Übungsblatt 4 Elias Gestrich

Aufgabe 1: Stetigkeit

(a)

Vor.: Ist (x_j, y_j) eine Folge mit $d_{\mathbb{R}^2}((x_j, y_j), (x, y)) \to 0$, so konvergiert $d_{\mathbb{R}}(f((x_j, y_j)), f((x, y))) \to 0$. Bzw. $(x_j, y_j) \to (x, y) \implies f((x_j, y_j)) \to f(x, y)$

Beh.:

$$f: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto \begin{cases} \frac{x_1^2 x_2^2}{(x_1^2 + x_2^2)^2} & x \neq 0\\ 0 & x = 0 \end{cases}$$

ist Stetig mit $d_{\mathbb{R}^2}$ sei die von $\|\cdot\|_2$ induzierte Metrik und $d_{\mathbb{R}}$ die von $|\cdot|$ induzierte Metrik.

Bew.: Sei $(x_j), (y_j)$ konvergente Folgen mit $\lim_{j\to\infty} x_j = x, \lim_{j\to\infty} y_j = y$. Sei (c_j) definiert durch $c_j := x_j^3 y_j^2$, sodass

$$\lim_{j \to \infty} c_j = \left(\lim_{j \to \infty} x_j\right)^3 \left(\lim_{j \to \infty} y_j\right)^2 = x^3 y^2$$

und sei (h_j) definiert durch $h_j := (x_j^2 + y_j^2)^2$, sodass

$$\lim_{j \to \infty} h_j = \left(\left(\lim_{j \to \infty} x_j \right)^2 + \left(\lim_{j \to \infty} y_j \right)^2 \right)^2 = (x^2 + y^2)^2$$

nach Ana I.

Für $(x, y) \neq (0, 0)$: (insbesondere $0 < |\lim_{j \to \infty} c_j|, |\lim_{j \to \infty} h_j| < \infty$)

$$\lim_{j \to \infty} f((x_j, y_j)) = \lim_{j \to \infty} \frac{x_j^3 y_j^2}{(x_j^2 + y_j^2)^2}$$

$$= \lim_{j \to \infty} \frac{c_j}{h_j}$$

$$= \frac{\lim_{j \to \infty} c_j}{\lim_{j \to \infty} h_j}$$

$$= \frac{x^3 y^2}{(x^2 + y^2)^2}$$

$$= f((x, y))$$

1 Stetigkeit 2

Für (x, y) = (0, 0):

$$\lim_{j \to \infty} \frac{x_j^3 y_j^2}{(x_j^2 + y_j^2)^2} = \begin{cases} 0, & y_j = 0\\ \lim_{j \to \infty} \frac{x_j^3 y_j^2}{(x_j^2 + y_j^2)^2} & \text{sonst} \end{cases}$$

$$= \begin{cases} 0, & y_j = 0\\ \lim_{j \to \infty} \frac{x_j^3 y_j^2}{x_j^4 + 2x_j^2 y_j^2 + y_j^4} & \text{sonst} \end{cases}$$

$$\leq \begin{cases} 0, & y_j = 0\\ \lim_{j \to \infty} \frac{x_j^3 y_j^2}{2x_j^2 y_j^2} & \text{sonst} \end{cases}$$

$$\leq \begin{cases} 0, & y_j = 0\\ \lim_{j \to \infty} \frac{x_j}{2} & \text{sonst} \end{cases}$$

$$\leq \begin{cases} 0, & y_j = 0\\ \lim_{j \to \infty} \frac{x_j}{2} & \text{sonst} \end{cases}$$

$$= \begin{cases} 0, & y_j = 0\\ 0 & \text{sonst} \end{cases}$$

(b) Stetig für geraden: $(ax_j, bx_j) \to 0$, zu zeigen $f((ax_j, bx_j)) \to 0$:

$$\lim_{j \to \infty} |f((ax_j, bx_j))| = \lim_{j \to \infty} \left| \frac{ax_j b^2 x_j^2}{a^2 x_j^2 + b^4 x_j^4} \right|$$

$$= \lim_{j \to \infty} \left| \frac{ab^2 x_j^3}{x_j^2 (a^2 + b^4 x_j^2)} \right|$$

$$= \lim_{j \to \infty} \left(\frac{|ab^2 x_j|}{a^2 + b^4 x_j^2} \right)$$

$$\leq \lim_{j \to \infty} \left(\frac{|ab^2 x_j|}{a^2} \right)$$

$$= 0$$

Nicht Stetig in $x_0 = 0$: Sei (x_i) eine nicht-negative Nullfolge, betrachte die Folge:

$$(x_i, \sqrt{x_i})$$

mit $\lim_{j\to\infty} (x_j, \sqrt{x_j}) = (0, \sqrt{0})$. Aber

$$\lim_{j \to \infty} \left| f\left(\left(x_j, \sqrt{x_j} \right) \right) \right| = \lim_{j \to \infty} \left| \frac{x_j \cdot \sqrt{x_j}^2}{x_j^2 + \sqrt{x_j}^4} \right|$$
$$= \lim_{j \to \infty} \frac{x_j^2}{2x_j^2}$$
$$= \frac{1}{2} \neq 0 = f\left(\left(0, \sqrt{0} \right) \right)$$

Also nicht Stetig

Aufgabe 2: Kompaktheit unter stetiger Abbildung

(a)

Beh.: Ist $f: X \to Y$ stetig und $K \subset X$ kompakt, dann ist auch $f(K) \subset Y$ kompakt. Äquivalent zu: Ist f stetig und K kompakt, dann gilt $\forall (y_j) \subset f(K)$ existiert eine konvergente Teilfolge, die gegen $y \in f(K)$ konvergiert.

Bew.: Sei $(y_j) \subset f(K)$ gegeben, zu zeigen, es existiert eine konvergente Teilfolge mit Grenzwert in f(K).

Sei $(x_j) \subset f((y_j))$, mit $x_j = \max\{f^{-1}(y_j)\}$. Da K kompakt hat (x_j) eine konvergente Teilfolge x_{j_k} , die gegen $x \in f(K)$ konvergiert. Da f stetig konvergiert $(f(x_{j_k})) = (y_{j_k})$ gegen $f(x) \in f(K)$, da $x \in K \implies f(x) \in f(K)$

(b) sei $X = \mathbb{R}, Y = \{0, 1\}$, dann gilt für die Kompakte Menge: K = [-1, 1] mit

$$f \coloneqq x \to \begin{cases} 0, & x = 0 \\ 1, & \text{sonst,} \end{cases}$$

sodass f nicht stetig, aber $f(K) = \{0, 1\}$ kompakt.

Aufgabe 3: Kompaktheit bleibt erhalten

(a)

Vor.: Eine Menge $K \subset X$ ist genau dann kompakt, wenn für alle Folgen in K gilt, dass eine konvergente Teilfolge existiert, deren Grenzwert in K liegt.

Es sei (X, d) ein metrischer Raum und $A, B \subset X$ seien kompakt.

Beh.: $A \cup B$ und $A \cap B$ sind kompakt.

Bew.:

 $A \cup B$: Sei (x_j) eine Folge in $A \cup B$, zu zeigen es existiert eine konvergente Teilfolge, die gegen ein x in $A \cup B$ konvergiert.

Falls endlich viele Folgenglieder in A liegen, müssen unendlich viele Folgenglieder in B liegen, sei (x_{j_k}) die Folge aller Folgenglieder in B. Da B kompakt, existiert eine konvergente Teilfolge in (x_{k_n}) , deren Grenzwert in B liegt. Was zu zeigen war.

Falls unendlich viele Folgenglieder in A liegen analog (vertausche B mit A)

 $A \cap B$: Sei (x_j) eine Folge in $A \cap B$, zu zeigen: es existiert eine konvergente Teilfolge, die gegen ein x in $A \cap B$ konvergiert.

Da insbesondere (x_j) in A liegt, existiert eine konvergente Teilfolge, die gegen $x \in A$ konvergiert. Diese Teilfolge liegt aber auch in B, also muss wegen der Kompaktheit auch ihr Grenzwert x in B liegen. Also liegt x sowohl in A, als auch in B, also $x \in A \cap B$.

4 Kompaktheit

(b)

Vor.: Ein Unterraum $K \subset X$ ist genau dann kompakt, wenn für alle Folgen in K gilt, dass eine konvergente Teilfolge existert, deren Grenzwert in K liegt.

Es sei (X, d) ein normierter Vektorraum und $A, B \subset X$ seien kompakt.

Beh.: $A + B := \{a + b : a \in A, b \in B\}$ ist kompakt.

Bew.: Sei $(a_j + b_j)$ eine Folge in A + B mit $\forall j \in \mathbb{N} : a_j \in A, b_j \in B$, da $(a_j) \subset A$ existiert eine konvergente Teilfolge (a_{j_k}) , die gegen einen Wert a in A konvergiert.

Da $(b_j) \subset B$ folgt auch $(b_{j_k}) \subset B$, also hat auch (b_{j_k}) eine konvergente Teilfolge $(b_{j_{k_n}})$ in B, die gegen einen Wert $b \in B$ konvergiert.

Da jede Teilfolge von konvergenten Folgen konvergieren, konvergiert auch $(a_{j_{k_n}})$ gegen a. Also konvergiert $(a_{j_{k_n}} + b_{j_{k_n}})$ gegen $a + b \in A + B$.

Aufgabe 4: Kompaktheit

Vor.: (X, d) ein kompakter metrischer Raum und $(U_i)_{i \in I}$ eine Überdeckung von X, durch offene Mengen in X.

Beh.: $\exists r > 0 : \forall B_r(x) : \exists i \in I : B_r(x) \subseteq U_i$

Bew.: Da X kompakt existieren endlich viele U_i 's, sodass

$$X \subset \bigcup_{i=1}^{N} U_i$$

Sei $C_i := X \setminus U_i$ und

$$f(x) := \frac{1}{N} \sum_{i=1}^{N} \inf_{c \in C_i} d(x, c)$$

Zwischenbeh. 1:

$$0 < f(x) \le \sup_{1 \le i \le N} \inf_{c \in C_i} d(x, c)$$

Bew. der Zwischenbeh. 1:

Für ein beliebiges $x \in X$ gilt, dass $x \in \bigcup_{i=1}^{N} U_i$, also existiert ein $1 \le i_0 \le N$ mit $x \in U_{i_0}$, bzw. $x \notin X \setminus U_{i_0}$. Somit $\forall c \in C_{i_0} : x \ne c \implies d(x,c) > 0$. Also da $d(x,c) \ge 0$ für alle $c \in C_{i_0}$ ist also:

$$\frac{1}{N} \sum_{i=1}^{N} \inf_{c \in C_i} d(x, c) \ge \frac{1}{N} \inf_{c \in C_i} d(x, c) > 0$$

und

$$\frac{1}{N} \sum_{i=1}^{N} \inf_{c \in C_i} d(x, c) \leq \frac{1}{N} \sup_{1 \leq i \leq N} \inf_{c \in C_i} d(x, c) = \frac{1}{N} \cdot N \cdot \left(\sup_{1 \leq i \leq N} \inf_{c \in C_i} d(x, c) \right) = \sup_{1 \leq i \leq N} \inf_{c \in C_i} d(x, c)$$

Zwischenbeh. 2:

 $\forall (x_i) \subset X$ gilt $f(x_i)$ konvergiert nicht gegen Null.

4 Kompaktheit 5

Also $\exists \varepsilon > 0 : \forall N_0 \in \mathbb{N} : \exists n > N_0 : |f(x_n)| = f(x_n) \ge \varepsilon$

Bew. der Zwischenbeh. 2:

Sei $(x_i) \subset X$ eine Folge.

Da X kompakt hat (x_j) eine konvergente Teilfolge (x_{j_k}) für die gilt $\lim_{k\to\infty} x_{j_k} = x \in X$.

Da f(x) > 0: $\exists \delta > 0$: $f(x) > \delta$, da (x_{j_k}) konvergent existiert ein $N_1 \in \mathbb{N}$, so dass für alle $k > N_1$ gilt $d(x_{j_k}, x) < \frac{\delta}{2}$, so dass $x_{j_k} \in B_{\frac{\delta}{2}}(x) \Longrightarrow f(x_{j_k}) \geq \frac{\delta}{2}$.

Wähle also $\varepsilon = \frac{\delta}{2}$, sodass für alle $N_0 \in \mathbb{N}$ ein $n > N_0$ existiert, sodass $f(x_n) \geq \frac{\delta}{2} = \varepsilon$. Was zu zeigen war

Fortsetzung des Bew.:

Aus der Zwischenbehauptung 2 folgt, dass $\inf_{x \in X} f(x) > 0$, daf(x) > 0 für alle $x \in X$ und für alle (x_i) für die $f(x_i)$ konvergiert, dass $\lim_{i \to \infty} f(x_i) > 0$.

Wähle also

$$r < \inf_{x \in X} f(x) = \inf_{x \in X} \frac{1}{N} \sum_{i=1}^{N} \inf_{c \in C_i} d(x, c)$$

Zu zeigen $\forall x \in X : \exists 1 \leq i_0 \leq N : B_r(x) \subset U_{i_0}$.

Sei $x \in X$ gegeben.

Aus Zwischenbeh. 1 folgt:

$$r < f(x) = \frac{1}{N} \sum_{i=1}^{N} \inf_{c \in C_i} d(x, c) \le \sup_{1 \le i \le N} \inf_{c \in C_i} d(x, c)$$

Da

$$\left\{\inf_{c \in C_i} d(x, c) : 1 \le i \le N\right\}$$

N Elemente hat, also endlich ist, ist sie auch Kompakt und besitzt ein Maximum, wähle i_0 so, dass $\inf_{c \in C_{i_0}} d(x, c)$ eben dieses Maximum ist. Also

$$r < f(x) \leq \inf_{c \in C_{i_0}} d(x,c)$$

Also $\forall c \in C_{i_0} : d(x,c) \ge r \implies B_r(x) \subset U_{i_0}$.

(Beweis durch Widerspruch, sei $x_1 \in B_r(x)$ mit $x_1 \notin U_{i_0}$, also $x_1 \in C_{i_0}$, also $d(x, x_1) \leq r < \inf_{c \in C_{i_0}} d(x, c) \leq d(x, x_1)$, was ein Widerspruch ist)