Ensemble Methods

Prof.Mingkui Tan

South China University of Technology Southern Artificial Intelligence Laboratory(SAIL)

November 27, 2018

- Introduction of Ensemble Learning
- 2 Decision Tree
- Randon Forest
- 4 Adaboost
- **6** GBDT

- Introduction of Ensemble Learning
- 2 Decision Tree
- Randon Forest
- Adaboost
- GBDT

Ensemble Learning

- Ensemble learning: Combine numerous weak learners to a strong learner
- Main methods: Bagging , Boosting

Contents

Introduction of Ensemble Learning

- Introduction of Ensemble Learning
- 2 Decision Tree

Decision Tree Example

Learning the Play Tennis Decision Tree

4 Attributes

	ı			1	
Day	Outlook	Temp	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Tree Example

Play Tennis: Yes or No?

- Learned function is a tree
- Classify instances by sorting them down from the root to the leaf node

7

10

11

12

13

14 15

Algorithm 1: Decision Tree

```
Input: Training set D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}; Attribute set A = \{a_1, a_2, ..., a_d\}.
   Procedure: Function TreeGenerate(D, A)
 1 Generate node:
 2 if all the samples in D belong to class C then
        mark this node as class C leaf node; return
 4 end
   if A = \emptyset OR samples in D have the same value on A then
        mark this node as leaf node, and the class should be the most frequent
        occurrence class; return
   end
   Select the best partition attribute a_* from A;
   for each value a_*^v of attribute a_* do
        D_v is the sample subset of D with a_* = a_*^v;
        if D_v = \emptyset then
             mark this node as the leaf node, and the class should be the most frequent
             occurrence class: return
        else
             generate a branch for this node, TreeGenerate(D_v, A \setminus \{a_*\})
        end
16 end
   Output: A decision tree
```

Which Is The Best Partition Attribute?

D13:Yes

Decision Tree Example A Good Attribute

An attribute is good when:

- For one value we get all instances as positive
- For other value we get all instances as negative

Decision Tree Example Poor Attribute

An attribute is poor when:

- It provides no discrimination
- Attribute is immaterial to the decision
- For each value we have same number of positive and negative instances

Measure of Homogeneity of Examples

- Entropy: Characterizes the (im)purity of an arbitrary collection of examples.
- Given a collection D of positive and negative examples, entropy of D relative to boolean classification is

$$Entropy(D) \equiv -p_+log_2p_+ - p_-log_2p_-$$

Where p_+ is proportion of positive examples and p_- is proportion of negative examples.

Entropy Function Relative to A Boolean Classification

Entropy

Introduction of Ensemble Learning

- Illustration:
- D is a collection of 14 examples with 9 positive and 5 negative examples
- Entropy of D relative to the Boolean classification:

$$Entropy(9+,5-) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.940$$

ullet Entropy is zero if all members of D belong to the same class

Entropy for Multi-Valued Target function

 If the target attribute can take on c different values, the entropy of D relative to this c-wise classification is

$$Entropy(D) \equiv \sum_{i=1}^{c} -p_i log_2 p_i$$

Introduction of Ensemble Learning

Information Gain Measures the Expected Reduction in Entropy

- Entropy measures the impurity of a collection
- Information gain of attribute A is the reduction in entropy caused by partitioning the set of examples D

$$Gain(D, A) \equiv Entropy(D) - \sum_{v \in Values(A)} \frac{|D_v|}{|D|} Entropy(D_v)$$

• Where Values(A) is the set of all possible values for attribute A and D_v is the subset of D for which attribute A has value v

Randon Forest

Introduction of Ensemble Learning

Measure of Purity: Information (bits)

$$Info[2,3] = entropy(2,3)$$

= $-\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5}$
= $0.97bits$

Information Gain for Each Attribute

Introduction of Ensemble Learning

- Gain(outlook) = 0.94 0.693 = 0.247
- Gain(temperature) = 0.94 0.911 = 0.029
- Gain(humidity) = 0.94 0.788 = 0.152
- Gain(windy) = 0.94 0.892 = 0.048
- $\arg \max_{A} \{0.247, 0.029, 0.152, 0.048\} = \text{outlook}$
- Select outlook as the splitting attribute of tree

Introduction of Ensemble Learning

Expanded Tree Stumps for PlayTennis for Outlook=Sunny

Expanded Tree Stumps for PlayTennis for Outlook=Sunny

Expanded Tree Stumps for PlayTennis for Outlook=Sunny

- Since Gain(humidity) is highest, select humidity as splitting attribute
- No need to split further

Decision Tree for the Weather Data

Randon Forest

Contents

- Introduction of Ensemble Learning
- Decision Tree
- 3 Randon Forest
- 4 Adaboost
- GBDT

- \bullet Giveing a dataset D with m samples, we take samples to make dataset $D^{'}$
- ullet Select a sample from D to $D^{'}$ and put it back to the data set D each time, so the sample has the probability to be selected next time
- ullet Repeat the procedure m times to get $D^{'}$ with m samples

The probablility that a sample will not be selected:

$$\lim_{m \to +\infty} \left(1 - \frac{1}{m} \right)^m \to \frac{1}{e} \approx 0.368$$

- There are approximately $\frac{1}{3}$ samples used for testing which is called out-of-bag estimate
- Bootstrap sampling is useful in the case of small dataset and getting testing samples difficultly

Get T sampling sets through bootstrap sampling

Train T base learners through the sampling sets respectively

- For classification: The class with the most votes becomes the final class
- For regression: The final output is the average output of every base learner

Random Forest

- Random forest is an extension of bagging using decision tree as base learner
- Randomly select m out of p features to get the optimal partition feature

Comparison between bagging and random forest

- The training efficiency of random forest is higher than bagging
- Bagging uses decision tree with definite structure
- Random forest uses decision tree with random structure

Random Forest

An example of the process flow is depicted below

Adaboost

Contents

- Introduction of Ensemble Learning

- Adaboost

Adaboost

How to train the base leaner?

Make the wrong predictive samples more important, and handle it in next round:

Adaboost Sample weight updating formula

$$w_{m+1}(i) = \frac{w_m(i)}{z_m} e^{-\alpha_m y_i h_m(\mathbf{x}_i)}$$

 $z_m = \sum_{i=1}^n w_m(i) e^{-\alpha_m y_i h_m(\mathbf{x}_i)}$ is normalization term, makes $w_m(i)$ become probability distributions

$$w_{m+1}(i) = \begin{cases} \frac{w_m(i)}{z_m} e^{-\alpha_m} & \text{for right predictive sample} \\ \frac{w_m(i)}{z_m} e^{\alpha_m} & \text{for wrong predictive sample} \end{cases}$$

so in next round, $\frac{w_{wrong}(i)}{w_{right}(i)} = e^{2\alpha_m} = \frac{1-\epsilon_m}{\epsilon}$ and $\epsilon_m < 0.5$, wrong samples will be more important

How to combine the base learner?

Every iteration generates a new base learner $h_m(\mathbf{x})$ and its importance score α_m

Adaboost

Adaboost

Evaluate the performance of the base learner

Base learner

$$h_m(\mathbf{x}): \mathbf{x} \mapsto \{-1, 1\}$$

Error rate

$$\epsilon_m = p(h_m(\mathbf{x}_i) \neq y_i) = \sum_{i=1}^n w_m(i) \mathbb{I}(h_m(\mathbf{x}_i) \neq y_i)$$

 $\epsilon_m < 0.5$, or the performance of Adaboost is weaker than random classfication.

Adaboost

Importance score of base learner

Make the base learner with lower ϵ_m more important

$$\alpha_m = \frac{1}{2} \log \frac{1 - \epsilon_m}{\epsilon_m}$$

Adaboost Additive model

Final learner

$$H(\mathbf{x}) = \operatorname{sign}(\sum_{m=1}^{M} \alpha_m h_m(\mathbf{x}))$$

Note: $h_m(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\top}\mathbf{x})$ is a nonlinear function, so the Adaboost can deal with nonlinear problem

Randon Forest

4

5

7

8

9

Introduction of Ensemble Learning

Algorithm 2: Adaboost

```
Input: D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}, where \mathbf{x}_i \in X, y_i \in \{-1, 1\}
     Initialize: Sample distribution w_m
     Base learner: \mathcal{L}
 1 w_1(i) = \frac{1}{n}
 2 for m=1,2,...,M do
           h_m(x) = \mathcal{L}(D, w_m)
           \epsilon_m = \sum_{i=1}^n w_m(i) \mathbb{I}(h_m(\mathbf{x}_i) \neq y_i)
            if \epsilon_m > 0.5 then
                    break
            end
            \alpha_m = \frac{1}{2} \log \frac{1 - \epsilon_m}{\epsilon_m}
           w_{m+1}(i) = \frac{w_m(i)}{z_m} e^{-\alpha_m y_i h_m(\mathbf{x}_i)}, where i = 1, 2, ..., n and
            z_m = \sum_{i=1}^n w_m(i) e^{-\alpha_m y_i h_m(\mathbf{x}_i)}
10 end
     Output: H(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})
```

GBDT

Contents

- Introduction of Ensemble Learning

- **6** GBDT

Gradient Boosting Decision Trees GBDT is a decision tree algorithm with iteration

GBDT?

Example: What is the difference between regression tree and

Suppose: There are 4 peoples A, B, C and D, whose age are 14,

16, 24, 26 respectively.

Figure: Single regression tree

GBDT

Gradient Boosting Decision Trees

- The key of GBDT is that trees learn all the results and residuals of all trees before.
- The residual is the difference of predictive value and real value, so the predictive value is the sum of all results of trees.

So. A=15+(-1)=14 B=15+1=16 C=25+(-1)=24 D=25+1=26

Gradient Boosting Decision Trees Question

Q1:when results of these two algorithms are same, Why do we choose GBDT?

- The motivation of this algorithm is that every calculation of residual is to increase the weight of wrong predictive samples, and the residual of right predictive sample is zero.
- So in the next iteration, model can concentratively address these wrong predictive samples. Another function is to prevent over fitting.

Gradient Boosting Decision Trees Question

Q2: Where does this algorithm reflect gradient boosting?

• In algorithm, residual is the gradient descent direction, which is the derivation of mean square error(MSE). Actually, MSE is the loss function of CART regression tree.

Setting	Loss Function	$-\partial L(y_i, f(x_i))/\partial f(x_i)$
Regression	$\frac{1}{2}[y_i - f(x_i)]^2$	$y_i - f(x_i)$
Regression	$ y_i - f(x_i) $	$sign[y_i - f(x_i)]$
Regression	Huber	$ y_i - f(x_i) $ for $ y_i - f(x_i) \le \delta_m$
		$\delta_m \operatorname{sign}[y_i - f(x_i)] \text{ for } y_i - f(x_i) > \delta_m$
		where $\delta_m = \alpha \text{th-quantile}\{ y_i - f(x_i) \}$
Classification	Deviance	kth component: $I(y_i = \mathcal{G}_k) - p_k(x_i)$

Randon Forest

Algorithm

Introduction of Ensemble Learning

Algorithm 3: GBDT

```
Input: D = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}, where \mathbf{x}_i \in X, y_i \in \{-1, 1\}
     Initialize: f_0(x) = \arg\min_{\mu} \sum_{i=1}^n L(y_i, \mu)
     for m=1,2,...,M do
             \overline{\text{for i}=1},2,...,n do
 2
                   r_{im} = -\left[\frac{\partial L(y_i, f_{m-1}(\mathbf{x}_i))}{\partial f_{m-1}(\mathbf{x}_i)}\right]
 3
                     Fit a regression tree to targets r_{im} giving terminal regions
 4
                    R_{im}, j = 1, 2, ..., J_m
             end
 5
             for j=1,2,...,J_m do
                    \mu_{jm} = \arg\min_{\mu} \sum_{\mathbf{x}_i \in R_{jm}} L(y_i, f_{m-1}(\mathbf{x}_i) + \mu), j = 1, 2, ..., J_m
                    Update f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \sum_{i=1}^{J_m} \mu_{jm} \mathbb{I}(\mathbf{x} \in R_{jm})
 8
             end
 9
10 end
     Output: \hat{f}(\mathbf{x}) = f_M(\mathbf{x})
```

THANK YOU!

GBDT