## King Saud University College of Computer and Information Sciences Department of Computer Science CSC453 – Parallel Processing – Tutorial No – Spring 2022

## Question

A Quadtree is a tree:

- that is empty, or
- that is composed of a root and 4 possible sub-Quadtrees.

Let's consider that the data of a Quadtree is stored in a N by N matrix called *Data*.

Let's consider that we would like to process this Quadtree (data) in parallel. Let's consider the following kernel:

\_\_global\_\_ void Quadtree\_Kernel(int \* Data, int L, int C, int W, int level);

- This kernel will process the sub-Quatree that is represented by a sub-Matrix of size W \* W starting from Data[L,C].
- *level* is the level of the sub-Quadtree.

The parallel processing of a Quadtree is launched by the main program using the following call:

Quadtree\_Kernel<<<1,4>>>(Data, 0, 0, N, 1);

This will launch a grid composed of 1 block of 4 threads. Every thread will process a sub-Quadtree as follows:

- Thread  $T_0$ : will process the sub-Quadtree  $S_0$ , that corresponds to the data starting from *Data* [0, 0] with width = N/2
- Thread  $T_1$ : will process the sub-Quadtree  $S_1$  that corresponds to the data starting from *Data* [0, N/2] with width = N/2
- Thread  $T_2$ : will process the sub-Quadtree  $S_2$  that corresponds to the data starting from *Data* [N/2, 0] with width = N/2
- Thread  $T_3$ : will process the sub-Quadtree  $S_3$  that corresponds to the data starting from Data [N/2, N/2] with width = N/2

## King Saud University College of Computer and Information Sciences Department of Computer Science CSC453 – Parallel Processing – Tutorial No – Spring 2022

|      | 0 | 1 | 2 | N/2 |  | N-1 |
|------|---|---|---|-----|--|-----|
| 0    |   |   |   |     |  |     |
| 1    |   |   |   |     |  |     |
| 2    |   |   |   |     |  |     |
| 27/2 |   |   |   |     |  |     |
| N/2  |   |   |   |     |  |     |
|      |   |   |   |     |  |     |
|      |   |   |   |     |  |     |
| N-1  |   |   |   |     |  |     |

Every sub-Quadtree will be decomposed recursively into 4 sub-Quatrees until no more decomposition are possible.



So, every thread  $T_i$  will process a sub-Qaudtree  $S_i$ . Every thread  $T_i$  will launch 4 threads to decompose its corresponding sub-Qautree as explained above.

- 1. Give the sub-Quadtree that will be processed by a thread  $T_i$  at level 1. (1 Point)
- 2. Give an implementation of the kernel. We assume that we stop at level 10.