- 1. (a) Up & more overfitting: deterministic noise depends on the target function f, so if the complexity of f increases, the deterministic noise so generally increase as well. There is less overfitting when the target complexity is low, in this case it is increasing, so there's a higher tendency to overfit the data.
 - (b) Up & less overfitting: deterministic noise will generally go up because, relative to the fixed target function, H becomes less complex. Target complexity is exponential when compared to overfitting, whereas noise is linear, so there will be less overfitting.
- 2. (a) We try to satisfy the condition at 4.4, which tells us that $w^T w \leq C$, to convert $w^T \Gamma^T \Gamma w \leq C$ to $w^T w \leq C$, Γ has to be the identity vector, then the inverse of Γ and its dot product is 1. Which satisfy the condition $w^T w \leq C$.
 - (b) TBD
- 3. Hard-order constraint: we have the perceptron model which uses a linear model, we can define this as the hypothesis set H_2 . When we compare H_2 and a higher order hypothesis set, let that be H_{10} , on a dataset with a lot of noise and low N, H_2 will have a smaller out of sample error due to its tendency to not overfit compared to H_{10} . So we place a hard-order constraint constraint on it and choose the simpler hypothesis, leading to a smaller d_{vc} and a smaller E_{out} .