体論(第7回)の解答

問題 7-1 の解答

$$(\alpha^2 + 3)^2 - 3 = \alpha^4 + 6\alpha^2 + 6 = 0.$$

 $f(x)=x^4+6x^2+6$ と置くと $f(\alpha)=0$ である。また、p=3 でアイゼンシュタインの定理が適用できるので、f(x) は $\mathbb Q$ 上既約.よって f(x) は α の $\mathbb Q$ 上の最小多項式である.

(2) f(x) を因数分解すると、

$$f(x) = (x^2 + 3)^2 - 3 = (x^2 + 3 - \sqrt{3})(x^2 + 3 + \sqrt{3})$$

$$= (x^2 - (-3 + \sqrt{3}))(x^2 - (-3 - \sqrt{3}))$$

$$= \left(x + \sqrt{-3 + \sqrt{3}}\right) \left(x - \sqrt{-3 + \sqrt{3}}\right) \left(x - \sqrt{-3 - \sqrt{3}}\right) \left(x + \sqrt{-3 - \sqrt{3}}\right).$$

従って, α の \mathbb{Q} 上共役は $\pm\sqrt{-3+\sqrt{3}}$, $\pm\sqrt{-3-\sqrt{3}}$.

(3) $K=\mathbb{Q}(\sqrt{3})$ と置く. $\sqrt{3}=\alpha^2+3\in\mathbb{Q}(\alpha)$ より $K\subseteq\mathbb{Q}(\alpha)$. また

$$4 = \deg f = [\mathbb{Q}(\alpha) : \mathbb{Q}] = [\mathbb{Q}(\alpha) : K][K : \mathbb{Q}] = [K(\alpha) : K] \times 2$$

より $[K(\alpha):K]=2$. よって, α の K 上の最小多項式の次数は 2 である. 一方,

$$g(x) = x^2 - (\sqrt{3} - 3) \in K[x]$$

と置くと, $g(\alpha)=0$ である. 従って g(x) が α の K 上の最小多項式である. よって α の K 上共役は $\pm\sqrt{\sqrt{3}-3}$ である.

問題 7-2 の解答

(1) αの ℚ上の最小多項式は

$$f(x) = \frac{x^{p} - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

で与えられる (問題 3-3 を参照). また $\alpha^p = 1$ より

$$f(x) = \frac{x^p - 1}{x - 1} = \prod_{i=1}^{p-1} (x - \alpha^i).$$

copyright © 大学数学の授業ノート

よって α の \mathbb{Q} 上共役は α , α^2 ,..., α^{p-1} である.

(2)
$$\alpha \overline{\alpha} = |\alpha|^2 = 1$$
 より $\overline{\alpha} = \frac{1}{\alpha}$. 一方,

$$\alpha = \cos\left(\frac{2\pi}{p}\right) + i\sin\left(\frac{2\pi}{p}\right), \quad \frac{1}{\alpha} = \overline{\alpha} = \cos\left(\frac{2\pi}{p}\right) - i\sin\left(\frac{2\pi}{p}\right).$$

よって

$$\beta = \cos\left(\frac{2\pi}{p}\right) = \frac{1}{2}\left(\alpha + \frac{1}{\alpha}\right) \in \mathbb{Q}(\alpha).$$

(3) $K = \mathbb{Q}(\beta)$ と置く. $\alpha \notin \mathbb{R}$ より $\alpha \notin K$. 従って α の K 上の最小多項式の次数は 2 以上. 一方,

$$\beta = \frac{1}{2} \left(\alpha + \frac{1}{\alpha} \right)$$

より, $g(x)=x^2-2\beta x+1\in K[x]$ と置くと $g(\alpha)=0$. よって g(x) が α の K 上の最小多項式である. ここで

$$g(x) = \left(x - \alpha\right)\left(x - \frac{1}{\alpha}\right)$$

と分解できるので, α , $\frac{1}{\alpha}$ が α の K 上共役である.

問題 7-3 の解答

 α の K 上の最小多項式を $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_0$ と置く. L/K は分離拡大より, f(x) は重根を持たない. 従って

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n).$$

右辺を展開し、n-1次と0次の項を比較すると

$$\beta_1 = \alpha_1 + \alpha_2 + \dots + \alpha_n = -a_{n-1}, \qquad \beta_2 = \alpha_1 \cdot \alpha_2 \cdots \alpha_n = (-1)^n a_0.$$

従って $\beta_1, \beta_2 \in K$ となる.