МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А. И. ГЕРЦЕНА

Институт информационных технологий и технологического образования Кафедра компьютерные технологии и электронного обучения Основная профессиональная образовательная программа Направление подготовки 09.03.01 Информатика и вычислительная техника Направленность (профиль) «Технологии разработки программного обеспечения» форма обучения - очная

ЛАБОРАТОРНАЯ РАБОТА №1

по дисциплине: «Анализ данных и основы Data science» КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ

Руководитель: кандидат педагогических наук, доцент, Светлана Викторовна Гончарова

Автор работы студент 2 курса 1 группы 1 подгруппы Чирцов Тимофей Александрович

Цель: реализовать нахождения погрешностей средством электронных таблиц и программного кода

Оборудование: Персональный компьютер, Excel, Visual Studio (C++)

Задание 1 (цилиндр)

- (4) Постановка задачи: В таблице представлены результаты измерений диаметра цилиндра. Вычислить погрешность эксперимента средствами Excel. В качестве d0 выбрать удобное для вычисления значение, например 14.80. Результаты оформить в виде таблицы
- (5) Математическая модель:

Среднее значение:

$$\overline{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

Дисперсия (Среднеквадратичная погрешность):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\overline{x} - x_{0})^{2} \right)$$

Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

Относительная погрешность:

$$\frac{\Delta x}{x} \cdot 100\%$$

(6) Результат выполненной работы:

Excel:

	Α	В	С	D	Е	F	G	Н	1	J
1	n	d, mm	di-do	(di-do) ²	Среднее значение d	Средне- квадратична я погрешность	Станд. Отклоне ние	Абсол. Погрешн ость ∆х	Относит. Погрешн ость	do
2	1	14,85	0,1	0,01	14,818	0,000134	0,011576	0,02975	0,20%	14,75
3	2	14,8	0,05	0,0025						
4	3	14,79	0,04	0,0016						
5	4	14,84	0,09	0,0081						
6	5	14,81	0,06	0,0036						

Код программы:

```
#include <iostream>;
#include <math.h>;
using namespace std;
int main()
{
         double d[5] = { 14.85, 14.80, 14.79, 14.84, 14.81 };
         double d0 = 14.75;
         cout << "di-d0\n";
         for (i = 0; i < 5; i++) {
                  cout << d[i] - d0;
                  cout << "\n";
         }
         cout << "(di-d0)^2n";
         for (i = 0; i < 5; i++) {
                  cout << (d[i] - d0) * (d[i] - d0);
                  cout << "\n";
         }
         cout << "Srednee znachenie\n";</pre>
         double sumd = 0;
         for (i = 0; i < 5; i++) {
                  sumd = sumd + (d[i] - d0);
         float dmid = d0 + 0.2 * sumd;
         cout << dmid;
         cout << "\n";
         cout << "Srednee kvadratichnoe znachenie\n";</pre>
         double sumd2 = 0;
         for (i = 0; i < 5; i++) {
                  sumd2 = sumd2 + ((d[i] - d0)*(d[i] - d0));
         double srkv = 0.05 * (sumd2 - 5 * ((dmid - d0) * (dmid - d0)));
         cout << srkv;
```

```
cout << "\n";

cout << "Standartnoe otklonenie\n";
cout << sqrt(srkv);
cout << "\n";

cout << "Absolutnaya pogreshnost\n";

double ta = 2.570;
double delx = ta * sqrt(srkv);
cout << delx;
cout << "\n";

cout << delx;
cout << "Otnositelnaya pogreshnost\n";

cout << delx / dmid * 100;
cout << "%";

return 0;</pre>
```

}

```
□ "D\|pyEvbw\|¬'|=|\n\|rioEφ\2 ±±±¬\3 exbxeEE\|-\p± ||1\|-\\an\\bin\|Debug\\an.exe" — >

di-d0
0.1
0.05
0.05
0.04
0.09
0.06
(di-d0)^2
0.01
0.0025
0.0016
0.0081
0.0081
0.0036
Srednee znachenie
14.818
Srednee kvadratichnoe znachenie
0.000134095
Standartnoe otklonenie
0.015761
Absolutnaya pogreshnost
0.2097585
0.20973%
Process returned 0 (0x0) execution time : 0.225 s
Press any key to continue.
```

(7) Вывод: Благодаря подсчетам мы вычислили абсолютную и относительную погрешность данного эксперимента с измерениями цилиндра.

Задание 2 (алюминий)

- (4) В результате определения содержания алюминия в сплаве получены следующие значения (в % масс): 7.48, 7.49, 7.52, 7.47, 7.50. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве m0 выбрать 7.48
- (5) Математическая модель:

Среднее значение:

$$\overline{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

Дисперсия (Среднеквадратичная погрешность):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\overline{x} - x_{0})^{2} \right)$$

Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

Относительная погрешность:

$$\frac{\Delta x}{x} \cdot 100\%$$

(6) Результат выполненной работы:

Excel:

8	Задан	ние 2								
9	n	т, % масс	mi-mo	(mi-mo) ²	Среднее значение m	Средне- квадратична я погрешность	Станд. Отклоне ние	Абсол. Погрешн ость ∆х	Относит. Погрешн ость	do
10	1	7,48 0 0 7,492		7,492	7,4E-05	0,008602	0,022108	0,30%	7,48	
11	2	7,49	0,01	1E-04						
12	3	7,52	0,04	0,0016						
13	4	7,47	-0,01	0,0001						
14	4 5 7,5		0,02	0,0004				·	·	
15										

Результат программы:

```
i 'D\|pyEerbu\\\\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\rightarrow\righ
```

(7) Вывод: Благодаря подсчетам мы вычислили абсолютную и относительную погрешность данного эксперимента с содержанием алюминия в сплаве.

Задание 3 (масса)

- (4) При взвешивании образца анализируемого вещества получены следующие результаты: 47,12; 47,08; 47,13 г. Оценить истинную массу образца и определить точность этой оценки для доверительной вероятности 0,95.
- (5) Математическая модель:

Среднее значение:

$$\overline{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

Дисперсия (Среднеквадратичная погрешность):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\overline{x} - x_{0})^{2} \right)$$

Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_\alpha \cdot \Delta S$$

Относительная погрешность:

$$\frac{\Delta x}{x}$$
·100%

(6) Результат выполненной работы:

Excel:

16	Задаі	ние 3								
17	n	n m, r		(mi-mo) ²	Среднее значение m	Средне- квадратична я погрешность	Отклоне ние	Абсол. Погрешн ость Δх	Относит. Погрешн ость	do
18	1	47,12	0,02	0,0004	47,11	0,000233333	0,015275	0,048606	0,10%	47,1
19	2	47,08	-0,02	0,0004						
20	3 47,13		0,03	0,0009						
21										

Результат программы:

```
To \py\censur\_r\+\\_r\censur\_r\+\\_\r\censur\_r\+\\_\r\censur\_r\+\\_\r\censur\_r\+\\_\r\censur\_r\+\\_\r\censur\_r\+\\_\r\censur\_r\+\\_\r\censur\_r\+\\_\r\censur\_r\+\\_\r\censur\_r\+\\\\r\censur\_r\+\\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\\r\censur\_r\+\r\censur\_r\+\\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censur\_r\+\r\censu
```

(7) Вывод: Благодаря подсчетам мы вычислили абсолютную и относительную погрешность данного эксперимента при взвешивании образца.

Задание 4 (брусок)

(4) При измерении бруска получились следующие результаты: 4,12 см³, 4,02 см³, 4,2 см³. Вычислить погрешность эксперимента с помощью Excel. Результаты оформить в виде таблицы.

(5) Математическая модель:

Среднее значение:

$$\overline{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

Дисперсия (Среднеквадратичная погрешность):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\overline{x} - x_{0})^{2} \right)$$

Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

Относительная погрешность:

$$\frac{\Delta x}{x} \cdot 100\%$$

(6) Результат выполненной работы:

Excel:

Z J										
22	Задаі	ние 4								
23	n	v, cm³	vi-vo	(vi-vo) ²	Среднее значение V	Средне- квадратична я погрешность	Отклоне ние	Абсол. Погрешн ость	Относит. Погрешн ость	do
24	1	4,12	0,01	1E-04	4,113333	0,002711111	0,052068	0,165681	4,03%	4,11
25	2	4,02	-0,09	0,0081						
26	3	4,2	0,09	0,0081					·	·
27										

Результат программы:

(7) Вывод: Благодаря подсчетам мы вычислили абсолютную и относительную погрешность данного эксперимента при измерении бруска.

Задание 5 (параллелепипед)

(4) В эксперименте выполнялись измерения размеров тела правильной геометрической формы (параллелепипед) с целью определения его объема. Все измерения проведены штангенциркулем с ценой деления нониуса 0,1 мм. Результаты измерений приведены в таблице.

n	a,mm	<i>b</i> ,мм	h , $\mathbf{M}\mathbf{M}$
1	12,7	12,7	14,8
2	12,7	12,8	14,9
3	12,7	12,9	14,7
Среднее:	$\widetilde{a} = 12,7$	$\widetilde{b} = 12.8$	$\widetilde{h} = 14.8$

(5) Математическая модель:

Среднее значение:

$$\overline{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

Дисперсия (Среднеквадратичная погрешность):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\overline{x} - x_{0})^{2} \right)$$

Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

Относительная погрешность:

$$\frac{\Delta x}{x} \cdot 100\%$$

(5.1) Рассчитать погрешность прямых измерений величины b (среднее арифметическое, среднеквадратичное отклонение, случайная погрешность многократных измерений, оценить доверительный интервал однократных измерений, общая погрешность серии измерений). Записать полученное из эксперимента значение величины b с учетом погрешности

(6.1) Результат выполненной работы:

Excel:

1	n	а, мм	Ь, мм	h, мм	bi-bo	(bi-bo) ²	Среднее значение b	Средне- квадрати чная погрешн ость	Станд. Отклоне ние	Абсол. Погрешн ость ∆х	Относит. Погрешн ость	Задание
2	1	12,7	12,7	14,8	-0,1	0,01	12,8	0,003333	0,057735	0,183713	1,44%	
3	2	12,7	12,8	14,9	0	0						
4	3	12,7	12,9	14,7	0,1	0,01						
5	Среднее:	12,7	12,8	14,8								

Результат программы:

- (7.1) Вывод: Благодаря подсчетам мы вычислили абсолютную и относительную погрешность данного эксперимента при измерении параллелепипеда величины b.
- (5.2) Рассчитать погрешность прямых измерений величины а.
- (6.2) Результат выполненной работы:

Excel:

7	n	а, мм	Ь, мм	h, мм	ai-ao	(ai-ao) ²	Среднее значение а	Средне- квадрати чная погрешн ость		Абсол. Погрешн ость ∆х	Относит. Погрешн ость	Залание
8	1	12,7	12,7	14,8	0	0	12,7	0	0	0	0,00%	
9	2	12,7	12,8	14,9	0	0						
10	3	12,7	12,9	14,7	0	0						
11	Среднее:	12,7	12,8	14,8	0	0						

Результат программы:

- (7.2) Вывод: Благодаря подсчетам мы вычислили абсолютную и относительную погрешность данного эксперимента при измерении параллелепипеда величины а.
- (5.3) Рассчитать погрешность прямых измерений величины h.
- (6.3) Результат выполненной работы:

Excel:

13	n	а, мм	Ь, мм	h, мм	hi-ho	(hi-ho) ²	Среднее значение h	Средне- квадрати чная погрешн ость	Станд. Отклоне ние	Абсол. Погрешн ость ∆х	Относит. Погрешн ость	Задание 5.3
14	1	12,7	12,7	14,8	0	0	14,8	0,003333	0,057735	0,183713	1,24%	
15	2	12,7	12,8	14,9	0,1	0,01						
16	3	12,7	12,9	14,7	-0,1	0,01						
17	Среднее:	12,7	12,8	14,8								

Результат программы:

- (7.3) Вывод: Благодаря подсчетам мы вычислили абсолютную и относительную погрешность данного эксперимента при измерении параллелепипеда величины h.
- (5.4) Рассчитать погрешность прямых измерений величины V.
- (6.4) Результат выполненной работы:

Excel:

19	n	а, мм	ь, мм	h, мм	V, mm³	Vi-Vo	(Vi-Vo) ²	Среднее значение V	Средне- квадрати чная погрешн ость			Относит. Погрешн ость	Задание 5.4
20	1	12,7	12,7	14,8	2387,092	-18,7537	351,7	2405,846	103,8941	10,19284	32,43363	1,35%	
21	2	12,7	12,8	14,9	2422,144	16,29833	265,6357						
22	3	12,7	12,9	14,7	2408,301	2,455333	6,028662						
23	Среднее:	12,7	12,8	14,8	2405,845667								

Результат программы:

(7.4) Вывод: Благодаря подсчетам мы вычислили абсолютную и относительную погрешность данного эксперимента при измерении параллелепипеда величины V.

Вывод по всей лабораторной работе: с помощью электронных таблиц и написанного нами программного кода мы реализовали решение задач на нахождение погрешностей разного вида.