Our Ref.: 249-125

U.S. PATENT APPLICATION

Inventor(s):

Satoshi

Nakagawa

Hiroshi

Mizoguchi

Seiko

Ando

Mikiro

Hayashi Ochiai

Keiko Akio

Ozaki

Invention:

NOVEL POLYNUCLEOTIDES

NIXON & VANDERHYE P.C. ATTORNEYS AT LAW 1100 NORTH GLEBE ROAD 8TH FLOOR ARLINGTON, VIRGINIA 22201-4714 (703) 816-4000 Facsimile (703) 816-4100

The present application claims benefit of Japanese Patent Application Nos. Hei. 11-377484 (filed December 16, 1999), 2000-159162 (filed April 7, 2000) and 2000-280988 (filed August 3, 2000), the entire contents of each of which is incorporated herein by reference.

SUB AT

7

The contents of the attached CD-R compact discs are incorporated herein by reference in their entirety. The attached discs contain an identical copy of a file "SEQ2.TXT" which were created on the discs on December 13, 2000, and are each 25,891 KB BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

For example, Corynebacterium glutamicum is a Grampositive bacterium identified as a glutamic acid-producing
bacterium, and many amino acids are produced by mutants

thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants.

Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

Ţ >

However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with Escherichia coli, Bacillus subtilis, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

A chromosomal physical map of Corynebacterium glutamicum ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (Mol. Gen. Genet., 252: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in Corynebacterium glutamicum, and the nucleotide sequences of most genes have not been clarified hitherto.

In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia* coli, *Mycobacterium tuberculosis*, yeast, and the like, have

been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

moreover, techniques In recent years, monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been The techniques contribute to the analysis of developed. microorganisms, such as yeasts, Mycobacterium tuberculosis, Mycobacterium bovis used in BCG vaccines, and the like (Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an

apparatus and a system for use in the analysis, and a method for breeding the microorganism.

The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as method of using the well as а polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Corynebacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

From the viewpoint that the determination of the full nucleotide sequence of Corynebacterium glutamicum would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of Corynebacterium glutamicum can be determined by applying the whole genome shotgun method.

Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
- (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
- (B) measuring an expression amount of a gene derived from a coryneform bacterium,
- (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
- (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
- (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant

of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,

- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the second polynucleotides, at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- the to (2), wherein according The method (3) microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium Corynebacterium acetoacidophilum, glutamicum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium lilium, herculis, Corynebacterium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucelotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound

selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.

- (5) The method according to (1), wherein the polynucleotide to be examined is derived from *Escherichia* coli.
- (6) A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and

a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the second polynucleotides, at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and

recovering the polypeptide from the medium.

(15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and

recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.

- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and

a solid support adhered thereto.

(22) A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and

a solid support adhered thereto.

- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for

screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and

- (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
- (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
- (ii) at least temporarily storing said information;
- (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence or target structure motif information;

- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
- (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
- (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
- (ii) at least temporarily storing said information;
- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.

- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
- (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:

- (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
- (ii) at least temporarily storing said information;
- (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
- (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
- (29) A system based on a computer for determining a function of a polypeptice having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
- (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target

amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS 3502 to 7001; and

- (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
- (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
- (ii) at least temporarily storing said information;
- (iii) comparing the a least one amino acid sequence information selected from SEQ ID NOS:3502 to /001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

- (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- to (31), wherein the The system according microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corymebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium lilium, Corynebacterium herculis, melassecola, Corynebacterium Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34)The method assembling to .32), wherein microorganism belonging to the gents Corynamatherium is selected from the grant consisting of Corynebasterium glutamicum, Corynenauterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium Corynebacterium Corynebacterium melassecola, thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28)

- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
- (37) The recording medical or storage device according to (35) or (36), while is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polyperide nating a horosomic behydrogenase activity, comprising an amino acid sequence is which the Val residue at the Symbol in the amino acid sequence of homoserine dehydrogenase degived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypertide comprising an amino acid sequence in which the Val residue at the 59th position as the amino acid sequence as represented by SEQ LD NO:6952 is replaced with an amino acid residue other than a Val residue.
- (40) The polypeptide according to (33) or (39) wherein the Val residue at the 59th position as replaced with an Ala residue.

- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
- (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polyper-tide was ording to any one of (38) to (43), which is derived from Corynebacterium plantamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.

medium, and

- (51) A method for producing L-lysine, comprising: culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the
 - recovering the L-lysine from the culture.
- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
- of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleicle sequence in SEQ ID NOS.1 to 3431;
- (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
- (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii)
- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.

- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
- (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS: to 3431;
- (ii) identifying a magnation point present in the production strain based on a result obtain by (i);
- (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.

- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
- (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
- (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
- (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
- (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
- (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
- (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
- (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis

pathway or signal transmission pathway of a coryneform bacterium;

- (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
- (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoglutamicum, acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(i) preparing

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and

- a protein derived from a bacterium of a parent strain of the production strain;
- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;

- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (67)The method according (66), to wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.

1. Determination of full nucleotide sequence of coryneform bacteria

The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).

Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.

Specific examples include Corynebacterium acetoacidophilum ATCC 13870, . Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium ATCC glutamicum Corynebacterium glutamicum ATCC 13060, Corynebacterium ATCC 13826 (prior and genus species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and

species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryneform bacteria

Coryneform bacteria can be cultured by a conventional method.

Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner,

3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in Molecular Cloning, A laboratory Manual, Second Edition (1989) (hereinafter referred to as "Molecular Cloning, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

This insert is ligated into a suitable vector, such as pUC18 SmaI/BAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 µl of TE buffer.

Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DH10B (manufactured by Life Technologies) for Escherichia coli. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl- β -thiogalactopyranoside) to the plate medium.

The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium

containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(3) Production of cosmid library

The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/1 NaCl, 20 mmol/1 Tris hydrochloride, 5 mmol/1 EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCosl (manufactured by Stratagene) in accordance with the manufacture's instructions.

The resulting ligation product is packaged using a packaging extract which can be prepared by a method

described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

The transformant can be obtained as colonies formed on the plate medium.

The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

Specifically, the template can be prepared as follows.

The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

The double-stranded DNA plasmid used as the template can be obtained by the following method.

The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μl of a sequencing reaction solution.

A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according the manufacture's instructions.

About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.

The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

According to this method, the nucleotide sequence of the gap part can be determined.

When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and

NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO:1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the 300 to 500 bp, and among such interval of about oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform polynucleotide preferably a Such is bacteria. polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

The expression modulating fragment referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an enhancer, a silencer, a ribosome-binding a sequence, transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10

nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA*, 85: 2444-48 (1988)), BLAST (*J. Mol. Biol.*, 215: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the three-dimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

Examples of highly useful EMF include a highexpression promoter, an inducible-expression promoter, and Such an EMF can be obtained by positionally the like. determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome upstream part (usually 200 500 fragment in the nucleotides from the translation initiation site). also possible to obtain a highly useful EMF by selecting an showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMFcapturing vector as described above.

The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring

the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (Nuc. Acids. Res., 26: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.

Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of Corynebacterium glutamicum as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS:3502 to 7001 are encoded.

The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (Meth. Enzym., 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-

aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are

industrially highly useful microorganisms, many of the identified genes are industrially useful.

the characteristics of respective Moreover, clarified classifying the microorganisms can be by result, valuable determined. As a functions thus information in breeding is obtained.

Furthermore, from the ORF information derived from ORF corresponding to the coryneform bacteria, the microorganism is prepared and obtained according to the general method as disclosed in Molecular Cloning, 2nd ed. Specifically, an oligonucleotide having a or the like. nucleotide sequence adjacent to the ORF is synthesized, and obtained isolated and using the the ORF can be oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

A polynucleotide which hybridizes under stringent polynucleotide obtained by colony conditions is a Southern blot hybridization, plaque hybridization, like using, as a probe, hybridization orthe polynucleotide having the nucleotide sequence of the ORF Specific examples include a identified in the above. polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the

filter with $0.1\times$ to $2\times$ SSC solution (the composition of $1\times$ SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65° C.

The hybridization can be carried out in accordance with known methods described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of

regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary include oligonucleotide. Specific examples an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 3431, and an oligonucleotide comprising a complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer, the above-described antisense and an primer oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

analogues of these oligonucleotides Also, "analogous (hereinafter referred to as also also provided are by the present oligonucleotides") invention and are useful in the methods described herein.

Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothicate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is to a peptide nucleic acid bond, analogous converted oligonucleotides in which uracil in an oligonucleotide is propynyluracil, analogous C-5 with replaced oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which is replaced with oligonucleotide in an cytosine phenoxazine-modified cytosine, analogous oligonucleotides

in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

These unknown points can be clarified by the following method.

The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known The resulting information is combined with organisms. Thus, the biosynthesis known data on coryneform bacteria. pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. with Biotechnol., 32: 269-273 (1989))the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the replaced with alanine (Val59Ala) was 59-position is identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at

the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

In addition, a mutation Ala213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.

Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by hom of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

many examples of improved recent years, In production strains have been made through the use of In breeding, however, most of recombinant DNA techniques. the parent production strains to be improved are mutants mutagenic procedure conventional by a Leuchtenberger, Amino Acids - Technical Production and Use. In: Roehr (ed) Biotechnology, second edition, vol. 6,

products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which

has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

Specifically, a useful mutant can be constructed in the following manner.

One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a ratedetermining point in the downstream of a biosynthesis is therefore preferred to successively Ιt evaluate mutation points upward from downstream.

By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free

of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

For example, a lysine-producing mutant B-6 (Appl. Biotechnol., 32: 262-273 (1989)), which Microbiol. obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, lysine fermentation to be performed at enables temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. the fermentation temperature should Therefore, maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 industrially 34°C. Therefore, this strain is to advantageous since it can save the load of cooling during the fermentation.

When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus Corynebacterium which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of

growing at a high temperature exceeding 43°C include Corynebacterium thermoaminogenes, such as Corynebacterium thermoaminogenes FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

A strain having a further improved productivity of target product can be obtained using the thus the reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

The breeding method as described above is applicable to microorganisms, other than coryneform

bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and polynucleotide comprising 10 to 200 continuous nucleotides the nucleotide sequence of the polynucleotide adhered; and a polynucleotide array comprising a solid support to which at least one of a polynucleotide encoding sequence comprising the amino acid polypeptide represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

Examples of the solid support include a glass plate, a nylon membrane, and the like.

The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (Nat. Genet., 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

The analysis described below can be efficiently performed by adhering the polynucleotides or

oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (Nat. Genet., 21: 20-24 In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a part. adhesion Next, definite part of the an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at repeating this procedure, irradiated part. By oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

(2) Use of polynucleotide array

The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of
 the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids,

nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

The method will be described in detail.

A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (Science, 280: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene expression amount and the expression profile thereof can be analyzed.

The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (Nat. Biotechnol., 16: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999)); and the like.

The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (J. Bacteriol., 181: 6425-40 (1999)).

In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined

from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and

the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out recording medium can be information in the appropriately selected, depending on the type of the recording medium and the access device utilized. various data processing programs, software, comparator and for recording and utilizing the formats are used polynucleotide sequence information or the like. of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available Moreover, software for accessing software, for example. the sequence information is available and known to one of ordinary skill in the art.

Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

9. System based on a computer using the recording medium of the present invention which is readable by a computer

The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device(s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994)), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; Nuc. Acids. Res., 26: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac Development), GCG Software (manufactured by Group), (manufactured by Genetic Computer (manufactured by Compugen), and the like. In the process of using such a software device, the default

setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.

The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural motif data, or the like, and a memory accessing device(s) for accessing the same.

Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
- (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the

target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and

(iv) an output device that shows a screening or analyzing result obtained by the comparator.

This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in Molecular Cloning, 2nd ed., Current Protocols in Molecular

Biology, and the like, for example, according to the following method.

A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

The recombinant vector is introduced to a host cell suitable for the expression vector.

Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the

recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding of the present invention sequence, the DNA and transcription termination sequence. A promoter controlling also be contained therewith in gene combination.

Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, pCG1 (Japanese Published Unexamined such as 134500/82), pCG2 (Japanese Published Application No. Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 Boehringer Mannheim Co.), (manufactured by (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese

Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Unexamined Patent Application Japanese Published No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 BP-6798), Published Unexamined Japanese Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and Bacteriol., 172: 2392 (1990)), (J. pGEX pEG400 (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.

Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from Escherichia coli, phage and the like, such as trp promoter (P_{trp}) , lac promoter, P_L promoter, P_R promoter, T7 promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two Ptrp are linked in series $(P_{trp} \times 2)$, tac promoter, lacT7 promoter letI promoter and the like, can be used.

It is preferred to use a plasmid in which the space between Shine-Dalgarno sequence which is the ribosome

binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

One of ordinary skill in the art will appreciate that the codons of the above-described elements may be optimized, in a known manner, depending on the host cells and environmental conditions utilized.

Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia, the genus Brevibacterium, the Bacillus, the genus genus genus Microbacterium, the Corynebacterium, the genus Specific examples include Pseudomonas, and the like. Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, coli HB101, Escherichia No. 49, coli Escherichia Escherichia coli W3110, Escherichia coli NY49, Escherichia TB1, Serratia ficaria, GI698, Escherichia coli liquefaciens, fonticola, Serratia Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammoniagenes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC

Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (Proc. Natl. Acad. Sci. USA, 69: 2110

(1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in Gene, 17: 107 (1982) and Molecular & General Genetics, 168: 111 (1979) and the like, can be used.

When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF α 1 promoter, CUP 1 promoter, and the like.

Examples of the host cell include microorganisms to the genus Saccharomyces, the genus belonging Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Schizosaccharomyces Saccharomyces cerevisiae, pullulans, Trichosporon lactis, Kluyveromyces Schwanniomyces alluvius, Candida utilis and the like.

With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (Methods. Enzymol.,

194: 182 (1990)), a spheroplast method (Proc. Natl. Acad. Sci. USA, 75: 1929 (1978)), a lithium acetate method (J. Bacteriol., 153: 163 (1983)), a method described in Proc. Natl. Acad. Sci. USA, 75: 1929 (1978) and the like, can be used.

When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, *3*:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SR α promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637

(Japanese Published Unexamined Patent Application No. 299/88), and the like.

The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (Cytotechnology, 3: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)), the method described in Virology, 52: 456 (1973), and the like.

When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors*, *A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family Barathra are infected, and the like.

Examples of the insect cells include Spodoptera frugiperda oocytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.

The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (Proc. Natl. Acad. Sci. USA, 84: 7413 (1987)) and the like.

When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.

Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the Agrobacterium method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined 94/00977), 70080/85, WO No. Patent Application (Japanese Published Unexamined electroporation method Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogencontaining compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and

soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.

Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

is carried out under culturing aerobic conditions by shaking culture, submerged-aeration stirring The culturing temperature like. culture or the preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured, an inducer can be added to the medium, if necessary.

For example, isopropyl- β -D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid

(IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing trp promoter is cultured.

Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (The Journal of the American Medical Association, 199: 519 (1967)), Eagle's MEM medium (Science, 122: 501 (1952)), Dulbecco's modified MEM medium (Virology, 8, 396 (1959)), 199 Medium (Proceeding of the Society for the Biological Medicine, 73:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40° C in the presence of 5% CO, for 1 to 7 days.

Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40° C for 3 to 60 days.

Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the

methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a

dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

Moreover, the polypeptide of the present invention transgenic animal individual produced by а can be individual animal) plant nonhuman or(transgenic (transgenic plant).

When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place

in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a β -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (Tissue Culture, 20 (1994), Tissue Culture, 21 (1994), Trends in Biotechnology, 15: 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

The polypeptide according to the present invention can also be obtained by translation in vitro.

The polypeptide of the present invention can be produced by a translation system in vitro. There are, for example, two in vitro translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an in vitro transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated

therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the in vitro translation, the origin of the gene synthesized encoding the protein to be (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like In vitro translation kits having should be considered. various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

nucleotide Transcription/translation of DNA sequence cloned into a plasmid containing a T7 promoter can be carried out using an in vitro transcription/translation system E. coli T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as lacUV5, tac, \lambda PL(con), \lambda PL, or the like, can be carried out using an in vitro transcription/translation system System for Linear Templates E. coli S30 Extract (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an in vitro transcriptional RNA, a prokaryotic RNA, and the like.

In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells after cultivation, centrifugation collected by are suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-(manufactured by Pharmacia) or the like, Sepharose FF hydrophobic chromatography using a resin, such as butyl

sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower concentration of the protein denaturing agent in the the configuration Thus, the normal solution. polypeptide is reconstituted. After the procedure, purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention, and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the term "substantially The present invention. activity as that of the polypeptide" means the activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing for example, part-specific mutation(s) described in, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, Nuc. Acids. Res., 10: 6487 (1982), Proc. Natl. Acad. Sci. USA, 79: 6409 (1982), Gene, 34: 315 (1985), Nuc. Acids. Res., 13: 4431 (1985), Proc. Natl. Acad. Sci. USA, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-glutamic L-asparagine, L-asparatic acid, L-glutamine, glycine, L-histidine, L-isoleucine, acid, L-leucine, L-methionine, L-phenylalanine, L-proline, L-lysine, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other. Group A:

leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, 0-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

Group C:

asparagine, glutamine;

Group D:

lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

serine, threonine, homoserine;

Group G:

phenylalanine, tyrosine.

Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using

these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from Escherichia coli (Japanese Examined Patent Publication 23750/93).

To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods.

Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (Molecular Cloning, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host

include prokaryotes, lower eukaryotes (for example, yeasts), (for example, mammals), and cells higher eukaryotes isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can of the host. chromosome into the integrated Alternatively, it can be integrated into a factor example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of Corynebacterium glutamicum, the polynucleotides of the present invention and fragments Alternatively, they can be used in producing thereof. arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

A dosage of the antigen is preferably 50 to 100 μg per animal.

When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen

used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell

A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.

On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.

The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.

The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.

(b) Preparation of myeloma cells

As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (Curr. Topics in Microbiol. Immunol., 81: 1 (1978); Europ. J. Immunol., (1976)); SP2/O-Ag14 (SP-2) (Nature, 276: 269 6: 511 P3-X63-Ag8653 (653) (J. Immunol., *123*: 1548 (1978)): (1979)); P3-X63-Ag8 (X63) cell line (Nature, 256: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaquanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10⁻⁵ mol/l 2-mercaptoethanol, 10 $\mu g/ml$ gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10^7 or more of the cells are used for the fusion.

(c) Production of hybridoma

The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

The suspension is poured into a 96 well culture plate at 100 μ l/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies*, A *Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

A specific example of the enzyme immunoassay is described below.

The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified a first antibody obtained in (d) described below as antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with luminous substance, a radioactive enzyme, a chemical substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

(d) Preparation of monoclonal antibody

The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetramethylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.

A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can

be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

The antibody obtained in the above is within the scope of the antibody of the present invention.

The antibody can be used for the general assay using an antibody, such as a radioactive material labeled competitive binding immunoassay (RIA), immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques Immunocytochemistry, Academic Press, Vol. 1 (1982), Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976);Antibodies - A Laboratory Manual, Cold Spring laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

The antibody of the present invention can be used as it is or after being labeled with a label.

Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC,

rhodamine, or the like), a label using a rhodamine atom, (J. Histochem. Cytochem., 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.

Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

- 12. Production and use of polypeptide array
- (1) Production of polypeptide array

A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in Biotechniques, 27: 1258-61 (1999); Molecular Medicine Today, 5: 326-7 (1999); Handbook of Experimental Immunology, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); Meth. Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.

The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a

polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and

(iv) analyzing the detection data.

Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

13. Identification of useful mutation in mutant by proteome analysis

Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by two-dimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.

The two dimensional electrophoresis means an electrophoretic method which is performed by combining two electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an

improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO:3785 is increased in the lysine-producing mutant.

As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a

nucleotide sequence having a high expression promoter can be efficiently selected.

In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a the nucleotide recording medium storing sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

Example 1

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

The full nucleotide sequence of the genome of Corynebacterium glutamicum was determined based on the whole genome shotgun method (Science, 269: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature.

Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 \times g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform To the aqueous layer, 3 mol/1 (twice) in the same manner. sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 Tris hydrochloride, $1 \quad mmol/l$ EDTA, mmol/1containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same The genome DNA was subjected to manner as the above. The thus formed genome DNA isopropanol precipitation. precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mq/ml).

(2) Construction of a shotgun library

TE buffer was added to 0.01 mg of the thus prepared genome DNA of Corynebacterium glutamicum ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of

20 continuously for 5 seconds to obtain fragments of 1 to The genome fragments were blunt-ended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to The DNA eluate was treated elute DNA. phenol/chloroform, and then precipitated with ethanol to The total insert and 500 obtain a genome library insert. ng of pUC18 Smal/BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of E. coli ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl- β -D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well

titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digested with Sau3AI (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

The DNA fragment was ligated to the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into Escherichia coli XL-1-BlueMR strain Gigapack III Gold (manufactured by Stratagene) using Stratagene) Extract (manufactured by in Packaging accordance with the manufacture's instructions. The Escherichia coli was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

The full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was

carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

The double-stranded DNA plasmid as the template was obtained by the following method.

The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

 $6 \mu l$ of a solution of ABI PRISM BigDve Sequencing Ready Reaction Kit Cycle Terminator (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle determined accordance with the in was manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

All operations were carried out on the basis of data were output UNIX platform. The analytical in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match Southwest Parallel Software). The (manufactured by assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap The contig obtained by (The University of Washington)). the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

The sequence in the region which was not covered with the contigs was determined by the following method.

Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the

opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

Table 1 shows the registration numbers in above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid-translation sequences. Moreover, corresponding positions were confirmed alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:1. positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, sequences, and the like) on the genome were determined.

Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

_										$\overline{}$					-	1				$\overline{}$		
	Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF protein)	hypothetical protein	DNA topoisomerase (ATP- hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Matched length (a.a.)	524		390	392	174	704					422			854	112	329	268		265	155	117
	Similarity (%)	99.8		81.8	79.9	58.1	88.9					50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
	Identity (%)	8.66		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Mycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	gsp:R98523		sp:DP3B_MYCSM	sp:RECF_MYCSM	sp:YREG_STRCO	pir:S44198					sp:YV11_MYCTU			sp:GYRA_MYCTU	pir:E70698	sp:YEIH_ECOLI	gp:AB042619_1		gp:AF156103_2	pir.A49232	pir.F70664
	ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	144	1071	261	246	2568	342	1035	894	420	870	762	369
	Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	8798	1001	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	1920	2292	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
	SEQ NO. (a.a.)	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
	SEQ NO. (DNA)	2	က	4	2	9	7	8	6	5	7	12	13	14	15	16	17	18	19	20	21	22

Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serine/threonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
Matched length (a.a.)	332		253	260	95	648	486	492	375	469	155	526					117	490	242	262
Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	65.6	70.8	66.5	38.8					63.3	78.2	57.0	64.1
Identity (%)	40.4	,,	51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0
Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c		,			Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
db Match	sp:FEPG_ECOLI		gp:VCU52150_9	sp:VIUB_VIBVU	sp:YO11_MYCTU	Sp:PKNB_MYCLE	gp:AF094711_1	gp:AF241575_1	sp:SP5E_BACSU	pir:H70699	pir.A70700	pir:B70700					sp:PH2M_TRICU	sp:GABD_ECOLI	sp:YRKH_BACSU	sp:Y441_METJA
ORF (bp)	978	966	777	822	270	1938	1407	1422	1143	1353	462	864	147	720	219	471	954	1470	1467	789
Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46669	48024	48505	49455	49897	50754	50966	54008	51626	55546	55629
Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	56417
SEQ NO. (a.a.)	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
SEQ NO.	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57	58	59	09

																ary				T
Function	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein			magnesium and cobalt transport protein		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
Matched length (a.a.)	74	179	62		310			390		400	241	340				497	563		229	293
Similarity (%)	74.3	70.4	83.9		50.7			59.5		64.8	53.1	0.09				68.8	9.09		63.3	73.7
Identity (%)	40.5	36.3	53.2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
db Match	sp:YRKF_BACSU	sp:YC61_SYNY3	pir:G70988		gp:LMFL4768_11			pir:F70952		gp:AF179611_12	sp:PNUC_SALTY	sp:PHOL_MYCTU				sp:CITM_BACSU	sp.DPIB_ECOLI		sp:DPIA_ECOLI	gp:AF134895_1
ORF (bp)	291	591	174	855	840	711	1653	1119	447	1269	069	1122	132	384	765	1467	1653	570	654	912
Terminal (nt)	56386	56680	57651	58941	59930	60662	62321	62390	63594	65458	65508	67972	68301	68251	69824	68720	72158	71474	72814	72817
Initial (nt)	56676	57270	57478	58087	59091	59952	69909	63508	64040	64190	66197	66851	68170	68634	09069	70186	70506	72043	72161	73728
SEQ NO. (a.a.)	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
SEQ NO. (DNA)	61	62	63	64	65	99	29	89	69	2	71	72	73	74	75	9/	77	78	79	80

Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information regulator)	triacylglycerol lipase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
Matched length (a.a.)	127	334	43	85		42	84	202	394			279	251	262		171	100	162	570
Similarity (%)	76.4	99.7	79.1	63.5		75.0	0.99	29.0	8.66			50.2	59.0	56.1		94.7	100.0	100.0	100.0
Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2.			26.2	30.7	29.4	, ,	90.6	100.0	100.0	100.0
Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
db Match	gp:SCM2_3	sp:BIOB_CORGL	pir:H70542	sp:YKI4_YEAST		PIR:F81737	GSP: Y35814	prf.2512333A	gp:D38505_1			sp:HST2_YEAST	prf:2316378A	prf:2316378A		gp:AB029154_1	gp:AB029154_2	gp:CGL251883_2	gp:CGL251883_3
ORF (bp)	429	1002	237	339	117	141	273	1449	1245	306	615	924	972	006	888	513	300	486	1710
Terminal (nt)	74272	75491	75742	76035	76469	80613	81002	82120	83691	82038	85663	87241	87561	88545	90445	90461	91473	91988	93701
Initial (nt)	73844	74490	75506	75697	76353	80753	81274	83568	84935	85403	86277	86318	88532	89444	89558	90973	91174	91503	91992
SEQ NO. (a.a.)	3581	3582	3583	3584	3585	3586	3587	3588	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
SEQ NO. (DNA)	18	82	83	84	85	98	87	88	89	06	91	92	93	94	95	96	6	86	6 6

Table 1 (continued)

r		—				Т							1		1			· · · · · · · · · · · · · · · · · · ·	T	Т		Т	
	Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothetical membrane protein	
	Matched length (a.a.)	157	226	205	283	279		347			999	481		196		1297		338	513	352		106	
	Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
	Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
(columnaca)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhimurium putA		Phanerochaete chrysosporium aad	Escherichia coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
	db Match	gp:CGL251883_4	gp:CGL251883_5	gp:CGL251883_6	gp:CGL251883_7	prf:2318326B		gp:AF148322_1			sp:HTPG_ECOLI	sp:AMN_ECOLI		pir.E72483		sp:PUTA_SALTY		sp:AAD_PHACH	sp:YDAH_ECOLI	prf:2422424A		sp:YIDH_ECOLI	
	ORF (bp)	471	678	615	849	777	699	1152	675	2775	1824	1416	629	552	099	3456	114	945	1614	1332	669	366	315
	Terminal (nt)	94199	94879	95513	96365	96368	98189	97319	100493	80886	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
	Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	106392	107289	107435	111161	111374	112470	114147	115262	115578	115949
	SEQ NO. (a.a.)	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616	3617	3618	3619	3620	3621
	SEQ NO. (DNA)	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121

Function		transcriptional repressor	methylglyoxalase	hypothetical protein	mannitol dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoate-beta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyltransferase		DNA-3-methyladenine glycosylase		esterase		carbonate dehydratase	xylose operon repressor protein	macrolide efflux protein		
Matched length (a.a.)		258	126	162	497	435		260	451		279	271		188		. 270		201	357	418		
Similarity (%)		59.7	78.6	64.8	70.4	68.3		64.6	68.1		100.0	100.0		9.79		69.3		53.2	49.3	61.2		
Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		42.0		39.3		30.9	24.1	21.1		
Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtilis yurT	Mycobacterium tuberculosis H37Rv Rv1276c	Pseudomonas fluorescens mtlD	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum ATCC 13032 panB		Arabidopsis thaliana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis mef214		
db Match		sp:ACCR_AGRTU	pir.C70019	sp:YC76_MYCTU	prf:2309180A	prf:2321326A		sp:GATR_ECOLI	Sp:XYLB_STRRU		gp:CGPAN_2	gp:CGPAN_1		sp:3MG_ARATH		gp:AB029896_1		sp:CAH_METTE	sp:XYLR_BACSU	gp:LLLPK214_12	,	
ORF (bp)	2052	780	390	510	1509	1335	189	837	1419	822	837	813	951	630	654	924	627	558	1143	1272	804	444
Terminal (nt)	116548	118810	120410	120413	120951	122507	124030	124966	126350	127992	126353	127192	128099	129489	130798	130815	132424	132981	132971	134207	135518	136122
Initial (nt)	118599	119589	120021	120922	122459	123841	123842	124130	124932	127171	127189	128004	129049	130118	130145	131738	131798	132424	134113	135478	136321	136565
SEQ NO. (a.a.)	3622	3623	3624	3625	3626	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3643
SEQ NO. (DNA)	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143

	Function				cellulose synthase	hypothetical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme
Matched	length (a.a.)				420	593				303	198			361	248			829		188	219	166	217	55	284
Similarity	(%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	2.09	65.1	61.3	72.7	52.1
Jontity	(%)				24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
	Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1Jl nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
	db Match				pir.139714	sp:HKR1_YEAST				sp:RARD_PSEAE	sp:YADS_ECOLI			sp:ABRB_ECOLI	sp:YFCA_ECOLI		:	sp:HRPB_ECOLI		sp:NODL_RHILV	sp:ALKB_ECOLI	sp:3MG1_ECOLI	Sp:RHTC_ECOLI	sp:YAAA_BACSU	prf:2510326B
190	(bp)	1941	1539	636	1461	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	9/9	069	525	678	291	852
	(nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
	(nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848	157614	158154	158869	159162
SEQ	NO. (a.a.)	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
SEQ	NO.	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167

							Matched	
Terminal (nt)	nal	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
160370	170	342	gp:SPAC1250_3	Schizosaccharomyces pombe SPAC1250.04c	35.6	56.7	104	methyltransferase
161360	360	930						
162352	352	657						
161363	363	933						
162867	367	405	gp:AE002420_13	Neisseria meningitidis MC58 NMB0662	41.5	76.3	118	ribonuclease
163603	933	639						
166	166457	741						
163	163689	2067	gp:AF176569_1	Mus musculus n11	28.5	57.2	722	neprilysin-like metallopeptidase 1
167	167419	963						
167	167837	759	sp:FARR_ECOLI	Escherichia coli K12 farR	29.8	65.6	238	transcriptional regulator, GntR family or fatty acyl-responsive regulator
169	169991	1017	pir.T14544	Beta vulgaris	28.6	63.0	332	fructokinase or carbohydrate kinase
170	170916	921	gp:SC8F11_3	Streptomyces coelicolor A3(2) SC8F11.03c	52.7	80.7	296	hypothetical protein
17;	172444	1512	prf:2204281A	Streptomyces coelicolor msdA	61.0	86.1	498	methylmalonic acid semialdehyde dehydrogenase
17	173355	888	sp:IOLB_BACSU	Bacillus subtilis iolB	33.2	58.2	268	myo-inositol catabolism
17	175275	1728	sp:IOLD_BACSU	Bacillus subtilis ioID	41.0	8.69	586	myo-inositol catabolism
17	176272	954	sp:MOCC_RHIME	Rhizobium meliloti mocC	29.7	51.0	290	rhizopine catabolism protein
1	177318	1011	sp:MI2D_BACSU	Bacillus subtilis idh or iolG	39.1	72.2	335	myo-inositol 2-dehydrogenase
17	178203	870	sp:IOLH_BACSU	Bacillus subtilis iolH	44.6	72.1	287	myo-inositol catabolism
17	179658	1374	sp:TCMA_STRGA	Streptomyces glaucescens tcmA	30.9	61.5	457	metabolite export pump of tetracenomycin C resistance
1	178461	621						
18	180711	1023	sp:YVAA_BACSU	Bacillus subtilis yvaA	31.1	65.5	354	oxidoreductase
18	181297	456						

SEQ NO.	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
190	3690	181264	181647	384						
191	3691	182679	181687	993	gp:SRE9798_1	Streptomyces reticuli cebR	32.0	61.9	331	regulatory protein
192	3692	182819	184051	1233	sp:Y4HM_RHISN	Rhizobium sp. NGR234 y4hM	24.4	52.5	442	oxidoreductase
193	3693	184077	185087	1011	sp:YFIH_BACSU	Bacillus subtilis yfiH	33.7	64.7	303	hypothetical protein
194	3694	185214	185642	429						
195	3695	186508	186708	201	sp:CSP_ARTGO	Streptomyces coelicolor A3(2) csp	70.3	92.2	64	cold shock protein
196	3696	186769	187302	534						
197	3697	187302	187607	306						
198	3698	187687	188100	414	prf:2113413A	Stellaria longipes	30.6	58.2	134	caffeoyl-CoA 3-O-methyltransferase
199	3698	188725	188300	426						
200	3700	189736	188747	066	sp:CCPA_BACSU	Bacillus subtilis ccpA	28.7	62.1	338	glucose-resistance amylase regulator regulator
201	3701	189920	190321	402						
202	3702	190628	190389	240						
203	3703	192175	190703	1473	sp:XYLT_LACBR	Lactobacillus brevis xylT	36.0	70.5	458	D-xylose proton symporter
204	3704	193248	192949	300						
205	3705	193262	194464	1203	gp:AF189147_1	Corynebacterium glutamicum ATCC 13032 tnp	100.0	100.0	401	transposase (ISCg2)
206	3706	195038	194604	435	sp:FIXL_RHIME	Rhizobium meliloti fixL	27.6	60.7	145	signal-transducing histidine kinase
207	3707	195240	199769	4530		Corynebacterium glutamicum gltB	99.9	100.0	1510	glutamine 2-oxoglutarate aminotransferase large subunit
208	3708	199772	201289	1518	gp:AB024708_2	Corynebacterium glutamicum gltD	99.4	8.66	506	glutamine 2-oxoglutarate aminotransferase small subunit
209	3709	201580	201341	240						
210	3710	203244	201760	1485	pir.C70793	Mycobacterium tuberculosis H37Rv Rv3698	44.6	72.8	496	hypothetical protein
211	3711	205588	205956	369						

Function		arabinosyl transferase	hypothetical membrane protein	acetoacetyl CoA reductase	oxidoreductase				proteophosphoglycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permease protein	hypothetical protein	NADPH quinone oxidoreductase
Matched length (a.a.)		1122 a	651 h	223 a	464 0				350 p	124 F		206	302		214	236 (262	416	302
Similarity (%)		70.6	66.1	56.5	85.1				57.4	83.9		73.8	. 79.1		55.1	78.4	9.57	63.0	71.5
Identity (%)		39.8	35.0	31.4	0.99				24.3	60.5		43.2	63.6		31.3	47.0	31.3	36.5	41.1
Homologous gene		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790		•		Leishmania major ppg1	Mycobacterium tuberculosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rfbE		Agrobacterium tumefaciens plasmid pTi-SAKURA tiorf100	Yersinia enterocolitica rfbE	Yersinia enterocolitica rfbD	Mycobacterium tuberculosis H37Rv Rv3778c	Homo sapiens pig3
db Match		prf:2224383C	pir:D70697	prf.2504279B	pir.B70697				gp:LMA243459_1	sp:Y0GN_MYCTU		pir:H70666	pir:B70696		gp:AB016260_100	sp.RFBE_YEREN	sp:RFBD_YEREN	pir.F70695	gp:AF010309_1
ORF (bp)	318	3471	1983	759	1464	234	202	453	1002	396	402	633	939	342	265	789	804	1173	954
Terminal (nt)	206385	203541	207007	209210	209992	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116	217141	217943	220151	220154
Initial (nt)	206068	207011	208989	209968	211455	211768	211777	212283	212656	213712	214121	214527	216100	216264	216712	217929	218746	218979	221107
SEQ NO. (a.a.)	3712	3713	3714	3715	3716	3717	3718	3719	3720	3721	3722	3723	3724	3725	3726	3727	3728	3729	3730
SEQ NO. (DNA)	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230

	Т			[\neg					\neg
Function		probable electron transfer protein	amino acid carrier protein		molybdopterin biosynthesis protein moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor subunit 1	maltose transport protein	hypothetical membrane protein	histidinol-phosphate aminotransferase			
Matched length (a.a.)		78	475		368	150	158	154	377	227	256	96	365	121	330			
Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	70.5	68.0	70.8	8.09	6.97	. 8.39			
Identity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans moaC	Arthrobacter nicotinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicotinovorans modA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malK	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC			
db Match		PIR:A70606	sp:ALST_BACSU		gp:SYPCCMOEB_	prf:2403296D	sp:MOCB_SYNP7	prf.2403296C	gp:ANY10817_2	prf.2403296F	prf.2403296E	pir:D70816	prf:2518354A	sp:YPT3_STRCO	sp:HIS8_ZYMMO	-		
ORF (bp)	582	297	1476	606	1083	456	471	468	1185	723	804	321	912	420	1023	906	294	120
Terminal (nt)	221131	222207	222210	225244	225242	226312	226760	227218	227703	228891	229711	230928	230931	231848	232260	234818	234910	235409
Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229613	230514	230608	231842	232267	233282	233913	235203	235290
SEQ NO. (a.a.)	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743	3744	3745	3746	3747	3748
SEQ NO. (DNA)	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248

Table 1 (continued)

																						_	
	Function	transcription factor	alcohol dehydrogenase	putrescine oxidase	magnesium ion transporter		Na/dicarboxylate cotransporter	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	glutamyl-tRNA synthetase		transposase		
	Matched length (a.a.)	252	335	451	444		567	317	160	144			266	400	203			526	316		360		
	Similarity (%)	57.1	66.0	38.1	68.5		59.6	69.1	73.8	70.1			45.7	68.0	62.1			49.6	63.3		55.0		
	Identity (%)	29.4	34.0	21.5	30.9		33.2	46.1	48.8	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
table 1 (collinaca)	Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum	•		Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
	db Match	gp:BAU81286_1	sp:ADH2_BACST	sp:PUO_MICRU	prf:2305239A		prf.2320140A	pir.C70800	pir.B70800	gp:RHBNFXP_1			sp:YV34_MYCTU	sp:TGT_ZYMMO	sp:YPDP_BACSU			pir.S65588	sp:SYE_BACSU		gp:PSESTBCBAD_ 1		
	ORF (bp)	762	1017	801	1350	174	1530	1020	522	417	201	351	2403	1263	738	1080	648	1437	879	066	1110	303	138
	Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	256204
	Initial (nt)	236212	236326	237345	238176	239772	239986	242902	242910	243494	244015	244466	244902	247310	249294	249428	250369	250503	251952	253819	255438	255794	256067
	SEQ NO. (a.a.)	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770
	SEQ NO. (DNA)	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270

SEQ NO. (a.a.)	Linitial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
3771	1 256599	257894	1296	gsp:W69554	Brevibacterium lactofermentum aspC	98.6	100.0	432	aspartate transaminase
3772	2 257900	258529	630						
3773	3 258551	260875	2325	gp:AF025391_1	Thermus thermophilus dnaX	31.6	53.1	642	DNA polymerase III holoenzyme tau subunit
3774	4 259312	258596	717						
3775	5 260987	261295	309	sp:YAAK_BACSU	Bacillus subtilis yaaK	41.6	74.3	101	hypothetical protein
3776	6 261402	262055	654	sp:RECR_BACSU	Bacillus subtilis recR	42.5	72.4	214	recombination protein
3777	7 263295	262546	750	prf:2503462B	Heliobacillus mobilis cobQ	38.3	61.7	248	cobyric acid synthase
3778	8 264566	263298	1269	prf.2503462C	Heliobacillus mobilis murC	31.3	9.09	444	UDP-N-acetylmuramyl tripeptide synthetase
3779	9 265678	264599	1080	pir.H70794	Mycobacterium tuberculosis H37Rv dnaQ	25.7	55.2	346	DNA polymerase III epsilon chain
3780	0 269124	268258	867	sp:YLEU_CORGL	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	100.0	100.0	270	hypothetical membrane protein
3781	1 269371	270633	1263	sp:AKAB_CORGL	Corynebacterium glutamicum lysC-alpha	99.5	93.8	421	aspartate kinase alpha chain
3782	2 270576	269524	1053						
3783	3 271761	273194	1434						
3784	14 274120	273542	579	prf:2312309A	Mycobacterium smegmatis sigE	31.2	63.5	189	extracytoplasmic function alternative sigma factor
3785	15 274366	275871	1506	sp:CATV_BACSU	Bacillus subtilis katA	52.9	76.4	492	vegetative catalase
3786	16 275891	276232	342						
3787	17 276247	275957	291						
3788	18 276763	276302	462	sp:LRP_KLEPN	Klebsiella pneumoniae Irp	37.1	72.0	143	leucine-responsive regulatory protein
3789	9 276829	277581	753	sp:AZLC_BACSU	Bacillus subtilis 1A1 azIC	30.5	68.0	203	branched-chain amino acid transport

Table 1 (continued)

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
290	3790	277581	277904	324						
291	3791	278301	277987	315						
292	3792	278732	278388	345	gp:AF178758_1	Sinorhizobium sp. As4 arsR	34.4	68.9	06	metalloregulatory protein
293	3793	278814	279893	1080	gp:AF178758_2	Sinorhizobium sp. As4 arsB	52.2	84.2	341	arsenic oxyanion-translocation pump membrane subunit
294	3794	279893	280279	387	sp:ARSC_STAXY	Staphylococcus xylosus arsC	31.1	68.9	119	arsenate reductase
295	3795	280666	280349	318						
296	3796	280939	280670	270						
297	3797	281401	280949	453						
298	3798	282933	281404	1530	gp:AF097740_4	Bacillus firmus OF4 mrpD	32.4	70.4	503	Na+/H+ antiporter or multiple resistance and pH regulation related protein D
299	3799	283317	282937	381	prf:2504285D	Staphylococcus aureus mnhC	37.0	9.07	119	Na+/H+ antiporter
300	3800	286202	283317	2886	gp:AF097740_1	Bacillus firmus OF4 mrpA	34.1	64.3	824	Na+/H+ antiporter or multiple resistance and pH regulation related protein A
301	3801	286373	287857	1485		ŕ				
302	3802	287661	287059	603						
303	3803	288829	287966	864					,	
304	3804	289796	289131	999	sp:cZcR_ALCEU	Alcaligenes eutrophus CH34 czcR	38.6	70.4	223	transcriptional activator
305	3805	291243	289777	1467	prf.2214304B	Mycobacterium tuberculosis mtrB	26.7	56.8	521	two-component system sensor histidine kinase
306	3806	291815	292417	603	sp:APL_LACLA	Lactococcus lactis MG1363 apl	28.3	60.0	180	alkaline phosphatase
307	3807	291833	291273	561						
308	3808	293511	292597	915	pir.B69865	Bacillus subtilis ykuE	26.1	54.7	307	phosphoesterase
309	3809	293539	293991	453	sp:YQEY_BACSU	Bacillus subtilis yqeY	37.6	71.8	149	hypothetical protein

Table 1 (continued)

Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acidCoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein	hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
Matched length (a.a.)	782	71		50	149	440		534	127	251	254	394	153	272			207		240	211
Similarity (%)	77.1	63.4		96.0	89.9	68.9		6.63	65.4	72.5	52.0	66.5	72.6	72.4			65.7		77.1	58.3
identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
Homologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coelicolor A3(2) SCH17.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arabidopsis thaliana atg6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
db Match	prf:2209359A	pir:S20912		gp:SCH17_10	pir:G70790	sp:SHIA_ECOLI		sp:LCFA_BACSU	gp:SCJ4_28	sp:FABG_BACSU	sp:FLUG_EMENI	prf:2512386A	sp:NODN_RHILV	pir.F70790			prf:2323349A		sp:UVEN_MICLU	pir.B70790
ORF (bp)	2385	339	192	153	459	1353	609	1536	525	933	942	1194	471	843	1173	705	681	192	780	558
Terminal (nt)	294004	297402	297622	297783	298250	298332	300695	299726	301512	303088	304074	305263	305758	306700	305195	307504	306782	307727	308734	309302
Initial (nt)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167	303133	304070	305288	305858	296908	306800	307462	307918	307955	308745
SEQ NO. (a.a.)	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829
SEQ NO. (DNA)	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329

Table 1 (continued)

														—	 -					_
	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase I	
	Matched length (a.a.)	192	396	280	156	287	349	319		262	201	59				764	67		977	
	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				66.1	88.1		81.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5			·	33.8	68.7		61.7	
(Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis H37Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis S155 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
	db Match	sp:YEAB_ECOLI	pir:H70789	prf:2411250A	pir.F70789	pir.S72914	pir:E70788	pir.C44020		pir.C70788	pir:B70788	pir.A70788				sp:YPRA_BACSU	sp:CSP_ARTGO		pir:G70563	
	ORF (bp)	699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
	Initial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318696	318958	318991	321690	322007	322216	322910	325904
	SEQ NO. (a.a.)	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
	SEQ NO. (DNA)	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

											nily Silv									
Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrolase	
Matched length (a.a.)	263	423		144	172	314	258	101	362		160	251	415	320	108	230		260	586	
Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	8.23	56.4	6.39	88.9	66.5		57.3	54.4	
Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1	
Homologous gene	Stigmatella aurantiaca B17R20 cyaB	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysanthemi D1 bgxA	Azospirillum irakense salB	Amycolatopsis methanolica		Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichia coli K12 yefJ	Salmonella typhimurium ushA	
db Match	sp:CYAB_STIAU	sp:DP3X_BACSU		gp:AE002103_3	gp:AE001882_8	sp:RLUC_ECOLI	sp:BGLX_ERWCH	gp:AF090429_2	sp:FADH_AMYME	-	sp:YTH5_RHOSN	sp:FABG_ECOLI	gp:AF148322_1	prf.2512357B	pir:A70562	sp:YC22_METJA		sp:YEFJ_ECOLI	sp:USHA_SALTY	
ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	621	537	699	1230	933	375	759	1029	1035	2082	162
Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340569	342375	343451	345717	345814
Initial (nt)	327735	328283	329748	329933	330973	331552	332919	332965	335009	335805	336212	336781	337539	338793	340569	341327	341347	342417	343636	345975
SEQ NO. (a.a.)	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868
SEQ NO.	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368

_
~
0
Ф
_
-=
=
=
_
$\overline{}$
$\mathbf{\mathcal{C}}$
ខ
. – .
=
ح
ت
<u>ح</u>
ت
ت
<u> </u>
je 1 (
ble 1 (
ble 1 (
ble 1 (
ble 1 (

Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	lipopolysaccharide biosynthesis / aminotransferase
Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	06	394
Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	76.6	27.2	9.89		65.7	51.0	68.3
Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans rmIC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A.19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
db Match		sp:ADH_MYCTU	sp:RFBA_SALAN	gp:D78182_5	sp:RMLB_STRMU	sp:NOX_THETH	prf:2510361A		sp:Y17M_MYCTU	gp:SC5F2A_19	prf:2502226A		gp:SCF43_2	gsp:W56155	prf.2404346B	prf:2404346A		sp:CAPD_STAAU	PRF:2109288X	prf:2423410L
ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	1092	1095	1434	603	984	1812	942	1155
Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	367701	369801
Initial (nt)	346460	348019	348952	350310	351443	351948	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	365855	366832	368642	368647
SEQ NO. (a.a.)	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3887	3888
SEQ NO. (DNA)	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388

Table 1 (continued)

Function		pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1-carboxyvinyltransferase	UDP-N- acetylenolpyruvoylglucosamine reductase	sugar transferase	transposase		transposase (insertion sequence IS31831)		hypothetical protein	acetyltransferase	hypothetical protein B	UDP-glucose 6-dehydrogenase			glycosyl transferase	acetyltransferase	
Matched	(a.a.)	196	380	504	427	273	998	53		02		404	354	99	388			243	221	
Similarity	(%)	75.0	69.2	8.69	64.6	68.5	57.3	79.3		94.3		57.4	60.2	53.0	2.68			65.0	62.0	
	(%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
Homologous gene		Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhH	-
db Match		gp:AF014804_1	sp:CAPM_STAAU	pir:S67859	sp:MURA_ENTCL	sp.MURB_BACSU	gp:VCLPSS_9	prf:2211295A		pir.S43613		pir.G70539	gsp:W37352	PIR:S60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB008676_13	
ORF	(pb)	612	1161	1491	1314	1005	1035	150	135	327	276	1170	993	231	1161	273	1209	822	645	195
Terminal	(nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	387200	387463
Initial	(nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	386195	386556	387657
SEQ		3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905	3906	3907
SEQ	(DNA)	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407

Table 1 (continued)

١										
NO.	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
408	3908	387692	389098	1407	gp:CGLPD_1	Corynebacterium glutamicum ATCC 13032 lpd	9.66	100.0	469	dihydrolipoamide dehydrogenase
409	3909	389248	390168	921	pir.JC4985	Xanthomonas campestris	41.7	68.1	295	UTPglucose-1-phosphate uridylyltransferase
410	3910	390233	390730	498	gp:PAU49666_2	Pseudomonas aeruginosa PAO1 orfX	43.8	71.9	153	regulatory protein
411	3911	392208	390787	1422	pir.E70828	Mycobacterium tuberculosis H37Rv Rv0465c	57.0	81.3	477	transcriptional regulator
412	3912	392705	393475	771	gp:SCM10_12	Streptomyces coelicolor A3(2) SCM10.12c	34.8	67.4	230	cytochrome b subunit
413	3913	393639	395513	1875	pir.A27763	Bacillus subtilis sdhA	32.4	61.2	809	succinate dehydrogenase flavoprotein
414	3914	395426	396262	837	gp:BMSDHCAB_4	Paenibacillus macerans sdhB	27.5	56.2	. 258	succinate dehydrogenase subunit B
415	3915	396315	099968	336						
416	3916	396672	396932	261						
417	3917	397040	396411	630						
418	3918	397730	397825	96						
419	3919	397884	398222	339		-				
420	3920	398206	397232	975	gp:SCC78_5	Streptomyces coelicolor SCC78.05	26.3	49.8	259	hypothetical protein
421	3921	398329	399579	1251	sp:YJIN_ECOLI	Escherichia coli K12 yjiN	32.7	64.3	431	hypothetical protein
422	3922	399598	400017	420						
423	3923	400039	400341	303						
424	3924	400473	401150	678	sp:TCMR_STRGA	Streptomyces glaucescens GLA 0 tcmR	26.4	53.8	197	tetracenomycin C transcription repressor
425	3925	401050	401253	204						
426	3926	401150	402796	1647	gp:AF164961_8	Streptomyces fradiae T#2717 urdJ	36.1	74.6	499	transporter

Table 1 (continued)

	Function		formyltetrahydrofolate deformylase	sphate aldolase			ein	ein		cation-transporting P-type ATPase B		-glucosidase	hemin-binding periplasmic protein		ABC transporter ATP-binding protein	ein	ein			
	Ή	transporter	formyltetrahydrof	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical protein		cation-transportir		glucan 1,4-alpha-glucosidase	hemin-binding po	ABC transporter	ABC transporter	hypothetical protein	hypothetical protein			
	Matched length (a.a.)	508	286	208			280	92		748		626	348	330	254	266	258			
	Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3		56.1	83.6	90.3	85.0	56.4	61.6			
	Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			L
ומסור ו (כסוותוומכם)	Homologous gene	Streptomyces fradiae T#2717 urdJ	Corynebacterium sp. P-1 purU	Bacillus subtilis deoC			Mycobacterium avium GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A.17c			
	db Match	gp:AF164961_8	sp:PURU_CORSP	sp:DEOC_BACSU			prf:2413441K	pir.A70907		Sp:CTPB_MYCLE		sp:AMYH_YEAST	gp:AF109162_1	gp:AF109162_2	gp:AF109162_3	gp:SCC75A_17	gp:SCC75A_17			
	ORF (bp)	1632	912	999	150	897	867	300	900	2265	450	1863	1077	1068	813	957	837	810	813	
	Terminal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	
	Initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354	419253	
	SEQ NO. (a.a.)	3927	3928	3929	3930	3931	3932	3933	3934	3935	3936	3937	3938	3939	3940	3941	3942	3943	3944	
	SEQ NO. (DNA)	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	

		, ,			_													
Function	UDP-N-acetylpyruvoylglucosamine reductase				long-chain-fatty-acidCoA ligase	transferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
Matched length (a.a.)	356				558	416	246	417	231		921	269	306	302	269	394	55	
Similarity (%)	58.4				68.1	58.7	84.2	74.8	90.9		60.7	6.99	8.73	57.3	100.0	52.0	94.6	
Identity (%)	30.1				35.5	33.9	70.7	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
Homologous gene	Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	gp:SC2G5_6	sp:PMGY_STRCO	prf.2404434A	prf:2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf:2512277A	sp:YV23_MYCTU	sp:PROC_CORGL	gp:D88733_1	pir:S72921	
ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	810	1122	198	219
Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
SEQ NO. (a.a.)	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
SEQ NO.	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463

Table 1 (continued)

									je je		julator		tase					mease		ein	ısferase	
	Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase	
	Matched length (a.a.)	29			296	74		455	308		321	214	309	282		363		578		347	486	
	Similarity (%)	100.0			77.4	66.2		74.3	75.3		97.6	72.2	6.73	98.6		9.89		55.2		59.9	71.6	
	Identity (%)	89.7			51.0	40.5		44.4	2.03		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
(Homologous gene	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyodysenteriae bitA	Mycobacterium leprae cysG	
	db Match	gp:SCE68_25			pir.S72914	sp:YV35_MYCTU		sp:HEM1_MYCLE	pir:S72887		sp:CATM_ACICA	sp:SHIA_ECOLI	sp:3SHD_NEUCR	gp:AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		gp:SHU75349_1	pir:S72909	
	ORF (bp)	66	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	,
	Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	71017
	Initial (nt)	436463	436573	437233	438044	438179	438294	438516	439909	441220	442482	442758	444185	446538	447670	449179	449714	450826	450849	451895	452661	
	SEQ NO. (a.a.)	3964	3965	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	, 600
	SEQ NO. (DNA)	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	3

Table 1 (continued)

_			_					_												
	Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
	Matched length (a.a.)	337			858		364	464	425	191	802	245	533	338		144	90		82	301
	Similarity (%)	83.1			56.5		7.97	6'69	83.5	62.7	71.2	85.3	76.0	8.77		69.4	72.2		78.1	61.5
	Identity (%)	60.8			27.4		25.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
(505)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae hemL	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
	db Match	sp:HEM2_STRCO			sp:CTPB_MYCLE		sp:DCUP_STRCO	sp:PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOLI	pir.A70545	pir.B70545	pir:C70545	pir.D70545		pir.G70790	prf:2420312A		pir.F70545	sp:MENA_ECOLI
	ORF (bp)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	894
	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
	Initial (nt)	454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO. (a.a.)	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
	SEQ NO. (DNA)	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	200	501	502	503

Table 1 (continued)

ſ																			Se	
	Function	glycosyl transferase	malonyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2-pyrone-4,6-dicarboxylic acid				low-affinity inorganic phosphate transporter			naphthoate synthase	peptidase E	pterin-4a-carbinolamine dehydratase	muconate cycloisomerase
	Matched length (a.a.)	238	421	139	520	303	293	94		267				410			293	202	77	335
	Similarity (%)	62.6	51.5	65.5	76.0	75.6	66.2	64.9		54.7				83.2			70.3	82.7	68.8	76.7
	Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1				0.09			48.5	57.9	37.7	54.0
/	Homologous gene	Bacteroides fragilis wcgB	Rhizobium trifolii matB	Escherichia coli K12 yqjF	Pseudomonas putida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. LB126 fldB				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex aeolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
	db Match	gp:AF125164_6	prf:2423270B	sp:YQJF_ECOLI	pir.S27612	sp:KDGD_PSEPU	sp:ALSR_BACSU	pir:B70547	-	gp:SSP277295_9				pir:D70547			sp:MENB_BACSU	gp:AE001957_12	pir:C70304	pir.D70548
	ORF (bp)	864	1323	411	1560	948	879	315	444	750	417	378	261	1275	222	306	957	603	309	1014
	Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
	Initial (nt)	472948	475136	475407	477048	477995	478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062	485384	485385	486001
	SEQ NO. (a.a.)	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022
	SEQ NO. (DNA)	504	505	909	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522

Table 1 (continued)

_								·							
	Function	2-oxoglutarate decarboxylase and 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
	Matched length (a.a.)	606	148	408	447	237		412	316	111	318	145	236	564	443
	Similarity (%)	54.0	64.9	54.2	89.9	66.7		7.97	67.1	100.0	100.0	100.0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100.0	100.0	100.0	23.1	60.5
()	Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rpIK	Corynebacterium glutamicum ATCC 13032 rpIA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
	db Match	sp:MEND_BACSU	pir:G70548	pir.H70548	sp:CYCA_ECOLI	sp:UBIE_ECOLI		pir.D70549	sp:HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp.SC5H4_2	sp:GABT_MYCTU
	ORF (bp)	1629	441	1239	1359	069	699	1272	1050	333	954	435	708	1512	1344
	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	499869	499925	502920
	Initial (nt)	487028	488660	489209	490580	491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
	SEQ NO. (a.a.)	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
	SEQ NO.	523	524	525	526	527	528	529	530	531	532	533	534	535	536

_																	
	Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase beta chain	DNA-directed RNA polymerase beta chain	hypothetical protein		DNA-binding protein	hypothetical protein
	Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
	Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
	Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
	Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rplJ	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpoC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A.15c	Mycobacterium tuberculosis H37Rv RV2908C
	db Match	sp:GABD_ECOLI	GP:ABCARRA_2	sp:TYRP_ECOLI	sp:CTPG_MYCTU	sp:P49_STRLI		sp:RL10_STRGR	sp:RL7_MYCTU		pir.A70962	sp:RPOB_MYCTU	sp:RPOC_MYCTU	GP:AF121004_1		gp:SCJ9A_15	sp:YT08_MYCTU
Ì	ORF (bp)	1359	468	1191	1950	1413	603	513	384	138	972	3495	3999	582	180	780	798
	Terminal (nt)	504283	503272	505569	507647	509081	509696	510510	510974	510989	512507	516407	520492	518696	520850	521644	521679
	Initial (nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	520865	522476
	SEQ NO. (a.a.)	4037	4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	4048	4049	4050	4051	4052
	SEQ NO. (DNA)	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552

Table 1 (continued)

						_															
Function	30S ribosomal protein S12	30S ribosomal protein S7	elongation factor G			lipoprotein			ferric enterobactin transport ATP-binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA:acetate coenzyme A transferase	30S ribosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein S19	
Matched length (a.a.)	121	154	602			44			258	329	335	145	101	212		212	96		280	92	
Similarity (%)	97.5	94.8	88.9			78.0			83.7	77.8	80.6	79.3	99.0	9.68		1.06	9.06		92.9	98.9	
Identity (%)	6.06	81.8	71.7			56.0			56.2	45.6	48.1	9'99	84.2	66.5		71.2	74.0		2.08	87.0	
Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chlamydia trachomatis			Escherichia coli K12 fepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rpID	Mycobacterium bovis BCG rplW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
db Match	sp.RS12_MYCIT	sp.RS7_MYCSM	sp:EFG_MICLU			GSP: Y37841			sp:FEPC_ECOLI	sp:FEPG_ECOLI	sp:FEPD_ECOLI	gp:CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		sp:RL4_MYCBO	sp:RL23_MYCBO		sp:RL2_MYCLE	sp:RS19_MYCTU	
ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	840	276	285
Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	528768	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
Initial (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570	530626	531782	532008	533099	533437	534087	534090	534746	535072	535076	535935	536183
SEQ NO. (a.a.)	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063	4064	4065	4066	4067	4068	4069	4070	4071	4072	4073
SEQ NO.	553	554	555	556	557	558	559	260	561	562	563	564	565	566	567	568	569	570	571	572	573

Table 1 (continued)

													tase			tide	ha			otein		
Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate dehydrogenase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formate dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		-
Matched length (a.a.)	109 50	239 30	137 50	9 20	82 30				122 5(105 50	183 50		260 2,		298 fo	94 bi	756 fo			624 A		
Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.6		
Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	76.2	73.6		52.3		28.9	37.2	24.3			26.9		
Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rpIP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rpIE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
db Match	sp:RL22_MYCTU	sp:RS3_MYCBO	sp:RL16_MYCBO	sp:RL29_MYCBO	sp:RS17_MYCBO				sp:RL14_MYCTU	sp:RL24_MYCTU	sp:RL5_MICLU		sp:2DKG_CORSP		Sp:FDHD_WOLSU	gp:SCGD3_29	sp:FDHF_ECOLI			sp:YC81_MYCTU		
ORF (bp)	360	744	414	228	276	294	318	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1146	4074
Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	254054
Initial (nt)	536217	536579	537328	537744	537977	538267	538698	539413	539741	540112	540426	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	1,000,1
SEQ NO. (a.a.)	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	1001
SEQ NO. (DNA)	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	100

Table 1 (continued)

																	$\underline{}$						
	Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
Matched	length (a.a.)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	09	629	378	422
1	Similarity (%)	50.4	66.7	97.7	87.7	6.06	88.3	76.4	87.4		68.8		52.0	71.5			71.6	66.4	70.8	26.0	45.0	66.7	65.2
1,100	(%)	24.7	42.7	75.8	2.69	67.3	8.79	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34.8
	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus Iuteus rpIO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodococcus erythropolis thcB
	db Match	pir.E69424	gp:AE001931_13	pir.S29885	pir:S29886	sp:RL18_MICLU	sp:RS5_MICLU	sp:RL30_ECOLI	sp:RL15_MICLU		prf:2204281A		GP:ABCARRA_2	prf:2516398E			prf:2411257B	prf.2313248B	gp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	prf:2104333G
ı,	(bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1290
	(nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
-	(nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	559805	560634	561368	562632	562633	562963	563736	563871	565471	566759	568088
SFO	NO. (a.a.)	4096	4097	4098	4099	4100	4101	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
_	NO.	596	597	598	599	009	601	602	603	604	605	909	209	909	609	610	611	612	613	614	615	616	617

_
ᄝ
Ō
₹
≓
.=
☱
_
0
ដ
こ
Ψ-
ø
互
ച

												—,				$\overline{}$				— т	
	Function	transcriptional repressor	adenylate kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyl-phospholipid synthase	hypothetical membrane protein
	Matched length (a.a.)	256	184		253		72	122	134	132	311		122	265	786			485	505	423	100
	Similarity (%)	66.0	81.0		74.7		86.0	91.0	93.3	93.9	8.77		77.1	61.1	51.2			53.8	50.9	56.0	29.0
	Identity (%)	28.5	48.9	-	43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
/	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rplQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV DIM	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c
	db Match	prf:2512309A	sp:KAD_MICLU		sp:AMPM_BACSU		pir.F69644	prf:2505353B	sp:RS11_STRCO	prf:2211287F	sp:RPOA_BACSU		sp:RL17_ECOLI	sp:TRUA_ECOLI	pir.G70695			pir.A70836	sp:DIM_ARATH	sp:CFA_ECOLI	gp:SCL2_30
	ORF (bp)	804	543	612	792	828	216	366	402	603	1014	156	489	867	2397	456	303	1257	1545	1353	426
	Terminal (nt)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	575211	576898	577923	580429	580436	580919	582662	584228	585620	586248
	Initial (nt)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	581406	582684	584268	585823
	SEQ NO. (a.a.)	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
	SEQ NO. (DNA)	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637

Table 1 (continued)

														`					
	Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESAT-6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
	Similarity (%)	58.0	50.6	38.4				6.69	81.3	82.1	72.4	76.4		45.6			72.2	68.5	78.6
	Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
(2011)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315	-	Synechocystis sp. PCC6803 slr1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
	db Match	sp:ELYA_BACAO	pir.T10930	pir.E70977				pir.C70977	prf.2111376A	sp:RL13_STRCO	sp:RS9_STRCO	prf:2320260A		pir.S75138	,		pir:S73000	sp.ALR_MYCTU	sp:Y097_MYCTU
	ORF (bp)	1359	1371	3567	822	663	006	324	288	441	546	1341	303	1509	573	234	855	1083	495
	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
	Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	599699	600876	600971	602080
	SEQ NO. (a.a.)	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
	SEQ NO. (DNA)	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

Table 1 (continued)

Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyltransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
Matched length (a.a.)	550	411	207	132	319	571			100	537	. 76	138	94	174		116	504	146
Similarity (%)	66.2	77.6	75.4	6.63	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		8.69	93.9	53.0
Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4			76.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium smegmatis whiB3	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshii PH0308
db Match	sp:YIDE_ECOLI	gp:PSJ00161_1	sp:Y098_MYCTU	sp:RIMI_ECOLI	sp:GCP_PASHA	sp:Y115_MYCTU			sp:CH10_MYCTU	sp:CH61_MYCLE	GP:MSGTCWPA_1	GP:MSGTCWPA_3	gp:AF073300_1	sp:Y09F_MYCTU		sp:Y09H_MYCLE	gp:AB003154_1	PIR:F71456
ORF (bp)	1599	1239	675	507	1032	1722	429	453	297	1614	255	1158	297	564	1026	378	1518	627
Terminal (nt)	604409	802508	606392	606898	607936	609679	610175	609816	610644	612272	610946	611109	612418	613719	614747	614803	616853	615605
Initial (nt)	602811	604470	605718	606392	606905	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
SEQ NO. (a.a.)	4156	4157	4158	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	4173
SEQ NO. (DNA)	929	657	658	629	099	661	662	663	664	665	999	299	899	699	670	671	672	673

Table 1 (continued)

Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
Matched length (a.a.)	381	274	262	517				513	411	218				201	563		275	288	
Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
 Identity (%)	70.9	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 deg∪	,			Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
db Match	gp:AB003154_2	sp:YBIF_ECOLI	prf.1516239A	sp:GUAA_CORAM				gp:SCD63_22	gp:SC6E10_15	sp:DEGU_BACSU				pir.B70975	pir.A70975		gp:SC5B8_20	gp:AE001935_7	
ORF (bp)	1122	921	606	1569	663	441	189	1176	1140	069	324	489	963	825	1590	099	861	861	390
Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
Initial (nt)	616973	619013	619086	620004	620926	621717	622269	623635	623800	624985	625677	626558	627539	627727	628551	630810	630949	632684	633079
SEQ NO. (a.a.)	4174	4175	4176	4177	4178	4179	4180	4181	4182	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
SEQ NO. (DNA)	674	675	929	229	678	6/9	680	681	682	683	684	685	989	687	688	689	069	691	692

	_	_
۰	7	3
	ă	ś
	_	3
	Ξ	=
	٧.	_
•	-	-
۰	7	=
	_	-
	c	•
	ζ	5
•	_	_
•	•	_
	٩	2
1	7	₹
•	_	2
2	α	3

ī																	-			
	Function	hypothetical membrane protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranylgeranyl pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
	Matched length (a.a.)	92	524	288	722	367	188	145	462	497	205	897	223		206		346	268	1101	159
	Similarity (%)	67.4	76.2	71.2	75.6	63.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2	٠	75.4	67.2	57.5	62.3
	Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
	Homologous gene	Mycobacterium marinum	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A 29c	Brevibacterium linens crtE	Brevibacterium linens	Citrobacter freundii blc OS60 blc	Brevibacterium linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11.
	db Match	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	gp:AF139916_11	gp:AF139916_14	sp:BLC_CITFR	gp:AF139916_1	gp:AF139916_5	gp:AF155804_7	gp:SCE25_30	prf:2420410P		prf:2320284D		sp:ABC_ECOLI	sp:HLPA_HAEIN	prf:2517386A	gp:SCE126_11
	ORF (bp)	396	1644	912	2190	1146	585	648	1425	1404	753	2415	717	153	999	846	1080	268	3012	447
	Terminal (nt)	633079	633532	635178	636089	638317	640208	640232	642557	642556	644778	645176	647593	648315	648440	650187	649114	650392	654612	655122
	Initial (nt)	633474	635175	636089	638278	639462	639624	640879	641133	643959	644026	647590	648309	648467	649105	649342	650193	651288	651601	654676
	SEQ NO. (a.a.)	4193	4194	4195	4196	4197	4198	4199	4200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
	SEQ NO. (DNA)	693	694	695	969	269	869	669	700	701	702	703	704	705	902	707	708	709	710	711

Homologous gene	Initial		Terminal	ORF			Identity	Similarity	Matched	-
19_1 Streptomyces coelicolor A3(2) 26.1 56.0 468 884 Mycobacterium tuberculosis 50.3 76.4 203 38A_5 Streptomyces coelicolor A3(2) 34.9 61.7 264 459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 141_34 Streptomyces coelicolor A3(2) 45.2 78.3 157 102617_1 irp1 62.9 86.1 151 1970 Mycobacterium tuberculosis 62.9 86.1 151 1970 Mycobacterium tuberculosis 70.9 87.4 278 1970 Mycobacterium leprae 31.3 76.3 489 18779_8 Mycobacterium glutamicum 99.5 99.5 379 185652_1 Corynebacterium glutamicum 99.5 99.5 429 18_ECOLI Escherichia coli K12 xjiX 40.0 66.0 50 18_ECOLI Escherichia coli K12 xjiX 40.0 </td <td>(nt) (nt) (bp)</td> <td></td> <td>(gd)</td> <td></td> <td>db Match</td> <td>Homologous gene</td> <td>(%)</td> <td>(%)</td> <td>length (a.a.)</td> <td>Function</td>	(nt) (nt) (bp)		(gd)		db Match	Homologous gene	(%)	(%)	length (a.a.)	Function
884 Mycobacterium tuberculosis 50.3 76.4 203 58A_5 Streptomyces coelicolor A3(2) 34.9 61.7 264 45BA_5 Streptomyces coelicolor A3(2) 34.9 61.7 264 45BA_5 Streptomyces coelicolor A3(2) 45.2 71.8 245 45BA_6 Archaeoglobus fulgidus AF1676 42.5 71.8 245 45BA_7 Streptomyces coelicolor A3(2) 45.2 78.3 157 971 Mycobacterium diphtheriae 31.1 62.2 357 971 Mycobacterium leprae 31.3 76.3 80 1970 Mycobacterium leprae 31.3 76.3 80 1971 Mycobacterium leprae 31.3 76.3 80 1877 Rysteptomyces coelicolor A3(2) 34.0 63.2 489 1873 Streptomyces coelicolor A3(2) 34.0 63.5 429 1855 Corynebacterium glutamicum 99.5 99.5 379 186 Corynebacterium glutamicum 99	655122 656534 1413 g	1413		_0,	lp:SCE9_1	Streptomyces coelicolor A3(2) SCE9.01	26.1	56.0	468	hypothetical membrane protein
884 Mycobacterium tuberculosis 50.3 76.4 203 58A_5 Streptomyces coelicolor A3(2) 34.9 61.7 264 459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 141_34 Streptomyces coelicolor A3(2) 45.2 78.3 157 102617_1 Corynebacterium tuberculosis 62.9 86.1 151 971 Mycobacterium tuberculosis 70.9 87.4 278 1970 Mycobacterium tuberculosis 70.9 87.4 278 1970 Mycobacterium leprae 31.3 76.3 80 181779_8 Mycobacterium glutamicum 99.5 99.5 379 152652_1 McB1779_18c Corynebacterium glutamicum 99.5 78.4 690 17_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4213 655834 655097 738		738	L						
38A_5 Streptomyces coelicolor A3(2) 34.9 61.7 264 459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 iH1_34 Streptomyces coelicolor A3(2) 45.2 78.3 157 J02617_1 Corynebacterium diphtheriae 31.1 62.2 357 971 Mycobacterium tuberculosis 62.9 86.1 151 H37Rv Rv3366 spoU H37Rv Rv3356 cfolD 70.9 87.4 278 H37Rv Rv3356 cfolD Mycobacterium leprae 31.3 76.3 489 58173_18 Streptomyces coelicolor A3(2) 34.0 63.2 489 55652_1 Corynebacterium glutamicum 99.5 99.5 379 7335A Leptospira meyeri metY 49.7 76.2 429 7A_ECOLI Escherichia coli K12 syiiX 40.0 66.0 50	656547 657215 669 p	699			ir.C70884	Mycobacterium tuberculosis H37Rv Rv2788 sirR	50.3	76.4	203	transcriptional repressor
459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 Streptomyces coelicolor A3(2) 45.2 78.3 157 Ju2617_1 Corynebacterium diphtheriae 31.1 62.2 357 Mycobacterium tuberculosis 62.9 86.1 151 H37Rv Rv3366 spoU Mycobacterium tuberculosis 70.9 87.4 278 H37Rv Rv3366 folD SB1779_8 Mycobacterium leprae 31.3 76.3 80 MLCB1779_16c Streptomyces coelicolor A3(2) 34.0 63.2 489	4215 658002 657205 798 g	798		0	38A	Streptomyces coelicolor A3(2) SCG8A.05c	34.9	61.7	264	hypothetical protein
459 Archaeoglobus fulgidus AF1676 42.5 71.8 245 141_34 Streptomyces coelicolor A3(2) 45.2 78.3 157 102617_1 Corynebacterium diphtheriae 31.1 62.2 357 141_34 Corynebacterium tuberculosis 62.9 86.1 151 141_37Rv Rv3366 spoU 142_8 Mycobacterium tuberculosis 70.9 87.4 278 142_8 Mycobacterium leprae 31.3 76.3 80 142_8 Mycobacterium glutamicum 99.5 99.5 379 142_8 Sc66T3.18c 142_8 Corynebacterium glutamicum 99.5 99.5 379 143_8 Corynebacterium glutamicum 99.5 99.5 379 143_8 Corynebacterium glutamicum 99.5 99.5 379 143_8 Corynebacterium glutamicum 99.5 99.5 99.5 379 143_8 Corynebacterium glutamicum 99.5 99.5 99.5 99.5 90.5 90.5 90.5 90.5	4216 658005 658142 138	 	138							
H1_34 Streptomyces coelicolor A3(2) 45.2 78.3 157 J02617_1 Corynebacterium diphtheriae 31.1 62.2 357 J02617_1 Corynebacterium tuberculosis 62.9 86.1 151 971 Mycobacterium tuberculosis 70.9 87.4 278 970 Mycobacterium tuberculosis 70.9 87.4 278 970 Mycobacterium tuberculosis 70.9 87.4 278 9370 Mycobacterium leprae 31.3 76.3 80 8617.9_8 Streptomyces coelicolor A3(2) 34.0 63.2 489 856673_18 Corynebacterium glutamicum 99.5 99.5 379 152652_1 Corynebacterium glutamicum 99.5 78.4 690 1A_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 X_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4217 658155 658928 774 p	774	\vdash	┕	ir.C69459	Archaeoglobus fulgidus AF1676	42.5	71.8	245	transcriptional regulator (Sir2 family)
971 Corynebacterium diphtheriae 31.1 62.2 357 971 Mycobacterium tuberculosis 62.9 86.1 151 970 Mycobacterium tuberculosis 70.9 87.4 278 970 Mycobacterium tuberculosis 70.9 87.4 278 581779_8 Mycobacterium leprae 31.3 76.3 80 5813_18 Streptomyces coelicolor A3(2) 34.0 63.2 489 152652_1 Corynebacterium glutamicum 99.5 99.5 379 7335A Leptospira meyeri metY 49.7 76.2 429 1A_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 X_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4218 658933 659424 492 g	492		6	p:SC5H1_34	Streptomyces coelicolor A3(2) SC5H1.34	45.2	78.3	157	hypothetical protein
971 Mycobacterium tuberculosis 62.9 86.1 151 H37Rv Rv3366 spoU H37Rv Rv3366 spoU 70.9 87.4 278 BH37Rv Rv3356c foID 31.3 76.3 80 CB1779_8 Mycobacterium leprae 31.3 76.3 80 MCB1779_16c 34.0 63.2 489 Streptomyces coelicolor A3(2) 34.0 63.2 489 MCB1779_18c 34.0 63.2 489 MCG13_18c Corynebacterium glutamicum 99.5 99.5 379 MA_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 K_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4219 659543 660538 996 gg	966		ਰ	o:CDU02617_1	Corynebacterium diphtheriae irp1	31.1	62.2	357	iron-regulated lipoprotein precursor
970 Mycobacterium tuberculosis 70.9 87.4 278 CB1779_8 Mycobacterium leprae 31.3 76.3 80 MLCB1779.16c 34.0 63.2 489 Streptomyces coelicolor A3(2) 34.0 63.2 489 Streptomyces coelicolor A3(2) 34.0 63.2 489 SC66T3.18c Corynebacterium glutamicum 99.5 99.5 379 7335A Leptospira meyeri metY 49.7 76.2 429 FA_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 X_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4220 661120 660650 471 pi	471		ā	::E70971	Mycobacterium tuberculosis H37Rv Rv3366 spoU	62.9	86.1	151	rRNA methylase
SB1779_8 Mycobacterium leprae 31.3 76.3 80 S6T3_18 Streptomyces coelicolor A3(2) 34.0 63.2 489 S6T3_18 SC66T3.18c 489 52652_1 76.2 489 N52652_1 Corynebacterium glutamicum glutamicum metA 99.5 99.5 379 TA_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 X_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	661166 662017 852 pii	852		<u>ē</u>		Mycobacterium tuberculosis H37Rv Rv3356c folD	70.9	87.4	278	methylenetetrahydrofolate dehydrogenase
16T3_18 Streptomyces coelicolor A3(2) 34.0 63.2 489 162652_1 Corynebacterium glutamicum 99.5 99.5 379 7335A Leptospira meyeri metY 49.7 76.2 429 7A_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 K_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4222 662120 662374 255 gp	255		аб	CB1779_	Mycobacterium leprae MLCB1779.16c	31.3	76.3	80	hypothetical membrane protein
152652_1 Corynebacterium glutamicum 99.5 99.5 379 7335A Leptospira meyeri metY 49.7 76.2 429 1A_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 K_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4223 663761 662382 1380 gp	1380			:SC66T3_18	Streptomyces coelicolor A3(2) SC66T3.18c	34.0	63.2	489	hypothetical protein
152652_1 Corynebacterium glutamicum 99.5 99.5 379 7335A Leptospira meyeri metY 49.7 76.2 429 7A_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 K_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4224 665088 664126 963		696							
7335A Leptospira meyeri metY 49.7 76.2 429 FA_ECOLI Escherichia coli K12 syliX 53.9 78.4 690 X_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4225 666313 665183 1131 g	1131			p:AF052652_1	Corynebacterium glutamicum metA	99.5	99.5	379	homoserine O-acetyltransferase
FA_ECOLI Escherichia coli K12 cstA 53.9 78.4 690 X_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4226 667770 666460 1311 p	1311	_	_	orf:2317335A	Leptospira meyeri metY	49.7	76.2	429	O-acetylhomoserine sulfhydrylase
X_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4227 668264 670465 2202	2202			sp:CSTA_ECOLI	Escherichia coli K12 cstA	53.9	78.4	069	carbon starvation protein
X_ECOLI Escherichia coli K12 yjiX 40.0 66.0 50	4228 670053 669445 609		609	Ī						
	4229 670472 670672 201		201	-	sp:YJIX_ECOLI	Escherichia coli K12 yjiX	40.0	0.99	50	hypothetical protein
	4230 671653 671045 609		609							

Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrate synthase		hypothetical protein		L-malate dehydrogenase	regulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenicol resistance protein	catabolite repression control protein	hypothetical protein	
Matched length (a.a.)	317	281	380		23		338	226		284	569	688	330	956	395	£0£	219	
Similarity (%)	86.4	76.2	81.3		62.3		67.5	62.8		54.2	1.28	86.4	88.2	82.3	9'69	1.83	85.8	
Identity (%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2	
Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gltA		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae	Corynebacterium diphtheriae irp1C	Corynebacterium diphtheriae irp1B	Corynebacterium diphtheriae irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd H11240	
db Match	pir:C70539	prf:1902224A	sp.cisY_MYcsM		sp:YNEC_ECOLI		sp:MDH_METFE	prf.2514353L		sp:VIUB_VIBCH	gp:AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02617_1	prf:2202262A	prf:2222220B	sp:YICG_HAEIN	
ORF (bp)	954	912	1149	930	192	672	1041	720	702	897	807	1059	966	1050	1272	912	657	195
Terminal (nt)	672653	673576	674756	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
Initial (nt)	671700	672665	673608	673639	674990	675175	676122	676937	677748	681027	681846	682904	683866	684925	685109	686435	687351	688141
SEQ NO. (a.a.)	4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
SEQ NO.	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748

									_											
	Function		ferrichrome ABC transporter	hemin permease	tryptophanyl-tRNA synthetase	hypothetical protein		penicillin-binding protein 6B precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, lacl family	N-acyl-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
	Matched length (a.a.)		244	346	331	278		301	417	323			209	77	385	561	468	1140	263	127
	Similarity (%)		73.8	69.1	79.8	72.3		57.5	70.7	52.6			72.3	66.2	80.5	53.8	65.0	100.0	60.1	6.99
	Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.6	51.4	22.1	31.6	100.0	26.2	30.7
lable I (collillueu)	Homologous gene		Corynebacterium diphtheriae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c	-		Lactococcus lactis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2) SCF11.30
	db Match		gp.AF109162_3	pir.S54438	sp:SYW_ECOLI	sp:YHJD_ECOLI		sp:DACD_SALTY	pir:F70842	gp:SC6G10_8			sp:UPP_LACLA	gp:SC1A2_11	pir.H70841	sp:MANB_MYCPI	sp:DLDH_HALVO	prf.2415454A	sp:YD24_MYCTU	gp:SCF11_30
	ORF (bp)	975	780	1017	1035	1083	803	1137	1227	858	195	351	633	384	1182	1725	1407	3420	870	486
	Terminal (nt)	688916	689917	902069	692916	694110	695074	695077	696769	698065	699266	698922	699913	700381	703262	700384	704811	708630	709708	710278
	Initial (nt)	068689	969069	691722	691882	693028	694172	696213	697995	698922	699072	699272	699281	866669	702081	702108	703405	705211	708839	709793
	SEQ NO. (a.a.)	4249	4250	4251	4252	4253	4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4264	4265	4266	4267
	SEQ NO. (DNA)	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767

Table 1 (continued)

Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
Matched length (a.a.)	381	305	521	278	96	383		456			225	352	133	718	192	63	537	543
Similarity (%)	69.0	59.3	49.5	74.5	47.0	78.9		72.6			100.0	8'62	7.97	63.4	66.2	8.69	100.0	100.0
Identity (%)	44.6	24.6	24.0	42.5	39.0	54.6		40.8			100.0	61.1	51.1	35.1	31.8	33.3	83.8	9.66
Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis IS58 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
db Match	pir:B69760	sp:TRXB_BACSU	sp:PRPD_SALTY	prf:1902224A	PIR:E72779	sp:CISY_MYCSM		pir.B70539			sp.THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir.G70539	sp:YCEF_ECOLI	prf:2323363CF	gp:AB018531_2	pir.JC4991
ORF (bp)	1086	924	1494	888	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
Initial (nt)	711605	711724	712738	714258	714757	715102	716660	718009	718105	718658	721449	721777	723338	723412	726462	726715	728352	730324
SEQ NO. (a.a.)	4268	4269	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
SEQ NO. DNA)	768	69/	0//	177	772	773	774	775	776	777	778	779	780	781	782	783	784	785

Table 1 (continued)

_												_						
	Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5-phosphoribosyl-5-amino-4- imidasol carboxylase	K+-uptake protein			5'-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein	
	Matched length (a.a.)	293	165	394	628			147	152	255	426	203	256	96		175	142	
	Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	70.6	73.0	52.5	64.8	68.8		66.3	76.8	
	Identity (%)	28.7	23.0	0.69	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.5		28.6	35.9	
	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purK	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzii ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408	-	Bacillus subtilis 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A.21	
	db Match	sp:BIRA_ECOLI	pir.G70979	sp:PURK_CORAM	sp:KUP_ECOLI			sp:PUR6_CORAM	gp:APU33059_5	gp:SCF43A_36	sp:NTAA_CHEHE	pir.A69426	sp:DHG2_BACME	pir.A72258	,	Sp:YWJB_BACSU	gp:SCJ9A_21	
	ORF (bp)	864	486	1161	1872	615	357	495	453	792	1314	1500	789	369	342	295	420	222
	Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	736351	737204	737216	738673	740228	741765	742195	741818	742828	742831
	Initial (nt)	730436	731312	731857	733072	733797	734984	735402	735899	736413	738529	740172	741016	741397	741854	742384	742409	743052
	SEQ NO. (a.a.)	4286	4287	4288	4289	4290	4291	4292	4293	4294	4295	4296	4297	4298	4299	4300	4301	4302
	SEQ NO. (DNA)	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802

	Function	trehalose/maltose-binding protein	trehalose/maltose-binding protein		trehalose/maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
	Matched length (a.a.)	271	908		417		332		1783			240	720	701					2033	869	873
	Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1				,	45.8	53.2	48.6
	Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
(commaca)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reticuli msiK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia coli K12 uvrD					Streptomyces coelicolor SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
	db Match	prf:2406355C	prf:2406355B		prf:2406355A		prf.2308356A		pir:B75633			pir.E70978	pir.C71929	sp:UVRD_ECOLI					pir.T36671	pir.T08313	sp:HEPA_ECOLI
	ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
	Terminal (nt)	743067	743900	745046	745622	748442	747031	748814	748886	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
	Initial (nt)	743900	744931	745513	746893	748020	748026	748446	753685	757063	757395	758262	760796	762468	762497	762730	762977	768191	769443	774142	777035
	SEQ NO. (a.a.)	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4316	4317	4318	4319	4320	4321	4322
	SEQ NO. (DNA)	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822

ᢐ
Φ
(continued)
.=
Ħ
=
ပ္
Ć
_
Υ-
Φ
☲
able

	Function	hypothetical protein	dTDP-Rha:a-D-GlcNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphate guanyiyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein		S-adenosyl-L-homocysteine hydrolase			thymidylate kinase
	Matched length (a.a.)	527	289	353	94	139	136	460	327	420			180		476			209
į	Similarity (%)	71.4	6'22	6.99	81.9	74.8	71.3	66.3	56.3	66.2			57.8		83.0			56.0
•	Identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.9			35.6		29.0			25.8
ומסוב ו (כסווווומכם)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA	•		Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
	db Match	pir:D70978	gp:AF187550_1	sp:MPG1_YEAST	gp:AF164439_1	pir:B70847	gp:SCE34_11	sp:MANB_SALMO	pir:B70594.	sp:MANA_ECOLI			prf.1804279K		sp:SAHH_TRIVA			sp:KTHY_ARCFU
	ORF (bp)	1554	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
	Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	785639	786824	787045	286787	787170	788546	790093	788719	789002	790704
	Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624	787733	788196	788672	789426	789721	960062
	SEQ NO. (a.a.)	4323	4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
	SEQ NO. (DNA)	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

	Matched Function (a.a.)	224 two-component system response regulator		484 two-component system sensor histidine kinase	595 lipoprotein	213 hypothetical protein		30S ribosomal protein or chloroplast precursor	845 preprotein translocase SecA subunit		170 hypothetical protein	322 hypothetical protein	461 5-enolpyruvylshikimate 3-phosphate synthase	180 hypothetical protein	23 5-enolpyruvylshikimate 3-phosphate synthase	380 hypothetical protein	100 ANA
	Similarity (%)	90.6		78.9	65.6	72.8		61.6	99.6		78.8	82.9	0.66	63.9	100.0	42.4	87.2
	Identity (%)	73.7		53.1	29.6	38.0		34.5	99.1		47.1	64.6	0.66	38.3	100.0	21.6	61.0
(Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis H37Rv Rv3244c lpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum) MJ-233 secA		Mycobacterium tuberculosis H37Rv Rv3231c	Mycobacterium tuberculosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3226c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis
	db Match	prf:2214304A		prf:2214304B	pir.F70592	pir.D70592		sp:RR30_SPIOL	gsp:R74093		pir.A70591	pir.F70590	gp:AF114233_1	pir.D70590	GP:AF114233_1	pir.G70506	nrf-0515333D
	ORF (bp)	678	684	1497	1704	588	156	663	2535	672	504	987	1413	480	123	1110	618
	Terminal (nt)	791409	790738	793008	794711	795301	795292	796110	798784	799691	800200	800208	801190	803128	802565	803131	ROSOS
	Initial (nt)	790732	791421	791512	793008	794714	795447	795448	796250	799020	799697	801194	802602	802649	802687	804240	RUAANR
	SEQ NO. (a.a.)	4340	4341	4342	4343	4344	4345	4346	4347	4348	4349	4350	4351	4352	4353	4354	4355
	SEQ NO. (DNA)	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855

O
Х
ខ
્ઇ
೮
ၓ
ၓ
<u>છ</u>
<u>은</u>
<u>5</u>
<u>1</u>
e 1 (c
e 1 (cc
ie 1 (cc
<u>و</u>
ble 1 (cc
<u>و</u>
<u>و</u>
<u>و</u>

									_								
Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase		potassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
Matched length (a.a.)	84	129	415	458		291	249	1155		1126		302	230	660		280	
Similarity (%)	96.4	65.1	62.2	64.0		69.8	65.9	48.9		65.7		64.2	58.3	58.8		49.3	
Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschii JAL- 1 MJ0138.1.	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis H37Rv Rv3196	
db Match	pir.D70596	pir.B70596	pir.E70595	sp:DEAD_KLEPN		pir:H70594	pir:F70594	pir:G70951		pir:G70951		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI		pir:B70951	
ORF (bp)	258	420	1200	1272	225	846	759	3048	780	3219	1332	1005	714	2034	591	816	603
Terminal (nt)	805535	806737	806740	807946	809510	810394	811163	814217	811386	817422	814210	818523	819236	821287	822669	821290	823391
Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	815541	817519	ġ18523	819254	822079	822105	822789
SEQ NO. (a.a.)	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372
SEQ NO. (DNA)	856	857	858	859	860	861	862	863	864	865	998	867	868	869	870	871	872

													-:	_					
Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor					monophosphatase
Matched length (a.a.)	474	350			1023	463	301	81	201		408		208	363					255
Similarity (%)	76.4	74.9			73.5	57.7	89.0	53.0	73.6		44.4		51.4	51.5					74.9
Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0					51.8
Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum pernix K1 APE0247	Bacillus subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487	1	Neurospora intermedia LaBelle- 1b mitochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Streptomyces alboniger pur3
db Match	pir.A70951	pir.H70950			pir:G70950	gp:AE001938_5	sp:ER1_HEVBR	PIR:F72782	sp:YAAE_BACSU		pir.TRYXB4		pir.S03722	sp:CSP1_CORGL					prf:2207273H
ORF (bp)	1446	1050	675	522	2955	1359	951	345	909	363	1062	501	585	1581	429	510	222	309	780
Terminal (nt)	822680	825239	825242	825996	829570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139	840210	840437	841517
Initial (nt)	824125	824190	825916	826517	826616	830985	831021	831922	831971	833157	833572	834888	835253	837312	838925	839630	840431	840745	842296
SEQ NO. (a.a.)	4373	4374	4375	4376	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
SEQ NO.	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891

_
┰
_
a)
ಶ
_
_
-
-
$\overline{}$
ဂ္ဂ
_
<i>•</i>
_
\sim
Ψ-
Ψ-
-
о
_
☱
ble 1
喜
喜
喜
喜
aple

,														 -				
	Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	cell division protein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
	Matched length (a.a.)	243	359	226	72	301	145	116				272	319	191	325	313	312	250
	Similarity (%)	59.3	88.6	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	0.97	82.0
	identity (%)	33.7	68.0	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
	db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp:SMPB_ECOLI	sp:YEAO_ECOLI				sp:VIUB_VIBCH	prf:2510361A	gp:MLCB1243_5	sp:FATB_VIBAN	pir.B69763	pir.C69763	pir.D69763
	ORF (bp)	819	1104	687	264	006	492	351	537	300	405	825	918	588	1014	666	942	753
	Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
	Initial (nt)	843124	843257	844495	845105	845198	846137	846632	846805	847727	848122	849323	850243	850999	851351	852618	853783	854724
	SEQ NO. (a.a.)	4392	4393	4394	4395	4396	4397	4398	4389	4400	4401	4402	4403	4404	4405	4406	4407	4408
	SEQ NO. (DNA)	892	893	894	895	968	897	868	899	006	901	902	903	904	905	906	907	908

_
o
a
Ē
=
.≥
-
_
\circ
8
೭
_
$\overline{}$
Ψ
൧
1
⋍

														=	_				
	Function	hypothetical protein	hypothetical protein	kynurenine aminotransferase/glutamine transaminase K		DNA repair helicase	hypothetical protein	hypothetical protein		resuscitation-promoting factor	cold shock protein	hypothetical protein	glutamine cyclotransferase			permease		rRNA(adenosine-2'-O-)- methyltransferase	
	Matched length (a.a.)	48	84	442		613	764	22		198	61	159	273			477		319	
	Similarity (%)	72.0	0.99	64.9		62.3	65.2	62.0		64.7	75.4	58.5	8'29			6.67		51.7	
	Identity (%)	0.99	61.0	33.5		30.7	36.1	44.0		39.4	42.6	28.3	41.8			43.6		27.9	
lable I (confined)	Homologous gene	Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Rattus norvegicus (Rat)		Saccharomyces cerevisiae S288C YIL143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863		Micrococcus luteus rpf	Lactococcus lactis cspB	Mycobacterium leprae MLCB57.27c	Deinococcus radiodurans DR0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus tsnR	
	db Match	PIR:F81737	GSP: Y35814	pir.S66270		sp:RA25_YEAST	pir:F70815	pir:G70815		prf:2420502A	prf:2320271A	gp:MLCB57_11	gp:AE001874_1			gp:Sc6c5_9		sp:TSNR_STRAZ	
	ORF (bp)	147	273	1209	639	1671	2199	219	843	297	381	525	774	669	138	1473	912	828	876
	Terminal (nt)	860078	860473	862752	862753	863396	865119	867571	868630	867803	869318	869379	869918	870721	871660	873210	872016	874040	874069
	Initial (nt)	860224	860745	861544	863391	865066	867317	867353	867788	868399	86898	869903	870691	871419	871523	871738	872927	873213	874944
	SEQ NO. (a.a.)	4409	4410	4411	4412	4413	4414	4415	4416	4417	4418	4419	4420	4421	4422	4423	4424	4425	4426
	SEQ NO. (DNA)	606	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926

nned)
_
Sont
_
$\overline{}$
ψ
豆
•

																	—т		
Function	hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter		hypothetical protein	fatty-acid synthase			homoserine O-acetyltransferase			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
Similarity (%)	55.1	52.9	69.5	80.6	58.1		77.4	83.4			59.7			72.6	62.0	88.9	56.4	68.1	51.0
Identity (%)	32.6	21.9	36.0	51.5	26.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCI8.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.16c	Synechococcus elongatus naegeli mutM
db Match	sp:YZ11_MYCTU	pir:S71439	sp:ACCD_ECOLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir.S55505			prf:2317335B			gp:AE002044_8	prf.2408256A	sp:TYSY_ECOLI	sp:CYSQ_ECOLI	gp:SC7C7_16	sp:FPG_SYNEN
ORF (bp)	933	1128	1473	339	1653	816	840	8907	489	186	1047	426	267	237	456	798	756	4560	768
Terminal (nt)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895596	896719	689/68	897727	897979	898434	899253	904602	905382
Initial (nt)	875883	877112	881114	881647	881995	883726	885388	885672	894703	895408	896642	897144	897423	897963	898434	899231	800006	900043	904615
SEQ NO. (a.a.)	4427	4428	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	4442	4443	4444	4445
SEQ NO. (DNA)	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945

Function	hypothetical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothetical protein		5'-phosphoribosylglycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole-4-carboxamide formyltransferase	citrate lyase (subunit)
Matched length (a.a.)	128	196	403		222	195		78	763	885	217		236	434		189	525	217
Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	8.09		86.2	87.8	100.0
Identity (%)	55.5	38.8	33.8		52.4	24.6		59.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SC128.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacilius stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
db Match	pir.F70816	sp:APL_LACLA	pir.T36776		pir:NUEC	pir:G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf:2420410P		pir:D70716	sp:YT19_MYCTU		gp:AB003159_2	gp:AB003159_3	gp:CGL133719_3
ORF (bp)	408	909	1173	717	1620	1176	381	309	2289	2223	999	202	711	1425	228	627	1560	819
Terminal (nt)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
Initial (nt)	905389	906391	907731	908612	909378	910696	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
SEQ NO. (a.a.)	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
SEQ NO. (DNA)	946	947	948	949	920	951	952	953	954	955	926	957	958	959	096	961	962	963

_
$\boldsymbol{\sigma}$
Φ
$\bar{\mathbf{z}}$
=
=:
_
\subseteq
0
Ö
-
•
യ
Ω
$\boldsymbol{\sigma}$
F

	nethyl)															1		- 1		Se
Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein		30S ribosomal protein S18	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)		large-conductance mechanosensitive channel	hypothetical protein	5-formyltetrahydrofolate cyclo-ligase
Matched length (a.a.)	222	109		29	100	49	77	529	80	78	55		227	484	406	188		131	210	191
Similarity (%)	100.0	100.0		76.1	80.0	83.7	81.8	71.1	77.5	65.4	78.2		73.6	60.1	59.9	54.3		77.1	0.09	29.7
Identity (%)	100.0	100.0	·	52.2	54.0	55.1	52.0	34.4	37.5	37.2	0.09		48.0	24.4	33.3	27.7		50.4	28.6	25.1
Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A.14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thaliana CV cnx1		Mycobacterium tuberculosis H37Rv Rv0985c mscL	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
db Match	gp:CGL133719_2	gp:CGL133719_1		sp:RR18_CYAPA	sp:RS14_ECOLI	sp:RL33_ECOLI	pir.R5EC28	pir.B70033	prf:2420312A	sp:RL31_HAEDU	gp:SC51A_14		sp.COPR_PSESM	sp:BAES_ECOLI	pir.S45229	sp.CNX1_ARATH		sp:MSCL_MYCTU	pir.A70601	pir.JC4389
ORF (bp)	999	327	321	249	303	162	234	1611	312	264	171	447	969	1365	1239	585	198	405	651	570
Terminal (nt)	922396	923138	923981	924159	924425	924734	924901	925325	926931	927737	927922	927339	928812	930248	931648	932290	932487	932570	933060	933733
Initial (nt)	923061	923464	923661	924407	924727	924895	925134	926935	927242	927474	927752	927785	928117	928884	930410	931706	932290	932974	933710	934302
SEQ NO.	4464	4465	4466	4467	4468	4469	4470	4471	4472	4473	4474	4475	4476	4477	4478	4479	4480	4481	4482	4483
SEQ NO. (DNA)	964	965	996	967	968	696	970	971	972	973	974	975	976	977	978	979	980	981	982	983

=
eg
ned
\supset
_
≔
continu
Q
္ပ
_
$\overline{}$
ø
\overline{a}
Table
<u> </u>

																	$\overline{}$
Function	UTPglucose-1-phosphate uridylyltransferase	molybdopterin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothetical protein	methionyl-tRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		94
Similarity (%)	68.9	62.6	54.9	54.8	62.4		60.6	59.6	53.6	75.2	78.3	2'99	49.0	53.3	59.0		59.6
Identity (%)	42.2	31.8	29.0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
Homologous gene	Xanthomonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H1602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
db Match	pir.JC4985	prf.2403296B	sp:RIMJ_ECOLI	pir.G70601	sp:CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp:CDAS_BACSH	pir.E70602	sp:Y19J_MYCTU	sp:SYM_METTH	prf:1306383A	pir.B69206	sp:YXAG_BACSU		gp:AF029727_1
ORF (bp)	897	1257	099	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
Terminal (nt)	935319	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791	951460	952991	953573	953973
SEQ NO. (a.a.)	4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	4500
SEQ NO. (DNA)	984	985	986	987	988	686	066	991	992	993	994	995	966	266	966	666	1000

-	-	+		Ţ					Matched	
Initial Terminal ORF (nt) (nt) (bp)	Terminal ORF (nt) (bp)	ORF (bp)		db l	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
4501 954277 954753 477 pir.TQE(954753 477 pir.TQ	477 pir.TQ	pir:TQ	pir:TQE(EC13	Escherichia coli K12	41.7	9.79	139	transposase
4502 954941 955354 414 gp:AF053	955354 414 gp:AF	414 gp:AF	gp:AF	gp:AF052	052055_1	Brevibacterium linens tnpA	73.2	88.4	112	transposase subunit
4503 955911 956774 864	956774		864							
4504 957398 955686 1713 prf.201428	955686 1713 prf:20	1713 prf:20	prf:20.	prf:20.	14253AE	Escherichia coli dId	46.4	75.6	265	D-lactate dehydrogenase
4505 958683 957844 840 sp:MTK1_	957844 840 sp:MT	840 sp:MT	sp:MT	sp:MTK1_	K1_KLEPN	Klebsiella pneumoniae OK8 kpnIM	30.8	62.8	231	site-specific DNA-methyltransferase
4506 959403 959185 219	959185		219							
4507 960081 960374 294 gp:AF029727	960374 294 gp:AF	294 gp:AF	gp:AF	gp:AF0297;	27_1	Enterococcus faecium	33.0	59.6	94	transposase
4508 960385 960861 477 pir.TQECI3	960861 477 pir.TQ	477 pir.TQ	pir.TQ	pir.TQEC13		Escherichia coli K12	41.7	67.6	139	transposase
4509 961297 961653 357 sp:YJ94_MYCTU	961653 357	357		sp:YJ94_MY	CTU	Mycobacterium tuberculosis H37Rv Rv1994c	62.6	84.6	91	transcriptional regulator
4510 961629 962249 621 prf.2514367A	962249 621 prf.25	621 prf.25	prf.25	prf.2514367A	-	Staphylococcus aureus cadD	31.7	66.8	205	cadmium resistance protein
4511 961662 961321 342	961321		342	:						
4512 962809 963639 831 pir.C70603	963639 831 pir.C7	831 pir.C7	pir.C7	pir.C70603		Mycobacterium tuberculosis H37Rv Rv1008	46.4	70.7	263	hypothetical protein
4513 963864 964934 1071 pir:D70603	964934 1071	1071				Mycobacterium tuberculosis H37Rv Rv1009 rpf	34.8	63.5	362	hypothetical protein
4514 964974 965852 879 sp.KSGA_ECOLI	965852 879	879	_	sp:KSGA_EC0	٦	Escherichia coli K12 ksgA	34.3	65.3	265	dimethyladenosine transferase
4515 965852 966784 933 pir.F70603	966784 933 pir.F7	933 pir.F7	pir.F7	pir.F70603		Mycobacterium tuberculosis H37Rv Rv1011	42.5	67.0	315	isopentenyl monophosphate kinase
4516 966591 965950 642	965950		642							
4517 966828 968660 1833 pir.S47441	968660 1833 pir.S4	1833 pir.S4	pir.S4	pir.S4		Saccharopolyspora erythraea ertX	65.5	85.8	478	ABC transporter
4518 968667 969458 792 sp:PDXK_ECOLI	969458 792	792		sp:PDXK_E	COLI	Escherichia coli K12 pdxK	40.1	67.4	242	pyridoxine kinase
4519 969940 969461 480 sp:YX05_MYCTU	969461 480	480		sp:YX05_N	ІУСТИ	Mycobacterium tuberculosis H37Rv Rv2874	27.0	58.5	159	hypothetical protein
4520 970029 970349 321 gp:SCF1_2	970349 321 gp:SC	321 gp:SC	gp:SC	gp:SCF1_2		Streptomyces coelicolor A3(2) SCF1.02	45.4	78.7	108	hypothetical protein

ι .

_
O
$^{\circ}$
Φ
-
=
_
•
=
_
\sim
Ö
ပ
$\overline{}$
$\overline{}$
•
യ
亙
m
۳
_

	_																$\overline{}$
Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR family)	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein
Matched length (a.a.)	107	261	276	337				440	100	802	157		121	482		546	404
Similarity (%)	69.2	88.1	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		68.0	72.8
Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus influenzae Rd HI0508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
db Match	gp:SCF1_2	gp:SCJ1_15	sp:YXEH_BACSU	pir.E70893				sp:CSP1_CORGL	gp:SCF56_6	gp:SCE87_17	sp:MENG_HAEIN		gp:NMA6Z2491_21 4	pir.A70539		pir:159305	prf:2406311A
ORF (bp)	321	096	792	1017	654	777	1212	1386	579	2373	498	999	381	1551	926	1647	1269
Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	282286	982294	984650	985845	984864	988007
Initial (nt)	970418	970864	973035	973139	973957	974186	976176	976349	978378	980740	980993	981622	982674	983100	984910	986510	986739
SEQ NO. (a.a.)	4521	4522	4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
SEQ NO. (DNA)	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufl protein precursor	nodulation ATP-binding protein I
Matched length (a.a.)	77	234	253	236	187	361	342	51	174	194	143	208	316	452		909	310
Similarity (%)	61.0	68.0	70.0	69.1	9.07	54.0	72.8	61.0	63.2	65.0	. 9.43	62.5	79.1	71.9		61.7	64.8
Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Bacillus subtilis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodl
db Match	prf.2406311B	prf.2406311C	sp:BRAF_PSEAE	sp:BRAG_PSEAE	sp:PTH_ECOLI	sp:2NPD_WILMR	sp:G3P_ZYMMO	GSP:Y75094	sp:PTH_ECOLI	pir.B70622	sp:LGUL_SALTY	prf.2516401BW	sp:KPRS_BACCL	pir.S66080		sp:SUFI_ECOLI	sp:NODI_RHIS3
ORF (bp)	882	1077	726	669	612	1023	1065	369	531	009	429	624	975	1455	1227	1533	918
Terminal (nt)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	696833	997466	998455	1000016	1002864	1003930
Initial (nt)	988023	988904	989980	990716	992028	992058	993549	994474	995375	996126	996402	997456	998440	606666	1001242	1001332	1003013
SEQ NO. (a.a.)	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	4554
SEQ NO. (DNA)	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054

									_											ein	
Function	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-glutamyltranspeptidase precursor					transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR-family)	transcription/repair-coupling protein	
Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217	
Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				59.6	65.1	
Identity (%)	30.2	24.6	36.6	- :	31.5	28.6		44.0	32.4					64.0	9.66				23.0	36.2	
Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Escherichia coli K12 ggt					Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli tetR	Escherichia coli mfd	
db Match	pir.JN0850	sp:UHPB_ECOLI	prf:2107255A		gp:SCF15_7	pir:S65587		pir.T14180	sp:GGT_ECOLI					GPU:AF164956_23	gp:AF121000_8				sp:TETC_ECOLI	sp:MFD_ECOLI	
ORF (bp)	831	1257	609	204	1155	1440	153	1734	1965	249	519	192	606	243	708	462	297	312	651	3627	1001
Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022716	1010200
Initial (nt)	1003953	1004829	1006089	1006937	1006998	1008622	1008686	1010057	1013761	1014016	1014861	1014925	1015652	1015692	1015852	1016557	1017870	1018082	1018416	1019090	4000643
SEQ NO. (a.a.)	4555	4556	4557	4558	4559	4560	4561	4562	4563	4564	4565	4566	4567	4568	4569	4570	4571	4572	4573	4574	4575
SEQ NO. (DNA)	1055	1056	1057	1058	1059	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075

Aeropyrum pernix K1 APE2459 68.0 58.0 41 hypothetical protein Wycobacterium tuberculosis 31.9 55.0 191 hypothetical protein Wycobacterium tuberculosis 59.5 77.8 153 hypothetical protein H37Rv Rv1025 H37Rv Rv1025 H37Rv Rv1025 H37Rv Rv1025 H37Rv Rv1025 59.5 77.8 153 hypothetical protein PA_ECOLI Escherichia coli gppA 25.2 55.0 329 guanosine pentaphosphatase or exopolyphosphatase
Mycobacterium tuberculosis 31.9 55.0 191 H37Rv Rv1024 191 191 Mycobacterium tuberculosis 59.5 77.8 153 H37Rv Rv1025 25.2 55.0 329 Escherichia coli tdcB 30.3 64.7 314
Mycobacterium tuberculosis 59.5 77.8 153 H37Rv Rv1025 Escherichia coli gppA 25.2 55.0 329 Escherichia coli tdcB 30.3 64.7 314
Escherichia coli gppA 25.2 55.0 329 Escherichia coli tdcB 30.3 64.7 314
Escherichia coli tdcB 30.3 64.7 314
Escherichia coli tdcB 30.3 64.7 314

						(2000)				
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1093	4593	1039996	1040325	330						
1094	4594	1040494	1040682	189	pir:B72287	Thermotoga maritima MSB8	46.3	74.1	56	hypothetical protein
1095	4595	1040925	1041917	993	sp:RHAR_ECOLI	Escherichia coli rhaR	24.8	55.8	242	transcription activator of L-rhamnose operon
1096	4596	1042027	1042842	816	pir.F70893	Mycobacterium tuberculosis H37Rv Rv1072	57.8	80.1	282	hypothetical protein
1097	4597	1043236	1042850	387						
1098	4598	1043747	1043298	450	gp:SCF55_39	Streptomyces coelicolor A3(2) SCF55.39	30.0	57.1	140	hypothetical protein
1099	4599	1044295	1043774	522	sp:GREA_ECOLI	Escherichia coli greA	35.0	60.1	143	transcription elongation factor
1100	4600	1044959	1044477	483	pir.G70894	Mycobacterium tuberculosis H37Rv Rv1081c	34.3	72.1	140	hypothetical protein
1101	4601	1045158	1046030	873	pir:S44952	Streptomyces lincolnensis ImbE	31.7	56.3	300	lincomycin-production
1102	4602	1046073	1046390	318						
1103	4603	1046610	1047707	1098	sp:AROG_CORGL	Corynebacterium glutamicum aroG	99.2	99.5	367	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase
1104	4604	1047452	1046820	633						
1105	4605	1047827	1048501	675	sp:YARF_CORGL	Corynebacterium glutamicum CCRC18310	0.96	97.3	26	hypothetical protein or undecaprenyl pyrophosphate synthetase
1106	4606	1048356	1048529	174	SP:YARF_CORGL	Corynebacterium glutamicum (Brevibacterium flavum)	100.0	100.0	28	hypothetical protein
1107	4607	1048525	1049043	519						
1108	4608	1049385	1049068	318						
1109	4609	1050362	1049427	936	sp:COAA_ECOLI	Escherichia coli coaA	53.9	79.9	308	pantothenate kinase
1110	4610	1050624	1051925	1302	gsp:R97745	Brevibacterium flavum MJ-233 glyA	99.5	100.0	434	serine hydroxymethyl transferase
1111	4611	1052021	1053880	1860	sp:PABS_STRGR	Streptomyces griseus pabS	47.6	70.1	969	p-aminobenzoic acid synthase
1112	4612	1053880	1054602	723						

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1113	4613	1054859	1055722	864						
1114	4614	1055032	1054640	262						
1115	4615	1055783	1056319	537	gp:A01504_1	Alcaligenes faecalis ptcR	30.3	58.8	165	phosphinothricin resistance protin
1116	4616	1057200	1056322	6/8	sp:YBGK_ECOLI	Escherichia coli ybgK	30.3	59.0	300	hypothetical protein
1117	4617	1057573	1058628	1056						
1118	4618	1057868	1057200	699	sp:YBGJ_ECOLI	Escherichia coli ybgJ	37.8	57.8	225	hypothetical protein
1119	4619	1058598	1057843	756	sp:LAMB_EMENI	Emericella nidulans lamB	30.8	52.2	276	lactam utilization protein
1120	4620	1059214	1058624	591	sp:YCSH_BACSU	Bacillus subtilis ycsH	40.6	81.2	165	hypothetical membrane protein
1121	4621	1059218	1059889	672						
1122	4622	1059360	1059962	603						
1123	4623	1060112	1060792	681	sp:YDHC_BACSU	Bacillus subtilis ydhC	26.0	63.2	204	transcriptional regulator
1124	4624	1060869	1062146	1278						
1125	4625	1063629	1062211	1419	Sp:FUMH_RAT	Rattus norvegicus (Rat) fumH	52.0	79.4	456	fumarate hydratase precursor
1126	4626	1063936	1064424	489	gp:AF048979_1	Rhodococcus erythropolis IGTS8 dszD	32.7	65.4	159	NADH-dependent FMN oxydoreductase
1127	4627	1064738	1064478	261						
1128	4628	1065200	1064754	447				-		
1129	4629	1065867	1065304	564	gp:SCAH10_16	Streptomyces coelicolor A3(2) StAH10.16	55.4	81.0	184	reductase
1130	4630	1066083	1067570	1488	sp:SOXA_RHOSO	Rhodococcus sp. IGTS8 soxA	39.1	67.7	443	dibenzothiophene desulfurization enzyme A
1131	4631	1067570	1068649	1080	sp.SOXC_RHOSO	Rhodococcus sp. IGTS8 soxC	25.8	51.3	372	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1132	4632	1068649	1069845	1197	sp.SOXC_RHOSO	Rhodococcus sp. IGTS8 soxC	28.9	61.6	391	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)
1133	4633	1069692	1068913	780						
1134	4634	1069808	1069119	069						

Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exodeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoyltransferase	hypothetical protein
Matched length (a.a.)	397 FM sulf	325 gly	211 hyp	227 hyp		82 traı	62 exc	466 exc	311 per	pol 131 ant dia		338 per		552 soc trai	412 ma	361 GT	75 vin	301 orr	143 hy
	ř	3,	2	2.		3	9	4	3	-		3		5	4	3		3	
Similarity (%)	73.1	75.7	56.4	66.1		78.1	2.79	55.6	78.8	47.0		63.9		61.4	60.0	88.6	80.0	58.8	6.69
Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
db Match	gp:ECO237695_3	sp:GLPX_ECOLI	pir:B70897	pir:H70062		gp:SCH24_37	sp:EX7S_ECOLI	sp:EX7L_ECOLI	sp:LYTB_ECOLI	GSP:Y75421		sp:PERM_ECOLI		sp:NTPR_RAT	sp:CSP1_CORGL	sp:YYAF_BACSU	sp:VAPI_BACNO	sp:OTCA_PSEAE	sp:YKKB_BACSU
ORF (bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501
Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1080972	1082951	1085462	1086087	1086917	1087044
Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791	1086096	1087544
SEQ NO. (a.a.)	4635	4636	4637	4638	4639	4640	4641	4642	4643	4644	4645	4646	4647	4648	4649	4650	4651	4652	4653
SEQ NO.	1135	1136	1137	1138	1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153

ſ																		<u>.c</u>
	Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)	transposase	transposase				oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			frenolicin gene cluster protein involved in frenolicin hiosynthetic
	Matched length (a.a.)	198	396	1153	259			97	125	48				264	108			146
	Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			66.4
	Identity (%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
(columned)	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869		•		Pseudomonas putida M10 norA	Acinetobacter calcoaceticus dc4c			Streptomyces roseofulvus frnS
	db Match	gp:AF013288_1	sp:YIS1_STRCO	sp:YEGE_ECOLI	sp:NODC_RHIME			pir.S43613	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp:DC4C_ACICA			gp:AF058302_19
	ORF (bp)	630	1206	3042	765	219	333	291	375	144	141	366	498	843	321	663	195	654
	Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	1099115
	Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229	1097750	1098609	1099088	1099209	1099768
	SEQ NO.	4654	4655	4656	4657	4658	4659	4660	4661	4662	4663	4664	4665	4666	4667	4668	4669	4670
	SEQ NO. DNA)	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170

biotin carboxylase	:					hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
563						929	329	160	797	248	593	136	111	134	367	436
78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	8.66
48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
Synechococcus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae tlrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
gp:SPU59234_3						sp:YT15_MYCTU	sp:BCHI_RHOSH	gp:AMU73808_1	pir.A70577	gp:STMBCPA_1	sp:TLRC_STRFR	sp:Y06C_MYCTU	sp:PHNA_ECOLI	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957	1113102	1114486
4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	4687
1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	1181	1182	1183	1184	1185	1186	1187
	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 563	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 RecC RecC<	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 663 <	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 RecC RecC<	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 RecC RecC<	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102635 597 PC 7000 PC	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102695 1103192 498 PCC 7942 100 PCC 794	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 PCC 7942 48.1 78.5 563 4673 1102695 1103180 1103180 1103524 345 PCC 794 PCC 7942 48.1 78.5 PCC 7942 48.1 PCC 7942 ACC 7942	4671 1099917 1101653 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 RecC RecC<	4671 1099917 1101653 1737 gp. SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 — <td>4671 1098917 1101653 1737 gp.:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102093 1102093 197.SPU59234_3 3ccC 10200 103192 498 103192 103114 103192 10311432 10311432 10311432 10311432<</td> <td>4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 —<td>4671 1099917 1101653 1737 gp.:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 —<td>4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 Recomposition of the composition of the com</td><td>4671 1099917 1101653 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 11020643 1102635 597 RecC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCCC RecCCC RecCCC RecCCC</td></td></td>	4671 1098917 1101653 1737 gp.:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102093 1102093 197.SPU59234_3 3ccC 10200 103192 498 103192 103114 103192 10311432 10311432 10311432 10311432<	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 — <td>4671 1099917 1101653 1737 gp.:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 —<td>4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 Recomposition of the composition of the com</td><td>4671 1099917 1101653 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 11020643 1102635 597 RecC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCCC RecCCC RecCCC RecCCC</td></td>	4671 1099917 1101653 1737 gp.:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 — <td>4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 Recomposition of the composition of the com</td> <td>4671 1099917 1101653 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 11020643 1102635 597 RecC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCCC RecCCC RecCCC RecCCC</td>	4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 1102043 1102639 597 Recomposition of the composition of the com	4671 1099917 1101653 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 4672 11020643 1102635 597 RecC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCC RecCCC RecCCC RecCCC RecCCC

ſ	 -				 1						- I			_					\neg
	Function	cysteine desulphurase	nicotinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	alkylphosphonate uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ antiporter ChaA	hypothetical protein	hypothetical membrane protein
	Matched length (a.a.)	376	283	361	235	192	214	108	216	148	420	362	161	232	250		339	236	221
	Similarity (%)	73.4	68.9	77.6	60.9	54.7	66.4	74.1	60.7	60.8	64.3	68.6	9.69	47.6	61.6		0.69	9.73	61.1
	Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	, 27.6
(Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coli K12 lplA	Escherichia coli K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
	db Match	gp:RFAJ3152_2	sp:NADC_MYCTU	pir.E69663	gp:SC5B8_7	gp:AE001961_5	gp:SC3A7_8	sp:YBDF_ECOLI	gp:AAA21740_1	sp:PHNB_ECOLI	sp:PCAK_PSEPU	sp:PHHY_PSEAE	pir.A69859	sp:YJJK_ECOLI	pir.G69858		sp:CHAA_ECOLI	pir.C75001	sp:YWAF_BACSU
	ORF (bp)	1074	837	1182	642	009	009	342	789	411	1293	1185	588	1338	753	531	1050	708	723
	Terminal (nt)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124836	1127009	1128350	1129102	1129632	1130704	1131428	1131401
	Initial (nt)	1116905	1117744	1118932	1119727	1120205	1121432	1121809	1122606	1123051	1124826	1126020	1126422	1127013	1128350	1129102	1129655	1130721	1132123
	SEQ NO. (a.a.)	4688	4689	4690	4691	4692	4693	4694	4695	4696	4697	4698	4699	4700	4701	4702	4703	4704	4705
	SEQ NO. (DNA)	1188	1189	1190	1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203	1204	1205

																				
Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein			-		chymotrypsin Bll	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]
Matched length (a.a.)	946	164			318	282					271	111	340	147	221	614	909	315		103
Similarity (%)	58.7	81.7			72.0	49.0					51.3	72.1	62.4	71.4	67.9	7.92	54.9	61.9		91.3
Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedL	Streptomyces coelicolor A3(2)			-		Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
db Match	sp:UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOLI	gp:SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	pir:F70559	pir.F70555	sp:TYPA_ECOLI	pir.F70874	pir:B70875		sp:FER_STRGR
ORF (bp)	2340	495	216	1776	954	006	366	297	261	387	834	345	1200	537	714	1911	1506	870	438	315
Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
Initial (nt)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273	1143015	1143739	1144118	1146097	1147592	1148445	1148953
SEQ NO. (a.a.)	4706	4707	4708	4709	4710	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	4725
SEQ NO. (DNA)	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225

77
_
υ
_
_
•
-
-
_
_
\sim
$\overline{}$
-
·-
_
_
•
a)
·
_
\circ
_
m

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1226	4726	1149279	1150379	1101	sp:AAT_BACSP	Bacillus sp. strain YM-2 aat	25.9	52.9	397	aspartate aminotransferase
1227	4727	1150408	1151028	621						
1228	4728	1151186	1152370	1185						
1229	4729	1153263	1152373	891	gp:CGAJ4934_1	Corynebacterium glutamicum ATCC 13032 dapD	100.0	100.0	229	tetrahydrodipicolinate succinylase or succinylation of piperidine-2,6-dicarboxylate
1230	4730	1156537	1155875	663						
1231	4731	1156902	1157669	768	pir:S60064	Corynebacterium glutamicum ATCC 13032 orf2	100.0	100.0	211	hypothetical protein
1232	4732	1157694	1158524	831	gp:SCP8_4	Streptomyces coelicolor A3(2) dhpS	59.0	0.69	273	dihydropteroate synthase
1233	4733	1158524	1159252	729	gp:MLU15180_14	Mycobacterium leprae u1756i	45.7	73.1	245	hypothetical protein
1234	4734	1159267	1159572	306	pir.G70609	Mycobacterium tuberculosis H37Rv Rv1209	31.3	67.7	66	hypothetical protein
1235	4735	1159635	1159799	165	gsp:W32443	Mycobacterium tuberculosis	72.3	91.5	47	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis
1236	4736	1159865	1160728	864	sp:MYRA_MICGR	Micromonospora griseorubida myrA	39.2	67.8	286	mycinamicin-resistance gene
1237	4737	1162231	1160738	1494	sp:SCRB_PEDPE	Pediococcus pentosaceus scrB	23.5	51.0	524	sucrose-6-phosphate hydrolase
1238	4738	1163605	1162379	1227	sp:GLGA_ECOLI	Escherichia coli K12 MG1655 glgA	24.7	51.3	433	ADPglucose—starch(bacterial glycogen) glucosyltransferase
1239	4739	1163702	1164916	1215	sp:GLGC_STRCO	Streptomyces coelicolor A3(2) glgC	61.0	81.8	400	glucose-1-phosphate adenylyltransferase
1240	4740	1165612	1164974	629	sp:MDMC_STRMY	Streptomyces mycarofaciens MdmC	25.8	62.4	63	methyltransferase
1241	4741	1165746	1166384	639	sp:RPOE_ECOLI	Escherichia coli rpoE	27.3	57.2	194	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress
1242	4742	1166576	1167067	492						

	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
	Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501				409	444	
	Similarity (%)	73.2	72.0	83.8	77.0	87.1			8.66	60.4	72.1	61.2	64.7				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
(confined)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tcmA	
	db Match	pir:C70508	sp:MRP_ECOLI	pir:B70509	pir:C70509	pir:A70952			prf:2306367A	sp:MDR2_CRIGR	pir:H70953	sp:AROE_ECOLI	sp:PNBA_BACSU				sp:TCR1_ECOLI	sp:TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	516	999	594	3771	3741	717	804	1611	651	876	525	1215	1347	705
	Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	1187039	1188389	1190526
	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	1176271	1180048	1180837	1181675	1181993	1183607	1184280	1185742	1185825	1187043	1189822
	SEQ NO. (a.a.)	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	4758	4759	4760
	SEQ NO. (DNA)	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

(nt) (bp) (nt) (bp) 1188388 2235 1191542 456 1193807 1398
pir:S57
gsp:Y2
_ ,
324
945
792
1647
192
1554 sp:CYDC_ECOLI
1533 sp.CYDD_ECOLI
999 gp:AB035086_2
1539 gp:AB035086_1
2265 sp:YEJH_ECOLI
342
393 sp:MUTT_PROVU
765
1404 Sp.PROY_SALTY

Table 1 (continued)

f					-											T 1	
Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetR family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothetical protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein			esterase or lipase		
Matched length	(a.a.) 643	247	595	354	278		185	878		203	368	915			220		
Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6			64.6		
Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) orfZ	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
db Match	sp:DEAD_KLEPN	prf:2323363BT	sp:PCPB_FLAS3	sp:CLCE_PSESB	sp:CATA_ACICA		pir.A70672	sp:SNF2_YEAST		gp:SCO007731_6	pir.E70755	sp:Y084_MYCTU			gp:AB029896_1		
ORF (bp)		687	1590	1068	885	471	540	3102	1065	858	1173	2628	306	318	774	378	786
Terminal (nt)	29	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1228636	1229095	1229935
Initial (nt)	1209934	1213115	1213269	1214871	1215952	1217374	1217982	1219895	1222905	1222986	1223887	1225066	1227587	1227657	1227863	1228718	1229150
SEO.	(a.a.) 4778	4779	4780	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791	4792	4793	4794
SEQ.	(DNA) 1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

Table 1 (continued)

																_		_				
	Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase		•	nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
	Matched length (a.a.)	122	166			228	81	605	137	601			24			220	175	505	137	83	1271	461
	Similarity (%)	69.7	56.6			57.9	66.7	70.6	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	6.79
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0		,	45.0	30.3	9.95	36.0	36.0	46.9	32.8
lable i (commaca)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
	db Match	sp:ATOE_ECOLI	sp:PECS_ERWCH			sp:FNR_ECOLI	sp:MERP_SHEPU	sp:ATZN_ECOLI	sp:RELA_VIBSS	gsp:R80504			GSP:P61449			sp:NARI_BACSU	sp:NARJ_BACSU	sp:NARH_BACSU	PIR:D72603	PIR:B72603	sp:NARG_BACSU	sp:NARK_ECOLI
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	069	777	732	1593	594	273	3744	1350
	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	1247199	1250444	1251817	1248794	1252557
	Initial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	1242156	1242275	1243621	1245201	1245532	1246496	1247239	1248791	1249851	1251545	1252537	1253906
	SEQ NO. (a.a.)	4795	4796	4797	4798	4799	4800	4801	4802	4803	4804	4805	4806	4807	4808	4809	4810	4811	4812	4813	4814	4815
	SEQ NO. (DNA)	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315

		r		γ					r	_		_	_		_	1	_		
	Function	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	molybdopterin guanine dinucleotide synthase	molybdoptein biosynthesis protein	molybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acid-CoA ligase	Rho factor				peptide chain release factor 1	protoporphyrinogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha-N-acetylglucosaminyltransferase
	Matched length (a.a.)	157	738		334	472	178	366	354	572	753				363	280		215	322
	Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
	Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
(Homologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS	-	Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho			-	Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherichia coli K12 rfe
	db Match	sp:CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp:Y0D2_MYCTU	gp:PPU242952_2	sp:MOEA_ECOLI	sp:CNX2_ARATH	sp:ALKK_PSEOL	sp:RHO_MICLU	•		•	sp:RF1_ECOLI	sp:HEMK_ECOLI		sp:YD01_MYCTU	sp:RFE_ECOLI
	ORF (bp)	489	1866	684	1008	1401	561	1209	1131	1725	2286	603	969	1023	1074	837	774	648	1146
	Terminal (nt)	1254634	1254737	1257750	1256851	1257865	1259429	1259993	1261688	1262886	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
	Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610	1265142	1265665	1266306	1266449	1267430	1268507	1269040	1269396	1270047
	SEQ NO. (a.a.)	4816	4817	4818	4819	4820	4821	4822	4823	4824	4825	4826	4827	4828	4829	4830	4831	4832	4833
	SEQ NO. (DNA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

_
_
77
$\overline{}$
a
ued
_
_
_
•-
-
_
_
_
$^{\circ}$
contin
_
_
•
4
v
$\overline{}$
$\overline{}$
_
apl
_
$\overline{}$

	Function		protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- binding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-transporting ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	protein	protein	putative ATP/GTP-binding protein	protein	protein	
		:	hypothetical protein	ATP synthas	H+-transport binding prote chane	H+-transport b	H+-transport chain	H+-transport chain	H+-transportir gamma chain	H+-transport chain	H+-transportir epsilon chain	hypothetical protein	hypothetical protein	putative ATP	hypothetical protein	hypothetical protein	thioredoxin
	Matched length (a.a.)		80	245	1.2	151	274	516	320	483	122	132	230	96	134	101	301
	Similarity (%)		0.66	56.7	85.9	6.99	67.2	88.4	76.6	100.0	73.0	67.4	2.28	96.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	99.8	41.0	38.6	70.0	45.0	35.8	54.5	37.9
(505)	Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpl.	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	sp:ATP6_ECOLI	Sp:ATPL_STRLI	sp:ATPF_STRLI	sp:ATPD_STRLI	sp:ATPA_STRLI	sp:ATPG_STRLI	sp:ATPB_CORGL	sp:ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	486	249	810	240	564	813	1674	975	1449	372	471	069	285	453	312	921
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967	1281714	1281794	1282194
	SEQ NO. (a.a.)	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
	SEQ NO. (DNA)	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

Table 1 (continued)

	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein betasubunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
	Matched length (a.a.)	366	240	228	311	710	467		211	260	367		244	335		375		397
	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		2.79		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
(command)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium meliloti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
	db Match	gp:ECO237695_3	sp:SSUC_ECOLI	sp:SSUB_ECOLI	sp:SSUA_ECOLI	sp:GLGB_ECOLI	sp:AMY3_DICTH		sp:FEPC_ECOLI	pir:Ċ70860	pir:H70859		sp:FIXA_RHIME	sp:FIXB_RHIME	:	sp:NIFS_AZOVI		sp:Y4ME_RHISN
	ORF (bp)	1143	768	729	957	2193	1494	348	879	804	1056	612	786	951	615	1128	312	1146
A	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
	Initial (nt)	1283324	1284517	1285302	1286043	1289473	1291007	1291026	1291699	1293222	1294151	1295047	1295435	1296253	1296479	1297212	1298653	1300145
	SEQ NO. (a.a.)	4850	4851	4852	4853	4854	4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	4866
	SEQ NO. (DNA)	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

ed)
ontinu
e 1 (c
Table

																Ļ		
	Function	transcriptional regulator	acetyltransferase				tRNA (5-methylaminomethyl-2- thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyl-tRNA(Gln) amidotransferase subunit C	glutamyl-tRNA(Gln) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphatefructose 6- phosphate 1-phosphotransrefase
	Matched length (a.a.)	59	181				361	•	332	009		229	220	26	484	263	96.	358
	Similarity (%)	76.3	55.3				80.9		66.0	65.8		70.6	70.9	64.0	83.0	54.0	79.2	6.77
	Identity (%)	47.5	34.8				61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
(continued)	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
	db Match	sp:Y4MF_RHISN	sp:YHBS_ECOLI				pir.C70858		pir.B70857	sp:TCMA_STRGA		sp:DNLJ_RHOMR	pir.H70856	sp:GATC_STRCO	sp:GATA_MYCTU	sp.VIUB_VIBVU	gp:SCE6_24	sp:PFP_AMYME
	ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	906	1071
	Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314470	1316083
	Initial (nt)	1300369	1300552	1301929	1303123	1303299	1303829	1304536	1304932	1307384	1308196	1308330	1311097	1311320	1311625	1313270	1314775	1315013
	SEQ NO. (a.a.)	4867	4868	4869	4870	4871	4872	4873	4874	4875	4876	4877	4878	4879	4880	4881	4882	4883
	SEQ NO. (DNA)	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383

Table 1 (continued)

Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	hypothetical protein	iron-siderophore binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydratase	hypothetical protein
Matched length (a.a.)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
Similarity (%)		31.4	76.2	76.9	7.77	68.4	98.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34.13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yajG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
db Match		sp:CCPA_BACME	sp:RBSA_ECOLI	sp:RBSC_ECOLI	sp:RBSB_ECOLI	sp:RBSD_ECOLI	sp:YIW2_YEAST	gp:SCF34_13	sp:NTCI_RAT	gsp:W61467	sp:F4RE_METJA	sp:YQJG_ECOLI	pir.A70672	pir:H70855		gp:AJ012293_1	pir.G70855
ORF (bp)	630	1107	1572	972	942	369	636	1014	1005	1479	672	1077	774	1056	237	1839	564
Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	1335975
SEQ NO. (a.a.)	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4898	4899	4900
SEQ NO. (DNA)	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400

				tein	ATP-				يو	0		•								
Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	maltose/maltodextrin transport ATP-binding protein	nitrate transporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothetical serine-rich protein			hypothetical protein	
Matched length (a.a.)	62	99		191	28	324			142	304			642		530	105			620	
Similarity (%)	100.0	55.0		80.8	78.2	8.95			73.2	72.7			53.7		100.0	52.0			63.1	
Identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		99.8	29.0			32.9	
Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrtD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter capsulatus strain SB1003	
db Match	sp:YILV_CORGL	GP:SSU18930_26 3		sp:NRTD_SYNP7	sp:MALK_ENTAE	sp:NRTA_ANASP			sp:DIM6_STRCO	sp:cZcD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pir.T03476	
ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	069	1815	1743	1590	327	867	1062	1866	402
Terminal (nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
Initial (nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344018	1344440	1344935	1345486	1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	1356452
SEQ NO. (a.a.)	4901	4902	4903	4904	4905	4906	4907	4908	4909	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	4920
SEQ NO. (DNA)	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

Table 1 (continued)

1										
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
1421	4921	1357557	1358210	654						
1422	4922	1358259	1359062	804	sp:HPCE_ECOLI	Escherichia coli C hpcE	33.3	59.2	228	homoprotocatechiuate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase); 5-carboxymethyl-2-oxo-hex-3-ene-1,7-dioate decarboxylase(opet decarboxylase)]
1423	4923	1359052	1359669	618	sp:UBIG_ECOLI	Escherichia coli K12	23.4	55.7	192	methyltransferase or 3- demethylubiquinone-9 3-O- methyltransferase
1424	4924	1361295	1360168	1128	sp:DHBC_BACSU	Bacillus subtilis dhbC	38.0	70.4	1/2	isochorismate synthase
1425	4925	1361361	1362848	1488	sp:SYE_BACSU	Bacillus subtilis gltX	37.3	69.7	485	glutamyl-tRNA synthetase
1426	4926	1363138	1362926	213	gp:SCJ33_10	Streptomyces coelicolor A3(2)	77.0	90.0	29	transcriptional regulator
1427	4927	1363657	1363142	516						
1428	4928	1364253	1363732	522						
1429	4929	1364915	1365256	342						
1430	4930	1364960	1364340	621						
1431	4931	1365180	1364878	303						
1432	4932	1365396	1365217	180						
1433	4933	1365808	1366137	330				:		
1434	4934	1367293	1367505	213						
1435	4935	1368070	1367888	183						
1436	4936	1368078	1368395	318						
1437	4937	1368400	1369551	1152						
1438	4938	1369551	1369874	324						
1439	4939	1371637	1369877	1761	sp:THIC_BACSU	Bacillus subtilis thiA or thiC	65.1	81.0	669	thiamin biosynthesis protein

Table 1 (continued)

										in		ate) 3'-		se large	se small		hydro- e)(8-			
	Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3',5'-bis(diphosphate) 3'- pyrophosphatase	acetate repressor protein	3-isopropylmalate dehydratase large subunit	3-isopropylmalate dehydratase small subunit		mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTPprophosphohydrolase)		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
	Matched length (a.a.)			44		797			299	256		178	257	473	195		294		331	374
	Similarity (%)			74.0		74.0			52.8	64.8		60.1	2.09	87.5	89.2		71.4	:	72.2	67.4
	Identity (%)			61.0		44.2			25.4	25.4		29.8	26.1	68.1	67.7		45.9		45.0	40.4
(commac)	Homologous gene			Chlamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	Escherichia coli K12 iclR	Actinoplanes teichomyceticus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655
	db Match			GSP:Y37857		sp:PHS1_RAT			sp:YRKH_BACSU	sp:Y441_METJA		sp:SPOT_ECOLI	sp:ICLR_ECOLI	sp:LEU2_ACTTI	sp:LEUD_SALTY		gp:MLCB637_35		sp:GPDA_BACSU	Sp.DDLA ECOLI
	ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	1080
	Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
	Initial (nt)	1372326	1372601	1373798	1374556	1375776	1375987	1376088	1377555	1378415	1378942	1379003	1380259	1380440	1381902	1382819	1383798	1383930	1384130	1385153
	SEQ NO. (a.a.)	4940	4941	4942	4943	4944	4945	4946	4947	4948	4949	4950	4951	4952	4953	4954	4955	4956	4957	4958
	SEQ NO. (DNA)	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1459	4959	1387270	1386293	978		-				
1460	4960	1387332	1388324	993	sp:THIL_ECOLI	Escherichia coli K12 thiL	32.2	57.6	335	thiamin-phosphate kinase
1461	4961	1388312	1389073	762	sp:UNG_MOUSE	Mus musculus ung	38.8	59.6	245	uracil-DNA glycosylase precursor
1462	4962	1389208	1390788	1581	sp:Y369_MYCGE	Mycoplasma genitalium (SGC3) MG369	23.1	56.3	568	hypothetical protein
1463	4963	1390796	1392916	2121	sp:RECG_ECOLI	Escherichia coli K12 recG	35.4	0.09	693	ATP-dependent DNA helicase
1464	4964	1391961	1391638	324	GSP:Y75303	Neisseria meningitidis	31.0	48.0	108	polypeptides predicted to be useful antigens for vaccines and diagnostics
1465	4965	1392939	1393151	213	sp:BCCP_PROFR	Propionibacterium freudenreichii subsp. Shermanii	38.8	67.2	29	biotin carboxyl carrier protein
1466	4966	1393154	1393735	582	sp:YHHF_ECOLI	Escherichia coli K12 yhhF	37.1	63.5	191	methylase
1467	4967	1393742	1394221	480	sp:KDTB_ECOLI	Escherichia coli K12 MG1655 kdtB	42.6	78.7	155	lipopolysaccharide core biosynthesis protein
1468	4968	1394854	1395933	1080						
1469	4969	1394894	1395097	204	GSP:Y75358	Neisseria gonorrhoeae	67.0	74.0	59	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics
1470	4970	1395549	1394800	750	sp:GLNQ_BACST	Bacillus stearothermophilus glnQ	56.4	78.6	252	ABC transporter or glutamine ABC transporter, ATP-binding protein
1471	1264	1396410	1395568	843	sp:NOCM_AGRT5	Agrobacterium tumefaciens nocM	32.7	75.0	220	nopaline transport protein
1472	4972	1397421	1396561	861	sp:GLNH_ECOLI	Escherichia coli K12 MG1655 glnH	27.4	59.0	234	glutamine-binding protein precursor
1473	4973	1397662	1398468	807						
1474	4974	1399534	1398557	978	pir:H69160	Methanobacterium thermoautotrophicum MTH465	28.6	60.3	322	hypothetical membrane protein
1475	4975	1400926	1401333	408				:		
1476	4976	1400940	1400185	756	sp:VINT_BPL54	Bacteriophage L54a vinT	26.9	52.5	223	phage integrase

Table 1 (continued)

																	,					
Function						insertion element (IS3 related)		hypothetical protein					:					DNA polymerase I	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	-
Matched length (a.a.)						26		37										896	456	283	284	
Similarity (%)						96.2		97.0										80.8	8.79	65.4	76.1	
Identity (%)						88.5		89.0						,				56.3	33.8	41.3	46.5	
Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum										Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A.15c	Pseudomonas putida morA	
db Match						pir:S60890		PIR:S60890										sp:DPO1_MYCTU	sp:CMCT_NOCLA	gp:SCJ9A_15	sp:MORA_PSEPU	
ORF (bp)	744	432	507	864	219	192	855	111	369	315	321	375	948	306	564	222	291	2715	1422	606	873	159
Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
Initial (nt)	1401333	1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	1420036
SEQ NO. (a.a.)	4977	4978	4979	4980	4981	4982	4983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	4995	4996	4997	4998
SEQ NO. (DNA)	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

										side												
	Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein					inosine-uridine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criptic asc operon repressor, ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
	Matched length (a.a.)	163	451		195					310	517	293	337		671	152	121	279		628	150	214
•	Similarity (%)	58.3	71.4		93.9					81.0	53.8	9.79	65.6		83.3	59.2	80.2	77.1		47.2	68.0	58.4
	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
(Homologous gene	Streptomyces coelicolor SCH5.13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13869 yacE					Crithidia fasciculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 ytfH	Escherichia coli K12 ytfG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
	db Match	sp:YAFE_ECOLI	sp:RS1_ECOLI		sp:YACE_BRELA					sp:iUNH_CRIFA	sp:QACA_STAAU	sp:RBSK_ECOLI	sp:ASCG_ECOLI		sp:UVRB_STRPN	sp:Y531_METJA	Sp:YTFH_ECOLI	sp:YTFG_ECOLI		pir:H70040	gp:SC9H11_26	sp:YCBL_ECOLI
	ORF (bp)	654	1458	1476	009	1098	582	246	957	936	1449	921	1038	798	2097	441	381	846	684	2349	912	009
	Terminal (nt)	1420071	1422556	1421096	1425878	1427354	1427376	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440026	1438212	1440675	1441793
	Initial (nt)	1420724	1421099	1422571	1425279	1426257	1427957	1428049	1428290	1429159	1430642	1431579	1432612	1432750	1434105	1436335	1437249	1437356	1439343	1440560	1441586	1442392
	SEQ NO. (a.a.)	4999	2000	5001	5005	5003	5004	5005	5006	5005	5008	5009	5010	5011	5012	5013	5014	5015	5016	5017	5018	5019
	SEQ NO. (DNA)	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

Table 1 (continued)

								1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1	1442487	1445333	2847	sp:UVRA_ECOLI	Escherichia coli K12 uvrA	56.2	80.6	952	excinuclease ABC subunit A
5021	1444115	1443810	306	PIR: JQ0406	Micrococcus luteus	40.0	57.0	100	hypothetical protein 1246 (uvrA region)
5022	1445393	1444944	450	PIR: JQ0406	Micrococcus luteus	31.0	47.0	142	hypothetical protein 1246 (uvrA region)
5023	1446158	1446874	717						
5024	1447446	1445323	2124		·			į	
5025	1447792	1448358	267	sp:IF3_RHOSH	Rhodobacter sphaeroides infC	52.5	78.2	179	translation initiation factor IF-3
5026	1448390	1448581	192	Sp:RL35_MYCFE	Mycoplasma fermentans	41.7	76.7	09	50S ribosomal protein L35
5027	1448645	1449025	381	sp:RL20_PSESY	Pseudomonas syringae pv. syringae	75.0	92.7	117	50S ribosomal protein L20
5028	1449940	1449119	822						
5029	1450126	1450692	295						
5030	1450918	1451820	903	sp:UGPA_ECOLI	Escherichia coli K12 MG1655 ugpA	33.2	71.6	292	sn-glycerol-3-phosphate transport system permease protein
5031	1451820	1452653	834	sp.UGPE_ECOLI	Escherichia coli K12 MG1655 upgE	33.3	70.4	270	sn-glycerol-3-phosphate transport system protein
5032	1452758	1454071	1314	sp:UGPB_ECOLI	Escherichia coli K12 MG1655 ugpB	26.6	9'29	436	sn-glycerol-3-phosphate transport system permease proein
5033	1454115	1455338	1224	sp:UGPC_ECOLI	Escherichia coli K12 MG1655 ugpC	44.0	71.3	393	sn-glycerol-3-phosphate transport ATP-binding protein
5034	1454350	1454102	249	PIR:E72756	Aeropyrum pernix K1 APE0042	47.0	56.0	74	hypothetical protein
5035	1456066	1455350	717	sp:GLPQ_BACSU	Bacillus subtilis glpQ	26.2	50.0	244	glycerophosphoryl diester phosphodiesterase
5036	1456355	1456948	594	sp:TRMH_ECOLI	Escherichia coli K12 MG1655 trmH	34.0	71.2	153	tRNA(guanosine-2'-0-)- methlytransferase
5037	1457047	1458066	1020	sp:SYFA_BACSU	Bacillus subtilis 168 syfA				phenylalanyl-tRNA synthetase alpha chain

Table 1 (continued)

																,				
	Function	phenylalanyl-tRNA synthetase beta chain		esterase	macrolide 3-O-acyltransferase		N-acetylglutamate-5-semialdehyde dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyase				hypothetical protein	tyrosyl-tRNA synthase (tyrosine- tRNA ligase)	hypothetical protein		hypothetical protein
1	Matched length (a.a.)	343		363	423		347	388	391	401		478				50	417	149		42
	Similarity (%)	71.7		55.1	56.3		99.1	99.7	99.2	99.5		0.06				72.0	79.6	64.4		75.0
	Identity (%)	42.6		26.5	30.0		98.3	99.5	99.0	99.5		83.3				48.0	48.4	26.9		71.0
(namuna) i alani	Homologous gene	Escherichia coli K12 MG1655 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebacterium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coli K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
	db Match	sp:SYFB_ECOLI		sp:ESTA_STRSC	sp.MDMB_STRMY		gp:AF005242_1	sp:ARGJ_CORGL	sp:ARGD_CORGL	sp:ASSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR:F81737
	ORF (bp)	2484	171	972	1383	402	1041	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	390	141
	Terminal (nt)	1460616	1458196	1462128	1463516	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	1477929	1478503	1483335
	Initial (nt)	1458133	1458966	1461157	1462134	1463533	1464083	1465210	1467376	1470211	1471362	1471477	1472977	1474119	1475683	1476343	1476550	1478393	1478892	1483475
	SEQ NO. (a.a.)	5038	5039	5040	5041	5042	5043	5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5056
	SEQ NO. (DNA)	·	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

Table 1 (continued)

						 -,													_	
	Function	hypothetical protein	translation initiation factor IF-2	hypothetical protein		hypothetical protein	hypothetical protein	DNA repair protein	hypothetical protein	hypothetical protein	CTP synthase (UTP-ammonia ligase)	hypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding protein	chromosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurtransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase B
	Matched length (a.a.)	84	182	311		260	225	574	394	313	549	157	300	551	258	251		270	172	229
	Similarity (%)	0.99	67.0	60.1		69.6	31.6	63.4	73.1	68.1	2.97	71.3	7.1.7	59.7	73.6	64.5		0.79	65.7	72.5
	Identity (%)	61.0	36.3	29.6		38.5	31.6	31.4	41.9	30.4	55.0	36.3	39.7	30.5	44.6	28.3	,	35.6	33.1	45.9
ומסו ו (פפווווומפת)	Homologous gene	Chlamydia pneumoniae	Borrelia burgdorferi IF2	Bacillus subtilis yzgD		Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Mycobacterium tuberculosis H37Rv Rv1697	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Bacillus subtilis yqkG	Staphylococcus aureus xerD	Streptomyces fradiae tlrC	Caulobacter crescentus parA	Bacillus subtilis ypuG		Datisca glomerata tst	Bacillus subtilis ypuH	Bacillus subtilis rluB
	db Match	GSP:Y35814	sp:IF2_BORBU	sp:YZGD_BACSU		sp:YQXC_BACSU	sp:YFJB_HAEIN	sp:RECN_ECOLI	pir:H70502	pir.A70503	sp:PYRG_ECOLI	sp:YQKG_BACSU	gp:AF093548_1		gp:CCU87804_4	sp:YPUG_BACSU		gp:AF109156_1	sp:YPUH_BACSU	sp:RLUB_BACSU
	ORF (bp)	273	1353	984	162	819	873	1779	1191	963	1662	657	912	1530	783	765	561	867	543	756
	Terminal (nt)	1483724	1486027	1487025	1487193	1488056	1489018	1490881	1492134	1493109	1495174	1495861	1496772	1496795	1499645	1500695	1500911	1502576	1503176	1504238
	Initial (nt)	1483996	1484675	1486042	1487032	1487238	1488146	1489103	1490944	1492147	1493513	1495205	1495861	1498324	1498863	1499931	1501471	1501710	1502634	1503483
	SEQ NO. (a.a.)	5057	5058	5059	5060	5061	5062	5063	5064	5065	5066	5067	5068	5069	5070	5071	5072	5073	5074	5075
	SEQ NO. (DNA)	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575

Table 1 (continued)

ſ							T										:=			
	Function	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter		hypothetical membrane protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxohepta-2,4-dienoate hydrolase	preprotein translocase SecA subunit	signal transduction protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	220	435			232	499	602		257		499			130	210	805	132	234	133
	Similarity (%)	73.6	74.0			67.2	60.1	56.3		73.2		61.5			57.7	8.69	61.7	93.2	74.4	63.2
	Identity (%)	38.6	42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
,	Homologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M82B tetB		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
	db Match	sp:KCY_BACSU	sp:YPHC_BACSU			sp:YX42_MYCTU	prf:2513302B	prf:2513302A		sp:YGIE_ECOLI		gp:AB029555_1			sp:YCHJ_ECOLI	pir.C69334	sp:SECA_BACSU	gp:AF173844_2	sp:Y0DF_MYCTU	sp:YODE_MYCTU
	ORF (bp)	069	1557	999	498	813	1554	1767	825	789	189	1548	186	420	375	1164	2289	429	756	633
	Terminal (nt)	1504945	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589
	Initial (nt)	1504256	1505017	1507327	1507902	1508729	1508813	1510366	1511667	1512189	1514505	1514527	1515159	1515396	1515782	1516962	1517170	1519601	1520190	1520957
	SEQ NO. (a.a.)	5076	5077	5078	5079	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089	5090	5091	5092	5093	5094
	SEQ NO. (DNA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594

Table 1 (continued)

	Function	hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	6-phosphogluconate dehydrogenase	thioesterase		nodulation ATP-binding protein I	hypothetical membrane protein	transcriptional regulator	phosphonates transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding protein		
	Matched length (a.a.)	178					342	65		374	245	492	121		235	232	277	281	268	250		
	Similarity (%)	84.3					69.0	65.5		69.5	66.1	99.2	67.8		68.1	76.3	63.9	63.4	62.3	72.0		
	Identity (%)	71.4					33.9	31.4		41.2	34.3	0.66	39.7		39.6	43.1	26.7	29.9	27.2	44.8		
() :	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1828					Bacillus subtilis yhdP	Bacillus subtilis yhdT		Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nodl	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
	db Match	sp:Y0DE_MYCTU					sp:YHDP_BACSU	sp:YHDT_BACSU		gp:TTHERAGEN_1	sp:YD48_MYCTU	gsp:W27613	pir:G70664		sp:NODI_RHIS3	pir.E70501	sp:YFHH_ECOLI	sp:PHNE_ECOLI	sp:PHNE_ECOLI	sp:PHNC_ECOLI		
	ORF (bp)	573	510	1449	900	930	1062	1380	219	1344	735	1476	462	675	741	741	873	846	804	804	210	1050
	Terminal (nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528186	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	1537870
	Initial (nt)	1521771	1522941	1524500	1525374	1525497	1526534	1527913	1527968	1529330	1529486	1531816	1531933	1532322	1533041	1533781	1535401	1536227	1537030	1537833	1538759	1538919
	SEQ NO. (a.a.)	5095	5096	5097	5098	5099	5100	5101	5102	5103	5104	5105	5106	5107	5108	5109	5110	5111	5112	5113	5114	5115
	SEQ NO. (DNA)	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1616	5116	1539664	1538963	702						
1617	5117	1541403	1539820	1584	sp:THID_SALTY	Salmonella typhimurium thiD	47.3	70.2	262	phosphomethylpyrimidine kinase
1618	5118	1542922	1542119	804	sp:THIM_SALTY	Salmonella typhimurium LT2 thiM	46.6	77.5	249	hydoxyethylthiazole kinase
1619	5119	1544976	1546289	1314	pir:H70830	Mycobacterium tuberculosis H37Rv ufaA1	28.6	55.0	451	cyclopropane-fatty-acyl-phospholipid synthase
1620	5120	1547692	1546307	1386	prf:2223339B	Burkholderia cepacia Pc701 mopB	32.5	6.99	468	sugar transporter or 4-methyl-o- phthalate/phthalate permease
1621	5121	1548440	1547967	474	prf:2120352B	Thermus flavus AT-62 gpt	36.5	9.65	156	purine phosphoribosyltransferase
1622	5122	1548651	1549349	669	sp:YEBN_ECOLI	Escherichia coli K12 yebN	39.8	68.5	206	hypothetical protein
1623	5123	1549403	1550398	966	gp:AF178758_2	Sinorhizobium sp. As4 arsB	23.3	54.6	361	arsenic oxyanion-translocation pump membrane subunit
1624	5124	1550469	1550951	483						
1625	5125	1551545	1552237	693	gp:SCI7_33	Streptomyces coelicolor A3(2) SCI7.33	62.2	83.8	222	hypothetical protein
1626	5126	1552518	1553972	1455	gp:PSTRTETC1_6	Pseudomonas sp. R9 ORFA	51.8	83.6	469	sulfate permease
1627	5127	1553722	1553297	426	GP:PSTRTETC1_7	Pseudomonas sp. R9 ORFG	39.0	50.0	26	hypothetical protein
1628	5128	1554684	1554070	615						
1629	5129	1554861	1555067	207						
1630	5130	1555079	1554891	189						
1631	5131	1555835	1555086	750						
1632	5132	1556376	1556771	396	pir.A70945	Mycobacterium tuberculosis H37Rv Rv2050	71.8	87.3	110	hypothetical protein
1633	5133	1557823	1557014	810	prf:2317468A	Schizosaccharomyces pombe dpm1	39.2	71.0	217	dolichol phosphate mannose synthase
1634	5134	1559493	1557859	1635	sp:LNT_ECOLI	Escherichia coli K12 Int	25.1	55.6	527	apolipoprotein N-acyltransferase
1635	5135	1560237	1559497	741						
1636	5136	1561660	1560437	1224	gp:AF188894_1	Candida albicans lip1	23.7	55.6	392	secretory lipase
					•					

Table 1 (continued)

	uo	ınsferase					dipeptidase		A helicase	otein translocase		:						
	Function	precorrin 2 methyltransferase	precorrin-6Y C5, 15- methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase protein	hypothetical protein	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
	Matched length (a.a.)	291	411			244	382		1030	268	85	317	324	467		61	516	159
	Similarity (%)	56.7	80.8			75.4	61.3		55.7	62.7	69.4	61.2	64.8	77.3		80.3	74.2	50.0
	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
lable (commuse)	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas denitrificans SC510 cobL			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
	db Match	pir.C70764	sp:COBL_PSEDE			sp:YY12_MYCTU	gp:AF014460_1	-	sp:MTR4_YEAST	sp:TATC_ECOLI	sp:YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE	sp:YY37_MYCTU		pir.B70512	pir.C70512	PIR:H72504
	ORF (bp)	774	1278	366	246	738	1137	639	2787	1002	315	981	972	1425	249	192	1542	480
	Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	1567106	1567117	1569932	1571068	1571506	1572492	1573491	1575205	1574945	1575406	1577806
	Initial (nt)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136	1576947	1577327
	SEQ NO. (a.a.)	5137	5138	5139	5140	5141	5142	5143	5144	5145	5146	5147	5148	5149	5150	5151	5152	5153
	SEQ NO. (DNA)	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653

			_															
	Function	AAA family ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP phosphoribosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase		cysteinyl-tRNA synthetase
	Matched length (a.a.)	545	281	436	269	69	385	526	281	195	1254		996	388	129	123		387
	Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	8.66	97.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
	Identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	99.8	8.96	30.8	31.6		22.4	33.0	32.6	47.2		35.9
table (commaca)	Homologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pimT	Homo sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 aspA	Corynebacterium glutamicum ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coli K12 metH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
	db Match	prf:2422382Q	pir:S72844	gp:AF005050_1	pir:B70513	sp:VAPI_BACNO	prf:2513299A	sp:ASPA_CORGL	gp:AF050166_1	pir:H72277	sp:METH_ECOLI		sp:AHPF_XANCH	sp:ACR3_YEAST	sp:ARSC_STAAU	pir.G70964		sp:SYC_ECOLI
	ORF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
	Terminal (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
	Initial (nt)	1578531	1579400	1580771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	1591343	1592966	1593337	1594532	1595030	1596221	1597460
	SEQ NO. (a.a.)	5154	5155	5156	5157	5158	5159	5160	5161	5162	5163	5164	5165	5166	5167	5168	5169	5170
	SEQ NO. (DNA)	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670

Table 1 (continued)

					ase					osynthetic	dicted to ines and						ase	kinasa -	אוומפנ
	Function	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			transposase		bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)/transport system kinase	
	Matched length (a.a.)	255	326	359	334			360		152	198		597		535		99	339	
	Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		56.4	72.3	
	Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	
(manusca)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Neisseria meningitidis	-	Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	
	db Match	sp:BACA_ECOLI	prf.2214302F	pir.F70577	sp:PYRD_AGRAE			gp:PSESTBCBAD_		sp:YBHB_ECOLI	GSP:Y74829		prf.2513302A		prf.2513302B		pir.JU0052	sp:ARGK_ECOLI	
	ORF (bp)	879	948	666	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	
	Terminal (nt)	1597745	1599614	1600677	1601804	1601931	1603466	1604629	1604830	1605281	1606689	1608248	1605861	1609335	1607661	1609842	1610844	1611150	
	Initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607646	1607657	1609087	1609247	1610192	1610236	1612238	
	SEQ NO. (a.a.)	5171	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183	5184	5185	5186	5187	
	SEQ NO. (DNA)	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	

Table 1 (continued)

Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
Matched length (a.a.)	610	224		370	141	261		364	611		656	174	235	122	98		446
Similarity (%)	68.2	70.1		87.0	78.7	72.8		65.7	56.5		85.9	81.6	51.9	62.0	80.2		86.1
Identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		69.9	54.6	21.3	32.6	37.2		61.2
Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichii subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningitidis MC58 NMB1652
db Match	sp:MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir:B70711	gp:SCC77_24		sp:HEMZ_PROFR	sp:P54_ENTFC		pir:F70873	pir.E70873	pir.F64496	gp:SCD82_4	pir.E64494		gp:AE002515_9
ORF (bp)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	756	663	267	393	1392
Terminal (nt)	1614451	1617300	1617994	1618321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
Initial (nt)	1616298	1616578	1617398	1619616	1620106	1621009	1621056	1622950	1624826	1625925	1626279	1629298	1629913	1631329	1631660	1631745	1631933
SEQ NO. (a.a.)	5189	5190	5191	5192	5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	5205
SEQ NO. (DNA)	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705

	Homologous gene (%) (%) (a.a.) Homologous gene (%) (%) (a.a.)	Neisseria gonorrhoeae ORF24 54.0 60.0 113 antigenic protein	Neisseria gonorrhoeae 59.0 69.0 152 antigenic protein	Synechocystis sp. PCC6803 42.6 73.2 883 cation-transporting ATPase P sll1614 pma1		Streptomyces coelicolor A3(2) 35.8 58.3 120 hypothetical protein SC3D11.02c					Streptococcus thermophilus 43.0 73.8 107 host cell surface-exposed lipoprotein phage TP-J34	Corynephage 304L int 34.4 60.4 154 integrase	Escherichia coli K12 yjjK 32.8 64.4 497 ABC transporter ATP-binding protein		Micromonospora viridifaciens 51.9 72.4 387 sialidase ATCC 31146 nedA	Corynebacterium glutamicum 99.6 100.0 236 transposase (IS1628)	Corynebacterium glutamicum 64.0 72.0 37 transposase protein fragment TnpNC	Plasmid NTP16 32.0 43.0 88 hypothetical protein		Pyrococcus abyssi Orsay 32.7 70.1 107 dTDP-4-keto-L-rhamnose reductase PAB1087	
		54.0	29.0	42.6		35.8					43.0	34.4	32.8		51.9	99.6	64.0	32.0		32.7	0 63
ומסום ו למסווווומסמו	Homologous gene	Neisseria gonorrhoeae ORF24	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sll1614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yjjK		Micromonospora viridifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Plasmid NTP16	٠	Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae
	db Match	GSP:Y38838	GSP: Y38838	sp:ATA1_SYNY3		gp:SC3D11_2					prf:2408488H	prf:2510491A	sp:YJJK_ECOLI		sp:NANH_MICVI	gp:AF121000_8	GPU:AF164956_23	GP:NT1TNIS_5		pir.B75015	13.07.07.1.
	ORF (bp)	480	456	2676	783	489	1362	357	156	162	375	456	1629	1476	1182	708	243	261	585	423	147
	Terminal (nt)	1632109	1632682	1636241	1633781	1636244	1638442	1638776	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645601	1647133	1647212	1647651
	Initial (nt)	1632588	1633137	1633566	1634563	1636732	1637081	1639132	1639365	1639656	1639781	1640546	1642674	1644218	1645499	1645661	1645821	1645861	1646549	1647634	1640007
	SEQ NO. (a.a.)	5206	5207	5208	5209	5210	5211	5212	5213	5214	5215	5216	5217	5218	5219	5220	5221	5222	5223	5224	2003
	SEQ NO. (DNA)	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1775

																$\overline{}$	Y	
Function		hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase assembly factor / heme O synthase	transketolase	transaldolase	
Matched length	(a.a.)	52	411	252	377	493	217	518	317	266	291		418	323	295	675	358	
Similarity	(%)	57.0	84.4	89.3	83.0	73.0	71.4	67.8	77.3	74.8	74.6		51.0	6.02	66.8	100.0	85.2	
≥	(%)	48.0	64.7	70.2	2:29	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0	62.0	
Homologous gene		Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22.08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coli K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobacterium leprae MLCL536.39 tal	
db Match		PIR:C72506	pir:S72761	gp:SCC22_4	pir.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir.F70871	pir.S72783	pir.S72778	pir.C70871		pir.C71156	sp:QOR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1	sp:TAL_MYCLE	
ORF (F.)	(dq)	162	1263	756	1176	1443	693	1629	1020	804	666	357	1629	975	696	2100	1080	1164
<u>la</u>	(nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502	1667752	1666601
Initial	(nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1655681	1656712	1657677	1659496	1659508	1661578	1663598	1664403	1666673	1667764
SEQ		5226	5227	5228	5229	5230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240	5241	5242
SEQ NO.		1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

_
ð
₽
⇄
₻
5
ಠ
$\stackrel{\smile}{}$
_
후
뎚
۳

Function	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose 6- phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
Matched length (aa)	484	318	258	128	200	205				259	128	405	333	324	309	281	701
Similarity (%)	100.0	71.7	58.1	87.8	46.6	100.0				93.6	51.0	98.5	99.7	87.4	82.5	76.2	61.5
Identity (%)	8.66	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
Homologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechocystis sp. PCC6803 uvrC
db Match	gsp:W27612	pir.A70917	sp:SOL3_YEAST	sp:SAOX_BACSN	gp:AF126281_1	gp:CGL007732_5				sp:TPIS_CORGL	SP:YCQ3_YEAST	sp:PGK_CORGL	sp:G3P_CORGL	pir.D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp:UVRC_PSEFL
ORF (bp)	1452	957	705	405	1401	840	174	687	981	777	408	1215	1002	981	1023	927	2088
Terminal (nt)	1669401	1670375	1671099	1671273	1673123	1673266	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117	1685110	1686152	1687103
Initial (nt)	1667950	1669419	1670395	1671677	1671723	1674105	1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	1687078	1689190
SEQ NO. (a.a.)	5243	5244	5245	5246	5247	5248	5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	5259
SEQ NO. (DNA)	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759

_
0
σŏ
_
_
_
_
_
=
_
=
O
Ö
こ
_
$\overline{}$
യ
$\overline{}$
亙
ᅙ
ap
Tab
Tab

Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4- dihydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nucleolar protein NOL1/NOP2 (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n`	S-adenosylmethionine synthetase	DNA/pantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
Matched length (a.a.)	150	154	72	217	106	404	211	365	234	448	308	150	725	407	409	81	186	103
Similarity (%)	68.7	72.1	68.0	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	80.9	2.78	7.47	90.3
Identity (%)	32.7	43.5	59.0	26.0	44.0	65.6	47.4	37.3	43.6	30.8	41.6	44.7	22.9	99.3	58.0	70.4	39.8	80.6
Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Bacillus subtilis	Bacillus subtilis	Bacillus subtilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia coli K12 ribD	Saccharomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus subtilis 168 def	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 mIHF
db Match	sp:YR35_MYCTU	sp:RISB_ECOLI	GSP: Y83273	GSP:Y83272	GSP:Y83273	gp:AF001929_1	sp:RISA_ACTPL	sp:RIBD_ECOLI	sp:RPE_YEAST	sp:SUN_ECOLI	sp:FMT_PSEAE	sp:DEF_BACSU	sp:PRIA_ECOLI	gsp:R80060	sp:DFP_MYCTU	sp.YD90_MYCTU	pir:KIBYGU	pir.B70899
ORF (bp)	579	477	228	714	336	1266	633	984	657	1332	945	507	2064	1221	1260	291	627	318
Terminal (nt)	1689201	1689869	1690921	1691421	1691347	1690360	1691639	1692275	1693262	1693967	1695499	1696466	1697084	1699177	1700508	1702032	1702411	1702991
Initial (nt)	1689779	1690345	1690694	1690708	1691012	1691625	1692271	1693258	1693918	1695298	1696443	1696972	1699147	1700397	1701767	1702322	1703037	1703308
SEQ NO. (a.a.)	5260	5261	5262	5263	5264	5265	5266	5267	5268	5269	5270	5271	5272	5273	5274	5275	5276	5277
SEQ NO. (DNA)	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777

ſ							Ë					>					v
	Function	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydroorotase	aspartate carbamoyltransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilin-like protein specific leader peptidase
	Matched length (a.a.)	276	1122	381	402	311	176	297				137	187	217	361	166	142
	Similarity (%)	73.6	77.5	70.1	67.7	79.7	80.1	73.4				69.3	98.4	100.0	99.7	100.0	54.9
	Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
(Homologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216			1	Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Aeromonas hydrophila tapD
	db Match	sp:DCOP_MYCTU	pir:SYECCP	sp:CARA_PSEAE	sp:PYRC_BACCL	sp:PYRB_PSEAE	sp:PYRR_BACCL	sp:Y00R_MYCTU				sp.NUSB_BACSU	sp:EFP_BRELA	gp:AF124600_4	gp.AF124600_3	gp:AF124600_2	sp:LEP3_AERHY
	ORF (bp)	834	3339	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	411
	Terminal (nt)	1703517	1704359	1707706	1709017	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	1720971
	Initial (nt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1714299	1714741	1716062	1716692	1717868	1719032	1719598	1721381
	SEQ NO. (a.a.)	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	5293
	SEQ NO. (DNA)	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793

100	ה מכונים	(===
4 /0004:0.		
F	ande	

ſ						60												
	Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyl-tRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
	Matched length (a.a.)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
	Similarity (%)	68.7	73.2		50.7	7.17	0.09	70.1	69.6	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	Identity (%)	45.8	35.9		23.6	38.3	50.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
(command)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
	db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	sp:FHUC_BACSU	pir:D70660	pir:E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		sp:SYD_MYCLE	sp:Y0BQ_MYCTU	sp:AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
•	Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740569	1741219	1741313
	SEQ NO. (a.a.)	5294	5295	5296	5297	5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	5310
	SEQ NO. (DNA)	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

Table 1 (continued)

		_																		
	Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	histidyl-tRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
İ	Matched length (a.a.)		371		116	462		598	421	211	175		128		760	185	49	558	332	
	Similarity (%)		88.1		9'22	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	6.09	57.2	
	Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		6.66	99.5	98.0	30.7	25.9	
ומחום ו (כסווווומכת)	Homologous gene		Streptomyces coelicolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 slfA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium glutamicum ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
	db Match		gp:SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOLI		prf:2423362A	sp:SYH_STAAU	gp:CJ11168X3_12 7	prf:2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	sp:Y0BG_MYCTU	sp:SECF_ECOLI	
	ORF (bp)	714	1113	126	495	1347	861	1686	1287	639	507	237	555	342	2280	555	150	1743	1209	630
	Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
	Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755748	1757228	1758797	1759707
	SEQ NO. (a.a.)	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	5321	5322	5323	5324	5325	5326	5327	5328	5329
	SEQ NO. (DNA)	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

Table 1 (continued)

															_			
Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acyltransferase	CDP-diacylglycerolglycerol-3- phosphate phosphatidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein			
Matched length (a.a.)	616	106	331	210	180	250	283	111	170	414	295	78	194	647	400			
Similarity (%)	52.0	66.0	81.9	74.3	63.3	78.4	68.6	61.3	61.2	49.3	8′29	78.0	78.4	68.9	61.8			
Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3			
Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN			
db Match	prf:2313285A	sp:Y0BD_MYCLE	sp:RUVB_ECOLI	sp:RUVA_MYCLE	sp:RUVC_ECOL!	sp:YEBC_ECOLI	sp:TESB_ECOLI	gp:SC10A5_9	pir:H70570	sp:GPI3_YEAST	gp:SCL2_16	pir.C70571	pir:D70571	sp:SYT2_BACSU	sp:YWBN_BACSU	-		
ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	657	099	2058	1206	564	546	735
Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1766442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
Initial (nt)	1760734	1761367	1762498	1763134	1763839	1764742	1765860	1765969	1766948	1768030	1768996	1769678	1770340	1772384	1773863	1773881	1774438	1775191
SEQ NO. (a.a.)	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343	5344	5345	5346	5347
SEQ NO. (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847
						-												

Table 1 (continued)

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
1848	5348	1777269	1777646	378						
1849	5349	1777444	1778037	594		-				
1850	5350	1779508	1778102	1407						
1851	5351	1780168	1779554	615						
1852	5352	1780905	1780507	399						
1853	5353	1781585	1781019	267	sp:PUAC_STRLP	Streptomyces anulatus pac	36.3	64.2	190	puromycin N-acetyltransferase
1854	5354	1781705	1782790	1086						
1855	5355	1783281	1784381	1101						
1856	5356	1784080	1783382	669						
1857	5357	1785473	1782894	2580						
1858	5358	1786844	1785732	1113						
1859	5359	1788829	1786907	1923						
1860	5360	1789080	1789562	483						
1861	5361	1789580	1789768	189						
1862	5362	1789746	1790057	312						
1863	5363	1790889	1790461	429						
1864	5364	1791842	1792438	597	sp:AFUC_ACTPL	Actinobacillus pleuropneumoniae afuC	28.7	28.7	202	ferric transport ATP-binding protein
1865	5365	1792428	1793426	666						
1866	5366	1793654	1793496	159						
1867	5367	1793714	1794820	1107						
1868	5368	1795202	1795621	420						
1869	5369	1795591	1796181	591	gp:AF088896_20	Zymomonas mobilis dfp	27.1	66.7	129	pantothenate metabolism flavoprotein
1870	5370	1796186	1797049	864						
1871	5371	1797350	1797769	420						

Table 1 (continued)

Function																			transposon TN21 resolvase			protein-tyrosine phosphatase		
Matched length (a.a.)																			186			164		
Similarity (%)																			78.0			51.8		
Identity (%)																			51.1			29.3		
Homologous gene																			Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
db Match																			sp:TNP2_ECOLI			sp:PVH1_YEAST		
ORF (bp)	120	735	225	894	156	474	753	423	687	429	465	237	681	096	480	681	285	375	612	1005	375	477	726	423
Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
Initial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
SEQ NO. (a.a.)	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	2382
SEQ NO. (DNA)	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

Table 1 (continued)

Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
Matched length (a.a.)	216									545					166	298	101			622		381
Similarity (%)	65.7									55.2					75.0	92.6	84.2			50.6		64.3
Identity (%)	34.3									22.6					63.0	67.8	72.3			24.0		31.8
Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB8 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir.S60890	pir.S60889			sp:RECJ_ERWCH		pir.T13302
ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836675
SEQ NO. (a.a.)	5396	5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
SEQ NO. (DNA)	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

Table 1 (continued)

Similarity Matched Function (%) (a.a.)				44.7 620 helicase		64.2 109 phage N15 protein gp57										49.8 422 actin binding protein with SH3 domains					52.5 347 ATP/GTP binding protein	_	
				22.1 44.		36.7 64.					_					28.7 49					23.6 52		30.2 61.0
				Mycoplasma pneumoniae ATCC 29342 yb95		Bacteriophage N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					Streptomyces coelicolor SC5C7.14		Escherichia coli K12 clpA
מם ואומוכנו				sp:Y018_MYCPN		pir.T13144										gp:SPAPJ760_2					gp:SC5C7_14		SP.CLPA ECOLI
(pp)	3789	447	534	1839	375	336	366	618	537	228	862	186	372	438	9/5	1221	852	1395	594	180	1257	1854	1965
(nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
(nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	1858763
(a.a.)	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	5438	5439	5440
NO.	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940

Г	I		- 1							\neg						T	I	I				
	Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase		-			type II 5-cytosoine methyltransferase	type II restriction endonuclease	-		hypothetical protein	
	Matched length (a.a.)					693					224	208					363	358			504	
	Similarity (%)					45.9					47.8	61.5					2.66	2.66			45.8	
	Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52	-				Corynebacterium glutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cgIIR		-	Streptomyces coelicolor A3(2) SC1A2.16c	
	db Match					sp:PCRA_STAAU					gp:SCH17_7	prf:2514444Y					prf:2403350A	pir.A55225			gp:SC1A2_16	
	ORF (bp)	474	156	324	312	2355	258	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
	Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
	Initial (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	1878312	1879412	1883990	1884936	1885230	1887405
	SEQ NO. (a.a.)	5441	5442	5443	5444	5445	5446	5447	5448	5449	5450	5451	5452	5453	5454	5455	5456	5457	5458	5459	5460	5461
	SEQ NO. (DNA)	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961

Terminal ORF (nt) ORF (nt) Homologous gene (qs) Identity (lept) (qs) <th></th> <th>Г</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Motobod</th> <th></th>		Г							Motobod	
351 gp.AE001973_4 Deinococcus radiodurans 46.7 70.0 90 9 864 pir.T13226 Lactobacillus phage phi-gle 33.1 56.4 163 1330 Rort232 2.7 47.9 537 1260 Por.AF188935_16 Bacillus anthracis pxO2-16 20.7 47.9 537 1261 Por.AF188935_16 Bacillus anthracis pxO2-16 20.7 47.9 537 1178 Por.AF188935_16 Bacillus anthracis pxO2-16 20.7 47.9 537 17.4 1178 Por.AF18 Por.AF18 Por.AF18 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 100.4 1	Initial Te (nt)		rminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
864 pir.T13226 Lactobacillus phage phi-gle 33.1 56.4 163 330 Rort232 Rort232 20.7 47.9 53.7 1 1680 gp.AF188935_16 Bacillus anthracis pXO2·16 20.7 47.9 53.7 1 1293 1 1293 C. 47.9 53.7 1 1 1293 C. 2493 C. 47.9 53.7 1 1 1293 C. 2493 C. 47.9 53.7 1 1 1785 Sp.CLPB_ECOLI Escherichia coli cipB 25.3 52.5 72.4 1 173 C. 113 C. 12.9 C. 12.9 C. 12.9 C. 12.9 1 173 C. 138 C. 138 C. 138 C. 13.0 C. 13.0 1 174 C. 138 C. 138 C. 13.0 C. 13.0 C. 13.0 1 175 C. 138 C. 139 C. 139 C. 139 C. 139 C. 139 1 1008 C. 138 C. 139 1 1008 </td <td>1888038 18</td> <td>~~</td> <td>387688</td> <td>1</td> <td>gp:AE001973_4</td> <td>Deinococcus radiodurans DR1258</td> <td>46.7</td> <td>70.0</td> <td>06</td> <td>SNF2/Rad54 helicase-related protein</td>	1888038 18	~~	387688	1	gp:AE001973_4	Deinococcus radiodurans DR1258	46.7	70.0	06	SNF2/Rad54 helicase-related protein
330 and another acid packed by APT 188935_16 Bacillus anthracis pXO2-16 20.7 47.9 537 1 1206 and a seperate packed by ADS-16 20.7 47.9 537 1 1293 and a seperate packed by ADS-16 20.7 47.9 537 1 1293 and a seperate packed by ADS-16 25.3 52.5 724 2 1785 sp.CLPB_ECOLI Escherichia coli clpB 25.3 52.5 724 2 1713 and a seperate packed by ADS-16 and a separate packed by ADS-16 a	5463 1889094 1		888231	-	pir.T13226	Lactobacillus phage phi-gle Rorf232	33.1	56.4	163	hypothetical protein
1680 gp.AF188935_16 Bacillus anthracis pXO2·16 20.7 47.9 537 1206 1208 1208 1208 1208 1208 1208 1208 1208 1209<	5464 1889530	Ľ.	1889859	330						
1206 1206 1209 1293 1293 1293 1293 1293 1293 1293 1293 1293 1293 1293 1294	5465 1891707	└	1890028			Bacillus anthracis pXO2-16	20.7	47.9	537	hypothetical protein
1293 Carbara and a coli cipB 25.3 52.5 724 1785 Sp.CLPB_ECOLI Escherichia coli cipB 25.3 52.5 724 621 Carbara and and and and and and and and and an	5466 1893037		1891832	1206						
2493 Eccherichia coli clpB 25.3 52.5 724 1785 Sp:CLPB_ECOLI Escherichia coli clpB 25.3 52.5 724 621 1113 11 11 11 11 11 11 12<	5467 1894680	ļ	1893388	1293						
1785 sp.CLPB_ECOLI Escherichia coli clpB 25.3 52.5 724 621 <td< td=""><td>5468 1897231</td><td>Ь—</td><td>1894739</td><td>2493</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5468 1897231	Ь—	1894739	2493						
621 621 621 1113 846 600 600 600 714 1004 879 Momo sapiens numA 20.1 49.1 1004 1251 Homo sapiens numA 20.1 49.1 1004 600 Momo sapiens numA 20.1 49.1 1004 1251 Momo sapiens numA 20.1 49.1 1004 696 Momo sapiens numA 20.1 49.1 1004 1008 Momo sapiens numA 20.1 <td< td=""><td>5469 1899158</td><td>+</td><td>1897374</td><td></td><td>sp:CLPB_ECOLI</td><td>Escherichia coli clpB</td><td>25.3</td><td>52.5</td><td>724</td><td>endopeptidase Clp ATP-binding chain B</td></td<>	5469 1899158	+	1897374		sp:CLPB_ECOLI	Escherichia coli clpB	25.3	52.5	724	endopeptidase Clp ATP-binding chain B
1113 1113 846 600 981 714 1008 20.1 49.1 1004 1251 49.1 1004 1008 1008 1008 1008 1488 1488 1509 1009 1008 1509 1450 1488 </td <td>5470 1899853</td> <td></td> <td>1899233</td> <td>621</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	5470 1899853		1899233	621						
1901066 846 981 981 981 981 981 981 981 982 982 983 <	5471 1900916		1899804	1113						
1902955 981 981 981 981 981 981 981 981 982 982 983 984 <	5472 1901911		1901066	846						
1902005 879 Homo sapiens numA 20.1 49.1 1004 1903225 198 Homo sapiens numA 20.1 49.1 1004 1905973 600 Modebed 1251 Modebed 1251 Modebed	5473 1901975		1902955	981						
1903225 198 Homo sapiens numA 20.1 49.1 1004 1903113 2766 pir.S23647 Homo sapiens numA 20.1 49.1 1004 1905973 600 Control of the sapiens numA Cont	5474 1902883		1902005	879						
1903113 2766 pir.S23647 Homo sapiens numA 20.1 49.1 1004 1905973 600 Control of the control of t	5475 1903028		1903225	198						
1905973 1906664 1907965 1908785 1909501 1910642 1912333 1913973	5476 1905878		1903113	2766	pir:S23647	Homo sapiens numA	20.1	49.1	1004	nuclear mitotic apparatus protein
1906664 1907965 1908785 1909501 1910642 1912333 1913973	5477 1906572		<u></u>	009						
1907965 1908785 1909501 1910642 1912333 1913973	5478 1907914		1906664	1251						
1909501 1909501 1910642 1912333 1913973	5479 1908660			969						
1910642 1912333 1913973 1914725	5480 1909498			714						
1910642 1912333 1913973 1914725	5481 1910508			1008						
1912333 1913973 1914725	5482 1912300			1659						
1913973	5483 1913820	1		1488						
1914725	5484 1914371		1913973	399						
	5485 1916233			1509						

				Т														1		\neg				\neg
Function										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
Matched length (a.a.)										1408			61					114			328			
Similarity (%)										49.2			9.39	****				58.8			54.6			
Identity (%)										23.2			42.6					38.6			27.1			
Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
db Match										pir.T03099			sp:MTE1_ECOLI					pir.H70638	•		sp:Y137_METJA			
ORF (bp)	360	222	312	645	759	549	930	306	357	4464	579	945	171	375	1821	201	468	381	507	837	942	624	210	534
Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522	1934971	1936849	1937411	1937486
Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
SEQ NO. (a.a.)	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	5500	5501	5502	5503	5504	5505	5506	5507	5508	5509
SEQ NO. (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Function										rotein				major secreted protein PS1 protein precursor			DNA topoisomerase III					major secreted protein PS1 protein precursor	
										surface protein				major sec precursor			DNA topo					major sec precursor	
Matched length (a.a.)							_			304				270			597					344	
Similarity (%)										44.1				54.4			50.9					54.7	
Identity (%)										23.0				30.7			23.8					29.7	
Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
db Match										prf:2509434A				sp:CSP1_CORGL			sp:TOP3_ECOLI					sp:CSP1_CORGL	
ORF (bp)	1191	534	588	444	753	303	216	608	588	828	297	381	429	1581	2430	298	2277	2085	891	432	744	1887	291
Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114	1963139
Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114	1963000	1963429
SEQ NO. (a.a.)	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522	5523	5524	5525	5526	5527	5528	5529	5530	5531	5532
SEQ NO. (DNA)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

Table 1 (continued)

						(
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2033	5533	1964743	1963514	1230		A Maria Committee of the Committee of th				
2034	5534	1965902	1964727	1176						
2035	5535	1966267	1965911	357				_		
2036	5536	1966301	1966984	684	sp:NUC_STAAU	Staphylococcus aureus nuc	30.4	57.7	227	thermonuclease
2037	5537	1967435	1967289	147						
2038	5538	1967604	1968167	564						
2039	5539	1968264	1969715	1452						
2040	5540	1969745	1970203	459						
2041	5541	1970254	1971474	1221						
2042	5542	1971672	1973090	1419						
2043	5543	1973147	1973737	591						
2044	5544	1973809	1974204	396						
2045	5545	1974267	1974503	237						
2046	5546	1975171	1975794	624	prf:2313347B	Shewanella sp. ssb	24.9	59.1	225	single stranded DNA-binding protein
2047	5547	1975916	1976494	579						
2048	5548	1976522	1976983	462						
2049	5549	1977043	1977549	202						
2050	5550	1977742	1978329	588						
2051	5551	1978389	1978721	333						
2052	5552	1978660	1979217	558						
2053	5553	1979239	1979808	029						
2054	5554	1979974	1980885	912	sp:S24D_ANOGA	Anopheles gambiae AgSP24D	25.7	52.6	249	serine protease
2055	5555	1980965	1981657	693						
2056	5556	1981663	1982028	366						
2057	5557	1982071	1982817	747						
2058	5558	1982091	1981912	180						

Table 1 (continued)

		_																		
Function								integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
Matched length (a.a.)								406	124	117		31	43	270					153	223
Similarity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
Identity (%)			-					29.6	83.9	6. <u>0</u> 7		80.7	74.4	31.1					25.0	28.7
Homologous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL2005 ISaB1	Brevibacterium lactofermentum CGL2005 ISaB1		Brevibacterium lactofermentum CGL 2005 ISaB1	Corynebacterium glutamicum orf1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
db Match								sp:VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	pir.S60889	gp:SCJ11_12					sp:CSP1_CORGL	sp:VINT_BPML5
ORF (bp)	363	273	264	234	342	273	303	1149	390	417	207	114	135	828	354	891	432	744	1584	687
Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
SEQ NO. (a.a.)	5559	5560	5561	5562	5563	5564	5999	5566	5567	5568	5569	5570	5571	5572	5573	5574	5575	5576	5577	5578
SEQ NO.	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078

Table 1 (continued)

| Function | sodium-dependent transporter | hypothetical protein | | | riboflavin biosynthesis protein | potential membrane protein

 | methionine sulfoxide reductase | | hypothetical protein | hypothetical protein
 | ribonuclease D
 | 1-deoxy-D-xylulose-5-phosphate synthase | RNA methyltransferase | | hypothetical protein
 | deoxyuridine 5'-triphosphate
nucleotidohydrolase | hypothetical protein | |
|-------------------|--|--|---|--|---
--
--|--
--|---|--
--
--|---|--|--|--
--|--|--|
| length
(a.a.) | 88 | 92 | | | 233 | 384

 | 126 | | 232 | 201
 | 371
 | 618 | 472 | | 268
 | 140 | 150 | |
| Similarity
(%) | 76.1 | 81.5 | | | 64.4 | 71.9

 | 67.5 | | 77.2 | 78.6
 | 52.8
 | 78.5 | 52.3 | | 62.7
 | 82.1 | 7.07 | |
| Identity
(%) | 39.8 | 48.9 | | | 33.5 | 42.5

 | 41.3 | | 55.2 | 55.7
 | 25.9
 | 25.3 | 25.4 | | 38.1
 | 55.0 | 46.0 | |
| Homologous gene | Helicobacter pylori 26695
HP0214 | Bacillus subtilis yxaA | | | Mycobacterium tuberculosis
H37Rv Rv2671 ribD | Mycobacterium tuberculosis
H37Rv Rv2673

 | Streptococcus gordonii msrA | | Mycobacterium tuberculosis
H37Rv Rv2676c | Mycobacterium tuberculosis
H37Rv Rv2680
 | Haemophilus influenzae Rd
KW20 HI0390 rnd
 | Streptomyces sp. CL190 dxs | Thermotoga maritima MSB8
TM1094 | | Mycobacterium tuberculosis
H37Rv Rv2696c
 | Streptomyces coelicolor A3(2)
SC2E9.09 dut | Mycobacterium tuberculosis
H37Rv Rv2698 | |
| db Match | pir.F64546 | sp:YXAA_BACSU | | - | pir:C70968 | pir.E70968

 | gp:AF128264_2 | | pir:H70968 | pir.C70528
 | sp:RND_HAEIN
 | gp:AB026631_1 | pir.E72298 | | pir.C70530
 | sp:DUT_STRCO | pir.E70530 | |
| ORF
(bp) | 306 | 432 | 345 | 336 | 969 | 1254

 | 408 | 426 | 969 | 624
 | 1263
 | 1908 | 1236 | 282 | 861
 | 447 | 549 | 207 |
| Terminal
(nt) | 1995783 | 1996537 | 1997112 | 1997503 | 1998240 | 1999542

 | 1999949 | 1999707 | 2000521 | 2002112
 | 2003334
 | 2003402 | 2005462 | 2006979 | 2006777
 | 2007738 | 2008798 | 2008876 |
| Initial
(nt) | 1996088 | 1996106 | 1996768 | 1997168 | 1997545 | 1998289

 | 1999542 | 2000132 | 2001216 | 2001489
 | 2002072
 | 2005309 | 2006697 | 2006698 | 2007637
 | 2008184 | 2008250 | 2009082 |
| (a.a.) | 5579 | 5580 | 5581 | 5582 | 5583 | 5584

 | 5585 | 5586 | 5587 | 5588
 | 5589
 | 5590 | 5591 | 5592 | 5593
 | 5594 | 5595 | 5596 |
| NO. | 2079 | 2080 | 2081 | 2082 | 2083 | 2084

 | 2085 | 2086 | 2087 | 2088
 | 2089
 | 2090 | 2091 | 2092 | 2093
 | 2094 | 2095 | 2096 |
| | SEC Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (bp) db Match Homologous gene (%) (%) (a.a.) | Initial Terminal ORF db Match Homologous gene Identity Similarity Ingth In | SECULATION (a.a.) Initial (a.a.) Terminal (h) ORF (bp) db Match (bp) Homologous gene (mt) Identity (similarity length (length (le | SECULATION Initial (a.a.) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Initial (% | SECULATION Initial (a.a.) Terminal (bp) ORF (bp) db Match (bp) Homologous gene (bc) Identity (bc) Similarity (bc) Incompanient (bc) | SEAL (nt) Initial (a.a.) Terminal (bp) ORF (b) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Incomplete (%) <td>SEAL (nt) Initial (a.a.) Terminal (pp) ORF (pl) db Match (pp) Homologous gene (pl) Identity (pl) Similarity (pl) Incompleted (pl) 5579 1996088 1995783 306 pir.F64546 Helicobacter pylori 26695 39.8 76.1 88 5580 1996106 1996537 432 sp:YXAA_BACSU Bacillus subtilis yxaA 48.9 81.5 92 5581 1996768 1997102 345 mycobacterium tuberculosis 33.5 64.4 233 5582 1997545 1998240 696 pir.C70968 Mycobacterium tuberculosis 33.5 64.4 233 5584 1998289 1999542 1254 pir.E70968 Mycobacterium tuberculosis 42.5 71.9 384</td> <td>SEAL Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Image: Mach (%) Identity (%)</td> <td>SEAS Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Identity /td> <td>SEAS Initial Terminal (nt) ORF (pp) db Match (pp) Homologous gene (po) Identity (pp) Image: Pp (pp) Identity (pp) Image: Pp (pp) Identity (pp)</td> <td>SEAR Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (gb) Identity (gb)<td>DEAM (nt) Terminal (nt) ORF (nt) db Match (nt) Homologous gene (%) Identity (%) Similarity (%) Hencipal (%) (%)</td><td> Terminal Terminal ORF Ab Match Homologous gene (%) (</td><td>DECAL (nt) (Int) (Ph) (Ab Match (Ab Match (Bas)) Homologous gene (Ph) Identity (Similarity (Bas)) (As Jan) (Ab Match (Bas)) Homologous gene (Bas) (Ab Match (Bas)) (Ab Match (Bas)) Homologous gene (Bas) (Ab Match (Bas)) (Ab Match (Bas))</td><td> September Initial Terminal ORF db Match Homologous gene (%) (%) (math Initial Initial Initial (mt) (</td><td>Name of the color of</td><td> Name</td><td> Fig. 2016 Terminal ORF GP Match Homologous gene Identity Similarity Similarity Similarity Similarity Similarity Signature Identity Signature Identity Signature Identity Signature Identity Ide</td></td> | SEAL (nt) Initial (a.a.) Terminal (pp) ORF (pl) db Match (pp) Homologous gene (pl) Identity (pl) Similarity (pl) Incompleted (pl) 5579 1996088 1995783 306 pir.F64546 Helicobacter pylori 26695 39.8 76.1 88 5580 1996106 1996537 432 sp:YXAA_BACSU Bacillus subtilis yxaA 48.9 81.5 92 5581 1996768 1997102 345 mycobacterium tuberculosis 33.5 64.4 233 5582 1997545 1998240 696 pir.C70968 Mycobacterium tuberculosis 33.5 64.4 233 5584 1998289 1999542 1254 pir.E70968 Mycobacterium tuberculosis 42.5 71.9 384 | SEAL Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Image: Mach (%) Identity (%) | SEAS Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Identity | SEAS Initial Terminal (nt) ORF (pp) db Match (pp) Homologous gene (po) Identity (pp) Image: Pp (pp) Identity (pp) Image: Pp (pp) Identity (pp) | SEAR Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (gb) Identity (gb) <td>DEAM (nt) Terminal (nt) ORF (nt) db Match (nt) Homologous gene (%) Identity (%) Similarity (%) Hencipal (%) (%)</td> <td> Terminal Terminal ORF Ab Match Homologous gene (%) (</td> <td>DECAL (nt) (Int) (Ph) (Ab Match (Ab Match (Bas)) Homologous gene (Ph) Identity (Similarity (Bas)) (As Jan) (Ab Match (Bas)) Homologous gene (Bas) (Ab Match (Bas)) (Ab Match (Bas)) Homologous gene (Bas) (Ab Match (Bas)) (Ab Match (Bas))</td> <td> September Initial Terminal ORF db Match Homologous gene (%) (%) (math Initial Initial Initial (mt) (</td> <td>Name of the color of</td> <td> Name</td> <td> Fig. 2016 Terminal ORF GP Match Homologous gene Identity Similarity Similarity Similarity Similarity Similarity Signature Identity Signature Identity Signature Identity Signature Identity Ide</td> | DEAM (nt) Terminal (nt) ORF (nt) db Match (nt) Homologous gene (%) Identity (%) Similarity (%) Hencipal (%) (%) | Terminal Terminal ORF Ab Match Homologous gene (%) (| DECAL (nt) (Int) (Ph) (Ab Match (Ab Match (Bas)) Homologous gene (Ph) Identity (Similarity (Bas)) (As Jan) (Ab Match (Bas)) Homologous gene (Bas) (Ab Match (Bas)) (Ab Match (Bas)) Homologous gene (Bas) (Ab Match (Bas)) (Ab Match (Bas)) | September Initial Terminal ORF db Match Homologous gene (%) (%) (math Initial Initial Initial (mt) (| Name of the color of | Name | Fig. 2016 Terminal ORF GP Match Homologous gene Identity Similarity Similarity Similarity Similarity Similarity Signature Identity Signature Identity Signature Identity Signature Identity Ide |

_
ਰੂ
a)
=
=
_
•
_
_
\sim
()
8
<u>ဗ</u>
e 1 (c
e 1 (
_
e 1 (

hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
100	198	248	200	422		578	127	9/	523	144	228	77	329		305	661
81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	9.66	64.0	99.1		79.0	50.7
58.0	38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dtxR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium Iactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
pir.F70530	sp:SUHB_ECOLI	sp:PPGK_MYCTU	prf:2204286A	sp:YRKO_BACSU		sp:Y065_MYCTU	pir:H70531	pir.G70531	gp:SCH5_8	prf.2204286C	pir.140339	GP:AF010134_1	sp.GALE_BRELA		pir.E70532	sp:MTR4_YEAST
291	816	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	2022266	2022546	2022959	2025270	2025423	2026494
5597	5598	5599	2600	5601	5602	5603	5604	5605	5606	5607	5608	5609	5610	5611	5612	5613
2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113
•	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0	5597 2009570 2009724 816 sp:SUHB_ECOLI Escherichia coli K12 suhB 58.0 81.0 100 5598 2010539 2009724 816 sp:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198	5597 2009570 2009724 816 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 2013356 1494 prf.2204286A Corynebacterium glutamicum 98.0 98.6 500	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 2013356 1494 prf.2204286A corynebacterium glutamicum 98.0 98.6 500 5601 2015496 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 2013356 1494 prf.2204286A corynebacterium glutamicum 98.0 98.6 500 5601 2015496 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015585 537	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 2013356 1494 prf.2204286A SigA 98.0 98.6 500 5601 2015496 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015585 537 Mycobacterium tuberculosis 61.3 80.8 578 5603 2017966 2016257 1710 sp.Y065_MYCTU Hy37Rv Rv2917 80.8 578	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp:PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 2013356 1494 prf.2204286A Corynebacterium glutamicum 98.0 98.6 500 5601 2015496 2014162 1335 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015585 537 Mycobacterium tuberculosis 61.3 80.8 578 5604 201816 436 pir.H70531 Mycobacterium tuberculosis 61.3 80.8 578 5604 2018119 2018754 636 pir.H70531 Mycobacterium tuberculosis 32.3 59.1 127	5597 2009570 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 2013356 1494 prf.2204286A sigA Gorynebacterium glutamicum 98.0 98.6 500 5601 2015496 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015865 537 Mycobacterium tuberculosis 61.3 80.8 578 5604 2018104 636 pir.H70531 Mycobacterium tuberculosis 65.8 85.1 127 5605 2018202 2017966 237 pir.H70531 Mycobacterium tuberculosis 65.8 85.5 76	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5600 2010556 2011382 828 sp:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5601 2010562 2011382 828 sp:PPGK_MYCTU Mycobacterium glutamicum 98.0 98.6 500 5602 2016121 201586 537 AM Mycobacterium tuberculosis 61.3 80.8 578 5604 20181796 2016257 1710 sp:YRKO_BACK Mycobacterium tuberculosis 32.3 59.1 127 5604 2018202 2017966 237 pir.H70531 Mycobacterium tuberculosis 65.8 85.5 76 5606 2018746<	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp::PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201335 1494 prf.2204286A SigA 98.6 500 5601 2016121 2015685 537 Corynebacterium glutamicum 98.0 98.6 500 5602 2016121 2015685 537 Mycobacterium tuberculosis 61.3 80.8 578 5603 2017966 2016257 1710 sp::Y065_MYCTU Mycobacterium tuberculosis 65.8 85.5 76 5604 2018102 2017966 237 pir.H70531 Mycobacterium tuberculosis 65.8 85.5 76 5607 201874 2020276 1533 gp::SCH5_8 <t< td=""><td>5597 2009570 2019280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010553 2011382 828 sp.:PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 2013356 1494 prt.2204286A Corynebacterium glutamicum 98.0 98.6 500 5601 2011863 201346 1494 prt.2204286A Corynebacterium glutamicum 98.0 98.6 500 5602 2011863 2014162 1335 sp.*YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 201621 201586 537 Mycobacterium tuberculosis 61.3 80.8 578 5604 201876 636 pir.H70531 Mycobacterium tuberculosis 65.8 85.6 76 5605 2018744 2020276 153</td><td>5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009570 2009524 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010553 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011663 201336 1494 prt.2204286A Corynebacterium glutamicum 98.0 98.6 500 5601 2016121 201566 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 201566 537 I710 sp.YRKO_BACSU Mycobacterium tuberculosis 61.3 80.8 578 5603 2016221 1710 sp.YRKO_BACSU Mycobacterium tuberculosis 65.8 85.7 76 5604 2018202 201874 636 pir.H70531 Mycobacterium tuberculosis 65.8 85.1 127 <</td><td>5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010553 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201336 1494 prt.2204286A Gorynebacterium tuberculosis 54.4 80.2 248 5601 2016121 2015486 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2016257 1710 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2016121 2016257 1710 sp.YRKO_BACSU Mycobacterium tuberculosis 65.8 65.8 578 5604 2018764 636 pir.H70531 Mycobacterium tuberculosis 65.8 65.0 65.8 65.0 76 <!--</td--><td>5597 2009570 2091 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5598 2010539 201382 82 8p.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201356 1494 prt.2204286A Grynebacterium glutamicum 98.0 98.6 500 5601 2015496 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015865 537 PryCKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2016121 2015866 537 Mycobacterium tuberculosis 61.3 80.8 57.8 5604 201874 636 pir.H70531 Mycobacterium tuberculosis 65.8 85.5 76 5608 201874 432 pir.G70531 Mycobacteriu</td><td>5597 2009570 2009280 291 pir.F70630 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010559 2010559 201036 81.6 sp:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 188 5599 2010555 2011382 828 sp:PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201336 1494 prt.2204286A sigh Mycobacterium tuberculosis 54.4 80.2 248 5601 2011862 2014162 1335 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2011866 20146267 1710 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2017966 2016267 1710 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2017966 237 pir.H70531 Mycobacterium tuberculosis 61.3 80.8 57.8</td></td></t<>	5597 2009570 2019280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010553 2011382 828 sp.:PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 2013356 1494 prt.2204286A Corynebacterium glutamicum 98.0 98.6 500 5601 2011863 201346 1494 prt.2204286A Corynebacterium glutamicum 98.0 98.6 500 5602 2011863 2014162 1335 sp.*YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 201621 201586 537 Mycobacterium tuberculosis 61.3 80.8 578 5604 201876 636 pir.H70531 Mycobacterium tuberculosis 65.8 85.6 76 5605 2018744 2020276 153	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009570 2009524 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010553 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011663 201336 1494 prt.2204286A Corynebacterium glutamicum 98.0 98.6 500 5601 2016121 201566 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 201566 537 I710 sp.YRKO_BACSU Mycobacterium tuberculosis 61.3 80.8 578 5603 2016221 1710 sp.YRKO_BACSU Mycobacterium tuberculosis 65.8 85.7 76 5604 2018202 201874 636 pir.H70531 Mycobacterium tuberculosis 65.8 85.1 127 <	5597 2009570 2009280 291 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010553 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5599 2010555 2011382 828 sp.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201336 1494 prt.2204286A Gorynebacterium tuberculosis 54.4 80.2 248 5601 2016121 2015486 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2016257 1710 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2016121 2016257 1710 sp.YRKO_BACSU Mycobacterium tuberculosis 65.8 65.8 578 5604 2018764 636 pir.H70531 Mycobacterium tuberculosis 65.8 65.0 65.8 65.0 76 </td <td>5597 2009570 2091 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5598 2010539 201382 82 8p.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201356 1494 prt.2204286A Grynebacterium glutamicum 98.0 98.6 500 5601 2015496 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015865 537 PryCKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2016121 2015866 537 Mycobacterium tuberculosis 61.3 80.8 57.8 5604 201874 636 pir.H70531 Mycobacterium tuberculosis 65.8 85.5 76 5608 201874 432 pir.G70531 Mycobacteriu</td> <td>5597 2009570 2009280 291 pir.F70630 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010559 2010559 201036 81.6 sp:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 188 5599 2010555 2011382 828 sp:PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201336 1494 prt.2204286A sigh Mycobacterium tuberculosis 54.4 80.2 248 5601 2011862 2014162 1335 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2011866 20146267 1710 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2017966 2016267 1710 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2017966 237 pir.H70531 Mycobacterium tuberculosis 61.3 80.8 57.8</td>	5597 2009570 2091 pir.F70530 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010539 2009724 816 sp.SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 198 5598 2010539 201382 82 8p.PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201356 1494 prt.2204286A Grynebacterium glutamicum 98.0 98.6 500 5601 2015496 2014162 1335 sp.YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2016121 2015865 537 PryCKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2016121 2015866 537 Mycobacterium tuberculosis 61.3 80.8 57.8 5604 201874 636 pir.H70531 Mycobacterium tuberculosis 65.8 85.5 76 5608 201874 432 pir.G70531 Mycobacteriu	5597 2009570 2009280 291 pir.F70630 Mycobacterium tuberculosis 58.0 81.0 100 5598 2010559 2010559 201036 81.6 sp:SUHB_ECOLI Escherichia coli K12 suhB 38.4 68.2 188 5599 2010555 2011382 828 sp:PPGK_MYCTU Mycobacterium tuberculosis 54.4 80.2 248 5600 2011863 201336 1494 prt.2204286A sigh Mycobacterium tuberculosis 54.4 80.2 248 5601 2011862 2014162 1335 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5602 2011866 20146267 1710 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2017966 2016267 1710 sp:YRKO_BACSU Bacillus subtilis yrkO 23.9 51.4 422 5603 2017966 237 pir.H70531 Mycobacterium tuberculosis 61.3 80.8 57.8

_	
continued	
<u>e</u> 1	
Tab Tab	

	Function	hydrogen peroxide-inducible genes activator		ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			diaminopimelate epimerase
	Matched length (a.a.)	299		1298	145		222	245	320	592	262	345	549	81		407	419			269
	Similarity (%)	65.6	·	76.2	86.2		71.6	67.8	.929	64.0	62.6	55.7	9.69	71.6		70.5	80.0			64.7
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
(Homologous gene	Escherichia coli oxyR	,	Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
	db Match	sp:OXYR_ECOLI		sp:HRPA_ECOLI	gp:SCAJ4870_3		sp:LEXA_BACSU	sp:GATR_ECOLI	gp:SCE22_14	sp:PT1_BACST	sp:GLPR_ECOLI	sp:K1PF_RHOCA	sp:PTFB_ECOLI	sp:PTHP_BACST		Sp:PYRP_BACCL	gp:AF145049_8			sp:DAPF_HAEIN
ĺ	ORF (bp)	981	1089	3906	450	420	969	777	096	1704	792	066	1836	267	285	1287	1458	786	537	831
	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	2051845
	Initial (nt)	2029177	2031365	2031478	2035880	2036409	2036812	2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	2052675
	SEQ NO. (a.a.)	5614	5615	5616	5617	5618	5619	5620	5621	5622	5623	5624	5625	5626	5627	5628	5629	5630	5631	5632
	SEQ NO. (DNA)	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

				_					5	ed to and							Вu	
	Function	tRNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
	Matched length (a.a.)	300		445			190	494	242	71	225	273	142	29		197	223	228
	Similarity (%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
,	Identity (%)	40.0	-	48.5			29.0	68.4	99.6	0.99	100.0	89.3	34.5	40.3		33.0	33.2	24.6
lable I (solullaca)	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp:MIAA_ECOLI		pir.B70506			pir.C70506	sp:Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	sp:GLUC_CORGL	sp:GLUD_CORGL	sp:RECX_MYCLE	pir:A70878		sp:BIOY_BACSH	sp:POTG_ECOLI	pir.F69742
	ORF (bp)	903	675	1359	1020	1023	699	1566	726	219	684	819	597	234	738	576	669	609
	Terminal (nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
	Initial (nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	2060414	2061629	2062441	2063894	2065627	2066404	2066566	2067168	2067866
	SEQ NO. (a.a.)	5633	5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644	5645	5646	5647	5648	5649
	SEQ NO. (DNA)	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149

Г					· · · · · · · · · · · · · · · · · · ·	 1			_				<u>-</u>						\neg
	Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
	Matched length (a.a.)	228	269	83	165	160	117	30		358	845	216	645	250			742	68	319
ĺ	Similarity (%)	78.5	89.6	78.3	68.5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
	Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	0.09		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
(Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP:T16I18.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spolIIE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glufamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
	db Match	pir.B60176	sp:35KD_MYCTU	pir:H70878	sp:CINA_STRPN	prf:2421334D	pir.T10688	gp:AF071810_1		prf:2119295D	sp:SP3E_BACSU	gp:SC4G6_14	sp:YOR4_CORGL	sp:YDAP_BRELA			prf:2217311A	pir.F69700	prf.2518365A
	ORF (bp)	069	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
	Terminal (nt)	2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
	Initial (nt)	2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066	2072905	2076056	2077024	2079275	2081136	2082115	2082368	2085190	2085702	2086826
	SEQ NO. (a.a.)	5650	5651	5652	5653	5654	5655	5656	5657	5658	5659	5660	5661	5662	5663	5664	5995	5666	2995
	SEQ NO. (DNA)	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167

Table 1 (continued)

	e e			<u> </u>													
Function	bifunctional protein (riboflavin kinase and FAD synthetase)	tRNA pseudouridine synthase B	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor A	translation initiation factor IF-2	hypothetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
Matched length (a.a.)	329	303	47	237	273	433	308	108	1103	83	352		165	534	337	292	552
Similarity (%)	79.0	61.7	73.0	62.5	68.9	78.8	70.8	70.4	62.9	66.3	71.0		65.5	6'09	69.4	69.2	81.3
Identity (%)	56.2	32.7	65.0	42.2	46.9	51.0	36.7	32.4	37.7	44.6	42.3		34.6	25.3	37.7	38.4	57.6
Homologous gene	Corynebacterium ammoniagenes ATCC 6872 ribF	Bacillus subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	Bacillus subtilis 168 rbfA	Stigmatella aurantiaca DW4 infB	Streptomyces coelicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Escherichia coli K12 dppB	Bacillus subtilis spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD
db Match	sp:RIBF_CORAM	sp:TRUB_BACSU	PIR:PC4007	gp:SC5A7_23	pir:B70885	pir.G70693	pir.H70693	sp:RBFA_BACSU	sp:IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU		pir.E70588	sp:DPPE_BACSU	sp:DPPB_ECOLI	prf:1709239C	pir:H70788
ORF (bp)	1023	891	228	651	804	1305	966	447	3012	336	966	1254	534	1602	924	666	1731
Terminal (nt)	2086919	2088863	2087954	2089218	2089861	2090751	2092051	2093055	2093712	2096844	2097380	2099815	2098412	2101841	2102946	2103973	2105703
Initial (nt)	2087941	2087973	2088181	2089868	2090664	2092055	2093046	2093501	2096723	2097179	2098375	2098562	2098945	2100240	2102023	2102975	2103973
SEQ NO.	5668	5669	5670	5671	5672	5673	5674	5675	5676	5677	5678	5679	5680	5681	5682	5683	5684
SEQ NO.		2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184

ſ																	ient		
	Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	penicillin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
	Matched length (a.a.)	578	243	37	342	237	488	151	338	466					252	930	216	424	360
	Similarity (%)	84.6	65.0	60.7	9.69	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58.1
•	Identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					47.2	27.3	44.0	29.5	24.4
(Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
	db Match	sp:SYP_MYCTU	gp:SCC30_5	sp:BCHD_RHOSH	prf:2503462AA	prf:2108318B	sp:YPLC_CLOPE	gp:SC5H1_10	pir.A70590	sp:GSHR_BURCE	·				sp:AMPM_ECOLI	prf:2224268A	prf:2518330B	prf:2518330A	gp:AE001863_70
	ORF (bp)	1764	735	759	1101	750	1422	006	1014	1395	942	474	357	729	789	1866	630	1149	957
	Terminal (nt)	2105801	2108386	2108389	2109155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
	Initial (nt)	2107564	2107652	2109147	2110255	2111183	2111238	2113616	2115761	2116916	2117956	2118607	2119139	2119628	2121147	2123161	2123848	2124996	2125089
	SEQ NO. (a.a.)	5685	5686	5687	5688	5689	2690	5691	5692	5693	5694	5695	9695	2695	9699	5699	5700	5701	5702
	SEQ NO.	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

																			_
Function	ABC transporter		hypothetical protein (gcpE protein)		hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphate reductoisomerase				ABC transporter ATP-binding protein	pyruvate formate-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
Matched length (a.a.)	225		359		405	147	312				245	356	94	294	185	109		280	254
Similarity (%)	71.1		73.8		73.6	43.0	42.0				75.1	78.0	74.5	56.5	84.3	43.1		76.8	83.5
Identity (%)	37.3		44.3		43.0	36.0	22.8				37.1	0.99	41.5	33.3	47.0	28.4		49.6	54.7
Homologous gene	Bacillus subtilis 168 yvrO		Escherichia coli K12 gcpE		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
db Match	prf:2420410P		sp:GCPE_ECOLI		pir:G70886	GSP:Y37145	sp:DXR_ECOLI				pir.B72334	sp:YS80_MYCTU	pir.A70801	sp:CDSA_PSEAE	sp:RRF_BACSU	prf:2510355C		sp:EFTS_STRCO	pir:A69699
ORF (bp)	069	162	1134	612	1212	645	1176	441	480	1578	855	1098	258	922	555	729	861	825	816
Terminal (nt)	2126753	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2131825	2133406	2134454	2136141	2136235	2137286	2137936	2139854	2139003	2140071
Initial (nt)	2126064	2127087	2128483	2128850	2129880	2130306	2131078	2131322	2131726	2133402	2134260	2135551	2135884	2137089	2137840	2138664	2138994	2139827	2140886
SEQ NO. (a.a.)	5703	5704	5705	5706	5707	5708	5709	5710	5711	5712	5713	5714	5715	5716	5717	5718	5719	5720	5721
SEQ NO. (DNA)	2203	2204	2205	2206	2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221

	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII	,	signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein
	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		111	225	376	62	251	437
	Similarity (%)	58.0	68.7	8.99	75.8	72.3	96.0	69.5		61.1	59.1		88.3	6.09	64.1	74.2	6.9/	56.8
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2
(Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H1059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
	db Match	sp:YS91_MYCTU	prf:2417318A	sp:YX27_MYCTU	sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp:RNH2_HAEIN		prf.2514288H	prf:2510361A		sp:RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1	sp.THIS_ECOLI	sp:THIG_ECOLI	prf:2417383A
	ORF (bp)	504	924	1182	1521	366	303	627	792	786	936	213	339	663	1080	195	780	1134
	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191
	Initial (nt)	2141257	2142686	2144066	2145586	2145941	2146566	2147192	2147231	2148046	2148231	2149571	2149972	2150335	2151039	2152135	2152334	2153058
	SEQ NO. (a.a.)	5722	5723	5724	5725	5726	5727	5728	5729	5730	5731	5732	5733	5734	5735	5736	5737	5738
	SEQ NO.	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238

Particologicus gene (%)	-
1 56.6 78.7 776 27.0 65.3 334 45.8 78.3 456 40.0 80.0 65 40.0 80.0 65 39.1 66.3 350 30.5 57.6 210 52.3 72.1 172 9 29.0 66.7 69 47.0 79.5 83 26.6 69.1 256 78.7 78.2 559 58.7 78.2 559 37.0 66.1 505	an Malcil
27.0 65.3 334 45.8 78.3 456 40.0 80.0 65 39.1 66.3 350 30.5 57.6 210 52.3 72.1 172 30.5 66.7 69 47.0 79.5 83 32.1 61.7 196 18 35.5 63.8 318 58.7 78.2 559 37.0 66.1 505	2274 sp:TEX_BORPE Bordetell tex
45.8 78.3 456 40.0 80.0 65 40.0 80.0 65 39.1 66.3 350 34.8 64.8 273 30.5 57.6 210 30.5 66.7 69 47.0 79.5 83 126.6 69.1 256 144.35.5 63.8 318 158.7 78.2 559 158.7 78.2 559	pir.A36940 Bacillus
39.1 66.3 350 39.1 66.3 350 34.8 64.8 273 30.5 57.6 210 30.5 67.6 210 32.1 61.7 196 32.1 61.7 196 32.1 61.7 196 32.1 61.7 196 32.1 61.7 196 32.1 61.7 196 32.1 61.7 196 33.1 61.7 196 33.1 66.1 569	1428 pir:H72105 CWL029 ybhl
(2) 39.1 66.3 350 34.8 64.8 273 34.8 64.8 273 52.3 72.1 172 32.1 66.7 69 47.0 79.5 83 47.0 79.5 83 mtrA 35.5 63.8 318 mtrA 35.5 63.8 318 37.0 66.1 505	prf.2108268A Spinacia
2 trmD 34.8 64.8 273 solor A3(2) 30.5 57.6 210 ae 52.3 72.1 172 199 jhp0839 29.0 66.7 69 rpsP 47.0 79.5 83 rpsP 32.1 61.7 196 actiae cylB 26.6 69.1 256 hii OT3 mtrA 35.5 63.8 318 fth 58.7 78.2 559 tfsY 37.0 66.1 505	sp:PCAB_PSEPU Pseudor
2 trmD 34.8 64.8 273 solor A3(2) 30.5 57.6 210 ae 52.3 72.1 172 199 jhp0839 29.0 66.7 69 rpsP 47.0 79.5 83 actiae cylB 26.6 69.1 256 hii OT3 mtrA 35.5 63.8 318 ffh 58.7 78.2 559 ffh 58.7 78.2 559	
2 trmD 34.8 64.8 273 color A3(2) 30.5 57.6 210 ae 52.3 72.1 172 lgg jhp0839 29.0 66.7 69 rpsP 47.0 79.5 83 extiae cylB 26.6 69.1 256 hii OT3 mtrA 35.5 63.8 318 ffh 58.7 78.2 559 ffh 58.7 66.1 505	
2 trmD 34.8 64.8 273 solor A3(2) 30.5 57.6 210 ae 52.3 72.1 172 199 jhp0839 29.0 66.7 69 rpsP 47.0 79.5 83 rpsP 47.0 79.5 83 actiae cylB 26.6 69.1 256 hii OT3 mtrA 35.5 63.8 318 ffh 58.7 78.2 559 ffth 37.0 66.1 505	
solor A3(2) 30.5 57.6 210 ae 52.3 72.1 172 J99 jhp0839 29.0 66.7 69 rpsP 47.0 79.5 83 rpsP 32.1 61.7 196 actiae cylB 26.6 69.1 256 hii OT3 mtrA 35.5 63.8 318 fth 58.7 78.2 559 fth 58.7 78.2 559	sp:TRMD_ECOLI Escheric
ae 52.3 72.1 172 J99 jhp0839 29.0 66.7 69 rpsP 47.0 79.5 83 actiae cylB 26.6 69.1 256 hii OT3 mtrA 35.5 63.8 318 ffh 58.7 78.2 559 ffr 58.7 78.2 559	gp:SCF81_27 Streptomy
29.0 66.7 69 47.0 79.5 83 32.1 61.7 196 26.6 69.1 256 35.5 63.8 318 58.7 78.2 559 37.0 66.1 505	sp:RIMM_MYCLE Mycobacterium lepr
47.0 79.5 83 32.1 61.7 196 26.6 69.1 256 35.5 63.8 318 58.7 78.2 559 37.0 66.1 505	348 pir.B71881 Helicoba
32.1 61.7 196 26.6 69.1 256 35.5 63.8 318 58.7 78.2 559 37.0 66.1 505	pir.C47154 Bacillus
26.6 69.1 256 35.5 63.8 318 58.7 78.2 559 37.0 66.1 505	576 pir.T14151 Mus musculus inv
35.5 63.8 318 58.7 78.2 559 37.0 66.1 505	prf.2512328G Streptoc
58.7 78.2 559 37.0 66.1 505	876 prf.2220349C Pyrococ
37.0 66.1 505	1641 sp:SR54_BACSU Bacillus
37.0 66.1 505	
37.0 66.1 505	
37.0 66.1 505	
	1530 sp:FTSY_ECOLI Esche

	Function			glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothetical protein	transport protein	ABC transporter	hypothetical protein	
	Matched length (a.a.)			1144 gluc gluc		1206 chro	92 acyl		305 tran	257 hypo			188 catio	285 form	221 ribo	176 hyp	238 hyp	559 tran	541 ABC	388 hyp	
	Similarity Mar (%)			46.2 1		72.6	73.9		0.09	73.5			9.92	66.7	76.5	62.5	76.9	9.55	58.8	62.6	
	Identity Si (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	9.05	28.3	26.6	35.3	
(columned)	Homologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581.28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
	db Match			sp:AMYH_YEAST		sp:Y06B_MYCTU	sp:ACYP_MYCTU		sp:YFER_ECOLI	pir.S72748			gp:DNINTREG_3	sp:FPG_ECOLI	pir.B69693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf:2104260G	sp:CYDC_ECOLI	gp:SC9C7_2	
	ORF (bp)	159	702	3393	963	3465	282	1854	858	831	183	447	615	858	741	534	789	1644	1530	1122	;
	Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2193165	2194694	2198004	100001
	Initial (nt)	2176046	2176402	2179502	2180918	2183092	2183391	2185258	2186208	2186299	2187160	2187679	2188306	2189170	2189906	2190439	2191328	2191522	2193165	2196883	21,00,0
	SEQ NO. (a.a.)	5760	5761	5762	5763	5764	5929	5766	2929	5768	5769	5770	5771	5772	5773	5774	5775	5776	5777	5778	-
	SEQ NO. (DNA)	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	

_
_
$^{\circ}$
inued
_
_
_
_
=
=
_
$\overline{}$
$^{\circ}$
ပ
(cont
_
၂
_
е _
-

					.		ایوا	l			1	
sucrose transport protein		maltodextrin phosphorylase / glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
133		814	295	264	169	228	88	258	241	245	210	402
51.9		67.4	66.4	65.5	62.1	58.8	. 8.62	7.76	94.0	9.79	92.4	54.0
27.1	-	36.1	33.9	31.4	29.6	29.4	52.8	97.3	94.0	95.9	86.7	25.6
A3431 nIpO Arabidopsis thaliana SUC1		Thermococcus litoralis maIP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485 Igt	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 hisH	Streptomyces lividans 66 cmIR
pir.S38197	0000	prf:2513410A	sp:YFIE_BACSU	sp:LGT_STAAU	sp:TRPG_EMENI	pir:H70556	sp:HIS3_RHOSH	sp:HIS6_CORG	prf:2419176B	gp:AF051846_1	gp:AF060558_1	sp:CMLR_STRLI
336	135	2550	900	948	801	657	354	774	825	738	633	1266
2201073	2201450	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
2201408	2201584	2204541	2205490	2208249	2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
5782	5783	5785	5786	5787	5788	5789	5790	5791	5792	5793	5794	5795
2282	2283	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295
	5782 2201408 22014073 336 nir S38197 Arahidonsis thaliana SUC1 27 1 51 9 133	5782 2201408 2201073 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201584 2201594 276 27.1 51.9 133	5782 2201408 22014564 22014564 22014592 250 prf. 2513410A Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201584 2201450 135 133 133 5784 2201869 2201992 2550 prf. 2513410A Thermococcus litoralis malP 36.1 67.4 814	5782 2201408 2201450 136 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201584 2201450 135 2201584 2201689 2201594 276 36.1 67.4 814 5785 2204541 2204591 900 sp:YFIE_BACSU Bacillus subtilis 168 yfiE 33.9 66.4 295	5782 2201408 2201450 135 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201584 2201450 135 2201450 135 2201450 136 137 133 5784 2201869 2201594 276 256 prf.2513410A Thermococcus litoralis malP 36.1 67.4 814 5786 2205490 2204591 900 sp:YFIE_BACSU Bacillus subtilis 168 yfiE 33.9 66.4 295 5787 2208249 2207302 948 sp:LGT_STAAU Staphylococcus aureus FDA 485 31.4 65.5 264	5782 2201408 2201450 133 133 5783 2201584 2201450 135 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201689 2201594 276 Thermococcus litoralis malP 36.1 67.4 814 5785 2204541 2201992 2550 prf.2513410A Thermococcus litoralis malP 36.1 67.4 814 5786 2205490 2204591 900 sp.YFIE_BACSU Bacillus subtilis 168 yfiE 33.9 66.4 295 5787 2208249 2207302 948 sp.LGT_STAAU İgt Igt 65.5 264 5788 2209167 2208367 801 sp.TRPG_EMENI Emericella nidulans trpC 29.6 62.1 169	5782 2201408 2201073 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201584 2201450 135 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201584 2201450 135 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201689 2201594 276 Thermococcus litoralis malP 36.1 67.4 814 5786 2205490 2204591 900 sp:YFIE_BACSU Bacillus subtilis 168 yffE 33.9 66.4 295 5786 2205490 2204591 900 sp:TRPG_EMENI Emericella nidulans trpC 29.6 62.1 169 5788 2209167 2208367 801 sp:TRPG_EMENI Emericella nidulans trpC 29.6 62.1 169 5789 2209888 2209232 657 pir.H70556 Mycobacterium tuberculosis 29.4 58.8 228	5782 2201408 2201405 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201468 2201450 135 manal Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201584 2201450 135 manal manal 36.1 67.4 814 5785 2204541 2201992 2550 prf.2513410A Thermococcus litoralis malP 36.1 67.4 814 5786 2205490 2204591 900 sp:YFIE_BACSU Bacillus subtilis 168 yfiE 33.9 66.4 295 5786 2205492 2207302 948 sp:LGT_STAAU Staphylococcus aureus FDA 485 31.4 65.5 264 5788 2209167 2208367 801 sp:TRPG_EMENI Emericella nidulans trpC 29.6 62.1 169 5789 2209232 657 pir.H70556 Mycobacterium tuberculosis 29.4 58.8 79.8 89 5790 2210273 354	5782 2201408 2201073 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5783 2201408 2201073 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201584 2201594 276 months 135 months 133 66.4 295 5785 2204541 2201592 2560 prt.2513410A Thermococcus litoralis malP 36.1 67.4 814 6.7 5786 2205490 2204591 900 sp.YFIE_BACSU Bacillus subtilis 168 yflE 33.9 66.4 295 5787 2208249 2207302 948 sp.LGT_STAAU Staphylococcus aureus FDA 485 31.4 65.5 264 5788 2209167 2208367 801 sp.TRPG_EMENI Emericella nidulans trpC 29.6 62.1 169 5789 2209288 2209232 657 pir.H70556 Mycobacterium glutamicum 97.3 97.7 258 5791<	5782 2201408 2201073 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5782 2201408 2201073 336 pir.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5784 2201684 2201594 276 Pr.S38197 Arabidopsis thaliana SUC1 27.1 51.9 133 5786 2201689 2201594 276 Pr.E513410A Thermococcus litoralis malP 36.1 67.4 814 5786 2205490 2204591 900 sp:YFIE_BACSU Bacillus subtilis 168 yfIE 33.9 66.4 295 5787 2205490 2207302 948 sp:LGT_STAAU Staphylococcus aureus FDA 485 31.4 65.5 264 5788 2209467 2207302 948 sp:LGT_STAAU Mycobacterium tuberculosis 29.4 58.8 228 5789 2209203 657 pir.H70556 Mycobacterium tuberculosis 29.4 58.8 79.8 89 5790 22102	5782 2201408 2201073 336 pir.538197 Arabidopsis thallana SUC1 27.1 51.9 133 5783 2201684 2201450 135 Arabidopsis thallana SUC1 27.1 51.9 133 5784 2201689 2201594 276 Arabidopsis thallana SUC1 27.1 51.9 133 5784 2201689 2201594 276 Arabidopsis thallana SUC1 27.1 51.9 133 5786 2201671 2201692 2550 prf.EBACSU Bacillus subtilis f68 yffe 33.9 66.4 295 5786 2205490 2204591 900 sp.YFIE_BACSU Bacillus subtilis f68 yffe 33.9 66.4 295 5786 2205490 2207302 948 sp.LGT_STAAU Staphylococcus aureus FDA 485 31.4 65.5 264 5789 2209167 2208367 801 sp.TRPG_EMENI Emericella nidulans trpC 29.6 62.1 169 5789 2210273 774 sp.HISS_CORG Asp.HISS_CO	5782 2201408 2

SEQ SEQ READ Initial Terminal ORF db Match Homologous gene (4%) Rephy (4%) Flagh Function 2296 5736 2215683 2215683 2215683 2216683 2216683 2216683 2216683 2216683 2216683 2216683 2216683 226 81.8 198 Initiatizatise Function-phosphate 2297 5779 221689 1098 sp-HISS_STRCO Streptomyces coelicolor A3(2) 57.2 78.3 362 Initiation-phosphate 2297 5789 2217690 1320 sp-HISS_MACCSM Myccoedfinion 57.2 78.3 362 Initiation-phosphate 2290 5789 2217690 1320 sp-HISS_MACCSM Myccoedfinion 57.2 78.3 serine-rich secreted protein 2300 5800 2217690 12280 ph-HISS_MACCSM Mycobactedinionyces coelicolor A3(2) 57.2 54.4 34.2 serine-rich secreted protein 2301 5801 2221 5221 54.3																				
SEC NO. (nt) 5796 Initial (nt) 5796 Terminal (nt) 5796 ORF (nt) 5797 db Match (pp) 5796 Homologous gene 5796 Identity (%) 5796 Identity (%) 5796 Similarity (%) 5796 Identity 5796 Similarity (%) 5796 Similarity 5796 Similarity 5796 Similarity 5796 Similarity 5796 Similarity 5797 Similarity 5796 Similarity 5796 Similarity 5797 Similarity 5797	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
SEQ Initial Terminal ORF db Match Homologous gene Identity NO (nt) (n	Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
SEQ Initial Terminal ORF db Match Homologous gene NO. (nt) (nt) (nt) (hb) adb Match Homologous gene 5796 2215683 225 225 2216674 2215689 606 sp.HISB_STRCO Streptomyces coelicolor A3(2) hisB 5798 2217861 2216694 1098 sp.HISB_STRCO Streptomyces coelicolor A3(2) hisB 5809 2217862 2217600 1326 sp.HISB_STRCO Streptomyces coelicolor A3(2) hisB 5801 222187 2220458 651 ATCC 607 hisD ATCC 607 hisD 5802 222186 651 ATCC 607 hisD ATCC 607 hisD 5803 222186 651 ATC321269A Leishmania donovani SAcP-1 5804 2221958 222568 prf.2321269A Leishmania donovani SAcP-1 5805 222258 222598 309 prir.RPECR1 HetR 5806 222258 309 prir.RPECR1 HetR 5808 222258 309 pr	Similarity (%)		81.8	79.3	85.7	54.4			59.7	8.09	2.57	76.0	55.2	6.09	64.4	68.3	71.1	0.89	9.79	73.5
SEQ (nt) Initial (nt) Terminal (nt) ORF (pp) db Match db Match 5796 2215863 225 5797 2216474 2215869 606 sp.HIS7_STRCO 5798 2217591 2216494 1098 sp.HIS7_STRCO 5799 2217591 2216494 1098 sp.HIS7_STRCO 5800 2217591 2220459 651 5801 2221109 2220459 651 5802 2221611 2221919 309 5803 2221618 222187 642 prf.2321269A 5804 2221958 2222518 661 pri.RPECR1 5805 2222528 2225518 561 pri.RPECR1 5806 222549 801 pri.R70572 5806 222569 774 gp.SC265_27 5807 222599 774 gp.GALR_ECOLI 5808 2227779 2228901 1011 pri.C30341E 5811 2223696 1038 pri.C423441E </td <th>Identity (%)</th> <td></td> <td>52.5</td> <td>57.2</td> <td>63.8</td> <td>27.2</td> <td></td> <td></td> <td>29.4</td> <td>28.9</td> <td>47.4</td> <td>50.0</td> <td>29.9</td> <td>35.0</td> <td>30.4</td> <td>32.9</td> <td>36.8</td> <td>30.1</td> <td>34.6</td> <td>38.1</td>	Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
SEQ (nt) (nt) (nt) (pt) (a.a.) (nt) (nt) (nt) (bp) (5796 2215863 2215639 225 5797 2216474 2215869 606 5798 2217591 2216494 1098 5799 2218925 2217600 1326 5800 2219159 2220459 651 5801 2221109 2220459 651 5803 222181 222187 642 5804 2221828 2225035 561 5805 2221611 2225949 801 5806 2225779 2225990 774 5808 2227779 2226769 1011 5808 2227779 2226769 1011 5808 2227779 2226769 1011 5808 2227779 2226769 1011 5808 2227779 2226769 1011 5808 2227779 2226769 1011 5808 2227779 2226769 1011 5808 2227779 2226769 1011 5808 22277906 2228900 1038 5812 2231294 2230947 348 5812 2231294 2230947 348	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 ytfH
SEQ (nt) Initial (nt) Terminal (nt) ORF (nt) 5796 2215863 2215639 225 5797 2216474 2215869 606 5798 2217591 2216494 1098 5799 2218925 2217600 1326 5800 2221919 309 5802 2221611 2221919 309 5801 2221611 2221187 642 651 681 5802 2221611 2221187 642 681 5803 2221611 222189 651 681 5804 2221638 222594 801 680 5805 2225149 2225990 774 680 5806 2227779 2226990 774 680 5227906 2228901 996 5810 222896 2227909 728 581 2230947 348 5813 2231932 2232016 441 441			sp:HIS7_STRCO	sp.HIS8_STRCO	sp:HISX_MYCSM	gp:SPBC215_13			prf:2321269A	pir:RPECR1	prf:2307203B	pir.E70572	gp:SC2G5_27	prf.2503399A	sp:GALR_ECOLI	sp:FHUC_BACSU		pir:G70046	pir:G70046	Sp:YTFH_ECOLI
SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	ORF (bp)	225	909	1098	1326		651	309	642	561	2508	801	774	1011	966	798	1038	348	594	441
SEQ NO. (a.a.) 5796 (a.a.) 5796 (a.a.) 5797 5798 5799 5800 5800 5807 5805 5806 5807 5808 5808 5808 5808 5808 5810 5811 5812 5813		2215639	2215869	— —–	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
	Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109			·	1				L		2230937	2231294		2232456
	SEQ NO. (a.a.)	5796	5797	5798	5799	5800	5801	5802	5803	5804	5805	5806	5807	5808	5809	5810	5811	5812	5813	5814
	_	+			2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

						(
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2315	5815	2232928	2234070	1143	gp:SCI8_12	Streptomyces coelicolor A3(2) SCI8.12	23.4	50.1	355	DNA polymerase III epsilon chain
2316	5816	2234158	2234763	909						
2317	5817	2234852	2237284	2433	pir.S65769	Arthrobacter sp. Q36 treY	42.0	68.6	814	maltooligosyl trehalose synthase
2318	5818	2237331	2238353	1023	gp:AE002006_4	Deinococcus radiodurans DR1631	27.6	52.8	322	hypothetical protein
2319	5819	2239092	2238694	399						
2320	5820	2240042	2239845	198		-				
2321	5821	2240246	2240058	189						
2322	5822	2240563	2239508	1056						
2323	5823	2240681	2241724	1044	sp:LXA1_PHOLU	Photorhabdus luminescens ATCC 29999 luxA	20.5	54.4	375	alkanal monooxygenase alpha chain
2324	5824	2242115	2241738	378	gp:SC7H2_5	Streptomyces coelicolor A3(2) SC7H2.05	58.3	79.2	120	hypothetical protein
2325	5825	2242359	2242129	231						
2326	5826	2243035	2244819	1785	pir.S65770	Arthrobacter sp. Q36 treZ	46.3	72.4	568	maltooligosyltrehalose trehalohydrolase
2327	5827	2243043	2242393	651	sp:YVYE_BACSU	Bacillus subtilis 168	36.5	72.4	214	hypothetical protein
2328	5828	2246171	2244864	1308	sp:THD1_CORGL	Corynebacterium glutamicum ATCC 13032 ilvA	99.3	99.3	436	threonine dehydratase
2329	5829	2246386	2246892	207						
2330	5830	2246450	2246295	156						
2331	5831	2248208	2247006	1203	pir.S57636	Catharanthus roseus metE	22.7	49.6	415	Corynebacterium glutamicum AS019
2332	5832	2251939	2248358	3582	prf:2508371A	Streptomyces coelicolor A3(2) dnaE	53.3	80.5	1183	DNA polymerase III
2333	5833	2252017	2252856	840	sp:RARD_ECOLI	Escherichia coli K12 rarD	37.6	73.8	279	chloramphenicol sensitive protein
2334	5834	2253192	2253659	468	sp:HISJ_CAMJE	Campylobacter jejuni DZ72 hisJ	21.5	55.7	149	histidine-binding protein precursor
2335	5835	2253725	2254642	918	pir:D69548	Archaeoglobus fulgidus AF2388	22.7	64.7	198	hypothetical membrane protein

0
a
v
_
_
_
-
=
\circ
\approx
v
_
$\overline{}$
•
4
Ψ
_
മ
C
,,,
-

																\leq				
	Function	short chain dehydrogenase or general stress protein	diaminopimelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase D	lipoprotein signal peptidase		oleandomycin resistance protein		hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptional regulator		hypothetical protein	isoleucyl-tRNA synthetase		
***	Matched length (a.a.)	280	445	314		326	154		550		158	321	371	286	334		212	1066		
	Similarity (%)	80.0	47.6	64.3		61.0	61.7		64.0		57.6	62.0	2.09	61.5	73.1		0.78	65.4		
	Identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3		42.0	38.5		
	Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM	-	Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 lspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis orf17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
	db Match	sp:GS39_BACSU	sp:DCDA_PSEAE	sp:CYSM_ALCEU		sp:RLUD_ECOLI	sp:LSPA_PSEFL		pir.S67863		prf.2422382P	sp:ASPG_BACLI	sp:DINP_ECOLI	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	sp:SYIC_YEAST		:
	ORF (bp)	876	1287	951	579	930	534	1002	1650	303	009	975	1401	828	1002	132	627	3162	216	1095
	Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298	2264509	2266394	2266897	2268388	0926927	2270435	2270258	2270988	2274473	2274767
	Initial (nt)	2255558	2257024	2259312	2259999	2260931	2261467	2261688	2262850	2264996	2265108	2265420	2268297	2269245	2270261	2270304	2270884	2274149	2274688	2275861
	SEQ NO. (a.a.)	5836	5837	5838	5839	5840	5841	5842	5843	5844	5845	5846	5847	5848	5849	5850	5851	5852	5853	5854
	SEQ NO. (DNA)	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354

Function	hypothetical membrane protein	hypothetical protein (putative YAK 1 protein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramate-alanine ligase	UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- glutamate ligase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase
Matched length (a.a.)	82	152	221	246	117	442	222	486	372	490	110			365	494
Similarity (%)	73.2	99.3	99.6	100.0	51.0	98.6	100.0	8.66	99.5	9.66	99.1			8.69	64.2
Identity (%)	46.3	66.3	2.79	99.2	39.0	98.6	9.66	99.4	6.86	99.4	99.1			38.6	35.0
Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum ftsZ	Corynebacterium glutamicum ftsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murF
db Match	pir:F70578	gp:BLFTSZ_6	sp:YFZ1_CORGL	prf:2420425C	GP:AB028868_1	sp:FTSZ_BRELA	gsp:W70502	gp:AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1			sp:MRAY_ECOLI	sp:MURF_ECOLI
ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	1542
Terminal (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281166	2282661	2283782	2285437	2286655	2286831	2286862	2287969
Initial (nt)	2276637	2277336	2278078	2278859	2279155	2280215	2281135	2282623	2283776	2285431	2285904	2286272	2286499	2287959	2289510
SEQ NO. (a.a.)	5855	5856	5857	5858	5859	5860	5861	5862	5863	5864	5865	5866	5867	5868	5869
SEQ NO. (DNA)	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367	2368	2369

Table 1 (continued)

_																		
	Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5,10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
	Matched length (a.a.)	491	57	650		323	143	137		190	303	329	484		125	684		411
-	Similarity (%)	67.6	100.0	58.8		79.3	88.8	69.3		65.3	9.07	62.0	9.69		68.8	62.4		58.4
	Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7
(Homologous gene	Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268.11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
	db Match	sp:MURE_BACSU	GSP:Y33117	pir.S54872		pir:A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	sp:METF_STRLI	pir.S32168	gp:MLCB268_16		pir:A70936	gp:AB019394_1		gp:MLCB268_21
	ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	202	369	2148	651	1236
	Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218
	Initial (nt)	2291073	2291197	2293164	2294117	2295127	2295804	2296898	2297653	2297866	2299428	2299524	2300706	2302179	2302619	2302833	2303690	2304983
	SEQ NO. (a.a.)	5870	5871	5872	5873	5874	5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	5886
	SEQ NO. (DNA)	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386

	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P60 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit	ubiquinol-cytochrome c reductase iron-sulfur subunit (Rieske [eFe-2S] iron-sulfur protein cyoB	ubiquinol-cytochrome c reductase cytochrome c
		hypoth	3-deo) phosp	hypoth	hypotl	major sec precursor			hypot	acyltra	glycos	protei	protei assoc	ubiqu cytocl	ubiqu iron-s iron-s	ubiqu
	Matched length (a.a.)	434	462	166	428	440			249	245	383	296	191	201	203	278
	Similarity (%)	62.0	87.9	77.7	64.5	57.1			100.0	100.0	75.7	8.09	61.3	64.7	57.1	83.1
	Identity (%)	30.4	6.99	58.4	35.1	28.2			100.0	100.0	50.1	26.4	33.0	34.3	37.9	58.6
()	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268.21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
	db Match	pir.G70936	gp:AF260581_2	gp:MLCB268_20	pir:G70936	sp:CSP1_CORGL			gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5	sp:P60_LISIV	sp:P60_LISGR	prf.2503462K	gp:AF107888_1	sp:Y005_MYCTU
	ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
	Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313916	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
	Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833	2314092	2315423	2316412	2318775	2319850	2320594	2323073	2323759	2325195
	SEQ NO. (a.a.)	5887	5888	5889	5890	5891	5892	5893	5894	5895	5896	5897	5898	5899	2900	5901
	SEQ NO. (DNA)	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401

Table 1 (continued)

	Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyltransferase
	Matched length (a.a.)	188		145	317	640	114	246	172	341	305		241	364	493	62	691		210
	Similarity (%)	70.7		71.0	53.9	99.8	100.0	60.2	0.49	6.99	49.8		68.5	70.3	62.9	67.0	68.5		65.7
	Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
table 1 (continued)	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 ItsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae. MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seoulensis pdhB		Arabidopsis thaliana
	db Match	sp:COX3_SYNVU		sp:Y00A_MYCTU	sp:COX2_RHOSH	gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir:S52220	sp:COBU_PSEDE	sp:COBV_PSEDE		prf:2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf.2110282A	gp:AF047034_2		gp:AB020975_1
	ORF (bp)	615	153	429	1077	1920	342	768	522	1089	921	237	714	1137	1500	393	2025	1365	753
	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
	Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974	2332512	2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	2341412
	SEQ NO. (a.a.)	5902	5903	5904	5905	5906	2907	5908	5909	5910	5911	5912	5913	5914	5915	5916	5917	5918	5919
	SEQ NO. (DNA)	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419

Table 1 (continued)

SEC SEC
SEQ Initial Terminal ORF db Match Homologous gene Identity (%) Imilarity (%) 6920 2342304 2343347 1044 sp.:LIPA_PELCA TippA 44.6 70.9 5921 2342304 2343347 1044 sp.:LIPA_PELCA TippA 44.6 70.9 5922 2344301 2346289 780 sp.:Y0DU_MYCTU Mycobacterium tuberculosis 45.5 76.7 5922 2344431 2346289 1203 gp.AF-189147_1 Corynebacterium tuberculosis 45.5 76.7 5924 2347505 2347804 300 A71 gp.AF-189147_1 ATCC 13032 tnp 100.0 100.0 5926 2347505 2347804 273 gp.AF-189147_1 ATCC 13032 tnp 41.4 63.7 5926 2351022 2351030 975 Themotoga maritima MSB8 36.7 65.6 5928 2351022 2351310 609 Pr.A72404 Thermotoga maritima MSB8 40.5 73.0 5929
SEQ Initial Terminal ORF db Match Hondogous gene (%) NO. (nt) (nt) (hp) db Match Hondogous gene (%) 5920 2342304 2343347 1044 sp.1LPA_PELCA Pelobacter carbinolicus GRA BD 44.6 5921 2343479 234258 780 sp.Y00U_MYCTU Mycobacterium tuberculosis 45.5 5922 2347491 2346289 1203 gp.AF189147_1 ATCC 13032 tnp 100.0 5924 2347504 300 Conynebacterium tuberculosis 45.5 5924 2347604 1203 gp.AF189147_1 ATCC 13032 tnp 100.0 5924 2347604 300 Sp.AF189147_1 ATCC 13032 tnp 100.0 5926 2350620 2350408 271 gp.SC5F7_34 Streptomyces coelicolor A3(2) 41.4 5926 2350602 2351310 600 Thermotoga maritima MSB8 36.7 5928 2351300 235288 849 sp.LUXA_VIBHA Vibrio harveyi
SEQ Initial Terminal ORF db Match Hondogous gene (%) NO. (nt) (nt) (hp) db Match Hondogous gene (%) 5920 2342304 2343347 1044 sp.1LPA_PELCA Pelobacter carbinolicus GRA BD 44.6 5921 2343479 234258 780 sp.Y00U_MYCTU Mycobacterium tuberculosis 45.5 5922 2347491 2346289 1203 gp.AF189147_1 ATCC 13032 tnp 100.0 5924 2347504 300 Conynebacterium tuberculosis 45.5 5924 2347604 1203 gp.AF189147_1 ATCC 13032 tnp 100.0 5924 2347604 300 Sp.AF189147_1 ATCC 13032 tnp 100.0 5926 2350620 2350408 271 gp.SC5F7_34 Streptomyces coelicolor A3(2) 41.4 5926 2350602 2351310 600 Thermotoga maritima MSB8 36.7 5928 2351300 235288 849 sp.LUXA_VIBHA Vibrio harveyi
SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match db Match 5920 2342304 2343347 1044 sp.LIPA_PELCA 5921 2343479 2344258 780 sp.Y00U_MYCTU 5922 2344431 2346047 1617 sp.Y10E_ECOLI 5923 2347491 2346289 1203 gp.AF189147_1 5924 2347505 2347804 300 ap.SC5F7_34 5926 2350620 2350408 213 ap.SC5F7_34 5927 2351309 2351310 600 ap.SC5F7_34 5928 2351309 2351310 600 ap.LUXA_VIBHA 5930 2351980 2351310 600 ap.LUXA_VIBHA 5931 235180 2353225 393 pir.A72404 5932 235180 2353325 393 pir.A72404 5933 235516 235538 243 ap.SC6D3_10 5934 235526 235538 243 ap.SC6D3_10 5935
SEQ Initial Terminal (bp) (a.a.) (nt) (nt) (bp) (5920 2342304 2343347 1044 5921 2343479 2344258 780 5922 2344431 2346047 1617 5922 2344431 2346289 1203 5924 2347505 2347804 300 5926 2350620 2350408 213 5927 2351022 2351996 975 5928 2351310 2350912 399 5929 2351909 2351310 600 5930 2351980 2355380 243 5931 235283 2355398 243 5932 2355156 2355843 1323 5934 2355521 2356843 1323 5936 2357264 2357354 561 5936 2357484 2357290 195
SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) NO. (nt) (nt) (pp) 6920 2342304 2343347 1044 5921 2343479 2344258 780 5922 2344431 2346047 1617 5923 2347491 2346289 1203 5924 2347505 2347804 300 5925 2348548 2348078 471 5926 2350620 2351996 975 5927 2351022 2351310 600 5928 2351310 2352828 849 5929 2351990 2351310 600 5930 2351980 2353225 393 5931 235546 235538 243 5932 235546 235538 243 5933 235546 235538 561 5934 235526 2357364 561 5936 2357264 2357367 444 5937
SEQ Initial NO. (nt) (a.a.) (nt) (a.a.) (nt) (5920 2342304 5921 2344431 5922 2344431 5925 2347491 5926 2350620 5926 2351909 5930 2351980 5931 2355440 5932 23557264 5935 2357264 5937 2357484
SEQ NO. (a.a.) 5920 5921 5922 5923 5924 5932 5933 5934 5935 5935 5936 5936 5936 5937 5937 5937 5937 5937
SEQ NO. (DNA) 2420 2421 2423 2424 2425 2426 2426 2427 2429 2430 2431 2433 2433 2433 2433 2433 2433 2433

o
(continued)
⊐
_
_
_
$\overline{}$
•
<u>യ</u>
_
Table
_
_

																		\neg
Function		heme oxygenase	glutamate-ammonia-ligase adenylyltransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	insertion element (IS402)
Matched length (a.a.)		214	809	441	392	601	54	374	358		382		249	378	204	156	281	129
Similarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
Identity (%)		57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	26.0	46.2	40.9	32.6
Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) glnE	Thermotoga maritima MSB8 glnA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c	,	Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
db Match	c	sp:HMUO_CORDI	gp:SCY17736_4	sp:GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	sp:GAL1_HUMAN	gp:AF174645_1		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	sp:GPH_ECOLI	sp:PTPA_STRCO	sp:Y01G_MYCTU	sp:YI21_BURCE
ORF (bp)	543	645	3135	1338	1104	1827	180	1293	1266	486	1146	729	717	1140	654	471	954	393
Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
Initial (nt)	2358695	2359416	2362748	2364155	2364352	2365587	2367652	2367791	2370381	2370423	2372557	2372561	2373289	2374462	2374544	2375214	2375767	2377390
SEQ NO. (a.a.)	5939	5940	5941	5942	5943	5944	5945	5946	5947	5948	5949	5950	5951	5952	5953	5954	5955	5956
SEQ NO. (DNA)	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456

ntinued)	
<u>ਤ</u>	
Table 1	

SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched Function 655 1337726 2377849 243 378 135 I transcriptional regulator 556 2377826 2377849 243 378 135 I transcriptional regulator 556 2377829 2378729 2378779 136 136 I transcriptional regulator 556 2378729 2378770 345 FD 134 hypothetical protein 556 2378770 346 57 136 136 I transcriptional regulator 556 2378770 346 57 77.6 136 Interscriptional regulator 556 2378770 346 57 77.6 136 Interscriptional regulator 556 238072 2378744 277 347 Streptomyces seoulentis pdhA 55.9 77.6 136 Interscriptional regulator 556 238074 238076 238076 2										
23777269 2377784 243 Composition of A3(2) 30.4 57.8 135 23777899 2378276 378 gp.SC8F4_22 Steptomyces coelicolor A3(2) 30.4 57.8 135 2378292 2378289 138 gp.SC8F4_22 Steptomyces coelicolor A3(2) 30.4 57.8 135 2378292 2378770 345 Mycobacterium tuberculosis 55.2 77.6 134 2382003 2378770 345 Mycobacterium tuberculosis 55.2 77.6 134 2382003 2382744 27.1 gp.AF047034_4 Streptomyces seoulensis pdhA 55.9 77.6 134 2382406 238246 2382627 345 Sp.CLNQ_ECOLI Escherichia coli K12 glnQ 33.7 62.8 26.1 2384509 2385426 963 pir.H71693 Rickettsia prowazekii Madrid E 26.2 62.9 28.6 2386584 2385621 388 sp.:CBPA_DICDI CabA A1.6 55.7 35.2 2386584 2386584	~ -	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
237899 2378276 378 pp. SCBF4_22 Streptomyces coelicolor A3(2) 30.4 57.8 135 2378292 2378489 198 PP. YOTK_MYCTU Mycobacterium tuberculosis 55.2 77.6 134 2379312 2378488 429 Sp. YOTK_MYCTU H37RV RV2239c 78.9 910 2380033 2382744 2712 gp. AF047034_4 Streptomyces seoulensis pdhA 55.9 77.6 134 2382240 2380765 1476 Sp. CLNQ_ECOLI Escherichia coli K12 glnQ 33.7 62.8 910 2384464 2385426 963 PR. CREAL PR. CREAL 26.2 62.9 281 2384509 2385618 8p. CBPA_DICDI Bacillus subtilis 168 rbsc 25.4 58.7 283 2386747 238688 8p. CBPA_DICDI Bacillus subtilis 168 rbsc 25.4 58.7 283 2387627 2386614 1014 gp. CBPA_DICDI Bacillus subtilis 168 rbsc 25.4 55.7 35.2 2387667 2387667	ا ۱۰	2377726	2377484	243						
2376292 2378489 198 Hydobacterium tuberculosis 55.2 77.6 134 2379426 2379770 345 Mycobacterium tuberculosis 55.2 77.6 134 2379426 2379770 345 Treptomyces seoulensis pdhA 55.9 78.9 910 2380033 2382744 2712 gp.AF047034_4 Streptomyces seoulensis pdhA 55.9 78.9 910 23826240 2380765 1476 Treptomyces seoulensis pdhA 55.9 78.9 910 23826740 2380785 1476 Treptomyces seoulensis pdhA 55.9 78.9 910 2384640 2386786 1476 Treptomyces seoulensis pdhA 55.2 78.9 910 2385771 2386580 910 Sp.CBPA_DICDI Escherichia coli K12 mgD 26.2 62.9 286 2387627 2386580 910 Sp.CBPA_DICDI CabpA 101 Sp.CBC4_24 Streptomyces coelicolor A3(2) 29.6 55.7 352 2387627 23878827 238		•			gp:SC8F4_22	Streptomyces coelicolor A3(2) SC8F4.22c	30.4	57.8	135	transcriptional regulator
2379312 2378884 429 sp.Y01K_MYCTU Mycobacterium tuberculosis 55.2 77.6 134 2379426 2379770 345 TR.P. R.V.22396 78.9 77.6 134 2380033 2382744 2712 gp.AF047034_4 Streptomyces seoulensis pdhA 55.9 78.9 910 2382640 2380765 1476 Escherichia coli K12 glnQ 33.7 62.8 261 2383615 2382827 789 sp.GLNQ_ECOLI Escherichia coli K12 glnQ 33.7 62.8 261 2384504 2385426 963 Escherichia coli K12 glnQ 33.7 62.8 261 2384509 2383622 888 sp.RBSC_BACSU Bacillus subtilis 168 rbsC 25.4 58.7 283 2385447 2384509 939 pir.H1693 Rickettsia prowazekii Madrid E 26.2 62.9 26.2 26.2 2386284 2386589 810 sp.CBPA_DICDI cbpA 238 75.5 25.3 2387967 2387967 23879				198						
2379426 2379770 345 Perpotomyces seoulensis pdhA 55.9 78.9 910 2380234 2380744 2712 gp.AF047034_4 Streptomyces seoulensis pdhA 55.9 78.9 910 2382240 2380765 1476 A.6 A.6 A.6 B.6 A.6 2382464 2385426 963 A.6 Bacillus subtilis 168 rbsC 25.4 58.7 283 2384464 2385426 963 Pir.H71693 Rickettsia prowazekii Madrid E 26.2 62.9 286 2385471 2386580 810 sp.CBPA_DICDI Dictyostellum discoideum AXZ 41.6 55.2 125 2387677 2386584 2386581 372 A.6 A.1.6 55.2 125 2387687 2386684 1014 gp:SC664_24 Streptomyces coelicolor A3(2) 29.6 55.7 352 2387667 2387967 29.6 55.7 362 253 23878687 2388883 388821 825 80.0 75<			2378884		sp:Y01K_MYCTU	Mycobacterium tuberculosis H37Rv Rv2239c	55.2	9.77	134	hypothetical protein
2380033 2382744 2712 gp.AF047034_4 Streptomyces seoulensis pdhA 55.9 78.9 910 2382240 2380765 1476 A.76 A.76 A.76 A.76 A.76 2382615 2382827 789 sp.CGLNQ_ECOLI Escherichia coli K12 glnQ 33.7 62.8 261 2384464 2385426 963 pir.H71693 Bacillus subtilis 168 rbsC 25.4 58.7 283 2385447 2384509 939 pir.H71693 Rickettsia prowazekii Madrid E 26.2 62.9 286 2385771 2386580 810 sp.CBPA_DICDI CbpA 41.6 55.2 125 2387627 2386684 1014 gp.CBPA_DICDI Streptomyces coelicolor A3(2) 29.6 55.7 362 2387667 2387667 29.6 42.7 80.0 75 2387667 2387967 35.232 acpP 42.7 80.0 75 2388838 2388838 1032 gp.AED01968_4 Deinococcus radiodurans <t< td=""><td></td><td>-</td><td>2379770</td><td>345</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		-	2379770	345						
2382240 2382827 789 sp:GLNQ_ECOLI Escherichia coli K12 glnQ 33.7 62.8 261 2384464 2385426 963 moderni Recolumenta Securi Recol		L		2712	gp:AF047034_4	Streptomyces seoulensis pdhA	55.9	78.9	910	pyruvate dehydrogenase component
2383615 2382827 789 sp.GLNQ_ECOLI Escherichia coli K12 glnQ 33.7 62.8 261 2384464 2385426 963 America de coli Marcia de coli K12 glnQ 33.7 62.8 261 2384509 2383622 888 sp.RBSC_BACSU Bacillus subtilis 168 rbsC 25.4 58.7 283 2385771 2386580 810 sp.CBPA_DICDI Dictyostelium discoideum AX2 41.6 55.2 125 2386284 2385913 372 America de colicolor A3(2) 29.6 55.7 362 2387627 238681 1014 gp.SC6G4_24 Streptomyces coelicolor A3(2) 29.6 55.7 352 2387667 2387967 298 101 sp.ACP_MYXXA Sc6G4.24 25232 acpp 43.9 75.5 253 23878883 2388883 1032 gp.AE001968_4 Deinococcus radiodurans 33.6 65.7 289 2390904 471 An An An An An An An An	1 12		Ь—	1476				,		
2385406 963 medilus subtilis 168 rbsC 25.4 58.7 283 2384509 2383622 888 sp.RBSC_BACSU Bacillus subtilis 168 rbsC 25.4 58.7 283 2385447 2384509 939 pir.H71693 Rickettsia prowazekii Madrid E 26.2 62.9 286 2386284 2386580 810 sp.CBPA_DICDI Dictyostelium discoideum AX2 41.6 55.2 125 2386284 2386581 1014 gp.CBPA_DICDI Streptomyces coelicolor A3(2) 29.6 55.7 352 2387627 2386614 1014 gp.SC6G4_24 Streptomyces coelicolor A3(2) 29.6 55.7 352 2387667 2387867 291 sp.ACP_MYXXA Myxococcus xanthus ATCC 42.7 80.0 75 2387898 2388821 825 sp.NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 2386883 2389869 1032 gp.AE001968_4 Deinococcus radiodurans 33.6 65.7 289	ı 💍			789	sp:GLNQ_ECOLI	Escherichia coli K12 glnQ	33.7	62.8	261	ABC transporter or glutamine transport ATP-binding protein
2384509 2383622 888 sp.RBSC_BACSU Bacillus subtilis 168 rbsC 25.4 58.7 283 2385447 2384509 939 pir.H71693 Rickettsia prowazekii Madrid E 26.2 62.9 286 2386284 2386580 810 sp.CBPA_DICDI Dictyostelium discoideum AXZ 41.6 55.2 125 2386284 23865813 372 cbpA cbpA 41.6 55.2 125 2387627 2386614 1014 gp.SC6G4_24 Streptomyces coelicolor A3(2) 29.6 55.7 352 2387667 2387967 291 sp.ACP_MYXXA 25232 acpP 42.7 80.0 75 2387997 2388821 825 sp.NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 2388838 2389869 1032 gp.AE001968_4 Deinococcus radiodurans 33.6 65.7 289 2390904 2390434 47.1 47.1 75.5 289	176		2385426	963						
238547 2384509 939 pir.H71693 Rickettsia prowazekii Madrid E RP367 26.2 62.9 286 2385771 2386580 810 sp.CBPA_DICDI Dictyostelium discoideum AX2 41.6 55.2 125 2386284 2385913 372 Experimental AID Streptomyces coelicolor A3(2) 29.6 55.7 352 2387627 2387627 2387997 291 sp.ACP_MYXXA Streptomyces coelicolor A3(2) 29.6 55.7 352 2387997 2388821 825 sp.NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 2388838 2389869 1032 gp.AE001968_4 Deinococcus radiodurans 33.6 65.7 289 2390904 2390434 471 A71 RAT	1 76			888	sp:RBSC_BACSU	Bacillus subtilis 168 rbsC	25.4	58.7	283	ribose transport system permease protein
2385771 2386580 810 sp:CBPA_DICDI Dictyostelium discoideum AX2 41.6 55.2 125 2386284 2385913 372 R. P. CBPA_DICDI Streptomyces coelicolor A3(2) 29.6 55.7 352 2387627 2387627 291 sp:ACP_MYXXA Streptomyces coelicolor A3(2) 29.6 55.7 352 2387667 2387967 291 sp:ACP_MYXXA Myxococcus xanthus ATCC 42.7 80.0 75 2387997 2388831 825 sp:NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 2380904 2390434 471 DR1192 83.6 65.7 289	l io			939	pir:H71693	Rickettsia prowazekii Madrid E RP367	26.2	62.9	286	hypothetical protein
2386284 2385913 372 Streptomyces coelicolor A3(2) 29.6 55.7 352 2387627 2387627 2387957 29.1 sp. ACP_MYXXA Streptomyces coelicolor A3(2) 29.6 55.7 352 2387667 2387967 29.1 sp. ACP_MYXXA Myxococcus xanthus ATCC 42.7 80.0 75 2387997 2387987 825 sp. NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 2388838 2389869 1032 gp. AE001968_4 Deinococcus radiodurans 33.6 65.7 289 2390904 2390434 471 A71 A72 A73 A73 A74 A74 A74 A74 <td>ωÕ</td> <td></td> <td>2386580</td> <td>810</td> <td>sp:CBPA_DICDI</td> <td>Dictyostelium discoideum AX2 cbpA</td> <td>41.6</td> <td>55.2</td> <td>125</td> <td>calcium binding protein</td>	ωÕ		2386580	810	sp:CBPA_DICDI	Dictyostelium discoideum AX2 cbpA	41.6	55.2	125	calcium binding protein
2387627 2386614 1014 gp:SC6G4_24 Streptomyces coelicolor A3(2) 29.6 55.7 352 2387667 2387957 291 sp:ACP_MYXXA Myxococcus xanthus ATCC 42.7 80.0 75 2387997 2388821 825 sp:NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 2388838 2389869 1032 gp:AE001968_4 Deinococcus radiodurans 33.6 65.7 289 2390904 2390434 471 A71 A71 A71 A71 A71	Ø			372						
2387667 2387957 291 sp.ACP_MYXXA Myxococcus xanthus ATCC A2.7 42.7 80.0 75 2387997 2388838 2388821 825 sp.NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 2388838 2389869 1032 gp.AE001968_4 Deinococcus radiodurans 33.6 65.7 289 2390904 2390434 471 n n n n n n	_			1014	gp:SC6G4_24	Streptomyces coelicolor A3(2) SC6G4.24	29.6	55.7	352	lipase or hydrolase
2387997 2388821 825 sp:NAGD_ECOLI Escherichia coli K12 nagD 43.9 75.5 253 2388838 2389869 1032 gp:AE001968_4 Deinococcus radiodurans 33.6 65.7 289 2390904 2390434 471 A71 289 A71 A71 A71	7			291	sp:ACP_MYXXA	Myxococcus xanthus ATCC 25232 acpP	42.7	80.0	75	acyl carier protein
2388838 2389869 1032 gp.AE001968_4 Deinococcus radiodurans 33.6 65.7 289 2390904 2390434 471 A71 A72 A7	_ ~			825	sp:NAGD_ECOLI	Escherichia coli K12 nagD	43.9	75.5	253	N-acetylglucosamine-6-phosphate deacetylase
2390904 2390434	7			1032		Deinococcus radiodurans DR1192	33.6	65.7	289	hypothetical protein
	I 🖳		<u> </u>	471						

Table 1 (continued)

		\neg	\neg	1												ate				
Function	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
Matched length (a.a.)	271						530		594	89		633	98		,	636			414	171
Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	507
Identity (%)	52.4		Ī				34.2		44.4	41.2		59.1	49.0			59.1			54.6	V 00
Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Lacon Min distinguishment of the Manager of the Man
db Match	gp:SC4A7_8						sp:PPBD_BACSU		gp:SCI51_17	pir.G70661		prf:2413330B	gp:XXU39467_1			gp:AF058788_1	,		prf.2413330A	gp:NMA1Z2491_23
ORF (bp)	825	492	177	546	465	342	1560	714	1836	240	675	1899	462	243	636	1869	324	1152	1272	27.0
Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	7406060
Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	00000
SEQ NO. (a.a.)	5975	5976	5977	5978	5979	5980	5981	5982	5983	5984	5985	5986	5987	5988	5989	2990	5991	5992	5993	3
SEQ NO. (DNA)	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	200

Table 1 (continued)

	Function	hypothetical protein	hypothetical protein		glycyl-tRNA synthetase	bacterial regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C.glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
	Matched length (a.a.)	692	138		508	68	132	529	224	233	245	296	432	157	85	344	248	
	Similarity (%)	63.6	54.4		66.69	73.0	70.5	46.7	0.78	71.2	74.3	70.3	82.4	86.0	50.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
(5)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
	db Match	pir:B70662	gp:AE003565_26		pir.S58522	pir:E70585	sp:FUR_ECOLI	pir.A70539	gp:AF162938_1	sp:UPPS_MICLU	pir:A70586	gp:AF072811_1		sp:YN67_MYCTU	GSP:Y75650	sp:PHOL_MYCTU	gp:SCC77_19	
	ORF (bp)	2037	486	582	1383	369	432	1551	792	729	726	915	1320	588	264	1050	723	942
	Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
	Initial (nt)	2406993	2410264	2410861	2412338	2412580	2412992	2413568	2416089	2417099	2417947	2418883	2420309	2420900	2420973	2421949	2422697	2422850
	SEQ NO. (a.a.)	5995	5996	5997	5998	5999	0009	6001	6002	6003	6004	6005	9009	6007	8009	6009	6010	6011
	SEQ NO.	2495	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	2508	2509	2510	2511

Table 1 (continued)

Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acid—CoA ligase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
Matched length	380	334	320	134			611	738	604	89	107			069	453	594	449
Similarity (%)	77.4	79.6	64.1	64.9			75.1	55.4	64.4	51.0	53.0			68.3	45.7	84.9	58.8
Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
db Match	prf:2421342B	prf.2421342A	prf:2318256A	sp:AGA1_YEAST			gp:SC6G10_4	sp:MALQ_ECOLI	gp:AB005752_1	GSP:Y74827	GSP:Y74829		÷	sp:DCP_SALTY	gp:AF064523_1	pir:G70983	pir:H70983
ORF (bp)	1146	1023	066	519	693	378	1845	2118	1863	255	333	180	204	2034	1179	1794	1089
Terminal (nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573	2434805	2438049	2439906	2440994
Initial (nt)	2423845	2424937	2425954	2426181	2427468	2428184	2430028	2430296	2432508	2433868	2434207	2434619	2434776	2436838	2436871	2438113	2439906
SEQ.	(a.a.)	6013	6014	6015	6016	6017	6018	6019	6020	6021	6022	6023	6024	6025	6026	6027	6028
SEQ NO.	(DINA) 2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528

Table 1 (continued)

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous.gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2529	6029	2441589	2441005	585	pir:T07979	Chlamydomonas reinhardtii ipi1	31.8	57.7	189	isopentenyl-diphosphate Delta- isomerase
2530	6030	2441669	2441890	222						
2531	6031	2442355	2442792	438						
2532	6032	2443356	2441602	1755						
2533	6033	2444015	2443356	099						
2534	6034	2444551	2444033	519						
2535	6035	2444735	2445709	975	gp:CORCSLYS_1	Corynebacterium glutamicum ATCC 13032 aecD	99.4	100.0	325	beta C-S lyase (degradation of aminoethylcysteine)
2536	6036	2445716	2446993	1278	sp:BRNQ_CORGL	Corynebacterium glutamicum ATCC 13032 brnQ	99.8	100.0	426	branched-chain amino acid transport system carrier protein (isoleucine uptake)
2537	6037	2447021	2447998	978	sp:LUXA_VIBHA	Vibrio harveyi luxA	21.6	49.0	343	alkanal monooxygenase alpha chain
2538	6038	2450844	2450323	522						
2539	6039	2451785	2450859	927	gp:AF155772_2	Sinorhizobium meliloti mdcF	25.9	60.5	324	malonate transporter
2540	-	6040 2454637	2451794	2844	sp:GLCD_ECOLI	Escherichia coli K12 glcD	27.7	55.1	483	glycolate oxidase subunit
2541	6041	2454725	2455435	711	sp:YDFH_ECOLI	Escherichia coli K12 ydfH	25.6	65.0	203	transcriptional regulator
2542	6042	2455733	2455452	282						
2543	6043	2457066	2455720	1347	sp:YGIK_SALTY	Salmonella typhimurium ygiK	22.5	57.6	467	hypothetical protein
2544	6044	2457759	2457337	423						
2545	6045	2457863	2459371	1509	sp:HBPA_HAEIN	Haemophilus influenzae Rd HI0853 hbpA	27.5	55.5	546	heme-binding protein A precursor (hemin-binding lipoprotein)
2546	6046	2459371	2460336	996	sp.APPB_BACSU	Bacillus subtilis 168 appB	40.0	73.3	315	oligopeptide ABC transporter (permease)
2547	6047	2460340	2461167	828	sp.DPPC_ECOLI	Escherichia coli K12 dppC	43.2	74.5	271	dipeptide transport system permease protein
2548	6048	2461163	2462599	1437	prf:2306258MR	Escherichia coli K12 oppD	37.4	66.4	372	oligopeptide transport ATP-binding protein

Table 1 (continued)

					- 1			- ,			- Т			Т					
Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin I	GTP-binding protein
Matched length (a.a.)	106	157	300	466		284	295		133	197	601				448	118	227	46	603
Similarity (%)	44.0	58.0	65.0	64.6	!	61.6	51.2		100.0	65.5	71.7				71.9	73.7	9.65	73.0	83.6
Identity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
db Match	PIR:G72536	pir.D70367	prf:2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	sp:BETP_CORGL				prf.2320266C	gp:AF186091_1	sp:DCTP_RHOCA	PRF:1806416A	sp:LEPA_BACSU
ORF (bp)	507	549	903	1425	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
Terminal (nt)	2461543	2462602	2464143	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
Initial (nt)	2462049	2463150	2463241	2464344	2465767	2467009	2467077	2470313	2472250	2473480	2473653	2476497	2477644	2479379	2481208	2481692	2482480	2483845	2484392
SEQ NO. (a.a.)	6049	6050	6051	6052	6053	6054	6055	6056	6057	6058	6909	0909	6061	6062	6063	6064	6065	9909	2909
SEQ NO. (DNA)	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567

	uo		in S20	tein			eron required for stake	eron required for stake			nutase				osphate nate-5- drogenase	-hydroxyacid		
	Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphate reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
	Matched length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
	Similarity (%)	69.7	72.9	67.1	9.08	74.1	49.7	63.6		66.3	66.4	86.3	85.3		8.66	100.0		78.2
	Identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.6	68.0		99.1	99.3		58.9
וממוכ ו (כסווווומכם)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2)
	db Match	pir:H70683	sp:RS20_ECOLI	sp:RHTC_ECOLI	gp:SC6D7_25	pir:H70684	sp:CME3_BACSU	sp:CME1_BACSU		gp:SCC123_7	pir:F70685	pir:G70685	gp:SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1
	ORF (bp)	609	261	699	405	975	1539	582	822	822	708	471	678	1023	1296	912	711	1503
	Terminal (nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
	Initial (nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	2499511
	SEQ NO. (a.a.)	8909	6909	6070	6071	6072	6073	6074	6075	9209	6077	8209	6209	6080	6081	6082	6083	6084
	SEQ NO. (DNA)	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584

Table 1 (continued)

Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
Matched length (a.a.)	422	276			81	101	886				195	436	117	143	134		92	112	118
Similarity (%)	77.3	81.9			92.6	82.2	56.6				82.6	100.0	76.9	8.79	89.6		67.4	64.3	68.6
Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9	,	34.8	36.6	33.9
Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
db Match	sp:PBUX_BACSU	pir:140838		•	sp:RL27_STRGR	prf:2304263A	sp:RNE_ECOLI			-	gp:SCF76_8	pir.S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir.H70515	pir.E70863
ORF (bp)	1887	843	621	396	264	303	2268	549	573	747	609	1308	378	450	408	360	342	465	423
Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
Initial (nt)	2499783	2502577	2502735	2503870	2504247	2504602	2507098	2507115	2507138	2508094	2508922	2510830	2511046	2511427	2512356	2512768	2512803	2513618	2514114
SEQ NO. (a.a.)	6085	9809	6087	6088	6089	0609	6091	6092	6093	6094	6095	9609	6097	8609	6609	6100	6101	6102	6103
SEQ NO. (DNA)	2585	2586	2587	2588	2589	2590	2591	2592	2593	2594	2595	2596	2597	2598	2599	2600	2601	2602	2603

Table 1 (continued)

Function	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
Matched length (a.a.)	451				915	521	508	170	319	207	208	357	338	444	286	430	366	210	251
Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
db Match	prf:2410252B				sp:SYV_BACSU	pir.A38447	sp:DNAK_BACSU	gp:ECU89166_1	sp:MDH_THEFL	gp:SC4A10_33	gp:AF065442_1	prf.2513416F	gp:FSU12290_2	prf:2513416G	gp:KPU95087_7	prf:2303274A	gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	576	1128	975	1425	930	1278	1086	633	750
Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	2533353
SEQ NO. (a.a.)	6104	6105	6106	6107	6108	6109	6110	6111	6112	6113	6114	6115	6116	6117	6118	6119	6120	6121	6122
SEQ NO. (DNA)	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

Table 1 (continued)

_																		\neg	
	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
1	Matched length (a.a.)	251	406		256	825	115		437	214	217	273	92		372		285		437
	Similarity (%)	82.5	71.9		76.6	43.0	89.6		63.4	70.6	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		60.8		72.3		62.2
(Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcaL	Streptomyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcaL		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xyIX
	db Match	prf:2408324F	prf:2411305D		prf.2408324E	gp:SCM1_10	prf.2408324E		prf.2408324D	prf.2408324C	prf:2408324B	pir:G70506	prf.2515333B		sp:CATB_RHOOP		prf:2503218A		gp:AF134348_1
	ORF (bp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	771	1119	909	855	141	1470
	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
	Initial (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	2545315
	SEQ NO. (a.a.)	6123	6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
	SEQ NO. (DNA)	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

Table 1 (continued)

_																			
	Function	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP-binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothetical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
	Matched length (a.a.)	161	342	277	979	435	388	197	198	42	417	160	336	115		142		35	75
•	Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	78.7
	Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
lable i (collillided)	Homologous gene	Pseudomonas putida plasmid pDK1 xylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xylL	Rhodococcus erythropolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptomyces coelicolor M145 clpP2	Streptomyces coelicolor M145 clpP1	Sulfolobus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
	db Match	gp:AF134348_2	gp:AF134348_3	gp:AF134348_4	gp:REU95170_1	sp:PCAK_ACICA	sp:BENE_ACICA	gp:AF071885_2	gp:AF071885_1	gp:SIS243537_4	sp:TIG_BACSU	gp:SCD25_17	sp:PBP4_NOCLA	prf:2301342A		prf:2513302C		prf:2513302C	prf.2513302C
	ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
	Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
	Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599	2558106	2558609	2559157	2560131	2561115	2561920	2562093	2562115	2562341
	SEQ NO. (a.a.)	6141	6142	6143	6144	6145	6146	6147	6148	6149	6150	6151	6152	6153	6154	6155	6156	6157	6158
	SEQ NO. (DNA)	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

Table 1 (continued)

						· · - · - · · · · · · · · · · · ·				
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
2659	6129	2562776	2562387	390						
2660	6160	2562963	2563847	.588						
2661	6161	2564402	2563932	471	sp:LACB_STAAU	Staphylococcus aureus NCTC 8325-4 lacB	40.0	71.4	140	galactose-6-phosphate isomerase
2992	6162	2565245	2564550	969	sp:YAMY_BACAD	Bacillus acidopullulyticus ORF2	26.2	58.1	248	hypothetical protein
2663	6163	2566231	2565623	609	pir.A70866	Mycobacterium tuberculosis H37Rv Rv2466c	56.8	80.9	199	hypothetical protein
2664	6164	2566345	2568945	2601	SP:AMPN_STRLI	Streptomyces lividans pepN	47.5	70.5	890	aminopeptidase N
2665	6165	2569211	2570293	1083	pir:B70206	Borrelia burgdorferi BB0852	25.1	58.1	358	hypothetical protein
2666	6166	2571460	2570309	1152						
2667	6167	2571510	2572175	999						
2668	6168	2572193	2572348	156		-				
2669	6169	2572677	2572351	327	gp:AF139916_3	Brevibacterium linens ATCC 9175 crtl	61.5	81.7	104	phytoene desaturase
2670	6170	2572977	2572807	171						
2671	6171	2573770	2573393	378						
2672	6172	2573864	2572659	1206	sp:CRTJ_MYXXA	Myxococcus xanthus DK1050 carA2	31.2	63.8	381	phytoene dehydrogenase
2673	6173	2574718	2573843	876	sp:CRTB_STRGR	Streptomyces griseus JA3933 crtB	31.4	58.6	290	phytoene synthase
2674	6174	2575898	2574780	1119	gp:LMAJ9627_3	Listeria monocytogenes lltB	25.8	47.7	392	multidrug resistance transporter
2675	6175	2577213	2575981	1233		-				
2676	6176	2578872	2577232	1641	gp:SYOATPBP_2	Synechococcus elongatus	41.3	71.6	538	ABC transporter ATP-binding protein
2677	6177	2579760	2578879	882	sp:DPPC_BACFI	Bacillus firmus OF4 dppC	38.8	73.8	286	dipeptide transport system permease protein
2678	6178	2580707	2579769	939	pir:S47696	Escherichia coli K12 nikB	33.2	62.0	316	nickel transport system permease protein
2679	6179	2582417	2580711	1707		·				

•

Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
Matched length (a.a.)		411	482	218	235	240	94	238	126	396	196	127		99	563	172	200	536
Similarity (%)		63.5	47.9	79.4	0.09	55.0	47.0	65.1	77.0	60.4	689	61.4		0.09	9.62	62.2	26.7	52.6
Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.0	28.0
Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actll	Neisseria meningitidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10.19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yjjK	Mycobacterium tuberculosis H37Rv Rv2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
db Match		sp:ARGD_CORGL	pir.A70539	sp:YA26_MYCTU	sp:PHBB_CHRVI	pir.A40046	GSP:Y74375	gp:AF106002_1	gp:MLCB1610_9	sp:CHRA_PSEAE	pir.A70867	gp:SC6D10_19		pir.B72589	sp:YJJK_ECOLI	pir:E70867	sp:Y05L_MYCLE	pir.C69676
ORF (bp)	1941	1314	1584	747	708	738	441	792	393	1128	627	465	621	162	1668	615	2103	1419
Terminal (nt)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	2596048	2597869	2598662	2602879
Initial (nt)	2582564	2584613	2586180	2587976	2589432	2589565	2590697	2592365	2592402	2592838	2594594	2595061	2595808	2595983	2597715	2598483	2600764	2601461
SEQ NO. (a.a.)	6180	6181	6182	6183	6184	6185	6186	6187	6188	6189	6190	6191	6192	6193	6194	6195	6196	6197
SEQ NO. (DNA)	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697

Table 1 (continued)

																		$\overline{}$
Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacyl reductase	oligoribonuclease
Matched length (a.a.)			279	292		462		386		154		207	183		412	255	258	179
Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
Identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
Homologous gene			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
db Match			sp:MSMG_STRMU	sp:MSMF_STRMU		prf:2206392C		prf.2308356A		prf.2317468A		prf:2516398E	prf.2513418A		pir.A72312	sp:GIP_ECOLI	pir.E70761	sp:ORN_ECOLI
ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	069	789	762	345	1182	750	798	657
Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
Initial (nt)	2604573	2604583	2605520	2606369	2606444	2607889	2609426	2610639	2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
SEQ NO. (a.a.)	6198	6199	6200	6201	6202	6203	6204	6205	6206	6207	6208	6209	6210	6211	6212	6213	6214	6215
SEQ NO. (DNA)	2698	2699	2700	2701	2702	2703	2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715

a
ě
.≣
continued
્ઇ
ĭ
ø
Table
Ë

Function	ferric enterochelin esterase	lipoprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-specific degradation regulator protein		uronate isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
Matched length (a.a.)	454	398				436			131	358	97		335		291	185	75	141	114
Similarity (%)	50.9	71.9				99.8			63.4	69.3	72.2		60.9		45.0	74.6	80.0	8.67	61.4
Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
Homologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv Rv2518c IppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacillus subtilis 168 degA	-	Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2)
db Match	prf:2409378A	pir:C70870				gp:SCU53587_1			gp:AF085239_1	sp:GLSK_RAT	pir.A36940		sp:UXAC_ECOLI		prf:1814452C	prf:232444A	pir.E70870	sp:BCP_ECOLI	gp:SCI11_1
ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	636
Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	2634751
Initial (nt)	2620728	2622181	2622961	2623770	2623803	2625358	2625600	2626447	2627924	2628121	2628376	2628878	2628926	2630636	2631270	2632543	2633418	2633600	2634116
SEQ NO. (a.a.)	6216	6217	6218	6219	6220	6221	6222	6223	6224	6225	6226	6227	6228	6229	6230	6231	6232	6233	6234
SEQ NO. (DNA)	2716	2717	2718	2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734

			د	ein					tein	tein	-					tein			
	Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		arylsulfatase
	Matched length (a.a.)	145	473	113		3029	404	230	112	113	202	236				428	175		250
	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	6.79	0.69	76.7	81.4				58.2	97.2		74.4
	Identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
(Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A6.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
	db Match	gp:BAY15081_1	gp:AF237667_1	pir.S76537		pir:S2047	gp:SC4A7_14	pir.D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	sp:RNPH_PSEAE	:			sp:Y029_MYCTU	gp:AF121000_8		SD:Y03O MYCLE
;	ORF (bp)	405	1425	324	414	8979	1182	615	462	354	618	735	246	669	582	1362	534	099	765
	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657736
	Initial (nt)	2635151	2636589	2636845	2637653	2647627	2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660	2656236	2656452	2657633	2658500
	SEQ NO. (a.a.)	6235	6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	6247	6248	6249	6250	6251	6252
	SEQ NO. (DNA)	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

_
`
$\boldsymbol{\sigma}$
Ō
_
_
_
.=
_
_
_
\sim
\sim
u
_
_
↽
a
_
Ω
m.
₩

_													-			— т		r	
	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain l	
	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
	Similarity (%)	69.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
	Homologous gene	Corynebacterium glutamicum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
	db Match	prf:2516259A		gp:SCE22_22	sp:Y03M_MYCTU		pir.A47039	sp:Y03H_MYCTU	sp:Y03G_MYCTU		sp:Y03F_MYCTU		prf:1816252A	sp:Y0A8_MYCTU	pir.T34684	sp:SERB_ECOLI		pir.D45335	
İ	ORF (bp)	852	636	492	747	891	096	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
	Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
	Initial (nt)	2659457	2659496	2660638	2661417	2661565	2662376	2662867	2663182	2663437	2664060	2665687	2666115	2668760	2669561	2670573	2671126	2672805	2672950
	SEQ NO. (a.a.)	6253	6254	6255	6256	6257	6258	6229	6260	6261	6262	6263	6264	6265	6266	6267	6268	6269	6270
	SEQ NO. (DNA)	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770

												—,							-	\neg
	Function	ribonucleotide reductase beta-chain	ferritin	sporulation transcription factor	iron dependent repressor or diptheria toxin repressor	cold shock protein TIR2 precursor	hypothetical membrane protein	ribonucleotide reductase alpha- chain		50S ribosomal protein L36	NH3-dependent NAD(+) synthetase			hypothetical protein	hypothetical protein	alcohol dehydrogenase	Bacillus subtilis mmg (for mother cell metabolic genes)	hypothetical protein		phosphoglucomutase
	Matched length (a.a.)	334	159	256	225	124	50	707		41	279			257	96	337	459	284		556
	Similarity (%)	99.7	64.2	60.2	60.4	62.1	86.0	100.0		79.0	78.1			56.4	68.8	52.8	56.0	66.2		90.6
	Identity (%)	99.7	31.5	32.8	27.6	24.2	50.0	99.9		58.0	55.6			30.7	41.7	26.1	27.0	33.8		61.7
(Homologous gene	Corynebacterium glutamicum ATCC 13032 nrdF	Escherichia coli K12 ftnA	Streptomyces coelicolor A3(2) whiH	Corynebacterium glutamicum ATCC 13869 dtxR	Saccharomyces cerevisiae YPH148 YOR010C TIR2	Archaeoglobus fulgidus AF0251	Corynebacterium glutamicum ATCC 13032 nrdE		Rickettsia prowazekii	Bacillus subtilis 168 nadE			Synechocystis sp. PCC6803 slr1563	Mycobacterium tuberculosis H37Rv Rv3129	Bacillus stearothermophilus DSM 2334 adh	Bacillus subtilis 168 mmgE	Arabidopsis thaliana T6K22.50		Escherichia coli K12 pgm
	db Match	gp:AF112536_1	sp:FTNA_ECOLI	gp:SCA32WHIH_4	pir:140339	sp:TIR2_YEAST	pir.C69281	gp:AF112535_3		SP:RL36_RICPR	sp:NADE_BACSU			pir.S76790	pir:G70922	sp:ADH2_BACST	sp:MMGE_BACSU	pir.T05174		sp:PGMU_ECOLI
	ORF (bp)	1002	486	750	099	438	276	2121	315	141	831	93	498	747	288	1020	1371	834	792	1662
	Terminal (nt)	2673338	2675289	2676240	2676243	2677377	2676918	2677478	2680784	2681223	2682376	2681464	2683616	2682379	2683131	2683627	2686289	2687148	2687449	2688389
	Initial (nt)	2674339	2674804	2675491	2676902	2676940	2677193	2679598	2680470	2681363	2681546	2681556	2683119	2683125	2683418	2684646	2684919	2686315	2688240	2690050
	SEQ NO. (a.a.)	6271	6272	6273	6274	6275	6276	6277	6278	6229	6280	6281	6282	6283	6284	6285	6286	6287	6288	6289
	SEQ NO. (DNA)	2771	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782	2783	2784	2785	2786	2787	2788	2789

Match Homologous gene Identity Similarity match Homologous gene Identity Similarity matched Homologous environment 0 1								_	Matched		
## Mycobacterium tuberculosis	NO. (nt) (nt) (bp)	Terminal ORF d (hp)	ORF (bp)	ס	ס	b Match	Homologous gene	Identity (%)	ıţ	length (a.a.)	Function
843 Helicobacter pylori J99 jhp1146 25.4 61.5 122 81_BACSU Bacillus subtilis 168 ycsl 51.2 79.1 254 26281_1 Rhodococcus erythropolis 24.2 48.6 49.6 26281_1 Rhodococcus erythropolis 24.8 49.6 355 17965 csp1 24.6 46.6 500 17965 csp1 24.6 46.6 500 17965 csp1 25.3 24.6 46.6 500 17_BACCA Bacillus subtilis 168 30.8 66.2 438 17_BACCA Bacillus subtilis 168 30.8 66.2 438 25_30 Streptomyces coelicolor A3(2) 33.0 69.0 873 1456 Chlamydophila pneumoniae 60.0 67.0 84 1737 Chlamydia muridarum Nigg 71.0 75.0 42 1738 Streptomyces collinus Tu 1892 28.1 54.1 196	6290 2690150 2690437 288 pir.F70	2690437 288 pir.F7	288 pir.F7	pir.F7	pir:F70	1650	Mycobacterium tuberculosis H37Rv Rv3069	41.7	64.3	84	hypothetical membrane protein
Secondary Bacillus subtilis 168 yes 51.2 79.1 254 26281_1 Rhodococcus erythropolis 24.2 48.6 496 10.0 1	6291 2690437 2690760 324 pir.D7	2690760 324 pir.D7	324 pir:D7	pir:D7	pir:D7	1843	Helicobacter pylori J99 jhp1146	25.4	61.5	122	hypothetical membrane protein
26281_1 Rhodococcus erythropolis 24.2 48.6 496 1_CORGL Corynebacterium glutamicum 24.8 49.6 355 1_F965 csp1 17965 csp1 68.6 49.6 355 1_CORGL Revibacterium flavum) ATCC 24.8 49.6 355 1_F965 csp1 68.0 46.6 500 450 1_CORGL Rhodococcus erythropolis 24.6 46.6 500 438 1_E25_30 Streptomyces coelicolor A3(2) 33.0 69.0 873 225_30 Streptomyces coelicolor A3(2) 33.0 69.0 873 18641_2 Staphylococcus aureus 45.4 79.8 218 11516 AR39 CP0987 71.0 75.0 42 1737 Chlamydai muridarum Nigg 71.0 75.0 42 1938BL Streptomyces collinus Tu 1892 28.1 54.1 196	6292 2690773 2691564 792 sp:YC	2690773 2691564 792	792		sp:YC	si_BACSU	Bacillus subtilis 168 ycsl	51.2	79.1	254	hypothetical protein
Corynebacterium glutamicum	6293 2691689 2693053 1365 gp:AF1	2693053 1365	1365		gp:AF1	26281_1	Rhodococcus erythropolis	24.2	48.6	496	transposase (IS1676)
Rhodococcus erythropolis 24.6 46.6 500	6294 2693299 2694918 1620 sp.CSF	2694918 1620 sp:CS	1620 sp:CS	sp:CS	sp:CSF	1_CORGL	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	24.8	49.6	355	major secreted protein PS1 protein precursor
Rhodococcus erythropolis 24.6 46.6 500	6295 2694926 2695279 354	2695279		354							
Rhodococcus erythropolis 24.6 46.6 500	6296 2695554 2695718 165	2695718		165							
Rhodococcus erythropolis 24.6 46.6 500	6297 2695766 2695320 447	2695320		447							
Streptomyces coelicolor A3(2) 33.0 66.2 438 Streptomyces coelicolor A3(2) 33.0 69.0 873 Staphylococcus aureus 45.4 79.8 218 Chlamydia muridarum Nigg 71.0 75.0 42 Chlamydia muridarum Nigg 71.0 75.0 42 Streptomyces collinus Tu 1892 28.1 54.1 196 ans G	6298 2695812 2697212 1401 gp:AF12	2695812 2697212 1401	2697212 1401		gp:AF12	6281_1	Rhodococcus erythropolis	24.6	46.6	200	transposase (IS1676)
A Bacillus subtilis 168 30.8 66.2 438 Streptomyces coelicolor A3(2) 33.0 69.0 873 SCE25.30 45.4 79.8 218 Staphylococcus aureus 45.4 79.8 218 Chlamydophila pneumoniae 60.0 67.0 84 AR39 CP0987 71.0 75.0 42 TC0129 71.0 75.0 42 Streptomyces collinus Tu 1892 28.1 54.1 196	6299 2698150 2697383 768	2697383		168							
Streptomyces coelicolor A3(2) 33.0 69.0 873 SCE25.30 Staphylococcus aureus 45.4 79.8 218 Chlamydophila pneumoniae 60.0 67.0 84 AR39 CP0987 71.0 75.0 42 TC0129 71.0 75.0 42 Streptomyces collinus Tu 1892 28.1 54.1 196	6300 2699531 2698194 1338 sp.GLTT	2699531 2698194 1338 sp.GL	1338 sp:GL	sp:GL	sp:GL	BACCA	Bacillus subtilis 168	30.8	66.2	438	proton/sodium-glutamate symport protein
Streptomyces coelicolor A3(2) 33.0 69.0 873 SCE25.30 Staphylococcus aureus 45.4 79.8 218 Chlamydophila pneumoniae 60.0 67.0 84 AR39 CP0987 71.0 75.0 42 TC0129 71.0 75.0 42 Streptomyces collinus Tu 1892 28.1 54.1 196	6301 2700920 2701612 693	2700920 2701612		693							
Staphylococcus aureus 45.4 79.8 218 Chlamydophila pneumoniae 60.0 67.0 84 AR39 CP0987 71.0 75.0 42 TC0129 71.0 75.0 42 Streptomyces collinus Tu 1892 28.1 54.1 196	6302 2702466 2699926 2541 gp:SCE	2702466 2699926 2541 gp:SC	2541 gp:SC	gp:SC	gp:SCE	25_30	Streptomyces coelicolor A3(2) SCE25.30	33.0	0.69	873	ABC transporter
Staphylococcus aureus 45.4 79.8 218 Chlamydophila pneumoniae 60.0 67.0 84 AR39 CP0987 71.0 75.0 42 TC0129 71.0 75.0 42 Streptomyces collinus Tu 1892 28.1 54.1 196	6303 2702466 2703356 891	2703356	2703356	891							
Chlamydophila pneumoniae 60.0 67.0 84 AR39 CP0987 71.0 75.0 42 Chlamydia muridarum Nigg 71.0 75.0 42 TC0129 TC0129 196 196 Streptomyces collinus Tu 1892 28.1 54.1 196	6304 2703194 2702487 708 gp:SAU	2703194 2702487 708	2702487 708	\vdash	gp:SAU	18641_2	Staphylococcus aureus	45.4	79.8	218	ABC transporter ATP-binding protein
Chlamydia muridarum Nigg 71.0 75.0 42 TC0129 Streptomyces collinus Tu 1892 28.1 54.1 196	6305 2704314 2704586 273 PIR:F8	2704314 2704586 273 PIR:F	2704586 273 PIR:F	PIR:F	PIR:F8	1516	Chlamydophila pneumoniae AR39 CP0987	0.09	67.0	84	hypothetical protein
Streptomyces collinus Tu 1892 28.1 54.1 196 ans G	6306 2704835 2704975 141 PIR:F8	2704835 2704975 141 PIR:F	2704975 141 PIR:F	PIR:F	PIR:F8	11737	Chlamydia muridarum Nigg TC0129	71.0	75.0	42	hypothetical protein
Streptomyces collinus Tu 1892 28.1 54.1 196 ansG	6307 2709878 2710555 678	2710555	2710555	678							
	6308 2710637 2711308 672 prf.25	2710637 2711308 672	672		prf:25(J9388L	Streptomyces collinus Tu 1892 ansG	28.1	54.1	196	oxidoreductase or dehydrogenase

	Function	methyltransferase	hypothetical protein	hypothetical protein		UDP-N-acetylglucosamine 1- carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthase	hypothetical protein	succinyl-CoA synthetase alpha chain	hypothetical protein	succinyl-CoA synthetase beta chain		frenolicin gene E product		succinyl-CoA coenzyme A transferase	transcriptional regulator
	Matched length (a.a.)	205	84	42		417	190	281		305	172	83	291	75	400		213		501	321
	Similarity (%)	51.2	66.0	75.0		75.3	84.2	69.0		84.6	79.7	65.1	79.4	43.0	73.0		71.8		8.77	68.5
	Identity (%)	25.9	61.0	71.0		44.8	66.3	45.9		57.1	61.1	36.1	52.9	42.0	39.8		38.5		47.9	38.6
(55,000)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0089	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Bacillus subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinococcus radiodurans R1 DR1844	Coxiella burnetii Nine Mile Ph I sucD	Aeropyrum pernix K1 APE1069	Bacillus subtilis 168 sucC		Streptomyces roseofulvus frnE	-	Clostridium kluyveri cat1 cat1	Azospirillum brasilense ATCC 29145 ntrC
	db Match	sp:Y089_MYCTU	GSP:Y35814	PIR:F81737		sp:MURA_ACICA	sp:Y02Y_MYCTU	gp:SC2G5_15		sp:CYSK_BACSU	prf:2417357C	gp:AE002024_10	sp:Sucp_coxBu	PIR:F72706	sp:SUCC_BACSU		gp:AF058302_5		sp:CAT1_CLOKL	sp:NIR3_AZOBR
	ORF (bp)	525	273	141	195	1254	570	843	408	924	546	288	882	225	1194	360	735	819	1539	1143
	Terminal (nt)	2712374	2713453	2713842	2717993	2718436	2720319	2720385	2721295	2722857	2723609	2723770	2724478	2725843	2725384	2726786	2727399	2728207	2729378	2732518
	Initial (nt)	2711850	2713181	2713702	2718187	2719689	2719750	2721227	2721702	2721934	2723064	2724057	2725359	2725619	2726577	2727145	2728133	2729025	2730916	2731376
	SEQ NO. (a.a.)	6309	6310	6311	6312	6313	6314	6315	6316	6317	6318	6319	6320	6321	6322	6323	6324	6325	6326	6327
	SEQ NO.	2809	2810	2811	2812	2813	2814	2815	2816	2817	2818	2819	2820	2821	2822	2823	2824	2825	2826	2827

_
_
Ö
a
_
_
_
-
⋍
_
둗
S
\sim
೭
$\overline{}$
Ę
$\overline{}$
e 1 (
e 1 (
e 1 (
<u>le 1 (</u>

Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5'-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
Matched length (a.a.)		213	255	292	325	369	. 315		344	225	529	352	58	347	482
Similarity (%)		81.7	82.8	82.2	78.5	56.0	60.0		55.2	74.2	56.0	79.0	81.0	94.2	89.0
Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purF
db Match		pir.E70810	pir.S68595	gp:MTPSTA1_1	pir.A70584	pir.H70583	gp:SCD84_18		sp:BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir:B70809	gp:AB003158_5	gp:AB003158_4
ORF (bp)	807	732	897	921	1014	1125	876	783	1095	687	942	1101	213	1074	1482
Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771	2740650	2740670	2742577	2742685	2744010	2745954	2747564
SEQ NO.	6328	6329	6330	6331	6332	6333	6334	6335	6336	6337	6338	6339	6340	6341	6342
SEQ NO.	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

	Function	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synthetase		5'-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
	Matched length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	269
	Similarity (%)	75.8	94.0	87.1	71.0	89.5		93.3	93.7		6.77	51.5		68.7	81.6	70.6
	Identity (%)	57.3	75.9	67.7	64.0	9.77		80.3	81.0		46.2	28.0		37.4	49.0	41.8
(Somman)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC 6872 purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
	db Match	pir.H70536	gp.AB003158_2	gp:AB003158_1	GP:SSU18930_21 4	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf:2420329A	prf:2216389A		pir.C70709	sp:DCTA_SALTY	prf:2408266A
	ORF (bp)	375	1017	741	186	2286	720	699	243	522	477	2748	276	289	1338	2118
	Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
	Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402	2752995	2753237	2753298	2753804	2753992	2756851	2757815	2759200	2761649
	SEQ NO. (a.a.)	6343	6344	6345	6346	6347	6348	6349	6350	6351	6352	6353	6354	6355	6356	6357
	SEQ NO. (DNA)	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857

	Function		5-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
	Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
	Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4	67.6	98.8	98.6	5.07	72.7	. 9.69	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
lable I (collinaed)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
	db Match		gp:AB003161_3	gp:AB003161_2	sp:AAT_SULSO	gp:AB003161_1	sp:YHIT_MYCLE		pir:S62195	sp:DTPT_LACLA	sp:BIOA_CORGL	sp.BIOD_CORGL	gp:AF049873_3	prf.2222216A	sp:TIPA_STRLI	
	ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
	Initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137	2769095	2770511	2770714	2771989	2774098	2774814	2775689	2776879
	SEQ NO. (a.a.)	6358	6329	6360	6361	6362	6363	6364	6365	9969	6367	6368	6369	6370	6371	6372
	SEQ NO. (DNA)	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872

Table 1 (continued)

													. —					
Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uptake system protein
Matched length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
Similarity (%)	75.8	68.9	68.5	78.4		62.1	0.69	52.9	9.53		50.7	64.0	50.3	66.7		57.6	60.2	46.7
Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4
Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd H10119 znuA
db Match	gp.ECOPOXB8G_	prf.2212334B	sp:YCDC_ECOLI			gp:AF096929_2	sp:ALSR_BACSU	pir.C70982	pir.C69862		pir.A45264	pir.B70798	pir:S41307	sp:TPS1_SCHPO		sp:OTSB_ECOLI	sp:CCPA_BACME	sp:ZNUA_HAËIN
ORF (bp)	1737	1482	531	1320	2142	096	705	813	813	459	399	1503	327	1455	513	768	1074	942
Terminal (nt)	2776768	2780446	2780969	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637	2795676	2797806
Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531	2792873	2794300	2794870	2796749	2796865
SEQ NO.	6373	6374	6375	6376	6377	6378	6379	6380	6381	6382	6383	6384	6385	6386	6387	6388	6389	6390
SEQ NO. (DNA)	2873	2874	2875	2876	2877	2878	2879	2880	2881	2882	2883	2884	2885	2886	2887	2888	2889	2890

Function	ABC transporter	hypothetical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or tRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
Matched length (a.a.)	223	135	303		561		204	128	292	130	212	334	464	899	473	248	368
Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	67.5	80.8	55.7	47.3	68.8	0.77	56.9	69.4	60.3
Identity (%)	31.4	0.09	23.4	-	32.1		34.3	35.2	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bpIA	Bacillus subtilis 168 idh or iolG	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coli K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
db Match	gp.AF121672_2	pir:E70507	pir.A69426		gp:AF096929_2		pir.B72359	sp:MI2D_BACSU	sp:SHIA_ECOLI	sp:SHIA_ECOLI	gp:SC5A7_19	sp.PT56_YEAST	sp:SYC_ECOLI	prf.2511335C	gp.AF205034_4	sp:NAGB_ECOLI	sp:NAGA_VIBFU
ORF (bp)	069	555	1500	201	1689	747	618	435	855	426	654	939	1380	1983	1299	759	1152
Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676	2805113	2806016	2806599	2807426	2808399	2809824	2811960	2813279	2814081
Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110	2805967	2806441	2807252	2808364	2809778	2811806	2813258	2814037	2815232
SEQ NO. (a.a.)	6391	6392	6393	6394	6395	6396	6397	6398	6388	6400	6401	6402	6403	6404	6405	6406	6407
SEQ NO. (DNA)	2891	2892	2893	2894	2895	2896	2897	2898	2899	2900	2901	2902	2903	2904	2905	2906	2907

Table 1 (continued)

				sphate		•	uc	7.		nding	nding	91					
	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
	Matched length (a.a.)	298	321	220		439	222	099	342	314	258	193	142		152	235	157
	Similarity (%)	62.1	57.6	68.6		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5	91.1
	Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
ומפוכ ו (פפווווותבת)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
	db Match	sp:DAPA_ECOLI	sp:GLK_STRCO	prf:2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	sp:OPPF_LACLA	sp.RHTB_ECOLI	prf.2309303A		pir.C70607	sp:Y18T_MYCTU	pir.H70803
	ORF (bp)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
	SEQ NO. (a.a.)	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
	SEQ NO. (DNA)	2908	2909	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

Homologous gene (%) (%) (aa) Function	Mycobacterium tuberculosis 43.5 70.0 223 two-component system response H37Rv Rv3246c mtrA	Escherichia coli K12 baeS 29.3 67.7 341 two-component system sensor		Escherichia coli K12 radA 41.5 74.3 463 DNA repair protein RadA	Bacillus subtilis 168 yacK 40.3 73.3 345 hypothetical protein	Mycobacterium tuberculosis 29.4 53.3 231 hypothetical protein H37Rv Rv3587c	Pseudomonas putida NCIMB 59.5 85.1 471 p-hydroxybenzaldehyde 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca1 36.7 66.2 210 mitochondrial carbonate dehydratase beta	Streptomyces antibioticus IMRU 48.4 70.7 283 A/G-specific adenine glycosylase 3720 mutY			Brevibacterium saccharolyticum 99.2 99.6 258 L-2.3-butanediol dehydrogenase				Mycobacterium tuberculosis 48.5 69.1 97 hypothetical protein		as actugitosa 57.0 63.0 99 virulence factor
S_ECOLI A_ECOLI K_BACSU	S_ECOLI A_ECOLI K_BACSU		13		7	304	196338_1		pir.T08204 Chlam	21797_1			109078_1				552	GSP:Y29188 Pseudomoi	Pseudomonas aeruginosa
) h	723 prf:221	1116 sp:BAE	582	1392 sp:R	1098 sp:Y	687 pir:D708	1452 gp:PPL	147	621 pir.T	879 gp:AF1	1155	306	774 gp:AB0	324	741	312	291 pir.E70:	420 GSF	
(nt) (bp)	2830779 7	2831894 1	2832666 5	2834181 1:	2835285 11	2835283 6	2836048 1	2837591 1	2837956 6	2839521	2840716 1	2840758	2841848 7	2842453	2843233	2843716	2843432	2845558	
(nt)	2830057 2	2830779 2	2832085 2	2832790 2	2834188 2	2835969 2	2837499 2	2837737	2838576 2	2838643 2	2839562	2841063 2	2841075	2842130	2842493	2843405	2843722	2845139	
(a.a.)	6424	6425	6426	6427	6428	6429	6430	6431	6432	6433	6434	6435	6436	6437	6438	6439	6440	6441	
SEQ NO.	2924	2925	2926	2927	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	

Function	virulence factor	CIPC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protein	hypothetical protein	lysyl-tRNA synthetase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase
Matched length	55	832	469	316	680					481	240	511	268			138	158	118	268
Similarity (%)	75.0	86.2	70.2	62.7	60.9					100.0	55.8	71.2	52.6		-	9.69	0.69	69.5	75.0
Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	51.5
Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacillus cereus ts-4 impdh	Rhodococcus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folK	Bacillus subtilis 168 folB	Mycobacterium leprae folP
db Match	GSP:Y29193	sp:MECB_BACSU	gp:AB035643_1	pir.JC6117	sp:PH2M_TRICU					gp:AF237667_1	pir:G70807	gp:AB012100_1	gp:CGPAN_2			gp:MLCB2548_4	sp:HPPK_METEX	sp:FOLB_BACSU	gp:AB028656_1
ORF (bp)	321	2775	1431	1011	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477	390	837
Terminal (nt)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867	2865346	2865731
Initial (nt)	2846186	2846940	2847229	2848769	2850031	2852017	2853769	2855795	2859044	2859055	2860145	2862082	2862929	2863621	2864421	2864848	2865343	2865735	2866567
SEQ NO.	6443	6444	6445	6446	6447	6448	6449	6450	6451	6452	6453	6454	6455	6456	6457	6458	6459	6460	6461
SEO NO		2944	2945	2946	2947	2948	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959	2960	2961

Table 1 (continued)

															_			
Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phosphoribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D-alanyl-D-alanine carboxypeptidase	inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothetical protein	hypothetical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family
Matched length (a.a.)	188		782	165	310	459	159		202	132	144	173	202	68		411	26	135
Similarity (%)	86.2		0.69	83.0	86.8	51.4	73.6		80.7	86.4	63.2	60.1	72.3	59.6		9.69	73.2	59.3
Identity (%)	9.09		56.0	51.5	41.0	27.2	49.7		56.0	38.6	36.8	36.4	44.6	30.3	·	38.0	46.4	26.7
Homologous gene	Bacillus subtilis 168 mtrA			Salmonella typhimurium GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bgIP		Nocardioides sp. KP7 phdD	Streptomyces coelicolor A3(2) SCH69.09c	Burkholderia pseudomallei ORF E
db Match	sp:GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp:DAC_ACTSP	sp:IPYR_ECOLI		pir:H70886	sp:Y0B1_MYCTU	sp:Y0B2_MYCTU	sp:Y0B3_MYCTU	sp:Y0B4_MYCTU	sp:PTBA_BACSU		gp:AB017795_2	6_69HOS:qg	prf.2516298U
ORF (bp)	588	915	2580	582	891	1233	474	219	1539	399	411	498	609	249	264	1233	288	444
Terminal (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478	2880252	2880987
Initial (nt)	2867173	2867471	2869748	2870444	2871389	2872677	2872926	2873611	2875443	2875832	2876280	2876777	2877385	2877703	2877858	2879710	2879965	2880544
SEQ NO. (a.a.)	6462	6463	6464	6465	6466	6467	6468	6469	6470	6471	6472	6473	6474	6475	6476	6477	6478	6479
SEQ NO. (DNA)	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972	2973	2974	2975	2976	2977	2978	2979

Table 1 (continued)

Function	peptide synthase		phenylacetaldehyde dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein							hypothetical protein			peptidase			Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
Matched length (a.a.)	1241		488	241	54	31	548							1236			447			797
Similarity (%)	51.6		63.7	79.7	63.0	80.0	100.0							42.3			68.0			68.3
Identity (%)	28.4		35.0	57.3	62.0	74.0	99.5	,						21.7	-		37.1			35.6
Homologous gene	Streptomyces roseosporus cpsB		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Brevibacterium flavum MJ-233							Homo sapiens MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
db Match	prf:2413335A		prf:2310295A	gp:CJ11168X2_25	GP:MSGTCWPA_1	GP:MSGTCWPA_1	gsp:R94368							prf:2309326A			pir.G70870			prf:2504285B
ORF (bp)	3885	1461	1563	918	162	177	1644	180	1209	963	1986	2454	2799	3591	2775	612	1371	579	909	3057
Terminal (nt)	2884882	2881844	2884935	2886916	2890346	2890553	2888897	2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788	2909231	2913228
Initial (nt)	2880998	2883304	2886497	2887833	2890185	2890377	2890540	2890930	2892138	2893100	2895085	2897525	2900326	2903920	2906738	2907250	2907515	2909210	2909830	2910172
SEQ NO. (a.a.)	6480	6481	6482	6483	6484	6485	6486	6487	6488	6489	6490	6491	6492	6493	6494	6495	6496	6497	6498	6499
SEQ NO. (DNA)	2980	2981	2982	2983	2984	2985	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	2998	2999

Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	cardiolipin synthase
Matched length (a.a.)	104	523	161	7.7	121	178	334		184	71	339			31	513
Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		60.9	70.4	54.2			59.9	62.0
Identity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0		37.5	47.9	31.3			30.8	27.9
Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
db Match	gp:AF097740_3	gp:AF097740_4	gp:AF097740_5	prf.2416476G	prf.2504285H	pir:D70594	sp:YBDK_ECOLI		sp:DEF_BACSU	pir:D70631	pir.B70631			gp:AF108767_1	gp:BFU88888_2
ORF (bp)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920220	2922108	2923617
Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	6507 2919481	2919715	2919741	2920286	2920476	2920849	2921320	2922118
SEQ NO. (a.a.)	6500	6501	6502	6503	6504	6505	9059	6507	6508	6209	6510	6511	6512	6513	6514
SEQ NO. (DNA)	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	3014

_
g
Ĭ
.⊑
፷
႘
_
τ-
<u>•</u>
虿
<u> </u>
_

Name Name	l										
65.16 2924644 664 Amount Escherichia coli K12 bor 31.6 67.2 393 65.17 2925541 2925674 1164 gp.PCCAJ10968_1 Vibrio cholerae US1569 nptA 28.5 68.9 382 65.17 2925541 2926704 1164 gp.PLZC_PSEAR Pseudomonas aureofaciens 30- 38.8 56.4 289 65.18 2927546 2926707 1164 gp.PLZC_PSEAR Pseudomonas aureofaciens 30- 38.8 56.4 289 65.19 2927561 633 2927616 633 360 56.4 289 65.21 2927561 633 398 Specific colling co		SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
65.16 2925147 2923564 1194 SpiBCR_ECOLLI Escherichia coli K12 bcr 31.6 67.2 383 65.17 2925541 2926704 1164 gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 38.2 65.18 2927541 2926707 840 sp.PHZC_PSEAR Pseudomonas aureofaciens 30-/more application and according a property and according a pr			2924191	2924844	654						
65.10 2925541 2926704 1164 gp.VCAJ10968_1 Vibrio cholerae JS1569 nptA 28.5 68.9 382 65.18 2927546 2926707 840 sp.PHZC_PSEAR Pseudomonas aureofaciens 30- 38.8 56.4 289 65.18 2927546 2926707 640 sp.PHZC_PSEAR Pseudomonas aureofaciens 30- 38.8 56.4 289 65.20 2928318 2927651 638 gp.PHZC_PSEAR Stream flormis ATCC 36.9 66.3 309 65.21 2929756 292936 501 pir.C70629 Mycobacterium tuberculosis 47.6 68.5 168 65.22 2929756 2923371 1032 pir.B70629 Mycobacterium tuberculosis 31.5 64.8 270 65.22 2929756 2933371 1032 pir.H70628 Mycobacterium tuberculosis 31.5 64.8 270 65.22 2933470 1365 pir.H70628 Mycobacterium tuberculosis 31.5 67.8 67.8 66.8 65.22			2925147	2923954	1194	sp:BCR_ECOLI	Escherichia coli K12 bcr	31.6	67.2	393	membrane transport protein or bicyclomycin resistance protein
65.18 2927546 2926707 640 sp. PHZC_PSEAR Pseudomonas aureofaciens 30- 38.8 56.4 289 65.19 2928754 633 PHZC_PSEAR Pseudomonas aureofaciens 30- 38.8 56.4 289 65.20 2928236 638 pp. BCRA_BACL Bacillus licheniformis ATCC 36.9 66.3 309 65.21 2929256 501 pir.C70629 Mycobacterium tuberculosis 47.6 68.5 168 65.22 2929256 503 pir.B70629 Mycobacterium tuberculosis 47.6 68.5 168 65.24 2931340 2924829 50.1 pir.B70629 Mycobacterium tuberculosis 31.5 64.8 27.0 65.24 2931340 2924829 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 66.8 50.6 65.25 2932677 2934829 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 67.8 457 65.26 2932577 2934829 2253 p		-	2925541	2926704	1164	gp:VCAJ10968_1	Vibrio cholerae JS1569 nptA	28.5	68.9	382	sodium dependent phosphate pump
6510 2928283 2927651 768 gp:SCE8_16 Streptomyces coelicolor A3(2) 24.3 60.8 255 6520 2928318 2927551 768 gp:SCE8_16 SCE8 16c 36.9 66.3 309 6521 2929237 2929256 501 pir.C70629 Mycobacterium tuberculosis 47.6 68.5 168 6522 2929456 2931336 1386 pir.C70629 Mycobacterium tuberculosis 31.5 64.8 270 6523 2929651 2931336 1386 pir.H70628 Mycobacterium tuberculosis 31.5 64.8 270 6524 2931340 2932657 747 Mycobacterium tuberculosis 41.2 63.5 805 6526 2932577 2934829 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 67.8 457 6526 2932567 1365 sp.:ADRO_BOVIN Bos taurus 31.0 67.8 457 6528 29341508 29404472 1062	 	·	2927546	2926707	840	sp:PHZC_PSEAR	Pseudomonas aureofaciens 30- 84 phzC	38.8	56.4	289	phenazine biosynthesis protein
6520 2928318 2927551 768 gp:SCE8_16 Streptomyces coelicolor A3(2) 24.3 60.8 255 6521 2929237 2928302 936 sp:BCRA_BACLI Bacillus licheniformis ATCC , 36.9 66.3 309 6522 2929256 501 pir.C70629 Mycobacterium tuberculosis 47.6 68.5 168 6523 2929951 2931336 1386 pir.B70629 Mycobacterium tuberculosis 31.5 64.8 270 6524 2931340 2932371 1032 sp:GLNH_BACST Mycobacterium tuberculosis 31.5 64.8 270 6524 2931340 2932677 2934629 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 64.8 270 6526 2932577 2934629 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 67.8 457 6526 2933607 1365 sp:ADRO_BOVIN Bos taurus 31.0 60.3 156 6529 <td>_</td> <td></td> <td>2928283</td> <td>2927651</td> <td>633</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_		2928283	2927651	633						
6521 2929237 2928302 936 sp.BCRA_BACLI Bacillus licheniformis ATCC 36.9 66.3 309 6522 2929756 2929256 501 pir.C70629 Mycobacterium tuberculosis 47.6 68.5 168 6523 2929756 2931336 1386 pir.B70629 Mycobacterium tuberculosis 31.5 64.8 270 6524 2931340 2932371 1032 sp.GLNH_BACST Bacillus stearchtermophilus 31.5 64.8 270 6526 2932577 2934829 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 805 6526 2933597 2934629 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.6 67.8 457 6526 2933507 2944629 254 sp.ELAA_ECOLI Escherichia coli K12 elaA 37.0 67.8 457 6528 2944608 2944472 1029 pir.BACSU Bacillus subtilis 168 purT 59.1 82.6 379		1	2928318	2927551	768	gp:SCE8_16	Streptomyces coelicolor A3(2) SCE8 16c	24.3	8.09	255	ABC transporter
6522 2929756 501 pir.C70629 Mycobacterium tuberculosis 47.6 68.5 168 6523 2929951 2931336 1386 pir.B70629 Mycobacterium tuberculosis 35.0 70.2 423 6524 2931340 2932371 1032 sp.GLNH_BACST Mycobacterium tuberculosis 41.2 64.8 270 6526 2932577 2934829 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 805 6526 2933597 29348403 2932652 747 Mycobacterium tuberculosis 41.2 63.5 805 6526 2933398 2932652 747 Mycobacterium tuberculosis 41.2 63.5 805 6526 2933398 293667 136 Sp.ELAA_ECOLI Escherichia coli K12 elaA 37.0 67.8 457 6529 2941508 2940447 1062 Bacillus subtilis 168 purT 59.1 82.6 379 6531 2942609 399 Bacillus subtilis 168 purT			2929237	2928302	936	sp:BCRA_BACLI	Bacillus licheniformis ATCC 9945A bcrA	6.96	66.3	309	ABC transporter ATP-binding protein
6523 2929951 2931336 1386 pir.B70629 Mycobacterium tuberculosis 35.0 70.2 423 6524 2931340 2932371 1032 sp.GLNH_BACST Bacillus stearothermophilus 31.5 64.8 270 6525 2932577 2934829 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 805 6526 2933398 2932652 747 Mycobacterium tuberculosis 41.2 63.5 805 6527 2938403 2939767 1365 sp.ADRO_BOVIN Bos taurus 37.2 67.8 457 6528 2939907 2940452 546 sp.ELAA_ECOLI Escherichia coli K12 elaA 34.0 60.3 156 6539 2941508 2940447 1062 m m m m 6531 2942500 2941472 1029 m m m m m 6531 2942656 2945639 1194 sp.PURT_BACSU Bacillus subtilis 168 purT			2929756	2929256	501	pir.C70629	Mycobacterium tuberculosis H37Rv Rv0413	47.6	68.5	168	mutator mutT protein
6524 2931340 2932371 1032 sp.GLNH_BACST Bacillus stearothermophilus 31.5 64.8 270 6525 2932577 2934829 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 805 6526 2933398 2932652 747 AMACOBACTERIUM tuberculosis 41.2 63.5 805 6526 2933603 2932662 747 AMACOBACTERIUM tuberculosis 41.2 63.5 805 6528 2933907 2940445 1365 sp.ADRO_BOVIN Bos taurus 37.2 67.8 457 6529 2941508 2940447 1062 Amacomator			2929951	2931336	1386	pir:B7	Mycobacterium tuberculosis H37Rv Rv0412c	35.0	70.2	423	hypothetical membrane protein
6526 2932577 2934829 2253 pir.H70628 Mycobacterium tuberculosis 41.2 63.5 805 6526 2933398 2932652 747 A7 A7 A7 A7 A7 6527 2938403 2939767 1365 sp.ADRO_BOVIN Bos taurus 37.2 67.8 457 6528 2939907 2940452 546 sp.ELAA_ECOLI Escherichia coli K12 elaA 34.0 60.3 156 6529 2941508 2940447 1062 A A A A A 6530 2942500 2941472 1029 A B A B A B A B A B A B B B B B B			2931340	2932371	1032	sp:GL	Bacillus stearothermophilus NUB36 glnH	31.5	64.8	270	glutamine-binding protein precursor
2933398 2932652 747 Bos taurus 37.2 67.8 457 2938403 2939767 1365 sp.ADRO_BOVIN Bos taurus 37.2 67.8 457 2939907 2940445 546 sp.ELAA_ECOLI Escherichia coli K12 elaA 34.0 60.3 156 2941508 2940447 1062 Promodernia	3025	6525	2932577	2934829	2253	pir:H70628	Mycobacterium tuberculosis H37Rv Rv0410c pknG	41.2	63.5	805	serine/threonine kinase
6527 2938403 2939767 1365 sp.ADRO_BOVIN Bos taurus 37.2 67.8 457 6528 2939907 2940452 546 sp.ELAA_ECOLI Escherichia coli K12 elaA 34.0 60.3 156 6529 2941508 2940447 1062 American subtilis 168 pur American subtilis 168				2932652	747						
6528 2939907 2940452 546 sp.ELAA_ECOLI Escherichia coli K12 elaA 34.0 60.3 156 6529 2941508 2940447 1062 Propression or service or se			2938403		1365	sp:A[Bos taurus	37.2	67.8	457	ferredoxin/ferredoxin-NADP reductase
6529 2941508 2940447 1062 1029 2941508 2941472 1029 2941672 1029 2942609 399 2942609 399 294205 2943012 1194 \$p:PURT_BACSU Bacillus subtilis 168 purT 59.1 82.6 379 6533 2946526 2945639 888 888 379 379	-	6528	2939907	2940452	546	sp:ELAA_ECOLI	Escherichia coli K12 elaA	34.0	60.3	156	acetyltransferase (GNAT) family
6530 2942500 2941472 1029 82.6 30.1 82.6 379 6531 2944205 2943012 1194 sp.PURT_BACSU Bacillus subtilis 168 purT 59.1 82.6 379 6533 2946526 2945639 888 888 888 888 888					1062			<u> </u>			
6531 2943007 2945639 399 Bacillus subtilis 168 purT 59.1 82.6 379 6532 2946526 2945639 888 Bacillus subtilis 168 purT 59.1 82.6 379					1029						
6532 2944205 2943012 1194 sp:PURT_BACSU Bacillus subtilis 168 purT 59.1 82.6 379 6533 2946526 2945639 888 368 379 379		6531	2943007	2942609	399						
6533 2946526 2945639	32	6532	2944205		1194	sp:PL	Bacillus subtilis 168 purT	59.1	82.6	379	phosphoribosylglycinamide formyltransferase
	_	6533			888						

ſ					$\neg \neg$	Ī												7	
	Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system sensor histidine kinase	transcriptional regulator		adenylosuccinate synthetase	hypothetical protein		hypothetical membrane protein	fructose-bisphosphate aldolase	hypothetical protein	methyltransferase	orotate phosphoribosyltransferase	hypothetical protein	3-mercaptopyruvate sulfurtransferase			
	Matched length (a.a.)	295	89	349	218		427	204		359	344	304	182	174	250	294			
	Similarity (%)	90.9	84.3	51.3	65.6		95.3	59.3		100.0	100.0	100.0	91.2	65.5	0.09	56.1			
	Identity (%)	77.6	67.4	22.4	31.7		89.7	34.3		100.0	99.7	100.0	76.9	39.1	27.6	29.6			
/	Homologous gene	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1	Streptomyces thermoviolaceus opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corynebacterium glutamicum AS019 ATCC 13059 ORF3	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis H37Rv Rv0383c	Homo sapiens mpsT			
	db Match	pir:S60890	pir.S60889	gp:AB016841_1	sp:DEGU_BACBR		gp:AB003160_1	pir.G70575		sp:YFDA_CORGL	pir.S09283	gp:CGFDA_1	pir.G70833	gp:AF058713_1	pir.B70834	sp:THTM_HUMAN			
	ORF (bp)	894	267	1140	618	225	1290	759	264	1167	1032	951	618	552	972	852	720	279	399
	Terminal (nt)	2946698	2947620	2948049	2949265	2950431	2950434	2952691	2952972	2952975	2954241	2955523	2956830	2957485	2958139	2959520	2960468	2962730	2963198
	Initial (nt)	2947591	2947886	2949188	2949882	2950207	2951723	2951933	2952709	2954141	2955272	2956473	2957447	2958036	2959110	2960371	2961187	2963008	2963596
	SEQ NO. (a.a.)	6534	6535	6536	6537	6538	6239	6540	6541	6542	6543	6544	6545	6546	6547	6548	6549	6550	6551
	SEQ NO. (DNA)	3034	3035	3036	3037	3038	3039	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051

Function	virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	bacterial regulatory protein, lacl family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
Matched length (a.a.)	59	200	132	489	108	283	476	399		375	184	88	56	361	204	386
Identity Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	9.09
Identity (%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous IFO3338	Kryptophanaron alfredi symbiont luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385
db Match	GSP:Y29188	GSP:Y29182	GSP:Y29193	pir:S76683	sp:CADF_STAAU	pir:H75109	gp:AB010439_1	sp:LUXA_KRYAS		sp:METB_ECOLI	gp:SC1A2_11	gp:SCE20_34	gp:SCE20_34	pir.E70812	pir:D70812	pir:D70834
ORF (bp)	177	762	396	1347	387	858	1170	1041	762	1146	567	240	183	1125	732	1179
Terminal (nt)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
Initial (nt)	2964258	2965076	2965188	2967804	2968403	2968951	2969834	2971017	2972099	2973205	2973796	2973961	2974200	2974467	2975629	2976596
SEQ NO. (a.a.)	6552	6553	6554	6555	6556	6557	6558	6229	6560	6561	6562	6563	6564	6565	6566	6567
SEQ NO. (DNA)	3052	3053	3054	3055	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067

Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5'-methylthioadenosine nucleosidase and S- adenosylhomocysteine nucleosidase			chromosome segregation protein			alcohol dehydrogenase
Matched length (a.a.)	275		289	108	202	135	397	212	618	338	195			1311			334
Similarity (%)	67.3		55.4	44.0	90.3	70.4	80.1	66.5	8.66	79.0	60.0			48.4			81.7
Identity (%)	32.0		28.0	38.0	9.69	47.4	26.7	38.7	99.8	42.6	27.2			18.9			50.0
Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Rhodococcus erythropolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh
db Match	pir.B69109		gp:SC4A7_3	GP:ABCARRA_2	prf:2104333D	gp:SAU43299_2	sp:DNAJ_MYCTU	sp:GRPE_STRCO	gsp:R94587	gp:SCF6_8	sp.PFS_HELPY			sp:cUT3_SCHPO			sp:ADH2_BACST
ORF (bp)	798	243	1134	330	1518	438	1185	636	1854	1332	633	1200	885	3333	929	1485	1035
Terminal (nt)	2977847	2978979	2980115	2981216	2980181	2982023	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747
Initial (nt)	2978644	2978737	2978982	2980887	2981698	2982460	2983679	2984522	2986397	2986833	2988846	2990045	2991718	2993286	2993921	2995405	2996781
SEQ NO. (a.a.)	6568	6959	6570	6571	6572	6573	6574	6575	6576	6577	6578	6259	6580	6581	6582	6583	6584
SEQ NO. (DNA)	3068	3069	3070	3071	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084

SEC Initial Tenninal ORF d Match Homologous gene Identity (%) Matched (%) Function Function 6586 29927681 207 100	- 1									
2997151 2967366 216 PREMISE STATE	<u>~</u>	Initial (nt)	Terminal (nt)	ORF (bp)		Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2997687 2997481 207 Percentage 2997688 2997876 189 Percentage Percentage <td>1</td> <td>2997151</td> <td>2997366</td> <td>216</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	2997151	2997366	216						
299768B 2997867 189 Amonates a collicular subtilis yrm 43.5 70.1 30.1 2999223 2997963 261 Amonates a collicular subtilis yrm 43.5 70.1 30.1 2999454 2998528 927 pir.F69997 Streptomyces coelicolor A3(2) 32.5 53.2 252 3000200 2999478 723 gp.SC7A8_10 Streptomyces coelicolor A3(2) 32.5 53.2 252 3001512 3002465 915 pr.CYSN_ECOLI Escherichia coli K12 cysN 47.3 78.3 414 3001524 3005465 912 sp.CYH1_BACSU Bacillus subtilis cysH 46.1 70.1 308 300546 3005462 300546 300546 30.8 64.2 212 3005545 3006546 3006916 1371 sp.ADRO_YEAST FL200 anh 487 3006546 3006947 103 pr.ADRO_YEAST FL200 anh 48.4 487 3006547 3006948 3006948 3006948 414 sp.	3	2997687	2997481	207						
2999223 2967963 261 Reactions subtiliis yrmM 43.5 70.1 30.1 2999454 2998528 927 pir.F69997 Streptomyces coelicolor A3(2) 32.5 53.2 52.2 3000200 2999478 723 gp.SC7A8_10 Streptomyces coelicolor A3(2) 32.5 53.2 52.2 3001512 3000242 915 American Signature	~	2997688	2997876	189						
2999454 2998528 927 pir F69997 Bacillus subtilis ythM 43.5 70.1 301 3000200 2999478 723 gp:SC7AB_10 Streptomyces coelicolor A3(2) 32.5 53.2 252 3001512 3002426 915 xxxxxx xxxxx xx	က	-	2997963	261						
3000200 2999478 723 gp.:SC7AB_10 Streptomyces coelicolor A3(2) 32.5 53.2 252 3001512 3002426 915 A.	ത		2998528	927	pir.F69997	Bacillus subtilis ytnM	43.5	70.1	301	hypothetical membrane protein
3001512 3002426 915 78.3 414 3001532 3000241 1299 SP.CYSN_ECOLI Escherichia coli K12 cysN 47.3 78.3 414 3002453 3000241 1299 SP.CYSD_ECOLI Escherichia coli K12 cysN 46.1 70.1 308 3003145 3002453 693 SP.CYH1_BACSU Bacillus subtilis cysH 39.2 64.2 212 3005162 3003480 1683 SP.NIR_SYNP7 Synechococcus sp. PCC 7942 34.5 65.5 502 3005545 3006916 1371 Sp.ADRO_YEAST FL200 arth 100 66.3 80.4 487 3006689 3008453 237 Homo sapiens hypE 32.6 59.0 66.3 80 3008770 3009607 414 sp.PHNB_ECOLI Escherichia coli K12 phnB 26.8 59.9 142 3009242 3009607 36 gp.SCE68_10 Streptomyces coelicolor A3(2) 50.0 66.3 80 3010231 3010979 32.1 <		L	2999478		gp:SC7A8_10	Streptomyces coelicolor A3(2) SC7A8.10c	32.5	53.2	252	hypothetical protein
3002453 3000241 1299 sp. CYSN_ECOLI Escherichia coli K12 cysN 47.3 78.3 414 3002453 3001542 912 sp. CYSD_ECOLI Escherichia coli K12 cysD 46.1 70.1 308 3003145 3002453 693 sp. CYH1_BACSU Bacillus subtilis cysH 39.2 64.2 212 3005162 3003480 1683 sp. NIR_SYNP7 Synechococcus sp. PCC 7942 34.5 65.5 502 3005545 3006915 1371 sp. ADRO_YEAST FL200 anh 30.8 61.4 487 3007294 3008376 1083 pr. ADRO_YEAST FL200 anh 30.8 61.4 487 3008689 3008453 237 Homo sapiens hype 32.6 59.7 144 300870 3008740 414 sp. PHNB_ECOLI Escherichia coli K12 phnB 56.8 59.9 142 3008242 3009607 36 gp. PPAMOA_I Rectorichia coli K12 phnB 50.0 66.3 80 3010659 3010	I 💳	⊢ −	3002426	915						
3002453 3001542 912 sp.:CYSD_ECOLI Escherichia coli K12 cysD 46.1 70.1 308 30021453 693 sp::CYH1_BACSU Bacillus subtilis cysH 39.2 64.2 212 3005162 3003480 1683 sp::NIR_SYNP7 Synechococcus sp. PCC 7942 34.5 65.5 502 3005162 3003480 1683 sp::NIR_SYNP7 Synechococcus sp. PCC 7942 34.5 65.5 502 3007294 3003616 1371 sp::ADRO_YEAST FL200 anh 1 30.8 61.4 487 3008689 3008453 237 Homo sapiens hypE 32.6 59.7 144 3008770 30098762 414 sp::PHNB_ECOLI Escherichia coli K12 phnB 26.8 59.9 142 3010231 3009710 522 gp::PPAMOA_1 Repudomonas putida DSMZ ID 39.1 76.4 161 3010659 3010979 321 Repudomonas putida DSMZ ID 39.1 76.4 161	1 (7		3000241	1299	sp:CYSN_ECOLI	Escherichia coli K12 cysN	47.3	78.3	414	sulfate adenylyltransferase, subunit
3003145 3002453 693 sp.:CYH1_BACSU Bacillus subtilis cysH 39.2 64.2 212 3005162 3003480 1683 sp.:NIR_SYNP7 Synechococcus sp. PCC 7942 34.5 65.5 502 3005545 3006915 1371 sp.:ADRO_YEAST FL200 arh1 30.8 61.4 487 3007294 3008376 1083 prt.2420294J Homo sapiens hypE 32.6 59.7 144 3008770 3008453 237 Homo sapiens hypE 32.6 59.7 144 3008771 3009303 534 Escherichia coli K12 phnB 26.8 59.9 142 3009242 3008749 414 sp:PHNB_ECOLI Escherichia coli K12 phnB 26.8 59.9 142 3010231 3009710 522 gp:PPAMOA_1 Pseudomonas putida DSMZ ID 39.1 76.4 161 3010659 3010441 486 321 486-260 amoA 161 161	1 (.)		3001542	912	sp:CYSD_ECOLI	Escherichia coli K12 cysD	46.1	70.1	308	sulfate adenylyltransferase small chain
3005162 3003480 1683 sp.NIR_SYNP7 Synechococcus sp. PCC 7942 34.5 65.5 502 3005545 3006915 1371 sp.ADRO_YEAST FL200 arh1 30.8 61.4 487 3007294 3008376 1083 prt.2420294J Homo sapiens hypE 32.6 59.7 144 3008689 3008453 237 Homo sapiens hypE 32.6 59.7 144 3008770 3008749 414 sp.PHNB_ECOLI Escherichia coli K12 phnB 26.8 59.9 142 3009242 3008607 366 gp.SCE68_10 Streptomyces coelicolor A3(2) 50.0 66.3 80 3010231 3009710 522 gp:PPAMOA_1 Pseudomonas putida DSMZ ID 39.1 76.4 161 3010659 3010944 486 321 486 50.0 66.3 80			ļ	693	sp:CYH1_BACSU	Bacillus subtilis cysH	39.2	64.2	212	phosphoadenosine phosphosulfate reductase
3005545 3006915 1371 sp.ADRO_YEAST Saccharomyces cerevisiae 30.8 61.4 487 3007294 3008376 1083 prf.2420294J Homo sapiens hypE 32.6 59.7 144 3008689 3008453 237 Homo sapiens hypE R F 144 3008770 3008703 534 Homo sapiens hypE C R F 3009162 3008749 414 sp:PHNB_ECOLI Escherichia coli K12 phnB 26.8 59.9 142 3009242 3009607 366 gp:SCE68_10 Steptomonas putida DSMZ ID 39.1 76.4 161 3010659 3010979 321 R R R 161 3010926 3010441 486 R R 161 R		L	3003480	1683	sp:NIR_SYNP7	Synechococcus sp. PCC 7942	34.5	65.5	502	ferredoxinnitrate reductase
3007294 3008376 1083 prf.2420294J Homo sapiens hypE 32.6 59.7 144 3008689 3008453 237 Respectively				1371	sp:ADRO_YEAST	Saccharomyces cerevisiae FL200 arh1	30.8	61.4	487	ferredoxin/ferredoxin-NADP reductase
3008689 3008453 237 Experimental Succession Experimental Succession </td <td></td> <td></td> <td></td> <td>1083</td> <td>prf:2420294J</td> <td>Homo sapiens hypE</td> <td>32.6</td> <td>29.7</td> <td>144</td> <td>huntingtin interactor</td>				1083	prf:2420294J	Homo sapiens hypE	32.6	29.7	144	huntingtin interactor
3008770 3009303 534 PANNB_ECOLI Escherichia coli K12 phnB 26.8 59.9 142 3009162 3008749 414 sp:PHNB_ECOLI Escherichia coli K12 phnB 26.8 59.9 142 3009242 3009607 366 gp:SCE68_10 SCE68.10 66.3 80 3010231 3009710 522 gp:PPAMOA_1 Pseudomonas putida DSMZ ID 39.1 76.4 161 3010659 3010441 486 486 66.3 66.3 66.3 66.3				237						
3009162 3008749 414 sp:PHNB_ECOLI Escherichia coli K12 phnB 26.8 59.9 142 3009242 3009607 366 gp:SCE68_10 Streptomyces coelicolor A3(2) 50.0 66.3 80 3010231 3009710 522 gp:PPAMOA_1 Pseudomonas putida DSMZ ID 39.1 76.4 161 3010659 3010974 486 A8-260 amoA 88-260 amoA A8-260 amoA				534						
3009242 3009607 366 pp:SCE68_10 Streptomyces coelicolor A3(2) 50.0 66.3 80 3010231 3009710 522 gp:PPAMOA_1 Pseudomonas putida DSMZ ID 39.1 76.4 161 3010659 3010979 321 R8-260 amoA 161 161 3010926 3010441 486 161 161				414	sp:PHNB_ECOLI	Escherichia coli K12 phnB	26.8	59.9	142	alkylphosphonate uptake protein and C-P lyase activity
3010231 3009710 522 gp:PPAMOA_1 R8-260 amoA 39.1 76.4 161 88-260 amoA 3010926 3010441 486 R910 R910 R910 R910 R910 R910 R910 R910				366	gp:SCE68_10	Streptomyces coelicolor A3(2) SCE68.10	50.0	66.3	80	hypothetical protein
3010659 3010979 3010926 3010441			3009710	522	gp:PPAMOA_1	Pseudomonas putida DSMZ ID 88-260 amoA	39.1	76.4	161	ammonia monooxygenase
3010926 3010441			\vdash	321						
		4 3010926		486						

					\sim	<u> </u>								 -							\neg
Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP- binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein
Matched length (a.a.)	68		337	199	211	416			466				114	373		179	231	317	276	179	406
Similarity (%)	58.0		57.9	64.8	73.0	87.8			48.5				46.0	50.1		67.6	71.4	59.3	59.4	8.87	63.8
Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
db Match	SP:YTZ3_AGRVI		sp:YGB7_ALCEU	gp:HIU68399_3	gp:HIU68399_3	pir:A69778			sp:DAPE_ECOLI				GPU:DCA297422_ 1	sp:MALK_ECOLI		gp:AF036485_6	sp:FRP_VIBHA	sp:IUNH_CRIFA	gp:SCE20_8	sp:3MG1_ECOLI	SP:HMPA_ALCEU
ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1068	642	618	816	903	975	588	1158
Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379	3025552	3027299
SEQ NO. (a.a.)	6605	9099	6607	8099	6099	6610	6611	6612	6613	6614	6615	6616	6617	6618	6619	6620	6621	6622	6623	6624	6625
SEQ NO.	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125

ſ					eta- otein															
	Function		oxidoreductase		transcription antiterminator or beta- glucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
	Matched length (a.a.)		210		192		167		99	402		401	399		442	188		229		410
	Similarity (%)		63.8		69.3		59.9		78.8	80.9		100.0	70.2		72.2	72.3		59.4		58.1
	Identity (%)		34.8		28.1		43.7		43.9	53.7		100.0	33.6		40.5	43.6		30.6		28.5
(Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11.10c		Sinorhizobium meliloti rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A. 16c		Streptomyces thermoviolaceus nagA
	db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp:ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf:2422381B	sp:DCD_ECOLI		gp:SCC75A_16		gp:AB008771_1
	ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	567	237	771	1689	1185
	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
	Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155	3030340	3030723	3032647	3032661	3034181	3034287	3036756	3037411	3037675	3038172	3040681	3041932
	SEQ NO. (a.a.)	9299	6627	6628	6629	6630	6631	6632	6633	6634	6635	6636	6637	6638	6639	6640	6641	6642	6643	6644
	SEQ NO. (DNA)	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
3145	6645	3041994	3042437	444						
3146	6646	3042503	3042703	201						
3147	6647	3042660	3045788	3129	gp:MLCB1883_7	Mycobacterium leprae MLCB1883.13c	29.6	49.4	1416	hypothetical protein
3148	6648	3043642	3043022	621						
3149	6649	3045796	3045990	195						
3150	6650	3047146	3048048	£06	gp:MLCB1883_4	Mycobacterium leprae MLCB1883.05c	24.8	47.1	363	hypothetical membrane protein
3151	6651	3047189	3046122	1068	pir.JC4001	Streptomyces sp. acyA	27.7	51.0	408	acyltransferase or macrolide 3-O-acyltransferase
3152	6652	3047904	3047197	708						
3153	6653	3048058	3049479	1422	gp:MLCB1883_3	Mycobacterium leprae MLCB1883.04c	31.2	54.8	529	hypothetical membrane protein
3154	6654	3050522	3051190	699						
3155	6655	3050592	3049456	1137	pir.G70961	Mycobacterium tuberculosis H37Rv Rv0225	53.4	79.1	698	hexosyltransferase
3156	9599	3051194	3051964	771	pir.F70961	Mycobacterium tuberculosis H37Rv Rv0224c	58.6	73.3	251	methyl transferase
3157	6657	3053891	3052062	1830	sp:PPCK_NEOFR	Neocallimastix frontalis pepck	54.7	78.5	601	phosphoenolpyruvate carboxykinase (GTP)
3158	6658	3054759	3055769	1011	pir:E75125	Pyrococcus abyssi Orsay PAB2393	24.4	52.7	332	C4-dicarboxylate transporter
3159	6659	3055867	3056631	765	sp:YGGH_ECOLI	Escherichia coli K12 yggH	35.7	67.2	241	hypothetical protein
3160	0999	3056613	3057317	705	pir.E70959	Mycobacterium tuberculosis H37Rv Rv0207c	69.1	85.0	207	hypothetical protein
3161	6661	3057328	3059643	2316	pir:C70839	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	42.3	72.3	768	mebrane transport protein
3162	6662	3059517	3058096	1422		-				

Table 1 (continued)

The color of the	-	i;	Teriminal	о П			Identity	Similarity	Matched	
1083 pir.A70839 Mycobacterium tuberculosis 29.1 62.9 364 363 pir.H70633 Mycobacterium tuberculosis 34.3 69.4 108 1548 gp.AF113605_1 Streptomyces coelicolor A3(2) 49.7 76.9 55.3 4830 sp.ERY1_SACER Streptomyces erythraeus eryA 30.2 54.2 1747 1788 pr.Z310345A Mycobacterium tuberculosis 39.8 67.4 319 1971 sp.ERY1_SACER Streptomyces erythraeus eryA 30.2 54.2 1747 1973 sp.ERY1_SACER Streptomyces erythraeus eryA 30.2 54.2 1747 1974 Mycobacterium tuberculosis 39.8 67.4 319 1971 sp.CSP1_CORGL (Revibacterium flavum) ATCC 98.6 69.5 65.7 1023 sp.AS5C_MYCTU Mycobacterium tuberculosis 37.5 61.2 667 2058 pir.A70888 Mycobacterium tuberculosis 55.6 74.7 656 1968 pir.D70888 Mycobacter	(nt)		(nt)	(dq)	db Match	Homologous gene	(%)	(%)	length (a.a.)	Function
3061380 363 pir.H70633 Mycobacterium tuberculosis 34.3 69.4 108 3061380 1548 gp.AF113605_1 Streptomyces coelicolor A3(2) 49.7 76.9 523 3062951 4830 sp.ERY1_SACER Streptomyces erythraeus eryA 30.2 54.2 1747 3062951 4830 pr.ERY1_SACER Streptomyces erythraeus eryA 30.2 54.2 1747 3068143 1788 pr.ERY1_SACER Mycobacterium tuberculosis 39.8 67.4 319 3070214 927 pir.F70887 Mycobacterium flavum) ATCC 98.6 99.5 657 307147 498 corynebacterium flavum) ATCC 98.6 99.5 657 3073857 191 corynebacterium flavum) ATCC 98.6 99.5 657 3073857 192 mycobacterium tuberculosis 36.3 62.5 331 3075540 1023 sp.NOEC_AZOCA Azorhizobium caulinodans 27.1 51.5 56.5 30803848 504 pir.C7088	3059651		3060733		pir.A70839	Mycobacterium tuberculosis H37Rv Rv0204c	29.1	62.9	364	hypothetical membrane protein
3061380 1548 gp:AF113605_1 Streptomyces coelicolor A3(2) 49.7 76.9 523 3062951 4830 sp:ERY1_SACER Streptomyces erythraeus eryA 30.2 54.2 1747 3068143 1788 prt.2310345A Mycobacterium bovis BCG 33.5 62.3 592 3070214 927 pir.F70887 Mycobacterium tuberculosis 39.8 67.4 319 3071477 498 corynebacterium flavum) ATCC 98.6 67.4 319 307547 1401 corynebacterium flavum) ATCC 98.6 69.5 657 307547 1401 mycobacterium tuberculosis 36.3 62.5 331 307547 1023 sp:A85C_MYCTU Mycobacterium tuberculosis 37.5 61.2 667 3075867 1023 sp:A85C_MYCTU Azorhizobium caulinodans 27.1 51.5 295 3075868 pir.C70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 mycobacterium tuberculosis	3060733	m	3061095		pir:H70633	Mycobacterium tuberculosis H37Rv Rv0401	34.3	69.4	108	hypothetical membrane protein
30762951 4830 sp.ERY1_SACER Streptomyces erythraeus eryA 30.2 54.2 1747 3068143 1788 prf.2310345A Mycobacterium bowis BCG 33.5 62.3 592 3070214 927 pir.F70887 Mycobacterium tuberculosis 39.8 67.4 319 3071147 498 Mycobacterium tuberculosis 98.6 99.5 657 3071650 1971 sp.CSP1_CORGL (Brewhacterium flavum) ATCC 98.6 99.5 657 3073857 219 months Mycobacterium tuberculosis 36.3 62.5 331 3075647 1023 sp.A85C_MYCTU Mycobacterium tuberculosis 37.5 61.2 667 3075848 504 pir.A70888 Mycobacterium tuberculosis 57.1 51.5 295 3079848 504 pir.C70888 Mycobacterium tuberculosis 55.6 74.7 656 3080344 1968 pir.D70888 Mycobacterium tuberculosis 55.6 74.7 656 3083956	6665 3062927	7	3061380		gp:AF113605_1	Streptomyces coelicolor A3(2) pccB	49.7	76.9	523	propionyl-CoA carboxylase complex B subunit
3070214 927 pir.F70887 Mycobacterium bovis BCG 33.5 62.3 592 3070214 927 pir.F70887 Mycobacterium tuberculosis 39.8 67.4 319 3071477 498 Corynebacterium flutamicum 98.6 99.5 657 3071650 1971 sp.CSP1_CORGL Corynebacterium flutamicum 98.6 99.5 657 3075447 1401 Corynebacterium flutamicum 17965 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 17966 cop1 179	6666 3067780	000	3062951	4830	sp:ERY1_SACER	Streptomyces erythraeus eryA	30.2	54.2	1747	polyketide synthase
3070214 927 pir.F70887 Mycobacterium tuberculosis 39.8 67.4 319 307147 498 Corynebacterium glutamicum 657 319 3071650 1971 sp.CSP1_CORGL Brevibacterium flavum) ATCC 98.6 99.5 657 3073857 219 Corynebacterium flavum) ATCC 98.6 99.5 657 3073857 219 ERDMANCTU ERDMANN RV0129C fbpC 36.3 62.5 331 307540 1023 sp.A85C_MYCTU Mycobacterium tuberculosis 37.5 61.2 667 3076715 2058 pir.A70888 H37Rv Rv3805c 27.1 51.5 295 3080344 1968 pir.C70888 H37Rv Rv3803c 55.6 74.7 656 3083960 1494 Bacillus licheniformis ATCC 28.2 56.5 170	3069930	8	3068143		prf:2310345A	Mycobacterium bovis BCG	33.5	62.3	265	acyl-CoA synthase
307147 498 Corynebacterium glutamicum 98.6 99.5 657 3071650 1971 sp:CSP1_CORGL (Brevibacterium flavum) ATCC 98.6 99.5 657 3075447 1401 Corynebacterium flavum) ATCC 56.5 657 3073857 219 Mycobacterium tuberculosis 36.3 62.5 331 3076715 2058 pir.A70888 Mycobacterium tuberculosis 37.5 61.2 667 3078853 996 sp:NOEC_AZOCA Azorhizobium caulinodans 27.1 51.5 295 3080344 1968 pir.C70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 pir.C70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 pir.CD7088B H37Rv Rv3803c 28.2 56.5 170	6668 3071140	Q	3070214	927	pir.F70887	Mycobacterium tuberculosis H37Rv Rv3802c	39.8	67.4	319	hypothetical protein
3071650 1971 sp:CSP1_CORGL Corynebacterium flavum) ATCC 98.6 99.5 657 3073857 1401 Corynebacterium flavum) ATCC 98.6 99.5 657 3073857 1401 Mycobacterium tuberculosis 36.3 62.5 331 3073857 219 Mycobacterium tuberculosis 36.3 62.5 331 3075540 1023 sp:A85C_MYCTU Mycobacterium tuberculosis 37.5 61.2 667 3076715 2058 pir.A70888 Mycobacterium tuberculosis 27.1 51.5 295 3079848 504 pir.C70888 Mycobacterium tuberculosis 55.6 74.7 656 3083360 1494 Mycobacterium tuberculosis 55.6 74.7 656 3083385 477 sp:BCRC_BACLI Bacillus licheniformis ATCC 28.2 56.5 170	6669 3071644	44	3071147	498						
3075447 1401 Mycobacterium tuberculosis 36.3 62.5 331 3073857 219 Mycobacterium tuberculosis 36.3 62.5 331 3075540 1023 sp.A85C_MYCTU Mycobacterium tuberculosis 37.5 61.2 667 3076715 2058 pir.A70888 Mycobacterium tuberculosis 27.1 51.5 295 3079848 504 pir.C70888 Mycobacterium tuberculosis 51.2 75.0 168 3080344 1968 pir.D70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 Bacillus licheniformis ATCC 28.2 56.5 170	6670 3073620	20		1971	sp:CSP1_CORGL	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1	98.6	99.5	657	major secreted protein PS1 protein precursor
3073857 219 Mycobacterium tuberculosis 36.3 62.5 331 3075540 1023 sp.A85C_MYCTU Mycobacterium tuberculosis 37.5 61.2 667 3076715 2058 pir.A70888 Mycobacterium tuberculosis 27.1 51.5 295 3078853 996 sp:NOEC_AZOCA Azorhizobium caulinodans 27.1 51.5 295 3079848 504 pir.C70888 Mycobacterium tuberculosis 51.2 75.0 168 3080344 1968 pir.D70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 Mycobacterium tuberculosis 55.6 74.7 656 3083935 477 sp:BCRC_BACLI Bacillus licheniformis ATCC 28.2 56.5 170	6671 3074047	47	3075447	1401						
3075540 1023 sp.A85C_MYCTU Mycobacterium tuberculosis 36.3 62.5 331 3076715 2058 pir.A70888 Mycobacterium tuberculosis 37.5 61.2 667 3078853 996 sp.NOEC_AZOCA Azorhizobium caulinodans 27.1 51.5 295 3079848 504 pir.C70888 Mycobacterium tuberculosis 51.2 75.0 168 3080344 1968 pir.D70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 Bacillus licheniformis ATCC 28.2 56.5 170	6672 3074075	75	3073857	219						
3076715 2058 pir.A70888 Mycobacterium tuberculosis 37.5 61.2 667 3078853 996 sp:NOEC_AZOCA Azorhizobium caulinodans 27.1 51.5 295 3079848 504 pir.C70888 Mycobacterium tuberculosis 51.2 75.0 168 3080344 1968 pir.D70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 Bacillus licheniformis ATCC 28.2 56.5 170	6673 3076562	99	3075540	1023		Mycobacterium tuberculosis ERDMANN RV0129C fbpC	36.3	62.5	331	antigen 85-C
3078853 996 sp:NOEC_AZOCA Azorhizobium caulinodans ORS571 noeC 27.1 51.5 295 3079848 504 pir.C70888 Mycobacterium tuberculosis H37Rv Rv3807c 55.6 75.0 168 3080344 1968 pir.D70888 Mycobacterium tuberculosis H37Rv Rv3808c 55.6 74.7 656 3083950 1494 Bacillus licheniformis ATCC 28.2 56.5 170	6674 3078772	72	3076715	2058	pir.A70888	Mycobacterium tuberculosis H37Rv Rv3805c	37.5	61.2	667	hypothetical membrane protein
3079848 504 pir.C70888 Mycobacterium tuberculosis 51.2 75.0 168 3080344 1968 pir.D70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 H37Rv Rv3808c A77 656 3083935 477 sp:BCRC_BACLI Bacillus licheniformis ATCC 28.2 56.5 170	6675 3079848	348	3078853	966	sp:NOEC_AZOCA	Azorhizobium caulinodans ORS571 noeC	27.1	51.5	295	nodulation protein
3080344 1968 pir.D70888 Mycobacterium tuberculosis 55.6 74.7 656 3083960 1494 Eacillus licheniformis ATCC 28.2 56.5 170	6676 3080351	351	3079848	504	pir:C70888	Mycobacterium tuberculosis H37Rv Rv3807c	51.2	75.0	168	hypothetical protein
3083960 1494 Bacillus licheniformis ATCC 56.5 170	6677 3082311	311	3080344	1968		Mycobacterium tuberculosis H37Rv Rv3808c	55.6	74.7	656	hypothetical protein
3083935 477 sp.BCRC_BACLI Bacillus licheniformis ATCC 28.2 56.5 170	6678 3082467	167	3083960	1494						
	6679 3084411	411	3083935	477	sp:BCRC_BACLI	Bacillus licheniformis ATCC 9945A bcrC	28.2	56.5	170	phosphatidic acid phosphatase

Table 1 (continued)

(nf) (bp) db Match Homologous gene (%)	SEQ Initial	<u> </u>	Terminal	ORF			Identify	Similarity	Matched	
717 T77 T77 510 Sus scrofa fmo1 24.4 50.4 377 612 1302 Sp.FMO1_PIG Sus scrofa fmo1 24.4 50.4 377 612 1203 Sp.GLF_ECOLI Escherichia coli K12 glf 43.2 72.9 377 1203 Sp.GLF_ECOLI Escherichia coli K12 glf 43.2 72.9 377 1204 pir.G70520 Mycobacterium tuberculosis 41.6 70.3 279 1266 gsp.W26465 Mycobacterium tuberculosis 46.7 72.0 261 1266 gsp.W26465 Mycobacterium tuberculosis 32.6 61.2 356 1113 pir.D70521 Mycobacterium tuberculosis 32.6 61.2 356 1113 pir.H70652 Mycobacterium tuberculosis 46.0 79.7 113 99 H37Rv Rv3836 46.0 79.7 113 669 gp.AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 669 gp.AMU738	NO. (nt)		(nt)	(bp)	db Match	Homologous gene	(%)	(%)	length (a.a.)	Function
510 Sus scrofa fmo1 24.4 50.4 377 612 24.4 50.4 377 612 24.4 50.4 377 1203 Sp.GLF_ECOLI Escherichia coli K12 glf 43.2 72.9 377 1203 Sp.GLF_ECOLI Escherichia coli K12 glf 43.2 72.9 377 1203 Sp.GLPK_PSEAE Mycobacterium tuberculosis 41.6 70.3 279 1527 Sp.GLPK_PSEAE ATCC 15692 glpK 46.7 72.0 261 876 pir.A70521 Mycobacterium tuberculosis 46.7 72.0 261 1266 gsp.W26465 Mycobacterium tuberculosis 70.2 87.6 419 1713 pir.A706521 Mycobacterium tuberculosis 46.0 79.7 113 1713 pir.A70652 Mycobacterium tuberculosis 46.0 79.7 113 1713 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 99 H37Rv Rv3835 A6.0 79.7 </td <td>6680 3085200</td> <td></td> <td>3084424</td> <td>777</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	6680 3085200		3084424	777						
30867048 1302 sp:FMO1_PIG Sus scrofa fmo1 24.4 50.4 377 3088276 612 A B B A B B A A B B B A A B A B B B A B <	6681 3085727	١	3085218	510						
3088276 612 72.9 377 30887101 1203 sp.GLF_ECOLI Escherichia coli K12 glf 43.2 72.9 377 30887101 1203 sp.GLF_ECOLI Escherichia coli K12 glf 43.2 72.9 377 3090760 1527 sp.GLPK_PSEAE Pseudomonas aeruginosa 51.7 78.8 499 3090760 1527 sp.GLPK_PSEAE ATCC 15692 glpK 41.6 70.3 279 3092342 834 pir.A70521 Mycobacterium tuberculosis 46.7 72.0 261 3094078 1266 gsp.W26465 H37Rv Rv3816c 70.2 87.6 419 3097242 1113 pir.H70652 Mycobacterium tuberculosis 27.7 61.7 235 3097784 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097780 39 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3099454 630 gp.AMU73808_1 Amycolatopsis methanolica pgm	6682 3085747	I ~	3087048		sp:FMO1_PIG	Sus scrofa fmo1	24.4	50.4	377	dimethylaniline monooxygenase (N-oxide-forming)
3090760 1523 sp.GLF_ECOLI Escheriohia coli K12 glf 43.2 72.9 377 3090684 2049 pir.G70520 Mycobacterium tuberculosis 29.6 47.8 659 3090760 1527 sp.GLPK_PSEAE Pseudomonas aeruginosa 51.7 78.8 499 3092342 834 pir.A70521 Mycobacterium tuberculosis 46.7 70.3 279 3093175 876 pir.D70521 Mycobacterium tuberculosis 46.7 72.0 261 3094078 1266 gsp.W26465 Mycobacterium tuberculosis 70.2 87.6 419 3095287 714 sp.FARR_ECOLI Escherichia coli K12 farR 27.7 61.7 235 3097764 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097780 99 H37Rv Rv3836 46.0 79.7 113 3097845 630 gp:AMU73808_1 Amycolaterium smegmatis pzaA 27.4 50.9 460 31010698 1143	6683 3087665	Ω.		612						
3090664 2049 pir.G70520 Mycobacterium tuberculosis 29.6 47.8 659 3090760 1527 sp.GLPK_PSEAE Reudomonas aeruginosa 51.7 78.8 499 3092342 834 pir.A70521 Mycobacterium tuberculosis 41.6 70.3 279 3093175 876 pir.D70521 Mycobacterium tuberculosis 46.7 72.0 261 3094078 1266 gsp:W26465 Mycobacterium tuberculosis 70.2 87.6 419 3097423 1113 pir.H70652 Mycobacterium tuberculosis 27.7 61.7 235 3097784 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097784 669 gp:AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3100698 1143 prit.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 62.8 218 218 218 218	6684 3088303	ကြ			sp:GLF_ECOLI	Escherichia coli K12 glf	43.2	72.9	377	UDP-galactopyranose mutase
3090760 1527 sp.GLPK_PSEAE Pseudomonas aeruginosa 51.7 78.8 499 3092342 834 pir.A70521 Mycobacterium tuberculosis 41.6 70.3 279 3093175 876 pir.D70521 Mycobacterium tuberculosis 46.7 72.0 261 3094078 1266 gsp.W26465 Mycobacterium tuberculosis 70.2 87.6 419 3095287 714 sp.FARR_ECOLI Escherichia coli K12 farR 27.7 61.7 235 3097423 1113 pir.H70652 Mycobacterium tuberculosis 46.0 79.7 113 3097764 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097780 669 pr.AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 76.0 76.0 76.0 76.0 76.0	6685 3088616	9			pir.G70520	Mycobacterium tuberculosis H37Rv Rv3811 csp	29.6	8'.4	629	hypothetical protein
3092342 834 pir.A70521 Mycobacterium tuberculosis 41.6 70.3 279 3093175 876 pir.D70521 Mycobacterium tuberculosis 46.7 72.0 261 3094078 1266 gsp.W26465 Mycobacterium tuberculosis 70.2 87.6 419 3096287 714 sp.FARR_ECOLI Escherichia coli K12 farR 27.7 61.7 235 3097423 1113 pir.H70652 Mycobacterium tuberculosis 32.6 61.2 356 3097780 99 H37Rv Rv3836 46.0 79.7 113 30997845 669 gp.AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 729 760.9 760.9 760.9 760.9	6686 3092286	98				Pseudomonas aeruginosa ATCC 15692 glpK	51.7	8.87	499	glycerol kinase
3093175 876 pir.D70521 Mycobacterium tuberculosis 46.7 72.0 261 3094078 1266 gsp:W26465 Mycobacterium tuberculosis 70.2 87.6 419 3096287 714 sp:FARR_ECOLI Escherichia coli K12 farR 27.7 61.7 235 3097423 1113 pir.H70652 Mycobacterium tuberculosis 32.6 61.2 356 3097764 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097780 99 mycolatopsis methanolica pgm 37.2 62.8 218 3099454 630 pp:AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460	6687 3093175	75		834	pir.A70521	Mycobacterium tuberculosis H37Rv Rv3813c	41.6	20.3	279	hypothetical protein
3094078 1266 gsp.W26465 Mycobacterium tuberculosis 70.2 87.6 419 3096287 714 sp.FARR_ECOLI Escherichia coli K12 farR 27.7 61.7 235 3097423 1113 pir.H70652 Mycobacterium tuberculosis 32.6 61.2 356 3097764 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097780 99 Amycolatopsis methanolica pgm 37.2 62.8 218 3097904 669 gp:AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 729 62.8 27.4 50.9 460	6688 3094050	20		876	pir:D70521	Mycobacterium tuberculosis H37Rv Rv3816c	46.7	72.0	261	acytransferase
3096287 714 sp.FARR_ECOLI Escherichia coli K12 farR 27.7 61.7 235 3097423 1113 pir.H70652 Mycobacterium tuberculosis 32.6 61.2 356 3097764 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097780 99 H37Rv Rv3836 A. 1. 1. 3099454 659 gp:AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 729 7.4 50.9 460	6689 3095343	343			gsp:W26465	Mycobacterium tuberculosis H37Rv	70.2	97.8	419	seryl-tRNA synthetase
3097423 1113 pir.H70652 Mycobacterium tuberculosis 32.6 61.2 356 3097764 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097780 99 H37Rv Rv3836 79.7 113 3097904 669 gp:AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 729 729 720 720 720 720	6690 3095574	574			sp:FARR_ECOLI	Escherichia coli K12 farR	27.7	61.7	235	transcriptional regulator, GntR family or fatty acyl-responsive regulator
3097764 342 pir.A70653 Mycobacterium tuberculosis 46.0 79.7 113 3097780 99 Amycolatopsis methanolica pgm 37.2 62.8 218 3097904 669 gp.AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3099454 630 Mycobacterium smegmatis pzak 27.4 50.9 460 3101426 729 729 729 720 720 720	6691 3096311	31		1113	pir:H70652	Mycobacterium tuberculosis H37Rv Rv3835	32.6	61.2	356	hypothetical protein
3097780 99 Amycolatopsis methanolica pgm 37.2 62.8 218 3097904 669 gp:AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3099454 630 Amycobacterium smegmatis pzak 27.4 50.9 460 3101426 729 Amycobacterium smegmatis pzak 27.4 50.9 460	6692 3097423	123	<u> </u>		pir.A70653	Mycobacterium tuberculosis H37Rv Rv3836	46.0	7.67	113	hypothetical protein
3097904 669 gp:AMU73808_1 Amycolatopsis methanolica pgm 37.2 62.8 218 3099454 630 630 77.4 60.9 460 3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 729 729 720	6693 3097878	378		66						
3099454 630 3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 729 729 729 729 720	6694 3098572	7.5	_		gp:AMU73808_1	Amycolatopsis methanolica pgm	37.2	62.8	218	2,3-PDG dependent phosphoglycerate mutase
3100698 1143 prf.2501285A Mycobacterium smegmatis pzaA 27.4 50.9 460 3101426 729 729 729 729 729 729 729 729 729 720 <td>6695 3098825</td> <td>25</td> <td></td> <td>630</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	6695 3098825	25		630						
3101426	6696 3099556	28	<u> </u>	1143	prf:2501285A	Mycobacterium smegmatis pzaA	27.4	50.9	460	nicotinamidase or pyrazinamidase
	6697 3100698	8		729						

Function	transcriptional regulator				hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconate permease			pyruvate kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
Matched length (a.a.)	380				107	432		259	456			491	314	526	224	188	221	255	422
Similarity (%)	57.1				81.3	55.3	•	54.1	71.9			47.7	2.66	64.8	58.5	9'29	0.73	68.6	74.4
Identity (%)	31.6				43.9	28.7		29.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
Homologous gene	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtilis gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum lctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
db Match	gp:SC6G4_33				pir:B26872	sp:AMYH_YEAST		sp:GLPQ_BACSU	sp:GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	pir.C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir.B70885	sp:SHIA_ECOLI
ORF (bp)	1035	120	552	870	327	1314	918	819	1389	642	159	1617	942	1776	636	543	693	786	1299
Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107769	3108131	3109464	3109845	3112080	3113390	3113619	3115407	3116079	3116640	3117336	3118284
SEQ NO. (a.a.)	8699	6699	6700	6701	6702	6703	6704	6705	90/9	6707	6708	6029	6710	6711	6712	6713	6714	6715	6716
SEQ NO.		3199	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase		immunity repressor protein			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
Matched length (a.a.)	376		55			569		122		210	164	292	384				216	447	137	212
Similarity (%)	68.9		80.0			51.3		63.1		1.69	2.7	65.8	49.0				64.8	59.3	65.0	75.5
Identity (%)	40.4		45.5			29.5		36.9		47.6	82.3	32.5	. 23.4				33.8	27.3	37.2	50.9
Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1			Caenorhabditis elegans Y51B11A.1		Arabidopsis thaliana ill1		Escherichia coli B msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gltC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus land	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
db Match	prf:2219306A		sp:RPC_BPPH1			gp:CELY51B11A_1		sp:ILL1_ARATH		sp:PMSR_ECOLI	pir:140858	sp:GLTC_BACSU	gp:AF121000_10				pir.G70654	prf.2508244AB	sp:YXAD_BACSU	prf.2518330B
ORF (bp)	1215	405	312	138	711	1617	546	402	150	651	909	924	1134	1611	111	1521	633	1491	456	636
Terminal (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
Initial (nt)	3119665	3120909	3121598	3122129	3123222	3124172	3124886	3125298	3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
SEQ NO. (a.a.)	6717	6718	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6229	6730	6731	6732	6733	6734	6735	6736
SEQ NO.	3217	3218	3219	3220	3221	3222	3223	3224	3225	3226	3227	3228	3229	3230	3231	3232	3233	3234	3235	3236

_
ڝ
믬
⋷
≆
$\stackrel{\sim}{\sim}$
್ರರ
_
Ξ.
<u> </u>
유
Ë

								Matchad	
SEG Initial NO. (nt)		Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
6737 3136920	Ţ	3137558	639						
6738 3137884		3138471	588						
6739 3137903		3136593	1311	prf:2518330A	Corynebacterium diphtheriae chrS	30.2	64.5	408	two-component system sensor histidine kinase
6740 3138630		3138481	150	gp:SCH69_22	Streptomyces coelicolor A3(2) SCH69.22c	45.8	79.2	48	hypothetical protein
6741 3139455	1 40	3138634	822	gp:SCH69_20	Streptomyces coelicolor A3(2) SCH69.20c	30.0	59.2	277	hypothetical protein
6742 3139651	1.50	3140952	1302	sp:SP3J_BACSU	Bacillus subtilis spollIJ	26.0	53.6	265	stage III sporulation protein
6743 3141523	I 🕾	3140885	639	pir:C70948	Mycobacterium tuberculosis H37Rv Rv3173c	32.3	60.9	192	transcriptional repressor
6744 3141969	55	3141709	261	sp:TAG1_ECOLI	Escherichia coli K12 MG1655 tag1	34.5	71.3	87	transglycosylase-associated protein
6745 3143356	28	3142454	903	sp:YW12_MYCTU	Mycobacterium tuberculosis H37Rv Rv2005c	41.2	9.69	296	hypothetical protein
6746 3144482	82	3143496	286	sp:YHBW_ECOLI	Escherichia coli K12 MG1655 yhbW	38.5	73.9	314	hypothetical protein
6747 3144661	6	3145626	996	sp:YBC5_CHLVI	Chlorobium vibrioforme ybc5	28.4	51.2	334	RNA pseudouridylate synthase
6748 3146569	39	3146841	273	GSP:Y35814	Chlamydia pneumoniae	61.0	0.99	84	hypothetical protein
6749 3147090	မွ	3147230	141	PIR:F81737	Chlamydia muridarum Nigg TC0129	71.0	75.0	42	hypothetical protein
6750 3151575	7.5	3151369	207						
6751 3152204	, 20	3151842	363	sp:GLCC_ECOLI	Escherichia coli K12 MG1655 glcC	30.3	56.0	109	bacterial regulatory protein, gntR family or glc operon transcriptional activator
6752 3152413	13	3153828	1416	gp:SC4G6_31	Streptomyces coelicolor SC4G6.31c	26.0	48.2	488	hypothetical protein
6753 3154766	96	3153894	873	sp:35KD_MYCTU	Mycobacterium tuberculosis H37Rv Rv2744c	48.3	78.7	267	hypothetical protein
	l								

Function						methyltransferase	nodulin 21-related protein	•			transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
Matched length (a.a.)						217	241				99		29	5 9	27	46		38	180	717	
Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	0.06		84.2	59.4	73.4	
Identity (%)				:		32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
Homologous gene						Streptomyces coelicolor A3(2) SCD35.11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesei gap	Synechocystis sp. PCC6803 sll0788	Archaeoglobus fulgidus AF0152	
db Match						gp:SCD35_11	sp:NO21_SOYBN				sp:TNP5_PSEAE		sp:FER_SACER	gp:SCD31_14	GPU:AF164956_8	GPU:AF164956_23		sp:G3P_PYRWO	pir:S77018	pir.H69268	
ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216	483	321	333	111	162	1038	126	099	2217	171
Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	3166437
SEQ NO. (a.a.)	6754	6755	6756	6757	6758	6229	6760	6761	6762	6763	6764	6765	99/9	6767	6768	6929	6770	6771	6772	6773	6774
SEQ NO. (DNA)	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol: disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)-translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
	Matched length (a.a.)		301		233		630	101	322		78			909	72		73	07
	Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7			68.5	54.0		73.0	77.0
	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
(command)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum tlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572	-	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
	db Match		sp:BAES_ECOLI		sp:PHOP_BACSU		sp:COPA_PSESM	sp:TLPA_BRAJA	sp:QOR_MOUSE		sp:ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU:AF164956_8	GPU:AF164956_8
Ì	ORF (bp)	192	1197	828	952	672	1479	363	918	471	234	315	207	1875	390	309	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
	Initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172536	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEQ NO. (a.a.)	6775	6776	6777	6778	6779	6780	6781	6782	6783	6784	6785	6786	6787	6788	6289	0629	6791
	SEQ NO. (DNA)	3275	3276	3277	3278	3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291
								•	-304	-								

Table 1 (continued)

_	т						_					1	T						-1				
	Function	transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
	Matched length (a.a.)	53	100		421		208	461		154	229	92		480		647	107	137	296		1.2	298	433
	Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		68.3		60.1	72.0	65.0	61.8		70.4	63.8	64.0
	Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
land (command)	Homologous gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 thi2		Pseudomonas putida pcaK		Escherichia coli K12 yqjl	Escherichia coli K12 dnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF	•	Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
	db Match	gp:AF121000_8	sp:THI2_ECOLI		sp:PCAK_PSEPU		sp:YQJI_ECOLI	sp:DNAB_ECOLI		sp:RL9_ECOLI	sp:SSB_ECOLI	sp:RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	Sp:Y0HC_MYCTU	pir:B70912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOLI	sp:YBJZ_ECOLI
	ORF (bp)	159	447	264	1344	159	576	1530	516	450	675	285	189	1458	882	2160	357	471	942	495	321	936	1263
	Terminal (nt)	3177525	3178112	3178872	3180392	3180946	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192266	3193252
	Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
	SEQ NO.	6792	6793	6794	6795	9629	6797	6798	6229	6800	6801	6802	6803	6804	6805	9089	6807	6808	6089	6810	6811	6812	6813
	SEQ NO. (DNA)	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313

Table 1 (continued)

Function	mercury(II) reductase	D-amino acid dehydrogenase small subunit				NAD(P)H nitroreductase			leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein		hypothetical protein	bifunctional protein (homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lacl family or pectin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoate transporter
Matched length (a.a.)	448	444				194			943	104	98		247	298	339	229	454
Similarity (%)	65.6	54.5				55.2			68.1	40.4	81.4		53.8	50.3	64.3	60.7	8.09
Identity (%)	29.9	27.3				25.8			47.7	40.4	8.33		31.6	28.5	34.2	25.3	27.5
Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolor SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xInE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
db Match	sp:MERA_STAAU	sp:DADA_ECOLI				sp:NOX_THETH			sp:SYL_BACSU	sp:YBAN_ECOLI	sp:VAPI_BACNO		gp:SCC54_19	sp.HPCE_ECOL!	gp:AF173167_1	sp:KDGR_ERWCH	sp:PCAK_PSEPU
ORF (bp)	1344	1230	1503	330	321	609	924	1452	2856	429	357	774	723	837	1125	780	1356
Terminal (nt)	3213931	3213934	3215257	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
Initial (nt)	3212588	3215163	3216759	3217215	3217777	3217993	3218777	3221044	3222633	3222722	3223445	3224601	3224714	3225554	3226687	3227689	3227724
SEQ NO. (a.a.)	6832	6833	6834	6835	6836	6837	6838	6839	6840	6841	6842	6843	6844	6845	6846	6847	6848
SEQ NO.	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3345	3346	3347	3348

															$\overline{}$
Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component l		anthranilate synthase component II	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
Matched length (a.a.)	476	507	170	515		208	348	474		417	283	521	152	302	547
Similarity (%)	49.4	54.4	99.4	99.8		100.0	99.4	98.3		97.9	96.5	8.98	71.7	63.6	57.2
Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glutamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21.17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
db Match	prf:1706191A	sp:EAT2_HUMAN	pir.JC2326	sp:TRPE_BRELA		TRPG_BRELA	sp:TRPD_CORGL	sp:TRPC_BRELA		sp:TRPB_BRELA	sp:TRPA_BRELA	gp:SCJ21_17	sp.PTXA_ECOLI	sp:NOSF_PSEST	gp:SCH10_12
ORF (bp)	1326	1251	510	1554	171	624	1044	1422	969	1251	840	1539	810	906	1584
Terminal (nt)	3230444	3231054	3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	3245342
Initial (nt)	3229119	3232304	3232596	3233403	3233420	3234956	3235602	3236641	3237213	3238082	3239332	3241851	3242688	3242854	3243759
SEQ NO. (a.a.)	6849	6850	6851	6852	6853	6854	6855	6856	6857	6858	6829	6860	6861	6862	6863
SEQ NO. (DNA)	3349	3350	3351	3352	3353	3354	3355	3356	3357	3358	3359	3360	3361	3362	3363

Table 1 (continued)

Table 1 (continued)

						•				
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
3381	6881	3258491	3257403	1089	sp:TCBF_PSESQ	Pseudomonas sp. P51	43.0	75.5	351	maleylacetate reductase
3382	6882	3260084	3258561	1524	sp:XYLE_ECOLI	Escherichia coli K12 xylE	31.4	58.3	513	sugar transporter or D-xylose-proton symporter (D-xylose transporter)
3383	6883	3261129	3261989	861	sp:ICLR_SALTY	Salmonella typhimurium iclR	25.7	60.7	280	bacterial transcriptional regulator or acetate operon repressor
3384	6884	3262145	3263221	1077	sp:YDGJ_ECOLI	Escherichia coli K12 ydgJ	27.2	55.7	357	oxidoreductase
3385	6885	3263237	3264115	879	gsp:W61761	Listeria innocua strain 4450	25.9	58.2	270	diagnostic fragment protein sequence
3386	6886	3264142	3265146	1005	sp:MI2D_BACSU	Sinorhizobium meliloti idhA	26.5	59.6	332	myo-inositol 2-dehydrogenase
3387	6887	3265184	3266266	1083	sp:STRI_STRGR	Streptomyces griseus strl	34.1	62.4	343	dehydrogenase or myo-inositol 2- dehydrogenase or streptomycin biosynthesis protein
3388	6888	3267062	3271093	4032	pir.C70044	Bacillus subtilis yvnB	33.3	62.7	1242	phosphoesterase
3389	6889	3268557	3267913	645						
3390	0689	3269235	3268618	618						
3391	6891	3271392	3272477	1086	÷					
3392	6892	3275231	3274488	744	sp:UNC1_CAEEL	Caenorhabditis elegans unc1	28.6	57.3	206	stomatin
3393	6893	3276570	3275602	696						
3394	6894	3281599	3276671	4929	gp:MBO18605_3	Mycobacterium bovis BCG RvD1-Rv2024c	58.4	80.2	1660	DEAD box RNA helicase family
3395	6895	3282172	3281666	202	prf:2323363AAM	Mycobacterium leprae u2266k	34.8	61.0	141	hypothetical membrane protein
3396	9689	3282742	3283101	360						
3397	6897	3282946	3282347	009	sp:THID_BACSU	Bacillus subtilis thiD	50.4	76.8	125	phosphomethylpyrimidine kinase
3398	6898	3283141	3283383	243	pir:F70041	Bacillus subtilis yvgY	46.3	70.1	67	mercuric ion-binding protein or heavy-metal-associated domain containing protein
3399	6899	3284309	3283473	837	prf:2501295A	Corynebacterium glutamicum proP	29.9	62.3	297	ectoine/proline uptake protein

Table 1 (continued)

	Function	iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
	Matched length (a.a.)	279	324			249		29	102	212	169	471	234		858	1201		189	308
	Similarity (%)	9.09	58.0			75.5		70.1	65.7	67.0	56.2	51.8	69.2		54.3	60.1		6.09	82.5
	Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	43.6		25.8	35.7		30.2	60.4
(Somman)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mrf1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azID	Bacillus subtilis azID	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB
	db Match	sp:FECB_ECOLI	sp:MRF1_SCHPO		-	sp:THID_BACSU		pir.F70041	sp:AZLD_BACSU	sp:AZLC_BACSU	sp:YQGE_ECOLI	sp:ccA_Ecoli	pir.E70600		pir.F70600	pir:G70600		sp:RPSH_PSEAE	sp:TRXB_STRCL
	ORF (bp)	957	1122	384	219	798	345	201	345	711	267	1320	996	273	2511	3249	723	603	951
	Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292610	3296007	3299404	3298428	3300263	3301321
	Initial (nt)	3285355	3285455	3286622	3287297	3288190	3288265	3288685	3289315	3290021	3290591	3291942	3292532	3292882	3293497	3296156	3297706	3299661	3300371
	SEQ NO. (a.a.)	0069	6901	6902	6903	6904	6905	9069	2069	8069	6069	6910	6911	6912	6913	6914	6915	6916	6917
	SEQ NO. (DNA)	3400	3401	3402	3403	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417

_
$\overline{}$
=
o)
=
_
-=
=
⊏
\circ
ನ
\mathbf{c}
_
~
•
Φ
=
_
Œ
ٽ

													_						
Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
Matched length (a.a.)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
db Match		sp:THI2_CHLRE	sp:CWLB_BACSU			pir:D70851	sp:YGI2_PSEPU	sp:YGI1_PSEPU	sp:GIDB_ECOLI	pir:A70852	sp:RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp:LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
ORF (bp)	1185	372	1242	777	1041	618	1152	837	699	951	399	336	294	222	408	1848	255	1032	447
Terminal (nt)	3300119	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	3308369	3308747	3309028	3309043	147980	268001	269068	270660	446075
SEQ NO. (a.a.)	6918	6919	6920	6921	6922	6923	6924	6925	6926	6927	6928	6929	6930	6931	6932	6933	6934	6935	9869
SEQ NO. (DNA)	3418	3419	3420	3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

SEQ Initial Terminal ORF (a.a.) (nt) (nt) (bp)	Terminal (nt)		ORF (bp)		db Match	Homologous gene Corynebacterium glutamicum	(%)	Similarity (%)	Matched length (a.a.)	Function elongation factor Tu
569452 570771 1320 sp:SECY_CORGL	570771 1320 sp.SECY_CORGL	1320 sp.SECY_CORGL	sp:SECY_CORGL	sp:SECY_CORGL	A IO E &	ATCC 13059 tuf Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	100.0	100.0	440	preprotein translocase secY subuit
6939 680044 677831 2214 sp.IDH_CORGL C	677831 2214 sp:IDH_CORGL	2214 sp:IDH_CORGL	sp:IDH_CORGL	sp:IDH_CORGL	O A	Corynebacterium glutamicum ATCC 13032 icd	100.0	100.0	738	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)
6940 720352 718580 1773 prf.2223173A C	718580 1773 prf.2223173A	1773 prf.2223173A	prf:2223173A	prf:2223173A	C	Corynebacterium glutamicum ATCC 13032 accBC	100.0	100.0	591	acyl-CoA carboxylase or biotin- binding protein
6941 877838 879148 1311 sp:CISY_CORGL C	879148 1311 sp:CISY_CORGL	1311 sp:CISY_CORGL	sp:CISY_CORGL		O	Corynebacterium glutamicum ATCC 13032 gltA	100.0	100.0	437	citrate synthase
6942 879276 879629 354 sp.FKBP_CORGL C	879629 354 sp:FKBP_CORGL	354 sp:FKBP_CORGL	sp:FKBP_CORGL		0	Corynebacterium glutamicum ATCC 13032 fkbA	100.0	100.0	118	putative binding protein or peptidyl- prolyl cis-trans isomerase
6943 944996 946780 1785 sp:BETP_CORGL C	946780 1785 sp:BETP_CORGL	1785 sp:BETP_CORGL	sp:BETP_CORGL	sp:BETP_CORGL	OA	Corynebacterium glutamicum ATCC 13032 betP	100.0	100.0	595	glycine betaine transporter
6944 1030283 1029006 1278 sp.YLI2_CORGL CC	1029006 1278 sp:YLI2_CORGL	1278 sp:YLI2_CORGL	sp:YLI2_CORGL	sp:YLI2_CORGL	9 E	Corynebacterium glutamicum ATCC 13032 orf2	100.0	100.0	426	hypothetical membrane protein
6945 1031871 1030369 1503 sp:LYSI_CORGL A	1030369 1503 sp:LYSI_CORGL	1503 sp:LYSI_CORGL	sp:LYSI_CORGL	sp:LYSI_CORGL	ÖΚ	Corynebacterium glutamicum ATCC 13032 lysl	100.0	100.0	501	L-lysine permease
6946 1154683 1153295 1389 sp.AROP_CORGL C	1153295 1389 sp:AROP_CORGL	1389 sp:AROP_CORGL	sp:AROP_CORGL	sp:AROP_CORGL	υV	Corynebacterium glutamicum ATCC 13032 aroP	100.0	100.0	463	aromatic amino acid permease
6947 1155676 1154729 948 pir.S52753	1154729 948 pir.S52753	948 pir.S52753	pir.S52753	753	0 4	Corynebacterium glutamicum ATCC 13032 orf3	100.0	100.0	316	hypothetical protein
6948 1155731 1156837 1107 prf.2106301A	1156837 1107 prf.2106301A	1107 prf:2106301A	prf.2106301A	prf.2106301A	7	Corynebacterium glutamicum ATCC 13032 dapE	100.0	100.0	369	succinyl diaminopimelate desuccinylase
6949 1219602 1218031 1572 gp:CGPUTP_1	1218031 1572 gp:CGPUTP_1	1572 gp:CGPUTP_1	gp:CGPUTP_1	gp:CGPUTP_1		Corynebacterium glutamicum ATCC 13032 putP	100.0	100.0	524	proline transport system
6950 1238274 1239923 1650 sp:SYR_CORGL (1239923 1650 sp:SYR_CORGL	1650 sp:SYR_CORGL	sp:SYR_CORGL	sp:SYR_CORGL		Corynebacterium glutamicum AS019 ATCC 13059 argS	100.0	100.0	250	arginyl-tRNA synthetase

Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoyltransferase	arginine repressor
Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
db Match	sp:DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp:ILVB_CORGL	pir:B48648	pir.C48648	sp:LEU3_CORGL	prf:2014259A	sp:ARGB_CORGL	sp:OTCA_CORGL	gp:AF041436_1
ORF (bp)	1335	1335	927	627	708	870	1878	516	1014	1020	2049	882	957	513
Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	1469528
SEQ NO. (a.a.)	6951	6952	6953	6954	6955	6956	6957	6958	6969	0969	6961	6962	6963	6964
SEQ NO.	3451	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

_	
continued)	
_	
Table 1	

Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinate reductase	L-malate dehydrogenase (acceptor)
Matched length (a.a.)	467	87	362	452	77	919	410	632	331	295	376	301	248	200
Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgllIR	Corynebacterium glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mqo
db Match	gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf.1509267A	gp:AF124600_1	pir.B55225	prf:2204286D	sp:GLUB_CORGL	sp:RECA_CORGL	sp:DAPA_BRELA	sp:DAPB_CORGL	gp:CGA224946_1
ORF (bp)	1401	261	1086	1356	231	2757	1230	1896	993	885	1128	903	744	1500
Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
Initial (nt)	1544554	1586725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
SEQ NO. (a.a.)	6965	9969	2969	6968	6969	6970	6971	6972	6973	6974	6975	6976	6977	6978
SEQ NO. (DNA)	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

_
$\overline{\mathbf{c}}$
$\mathbf{\mathcal{C}}$
a
_
_
=
⊏
=
_
=
_
\sim
\sim
(1
ъ.
_
$\overline{}$
•
a)
_
$\overline{}$
_
···
_

Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
Matched length (a.a.)	692	112	438	447	475	323	477	481	615	739	432	369	386	148	22
Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	pir:S32227	sp:KPYK_CORGL	gp:AF096280_1	prf.2322244A	sp:THRC_CORGL	prf.2501295B	pir.140715	pir:140713	sp:PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
ORF (bp)	2076	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
Initial (nt)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
SEQ NO. (a.a.)	6269	0869	6981	6982	6983	6984	6985	9869	6987	6988	6869	0669	6991	6992	6993
SEQ NO. (DNA)	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493

Table 1 (continued)

SEQ Initial Terminal ORF db Ma NO. (nt) (nt) (bp)	Terminal ORF db (nt)	ORF db	ф		Match	Homologous gene	Identity (%)	Identity Similarity (%)	Matched ength (a.a.)	Function
3494		2787715	2786756	096	sp:DDH_CORGL	Corynebacterium glutamicum KY10755 ddh	100.0	100.0	320	meso-diaminopimelate D- dehydrogenase
,	6995	2888078	2887944	135	gp:CGL238703_1	Corynebacterium glutamicum MH20-22B porA	100.0	100.0	45	porin or cell wall channel forming protein
3496	9669	2936505	2935315	1191	sp:ACKA_CORGL	Corynebacterium glutamicum ATCC 13032 ackA	100.0	100.0	397	acetate kinase
	2669	2937494	2936508	987	prf:2516394A	Corynebacterium glutamicum ATCC 13032 pta	100.0	100.0	329	phosphate acetyltransferase
3498	8669	2961342	2962718		1377 prf.2309322A	Corynebacterium glutamicum ATCC 13032 cmr	100.0	100.0	459	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter
3499	6669	6999 2966161	2963606	2556	2556 sp:CLPB_CORGL	Corynebacterium glutamicum ATCC 13032 clpB	100.0	100.0	852	ATP-dependent protease regulatory subunit
3500	7000	3099522	3098578	945	prf.1210266A	Corynebacterium glutamicum pheA	100.0	100.0	315	prephenate dehydratase
3501	7001	7001 3274074	3272563	1512	1512 prf.2501295A	Corynebacterium glutamicum ATCC 13032 proP	100.0	100.0	504	ectoine/proline uptake protein

Example 2

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl) cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N'-nitro-N-nitrosoguanidine 32: 269-273 Biotechnol., Microbiol. screening (Appl. (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom diaminopimelate dehydrogenase, lysC (encoding and dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and

analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (Amino Acid Fermentation, ed. by Hiroshi Aida et al., Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in hom and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in hom is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in pyc is effective by introducing this mutation

into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysineproducing bacterium, No. 58 strain (FERM BP-7134) selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in hom and the mutation, Pro458Ser, in pyc were introduced into the wild type strain of Corynebacterium glutamicum ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysineproducing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (Mol. Gen. Genet., 196: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (sacB) of Bacillus subtilis (Molecular Microbiology, 6: 1195-1204 (1992)) were each digested with PstI. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing sacB were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated

using Ligation Kit ver. 2 (manufactured by Takara Shuzo), ATCC 13032 strain introduced into the by the electroporation method (FEMS Microbiology Letters, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing $\mu g/ml$ kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the PstI site of pCE53. This plasmid was named pCES30.

Next, two genes having a mutation point, hom and were amplified by PCR, and inserted into pCES30 TA cloning method (Bio Experiment according to the Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended extraction fragment was concentrated by

phenol/chloroform and precipitation with ethanol, and allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (Biochem. Biophys. Acta, 72: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried DNA polymelase (manufactured turbo out with Pfu In the mutated hom gene, the DNAs having the Stratagene). nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated pyc gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

The above pCES30 T vector fragment and the mutated hom gene (1.7 kb) or mutated pyc gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and

precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the into the chromosomal integrated plasmid is homologous recombination were selected using the method of Ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (*J. of Bacteriol.*, 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 μg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCG11, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda et al. (Microbiology, 144: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated hom or pyc genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 q of sodium chloride, 5 g of yeast extract and 18 g ofBactoagar (manufactured by Difco), (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. colonies thus growing were selected in each case. strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this In the homologous recombination, either the wild medium. type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In

DNAs having the nucleotide gene, the homrepresented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gene and pyc gene, respectively.

(3) Lysine production test of HD-1 and No. 58pyc strains

The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the hom gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the pyc gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 l jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium

sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at A total amount of the seed 30°C for 12 to 16 hours. culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β -alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 l jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was

carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the hom gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the hom gene and the mutation, Pro458Ser, in the pyc gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the lysC gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology,

Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

Reconstruction of lysine-producing strain based on genome information

lysine-producing mutant B-6 The strain (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon However, since the fermentation period is long, source. the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to

identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in hom, a mutation, Thr311Ile, in lysC, a mutation, Pro458Ser, in pyc and a mutation, Ala213Thr, in zwf were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacement having mutated gene

The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated lysC and zwf were produced as described below.

The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3).

Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito et al. Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase

(manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

The above pCES30 T vector fragment and the mutated lysC gene (1.5 kb) or mutated zwf gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μ g/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μ g/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it

was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.

(3) Introduction of mutation, Thr311Ile, in *lysC* into one point mutant HD-1

Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311Ile, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.

(4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2

The mutation, Pro458Ser, in pyc was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated pyc gene in addition to the mutated hom gene and lysC gene.

(5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3

The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that

the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 l jar fermenter in accordance with the method of Example 2(3).

Table 3 shows the results.

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/1/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

The APZ-4 strain, which had been reconstructed by
introducing 4 effective mutations into the wild type strain,

was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40° C.

The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

As is apparent from the results shown in Table 4, hydrochloride titer and productivity lysine the culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysineproducing B-6 strain constructed by repeating random growth and the lysine mutation and selection, the productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. lysine fermentation at high temperatures achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

in the reconstruction of the demonstrated As lysine-producing strain, the present invention provides a novel breeding method effective eliminating for conventional mutants and acquiring problems in the This methodology which industrially advantageous strains. reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID

NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

As the oligo DNA primers used for the PCR,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of

the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229.

DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of

the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C PCR system thermal cvcler (GeneAmp usina a manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by manufacture's according to the Life Technologies) reverse transcriptase RAV-2 instructions using а The PCR product of each (manufactured by Takara Shuzo). subjected to agarose amplified was thus electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 $ng/\mu l$. Each slide glass spotted on a plate PCR product was

(manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, monopotassium dihydrogenphosphate, 0.5 g 0.5 g of 20.9 q monohydrogenphosphate, of dipotassium morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm.

the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To contamination with DNA, the RNA was treated with DnaseI (manufactured by Takara Shuzo) at 37°C for 30 minutes and further purified using Qiagen RNeasy (manufactured by QIAGEN) according to the manufacture's To 30 μg of the resulting total RNA, 0.6 μl instructions. of rabbit globin mRNA (50 $ng/\mu l$, manufactured by Life Technologies) and 1 μ l of a random 6 mer primer (500 ng/ μ l, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. resulting solution, 6 $\mu 1$ of а buffer attached SuperScript II (manufactured by Lifetechnologies), 3 µl of 0.1 mol/l DTT, 1.5 μ l of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l dTTP), 1.5 μ l of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of SuperScript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. the fluorescence labeling reaction, the RNA was digested by adding 1.5 μ l of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 μl of 10% SDS solution, and allowed to

stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μ l.

(3) Hybridization

UltraHyb (110 μ l) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μ l) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic

acid in Corynebacterium glutamicum (Archives of Microbiology, 168: 262-269 (1997)).

As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of Corynebacterium glutamicum ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of Corynebacterium glutamicum as a template in the PCR reaction, and thus producing and using a DNA microarray.

This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several Accordingly, it is also thousand gene probes at once. possible to prepare DNA microarrays having thereon all of the full genomic gene probes deduced from ORF nucleotide sequence of Corynebacterium glutamicum ATCC 13032 determined by the present invention, and analyze the level total gene profile at the expression Corynebacterium glutamicum using these arrays.

Example 5

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

The amino acid sequence (ADD_ECOLI) of Escherichia adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which confirmed as adenosine deaminase function had been By using the full length of this amino acid (EC3.5.4.4). sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (Proc. Natl. Acad. Sci. ISA, 85: 2444-2448 (1988)). A case where E-value was le-10 or less was judged being significantly homologous. As a result, sequence significantly homologous with the Escherichia coli adenosine deaminase was found in the nucleotide sequence Corynebacterium the sequence of of genome database glutamicum or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on results, assumed that Corynebacterium it is these ORF having adenosine deaminase glutamicum contains no activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. case where E-value was le-10 or less was judged as being As a result, no significantly homologous. significantly homologous with the glycine decarboxylase, aminomethyl transferase the aminomethyl or carrier each of which is a component of Escherichia coli found in the nucleotide glycine cleavage enzyme, was sequence database of the genome sequence of Corynebacterium glutamicum or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that Corynebacterium glutamicum contains no glycine decarboxylase, activity of ORF having the aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

The Amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as **IMP** dehydrogenase (EC1.1.1.205), was obtained from Swiss-prot By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using A case where E-value was le-10 or less was FASTA program. judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF) having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the abovedescribed predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on (http://www.ncbi.nlm.nih.go\) nr-aa database GenBank

(amino acid sequence database constructed on the basis of GenBankCD\$ translation products, PDB database, Swiss-Prot database, \ PIR database, PRF database by eliminating duplicated \registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was ORFs would function that \ the two assumed \Based on these results, it was therefore dehydrogenase. assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogen activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60

After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for minutes. The solution was 10 15 minutes, 4°C) to remove the centrifuged $(5,000 \times g,$ undisrupted cells as the precipitate, and the supernatant was recovered.

To the supernatant, urea was added to give a concentration of 9 mol/1, and an equivalent amount of a lysis buffer (9.5 mol/1 urea, 2% NP-40, 2% Ampholine, 5%

mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

After being dissolved, the solution was centrifuged $(16,000 \times g, 20 \text{ minutes}, 4^{\circ}\text{C})$, and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor

II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 µg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4%

. .

glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and subjected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

Coomassie staining was performed by the method of Gorg et al. (Electrophoresis, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

(4) In-gel digestion of detected protein spot

The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100

mmol/1 ammonium bicarbonate : acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μ l of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/1 ammonium bicarbonate to give a concentration of 100 $ng/\mu l$) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μ l of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation in vacuo to halve the liquid volume. To the concentrate, 20 μl of trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using The protein absorbed ZipTip (manufactured by Millipore). on the carriers of ZipTip was eluted with 5 μl of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.

(5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)

The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μ mol/l bovine insulin B chain), and 1 μ l of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.

As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.

The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.

The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.

The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.

(6) Identification of protein spot

From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.

The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.

(a) Search and identification of gene encoding highexpression protein

In the proteins derived from *Corynebacterium* glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

As a result, it was found that Spot-1 corresponded to enolase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was a protein having the amino acid sequence represented by SEQ

ID NO:5255; Spot-4 corresponded to fructose bis-phosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (J. of Bacteriol., 174: 6067-6086 (1992)).

Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID NO:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID NO:3437.

Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously.

Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.

(b) Search and identification of modified protein

Among the proteins derived from Corynebacterium glutamicum FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.

Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID NO:285. Accordingly, it is shown that the catalase derived from Corynebacterium glutamicum FERM BP-7134 was modified after the translation.

Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1.

(c) Search and identification of expressed protein effective in lysine production

It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing

strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.

Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of Corynebacterium glutamicum constructed in Example 1.

Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.

While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.