Classification of Cardiovascular Age by Single-Particle Tracking Method of Deep Learning

Maximilian Pfundstein

March 23, 2020

Linköpings University

Table of contents

- 1. Introduction
- 2. Related Literature
- 3. Data
- 4. Objectives
- 5. Status and Outlook

Introduction

Introduction — ECG and HRV

- Electrocardiography (ECG) measures the electrical potential of the heart
- Heart Rate Variability (HRV) is the variation in time

Introduction — QRS Complex

Source: https://en.wikipedia.org/wiki/File: SinusRhythmLabels.png

Introduction — RR Interval

Source: https://commons.wikimedia.org/wiki/File: ECG-RRinterval.svg

Introduction — Research Questions

- Can you infer information about the patients age from RR Intervals?
- How can impurity been handled?
- Can RR Intervals be simulated?

Related Literature

Related Literature

- Patterns of Heart Rate Dynamics in Healthy Aging Population: Insights from Machine Learning Methods [Makowiec and Wdowczyk, 2019]
- Classification of diffusion modes in single particle tracking data: feature based vs. deep learning approach [Kowalek et al., 2019]
- Heart Rate Variability: Analysis and Classification of Healthy Subjects for Different Age Groups [Poddar et al., 2015]

Data

Data — Data Sets

- University of Gdansk
 - 181 Holter recordings of 4 hours
 - Sleep only
 - Healthy patients
 - Missing data points
- PhysioNet: CAST RR Interval Sub-Study Database
 - 1543 recordings of 24 hours
 - Sleep and awake
 - Survivors of myocardial infarction (heart attack)
 - Treated with different medication
 - No missing data points

Master Thesis (732A64)

Master Thesis (732A64) Amount of Missing Gaps (length not considered)

Master Thesis (732A64)

11

Objectives

Objectives — Impurity

- Splines
- Gaussian Processes (GPs)

Objectives — Impurity — Splines

Objectives — Impurity — GPs

Objectives — Classification

- Feature based Machine Learning Methods*
- Deep Learning Convolutional Neural Networks (CNNs)

Objectives — Simulation — GP

Sampling from the Posterior of the GP

- $f(x) \sim \mathcal{GP}(m(x), k(x, x'))$
- m(x) is the mean function, k(x, x') the kernel function
- $K_{OU}(x, x') = \exp\left(-\frac{|d|}{\ell}\right)$
- $K_{LP} = \sigma^2 \exp\left(-\frac{2}{\ell^2} \sin\left(\pi \frac{|x-x'|}{p}\right)\right) \exp\left(-\frac{(x-x')^2}{2\ell^2}\right)$

Objectives — Simulation — GP

Source: https://peterroelants.github.io/posts/ gaussian-process-kernels/

Objectives — Simulation — OU

Fitting an Ornstein-Uhlenbeck (OU) process

- Stochastic Differential Equation (SDE)
- $dx_t = \theta(\mu x_t)d_t + \sigma dW_t$
- ullet μ is the long-term mean
- ullet defines the speed of mean reversion
- \bullet σ defines the randomness
- W_t is the Wiener process
- ullet \Rightarrow Using a trigonometric function as the optimum function

Objectives — **Simulation** — **OU**

Status and Outlook

Status and Outlook

- Impurity
 - (done) Splines (linear, quadratic, cubic)
 - (open) GP, possibly in TensorFlow Probability (TFP), very large covariance matrix
- Classification
 - (done) Simply CNN yields in very bad results
 - (open) More advanced CNN, maybe combine with Recurrent Neural Networks (RNNs)
 - Utilise Long Short-Term Memory Cells (LSTMs)
- Simulation
 - (open) Sampling from GP
 - (open) Fitting OU process
- Evaluation

Appendix

Objectives — Classification — CNN

Master Thesis (732A64)

Objectives — Classification — CNN

Master Thesis (732A64)

References i

- Kowalek, P., Loch-Olszewska, H., and Szwabiński, J. (2019). Classification of diffusion modes in single particle tracking data: feature based vs. deep learning approach.
- Makowiec, D. and Wdowczyk, J. (2019).

 Patterns of heart rate dynamics in healthy aging population: Insights from machine learning methods.

 Entropy, 21:1206.
- Poddar, M., Kumar, V., and Sharma, Y. (2015).

 Heart rate variability: Analysis and classification of healthy subjects for different age groups.