Nom :	Classe :	Copie n°1 (882)
Prénom :	Date :	Spécialité

Bac 1^{ère} Maths - Première Partie : Automatismes

1) Quel est l'inverse du double de 6?

2) Soit
$$F=a+rac{b}{cd}$$
 . Lorsque : $a=1$; $b=6$; $c=3$; $d=-rac{1}{10}$, quelle est la valeur de F ?

- 3) Le prix d'un article est multiplié par 1.015. Calculer la variation relative V_r de ce prix.
- 4) Le prix d'un article est noté P. Ce prix augmente de 5% puis diminue de 5%. À l'issue de ces deux variations, quelle est la variation relative V_r du prix ?
- 5) On lance un dé à 4 faces. La probabilité d'obtenir chacune des faces est donnée dans le tableau ci-contre. Calculer x.

Face	1	2	3	4
Probabilité	$\frac{1}{24}$	$\frac{7}{8}$	$\frac{1}{24}$	x

- 6) On considère x,y, et u des réels non nuls tels que : $\frac{1}{x}+\frac{1}{y}=\frac{1}{u}.$ Exprimer u en fonction de x et y.
- 7) On a représenté ci-contre la parabole d'équation $y=x^2$ ainsi que la droite d'équation y=1. Résoudre sur $\mathbb R$ l'inéquation : $x^2>1$.

8) On a représenté ci-contre une droite ${\cal D}$ dans un repère orthonormé. Donner l'équation de la droite ${\cal D}$ sous la forme y=ax+b.

9) Parmi les 3 fonctions ci-dessous, identifier les fonctions qui sont affines. Quelle est la valeur du coefficient directeur (de ces fonctions qui sont bien affines) avec la plus grande valeur absolue?

f	f_1	f_2	f_3
f(x)	$x^2 - (x - 10)^2$	$\boxed{\frac{1}{6}x - \left(-6 + \frac{1}{\sqrt{9}}\right)}$	$\frac{\frac{8}{9}x+3}{4}$

Nom :	Classe :	Copie n°1 (882)
Prénom :	Date :	Spécialité

10) a et c sont des nombres réels. Ci-contre, on a représenté la parabole d'équation $y=ax^2+c$. On suppose que |a|=1. Le point M(0;-6) appartient à la parabole. Donner l'équation de la parabole.

11) On a représenté ci-contre la courbe ${\mathcal C}$ d'une fonction f . On note A le point d'abscisse $x_A=6$ tel que le point appartienne à la courbe $\mathcal C$. Parmi les deux inégalités suivantes :

$$x_a imes f(x_a) > 0$$
 et $x_a imes f(x_a) < 0$
Laquelle est correcte ?

12) Voici une série de notes avec les coefficients associés. On note m la moyenne de cette série. Quelle valeur de x mène à $m=\frac{140}{11}$?

Note	Coefficient
0	2
20	5
10	\boldsymbol{x}

Nom :	Classe :	Copie n°2 (212)
Prénom :	Date :	Spécialité

Bac 1ère Maths - Première Partie : Automatismes

1) Quel est l'inverse du quintuple de 10 ?

2) Soit
$$F=a+rac{b}{cd}$$
. Lorsque : $a=rac{1}{7}$; $b=10$; $c=1$; $d=-rac{1}{2}$, quelle est la valeur de F ?

- 3) Le prix d'un article est multiplié par 0.49. Calculer la variation relative V_r de ce prix.
- 4) Le prix d'un article est noté P. Ce prix augmente de 65% puis diminue de 65%. À l'issue de ces deux variations, quelle est la variation relative V_r du prix ?
- 5) On lance un dé à 4 faces. La probabilité d'obtenir chacune des faces est donnée dans le tableau ci-contre. Calculer x.

Face	1	2	3	4
Probabilité	$\frac{13}{24}$	$\frac{1}{24}$	$\frac{1}{24}$	x

- 6) On considère x,y, et u des réels non nuls tels que : $\frac{1}{x}+\frac{1}{y}=\frac{1}{u}$. Exprimer u en fonction de x et y.
- 7) On a représenté ci-contre la parabole d'équation $y=x^2$ ainsi que la droite d'équation y=7. Résoudre sur $\mathbb R$ l'inéquation : $x^2>7$.

8) On a représenté ci-contre une droite ${\cal D}$ dans un repère orthonormé. Donner l'équation de la droite ${\cal D}$ sous la forme y=ax+b.

9) Parmi les 3 fonctions ci-dessous, identifier les fonctions qui sont affines. Quelle est la valeur du coefficient directeur (de ces fonctions qui sont bien affines) avec la plus grande valeur absolue?

f	f_1	f_2	f_3
f(x)	$x^2 - \left(x+2\right)^2$	$\boxed{\frac{1}{10}x - \left(-9 + \frac{1}{\sqrt{10}}\right)}$	$\frac{\frac{1}{5}x+7}{2.5}$

Nom :	Classe :	Copie n°2 (212)
Prénom :	Date :	Spécialité

10) a et c sont des nombres réels. Ci-contre, on a représenté la parabole d'équation $y=ax^2+c$. On suppose que |a|=1. Le point M(0;-10) appartient à la parabole. Donner l'équation de la parabole.

11) On a représenté ci-contre la courbe $\mathcal C$ d'une fonction f. On note A le point d'abscisse $x_A=4$ tel que le point appartienne à la courbe $\mathcal C$.

Parmi les deux inégalités suivantes :

$$x_a imes f(x_a) > 0$$
 et $x_a imes f(x_a) < 0$
Laquelle est correcte ?

12) Voici une série de notes avec les coefficients associés. On note m la moyenne de cette série. Quelle valeur de x mène à $m=\frac{82}{9}$?

Note	Coefficient
12	5
19	1
1	\boldsymbol{x}