

Lecture 22: GLM: Link Functions and

4. GLM: Statistical Model and

Course > Unit 7 Generalized Linear Models > the Canonical Link Function

> Notation

4. GLM: Statistical Model and Notation

We now combine our ingredients together.

We have discussed **canonical exponential families** parametrized by θ , with the log-partition function $b(\theta)$ having the property that $b'(\theta) = \mu$. Recall that in GLMs, the point of the link function is to assume $g(\mu(\mathbf{x})) = \mathbf{x}^T \boldsymbol{\beta}$, where μ is the **regression function**: the mean of Y given $\mathbf{X} = \mathbf{x}, \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}].$

Concept Check: Properties of the Canonical Link Function

1/1 point (graded)

Let $f_{ heta}=\exp\left(rac{y heta-b(heta)}{\phi}+c\left(y,\phi
ight)
ight)$ for $\phi
eq0$ describe an exponential family. Which one of the following statements about the function $g(\mu) = \theta$ is false?

- The canonical link function always exists.
- $\bigcirc g$ is identical to $(b')^{-1}$.
- \bigcirc If q strictly increases, then q^{-1} strictly increases.
- lacktriangle Regardless of the value of ϕ , g is strictly increasing.

~

Solution:

- We can always write down the function $g(\mu) = \theta$.
- Based on the properties of the log-partition function b, we derived previously that $b'(\theta) = \mu$, so we have the identity $g(\mu) = (b')^{-1}(\mu)$.
- It is a general fact that if f is a function that strictly increases, then its inverse is a function that strictly increases. The same holds for strictly decreasing functions.
- g decreases if $\phi < 0$. This can be seen from the fact that $\phi \cdot b''(\theta)$ is the variance of a random variable, which means b'' < 0. Thus, b' is a decreasing function, which means $(b')^{-1}$ is decreasing. **Ultimately, this demonstrates that there is a "canonical" choice of parametrization.** If $\phi < 0$, all that tells us is that we should re-parametrize by multiplying both ϕ and b by -1. We can always make such a choice, as long as $\phi \neq 0$, so that g is an increasing function. Recall that this is one of the properties we wanted out of link functions of GLMs!

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

GLM and Introduction of Beta for Estimation

Concept Check: Assumptions for GLM

0/1 point (graded)

Choose from the following the assumptions we make in fitting data using a GLM.

© All Rights Reserved