3710) 73.57	.0000	.0000	.0005
Stddev	.000	.0076	.0005	.0007	.0001	.24	.000	.000	.0003
%RSD	1451.	1324.	209.8	.7337	97.95	.3290	324.8	303.2	55.39
#1	.0002	.0041	.0000	.0937	.0000	73.68	.0001	0001	.0007
#2 #3	0005 .0002	0082 .0058	.0009 0001	.0923 .0933	.0000 .0001	73.29 73.73	0001 0001	.0001 0001	.0003 .0003
Elem	Cu3247		K_7664				Na5895	Ni2316	Pb2203
IS Ref						(Y_2243)			(In2306)
Avg Stddev	.0007	.0111	.3259	2.041	.3128	.0001	F147.9	.0002	.0033
%RSD	26.50	6.713	6.982				.5903	79.10	26.39
#1	.0009	.0106	.3112		.3135		149.0	.0004	.0039
#2 #3	.0006	.0120 .0107	.3522	2.019 2.055	.3119	.0000	147.4 147.5	.0002	.0036 .0023
Elem IS Ref	Sb2068 (Y 2243)		Si2124 (Y 2243)	Sn1899 (Y 2243)	Sr4077 (Y 3710)	Ti3349 (Y 3600)	TI1908 (In2306)	V_2924 (Y 3600)	Zn2062 (Y 2243)
Avg	0002	.0011	.2906	.0002	.0563	.0018	.0006	.0004	.0010
Stddev	.0001	.0006	.0006	.0003	.0003	.0002	.0008	.0002	.0000
%RSD	43.71	57.27	.2026	126.1	.4906	12.10	135.1	41.58	3.106
#1 #2	0002 0003	.0014	.2902	.0001	.0564	.0021 .0017	.0012	.0002	.0010 .0010
#3	0003	.0015	.2913	.0005	.0565	.0017	.0003	.0004	.0011
Int. Std.	ln2306	Y_2243	Y_3600	Y_3710					
Avg Stddev	2397.8 6.1	5882.2 11.9	42725. 269.	5635.6 28.6					
%RSD	.25590	.20171	.63033						
#1	2403.8		42591.						
#2 #3	2398.1	5878.6	43035.						
#3	2391.6	5872.6	42549.	5611.7					

Raw Data MA13933 page 168 of 198

Raw Data MA13933 page 167 of 198

Sample Name: FA42317-1 Acquired: 3/28/2017 18:29:14

13.69

.0185

.0193 .0237

Cu3247 Fe2599 K_7664 (Y_3600) (Y_3710) (Y_3710) .0006 .8330 1.186

.0028

.8298

.8350

.8342

0009

.0020

.0003

.0008

Y_2243

5918.1 9.1

.15319

5909.5

5927.6

5917.3

Se1960

SSTRACE02:

27.64

-.0002

-.0003 -.0002

.0003

46.61

.0006

.0003

.0009

0008

.0033 .0044

.0028

In2306

2420.4 6.2 .25634

2413.3

2423.1

2424.8

(Y_2243) (Y_2243) .0035 .0011

Sb2068

User: admin

Comment:

IS Ref

%RSD

#1

#3

Elem IS Ref

Avg Stddev

%RSD

#3

#1

#3

Int. Std.

Avg Stddev %RSD

#2

Elem

IS Ref Avg

Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000

22.22

.0006

.0006

020

1.648

1.167

1.184

1.206

Si2124

(Y_2243) .1117

0008

.1120

.1108

Y 3600

43107. 274.

.63549

42830.

43377.

Custom ID2:

.7902

.0409

.0406

Mg2790

(Y_3710) 6.152

.034

6.113

6.177

6.167

Sn1899

.0001

.0004

.0004

.0002

Y_3710

5549.3 74.4 1.3414

5536.6

5482.0

(Y_2243) .0003

Type: Unk

.5561

19.74

19.87 19.96

Mo2020

.0003

.1434

.2020

.2015

.2020

Ti3349

0001

.0017

.0017

.0016

(Y_3600) .0017

1222.

.0000

.0000

Na5895

(Y_3710) F145.8

.5353

145.0

146.5

145.9

TI1908

(ln2306) -.0006

.0007

.0001

-.0010

-.0011

27.17

.0003

.0003

Ni2316

.0001

.4778

.0166

.0164

.0165

V 2924

0002

.0003

.0004

.0007

(Y_3600) .0005

(Y_2243) .0165

Custom ID3:

 Ag3280
 Al3961
 As1890
 Ba4554
 Be3130
 Ca3179
 Cd2265
 Co2286
 Cr2677

 (Y_3600)
 (Y_3710)
 (Y_2243)
 (Y_3710)
 (Y_3710)
 (Y_2243)
 (Y_2243)
 (Y_23600)

 .0003
 .0205
 .0005
 .0409
 .0001
 19.86
 .0000
 .0003
 .0016

 .0001
 .0002
 .0003
 .0000
 .11
 .0000
 .0001
 .0001

93.50

.0001

.0000

Mn2576

.0002

.3626

.0595

.0598

.0593

Sr4077

(Y_3710) .0153

0001

.0154

.0153

(Y_3600) (Y_2243) .0595 .2018

.0016 .0001 7.125

.0015

.0016 .0017

Pb2203

(In2306) .0016

.0004 27.28

.0020

.0018

.0011

Zn2062

005

3.692

3.683

3.684

(Y_2243) 3.686

									Zoom Out
	E					-			
Sample Na			cquired: 3/2			Type: Unk			
Method: 60	_	. ,		: CONC		ctor: 1.000	000		
User: admir	n SST	RACE02:	Cu	stom ID2:	Cus	tom ID3:			
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
IS Ref			(Y_2243)						
Avg	0001	0066	.0001	.0166	.0000	71.80	.0002	.0032	0001
Stddev %RSD	.0003	.0061 93.30	.0002 182.5	.0003 1.976	.0001 223.1	.29 .4048	.0001 32.37	.0001 2.556	.0001 157.4
%H3D	224.9	93.30	162.5	1.976	223.1	.4046	32.37	2.556	157.4
#1	0004	0137	0001	.0169	.0000	71.53	.0002	.0031	.0000
#2	0002	0032	.0002	.0163	.0000	71.75	.0001	.0032	0001
#3	.0002	0028	.0002	.0167	.0001	72.11	.0002	.0033	0001
E1	00047	F-0500	14 7004	14-0700	14-0570	14-0000	N - 5005	NUCCAC	DI- 0000
Elem IS Ref	Cu3247	Fe2599	K_7664 (Y 3710)	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203 (In2306)
Ava	.0006	.0079	.2377	.4456	.0363	0002	F144.9	.0036	.0028
Stddev	.0001	.0026	.0197	.0069	.0001	.0001	2.3	.0001	.0003
%RSD	15.76	33.08	8.307	1.545	.2204	65.05	1.576	3.671	9.494
#1	.0006	.0053	.2308	.4511	.0364	.0000	144.5	.0035	.0030
#2	.0007	.0077	.2223	.4379 .4477	.0363	0002	142.8 147.3	.0036	.0025
#3	.0005	.0106	.2600	.4477	.0364	0002	147.3	.0038	.0028
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062
IS Ref	(Y_2243)		(Y_2243)		(Y_3710)		(In2306)	(Y_3600)	(Y_2243)
Avg	.0008	.0007	.1129	.0002	.2350	.0015	0011	.0002	.5941
Stddev	.0012	.0008	.0008	.0001	.0006	.0000	.0002	.0001	.0004
%RSD	145.5	112.0	.7343	31.16	.2601	1.171	19.53	74.74	.0616
#1	.0021	.0005	.1138	.0002	.2346	.0015	0014	.0001	.5937
#2	0002	.0000	.1121	.0002	.2347	.0015	0010	.0002	.5940
#3	.0006	.0016	.1128	.0003	.2357	.0016	0010	.0003	.5945
Int. Std.	ln2306	Y_2243	Y_3600	Y_3710					
Avg Stddev	2406.4 3.1	5909.1 4.9	42742. 50.	5571.7 40.3					
%RSD	.12730	.08329	.11711	.72301					
701 IOD	.12730	.00023	.11711	., 2001					
#1	2404.2	5913.1	42773.	5616.6					
#2	2409.9	5910.7	42768.	5560.0					
#3	2405.2	5903.6	42684.	5538.6					

Raw Data MA13933 page 170 of 198

Raw Data MA13933 page 172 of 198

									◀ Zoom In I Zoom Out
OI- N-	MD040	70 1400		1. 0.00.004	7.40.07.55	T	00		
Sample Na					7 18:37:55	Type:			
Method: 60	_			: CONC		ctor: 1.000	000		
User: admir	n SST	RACE02:	Cu	stom ID2:	Cus	stom ID3:			
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0001	0010	.0004	.0006	.0001	.0597	.0000	.0000	.0002
Stddev	.0001	.0082	.0004	.0002	.0000	.0004	.000	.0001	.0001
%RSD	94.17	860.1	103.6	44.07	16.22	.5887	79.29	165.4	70.80
#1	.0000	.0031	.0005	.0004	.0001	.0593		.0001	.0001
#2	0002	0104	0001	.0008	.0001	.0599	.0000	.0000	.0002
#3	0003	.0045	.0007	.0005	.0001	.0599	.0000	.0000	.0003
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cu3247	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0006	.0009	.1361	.0048	.0003	0002	F137.0	.0000	.0002
Stddev	.0002	.0014	.0112	.0128	.0000	.0001	.8	.0001	.0004
%RSD	32.46	155.9	8.231	268.4	12.11	52.78	.6128	463.7	168.1
#1	.0007	0002	.1234	.0151	.0003	0002			.0002
#2	.0004	.0004	.1444	.0087	.0003	0003		0001	0002
#3	.0007	.0024	.1406	0095	.0004	0001	136.3	.0000	.0006
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 2.500 -2.500		Chk Pass
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0003	.0001	.0063	.0003	.0001	.0001	0017	.0000	.0017
Stddev	.0006	.0003	.0005	.0001	.0000	.0001	.0008	.0001	.0000
%RSD	215.3	206.1	8.201	26.47	43.92	94.79	49.23	551.4	1.817
#1	.0003	0001	.0064	.0003	.0000	.0000	0009		.0017
#2	0004	.0004	.0058	.0002	.0001	.0001	0016		.0017
#3	.0009	.0000	.0068	.0004	.0001	.0001	0026	.0001	.0017
Check ? High Limit Low Limit	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA13933 page 169 of 198

									■ Zoom In ■
									Zoom Out
Sample Na				3/28/2017		Type: Ur			
Method: 60	_	. ,		: CONC		ctor: 1.000	000		
User: admir	n SST	RACE02:	Cu	stom ID2:	Cus	tom ID3:			
Comment:									
Elem	Ag3280	Al3961	As1890		Be3130	Ca3179	Cd2265	Co2286	Cr2677
IS Ref	.0001	.0003	(Y_2243) .0000	(Y_3/10) .0941	(Y_3710) .0000	(Y_3/10) 74.66	(Y_2243) .0000	.0000	(Y_3600) .0002
Avg Stddev	.0001	.0003	.0005	.0001	.000	.17	.000	.0001	.0002
%RSD	115.5	2775.	1748.	.0955	995.4	.2276	39.85	391.5	108.9
701100	110.0	2770.	1740.	.0000	333.4	.2270	00.00	001.0	100.5
#1	.0000	.0071	0003	.0941	0001	74.48	0001	0001	.0004
#2	.0001	.0046	.0005	.0942	.0001	74.69	.0000	.0001	.0000
#3	.0002	0107	0001	.0941	.0000	74.82	.0000	.0001	.0001
Elem	Cu3247	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
IS Ref	(Y_3600)	(Y_3710)	(Y_3710)	(Y_3710)	(Y_3600)	(Y_2243)	(Y_3710)	(Y_2243)	(In2306)
Avg	.0007	.0023	.2536	2.084	.3157	0004	F148.5	.0001	.0021
Stddev	.0003	.0011	.0305	.031	.0005	.0001	1.3	.0001	.0004
%RSD	44.81	45.96	12.04	1.475	.1708	33.32	.8798	122.8	19.68
#1	.0004	.0036	.2800	2.049	.3151	0003	147.0	.0000	.0019
#2	.0007	.0018	.2202	2.107	.3159	0005	149.4	.0001	.0025
#3	.0010	.0017	.2606	2.097	.3162	0004	149.1	.0001	.0018
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062
IS Ref	(Y_2243)	(Y_2243)	(Y_2243)	(Y_2243)	(Y_3710)		(In2306)	(Y_3600)	
Avg	.0007	.0003	.2892	.0001	.0570	.0016	0010	.0000	.0009
Stddev	.0005	.0010	.0010	.0002	.0001	.0001	.0003	.0001	.0001
%RSD	65.95	342.8	.3291	222.9	.2156	4.633	29.42	133.3	8.360
#1	.0007	0003	.2888	0001	.0569	.0016	0007	.0001	.0010
#2	.0003	0003	.2886	.0002	.0571	.0015	0012	.0001	.0010
#3	.0012	.0014	.2903	.0002	.0569	.0016	0012	.0000	.0008
Int. Std.	ln2306	Y 2243	Y 3600	Y 3710					
Avg	2389.6	5876.3	42075.	5503.0					
Stddev	9.6	23.7	127.	37.7					
%RSD	.40304	.40367	.30072	.68558					
#1	2395.6	5893.3	42167.	5538.8					
#2	2394.7	5886.4	42127.	5506.5					
#3	2378.5	5849.2	41931.	5463.6					

Raw Data MA13933 page 171 of 198

◀ Zoom In ▶ Zoom Out

						200111
Sample Nan	ne: MP3187	72-MB2	Acquired	3/28/2017	' 18:37:55 Type: QC	
Method: 601	02007_041	712(v608)	Mode:	CONC	Corr. Factor: 1.000000	
User: admin	SSTI	RACE02:	Cus	tom ID2:	Custom ID3:	
Comment:						
Int. Std.	In2306	Y_2243	Y_3600	Y_3710		
Units	Cts/S	Cts/S	Cts/S	Cts/S		
Avg	2482.6	6014.0	43244.	5656.8		
Stddev	1.3	5.1	70.	38.0		
%RSD	.05354	.08541	.16106	.67197		
#1	2484.2	6019.4	43304.	5696.5		
#2	2482.1	6013.2	43168.	5620.8		
#3	2481.7	6009.2	43260.	5653.0		

Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
Units	ppm	ppm	ppm						
Avg	.0469	27.01	2.006	2.065	.0529	25.43	.0473	.4668	.1977
Stddev	.0006	.07	.005	.003	.0001	.03	.0001	.0006	.0009
%RSD	1.334	.2521	.2359	.1635	.2012	.1041	.1874	.1385	.4767
#1	.0466	27.06	2.008	2.062	.0528	25.43	.0474	.4672	.1977
#2	.0466	27.03	2.001	2.066	.0530	25.46	.0473	.4661	.1968
#3	.0476	26.93	2.009	2.069	.0529	25.41	.0473	.4672	.1987
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cu3247	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
Units	ppm	ppm	ppm						
Avg	.2544	26.98	26.74	25.39	.5188	.5553	F170.9	.4892	.5098
Stddev	.0012	.02	.03	.08	.0018	.0011	4.4	.0010	.0006
%RSD	.4636	.0874	.1015	.3166	.3428	.2008	2.548	.2141	.1158
#1	.2551	26.95	26.71	25.46	.5186	.5557	176.0	.4896	.5098
#2	.2550	26.99	26.76	25.42	.5172	.5540	168.1	.4880	.5103
#3	.2530	26.99	26.75	25.30	.5207	.5561	168.7	.4899	.5092
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 25.00 20.00%	Chk Pass	Chk Pass
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm						
Avg	.4963	2.014	.0152	.5305	.5702	.5496	2.031	.4915	.5123
Stddev	.0020	.003	.0006	.0007	.0008	.0014	.003	.0005	.0011
%RSD	.4116	.1523	3.944	.1321	.1359	.2600	.1399	.1021	.2060
#1	.4985	2.013	.0157	.5312	.5698	.5506	2.033	.4917	.5123
#2	.4945	2.012	.0153	.5298	.5698	.5480	2.033	.4910	.5113
#3	.4958	2.017	.0145	.5303	.5711	.5502	2.028	.4919	.5134
Check ? Value Range	Chk Pass	Chk Pass	None	Chk Pass	None	None	Chk Pass	Chk Pass	Chk Pass

 Sample Name: MP31872-B2
 Acquired: 3/28/2017 18:42:20
 Type: QC

 Method: 60102007_041712(v608)
 Mode: CONC
 Corr. Factor: 1.000000

 User: admin
 SSTRACE02:
 Custom ID2:
 Custom ID3:

Raw Data MA13933 page 173 of 198

4 20011	
Zoom	Out

	me: MP3187 102007_041 n SSTF			/28/2017 1 CONC tom ID2:	Corr. Fa	Type: QC actor: 1.000000 stom ID3:
Int. Std. Units Avg Stddev %RSD	In2306 Cts/S 2358.1 3.4 .14565	Y_2243 Cts/S 5977.1 10.5 .17512	Y_3600 Cts/S 43220. 285. .65853	Y_3710 Cts/S 5560.4 41.2 .74088		
#1 #2 #3	2354.3 2360.9 2359.3	5970.1 5989.2 5972.2	43284. 43468. 42909.	5522.3 5554.8 5604.1		

Raw Data MA13933 page 174 of 198

Sample Name: C	CV Acquired	: 3/28/2017 18:46:28	Type: QC	
Method: 6010200	07_041712(v608)	Mode: CONC	Corr. Factor: 1.000000	
User: admin	SSTRACE02:	Custom ID2:	Custom ID3:	
Comment:				

Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.2469	39.26	1.946	2.043	2.064	39.42	1.900	1.896	1.997	2.017
Stddev	.0013	.07	.003	.002	.003	.11	.004	.004	.003	.003
%RSD	.5071	.1760	.1374	.1097	.1592	.2665	.1963	.1992	.1547	.1541
#1	.2458	39.18	1.946	2.041	2.061	39.31	1.904	1.900	1.998	2.014
#2	.2483	39.31	1.943	2.046	2.068	39.52	1.896	1.893	1.993	2.020
#3	.2467	39.29	1.948	2.044	2.064	39.42	1.900	1.895	1.999	2.017

Value Range

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	40.74	41.37	40.24	2.099	2.012	39.29	1.966	2.050	1.947	1.945
Stddev	.15	.09	.12	.004	.002	.10	.002	.001	.003	.005
%RSD	.3564	.2253	.3040	.2112	.0760	.2651	.1070	.0473	.1540	.2687
#1	40.62	41.26	40.10	2.102	2.010	39.18	1.968	2.051	1.950	1.950
#2	40.90	41.44	40.29	2.094	2.011	39.38	1.964	2.050	1.947	1.939
#3	40.70	41.41	40.33	2.100	2.013	39.33	1.966	2.049	1.944	1.945

Check? Chk PassChk Pas

riango							
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.953	1.953	2.100	2.069	2.047	2.032	2.035
Stddev	.003	.003	.003	.001	.005	.006	.002
%RSD	.1427	.1691	.1236	.0325	.2671	.2776	.1086
#1	1.956	1.957	2.097	2.069	2.054	2.036	2.034
#2	1.951	1.951	2.102	2.069	2.045	2.026	2.033
#3	1.953	1.951	2.100	2.070	2.043	2.035	2.037

Check ? Value None Chk PassChk PassChk PassChk PassChk Pass

Range

Raw Data MA13933 page 176 of 198

Raw Data MA13933 page 175 of 198

Method: 60102007_041712(v608) Mode: CONC

Y_2243

5945.6

.10017

5945.0

5951.8

5939.9

Cts/S

SSTRACE02:

In2306

Cts/S

2353.5

.15413

2349.5

2356.5 2354.5

Sample Name: CCV

User: admin Comment: Int. Std.

Units

Avg Stddev

%RSD

#2

Acquired: 3/28/2017 18:46:28

Y_3600

42687

Cts/S

.30294

42545.

42799

Custom ID2:

Y_3710

Cts/S

.35638

5493.0

5469.4

5454.3

5472.2 129

Type: QC

Corr. Factor: 1.000000

Custom ID3:

Sample N	Name: CCB	Acquire	d: 3/28/201	7 18:50:25	Type:	QC			
Method: (60102007_04	1712(v608)) Mode	: CONC	Corr. Fa	ctor: 1.000	000		
User: adr	min SST	RACE02:	Cu	stom ID2:	Cus	stom ID3:			
Commen	t:								
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0003	.0072	.0005	.0006	.0004	.0067	.0002	.0002	.0004
Stddev	.0000	.0015	.0007	.0001	.0001	.0038	.0001	.0001	.0003
%RSD	7.761	20.45	128.3	15.75	27.89	56.76	68.23	29.10	69.44
#1	0003	.0062	.0001	.0005	.0004	.0083	.0003	.0003	.0006
#2	0003	.0065	.0013	.0008	.0005	.0094	.0001	.0002	.0001
#3	0004	.0089	.0002	.0006	.0003	.0023	.0001	.0002	.0006
Check ? High Lim Low Limi	it	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cu3247	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0002	.0182	.0119	.0226	.0004	F.0017	.0439	.0002	.0004
Stddev	.0001	.0023	.0020	.0080	.0000	.0004	.0052	.0000	.0009
%RSD	29.96	12.82	16.94	35.41	7.326	20.35	11.86	26.95	215.5
#1	.0003	.0202	.0111	.0154	.0004	.0021	.0398	.0001	.0010
#2	.0002	.0187	.0104	.0211	.0004	.0017	.0497	.0002	0006
#3	.0002	.0156	.0142	.0312	.0003	.0014	.0422	.0002	.0009
Check ? High Lim		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail .0010	Chk Pass	Chk Pass	Chk Pass

Low Limit -.0010

Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0007 ppm .0004 ppm .0003 ppm .0008 ppm .0004 ppm .0002 ppm .0010 ppm -.0005 ppm -.0001 Ava 0001 0004 0002 0002 0000 0000 0003 0001 0000 %RSD #1 .0010 -.0004 .0008 .0006 .0003 .0008 .0001 .0005 .0002 .0008 .0002 .0009 .0004 .0004 .0008 .0001 .0003 .0002 #3 .0011 -.0009 .0005 .0002 .0003 .0008 -.0005 .0003 .0002

Check? Chk Pass Chk Pass None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Raw Data MA13933 page 177 of 198

Zoom In ►
 Zoom Out

Zoom In Zoom Out

Sample Name: CCB Acquired: 3/28/2017 18:50:25 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3: Comment:

Y_2243 Cts/S Y_3600 Cts/S Y_3710 Cts/S Int. Std. In2306 Units Cts/S Avg Stddev 2738.5 6261.5 45264. 5564.5 12.0 %RSD .12948 .19149 .15639 .06534 2742.3 6274.0 #2 2737.6 6260.4 45190. 5568.6 2735.4 6250.1 45270. 5561.9 Raw Data MA13933 page 178 of 198

Sample Name: CCV Acquired: 3/28/2017 19:35:45 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3:

Comment: Flem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265

Units ppm .2470 ppm ppm 1.945 ppm ppm ppm ppm ppm 1.889 ppm 1.999 ppm 2.025 39.40 2.062 2 086 39.50 1 895 .0009 .003 .2179 %RSD .3640 .2147 .0398 .5332 .4108 .1629 .1298 .1752 .0691 39.37 2.065 39.51 2.027 #2 .2468 39.50 1.946 2.072 2.094 39.58 1.897 1.891 1.998 2.024 .2463 39.34 1.946 2.050 2.077 39.41 1.897 2.025 Check ? Chk PassChk Pa

Range

Elem Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 Se1960 Sb2068 ppm 41.08 ppm 41.95 ppm 40.79 ppm 2.123 ppm 2.012 ppm 39.63 ppm 1.966 ppm 2.070 ppm 1.940 Units Avg Stddev .15 .17 .10 .005 .003 .12 .002 .007 .004 .002 %RSD .3700 3983 .2479 .2162 .1610 3052 0952 3408 .1954 .1239 41.08 #1 42.02 40.86 2.128 2.009 1.965 2.072 1.934 1.941 39.64 41 24 42.06 41.75 40.84 2.123 2.118 2.014 39.75 39.51 1 968 2.063 1.940 1.938 1.942 40.68 2.076 40.93 1.966

Check? Chk PassChk Pa Value Range

Elem Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm 1.947 ppm 1.954 ppm 2.126 ppm 2.081 ppm 2.067 ppm 2.042 ppm 2.050 Avg Stddev .001 .004 .010 .003 .008 .003 .004 %RSD .0295 .2076 .1792 1.946 1.949 2.128 2.084 2.067 2.046 2.047 #3 1.947 1.955 2.115 2.079 2.075 2.040 2.054

Check ? None Chk PassChk PassChk PassChk PassChk PassChk PassChk Value Range

Raw Data MA13933 page 180 of 198

Raw Data MA13933 page 179 of 198

■ Zoom In ▶

Cu3247

Cn2286

Cr2677

Cr2677

ppm .0006 .0001

14.31

.0006

.0007

.0006

Pb2203

ppm -.0001 .0004

268.8

-.0004

.0003

Zn2062

ppm .0003

0001

.0004

.0003

.0001

Sample Name: CCV							Zoom Out
Int. Std. In2306 Y_2243 Y_3600 Y_3710 Units Cts/S Cts/S Cts/S Cts/S Cts/S Avg 2372.9 6021.8 42901. 5467.6 Stddev 5.0 7.0 79. 24.2 %RSD 21030 .11640 .18462 .44225 #1 2376.8 6029.8 42835. 5442.6 #2 2374.7 6018.7 42988. 5469.3	Method: 60 User: adm	0102007_0 in SS	41712(v6	08) M	ode: CONC	Corr. Factor: 1.000000	
#2 2374.7 6018.7 42988. 5469.3	Int. Std. Units Avg Stddev	In2306 Cts/S 2372.9 5.0	Cts/S 6021.8 7.0	Cts/S 42901. 79.	Cts/S 5467.6 24.2		
	#2	2374.7	6018.7	42988.	5469.3		

■ Zoom In ▶

Sample Name: CCB

User: admin Comment: Elem

Units

Avg

#1

%RSD

Check?

Elem

Units Avg

Stddev

%RSD

Check?

High Limit

Low Limit

Elem

Units

Ava

#3

Zoom In ►
 Zoom Out

%RSD #1

Check? High Limit Low Limit

#1

#2 #3

High Limit Low Limit

Method: 60102007_041712(v608)

Ag3280

ppm .0000 .000

686.3

.0003

-.0001

-.0003

Cu3247

ppm .0006

.0004

63.30

.0005

.0010

ppm .0010

0006

.0017

.0006

.0006

Chk Pass Chk Pass

Sb2068 Se1960

SSTRACE02:

Al3961

ppm .0059 .0048

80.85

.0034

.0029

Fe2599

ppm .0137

.0008

6.129

.0147

.0133

ppm .0005

0006

.0008

.0002

.0009

Acquired: 3/28/2017 19:39:43

As1890

ppm .0002

.0004

255.9

.0003

-.0003

.0005

K_7664

ppm .0229

.0397

173.2

-.0082

.0093 .0676

Chk Pass Chk Pass Chk Pass Chk Pass

Si2124

ppm .0005

0004

.0010

.0004

.0002

Custom ID2:

Ba4554

ppm .0007

.0001

16.50

.0007

.0006

Mg2790

ppm .0213

.0043

20.02

.0174

.0206

Sn1899

ppm .0005

0000

.0005

.0005

.0005

Type: QC

Custom ID3:

Ca3179

ppm .0047 .0012

24.85

.0060

.0040

Mo2020

.0004

27.66

.0020

.0015

.0010

-.0010

Ti3349

ppm .0009

0000

.0008

.0008

.0009

None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Cd2265

ppm .0001

.0001

49.40

.0002

.0002

.0001

Na5895

ppm .0267 .0040

15.01

.0221

0284 .0296

TI1908

ppm -.0008

0003

-.0012

.0007

-.0005

Chk Fail Chk Pass Chk Pass Chk Pass

Co2286

ppm .0002 .0001

34.51

.0003

.0002

.0002

Ni2316

ppm .0000

.0002

1093.

.0001

.0001

V 2924

ppm .0003

0001

.0002

.0004

.0002

Mode: CONC Corr. Factor: 1.000000

Be3130

ppm .0004

.0000

2.750

.0004

.0004

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Mn2576

ppm .0004 .0001

13.62

.0004

.0005

Sr4077

ppm .0004

0000

.0004

.0004

.0004

Raw Data MA13933 page 181 of 198

In2306

Sample Name: CCB Acquired: 3/28/2017 19:39:43 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: User: admin Custom ID3: Comment:

Y_2243 Cts/S Y_3600 Cts/S Y_3710 Cts/S Int. Std. Units Cts/S Avg Stddev 2759.1 1.6 6304.2 45683. 5538.3 .05752 %RSD .20860 .14959 .62884 2760.6 6319.2 45606. 5547.9 #2 2759.2 6294.8 45734. 5567.3 2757.4 6298.5 45709. 5499.6 Raw Data MA13933 page 182 of 198

										▼ Zoom
										Zoom C
Sample N	Name: CCV	Acqu	ired: 3/28/	2017 19:4	3:59	Type: QC				
Method: 6	60102007_0	41712(v6	08) M	ode: CON	IC Co	rr. Factor:	1.000000	1		
User: adr	min SS	TRACE0	2:	Custom II	D2:	Custom	ID3:			
Commen	t:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.2415	38.70	1.917	2.030	2.041	38.85	1.872	1.865	1.951	1.980
Stddev	.0002	.05	.005	.004	.004	.09	.003	.003	.003	.003
%RSD	.0647	.1300	.2533	.2056	.2110	.2425	.1569	.1746	.1525	.1374
/61 TOD	.0047	.1300	.2333	.2000	.2110	.2423	.1303	.1740	.1020	.1374
#1	.2417	38.74	1.914	2.035	2.043	38.89	1.870	1.862	1.951	1.982
#2	.2414	38.64	1.916	2.026	2.036	38.74	1.870	1.864	1.947	1.981
#3	.2415	38.71	1.923	2.030	2.045	38.91	1.875	1.869	1.953	1.977
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Ava	40.11	41.31	39.92	2.069	1.974	39.00	1.932	2.030	1.906	1.910
Stddev	.11	.09	.14	.002	.005	.11	.002	.004	.008	.004
%RSD	.2743	.2160	.3512	.1019	.2543	.2903	.0793	.2002	.4254	.2289
701 TOD	.2740	.2100	.0012	.1013	.2040	.2000	.07 50	.2002	.4204	.2200
#1	40.16	41.41	39.98	2.068	1.970	39.13	1.932	2.031	1.898	1.905
#2	39.99	41.27	39.76	2.068	1.973	38.92	1.931	2.025	1.907	1.909
#3	40.20	41.25	40.03	2.072	1.980	38.96	1.934	2.033	1.914	1.914
Check ? Value Range	Chk Pass(Chk Pass	Chk Pass	Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass(Chk Pass	Chk Pass
Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V 2924	Zn2062			
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm			
Ava	1.917	1.924	2.078	2.020	2.019	1.992	2.013			
Stddev	.006	.003	.004	.001	.005	.002	.003			
%RSD	.3132	.1370	.1983	.0464	.2497	.0758	.1401			
/onou	.3132	.1370	.1963	.0404	.2497	.0758	.1401			
#1	1.912	1.923	2.081	2.020	2.023	1.991	2.012			
#2	1.915	1.923	2.074	2.019	2.013	1.994	2.010			
#3	1.924	1.927	2.080	2.021	2.021	1.992	2.016			
Check ? Value	None (Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass(Chk Pass			

Raw Data MA13933 page 184 of 198

Range

Raw Data MA13933 page 183 of 198

SSTRACE02:

Y_2243

6070.2

.06513

6073.2

6071.8 6065.7

Cts/S

Sample Name: CCV

User: admin

Comment: Int. Std.

Units

Avg Stddev

%RSD

#2

Method: 60102007_041712(v608)

In2306

Cts/S

2395.1

.08034

2396.8

2395.5

2393.0

Y_3600

43831

Cts/S

106

.24089

43914.

43867

43712.

Acquired: 3/28/2017 19:43:59

Mode: CONC

Y_3710

5493.3 28.7

.52292

5502.0

5461.2

5516.7

Cts/S

Custom ID2:

Type: QC

Corr. Factor: 1.000000

Custom ID3:

Zoom In Zoom Out

Acquired: 3/28/2017 19:47:59 Sample Name: CCB Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment:

Elem Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Co2286 Cr2677 ppm .0000 .000 Units ppm .0001 ppm .0000 ppm .0006 ppm 0005 ppm 0083 ppm .0001 ppm .0001 ppm .0004 Avg .0013 .0003 .0000 .0001 .0073 .0004 .0001 .0000 %RSD 956.4 5560 708.0 61.98 2.699 16.02 75.81 25.72 26.36 .0004 -.0003 .0010 .0004 .0074 .0002 .0002 .0005 #1 -.0023 .0002 .0083 .0003 .0005 .0005 0098 .0002 .0002 .0004 -.0003 -.0056 .0002 .0003 .0005 .0076 .0001 .0003 .0000

Check ? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Cu3247 Fe2599 K_7664 Mg2790 Mn2576 Mo2020 Ni2316 Elem Na5895 Pb2203 ppm .0187 ppm .0371 ppm .0004 Units ppm .0002 ppm .0218 ppm F.0016 ppm 0232 ppm .0001 Avg .0210 .0001 .0052 Stddev .0001 .0009 .0182 .0004 .0001 .0002 %RSD 57 50 4.687 56.70 83.70 13.92 24 60 22 26 284 0 22.67 .0197 .0004 .0173 .0000 .0008 #1 .0002 .0611 .0097 .0019 0004 .0286 .0018 .0002 0185 0427 .0004 .0006 .0217 #3 .0001 .0180 .0129 .0003 .0256 .0005

Check ? Chk Pass Chk Pass Chk Pass Chk Pass Chk Fail Chk Pass Chk Pass Chk Pass High Limit .0010 Low Limit -.0010

Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3349 TI1908 V 2924 Zn2062 Units ppm .0003 ppm .0006 ppm .0005 ppm .0009 ppm .0011 ppm .0007 ppm -.0004 ppm .0003 ppm .0001 Ava 0001 0012 0001 0002 0001 0001 0003 0001 0001 %RSD #1 .0010 -.0003 .0004 .0007 .0004 .0010 -.0007 .0003 .0001 .0011 .0020 .0004 .0003 .0005 .0009 .0002 .0004 .0000 #3 .0011 .0004 .0002 .0007 .0005 .0008 -.0002 .0003 .0001

Check? Chk Pass Chk Pass None Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit

Raw Data MA13933 page 185 of 198

2762.5

.08106

2760.1

2764.5

2763.0

6320.4

.13141

6325.9

6324.4

6310.8

Avg Stddev

%RSD

#2

✓ Zoom In ►
Zoom Out

■ Zoom In ■ Zoom Out

Sample Name: CCB Acquired: 3/28/2017 19:47:59 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: Custom ID2: Custom ID3: User: admin Comment: Y_2243 Cts/S Y_3600 Cts/S Y_3710 Cts/S Int. Std. In2306 Units Cts/S

45866

.06225

45895.

45867.

45837.

5559 2

31.3

.56377

5525.4

5587.2

Sample Name: CCV Acquired: 3/28/2017 20:26:49 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment:

Raw Data MA13933 page 186 of 198

Flor Ag3280 Al3961 As1890 Ba4554 Be3130 Ca3179 Cd2265 Cn2286 Cr2677 Cu3247 Units ppm .2489 ppm ppm ppm ppm ppm 40.43 ppm 1.987 ppm 1.975 ppm 2.046 ppm 2.032 40.27 2 003 2 094 2 085 .0010 .000 .006 .009 .000 %RSD .4185 .3128 .0038 .2663 .4194 .3510 .0208 .0397 .1078 .0805 40.13 2.003 2.076 1.987 1.974 2.034 #2 .2494 40.28 2.003 2.095 2.086 40.47 1.987 1.976 2.048 2.033 #3 .2477 40.38 2.003 2.099 2.094 40.56 2.045 2.031 1.986 Check ?

Chk PassChk Pa Range

Elem Fe2599 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Se1960 K_7664 Pb2203 Sb2068 ppm 42.57 ppm 2.136 ppm 39.72 ppm 2.085 ppm 1.989 Units ppm 40.94 ppm 41.14 ppm 2.053 ppm 2.023 Avg Stddev .20 .09 .006 .003 .13 .001 .005 .003 .002 %RSD .4952 .2175 .5710 .2733 .1303 3285 .0370 2546 .1602 .1001 42.47 40.74 2.051 #1 40.91 2.132 39.68 2.022 2.084 1.989 1.990 40.93 42.59 41.14 2.142 2.132 2.052 2.056 39.62 39.87 2 023 2 090 1.983 1.989 1.987 42.65 41.38 2.023 2.079 1.987

Check? Chk PassChk Pa Value Range TI1908

Zn2062

V 2924

Units ppm 1.997 ppm 2.029 ppm 2.123 ppm 2.075 ppm 2.075 ppm 2.070 ppm 2.094 Avg Stddev .002 .001 .006 .005 .007 .002 .001 %RSD .1068 .0355 .2995 .2449 .3501 .0259 1.999 2.028 2.116 2.080 2.071 2.069 2.093 2.029 #3 1.995 2.029 2.128 2.070 2.071 2.068 2.094

Ti3349

Sr4077

Check ? None Chk PassChk PassChk PassChk PassChk PassChk PassChk Value Range

Raw Data MA13933 page 187 of 198

Raw Data MA13933 page 188 of 198

Elem

Si2124

Sn1899

■ Zoom In ▶

371 of 383 **ACCUTEST** **⋖** Zoom In ▶ Zoom Out

						Zoom Out
				2017 20:26:49	**	
Method: 6	0102007_0	41712(v60	08) M	ode: CONC	Corr. Factor: 1.000000	
User: adm Comment		TRACE02	2:	Custom ID2:	Custom ID3:	
Int. Std.		Y_2243		Y_3710		
Units Avg	Cts/S 2318.5	Cts/S 5816.4	Cts/S 42204.	Cts/S 5306.4		
Stddev	2.5	2.2	23.	54.1		
%RSD	.10627	.03748	.05518	1.0202		
#1	2321.1	5815.1	42202.	5365.6		
#2	2316.2	5818.9	42181.	5294.1		
#3	2318.2	5815.1	42228.	5259.4		

Method: 60 User: admi	102007_04 n SST	1712(v608) RACE02:		: CONC stom ID2:		ctor: 1.000 stom ID3:	000		
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179		Co2286	Cr26
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pp
Avg	0001	.0130	.0000	.0011	.0009	.0171	.0002	.0002	.000
Stddev %RSD	.0001 120.1	.0094 72.56	.0005 909.9	.0002 18.75	.0000 2.674	.0018 10.29	.0001 47.85	.0001 44.29	.00
%RSD	120.1	72.56	909.9	16.75	2.074	10.29	47.65	44.29	10.
#1	.0000	.0032	.0006	.0011	.0010	.0191	.0004	.0004	.00
#2	0002	.0220	0001	.0013	.0009	.0163	.0002	.0002	.000
#3	0001	.0137	0003	.0009	.0009	.0159	.0001	.0002	.000
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pa
Elem	Cu3247	Fe2599	K 7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb22
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pp
Avg	.0005	.0299	.0827	.0277	.0007	F.0017	.1500	.0003	.000
Stddev	.0002	.0059	.0099	.0122	.0001	.0004	.0060	.0001	.00
%RSD	44.59	19.62	11.96	44.16	14.43	25.02	3.981	38.73	79.8
#1	.0007	.0367	.0919	.0164	.0007	.0022	.1433	.0004	.00
#2	.0003	.0264	.0722	.0260	.0007	.0016	.1520	.0002	.00
#3	.0004	.0267	.0841	.0406	.0005	.0014	.1547	.0002	.000
Check ? High Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	.0010	Chk Pass	Chk Pass	Chk Pa
Low Limit						0010			
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn20
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pp
Avg	.0015	.0010	.0004	.0006	.0009	.0010	.0004	.0004	.000
Stddev	.0008	.0010	.0005	.0000	.0001	.0001	.0004	.0001	.000
%RSD	52.98	102.7	132.7	6.243	7.961	12.40	93.87	17.26	18.
#1	.0023	.0018	.0010	.0006	.0010	.0011	.0000	.0003	.00
#2	.0007	.0012	.0003	.0007	.0009	.0010	.0006	.0004	.00
#3	.0015	0001	.0000	.0006	.0008	.0009	.0006	.0003	.000
Check ? High Limit Low Limit	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pa

Raw Data MA13933 page 189 of 198

2735.9 2732.8 2735.4

6223.8 6216.7 6197.1

#1 #2 #3

> 45406. 45036.

45273.

5443.7 5424.5

5470.5

Raw Data MA13933 page 190 of 198

										■ Zoom I
										Zoom O
		_								
	Name: CRIA			/2017 20:		Type: Unl				
	60102007_0	,	,	ode: CON		rr. Factor)		
User: ad		TRACE0	2:	Custom I	D2:	Custom	ID3:			
Comme	nt:									
Elem	Aa3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247
IS Ref	(Y_3600)									
Avg	.0080	.2055	.0094	.2065	.0054	1.029	.0051	.0507	.0105	.0268
Stddev	.0005	.0036	.0003	.0008	.0001	.008	.0000	.0001	.0002	
%RSD	6.244	1.763	2.721	.4028	1.440	.7668	.6225	.2944	1.584	.0952
#1	.0084	.2083	.0097	.2057	.0053		.0051	.0508		
#2	.0074	.2068	.0092	.2065	.0054	1.033	.0051	.0506		
#3	.0081	.2014	.0093	.2073	.0053	1.034	.0051	.0508	.0107	.0269
Elem						Na5895				Se1960
IS Ref	(Y_3710)									
Avg	.3263	10.79	5.320	.0163	.0530	10.35	.0414	.0054	.0062	.0088
Stddev %RSD	.0022 .6816	.04 .3514	.067 1.263	.0000	.0001	.04 .4125	.0002	.0004	.0003 5,239	
70N3D	.0010	.3314	1.203	.1100	.2190	.4123	.3093	0.040	5.239	22.76
#1	.3269	10.77	5.260	.0163	.0529		.0416	.0056		
#2	.3282	10.78	5.393	.0163	.0530	10.37 10.38	.0413	.0056		
#3	.3239	10.84	5.307	.0163	.0531	10.38	.0414	.0050	.0058	.0087
Elem		Sn1899	Sr4077	Ti3349		V_2924				
IS Ref	(Y_2243)									
Avg	.0186	.0542	.0105	.0107	.0089	.0502	.0217			
Stddev %RSD	.0002 1.305	.0004	.0001 .6385	.0001	.0007 8.356	.0002 .4572	.0001 .5555			
%HSD	1.305	.0090	.0303	1.010	0.330	.4572	.5555			
#1	.0188	.0544	.0106	.0106	.0097	.0501	.0218			
#2	.0185	.0537	.0104	.0108	.0087	.0505	.0216			
#3	.0184	.0544	.0106	.0106	.0083	.0500	.0216			
Int. Std.	In2306	Y_2243	Y_3600	Y_3710						
Avg	2619.5	6107.4	44372.	5412.8						
Stddev	2.6	13.2	150.	51.3						
%RSD	.09811	.21617	.33713	.94814						
#1	2621.6	6118.4	44508.	5470.7						
#2	2620.3	6110.9	44396.							
#3	2616.6	6092.8	44212.	5372.8						

Raw Data MA13933 page 191 of 198

Raw Data MA13933 page 192 of 198

■ Zoom In ■ Zoom Out

Sample Name: ICSA Acquired: 3/28/2017 20:39:11 Type: Unk Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 User: admin SSTRACE02: Custom ID2: Custom ID3: Comment: Ag3280 Al3961 Ba4554 Be3130 Ca3179 Cd2265 Co2286 IS Ref (Y 3600) (Y 3710) (Y 2243) (Y 3710) (Y 3710) (Y 3710) (Y 2243) (Y 2243) (Y 3600) Avg Stddev .0002 489.5 .0030 -.0002 .0001 .0001 473.9 .0013 .0001 .0008 .0002 .0001 .0001 %RSD 110.8 .3531 23.78 86.93 96.66 .6619 7.803 128.7 10.37 -.0001 487.8 .0038 .0001 477.3 -.0013 .0000 .0007 -.0003 .0003 -.0015 -.0012 491.2 .0029 -.0002 .0000 471.1 .0002 .0009 489.5 .0023 .0000 .0001 .0002 .0007 Cu3247 Fe2599 (Y_3600) (Y_3710) .0001 183.1 Elem K_7664 Mg2790 Mn2576 Mo2020 Na5895 Ni2316 Pb2203 IS Ref (Y_3710) .1780 Y_3710) F500.6 (Y_3600) .0001 (Y_2243) .0010 (Y_3710) .2957 (Y_2243) .0007 (In2306) .0027 Avg Stddev %RSD .0002 22.37 0003 .0275 .0000 0198 .0001 .0007 461.0 .1060 .1864 15.46 39.93 6.696 19.26 26.80 -.0002 182.9 .2062 499.6 .0001 .0013 .3145 .0006 .0030 .0003 183.2 .1765 500.8 .0001 .0008 .2751 .0007 .0019 #3 .0000 183.3 .1512 501.4 .0001 .0010 .2976 .0008 .0032 Elem Sb2068 Se1960 Si2124 Sn1899 Sr4077 Ti3349 V 2924 Zn2062 TI1908 (Y_2243) -.0006 (Y_2243) -.0004 (Y_2243) .0130 (Y_2243) .0036 Y_3710) .0014 (Y_3600) -.0003 (ln2306) -.0019 (Y_2243) .0016 IS Ref 3600) .0000 Avg Stddev 0002 0020 0006 0007 0004 0001 0013 000 0000 #1 #2 -.0003 .0019 0135 0040 .0010 - 0001 0034 0003 0015 -.0008 .0028 -.0004 .0015 .0000 .0015 .0133 .0018 -.0017 #3 -.0005 -.0014 .0123 .0038 .0015 -.0002 -.0010 .0003 .0016 Int. Std ln2306 Y_2243 Y 3600 Y 3710 2105.7 5520.1 39453 5270.9 14.3 .33718 .25816 .21749 %RSD .53855

Sample Name: ICSAB Method: 60102007_04 User: admin SST Comment:		Mode	17 20:43:3 : CONC stom ID2:	Corr. Fa	e: Unk ctor: 1.0000 stom ID3:	000			
Elem Ag3280 IS Ref (Y_3600) Avg F_9025 Stddev .0037 %RSD .4057	(Y_3710) 493.5 7.0	As1890 (Y_2243) 1.033 .002 .1971	Ba4554 (Y_3710) .5089 .0012 .2348	Be3130 (Y_3710) .4930 .0024 .4920	Ca3179 (Y_3710) 462.3 7.3 1.585	Cd2265 (Y_2243) .8748 .0018 .2087	Co2286 (Y_2243) .4379 .0009 .2100	Cr2677 (Y_3600) .4838 .0011 .2250	
#1 .9065 #2 .9017 #3 .8993	488.0	1.030 1.034 1.034	.5089 .5101 .5077	.4943 .4945 .4902	470.7 457.9 458.2	.8735 .8741 .8769	.4368 .4382 .4386	.4840 .4848 .4827	
Elem Cu3247 IS Ref (Y_3600) Avg .5130 Stddev .0005 %RSD .0959	(Y_3710) 179.7 .8	K_7664 (Y_3710) .1040 .0153 14.69		Mn2576 (Y_3600) .4948 .0006 .1206		Na5895 (Y_3710) .2271 .0051 2.233	Ni2316 (Y_2243) .9040 .0018 .2046	Pb2203 (ln2306) .9705 .0056 .5758	
#1 .5135 #2 .5127 #3 .5127	180.4	.0864 .1132 .1124	505.1 506.0 502.7	.4946 .4954 .4943	.9531 .9557 .9583	.2241 .2329 .2242	.9036 .9024 .9061	.9657 .9693 .9766	
Elem Sb2068 IS Ref (Y_2243) Avg .9580 Stddev .0014 %RSD .1453	(Y_2243) .9524 .0026	Si2124 (Y_2243) .0703 .0011 1.631	Sn1899 (Y_2243) .8927 .0013 .1425	Sr4077 (Y_3710) 1.031 .005 .4714	Ti3349 (Y_3600) .9824 .0023 .2377	TI1908 (In2306) .9513 .0018 .1940	V_2924 (Y_3600) .4674 .0010 .2042	Zn2062 (Y_2243) .9351 .0023 .2457	
#1 .9564 #2 .9586 #3 .9590	.9550	.0691 .0704 .0714	.8914 .8928 .8939	1.031 1.036 1.027	.9850 .9818 .9804	.9510 .9497 .9533	.4681 .4678 .4663	.9344 .9332 .9377	
Int. Std. In2306 Avg 2058.1 Stddev 2.7 %RSD .12974	5513.5 2.9	Y_3600 39282. 90. .23016	Y_3710 5210.3 5.3 .10180						
#1 2058.6 #2 2060.5	5515.5 5514.8	39263. 39203.	5204.2 5212.4						

Raw Data MA13933 page 193 of 198

2100.6 2113.8

2102.6

5531.1

5504.0

Zoom In ►
 Zoom Out

Raw Data MA13933 page 194 of 198

5510.1

2055.2

▼ Zoom In **▶** Zoom Out

Sample Name: CCV Acquired: 3/28/2017 20:47:48 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3: Comment:

39532.

39466

5251.7

5257.5

Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677	Cu3247	
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
Avg	.2470	39.48	1.955	2.043	2.042	39.53	1.933	1.924	2.013	2.006	
Stddev	.0015	.12	.003	.007	.001	.08	.005	.004	.006	.006	
%RSD	.6192	.2997	.1539	.3251	.0589	.1956	.2809	.1863	.2839	.3211	
#1	.2453	39.36	1.953	2.042	2.044	39.45	1.931	1.923	2.011	2.003	
#2	.2483	39.59	1.954	2.050	2.041	39.61	1.929	1.922	2.019	2.013	
#3	.2473	39.47	1.959	2.037	2.042	39.54	1.939	1.928	2.008	2.001	

Check ? Chk PassChk Pa Range

Elem	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203	Sb2068	Se1960
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	40.31	41.78	40.33	2.099	2.012	39.60	1.980	2.052	1.942	1.948
Stddev	.05	.09	.12	.005	.006	.09	.005	.003	.004	.004
%RSD	.1261	.2174	.3003	.2272	.2988	.2379	.2521	.1674	.1806	.1925
#1	40.25	41.71	40.19	2.097	2.007	39.56	1.978	2.051	1.943	1.947
#2	40.35	41.89	40.38	2.105	2.010	39.70	1.976	2.048	1.945	1.945
#3	40.32	41.75	40.41	2.096	2.018	39.53	1.985	2.055	1.938	1.952

Chk PassChk Pa Value Range

Elem	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.951	1.978	2.091	2.062	2.047	2.037	2.047
Stddev	.002	.005	.002	.008	.010	.004	.007
%RSD	.0776	.2559	.1032	.3963	.4885	.1850	.3284
#1	1.950	1.975	2.093	2.055	2.050	2.037	2.043
#2	1.951	1.975	2.093	2.071	2.036	2.041	2.044
#3	1.953	1.984	2.089	2.060	2.055	2.034	2.055

Check ? Value None Chk PassChk PassChk PassChk PassChk PassChk PassChk

Range

Raw Data MA13933 page 195 of 198

Sample Name: CCV Acquired: 3/28/2017 20:47:48 Type: QC Method: 60102007_041712(v608) Mode: CONC Corr. Factor: 1.000000 SSTRACE02: User: admin Custom ID2: Custom ID3: Comment:

Int. Std.	In2306	Y_2243	Y_3600	Y_3710
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	2357.6	5934.1	42644.	5380.0
Stddev	7.3	14.9	254.	36.8
%RSD	.31164	.25073	.59461	.68464
#1	2358.8	5940.5	42817.	5422.5
#2	2364.3	5944.7	42353.	5359.7
#3	2349.8	5917.0	42763.	5357.7

Raw Data MA13933 page 196 of 198

Raw Data MA13933 page 197 of 198

									▼ Zoom C
Sample Na	me: CCB	Acquire	d: 3/28/201	7 20:51:46	Type:	QC			
Method: 60	102007_04	1712(v608)	Mode	: CONC	Corr. Fa	ctor: 1.000	000		
Jser: admi	_	RACE02:		stom ID2:		tom ID3:			
	11 331	TIACLUZ.	Ou	Stom IDZ.	Ous	itom ibs.			
Comment:									
Elem	Ag3280	Al3961	As1890	Ba4554	Be3130	Ca3179	Cd2265	Co2286	Cr2677
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0000	.0139	.0009	.0007	.0005	.0227	.0001	.0001	.0003
Stddev	.0003	.0048	.0008	.0001	.0000	.0010	.0000	.0001	.0002
%RSD	919.7	34.34	88.01	7.679	9.326	4.325	49.69	107.5	58.54
#1	.0004	.0176	.0012	.0007	.0005	.0239	.0001	.0002	.0003
#2	0002	.0157	.0014	.0006	.0005	.0222	.0001	.0000	.0001
#3	.0000	.0085	.0000	.0007	.0004	.0221	.0001	.0000	.0005
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Cu3247	Fe2599	K_7664	Mg2790	Mn2576	Mo2020	Na5895	Ni2316	Pb2203
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0004	.0251	.0360	.0314	.0004	F.0017	.0553	0001	.0001
Stddev	.0001	.0021	.0215	.0199	.0000	.0003	.0078	.0001	.0006
%RSD	28.66	8.569	59.80	63.52	9.034	17.03	14.12	173.6	741.5
#1	.0003		.0358			.0021	.0508	.0000	.0001
#2	.0005		.0145			.0016	.0507	.0000	0005
#3	.0004	.0243	.0575	.0373	.0003	.0015	.0643	0002	.0006
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail .0010 0010	Chk Pass	Chk Pass	Chk Pass
Elem	Sb2068	Se1960	Si2124	Sn1899	Sr4077	Ti3349	TI1908	V_2924	Zn2062
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0005	0001	.0001	.0005	.0003	.0008	0008	.0004	.0002
Stddev	.0006	.0010	.0002	.0001	.0000	.0002	.0006	.0003	.0001
%RSD	142.4	670.7	326.3	28.34	4.983	20.03	75.70	63.47	48.94
<i>‡</i> 1	0002			.0004		.0009	0002		.0003
‡ 2	.0011	0002		.0006	.0003	.0009	0009		.0002
#3	.0005	0011	.0003	.0006	.0004	.0006	0014	.0001	.0001
Check ? High Limit Low Limit	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCB							▼ Zoom In Zoom Ou
Units Cts/S Cts/S Cts/S Cts/S Cts/S Avg 2726.1 6178.9 44971. 5390.1 Studev 4.0 10.1 213. 11.5 76RSD .14702 .16372 .47301 .21254 #1 2729.9 6190.2 44830. 5395.3 #2 2726.5 6175.9 45216. 5376.9	Method: 60102 User: admin	007_041	712(v608)	Mode:	CONC	Corr. Factor: 1.000000	
#2 2726.5 6175.9 45216. 5376.9	Units Avg Stddev	Cts/S 2726.1 4.0	Cts/S 6178.9 10.1	Cts/S 44971. 213.	Cts/S 5390.1 11.5		
	#2	2726.5	6175.9	45216.	5376.9		

374 of 383
ACCUTEST
FA42152

	Element, Wavelength and Order	Use?	# IECs	IEC	k1	k2	Calc-in-fit?
	Ag 328.068 {103}	X	3	V	-0.009834	0.000000	No
				Fe	-0.000001	0.000000	No
				Mg	0.000002	0.000000	No
	Al 396.152 { 85}	Ø	1	Мо	0.035224	0.000000	No
	As 189.042 {478}	X	5	Fe	-0.000051	0.000000	No
				Cr	-0.000226	0.000000	No
				Мо	-0.000017	0.000000	No
				Al	0.000004	0.000000	No
				Ca	0.000002	0.000000	No
	Ba 455.403 { 74}	<u> </u>	1	Fe	0.000024	0.000000	No
	Be 313.042 {108}	X	2	V	0.000115	0.000000	No
	0 - 017 000 (100)		Nlama	Ti	-0.000059	0.000000	No
	Ca 317.933 {106}	<u> X</u>	None		0.000050	0.000000	NI.
	Cd 226.502 {449}		4	Fe	0.000050	0.000000	No
				Ca	0.000001	0.000000	No No
				Al Ti	-0.000001	0.000000	No
	Co 228.616 {447}	⊠	2	Ti Mo	0.000151 -0.001220	0.000000	No No
	00 220.010 (447)		3	Ti	0.003012	0.000000	No
				Fe	0.000012	0.000000	No
	Cr 267.716 {126}	X	3	Al	0.000005	0.000000	No
	01 207.710 (120)	I/AI	<u> </u>	Fe	-0.000001	0.000000	No
				Ca	0.000001	0.000000	No
	Cu 324.754 {104}	X	10	Fe	-0.000137	0.000000	No
	00 02 01 (10 1)	N/N		Ca	0.000002	0.000000	No
				Мо	0.000528	0.000000	No
				Sn	-0.000012	0.000000	No
				V	-0.000158	0.000000	No
				Ti	-0.000251	0.000000	No
				Al	0.000004	0.000000	No
				Mg	0.000002	0.000000	No
				Co	-0.000787	0.000000	No
				Cd	0.000240	0.000000	No
	Fe 259.940 {130}		None				
	In 230.606 {446}*		None				
	K 766.490 { 44}		None				
	Mg 279.079 {121}	<u> </u>	None				
	Mn 257.610 {131}	M	2	Fe	0.000009	0.000000	No
				Mg	0.000001	0.000000	No
	Mo 202.030 {467}	XI.	1 None	Fe	-0.000017	0.000000	No
·····-	Na 589.592 { 57}		None 7	Γ_	0.000000	0.000000	No
	Ni 231.604 {445}	<u> </u>	7	Fe Co	-0.000023 -0.00054	0.000000	No No
[Mo	-0.000054 0.000005	0.000000	No
				Sb	-0.000120	0.000000	No
				Al	0.000003	0.000000	No
······································				Be	-0.00003	0.000000	No
				TI	0.000440	0.000000	No
	Pb 220.353 {453}	M	9	Al	0.000440	0.000000	No
	()	IV.Nt		Fe	0.000123	0.000000	No
•••••••••••••••••••••••••••••••••••••••				Mo	-0.001012	0.000000	No
				Cu	0.001070	0.000000	No
				Ti	0.000036	0.000000	No
•				Si	0.000071	0.000000	No
				Ca	-0.000005	0.000000	No
•••••••••••••••••••••••••••••••••••••••				Cr	0.000050	0.000000	No
			*	Mg	0.000004	0.000000	No

Element, Wavelength and Order	Use?	# IECs	IEC	k1	k2	Calc-in-fit?
Sb 206.833 {463}	X	10	Fe	0.000007	0.000000	No
			Cr	0.012140	0.000000	No
			Мо	-0.004076	0.000000	No
	•••••		V	-0.000611	0.000000	No
			Sn	-0.010736	0.000000	No
	•••••		Ti	0.000040	0.000000	No
			Ca	0.000004	0.000000	No
			Ni	-0.000438	0.000000	No
			Mg	-0.000002	0.000000	No
			Al	0.000003	0.000000	No
Se 196.090 {472}	Ø	10	, " Fe	-0.000063	0.000000	No
Ge 130.030 (472)		10	Ca	-0.000003	0.000000	No
			Mn	0.000574	0.000000	No
			Mo			
				0.000111	0.000000	No No
			Al	-0.000024	0.000000	No
			۷	0.000000	0.000000	No
			Zn	0.000000	0.000000	No
			Sr	0.000137	0.000000	No
			As	-0.000032	0.000000	No
			Be	0.000212	0.000000	No
Si 212.412 {459}		1	Мо	0.019120	0.000000	No
Sn 189.989 {477}	\boxtimes	None				į
Sr 407.771 { 83}	X	1	Ca	0.000102	0.000000	No
Ti 334.941 {101}	X	1	Ca	-0.000006	0.000000	No
TI 190.856 {477}	X	11	Co	0.001145	0.000000	No
			Fe	-0.000015	0.000000	No
9	••••••		Al	-0.000011	0.000000	No
			Ва	-0.000051	0.000000	No
			Ti	-0.002651	0.000000	No
			Sb	0.000012	0.000000	No
			Ca	0.000003	0.000000	No
			Cr	0.000230	0.000000	No
Ē			Mg	-0.000003	0.000000	No
			Mn	0.000818	0.000000	No
			V	-0.038621	0.000000	No
V 202 402 (11E)		E				
V 292.402 {115}	ΙΧI	5	Fe	0.000009	0.000000	No No
			Cr Ma	-0.002590	0.000000	No
			Mo :	-0.005797	0.000000	No
			Ti	0.000364	0.000000	No
			Mn	-0.000693	0.000000	No
Y 224.306 {450}*	X	None				
Y 360.073 { 94}*	X	None				.
Y 371.030 { 91}*		None				
Zn 206.200 {463}	X	5	Cr	-0.000965	0.000000	No
			Al	0.000005	0.000000	No
	•••••••••••	Ī	Ca	0.000003	0.000000	No
			Fe	0.000046	0.000000	No
			As	0.001128	0.000000	No

Element, Wavelength and Order	Date of Fit	Date of Cal.	Type of Fit	Weighting	A0	A1	A2	n (Exponent)
Ag 328.068 {103}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.000642	0.514679	0.000000	1.000000
Al 396.152 { 85}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.004102	0.154662	0.000000	1.000000
As 189.042 {478}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.000181	0.226344	0.000000	1.000000
Ba 455.403 { 74}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.017165	9.858170	0.000000	1.000000
Be 313.042 {108}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.000707	8.041292	0.000000	1.000000
Ca 317.933 {106}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.005026	0.267858	0.000000	1.000000
Cd 226.502 {449}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.000750	4.990082	0.000000	1.000000
Co 228.616 {447}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.000254	2.378537	0.000000	1.000000
Cr 267.716 {126}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.000230	0.457834	0.000000	1.000000
Cu 324.754 {104}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.003448	0.679581	0.000000	1.000000
Fe 259.940 {130}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.001986	0.162793	0.000000	1.000000
In 230.606 {446}*	3/28/2017 9:20:24	5/5/2010 12:30:54	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
K 766.490 { 44}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.003072	0.117963	0.000000	1.000000
Mg 279.079 {121}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.000179	0.027298	0.000000	1.000000
Mn 257.610 {131}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.000229	2.524910	0.000000	1.000000
Mo 202.030 {467}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.001249	1.067599	0.000000	1.000000
Na 589.592 { 57}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.013022	0.394250	0.000000	1.000000
Ni 231.604 {445}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.000768	1.454093	0.000000	1.000000
Pb 220.353 {453}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.001064	1.106007	0.000000	1.000000
Sb 206.833 {463}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.000248	0.255264	0.000000	1.000000
Se 196.090 {472}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.001341	0.161142	0.000000	1.000000
Si 212.412 {459}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.003630	0.352425	0.000000	1.000000
Sn 189.989 {477}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.000409	0.545773	0.000000	1.000000
Sr 407.771 { 83}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.000154	14.143823	0.000000	1.000000
Ti 334.941 {101}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.001874	1.528938	0.000000	1.000000
TI 190.856 {477}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.003318	0.519238	0.000000	1.000000
V 292.402 {115}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	-0.000113	0.654237	0.000000	1.000000
Y 224.306 {450}*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
Y 360.073 { 94}*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
Y 371.030 { 91}*	<not fit=""></not>	<never calibrated=""></never>	Linear	1/Conc	0.000000	0.000000	0.000000	1.000000
Zn 206.200 {463}	3/28/2017 9:20:24	3/28/2017 8:37:17	Linear	1/Conc	0.002657	2.982293	0.000000	1.000000

Element,		01-1-5	Donali ataud	Donallatad	Ī	Res	lope	QC	Norm
Wavelength and Order	Correlation	Std Error of Est	Predicted MDL	Predicted MQL	Status	Slope	Y-int	Slope factor	Offset
Ag 328.068 {103}	0.999981	0.000030	0.000405	0.001351	OK.	1.000000	0.000000	1	0
Al 396.152 { 85}	0.999774	0.005302	0.009348	0.031159	OK.	1.000000	0.000000	1	0
As 189.042 {478}	0.999963	0.000156	0.000653	0.002176	OK.	1.000000	0.000000	1	0
Ba 455.403 { 74}	0.999964	0.006779	0.000196	0.000652	OK.	1.000000	0.000000	1	0
Be 313.042 {108}	0.999839	0.011620	0.000075	0.000249	OK.	1.000000	0.000000	1	0
Ca 317.933 {106}	0.999675	0.011007	0.002719	0.009064	OK.	1.000000	0.000000	1	0
Cd 226.502 {449}	0.999891	0.005936	0.000045	0.000151	OK.	1.000000	0.000000	1	0
Co 228.616 {447}	0.999884	0.002918	0.000102	0.000341	OK.	1.000000	0.000000	1	0
Cr 267.716 {126}	0.999904	0.000512	0.000285	0.000950	OK.	1.000000	0.000000	1	0
Cu 324.754 {104}	0.999975	0.000388	0.000283	0.000942	OK.	1.000000	0.000000	1	0
Fe 259.940 {130}	0.999240	0.010230	0.002283	0.007611	OK.	1.000000	0.000000	1	0
In 230.606 {446}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
K 766.490 { 44}	0.999793	0.003871	0.024135	0.080450	OK.	1.000000	0.000000	1	0
Mg 279.079 {121}	0.999691	0.001093	0.017055	0.056849	OK.	1.000000	0.000000	1	0
Mn 257.610 {131}	0.999753	0.004518	0.000045	0.000151	OK.	1.000000	0.000000	1	0
Mo 202.030 {467}	0.999750	0.001924	0.000141	0.000470	OK.	1.000000	0.000000	1	0
Na 589.592 { 57}	0.999707	0.015384	0.007380	0.024602	OK.	1.000000	0.000000	1	0
Ni 231.604 {445}	0.999864	0.001931	0.000163	0.000543	OK.	1.000000	0.000000	1	0
Pb 220.353 {453}	0.999996	0.000240	0.000520	0.001734	OK.	1.000000	0.000000	1	0
Sb 206.833 {463}	0.999959	0.000186	0.000937	0.003122	OK.	1.000000	0.000000	1	0
Se 196.090 {472}	0.999969	0.000102	0.001411	0.004704	OK.	1.000000	0.000000	1	0
Si 212.412 {459}	0.996266	0.002507	0.000485	0.001617	OK.	1.000000	0.000000	1	0
Sn 189.989 {477}	0.999917	0.000567	0.000230	0.000766	OK.	1.000000	0.000000	1	0
Sr 407.771 { 83}	0.999781	0.023871	0.000085	0.000284	OK.	1.000000	0.000000	1	0
Ti 334.941 {101}	0.999875	0.001948	0.000128	0.000425	OK.	1.000000	0.000000	1	0
TI 190.856 {477}	0.999948	0.000410	0.000712	0.002375	OK.	1.000000	0.000000	1	0
V 292.402 {115}	0.999899	0.000743	0.000257	0.000858	OK.	1.000000	0.000000	1	0
Y 224.306 {450}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
Y 360.073 { 94}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
Y 371.030 { 91}*	0.000000	0.000000	-1.000000	-1.000000	Warnin	1.000000	0.000000	1	0
Zn 206.200 {463}	0.999819	0.004575	0.000056	0.000187	OK.	1.000000	0.000000	1	0

DOD (MS)

SGS Accutest - Orlando

Metals Digestion Log Soil

MP #: 🗽

31871

Method of Digestion: SW846-3050B

Prep Date/Time (mm/dd/yy 24:00): Spk. Sol. A Volume Used(ml) HotBlock I.D. ACC 997 6071 Thermometer I.D. ACC 978 Correction Factor (°C)_ WH5670 0.25 0003294 Temperature Observed/Corrected (°C) 89 140320014 ADVPED 6 Balance I.D. Dig. Tube Lot# 16/0/38 Added 8: HNO₃ 0060132880 PTFE Boiling Chips 1105228 0000162027 5941-6749 Lot#

LOIH .	165720	-	*0001W/	ω <i>Σ</i> /	0000172000	5941-624
Sai	mple #		Wt., g	Final Volume(ml)	Comme	ents
Method Blan			1.0	30 ₀ ·O *	-	
Spike Blank(4	2	5	
Matrix Spike			1.24			
Matrix Spike			1.14			
Duplicate(DU	JP)		1-11	<u> </u>		
1 QC CFAU		٦,	1.69			
2D2-FA4.	2067-5	1	1.01		1112 00 111	
3 FA420	(e7-1	T	1.09			
4	1 - Z		1.33			
5	-3				771111111111111111111111111111111111111	
6	1-4		1:27 1:34			
7	-6		80.1			
8 8	- 7	11	1.15			The state of the s
9 FA4215	2-1		1.22			
10	-2 -3		30.1		TO THE TO THE CO. AND THE CO. AND THE CO.	70
11	-3		1.40			
12		4	1.13	4	†	
18						70000
14						
15					4)	1000
16				- Walter and the same of the s	7	
17		4				
18	4		037			
19	- 30.3		9/	272		
20				29 /13		100000
21 ^E	27					
22 ^E		\neg		TO STATE STATE SALL		
23 ^E		\dashv				
24 ^E	TOTAL WILLIAM CO. CO. CO. CO. CO. CO. CO. CO. CO. CO.					
<u>_</u>	(b) (6)					
Analyst:					* Date: <u>03/28</u>	7/12
QC Review;					* Date: <u>03/28</u>	<i>17'</i>
•						

- A Used for SB, MS, MSD
- B For reagent volumes used consult SOP MET 104, current revision
- C Parent sample used to prepare MS, MSD, DUP
- D Bottle Number E Additional Matrix QC

icpsoildigestionlog 0316.xls

Rev 03/04/16 DM

3 of 100

Section 12

General Chemistry

QC Data Summaries

Includes the following where applicable:

- · Method Blank and Blank Spike Summaries
- · Duplicate Summaries
- · Matrix Spike Summaries

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: FA42152 Account: CAPEGAA - Cape Environmental Management Inc. Project: OB/OD Site I, OB Site II, Fort Bliss, TX

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
рн	GN74604	FA42152-1A	su	8.18	8.15	0.4	0-10%

Associated Samples: Batch GN74604: FA42152-1A, FA42152-2A, FA42152-3A, FA42152-9A (*) Outside of QC limits

Section 13

Raw Data		

Method: (circle) SW846 9045 SW846 9040 SM4500H+B pH Analysis Log Matrix: (circle) Soil Water GN# 74604 Analysis Date (mm-dd-yy): 03-3/-17 Time (24:00): 16:45 (24:00): <u>/6:45</u>
Thermometer Corr. Factor C: O./ ___ Cal. Slope: 100.6 pH Buffer Lot # pH 4 6 4 6 9 pH 7 6 C 237 pH 10 6 C 445 11 + 54 03-31-17
pH 2 M/A pH 12 M/A Balance ID Adv pro 1 pH 2 ///- pH 12 /*//-

	P	//#	•	///			,
Sample ID	Bottle #	Sample Wt (g) / Vol (ml)	Vol of DI H2®	Sample Temp, observed, C	Sample Temp, 🖖 corrected, C	рН	Comments
pH 4 Buffer				20.7	20.6	4.00	
pH 7 Buffer				20.8	20.7	7.01	
pH 10 Buffer				20.6	20.5	10.04	
FD-42 152 -1.1 Dup	1	20.00	20	22.5	22.4	8.15	%RPD 0.367
4 QC		19.99	20	26.4	22.3	8.18	QC/Dup within 0.169/ N
FA 42 152-2	1	20.02	20	22.5	22-4	8.22	
1 -3	1_	20.04	20	22.2	22.1	8-22	
h -9	1	20.05	20	22.1	22.0	8.29	
pH 4 Buffer				20.5	20.4	4.00	
pH 7 Buffer	٠			20.6	20.5	7.01	
pH 10 Buffer				20.4	20.3	10.05	
Dup			,		14		%RPD
QC							QC/Dup within 0.1 Y / N
		14		<u></u>			
	ļ		03		,		
		<u></u>	1				
			03	<u> </u>			
pH 4 Buffer "							
pH 7 Buffer			,				<u> </u>
pH 10 Buffer			·				

* Second Duplicate require Analyst's Signature:	d for SM4500 only (b) (6)		Date (mm-dd-yy):	02-31-2017
QC Reviewer Signatu				04/03/17
QO NOVICWEI OIGHALA			- \	1 7/
Rev 0116 LM		lando		13 of 50