Ciencias de la Computación II

Lenguajes Regulares y Construcción de Autómatas

Eduardo Contrera Schneider

Universidad de la Frontera

14 de septiembre de 2016

1 Unión de Lenguajes

2 Concatenación de Lenguajes

Cerradura estrella de Lenguajes

Unión de Lenguajes

Supongamos que $M_1=(Q_1,\Sigma_1,s_1,F_1,\Delta_1)$ y $M_2=(Q_2,\Sigma_2,s_2,F_2,\Delta_2)$ son AFN. Podemos unir M_1 y M_2 en un nuevo AFN que acepte $L(M_1)\cup L(M_2)$, añadiendo un nuevo estado inicial s y dos ϵ -transiciones, una de s a s_1 y otra de s a s_2 . Formalmente el nuevo AFN $M=(Q,\Sigma,s,F,\Delta)$ viene dado por $\Sigma=\Sigma_1\cup\Sigma_2,\,F=F_1\cup F_2$ y $Q=Q_1\cup Q_2\cup \{s\}$, donde s es el nuevo estado inicial y Δ se define de forma que se incluyan todas las transiciones de Δ_1,Δ_2 y las dos nuevas ϵ -transiciones de s a s1 y s2. De esta manera tenemos

$$\Delta = \Delta_1 \cup \Delta_2 \cup \{(s, \epsilon, s_1), (s, \epsilon, s_2)\}$$

Concatenación de Lenguajes

Sean $M_1=(Q_1,\Sigma_1,s_1,F_1,\Delta_1)$ y $M_2=(Q_2,\Sigma_2,s_2,F_2,\Delta_2)$ dos AFN. Podemos unirlos para formar un AFN que acepte $L(M_1)L_(M_2)$. Se necesita un AFN que reconozca una cadena de $L(M_1)$ y después reconozca una de $L(M_2)$. Es decir, un recorrido hasta un estado de aceptación para admitir la cadena en su totalidad, primero debe pasar por un estado de aceptación M_1 y después pasar (y terminar) en un estado de aceptación de M_2 . Esto se realiza mediante una ϵ -transición desde un estado final de M_1 al estado inicial de M_2 . Formalmente tenemos que el nuevo AFN es $M=(Q,\Sigma,s,F,\Delta)$ está dado por $Q=Q_1\cup Q_2$, $s=s_1$, $F=F_2$ y

$$\Delta = \Delta_1 \cup \Delta_2 \cup (F_1 \times \{\epsilon\} \times \{s_2\})$$

Cerradura estrella de Lenguajes

Un procedimiento para construir un AFN que acepte $L(M)^*$ para el AFN $M = (Q, \Sigma, s, F, \Delta \text{ como sigue. Primero se añade un nuevo})$ estado inicial s'; se hará que este estado sea además un estado de aceptación con el fin de que ϵ sea aceptada. Entonces, se permite una ϵ -transición desde s' al antiguo estado inicial s. Por tanto, M comenzará una vez que M' se encuentre en s'. Se tendrá además una ϵ -transición desde todos los estados de aceptación hasta el estado inicial s'. Una vez que la cadena de L(M) ha sido agotada, el análisis puede continuar a partir del estado inicial de M o terminar en s'. El AFN $M' = (Q', \Sigma, s', F', \Delta')$ resultante queda $Q' = Q \cup \{s'\}$, $F' = \{s'\} \ v$

$$\Delta = \Delta \cup \{(s', \epsilon, s)\} \cup (F \times \{\epsilon\} \times \{s'\})$$

Lema del Bombeo

Lema del Bombeo

Sea L un lenguaje regular infinito. Entonces hay una constante n de forma que, si w es una cadena de L cuya longitud es mayor o igual que n, se tiene w=uvx, siendo $uv^ix\in L$ para todo $i\geq 0$, con $|v|\geq 1$ y $|uv|\leq n$.

Supongamos que un lenguaje es regular y que, por tanto, es aceptado por un AFD $M=(Q,\Sigma,s,F,\delta,$ donde Q contiene n estados. Si L(M) es infinito, podemos encontrar cadenas cuya longitud sea mayor que n. Supongamos $w=a_1a_2...a_{n+1}$ una cadena de longitud n+1 que pertenece a L(M). Si tuvieramos que $q_1=\delta(q_0,a_1),q_2=\delta(q_1,a_2),...$, y así sucesivamente, obtedríamos n+1 estados de Q, pero como Q tiene sólo n, entonces no todos son distintos. En consecuencia, para algunos índices j y k con $1\leq j< k\leq n+1$, se tiene que $q_j=q_k$. Adempas, se puede dar vueltas en el ciclo tantas veces como se quiera.

Ejemplo

Sea el lenguaje $L = \{a^m b^m | m \ge 0\}$. Probemos que L no es regular.

El lema anterior nos provee del siguiente teorema para determinar si un lenguaje regular es vacío, finito o infinito.

Teorema

Sea M un autómata finito con k estados.

- **1** $L(M) \neq \emptyset$ si y sólo si M acepta una cadena de longitud menor que k.
- ② L(M) es infinito si y sólo si M acepta una cadena de longitud n, donde $k \le n < 2k$.

Existen además otras técnicas basadas en teoría de conjuntos para probar que un lenguaje es regular.

Proposición

- 1 El complemento de un lenguaje regular es también regular.
- 2 La intersección de lenguajes regulares es también regular.