Name: ______Teacher: _____

Section One: Multiple Choice (10 marks)

1. According to the following energy diagram, which of the following represents the activation energy and the heat of reaction for the **REVERSE** reaction?

reaction path

	Activation Energy	Heat of Reaction
A.	R	S
B.	P + Q	Т
C.	R	Q
D.	Q	S

The reaction below is exothermic

$$A+B \longrightarrow C+D$$

The total enthalpy (heat content) of the products is:

- A. higher than the reactants
- B. different for different elements
- C. the same for all compounds
- D. lower than that of the reactants

- 3. Reaction rate is **NOT** increased by
 - A. heating the reagents
 - B. adding a catalyst
 - C. adding larger lumps of reagent
 - D. stirring a reaction mixture
- Q4. The rate at which a chemical dissolves is found to be proportional to the surface area in contact with the solvent.

A cubic shaped crystal of a chemical which measures 2cm x 2cm x 2cm takes 10 minutes to dissolve. A similar crystal of the same chemical was cut along the lines shown above. How long will it take all 8 pieces to dissolve?

- A. about 5 minutes
- B. about 7.5 minutes
- C. about 10 minutes
- D. about 20 minutes
- Q5. The reaction between hydrazine and hydrogen peroxide, used to propel rockets, is represented by the following equation:

$$N_2H_4 + 2H_2O_2 \longrightarrow N_2 + 4H_2O$$
 $\Delta H = -684 \text{ kJ}$

1368 kJ of heat is released by this reaction if:

- A. one mole of hydrazine is used
- B. 64 g of hydrazine is used
- C. 28 g of nitrogen is formed
- D. 28 mole of nitrogen is formed.
- Q6. Which of the following statements is **TRUE**?
 - A. Exothermic reactions slow down when the reactants are heated.
 - B. Only endothermic reactions go faster when the reactants are heated..
 - C. Only exothermic reactions proceed spontaneously at room temperature.
 - D. The rates of all chemical reactions increase with temperature.

$$2NO_{2(g)} \longrightarrow N_{2(g)} + 2O_{2(g)}$$
 $\Delta H = +33.7 \text{ kJ mol}^{-1}$

Which graph below could represent the changes of potential energy during the course of this reaction?

- Q8. In which of the following changes at constant temperature does the entropy of the system **NOT** increase?
 - A. decomposition of one mole of hydrogen peroxide:

$$H_2O_{2(l)} \longrightarrow H_2O_{(l)} + \frac{1}{2}O_{2(g)}$$

B. decomposition of two moles of ammonia:

$$2NH_{3(g)} \longrightarrow N_{2(g)} + 3H_{2(g)}$$

C. formation of one mole of water from its elements:

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_2O_{(l)}$$

D. reaction of one mole of zinc with hydrochloric acid:

$$Zn_{(s)} + 2HCI_{(aq)} \longrightarrow ZnCI_{2(aq)} + H_{2(g)}$$

- Q9. When a liquid evaporates:
 - A. there is a decrease in entropy
 - B. the value for ΔH for the process is negative
 - C. the process can be described as homogenous
 - D. none of the above.

- Q10. A mixture of oxygen and hydrogen gases do not react rapidly at room temperature because:
 - A. ΔH is small and negative
 - B. Ea is large
 - C. ΔH is small and positive
 - D. Ea is small.

End of Section One

Section Two: Short answer

(15 marks)

11. Ethene can be produced from ethane by heating it in the presence of a catalyst. The reaction can be represented by the equation:

$$C_2H_{6(g)} = C_2H_{4(g)} + H_{2(g)}; \Delta H = +120 \text{ kJ mol}^{-1}$$

On the axes below

- A. draw a potential energy diagram for the uncatalysed reaction if the activation energy is 180 kJ mol⁻¹.
- B. using a dotted line, draw a possible potential energy diagram for the same reaction in the presence of a catalyst.

(I)	$2C_{(s)} + O_{2(g)}$ -	→ 2CO _(g)	∆H = -22	22 kJ		
(II)	$C_{(s)} + O_{2(g)}$	CO _{2(g)}	∆H = −39	3 kJ		
Use the inf the reactior	ormation given in	n equations (I) a	and (II) to ca	alculate t	ne enthalp	oy change (
	$C_{(s)} + CO_{2(g)}$	→ 2CO _(g)				
						V
						(4 ma
Propene (Cabutene (C4F	3H6) has a Heat o l8) has a Heat of (f Combustion or Combustion or Δ	· ∆H = −2056 \H = −2715	6 kJ mol ⁻¹ .	⁻¹ while	(4 mai
utene (C ₄ F	3H6) has a Heat o l8) has a Heat of (palanced chemica	Combustion or A	M = -2715 H	kJ mol ⁻¹ .		
utene (C ₄ F	l ₈) has a Heat of (palanced chemica	Combustion or A	.H = −2715 l e complete d	k J mol -1 _. combusti	on of prop	
outene (C ₄ F	l ₈) has a Heat of (palanced chemica	Combustion or Δ	.H = −2715 F e complete (k J mol -1 _.	on of prop	oene. (1 mar
outene (C ₄ Fa) Write a b	l ₈) has a Heat of (palanced chemica	Combustion or Δ	.H = −2715 F e complete (k J mol -1 _.	on of prop	oene. (1 mar
outene (C ₄ F	l ₈) has a Heat of (palanced chemica	Combustion or Δ	.H = −2715 F e complete (k J mol -1 _.	on of prop	oene. (1 mar
outene (C ₄ Fa) Write a b	l ₈) has a Heat of (palanced chemica	Combustion or Δ	.H = −2715 F e complete (k J mol -1 _.	on of prop	oene. (1 mar

12.

The er	nzyme <i>polyphenoxidase</i> is involved in the oxidation reaction that causes sl rown in air. Explain the following observations.	iced apple to
A.	When the apple is first cut open the apple is not brown.	
В.	Browning is much slower when the apple is placed in the fridge.	(1 mark)
		(1 mark <u>)</u>
C. does.	Apple that has been pulped in a food mixer turns brown much faster than	sliced apple
D. lemon	The browning reaction does not take place if the sliced apple is dipped in juice straight away.	(2 marks)
		(1 mark)

14.

End of Section Two

	$3Mn_3O_4 + 8AI \longrightarrow 9Mn + 4AI_2O_3$; $\Delta H = -2510 \text{ kJ mol}^{-1}$	
The	notation $\Delta H = -2510 \text{ kJ mol}^{-1}$ refers to the enthalpy change per mole of Mr	n₃O₄ reduc
Α.	Explain what is meant by the notation ΔH or the term enthalpy change.	
		(1 mark)
B.	State whether this reaction is endothermic or exothermic. Explain your a	nswer
	endothermic or exothermic	(1 mark)
	Explanation:	
		(1 mark)
C.	Calculate the mass of Al required to reduce (react with) 10.0 g of Mn ₃ O ₄	
· · · · · · · · · · · · · · · · · · ·		(3 marks
D.	Calculate the enthalpy change for the reduction of 1.00 g of Mn ₃ O ₄	
		(2 marks
E.	Calculate the number of moles of Al_2O_3 resulting from the reduction of 1.0 Mn_3O_4 .	00 kg of

(10 marks)

Section Three: Extended answer

RATES AND ENERGY:

Answer all questions

Section One: MULTIPLE CHOICE QUESTIONS (10 marks)

1A	2D	3C	4A	5B	6D	7B	8C	9D	10B

Section Two: Short Answer (15 marks)

12. Ethene can be produced from ethane by heating it in the presence of a catalyst. The reaction can be represented by the equation:

$$C_2H_{6(g)} = C_2H_{4(g)} + H_{2(g)}; \Delta H = +120 \text{ kJ mol}^{-1}$$

On the axes below

- A. draw a potential energy diagram for the uncatalysed reaction if the activation energy is 180 kJ mol⁻¹.
- B. using a dotted line, draw a possible potential energy diagram for the same reaction in the presence of a catalyst.

The enzyme <i>polyphenoxidase</i> is involved in the oxidation reaction that causes sli turn brown in air. Explain the following observations.	ced apple to
A. When the apple is first cut open the apple is not brown.	
Oxygen has not had time to react with apple. Or any comment about DURATION	٧
,	
	(1 mark)
B. Browning is much slower when the apple is placed in the fridge.	
Temperature decreased making molecules move slowly less collisions per unit ti	me
OR; Molecules have less than Activation energy required to react	
	(1 mark)
C. Apple that has been pulped in a food mixer turns brown much faster than does.	sliced apple
Increased surface area in pulped apple [1]	
Increase number of collisions per unit time [1]	1 Processor (1980)
	(2 marks)
D. The browning reaction does not take place if the sliced apple is dipped in lemon juice straight away.	
Lemon juice denatures the enzyme catalyst [1]	
	_
	(1 mark)

14.

End of Section Two

	inganese may be prepared by the reduction of manganese (II, III) oxide Mn_3O following equation	4 according to
	$3Mn_3O_4 + 8AI \longrightarrow 9Mn + 4AI_2O_3$; $\Delta H = -2510 \text{ kJ mol}^{-1}$	
Th	e notation $\Delta H = -2510$ kJ mol ⁻¹ refers to the enthalpy change per mole of Mn ₃	O ₄ reduced.
Α.	Explain what is meant by the notation ΔH or the term enthalpy change.	
	e net change in energy, from the start of the reaction until the end [1] stored will lecules involved. [1]	vithin the
1110	lecules involved. [1]	(1 mark)
В.	State whether this reaction is endothermic or exothermic. Explain your ans	swer
	endothermic or exothermic exothermic	_(1 mark)
	Explanation: Because the molecules have lost stored bond energy overal	<u>l</u> (1 mark)
C.	Calculate the mass of Al required to reduce (react with) 10.0 g of Mn ₃ O ₄	
<u>n(N</u>	$M_{103}O_4) = m(M_{103}O_4) / M(M_{103}O_4) = 10 / 228.82 = 0.0437024 \text{ moles } [1]$	
n(A	$I(x) = 8/3 \text{ n}(Mn_3O_4) = 0.1165399 \text{ moles}$ [1]	
<u>m(</u> ,	$AI) = n(AI) \times M(AI) = 26.98 \times n(AI) = 3.14 g$ [1]	_
		(3 marks)
D.	Calculate the enthalpy change for the reduction of 1.00 g of Mn ₃ O ₄	,
<u>n(N</u>	$M_{103}O_4) = m(M_{103}O_4)/M(M_{103}O_4) = 1g / 228.82 = 0.0043702 [1]$	
<u>tota</u>	al $\Delta H/g = n \text{ (Mn}_3O_4) \times \Delta H/\text{mol} = 0.0043702 \times -2510 = 10.969202 \text{ kJ/g [1]}$	
		(2 marks)
E.	Calculate the number of moles of Al_2O_3 resulting from the reduction of 1.0 Mn_3O_4 .	0 kg of
<u>n(N</u>	$M_{103}O_4) = m(M_{103}O_4)/M(M_{103}O_4) = 1000g / 228.82 = 4.3702 \text{ moles } [1]$	
<u>n(A</u>	I_2O_3) = 4/3 n(Mn ₃ O ₄) = 5.826996 moles [1]	
		<u>(</u> 2 marks)

**