CS49X Series Linear Hall-Effect Integrated Circuits

Description

The CS49X series linear Hall-effect IC includes a voltage regulator, Hall generator, linear amplifier, and emitter-follower output stage. The output of the IC changes linearly with the magnetic flux density.

Features

Applications

- Small Size
- Motion Sensors
- High Accuracy
- Gear Tooth Sensors
- High Sensitivity
- Proximity SensorsCurrent Sensors
- Excellent ReliabilityLow Power
- Single Supply Operation

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Supply Voltage	V _{cc}	9	V	
Operating Temperature Range	T _A	- 40 to 85	°C	
Storage Temperature Range	T _S	-65 to 150	°C	

FUNCTIONAL BLOCK DIAGRAM

Electrical & Magnetic Characteristics (T_A=25°C V_{cc}=5.0V)

Models	Supply current I _{CC} (mA)	Output Upper Limit Voltage V_T (V) $B \ge 90 mT$	Output Lower Limit Voltage V _L (V) B≤-90mT	Quiescent Output Voltage Vo (V) B=0 mT	Sensitivity (mV/mT)	Operating Temperature Range (°C)	Output Function
CS49E	≤8mA	≥ 4.20	≤1	2.5 ± 0.1	15 to 20	- 40 to 85	Linear
CS49F	≤8mA	≥ 4.20	≤1	2.5 ± 0.1	18 to 25	- 40 to 85	Linear
CS49G	≤8mA	≥ 4.20	≤1	2.5 ± 0.1	22 to 30	- 40 to 85	Linear
CS49H	≤8mA	≥ 4.20	≤1	2.5 ± 0.1	28 to 35	- 40 to 85	Linear

Package (units mm)

45°

Characteristic Curves

Pin Notes:

- 1. Power Supply
- 2. Ground
- 3. Output

Principles

The quiescent output voltage (B=0mT) is nominally one-half the supply voltage. When a south magnetic pole is presented to the branded face of the Hall-effect IC, it will drive the output higher than the quiescent voltage. A north magnetic pole will drive the output below the quiescent output voltage. Output voltage levels are dependent on magnetic flux density at the most sensitive area of the device. Greatest sensitivity is obtained with a supply voltage of 6V, but at the cost of increased supply current and a slight loss of output symmetry.

Notes:

- Mechanical stress should be minimized in the process of assembly.
- The soldering temperature at the leads should be less than 260°C not exceeding 5 seconds.

