Introdução à Lógica Proposicional

Marcelo Bezerra

Universidade Federal de Goiás Instituto de Matemática e Estatística

18 de agosto de 2025

Roteiro da Aula

- O que é Lógica?
- Proposições e o seu valor-verdade
- Conectivos Lógicos Fundamentais
 - ► Negação (¬)
 - ▶ Conjunção (∧)
 - ▶ Disjunção (∨)
 - ightharpoonup Condicional (\rightarrow)
 - ▶ Bicondicional (↔)
- ► Tautologias, Contradições e Contingências
- Equivalência Lógica
- Exercícios

O que é Lógica?

- A Lógica é o estudo do raciocínio e da argumentação.
- Nos permite distinguir argumentos válidos de argumentos inválidos.
- A Lógica Proposicional é a parte da lógica que lida com a verdade ou falsidade de sentenças inteiras, chamadas de proposições.

O que é uma Proposição?

- Uma proposição é uma frase declarativa que pode ser classificada, sem ambiguidade, como verdadeira (V) ou falsa (F).
- Chamamos V e F de valores-verdade.

O que é uma Proposição?

- Uma proposição é uma frase declarativa que pode ser classificada, sem ambiguidade, como verdadeira (V) ou falsa (F).
- Chamamos V e F de valores-verdade.

Exemplos:

- O sol é uma estrela. (Verdadeira)
- ightharpoonup 2 + 2 = 5. (Falsa)
- ▶ Qual é o seu nome? (Não é proposição)
- Estude para a prova. (Não é proposição)

Conectivos Lógicos

- Usamos conectivos para combinar proposições simples e formar proposições compostas.
- Vamos ver os 5 conectivos fundamentais.

Negação (¬)

- ► A negação de uma proposição P é "não P".
- Altera o valor-verdade da proposição.

Negação (¬)

- ► A negação de uma proposição P é "não P".
- Altera o valor-verdade da proposição.

Tabela-Verdade da Negação:

Р	¬P		
V	F		
F	V		

Negação (¬)

- ► A negação de uma proposição P é "não P".
- Altera o valor-verdade da proposição.

Tabela-Verdade da Negação:

Р	$\neg P$
V	F
F	V

Exemplo:

P: "João é alto."(¬P): "João não é alto."

Conjunção (∧)

- ► Conjunção de P e Q é "P e Q".
- ▶ Só é verdadeira se ambas as proposições P e Q forem verdadeiras.

Conjunção (∧)

- ► Conjunção de P e Q é "P e Q".
- Só é verdadeira se ambas as proposições P e Q forem verdadeiras.

Tabela-Verdade da Conjunção:

Р	Q	$P \wedge Q$		
V	V	V		
V	F	F		
F	V	F		
F	F	F		

Disjunção (∨)

- ▶ Disjunção de P e Q é "P ou Q".
- ▶ É verdadeira se **pelo menos uma** das proposições P ou Q for verdadeira.

Disjunção (∨)

- ▶ Disjunção de P e Q é "P ou Q".
- ▶ É verdadeira se **pelo menos uma** das proposições P ou Q for verdadeira.

Tabela-Verdade da Disjunção:

Р	Q	$P \vee Q$
V	V	V
V	F	V
F	V	V
F	F	F

Condicional (\rightarrow)

- Condicional de P e Q é "Se P, então Q".
- ▶ P é a hipótese (ou antecedente) e Q é a tese (ou consequente).
- É falsa apenas quando a hipótese (P) é verdadeira e a tese
 (Q) é falsa.

Condicional (\rightarrow)

- Condicional de P e Q é "Se P, então Q".
- ▶ P é a hipótese (ou antecedente) e Q é a tese (ou consequente).
- É falsa apenas quando a hipótese (P) é verdadeira e a tese
 (Q) é falsa.

Tabela-Verdade do Condicional:

Р	Q	$P \rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

Bicondicional (\leftrightarrow)

- ▶ Bicondicional de P e Q é "P se, e somente se, Q".
- É verdadeira se P e Q tiverem o **mesmo** valor-verdade.

Bicondicional (\leftrightarrow)

- ▶ Bicondicional de P e Q é "P se, e somente se, Q".
- ▶ É verdadeira se P e Q tiverem o **mesmo** valor-verdade.

Tabela-Verdade do Bicondicional:

Р	Q	$P \leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V

Construção de Tabelas-Verdade Complexas

- ▶ A tabela-verdade de uma proposição composta com n proposições simples terá 2ⁿ linhas.
- **Exemplo:** P, Q e R \rightarrow 2³ = 8 linhas.
- A ordem das operações é importante: primeiro parênteses, depois negação, depois conjunção e disjunção, e por fim condicional e bicondicional.

Exemplo: Tabela-Verdade de $(P \lor \neg Q) \to R$

Р	Q	R	$\neg \mathbf{Q}$	$P \vee \neg Q$	$(P \lor \neg Q) \to R$
V	V	V	F	V	V
V	V	F	F	V	F
V	F	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	V	F	F	F	V
F	F	V	V	V	V
F	F	F	V	V	F

Tautologias, Contradições e Contingências

- Tautologia: uma proposição que é sempre verdadeira, independentemente dos valores-verdade de suas proposições componentes.
- Contradição: uma proposição que é sempre falsa, independentemente dos valores-verdade de suas proposições componentes.
- Contingência: uma proposição que não é nem tautologia nem contradição. Seu valor-verdade depende dos valores-verdade de suas proposições componentes.

Exemplo de Tautologia: $P \lor \neg P$

Р	$\neg P$	$P \vee \neg P$	
V	F	V	
F V		V	

O resultado é sempre verdadeiro. É uma tautologia.

Exemplo de Contradição: P ∧ ¬P

Р	$\neg P$	$P \wedge \neg P$	
V	F	F	
FV		F	

O resultado é sempre falso. É uma contradição.

Equivalência Lógica

- Duas proposições são logicamente equivalentes se possuem a mesma tabela-verdade.
- ► Usamos o símbolo ≡ para denotar equivalência.

Equivalência Lógica

- Duas proposições são logicamente equivalentes se possuem a mesma tabela-verdade.
- ► Usamos o símbolo ≡ para denotar equivalência.

Exemplo: A lei de De Morgan: $\neg(P \land Q) \equiv \neg P \lor \neg Q$

Р	Q	$P \wedge Q$	¬(P ∧ Q)	¬Р	$\neg Q$	$\neg P \lor \neg Q$
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

▶ As colunas de $\neg(P \land Q)$ e $\neg P \lor \neg Q$ são idênticas.

Construa a tabela-verdade para a seguinte proposição: $\neg (P \leftrightarrow Q)$.

▶ Classifique a proposição $(P \rightarrow Q) \leftrightarrow (\neg P \lor Q)$ como tautologia, contradição ou contingência.

▶ Verifique se as proposições (P \rightarrow Q) e (¬Q \rightarrow ¬P) são logicamente equivalentes.

- Considere a proposição "Se está chovendo (P), então a rua está molhada (Q)."
- Expresse em linguagem natural a negação dessa proposição, $\neg (P \rightarrow Q)$.
- ► Em seguida, construa a tabela-verdade para $\neg(P \rightarrow Q)$ e verifique que ela é equivalente a $P \land \neg Q$.

- Construa a tabela-verdade para a proposição: $(P \land Q) \lor (\neg P \land R)$.
- Em seguida, determine o valor-verdade da proposição sabendo que *P* é falso, *Q* é verdadeiro e *R* é verdadeiro.

- ► Classifique a proposição $[(P \land Q) \rightarrow P]$ como **tautologia**, **contradição** ou **contingência**.
- O que essa classificação nos diz sobre a relação entre as proposições P e Q?

▶ Utilize uma tabela-verdade para provar a seguinte lei de De Morgan: $\neg(P \lor Q) \equiv \neg P \land \neg Q$.

- Uma proposição composta é dita ser uma **Implicação Material**. Sabendo que ela só é falsa se sua hipótese for verdadeira e sua tese for falsa, construa a tabela-verdade para a proposição: [(P ∨ Q) ∧ (¬P ∨ R)] → (Q ∨ R).
- Que tipo de proposição é essa (tautologia, contradição ou contingência)?

- Suponha que a proposição A ↔ B é falsa. Quais são os possíveis valores-verdade de A e B?
- ▶ Agora, se a proposição $(A \lor C) \to D$ é falsa, quais são os valores-verdade de $A, C \in D$?

- ▶ Verifique se a proposição $P \to (Q \to R)$ é logicamente equivalente a $(P \land Q) \to R$.
- ▶ Qual nome essa lei recebe na lógica proposicional?

