

Traitement analogique et numérique du signal Chapitre 3 : *Signaux numériques*

Antony Pottier / Pierre-Jean Bouvet / Charles Vanwynsberghe ISEN Ouest - Yncréa Ouest M1 2021-2022

Sommaire

- Introduction
- Opérations de base
- 3 Analyse fréquentielle
- 4 Propriétés de la TFD
- 6 En résumé

•0000

- Introduction
 Hypothèse et notations
 Signaux élémentaires
- Opérations de base
- 3 Analyse fréquentielle
- 4 Propriétés de la TFD
- 5 En résumé

Introduction

00000

Hypothèse et notations

- On note $x[k]=x(t_k)$ l'échantillon d'un signal x(t) pris à l'instant d'échantillonnage t_k
- Hypothèse : l'échantillonnage est uniforme et de fréquence $f_e=1/T_e$

$$ightarrow t_k = kT_e ext{ et } x[k] = x(kT_e)$$

Introduction

00000

Signaux élémentaires

Impulsion de Kronecker

$$\delta[k] = \begin{cases} 1 & k = 0 \\ 0 & \mathsf{sinon} \end{cases}$$

Remarques:

- similarités avec la distribution de Dirac

00000

Signaux élémentaires

Fonction rectangulaire

lacksquare N impair

$$\Pi_N[k] = \begin{cases} 1 & -\frac{N-1}{2} \le k \le \frac{N-1}{2} \\ 0 & \text{sinon} \end{cases}$$

 $lue{N}$ pair

$$\Pi_N[k] = \begin{cases} 1 & -\frac{N}{2} \le k < \frac{N}{2} \\ 0 & \text{sinon} \end{cases}$$

Introduction

00000

Signaux élémentaires

Échantillonnage de $\Pi_T(t)$:

- $T = NT_e$
- $t_k = kT_e$

Sommaire

- Opérations de base Énergie et puissance Convolution discrète Corrélation
- 3 Analyse fréquentielle
- 4 Propriétés de la TFD
- 5 En résumé

8

Opérations de base

Énergie et puissance

Énergie d'un signal numérique

On appelle énergie d'un signal numérique x[k], la quantité E_x définie quand elle existe par :

$$E_x = \sum_{k=-\infty}^{+\infty} \left| x[k] \right|^2$$

Énergie et puissance

Énergie d'un signal numérique

On appelle énergie d'un signal numérique $x[k]\mbox{, la quantité }E_x$ définie quand elle existe par :

$$E_x = \sum_{k=-\infty}^{+\infty} \left| x[k] \right|^2$$

Puissance moyenne d'un signal numérique

On appelle puissance moyenne d'un signal numérique x[k], la quantité ${\cal P}_x$ définie quand elle existe par :

$$P_x = \lim_{N \to +\infty} \frac{1}{N} \sum_{k=-N/2+1}^{N/2} \left| x[k] \right|^2 \qquad \text{avec } N \text{ pair}$$

Opérations de base

Convolution discrète

Produit de convolution de 2 signaux discrets

Soient x[k] et y[k] deux signaux discrets, le convolution de x par y est noté (x*y)[n] est défini par :

$$z[n] = (x * y)[n] = \sum_{k=-\infty}^{+\infty} x[k]y[n-k]$$

$$\begin{split} z[n] &= x[1]y[n-1] + x[2]y[n-2] + \dots \\ &+ x[0]y[n] \\ &+ x[-1]y[n+1] + x[-2]y[n+2] + \dots \end{split} \tag{\'echantillons } y[k] \text{ pass\'es})$$

Corrélation

Signaux discrets à énergie finie

$$\Gamma_{xy}[n] = \sum_{k=-\infty}^{+\infty} x[k+n]y^*[k]$$

Signaux discrets à énergie finie

$$\Gamma_{xy}[n] = \sum_{k=-\infty}^{+\infty} x[k+n]y^*[k]$$

Signaux discrets à puissance moyenne finie non nulle

$$\Gamma_{xy}[n] = \lim_{N \to +\infty} \frac{1}{N} \sum_{k=-N/2+1}^{+N/2} x[k+n]y^*[k]$$

•00000000000

Sommaire

- Introduction
- Opérations de base
- 3 Analyse fréquentielle De la TF à la TFD Transformée de Fourier Discrète (TFD) Implémentation Rapide Résolution et précision
- 4 Propriétés de la TFD
- 6 En résumé

Analyse fréquentielle De la TF à la TFD

- L'analyse fréquentielle fait appel à la transformée de Fourier
- calcul d'une intégrale à support infini d'un signal à temps continu

0**000**0000000

- Analyse fréquentielle d'un signal numérique sur machine (ou µP)?
 - signal est à temps discret (et non continu)
 - nombre d'échantillons disponibles fini
 - puissance et/ou temps de calcul (souvent) limités
- Nécessité d'introduire un nouvel outil d'analyse : la Transformée de Fourier Discrète (TFD)

- Problème 1 : la TF nécessite en entrée un signal continu
- Solution : on échantillonne le signal

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$$

$$\Rightarrow X_1(f) = \sum_{n = -\infty}^{+\infty} x(nT_e)e^{-j2\pi fnT_e}$$

$$= \sum_{n = -\infty}^{+\infty} x[n]e^{-j2\pi fnT_e}$$

On appelle $X_1(f)$ Transformée de Fourier à temps discret.

Analyse fréquentielle De la TF à la TFD

- Problème 2 : la sommation est infinie
- Solution : on restreint la sommation à N échantillons du signal

$$X_1(f) = \sum_{n = -\infty}^{+\infty} x(nT_e)e^{-j2\pi f nT_e}$$

$$\Rightarrow X_2(f) = \sum_{n=0}^{N-1} x(nT_e)e^{-j2\pi f nT_e}$$

De la TF à la TFD

- Problème 2 : la TF est une fonction continue de la fréquence
- Solution : on échantillonne $X_2(f)$ avec un pas de $\frac{1}{NT_e}=\frac{f_e}{N}$

$$\begin{split} X_2(f) &= \sum_{n=0}^{N-1} x(nT_e) e^{-j2\pi f n T_e} \\ &\Rightarrow X_2 \Big(f_k = \frac{k}{NT_e} \Big) = \sum_{n=0}^{N-1} x(nT_e) e^{-j2\pi n k/N} \end{split}$$

Justification du choix du pas :

- Critère de Shannon-Nyquist : $f_k \in [-\frac{f_e}{2}, \frac{f_e}{2}] \Leftrightarrow f_k \in [0, f_e]$
- Nombre d'échantillons fréquentiels = nombre d'échantillons temporels

Transformée de Fourier Discrète (TFD)

Définition de la TFD

Soit x[k] un signal numérique défini pour $n \in [0, ..., N-1]$, on appelle transformée de Fourier discrète du signal x[n], le signal numérique X[k]défini comme :

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N}$$
 avec $k \in [0, \dots, N-1]$

Transformée de Fourier Discrète (TFD)

Définition matricielle

Soit x un vecteur colonne de taille N représentant un signal numérique, la transformée de Fourier discrète du vecteur x s'écrit sous forme matricielle:

$$\mathbf{y} = \mathbf{F} \cdot \mathbf{x}$$

où $\mathbf{F} \in \mathbb{C}^{N imes N}$ est la matrice de Vandermonde-Fourier définie comme :

$$\mathbf{F} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & e^{-\frac{j2\pi}{N}} & \dots & e^{-\frac{j2\pi(N-1)}{N}} \\ \vdots & \vdots & & \vdots \\ 1 & e^{-\frac{j2\pi(N-1)}{N}} & \dots & e^{-\frac{j2\pi(N-1)(N-1)}{N}} \end{pmatrix}$$

Remarque : les vecteurs de F constituent une base orthonormale

Transformée de Fourier Discrète (TFD)

TFD inverse

Soit X[k] un spectre numérique défini pour $k\in[0,\dots,N-1]$, la transformée de Fourier discrète inverse du signal X[k] s'écrit :

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi nk/N}$$
 avec $n \in [0, \dots, N-1]$

Sous forme matricielle, la TFD inverse s'écrit :

$$\mathbf{x} = \frac{1}{N} \mathbf{F}^H \mathbf{y}$$

- La TFD revient à calculer le produit matriciel $\mathbf{F} \cdot \mathbf{x}$
 - Complexité d'ordre $O(N^2)$
- Algorithme rapide: Fast Fourier Transform (FFT)
 - Introduit par J.W. Cooley et J. Tukey en 1965 sur une invention de C. F. Gauss de 1805
 - Approche Diviser pour mieux Régner : une TFD de taille N se déduit de 2 TFDs de taille N/2 (radix 2)
 - Complexité d'ordre $O(N \log N)$

 $W_N^k=e^{j2\pi\frac{k}{N}}$

www.isen.fr

Implémentation Rapide

Autres implémentations :

- Algorithme de Good-Thomas (1963) algorithme des facteurs premiers
- Algorithme de Rader (1968)
- Algorithme de Bluestein (1968)
- Algorithme de Winograd (1978)
- Algorithme de Bruun (1978)
- FFTW de Frigo & Johnson (1997)
- . . .

En bref

- une unique définition de la TFD
- de nombreux algorithmes de calcul de la TFD

ISEN
ALL IS DIGITAL!
BRESTI

 \bullet La $\emph{r\'esolution}$ en fréquence δf est l'aptitude à distinguer deux fréquences voisines dans le spectre

Analyse fréquentielle

0000000000000

- Dans le cas d'une fenêtre d'apodisation rectangulaire, la résolution fréquentielle est égale à $0.88/NT_e$ où N est le nombre d'échantillons utiles du signal
- Pour augmenter la résolution, on peut
 - Réduire f_e , mais attention au repliement de spectre
 - lacksquare Augmenter N, mais alourdissement du calcul de TFD
- La précision en fréquence Δf est l'aptitude à mesurer une valeur de fréquence
 - La précision est de f_e/P où P est le nombre de points de la TFD.
 - Pour augmenter la précision, il suffit de rajouter P-N zéros en fin de signal ($\emph{zero-padding}$)

Résolution et précision

Exemple avec $x(t) = \sin(2\pi f_0 t)$, $f_0 = 1$ kHz et $f_e = 10$ kHz

Sommaire

- Introduction
- Opérations de base
- Analyse fréquentielle
- Propriétés de la TFD Spectre Troncature Techniques d'apodisation TFD de signaux classiques Conservation de l'énergie Exercice
- 6 En résumé

La TFD représente les échantillons du spectre allant de 0 à f_e par pas de $\frac{f_e}{N}$

Spectre

- \bullet En traitement numérique du signal, on préfère représenter les fréquences entre $-f_e/2$ et $f_e/2$
 - \Rightarrow En sortie de TFD, il est d'usage de faire un centrage à $0~{\rm Hz}$ du spectre

Propriétés de la TFD Spectre

Signal en sortie de TFD

Propriétés de la TFD Spectre

Après FFTshift:

- ${\color{blue} \bullet}$ La Transformée de Fourier de x(t) nécessite une infinité d'échantillons en entrée
 - \Rightarrow En prenant seulement N échantillons, la TFD revient à tronquer le signal d'entrée :

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-\frac{j2\pi nk}{N}} = \sum_{n=-\infty}^{+\infty} (x[n]\Pi_N[n]) e^{-\frac{j2\pi nk}{N}}$$

Propriété

La TFD revient à calculer le spectre numérique du signal $x(t)\Pi_{NT_e}(t)$ et non celui de x(t).

SEN LL IS DIGITAL!

Troncature

Exemple avec
$$x(t) = \sin(2\pi f_0 t)$$
, $N = 500$ et $f_e = 50 f_0$.

⇒ Apparition de lobes secondaires dues à la convolution du spectre utile par un sinus cardinal...

 Pour observer un signal sur une durée finie, on le multiple par une fenêtre d'observation (ou d'apodisation) :

$$z[n] = h[n]x[n] \quad \text{pour } n \in [0,N-1]$$

- \Rightarrow La plus simple est la fenêtre rectangulaire : TFD classique
- Afin de changer la TFD du signal (et de compenser les effets de troncature), on peut utiliser des fenêtres d'apodisation dédiées :
 - Fenètre de Hann : $h[n] = \frac{1}{2} \left(1 \cos\left(\frac{2\pi n}{N-1}\right)\right)$
 - Fenètre de Hamming : $h[n] = 0.54 0.46\cos\left(\frac{2\pi n}{N-1}\right)$
 - Fenètre de Blackman : $h[n] = 0.42 0.5\cos\left(\frac{2\pi n}{N-1}\right) + 0.08\cos\left(\frac{4\pi n}{N-1}\right)$
 - ..

Techniques d'apodisation

TFD.

Techniques d'apodisation

Exemple avec $x(t) = \sin(2\pi f_0 t)$ et apodisation avec une fenêtre de Blackman

Réduction des lobes secondaires mais élargissement du lobe principal...

Propriétés	Suite numérique	TFD
Linéarités	ax[n] + bx[n]	aX[k] + bY[k]
Retard	$x((n-p) \bmod N)$	$e^{-\frac{j2\pi pk}{N}}X[k]$
Déphasage	$e^{\frac{j2\pi pn}{N}}x[n]$	$X[(k-p) \bmod N)]$
Signaux réels	$x[n] \in \mathbb{R}$	$X[k] = X^*[-k]$
Conjugaison	$x^*[n]$	$X^*[-k]$
Convolution circulaire	$x[n] \otimes y[n]$	X[k]Y[k]
Produit	x[n]y[n]	$X[k] \otimes Y[k]$

avec

$$x[n] \otimes y[n] = \sum_{k=0}^{N-1} x[k]y[(n-k) \mod N]$$

Conservation de l'énergie

Théorème de Parseval

Soient x[n] un signal numérique et X[n] son spectre numérique après TFD avec $n\in[0,N-1]$, la relation de Parseval implique :

$$\sum_{n=0}^{N-1} \left| x[n] \right|^2 = \frac{1}{N} \sum_{k=0}^{N-1} \left| X[k] \right|^2$$

Exercice

Soit le signal numérique suivant :

$$x[n] = 1 \quad \text{ avec } 0 \le n \le N - 1$$

On supposera $f_e = 1$ kHz et N = 10.

- Calculez l'expression de la transformée de Fourier discrète X[k].
- \bigcirc Représentez |X[k]|
- On procède à un zero-padding afin d'obtenir une TFD avec P=100. Calculez la nouvelle expression de X[k]
- Représentez le nouveau spectre |X[k]|

Sommaire

- Introduction
- Opérations de base
- 3 Analyse fréquentielle
- 4 Propriétés de la TFD
- 6 En résumé
 - Signaux numériques
 - Formules de traitement du signal analogique et numérique

En résumé

- Les opérations de traitement de signal analogique se déclinent en numérique de façon (quasi) identique
- L'outil de base pour l'analyse fréquentielle des signaux numériques est la Transformée de Fourier Discrète (TFD)
- La TFD s'implémente efficacement au moyen d'algorithmes rapides (FFT)
- La TFD calcule le spectre numérique entre 0 et f_e avec une précision de f_e/N
- la TFD implique une troncature du signal temporel qui peut être compensée par une fenêtre d'apodisation

38

Formules de traitement du signal analogique et numérique

iules de traitement du signal analogique et numerique		
Notation	Formule	
Énergie et puissance moyenne (temps continu)	$E_x = \int_{-\infty}^{+\infty} x(t) ^2 dt , P_x = \lim_{T \to +\infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t) ^2 dt$	
Énergie et puissance moyenne (temps discret)	$E_x = \sum_{k=-\infty}^{+\infty} x[k] ^2, P_x = \lim_{N \to +\infty} \frac{1}{N} \sum_{k=-N/2+1}^{N/2} x[k] ^2$ $X(f) = \text{TF}\left[x(t)\right] = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$	
Transformée de Fourier (temps continu)	$X(f) = \text{TF}\left[x(t)\right] = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$	
Transformée de Fourier (temps discret)	$X[k] = \text{TF}[x[n]] = \sum_{n=0}^{N-1} x[n]e^{-j2\pi n \frac{k}{N}}$	
Produit de convolution (temps continu)	$(x * y)(t) = \int_{-\infty}^{+\infty} x(t - \tau)y(\tau)d\tau = (y * x)(t)$	
Produit de convolution (temps discret)	$(x*y)[n] = \sum_{m=-\infty}^{+\infty} x[n-m]y[m] = (y*x)[n]$	
Corrélation croisée (temps continu)	$\Gamma_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t+\tau)y^*(t)dt = \Gamma_{yx}^*(-\tau)$ $\Gamma_{xy}[n] = \sum_{x} x[m+n]y^*[m] = \Gamma_{yx}^*[-n]$	
Corrélation croisée (temps discret)	m	
Théorème de Parseval (temps continu)	$\int_{-\infty}^{+\infty} x(t)y^*(t)dt = \int_{-\infty}^{+\infty} X(f)Y^*(f)df$ $\sum_{n=1}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{n=1}^{N-1} X[k] ^2$	
Théorème de Parseval (temps discret)	$\left\ \sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$	

VC