

RAJALAKSHMI INSTITUTE OF TECHNOLOGY

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai. Kuthambakkam, Chennai-124

BONAFIDE CERTIFICATE

DEPARTMENT:	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
REGISTER NO:			
This is to certify that bonafide record	v	•	in
theyear	•		· ·
Staff In-Charge			HOD
Submitted for the University P	Practical E	Examination	to be held
Internal Examiner	Ex	ternal Exam	niner

	INDEX				
Sl. No	Date	NAME OF THE EXPERIMENT	Page no	Marks	Initials
1		Install the data Analysis and Visualization tool: R/ Python/Tableau, Public/ Power BI			
2		Perform exploratory data analysis (EDA) with datasets like emaildata set. Export all your emails as a dataset, import them inside a pandas data frame, visualize them and get different insights from the data.			
3		Working with numpy arrays, pandas data frames, basicplots using matplotlib			
4		Explore various variable and row filters in R for cleaning data			
5		Perform time series analysis and apply the various visualization techniques			
6		Perform data analysis and representation on A map using various map datasets with mouse Rollover effect ,user interaction			
7		Build cartographic visualization for multiple datasets involving various countries of the world, states and districts in India			
8		Perform EDA on wine quality data set			
9		Use a case study on a data set and apply the various EDA and visualization techniques and present an analysis report			

Ex. No:1	Install the data Analysis and Visualization tool: R/
Date:	Python
	/Tableau Public/ Power BI

To install the data analysis and visualization tools like R, PYTHON, TABLEAU PUBLIC, POWER BI.

ALGORITM

```
STEP 1: Install required libraries
STEP 2: Create a DataFrame from the data
STEP 3: Display the DataFrame
STEP 4: Data Analysis
STEP 5: Data Visualization
PROGRAM
import pandas as pd
import matplotlib.pyplot as plt
# Sample data (you can replace this with your own dataset) data
= {
  'Name': ['John', 'Jane', 'Mike', 'Emily', 'Alex'],
  'Age': [25, 30, 22, 28, 35],
  'Score': [90, 85, 78, 95, 88]
}
# Create a DataFrame from the data
df = pd.DataFrame(data)
# Display the DataFrame
print("DataFrame:")
print(df)
       Data
                   Analysis
print("\nData Analysis:")
print("Mean Age:", df['Age'].mean())
print("Maximum Score:", df['Score'].max())
print("Minimum Score:", df['Score'].min())
# Data Visualization
plt.figure(figsize=(8,
                           4))
plt.bar(df['Name'], df['Score'])
plt.xlabel('Name')
plt.ylabel('Score')
plt.title('Scores of Students')
plt.show()
```

OUTPUT DATAFRAME

S.no	Name	Age	Score
1	John	25	90
2	Jane	30	85
3	Mike	22	78
4	Emily	28	95
5	Alex	35	88

DATA ANALYSIS

Mean Age: 28.0

Maximum Score: 95

Minimum Score: 78

RESULT

Thus, the installation of analysis and visualization tool is done successfully.

Ex. No:2	PERFORM EXPLORATORY DATA ANALYSIS (EDA)
Date:	WITH DATASETS LIKE EMAIL DATA SET.

To perform Exploratory data Analysis (EDA) with Datasets like Email Dataset in python using PyCharm.

ALGORITHM

```
STEP 1: Import necessary libraries
```

STEP 2: Sample data for the email dataset

```
STEP 3: Create a DataFrame from the sample
data STEP 4: Convert timestamp to datetime
format STEP 5: Save the DataFrame to a CSV
file
```

STEP 6: Load the data from CSV into a DataFrame

STEP 7: Display basic information about the DataFrame

STEP 8: Convert timestamp to datetime format

STEP 9: Create a new column for email length

STEP 10: Perform additional analysis and visualizations as needed based on the specific characteristics of your dataset.

PROGRAM

```
import pandas as
pddata = {
  'sender': ['alice@example.com',
                                   'bob@example.com', 'alice@example.com'],
  'receiver': ['bob@example.com', 'alice@example.com', 'carol@example.com'],
  'subject': ['Hello', 'Meeting Reminder', 'Project Update'],
  'timestamp': ['2023-08-01 10:00:00', '2023-08-02 14:30:00', '2023-08-03 09:15:00'],
  'content': ['Hi Bob,\n\nHow are you?', 'Hi Alice,\n\nDon\'t forget the meeting at 3 PM.',
'HiCarol,\n\nHere\'s the latest project update.']
}
df = pd.DataFrame(data)
df['timestamp']
                             pd.to_datetime(df['timestamp'])
df.to_csv('emails.csv', index=False)
print("CSV
                  file
                             created
successfully.")import pandas as pd
import matplotlib.pyplot as
pltimport seaborn as sns
df = pd.read_csv("emails.csv")
print(df.info())
```

```
df.dropna(inplace=True)
df['email_length']
df['content'].apply(len)
plt.figure(figsize=(10, 6))
sns.histplot(data=df, x='email_length', bins=30, kde=True)
plt.xlabel('Email Length')
plt.ylabel('Count')
plt.title('Distribution of Email Lengths')
plt.show()
top_senders
                       df['sender'].value_counts()[:10]
                =
top_receivers
                     df['receiver'].value_counts()[:10]
plt.figure(figsize=(12,
                                                    6))
sns.barplot(x=top_senders.index, y=top_senders.values)
plt.xticks(rotation=45)
plt.xlabel('Sender')
plt.ylabel('Number of Emails')
plt.title('Top 10 Email Senders')
plt.tight_layout()
plt.show()
df['year_month']
df['timestamp'].dt.to_period('M') email_activity =
df.groupby('year_month').size()
plt.figure(figsize=(12,
                                              6))
email_activity.plot(kind='line')
plt.xlabel('Year-Month')
plt.ylabel('Number of Emails')
plt.title('Email Activity Over Time')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
OUTPUT
CSV file created successfully.
          'pandas.core.frame.DataFrame'>
<class
RangeIndex: 3 entries, 0 to 2
Data columns (total 5 columns):
```

Column Non-Null Dtype

		Count	
0	sender	3 non-null	object
1	receiver	3 non-null	object
2	subject	3 non-null	object
3	timestamp	3 non-null	object
4	content	3 non-null	object

dtypes: object(5)

memory usage: 252.0+

bytesNone

RESULT

Thus, to perform Exploratory data Analysis (EDA) with Datasets like Email Dataset in pythonusing PyCharm is done successfully.

Ex. No:3	WORKING	WITH NUMPY	ARRAYS.	PANDAS	DATA
		· · · · · · · · · · · · · · · · · · ·	/		

Date:

FRAMES, BASIC PLOTS USING MATPLOTLIB

AIM

To execute with NumPy Arrays, Pandas DataFrame, Basic Plots using Matplotlib in pythonusing PyCharm.

ALGORITHM

STEP 1: Install required libraries

STEP 2: Create a DataFrame from the

dataSTEP 3: Display the DataFrame

STEP 4: Perform basic operations with NumPy Arrays, Basic plots using Matplotlib

STEP 5: Data Analysis

STEP 6: Data Visualization

PROGRAM

1)NUMPY ARRAYS

import numpy as np

arr=np.array([[1,2,3],[4,2,5]])

print("Array is of type:",type(arr))

print("No of dimensions:",arr.ndim)

print("Shape of array:",arr.shape)

print("Size of array:",arr.size)

print("Array stores elements of type:",arr.dtype)

OUTPUT

Array is of type: <class

'numpy.ndarray'>No of dimensions: 2

Shape of array: (2,

3)Size of array: 6

Array stores elements of type: int32

import numpy as np

a=np.array([[1,2,3],[3,4,5],[4,5,6]])

print(a)

print("After

Slicing")print(a[1:])

.....

```
OUTPUT
[[1 2 3]]
[3 4 5]
[4 5 6]]
After Slicing
[[3 4 5]
[4 5 6]]
import
              numpy
                                      np
a=np.array([[1,2,3],[3,4,5],[4,5,6]])
print('Our
              array
is:')print(a)
print('The items in the second column
are:')print(a[...,1])
print('\n')
print('The items in the second row are:')
print(a[1,...])
print('\n')
print('The items column 1 onwards are:')
print(a[...,1])
OUTPUT
Our array is:
[[1 \ 2 \ 3]]
[3 4 5]
[4 5 6]]
The items in the second column are:
[2 4 5]
The items in the second row are:
[3 4 5]
The items column 1 onwards are:
[2 4 5]
2) PANDAS DATAFRAMES
import numpy as
npimport pandas as
pd
data=np.array([['Col1','Col2'],['Row1',1,2],['Row2',3,4]])
print(pd.DataFrame(data=data[1:,1:],index=data[1:,0],columns=data[0,1:]))
```

```
my_2darray=np.array([[1,2,3],[4,5,6]])
print(pd.DataFrame(my_2darray))
my_dict={1:['1','3'],2:['1','2'],3:['2','4']}
print(pd.DataFrame(my_dict))
my_df=pd.DataFrame(data=[4,5,6,7],index=range(0,4),columns=['A'])
print(pd.DataFrame(my_df))
my_series=pd.Series({"UnitedKingdom":"London","India":"NewDelhi","United States":"Washington","Belgium":"Brussels"})
print(pd.DataFrame(my_series))
df=pd.DataFrame(np.array([[1,2,3],[4,5,6]]))
print(df.shape)
print(len(df.index))
```

3) BASIC PLOT USING MATPLOTLIB

```
import matplotlib.pyplot as
pltx=[1,2,3]
y=[2,4,1]
plt.plot(x,y)
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.title('My first
graph')plt.show()
```

OUTPUT


```
import matplotlib.pyplot as
plt
                 a=[1,2,3,4,5]
b = [0,0.6,0.2,15,10,8,16,21]
plt.plot(a)
plt.plot(b,"or")
plt.plot(list(range(0,22,3))
       plt.xlabel('Day->')
plt.ylabel('Temp->')
c=[4,2,6,8,3,20,13,15]
plt.plot(c,label='4th
                             Rep')
ax=plt.gca()
ax.spines['right'].set_visible(False
)
ax.spines['top'].set_visible(False
    ax.spines['left'].set_bounds(-
3,40)
            plt.xticks(list(range(-
3,10)))
            plt.yticks(list(range(-
3,20,3)))
import matplotlib.pyplot as
plt
                 a=[1,2,3,4,5]
b = [0,0.6,0.2,15,10,8,16,21]
c=[4,2,6,8,3,20,13,15]
fig=plt.figure(figsize=(10,10))
sub1=plt.subplot(2,2,1)
sub2=plt.subplot(2,2,2)
sub3=plt.subplot(2,2,3)
sub4=plt.subplot(2,2,4)
sub1.plot(a,'sb')
sub1.set_xticks(list(range(0,10,1)))
sub1.set_title('ist
                              Rep')
sub2.plot(b,'or')
sub2.set_xticks(list(range(0,10,2)))
sub2.set_title('2nd
                              Rep')
sub3.plot(list(range(0,22,3)),'vg')
sub3.set_xticks(list(range(0,10,1)))
sub3.set_title('3rd
                              Rep')
sub4.plot(c,'Dm')
sub4.set_yticks(list(range(0,24,2)))
sub4.set_title('4th Rep')
```

plt.show()

OUTPUT

RESULT

Thus, to execute with NumPy Arrays, Pandas DataFrame, Basic Plots using Matplotlib inpython using PyCharm is executed successfully.

Ex. No:4	EXPLORE VARIOUS VARIABLE AND ROW
Date:	FILTERS IN R FOR CLEANING DATA

To explore various variable and Row Filters in R For cleaning data and also to apply various plot features in Ron sample data sets and visualize in python using PyCharm.

ALGORITHM

STEP 1: Create a Sample Dataset and Import Libraries

- 1.1. Create a sample dataset or use an existing one.
- 1.2. Import the necessary Python libraries, including Pandas and Matplotlib.STEP 2: Load and Explore the Dataset
- 2.1. Load your dataset into a Pandas DataFrame.
- 2.2. Explore the dataset to understand its structure and content.STEP 3: Data Cleaning
- 3.1. Handle missing values by either removing rows with missing values or imputing them.
- 3.2. Remove duplicate rows if necessary. STEP 4: Apply Variable Filters
- 4.1. Select specific columns or variables of interest.

STEP 5: Apply Row Filters

- 5.1. Filter rows based on specific conditions.STEP 6: Data Visualization
- 6.1. Visualize the data using Matplotlib or other plotting libraries.

PROGRAM

```
print(df.isnull().sum())
print(df['Gender'].unique())
print(df['Education'].unique())
selected_columns = df[['Age', 'Income']]
print(selected_columns.head())
filtered_data = df[df['Age'] >
                                      30]
print(filtered_data.head())
filtered_rows = df[(df['Gender']
                                           'Male')
                                                     & (df['Education'] ==
                                                                                 'Master')]
                                     ==
print(filtered_rows.head())
import
          matplotlib.pyplot
                                as
                                       plt
                                  bins=5,
plt.hist(df['Age'],
                             plt.title('Age
edgecolor='black')
Distribution')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
plt.boxplot(df['Income'])
plt.title('Income
Distribution')
plt.ylabel('Income')
plt.show()
gender_counts = df['Gender'].value_counts()
gender_counts.plot(kind='bar', color='skyblue')
plt.title('Gender
                                Distribution')
plt.xlabel('Gender')
plt.ylabel('Count')
plt.show()
education_counts = df['Education'].value_counts()
education_counts.plot(kind='pie', autopct='%1.1f%%', colors=['gold', 'lightcoral', 'lightgreen',
'lightskyblue'])
                            Distribution')
plt.title('Education
plt.ylabel(")
plt.show()
```

OUTPUT

	ID	Age	Income	Gender	Education
0	1	23	63477	Male	High School
1	2	18	89372	Female	Bachelor
2	3	33	67140	Male	Master
3	4	22	80944	Female	PhD
4	5	44	33050	Male	Bachelor

	ID	Age	Income
count	10.00000	10.000000	10.000000
mean	5.50000	32.600000	59744.800000
std	3.02765	11.644741	20306.181121
min	1.00000	18.000000	30151.000000
25%	3.25000	22.250000	43115.250000
50%	5.50000	32.500000	63191.500000
75%	7.75000	43.500000	73913.250000
max	10.00000	`49.00000	89372.000000
		0	

ID	0
Age	0
Income	0
Gender	0
Education	0

dtype: int64 ['Male' 'Female']

['High School' 'Bachelor' 'Master' 'PhD']

	Age	Income
0	23	63477
1	18	89372
2	33	67140
3	22	80944
4	44	33050

	ID	Age	Income	Gender	Education
2	3	33	67140	Male	Master
4	5	44	33050	Male	Bachelor
6	7	49	76171	Male	Bachelor
7	8	32	30151	Female	PhD
8	9	42	62906	Male	High School

	ID	Age	Income	Gender	Educatio	
					n	
2	3	33	67140	Male	Master	
9	10	44	39112	Male	Master	

THE REPORT OF THE PERSON NAMED IN

RESULT:

Thus, the program to explore various variable and row filters in Python for cleaning data on sample data sets is done and visualized using PyCharm.

Ex. No:5	PERFORM TI	ME SERIES AN	ALYSIS AND APPLY	
Date:	THE	VARIOUS	VISUALIZATION	
	TECHNIQUES			

To perform Time Series Analysis and apply the various visualization techniques in pythonusing PyCharm.

ALGORITHM

STEP 1: Data Preparation

Import necessary libraries (e.g., pandas, matplotlib, statsmodels).

Load your time series data into a panda DataFrame.

Set the date column as the index and ensure it's in date

format.STEP 2: Data Exploration

Display basic statistics of your time series data using df. describe ().

Visualize the time series data using line plots to observe trends and patterns.

STEP 3: Decomposition

Decompose your time series data into trend, seasonality, and residuals using a method like seasonal decomposition.

STEP 4: Visualization of Decomposed Components

Plot the original time series data, trend, seasonality, and residuals.

STEP 5: Autocorrelation Plot

Create an autocorrelation plot to understand the temporal relationships in the data.

STEP 6: Rolling Statistics

Calculate rolling statistics (e.g., rolling mean and rolling standard deviation) and plot them.

STEP 7: Interpretation and Further Analysis

Run the program and visualizations for each above step is obtained in form of graphs.

STEP 8: Report and Visualization Export (Optional)

Create a report summarizing your findings and insights.

Save visualizations as image files if needed.

PROGRAM

```
import pandas as
pdimport numpy as
np
import matplotlib.pyplot as
pltimport statsmodels.api as
sm np.random.seed(0)
start date = '2020-01-01'
end_date = '2023-12-31'
date_range = pd.date_range(start=start_date,
                                               end=end_date,
                                                               freq='M') sales_data
np.random.randint(10000,
                          50000,
                                    size=len(date_range)) df = pd.DataFrame({'Date':
date_range, 'Sales': sales_data}) df.set_index('Date', inplace=True)
print(df.describe())
```

```
plt.figure(figsize=(12,
                                 6))
plt.title('Monthly Sales Over Time')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.plot(df.index, df['Sales'], label='Sales')
plt.legend()
plt.grid(True)
plt.show()
from statsmodels.tsa.seasonal import seasonal decompose
decomposition
                        seasonal_decompose(df['Sales'],
                                                             model='additive',
period=12) trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
plt.figure(figsize=(12,
plt.subplots_adjust(hspace=0.4)
plt.subplot(4,
                                 1)
plt.title('Original Sales Data')
plt.plot(df.index, df['Sales'], label='Sales')
plt.legend()
plt.subplot(4,
                  1,
                         2)
plt.title('Trend')
plt.plot(trend,
label='Trend')plt.legend()
plt.subplot(4,
                        1,
                                   3)
plt.title('Seasonality')
plt.plot(seasonal, label='Seasonality')
plt.legend()
plt.subplot(4,
                                4)
                      1,
plt.title('Residuals')
plt.plot(residual, label='Residuals')
plt.legend()
plt.show()
from
         statsmodels.graphics.tsaplots
                                           import
                                                       plot_acf
plt.figure(figsize=(12, 4))
plot_acf(df['Sales'], lags=24) plt.title('Autocorrelation Plot') plt.xlabel('Lags')
plt.ylabel('ACF') plt.grid(True)
plt.show()
rolling_mean
                        df['Sales'].rolling(window=12).mean()
                         df['Sales'].rolling(window=12).std()
rolling_std
plt.figure(figsize=(12, 6))
plt.title('Rolling
                    Mean
                              and
                                      Standard
                                                    Deviation')
plt.xlabel('Date')
plt.plot(df.index, df['Sales'], label='Sales')
```

plt.plot(rolling_mean, label='Rolling Mean (12 months)', color='red')plt.plot(rolling_std, label='Rolling Std (12 months)', color='green') plt.legend() plt.grid(True) plt.show()

OUTPUT

Sales

count	48.000000
mean	29559.562500
std	11393.671539
min	10797.000000
25%	20761.500000
50%	29056.000000
75%	38202.500000
max	49512.000000

in an inspiration

RESULT:

Thus, to perform Time Series Analysis and apply the various visualization techniques in python using PyCharm is done and executed successfully.

Ex.No:	6	
Date:		

PERFORM DATA ANALYSIS AND REPRESENTATION ON A MAP USING VARIOUS MAP DATASETS WITH MOUSE ROLLOVER EFFECT, USER INTERACTION

AIM

To perform data analysis and representation on a map using various map datasets with mouserollover effect ,user interaction in python using PyCharm.

ALGORITHM

STEP 1: Import required libraries.

STEP 2: Generate random data.

STEP 3: Create a Dataframe...

STEP 4: Save the DataFrame to a CSV

fileSTEP 5: Load the generated CSV file

STEP 6:Create a base map

STEP 7:Add data points to the map

STEP 8:Save the map as an HTML

file

PROGRAM

```
import pandas as
pdimport numpy as
np
# Generate random
data
np.random.seed(42)
num_points = 100
latitude = np.random.uniform(37.5, 38.5, num_points)
longitude = np.random.uniform(-123, -121, num_points)
value = np.random.randint(1, 100, num_points)
# Create a DataFrame
df = pd.DataFrame({ Latitude': latitude, 'Longitude': longitude, 'Value': value}) # Save the
DataFrame to a CSV file
df.to_csv('map_data.csv',
                           index=False)
import folium
# Load the generated CSV file
df
pd.read_csv('map_data.csv')
Create a base map
                   folium.Map(location=[df['Latitude'].mean(), df['Longitude'].mean()],
base_map
zoom start=10)
# Add data points to the map for index, row in df.iterrows():
```

popup_text = f"Value: {row['Value']}"

```
popup=popup_text).add_to(base_map) # Save the map as an HTML file
base_map.save('interactive_map.html')
     Import
                necessary
libraries import pandas as
pd
import folium
# Load the
data
df
pd.read_csv('map_data.csv')
Display
            basic
                      statistics
print("Basic
                   Statistics:")
print(df.describe())
# Create a base map
                   folium.Map(location=[df['Latitude'].mean(),
                                                                    df['Longitude'].mean()],
base_map
zoom start=10)
# Add data points to the map
for index, row in df.iterrows():
  popup_text = f"Value: {row['Value']}"
  folium.Marker([row['Latitude'],
                                                                    row['Longitude']],
popup=popup_text).add_to(base_map) # Display the map
base_map
OUTPUT
```

Basic Statistics:

	LATITUDE	LONGITUD E	VALUE
count	100.000000	100.000000	100.00000
			0
mean	37.970181	-122.004337	50.670000
std	0.297489	0.586223	28.640247
min	37.505522	-122.986096	2.000000
25%	37.693201	-122.515991	27.000000
50%	37.964142	-121.988750	47.500000
75%	38.230203	-121.467633	72.750000
max	38.486887	-121.028699	99.000000

RESULT

Thus, to perform data analysis and representation on a map using various map datasets with mouse rollover effect ,user interaction in python using PyCharm is done and executed successfully.

Ex. No:7	BUILD CAI	RTOGRAPHIC	VISUALIZA	ATION	FOR	MULT	TIPLE
Dotos	DATASETS	INVOLVING	VARIOUS	COUN	TRIES	OF	THE
Date:	WORLD; ST	ATES AND DIS	TRICTS IN I	NDIA			

To build cartographic visualization for multiple datasets involving various countries of the world; states and districts in India etc. in pandas using PyCharm.

ALGORITHM

STEP 1: Import required libraries.

STEP 2: Replace with actual data paths and datasets. STEP 3: Function to load and merge data with maps. STEP 4: Load world and India maps. STEP 5: Merge data with maps.

STEP 6: Function to plot cartographic visualizations for World Map, India States Map and India Districts Map.

PROGRAM

```
import pandas as pd
import geopandas as
gpd
import matplotlib.pyplot as
plt
         world_data
pd.DataFrame({
  'Country': ['USA', 'Canada', 'India',
  'China'], 'Value': [100, 150, 200, 80, 120]
})
india_states_data = pd.DataFrame({
  'State': ['Maharashtra', 'Karnataka',
                                        'Tamil Nadu', 'Uttar Pradesh',
  'Gujarat'], 'Value': [50, 75, 60, 40, 30]
})
india_districts_data = pd.DataFrame({
  'District': ['Mumbai', 'Bengaluru', 'Chennai', 'Lucknow', 'Ahmedabad'],
  'Value': [20, 30, 25, 15, 10]
})
world map
                       gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
                          gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
india_states_map
                          gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
india_districts_map
world_data_geo = world_map.merge(world_data, how='left', left_on='name',
right_on='Country')
india_states_data_geo
                            india_states_map.merge(india_states_data,
                                                                        how='left',
left_on='name', right_on='State')
```

```
india districts data geo =
                              india_districts_map.merge(india_districts_data,
                                                                                how='left',
left_on='name', right_on='District')
                                          figsize=(15,
             =
                  plt.subplots(1,
                                    3,
                                                         5))
fig,
       axs
axs[0].set_title('World
                                                      Data')
world_data_geo.boundary.plot(ax=axs[0])
world_data_geo.plot(column='Value', ax=axs[0], legend=True, legend_kwds={'label':
"Values by Country"})
axs[1].set_title('India
                                  States
                                                      Data')
india states data geo.boundary.plot(ax=axs[1])
india_states_data_geo.plot(column='Value', ax=axs[1], legend=True, legend_kwds={'label':
"Values by State"})
                                             Districts
axs[2].set_title('India
                                                                             Data')
india_districts_data_geo.boundary.plot(ax=axs[2])
india_districts_data_geo.plot(column='Value',
                                                                      legend=True,
                                                    ax=axs[2],
legend_kwds={'label': "Values by District"})
plt.tight_layout()
plt.show()
```

OUTPUT

RESULT

Thus, the python program to perform to build cartographic visualization for multiple datasets involving various countries of theworld; states and districts in India etc. in python using PyCharm is executed successfully.

Ex. No:8	PERFORM EDA ON WINE QUALITY DATA SET
Date:	

To perform EDA on Wine Quality dataset in pandas using PyCharm.

ALGORITHM

```
STEP 1: Generate a Sample Wine Quality Dataset.
STEP 2: Perform EDA on the Generated Dataset.
STEP 3: Display basic information about the dataset.
STEP 4: Display summary statistics.
STEP 5: Check for missing values.
STEP 6: Plot the distribution of wine quality.
STEP 7: Plot the correlation matrix.
STEP 8: Plot pair plot for selected features.
STEP 9: Plot boxplot for wine quality and alcohol content.
```

PROGRAM

```
import pandas as
pdimport numpy as
np
np.random.seed(42)
data = {
  'fixed acidity': np.random.uniform(5, 15, 100),
  'volatile acidity': np.random.uniform(0.1, 1.5, 100),
  'citric acid': np.random.uniform(0, 1, 100),
  'residual sugar': np.random.uniform(0, 10, 100),
  'alcohol': np.random.uniform(8, 15, 100),
  'quality': np.random.randint(1, 11, 100)
}
wine_df
                                  pd.DataFrame(data)
wine_df.to_csv('wine_quality_dataset.csv', index=False)
import matplotlib.pyplot as plt
import seaborn as
sns #
        Load
                 the
dataset
wine df
                      pd.read_csv('wine_quality_dataset.csv')
print(wine_df.info())
print(wine_df.describe())
print(wine_df.isnull().sum())
sns.countplot(x='quality',
                          data=wine df)
plt.title('Distribution of Wine Quality')
plt.show()
```

```
correlation matrix
                           wine_df.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix,
                                   annot=True,
                                                   cmap='coolwarm',
                                                                         fmt=".2f")
plt.title('Correlation Matrix')
plt.show()
                                                                       'residual
selected_features = ['alcohol', 'volatile acidity', 'citric acid',
                                                                                  sugar',
                                                                                           'quality']
sns.pairplot(wine_df[selected_features], hue='quality')
plt.title('Pairplot
                            Selected
                     of
Features')plt.show()
plt.figure(figsize=(10, 6))
sns.boxplot(x='quality',
                            y='alcohol',
                                             data=wine_df)
plt.title('Boxplot of Alcohol Content by Wine Quality')
plt.show()
```

OUTPUT

<class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	100 non-null	float64
1	volatile acidity	100 non-null	float64
2	citric acid	100 non-null	float64
3	residual sugar	100 non-null	float64
4	alcohol	100 non-null	float64
5	quality	100 non-null	int64

dtypes: float64(5), int64(1) memory usage: 4.8 KB

None

	fixed acidity	volatile acidity	•••	alcohol	quality
count	100.000000	100.000000		100.000000	100.00000
					0
mean	9.701807	0.796964		11.612321	4.750000
std	2.974894	0.410356		2.230206	2.900279
min	5.055221	0.109733		8.075864	1.000000
25%	6.932008	0.438806		9.847544	2.000000
50%	9.641425	0.807875		11.677796	5.000000
75%	12.302031	1.172657		13.578189	7.000000
max	14.868869	1.479911		14.950754	10.000000

[8 rows x 6 columns]

fixed acidity	0
volatile acidity	0
citric acid	0
residual sugar	0
alcohol	0
quality	0

dtype: int64

OR AN POPULATION

RESULT

Thus, the program to perform EDA on Wine Quality dataset in python using PyCharm has been executed successfully.

Ex. No:9	USE A CASE STUDY ON A DATA SET AND				
	APPLY THE VARIOUS EDA AND				
Date:	VISUALIZATION TECHNIQUESAND PRESENT AN				
	ANALYSISREPORT				

Perform a case study on a data set and apply the various EDA and visualization techniques and present an analysis report in pandas using PyCharm.

ALGORITHM

STEP 1: Create CSV Dataset:

STEP 2: Load the Dataset

STEP 3: Exploratory Data Analysis (EDA)

a. Basic Dataset Exploration

b. Handle Missing Values

c. Explore Categorical Variables

d. STEP 4: Visualizations

a. Distribution of Age:

b. Performance Ratings by Department:

STEP 5: Analysis Report

a. Demographic Overview

The age of employees in the company is normally distributed, with the majority falling between 22 and 60 years.

The workforce is well-distributed among different departments, with the highest number in Sales.

b. Performance Analysis

The performance ratings are generally high across all departments.

There is a positive correlation between years of experience and performance ratings.

c. Salary Analysis

Explore salary distribution and identify any anomalies or disparities.

STEP 6: Insights and Recommendations

a. Identify High-Performing Employees

Recognize and reward high-performing employees based on performance ratings.

b. Training Opportunities

Identify departments with lower performance ratings and provide targeted training programs.

c. Address Salary Disparities

Investigate and address any salary disparities to ensure fairness.

PROGRAM

```
import pandas as pd import
numpy
         as
              np
                    import
seaborn as sns
import matplotlib.pyplot as plt
np.random.seed(42) employee id =
range(1, 101)
age = np.random.randint(22, 60, size=100)
gender = np.random.choice(['Male', 'Female'], size=100)
department = np.random.choice(['HR', 'Sales', 'IT', 'Marketing'], size=100)
years of experience = np.random.randint(1, 15, size=100) performance rating =
np.random.randint(1, 6, size=100)
salary
               np.random.randint(40000,
                                           120000,
                                                       size=100)
employee_data = pd.DataFrame({
  'EmployeeID': employee_id,'Age':
  age,
  'Gender': gender, 'Department':
  department,
  'YearsOfExperience':
                               years_of_experience,
  'PerformanceRating': performance rating, 'Salary':
  salary
})
employee_data.to_csv('employee_data.csv',
                                               index=False)
                           pd.read_csv('employee_data.csv')
employee_data
                    =
print(employee_data.info()) print(employee_data.describe())
print(employee_data.isnull().sum())
department_distribution
                                                    employee_data['Department'].value_counts()
                                    =
print(department_distribution)
import matplotlib.pyplot as pltimport seaborn as sns
sns.histplot(employee_data['Age'], bins=20, kde=True)
```

plt.title('Distribution of Employee Ages')
plt.show()
sns.boxplot(x='Department', y='PerformanceRating', data=employee_data)
plt.title('Performance Ratings by Department')
plt.show()

OUTPUT

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 100 entries, 0 to 99

Data columns (total 7 columns):

#	Column	Non-Null	Dtype
		Count	
0	EmployeeID	100 non-null	int64
1	Age	100 non-null	int64
2	Gender	100 non-null	object
3	Department	100 non-null	object
4	Years Of Experience	100 non-null	int64
5	Performance Rating	100 non-null	int64
6	Salary	100 non-null	int64

dtypes: int64(5), object(2) memory usage: 5.6+ KB None

	EMPLOYEE	AGE	PERFORMANC	•••	SALARY
	ID		E		
count	100.00000	100.00000	100.000000		100.000000
	0	0			
mean	50.500000	40.060000	2.96000		81430.86000
std	29.011492	10.688255	1.44194		22497.541898
min	1.000000	22.000000	1.00000		40412.000000
25%	25.750000	30.000000	2.00000		62624.750000
50%	50.500000	41.500000	3.00000		80856.500000
75%	75.250000	45.000000	4.00000		100741.50000
					0
max	100.00000	59.000000	5.00000		119605.00000
	0				0

[8 rows x 5 columns]

EmployeeID	0
Age	0
Gender	0
Department	0
Years Of Experience	0
Performance Rating	0
Salary	0

dtype: int64

Department	
Marketing	31
IT	26
HR	22
Sales	21

Name: count, dtype: int64

RESULT

Thus, a case study on a data set and applying the various EDA and visualization techniques and present an analysis report in python using PyCharm is done and executed successfully.