# Challenges for Oil & Gas Operators: An industry perspective

Dr Malcolm Woodman
MR Woodman Consulting Ltd

## Challenges for Oil & Gas Operators: An industry perspective Introduction

Challenges in the use of physics-based models for operations & planning for Oil & Gas Operators: An industry perspective

- Physics-based models range from
  - Correlations with the correct behaviour, but coefficients fitted to data
    - Flow correlations
    - Compressor curves
    - etc.
  - First principles models with no fitted coefficients at all
- All have a predictive capability
  - Can be used (with care) to model regimes where an asset has not been operated before
- Pure data-driven models are only valid in the regime for which the data was obtained

## Challenges for Oil & Gas Operators: An industry perspective **Scope**



### Challenges for Oil & Gas Operators: An industry perspective **Overview**

- Description of technology
- Potential benefits
- Challenges
- ... but NOT solutions

#### Challenges for Oil & Gas Operators: An industry perspective

## **Production Network Optimisation**



#### Definition

- Wells, flowlines & network through to separator
- Identification of increased daily production
  - Through the use of optimisation technology
- Through operational changes on the asset
  - Open-loop, so all changes made by operators
- Benefits:
  - Is your asset optimised?
  - How do you know?
  - 2 20% production increases

### Example



Gas

#### Control Decisions

- "Continuous variables"
  - Well Choke Valves
  - Gas Lift rates
  - Separator Pressures
- "Discrete variables"
  - Well routings
  - Riser routings
  - Well status

#### Constraints

- Well Drawdown (DHGP)
- Riser velocity constraints
- Total gas lift
- Gas lift pressures
- Gas & water handling

### Challenges – Optimisation Technology

- Highly constrained non-linear problem
  - Needs a fast and reliable optimiser
  - Current standard industry tools
    - Not fully flexible
    - Become less reliable with increasing scale
- Continuous + discrete decision variables
  - MINLP optimisation technology is required
  - Not currently available in single optimiser
- Multiple optima
  - Current tools normally find the (same) optimum all the time

## Challenges – Model fidelity (1)

- Model fidelity relies on availability of accurate asset data
- Many potential issues:
  - Instrumentation may not be available, especially on older assets
    - Potentially expensive to retrofit
  - Instrumentation may be inaccurate or have failed
    - Often not a priority on an operating asset, especially if in decline
    - How do we know if there is instrument drift?
    - Can be expensive to fix
  - Well test data unreliable or inaccurate
    - Well tests not possible or carried out infrequently
    - Multi-phase flow meters often unreliable (and expensive)
    - How to well test if many low-rate wells?

## Challenges – Model fidelity (2)

- Are the physics based models sufficiently accurate?
- Example choice & tuning of flow correlation
  - Use Beggs & Brill
  - Tune gravity and friction coefficients to asset data
  - Model matches across range of data
  - But Beggs & Brill incapable of matching qualitative flow behaviour in some circumstances
    - NO predictive capability!
- Can we address data inaccuracy & model tuning simultaneously?
  - Has been done in other industries
  - But need redundant data?

### Challenges – Model fidelity example

- Multi-well production system
  - Common flowlines and risers
  - Back pressure effects
    - Open choke valve on one well
    - Production from that well increases
    - Production from all other wells routed to same riser decreases
- Model tuned to best available well test and asset data
- Optimisation recommends set of choke valve positions to maximise production
- ... well test data was out of date
  - When recommendations implemented, total production rate decreased!

### Challenges – Implementation of recommendations

- Potentially large number of decision variables
  - Well choke position and gas lift rates
  - Riser gas lift rates
  - Separator pressures
  - Well & Riser routings
  - Well status
- Operators can only implement in a sequence
  - Could we shut-in the asset if the sequence is wrong?
  - How long will it take to implement all the changes?
  - Will the operators even be willing to consider making so many changes?
- Can we identify a (much) smaller sub-set of decision variables?
- How do we track whether the changes worked?

#### Challenges for Oil & Gas Operators: An industry perspective

### **Production Network + Facility Optimisation**



#### Production Network + Facility Optimisation

#### Definition

- Wells, flowlines, separators and facility through to export
  - Or beyond?
  - Export pipelines and terminal may be significant
- Replaces simple facility constraints with complex model
  - e.g. Facility gas constraint with detailed model of compression train
  - Increases accuracy of constraint modelling
- Identification of increased daily production
  - Same aim as Production Network optimisation
- Additional benefits:
  - Accurate constraint model may lead to higher production
  - Or, may identify scenarios where simple constraint too optimistic
  - Allows production optimisation when facility in upset condition
    - E.g. loss of one of multiple compressor trains

## Production Network + Facility Optimisation Challenges

- Increased scope of model
  - Longer run-times
  - Higher non-linearity leads to poorer convergence stability
- Thermodynamic modelling
  - Production network typically uses black oil model for speed
  - Facility model needs compositional modelling for accuracy
  - Switching production network to compositional may be too slow
  - How to manage the boundary between the two models?
  - Do we actually know the current reservoir fluid characterisation?
  - Multiple reservoirs feeding a single facility
    - Different fluid characterisation for each reservoir
- Implementation requires communication between discipline "silos"

#### Challenges for Oil & Gas Operators: An industry perspective

## Reservoir + Production Network Optimisation



#### Reservoir + Production Network Optimisation

#### Definition

- Simultaneous optimisation of Reservoir to Separator
- Benefits
  - Improved forecasts for planning
    - Short term (up to 1 year)
    - Long term (5+ years)
  - Planning of well work, e.g. new infill well
    - Considering reservoir only predicts increase in total production
    - Modelling both reservoir and production network simultaneously can demonstrate no overall increase in production
    - Avoids drilling of very expensive well
  - Traditional production optimisation focuses on short-term production increases
    - Reservoir limitations modelled via drawdown constraint
    - Inclusion of reservoir in scope also maximises long term reserves recovery
  - Integrated model can be used in design optimisation over lifetime of field to improve facility design

## Reservoir + Production Network Optimisation Challenges

- May not be realistic to re-implement reservoir model in a single model with production network
  - Need to optimise two separate models?
- Long calculation times
  - Reservoir models are typically complex
  - Iterative convergence strategy at each time period
- Different timescales for reservoir and production networks
  - Months / years vs. seconds / minutes
- Uncertainty in future reservoir production profiles
  - Do we therefore need detailed production network model?
- Communication between discipline "silos"

## Challenges for Oil & Gas Operators: An industry perspective Reservoir + Production Network + Facility Optimisation



## Reservoir + Production Network + Facility Optimisation Definition & Challenges

- Simultaneous optimisation of Reservoir to Export
- Need a justification for this scope
  - Don't assume full asset model is required
- Benefits
  - Combination of all those already presented
- Challenges
  - Everything already presented!

## Challenges for Oil & Gas Operators: An industry perspective Other model-based technologies

- Real time optimisation
  - On-line closed loop
- Advanced control
- Benefits
  - Continuous optimisation without operator intervention
  - More stable operation
  - Constraint pushing
- Challenges
  - Reservoir is inherently unsteady
    - Slugging
    - Water breakthough etc.
  - Reservoir decline gives continuous change
  - Basic automated regulatory control may not exist

## Challenges for Oil & Gas Operators: An industry perspective **Summary**

### Significant benefits. Highlights:

- 2 20% production increases
- Avoidance of \$multi-million well work
- Production optimisation during upset conditions
- Improved forecasts and planning

#### Challenge highlights:

- Optimisation technology
- Asset data & model fidelity
- Implementation of optimisation results
- Long run times for integrated asset models
- Thermodynamic models
- Communication between discipline "silos"

Questions?