3. Übung zur Komplexen Analysis

1. Man zeige: $\int_{0}^{\infty} \cos(t^2) dt = \int_{0}^{\infty} \sin(t^2) dt = \frac{\sqrt{\pi}}{2\sqrt{2}}.$ Sie dürfen verwenden, dass $\int_{0}^{\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \text{ ist.}$

Anleitung: Integrieren Sie e^{-z^2} über den Rand des Kreissegments, das gegeben ist durch die drei Randkurven $\gamma_1(t)=t,\ 0\leq t\leq R,\ \gamma_2(t)=Re^{it},\ 0\leq t\leq \frac{\pi}{4}$ und $-\gamma_3(t)=te^{i\frac{\pi}{4}},\ 0\leq t\leq R.$ Schätzen Sie das Integral über γ_2 ab. Sie dürfen dazu $\cos 2t\geq 1-\frac{4t}{\pi}$ für $0\leq t\leq \frac{\pi}{4}$ verwenden. Lassen Sie R gegen $+\infty$ streben.

2. Man zeige: Für $0 \le a < 1$ ist

$$\int_0^\infty e^{-(1-a^2)x^2} \cos(2ax^2) dx = \frac{\sqrt{\pi}}{2(1+a^2)} .$$

3. (a) Auf $\{z:|z|< R\}$ sei $f(z)=1+\sum_{n=1}^\infty a_nz^n$ gegeben. Sei $0<\rho< R$ und $M_\rho(f)=\max\{|f(z)|:|z|=\rho\}$ und $r=\frac{\rho}{1+M_\rho(f)}$. Zeigen Sie, dass f keine Nullstelle in $\{z:|z|< r\}$ hat.

Hinweis: Benutzen Sie $|a_n| \leq \frac{M_{\rho}(f)}{\rho^n}$, um f(z) - 1 abzuschätzen.

- (b) Mithilfe des vorigen Teiles gebe man einen Radius r für eine holomorphe Funktion $f \not\equiv 0$ auf $\{z: |z| < R\}$ an, sodass f auf $\{z: |z| < r\}$ keine Nullstellen außerhalb von 0 hat.
- 4. Sei z_0 eine Nullstelle der holomorphen Funktion f. Man zeige: Genau dann kann man aus f lokal bei z_0 die holomorphe k-te Wurzel ziehen (d.h. eine in einer Umgebung von z_0 holomorphe Funktion h mit $h^k = f$ finden), wenn k die Ordnung der Nullstelle teilt.
- 5. Auf dem Gebiet G seien f,g holomorph. Es gelte $f\cdot g\equiv 0$. Zeigen Sie, dass $f\equiv 0$ oder $g\equiv 0$ ist.
- 6. Es sei G ein beschränktes Gebiet und f und g seien holomorph auf G und stetig auf $G \cup \partial G$. Sind f und g nullstellenfrei in $G \cup \partial G$ und gilt |f(z)| = |g(z)| für alle $z \in \partial G$, dann ist f(z) = cg(z) mit |c| = 1.
- 7. Es sei G ein beschränktes Gebiet und f holomorph auf G und stetig auf $G \cup \partial G$. Zeigen Sie mithilfe des Satzes von der Gebietstreue, dass die Maxima von

$$(\mathrm{Re}f)^4 + (\mathrm{Im}f)^4$$

auf ∂G angenommen werden.

8. Klassifizieren Sie die isolierten Singularitäten der folgenden Funktionen und geben Sie im Falle eines Pols dessen Ordnung an:

$$\frac{1}{1 - e^z} \text{ bei } z_0 = 0, \ \frac{ze^{iz}}{(z^2 + b^2)^2} \text{ bei } z_0 = ib \ (b > 0), \ (\sin z + \cos z - 1)^{-2} \text{ bei } z_0 = 0,$$

$$\sin \left(\frac{\pi}{z^2 + 1}\right) \text{ bei } z_0 = i, \ \frac{1}{z - \sin z} \text{ bei } z_0 = 0.$$