

General information

Designation

Quercus rubra (T)

Typical uses

Lumber; sleepers; mine timbers; fenceposts; veneer; pulpwood; fuelwood; flooring; furniture; general millwork; boxes; pallets & crates; agricultural implements; caskets; woodenware; handles; railroad cars;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O							
Material family	Natural	Natural					
Base material	Wood (ha	Wood (hardwood)					
Renewable content	100	100 %					
Composition detail (polymers and natur	al materials)						
Wood	100			%			
Price							
Price	* 0.912	-	1.22	USD/lb			
Price per unit volume	* 36.5	-	59.2	USD/ft^3			
Physical properties							
Density	0.0231	-	0.0282	lb/in^3			
Mechanical properties							
Young's modulus	* 0.306	-	0.341	10^6 psi			
Yield strength (elastic limit)	* 0.435	-	0.531	ksi			
Tensile strength	0.725	-	0.885	ksi			
Elongation	* 0.7	-	0.86	% strain			
Compressive strength	0.909	-	1.11	ksi			
Flexural modulus	0.278	-	0.31	10^6 psi			
Flexural strength (modulus of rupture)	* 0.725	-	0.885	ksi			
Shear modulus	* 0.0316	-	0.0434	10^6 psi			
Shear strength	* 4.81	-	5.85	ksi			
Rolling shear strength	* 0.177	-	0.532	ksi			
Bulk modulus	* 0.157	-	0.174	10^6 psi			
Poisson's ratio	* 0.02	-	0.04				
Shape factor	5.7						
Hardness - Vickers	5.16	-	6.31	HV			
Hardness - Brinell	* 22.7	-	27.7	HB			

Oak (quercus rubra) (t)

BEDUPACK	
Hardness - Janka	1.16e3 - 1.42e3 lbf
Fatigue strength at 10^7 cycles	* 0.218 - 0.265 ksi
Mechanical loss coefficient (tan delta)	* 0.016 - 0.021
Differential shrinkage (radial)	0.14 - 0.18 %
Differential shrinkage (tangential)	0.28 - 0.34 %
Radial shrinkage (green to oven-dry)	3.6 - 4.4 %
Tangential shrinkage (green to oven-dry)	7.7 - 9.5 %
Volumetric shrinkage (green to oven-dry)	12.3 - 15.1 %
Work to maximum strength	* 0.109 - 0.133 ft.lbf/in^3
Impact & fracture properties	
Fracture toughness	0.333 - 0.408 ksi.in^0.5
Thermal properties	
Glass temperature	171 - 216 F
Maximum service temperature	248 - 284 F
Minimum service temperature	* -99.49.4 F
Thermal conductivity	* 0.0641 - 0.078 BTU.ft/hr.ft^2.F
Specific heat capacity	0.396 - 0.408 BTU/lb.F
Thermal expansion coefficient	* 17.5 - 23.4 µstrain/F
Electrical properties	
Electrical resistivity	* 1.43e14 - 2.13e14 µohm.in
Dielectric constant (relative permittivity)	* 3.93 - 4.8
Dissipation factor (dielectric loss tangent)	* 0.054 - 0.067
Dielectric strength (dielectric breakdown)	* 25.4 - 50.8 V/mil
Magnetic properties	
Magnetic type	Non-magnetic
Ontical properties	
Optical properties Transparency	Opaque
Transparency	Opaque
Critical materials risk	
Contains >5wt% critical elements?	No
Durability	
Water (fresh)	Limited use
Water (salt)	Limited use
Weak acids	Limited use
Strong acids	Unacceptable
Weak alkalis	Acceptable

Oak (quercus rubra) (t)

Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources				

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb			
-----------------------------------	-------	---	-------	-------	--	--	--

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage	* 1.84e4	-	2.03e4	in^3/lb
-------------	----------	---	--------	---------

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 244	-	270	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0426	-	0.0471	lb/lb
Fine machining energy (per unit wt removed)	* 605	-	668	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.106	-	0.117	lb/lb
Grinding energy (per unit wt removed)	* 1.01e3	-	1.11e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.175	-	0.194	lb/lb

Recycling and end of life

Recycle		×			
Recycle fraction in current supply		8.55	-	9.45	%
Downcycle		✓			
Combust for energy recovery		✓			
Heat of combustion (net)	*	8.49e3	-	9.16e3	BTU/lb
Combustion CO2	*	1.69	-	1.78	lb/lb
Landfill		✓			
Biodegrade		✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

LIIIKS	
ProcessUniverse	
Reference	
Shape	

