

Report No: CCIS15120093101

# **FCC REPORT**

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

**Equipment Under Test (EUT)** 

Product Name: 21.5"Quad Core Media Player Slim Housing

Model No.: DT215-AS4-1080-SL, 502-2159ATM

**FCC ID**: 2AB6Z-DT215-AS4-SL

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Dec., 2015

**Date of Test:** 08 Dec., to 16 Dec., 2015

Date of report issued: 17 Dec., 2015

Test Result: PASS\*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





#### 2 **Version**

| Version No. | Date          | Description                                                                                                                                                                     |
|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00          | 17 Dec., 2015 | Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMB) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested. |
|             |               |                                                                                                                                                                                 |
|             |               |                                                                                                                                                                                 |
|             |               |                                                                                                                                                                                 |

Viki zhul Test Engineer Tested by: 17 Dec., 2015 Date:

Reviewed by: 17 Dec., 2015 Date:

Project Engineer

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



## 3 Contents

|   |      | P                                             | age? |
|---|------|-----------------------------------------------|------|
| 1 | С    | OVER PAGE                                     | 1    |
| 2 | V    | ERSION                                        | 2    |
| 3 |      | ONTENTS                                       |      |
| ၁ |      |                                               |      |
| 4 | TI   | EST SUMMARY                                   | 4    |
| 5 | G    | ENERAL INFORMATION                            | 5    |
|   | 5.1  | CLIENT INFORMATION                            | 5    |
|   | 5.2  | GENERAL DESCRIPTION OF E.U.T.                 |      |
|   | 5.3  | TEST MODE                                     |      |
|   | 5.4  | LABORATORY FACILITY                           |      |
|   | 5.5  | LABORATORY LOCATION                           | 7    |
|   | 5.6  | TEST INSTRUMENTS LIST                         | 8    |
| 6 | T    | EST RESULTS AND MEASUREMENT DATA              | 9    |
|   | 6.1  | ANTENNA REQUIREMENT                           | 0    |
|   | 6.2  | CONDUCTED EMISSIONS                           |      |
|   | 6.3  | CONDUCTED CHIRISTONS  CONDUCTED OUTPUT POWER. |      |
|   | 6.4  | 20dB Occupy Bandwidth                         |      |
|   | 6.5  | CARRIER FREQUENCIES SEPARATION                | 14   |
|   | 6.6  | HOPPING CHANNEL NUMBER                        | 15   |
|   | 6.7  | DWELL TIME                                    |      |
|   | 6.8  | PSEUDORANDOM FREQUENCY HOPPING SEQUENCE       |      |
|   | 6.9  | BAND EDGE                                     |      |
|   |      | 9.1 Conducted Emission Method                 |      |
|   |      | 9.2 Radiated Emission Method                  |      |
|   | 6.10 | Spurious Emission                             |      |
|   |      | 10.2 Radiated Emission Method                 |      |
|   | ٠.   |                                               |      |
| 7 | TI   | EST SETUP PHOTO                               | 28   |
| 8 | E    | UT CONSTRUCTIONAL DETAILS                     | 30   |





4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna Requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)     | Pass*  |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)     | Pass*  |
| Carrier Frequencies Separation   | 15.247 (a)(1)     | Pass*  |
| Hopping Channel Number           | 15.247 (a)(1)     | Pass*  |
| Dwell Time                       | 15.247 (a)(1)     | Pass*  |
| Radiated Emission                | 15.205/15.209     | Pass   |
| Band Edge                        | 15.247(d)         | Pass*  |

Pass: The EUT complies with the essential requirements in the standard.

Pass\*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009





## **5** General Information

## 5.1 Client Information

| Applicant:               | HUNG WAI PRODUCTS LIMITED                                                                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong                                                                  |
| Manufacturer:            | HUNG WAI ELECTRONICS (HUIZHOU) LTD.                                                                                                       |
| Address of Manufacturer: | 3 <sup>rd</sup> floor, NO. 3, Minfeng Road, Huinan High and New Technology<br>Industry Park, Huiao Avenue, Huizhou City, Guangdong, China |

## 5.2 General Description of E.U.T.

| Product Name:          | 21.5"Quad Core Media Player Slim Housing                                                                                            |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:             | DT215-AS4-1080-SL, 502-2159ATM                                                                                                      |
| Operation Frequency:   | 2402MHz~2480MHz                                                                                                                     |
| Transfer rate:         | 1/2/3 Mbits/s                                                                                                                       |
| Number of channel:     | 79                                                                                                                                  |
| Modulation type:       | GFSK, π/4-DQPSK, 8DPSK                                                                                                              |
| Modulation technology: | FHSS                                                                                                                                |
| Antenna Type:          | Omni-directional                                                                                                                    |
| Antenna gain:          | 2.5 dBi                                                                                                                             |
| AC Adapter:            | MODEL: PS36IBCAY3000S                                                                                                               |
|                        | Input: AC 100-240V 50/60Hz 1.0A                                                                                                     |
|                        | Output: DC 12V, 3000mA                                                                                                              |
| Remark:                | Model No.: DT215-AS4-1080-SL, 502-2159ATM are electrically identical, only model number is different for customer and for HUNG WAI. |
|                        |                                                                                                                                     |





| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 0       | 2402MHz   | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1       | 2403MHz   | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
| 2       | 2404MHz   | 22      | 2424MHz   | 42      | 2444MHz   | 62      | 2464MHz   |
| 3       | 2405MHz   | 23      | 2425MHz   | 43      | 2445MHz   | 63      | 2465MHz   |
| 4       | 2406MHz   | 24      | 2426MHz   | 44      | 2446MHz   | 64      | 2466MHz   |
| 5       | 2407MHz   | 25      | 2427MHz   | 45      | 2447MHz   | 65      | 2467MHz   |
| 6       | 2408MHz   | 26      | 2428MHz   | 46      | 2448MHz   | 66      | 2468MHz   |
| 7       | 2409MHz   | 27      | 2429MHz   | 47      | 2449MHz   | 67      | 2469MHz   |
| 8       | 2410MHz   | 28      | 2430MHz   | 48      | 2450MHz   | 68      | 2470MHz   |
| 9       | 2411MHz   | 29      | 2431MHz   | 49      | 2451MHz   | 69      | 2471MHz   |
| 10      | 2412MHz   | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |
| 11      | 2413MHz   | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |
| 12      | 2414MHz   | 32      | 2434MHz   | 52      | 2454MHz   | 72      | 2474MHz   |
| 13      | 2415MHz   | 33      | 2435MHz   | 53      | 2455MHz   | 73      | 2475MHz   |
| 14      | 2416MHz   | 34      | 2436MHz   | 54      | 2456MHz   | 74      | 2476MHz   |
| 15      | 2417MHz   | 35      | 2437MHz   | 55      | 2457MHz   | 75      | 2477MHz   |
| 16      | 2418MHz   | 36      | 2438MHz   | 56      | 2458MHz   | 76      | 2478MHz   |
| 17      | 2419MHz   | 37      | 2439MHz   | 57      | 2459MHz   | 77      | 2479MHz   |
| 18      | 2420MHz   | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19      | 2421MHz   | 39      | 2441MHz   | 59      | 2461MHz   |         |           |

Remark: Channel 0, 39 &78 selected for GFSK,  $\pi/4$ -DQPSK and 8DPSK.



Report No: CCIS15120093101

#### 5.3 Test mode

| Transmitting mode: | Keep the EUT in transmitting mode with worst case data rate. |
|--------------------|--------------------------------------------------------------|
| Remark             | 8DPSK (3 Mbps) is the worst case mode.                       |

The sample was placed 0.8m above the ground plane of 3m chamber\*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

## 5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

## ● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

## CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

## 5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366





## 5.6 Test Instruments list

| Radia | Radiated Emission:              |                                   |                             |                  |                         |                             |  |  |  |  |
|-------|---------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|--|--|--|--|
| Item  | Test Equipment                  | st Equipment Manufacturer         |                             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |  |
| 1     | 3m Semi- Anechoic<br>Chamber    | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 08-23-2014              | 08-22-2017                  |  |  |  |  |
| 2     | BiConiLog Antenna               | SCHWARZBECK<br>MESS-ELEKTRONIK    | VULB9163                    | CCIS0005         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 3     | Double -ridged waveguide horn   | SCHWARZBECK<br>MESS-ELEKTRONIK    | BBHA9120D                   | CCIS0006         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 4     | EMI Test Software               | AUDIX                             | E3                          | N/A              | N/A                     | N/A                         |  |  |  |  |
| 5     | Amplifier(10kHz-<br>1.3GHz)     | HP                                | 8447D                       | CCIS0003         | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 6     | Amplifier(1GHz-<br>18GHz)       | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 7     | Pre-amplifier<br>(18-26GHz)     | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 8     | Horn Antenna                    | ETS-LINDGREN                      | 3160                        | GTS217           | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 9     | Printer                         | HP                                | HP LaserJet P1007           | N/A              | N/A                     | N/A                         |  |  |  |  |
| 10    | Positioning Controller          | UC                                | UC3000                      | CCIS0015         | N/A                     | N/A                         |  |  |  |  |
| 11    | Spectrum analyzer<br>9k-30GHz   | Rohde & Schwarz                   | FSP                         | CCIS0023         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 12    | EMI Test Receiver               | Rohde & Schwarz                   | ESCI                        | CCIS0002         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 13    | Loop antenna                    | Laplace instrument                | RF300                       | EMC0701          | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 14    | Universal radio Rhode & Schwarz |                                   | CMU200                      | CCIS0069         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 15    | Signal Analyzer                 | Rohde & Schwarz                   | FSIQ3                       | CCIS0088         | 04-08-2015              | 04-08-2016                  |  |  |  |  |

| Conducted Emission: |                   |                    |                       |                  |                         |                             |  |  |  |  |
|---------------------|-------------------|--------------------|-----------------------|------------------|-------------------------|-----------------------------|--|--|--|--|
| Item                | Test Equipment    | Manufacturer       | Model No.             | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |  |  |
| 1                   | Shielding Room    | ZhongShuo Electron | 11.0(L)x4.0(W)x3.0(H) | CCIS0061         | 11-10-2013              | 11-09-2016                  |  |  |  |  |
| 2                   | EMI Test Receiver | Rohde & Schwarz    | ESCI                  | CCIS0002         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 3                   | LISN              | CHASE              | MN2050D               | CCIS0074         | 03-28-2015              | 03-28-2016                  |  |  |  |  |
| 4                   | Coaxial Cable     | CCIS               | N/A                   | CCIS0086         | 04-01-2015              | 03-31-2016                  |  |  |  |  |
| 5                   | EMI Test Software | AUDIX              | E3                    | N/A              | N/A                     | N/A                         |  |  |  |  |





## 6 Test results and Measurement Data

## 6.1 Antenna requirement

## Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.







## 6.2 Conducted Emissions

| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|
| Test Method:          | ANSI C63.4:2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |  |  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |  |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |  |  |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz, Sweep time=auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |  |  |  |  |
| Limit:                | Frequency range (MHz)         Limit (dBuV)           Quasi-peak         Average           0.15-0.5         66 to 56*         56 to 46*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |  |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |  |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56 to 46*           |  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 46                  |  |  |  |  |
|                       | 5-30 60 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |  |  |  |  |
|                       | * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n of the frequency. |  |  |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |  |  |  |  |
|                       | AUX Equipment    E.U.T     EMI     Receiver     Remark   E.U.T     EQUIPMENT Under Test     LISN: Line Impedence Stabilization Network     Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |  |  |  |  |
| Test procedure:       | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.</li> </ol> |                     |  |  |  |  |
| Test Instruments:     | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |  |  |  |  |
| Test mode:            | Bluetooth (Continuous transm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | itting) mode        |  |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |  |  |  |  |
|                       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |  |  |  |  |

## **Measurement Data**





### Line:



Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 21.5"Quad Core Media Player : DT215-AS4-1080-SL Condition EUT

Model

Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

Remark

| nomark                                    | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|----------------|---------------|-------|---------------|---------------|---------|
| 3 T 42 7 T 1                              | MHz    | dBu∜          | dB             | ₫B            | dBu₹  | dBu∜          | <u>dB</u>     |         |
| 1                                         | 0.150  | 25.88         | 0.27           | 10.78         | 36.93 | 56.00         | -19.07        | Average |
| 2                                         | 0.155  | 49.70         | 0.27           | 10.78         | 60.75 | 65.74         | -4.99         | QP      |
| 3                                         | 0.165  | 47.21         | 0.27           | 10.77         | 58.25 | 65.21         | -6.96         | QP      |
| 4                                         | 0.180  | 46.36         | 0.28           | 10.77         | 57.41 | 64.50         | -7.09         | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.195  | 26.86         | 0.28           | 10.76         | 37.90 | 53.80         | -15.90        | Average |
| 6                                         | 0.220  | 19.26         | 0.28           | 10.76         | 30.30 | 52.83         | -22.53        | Average |
| 7                                         | 0.230  | 40.23         | 0.27           | 10.75         | 51.25 |               | -11.19        |         |
| 8                                         | 0.235  | 17.73         | 0.27           | 10.75         | 28.75 | 52.26         | -23.51        | Average |
| 9                                         | 0.255  | 35.75         | 0.27           | 10.75         | 46.77 | 61.60         | -14.83        | QP      |
| 10                                        | 0.751  | 9.46          | 0.23           | 10.79         | 20.48 | 46.00         | -25.52        | Average |
| 11                                        | 16.398 | 29.30         | 0.33           | 10.91         | 40.54 | 60.00         | -19.46        | QP      |
| 12                                        | 16.573 | 19.83         | 0.33           | 10.91         | 31.07 | 50.00         | -18.93        | Average |



### Neutral:



Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : 21.5 "Quad Core Media Player : DT215-AS4-1080-SL Condition EUT

Model

Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki

Remark

| Freq   | Read<br>Level                                                              | LISN<br>Factor                                                                                                                                             | Cable<br>Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Over<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MHz    | dBu∜                                                                       | <u>dB</u>                                                                                                                                                  | ₫B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dBu₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dBu₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>dB</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.150  | 45.44                                                                      | 0.25                                                                                                                                                       | 10.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -9.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.150  | 33.21                                                                      | 0.25                                                                                                                                                       | 10.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -11.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.175  | 46.97                                                                      | 0.25                                                                                                                                                       | 10.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -6.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.195  | 28.28                                                                      | 0.25                                                                                                                                                       | 10.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -14.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.200  | 45.20                                                                      | 0.25                                                                                                                                                       | 10.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -7.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.211  | 40.91                                                                      | 0.25                                                                                                                                                       | 10.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -11.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.240  | 20.48                                                                      | 0.25                                                                                                                                                       | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -20.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.296  | 35.29                                                                      | 0.26                                                                                                                                                       | 10.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -14.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.296  | 18.52                                                                      | 0.26                                                                                                                                                       | 10.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -20.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.330  | 17.79                                                                      | 0.26                                                                                                                                                       | 10.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -20.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16.486 | 22.99                                                                      | 0.25                                                                                                                                                       | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -15.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16.839 | 32.43                                                                      | 0.25                                                                                                                                                       | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -16.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | MHz 0. 150 0. 150 0. 175 0. 195 0. 200 0. 211 0. 240 0. 296 0. 330 16. 486 | Freq Level  MHz dBuV  0.150 45.44 0.150 33.21 0.175 46.97 0.195 28.28 0.200 45.20 0.211 40.91 0.240 20.48 0.296 35.29 0.296 18.52 0.330 17.79 16.486 22.99 | MHz         dBuV         dB           0.150         45.44         0.25           0.150         33.21         0.25           0.175         46.97         0.25           0.195         28.28         0.25           0.200         45.20         0.25           0.211         40.91         0.25           0.240         20.48         0.25           0.296         35.29         0.26           0.296         18.52         0.26           0.330         17.79         0.26           16.486         22.99         0.25 | Freq         Level         Factor         Loss           MHz         dBuV         dB         dB           0.150         45.44         0.25         10.78           0.150         33.21         0.25         10.78           0.175         46.97         0.25         10.77           0.195         28.28         0.25         10.76           0.200         45.20         0.25         10.76           0.211         40.91         0.25         10.76           0.240         20.48         0.25         10.75           0.296         35.29         0.26         10.74           0.296         18.52         0.26         10.74           0.330         17.79         0.26         10.73           16.486         22.99         0.25         10.91 | MHz         dBuV         dB         dB         dBuV           0.150         45.44         0.25         10.78         56.47           0.150         33.21         0.25         10.78         44.24           0.175         46.97         0.25         10.77         57.99           0.195         28.28         0.25         10.76         39.29           0.200         45.20         0.25         10.76         56.21           0.211         40.91         0.25         10.76         51.92           0.240         20.48         0.25         10.75         31.48           0.296         35.29         0.26         10.74         46.29           0.296         18.52         0.26         10.74         29.52           0.330         17.79         0.26         10.73         28.78           16.486         22.99         0.25         10.91         34.15 | MHz         dBuV         dB         dB         dBuV         dBuV           0.150         45.44         0.25         10.78         56.47         66.00           0.150         33.21         0.25         10.78         44.24         56.00           0.175         46.97         0.25         10.77         57.99         64.72           0.195         28.28         0.25         10.76         39.29         53.80           0.200         45.20         0.25         10.76         56.21         63.62           0.211         40.91         0.25         10.76         51.92         63.18           0.240         20.48         0.25         10.75         31.48         52.08           0.296         35.29         0.26         10.74         46.29         60.37           0.296         18.52         0.26         10.74         29.52         50.37           0.330         17.79         0.26         10.73         28.78         49.44           16.486         22.99         0.25         10.91         34.15         50.00 | Freq         Level         Factor         Loss         Level         Line         Limit           MHz         dBuV         dB         dB         dBuV         dBuV         dB         dB         dBuV         dBuV         dB         dB         dBuV         dBuV         dB         dB         dB         dBuV         dBuV         dB         dB |

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss



## 6.3 Conducted Output Power

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                                                                      |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                                                                             |  |  |  |  |  |
| Receiver setup:   | RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz) |  |  |  |  |  |
| Limit:            | 125 mW(21 dBm)                                                                                                           |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                    |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                         |  |  |  |  |  |
| Test mode:        | Non-hopping mode                                                                                                         |  |  |  |  |  |
| Test results:     | Refer to FCC ID: 2AB6Z-1859ATMB                                                                                          |  |  |  |  |  |

## 6.4 20dB Occupy Bandwidth

|                   | Т                                                                     |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |  |  |  |  |  |
| Test Method:      | ANSI C63.4:2009 and DA00-705                                          |  |  |  |  |  |
| Receiver setup:   | RBW=30 kHz, VBW=100 kHz, detector=Peak                                |  |  |  |  |  |
| Limit:            | NA                                                                    |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |  |
| Test mode:        | Non-hopping mode                                                      |  |  |  |  |  |
| Test results:     | Refer to FCC ID: 2AB6Z-1859ATMB                                       |  |  |  |  |  |





## 6.5 Carrier Frequencies Separation

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                          |  |  |  |  |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, detector=Peak                               |  |  |  |  |  |
| Limit:            | 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)          |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |  |
| Test mode:        | Hopping mode                                                          |  |  |  |  |  |
| Test results:     | Refer to FCC ID: 2AB6Z-1859ATMB                                       |  |  |  |  |  |





## 6.6 Hopping Channel Number

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                        |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                               |  |  |  |  |  |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |  |  |  |  |  |
| Limit:            | 15 channels                                                                |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane      |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                           |  |  |  |  |  |
| Test mode:        | Hopping mode                                                               |  |  |  |  |  |
| Test results:     | Refer to FCC ID: 2AB6Z-1859ATMB                                            |  |  |  |  |  |





## 6.7 Dwell Time

|                   | T I                                                                   |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|
| Test Requirement: | FCC Part 15 C Section 15.247 (a)(1)                                   |  |  |  |  |
| Test Method:      | ANSI C63.4:2009 and KDB DA00-705                                      |  |  |  |  |
| Receiver setup:   | RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak                        |  |  |  |  |
| Limit:            | 0.4 Second                                                            |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |  |  |
| Test mode:        | Hopping mode                                                          |  |  |  |  |
| Test results:     | Refer to FCC ID: 2AB6Z-1859ATMB                                       |  |  |  |  |



## 6.8 Pseudorandom Frequency Hopping Sequence

## Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

## **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2<sup>9</sup>-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



## 6.9 Band Edge

## 6.9.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.4:2009 and DA00-705                                                                                                                                                                                                                                                                                                                                                            |
| Receiver setup:   | RBW=100 kHz, VBW=300 kHz, Detector=Peak                                                                                                                                                                                                                                                                                                                                                 |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |
| Test mode:        | Non-hopping mode and hopping mode                                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Refer to FCC ID: 2AB6Z-1859ATMB                                                                                                                                                                                                                                                                                                                                                         |





## 6.9.2 Radiated Emission Method

| 0.5.2 | Nadiated Lillission Met | illoa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
|-------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Test Requirement:       | FCC Part 15 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Section 15.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 and 15.205                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
|       | Test Method:            | ANSI C63.4: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
|       | Test Frequency Range:   | 2.3GHz to 2.5G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
|       | Test site:              | Measurement D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | istance: 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
|       | Receiver setup:         | Frequency Detecto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RBW                                                                                                                                                                                                     | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                                                                                                                          |
|       |                         | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                    | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak Value                                                                                                                                                                                                      |
|       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1MHz                                                                                                                                                                                                    | 10Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average Value                                                                                                                                                                                                   |
|       | Limit:                  | Freque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (dBuV/<br>54.0                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remark<br>Average Value                                                                                                                                                                                         |
|       |                         | Above 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.0                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Peak Value                                                                                                                                                                                                      |
|       | Test setup:             | EUTTurn Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | → 3m ← 4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                         | Antenna Horn Ant Spectrum Analyzer Amplii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | enna                                                                                                                                                                                                            |
|       | Test Procedure:         | ground at a 3 determine the 2. The EUT was antenna, whistower.  3. The antenna ground to de horizontal an measuremer.  4. For each sus and then the and the rota maximum resured by the control of the emission of the emissio | B meter camber e position of the set 3 meters che was mount the mass and the set of the | er. The table was away from the don the top ed from one maximum value arizations of the tuned to height as set to Pea was set to Pea was mum Hole EUT in peak could be stop therwise the elected one by | was rotated diation. The interference of a variable of the field one antennal was arrange has from 1 ragrees to 360 kb. Detect Full Mode. The mode was apped and the missions the one using processing | r meters above the I strength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and 10dB lower than the e peak values of the nat did not have beak, quasi-peak or |
|       | Test Instruments:       | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.7 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
|       | Test mode:              | Non-hopping m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
|       | Test results:           | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |
|       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                 |





### Measurement data

| Test mode: G | FSK    |         | Test char            | nel: Lowest |            | Remark: Pea     | ık     |            |  |
|--------------|--------|---------|----------------------|-------------|------------|-----------------|--------|------------|--|
| Fraguanay    | Read   | Antenna | Cable                | Preamp      | Level      | Limit Line      | Over   |            |  |
| Frequency    | Level  | Factor  | Loss                 | Factor      | (dBuV/m)   |                 | Limit  | Polar.     |  |
| (MHz)        | (dBuV) | (dB/m)  | (dB)                 | (dB)        | (ubuv/III) | (dBuV/m)        | (dB)   |            |  |
| 2390.00      | 23.15  | 27.58   | 6.63                 | 0.00        | 57.36      | 74.00           | -16.64 | Vertical   |  |
| 2390.00      | 23.02  | 27.58   | 6.63                 | 0.00        | 57.23      | 74.00           | -16.77 | Horizontal |  |
| Test mode: G | FSK    |         | Test channel: Lowest |             |            | Remark: Average |        |            |  |
| Fraguenay    | Read   | Antenna | Cable                | Preamp      | Level      | Limit Line      | Over   |            |  |
| Frequency    | Level  | Factor  | Loss                 | Factor      |            |                 | Limit  | Polar.     |  |
| (MHz)        | (dBuV) | (dB/m)  | (dB)                 | (dB)        | (dBuV/m)   | (dBuV/m)        | (dB)   |            |  |
| 2390.00      | 10.45  | 27.58   | 6.63                 | 0.00        | 44.66      | 54.00           | -9.34  | Vertical   |  |
| 2390.00      | 11.03  | 27.58   | 6.63                 | 0.00        | 45.24      | 54.00           | -8.76  | Horizontal |  |

| Test mode: G       | FSK                     |                             | Test char             | nel: Highest             |                   | Remark: Pea            | ık                    |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 2483.50            | 21.45                   | 27.52                       | 6.85                  | 0.00                     | 55.82             | 74.00                  | -18.18                | Vertical   |  |
| 2483.50            | 22.56                   | 27.52                       | 6.85                  | 0.00                     | 56.93             | 74.00                  | -17.07                | Horizontal |  |
| Test mode: G       | FSK                     |                             | Test channel: Highest |                          |                   | Remark: Average        |                       |            |  |
| Frequency          | Read<br>Level           | Antenna<br>Factor           | Cable<br>Loss         | Preamp<br>Factor         | Level             | Limit Line             | Over<br>Limit         | Polar.     |  |
| (MHz)              | (dBuV)                  | (dB/m)                      | (dB)                  | (dB)                     | (dBuV/m)          | (dBuV/m)               | (dB)                  |            |  |
| (MHz)<br>2483.50   | (dBuV)<br>10.36         | (dB/m)<br>27.52             | (dB)<br>6.85          | (dB)<br>0.00             | (dBuV/m)<br>44.73 | (dBuV/m)<br>54.00      | (dB)<br>-9.27         | Vertical   |  |

| Test mode: π/      | 4-DQPSK                 |                             | Test char             | nel: Lowest              |                   | Remark: Pea            | ık                    |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 2390.00            | 24.12                   | 27.58                       | 6.63                  | 0.00                     | 58.33             | 74.00                  | -15.67                | Vertical   |  |
| 2390.00            | 23.39                   | 27.58                       | 6.63                  | 0.00                     | 57.60             | 74.00                  | -16.40                | Horizontal |  |
| Test mode: π/      | 4-DQPSK                 |                             | Test channel: Lowest  |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 2390.00            | 12.96                   | 27.58                       | 6.63                  | 0.00                     | 47.17             | 54.00                  | -6.83                 | Vertical   |  |
| 2390.00            | 11.87                   | 27.58                       | 6.63                  | 0.00                     | 46.08             | 54.00                  | -7.92                 | Horizontal |  |

| Test mode: π       | /4-DQPSK                |                             | Test char             | nel: Highest             |                   | Remark: Pea            | ık                    |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 2483.50            | 23.42                   | 27.52                       | 6.85                  | 0.00                     | 57.79             | 74.00                  | -16.21                | Vertical   |  |
| 2483.50            | 24.05                   | 27.52                       | 6.85                  | 0.00                     | 58.42             | 74.00                  | -15.58                | Horizontal |  |
| Test mode: π       | /4-DQPSK                |                             | Test channel: Highest |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 2483.50            | 11.49                   | 27.52                       | 6.85                  | 0.00                     | 45.86             | 54.00                  | -8.14                 | Vertical   |  |
| 2483.50            | 10.97                   | 27.52                       | 6.85                  | 0.00                     | 45.34             | 54.00                  | -8.66                 | Horizontal |  |

Remark:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 20 of 41

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor





| Test mode: 80                 | DPSK                    |                             | Test char                          | nel: Lowest              |                   | Remark: Pea                           | ak                    |            |
|-------------------------------|-------------------------|-----------------------------|------------------------------------|--------------------------|-------------------|---------------------------------------|-----------------------|------------|
| Frequency<br>(MHz)            | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB)              | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m)                | Over<br>Limit<br>(dB) | Polar.     |
| 2390.00                       | 24.05                   | 27.58                       | 6.63                               | 0.00                     | 58.26             | 74.00                                 | -15.74                | Vertical   |
| 2390.00                       | 23.96                   | 27.58                       | 6.63                               | 0.00                     | 58.17             | 74.00                                 | -15.83                | Horizontal |
|                               | st mode: 8DPSK          |                             | Test channel: Lowest               |                          |                   |                                       |                       |            |
| Test mode: 81                 | DPSK                    |                             | Test char                          | nel: Lowest              |                   | Remark: Ave                           | erage                 |            |
| Test mode: 8I Frequency (MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Test char<br>Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Remark: Ave<br>Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| Frequency                     | Read<br>Level           | Factor                      | Cable<br>Loss                      | Preamp<br>Factor         |                   | Limit Line                            | Over<br>Limit         | Polar.     |

| Test mode: 8DPSK   |                         |                             | Test channel: Highest |                          |                   | Remark: Peak           |                       |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 2483.50            | 22.56                   | 27.52                       | 6.85                  | 0.00                     | 56.93             | 74.00                  | -17.07                | Vertical   |  |
| 2483.50            | 22.14                   | 27.52                       | 6.85                  | 0.00                     | 56.51             | 74.00                  | -17.49                | Horizontal |  |
| Test mode: 80      | DPSK                    |                             | Test channel: Highest |                          |                   | Remark: Average        |                       |            |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 2483.50            | 10.96                   | 27.52                       | 6.85                  | 0.00                     | 45.33             | 54.00                  | -8.67                 | Vertical   |  |
|                    |                         |                             |                       |                          |                   |                        |                       |            |  |

Remark:

<sup>1.</sup> Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor



## 6.10 Spurious Emission

## 6.10.1 Conducted Emission Method

| Tost Poquiroment: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Requirement: |                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Test Method:      | ANSI C63.4:2009 and DA00-705                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test results:     | Refer to FCC ID: 2AB6Z-1859ATMB                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |



### 6.10.2 Radiated Emission Method

|                       | 10.2 Radiated Emission Method |                 |             |         |                  |  |  |  |  |
|-----------------------|-------------------------------|-----------------|-------------|---------|------------------|--|--|--|--|
| Test Requirement:     | FCC Part 15 C Section 15.209  |                 |             |         |                  |  |  |  |  |
| Test Method:          | ANSI C63.4: 2009              |                 |             |         |                  |  |  |  |  |
| Test Frequency Range: | 9 kHz to 25 GH                |                 |             |         |                  |  |  |  |  |
| Test site:            | Measurement D                 |                 | T           | T       |                  |  |  |  |  |
| Receiver setup:       | Frequency                     | Detector        | RBW         | VBW     | Remark           |  |  |  |  |
|                       | 30MHz-<br>1GHz                | Quasi-peak      | 120kHz      | 300kHz  | Quasi-peak Value |  |  |  |  |
|                       | Above 1GHz                    | Peak            | 1MHz        | 3MHz    | Peak Value       |  |  |  |  |
|                       |                               | Peak            | 1MHz        | 10Hz    | Average Value    |  |  |  |  |
| Limit:                | Freque                        | ency            | Limit (dBuV | /m @3m) | Remark           |  |  |  |  |
|                       | 30MHz-8                       | 8MHz            | 40.0        | )       | Quasi-peak Value |  |  |  |  |
|                       | 88MHz-2                       | 16MHz           | 43.         | 5       | Quasi-peak Value |  |  |  |  |
|                       | 216MHz-9                      | 60MHz           | 46.0        | )       | Quasi-peak Value |  |  |  |  |
|                       | 960MHz-                       | ·1GHz           | 54.0        | )       | Quasi-peak Value |  |  |  |  |
|                       | Ahove 1                       | GH <sub>7</sub> | 54.0        | )       | Average Value    |  |  |  |  |
|                       | Above                         | OTIZ            | 74.0        | )       | Peak Value       |  |  |  |  |
|                       | Above 1GHz                    |                 |             |         |                  |  |  |  |  |





| Test Procedure:   | The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                                |
|                   | 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.                                                                                                                        |
|                   | 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.                                                                                                                     |
|                   | The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                               |
|                   | 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                       |
| Test mode:        | Non-hopping mode                                                                                                                                                                                                                                                                                                                                       |
| Test results:     | Pass                                                                                                                                                                                                                                                                                                                                                   |

#### Remark

- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.





#### Measurement data:

#### **Below 1GHz**

Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 21.5 "Quad Core Media Player : DT215-AS4-1080-SL Condition

EUT

Model

Test mode : BT mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki

REMARK

|             |         |       | ReadAntenna Cable Pro<br>Freq Level Factor Loss Fac |      |           |        |        |           |    |  |
|-------------|---------|-------|-----------------------------------------------------|------|-----------|--------|--------|-----------|----|--|
| -           | MHz     | dBu∜  | <u>dB</u> /m                                        | dB   | <u>dB</u> | dBu√/m | dBu√/m | <u>dB</u> |    |  |
| 1           | 59.232  | 45.60 | 12.75                                               | 0.68 | 29.77     | 29.26  | 40.00  | -10.74    | QP |  |
| 2           | 172.599 | 51.82 | 9.16                                                | 1.35 | 29.03     | 33.30  | 43.50  | -10.20    | QP |  |
| 1<br>2<br>3 | 390.723 | 47.19 | 14.87                                               | 2.09 | 28.74     | 35.41  | 46.00  | -10.59    | QP |  |
| 4           | 420.580 | 44.86 | 15.47                                               | 2.18 | 28.82     | 33.69  | 46.00  | -12.31    | QP |  |
| 5           | 633.907 | 44.95 | 18.58                                               | 2.74 | 28.83     | 37.44  | 46.00  | -8.56     | QP |  |
| 5<br>6      | 848.056 | 44.60 | 20.55                                               | 3.25 | 28.01     | 40.39  | 46.00  | -5.61     | QP |  |





#### Horizontal:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 21.5 "Quad Core Media Player : DT215-AS4-1080-SL Condition

EUT

Model

Test mode : BT mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5 C Huni:55% 101KPa

Test Engineer: Viki REMARK :

| $\pi$ marr |         |        |                   |           |            |        |                     |               |    |  |
|------------|---------|--------|-------------------|-----------|------------|--------|---------------------|---------------|----|--|
|            | Freq    |        | Antenna<br>Factor |           |            |        | Limit<br>Line       | Over<br>Limit |    |  |
| -          | MHz     | −−dBuV | $\overline{dB/m}$ | <u>dB</u> | <u>d</u> B | dBuV/m | $\overline{dBuV/m}$ | <u>dB</u>     |    |  |
| 1          | 150.011 | 53.28  | 8.26              | 1.32      | 29.22      | 33.64  | 43.50               | -9.86         | QP |  |
| 2          | 211.527 | 58.54  | 10.93             | 1.44      | 28.76      | 42.15  | 43.50               | -1.35         | QP |  |
| 2          | 281.995 | 54.38  | 12.70             | 1.72      | 28.48      | 40.32  | 46.00               | -5.68         | QP |  |
| 4          | 390.723 | 56.31  | 14.87             | 2.09      | 28.74      | 44.53  | 46.00               | -1.47         | QP |  |
| 5          | 451.135 | 51.94  | 15.58             | 2.26      | 28.87      | 40.91  | 46.00               | -5.09         | QP |  |
| 6          | 490.745 | 46.52  | 16.39             | 2.38      | 28.94      | 36.35  | 46.00               | -9.65         | QP |  |
|            |         |        |                   |           |            |        |                     |               |    |  |



## Above 1GHz:

| Test channel:      |                         |                             | Lowest             |                          | Le                | vel:                   | Peak               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4804.00            | 46.25                   | 31.53                       | 10.57              | 40.24                    | 48.11             | 74.00                  | -25.89             | Vertical     |
| 4804.00            | 45.23                   | 31.53                       | 10.57              | 40.24                    | 47.09             | 74.00                  | -26.91             | Horizontal   |
| Te                 | st channel:             |                             | Lowest             |                          | Level:            |                        | Average            |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4804.00            | 31.45                   | 31.53                       | 10.57              | 40.24                    | 33.31             | 54.00                  | -20.69             | Vertical     |
| 4804.00            | 32.56                   | 31.53                       | 10.57              | 40.24                    | 34.42             | 54.00                  | -19.58             | Horizontal   |

| Test channel:      |                         |                             | Middle             |                          | Le                | vel:                   | Peak               |              |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4882.00            | 40.16                   | 31.58                       | 10.66              | 40.15                    | 42.25             | 74.00                  | -31.75             | Vertical     |
| 4882.00            | 43.56                   | 31.58                       | 10.66              | 40.15                    | 45.65             | 74.00                  | -28.35             | Horizontal   |
| Te                 | st channel:             |                             | Middle             |                          | Level:            |                        | Average            |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |
| 4882.00            | 33.26                   | 31.58                       | 10.66              | 40.15                    | 35.35             | 54.00                  | -18.65             | Vertical     |
| 4882.00            | 31.05                   | 31.58                       | 10.66              | 40.15                    | 33.14             | 54.00                  | -20.86             | Horizontal   |

| Test channel:      |                         |                             | Highest            |                          | Le                | vel:                   | Peak               |              |  |
|--------------------|-------------------------|-----------------------------|--------------------|--------------------------|-------------------|------------------------|--------------------|--------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |  |
| 4960.00            | 42.15                   | 31.69                       | 10.73              | 40.03                    | 44.54             | 74.00                  | -29.46             | Vertical     |  |
| 4960.00            | 41.58                   | 31.69                       | 10.73              | 40.03                    | 43.97             | 74.00                  | -30.03             | Horizontal   |  |
| Te                 | st channel              |                             | Highest            |                          | Level:            |                        | Average            |              |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over Limit<br>(dB) | Polarization |  |
| 4960.00            | 32.56                   | 31.69                       | 10.73              | 40.03                    | 34.95             | 54.00                  | -19.05             | Vertical     |  |
| 4960.00            | 31.49                   | 31.69                       | 10.73              | 40.03                    | 33.88             | 54.00                  | -20.12             | Horizontal   |  |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.