

Kategoria: Gremliny (Szkoła Średnia)

Język Programowania: C++/Python

Zadanie: Król dzielni©

Król dzielni©

Rok 3123 przyniósł wiele zmian w królestwie Bajtocji. Jedną z nich była gruntowna zmiana prawa administracyjnego. Tzw. "Stary Ład" został zastąpiony przez "Nowy Porządek". Nowa ustawa wymusiła podział każdego z miast wojewódzkich na dzielnice. Oczywiście pojęcie dzielnicy zostało w "Nowym Porządku" bardzo precyzyjnie zdefiniowane:

§13 ust. 37: Przez dzielnicę rozumiemy fragment miasta, w którym:

- a) dla dowolnych dwóch punktów dzielnicy jest możliwy przejazd pomiędzy nimi (w obydwie strony). Przez możliwość przejazdu należy rozumieć istnienie drogi, która w całości zawarta jest w danej dzielnicy.
- b) dzielnica jest maksymalnym fragmentem miasta posiadającym własność a). Maksymalność rozumiemy w tym sensie, że rozszerzenie dzielnicy o kolejne punkty spowodowałoby naruszenie części a) powyższej definicji.

Prezydent miasta stołecznego Bajtawy, pan Brajan Bajtkovsky, musi przedstawić na konferencji prasowej nowy podział administracyjny miasta. W tym celu poprosił o wsparcie swoich współpracowników. Pomóż prezydentowi wykonać stojące przed nim zadanie!

Zadanie

Prezydent Bajtkovsky przesłał Ci mailem plany administracyjne. Miasto stołeczne Bajtawa składa się z $3 \le n \le 100\,000$ punktów, które połączone są przez $3 \le k \le 1\,000\,000$ jednokierunkowych uliczek. W tym miejscu należy podkreślić, że możliwe jest istnienie kilku równoległych uliczek, tj. biegnących od tego samego punktu a do tego samego punktu b. Twoim celem jest przygotowanie podziału administracyjnego Bajtawy, zgodnie z wymogami najnowszej ustawy.

Opis wejścia

W pierwszej linii wejścia podane są dwie liczby całkowite: n – liczba punktów, z których składa się mapa miasta oraz k – liczba ulic w Bajtawie. Każda z następnych k linii wejścia zawiera dwie liczby: $a,b\leqslant n-1$. Owa para liczb opisuje jednokierunkową ulicę, wychodzącą z punktu o numerze a i wiodacą bezpośrednio do punktu o numerze b.

Opis wyjścia

W pierwszej linii wyjścia powinna pojawić się pojedyncza liczba całkowita d, opisująca liczbę dzielnic Bajtawy, zgodnie z przepisami "Nowego Porządku". W następnych d liniach wyjścia powinny pojawić się opisy poszczególnych dzielnic.

Kategoria: Gremliny (Szkoła Średnia)

Język Programowania: C++/Python

Zadanie: Król dzielni©

Opis pojedynczej dzielnicy składa się z listy należących do niej punktów, ustawionych w kolejności malejącej. Lista dzielnic powinna być również uporządkowana malejąco względem pierwszego elementu ich opisu (tj. punktu dzielnicy o największym numerze).

Przykłady

Dla przykładowego, podanego poniżej wejścia:
3 5 0 1 1 2 2 1 0 2 0 1
prawidłową odpowiedzią jest:
2 2 1 0
Z kolei dla następującego wejścia:
7 8 0 1 1 2 2 0 3 4 4 5 5 6 3 6 3 5
prawidłową odpowiedzią jest:
5 6 5 4 3 2 1 0

Kategoria:

Gremliny (Szkoła Średnia)

Język Programowania: C++/Python

Zadanie:

Król dzielni©

W ostatnim z przykładów, w którym wejście ma postać:

8 12

0 1

1 2

1 3

1 4

2 0

3 0

3 5

3 7

4 5

5 6

6 4

7 5

prawidłową odpowiedzią jest:

3

7

6 5 4

3 2 1 0

Wyjaśnienie przykładów

Naszkicujmy sobie rozpatrywane powyżej przypadki.

W pierwszym przykładzie mamy do czynienia z prostym schematem, w którym wierzchołki 1 i 2 są połączone w obydwie strony. Z kolei z wierzchołka 0 można dotrzeć do 1 i 2, ale nie można już w żaden sposób doń wrócić, co daje nam dwie dzielnice.

Kategoria:

Gremliny (Szkoła Średnia)

Język Programowania: C++/Python

Zadanie:

Król dzielni(C)

Schemat występujący w drugim przykładzie jest nieco bardziej złożony. Wyraźnie narzucają się nam dwie struktury. Pierwsza, która składa się z wierzchołków 0, 1 i 2 tworzy dzielnicę. Istotnie, z każdego z tych punktów daje się dotrzeć do dwóch pozostałych (niekoniecznie bezpośrednią trasą). W drugiej strukturze mamy jednak do czynienia z czterema jednopunktowymi dzielnicami. Istotnie, z wierzchołka 3 da się dotrzeć do każdego innego wierzchołka, ale nie da się poprowadzić trasy w drugim kierunku. Pozostałe wierzchołki również są pod tym względem problematyczne.

W trzecim przykładzie mamy do czynienia z jeszcze bardziej złożoną siecią powiązań. Widzimy, że 0, 1, 2 oraz 0, 1, 3 tworzą dwa trójkątne "ronda". Te cztery punkty tworzą zatem jedną dzielnicę. Kolejny tego typu trójkąt tworzą wierzchołki 4, 5, 6. Wierzchołka 7 nie da się przypisać do żadnej dotychczas utworzonej dzielnicy, więc łącznie mamy trzy dzielnice.

Punktacja

Oczywiście jeżeli Twój algorytm podoła jedynie części przypadków testowych to zostaniesz nagrodzony częściowymi punktami. Poniższa tabela opisuje poszczególne grupy testów obłożone dodatkowymi założeniami.

Dodatkowe założenia:	Punkty za grupę testów:
Liczba wierzchołków nie przekracza 5 000.	20
Liczba krawędzi nie przekracza 10000.	20
Liczba wierzchołków nie przekracza 50 000.	30
Liczba krawędzi nie przekracza 200 000.	30
Brak dodatkowych ograniczeń.	50

Biuro Projektu Partnera Wiodącego: Politechnika Łódzka | Wydział Elektrotechniki, Elektroniki, Informatyki | Automatyki | ul. Stefanowskiego 22, pokój 14, 90-924 Łódź | tel. (42) 631-28-89, | e-mail: biuro@cmi.edu.pl | www.cmi.edu.pl

Partner Wiodący Projekti

