Дифференциальная геометрия. Неофициальный конспект

Лектор: Лебедева Нина Дмитриевна Конспектировал Леонид Данилевич

III семестр, осень 2023 г.

Оглавление

1	Алге	ебраическая топология	
	1.1	Применения фундаментальной группы	3
	1.2	Теорема Жордана	1
	1.3	Ретракция. Гомотопическая эквивалентность	5
	1.4	Гомотопическая эквивалентность	3
	1.5	Пары Борсука	7
	1.6	Клеточная пара — пара Борсука	3
	1.7	Гомотопическая эквивалентность и фундаментальная группа	9
	1.8	Накрытия)
		1.8.1 Морфизмы накрытий	
		1.8.2 Иерархия накрытий с общей базой	5
	1.9	Фундаментальные группы клеточных пространств (СW-комплексов). Теорема Зей-	
		ферта — ван Кампена	5
		1.9.1 План	
		1.9.2 Фундаментальная группа конечного графа	
		1.9.3 Теорема Зейферта — ван Кампена	
	1.10	Фундаментальные группы основных поверхностей	7
		Построение универсального накрытия	
2	Диф	рференциальная геометрия 19)
	2.1	Дифференциальная геометрия кривых)
		2.1.1 Параметризация кривой длиной дуги	
	2.2	Кривизна плоской кривой, базис Френе	
		2.2.1 Формулы Френе	
		2.2.2 Поворот кривой	3
		2.2.3 Замкнутые кривые	1
		2.2.4 Выпуклые кривые на плоскости	1
	2.3	Базис Френе и кривизны в \mathbb{R}^n	5
	2.4	2 -мерные поверхности в \mathbb{R}^3	3
		2.4.1 Локальная параметризация	7
		2.4.2 Гладкие функции на поверхности	
		2.4.3 Производная по направлению	3
	2.5	Первая квадратичная форма поверхности)
		2.5.1 Площадь)
		2.5.2 І форма при замене координат)
		2.5.3 Изометрии	
	2.6	Вторая квадратичная форма)
	2.7	Специальные координаты. Соприкасающийся параболоид	
		2.7.1 Гауссово отображение	
		2.7.2 Оператор Вайнгартена	
		2.7.3 Что-то считаем	
	2.8	Формулы типа Френе	
	2.9	Вычисление главных кривизн и направлений в координатах	
	2.10	Ковариантная производная	

	2.10.1 Вычисления в координатах. Символы Кристоффеля	3
	2.10.2 Зачем нужны символы Кристоффеля	3
2.11	Выпуклые поверхности	39

Глава 1

Алгебраическая топология

Лекция I 4 сентября 2023 г.

1.1 Применения фундаментальной группы

Теорема 1.1.1 (Об инвариантности размерности). \mathbb{R}^n (при n > 2) не гомеоморфно никакому открытому подмножеству $U \subset \mathbb{R}^2$.

Доказательство. Рассмотрим произвольную точку $x \in U$.

Если её удалить, то фундаментальная группа $U\backslash\{x\}$ будет нетривиальной, а $\mathbb{R}^n\backslash\{pt\}$ — стягиваемо.

Теорема 1.1.2 (Об инвариантности края). $\mathbb{R}_{\geq 0} \times \mathbb{R}$ не гомеоморфно никакому открытому $U \subset \mathbb{R}^2$.

Доказательство. У $\mathbb{R}_{\geqslant 0} \times \mathbb{R}$ можно выкинуть граничную точку, пространство останется стягиваемым.

Определение 1.1.1 (Ретракция топологического пространства $X\supset A$). $f:X\to A$, такое, что $f\Big|_A=\mathrm{id}.$

Теорема 1.1.3 (Борсук). Не существует ретракции двумерного диска D^2 на свою границу $S^1 = \partial D^2$.

 \mathcal{Q} оказательство. От противного: пусть нашлась ретракция $f:D^2\to S^1$. Рассмотрим композицию $S^1\stackrel{\mathrm{in}}{\hookrightarrow} D^2\stackrel{f}{\to} S^1$. Композиция in $\circ f=\mathrm{id}_{S^1}$.

Эта композиция индуцирует гомоморфизм фундаментальных групп $\pi_1(S^1) \xrightarrow{\mathrm{in}_*} \pi_1(D^2) \xrightarrow{f_*} \pi_1(S^1)$, причём $\mathrm{in}_* \circ f_* = \mathrm{id}_* = \mathrm{id}_*$ однако фундаментальная группа диска тривиальна.

Замечание. Все предыдущие теоремы можно обобщить на случай больших размерностей, но в доказательстве будет уже не фундаментальная группа.

Теорема 1.1.4 (Брауэр). Любое непрерывное отображение $f:D^2\to D^2$ имеет неподвижную точку.

Доказательство. От противного: $\exists f: D^2 \to D^2$ без неподвижных точек.

Тогда можно построить ретракцию из диска на окружность: $x \in D^2$ отобразим в пересечение луча $f(x) \to x$ с границей ∂D^2 . Назовём построенную функцию g.

 $g\Big|_{\mathrm{Gl}}=\mathrm{id}$ по определению. Для проверки непрерывности запишем g формулой:

$$q(x) = f(x) + t_x(x - f(x))$$

где t_x выбирается так, что $|f(x)+t_x(x-f(x))|=1$. Таким образом, t_x — положительный (больший) корень некоего квадратного уравнения с непрерывно меняющимися коэффициентами.

Теорема 1.1.5 (Основная теорема алгебры). $\forall f \in \mathbb{C}[x], \deg f \geqslant 1 : \exists z_0 \in \mathbb{C} : f(z_0) = 0.$

Доказательство (дама с собачкой). Запишем $f(z) = z^n + a_1 z^{n-1} + \dots + a_n$.

Обозначим $g(z) = a_1 z^{n-1} + \dots + a_n$. Выберем достаточно большое $R \in \mathbb{R}_+$, такое, что $|z| \geqslant R \Rightarrow |z^n| > |g(z)|$.

Если z пробегает все значения одного модуля $z=R\cdot e^{it}$ по $t\in [0,2\pi]$, то $f(z)=z^n+g(z)$ пробегает некую нетривиальную петлю в $l\subset \mathbb{C}\setminus\{0\}$ (n раз оборачивающуюся вокруг нуля — можно линейно прогомотопировать в петлю Re^{it}).

Рассмотрим гомотопию петли $\{t \mapsto R \cdot e^{it} | t \in [0, 2\pi] \} \subset \mathbb{C}$ в точку. Композиция f с этой гомотопией создаст гомотопию петли l в точку. Но в $\mathbb{C} \setminus \{0\}$ l не стягиваема, значит, применение f заденет гле-то 0.

Теорема 1.1.6 (Улам-Борсук). У любого $f: S^2 \to \mathbb{R}^2$ найдётся $x \in S^2: f(x) = f(-x)$.

Предположим противное. Рассмотрим функцию g(x) := f(x) - f(-x). Это нечётная функция (g(x) = -g(-x)), мы предполагаем, что она не обнуляется.

Сузим g на экватор сферы. $g\Big|_{S^1}$ — нечётная петля.

Лемма 1.1.1. Нечётная петля имеет нечётный индекс (индекс — количество раз, которое петля обмоталась вокруг 0 с учётом ориентации).

Доказательство леммы.

Рассмотрим $\alpha(x)=\frac{g(x)}{|q(x)|}$ — отображение $S^1\to S^1$, по-прежнему нечётное.

Для определения индекса петли надо рассмотреть универсальное накрытие $\mathbb{R} \stackrel{p}{\to} S^1$. Обозначим за $\widetilde{\alpha}:[0,2\pi]\to\mathbb{R}$ поднятие петли α $(\widetilde{\alpha}(0)=\widetilde{\alpha}(2\pi))$.

Без потери общности можно считать, что $\widetilde{\alpha}(0)=0$. Так как α нечётная, то $\widetilde{\alpha}(\pi)=\pi(2k+1)$ для некоего $k\in\mathbb{Z}$. Дальше из нечётности α получаем $\widetilde{\alpha}(2\pi)=2\pi(2k+1)$, что и значит нечётность индекса.

Аналогично предыдущей теореме, стянем экватор S^1 в точку, петля стянется в точку, значит, где-то заденет 0.

1.2 Теорема Жордана

Теорема 1.2.1 (Детская версия теоремы Жордана). Рассмотрим диск D^2 , пусть N и S — северный и южный полюса диска соответственно.

Пусть $\gamma_0: [0,1] \to D^2$ — путь от N до S, причём пусть $\gamma_0(0,1) \cap S^1 = \emptyset$.

Тогда существуют $p,q\in D^2$, «достаточно близкие к границе», такие, что p и q лежат в разных компонентах связности $D^2\setminus {\rm Im}(\alpha)$.

Доказательство. Выберем p_0 на дуге NS и q_0 на дуге SN. Выберем внутри диска достаточно близко к p_0 и q_0 , точки p и q соответственно (выберем так, чтобы p_0)

Теорема 1.2.2 (Теорема Жордана). Рассмотрим инъективное $S^1 \stackrel{\alpha}{\hookrightarrow} \mathbb{R}^2$. Тогда число компонент связности $\#(\mathbb{R}^2 \setminus \operatorname{Im}(\alpha)) = 2$.

Замечание (Уточнение, теорема Шёнфлиса). Эти компоненты связности гомеоморфны компонентам связности $\mathbb{R}^2 \setminus S^1$.

Ретракция. Гомотопическая эквивалентность 1.3

Как уже было сказано,

Определение 1.3.1 (Ретракция топологического пространства $X\supset A$). $f:X\to A$, такое, что $f\Big|_{\Lambda} = \mathrm{id}.$

Теорема 1.3.1. Пусть существует $r: X \to A$ — ретракция. Тогда для отображения іn : $A \to X$ индуцированный гомоморфизм фундаментальных групп in, инъективен.

Доказательство. Композиция $A \stackrel{\text{in}}{\to} X \stackrel{r}{\to} A$ тождественна, значит, индуцированный гомоморфизм фундаментальных групп тождественнен, значит, никакие точки при in, не склеились.

Определение 1.3.2 (Деформационная ретракция $X \supset A$). Гомотопия $H: X \times [0,1] \to X$, такое, что $\forall a \in A, t \in [0,1] : H(a,t) = a$, причём $H(_,1) = A$.

Замечание. Некоторые определения не такие сильные — требуют $H(a,t) \in A$ или даже только H(a, 1) = a.

Лекция II 11 сентября 2023 г.

Предостережение (Проблемы с доказательством теоремы Жордана). Длина кривой может быть бесконечной. Кривая может бесконечно закручиваться, как спираль, внутрь себя. (?) Заменить кривую на ломаную может не получиться, так как будут возникать самопересечения.

Лемма 1.3.1. Пусть p,q — концы пути γ , причём петля α не пересекается с носителем пути γ . Torda $ind_p(\alpha) = ind_q(\alpha)$.

Доказательство. Рассмотрим гомотопию $H(x,t)=\alpha(x)-\gamma(t)$. Это непрерывная деформация α , которая не задевает 0, значит, индексы p и q равны.

Теорема 1.3.2 (Шёнфлис, для ломаных). Пусть α — замкнутая несамопересекающаяся ломаная с вершинами A_1, \ldots, A_n .

Тогда плоскость бьётся на две компоненты связности, одна гомеоморфна $B_1(0)$, другая — $\mathbb{R}^2 \setminus D_1(0)$.

Доказательство.

• Докажем, что компонент связности $\mathbb{R}^2 \setminus \text{Im}(\alpha)$ не больше 2. Зафиксируем точку p на границе, у неё есть окрестность, гомеоморфная B_2 без диаметра.

Любую другую точку q можно соединить с этой окрестностью путём, не пересекающим $\mathrm{Im}(lpha)$ подойдём достаточно близко к кривой, дальше будем идти вдоль неё.

Так как компонент связности B_2 без диаметра две, то и компонент связности $\mathbb{R}^2 \setminus \mathrm{Im}(\alpha)$ не больше 2.

• Пусть l — прямая, не параллельная A_iA_j для всех пар $i \neq j$. Пусть N — нормаль к l. Определим функцию высоты $h(p) = \langle N, p \rangle$. У всех точек A_1, \dots, A_n разная высота.

Зафиксируем высоту h, рассмотрим точки пересечения B_1,\ldots,B_k ломаной lpha с линией уровня h. Каждой вершине B_1,\ldots,B_k сопоставим чётность - 0, если в окрестности этой вершины уровни ломаной всегда не больше (или не меньше), чем уровень данной точки. Иначе — если уровень ломаной меняет знак в данной вершине — присвоим чётность 1.

Каждой точке на линии уровня h присвоим чётность, равную сумме (в $\mathbb{Z}/2\mathbb{Z}$) чётностей вершин левее. Точки с чётностями 0 лежат снаружи ломаной, с чётностями 1 — внутри.

По построению очевидно, что точки разных чётностей лежат в разных компонентах связности $\mathbb{R}^2 \setminus \operatorname{Im}(\alpha)$ (отображение $\mathbb{R}^2 \setminus \operatorname{Im}(\alpha) \to \{0,1\}$, сопоставляющее точке уровень непрерывно, что проверяется ручками), а так как компонент связности не больше 2, то их ровно 2.

• Докажем, что множество «нечётных точек» гомеоморфно B_2 . Для этого триангулируем их замыкание — на самом деле, «нечётные точки», объединённые с $\operatorname{Im}(\alpha)$.

Проведя все линии уровня для $h \in \{h(A_1), \dots, h(A_n)\}$, мы получим разбиение на множество треугольников и трапеций — трапеции несложно триангулировать.

Склейка множества треугольников по рёбрам, как известно, даёт сферу с ручками, дырками и плёнками.

Плёнки получиться не могут — они неориентируемы, а \mathbb{R}^2 ориентируема. Но и ручки получиться не могут — в предположении, что из плоскости получилось вырезать ручку, мы можем устроить (не деформационную) ретракцию из плоскости на окружность, что противоречит тому, что у окружности фундаментальная группа больше. Для этого представим ручку, как тор с дыркой — $S^1 \times S^1$ с дыркой. Ретракция на окружность устроена отбрасыванием второй координаты.

У каждой дырки есть компонента края. То, что дырок ровно одна понятно из того, что край — как-раз-таки только та ломаная α . Но ломаная связна, значит, компонента края одна. \square

1.4 Гомотопическая эквивалентность

Пусть X, Y — топологические пространства.

Определение 1.4.1 (Гомотопически обратные отображения). Отображения $f: X \to Y, g: Y \to X$, такие, что $f \circ g \sim \operatorname{id}_Y$ и $g \circ f \sim \operatorname{id}_X$.

Определение 1.4.2 (Гомотопически эквивалентные пространства). Такие X,Y, что $\exists f: X \to Y, g: Y \to X$ — гомотопически обратные отображения.

Обозначается $X \sim Y$.

Теорема 1.4.1. Пусть X — деформационный ретракт Y (достаточно самого слабого определения). Тогда $X \sim Y$.

Доказательство. Пусть $\tau: Y \to X$ — ретракция, in : $X \to Y$ — включение.

Докажем, что au и in — гомотопически обратные.

- $\tau \circ \text{in} = \text{id}_X$, поэтому и гомотопически эквивалентно X.
- in $\circ \tau \sim \mathrm{id}_Y$ по определению деформационной ретракции.

Примеры (Гомотопически эквивалентные пространства).

- $[0,1] \sim [0,1] \times [0,1]$ отрезок является деформационным ретрактом квадрата.
- ullet ($S^1\sim$ лист Мёбиуса).
- Точка гомотопически эквивалентна дереву.
- Две разные (одномерные) восьмёрки гомомотопически эквивалентны, потому что они ретракты третьей (двумерной) восьмёрки (1.1).

Теорема 1.4.2. Гомотопическая эквивалентность — отношение эквивалентности.

Рис. 1.1: Восьмёрки

Доказательство.

- Рефлексивность: $X \sim X$, так как id_X и id_X гомотопически обратные.
- Симметричность заложена в определение.
- Транзитивность: пусть $X \overset{f}{\underset{h}{\rightleftarrows}} Y \overset{g}{\underset{i}{\rightleftarrows}} Z$, где $g \circ i, i \circ g, f \circ h$ и $h \circ f$ гомотопны постоянным отображениям соответвующего пространства. Таким образом, так как $i \circ g \sim \mathrm{id}_Y$, то

$$h \circ (i \circ g) \circ f \sim h \circ f \sim \mathrm{id}_X$$

Аналогично $g \circ f \circ h \circ i \sim \mathrm{id}_Z$.

1.5 Пары Борсука

Определение 1.5.1 ((X,A)- пара Борсука). $A\subset X$, причём $\forall Y:\forall f:X\to Y:\forall H:A\times I\to Y:H(_,0)=f\Big|_A(_)$ эту гомотопию можно продолжить: $\exists \widetilde{H}:X\times I\to Y$, такая что $\widetilde{H}\Big|_{A\times I}=H$, причём $\widetilde{H}(_,0)=f(_)$.

Лекция III 18 сентября 2023 г.

В некотором смысле, практически все пары пространства-подпространства, которые естественно придумать, являются парой Борсука.

Факт 1.5.1. Пусть $X\supset A$, причём B локально компактно. Тогда $(X/A)\times B\equiv (X\times B)/_{(a_1,b)\sim (a_2,b)}.$

Доказательство. Равенство множеств проверить несложно, но чтобы поверить гомеоморфизм топологических пространств, надо воспользоваться локальной компактностью.

Этот факт из общей топологии мы доказывать не будем.

3амечание. A — стягиваемо $\iff \forall a \in A$: a — деформационный ретракт A в самом слабом смысле.

Теорема 1.5.1. Пусть (X,A) — пара Борсука. Если A стягиваемо, то $X\sim X/A$.

 \mathcal{A} оказательство. Пусть $\mathcal{F}^*: A \times I \to A$ — гомотопия, стягивающая A в точку $a \in A$ (таким образом $\mathcal{F}^*\Big|_{A \times \{0\}} = \operatorname{id}$ и $\mathcal{F}^*\Big|_{A \times \{1\}} = a$)

Положим в качестве $\mathcal F$ гомотопию, продолжающую $\mathcal F^*$ так, что $\mathcal F\Big|_{X \times \{0\}} = \mathrm{id}$ (такая найдётся по определению пары Борсука).

Так как $\forall t \in I : (p \circ \mathcal{F})(A, t) \subset A$, то $p \circ \mathcal{F}$ пропускается через фактор: существует непрерывное $\widetilde{\mathcal{F}}$, делающее диаграмму коммутативной.

Дальше надо сказать ещё немало (?) слов, что-то из них написано ниже.

Так как $(X \times I)/_{(a_1,t)\sim (a_2,t)}\cong (X/A) \times I$, то можно считать, что \widetilde{F} бьёт из $(X/A) \times I$ в X/A. Пусть $p:X \to X/A$, $q:X/A \to X$, причём $p\circ q:X/A \to X/A$ и $q\circ p:X \to X$ гомотопно постоянному.

Пусть $\mathcal{F}^{**}: A \times I \to A, \mathcal{F}^{*}: \operatorname{in}_{A \hookrightarrow X} \circ \mathcal{F}^{**}, A \times I \to X.$

Пусть \mathcal{F} — гомотопное продолжение $\mathcal{F}^*,\mathcal{F}\Big|_{X imes\{0\}}=\mathrm{id}.$

 $\mathcal{F}: X \times I \to X \xrightarrow{p} X/A.$

$$X \xrightarrow{\mathcal{F}_1} X$$

$$\downarrow p \qquad \qquad \downarrow q$$

$$X/A$$

 $p\circ F:X imes I o X/A$, это можно непрерывно пропустить через фактор $\mathcal{F}^{\sim}:(X imes I)/\sim \to X/A$.

1.6 Клеточная пара — пара Борсука

Пусть X — клеточное пространство, $A\subset X$ — замкнутое подпространство, состоящее из целого числа клеток.

Факт 1.6.1. Пусть A замкнуто в X (необязательное условие, без которого сложнее).

Рассмотрим пространство $X \times I$. $A \subset X$ — пара Борсука, если $(X \times \{0\}) \cup (A \times I)$ — ретракт $X \times I$.

Доказательство. Обозначим данную ретракцию за $\rho: X \times I \to (X \times \{0\} \cup A \times I)$. Чтобы показать, что (X,A) — пара Борсука, рассмотрим произвольное $f: X \to Y$, рассмотрим гомотопию $H: A \times I \to Y$, такую, что $H\Big|_{A \times \{0\}} = f\Big|_A$.

Необходимо показать существование продолжения гомотопии $\widetilde{H}: X imes I o Y$. Подойдёт

$$\widetilde{H}:(x,t)\mapsto \begin{cases} f(\widetilde{x}), & \rho(x)=(\widetilde{x},0)\in X\times\{0\}\\ H(a,t), & \rho(x)=(a,t)\in A\times I \end{cases}$$

Непрерывность \widetilde{H} следует из замкнутости A в X.

Замечание. $(D^n, \partial D^n) = (D^n, S^{n-1})$ — пара Борсука.

Доказательство. Цилиндр $D^n \times I$ легко можно стянуть на «стакан» $(D^n \times \{0\}) \cup (S^{n-1} \times I)$.

Пусть y — центр шара D^n . Ретракция может быть устроена следующим образом:

$$\begin{split} H:D^n\times I &\to (D^n\times\{0\})\times (S^{n-1}\times I) \\ (x,t) &\mapsto \begin{cases} \left(y+(x-y)\cdot \frac{2-t}{d(x,y)},\frac{2-t}{d(x,y)}\right), & \frac{2-t}{d(x,y)}\leqslant 2\\ \left(y+(x-y)\cdot \frac{2}{2-t},0\right), & \frac{2-t}{d(x,y)}\geqslant 2 \end{cases} \end{split}$$

Иначе говоря, берётся произведение диска $D^n \subset \mathbb{R}^n$ с отрезком [0,2], в качестве стакана выбирается $(D^n \times \{0\}) \cup (\partial D^n \times [0,1])$, после чего все точки $x \in D^n \times [0,1]$ переходят в пересечение луча $(0,2) \to x$ и стакана.

Замечание. Если (X,A) и (A,B) — пары Борсука, то (X,B) — пара Борсука.

Доказательство. Прямо из определения. Пусть $f:X\to Y,\ H:B\times I\to Y$ — отображение и гомотопия, которые надо продолжить $f\Big|_B=H\Big|_{B imes\{0\}}$.

Так как
$$(A,B)$$
 — пара Борсука, то $\exists H_1: A\times I\to Y$, такая, что $H_1\Big|_{B\times I}=H, H_1\Big|_{B\times \{0\}}=f\Big|_{B}.$

Так как
$$(X,A)$$
 — пара Борсука, то $\exists H_2: X \times I \to Y$, такая, что $H_2\Big|_{A \times I} = H_1, H_2\Big|_{A \times \{0\}} = f\Big|_A$. \square

Факт 1.6.2. Приклеим D^n по её границе $f: \partial D^n \to X$. Положим $Y = X \sqcup_f D^n$. Утверждается, что тогда (Y,X) — пара Борсука.

Доказательство с маханием руками», которое я не понял.

Вроде просто $Y \times I = (X \times I) \sqcup_{(f, \mathrm{id})} (D^n \times I)$, и ретракция $Y \times I \to (X \times I) \cup (D^n \times \{0\})$ устроена склейкой постоянного отображения и ретракции $D^n \times I$ на соответсвующий стакан.

Следствие 1.6.1. Клеточное пространство X с клеточным подпространством A — пара Борсука.

 $\ensuremath{\mathcal{L}\xspace}$ оказательство. Индукция по построению клеточного пространства — приклеивая клетку к X, мы можем либо приклеить, либо не приклеить, эту клетку к A, в обоих случаях пара останется парой Борсука.

Согласно транзитивности пар Борсука на выходе получится пара Борсука.

1.7 Гомотопическая эквивалентность и фундаментальная группа

Пусть $\gamma: I \to X$ путь, такой, что $p := \gamma(0), q := \gamma(1)$.

Тогда $T_{\gamma}: \pi_1(X,p) \to \pi_2(X,q); [\alpha] \mapsto [\gamma^{-1}\alpha\gamma]$ — изоморфизм фундаментальных групп.

Теорема 1.7.1. Фундаментальные группы гомотопически эквивалентных пространств изоморфны.

Доказательство. Пусть $f: X \to Y, g: Y \to X$ — отображения из определения гомотопических эквивалентностей.

Пусть $f(x_0) = y_0$. Тогда f индуцирует гомоморфизм прямого образа $f_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$.

Чтобы проверить, что это изоморфизм групп, проверим, что это биекция. $g \circ f \sim \mathrm{id}_X$. Тогда соответствующие петли тоже получаются свободно гомотопными.

Чтобы убедиться в этом, рассмотрим петлю $\gamma(t) \coloneqq h_t(x_0)$, где h_t — гомотопия, соединяющая $g \circ f$ и id_X . $[\alpha] = (T_\gamma \circ g_* \circ f_*)([\alpha])$, откуда $T_\gamma \circ g_* \circ f_* = \mathrm{id}$.

Воспользуемся тем, что T_{γ} — биекция ($T_{\gamma} \circ T_{\gamma^{-1}} = \mathrm{id}$). Таким образом, у f_* имеется обратный слева, у g_* — обратный справа. Но аналогично у f_* имеется обратный справа, у g_* — обратный слева, значит, это биекции.

1.8 Накрытия

Определение 1.8.1 (Накрытие). Непрерывное отображение $p:Y\to X$, такое что $\forall x\in X:\exists U\ni x$ — правильная окрестность, такая, что $p^{-1}(U)=\bigcup_{\alpha\in\Lambda}V_\alpha$, причём $\forall \alpha\in\Lambda:p\Big|_{V_\alpha}$ — гомеоморфизм на U

Определение 1.8.2 (Поднятие отображения $f:Z\to X$ в накрытии). Такое $\widetilde{f}:Z\to Y$, что $f=p\circ\widetilde{f}$.

$$Z \xrightarrow{\widetilde{f}} X$$

$$X$$

Не у всякого отображения есть поднятие (например, при двулистном накрытии окружности собой нет поднятия у тождественного отображения окружности в себя). В прошлом семестре мы доказали, что если в X есть стягиваемая петля, то её поднятие — тоже стягиваемая петля.

Определение 1.8.3 (Петли, которые размыкаются при поднятии). Пути $\widetilde{\gamma}:[0,1]\to X$ (являющиеся петлями, то есть $\widetilde{\gamma}(0)=\widetilde{\gamma}(1)$), такие, что для поднятия $\gamma\colon\gamma(0)\neq\gamma(1)$.

Факт 1.8.1. Для любого накрытия $p:Y \to X$: p_* — инъекция.

 \mathcal{A} оказательство. Если $\exists \alpha: p_*([\alpha]) = 0$, то $p([\alpha])$ — стягиваемая петля, откуда α — тоже, то есть $[\alpha] = 0$.

Определение 1.8.4 (Группа накрытия). Образ ${\rm Im}(p_*) \leqslant \pi_1(X,x_0)$. Группа накрытия может зависеть от отмеченной точки x_0 .

Определение 1.8.5 (Локально линейно связное пространство X). \forall точки и окрестности $x \in U \subset X$: \exists линейно связная подокрестность $V : x \in V \subset U$.

Контрпримеры (Локально линейно связные и линейно связные пространства).

- Конус над $\left\{\frac{1}{n}\right\}_{n=1}^{\infty} \cup \{0\}$ линейно связен, но не локально линейно связен.
- Любое несвязное многообразие связно локально.

${\displaystyle \prod_{25\ { m сентября}}\ {\footnotesize { m IV}}}_{2023\ { m r.}}$

Пусть X, Y — линейно связны, Z — линейно связное и локально линейно связное пространство.

Рассмотрим накрытие с базой X и накрывающим Y.

Теорема 1.8.1. Зафиксируем $z_0 \in Z$ и $y_0 \in p^{-1}(f(z_0))$. Утверждается равносильность: у f найдётся единственное поднятие $\widetilde{f}: Z \to Y$, такое что $\widetilde{f}(z_0) = y_0 \iff \operatorname{Im}(f_*) \subset \operatorname{Im}(p_*)$.

$$Z \xrightarrow{\widetilde{f}} X$$

$$X$$

Доказательство.

- \Rightarrow . $f_* = p_* \circ \widetilde{f}_*$.
- \Leftarrow . Пусть Im $f_* \subset \operatorname{Im} p_*$.
 - Рассмотрим $z \in Z$, соединим с z_0 из каким-то путём γ ($\gamma(0) = z_0, \gamma(1) = z$). Путь $f \circ \gamma : [0,1] \to X$ поднимается до какого-то пути $\alpha : [0,1] \to Y, \alpha(0) = y_0$ единственным образом, положим $\widetilde{f}(z) = \alpha(1)$.

Понятно, что из коммутативности диаграммы нельзя выбрать $\widetilde{f}(z)$ чем-нибудь другим, то есть поднятие можно определить так, и если определение корректно, то поднятие единственно.

- Проверим корректность определения: поднятие z не зависит от пути. Пусть z_0 и z соединяются двумя путями α и β . Тогда $f \circ (\alpha \beta^{-1})$ петля с началом в x_0 . Так как $[f \circ (\alpha \beta^{-1})] \in \operatorname{Im}(p_*)$, то эта петля не размыкается при поднятии.
- Пусть $z\mapsto \widetilde{f}(z)$. Рассмотрим любую $U\ni \widetilde{f}(z)$. Для проверки непрерывности \widetilde{f} надо проверить, что $\exists W\ni z:\widetilde{f}(W)\subset U.$

Пусть $U'\ni f(z)$ — правильная окрестность. Обозначим за $V=f^{-1}(U')$. Используя локальную линейную связность, можно в качестве W выбрать линейно связную подокрестность V, содержащую z.

Ниже считаем, что все пространства «хорошие»: линейно связные, локально линейно связные, микроодносвзяные.

Определение 1.8.6 (Микроодносвязное или полулокально односвязное пространство X). $\forall x \in X : \exists U \ni x$: все петли, лежащие в U, стягиваемы в X.

1.8.1 Морфизмы накрытий

Рассмотрим два накрытия с общей базой, пусть у каждого из трёх пространств отмечена некоторая точка.

$$(Y, y_0) \xrightarrow{f} (Z, z_0)$$

$$(X, x_0)$$

Определение 1.8.7 (Морфизм накрытий). Отображение f, делающее диаграмму выше коммутативной.

При накрытии пространств с отмеченной точкой $p(y_0)=x_0=q(z_0)$. От морфизма f также требуется $f(y_0)=z_0$.

3амечание. Требование непрерывности f можно опустить, так как оно следует из доказательства 1.8.1.

Теорема 1.8.2. \exists ! морфизм накрытий $f \iff \operatorname{Im}(p_*) \subset \operatorname{Im}(q_*)$.

$$\square$$
 Доказательство. 1.8.1

Следствие 1.8.1. Если p — универсальное накрытие, то \forall накрытия q: \exists морфизм f.

Теорема 1.8.3. Для хороших пространств универсальное накрытие существует и единственно с точностью до автоморфизма накрытий.

Доказательство. Я считаю, что доказательства не было. Prove me wrong.

Определение 1.8.8 (Автоморфизм накрытия $p:Y\to X$). Такой гомеоморфизм f, что диаграмма коммутативна.

$$(Y, y_1) \xrightarrow{f} (Y, y_2)$$

$$(X, x_0)$$

Примеры.

• Два накрытия $(\mathbb{R},0) \to S^1$ и $(\mathbb{R},2\pi) \to S^1$ изоморфны сдвигом

$$f: (\mathbb{R}, 0) \to (\mathbb{R}, 2\pi)$$

 $x \mapsto x + 2\pi$

• В накрытие букета окружностей диаграммой свободной группы на двух образующих можно отметить любую вершину графа валентности 4.

Определение 1.8.9 (Группа скольжения). Автоморфизмы накрытия p образуют группу $\mathrm{Aut}(p)$

Теорема 1.8.4. Если накрытие $p:Y\to X$ универсально, то $\forall y_1,y_2\in p^{-1}(x_0):\exists$ автоморфизм $f:f(y_1)=y_2.$

 \square Доказательство. 1.8.1

Теорема 1.8.5. Для накрытия $p: Y \to X$, для $\forall y_1, y_2 \in p^{-1}(x_0)$: существует автоморфизм $f: f(y_1) = y_2$ тогда и только тогда, когда $\mathrm{Im}(p_*) \leqslant \pi_1(X)$.

Доказательство. Образы фундаментальных групп $\pi_1(Y,y_1)$ и $\pi_1(Y,y_2)$ при действии p_* сопряжены. В самом деле, пусть γ — путь от y_2 до y_1 . Пусть α — петля с началом в y_1 . Петле $p(\alpha)$ поставим в соответствие петлю $p(\gamma\alpha\gamma^{-1})$.

Из теоремы о поднятии автоморфизм накрытий существует, если $Im(p_*) = Im(p_*)$ (выполнено включение в обе стороны), а это верно, если подгруппа нормальна.

Если же подгруппа не нормальна, то найдётся петля, которой можно сопрячь образы так, чтобы они различались, тогда автоморфизма не будет существовать.

Определение 1.8.10 (Регулярное накрытие). Накрытие, $p:Y\to X$ о котором идёт речь в теореме 1.8.5, то есть $\mathrm{Im}(p_*)\leqslant \pi_1(X)$.

Примеры.

- Двулистное накрытие букета двух окружностей склейкой трёх окружностей регулярно 1.2.
- Трёхлистное накрытие букета двух окружностей склейкой четырёх окружностей нерегулярно (разные отмеченные точки неравноправны, нет автоморфизма, переводящего точку одного цвета в точку другого цвета) 1.3

Рис. 1.2: Двулистное накрытие

Рис. 1.3: Трёхлистное накрытие

Теорема 1.8.6.

- Если накрытие $p:Y\to X$ универсально, то группа автоморфизмов накрытия ${\rm Aut}(p)$ совпадает с фундаментальной группой пространства X.
- Для произвольного регулярного накрытия $\operatorname{Aut}(p) = \pi_1(X)/\operatorname{Im}(p_*)$ (факторгруппа существует, так как $\operatorname{Im}(p_*)$ нормальная подгруппа; это же влечёт, что $\operatorname{Im}(p_*)$ не зависит от выбранной точки).

Доказательство. Докажем второй пункт, первый из него следует. Зафиксируем $y_0 \in Y : p(y_0) = x_0$. Определим гомоморфизм групп $\mathcal{F} : \pi_1(X) \to \operatorname{Aut}(p)$.

Рассмотрим произвольную петлю γ с концом в x_0 . Её поднятие — путь, соединяющий y_0 с некой точкой y. Так как $p(y)=x_0$, а накрытие регулярно, то найдётся автоморфизм накрытия τ , такой что $\tau(y_0)=y$. Положим $\mathcal{F}([\gamma])=\tau$.

Проверим, что

1. \mathcal{F} — гомоморфизм. Рассмотрим петли γ, γ' — образы путей $\widetilde{\gamma}$ и $\widetilde{\gamma}'$, соединяющих y_0 с y и y' соответственно. Точкам y и y' соответствуют автоморфизмы τ и τ' соответственно.

Рассмотрим путь $\tau \circ \widetilde{\gamma}'$, он соединяет точку y' с некой точкой, пусть это y''. Заметим, что $\mathcal{F}([\gamma] \cdot [\gamma'])$ — это автоморфизм, переводящий y в y'', но он же равен $\mathcal{F}([\gamma]) \cdot \mathcal{F}([\gamma']) = \tau \circ \tau'$.

- 2. \mathcal{F} сюръективно, так как каждой точке y соответствует единственный морфизм $\tau : \tau(y_0) = y$.
- 3. $\operatorname{Ker}(\mathcal{F}) = \operatorname{Im}(p_*)$, так как $[\alpha] \in \operatorname{Ker}(\mathcal{F}) \iff$ при поднятии α она не размыкается, а такие петли и составляют $\operatorname{Im}(p_*)$.

Определение 1.8.11 (Группа G действует на топологическом пространстве X). \exists гомоморфизм групп $G \to \operatorname{Homeo}(X)$, где $\operatorname{Homeo}(X)$ — группа гомеоморфизмов пространства X.

Назовём эквивалентными элементы $x_1, x_2 \in X$, если $\exists g \in G : g(x_1) = x_2$. Так как G — группа, то эквивалентными названы элементы одной орбиты, это действительно отношение эквивалентности.

Примеры.

- $\mathbb{R} \curvearrowright S^1$ действие поворотами.
- Действие сдвигами $C_1 = \mathbb{Z}^2 \curvearrowright \mathbb{R}^2$ порождает факторпространство $\mathbb{R}^2/C_1 = T^2$.

Π екция V 2 октября 2023 г.

Пусть $G \curvearrowright X$.

Определение 1.8.12 (Действие G — накрывающее (properly discentional action)). $\forall x \in X : \exists U \ni x : \{gU\}_{g \in G}$ дизъюнктны.

Примеры.

• Универсальное накрытие $\widetilde{X} \to X$. Группа автоморфизмов накрытия действует накрывающе.

Теорема 1.8.7. Если $G \curvearrowright X$ — накрывающее, то $p: X \to X/G$ — накрытие.

Доказательство. Рассмотрим $x \in X$. Так как действие накрывающее, то $\exists U \ni x$, такая, что $\{gU\}_{g \in G}$ дизъюнктны. Тогда p(U) — правильно накрываемая окрестность.

B самом деле,
$$p^{-1}(U) = \bigsqcup_{g \in G} gU$$
.

Осталось проверить, что p(U) открыто. Это общий факт про действие групп — образ открытого множества открыт. В самом деле, $p^{-1}(p(U)) = \bigcup gU$, что открыто, откуда p(U) открыто (по

определению V открыто в $X/_{\sim} \iff p^{-1}(V)$ открыто в X).

Следствие 1.8.2. *Если* X односвязно, то $G \sim \pi_1(X)$.

Доказательство. Накрытие $X \to X/G$ универсально (1.8.6).

Теорема 1.8.8. Пусть X — хорошее пространство (существует универсальное накрытие).

Тогда $\forall N\leqslant\pi_1(X):\exists!$ накрытие $p:Y\to X$, такое, что $p_*(\pi_1(Y))=N$. Единственность накрытия предполагается, как и следует, с точностью до изоморфизмов.

Доказательство. Пусть $p_0:\widetilde{X}\to X$ — универсальное накрытие. $G\coloneqq \pi_1(X)=\mathrm{Aut}(p_0)$, имеется действие $G \curvearrowright \widetilde{X}, X = \widetilde{X}/G$.

Положим $Y\coloneqq \widetilde{X}/N$, тогда Y o X — накрытие с требуемой группой. p_0 пропускается через фактор.

Чтобы проверить, что $N = {
m Im}(p_*)$, посмотрим, что при поднятии не размыкаются как раз петли с нужными концами.

Пример. Букет двух окружностей имеет группу \mathcal{F}_2 . Накрытие с группой $\mathbb Z$ факторизует по одной образующей, оставляя другую. Выглядит это примерно так: 1.4.

Рис. 1.4: Накрытие букета окружностей с группой $\mathbb Z$.

1.8.2 Иерархия накрытий с общей базой

Пусть $\pi_1(X)\geqslant N_1\geqslant N_2$ — цепочка вложений групп. Тогда имеется цепочка морфизмов накрытий в обратном направлении.

$$X/N_1 = (Y_2, y_2)$$

$$\downarrow^{p_2}$$

$$X/N_1 = (Y, y_1)$$

$$\downarrow^{p_1}$$

$$X$$

1.9 Фундаментальные группы клеточных пространств (СW-комплексов). Теорема Зейферта — ван Кампена

1.9.1 План

- Начинаем с одномерного остова (букета окружностей)
- Приклеиваем двумерные клетки, ищем соотношения
- Приклеиваем клетки размерности $\geqslant 3$, докажем, что ничего не будет меняться.

1.9.2 Фундаментальная группа конечного графа

Пусть X = (V, E) — связный граф с |V| = n, |E| = m.

Тогда $\pi_1(X)$ — свободная группа \mathcal{F}_{m-n+1} .

Доказательство. Выберем в графе остовное дерево $T=\left(V,\widetilde{E}\right)$. $\widetilde{E}=n-1$. Заметим, что (X,T) — пара Борсука (клеточное пространство и подпространство).

Стягивая T в точку, получаем букет из m - (n - 1) = m - n + 1 окружностей. \Box

1.9.3 Теорема Зейферта — ван Кампена

Некоторые определения из теории групп

Мы будем рассматривать только конечнопорождённые конечнопредставленные группы.

Напомним, что свободное произведение групп $G = \langle g_1, \dots, g_n | \alpha_1, \dots, \alpha_k \rangle$ и $H = \langle h_1, \dots, h_m | \beta_1, \dots, \beta_l \rangle$ — это группа

$$G \star H = \langle g_1, \dots, g_n, h_1, \dots, h_m | \alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_l \rangle$$

Примеры.

- Свободное произведение $\mathbb{Z} \star \mathbb{Z} = \mathcal{F}_2$.
- «Несвободное произведение» $\mathbb{Z}\oplus\mathbb{Z}=\left\langle a,b\big|[a,b]=aba^{-1}b^{-1}=1\right\rangle$.

$$G=\langle g_1,\ldots,g_n|\alpha_1,\ldots,\alpha_k
angle$$
 Пусть $H=\langle h_1,\ldots,h_m|\beta_1,\ldots,\beta_l
angle$ — группы, и зафиксированы гомоморфизмы $I:F o G,J:F o H.$ $F=\langle f_1,\ldots,f_s|\gamma_1,\ldots,\gamma_r
angle$

Определение 1.9.1 (Амальгамированное произведение). Группа

$$G \underset{F}{\star} H = \left\langle \begin{array}{ccc} g_1 & \cdots & g_n \\ h_1 & \cdots & h_m \end{array} \middle| \begin{array}{ccc} \alpha_1 & \cdots & \alpha_k \\ \beta_1 & \cdots & \beta_l \\ I(f_1) = J(f_1) & \cdots & I(f_s) = J(f_s) \end{array} \right\rangle$$

Формулировка теоремы Зейферта — ван Кампена и доказательство для клеточных пространств

Пусть $X = U \cup V$, где U, V — открыты и линейно связны, $U \cap V$ линейно связно тоже.

Выберем $x_0 \in U \cap V$, все фундаментальные группы будем рассматривать с этой отмеченной точкой.

Имеются вложения $i:U\cap V\to U, j:U\cap V\to V.$ Положим $I=i_*:\pi_1(U\cap V)\to\pi_1(U)$ и $J=j_*:\pi_1(U\cap V)\to\pi_1(V).$

Теорема 1.9.1 (Зейферт — ван Кампен). Тогда фундаментальная группа X — это

$$\pi_1(X) = \pi_1(U) \underset{\pi_1(U \cap V)}{\star} \pi_1(V)$$

амальгамированное произведение $\pi_1(U)$ и $\pi_1(V)$ по отношению к гомоморфизмам I и J.

Примеры (Примеры применения).

• При склейке по точке никаких новых соотношений не добавляется. Пусть X,Y — локально односвязны.

$$\pi_1(X \vee Y) = \pi_1(X) \star \pi_1(Y)$$

где ∨ — склейка по точке, букет.

Для доказательства надо рассмотреть некоторую окрестность точки склейки.

- Например, $\pi_1(S^1 \vee S^1) = \mathcal{F}_2$.
- При склейке сферы из двух дисков по границе получится тривиальная группа.
- 23 с практики. Для односвязных A и B и линейно связного $A \cap B$ верно, что $A \cup B$ односвязно.
- 24 с практики. Для односвязных $A \cup B, A \cap B$ сами пространства A, B тоже односвязны.

Контример (Важность линейной связности $U \cap V$).

При склейке двух (односвязных) отрезков по концам получится окружность с нетривиальной фундаментальной группой.

Теорема 1.9.2 (О приклеивании двумерной клетки). Пусть Y — «хорошее», приклеим двумерную клетку D^2 по отображению $\alpha: \partial D^2 \to Y$. $X \coloneqq Y \sqcup_{\alpha} D^2$. Тогда $\pi_1(X) = \pi_1(Y)/[\alpha]^{\pi_1(Y)}$ (где $[\alpha]^{\pi_1(Y)}$ — нормальное замыкание).

Доказательство из теоремы Зейферта — ван Кампена. Пусть $y \in D^2$ — центр диска. Рассмотрим $U = X \setminus \{y\}, V = B_{\frac{1}{2}}(y)$. Тогда пересечение $U \cap V$ гомотопически эквивалентно (внутри $U \cup V$) петле α , $\pi_1(V) = \{e\}$.

$$\pi_1(X) = \pi_1(Y) \underset{[\alpha]^{\pi_1(Y)}}{\star} \{e\} = \pi_1(Y)/[\alpha]^{\pi_1(Y)}$$

Другое доказательство. Пусть $\alpha: S^1 \to Y, X = Y \sqcup_{\alpha} D^2, i: Y \to X, i_*: \pi_1(Y) \to \pi_1(X).$

Заметим, что i_* — эпиморфизм: используя лемму о свободной точке (появлялась при доказательстве того, что на D^n для $n\geqslant 2$ всякая петля гомотопически эквивалентна несюръективной) можно гомотопией любую петлю $\gamma:S^1\to Y$ привести к петле $\gamma:S^1\to X$. Для этого надо рассмотреть линейное «отталкивание» от данной свободной точки.

Теперь осталось проверить, что $\mathrm{Ker}(i_*) = [\alpha]^{\pi_1(Y)}$. Очевидно включение $[\alpha] \in \mathrm{Ker}(i_*)$, так как ядро нормально, то $[\alpha]^{\pi_1(Y)} \leqslant \mathrm{Ker}(i_*)$.

Дальше было что-то про накрытие $Z \to Y$ с группой $[\alpha]^{\pi_1(Y)}$ и петли, которые не размыкаются при поднятии, я не понял. \square

Лекция VI 9 октября 2023 г.

Проверим, что при приклеивании клетки размерности хотя бы 3 фундаментальная группа не меняется.

Доказательство. Рассмотрим склейку $X = D^n \sqcup_{\phi} Y$, и в ней путь $\alpha: [0,1] \to X$. Берём гомоморфизм вложения in : $Y \hookrightarrow X$, индуцируем in $*: \pi_1(Y) \to \pi_1(X)$, применяя лемму о свободной точке, находим петле в X гомотопную петлю в Y.

Проверим инъективность: α стягиваема в $X \Rightarrow \alpha$ стягиваема в Y. Хотим показать, что \exists гомотопия H, стягивающая α . Для этого найдём точку в образе D^n , не покрываемую H.

Представим $X=U\cup V$, где U — образ $B_{\frac{1}{2}}(0),\ V$ — весь X без образа $0.\ U\cap V=S^{n-1}\times (0,1).$

Разобьём $[0,1] \times [0,1]$ по лемме Лебега на маленькие квадратики $K_{i,j}$, так что $H(K_{i,j}) \subset U$ или $H(K_{i,j}) \subset V$.

Обозначим $L=\bigcup_{K_{i,j}\subset V}K_{i,j}$. Рассмотрим связные компоненты квадратиков из L, два квадратика будем считать связанными, если у них есть общая сторона. Тогда $L=\bigcup_i L_i$, где L_i — объединение квадратиков, между любыми двумя из которых есть путь, в котором соседние квадратики имеют общую сторону. $\mathrm{Im}(\partial L_i)\subset U\cap V$.

Можно представить ∂L_i , как образ $\alpha_i:S^1\to [0,1]\times [0,1], \alpha_i(S^1)=\partial L_i$ (это правда только в том случае, если L_i «без дырок внутри»; если есть дырки, то их можно заклеить квадратиками, присоединив их к L_i). Так как $S^{n-1}\times (0,1)$ односвязно, то петля $H\circ \alpha$ стягиваема в $U\cap V$. Тогда внутрь петли можно вклеить диск D^2 .

Таким образом, гомотопия не задевает образ центра шара, дальше ясно.

1.10 Фундаментальные группы основных поверхностей

 S_p — сфера с p ручками, S_q — сфера с q плёнками.

Склеим сферу с p ручками, как клеточное пространство.

$$\pi_1(S_p) = \langle a_1, \dots, a_p, b_1, \dots, b_p | a_1 b_1 a_1^{-1} b_1^{-1} \dots a_p b_p a_p^{-1} b_p^{-1} \rangle$$

Если посчитать абелианизацию $\pi_1(S_p)$, то есть фактор по коммутанту, то будет $\underbrace{\mathbb{Z}\oplus\ldots\mathbb{Z}}_{2p}$.

$$\pi_1(S_q) = \langle a_1, \dots, a_q | a_1^2 \cdots a_q^2 \rangle$$

Если посчитать абелианизацию $\pi_1(S_q)$, то есть фактор по коммутанту, то будет $\mathbb{Z}/2\mathbb{Z} \oplus \underbrace{\mathbb{Z} \oplus \ldots \mathbb{Z}}_{q-1}$.

Доказательство. В качестве базиса $\pi_1(S_q)/\sim$ можно взять $a_1\cdot\ldots\cdot a_q$ и a_2,\ldots,a_q .

Теорема 1.10.1. Для всякой конечнопредставленной группы $G \; \exists \; \mathsf{CW}$ -комплекс $X : \pi_1(X) = G.$

Доказательство. Пусть $G = \langle a_1, \dots, a_n | \alpha_1, \dots, \alpha_k \rangle$.

Приклеиваем клетки к букету окружностей.

Следствие 1.10.1. Сферы с ручками и плёнками неэквивалентны друг другу.

1.11 Построение универсального накрытия

Теорема 1.11.1. Для «хороших» пространств существует универсальное накрытие $p:\widetilde{X} \to X$.

Доказательство. Пусть X — «хорошее», то есть линейно связное, локально линейно связное, полулокально односвязное 1.8.6.

- Построим \widetilde{X} , как множество. Выберем $x_0 \in X$, построим \widetilde{X} . Пусть $PX = \{\alpha: [0,1] \to X | \alpha(0) = x_0\}$. $\widetilde{X} = PX / \sim -$ пути, профакторизованные по гомотопности, связанной на концах.
- Определим $p: \widetilde{X} \to X, p([\alpha]] = \alpha(1).$
- Введём на \widetilde{X} топологию. Назовём $U \subset X$ хорошим, если оно открыто, линейно связно, любая петля в U стягиваема в X.

Введём базу топологии для \widetilde{X} . Пусть $\alpha \in PX, \alpha(1) \in U$; обозначим через U_{α} класс петель вида $[\alpha s]$, где s — путь в U с началом в $\alpha(1)$.

Если $\beta \in U_{\alpha}$, то $U_{\beta} = U_{\alpha}$. Надо проверить включение в обе стороны. $\gamma \in U_{\alpha}, \gamma = \alpha s_1$, откуда $\gamma = \alpha s s^{-1} s_1$.

Проверим, что $\{U_{\alpha}|\alpha\in PX\}$ образуют базу топологии, то есть $U_{\alpha}\cap V_{\beta}=\bigcup W_{\gamma}.$ $\alpha(1)\in U,\beta(1)\in V.$ Пусть $[\gamma]\in U_{\alpha}\cap V_{\beta}$, в частности, $\gamma(1)\in U\cap V.$ Надо проверить, что γ содержится в $U\cap V$ вместе с некой окрестностью.

В качестве W выберем хорошую окрестность $\gamma(1)$, содердащуюся в $U \cap V$ (достаточно выбрать линейно связную компоненту $U \cap V$). Достаточно проверить, что $W_{\gamma} \subset U_{\alpha}, V_{\beta}$.

• Докажем, что p — накрытие. Пусть $U \subset X$ — хорошее. $p^{-1}(U) = \bigsqcup U_{\alpha}$. В самом деле, если $U_{\alpha} \cap U_{\beta}$ непусто, то $U_{\alpha} = U_{\beta}$.

 $p^{-1}(U)$ — классы путей с концами в U. p непрерывно и открыто (проеряем на базе).

Проверим, что $p\Big|_{U_{lpha}}$ — биекция. То, что это сюръекция — очевидно, почему p — инъекция?

Рассмотрим $[\gamma_1], [\gamma_2] \in U_{\alpha}$, предположим, что $p([\gamma_1]) = p([\gamma_2])$. Тогда $\gamma_1(1) = \gamma_2(1)$, и каждый из них представим в виде $alpha \cdot s$. Тогда пути s_1 и s_2 гомотопны, потому что окрестность хорошая, и $s_1s_2^{-1}$ — петля.

• Докажем, что \widetilde{X} односвязно (и линейно связно). Посмотрим на поднятие путей из X в \widetilde{X} . Выберем $\widetilde{x}_0 = [\mathrm{const}]_{x_0} = \alpha_0$.

$$lpha\in PX$$
 поднимем в $\widetilde{lpha}:[0,1] o\widetilde{X}.$ $\widetilde{lpha}(0)=lpha_0.$ $\widetilde{lpha}(t)\simlpha\Big|_{[0,t]}.$

Таким образом, \widetilde{X} линейно связно. Проверим односвязность.

 $\widetilde{lpha}:[0,1] o X$ — петля. Рассмотрим проекцию $p\circ\widetilde{lpha}=lpha$

Докажем односвязность. $\alpha_t = \alpha(tx), \ x \in [0,1].$

Если поднятие — петля: $[\alpha(t)]=[\mathrm{const}_{x_0}]=\widetilde{\alpha}(0)=\widetilde{\alpha}(1)$. Таким образом, α — стягиваемая \Rightarrow $\widetilde{\alpha}$ стягиваемая.

Кстати, мы уже доказали, что если накрытие существует, то оно единственно.

Глава 2

Дифференциальная геометрия

Лекция VII 16 октября 2023 г.

2.1 Дифференциальная геометрия кривых

Определение 2.1.1 (Гладкая функция f). Бесконечно дифференцируемая функция $f \in C^{\infty}(\mathbb{R}^n \to \mathbb{R}^m)$. Пусть (X,d) — метрическое пространство.

Определение 2.1.2 (Путь (кривая)). Непрерывное $\gamma:I\to X$, где I — выпуклое подмножество прямой. Чаще всего рассматривают I=[a,b].

Определение 2.1.3 (Гладкая кривая). Гладкое отображение $I \to \mathbb{R}^n$ (все координатные отображения гладкие).

Предостережение. Необязательно гладкое отображение выглядит гладким. График $|y|=x^{3/2}$ представим, как гладкая кривая $\gamma(t)=(t^2,t^3)$.

Определение 2.1.4 (Регулярная кривая). Гладкая кривая γ , такая, что $\forall t: |\gamma'(t)| \neq 0.$

Пусть γ_1, γ — две кривые.

Определение 2.1.5 (γ_1 — перепараметризация γ). \exists строго возрастающее ϕ : $\gamma_1 = \gamma \circ \phi$.

Для гладких кривых вводят гладкую перепараметризацию $\phi \in C^{\infty}$, $\phi' > 0$.

Определение 2.1.6 (Кривые γ_1, γ_2 эквивалентны). Существует перепараметризация ϕ . Пишут $\gamma_1 \sim \gamma_2$

Факт 2.1.1. Эквивалентность кривых — отношение эквивалентности. Аналогичный факт верен для эквивалентности гладких перепараметрищаций гладких кривых.

Определение 2.1.7. Разбиение отрезка [a, b]

Разбиение $a=t_0\leqslant \cdots \leqslant t_k=b$.

Определение 2.1.8. Длина кривой $\gamma:[a,b] o X$

$$L(\gamma) \stackrel{def}{=} \sup_{a=t_0 \le \dots \le t_k = b} \sum_{i=0}^{k-1} d(\gamma(t_i), \gamma(t_{i+1}))$$

Замечание. Согласно неравенству треугольника, при измельчении разбиения $\sum\limits_{i=0}^{k-1} d(\gamma(t_i), \gamma(t_{i+1}))$ возрастает.

Определение 2.1.9 (Кривая спрямляемая). $L(\gamma) < \infty$

Пример. Неспрямляемую кривую придумать несложно. Например, соединим ломаной соседние точки в последовательности $(\alpha_n, (-1)^n \beta_n)$, где α_n, β_n — убывающие, стремящиеся к нулю, последовательности, причём $\sum\limits_{n\geqslant 0} \beta_n = \infty$.

Предложение 2.1.1. $\gamma_1 \sim \gamma_2 \Rightarrow L(\gamma_1) = L(\gamma_2)$.

Утверждение 2.1.1. Если кривая γ гладкая, то $L(\gamma) = \int\limits_a^b |\gamma'(t)| \,\mathrm{d}t.$

Доказательство. Докажем неравенство в обе стороны.

• $\int_{a}^{b} |\gamma'(t)| dt \leqslant L(\gamma)$.

 γ' равномерно непрерывна. Таким образом, $\forall \varepsilon>0:\exists \delta>0:|t_1-t_2|\leqslant \delta\Rightarrow |\gamma'(t_1)-\gamma'(t_2)|<\varepsilon.$ Разобьём отрезок на $\left\lceil \frac{b-a}{\delta} \right\rceil$ частей равной длины (каждая часть имеет длины не больше δ) точками $a=t_0\leqslant \cdots\leqslant t_k=b.$

Запишем $\gamma(t_{i+1})-\gamma(t_i)=\int\limits_{t_i}^{t_{i+1}}\gamma'(t)\,\mathrm{d}t=\int\limits_{t_i}^{t_{i+1}}\gamma'(t_i)+(\gamma'(t)-\gamma'(t_i))\,\mathrm{d}t.$ Отсюда получаем

$$\int_{t_i}^{t_{i+1}} |\gamma'(t_i)| dt = \left| \int_{t_i}^{t_{i+1}} \gamma'(t_i) dt \right| \le \left| \int_{t_i}^{t_{i+1}} \gamma(t) dt + \varepsilon |t_{i+1} - t_i| \right| \le |\gamma(t_{i+1}) - \gamma(t_i)| + \varepsilon |t_{i+1} - t_i|$$

Используя $|\gamma'(t)|\leqslant |\gamma'(t_i)|+arepsilon$, получаем $\int\limits_a^b |\gamma'(t)|\,\mathrm{d}t+2arepsilon|b-a|\leqslant L(\gamma)$. Устремим arepsilon o 0.

• $L(\gamma) \leqslant \int_{a}^{b} |\gamma'(t)| dt$.

Рассмотрим разбиение $a=t_0\leqslant \cdots\leqslant t_k=b$. Используем неравенство

$$|\gamma(t_{i+1}) - \gamma(t_i)| = \left| \int_{t_i}^{t_{i+1}} \gamma'(t) dt \right| \leqslant \int_{t_i}^{t_{i+1}} |\gamma'(t)| dt$$

Следствие 2.1.1. $\int\limits_a^b |\gamma'(t)| \,\mathrm{d}t$ не зависит от перепараметризации.

Теорема 2.1.1. Отрезки в \mathbb{R}^n кратчайшие. Иными словами, $\forall r, s \in \mathbb{R}^n$ отрезок

$$\alpha: [0,1] \to \mathbb{R}^n$$

 $t \mapsto r + t(s-r)$

имеет наименьшую длину среди всех кривых (необязательно гладких), соединяющих r и s.

Доказательство. Рассмотрим путь γ , соединяющий r и s. Рассмотрим разбиение $a=t_0\leqslant t_1=b$. По определению $L(\gamma)\geqslant |\gamma(b)-\gamma(a)|$.

Теорема 2.1.2. Кратчайшие пути на сфере S^2 — дуги больших кругов.

 \mathcal{A} оказательство. Покажем, что $\forall \gamma: [a,b] \to S^2: L(\gamma) \geqslant \angle(\gamma(a),\gamma(b))$. Выберем $\varepsilon>0$, из равномерной непрерывности γ найдётся $\delta>0: |t_1-t_2|\leqslant \delta \Rightarrow |\gamma(t_1)-\gamma(t_2)|< \varepsilon$.

Рассмотрим разбиение $a=t_0\leqslant \cdots \leqslant t_k=b$, такое, что $|t_{i+1}-t_i|\leqslant \varepsilon$.

$$L(\gamma) \geqslant \sum_{i=0}^{k-1} |\gamma(t_i) - \gamma(t_{i+1})| \geqslant \sum_{i=0}^{k-1} \angle(\gamma(t_i), \gamma(t_{i+1})) \cdot \frac{\varepsilon}{2\arcsin\left(\varepsilon/2\right)} \geqslant \angle(\gamma(a), \gamma(b)) \cdot \frac{\varepsilon}{2\arcsin\left(\varepsilon/2\right)}$$

Устремляем $\varepsilon \to 0$.

2.1.1 Параметризация кривой длиной дуги

Пусть $\gamma:[a,b]\to X$, где (X,d) — метрическое пространство.

Определение 2.1.10 (Натуральная параметризация). $L\left(\gamma\Big|_{[t_1,t_2]}\right) = t_1 - t_2$

Утверждение 2.1.2. Гладкая кривая параметризована натурально $\iff |\gamma'| \equiv 1.$

Доказательство.

- \Leftarrow . Если $\exists t_0: \gamma'(t_0) = 1 + \delta$, то $\exists \varepsilon > 0: |t t_0| < \varepsilon \Rightarrow |\gamma'(t)| |\gamma'(t_0)| \leqslant \frac{\delta}{2}$. Тогда так как длина интеграл модуля производной, то в ε -окрестности t_0 не выполняется определение натуральной параметризации.
- ⇒. Длина интеграл модуля производной.

Теорема 2.1.3. Для любой регулярной кривой существует натуральная параметризация. Эта параметризация единственна с точностью до сдвига на константу: если $\gamma:[a,b] \to X$ — натуральная параметризация, то

$$\widetilde{\gamma}: [a+c,b+c] \to X$$

$$t+c \mapsto \gamma(t)$$

тоже.

Доказательство. Пусть $\gamma:[a,b]\to\mathbb{R}^n$.

Эта параметризация устроена так: $s:[a,b] \to [0,L(\gamma)]$ $s(t)=L\left(\gamma\Big|_{[a,t]}\right)=\int\limits_a^t|\gamma'(t)|\,\mathrm{d}t.$

 $s'(t) = |\gamma'(t)| > 0$, поэтому s — валидная перепараметризация.

Положим $\gamma_1 = \gamma \circ s^{-1}$.

$$\gamma_1' = (\gamma \circ (s^{-1}))' = \gamma' \cdot \frac{1}{s'} \quad \Rightarrow \quad |\gamma_1'| = \frac{|\gamma'|}{|\gamma'|} = 1$$

Если же есть две перепараметризации γ_1 , γ_2 , то $|\gamma_1'| = |\gamma_2'| \cdot |\phi'|$, откуда $|\phi'| = 1$, то есть используя $\phi' > 0$ (получаем, что ϕ — сдвиг на константу)

Утверждение 2.1.3. Пусть $A:I\to\mathbb{R}^n, B:I\to\mathbb{R}^m$; пусть $*:\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^k$ — билинейно. Тогда у отображения $A*B:I\to\mathbb{R}^k$ производная считается по правилу

$$(A*B)' = A'*B + A*B'$$

Доказательство.

Примеры.

• В качестве * может выступать скалярное произведение, векторное произведение, умножение вектора на число (и вообще умножение матриц)...

2.2 Кривизна плоской кривой, базис Френе

Далее везде считаем, что кривая $\gamma:[a,b]\to\mathbb{R}^2$ параметризована натурально, то есть $|\gamma'|=1$. Будем обозначать $v=\overrightarrow{v}=\gamma'$ — вектор скорости.

Определение 2.2.1 (Базис Френе). Пара (v,n), такая, что $v\perp n$, причём (v,n) — правый ортонормированный базис. Данный вектор n — нормаль κ плоской κ ривой.

Так как $\langle v,v\rangle=1$, то $\langle v',v\rangle=0$, откуда $v'\perp v$ и $\exists!\kappa(t)\in\mathbb{R}:v'=\kappa n.$

Определение 2.2.2 (Кривизна плоской кривой). Данное число κ .

2.2.1 Формулы Френе

- По определению кривизны $v' = \kappa n$
- $\langle n, v \rangle = 0$, откуда $\langle n', v \rangle + \langle n, v' \rangle = 0$, откуда $n' = -\kappa v$.

Лекция VIII

23 октября 2023 г.

Утверждение 2.2.1. Длина полунепрерывна снизу. Пусть γ_n — последовательность кривых: $\gamma_n:[0,1]\to\mathbb{R}^2$, таких, что $\gamma_n(t)\underset{n\to\infty}{\longrightarrow}\gamma_\infty(t)$.

Тогда $l(\gamma_{\infty}) \leqslant \underline{\lim}_{n \to \infty} l(\gamma_n)$.

Доказательство. Рассмотрим $\varepsilon>0$. Для него найдётся последовательность точек $0=t_0\leqslant\cdots\leqslant t_k=1:\sum_{i=0}^{k-1}|\gamma_\infty(t_{i+1})-\gamma_\infty(t_i)|\geqslant l(\gamma_\infty)-\varepsilon.$

Выберем настолько большой номер $m: \forall i: |\gamma_m(t_i) - \gamma_\infty(t_i)| < \frac{\varepsilon}{m}.$ Тогда $l(\gamma_m) \geqslant l(\gamma_\infty) - 3\varepsilon.$

Устремляя $\varepsilon \to 0$, получаем искомое утверждение.

3амечание. κ — кривизна двумерной кривой (кривизна со знаком).

Если же работать в более, чем двумерном пространстве, то у кривизны не будет знака. Там

$$v \coloneqq \gamma' \quad N = \frac{\gamma''}{|\gamma''|}$$

Так как $\langle \gamma', \gamma' \rangle = 1$, то $\langle \gamma'', \gamma' \rangle = 0$.

Кривизна без знака $k := |\gamma''|$.

Пусть $\gamma:I\to\mathbb{R}^n$ — регулярная кривая, $M\subset\mathbb{R}^n$ — множество.

Определение 2.2.3 (γ имеет порядок касания не меньше m со множеством M в точке t_0). $d(\gamma(t), M) = o((t - t_0)^k)$.

Если две регулярные кривые можно параметризовать так, что $\gamma_1^{(i)} = \gamma_2^{(i)}$ для $i \leqslant m$, то порядок касания не меньше m.

Определение 2.2.4 (Касательная прямая к γ в точке t_0). Кривая, проходящая через $\gamma(t_0)$ с направляющим вектором $\gamma'(t_0)$.

Предложение 2.2.1. Порядок касания касательной и кривой не меньше 1.

Факт 2.2.1. Кривизна окружности радиуса R — это $\pm \frac{1}{R}$.

Пусть γ — регулярная кривая $\gamma(t_0) = \gamma_0$.

Определение 2.2.5 (Соприкасающаяся окружность к γ в точке t_0). Окружность радиуса $\left|\frac{1}{\kappa}\right|$ с центром $\gamma_0 + \frac{n}{\kappa}$. (или минус?)

Разложив в ряд Тейлора, можно показать, что порядок касания соприкасающейся окружности ≥ 2.

Теорема 2.2.1. Пусть γ — регулярная кривая. Тогда кривизна считается по формуле $\kappa(t_0) = \frac{[\gamma'(t_0), \gamma''(t_0)]}{[\gamma'(t_0)]^3}$. Здесь [x,y] — смешанное или внешнее произведение x и y

Доказательство. Перепараметризуем γ натуральной параметризацией $\gamma=\overline{\gamma}(\phi(t))$. Тогда $|\gamma'|=\phi',$ $\gamma'=\phi'v$ и

$$\gamma'' = \phi'' \cdot \overline{\gamma}' + (\phi')^2 \cdot \overline{\gamma}'' = \phi'' \cdot \overline{\gamma}' + |\gamma'|^2 \cdot \kappa n$$

Отсюда получаем $[\gamma',\gamma'']=[|\gamma'|^2,|\gamma'|^2\kappa n]=|\gamma'|^3\cdot\kappa$

2.2.2 Поворот кривой

Всякое отображение $f:[a,b]\to S^1$ поднимается до отображения $\alpha:[a,b]\to\mathbb{R}$, такого, что $p\circ\alpha=f$.

Если f гладкое, то α гладкое — выражается где-то как арксинус, где-то — как арккосинус.

В дальнейшем мы часто будем поднимать вектор скорости γ' , если γ — кривая при $|\gamma'|=1...$

Определение 2.2.6 (Поворот плоской кривой). $\int_{a}^{b} \kappa(t) dt$, где $\kappa(t)$ — кривизна в натуральной параметризации.

Теорема 2.2.2. Пусть γ — натуральная параметризация, v — вектор скорости. Пусть $\alpha(t)$ — непрерывный аргумент (полученный из поднятия), такой, что $v(t) = (\cos(\alpha(t)), \sin(\alpha(t)))$. Тогда $\alpha' = k$ и $\int\limits_a^b \kappa(t) \, \mathrm{d}t = \alpha(b) - \alpha(a)$.

Доказательство. $\kappa n = v' = (-\sin(\alpha), \cos(\alpha)) \cdot \alpha'$. Можно проверить, что $(-\sin(\alpha), \cos(\alpha)) \perp (\sin(\alpha), \cos(\alpha))$, причём векторы образуют правый базис.

Теорема 2.2.3. Для любой гладкой функции $\widetilde{\kappa}:I\to\mathbb{R}$: $\exists !\gamma:I\to\mathbb{R}^2$ — натурально параметризованная кривая, такая, что $\kappa_{\gamma}=\widetilde{\kappa}$. Единственность предполагается с точностью до движения, сохраняющего ориентацию.

Доказательство. Имеет место даже более точное утверждение: при заданном $\tilde{\kappa}$: $\forall p0, v_0$: \exists ! натурально параметризованная кривая $\gamma : \gamma(a) = p_0, \gamma'(a) = v_0$.

Для любой пары векторов одной длины существует единственное движение, сохраняющее ориентацию, переводящее точку в точку, вектор в вектор.

Пусть γ — натурально параметризована, $v=(\cos\alpha,\sin\alpha)$. $\dot{\alpha}=\widetilde{\kappa}$, причём α определяется единственным образом с точностью до константы 2π .

$$\alpha = \alpha_0 + \int_a^b \widetilde{\kappa}(\tau) \, \mathrm{d}\tau$$

В качестве α_0 можно выбрать угол, который составляет v_0 с осью абсцисс.

$$\gamma(t)=\int\limits_{0}^{t}v(au)\,\mathrm{d} au+c_{0}$$
, где $c_{0}=p_{0},v(au)=(\coslpha,\sinlpha).$

Это построение одновременно показывает существование и единственность искомой кривой γ . \square

2.2.3 Замкнутые кривые

Пусть $\gamma: [a,b] \to \mathbb{R}^2$.

Определение 2.2.7 (Кривая γ замкнута). Функцию γ можно продолжить до периодической с периодом b-a. Иными словами, $\gamma^{(i)}(a)=\gamma^{(i)}(b)$ для $i\in\mathbb{N}_0$.

Определение 2.2.8 (Простая кривая γ). Кривая без самопересечений.

Поворот замкнутой кривой — $2\pi n, n \in \mathbb{Z}$.

Теорема 2.2.4. Поворот простой замкнутой кривой $-\pm 2\pi$.

Доказательство. Пусть $\gamma:[0,L]\to\mathbb{R}^2$ параметризована натурально. Выберем базис так, что $\gamma(0)=(0,0)$. Сдвинем аргумент так, что $\gamma(t)=(x,y)$, причём $y\geqslant 0$ для всех t.

Из гладкости сразу получается $\gamma'(0) = (1,0)$.

Пусть $T=\left\{(t,\tau)\subset\mathbb{R}^2\middle|0\leqslant t\leqslant\tau\leqslant L\right\}$. Устроим $\mathcal{F}: \begin{array}{ccc} T&\to&S^1\\ (t,\tau)&\mapsto&\frac{\gamma(\tau)-\gamma(t)}{|\gamma(\tau)-\gamma(t)|} \end{array}$. Если же $t=\tau$, то дооопределим \mathcal{F} по непрерывности: $\mathcal{F}(t,t)=\gamma'(t)$.

T односвязно, поэтому существует поднятие — непрерывный аргумент A: $\mathcal{F}(t,\tau) = \sin(A(t,\tau)), \cos(A(t,\tau)).$

$$T \xrightarrow{A} S^{1}$$

$$T \xrightarrow{\mathcal{F}} S^{1}$$

Так как A(t,t) — непрерывный аргумент для $\gamma'(t)=\mathcal{F}(t,t)$, то поворот кривой γ — разность A(L,L)-A(0,0).

$$A(L,L) - A(0,0) = (A(L,L) - A(0,L)) + (A(0,L) - A(0,0))$$

Если посмотреть на $A\Big|_{\{0\} \times [0,L]}$, то окажется, что это векторы с фиксированным началом, которые всегд смотрят в верхнюю полуплоскость. Из существования непрерывного аргумента $A(0,t) \in [0,\pi]$ и $A(0,L) - A(0,0) = \pi - 0 = \pi$

При подсчёте A(L,L)-A(0,L) будет то же, только аргумент меняется в пределах $[-\pi,0]$. Разность опять выйдет π , итого $A(L,L)-A(0,0)=2\pi$.

2.2.4 Выпуклые кривые на плоскости

Пусть γ — замкнутая гладкая регулярная кривая.

Дадим два определения, и покажем их равносильность.

Определение 2.2.9 (Выпуклая кривая, 1). Простая кривая, обходящая границу выпуклого компакта $K: \operatorname{Im}(\gamma) = \partial(K)$.

Определение 2.2.10 (Выпуклая кривая, 2). Кривая, лежащая по одну сторону от любой своей касательной.

Факт 2.2.2. Эти определения равносильны.

Доказательство.

- \Rightarrow . Касательная к γ в точке t опорная прямая для компакта. Значит, она лежит только по то сторону от своей касательной, в которую лежит компакт.
- \Leftarrow . Рассмотрим $K := \operatorname{conv}(\operatorname{Im}(\gamma))$. $\nexists t_0 : \gamma(t_0)$ внутренняя точка K.

Так как K гомеоморфно диску D^2 , то $\partial K\sim S^1$, ${\rm Im}(\gamma)\sim S^1$. При этом $\gamma\subset\partial K$ — простая кривая без самопересечений.

Несложно показать, что инъективное непрерывное отображение $S^1 o S^1$ — гомеоморфизм.

Теорема 2.2.5. Следующие условия равносильны:

- 1. γ выпукла
- 2. K_{γ} не меняет знак (всегда ≥ 0 или всегда ≤ 0).
- 3. Для любой прямой $L: \exists$ ровно две касательные к γ , параллельные L.

Доказательство.

 $1\Rightarrow 2$ Выберем какую-то ориентацию, зафиксируем t_0 . Покажем, что если γ лежит слева от касательной в t_0 , то кривизна $\geqslant 0$, если γ лежит справа от касательной в t_0 , то кривизна $\leqslant 0$.

Пусть $\delta:[a,b] \to \{\pm 1\}$ — определяет, лежит кривая слева или справа от прямой. Покажем, что δ непрерывно, эквивалентно, локально постоянна.

Выберем точку $q:\left\langle \overrightarrow{\gamma(t_0)q},n\right\rangle>0.$ Тогда в некоторой окрестности $t_0:\left\langle \overrightarrow{\gamma(t)q},n\right\rangle>0$ тоже.

Лекция IX 30 октября 2023 г.

//todo

Лекция X 6 ноября 2023 г.

2.3 Базис Френе и кривизны в \mathbb{R}^n

Пусть $\gamma:I\to\mathbb{R}^n$ — невырожденная кривая в $\mathbb{R}^n:\gamma',\ldots,\gamma^{(n-1)}$ линейно независимы.

Теорема 2.3.1. Пусть γ — натурально параметризованная невырожденная кривая в \mathbb{R}^n . Тогда $\exists v_1,\dots,v_n:I\to\mathbb{R}^n$ — базис Френе, зависящий от времени, и $\exists !$ гладкие функции $k_1,\dots,k_{n-1}:I\to\mathbb{R}^n$, такие, что $k_1,\dots,k_{n-2}>0,k_{n-1}$ имеет любой знак. При этом выполнены формулы Френе 1. $\gamma'(t)=v_1(t)$

- $v_1'=k_1v_2$ 2. $v_i'=-k_{i-1}v_{i-1}+k_iv_{i+1}$. Это также можно записать в виде v'=Kv, где K матрица $v_n'=-k_{n-1}v_{n-1}$ из кривизн.
- 3. Базис v_1, \ldots, v_n правый ортонормированный.

Доказательство. $|\gamma'|=1$. Положим $v_1\coloneqq\gamma'$.

Рассматриваем набор производных $\gamma', \dots, \gamma^{(n-1)}$, по ним строится v_1, \dots, v_{n-1} при помощи ортогонализации Грама — Шмидта. Алгоритм возвращает ортонормированный базис какой-то гиперплоскости коразмерности 1, он единственным образом дополняется до ортонормированного правого базиса \mathbb{R}^n .

Дальше по данному базису раскладываются вектора производных. Проверим, что соответствующие коэффициенты получаются нужного знака, и много кто — нули: проверим соответствие (2).

$$v_i' = c_{i,1}v_1 + \dots + c_{i,n}v_n$$

Так как $\langle v_i, v_i \rangle = 1$, то $\langle v_i', v_i \rangle = 0$. Так как $\langle v_i, v_j \rangle = 0$, то $\langle v_i', v_j \rangle = -\langle v_i, v_j' \rangle$. Таким образом, матрица $(c_{i,j})$ кососимметричная. $v_i \in \operatorname{Lin}(\gamma^{(1)}, \dots, \gamma^{(i)})$, откуда $v_i' \in \operatorname{Lin}(\gamma^{(1)}, \dots, \gamma^{(i+1)}) = \operatorname{Lin}(v_1, \dots, v_{i+1})$. Согласно кососимметричности видим, что почти нужные коэффииценты равны нулю.

Проверить положительность кривизн k_1, \dots, k_{n-2} , на лекции сделать не вышло.

Проверим однозначность определения базиса Френе. Пойдём индукцией: пусть v_1, \ldots, v_i однозначно определены. Почему v_{i+1} однозначно определён? Из формул $v_{i+1} \perp \operatorname{Lin}(v_1, \ldots, v_i), \ v_i' \in \operatorname{Lin}(v_1, \ldots, v_{i+1})$. Производная v_i' определена однозначно, значит, $\operatorname{Lin}(v_1, \ldots, v_{i+1})$. определена, как $\operatorname{Lin}(v_1, \ldots, v_i, v_i')$. Так как $k_i = \langle v_i', v_{i+1} \rangle > 0$, то направление v_{i+1} определено однозначно. v_n же определяется однозначно из того, что базис — правый.

Теорема 2.3.2. Пусть даны гладкие функции $k_1,\ldots,k_{n-1}:I\to\mathbb{R}$, такие, что $k_1,\ldots,k_{n-2}\geqslant 0$. Тогда существует (и единственна с точностью до движения) кривая с такими кривизнами.

Доказательство. Отметим произвольную точку, произвольно выберем правый ортонормированный базис $v_0=v(0),v_1,\ldots,v_{n-1}$. В матричной записи v'=Kv. Это линейное дифференциальное уравнение, имеет единственное решение при начальных данных v_0,\ldots,v_{n-1} .

Таким образом ищется функция v(t), тогда $\gamma = p_0 + \int\limits_{t_0}^t v(\tau) \,\mathrm{d} \tau.$

Заметим, что $(v^tv)'=(v')^tv+v^tv'=v^tK^tv+v^tKv=v^t\underbrace{(K^t+K)}_0v=0$, откуда базис v — правый ортонормированный в любой момент времени, а не только в нулевой.

2.4 2-мерные поверхности в \mathbb{R}^3

Далее всё происходит в \mathbb{R}^2

Определение 2.4.1 (Топологическая поверхность Σ). Подмножество $\Sigma \subset \mathbb{R}^3$, которое может быть получено, как образ топологического вложения связного двумерного многообразия $f: M \hookrightarrow \mathbb{R}^3$.

Топологичность вложения означает, что топология, индуцируемая с помощью f топологией \mathbb{R}^3 совпадает с собственной топологией M.

Определение 2.4.2 (Гладкая поверхность $\Sigma \subset \mathbb{R}^3$). Поверхность Σ , которая локально может быть представлена, как график гладкой функции: $\forall p \in M$: можно ввести координатные оси x,y,z с нулём в p, так, что $\exists U \subset \mathbb{R}^3: \exists f: (\Omega \subset \mathbb{R}^2_{x,y}) \underset{\text{гладко}}{\to} \mathbb{R}: \Sigma \cap U = \Gamma_f$ (здесь Γ_f — график f в $\mathbb{R}^3_{x,y,z}$).

Определение 2.4.3 (Регулярное отображение r). Дифференциал dr невырожден.

Невырожденность гладкого $r:\mathbb{R}^2\to\mathbb{R}^3$ при введении базиса (u,v) в \mathbb{R}^2 можно переформулировать так: $\frac{\partial r}{\partial u} imes \frac{\partial r}{\partial v} \neq 0$.

2.4.1 Локальная параметризация

Теорема 2.4.1. Пусть $\Omega \subset \mathbb{R}^2$, пусть $r: \Omega \to \mathbb{R}^3$ — регулярное (всегда подразумевается, что ещё и гладкое). Если $r: \Omega \to \mathbb{R}^3$ — вложение, то $r(\Omega) =: \Sigma$ — гладкая поверхность.

Доказательство. Рассмотрим z покоординатно:

$$(u,v) \stackrel{r}{\mapsto} \begin{pmatrix} r_1(u,v) = x(u,v) \\ r_2(u,v) = y(u,v) \\ r_3(u,v) = z(u,v) \end{pmatrix}$$

Условие невырожденности дифференциала: $\begin{vmatrix} x_u & y_u \\ x_v & y_v \end{vmatrix} \neq 0$, здесь x_u — частная производная (?).

Пусть $p=r(x_0)$. Из невырожденности дифференциала $\exists W \subset \mathrm{Lin}(x,y), V \subset \mathrm{Lin}(u,v)$ и обратное отображение $s:W \to V$, такое, что $(r_1,r_2) \circ s=\mathrm{id}$. Тогда $(r\circ s)(x,y)=(x,y,(r_3\circ s)(x,y))$. Обозначим $f\coloneqq r_3\circ s$; заметим, что r(V) открыто в Σ , получаем, что r(V) переписывается в виде $\Sigma\cap U$ для некоторого открытого $U\subset\mathbb{R}^3$.

Определение 2.4.4 (Регулярная параметризация поверхности Σ). Отображение r, как в (2.4.1)

Замечание. Далеко не всякая поверхность в \mathbb{R}^3 гомеоморфна плоскости, например, у сферы $S^2 \subset \mathbb{R}^3$ нет регулярной параметризации.

Тем не менее, существует локальная регулярная параметризация, которая получается из тех же соображений, что в теореме.

Пусть r — регулярная параметризация, как в теореме. Тогда $\exists r^{-1} =: \phi: \Sigma \to \Omega$, оно называется κ артой.

Определение 2.4.5 (Две регулярные параметризации $r_1:\Omega_1\to \Sigma$ и $r_2:\Omega_2\to \Sigma$). \exists гладкое регулярное $s:\Omega_1\to \Omega_2$, такое, что s^{-1} — тоже гладкое регулярное, такое, что $r_1=r_2\circ s$

Упражнение 2.4.1. Для гладкой поверхности локально любые две параметризации эквивалентны.

Пусть $r:\Omega\to\Sigma$ — регулярная параметризация.

Пусть $l(t)=(t, {\rm const})$ — путь, обозначим данную константу v_0 . Можно ввести координатные линии $r(t,v_0)$ и $r(u_0,t)$.

Векторы скорости координатных линий $r_u(t, v_0)$ и $r_v(u_0, t)$.

Пусть $\widetilde{\gamma} = r \circ \gamma$. γ регулярна $\iff \widetilde{\gamma}$ регулярна. Обратно можно получить $\gamma = \phi \circ \widetilde{\gamma}$.

Утверждение 2.4.1. Писть $F: \mathbb{R}^m \to \mathbb{R}^n$ — гладкое отображение.

Чтобы посчитать производную по направлению v, можно взять произвольную гладкую кривую γ , такую, что $\gamma(0) = x, \gamma'(0) = v$, тогда $(f \circ \gamma)$ — искомая.

Определение 2.4.6 (Касательное пространство к Σ в точке p = r(x)). $T_p(\Sigma) = \mathrm{d}_x r(\mathbb{R}^2)$.

Касательное пространство можно рассматривать, как линейное пространство, или аффинное пространство в \mathbb{R}^3 .

Утверждение 2.4.2. Касательное пространство не зависит от параметризации.

Доказательство. Можно определить эквивалентным образом: касательное пространство $T_p(\Sigma) = \{$ векторы скорости гладких кривых, проходящих через точку $p\}$

Касательная плоскость — линейное пространство, натянутое на векторы $\frac{\partial r}{\partial u}$ И $\frac{\partial r}{\partial v}$ — стандартный базис в касательном пространстве. $\frac{\partial r}{\partial u}=r_u=\mathrm{d}r(1,0), \frac{\partial r}{\partial v}=r_v=\mathrm{d}r(0,1).$

Лекция XI

13 ноября 2023 г.

2.4.2 Гладкие функции на поверхности

Определим гладкую функцию $f:\Sigma\to\mathbb{R}$ из поверхности в прямую.

Определение 2.4.7 (Функция f гладкая). $\forall p \in \Sigma : \exists U \ni p$ — карта, такая, что f — гладкая в карте U, то есть $\exists r : \Omega \to U : f \circ r$ — гладкая.

Утверждение 2.4.3. Условие гладкости $f: \Sigma \to \mathbb{R}$ равносильно следующим:

- 1. f гладкая в любой карте.
- $2. \ \exists F: (\subset \mathbb{R}^3) \to \mathbb{R} продолжение f$, гладкое в окрестности любой точки.

Доказательство. (a) Отображение перехода между картами s — регулярно, и s^{-1} — тоже регулярно.

 $\it 3ameчahue.$ Из теоремы об обратном отображении $\it s-$ регулярная биекция.

(b) Если поверхность локально задаётся графиком $\Sigma = (x,y,h(x,y))$, то можно определить F(x,y,z) = f(x,y,h(x,y)).

2.4.3 Производная по направлению

Пусть $p \in \Sigma, X \in T_p(X)$.

Пусть $f:\Sigma \to \mathbb{R}$ — гладкая функция, пусть $\widetilde{\gamma}:(-e^{\gamma}+\varepsilon)\to \Sigma$ — кривая на поверхности. Пусть $p\coloneqq \widetilde{\gamma}(0), \widetilde{\gamma}'(0)=X.$ Тогда

- 1. $(f \circ \widetilde{\gamma})$ гладкая.
- 2. Для всякой параметризации $r:\Omega\to\mathbb{R}^3$: $(f\circ\widetilde{\gamma})'(0)$ не зависит от $\widetilde{\gamma}$.
- 3. Для всякой параметризации $r:\Omega\to\mathbb{R}^3$: $(f\circ\widetilde{\gamma})'(0)=X_1\frac{\partial f\circ r}{\partial u}+X_2\frac{\partial f\circ r}{\partial v}$.

Доказательство. 1. $f\circ\widetilde{\gamma}=f\circ r\circ\gamma$ 3. Пусть $\gamma=(u(t),v(t))$. $(f\circ r\circ\gamma)'=(f\circ r)'_u\cdot u'+(f\circ r)'_v\cdot v'$. $\gamma'(0)=(X_1,X_2)$.

 $X_1(f \circ r)'_u + X_2(f \circ r)'_v$ называется производной функции f по направлению X, обозначается X(f).

Определение 2.4.8 $(f: \Sigma \to \mathbb{R}^3 - \text{гладкая функция}).$ f - гладкая покоординатно.

Пусть теперь есть две поверхности Σ_1 и Σ_2 .

Если ${
m Im}(\widetilde f)\subset \Sigma_2$, то $\widetilde f$ — гладкая функция $\Sigma_1\to \Sigma_2$ из одной поверхности в другую.

Можно рассмотреть соответствующую $\widetilde{f}: \Sigma_1 \to \Sigma_2$

$$\begin{array}{ccc} \Sigma_1 & \longrightarrow & \Sigma_2 \\ \uparrow^{r_1} & & r_2 \uparrow \\ \Omega_1 & \longrightarrow & \Omega_2 \end{array}$$

Утверждение 2.4.4. $\widetilde{f}-$ гладкая $\iff f$ гладкая в любой карте.

Доказательство. \Rightarrow Рассмотрим хорошую карту $\Sigma = \Gamma_h : r : (x,y) \mapsto (x,y,h(x,y)).$

Пусть $\widetilde{f}: \Sigma_1 \to \Sigma_2$ — гладкая. Посчитаем производную по направлению, рассматривая \widetilde{f} , как функцию в \mathbb{R}^3 . Пусть $X \in T_p(\Sigma_1)$. Утверждается, что $X(\widetilde{f}) \in T_{\widetilde{f}(p)}(\Sigma_2)$.

Определение 2.4.9 (Дифференциал \widetilde{f} в точке p по направлению X). $\mathrm{d}_p\widetilde{f}(X) \stackrel{def}{=} X(\widetilde{f})$.

$$\Sigma_1 \xrightarrow{\widetilde{f}} \Sigma_2 \xrightarrow{\widetilde{g}} \Sigma_3$$

 $d(\widetilde{g}) \circ d\widetilde{f} = d\widetilde{h}.$

$$\begin{array}{ccc} \Sigma_1 & \xrightarrow{\widetilde{f}} & \Sigma_2 \\ \uparrow^{r_1} & & r_2 \uparrow \\ \Omega_1 & \xrightarrow{f} & \Omega_2 \end{array}$$

 $\mathrm{d}\widetilde{f}\circ\mathrm{d}r_1=\mathrm{d}r_2\circ\mathrm{d}f.$

Определение 2.4.10 (\widetilde{f} регулярно). $\mathrm{d}\widetilde{f}$ невырожден (здесь эквивалентно: f регулярно в любой карте).

2.5 Первая квадратичная форма поверхности

Отображение $Q:V o\mathbb{R}$ из векторного пространства в \mathbb{R} — квадратичная форма.

Имеется соответствие между квадратичными и билинейными симметричными формами B(x,x) = Q(x).

После выбора базиса $(e_1,\ldots,e_n)\in V$ для билинейной формы можно записать матрицу $[B]=(b_{i,j})_{i,j}=(B(e_i,e_j))_{i,j}.$

I квадратичная форма определяется для параметризации $r:\Omega \to \Sigma.$ Пусть $X=(X_1,X_2),Y=(Y_1,Y_2)\in \mathbb{R}^2.$

Определение 2.5.1 (I квадратичная форма в $x \in \Omega$). Билинейная симметричная форма $I_x : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, определённая так: $I_x(X,Y) \stackrel{def}{=} \langle \mathrm{d}_x r(X), \mathrm{d}_x r(Y) \rangle_{\mathbb{R}^3}$.

Ей соответствует квадратичная форма $I_x(X) = I_x(X,X)$, матрица квадратичной формы $[I_x] = (g_{i,j})_{i,j} = (\langle \mathrm{d} r(e_i), \mathrm{d} r(e_j) \rangle)_{i,j}$ — метрический тензор.

$$E(u,v) = \langle r_u(u,v), r_u(u,v) \rangle, F(u,v) = \langle r_u(u,v), r_v(u,v) \rangle, G(u,v) = \langle r_v(u,v), r_v(u,v) \rangle. [I_x] = \begin{pmatrix} E & F \\ F & G \end{pmatrix}.$$

$$I(X,Y) = X_1 E Y_1 + (X_1 F Y_2 + X_2 F Y_1) + X_2 G Y_2.$$

Длина вектора X — это $\sqrt{I(X,X)}$, $\cos(\angle(X,Y)) = \frac{I(X,Y)}{\sqrt{I(x)}\sqrt{I(Y)}}$.

Пути $\widetilde{\gamma}=r\circ\gamma$ сопоставляется его длина $L(\widetilde{\gamma})=\int\sqrt{I(\gamma',\gamma')}\,\mathrm{d}t$

2.5.1 Площадь

«Что такое площадь, мы определять не будем, обещают определить на матанализе» Ортонормированному базису (u,v) соответствует базис r'_u, r'_v . Площадь поверхности $\int\limits_{\Omega} \sqrt{EG-F^2} \, \mathrm{d}s$.

2.5.2 І форма при замене координат

Пусть $r:\Omega_1\to\Sigma, r^*:\Omega_2\to\Sigma$ — две параметризации Σ , отображение перехода между картами s.

При замене параметризации новая форма выражается через старую: $I^*(v,w) = I(\mathrm{d} s(v),\mathrm{d} s(w))$. В координатной форме $[v]^t[I^*][w] = ([\mathrm{d} s][v])^t[I]\cdot]\,\mathrm{d} s[w] = [v^t]([\mathrm{d} s]^t[I][\mathrm{d} s])[w]$. $[I^*] = [\mathrm{d} s]^t[I][\mathrm{d} s]$.

- 1. В декартовых (x,y,z)(u,v)=(u,v,0). $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2. В полярных $(x,y,z)(\rho,\phi)=(\rho\cos(\phi),\rho\sin(\phi),0)$. $\frac{\partial r}{\partial \rho}=(\cos\phi,\sin\phi), \ \frac{\partial r}{\partial \phi}=(-\rho\cos\phi,\rho\cos\phi)$. $I^*=\begin{pmatrix} 1 & 0 \\ 0 & \rho^2 \end{pmatrix}$. $\mathrm{d} s=\begin{pmatrix} \cos\phi & -\rho\sin\phi \\ \sin\phi & \rho\cos\phi \end{pmatrix}$. Действительно, $[\mathrm{d} s]^t\cdot[\mathrm{d} s]=\begin{pmatrix} 1 & 0 \\ 0 & \rho^2 \end{pmatrix}$.

2.5.3 Изометрии

$$\begin{array}{ccc} \Sigma_1 & \xrightarrow{\widetilde{f}} & \Sigma_2 \\ \uparrow^{r_1} & & r_2 \uparrow \\ \Omega_1 & \xrightarrow{f} & \Omega_2 \end{array}$$

Бывают такие поверхности, что их можно отобразить друг в друга, при этом длины соответствующих векторов не будут меняться. Например, квадрат скатать в цилиндр, или конус развернуть в кусок плоскости.

Определение 2.5.2 (Гладкое \widetilde{f} — изометрия). $\mathrm{d}\widetilde{f}$ сохраняет скалярное произведение $\langle_,_\rangle$: $\forall V,W\in T_p(\Sigma_1):\langle V,W\rangle_p=\left\langle \mathrm{d}_p\widetilde{f}(V),\mathrm{d}_p\widetilde{f}(W)\right\rangle_{\widetilde{f}(p)}$.

Если параметризации используют одну карту — например, вторая параметризация равна $r_2 = r_2 \circ f$ — то матрицы первых форм равны: $[I]^{r_1} = [I]^{r_2}$. В общем случае $[I]^{r_1} = [\mathrm{d} f]^t [I]^{r_2} [\mathrm{d} f]$.

Пример. Конус над любой кривой локально изометричен плоскости.

Пусть $\gamma(t)$ — натурально параметризованная кривая на сфере с центром в верзине конуса: $\gamma: \mathbb{R} \to S^2$. (можно подвинуть точки кривой вдоль луча так, чтобы они все лежали на одной сфере (?))

 $r(
ho,t) =
ho \cdot \gamma(t)$. $rac{\partial r}{\partial
ho} = \gamma(t), rac{\partial r}{\partial t} =
ho \cdot \gamma'(t)$. Если посчитать, то первая квадратичная форма окажется такой же, как и у параметризации плоскости в полярных координатах $- egin{pmatrix} 1 & 0 \\ 0 &
ho^2 \end{pmatrix}$.

Пусть $p,q\in \Sigma$, тогда расстояние между точками $d(p,q)=\inf L(\widetilde{\gamma}):[0,1]\to \Sigma\widetilde{\gamma}(0)=p,\widetilde{\gamma}(1)=q.$ Это внутренняя метрика поверхности.

Внутренняя метрика, вообще говоря, не совпадает с внешней — между диаметрально противоположными точками S^1 расстояние внешнее — 2, внутреннее — π .

2.6 Вторая квадратичная форма

Первая форма не менялась при изометриях, а вторая, наоборот, будет говорить, как поверхность изогнута в \mathbb{R}^3 — на какой параболоид она больше всего похожа.

Зафиксируем параметризацию $r:\Omega\to\Sigma$, определим нормаль $n\coloneqq \frac{r_u\times r_v}{|r_u\times r_v|}.$

Определение 2.6.1 (Вторая квадратичная форма). $II_x(v,w) = \langle d_x^2 r(v,w), n \rangle$.

Коэффииценты матрицы второй формы обозачают так: $[I\!I] = \begin{pmatrix} L & M \\ M & N \end{pmatrix}$, где $L = \langle r_{u,u}, n \rangle$, $M = \langle r_{u,v}, n \rangle$, $N = \langle r_v, v, n \rangle$.

Теорема 2.6.1. Можно рассмотреть нормаль, как гладкую функцию $\Omega \to (S^2 \subset \mathbb{R}^3)$. Утверждается, что $I\!\!I(v,w) = -\langle \mathrm{d} r(v), \mathrm{d} n(w) \rangle$.

Доказательство. dr(v) лежит в касательной плоскости, поэтому $\langle dr(v), n \rangle = 0$. Дифференцируя по w, получаем $\langle d^2r(v,w), n \rangle + \langle dr(v), dn(w) \rangle = 0$.

Лекция XII

20 ноября 2023 г.

2.7 Специальные координаты. Соприкасающийся параболоид

Пусть Σ — поверхность, $p\in \Sigma$ — точка. Выберем ортонормированный базис $X=f_1,Y=f_2$ в $T_p\Sigma$. Можно выбрать такую окрестность $U\ni p$, что $\Sigma\cap U$ — график (x,y,f(x,y)).

Тогда
$$r_x'(0) = (1,0,f_x') \in T_p\Sigma$$
 и $r_y'(0) = (0,1,f_y') \in T_p\Sigma$.

Можно добиться того, что $f_x'(0) = f_y'(0) = 0$. Тогда $\mathrm{d} f = 0$, и n(0) = (0,0,1). Далее,

$$r''_{x,x}(0) = (0,0,f''_{x,x}) \qquad r''_{x,y}(0) = (0,0,f''_{x,y}) \qquad r''_{y,y}(0) = (0l0,f''_{y,y})$$

Записав коэффициенты $I\!\!I$ формы $L=\langle r_{x,x},n\rangle=f''_{x,x},M=f''_{x,y},N=f''_{y,y},$ получаем матрицу Гесса $H=\begin{pmatrix} f''_{x,x}&f''_{x,y}\\ f''_{x,y}&f''_{y,y} \end{pmatrix}$

 $f(x,y)=rac{1}{2}(Lx^2+2Mxy+Ny^2)+o(x^2+y^2)$. Определим соприкасающийся параболоид $z=rac{1}{2}(Lx^2+2Mxy+Ny^2)$, здесь касание второго порядка.

Оси координат можно так повернуть, чтобы смешанная производная $\frac{\partial}{\partial y} \frac{\partial}{\partial x} f = f_{x,y}$ была равна нулю, тогда параболоид имеет вид $z = Ax^2 + By^2$. Гессиан тогда имеет вид $\begin{pmatrix} L & 0 \\ 0 & N \end{pmatrix}$, и данные значения L,N называются k_1,k_2- главные кривизны.

Координаты, в которых гессиан имеет вид $\begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}$ — специальные. Гауссова кривизна $K \stackrel{def}{=} k_1 \cdot k_2$. Средняя кривизна $\frac{k_1 + k_2}{2}$.

В специальных координатах векторы r_x, r_y — главные направления — образуют ортонормированный базис в $T_p\Sigma$.

Определение 2.7.1 (Эллиптическая точка). Кривизны в ней одного знака, и не равны нулю.

Определение 2.7.2 (Гиперболическая точка). Кривизны в ней разного знака. Ещё такую точку называют *седловая*.

Определение 2.7.3 (Омбилическая точка). Кривизны равны.

Определение 2.7.4 (Параболическая точка). Ровно одна из кривизн равна нулю.

Определение 2.7.5 (Точка уплощения). Обе кривизны равны нулю.

На пространстве $(V,\langle _,_\rangle)$ билинейной форме B(x,y) по лемме Рисса соответствует линейный оператор $A:V\to V$, такой, что $B(x,y)=\langle x,Ay\rangle.$

Если базис e_1, \ldots, e_n ортонормирован, то матрицы [A] = [B] равны. Иначе [B] = [G][A], где G — матрица Грама.

 $[X]^t[B][Y] = [X]^t[G][AY].$

Факт 2.7.1. $[B] - симметрическая матрица <math>\iff A - самосопряжена.$

Факт 2.7.2. В ортонормированном базисе матрица самосопряжённого оператора симметрична.

2.7.1 Гауссово отображение

Пусть $\Sigma \subset \mathbb{R}^3$ — поверхность.

Определение 2.7.6 (Гауссово отображение). Непрерывное $\widehat{n}: \Sigma \to S^2$, такое, что $\forall p \in \Sigma: \widehat{n}(p) \perp T_p\Sigma, \ |\widehat{n}(p)| = 1.$

Если поверхность ориентируема, то \widehat{n} можно задать на всей поверхности, но нас будет интересовать задание в карте.

Пусть $r:\Omega o \Sigma$ — карта, тогда $n(u,v)=rac{r_u imes r_v}{|r_u imes r_v|}.$

2.7.2 Оператор Вайнгартена

Пусть $p \in \Sigma$. Посмотрим на $\mathrm{d}_p \widehat{n} : T_p \Sigma \to T_{\widehat{n}(p)} S^2$. Получается, в точке p касательные пространства к Σ и S^2 совпадают (как векторные пространства), так как у них общая нормаль.

Если их отождествить, то можно считать, что $\mathrm{d}_p \widehat{n}: T_p \Sigma \to T_p \Sigma$.

Определение 2.7.7 (Оператор Вайнгартена). $S\stackrel{def}{=} -\mathrm{d}_p \widehat{n}: T_p\Sigma \to T_p\Sigma.$

Определим билинейную форму $\widehat{I}\!\!I:T_p\Sigma\times T_p\Sigma\to\mathbb{R}, \widehat{I}\!\!I(v,w)=\langle v,S(w)\rangle=-\langle v,\mathrm{d}_p\widehat{n}(w)\rangle.$ Определение не использует никакую конкретную параметризацию.

Теорема 2.7.1. Пусть $r:\Omega\to \Sigma$ — параметризация, пусть p=r(x). Тогда $\forall v,w\in\mathbb{R}^n:I\!\!I(v,w)=\widehat{I\!\!I}(\mathrm{d}_xr(v),\mathrm{d}_xr(w)).$

Доказательство. По определению $I\!\!I(v,w) = \langle -\operatorname{d}\! r(v),\operatorname{d}\! n(w)\rangle$, но $n=\widehat{n}\circ r$, то есть $I\!\!I(v,w) = \langle \operatorname{d}\! r(v), -\operatorname{d}\! \widehat{n}(\operatorname{d}\! r(w))\rangle$.

Следствие 2.7.1. 1. \widehat{I} симметрична, поэтому оператор Вайнгартена самосопряжён.

2.
$$[II]_{e_1,e_2} = [\widehat{II}]_{r_u,r_v}$$
.

3.
$$[II] = \underbrace{[I]}_{\text{матрица Грама}} \cdot [S].$$

4. Пусть есть две параметризации

$$\Omega_1 \xleftarrow{\Gamma_1} \xrightarrow{\Sigma} \Gamma_2$$

Тогда $r_2 = r_1 \circ S$ и $[II^{r_2}] = [dS]^t [II^{r_1}][dS].$

Теорема 2.7.2. Пусть Ω — связно, и есть параметризация $r:\Omega\to\mathbb{R}^3$. $I\!\!I\equiv 0\iff r(\Omega)$ — часть плоскости.

Доказательство.

- \Leftarrow . Для плоскости $n \equiv \text{const} \Rightarrow \text{d}n \equiv 0 \Rightarrow II = 0.$
- \Rightarrow . $S\equiv 0 \Rightarrow {
 m d}\widehat{n}\equiv 0 \Rightarrow n=n_0={
 m const.}$ Любая кривая $\gamma:[0,1]\to \Sigma$ на поверхности перпендикулярна этой нормали во всякой своей точке. Функция высоты $H=\langle_,n_0\rangle$ постоянна во всех точках кривой.

Оператор Вайнгартена можно записать в специальном базисе, в котором $I\!\!I = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}$.

Предложение 2.7.1. B этом базисе собственные числа оператора Bайнгартена — главные кривизны.

Доказательство. Собственные векторы оператора Вайнгартена — главные направления.

Из предложения следует, что так как оператор Вайнгартена самосопряжён, то у него существует ортонормированный базис из собственных векторов с вещественными собственными числами.

Теорема 2.7.3 (Родрига). 1. Бескоординатная формулировка: v принадлежит главному направлению \iff $\mathrm{d}\widehat{n}(v) \parallel v$.

2. Пусть $r:\Omega\to\Sigma$ — параметризация. $\xi\in\mathbb{R}^2$ на главном направлении \iff $\mathrm{d}r(\xi)\parallel\mathrm{d}n(\xi)$, при этом $\mathrm{d}n(\xi)=-k_1\cdot\mathrm{d}r(\xi)$ или $\mathrm{d}n(\xi)=-k_2\cdot\mathrm{d}r(\xi)$.

Доказательство. 1. Это определение собственного вектора.

Пусть $p \in \Sigma$.

Определение 2.7.8 (Нормальное сечение с началом в точке p и направлением $v \in T_p\Sigma$). Пересечение $\Sigma \cap P(p,n(p),v)$, здесь P(p,n(p),v) — точка, проходящая через p, и натянутая на векторы нормали n(p) и v.

В окрестности p нормальное сечение — кривая.

Далее в определениях считаем, что во всех точках непрерывно выбрана нормаль $\widehat{n}:\Sigma\to S^2$ (крышка иногда будет опускаться, если понятно из контекста).

Определение 2.7.9 (Кривизна поверхности в направлении вектора v). Кривизна нормального сечения — гладкой регулярной кривой γ — со знаком \pm .

Пусть γ — нормальное сечение в натуральной параметризации, $\gamma' \uparrow \uparrow v$. $k(v) = k_{\gamma} \cdot \langle N, \widehat{n} \rangle = k_{\gamma} \cdot \frac{\gamma''}{|\gamma''|}$.

Пусть $\widetilde{\gamma}:[a,b]\to \Sigma$ — регулярная кривая. Пусть $\widetilde{\gamma}$ натурально параметризована, $\widetilde{\gamma}'\in T_p\Sigma,\ \widetilde{\gamma}''=k_\gamma\cdot N.$

Определение 2.7.10 (Нормальная кривизна $\widetilde{\gamma}$). $k_n(\gamma) \coloneqq \langle \widetilde{\gamma}'', \widehat{n} \rangle = k_{\gamma} \cos(N, \widehat{n})$.

Определение 2.7.11 (Геодезическая кривизна $\widetilde{\gamma}$). k_q — модуль проекции $\widetilde{\gamma}''$ на $T_p\Sigma$.

Фактически, вектор кривизны был разложен на нормальную и касательную составляющие, только нормальная со знаком, и касательная — без. $k_g = |\widetilde{\gamma}'' - k_n \widehat{n}|$. По теореме Пифагора $k_\gamma = \sqrt{k_n^2(\gamma) + k_g^2(\gamma)}$.

Определение 2.7.12 (Геодезическая кривая). $k_g \equiv 0$.

2.7.3 Что-то считаем

$$\widetilde{\gamma} = r \circ \gamma, \ \gamma' = (u', v'), \ \gamma(t) = (u(t), v(t)).$$

 $\widetilde{\gamma}=r(u(t),v(t))\Rightarrow\widetilde{\gamma}'=r_u\cdot u_t'+r_v\cdot v_t'$ и $\widetilde{\gamma}''=r_{u,u}(u_t')^2+r_{u,v}u_t'\cdot v_t'+r_{v,u}v_t'u_t'+r_{v,v}(v_t')^2+r_uu_t''+r_v\cdot v_t''$. Домножим это скалярно на нормаль. $r_u\perp\widehat{n},r_v\perp\widehat{n}$, поэтому

$$\langle \widetilde{\gamma}'', \widehat{n} \rangle = \langle r_{u,u}, \widehat{n} \rangle (u')^2 + 2 \langle r_{u,v}, \widehat{n} \rangle u'v' + \langle r_{v,v} \widehat{n} \rangle (v')^2$$

Если обозначит $X = \gamma'$, то видим, что получилась $I\!\!I(X)$:

$$\langle \widetilde{\gamma}'', \widehat{n} \rangle = II(\gamma')$$

Теорема 2.7.4. Значение $I\!\!I$ на единичных векторах (те, для которых I(v)=1 — единичные в касательной плоскости) — это кривизны поверхности по направлению соответствующего вектора.

Доказательство. Применить предыдущую формулу к нормальному сечению с направляющим вектором v.

$$\widehat{I}(v,v) = ??????$$

Если
$$v \neq 1$$
, то $k(v) = \frac{I\!\!I(\xi,\xi)}{I(\xi,\xi)}$, где $v = \mathrm{d}r(\xi)$.

Теорема 2.7.5 (Менье). Пусть $p \in \Sigma, v \in T_p\Sigma, |v| = 1$.

1. Пусть $\widetilde{\gamma}$ — натурально параметризованная кривая, такая, что $\widetilde{\gamma}(0)=p,\widetilde{\gamma}'(0)=v.$ Для всех таких $\widetilde{\gamma}$ нормальная кривизна одна и та же.

2. Кривизна кривой на поверхности с начальным вектором скорости v зависит только от угла $\angle(N, \widehat{n})$, где N — главная нормаль к кривой. Точнее $k_{\gamma} \cdot \langle N, \widehat{n} \rangle = k(v)$.

Доказательство.
$$\langle \widetilde{\gamma}'', \widehat{n} \rangle = I\!\!I(\gamma', \gamma')$$
.

Пример. В сфере единичного радиуса кривизны в любом направлении — 1, тогда можно посчитать кривизну кривой, которая получается сечением сферы какой-то плоскости. Например, если плоскость под углом $\frac{\pi}{4}$ к касательному пространству, то кривизна равна $\sqrt{2}$.

Лекция XIII 27 ноября 2023 г.

2.8 Формулы типа Френе

Пусть Σ — поверхность, γ — кривая на поверхности.

Обозначим вектор скорости $\gamma'=v$ (|v|=1), вектор главной нормали $m=\frac{\gamma''}{|\gamma''|}$.

Пусть n — нормаль к $T_p\Sigma$, зафиксируем $t_0:\gamma(t_0)=p$, дополним (v,n) до ортонормированного базиса: $l\coloneqq v\times n$.

Запишем формулы, как в случае формул Френе:

$$\begin{cases} v' = \alpha_1(t)v(t) + \beta_1(t)n(t) + \delta_1(t)l(t) \\ n' = \alpha_2(t)v(t) + \beta_2(t)n(t) + \delta_2(t)l(t) \\ l' = \alpha_3(t)v(t) + \beta_3(t)n(t) + \delta_3(t)l(t) \end{cases} \qquad \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} v \\ n \\ l \end{pmatrix} = \begin{pmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{pmatrix} \begin{pmatrix} v \\ n \\ l \end{pmatrix}$$

Из того, что вектора единичные, получаем $\langle v,v\rangle=1\Rightarrow \langle v',v\rangle=0\Rightarrow \alpha_1=0$. Аналогично $\beta_2=\gamma_3=0$. Далее, из того, что вектора ортогональны: $\langle v',n\rangle=-\langle v,n'\rangle$ получается, что матрица, как и ранее, кососимметрична. Итак, матрица имеет вид

$$\begin{pmatrix}
0 & -\alpha_2 & -\alpha_3 \\
\alpha_2 & 0 & -\beta_3 \\
\alpha_3 & \beta_3 & 0
\end{pmatrix}$$

Оказывается, что с первой парой коэффициентов мы уже знакомы. Это K_n — нормальная кривизна, $K_g = \langle \gamma'', l \rangle$ — геодезическая кривизна со знаком. Иными словами, $\gamma'' = K_n \cdot n + K_g \cdot l$.

Третий вектор назовём *геодезическим кручением*, можно проверить, что $au_g = -I\!\!I(l,v)$.

Теорема 2.8.1. Для натурально параметризованной кривой γ на поверхности Σ выполняются

формулы типа Френе:
$$\begin{cases} v' = K_n n' + K_g l \\ n' = -K_n v + \tau_g l \\ n' = -\tau_g n - k_g v \end{cases}.$$

Доказательство. Надо проверить только то, что коэффициент τ_g — как раз $-I\!\!I(l,v)$. l лежит в касательной плоскости, поэтому $\langle n,l\rangle=0$. Продифференцируем это равенство вдоль кривой:

$$0 = \langle n_v, l \rangle + \langle n, l_v \rangle \Rightarrow \langle l', n \rangle = -\langle n_v, l \rangle = II(v, l)$$

Определение 2.8.1 (Геодезическая кривая). Геодезическая кривизна K_g равна 0, иначе говоря $\gamma'' \parallel n$.

Определение 2.8.2 (Асимптотическая кривая). Нормальная кривизна K_n равна 0, иначе говоря k(v) = 0.

Пример (Асимптотиечксая линия). Через каждую точку гиперболического параболоида походит прямая.

Как мы скоро увидим, у любой поверхности с кривизной меньше нуля есть такое семейство прямых.

Определение 2.8.3 (Линия кривизны). Геодезическое кручение равно нулю.

Предложение 2.8.1. У линии кривизны γ' — главное направление.

Доказательство. Последняя формула вида Френе принимает вид $n' = -K_n v$, то есть $n_v \parallel -K_n v$, но так как $n_v = -S(v)$, то v — собственный вектор оператора Вайнгартена.

Пример (Линия кривизны). Параллели и меридианы на торе.

Теорема 2.8.2 (Эйлер). Рассмотрим $T_p\Sigma$, пусть v_1,v_2 — главные направления, отнормируем их: $|v_1|=|v_2|=1$. Пусть им соответствуют главные кривизны k_1,k_2 .

Пусть $\angle(v_1,v)=\phi$, тогда $v=\cos(\phi)v_1+\sin(\phi)v_2$, так как $v_1\perp v_2$. Тогда $k(v)=k_1\cos^2(\phi)+k_2\sin^2(\phi)$.

Доказательство. Выберем специальные координаты. Пусть $\mathbb{R}^2_{x,y} = T_p \Sigma$, причём оси координат x,y — главные направления. Пусть $r(x_0) = p$. Тогда $[I\!I] = \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix}$ и $r_x(x_0) = v_1, r_y(x_0) = v_2$.

Тогда
$$k(v) = \widehat{\underline{I}}(v)$$
. Так как $|v| = 1$, то $k(v) = \widehat{\underline{I}}(v) = (\cos \phi - \sin \phi) \begin{pmatrix} k_1 & 0 \\ 0 & k_2 \end{pmatrix} \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix} = k_1 \cos^2 \phi + k_2 \sin^2 \phi$.

Следствие 2.8.1. k_1, k_2 — экстремальные значения (минимум и максимум) кривизн по направлению.

2.9 Вычисление главных кривизн и направлений в координатах

Вычислим при заданной параметризации $r:\Omega \to \Sigma$ главные кривизны.

Теорема 2.9.1. Пусть поверхность параметризована $r:\Omega\to\Sigma$, тогда главные кривизны — это корни уравнения

$$\det([I\!I] - \lambda[I]) = 0$$

У данного квадратного уравнения могут быть два равных корня, тогда точка — омбилическая, то есть все кривизны равны, и все векторы — главного направления.

Иначе векторы главного направления $\xi_{1,2}$ — такие, что $([II] - k_{1,2}[I])\xi_{1,2} = 0$.

Доказательство. [II] = $[I] \cdot [S]$. Отсюда $[S] = [I]^{-1}[II]$. Вообще говоря, S — самосопряжён, но матрица не симметрична, так как базис не ортонормирован. Найдём собственные числа [S], то есть решим уравнение $\det([S] - \lambda E) = 0$. Но $\det([I]) \neq 0$, поэтому уравнение эквивалентно уравнению $\det([I] \cdot [S] - \lambda [I]) = 0$.

Про собственные векторы аналогично: если ξ — вектор главного направления, то $[S]\xi=k_{1,2}\xi$, домножая на первую форму, получаем, $[I]\cdot [S]\xi=k_{1,2}\cdot [I]\xi$.

Для конкретных коэффициентов $[I\!I]=egin{pmatrix} L & M \\ M & N \end{pmatrix}, \ [I]=egin{pmatrix} E & F \\ F & G \end{pmatrix}$, получено уравнение

$$\det([I\!I] - \lambda[I]) = \left| \begin{array}{cc} L - \lambda E & M - \lambda F \\ M - \lambda F & N - \lambda G \end{array} \right| = (L - \lambda E)(N - \lambda G) - (M - \lambda F)^2 = 0$$

$$\lambda^{2}(EG - F^{2}) - \lambda(EN + LG - 2FM) + (LN - M^{2}) = 0$$

Гауссова кривизна $K=k_1\cdot k_2=rac{LN-M^2}{EG-F^2}=rac{\det[I]}{\det[I]}$. Средняя кривизна — это $rac{k_1+k_2}{2}=rac{EN+LG-2FM}{2\det[I]}$.

2.10 Ковариантная производная

Определение 2.10.1 (Гладкое векторное поле вдоль поверхности Σ). Гладкое отображение $X:\Sigma\to\mathbb{R}^3$, такое, что $X(p)\in T_p\Sigma$ ($\forall p:T_p\Sigma\ni 0$).

Рассмотрим параметризацию $r:\Omega\to \Sigma$. Всякий вектор можно разложить в этом базисе: $X=X_1r_u+X_2r_v$.

Утверждение 2.10.1. $X - \varepsilon$ ладкое $\iff X_1, X_2 - \delta$ а ε ладкие.

Пусть X — гладкое векторное поле, зафиксируем $p \in \Sigma$, выберем $v = v_p \in T_p \Sigma$.

Определение 2.10.2 (Ковариантная производная векторного поля вдоль вектора v). Производная ортогональной проекции X на $T_p\Sigma$ по направлению вектора v: $\nabla_v X = \Pr_{T_p\Sigma}^{\perp}(X)'_v \in T_p\Sigma$. Ещё ∇ называется *связность* (с чего бы это?).

Для двух векторных полей X,Y: $\nabla_Y X = \nabla_{Y_p} X$. Это тоже векторное поле.

Замечание. Ковариантная производная $\nabla_{v_p} X$ зависит только от X в окрестности p.

3амечание. Для двух функций $f,g:\mathbb{R}^n \to \mathbb{R}^n$ и регулярной кривой γ с вектором скорости v_p : Если $f\Big|_{\gamma}=g\Big|_{\gamma}$, то $f'_v(t_0)=g'_v(t_0)$.

Предложение 2.10.1. Кривая γ геодезическая $\iff \nabla_{\gamma'}(\gamma') = 0$. Производную можно брать только вдоль кривой, но можно что-то продолжить, и всё будет хорошо.

Доказательство.
$$\Pr(\gamma'') = \nabla_{\gamma'} \gamma'$$
. $\gamma'' \perp T_p \Sigma$.

Свойства.

• **Билинейность**: для $\alpha, \beta \in \mathbb{R}: \nabla_v(\alpha X + \beta Y) = \alpha \nabla_v X + \beta \nabla_v Y$ и $\nabla_{\alpha v_1 + \beta v_2} X = \alpha \nabla_{v_1} X + \beta \nabla_{v_2} X$. Следует из того, что производная линейна.

• Пусть $f:\Sigma \to \mathbb{R}$. Тогда $\nabla_{v_p}(f\cdot X)=f_v'(p)\cdot X_p+f(p)\cdot \nabla_{v_p}X$. Следует из определения: $\nabla_{fv}(X)=f\nabla_vX$.

• Дифференцирование $\langle _, _ \rangle$. Пусть X, Y — векторные поля, $v_p \in T_p \Sigma$. Тогда $\langle X, Y \rangle'_{v_p} = \langle \nabla_v X, Y \rangle + \langle X, \nabla_v Y \rangle$.

Доказательство. Мы знаем, что $\langle X,Y \rangle_v' = \langle X_v',Y \rangle + \langle X_v',Y \rangle.$

Достаточно проверить, что $\langle X'_v,Y\rangle=\langle \nabla_vX,Y\rangle.$ Это правда, так как $\Pr(X'_v)=\nabla_vX,$ и $Y\in T_p\Sigma.$ Таким образом, $X'_v=\nabla_vX+c\widehat{n}.$

2.10.1 Вычисления в координатах. Символы Кристоффеля

Пусть $r:\Omega \to \Sigma$ — параметризация.

В данном случае будет удобно писать координаты x_1, \ldots, x_n , хотя мы будем считать, что n=2 (?)

Рассмотрим производные r'_{x_i} . Пусть $\Gamma_{i,j} = \nabla_{r'_{x_i}} r'_{x_j} \in T_p \Sigma$. Так как $r''_{x_i x_j} = r''_{x_j x_i}$, то $\Gamma_{i,j} = \Gamma_{j,i}$.

Разложим $\Gamma_{i,j}$ в базисах r_{x_1},\ldots,r_{x_n} :

Определение 2.10.3 (Символ Кристофвеля первого рода). $\Gamma_{i,j;k} = \langle \Gamma_{i,j}, r_{x_k} \rangle$.

Определение 2.10.4 (Символ Кристофвеля второго рода). Такие числа $\Gamma_{i,j}^k$, что $\Gamma_{i,j} = \sum_{k=1}^n \Gamma_{i,j}^k r_{x_k}$.

Удобнее использовать символы Кристоффеля второго рода, а символы первого рода нужны только, чтобы посчитать символы второго рода.

Утверждение 2.10.2. Пусть первая форма
$$I = \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} g_{1,1} & g_{1,2} \\ g_{2,1} & g_{2,2} \end{pmatrix}$$
. $\Gamma_{i,j;k} = \sum_{l=1}^n g_{k,l} \Gamma_{i,j}^l$.

Доказательство. Умножим разложение $\Gamma_{i,j} = \sum_{l=1}^n \Gamma_{i,j}^l r_{x_l}$ скалярно на r_{x_k} . $\Gamma_{i,j;k} = \langle \Gamma_{i,j}, r_{x_k} \rangle = \langle \sum_{l=1}^n \Gamma_{i,j}^l r_{x_l}, r_{x_k} \rangle$. Далее воспользуемся тем, что $\langle r_{x_l}, r_k \rangle = g_{l,k}$, и по линейности получим нужную формулу.

Лекция XIV

4 декабря 2023 г.

Если при фиксированных i,j обозначить $\Gamma_{i,j;k}=(Y)=\begin{pmatrix}\Gamma_{i,j;1}\\\vdots\\\Gamma_{i,j,n}\end{pmatrix}$ и $\Gamma_{i,j}^l=(X)=\begin{pmatrix}\Gamma_{i,j}^1\\\vdots\\\Gamma_{i,j}^n\end{pmatrix}$, то окажется, что Y=GX и $G^{-1}Y=X$ (матрица Грама обратима).

2.10.2 Зачем нужны символы Кристоффеля

Символы Кристоффеля нужны для того, чтобы вычислять ковариантную производную в координатах

Теорема 2.10.1. Пусть Σ — поверхность (?), $V = \sum_{i} \xi_{i} r_{x_{i}}$ и $W = \sum_{i} \eta_{i} r_{x,i}$.

Тогда
$$\nabla_V W = \sum_i (\eta_i)_v' r_{x_i} + \sum_{i,j} \xi_i \eta_j \Gamma_{i,j}$$
.

Доказательство. Дифференцируя по правилу Лейбница, получаем $\nabla_V(\sum_i \eta_i r_{x_i}) = \sum_i \eta_i r_{x_i} + \sum_i \eta_i \nabla_V r_{x_i}$. Раскроем второе выражение по линейности: $\nabla_{\sum_j \xi_j r_{x_j}} r_{x_i} = \sum_j \xi_j \nabla_{r_{x_j}} r_{x_i} = \sum_{i,j} \xi_j \Gamma_{i,j}$.

Теорема 2.10.2. Символы Кристоффеля выражаются через коэффициенты первой формы $I=\begin{pmatrix}g_{1,1}&g_{1,2}\\g_{2,1}&g_{2,2}\end{pmatrix}$ и их производные: $\Gamma_{i,j;k}=\frac{(g_{i,k})'_{x_j}+(g_{j,k})'_{x_i}-(g_{i,j})'_{x_k}}{2}$.

Доказательство. Возьмём определение метрического тензора $\langle r_{x_i}, r_{x_j} \rangle = g_{i,j}$ и продифференцируем:

$$(g_{i,j})'_{x_k} = \langle r_{x_i,x_k}, r_{x_j} \rangle + \langle r_{x_i}, r_{x_j,x_k} \rangle$$

$$\Pr_{T_n \Sigma} r_{x_i,x_j} = \nabla_{r_{x_i}} r_{x_j} = \Gamma_{i,j} = \cdots$$

Так как если w — вектор плоскости S, то $\langle v, w \rangle = \langle \Pr_S v, w \rangle$, то

$$\cdots = \langle \Gamma_{i,k}, r_{x_i} \rangle + \langle r_{x_i}, \Gamma_{j,k} \rangle = \Gamma_{i,k;j} + \Gamma_{j,k;i}$$

Из симметрии ($\Gamma_{i,j;*} = \Gamma_{j,i;*}$) получаем ($g_{i,k}$) $_{x_i} = \Gamma_{i,j;k} + \Gamma_{k,j;i}$ и ($g_{k,j}$) $_{x_i} = \Gamma_{k,i;j} + \Gamma_{j,i;k}$.

Действительно
$$\Gamma_{i,j;k} = \frac{(g_{i,k})'_{x_j} + (g_{j,k})'_{x_i} - (g_{i,j})'_{x_k}}{2}.$$

Следствие 2.10.1. Символы Кристоффеля лежат во внутренней геометрии (сохраняется при изометриях, зависит только от внутренней метрики).

Следствие 2.10.2. Ковариантная производная принадлежит внутренней геометрии.

Замечание. Посмотрим в какой-то карте. Векторное поле — в каждой точке задан вектор, гладко зависящий от точки.

Проведём кривую, и продифференцируем векторное поле вдоль кривой. Можно рассмотреть некоторую аналогию с евклидовым пространством, но это останется за рамками данного повествования.

Теорема 2.10.3 (Egregium, теорема Гаусса). Гауссова кривизна принадлежит внутренней геометрии поверхности. Точнее, гауссова кривизна $K = \frac{\langle \nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y, X \rangle}{\det I}$.

Здесь
$$X = r_u, Y = r_v$$
.

Доказательство.

Лемма 2.10.1. Пусть
$$W,V-$$
 гладкие векторные поля. Тогда $(W)_V=\underbrace{\nabla_V W}_{T_p\Sigma}+\widehat{I\!\!I}(V,W)\cdot$ $n.$

Доказательство леммы.

По определению ковариантной производной составляющая в касательной плоскости — это $\nabla_V W$. $\langle W_V, n \rangle \stackrel{?}{=} \widehat{I\!\!I}(V,W)$

$$\langle W, n \rangle = 0 \Rightarrow \langle W_V, n \rangle + \langle W, n_V \rangle = 0, \text{ if } \langle W_V, n \rangle = \langle W, -n_V \rangle = \langle W, S(V) \rangle = \widehat{I\hspace{-.1em}I}(V, W). \qquad \Box$$

Посчитаем ковариантную производную: $\nabla_Y Y = r_{v,v} - \widehat{I\!\!I}(v,v) \cdot n$. Затем $\nabla_X (r_{v,v} - \widehat{I\!\!I}(v,v) \cdot n) = \Pr_{T_p\Sigma}(r_{v,v,u} - (\widehat{I\!\!I})' \cdot n - \widehat{I\!\!I}(Y,Y)n_u) = \Pr_{T_p\Sigma}(r_{v,v,u} - \widehat{I\!\!I}(Y,Y) \cdot S(X))$.

Аналогично
$$\nabla_X Y = r_{v,u} - \widehat{I\!\!I}(X,Y) \cdot n$$
 и $\nabla_Y (r_{v,u} - \widehat{I\!\!I}(X,Y)n) = \Pr(r_{v,u,v} - (\widehat{I\!\!I})' \cdot n - \widehat{I\!\!I}(X,Y) \cdot n_v) = \Pr(r_{v,u,v} - \widehat{I\!\!I}(X,Y) \cdot S(Y)).$

Вычитая выражения друг из друга, получаем

$$\left\langle \widehat{I\hspace{-.01cm}I}(Y,Y)S(X) + I\hspace{-.01cm}I(Y,Y)S(X),X \right\rangle = \widehat{I\hspace{-.01cm}I}(Y,Y) \cdot \widehat{I\hspace{-.01cm}I}(X,X) - (\widehat{I\hspace{-.01cm}I}(X,Y))^2$$

Далее используем $K = \frac{\det I}{\det I}$.

Получается, в случае, когда пространство искривлено, равенство $f''_{u,v} \neq f''_{v,u}$, и мера некоммутативности ковариантной производной определяет гауссову кривизну.

Пример. Гауссова кривизна плоскости — ноль, плоскость можно как-то изгибать, в конус или цилиндр, но по-прежнему гауссова кривизна будет нулём (и цилиндр, и конус лежат по одну сторону от касательной плоскости, поэтому их гауссовы кривизны неотрицательны, но есть направления, в которых их кривизны равны нулю, поэтому гауссовы кривизны равны нулю).

Локально поверхность имеет уравнение $z=rac{k_1x^2+k_2y^2}{2}$. Кривизны k_1 и k_2 могут быть одного знака, или разных.

Если кривизны разного знака, то из формулы $k(\phi) = k_1 \cos^2 \phi + k_2 \sin^2 \phi$ понятно, что найдётся направление, в котором кривизна равна нулю. В частности, в гиперболическом параболоиде эти направления выстраиваются в прямую.

2.11 Выпуклые поверхности

Определение 2.11.1 (Выпуклая поверхность). Она лежит по одну сторону от любой своей соприкасающейся плоскости.

Определение 2.11.2 (Локальный гомеоморфизм $f: X \to Y$). Отображение f, такое, что $\forall x \in X: \exists U \ni x: f \Big|_U$ — гомеоморфизм на образ, причём f(U) открыто.

Теорема 2.11.1. Пусть Σ — гладкая компактная поверхность без края.

- 1. Если поверхность выпукла, то гауссова кривизна $K \geqslant 0$.
- 2. Если гауссова кривизна K>0, то поверхность выпукла.

Доказательство.

- Выберем специальные координаты, в них должно быть очевидно.
- Выберем нормаль n во всех точках так, что главные кривизны во всех точках >0.

Это показывает, что существует гауссово отображение $n:\Sigma\to S^2$, то есть гауссово отображение можно определить глобально. $\mathrm{d} n\neq 0$, так как главные кривизны невырождены, и если u,v — главные направления, то по теореме Родрига $n_u=-k_1r_u\neq 0$ и $n_v=-k_2r_v\neq 0$. Ещё можно сказать, что $S=-\mathrm{d} n$, собственные числа S не равны 0, поэтому $\mathrm{d} n$ невырожден.

Значит (по теореме об обратной функции), отображение $n:\Sigma \to S^2$ — локальный гомеоморфизм.

Лемма 2.11.1. Пусть X — компактное метризуемое пространство, $f: X \to Y$ — локальный гомеоморфизм. Тогда f — накрытие.

Доказательство леммы.

Из метризуемости следует хаусдорфовость, из компактности — секвенциальная компактность.

Проверим, что f — конечнолистное накрытие. От противного: $\exists y \in Y: |f^{-1}(y)|$ бесконечно. Выберем сходящуюся подпоследовательность $x_n \underset{n \to \infty}{\longrightarrow} x$. Получим противоречие (?)

Теперь у каждой точки конечное число прообразов, и из хаусдорфовости можно выбрать им непересекающиеся окрестности. \Box

Далее сфера односвязна, поэтому всякое накрытие однолистно, значит, $\Sigma \to S^2$ — гомеоморфизм. Получается, нашлось ровно два направления, в которых данная плоскость — касательна, и, значит, Σ действительно выпукла:

От противного, пусть Σ не выпукла, тогда существует касательная плоскость, такая, что Σ лежит по обе стороны от данной плоскости, но тогда на $+\infty$ и $-\infty$ найдутся ещё по два направления. \Box

Замечание. На самом деле даже $K\geqslant 0$ влечёт выпуклость поверхности, но это доказывать сложнее.

Лекция XV

11 декабря 2023 г.

Лемма 2.11.2. Пусть $\Omega \subset \mathbb{R}^2$ — область (в размерности 3 неверно), и пусть в Ω заданы два гладких поля — V, W, причём в $x_0 \in \Omega : V_{x_0}, W_{x_0}$ линейно независимы.

Тогда $\exists U_{x_0} \ni x_0$, и \exists карта $\phi: U_{x_0} \to \Omega_0$, такая, что V, W — касательные к координатным

Обратно, если $r = \phi^{-1}$, то $dr(1,0) \parallel V$ и $dr(0,1) \parallel W$.

Доказательство. 2.11.4

Определение 2.11.3 (Развёртывающаяся поверхность). Поверхность, локально изометричная плоскости.

Утверждение 2.11.1. Из теоремы Гаусса следует, что гауссова кривизна развёртывающейся поверхности — нуль.

Интересный факт. Если гауссова кривизна поверхности $K \equiv 0$, то поверхность — развёртывающаяся.

Теорема 2.11.2. Пусть $\Sigma \subset \mathbb{R}^3$ — развёртывающаяся поверхность.

- 1. Тогда $\forall p \in \Sigma : \exists a, b \in \Sigma : p \in (a, b)$ и $[a, b] \subset \Sigma$.
- 1+. Если одна из главных кривизн не нуль, то отрезок можно продолжать на любой компакт $K \subset \Sigma$.
- 2. Все касательные плоскости, построенные в точках [a, b], параллельны.
- 3. Интересный факт. Если Σ полная (в смысле топологического пространства: все фундаментальные последовательности имеют предел), то это — цилиндр (то есть восставлены перпендикуляры к некоторой кривой на поверхности).

Доказательство. Разобьём точки на омбилические Σ_0 (обе кривизны равны нулю) и остальные Σ_1 : $\Sigma = \Sigma_0 \sqcup \Sigma_1$.

Сначала рассмотрим точки из Σ_1 . Пусть в направлении v_1 кривизна $k_1=0$, а в направлении $v_2: k_2 \neq 0.$

Такой базис единственен, значит, векторы v гладко зависят от точки — чтобы их найти, надо решить соответствующее уранвение.

Тогда в окрестности каждой точки $x_0\in \Sigma$ можно выбрать параметризацию $r:\Omega\to \Sigma_1$, такую, что координатные линии параллельны главным направлениям: $\begin{cases} n'_x=-k_1r'_x=0\\ n'_y=-k_2r'_y \end{cases},\; r'_x\perp r'_y.$

Так как $n_x^\prime = 0$, то при перемещении нормали вдоль координатной линии — образа вектора (1,0) — она локально остаётся постоянной: $n(_, const) = const.$

Запишем $0=n''_{x,y}=n''_{y,x}$, значит, $n'_y\neq 0$ тоже постоянен вдоль оси x: $n_y(_,y_0)={
m const.}$

Так как $n_y' \parallel r_y'$, то n, n_y' — линейно независимы. Так как $n, n_y' \perp r_x'$, то r_x' — координатная линия — является куском прямой, можно выбрать внутри маленький отрезок [a,b]. Доказали 1 для Σ_1 .

Понятно, что интервал (a,b) можно продолжить в точке b, это не получится только если $b
otin \Sigma_1$ (либо $b \in \Sigma_0$, либо пришли к краю поверхности). Покажем, что ситуация $b \in \Sigma_0$ невозможная.

Лемма 2.11.3. Заметим, что $\langle r'_x, r'_x \rangle'_y = 0$.

Доказательство леммы.

$$\left\langle r_x',r_y' \right
angle = 0 \Rightarrow \left\langle r_{x,x}'',r_y' \right
angle + \left\langle r_x',r_{x,y}' \right
angle = 0.$$
 Мы доказали, что $r_{x,x}' \parallel r_x$, откуда первое слагаемое — нуль. Но $\left\langle r_x',r_x' \right
angle_y = 2 \left\langle r_x',r_{x,y}'' \right
angle = 0.$

Можно перепараметризовать так, что $\langle r'_x, r'_x \rangle = 1$ — взять натуральную параметризацию в направлении отрезка [a,b].

Теперь $r''_{x,x}=0$, то есть $r'''_{x,x,y}=0$, откуда $\left(r'_y\right)''_{x,x}=0$. Значит, $r'_y=(ax+b)w_0$, где w_0 — некий постоянный вектор.

Теперь вспомним, что $\xi_0 \coloneqq n_y' = -k_1 r_y'$. Получается, что $k_1 = \frac{1}{ax+b}$, при движении вдоль x. Значит, на данном отрезке кривизна никогда не станет нулём. Доказали 1+.

Посмотрим на Σ_0 . Если $p\in {\rm Int}\,\Sigma_0,\,\exists\underbrace{U}_{\ni p}\in\Sigma_0$. Дифференциал ${\rm d} n=0$ в данной окрестности, и U — часть плоскости. Иначе $\nexists\underbrace{U}_{\ni p}\in\Sigma_0$, то есть найдётся последовательность точек

 $p_1,\dots,p_n,\dots\in\Sigma_1:p_k\longrightarrow p$. Возьмём у каждой точке p_k интервал, проходящий через неё. Их длины не стремятся к нулю, так как интервалы могут заканчиваться только на краю поверхности, выберем сходящуюуся подпоследовательность отрезков. Доказали 1 для Σ_0 . \square

Теорема 2.11.3 (О выпрямлении векторного поля). Пусть $\Omega \subset \mathbb{R}^2$ (хотя вообще это верно для любой размерности). Зафиксируем $x \in \Omega$, Пусть V — гладкое векторное поле, $V_x \neq 0$.

Тогда \exists карта $\phi:\underbrace{U_x}_{\ni x} \to \Omega_0$, такая, что V — векторное поле координатных линий: $\mathrm{d}\phi(v)=(1,0)$, или если $r=\phi^{-1}$ — параметризация, то $r_x'=v$.

Доказательство. Рассмотрим гладкую регулярную кривую $\alpha(0) = x, \alpha'(0)$ и V'_x линейно независимы (например, можно выбрать так, чтобы было $\alpha'(0) \perp V'_x$).

Если такая карта существует (в качестве второй координатной линии взять α), то понятно, как она устроена. Построим параметризацию

$$r(t,\tau) = \gamma_{\tau}(t) = \begin{cases} \gamma_{\tau}(0) = \alpha(\tau) \\ \gamma'_{\tau}(t) = V(\gamma_{\tau}(t)) \end{cases}$$

Решая это дифференциальное уравнение (почему оно имеет решение?) получаем карту $\gamma_{\tau}(t)$, гладко зависящее от начальных данных.

Осталось проверить, что $\mathrm{d} r(0,0) \neq 0$. $r_{\tau}'(0,0) = \alpha'(0), r_{t}'(0,0) = V_{x}$, а V_{x} линейно независимо с $\alpha'(0)$.

Пусть $\phi = (\phi_1, \phi_2) = r^{-1}$ — расписали карту, обратную к параметризации, по координатам.

Теперь докажем лемму, анонсированную в начале лекции.

Лемма 2.11.4. Пусть $\Omega \subset \mathbb{R}^2$ — область (в размерности 3 неверно), и пусть в Ω заданы два гладких поля — V,W, причём в $x_0 \in \Omega: V_{x_0}, W_{x_0}$ линейно независимы.

Тогда $\exists U_{x_0} \ni x_0$, $u \exists \kappa$ карта $\phi: U_{x_0} \to \Omega_0$, такая, что V, W — касательные κ координатным линиям.

Обратно, если $r = \phi^{-1}$, то $dr(1,0) \parallel V$ и $dr(0,1) \parallel W$.

Доказательство. Применим к V,W теорему о выпрямлении векторного поля, назовём карту для V (ϕ_1,ϕ_2) , для W - (ψ_1,ψ_2) .

Возьмём в качестве карты $h := (\phi_2, \psi_2).$ Оно подходит:

- $V \in \operatorname{Ker} \mathrm{d} \phi_2, W \in \operatorname{Ker} \mathrm{d} \psi_2$. Действительно, ϕ_2 постоянно вдоль главных координатных линий, значит, $\mathrm{d} \phi_2(V) = 0$
- $\mathrm{d}\phi$ невырожден, значит, $\mathrm{d}\phi_2$ невырожден, аналогично $\mathrm{d}\psi_2$ невырожден. При этом V_{x_0} и W_{x_0} линейно независимы, значит, $\mathrm{d}h$ невырожден.