Set#4: Probs. 11-14. Accional 10/14/89:1... 10/

Assigned 10/14/80; due 10/21/88.

[Jackson Prot. (6.2)]. Calculate the self-inductance per unit length for an asymmetric transmission line. Show: $\overline{L} = \frac{1}{c^2} [1 + 2 \ln(d^2/ab)]$.

Proposition of a particle (change q, mass m) in an EM field by potentials (ϕ, A) is described by Schrödinger's egtn: $\frac{1}{2}$ $\frac{3\psi}{3t}$, with the "electromagnetic Hamiltonian" $\frac{1}{2}$ $\frac{1}{2m}$ $(p-\frac{q}{c}A)^2+q\phi$, and $p\to(-)$ it ∇ as usual. Consider a gauge transform $\{A\to A'=A+\nabla g, \Delta f'=A+\nabla g,$

(A) Show that the required gauge transform for the wavefunction Ψ implies a phase shift: $\Psi \rightarrow \Psi' = \Psi \exp [i\beta(\kappa;t)]$, and find β in terms of the gauge function β . The transform $(\phi, A; \Psi) \rightarrow (\phi', A'; \Psi')$ now ensures that Schrödinger's extr is gauge invariant.

(B) Do the problem backwards. First, demand that Schrodinger's theory be invariant under local phase shifts: $\Psi \rightarrow \Psi' = \Psi e^{i}\beta$, $\beta = \text{same as part (A)}$. Show that $\Psi \notin \Psi'$ cannot both obey the free-particle extn: $(\frac{P^2}{2m})\Psi = i t (\frac{\partial \Psi}{\partial t})$. How must this extn be modified to be invariant under $\Psi \rightarrow \Psi' = \Psi e^{i}\beta$? How are the modifications related to potentials (ϕ, A) ?

This is the machinery of "gange theories" in QM: a local invariance for 4 in some field is used to fix the nature of the feed (potentials), and to fix possible couplings of wave eights.

\$519 Problems

- B Consider Jackson's Sec. (6.6). Assume that: (1) you have solved Eq. (6.57) for the wave's Fourier transform Ψ a la Green, so: Ψ(R, ω) = $\int_{\infty} G_k^{(\pm)}(R, R') \tilde{f}(R', \omega) dT'$, over an oo domain, (2) you know $G_k^{(\pm)}(R) = \frac{1}{R} e^{\pm ikR}$, R = |R R'|, from Eq. (6.62). Now, instead of doing Jackson's Eqs. (6.63 > 6.69), obtain the wave amplitude Ψ(R, t) by inverting both of the Fourier transforms $\tilde{\Psi}$ \$\tilde{f}\$. Show that the Same retarded advanced Green's fens $G^{(\pm)}(R, t; R', t')$ result, per Jackson's Eq. (6.66). What happens to this approach in a dispersive medium, when $\frac{\partial \omega}{\partial k} \neq \text{cnst}$?
- When the radial distance r > 0, and the 8's are Durac delta feas. Carryout a Fourier transform $G(r,t) \rightarrow \widetilde{G}(r,\omega)$, and solve the resulting ODE for \widetilde{G} [Also sorb the singularity at r = 0 into $\frac{\partial \widetilde{G}}{\partial r}$, and fix the multiplicative constant in \widetilde{G} by integrating the \widetilde{G} ODE over the small interval $0 \leq r \rightarrow 0 + 1$. Invert the transform, $\widetilde{G} \rightarrow G$, and show: $G(r,t) = \alpha \theta(ct-r)$ where θ is the unit step for $[\theta(x) \equiv 0$, 0 < 0; $\theta(x) \equiv 1$, 0 < 0. Find the constant 0 < 0. Finally, write out a particular integral for a solution to the inhomogeneous 10 wave extin: $(\frac{\partial^2}{\partial r^2} \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) \Psi(r,t) = -4\pi f(r,t)$.

\$ 519 Prob. Solutions

Calculate the self-inductance/length of a bifilar lead.

1. We use the result of prob = @ [Jackson's Prob = (6.1)] in the form:

$$W_{m} = \frac{1}{2c} \int d^{3}r \, J(r) \cdot A(r) \, , \quad A(r) = \frac{1}{c} \int d^{3}r' \, \frac{J(r')}{|r-r'|} \cdot \frac{1}{c} dr$$

All is the vector potential produced in one wire by contribu-

trons both from the interior of that wire plus the lexterior) a contribution from the other wire. There are two such pairings,

and since A is always along the direction of I, we can write ..

$$2c W_m = \int d^3r J_a \left(A_a^{(int)} + A_b^{(ext)} \right) + \int d^3r J_b \left(A_b^{(int)} + A_a^{(ext)} \right).$$
wire a wire b

.

2. In Eq. (2), the subscripts to wires a and b, and A will carry the algebraic Sign of the J which produced it. As magnitudes, take Ja=I/πδ² & Jb=I/πb²,

where I is the cornent, and then recall by the definition of self-inductance

I) that the magnetic energy Wm = 2 LI2. To get I, the self-in-

ductance per unit length, we suppress integration along the Z-axis. Then:

$$\overline{L} = \frac{1}{cI^2} (2cW_m)|_{z=cnst}, \text{ or from Eq. (2)} \dots$$

$$\rightarrow \overline{L} \cdot \pi c I = \frac{1}{a^2} \int dS_a \left(A_a^{(int)} + A_b^{(ext)} \right) + \frac{1}{b^2} \int dS_b \left(A_b^{(int)} + A_a^{(ext)} \right). \tag{3}$$

The integrations are now over the cross-sectional areas of the wires, where it is natural to use plane polar coss (p, ϕ) as indicated in the above diagram.

3. To get the A's in Eq. (3), we could try evaluating $A = \int d^3r' J/R$, but it is much easier to recognize that $A \in J$ are related by Poisson's extini

Assumption is that wire length >> a & b, so nothing changes along the z-axis.

* The quoted form of A appears in Jackson's Eq. (5.32).

$$\nabla^2 A = -(4\pi/c) \mathbf{J} \rightarrow \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial A_z}{\partial \rho} \right) = -\frac{4\pi}{c} J_z , \text{ in cylindrical symmetry.} \tag{4}$$

When J_z = cost, as is the case here, this extr[†] can be integrated easily, % getting involved in ambiguous integrations over z. For a circular region of radius R, the solutions to Eq. (4) are easily found to be ... Solutions to Eq. (4) are easily found to be... $0 \le p \le R$: $A^{(mit)} = \alpha - (\pi J/c) p^2$, $\alpha = cnst$;

$$\rho \geqslant R \left(\stackrel{\varepsilon}{+} \stackrel{\varepsilon}{J} \stackrel{\varepsilon}{=} 0 \right) : A^{(ext)} = \alpha - (\pi J/c) R^2 - \left(\frac{2\pi J}{c} R^2 \right) ln \frac{\rho}{R}.$$
 (5)

Here we have dropped the subscript 2, understanding A is along J. The cost a is ~ arbitrary (get same B= V x A for any a), except for the fact that a must change sign when I does ... otherwise A would preferentially depend on some I direction, which is untidy & non-isotropic.

4. The A's in Eq. (3) may now be read off from two results of Eq. (5) ...

$$\rightarrow A_a^{(int)} = \alpha - (I/a^2c)\rho_a^2, \quad A_b^{(ext)} = -\alpha + (I/c) + (I/c) \ln \frac{\rho_b^2}{b^2}. \quad (b)$$

Since: Pb= Po2+d2-2pod coso (low of Cosines), the 1st integral in (3) is...

$$\frac{1}{a^{2}}\int dS_{3}\left(A_{3}^{(int)}+A_{b}^{(ext.)}\right)=\frac{1}{ca^{2}}\int_{0}^{a}\rho_{3}d\rho_{3}\int_{0}^{2\pi}d\phi\left[-\frac{\rho_{3}^{2}}{a^{2}}+1+\ln\left(\frac{\rho_{3}^{2}+d^{2}-2\rho_{3}d\cos\phi}{b^{2}}\right)\right]$$

$$= \frac{2\pi I}{ca^2} \int_{0}^{a} \rho_a d\rho_a \left[1 - \frac{\rho_a^2}{a^2} + \ln(d^2/b^2)\right] = \frac{\pi I}{2c} \left[1 + 4 \ln(d/b)\right].$$

The 2rd integral in (3) will be: (#I/20) [1+4 ln (d/a)], similarly, Adding these results, we get the desired inductance/length from (3), as ...

$$c^2 \bar{L} = 1 + 2 \ln (d^2/ab)$$
.

* Unly tricky integration is $\int_{0}^{2\pi} d\phi \ln() = 2\pi \ln(1/b^{2}) + \int_{0}^{2\pi} d\phi \ln(\rho_{0}^{2} - 2\rho_{0} d\cos\phi + d^{2}),$ Use Dwight # (865.73) to get: Son do ln() = 211 ln(d2/62), as used in Eq. (7).

TEq. (4) = Jackson's Eq. 15.31). It is also obvious from form of A = Jd3r' J/R.

\$ 519 Prob. Solutions

Establish gauge invenience of Schrödinger Egtn, then do it backwards.

We take the hint that Ψ transforms as: $\Psi \rightarrow \Psi' = \Psi \exp[i\beta(\vec{x},t)]$, and note that we smust have $\beta=0$ when the gauge for $\beta=0$. It is reasonable to set $\beta=\alpha \beta$, and look for a enst α such that: $(\mathcal{H}-i\hbar\frac{\partial}{\partial t})\Psi=0 \rightarrow (\mathcal{H}'-i\hbar\frac{\partial}{\partial t})\Psi'=0$, is form-invariant under the gauge transform: $A \rightarrow A' = A + \nabla \beta$, $\phi \rightarrow \phi' = \phi - \frac{1}{c}(\partial \beta/\partial t)$. First note that the momentum operator for the gauge-transformed \mathcal{H} acts as follows: $(\mathbf{P}-\frac{q}{c}A)'\Psi'=(-i\hbar\nabla-\frac{q}{c}A-\frac{q}{c}\nabla \beta)\Psi'=i\alpha\beta$

 $(P - \frac{1}{c}A) \Psi = (-inV - \frac{1}{c}A - \frac{1}{c}Vg) \Psi e^{ivg}$

= $e^{i\alpha g} \left(-i\hbar \nabla - \frac{q}{c} A\right) \psi + \left[(\hbar \alpha - \frac{q}{c}) \nabla g\right] \psi e^{i\alpha g}$. (1)

Evidently we can avoid large helpings of unpalatable arithmetic if we choose? It such that the 2ND term here vanishes. Thus we try...

 $\alpha = 9/\hbar c$

(2)

Soy $E_{g}(1) \Rightarrow P' \psi' = e^{i\alpha g} P \psi$, $W = -i t \nabla - \frac{q}{c} A$ (momentum specutor). (3)

The hope is, of conse, that this choice of a goes all the way through to the regulied gange invariance of HY = its (34/2t). Another application of P' yields ...

(P')24' = eias P24 => (36'-40')4' = eias (36-40)4;

 $\psi' = \psi - \frac{1}{c} \dot{g}$ \\ \psi' + \frac{q}{c} \dot{g} \right) \psi' = e^{i \alpha g} (\frac{\psi}{2} \psi').

(4)

Now, note that the RHS of 764=it/04/2t) requires we look at ...

 $ih \frac{\partial}{\partial t} \psi' = ih \frac{\partial}{\partial t} (\psi e^{i\alpha g}) = e^{i\alpha g} (ih \frac{\partial}{\partial t} - h\alpha g) \psi.$

(5)

Subtract this equation: LHS-LHS = RHS-RHS from Eq. (4) to obtain...

 $(36'-i\hbar\frac{\partial}{\partial t}+\frac{q}{c}\dot{g})\psi'=e^{i\alpha g}(36-i\hbar\frac{\partial}{\partial t}+\hbar\alpha\dot{g})\psi.$ (6) The same choice of a as in Eq. (2), that = \frac{9}{c}, ensures that if: (46-it \frac{3}{2t}) \psi = 0, then: (76'- it 3t) 4' = 0. Thus the Schrödinger Egth is gauge invariant if:

4 > 4'= 4 exp[i|q/hc)g(r,t)], B= gauge transform for. (F) ~~

B. If $\psi \rightarrow \psi' = \psi e^{i\beta}$, $\beta = (9/\hbar c)g$, under a local phase shift β ["local" means the phase shift changes at lack space-time point; it is not a global luniform) phase Shift everywhere in space-time I, then it is clear that both Y & Y' cannot satisfy the free particle Schrödinger ext.: - (th2/2m) V2 4 = it (04/2t); one or the other of the 4 4 egths will involve derivatives of B, which cannot be arbitrarily set to zero. Demanding that: [V2+(2im/h) at] \psi = 0, be forminvariant under 4 - 4 = 4 e 18 requires new degrees of freedom for the operators $\nabla \notin \partial/\partial t$, Say: $\nabla \rightarrow \nabla + \mathbb{K}$, $\partial/\partial t \rightarrow \partial/\partial t + \Omega$, where $\mathbb{K} \notin \Omega$ are now vector & scalar fields constructed to make the Y > Y = Y e 1 invariance work.

Put (V+K) & (∂t+Ω) into the free-particle Schrödinger egtn. Then, when V → V = Veiß, the phase invariance requires K&D to transform in a gauge-like way ...

 $K \to K' = K - i \nabla \beta$, $\Omega \to \Omega' = \Omega - i \frac{\partial \beta}{\partial t}$. (8) $\int With \beta = \alpha g$, the assignment: $K = -i \propto A$, $\Omega = i c \propto \phi$, brings Us back to the standard potentials A & p, and to the standard wave egth, viz.: it ot = [2m(-it. V- \(\frac{4}{c}\A)^2 + qφ] \(\psi\). The procedure is unique so long as \(\mathbb{E}\) \(\pi\) are fields, not Specifically: $e^{-i\beta}\left(\frac{\hbar^2}{2m}\nabla^2 + i\hbar\frac{\partial}{\partial t}\right)\psi' = \left(\frac{\hbar}{2m} + i\hbar\frac{\partial}{\partial t}\right)\psi - \left(\hbar\beta\frac{\partial\beta}{\partial t}\right)\psi' + \frac{\partial\beta}{\partial t}\psi' + \frac$

Alternati derivation of Jackson's Egs. (6.63)-(6.69).

2) Assumptions (1) & (2) allows writing the solution for the wave's Fourier transform $\widetilde{\psi}(\vec{x},\omega) = \int_{\infty} \frac{d\tau'}{R} e^{\pm ikR} \, \widehat{f}(\vec{r}',\omega)$

In real time, the wave is: $\Psi(\vec{r},t) = \frac{1}{2\pi} \int d\omega \, \widetilde{\Psi}(\vec{r},\omega) \, e^{-i\omega t}$, and the source for transform: f(F; w) = I dt'f(F,t') eiwt'. Notice that we have resed t' as the integration variable, so as not to confuse it with the field point observation time t. Putting this together, we have ...

 $2\pi \Psi(\vec{r},t) = \int_{-\infty}^{\infty} d\omega \left\{ \int_{\infty}^{\infty} \frac{d\tau'}{R} e^{\pm ikR} \left[\int_{-\infty}^{\infty} dt' f(\vec{r}',t') e^{i\omega t'} \right] \right\} e^{-i\omega t}$ $= \int_{\infty}^{\infty} \frac{d\tau'}{R} \int_{-\infty}^{\infty} dt' f(\vec{r}',t') \left\{ \int_{-\infty}^{\infty} d\omega e^{i[\omega(t'-t)\pm kR']} \right\}.$ (2)

2) If we assume no dispersion: $k = \omega/c$, c = indpt. of ω , the last integral is $\{\} = \int_{-\infty}^{\infty} d\omega \, e^{i\omega[t'-(t\mp\frac{R}{c})]}$ $= 2\pi \delta(t'-[t\mp\frac{R}{c}]),$ (3)

and then Eq. (2) yields ...

$$\psi(\vec{r},t) = \int_{\infty}^{\infty} d\tau' \int_{-\infty}^{\infty} dt' f(\vec{r}',t') \left\{ \frac{1}{R} \delta(t' - [t \mp \frac{R}{c}]) \right\}.$$

The 17 is just Jackson's Gt (7, t; ri, t') of his Eq. 16.66), and the solution for YIV, t) is = Jackson's un-numbered egting at bottom of his p. 225.

3) For a dispersive medium, let $k = \frac{\omega}{c} D(\omega)$. Then the integral in Eq. (3) becomes: { } = I dw eiw[(t'-t) ± & D(w)]. This must be evaluated on a case-by-case basis, and the idea of retarded and advanced times t'= t = R in Eq. (4) loses its meaning.

\$ 519 Prot. Solutions

Construct Green's Function for a 1D Spherical wave.

4) A Forvier transform: $G(r,t) \rightarrow \widetilde{G}(r,\omega) = \int_{-\infty}^{\infty} G(r,t) e^{i\omega t} dt$, through the defining egtn: $G_{rr} - \frac{1}{c^2} G_{tt} = -4\pi S(r) S(t)$, easily gives a harmonic oscillator egt. § solution: $\widetilde{G}_{rr} + (\omega/c)^2 \widetilde{G} = -4\pi S(r) \Rightarrow \widetilde{G}(r,\omega) = A Sin(\frac{\omega r}{c}) \int_{-\infty}^{\omega r} \frac{dr}{dr} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1)} \int_{-\infty}^{\omega r} \frac{dr}{dr} r = 0; \text{ choose (1$

2) To fix A, integrate the \widetilde{G} different over $0-\langle r=\varepsilon \rightarrow 0+$, i.e. $\int_{-\infty}^{\infty} dr \times egtn$. Here: $(\partial \widetilde{G}/\partial r)|_{r=0-}^{r=\varepsilon} + (\omega/c)^2 \int_{-\infty}^{\infty} \widetilde{G} dr = -4\pi \int_{-\infty}^{\infty} \delta(r) dr = -4\pi$.

By choice, $G(r,t) \notin \widetilde{G}(r,\omega)$ are continuous (in fact = 0) at r=0, so $\int_{-\widetilde{G}} \widetilde{G} dr \to 0$ as $E \to 0$. Since G must = 0 for r < 0, then also $(\partial \widetilde{G}/\partial r) = 0$ at 0-, and $E_{\widetilde{G}}$. (2) is...

$$\frac{1}{1} |\partial \widetilde{G} |\partial r||_{r=\varepsilon} = \frac{A\omega}{c} \cos(\omega \varepsilon / c) = -4\pi \implies \underline{A = -4\pi c/\omega}.$$

3) $S_0: \tilde{G}(r, \omega) = -(4\pi c/\omega) \sin(\frac{\omega r}{c})$, which has the four in inverse...

$$= G(r,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{G}(r,\omega) e^{-i\omega t} d\omega = (-) 2c \int_{-\infty}^{\infty} \frac{d\omega}{\omega} e^{-i\omega t} \sin(\frac{\omega r}{c})$$

$$= (-) c \int_{-\infty}^{\infty} \frac{d\omega}{i\omega} \left[e^{-i(t-\frac{r}{c})\omega} - e^{-i(t+\frac{r}{c})\omega} \right], \qquad (4)$$

$$\frac{\partial G}{\partial t} = c \int_{-\infty}^{\infty} d\omega \left[e^{-i(t-\frac{\gamma}{c})\omega} - e^{-i(t+\frac{\gamma}{c})\omega} \right] = 2\pi c \left[\delta(t-\frac{\gamma}{c}) - \delta(t+\frac{\gamma}{c}) \right]. \quad (5)$$

The 2^{NO} S-fer does not contribute for t=0+ (since $t+\frac{v}{c}>0$). Then, as advertised

$$G(r,t) = \alpha \theta(t-\frac{\gamma}{c}), \quad \alpha = 2\pi c$$
, $\theta = unit step fen =)$

*At any pethological point for a Green's fon, Y=0 in this case, one always considers the Néhavior of G as the singularity is approached from "above" of "below; hence 0-3×50+

t' + 0, r' + 0, then we let t > (t-t'), r > (r-r') in Eq. (6), and use ...

 \rightarrow $G(r,t; r',t') = 2\pi c \theta([t-t'] - \frac{1}{c}[r-r'])$, t > t' understood.

(7)

(9)

This fen satisfies: $G_{rr} - \frac{1}{c^2}G_{tt} = -4\pi \delta(r-r')\delta(t-t')$. Note that by the symmetry of the δ -fen: $\partial G/\partial t' = -\partial G/\partial t$, and $\partial G/\partial r' = -\partial G/\partial r$.

5) The utility of G for the 1D problem lies in the usual manufacture of a particular integral for the inhomogeneous problem, as follows...

INHOM. EQTN: Yrr - \frac{1}{c^2} \Pt't' = -4\pi flr;t'), \P=\Plr;t') \mult. mult. mult. muft by G

GREEN'S ERTN: Grr - \frac{1}{c^2} Gt't' = -4\pi \delta(\gamma-\gamma') \delta(t-t') \quad \text{mult. on left by } \Partial \text{mult. on left b

 $\frac{\partial}{\partial r'}\left(G\psi_{r'} - \psi G_{r'}\right) - \frac{1}{c^2}\left(G\psi_{t'} - \psi G_{t'}\right) = -4\pi \left[Gf - \psi \delta(r-r')\delta(t-t')\right]$

... integrate: \$\int dr'\int dt', a=\position of some bridy (botto, \(\cappa\); rearrange times...

 $\Psi(r,t) = \int_{0}^{\infty} dr' \int_{0}^{t+1} dt' Gf(r',t') + \frac{1}{4\pi} \int_{0}^{\infty} dt' (G\Psi_{r'} - \Psi_{Gr'}) \Big|_{T'=0}^{T'=a} - \frac{1}{4\pi} \int_{0}^{\infty} dr' (G\Psi_{r'} - \Psi_{Gr'}) \Big|_{T'=0}^{T'=a}$

- 1/4TC2 \$ dr' (Gyt'- YGt') | t'=tt

In the last term, both $G \notin G_{t'}$ vanish at the upper limit (since t-t+<0). In the t' integrations, $G \notin G_{t'}$ are non-zero only for $(t-t')-\frac{1}{c}(r-r')\geqslant 0$, i.e. for $0 \le t' \le t_{ret.}$, where i $t_{ret.} = t-\frac{1}{c}(r-r')$. Thus we get, finally...

 $\left[\begin{array}{c} \psi(r,t) = \int_{0}^{a} dr' \int_{0}^{t} dt' Gf(r',t') + \frac{1}{4\pi} \int_{0}^{t} dt' (G\psi_{r'} - \psi_{G_{r'}}) \Big|_{r'=0}^{r'=0} + \frac{Boundary}{term} \right]$

Beliader integral

+ \frac{1}{4\tau c^2} \int dr' (G\psi_{t'} - \psi G_{t'}) \times \text{Propagation/} \frac{1}{t'=0} \text{ instial } \frac{1}{t'} \text{ instial } \frac{1}{t'}