Nom			
Prénom		Note	
Groupe			

Algorithmique
INFO-SUP (S2)
Partiel nº 2 (P2)
6 juin 2016 - 10:00
(D.S. 307430.1 BW)
Feuilles de réponses

1	
2	
3	
4	

Réponses 1 (Arbres de Léonard – 5 points)

1.	Représentation	graphique	de	A_5	:
----	----------------	-----------	----	-------	---

		n	H_n	T_n	F_n	Fib_n
		0				0
		1				1
2.	Valeurs de H_n , T_n , F_n et Fib_n :	2				
		3				
		4				
		-				-

 $- H_n =$

3. En fonction de $n \ge 2$, et éventuellement de Fib_n , exprimer :

 (a) call(25, B₁): (b) call(21, B₁): (c) call(20, B₁): (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (A la fin de la partie 1) 	ystère – 5 points)	
 Résultats retournés ? (a) call(25, B₁) : (b) call(21, B₁) : (c) call(20, B₁) : (d) call(9, B₁) : (e) call(53, B₁) : bst_mystery(x, B) (E À la fin de la partie 1 		
(a) call(25, B ₁): (b) call(21, B ₁): (c) call(20, B ₁): (d) call(9, B ₁): (e) call(53, B ₁): 2. bst_mystery(x, B) (A la fin de la partie 1)		
 Résultats retournés ? (a) call(25, B₁) : (b) call(21, B₁) : (c) call(20, B₁) : (d) call(9, B₁) : (e) call(53, B₁) : bst_mystery(x, B) (EA) : A la fin de la partie 1 		
 Résultats retournés ? (a) call(25, B₁) : (b) call(21, B₁) : (c) call(20, B₁) : (d) call(9, B₁) : (e) call(53, B₁) : bst_mystery(x, B) (E À la fin de la partie 1 		
 (a) call(25, B₁): (b) call(21, B₁): (c) call(20, B₁): (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (A la fin de la partie 1) 		
 (a) call(25, B₁): (b) call(21, B₁): (c) call(20, B₁): (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (A la fin de la partie 1) 		_
 (a) call(25, B₁): (b) call(21, B₁): (c) call(20, B₁): (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (A la fin de la partie 1) 		
 (b) call(21, B₁): (c) call(20, B₁): (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (Barting All All All All All All All All All Al		
 (a) call(25, B₁): (b) call(21, B₁): (c) call(20, B₁): (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (A la fin de la partie 1) 		
 (b) call(21, B₁): (c) call(20, B₁): (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (Example 1) 		
 (c) call(20, B₁): (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (BA la fin de la partie 1 		
 (d) call(9, B₁): (e) call(53, B₁): 2. bst_mystery(x, B) (A la fin de la partie 1 		
(e) call(53, B_1): 2. bst_mystery(x, B) (B À la fin de la partie 1		
2. bst_mystery(x, B) (EA) À la fin de la partie 1		
2. bst_mystery(x, B) (E À la fin de la partie 1		
(a) Que représente B	:	
(b) Que représente P	?	
3. Que fait call(x , B)?	?	

Réponses 3 (La taille en plus)

Spécifications:

La fonction copyWithSize(B), avec B un arbre binaire "classique" (BinTree()), retourne une copie de B avec la taille renseignée en chaque nœud (BinTreeSize()).

Réponses 4 (Médian - 7 points)

1.	B ABR de n éléments dont le $k^{\grave{e}me}$ élément (1	$\leq k \leq n$) se trouve en racine :
	taille(g(B)) =	$\mathrm{taille}(\mathrm{d}(\mathrm{B})) = $
2.	Définition abstraite des opérations kieme et mé	ídian :

OPÉRATIONS

 $kieme: Arbre Binaire \times Entier \rightarrow Nœud$ $m\'edian: Arbre Binaire \rightarrow Nœud$

PRÉCONDITIONS

kieme (A, k) est-défini-ssi $1 \le k \le taille(A)$ médian (A) est-défini-ssi A \ne arbrevide

AXIOMES

 $A \neq arbrevide \Rightarrow m \neq dian (A) = kieme (A, (taille (A)+1) div 2)$

3. Spécifications:

La fonction $\mathtt{nthBST}(B,\ k)$ avec B un ABR non vide et $1 \leq k \leq taille(B)$, retourne l'arbre dont la racine contient le $k^{\grave{e}me}$ élément de B.

La fonction median(B) retourne la valeur médiane de l'ABR B s'il est non vide, la valeur None sinon.

