A Variational Framework for Phase-Field Fracture Modeling with Applications to Fragmentation, Desiccation, Ductile Failure, and Spallation Dissertation Defense

Tianchen (Gary) Hu

Department of Mechanical Engineering & Materials Science Pratt School of Engineering Duke University

Committee:

John Dolbow
Wilkins Aquino
Johann Guilleminot
Manolis Viveakis
Benjamin Spencer

July 15th, 2021

Overview

Introduction

Background
Phase-field approach to fracture

The Variational Framework

Kinematics and Constraints Thermodynamics The variational statement

Applications

Intergranular Fracture in Polycrystalline Materials Soil Desiccation Towards Ductile Fracture

Conclusions and Future Work

Conclusions
Future work

Background

Phase-field approach to fracture

The Variational Frameworl

Kinematics and Constraints

Thermodynamics

The variational statement

Applications

Intergranular Fracture in Polycrystalline Materials

Desiccation

Towards Ductile Fracture

Conclusions and Future Work

Conclusions

Future work

Background

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: **fragmentation**, desiccation, ductile failure, spallation, etc..

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, **spallation**, etc..

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.

- \bullet Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: **defects**, **nucleation**, propagation, branching, merging.

- \bullet Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, **propagation**, branching, merging.

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.

- \bullet Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.

- \bullet Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.
- To categorize fracture by **material response**:

- \bullet Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.
- To categorize fracture by **material response**:
 - brittle fracture: singularities, abrupt failure, tiny fracture process zone;

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.
- To categorize fracture by **material response**:
 - brittle fracture: singularities, abrupt failure, tiny fracture process zone;
 - quasi-brittle fracture: softening, small fracture process zone;

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.
- To categorize fracture by **material response**:
 - brittle fracture: singularities, abrupt failure, tiny fracture process zone;
 - quasi-brittle fracture: softening, small fracture process zone;
 - cohesive fracture: softening, large fracture process zone;

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.
- To categorize fracture by material response:
 - brittle fracture: singularities, abrupt failure, tiny fracture process zone;
 - quasi-brittle fracture: softening, small fracture process zone;
 - cohesive fracture: softening, large fracture process zone;
 - ductile fracture: plastic deformation prior to fracture;

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.
- To categorize fracture by **material response**:
 - brittle fracture: singularities, abrupt failure, tiny fracture process zone;
 - quasi-brittle fracture: softening, small fracture process zone;
 - cohesive fracture: softening, large fracture process zone;
 - ductile fracture: plastic deformation prior to fracture;
 - ...

- Fracture is a common phenomenon in engineering applications.
- To characterize fracture by its **consequence**: fragmentation, desiccation, ductile failure, spallation, etc..
- To characterize fracture by its **development lifecycle**: defects, nucleation, propagation, branching, merging.
- To categorize fracture by **material response**:
 - brittle fracture: singularities, abrupt failure, tiny fracture process zone;
 - quasi-brittle fracture: softening, small fracture process zone;
 - cohesive fracture: softening, large fracture process zone;
 ductile fracture: plastic deformation prior to fracture:
 - ...
- Coupling with other phenomena: dynamics, viscous dissipation, thermal effects, plasticity, creep, etc..

To date, fracture is still one of the most challenging phenomena to model and predict.

The permanent crack set Γ and its associated fracture energy

$$\Psi^f = \int_{\Gamma} \mathcal{G}_c \, \, \mathrm{d}A$$

The permanent crack set Γ and its associated fracture energy

$$\Psi^f = \int_{\Gamma} \mathcal{G}_c \, dA$$

is approximated with

the crack surface density function $\gamma = \widehat{\gamma}_l(d)$:

$$\Psi^f pprox \int_{\Omega} \mathcal{G}_c \gamma \, dV, \quad \gamma = \frac{1}{c_0 l} \left(\alpha + l^2 \nabla d \cdot \nabla d \right).$$

- $d \in [0, 1]$ is the phase field;
- $\alpha = \widehat{\alpha}(d)$ is the crack geometric function, $\widehat{\alpha}(0) = 0$, $\widehat{\alpha}(1) = 1$;
- $g = \widehat{g}(d)$ is the degradation function, $\widehat{g}(0) = 1$, $\widehat{g}(1) = 0$;
- c_0 is chosen such that

$$\lim_{l \to 0^+} \int_{\Omega} \mathcal{G}_c \gamma \, dV = \int_{\Gamma} \mathcal{G}_c \, dA.$$

For more details: [1].

Background Phase-field approach to fracture

The Variational Framework

Kinematics and Constraints Thermodynamics The variational statement

Applications

Intergranular Fracture in Polycrystalline Materials Soil Desiccation Towards Ductile Fracture

Conclusions and Future Work

Conclusions

Future work

The Variational Framework

Thermodynamics

The Variational Framework

The Variational Framework

5/10

The variational statement

- Duke PRATT SCHOOL OF ENGINEERING

Background

Phase-field approach to fracture

The Variational Frameworl

Kinematics and Constraints

Thermodynamics

The variational statement

Applications

Intergranular Fracture in Polycrystalline Materials Soil Desiccation

Soil Desiccation

Towards Ductile Fracture

Conclusions and Future Work

Conclusions

Future work

Backgroun

Phase-field approach to fracture

The Variational Framewor

Kinematics and Constraint

The variational statement

Applications

Intergranular Fracture in Polycrystalline Materials

Soil Desiccation
Towards Ductile Fracture

Conclusions and Future Wor

Conclusions

ruture work

Applications

Intergranular Fracture in Polycrystalline Materials

- Duke PRATT SCHOOL OF ENGINEERING

Backgroun

Phase-field approach to fracture

The Variational Framewor

Kinematics and Constraints

Thermodynamic

The variational statemen

Applications

Intergranular Fracture in Polycrystalline Materials

Soil Desiccation

Towards Ductile Fracture

Conclusions and Future Wor

Conclusions

Future work

Backgroun

Phase-field approach to fractur

The Variational Framewor

Kinematics and Constraints

Thermodynamic

The variational statemen

Applications

Intergranular Fracture in Polycrystalline Material Soil Desiccation

Towards Ductile Fracture

Conclusions and Future Wor

Conclusions

Future work

Background

Phase-field approach to fracture

The Variational Framework

Kinematics and Constraints Thermodynamics

The variational statement

Applications

Intergranular Fracture in Polycrystalline Materials Soil Desiccation Towards Ductile Fracture

Conclusions and Future Work

Conclusions

Future work

Conclusions and Future Work

Conclusions

 Blaise Bourdin, Gilles A Francfort, and Jean-Jacques Marigo. The variational approach to fracture. Journal of elasticity, 91(1):5-148, 2008.