RAID

INTRO

Las siglas RAID vienen del inglés *Redundant Array of Independent Diks*:

- Consiste en un grupo de discos que trabajan de manera conjunta como un mismo sistema de almacenamiento de datos.
- Los bloques de datos están distribuidos en varios discos en paralelo, dependiendo del tipo de RAID, estos bloques pueden almacenarse con ciertas duplicidades/replicación en los datos: redundancia.

BENEFICIOS FRENTE A UN ÚNICO DISCO

Dependen de la configuración del RAID, pueden ser:

- Integridad: la información se mantiene completa y correcta.
- Tolerancia a fallos: si falla un disco se puede evitar que perdamos la información.
- Mayor tasa de transferencia: las lecturas y/o escrituras pueden ser más rápidas.
- Mayor capacidad que usar un único disco.

REQUISITOS GENERALES

GESTIÓN

RAID debe gestionarse por hardware (desde BIOS/UEFI si se tiene controladora en placa base o tarjeta de expansión) o por software (desde un sistema operativo que permita esta función).

DISCOS HOT-SWAPPABLE

Se necesita que los discos sean rápidamente reemplazables/sustituidos en caliente, es decir, sin que haya que reiniciar.

Cuando se sustituye un disco, RAID se asegura de reconstruir en el nuevo disco la información que falta a partir de datos originales y redundantes (depende del tipo de RAID y de qué discos o cuántos han fallado). Esto se llama reconstruir o reparar el RAID y es el motivo por el que decimos que hay tolerancia a fallos.

NIVELES RAID

Existen multitud de configuraciones RAID posibles, suelen llamarse **niveles**. Se pueden clasificar en:

- Niveles estándar
- Niveles anidados
- Niveles RAID con discos de reserva
- Niveles no estándar

Veremos los niveles más importantes, ya que existen varios en desuso y los controladores HW/SW actuales no los soportan.

NIVELES ESTÁNDAR HABITUALES

RAID 0. VOLUMEN DIVIDIDO/SECCIONADO

- Distribuye equitativamente la información entre varios discos, no hay redundancia.
- Necesita un mínimo de 2 discos.
- No es tolerante a fallos, 0 discos.

- No debería considerarse RAID, no hay redundancia
- Ofrece un alto rendimiento en lectura/escritura (los datos se leen/escriben en varios discos de forma dividida y en paralelo). Es su única ventaja.
- Se puede crear con discos de distinto tamaño, pero el espacio de almacenamiento añadido estará limitado por el tamaño del disco más pequeño.

RAID 1. ESPEJO

- Se crea una copia exacta (o espejo) de un conjunto de datos en dos o más discos.
- Necesita un mínimo de 2 discos.
- Tolerante a fallos de *n* 1 discos.

- Ofrece un alto rendimiento en lectura.
- Ofrece tolerancia a fallos, desaprovechando capacidad de los discos.
- El RAID 1 solo puede ser tan grande como el más pequeño de sus discos.
- La información se replica totalmente, no se calcula realmente paridad.

RAID 5. DIVIDIDO CON PARIDAD DISTRIBUIDA

- Divide los datos a nivel de bloques y además distribuye información de paridad entre todos los discos.
- Necesita un mínimo 3 discos.
- Tolerante a fallo de 1 disco.

- El equivalente a un disco entero se usa para almacenar la paridad.
- Ofrece un buen rendimiento en lectura, pero no el mejor.
- Mejora rendimiento en escritura y en capacidad de almacenamiento respecto a RAID 1.

RAID 6. DIVIDIDO CON DOBLE PARIDAD DISTRIBUIDA

- Divide los datos a nivel de bloques y además distribuye dos bloques de información de paridad entre todos los discos.
- Necesita un mínimo 4 discos.

- Tolerante a fallo de 2 discos simultáneos o mientras se está reconstruyendo la información del primero que falló.
- RAID 6 no era uno de los niveles RAID originales.

NIVELES ANIDADOS

Combinan niveles estándares:

- RAID 01: RAID 0 + 1
- RAID 10: RAID 1 + 0
- RAID 50: RAID 5 + 0

RAID 01: RAID 0 + 1

Un espejo de divisiones

RAID 10: RAID 1+0

Una división de espejos

RAID 50: RAID 5+0

Una división con paridad distribuida de espejos.

NIVELES RAID CON DISCOS DE RESERVA

DISCOS HOT-SPARE

Casi todas las implementaciones de RAID permiten tener uno o más discos de reserva (*hot-spare*), son unidades preinstaladas que pueden usarse inmediatamente (y casi siempre automáticamente). Reduce el tiempo de reparación del RAID.

RAID 5EY 6E

Son variantes de RAID 5 y RAID 6 que incluyen discos de reserva

No suponen mejora alguna del rendimiento, pero sí se minimiza el tiempo de reconstrucción (en el caso de los discos hot spare) y las labores de administración cuando se producen fallos. Un disco de reserva no es realmente parte del conjunto hasta que un disco falla y el conjunto se reconstruye sobre el de reserva.

NIVELES NO ESTÁNDAR

Son niveles propietarios, es decir, implementaciones patentadas de determinadas compañías, difieren sustancialmente de todas las demás.

RESUMEN

COMPARATIVA RAID 0, 1, 5

Nivel	Descripción	Mínimo # de discos	Eficiencia del espacio	Tolerancia a fallos	Rendimiento Lectura	Rendimiento escritura	lmagen
RAID 0	División de bloques sin paridad ni espejeado	2	1	0 (ninguna)	nºdiscos * X	nºdiscos * X	RAID 0 A1 A2 A4 A6 A8 Disk 0 Disk 1
RAID 1	Espejeado sin paridad ni bandas	2	1/nºdiscos	nºdiscos-1 discos	nºdiscos * X	1 * X	RAID 1 A1 A2 A3 A4 Disk 0 Disk 1
RAID 5	División de bloques con paridad distribuida	3	1 – 1/nºdiscos	1 disco	(nºdiscos-1) * X	hardware: (nºdiscos - 1) * X software: [(nºdiscos - 1) * X] - cálculo paridad	RAID 5 A1 B1 C1 Dp Disk 0 Disk 1 Disk 2 Disk 3

C Ver más ta... Compartir

Ver más ta... Compartir

()