Let's backup. What we study will require BINARY

0	
1	
2	
3 4	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Binary terminology

- Binary uses only 1's and 0's as symbols
- A binary digit is called a bit
- Eight binary digits together is a byte (or an octet)

Why all the ones and zeros?

 Only two states: on & off, high & low, etc.

If Binary is base 2, why only ones and zeros?

Think about normal numbers...

To talk about Binary, let's talk about normal numbers (Decimal)

$$\bullet$$
 904₁₀ = 9 x 10² + 0 x 10¹ + 4 x 10⁰

$$\bullet$$
 904₁₀ = 9 x 10² + 4 x 10⁰

n	5	4	3	2	1	0
10 ⁿ	100000	10000	1000	100	10	1

So let's count in Binary

Only 1s and 0s...

Binary, like Decimal, is a positional number system

n	5	4	3	2	1	0
10 ⁿ	100000	10000	1000	100	10	1

n	5	4	3	2	1	0
10 ⁿ	100000	10000	1000	100	10	1
2 ⁿ	32	16	8	4	2	1

Aside, nice, pretty round numbers in number system aren't necessarily so in another:

n	3	2	1	0
10 ⁿ (Decimal)	1000 ₁₀	10010	10 ₁₀	1
10 ⁿ (Binary)	1111010002	1100100 ₂	10102	1

So let's look at some Binary numbers

$$101101_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

$$101101_2 = 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0$$

n	5	4	3	2	1	0
2 ⁿ (Binary)	1000002	100002	10002	1002	102	0
2 ⁿ (Decimal)	32 ₁₀	16 ₁₀	8 ₁₀	4 ₁₀	2 ₁₀	0

And how do you get the binary for a "normal" number?

 Subtracting Method: Subtract the largest power of two you can until you get to 0

 Dividing Method: Divide by 2 (writing down the remainder) until the number is gone.

Subtracting method

n	10	9	8	7	6	5	4	3	2	1	0
2 ⁿ	1024	512	256	128	64	32	16	8	4	2	1

Dividing method

Hexadecimal will help us

Decimal	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	Е
15	F

Which Number is This?

• 1234 decimal (base 10)

• <u>0x</u>1234 hexadecimal (base 16)

• <u>0</u>1234 octal (base 8)

• <u>0b</u>1010 binary (base 2)

• 1010₂ binary (base 2)

What We Talked About Today

- The Doubles ... 128 64 32 16 8 4 2 1
- The decimal value of a binary number
- The binary form of a decimal value
- The binary/hexadecimal table
- The binary form of a hex number
- The hex form of a binary number
- Octal numbers
- Studying with a blank piece of paper

