33.7 Symmetric Tensor Powers

Our goal is to come up with a notion of tensor product that will allow us to treat symmetric multilinear maps as linear maps. Note that we have to restrict ourselves to a *single* vector space E, rather then n vector spaces E_1, \ldots, E_n , so that symmetry makes sense.

Definition 33.15. A multilinear map $f: E^n \to F$ is symmetric iff

$$f(u_{\sigma(1)},\ldots,u_{\sigma(n)})=f(u_1,\ldots,u_n),$$

for all $u_i \in E$ and all permutations, $\sigma \colon \{1, \ldots, n\} \to \{1, \ldots, n\}$. The group of permutations on $\{1, \ldots, n\}$ (the *symmetric group*) is denoted \mathfrak{S}_n . The vector space of all symmetric multilinear maps $f \colon E^n \to F$ is denoted by $\operatorname{Sym}^n(E; F)$ or $\operatorname{Hom}_{\operatorname{symlin}}(E^n, F)$. Note that $\operatorname{Sym}^1(E; F) = \operatorname{Hom}(E, F)$.

We could proceed directly as in Theorem 33.6 and construct symmetric tensor products from scratch. However, since we already have the notion of a tensor product, there is a more economical method. First we define symmetric tensor powers.

Definition 33.16. An *n*-th symmetric tensor power of a vector space E, where $n \ge 1$, is a vector space S together with a symmetric multilinear map $\varphi \colon E^n \to S$ such that, for every vector space F and for every symmetric multilinear map $f \colon E^n \to F$, there is a unique linear map $f_{\odot} \colon S \to F$, with

$$f(u_1,\ldots,u_n)=f_{\odot}(\varphi(u_1,\ldots,u_n)),$$

for all $u_1, \ldots, u_n \in E$, or for short

$$f = f_{\odot} \circ \varphi$$
.

Equivalently, there is a unique linear map f_{\odot} such that the following diagram commutes.

The above property is called the *universal mapping property* of the symmetric tensor power (S, φ) .

We next show that any two symmetric *n*-th tensor powers (S_1, φ_1) and (S_2, φ_2) for E are isomorphic.

Proposition 33.23. Given any two symmetric n-th tensor powers (S_1, φ_1) and (S_2, φ_2) for E, there is an isomorphism $h: S_1 \to S_2$ such that

$$\varphi_2 = h \circ \varphi_1$$
.