

Long-range angular correlations of charged particles in high multiplicity e^+e^- collisions using archived data from the ALEPH detector at LEP

Anthony Badea, Austin Baty, Gian Michele Innocenti, Yen-Jie Lee, Christopher McGinn, Bibek Pandit, Michael Peters, and Jesse Thaler Massachusetts Institute of Technology

Paoti Chang and Tzu-An Sheng

National Taiwan University

Marcello Maggi Universita degli Studi di Bari (Dated: February 5, 2018)

Abstract

First results on two-particle angular correlations for charged particles emitted in e^+e^- collisions using 730 pb^{-1} of data collected between 91 and 209 GeV with the ALEPH detector at LEP are presented. With the archived data, the correlation functions are studied over a broad range of pseudorapidity η (rapidity y) and azimuthal angle ϕ with respect to the electron-positron beam axis and the event thrust axis. Short-range correlations in $\Delta \eta$ (Δy), which are studied with e^+e^- annihilations which reveal jet-like correlations. Long-range azimuthal correlations are studied differentially as a function of charged particle multiplicity. Those results are compared to event generators and are complementary to the studies of the ridge signals in high multiplicity pp, pA and AA collisions at the RHIC and the LHC.

I. INTRODUCTION

This paper proposes measurements of two-particle angular correlations of charged hadrons produced in e^+e^- collisions as a function of charged hadron multiplicity using 730 pb^{-1} of archived data collected between 91 and 209 GeV with the ALEPH detector at LEP are presented. Two-particle correlations in high-energy collisions provide valuable information for characterizing Quantum Chromodynamics and have been studied previously for a broad range of collision energies in proton-proton (pp) [1], proton-nucleus (pA) [2–4], and nucleus-nucleus (AA) [5, 6] collisions. Such measurements can elucidate the underlying mechanism of particle production and reveal possible collective effects resulting from the high particle densities accessible in these collisions.

Studies of two-particle angular correlations are typically performed using two-dimensional $\Delta \eta - \Delta \phi$ correlation functions, where $\Delta \phi$ is the difference in the azimuthal angle ϕ between the two particles and $\Delta \eta$ is the difference in pseudorapidity $\eta = -\ln(\tan(\theta/2))$. The polar angle θ is defined relative to the counterclockwise hadron beam direction.

Of particular interest in studies of collective effects is the long-range (large $|\Delta\eta|$) structure of the two-particle correlation functions. In this region, the function is less susceptible to other known sources of correlations such as resonance decays and fragmentation function of energetic jets. Measurements in high-energy AA collisions have shown significant modification of the long-range structure compared with minimum-bias pp collisions, over a very wide range of collision energies [7–10]. The long-range correlations are commonly interpreted as a consequence of the hydrodynamical flow of the produced strongly interacting medium [11] and usually characterized by the Fourier components of the azimuthal particle distributions. The extraction of the second and third Fourier components, usually referred to as elliptic and triangular flow, is of great interest because it is closely related to initial collision geometry and its fluctuation [12]. Those measurements allow the extraction of the fundamental transport properties of the medium using hydrodynamic models.

Recently, measurements in pp [1] and pPb collisions [2–4] have revealed the emergence of long-range, near-side ($\Delta\phi \sim 0$) correlations in the selection of collisions with very high number of final state particles. This "ridge-like" correlation has inspired a large variety of theoretical models [13, 14]. The physical origin of the phenomenon is not yet fully understood. Moreover, it was found that the elliptic flow signal exists even at the lowest

nucleon-nucleon center-of-mass energy of 7.7 GeV in AA collisions at the Relativistic Heavy Ion Collider [15].

Due to the complexity of the hadron-hadron collisions, possible initial state correlations of the partons, such as those arise from color-glass condensate [16, 17], could complicate the interpretation of the pp and pA data. Studies of high multiplicity e^+e^- collision, where the initial kinematics of the collisions are well-controlled, could bring significant insights about the observed phenomenon. These measurements will also enable a direct comparison between different collision systems for the first time. The studies of ridge signal in e^+e^- collisions will bring significant impact to the field of relativistic heavy ion collisions, either change completely the interpretation of the ridge in pp, pA and AA collisions if a significant signal is observed, or serve as an important reference for the final state effect observed in high multiplicity hadron-hadron scatterings if no long-range correlation signal was detected.

With the archived data, the correlation functions are studied over a broad range of pseudorapidity η (rapidity y) and azimuthal angle ϕ with respect to the electron-positron beam axis and the event thrust axis.

II. DATA SAMPLE

Document the ALEPH data used in this analysis

III. DATA QUALITY CHECKS

Basic data quality checks for LEP1, LEP2, and PYTHIA8. The spike in the LEP1 and LEP2 pt spectra near 45 GeV is produced by the particles that took the full beam energy in the transverse plane. The beam energy is 92 GeV so in a two particle configuration each particle will take half of the total energy to conserve various kinematics.

FIG. 1. LEP1 Eta Spectra

FIG. 2. LEP1 PT spectra

FIG. 3. LEP1 Multiplicity Distribution

FIG. 4. LEP1 z distance-of-closest-approach distribution of charged tracks.

FIG. 5. LEP1 d0 distribution of charged tracks.

FIG. 6. LEP1 distribution of number of TPC clusters on charged tracks.

FIG. 7. LEP2 Eta Spectra

FIG. 8. LEP2 PT spectra

FIG. 9. LEP2 Multiplicity Distribution

FIG. 10. PYTHIA8 Eta Spectra

FIG. 11. PYTHIA8 PT spectra

FIG. 12. PYTHIA8 Multiplicity Distribution

FIG. 13. LEP1 vs PYTHIA8 Eta Spectra of charged hadrons

FIG. 14. LEP1 vs PYTHIA8 PT spectra of charged hadrons

FIG. 15. LEP1 vs PYTHIA8 Multiplicity Distribution of charged hadrons

IV. MULTIPLICITY DISTRIBUTIONS

Previous measurements of two particle correlations have been done at hadron collider experiments, such as CMS. These measurements typically are typically done in bins of event multiplicity in order to quantify the activity in a set of events. Because ALEPH has a different acceptance than the CMS detector, and because e^+e^- collisions have different kinematics than those at hadron colliders, some conversion needs to be done in order to compare events of a given multiplicity in ALEPH with those in CMS. For the studies done here, we require charged tracks to have $p_T < 0.2$ GeV and $|\eta| < 1.8$ in ALEPH, and $p_T < 0.4$ and $|\eta| < 2.4$ in CMS. The latter requirement is identical to the cuts used in all CMS papers on two particle correlations. The multiplicity distribution in LEP1 ALEPH events can be seen in Fig. 16. The tracking efficiency as a function of event multiplicity can be seen in Fig. 17, calculated by matching reconstructed tracks to generator-level particles in ALEPH Monte Carlo. The dip at low multiplicity is most likely due to a self-bias causing lowefficiency events to also have low multiplicity. After taking into account both the efficiency and acceptance of the ALEPH detector, the total fraction of charged particles reconstructed is shown in Fig. 18. In the highest multiplicity events, the ALEPH detector reconstructions around 50% of all the charged particles in an event.

The acceptance of the CMS detector, as calculated by seeing how many generator-level charged particles pass the η cut, in pp pythia Monte Carlo events is shown in Fig. 19. This is done as a function of generator-level multiplicity. Roughly 30% of all charged particles can be reconstructed in CMS for pp collisions. Using Fig. 18 and Fig. 19, a conversion factor can be calculated to convert the reconstructed ALEPH multiplicity to an equivilent corrected multiplicity for a hadron collider. This conversion factor is shown in Fig. 20, and the mapping from ALEPH multiplicities to CMS multiplicities is shown in Fig. 21. The behavior at low multiplicities is caused by the self-bias of the efficiency and acceptances with the multiplicity calculation. However, this analysis is mostly interested in events having high multiplicity, where the conversion factor converges to a reasonable factor of around 0.7. After applying this mapping to the distribution in Fig. 16, the multiplicity distribution that can be used for comparing with CMS results is shown in Fig. 22.

FIG. 16. LEP1 Multiplicity Distribution

FIG. 17. LEP1 Efficiency Distribution vs Multiplcity

FIG. 18. LEP1 Efficiency+Acceptance Distribution vs Multiplicity

FIG. 19. CMS Acceptance Distribution vs generator-level Multiplicity

FIG. 20. Conversion factor from ALEPH to CMS multipliity

FIG. 21. Conversion mapping from ALEPH to CMS multiplicty

FIG. 22. Scaled ALEPH multiplicity for comparing to CMS

V. ANALYSIS

VI. THRUST AXIS

VII. REPRODUCING QCD PAPER PLOT

VIII. TWO-PARTICLE CORRELATION FUNCTION

In this analysis with ALEPH open data, charged particles with transverse momentum between 0.1 and 4.0 GeV/c are selected for the correlation function analysis. High multiplicity events are sampled using the total number of selected proton, pions and kaons (hadron multiplicity N) in each event. The first step in extracting the correlation function was to divide the sample into bins in the hadron multiplicity. For each hadron multiplicity class, "trigger" particles are defined as charged hadrons in the selected transverse momentum range (0.1 and 4.0 GeV/c). Particle pairs are then formed by associating every trigger particle with the remaining charged hadrons in the same $p_{\rm T}$ interval as the trigger particle. The per-trigger-particle associated yield is defined as:

$$\frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^2 N^{\text{pair}}}{d\Delta \eta \mathrm{d}\Delta \phi} = B(0, 0) \times \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)}$$
(1)

where N_{trig} is the number of trigger particles in the event, $\Delta \eta$ and $\Delta \phi$ are the differences in η and ϕ of the pair. The signal distribution, $S(\Delta \eta, \Delta \phi)$, is the per-trigger-particle yield of

particle pairs in the same event:

$$S(\Delta \eta, \Delta \phi) = \frac{1}{N_{trig}} \frac{\mathrm{d}^2 N^{\text{same}}}{\mathrm{d} \Delta \eta \mathrm{d} \Delta \phi}$$
 (2)

The mixed-event background distribution, used to account for random combinatorial background, is defined as

$$B(\Delta \eta, \Delta \phi) = \frac{1}{N_{trig}} \frac{\mathrm{d}^2 N^{\text{mix}}}{\mathrm{d} \Delta \eta \mathrm{d} \Delta \phi}$$
 (3)

and is constructing by pairing the trigger particles from two random events in the same hadron multiplicity interval. The symbol N^{mix} denotes the number of pairs taken from the mixed event, while B(0,0) represents the mixed-event associated yield for both particles of the pair going in the same direction and thus having full pair acceptance. Therefore, the ratio $B(0,0)/B(\Delta\eta,\Delta\phi)$ represents the pair-acceptance correction factor used to derive the corrected per-trigger-particle associated yield distribution. The signal and background distributions are first calculated for each event and then averaged over all the events within the track multiplicity class.

In the full data analysis, a matching between particles and the primary vertex should be performed so that the studies are done with primary hadrons from a single primary vertex. This matching requirement is not yet included in this preliminary analysis due to the limited information in the Belle open data.

ALEPH e'e', fi= XXX GeV Occht*-20 Oc

FIG. 23. LEP1 Beam Axis, Ratio Plot, Multiplicity 0-20 (Austin, Anthony, Ratio)

FIG. 24. LEP1 Beam Axis, Ratio Plot, Multiplicity 20-30 (Austin, Anthony, Ratio)

FIG. 25. LEP1 Beam Axis, Ratio Plot, Multiplicity 30-999 (Austin, Anthony, Ratio)

IX. SYSTEMATICAL UNCERTAINTIES

X. PRELIMINARY RESULTS FROM BELLE OPEN DATA

A. Charged hadron multiplicity distributions

Figure 35 shows the multiplicity distribution of identified hadrons (pions, kaons and protons) obtained after applying the selection on the particle transverse momentum (0.1 $< p_T < 4.0 \text{ GeV}/c$). The dominant contribution to the total event multiplicity is coming from pions as expected. In Fig. 36, the charged hadron multiplicity distribution N is shown. The multiplicity distribution is smooth and the largest raw particle multiplicity observed in these events is about 70 before corrections for tracking efficiency, misidentification and multiple reconstruction rates, which is large given the relatively low center-of-mass energy of the collisions. Detailed studies of primary vertex-track matching and track quality as

FIG. 26. LEP1 Thrust Axis, Ratio Plot, Multiplicity 0-20 (Austin, Anthony, Ratio)

FIG. 27. LEP1 Thrust Axis, Ratio Plot, Multiplicity 20-30 (Austin, Anthony, Ratio)

well as possible pile-up event rejection are needed for the full Belle data analysis and those effects could lower the significance of the possible correlation signals.

B. Two-particle correlation functions

In Fig. 37, the two-particle correlation functions from low (N>20) and high multiplicity (N> 50) events are presented. In low-multiplicity events, the dominant features of the correlation function are the jet peak near $(\Delta \eta, \Delta \phi) = (0,0)$ for pairs of particles originating from the same jet and the elongated structure at $\Delta \phi \sim \pi$ for pairs of particles from back-to-back jets. The same-side jet peak and back-to-back correlation structures are also observed in high multiplicity events. In addition, a hint of "ridge"-like structure is visible at $\Delta \phi \sim 0$ in the right panel of Fig. 37.

To separate and inspect the long-range and short-range structure, one-dimensional dis-

FIG. 28. LEP1 Thrust Axis, Ratio Plot, Multiplicity 30-999 (Austin, Anthony, Ratio)

FIG. 29. LEP2 Beam Axis, Ratio Plot, Multiplicity 0-20 (Austin, Anthony, Ratio)

tributions in $\Delta \phi$ are obtained by integrating over two $|\Delta \eta|$ intervals: $0 < |\Delta \eta| < 1$ and $2 < |\Delta \eta| < 3$. At small $\Delta \eta$, a near-side peak at $\Delta \phi = 0$ and the contribution from the back-to-back jet at $\Delta \phi = \pi$ is observed in the left panel of Fig 38. At large $\Delta \eta$, a near-side peak at $\Delta \phi = 0$ is shown in the right panel of Fig 38, similar to the structures observed in high multiplicity pp, pA and AA collisions over a wide range of energies. However, the significance of this signal is limited by the available statistics in the Belle open data. This motivates a detailed study with the high statistics hadronic data taken by the Belle collaboration.

FIG. 30. LEP2 Beam Axis, Ratio Plot, Multiplicity 20-30 (Austin, Anthony, Ratio)

FIG. 31. LEP2 Beam Axis, Ratio Plot, Multiplicity 30-999 (Austin, Anthony, Ratio)

XI. SUMMARY

The ALEPH archieved data has been used to perform measurements of two-particle angular correlation functions for the first time.

- [1] CMS Collaboration, "Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC", JHEP 09 (2010) 091, doi:10.1007/JHEP09(2010)091, arXiv:1009.4122.
- [2] CMS Collaboration, "Observation of long-range near-side angular correlations in proton-lead collisions at the LHC", Phys. Lett. B718 (2013) 795–814, doi:10.1016/j.physletb.2012.11.025, arXiv:1210.5482.

FIG. 32. LEP2 Thrust Axis, Ratio Plot, Multiplicity 0-20 (Austin, Anthony, Ratio)

FIG. 33. LEP2 Thrust Axis, Ratio Plot, Multiplicity 20-30 (Austin, Anthony, Ratio)

- [3] ALICE Collaboration, "Long-range angular correlations on the near and away side in p-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV", Phys. Lett. B719 (2013) 29–41, doi:10.1016/j.physletb.2013.01.012, arXiv:1212.2001.
- [4] ATLAS Collaboration, "Observation of Associated Near-Side and Away-Side Long-Range Correlations in √s_{NN}=5.02??TeV Proton-Lead Collisions with the ATLAS Detector", Phys. Rev. Lett. 110 (2013), no. 18, 182302, doi:10.1103/PhysRevLett.110.182302, arXiv:1212.5198.
- [5] ALICE Collaboration, "Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV", Phys. Rev. Lett. 105 (2010) 252302, doi:10.1103/PhysRevLett.105.252302, arXiv:1011.3914.
- [6] CMS Collaboration, "Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", Eur. Phys. J. C72 (2012)

FIG. 34. LEP2 Thrust Axis, Ratio Plot, Multiplicity 30-999 (Austin, Anthony, Ratio)

FIG. 35. Uncorrected multiplicity distributions of pions (left), kaons (middle), protons (right) for particles in the range $0.1 < p_{\rm T} < 4.0~{\rm GeV}/c$ in e^+e^- collisions.

FIG. 36. Multiplicity distribution of charged hadrons (protons, kaons and pions) for particles in the range $0.1 < p_{\rm T} < 4.0~{\rm GeV}/c$ in e^+e^- collisions.

FIG. 37. Two-particle correlation functions versus $\Delta \eta$ and $\Delta \phi$ in e^+e^- collisions for events with particle multiplicity > 20 (left) and > 50 (right).

FIG. 38. Two-particle correlation functions as a function of $\Delta \phi$ in e^+e^- in the pseudorapidity ranges $0 < \Delta \eta < 1$ (left) and $2 < \Delta \eta < 3$ (right) for events with particle multiplicity > 50.

2012, doi:10.1140/epjc/s10052-012-2012-3, arXiv:1201.3158.

[7] B. B. Back et al., "The PHOBOS perspective on discoveries at RHIC", Nucl. Phys. A757 (2005) 28-101, doi:10.1016/j.nuclphysa.2005.03.084, arXiv:nucl-ex/0410022.

- [8] BRAHMS Collaboration, "Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment", Nucl. Phys. A757 (2005) 1–27, doi:10.1016/j.nuclphysa.2005.02.130, arXiv:nucl-ex/0410020.
- [9] PHENIX Collaboration, "Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration", Nucl. Phys. A757 (2005) 184–283, doi:10.1016/j.nuclphysa.2005.03.086, arXiv:nucl-ex/0410003.
- [10] STAR Collaboration, "Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration's critical assessment of the evidence from RHIC collisions", Nucl. Phys. A757 (2005) 102–183, doi:10.1016/j.nuclphysa.2005.03.085, arXiv:nucl-ex/0501009.
- [11] J.-Y. Ollitrault, "Anisotropy as a signature of transverse collective flow", *Phys. Rev.* **D46** (1992) 229–245, doi:10.1103/PhysRevD.46.229.
- [12] B. Alver and G. Roland, "Collision geometry fluctuations and triangular flow in heavy-ion collisions", Phys. Rev. C81 (2010) 054905, doi:10.1103/PhysRevC.82.039903, 10.1103/PhysRevC.81.054905, arXiv:1003.0194. [Erratum: Phys. Rev.C82,039903(2010)].
- [13] A. Bzdak, B. Schenke, P. Tribedy, and R. Venugopalan, "Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions", Phys. Rev. C87 (2013), no. 6, 064906, doi:10.1103/PhysRevC.87.064906, arXiv:1304.3403.
- [14] K. Dusling, W. Li, and B. Schenke, "Novel collective phenomena in high-energy proton? proton and proton? nucleus collisions", Int. J. Mod. Phys. E25 (2016), no. 01, 1630002, doi:10.1142/S0218301316300022, arXiv:1509.07939.
- [15] STAR Collaboration, "Inclusive charged hadron elliptic flow in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 39 GeV", *Phys. Rev.* C86 (2012) 054908, doi:10.1103/PhysRevC.86.054908, arXiv:1206.5528.
- [16] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, "The Color Glass Condensate", Ann. Rev. Nucl. Part. Sci. 60 (2010) 463–489, doi:10.1146/annurev.nucl.010909.083629, arXiv:1002.0333.
- [17] K. Dusling and R. Venugopalan, "Comparison of the color glass condensate to dihadron correlations in proton-proton and proton-nucleus collisions", Phys. Rev. D87 (2013), no. 9, 094034, doi:10.1103/PhysRevD.87.094034, arXiv:1302.7018.