

MAE 352 – Experimental Aerodynamics II Lab 5 – Converging-Diverging Nozzle Analysis

Shreyas Narsipur NCSU March 19th, 2019

Outline

- Lab 5 Objective
- ➤ Lab 5 Theory
- > Lab 5 Expectations

Lab 5 - Objective

- Understand the nozzle test rig in NCSU's supersonic wind tunnel facility.
- Observe the different regimes of flow in a convergingdiverging nozzle.
- ➤ Plot and study the pressure and temperature variations across the converging-diverging nozzle from no-flow to supersonic-isentropic flow condition.

Lab 5 - Theory

- > CD-nozzles are used to accelerate the fluid to M > 1.
- \triangleright The back pressure (p_B) / temperature (T_B) is the driving factor that determines the flow condition in the nozzle.
- \triangleright When $p_0 = p_B$, there is no flow through the nozzle.
- As p_B is reduced, the Mach number at the throat (p_T) keeps rising until the flow is chocked $(M_T = 1)$.
- > Beyond that point, a decrease in back pressure ratio can result in the following flow conditions:
 - subsonic isentropic flow (the flow decelerates after the choked condition)
 - supersonic non-isentropic flow (where the flow accelerates supersonically, forms a normal shock, and decelerates subsonically after the shock)
 - supersonic isentropic flow (where the flow accelerates supersonically after the choked condition).

Lab 5 - Theory

- > The following are the flow conditions that can be observed in a converging-diverging nozzle,
 - Subsonic flow (never reaches choked condition).
 - Subsonic flow reaching choked condition, never reaching supersonic velocities (considered isentropic).
 - Subsonic flow reaching choked condition, the resulting supersonic flow results in a normal shock, then subsonic deceleration.
 - Subsonic flow reaching choked condition, the resulting supersonic flow results in a normal shock, after the nozzle (considered isentropic in the nozzle).
 - Over-expanded flow.
 - The flow after the choked condition is supersonic through the nozzle, and no shock is formed.
 - Under-expanded flow.

Lab 5 – Expectations

- > Using the nozzle test rig in NCSU's supersonic wind tunnel facility, characterize the converging-diverging nozzle.
- Data acquired:

Тар	Tap Axial	Nozzle	P _{static}	Po	Mass	P _{atm}
Number	Positon	Area	(psi)	(psi)	Flow Rate	(psi)
	(inches)	Ratio			(slugs/second)	
		(A/A _i)				

- Plot the following data (calculated at the tap locations) with respect to the normalized nozzle distance for all runs:
 - \circ p/p₀
 - Mach Number
- Identify the flow regimes and flow conditions in the above.
- Plot the mass flow parameter (MFP) with respect to the back pressure ratio (p_B/p_O) .
- Plot the pressure ratios at the throat and exit with respect to the back pressure ratio and identify the flow regimes and conditions
 - p_E/p_O vs. p_B/p_O
 - $-p_T/p_O vs. p_B/p_O$

Lab 5 – Expectations

- \triangleright Pressure readings from tap 10 can be considered as the back pressure (p_B) conditions.
- \triangleright Pressure readings from tap 9 can be assumed to be the exit pressure (p_F) conditions.
- \triangleright Pressure readings from tap 3 can be assumed to be the throat pressure (p_T) conditions.

