Topics in Combinatorics Revision Questions

Otto Pyper

- 1. State Jensen's inequality.
- 2. Prove that if X is a random variable, then $\mathbb{P}[X \geq EX] > 0$ and $\mathbb{P}[X \leq EX] > 0$
- 3. State and prove a proposition about average degrees in bipartite graphs.
- 4. What is this method called, roughly speaking?
- 5. State and prove another proposition about average degrees, concerning an inequality instead of an equality.
- 6. Show that for a planar graph, $E \geq 3F/2$.
- 7. Define $\partial_s \mathcal{A}$, in context. What is this called?
- 8. State and prove a lower bound on $|\partial_S \mathcal{A}|$, representing it in two different ways.
- 9. State Sperner's Theorem.
- 10. Prove Sperner's Theorem.
- 11. State the Erdos-Ko-Rado Theorem.
- 12. Prove the Erdos-Ko-Rado Theorem.
 - (a) Show that, for a random ordering, at most k intervals can be part of an intersecting family.
 - (b) What is the expected total number of such intervals belonging to the family?
 - (c) In the equality case, how are we able to still have k intervals?
 - (d) Construct a helpful cylcic order to show any A of size k is contained in A.
- 13. Define the crossing number of G.
- 14. Show that a planar graph with n vertices has at most 3n-6 edges.
- 15. Prove that a graph with n vertices and m edges has crossing number at least m-3n.

- 16. Let G be a graph drawn in the plane with n vertices and m edges, with $m \ge 6n$. G must have at least how many crossings?
- 17. Prove this.
- 18. State the Szemeredi-Trotter Theorem
- 19. Prove the Szemeredi-Trotter Theorem.
 - (a) What is an appropriate way to convert the points/lines into a graph?
 - (b) Put two different bounds on the number of crossings.
- 20. Give three examples of graphs demonstrating the S-T bound (up to a constant).
- 21. State Stirling's Formula. [optional]
- 22. State a gentler upper/lower bound on n!.
- 23. Prove this.
- 24. State bounds on $2^{-n} \binom{n}{n/2}$.
- 25. Prove these bounds.
- 26. Give an example of an event that occurs with probability $2^{-n} \binom{n}{n/2}$.
- 27. Give a bound on $\binom{n}{m}$, useful for when $m \ll n$.
- 28. Improve this bound slightly. In what scenario is this often useful?
- 29. State the quotient of consecutive binomial coefficients.
- 30. Bound $\sum_{k=0}^{m} {n \choose k}$ in the case $m = \alpha n$, $\alpha < 1/2$.
- 31. State an example of the concentration of measure phenomenon.
- 32. Let $m = (1/2 \theta)n$ with $0 < \theta \le 1/2$. Then $2^{-n} \binom{n}{m} \le e^{-\theta^2 n/2}$.
- 33. Prove that if X_1, \ldots, X_n are independent random variables of mean zero taking values in [-1,1], and $X = \sum X_i$, then $\mathbb{P}[X \geq \varepsilon n] \leq \mathrm{e}^{-\varepsilon^2 n/4}$.
 - (a) What is the exponential moment?
 - (b) Markov...
 - (c) Optimise over something?
- 34. What similar result do we immediately get by switching signs?
- 35. Let $m = (1/2 \varepsilon)n$. Show that $2^{-n} \sum_{k=0}^{m} {n \choose k} \le e^{-\varepsilon^2 n}$.
- 36. What is a general question regarding well-separated sets.
- 37. What is the critical threshold for changing behaviour at intersections of size αn , and why?

- 38. Prove that if $\alpha > 1/4$, there can be exponentially many subsets of [n] of size n/2 intersecting in no more than αn .
 - (a) Let A be a random set of size n/2. What is a good probability to estimate?
 - (b) Then how many bad intersections can we have?
 - (c) How can we mitigate this?
- 39. What is the characteristic function of a set?
- 40. What space does it live in?
- 41. What is an oftentimes more useful function with which to associate a set?
- 42. Why is it thusly named?
- 43. Prove that if $A, B \subset [n]$ have size n/2 and f_A, f_B are their balanced functions, then $\langle f_A, f_B \rangle = |A \cap B| n/4$.
- 44. Use this to prove that if $A_1, \ldots, A_m \subset [n]$ intersect in at most $(1/4 \delta)n$, then $m \leq 1 + \delta/4$.
- 45. State and prove a more general theorem, of which the above is a special case.
- 46. Prove that if x_1, \ldots, x_m are non-zero vectors in \mathbb{R}^n such that $\langle x_i, x_j \rangle \leq 0$ for every $i \neq j$ then $m \leq 2n$.
 - (a) Induction on n.
 - (b) How can we reduce to n-1-dimensional space?
- 47. Furthermore, prove that if m = 2n then there is an orthonormal basis a_1, \ldots, a_n such that each x_i is a multiple of some a_j (so we have exactly one positive multiple and one negative multiple of each a_i).
- 48. Relate the above back to the problem of finding families of sets with intersections in at most n/4.
- 49. Define a Hadamard matrix.
- 50. Define the Walsh matrices W_m .
- 51. State three basic facts about W_m .
- 52. How do we find the desired set system from the W_m ?
- 53. Define the Paley matrix P_n .
- 54. Prove that for every prime p and every $d \not\equiv 0 \mod p$ we have that $\sum_{x \in \mathbb{Z}_p} \left(\frac{x}{p}\right) \left(\frac{x+d}{p}\right) = -1$
- 55. Hence show P_n has orthogonal rows.

- 56. What is the smallest n, a multiple of 4, for which no Hadamard matrix is known?
- 57. Prove that if |A| = n, then $|A + A| \ge 2n 1$. When do we have equality?
- 58. Demonstrate a similar result for |A.A|.
- 59. State a famous conjecture of Erdos and Szemeredi.
- 60. Define $\rho_A^+(x)$ and $\rho_A^{\times}(x)$.
- 61. Define the multiplicative energy and additive energy of A.
- 62. What is the quotient set of A?
- 63. State and prove a lemma about multiplicative energy (a reformulation).
- 64. Prove that $\sum_{i=1}^{n} |a_i|^2 \ge n^{-1} (\sum_i |a_i|)^2$.
- 65. Prove it again, in a different way.
- 66. Show that the multiplicative energy of A is at least $|A|^4/|A.A|$.
- 67. Prove that $\sum_{m \in A/A} \rho_A^{\div}(m^{-1})^2 \le 2|A+A|^2 \lceil \log |A| \rceil$.
 - (a) What is dyadic decomposition?
 - (b) Think a bit about what $\rho_A^{\div}(m^{-1})^2$ means.
- 68. Hence, prove Solymosi's Theorem.
- 69. Define the Kneser Graph $G_{n,k}$.
- 70. Give a k + 2-colouring of $G_{n,k}$.
- 71. State the Borsuk-Ulam Theorem.
- 72. State an equivalent formulation of the Borsuk-Ulam Theorem.
- 73. Prove this equivalence.
- 74. State yet another variant of Borsuk-Ulam.
- 75. Show that it is implied by the above.
- 76. State the mixed version.
- 77. Show that the open sets version implies the mixed version.
- 78. Let $\delta > 0$. Prove that the graph on S^d defined by joining u, v iff $\langle u, v \rangle < -1 + \delta$ has chromatic number at least d + 2.
- 79. Show that this bound is sharp for sufficiently small δ .
- 80. If δ is small, what does this say about where a vertex is located relative to its neighbourhood? What can we conclude about odd cycles in this graph?

81. Prove that the chromatic number of the Kneser Graph $G_{n,k}$ is k+2.

- (a) How might we represent this graph on the sphere?
- (b) What is a good choice of a base set of 2n + k points? What key property should they have?
- (c) Find a good choice of k+2 open/closed sets to apply B-U to.
- 82. Define what it means for permutation σ to contain permutation π .
- 83. Give a construction of a general 2413-avoiding permutaiton.
- 84. Define what it means in terms of adjacency matrices of bipartite graphs for one to contain/avoid another.
- 85. State the conjecture solved by Marcus & Tardos.
- 86. Define an ordered quotient of an $n \times n$ 01-matrix.
- 87. Let P be a permutation matrix and let A be a P-avoiding 01-matrix. Show that every ordered quotient of A avoids P.
- 88. Suppose $k^2|n$. Define a block of A.
- 89. What does it mean for a block to be wide?
- 90. What does it mean for a block to be tall?
- 91. Roughly speaking, what is the structure of the following proof?
- 92. Show that if A does not contain the $k \times k$ P, then for each j the number of wide blocks with columns in C_j is at most $(k-1)\binom{k^2}{k}$ and similarly for each i the number of tall blocks with rows in R_i is at most $(k-1)\binom{k^2}{k}$.
- 93. Prove that, for P a $k \times k$ permutation matrix, and $k^2|n$, then f(n), the largest number of non-zero entires in any 01-matrix avoiding P, satisfies

$$f(n) \le 2k^2 n(k-1) \binom{k^2}{k} + (k-1)^2 f(n/k^2)$$

- (a) How many 1s can we see in wide blocks or tall blocks?
- (b) Where does the $f(n/k^2)$ term come from?
- 94. Now prove the theorem of Marcus & Tardos.
- 95. For the C in question, how does it vary with k?
- 96. State the Stanley-Wilf conjecture.
- 97. Prove it, using M-T.
- 98. State the Khinchin axioms for entropy.
 - (a) State axiom 0.

- (b) State axiom 1.
- (c) State axiom 2.
- (d) State axiom 3.
- (e) State axiom 4.
- (f) State axiom 5.
- 99. Prove that if X, Y are independent, then H[Y|X] = H[Y] and H[X, Y] = H[X] + H[Y].
- 100. Prove that if X takes just one value, then H[X] = 0.
- 101. Let $A \subset B$, X uniform on A, Y uniform on B. Then $H[X] \leq H[Y]$, with equality iff A = B.
- 102. Let X be a random variable and Y = f(X), some function X. Then $H[Y] \leq H[X]$.
- 103. Prove that $H[X] \ge 0$ for every discrete random variable X taking values on a finite set A.
- 104. Prove that if X takes at least two values with non-zero probability, then H[X] > 0.
- 105. State and prove the chain rule for entropy.
- 106. Describe the process of expressing the P3 bound using entropy.
- 107. Show that, in the distribution defined in lectures, the individual edges of the random P3 are uniformly distributed.
- 108. Show that a bipartite graph with density α must contain at least $\alpha^3 |A|^2 |B|^2$ labelled P3s, and show this is sharp.
- 109. State Sidorenko's Conjecture.
- 110. Write down the formula for entropy.
- 111. What is the entropy of a uniformly random variable?
- 112. Prove that the formula for entropy satisfies the Khinchin axioms (in particular, maximality and additivity).
- 113. Prove that the Khinchin axioms uniquely determine the formula.
 - (a) Prove that if X is uniform on a set of size 2^k , then H[X] = k.
 - (b) Prove that if X is uniformly distributed on a set of size n, then $H[X] = \log n$.
 - (c) Now show that $H[X] = \sum_{x \in A} p_a \log(1/p_a)$.
- 114. Define the permanent of a square matrix A.
- 115. What is the complexity class of the problem of calculating the permanent?

- 116. If A is a bipartite adjacency matrix, what does per(A) represent?
- 117. State Bregman's Theorem.
- 118. Demonstrate that the bound given is sharp.
- 119. Prove the theorem.
 - (a) Define a random variable whose entropy we aim to bound.
 - (b) Write down the upper bound that we are aiming for.
 - (c) Bound $H[\sigma(x_1)]$.
 - (d) Bound $H[\sigma(x_k)|\sigma(x_1),\ldots,\sigma(x_{k-1})].$
 - (e) For any fixed σ , find the distribution of $d_{k-1}^{\sigma}(x)$.
 - (f) Take expectations and complete the proof.
- 120. Let X,Y be discrete random variables. Prove that $H[X,Y] \leq H[X] + H[Y]$.
 - (a) Prove this using the formula.
 - (b) Prove this using the axioms.
 - i. First uniform.
 - ii. Then rational.
 - iii. Then real.
- 121. Deduce a more general subadditivity formula.
- 122. State Shearer's Lemma.
- 123. Prove Shearer's Lemma.
- 124. Let G be a graph with m edges and t triangles. Prove that $t \leq (2m)^{3/2}/6$.
- 125. Prove that a \triangle -intersecting family \mathcal{G} of graphs on vertex set [n] has size at most $2^{\binom{n}{k}}/4$.
- 126. State the theorem arising from Dvir's solution to the Kakeya problem for finite fields.
- 127. Let $A \subset \mathbb{F}_p^n$ be a set of size $\binom{n+d}{d}$. Then there exists a non-zero polynomial $P(x_1,\ldots,x_n)$ of degree d that vanishes on A.
 - (a) What is another way of representing a polynomial of degree d in variables x_1, \ldots, x_n ?
 - (b) What is an equivalent notion now to vanishing on A?
- 128. In particular this is true when?

- 129. State three sufficient conditions (involving a set A, a degree d, and a polynomial f) for the existence of a non-zero degree d polynomial that vanishes everywhere on \mathbb{F}_p^n .
- 130. Let f be a non-zero polynomial on \mathbb{F}_p^n of degree less than p. Show that f is not identically zero.
- 131. Now prove Dvir's result.
- 132. Let f be a non-zero polynomial of degree at most d on \mathbb{F}_p^n . Prove that f has at most dp^{n-1} roots. [Schwarz-Zippel Lemma.]
- 133. Name a real-world application of the Schwarz-Zippel Lemma.
- 134. State Alon's combinatorial Nullstellensatz.
- 135. Prove Alon's combinatorial Nullstellensatz.
- 136. State the Cauchy-Davenport Theorem.
- 137. Prove the Cauchy-Davenport Theorem.
- 138. Define $A \dot{+} B$.
- 139. State a result of da Silva and Hamidoune, which is a variant of C-D T.
- 140. Prove this.
- 141. Show that for when |A| = |B| this result is sharp.
- 142. State a theorem due to Roy Meshulam.
- 143. State a closely related theorem due to Roth.
- 144. Define the rank of $f: X \times Y \to \mathbb{F}$.
- 145. Define the slice rank of $f: X \times Y \times Z \to \mathbb{F}$.
- 146. Let X be a finite set, let $A \subset X$, \mathbb{F} a field, $f: X^3 \to \mathbb{F}$ a function such that $f(x, y, z) \neq 0$ iff x = y = z and $x \in A$. Show that the slice rank of f is A.
- 147. Connect the slice rank to the cap-set problem.
- 148. Show that the slice rank of the polynomial $P(x, y, z) = \prod_{i=1}^{n} (1 (x_i + y_i + z_i)^2)$ is at most 3M, where M is the number of 012-sequences of length n that sum to at most 2n/3.
- 149. Obtain an upper bound on the above M.
- 150. Define the Hamming cube Q^n .
- 151. State the sensitivty conjecture (-adjacent problem) that Hao Huang proved.
- 152. Define a helpful class of matrices A_n : $n \in \mathbb{N}$.
- 153. Show that A_n is symmetric.

- 154. Show that the rows of A_n are orthogonal.
- 155. What are the possible entries of A_n ?
- 156. How many non-zero entries are there in each row/column of A_n ?
- 157. If the entries are indexed with 01 sequences, what is the value of $(A_n)_{xy}$ in terms of x and y?
- 158. How does A_n then relate to Q^n ?
- 159. Describe the assignment of signs to the adjacency matrix of Q^n inductively.
- 160. What is A_n^2 ? Prove this.
- 161. Prove Huang's Theorem.
- 162. Suppose $X \subset \mathbb{R}^n$ and the members of X are all pairwise the same distance. How large can X be?
- 163. Let $a_1, \ldots, a_m \in \mathbb{R}^n$ be such that the number of distinct distances $d(a_i, a_j)$ with $i \neq j$ is at most 2. Then $m \leq (n+1)(n+4)/2$.
- 164. Suppose A is a family of subsets of [n], all of even size, all with even intersections. How big can |A| be?
- 165. Now what happens if we demand the intersections to be of odd size instead?
- 166. In particular, let \mathcal{A} be a family of subsets of [n] all of even size, such that any two distinct sets have odd intersection. Prove that $|\mathcal{A}| \leq n$ if n odd, and $|\mathcal{A}| \leq n-1$ if n is even.
- 167. Now prove the even-even case is $|\mathcal{A}| \leq 2^{\lfloor n/2 \rfloor}$.
- 168. Let \mathcal{A} be a family of subsets of [n] such that the size of every $A \in \mathcal{A}$ is a multiple of p, but no two distinct sets in \mathcal{A} have intersection of size a multiple of p. Show that $|\mathcal{A}| \leq \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{p-1}$.
- 169. Let p be an odd prime and let n=4p. Show that the largest measure of a set X of unit vectors in \mathbb{R}^n that contains no pair of orthogonal vectors is exponentially small.
- 170. State Borsuk's (disproved) conjecture.
- 171. Let n=4p for a prime p. Show that \mathbb{R}^{n^2} contains a set X of size $\binom{n}{2p}$ such that every subset of X of smaller diameter has size at most $\sum_{m=0}^{p-1} \binom{n}{m}$.