Αριθμηζική Επίλυση Πλάχιας Βολής

Σύντομη Επανάληψη Πλάχιας Βολής

- Ο τύπος για το βεληνεκές σώματος σε πλάγια βολή προκύπτει:
 - Ι. Από την Αρχή Ανεξαρτησίας των Κινήσεων
 - 2. Από ζις εξισώσεις κίνησης

Στην οριζόντια διεύθυνση ισχύει:

$$x = u_{0x}t$$

Στην κατακόρυφη διεύθυνση ισχύει:

$$x = u_{0y}t - \frac{1}{2}gt^2$$

- $m{a}$ Απαλείφοντας τον χρόνο t: $y=rac{u0y}{u_{0x}}x-rac{g}{2}rac{x^2}{u_{0x}^2}$
- ο Για το βεληνεκές ισχύει: $y=0\Rightarrow \frac{u0y}{u_{0x}}r-\frac{g}{2}\frac{r^2}{u_{0x}^2}\Rightarrow \begin{array}{c} r=0\\ r=\frac{g}{2}u_{0y}u_{0x} \end{array}$

Αριθμηζική επίλυση

- Προβλήματα κινηματικής, όπως η πλάχια βολή, επιδέχονται αριθμητικής επίλυσης
 - oxdot Χωρίζουμε την κίνηση του σώματος σε χρονικά διαστήματα διάρκειας Δt
 - Επιλέχουμε το Δt να είναι μικρό, π.χ. Δt = 0.19
 - Π Το τέλος κάθε διαστήματος Δt ονομάζεται "χρονική στιχμή"

Αριθμηζική επίλυση

- Σε κάθε χρονική στιχμή υπολοχίζουμε ξεχωριστά τις συνιστώσες τις θέσης και της ταχύτητας στις διευθύνσεις O_x και O_y
 - $lue{lue{\Box}}$ Για τον υπολοχισμό της θέσης την επόμενη χρονική στιχμή, υποθέτουμε ότι το σώμα εκτελεί ομαλή ευθύχραμμη κίνηση κατά το διάστημα Δt , με την ταχύτητα που είχε την προηχούμενη χρονική στιχμή (στην αρχή του χρονικού διαστήματος).
 - $lue{lue}$ Για τον υπολοχισμό της ταχύτητας την επόμενη χρονική στιχμή, υποθέτουμε ότι το σώμα εκτελεί ομαλή ευθύχραμμη κίνηση (διεύθυνση x) ή ομαλά επιταχυνόμενη κίνηση (διεύθυνση y) κατά το διάστημα Δt .

Αριθμηζική επίλυση

- Ας δούμε ένα-ένα ζις χρονικές σζιχμές:
 - Π Την χρονική στιζμή μηδέν (ΣΟ), έχουμε:

$$x_0 = 0 \quad u_{0x} = u_0 \cos(\theta)$$
$$y_0 = 0 \quad u_{0y} = u_0 \sin(\theta)$$

Για την δέυτερη στιχμή (ΣΙ):

$$x_1 = x_0 + u_{0x} \Delta t$$
$$y_1 = y_0 + u_{0y} \Delta t$$

Υπολοχίζουμε τη νέα θέση υποθέτοντας ομαλή ευθύχραμμη κίνηση με αρχική ταχύτητα u_{0x} , u_{0y}

$$u_{1x} = u_{0x}$$

$$u_{1y} = u_{0y} + a_y \Delta t$$

Υπολοχίζουμε τη νέα ταχύτητα υποθέτοντας ομαλά επιταχυνόμενη κίνηση με αρχική ταχύτητα u_{0x} , u_{0y} , και επιτάχυνση a_x =0, a_y =-g

Π Για την πρώτη χρονική στιχμή (ΣΙ):

$$x_1 = x_0 + u_{0x} \Delta t$$
$$y_1 = y_0 + u_{0y} \Delta t$$

Υπολοχίζουμε τη νέα θέση υποθέτοντας ομαλή ευθύχραμμη κίνηση με αρχική ταχύτητα u_{ox} , u_{oy}

$$u_{1x} = u_{0x}$$
$$u_{1y} = u_{0y} + a_y \Delta t$$

Υπολοχίζουμε τη νέα ταχύτητα υποθέτοντας ομαλά επιταχυνόμενη κίνηση με αρχική ταχύτητα u_{0x} , u_{0y} , και επιτάχυνση $a_x=0$, $a_y=-g$

Π Για την δεύτερη στιχμή (Σ2):

$$x_2 = x_1 + u_{1x}\Delta t$$
$$y_2 = y_1 + u_{1y}\Delta t$$

$$u_{2x} = u_{1x}$$

$$u_{2y} = u_{1y} - g\Delta t$$

Όπου \mathbf{x}_1 , \mathbf{y}_1 και \mathbf{u}_{0x} , \mathbf{u}_{0y} , έχουν υπολοχισζεί σζο προηχούμενο βήμα

Αριθμηζικό παράδειχμα

$$x_0 = 0, y_0 = 0, u_{0x} = 1\frac{\mathrm{m}}{\mathrm{s}}, u_{0y} = 2\frac{\mathrm{m}}{\mathrm{s}}, \Delta t = 0.1\mathrm{s}$$

Xoco	yo=0	uox=1m/5	ung = 2m/s
x1= x0+ U0x · Dt = 0.1 m	y1= y0+ Noy. At = 0.2m	U1x = U0x = 1 m/g	U,y= Moy-8: Дt = 1 m/s.
x2= x1+ u1x. Δt= 0.2m	y2=91+U1y. △t= 0.3m	U2x= U1x = \m/s	U25 = U19 -8. At = Om/s.
X3 = X2+ N2x. Δt = 0.3m	y3= y2-1 M2y-15t=0.3m	113x= 12x= 1m/s	May = May -8-Dt = -1m/s.
x4 = x3+113x. 12t= 0.4m	yu= y3+ U3y. Dt= 0.2m	uux= U3x=/m/g	Muy= Uzy - g. Dt= -2m/s.
X5 = X4+ Uux . Dt=0.5m	95= yu 1 U4y.∆t= 0 m	U5x = Unx = 1 m/s	Usy= Uny-80t= -3m/s.
	$x_1 = x_0 + u_{0x} \cdot \Delta t = 0.1 \text{ m}$ $x_2 = x_1 + u_{1x} \cdot \Delta t = 0.2 \text{ m}$ $x_3 = x_2 + u_{2x} \cdot \Delta t = 0.3 \text{ m}$ $x_4 = x_3 + u_{3x} \cdot \Delta t = 0.4 \text{ m}$	$x_1 = x_0 + u_{0x} \cdot \Delta t = 0.1 m$ $y_1 = y_0 + u_{0y} \cdot \Delta t = 0.2 m$ $x_2 = x_1 + u_{1x} \cdot \Delta t = 0.2 m$ $y_2 = y_1 + u_{1y} \cdot \Delta t = 0.3 m$ $x_3 = x_2 + u_{2x} \cdot \Delta t = 0.3 m$ $y_3 = y_2 + u_{2y} \cdot \Delta t = 0.3 m$ $x_4 = x_3 + u_{3x} \cdot \Delta t = 0.4 m$ $y_4 = y_3 + u_{3y} \cdot \Delta t = 0.2 m$	$x_1 = x_0 + u_{0x} \cdot \Delta t = 0.1 \text{ m}$ $y_1 = y_0 + u_{0y} \cdot \Delta t = 0.2 \text{ m}$ $u_{1x} = u_{0x} = 1 \text{ m/g}$ $x_2 = x_1 + u_{1x} \cdot \Delta t = 0.2 \text{ m}$ $y_2 = y_1 + u_{1y} \cdot \Delta t = 0.3 \text{ m}$ $u_{2x} = u_{1x} = 1 \text{ m/g}$ $x_3 = x_2 + u_{2x} \cdot \Delta t = 0.3 \text{ m}$ $y_3 = y_2 + u_{2y} \cdot \Delta t = 0.3 \text{ m}$ $u_{3x} = u_{2x} = 1 \text{ m/g}$ $u_{3x} = u_{3x} = 1 \text{ m/g}$

Αριθμηζικό παράδειχμα

Το αποτέλεσμα της αριθμητικής λύσης εμπεριέχει σφάλμα, το λεζόμενο σφάλμα διακριτοποίησης. Το σφάλμα αυτό, μικραίνει όσο μικραίνει το Δt

- εάν επαναλάβουμε την άσκηση με Δt = 0.05ε, θα χρειαστούμε διπλάσια βήματα, και εάν την επαναλάβουμε με Δt = 0.01ε θα χρειαστούμε δεκαπλάσια βήματα
- $m{\varnothing}$ Είναι προφανές πως χια όλο και πιο μικρές τιμές του Δt η αριθμητική επίλυση χίνεται όλο και πιο χρονοβόρα

Υπολοχιστική Λύση

- Κατά την υπολοχιστική επίλυση του προβλήματος, χρησιμοποιούμαι έναν υπολοχιστή
 χια να αυτοματοποιήσουμε τον υπολοχισμό των στιχμιοτύπων
- Θα πρέπει να δώσουμε: Την αρχική θέση και ζαχύζηζα (αρχικές συνθήκες)
 - Τον χρόνο Δτ
 - Τις εξισώσεις κίνησης, με τις οποίες θα υπολοχίζουμε την θέση και ταχύτητα της νέας στιχμής βάσει του προηχούμενου

Υπολοχιστική Λύση

- Σημειώστε πως, με τον υπολοχιστής, δεν χρειάζεται να χνωρίζουμε την εξίσωση της τροχιάς. Η τροχιά προκύπτει αφού ο υπολοχιστής βρεί μία μία την θέση του σώματος σε κάθε χρονική στιχμής
- Στο παράδειχμα που θα δούμε, στη διεύθυνση O_y ο υπολοχιστής προσδιορίζει ποια χρονική στιχμή και σε ποια θέση μηδενίζεται η ταχύτητα του βλήματος χωρίς να χρησιμοποιεί κάποιον τύπο χια τον χρόνο πτήσης ή το μέχιστο ύψος.
- Η υπολοχιστική μέθοδος είναι λοιπόν ζενική, και μπορεί να χρησιμοποιηθεί και όταν δεν χνωρίζουμε την εξισώσεις της τροχιάς
- Συνεχίστε αυτό το πρόβλημα ακολουθώντας τον πιο κάτω σύνδεσμο και τις οδηχίες που υπάρχουν εκεί:

http://172.104.245.249:8000