Lycée Claude Fauriel Option Informatique

Cours de Spé 2007,8

Suppression du non déterminisme

 $\mathcal{A}=(Q,A,T,i,F)$ est un AFND : T est une application de Q dans $\mathcal{P}(Q)$. On lui associe son déterminisé $\mathcal{D}=(\mathcal{P}(Q),A,T',\{i\},F')$ où

$$T'(X,q) = \bigcup_{x \in X} T(x,q) \quad \text{et} \quad F' = \{X \subset Q | X \cap F \neq \emptyset\}$$
 Pour un AFD $\boldsymbol{\mathcal{A}}$ comme pour un AFND $\boldsymbol{\mathcal{D}}$ on notera ci-dessous suit $\boldsymbol{\mathcal{A}}(q,a)$ ou

 $\operatorname{suit}_{\mathcal{D}}(q, a)$ ce qui a été noté ci-dessus T(q, a) ou T'(q, a)

Pour $\mathcal{M} = \mathcal{A}$ ou \mathcal{D} , on étend aux mots de A* la définition de suit par

$$\operatorname{suit}_{\mathcal{M}}(q,\varepsilon) = q \text{ et suit}_{\mathcal{M}}(q,\mu a) = \operatorname{suit}_{\mathcal{M}}(\operatorname{suit}_{\mathcal{M}}(q,\mu), a)$$

Enfin si X est une partie de Q on utilise la définition usuelle de l'image d'une partie par une application: $\mathrm{suit}_{\mathcal{A}}(X,m) = \bigcup_{X} \mathrm{suit}_{\mathcal{A}}(q,m)$

On va prouver que,
$$\forall Z \in \mathcal{P}(Q), \forall m \in A^*, suit_{\mathcal{D}}(Z, m) = suit_{\mathcal{A}}(Z, m)$$

La preuve va s'effectuer par récurrence sur |m|

 \triangleright Pour $|\mathbf{m}| = 0$ on a $\mathbf{m} = \varepsilon$ et on doit vérifier : $\mathbf{Z} = \mathbf{Z}$, c'est bon

On prend maintenant un mot $m=\mu a$ où $a\in A$ et où le résultat est supposé acquis pour μ , on le veut pour m

Partons de suit $\mathcal{A}(Z, \mu a)$ c'est à dire $\bigcup_{z \in Z} suit_{\mathcal{A}}(q, \mu a)$ par définition(s) des images par μ a c'est encore $\bigcup_{q\in Z}$ suit $\mathcal{A}(\operatorname{suit}_{\mathcal{A}}(q,\mu), a)$ on utilise alors nos hypothèses sur μ pour le transformer en $\bigcup_{q\in Z}^{q\in Z} \operatorname{suit}_{\mathcal{A}}(\operatorname{suit}_{\mathcal{D}}(q,\mu),a)$

Maintenant suit_{**p**}(q, μ a) c'est suit_{**p**}(suit_{**p**}(q, μ), a) on utilise alors la définition de \mathcal{D} en fonction de \mathcal{A} : \bigcup suit $\mathcal{A}(\alpha, \mathbf{a})$ soit par définition de l'image d'une $\alpha \in \operatorname{suit}_{\mathbf{p}}(q,\mu)$

partie (par un automate ou non) suit \mathbf{A} (suit $\mathbf{D}(q, \mu)$, a): c'est ce qui apparaissait dans notre union en fin du § précédent

On a donc
$$\operatorname{suit}_{\boldsymbol{\mathcal{A}}}(Z, \mu a) = \bigcup_{q \in Z} \operatorname{suit}_{\boldsymbol{\mathcal{D}}}(q, \mu a)$$
 c'est à dire $\operatorname{suit}_{\boldsymbol{\mathcal{D}}}(Z, \mu a) \triangleleft$

Pour passer d'un AFND ε à un AFD, il reste à effectuer le passage AFND $\varepsilon \to$ AFND: on remplace T'(X,q) défini ci dessus à partir de T par T''(X,q) = clot(T'(X,q)): il n'y a plus de transitions instantanées, on vient de traduire en ensembles d'états ce qu'elles faisaient

Attention le concours CCP aime (?) ce genre de détails et chaque année il y a des preuves par récurrences du type de celle qui part au > ci-dessus