1. Consider a hydrostatic system S which is connected to a bath, with which it can exchange energy and volume.

- a) Recall, how we calculated the canonical and the grand canonical distribution functions. Using the same line of argument, calculate the probability $\rho(E, V)$ of finding the system with energy E and volume V.
- b) Using the relation $S = \langle S \rangle$ and the Boltzmann relation for the entropy S, relate the partition function Q, that defines the normalization in $\rho(E, V)$, to one of the thermodynamic potentials.
- c) Using the expression for $\rho(E,V)$ calculate the relative fluctuation $\sqrt{\langle \Delta V^2 \rangle}/\langle V \rangle$.
- d) Now, the partition function Q can be written down as

$$Q = \int_0^\infty dV \int \prod_{i=1}^N d^3 p_i d^3 q_i \ \rho(E, V).$$

Using this expression, relate Q to the canonical partition function Z(N, V, T). Hence, derive an expression for Q of an ideal gas, and the chemical potential μ for the same system.

2. The energy of a system of N localized magnetic spins, at temperature T and in the presence of magnetic field H is given by

$$\mathcal{H} = D \sum_{i=1}^{N} S_i^2 - \mu_0 H \sum_{i=1}^{N} S_i,$$

where the parameters D, μ_0, H are positive and spin variables S_j may assume values ± 1 or 0, for $i = 1, 2, 3, \ldots$

- a) Obtain an expression for the internal energy, the entropy and the magnetization per site.
- b) In zero field limit (H = 0), sketch the graphs of the internal energy, entropy and the specific heat as a function of temperature.
- c) Indicate the behavior of the these quantities in the limits of $T \to 0$ and $T \to \infty$.
- d) Calculate the average of the quadrupole moment defined as $Q = \frac{1}{N} \sum_{i=1}^{N} S_i^2$.
- 3. Consider a one-dimensional magnetic system of N localized spins, at temperature T, with the Hamiltonian given by

$$\mathcal{H} = -J \sum_{i=1,3,5,...N-1} \sigma_i \sigma_{i+1} - \mu_0 H \sum_{i=1}^N \sigma_i$$

where the parameters J, μ_0, H are positive numbers, and $\sigma_i = \pm 1$ for all sites i. Assume that N is even and note that the first sum is over the odd spins.

- a) Obtain an expression for the canonical partition function and calculate the internal energy per spin u = u(T, H). Sketch a graph of u(T, H = 0) versus temperature.
- b) Obtain an expression for the entropy per spin s = s(T, H). Sketch a graph of s(T, H = 0) versus temperature.
- c) Calculate the magnetization per spin defined as

$$m = m(T, H) = \frac{1}{N} \left(\mu_0 \sum_{i=1}^{N} \sigma_i \right)$$

and the magnetic susceptibility $\chi(T, H)$.

- 4. Consider a system of N classical and non-interacting particles in contact with a thermal reservoir at temperature T. Each particle may have energies $0, \epsilon >$), or 3ϵ . Obtain the expression for the canonical partition function, and calculate the internal energy and the entropy per particle for the system. Sketch the results, indicating the values for $T \to 0$ and $T \to \infty$.
- 5. Consider N non-interacting spins in a magnetic field $\mathbf{B} = B\hat{z}$, and at a temperature T. The work done by the field is given by BM_z , with a magnetization $M_z = \sum_{i=1}^N m_i$. For each spin, m_i can take only the (2s+1) values -s, -s+1,s-1, s.
 - a) Calculate the canonical partition function and the free energy of the system.
 - b) Expand the free energy for small magnitude of the magnetic field and show that the magnetic susceptibility obeys Curie's law $\chi = c/T$.
 - c) Show that $C_B C_M = cB^2/T^2$, where C_B and C_M are the heat capacities at constant field and magnetization, respectively.
- 6. A system of N one dimensional localized classical harmonic oscillators, at a given temperature T, is associated with the Hamiltonian

$$\mathcal{H} = \sum_{i=1}^{N} \left[\frac{p_i^2}{2m} + V(q_i) \right],$$

where V(q) has the form

$$V(q) = \begin{cases} \frac{1}{2}m\omega^2 q^2 & \text{for } q > 0\\ \frac{1}{2}m\omega^2 q^2 + \epsilon & \text{for } q < 0 \end{cases}$$

- a) Plot the potential as a function of q. What happens when $\epsilon \to \infty$?
- b) Calculate the canonical partition function and the internal energy per oscillator u.
- c) What are the limiting values of the u for $\epsilon \to 0$ and $\epsilon \to \infty$.
- d) Now setting $\epsilon \to \infty$ in the potential, re-calculate the canonical partition function and the internal energy per particle and see whether they agree with the previous result.
- e) Consider now the quantum version of the problem, where the classical oscillators are replaced by quantum oscillators. Calculate the canonical partition function in the limit of $\epsilon \to \infty$.