Apellido y	y nombres:				
Padrón: .		Correo elec	trónico:		
Cursada.	Cuatrimestre: .	Año:		Profesor:	

Análisis Matemático III. Examen Integrador. Cuarta fecha. 22 de julio de 2015.

1		-	ı	2	0		4	
	1		2		3		4	
	a	b	a	b	a	b	a	b

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de al menos 4(cuatro) ítems, entre los cuales debe figurar uno del ejercicio 1 o del 2 y uno del ejercicio 3 o del 4.

Ejercicio 1.

- (a) Sea D un conjunto abierto y conexo del plano complejo. Probar que dos funciones holomorfas en D que coinciden en un punto de D, y tienen igual parte real, son iguales en todo D.
- (b) Probar que si f es holomorfa para |z| > R, continua en |z| = R y su límite en infinito es cero, entonces existe $m \in \mathbb{N}$ tal que $|f(z)| \le \frac{c}{|z|^m}$ para |z| > R y algún c > 0.

Ejercicio 2.

(a) Sea u(x, y) la distribución de temperaturas en régimen estacionario que evoluciona en la placa semiinfinita y bajo las condiciones de frontera que se indican:

$$\begin{array}{lll} \nabla^2 u(x,y) = 0 & \text{para} & |x| < 1 \ \land \ y > 0 \\ u(1,y) = 1 & \text{para} & y > 0 \\ u(-1,y) = 1 & \text{para} & y > 0 \\ u(x,0) = 0 & \text{para} & x \in (-1,1) \end{array}$$

Hallar la función de distribución y describir gráfica y analíticamente las líneas isotérmicas y las líneas de flujo.

(b) Si el desarrollo exponencial de Fourier en $[-\pi,\pi]$ de $(x-\pi)$ sen $(x+\pi)$ es $\sum_{n=-\infty}^{\infty}\alpha_n e^{inx}$, argumentar la convergencia de las series $\sum_{n=-\infty}^{\infty}\alpha_n$, $\sum_{n=-\infty}^{\infty}|\alpha_n|^2$ y $\sum_{n=-\infty}^{\infty}n^2\alpha_n^2$. Calcular el valor de cada una.

Ejercicio 3.

(a) Hallar
$$f: \mathbb{R} \to \mathbb{C}$$
 que cumpla: $\frac{1}{2\pi} \int_{-\infty}^{\infty} (1+i)\hat{f}(w)e^{iwt}dw = e^{-2t}H(t)$, siendo $\hat{f}(w) = \mathcal{F}[f](w) \vee H(t)$ la función de Heaviside. Es única? Calcular $\int_{-\infty}^{\infty} |\hat{f}(w)|^2 dt$

 $\hat{f}(w) = \mathcal{F}[f](w)$ y H(t) la función de Heaviside. ¿ Es única? Calcular $\int_{-\infty}^{\infty} \left| \hat{f}(w) \right|^2 dw$.

(b) Analizar la existencia de la transformada de Fourier de $f(t) = \frac{1}{t}$. En caso afirmativo, hallarla, y a partir de ésta, calcular la de $\frac{\sin(2\pi t)}{t-1}$.

Ejercicio 4.

(a) Resolver:
$$\begin{cases} y_1'(t) - y_2(t) = 0 \\ y_1(t) - y_2'(t) = r(t) \end{cases} \quad \text{con } r(t) = \begin{cases} 0 & \text{si } t \leq 1 \\ 1 & \text{si } t > 1 \end{cases}$$
y condiciones iniciales nulas. ¿Cuál es el valor de $y_1(1 - \pi/3)$ y de $y_2(1 - \pi/3)$?

(b) Calcular
$$\mathcal{L}^{-1}\left[\frac{1}{(s^2+a^2)^2}\right]$$
 cualquiera sea $a \in \mathbb{R}$.