$f_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	٤ 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}{}_+\alpha\beta$	0	0	0	0	0	0	0
$\omega_1^{\#_2}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} +^{\alpha\beta}$	$f_1^{\#1} + \alpha \beta$	$\omega_1^{\#1} +^\alpha$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{lpha}$

 $f_{0+}^{\#1} \dagger \sqrt{2} kt_3$

 $f_{0+}^{\#1}$

 $-i\sqrt{2}kt_3$

 $2k^2t_3$

 $f_{0+}^{#2} \omega_{0-}^{#1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\sharp 1} \dagger^{\alpha \beta}$	0	0	0
$f_{2+}^{#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1$

$f_{0}^{#2}$		()		0		0	0					$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	0
$\omega_0^{\#1}$	+	()		0		0	0					$\tau_0^{\#2}$	0	0	0	0
	#	1	1	1	3	Ж	(n	m	2	2	25	$\tau_0^{\#1}$	$i \sqrt{2} k $ (1+2 k^2) ² t_3	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
aints				0 :	2α == 0									$\frac{1}{t_3} - \frac{i}{(1+t_3)^2}$	t ₃ (1+2)		
Source constraints	reps			$\sigma_0^{\#}$	$2ik \sigma_{1}^{\#2}$	0		0 =	0 ==	0 ==	0 ==		$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2}t$	0	0
ource	SO(3) irreps	$\sigma_{0}^{\#1} == 0$	$\tau_0^{\#2} == 0$	$\tau_0^{\#1}-2\bar{\imath}k$	$\tau_{1}^{\#2\alpha}$ +	$t_1^{\#1}\alpha ==$		$\tau_1'' + \cdots =$		$\tau_2^{\#1}\alpha\beta =$		Total #:		$\sigma_{0}^{\#1} + \frac{1}{2}$		$\tau_{0}^{\#2} +$	$\sigma_{0}^{\#1}\dagger$
S	Š	$\mathcal{J}_{\mathcal{O}}$	$ au_0^{\#}$	$\mathbf{t}_0^{\#}$	$ au_1^{\sharp}$	1,1	' ^{**}	,	P	[‡] 2	ρ,	ΙĔ		<i>P</i>	, T	1	Р

?	
? / Quadratic pole	
$\stackrel{k^{\mu}}{\longrightarrow}$ Pole residue:	$-\frac{1}{r_1(r_1+r_5)(2r_1+r_5)p^2}$
Polarisations:	2
?	

Unitarity conditions

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$

(No massive particles)