

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)
\underline{x}	y
2104	460
1416	232
1534	315
852	178
•••	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••	•••	•••

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat $\{$ $heta_j:= heta_j-lpharac{\partial}{\partial heta_j}J(heta_0,\dots, heta_n)$ $\}$ (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update
$$heta_0, heta_1$$
)

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $\, heta_{\,i}\,$ for $i=0,\ldots,n$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²) x_2 = number of bedrooms (1-5) θ_2

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Feature Scaling

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{size - 1000}{2000}$$
 $x_2 = \frac{\#bedrooms - 2}{5}$ $-0.5 < x_1 < 0.5, -0.5 < x_2 < 0.5$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

For different application, it may take different iteration, 30, 3000, etc.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try

$$\dots, 0.001,$$

$$,0.1, \qquad ,1,\ldots$$

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

Polynomial regression

 $x_2 = (size)^2$

 $x_3 = (size)^3$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Choice of features

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$
$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$ $J(\theta) = a\theta^2 + b\theta + c$

$$\frac{1}{\theta}$$

$$heta \in \mathbb{R}^{n+1}$$
 $J(heta_0, heta_1, \dots, heta_m) = rac{1}{2m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2$ $rac{\partial}{\partial heta_j} J(heta) = \dots = 0$ (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
 x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

m examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$; n features.

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

E.g. If
$$x^{(i)} = \begin{vmatrix} 1 \\ x_1^{(i)} \end{vmatrix}$$

$$\theta = (X^TX)^{-1}X^Ty$$

$$(X^TX)^{-1} \text{ is inverse of matrix } X^TX.$$

Octave: pinv(X'*X)*X'*y

m training examples, n features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large.

Machine Learning

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X)*X'*y

What if X^TX is non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1$$
 =size in feet² x_2 = size in m²

- Too many features (e.g. $m \le n$).
 - Delete some features, or use regularization.