Homework10

Patrick Foster

2025-04-06

Load packages

```
library(tidyverse)
library(tidyclust)
library(tidymodels)
library(embed)
library(ggrepel)
library(patchwork)
```

The 2022 ANES Pilot Study

PCA Analysis

```
library(doParallel)
cl <- makePSOCKcluster(parallel::detectCores(logical = FALSE))
registerDoParallel(cl)</pre>
```

Part A. Setup

```
data <- read_csv('https://gedeck.github.io/DS-6030/datasets/anes_pilot_2022_csv_20221214/anes_pilot_202
```

1.1 Identify the feeling thermometer questions

Here we can use the select function from dpylr to only select the columns we want to analyze. Here we want to remove the timing columns, the ord columns, and the columns that contain black and white.

```
ft <- data %>%
  select(caseid, starts_with('ft'), jan6therm) %>%
  select(-contains('timing')) %>%
  select(-contains('white'), -contains('black'))
```

1.2 Filter out NA

Since the NAs were recorded as negative values we can use base R, to subset the dataframe to only include positive values and input NA values on the negatives. Then we can use the <code>drop_na()</code> function to remove any rows that contain NA values.

```
ft[ft < 0] <- NA
ft <- ft %>%
  drop_na()
```

```
nrow(ft)
```

[1] 1565

We now have approximately 1560 rows with 16 feeling thermometer questions.

Part B PCA

Now we set up the PCA for the ft data.

```
pca_rec <- recipe(data=ft, formula = ~.) %>%
    update_role(caseid,new_role = "id") %>%
    step_normalize(all_numeric_predictors()) %>%
    step_pca(all_numeric_predictors())

ft_pca <- pca_rec %>%
    prep() %>%
    bake(new_data=NULL)
```

1.3 Create a Scree plot

```
explained_variance <- pca_rec %>%
  prep() %>%
  pluck('steps',2) %>%
  tidy(type='variance')

explained_variance %>%
  pivot_wider(id_cols="component", names_from="terms", values_from="value")
```

```
## # A tibble: 15 x 5
##
      component variance `cumulative variance` `percent variance`
##
                                           <dbl>
          <int>
                    <dbl>
                                                               <dbl>
                    5.63
                                            5.63
                                                              37.5
##
   1
              1
                   3.28
## 2
              2
                                            8.91
                                                              21.9
## 3
              3
                   1.30
                                           10.2
                                                               8.68
## 4
              4
                   0.739
                                           11.0
                                                               4.93
## 5
              5
                   0.698
                                           11.7
                                                               4.65
##
   6
              6
                   0.546
                                           12.2
                                                               3.64
##
   7
              7
                   0.478
                                           12.7
                                                               3.18
##
  8
              8
                   0.424
                                           13.1
                                                               2.83
##
  9
              9
                   0.377
                                           13.5
                                                               2.51
## 10
             10
                   0.356
                                           13.8
                                                               2.37
## 11
             11
                   0.311
                                           14.1
                                                               2.07
## 12
             12
                   0.287
                                           14.4
                                                               1.91
## 13
             13
                   0.249
                                           14.7
                                                               1.66
## 14
             14
                    0.194
                                           14.9
                                                               1.29
             15
## 15
                    0.127
                                           15.0
                                                               0.845
## # i 1 more variable: `cumulative percent variance` <dbl>
```

```
perc_variance <- explained_variance %>% filter(terms == "percent variance")
cum_perc_variance <- explained_variance %>% filter(terms == "cumulative percent variance")

ggplot(explained_variance, aes(x=component, y=value))+
   geom_bar(data = perc_variance, stat = "identity")+
   labs(x="Principal Component",y="Percent Variance")
```


An argument could be made for either 2 or 3 principal components, I am going to use 2 principal components in order as there is a definite "elbow" located there. After three principal components the amount of variance is fairly constant and small.

1.4 Create A bi-plot

```
loadings <- pca_rec %>%
  prep() %>%
  pluck("steps",2) %>%
  tidy(type = "coef") %>%
  pivot_wider(id_cols = "terms", names_from = "component", values_from = "value")

loadings %>%
  select("terms","PC1","PC2") %>%
  arrange(desc(PC1))
```

```
## # A tibble: 15 x 3
##
      terms
                   PC1
                            PC2
##
      <chr>
                  <dbl>
                          <dbl>
##
    1 ftbiden
                0.364
                         0.0806
##
    2 ftdem
                0.359
                         0.0603
    3 ftjourn
                0.333
                       -0.0274
##
##
    4 ftfem
                0.325
                       -0.0202
##
    5 fttrans
                0.304
                       -0.0782
##
    6 ftfbi
                0.283
                       -0.0637
    7 ftteach
                0.278 -0.170
```

```
8 fthisp
                0.163 -0.377
##
   9 ftwomen
               0.163 -0.365
## 10 ftasian
                0.131 - 0.393
                0.0243 -0.431
## 11 ftmen
## 12 ftnfem
               -0.136 -0.318
## 13 ftscotus -0.156 -0.308
## 14 ftrep
               -0.257 -0.296
## 15 fttrump -0.306 -0.225
scale <-15
ggplot(ft_pca, aes(x=PC1, y=PC2))+
  geom_point(color= "darkgrey")+
  geom_segment(data=loadings,
               aes(xend=scale*PC1, yend=scale*PC2,x=0,y=0),
               arrow = arrow(length = unit(.15, "cm")))+
  geom_label_repel(data=loadings,
             aes(x=scale*PC1,y=scale*PC2,label=terms),
             size = 3, max.overlaps = 20)+
  labs(title = "PCA Biplot")
```

PCA Biplot

1.5 Interpret the two components.

Component 1 seems to be the traditional left-right partisan split on the Us electorate, The ftbiden, ftdem, ftfem, are all the most positive PC1, whereas the fttrump and ftrep are the most negative values of PC1. PC2 is harder to quantify.

```
loadings %>%
  select("terms","PC1","PC2") %>%
  arrange(desc(PC2))
## # A tibble: 15 x 3
##
      terms
                   PC1
                           PC2
##
      <chr>
                 <dbl>
                         <dbl>
##
   1 ftbiden
               0.364
                        0.0806
## 2 ftdem
               0.359
                       0.0603
## 3 ftfem
               0.325 - 0.0202
## 4 ftjourn
               0.333 -0.0274
## 5 ftfbi
               0.283 -0.0637
               0.304 -0.0782
## 6 fttrans
##
   7 ftteach
               0.278
                      -0.170
## 8 fttrump
              -0.306 -0.225
## 9 ftrep
               -0.257 -0.296
## 10 ftscotus -0.156 -0.308
## 11 ftnfem
               -0.136
                      -0.318
## 12 ftwomen
              0.163 -0.365
## 13 fthisp
               0.163 -0.377
## 14 ftasian
               0.131 - 0.393
## 15 ftmen
               0.0243 - 0.431
```

Looking at the values of PC2 arranged in descending order it seems that PC2 is more of a distinguisher of group types, where we see that the most negative values are women, hisp, asian, and men.

Part C. Explore the dataset

1.6 Map respondents profile

```
ft_profile <- data %>%
  select(caseid,gender,educ,marstat)
ft_profile <- ft_profile %>%
 mutate(
    gender = factor(gender,levels = c(1,2),labels = c("Male", "Female")),
    educ = factor(educ,levels=c(1,2,3,4,5,6),labels = c("No Hs","High School Graduate", "Some College",
    marstat = factor(marstat, levels = c(1,2,3,4,5,6),labels=c("Married", "Seperated", "Divorced", "Widowe
 )
head(ft_profile)
## # A tibble: 6 x 4
##
     caseid gender educ
                                         marstat
##
      <dbl> <fct> <fct>
                                         <fct>
## 1
          1 Male
                   2-Year
                                         Divorced
## 2
          2 Female Post Grad
                                         Divorced
## 3
          3 Male
                                         Divorced
                   4-Year
## 4
          4 Male
                   High School Graduate Married
          5 Female 4-Year
## 5
                                         Married
          6 Female Post Grad
                                         Never Married
ft_pca <- ft_pca %>%
  inner_join(ft, by = "caseid")
```

```
ft_profile <- ft_profile %>%
  inner_join(ft_pca, by="caseid")
head(ft_profile)
## # A tibble: 6 x 24
##
   caseid gender educ
                               marstat
                                          PC1
                                                 PC2
                                                        PC3
                                                                PC4
                                                                        PC5 fthisp
##
     <dbl> <fct> <fct>
                                                                      <dbl> <dbl>
                               <fct>
                                        <dbl> <dbl> <dbl>
                                                              <dbl>
## 1
         1 Male
                  2-Year
                               Divorc~ -4.52
                                               2.28
                                                      0.157 0.121 -1.13
## 2
                                                                                74
         2 Female Post Grad
                               Divorc~ -1.71 -3.00 -1.01 -1.62
                                                                     0.575
## 3
         3 Male
                  4-Year
                               Divorc~ -0.597 0.738 -1.64
                                                             0.0361 0.290
                                                                                51
## 4
         4 Male
                  High School~ Married 3.14 0.259 0.904 -1.08
                                                                     0.0360
                                                                               87
## 5
         5 Female 4-Year
                               Married 4.54 -1.49 -0.146 0.105
                                                                     0.154
                                                                               100
                               Never ~ 2.92
                                              0.310 1.31
## 6
         6 Female Post Grad
                                                             0.973 -0.283
                                                                               100
## # i 14 more variables: ftasian <dbl>, ftfbi <dbl>, ftscotus <dbl>,
      fttrump <dbl>, ftbiden <dbl>, fttem <dbl>, ftrep <dbl>, ftteach <dbl>,
      ftfem <dbl>, ftnfem <dbl>, ftjourn <dbl>, ftmen <dbl>, ftwomen <dbl>,
## #
      fttrans <dbl>
ft_profile %>%
 ggplot(aes(x=PC1,y=PC2))+
 geom_point(color = "darkgrey")+
  geom_density2d(aes(color=gender),linewidth=.6)+
 facet_wrap(~gender)+
 labs(title= "PC1 vs PC2 by Gender",
      x = "PC1 (Political Right vs Left)",
      y = "PC2 (Ideals vs Groups)")
```

PC1 vs PC2 by Gender

Here we see that in general the females are skewed more to the right of PC1, which is the political left, when compared to the Males. Also There is a distinct pull up on PC2 for males, which we determined was towards ideals vs groups.

PC1 vs PC2 by Education Level

It seems that as education level increases generally the groups skew more towards the political left.

PC1 vs PC2 by Marriage Status

Interestingly the married group has two distinct peaks, one for political left vs political right. The never married group has one peak it's pretty much right in the middle!

1.7 Gun Ownership and PCA Analysis

My hypothesis for gun ownership is that those who say that gun ownership rights are extremely important will have a very negative value of PCA 1, and a negative value of PCA2, so they will be on the political right and have stronger opinions on groups. Whereas the opposite will hold true for those who say it is not important at all.

Here we see that the political left vs political right is spot on. PCA 1 does a very good job at separating this classes. Those who classify Gun Ownership as "Extremely Important" are much more likely to have a lower PCA1 value when compared to those in the "Not at all important".

Clustering

Part A

2.1 Create a hierarchical clustering.

Using the code from class we can visualize the different clustering methods from hierarchical clustering.

```
get_hier_clust_fit <- function(linkage_method) {
   formula = ~.
    hier_ft <- hier_clust(linkage_method=linkage_method) %>%
        set_engine("stats") %>%
        set_mode("partition")
    hier_model <- hier_ft %>% fit(formula, data=ft)
    hier_model
}

par(mfrow=c(3, 1), mar=c(1, 1, 1, 1))
plot(get_hier_clust_fit("complete")$fit,
        main="Complete Linkage", xlab="", sub="", ylab="")
plot(get_hier_clust_fit("average")$fit,
        main="Average Linkage", xlab="", sub="", ylab="")
plot(get_hier_clust_fit("single")$fit,
```


Judging from the above graph I am going to choose the complete linkage for the balanced clustering. Now we can tune a model to choose the clustering depth.

```
formula <- (~.)
rec_ft <- recipe(formula,data=ft) %>%
  update_role(caseid,new_role = "id") %>%
  step_normalize(all_predictors())
hier_ft <- hier_clust(num_clusters = tune()) %>%
  set_engine("stats") %>%
  set_mode("partition")
hier_wf <- workflow() %>%
  add_recipe(rec_ft) %>%
  add_model(hier_ft)
registerDoSEQ()
folds <- vfold_cv(ft,v=2)</pre>
grid <- tibble(num_clusters=1:10)</pre>
result <- tune_cluster(hier_wf,resamples = folds,grid = grid,</pre>
                        metrics = cluster_metric_set(sse_within_total,silhouette_avg))
registerDoParallel(cl)
```

autoplot(result)

Here we see that the optimal number of clusters is 3.

2.2 k-means clustering

We are going to create a k-means cluster using the tidyclust package.

First we define a workflow.

```
formula <- (~.)

rec_ft <- recipe(formula,data=ft) %>%
    update_role(caseid,new_role = "id") %>%
    step_normalize(all_predictors())

kmeans_ft <- k_means(num_clusters=5) %>%
    set_engine("stats") %>%
    set_mode("partition")

kmeans_wf <- workflow() %>%
    add_recipe(rec_ft) %>%
    add_model(kmeans_ft)
```

Then we can fit the model.

```
kmeans_model <- fit(kmeans_wf, data = ft)</pre>
```

Now we can get the predicted cluster from the model.

```
ft_kmeans <- augment(kmeans_model,new_data = ft) %>%
select(caseid, .pred_cluster)
```

Here I join it to all the other data.

```
ft_kmeans <- ft_kmeans %>%
  inner_join(ft_profile,by="caseid")
head(ft_kmeans,3)
```

```
## # A tibble: 3 x 25
##
     caseid .pred_cluster gender educ
                                       marstat
                                                  PC1
                                                         PC2
                                                                PC3
                                                                        PC4
                                                                               PC5
##
      <dbl> <fct>
                         <fct> <fct> <fct>
                                                <dbl>
                                                       <dbl>
                                                              <dbl>
                                                                      <dbl> <dbl>
## 1
         1 Cluster_1
                         Male
                                 2-Year Divorc~ -4.52
                                                       2.28
                                                              0.157
                                                                     0.121
## 2
         2 Cluster 2
                         Female Post ~ Divorc~ -1.71 -3.00 -1.01 -1.62
                                                                             0.575
## 3
                               4-Year Divorc~ -0.597 0.738 -1.64
          3 Cluster 3
                         Male
                                                                     0.0361 0.290
## # i 15 more variables: fthisp <dbl>, ftasian <dbl>, ftfbi <dbl>,
      ftscotus <dbl>, fttrump <dbl>, ftbiden <dbl>, ftdem <dbl>, ftrep <dbl>,
## #
      ftteach <dbl>, ftfem <dbl>, ftnfem <dbl>, ftjourn <dbl>, ftmen <dbl>,
      ftwomen <dbl>, fttrans <dbl>
```

Now we can plot the PC1/PC2 scatter and see the cluster groupings.

PC1 vs PC2 with k-means clustering

Here we see that the clusters are definitely separating along some line. They have different clusters for different areas of the scatter plot. The clusters seem to further divide the political spectrum along the PC1/PC2 Axis. Into a Far Right, Middle Right, True Moderate, Middle Left, and Far left.

• Cluster1 : Orange : True-Moderate

• Cluster2 : Yellow : Middle-Right

• Cluster3 : Green : Far-Left

• Cluster4 : Blue : Far-Right

• Cluster5 : Purple: Middle-Left

For further analysis we can create a new variable Cluster with this factor in mind.

```
ft_kmeans <- ft_kmeans %>%
  mutate(
    Cluster = factor(.pred_cluster,
    levels=c('Cluster_1','Cluster_2','Cluster_3','Cluster_4','Cluster_5'),
    labels=c("True-Moderate","Middle-Right","Far-Left","Far-Right","Middle-Left"))
  )

tidy(kmeans_model)
```

```
## # A tibble: 5 x 18
##
     fthisp ftasian
                     ftfbi ftscotus fttrump ftbiden
                                                       ftdem
                                                              ftrep ftteach
                                                                              ftfem
##
      <dbl>
              <dbl>
                     <dbl>
                               <dbl>
                                       <dbl>
                                                <dbl>
                                                       <dbl>
                                                              <dbl>
                                                                       <dbl>
```

```
## 1 -0.151 0.0330 -1.21
                             0.425
                                     1.12
                                            -1.14 -1.20
                                                           0.759
                                                                  -1.10 -1.11
                                                                   0.232 -0.355
## 2 0.475 0.502 -0.269
                             0.732
                                            -0.916 -0.771 0.895
                                     0.800
           -1.08
                             -0.349
## 3 -1.06
                   -0.225
                                    -0.184
                                            -0.155 -0.159 -0.262
                                                                  -0.575 - 0.301
     0.519 0.470
                    0.484
                             -0.921
                                    -0.992
                                             0.983 0.914 -1.04
                                                                   0.686 0.897
     0.299 0.221
                     0.918
                             0.623
                                    -0.146
                                             0.745 0.740 0.224
                                                                   0.489 0.447
## # i 8 more variables: ftnfem <dbl>, ftjourn <dbl>, ftmen <dbl>, ftwomen <dbl>,
       fttrans <dbl>, size <int>, withinss <dbl>, cluster <fct>
```

In order to create the Parallel Coordinate plot we have to use the tidy command on the kmeans_model. In order to better vizualize the class seperations I ordered the feeling thermometers by PC1.

```
tidy(kmeans_model) %>%
  pivot_longer(-c(cluster,size,withinss)) %>%
left_join(loadings %>% select(terms,PC1), by = c("name"="terms")) %>%
mutate(name=fct_reorder(name,PC1)) %>%
ggplot(aes(x = name, y = value, group = factor(cluster), color = factor(cluster))) +
geom_point() +
geom_line() +
labs(
    title = "Mean Cluster Value, ordered by PC1",
    x = "Feeling Thermometer Variable",
    y = "Value at Cluster Center",
    color = "Cluster"
) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Mean Cluster Value, ordered by PC1

Here we see that the cluster do tend to help separate on the political spectrum.

C Explore the Dataset

2.3 Characterize the clusters

```
ft_kmeans %>%
  ggplot(aes(x=gender, fill = Cluster))+
  geom_bar(position = "fill")+
  labs(
    title = "Cluster Distribution by Gender",
    x="Gender",
    fill = "Cluster",
    y="Proportion"
)
```

Cluster Distribution by Gender

This tends to agree with what I saw in 1.6. Females tend to be more left-leaning than men, their is a higher proportion of Left/Middle-Left women than men.

```
ft_kmeans %>%
  ggplot(aes(x=educ, fill = Cluster))+
  geom_bar(position = "fill")+
  labs(
    title = "Cluster Distribution by Education Level",
    x="Education Level",
    fill = "Cluster",
    y="Proportion"
)+
  theme(axis.text.x = element_text(angle=45, hjust =1))
```


Education Level

This also agrees with 1.6. The Far-Left definitely increases as education increases.

```
ft_kmeans %>%
  ggplot(aes(x=marstat, fill = Cluster))+
  geom_bar(position = "fill")+
  labs(
    title = "Cluster Distribution by Marriage Status",
    x="Marriage Status",
    fill = "Cluster",
    y="Proportion"
)+
  theme(axis.text.x = element_text(angle=45, hjust =1))
```


These clusters seem to be agreeing with what I saw in 1.6. It was harder to make seperations based on Marriage staus, however the married couples seem to have a fairly even split across all ideologies. The never married seem to have fewer far-right people.

2.4 Gun Ownership Clustering

```
ft_kmeans %>%
  left_join(guns, by="caseid") %>%
  ggplot(aes(x=gunown, fill = Cluster))+
  geom_bar(position = "fill")+
  labs(
    title = "Cluster Distribution by Gun Ownserhsip Importance",
    x="Marriage Status",
  fill = "Cluster",
    y="Proportion"
)+
  theme(axis.text.x = element_text(angle=45, hjust =1))
```


Here it is even more clear that the distributions support the conclusions from 1.7. The Far-Right/Right Finds Gun Ownership to be extremely important. Of the people who say it is "not at all important", the far-left are the majority by far.

stopCluster(cl)
registerDoSEQ()