부스트캠프 Al Tech 2기

boostcamp aitech

BERT, MT-DNN

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, NAACL 2019 Multi-Task Deep Neural Networks for Natural Language Understanding, ACL 2019

Email: jinmang2@gmail.com

GitHub: github.com/jinmang2

Huggingface Hub: huggingface.co/jinmang2

Boostcamp Al Tech 2 NLP 논문 모임에 오신 여러분 환영합니다!

00. BERT vs ELMo, GPT-1

High-Level View

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

Bidirectional Encoder Representation from Transformer

01. Review: ELMo

High-Level View

01. Review: GPT-1

High-Level View

High-Level View

Pre-training

Forward LM과 Backward LM을 동시에 학습하는 것이 가능한가? Cheating인데...

BERT vs ELMo vs GPT-1

- Bidirectional repr
- Fine-tuning
- Single/Pair input form
- BookCorpus + Wikipedia
- Transformer Encoder
- Difference learning rate
- Better than GPT-1 and ELMo

- Unidirectional
- Fine-tuning
- Single/Pair input form
- BookCorpus
- Transformer Encoder
- Same learning rate
- Better than ELMo

- Shallow concatenate Bidirectional
- Feature-based
- simple
- 1B Word Benchmark
- Char-CNN + biLM
- Difference learning rate
- Better than before

What is cloze procedure?

Cloze Activities: Isn't It Just Fill-in-the-Blank?

What is cloze procedure?

Masked Language Modeling

```
import torch
from typing import Tuple
from transformers import PreTrainedTokenizer
def mask_tokens(
    inputs: torch.Tensor,
    tokenizer: PreTrainedTokenizer,
    mlm probability=0.15,
) -> Tuple[torch.Tensor, torch.Tensor]:
    if tokenizer.mask token is None:
        raise ValueError(
            "This tokenizer does not have a mask token which is necessary for masked language modeling. Remove the
    labels = inputs.clone()
    probability_matrix = torch.full(labels.shape, mlm_probability)
    special tokens mask = [
        tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True)
        for val in labels.tolist()
    probability matrix.masked fill (torch.tensor(special tokens mask, dtype=torch.bool), value=0.0)
    if tokenizer. pad token is not None:
        padding mask = labels.eq(tokenizer.pad token id)
        probability matrix.masked fill (padding mask, value=0.0)
    masked indices = torch.bernoulli(probability_matrix).bool()
    labels[~masked indices] = -100 # We only compute loss on masked tokens
    indices replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked indices
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
    return inputs, labels
```


80%	[MASK]
10%	random token
10%	hold original token

Fine-Tuning

이런 건 repo를 직접 뜯어보면서 봐야해요!

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Performance

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

System	D	ev	Test		
•	EM	F1	EM	Fl	
Top Leaderboard System	s (Dec	10th,	2018)		
Human	-	-	82.3	91.2	
#1 Ensemble - nlnet	-	-	86.0	91.7	
#2 Ensemble - QANet	-	-	84.5	90.5	
Publishe	d				
BiDAF+ELMo (Single)	-	85.6	-	85.8	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERT _{LARGE} (Single)	84.1	90.9	-	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

Table 2: SQuAD 1.1 results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

System	D	ev	Test		
-	EM	F1	EM	F1	
Top Leaderboard Systems	(Dec	10th,	2018)		
Human	86.3	89.0	86.9	89.5	
#1 Single - MIR-MRC (F-Net)	-	_	74.8	78.0	
#2 Single - nlnet	-	-	74.2	77.1	
Publishe	d				
unet (Ensemble)	-	_	71.4	74.9	
SLQA+ (Single)	-		71.4	74.4	
Ours					
BERT _{LARGE} (Single)	78.7	81.9	80.0	83.1	

Table 3: SQuAD 2.0 results. We exclude entries that use BERT as one of their components.

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
OpenAI GPT	-	78.0
BERT _{BASE}	81.6	-
BERT _{LARGE}	86.6	86.3
Human (expert) [†] Human (5 annotations) [†]	_	85.0 88.0

Table 4: SWAG Dev and Test accuracies. †Human performance is measured with 100 samples, as reported in the SWAG paper.

	Dev Set								
Tasks	MNLI-m (Acc)	QNLI (Acc)		SST-2 (Acc)	SQuAD (F1)				
BERTBASE	84.4	88.4	86.7	92.7	88.5				
No NSP LTR & No NSP	83.9 82.1	84.9 84.3	86.5 77.5	92.6 92.1	87.9 77.8				
+ BiLSTM	82.1	84.1	75.7	91.6	84.9				

Table 5: Ablation over the pre-training tasks using the BERT_{BASE} architecture. "No NSP" is trained without the next sentence prediction task. "LTR & No NSP" is trained as a left-to-right LM without the next sentence prediction, like OpenAI GPT. "+ BiLSTM" adds a randomly initialized BiLSTM on top of the "LTR + No NSP" model during fine-tuning.

Ну	perpar	ams		Dev Set Accuracy					
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2			
3	768	12	5.84	77.9	79.8	88.4			
6	768	3	5.24	80.6	82.2	90.7			
6	768	12	4.68	81.9	84.8	91.3			
12	768	12	3.99	84.4	86.7	92.9			
12	1024	16	3.54	85.7	86.9	93.3			
24	1024	16	3.23	86.6	87.8	93.7			

Table 6: Ablation over BERT model size. #L = the number of layers; #H = hidden size; #A = number of attention heads. "LM (ppl)" is the masked LM perplexity of held-out training data.

System	Dev F1	Test F1
ELMo (Peters et al., 2018a)	95.7	92.2
CVT (Clark et al., 2018)	-	92.6
CSE (Akbik et al., 2018)	-	93.1
Fine-tuning approach		
BERT _{LARGE}	96.6	92.8
$BERT_{BASE}$	96.4	92.4
Feature-based approach (BERT _{BASE})		
Embeddings	91.0	_
Second-to-Last Hidden	95.6	_
Last Hidden	94.9	_
Weighted Sum Last Four Hidden	95.9	_
Concat Last Four Hidden	96.1	_
Weighted Sum All 12 Layers	95.5	-

Table 7: CoNLL-2003 Named Entity Recognition results. Hyperparameters were selected using the Dev set. The reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

Figure 5: Ablation over number of training steps. This shows the MNLI accuracy after fine-tuning, starting from model parameters that have been pre-trained for k steps. The x-axis is the value of k.

Ma	sking Ra	ates	Dev Set Results					
MASK	SAME	RND	MNLI	1	NER			
			Fine-tune	Fine-tune	Feature-based			
80%	10%	10%	84.2	95.4	94.9			
100%	0%	0%	84.3	94.9	94.0			
80%	0%	20%	84.1	95.2	94.6			
80%	20%	0%	84.4	95.2	94.7			
0%	20%	80%	83.7	94.8	94.6			
0%	0%	100%	83.6	94.9	94.6			

Table 8: Ablation over different masking strategies.

Catastrophic Forgetting

BERT 논문에서 각 task를 어떻게 학습했는지 살펴보면 아래와 같은 특징이 있다는 것을 확인할 수 있다.

- 3 Epochs
- Small Learning Rate

그리고 BERT-Large의 경우 성능이 좋지 않아서 Random Restart 후 성능이 좋은 친구를 결과로 사용했다는 보고도 있다.

왜 이렇게 해줄까? 찾아보니 Catastrophic Forgetting이라는 키워 드를 찾을 수 있었다!

여기에 초기 BERTAdam이 Bias Compensation을 안해줘서 그런 경향도 있었다고 하네요! TMI ㅎㅎ

BERT + Multi-Task Learning

What is Multi-Tasking Learning?

Figure 1: Hard parameter sharing for multi-task learning in deep neural networks

동시에 여러 문제를 푸는 것!

What is Multi-Tasking Learning?

Algorithm 1: Training a MT-DNN model. Initialize model parameters Θ randomly. Pre-train the shared layers (i.e., the lexicon encoder and the transformer encoder). Set the max number of epoch: $epoch_{max}$. //Prepare the data for T tasks. for t in 1, 2, ..., T do Pack the dataset t into mini-batch: D_t . end for epoch in $1, 2, ..., epoch_{max}$ do 1. Merge all the datasets: $D = D_1 \cup D_2 ... \cup D_T$ 2. Shuffle D for b₊ in D do $//b_t$ is a mini-batch of task t. 3. Compute loss : $L(\Theta)$ $L(\Theta) = \text{Eq. 6}$ for classification $L(\Theta) = \text{Eq. 7 for regression}$ $L(\Theta) = \text{Eq. 8 for ranking}$ 4. Compute gradient: $\nabla(\Theta)$ 5. Update model: $\Theta = \Theta - \epsilon \nabla(\Theta)$ end end

- Classification Task는 Cross Entropy loss 사용
 - $\circ -\sum_{c} 1(X,c) \log(P_c(c|X))$
- Regression Task는 MSE 사용
 (y Sim(X₁, X₂))²
- Ranking Task는 pairwise learning-to-rank paradigm 사용
 - Positive example의 NLL Loss를 최소화

$$\begin{aligned} & \circ & -\sum_{(Q,A^+)P_r(A^+|Q)} \\ & \circ & P_r(A^+|Q) = \frac{\exp(\gamma \mathrm{Rel}(Q,A^+))}{\sum_{A' \in \mathcal{A}} \exp(\gamma \mathrm{Rel}(Q,A'))} \end{aligned}$$

。 γ 는 1로 세팅

What is Multi-Tasking Learning?

Corpus	Task	#Train	#Dev	#Test	#Label	Metrics
	Sing	le-Senten	ce Class	sification	(GLUE)	
CoLA	Acceptability	8.5k	1k	1k	2	Matthews corr
SST-2	Sentiment	67k	872	1.8k	2	Accuracy
	P	airwise Te	ext Class	sification	(GLUE)	
MNLI	NLI	393k	20k	20k	3	Accuracy
RTE	NLI	2.5k	276	3k	2	Accuracy
WNLI	NLI	634	71	146	2	Accuracy
QQP	Paraphrase	364k	40k	391k	2	Accuracy/F1
MRPC	Paraphrase	3.7k	408	1.7k	2	Accuracy/F1
		Text Sir	nilarity ((GLUE)		
STS-B	Similarity	7k	1.5k	1.4k	1	Pearson/Spearman corr
		Re	levance	Ranking	g (GLUE)	
QNLI	QA/NLI	108k	5.7k	5.7k	2	Accuracy
		Pa	irwise T	Text Clas	sification	
SNLI	NLI	549k	9.8k	9.8k	3	Accuracy
SciTail	NLI	23.5k	1.3k	2.1k	2	Accuracy

4.2 Implementation Details

- PyTorch로 구현 (정확히는 킹갓 허깅페이스)
- · Adamax Optimizer
 - learning rate 5e-05
 - batch size 32
- · maximum epoch 5
- · linear learning rate decay scheduler with warm-up 0.1
- task-specific layer에 dropout 0.1
 - o MNLI엔 0.3, CoLa엔 0.05
- · gradient clipping 1.
- wordpieces tokenizer 사용
- max tokens 512

What is Multi-Tasking Learning?

Model	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	WNLI	AX	Score
	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634		
BiLSTM+ELMo+Attn ¹	36.0	90.4	84.9/77.9	75.1/73.3	64.8/84.7	76.4/76.1	-	56.8	65.1	26.5	70.5
Singletask Pretrain Transformer ²	45.4	91.3	82.3/75.7	82.0/80.0	70.3/88.5	82.1/81.4	-	56.0	53.4	29.8	72.8
GPT on STILTs 3	47.2	93.1	87.7/83.7	85.3/84.8	70.1/88.1	80.8/80.6	-	69.1	65.1	29.4	76.9
BERT ⁴ _{LARGE}	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5
MT-DNN _{no-fine-tune}	58.9	94.6	90.1/86.4	89.5/88.8	72.7/89.6	86.5/85.8	93.1	79.1	65.1	39.4	81.7
MT-DNN	62.5	95.6	91.1/88.2	89.5/88.8	72.7/89.6	86.7/86.0	93.1	81.4	65.1	40.3	82.7
Human Performance	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1

Model	MNLI-m/mm	QQP	RTE	QNLI (v1/v2)	MRPC	CoLa	SST-2	STS-B
BERT _{LARGE}	86.3/86.2	91.1/88.0	71.1	90.5/92.4	89.5/85.8	61.8	93.5	89.6/89.3
ST-DNN	86.6/86.3	91.3/88.4	72.0	96.1/-	89.7/86.4	-	-	-
MT-DNN	87.1/86.7	91.9/89.2	83.4	97.4/92.9	91.0/87.5	63.5	94.3	90.7/90.6

What is Multi-Tasking Learning?

Model	0.1%	1%	10%	100%
SNLI Dataset (Dev Accuracy%)				
#Training Data	549	5,493	54,936	549,367
BERT	52.5	78.1	86.7	91.0
MT-DNN	82.1	85.2	88.4	91.5
SciTail Dataset (Dev Accuracy%)				
#Training Data	23	235	2,359	23,596
BERT	51.2	82.2	90.5	94.3
MT-DNN	81.9	88.3	91.1	95.7

부스트캠프 Al Tech 2기

Discussion

Email: jinmang2@gmail.com

GitHub: github.com/jinmang2

Huggingface Hub: huggingface.co/jinmang2

