Esercitazioni di Fisica (+richiami di Vettori e Meccanica)

martino.gagliardi@unito.it

Grandezze scalari e vettoriali

Grandezze scalari: sono completamente definite da un numero (con unità di misura).

Esempi: massa, temperatura, energia...

Grandezze vettoriali:

Sono definite da:

- un numero >= 0 con unità di misura (modulo)
- una direzione
- un verso

Esempi: posizione, spostamento, velocità, forza, accelerazione, campo elettrico,

campo magnetico...

I vettori si possono descrivere mediante le loro componenti rispetto a un dato sistema di riferimento, e.g. per vettori in 2D:

$$\overrightarrow{v} = (v_x, v_y) \qquad |\overrightarrow{v}| = \sqrt{v_x^2 + v_y^2} \qquad v_x = |\overrightarrow{v}|$$

$$v_x = |\overrightarrow{v}|$$

$$v_y = |\overrightarrow{v}|$$

$$v_{x} = |\vec{v}| \cos \theta$$

$$v_{y} = |\vec{v}| \sin \theta$$

Somma e differenza di vettori

• Somma di vettori: metodo grafico

Somma e differenza di vettori

• Somma e differenza di vettori in componenti

$$\vec{a} = (a_x, a_y)$$

$$\vec{b} = (b_x, b_y)$$

$$\Rightarrow \vec{a} + \vec{b} = (a_x + b_x, a_y + b_y)$$

$$\Rightarrow \vec{a} - \vec{b} = (a_x - b_x, a_y - b_y)$$

Nota: per vettori in 3 dimensioni:

$$\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y, a_z + b_z)$$

Moltiplicazione di un vettore per un numero reale

Moltiplicando un vettore \mathbf{v} per un numero α si ottiene un nuovo vettore $\alpha \mathbf{v}$, che ha:

Modulo:

$$\left| \vec{\alpha v} \right| = \left| \vec{\alpha} \right| \vec{v}$$

Direzione: la stessa di v

Verso:

- lo stesso di \mathbf{v} se $\alpha > 0$
- opposto a ${\bf v}$ se α < 0

onenti:
$$\vec{v} = (v_x, v_y) \Longrightarrow \vec{\alpha v} = (\alpha v_x, \alpha v_y)$$

Divisione di un vettore per un numero: definizione analoga

$$\frac{\vec{v}}{\alpha} = \left(\frac{v_x}{\alpha}, \frac{v_y}{\alpha}\right)$$

Versori

• Dato un vettore \mathbf{v} , si definisce "versore di \mathbf{v} " ($\mathbf{u}_{\mathbf{v}}$) il vettore \mathbf{v} diviso per il suo modulo:

$$\overrightarrow{u}_{\overrightarrow{v}} = \frac{\overrightarrow{v}}{|\overrightarrow{v}|} = \left(\frac{v_x}{|\overrightarrow{v}|}, \frac{v_y}{|\overrightarrow{v}|}, \frac{v_z}{|\overrightarrow{v}|}\right)$$

- Proprietà:
 - stessa direzione e stesso verso di **v**

$$- \left| \overrightarrow{u}_{\overrightarrow{v}} \right| = \frac{\left| \overrightarrow{v} \right|}{\left| \overrightarrow{v} \right|} = 1$$

Il versore ha modulo 1 e non ha unità di misura, si utilizza per indicare una direzione e un verso nello spazio

Versori degli assi

In 2 D

Versore dell'asse x:

$$\vec{i} = (1,0)$$

Versore dell'asse y:

$$\vec{j} = (0,1)$$

I versori degli assi possono essere usati per rappresentare un vettore qualsiasi. Per esempio, in 2D:

$$\Rightarrow \vec{v} = (v_x, v_y) = (v_x, 0) + (0, v_y)$$
$$= v_x(1, 0) + v_y(0, 1) = v_x \vec{i} + v_y \vec{j}$$

In 3 D

Versore dell'asse x:

$$\vec{i} = (1,0,0)$$

Versore dell'asse y:

$$\vec{j} = (0,1,0)$$

Versore dell'asse z:

$$\vec{k} = (0,0,1)$$

$$\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$$

Vettore posizione: ha per componenti le coordinate di un punto, misurate rispetto a un dato sistema di riferimento.

Nel piano (2 dimensioni):

$$\vec{r}_A = x_A \vec{i} + y_A \vec{j}$$

$$\vec{r}_B = x_B \vec{i} + y_B \vec{j}$$

Vettore spostamento

$$\vec{r}_{AB} = \vec{r}_{B} - \vec{r}_{A} = (x_{B} - x_{A})\vec{i} + (y_{B} - y_{A})\vec{j}$$

$$\vec{r}_{BA} = \vec{r}_{A} - \vec{r}_{B} = (x_{A} - x_{B})\vec{i} + (y_{A} - y_{B})\vec{j} = -\vec{r}_{AB}$$

Distanza tra due punti

$$r_{AB} = |\vec{r}_{AB}| = |\vec{r}_{BA}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Versore che va dal punto A al punto B

$$\vec{u}_{AB} = \frac{\vec{r}_{AB}}{|\vec{r}_{AB}|} = \frac{\vec{r}_{AB}}{|\vec{r}_{AB}|} = \frac{(x_B - x_A)\vec{i} + (y_B - y_A)\vec{j}}{\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}}$$

Vettore posizione: ha per componenti le coordinate di un punto, misurate rispetto a un dato sistema di riferimento.

Nel piano (2 dimensioni):

$$\vec{r}_A = x_A \vec{i} + y_A \vec{j}$$

$$\vec{r}_B = x_B \vec{i} + y_B \vec{j}$$

Vettore spostamento

$$\vec{r}_{AB} = \vec{r}_B - \vec{r}_A = (x_B - x_A)\vec{i} + (y_B - y_A)\vec{j}$$

$$\vec{r}_{BA} = \vec{r}_A - \vec{r}_B = (x_A - x_B)\vec{i} + (y_A - y_B)\vec{j} = -\vec{r}_{AB}$$

Distanza tra due punti

$$r_{AB} = |\vec{r}_{AB}| = |\vec{r}_{BA}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Versore che va dal punto A al punto B

$$\vec{u}_{AB} = \frac{\vec{r}_{AB}}{|\vec{r}_{AB}|} = \frac{\vec{r}_{AB}}{r_{AB}} = \frac{(x_B - x_A)\vec{i} + (y_B - y_A)\vec{j}}{\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}}$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{u}| |\overrightarrow{v}| \cos \theta$$
$$= u_x v_x + u_y v_y (+u_z v_z)$$

- 1. Un corpo compie un percorso ABCA nel piano xy. Le coordinate dei punti sono: A(2,3), B(4,5), C(7,-9).
 - Scrivere il vettore spostamento per ciascuno dei tratti del percorso e calcolarne la lunghezza.
 - Individuare il versore corrispondente a ciascuno spostamento.
 - Calcolare l'angolo tra i tratti AB e BC e tra i tratti BC e CA.

- 1. Un corpo compie un percorso ABCA nel piano xy. Le coordinate dei punti sono: A(2,3), B(4,5), C(7,-9).
 - Scrivere il vettore spostamento per ciascuno dei tratti del percorso e calcolarne la lunghezza.

$$\vec{r}_{AB} = \vec{r}_B - \vec{r}_A = (x_B - x_A)\vec{i} + (y_B - y_A)\vec{j} = (4 - 2)\vec{i} + (5 - 3)\vec{j} = 2\vec{i} + 2\vec{j}$$

$$\vec{r}_{AB} = |\vec{r}_{AB}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$$

$$\vec{r}_{BC} = \vec{r}_C - \vec{r}_B = (x_C - x_B)\vec{i} + (y_C - y_B)\vec{j} = 3\vec{i} - 14\vec{j}$$

$$\vec{r}_{BC} = |\vec{r}_{BC}| = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{3^2 + (-14)^2} = \sqrt{205} \approx 14.3$$

$$\vec{r}_{CA} = \vec{r}_A - \vec{r}_C = (x_A - x_C)\vec{i} + (y_A - y_C)\vec{j} = -5\vec{i} + 12\vec{j}$$

$$\vec{r}_{CA} = |\vec{r}_{CA}| = \sqrt{(x_A - x_C)^2 + (y_A - y_C)^2} = \sqrt{(-5)^2 + 12^2} = 13$$

• Individuare il versore corrispondente a ciascuno spostamento.

$$\vec{u}_{AB} = \frac{\vec{r}_{AB}}{|\vec{r}_{AB}|} = \frac{2\vec{i} + 2\vec{j}}{2\sqrt{2}} = \frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$$

$$\vec{u}_{BC} = \frac{\vec{r}_{BC}}{|\vec{r}_{BC}|} = \frac{3\vec{i} - 14\vec{j}}{\sqrt{205}} = \frac{3}{\sqrt{205}}\vec{i} - \frac{14}{\sqrt{205}}\vec{j}$$

$$\vec{u}_{CA} = \frac{\vec{r}_{CA}}{|\vec{r}_{CA}|} = \frac{-5\vec{i} + 12\vec{j}}{13} = \frac{5}{13}\vec{i} + \frac{12}{13}\vec{j}$$

• Calcolare l'angolo tra i tratti AB e BC e tra i tratti BC e CA.

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta = u_x v_x + u_y v_y$$

$$\rightarrow \cos \vartheta = \frac{u_x v_x + u_y v_y}{\left| \overrightarrow{u} \right| \left| \overrightarrow{v} \right|}$$

$$\cos \theta_{AB,BC} = \frac{\vec{r}_{AB} \cdot \vec{r}_{BC}}{r_{AB}r_{BC}} = \frac{r_{AB,x} \cdot r_{BC,x} + r_{AB,y} \cdot r_{BC,y}}{r_{AB}r_{BC}} = \frac{2 \cdot 3 + 2 \cdot (-14)}{2\sqrt{2} \cdot \sqrt{205}} = \frac{-22}{2\sqrt{410}} \approx -0.543$$

$$\rightarrow \theta_{AB,BC} \approx \arccos(-0.543) \approx 2.145 \text{ rad} \approx 123^{\circ}$$

$$\rightarrow \theta_{AB,BC} \approx \arccos(-0.543) \approx 2.145 \text{ rad} \approx 123$$

$$\cos \theta_{BC,CA} = \frac{\vec{r}_{BC} \cdot \vec{r}_{CA}}{r_{BC} r_{CA}} = \frac{r_{BC,x} \cdot r_{CA,x} + r_{BC,y} \cdot r_{CA,y}}{r_{BC} r_{CA}} = \frac{3 \cdot (-5) + (-14) \cdot 12}{\sqrt{205} \cdot 13} = \frac{-183}{13\sqrt{205}} \approx -0.983$$

$$\rightarrow \theta_{BC,CA} \approx \arccos(-0.983) \approx 2.958 \text{ rad} \approx 169^{\circ}$$

$$\rightarrow \theta_{BC,CA} \approx \arccos(-0.983) \approx 2.958 \,\mathrm{rad} \approx 169^{\circ}$$

2. Un escursionista percorre in un giorno 40 km in direzione SE. Il giorno successivo percorre 25 km in direzione N60°E.

Dopo aver scelto un opportuno sistema di riferimento,

- scrivere i vettori corrispondenti ai due spostamenti, e i rispettivi versori;
- scrivere il vettore posizione dell'escursionista alla fine del secondo giorno;
- calcolare la distanza dal punto di partenza alla fine del secondo giorno.

2. Un escursionista percorre in un giorno 40 km in direzione SE. Il giorno successivo percorre 25 km in direzione N60°E.

Dopo aver scelto un opportuno sistema di riferimento,

• scrivere i vettori corrispondenti ai due spostamenti, e i rispettivi versori;

$$r_{12} = |\vec{r}_{12}| = 40 \text{ km}$$

$$r_{12} = |\vec{r}_{12}| = 25 \text{ km}$$

$$\vec{r}_{1} = r_{1} \cos(-45^{\circ}) \vec{i} + r_{1} \sin(-45^{\circ}) \vec{j} = \frac{40 \text{ km}}{\sqrt{2}} \vec{i} - \frac{40 \text{ km}}{\sqrt{2}} \vec{j}$$

$$= \left(\frac{40}{\sqrt{2}} \vec{i} - \frac{40}{\sqrt{2}} \vec{j}\right) \text{ km}$$

$$\vec{r}_{12} = r_{12} \cos 30^{\circ} \vec{i} + r_{12} \sin 30^{\circ} \vec{j} = 25 \text{ km} \frac{\sqrt{3}}{2} \vec{i} + 25 \text{ km} \frac{1}{2} \vec{j}$$

$$= \left(12.5\sqrt{3} \vec{i} + 12.5 \vec{j}\right) \text{ km}$$

$$\vec{u}_{1} = \frac{\vec{r}_{1}}{r_{1}} = \cos(-45^{\circ}) \vec{i} + \sin(-45^{\circ}) \vec{j} = \frac{1}{\sqrt{2}} \vec{i} - \frac{1}{\sqrt{2}} \vec{j}$$

$$\vec{u}_{12} = \frac{\vec{r}_{12}}{r_{12}} = \cos 30^{\circ} \vec{i} + \sin 30^{\circ} \vec{j} = \frac{\sqrt{3}}{2} \vec{i} + \frac{1}{2} \vec{j}$$

- scrivere il vettore posizione dell'escursionista alla fine del secondo giorno;
- calcolare la distanza dal punto di partenza alla fine del secondo giorno.N

$$\vec{r}_{12} = \vec{r}_2 - \vec{r}_1$$

$$\rightarrow \vec{r}_2 = \vec{r}_1 + \vec{r}_{12} = \left(\frac{40}{\sqrt{2}}\vec{i} - \frac{40}{\sqrt{2}}\vec{j} + 12.5\sqrt{3}\vec{i} + 12.5\vec{j}\right) \text{km} =$$

$$= \left[\left(\frac{40}{\sqrt{2}} + 12.5\sqrt{3}\right)\vec{i} + \left(-\frac{40}{\sqrt{2}} + 12.5\right)\vec{j}\right] \text{km} \approx \left(49.9\vec{i} - 15.8\vec{j}\right) \text{km}$$

$$|\vec{r}_2| = \sqrt{r_{2,x}^2 + r_{2,y}^2} \approx \sqrt{49.9^2 + (-15.8)^2} \text{ km} \approx 52.4 \text{ km}$$

Moto uniformemente accelerato in 2 dimensioni

$$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$

$$\vec{v} = \vec{v}_0 + \vec{a} t$$

$$\vec{r} = x\vec{i} + y\vec{j}$$

$$\vec{v} = v_x \vec{i} + v_y \vec{j}$$

$$\vec{r}_0 = x_0 \vec{i} + y_0 \vec{j}$$

$$\vec{v}_0 = v_{x,0} \vec{i} + v_{y,0} \vec{j}$$

$$\vec{a} = a_x \vec{i} + a_y \vec{j}$$

$$x = x_0 + v_{0,x}t + \frac{1}{2}a_xt^2$$

$$v_x = v_{0,x} + a_xt$$

$$y = y_0 + v_{0,y}t + \frac{1}{2}a_yt^2$$

$$v_y = v_{0,y} + a_yt$$

Moto uniformemente accelerato in 2 dimensioni

- **3.** Un corpo viene lanciato a t=0 da un'altezza di 20 m dal suolo, con una velocità iniziale di 12 m/s e direzione che forma un angolo di 30° verso l'alto con il suolo.
 - Calcolare dopo quanto tempo il corpo raggiunge la massima quota;
 - calcolare la massima quota raggiunta;
 - calcolare dopo quanto tempo il corpo tocca terra;
 - calcolare la velocità del corpo subito prima di toccare terra.
 - Calcolare la coordinata orizzontale del corpo quando tocca terra (gittata)
 - Scrivere l'equazione della traiettoria del corpo nel piano x-y

- **3.** Un corpo viene lanciato a t=0 da un'altezza di 20 m dal suolo, con una velocità iniziale di 12 m/s e direzione che forma un angolo di 30° verso l'alto con il suolo.
 - Calcolare dopo quanto tempo il corpo raggiunge la massima quota;
 - calcolare la massima quota raggiunta;

$$v_{0} = |\vec{v}_{0}| = 12 \text{ m/s}$$

$$x = x_{0} + v_{0,x}t + \frac{1}{2}a_{x}t^{2} = v_{0,x}t$$

$$v_{0,x} = v_{0}\cos 30^{\circ} \approx 10.4 \text{ m/s}$$

$$v_{x} = v_{0,x} + a_{x}t = v_{0,x}$$

$$v_{0,y} = v_{0}\sin 30^{\circ} = 6 \text{ m/s}$$

$$a_{x} = 0; \quad a_{y} = -g$$

$$y_{0} + v_{0,y}t + \frac{1}{2}a_{y}t^{2} = y_{0} + v_{0,y}t - \frac{1}{2}gt^{2}$$

$$v_{y} = v_{0,y} + a_{y}t = v_{0,y} - gt$$

Alla max quota:
$$v_y = 0 \rightarrow v_{0,y} - gt_{\text{max}} = 0 \rightarrow t_{\text{max}} = \frac{v_{0,y}}{g} \approx 0.61 \, \text{s}$$

$$y_{\text{max}} = y_0 + v_{0,y} t_{\text{max}} - \frac{1}{2} g t_{\text{max}}^2 = y_0 + \frac{v_{0,y}^2}{g} - \frac{1}{2} g \frac{v_{0,y}^2}{g^2} = y_0 + \frac{v_{0,y}^2}{2g} \approx 21.8 \text{ m}$$

• calcolare dopo quanto tempo il corpo tocca terra;

$$y = 0 \rightarrow y_{0} + v_{0,y}t_{0} - \frac{1}{2}gt_{0}^{2} = 0 \rightarrow t_{0} = \frac{-v_{0,y} \pm \sqrt{v_{0,y}^{2} + 2gy_{0}}}{-g} = t_{0} = \frac{-v_{0,y} + \sqrt{v_{0,y}^{2} + 2gy_{0}}}{-g} < 0$$

$$\rightarrow t_{0} = \frac{-v_{0,y} - \sqrt{v_{0,y}^{2} + 2gy_{0}}}{-g} \approx 2.72 \text{ s}$$

$$\rightarrow t_{0} = \frac{-v_{0,y} - \sqrt{v_{0,y}^{2} + 2gy_{0}}}{-g} > 0$$

calcolare la velocità del corpo subito prima di toccare terra.

$$\begin{aligned} v(t_0) &= v_x(t_0)\vec{i} + v_y(t_0)\vec{j} \\ v_x(t_0) &= v_{0,x} \\ v_y(t_0) &= v_{0,y} - gt_0 = v_{0,y} - g\frac{-v_{0,y} - \sqrt{v_{0,y}^2 + 2gy_0}}{-g} = -\sqrt{v_{0,y}^2 + 2gy_0} \\ \left| \vec{v}(t_0) \right| &= \sqrt{v_x^2(t_0) + v_y^2(t_0)} = \sqrt{v_{0,x}^2 + v_{0,y}^2 + 2gy_0} = \sqrt{v_0^2 + 2gy_0} \approx 23\frac{m}{s} \end{aligned}$$

Calcolare la coordinata orizzontale *L* del corpo quando tocca terra

$$x = v_{0,x}t$$

$$\rightarrow L = v_{0,x}t_0 \approx 28.3 \text{ m}$$

Scrivere l'equazione della traiettoria del corpo nel piano x-y

$$y = y_0 + v_{0,y}t - \frac{1}{2}gt^2$$

$$v_{0,x} = v_0 \cos \theta$$

$$v_{0,y} = v_0 \sin \theta$$

$$x = v_{0,x}t \to t = \frac{x}{v_{0,x}}$$

$$\Rightarrow y = y_0 + v_{0,y} \frac{x}{v_{0,x}} - \frac{1}{2} g \frac{x^2}{v_{0,x}^2} = y_0 + x \tan \theta - \frac{g}{2} \frac{x^2}{v_0^2 \cos^2 \theta}$$
 (equazione di una parabola)

Back-up