Importing Libraries

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Importing Datasets

In [2]:

df=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs(Dataset)\madrid_2004.
df

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2004- 08-01 01:00:00	NaN	0.66	NaN	NaN	NaN	89.550003	118.900002	NaN	40.020000	39
1	2004- 08-01 01:00:00	2.66	0.54	2.99	6.08	0.18	51.799999	53.860001	3.28	51.689999	22
2	2004- 08-01 01:00:00	NaN	1.02	NaN	NaN	NaN	93.389999	138.600006	NaN	20.860001	49
3	2004- 08-01 01:00:00	NaN	0.53	NaN	NaN	NaN	87.290001	105.000000	NaN	36.730000	31
4	2004- 08-01 01:00:00	NaN	0.17	NaN	NaN	NaN	34.910000	35.349998	NaN	86.269997	54
245491	2004- 06-01 00:00:00	0.75	0.21	0.85	1.55	0.07	59.580002	64.389999	0.66	33.029999	30
245492	2004- 06-01 00:00:00	2.49	0.75	2.44	4.57	NaN	97.139999	146.899994	2.34	7.740000	37
245493	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.13	102.699997	132.600006	NaN	17.809999	22
245494	2004- 06-01 00:00:00	NaN	NaN	NaN	NaN	0.09	82.599998	102.599998	NaN	NaN	45
245495	2004- 06-01 00:00:00	3.01	0.67	2.78	5.12	0.20	92.550003	141.000000	2.60	11.460000	24
245406 roug v 47 columns											
245496 rows × 17 columns											
4											•

Data Cleaning and Data Preprocessing

In [3]:

df=df.dropna()

In [4]:

```
df.columns
```

```
Out[4]:
```

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 19397 entries, 5 to 245495
Data columns (total 17 columns):
             Non-Null Count Dtype
    Column
             -----
    -----
---
                             ----
0
    date
             19397 non-null object
 1
    BEN
             19397 non-null float64
 2
    CO
             19397 non-null float64
 3
    EBE
             19397 non-null float64
 4
    MXY
             19397 non-null float64
 5
             19397 non-null float64
    NMHC
             19397 non-null float64
 6
    NO_2
 7
    NOx
             19397 non-null float64
 8
    OXY
             19397 non-null float64
 9
    0 3
             19397 non-null float64
 10
    PM10
             19397 non-null float64
 11
    PM25
             19397 non-null float64
 12
    PXY
             19397 non-null float64
 13
    SO 2
             19397 non-null float64
 14
    TCH
             19397 non-null float64
 15
    TOL
             19397 non-null float64
 16 station 19397 non-null int64
dtypes: float64(15), int64(1), object(1)
memory usage: 2.7+ MB
```

In [8]:

```
data=df[['OXY', 'TCH', 'NOx']]
data
```

Out[8]:

	OXY	тсн	NOx
5	5.04	1.54	144.800003
22	0.50	1.55	32.799999
26	2.47	1.55	75.470001
32	2.56	1.67	165.800003
49	0.46	1.41	34.840000
245463	0.42	1.24	45.450001
245467	2.09	1.47	132.800003
245473	4.51	1.58	253.600006
245491	0.66	1.28	64.389999
245495	2.60	1.47	141.000000

19397 rows × 3 columns

Line chart

In [9]:

```
data.plot.line(subplots=True)
```

Out[9]:

array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

In [10]:

data.plot.line()

Out[10]:

<AxesSubplot:>

Bar chart

In [11]:

b=data[0:50]

In [12]:

b.plot.bar()

Out[12]:

<AxesSubplot:>

Histogram

In [13]:

data.plot.hist()

Out[13]:

<AxesSubplot:ylabel='Frequency'>

Area chart

In [14]:

data.plot.area()

Out[14]:

<AxesSubplot:>

Box chart

In [15]:

data.plot.box()

Out[15]:

<AxesSubplot:>

Pie chart

In [17]:

b.plot.pie(y='OXY')

Out[17]:

<AxesSubplot:ylabel='OXY'>

Scatter chart

In [18]:

```
data.plot.scatter(x='OXY' ,y='NOx')
```

Out[18]:

<AxesSubplot:xlabel='OXY', ylabel='NOx'>

In [19]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 19397 entries, 5 to 245495
Data columns (total 17 columns):
 # Column Non-Null Count Dtype

#	Column	Non-Null Count	Dtype	
0	date	19397 non-null	object	
1	BEN	19397 non-null	float64	
2	CO	19397 non-null	float64	
3	EBE	19397 non-null	float64	
4	MXY	19397 non-null	float64	
5	NMHC	19397 non-null	float64	
6	NO_2	19397 non-null	float64	
7	NOx	19397 non-null	float64	
8	OXY	19397 non-null	float64	
9	0_3	19397 non-null	float64	
10	PM10	19397 non-null	float64	
11	PM25	19397 non-null	float64	
12	PXY	19397 non-null	float64	
13	S0_2	19397 non-null	float64	
14	TCH	19397 non-null	float64	
15	TOL	19397 non-null	float64	
16	station	19397 non-null	int64	
<pre>dtypes: float64(15), int64(1), object(1)</pre>				

localhost:8888/notebooks/madrid_2004.ipynb

memory usage: 2.7+ MB

```
In [20]:
```

```
df.describe()
```

Out[20]:

	BEN	СО	EBE	MXY	NMHC	NO_2
count	19397.000000	19397.000000	19397.000000	19397.000000	19397.000000	19397.000000
mean	2.250781	0.675347	2.775913	5.424809	0.151024	62.887023
std	2.184724	0.591026	2.729622	5.554358	0.158603	37.952255
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.090000
25%	0.870000	0.320000	1.020000	1.780000	0.060000	35.150002
50%	1.620000	0.520000	1.970000	3.800000	0.110000	58.310001
75%	2.910000	0.860000	3.580000	7.260000	0.200000	85.730003
max	34.180000	8.900000	41.880001	91.599998	4.810000	355.100006
4						>

In [21]:

```
df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3', 'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station']]
```

EDA AND VISUALIZATION

In [22]:

sns.pairplot(df1[0:50])

Out[22]:

<seaborn.axisgrid.PairGrid at 0x1f543b78100>

In [26]:

```
sns.distplot(df1['NOx'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[26]:

<AxesSubplot:xlabel='NOx', ylabel='Density'>

In [27]:

sns.heatmap(df1.corr())

Out[27]:

<AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

```
In [28]:
```

In [29]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear Regression

In [30]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[30]:

LinearRegression()

In [31]:

```
lr.intercept_
```

Out[31]:

28079074.466013305

In [32]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[32]:

	Co-efficient
BEN	-3.428438
СО	23.720830
EBE	3.462263
MXY	-3.428359
NMHC	82.207293
NO_2	-0.142861
NOx	-0.245975
OXY	-2.022878
O_3	-0.271436
PM10	0.062757
PXY	6.011119
SO_2	-0.209234
тсн	-6.418532
TOL	1.149801

In [33]:

```
prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[33]:

<matplotlib.collections.PathCollection at 0x1f550850700>

ACCURACY

```
8/4/23, 9:59 AM
                                             madrid 2004 - Jupyter Notebook
 In [34]:
 lr.score(x_test,y_test)
 Out[34]:
 0.11870348140040887
 In [35]:
 lr.score(x_train,y_train)
 Out[35]:
 0.10067971554067745
 Ridge and Lasso
 In [36]:
 from sklearn.linear_model import Ridge,Lasso
 In [37]:
 rr=Ridge(alpha=10)
 rr.fit(x_train,y_train)
 Out[37]:
 Ridge(alpha=10)
 Accuracy(Ridge)
 In [38]:
 rr.score(x_test,y_test)
 Out[38]:
 0.11664945877101263
```

```
In [39]:
rr.score(x_train,y_train)
Out[39]:
0.1003371173292632
In [40]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[40]:
```

Lasso(alpha=10)

```
In [41]:
```

```
la.score(x_train,y_train)
```

Out[41]:

0.051781300470869596

Accuracy(Lasso)

```
In [42]:
la.score(x_test,y_test)
Out[42]:
0.056773795637802715
```

Accuracy(Elastic Net)

```
In [43]:
```

```
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[43]:
```

ElasticNet()

```
In [44]:
```

```
en.coef_
```

```
Out[44]:
```

```
, 0.33534742, 1.45923881, -1.87938948, 0.
array([-0.
      -0.1537371 , -0.09301587, -0. , -0.20672745, 0.09436363,
                                        , 1.20582375])
       0.5749052 , -0.13540571, 0.
```

In [45]:

```
en.intercept_
```

Out[45]:

28079066.002937175

```
In [46]:
```

```
prediction=en.predict(x_test)
```

```
In [47]:
en.score(x_test,y_test)
Out[47]:
0.07033811305468773
```

Evaluation Metrics

```
In [48]:
```

```
from sklearn import metrics
print(metrics.mean_absolute_error(y_test,prediction))
print(metrics.mean_squared_error(y_test,prediction))
print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))
38.45619093357262
```

1639.150228011821 40.4864202913992

Logistic Regression

```
feature_matrix.shape

Out[51]:
  (19397, 14)

In [52]:
  target_vector.shape

Out[52]:
```

```
(19397,)
```

In [53]:

from sklearn.preprocessing import StandardScaler

```
In [54]:
fs=StandardScaler().fit_transform(feature_matrix)
In [55]:
logr=LogisticRegression(max_iter=10000)
logr.fit(fs,target_vector)
Out[55]:
LogisticRegression(max_iter=10000)
In [56]:
observation=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14]]
In [57]:
prediction=logr.predict(observation)
print(prediction)
[28079006]
In [58]:
logr.classes_
Out[58]:
array([28079006, 28079024, 28079099], dtype=int64)
In [59]:
logr.score(fs,target_vector)
Out[59]:
0.7360416559261741
In [60]:
logr.predict_proba(observation)[0][0]
Out[60]:
0.9999978255573396
In [61]:
logr.predict_proba(observation)
Out[61]:
```

Random Forest

array([[9.99997826e-01, 7.75018107e-20, 2.17444266e-06]])

```
In [62]:
```

```
from sklearn.ensemble import RandomForestClassifier
```

```
In [63]:
```

```
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[63]:

RandomForestClassifier()

In [64]:

In [65]:

```
from sklearn.model_selection import GridSearchCV
grid_search =GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
```

Out[65]:

In [66]:

```
grid_search.best_score_
```

Out[66]:

0.7720404784056986

In [67]:

```
rfc_best=grid_search.best_estimator_
```

In [68]:

Conclusion

Accuracy

Linear Regression: 0.10067971554067745

Ridge Regression:0.051781300470869596

Lasso Regression:0.056773795637802715

ElasticNet Regression:0.07033811305468773

Logistic Regression:0.7360416559261741

Random Forest: 0.7720404784056986

Random Forest is suitable for this dataset