

▮ 1. 주제 선정 배경 및 이유

핵심 개념 이해의 중요성

분산 스위치의 역할

- 효율적인 연결 및 관리
- 네트워크 성능 최적화

즉, 이를 깊이 이해하는 것이 전체 가상 네트워크를 이해하는 것

- 표준 스위치
- 분산 스위치
- 분산 스위치의 구조
- 분산 스위치의 흐름

표준 스위치

특징

- 각 ESXi 호스트에 단일 연결
- 호스트와 VM 간의 네트워크 트래픽 처리

장점

- 간단한 설정
- 적은 비용

단점

- 각 ESXi 호스트에서 개별 관리
- 대규모 환경에서 관리 복잡
- 트래픽 분리 및 VLAN 설정 필요

2. 표준 스위치와 분산 스위치

분산 스위치

특징

- 데이터 센터 내 모든 ESXi 호스트 지원
- vCenter Server로 관리
- 일관된 네트워크 구성 제공

장점

- 중앙 집중식 관리로 구성 및 모니터링 용이
- VM 이동 시 일관된 네트워크 구성 유지
- 대규모 환경에서 관리 효율성 향상

단점

- 라이센스 비용 발생
- 서버와의 연결이 필수적

표준 스위치와 분산 스위치의 비교

기능	표준 스위치	분산 스위치
Management	각 호스트에 개별 네트워크 구성 및 관리	단일 인터페이스에서 시스템에 연결된 모든 호스트의 네트워크 구성 및
Licensing	모든 라이선스 모델에서 사용 가능	엔터프라이즈 에디션 모델에서 사용 가능
Creation and Configuration	ESXI 레벨에서 생성 및 구성	vCenter 레벨에서 생성 및 구성
Layer 2 Switch	Layer 2 Frames 라우팅 가능	Layer 2 Frames 라우팅 가능
VLAN Segmentation	0	0
802.1Q Tagging	VLAN Tagging O, 802.1Q O	VLAN Tagging O, 802.1Q O
NIC Teaming	다중 업링크로 NIC Teaming 가능	다중 업링크로 NIC Teaming 가능
Outbound Traffic Shaping	0	0
🙀 Inbound Traffic Shaping	X	분산 스위치에서만 사용 가능
VM Port Blocking	X	분산 스위치에서만 사용 가능
Private VLAN	X	3가지 방법으로 생성 가능 (Promiscuous- Community - Isolated)
Load Based Teaming	X	0
Network vMotion	X	0
Port Policy Settings	0	0
NetFlow	X	0
Port Mirroring	X	0

2. 표준 스위치와 분산 스위치

분산 스위치의 구조

• 2개의 논리 섹션

- 관리부: 데이터부 기능을 구성하는 제어 구조
- 데이터부: 패킷 스위칭, 필터링 등을 구현
- 관리 기능: vCenter Server 시스템에서 데이터 센터 수준 의 네트워크 구성 관리
 - 관리부에서 생성된 네트워킹 구성을 데이터부에 자동으로 푸시
- 업링크 포트 그룹: 분산 스위치 생성 시 정의, 하나 이상의 업링크 포함
 - 업링크는 물리적 NIC와 매핑
 - 페일오버 및 로드 밸런싱 정책 설정 가능
- 분산 포트 그룹: 가상 머신 및 VMkernel 트래픽에 대한 네트워크 연결 제공
 - 네트워크 레이블로 식별
 - 페일오버, 로드 밸런싱 등 다양한 정책 설정 가능

2. 표준 스위치와 분산 스위치

분산 스위치에서의 데이터 흐름

- 1. 분산 포트 그룹 생성 시 순서대로 포트 ID 할당 및 연결
- 2. 호스트 추가 시, 각 물리적 NIC에 포트 번호 순차 할당
- 3. 호스트의 vmnic0을 업링크 1에 매핑, 이후 순차 맵핑
- 4. 네트워크 Teaming 및 페일오버 설정
- 5.각 네트워크에 연결된 업링크가 트래픽 처리 시작

- 분산 스위치 생성
- 표준 스위치에서 분산 스위치로 가상 머신 Migration
- 분산 스위치 기능 살펴보기

분산 스위치 생성 과정

- 1. 새 분산 스위치 설정 및 등록
 - 이름 및 버전 설정
 - Network Offloads Compatibility, Uplinks, Network I/O Control, Port Group
- 2. 분산 스위치에 ESXi 호스트 추가
 - 호스트 연결
 - Uplink 및 VMkernel Port 설정

분산 스위치 생성 1. 새 분산 스위치 설정 및 등록

분산 스위치 생성 2. 분산 스위치에 ESXi 호스트 추가

표준 스위치에서 분산 스위치로 가상 머신 Migration 과정

1. Source Network 선택

2. Destination Network 선택

3. 이전할 가상 머신 선택

표준 스위치에서 분산 스위치로 가상 머신 Migration

분산 스위치 기능 살펴보기

1. Network I/O Control (NIOC)

우선순위가 높은 트래픽이 필요한 대역폭을 확보할 수 있도록 보장하는 기능

2. Port Mirroring

○ 특정 포트에서 발생하는 트래픽을 **다른 포트로 복사**해 **모니터링**하는 기능

3. NetFlow

○ 패킷 데이터를 수집해 네트워크 **트래픽의 흐름을 분석**하는 기능

4. Inbound Traffic Shaping

○ 네트워크로 들어오는 **트래픽의 속도나 양을 제어**하는 기능

분산 스위치 기능 살펴보기 1. Network I/O Control

트래픽에 우선순위를 지정해 대역폭을 할당하는 기능

- Share → 네트워크 과부하 발생 시, 전체 대역폭에서 확보할 비율 결정
- Reservation → 최소 대역폭을 사용할 수 있도록 보장

분산 스위치 기능 살펴보기 2. Port Mirroring

네트워크 트래픽을 다른 포트에 복제해 모니터링하는 기능

- Mirrored packet length → 프레임 길이 지정
- Sampling rate → 샘플링 속도 설정

분산 스위치 정리

Summary

- 분산 스위치 **개요**
- 표준 스위치와의 비교
- 구조 및 데이터 흐름
- 실습 생성 및 활용
- 실습 **기능** 확인

Continue

- 분산 스위치와 NSX의 관계
- NSX에서 분산 스위치 **사용 이유**
- 분산 스위치를 이용한 NSX 환경 구축

NSX와 분산 스위치의 관계

네트워크 가상화 계층 제공

- 가상 머신과 물리적 네트워크 간 통신
- 네트워크 별도 관리 및 배포
- 네트워크 세그먼트 생성 가능

네트워크 관리의 중앙화

- 네트워크 정책과 구성을 중앙에서 관리
- 모든 ESXi 호스트에 일괄 적용

NSX와 분산 스위치의 관계

고급 네트워크 기능 구현

- 분산 방화벽 : 네트워크 트래픽 가시성과 제어 강화
- 로드 밸런싱 : 가용성과 성능 향상
- NAT : 보안과 네트워크 연결성 향상

보안 및 마이크로 세그멘테이션

- 가상 머신 간 트래픽 제어
- 보안 정책을 네트워크 전체에 일괄 적용

분산 스위치를 활용한 NSX 환경 구축

Transport Node

• 네트워크 가상화 기능을 실행할 수 있는 네트워크 구성요소

Transport Zone

• 어떤 호스트와 클러스터가 논리적 네트워크에 참여할 수 있는지 결정

Uplink Profile

- Uplink 설정을 위한 템플릿
- Uplink의 인터페이스와 네트워크 정책 설정

분산 스위치를 활용한 NSX 환경 구축

Uplink

- 물리적 네트워크 연결 설정
- Overlay 네트워크 및 터널링을 목적으로 한 기본 인터페이스

VDS Uplink

- 분산 스위치의 Uplink
- VM의 트래픽이 나가거나 들어올 때 사용

분산 스위치를 활용한 NSX 환경 구축

데이터 경로 모드

- Standard
 - 일반적인 네트워크 가상화 기능
- Enhanced
 - 특정 네트워크의 하드웨어와 드라이버를 사용하여 낮은 지연 시간과 높은 패킷 처리량 제공
- N-VDS
 - 고급 기능을 지원하며 특정 하드웨어 오프로드 기능을 활용

| 5. 분산 스위치를 활용한 NSX Preparing

시연 결론

NSX Preparing

1.NSX 설치 준비 2.네트워크 리소스 설정 a.VDS 설정 3.Segment 생성 준비

| 5. 분산 스위치를 활용한 NSX Preparing

시연 결론

NSX Preparing

1.NSX 설치 준비

2.네트워크 리소스 통합

a. VDS 설정

3.Segment 생성 준비

시연 결론

- TEP을 통해 NSX 호스트 간 터널 설정
- VDS를 통해 물리적 네트워크와의 연결
- Uplink Mapping을 통해 트래픽 경로 설정
- → 네트워크 트래픽을 안정적으로 관리

- PowerCLI를 사용하는 이유
- 트러블 슈팅
- PowerCLI 명령어&결과

PowerCLI를 사용하는 이유

PowerCLI란?

• VMware 제품을 관리하고 자동화하는 데 사용되는 PowerShell 기반 Command 도구

PowerCLI를 사용하는 이유

PowerCLI란?

• VMware 제품을 관리하고 자동화하는 데 사용되는 PowerShell 기반 Command 도구

PowerCLI를 사용하는 이유

1. 자동화 : 반복적인 관리 작업을 자동화

2.대규모 관리: GUI보다 PowerCLI 명령어로 빠르게 처리

3.일관된 구성: VMware 환경의 구성을 표준화하고 일관되게 적용

4.모니터링: 환경의 상태를 빠르게 점검 가능

```
| 6. 트러블 슈팅
```

트러블 슈팅

```
Minifest 12.7.0.20... VMware.PowerCLI Desk

PS /home/holuser>
PS /home/holuser> connect-viserver 198.168.110.10

Specify Credential
Please specify server credential
User: administrator@vsphere.local
Password for user administrator@vsphere.local:

Connect-VIServer: 9/5/2024 1:30:31 AM Connect-VIServer
unnel request to proxy 'http://192.168.110.1:3128/' falled with status cole '403'.

PS /home/holuser>
```

HOL 환경에 PowerCLI는 설치되어있지만,

vCenter에 연결하려 할 때 프록시 설정 문제로 403 오류가 발생하여 서버 접속 거부

PowerCLI 명령어

```
# vCenter에 연결
Connect-VIServer -Server 192.168.1.10 -User admin -Password "password"
# 마이그레이션할 ESX1 호스트 목록
$vmhost_array = @("esxi-01.domain.com", "esxi-02.domain.com", "esxi-03.domain.com")
# 분산 스위치(VDS) 생성
New-VDSwitch -Name "MyDistributedSwitch" -Location (Get-Datacenter -Name "Datacenter1")
-Version "7.0"
# 포트 그룹 생성
New-VDPortgroup -Name "Management Network" -Vds "MyDistributedSwitch"
New-VDPortgroup -Name "Storage Network" -Vds "MyDistributedSwitch"
# ESX1 호스트 추가
foreach ($vmhost in $vmhost_array) {
   Add-VDSwitchVMHost -VDSwitch "MyDistributedSwitch" -VMHost $vmhost
# VMkernel 인터페이스 및 물리 NIC 마이그레이션
$vmnic = Get-VMHostNetworkAdapter -Physical -Name "vmnic0"
Add-VDSwitchPhysicalNetworkAdapter -VMHostNetworkAdapter $vmnic -Confirm:$false
# 기존 포트 그룹 삭제
Remove-VDPortgroup -Vds "MyDistributedSwitch" -Name "Management Network" -Confirm:$false
Remove-VDPortgroup -Vds "MyDistributedSwitch" -Name "Storage Network" -Confirm:$false
```

PowerCLI 결과

7. 결론

- 가상 스위치 특성과 구조 파악
 - 표준 스위치 → 분산 스위치 → NSX 활용
- 표준 스위치 <<< 분산 스위치
- NSX 기반에는 분산 스위치가 필수적이다!!

우리FISA 3기 클라우드 엔지니어링 기술세미나

Tank You

For Your Attention

이아영 이유나 최나영 허예은

우리FISA 3기 클라우드 엔지니어링 기술세미나

Distributed Switch

: 분산 스위치의 구현 및 활용

