Uma Abordagem Eficiente e Sustentável para Classificação de Aderência Temática usando Sentence-BERT e LightGBM

Vinícius Santos Monteiro

¹Instituto de Ciências Matemáticas e de Computação – Universidade de São Paulo (USP) São Carlos – SP – Brazil

vini.mon@usp.br

Abstract. This study proposes a computationally efficient solution to the LeanDL-HPC 2025 challenge, which involves the multi-class classification of the adherence of academic productions to strategic themes. The methodology employed is based on a two-phase architecture: initially, semantic features are extracted from the texts using the pre-trained Sentence-BERT model; then, supervised classification takes place. Two classifiers with low computational cost were analyzed: Logistic Regression, used as a baseline model, and LightGBM, a gradient boosting model. The results indicate that the suggested architecture is efficient, with the LightGBM model obtaining a weighted F1-score of 0.54, representing an improvement of 5 points compared to the baseline. In addition, the carbon footprint of each stage was monitored using the CodeCarbon library, proving the viability of the solution in terms of low-cost computing and sustainability.

Resumo. Este estudo propõe uma solução eficiente em termos computacionais para o desafio LeanDL-HPC 2025, que envolve a classificação multi-classe da aderência de produções acadêmicas a temas estratégicos. A metodologia empregada fundamenta-se em uma arquitetura de duas fases: inicialmente, são extraídas características semânticas dos textos por meio do modelo préteinado Sentence-BERT; em seguida, ocorre a classificação supervisionada. Dois classificadores de baixo custo computacional foram analisados: Regressão Logística, utilizada como modelo de base (baseline), e LightGBM, um modelo de gradient boosting. Os resultados indicam que a arquitetura sugerida é eficiente, com o modelo LightGBM obtendo um F1-score ponderado de 0.54, representando uma melhoria de 5 pontos em comparação com o baseline. Além disso, a pegada de carbono de cada etapa foi acompanhada com o uso da biblioteca CodeCarbon, comprovando a viabilidade da solução em termos de computação de baixo custo e sustentabilidade.

1. Introdução

A crescente demanda por alinhamento entre a produção científica e as necessidades estratégicas da sociedade traz desafios consideráveis na análise e categorização de grandes volumes de texto. O LeanDL-HPC Challenge 2025 apresenta um desafio prático nessa área: relacionar teses e dissertações a tópicos de importância estratégica, classificando o grau de aderência como Baixo, Médio ou Alto. Este relatório descreve uma metodologia criada para solucionar este problema, com um enfoque duplo na precisão e na eficiência

computacional. A ideia principal é que modelos de linguagem modernos podem ser usados de maneira "enxuta" (lean), dissociando a fase de extração de características, que exige mais recursos computacionais, da formação de classificadores leves. Essa estratégia busca equilibrar a capacidade de representação semântica dos modelos de transformação (transformers) com as demandas de baixo consumo de recursos defendidas pela computação de alto desempenho (HPC) sustentável. O código-fonte e os experimentos completos estão disponíveis publicamente em um notebook do Google Colab¹.

2. Objetivos

Este estudo tem como objetivo criar e avaliar uma arquitetura de duas etapas (extração de características com Sentence-BERT e classificação com modelos leves) para enfrentar o desafio LeanDL-HPC 2025, concentrando-se no equilíbrio entre desempenho preditivo e pegada de carbono.

3. Abordagem Proposta

A solução foi implementada em um pipeline sequencial, compreendendo as etapas de pré-processamento de dados, extração de características e modelagem.

3.1. Pré-processamento e Preparação dos Dados

O conjunto de dados inicial, composto por informações textuais e categóricas de produções acadêmicas, passou por uma etapa de limpeza para tratamento de valores ausentes. Para cada par (produção, tema), foram criados dois documentos de texto consolidados:

- **Documento da Produção:** Concatenação do título, resumo (em português) e abstract (em inglês) da produção acadêmica.
- **Documento do Tema:** Concatenação do nome do tema estratégico e suas palavras-chave associadas.

3.2. Extração de Características com Sentence-BERT

A conversão de documentos de texto em vetores numéricos densos, também conhecidos como embeddings, é o núcleo de nossa metodologia. Para esta tarefa, escolheu-se o modelo paraphrase-multilingual-MiniLM-L12-v2 da biblioteca Sentence-Transformers. Este modelo foi selecionado devido ao seu equilíbrio entre desempenho e eficiência, sendo mais leve do que os modelos BERT convencionais e tendo uma capacidade multilíngue nativa, apropriada para nosso corpus [Reimers and Gurevych 2019].

Cada "Documento da Produção" e "Documento do Tema" foi processado pelo modelo, gerando um embedding de 384 dimensões para cada. O vetor de características final para cada amostra de dados foi criado pela concatenação do embedding da produção e do embedding do tema, resultando em um vetor de 768 dimensões.

Ihttps://colab.research.google.com/drive/108BKSmGwF8HEuggTLdGtzNnVjbULDqB5?
usp=sharing

3.3. Modelos de Classificação

Com os vetores de características definidos, dois modelos de classificação foram treinados e avaliados:

- Regressão Logística (Baseline): Um modelo linear selecionado devido à sua simplicidade, facilidade de interpretação e custo computacional de treinamento extremamente baixo.
- 2. **LightGBM:** Um modelo de Gradient Boosting Machine (GBM) fundamentado em árvores. Foi selecionado devido à sua habilidade de identificar relações nãolineares nos dados, desempenho superior e elevada eficiência de treinamento em relação a outros algoritmos de boosting [Ke et al. 2017].

Em ambos os modelos, usou-se o parâmetro de balanceamento de classes para reduzir o impacto da distribuição desequilibrada dos rótulos (Baixo, Médio, Alto) no conjunto de dados.

3.4. Cálculo da Pegada de Carbono

A biblioteca CodeCarbon foi utilizada para monitorar a pegada de carbono. As emissões de CO₂eq (em gramas) foram medidas individualmente nas duas fases mais onerosas do processo: a criação de todos os embeddings e o treinamento de cada um dos classificadores [Lacoste et al. 2021].

4. Resultados

Os modelos foram treinados em 75% do conjunto de dados e avaliados nos 25% restantes. A Tabela 1 apresenta os resultados de performance, enquanto a Tabela 2 detalha a pegada de carbono.

Figure 1. Distribuição das classes de aderência (Baixa, Média, Alta) no conjunto de dados.

Table 1. Resultados de Performance dos Modelos de Classificação

	F1-Score			
Modelo	ALTA	MEDIA	BAIXA	Ponderado
Regressão Logística	0.48	0.38	0.56	0.49
LightGBM	0.55	0.39	0.62	0.54

Table 2. Pegada de Carbono Estimada das Etapas do Pipeline

Etapa do Processo	Emissões (gCO ₂ eq)	
Geração de Embeddings (Custo único)	2.67840	
Treinamento - Regressão Logística	0.33014	
Treinamento - LightGBM	0.45240	

O modelo LightGBM apresentou uma vantagem evidente em todas as métricas, obtendo um F1-score ponderado de 0,54, o que representa um crescimento de 5 pontos percentuais em comparação com o baseline da Regressão Logística. O ganho mais significativo foi na classificação da classe "ALTA", que teve um crescimento de 7 pontos no F1-score, sinalizando uma habilidade melhorada para identificar corretamente as produções de maior aderência. Para ambos os modelos, a classe "MEDIA" continuou sendo a mais difícil.

Em termos de eficiência, os dados apresentados na Tabela 2 indicam que o maior custo da abordagem está na criação dos embeddings. O custo de treinamento de ambos os classificadores é consideravelmente reduzido, sendo que o LightGBM exibe um consumo de recursos um pouco maior do que a Regressão Logística. No entanto, esse aumento é amplamente compensado pelo ganho significativo em desempenho.

5. Conclusão

Este estudo apresentou com êxito uma metodologia eficaz e econômica para a classificação de aderência temática. A abordagem de extração de características usando Sentence-BERT e classificação com LightGBM demonstrou ser robusta, superando de forma significativa o modelo de baseline, com um custo computacional de treinamento apenas marginalmente maior.

A análise da pegada de carbono confirma a eficácia da arquitetura "lean", na qual o custo computacional mais alto é incorrido apenas uma vez durante a etapa de vetorização, possibilitando experimentações rápidas e econômicas com diversos modelos de classificação. Conclui-se que a solução apresentada atende aos critérios do desafio LeanDL-HPC, fornecendo um modelo com excelente desempenho preditivo e em conformidade com as práticas de computação sustentável.

Para trabalhos futuros, recomenda-se a experimentação com modelos de embedding mais recentes e a aplicação de técnicas de fine-tuning do modelo de linguagem para tarefas específicas, visando um aumento ainda maior na performance, sempre observando o impacto no custo computacional, além da parte ambiental focada nesse projeto que é a pegada de carbono.

6. References

References

- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In *Advances in neural information processing systems 30*.
- Lacoste, A., Schmidt, A., Dandres, T., and Anthony, J. (2021). Codecarbon: A machine learning emissions calculator. *arXiv preprint arXiv:2110.11432*.
- Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics.