of Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\frac{1}{2} (h_{\theta}(z^{(i)}) - y^{(i)})^{2})$$

 $Cost (h_{\theta}(x^{(i)}) - y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} (2x^{2}/2)$

· Cost function 则各部气息烈烈的各些

Logistin function 2 "non-convex" in M 升生 对各对公义

다른 Cost function 필입!

Logistic Regression cost function

$$Cost(ho(x),y) = \begin{cases} -\log(ho(x)) & \text{if } y=1\\ -\log(1-ho(x)) & \text{if } y=0 \end{cases}$$

"Cost=0"

if
$$y=1$$
, $h_{\theta}(\alpha)=1$

if $y=0$, $h_{\theta}(\alpha)=0$

Animal only by But, as $h_{\theta}(\alpha) \to 0$

But, as $h_{\theta}(\alpha) \to 0$

Cost $\to \infty$

Simplified Cost Function and Gradient Descent $Cost(ho(x),y) = \begin{cases} -\log(ho(x)) & \text{if } y=1-1 \\ -\log(1-ho(x)) & \text{if } y=0-2 \end{cases}$ $= -y\log(ho(x)) - (1-y)\log(1-ho(x))$

y=10100 (), y=00102 (2)

J(9)=-- [其y(2) log (hp(x(2)))-(1-y(2)) log (1-ho(x(2)))]

Came from MLE (Maximum Likelihood Estimation)

=> 서로 다른 모델에 다한 와까 변수 호흡 302 文는 방법 To fit parameters 9:

Repeat $(Q_i := Q_j - \alpha \cdot \frac{\partial}{\partial Q_i} J(0)^2 (\mathcal{A}_i + \mathcal{A}_i))$ $= \frac{\partial}{\partial Q_i} J(0)^2 (\mathcal{A}_i + \mathcal{A}_i) (h_0(\dot{x}^2) - \dot{y}) \cdot \dot{y}^2$

Advanced Optimization
Not only Gradient Descant,
But also Conjugate gradient, BFGIS, L-BFGIS
(X对为型企X, often faster but more comblex)
olat Octave library 2m.