Advanced Studies In Mathematics Exercise

Hwijae Son

October 24, 2024

1. Consider the quantity

$$MSE = \mathbb{E}[(\hat{\theta} - \theta)^2],$$

where $\hat{\theta}$ is an estimator of θ , and MSE denotes mean squared error. Show that

$$MSE = \mathbb{E}[(\hat{\theta} - \mathbb{E}(\hat{\theta}))^2] + \mathbb{E}[(\hat{\theta} - \theta)^2].$$

- 2. Let X_1, X_2, \ldots, X_n be *i.i.d.* random variables. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ denotes the sample mean, and let $K^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$. Show that K^2 is a biased estimator for σ^2 .
- 3. Let X_1, X_2, \ldots, X_n be *i.i.d.* random variables, and let $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$. Compute the variance of S^2 .
- 4. (Order Statistics)
- (a) Let X_1, X_2, \ldots, X_n be *i.i.d.* random variables with p.d.f. f(x) and c.d.f. F(x). Define $Y = \max(X_1, X_2, \ldots, X_n)$. What is the distribution of Y?
- (b) Define $Z = \min(X_1, X_2, \dots, X_n)$. What is the distribution of Z?
- 5. Consider a random sample of $x_1, x_2, ..., x_n$ from a uniform distribution $U(0, \theta)$ with unknown parameter θ , where $\theta > 0$. Determine the maximum likelihood estimator of θ .
- 6. (a) Suppose random samples are given as (0,0,1,1,0) from a binomial distribution $b(1,\theta)$ where θ is unknown. Assume that $\theta \in (0,1)$. What is the maximum likelihood estimator for θ ?
- (b) Suppose we impose the restriction that $\theta \in 0.2, 0.5, 0.7$. What is the maximum likelihood estimator for θ ?
- (c) Assume $\theta \in 0.2, 0.5, 0.7$ and we have a prior distribution $\pi_{\theta}(0.2) = 0.1, \pi_{\theta}(0.5) = 0.01, \pi_{\theta}(0.7) = 0.89$. What is the maximum a posteriori estimator for θ ?