Integer Polynomials

Chuah Jia Herng

1 Fundamentals

Definition 1.1

A **polynomial** of **degree** n is an algebraic expression of the form

$$P(x) = a_0 + a_1 x + \dots a_n x^n$$

where x is a variable, and $a_0, a_1..., a_n$ are coefficients of $x^0, x^1, ..., x^n$, and a polynomials is called **monic** if $a_n = 1$.

Theorem 1.2 (Fundamental Theorem of Algebra)

Let $P \in \mathbb{C}[X]$ be a nonzero polynomial of degree n. Then P(x) has exactly n complex roots, up to multiplicity.

Remark. The degree of zero polynomial is $-\infty$.

Theorem 1.3

Every polynomials $P \in \mathbb{C}[X]$ can be factorized into real quadratic and linear factors.

2 Identical Polynomials

Theorem 2.1

If two polynomials f, g coincide for more than $\max\{\deg f, \deg g\}$ times, then they are identical.

Theorem 2.2

Let f be a polynomial such that f(x) = 0 for infinitely many x. Then $f \equiv 0$.

Problem 2.3

Find all polynomials P with real coefficients such that $P(x^2 + x) = (x + 1)P(x)$ and P(1) = 1.

3 Lagrange Interpolation

Chuah Jia Herng () Integer Polynomials

Theorem 3.1 (Lagrange Interpolation)

A polynomial of degree n is uniquely determined by n+1 values. In particular, if we knew $P(x_0), ..., P(x_n)$, then

$$P(x)\sum_{i=0}^{n} P(x_i) \cdot \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

Problem 3.2 (IMO SL 1997)

Let p be a prime number and f an integer polynomial such that f(0) = 0, f(1) = 1 and f(n) is congruent to 0 or 1 modulo p for every integer n. Prove that deg $f \ge p - 1$.

Problem 3.3 (ELMO 2014 SL N3)

Let t and n be fixed integers each at least 2. Find the largest positive integer m for which there exists a polynomial $P \in \mathbb{Q}[X]$ of degree n such that exactly one of

$$\frac{P(k)}{t^k}$$
 and $\frac{P(k)}{t^{k+1}}$

is an integer for each k = 0, 1, ..., m.

Problem 3.4

Prove that if for a polynomial $P, P(\mathbb{Q}) \subset \mathbb{Q}$. Then P has rational coefficients.

Problem 3.5

Find all polynomials $f \in \mathbb{R}[X]$ such that $x \in \mathbb{Q} \iff f(x) \in \mathbb{Q}$.

Lemma 3.6

 ε is fixed. For any polynomial $f: \mathbb{R} \to \mathbb{R}$ with deg f > 1 and positive leading coefficient. Then the difference $f(x + \varepsilon) - f(x)$ grows arbitrarily large.