#### Towards Real-World Adverse Weather Image Restoration: Enhancing Clearness and Semantics with Vision-Language Models

Jiaqi Xu<sup>1</sup>, Mengyang Wu<sup>1</sup>, Xiaowei Hu<sup>2,\*</sup>, Chi-Wing Fu<sup>1</sup>, Qi Dou<sup>1</sup>, and Pheng-Ann Heng<sup>1</sup>

The Chinese University of Hong Kong
 Shanghai Artificial Intelligence Laboratory

ECCV 2024

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

- Introduction
- Framework
- Method
- Experiment
- Conclusion

#### Introduction

• Formulate a **semi-supervised learning framework** employing **vision-language models** to enhance restoration performance across diverse adverse weather conditions in real-world settings

• This approach involves assessing **image clearness** and providing **semantics** using vision-language models on real data, serving as supervision signals for training restoration models.

• Achieves superior results in real-world adverse weather image restoration, demonstrated through qualitative and quantitative comparisons with state-of-the-art works.

#### Introduction



Q1: Please rate the visibility of the image.

Answer with excellent, good, fair, poor, or bad.

Q2: Describe the scene with weather information (e.g., clear, rainy, hazy, snowy)



• The clearness level and the semantics information of real-world adverse weather images are provided by large vision-language models.

- Introduction
- Framework
- Method
- Experiment
- Conclusion

#### Framework



- Introduction
- Framework
- Method
- Experiment
- Conclusion

# Image Assessment



# Pseudo-Labeling





$$\mathcal{L}_{ps} = \mathcal{L}_{app}(\hat{y}_i, y_i^{ps})$$

# Weather Prompt Learning



$$\mathcal{L}_{wpl} = \frac{e^{\cos(\mathcal{E}_I(\hat{y}), \mathcal{E}_T(t_c))}}{\sum_{t \in \{t_c, t_r, t_h, t_s\}} e^{\cos(\mathcal{E}_I(\hat{y}), \mathcal{E}_T(t))}}.$$

# Feature similarity loss

$$\mathcal{L}_{feat} = \frac{1}{HW} \sum_{i=1}^{HW} (1 - cos(\hat{g}_i, g_i^*))$$

- the resulting image exhibits noticeable noise
- align the model's prediction with both the pseudo-label and the input
- adopt the visual encoder of Depth Anything for feature extraction

## Description-assisted semantic enhancement



$$\mathcal{L}_{sem} = \frac{e^{cos(\mathcal{E}_I(\hat{y}), \mathcal{E}_T(d_{pos}))}}{\sum_{d \in \{d_{pos}, d_{neg}\}} e^{cos(\mathcal{E}_I(\hat{y}), \mathcal{E}_T(d))}}$$

### Total loss



 $\mathcal{L} = \mathcal{L}_{sup} + w_1 \times \mathcal{L}_{ps} + w_2 \times \mathcal{L}_{wpl} + w_3 \times \mathcal{L}_{sem} + w_4 \times \mathcal{L}_{feat}$ 

- Introduction
- Framework
- Method
- Experiment
- Conclusion

## Results



## Results

| Method            | NIMA $36$ $\uparrow$ / MUSIQ $14$ $\uparrow$ / CLIP-IQA $41$ $\uparrow$ |                                     |                                             |                                                      |  |  |
|-------------------|-------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|------------------------------------------------------|--|--|
|                   | Rain                                                                    | Haze                                | Snow                                        | Overall                                              |  |  |
| Restormer 54      | 5.151 / 54.69 / 0.437                                                   | 4.804 / 53.27 / 0.366               | 5.020 / 61.18 / 0.510                       | 4.992 / 56.38 / 0.438                                |  |  |
| TransWeather [40] | 5.068 / 51.06 / 0.358                                                   | $4.716 \; / \; 46.27 \; / \; 0.292$ | 4.928 / 59.38 / 0.416                       | $\mid$ 4.904 $/$ 52.24 $/$ 0.355                     |  |  |
| TKL [4]           | 5.099 / 50.96 / 0.392                                                   | $4.697 \; / \; 48.21 \; / \; 0.318$ | 4.905 / 59.24 / 0.428                       | 4.900 / 52.80 / 0.379                                |  |  |
| WeatherDiff [27]  | 5.054 / 51.82 / 0.395                                                   | $4.616 \; / \; 47.70 \; / \; 0.326$ | 4.917 / 60.52 / 0.466                       | 4.862 / 53.35 / 0.396                                |  |  |
| WGWS-Net 59       | 5.035 / 51.46 / 0.389                                                   | $4.815 \; / \; 45.76 \; / \; 0.310$ | 4.779 / 57.95 / 0.395                       | 4.876 / 51.72 / 0.365                                |  |  |
| MWDT 28           | 5.104 / 52.47 / 0.377                                                   | $4.741\ /\ 51.23\ /\ 0.315$         | 5.034 / 60.16 / 0.407                       | 4.960 / 54.62 / 0.366                                |  |  |
| PromptIR 29       | 5.174 / 53.48 / 0.439                                                   | 4.823 / 53.88 / <b>0.372</b>        | 5.032 / 60.86 / 0.517                       | 5.009 / 56.07 / 0.443                                |  |  |
| DA-CLIP 25        | 5.168 / 52.98 / 0.412                                                   | $4.851\ /\ 53.23\ /\ 0.325$         | 5.012 / 60.57 / 0.499                       | 5.010 / 55.59 / 0.412                                |  |  |
| Our method        | $  {f 5.291} \; / \; {f 59.80} \; / \; {f 0.477}  $                     | <b>4.906</b> / <b>56.09</b> / 0.371 | $  {f 5.057}  /   {f 62.12}  /   {f 0.519}$ | $  {f 5.084} \; / \; {f 59.34} \; / \; {f 0.456}   $ |  |  |
|                   |                                                                         |                                     |                                             |                                                      |  |  |

| Method            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |                                     |                                     |                                    |  |  |
|-------------------|--------------------------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|--|--|
|                   | Rain                                                   | Haze                                | Snow                                | Overall                            |  |  |
| Restormer [54]    | 2.277 / 3.795 / 0.417                                  | 1.918 / 3.068 / 0.218               | 3.172 / 3.646 / 0.395               | 2.456 / 3.503 / 0.343              |  |  |
| TransWeather [40] | $1.924 \ / \ 3.545 \ / \ 0.402$                        | $1.502 \ / \ 2.809 \ / \ 0.223$     | $2.770 \; / \; 3.537 \; / \; 0.384$ | 2.065 / 3.297 / 0.336              |  |  |
| TKL [4]           | 2.028 / 3.588 / 0.406                                  | $1.590 \ / \ 2.908 \ / \ 0.238$     | $2.830 \; / \; 3.557 \; / \; 0.393$ | $2.149 \ / \ 3.351 \ / \ 0.346$    |  |  |
| WeatherDiff [27]  | $2.050 \; / \; 3.640 \; / \; 0.411$                    | $1.520 \ / \ 2.843 \ / \ 0.217$     | $2.950 \; / \; 3.573 \; / \; 0.397$ | $2.173 \ / \ 3.352 \ / \ 0.342$    |  |  |
| WGWS-Net 59       | $1.965 \; / \; 3.592 \; / \; 0.411$                    | $1.506 \; / \; 2.915 \; / \; 0.238$ | $2.619 \; / \; 3.490 \; / \; 0.383$ | 2.030 / 3.332 / 0.344              |  |  |
| MWDT 28           | $2.068 \ / \ 3.548 \ / \ 0.426$                        | $1.720 \ / \ 2.861 \ / \ 0.273$     | $2.903 \ / \ 3.569 \ / \ 0.412$     | 2.230 / 3.326 / 0.370              |  |  |
| PromptIR 29       | $2.250 \ / \ 3.770 \ / \ 0.419$                        | $1.941 \ / \ 3.093 \ / \ 0.226$     | 3.121 / 3.609 / 0.384               | $\mid 2.437 \mid 3.491 \mid 0.343$ |  |  |
| DA-CLIP 25        | 2.250 / 3.732 / 0.412                                  | $2.014 \ / \ 3.071 \ / \ 0.230$     | 3.050 / 3.637 / 0.395               | 2.438 / 3.480 / 0.346              |  |  |
| Our method        | 2.563 / 3.843 / 0.440                                  | 2.064 / 3.176 / 0.289               | 3.293 / 3.702 / 0.431               | $2.640 \ / \ 3.574 \ / \ 0.387$    |  |  |

# User study





## **Ablation Study**



# Ablation Study

| $\mathcal{L}_{sup}$ | $\mathcal{L}_{ps}$ | $r^{vlm}$ | init | $\mathcal{L}_{wpl}$ | $\mathcal{L}_{sem}$ | iter | MUSIQ 1      | CLIP-IQA ↑           | VLM-Vis ↑ |
|---------------------|--------------------|-----------|------|---------------------|---------------------|------|--------------|----------------------|-----------|
| ✓                   |                    |           |      |                     |                     |      | 53.41        | 0.388                | 0.343     |
| ✓                   | ✓                  |           |      |                     |                     |      | 54.08        | 0.396                | 0.354     |
| ✓                   | ✓                  | 1         |      |                     |                     |      | 56.68        | 0.429                | 0.366     |
| ✓                   | ✓                  | 1         | ✓    |                     |                     |      | 57.34        | 0.425                | 0.370     |
| ✓                   | ✓                  | ✓         | ✓    | ✓                   |                     |      | 58.13        | 0.437                | 0.376     |
| ✓                   | ✓                  | ✓         | ✓    | ✓                   | ✓                   |      | 58.91        | 0.445                | 0.381     |
| ✓                   | ✓                  | ✓         | ✓    | ✓                   | ✓                   | ✓    | <b>59.34</b> | $\boldsymbol{0.456}$ | 0.387     |

- Introduction
- Framework
- Method
- Experiment
- Conclusion

#### Conclusion

• By evaluating clearness and semantics in natural images, our semi-supervised approach trains models on real, unlabeled images using vision-language models.

• Dual-step strategy, combining **image assessment** and **weather prompt learning**, enhances clearness with real data. Further, **semantics enhancement** adjusts weather conditions in vision-language model descriptions, addressing context semantics in adverse weather.

• Experimental results show that this method outperforms state of the arts. Yet, the computational burden of using large VLMs remains a limitation.