Beispiel 1. Welche der folgenden Aussagen sind richtig bzw. falsch? Begründe:

- (a) Die Abbildung $f_1: \mathbb{C} \to \mathbb{C}, z = x + iy \mapsto x^5y^4 ix^4y^5$ ist holomorph.
- (b) Die Abbildung $f_2: \mathbb{C} \to \mathbb{C}, z = x + iy \mapsto e^y ie^x$ ist holomorph.
- (c) Die Abbildung $f_3: \mathbb{C} \to \mathbb{C}, z \mapsto \sin(z^4|z|^2)$ ist holomorph.
- (d) Falls $f: \mathbb{C} \to \mathbb{C}$ holomorph ist, so sind dies auch $g_1(z) := \overline{f(z)}, g_2(z) := f(\overline{z})$ und $g_3(z) := \overline{f(\overline{z})}$.

Wir finden:

(a) Wir prüfen die Cauchy-Riemann Gleichungen, dabei gilt $u(x+iy)=x^5y^4, v(x+iy)=-x^4y^5$:

$$\frac{\partial u}{\partial x} = 5x^4y^4 \neq -5x^4y^4 = \frac{\partial v}{\partial y}$$

Also ist die Funktion nicht holomorph.

(b) Wir prüfen die Cauchy-Riemann Gleichungen, dabei gilt $u(x+iy) = e^y$, $v(x+iy) = -e^x$:

$$\frac{\partial u}{\partial y} = e^y \neq -e^x = \frac{\partial v}{\partial x}$$

Also ist die Funktion nicht holomorph.

- (c) Der Sinus ist eine Potenzreihe, die überall konvergiert, also ist die Funktion holomorph.
- (d) $g_1(z)$ und $g_2(z)$ sind im Allgemeinen nicht holomorph, wie man an dem Beispiel f(z) = z sieht. Für $g_3(z)$ hingegen finden wir:

$$\lim_{h \to 0} \frac{g_3(z+h) - g_3(z)}{h} = \lim_{h \to 0} \frac{\overline{f(\overline{z+h})} - \overline{f(\overline{z})}}{h} = \lim_{h \to 0} \frac{\overline{f(\overline{z}+\overline{h})} - f(\overline{z})}{h}$$
$$= \lim_{h \to 0} \overline{\left(\frac{f(\overline{z}+\overline{h}) - f(\overline{z})}{\overline{h}}\right)} = \overline{f'(\overline{z})}$$

Also ist die Funktion holomorph.

Beispiel 2. Sei

$$\alpha(t) := \begin{cases} 1 - e^{it}, & t \in [0, 2\pi], \\ -1 + e^{-it}, & t \in [2\pi, 4\pi]. \end{cases}$$

Skizziere die durch α parametrisierte Kurve und berechne das Kurvenintegral

$$\int_{\alpha} z e^{z^2} dz$$

Da ze^{z^2} und $\alpha(0) = 1 - e^{i0} = 0 = -1 + e^{-i4\pi} = \alpha(4\pi)$ ist die Kurve geschlossen und die Funktion holomorph. Damit ist das gegebene Integral 0. Wir finden:

$$\int_{\alpha} z e^{z^2} dz = -i \left(\int_{0}^{2\pi} (1 - e^{it}) e^{(1 - e^{it})^2} e^{it} + \int_{2\pi}^{4\pi} (-1 + e^{-it}) e^{(-1 + e^{-it})^2} e^{-it} \right)$$

1

Beispiel 3. Seien $\Omega \subset \mathbb{C}$ offen und $f : \Omega \to \mathbb{C}$ holomorph. Sei $R \subset \mathbb{C}$ ein solides Rechteck und $\varphi : \mathbb{C} \to \mathbb{C}$ eine C^1 Funktion mit $\varphi(R) \subset \Omega$. Zeige: Parametrisiert γ den Rand von $\varphi(R)$, so gilt

$$\int_{\gamma} f(z)dz = 0.$$

Beispiel 4. Berechne die folgenden Integrale:

(a) $F\ddot{u}r \ n \in \mathbb{Z}$:

$$\int_C z^n dz$$

wobei C ein im Ursprung zentrierter, positiv orientierter Kreis ist.

(b) $F\ddot{u}r \ n \in \mathbb{Z}$:

$$\int_C z^n dz$$

wobei C der positiv orientierte Rand einer Kreisscheibe $\partial B_R(z)$ ist mit 0 < R < |z|.

(c) $F\ddot{u}r \ 0 < a < r < b$:

$$\int_C \frac{1}{(z-a)(z-b)} dz,$$

wobei $C = \{z \in \mathbb{C} : |z| = r\}$ mit positiver Orientierung.

Beispiel 5. Sei f holomorph auf $\Omega \subset \mathbb{C}$, und $T \subset \Omega$ ein Dreieck dessen Inneres auch in Ω enthalten ist. Gemäss Satz von Goursat gilt dann, dass

$$\int_T f(z)dz = 0.$$

Beweise dies mittels Satz von Green unter der zusätzlichen Annahme, dass die Ableitung f' stetig ist.