Politechnika Warszawska Wydział Mechatroniki

Konstrukcja Układów Optycznych Projekt 1 Śledzenie biegu promienia przyosiowego Temat nr 26

> Wykonał: Piotr Majewski, MT-IFO-161 Prowadzący: dr inż Arkadiusz Kuś

1. Założenia tematu nr 26

promienie	odstępy	Gatunek szkła
58,922	1,5	SF 5
18,88	3	Bak 2
-31,71	0,86	
31,71	3	Bak 2
-18,88	1,5	SF 5
-58,922		

- Przysłona aperturowa 20,94 mm za 6 powierzchnią
- Położenie przedmiotu -36,94
- Średnica przysłony aperturowej Ø 8 mm
- Wielkość obrazu Ø 14 mm

2. Cel projektu

Celem projektu było scharakteryzowanie układu optycznego skonstruowanego z 4 soczewek o parametrach załączonych w poprzednim punkcie, wyznaczenie jego właściwości geometrycznych, prześledzenie biegu promieni oraz przeprowadzenie analizy winietowania.

3. Tabela biegu promienia

Wykorzystując podstawowe zależności optyczne, można sporządzić tabelę biegu promienia z rekurencyjnymi obliczeniami dotyczącymi kolejnych powierzchni układu. Pozwala ona parametry optyczne wykorzystywane do dalszego opisu układu. Wzór tabeli wygląda następująco:

r	Δn	h	∆n h	αn	α	d	n
Ľ	r		r	$\alpha_0 n_0 = \dots$	α ₀ =		n ₀ =
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
r ₁		h ₁ =				d ₁	n ₁
•						•	.
:	$[8]_k - [8]_{k-1}$	$ [3]_{k-1} + \\ -[6]_{k-1} \cdot [7]_{k-1} $	[2], , [3],	[4],+[5],	$[5]_{k}$:	:
r _k	$[1]_k$	$-[6]_{k-1} \cdot [7]_{k-1}$			$\frac{[5]_k}{[8]_k}$	d_k	n _k
• "						• "	· ``
:						:	:

Dla danych z tematu 26 oraz promienia biegnącego z nieskończoności na wysokości 4 nad osią optyczną ($\alpha_0 = 0$ oraz $h_1 = 4$) tabela wygląda następująco:

	Δn		Δn				
r	\overline{r}	h	$\overline{r \cdot h}$	$\alpha \cdot n$	α	d	n
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
				0	0		1
58,922	0,011417	4	0,045666996	0,045666996	0,027301	1,5	1,672698
18,88	-0,00703	3,959048	-0,027834435	0,01783256	0,01158	3	1,53996
-31,71	0,017028	3,924308	0,066823405	0,084655966	0,084656	0,86	1
31,71	0,017028	3,851504	0,065583691	0,150239657	0,097561	3	1,53996
-18,88	-0,00703	3,558822	-0,025020611	0,125219045	0,074861	1,5	1,672698
-58,922	0,011417	3,446531	0,03934818	0,164567226	0,164567		1

Dzięki danym z tabeli możemy obliczyć ogniskową f':

$$f' = \frac{h_1}{\alpha_6} = \frac{4}{0,164567} = 24,30618$$

Oraz wyznaczyć ogniskową czołową s'f:

$$s'_f$$
, $=\frac{h_6}{\alpha_6} = \frac{3,446531}{0,164567} = 20,943$

Ponieważ analizowany układ optyczny jest lustrzany, to rozpatrywanie odwróconego biegu promienia jest bezcelowe gdyż otrzymalibyśmy takie same wartości jak w tabeli powyżej.

4. Położenie obrazu

Wykorzystując fakt, że znamy położenie przedmiotu (s = -36,94), możemy za pomocą tabeli biegu promienia obliczyć położenie obrazu. Przyjmując wartość h₁ = 4, wyznaczamy kąt, pod którym pada na pierwszą powierzchnię promień wychodzący z przedmiotu:

$$\alpha_0 = arctg\left(\frac{h_1}{s}\right) = arctg\left(\frac{4}{36,94}\right) = -0.10786$$

Dla wartości $\alpha_0 = -0.10786$ oraz $h_1 = 4$ otrzymujemy tabelę:

	Δn		Δn				
r	\overline{r}	h	$\overline{r \cdot h}$	$\alpha \cdot n$	α	d	n
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
				-0,10786	-0,10786		1
58,922	0,011417	4	0,045666996	-0,0622	-0,03718	1,5	1,672698
18,88	-0,00703	4,055774967	-0,028514484	-0,09071	-0,0589	3	1,53996
-31,71	0,017028	4,232489125	0,072071131	-0,01864	-0,01864	0,86	1
31,71	0,017028	4,248519344	0,072344095	0,053704	0,034874	3	1,53996
-18,88	-0,00703	4,143897864	-0,029134039	0,02457	0,014689	1,5	1,672698
-58,922	0,011417	4,121864356	0,047058291	0,071629	0,071629		1

Położenie obrazu s' obliczamy ze wzoru:

$$s' = \frac{h_6}{\alpha_6} = \frac{4,121864356}{0,071629} = 57,54499$$

Korzystając z danych z tabeli możemy również wyznaczyć powiększenie układu:

$$\beta = \frac{\alpha_0}{\alpha_6} = \frac{-0,10786}{0,071629} = -1,50587$$

A ponieważ znamy wielkość obrazu $\emptyset_{sr} = 14$, to dzięki powiększeniu możliwe jest wyznaczenie wielkości przedmiotu:

$$\phi_s = \frac{\phi_{s'}}{\beta} = \frac{14}{-1,50587} = -9,29694$$

5. Położenie źrenicy

Kolejnym etapem obliczeń jest wyznaczenie źrenicy wejściowej układu. Ponieważ w danym temacie przysłona aperturowa znajduje się za 6 powierzchnią i jest źrenicą wyjściową, przeprowadzenie dalszych obliczeń będzie prostsze przy założeniu odwróconego biegu promieni. Zatem w dalszych obliczeniach cały analizowany układ będzie odwrócony, dotychczasowy obraz będzie przedmiotem, przedmiot obrazem a źrenica wyjściowa stanie się źrenicą wejściową.

Przy takich założeniach przedmiot znajduje się 57,54499 przed pierwszą powierzchnią, źrenica wejściowa i przysłona aperturowa 20,94 przed pierwszą powierzchnią, a obraz 36,94 za ostatnią powierzchnią. Schemat tak opisanego układu zamieszczam w kolejnym punkcie.

6. Zbiorcze parametry układu optycznego

7. Wyznaczenie promienia polowego i aperturowego

Do wyznaczenia biegu promienia polowego i aperturowego wykorzystamy zależności z poniższego rysunku:

Promień aperturowy

Ponieważ wielkość źrenicy wejściowej to $\emptyset_z = 8$, przedmiot znajduje się w odległości $s_1 = -57,54499$, a źrenica wejściowa i przysłona aperturowa z = -20,94, więc otrzymujemy:

$$u = arctg\left(\frac{\emptyset_z}{2 \cdot (z - s_1)}\right) = arctg\left(\frac{8}{2 \cdot (-20,94 - (-57,54499))}\right) = 0,108843$$

$$\sin u = \sin(0,108843) = 0,108628$$

Wysokość, na której promień aperturowy pada na powierzchnię 1 wyznaczamy ze wzoru:

$$h_a = s_1 \cdot \sin u = -57,54499 \cdot 0,108628 = -6,251$$

Po wstawieniu $h_1 = -6,251$ i $\alpha_0 = 0,108843$ do tabeli otrzymujemy bieg promienia aperturowego:

	Δn		Δn				
r	\overline{r}	h	$\overline{r \cdot h}$	$\alpha \cdot n$	α	d	n
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
				0,108843	0,108843		1
58,922	0,011417	-6,251	-0,071366121	0,037477	0,022405	1,5	1,672698
18,88	-0,00703	-6,28461	0,044184501	0,081661	0,053028	3	1,53996
-31,71	0,017028	-6,44369	-0,109723687	-0,02806	-0,02806	0,86	1
31,71	0,017028	-6,41956	-0,109312737	-0,13738	-0,08921	3	1,53996
-18,88	-0,00703	-6,15194	0,043251752	-0,09412	-0,05627	1,5	1,672698

-58 922	0,011417	-6,06753	-0,069271509	-0,16339	-0,16339	1
-50,722	0,01171/	-0,00733	-0,0072/1307	-0,10337	-0,10337	I I

Na podstawie danych z tabeli można wyznaczyć położenie obrazu:

$$s' = \frac{h_6}{\alpha_6} = \frac{-6,06753}{-0,16339} = 37,134161$$

A także powiększenie poprzeczne całego układu:

$$\beta = \frac{\alpha_0}{\alpha_6} = \frac{0,108843}{-0,16339} = -0,66613$$

Wartości h z powyższej tabeli zostaną później wykorzystane do analizy winietowania.

Promień polowy

Ponieważ wielkość przedmiotu to to $\emptyset_{s'} = 14$, zatem wysokość przedmiotu to $y = \frac{\emptyset_{s'}}{2} = 7$. Przedmiot znajduje się w odległości $s_1 = -57,54499$, a źrenica wejściowa i przysłona aperturowa z = -20,94, więc otrzymujemy:

$$w = arctg\left(\frac{y}{z - s_1}\right) = arctg\left(\frac{7}{-20,94 - (-57,54499)}\right) = 0,18895$$

$$\sin w = \sin(0.18895) = 0.187827$$

Wysokość, na której promień polowy pada na powierzchnię 1 wyznaczamy ze wzoru:

$$h_n = z \cdot \sin w = -20,94 \cdot 0,187827 = -3,9331$$

Po wstawieniu $h_1 = -3,9331$ i $\alpha_0 = 0,18895$ do tabeli otrzymujemy bieg promienia polowego:

	Δn		Δn				
r	\overline{r}	h	$\overline{r \cdot h}$	$\alpha \cdot n$	α	d	n
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
				0,18895	0,18895		1
58,922	0,011417	-3,9331	-0,044903248	0,144046	0,086116	1,5	1,672698
18,88	-0,00703	-4,06228	0,028560197	0,172607	0,112085	3	1,53996
-31,71	0,017028	-4,39853	-0,074898526	0,097708	0,097708	0,86	1
31,71	0,017028	-4,48256	-0,076329375	0,021379	0,013883	3	1,53996
-18,88	-0,00703	-4,52421	0,031807849	0,053186	0,031797	1,5	1,672698
-58,922	0,011417	-4,5719	-0,052196281	0,00099	0,00099		1

Na podstawie danych z tabeli można wyznaczyć położenie źrenicy wyjściowej:

$$s' = \frac{h_6}{\alpha_6} = \frac{-4,5719}{0,00099} = -4617,23$$

A także powiększenie poprzeczne w źrenicach:

$$\beta = \frac{\alpha_0}{\alpha_6} = \frac{0,18895}{0,00099} = 190,8229$$

Wartości h z powyższej tabeli zostaną później wykorzystane do analizy winietowania.

8. Winietowanie

Średnice czynne wyliczamy z wzoru:

$$\emptyset = max\{2 \cdot (|h_p| + \eta \cdot |h_a|), 2 \cdot |h_a|\}$$

Gdzie $\eta = 50\%$ to współczynnik winietowania, a h_a oraz h_p to wysokości odpowiednio promieni aperturowych i polowych, ich wartości zostały wyliczone w poprzednim punkcie. Obliczenia kolejnych średnic czynnych zamieszczam w tabeli poniżej:

$/h_a/$	$/h_p/$	2·/ha/	$2(/h_a/+/h_p/)$	$2\cdot(h_p +\eta\cdot h_a)$	Ø	r
6,251002	3,933103	12,502	20,36820973	14,11721	14,11721	7,058604
6,284609	4,062277	12,56922	20,69377316	14,40916	14,40916	7,204582
6,443694	4,398532	12,88739	21,6844524	15,24076	15,24076	7,620379
6,41956	4,482561	12,83912	21,80424275	15,38468	15,38468	7,692341
6,151939	4,524209	12,30388	21,35229641	15,20036	15,20036	7,600179
6,067534	4,571904	12,13507	21,27887556	15,21134	15,21134	7,605671

Z tabelki wynika, że dla każdej powierzchni decydującą wartość stanowił promień polowy. Po przeniesieniu układu do Oslo wygląda on w sposób następujący:

Na schemacie widoczne jest, że nie wszystkie promienie przechodzą przez układ, więc konieczna jest dalsza korekcja winietowania. Stan początkowy:

$$Y=0$$

Y=0.7

Y=1

Po wprowadzeniu modyfikacji dla Y=0,7 i Y=1 otrzymujemy układ o parametrach:

Ostateczny wygląd układu po korekcji winietowania:

9. Porównanie wyników z Oslo i Excela

Wyniki z programu OSLO:

Porównanie wyników:

	Excel	OSLO
położenie przedmiotu s	37,134161	36,934306
Powiększenie układu β	-0,66613	-0,658146
h ₁ promienia aperturowego	6,251	6,304443
h ₁ promienia polowego	3,9331	3,957581

Wartość obliczone w Excelu różnią się nieznacznie od tych z Oslo, różnice te wynikają prawdopodobnie z faktu, że podczas obliczeń w Excelu najpierw zostało wyznaczone położenie obrazu w zależności od zadanego położenia przedmiotu, a następnie rozpatrywany był odwrócony bieg promieni, co prawdopodobnie zwiększyło różnice między wartościami z Oslo i Excela. Z kolei różnice w wysokościach promienia polowego i aperturowego prawdopodobnie wynikają z zastosowania przybliżenia małych kątów przy obliczeniach uwzględniających funkcje trygonometryczne sinus i tangens.

Wykresy aberracji

Wartości aberracji dla danego układu optycznego osiągają stosunkowo niskie wartości nawet bez dalszej korekcji.