

STATE OF NEW YORK HUGH L. CAREY, Governor

DEPARTMENT OF TRANSPORTATION

WILLIAM C. HENNESSY, Commissioner

1220 WASHINGTON AVE., STATE CAMPUS, ALBANY, NEW YORK 12232

Ron Brown

TECHNICAL REPORT 81-3

PERFORMANCE OF ASPHALT CONCRETE
PAVEMENTS CONTAINING ANTI-STRIPPING
ADDITIVES

December 1981

materials bureau technical services division

TECHNICAL REPORT 81-3

PERFORMANCE OF ASPHALT CONCRETE PAVEMENTS CONTAINING ANTI-STRIPPING ADDITIVES

Prepared by

Ronald A. Brown Assistant Civil Engineer

Thomas E. Wohlscheid Associate Civil Engineer (Materials)

December 1981

MATERIALS BUREAU

JAMES J. MURPHY, DIRECTOR

NEW YORK STATE DEPARTMENT OF TRANSPORTATION
1220 WASHINGTON AVENUE, ALBANY, NY 12232

PREFACE

This report reviews the use of heat stable anti-stripping additives in New York State. The additives were pre-blended with the asphalt cement and were used in Regions 1, 3, and 7 (Albany, Syracuse, and Watertown) for various periods of time between 1976 and 1981. Performance evaluations of pavements containing the additives and laboratory testing of samples from these pavements indicated that any long term performance benefits derived from the addition (of the additive) were negligible. Therefore, it was concluded that the addition was not cost effective.

TABLE OF CONTENTS

PRE	FACE	ii
I.	INTRODUCTION	1
II.	REGION EXPERIENCE	
	A. Region 3 (Syracuse)	2
	B. Region 1 (Albany)	3
	C. Region 7 (Watertown)	4
III.	RESULTS	6
IV.	CONCLUSIONS	7
APP	ENDICES	
Α.	Stripping Test Method	9
В.	Region 3: Test Core Results	12
С.	Research Report on "Stripping Susceptibility of Aggregates From Two Sources in Northern	
	New York State"	18
D.	Region 1: Visual Observations and Report	31

I. INTRODUCTION

Poor bituminous concrete pavement performance encountered on high traffic volume highways has been a major concern for a number of years. Early investigation of this problem revealed that one of the major causes of this poor performance was the action of water breaking the bond between the non-carbonate coarse aggregate particles and the asphalt cement (stripping).

In June 1976, the use of heat stable anti-stripping additives began in an attempt to reduce the occurrence of this stripping and improve pavement performance. At this time the Department's position concerning these additives was as follows:

- 1. Expand the Department's knowledge on the use and effectiveness of these additives.
- 2. Evaluate the performance of pavements containing the additive and compare the performance to pavements without the additive.
- 3. Require the use of additives in selected areas of the state.

The Materials Bureau adopted a stripping test method (Appendix 1) and tested various heat stable anti-stripping additives with different combinations of non-carbonate aggregates and asphalt cement to determine the effectiveness of each additive. Additives passing this stripping test were approved for use. Initially, the required dosage rate for all additives was 0.5% (based on the weight of asphalt cement), but this rate was modified as new additives became available. In addition, the asphalt cement treated with anti-stripping additive had to meet all specification requirements for untreated asphalt cements.

To insure complete dispersion of the additive into the asphalt cement, the Department required that the additive be in-line blended either at the asphalt cement terminal or at the mixing plant. The method of blending and the equipment had to meet the approval of the Regional Director or his representative. Since the additives have a shelf life which could limit their effectiveness, Department policy was established that if the treated asphalt cement was held four days or less it was acceptable. Treated asphalt cement held 4-7 days was conditionally acceptable based upon stripping test results done by the plant inspector. Treated asphalt cement held longer than 7 days was not acceptable and considered as untreated asphalt cement. Periodic testing of the treated asphalt cement was done by the plant inspector to confirm both the presence and effectiveness of the additives.

Heat stable anti-stripping additives were used in Region 3 (Syracuse), Region 1 (Albany) and Region 7 (Watertown) during the period 1976-1981. The purpose of this report is to document the performance of the additive in the pavement.

II. REGION EXPERIENCE

A. Region 3 (Syracuse)

1. Background Starting in July 1976, all Region 3 contracts contained
a "Special Note" that required all asphalt concrete high
friction top course mixes (excluding dolomite mixes)
to use asphalt cement treated with an approved heat
stable anti-stripping additive.

The 1977 Region 3 O.G.S. Maintenance Bid Proposals for Bituminous Concrete were also changed to require the addition of approved anti-stripping additive to asphalt cements for high friction top course mixes.

2. Observation/Analysis In the Fall of 1980, 16 different projects were visually evaluated and sampled. Nine of these projects had top courses with anti-stripping additives and 7 without. Four of the projects without the additive were located in Region 7 and contained the same type high friction aggregate that was used in Region 3 top courses. One-hundred cores were taken from these projects and evaluated. In the summer of 1981, these pavements were reinspected. The results of the visual evaluation and the core test results are included in Appendix 2.

Each core was broken up and the coarse aggregate was visually examined. No distinct difference was observed between those cores containing anti-stripping additive and those with none. Overall, the majority of coarse aggregate particles in all the cores appeared to be well coated except for one project where water was moving through the pavement. Although this particular project (Route I-81 near Cortland) had the anti-stripping additive in the mix, all the aggregate was stripped. The physical test properties of the cores and asphalt cement did not show any difference between those cores with additive and those without.

The visual evaluation of the pavements showed that all pavements with the exception of one are performing satisfactorily. Contract D95619 Interstate 81 near Cortland showed distress in the form of isolated potholing and ravelling. Due to water in the overlay, the gravel coarse aggregate particles exhibited severe stripping which caused the ravelling. As mentioned previously, this overlay included the anti-stripping additive which did not prevent the aggregate from stripping after 3 years in service.

Other pavements, both with and without additives, contained stripped coarse aggregate particles but no ravelling or other distress that affected performance. No visual evidence indicating that the pavements containing the anti-stripping additive were out performing those without the additive was observed.

The use of the additive was discontinued in August 1981.

B. Region 1 (Albany)

- 1. Background In 1977, I-87 located in Region I was resurfaced between
 exits 24-26N using a crushed gravel. During the initial
 phase of this construction it was determined by the Region
 Materials personnel that this aggregate had stripping
 tendencies. An order-on-contract was initiated to require
 the use of anti-stripping additive with the binder and top
 courses. Two-thirds of the binder course and all the top
 course received the additive. In 1978, two other I-87
 resurfacing contracts were completed using this same type
 crushed gravel and anti-stripping additive.
- 2. Observation/Analysis In 1978 when paving was being completed on the two I-87
 contracts, it was noticed that there was some pavement
 surface distress in the contract completed in 1977.
 The surface course on some sections of the project had
 shoved under traffic and left humps in the wheel paths.
 These humps contained numerous pieces of aggregate that
 showed signs of asphalt stripping. Further investigation
 of the entire project indicated that much of the gravel
 aggregate in the surface course showed signs of stripping.

A number of asphalt cement samples with the anti-stripping additive were retained at the plant producing the mixes in 1977. All these samples had passed initial stripping tests. These retained samples were tested to determine the effectiveness of the additive after one year shelf storage. All samples failed the stripping test which indicated the admixture may have a shelf life and may not be effective in the pavement after some time period had elasped.

In the Fall of 1978, a number of cores were taken from each of the three projects paved using the anti-stripping admixtures. Test results indicated the physical properties of the cores and recovered asphalt cements were well within the acceptable limits.

In December 1978 the Region postponed two I-87 projects scheduled for letting in 1979 until additional evaluations could be done. The Engineering Research and Development Bureau assisted the Materials Bureau in evaluating the stripping susceptibility of aggregates from two northern sources. These sources were potential candidates for use in the two upcoming contracts. The aggregates were evaluated using varying dosage rates of different antistripping admixtures. Stripping potential was evaluated on the basis of indirect tensile strength tests from which tensile strength ratios were determined after two different simulated exposure treatments. Tests concluded that only one admixture at 1.0 percent was effective in improving tensile strength ratios for both short and long term evaluations. However, there was visual evidence of stripping in the specimens. The study concluded that the dolomite aggregate, which was used as a control and passed all tests, be used instead of the gravel aggregates. The report "Stripping Susceptibility of Aggregates from two sources in Northern New York State" can be found in Appendix 3.

The use of the additive was discontinued in December 1978.

In July 1979 the Regional and Main Office Materials Bureau personnel examined several northern projects which had used gravel aggregates and been in service for a number of years. Visual evaluations indicated that some stripping of the aggregate was evident, but the traffic volume and loading of the roadways was such that no visible surface distress was apparent to reduce serviceability (Appendix 4).

C. Region 7 (Watertown)

1. Background In 1977, Region 7 decided that since many of their noncarbonate aggregate exhibited stripping susceptibility
they should evaluate the use of anti-stripping additives.
A special note requiring that the additive be added only
to top and binder courses composed entirely of noncarbonate coarse aggregate was inserted in all proposals.

2. Observation/Analysis A number of cores were taken from Contract D95800, NYS
Route 3 between Cranberry Lake and Sevey's Corners
after one year service. The core results and visual
evaluation indicated that no immediate benefits were
derived from the use of the additive. The use of the
additive was terminated in January 1980 based on the
findings in Region 7 and Region 1.

III. RESULTS

Region 3 pavement core test results and pavement evaluations performed on pavements in-service for up to four years, showed no long term performance benefits from adding heat stable anti-stripping additives to high friction top course mixes. Results also indicated that dense graded top course mixes properly designed and constructed produce low permeable pavement surfaces with low air voids and high densities. This type of pavement reduces water entering the pavement and minimizes the chance for stripping.

After reviewing all the evaluations and test core results from Region 1, it was determined that any initial benefit derived from the addition of additive was negated after a short period of time. Pavement cores taken from sections with and without the additive showed the same degree of aggregate stripping after one year service. Stripping tests on asphalt cements containing the additive and stored for one year resulted in failing tests.

Region 7 evaluation and testing also indicated that no immediate benefits were derived from adding the additive. Pavement performance evaluations and the increased cost of approximately one dollar per ton have shown that the use of these additives is not cost effective.

IV. CONCLUSIONS

The conclusions of this study are as follows:

- 1. Any long term performance benefits derived from adding heat stable anti-stripping additive to asphalt concrete course mixes are negligible.
- 2. Any benefits derived from the initial addition of the additive are negated after a short period of time.

 The additive has a "shelf" life.
- 3. Benefits derived from the addition of the additive are not cost effective.
- 4. Dense graded asphalt concrete mixes properly designed and constructed result in relatively impervious surfaces. This type of surface reduces water from entering pavement, thus minimizing the chance for stripping.
- 5. One admixture at 1.0 percent (by weight of asphalt cement) was effective in improving tensile strength ratios of mixes for both short and long term evaluations. However there was visual evidence of stripping in the specimens.

APPENDIX A

STRIPPING TEST METHOD

TEST METHOD FOR DETERMINING STRIPPING TENDENCIES FOR COARSE AGGREGATES

SCOPE: This method covers the procedure for testing coarse aggregate particles used in asphalt paving mixtures for retention of a bituminous film in the presence of water and the procedure for determining the effectiveness of antistripping additives when added to asphalt cement.

APPARATUS:

- a. Sieves, standard, square hole, of 1/2 in. and 1/4 in. size.
- b. Scale Capacity of 200 g., accurate to +0.1 g.
- c. Constant Temperature oven capable of maintaining a constant temperature of 300°F.
- d. Containers, for mixing, having rounded sides, such as seamless tin cans, 12-16 oz. capacity.
- e. Spatula for mixing the aggregate particles and asphalt cement.
- f. Burner open flame gas operated, or electric.

MATERIALS:

- a. Treated asphalt cement use the asphalt cement produced by the same manufacturer(s) and of the same grade(s) as that to be used in the project with the aggregate under test. Preheat asphalt cement and additive to 300°F. Thenmix in the manufacturers prescribed dosage of anti-stripping additive to the asphalt cement.
- b. Aggregate Test aggregate is to be of such a size that 100% passes a 1/2 in. sieve and is retained on a 1/4 in. sieve.
- c. Distilled water

REFERENCE STANDARD:

- a. An aggregate which is known to exhibit loss of asphalt coating after undergoing the test procedure as outlined here. (Wellesley Is. granite)
- b. An aggregate which is known not to have stripping tendencies (limestone).

PROCEDURE:

- 1. Coating Weigh 100 g. of the dry, washed aggregate at room temperature into the mixing container and heat in an oven to approximately 300°F. To the heated aggregate add 5.0 ±1 g. of the treated asphalt cement which has also been preheated to 300°F. Mix the asphalt cement and aggregate vigorously with the spatula until all the stone has a uniform coating, no bare spots are permissible.
- Curing Let the coated aggregate cool to ambient temperature.
- 3. Testing Add enough distilled water to cover the coated stone in the container. Place the container over a source of direct heat (an open flame or an electric burner) and bring the water to a full, rolling boil for one minute. Remove the container from the burner and immediately rinse the contents with tap water.
- 4. Visual Examination. Compare against reference standard.

TEST METHOD FOR DETERMINING STRIPPING TENDENCIES FOR COARSE AGGREGATES

SCOPE: This method covers the procedure for testing coarse aggregate particles used in asphalt paving mixtures for retention of a bituminous film in the presence of water and the procedure for determining the effectiveness of antistripping additives when added to asphalt cement.

APPARATUS:

- a. Sieves, standard, square hole, of 1/2 in. and 1/4 in. size.
- b. Scale Capacity of 200 g., accurate to +0.1 g.
- c. Constant Temperature oven capable of maintaining a constant temperature of 300°F.
- d. Containers, for mixing, having rounded sides, such as seamless tin cans, 12-16 oz. capacity.
- e. Spatula for mixing the aggregate particles and asphalt cement.
- f. Burner open flame gas operated, or electric.

MATERIALS:

- a. Treated asphalt cement use the asphalt cement produced by the same manufacturer(s) and of the same grade(s) as that to be used in the project with the aggregate under test. Preheat asphalt cement and additive to 300°F. Thenmix in the manufacturers prescribed dosage of anti-stripping additive to the asphalt cement.
- b. Aggregate Test aggregate is to be of such a size that 100% passes a 1/2 in. sieve and is retained on a 1/4 in. sieve.
- Distilled water

REFERENCE STANDARD:

- a. An aggregate which is known to exhibit loss of asphalt coating after undergoing the test procedure as outlined here. (Wellesley Is. granite)
- b. An aggregate which is known not to have stripping tendencies (limestone).

PROCEDURE:

- 1. Coating Weigh 100 g. of the dry, washed aggregate at room temperature into the mixing container and heat in an oven to approximately 300°F. To the heated aggregate add 5.0 ±1 g. of the treated asphalt cement which has also been preheated to 300°F. Mix the asphalt cement and aggregate vigorously with the spatula until all the stone has a uniform coating, no bare spots are permissible.
- 2. Curing Let the coated aggregate cool to ambient temperature.
- 3. Testing Add enough distilled water to cover the coated stone in the container. Place the container over a source of direct heat (an open flame or an electric burner) and bring the water to a full, rolling boil for one minute. Remove the container from the burner and immediately rinse the contents with tap water.
- 4. Visual Examination. Compare against reference standard.

_	
120	1
-(,
	∕

CONTRACT		THIC-TIME	PPING ADDITIVE INVESTIG	JATLON	
NUMBER:	LOCATION:	MIX: PLACED:	PLANT:	HIGH FRICTION AGGREGATE:	· ADDITIVE:
D95431	ROUTE 5; ONONDAGA COUNTY Elbridge - Camillus, Part 2 Camillus - Fairmount, Part 1 & Part 2	1-ACF 1977	Warren Brothers Co. Schuyler Road Plant East Syracuse, NY	3-8G General Crushed Stone Co. Lacona, NY	ACRA - 500
FASS 73-5 FARC 73-121	ROUTE 5 - CAMILLUS BYPASS Fairmount - Camillus - Elbridge	1-AF (51-F) 1976-77	Barrett Paving Jamesville, NY	3-8G General Crushed Stone Co. Lacona, NY	NO ADDITIVE
D95430	ROUTE 227; TOMPKINS COUNTY Perry City - Trumansburg	1-AF 1977-78	Warren Brothers Co. Canoga, NY	2-28G Special Aggregates Corp. Oriskany, NY	ACRA - 500
D95619	I-81; CORTLAND COUNTY Interstate Route 505, Cortland - Tully	1-AF 1978-79	Concrete Matls., Inc. Homer, NY	3-4G Concrete Materials, Inc. Homer, NY - 100% -	REDI-COAT
D95553	ROUTE 41; ONONDAGA COUNTY Scott - Borodino, Part 1 & 2	1-AF 1978	General Crushed Stone Co. Skaneateles, NY	3-8G General Crushed Stone Co. Lacona, NY	TERMINAL BLENDED ARCO - Kling/Beta 1000 EXXON - Pave Bond Spec.
ONONDAGA EAST	MAINTENANCE PROJECT - ROUTE 80 Syracuse City Line to 1 mile north of Lyons Den Road	1-AF 1977	General Crushed Stone Co. Jamesville, NY	3-8G General Crushed Stone Co. Lacona, NY	TERMINAL BLENDED ARCO - Kling/Beta 1000 EXXON - Pave Bond Spec.
D95064	ROUTE 5; ONONDAGA COUNTY Syracuse - Fayetteville	1-AF 1976-77	Barrett Paving Jamesville, NY	6-13G Allied Chemical, Nichols, NY 3-8G General Crushed Stone Co. Lacona, NY	TERMINAL BLENDED (1976) ARCO - Kling/ Beta 1000 (1977) ARCO - Kling/ Beta 1000 MABATHON ? (Tonawanda)

r = r

ANTI-STRIPPING ADDITIVE INVESTIGATION

. . .

		ANTI-	STRIPPING ADDITIVE INVE	ESTIGAT.	LON	
CONTRACT NUMBER:	LOCATION:	MIX: PLACED:	PLANT:	HIGH	H FRICTION AGGREGATE:	ADDITIVE:
ONONDAGA EAST	MAINTENANCE PROJECT - ROUTE 298 From Taft Road to 0.8 miles south of Route 31 at Bridgeport	1-AF 1978	Barrett Paving Jamesville, NY	3-20G 3-8G	Polkville Crushed Stone Polkville, NY General Crushed Stone Co. Lacona, NY	TERMINAL BLENDED ARCO-KLING/BETA 1000 (Three Rivers) ARCO ? (Albany) MARATHON ? (Tonawanda)
FARC 71-50 FASH 71-3 FIRC 71-51	ROUTE 5 - CAMILLUS BYPASS Fairmount - State Fair (I-690)	1-AF (51-MF) 1973-74	Barrett Paving Jamesville, NY	3-8G	General Crushed Stone Co. Lacona, NY	NO ADDITIVE
D95128	I-690; ONONDAGA COUNTY Lake Onondaga West Shore Development City of Syracuse: State Fair Boulevard	1-AF 1978	General Crushed Stone Co. Jamesville, NY	3-8G	General Crushed Stone Co. Lacona, NY	TERMINAL BLENDED EXXON-Pave Bond Spec. ARCO-Kling/Beta 1000
D95763	I-690; ONONDAGA COUNTY Bear Street to Clinton Street	7F 1978	Warren Brothers Co. Schuyler Road Plant East Syracuse, NY	2-28	Special Aggregates Corp. Oriskany, NY	ACRA - 500
		1979	Warren Brothers Co. Clockville, NY	2-28	Special Aggregates Corp. Oriskany, NY	ACRA - 500
D95042	I-481; ONONDAGA COUNTY Forest Interchange - Jamesville	1-AF 1977	General Crushed Stone Co. Jamesville, NY	3-8G	General Crushed Stone Co. Lacona, NY	NO ADDITIVE
		1979	-ditto-		-ditto-	EXXON-Pave Bond Spec.

. . .

4	_
	~
- (3
- /	

		ANTI-S	TRIPPING ADDITIVE INVE	STIGATION	(3)
CONTRACT: NUMBER:	LOCATION:	MIX: PLACED:	PLANT:	HIGH FRICTION AGGREGATE:	ADDITIVE:
D95143	I-81; ONONDAGA COUNTY City of Syracuse: Oswego Blvd. SH C56-11;	<u>1-AF</u> 1977-78	Barrett Paving Jamesville, NY	(1977) 3-8G General Crushed Stone Co. Lacona, NY	TERMINAL BLENDED (1977) ARCO-Kling/Beta 1000 MARATHON ? (Tonawanda)
				(1978) 3-20G Polkville Crushed Stone Polkville, NY 3-8G General Crushed Stone Co Lacona, NY	(Three Rivers) ARCO ?
NOTE:	CORES TAKEN ON D 95042 Mile Marker 2002 - N.B NO ADDITIVE USED Paved September 1977 - Mile Marker 2002 - S.B NO ADDITIVE USED	Opened to	o traffic (two - way): Oc	tober 1977	·
Check	Paved October 1977 - Or	ened to	traffic: November 1979		
			•		1

APPENDIX B

REGION 3: TEST CORE RESULTS

CONTRACTS WITH ANTI-STRIPPING ADDITIVE

					8	NTRACIS	TH ANI	-SIKIPPIN	CONTRACTS WITH ANTI-STRIPPING ADDITIVE	ul			GRADATIC	GRADATION % PASSING	SN SN						
CONTRACT	OCATION	MIX	PLANT	AGGREGATE	ADMIXTURE	CORE	1"	1/2"	1/4"	1/8"	#200	4	#80	#200	AC Cont,	#/ft.3 Density	% Air Voids	Pen. 77°F	Viscosity Viscosity 140°F 275°F	Viscosity 275°F	
D95064	Route 5: Onondaga County	1 AF			Kling-Beta	37	100	100	82.8	56.4	24.1	16.4	10.4	7.3	6.8	138.8	11.6	56	10281	748	
	Syracuse - Fayetteville		Jamesville	Allied Chem.	1000	38	100	100	83.5	57.7	9.92	18.0	11.5	7.7	6.4	136.6	10.54	24	12578	780	
į.	Dirty fines many uncoated coarse agg. good coating overwill	-		3-8G Lacona		39	001	900	82.3	48.5	18.3	12.8	9.8	6.4	7.1	139.5	9.15	23 24.3	14733	854 797	
*	Good shape, heavily traveled Poor longidinal joint reflective cracks in driving lane (transverse)																				
***	7/81 - same as reported 8/80																				
Maint.	Route 298 From Taft Rd. to .8 miles	1 AF 1978	Barrett Paving Jamesville	3-20G Polkville	Kling-Beta 1000		001	001	85.7	56.4	24.0	16.4	10.9	7.8	7.5	146.6	4.00	[2 8	4478	631.	
	south of Route 31 at Bridgeport			3-8G Lacona		5 9 1	<u> </u>	8 0	87.3	51.7	21.12	14.3	9.7	6.4	7:0	147.6	3.55	120 4	4528	623	
*	Good to excellent coating						20	100	86.8	55.4	23.3	15.8	10.9	7.7	7.3	147.0	3.86	20	4543	630	
±	Appears in excellent shape No distress showing																				
D95128	I-690 Onondaga County	1 AF	General Crush	3-8G General	Pave Bond Spec.		100	100	80.1	50.7	21.9	14.0	0.6	6.4	6.9	144.0	5.76	33	8115	169	
	Lake Unundaya west shure	265		Crush.	Kling-Beta	25	100	100	78.3	50.7	21.9	13.9	8.8	6.3	7.2	147.1	3.16	37	2006	624	
. ‡	Good condition - some flushing in wheelpath (isolated). Poor				8	54	100	001	82.1 80.1	52.6	22.5	15.6	9.3	6.8	6.6	145.8	4.38	33.6	6453 6826	648 648	
* *	7/81 - Condition is same as																				
095143	I-81: Onondaga County	1 AF			Kling-Beta	200	100	100	88.8	58.0	22.3	15.1	10.2	7.0	7.0	139.2	8.83	38	6943	688	
	City of Syracuse, Oswego Blvd.	1977-78	Jamesville	General Crush.	1000	69	100	100	9.77	57.0	23.6	15.0	9.8	6.7	6.7	145.0	5.30	40	4942	591	
*	Stripping on some coarse agg. Fair to poor overall on coarse agg. Dirty fines, (Very)			Lacona		70	100	001	75.0	55.2	22.0	14.3	8 6	6.4	0.00	142.8	5.75	41 39.6	5025 5636	618	
*	Good to excellent condition Poor longitudinal joint in some areas. No visible sign of distress																				
**	7/81 - Maybe some minor rutting Same condition as previously reported.																				
D95042	I-481; Onondaga Coutny Forest Interchange-Jamesville	1 AF 1977	General Crush. Jamesville	3-8G Lacona	Exxon Pave Bond		001	99.3	84.9	56.1	20.5	12.8	8.0	ເກີ ເ	7.5	139.0	9.10	29	13998	921	
*	Good to excellent coating on all aggregate - few fine sandstone particles not coated.				spec.		001	99.2	82.3	45.0	20.0	13.5	9.0	6.3	7.2	141.1	7.82	s &	12601	885	
*	8/4/80 - Good to excellent condition - No visible signs of distress					64	<u>00</u> 00	99.5	83.1	50.2	20.8	13.0	8.2	5.6	7.3	138.3	8.34	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11156	820 862	
*	Some longitudinal cracks appearing in between wheelpath driving lane minor popouts. Overall good to excellent. Few fat spot in passing lane.	ine sing																			

*Visual Coating Evaluations ***Yjsual Payement Condition 8/80 ***Yjsual Payement Condition 3/81

CONTRACTS WITH ANTI-STRIPPING ADDITIVE

shape shape shape shape shape shape shape sess	LOCATION		MIX	PLANT	AGGREGATE	CO ADMIXTURE	CORE NUMBER	I"	1/2"	CONFRACTS WITH ANTI-STRIPTING AUGULINE CORE NUMBER 1" 1/2" 1/4" 1	1/8"	#200	#40	GRADATIO #80	GRADATION % PASSING #80 #200 Co.	., t	#/ft.3 Density	# Air Voids	Pen. 77°F	Viscosity 140°F	Viscosity Viscosity 140°F 275°F
1 15 1971 Schwiller Rich Licona 1 100 100 1971 1972	Onondada County		1-ACF	Warren Bros.	3-86	8	2	100	100	94.5	55.7	28.9					146.2	2.38	38	4887	588
Authors Part	Elbridge - Camillus, Part Camillus - Fairmont, Part	35	1977	Schuyler Rd.	Lacona		673	100	100	93.9	53.8	27.3			6.2	8.2	146.8	2.28	51	3264	502
Concrete Mat. 2-866	Good to Excellent Coating						4	. 000	900	92.1		25.5			6.3	8.2	145.9	2.46	4650	3052 3734	480 523
General Crash 3-86 King-beta 23 100 100 86.1 57.0 22.6 14.4 9.1 6.4 6.3 137.7 10.28 27 11417 1	8/80 Pavement appears excellent shape Very little reflective cracking Some wheel ruts (less than 1/4")	shap cking 1/4"																			
1 M Street Box	ion is same as repor	ted pi	reviously																		
Aggregate 14 100 100 82.4 57.9 22.4 14.4 9.0 6.2 6.4 141.2 8.16 8.16 156 156 156 156 156 156 156 156 156 1	Route 227; Tompkins County Perry City - Trumansburg		1 AF 1977-78	Warren Bros. Canoga, NY	2-38G Special	Acra-500	13	100	100	86.1	67.0	22.6			6.4	6.3	137.7	10.28	27	11417	864
1 AF Concrete Mat. 3-46 Redi-Coat 20 100 100 77.9 38.3 24.2 18.0 8.1 4.6 6.5 146.5 3.06 38 4559 19.1 1	Good Coating #13, 14 Some dirty uncoated Agg. #17	7			Aggregate		17	8 8	00 00	86.7 82.4		23.4			2 5	6.4	139.0	8.16	328 32	6355 11642	706 1885 1885
1 MF Concrete Mat. 3-46 Redi-Cast 20 100 100 77.9 38.3 24.2 18.0 8.1 4.6 6.5 146.5 3.06 38 4559 1978-79 Homer Mat. Concrete Mat.	Appears in excellent shape Minor longitudinal cracks in outside wheelpath	ŧ						3	3	?		-			?				3		2
1 MF Concrete Mat. Concr	7/81 - Same as 8/80 appearance	rance																			
tion- Mat. Mat. 21 100 100 12.3 37.8 22.2 16.5 8.7 4.1 6.2 145.9 3.77 42 5411	I-81; Cortland County Lot Route 505, Cortland-Tully	[n]	1 AF 1978-79		3-4G Concrete	Redi-Coat	50	100	100	6.77	38.3	24.2			4.6	6.5	146.5	3.06	88	4559	217
Statesteles Lecona 3-86 Riling-Beta 23 100 100 79.4 387 23.2 17.2 8.2 4.2 6.6 144.6 3.70 42 4165		?			Mat.		2.1	100	100	82.3	37.8	22.2		8.7	4.1	6.2	145.9	3.71	42	5411	599
Skaneateles Lacona Lacon	Good to excellent coating						22	<u> </u>	86	78.1		23.4			02	9.0	144.6	3.70	46	4160	529
Skanesteles Lacona 1906 100	Excellent condition - Some transverse and reflective cracking. Some cracking in longitudinal joint.	e t						2	3									;	4		3
1 AF General Crush 3-8G Ning-Beta 23 100 100 82.4 66.7 27.5 16.9 10.6 7.2 6.9 137.7 9.33 32 10612	7/81 - Some raveling in wheelpaths (Driving), Contamination- NB Lane water pumping through, Overall good.	aminat ough,	ion-																		
Pave Bond 24 100 100 82.4 66.7 27.5 16.9 10.6 7.2 6.9 137.7 9.33 32 10612 Spec. 26 100 100 82.5 63.1 27.7 17.8 11.0 7.2 6.9 137.7 9.36 25 18056 ping out binder I AF General Crush 3-86 Kling-Beta 29 100 100 86.6 61.7 23.1 14.6 9.2 6.5 5.9 143.5 7.45 22 16276 Wi. 1977 Jamesville Lacona Pave Bond 30 100 100 84.1 59.8 21.8 13.6 8.4 6.4 6.1 142.6 8.12 24 17020 Spec. 33 100 100 86.3 65.3 29.9 14.7 8.9 6.3 5.7 141.3 9.04 25 19186 Eshape ess	Route 41, Onondaga County Scott-Borodino Part 1 & 2		1 AF 1978	General Crush Skaneateles	3-8G Lacona	Kling-Beta 1000	23	100	100	80.9	66.4	27.9			7.5	7.0	136.5	10.25	32	10966	829
AF General Crush 3-86 Kiling-Beta 29 100 100 86.6 61.7 23.1 14.6 9.2 6.5 5.9 143.5 7.45 22 16276 1977 James ville Lacona 1000 84.1 59.8 21.8 15.9 9.1 6.0 5.3 186.0 11.56 23 24263 1978 Spec. 33 100 100 86.5 52.9 14.7 8.9 6.0 5.3 188.0 11.56 23 24263 19716 Spec. 31 100 100 86.5 52.9 14.7 8.9 6.0 5.3 188.0 11.56 23 24263 19716 Spec. 32 100 100 86.5 52.9 14.7 8.9 6.0 5.3 188.0 11.56 23 24263 19716 Spec. 33 100 100 86.5 52.9 14.7 8.9 6.0 5.3 184.0 11.56 23 24263 19716 Spec. 33 100 100 86.3 65.3 23.9 14.7 8.9 6.3 5.7 141.3 9.04 23 19716 Spec. 33 100 100 86.3 65.3 14.7 8.9 6.3 5.7 141.3 9.04 23 19716 Spec. 34.65 5.9 14.7 8.9 6.0 5.3 188.0 11.56 23 24263 19716 Spec. 34.65 5.9 14.7 8.9 6.0 5.3 184.0 11.56 23 24263 19716 Spec. 34.65 5.9 14.7 8.9 6.0 5.3 184.0 11.56 8.7 141.3 19716 Spec. 35 100 100 100 100 100 100 100 100 100 10						Pave Bond Spec.	24	100	000	82.4					7.2	6.9	137.7	9.33	32	10612	818
AF General Crush 3-86 Kiing-Beta 29 100 100 86.6 61.7 23.1 14.6 9.2 6.5 5.9 143.5 7.45 22 16276 1977 Jamesville Lacona 1000 100 84.1 59.8 21.8 13.6 8.4 6.4 6.1 142.6 8.12 24 17020 24.63 25.6 25.7 24.63	Many uncoated fine agg. Overall poor to fair Some dirty aggregate						56	001	<u> </u>	81.9					2.7	6.7	139.0	9.36	25 29.6	13212	988 888
1 AF General Crush 3-8G	Appears in excellent shape Some coarse agg. (#1) popping out Top separated easily from binder	ping o	r ut																		
Pave Bond 30 100 100 84.1 59.8 21.8 13.5 8.4 6.4 €.1 142.0 8.12 24 170.0 8.12 24.263	Route 80 Syracuse City Line to 1/4 Mi.	MI.	1 AF 1977	General Crush Jamesville		Kling-Beta	29	100	001	96.6	61.7	23.1			6.5	5.9	143.5	7.45	22	16276	882
33 100 100 86.3 62.3 23.9 14.7 8.9 6.3 5.7 141.3 9.04 23 19136 sis	of Lyons Den Road					Pave Bond Spec.	e :	90 ;	00 5						4. 0	- · ·	142.6	8.12	24	020/1	626
shape	Some uncoated fines Some coarse agg. Stripped Overall fair to good	-					m m	<u> </u>	8 8) m	200	141.3	9.04	2 2	19136	963
	8/80 - Good to excellent shape No visible signs of distress	t shape tress																			
	Condition same as 8/80								Ì												

*Visual Coating Evaluations **Visual Pavement Condition 8/80 ***fisual Pavement Condition 3/81

CONTRACTS WITHOUT ANTI-STRIPPING ADDITIVE

FASS Route: 73-5 FASS FASS FASS 73-121 * Dirty Fair c Good t Very 1 betwee cracks Isolatt fines.				OIS	** Goo	* 600	D95627 Rou (Re	** Goo		•	D95047 Rou	Goo	* Som	75-164 Rou (Re	gr	**Visual Fai Pavement Som Condition all	*Visual Ver Coating Evaluations	(R	D95897 Rou	CONTRACT LOC	
	Good to excellent shape Very little rutting. No bond between top & binder. Some cracks in westbound lane. Isolated loss of some surface fines.	Some uncoated sandstones Dirty Aggregate Fair coating	Fairmount-Camillus-Elbridge	Route 5 - Camillus by Pass	Good to excellent shape. Some reflective cracking, very little distress	Good to excellent coating.	Route 12, Clayton - Alex. Bay (Region 7)	Good to excellent shape. Some reflective cracks, few flushed areas.	coating. Couple of coarse Agg. stripped.	9.50. 27	Route 12 Clayton - Alex. Bay (Region 7)	Good to excellent shape. Few flushed areas - No cracks.	Some stripping both coarse and fine agg. Fair to good overall	Route 342-Thousand Is. Bridge (Region 7)	81	Fair to Good shape overall Some reflective cracking in all lanes - Small areas of flushing.	Very Good Coating	1	Route 11	LOCATION	
				1 AF 1976-77			1 ACF 1977			3	1 ACF			1976				1370	1 ACF	MIX PLACED	
			Jamesv111e				General Crush. Watertown				General Crush.			Watertown				Ma col comii	General Crush.	PLANT	
			Lacona	3-8G General			Lacona				Lacona			Lacona				Lacona	General	AGGREGATE	
				None			None				None			i di	•				None	ADMIXTURE	
		ā		7	\$	97	95		94	90	89		87	86, 8	2		82	81	77	CORE	
		ā	100	100	100	100	100		100	100	100		100	100	Š		100	100	100	1	
		ਭ	100	100	100	100	100		100	100	100		100	100	Š		000	100	100	1/2"	
		89.8	90.5	89.3	98.8	99.1	98.3		97.8 98.3	98.4	98.7		90.6	98.9	3		98.3 98.8	99.3	99.0	1/4"	
		57.1	57.5	57.6	69.6	73.7	67.0		73.5 74.4	75.1	74.8		64.6	69.5			70.8 70.8	70.7	71.1	1/8"	
		21.8	21.8	21.9	28.5	29.4	27.6		28.5 28.7	29.2	28.5		27.0 25.3	23.9	2		27.6 27.4	27.9	26.7	#200	
		3.5	13.5	13.4	18.8	19 3	18.2		17.5 17.3	17.7	16.9		17.6 14.9	13.5	3		17.2 17.1	17.3	16.8	#40	
		7.6	6.9	8.0	12.2	19 5	11.7		9.9	10.0	9.9		10.8 8.4	7.0	4		10.1	10.6	10.2	#80	GRAD!
		5.0	5.2	5.1	7.9	7 0	7.7		6.0	6.1	5.9		5.2	4.5	•		6.4	6.5	6.4	#200	GRADATION % PASSING
		6.2	6.4	6.4	න ක	n c	7.3		6.0	6.9	6.4		6.7	7.0	n J		7.0 6.8	6.6	6.9	AC Cont.	ASSING
		136.1	137.9	135.6	140.4	130 7	141.0		136.6 136.0	136.2	135.3		148.1 139.1	135.4	3		141.2	138.5	140.6	#/ft. o Density	ω.
		11.54	10.20	11.81	7.64	8 54	6.92		11.05 11.43	11.16	12.08		3.42 9.0	11.10	5		7.22 8.00	9.32	7.63	% Air Voids	
		26	24	24	41.6	30 5	47		27 28	29	28		39 58 8	31	3		46	39	47	Pen. 77°F.	
		12939	14125	15039	5076	5010	3590		17922 17007	14787	18314		2266 6223	7619			3642 3818	4550	3264	Viscosity Viscosity	
		808	837	866	561	506	496		1037	949	1023		417 553	605			479	515	461	Viscosity 275°F	

^{*}Visual Coating Evaluations

**Visual Pavement Condition

***Visual Pavement Condition - 7/81

CONTRACTS WITHOUT ANTI-STRIPPING ADDI

***	*	*	D95042	‡	*	D95042	‡	*	*	FARC 71-51	FASH	FARC	CONTRACT	
Some longitudinal cracks appearing in between MP driving lane. Minor popouts, Few flush spots passing lane. Overall good to excellent.	8/4/80 Good to excellent condition. No visible signs of distress.	Generally good coating of all aggregate - Some sandstone in the fines are uncoated	I-481; Onondaga County Forest Interchange - Jamesville	8/4/80 Good to excellent condition. No visible signs of distress.	Good coating coarse agg. Some fine (silt) did not coat.	I-481; Onondaga County Forest Interchange - Jamesville	7/81 Same condition as previously reported.	8/4/80 Fair to good shape overall. Poor longitudinal joint. Long cracks in some lanes	Good coating overall. Some silt in one core did not coat.	Fairmont - State Fair (I-690) 1973-74 Jamesville		Route 5 - Camillus by Pass	LOCATION	
	:	(Open to traffic in 10/77)	1 AF 1977	in 11/79)	(Open	1 AF 1977	Y			1973-74		1· AF	PLACED	
		3)'	General Crush Jamesville	S		General Crush. Jamesville				Jamesville	Paving	Barrett	PLANT	
			3-8G Lacona			3-8G Lacona				0	Lacona	General	AGGREGATE	
			None			None						None	ADMIXTURE	
		S	59			65 65				50	4 8	47	CORE	
		a s	100		100	ī				<u> </u>	100	100		
		99.7	00		00	1 00				ā ē	100	100	1/2"	
		82.9	83.9		82.7	84.0				83.6 84.0	84.7	83.8	1/4"	
		52.1	51.7		47.9	49.2				54.4 53.9	54.3	53.2	1/8"	
		22.8	22.6		19.5	20.1				21.7 23.0	23.6	23.9	#200	
		5	14.8		11.9	12.2				13.8	15.7	17.0	#40	
		9.7	9.5		6.9	7.3				8.3	10.9	12.2	#80	GRADA.
		6.7	n 6.6		4.8	4- 5-				5.7 7.5	7.8	9.2	#200	GRADATION % PASSING
		213	7.2		6.7	6.8				6.8	6.8	7.2	AC Cont.	SSING
		143.8	143.5		139.1	139.5 138.8				140.6 145.8	147.5	149.4	#/ft.3 Density	,
		7.51	8.78		9.15	8.89 9.41				7.85 4.10	2.92	1.72	% Air Voids	
		3	30		띄	3 2				%	37	41	Pen. 77°F	
		20149	20253		15531	16732 14331				6377 5644	6159	4397	Viscosity Viscosity 140°F 275°F	
		985 985	986		909	940 879				577 494	477	430	iscosity 275°F	

*Visual Coating Evaluations

**Visual Pavement Condition

***Visual Pavement Condition - 7/81

APPENDIX C

SPECIAL REPORT 67

STRIPPING SUSCEPTIBILITY OF AGGREGATES FROM TWO SOURCES IN NORTHERN NEW YORK STATE

Printed With Permission Of The Engineering Research And Development Bureau New York State Department of Transportation

STRIPPING SUSCEPTIBILITY OF AGGREGATES
FROM TWO SOURCES IN NORTHERN NEW YORK STATE

Richard W. Miller, Senior Civil Engineer

Special Report Prepared Under Research Project 12-7
Conducted in Cooperation With
The U.S. Department of Transportation
Federal Highway Administration

Special Report 67 April 1980

I. INTRODUCTION

In March 1979, the Materials Section of the Engineering Research and Development Bureau was asked to assist the Materials Bureau in evaluating the stripping susceptiblity of aggregates from several northern New York sources. These sources were potential candidates for use in two upcoming contracts for resurfacing portions of the Adirondack Northway (I 87) near Chestertown and Elizabethtown, New York. Stripping had occurred in other Northway pavements when aggregate from one of these sources was used (in 1977 and again in 1978) with a commercial anti-stripping agent, even though tests for stripping susceptibility had indicated that it could be used safely.

This report describes work that was performed in the bituminous laboratory of the Engineering Research and Development Bureau from April through June 1979, using a stripping susceptibility test recently developed under an NCHRP contract with the University of Idaho. The tests included two commercial antistripping agents plus hydrated lime, at several dosage rates. The report also includes recommendations regarding future use of the aggregates under consideration.

A. Background

The New York State Department of Transportation had planned to resurface major highways into the Lake Placid area, site of the 1980 Winter Olympics, to provide acceptable levels of service for the increased traffic volumes expected. That program included six projects on the Adirondack Northway — the major north-south route connecting Albany and Montreal, and a major access road to Lake Placid.

In 1977, the first two of the six projects were completed. Within 12 months, distress of the type associated with stripping of asphalt from aggregate particles was observed on one of the two projects. The condition worsened by the spring of 1979. Cores drilled from the pavement confirmed that stripping was the cause of the distress. The second two projects, paved in 1978, appeared in the spring of 1979 to be developing similar symptoms. Significantly, the Department's stripping susceptibility test (60-seconds immersion of loose mix in boiling water) had predicted that the aggregate-asphalt combination used would not result in stripping if a particular proprietary anti-stripping agent were used, and it was. Because this same aggregate source appeared to be the most economical for the two remaining projects, the award date for contracts was delayed, pending completion of this investigation.

Numerous tests have been developed to identify asphalt concrete susceptible to moisture damage. None has been more than moderately successful or has received

wide acceptance, primarily because of a lack of relationship between test and field conditions. There has been considerable interest recently in a new test procedure developed at the University of Idaho under sponsorship of the National Cooperative Highway Research Program $(\underline{1},\underline{2})$.

The new test is based on comparisons of the tensile strength of dry compacted bituminous-concrete specimens before and after being subjected to two levels of moisture conditioning: 1) VS or vacuum saturation, and 2) FS or vacuum saturation plus one cycle of freezing followed by 15 hours of warm-water soaking. This comparison is expressed as a tensile strength ratio or TSR. Short-term moisture damage, for pavement life up to 24 months, is inferred from TSRs after vacuum saturation alone, according to the test's developers, Long-term moisture damage, for pavement life up to and through 60 months, is inferred from TSRs after vacuum saturation plus freezing and soaking (1).

A TSR of 0.70 was found in earlier work (1) to discriminate between those combinations that field experience had shown to be susceptible to stripping and those that had not (Fig. 1). A later interpretation of the test (2) has been that any loss of tensile strength, expressed by a TSR less than 1.00, predicts potential moisture damage, with the TSR becoming smaller as the damage potential increases. Research under NCHRP sponsorship is continuing at the University of Idaho for further correlation of the results of the new test with field experience (2).

One of the first states to make use of the new procedure was Virginia, where it is currently being implemented (3). Experience in that state with eight agregates thought to be susceptible to stripping was that seven showed stripping damage after vacuum saturation and FS conditioning (TSR less than 1.00), with six having TSRs less than 0.70. Only one Virginia mix had a TSR more than 1.00 after vacuum saturation alone. Two commercial anti-stripping agents were effective in increasing TSRs of the mixes in which they were used. The Virginia results illustrate the significant influence of void content on the degree of stripping that occurs in the new test (Fig. 2), confirming findings of the NCHRP study and illustrating the importance of reproducing field levels of compaction in laboratory specimens. The amount of stripping observed visually in the Virginia research was also found to be indicative of the measured TSRs.

B. Test Procedures

Begun in April, the laboratory study had to be completed by July 1979 so that a scheduled August contract award could include resulting recommendations. Within that time frame, only 12 batches could be fabricated and tested.

The combination of materials used is given in Table 1. In one batch, a crushed dolomitic aggregate with a history of resistance to stripping was used without additive as a control. The crushed gravel aggregate was typical of other gravels from the area for which experience had been unsatisfactory. In addition to the two proprietary anti-stripping admixtures, identified in this report as Brands A and B, hydrated lime was also used. Dosage rates varied between 0.5 and 1.5 percent. Mixtures were prepared and compacted with aggregate graded as summarized in Table 2. Asphalt content was 6.2 percent.

FIGURE 1 RELATIONSHIP BETWEEN TSR AND AGGREGATE SERVICE RECORD (from Fig. 9 Ref. 1)

FIGURE 2 RELATIONSHIP BETWEEN TSR AND VOIDS (from data in Ref. 3, tables 4 and 5)

TABLE 1. MIX MATERIALS AND STRIPPING TEST RESULTS.

	Anti-St Admixtu	ripping re	Asphalt	Tensile Strength		Visual	
Crushed	7 14	Dosage,	Cement	Ratio		Stripping	Test
Aggregate	Brand*	% * *	Grade	VS	FS	Index	Series
Dolomite	None	***	AC-10	1.06	1.09	4.6	6
Gravel	None		AC-10	1.03	0.90	1.8	3
Gravel	В	0.5	AC-10	0.96	0.95	4.1	5
Gravel	В	1.0	AC-10	0.92	0.91	4:.3	0
Gravel	Α .	0.5	AC-10	0.97	0.97	3.8	. 4
Gravel	A	1.0	AC-10	1.04	1.02	4.6	1
Gravel	A	1.0	AC-10	1.01	1.00	4.3	10
Gravel	A	1.5	AC-20	0.93	0.89	3.8	11
Gravel	HL	0.5	AC-10	0.91	0.93	2.1	8
Gravel	HL	1.0	AC-10	0.95	0.77	2.3	7
Gravel	HL.	1.0	AC-10	0.95	0.63	1.3	12
Gravel	HL	1.5	AC-10	1.02	0.95	2.5	9

^{*}HL = hydrated limestone.

TABLE 2. MIX DESIGN.

Sieve Size	Percent Passing
	- 4031116
l in.	100.0
1/2 in.	97.5
1/4 in.	72.0
1/8 in.	50.0
No. 20	27.0
No. 40	14.0
No. 80	7.0
No. 200	4.0
Asphalt Content, %	6.2

^{**}Admixtures A and B by weight of asphalt cement, hydrated lime by weight of aggregate.

tEach value is the average of results of tests on four samples molded from the same batch.

Procedures used to prepare and test the specimens were those developed by Lottman (1), as modified by Maupin (3). A total of 20 specimens were fabricated for each batch to ensure that a minimum of 12 would be within the target void content, 3.0 to 4.0 percent for the gravel-aggregate mixes. This range was selected to yield a mean value equal to or greater than that for 90 percent of the cores extracted from damaged pavements built with this aggregate. The dolomitic-aggregate mixes were targeted for void contents of 5.0 to 6.0 percent, approximating void contents experienced for that mix in the field. Splitting tensile strengths were measured at 77 F using standard Marshall testing apparatus with a loading rate of 2 in./min.

II. RESULTS AND DISCUSSION

A. Results

The results of all tests on mixes and recovered asphalt for the 12 batches are given in Table 3. Tensile strength ratios (Table 1) were determined by dividing the tensile strength of conditioned specimens, VS or FS, by the tensile strength of dry specimens. As suggested by Lottman (2), a TSR of 1.00 or more was taken to indicate no stripping potential, less than 1.00 some stripping potential, and less than 0.70 an unacceptable stripping potential.

Predicted short-term (0 to 2 years) stripping potentials (after VS conditioning only) were all greater than 0.90, indicating (according to the recommended interpretation) that any moisture-induced damage that did occur would be minor. Predicted long-term (2 to 5 years) stripping potential (after FS conditioning) ranged from 0.63 to 1.09, indicating (according to the recommended interpretation) that moisture-induced damage would vary from unacceptable to none. Only hydrated lime at 1.0-percent concentration (Series 12) indicated an unsatisfactory stripping potential (TSR below 0.70).

TSRs were found to vary considerably, as shown by the coeficients of variation for tensile strengths in Table 4. Lottman (2) reported a range of coefficients of variation of 7.8 to 19.5, compared to 1.07 to 27.20 in this study. Except for one (Series 12, FS), all in this study were less than 13.00. A withintest standard deviation for tensile strength of 4.8 psi was estimated (in the usual manner) for the 36 groups of 4 tests each. Any values of TSR must be viewed with this testing error in mind.

B. Discussion

Effectiveness of the anti-stripping admixtures was determined by comparing TSRs of the gravel-aggregate series in which the admixtures were used to the gravel-aggregate series (No. 3) with no admixture, fabricated to represent pavement conditions in which stripping had been observed. TSRs greater than those for Series 3 were taken to indicate those admixture-dosage combinations that should be effective in reducing or eliminating stripping.

It is interesting to note that TSRs for Series 3 were 1.03 and 0.90, respectively, for the short- and long-term evaluations. Recalling that stripping was observed on I 87 within 2 years, TSRs for Series 3 should have both been less than 1.00 to be consistent. Visual examination of the tested specimens showed stripping of asphalt in samples from both — considerable in the FS specimens, and less in the VS specimens. Variations in the tensile strength measurements noted

ASPHALT CONSISTENCY AND TENSILE STRENGTH. TABLE 3.

		Asphalt	Consistency	у						
		Original	Q .		After Cor	After Conditioning ^C	u	Tensile	le Stre	Strength.
م م	Mean	Pen. (77 F).	Visc. (140 F).	Visc. (245 F).	Pen. (77 F).	Visc. (140 F).	Visc. (275 F).	pstq		
eries	% 2000 2000 2000 2000 2000 2000 2000 20			cSt		cSt	P	Dry	VS	FS
	3.24	87	1130	314	34	9,166	669	90.08	73.9	73.2
	3.47	87	1130	314	32	9,093	543	72.3	75.1	73.7
	4.08	87	1130	314	34	11,076	738	68.3	70.2	61.4
	3,71	87	1130	314	32	11,858	746	77.8	75.3	75.6
	3,83	87	1130	314	32 .	11,752	770	78.0	75.0	74.4
	5.32	87	1130	314	38	6,856	705	65.5	9.69	71.4
	2.99	87	1130	314	50	2,919	479	91.0	86.8	8.69
	3.75	87	1130	314	65	3,054	486	83.8	76.5	77.8
	3.25	87	1130	314	53	2,865	665	82.2	83.8	78.1
	4.00	87	1154	321	33	11,781	811	76.4	77.0	70.2
	4.34	1	1		28.	54,857	1486	101.6	94.3	0.06
	3.81	87	1154	321	52	2,907	493	84.6	80.7	53.1

 a Each value is the average of results of tests on eight different samples. Result of a single test on each lot of asphalt (all were AC-10, but Series 11 which was AC-20). $^{\rm c}_{\rm Each}$ value is the result of a single test on one aged sample for each series. Each value is the average of the results of tests on four different samples.

TABLE 4. VARIATIONS IN SPLITTING TENSILE STRENGTH.

Aggregate	Dosage,	Coeffi Of Var	Test		
And Admixture	%	Dry	vs	FS	Series
Crushed Dolomite None	None	2.67	2.05	6.54	6 ,
Crushed Gravel					
None	None	5.45	9.60	8.79	3
Brand A	0.5	5.46	12.34	8.71	4
Brand A	1.0	4.72	8.70	8.20	1
Brand A	1.0	8.21	5.13	4.03	10
Brand A	1.5	3.93	2.73	4.27	11
Brand B	0.5	1.53	2.10	3.14	5
Brand B	1.0	11.60	2.70	1.49	0
Hydrated Lime	0.5	5.51	6.60	6.20	8
Hydrated Lime	1.0	6.89	10.90	11.20	7
Hydrated Lime	1.0	4.70	9.65	27.20	12
Hydrated Lime	1.5	1.07	1.61	6.51	9

earlier in this chapter were great enough to account for this discrepancy between test results and field experiences. Because time constraints did not allow duplicate batches to be fabricated, this explanation was not tested.

Comparisons between the gravel-aggregate series with additives and Series 3 indicated that only one admixture -- Brand A at 1.0-percent dosage -- was effective in reducing or eliminating stripping in both the VS and FS evaluations. A duplicate batch (Series 10) confirmed these results. Visual examination showed only minor stripping for dry, VS, and FS specimens.

Use of other admixtures and Brand A at 0.5 percent dosage were determined to be less effective in reducing stripping potential. Brand B resulted in TSRs between 0.91 and 0.96 for both VS and FS tests, but visual examination of the specimens showed stripping for both conditioning processes. Hydrated lime, which has been reported effective in reducing stripping with some aggregates, was ineffective for these gravels. Curiously, FS specimens with hydrated lime were stripped worse than similar specimens without additives. Use of hydrated lime has one advantage in that it reduced asphalt hardening (Table 3), which has also been reported.

The dolomitic aggregate (Series 6) was a candidate alternative aggregate, and had been included in the testing program as a material with a good performance history with respect to stripping. Its TSR values were 1.06 and 1.09 for short-and long-term evaluations, respectively — the highest of all the series. Visual examination of these specimens showed no evicence of stripping.

Each of the specimens preconditioned by FS was visually inspected to determine the relative extent of stripping and a subjective rating of 1 to 5 was assigned, where 1 was the least amount of stripping and 5 the most. The average of four independent ratings (four different persons evaluated each specimen) constituted the "Visual Stripping Index" for that specimen (Table 1). All gravel-aggregate samples showed some stripping. Only the dolomite-aggregate sample (Series 6) showed none. These indices for the four FS specimens for each batch were then averaged and plotted against TSRs for long-term potential in Figure 3. There was a general relationship that as this index increased, TSR decreased.

FIGURE 3 CORRELATION BETWEEN TSR AND VISUAL STRIPPING INDEX

III. SUMMARY

Stripping potential of aggregate from two sources was evaluated. Aggregate from one source was also evaluated with different dosages of three different anti-stripping admixtures. Stripping potential was evaluated on the basis of indirect tensile strength tests from which tensile strength ratios (TSRs) were determined after two different simulated exposure treatments. On the basis of TSRs and visual evaluation of the test samples, the following conclusions are drawn:

- 1. The only admixture that improved TSR in both short- and long-term evaluations from that when no admixture was used was Brand A at a 1.0-percent dosage. When used at 0.5 percent, it was less effective than when no admixture was used.
- 2. Brand B when used at either 0.5 or 1.0 percent was not effective in improving the TSR in the short-term evaluation, but did improve it in the long-term evaluation.
- 3. Hydrated lime was ineffective at 0.5, 1.0, and 1.5 percent in the short-term evaluation, and in the long-term evaluation improved the TSR at dosage rates of only 0.5 and 1.5 percent.
- 4. The dolomitic aggregate had the highest TSR of all the batches.
- 5. Visual examination of the FS specimens showed some signs of stripping for all batches except when dolomitic aggregate was used.

Based on this study's results, it was recommended that if locally available gravel aggregates are to be used, 1.0-percent Brand A by weight of asphalt cement should be used as an anti-stripping agent. However, because there was visual evidence of stripping in the specimens, it could not be assumed that stripping would not occur. It was recommended, based on test results and performance history, that the dolomitic aggregate be used if it could be justified economically.

REFERENCES

- 1. Lottman, R. P. Predicting Moisture-Induced Damage to Asphaltic Concrete.

 Report 192, National Cooperative Highway Research Program, Transportation Research Board, 1978.
- 2. Lottman, R. P. Predicting Moisture-Induced Damage to Asphaltic Concrete: Field Evaluation Phase. "Summary Interim Report" on NCHRP Project 4-8(3)/1, University of Idaho, February 1979. Unpublished.
- 3. Maupin, G. W., Jr. "Implementation of Stripping Test for Asphaltic Con-Concrete." Transportation Research Record 712, Transportation Research Board, 1979, pp. 8-12.

APPENDIX D

REGION 1: VISUAL OBSERVATIONS AND REPORT

DATE July 13, 1979

SUBJECT ASPHALT CONCRETE PAVEMENT PERFORMANCE

FROM W. J. Brule W

TO J. J. Murphy

On July 9-10, T. Wohlscheid, P. Ducharme, R. Brady and I inspected the performance of several asphalt concrete pavements in the Adirondack Mountains area. The purpose of the inspection was to determine if the distress occurring on the Northway, due to stripping of asphalt from crushed gravel particles, occurs in other pavements in the area. The results of the inspection showed that the overall performance of the asphalt concrete pavements on the primary and secondary roads was relatively good. The distress on the Northway, which is occurring in the pavement constructed with the same or similar materials, is unique to that roadway.

The inspection included observations of pavements consisting of crushed gravel, iron ore mine tailings, granite, and limestone. We dug into the pavement to inspect the adhesion of asphalt to the aggregate particles. Attached is a record of the observations at each site inspected.

An analysis of the data shows that adhesion of asphalt to the aggregate is very good for limestone and iron ore mine tailings. The adhesion of asphalt to gravel and crushed granite aggregate particles ranges from very poor to good. The most important single factor relating to the degree of adhesion appears to be the relationship between traffic volume, density and speed. Pavement in the wheel paths showed severe stripping, in most cases, whereas pavement between wheel paths was relatively less. The passing lane on the Northway showed less stripping than the driving lane also. The asphalt concretion the Northway shoulders and the U-turns showed no stripping.

It was noted that the use of chemical anti-stripping additive (Kling-Beta) did not prevent the occurrence of stripping. If one did not know that the anti-stripping additive had been added to certain pavements, it is very doubtful that one could tell the difference between pavements with and without it.

Based on the findings in this pavement inspection, we have determined that all gravels in the Adirondack Mountains area will lose adhesion between the asphalt and aggregate particle in areas subjected to J. J. Murphy July 13, 1979 Page Two

wheel passes. It appears that the hydraulic pressures induced in the pavement pores by tires passing over wet pavement is the primary cause for stripping. Conversely, areas exposed to the same environmental conditions, but no appreciable traffic, exhibit little or no stripping.

It is interesting to note a comment made by Mr. Charles R. Foster in the discussion following the report "Asphalt Stripping" by H. J. Fromm published in the 1974 proceedings, Association of Asphalt Paving Technologists. The comment is as follows:

"I think most of the stripping that we get in the pavements is the result of work rather than spontaneous emulsion.

I've seen bad stripping in the traffic lane with no stripping outside the traffic lane."

Mr. Foster's comment leads me to believe that the asphalt stripping problem has been with us for a long time. We may be faced with the situation where paving mixtures prone to stripping are being subjected to increased traffic and the distress is appearing as a result.

In conclusion, we believe that the gravel aggregates in the Adirondack Mountains area should continue to be used in asphalt concrete pavements on the primary and secondary road system without any limitations. We also believe that chemical anti-stripping additives should be used only experimentally on selected projects until a determination can be made as to their effectiveness.

WJB:FS File: 13

Attachment

PAVEMENT INSPECTION 7/9/79

Remarks	Kling Beta Additive Ripples in pavement surface	Kling Beta Additive	Kling Beta Additive Top course transverse construction joint was distorted in wheel paths with movement in direction of travel	Kling Beta Additive	Kling Beta Additive	Kiing Beta Additive Pot holes developing in driving lane - only one appears to be caused by contamination
Pavement	Fair	poog	Fair/Good	poog	Poog	Falr
Stripping Asphalt/Aggregate	Driving Lane (WP)-Severe Passing Lane (WP)-Very Little Shoulders - None	Driving Lane (WP)-Severe Passing Lane (WP)-Little Shoulders - None	Driving Lane (WP)-Severe (BWP)-Moderate (Edge)-Slight Passing Lane (WP)-Mod/Severe (BWP)-Slight	U-Turn Area - None/Slight	Driving Lane (WP)-Severe Passing Lane (WP)-Mod/Severe Shoulders - None	Driving Lane(WP)-Severe
Coarse Aggregate	Crushed Gravel Peckham, Chestertown	Crushed Gravel Peckham, Chestertown	Crushed Gravel Peckham, Chestertown	Crushed Gravel Peckham, Chestertown	Crushed Gravel Peckham, Chestertown	Crushed Gravel Peckham, Chestertown
Mix Type	Top	lA .Top	Top	Top	Top	Top
	4	IA	41	\$ 1	11	4
Pavement Age, Yrs	2	7	7	6	7	7
Post	N.	EX.	gu .	2	E Z	8
Mile Post	871 1710 1286	871 1710 1288,	871 1710 1328	87I 1710 1329	871 1710 1336	871 1710 1362

Remarks	Kling Beta Additive Drum Mix Plant	Kling Beta Additive SB entrance ramp had slight stripping in the wheel path	Pavement has many cracks	RCR 74-179		Chestertown-Wevertown Asphalt Concrete Overlay on Pcc Pvt.	East of North D95541
Pavement Condition	Poog.	Good	Fair	poo9	poog	poog	Poog
Stripping Asphalt/Aggregate	Driving Lane (WP)-Severe (BWP)-Moderate Passing Lane (Edge)-Slight (WP)-Severe (BWP)-Slight	Driving Lane (WP)-Severe Passing Lane (WP)-Moderate/ Severe	Driving Lane (WP)-Very Little	(WP)-Slight/ Moderate	(WP)-Slight	(WP)-Moderate	(WP) - Moderate/Severe (Shoulder)-Slight
Coarse Aggregate	Crushed Gravel Peckham, Chestertown	Crushed Gravel Peckham, Chestertown	Iron Ore Mine Tailings	Crushed Gravel Peckham, Chestertown	Crushed Granite Chestertown	Crushed Granite Chestertown	Crushed Gravel Peckham, Chestertown
Mix Type	1A Top	1.A Top	1A Top	1A Top	1A Top	1A Top	1A Top
Pavement Age, Yrs,		1	12 est.	4	10 est	10 est	2
Mile Post	871 SB 1211 1039	871 SB 1211 1074	871 SB 1211 1201	Route 8 Chestertown- Hauge	Route 8 Chestertown~ Hauge	8 1710 1228	28 1710 1072

Remarks	North Creek - Minerva RCR 74-13	North Creek - Indian Lake	North Greek - Indian Lake	Indian Lake - Blue Mt. Lake FARC 75-4	Low Point in Vertical Grades		Blue Mt. Lake - Raquette Lake Stripping concerns gravel and natural sand particles
Pavement	poog	Excellent	Excellent	poog	poog	poog	Poop
Stripping Asphalt/Aggregate	(WP) - Slight	(WP) - None	(WP) - None	(WP) - Slight	(WP) - Moderate/Severe	(WP) - Slight	Limestone, Booneville (WP) - Slight/Moderate Gravel, Poland
Coarse Aggregate	Crushed Gravel Peckham, Chestertown	Crushed Iron Ore Mine Tailings Barton Mines?	Crushed Iron Ore Mine Tailings Barton Mines?	Crushed Gravel Peckham, Chestertown	Crushed Gravel Puckham, Chestertown	Crushed Gravel Peckham, Chestertown	Limestone, Booneville Gravel, Poland
Mix Type	IA Top	lA Top	lA Top	LA Top	lA Top	lA Top	1A Top
Pavement Age, Yrs M	4	10 est. 1	10 est. 1	en ,	en en	e e	. 2
Mile Post	28 1710 1026	28 2209 1488	28 2209 1472	28 2209 1027	28 2209 1313	28 2209 1311	28 2209 1239

Remarks	Blue Mt. Lake - Raquette Lake Larger % of gravel in mixture than in MP 1239	Long Lake - Tupper Lake Asphalt overlay on Pcc pavement with open binder, Pavement has many potholes,	Long Lake - Tupper Lake	Tupper Lake - Saranac Lake	Tupper Lake - Malone	Lake Placid - Keene Pavement has some fat spots
Pavement	poog	Poor/Fair	pood	Fair/Good	poog	poog
Stripping Asphalt/Aggregate	(WP) - Moderate/Severe	Varied from slight to severe in top course - severe in Open Binder	(WP) - Severe	(WP) - Severe (gravel) - None (limestone)	(WP) - Moderate	(WP) - Slight/Moderate
Coarse Aggregate	Limestone, Booneville Gravel, Poland	Crushed Gravel Whitney Estate	Crushed Gravel Martin Pit, So. Colton	Limestone/Gravel Source Unknown	Crushed Granite Saranac Lake	Grushed Granite Saranac Lake
Mix Type	1A Top	lA Top	LA Top	1A Top	IA Top	Open Graded Surface Course
Pavement Age, Yrs	N	۵ ۵ ۲	7 est.	7 est.	S e8t.	4
Mile Post	28 2209 1176	30 2206 1763	30 7209 1001	7205 1102	30 7209 1141	73 1201 1642

Kemarks	Fair/Good Lake Placid - Keene Dense binder wintered over, Kling Beta Additive	Lake Placid-Keene	Poor/Fair Lake Placid-Keene Being resurfaced.
Pavement	Fair/Good	poog	Poor/Fair
Stripping Asphalt/Aggregate	(WP) - Moderate	(WP) - None	(WP) - Top 3/4 inches-slight Lower-Severe
Mile Post Age, Yrs Mix Type Coarse Aggregate	Crushed Gravel Lewis	Limestone Source unknown	Crushed Gravel Source unknown
Mix Type	Dense	1A Top	1A Top
Pavement Age, Yrs !	-	10 est. 1A Top	12 est.
Mile Post	Route 73 D95671	73 1201 1600	Route 73 12 est. D95671

