Assignment 5.1

Automatic Garage Door Controller

Introduction: -

- Finite state machine (FSM) is a major tool to implement controllers and sequencers.
- FSM has finite inputs, outputs and number of states. At each clock edge, combinational logic computes outputs and next state as function of inputs and present state.
- FSM has two types: -
 - Moore FSM (outputs change with the clock edge)
 - Mealy FSM (outputs change irrespective to clock edge)

Assignment: -

You have to implement an **automatic Garage Door Controller** that control both up and down motors.

Block Interface: -

Specifications: -

- The **Controller** has 3 inputs: -
 - Activate push button (user) trigger the Up motor when the Door down and trigger the Down motor when the Door Up
 - UP_Max (Sensor) becomes high when the **Door** is completely open.
 - DN_Max (Sensor) becomes high when the **Door** is completely close.
 - Always the **Door** is completely close or completely open.
 - Finite state machine is initialized to IDLE state using Asynchronous reset

States Diagram: -

IDLE state: it is the default state & reset state of the finite state machine.

Mv_Up State: it is the state to enable the up motor to open the garage door

Mv_Dn state: it is the state to enable the down motor to close the garage door

Requirements: -

- 1- Design a Moore Finite state machine that implement the above state diagram using Verilog language.
- 2- Write a testbench to validate your design using 50 MHz clock frequency.