Sprawozdanie I

Przeszukiwanie grafów i planowanie tras przejazdu

Autor: Konrad Kalita

Sekcja "4 Wyszukiwanie najkrótszej ścieżki":

1. Statystyki dla problemu bez ograniczeń

Ustawienia	Długość ścieżki	Czas pracy (ms)	Liczba operacji
Breadth-First-Search (domyślny)	16.14	1.90	1243
Dijkstra (domyślny)	16.14	3.55	1614
Best-First-Search (domyślny)	16.14	104.52	1614
A* (domyślny)	16.14	105	1614
Best-First-Search (dx)	16.14	10.91	131
$A^*(dx)$	16.14	32.99	509
Best-First-Search (Manhattan)	16.14	7.07	75
A* (Manhattan)	16.14	7.50	75
Best-First-Search (Diagonal)	16.14	6.48	75
A* (Diagonal)	16.14	9.01	113
Best-First-Search (Euclidean)	16.14	6.78	75
A* (Euclidean)	16.14	9.48	127

- 2. Jak wyglądają definicje heurystyki (w narzędziu on-line):
 - a. Manhattan: dx + dy
 - b. Diagonal: (dx + dy) (0.6 * Math.min(dx, dy))
 - c. Euclidean: Math.sqrt(dx *dx, dy * dy)
- 3. Jaka heurystyka była w stanie doprowadzić algorytmy A* i Best-First-Search do przejścia nad dłuższą krawędzią w **zadaniu 1**, podpunkt 3?

Przykładowo heurystyka - **8** * **dy** jest w stanie doprowadzić algorytmy A* i Best-First-Search do przejścia nad dłuższą krawędzią.

4. Statystyki dla problemu z zadania 2:

Ustawienia	Długość ścieżki	Czas pracy	Liczba operacji
A* (Euclidean)	36.49	121.27	2252
A* (Manhattan)	36.49	75.61	1300
A* (Diagonal)	36.49	91.72	1466
A^* (dx)	36.49	125.18	2252
A* (5*dx)	36.49	84.96	1415
A* (dy)	36.49	140.53	2507
Breadth-First-Search (bidirectional)	36.49	1.18	282

Dijkstra (bidirectional)	36.49	0.93	279
A* (Euclidean, bidirectional)	38.14	10.9	148
A* (Manhattan, bidirectional)	38.14	13.24	191
A* (Diagonal, bidirectional)	38.14	11.84	163
A* (dx, bidirectional)	36.49	10.72	148
A* (5*dx, bidirectional)	38.49	11.17	155
A* (dy, bidirectional)	38.14	21.4	324

5. Czy któraś heurystyka działała w lepiej w trybie jednokierunkowym?

Z moich obserwacji wynika, że nie. Dwukierunkowe algorytmy są znacznie szybsze i wykonują mniej operacji. Są po prostu dużo efektywniejsze. Jedyną wadą jest, że czasem znaleziona droga jest dłuższa niż przy użyciu algorytmu jednokierunkowego. Tak zwany trade-off pomiędzy czasem wykonania a jakością rozwiązania.

6. Zaproponuj najlepszą strategię przeszukiwania dla tego problemu i zapisz dla niej statystyki.

Najlepszą strategią jest użyć algorytmów dwukierunkowych takich jak BFS czy Dijkstra (jak widać w tabelce są one najszybsze). Jeżeli jednak czas nie gra dla nas takiej roli i interesuje nas bardziej dokładność rozwiązania to można rozważyć użycie algorytmów jednokierunkowych.

Sekcja "5 Problem n-puzzli"

- Graf reprezentujący puzzle 5x5 zajmie w pamięci:
 32bits * 25! = 4.96358721e26 jak widzimy jest to ogromna liczba.
- 2. Czy graf musi być w całości wygenerowany przed przystąpieniem do przeszukiwania? **NIE**, ponieważ dla konkretnego z wierzchołków iteracyjnie wyznaczamy kolejne możliwe kombinacje ułożenia.
- 3. Statystyki dla różnych algorytmów i heurystyk dla domyślnego problemu:

Ustawienia	Długość ścieżki	Open list	Closed list
Breadth-First-Search	6	60	84
Iterative Deepening Search	7	2	17
Greedy (Euclidean)	6	4	7
Greedy (Manhattan)	6	4	7
Greedy (Tile out-of-place)	6	4	7
A* (Euclidean)	6	6	8
A* (Manhattan)	6	4	7
A* (Tile out-of-place)	6	4	7

4. Jak na proces rozwiązywania wpływa zamiana 1 i 2 w stanie początkowym? Jeżeli zmiana jest zauważalna, co jest jej przyczyną?

Liczba kroków zwiększa się znacząco. Przyczyną jest to, że problem jest typu NP-hard i liczenie tego wszystkiego zajmuje bardzo dużo czasu.

Sekcja "6 Świat klocków"

1. Poniżej znajduje się screenshot z narysowanym grafem stanów dla świata klocków:

- 2. Wynik rozwiązania dla tego grafu (metoda Best-First Search):
 - a. Ścieżka:
 - i. |a|b||
 - ii. |a| |b|
 - iii. | |a|b|
 - iv. | |ba| | (koniec)
 - b. Długość (koszt ścieżki): 3.0
 - c. Liczba rozwiniętych węzłów: 6

Sekcja "7 Zagadnienie automatycznego planowania"

- 1. Reguły dla brakujących akcji w solverze STRIPS:
 - a. ACTION II:

b. ACTION III:

c. ACTION IV:

- 2. Plany znalezione przez solver dla problemów:
 - a. problem1:

```
Init: [ontable(a), ontable(b), ontable(c), clear(a), clear(b), clear(c), handempty]

Goal: [on(b, c), on(a, b)]

Plan: pickup(b)

stack(b, c)

pickup(a)

stack(a, b)
```

b. problem2:

```
Init: [on(a, c), ontable(b), ontable(c), clear(a), clear(b), handempty]
Goal: [on(b, c), on(a, b)]
Plan: pickup(c)
stack(c, a)
pickup(b)
stack(b, c)
pick_from(a, c)
stack(a, b)
```

c. problem3:

```
Init: [on(c, a), ontable(a), ontable(b), clear(b), clear(c), handempty]
Goal: [on(b, c), on(a, b)]
Plan: pickup(b)
stack(b, c)
pickup(a)
stack(a, b)
```

3. Dodatkowy problem:

```
%TODO: EXAMPLE IV
problem4:- plan(
[on(a,b), on(c, d), ontable(d), ontable(b), clear(a), clear(c), handempty],
[on(c,b)]).
```

- a. stan początkowy:
- b. stan końcowy:
- c. znaleziony plan:

```
Init: [on(a, b), on(c, d), ontable(d), ontable(b), clear(a), clear(c), handempty]

Goal: [on(c, b)]

Plan: pick_from(c, d)

place(c)

pickup(b)

stack(b, d)

pickup(c)

stack(c, b)
```

4. Opisz poniżej, jaką wartość dostrzegasz w rozwiązywaniu problemów bez warunków clear/1

Brak użycia clear/1 powoduje, że problem staje się łatwiejszy. Takie uproszczenie pozwala na przybliżanie się do wyniku (poprzez znajdowanie rozwiązań przybliżających do optymalnego rozwiązania) i finalnie poprawnego wyniku.