Übung 0.1. Zeigen Sie, dass die Verbände $\mathcal{L}(K_1 \times K_2)$ und $\mathcal{L}(K_1 * K_2)$ schon bis auf Isomorphie durch $\mathcal{L}(K_1)$ und $\mathcal{L}(K_2)$ bestimmt sind und geben Sie explizite Konstruktionen an (Zusatz: auch für den äußeren Join).

Lösung. Sei $F \in \mathcal{L}(K_1 \times K_2)$, dann gibt es eine Stützhyperebene, die durch den Kern einer linearen Abbildung der Form $\langle a_1, \pi_1(\bullet) \rangle + \langle a_2, \pi_2(\bullet) \rangle$, mit $\pi_i : \mathbb{R}^{d_1 \sqcup d_2} \to \mathbb{R}^{d_i}$ als Projektionen und $a_i \in \mathbb{R}^{d_i}$. Insbesondere ist also ker $\langle a_i, \bullet \rangle \cap K_i$ eine exponierte Seite von K_i und aufgrund der Stützhyperebeneneigenschaft wird das obige Funktional auf $K_1 \times K_2$ genau dann 0, wenn beide Summanden 0 werden. Dies zeigt, dass die exponierten Seiten von $\mathcal{L}(K_1 \times K_2)$ genau die kartesischen Produkte der Seiten von $\mathcal{L}(K_1)$ und $\mathcal{L}(K_2)$ sind. Damit ist $\mathcal{L}(K_1 \times K_2) \equiv \mathcal{L}(K_1) \times \mathcal{L}(K_2) / \sim$, wobei \sim die von Paaren der Form ((a,b),(c,d)) erzeugte Äquivalenzrealtion, sodass $\emptyset \in \{a,b\},\{c,d\}$. Für den Verband $\mathcal{L}(K_1 \times K_2)$ erhält man ein ähnliches Ergebnis. Dazu wenden wir einfach die Identität $(K_1 \times K_2) = (K_1^* \times K_2^*)^*$ an und erhalten

$$\mathcal{L}(K_1 * K_2) = (\mathcal{L}^*(_1)^* \times \mathcal{L}^*(K_2) / \sim)^*.$$

Diesmal werden also alle Elemente des Verbandes $\mathcal{L}(K_1 \times K_2)$ mit Höhe größer oder gleich $d_1 + d_2 - 1$ identifiziert. Für den äußeren Join ergibt sich einfach das direkte Produkt als Verband.

Übung 0.2. Seien $K_1 \in \mathfrak{K}^{d_1}$, $K_2 \in \mathfrak{K}^{d_2}$ mit 0 im Inneren von K_1 und K_2 . Ziegen Sie, dass

- (a) $(K_1 \times K_2)^* = K_1^* * K_2^*$
- (b) $(K_1 * K_2)^* = K_1^* \times K_2^*$.

Lösung.

- (a) Sei $(a_1, a_2) \in (K_1 \times K_2)^*$, dann gilt für alle $k_1 \in K_1$, $k_2 \in K_2$, dass $\langle a_1, k_1 \rangle + \langle a_2, k_2 \rangle \leq 1$. Setzen wir k_1 bzw. k_2 jeweils auf 0, so erhalten wir, dass $a_i \in K_i^*$ sein muss. Andererseits erfüllen alle $(\lambda k_1^*, (1 \lambda)k_2^*)$ mit $\lambda \in [0, 1], k_i^* \in K_i^*$ offensichtlich die obige Relation, also $K_1^* * K_2^* \subseteq (K_1 \times K_2)^*$. Andererseits können wir $(a_1, a_2) \in (K_1 \times K_2)^*$ schreiben als $(\lambda_1 k_1^*, \lambda_2 k_2^*)$ mit k_i^* Randpunkt von K_1^* (da K_i die 0 im Inneren hat ist K_i^* beschränkt). Es gibt also, da k_i^* Randpunkte sind ein $k_i \in K_i$, sodass $\langle k_i^*, k_i \rangle = 1$. Damit folgt aber, dass $\lambda_1 + \lambda_2 \leq 1$. Durch entsprechendes verkleinern der k_i^* mit dem Faktor $\lambda_1 + \lambda_2 \leq 1$ erhalten wir also, dass $(a_1, a_2) \in K_1^* * K_2^*$.
- (b) Wir ersetzen die K_i in der ersten Teilaufgabe durch K_i^* und wenden den Dualitätsoperator einmal an.