Underdamped Langevin MCMC

Yuze Zhou

Apr.29th

Underdamped Langevin Diffusion Process

Underdamped Langevin Diffusion Process:

$$dv_t = -\gamma v_t dt - u\nabla(f(x_t))dt + (\sqrt{2\gamma u})dB_t$$
$$dx_t = v_t dt$$

- $(x_t, v_t) \in \mathbb{R}^{2d}$ and f is twice continuously-differentiable
- Unique invariant distribution proportional to

$$exp(-(f(x) + ||v||_2^2/2u))$$

■ More specifically, for the marginal distribution of *x* from the invariant distribution would be proportional to:

$$exp(-f(x))$$

Assumptions

Lipschitz Gradients

$$\|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$$

m-strongly convex

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} ||x - y||_2^2$$

Notations for f(x):

$$\kappa = L/m$$
$$x^* = \arg\min f(x)$$

Notations

- Let μ and ν be two probability measures on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$
- ullet $\Gamma(\mu, v)$ is the set of all couplings of measure μ and v
- Wasserstein Distance

$$W_2(\mu, \upsilon) = (\inf_{\zeta \in \Gamma(\mu, \upsilon)} \int \|x - y\|_2^2 d\zeta(x, y))^{1/2}$$

■ $\Gamma_{opt}(\mu, v)$ is the optimal coupling that achieves the infimum of the Wasserstein distance

Notations

■ For the Langevin Diffusion Process defined by the SDE before, with initial condition $(x_0, v_0) \sim p_0$ for some distribution p_0 on \mathbb{R}^{2d} , let p_t be the distribution for (x_t, v_t) and Φ_t be the operator that maps p_0 to p_t

$$\Phi_t p_0 = p_t$$

Previous Work

Durmus & Moulines 2016 For f(x) with same properties, Unadjusted Langevin MCMC:

$$x_{k+1} = x_k - \delta \nabla f(x_k) + \sqrt{2\delta} Z_{k+1}$$

■ Converge in W2 with $\mathcal{O}(d\kappa^2/\epsilon^2)$ iterations

Underdamped Langevin MCMC

Discretized Underdamped Langevin Process

■ Starting from $(\tilde{x_0}, \tilde{v_0}) \in \mathbb{R}^{2d}$, the discretized Underdamped Langevin Process will evolve according to the following SDE:

$$d\tilde{v}_t = -\gamma \tilde{v}_t - u \nabla f(\tilde{x}_0) dt + (\sqrt{2\gamma u}) dB_t$$
$$d\tilde{x}_t = \tilde{v}_t dt$$

- Denote $Z^{\delta}(\tilde{x_0}, \tilde{v_0})$ as the distribution of $(\tilde{x_\delta}, \tilde{v_\delta})$ evolving according to the discretized process starting from $(\tilde{x_0}, \tilde{v_0})$
- The discretized version of Underdamped Langevin Process has an explicit form of solution for $(\tilde{x_t}, \tilde{v_t})$ and easy to implement
- Parallelly, for the discretized SDE with initial condition $(\tilde{x_0}, \tilde{v_0}) \sim p_0$ for some distribution $\tilde{p_0}$ on \mathbb{R}^{2d} , let $\tilde{p_t}$ be the distribution for $(\tilde{x_t}, \tilde{v_t})$ and $\tilde{\Phi_t}$ be the operator that maps $\tilde{p_0}$ to $\tilde{p_t}$

$$\tilde{\Phi}_t p_0 = \tilde{p}_t$$

Underdamped Langevin MCMC

The algorithm for underdamped Langevin MCMC now goes as followed

Algorithm 1: Underdamped Langevin MCMC

Initialisation: Choose step-size δ , iteration times n and starting point (x^0, v^0) ;

for
$$0 \le i \le n-1$$
 do

Sample
$$(x^{i+1}, v^{i+1}) \sim Z^{\delta}(x^i, v^i)$$

end

For the following analysis on convergence, denote by p^* the unique invariant distribution of the Underdamped Langevin Process such that $p^* \propto exp(-(f(x) + \frac{1}{2} ||v||_2^2))$

$$(r+v)$$
, and q_t be the distribution of $g(x_t, x_t + v_t)$

- Let g(x, v) = (x, x + v), and q_t be the distribution of $g(x_t, x_t + v_t)$, q^* be the distribution of g(x, v) when $(x, v) \sim p^*$
- In the following analysis, we would set u=1/L and $\gamma=2$

Theorem (Cheng et.al. 2018)

Let (x_0, v_0) and (y_0, w_0) be two arbitrary points in \mathbb{R}^{2d} . Let p_0 and $p_0^{'}$ be two dirac measures concentrated on (x_0, v_0) and (y_0, w_0) . If we set u = 1/L and $\gamma = 2$, then for every t > 0, there exists a $\zeta_t(x_0, v_0, y_0, w_0) \in \Gamma(\Phi_t p_0, \Phi_t p_0^{'})$ such that:

$$\mathbb{E}_{(x_t, v_t, y_t, w_t) \sim \zeta_t(x_0, v_0, y_0, w_0)} [\|x_t - y_t\|_2^2 + \|(x_t + v_t) - (y_t + w_t)\|_2^2] \le e^{-t/\kappa} [\|x_0 - y_0\|_2^2 + \|(x_0 + v_0) - (y_0 + w_0)\|_2^2]$$

■ From the theorem above, let $(x_0, v_0) \sim p_0$ and $g(x_0, v_0) \sim q_0$, we could easily get:

$$W_2(\Phi_t q_0, q^*) \le e^{-t/2\kappa} W_2(q_0, q^*)$$

 $W_2(\Phi_t p_0, p^*) \le 4e^{-t/2\kappa} W_2(p_0, p^*)$

- The previous theorem only guarantees the convergence of the continuous process. However, for the discretized version, more assumptions are needed.
- Let δ represents a single step of the Underdamped Langevin MCMC algorithm, p_t be the probability distribution of (x_t, v_t) from the continuous process and \tilde{p}_t be the distribution from the discretized version. Recall the definitions of $\tilde{\Phi}_t$ and Φ_t aforementioned.
- **Assumptions:** For the continuous time process, there exists \mathcal{E}_{κ} such that:

$$\forall t \in [0, \delta]$$
 $\mathbb{E}_{p_t}[\|v\|_2^2] \leq \mathcal{E}_{\kappa}$

lacksquare \mathcal{E}_k could be explicitly bounded by function of paramters $m, \ L$ and d

The following theorem bounds the distance between the continuous process and the discretized process with one step.

Theorem (Cheng et.al. 2018)

Let $\tilde{\Phi}_t$ and Φ_t be the probability transfer operator as aforementioned. Let p_0 be any arbitrary distributions and the step-size $\delta < 1$. If we choose u = 1/L and $\gamma = 2$, the Wasserstein distance between the continuous process and the discretized process is upper bounded by:

$$W_2(\tilde{\Phi}_{\delta}p_0,\Phi_{\delta}p_0) \leq \delta^2\sqrt{\frac{2\mathcal{E}_{\kappa}}{5}}$$

Theorem (Cheng et.al. 2018)

Let $p^{(n)}$ be the distribution of the Underdamped Langevin MCMC algorithm after n steps starting from initial distribution $p^{(0)} = \mathbf{1}_{\{x=x^{(0)},v=0\}}$, and the initial distribution satisfies $\|x^{(0)} - x^*\| \leq D^2$. If we set the step-size to be:

$$\delta = \frac{\epsilon}{104\kappa} \sqrt{\frac{1}{d/m + D^2}}$$

and run the algorithm for:

$$n \geq \big(\tfrac{52\kappa^2}{\epsilon}\big) \cdot \big(\sqrt{\tfrac{d}{m} + D^2}\big) \cdot log\big(\tfrac{24(\tfrac{d}{m} + R^2)}{\epsilon}\big)$$

we shall have the guarantee that:

$$W_2(p^{(n)}, p^*) \le \epsilon$$

• converge with $\mathcal{O}(\sqrt{d}\kappa^2/\epsilon)$ iterations

Comparisons to traditional MCMC

- Strong assumptions for the invariant distribution proportional to exp(-f(x))
- Converge in Wasserstein Distance rather than total variation distance

References I

- Cheng.X, Chatterji.N.S, Barlett.P, Jordan.M.I(2018)
 Underdamped Langevin MCMC, a non-asymptotic analysis
- Durmus.A, Moulines.E(2016)
 Sampling from a strongly log-concave distribution with the Unadjusted Langevin Algorithm
- Pavliotis.G.A(2014)
 Stochastic Process and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations