Introduction on PV Cell

- 1. A solar photovoltaic (PV) cell, also known as a solar cell, is an electronic device that converts sunlight into electricity.
- 2. It is a type of semiconductor device that absorbs photons (particles of light) and releases electrons, generating an electric current.
- 3. Solar cells are the building blocks of solar panels, which are used to capture the energy from the sun and convert it into usable electricity.
- 4. The basic structure of a solar cell consists of a thin layer of semiconductor material, typically made of silicon, with a metal conductor on top and a transparent conductor on the bottom.
- 5. The transparent conductor on the bottom of the semiconductor material is used to collect the electrons that are released from the material.
- 6. This conductor is typically made of a material such as indium tin oxide (ITO), which is transparent to visible light but conducts electricity.
- 7. The reason why the semiconductor material in a solar cell is thin is because the thinner the material, the more efficiently it can convert sunlight into electricity.
- 8. This is because a thinner material allows the electrons that are released by the sunlight to move more easily to the metal conductor, which creates a stronger electrical current.
- 9. When sunlight hits the semiconductor material, it excites electrons, which are then collected by the metal conductor and flow as electricity through an external circuit.
- 10. With ongoing advances in technology, solar cells are becoming more efficient and cost-effective, making them an increasingly attractive option for meeting our energy needs.

The fundamentals of how solar PV cells work:

1. **Photons:** Sunlight is made up of photons, which are particles of electromagnetic radiation.

2. Semiconductors:

- 1. Solar PV cells are made of semiconductors, such as silicon.
- 2. Semiconductors have unique electronic properties that allow them to absorb photons and release electrons.

3. Energy bands:

- 1. In a semiconductor material, there are two energy bands: the valence band and the conduction band.
- 2. The valence band is where electrons are normally located, while the conduction band is where free electrons are available for current flow.

4. Electron movement:

- 1. When a photon is absorbed by the semiconductor, it can provide enough energy to an electron in the valence band to allow it to jump into the conduction band, leaving behind a positively charged "hole" in the valence band.
- 2. This creates a free electron and a positively charged hole that can flow in opposite directions to create a current.

5. P-N junction:

- 1. Solar PV cells are typically constructed as a p-n junction, where one side of the junction is a p-type semiconductor (containing positively charged "holes"), and the other side is an n-type semiconductor (containing extra free electrons).
- 2. When the two semiconductors are brought together, an electric field is created that helps to separate the free electrons and holes created by the photons.

6. Circuit:

- 1. The flow of electrons and holes in the p-n junction creates a direct current (DC) that can be used to power electrical devices.
- 2. To use the electricity produced by a solar PV cell, it is typically connected to an electrical circuit, which can include a battery, inverter, and other components.

Classification of PV cells

- 1. In general PV cells can be classified based on their materials, efficiency, cost, and other factors.
- 2. There are several types of PV cells, each with its own unique characteristics and advantages.
- 3. The most common types are:

1. Crystalline Silicon (c-Si) Cells:

- 1. These are the most common type of solar cells.
- 2. They are made up of silicon wafers and come in two varieties: monocrystalline and polycrystalline.
- 3. Monocrystalline cells are made from a single, pure silicon crystal,
- 4. Polycrystalline cells are made from multiple silicon crystals.
- 5. Monocrystalline cells have a higher efficiency, but they are also more expensive.

2. Thin-film Cells:

- 1. These are made by depositing a thin layer of semiconductor material onto a substrate.
- 2. There are several types of thin-film cells, including amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium selenide (CIGS).
- 3. Thin-film cells are less efficient than c-Si cells, but they are also less expensive.

3. Concentrated PV (CPV) Cells:

- 1. These cells use lenses or mirrors to concentrate sunlight onto a small area of highly efficient PV cells.
- 2. CPV cells are expensive and require a tracking system to follow the sun, but they have the highest efficiency of all PV cells.

4. Organic PV (OPV) Cells:

- 1. These are made from organic materials, such as polymers or small molecules.
- 2. OPV cells are lightweight, flexible, and inexpensive, but they have lower efficiency than other types of PV cells.

5. Dye-sensitized Solar Cells (DSC):

- 1. These cells use a layer of dye molecules to absorb sunlight and generate electrical energy.
- 2. DSC cells are lightweight, flexible, and have low manufacturing costs, but they have lower efficiency than other types of PV cells.

Construction and Working of Crystalline Silicon (c-Si) cells

- 1. These are a type of solar cell that is commonly used in photovoltaic (PV) systems.
- 2. They are made from thin wafers of silicon, which are treated with various chemicals and processes to create a p-n junction, which is necessary for the conversion of light into electricity.

Construction of c-Si Cells:

3. Silicon Ingot Production:

- 1. The first step in the construction of c-Si cells is the production of a silicon ingot.
- 2. This is done by melting high-purity silicon and then slowly cooling it to form a solid block of silicon.

4. Wafer Production:

- 1. The silicon ingot is then sliced into thin wafers using a saw.
- 2. The wafers are typically about 200 micrometers thick.

5. Doping:

- 1. To create a p-n junction, the wafers are doped with impurities.
- 2. This involves adding small amounts of boron to the top layer of the wafer and small amounts of phosphorus to the bottom layer.

6. Metallization:

- 1. The next step is to add metal contacts to the top and bottom of the wafer.
- 2. These contacts allow for the flow of electricity out of the cell.

7. Encapsulation:

1. Finally, the cells are encapsulated in a protective layer of glass or plastic to protect them from the elements.

Working of Crystalline Silicon (c-Si) cells

c-Si (crystalline silicon) cells are the most commonly used solar cells in the world. They are made from a single crystal or a polycrystalline silicon wafer, which is sliced into thin cells that are then assembled into a solar panel.

Here's a basic overview of how c-Si cells work:

1. Absorption of sunlight:

1. When sunlight hits the c-Si cell, it is absorbed by the silicon atoms in the cell.

2. Generation of electron-hole pairs:

- 1. The absorbed sunlight provides enough energy to some of the silicon atoms in the cell to knock electrons out of their orbits, leaving behind positively charged "holes".
- 2. This process generates a pair of electrons and holes for every absorbed photon.

3. Separation of electron-hole pairs:

- 1. In the c-Si cell, there are two distinct regions of silicon: the p-type and n-type layers.
- 2. These layers are created by doping the silicon with impurities to create areas with excess electrons (n-type) and areas with excess holes (p-type).
- 3. The electrons generated in step 2 move towards the n-type layer, while the holes move towards the p-type layer.

4. Collection of electrons:

- 1. The movement of the electrons towards the n-type layer creates a flow of current.
- 2. This current is collected by the metal contacts on the top and bottom of the cell, which transfer the current out of the cell and into an external circuit.

5. Recombination of electron-hole pairs:

- 1. If the electrons and holes do not move towards their respective layers fast enough, they may recombine before they can be collected.
- 2. This reduces the efficiency of the cell.

6. Reflection of unused light:

- 1. Some of the light that hits the cell is reflected off the surface and does not get absorbed.
- 2. This is why solar cells appear to be a dark blue or black color.

7. Conversion of energy:

- 1. The flow of current generated by the cell can be used to power a load or stored in a battery for later use.
- 2. This conversion of sunlight into usable electricity is what makes c-Si cells such a valuable technology for renewable energy production.

PV cells Characteristics

1. Efficiency:

- 1. This refers to the percentage of sunlight that a PV cell can convert into electricity.
- 2. Higher efficiency means more energy can be produced with fewer cells.

2. Power output:

- 1. It is the amount of electrical power that a PV cell can produce.
- 2. It is determined by the size and efficiency of the cell.

3. Durability and reliability:

- 1. PV cells should be able to withstand various weather conditions and have a long lifespan.
- 2. They should also be reliable in producing electricity consistently over time.

4. Cost:

- 1. The cost of PV cells and their installation is an important consideration.
- 2. The cost of PV cells has decreased significantly over the years, making them more accessible to the general public.

5. Operating temperature:

- 1. PV cells can lose efficiency as they get hotter.
- 2. Therefore, it's important to consider the temperature at which the cell will operate and how that will affect its performance.

6. Spectral response:

- 1. The spectral response of a PV cell refers to its ability to convert different wavelengths of light into electricity.
- 2. PV cells with a broader spectral response can generate electricity from a wider range of light sources.

7. Size and weight:

1. The size and weight of PV cells are important factors to consider, especially for installations where space is limited.

8. Environmental impact:

- 1. The manufacturing and disposal of PV cells can have environmental impacts.
- 2. Therefore, it's important to consider the environmental impact of the materials used to make the cells and how they are disposed of at the end of their lifespan.

PV Cells "Module" "Panel" "Array" *Construction*

- 1. When multiple PV cells are connected together, they form a PV module or solar panel.
- 2. A PV module is made up of several PV cells connected together and encapsulated in a protective material such as tempered glass, plastic or aluminum.
- 3. This encapsulation provides mechanical strength and protection against weather and environmental conditions.
- 4. When multiple PV modules are connected together, they form a PV panel.
- 5. A PV panel can be used to generate electricity for homes, businesses, and other applications.
- 6. An array is a group of PV panels or modules that are interconnected to form a larger system.
- 7. The size and capacity of a solar array depend on the energy demand and available space for installation.
- 8. The construction of a PV cell, module, panel, and array varies slightly depending on the manufacturer and technology used.

However, the basic construction of a typical silicon-based PV module includes the following layers:

9. Glass or plastic protective layer:

1. This layer is placed on top of the PV module to protect the cells from weather and environmental conditions.

10. Anti-reflective coating:

1. This layer is added to the protective layer to reduce the amount of reflection and increase the amount of sunlight absorbed by the PV cells.

11. PV cells:

1. These are the actual solar cells that absorb sunlight and convert it into electrical energy.

12. Encapsulant layer:

1. This layer is added to the back of the PV cells to protect them from moisture and provide mechanical support.

13. Back sheet:

1. This layer is placed on the back of the encapsulant layer to protect the module from moisture and other environmental conditions.

14. Frame:

1. The frame is used to provide mechanical support and protect the edges of the PV module.

Photovoltaic thermal (PVT) systems

- 1. These are hybrid solar energy systems that can generate both electricity and heat.
- 2. These systems consist of photovoltaic cells and a heat-absorbing component, typically a flat plate collector, which are combined to create a single unit.
- 3. PVT systems are often used to provide both electricity and hot water in residential and commercial buildings.

Working:

- 4. When sunlight hits the PVT system, the photovoltaic cells convert some of the solar energy into electricity, while the plate collector absorbs the remaining energy and converts it into heat.
- 5. The heat is transferred to the fluid circulating through the heat exchanger, which is then used to provide hot water or space heating.
- 6. The temperature of the heat-absorbing plate is kept lower than that of a typical flat plate solar thermal collector to ensure that the photovoltaic cells operate efficiently.
- 7. This is achieved through the use of a heat transfer fluid that removes excess heat from the plate collector, ensuring that the cells remain cool and operate at their optimal temperature.

Construction:

- 8. The construction of a PVT system is similar to that of a traditional solar photovoltaic system, with the addition of a thermal component.
- 9. The photovoltaic cells are typically mounted on a flat plate collector, which is designed to absorb sunlight and convert it into heat.
- 10. The plate collector is usually made of a high thermal-conductivity material such as copper or aluminum, with a black coating to maximize heat absorption.
- 11. The heat generated by the plate collector is then transferred to a fluid, such as water or antifreeze, which circulates through a heat exchanger.
- 12. This fluid can be used to provide hot water for domestic use, space heating, or industrial processes.
- 13. The electricity generated by the photovoltaic cells is typically used to power electrical appliances or to feed back into the grid.
- The efficiency of a PVT system depends on a variety of factors, including the amount of sunlight available, the size and orientation of the system, and the efficiency of the photovoltaic cells and heat exchanger.
- In general, PVT systems are more efficient than separate photovoltaic and solar thermal systems, as they allow for the simultaneous generation of both electricity and heat.