Jour 12 : probabilités et suites

Avant le début des travaux de construction d'une autoroute, une équipe d'archéologie préventive procède à des sondages successifs en des points régulièrement espacés sur le terrain.

Lorsque le *n*-ième sondage donne lieu à la découverte de vestiges, il est dit positif.

L'évènement : « le n-ième sondage est positif » est noté V_n , on note p_n la probabilité de l'évènement V_n .

L'expérience acquise au cours de ce type d'investigation permet de prévoir que :

- si un sondage est positif, le suivant a une probabilité égale à 0,6 d'être aussi positif;
- si un sondage est négatif, le suivant a une probabilité égale à 0,9 d'être aussi négatif.

On suppose que le premier sondage est positif, c'est-à-dire : $p_1 = 1$.

- 1. Calculer les probabilités des évènements suivants :
 - **a.** A: « les 2^e et 3^e sondages sont positifs »;
 - **b.** B : « les 2^e et 3^e sondages sont négatifs ».
- **2.** Calculer la probabilité p_3 pour que le 3^e sondage soit positif.
- **3.** n désigne un entier naturel supérieur ou égal à 2. Compléter l'arbre ci-dessous en fonction des données de l'énoncé :

- **4.** Pour tout entier naturel *n* non nul, établir que : $p_{n+1} = 0.5p_n + 0.1$.
- **5. a.** Démontrer que la suite (p_n) est minorée par 0, 2.
 - **b.** Démontrer que la suite (p_n) est décroissante.
 - **c.** Déterminer la limite de la suite (p_n) .
- **6.** On note u la suite définie, pour tout entier naturel n non nul par : $u_n = p_n 0, 2$.
 - **a.** Démontrer que *u* est une suite géométrique, en préciser le premier terme et la raison.
 - **b.** Exprimer p_n en fonction de n.
 - **c.** Calculer la limite, quand n tend vers $+\infty$, de la probabilité p_n .