DS (CHAPTER WISE IMP Q'S)

UNIT 1 - INTRODUCTION TO DS

- 1.Converting infix to postfix
- 2. Evaluating given postfix/prefix using Stack
- 3. Programme to implement stack/Queue
- 4. Tower of Hanoi (programme & algorithm)
- 5.Define Stack/Queue and their applications
- 6, Parenthesis matching using Stack

UNIT 2 - Tree DS

- 1. Differentiate between using Linked List and Array for implementing Tree DS.
- 2.Inorder, Preorder, Postorder:
 - Algorithms (or)
 - Programme (or)
 - Writing the order of given tree
- 3. Defining and constructing Min (or) Max Heap with given data
- 4. Representing given Arithmetic expression in binary tree format
- 5. Algorithm for Heap Sort.

UNIT 3 - Advance Trees

- 1. Constructing:
 - AVL
 - B-Tree
 - BST(insertion & deletion)
 - Red-black tree

2. Write short note on:

- B-tree
- Red-Black tree
- Splay tree

3. Properties of Red-Black tree

- 4. Algorithm/explanation for:
 - B-Tree
 - AVL rotations,insertion,deletion
 - BST Insertion/deletion

UNIT 4 - Graphs

- 1. Describe in detail about the following representations of a graph.
- i) Adjacency Matrix
- ii) Adjacency List
- 2. Explain and display BFS and DFS for given graph
- 3. Elaborate Spanning Trees and its properties
- 4. Explain and implement Dijkstra Algorithm .(for given graph)
- 5. Find minimum spanning tree using
 - Prims algorithm
 - Kruskal's algorithm

UNIT 5 - Hashing

- 1. (i)Define hash function and discuss the applications of hashing.
- (ii)Summarize Separate Chaining Concept.
- 2. Open addressing hash table using
 - linear probing.
 - Quadratic probing
 - Double hashing
- 3.) i) Write a program for implementation of Dictionaries
- ii) Categorize Rehashing & Extendible Hashing
- 4. Construct hash table by using Extendible Hashing with the given data
- 5. What is collision? Explain different collision resolution techniques with example?

