Gustavo Oliveira Dias

Motivação o Trabalho

Protocolo MOTT

Formulação escopo do problema

Objetive

Metodo Propost

Estudo de caso

Conclusão

MONITORAMENTO REATIVO DE PROTOCOLOS EM SISTEMAS IOT SOBRE O MQTT

Gustavo Oliveira Dias

Universidade Estadual do Norte do Paraná Bacharelado em Ciência da Computação Orientador: Prof. Me. Wellington Aparecido Della Mura

Banca de Defesa do Trabalho de Conclusão de Curso 24 de novembro de 2017

Roteiro da Apresentação

Gustavo Oliveira Dias

Motivação do Trabalho

Protocol

Formulação escopo do

problema

Estrutu

Objetivo

Método Propost

TPi

Contratos multilaterai

Estudo de cas

Aplicação do algoritm

Conclusão

- Motivação;
- 2 Formulação e escopo do problema;
- Objetivos;
- Método proposto;
- **5** Estudo de Caso;
- 6 Conclusão;

Motivação - IoT

Gustavo Oliveira Dias

Motivação do Trabalho

Protocol MQTT

Formulação escopo do problema Estrutura

Objetivo

Método Propost

Estudo de caso Modelagem e conversão Aplicação do algoritmo

Conclusão

O que é Internet das Coisas?

Aplicações que **armazenam** e **processam** dados que **representam virtualmente** objetos do mundo físico, provendo **interação** e **comunicação** entre dispositivos **heterogêneos** conectados.

- Em 2011, movimentou cerca de US\$44 bi;
- Crescimento previsto em US\$290 bi para 2017;
- Até 2020, haverá em torno de 34 bi de dispositivos.

Desafio: lidar com a **comunicação** entre tantos dispositivos conectados.

Motivação - Protocolos

Gustavo Oliveira Dias

Motivação d Trabalho

Protocolos MQTT

Formulação escopo do problema

Estrutur

Objetivo

Método Proposto

Contratos multilatera

Estudo de caso Modelagem e conversão

Canalucão

Protocolos de comunicação

Conjunto de **regras-padrão** para **transmissão de informação** entre computadores.

- Formato;
- Sincronização;
- Sequência;
- Detecção de erros e falhas.

Motivação - MQTT

Gustavo Oliveira Dias

Motivação do Trabalho

Protocol

MQTT

Formulação escopo do problema

Objetive

Método Propost

Estudo de cas

Modelagem e conversa Aplicação do algoritmo

Conclusão

MQTT (Message Queue Telemetry Transport protocol)

Ideal para dispositivos com baixo poder de processamento em ambientes com largura de banda limitada.

Características:

- Utiliza TCP;
- Cabeçalho de apenas 2 bytes;
- Estratégia *publish/subscribe*;
- Clientes se inscrevem em tópicos;
- Implementa um servidor próprio: broker.
- 3 níveis de *Quality of Service* (QoS);

Motivação - Protocolos IoT

Gustavo Oliveira Dias

MOTT

Motivação

Gustavo Oliveira Dias

Motivação do Trabalho

Protocolos MQTT

Formulação e escopo do problema

Objetivo

Método Proposto

Contratos multilaterais

Modelagem e conversão Aplicação do algoritmo

Conclusão

É possível **detectar** e **identificar** o responsável por uma **violação** do protocolo?

Os protocolos IoT podem ser **modelados** por meio de **formalismos**?

Estrutura

Gustavo Oliveira Dias

Motivação do Trabalho

Protocok

Formulação escopo do problema

Estrutura

Objetivos

Método Propost

Contratos multilaterai

Modelagem e conversão Aplicação do algoritmo

Conclucão

Gustavo Oliveira Dias

Motivação do Trabalho

Protocolo MQTT

Formulação escopo do problema Estrutura

Objetivos

Metodo Propost

TPi

Contratos multilaterais

Estudo de caso Modelagem e conversão Aplicação do algoritmo

Objetivo geral

Mecanismo para formalização e monitoramento reativo de sistemas de loT que utilizam o protocolo MQTT.

Objetivos específicos:

- Definir métodos para representação de protocolos em contratos multilaterais a partir do modelo descrito em TPi;
- Representar o modelo em TPi do MQTT como um contrato multilateral;
- Aplicar o algoritmo de monitoramento a um estudo de caso real.

Representação formal - TPi

Gustavo Oliveira Dias

Motivação de Trabalho

Protocolo MQTT

Formulação escopo do problema

Objetive

Método Propos

TPi

Contratos multilaterai

Estudo de caso

Modelagem e conversão

Conclusão

O que é o TPi?

Uma linguagem temporal para modelagem de processos.

QoS nível 0 "(At most once)":

 $Cliente(Publish) \mid Servidor() \mid ClienteSub(), em que :$

 $Cliente(z) \stackrel{def}{=} \overline{c}\langle z \rangle$

 $Servidor() \stackrel{def}{=} c(x).\overline{pub}\langle x \rangle$

 $ClienteSub() \stackrel{def}{=} pub(y)$

Contratos multilaterais

Gustavo Oliveira Dias

Motivação d Trabalho

Protocole MQTT

Formulação escopo do problema

Objetiv

Método Proposto

Estudo de caso Modelagem e conversão Aplicação do algoritmo Acordo entre duas ou mais partes baseado em **compromissos mútuos**.

Composto por:

■ **Ação:** o que cada parte deverá fazer;

 $(A_QoS0enviarPublish, C, S, ?)$

■ Compromisso: garantia de cumprimento das ações entre as partes envolvidas;

```
c = (C_QoS0delivery, C, CS, 4, \\ \{(A_QoS0enviarPublish, tr), (A_QoS0receberPublish, fi), \\ (A_QoS0publicarPacote, tr), (A_QoS0receberPacote, fi) \}
```

■ Grafo de compromisso: forma de visualizar os compromissos entre as partes.

QoS 0 - "At most once"

Gustavo Oliveira Dias

Motivação d Trabalho

Protocolo

Formulação escopo do problema

01.1...

Método Propost

TPi

Contratos multilaterais

Estudo de caso

Modelagem e conversão

Conclusão

A comunicação baseia-se em um *broker* **recebendo** e **publicando** mensagens.

Compromissos	Classificação das aç	Rótulos	
Compromissos	tr	fi	Rotalos
C_QoS0delivery	A_QoS0enviarPublish		Q0, 1
(Q0)		A_QoS0receberPublish	Q0, 2
	A_QoS0publicarPacote		Q0, 3
		A_QoS0receberPacote	Q0, 4

Estudo de caso

Gustavo Oliveira Dias

Motivação do

Protocole

Formulação escopo do problema

Objetivo

Método Proposto

Estudo de caso

Modelagem e conversão Aplicação do algoritmo

Conclução

Sistema IoT de **detecção** e **supressão** de incêndio.

loT Protocolos

MQTT

Formulação escopo do problema

Estrutur

Objetivo

Método Propost

Estudo de caso

Anlicação do algoritmo

Conclucă

Estudo de caso

Mensagem	Tópico MQTT	Publisher	Subscriber	Ação do subscriber
Fire Detection	Fire/Detected	Sensor de incêndio	Арр	Exibir notificação
Sprinkler Request	Sprinkler/StReq	Арр	Sprinkler	Ler status
Sprinkler Reply	Sprinkler/StRep	Sprinkler	Арр	Enviar mensagem
Sprinkler Start	Sprinkler/Start	Арр	Sprinkler	Ativar sprinkler
Sprinkler Start	Sprinkler/Start	Sensor de incêndio	Sprinkler	Ativar sprinkler

Gustavo Oliveira Dias

Motivação do Trabalho

Protocolo MQTT

Formulação escopo do problema

Objetivo

Método Propost

TPi

Contratos multilaterais

Estudo de caso

Modelagem e conversã Aplicação do algoritmo

Conclusão

O sistema é baseado em três processos, que são **modelados** e convertidos em um **contrato**.

- Detecção/Alerta;
- Checagem;
- Supressão;
- O aplicativo assume o papél Ap durante a detecção/alerta e checagem, e recebe o papel Ap' no compromisso de supressão;
- Os agentes broker, sprinkler e sensor assumem os papéis Br, Sp e S, respectivamente.

Gustavo Oliveira Dias

Motivação do Trabalho

Protocolo MQTT

Formulação escopo do problema

Objetivo

Método Proposto

Contratos multilaterai

Modelagem e conversão

Aplicação do algoritm

Conclusão

Estudo de caso - Modelo para Detecção/Alerta

$$Sensor(FireDetection) \mid Broker() \mid App() \mid Sprinkler() :$$

$$Sensor(z) \stackrel{def}{=} \overline{fd}\langle z \rangle$$

$$Broker() \stackrel{def}{=} fd(x).\overline{fd'}\langle x \rangle$$

$$App() \stackrel{def}{=} fd'(y)$$

$$Sprinkler() \stackrel{def}{=} fd'(y')$$

Reativo de Protocolos em Sistemas IoT Sobre o MQTT Gustavo Oliveira Dias

Monitoramento

Estudo de caso - Conversão do modelo de Detecção/Alerta

```
опуаçа
abalho
т
```

Protocol MQTT

Formulação escopo do problema Estrutura

Objetive

TPi Contratos multilaterais

Modelagem e conversão

Conclusão

```
Conjunto de ações : { (\overline{fd}\langle z\rangle, S, Br, ?), (fd(x), Br, Br, ?), (\overline{fd'}\langle x\rangle, Br, Ap, ?), (fd'(y), Ap, Ap, ?), (\overline{fd'2}\langle x\rangle, Br, Sp, ?), (fd'2(y'), Sp, Sp, ?)\}
```

Compromisso:

```
m_1 = (C_- detectarIncendio, Sensor, Sprinkler, 6, 
\{(\overline{fd}\langle z\rangle, tr), (fd(x), fi), (\overline{fd'}\langle x\rangle, tr), (fd'(y), fi), 
(\overline{fd'2}\langle x\rangle, tr), (fd'2(y'), fi) \})
```

Estudo de caso - Conversão do modelo de Detecção/Alerta

Dias

Motivação o Trabalho

Protocolo MQTT

escopo do problema

Objetiv

Método Proposto

studo de ca

Modelagem e conversão Anlicação do algoritmo

Conclusão

1 Atribuir um nome ao compromisso;

$$name = C_detectarIncendio$$

Definir o agente e a mensagem que d\u00e3o in\u00edcio ao processo;

$$P_{ini} = (Sensor, FireDetection)$$

3 Identificar todos os agentes.

$$\mathcal{P} = \{Sensor, Broker, App, Sprinkler\}$$

Dias

Estudo de caso - Conversão do modelo de Detecção/Alerta

Motivação d

Motivação Trabalho

Protocolo MQTT

Formulaçã escopo do problema

Objetive

TPi

Estudo de ca:

Modelagem e conversão

Conclusão

4 Agrupar duplas compostas por cada agente e sua definição;

$$\mathcal{D} = \{ (Sensor, \{ \overline{fd} \langle z \rangle \}), \\ (App, \{ fd'(y) \}), (Sprinkler, \{ fd'(y') \}) \}$$

5 Identificar a ordem de execução das ações.

$$\mathcal{A} = \{ (\overline{fd}\langle z \rangle, Sensor), (fd(x), Broker), (\overline{fd'}\langle x \rangle, Broker), (fd'(y), App), (fd'(y'), Sprinkler) \}$$

Dias

Motivação Trabalho

Protocolo
MOTT

Formulação escopo do problema

Objetiv

Método Proposto

studo de ca

Modelagem e conversão

Conclusão

Estudo de caso - Conversão do modelo de Detecção/Alerta

- Quando uma mensagem é publicada para mais de um inscrito, então novas ações de saída são adicionadas;
- Ações de entrada podem ser modificadas.

```
Conjunto de ações : { (\overline{fd}\langle z\rangle, S, Br, ?), (fd(x), Br, Br, ?), (\overline{fd'}\langle x\rangle, Br, Ap, ?), (fd'(y), Ap, Ap, ?), (\overline{fd'2}\langle x\rangle, Br, Sp, ?), (fd'2(y'), Sp, Sp, ?)}
```

Dias

Estudo de caso - Conversão do modelo de Detecção/Alerta

Motivação o

IoT Protocolos

Formulaçã escopo do problema

Objetiv

Método Propost

TPi

Contratos multilaterais

Estudo de cas

Modelagem e conversão Aplicação do algoritmo

Conclusão

- O agente contido em $P_{ini} = (Sensor, FireDetection)$ é o **expedidor** do compromisso;
- O agente que envia a última ação é o recebedor;
- Ações de saída são do tipo trigger e ações de entrada são do tipo finish.

Compromisso:

$$m_1 = (C_- detectarIncendio, Sensor, Sprinkler, 6, \{ (\overline{fd}\langle z \rangle, tr), (fd(x), fi), (\overline{fd'}\langle x \rangle, tr), (fd'(y), fi), (\overline{fd'2}\langle x \rangle, tr), (fd'2(y'), fi) \})$$

Gustavo Oliveira Dias

Motivação d

Protocole

Formulação escopo do problema

Ectrutura

Estrutu

Objetive

Método Proposi

Contratos multilatera

Modelagem e conversão

Aplicação do algoritmo

Canalucão

Estudo de caso - Tabela de compromisso

0	Classificação das ações e compromissos			
Compromisso	tr fi		Rótulo	
	A_publicarAlerta		DI,1	
		A_receberAlerta	DI,2	
C_detectarIncendio	A_disponibilizarAlerta		DI,3	
(DI)		A_receberPubAlerta	DI,4	
	A_disponibilizarAlerta2		DI,5	
		A_receberPubAlerta2	DI,6	
	A_requisitarStatus		CS,1	
		A_receberRequisicao	CS,2	
	A_disponibilizarRequisicao		CS,3	
C_checarStatusSprinkler		A_receberPubRequisicao	CS,4	
(CS)	A_publicarStatus		CS,5	
		A_receberStatus	CS,6	
	A_disponibilizarStatus		CS,7	
		A_receberPubStatus	CS,8	
	A_publicarAtivacao		SI,1	
C_suprirIncencio		A_receberAtivacao	SI,2	
(SI)	A_disponibilizarAtivacao		SI,3	
		A_receberPubAtiv	SI,4	

Estudo de caso - Grafo de compromisso

Gustavo Oliveira Dias

Motivação do Trabalho

Protocole

Formulação e escopo do problema

Obietivo

Método Proposto

Contratos multilatera

Estudo de cas

Modelagem e conversão

$$order commitment = \{(m_2), (m_1 \cdot m_2), (m_1 \cdot m_2 \cdot m_3)\}$$

Gustavo Oliveira Dias

Motivação d Trabalho

Protocolo

Formulaçã escopo do problema

Objetivo

Método Proposto

studo de caso

Modelagem e conversão

Conclucão

Estudo de caso - Cenário da violação

- Um incêndio foi detectado pelo sensor;
- O aplicativo verificou que o status do sprinkler consta como desativado;
- O compromisso de Supressão é disparado;
- Porém, o *sprinkler* continua **desativado**.

Estudo de caso - Aplicação do algoritmo

Gustavo Oliveira Dias

Motivação d Trabalho

loT Protocolo MQTT

Formulação escopo do problema

Objetivo

Método Proposto

TPi

Contratos multilaterais

Estudo de caso

Modelagem e conversão

Aplicação do algoritmo

Conclusão

- 1 Entradas:
 - Contrato;
 - Ação perdida: $a_{miss} = A_{receber}Ativacao(SI_2)$
 - Última ação feita: $a_{done} = A_{publicarAtivacao}(SI_1)$
- 2 Localizar todas as ações que não ocorreram após a violação;

$$E_{not_occur} = \{SI_3, SI_4\}$$

Encontrar todas as ações que ocorreram antes da violação;

$$E_{cut} = \{DI_1, DI_2, DI_3, DI_4, DI_5, DI_6, CS_1, CS_2, CS_3, CS_4, CS_5, CS_6, CS_7, CS_8\}$$

4 Montar o grafo restruturado.

Gustavo Oliveira Dias

Motivação do

loT Protocole

Protocol

Formulação escopo do problema

Estrutur

Objetivo

Método Proposto

Contratos multilatera

Estudo de cas

Aplicação do algoritmo

C l . . ~ .

Estudo de caso - Grafo restruturado

Gustavo Oliveira Dias

Motivação do Trabalho

Protocol

Formulação escopo do problema

Objetivo

Método Proposto

Facility of the same

Estudo de cas

Aplicação do algoritmo

c . ~

Estudo de caso - Detecção do responsável

■ Se a mensagem "StartSprinkler" enviada por Ap' ao Br (SI, 1) estiver incorreta, então **Ap'** é o responsável;

Gustavo Oliveira Dias

Motivação de Trabalho

Protocolo

Formulação escopo do problema

Objetivo

Método Proposto

Contratos multilaterais

Modelagem e conversão Aplicação do algoritmo

Estudo de caso - Detecção do responsável

- Caso contrário, a mensagem direcionada por *Br* ao *Sp* é verificada;
- Se estiver incorreta, então **Br** é o responsável;

Estudo de caso - Detecção do responsável

Gustavo Oliveira Dias

Motivação d Trabalho

Protocol MOTT

Formulação escopo do problema

Objetivo

Método Proposto

Estudo de cas

Aplicação do algoritmo

c . ~

■ Se não, o responsável é o papel **Sp**.

Gustavo Oliveira Dias

Motivação d Trabalho

Protocolo MQTT

Formulação escopo do problema

O la : a 4 : . .

Método Propos

Contratos multilaterais

Estudo de caso

Modelagem e conversão

Aplicação do algoritmo

Conclusão

- Proposta: método para monitoramento reativo de protocolos IoT sobre o MQTT;
- É importante que violações sejam detectadas, assim como localizar o responsável;
- A solução proposta consiste em:
 - Descrever o modelo por meio do TPi;
 - 2 Desenvolver um método de conversão para representação em contrato multilateral;
 - 3 Aplicar o algoritmo de monitoramento;
- O que foi feito:
 - Aplicação da proposta para comunicação QoS 0.

Conclusão

Gustavo Oliveira Dias

Motivação d Trabalho

Protocolo MQTT

Formulação escopo do problema Estrutura

Objetive

TPi
Contratos multilaterais

Estudo de caso Modelagem e conversão Aplicação do algoritmo

Conclusão

Questões pendentes:

- Representação em TPi dos papéis, suas propriedades;
- Representação das ordens de execução dos compromissos;

Trabalhos futuros:

- Determinar meios para representação em TPi das propriedades pendentes;
- Adaptar o método de conversão para casos mais complexos;
- Estender o método proposto para os níveis 1 e 2 de QoS;
- Desenvolver um broker MQTT para implemente o monitoramento reativo.

Gustavo Oliveira Dias

Motivação d Trabalho

Protocolo
MQTT

Formulaçã escopo do problema

Objetive

Método Propost

Estudo de caso Modelagem e conversão

Conclusão

MONITORAMENTO REATIVO DE PROTOCOLOS EM SISTEMAS IOT SOBRE O MQTT

Gustavo Oliveira Dias

Universidade Estadual do Norte do Paraná Bacharelado em Ciência da Computação Orientador: Prof. Me. Wellington Aparecido Della Mura

Banca de Defesa do Trabalho de Conclusão de Curso 24 de novembro de 2017

Gustavo Oliveira Dias

Motivação do Trabalho

loT

MQTT

Formulação escopo do problema

Estrutura

Estrutu

Objetivo

Método Proposto

TPi

Contratos multilaterai

Estudo de cas

Anlicação do algoritm

Conclusão

QoS Level 0 Protocol:

 $Client(Publish) \mid Server()$, where:

 $Client(z) \stackrel{\mathsf{def}}{=} \overline{c}\langle z \rangle$

 $Server()\stackrel{\mathrm{def}}{=} c(x).\overline{pub}\langle x\rangle$

QoS Level 1 Protocol:

 $Client(Publish) \mid Server()$, where:

 $Client(z) \stackrel{\text{def}}{=} \overline{c}\langle z \rangle. timer^t(c'(y), Client(Publish_{DUP}))$

 $Server() \stackrel{\text{def}}{=} !c(x).\overline{pub}\langle x \rangle.\overline{c'}\langle Puback \rangle$

Sintaxe do TPi

Gustavo Oliveira Dias

Conclusão