What is claimed is:

1	1. A constant current circuit including a plurality of resistors
2	formed on a semiconductor substrate, comprising:
3	a first current source for producing a first current of constant
4	magnitude regardless of resistance variations which can occur uniformly in
5	said resisters; and
6	a second current source for producing a second current of magnitude
7	which is inversely variable with said resistance variations,
8	said first and second current sources being connected to each other for
9	producing an output current which is equal to a difference between said first
10	and second currents.
	·

- 1 2. The constant current circuit of claim 1, wherein said second 2 current is variable depending on an base-emitter voltage of a transistor.
- 1 3. The constant current circuit of claim 1, wherein said second 2 current is variable depending on a power-line voltage.
- 4. The constant current circuit of claim 1, wherein said second
 current source is a band-gap type constant current source.
- 5. A constant current circuit including a plurality of resistors
 formed on a semiconductor substrate, comprising:
- a first group of parallel transistors having emitters connected via
 respective resistors to a voltage source and having collectors connected
 together to an output terminal;

6	a second group of parallel transistors having emitters connected via
7	respective resistors to said voltage source and having collectors connected to
8	each other;
9	a constant current source connected between the collectors of said
10	second group of transistors and ground to produce a constant current, said
11	first and second groups of transistors having bases connected together to
12	form a current mirror, whereby a current equal to said constant current is
13	drawn by said first group of transistors to said output terminal; and
14	transistor-resistor circuitry for drawing a current inversely variable
15	with uniform resistance variations of said semiconductor substrate from said

6. The constant current circuit of claim 5, wherein said transistor-resistor circuitry comprises:

output terminal to ground.

at least one third transistor having an emitter connected via a resistor to said voltage source and a collector connected to a circuit node, whereby a current whose magnitude is equal to 1/M of said constant current is drawn by said third transistor to said circuit node, where M is the number of transistors provided in each of said first and second groups of transistors;

a fourth transistor having a collector connected to said output terminal and an emitter connected to ground via a resistor, said fourth transistor having a base electrode connected to said circuit node; and

a fifth transistor having a collector connected to said circuit node and an emitter connected to ground via a resistor, said fifth transistor having a base electrode connected to the emitter of said fourth transistor.

7. The constant current circuit of claim 5, wherein said transistor-

2	resistor circuitry comprises:	
3	a pair of resistors connected in series between said voltage source and	
4	ground to form a circuit node therebetween; and	
5	a third transistor having a collector connected to said output terminal	
6	and an emitter connected to ground via a resistor, said third transistor having	
7	a base electrode connected to said circuit node.	
1	8. The constant current circuit of claim 5, wherein said transistor-	
` 2	resistor circuitry comprises:	
3	third and fourth transistors having emitters connected via respective	
4	resistors to said voltage source and having bases connected together to the	
5	bases of said first and second groups of transistors to produce from each of	
6	the third and fourth transistors a current whose magnitude is equal to $1/M\ of$	
7	said constant current, where M is the number of transistors provided in each	
8	of said first and second groups of transistors;	
9	a group of fifth transistors having collectors connected together to the	
10	collector of said third transistor, having emitters connected together to	
11	ground through a series-connected resistors to ground and having bases	
12	connected to a first circuit node to which collector of said fourth transistor is	
13	connected;	
14	a sixth transistor having a collector and a base electrode connected	
15	together to said first circuit node and having an emitter connected to a second	
16	circuit node formed between said series-connected resistors; and	
17	a seventh transistor having a collector connected to said output	
18	terminal and an emitter connected to ground via a resistor and having a base	

electrode connected to said first circuit node.

1	 An active filter circuit having a plurality of resistors formed on 	
2	a semiconductor substrate, comprising:	
3	a first current source for producing a first current of constant	
4	magnitude regardless of resistance variations which can occur uniformly in	
5	said resistors;	
6	a second current source for producing a second current of magnitude	
7	which is inversely variable with said resistance variations, said first and	
8	second current sources being connected to each other for producing an	
9	output current which is equal to a difference between said first and second	
10	currents; and	
11	an active filter driven by said output current for filtering an input	
12	signal.	
1	10. The active filter circuit of claim 9, wherein said active filter is a	
2	low-pass filter.	
1	11. The active filter circuit of claim 9, wherein said active filter	
2	comprises:	
3	a pair of switching circuits driven by said output current, said	
4	switching circuits alternately assuming a conducting state according to	
5	polarity of an input signal applied thereto; and	
6	resistor-capacitor circuitry connected across said switching circuits to	
7	produce an output signal.	

The active filter circuit of claim 9, wherein said second current

is variable depending on an base-emitter voltage of a transistor.

12.

1

2

1	13.	The active filter circuit of claim 9, wherein said second current
2	is variable c	lepending on a power-line voltage.
1	14.	The active filter circuit of claim 9, wherein said second current
2	source is a b	oand-gap type constant current source.

- 1 15. An active filter circuit having a plurality of resistors formed on 2 a semiconductor substrate, comprising:
- a first group of parallel transistors having emitters connected via
 respective resistors to a voltage source and having collectors connected
 together to an output terminal;

6

7

8

9

10

11

12

13

14

15

16

17

18

19

- a second group of parallel transistors having emitters connected via respective resistors to said voltage source and having collectors connected to each other;
- a constant current source connected between the collectors of said second group of transistors and ground to produce a constant current, said first and second groups of transistors having bases connected together to form a current mirror, whereby a current equal to said constant current is drawn by said first group of transistors to said output terminal; and
- transistor-resistor circuitry for drawing a current inversely variable with uniform resistance variations of said semiconductor substrate from said output terminal to ground;
- a pair of switching circuits driven by said output current, said switching circuits alternately assuming a conducting state according to polarity of an input signal applied thereto; and
- resistor-capacitor circuitry connected across said switching circuits to produce an output signal.

1	16. The active filter circuit of claim 15, wherein one of said		
2	switching circuits comprises a first transistor and a second transistor		
3	connected in series between said voltage source and ground, and the other		
4	switching circuit comprises a third transistor and a fourth transistor		
5	connected in series between said voltage source and ground,		
6	said first and third transistors having bases connected together to		
7	receive said output current, and said second and fourth transistor connected		
8	to a pair of input terminals to which said input signal is applied,		
9	wherein said resistor-capacitor circuitry comprises:		
10	a resistor connected between collectors of said first and third		
11	transistors; and		
12	a capacitor connected between collectors of said second and fourth		
13	transistors for producing said output signal.		
1	17. The active filter circuit of claim 15, wherein said transistor-		
2	resistor circuitry comprises:		
3	at least one third transistor having an emitter connected via a resistor		
4	to said voltage source and a collector connected to a circuit node, whereby a		
5	current whose magnitude is equal to 1/M of said constant current is drawn		
6	by said third transistor to said circuit node, where M is the number of		
7	transistors provided in each of said first and second groups of transistors;		
8	a fourth transistor having a collector connected to said output terminal		
9	and an emitter connected to ground via a resistor, said fourth transistor		
10	having a base electrode connected to said circuit node; and		
11	a fifth transistor having a collector connected to said circuit node and		
12	an emitter connected to ground via a resistor, said fifth transistor having a		
13	base electrode connected to the emitter of said fourth transistor.		

1	18. The active filter circuit of claim 15, wherein said transistor-		
2	resistor circuitry comprises:		
3	a pair of resistors connected in series between said voltage source and		
4	ground to form a circuit node therebetween; and		
5	a third transistor having a collector connected to said output terminal		
6	and an emitter connected to ground via a resistor, said third transistor having		
7	a base electrode connected to said circuit node.		
1	19. The active filter circuit of claim 15, wherein said transistor-		
2	resistor circuitry comprises:		
3	third and fourth transistors having emitters connected via respective		
4	resistors to said voltage source and having bases connected together to the		
5	bases of said first and second groups of transistors to produce from each of		
6	the third and fourth transistors a current whose magnitude is equal to 1/M of		
7	said constant current, where M is the number of transistors provided in each		
8	of said first and second groups of transistors;		
9	a group of fifth transistors having collectors connected together to the		
10	collector of said third transistor, having emitters connected together to		
11	ground through a series-connected resistors to ground and having bases		
12	connected to a first circuit node to which collector of said fourth transistor is		
13	connected;		
14	a sixth transistor having a collector and a base electrode connected		
15	together to said first circuit node and having an emitter connected to a second		
16	circuit node formed between said series-connected resistors; and		
17	a seventh transistor having a collector connected to said output		
18	terminal and an emitter connected to ground via a resistor and having a base		
19	electrode connected to said first circuit node		