# **Sherlock and The Beast**



### **Problem Statement**

Sherlock Holmes is getting paranoid about Professor Moriarty, his arch-enemy. All his efforts to subdue Moriarty have been in vain. These days Sherlock is working on a problem with Dr. Watson. Watson mentioned that the CIA has been facing weird problems with their supercomputer, 'The Beast', recently.

This afternoon, Sherlock received a note from Moriarty, saying that he has infected 'The Beast' with a virus. Moreover, the note had the number N printed on it. After doing some calculations, Sherlock figured out that the key to remove the virus is the largest P doing N digits.

A *Decent Number* has the following properties:

- 1. 3, 5, or both as its digits. No other digit is allowed.
- 2. Number of times 3 appears is divisible by 5.
- 3. Number of times 5 appears is divisible by 3.

Meanwhile, the counter to the destruction of 'The Beast' is running very fast. Can you save 'The Beast', and find the key before Sherlock?

### **Input Format**

The 1<sup>st</sup> line will contain an integer T, the number of test cases. This is followed by T lines, each containing an integer N. i.e. the number of digits in the number.

### **Output Format**

Largest Decent Number having N digits. If no such number exists, tell Sherlock that he is wrong and print -1.

### **Constraints**

```
\begin{array}{l} 1 \leq T \leq 20 \\ 1 < N < 100000 \end{array}
```

## **Sample Input**



# **Sample Output**

```
-1
555
33333
55555533333
```

### **Explanation**

For N=1, there is no such number.

For N=3, 555 is the only possible number.

For  ${\cal N}=5$  ,  ${\it 33333}$  is the only possible number.

For N=11, 55555533333 and all permutations of these digits are valid numbers; among them, the given number is the largest one.