CHAPTER 19

MACROSCOPIC CIRCUIT ANALYSIS

OVERVIEW

- Last chapter, we developed a qualitative sense of the microscopic behavior of a circuit in terms of fundamental principles
 - Where does the field come from?
 - What is the function of a battery?
 - What is a resistor?
 - Charge & energy conservation

OVERVIEW

- In this chapter, we will apply this understanding to understand circuits macroscopically
 - How do circuit elements behave within a circuit?
 - Capacitors & resistors
 - ightharpoonup Calculate ΔV across different circuit elements
 - $lackbox{ }$ Calculate conventional current I in every part of a circuit

CONSIDER THIS CIRCUIT

Assume it is initially disconnected

CONSIDER THIS CIRCUIT

- Assume it is initially disconnected
- What happens when I connect the circuit?

CONSIDER THIS CIRCUIT

- Assume it is initially disconnected
- What happens when I connect the circuit?
- Why?

Capacitorcontinuescharging until?

• Capacitor continues charging until $E_{net} = 0$

CAPACITOR CHARGING CIRCUIT

Capacitor is initially "ignored"

Charge accumulates on the capacitor, decreases current

Battery power diverted to capacitor, bulb dims

CAPACITOR CHARGING CIRCUIT

- Charge continues to accumulate until fringe field of capacitor cancels field in wire
- Current stops flowing
 - Bulb is completely dark

CAPACITORS IN CIRCUITS

Charge on the capacitor: $Q = C\Delta V_c$

C is the **capacitance** of the capacitor (how much charge can it hold?)

 \blacktriangleright For same ΔV_c , higher C means more charge stored on the capacitor

CAPACITORS IN CIRCUITS

Full charged capacitor, remove the battery

Fully charged capacitor with battery connected

- Now remove the battery
- Charge leavescapacitor(current flows)
- Bulb lights up brightly

- Charge leaves capacitor $->E_c$ weakens
- Currentweakens, bulbdims

- Eventually,capacitor iscompletelydischarged
- $E_{net} = 0$, no more current
 - Bulb is off

CAPACITORS IN CIRCUITS

Uncharged capacitor connected to a battery:

- Initially acts like a piece of wire (no effect on the circuit)
- Builds up charge until it completely stops current flow (acts like an open wire)
- Fully charged capacitor: $Q = C\Delta V_c = C\varepsilon$

CAPACITORS IN CIRCUITS

Fully capacitor disconnected from battery

- Initially acts like a battery with "emf" of $\Delta V = Q/C$
- $ightharpoonup \Delta V$ drives current through circuit
- $lackbox{ }$ Capacitor slow discharges, decreasing ΔV , until current flow stops

- In chapter 18, we learned how to describe circuits in terms of their atomic-level properties: i, n, u, E, etc
- These quantities are more "fundamental", but hard to work with in practice (hard to measure!)
- Easier to work with conventional current I, potential difference ΔV , etc

$$J = |q| nuE$$

$$J = |q| nuE$$

		n	u	q nu
Copper	$1.6 \times 10^{-19} \text{ C}$	$8.5 \times 10^{28} \text{ m}^{-3}$	$4.5 \times 10^{-3} \frac{\text{m/s}}{\text{N/C}}$	$6.1 \times 10^7 \frac{\text{C}^2}{\text{m}^2 \text{Ns}}$
Tungsten	$1.6 \times 10^{-19} \text{ C}$	$6 \times 10^{28} \text{ m}^{-3}$	$1.8 \times 10^{-3} \frac{\text{m/s}}{\text{N/C}}$	$1.7 \times 10^7 \frac{\text{C}^2}{\text{m}^2 \text{Ns}}$
etc				

ELECTRICAL CONDUCTIVITY

$$\sigma = |q| nu$$

- $m{\sigma}$ is called the "electrical conductivity"
 - Lumps together all relevant properties of the material

ELECTRICAL CONDUCTIVITY

$$\sigma = |q| nu$$

- $m{\delta}$ is called the "electrical conductivity"
 - Lumps together all relevant properties of the material
- ightharpoonup Higher $\sigma \Longrightarrow$ less field needed for same current

CONSIDER

Length L of wire with crosssectional area A and conductivity σ

What is $|\Delta V|$ across the wire?

ELECTRICAL RESISTANCE

"Resistance"
$$R = \frac{L}{\sigma A}$$

- Combines geometry and inherent conductivity
- Units: The "ohm" (Ω)

OHM'S LAW

$$I = \frac{\Delta V}{R}$$

- Electric potential difference causes charges to move (current)
- Note that the Higher $\Delta V \implies$ more charge motion \implies higher current
- ▶ Higher R (low conductivity, fewer free electrons in wire, more collisions with atomic nuclei, etc) \Longrightarrow lower current

EXAMPLE

A resistor is made of nichrome wire (made of nickel, iron, and chromium) which has a cross-sectional area of $80~\mu m^2$.

- \blacktriangleright How long of a wire do you need to construct a 220 Ω resistor?
- \blacktriangleright What is the current through this resistor when connected to a 9 V battery?

$$\sigma_{\text{Nichrome}} = 0.10 \times 10^7 \ \Omega^{-1} \text{m}^{-1}$$

EXAMPLE

The resistor is connected to the battery via a length of thick copper wire (cross-sectional area of $0.3\ \mathrm{mm}^2$)

- How much copper wire do you need to use to match the resistance of the Nichrome resistor?
- $\sigma_{\text{Copper}} = 6.0 \times 10^7 \ \Omega^{-1} \text{m}^{-1}$

EXAMPLE

The resistor is connected to the battery via a length of thick copper wire (cross-sectional area of $0.3\ \mathrm{mm}^2$)

- How much copper wire do you need to use to match the resistance of the Nichrome resistor?
- $\sigma_{\text{Copper}} = 6.0 \times 10^7 \ \Omega^{-1} \text{m}^{-1}$

CONCLUSION? WE CAN SAFELY IGNORE CONNECTING WIRES IN CIRCUITS

CIRCUIT ELEMENTS

- For our purposes, a "circuit element" is structure placed in the circuit which uses (or supplies) significant energy (ΔV)
 - Capacitors
 - Resistors
 - Batteries

CIRCUIT DIAGRAMS

Capacitor

Resistor

Battery

CIRCUIT DIAGRAMS

Capacitor

Resistor

Battery

THE MICRO-MACRO CONNECTION

Microscopic View

$$\overline{v} = uE$$

$$i = nA\overline{v} = nAuE$$

Macroscopic View

$$J = \sigma E$$

$$I = |q| nA\overline{v} = \frac{1}{R}\Delta V$$

THE MICRO-MACRO CONNECTION

Microscopic View

Node Rule:

$$\sum_{\text{in}} i_{\text{in}} = \sum_{\text{out}} i_{\text{out}}$$
node node

Loop Rule:

$$\sum_{\text{loop}} \Delta V = 0$$

Macroscopic View

Node Rule:

$$\sum_{\text{in}} I_{\text{in}} = \sum_{\text{out}} I_{\text{out}}$$

Loop Rule:

$$\sum_{\text{loop}} \Delta V = 0$$

EXAMPLE

Current through and voltage across the resistor?

MULTIPLE RESISTORS IN <u>SERIES</u>

CIRCUIT ELEMENTS CONNECTED IN SERIES

$$I_1 = I_2 = I_3 = \dots = I_n = I$$

$$\Delta V = \Delta V_1 + \Delta V_2 + \Delta V_3 + \dots + \Delta V_n$$

$$I = \frac{\Delta V}{R_1 + R_2 + R_3 + \dots + R_n} = \frac{\Delta V}{R_{\text{eqiv}}}$$

$$R_{\text{equiv}} = R_1 + R_2 + R_3 + \dots + R_n$$

MULTIPLE RESISTORS IN PARALLEL

MULTIPLE RESISTORS IN PARALLEL

CIRCUIT ELEMENTS CONNECTED IN PARALLEL

$$I = I_1 + I_2 + I_3 + \dots + I_n$$

$$\Delta V = \Delta V_1 = \Delta V_2 = \Delta V_3 = \dots = \Delta V_n$$

$$I = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}\right) \varepsilon = \frac{\varepsilon}{R_{\text{equiv}}}$$

$$\frac{1}{R_{\text{equiv}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

VOLTAGE ACROSS PARALLEL RESISTORS

How can the voltage be the same across every resistor in parallel? Doesn't that violate energy conservation?

Electrical energy from the battery is converted to thermal energy in the resistor at a rate:

$$\frac{\Delta E}{\Delta t} = I \Delta V$$

Electrical energy from the battery is converted to thermal energy in the resistor at a rate:

$$\frac{\Delta E}{\Delta t} = I \Delta V$$

Power =
$$P = I\Delta V$$

- Power: change in energy per unit time
- Units?

POWER

- Power: change in energy per unit time
- Units?
 - SI Unit: 1 Watt = 1 $W = 1 \frac{J}{S}$

ENERGY CONSERVATION

Total power consumed by all circuit elements **must** be equal to the power output of the battery

A 60-WATT LIGHTBULB

A 60-WATT LIGHTBULB

1.5 V

SHORT CIRCUIT

- Circuit components
 connected only by wires
 are said to be "shorted"
 to one another
- A circuit formed only of wires (with not circuit elements) is called a "short circuit"

SHORT CIRCUIT

- Circuit components
 connected only by wires
 are said to be "shorted"
 to one another
- A circuit formed only of wires (with not circuit elements) is called a "short circuit"

SHORT CIRCUIT

How much current is drawn during a short circuit?

"REAL" BATTERIES

- We haven't been accounting for the fact that a small amount of energy is lost within the battery itself
- Model the battery as an ideal battery in series with a tiny resistor
 - "Internal resistance"

"REAL" BATTERIES

- "Ideal battery"
 - No internal resistance
 - $\Delta V_{\rm battery} = \varepsilon$
- "Real battery"
 - Small but non-zero internal resistance
 - $\Delta V_{\rm battery} = \varepsilon Ir_{\rm int}$

MEASURING CURRENT AND VOLTAGE

We have used both voltmeters and ammeters in labs this semester. How do these instruments work?

MEASURING CURRENT AND VOLTAGE

- We have used both voltmeters and ammeters in labs this semester. How do these instruments work?
- Ammeter: a device to measure current ("amp" meter)
- Voltmeter: no one knows

A PRIMITIVE AMMETER

A PRIMITIVE AMMETER

A PRIMITIVE AMMETER

HOW TO MEASURE CURRENT THROUGH RESISTOR?

- To measure the current through a circuit element, connect it in series with the ammeter
 - Node rule guarantees that current is the same through both components

CONSTRUCTING AN AMMETER

What kind of wire should you use to conduct current through the ammeter?

CONSTRUCTING AN AMMETER

- What kind of wire should you use to conduct current through the ammeter?
 - \triangleright Smallest possible R to avoid changing the circuit!

CONSTRUCTING AN AMMETER

- What kind of wire should you use to conduct current through the ammeter?
 - \triangleright Smallest possible R to avoid changing the circuit!
 - Because ammeters have almost zero resistance, connecting an ammeter in parallel will create a short circuit!

USING AN AMMETER

A positive current reading occurs when conventional current flows into the "+" or "A" terminal and out of the "-" or "COM" terminal

A PRIMITIVE VOLTMETER

- If we know the resistance of the wire used in the ammeter, we can use Ohm's Law ($\Delta V = IR$) to calculate the potential difference across the ammeter
- This is the basic operating principle of a voltmeter

TO MINIMIZE ITS EFFECT ON THE CIRCUIT, A VOLTMETER SHOULD HAVE VERY HIGH RESISTANCE

- A typical voltmeter has two terminals "+" and "-" or maybe "V" and "COM"
- $\ \, \hbox{ The voltage reading is } V_+ V_- \\$
 - If the potential is higher at the "+" socket as compared to the "-" socket, the reading will be **positive**

SOLVING A CIRCUIT

Current through and voltage across each resistor

CHARGE ENTERING THE CAPACITOR

CHARGE ENTERING THE CAPACITOR

CAPACITOR IS INITIALLY UNCHARGED

CHARGE ENTERING THE CAPACITOR

After a very small time interval Δt has passed, what is the charge on the capacitor?

(Assume Δt is so small that the current is constant during this interval)

CURRENT AND CHARGE

Current is the time derivative of capacitor charge!

$$I = \frac{dQ}{dt}$$

Current through an RC circuit:

$$I(t) = \frac{\varepsilon}{R} e^{-\frac{t}{RC}}$$

