

1. Laboratorijska vježba

Mjerenje temperature u sustavima automatizacije

Prilikom izrade ovog izvještaja koristite upute za laboratorijsku vježbu te pripadne programe u Matlabu. Ovaj izvještaj je napravljen u obliku interaktivnog PDF dokumenta. Dokument sadrži polja unutar kojih je potrebno upisati odgovore te tablice s praznim mjestima gdje je potrebno priložiti slike. Slike se prilažu u obliku "attachmenta" na pdf. Opciji za dodavanje "attachmenta" se pristupa otvaranjem alata za komentiranje u Adobe Readeru te selektiranjem gumba u obliku spajalice u nastaloj traci. Izvještaj se ocjenjuje na skali od 20 bodova dok se konačni bodovi skaliraju na 10 bodova.

IME I PREZIME JMBAG DATASET

1 Otpornički termometar KTY81/210

 ${\bf Zadatak~1} \hspace{3.2cm} {\bf bod.:} \hspace{0.2cm} /{\bf 1}$

Navedite korištenu relaciju pretvorbe temperature $T [^{\circ}C] = f(R) [\Omega]$ s polinomom prvog reda i višeg reda (naznačiti iznos višeg reda u formular). Izraz zapisati u formatu $f(R) = p_1 * R^n + p_2 * R^{n-1} + \cdots + p_n * R + p_{n+1}$. Za dobivene izraze potrebno je unesti i relativnu pogrešku interpolacije. Koristite relacije izvedene za potrebe pisanja pripreme.

Tablica 1: Relacije korištene za pretvorbu otpora u temperaturu.

Red korištenog polinoma	Relacija $f(R)[\Omega]$	Greška
prvi red		
viši red		

Na jednu sliku iscrtajte ovisnost mjerene temperature i otpora za podatke iz datasheeta, polinom prvog reda i za korišteni polinom višeg reda. Vodite računa da osi budu označene (naredbe xlabel i ylabel) te da bude prikazana legenda (naredba legend). Obratite pažnju da prilikom iscrtavanja polinoma višeg reda vrijednosti otpora za iscrtavanje uzimate s rezolucijom od 1Ω .

Slika ovisnosti temperature o otporu 👂

Komentirajte rezultate. Je li opravdano koristiti polinom višeg reda naspram prvog reda? Kako se izgled krivulje ponaša povećanjem reda polinoma? Što se događa s pogreškom interpolacije?

Zadatak 2 bod.: /2

U tablicu 2 unesite grafičke prikaze mjerenja fizikalne veličine otpora R s paralelnim prikazom izračunate temperature dobivene na vježbi.

Tablica 2: Grafički prikaz otpora i temperature.

	Dvožično mjerenje		Četverožičn	no mjerenje
	Prvog reda	Višeg reda	Prvog reda	Višeg reda
Slika odziva	<u>Q</u>	Q	Q	9

Komentirajte razlike u odzivima sondi. Je li linearizacija utjecala na mjerenje i ako je kako? Komentirajte opravdanost linearizacije KTY81/210 sonde.

Ukratko objasnite princip rada četverožičnog mjerenja otpora. Komentirajte razliku između dvožičnog i četverožičnog mjerenja sondom KTY81/210. Je li četvereožično mjerenje napravilo znatnu razliku? Ako je objasnite zašto. Je li, i u kojim slučajima, opravdano koristiti četverožično mjerenje s KTY81/210 sondom? Kakvo bi mjerenje koristili s ovom sondom u slučaju da znate da je otpor prijenosnih žica 4 Ω ? Obrazložite svoj odgovor.

Zadatak 3 bod.: /2

Ovaj zadatak provodite s podacima dobivenim četverožičnim i dvožičnim mjerenjem uz relaciju pretvorbe predstavljenu polinomom višeg reda. Potrebno je korištenjem postupka opisanoga u pripremi provesti identifikaciju prijenosne funkcije za ovaj senzor. U tablice upišite ulazne podatke u procesu identifikacije mjerenja (podaci u prozoru "Analysis") i koeficijente najbolje identificirane funkcije.

Tablica 3: Ulazni podatci u procesu identifikacije mjerenja.

Podatak	Dvožično mjerenje	Četverožično mjerenje
Input value start		
Input value end		
Input time		

Parametar	Dvožično mjerenje	Četverožično mjerenje
K		
D		
Z		
T1		
T2		
Т3		

Tablica 4: Parametri identificiranog sustava.

Tablica 5: Odzivi stvarnog i identificiranog sustava.

	Dvožično mjerenje	Četverožično mjerenje
Slika odziva	Q	9
Greška		

Komentirajte proces identifikacije i odziv sustava. Objasnite strukturu sustava i identificirane parametre prijenosne funkcije s obzirom na konstrukcijske karakteristike senzora (pojasnite zašto jeste odnosno niste koristili pojedine komponente pri modeliranju sustava). Ima li razlike u parametrima četverožičnog i dvožičnog sustava.

Zaključak

Napišite kratak osvrt na KTY81/210 sondu. Koje su njene prednosti i mane? Navedite primjer u kojem biste za mjerenje temperature iskoristili KTY81/210 sondu.

2 Naponski termometar LM35

Zadatak 1 bod.: /1

Navedite korištenu relaciju pretvorbe temperature $T[^{\circ}C] = K \cdot (U)[V]$. S obzirom da je senzor linearan potrebno je upisati samo jedan koeficijent pretvorbe.

Tablica 6: Koeficijent korišten za pretvorbu napona u temperaturu.

Koeficijent pretvorbe napona (K)

Zašto je ovaj senzor linearan? Zašto se za mjerenje koristi napon umjesto otpora? Možemo li ovaj senzor smatrati aktivnim ili pasivnim?

Zadatak 2 bod.: /2

U tablicu 7 unesite grafičke prikaze mjerenja fizikalne veličine napona U s paralelnim prikazom izračunate temperature dobivene na vježbi.

Tablica 7: Grafički prikaz mjerenja napona i temperature.

Slika odziva 🛭 🛭

Komentirajte odziv sonde. Usporedite odziv ove sonde s drugim odzivima dobivenim na laboratoriju.

Zadatak 3 bod.: /2

Potrebno je korištenjem postupka opisanoga u pripremi provesti identifikaciju prijenosne funkcije za ovaj senzor. U tablice upišite ulazne podatke u procesu identifikacije mjerenja (podaci u prozoru "Analysis") i koeficijente najbolje identificirane funkcije.

Tablica 8: Ulazni podatci u procesu identifikacije mjerenja.

Podatak	Vrijednost
Input value start	
Input value end	
Input time	

Tablica 9: Parametri identificiranog sustava.

Parametar	Vrijednost
K	
D	
Z	
T1	
T2	
Т3	

Tablica 10: Odzivi stvarnog i identificiranog sustava.

Slika odziva	9
Greška	

Komentirajte proces identifikacije i odziv sustava. Objasnite strukturu sustava i identificirane parametre prijenosne funkcije s obzirom na konstrukcijske karakteristike senzora (pojasnite zašto jeste odnosno niste koristili pojedine komponente pri modeliranju sustava).

Zaključak

Napišite kratak osvrt na LM35 sondu. Koje su njene prednosti i mane? Po čemu se ona razlikuje od ostalih sondi korištenih u vježbi. Navedite primjer u kojem biste za mjerenje temperature iskoristili LM35 sondu.

3 Otpornički termometar NTCLE100E3102GB0

Zadatak 1 bod.: /1

Navedite korištenu relaciju pretvorbe temperature $T [^{\circ}C] = f(R) [\Omega]$ s polinomom prvog reda i višeg reda (naznačiti iznos višeg reda u formular). Izraz zapisati u formatu $f(R) = p_1 * R^n + p_2 * R^{n-1} + \cdots + p_n * R + p_{n+1}$. Koristite relacije izvedene za potrebe pisanja pripreme.

Tablica 11: Relacije korištene za pretvorbu otpora u temperaturu.

Red korištenog polinoma	Relacija $f(R)[\Omega]$	Greška
prvi red		
viši red		

Na jednu sliku iscrtajte ovisnost mjerene temperature i otpora za podatke iz datasheeta, polinom prvog reda i za korišteni polinom višeg reda. Vodite računa da osi budu označene (naredbe xlabel i ylabel) te da bude prikazana legenda (naredba legend). Obratite pažnju da prilikom iscrtavanja polinoma višeg reda vrijednosti otpora za iscrtavanje uzimate s rezolucijom od 1 Ω .

Slika ovisnosti temperature o otporu

Komentirajte rezultate. Je li opravdano koristiti polinom višeg reda naspram linearne interpolacije? Kako se izgled krivulje ponaša s povećanjem reda polinoma? Što se događa s pogreškom interpolacije? Kako bi vi predstavili karakteristiku ovog senzora kada bi mogli slobodno birati način parametriranja krivulje senzora?

Zadatak 2 bod.: /2

U tablicu 12 unesite grafičke prikaze mjerenja fizikalne veličine otpora R s paralelnim prikazom izračunate temperature dobivene na vježbi.

Tablica 12: Grafički prikaz otpora i temperature.

	Dvožično mjerenje		Četverožičn	no mjerenje
	Prvog reda	Višeg reda	Prvog reda	Višeg reda
Slika odziva	9	9	<u>Q</u>	Q

Komentirajte razlike u odzivima sondi. Je li linearizacija utjecala na mjerenje i ako je kako? Komentirajte opravdanost linearizacije NTCLE sonde. Vidi li se u odzivu utjecaj pogreške interpolacije?

Komentirajte razliku između dvožičnog i četverožičnog mjerenja sondom NTCLE. Je li četvereožično mjerenje napravilo znatnu razliku? Ako je objasnite zašto. Je li, i u kojim slučajima, opravdano koristiti četverožično mjerenje s NTCLE sondom? Kakvo bi mjerenje koristili s ovom sondom u slučaju da znate da je otpor prijenosnih žica 4Ω . Obrazložite svoj odgovor.

Zadatak 3 bod.: /2

Ovaj zadatak provodite sa podacima dobivenim četverožičnim i dvožičnim mjerenjem uz relaciju pretvorbe predstavljenu linearnim polinomom. Potrebno je korištenjem postupka opisanoga u pripremi provesti identifikaciju prijenosne funkcije za ovaj senzor. U tablice upišite ulazne podatke u procesu identifikacije mjerenja (podaci u prozoru "Analysis") i koeficijente najbolje identificirane funkcije.

Tablica 13: Ulazni podatci u procesu identifikacije mjerenja.

Podatak	Dvožično mjerenje	Četverožično mjerenje
Input value start		
Input value end		
Input time		

Parametar	Dvožično mjerenje	Četverožično mjerenje
K		
D		
Z		
T1		
T2		
Т3		

Tablica 14: Parametri identificiranog sustava.

Tablica 15: Odzivi stvarnog i identificiranog sustava.

	Dvožično mjerenje	Četverožično mjerenje
Slika odziva	Q	Q
Greška	0.95239	0.6876

Komentirajte proces identifikacije i odziv sustava. Objasnite strukturu sustava i identificirane parametre prijenosne funkcije s obzirom na konstrukcijske karakteristike senzora(Pojasnite zašto jeste odnosno niste koristili pojedine komponente pri modeliranju sustava).

Zaključak

Napišite kratak osvrt na NTCLE sondu. Koje su njene prednosti i mane? Navedite primjer u kojem biste za mjerenje temperature iskoristili NTCLE sondu. Postoji li neka primjena za koju nelinearnost NTC sonde ne predstavlja veliku manu?

4 Otpornički termometar PT100

Zadatak 1 bod.: /1

Navedite korištenu relaciju pretvorbe temperature $T [^{\circ}C] = f(R) [\Omega]$ s polinomom prvog reda i višeg reda (naznačiti iznos višeg reda u formular). Izraz zapisati u formatu $f(R) = p_1 * R^n + p_2 * R^{n-1} + \cdots + p_n * R + p_{n+1}$. Koristite relacije izvedene za potrebe pisanja pripreme.

Tablica 16: Relacije korištene za pretvorbu otpora u temperaturu.

Red korištenog polinoma	Relacija $f(R)[\Omega]$	Greška
prvi red		
viši red		

Na jednu sliku iscrtajte ovisnost mjerene temperature i otpora za podatke iz datasheeta, polinom prvog reda i za korišteni polinom višeg reda. Vodite računa da osi budu označene (naredbe xlabel i ylabel) te da bude prikazana legenda (naredba legend). Obratite pažnju da prilikom iscrtavanja polinoma višeg reda vrijednosti otpora za iscrtavanje uzimate s rezolucijom od 1 Ω .

Slika ovisnosti temperature o otporu

Komentirajte rezultate. Je li opravdano koristiti polinom višeg reda naspram linearne interpolacije? Kako se izgled krivulje ponaša povećanjem reda polinoma? Što se događa s pogreškom interpolacije?

Zadatak 2 bod.: /2

U tablicu 17 unesite grafičke prikaze mjerenja fizikalne veličine otpora R s paralelnim prikazom izračunate temperature dobivene na vježbi.

Tablica 17: Grafički prikaz otpora i temperature.

	Dvožično mjerenje		Četverožično mjerenje	
	Grijanje	Hlađenje	Grijanje	Hlađenje
Slika odziva	Q	0	O	Q

Komentirajte razlike u odzivima sondi. Zašto je odziv sonde u pećnici tako spor a u vodi brz? Koji zaključak iz toga izvodite o stvarnoj upotrebi sonde?

Komentirajte razliku između dvožičnog i četverožičnog mjerenja sondom PT100. Je li četvereožično mjerenje napravilo znatnu razliku? Ako je objasnite zašto. Je li, i u kojim slučajima, opravdano koristiti četverožično mjerenje s PT100 sondom? Kakvo bi mjerenje koristili s ovom sondom u slučaju da znate da je otpor prijenosnih žica $4\ \Omega$. Obrazložite svoj odgovor.

Zadatak 3 bod.: /2

Ovaj zadatak provodite sa podacima dobivenim četverožičnim uz relaciju pretvorbe predstavljenu linearnim polinomom. Potrebno je korištenjem postupka opisanoga u pripremi provesti identifikaciju prijenosne funkcije za ovaj senzor. U tablice upišite ulazne podatke u procesu identifikacije mjerenja (podaci u prozoru "Analysis") i koeficijente najbolje identificirane funkcije.

Tablica 18: Ulazni podaci u procesu identifikacije mjerenja.

Podatak	Grijanje	Hlađenje
Input value start		
Input value end		
Input time		

Grijanje	Hlađenje
	Grijanje

Tablica 19: Parametri identificiranog sustava.

T3

Tablica 20: Odzivi stvarnog i identificiranog sustava.

	Grijanje	Hlađenje
Prikaz odziva	Q	<u> </u>
Greška		

Komentirajte proces identifikacije i odziv sustava. Objasnite strukturu sustava i identificirane parametre prijenosne funkcije s obzirom na konstrukcijske karakteristike senzora(Pojasnite zašto jeste odnosno niste koristili pojedine komponente pri modeliranju sustava).

Zaključak

Napišite kratak osvrt na PT100 sondu. Koje su njene prednosti i mane? Navedite primjer u kojem bi za mjerenje temperature iskoristili PT100 sondu.