Zusammenfassung Modellkategorien

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

Bem. Die Topologie-Zusammenfassung bietet eine Übersicht über Grundbegriffe der Kategorientheorie. Weiterführende Begriffe werden in der Homologische-Algebra-Zusammenfassung behandelt.

Die Ordinalzahlen

Def. Eine Wohlordnung auf einer Menge S ist eine Totalordnung auf S bezüglich der jede nichtleere Teilmenge $A \subseteq S$ ein kleinstes Element besitzt. Eine wohlgeordnete Menge ist ein Tupel (S, \leq) bestehend aus einer Menge S und einer Wohlordnung \leq auf S.

Bem. Eine äquivalente Bedingung lautet: Es gibt in S keine nach rechts unendlichen absteigenden Folgen $\ldots > a_i > a_{i+1} > a_{i+2} > \ldots$ Bem. Äquivalent zum Auswahlaxiom ist:

Axiom (Wohlordnungssatz). Auf jeder Menge ex. eine Wohlord.

Def. Zwei wohlgeordnete Mengen heißen isomorph, wenn es eine monotone Bijektion zwischen ihnen gibt.

Def. Eine Ordinalzahl ist eine Isomorphieklasse von wohlgeordneten Mengen.

Bem. Die Klasse aller Ordinalzahlen wird mit \mathcal{O}_n bezeichnet und ist eine echte Klasse, keine Menge. Sie ist selbst wohlgeordnet mittels

$$[(S, \leq_S)] \leq [(T, \leq_T)] : \iff \exists \text{ inj. monotone Abb. } (S, \leq_S) \to (T, \leq_T).$$

Notation. • $0 \coloneqq [\emptyset]$, • $n \coloneqq [\{1, \dots, n\}]$ für $n \in \mathbb{N}$, • $\omega \coloneqq [\mathbb{N}]$ mit der jeweils kanonischen Ordnungsrelation.

Bem. Die ersten Ordinalzahlen sind

$$0, 1, 2, \ldots, \omega, \omega + 1, \omega + 2, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots, \omega \cdot 3, \ldots, \omega^{\omega}, \ldots$$

Prinzip (Transfinite Induktion).

Sei $P: \mathcal{O}_n \to \mathbf{Prop}$ eine Aussage über Ordinalzahlen. Dann gilt:

$$(\forall \beta \in \mathcal{O}_n : (\forall \gamma < \beta : P(\gamma)) \implies P(\beta)) \implies \forall \alpha \in \mathcal{O}_n : P(\alpha)$$

Def. Arithmetik von Ordinalzahlen ist folgendermaßen definiert: Für $\alpha = [(S, \leq_S)]$ und $\beta = [(T, \leq_T)] \in \mathcal{O}_n$ ist

• $\alpha + \beta := [(S \coprod T, \leq_{S \coprod T})]$, wobei gilt:

$$\leq_{SIIT} \mid_{S \times S} := \leq_{S}, \quad \leq_{SIIT} \mid_{T \times T} := \leq_{T}, \quad S <_{SIIT} T.$$

• $\alpha \cdot \beta \coloneqq [(S \times T, \leq_{S \rtimes T})]$ mit der lexikogr. Ordnung

$$(s_1, t_1) \leq_{S \rtimes T} (s_2, t_2) := t_1 < t_2 \lor (t_1 = t_2 \land s_1 \leq_S s_2)$$

• $\alpha^{\beta} := [(\{Abb. \ f : S \to T \text{ mit } f(s) = 0 \text{ für fast alle } s \in S\}, \leq)] \text{ mit } f < q : \iff \exists t \in T : f(t) < q(t) \land (\forall t_2 >_T t : f(t_2) = q(t_2))$

Bem. Es gibt drei Typen von Ordinalzahlen:

- a) Die Null $0 := [(\emptyset, \leq)] \in \mathcal{O}_n$.
- b) Die Nachfolgerzahl $\alpha + 1$ einer Zahl $\alpha \in \mathcal{O}_n$.
- c) Die Limeszahl $\lim A := \sup A$ einer Teil*menge* $A \subset \mathcal{O}_n$.

Bem. Die Rechenop. können auch rekursiv definiert werden durch a) b) c) c) $\alpha+0\coloneqq\alpha\quad\alpha+(\beta+1)\coloneqq(\alpha+\beta)+1\quad\alpha+\lim A\coloneqq\lim\left\{\alpha+\gamma\mid\gamma\in A\right\}$ $\alpha\cdot0\coloneqq0\quad\alpha\cdot(\beta+1)\coloneqq(\alpha\cdot\beta)+\alpha\quad\alpha\cdot\lim A\coloneqq\lim\left\{\alpha\cdot\gamma\mid\gamma\in A\right\}$ $\alpha^0\coloneqq1\quad\alpha^{\beta+1}\coloneqq\alpha^{\beta}\cdot\alpha\qquad\alpha^{\lim A}\coloneqq\lim\left\{\alpha^{\gamma}\mid\gamma\in A\right\}$

Def. Ein **Fast-Halbring** ist ein Tupel $(S, +, \cdot, 0)$, sodass (S, +, 0) ein Monoid und (S, \cdot) eine Halbgruppe ist mit

• $a \cdot (b+c) = a \cdot b + a \cdot c$, • $a \cdot 0 = 0$.

Lem (Rechenregeln in \mathcal{O}_n). \bullet $\alpha \cdot 0 = 0 = 0 \cdot \alpha$ \bullet $\alpha \cdot 1 = \alpha = 1 \cdot \alpha$

- $\alpha^0 = 1$ $0^{\alpha} = 0$ für $\alpha > 0$ $1^{\alpha} = 1$ $\alpha^1 = \alpha$
- $\alpha^{\beta} \cdot \alpha^{\gamma} = \alpha^{\beta+\gamma}$ $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$
- \mathcal{O}_n ist ein Fast-Halbring (mit einer Klasse statt Menge)
- Das andere Distributivgesetz stimmt nicht!
- Weder Addition noch Multiplikation sind kommutativ.
- Addition und Mult. erlauben das Kürzen von Elementen nur links.
- Addition, Multiplikation und Potenzieren sind in beiden Argumenten monoton, allerdings nur im zweiten strikt monoton:

$$\forall \beta < \gamma: \quad \alpha + \beta < \alpha + \gamma, \quad \alpha \cdot \beta < \alpha \cdot \gamma \ (\alpha > 0), \quad \alpha^{\beta} < \alpha^{\gamma} \ (\alpha > 1).$$

Lem. Jedes $\alpha \in \mathcal{O}_n$ kann geschrieben werden in **Cantor-NF**:

$$\alpha = \omega^{\beta_1} c_1 + \omega^{\beta_2} c_2 + \ldots + \omega^{\beta_k} c_k$$

mit $k \in \mathbb{N}$, $c_1, \ldots, c_k \in \mathbb{N}_{>0}$ und $\beta_1 > \ldots > \beta_k \in \mathcal{O}_n$.

Kategorientheorie

Def. Eine (schwache) 2-Kategorie C besteht aus

- einer Ansammlung Ob(C) von Objekten,
- für jedes Paar $(\mathcal{C}, \mathcal{D})$ von Objekten einer Kategorie

$$\operatorname{Hom}_{\mathbb{C}}(\mathcal{C},\mathcal{D}) = \left\{ A \underbrace{\downarrow}_{G}^{F} B \right\},\,$$

- für jedes Tripel $(\mathcal{C}, \mathcal{D}, \mathcal{E})$ von Objekten einem Funktor $\operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D}) \times \operatorname{Hom}_{\mathbb{C}}(\mathcal{D}, \mathcal{E}) \to \operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{E}), \ (F, G) \mapsto G \circ F,$
- für jedes Objekt $\mathcal{C} \in \mathrm{Ob}(\mathbb{C})$ einem Objekt $\mathrm{Id}_{\mathcal{C}} \in \mathrm{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{C})$,
- für alle $\mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F} \in \mathrm{Ob}(\mathbb{C})$ einem natürlichen Isomorphismus

$$\alpha_{\mathcal{C},\mathcal{D},\mathcal{E},\mathcal{F}}: -\circ (-\circ -) \Longrightarrow (-\circ -)\circ -,$$

wobei beide Seiten Funktoren sind vom Typ

$$\operatorname{Hom}(\mathcal{E}, \mathcal{F}) \times \operatorname{Hom}(\mathcal{D}, \mathcal{E}) \times \operatorname{Hom}(\mathcal{C}, \mathcal{D}) \to \operatorname{Hom}(\mathcal{C}, \mathcal{F}),$$

 $\bullet\,$ und für alle $\mathcal{C},\mathcal{D}\in \mathrm{Ob}(\mathbb{C})$ natürlichen Isomorphismen

 $\lambda_{\mathcal{C},\mathcal{D}}: (\mathrm{Id}_{\mathcal{D}} \circ -) \Rightarrow \mathrm{Id}_{\mathrm{Hom}(\mathcal{C},\mathcal{D})}, \ \rho_{\mathcal{C},\mathcal{D}}: (- \circ \mathrm{Id}_{\mathcal{C}}) \Rightarrow \mathrm{Id}_{\mathrm{Hom}(\mathcal{C},\mathcal{D})},$

sodass folgende Kohärenzbedingungen erfüllt sind:

• Für alle $(\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E} \xrightarrow{H} \mathcal{F} \xrightarrow{K} \mathcal{G}) \in \mathcal{C}$ kommutiert

• Für alle $(\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}) \in \mathcal{C}$ kommutiert

$$G \circ (\operatorname{Id}_{\mathcal{D}} \circ F) \xrightarrow{\alpha_{\mathcal{C}, \mathcal{D}, \mathcal{D}, \mathcal{E}}} (G \circ \operatorname{Id}_{\mathcal{D}}) \circ F$$

$$G \circ F \xrightarrow{G\lambda_{\mathcal{C}, \mathcal{D}}} G \circ F$$

 $\mathbf{Bspe.} \ \bullet \ \mathrm{Die} \ \mathrm{Kategorie} \ \mathbf{Cat} \ \mathrm{der} \ \mathrm{Kategorien}$ ist eine 2-Kategorie.

- ullet Jede Kategorie $\mathcal C$ ist natürlich eine 2-Kategorie.
- Die Kategorie der Ringe \mathbb{R} mit $\mathrm{Ob}(\mathbb{R}) := \{ \text{Ringe mit Eins} \}$ und $\mathrm{Hom}_{\mathbb{R}}(A,B) := \mathrm{Kat.}$ der $B\text{-}A\text{-}\mathrm{Bimoduln}$ mit $N \circ M := N \otimes_B M$ für $M \in \mathrm{Hom}(A,B)$ und $N \in \mathrm{Hom}(B,C)$. Dabei ist $\mathrm{Id}_A := A$.

Def. Eine monoidale Kategorie ist eine 2-Kategorie mit genau einem Objekt. In der Regel wird dann \otimes anstelle von \circ geschrieben.

Def. Sei $S: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{A}$ ein Funktor. Ein **Ende** $E \in \text{Ob}(\mathcal{A})$ von S ist eine Familie $\alpha_c: E \to S(c,c), c \in \text{Ob}(\mathcal{C})$ von Morphismen in \mathcal{A} , sodass für alle $(f: c \to c') \in \mathcal{C}$ das Diagramm

kommutiert und E universell mit dieser Eigenschaft ist.

Notation.
$$E = \int_{c} S(c,c)$$
.

Bem. Enden sind spezielle Limiten.

Bem. Das duale Konzept ist das eines Anfangs Koendes $\int S(c,c)$

Bsp. Seien $F, G: \mathcal{C} \to \mathcal{A}$ zwei Funktoren. Dann ist

$$\int_{c} \operatorname{Hom}_{\mathcal{A}}(F(c), G(c)) \cong \operatorname{Nat}(F, G).$$

Satz (Fubini). Sei $S: \mathcal{D}^{op} \times \mathcal{D} \times \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{A}$ ein Funktor. Dann gilt

$$\int_{(d,c)} S(d,d,c,c) \cong \int_{d} \int_{c} S(d,d,c,c),$$

falls die rechte Seite und $\int\limits_c S(d,d',c,c)$ für alle $d,d'\in \mathcal{D}$ existieren.

Bsp. Sei R ein Ring, aufgefasst als präadditive Kategorie mit einem Objekt *. Ein additiver Funktor $R^{(\text{op})} \to \mathbf{Ab}$ ist nichts anderes als ein R-Linksmodul (bzw. R-Rechtsmodul). Dann ist

$$\int\limits_{-}^{*\in R} A \otimes_{\mathbb{Z}} B \cong A \otimes_{R} B.$$

Def. Sei \mathbb{C} eine 2-Kategorie. Seien $\mathcal{C}, \mathcal{D} \in \mathbb{C}$. Eine **Adjunktion** von $F \in \operatorname{Hom}_{\mathbb{C}}(\mathcal{C}, \mathcal{D})$ und $G \in \operatorname{Hom}_{\mathbb{C}} \mathcal{D}, \mathcal{C}$ ist ein nat. Isomorphismus

$$\operatorname{Hom}(F \circ -, -) \cong \operatorname{Hom}(-, G \circ -),$$

d. h. Morphismen $\eta: \mathrm{Id}_C \Rightarrow G \circ F$ und $\epsilon: F \circ G \Rightarrow \mathrm{Id}_{\mathcal{D}}$, sodass $G\epsilon \circ \eta G = \mathrm{Id}_G$ und $\epsilon F \circ F \eta = \mathrm{Id}_F$. Man notiert $F \dashv G$.