푄 (foehn) 현상

지구과학교육과 윤동욱 산림과학부 서유경 지구환경과학부 최명균 지구환경과학부 황지우

목차

1. 연구 목적

2. 푄 현상

- 1) 푄 현상이란?
- 2) 원리는?
- 3) 예시

3. 분석 모델 소개 및 적용

- 1) 분석 모델 소개
- 2) 분석 모델 적용 태백산맥, Appalachian 산맥

4. 결론

연구 목적

- 푄에 대해 이해하고 열역학적으로 정량분석 해본다.
- 분석 결과를 실제 현상과 비교해보고 오차 원인을 분석한 다.

푄 현상

푄 현상이란?

- 공기가 산맥을 넘어 풍하 측으로 불어 내리는 현상

- 풍하 측의 고온 건조 현상

푄 현상

푄 현상의 원리

- 1. 바람이 산지에 걸쳐 상승
 - 단열 팽창하면서 기온이 점차 하강
- 2. 상승 도중, 포화상태에 도달
 - 구름 생기고, 강수 동반
- 3. 풍하 측을 따라 하강
 - 거의 단열압축에 의해 기온 상승

푄 현상

푄 현상의 예

- 유럽 Alps 산맥
- 북미 Rocky 산맥
- 북미 Appalachian 산맥
- 우리나라 태백산맥

가정

- 공기는 **정역학적 평형**을 이룬다
- 마찰이 없다
- 풍속은 공기가 산을 넘게 하는 데에 충분히 제공(i.e. **풍속에 따라 변하는 요인 제외**)
- **대기**의 평균 기온 감률 일정(6.5)
- 건조 단열 감률(9.8)과 **이슬점 감률**(1.8)은 일정

1. 건조 단열 상승

1) 온도

$$\Gamma_{\!d} = - \, \frac{d\,T}{dz} = \frac{\gamma - 1}{\gamma} \, \frac{g}{R_{\!d}} = \frac{g}{c_{\!pd}} = 9.8 \, \text{C} \, / km$$

$$T=T_0-\Gamma_d(z-z_0)$$
 ------- T, z 관계 파악

1. 건조 단열 상승

2) 이슬점

$$\Gamma_{dew} = -\frac{d T_{dew}}{dz} = \frac{g}{\epsilon l_v} \frac{T_{dew}^2}{T} \approx 1.8 \, \text{C/km}$$

대입

$$T=T_0-\Gamma_d(z-z_0)$$
 \longrightarrow T dew, z 관계 파악

2. 상승 응결 고도(LCL)

$$T\!=T_{dew} \Leftrightarrow\! T_{dew,0} - \varGamma_{dew}(z-z_0) \!= T_0 - \varGamma_d(z-z_0)$$

$$T_{LCL}=rac{1}{rac{1}{T-55}-rac{\ln r}{2840}}+55$$
 \longrightarrow T LCL 파악 T LCL 다 아이 provided by Bolton

2. 상승 응결 고도(LCL)

But, z를 p로 변환 시킨다. (습윤 단열 과정에서 p가 z보다 유용하게 쓰이기 때문)

$$dp = - \rho g dz$$

$$p=p_0(1-rac{\Gamma}{T_0}(z-z_0))^{rac{g}{R_d\Gamma}}$$
 PLCL শৃণ $\Gamma=6.5K/km$

2. 상승 응결 고도(LCL)

3. 습윤 단열 상승

- 실제 공기가 산을 넘을 때 강수과정이 동반 된다.

pseudo adiabatic 과정으로 고려

* 물론 pseudo adiabatic 과정과 saturation adiabatic 과정 사이에서 작용이 일어나긴 하지만, 두 lapse rate는 거의 비슷한 수치를 가지기 때문에, 극단적인 pseudo adiabatic 과정만 고려하였다. (김경익, 대기열역학, 2010)

3. 습윤 단열 상승

1) T≥0, rain stage(성우급)

$$(c_{pd} + w_t c_w) \ln T - R_d \ln p_d + \frac{l_v w_{sw}}{T} = constant$$

$$c_{pd} \ln T - R_d \ln p + \frac{l_v}{T} \frac{\epsilon e_{sw}}{p} = constant$$

$$lpha$$
 assume. $w_{sw}pprox w_t \ll c_{pd}$, $p_d \gg e_{ws}$, $w_{sw}pprox \epsilon rac{e_{sw}}{p}$ $e_{sw}=6.11 imes \exp(19.83-rac{5417}{T})$, $l_v,c_{pd}pprox constant$

3. 습윤 단열 상승

1) T ≥ 0, rain stage(성우급)

$$c_{pd} \ln T_i - R_d \ln p_i + \frac{l_v}{T_i} \frac{\epsilon}{p_i} \ 6.11 \exp(19.83 - \frac{5417}{T_i}) = c_{pd} \ln T_f - R_d \ln p_f + \frac{l_v}{T_f} \frac{\epsilon}{p_f} \ 6.11 \exp(19.83 - \frac{5417}{T_f})$$

Then,
$$T_i = T_{LCL}, p_i = p_{LCL}, p_f \sim$$
 관측고도압력 \longrightarrow 아는 값

 $T_f \longrightarrow$ 계산 가능

3. 습윤 단열 상승

2) T<0, snow stage(성설급)

$$c_{pd} \ln T - R_d \ln p + rac{l_v}{T} rac{\epsilon e_{sw}}{p} = constant$$
 From, Rain stage

$$c_{pd} \ln T - R_d \ln p + \frac{l_s}{T} \frac{\epsilon e_{si}}{p} = constant$$

3. 습윤 단열 상승

- 2) T<0, snow stage(성설급)
- Rain stage(성우급)에서 한 방식대로 Ti, Pi, Pf 를 구할 수 있고,
 그에 따라 **Tf** 를 구할 수 있다.
- Snow stage의 과정을 겪는 것은 산이 매우 높거나 시작 온도가 비교적 낮아 온도가 0도 이하일 때만 가 능 할 것이다.

3. 습윤 단열 상승

Saturation adiabatic 과정 Pseudo adiabatic 과정

4. 건조 단열 하강

1) 온도

$$T = T_{peak} - \Gamma_d(z - z_{peak})$$

2) 이슬점

$$T = T_{peak} - \Gamma_d(z - z_{peak})$$

1. 연구 목적 2. 푄 현상 3. 분석모델 소개 및 적용 4.결론

1. 연구 목적 2. 푄 현상 3. 분석모델 소개 및 적용 4.결론

초여름 한반도 주변의 전형적인 기압배치도

바람 발생원인

봄철 ~ 초여름

- -> 오호츠크해 기단 (고기압성)
- -> 동풍 계열의 바람 우세

영동지방에서 태백산맥을 넘어 영서지방으로 높새바람

		강릉 (26m)	홍천 (141m)	Tdew (K)	Tlcl (m)	Zlcl (m)	Plcl (mb)
2009. 03. 20. 14:00	온도(K)	283.36	290.76	273.99	271.95	1196.88	883.27
	R.H	0.52	0.23				
2009. 05. 24. 13:00	온도(K)	293.26	297.86	286.35	284.66	890.30	912.41
	R.H	0.64	0.44				
2009. 06. 05. 15:00	온도(K)	293.36	301.26	288.66	287.48	614.04	937.18
	R.H	0.74	0.27				
2010. 05. 13. 14:00	온도(K)	288.56	293.86	282.75	281.38	751.70	932.89
	R.H	0.68	0.3				
2010. 06. 15. 15:00	온도(K)	296.96	303.46	291.71	290.37	682.29	931.31
	R.H	0.72	0.42				
2011. 04. 16. 15:00	온도(K)	284.16	292.66	272.43	269.92	1491.76	847.58
	R.H	0.44	0.07				
2011. 05. 25. 14:00	온도(K)	285.76	300.26	282.25	281.42	464.48	967.13
	R.H	0.79	0.34				
2011. 06. 19. 15:00	온도(K)	298.06	303.36	273.99	283.69	1471.46	849.94
	R.H	0.48	0.33				

		강릉 (26m)	홍천 (141m)	강릉 - 홍천 관측값 차	Tpeak (K)	홍천 모델링(K)	모델링 - 강릉 온도차 (K)	오차 (K)
2009. 03. 20. 14:00	온도(K)	283.36	290.76	7.4	270.01	283.27	-0.09	-7.49
	R.H	0.52	0.23			0.39		
2009. 05. 24. 13:00	온도(K)	293.26	297.86	4.6	282.94	296.20	2.94	-1.66
	R.H	0.64	0.44			0.42		
2009. 06. 05. 15:00	온도(K)	293.36	301.26	7.9	275.47	288.73	-4.63	-12.53
	R.H	0.74	0.27			0.41		
2010. 05. 13. 14:00	온도(K)	288.56	293.86	5.3	276.99	290.25	1.69	-3.61
	R.H	0.68	0.3			0.41		
2010. 06. 15. 15:00	온도(K)	296.96	303.46	6.5	286.46	299.72	2.76	-3.74
	R.H	0.72	0.42			0.43		
2011. 04. 16. 15:00	온도(K)	284.16	292.66	8.5	269.67	282.93	-1.23	-9.73
	R.H	0.44	0.07			0.39		
2011. 05. 25. 14:00	온도(K)	285.76	300.26	14.5	275.47	288.73	2.97	-11.53
	R.H	0.79	0.34			0.41		
2011. 06. 19. 15:00	온도(K)	298.06	303.36	5.3	283.39	296.65	-1.41	-6.71
	R.H	0.48	0.33			0.43		

1. 연구 목적 2. 푄 현상 3. 분석모델 소개 및 적용 4.결론

- 계산한 홍천의 기온은 실제 관측 값보다 낮 게 나타났다.

- 계산한 홍천의 습도는 실제 관측 값보다 높 게 나타났다.

이 지역에서 특정한 지리적 자료를 찾기가 어려워 어느 점에서 오차가 생겼는지 파악하기 힘들었다.

그래서 아마 식 자체에서 가정한 값에 의해 오차가 생겼을 거라 생각한다.

2. Appalachian 산맥

- 남부 지역

1. 연구 목적 2. 푄 현상 3. 분석모델 소개 및 적용 4.결론

1. 연구 목적 2. 푄 현상 3. 분석모델 소개 및 적용 4.결론

바람 발생원인

미시시피 강 -> 비교적 저기압

Appalachian 산맥 -> 비교적 고기압

Appalachian 산 맥에서 미시시피 강으로 바람생성

표면에서의 등압선

1. 연구 목적 2. 푄 현상 3. 분석모델 소개 및 적용 4.결론

 $T_{1500m} = 275.6K T_f = 287.4K$

- 실제 관측 값

$$z_i = 287m$$
 $z_f = 293m$ $T_{1500m} = 283K$ $T_i = 285K$ $T_f = 290K$ $p_i = 1018hpa$ $r_i = 0.85$ - 모델 계산 값 $z_{LCL} = 589.5m$ $T_{LCL} = 282.01K$ $p_{LCL} = 975hpa$

- 1500m 와 표면(293m)에서의 온도

오차의 원인

① 지형적인 요인

② 기압 차에 의한 warm air mass 의 유입

① 지형적인 요인

산맥이 지형적으로 평탄하지 않음

산맥 사이의 gap을 타고 흐르는 Shallow foehn wind 발생

Shallow foehn wind가 낮은 곳을 넘어오며, 온도증가가 비교적 적음

② 기압 차에 의한 warm air mass 의 유입

산 정상 높이(1500m)에서의 기압을 비교하면, 이 산 정상의 압력은 남쪽에 비해 상대적으로 낮음.

이 남쪽에서 부는 바람은 따뜻한 바람으로, 산 정상의 기온을 높게 해줌.

이로 인해 1500m에서의 기온이 실제 값에서 더 높음.

850hpa의 등고선

결론

푄 현상은 단순 모델이 아닌 여러 지역 적 변수를 포함하는 복합적 모델

푄 현상을 좀 더 다차원적으로 살펴 기온에 관해 조사해 본다면 더 기온 예측이 잘 될 것이라 생각한다.

Reference

김경익, 『대기열역학』, 2010, 119~124쪽

소진섭 · 소은미, 『역학 대기과학』, 2009, 51~58쪽, 89~126쪽

이현영, 「영서 지방의 푄 현상」, 1994

김유미·김만규. 「강원도 홍천 지역의 푄 연구」, 2013

David M. Gaffin, Foehn wind that produced large temperature differences near the southern appalachian mountains _, 2007