date: wednesday, february 7, 2024

Third Sylow Theorem

Recall: If $|G|=p^rm$ with p^rm , then any subgroup P of G with $|P|=p^r$ is a Sylow p-subgroup.

First Sylow Theorem => a Sylow p-subgroup always exists

(Third Sylow Theorem) Let G be a group with pliGl (p is a prime). If np=number of distinct Sylow p-subgroups

1) np=1 mod p

2) npligi

eg. Show that any group G with IGI=45=3°.5 has exactly one Sylow 5-subgroup.
By 3rd Sylow theorem,
1) n5 c {1,6,11,16,21,26,31,36,41}

2) n5e {1,3,5,9,15,45} So n5=1 (only number in both sets)

Last Class: If P is the only Sylow p-subgroup of G, then P is normal.

In any group G with IGI=45, the Sylow 5-subgroup is normal.

Carallany, Na simple assure of andre (15

Recall: G is simple if it has no normal subgroups.

Corollary: No simple groups of order 45.

"Ingredients"

Lemma: Let H and K be subgroups of G. The number of distinct H conjugates of K is EH: N(K) n H].

Lemma 2: Suppose $|x|=p^{\alpha}$ and $\alpha P\alpha^{-1}=P$ for some Sylow p-subgroup. Then $x \in P$. Proof (Third Sylow Theorem) Let 8={P=P,P2,...,Px} be all the distinct Sylow p-subgroups. We want np=K. Can make S into a P-set via action PxS->S $(\chi,P_i)\mapsto \chi P_i \chi^{-1}(*)$ Note $xP_ix^*\in S$ by the Second Sylow Theorem since any two Sylow subgroups related by conjugation. Since (*) is a group action, S is partitioned by the orbits.

If P=P, orbit of $P=Q_p=\{xPx^-|xeP\}=\{P\}$.

If $P_i\neq P$, orbit of $P_i=Q_p=\{xP_ix^-|xeP\}$. |Op |= number of distinct P-conjugates of Pi $= [P: N(P_i) \cap P] = IPI = P^{a_i} \text{ with } a_i \ge 0$ In addition, if $P_i \neq P_i$, then $|\mathcal{O}_{p_i}| > 1$ because if $\{xP_ix^* | x \in P\} = \{P_i\}$, ie. $xP_ix^* = P_i$ for all $x \in P$. But Lemma ② then forces $P_i = P_i$ so $|\bigcirc_{D}| = p^{a_i}$ with $a_i \ge 1$. To summarize, we have partition $S = \mathcal{O}_{p_1} \cup \mathcal{O}_{p_2} \cup \cdots \cup \mathcal{O}_{p_k} \leftarrow \text{distinct orbits}$ රිර $|S| = |O_p| + |O_{p_2}| + \dots + |O_{p_t}| = 1 + p^{0_2} + p^{0_3} + \dots + p^{0_3}$ So $np=|S|\equiv 1 \mod p$. At the same time, 'S is a G-set via action, GxS->S $(q,P_i) \rightarrow qP_iq^{-1}$ For any PeS, orbit under this action is $O_p = \{qPg^-|qeG\} < -using 2^{nd} Sylow theorem$ So $|O_{P}| = [G:N(P)\cap G] = [G:N(P)] = \frac{|G|}{|N(P)|}$ So IN(P)||Op|=|G|.

But np=10pl, so np11G1.

Applications:
Recall: If $ G =p$ (a prime), then $G \cong \mathbb{Z}_p$.
Theorem: Suppose $ G =pq$ with p,q prime and p <q. (so="" <math="" a="" addition,="" g="" has="" if="" in="" is="" not="" q-subgroup="" simple).="" sylow="" then="" unique="">q \not\equiv 1 \mod p, then $G \cong \mathbb{Z}_{pq}$.</q.>
eg. G =77=7:11 11 ≠ 1 mod 7 so G≃Z ₇₇ .
Proof We need nq=number of distinct Sylow p-subgroups. So nqe 21 , p, q, pq 3 . Note $q = 0 \mod p$ and pq $= 0 \mod q$. And $p = p \mod q$ since $p < q$. So nq= $1 < -$ only one Sylow q-subgroup. Now count np=number of Sylow p-subgroup if $q \neq 1 \mod p$. So npe 21 , q, p, pq 3 . Note $p = 0 \mod p$ and $pq = 0 \mod p$. Given $q \neq 1 \mod p$. So np= 1 .
To summarize, we have a Sylow q-subgroup Q and a Sylow p-subgroup P with Q =q and P =p. Claim: G is the internal direct product of P and Q. Need to check: QnP={e} QP=G
· $qp=pq$ for all peP, qeQ (use fact P and Q are normal) So $G \cong Q \times P \cong \mathbb{Z}_q \times \mathbb{Z}_p \times \mathbb{Z}_{pq}$ since $gcd(p,q)=1$.
eg. If $ G =15=3.5$, we have $3<5$ and $5\not\equiv 1 \mod 3$ so $G \cong \mathbb{Z}_{15}$.