Machine Learning

Lecture 3

Simple Classifiers: Nearest Centroids and Linear Classification

Felix Bießmann

Beuth University & Einstein Center for Digital Future

Overview of today's lecture

- Today we will introduce three simple classifiers
 - 1. Nearest Centroid Classifier (NCC)
 - 2. Perceptron
 - 3. K-Nearest Neighbor (KNN)
- These algorithms are extremely powerful
- Often they can compete with complex algorithms
- Some aspects can be motivated by biological cognition

Prototypes: Psychological Models of Abstract Ideas

Psychologists postulated that we learn **prototypes** [??]

Toy data example:

Two dimensional input $\mathbf{x} \in \mathbb{R}^2$

Two *classes* of data, Δ and \circ

Prototypes: Psychological Models of Abstract Ideas

Prototypes μ_{Δ} and μ_o can be the class means

$$\mu_{\Delta} = 1/N_{\Delta} \sum_{n}^{N_{\Delta}} \mathbf{x}_{\Delta,n}$$

$$\mu_{o} = 1/N_{o} \sum_{n}^{N_{o}} \mathbf{x}_{o,n}$$

Distance from w_{Δ} to new data x

$$\|\boldsymbol{\mu}_{\Delta} - \mathbf{x}\|_2$$

Prototypes: Psychological Models of Abstract Ideas

For new data x check: Is x more similar to μ_a ?

$$\|oldsymbol{\mu}_{\Delta} - \mathbf{x}\| > \|oldsymbol{\mu}_{o} - \mathbf{x}\|$$

yes? ightarrow x belongs to μ_o no? ightarrow x belongs to μ_Δ This is called a nearest centroid classifier

Nearest Centroid Classification Algorithm (Batch Mode)

Algorithm 1 Computation of Class-Centroids

Require: data $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^D$, labels $y_1, \dots, y_N \in \{1, \dots, K\}$

Ensure: Class means μ_k , $k \in \{1, ..., K\}$

- 1: # Initialize means and counters for each class
- 2: # Computation of class means
- 3: **for** Class k = 1, ..., K **do**
- 4: $\mu_k = \frac{1}{N_k} \sum_{i=1}^{N_k} \mathbf{x}_i$

5: end for

Batch Computations vs. Streaming

Solutions for algorithms can be obtained

- In Batch Mode:
 - Use all available data at once
 - Requires to store all data in memory
- In Streaming Mode:
 - Use one data point at a time
 - Requires to store only centroids

Given the mean μ_{N-1} computed from N-1 samples we want to update μ_{N-1} with the Nth sample \mathbf{x}_N to obtain μ_N

$$\mu_{N} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}$$

$$= \frac{1}{N} \sum_{n=1}^{N-1} \mathbf{x}_{n} + \frac{1}{N} \mathbf{x}_{N}$$

$$= \frac{N-1}{N} \underbrace{\frac{1}{N-1} \sum_{n=1}^{N-1} \mathbf{x}_{n}}_{\mu_{N-1}} + \frac{1}{N} \mathbf{x}_{N}$$

$$= \frac{N-1}{N} \mu_{N-1} + \frac{1}{N} \mathbf{x}_{N}$$

Nearest Centroid Classification Algorithm (Streaming)

Algorithm 2 Iterative computation of Class-Centroids

Require: data $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^D$, labels $y_1, \dots, y_N \in \{1, \dots, K\}$

Ensure: Class means μ_k , $k \in \{1, ..., K\}$

1: # Initialize means and counters for each class

2: $\forall k$: $\mu_k = \mathbf{I} \cdot \mathbf{0}, N_k = \mathbf{0}$

3: # Iterative computation of class means

4: for Data point i = 1, ..., N do

5: # Update means and counters

6: $k = y_i$

7: $\mu_k = \frac{N_k}{N_k + 1} \; \mu_k + \frac{1}{N_k + 1} \; \mathbf{x}_i$

8: $N_k = N_k + 1$

9: end for

Nearest Centroid Classification

Algorithm 3 Nearest Centroid Prediction

Require: Data point $\mathbf{x} \in \mathbb{R}^D$, class centroids $\boldsymbol{\mu}_k, \ k \in \{1, \dots, K\}$

Ensure: Class membership k^*

 $1:\ \#\ {\sf Compute}\ {\sf nearest}\ {\sf class}\ {\sf centroid}\ {\sf in}\ {\sf discriminative}\ {\sf subspace}$

2: $k^* = \operatorname{argmin}_k \| \mu_k - \mathbf{x} \|_2$.

Toy Data Example NCC

From Prototypes to Linear Classification

$$\begin{aligned} \mathsf{distance}(\mathbf{x}, \mu_{\Delta}) > &\mathsf{distance}(\mathbf{x}, \mu_{o}) \\ &\|\mathbf{x} - \mu_{\Delta}\| > &\|\mathbf{x} - \mu_{o}\| \end{aligned} \tag{1}$$

From Prototypes to Linear Classification

$$\begin{aligned} \mathsf{distance}(\mathbf{x}, \boldsymbol{\mu}_{\Delta}) > & \mathsf{distance}(\mathbf{x}, \boldsymbol{\mu}_{o}) \\ & \|\mathbf{x} - \boldsymbol{\mu}_{\Delta}\| > \|\mathbf{x} - \boldsymbol{\mu}_{o}\| \\ \Leftrightarrow & \|\mathbf{x} - \boldsymbol{\mu}_{\Delta}\|^{2} > \|\mathbf{x} - \boldsymbol{\mu}_{o}\|^{2} \\ \Leftrightarrow & \mathbf{x}^{\top}\mathbf{x} - 2\boldsymbol{\mu}_{\Delta}^{\top}\mathbf{x} + \boldsymbol{\mu}_{\Delta}^{\top}\boldsymbol{\mu}_{\Delta} > & \mathbf{x}^{\top}\mathbf{x} - 2\boldsymbol{\mu}_{o}^{\top}\mathbf{x} + \boldsymbol{\mu}_{o}^{\top}\boldsymbol{\mu}_{o} \\ \Leftrightarrow & \boldsymbol{\mu}_{\Delta}^{\top}\mathbf{x} - \boldsymbol{\mu}_{\Delta}^{2}/2 < \boldsymbol{\mu}_{o}^{\top}\mathbf{x} - \boldsymbol{\mu}_{o}^{2}/2 \\ \Leftrightarrow & 0 < \underbrace{(\boldsymbol{\mu}_{o} - \boldsymbol{\mu}_{\Delta})^{\top}}_{\mathbf{w}} \mathbf{x} - 1/2\underbrace{(\boldsymbol{\mu}_{o}^{\top}\boldsymbol{\mu}_{o} - \boldsymbol{\mu}_{\Delta}^{\top}\boldsymbol{\mu}_{\Delta})}_{\beta} \end{aligned}$$

From Prototypes to Linear Classification

$$\begin{aligned} \operatorname{distance}(\mathbf{x}, \boldsymbol{\mu}_{\Delta}) > & \operatorname{distance}(\mathbf{x}, \boldsymbol{\mu}_{o}) \\ & \|\mathbf{x} - \boldsymbol{\mu}_{\Delta}\| > \|\mathbf{x} - \boldsymbol{\mu}_{o}\| \\ \Leftrightarrow & \|\mathbf{x} - \boldsymbol{\mu}_{\Delta}\|^{2} > \|\mathbf{x} - \boldsymbol{\mu}_{o}\|^{2} \\ \Leftrightarrow & \mathbf{x}^{\top}\mathbf{x} - 2\boldsymbol{\mu}_{\Delta}^{\top}\mathbf{x} + \boldsymbol{\mu}_{\Delta}^{\top}\boldsymbol{\mu}_{\Delta} > & \mathbf{x}^{\top}\mathbf{x} - 2\boldsymbol{\mu}_{o}^{\top}\mathbf{x} + \boldsymbol{\mu}_{o}^{\top}\boldsymbol{\mu}_{o} \\ \Leftrightarrow & \boldsymbol{\mu}_{\Delta}^{\top}\mathbf{x} - \boldsymbol{\mu}_{\Delta}^{2}/2 < \boldsymbol{\mu}_{o}^{\top}\mathbf{x} - \boldsymbol{\mu}_{o}^{2}/2 \\ \Leftrightarrow & 0 < \underbrace{(\boldsymbol{\mu}_{o} - \boldsymbol{\mu}_{\Delta})}_{\mathbf{w}}^{\top}\mathbf{x} - 1/2\underbrace{(\boldsymbol{\mu}_{o}^{\top}\boldsymbol{\mu}_{o} - \boldsymbol{\mu}_{\Delta}^{\top}\boldsymbol{\mu}_{\Delta})}_{\beta} \end{aligned}$$

Linear Classification

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to class } 0 \\ < 0 & \text{if } \mathbf{x} \text{ belongs to class } \Delta \end{cases}$$
 (2)

Linear Classification

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to } o \\ < 0 & \text{if } \mathbf{x} \text{ belongs to } \Delta \end{cases}$$

Linear Classification

$$\mathbf{w}^{\top}\mathbf{x} - \beta = \begin{cases} > 0 & \text{if } \mathbf{x} \text{ belongs to } o \\ < 0 & \text{if } \mathbf{x} \text{ belongs to } \Delta \end{cases}$$

The offset β can be included in \mathbf{w}

$$\tilde{\mathbf{x}} \leftarrow \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} \qquad \tilde{\mathbf{w}} \leftarrow \begin{bmatrix} -\beta \\ \mathbf{w} \end{bmatrix}$$

such that

$$\tilde{\mathbf{w}}^{\top}\tilde{\mathbf{x}} = \mathbf{w}^{\top}\mathbf{x} - \beta.$$

Linear Classification

What is a good \mathbf{w} ?

 \rightarrow We need an **error function** that tells us how good ${\bf w}$ is.

Two classical Error Functions

Given data $\mathbf{x} \in \mathbb{R}^D$ and corresponding labels $y \in \{-1, +1\}$, two classical error functions $\mathcal{E}(\mathbf{x}, y, \mathbf{w})$ to find the optimal $\mathbf{w} \in \mathbb{R}^D$ are:

Error Function	Used in
$\frac{1}{2}(y - \mathbf{w}^{\top}\mathbf{x})^2$	Adaline [?]
$\max(0, -y\mathbf{w}^{ op}\mathbf{x})$	Perceptron [?]

Classification Error as Function of Weights

Given data $\mathbf{x} \in \mathbb{R}^D$ and corresponding labels $y \in \{-1, +1\}$ the classification error \mathcal{E} is a function of the weights \mathbf{w} (and the data \mathbf{x}, y)

$$\mathcal{E}(\mathbf{w}, \mathbf{x}_m, y_m) = -\sum_{m \in \mathcal{M}} \mathbf{w}^\top \mathbf{x}_m y_m \quad (3)$$

where \mathcal{M} denotes the index set of all misclassified data \mathbf{x}_m

Classification Error as Function of Weights

Gradient Descent

How to minimize the error function?

$$\mathcal{E}(\mathbf{w}, \mathbf{x}_m, y_m) = -\sum_{m \in \mathcal{M}} \mathbf{w}^\top \mathbf{x}_m y_m$$

→ Gradient Descent

Gradient Descent

We minimize $\mathcal{E}(\mathbf{w}, \mathbf{x}_m, y_m)$ by walking in the opposite direction of the gradient.

$$\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} - \eta \frac{1}{|\mathcal{X}|} \sum_{i=1}^{|\mathcal{X}|} \nabla \mathcal{E}(\mathbf{w}, \mathbf{x}_i, y_i)$$

where \mathcal{X} is the set of data points and η is called a **learning rate**.

Stochastic Gradient Descent

A noisy estimate of

$$\frac{1}{|\mathcal{X}|} \sum_{i=1}^{|\mathcal{X}|} \nabla \mathcal{E}(\mathbf{w}, \mathbf{x}, y)$$

is obtained by [?]

$$\mathbf{w}^{\mathsf{new}} \leftarrow \mathbf{w}^{\mathsf{old}} - \eta \nabla \mathcal{E}(\mathbf{w}, \mathbf{x}_i, y_i)$$

Note that only \mathbf{w} is stored and only one data point \mathbf{x}_i and label y_i are considered at a time!

 \rightarrow Scales to large data sets [?]

References

