PCA Homework

	Terms				
m	m 5 Number of instances in data set				
n	n 2 Number of input features				
p	1	Final number of principal components chosen			

Original Data			
	x	y	
p1	.2	3	
p2	-1.1	2	
р3	1	-2.2	
p4	.5	-1	
p5	6	1	
mean	0	1	

- Use PCA on the given data set to get a transformed data set with just one feature (the first principal component (PC)). Show your work along the way.
- Show what % of the total information is contained in the 1st PC.
- Do not use a PCA package to do it. You need to go through the steps yourself, or program it yourself.
- You may use a spreadsheet, Matlab, etc. to do the arithmetic for you.
- You may use any web tool or Matlab to calculate the eigenvectors from the covariance matrix.

PCA Homework

	Terms			
m	m 5 Number of instances in data set			
n	n 2 Number of input features			
p	1	Final number of principal components chosen		

Original Data		
	x	y
m1	.2	3
m2	-1.1	2
m3	1	-2.2
m4	.5	-1
m5	6	1
mean	0	1

Zero Centered Data			
	x	y	
m1	.2	2	
m2	-1.1	2.1	
m3	1	-2.1	
m4	.5	9	
m5	6	1.1	
mean	0	0	

Covariance Matrix			
x	у		
.715	-1.39		
-1.39	2.72		

EigenVectors			
x y Eigenvalue			
.456	890	3.431	
890	456	.0037	

% total info in 1^{st} principal component 3.431/(3.431 + .0037) = 99.89%

$Matrix A - p \times n$		
	У	
1 st PC	.456	890

Ma	Matrix $B = Transposed$ zero centered Training Set - $n \times m$				
	m1	m2	m3	m4	m5
x	.2	-1.1	1	.5	6
у	2	2.1	-2.1	9	1.1

Note that some packages might return the opposite signs on the eigenvectors. Since eigenvectors are equivalent up to a constant (e.g. -1), your final results could have opposite signs from our solution, which is fine.

$(A \times B)^{\mathrm{T}}$ - $m \times p$ New Data Set		
	1st PC	
m1	.269	
m2	-2.37	
m3	2.32	
m4	1.03	
m5	-1.25	