MATHS

Section: Mathématiques

1ère Session

Exercice 1

Le plan est muni d'un repère orthonormé.

Soit f une fonction définie et dérivable sur $[\frac{1}{2}, 5]$ telle que sa courbe représentative (C) passe par les points A(1,0) et B(3, 1). Dans la figure ci-contre, on a représenté la courbe (C') de la dérivée f' de la fonction f.

Répondre par vrai ou faux en justifiant la réponse.

- 1) (C) admet une tangente de coefficient directeur -1.
- 2) L'aire de la partie hachurée est égale à 1.
- 3) (C) admet une tangente de coefficient directeur $\frac{1}{2}$.
- 4) Pour tous a et b de [1,3], $|f(b)-f(a)| \le |b-a|$.

Contenu

- Tangente à une courbe
- Notion d'aires
- Inégalités des accroissements finis

Solutions

- **1.** Faux., car Pour $x \in \left[\frac{1}{2}, 5\right]$, f'(x) > 0. Par suite $f'(x) \neq -1$ pour tout $x \in \left[\frac{1}{2}, 5\right]$.
- 2. Vrai. En effet : La fonction f' est continue et positive sur 1,3 donc l'aire de la partie hachurée est égale à : $\int_1^3 f' \ x \ dx = f \ 3 f \ 1 = 1 0 = 1.$
- 3. Vrai. En effet: La fonction f' est continue sur $\left[\frac{1}{2},5\right]$ et $\frac{1}{2} \in f'\left(\left[\frac{1}{2},5\right]\right)$ donc il existe $c \in \left[\frac{1}{2},5\right]$ tel que f' $c = \frac{1}{2}$.
- 4. Vrai. En effet : La fonction f est dérivable sur [1,3] et pour x ∈ [1,3], |f' x | ≤ 1.
 D'après l'inégalité des accroissements finis, pour tous a et b de [1,3], |f b f a | ≤ |b a|.

Exercice 2

Dans le plan orienté, AlJ est un triangle quelconque, BAJ et CIJ sont deux triangles isocèles respectivement en B et C tels que $(\overrightarrow{BA}, \overrightarrow{BJ}) \equiv \frac{\pi}{6} \left[2\pi \right]$ et

$$(\overrightarrow{CI}, \overrightarrow{CJ}) \equiv \frac{\pi}{6} [2\pi].$$

On désigne par t la translation de vecteur \overrightarrow{IA} et par r_B et r_C les rotations de même angle $\frac{\pi}{6}$ et de centres respectifs B et C.

- b) Montrer que $r_B \circ t(I) = J$.
- c) En déduire que $r_{B} \circ t = r_{C}$.
- 2) Soit K = t (C).

Montrer que BC = BK et
$$(\overrightarrow{BC}, \overrightarrow{BK}) = -\frac{\pi}{6} [2\pi]$$
.

- 3) Soit D le point du plan tel que le triangle DIA est isocèle en D et $(\overrightarrow{DI}, \overrightarrow{DA}) \equiv \frac{\pi}{6} [2\pi]$.
 - a) Soit O le milieu de [AC].
 Montrer que l'image du triangle DIA par la symétrie centrale de centre O est le triangle BKC.
 - b) Montrer que ABCD est un parallélogramme.

Contenu

- Composée rotation et translation
- Configuration de base (triangle isocèle, parallélogramme)

Aptitudes visées :

- Reconnaître la composée d'une rotation et d'une translation
- Exploiter une isométrie pour déterminer la nature d'un quadrilatère.

Solutions

- **1.** a) Le triangle CIJ est isocèle en C et $\overline{Cl}, \overline{CJ} \equiv \frac{\pi}{6}$ 2π , par suite Cl = CJ et $\overline{Cl}, \overline{CJ} \equiv \frac{\pi}{6}$ 2π . On en déduit que r_C l = J.
 - **b)** Le triangle BAJ est isocèle en B et $\left(\overline{BA},\overline{BJ}\right) \equiv \frac{\pi}{6} \left[2\pi\right]$, par suite BA = BJ et $\left(\overline{BA},\overline{BJ}\right) \equiv \frac{\pi}{6} \left[2\pi\right]$. On en déduit que r_B A = J. $\begin{cases} t \mid I = A \\ r_B \mid A = J \end{cases}$ donc $r_B \circ t \mid I = J$.
 - c) $r_B \circ t$ est la composée d'une rotation d'angle $\frac{\pi}{6}$ et d'une translation donc c'est une rotation d'angle $\frac{\pi}{6}$.

$$\text{Or} \ \ r_{_{\!B}} \circ t \ I \ = J \,, \ CI = CJ \ \text{et} \ \ \overline{CI}, \\ \overline{CJ} \ \equiv \frac{\pi}{6} \quad 2\pi \ \ . \ \text{Il en résulte que C est le centre de } \\ r_{_{\!B}} \circ t \,.$$

On en déduit que $r_B \circ t = r_C$.

- 2. Puisque K = t C donc $r_B \circ t$ C = r_B K , or $r_B \circ t$ C = r_C C = C. Il en résulte que r_B K = C ou encore BC = BK et $\overline{BC}, \overline{BK} \equiv -\frac{\pi}{6}$ 2π .
- **3.** a) On sait que K = t C donc $\overline{CK} = \overline{IA}$ et les points I, A et C ne sont pas alignés donc IAKC est un parallélogramme. Comme O est le milieu de [IC] donc O est le milieu de [IK]. Il en résulte que S_O I = K. d'autre part Le point O est le milieu de [AC] donc S_O A = C.

Le triangle DIA est isocèle de base [IA] tel que $(\overrightarrow{DI}, \overrightarrow{DA}) \equiv \frac{\pi}{6} [2\pi]$.

$$S_{O} I = K, S_{O} A = C, (\overrightarrow{BK}, \overrightarrow{BC}) \equiv \frac{\pi}{6} [2\pi]$$
 et le triangle BKC est isocèle de base [KC].

On en déduit que l'image du triangle IAD par S_o est le triangle BKC.

b) L'image du triangle IAD par S_o est le triangle BKC, S_o I = K et S_o A = C donc S_o D = B ou encore O est le milieu de [BD] de plus O est le milieu de [AC] et les points A, B et C ne sont pas alignés. On en déduit que ABCD est un parallélogramme.

Le plan est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On désigne par A le point de coordonnées (3, 2).

Soit N un point de l'axe (O, \vec{u}) et P le point de l'axe (O, \vec{v}) tel que ANP est un triangle rectangle en A.

- 1) a) Soit les points E(3,0) et F(0,2).

 Montrer qu'il existe une unique similitude directe S de centre A qui transforme E en F.

 Donner son rapport et son angle.
 - b) Déterminer l'image de l'axe (O, u) par S.
 - c) En déduire que S(N) = P.
 - d) Soit M un point d'affixe z et M' le point d'affixe z' tel que M' = S(M).

Montrer que
$$z' = -\frac{3}{2}i z + \frac{13}{2}i$$
.

- 2) a) On note x l'abscisse du point N et y l'ordonnée du point P. Montrer que 3 x + 2 y = 13.
 - b) Déterminer les points N et P dont les coordonnées sont des entiers.

Contenu

- Similitude directe (image d'une configuration de base par une similitude directe, expression complexe d'une similitude directe)
- Arithmétique

Aptitudes visées :

- Reconnaître une similitude directe.
- Reconnaître l'image d'une droite par une similitude directe.
- Identifier l'image d'un point par une similitude directe.
- Résoudre un problème d'arithmétique.

Solutions

- 1. a) $A \neq E$ et $A \neq F$ donc il existe une unique similitude directe S de centre A qui envoie E en F, son rapport est $k = \frac{AF}{AE} = \frac{3}{2}$ et son angle a pour mesure $(\overline{AE}, \overline{AF}) \equiv -\frac{\pi}{2}$ [2 π].
 - b) S E = F et $E \in O, \vec{u}$ donc $S O, \vec{u}$ est la droite passant par F et perpendiculaire à O, \vec{u} . Il en résulte que $S O, \vec{u} = O, \vec{v}$.
 - $c) \ S \ AN \ est la droite passant par A et perpendiculaire à AN , il en résulte que S \ AN = AP .$

$$N \in AN \cap O, \vec{u} \ donc \ S \ N \in S \ AN \ \cap S \ O, \vec{u} \ = AP \cap O, \vec{v} \ = P \ .$$
 D'où $S \ N = P.$

d) S est la similitude directe de centre A d'affixe $z_{_A}=3+2i$, de rapport $\frac{3}{2}$ et d'angle $-\frac{\pi}{2}$.

Soit M un point d'affixe z et M' le point d'affixe z', image de M par S. L'expression complexe de S est de la forme z' = az + b, $a \in \square^*$ et $b \in \square$ avec $a = \frac{3}{2}e^{i(-\frac{\pi}{2})} = -\frac{3}{2}i$ et $\frac{b}{1+\frac{3}{2}i} = 3+2i$ donc $b = \frac{13}{2}i$.

On en déduit que $z' = -\frac{3}{2}iz + \frac{13}{2}i$.

2. a) L'affixe de N est $z_N = x$ et l'affixe de P est $z_P = iy$.

 $S N = P \Leftrightarrow iy = \frac{-3}{2}ix + \frac{13}{2}i = \left(\frac{-3}{2}x + \frac{13}{2}\right)i \Leftrightarrow y = \frac{-3}{2}x + \frac{13}{2} \Leftrightarrow 3x + 2y = 13.$

b) N x,0 et P 0,y . x et y sont des entiers si et seulement si x,y est solution de l'équation 3x + 2y = 13 dans $\square \times \square$.

Résolvons alors dans $\square \times \square$ l'équation E: 3x + 2y = 13.

1,5 est solution de E donc $3x + 2y = 13 \Leftrightarrow 3x + 2y = 3 \times 1 + 2 \times 5 \Leftrightarrow 3 \ x - 1 = 2 \ -y + 5 \ *$. 3 divise 2 - y + 5 et $3 \land 2 = 1$ donc d'après Gauss 3 divise -y + 5 par suite -y + 5 = 3k avec $k \in \square$ ou encore y = -3k + 5. En remplaçant y par sa valeur dans * , on obtient x = 2k + 1 avec $k \in \square$.

Réciproquement 3 2k+1+2-3k+5=3+10=13. On en déduit que N 2k+1,0 , P 0,-3k+5 avec $k \in \square$.

Exercice 4

Un laboratoire de sciences physiques dispose d'un ensemble d'oscilloscopes de même modèle. La durée de vie, en nombre d'années, d'un oscilloscope est une variable aléatoire notée X qui suit la loi exponentielle de paramètre 0,125.

Dans tout l'exercice on donnera les résultats à 10⁻³ près par défaut.

- 1) a) Montrer que p(X > 10) = 0.286.
 - b) Calculer la probabilité qu'un oscilloscope ait une durée de vie inférieure à 6 mois.
- 2) Le responsable du laboratoire veut commander n oscilloscopes (n≥2).

On suppose que la durée de vie d'un oscilloscope est indépendante de celle des autres.

On note p₁ la probabilité qu'au moins un oscilloscope ait une durée de vie supérieure à 10 ans.

- a) Exprimer p₁ en fonction de n.
- b) Combien d'oscilloscopes, au minimum, devrait commander le responsable pour que p₁ soit supérieure à 0.999 ?

Contenu

- Loi de probabilité continue (loi exponentielle)
- Loi binomiale

Aptitudes visées :

- Calculer la probabilité d'un évènement pour une loi exponentielle.
- Reconnaître une loi binomiale
- Calculer la probabilité d'un évènement pour une loi binomiale.

Solutions

- 1. a) p X > 10 = $e^{-0.125 \times 10} = e^{-1.25} = 0.286$.
 - b) L'évènement « l'oscilloscope a une durée de vie inférieur à 6 mois » se traduit par $0 \le X \le 0,5$.

$$p \ 0 \le X \le 0.5 \ = 1 - e^{-\frac{0.125}{2}} = 1 - e^{-0.0625} = 0.06.$$

2. On considère la variable aléatoire Y qui prend pour valeurs, le nombre d'oscilloscopes qui ont une durée de vie supérieure à 10 ans. Y suit une loi binomiale de paramètres $n,p \times 10 = 0.286$.

a)
$$p_1 = p \overline{Y = 0} = 1 - p Y = 0 = 1 - 0.714^n$$
.

$$\begin{array}{ll} \textbf{b)} & p_1 \geq 0,999 \, \Leftrightarrow 1- \ 0,714 \ ^n \geq 0,999 \, \Leftrightarrow \ 0,714 \ ^n \leq 0,001 \, \Leftrightarrow n \, ln \ 0,714 \ \leq ln \ 0,001 \\ \\ & \Leftrightarrow n \geq \frac{ln \ 0,001}{ln \ 0,714} = 20.505 \, . \, \text{Soit} \ n = 21. \end{array}$$

Exercice 5

- I] On considère la fonction f_2 définie sur $]0,+\infty[$ par $f_2(x)=x^2-\ln x$ et on désigne par (Γ) sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.
 - 1) a) Calculer $\lim_{x\to 0^+} f_2(x)$ et $\lim_{x\to +\infty} f_2(x)$.
 - b) Calculer $\lim_{x\to +\infty} \frac{f_2(x)}{x}$ et interpréter graphiquement le résultat.
 - c) Dresser le tableau de variation de f₂.
 - 2) On a tracé ci-dessous, dans le repère $(0, \vec{i}, \vec{j})$, la courbe (L) de la fonction ln et la courbe (C) d'équation $y = x^2$.
 - a) Soit x > 0. On considère les points M et M_2 de même abscisse x et appartenant respectivement à (L) et (C). Vérifier que $MM_2 = f_2(x)$.
 - b) Construire alors les points de la courbe (Γ) d'abscisses respectives 2, $\frac{1}{e}$ et $\sqrt{\frac{1}{2}}$.
 - c) Tracer la courbe (Γ) dans le repère (O, \vec{i} , \vec{j}).
- II] 1) Soit k un entier supérieur ou égal à 2.

On considère la fonction f_k définie sur $]0,+\infty[$ par $f_k(x)=x^k-\ln x$.

- a) Déterminer f_k la fonction dérivée de f_k .
- b) Montrer que f_k admet un minimum en $\sqrt[k]{\frac{1}{k}}$ égal à $\frac{1+lnk}{k}$.
- c) Pour tout réel x > 0, on considère les points $M_k(x,x^k)$ et $M(x,\ln x)$. Déterminer la valeur minimale de la distance MM_k .
- 2) Pour tout entier $k \ge 2$, on pose $u_k = \sqrt[k]{\frac{1}{k}}$.
 - a) Vérifier que $Inu_k = -\frac{Ink}{k}$ et en déduire la limite de (u_k) .
 - b) Soit A(1, 0) et A_k le point de coordonnées $(u_k, f_k(u_k))$. Calculer la limite de la distance AA_k lorsque k tend vers $+\infty$.

- Fonction ln : continuité, dérivabilité, branches infinies .
- Notion d'extremum
- Suite réelle.

Aptitudes visées :

- Calculer la limite d'une fonction.
- Interpréter graphiquement un résultat.
- Etudier les variations d'une fonction.
- Reconnaître un minimum d'une fonction.
- Calculer la limite d'une suite réelle.

Solutions

I.

1. a)
$$\lim_{x \to 0^+} f_2 x = +\infty$$
, $\lim_{x \to +\infty} f_2 x = \lim_{x \to +\infty} x^2 \left(1 - \frac{\ln x}{x^2} \right) = +\infty$.

b)
$$\lim_{x \to +\infty} \frac{f_2 x}{x} = \lim_{x \to +\infty} x - \frac{\ln x}{x} = +\infty$$
 donc Γ admet une branche parabolique de direction celle de $0, \vec{j}$.

c) La fonction
$$f_2$$
 est dérivable sur $]0,+\infty[$ et pour tout $x \in]0,+\infty[$, $f_2' \times = 2x - \frac{1}{x} = \frac{2x^2 - 1}{x}$.

$$\text{Le signe de } f_2' \ x \ \text{ est celui de } 2x^2 - 1. \ \begin{cases} 2x^2 - 1 \\ x \in \left] 0, + \infty \right[\Leftrightarrow x = \frac{1}{\sqrt{2}} \, . \end{cases}$$

х	$0 \qquad \qquad \frac{1}{\sqrt{2}} \qquad \qquad +\infty$
f_2' x	_ 0 +
f ₂	$\frac{1}{2} + \frac{1}{2} \ln 2$

- 2. a) Pour tout $x \in]0, +\infty[$, $MM_2 = |x^2 lnx| = |f_2|x| = f_2|x|$ car f_2 admet un minimum global strictement positif $\sup]0, +\infty[$ donc $f_2|x| > 0$ pour tout $x \in]0, +\infty[$.
 - b) *) La droite passant par le point A de l'axe des abscisses d'abscisse 2 et parallèle à l'axe des ordonnées coupe
 L en B et C en E. Ainsi le point de Γ d'abscisse 2 est le point G de AE tel que EG = AB.
 - **) Du point de l'axe des ordonnées d'ordonnée -1, on mène la parallèle à l'axe des abscisses. Elle coupe $\ L$ en N. Du point N on mène la parallèle à l'axes des ordonnées. Elle coupe $\ C$ en Q et l'axes des abscisses en R, le point de $\ \Gamma$ d'abscisse $\frac{1}{e}$ est alors le point S du segment RQ tel que RS = NQ.
- ***) Du point de l'axe des ordonnées d'ordonnée $\frac{1}{2}$ on mène la parallèle à l'axe des abscisses. Elle coupe C en F et de F on mène la parallèle à l'axe des ordonnées elle coupe L en H et l'axe des abscisses en K, le point de Γ d'abscisse $\frac{1}{\sqrt{2}}$ est alors le point J de la demi-droite KF tel que KJ = HF.

II.

- $\textbf{1.} \quad \textbf{a)} \quad \text{La fonction} \ \ f_k \text{ est dérivable sur } \left] 0, + \infty \right[\text{ et pour } x \in \ 0, + \infty \ , \ \ f_k^{\ \prime} \quad x \ = k x^{k-1} \frac{1}{v} = \frac{k x^k 1}{v}.$
 - $\begin{array}{ll} \textbf{b)} & f_k^{\;\prime} \; \; x \; = 0 \Leftrightarrow x = \sqrt[k]{\frac{1}{k}} \; \; \text{de plus} \; f_k^{\;\prime} \; \; x \; < 0 \Leftrightarrow 0 < x < \sqrt[k]{\frac{1}{k}} \; \; \text{et} \; f_k^{\;\prime} \; \; x \; > 0 \Leftrightarrow x > \sqrt[k]{\frac{1}{k}} \; \; \text{. il en résulte que} \; f_k^{\;\prime} \\ & \text{s'annule en} \; \sqrt[k]{\frac{1}{k}} \; \; \text{en changeant de signe, d'où} \; \; f_k \; \; \text{admet un minimum en} \; \sqrt[k]{\frac{1}{k}} \; \; \text{égal à} \end{array}$

$$f_k\!\left(\!\sqrt[k]{\frac{1}{k}}\right)\!=\!\left(\!\sqrt[k]{\frac{1}{k}}\right)^{\!k}-\ln\sqrt[k]{\frac{1}{k}}=\frac{1}{k}+\frac{1}{k}\ln k=\frac{1+\ln k}{k}\,.$$

- c) $MM_k = \left| x^k lnx \right| = \left| f_k \ x \ | = f_k \ x \ \text{car le minimum de } f_k \ \text{est } \frac{1 + lnk}{k} > 0 \ \text{pour } k \ge 2 \text{ . Donc la valeur minimale}$ de $MM_k \ \text{est la valeur minimale de } f_k \ \text{sur } \left] 0, + \infty \right[\ \text{qui est \'egale \`a} \ f_k \left(\sqrt[k]{\frac{1}{k}} \right) = \frac{1 + lnk}{k} . .$
- $\textbf{2.} \quad \textbf{a) Pour tout } \ k \geq \textbf{2, } \\ lnu_k = ln \sqrt[k]{\frac{1}{k}} = \frac{1}{k} ln \frac{1}{k} = \frac{-lnk}{k} \ . \ \lim_{k \to +\infty} lnu_k = \lim_{k \to +\infty} \frac{-lnk}{k} = 0 \ \text{ d'où } \lim_{k \to +\infty} u_k = 1.$
 - $\begin{aligned} \textbf{b)} \quad & AA_k = \sqrt{1 u_k^{-2} + \ f_k^{-2} \ u_k^{-2}} \ . \ \text{Or} \ \lim_{k \to +\infty} u_k^{-2} = 1 \ \text{et} \ \lim_{k \to +\infty} f_k^{-2} \ u_k^{-2} = \lim_{k \to +\infty} \frac{1 + lnk}{k} = \lim_{k \to +\infty} \frac{1}{k} + \frac{lnk}{k} = 0 \ . \end{aligned}$ On en déduit que $\lim_{k \to +\infty} AA_k^{-2} = \lim_{k \to +\infty} \sqrt{1 u_k^{-2} + f_k^{-2} u_k^{-2}} = 0 \ .$