Will this Movie be Successful?

A network based prediction of Award nomination

Introduction

- Oscars and Golden Globes are renown awards
- In the US:
 - 29.6M watched the Oscars ceremony
 - 18.3M watched the Golden Globes ceremony
- What if we could predict them?

Data

- TMDB 5000 movie Dataset from Kaggle
- Web Scrapping of Oscars and Golden Globes nominations and awards
- 22.4% of total movies at least nominated once
- 18.6% of total movies at least awarded once

Graph construction

- WHY?
 - To visualize and exploit high dimensional features
- HOW?
 - Cosine similarity matrix
 - Features used to connect each movie:
 - cast, crew, keywords and genres
 - Pruning at 0.25
- WHAT?
 - Movie characteristics:
 - revenue, budget, runtime, vote score, vote average, popularity and genres

Graph Properties

	Whole Network	Giant Component
N edges	109874	109859
N nodes	4802	4690
N connected components	100	1
Giant component size	4690	4690
Avg degree	45.76	46.85
Density	0.0095	0.01
Diameter	None	11
Avg clustering coefficient	0.62	0.638

Graph Type

- Two curves fitted to the degree distribution
- Exponential law \rightarrow best fit
- Exponential cutoff → fewer and smaller hubs than a scale free
- Between a scale free network in a sublinear regime and a random network [1].

Network Structure

- Visualization of the network in a circle pack layout based on connected component, modularity and clustering coefficient
- Nodes colored according to number of Nominations
- Nodes sized according to number of Awards

Nominations

Awards

Fun Facts

- Network is a movie Nominated 15 times which received 4 Oscars and 4 Golden Globes. It's connected to Julia which is also a programming language and received awards.
- The Untouchable is a movie which is ironically not connected to the network.
- There is a movie called AI Artificial Intelligence which got nominated twice for the Oscars.

Prediction Models

Could one predict if a new movie will be nominated at the next Award season?

- Logistic Regression
- Graph Polynomial Filter & Logistic Regression
- Graph Convolutional Neural Network

Prediction Performances

Discussion

 Combining Laplacian Polynomial Graph Filter with Logistic Regression gives highest F1-score and lowest overfit (Train F1 - 61%, Test F1 - 58%)

Our model predicts the success of a film based on the criterias of American Film Awards institutions with a 82% of true positive rate

Prediction on 2019 biggest success

Limitations & Further Improvements

Limitations...

- Features sparsity
- Signal-Nomination correlation
- Class imbalance

... & Further Improvements

- Get more movies features
- Different graph construction
- Rebalance the dataset

Conclusion

- Our study question was partially answered
- Yet many information could be gathered from the network structure

