3050571 Practical Clin Data Sci

Session 17: Machine learning project design

March 7, 2024

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Hype Cycle for Artificial Intelligence, 2023

- Solve the most important bottleneck with the simplest, proven solution
- Deep learning model
 designs may be easy to
 understand conceptually
 but can be very difficult
 to tune

Define the tasks and use cases

Focus on the pain point

- Pain point = inspecting the whole image
- Imperfect object detector is good enough for estimating mitotic density

Human-in-the-loop

Cell-level performance

Low precision AI due to small training data

- Provide top 10 cells with highest p(infected) in each whole slide image
- 100% diagnosis when considering only proposed cells

Use cases define performance metrics

- Screening patients for secondary inspection
 - Recall: Missed samples cannot be recovered
 - Improve precision during secondary inspection
- Taking high-risk action based on prediction
 - Precision (positive predictive value)
 - Whether to perform surgery
 - Negative-class precision (negative predictive value)
 - Whether to send patient home
 - Whether the patient will be allergic to drug

Data-centric approach

Data-centric approach

Conventional model-centric approach:

Data-centric approach:

Require understanding of the data generation and collection process

Smart data selection

Problems come from powerful model + incomplete data

More is not always better

Bad, noisy, out-of-distribution data can fool any model

Beware of hard samples

Bernhardt, M. et al. Nature Comm 13:1161 (2022)

3x-5x increase in label error in hard samples

Synthetic data from generative Al

- Reduce data requirement for new hospital
- Minimize data privacy issue
- Self-supervised or annotated
 - Generated with guided prompt

Manual labeling for chest x-ray

- 30,000 CXR images
 - From >200,000 total
- 18 radiologists
- 6 months

Shih, G. et al. Radiol Artif Intell 1(1):e180041 (2019)

Automated labeling for chest x-ray

Report Segment and Labels	Reasoning
two views of chest demonstrate cariomegaly with	T-auto, in contrast to CheXpert, recognizes con-
no focal consolidation	ditions with misspellings in the report like "cari-
	omegaly" in place of "cardiomegaly".
Cardiomegaly	
CheXpert: Blank X	
T-auto: Positive ✓	
<u>consistent with acute and/or</u> chronic pulmonary	T-auto incorrectly detects uncertainty in the
edema	edema label, likely from the "and/or"; CheXpert
	correctly classifies this example as positive.
Edema	
CheXpert: Positive ✓	
T-auto: Uncertain 🗴	
Normal heart size, mediastinal and hilar contours	T-auto and CheXpert both incorrectly label this ex-
are unchanged in appearance	ample as negative for enlarged cardiomediastinum;
	CheXbert correctly classifies it as uncertain, likely
Enlarged Cardiomediastinum	recognizing that "unchanged" is associated with
CheXpert: Negative X	uncertainty of the condition. The condition can-
T-auto: Negative X	not be labeled positive or negative without more
CheXbert: Uncertain ✓	information.

Smit, A. et al. https://arxiv.org/pdf/2004.09167

- Radiologist's written report: keywords + positive / negative / uncertain

Poor quality from automated labeling

Kim, D. et al. Nature Comm 13:1867 (2022)

- Automated label extractions were previously used as ground truth
- Significant performance improvement by label cleaning

Iterative labeling process

Automated labeling reduces time spent on easy samples

Labeling standard

https://landing.ai/tips-for-a-data-centric-ai-approach/

Data spliting tips

Roles of data split

- Training:
 - Represent data distribution
 - Find the best fit coefficients
- **Validation**: Find the best hyperparameters
- **Internal Test**: Performance evaluation
- External Test: Generalizability

Typical Size

Cross-validation vs bootstrapping

- **Cross-validation** = equal split & used once
- Bootstrapping = repeated sampling
 - Full control over the proportion of every class

Problems from small dataset

- Small test set
 - Estimated performance cannot be trusted ← silent problem!
 - Can use validation instead initially
- Small validation set
 - Select suboptimal, biased model ← silent problem!
- Small training set
 - Poorly-fitted model ← clearly observed
 - Limit the usage of complex model

Some example situations

- **Example 1**: 223 negative, 77 positive
 - **Test**: 31 negative, 27 positive
 - **Validation**: 25 negative, 25 positive
 - **Training**: 167 negative, 25 positive
- **Example 2**: 48 negative, 23 positive
 - 2-fold cross-validation: 24 negative, 11 positive
 - Limited to logistic regression model
 - Limited to discussion of feature importance

Model calibration / cutoff tuning

Finding the right cutoff

https://acutecaretesting.org/en/articles/precision-recall-curves-what-are-they-and-how-are-they-used

- Requirement user testing in realistic environment

Calibration curve

https://medium.com/analytics-vidhya/how-probability-calibration-works-a4ba3f73fd4d

- Calibration = correction of predicted probability
- Improve interpretability of the model

Data cost of calibration

- Estimate the true fraction of positive for EVERY OUTPUT RANGE
- 20 data points with predicted [0, 0.1]
- 20 data points with predicted [0.1, 0.2]

-

https://medium.com/analytics-vidhya/how-probability-calibration-works-a4ba3f73fd4d

Agile management

Agile development cycle

https://www.linkedin.com/pulse/waterfall-vs-agile-which-better-you-why-datacademy-cloud/

Back to computational thinking principles

- Decomposition & Abstraction
 - Identify pain points and use cases
- Pattern Recognition
 - Proof-of-concept with public / small datasets
 - Start with simple model
- Algorithm
 - Design workflow with your solution integrated

Any questions?

See you on March 8th