NCERT Chemistry Formula Book Classes 11 & 12

Compiled from NCERT Textbooks

Contents

C	nemi	cal Constants and Values	5			
1	Phy	vsical Chemistry Formulas	7			
	1.1	Some Basic Concepts of Chemistry	7			
	1.2	States of Matter: Gases and Liquids	7			
	1.3	Thermodynamics	8			
	1.4	Chemical Equilibrium	9			
	1.5	Electrochemistry	9			
2	Organic Chemistry - Named Reactions					
	2.1	Alkyl Halides	11			
	2.2	Aromatic Compounds	11			
	2.3	Carbonyl Compounds	12			
	2.4	Carboxylic Acids and Derivatives	12			
	2.5	Amines	12			
	2.6	Important Tests	13			
3	Inorganic Chemistry - Important Processes 1					
	3.1	Industrial Processes	15			
	3.2	Extraction Processes	16			
	3.3	Coordination Compounds	16			
4	Biomolecules and Polymers 1'					
	4.1	Biomolecules	17			
	4.2	Analytical Chemistry	17			

Chemical Constants and Values

Fundamental Constants

Constant	Symbol	Value
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Gas constant	R	$8.314 \text{ J/mol} \cdot \text{K}$
Faraday constant	F	96485 C/mol
Planck's constant	h	$6.626 \times 10^{-34} \text{ J} \cdot \text{s}$
Speed of light	c	$3 \times 10^8 \text{ m/s}$
Boltzmann constant	k_B	$1.381 \times 10^{-23} \text{ J/K}$
Electronic charge	e	$1.602 \times 10^{-19} \text{ C}$

Common Conversion Factors

Conversion	Value
1 atm	101.325 kPa
1 bar	100 kPa
1 calorie	4.184 J
1 eV	$1.602 \times 10^{-19} \text{ J}$
1 Debye	$3.336 \times 10^{-30} \text{ C} \cdot \text{m}$

Physical Chemistry Formulas

1.1 Some Basic Concepts of Chemistry

Mole Concept: Number of moles = $\frac{\text{Mass}}{\text{Molar mass}}$

Definition: Fundamental concept relating mass to number of particles. 1 mole contains 6.022×10^{23} entities.

Percentage Composition: % of element = $\frac{\text{Mass of element in compound}}{\text{Molar mass of compound}} \times 100$

Definition: Mass percentage of each element in a compound.

Empirical Formula: Simplest whole number ratio of atoms

Definition: Derived from percentage composition data.

Molecular Formula: Actual number of atoms of each element

 $\begin{tabular}{ll} \textbf{Definition:} & \textbf{Multiple of empirical formula.} \end{tabular}$

Stoichiometry: Calculation of reactants and products

Definition: Based on balanced chemical equations.

1.2 States of Matter: Gases and Liquids

Ideal Gas Law: PV = nRT

Definition: Relationship between pressure, volume, temperature and moles of ideal gas. Applies to gases at high temperature and low pressure.

Combined Gas Law: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$

Definition: For fixed amount of gas, PV/T is constant.

Dalton's Law: $P_{\text{total}} = P_1 + P_2 + P_3 + \cdots$

Definition: Total pressure equals sum of partial pressures in gas mixture.

Graham's Law: $\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$

Definition: Rate of effusion/diffusion inversely proportional to square root of molar mass.

Kinetic Gas Equation: $PV = \frac{1}{3}mN\bar{c}^2$

Definition: Relates pressure to molecular speed and mass.

Van der Waals Equation: $\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$

Definition: Modified gas equation for real gases accounting for molecular size and intermolecular forces.

1.3 Thermodynamics

First Law: $\Delta U = q + W$

Definition: Law of conservation of energy. Change in internal energy equals heat added to system plus work done on system.

Work: $W = -P_{\rm ext}\Delta V$

Definition: Work done in expansion/compression at constant pressure.

Enthalpy: H = U + PV

Definition: Heat content at constant pressure.

Entropy: $\Delta S = \frac{q_{\text{rev}}}{T}$

Definition: Measure of disorder or randomness in system.

Gibbs Free Energy: $\Delta G = \Delta H - T\Delta S$

Definition: Predicts spontaneity of process. Negative ΔG indicates spontaneous process.

8

1.4 Chemical Equilibrium

Equilibrium Constant:
$$K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$$
 for $aA + bB \implies cC + dD$

Definition: Ratio of product concentrations to reactant concentrations at equilibrium.

Relationship:
$$K_p = K_c(RT)^{\Delta n_g}$$

Le Chatelier's Principle

1.5 Electrochemistry

Ohm's Law:
$$V = IR$$

Conductivity:
$$\kappa = G \frac{l}{A}$$

Nernst Equation:
$$E = E^0 - \frac{RT}{nF} \ln Q$$

Faraday's Laws:

First Law:
$$m = ZIt$$

Second Law:
$$\frac{m_1}{m_2} = \frac{E_1}{E_2}$$

Definition: Quantitative relationships in electrolysis.

Organic Chemistry - Named Reactions

2.1 Alkyl Halides

Wurtz Reaction: ${}_{2}R-X + {}_{2}Na \longrightarrow R-R + {}_{2}NaX$

Definition: Coupling of two alkyl halides with sodium metal to form alkane. Used for preparation of symmetrical alkanes.

Finkelstein Reaction: $R-X + NaI \longrightarrow R-I + NaX$

Definition: Halogen exchange reaction in acetone. Iodides prepared from chlorides/bromides.

Swarts Reaction: $R-X + AgF \longrightarrow R-F + AgX$

Definition: Preparation of fluorides from alkyl halides.

2.2 Aromatic Compounds

Friedel-Crafts Alkylation: $Ar-H + R-X \longrightarrow Ar-R + HX$ (with $AlCl_3$)

Definition: Introduction of alkyl group on aromatic ring using alkyl halide and Lewis acid catalyst.

Friedel-Crafts Acylation: $Ar-H + RCOX \longrightarrow Ar-COR + HX$ (with $AlCl_3$)

Definition: Introduction of acyl group on aromatic ring using acid chloride and Lewis acid catalyst.

Reimer-Tiemann Reaction: Ar−OH + CHCl₃ + NaOH → Ar−CHO

Definition: Formylation of phenols to produce salicylaldehyde.

2.3 Carbonyl Compounds

Cannizzaro Reaction: $_2$ Ar-CHO + NaOH \longrightarrow Ar-CH $_2$ OH + Ar-COONa

Definition: Disproportionation of aldehydes lacking alpha-hydrogen in presence of strong base.

Clemmensen Reduction: $Ar-COR + {}_{4}[H] \longrightarrow Ar-CH_{2}-R + H_{2}O$ (with Zn-Hg/HCl)

Definition: Reduction of carbonyl to methylene group using zinc amalgam and hydrochloric acid.

Wolff-Kishner Reduction: $Ar-COR \longrightarrow Ar-CH_2-R$ (with NH_2NH_2/KOH)

Definition: Alternative method for carbonyl to methylene reduction using hydrazine and base.

Aldol Condensation: ${}_{2}R-CH_{2}-CHO \longrightarrow R-CH_{2}-CH(OH)-CH(R)-CHO$

Definition: Carbon-carbon bond formation between carbonyl compounds having alpha-hydrogen.

Perkin Reaction: $Ar-CHO + (CH_3CO)_2O \longrightarrow Ar-CH=CH-COOH$ (with CH_3COONa)

Definition: Synthesis of cinnamic acids from aromatic aldehydes and acid anhydrides.

2.4 Carboxylic Acids and Derivatives

Hell-Volhard-Zelinsky Reaction: $R-COOH \longrightarrow R-CH_2-COOH$ (with P_1Br_2)

Definition: Alpha-bromination of carboxylic acids.

Claisen Condensation: ${}_{2}R-CH_{2}-COOR' \longrightarrow R-CH_{2}-CO-CH(R)-COOR'$

Definition: Ester analogue of aldol condensation producing beta-keto esters.

Dieckmann Condensation: Intramolecular Claisen condensation

Definition: Cyclization via intramolecular ester condensation forming cyclic beta-keto esters.

2.5 Amines

Hofmann Bromamide Reaction: $R-CONH_2+Br_2+{}_4NaOH \longrightarrow R-NH_2+{}_2NaBr+Na_2CO_3+{}_2H_2O$

Definition: Conversion of amides to amines with one less carbon atom using bromine and sodium hydroxide.

Carbylamine Reaction: $R-NH_2 + CHCl_3 + {}_{3}KOH \longrightarrow R-NC + {}_{3}KCl + {}_{3}H_2O$

Definition: Test for primary amines producing isocyanides (bad smelling compounds).

Hinsberg Test: Distinguishes between 1°, 2°, and 3° amines

Definition: Reaction with benzenesulfonyl chloride for amine classification.

2.6 Important Tests

Tollens' Test:
$$R-CHO + {}_{2}[Ag(NH_{3})_{2}]^{+} + {}_{3}OH^{-} \longrightarrow R-COO^{-} + {}_{2}Ag + {}_{4}NH_{3} + {}_{2}H_{2}O$$

Definition: Test for aldehydes producing silver mirror. Aldehydes reduce Tollens' reagent to metallic silver.

Fehling's Test:
$$R-CHO + {}_{2}Cu^{2+} + {}_{5}OH^{-} \longrightarrow R-COO^{-} + Cu_{2}O + {}_{3}H_{2}O$$

Definition: Test for aldehydes producing red precipitate of cuprous oxide.

Iodoform Test:
$$CH_3-CH(OH)-R + {}_4I_2 + {}_6NaOH \longrightarrow CHI_3 + R-COONa + {}_5NaI + {}_5H_2O$$

Definition: Test for methyl ketones and alcohols producing yellow precipitate of iodoform.

Inorganic Chemistry - Important Processes

3.1 Industrial Processes

Ostwald Process:

$$_4\mathrm{NH_3} + _5\mathrm{O_2} \longrightarrow _4\mathrm{NO} + _6\mathrm{H_2O}$$
 $_2\mathrm{NO} + \mathrm{O_2} \longrightarrow _2\mathrm{NO_2}$
 $_3\mathrm{NO_2} + \mathrm{H_2O} \longrightarrow _2\mathrm{HNO_3} + \mathrm{NO}$

Definition: Industrial production of nitric acid from ammonia through catalytic oxidation.

Contact Process:

$$_2SO_2 + O_2 \Longrightarrow {_2SO_3} \quad (V_2O_5 \text{ catalyst})$$

 $SO_3 + H_2SO_4 \longrightarrow H_2S_2O_7$
 $H_2S_2O_7 + H_2O \longrightarrow {_2H_2SO_4}$

Definition: Industrial production of sulfuric acid from sulfur dioxide.

Haber Process: $N_2 + {}_3H_2 \rightleftharpoons {}_2NH_3$

Definition: Industrial synthesis of ammonia from nitrogen and hydrogen using iron catalyst at high pressure and temperature.

Down's Process: Electrolysis of molten NaCl for sodium metal

Definition: Industrial production of sodium metal by electrolysis of molten sodium chloride.

Castner-Kellner Process: Electrolysis of brine for NaOH

Definition: Industrial production of sodium hydroxide by electrolysis of brine using mercury cathode.

3.2 Extraction Processes

Mond Process: $Ni + {}_{4}CO \longrightarrow Ni(CO)_{4} \longrightarrow Ni + {}_{4}CO$

Definition: Purification of nickel via formation and decomposition of volatile nickel carbonyl.

Van Arkel Method: Purification of titanium and zirconium

Definition: Using iodine transport method to form volatile iodides which decompose to pure metal.

Thermite Process: $Fe_2O_3 + {}_2Al \longrightarrow {}_2Fe + Al_2O_3$

Definition: Reduction of metal oxides using aluminum as reducing agent, producing molten metal.

3.3 Coordination Compounds

Werner's Theory: Primary and secondary valences

Definition: Foundation of coordination chemistry proposing central metal atom with primary (ionizable) and secondary (non-ionizable) valences.

Valence Bond Theory: Hybridization in complexes

Definition: Explains geometry of complexes using hybridization concept.

Crystal Field Theory: Splitting of d-orbitals

Definition: Explains color and magnetic properties of complexes based on d-orbital splitting in ligand field.

Biomolecules and Polymers

4.1 Biomolecules

Photosynthesis: ${}_{6}\text{CO}_{2} + {}_{6}\text{H}_{2}\text{O} \longrightarrow \text{C}_{6}\text{H}_{12}\text{O}_{6} + {}_{6}\text{O}_{2}$

Definition: Process by which plants convert light energy to chemical energy using chlorophyll.

Respiration: $C_6H_{12}O_6 + {}_6O_2 \longrightarrow {}_6CO_2 + {}_6H_2O + energy$

Definition: Cellular process of energy production through oxidation of glucose.

Fermentation: $C_6H_{12}O_6 \longrightarrow {}_2C_2H_5OH + {}_2CO_2$

Definition: Anaerobic breakdown of glucose to ethanol and carbon dioxide by microorganisms.

4.2 Analytical Chemistry

Beer-Lambert Law: $A = \epsilon cl$

Definition: Relationship between absorbance and concentration in spectrophotometry.

Raoult's Law: $P = P^0x$

Definition: Vapor pressure of ideal solutions is proportional to mole fraction of solvent.

Henry's Law: $P = K_H x$

Definition: Solubility of gases in liquids proportional to pressure of gas over solution.