dm25s1 Topic 02: Motivating Example Part 01: Introduction to Classification Dr Bernard Butler Explor Department of Computing and Mathematics, WIT. at a 2 (bernard.butler@setu.ie)

Prediction

Autumn Semester, 2025

Outline

- How classification differs from regression
- Classification metrics
- Lazy vs Eager learners

Wrap up

Outline

1. Introduction

1.1. Learning from data 1.2. Lazy vs Eager Learners	4 6
2. Introduction to Classification	7

What does it mean to learn from data?

Programmed Computation

• Explicit, detailed programming logic

Learned Computation

• Implicit, learning from examples

What does it mean to learn from data?

Programmed Computation

- Explicit, detailed programming logic
- Handle edge cases, messy data

Learned Computation

- Implicit, learning from examples
- Less brittle, but harder to test

Programmed Computation

- Explicit, detailed programming logic
- Handle edge cases, messy data
- Software engineering unit testing, etc.

Learned Computation

- Implicit, learning from examples
- Less brittle, but harder to test
- New paradigms iterative model building

Machine learning pros and cons

Benefits

- Less programming effort
- Subtle rules are inferred
- One algorithm works for a range of problems
- Most of the code is in libraries
- Scales better with data complexity

Machine learning pros and cons

Benefits

- Less programming effort
- Subtle rules are inferred
- One algorithm works for a range of problems
- Most of the code is in libraries
- Scales better with data complexity

Challenges

- Need (lots of) data for training
- Training data (sample) needs to represent population
- Algorithms have many configuration settings
- Need to understand and validate
- Prediction error needs to be minimised

Introduction

Lazy vs Eager Learners

Lazy learner

Stores training data (or only minor processing) and uses local approximation to predict a value from test data.

Eager learner

Lazy learner

Stores training data (or only minor processing) and uses local approximation to predict a value from test data.

• Does not generalise until after training

Eager learner

Builds a model from the train set, before receiving new data for prediction

 Training has an extra goal: to generalise from the data

Lazy learner

Stores training data (or only minor processing) and uses local approximation to predict a value from test data.

- Does not generalise until after training
- Does not produce a standalone model

Eager learner

- Training has an extra goal: to generalise from the data
- Training has an extra output: standalone model

Lazy learner

Stores training data (or only minor processing) and uses local approximation to predict a value from test data.

- Does not generalise until after training
- Does not produce a standalone model
- Training data must be kept for prediction

Eager learner

- Training has an extra goal: to generalise from the data
- Training has an extra output: standalone model
- Training data can be discarded after use

Lazy learner

Stores training data (or only minor processing) and uses local approximation to predict a value from test data.

- Does not generalise until after training
- Does not produce a standalone model
- Training data must be kept for prediction
- Local approximations

Eager learner

- Training has an extra goal: to generalise from the data
- Training has an extra output: standalone model
- Training data can be discarded after use
- Local and/or global approximations

Lazy learner

Stores training data (or only minor processing) and uses local approximation to predict a value from test data.

- Does not generalise until after training
- Does not produce a standalone model
- Training data must be kept for prediction
- Local approximations
- Often based on search

Eager learner

- Training has an extra goal: to generalise from the data
- Training has an extra output: standalone model
- Training data can be discarded after use
- Local and/or global approximations
- Based on computation

Lazy learner

Stores training data (or only minor processing) and uses local approximation to predict a value from test data.

- Does not generalise until after training
- Does not produce a standalone model
- Training data must be kept for prediction
- Local approximations
- Often based on search
- If new data is just added to the training data, it can respond more easily to changing conditions

Eager learner

- Training has an extra goal: to generalise from the data
- Training has an extra output: standalone model
- Training data can be discarded after use
- Local and/or global approximations
- Based on computation
- Models drift with time, so not suited to highly dynamic contexts, as it needs retraining

Lazy learner

Stores training data (or only minor processing) and uses local approximation to predict a value from test data.

- Does not generalise until after training
- Does not produce a standalone model
- Training data must be kept for prediction
- Local approximations
- Often based on search
- If new data is just added to the training data, it can respond more easily to changing conditions

Eager learner

Builds a model from the train set, before receiving new data for prediction

- Training has an extra goal: to generalise from the data
- Training has an extra output: standalone model
- Training data can be discarded after use
- Local and/or global approximations
- Based on computation
- Models *drift* with time, so not suited to highly dynamic contexts, as it needs retraining

Usually an (eager) model requires much less memory than a (lazy) training set.

Outline

1.1. Learning from data 1.2. Lazy vs Eager Learners	6
2. Introduction to Classification	7

Definition 1 (Classification)

Classification aims to learn a function that takes attribute values and predicts a categorical/qualitative value, such as membership of a class, existence of an effect, etc.

Definition 1 (Classification)

Classification aims to learn a function that takes attribute values and predicts a categorical/qualitative value, such as membership of a class, existence of an effect, etc.

The attributes can be categorical or numeric.

Definition 1 (Classification)

Classification aims to learn a function that takes attribute values and predicts a categorical/qualitative value, such as membership of a class, existence of an effect, etc.

The attributes can be categorical or numeric.

Classification is an example of *supervised learning* because it requires a training set of labeled observations.

Definition 1 (Classification)

Classification aims to learn a function that takes attribute values and predicts a categorical/qualitative value, such as membership of a class, existence of an effect, etc.

The attributes can be categorical or numeric.

Classification is an example of *supervised learning* because it requires a training set of labeled observations.

Some classifiers generate class membership probabilities en route to predicting class membership (of
the most likely class), so the predicted class can be defined by a set of numbers rather than a simple
label.

Definition 1 (Classification)

Classification aims to learn a function that takes attribute values and predicts a categorical/qualitative value, such as membership of a class, existence of an effect, etc.

The attributes can be categorical or numeric.

Classification is an example of *supervised learning* because it requires a training set of labeled observations.

- Some *classifiers* generate class membership probabilities en route to predicting class membership (of the most likely class), so the predicted class can be defined by a set of numbers rather than a simple label.
- There are many classification algorithms!

Definition 1 (Classification)

Classification aims to learn a function that takes attribute values and predicts a categorical/qualitative value, such as membership of a class, existence of an effect, etc.

The attributes can be categorical or numeric.

Classification is an example of *supervised learning* because it requires a training set of labeled observations.

- Some *classifiers* generate class membership probabilities en route to predicting class membership (of the most likely class), so the predicted class can be defined by a set of numbers rather than a simple label.
- There are many classification algorithms!
- We choose one of the simplest today, which works by voting for the most likely label.

Classification Overview

Today's classifier is a lazy learner and so uses local approximantion, not a model

Example Applications

In 5 minutes, identify 3 possible applications for classification

Outline

3. k Nearest Neighbours

1.1. Learning from data 1.2. Lazy vs Eager Learners	6
2. Introduction to Classification	7

Example 2 (Spam Detection)

A new email arrives. Is it spam? We have a large database of previous emails that have been labeled "Spam" or "Ham". Can we use this information *directly* to say whether the new email is spam or not?

Example 2 (Spam Detection)

A new email arrives. Is it spam? We have a large database of previous emails that have been labeled "Spam" or "Ham". Can we use this information *directly* to say whether the new email is spam or not?

Example 2 (Spam Detection)

A new email arrives. Is it spam? We have a large database of previous emails that have been labeled "Spam" or "Ham". Can we use this information *directly* to say whether the new email is spam or not?

Given each of the following

• database of n instances $\{x_i\}$ with p attribute values per instance

Example 2 (Spam Detection)

A new email arrives. Is it spam? We have a large database of previous emails that have been labeled "Spam" or "Ham". Can we use this information *directly* to say whether the new email is spam or not?

- database of *n* instances $\{x_i\}$ with *p* attribute values per instance
- **o** distance function $D: d(x_i, x_j): \mathbb{R}^{p \times p} \to \mathbb{R}$ where $d(x_i, x_j) > 0$ if $x_i \neq x_j$ and is zero otherwise

Example 2 (Spam Detection)

A new email arrives. Is it spam? We have a large database of previous emails that have been labeled "Spam" or "Ham". Can we use this information *directly* to say whether the new email is spam or not?

- database of *n* instances $\{x_i\}$ with *p* attribute values per instance
- **②** distance function $D: d(x_i, x_j): \mathbb{R}^{p \times p} \to \mathbb{R}$ where $d(x_i, x_j) > 0$ if $x_i \neq x_j$ and is zero otherwise
- function S that searches for instances that "match" an incoming instance based on D

Example 2 (Spam Detection)

A new email arrives. Is it spam? We have a large database of previous emails that have been labeled "Spam" or "Ham". Can we use this information *directly* to say whether the new email is spam or not?

- **①** database of *n* instances $\{x_i\}$ with *p* attribute values per instance
- **②** distance function $D: d(x_i, x_j): \mathbb{R}^{p \times p} \to \mathbb{R}$ where $d(x_i, x_j) > 0$ if $x_i \neq x_j$ and is zero otherwise
- function S that searches for instances that "match" an incoming instance based on D
- \bullet function R that identifies the k "nearest" (as defined by D) instances

Example 2 (Spam Detection)

A new email arrives. Is it spam? We have a large database of previous emails that have been labeled "Spam" or "Ham". Can we use this information *directly* to say whether the new email is spam or not?

- database of *n* instances $\{x_i\}$ with *p* attribute values per instance
- **②** distance function $D: d(x_i, x_j): \mathbb{R}^{p \times p} \to \mathbb{R}$ where $d(x_i, x_j) > 0$ if $x_i \neq x_j$ and is zero otherwise
- lacksquare function S that searches for instances that "match" an incoming instance based on D
- function R that identifies the k "nearest" (as defined by D) instances
- function A that aggregates the "labels" of these k neighbours, yielding one representative value

Example 2 (Spam Detection)

A new email arrives. Is it spam? We have a large database of previous emails that have been labeled "Spam" or "Ham". Can we use this information *directly* to say whether the new email is spam or not?

- **①** database of *n* instances $\{x_i\}$ with *p* attribute values per instance
- **②** distance function $D: d(x_i, x_j): \mathbb{R}^{p \times p} \to \mathbb{R}$ where $d(x_i, x_j) > 0$ if $x_i \neq x_j$ and is zero otherwise
- § function S that searches for instances that "match" an incoming instance based on D
- \bullet function R that identifies the k "nearest" (as defined by D) instances
- function A that aggregates the "labels" of these k neighbours, yielding one representative value
- function L that applies this representative label to the incoming instance

K-Nearest Neighbours: Practical Considerations

Implementation

• The training set needs to be stored in a format (such as a pandas dataframe) that is ready for both searching and computation

K-Nearest Neighbours: Practical Considerations

Implementation

- The training set needs to be stored in a format (such as a pandas dataframe) that is ready for both searching and computation
- The distance function D needs to take account of all the relevant dimensions/attributes, possibly weighted

Implementation

- The training set needs to be stored in a format (such as a pandas dataframe) that is ready for both searching and computation
- The distance function D needs to take account of all the relevant dimensions/attributes, possibly weighted
- The search S and ranking R functions needs to work well together

Implementation

- The training set needs to be stored in a format (such as a pandas dataframe) that is ready for both searching and computation
- The distance function D needs to take account of all the relevant dimensions/attributes, possibly weighted
- The search S and ranking R functions needs to work well together
- The aggregation function A for k-nearest neighbours just takes the most frequent value (also known as the mode) of the k existing labels

Implementation

- The training set needs to be stored in a format (such as a pandas dataframe) that is ready for both searching and computation
- The distance function D needs to take account of all the relevant dimensions/attributes, possibly weighted
- The search S and ranking R functions needs to work well together
- The aggregation function A for k-nearest neighbours just takes the most frequent value (also known as the mode) of the k existing labels

Conceptually this is a very simple algorithm. It can be tweaked by varying k and D (or, very rarely, A).

Implementation

- The training set needs to be stored in a format (such as a pandas dataframe) that is ready for both searching and computation
- The distance function D needs to take account of all the relevant dimensions/attributes, possibly weighted
- The search S and ranking R functions needs to work well together
- The aggregation function A for k-nearest neighbours just takes the most frequent value (also known as the mode) of the k existing labels

Conceptually this is a very simple algorithm. It can be tweaked by varying k and D (or, very rarely, A). Implementations exist in python (in scikit-learn).

K-Nearest Neighbours: Example prediction

Classifying iris species

Given measurements of sepal and petal lengths and widths, can we distinguish between the 3 species?

• The Iris dataset has 4 descriptive attributes, so there are 6 possible pairs

- The Iris dataset has 4 descriptive attributes, so there are 6 possible pairs
- Of these, the Sepal-Width × Sepal-Length combination is the least effective at distinguishing between the three species

- The Iris dataset has 4 descriptive attributes, so there are 6 possible pairs
- Of these, the Sepal-Width × Sepal-Length combination is the least effective at distinguishing between the three species
- In this plot, *I. setosa* (red) is well separated from *I. versicolor* (green) and *I. virginica* (blue)

- The Iris dataset has 4 descriptive attributes, so there are 6 possible pairs
- Of these, the Sepal-Width × Sepal-Length combination is the least effective at distinguishing between the three species
- In this plot, *I. setosa* (red) is well separated from *I. versicolor* (green) and *I. virginica* (blue)
- However the boundary between *I. versicolor* (green) and *I. virginica* (blue) is unclear

- The Iris dataset has 4 descriptive attributes, so there are 6 possible pairs
- Of these, the Sepal-Width × Sepal-Length combination is the least effective at distinguishing between the three species
- In this plot, *I. setosa* (red) is well separated from *I. versicolor* (green) and *I. virginica* (blue)
- However the boundary between *I. versicolor* (green) and *I. virginica* (blue) is unclear
- k = 3 has relatively low bias and (possibly) high variance

- The Iris dataset has 4 descriptive attributes, so there are 6 possible pairs
- Of these, the Sepal-Width × Sepal-Length combination is the least effective at distinguishing between the three species
- In this plot, *I. setosa* (red) is well separated from *I. versicolor* (green) and *I. virginica* (blue)
- However the boundary between *I. versicolor* (green) and *I. virginica* (blue) is unclear
- k = 3 has relatively low bias and (possibly) high variance
- k = 7 has lower variance, pays less attention to "outliers", so region boundaries are smoother

• As can be seen, the Petal-Width × Petal-Length combination separates Iris species better

- As can be seen, the Petal-Width × Petal-Length combination separates Iris species better
- There are still some difficulties distinguishing between *I. versicolor* (green) and *I. virginica* (blue).

- As can be seen, the Petal-Width × Petal-Length combination separates Iris species better
- There are still some difficulties distinguishing between *I. versicolor* (green) and *I. virginica* (blue).
- The size of k does have some effect, but not as dramatically as the more difficult SW-SL combination

- As can be seen, the Petal-Width × Petal-Length combination separates Iris species better
- There are still some difficulties distinguishing between *I. versicolor* (green) and *I. virginica* (blue).
- The size of k does have some effect, but not as dramatically as the more difficult SW-SL combination
- The distance function D depends on the number of dimensions p

- As can be seen, the Petal-Width × Petal-Length combination separates Iris species better
- There are still some difficulties distinguishing between *I. versicolor* (green) and *I. virginica* (blue).
- The size of k does have some effect, but not as dramatically as the more difficult SW-SL combination
- The distance function D depends on the number of dimensions p
- If the regions are well separated, as here, adding more dimensions rarely helps

- As can be seen, the Petal-Width × Petal-Length combination separates Iris species better
- There are still some difficulties distinguishing between *I. versicolor* (green) and *I. virginica* (blue).
- The size of k does have some effect, but not as dramatically as the more difficult SW-SL combination
- The distance function D depends on the number of dimensions p
- If the regions are well separated, as here, adding more dimensions rarely helps
- Over- and under-fitting is largely down to the choice of k

Generally, under-fitted models do not follow the training set closely enough, and so are likely to miss comparable features in the test set.

Generally, under-fitted models do not follow the training set closely enough, and so are likely to miss comparable features in the test set.

Over-fitted models do the opposite, pay too much attention to peculiarities of the training set. They "wiggle" too much!

Generally, under-fitted models do not follow the training set closely enough, and so are likely to miss comparable features in the test set.

Over-fitted models do the opposite, pay too much attention to peculiarities of the training set. They "wiggle" too much!

Setting k = 1 ensures that all the training data is correctly labeled (by definition) but it rarely generalises well.

Generally, under-fitted models do not follow the training set closely enough, and so are likely to miss comparable features in the test set.

Over-fitted models do the opposite, pay too much attention to peculiarities of the training set. They "wiggle" too much!

Setting k = 1 ensures that all the training data is correctly labeled (by definition) but it rarely generalises well.

As *k* increases the boundary becomes smoother. Often that is what you need.

k = 1, training

Each instance is assigned the correct label. There are no off-diagonal terms. **S** represents *I. setosa*, **V1** represents *I. versicolor* and **V2** represents *I. virginica*.

k = 3, training

k = 3, test

k = 1, training

		Actual		
ted		\mathbf{S}	V1	V2
dic	S	50	0	0
rec	V1	0	50	0
I	V2	0	0	50

Each instance is assigned the correct label. There are no off-diagonal terms. **S** represents *I. setosa*, **V1** represents *I. versicolor* and **V2** represents *I. virginica*.

k = 3, training

		Actual		
ted		\mathbf{S}	V1	V2
dic	\mathbf{S}	50	0	0
re	V1	0	47	3
1	V2	0	3	47

Each training instance of *I. setosa* is assigned the right label. However, of the 50 each of *I. versicolor* and *I. virginica*, 3 of each were incorrectly predicted to be the other.

k = 3, test

		Actual			
ted		S	V1	V2	
dic	\mathbf{S}	10	0	0	
ne	V1	0	7	3	
I	V2	0	0	10	

k = 1, training

		Actual		
ted		\mathbf{S}	V1	V2
dic	\mathbf{S}	50	0	0
re	V1	0	50	0
I	V2	0	0	50

Each instance is assigned the correct label. There are no off-diagonal terms. **S** represents *I. setosa*, **V1** represents *I. versicolor* and **V2** represents *I. virginica*.

k = 3, training

		Actual		
ted		S	V1	V2
dic	\mathbf{S}	50	0	0
re	V1	0	47	3
1	V2	0	3	47

Each training instance of *I. setosa* is assigned the right label. However, of the 50 each of *I. versicolor* and *I. virginica*, 3 of each were incorrectly predicted to be the other.

k = 3, test

		Actual		
ted		S	V1	V2
dici	\mathbf{S}	10	0	0
re	V1	0	7	3
	V2	0	0	10

Each test instance of *I. setosa* and *I. virginica* is assigned the right label. However, of the 10 predicted *I. versicolor* (from a stratified sample), 3 were actually *I. virginica*.

k = 1, training

		Actual		
ted		\mathbf{S}	V1	V2
dic	\mathbf{S}	50	0	0
re	V1	0	50	0
F	V2	0	0	50

Each instance is assigned the correct label. There are no off-diagonal terms. **S** represents *I. setosa*, **V1** represents *I. versicolor* and **V2** represents *I. virginica*.

k = 3, training

		Actual		
ted		\mathbf{S}	V1	V2
lici	\mathbf{S}	50	0	0
rec	V1	0	47	3
1	V2	0	3	47

Each training instance of *I. setosa* is assigned the right label. However, of the 50 each of *I. versicolor* and *I. virginica*, 3 of each were incorrectly predicted to be the other.

k = 3, test

		Actual		
ted		S	V1	V2
dici	\mathbf{S}	10	0	0
rec	V1	0	7	3
	V2	0	0	10

Each test instance of *I. setosa* and *I. virginica* is assigned the right label. However, of the 10 predicted *I. versicolor* (from a stratified sample), 3 were actually *I. virginica*.

• k-nearest neighbours works better with "small" dimension *p* but can scale well to "large" number of cases *n*.

k = 1, training

Each instance is assigned the correct label. There are no off-diagonal terms. **S** represents *I. setosa*, **V1** represents *I. versicolor* and **V2** represents *I. virginica*.

k = 3, training

Each training instance of *I. setosa* is assigned the right label. However, of the 50 each of *I. versicolor* and *I. virginica*, 3 of each were incorrectly predicted to be the other.

k = 3, test

Each test instance of *I. setosa* and *I. virginica* is assigned the right label. However, of the 10 predicted *I. versicolor* (from a stratified sample), 3 were actually *I. virginica*.

- k-nearest neighbours works better with "small" dimension *p* but can scale well to "large" number of cases *n*.
- Unlike most other techniques, decision boundaries are implicit, not explicit.

k = 1, training

		Actual		
ted		\mathbf{S}	V1	V2
dic	\mathbf{S}	50	0	0
re	V1	0	50	0
I	V2	0	0	50

Each instance is assigned the correct label. There are no off-diagonal terms. **S** represents *I. setosa*, **V1** represents *I. versicolor* and **V2** represents *I. virginica*.

k = 3, training

		Actual		
ted		\mathbf{S}	V1	V2
dici	\mathbf{S}	50	0	0
)re	V1	0	47	3
I	V2	0	3	47

Each training instance of *I. setosa* is assigned the right label. However, of the 50 each of *I. versicolor* and *I. virginica*, 3 of each were incorrectly predicted to be the other.

k = 3, test

		Actual		
pa		S	V1	V2
dici	\mathbf{S}	10	0	0
rec	V1	0	7	3
F	V2	0	0	10

Each test instance of *I. setosa* and *I. virginica* is assigned the right label. However, of the 10 predicted *I. versicolor* (from a stratified sample), 3 were actually *I. virginica*.

- k-nearest neighbours works better with "small" dimension *p* but can scale well to "large" number of cases *n*.
- Unlike most other techniques, decision boundaries are implicit, not explicit.
- If the decision boundary is also needed, might be better to use a different algorithm.

k-nearest-neighbours in python

Python's scikit-learn libraries provide a general interface to model fitting that abstracts away most of the details.

Method (Identifying the Iris species)

```
# create the model
   knn = neighbors.KNeighborsClassifier(n neighbors=5)
   # fit the model
   knn.fit(X, y)
 6
   # What kind of iris has 3cm x 5cm sepal and 4cm x 2cm petal?
   result = knn.predict([[3, 5, 4, 2],])
   # it is a versicolor...
11
   print(iris.target names[result])
12
   # class membership probabilities are [0., 0.8, 0.2]
   knn.predict proba([[3, 5, 4, 2],])
```

k-nearest-neighbours in python

Python's scikit-learn libraries provide a general interface to model fitting that abstracts away most of the details.

Method (Identifying the Iris species)

```
# create the model
   knn = neighbors.KNeighborsClassifier(n neighbors=5)
   # fit the model
   knn.fit(X, y)
 6
   # What kind of iris has 3cm x 5cm sepal and 4cm x 2cm petal?
   result = knn.predict([[3, 5, 4, 2],])
   # it is a versicolor...
   print(iris.target names[result])
12
   # class membership probabilities are [0., 0.8, 0.2]
   knn.predict proba([[3, 5, 4, 2],])
```

How might things go wrong?

K nearest neighbors is very sensitive to unbalanced data, so need to be careful!!

Outline

4. Summary

1.1. Learning from data	4
1.2. Lazy vs Eager Learners	6
2. Introduction to Classification	7

22

• Classification is a supervised learning operation, where training data is used to configure the classifier

- Classification is a supervised learning operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier

- Classification is a supervised learning operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier
- Lazy means tha prediction is based on the training data only a separate model is not trained or used for prediction

- Classification is a *supervised learning* operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier
- Lazy means tha prediction is based on the training data only a separate model is not trained or used for prediction
- The knn algorithm is conceptually simple vote for the most common label in the local neighbourhood of the unseen data instance

- Classification is a *supervised learning* operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier
- Lazy means tha prediction is based on the training data only a separate model is not trained or used for prediction
- The knn algorithm is conceptually simple vote for the most common label in the local neighbourhood of the unseen data instance
- There are some options in how the classifier is configured, notably choice of distance function and the hyperparameter k

- Classification is a *supervised learning* operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier
- Lazy means tha prediction is based on the training data only a separate model is not trained or used for prediction
- The knn algorithm is conceptually simple vote for the most common label in the local neighbourhood of the unseen data instance
- There are some options in how the classifier is configured, notably choice of distance function and the hyperparameter k
- Classification performance is assessed using a *confusion matrix*

- Classification is a *supervised learning* operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier
- Lazy means tha prediction is based on the training data only a separate model is not trained or used for prediction
- The knn algorithm is conceptually simple vote for the most common label in the local neighbourhood of the unseen data instance
- There are some options in how the classifier is configured, notably choice of distance function and the hyperparameter k
- Classification performance is assessed using a *confusion matrix*
- Predictions do not always match unseen data ideally they would

- Classification is a *supervised learning* operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier
- Lazy means tha prediction is based on the training data only a separate model is not trained or used for prediction
- The knn algorithm is conceptually simple vote for the most common label in the local neighbourhood of the unseen data instance
- There are some options in how the classifier is configured, notably choice of distance function and the hyperparameter k
- Classification performance is assessed using a *confusion matrix*
- Predictions do not always match unseen data ideally they would
- Performance on unseen data (used for testing) is the most common quality criterion, but there are others

- Classification is a *supervised learning* operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier
- Lazy means tha prediction is based on the training data only a separate model is not trained or used for prediction
- The knn algorithm is conceptually simple vote for the most common label in the local neighbourhood of the unseen data instance
- There are some options in how the classifier is configured, notably choice of distance function and the hyperparameter k
- Classification performance is assessed using a *confusion matrix*
- Predictions do not always match unseen data ideally they would
- Performance on unseen data (used for testing) is the most common quality criterion, but there are others
- Later, we will meet some metrics that can be computed from the confusion matrix and used to compare different classifiers

- Classification is a *supervised learning* operation, where training data is used to configure the classifier
- k-nearest-neighbours is a *lazy* classifier
- Lazy means tha prediction is based on the training data only a separate model is not trained or used for prediction
- The knn algorithm is conceptually simple vote for the most common label in the local neighbourhood of the unseen data instance
- There are some options in how the classifier is configured, notably choice of distance function and the hyperparameter k
- Classification performance is assessed using a *confusion matrix*
- Predictions do not always match unseen data ideally they would
- Performance on unseen data (used for testing) is the most common quality criterion, but there are others
- Later, we will meet some metrics that can be computed from the confusion matrix and used to compare different classifiers
- We can use such metrics to validate our classifier choice and search for optimal hyperparameters (hyperparameter tuning)