Dans tout l'exercice, α désigne un entier naturel supérieur ou égal à 4. On considère l'équation (E) ci-dessous dont l'inconnue est le triplet d'entiers relatifs $(x_1, x_2, x_3) \in \mathbf{Z}^3$.

(E):
$$x_1^2 + x_2^2 + x_3^2 = \alpha x_1 x_2 x_3$$

Le but de l'exercice est de démontrer que le seul triplet dans Z^3 solution de (E) est (0,0,0).

Partie 1

Soient b et c deux réels. On considère la fonction polynôme de $\mathbf R$ dans $\mathbf R$ définie par $P(x)=x^2+bx+c$. Un réel r tel que P(r)=0 est appelé r admet deux racines distinctes, r_1 et r_2 . Ainsi, $P(x)=(x-r_1)(x-r_2)$ pour tout réel x.

- **1.** Exprimer b et c en fonction de r_1 et r_2 .
- 2. On suppose ici $b \le 0$ et $c \ge 0$. Que peut-on dire du signe de r_1 et r_2 ?

Partie 2

- **1. a.** On suppose que le triplet $(x_1, x_2, x_3) \in \mathbf{Z}^3$ est solution de l'équation (E). Montrer que $(|x_1|, |x_2|, |x_3|)$ est aussi solution de (E).
 - Pour x réel, |x| désigne la valeur absolue de x et vaut x si x est positif et -x si x est négatif.
 - **b.** En déduire que, s'il existe un triplet d'entiers relatifs différent de (0,0,0) solution de l'équation (E), alors il existe un triplet d'entiers naturels différent de (0,0,0) solution de l'équation (E).
- 2. Si le triplet $(x_1, x_2, x_3) \in \mathbb{Z}^3$ est solution de l'équation (E), que dire du triplet (x_2, x_1, x_3) ?
- 3. En déduire que, si l'équation (E) admet une solution dans \mathbf{Z}^3 différente du triplet (0,0,0), alors elle admet une solution (x_1,x_2,x_3) dans \mathbf{N}^3 différente du triplet (0,0,0) et telle que $x_1 \leq x_2 \leq x_3$.