

FIG. 1

FIG. 3

FIG. 4

GENERAL RANGING PROCESS

FIG. 5A

02/26/2016 10:40 AM

FIG. 5C

FIG. 6
DEAD RECKONING RE-SYNC

246

CU CONCLUDES IT
MUST ALTER ITS
DELAY VECTOR TO
ALLOW THE FARthest
RU's TO SYNCHRONIZE
TO THE SAME FRAME
AS THE NEAREST RU's
AND BROADCASTS A
MESSAGE TO ALL RU's
INDICATING WHEN AND
BY HOW MUCH IT WILL
ALTER ITS DELAY
VECTOR

248

EACH RU RECEIVES
BROADCAST AND
ALTERS ITS DELAY
VECTOR BY AMOUNT
INSTRUCTED AT TIME
CU ALTERS ITS DELAY
VECTOR

250

EACH RU REINITIATES
SYNCHRONIZATION
PROCESS

FIG. 7
PRECURSOR EMBODIMENT

Digitized by srujanika@gmail.com

```

graph TD
    XMIT[XMIT FRAME TIMING] --> 405[405]
    405 --> 405[405]
    405 --> TIMESLOT[TIMESLOT #ENABLE]
    
```

The diagram shows a block labeled "XMIT FRAME TIMING" with an arrow pointing to a block labeled "405". From the "405" block, two arrows emerge: one pointing to another "405" block, and another pointing to a block labeled "TIMESLOT #ENABLE".

FIG. 9

FIG. 10

FIG. 11

FIG. 13

FIG. 12

FIG. 14

FIG. 15

FIG. 16

T05290-68419460

PREFERRED TRELLIS ENCODER

FIG. 17

3910
2021-06-07

FIG. 18

0000	111	111	
0001	001	111	$= 1 - j$
0010	001	001	$= 1 + j$
0011	111	001	$= -1 + j$
0100	011	111	$= 3 - j$
0101	001	011	$= 1 + 3*j$
0110	101	001	$= -3 + j$
0111	111	101	$= -1 - 3*j$
1000	011	011	$= +3 + 3*j$
1001	101	011	$= -3 + 3*j$
1010	101	101	$= -3 - 3*j$
1011	011	101	$= 3 - 3*j$
1100	111	011	$= -1 + 3*j$
1101	101	111	$= -3 - j$
1110	001	101	$= 1 - 3*j$
1111	011	001	$= 3 + j$

403

FIG. 19

INFORMATION
VECTOR [B]
FOR EACH
SYMBOL

$$\begin{array}{c}
 483 \curvearrowleft \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \vdots & & & \end{bmatrix} \\
 481 \curvearrowleft \times \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,144} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,144} \\ \vdots & \vdots & & \vdots \end{bmatrix}
 \end{array}$$

ORTHOGONAL
CODE MATRIX

FIG. 20A

REAL
PART OF
INFO
VECTOR
[b] FOR
FIRST
SYMBOL

$$\begin{array}{c}
 405 \curvearrowleft \begin{bmatrix} +3 \\ -1 \\ -1 \\ +3 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \\ -8 \end{bmatrix} \curvearrowleft 409 \\
 \begin{bmatrix} b_{\text{REAL}} \end{bmatrix} \times \begin{bmatrix} \text{CODE MATRIX} \end{bmatrix} = \begin{bmatrix} R_{\text{REAL}} \end{bmatrix} = \text{"CHIPS OUT"} \\
 \text{ARRAY-REAL}
 \end{array}$$

FIG. 20B

MAPPING FOR FALL-BACK MODE - LSB'S

FIG. 21

MSBs y_3, y_2	Phase difference (2nd-1st symbol)	1+jQ WHEN LSB=00	1+jQ WHEN LSB=01	1+jQ WHEN LSB=10	1+jQ WHEN LSB=11
00	0	3-j	1+j3	-3+j	-1-j3
01	90	1+j3	1+j3	-3+j	3-j
10	180	-3+j	-3+j	-1-j3	3-j
11	-90	-1-j3	-1-j3	3-j	1+j3

LSBs y_1, y_0	Phase	1+jQ
00	0	3-j
01	90	1+j3
10	180	-3+j
11	-90	-1-j3

LSB & MSB FALBACK MODE MAPPINGS

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

CU MODEM
FIG. 28

FIG. 29

0924239 - 052401

CU RÉCEIVER
FIG. 31

CU TRANSMITTER
FIG. 32

F0P250 "EECHS260

FIG. 34

FIG. 35

FIG. 36

FIG. 37
FINE TUNING TO
CENTER BARKER CODE

FIG. 38

032514736 0052101

FIG. 42

FIG. 43

FIG. 44

RU RANGING

FIG. 45

0012947230 - 05240

FIG. 46

00000000000000000000000000000000

CU RANGING AND CONTENTION RESOLUTION

FIG. 47

0076192350-05201

CONTENTION RESOLUTION - RU
USING BINARY STACK

FIG. 48

00264735 in 00210

FIG. 49

FIG. 50

FIG. 51

STATE MACHINE

FIG. 52

PRECHANNEL EQUALIZATION TRAINING ALGORITHM

FIG. 53A

00264235-052101

FIG. 53B

FIG. 53C

FIG. 54

SIMPLE CU SPREAD SPECTRUM RECEIVER

FIG. 55

FIG. 57

SYNCHRONOUS TDMA SYSTEM

OFFSET (CHIPS)	1B ASIC		2A ASIC	
	RGSRH	RGSRL	RGSRH	RGSRL
0	0x0000	0x8000	0x0001	0x0000
1/2	0x0000	0xC000	0x0001	0x8000
1	0x0000	0x4000	0x0000	0x8000
-1	0x0001	0x0000	0x0002	0x0000

FIG. 58

TRAINING ALGORITHM

SE FUNCTION

FIG. 59

INITIAL 2-STEP TRAINING ALGORITHM

2-STEP INITIAL EQUALIZATION TRAINING
FIG. 60

EQ STABILITY CHECK

FIG. 61

NOTE: $\text{THRLD}_{\text{COEFF}} = 7F00H$ $\text{THRLD}_{\text{STABLE}} = 10^{-3}$

PERIODIC 2-STEP TRAINING ALGORITHM

TDT250" 544494260

FIG. 62

TOT250-6E2-19260

RACM CORRECTION

NOTE: $THRLD_{AMP} = TBD$

$THRLD_{PHASE} = TBD$

ROTATIONAL AMPLIFIER CORRECTION

FIG. 63

EQ CONVERGENCE CHECK

1544

$$AMP_{SIDE} = \sum_{k=0}^2 (SECFFI_k^2 + SECFFQ_k^2) + \sum_{k=0}^3 (SECFBi_k^2 + SECFBQ_k^2)$$

1546

$$AMP_{MAIN} = SECFFI_3^2 + SECFFQ_3^2$$

1548

$$AMP_{RATIO} = \frac{AMP_{SIDE}}{AMP_{MAIN}}$$

1550

NO

$$AMP_{RATIO} < THRLD_{CONVERGE}$$

YES

1552

EQ NOT CONVERGED

1554 EQ CONVERGED

NOTE: $THRLD_{CONVERGE} = 10^{-5}$

FIG. 64

POWER ALIGNMENT FLOW CHART

NOTE: TH = 600H

N = 12

FIG. 65

FIG. 66

TOTAL TURN AROUND (TTA) IN FRAMES = OFFSET

FIG. 67

TOP SECRET//
REF ID: A60

FIG. 68

CONTROL MESSAGE (DOWNSTREAM) AND FUNCTION (UPSTREAM)
PROPAGATION IN A 3 FRAMES TTA CHANNEL

FIG. 69

FIG. 70

09764739 . 052101

FIG. 71

TO T2100 - 66214760

CHIP\FR	1	2	3	4	5	6	7		33
1	0	0	1	0	0	1	1	...	0
2	1	0	0	1	1	1	1	...	
3	0	0	0	1	1	1			
4	0	0	0	1	0	0	0	...	0
5	0	1	0	0	1				
6	0	0	1	1	1				
7	0	0	0	1	1				
8	0	0	0	0	1	0	0	...	

FIG. 72