(1) $vw = v^2 \rightarrow vw - v^2 = 0 \rightarrow v(w - v) = 0$: either v = 0 or v = w, but as we are told that v and w are different integers then this case is out, so v = 0. Sufficient.

(2) w=2 . Clearly not sufficient.

Answer: A.

2

$$x(x-5)(x+2) = 0$$
 ... $x = 0$ or $x = 5$ or $x = -2$. Question is $x < 0$ or is $x = -2$?

(1)
$$x^2 - 7x \neq 0 \longrightarrow x = 0$$
 and $x \neq 0$ is out). Not sufficient.

(2)
$$\times^2$$
 -2x -15 \neq 0 --> $(x+3)(x-5)\neq 0$.-> $x\neq -3$ and $x\neq 5$, so x can be 0 or -2 (from the stem as $x=5$ is out). Not sufficient.

(1)+(2) As x=0 and x=5 are out, only value left is x=-2, so x is negative. Sufficient.

Answer: C.

3

If xy > 0, does xy - y = 3?

(1) xy = 3 --> question becomes: is 3-y=3? or is y=0? Since given that xy>0 (or the same xy=3) then it's clear that $y\neq 0$ so we have the answer NO. Sufficient.

(2) y - 1 = 0 --> question becomes: is x = 4? We don't know that. Not sufficient.

Answer: A.

4

Given:
$$a$$
 and b are integers, also $\sqrt{a^3-a^2-b}=7 \rightarrow a^3-a^2-b=49$

(1) a^2 - a = 12 --> a=-3 or a=4. Now, both values of a give an integer solution for b (b=85 or b=-1), so both values are valid. Not sufficient.

(2) b^2 - b = 2 -->
$$b = -1$$
 or $b = 2$ --> if $b = -1$ then $a^3 - a^2 = 48$ --> $a^2(a-1) = 48$... $a = 4 = integer$ BUT if if $b = 2$ then $a^3 - a^2 = 51$ --> $a^2(a-1) = 51 = 3*17$ --> this equation has no integer solution for a , hence only the first case is valid: $b = -1$ and $a = 4 = integer$. Sufficient.

Answer: B.

5

Given: x and y are positive integers and $y=\sqrt{9-x}$... $y^2=9-x$... y^2 is a positive perfect square less than 9: so $y^2=4=2^2$ if x=5 or $y^2=1=1^2$ if x=8.

(1) x < 8 -->
$$x = 5$$
 and $y = 2$. Sufficient.
(2) y > 1 --> $y = 2$. Sufficient.

Answer: D.