在 2-1 我们知道了 $\begin{bmatrix} 0 & -1 \end{bmatrix}$ 是 \mathbb{R}^2 中 counter clock wise 转90°的 linear transformation 现在再看几个:

(onsider a line L in coordinate plane, 算过 (0,0)

(性何 不 E R 2 都可以多数 不 = 式" + 式」)

其中 文" // L, 式 上 L.

而过个 T (灵) = 灵 " Bs transformation althe orthogonal projection of 灵 onto L.

denoted: proj_ (灵)

3. Reflection

Def 52.22 Reflection)

Consider a line L in coordinate plane, it (0,0), Let $\overrightarrow{R} = \overrightarrow{X}^{\perp} + \overrightarrow{X}^{\parallel}$

$$T(\vec{x}) = \vec{\chi}'' - \vec{\chi}'$$
denoted: $ref_{L}(\vec{x}) = \vec{\chi}'' - \vec{\chi}'$

$$Def(\theta) : 2i \text{ of } ref_{L}(\vec{x}) = \vec{\chi}'' - (\vec{\chi} - \vec{\chi}'')$$

$$= 2proj_{L}(\vec{x}) - \vec{\chi} = 2i \text{ of } \vec$$

$$ref_{L}(\vec{x}) = 2pnj_{L}(\vec{x}) - \vec{x}$$

$$= 2p\vec{x} - \vec{x} = (2p - I_{2})\vec{x}$$

$$\implies S = 2p - I_{2} = \begin{bmatrix} 2ui^{2} & 2u_{1}u_{2} \\ 2u_{1}u_{2} & 2u_{2}^{2} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2u_{1}^{2} - 1 & u_{1}u_{2} \\ 2u_{1}u_{2} & 2u_{2}^{2} - 1 \end{bmatrix}$$
4. Rotation

Thm @ 2.2.4 Rotations

$$T(x) = A x = \frac{1}{x^2} + \frac{1$$

<u>P</u>ナ 对于原始 vector ズ, 特集 coordinate & polar 形成表示为 (rcosg, vsing)

> rotation & x = (rcos(9+12), rsin(ptv))

$$\Rightarrow x_1' = r \cos(\varphi + \theta) = r \cos \varphi \cos \theta - r \sin \varphi \sin \theta$$

$$= \pi \cos \theta - y \sin \theta$$

$$y'_1 = r \sin(\beta + \theta) = r \sin \beta \cos \theta + r \cos \beta \sin \theta$$

= $x \sin \theta + y \cos \theta$

Thm 5 2.2.4 Rotations combined with a scaling

$$\overrightarrow{T(x)} = \overrightarrow{Ax}, A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = r \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

5. Sheanhy

horizontal:

Thm @22.5 Horizontal and vertical shearing

horizontal showing of slope [1 x2: [1 k]

vertical shearing of slope ky : [k 1]

Ž.:	11 20
Transformation	Mathx
Scaling by k	$kl_2 = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$
Orthogonal proj onto line L	[U, 2 4, 42] (\frac{1}{4} // L)
Reflection about line L	$\begin{bmatrix} 2U_1^2 - 1 & 2U_1U_2 \\ 2U_1U_2 & 2U_2^2 - 1 \end{bmatrix} \begin{bmatrix} a & b \\ b & -a \\ 0.46^2 - 1 \end{bmatrix}$
Rotation through angle 8 (遂母轩)	[sind wd] ([a b])
Rototion through the with scaling by r	r sint cost (22/b2=r2)
Shear	horizontal: [k]; vertical: [k]