CSCD84: Artificial Intelligence

Worksheet: Probability Review

Q1

Suppose the variables A and B are Boolean variables (i.e., A can have the value a or $\neg a$) and A is independent of B. Determine the missing values in the joint distribution for P(A,B) below.

$P(\neg a, \neg b)$	0.1
$P(\neg a, b)$	0.3
$P(a, \neg b)$	
P(a,b)	

Answer. A is independent of B. Hence, P(A=x,B=y)=P(A=x)P(B=y). Therefore, $\frac{P(\neg a, \neg b)}{(\neg a, b)}=\frac{P(B=\neg b)}{P(B=b)}=\frac{0.1}{0.3}=\frac{1}{3}$. Hence, $\frac{P(a, \neg b)}{P(a, b)}=\frac{P(B=\neg b)}{P(B=b)}=\frac{1}{3}\Rightarrow P(a,b)=3P(a,\neg b)$. These four probabilities should sum to 1. Therefore, $4P(a, \neg b)=0.6\Rightarrow P(a, \neg b)=\frac{P(a,b)}{3}=0.15$. The completed table would be

$P(\neg a, \neg b)$	0.1
$P(\neg a, b)$	0.3
$P(a, \neg b)$	0.15
P(a,b)	0.45

Q2

Suppose A, B and C are Boolean variables and that B is independent of C given A. Determine the missing values in the joint distribution for P(A,B,C) below.

$P(\neg a, \neg b, \neg c)$	0.01
$P(\neg a, \neg b, c)$	0.02
$P(\neg a, b, \neg c)$	0.03
$P(\neg a, b, c)$	
$P(a, \neg b, \neg c)$	0.01
$P(a, \neg b, c)$	0.1
$P(a,b,\neg c)$	
P(a,b,c)	

Answer. Since B is independent of C given A, P(A=x,B=y,C=z)=P(B=y|A=x,C=z)P(A=x,C=z)=P(B=y|A=x)P(A=x,C=z). Now, let's rewrite the table

$P(B = \neg b A = \neg a)P(A = \neg a, C = \neg c)$	0.01
$P(B = \neg b A = \neg a)P(A = \neg a, C = c)$	0.02
$P(B = b A = \neg a)P(A = \neg a, C = \neg c)$	0.03
$P(B = b A = \neg a)P(A = \neg a, C = c)$	
$P(B = \neg b A = a)P(A = a, C = \neg c)$	0.01
$P(B = \neg b A = a)P(A = a, C = c)$	0.1
$P(B = b A = a)P(A = a, C = \neg c)$	
P(B = b A = a)P(A = a, C = c)	

Rows 1 and 2 imply that $P(B=\neg b|A=\neg a)=1/4$, $P(B=b|A=\neg a)=3/4$, and $P(A=\neg a,C=\neg c)=1/25$. These results together with row 2 imply that $P(A=\neg a,C=c)=2/25$. Therefore, the value for row 4 is $2/25\times 3/4=0.06$. Moreover, $P(A=\neg a)=1-P(A=a)=3/25$. Rows 5 and 6 and the fact that P(A=a)=22/25 imply that $P(A=a,C=c)=10P(A=a,C=\neg c)=20/25$. Therefore, $P(B=\neg b|A=a)=1/8$ and P(B=b|A=a)=7/8. Thus, the value for rows7 and 8 are $7/8\times 2/25$ and $7/8\times 20/25$, respectively. The completed table would be

$P(\neg a, \neg b, \neg c)$	0.01
$P(\neg a, \neg b, c)$	0.02
$P(\neg a, b, \neg c)$	0.03
$P(\neg a, b, c)$	0.06
$P(a, \neg b, \neg c)$	0.01
$P(a, \neg b, c)$	0.1
$P(a,b,\neg c)$	0.07
P(a,b,c)	0.7

Q3

Given that $P(A \mid B) < P(A)$, show that $P(B \mid A) < P(B)$.

Answer.
$$P(A \mid B) < P(A) \Rightarrow \frac{P(A,B)}{P(B)} < P(A) \Rightarrow \frac{P(A,B)}{P(A)} < P(B) \Rightarrow P(B \mid A) < P(B)$$