Formula Sheet – Project 2

Definition 3.9 – Negative Binomial Probability Distribution

A random variable Y is said to have a negative binomial probability distribution if and only if

$$p(y) = {y-1 \choose r-1} p^r q^{y-r}, y = r, r+1, r+2...$$

Theorem 3.9 - Negative Binomial mean and variance

If Y is a random variable with a negative binomial distribution,

$$\mu = E(Y) = \frac{r}{p}$$
 and $\sigma^2 = V(Y) = \frac{r(1-p)}{p^2}$

Definition 3.10 – Hypergeometric Probability Distribution

A random variable Y is said to have a hypergeometric probability distribution if and only if

$$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}}$$

where y is an integer 0 to n, subject to the restrictions $y \le r$ and $n-y \le N-r$.

Theorem 3.10 – Hypergeometric mean and variance

If Y is a random variable with a hypergeometric distribution,

$$\mu = E(Y) = \frac{nr}{N}$$
 and $\sigma^2 = V(Y) = n * \frac{r}{N} * \frac{N-r}{N} * \frac{N-r}{N-1}$

Definition 3.11 – Poisson Probability Distribution

A random variable Y is said to have a Poisson probability distribution if and only if

$$p(y) = \frac{\lambda^{y}}{y!}e^{-\lambda}, \quad y = 0, 1, 2, ..., \lambda > 0.$$

Theorem 3.11 – Poisson mean and variance

If Y is a random variable possessing a Poisson distribution with parameter λ , then

$$\mu = E(Y) = \lambda$$
 and $\sigma^2 = V(Y) = \lambda$

Theorem 3.14 – Tchebysheff's Theorem

Let Y be a random variable with mean μ and finite variance σ^2 . Then, for any constant k > 0,

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$

Definition 4.3 – Probability Density Function

Let F(y) be the distribution function for a continuous random variable Y . Then f(y), given by

$$f(y) = \frac{dF(y)}{dy} = F'(y)$$

wherever the derivative exists, is called the probability density function for the random variable Y.

Theorem 4.3 – Probability of Y on a PDF

If the random variable Y has density function f(y) and a < b, then the probability that Y falls in the interval [a, b] is

$$P(a \le Y \le b) = \int_{a}^{b} f(y) \, dy$$

Definition 4.5 – Expected Values for Continuous Random Variables

The expected value of a continuous random variable Y, provided the integral exists, is

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy$$

Variance for Continuous Random Variables

The variance for a continuous random variable Y would be

$$E(Y^2) = \int_{-\infty}^{\infty} y^2 * f(y) \, dy$$

$$\sigma^2 = V(Y) = E(Y^2) - E(Y)^2$$

Definition 4.6 – Uniform Probability Distribution

If $\theta_1 < \theta_2$, a random variable Y is said to have a continuous uniform probability distribution on the interval (θ_1, θ_2) if and only if the density function of Y is

$$f(y) = \{ \frac{1}{\theta_2 - \theta_1}, \quad \theta_1 \le y \le \theta_2 \\ 0, \quad elsewhere$$

Theorem 4.6 – Uniform mean and variance

If $\theta_1 < \theta_2$ and Y is a random variable uniformly distributed on the interval (θ_1, θ_2) , then

$$\mu = E(Y) = \frac{\theta_1 + \theta_2}{2}$$
 and $\sigma^2 = V(Y) = \frac{(\theta_2 - \theta_1)^2}{12}$

Definition 4.8 – Normal Probability Distribution

A random variable Y is said to have a normal probability distribution if and only if, for $\sigma > 0$ and $-\infty < \mu < \infty$, the density function of Y is

$$f(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

Definition 4.9 – Exponential Distribution

A random variable Y is said to have an exponential distribution with parameter $\beta > 0$ if and only if the density function of Y is

$$f(y) = \begin{cases} \frac{1}{\beta} e^{-\frac{y}{\beta}}, & 0 \le y < \infty \\ 0, & elsewhere \end{cases}$$

Definition 4.10 – Exponential mean and variance

If Y is an exponential random variable with parameter β , then

$$\mu = E(Y) = \beta$$
 and $\sigma^2 = V(Y) = \beta^2$

Bivariate and Multivariate Probability

$$P(a_1 \le Y_1 \le a_2, b_1 \le Y_2 \le b_2)$$
 is equal to $\int_{b_1}^{b_2} \int_{a_1}^{a_2} f(y_1, y_2) dy_1 dy_2$.

Definition 5.4 – Marginal Probability

Let Y_1 and Y_2 be jointly discrete random variables with probability function $p(y_1, y_2)$. Then the marginal probability functions of Y_1 and Y_2 , respectively, are given by

$$p_1(y_1) = \sum_{all \ y_2} p(y_1, y_2)$$

$$p_2(y_2) = \sum_{all \ y_1} p(y_1, y_2)$$

Let Y_1 and Y_2 be jointly continuous random variables with joint density function $f(y_1, y_2)$. Then the marginal density functions of Y_1 and Y_2 , respectively, are given by

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$

$$f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$$

Definition 5.5 – Conditional Discrete Probability Function

If Y_1 and Y_2 are jointly discrete random variables with joint probability function $p(y_1, y_2)$ and marginal probability functions $p_1(y_1)$ and $p_2(y_2)$, respectively, then the conditional discrete probability function of Y_1 given Y_2 is

$$p(y_1|y_2) = P(Y_1 = y_1|Y_2 = y_2) = \frac{P(Y_1 = y_1, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1, y_2)}{p_2(y_2)}$$

Definition 5.7 – Conditional Density

Let Y_1 and Y_2 be jointly continuous random variables with joint density $f(y_1, y_2)$ and marginal densities $f_1(y_1)$ and $f_2(y_2)$, respectively. For any y_2 such that $f_2(y_2) > 0$, the conditional density of Y_1 given $Y_2 = y_2$ is given by

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$