Deep Reinforcement Learning with Continuous Actions

Simon Ramstedt simonramstedt@gmail.com Supervisors: Simone Parisi, Gerhard Neumann

Motivation

- Neural Networks work well with high dimensional real world data
- Reinforcement Learning for sequential decision making proved successful for robot learning
- Deep Reinforcement Learning successes (at least for discrete actions): AlphaGo and Atari games
- Continuous actions needed for many control tasks

Neural Networks

Reinforcement Learning

Objective: Maximize the return (i.e. sum of rewards)

$$R = \sum_{i=t}^{T} \gamma^{(i-t)} r(s_i, a_i)$$

Policy

$$\pi: s_t \rightarrow a_t$$

Value function

$$V(s_t) = \mathbb{E}[R \big| s_t]$$

Action value function
$$Q(s_t, a_t) = \mathbb{E}[R|s_t, a_t]$$

Transition model

$$M: s_t, a_t \rightarrow s_{t+1}, r_{t+1}$$

Deep Q-Network

Q-learning with a Neural Network

Bellman equation: $Q^{\pi}(s_t, a_t) = \mathbb{E}[r(s_t, a_t) + \gamma Q^{\pi}(s_{t+1}, \pi(s_{t+1}))]$

- ▶ Problem: correlated samples
- ► Solution: experience replay
- Problem: recursive Q targets
- ► Solution: target weights $\theta' = EMA(\theta)$

Deep Q-Network

for every timestep t do

Select action $a_t = \epsilon$ -greedy [argmax_a $Q(s_t, a|\theta)$]

Execute a_t and observe reward r_t and next state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in D

Sample random minibatch of *m* transitions from *D*

Set targets $y_j = r_j + \gamma \max_a Q(a, s_{j+1} | \theta')$

Perform gradient descent on cost $C = \frac{1}{m} \sum_{j} (y_j - Q(s_j, a_j | \theta))^2$ with respect to θ

Update $\theta' \leftarrow LP(\theta)$

end

Deep Deterministic Policy Gradient (DDPG)

- ▶ Policy gradient $\nabla_{\xi}\mathbb{E}[R] = \nabla_a Q \cdot \nabla_{\xi}\pi$
- Use tricks from DQN

- ► 20+ different motor control tasks (pole swingup, cart-pole, double pole, quadruped balance, ...)
- Evaluated on state inputs and pixel inputs
- Smooth reward functions
- ► Performance: max. 10⁶ timesteps of interaction needed

Deep Deterministic Policy Gradient

for every timestep t do

Select action $a_t = \pi(s_t) + \mathcal{M}_t$

Execute a_t and observe reward r_t and next state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in D

Sample random minibatch of *m* transitions from *D*

Set Q targets $y_i = r_i + \gamma Q(s_{i+1}, \pi(s_{i+1}|\xi')|\theta')$

Perform gradient descent on cost $C = \frac{1}{m} \sum_{i} (y_i - Q(s_i, a_i | \theta))^2$ with respect to θ

Perform gradient ascent on $Q(s_j, \pi(s_j|\xi)|\theta)$ with respect to ξ

Update $\theta' \leftarrow LP(\theta)$

Update $\xi' \leftarrow LP(\xi)$

end

Experiments

DDPG sounds nice but ...

- ▶ How hard is it to implement?
- How data efficient is it?
- ▶ What about sparse reward functions?
- How robust is it to hyperparameters variations?
- Other problems?
- ► How can it be improved?

Experiments

Setup

Policy network layout:

Q network layout:

Cart pole swingup and balance

 \boldsymbol{s}_0 : position of the cart

 s_1 : angle of the pole

 $s_2 = \dot{s_0}$

 $s_3 = \dot{s_1}$

a: force applied to the cart

Experiments

Trajectories

(c) Balance after \sim 100,000 timesteps.

(b) Swingup after \sim 10,000 timesteps.

(d) Near optimal after \sim 200, 000 timesteps.

Results DDPG in Cartpole

$$r = 0.5 \cdot \cos(s_1) - 0.03 \cdot a^2 - 0.015 \cdot |s_0| - 0.2 \cdot s_3^2$$

 $t_{\rm warmup}=50,000$

DDPG in Cartpole without target networks

$$r = 0.5 \cdot \cos(s_1) - 0.03 \cdot a^2 - 0.015 \cdot |s_0| - 0.2 \cdot s_3^2$$

 $t_{\rm warmup}=50,000$

DDPG in Cartpole without replay memory

$$r = 0.5 \cdot \cos(s_1) - 0.03 \cdot a^2 - 0.015 \cdot |s_0| - 0.2 \cdot s_3^2$$

$$t_{\rm warmup}=50,000$$

$$r = 1 \cdot (s_1 < 0.01) - 0.03 \cdot a^2$$

$$t_{\text{warmup}} = 10,000$$

$$r = 4 \cdot (s_1 < 0.01) - 0.03 \cdot a^2$$

$$t_{\text{warmup}} = 10,000$$

$$r = 4 \cdot (s_1 < 0.01) - 0.03 \cdot a^2$$

$$t_{\text{warmup}} = 50,000$$

$$r = 4 \cdot (s_1 < 0.01) - 0.03 \cdot a^2$$

$$t_{\text{warmup}} = 100,000$$

Future Work

Increase data efficiency

Share weights:

Learn a transition model

Use it to compute another policy gradient (e.g. Heess et. al., 2015)

$$\mathbb{E}[R] = r(s_t, a_t) + \lambda V(M(s_t))$$

$$\nabla_{\xi} \mathbb{E}[R] \ = \ \nabla_{\xi} r(s_t, a_t) + \lambda \nabla_{\xi} \pi(s_t) \cdot \nabla_a M(s_t, a_t) \cdot \nabla_{s_{t+1}} V(s_{t+1})$$

Future Work

Faster reward propagation via **n-step updates** on recent trajectories (e.g. Mnih et. al., 2016) $Q^{\pi}(s_t, a_t) = \mathbb{E}[r_t + \gamma^1 r_{t+1} + \dots + \gamma^n r_{t+n} + \gamma^{n+1} Q^{\pi}(s_{t+n+1}, a_{t+n+1})]$

Stochastic neural networks:

- a) Additive noise in the layers (works with standart backpropagation)
- b) Stochastic backpropagation (Kingma & Welling, 2013) (Rezende et. al., 2014)

Thanks

Questions or Feedback?

- ► Thesis and slides: https://github.com/simonramstedt/bt
- Code: https://git.ias.informatik.tu-darmstadt.de/SimonR/DRLTF
- Deep Reinforcement Learning papers overview: https://github.com/junhyukoh/deep-reinforcement-learning-papers
- ▶ DQN: Mnih et. al., Human-level control through deep reinforcement learning, 2015
- ▶ DDPG: Lillicrap et. al., Continuous control with deep reinforcement learning, 2015
- ▶ A3C: Mnih et. al, Asynchronous Methods for Deep Reinforcement Learning, 2016
- Prioritized Replay: Schaul et. al., Prioritized Experience Replay, 2015

Automatic differentiation

Deep Q-Network (DQN)

on the Arcade Learning Environment (ALE)

Atari Environment:

- Discrete actions (buttons on Atari controller)
- Learning from raw pixel input
- Using only the game score as reward signal
- ▶ Performance: max. 10⁸ timesteps of interaction needed

Method	Training Time	Mean	Median
DQN (from [Nair et al., 2015])	8 days on GPU	121.9%	47.5%
Gorila [Nair et al., 2015]	4 days, 100 machines	215.2%	71.3%
Double DQN [Van Hasselt et al., 2015]	8 days on GPU	332.9%	110.9%
Dueling Double DQN [Wang et al., 2015]	8 days on GPU	343.8%	117.1%
Prioritized DQN [Schaul et al., 2015]	8 days on GPU	463.6%	127.6%
A3C, FF	1 day on CPU	344.1%	68.2%
A3C, FF	4 days on CPU	496.8%	116.6%
A3C, LSTM	4 days on CPU	623.0%	112.6%

