Mathematical Analysis Homework 3: Solutions

Cory Nezin

September 17, 2017

1. Assume \mathbb{R} is an ordered field satisfying least upper bound or supremum principle. Prove that \mathbb{R} has the completeness property.

Proof:

Let $\emptyset \neq A \subseteq \mathbb{R}$, A bounded above and $T = \{b \in \mathbb{R}; x \leq b \ \forall x \in A\}$ Let S be the complement of T: $S = \{x \in \mathbb{R}; x \notin T\}$

By the supremum principle, A has a least upper bound in \mathbb{R} . That is, $\exists \alpha \in \mathbb{R}$ such that $\alpha \leq b \ \forall b \in T$.

Since S and T are complementary, they form a partition over \mathbb{R} , so either $\alpha \in S$ or $\alpha \in T$.

If $\alpha \in S$ then since it the supremum of A, by Homework 2 it is also the maximum of S.

If $\alpha \in T$ then since $\alpha \leq b \ \forall b \in T$ (by the supreum principle) α is the minimum of T.

Thus \mathbb{R} has the completeness property.

- 2. Let $\emptyset \neq A \subseteq B \subseteq \mathbb{R}$ and given that B is bounded, prove that A is bounded and
 - (a) $\sup A \le \sup B$
 - (b) $\inf B \leq \inf A$

Proof (A is bounded):

 $B \text{ is bounded} \to \ \forall b \in B, |b| \leq M \in \mathbb{R}.$

 $A\subseteq B \to \ \forall a\in A, a\in B \to |a|\leq M.$ So A is bounded. \blacksquare

Proof (a):

 $\forall b \in B, b \leq \sup B \to a \leq \sup B \ \forall a \in A \to \sup B$ is an upper bound for A. So $\sup A \leq \sup B \blacksquare$

Proof (b):

 $\forall b \in B, b \ge \inf B \to a \ge \inf B \ \forall a \in A \to \inf B \text{ is a lower bound for } A.$ So $\inf A \ge \inf B \blacksquare$