

I.2 Principe de la numérisation

- Tout signal peut être décomposé en une somme de signaux sinusoïdaux de fréquences multiples par une transformation de *Fourier*
- Le spectre des fréquences des composantes sinusoïdales forme la bande passante du signal
- Un encodeur contient deux circuits :
 - Un filtre passe-bas (élimine les hautes fréquences inutiles)
 - Un convertisseur analogique numérique (échantillonneur/ quantifieur)

a) Echantillonnage, Prélever n échantillons à intervalles Te (période d'échantillonnage) d'un signal analogique s(t) pour générer un signal échantillonné noté s*(t), Signal analogique Impulsions de Dirac Fréquence d'échantillonnage: Nombre d'échantillons par unité de temps Fe=1/Te (Si l'unité de temps est en seconde, la fréquence d'échantillonnage est en hertz).

- Erreur de quantification
- L'amplitude est représentée par un nombre fini de bits d'où une perte d'information appelé *erreur de quantification*
- $^{\circ}$ L'erreur de quantification est égale au plus à $\frac{q}{2}$
- L'erreur varie entre chaque échantillon d'où le terme de bruit de quantification
- Le spectre dynamique du signal est égal à:

$$D = 20 \times \log \left(V \frac{max}{V min} \right) dB$$

7

C'est le fait de transformer en binaire la valeur discrète obtenue

Codes à longueur fixe/variable: Généralement, on utilise un nombre de bits *n* fixe pour représenter tous les éléments du code. D'autres techniques, assimilable à la compression de données, emploient des codes de longueur *n* variable.

I.3 Méthodes de numérisation,

a) Modulation MIC (PCM: pulse code modulation), consiste à coder sur *n* bits chaque valeur mesurée de la donnée de quantification.

Exemple 1: Déterminer le nombre de bits nécessaires pour numériser la voix humaine avec F_{max} =4000Hz et le codage sur 8bits.

Solution: * Si on prend 4000Hz comme fréquence maximale à reproduire, la fréquence d'échantillonnage minimale est de : $F_e \ge 2.F_{max} = 2 \times 4000 = 8000$ Hz (8000éch/s) et $Te=125 \mu s(1/8000)$

* En codant chaque échantillon sur 8 bits il est nécessaire d'écouler : 8000×8 = 64000 bits sur le lien. Ce qui correspond à un débit de 64kb/s

Modulation MIC

- Bande passante du réseau téléphonique public: 200 à 3,4k Hz
- Le codage est de 7/8 bits (US/Europe) par échantillons pour un débit de 56/64 kbps
- Il est définie dans la norme de l'ITU-T G.711.
- On utilise un compresseur pour rendre les intervalles de quantification non linéaires (l'oreille a une sensibilité logarithmique)
- The Deux méthodes de compression-expansion: μ-law (USA) et A-law (Europe)

b) Modulation Delta: consiste à monter d'un pas de quantification vers le haut si le niveau est au-dessous de la courbe analogique, vers le bas dans le cas contraire. Le codage résultant: transition si on change de sens, sinon pas de transition.

Exemple 2: Soit les données analogiques suivantes à coder sur 4 bits (lignes verticales-instants d'échantillonnage).

- 1)Quelle est la séquence binaire en utilisant le codage Delta.
- 2)Déduire le taux de compression obtenu par rapport au codage MIC.

c. Codage prédictive,

Principe: Prédire une valeur ensuite quantifier uniquement la différence (de manière non uniforme) entre la valeur prédite (état futur) et la valeur réelle.

Q: Quantificateur **Q**-1: Quantificateur inverse

Q . Quantificateur inverse

On prédit les valeurs futures d'après l'observation des valeurs passées

On peut réaliser une prédiction:

- Intra: au sein d'une même séquence,
- Inter: en utilisant la corrélation forte entre les séquences successives.

Algorithme: Codage prédictive

- 1. Calculer la différence entre le signal d'entrée x et une valeur de prédiction p.
- 2. p est une combinaison linéaire de x et de ses prédécesseurs.
- 3. Différentes combinaisons existent pour déterminer la valeur de prédiction *p*.
- 4. Si x_i est l'échantillon considéré alors p peut être défini par x_{i-1} , x_{i-2} , $x_{i-1} + x_{i-2} + x_{i-3}$, $x_{i-1} + (x_{i-2} x_{i-3})/2$, $(x_{i-1} + x_{i-2})/2$ (Cette valeur de prédiction est connue du décodeur).
- 5. L'erreur « x-p » est ensuite quantifiée à l'aide d'un vecteur de quantification et on obtient e_a . On code alors en mots binaires ces valeurs par indexation.
- 6. On reconstruit simplement la valeur codée en ajoutant $\boldsymbol{e_q}$ à la valeur de prédiction.

	Erreur de prédiction	Valeur quantifiée de e : eq	Erreur de prédiction	Valeur quantifiée de e : e _q
	- 255 ≤ e ≤ -70	- 80	9 ≤ e ≤ 18	12
Exemple de table		- 58	19 ≤ e ≤ 32	25
de quantification:	$-49 \le e \le -33$	- 40	$33 \le e \le 47$	39
	-32 ≤ e ≤ - 19	- 25	$48 \le e \le 64$	55
	-18 ≤ e ≤ - 9	- 12	$65 \le e \le 83$	73
	$-8 \le e \le -3$	- 4	$84 \le e \le 104$	93
	-2 ≤ e ≤ 2	0	$105 \le e \le 127$	115
13	$3 \le e \le 8$	4	128 ≤ e ≤ 255	140

Codage prédictive,

La forme la plus simple du codage prédictif est la Modulation Delta ou « linéaire Modulation ». Le prédicteur est une fonction dépendant simplement de la valeur de la donnée précédente, et on utilise un quantificateur sur 1 bit ce qui permet une représentation sur 1 bit du signal.

Exercice

Si l'on considère que la valeur de prédiction pour l'indice i est obtenue par $p = (x_{i-1} + x_{i-2}) / 2$ pour i > 2. Si i = 2 ($2^{\text{éme}}$ échantillon) $p = x_1$ et x_1 est transmis tel quel. On utilise la table de quantification précédente, la transmission des indexes est codée sur 4 bits. *Vecteur original*

100 102 106 92 98 100 104 100 70 80 92 98 72

- 1) Calculer le vecteur de prédiction avec les règles énoncées plus haut.
- 2) Calculer le vecteur d'erreurs de prédiction.
- 3) Quantifier le vecteur d'erreurs de prédiction à l'aide la table précédente.
- 4) Reconstruire le signal (en arrondissant à l'entier supérieur). Quelle est l'erreur moyenne?

14

II. Composant Audio,

II.1 Concepts,

■ Le son est une **somme de vibrations**, produites par des cordes vocales, un haut-parleur, etc...

Vibrations sonores

- Ces vibrations ont une fréquence, mesurée en Hertz
- L'oreille humaine est un récepteur ne percevant que certaines fréquences : la bande 20Hz – 20Khz
- Les vibrations sont codées dans un fichier par une suite de 0 et 1.
 - -Codage Audio très volumineux : 1 min de CD Audio = 8,5Mo!
- Codage son WAV (1min, F_{ech} =44,1KHz, Résolution=16bits) =5.3Mo (88Ko/s)
- 15
- Codage Audio avec **compression**: 1 min de MP3 = 1Mo

II.2 Caractéristiques Audio

- Deux types de signaux audio :
 - *Parole* : utilisée dans le téléphone, le vidéo-téléphone, etc.
 - Musique : utilisée dans le CD audio, la télévision, la vidéo
- Bande passante :
 - *Parole*: 50 à 10k Hz
 - *Musique* : 15 à 20k Hz
- Nombre de bits nécessaires à la quantification pour avoir une dynamique suffisante :
 - Parole: 12 bits
 - Musique: 16 bits
- La stéréophonie nécessite un débit (bit rate) double

II.3 Compression du son,

- i. Supprimer les hautes fréquences quasiment inaudibles
- ii. Supprimer les vibrations parasites
- iii. Diminuer la fréquence d'échantillonnage
 - Diminue fortement le rendu sonore

© Solution, le VBR (Variable Bit Rate): la fréquence d'échantillonnage s'adapte au son.

17

Le débit est différent à chaque instant

II.4 Mesure de qualité du son,

- Eréquence d'échantillonnage,
 - Entre 8KHz et 44KHz
- Résolution sonore = précision de l'échelle de mesure d'un échantillon, = 8, 16 ou 32 bits
- Stéréophonie = Son mono, full stéréo, joint stéréo...
- Débit audio = représentatif de la qualité sonore,.
 - Mesuré en **Kbit/s**

Qualité du son	Débit binaire	
Qualité CD	1440 Kbit/s	
Fichier MP3 compressé au minimum	320 Kbit/s	
Qualité correcte au format MP3	128 ou 192 Kbit/s	
Fichier MP3 compressé au maximum	64 Kbit/s	
Son de qualité téléphonique	32 Kbit/s	

9

II.4 Autres concepts,

**Le Streaming

- Utilisé principalement par les Webradios
- Permet la diffusion et l'écoute d'un flux direct audio ou vidéo (données brutes), stocké dans la mémoire vive.
- Fourni par des plateformes: QuickTime, RealPlayer, Windows media Player, Youtube, ...

Gestion des droits numériques (DRM: Digital Rights Management)

- Mesure technique basée sur le chiffrement des œuvres numériques.
- Limite la lecture et l'enregistrement des fichiers audio/vidéo.
- Utilisé sur les boutiques de musique en ligne (*iTunes*, *VirginMusic*).

II.5 Formats audio,

- ☑ Environ 50 formats audio plus ou moins utilisés.
- ☑ 98% des fichiers audio sont l'un de ces 8 principaux formats:

WAV - MID - MP3 - WMA - AAC - OGG - AIFF - RA

- 1) Format WAVE (.wav): Format « basique » développé par Microsoft
- ✓ Encodage et décodage immédiats, sans compression
 - ⊕ Qualité sonore incomparable
 - \oplus Compatible avec tous les lecteurs audio
 - ⊖ **Taille** des fichiers **très importante**. À ne pas utiliser pour la diffusion par Internet!
- 2) Format MIDI (.mid): (Musical Instrument Digital Interface)
- ✓ Pas de « son », mais une <u>succession de notes</u> (équivalent au son produit par un synthétiseur: note jouée, vélocité, durée, etc...).
- ✓ Son synthétisé par l'ordinateur et dépend de la qualité du matériel audio.
 - ⊕ Taille du fichier extrêmement réduite
 - O Impossibilité de retranscrire la voix dans ce format
- 3) Format MP3 (.mp3): Le format le plus répandu actuellement.
- ✓ Son **compressé** avec pertes (qualité sonore plus ou moins bonne selon le débit).
 - ⊕ Compatible avec presque tous les logiciels existants
 - ⊕ Idéal pour la diffusion libre par Internet
- 20
- O Pas de gestion des droits d'accès (DRM) et Pas de streaming

- 4) Format Windows Media Audio (.wma): Crée par Microsoft
 - ✓ Alternative au MP3, plus souple mais moins répandu.
 - ⊕ De nombreuses déclinaisons (Compressé, non compressé, avec ou sans DRM, streaming)
 - ⊕ Généralement adapté à la **diffusion par Internet** (selon les déclinaisons)
 - O Uniquement Compatible avec les logiciels Microsoft.
- 5) Format Advanced Audio Coding (.aac): Concurrent du WMA crée par Apple
 - ✓ Sa raison d'être : iPod et iTunes
 - ⊕ Son compressé mais de très bonne qualité
 - ⊕ Possibilité de DRM : technique Fairplay
 - O Compatible avec très peu d'applications
- 6) Format OGG Vorbis (.ogg): Amélioration du MP3
 - ✓ librement exploitable et entièrement gratuit.
 - ⊕ Bonne **compression**, très bonne qualité sonore
 - Θ Compatible avec très **peu d'applications**

- 7) Format Real Audio (.ra): Introduit par Real Media.
 - ✓ Uniquement destiné à la **diffusion par Internet**
 - ⊕ Bonne possibilité de **compression**
 - Θ Peu manipulable, **peu compatible** avec d'autres logiciels (à part RealPlayer)
- 8) Format CD Audio (.cda):
 - ✓ Uniquement utilisé sur les **CD Audio** pour représenter les pistes du CD.
 - ✓ Les pistes sont en fait au format WAV.
 - ⊕ Meilleure qualité possible, aucune compression
 - O Exploitable en lecture seulement
 - Θ Ce n'est pas un fichier. Un logiciel pour extraire le fichier WAV.

En résumé...

Nom	Taille de	Qualité	Compatibilité	Diffusion sur	Possibilité de	Possibilité
	fichier	sonore		Internet	streaming	de DRM
WAV	*	****	****	*	Non	Non
MID	****	*	***	***	Non	Non
MP3	***	***	***	****	Non	Non
WMA	****	***	***	****	Oui	Oui
AAC	**	***	*	**	Non	Oui
OGG	***	****	**	***	Oui	Non
RA	****	**	*	****	Oui	Non
CDA	*	****	*	0	Non	Non

III. Composant Image,

- ✓ Il existe une très grande diversité de formats d'images.
- ✓ Chaque logiciel ne peut traiter qu'un nombre limité de formats.
- ✓ Classé en deux grandes catégories :
 - o Images vectorielles ou vectorisées
 - o Images matriciel ou codées par points (codage Bitmap)

III.1 Images Vectorielles,

- Elles sont toujours nettes à l'impression (pas de taille définie)
- *Description géométrique* de l'image: des courbes mathématiques (dites de *Bézier* du nom du mathématicien qui les a inventées) ou des droites décrivant les formes élémentaires constituant l'image (carré, cercle,...).
- Chaque forme possède un certain nombre *d'attributs* (couleur, épaisseur du trait,...)
- les formes sont *éditables* (modifiables) : points, tangentes, couleur de fond, couleur de contour, style de contour, transparence..
- Stockage plus économique que celui d'une image par points.
- La taille du fichier varie en fonction de la complexité de l'image.
- *Codage* particulièrement *adapté* pour les *dessins techniques* (composés de formes géométriques ou de schémas).
 - © Les logos sont généralement réalisé sous forme vectorielles.
 - © Formats de fichiers-image vectoriels : AI, SVG, EPS, VML

24

III.2 Images codées par points,

a) Notions élémentaires,

🖎 Image codée par points ?

Réalité analogique

Représentation numérique

- Définition d'une image: représente le nombre de points (pixels) constituant l'image. C'est-à-dire sa « dimension informatique ».
 - o Une image possédant 640 pixels en largeur et 480 en hauteur aura *une définition de* 640 pixels par 480, notée 640×480.
 - o Les définitions courantes correspondent souvent aux résolutions des écrans (800×600, 1024×768: format 3/4, 1280×800: écran large 16/10, 1366×768:

HD 16/9, 3840×2160: 4K ou UHD).

1 image = 1 ensemble de pixels 1 pixel =1 valeur (ou plusieurs)

☒ Images sur écran

- Balayage à *trames* d'en haut à gauche jusqu'en bas à droite : balayage progressif
- © Chaque jeu complet de lignes horizontales est une image (frame)
- Le taux de *rafraîchissement* indique la fréquence de retraçage des lignes

➣ Format d'écran

- Le format (aspect ratio) est égal à la *largeur* de l'image visible à l'écran divisé par sa *hauteur*
- 👺 Écrans :
 - anciens: 4/3nouveaux: 16/9
- **Normes:
 - NTSC: USA (480 lignes visibles)
 PAL: GB (576 lignes visibles)
 CCIR: Allemagne (idem)
 SECAM: France (idem)

,

Résolution d'une image: Nombre de points par unité de surface, exprimé en points par pouce (PPP ou DPI pour Dots Per Inch).

- o Un pouce représentant 2.54 cm
- Une résolution de 300 DPI signifie 300 colonnes et 300 rangées de pixels sur un pouce carré -> 90000 pixels sur un pouce carré

Plus la trame est fine, plus la qualité de l'image restituée est bonne.

8DPI

16DPI

72DP1

Exercice: Soit une page A4 (21x29,7 cm) scannée en 360 dpi. Quelle sera la taille de l'image en pixels ?

Solution: Nombre de points en L=360*(21/2,54) = 2976 pixels, Nombre de points en H=360*(29,7/2,54) = 4209 pixels.

La page A4 en 360 dpi donnera donc une image de 2976 par 4209 pixels.

Qualité de l'image: Nombre de couleurs à coder dans l'image restituée. Le codage de chaque pixel se fait sur:

- o Un bit (noir et blanc)
- o 2 bits (quatre nuances de gris)
- 4 bits (16 couleurs)
- o 8 bits (256 couleurs)
- o 16 bits (65536 couleurs)
- o True color:
 - 24 bits (plus de 16 millions de couleurs)
 - Rajouter une information de transparence : 32 bits

Passage du bitmap au vectoriel: possible grâce à des algorithmes de vectorisation

Exemple: Soit une image, de dimension 640x480 pixels, codée en 256 couleurs. Quelle sera sa taille en octets?

Solution: Les 256 couleurs correspondent à 1 octet,

La taille en octets=640 * 480 * 1= 307200 Octets <> 300 Ko

_					
	b) Formats de fichiers,				
	Extension	Nombre de couleurs	Compression	Commentaires	
	BMP	16 M	Non	Format standard Windows	
	JPG	16 M	Oui	Format courant sur Internet	
	GIF	256	Oui	Permet les animations ainsi que le mode transparence. Très utilisé sur Internet	
	ICO	16 ou 256	Non	Format des icônes sous Windows	
	TIFF	16 M	Oui	Utilisé en gestion de document.	
	PCX	16 M	Non	Ancien format (Paintbrush)	
	PNG	16 M	Oui	Concurrent libre du Gif	
	TGA	16 M	Oui / Non	Haute qualité adapté aux cartes Targa	
	•••			·	
	Exemples de formats,				
	i. Format d'échange graphique GIF (Graphic Interchange Format),				
	• Format propriétaire (<i>Compuserve</i>).				
	 Stocke les images comme une séquence de pixel en valeur RGB. 				

i. Format GIF,

• Compressé avec l'algorithme LZW.

Chaque image est précédée

□ une définition d'écran□ et une échelle de couleur.

☐ d'une signature (no de version, etc.),

- Facilité d'emploi + largement diffusé
- Chaque image possède une palette de 256 couleurs maximum.
- Chaque pixel est codé par l'indexe de la couleur dans la palette.
- Permet de réaliser de courtes animations tournant en boucle
- ii. Format PNG (Portable Network Graphics),
 - Projet Norme internationale (W3C)
 - En plus de fonctionnalités de GIF, PNG devrait supporter:
 - des images en couleur vraie de plus de 48 bits/pixel
 - ☐ un canal de texte (masque transparent)
 - ☐ des infos sur le gamma de l'image
 - un affichage progressif rapide

GIF et PNG conviennent les images de type logo ou bande dessinée,

Gif animé

iii. Format TIFF (Tag Image File Format),

- Format propriétaire (Adobe).
- définit une séries de description de fichiers permettant la reconnaissance de la plupart des formats de données en deux dimensions.
- TIFF défini des types de classe selon les données numérisées.
- Des "marqueurs" (tags) privés peuvent être ajoutés pour définir des types d'image particuliers.
- iv. Format JPEG (Joint Photographic Expert Group standard),
 - Norme internationale
 - Format de compression variable avec ou sans perte d'information
 - Gains de place mémoire et de vitesse d'affichage (internet).

Privilégier pour des images de type photo

III.4 Codage des couleurs,

a) RGB,

- Sur les ordinateurs et en télévision on utilisera le plus souvent un codage RVB (Rouge, Vert, Bleu).
- Ces trois couleurs primaires permettent par synthèse additive la recomposition de toutes les couleurs visibles.

Couleurs primaires et secondaires: rouge, vert et bleu peuvent être mélangées pour produire cyan, magenta, jaune et blanc

- Le choix de trois couleurs primaires est un résultat du système visuel humain (Il y a trois types de cône: tri-stimulus).
- Pour des applications de vision industrielle (télédétection, classification,...), il est plus intéressant d'utiliser des systèmes de codage autres.

Système CIE RGB :

- Proposé par la Commission Internationale de l'Eclairage (1931).
- Fondé sur des expériences où on présente des stimulus de couleur à des personnes qui doivent égaliser les couleurs.
- L'ensemble de ces couleurs s'appelle diagramme de chromaticité.

 Diagramme de chromaticité est utilisé pour placer les points R, V, B correspondant aux trois primaires des systèmes de synthèse des couleurs. Seules les couleurs situées dans ce triangle peuvent être reconstituées. L'ensemble de ces couleurs s'appelle espace de

b) CMJN,

- En imprimerie, la synthèse des couleurs étant *soustractive*, on utilise les *trois primaires de la peinture* (Cyan, Magenta, Jaune) auxquels *on ajoute le Noir* (l'utilisation de ces 3 primaires ne donne pas un noir satisfaisant).
- On travaille alors en *quadrichromie*. Le codage de base est le plus souvent en 32 bits (4×8).
- Peu de logiciels permettent le codage des couleurs directement en CMJN (ex. Corel Draw)
- La conversion RVB vers CMJN peut réserver des surprises car certaines couleurs RVB ne pourront être correctement imprimées.

c) Système HLS (Hue/Saturation/Lightness)

- Représenté par un double cône dont la base est commune.
- Utilisé dans des logiciels de colorisation d'images et de 'retouche photographique'.
- Propriétés d'une couleur :
- **Luminance (Value): mesure l'énergie stimulant l'œil et variant sur une échelle de gris de noir à blanc et ne dépend pas de la couleur de la source (quantifiée avec l'axe central)
- **Solution of the second content of the seco
- **Saturation : mesure la force de la couleur, Représentée par une distance par rapport à l'axe central (décroit de la périphérie vers le centre).
- Chrominance = Nuance +Saturation

d) Espace XYZ:

- Fondé sur des valeurs virtuelle
- Idée de base: tous les couleurs peuvent être présentée par des valeurs positives

 \Rightarrow Y : luminosité \Rightarrow X et Z : couleur

e) Espace Lab:

- 🦄 fondé sur une étude de la vision humaine.
- Présente les couleurs réellement perçues par l'œil humain.
- Les couleurs sont définies par 3 valeurs
 ⇒L est la luminance, qui va de 0% (noir) à 100% (blanc)
 ⇒a* axe allant du vert (valeur négative) au rouge (positive)

⇒b* axe allant du bleu (négative) au jaune (valeur positive) L = 10 * sqrt(Y)

$$\begin{split} a &= 17.5*(\,(\,(\,1.02*X\,)\,\text{-}Y\,)\,/\,\,\text{sqrt}(Y\,)\,) \\ b &= 7*(\,(Y\,\text{-}(\,0.847*Z\,)\,)\,/\,\,\text{sqrt}(Y\,)\,) \end{split}$$

Deux couleurs proches en distance le sont aussi pour l'œil.

37

III.5 Images en 3D,

- Les images en 2D possèdent une représentation simple (bitmap ou vectoriel),
- Les images en 3D sont plus complexes à manipuler,
 - ⇒ Pas de *représentation standard*, à cause de la diversité des sources d'acquisition (scanneur 3D, modélisation 3D, imagerie médicale...).
 - ⇒ Le *passage* d'une représentation à une autre est *complexe*,
 - ⇒ Le *choix* de la forme de représentation doit être *judicieux* en fonction du domaine d'application.
- Les formes de représentation des objets 3D peuvent être classés en 2 catégories :
 - i. Représentations volumétriques (voxels),
 - ii. Représentations surfaciques (vertexs).

Représentation volumétrique

38

a) Représentations volumétriques: Connue sous le nom de reconstruction multiplanaire (MPR: multi-planar reconstruction), elles génèrent une approximation polyédrique (grille de voxels) d'un objet 3D.

> 🖎 Voxels: Grille uniforme d'échantillons volumétriques. L'acquisition se fait à l'aide de CT (CAT Scan), MRI, ...

- Empilement de coupes (images)
 - ⊕ Information globale, visualisation directe.
 - ⊕ Simple, rapide, parallélisable.
- O Compromis précision/complexité, transparence trompeuse.

- b) Approches surfaciques: Les formes de représentation surfacique peuvent être classés en 2 catégories :
 - ⇒ Représentations basées sur des surfaces paramétriques,
 - ⇒ Représentations *non structurées* (nuage de points, maillage triangulaire).

Représentation par subdivisions successives de surfaces paramétriques

Nuage de points (vertexs)

Ensemble de points appartenant à la surface de l'objet à modéliser.

Maillage triangulaire

Ensemble de triangles (ou facettes) issus d'une triangulation 3D des points.

Différentes représentations d'un lapin

- Précis,
- ⊕ Réduction des données,

⊖ Informations locales : nécessitent connaissance préalable des données.

c) Formats d'images 3D:

Selon le type d'application:

- format **Blender** (.blend) pour la **création Multimédia**
- format **Pro/Engineer** (.prt) pour la **CAO industrielle**
- Format OpenFlight (. FLT)pour la simulation de vol et/ou de conduite.

Parmi les formats les plus répandus on peut citer :

- 3DS, DXF d'AutoCAD, BLEND de Blender
- *IGES* normalisé, *X* Direct 3D, *OBJ* de *Wavefront*
- *LWO* de *LightWave 3D*
- *VRML* de réalité virtuelle, avec ses versions (1, 2 et *X3D*) de *Silicon Graphics*.
- COB de TrueSpace.
- La tendance actuelle est de privilégier le format descriptif de type X3D (évolution du VRML avec un formatage XML).
- L'un des critères de choix des *modeleurs 3D* est de pouvoir lire (Import) et créer (Export) plusieurs formats.
- Le format libre *COLLADA* permet d'échanger des données entre différents logiciels.

IV.1 Vidéo numérique: problématiques,

Comment compresser un fichier vidéo ?

■ Vidéo : une succession d'images → Fichiers très volumineux !

• Une vidéo possède souvent une bande sonore, des sous titres, des chapitres...

Comment lier toutes ces informations dans un même fichier?

IV.2 Compression vidéo,

 Compression des images: On réduit la taille des images, et on les compresse au format JPEG.

Inconvénient : on perd en qualité d'image

 Suppression des informations inutiles: On supprime les éléments identiques d'une image à l'autre, pour ne garder que les parties en mouvement de l'image.

Inconvénient : on perd des détails

■ Réduction du Nb. d'images / sec. (frame rate): On supprime une image de temps en temps (ex : 1 image sur 5)

Inconvénient : on perd en qualité de l'animation

IV.3 Conteneur,

- Rôle: réunir le son et l'image
- Contient en plus des informations diverses Chapitres, Menus, Sous titres, etc...

IV.4 Formats de conteneurs,

- AVI : le plus répandu, crée par *Microsoft* pour Windows
 - Peut contenir tout type de fichier audio et vidéo, mais pas de textes
 - Pas de chapitres (1 seule piste vidéo)
 - Doublage multilingue (jusqu'à 99 pistes audio)
 - Format très répandu, fonctionne sur tous les lecteurs vidéo
- QuickTime : le plus souple, crée par Apple
 - Peut contenir des pistes audio, vidéo, et des textes (pour les sous titres)
 - Une piste peut être également un *stream* (diffusion en temps réel par internet)

- Nécessite le lecteur Quicktime

- ASF: le plus prometteur, format récent développé par Microsoft
 - Supporte tous les formats audio et vidéo
 - AVI amélioré : plusieurs pistes audio, vidéo et texte
 - Très utilisé pour le streaming par internet
 - Compatible avec les *DRM* (gestion des droits numérique)
 - Format utilisé sur les successeurs du DVD : Blu-Ray et HD-DVD
- RealMedia: en perte de vitesse, développé par RealNetworks
 - Supporte de nombreux formats (spécialement les formats Real Audio et Real Movie)
 - Adapté au streaming
 - Supporte uniquement le CBR (Constant Bit Rate) Mauvaise compression des données
 - De plus en plus délaissé au profit des formats ASF et Quicktime
 - Lecture uniquement avec RealPlayer, souvent jugé trop intrusif.
- MP4: *Quicktime* amélioré, souvent utilisé pour les *DivX*. Très souple, peut contenir des images.

■ 3GP: Dérivé du MP4 pour les téléphones mobiles.

Nom	Compatibilité	Pistes vidéo	Pistes audio	Sous titres	Possibilité de streaming	Possibilité de DRM
AVI	****	1	99	Non	Non	Non
QuickTime	***	infini	infini	Oui	Oui	Oui
ASF	***	infini	infini	Oui	Oui	Oui
RealMedia	**	1	1	Non	Oui	Oui
MP4	***	infini	infini	Oui	Oui	Oui
3GP	**	1	1	Non	Oui	Oui

Récapitulatif des conteneurs

IV.5 Formats des vidéos,

- MPEG-2: Format le plus répandu,
 - Compression peu performante, adaptée aux résolutions standards mais pas à la HD
 - Format du DVD : Compatible avec tous les logiciels et les platines DVD.
- DivX: Format récent, moins répandu,
 - Compression très performante (jusqu'à 7 fois plus efficace que le MPEG-2)
 - Compatible avec la plupart des logiciels, et les platines DVD récentes.
- XviD: Format basé sur le DivX, mais non compatible,
 - Crée pour des raisons de propriété intellectuelle (format libre)
 - Compatible avec peu de logiciels et très peu de platines DVD.

V. Les formats de fichiers Multimédias

Catégorie	Formats
Images	PNG, MNG, TIFF, JPEG, GIF, TGA, OpenEXR, BMP
Dessin vectoriel	VML, SVG, Silverlight, SWF, AI, EPS, DXF
3D	XCF, BLEND, SKP, (SKB), DXF, 3DS, Max, C4D, VRML, X3D, IFC, DWG
Son	OGG, FLAC, MP3, WAV, WMA, AAC
Vidéo	MPEG, OGM(DVD, DivX, XviD), AVI, Theora, FLV
Page	PDF, PostScript, HTML, XHTML, XML, PHP
Document de traitement de texte	ODT, TXT, DOC, RTF
Exécutable	BIN, ELF, EXE, SDC, BAT
Archives (fichier compressé)	7Z, TAR, GZIP, ZIP, LZW, ARJ, RAR, SDC

