Take home exam for 515 Qingzhou Feng

1.a First, we need to find the posterior function of Π (β_1/Y , X)

 $\Pi(\beta_1/Y, X) = f(Y; \beta_0 + \beta_1 * X, \sigma, \lambda) * exp(-\beta_1 * \beta_1/200)/C$

(f(Y; β_0 + β_1 *X, σ , λ) is the pdf of EMG, and Y, X can be vectors. C is a normalizing constant.)

We can apply a Metropolis-Hastings algorithm for sampling from the posterior distribution using a normal proposal distribution centered at the current value of the Markov chain and with variance $\,\mathrm{T}^{\,2}$.

- (i) Choose a start value. Based on the plot of data1, β_1 is the slope of the regression. So I choose 8 as the start value.
- (ii) Propose for a next value of β_1^* based on the normal distribution with mean β_1 and variance T^2 .
- (iii) Accept β_1^* (replacing β_1 by β_1^* as long as a standard uniform random variable is less than $\Pi(\beta_1^*)/\Pi(\beta_1)$. (Since normal proposal is symmetric, that is $q(\beta_1/\beta_1^*)=q(\beta_1^*/\beta_1)$

Here I use a log ratio, so the formula will be $\log U < \log \Pi(\beta_1^*) - \log \Pi(\beta_1)$ if we accept β_1^* . When using EMG pdf choose log=true.

(iiii) Go back to step (ii)

b Expectation of $\beta_1 = 7.138139$, MCMCse= 0.02820279

d

First, check the auto-correlation of samples. By trying different $\ T^2$ values, I find $\ T$ =10 has good results. Here's the plot. I didn't calculate the ESS, for I think this plot can give us something about the ESS

Series bete1

Next, plot the MCMCse according to different number of realizations

Also, I got the acceptance rate as 0.28728 (acceptable).

2a First, the likelihood function is

$$\pi$$
 (β 0, β 1, λ /Y,X)= $f(Y; \beta_0 + \beta_1 * X, \sigma, \lambda) * \lambda$ (-0.99) $*exp(-\lambda/100) *exp(-\beta_1 * \beta_1/200) *exp(-\beta_0 * \beta_0/200)$

Next, get marginal distribution of λ

$$\pi$$
 (λ / β 0, β 1, Y, X)= f (Y; β 0+ β 1*X, σ, λ) * λ (-0.99)* exp (-λ /100)

for log level
$$\pi$$
 (λ / β ₀, β ₁,Y,X)= logf(Y; β ₀+ β ₁*X, σ , λ)-0.99log λ - λ /100

Next, get marginal distribution of β_1

$$\pi$$
 (β 1/ λ , β 0,Y,X)= f (Y; β 0+ β 1*X, σ , λ)*exp(- β 1* β 1/200)

for log level
$$\pi$$
 (λ / β_0 , β_1 , Y , X) = logf (Y ; β_0 + β_1 * X , σ , λ) – β_1 * β_1 /200

Next, get marginal distribution of β_0

$$\pi$$
 (β 0, β 1, λ /Y,X)= f (Y; β 0+ β 1*X, σ , λ)*exp(- β 0* β 0/200)

for log level
$$\pi$$
 (λ / β ₀, β ₁,Y,X)= logf(Y; β ₀+ β ₁*X, σ , λ)- β ₀* β ₀/200

- (i) choose starting values based on the X,Y plot from data 2: β $_0\!\!=\!\!0,~\beta$ $_1\!\!=\!\!0,$ and $\lambda=\!0.1$
- (ii) Update parameters

For λ :

1) Use M-H to update λ . The proposal distribution should be U(0,1), propose a λ^* . (I tried gamma and exponential distribution as proposal, however, they did not work well for the autocorrelation. For normal distribution there will be half of the data <=0, so, I choose a U(0,1). It seems good)

2) accept λ if π (λ^*/β_0 , β_1 ,Y,X) / π (λ/β_0 , β_1 ,Y,X) >U. Still can transform to log values. Note: here, the β_0 , β_1 should be the most up to date values. And q(λ/λ^*)= q(λ^*/λ)

For β_1

1) Use M-H to update λ . The proposal distribution should be normal with mean=current β_1 , and sd=T, propose a β^* , adjust T to get better results. 2) accept β^* if π (β_1^*/β_0 , λ ,Y,X) / π (β_1/β_0 , λ ,Y,X) >U. Still can transform to log values. Note: here, the β_0 , λ should be the most up to date values.

For β_0

Use the same method as β_1

	mean	MCMCse	(0.025,0.975)
λ	0.05452495	0.0008154688	0.001122283
			0.221680106
β 1	-0.9769537	0.0717041	-17.61843
			12.50166
β 0	-6.312205	0.05553525	-20.047835
			1.412603

 $\mathbf{c} \operatorname{cor}(\beta_1, \beta_0) = -0.1955171$

plot the MCMCse for 100-5000 Realizations for $~\lambda$, β $_{\text{1}},$ β $_{\text{0}}$

Markov chain algorithm ran for 1e+05 iterations: (accept.rate for lambda 0.1095111) (accept.rate for bete1 0.5607956) (accept.rate for bete0 0.4116141)

3a

	mean	MCMCse	(0.025,0.975)
λ	0.03622615	0.0006705153	0.000827586
			0.142940637
β 1	-2.04731	0.07532999	-18.64347 ,11.82401
βο	-7.839889	0.05529316	-21.49537806
			0.02105507

C The only change I made is to change the start values. From the X/Y plot, β_0 =3, β_1 =0, λ =1. (The error term seems to be bi-norm as plot below, however, I can not make any change for the model)

