Statistical Linear Model	
11 - 1 - 1 - 1	
中圣杰 11910901	
Assignment 4.	
Assignment T.	
1. Note that by the problem we have	
$\begin{pmatrix} \frac{1}{Y_2} \\ \frac{1}{Y_3} \end{pmatrix} = \bigvee_{\mathcal{Y}} = \begin{pmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{4} \\ \frac{1}{1} & 2 \end{pmatrix} \begin{pmatrix} \theta \\ \phi \end{pmatrix} + \underbrace{\mathcal{E}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$	
$\begin{pmatrix} 1_3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} \emptyset \end{pmatrix} \begin{pmatrix} \varepsilon_2 \end{pmatrix}$	
Denote $X \stackrel{d}{=} \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 2 & 2 \end{pmatrix}$. Since $\check{E}(\xi_1) = 0$, $i = 1, 2, 3$.	
Venote $X = \begin{pmatrix} 2 & -7 \\ 1 & 2 \end{pmatrix}$. Since $E(2:) = 0$, $I = 1, 2, 3$.	
then we have that the least squares estimate:	
$\binom{\theta}{\phi} = \binom{\times}{\times} \times \times$	
$\Rightarrow \chi \chi = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} b & 0 \\ 0 & 5 \end{pmatrix} \Rightarrow (\chi \chi)^{-1} = \frac{1}{30} \begin{pmatrix} 5 & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \frac{1}{b} & 0 \\ 0 & \frac{1}{b} \end{pmatrix}$	
$\text{then } \begin{pmatrix} \theta \\ \phi \end{pmatrix} = \begin{pmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \end{pmatrix} \underbrace{y}_{y} = \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{6} \\ 0 & -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \underbrace{y}_{y} = \begin{pmatrix} \frac{1}{6} (Y_{1} + 2Y_{1} + Y_{1}) \\ \frac{1}{2} (2Y_{1} - Y_{1}) \end{pmatrix}$	
$\Rightarrow \text{ the least square estimate: } \{ \hat{\theta} = \frac{1}{6} (\gamma_1 + 2\gamma_2 + \gamma_3) \}$	
$\hat{\psi} = \frac{1}{5}(2\gamma_3 - \gamma_5)$	
2. By the problem, we have that the following observations.	
and the second s	
type (a): $\gamma_{11} = \theta + \xi_{11}, \gamma = 1, \cdots, m$, $\xi_{11} \stackrel{\text{iid}}{=} N(0, 0^2)$	
type (b): $\Upsilon_{2i} = \theta + \phi + \mathcal{E}_{2i}, i=1,\cdots, m. \mathcal{E}_{2i} \stackrel{\text{id}}{\to} N(a,b^2)$	
Topic Cox. 121 - 0 ty team - 11 / 11 / 12 / 11 / 12 / 11 / 12 / 12	
type (c). $\Upsilon_{3i} = \theta - 2\phi + \xi_{3i}$, $i = 1 - n$ $\xi_{3i} \stackrel{iid}{=} N(0, \theta)$	
⇒ Consider the least Square estimate:	
They we need to find	
Then we need to find:	
$\min\left(\underset{\leftarrow}{\mathbb{E}} \left(\Upsilon_{ii} - \mathring{\Upsilon}_{ii} \right) + \underset{\leftarrow}{\mathbb{E}} \left(\Upsilon_{2i} - \mathring{\Upsilon}_{2i} \right) + \underset{\leftarrow}{\mathbb{E}} \left(\Upsilon_{3i} - \mathring{\Upsilon}_{3i} \right) \right)$	
Let (\(\frac{1}{2} \left(\Ti_1 - \theta \right)^2 + \(\frac{1}{2} \left(\Ti_1 - \theta - \phi - \phi \right)^2 + \(\frac{1}{2} \left(\Ti_1 - \theta + \phi \right)^2 + \(\frac{1}{2} \left(\T	
35SE m m m	
$\Rightarrow \frac{3 \times 1}{2} = \sum_{i=1}^{m} -(Y_{ii} - \theta) + \sum_{i=1}^{m} -(Y_{1i} - \theta - \phi) + \sum_{i=1}^{m} -(Y_{2i} - \theta + 2\phi)$	
$= -\frac{\sum_{i=1}^{j-1} I_{ii} + m\theta - \sum_{i=1}^{j-1} I_{2}; + m\theta + m\phi - \sum_{i=1}^{j-1} I_{3}; + n\theta - 2n\phi}{2}$	
$ \text{let } \frac{\partial SSE}{\partial \theta} = 0 \implies \hat{\theta} = \frac{\frac{m}{2} \text{Tri} + \frac{m}{2} \text{Tai} + \frac{m}{2} $	
$\frac{\partial SSE}{\partial \phi} = \sum_{i=1}^{m} \left(\chi_{2i}, -\phi - \theta \right) + \sum_{i=1}^{m} -2 \left(\chi_{3i}, -\theta + 2\phi \right)$	

		_ my-1																							
آ ما	355E_	0 =>	î_	<u> </u>	Í2i - 2	<u>ڇ</u> کي	+ (2	n-m)	Đ																
161 -	24 -	U = 5	Ψ=		m+	4n																			
Consid	ler th	e Probl	em. i	f ma	≘ ນ ກ . 1	hen	we	have	2																
								,.,,-																	
ŞΘ	<u> </u>	三 三 5 n	12:十台	131																					
		m = 16.1 = 2	.≘ Yai																						
lφ	; = !	፫ ነ _{2i} - 2 6 ከ	121 131																						
Sind	ce E	~ N(0.	ક) હિ	or all	errors	, ⇒	ξYii	χĊΝ	(B.	_ይ)	Tor	i=),·	·-,m											-	
										ቀ የ})															
				\vdash			۱ ۲۶	; /≈ r	1(6-:	2¢1 63.) {	or i=	1,	٨											
~ .1		e have		10	Îν-	Co	v(🖺	Tii + i	<u>n</u> ≧ 121	+ <u>2</u> ĭ	3) <u>E</u>	12i -	2흠	ßi)											
シ the	en M	2 Maye	LOI	y C B .	,ψ) =				30M3																
b	۔ طد			مرداء ۵	224-2	,,,	ho ho	ve																	
Dy	TITIE :	рюрену	ot ir	iciepe					o			n _	۵.												
						Cov	(ﷺ '	1́≥i , ≩	12i)-2 <i>C</i>	ον (<u>}</u>	<u> 13</u> i,	돌	<u>)</u>											
					=	II MB	Covi	[2i. T2i)- 2	<u> </u>	ov(Ysi	· 1 <u>5</u> 1)													
					=	_ m	Var(Y			ar (Yái)														
								30N2																	
					:	<u> </u>	30N	<u> </u>	. 2r	16 ² -21	<u>nb³</u> =	0													
							7011			,,,,,															
	=7	> B and	d of a	ie ui	ncorrela	ated.	ľ	\Rightarrow																	
(a). No	ote tha	n Ř=∠	. X X) ")	X X =	< X X J	' Ϫ ረϪ	₽+£)	- B	+ 4	גַיעג׳	€, th	ien w	e hai	e											
	2.				- 17				- '.				.1												
MSE	.₽)= I	E(¢ĝ-B)(c)	-E) -	= E[(c	c-1)₽	+ c (X	X)'X'£	,) (c	-ı)B +	· c c 🎗	X)¦X(£	ل(.											-	
					- (0.1	3 R/R	(.	, B'		م /بدا س		r / .			\	4 a 2 E	(e' v	. ,,,,	احد الحد	ر ایداند.	. Y	1180			
					= (c-1)	er.	TEL	.c-1)E	Σ×	A) A S	.)+.	E ((c.	1) E Z	XCXX	(3.6)	761	۱ ۴۰۸	, CVV) . t ¥	እንጆን	٠)	(1 7)			
Neto	F(,	(c-1)B'-c < ;	ΧΧΊΧς) <u>.</u> c	((0.1)	5 5' Y 1	ا بر بردا	a) = c	, /	Sinc	F /	٤١=	ر و												
Tiole	-10	7L - 7	~~! んぷ	, , - <u>L</u>	- (a o)	۰۵۵۰	· RAJ	-) - (. (الر		~J	~ /												
⇒ (*	k)= (c-1)³KB.	+ c'E	(ξ' χ	(XX)	(χ(χ)	χ£)		C**)															
		-210				1																			
C	der c	÷Ε(ξχ	ͺͺͺϒͺϫͻϳʹͿ	ιχχ	(۱۵٪ار	ر چ	NO	Q. 6 ⁷ I)	Sinc	ce E	(<u>X</u>	Ąχ)= t	r (A	(چِر	٠ <u>۴</u>	۱.							
しのロシ																		•							
	E(5	<u> (</u> X/XX	ϽͿʹϹϪʹϪ	() ⁻ X(≨)=	ť tr	<u>ر پر</u>	(<u>X</u> X) ⁻¹ 4 <u>X</u>	<u>ሂ</u> ነርል'	<u>(</u>)=	₽†	r (((X) ⁻	ΧX	(XX) ⁻¹) =	- 6ª.	tr (X	اريد					
⇒																									
⇒) = (c	-13党	+ c,	β tr()	(XX)																			
⇒) = (c	-13党民	; + c'	'β' † Υ()	(XX)																			

,,,,,_	- (HS)	= (C-I) B'P	+ 0	°6° t	12 X	χyl																					Γ
	- %			~~			- ~	~																					T
		= c	'(<u>}</u>	β+ i	Btt (אָלאָ	- (۱	2£ J	₿́₿ t	F RE	} \	whic	h is	94	ardrat	tic fo	ΥM.												
Note	that	ĔŖ	+ 6	# L]	X(X)	' m	WSt	be	Posit	iye.																			L
				-											Æ	£.													L
⇒ the	e qua	rdrati	c e	quati	۵N	ocqui	ire i	ts r	n in wi	m V	alne	whe	en C		₽́B+	B#1	אָלג'ָּצ												L
																													H
c). B	by the	Pit	blen	١,	er E	= (12	3 4	5) <i>(</i>	12	3 4	5) =	55																
ıl		. 1	,	V Y :	dΔ	:4	اء ع	l		ļ.,	(1		r /		الماند						,	v ,		Δν	_ a)	L.			H
Trier	n <i>C</i> on	Iside	Y,	٥.۶ ·	- \(\)	. []	٥	IS V	eri e	eige	nyeuu	e o	7 2	رء . ا	тие	e ex	ist n	onzero	219	enye	tor,	ર :	٠١٠	Ωâ	- a	&			H
=)	mul	العنا	ı A	T 01	, b	əth (s:do	<i>(=</i>)	χ	=	λA·I	χ =	5 /	4\-1 <u>X</u>	<u> </u>	X =	, †	is al	n eia	en\	صدا	σf	Α·I	= (χχ) ~1			T
	10.001) ^		, ,	, ii (Ji qe ;	, –,			~ 1	~	•	~ ~		~	î	, 5 0 0				-			N				T
Νı	ote th	net	P=	, A	= 4	χχ Σ	' is	5x5	ma	nrìX	=)	l, 늴	, j .	4. 7	<u>+</u> 0	Ne a	ıll eig	genval	hes	of ·	4 Χ) ⁻¹							
	·																			Ĺ									
ž	∍tr(ХίХ) ¹ =	1+	1 +	3+	4+	<u>ځ</u> =	137 60																				L
<u>.</u>	⇒	* =	5	<u>, 127</u>	= (.46																							
			55	T-60		Ė																							
				-																									L
4. (a	() B	= 4)	(X)	ľΧľ		}* =	- ()	Ķí įķ;	יָּגַע'יִ	Ŋ																			L
				-																									H
Note t	that	ę, =	<u>F</u> -	· J	- J	– <u>X</u> .	:₿=	Į.	– χ₃	<u> (X)</u>	IJ'X	<u></u> ፣	Ϋ́	– ÿ	(X()	(1+ <i>)</i> / ₂	χ ²)_ι (XiX) + <u>X</u> ;	(F)									H
		1.		 	Vel	lv/			اد د ۱۰		/.			4															H
=>	4,25')	(i)	[² , K;	, = (ŅŅ) <i>(</i> b)ક -	- (Xı	(<u>(</u>	ķε	CXX	ù+ X	€ <i>k</i>)	'(<u>X</u> i	<u>1</u>) + <u>)</u> ,	E)													H
	d β-																												H
7(114	4 P	P.	- (;	ديمرد	<i>?</i> \		A) A)) <u>%</u> .	₩																				T
					. v	(x.51	ζ χί'	T) +	χζΥ	ر (ء	- ZX	.′χ.)	-l χ, ' \	r.															T
			= (Xı Xı	+ 1			~~	\sim	~~												_	_						Г
			= (3°	XI XI	+ <u>v</u>	(22)					4°	,,,	,,,	-															
Tr	n ord		= (3° to												need	to	⊅rov <i>e</i>	. lº+	-4° =	: 2°4	-3°.								
		ler	10	Prov	e j	3 - β	* <u>-</u>	ιχί	χ _{ι)} ¬	X	٤,	we	onl	y 1			prove				-3°.								
		ler	10	Prov	e j	3 - β	* <u>-</u>	ιχί	χ _{ι)} ¬	X	٤,	we	onl	y 1							-3°.								
		ler	10	Prov 2° =	e j = (X	}-β (X)+	* <u>-</u> + X₂́	رکز دکرار	<u>ኢ</u> ንግ ኒሂኒ)(E	٤, (إلاي)	We)+(on! X(X)	ያ ' ነ ⁻ 'ጷ'፤	6 (X	(<u>X</u> ı+)	K,FD,				-3°.								
		ler	10	Prov 2°=	e j = (X	}-β (X)+	* <u>-</u>	رکز دکرار	<u>ኢ</u> ንግ ኒሂኒ)(E	٤, (إلاي)	We)+(on! X(X)	ያ ' ነ ⁻ 'ጷ'፤	6 (X		K,FD,				-3°.								
		ler	10	Prov 2° = =	e (x = (x = [(x	} - β (χ;+ (χō'	* = * * X(X)	(X) ¹ (& (C)+	, Σίχι Έ(<u>Ι</u> Χ΄)	χ(ς (<u>λ.</u>)	P]() ((,T)	We)+((v́X)	onl X(X) + X(ያ ' ነ ⁻ 'ጷ'፤	6 (X	(<u>X</u> ı+)	K,FD,				-3°.								
		ler	10	Prov 2° = =	e (x = (x = [(x	} - β (χ;+ (χō'	* = * * X(X)	(X) ¹ (& (C)+	, Σίχι Έ(<u>Ι</u> Χ΄)	χ(ς (<u>λ.</u>)	٤, (إلاي)	We)+((v́X)	onl X(X) + X(ያ ' ነ ⁻ 'ጷ'፤	6 (X	(<u>X</u> ı+)	K,FD,				-3°.								
	te th	ler at	to 3°+	Prov -2° = =	e f = (<u>x</u> = (<u>x</u>	(, Xi) (, Xi2, (, Xi2,	* <u>*</u> * <u>X</u> (X)	(X) (X)+(X ((X)	+ Ά (Χί) Έ(Χ΄) Έ(Ο)	Œ) (Χ) (Σ)	 D)(S)	we)+((*) (*)	on) X(X) + X(j '	(X),Y	(Xi+) L+ X	(T)	(X 'X	+ X;	E)		7							
	te th	ler at	to 3°+	Prov -2° = =	e f = (<u>x</u> = (<u>x</u>	(, Xi) (, Xi2, (, Xi2,	* <u>*</u> * <u>X</u> (X)	(X) (X)+(X ((X)	+ Ά (Χί) Έ(Χ΄) Έ(Ο)	Œ) (Χ) (Σ)	 D)(S)	we)+((*) (*)	on) X(X) + X(j '	(X),Y	(Xi+) L+ X	K,FD,	(X 'X	+ X;	E)		্র		(*)					
Not	te th	at the s	to 3°+	Prov 2° = = = tim	e [(<u>X</u> = [(<u>X</u> = (<u>X</u>	} - β (χ)+ (χ) (χ)	* = + <u>%</u> !\(\)\(\)\(\) 4°:	(X) (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	X, X, Y,	Œ) (Χ) (Σ)	 D)(S)	we)+((*) (*)	on) X(X) + X(j '	(X),Y	(Xi+) L+ X	(T)	(X 'X	+ X;	E)		[j	-	(米)					
Not	te th	at the s	to 3°+	Prov 2° = = = tim	e [(<u>X</u> = [(<u>X</u> = (<u>X</u>	} - β (χ)+ (χ) (χ)	* = + <u>%</u> !\(\)\(\)\(\) 4°:	(X) (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	X, X, Y,	Œ) (Χ) (Σ)	 D)(S)	we)+((*) (*)	on) X(X) + X(j '	(X),Y	(Xi+) L+ X	(T)	(X 'X	+ X;	E)		চ্		(米)					
Not	te th	er at	to 3°+	Prov 2° = = tim	e [(X) = (X) = (X) = (X)	;	* = + X; X(X) - - - - - - - - - - - - - - - - - - -	=)) +)r ()X))_ ()X)] (X)]	X & (X) (X) (Y2)	m M()	We)+((½) (*) (≥+	on) (X(X)	y ' '**\ \\\\	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	(Xi+) L+ X	(T)	(X 'X	+ X;	E)		Į.		(*)					
Not	te th	er at	to 3°+	Prov 2° = = tim	e [(X) = (X) = (X) = (X)	;	* = + X; X(X) - - - - - - - - - - - - - - - - - - -	=)) +)r ()X))_ ()X)] (X)]	X & (X) (X) (Y2)	m M()	We)+((½) (*) (≥+	on) (X(X)	y ' '**\ \\\\	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	(Xi+) L+ X	(T)	(X 'X	+ X;	E)		Ę	=	(*)					
Not	At 1	ler the st	3°+ 0me 3* <u>-</u>	Prov 2° = = tim ()()	e () = () = () () = ()	- Î	* = * X X X X X X X X X X X X X X X X X X X	(Xi) +(Xi) +(Xi) +(Xi) (E -	- 変 貨 スパ + デ (ダル ズの)	X & (X) (X) (Y)	产—) () () ()	We)+((½) (*) (≥+	on! X(X) + X(y ' ;'` <u>k`</u> ; <u>`k</u> ;''	/ <u>A/I</u> . / <u>A/I</u> .	(X)+) 1+ X	(X)	(X 'X	+ X;	E)		<u>ত্</u>		(*)					
Not	At 1	ler the st	3°+ 0me 3* <u>-</u>	Prov 2° = = tim ()()	e () = () = () () = ()	- Î	* = * X X X X X X X X X X X X X X X X X X X	(Xi) +(Xi) +(Xi) +(Xi) (E -	- 変 貨 スパ + デ (ダル ズの)	X & (X) (X) (Y)	产-)) (() (()	We)+((½) (*) (≥+	on! X(X) + X(y ' ;'` <u>k`</u> ; <u>`k</u> ;''	/ <u>A/I</u> . / <u>A/I</u> .	(Xi+) L+ X	(X)	(X 'X	+ X;	E)		[6]		(米)					
Not	At 1	ler at \$-1	3°+	Prov 2° = = tim = (Xi E ₂ = = T ₂	e (X) = (X) = (X) = (X) = (X) = (X)	}-\$ (X)-1 (X) (X) (X) (X) (X) (X) (X) (X) (X) (X)	* * * * * * * * * * * * * * * * * * *	(Xi) (Xi) (Xi) (Xi) (Xi) (Xi) (Xi) (Xi)	- 変 貨 スパ + デ (ダル ズの)	X & (X) (X) (Y)	产-)) (() (()	We)+((½) (*) (≥+	on! X(X) + X(y ' ;'` <u>k`</u> ; <u>`k</u> ;''	/ <u>A/I</u> . / <u>A/I</u> .	(X)+) 1+ X	(X)	(X 'X	+ X;	E)		[3]		(米)					
Not	At 1	ler at \$-1	3°+	Prov 2° = = tim = (Xi E ₂ = = T ₂	e (X) = (X) = (X) = (X) = (X) = (X)	}-\$ (X)-1 (X) (X) (X) (X) (X) (X) (X) (X) (X) (X)	* * * * * * * * * * * * * * * * * * *	(Xi) (Xi) (Xi) (Xi) (Xi) (Xi) (Xi) (Xi)	- 変 貨 スパ + デ (ダル ズの)	X & (X) (X) (Y)	产-)) (() (()	We)+((½) (*) (≥+	on! X(X) + X(y ' ;'` <u>k`</u> ; <u>`k</u> ;''	/ <u>A/I</u> . / <u>A/I</u> .	(X)+) 1+ X	(X)	(X 'X	+ X;	E)		[D]	=	(米)					

$$\Rightarrow \beta - \beta^{2} + N^{2} \otimes P^{2} \otimes N^{2} \otimes P^{2} \otimes P^{2}$$