Московский государственный технический университет имени Н.Э.Баумана

Кафедра «Системы обработки информации и управления»

ОТЧЕТ

Лабораторная работа №3
по дисциплине
«Методы машинного обучения»
на тему
«Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

Выполнил:

Студент ИУ5-24М

Гаврилюк А.Г.

Москва, 2020

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
In [4]:
data = pd.read csv('data/restaurant-scores-lives-standard.csv', sep=",")
In [5]:
data.shape
Out[5]:
(53973, 17)
In [6]:
data.dtypes
Out[6]:
business id
                          int64
business name
                         object
business_address
                        object
business city
                        object
business_state
                        object
business_postal_code
                        object
business latitude
                        float64
business_longitude
                        float64
business_location
                        object
business_phone_number float64
inspection_id
                        object
inspection_date
                         object
inspection_score
                        float64
inspection_type
                         object
violation id
                         object
violation_description
                        object
risk_category
                         object
dtype: object
In [7]:
data.isnull().sum()
Out[7]:
                             0
business id
business_name
                             0
                            0
business_address
                             0
business_city
business_state
                            0
                        1083
business_postal_code
business latitude
                        24095
                        24095
business_longitude
business_location
                        24095
business phone number
                         36539
inspection_id
                            0
inspection_date
                            0
inspection_score
                         14114
inspection_type
                            0
                         13462
violation id
violation_description
                        13462
                        13462
risk_category
dtype: int64
In [8]:
```

```
data.head()
```

Out[8]:

	business_id	business_name	business_address	business_city	business_state	business_postal_code	business_latitude	business_long
0	69618	Fancy Wheatfield Bakery	1362 Stockton St	San Francisco	CA	94133	NaN	
1	97975	BREADBELLY	1408 Clement St	San Francisco	CA	94118	NaN	
2	69487	Hakkasan San Francisco	1 Kearny St	San Francisco	CA	94108	NaN	
3	91044	Chopsticks Restaurant	4615 Mission St	San Francisco	CA	94112	NaN	
4	85987	Tselogs	552 Jones St	San Francisco	CA	94102	NaN	

1 Обработка пропусков в данных

```
In [14]:
```

```
# Удаление колонок, содержащих пустые значения data_new_1 = data.dropna(axis=1, how='any') (data.shape, data_new_1.shape) print(f'Удалено колонок: {data.shape[1] - data_new_1.shape[1]}')
```

Удалено колонок: 9

In [13]:

```
# Удаление строк, содержащих пустые значения data_new_2 = data.dropna(axis=0, how='any') (data.shape, data_new_2.shape) print(f'Удалено строк: {data.shape[0] - data_new_2.shape[0]}')
```

Удалено строк: 48262

1.1 Обработка пропусков в числовых данных

In [16]:

```
rows_count = data.shape[0]
num_cols = []
for col in data.columns:

# Количество пустых значений

temp_null_count = data[data[col].isnull()].shape[0]

dt = str(data[col].dtype)

if temp_null_count > 0 and (dt=='float64' or dt=='int64'):

num_cols.append(col)

temp_perc = round((temp_null_count / rows_count) * 100.0, 2)

print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
```

Колонка business_latitude. Тип данных float64. Количество пустых значений 24095, 44.64%. Колонка business_longitude. Тип данных float64. Количество пустых значений 24095, 44.64%. Колонка business_phone_number. Тип данных float64. Количество пустых значений 36539, 67.7%. Колонка inspection_score. Тип данных float64. Количество пустых значений 14114, 26.15%.

In [19]:

```
# Фильтр по колонкам с пропущенными значениями data_num = data[num_cols] data_num
```

Out[19]:

	business_latitude	business_longitude	business_phone_number	inspection_score
0	NaN	NaN	NaN	NaN
1	NaN	NaN	1.415724e+10	96.0
2	NaN	NaN	NaN	88.0
3	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	94.0
53968	NaN	NaN	1.415596e+10	94.0
53969	NaN	NaN	NaN	75.0
53970	NaN	NaN	1.415530e+10	84.0
53971	NaN	NaN	1.415544e+10	83.0
53972	NaN	NaN	1.415551e+10	NaN

53973 rows × 4 columns

In [23]:

```
# Гистограмма по признакам

for col in data_num:
    plt.hist(data[col], 50)
    plt.xlabel(col)
    plt.show()
```


In [27]:

```
# Фильтр по пустым значениям поля inspection_score data[data['inspection_score'].isnull()]
```

Out[27]:

	business_id	business_name	business_address	business_city	business_state	business_postal_code	business_latitude	business
0	69618	Fancy Wheatfield Bakery	1362 Stockton St	San Francisco	CA	94133	NaN	
3	91044	Chopsticks Restaurant	4615 Mission St	San Francisco	CA	94112	NaN	
5	96024	Fig & Thistle Market	691 14th St	San Francisco	CA	94114	NaN	
6	97503	Moscone South Main Kitchen	747 Howard St	San Francisco	CA	94103	NaN	
7	97748	FISTFUL OF TACOS	201 Harrison St Unit C-2	San Francisco	CA	94105	NaN	
53955	94521	Joe & The Juice Howard	301 Howard St	San Francisco	CA	94105	NaN	
53957	81789	Koja Kitchen Truck	Off The Grid	San Francisco	CA	NaN	NaN	
53958	98279	LITTLE GEM	2184 UNION ST	San Francisco	CA	94123	NaN	
53961	99249	BLACK SANDS BREWERY	701 HAIGHT ST	San Francisco	CA	94117	NaN	
53972	77681	Tart To Tart Inc.	641 Irving St	San Francisco	CA	94122	NaN	

14114 rows × 17 columns

In [25]:

```
# Запоминаем индексы строк с пустыми значениями flt_index = data[data['inspection_score'].isnull()].index flt_index
```

Out[25]:

```
Int64Index([ 0, 3, 5, 6, 7, 10, 11, 13, 14, 15, ...
```

```
33732, 33730, 33741, 33743, 33730, 33733, 33737, 33730, 33701, 53972], dtype='int64', length=14114)
```

In [26]:

```
# Проверяем что выводятся нужные строки data[data.index.isin(flt_index)]
```

Out[26]:

	business_id	business_name	business_address	business_city	business_state	business_postal_code	business_latitude	business
0	69618	Fancy Wheatfield Bakery	1362 Stockton St	San Francisco	CA	94133	NaN	
3	91044	Chopsticks Restaurant	4615 Mission St	San Francisco	CA	94112	NaN	
5	96024	Fig & Thistle Market	691 14th St	San Francisco	CA	94114	NaN	
6	97503	Moscone South Main Kitchen	747 Howard St	San Francisco	CA	94103	NaN	
7	97748	FISTFUL OF TACOS	201 Harrison St Unit C-2	San Francisco	CA	94105	NaN	
53955	94521	Joe & The Juice Howard	301 Howard St	San Francisco	CA	94105	NaN	
53957	81789	Koja Kitchen Truck	Off The Grid	San Francisco	CA	NaN	NaN	
53958	98279	LITTLE GEM	2184 UNION ST	San Francisco	CA	94123	NaN	
53961	99249	BLACK SANDS BREWERY	701 HAIGHT ST	San Francisco	CA	94117	NaN	
53972	77681	Tart To Tart Inc.	641 Irving St	San Francisco	CA	94122	NaN	

14114 rows × 17 columns

In [28]:

```
# фильтр по колонке data_num[data_num.index.isin(flt_index)]['inspection_score']
```

Out[28]:

0	NaN	
3	NaN	
5	NaN	
6	NaN	
7	NaN	
	• •	
53955	NaN	
53957	NaN	
53958	NaN	
53961	NaN	
53972	NaN	

Name: inspection_score, Length: 14114, dtype: float64

In [29]:

```
data_num_inspection_score = data_num[['inspection_score']]
data_num_inspection_score.head()
```

Out[29]:

inspection_score

0	NaN
1	96.0

```
inspection_score
88.0
3
            NaN
            94.0
In [30]:
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
In [32]:
# Фильтр для проверки заполнения пустых значений
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data_num_inspection_score)
mask missing values only
Out[32]:
array([[ True],
       [False],
       [False],
       [False],
       [False],
       [ True]])
In [33]:
strategies=['mean', 'median', 'most_frequent']
In [34]:
def test num impute col(dataset, column, strategy param):
    temp_data = dataset[[column]]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)
    filled_data = data_num_imp[mask_missing_values_only]
    return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled_data.size-1
]
In [63]:
data[['inspection_score']].describe()
Out[63]:
      inspection_score
         39859.000000
count
mean
           86.235254
            8.480003
  std
           45.000000
  min
           81.000000
 25%
           88.000000
 50%
 75%
           92.000000
           100.000000
```

```
ın [64]:
data[['business_latitude']].describe()
Out[64]:
        business_latitude
            29878.000000
 count
               37.755265
 mean
                0.788075
   std
   min
                0.000000
               37.756771
  25%
               37.780174
  50%
  75%
               37.788882
               37.824494
  max
In [65]:
data[['business_longitude']].describe()
Out[65]:
        business_longitude
             29878.000000
 count
               -122.373755
 mean
                 2.553357
   std
               -122.510896
   min
               -122.437091
  25%
               -122.419136
  50%
  75%
               -122.407417
  max
                 0.000000
In [57]:
for strategy in strategies:
     print(test_num_impute_col(data, 'inspection_score', strategy))
print(test_num_impute_col(data, 'business_latitude', strategy))
print(test_num_impute_col(data, 'business_longitude', strategy), end='\n\n')
('inspection_score', 'mean', 14114, 86.23525427130636, 86.23525427130636)
('business_latitude', 'mean', 24095, 37.7552651997791, 37.7552651997791)
('business_longitude', 'mean', 24095, -122.37375472595221, -122.37375472595221)
('inspection_score', 'median', 14114, 88.0, 88.0)
('business_latitude', 'median', 24095, 37.780174, 37.780174)
('business_longitude', 'median', 24095, -122.4191360000001, -122.4191360000001)
('inspection_score', 'most_frequent', 14114, 90.0, 90.0)
('business_latitude', 'most_frequent', 24095, 37.80824000000005, 37.80824000000005)
('business_longitude', 'most_frequent', 24095, -122.4101889999999, -122.4101889999999)
1.2 Обработка пропусков в категориальных данных
In [66]:
```

cat_cols = []

for col in data.columns:

Количество пустых значений

dt = str(data[coll.dtvpe)

temp_null_count = data[data[col].isnull()].shape[0]

```
if temp_null_count>0 and (dt=='object'):
        cat cols.append(col)
        temp_perc = round((temp_null_count / rows_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp
_null_count, temp_perc))
Колонка business postal code. Тип данных object. Количество пустых значений 1083, 2.01%.
Колонка business_location. Тип данных object. Количество пустых значений 24095, 44.64%.
Колонка violation_id. Тип данных object. Количество пустых значений 13462, 24.94%.
Колонка violation_description. Тип данных object. Количество пустых значений 13462, 24.94%.
Колонка risk_category. Тип данных object. Количество пустых значений 13462, 24.94%.
In [68]:
cat_temp_data = data[['risk_category']]
cat_temp_data.head()
Out[68]:
   risk category
0 Moderate Risk
1 Moderate Risk
2 Moderate Risk
         NaN
4 Moderate Risk
In [69]:
cat temp data['risk category'].unique()
Out[69]:
array(['Moderate Risk', nan, 'Low Risk', 'High Risk'], dtype=object)
In [70]:
cat temp data[cat temp data['risk category'].isnull()].shape
Out[70]:
(13462, 1)
In [71]:
# Импьютация наиболее частыми значениями
imp2 = SimpleImputer(missing values=np.nan, strategy='most frequent')
data_imp2 = imp2.fit_transform(cat_temp_data)
data_imp2
Out[71]:
array([['Moderate Risk'],
       ['Moderate Risk'],
       ['Moderate Risk'],
       ['Moderate Risk'],
       ['High Risk'],
       ['Low Risk']], dtype=object)
In [72]:
# Пустые значения отсутствуют
np.unique(data_imp2)
Out[72]:
```

```
In [74]:
# Импьютация константой
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='Unknown')
data_imp3 = imp3.fit_transform(cat_temp_data)
data_imp3
Out[74]:
array([['Moderate Risk'],
      ['Moderate Risk'],
       ['Moderate Risk'],
       ['Moderate Risk'],
       ['High Risk'],
       ['Unknown']], dtype=object)
In [75]:
np.unique(data imp3)
Out[75]:
array(['High Risk', 'Low Risk', 'Moderate Risk', 'Unknown'], dtype=object)
In [76]:
data imp3[data imp3=='Unknown'].size
Out[76]:
13462
2 Преобразование категориальных признаков в числовые
In [77]:
cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
Out[77]:
              с1
    0 Moderate Risk
    1 Moderate Risk
    2 Moderate Risk
         Low Risk
    4 Moderate Risk
         Low Risk
53968
53969 Moderate Risk
53970 Moderate Risk
         High Risk
53971
         Low Risk
53972
53973 rows × 1 columns
```

array(['High Risk', 'Low Risk', 'Moderate Risk'], dtype=object)

2.1 Кодирование категорий целочисленными значениями

```
In [78]:
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [80]:
le = LabelEncoder()
cat_enc_le = le.fit_transform(cat_enc['c1'])
cat_enc['c1'].unique()
Out[80]:
array(['Moderate Risk', 'Low Risk', 'High Risk'], dtype=object)
In [81]:
np.unique(cat_enc_le)
Out[81]:
array([0, 1, 2])
In [82]:
le.inverse_transform([0, 1, 2])
Out[82]:
array(['High Risk', 'Low Risk', 'Moderate Risk'], dtype=object)
2.2 Кодирование категорий наборами бинарных значений
In [83]:
ohe = OneHotEncoder()
cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
cat_enc.shape
Out[83]:
(53973, 1)
In [84]:
cat_enc_ohe.shape
Out[84]:
(53973, 3)
In [85]:
cat_enc_ohe
Out[85]:
<53973x3 sparse matrix of type '<class 'numpy.float64'>'
with 53973 stored elements in Compressed Sparse Row format>
In [86]:
cat_enc_ohe.todense()[0:10]
Out[86]:
matrix([[0., 0., 1.],
        [0., 0., 1.],
        [0., 0., 1.],
```

```
[0., 1., 0.],
[0., 0., 1.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.]])
```

In [87]:

```
cat_enc.head(10)
```

Out[87]:

с1

- 0 Moderate Risk
- 1 Moderate Risk
- 2 Moderate Risk
- 3 Low Risk
- 4 Moderate Risk
- 5 Low Risk
- 6 Low Risk
- 7 Low Risk
- 8 Low Risk
- 9 Low Risk

2.3 Быстрый вариант one-hot кодирования

In [88]:

```
pd.get_dummies(cat_enc).head()
```

Out[88]:

c1_High Risk c1_Low Risk c1_Moderate Risk

0	0	0	1
1	0	0	1
2	0	0	1
3	0	1	0
4	0	0	1

In [89]:

```
pd.get_dummies(cat_temp_data, dummy_na=True).head()
```

Out[89]:

risk_category_High Risk risk_category_Low Risk risk_category_Moderate Risk risk_category_nan

0	0	0	1	0
1	0	0	1	0
2	0	0	1	0
3	0	0	0	1
4	0	0	1	0

^ Na------

з масштаоирование данных

Заменяю пропуски в колонке 'inspection_score' исходного датасета, чтобы использовать ее для масштабирования/нормализации

```
In [109]:
def num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]
    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)
      data_num_imp = imp_num.fit_transform(dataset[[column]])
    filled data = data num imp[mask missing values only]
    new data = imp num.transform(dataset[[column]])
    return new_data
In [110]:
num_impute_col(data, 'inspection_score', 'mean')
Out[110]:
array([[86.23525427],
       [96.],
       [88.
                    ],
       [84.
                    ],
       [83.
                    1,
       [86.23525427]])
In [115]:
data[['inspection_score']] = num_impute_col(data, 'inspection_score', 'mean')
In [116]:
data[['inspection_score']]
Out[116]:
      inspection_score
           86.235254
    0
           96.000000
    1
    2
           88.000000
           86.235254
    3
    4
           94.000000
           94.000000
53968
           75.000000
53969
           84.000000
53970
53971
           83.000000
53972
           86.235254
53973 rows × 1 columns
```

In []:

3.1 МіпМах масштабирование

```
In [90]:
```

```
from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
```

In [125]:

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['inspection_score']])
```

In [126]:

```
plt.hist(data['inspection_score'], 50)
plt.show()
```


In [127]:

```
plt.hist(sc1_data, 50)
plt.show()
```


3.2 Масштабирование данных на основе Z-оценки

In [128]:

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['inspection_score']])
```

In [129]:

```
plt.hist(sc2_data, 50)
plt.show()
```


3.3. Нормализация данных

```
In [130]:
```

```
sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['inspection_score']])
```

In [131]:

```
plt.hist(sc3_data, 50)
plt.show()
```


In []: