LINEAR REGRESSION

Isaac Lo, Ronica Gupta, Brendan Jenkins

Overview

- What is linear regression?
- Simple linear regression
- Multiple linear regression

Terms

- Target variable (Y) value to be predicted
- Feature variables (X) values used to predict target variables

$$Y = mX + b$$

What is Linear Regression?

- Predict target value (Y) given a set of feature variables (X)
- Explain relationship between feature (X) and target value (Y)

Simple Linear Regression

- One target variable
- One feature variable

SLR: Predicting Y from X

- How can we predict Y from X, given existing data on X and Y?
- Model set up: $\hat{Y}=\beta_0+\beta_1 X$
- Find best model parameters:
 - \circ β_1 slope
 - \circ β_0 intercept

SLR: Finding Best Model Parameters

- $\bullet \quad \text{Minimize:} \ e = Y \hat{Y}$
- ullet Y observed target value
- ullet \hat{Y} predicted target value
- \bullet e error

$$\hat{Y} = \beta_0 + \beta_1 X$$

Example: Car Price vs Horsepower

• $Price = \beta_0 + \beta_1 Horsepower$

$$\circ \beta_1 = 145$$

$$^{\circ} \beta_0 = -2500$$

• Horsepower = 150 25000 = -2500 + 145(150)

Measuring Relationship Between X and Y

- How do we know X is relevant to predicting Y?
- Hypothesis test
 - $H_0: \beta_1 = 0$
 - $\circ H_1: \beta_1 \neq 0$

Example: Car Price vs Horsepower

• $H_0: Price = \beta_0 + (0) Horsepower$

• $H_1: Price = \beta_0 + (s) Horsepower$

Multiple Linear Regression

- One target variable
- Two or more feature variables

MLR: Predicting Y From Set of Xs

- ullet Model set up: $\hat{Y}=eta_0+eta_1X_1+eta_2X_2+...+eta_pX_p$
- Find best model parameters that minimizes error:
 - \circ β_0 intercept
 - \circ β_1 slope of X_1
 - \circ β_2 slope of X_2
 - \circ $\ eta_p$ slope of $\ X_p$

Example: Car Price vs Horsepower and Weight

- $Price = \beta_0 + \beta_1 Horsepower + \beta_2 Weight$
 - $\circ \beta_0 = -2488$
 - $\circ \beta_1 = 145$
 - $^{\circ} \beta_2 = 9.5$

- Weight = 2500
- Horsepower = 150

$$43118 = -2488 + 145(150) + 9.5(2500)$$

Example: Car Price vs Horsepower and Weight

Hypothesis test on Horsepower:

$$\circ H_0: Price = \beta_0 + (0)Horsepower + \beta_2 Weight$$

$$^{\circ}$$
 $H_1: Price = \beta_0 + (s)Horsepower + \beta_2 Weight$

Hypothesis test on Weight:

$$\circ H_0: Price = \beta_0 + \beta_1 Horsepower + (0) Weight$$

 $^{\circ}$ $H_1: Price = \beta_0 + \beta_1 Horsepower + (v) Weight$

Code Implementation

Simple Linear Regression

```
# Make SLR model
slr_model = smf.ols('price ~ horsepower', data=df).fit()

slr_model.params

Intercept    -2488.731679
horsepower     145.398303
```

Multiple Linear Regression

Summary

- Goal:
 - Predict target variable (Y) from feature variable(s) (X)
 - Explain relationship between target variable(Y) and feature variable(s) (X)
- Simple Linear Regression
- Multiple Linear Regression
- Implementation in Python