Cavallaro, Jeffery Math 275A Homework #13

Theorem: 8.3

 \mathbb{R}_{std} is connected.

Proof. Since $\mathbb R$ is homeomorphic to (0,1), it is sufficient to show that (0,1) is connected. So ABC that (0,1) is disconnected. This means that there exists $A\subset (0,1)$ such that $A\neq \emptyset, (0,1)$ and A is clopen. Since A is bounded, it has a \sup , so let $a=\sup A$. But A is closed, so $a\in A$. But A is also open, so there exists E0 such that E1 but E2 but E3. Therefore E4 is connected, and so E5 is connected.

Theorem: Exercise 8.7

The closure of the topologist's sine curve in \mathbb{R}^2 is connected.

Proof. Let:

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \middle| x \in (0, 1) \right\}$$

$$\bar{S} = S \cup \{(1, \sin(1))\} \cup \{(0, y) \mid y \in [-1, 1]\}$$

ABC that S is not connected. This means that there exists $g:S \to \{0,1\}$ such that g is continuous and surjective. But $f:(0,1)\to S$ defined by $f(x)=(x,\sin\frac{1}{x})$ is also continuous and surjective. This means that $g\circ f:(0,1)\to \{0,1\}$ is also continuous and surjective, indicating that (0,1) is not connected, contradicting the connectedness of the interval. Therefore S is connected, and by previous corollary, \bar{S} is connected.