Table of Contents

1	Solutions to Lambda Calculi with Types	2
2	Solutions to Domain-Theoretic Foundations of Functional Programming	
	2.1 PCF and its Operational Semantics	;
	2.2 The Scott Model of PCF	
	2.3 Milner's Context Lemma	
	2.4 Logical Relations	,

Chapter 1. Solutions to Lambda Calculi with Types

Problem 1. (Exercise 3.1.13) *Exercise Statement*

Solution: *Solution!*

Problem 2. (Exercise 4.1.20) *Exercise Statement*

Problem 3. (Exercise 4.2.8) *Exercise Statement*

Problem 4. (Exercise 5.1.16):

(i): Define $\neg \equiv \lambda \alpha : *$

Chapter 2. Solutions to Domain-Theoretic Foundations of Functional Programming

2.1 PCF and its Operational Semantics

Problem 1. (Page 14) *Problem Statement*

Problem 2. (Page 16) (Lemma 2.1.) The evaluation relation \Downarrow is deterministic, i.e. whenever $M \Downarrow V$ and $M \Downarrow W$ then $V \equiv W$

Solution: We prove this by induction on the structure of the derivation. **Base cases.**

- By the rules of the BigStep semantics for PCF, the lemma for the following base cases is trivial:
 - $-M \equiv x$, then $x \downarrow x$. So V and W can only be x; thus, $V \equiv W \equiv x$.
 - $-M \equiv \lambda x : \sigma.M$, then $\lambda x : \sigma.M \downarrow \lambda x : \sigma.M$.
 - $-M\equiv 0$, then $0\downarrow 0$.

Inductive Steps.

- If $M \equiv succ(M)$, then it must be derived by the rule $\frac{M \Downarrow \underline{n}}{succ(M) \Downarrow \underline{n+1}}$. Then we would have $V \equiv \underline{n+1}$ and $W \equiv \underline{m+1}$ since the successor rule is the only way to derive succ(M). By IH, we know that $\underline{n} = \underline{m}$, thus $\underline{n+1} = \underline{m+1}$, and hence V = W.
- If $M \equiv M(N)$. The derivation for M(N) must be of the form $\frac{M \Downarrow \lambda x: \sigma.E \ E[N/x] \Downarrow V}{M(N) \Downarrow V}$. A second derivation for M(N) must use the same rule. i.e., $\frac{M \Downarrow \lambda x: \sigma'.E' \ E'[N/x] \Downarrow W}{M(N) \Downarrow W}$. But then by IH, we would have $\lambda x: \sigma.E \equiv \lambda x: \sigma'.E'$. So $\sigma \equiv \sigma'$ and E = E'. Now, we have $E[N/x] \Downarrow V$ and $E[N/x] \Downarrow W$. By the IH on the sub-derivation for E[N/x], we conclude $V \equiv W$.
- If $M \equiv pred(M)$, then the rules are $\frac{M \Downarrow \underline{0}}{pred(M) \Downarrow \underline{0}}$ and $\frac{M \Downarrow \underline{n+1}}{pred(M) \Downarrow \underline{n}}$. For the derivation $pred(M) \Downarrow V$, we must have a sub-derivation for $M \Downarrow \underline{x}$ for some numeral \underline{x} . Similarly, for $pred(M) \Downarrow W$, we must have a sub-derivation for $M \Downarrow \underline{y}$ for some numeral \underline{y} . By the IH on the sub-derivation for M, we can conclude that $\underline{x} \equiv y \equiv k$.

Let's examine k. If $k \equiv \underline{0}$, then both derivations must be $\frac{M \Downarrow \underline{0}}{pred(M) \Downarrow \underline{0}}$. Thus, $V \equiv W \equiv \underline{0}$. Same argument is valid for the case $k \equiv n+1$.

• The other cases $(Y_{\sigma}, \text{ and both cases of } ifz)$ can be proved likewise.

Problem 3. (Page 16) *Problem Statement*

Problem 4. (Page 17) *Problem Statement*

Problem 5. (Page 17) *Problem Statement*

Problem 6. (Page 19) *Problem Statement*

3

2.2 The Scott Model of PCF

Problem 1. (Page 26) *Problem Statement*

Problem 2. (Page 26) *Problem Statement*

Problem 3. (Page 27) *Problem Statement*

Problem 4. (Page 30) *Problem Statement*

Problem 5. (Page 33) *Problem Statement*

Problem 6. (Page 34) *Problem Statement*

2.3 Milner's Context Lemma

Problem 1. (Page 44) *Problem Statement*

2.4 Logical Relations

Problem 1. (Page 52) *Problem Statement*

Problem 2. (Page 54) *Problem Statement*