IoT hardware (in Simulation) Internet of Things

CS5055 - 2025-I

PROF.: <u>CWILLIAMS@UTEC.EDU.PE</u> SRC: BUYYA&VAHID, U.MELBOURNE

Executive Summary

- Motivation: IoT needs a hardware component.
- **Problem:** We need to understand the importance and basic physics of the hardware component of IoT
- Overview:
- SimulDE Simulator
- Review of IoT fundamentals and computing systems.
- Conclusion: Circuit components and overall hardware components can effectively model an IoT systems.

Circuit Elements

Microprocessors and Microcontrollers

Embedded systems for IoT

SIMULIDE Simulator

- It is an open source approximated high-level simulator.
 - The simulation results are not strictly accurated, still the results are valid.
 - This is good: because it is very fast for execution,
 - Download and install from:
 - https://www.simulide.co m/p/downloads.html

Introduction: the painful truth

. How it works?: at least all electronics ©

Basic electrical circuit model

Answer: list electronic components.

Also: How do they work?

. How do they work? Passive vs active elements?

Resistor

Inductor

Capacitor

Voltage Source

. What about a LED?

DC Voltage

Circuit Elements

Microprocessors and Microcontrollers

Embedded systems for IoT

Microprocessor vs microcontroller

https://www.youtube.com/watch?v=dcNk0urQsQM

Types of devices

Characteristics

Microprocessors
General purpose

General purpose

Microcontroller

hardware

hardware

Components

CPU

CPU, RAM, GPIO

Languages
Main Companies

C/C++,Python, etc.
Intel, ARM, AMD

C to Assembly
ATMEL, Microchip,
Cypress

The components on a single chip or board makes a big difference.

Also ISA (or instructions), microcontroller is limited

Circuit Elements

Microprocessors and Microcontrollers

Embedded systems for IoT

Embedded systems for IoT

- Platform-based (hardware) design
 - Platform includes hardware, supporting software.
- . Two stage process:
 - 1. Design the platform.
 - 2. Use the platform.
- Platform can be reused to host many different systems.

Smart sensing is the first requirement.

Types of devices

Arduino

Characteristics Microcontroller based board

Components CPU, RAM, GPIO

Languages
Main Component

C to Assembly.

ATMEL

microcontroller

Raspberry

Microcomputer (or microprocessor based board).

CPU, RAM, GPIO

C/C++,Python, etc.
SoC with ARM
microprocessor

Because a microcomputer is larger in capabilities, it can execute minimal OS (e.g., tinyLinux).

We will cover more details during lab sessions ©

Course Logistics

Introduction

loT design perspective

Embedded systems for IoT

Summary

- We introduced circuit components that model the behaviour of sensors on an IoT system
- . We review the loT requeried hardware:
 - . Infraestructure and architectural

