▼ Checkpoint 1:Print out the first 5 columns.

Checkpoint 2: Use describe() to learn about the DataFrame.

summary	Date	0pen	High	Low	Close	Volume	Adj Close
count							
mean	nul1	72. 35785375357709	72. 83938807631165	71. 9186009594594	72. 38844998012726	8222093. 481717011	67. 23883848728146
stddev	nul1	6.76809024470826	6.768186808159218	6.744075756255496	6. 756859163732991	4519780. 8431556	6.722609449996857
min	2012-01-03	56. 389998999999996	57.060001	56. 299999	56. 419998	2094900	50. 363689
max	2016-12-30	90. 800003	90. 970001	89. 25	90. 470001	80898100	84. 91421600000001

Checkpoint 3: format number

[]

summary Open High Low Close Volume	_		L	L	L	L	L	_
mean 72.36 72.84 71.92 72.39 8222093 stddev 6.77 6.77 6.74 6.76 4519780		summary	0pen	High	Low	Close	Volume	
max 90.80 90.97 89.25 90.47 80898100	1	mean stddev min	72. 36 6. 77 56. 39	72. 84 6. 77 57. 06	71. 92 6. 74 56. 30	72. 39 6. 76 56. 42	8222093 4519780 2094900	

- Checkpoint 4: HV Ratio

HV Ratio = df["High"]/df["Volume"]

Create a new dataframe with a column called HV Ratio that is the ratio of the High Price versus volume of stock traded for a day.

HV Ratio

4. 819714653321546E-6
6. 290848613094555E-6
4. 66941299478316E-6
7. 367338465826307E-6
8. 915604778943901E-6
8. 644477436914568E-6
9. 351828421515645E-6
8. 29141562102703E-6
7. 712212102001476E-6
7. 701764823529412E-6
1. 015495466386981E-5
6. 576334146362592...
5. 90145296180676E-6
8. 547679455011844E-6

▼ Checkpoint 5: What is the mean, max and min of the Close column?

▼ Checkpoint 6: How many days was the Close lower than 60 dollars?

Checkpoint 7: What percentage of the time was the High greater than 80 dollars?
 In other words, (Number of Days High>80)/(Total Days in the dataset)

```
[] # Many ways to do this
9.141494435612083
```

▼ Checkpoint 8: What is the Pearson correlation between High and Volume?

hint: corr("High","Volume")

<u>Hint</u>

▼ Checkpoint 9: What is the average Close for each Calendar Month?

In other words, across all the years, what is the average Close price for Jan, Feb, Mar, etc... Your result will have a value for each of these months.

Great Job!