A Comparative Study of Training Objectives for Clarification Facet Generation

Shiyu Ni, Keping Bi, Jiafeng Guo, Xueqi Cheng

CAS Key Lab of Network Data Science and Technology, ICT, CAS, Beijing, China University of Chinese Academy of Sciences, Beijing, China

MOTIVATION

- Since user queries can be ambiguous or vague, query intent clarification is beneficial to enhance user experience and retrieval effectiveness
- Current work on query facet generation only considers whether the training objective is permutation-invariant and the evaluation is inadequate
- It is necessary to conduct a systematic comparative study of various types of training objectives with different properties

VARIOUS TRAINING OBJECTIVES

Model	Sequential-Prediction	Permutation-Invariant	Facet-Count-Controllable	Complexity-Per-Training-Epoch
Seq-Default	✓	×	×	$O(n*((q + d)^2+(m* f)^2+(q + d)*m* f))$
Seq-Min-Perm	✓	✓	×	$O(n*m!*((q + d)^2+(m* f)^2+(q + d)*m* f))$
Seq-Avg-Perm	✓	✓	×	$O(n*m!*((q + d)^2+(m* f)^2+(q + d)*m* f))$
Set-Pred	×	✓	✓	$O(n*m*((q + d)^2+ f ^2+(q + d)* f))$
Seq-Set-Pred	✓	✓	✓	$O(n*(\sum_{i=0}^{m-1}\mathcal{A}_m^i*\mathcal{A}_{m-i}^1)*((q + d +i* f)^2+ f ^2+(q + d +i* f)* f))$

Setting of Query Facet Generation

Let $D = \{(q_1, D_1, F_1), (q_2, D_2, F_2), \dots, (q_n, D_n, F_n)\}$ denote the training data, where q_i is the i-th open-domain query, $D_i = \{d_{i1}, d_{i2}, \dots, d_{ik}\}$ is the top k_i retrieved documents for the given query. $F_i = \{f_{i1}, f_{i2}, \dots, f_{im}\}$ represents m_i ground truth facets related to q_i . The task is to generate a set of related facets F for any given query q with its associated documents D.

> Seq-Avg-Perm

> Sequentially generates facets and is trained with the average loss of permutations of facets

$$\theta = \arg\min_{\theta^*} \sum_{i=1}^n \frac{1}{|\pi(y_i)|} \sum_{y_i^* \in \pi(y_i)} P(v, y_i^*)$$

Where $P(v, y_i) = \frac{1}{|y_i|} \sum_{x=1}^{|y_i|} -\log p(y_{ix} \mid v, y_{i1}, \dots, y_{ix-1}), v$ is the output of the encoder, and $\pi(y_i)$ means all the permutations

> We permute the concatenation of facets in order to let the model learn towards all the possible permutations

> Set-pred

> Treats each facet as an individual target and conducts parallel predictions

$$\theta = \arg\min_{\theta^*} \sum_{i=1}^n \frac{1}{m_i} \sum_{f_{ij} \in F_i} P(v, f_{ij})$$

where P and v are the same as seq-avg-perm.

> Do not use the so-far predicted facets as contexts for the current facet generation and the generated facets may be synonyms

> Seq-Set-Pred

> Predicts each of the remaining facet sets in parallel based on arbitrarily generated facets as context

$$\theta = \arg\min_{\theta^*} \sum_{i=1}^n \frac{1}{V_i} \sum_{j=0}^{|F_i|-1} \sum_{k=1}^{|\mathcal{A}_j(F_i)|} \sum_{h=1}^{|\mathcal{A}_1(R_{ijk})|} P(v_{ijk}, y_{ijkh})$$

where $A_j(X)$ means all the possible orderings of j selected non-repetitive elements from X

➤ It is a combination of seq-avg-perm and set-pred

EXPERIMENTS

Model and Dataset

Out dataset is MIMICS and the model is BART-base

- ➤ Dataset: MIMICS is a collection of search clarification datasets for real search queries sampled from the Bing query logs
- ➤ Model: BART-base is a Seq2Seq model for sequence generation tasks

• Newly Proposed Metrics

We introduce two metrics to measure the diversity of generated facets

- ➤ Term diversity: calculate the average of one minus the overlap ratio between each pair of facets
- ➤ BERT-Score diversity: calculate the average BERTScore between each pair of facets

• Evaluation Against Ground Truth

- > Most permutation-invariant methods except seq-min-perm perform better than the order-sensitive methods
- The method that generates facets without depending on the previously generated facets (i.e., set-pred) has compelling performance in terms of both term-based and semantic matching metric
- > Methods that only learn facet prediction given context(e.g., seq-set-pred) have better semantic matching performance with ground truth compared to those that also learn when to stop generating facets

Model	Term Overlap		Exact Match		Set BLEU Score			Set BERT-Score					
Titode1	P	R	F1	P	R	F1	1-gram	2-gram	3-gram	4-gram	P	R	F1
Seq-Default Seq-Min-Perm	0.2976 ⁺ 0.2761 ⁻	0.2769 ⁺⁻ 0.2536 ⁻	0.2752 ⁺⁻ 0.2537 ⁻	0.0718 ⁻ 0.0620 ⁻	0.0561 ⁻ 0.0470 ⁻	0.0611 ⁻ 0.0519 ⁻	0.2335 ⁺⁻ 0.2102 ⁻	0.1040 ⁺⁻ 0.0850 ⁻	0.0444 ⁺⁻ 0.0346 ⁻	0.0175 ⁺⁻ 0.0125 ⁻	0.6391 ⁻ 0.6442 ⁺⁻	$\frac{0.6455}{0.6482}^{-}$	0.6419 ⁻ 0.6457 ⁺⁻
Seq-Avg-Perm Set-Pred Seq-Set-Pred	0.2977 ⁺ 0.3029 ⁺ 0.2930 ⁺	0.3263 ⁺ 0.2978 ⁺⁻ 0.2989 ⁺⁻	0.3005 ⁺ 0.2897 ⁺ 0.2863 ⁺⁻	0.1040 ⁺ 0.0988 ⁺ 0.0993 ⁺	0.0960 ⁺ 0.0973 ⁺ 0.1009 ⁺	0.0977 ⁺ 0.0953 ⁺ 0.0973 ⁺	0.2422 ⁺⁻ 0.2567 ⁺ 0.2577 ⁺	0.1081 ⁺⁻ 0.1198 ⁺ 0.1228 ⁺	0.0568 ⁺⁻ 0.0606 ⁺⁻ 0.0676 ⁺	0.0288 ⁺ 0.0260 ⁺⁻ 0.0308 ⁺	0.6665 ⁺⁻ 0.6873 ⁺ 0.6849 ⁺	0.6697 ⁺⁻ 0.6897 ⁺ 0.6887 ⁺	0.6676 ⁺⁻ 0.6880 ⁺ 0.6863 ⁺

• Evaluation on Diversity

- > Seq-avg-perm performs the best on both metrics
- ➤ All the sequential prediction methods, except for seq-default, exhibit higher diversity than set-pred
- ➤ We observe good term diversity but worse semantic diversity in seq-set-pred

Model	Num	Term Overlap F1	Set BERT-Score F1	Term Div Ratio	BERT-Score Div F1
	1	0.2696	0.3254	-	-
	2	0.2888	0.6477	0.8812	0.0613
Set-Pred	3	0.2897	0.6880	0.8883	0.0635
	4	0.2867	0.6231	0.8903	0.0658
	5	0.2814	0.5450	0.8869	0.0683
	1	0.2709	0.3253	-	-
	2	0.2886	0.6474	0.9133	0.0649
Seq-Set-Pred	3	0.2863	0.6863	0.9117	0.0667
-	4	0.2759	0.6259	0.9095	0.0687
	5	0.2677	0.5660	0.9083	0.0705

• Impact of Training Data Amount

- > The results have different extents of regressions
- ➤ Both seq-avg-perm and seq-set-pred still outperform seq-default and seq-min-perm in terms of all the metrics

Model	Term Overlap	Exact Match	Set BERT-Score
	F1	F1	F1
Seq-Default	0.2752 ⁺⁻	0.0611 ⁺⁻	0.6419 ⁻
Seq-Min-Perm	0.2537 ⁻	0.0519 ⁻	0.6457 ⁺⁻
Seq-Avg-Perm Set-Pred Seq-Set-Pred	0.2898 ⁺ 0.2897 ⁺ 0.2777 ⁺⁻	0.0737 ⁺⁻ 0.0953 ⁺ 0.0816 ⁺⁻	0.6562 ⁺⁻ 0.6880 ⁺ 0.6791 ⁺⁻

Model	Term Diversity	BERT-Score Diversity			
Model	Ratio	P	R	F1	
Ground Truth	0.9284	0.0829	0.0829	0.0836	
Seq-Default	0.8783	0.0743	0.0743	0.0749	
Seq-Min-Perm	0.8922	0.0883	0.0889	0.0893	
Seq-Avg-Perm	0.9218	0.0993	0.0989	0.1000	
Set-Pred	0.8883	0.0630	0.0630	0.0635	
Seq-Set-Pred	0.9117	0.0657	0.0666	0.0667	

• Performance w.r.t. Facet Counts

- The best matching scores are mainly achieved when generating 2 or 3 facets
- ➤ Compared to seq-avg-perm, facet-count-controllable methods perform better on set BLEU score and set BERT-Score
- > Seq-set-pred demonstrates better diversity than set-pred across all the numbers of generated facets.

	Seq-default	Seq-Min-Perm	Seq-Avg-Perm	Three Facets	Two Facets
Ratio	0.7038	0.7072	0.6678	0.7039	0.7431

• Facet Generation with ChatGPT

- ➤ ChatGPT has a large performance gap compared to most of the methods presented in our paper across all metrics
- ➤ The facets generated by ChatGPT are general concepts

Model	Term Overlap F1	Exact Match F1	Set BERT-Score F1
Seq-Default	0.2566	0.0374	0.6070
Seq-Min-Perm	0.2627	0.0044	0.6293
Seq-Avg-Perm	0.3276	0.0760	0.6654
Set-Pred	0.3187	0.1225	0.7039
Seq-Set-Pred	0.2998	0.1003	0.5811
ChatGPT	0.1598	0.0315	0.5711

CONCLUSION

Sequential-Prediction

Facet-Count-Controllable

ARA

The method does not sequentially predict facets has Appropriate permutation-invariant Methods that only learn facet prediction have better compelling matching scores but the worst diversity objectives can help generate better facets semantic matching metrics but worse diversity