CS 4395 Author Attribution Assignment

This assignment will use sklearn to predict the author of a given document.

Part 1

```
from google.colab import files
data = files.upload()
      Choose Files | federalist.csv

    federalist.csv(text/csv) - 1100616 bytes, last modified: 11/5/2022 - 100% done

     Saving federalist.csv to federalist.csv
import io
import pandas as pd
df = pd.read csv(io.BytesIO(data['federalist.csv']))
df.author = df.author.astype('category')
print("Counts: ")
print(df.author.value counts())
df.head()
     Counts:
     HAMILTON
                               49
     MADISON
                               15
     HAMILTON OR MADISON
                               11
     HAMILTON AND MADISON
     Name: author, dtype: int64
             author
                                                                 text
         HAMILTON
                         FEDERALIST, No. 1 General Introduction For the...
      1
                JAY
                      FEDERALIST No. 2 Concerning Dangers from Forei...
                JAY FEDERALIST No. 3 The Same Subject Continued (C...
      2
      3
                     FEDERALIST No. 4 The Same Subject Continued (C...
                JAY FEDERALIST No. 5 The Same Subject Continued (C...
```

Part 2 - Train/Test split

Part 3 - Text processing & tf-idf vectorization

```
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
stopwords = set(stopwords.words('english'))
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(stop_words=stopwords)
X_train_vect = vectorizer.fit_transform(X_train)
X_test_vect = vectorizer.transform(X_test)
print(X_train_vect.shape)
print(X_test_vect.shape)

[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.
(66, 7678)
(17, 7678)
```

Part 4 - Naive Bayes Model

```
from sklearn.naive_bayes import BernoulliNB
bnb = BernoulliNB()
bnb.fit(X_train_vect, y_train)
print(bnb.score(X_train_vect, y_train), '\n')
prediction = bnb.predict(X_test_vect)

from sklearn.metrics import confusion_matrix, classification_report
print(classification_report(y_test, prediction))
```

0.803030303030303

	precision	recall	f1-score	support
HAMILTON	0.59	1.00	0.74	10
HAMILTON AND MADISON	0.00	0.00	0.00	1
HAMILTON OR MADISON	0.00	0.00	0.00	2
JAY	0.00	0.00	0.00	1
MADISON	0.00	0.00	0.00	3

```
accuracy 0.59 17 macro avg 0.12 0.20 0.15 17 weighted avg 0.35 0.59 0.44 17
```

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

Part 5 - Naive Bayes with Vectorization

0.8939393939393939

	precision	recall	f1-score	support
HAMILTON	0.59	1.00	0.74	10
HAMILTON AND MADISON	0.00	0.00	0.00	1
HAMILTON OR MADISON	0.00	0.00	0.00	2
JAY	0.00	0.00	0.00	1
MADISON	0.00	0.00	0.00	3
accuracy			0.59	17
macro avg	0.12	0.20	0.15	17
weighted avg	0.35	0.59	0.44	17

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine warn prf(average, modifier, msg start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

Part 6 - Logistic Regression

First algorithm using default solver ('lbfgs')

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression(solver='lbfgs', multi_class='multinomial', class_weight='balance
log_reg.fit(X_train_vect2, y_train)
prediction = log_reg.predict(X_test_vect2)
print(classification_report(y_test, prediction), '\n')
```

	precision	recall	t1-score	support
HAMILTON	0.91	1.00	0.95	10
HAMILTON AND MADISON	0.00	0.00	0.00	1
HAMILTON OR MADISON	1.00	0.50	0.67	2
JAY	1.00	1.00	1.00	1
MADISON	0.75	1.00	0.86	3
accuracy			0.88	17
macro avg	0.73	0.70	0.70	17
weighted avg	0.84	0.88	0.85	17

```
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine
   _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine
   _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine
   _warn_prf(average, modifier, msg_start, len(result))
```

Second algorithm using solver 'liblinear'

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression(solver='liblinear', class_weight='balanced', random_state=1234)
log_reg.fit(X_train_vect2, y_train)
prediction = log_reg.predict(X_test_vect2)
print(classification_report(y_test, prediction), '\n')
```

	precision	recall	f1-score	support
HAMILTON	0.59	1.00	0.74	10
HAMILTON AND MADISON	0.00	0.00	0.00	1
HAMILTON OR MADISON	0.00	0.00	0.00	2

```
0.00
                                0.00
                                           0.00
         JAY
     MADISON
                     0.00
                                0.00
                                           0.00
                                                         3
    accuracy
                                           0.59
                                                        17
   macro avg
                     0.12
                                0.20
                                           0.15
                                                        17
weighted avg
                     0.35
                                0.59
                                           0.44
                                                        17
```

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

→

Third algorithms using solver 'sag'

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression(solver='sag', multi_class='multinomial', class_weight='balanced'
log_reg.fit(X_train_vect2, y_train)
prediction = log_reg.predict(X_test_vect2)
print(classification_report(y_test, prediction), '\n')
```

precision	recall	t1-score	support
0.91	1.00	0.95	10
0.00	0.00	0.00	1
1.00	0.50	0.67	2
1.00	1.00	1.00	1
0.75	1.00	0.86	3
		0.88	17
0.73	0.70	0.70	17
0.84	0.88	0.85	17
	0.00 1.00 1.00 0.75	0.91 1.00 0.00 0.00 1.00 0.50 1.00 1.00 0.75 1.00	0.91 1.00 0.95 0.00 0.00 0.00 1.00 0.50 0.67 1.00 1.00 1.00 0.75 1.00 0.86 0.88 0.73 0.70 0.70

```
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))
```

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.7/dist-packages/sklearn/metrics/_classification.py:1318: Undefine _warn_prf(average, modifier, msg_start, len(result))

```
→
```

Fourth algorithm using solver 'saga'

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression(solver='saga', multi_class='multinomial', class_weight='balanced
log_reg.fit(X_train_vect2, y_train)
prediction = log_reg.predict(X_test_vect2)
```

print(classification_report(y_test, prediction), '\n')

	precision	recall	f1-score	support
HAMILTON	1.00	0.60	0.75	10
HAMILTON AND MADISON	0.20	1.00	0.33	1
HAMILTON OR MADISON	1.00	0.50	0.67	2
JAY	1.00	1.00	1.00	1
MADISON	0.50	0.67	0.57	3
accuracy			0.65	17
macro avg	0.74	0.75	0.66	17
weighted avg	0.86	0.65	0.70	17

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_sag.py:354: ConvergenceWarr ConvergenceWarning,

Lbfgs and sag boast the highest accuracy at 0.88 (but only if multi_class is set to multinomial, otherwise the accuracy is lower), which is a significant improvement over the naive bayes classifier.

Part 7 - Neural Networks

```
from sklearn.neural_network import MLPClassifier
nn = MLPClassifier(activation='tanh',solver='lbfgs', alpha=1e-4, hidden_layer_sizes=(10, 15,
nn.fit(X_train_vect2, y_train)
prediction = nn.predict(X_test_vect2)
print(classification_report(y_test, prediction), '\n')
```

₽	precision	recall	f1-score	support
HAMILTON	1.00	1.00	1.00	10
HAMILTON AND MADISON	0.50	1.00	0.67	10
HAMILTON OR MADISON	0.50	0.50	0.50	2
YAC	1.00	1.00	1.00	1
MADISON	0.50	0.33	0.40	3
1 11 12 20 11	0.30	0.33	00	9
accuracy			0.82	17
macro avg	0.70	0.77	0.71	17
weighted avg	0.82	0.82	0.82	17

Of all the combinations, lbgfs with tanh activation function provided the best accuracy, and the hidden layers were tweaked until I reached the highest at 82% accuracy. It seems the accuracy is

always 59%, 65%, 71%, 76%, and 82%. No matter what I changed, the accuracy is always one of those five. Overall, logistic regression provides the best accuracy at 88%.

Colab paid products - Cancel contracts here

✓ 0s completed at 7:32 PM