Serial No.: 09/931,061 Filed: August 17, 2001

Page : 2 of 17

## Amendments to the Claims

This listing of claims replaces all prior versions and listings of claims in the application.

## <u>Listing of Claims</u>

- 1. (Withdrawn) An electronic device comprising a plurality of pixels, wherein each of the plurality of pixels has a plurality of volatile memory circuits and a plurality of non-volatile memory circuits.
- 2. (Withdrawn) A device according to claim 1, wherein the volatile memory circuits are static memories (SRAMs).
- 3. (Withdrawn) A device according to claim 1, wherein the volatile memory circuits are ferroelectric memories (FeRAMs).
- 4. (Withdrawn) A device according to claim 1, wherein the volatile memory circuits are dynamic memories (DRAMs).
- 5. (Withdrawn) A device according to claim l, wherein the non-volatile memory circuits are electrically writable, readable, and erasable non-volatile memories (EEPROMs).
- 6. (Withdrawn) A device according to claim 1, wherein the volatile and non-volatile memory circuits are formed over a glass substrate.
- 7. (Withdrawn) A device according to claim 1, wherein the volatile and non-volatile memory circuits are formed over a plastic substrate.
  - 8. (Withdrawn) A device according to claim 1, wherein the volatile and non-volatile

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 3 of 17

memory circuits are formed over a stainless steel substrate.

9. (Withdrawn) A device according to claim 1, wherein the volatile and non-volatile memory circuits are formed on a single crystal wafer.

- 10. (Withdrawn) Electronic equipment employing the device according to claim 1.
- 11. (Withdrawn) An electronic device comprising a plurality of pixels, wherein: each of the plurality of pixels has n x m volatile memory circuits for storing m frame portions (where m is a natural number,  $m \ge 1$ ) of an n-bit digital image signal (where n is a natural number,  $n \ge 2$ ); and

each of the plurality of pixels has n x k non-volatile memory circuits for storing k frame portions (where k is a natural number,  $k \ge 1$ ) of the n-bit digital image signal.

- 12. (Withdrawn) A device according to claim 11, wherein the volatile memory circuits are static memories (SRAMs).
- 13. (Withdrawn) A device according to claim 11, wherein the volatile memory circuits are ferroelectric memories (FeRAMs).
- 14. (Withdrawn) A device according to claim 11, wherein the volatile memory circuits are dynamic memories (DRAMs).
- 15. (Withdrawn) A device according to claim 11, wherein the non-volatile memory circuits are electrically writable, readable, and erasable non-volatile memories (EEPROMs).
- 16. (Withdrawn) A device according to claim 11, wherein the volatile and non-volatile memory circuits are formed over a glass substrate.

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 4 of 17

17. (Withdrawn) A device according to claim 11, wherein the volatile and non-volatile memory circuits are formed over a plastic substrate.

- 18. (Withdrawn) A device according to claim 11, wherein the volatile and non-volatile memory circuits are formed over a stainless steel substrate.
- 19. (Withdrawn) A device according to claim 11, wherein the volatile and non-volatile memory circuits are formed on a single crystal wafer.
- 20. (Withdrawn) Electronic equipment employing the electronic device according to claim 11.
- 21. (Currently Amended) An electronic device comprising a plurality of pixels, each of the pixels having:

a source signal line;

n (where n is a natural number,  $n \ge 2$ ) gate signal lines used for write-in;

n gate signal lines used for read-out;

n transistors used for write-in;

n transistors used for read-out;

 $n \times m$  volatile memory circuits for storing m frame portions (where m is a natural number,  $m \ge 1$ ) of an n-bit digital image signal;

n x k non-volatile memory circuits for storing k frame portions (where k is a natural number,  $k \ge 1$ ) of the n-bit digital image signal;

2n volatile memory circuit selection portions;

2n non-volatile memory circuit selection portions;

an electric current supply line;

an EL driver transistor; and

Serial No. : 09/931,061 Filed : August 17, 2001

Page : 5 of 17

an EL element;

wherein:

gate electrodes of the n write-in transistors are each electrically connected to any one of the n write-in gate signal lines, with each of said gate electrodes connected to a different write-in gate signal line;

input electrodes of the n write in transistors are each electrically connected to the source

input electrodes of the n write-in transistors are each electrically connected to the source signal line;

output electrodes of the n write-in transistors are each electrically connected to the volatile memory circuits through any one of the volatile memory circuit selection portions, with each of said output electrodes being connected through a different volatile memory circuit selection portion;

the output electrodes of the n write-in transistors are each electrically connected to the non-volatile memory circuits through any one of the non-volatile memory circuit selection portions, with each of said output electrodes being connected through a different non-volatile memory circuit selection portion;

gate electrodes of the n read-out transistors are each electrically connected to any one of the n read-out gate signal lines, with each of said gate electrodes connected to a different read-out gate signal line;

the input electrodes of the n read-out transistors are each electrically connected to the volatile memory circuits through any one of the volatile memory circuit selection portions, with each of said input electrodes being connected through a different volatile memory circuit selection portion;

the input electrodes of the n read-out transistors are each electrically connected to the non-volatile memory circuits through any one of the non-volatile memory circuit selection portions, with each of said input electrodes being connected through a different non-volatile memory circuit selection portion;

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 6 of 17

the output electrodes of the n read-out transistors are each electrically connected to a gate electrode of the EL driver transistor;

an input electrode of the EL driver transistor is electrically connected to the electric current supply line; and

an output electrode of the EL driver transistor is electrically connected to one electrode of the EL element.

- 22. (Previously Presented) A device according to claim 21, wherein the volatile memory circuits are static memories (SRAMs).
- 23. (Previously Presented) A device according to claim 21, wherein the volatile memory circuits are ferroelectric memories (FeRAMs).
- 24. (Previously Presented) A device according to claim 21, wherein the volatile memory circuits are dynamic memories (DRAMs).
- 25. (Original) A device according to claim 21, wherein the non-volatile memory circuits are electrically writable, readable, and erasable non-volatile memories (EEPROMs).
- 26. (Previously Presented) A device according to claim 21, wherein the volatile and non-volatile memory circuits are formed over a glass substrate.
- 27. (Previously Presented) A device according to claim 21, wherein the volatile and non-volatile memory circuits are formed over a plastic substrate.
- 28. (Previously Presented) A device according to claim 21, wherein the volatile and non-volatile memory circuits are formed over a stainless steel substrate.

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 7 of 17

29. (Previously Presented) A device according to claim 21, wherein the volatile and non-volatile memory circuits are formed on a single crystal wafer.

- 30. (Original) Electronic equipment employing the electronic device according to claim 21.
  - 31. (Previously Presented) A device according to claim 21, wherein:

the volatile memory circuit selection portions:

select any one circuit from among the volatile memory circuits and the non-volatile memory circuits, make the output electrode of the write-in transistor conductive to the selected one circuit from among the volatile memory circuits and the non-volatile memory circuits, and perform write-in of the digital image signal to the selected one circuit; or

select any one circuit from among the volatile memory circuits and the non-volatile memory circuits, make the input electrode of the write-in transistor conductive to the selected one circuit from among the volatile memory circuits and the non-volatile memory circuits, and perform read-out of the digital image signal from the selected one circuit.

- 32. (Previously Presented) A device according to claim 21, wherein the electronic device has:
- a shift register for outputting sampling pulses one after another in accordance with a clock signal and a start pulse;
- a first latch circuit for storing the n-bit digital image signal (where n is a natural number,  $n \ge 2$ ) in accordance with the sampling pulse;
- a second latch circuit into which the n-bit digital image signal stored in the first latch circuit is transferred; and
- a bit selection circuit for selecting, in order, single bits of the n-bit digital image signal transferred to the second latch circuit, and outputting the selected single bits to the source signal line.

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 8 of 17

33. (Currently Amended) An electronic device comprising a plurality of pixels, each of the pixels having:

n (where n is a natural number,  $n \ge 2$ ) source signal lines;

n gate signal lines used for write-in;

n gate signal lines used for read-out;

n transistors used for write-in;

n transistors used for read-out;

 $n \times m$  volatile memory circuits for storing m frame portions (where m is a natural number,  $m \ge 1$ ) of an n-bit digital image signal;

n x k non-volatile memory circuits for storing k frame portions (where k is a natural number,  $k \ge 1$ ) of the n-bit digital image signal;

2n volatile memory circuit selection portions;

2n non-volatile memory circuit selection portions;

an electric current supply line;

an EL driver transistor; and

an EL element;

## wherein:

gate electrodes of the n write-in transistors are each electrically connected to any one of the write-in gate signal lines, with each of said gate electrodes being connected to a different write-in gate signal line;

input electrodes of the n write-in transistors are each electrically connected to any one of the sources signal lines, with each of said input electrodes being connected to a different source signal line;

output electrodes of the n write-in transistors are electrically connected to volatile memory circuits through any one of the volatile memory circuit selection portions, with each of said output electrodes being connected through a different volatile memory circuit selection portion;

Serial No. : 09/931,061
Filed : August 17, 2001

Page : 9 of 17

the output electrodes of the n write-in transistors are electrically connected to the non-volatile memory circuits through any one of the non-volatile memory circuit selection portions, with each of said output electrodes being connected through a different non-volatile memory circuit selection portion;

gate electrodes of the n read-out transistors are each electrically connected to any one of the n read-out gate signal lines, with each of said gate electrodes being connected to a different read-out gate signal line;

input electrodes of the n read-out transistors are electrically connected to the non-volatile memory circuits through any one of the volatile memory circuit selection portions, with each of said input electrodes being connected through a different volatile memory circuit selection portion;

the input electrodes of the n read-out transistors are electrically connected to the non-volatile memory circuits through any one of the non-volatile memory circuit selection portions, with each of said input electrodes being connected through a different non-volatile selection portion;

the output electrodes of the n write-in read-out transistors are each electrically connected to a gate electrode of the EL driver transistor;

an input electrode of the EL driver transistor is electrically connected to the electric current supply line; and

an output electrode of the EL driver transistor is electrically connected to one electrode of the EL element.

- 34. (Previously Presented) A device according to claim 33, wherein the volatile memory circuits are static memories (SRAMs).
- 35. (Previously Presented) A device according to claim 33, wherein the volatile memory circuits are ferroelectric memories (FeRAMs).

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 10 of 17

36. (Previously Presented) A device according to claim 33, wherein the volatile memory circuits are dynamic memories (DRAMs).

- 37. (Original) A device according to claim 33, wherein the non-volatile memory circuits are electrically writable, readable, and erasable non-volatile memories (EEPROMs).
- 38. (Previously Presented) A device according to claim 33, wherein the volatile and non-volatile memory circuits are formed over a glass substrate.
- 39. (Previously Presented) A device according to claim 33, wherein the volatile and non-volatile memory circuits are formed over a plastic substrate.
- 40. (Previously Presented) A device according to claim 33, wherein the volatile and non-volatile memory circuits are formed over a stainless steel substrate.
- 41. (Previously Presented) A device according to claim 33, wherein the volatile and non-volatile memory circuits are formed on a single crystal wafer.
  - 42. (Previously Presented) A device according to claim 33, wherein: the memory circuit selection portions:

select any one circuit from among the volatile memory circuits and the non-volatile memory circuits, make the output electrode of the write-in transistor conductive to the selected one circuit from among the volatile memory circuits and the non-volatile memory circuits, and perform write-in of the digital image signal to the selected one circuit; or

select any one circuit from among the volatile memory circuits and the non-volatile memory circuits, make the input electrode of the write-in transistor conductive to the selected one circuit from among the volatile memory circuits and the non-volatile memory circuits, and perform read-out of the digital image signal from the selected one circuit.

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 11 of 17

43. (Original) A device according to claim 33, wherein the electronic device has:

a shift register for outputting sampling pulses one after another in accordance with a clock signal and a start pulse:

a first latch circuit for storing one bit of the digital image signal from among the n-bit digital image signal (where n is a natural number,  $n \ge 2$ ); and

a second latch circuit into which the one bit of the digital image signal stored in the first latch circuit is transferred, and which outputs the one bit of the digital image signal to the source signal line.

44. (Original) A device according to claim 33, wherein the electronic device has:

a shift register for outputting sampling pulses one after another in accordance with a clock signal and a start pulse:

a latch circuit for storing one bit of the digital image signal in accordance with the sampling pulse: and

a bit selection circuit for selecting the source signal line for outputting the one bit of the digital image signal which has been transferred to the latch circuit.

- 45. (Original) Electronic equipment employing the electronic device according to claim 33.
- 46. (Withdrawn) A method of driving an electronic device for performing display of an image using an n-bit digital image signal (where n is a natural number,  $n \ge 2$ ), wherein the electronic device has a source signal line driver circuit, a gate signal line driver circuit, and a plurality of pixels, the method comprising:

in the source signal line driver circuit, outputting a sampling pulse from a shift register and inputting the sampling pulse to a latch circuit, storing the digital image signal in the latch

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 12 of 17

circuit in accordance with the sampling pulse, and writing the stored digital image signal to a source signal line;

in the gate signal line driver circuit, outputting a gate signal line selection pulse and selecting a gate signal line; and

in the plurality of pixels, in a row in which the gate signal line is selected, writing the n-bit digital image signal input from the source signal line to a memory circuit, reading the n-bit digital image signal stored in the memory circuit, writing the n-bit digital image signal input from the source signal line, or the n-bit digital image signal stored in the memory circuit to a non-volatile memory circuit, reading the n-bit digital image signal stored in the non-volatile memory circuit, or writing the n-bit digital image signal stored in the non-volatile memory circuit to the memory circuit.

- 47. (Withdrawn) A method according to claim 46, further comprising, in a static image display period, stopping the source signal line driver circuit by repeatedly reading out the n-bit digital image signal stored in the memory circuit to display a static image.
  - 48. (Withdrawn) Electronic equipment employing the method according to claim 46.
- 49. (Withdrawn) A method of driving an electronic device for performing display of an image using an n-bit digital image signal (where n is a natural number,  $n \ge 2$ ), wherein the electronic device has a source signal line driver circuit, a gate signal line driver circuit, and a plurality of pixels, the method comprising:

in the source signal line driver circuit, outputting a sampling pulse from a shift register and inputting the sampling pulse to a latch circuit, storing the digital image signal in the latch circuit in accordance with the sampling pulse, and writing the stored digital image signal to a source signal line;

outputting from the gate signal line driver circuit a gate signal line selection pulse to select gate signal lines in order from a first row; and

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 13 of 17

in the plurality of pixels, writing the n-bit digital image signal in order from the first row or reading the n-bit digital image signal.

50. (Withdrawn) A method according to claim 49, further comprising, in a static image display period, stopping the source signal line driver circuit by repeatedly reading out the n-bit digital image signal stored in the memory circuit to display a static image.

- 51. (Withdrawn) Electronic equipment employing the method according to claim 49.
- 52. (Withdrawn) A method of driving an electronic device for performing display of an image using an n-bit image signal (where n is a natural number,  $n \ge 2$ ), wherein the electronic device has a source signal line driver circuit, a gate signal line driver circuit, and a plurality of pixels, the method comprising:

in the source signal line driver circuit, outputting a sampling pulse from a shift register and inputting the sampling pulse to a latch circuit, storing the digital image signal in the latch circuit in accordance with the sampling pulse, and writing the stored digital image signal to a source signal;

the gate signal line driver circuit specifying an arbitrary row of gate signal lines and outputting a gate signal line selection pulse; and

in the plurality of pixels, writing the n-bit digital image signal in the specified arbitrary row of the gate signal lines or reading the n-bit digital image signal.

- 53. (Withdrawn) A method according to claim 52, further comprising, in a static image display period, stopping the source signal line driver circuit by repeatedly reading out the n-bit digital image signal stored in the memory circuit to display a static image.
  - 54. (Withdrawn) Electronic equipment employing the method according to claim 52.

Serial No.: 09/931,061 Filed: August 17, 2001

Page : 14 of 17

55. (Withdrawn) Electronic equipment according to claim 10, wherein the electronic equipment is at least one selected from the group consisting of: a television, a personal computer, a portable terminal, a video camera, and a head mounted display.

- 56. (Withdrawn) Electronic equipment according to claim 20, wherein the electronic equipment is at least one selected from the group consisting of: a television, a personal computer, a portable terminal, a video camera, and a head mounted display.
- 57. (Original) Electronic equipment according to claim 30, wherein the electronic equipment is at least one selected from the group consisting of: a television, a personal computer, a portable terminal, a video camera, and a head mounted display.
- 58. (Original) Electronic equipment according to claim 45, wherein the electronic equipment is at least one selected from the group consisting of: a television, a personal computer, a portable terminal, a video camera, and a head mounted display.
- 59. (Withdrawn) Electronic equipment according to claim 48, wherein the electronic equipment is at least one selected from the group consisting of: a television, a personal computer, a portable terminal, a video camera, and a head mounted display.
- 60. (Withdrawn) Electronic equipment according to claim 51, wherein the electronic equipment is at least one selected from the group consisting of: a television, a personal computer, a portable terminal, a video camera, and a head mounted display.
- 61. (Withdrawn) Electronic equipment according to claim 54, wherein the electronic equipment is at least one selected from the group consisting of: a television, a personal computer, a portable terminal, a video camera, and a head mounted display.