Bipartite graphs with the maximum sum of squares of degrees*

Shenggui Zhang[†]and Chuncao Zhou

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China

August 9, 2009

Abstract

In this paper we determine all the bipartite graphs with the maximum sum of squares of degrees among the ones with a given number of vertices and edges.

Keywords: Bipartite graphs; Sum of squares of degrees; Extremal graphs

AMS Subject Classification (2000): 05C07 05C35

1 Introduction

All graphs considered here are finite, undirected and simple. For terminology and notation not defined here we follow those in Bondy and Murty [3].

In this paper we study an extremal problem on bipartite graphs: among all bipartite graphs with a given number of vertices and edges, find the ones where the sum of squares of degrees is maximum.

The corresponding problem for general graphs has been studied in [1, 2, 7]. For all graphs with a given number vertices and edges, Ahlswede and Kanota [1] first determined the maximum sum of squares of degrees. Boesch et al. [2] proved that if the sum of squares of degrees attains the maximum, then the graph must be a threshold graph (See the definition in [6]). They constructed two threshold graphs and proved that at least one of them is such an extremal graph. Peled et al. [7] further studied this problem and showed that, if a graph has the maximum sum of squares of degrees, then it must belong to one of the six particular classes of threshold graphs.

^{*}Supported by NSFC (No. 10871158).

[†]Corresponding author. E-mail address: sgzhang@nwpu.edu.cn (S. Zhang).

For the family of bipartite graphs with a given number of vertices and edges and the size of one partite side, Ahlswede and Kanota [1] determined a bipartite graph such that the sum of squares of its degrees is maximum. Recently, Cheng et al. [4] determined the maximum sum of squares of degrees for bipartite graphs with a given number of vertices and edges.

While the problem of finding all the graphs with a given number of vertices and edges where the sum of squares of degrees is maximum is still unsolved, we give a complete solution to the problem of finding all the bipartite graphs with a given number of vertices and edges where the sum of squares of degrees is maximum in this paper. In Section 2 we present some notation and lemmas that will be used later and in Section 3 give the main results and the proof.

2 Notation and lemmas

Let x be a real number. We use $\lfloor x \rfloor$ to represent the largest integer not greater than x and $\lceil x \rceil$ to represent the smallest integer not less than x. The sign of x, denoted by sgn(x), is defined as 1, -1, and 0 when x is positive, negative and zero, respectively.

Let n, m and k be three positive integers. We use B(n,m) to denote a bipartite graph with n vertices and m edges, and B(n,m,k) to denote a B(n,m) with a bipartition (X,Y) such that |X|=k. By $\mathcal{B}(n,m)$ we denote the set of graphs of the form B(n,m) and $\mathcal{B}(n,m,k)$ the set of graphs of the form B(n,m,k).

Suppose that n, m and k are three integers with $n \geq 2$, $0 \leq m \leq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ and $1 \leq k \leq n-1$. Let m=qk+r, where $0 \leq r < k$. Then $B^l(n,m,k)$ is defined as a bipartite graph in $\mathcal{B}(n,m,k)$ such that q vertices in Y are adjacent to all the vertices of X and one more vertex in Y is adjacent to r vertices in X if r > 0.

We use $\mathcal{G}(n,m)$ to denote the family of graphs with n vertices and m edges. Given an integer $t \geq 2$, and a graph $G \in \mathcal{G}(n,m)$, let

$$\sigma_t(G) = \sum_{v \in V(G)} (d(v))^t.$$

The following result is due to Ahlswede and Kanota [1].

Lemma 1 (Ahlswede and Kanota [1]). Let n, m and k be three integers with $n \geq 2$, $0 \leq m \leq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ and $\lceil \frac{n}{2} \rceil \leq k \leq n-1$. Suppose that m = qk + r, where $0 \leq r < k$. Then $\sigma_2(B^l(n, m, k))$ attains the maximum value among all the graphs in $\mathcal{B}(n, m, k)$.

With this result, Cheng et al. [4] obtained the following

Lemma 2 (Cheng, Guo, Zhang and Du [4]). Let n, m be two integers with $n \geq 2$, $n \leq m \leq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ and $k_0 = max\{k|m = qk + r, 0 \leq r < k, \lceil \frac{n}{2} \rceil \leq k \leq n - q - sgn(r)\}$. Then $\sigma_2(B^l(n, m, k_0))$ attains the maximum value among all the bipartite graphs in $\mathcal{B}(n, m)$.

For general graphs with few edges, Ismailescu and Stefanica [5] got the following result.

Lemma 3 (Ismailescu and Stefanica [5]). Let n, m and t be three integers with $n \geq 2$, $m \leq n-2$ and $t \geq 2$. Suppose that $\sigma_t(G^*)$ attains the maximum value among all the graphs in $\mathcal{G}(n,m)$. Then $G^* \cong K_{1,m} \cup S_{n-m-1}$, the star with m edges plus n-m-1 isolated vertices, except the case t=2 and m=3, where both $\sigma_t(K_{1,3} \cup S_{n-4})$ and $\sigma_t(K_3 \cup S_{n-3})$ attains the maximum.

Let B be a bipartite graph. We use \overline{B} to denote the bipartite graph on the same partition as B such that two vertices in \overline{B} are adjacent if and only if they are not adjacent in B.

Lemma 4. Let B be a bipartite graph in $\mathcal{B}(n, m, k)$. Then $\sigma_2(B)$ attains the maximum value among all the graphs in $\mathcal{B}(n, m, k)$ if and only if $\sigma_2(\overline{B})$ attains the maximum value among all the graphs in $\mathcal{B}(n, k(n-k)-m, k)$.

Proof. Let (X,Y) be the bipartition of B. Suppose that $X = \{x_1, x_2, \ldots, x_k\}$ and $Y = \{y_1, y_2, \ldots, y_{n-k}\}$. Denote the degree of x_i in \overline{B} by $\overline{d}(x_i)$ for $i = 1, 2, \ldots, k$ and the degree of y_j in \overline{B} by $\overline{d}(y_j)$ for $j = 1, 2, \ldots, n-k$. Then we have

$$d(x_i) + \overline{d}(x_i) = n - k$$
 for $i = 1, 2, \dots, k, d(y_j) + \overline{d}(y_j) = k$ for $j = 1, 2, \dots, n - k$,

and

$$\sum_{i=1}^{k} \overline{d}(x_i) = \sum_{j=1}^{n-k} \overline{d}(y_j) = k(n-k) - m.$$

Therefore,

$$\sigma_{2}(B) = \sum_{i=1}^{k} d(x_{i})^{2} + \sum_{j=1}^{n-k} d(y_{j})^{2}$$

$$= \sum_{i=1}^{k} (n - k - \overline{d}(x_{i}))^{2} + \sum_{j=1}^{n-k} (k - \overline{d}(y_{j}))^{2}$$

$$= k(n - k)^{2} - 2(n - k) \sum_{i=1}^{k} \overline{d}(x_{i}) + \sum_{i=1}^{k} \overline{d}(x_{i})^{2}$$

$$+ (n - k)k^{2} - 2k \sum_{j=1}^{n-k} \overline{d}(y_{j}) + \sum_{j=1}^{n-k} \overline{d}(y_{j})^{2}$$

$$= n(2m + k^{2} - nk) + \sum_{i=1}^{k} \overline{d}(x_{i})^{2} + \sum_{j=1}^{n-k} \overline{d}(y_{j})^{2}$$

$$= n(2m + k^{2} - nk) + \sigma_{2}(\overline{B}).$$

The result follows immediately.

3 Main results

We first determine the bipartite graphs with few edges where the sum of squares of degrees is maximum.

Theorem 1. Let n, m be two integers with $n \ge 2$ and $0 \le m \le n-1$. Suppose that $\sigma_2(B^*)$ attains the maximum value among all the graphs in $\mathcal{B}(n, m)$. Then $B^* \cong K_{1,m} \cup S_{n-m-1}$.

Proof. From Lemma 2 we know that $\sigma_2(B^l(n, m, k_0))$ attains the maximum value among all the bipartite graphs in $\mathcal{B}(n, m)$, where $k_0 = max\{k|m = qk + r, 0 \le r < k, \lceil \frac{n}{2} \rceil \le k \le n - q - sgn(r)\}$. So we have $\sigma_2(B^l(n, m, k_0)) = \sigma_2(B^*)$. We distinguish two cases.

Case 1. $0 \le m \le n - 2$.

Let $m = q_0 k_0 + r_0$, where $0 \le r_0 < k_0$. Then we can conclude $k_0 = n - 1$, $q_0 = 0$ and $r_0 = m$. Hence, $B^l(n, m, k_0) = K_{1,m} \cup S_{n-m-1}$. By Lemma 3 we know that $K_{1,m} \cup S_{n-m-1}$ is the unique bipartite graph with the maximum sum of squares of degrees in $\mathcal{B}(n, m)$. So we have $B^* \cong K_{1,m} \cup S_{n-m-1}$.

Case 2. m = n - 1.

In this case we have $B^l(n, m, k_0) = K_{1,n-1}$. Therefore, $\sigma_2(K_{1,n-1}) = \sigma_2(B^*)$. If $B^* \not\cong K_{1,n-1}$, then

$$\sigma_2(K_{1,n-1} \cup S_1) = \sigma_2(K_{1,n-1}) = \sigma_2(B^*) = \sigma_2(B^* \cup S_1),$$

which is a contradiction to the result in the Case 1.

Theorem 2. Let n, m be two integers with $n \ge 2$, $n \le m \le \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$ and $k_0 = max\{k|m = qk + r, 0 \le r < k, \lceil \frac{n}{2} \rceil \le k \le n - q - sgn(r)\}$. Suppose that $\sigma_2(B^*)$ attains the maximum value among all the graphs in $\mathcal{B}(n, m)$. Then

- (a) $B^* \cong B^l(n, m, k_0)$, or $B^l(n, m, n k_0)$ if $m > (n k_0)(k_0 1)$;
- (b) $B^* \cong B^l(n, m, k_0)$, $B^l(n, m, n k_0)$, or $B^l(n, m, k_0 1)$ if $m = (n k_0)(k_0 1)$;
- (c) $B^* \cong B^l(n, m, k_0)$ if $m < (n k_0)(k_0 1)$.

Proof. Let $m = q_0 k_0 + r_0 = q'_0 (k_0 + 1) + r'_0$, where $0 \le r_0 < k_0$, $0 \le r'_0 < k_0 + 1$. We first prepare three claims.

Claim 1. $m > (k_0 + 1)(n - k_0 - 1)$.

Proof. Suppose that $m \leq (k_0+1)(n-k_0-1)$. Then $B^l(n,m,k_0+1)$ exists in $\mathcal{B}(n,m,k_0+1)$. This implies that $k_0+1 \leq n-q_0'-sgn(r_0')$, contradicting the maximum of k_0 .

Claim 2. There exist no isolated vertices in $B^l(n, m, k_0)$.

Proof. Suppose that there exists an isolated vertex in $B^l(n, m, k_0)$. Since $n \leq m$, we have $q_0 \geq 1$. Let (X_0, Y_0) be the bipartition of $B^l(n, m, k_0)$ with $|X_0| = k_0$. Then by the definition of $B^l(n, m, k_0)$, the isolated vertex must be in Y_0 . Hence we have $m \leq k_0(n-k_0-1) \leq (k_0+1)(n-k_0-1)$, contradicting Claim 1.

Let $k \ge \lceil \frac{n}{2} \rceil$ be an integer. Suppose that m = qk + r = q'(k+1) + r', where $0 \le r < k$, $0 \le r' < k+1$. Then we have $q = \lfloor \frac{m}{k} \rfloor$ and $q' = \lfloor \frac{m}{k+1} \rfloor$.

Claim 3. $\lfloor \frac{m}{k} \rfloor - \lfloor \frac{m}{k+1} \rfloor \leq 1$.

Proof. If $\lfloor \frac{m}{k} \rfloor - \lfloor \frac{m}{k+1} \rfloor \ge 2$, then

$$r' = \lfloor \frac{m}{k} \rfloor k + r - \lfloor \frac{m}{k+1} \rfloor (k+1)$$

$$\geq \lfloor \frac{m}{k} \rfloor k + r - (\lfloor \frac{m}{k} \rfloor - 2)(k+1)$$

$$= r + 2(k+1) - \lfloor \frac{m}{k} \rfloor$$

$$\geq r + 2(k+1) - k$$

$$> k+1,$$

a contradiction.

By the definition of $B^l(n, m, k)$, we have

$$\begin{split} \sigma_2(B^l(n,m,k)) &= r(q+1)^2 + (k-r)q^2 + qk^2 + r^2 \\ &= (m-qk)(q+1)^2 + (k+qk-m)q^2 + qk^2 + (m-qk)^2 \\ &= q(k-1)(k+qk-2m) + m^2 + m \\ &= \lfloor \frac{m}{k} \rfloor (k-1)(k+\lfloor \frac{m}{k} \rfloor k - 2m) + m^2 + m. \end{split}$$

Set $f(k) = \sigma_2(B^l(n, m, k))$. Then

$$f(k+1) - f(k) = \lfloor \frac{m}{k+1} \rfloor k(k+1 + \lfloor \frac{m}{k+1} \rfloor (k+1) - 2m) - \lfloor \frac{m}{k} \rfloor (k-1)(k + \lfloor \frac{m}{k} \rfloor k - 2m).$$

If $\lfloor \frac{m}{k} \rfloor - \lfloor \frac{m}{k+1} \rfloor = 0$, then

$$f(k+1) - f(k) = 2\lfloor \frac{m}{k} \rfloor (\lfloor \frac{m}{k} \rfloor k + k - m) > 0.$$
(1)

If $\lfloor \frac{m}{k} \rfloor - \lfloor \frac{m}{k+1} \rfloor = 1$, then

$$f(k+1) - f(k) = 2(\lfloor \frac{m}{k} \rfloor - k)(\lfloor \frac{m}{k} \rfloor k - m) \ge 0.$$
(2)

Thus, f(k) is a nondecreasing function. So we have

$$f(k_0) \ge f(k_0 - 1) \ge f(k_0 - 2) \ge \dots \ge f(\lceil \frac{n}{2} \rceil).$$
 (3)

By Lemma 1, we know that $\sigma_2(B^*) = \max\{f(k_0), f(k_0-1), \dots, f(\lceil \frac{n}{2} \rceil)\}$. Let (X^*, Y^*) be the bipartition of B^* with $|X^*| \geq \lceil n/2 \rceil$. We distinguish two cases.

Case 1. $k_0 = \lceil \frac{n}{2} \rceil$.

First, we have $n = 2k_0$ or $2k_0 - 1$. It is clear that

$$m \le k_0(n - k_0). \tag{4}$$

Suppose that $n = 2k_0$. Then by Claim 1 and (4) we have

$$k_0^2 - 1 < m \le k_0^2,$$

i.e., $m = k_0^2$. This means that $B^l(n, m, k_0)$ is the unique graph in $\mathcal{B}(n, m)$. So we have $B^* \cong B^l(n, m, k_0)$.

Suppose that $n = 2k_0 - 1$. Then by Claim 1 and (4) we have

$$(k_0+1)(k_0-2) < m \le k_0(k_0-1).$$

This implies that $m = k_0(k_0 - 1)$ or $k_0(k_0 - 1) - 1$. In either cases, $B^l(n, m, k_0)$ is the unique graph in $\mathcal{B}(n, m)$. So we have $B^* \cong B^l(n, m, k_0)$.

Case 2. $k_0 > \lceil \frac{n}{2} \rceil$.

Case 2.1. $f(k_0) = f(k_0 - 1)$.

Let $m = q_0''(k_0 - 1) + r_0'' = q_0'''(k_0 - 2) + r_0'''$, where $0 \le r_0'' < k_0 - 1$, $0 \le r_0''' < k_0 - 2$. Then we have $q_0'' = \lfloor \frac{m}{k_0 - 1} \rfloor$ and $q_0''' = \lfloor \frac{m}{k_0 - 2} \rfloor$.

Since $f(k_0) = f(k_0 - 1)$, it follows from (1) and (2) that

$$f(k_0) - f(k_0 - 1) = 2(\lfloor \frac{m}{k_0 - 1} \rfloor - (k_0 - 1))(\lfloor \frac{m}{k_0 - 1} \rfloor (k_0 - 1) - m) = 0.$$

So we have

$$\lfloor \frac{m}{k_0 - 1} \rfloor - (k_0 - 1) = 0 \text{ or } \lfloor \frac{m}{k_0 - 1} \rfloor (k_0 - 1) - m = 0.$$

Suppose that $\lfloor \frac{m}{k_0-1} \rfloor - (k_0-1) = 0$. Since $k_0-1 \geq \lceil \frac{n}{2} \rceil$, we have

$$m \ge (k_0 - 1)^2 \ge (\lceil \frac{n}{2} \rceil)^2.$$

By the condition $m \leq \lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil$, we can easily deduce that $m = (k_0 - 1)^2$. Again, with $k_0 - 1 \geq \lceil \frac{n}{2} \rceil$, we have

$$m = (k_0 - 1)^2 > k_0(k_0 - 2) \ge k_0(n - k_0),$$

a contradiction.

Suppose that $\lfloor \frac{m}{k_0-1} \rfloor (k_0-1) - m = 0$. Then we have $r_0'' = 0$. Since $f(k_0) = f(k_0-1)$, by (1) and (2) we can conclude that $\lfloor \frac{m}{k_0-1} \rfloor - \lfloor \frac{m}{k_0} \rfloor = 1$.

Suppose that $r_0 = 0$. Then

$$m = q_0 k_0 = \lfloor \frac{m}{k_0 - 1} \rfloor (k_0 - 1) = (q_0 + 1)(k_0 - 1).$$

This implies that $q_0 = k_0 - 1$. It follows from Claim 2 that $k_0 = \lceil \frac{n}{2} \rceil$, a contradiction.

Suppose $r_0 \neq 0$. Then by Claim 2, we can conclude that $k_0 + q_0 + 1 = n$. So we have

$$m = \lfloor \frac{m}{k_0 - 1} \rfloor (k_0 - 1) = (\lfloor \frac{m}{k_0} \rfloor + 1)(k_0 - 1) = (n - k_0)(k_0 - 1).$$
 (5)

Suppose that $k_0 - 2 \ge \lceil \frac{n}{2} \rceil$ and $f(k_0) = f(k_0 - 1) = f(k_0 - 2)$. Then it follows from (1) and (2) that

$$f(k_0 - 1) - f(k_0 - 2) = 2(\lfloor \frac{m}{k_0 - 2} \rfloor - (k_0 - 2))(\lfloor \frac{m}{k_0 - 2} \rfloor (k_0 - 2) - m) = 0.$$

As the proof of $\lfloor \frac{m}{k_0-1} \rfloor - (k_0-1) \neq 0$ for the case $f(k_0) = f(k_0-1)$, we can prove that $\lfloor \frac{m}{k_0-2} \rfloor - (k_0-2) \neq 0$. So let us now assume that $\lfloor \frac{m}{k_0-2} \rfloor (k_0-2) - m = 0$. Then we have $r_0''' = 0$. Since $f(k_0-1) = f(k_0-2)$, by (1) and (2) we can conclude that $\lfloor \frac{m}{k_0-2} \rfloor - \lfloor \frac{m}{k_0-1} \rfloor = 1$. Then, by (5), we have

$$m = (n - k_0)(k_0 - 1) = \lfloor \frac{m}{k_0 - 2} \rfloor (k_0 - 2) = (n - k_0 + 1)(k_0 - 2).$$

This implies that $n = 2k_0 - 2$, contradicting our assumption $k_0 - 2 \ge \lceil \frac{n}{2} \rceil$.

Therefore, we have $f(k_0) = f(k_0 - 1) > f(k_0 - 2)$. This means that $B^* \in \mathcal{B}(n, m, k_0)$ or $\mathcal{B}(n, m, k_0 - 1)$.

Suppose that $B^* \in \mathcal{B}(n, m, k_0)$. Then $\sigma_2(B^*)$ attains the maximum value among all the graphs in $\mathcal{B}(n, m, k_0)$. Note that $m = (n - k_0)(k_0 - 1)$. So we have $k_0(n - k_0) - m = n - k_0$. It follows from Lemma 4 that $\sigma_2(\overline{B^*})$ attains the maximum value among all the graphs in $\mathcal{B}(n, n-k_0, k_0)$. By Theorem 1, we obtain that $\overline{B^*} \cong K_{1,n-k_0} \cup S_{k_0-1}$. If the $n-k_0$ pendent vertices of $\overline{B^*}$ are in X^* , then by Lemma 4, we have $B^* \cong B^l(n, m, k_0)$. If the $n-k_0$ pendent vertices of $\overline{B^*}$ are in Y^* , then by Lemma 4, we have $B^* \cong B^l(n, m, n-k_0)$, which is also a graph in $\mathcal{B}(n, m, k_0)$

Suppose that $B^* \in \mathcal{B}(n, m, k_0 - 1)$. Then $\sigma_2(B^*)$ attains the maximum value among all the graphs in $\mathcal{B}(n, m, k_0 - 1)$. Note that $m = (n - k_0)(k_0 - 1)$. Then we have $(k_0 - 1)(n - k_0 + 1) - m = k_0 - 1$. It follows from Lemma 4 that $\sigma_2(\overline{B^*})$ attains the maximum value among all the graphs in $\mathcal{B}(n, k_0 - 1, k_0 - 1)$. By Theorem 1, we obtain that $\overline{B^*} \cong K_{1,k_0-1} \cup S_{n-k_0}$. Since $k_0 - 1 \geq \lceil \frac{n}{2} \rceil$, we have $k_0 - 1 \geq n - k_0 + 1$. So all the pendent vertices are in X^* . By Lemma 4, we have $B^* \cong B^l(n, m, k_0 - 1)$.

Case 2.2.
$$f(k_0) > f(k_0 - 1)$$
.

In this case, we have $B^* \in \mathcal{B}(n, m, k_0)$ and $\sigma_2(B^*)$ attains the maximum value among all the graphs in $\mathcal{B}(n, m, k_0)$. From Claim 3 we know that $\lfloor \frac{m}{k_0 - 1} \rfloor - \lfloor \frac{m}{k_0} \rfloor \leq 1$. Suppose $\lfloor \frac{m}{k_0 - 1} \rfloor - \lfloor \frac{m}{k_0} \rfloor = 0$. Then we have $q_0'' = q_0$ and $r_0'' = q_0 + r_0$. By $r_0'' < k_0 - 1$, we get $r_0 < k_0 - q_0 - 1$. If $r_0 = 0$, then

$$m = (n - k_0)k_0 > (n - k_0)(k_0 - 1).$$

If $r_0 > 0$, then

$$m = (n - k_0 - 1)k_0 + r_0$$

$$= (n - k_0)(k_0 - 1) + n - 2k_0 + r_0$$

$$< (n - k_0)(k_0 - 1).$$

Suppose $\lfloor \frac{m}{k_0 - 1} \rfloor - \lfloor \frac{m}{k_0} \rfloor = 1$. Then $m - \lfloor \frac{m}{k_0 - 1} \rfloor (k_0 - 1) > 0$. Since $\lfloor \frac{m}{k_0 - 1} \rfloor \ge n - k_0$, we have $m > (n - k_0)(k_0 - 1)$.

Therefore, in the following we consider two subcases.

Case 2.2.1.
$$m > (n - k_0)(k_0 - 1)$$
.

By Lemma 4 we know that $\sigma_2(\overline{B^*})$ attains the maximum value among all the graphs in $\mathscr{B}(n, k_0(n-k_0)-m, k_0)$. Since $k_0(n-k_0)-m < n-k_0 \le n-1$, it follows from Theorem 1 that $B^* \cong k_{1,k_0(n-k_0)-m} \cup S_{n-k_0(n-k_0)+m-1}$. If the $k_0(n-k_0)-m$ pendent vertices are in X^* , then by Lemma 4, we have $B^* \cong B^l(n, m, k_0)$. If the $k_0(n-k_0)-m$ pendent vertices are in Y^* , then by Lemma 4, we have $B^* \cong B^l(n, m, k_0)$, which is also a graph in $\mathscr{B}(n, m, k_0)$.

Case 2.2.2.
$$m < (n - k_0)(k_0 - 1)$$
.

It follows from Lemma 4 that $\sigma_2(\overline{B^*})$ attains the maximum value among all the graphs in $\mathcal{B}(n, k_0(n-k_0)-m, k_0)$. By Claim 1, we can conclude that $k_0(n-k_0)-m < 2k_0$

 $n+1 \le n-1$. Then by Theorem 1 we have $B^* \cong k_{1,k_0(n-k_0)-m} \cup S_{n-k_0(n-k_0)+m-1}$. Since $k_0(n-k_0)-m > n-k_0$, we know that the $k_0(n-k_0)-m$ pendent vertices are in X^* . By Lemma 4, we have $B^* \cong B^l(n,m,k_0)$.

The proof is complete.

References

- [1] Ahlswede, R., Katona, G.O.H. Graphs with maximal number of adjacent pairs of edges. *Acta Math. Acad. Sci. Hungar.*, 32: 97-120 (1978)
- [2] Boesch F., Brigham R., Burr S., Dutton R., Tindell R. Maximizing the sum of the squares of the degrees of a graph, Tech. Rep., Stevens Inst. Tech., Hoboken, NJ, c. 1990
- [3] Bondy J.A., Murty U.S.R. Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976
- [4] Cheng T.C.E., Guo Y., Zhang S., Du Y. Extreme values of the sum of squares of degrees of bipartite graphs. *Discrete Math.*, 309: 1557-1564 (2009)
- [5] Ismailescu D., Stefanica D. Minimizer graphs for a class of extremal problems. *J. Graph Theory*, 39 (4):230-240 (2002)
- [6] Mahadev N.V.R., Peled U.N. Threshold Graphs and Related Topics, in: Ann. Discrete Math., vol. 56, North-Holland Publishing Co., Amsterdam, 1995
- [7] Peled U., Petreschi R., Sterbini A. (n, m)-graphs with maximum sum of squares of degrees. J. Graph Theory 31: 283-295 (1999)