Московский физико-технический институт (госудраственный университет)

Устный экзамен по физике (термодинамика) Вопрос по выбору

Термодинамическая устойчивость

Талашкевич Даниил Группа Б01-009

Долгопрудный 2021

Содержание

1	Что такое термодинамическое равновесие?	1
2	2.1 Термодинамические неравенста.	
	2.3.1 Условие а)	
3	Смысл условий устойчивости	4
4	Общие критерии термодинамической устойчивости	5
	4.1 Критерий термодинамической устойчивости	1
	4.2 Первое достаточное условие	
	4.3 Второе достаточное условие	6
	4.4 Менее полезные условия термодинамической устойчивости	7
5	Неравенство Клаузиуса	7
6	Литература	ç

1 Что такое термодинамическое равновесие?

Предоставленная самой себе, изолированная система приходит в состояние термодинамического равновесия, характеризуемое тем, что в нем все макроскопические процессы прекращаются, скорости прямых и обратных реакций сравниваются, давление и температура принимают постоянные по объему системы значения.

Сформулированное утверждение есть обобщение опыта, и принимается в качестве постулата — основного или общего начала термодинамики. Состояние, близкое к термодинамически равновесному, может устанавливаться и в открытой системе. Для этого необходимо, чтобы ее энергои массообмен с окружающей средой был мал. Тогда данная система будет вести себя почти как изолированная. Состояние равновесия является динамическим: на молекулярном (микроскопическом) уровне непрерывно происходят сложные движения, а на макроскопическом уровне — никаких видимых изменений. Если параметры системы меняются от точки к точке и с течением времени, то ее состояние — неравновесное.

2 Условия термодинамической устойчивости

2.1 Термодинамические неравенста.

Рассмотрим систему «тело + термостат» или, иначе, «подсистема + окружающая среда», причем вся система помещена в жесткую адиабатическую оболочку. Пусть тело характеризуется параметрами (T, P, V), а термостат — (T_0, P_0, V_0) . Первое начало термодинамики для тела записывается в виде:

$$dU = \delta A^{\swarrow} + \delta Q^{\swarrow}$$

где δA^{\swarrow} — работа совершенная окружающей средой над телом, а δQ^{\swarrow} — теплота, полученная телом из окружающей среды.

Так как оболочка жесткая, то

$$dV = -dV_0, \delta A^{\checkmark} = P_0 dV_0 = -P_0 dV$$

Согласно неравенству Клаузиуса

$$\delta Q^{\checkmark} \leq T_0 dS$$

где S — энтропия тела, T_0 — температура резервуара, с которым происходит теплообмен (температура окружающей среды). С учетом этого имеем

$$0 = dU - \delta A^{\checkmark} - \delta Q^{\checkmark} = dU + P_0 dV - \delta Q^{\checkmark} \ge dU + P_0 dV - T_0 dS \equiv dZ$$

где введено обозначение $Z=U+P_0V-T_0S$. Следовательно, эволюция протекает так, что $dZ\leq 0$.

В состоянии равновесия величина Z достигает минимума. Рассмотрим Z как функцию объема и энтропии:

$$Z = Z(V, S)$$

2.2 Условие экстремальности Z

$$Z: \left(\frac{\partial Z}{\partial V}\right)_S = 0, \left(\frac{\partial Z}{\partial S}\right)_V = 0$$

Имея ввиду, что для квазистатических процессов dU=TdS-pdV, находим

$$\left(\frac{\partial U}{\partial V}\right)_S + P_0 = -P + P_0 = 0 \Rightarrow P = P_0$$

$$\left(\frac{\partial U}{\partial S}\right)_V - T_0 = T - T_0 = 0 \Rightarrow T = T_0$$

2.3 Условие минимума Z

В точке экстремума $d^2Z \ge 0$ или, вследствие постоянства P_0 и $T_0, d^2U \ge 0$. Последнее означает

$$\left(\frac{\partial^2 U}{\partial S^2}\right)_V dS^2 + 2\left(\frac{\partial^2 U}{\partial S \partial V}\right) dS dV + \left(\frac{\partial^2 U}{\partial V^2}\right)_S dV^2 \ge 0 \tag{1}$$

В левой части неравенства стоит квадратичная форма относительно dS и dV. Условия ее положительной определенности есть

a)
$$\left(\frac{\partial^2 U}{\partial S^2}\right)_V > 0$$

6) $X \equiv \left(\frac{\partial^2 U}{\partial S^2}\right)_V \left(\frac{\partial^2 U}{\partial V^2}\right)_S - \left(\frac{\partial^2 U}{\partial S \partial V}\right)^2 > 0$

Эти неравенства преобразуются с учетом соотношений

$$\left(\frac{\partial U}{\partial S}\right)_V = T, \left(\frac{\partial U}{\partial V}\right)_S = -p$$

2.3.1 Условие а)

$$\left(\frac{\partial^2 U}{\partial S^2}\right)_V = \left(\frac{\partial T}{\partial S}\right)_V = \frac{T}{C_V} > 0, \quad \text{ T. e. } \quad C_V > 0$$

2.3.2 Условие б)

$$\begin{split} X &= \left(\frac{\partial^2 U}{\partial S^2}\right)_V \left(\frac{\partial^2 U}{\partial V^2}\right)_S - \left(\frac{\partial}{\partial V} \left(\frac{\partial U}{\partial S}\right)_V\right) \left(\frac{\partial}{\partial S} \left(\frac{\partial U}{\partial V}\right)_S\right) = \\ &= - \left(\frac{\partial T}{\partial S}\right)_V \left(\frac{\partial P}{\partial V}\right)_S + \left(\frac{\partial T}{\partial V}\right)_S \left(\frac{\partial P}{\partial S}\right)_V > 0. \end{split} \tag{2}$$

Рассматривая давление как функцию объема и температуры P=P(V,T) имеем $dP=(\partial P/\partial V)_T dV+(\partial P/\partial T)_V dT$, откуда

$$\left(\frac{\partial P}{\partial V}\right)_S = \left(\frac{\partial P}{\partial V}\right)_T + \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial T}{\partial V}\right)_S.$$

Подстановка последнего равенства в (2) дает

$$\begin{split} X &= -\left(\frac{\partial T}{\partial S}\right)_V \left[\left(\frac{\partial P}{\partial V}\right)_T + \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial T}{\partial V}\right)_S \right] + \\ &+ \left(\frac{\partial T}{\partial V}\right)_S \left(\frac{\partial P}{\partial S}\right)_V = -\left(\frac{\partial T}{\partial S}\right)_V \left(\frac{\partial P}{\partial V}\right)_T - \\ &- \left(\frac{\partial T}{\partial S}\right)_V \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial T}{\partial V}\right)_S + \left(\frac{\partial T}{\partial V}\right)_S \left(\frac{\partial P}{\partial S}\right)_V. \end{split}$$

Имея в виду, что

$$\left(\frac{\partial T}{\partial S}\right)_{V} = \frac{T}{C_{V}}, \quad \left(\frac{\partial T}{\partial S}\right)_{V} \left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial P}{\partial S}\right)_{V},$$

получим

$$X = -\frac{T}{C_V} \left(\frac{\partial P}{\partial V} \right)_T > 0.$$

Вследствие неравенства $C_V > 0$ получаем, что $(\partial P/\partial V)_T < 0$. Таким образом, независимо от уравнения состояния вещества изотермическая сжимаемость

$$\beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T > 0.$$

Поскольку

$$C_P - C_V = -T \frac{\left(\frac{\partial V}{\partial T}\right)_P^2}{\left(\frac{\partial V}{\partial P}\right)_T},$$

то из полученного неравенства следует, что всегда $C_P > C_V$. Имея в виду также, что $C_V > 0$, заключаем, что показатель адиабаты $\gamma = C_P/C_V > 1$. Для положительной определенности квадратичной формы в (1) можно было бы условие **a**) заменить условием $\left(\partial^2 U/\partial V^2\right)_S > 0$ или $\left(\partial^2 U/\partial V^2\right)_S = -(\partial P/\partial V)_S > 0$. Последнее означает, что адиабатическая сжимаемость также положительна:

$$\beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T > 0.$$

Условия термодинамической устойчивости $C_V>0$ и $\beta_T>0$ называют термодинамическими неравенствами.

3 Смысл условий устойчивости

Предположим, что подсистема находится в тепловом и механическом равновесии с внешней средой, т. е. $T = T_0$, $P = P_0$. Покажем, что при нарушении найденных условий состояние равновесия не может быть устойчивым.

1) Допустим, что $C_V < 0$. Пусть температура подсистемы случайно уменьшилась, $T < T_0$. Тогда в соответствии со вторым началом термодинамики в эту подсистему потечет тепловой поток из внешней среды. Поскольку $\delta Q = C_V dT > 0$, то в результате температура T еще более уменьшится. Аналогично, случайное увеличение температуры подсистемы приведет к ее дальнейшему увеличению. Следовательно, тепловое равновесие неустойчиво.

2) Допустим, что $(\partial P/\partial V)_T > 0$. Пусть объем подсистемы случайно уменьшился. Тогда давление в ней также уменьшилось, $P < P_0$. В результате внешнее давление P_0 оказывается больше, чем внутреннее. Поэтому объем подсистемы будет и дальше уменьшаться. Аналогично, при случайном увеличении объема подсистемы ее объем будет продолжать увеличиваться. Следовательно, механическое равновесие оказывается неустойчивым.

4 Общие критерии термодинамической устойчивости

4.1 Критерий термодинамической устойчивости.

Допустим, что адиабатически изолированная система находится в термодинамическом равновесии, причем ее энтропия S в рассматриваемом состоянии максимальна, т. е. больше энтропии всех возможных бесконечно близких состояний, в которые система может перейти без подвода или отвода тепла.

Тогда можно утверждать, что самопроизвольный адиабатический переход системы во все эти состояния невозможен, т. е. система находится в устойчивом термодинамическом равновесии.

Действительно, если бы такой переход был возможен, то энтропии начального 1 и конечного 2 состояний были бы связаны соотношением $S_1 > S_2$. Но это соотношение находится в противоречии с принципом возрастания энтропии, согласно которому при адиабатических переходах должно быть $S_1 < S_2$. Таким образом, мы приходим к следующему критерию термодинамической устойчивости.

Если система адиабатически изолирована и ее энтропия в некотором равновесном состоянии максимальна, то это состояние является термодинамически устойчивым. Это значит, что система, оставаясь адиабатически изолированной, не может самопроизвольно перейти ни и как;е другие состояние.

В приложениях термодинамики к конкретным вопросам часто бывает удобно вместо адиабатической изоляции системы накладывать на ее поведение другие ограничения. Тогда критерии термодинамической устойчивости изменятся. Особенно удобны два достаточных условия.

4.2 Первое достаточное условие

Пусть система окружена средой, температура которой поддерживается постоянной. Кроме того, объем системы V также поддерживается постоянный, например, система заключена в жесткую оболочку. В этих условиях работа системы A всегда равна нулю, и соотношение

$$A \leqslant Y_1 - Y_2$$

где $Y=U-T_0S$, а само соотношение – следствие из неравенства Клаузиуса, переходит в $Y_1-Y_2\geqslant 0$. Следовательно, функция $Y\equiv U-T_0$. может только уменьшаться или оставаться неизменной. Отсюда, рассуждая, как и раньше, получаем следующий критерий термодинамической устойчивости.

Если температира окружающей среды T_0 и объем системы V поддерживают постоянными и в рассматриваемом состоянии функция $Y=U-T_0S$ минимальна, то состояние системы термодинамически устойчиво. В частности, если температура среды равна температуре системы, роль функции Y выполняет свободная энергия $\Psi=U-TS$.

4.3 Второе достаточное условие

Допустим теперь, что система со всех сторон окружена средой, температура T_0 и давление P_0 которой поддерживаются постоянными. Никакой работы, помимо работы против внешнего давления P_0 система совершать не может. Иными словами, полезная работа системы всегда равна нулю, так что соотношение

$$A^{\text{полезное}} \leqslant Z_1 - Z_2,$$

где

$$Z = Y + P_0 V = U - T_0 S + P_0 V,$$

дает $Z_2 \leqslant Z_1$. Все самопроизвольные процессы в системе могут идти только с уменьшением функции $Z \equiv Y + P_0 V$. Поэтому, если финкция Z B некотором равновесном состоянии достигла минимума, то равновесие будет устойчивым. B частности, когда $P = P_0$, это утверждение относится к термодинамическому потенциалу системы $\Phi = F + PV$.

Приведем еще два, менее употребительные, условия термодинамической устойчивости. В них роль потенциальных функций выполняют внутренняя энергия U и энтальпия I.

4.4 Менее полезные условия термодинамической устойчивости

1. Перепишем неравенство Клаузиуса в виде

$$S_2 - S_1 \ge \int_{1 \to 2} \frac{dU + \delta A}{T}$$

Пусть энтропия и объем системы поддерживаются постоянными. Тогда $S_2-S_1=0$ и $\delta A=PdV=0$, поэтому предыдущее неравенство дает

$$\int \frac{dU}{T} \le 0$$

Так как T>0, то отсюда следует, что $dU\leq 0$. Если объем и энтропию системы поддерживать постоянными, то самопроизвольные процессы в ней могут идти лишь с уменьшением внутренней энергии. Если внутренняя энергия системы достигла минимума, то дальнейшие процессы в системе становятся невозможными. Это приводит к следующему критерию термодинамической устойчивости.

Если объем и энтропия системы поддерживаются постоянными и система в некотором равновесном состоянии достигла минимума внутренней энергии, то равновесие термодинамически устойчиво.

2. Если давление и энтропия системы поддерживаются постоянными и система, в некотором равновесном состоянии достигла минимума энтальпии, то равновесие термодинамически устойчиво. Для доказательства этого положения следует переписать неравенство Клаузиуса в виде

$$S_2 - S_1 \ge \int_{1 \to 2} \frac{dU - VdP}{T}$$

и повторить предыдущие рассуждения.

5 Неравенство Клаузиуса

При выводе некоторых формул мы использовали неравенство Клаузиуса, поэтому, на последок, сформулируем и докажем его.

Согласно второй теореме Карно $\eta \leq \eta_k$, где $\eta_k - \text{КПД}$ машины Карно. Отсюда следует, что $1 - \frac{Q_2^{\checkmark}}{Q_1^{\checkmark}} \leq 1 - \frac{T_2}{T_1}$. Поскольку $Q_2^{\checkmark} = -Q_2^{\checkmark}$, а $Q_1^{\checkmark} > 0$ (По определению КПД), то мы приходим к частному случаю неравенства Клаузиуса:

$$\frac{Q_1^{\checkmark}}{T_1} + \frac{Q_2^{\checkmark}}{T_2} \le 0$$

Для обратимой машины, работающей только с двумя резервуарами, справедливо равенство Клаузиуса:

$$\frac{Q_1^{\checkmark}}{T_1} + \frac{Q_2^{\checkmark}}{T_2} = 0$$

Пусть теперь система А осуществляет произвольный круговой процесс. Рассмотрим ее контакт с набором термостатов, имеющих температуры T_i . Для восстановления состояния резервуаров введем вспомогательный резервуар с температурой T_0 и n машин Карно, осуществляющих перекачку тепла из резервуара T_0 в резервуар T_i . Для каждой машины Карно согласно равенству Клаузиуса имеем

$$\frac{Q_{0i}}{T_0} + \frac{Q_i'}{T_i} = 0$$

ИЛИ

$$Q_0 = \sum_{i=1}^{n} Q_{0i} = -T_0 \sum_{i=1}^{n} \frac{Q_i'}{T_i}$$

(стрелку $[\checkmark]$ не пишем для краткости). Подберем теплоты Q_i' так, чтобы они полностью компенсировали расходы резервуаров $T_i:Q_i'=-Q_i$. Тогда

 $Q_0 = T_0 \sum_{i=1}^n Q_i/T_i$. Это количество тепла отдаст резервуар T_0 . В результате система A совместно с машинами Карно K_i совершнт круговой процесс, фактически обмениваясь теплом с единственным резервуаром T_0 . Поскольку этот резервуар отдал тепло Q_0 , то совершена эквивалентная работа $A = Q_0$. Согласно второму началу термодинамики в формулировке Томсона эта работа не может быть положительной: $A \leq 0$. Отсюда следует неравенство Клаузиуса (общий случай):

$$\sum_{i=1}^{n} \frac{Q_i^{\checkmark}}{T_i} \leqslant 0.$$

Переходя к пределу бесконечно большого числа промежуточных резервуаров, обменивающихся бесконечно малыми порциями тепла с системой A и резервуаром T_0 , приходим к неравенству Клаузиуса в интегральной форме:

$$\oint \frac{\delta Q^{\checkmark}}{T} \leqslant 0$$

Здесь величина T есть температура термостата, с которым в данный момент система обменивается теплом.

Пусть в системе A протекают только обратимые процессы. Тогда процесс можно провести в обратном направлении через те же промежуточные состояния, что и прямой, изменив лишь знак поступающей в систему теплоты и совершаемой работы. Применяя неравенство Клаузиуса для этого случая $\oint \frac{\delta Q^{\checkmark}}{T} \leqslant 0$ с учетом замены $\delta' Q^{\checkmark} = -\delta Q^{\checkmark}$, находим $\oint \frac{\delta Q^{\checkmark}}{T} \geqslant 0$. Совместно с неравенством Клаузиуса в исходной форме это дает равенство Клаузиуса:

$$\oint \frac{\delta Q^{\checkmark}}{T} = 0$$

6 Литература

- 1. Сивухин Д. В. Общий курс физики. М.: Наука, 1975. Т. II. Термодинамика и молекулярная физика.
- 2. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1. («Теоретическая физика», том V).
- 3. Кириченко Н. А. 1.3.8. Неравенство Клаузиуса // Термодинамика, статистическая и молекулярная физика. 3-е изд. М.: Физматкнига, 2005.