Dot-matrix graphic display systems

Make use of "picture elements" - Pixels

Pixels can be monochrome

- More usually colour

- Bitmap display technologies
 - Cathode Ray Tube
 - Electron gun lights coloured phosphors
 - LCD
 - Polarized light is allowed pass through (to varying extents) coloured filters
 - LED
 - Each Pixel consists of a number of coloured LED's whose brightness is varied
 - OLED
 - Similar to LED, fabrication involves a print-like process. Flexible.

- How is colour made?
 - Intensity of 3 colours is varied
 - Usually 8 bit resolution per colour
 - 2²⁴ different colours possible (16 million approx)

- Bitmap display made up of lots of clusters of variable colour dots.
- Sometimes extra (red) dot is added per pixel for brightness
- How many pixels in a full HD TV?
- How many pixels in a 4k TV?

- Non-Bitmap displays
 - Split flap display

- Non-Bitmap displays
 - LCD display (5x8 font, intelligent)

- Non-Bitmap displays
 - LED display (7 segment)
 - Each segment is an LED

How do you get data on to the display?

Display represents data in a particular way

Computer represents data in perhaps a different way

Humans may have another view entirely

Computer system

Data memory

Output function (printf)
Translate to ASCII

Call puts

Call putc

Device driver (Translate to hardware signals)

Full alpha-numeric display system architecture

Display hardware

Computer system

Data memory

Output function : displayNumber, displayHex.

Translate to an array of individual digit values

Copy to display buffer

Device driver (Translate to hardware signals)

Simple numeric display system architecture

Display hardware

7 Segment display hardware

Light individual segments to make "number shapes"

Segment	State
а	ON
b	ON
С	ON
d	ON
е	ON
f	ON
g	OFF
DP	OFF

Display the number 0

Segment	State
а	OFF
b	ON
С	ON
d	OFF
е	OFF
f	OFF
g	OFF
DP	OFF

Display the number 1

• 7 Segment display hardware

Segment	State
а	ON
b	ON
С	OFF
d	ON
е	ON
f	OFF
g	ON
DP	OFF

Display the number 2

Segment	State
а	ON
b	ON
С	ON
d	ON
е	OFF
f	OFF
g	ON
DP	OFF

Display the number 3

Segment	State
а	OFF
b	ON
С	ON
d	OFF
е	OFF
f	ON
g	ON
DP	OFF

Display the number 4

State
ON
OFF
ON
ON
OFF
ON
ON
OFF

Display the number 5

Segment	State
а	ON
b	OFF
С	ON
d	ON
е	ON
f	ON
g	ON
DP	OFF

Display the number 6

State
ON
ON
ON
OFF

Display the number 7

Segment	State
а	ON
b	ON
С	ON
d	ON
е	ON
f	ON
g	ON
DP	OFF

Display the number 8

• 7 Segment display hardware

Segment	State
а	ON
b	ON
С	ON
d	ON
е	OFF
f	ON
g	ON
DP	OFF

Display the number 9

• 7 Segment display hardware

Segment	State
а	1
b	1
С	1
d	1
е	1
f	1
g	0
g DP	0

Display the number 0; Bit pattern: 0011 1111 in binary 0x3 f in hex

• 7 Segment display hardware

Segment	State
а	0
b	1
С	1
d	0
е	0
f	0
g	0
DP	0

Display the number 1; Bit pattern: 0000 0110 in binary 0x0 6 in hex

• 7 Segment display hardware

State
1
1
0
1
1
0
1
0

Display the number 2; Bit pattern: 0101 1011 in binary 0x5 b in hex

• 7 Segment display hardware

State
1
1
1
1
0
0
1
0

Display the number 3; Bit pattern: 0100 1111 in binary 0x4 f in hex

• 7 Segment display hardware

State
0
1
1
0
0
1
1
0

Display the number 4; Bit pattern: 0110 0110 in binary 0x6 6 in hex

• 7 Segment display hardware

Segment	State
а	1
b	0
С	1
d	1
е	0
f	1
g	1
DP	0

Display the number 5; Bit pattern: 0110 1101 in binary 0x6 d in hex

• 7 Segment display hardware

Segment	State
а	1
b	0
С	1
d	1
е	1
f	1
g	1
g DP	0

Display the number 6; Bit pattern: 0111 1101 in binary 0x7 d in hex

• 7 Segment display hardware

Segment	State
а	1
b	1
С	1
d	0
е	0
f	0
g	0
DP	0

Display the number 7; Bit pattern: 0000 0111 in binary 0x0 7 in hex

• 7 Segment display hardware

State
1
1
1
1
1
1
1
0

Display the number 8; Bit pattern: 0111 1111 in binary 0x7 f in hex

• 7 Segment display hardware

Segment	State
а	1
b	1
С	1
d	1
е	0
f	1
g	1
DP	0

Display the number 3; Bit pattern: 0110 1111 in binary 0x6 f in hex

We can perform translation using a "lookup" table:

```
const char LUT[] =
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};
```

• Test: What is LUT[4]?

```
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};
```

Translation function:

Wiring a display

- Identify suitable "handy" pins on microcontroller

- Select pins that are "bitwise contiguous" if possible

Selecting bits GPIO0_5 to GPIO0_11
Total 7 bits
Not driving Decimal point

Display digit function

```
displayDigit(int Digit)
{
    char code;
    code=Digit2Code(Digit);
    GPIOODATA = (code << 5);
}</pre>
```

Most display have more than one digit

- Can wire each segment to an individual port pin
- Requires 4x8 pins = 32 Output pins
- Not really necessary
- Rarely done
- Muliplex instead!

- Digits are flashed in sequence
- Sequence runs quickly enough to fool the eye
- Pins required:
 - $-1 \times 8 + 1$ for each digit.

Most display have more than one digit

Digit control wires

- Software sequence:
- Get first digit value
- Translate to segment code
- Enable first digit
- Output code
- Pause
- Disable digit
- Repeat for all other digits
- Repeat entire sequence

Internal wiring of 7 segment displays (common cathode)

- To disable digit, make common cathode high
- To enable digit, make common cathode low
- Can use this for multiplexing
- Must assign additional IO to digit control

Will use GPIO1 to GPIO4 for digit control.

Pins connected to common cathodes on 4 digit LED display.

High disables a digit