NYC Taxi Trip Explorer - Technical Report

1. Problem Framing and Dataset Analysis

Dataset Context

The NYC Taxi Trip Dataset contains 1.4 million trip records from 2016, providing a comprehensive view of urban mobility patterns in New York City. This dataset presents unique challenges and opportunities for understanding transportation dynamics.

Data Challenges Identified

- Missing Values: 17,065 records had invalid coordinates or missing critical data
- Outliers: Extreme trip durations (0-86,400 seconds) and distances (0-100+ km)
- Data Quality: Inconsistent borough classifications and coordinate precision
- Scale: Large dataset requiring memory-efficient processing strategies

Unexpected Observation

A significant discovery was the presence of "zero-distance" trips (same pickup/dropoff coordinates) representing 2.3% of all trips. These trips, averaging 8.5 minutes duration, likely represent passenger cancellations or meter errors, providing insights into operational inefficiencies.

2. System Architecture and Design Decisions

Architecture Overview

Backend	Database
(Express.js)	(PostgreSQL)
• REST API	 Normalized
• Data Cleaning	Schema
• Custom	 Indexing
Algorithms	• Performance
	(Express.js) • REST API • Data Cleaning • Custom

Technology Stack Justification

- Node.js/Express.js: Chosen for rapid development and JavaScript ecosystem consistency
- PostgreSQL: Selected for ACID compliance and advanced indexing capabilities

- HTML/CSS/JavaScript: Ensures broad compatibility and no additional dependencies
- Plotly.js: Provides professional-grade visualizations with minimal code

Design Trade-offs

- Memory vs. Performance: Implemented streaming data processing to handle 1.4M records
- Simplicity vs. Features: Focused on core functionality with clean, maintainable code
- Real-time vs. Batch: Chose batch processing for data consistency and performance

3. Algorithmic Logic and Data Structures

Custom K-means Clustering Implementation

Problem: Group similar taxi trips based on geographic location and temporal patterns to identify mobility hotspots.

Approach: Manual implementation of K-means algorithm without external libraries.

Pseudo-code:

```
FUNCTION kMeans(data, k, maxIterations):
    IF data.length == 0 OR k <= 0:
        RETURN empty array

centroids = initializeCentroids(data, k)

FOR iteration = 1 TO maxIterations:
    clusters = createEmptyClusters(k)

FOR each point IN data:
        distances = calculateDistances(point, centroids)
        nearestCluster = findMinimumDistance(distances)
        clusters[nearestCluster].add(point)

newCentroids = calculateNewCentroids(clusters)

IF converged(centroids, newCentroids):
        BREAK

centroids = newCentroids</pre>
RETURN filterNonEmptyClusters(clusters)
```

Time Complexity: $O(n \times k \times i \times d)$ where n=points, k=clusters, i=iterations, d=dimensions **Space Complexity**: O(n + k) for storing points and centroids

Key Features: - Handles empty clusters by reinitializing with random points - Uses Haversine distance for geographic accuracy - Normalizes duration dimension for balanced clustering - Implements convergence detection for efficiency

4. Insights and Interpretation

Insight 1: Manhattan Dominance

Derivation: Borough analysis query showing 78% of trips originate in Manhattan **Visualization**: Pie chart showing trip distribution by borough **Interpretation**: Manhattan's central business district generates the highest taxi demand, indicating economic activity concentration and transportation needs.

Insight 2: Rush Hour Patterns

Derivation: Hourly trip analysis revealing peak times at 8 AM and 6 PM **Visualization**: Bar chart showing trips per hour **Interpretation**: Clear commuter patterns with morning and evening peaks, suggesting work-related travel dominates taxi usage.

Insight 3: Speed-Distance Relationship

Derivation: Scatter plot analysis of trip speed vs. distance **Visualization**: Interactive scatter plot with color-coded duration **Interpretation**: Shorter trips show higher speed variability, while longer trips maintain more consistent speeds, indicating different traffic conditions and trip purposes.

5. Reflection and Future Work

Technical Challenges

- Memory Management: Large dataset required streaming processing and batch operations
- Algorithm Optimization: K-means convergence needed careful parameter tuning
- Data Type Handling: PostgreSQL string returns required frontend type conversion

Lessons Learned

- Streaming data processing is essential for large datasets
- Custom algorithms provide better control and understanding
- Data validation at multiple layers prevents runtime errors

Future Enhancements

- Real-time Processing: Implement WebSocket connections for live data updates
- Machine Learning: Add predictive models for trip duration and demand
- Mobile Optimization: Responsive design improvements for mobile devices
- Advanced Analytics: Time series analysis and seasonal pattern detection

Production Considerations

- Database connection pooling for concurrent users
- Caching layer for frequently accessed data
- API rate limiting and authentication
- $\bullet\,$ Horizontal scaling with load balancers

Technical Specifications: - Database: 1,441,579 valid trip records - Processing Time: $<200 \mathrm{ms}$ average query response - Memory Usage: $<500 \mathrm{MB}$ peak during data import - Browser Compatibility: Modern browsers with ES6 support