distribution	pmf and domain	E(X)	Var(X)	$\operatorname{mgf} M(\theta)$
Bernoulli(p)	$p(x) = p^{x}(1-p)^{1-x}, x = 0, 1$	p	p(1-p)	$1 - p + pe^{\theta}$
Binomial(n,p)	$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x = 0, 1, \dots, n$	np	np(1-p)	$(1 - p + pe^{\theta})^n$
$Poisson(\lambda)$	$p(x) = \frac{e^{-\lambda}\lambda^x}{x!}, \ x = 0, 1, 2, \dots$	λ	λ	$e^{\lambda(e^{\theta}-1)}$
Geometric(p)	$p(x) = p(1-p)^{x-1}, \ x = 1, 2, 3, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\theta < -\ln(1-p)$
Neg.bin(r,p)	$p(x) = {\binom{x-1}{r-1}} p^r (1-p)^{x-r},$ $x = r, r+1, r+2, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{pe^{\theta}}{1 - (1 - p)e^{\theta}}\right)^{r}$ $\theta < -\ln(1 - p)$
Hyp.geom(n, M, N)	$p(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}, \ x = 0, 1, \dots, n$ $x \le M, \ n - x \le N - M$	$\frac{nM}{N}$	$\frac{nM}{N}(1-\frac{M}{N})(\frac{N-n}{N-1})$	
Discrete uniform	$p(x) = \frac{1}{n}, x \in \{x_1, x_2, \dots, x_n\}$	$\frac{\sum_{i=1}^{n} x_i}{n}$	$\frac{\sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n}}{n}$	$\frac{1}{n} \sum_{i=1}^{n} e^{\theta x_i}$
logarithmic(p)	$p(k) = -\frac{p^k}{k \ln(1-p)}, \ k = 1, 2, 3, \dots$	$-\frac{p}{(1-p)\ln(1-p)}$	$-\frac{p^2 + p \ln(p)}{(1-p)^2 (\ln(1-p))^2}$	$\frac{\frac{\ln(1-pe^{\theta})}{\ln(1-p)}}{\theta < -\ln(p)}$
multinomial	$p(x_1, x_2, \dots, x_r) = \frac{n!}{x_1! x_2! \dots x_r!} p_1^{x_1} p_2^{x_2} \dots p_r^{x_r}$	$E(X_i) = np_i$	$\sigma_i^2 = np_i(1 - p_i)$ $\sigma_{i,j} = -np_i p_j$ for $i \neq j$	

Euler Gamma function: for $\alpha > 0$, $\Gamma(\alpha) = \int_0^\infty u^{\alpha-1} e^{-u} du$.

Some properties of the Euler Gamma function: **1.** If n>0 is an integer, then $\Gamma(n)=(n-1)!$, **2.** $\Gamma(\frac{1}{2})=\sqrt{\pi}$, **3.** If x>1, then $\Gamma(x)=(x-1)\Gamma(x-1)$

Binomial theorem: $(a+b)^n = \sum_{j=1}^n \binom{n}{j} a^j b^{n-j}$. Geometric series: $\sum_{j=m}^\infty r^j = \frac{r^m}{1-r}$. Liebniz rule: $\frac{d}{dx} \int_{a(x)}^{b(x)} g(x,y) \, dy = g(x,b(x))b'(x) - g(x,a(x))a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,y) \, dy$.

distribution	pdf and domain	E(X)	Var(X)	$\mod M(\theta)$
uniform(a,b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{\theta b} - e^{\theta a}}{(b-a)\theta}$
$Exp(\lambda)$	$f(x) = \lambda e^{-\lambda x}, \ x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{(1 - \frac{\theta}{\lambda})^{-1}}{\theta < \lambda}$
Gamma(lpha,eta)	$f(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, \ x > 0$	lphaeta	$lphaeta^2$	$ \begin{vmatrix} (1 - \beta \theta)^{-\alpha} \\ \theta < 1/\beta \end{vmatrix} $
$Normal(\mu, \sigma^2)$	$f(x) = \frac{e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}}{\sqrt{2\pi\sigma^2}}, -\infty < x < \infty$	μ	σ^2	$e^{\mu\theta + \frac{\sigma^2\theta^2}{2}}$
$log-normal(\mu,\sigma^2)$	$f(x) = \frac{e^{-\frac{(\ln(x) - \mu)^2}{2\sigma^2}}}{x\sqrt{2\pi\sigma^2}}, \ 0 < x < \infty$	$e^{\mu + \frac{\sigma^2}{2}}$	$[e^{\sigma^2} - 1]e^{2\mu + \sigma^2}$	
chi – square with ν d.f. χ^2_{ν}	$f(x) = \frac{x^{\frac{\nu}{2} - 1} e^{-x/2}}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})}, \ x > 0$	ν	2ν	$(1 - 2\theta)^{-\frac{\nu}{2}}$ $\theta < \frac{1}{2}$
$Beta(\alpha, \beta)$ $\alpha > 0, \ \beta > 0$	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ 0 < x < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
$F_{n,m} - distribution$ $n \ numer, m \ denom \ df$	$f(x) = \frac{\Gamma(\frac{n+m}{2})}{\Gamma(\frac{n}{2})\Gamma(\frac{m}{2})} (\frac{n}{m})^{\frac{n}{2}} x^{\frac{n}{2}-1} (1 + \frac{nx}{m})^{-\frac{n+m}{2}}$ $for \ x > 0$	$\frac{m}{m-2}$ $m > 2$	$\frac{2m^{2}(n+m-2)}{n(m-2)^{2}(m-4)}$ $m > 4$	
$t_m - distribution$ $m \ df$	$f(x) = \frac{\Gamma(\frac{m+1}{2})}{\sqrt{\pi m}\Gamma(\frac{m}{2})} (1 + \frac{t^2}{m})^{-(\frac{m+1}{2})}$ $for - \infty < x < \infty$	$0 \\ m > 1$	$\frac{\frac{m}{m-2}}{m>2}$	
Laplace dist./double exp. $\lambda > 0, c \in \mathbb{R}$	$f(x) = \frac{\lambda}{2}e^{-\lambda x-c }, \ x \in \mathbb{R}$	c	$\frac{2}{\lambda^2}$	$\frac{e^{c\theta}}{1 - \frac{\theta^2}{\lambda^2}} - \lambda < \theta < \lambda$
$bivariate \\ normal$	$f(x,y) = \frac{e^{-\frac{Q(x,y)}{2(1-\rho^2)}}}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}, (x,y) \in \mathbb{R}^2$ $Q(x,y) = (\frac{x-\mu_x}{\sigma_x})^2 - 2\rho(\frac{x-\mu_x}{\sigma_x})(\frac{y-\mu_y}{\sigma_y}) + (\frac{y-\mu_y}{\sigma_y})^2$		$Var(X) = \sigma_x^2$ $Var(Y) = \sigma_y^2$ $corr(X, Y) = \rho$	
$Pareto \\ \alpha > 0, \ \lambda > 0$	$f(x) = \frac{\alpha \lambda^{\alpha}}{x^{\alpha+1}}, \ x > \lambda$	$\frac{\frac{\alpha\lambda}{\alpha-1}}{\alpha>1}$	$\frac{\frac{\alpha\lambda^2}{(\alpha-1)^2(\alpha-2)}}{\alpha>2}$	