POIR 613: Computational Social Science

Pablo Barberá

University of Southern California pablobarbera.com

Course website: pablobarbera.com/POIR613/

Comparing documents

- Describing a single document
 - ► Lexical diversity
 - Readability
- Comparing documents
 - Similarity metrics: cosine, Euclidean, edit distance
 - Keyness statistics
 - Clustering methods: k-means clustering

Quantities for describing a document

Length in characters, words, lines, sentences, paragraphs, pages, sections, chapters, etc.

Word (relative) frequency counts or proportions of words

Lexical diversity (At its simplest) involves measuring a type-to-token ratio (TTR) where unique words are types and the total words are tokens

Readability statistics Use a combination of syllables and sentence length to indicate "readability" in terms of complexity

Lexical Diversity

- Basic measure is the TTR: Type-to-Token ratio
- ► Problem: This is very sensitive to overall document length, as shorter texts may exhibit fewer word repetitions
- Another problem: length may relate to the introduction of additional subjects, which will also increase richness

Lexical Diversity: Alternatives to TTRs

TTR total types total tokens

Guiraud $\frac{\text{total types}}{\sqrt{\text{total tokens}}}$

S Summer's Index: $\frac{\log(\log(\text{total types}))}{\log(\log(\text{total tokens}))}$

MATTR the Moving-Average Type-Token Ratio (Covington and McFall, 2010) calculates TTRs for a moving window of tokens from first to last token. MATTR is the mean of the TTRs of each window.

Readability

- Use a combination of syllables and sentence length to indicate "readability" in terms of complexity
- Common in educational research, but could also be used to describe textual complexity
- No natural scale, so most are calibrated in terms of some interpretable metric

Flesch-Kincaid readability index

Based on the Flesch Reading Ease Index:

$$206.835 - 1.015 \left(\frac{total\ words}{total\ sentences}\right) - 84.6 \left(\frac{total\ syllables}{total\ words}\right)$$

Interpretation: 0-30: university level; 60-70: understandable by 13-15 year olds; and 90-100 easily understood by an 11-year old student.

► Flesch-Kincaid rescales to the US educational grade levels (1–12):

$$0.39 \left(\frac{\text{total words}}{\text{total sentences}}\right) + 11.8 \left(\frac{\text{total syllables}}{\text{total words}}\right) - 15.59$$

- Describing a single document
 - Lexical diversity
 - Readability
- Comparing documents
 - ► Similarity metrics: cosine, Euclidean, edit distance
 - Keyness statistics
 - Clustering methods: k-means clustering

Comparing documents

- The idea is that (weighted) features form a vector for each document, and that these vectors can be judged using metrics of similarity
- A document's vector for us is simply (for us) the row of the document-feature matrix
- ► The question is: how do we measure distance or similarity between the vector representation of two (or more) different documents?

Euclidean distance

Between document A and B where j indexes their features, where y_{ij} is the value for feature j of document i

- Euclidean distance is based on the Pythagorean theorem
- Formula

$$\sqrt{\sum_{j=1}^{j} (y_{Aj} - y_{Bj})^2}$$
 (1)

In vector notation:

$$\|\mathbf{y}_A - \mathbf{y}_B\| \tag{2}$$

➤ Can be performed for any number of features *J* (where *J* is the number of columns in of the dfm, same as the number of feature types in the corpus)

Cosine similarity

- Cosine distance is based on the size of the angle between the vectors
- Formula

$$\frac{\mathbf{y}_A \cdot \mathbf{y}_B}{\|\mathbf{y}_A\| \|\mathbf{y}_B\|} \tag{3}$$

- ▶ The · operator is the dot product, or $\sum_{j} y_{Aj} y_{Bj}$
- The $\|\mathbf{y}_A\|$ is the vector norm of the (vector of) features vector \mathbf{y} for document A, such that $\|\mathbf{y}_A\| = \sqrt{\sum_j y_{Aj}^2}$
- Nice property: independent of document length, because it deals only with the angle of the vectors
- Ranges from -1.0 to 1.0 for term frequencies

Edit distances

- Edit distance refers to the number of operations required to transform one string into another for strings of equal length
- Common edit distance: the Levenshtein distance
- Example: the Levenshtein distance between "kitten" and "sitting" is 3
 - kitten → sitten (substitution of "s" for "k")
 - sitten → sittin (substitution of "i" for "e")
 - ▶ sittin \rightarrow sitting (insertion of "g" at the end).

Outline

- Describing a single document
 - Lexical diversity
 - Readability
- Comparing documents
 - Similarity metrics: cosine, Euclidean, edit distance
 - Keyness statistics
 - Clustering methods: k-means clustering

Keyness statistics

	Target	~ Target	•
Word 1	n ₁₁	n ₁₂	n _{1.}
~ (Word 1)	n ₂₁	n ₂₂	n _{2.}
'	n _{.1}	n _{.2}	n

 χ^2 Pearson's χ^2 statistic, computed as:

$$\sum_{i}\sum_{j}\frac{(n_{ij}-m_{ij})^{2}}{m_{ij}}$$

where m_{ij} represents the cell frequency expected according to independence; i.e. $m_{ij} = n \times (\frac{n_i}{n} \times \frac{n_j}{n})$

Outline

- Describing a single document
 - Lexical diversity
 - Readability
- Comparing documents
 - Similarity metrics: cosine, Euclidean, edit distance
 - Keyness statistics
 - Clustering methods: k-means clustering

The idea of "clusters"

- Essentially: groups of items such that inside a cluster they are very similar to each other, but very different from those outside the cluster
- "unsupervised classification": cluster is not to relate features to classes or latent traits, but rather to estimate membership of distinct groups
- groups are given labels through post-estimation interpretation of their elements
- typically used when we do not and never will know the "true" class labels
- issues:
 - how many clusters?
 - which features to include?
 - how to compute distance is arbitrary

k-means clustering

- Essence: assign each item to one of k clusters, where the goal is to minimized within-cluster difference and maximize between-cluster differences
- Uses random starting positions and iterates until stable
- k-means clustering treats feature values as coordinates in a multi-dimensional space
- Advantages
 - simplicity
 - highly flexible
 - efficient
- Disadvantages
 - no fixed rules for determining k
 - uses an element of randomness for starting values

algorithm details

- Choose starting values
 - assign random positions to k starting values that will serve as the "cluster centres", known as "centroids"; or,
 - assign each feature randomly to one of k classes
- assign each item to the class of the centroid that is "closest"
 - Euclidean distance is most common
 - any others may also be used (Manhattan, Minkowski, Mahalanobis, etc.)
 - (assumes feature vectors are normalized within document)
- 3. update: recompute the cluster centroids as the mean value of the points assigned to that cluster
- repeat reassignment of points and updating centroids
- 5. repeat 2–4 until some stopping condition is satisfied
 - e.g. when no items are reclassified following update of centroids

k-means clustering illustrated

choosing the appropriate number of clusters

- very often based on prior information about the number of categories sought
 - for example, you need to cluster people in a class into a fixed number of (like-minded) tutorial groups
- ▶ a (rough!) guideline: set $k = \sqrt{N/2}$ where N is the number of items to be classified
 - usually too big: setting k to large values will improve within-cluster similarity, but risks overfitting
- "elbow plots": fit multiple clusters with different k values, and choose k beyond which are diminishing gains

