

Viraj Hewage

INTRODUCTION

The crops, lands, and timing of 622 rural municipalities in Saskatchewan were used in a historical data analysis. Python and Geopanda used unsupervised machine learning clustering to analyze this large cohort.

DATA BASES

rm_crop_yields_1938_2021.csv

Rural Mnicipilaty.shp

DATA ANALYSIS

Why I chose Spring wheat data?

WHEAT PRODUCTION ACROSS THE SK, BASED ON A 1938-2021 DATABASE

METHODOLOGY

Generating Summary Statistics: Use the describe() method to generate summary statistics such as mean, standard deviation, quartiles, etc. Data were analyzed using the K-Means Clustering method as a technique for performing data groupings. Furthermore, the data classification procedure was based on the degree of each component's membership. This analysis was performed by using python (pandas, numpy, matplotlib, seaborn) and Geopandas.

FINDING
A
RM
FOR
MODELING

TIME SERIES FORECASTING RM 111 MAPLE CREEK

DATA MODELING FOR RM 111, MAPLE CREEK

Unsupervised machine learning algorithms are also useful for understanding the relationships between different variables in a dataset. For example, you can use clustering algorithms such as K-Means to identify clusters of similar points in a dataset

Define the features to be used for clustering

CREATE A MODEL FOR SPRING-WEAT IN RM 111 MAPLE CREEK

DATA MODELING FOR SK 622 RMS -HISTOGRAM

Shape (84, 6)

slope: 0.3097599939120827

intercept: -587.316443382177

r: 0.8226524204739321

p: 8.255635700786158e-22

stderr: 0.023641040235293034

DATA MODELING FOR SK 622 RMS - BY YEAR

TIME SERIES FORECASTING RM 111 MAPLE CREEK

Autoregressive Integrated Moving Average (ARIMA) models facilitate demand forecasting, such as in determining future demand for spring_weats. That is because the model provides products related to time. This forecasting can also be used to predict future yield production.

LINEAR REGRESSION FORECASTING FOR SPRING_WEAT IN RM 111, MAPLE CREEK

We can see that there is a positive linear relationship between amount of mean spring_weat production and time.

With this model, we can predict production increases with the time.

K-MEANS CLUSTERING WITH SCIKIT-LEARN

From the chart, it's clear that the "elbow" is somewhere around the k value of 4. So, let's run k-means with 4 clusters.

K-MEANS CLUSTERS FOR SPRING_WEAT IN RM 111, MAPLE CREEK

TO FIND MEA GENERATE DATA ADDED WITH NOISE

ASSUME THAT WE HAVE MADE A MODEL TO PREDICT THE Y VALUES FOR EACH X IN OUR DATASET.

SINUSOIDAL DATA WITH NOISE + PREDICTION

The model output with data

The mean absolute error is: 0.48

DATA MODELING FOR SK 622 RMS

K-MEANS CLUSTERING WITH SCIKIT-LEARN

Found the "Elbow"

K-MEANS CLUSTERS IN SPRING_WEAT FORSK 622 RMS

HEATMAP FOR SPRING_WEAT IN FOR SK 622 RMS

SCATTER PLOT FOR SK 622 RMS(EACH CLUSTERS)

Define the features to be used for clustering

RESULTS

The sizes of the four clusters are as follows: 0: n = 27.34, 1: n = 20.87; 2: n = 30.66, 3: n = 24.54. The majority of the RMs in the south are in Cluster 3. According to the unsupervised ML, the highest value is in cluster 2.In the north SK, there is an exceptional RM, which also indicates that it belongs to class 3. However, spring wheat's high production is demonstrated in South Saskechawan RMs.

THANK YOU