Lineare Algebra für Informatiker

Tragen Sie Ihre Lösungen auf dem Lösungsblatt ein.

Aufgabe 1 (ca. 15 Punkte)

Geben Sie jeweils ohne Begründung an:

- (a) Die Realteile Re z_0 , Re z_1 und Re z_2 der drei komplexen Lösungen z_0 , z_1 und z_2 von $z^3 = -27$.
- (b) Die Real- und Imaginärteile von $w_1 = \frac{3}{4}(\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2}))$ und $w_2 = \frac{3+4i}{1+i}$.
- (c) Die Menge L aller reellen Zahlen s, sodass $\ker(A) \neq \{0\}$, wobei $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & s & 1 & 1 \\ 0 & 0 & s & 1 \\ 0 & 0 & 1 & s \end{pmatrix} \in \mathbb{R}^{4 \times 4}$.
- (d) Die Dimension dim(V) des \mathbb{R} -Vektorraumes $V = \langle x^2 1, x^2 + 1, x^2 + 2, x^2 2 \rangle \subseteq \mathbb{R}[x]$.
- (e) Das Inverse A^{-1} der reellen Matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Aufgabe 2 (ca. 9 Punkte)

Es sei $b \in \mathbb{R}^3$ mit $b^\top b = 1$. Wir setzen $P = bb^\top \in \mathbb{R}^{3 \times 3}$.

- (a) Zeigen Sie: $P \cdot P = P$.
- (b) Zeigen Sie: Falls $v^{\top}b = 0$, $v \in \mathbb{R}^3$, so gilt Pv = 0.
- (c) Zeigen Sie: Für jedes $v \in \mathbb{R}^3$ gilt: $Pv \in \langle b \rangle$.

Aufgabe 3 (ca. 16 Punkte)

Sind die folgenden Aussagen wahr oder falsch? Geben Sie jeweils eine kurze Begründung bzw. ein begründetes Gegenbeispiel an. (Nur die Begründung wird bepunktet.)

- (a) Die Menge $U = \{f : \mathbb{R} \to \mathbb{R} \mid \exists K \in \mathbb{R} \text{ mit } |f(x)| \leq K \ \forall x \in \mathbb{R} \}$ bildet einen \mathbb{R} -Vektorraum.
- (b) Gilt $A^2 = E_n$ für $A \in \mathbb{R}^{n \times n}$, so ist $A E_n$ oder $A + E_n$ nicht invertierbar.
- (c) Das LGS $(e_1 + e_3) \cdot (e_1 + e_3)^\top x = 0$ ist eindeutig lösbar $(e_1 = (1, 0, 0)^\top, e_3 = (0, 0, 1)^\top \in \mathbb{R}^3)$.
- (d) Die Menge $\{\exp, \log\} \subseteq \mathbb{R}^{\mathbb{R}_{>0}}$ ist linear unabhängig.

Viel Erfolg!