Σπύρος Φρονιμός - Μαθηματικός

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΟΡΙΣΜΟΙ ΚΑΙ ΘΕΩΡΗΜΑΤΑ 25 Απριλίου 2016

ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ

Σύνολα - Πιθανότητες

ΠΙΘΑΝΟΤΗΤΕΣ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΚΛΑΣΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

Πιθανότητα ενός ενδεχομένου $A = \{a_1, a_2, \dots, a_\kappa\}$ ενός δειγματικού χώρου Ω ονομάζεται ο λόγος του πλήθους των ευνοϊκών περιπτώσεων του A προς το πλήθος όλων των δυνατών περιπτώσεων.

$$P(A) = \frac{N(A)}{N(\Omega)}$$

- Ο παραπάνω ορισμός ονομάζεται **κλασικός ορισμός** της πιθανότητας και εφαρμόζεται όταν το ενδεχόμενο A αποτελείται από ισοπίθανα απλά ενδεχόμενα $\{a_i\}$, $i=1,2,\ldots,\kappa$.
- Το πλήθος των στοιχείων ενός ενδεχομένου A συμβολίζεται με N(A).

ΟΡΙΣΜΟΣ 2: ΑΞΙΩΜΑΤΙΚΟΣ ΟΡΙΣΜΟΣ ΠΙΘΑΝΟΤΗΤΑΣ

Η πιθανότητα ενός ενδεχομένου $A = \{a_1, a_2, \dots, a_\kappa\}$ ενός δειγματικού χώρου $\Omega = \{\omega_1, \omega_2, \dots, \omega_\nu\}$ ορίζεται ώς το άθροισμα των πιθανοτήτων $P(a_i)$, $i = 1, 2, \dots, \nu$ των απλών ενδεχομένων του.

$$P(A) = P(a_1) + P(a_2) + ... + P(a_k)$$

- Για κάθε στοιχείο $ω_i$, $i=1,2,\ldots,\nu$ του δειγματικού χώρου Ω ονομάζουμε τον αριθμό $P(ω_i)$ πιθανότητα του ενδεχομένου $\{ω_i\}$.
- Ο παραπάνω ορισμός ονομάζεται αξιοματικός ορισμός της πιθανότητας και εφαρμόζεται όταν το ενδεχόμενο A δεν αποτελείται από ισοπίθανα απλά ενδεχόμενα $\{a_i\}$, $i=1,2,\ldots,\kappa$.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΙΔΙΟΤΗΤΕΣ ΠΙΘΑΝΟΤΗΤΩΝ

Από τον κλασικό ορισμό της πιθανότητας προκύπτουν οι παρακάτω ιδιότητες:

- i. Πιθανότητα κενού συνόλου : $P(\emptyset) = 0$.
- ii. Πιθανότητα δειγματικού χώρου : $P(\Omega) = 1$.
- iii. Για κάθε ενδεχόμενο A ισχύει : $0 \le P(A) \le 1$.

ΘΕΩΡΗΜΑ 2: ΚΑΝΟΝΕΣ ΛΟΓΙΣΜΟΥ ΠΙΘΑΝΟΤΗΤΩΝ

Οι παρακάτω ιδιότητες μας δείχνουν τις σχέσεις με τις οποίες συνδέονται οι πιθανότητες οποιονδήποτε ενδεχομένων A, B με τις πιθανότητες των ενδεχομένων των πράξεων που περιέχουν τα ενδεχόμενα αυτά.

Ενδεχόμενο	Πιθανότητα
Ένωση	$P(a \cup B) = \begin{cases} P(A) + P(B) - P(A \cap B) , & \text{av } A \cap B \neq \emptyset \\ P(A) + P(B) , & \text{av } A \cap B = \emptyset \end{cases}$
Συμπλήρωμα	P(A') = 1 - P(A)
Διαφορά	$P(A - B) = P(A) - P(A \cap B)$
	$P(B-A) = P(B) - P(A \cap B)$
Υποσύνολο	$A \subseteq B \Rightarrow P(A) \le P(B)$

ΘΕΩΡΗΜΑ 3: ΑΝΙΣΟΤΗΤΕΣ ΜΕΤΑΞΥ ΠΙΘΑΝΟΤΗΤΩΝ

Μεταξύ των πιθανοτήτων δύο οποιονδήποτε ενδεχομένων Α, Β καθώς και των ενδεχομένων που προκύπτουν από πράξεις που τα περιέχουν, ισχύουν οι ακόλουθες ανισότητες.

i.
$$P(A) \le P(A \cup B)$$
 iv. $P(A \cap B) \le P(B)$ vii. $P(B - A) \le P(B)$ ii. $P(B) \le P(A \cup B)$ v. $P(A \cap B) \le P(A \cup B)$ viii. $P(A - B) \le P(A \cup B)$

viii
$$P(A = R) < P(A \sqcup R)$$

iii.
$$P(A \cap B) \leq P(A)$$
 vi. $P(A - B) \leq P(A)$ ix. $P(B - A) \leq P(A \cup B)$