Also published as:

US5632534 (A1) GB2282651 (A)

Electric vehicle having a hydraulic brake system

Patent number:

DE4435953

Publication date:

1995-05-04

Inventor:

KNECHTGES JOSEF (DE)

Applicant:

LUCAS IND PLC (GB)

Classification:

- international:

B60L7/26; B60T8/00

- european:

B60T13/58C1, B60T13/74

Application number:

DE19944435953 19941007

Priority number(s):

GB19930020661 19931007

Abstract not available for DE4435953 Abstract of correspondent: **US5632534**

An electric-powered vehicle having a drive system which includes at least one electric motor which is controlled and monitored by an electric control system for driving at least one vehicle wheel in a traction mode of the motor and also for selectively providing a contribution to overall braking torque when operated in a braking mode, and which also provides a hydraulic braking system which is actuated by the vehicle driver and which operates on at least the front wheels of the vehicle. The hydraulic braking torque produced by the driver by way of the hydraulic braking system, is adjusted in such a manner that, for the purpose of modulating the overall braking torque effective at the vehicle wheels the variation of the electric torque is arranged to stay within the "regenerative range" of operation of the electric motor, at least under predetermined operating conditions of the vehicle.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift ₀₀ DE 4435953 A1

(51) Int. Cl.6: B 60 L 7/26 B 60 T 8/00

DEUTSCHES PATENTAMT Aktenzeichen:

P 44 35 953.5

Anmeldetag:

7. 10. 94

Offenlegungstag:

4. 5.95

(3) Unionspriorität: (2) (3) (3)

07.10.93 GB 9320661

(71) Anmelder:

Lucas Industries p.l.c., Solihull, West Midlands, GB

(74) Vertreter:

Frhr. von Pechmann, E., Dipl.-Chem. Dr.rer.nat.; Behrens, D., Dr.-Ing.; Goetz, R., Dipl.-Ing. Dipl.-Wirtsch.-Ing., Pat.-Anwälte, 81541 München (72) Erfinder:

Knechtges, Josef, 56727 Mayen, DE

(54) Elektrofahrzeug mit einem hydraulischen Bremssystem

Ein elektrisch betriebenes Fahrzeug mit einem Antriebssystem weist wenigstens einen Elektromotor auf, der durch eine elektronische Steuerungseinheit gesteuert und überwacht ist, um wenigstens ein Fahrzeugrad in einer Antriebsbetriebsart des Motors anzutreiben und um wahlweise einen Beitrag zum Gesamtbremsmoment (M_{Brems}) beizutragen, wenn der Motor in einem Bremsbetrieb betrieben wird. Es umfaßt auch ein hydraulisches Bremssystem, das durch den Fahrzeugführer betätigt wird und das auf wenigstens eines der Vorderräder des Fahrzeugs wirkt, wobei das hydraulische Bremsmoment (MHydraul), das durch den Fahrer durch das hydraulische Bremssystem erzeugt wird, in einer solchen Weise angepaßt wird, daß zur Modulation des Gesamtbremsmomentes (M_{Brems}), das auf die Fahrzeugräder wirkt, die Veränderung des elektrischen Bremsmomentes (M_{Elektr}) so eingerichtet ist, daß es innerhalb des "regenerativen Bereichs" des Betriebes des Elektromotors bleibt, zumindest unter vorbestimmten Betriebsbedingungen des Fahrzeugs.

Beschreibung

Die vorliegende Erfindung betrifft ein elektrisch betriebenes Fahrzeug mit einem Antriebssystem, das einen oder mehrere Elektromotoren aufweist und durch ein elektronisches Steuerungssystem gesteuert und überwacht wird und das des weiteren ein von dem Fahrzeugführer betätigbares hydraulisches Bremssystem aufweist, das wenigstens auf die Vorderräder des Fahr-

Antriebssysteme in elektrisch betriebenen Fahrzeugen gehören normalerweise zu einem der folgenden beiden Typen, nämlich dem einen Typ, bei dem jeweils eine Elektromotor-Antriebseinheit mit jedem der Vielzahl von Rädern verbunden ist (als Motor-im-Rad-Einheiten 15 wert (hohes μ) auftritt, wobei die Modulation des bezeichnet) und den Typ, bei dem ein einziger Zentral-Elektromotor und ein Getriebe mit einem herkömmlichen Differential und Antriebswellen vorhanden ist.

Die vorliegende Erfindung ist gleichermaßen auf diese beiden Antriebsmotorkonfigurationen anwendbar, 20 obwohl die Motor-im-Rad-Anordnung vermutlich bevorzugt ist.

Zum Verzögern eines derartigen Fahrzeugs ist zusätzlich zu dem hydraulischen Bremsmoment M_{Hydraul} das von dem fahrerbetätigten Bremssystem hervorgeru- 25 fen wird, ein elektrisches Bremsmoment Melektr von dem (den) elektrischen Antriebsmotor(en) verfügbar und verwendbar. Dies rührt von dem bekannten Effekt her, daß manche Motoren, wenn sie bei abgeschaltetem Strom mechanisch angetrieben werden, als Generato- 30 ren wirken und einen Strom erzeugen, wobei das resultierende Bremsmoment gegen die aufgewendete mechanische Leistung wirkt, und so wirksam als Bremse

Als Konsequenz hiervon ist das gesamte Bremsdreh- 35 moment M_{Brems} an einem Fahrzeugrad durch folgende Gleichung definiert:

MBrems = MHydraul + MElektr.

Da eine Fahrzeugbatterie nur eine begrenzte Kapazität verfügbar hat, wird es als nützlich erachtet, die Fahrzeugbatterie zu laden, indem sie an den "Genera- 45 to."-Strom angeschlossen wird, der durch das elektrische Bremsmoment MElektr erzeugt wird. Diese Vorgehensweise wird als "regeneratives Bremsen" bezeichnet.

Mit einem derartigen Bremssystem kann eine einfache Antiblockierbremsanordnung (ABS) realisiert wer- 50 den, indem der an den (die) elektrischen Antriebsmotor(en) angelegte Strom und damit das Bremsmoment moduliert wird.

Mit einem herkömmlichen hydraulischen ABS ist das cher Weise ist das elektrische Bremsmoment weitgehend proportional zu dem Elektromotorenstrom, der beispielsweise durch Pulsbreitenmodulationstechniken gesteuert sein kann. Falls ein erheblicher Radschlupf auftritt, wird dafür gesorgt, daß das Drehmoment des 60 Elektromotors verringert wird. Nachdem sich das Rad erholt hat, reaktiviert die elektronische Steuereinheit (ECU), die das Bremssystem steuert, den elektrischen Antrieb. Der ABS-Algorithmus kann im wesentlichen der gleiche sein wie für hydraulische Bremsen und das 65 Fahrzeugverhalten bleibt erhalten, wenn die Verringerung des Drehmoments des Elektromotors ausreichend für die Erholung des Rades ist (siehe beigefügte Fig. 1).

Eine Anti-Blockier-(ABS)-Bremsung ist stets dann erforderlich, wenn das Bremsmoment MBrems das Antiblockiermoment MBlock überschreitet, bei dem die Räder blockieren und das unter anderem von dem Reibungskoeffizienten zwischen dem Reifen und der Stra-Benoberfläche abhängt, d. h. wenn $M_{Brems} > M_{Block}$ ist.

Für Anti-Blockier-Bremsungen müssen zwei grundlegende Fälle unterschieden werden. Zum einen der Fall, daß

M_{Block} > M_{Hydraul}

ist, der auf Straßenoberflächen mit hohem Reibungsbei-Bremsmomentes M_{Brems}, das für den Anti-Blockier-Betrieb notwendig ist, durch die Veränderung des elektrischen Drehmoment-Anteils Melektr bewirkt werden kann, indem der an den jeweiligen Elektromotor angelegte elektrische Strom gesteuert wird. In diesem Fall würde das Anti-Blockier-Verfahren vollständig in dem "regenerativen Bereich" des Betriebes ausgeführt werden, ohne daß zusätzliche elektrische Energie verbraucht werden würde.

Falls jedoch andererseits M_{Block} < M_{Hydraul} ist, was auf Oberflächen mit niedrigen Reibungsbeiwerten (niedrigem μ) auftreten kann, muß der Elektromotor so eingerichtet werden, daß er ein gegenwirkendes Drehmoment M_{Contra} (= M_{Block} - M_{Hydraul}) hervorruft, da das Rad gegen das hydraulische Drehmoment Mydraul angetrieben werden muß, falls ein Blockieren des Rades verhindert werden soll. Dieses Verfahren würde außerhalb des "regenerativen Bereichs" ablaufen und einen zusätzlichen Verbrauch elektrischer Energie hervorru-

Ein derartiges Verfahren wäre im Prinzip bei einem extrem geringen elektrischen Gegenmomentes MContra immer noch praktikabel, aber bei einem extrem niedrigen Reibungsbeiwert (Adhäsion), der beispielsweise auf einer Straßenoberfläche auftreten würde, die mit Schnee oder Eis bedeckt ist und damit ein sehr geringes Anti-Blockier-Moment MBlock hervorrusen würde, wäre eine derartige Vorgehensweise unwirksam oder unmöglich, da das Gegenmoment Mcontra, das zu überwinden wäre, zu groß wäre. Da die Vorteile von Anti-Blockier-Systemen hauptsächlich bei niedrigen Adhäsionskoeffizienten wirksam sind, ist es so notwendig, bereits bekannte Einrichtungen zum Zweck der hydraulischen Druckmodulation einzufügen, woraus Nachteile resultieren, z. B. eine Erhöhung des Gewichtes, eine Anforderung an zusätzlichen Stauraum, erhöhter Aufwand im Zusammenhang mit der Montage und daher eine Gesamterhöhung der Kosten.

Es ist ein Ziel der vorliegenden Erfindung die Nach-Bremsmoment proportional zum Bremsdruck. In ähnli- 55 teile des vorstehend beschriebenen Basissystems zu überwinden.

Gemäß der vorliegenden Erfindung wird das hydraulische Bremsmoment MHydraul, das durch den Fahrer mittels des hydraulischen Bremssystems erzeugt wird, in einer solchen Weise für den Zweck der Modulation des Bremsmomentes M_{Brems} eingestellt, daß die Schwankung des elektrischen Momentes Melektr stets innerhalb des "regenerativen Bereiches" liegt.

Als Mittel zur Einstellung des hydraulischen Bremsmomentes wird ein elektronisch gesteuerter Bremser z.B. wie bevorzugt, kraftverstärker EP 0 379 329 A1 beschrieben ist, auf die hiermit direkt Bezug genommen wird.

Mit Hilfe der Erfindung ist eine Verringerung des hydraulischen Momentes MHydraul im Fall niedriger und sehr niedriger Reibungsbeiwerte möglich, so daß der elektrische Anteil MElektr innerhalb des "regenerativen" Bereiches verändert werden kann, um das Bremsmoment M_{Brems} zur Anti-Blockier-Steuerung zu modulieren. Der Vorteil davon ist, daß eine Anti-Blockier-Steuerung erreicht wird, die einerseits ohne Verlust von Betriebseffizienz arbeitet und andererseits keine Belastungen auf die Fahrzeugbatterie ausübt.

Andere Vorteile resultieren aus der Tatsache, daß die Verwendung z. B. eines elektrisch gesteuerten Bremskraftverstärkers kostengünstiger ist als die Installation eines herkömmlichen Anti-Blockier-Systems.

Es ist des weiteren vorteilhaft, daß die Verringerung 15 des Drehmomentes des elektrischen Motors und damit das verfügbare elektrische Bremsmoment Melektr, das durch die elektromagnetische Kraft während des Ansteigens der Motorgeschwindigkeit oder der Fahrzeuggeschwindigkeit jeweils hervorgerufen wird, durch Er- 20 höhen des hydraulischen Momentes M_{Hydraul} kompensiert werden kann.

Des weiteren ist es möglich, daß das hydraulische Moment M_{Hydraul} in Abhängigkeit von dem Zustand der Ladung der Fahrzeugbatterie während jedem Brems- 25 Hauptbremszylinders 10 ist mit einer herkömmlichen vorgang verändert werden kann. Falls die Fahrzeugbatterie voll geladen ist, wird das Bremsen in dem "regenerativen Bereich" weniger relevant, da die Batterie durch Überladen in gewissen Umständen beschädigt werden könnte. In dieser Situation ist es daher bevorzugt, daß 30 keitssignalen von einem Radgeschwindigkeitssensor geder hydraulische Anteil M_{Hydraul} stärker gewichtet und wichtiger ist. Dies würde auch sicherstellen, daß die hydraulische Bremse ausreichend oft betätigt wird, um eine Korrosion der Bremsscheiben zu verhindern.

Die Erfindung wird nachstehend an einem Beispiel 35 unter Bezugnahme auf die beigefügten Zeichnungen beschrieben, in denen:

Fig. 1 graphisch die Unterschiede/Gemeinsamkeiten bei ABS-Steuerzyklen für hydraulische und elektrische Bremssysteme zeigt;

Fig. 2 graphisch die ABS-Steuerung eines elektrischen Antriebsmotors erläutert;

Fig. 3 graphisch die ABS-Steuerung eines elektrischen Antriebsmotors in Verbindung mit einem elektronisch gesteuerten Bremskraftverstärker erläutert;

Fig. 4 diagrammatisch die Anordnung eines Drucksensors in einem Fahrzeug zeigt, der auf den Druck in dem hydraulischen Bremssystem reagiert und ein entsprechendes Signal an die elektronische Steuereinheit des Fahrzeugs abgibt;

Fig. 5 graphisch das regenerative Bremsen ohne die vorliegende Erfindung zeigt;

Fig. 5A graphisch das regenerative Bremsen mit Hilfe der vor liegenden Erfindung zeigt;

Fig. 6 graphisch das aufeinanderfolgende Anwenden 55 von regenerativen und hydraulischen Bremssystemen

Fig. 7 graphisch die Wechselwirkung zwischen einem elektrischen Antriebsmotor und einem elektronisch gesteuerten Bremskraftverstärker zeigt;

Fig. 8 eine diagrammatische Erläuterung eines Bremssystems gemäß der vorliegenden Erfindung darstellt, die hydraulisches und elektrisches Antriebsbremsen mit einem elektronischen Bremskraftverstärker verbinden;

Fig. 9 eine detaillierte Erläuterung einer möglichen Ausführungsform gemäß der Erfindung zur Ausführung von hydraulischer Steuerungseinstellung, um die elektrische Bremsung in dem "regenerativen Bereich" zu halten, ist, und

Fig. 10 ein Flußdiagramm des Betriebs der Ausführungsform von Fig. 9 darstellt.

In Fig. 8 ist eine stark schematisierte Form eines verallgemeinerten Systems einer Fahrzeugbremsanlage gemäß der vorliegenden Erfindung mit elektrischer Antriebsbremsung, hydraulisch betätigten Reibbremsen und einer Einrichtung zum Einstellen des hydrau-10 lischen Verstärkungsverhältnisses gezeigt, um ein elektrisches Bremsen in dem regenerativen Bereich zu erhalten.

Die Bremsanlage von Fig. 8 umfaßt eine hydraulische Bremse mit einem Hauptbremszylinder und einer veränderbaren elektronischen Verstärkereinheit 10, die von der in unserer EP-A-0 379 329 beschriebenen Art sein kann, die einen mechanischen Eingang von einem Bremspedal 12 und einen elektrischen Ausgang von einer elektronischen Steuereinheit EPC 14 über eine Leitung 16 hat. Ein Sensor 18 ist mit dem Bremspedal 12 verbunden um ein elektrisches Anforderungs-/Pedalverschiebungssignal an die ECU 14 über eine Leitung 20 abzugeben. Der hydraulische Ausgang des veränderbaren elektronischen Bremskraftverstärkers und des Reibungsbremse 22 durch einen herkömmlichen ABS-Modulator 24 verbunden, der elektrisch durch die elektronische Steuereinheit ECU 14 über eine Leitung 15 unter anderem in Abhängigkeit von Radgeschwindigsteuert ist, der mit einem zu bremsenden Fahrzeugrad 28 gekoppelt ist. Die Signale von dem Radgeschwindigkeitssensor 26 werden in die elektronische Steuereinheit ECU 14 durch eine Leitung 30 eingespeist.

Das Fahrzeug ist von der Art, die ein elektrisches Antriebssystem hat, und in dieser Ausführungsform weist das System einen getrennten Antriebsmotor 32 und ein Getriebe mit einem konstanten Übersetzungsverhältnis für jedes der Vielzahl von Fahrzeugrädern 28 40 auf (von denen nur eines gezeigt ist). Der Motor 32 wäre normalerweise ein Asynchronmotor, der als Generator arbeitet, wenn er im Schubbetrieb arbeitet, d. h. wenn er durch das Moment des Fahrzeugs angetrieben wird. Der Motor 32 wird von einer Batterie 34 durch eine 45 Motorsteuerung und eine Batterieüberwachungseinrichtung 36, die mit der ECU 14 durch eine Leitung 38 und mit dem Motor 32 durch eine Leitung 40 verbunden ist, mit Energie beaufschlagt.

In dem vorliegenden System wird der Elektromotor 50 32 nicht nur zum Antrieb und für ein regeneratives Bremsen, sondern auch für die ABS-Steuerung durch geeignete Modulation des Bremsmomentes verwendet. Wie vorstehend erwähnt, ist das elektrische Bremsmoment im wesentlichen proportional zu dem elektrischen Motorstrom, der durch die ECU 14 beispielsweise durch Pulsbreitenmodulation gesteuert werden kann. Falls ein erheblicher Radschlupf auftritt, wird das Bremsmoment des Motors 32 verringert und der Antrieb nach einer Raderholung wieder reaktiviert.

Ein hydraulischer Drucksensor, der mit dem Bezugszeichen 42 in Fig. 4 bezeichnet ist, oder der preiswertere Bremspedalwegsensor 18 von Fig. 8 ist in der Lage, das Fahrerbremsanforderungssignal in die elektronische Steuereinheit ECU 14 einzuspeisen, so daß diese durch 65 den (die) Elektromotor(en) 32 verändert werden kann.

Die gesamte Bremsleistung ist die Summe der hydraulischen und der elektrischen Leistungen. Wie in den Fig. 5 und 5A gezeigt, ist das maximale Bremsmoment, das durch den Elektromotor verfügbar ist, z. B. 1 g Fahrzeugverzögerung, wobei die Motoren selbst dabei etwa 0,3 g in Abhängigkeit von dem Fahrzeugladezustand beitragen. Wegen dieser Verteilung der Bremsleistunallen Bremsanwendungen unter 1.0 g vollständig verwendet (Fig. 5).

Fig. 7 zeigt die charakteristische Kurve eines Asynchron-Elektromotors hinsichtlich Leistung, Drehmoment und Spannung und zeigt, daß sich all diese Para- 10 meter mit der Fahrzeuggeschwindigkeit verändern. Ein begrenzter Anteil an Rotorschlupf des Motors ist notwendig, um ein minimales Bremsmoment von dem Elektromotor zu erhalten. Bei sehr niedrigen Fahrzeuggeschwindigkeiten (beispielsweise unter 5 Km/h) kann der 15 Rotorschlupf durch Verwenden des Elektromotors als Generator nicht aufrechterhalten werden, und als Ergebnis hiervon kann die elektrische Bremskraft nicht weiter sichergestellt werden. Ähnliches Verhalten wird bei Fahrzeuggeschwindigkeiten von etwa 1/3 der Maximalgeschwindigkeit erreicht. Dies liegt an der Schwächung des elektrischen Magnetfeldes um die Motorgrö-Be und das Motorgewicht aus Kostengründen zu reduzieren. Oberhalb dieser Geschwindigkeit besteht eine konstante Leistungsabgabe, aber ein verringertes Mo- 25 tordrehmoment für Antrieb und Bremsung.

Diese Eigenschaften an unterschiedlichem Motordrehmoment in Abhängigkeit von der Geschwindigkeit würden normalerweise zu einer veränderbaren Fahrzeugverzögerung trotz einer konstanten Pedalbetäti- 30 gung (Fig. 7) führen. Allerdings kann das Vorsehen des elektronischen Bremskraftverstärkers 10 in dem vorliegenden System dieses unregelmäßige Verhalten mit Hilfe seines variablen Verstärkungsverhältnisses kompensieren, das es ermöglicht, das hydraulische Bremsmo- 35 ment, das von der Fahrerbetätigung des Bremspedals 12 abgeleitet wird, in einer solchen Weise einzustellen, daß das veränderbare elektrische Bremsmoment innerhalb des regenerativen Bereiches konstant bleibt, so daß die digkeiten und auf Straßen mit niedrigem Reibungsbeiwert wirksam bleibt.

In den Fig. 5 und 5A ist gezeigt, daß in einem typischen Fall der Elektromotor etwa 0,3 g zu der Fahrzeugverzögerung beiträgt. Fig. 5 zeigt ein Ansteigen 45 der hydraulischen Bremskraft proportional zu der Bremspedalkraft bei Verwendung eines herkömmlichen Standard(nicht-variablen)bremskraftverstärkers. Dies hat den Nachteil, daß die maximale elektronische Bremskraft 0,3 g nur verfügbar ist, wenn die Fahrzeug- 50 verzögerung 1 g überschreitet. Dieser Nachteil wird durch geeignete Einstellung der hydraulischen Kraft unter Verwendung des elektronisch gesteuerten Bremskraftverstärkers 10 bei dieser Ausführungsform vermieden, wie in Fig. 5 dargestellt. Das Verstärkungsverhält- 55 nis wird so eingestellt, daß es auf seinem Minimalwert von 1:1 gehalten wird bis ein maximaler Elektro-Motor-Beitrag zu der Fahrzeugverzögerung erreicht wird. Für höhere Verzögerungen über diesen Punkt hinaus wird ein Anstieg des Verstärkungsverhältnisses einge- 60 stellt, so daß der Elektromotor seinen maximalen Beitrag zu der Fahrzeugverzögerung bringen kann, indem er in dem regenerativen Bereich so lange wie möglich bleibt.

Dies hat den weiteren Vorteil, daß die maximale Ka- 65 pazität zum Wiederaufladen der Fahrzeugbatterie zur Verfügung steht. Die vorstehend beschriebene Anordnung hat auch den Vorteil, daß sichergestellt ist, daß die

hydraulische Bremse an irgendeinem Punkt in dem Bremszyklus betätigt wird, so daß eine Korrosion der Bremsscheibe verhindert wird.

Um die notwendige Steuerung des elektronischen gen wird die regenerative Energie nicht vollständig in 5 Bremskraftverstärkers 10 zusätzlich zu den üblichen Radgeschwindigkeitssignalen, die durch den Sensor 26 bereitgestellt werden, zu ermöglichen, ist es notwendig, Signale zu erfassen, die die Bremspedalkraft und das Elektromotordrehmoment wiedergeben. Die Bremspedalkraft wird in der vorliegenden Ausführungsform durch das Signal von dem Pedalbetätigungsübertrager 18 bereitgestellt. Das Elektromotordrehmoment kann aus einer Messung des Motorstroms, z. B. in der Motorsteuerungseinheit 36 bestimmt werden.

Die Vorgehensweise im Fall von hohen und niedrigen Reibungsbeiwerten ist in den Fig. 2 und 3 erläutert. Insbesondere werden niedrige Reibungsbeiwerte in Fig. 3 durch das zugehörige Blockiermoment 3 behandelt.

Eine mögliche Vorgehensweise in der vorstehend be-20 schriebenen Steuerung des elektronischen Bremskraftverstärkers in dem Hydraulikschaltkreis kann in der in Fig. 9 schematisch gezeigten Weise erreicht werden, die nachstehend beschrieben wird.

In Fig. 9 ist eine elektronische Steuerungseinheit (ECU) 50 gezeigt, die ein Eingangssignal von der Fahrzeugbatterie 52 über die Leitung 54 erhält, das den Ladungszustand der Batterie wiedergibt. Ein elektronisch gesteuerter Bremskraftverstärker 56 enthält schematisch einen Teil 56a, der ein auszuwählendes Standard-Verstärkungsverhältnis von 1:1 ermöglicht, und einen Teil 56b, der ein auszuwählendes einstellbares Verstärkungsverhältnis ermöglicht. Die elektronische Steuereinheit ECU 50 und der Standardbremsteil 56a erhalten ein Eingangssignal auf einer Leitung 58, das die Bremspedalkraft wiedergibt. Die Ausgänge beider Teile 56a, 56b werden an die Fahrzeugbremse 60 gekoppelt, woraus ein hydraulisches Bremsmoment MHydraul resultiert, das an das Fahrzeugrad 62 angelegt wird. Ein elektrischer Antriebsmotor 64 empfängt über die Leitung 66 in elektronische Bremsung auch bei niedrigen Geschwin- 40 Abhängigkeit von der elektronischen Antriebsmotor-Anforderung, die durch die elektronische Steuereinheit ECU 50 bestimmt wird, ein Steuersignal, wobei der Motor ein elektrisches Bremsmoment MElektr erzeugt, das bei dem Bezugszeichen 68 zu MHydraul addiert wird und an das Rad 62 angelegt wird. Das elektrische Bremsmoment MElektr wird auch in die elektronische Steuereinheit ECU 50 über die Verbindung 70 eingespeist. Von dem Drehverhalten des Fahrzeugrades 62 abgeleitete Daten, wie Geschwindigkeit und Verzögerung, die notwendig sind um die Fahrzeuggeschwindigkeit und die Fahrzeugverzögerung zu errechnen, werden über eine Verbindung 72 an die elektronische Steuereinheit ECU 50 geleitet. Die elektronische Steuereinheit ECU 50 gibt auch ein Signal über die Leitung 74 aus, das die Anforderung für den elektrisch gesteuerten Bremskraftverstärker 56b wiedergibt.

Bei einer Betätigung des Bremspedals durch den Fahrer wird eine Bremspedalkraft PF auf der Leitung 58 in die Bremskraftverstärkereinrichtung 56 geleitet und dort in einen hydraulischen Bremsdruck PH umgesetzt, um die Fahrzeugbremse 60 zu betätigen, die dann ein hydraulisches Bremsmoment MHydraul bereitstellt.

Der elektrische Antriebsmotor, der durch die elektronische Steuerungseinheit 50 gesteuert ist, stellt ein elektrisches Bremsmoment Melektr zur Verfügung, so daß das Gesamtbremsmoment MBrems zum Bremsen des Fahrzeugrades 60 aus der Summe des hydraulischen Bremsmoments MHydraul und des elektrischen Bremsmoments MElektr resultiert.

Bei einer vollständig geladenen Batterie sollten Schritte möglich sein, die ein regeneratives Bremsen verhindern, da die Batterie sonst bei einem Versuch, sie in diesem Zustand weiter zu laden, beschädigt werden 5 könnte. Die Überwachung des Ladezustands der Batterie (Batteriespannung) ist daher so ausgeführt, daß bei einer vollständig geladenen Batterie das Bremskraftverstärkerverhältnis so erhöht werden kann, daß die elektrische Bremskraft durch eine Erhöhung der hydrauli- 10 schen Bremskraft ersetzt wird, um die Gesamtbremskraft zu erhalten.

In einer Situation, in der das Fahrzeug auf einer Oberfläche mit geringen Reibkoeffizienten (niedriger Adhäsion) gebremst wird, ist es für den Elektromotor vorteil- 15 haft gegen die Wirkung des hydraulischen Bremsmomentes betrieben zu werden, wenn mit einem Standardbremskraftverstärker das hydraulische Bremsmoment größer ist als das Blockiermoment. Dies ist in Fig. 2 dargestellt (Blockiermoment 2). Um diesen Nachteil zu 20 vermeiden, wird das hydraulische Bremsmoment in diesem Fall durch den elektronisch gesteuerten Bremskraftverstärker so eingestellt, daß das hydraulische Bremsmoment geringer als das Blockiermoment ist, wobei die ABS-Steuerung durch Veränderung des elektri- 25 schen Bremsmomentes (wie in den Graphen von Fig. 3 gezeigt) ausgeführt wird.

Unter Bezugnahme auf Fig. 10 wird nachstehend ein vereinfachtes Flußdiagramm erläutert, das zeigt, wie die Eingangssignale des elektrischen Bremsmomentes ME- 30 lektr und der Ladungszustand der Fahrzeugbatterie in der elektronischen Steuereinheit ECU 50 verarbeitet werden. Die unterschiedlichen Schritte werden nachstehend durch folgende Nummern identifiziert:

80: Entscheidung in Abhängigkeit vom Ladungszustand 35 der Fahrzeugbatterie (52),

80a: Pfad für den Fall, daß die Fahrzeugbatterie nicht vollständig geladen ist,

80b: Pfad für den Fall, daß die Fahrzeugbatterie voll geladen ist,

82: Entscheidung in Abhängigkeit von dem elektrischen Bremsmoment MElektri

82a: Pfad für den Fall, daß das elektrische Bremsmoment nicht seinen Maximalwert erreicht hat, was einem Beitrag in der Größenordnung von etwa 0,3 g der Ge- 45 samtfahrzeugverzögerung entspricht,

82b: Pfad für den Fall, daß das elektrische Bremsmoment bereits bei seinem Maximum ist,

84: Aktion, so daß von dem elektronisch gesteuerten Bremskraftverstärker nicht gefordert wird, das Brems- 50 kraftverstärkungsverhältnis konstant auf seinem Minimum von 1:1 zu halten,

86: Aktion, so daß die Anforderung an den elektronisch gesteuerten Bremskraftverstärker 11 auf eine optimale Bedingung in Abhängigkeit von dem Graph der Fahr- 55 zeugverzögerung über die Bremspedalbelastung ange-

paßt ist, 88: Aktion, so daß die Anforderung an den elektrischen Antriebsmotor 64 auf einen optimalen Zustand in Abhängigkeit von dem Graph der Fahrzeugverzögerung 60

über der Bremspedalbelastung angepaßt ist, 90: Aktion, so daß das elektrische Bremsmoment auf seinem Maximalwert gehalten wird, um ein regeneratives Bremsen im möglichen Optimalzustand in Abhängigkeit von dem Ladungszustand der Batterie auszufüh- 65 ren.

Es sei bemerkt, daß die Eingangssignale der Fahrzeugverzögerung und der Bremspedalbelastung in den Schritten 86 und 88 in der elektronischen Steuerungseinheit von der Bremspedalkraft und den Raddaten vorliegen. Der entsprechende Graph für die Anpassung ist in Fig. 3 gezeigt.

Patentansprüche

1. Elektrisch betriebenes Fahrzeug mit einem Antriebssystem, das wenigstens einen Elektromotor (32) aufweist, der durch eine elektronische Steuerungseinheit (ECU) gesteuert und überwacht ist, um wenigstens ein Fahrzeugrad (28) in einer Antriebsbetriebsart des Motors (32) anzutreiben und um wahlweise einen Beitrag zum Gesamtbremsmoment (M_{Brems}) beizutragen, wenn der Motor (32) in einem Bremsbetrieb betrieben wird, und das auch ein hydraulisches Bremssystem umfaßt, das durch den Fahrzeugführer betätigt wird und das auf wenigstens eines der Vorderräder des Fahrzeugs wirkt, dadurch gekennzeichnet, daß das hydraulische Bremsmoment (MHydraul), das durch den Fahrer durch das hydraulische Bremssystem erzeugt wird, in einer solchen Weise angepaßt wird, daß zur Modulation des Gesamtbremsmomentes (M_{Brems}), das auf die Fahrzeugräder (28) wirkt, die Veränderung des elektrischen Bremsmomentes (MElektr) so eingerichtet ist, daß es innerhalb des regenerativen Bereichs" des Betriebes des Elektromotors (32) bleibt, zumindest unter vorbestimmten Betriebsbedingungen des Fahrzeugs.

2. Elektrisch betriebenes Fahrzeug nach Anspruch 1, das als Vorrichtung zum Einstellen des hydraulischen Bremsmomentes einen elektronisch gesteuerten hydraulischen Bremskraftverstärker (10) aufweist, der ein veränderbares Verstärkungsverhältnis ermöglicht, das elektronisch auswählbar ist.

3. Elektrisch betriebenes Fahrzeug nach Anspruch 2, bei dem der elektronisch gesteuerte Bremskraftverstärker (10) in eine hydraulische Hauptbremszylindereinheit eingegliedert ist, die mit einem fußbetätigten Bremspedal (12) betätigt wird.

4. Elektrisch betriebenes Fahrzeug nach einem der Ansprüche 1 bis 3, bei dem unter einem durch den Fahrer geforderten vorbestimmten Verzögerungspegel das Verstärkungsverhältnis auf einem Minimalwert gehalten wird, bis der maximale Beitrag des Elektromotors (32) zu der Fahrzeugverzögerung erreicht worden ist.

5. Elektrisch betriebenes Fahrzeug nach einem der Ansprüche 1 bis 4, bei dem das hydraulische Bremselement in Abhängigkeit von dem Ladungszustand der Fahrzeugbatterie (34) so verändert wird, daß, falls die Batterie (34) als voll geladen erkannt wird, ein Bremsen in dem regenerativen Bereich verhindert wird und der hydraulische Beitrag zu dem Bremsmoment überwiegt.

6. Elektrisch betriebenes Fahrzeug nach einem der Ansprüche, bei dem der Elektromotor (32), der zum Antrieb des Fahrzeugs verwendet wird, auch dazu eingerichtet ist, das Bremsmoment für die ABS-Bremsung zu modulieren, wodurch bei einem Auftreten von erheblichem Radschlupf das Elektromotormoment verringert wird.

7. Elektrisch betriebenes Fahrzeug nach Anspruch 6, bei dem das elektrische Bremsmoment vollständig entfernt und zusätzliches Antriebsmoment angelegt werden kann, um die von der Bremse erzeugte hydraulische Bremskraft zu überwinden, um

eine ABS-Steuerung auch dann zuzulassen, wenn das hydraulische Bremsmoment allein das Radblokkiermoment überschreitet.

Hierzu 8 Seite(n) Zeichnungen

508 018/552

DE 44 35 953 A1 B 60 L 7/26 4. Mai 1995

FIG. 6

508 018/552

Wechselwirkung zwischen elektrischem Antriebsmotor und elektronisch gesteuertem Bremskraft-

Einreichen einer annehmbaren Erholung (Rekuperation) und konstanter Fahrzeugverzögerung

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 44 35 953 A1 B 60 L 7/26 4. Mai 1995

Leistung kW Moment Nm Spannung V

508 018/552

Nummer:

