

Fahrzeugmechatronik II (Übung): Grundlagen 2

Andreas Hartmann, M. Sc.

Prof. Dr.-Ing. Steffen Müller | Fachgebiet Kraftfahrzeuge | Fakultät Verkehrs- und Maschinensystem

Testsignale zur Untersuchung LTI-Systeme

Einheitssprung (Sprungfunktion)

$$\sigma(t) = \begin{cases} 0 & t \le 0 \\ 1 & t > 0 \end{cases}$$

Systemantwort: Sprungantwort oder Übergangsfunktion h(t)

Einheitsimpuls (Dirac-Impuls, Impulsfunktion)

Rechteckimpuls: $r(t) = \begin{cases} \frac{1}{\varepsilon} & 0 \le t \le \varepsilon \\ 0 & \text{sonst} \end{cases}$

$$0 \le t \le \varepsilon$$
 sonst

Dirac-Impuls: $\delta(t) = \lim_{\epsilon \to 0} r(t)$

Systemantwort: Impulsantwort oder Gewichtsfunktion q(t)

Beschreibung im Zeitbereich Systemeigenschaften - Linearität

Linearität

■ Ein dynamisches System heißt *linear*, wenn sich die Wirkungen zweier linear überlagerter Eingangssignale am Ausgang des Systems in gleicher Weise linear überlagern (*Superpositionsprinzip*)

$$u(t) = k u_1(t) + l u_2(t) \rightarrow y(t) = k y_1(t) + l y_2(t)$$

Beschreibung im Zeitbereich Systemeigenschaften - Zeitinvarianz

Zeitinvarianz

- DGL hat konstante Koeffizienten.
- Das System reagiert auf eine Erregung (also einen vorgegebenen Verlauf u(t)) unabhängig davon, wann die Erregung eintrifft.

$$u_1(t) = u_2(t - T_t) \rightarrow y_1(t) = y_2(t - T_t)$$

Zustandsraumdarstellung

Zustandsgrößen eines dynamischen Systems Universitä

Aus der mathematischen Sicht ist die Beschreibung eines dynamischen Systems im Zustandsraum nichts anderes als die Darstellung des mathematischen Modells mit Differentialgleichungen *n*-ter Ordnung in Form eines äquivalenten Systems von *n* Differentialgleichungen 1. Ordnung.

Definition: Zustand eines dynamischen Systems

Ein Vektor \mathbf{X} wird Zustand eines Systems genannt, wenn für eine beliebige Zeit $t_e \geq 0$ die Elemente $x_i(0)$ von \mathbf{X} zum Zeitpunkt 0 zusammen mit dem Verlauf der Eingangsgröße $u(\tau)$ für $0 \leq \tau \leq t_e$ den Wert $\mathbf{X}(t_e)$ und den Wert der Ausgangsgröße $\mathbf{y}(t_e)$ eindeutig bestimmen. \mathbf{X} heißt auch Zustandsvektor und die Komponenten $x_i(t)$ von \mathbf{X} Zustands variable oder Zustandsgrößen.

- > Typische Zustandsgrößen sind: Strom, Spannung, Wege, Geschwindigkeiten.
- ➤ Die **Anzahl der Zustände n** stimmt mit der Anzahl der Speicherelemente (Kapazität, Induktivität, Masse, Feder) des Systems überein.
- ➤ Die **Wahl der Zustände** ist im allg. nicht eindeutig. Es können auch physikalisch nicht interpretierbare Zustände gewählt werden.

Zustandsraumdarstellung

Zustandsraummodell eines LTI-Systems

Das Zustandsraummodell eines linearen zeitinvarianten Systems hat folgende Form:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t).$$

Dabei gelten folgende Bezeichnungen und Formate:

Zustandsvektor	\boldsymbol{x}	(n, 1)-Vektor
Eingangsvektor	$oldsymbol{u}$	(m, 1)-Vektor
Ausgangsvektor	$oldsymbol{y}$	(r, 1)-Vektor
Systemmatrix	\boldsymbol{A}	(n, n)-Matrix
Steuermatrix	B	(n, m)-Matrix
Beobachtungsmatrix	\boldsymbol{C}	(r, n)-Matrix
Durchgangsmatrix	D	(r, m)-Matrix

Wichtig!

• Autonomes System:

$$u(t) = 0$$

Nichtsprungfähiges System:

$$D = 0$$

Zustandsraumdarstellung (LTI-Systeme)

Beispiel 1

- ➤ LTI: linear time-invariant system
- Gegeben ist das dynamische System:

$$\sqrt{2} \cdot \ddot{z}(t) + 5 \cdot \ddot{z}(t) - z(t) + 2 \cdot u(t) = 0$$

- Ordnung? Linear? Zeitvariant?
- Zustandsraummodell?

Zustandsraumdarstellung (LTI-Systeme)

Beispiel 2: LRC-Schwingkreis

- Für den LRC-Schwingkreis (Tiefpass 2.Ordnung) soll das Zustandsraummodell aufgestellt werden mit den Ausgängen:
 - u_A
 - u_A und u_R

Kanonische Normalform

Transformation - Beispiel

Gegeben ist das Zustandsraummodell

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 6 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Gesucht: Das Zustandsraummodell in kanonischer Normalform

▶ **Bemerkung**: Die Umformung in die kanonische Normalform ist nicht eindeutig, denn mit v_i ist auch der a-fache Vektor av_i ein Eigenvektor von A. Alle Modelle führen jedoch auf dasselbe Produkt $\tilde{b}_i \tilde{c}_i$ der i-ten Elemente der Vektoren \tilde{b} und \tilde{c} .

1.Übungsaufgabe

Vielen Dank für Ihre Aufmerksamkeit und Frohe Ostern!

