LSTM+CRF 整体流程与相关变量:

变量:

X_train:训练集句子: EU rejects German call to boycott British lamb .

Y_train:训练集句子单词的实体类型: B-ORG O B-MISC O O O B-MISC O O

X_test:测试集句子: SOCCER - JAPAN GET LUCKY WIN , CHINA IN SURPRISE DEFEAT .

Y_test:测试集句子单词的实体类型: 0 0 B-LOC 0 0 0 0 B-PER 0 0 0 0

Word2idx:训练集+测试集单词数组: {'Boat': 0, 'Standings': 1, ..., '<pad>': 27316}

Vocab_size:训练集+测试集单词个数: 27317

Tag2idx:训练集+测试集实体类型数组: {'I-ORG': 0, 'I-MISC': 1, ..., '<pad>': 11}}

Max_length:句子最长的长度:设置为124

Dataset:

Inputs: 句子单词在 word2idx 中的编号: [386,10193,24516,14669,24332,17873,9648,21165,11724, 27316,27316,27316,..., 27316]:一组里面有 max_length 个数值,用<pad>)的编号填充

Targets:句子单词的实体类型在 tag2idx 中的编号: [1,2,7,2,2,2,7,2,2,11,11,11,...,11]:一组里面有 max_length 个数值,用<pad>的编号填充

Length_list:每个句子的真实长度: [9, 2, 2, 30, ..., 4]

Dataloder:以 batch_size 为一组分割 Dataset

batch_size:一次训练所抓取的数据样本数量:论文里设置为 100

embedding_size:特征向量的大小:论文里设置为 50

hidden_size:隐藏层:论文里设置为 300 Epochs:循环次数:论文里设置为 10

整体流程:

1. 构造 dataloder:

Dataloder 每一块为 100 行(=batch size)和 124 列(=sequence length), 共有 141 块 (根据具体数据计算). Dataloder 作为嵌入层的输入.

2. Embedding Layer: nn.Embedding

self.embedding = nn.Embedding(vocab_size(=词汇表大小), embedding_size(=嵌入维数, 把具体数值改成 embedding_size 维向量)).

embeds = self.embedding(sentences)

从嵌入层的输出可以看出,它作为嵌入权值的结果创建了一个三维张量。现在它每块有 100 行,124 列和 50 个嵌入维,也就是说,在我们的审查中,我们为每个标记化的单词添加了嵌入维。该数据现在将进入 LSTM 层.

torch.nn.Embedding(

num_embeddings, - 词典的大小尺寸,比如总共出现5000 个词,那就输入5000。此时index 为 (0-4999) embedding_dim, - 嵌入向量的维度,即用多少维来表示一个符号。

padding_idx=None,-填充id,比如,输入长度为100,但是每次的句子长度并不一样,后面就需要用统一的数字填充,而这里就是指定这个数字,这样,网络在遇到填充id 时,就不会计算其与其它符号的相关性。(初始化为0)

max_norm=None, - 最大范数,如果嵌入向量的范数超过了这个界限,就要进行再归一化。

norm_type=2.0, - 指定利用什么范数计算,并用于对比max_norm,默认为2 范数。

scale_grad_by_freq=False,根据单词在mini-batch 中出现的频率,对梯度进行放缩。默认为False.

sparse=False, - 若为True,则与权重矩阵相关的梯度转变为稀疏张量。

_weight=None)

3. LSTM Layer: nn.LSTM

self.lstm = nn.LSTM(embedding_size(=嵌入维数), hidden_size(=隐藏层数), bidirectional=False(= 选择是否双向))

lstm_out, _ = self.lstm(packed_sentences)

通过查看 LSTM 层的输出,我们可以看到每块现在有 100 行,124 列和 300 个 LSTM 节点。接下来,该数据被提取到全连接层。

torch.nn.LSTM(

input_size 输入数据的特征维数,通常就是embedding_dim(词向量的维度)

hidden_size LSTM 中隐层的维度

num_Layers 循环神经网络的层数

bias 用不用偏置,default=True

batch_first 这个要注意,通常我们输入的数据 shape=(batch_size,seq_length,embedding_dim),而
batch_first 默认是False,所以我们的输入数据最好送进 LSTM 之前将 batch_size 与 seq_length 这两个维度调换

dropout 默认是 0,代表不用 dropout

bidirectional 默认是 false, 代表不用双向 LSTM)

输入数据包括 input, (h_0, c_0):

input 就是 shape=(seq_length, batch_size, input_size)的张量

 h_0 是 $shape=(num_layers*num_directions, batch_size, hidden_size)$ 的 ntildestable ntildesta

 c_0 和 h_0 的形状相同,它包含的是在当前这个 batch_size 中的每个句子的初始细胞状态。 h_0 , c_0 如果不提供,那么默认是 0 。

输出数据包括output,(h_n,c_n):

output 的 shape=(seq_length, batch_size, num_directions*hidden_size),

它包含的是LSTM 的最后一时间步的输出特征(h_t), t 是 batch_size 中每个句子的长度。

h_n.shape==(num_directions * num_layers,batch,hidden_size)

 c_n . $shape==h_n$. shape

 h_n 包含的是句子的最后一个单词(也就是最后一个时间步)的隐藏状态, c_n 包含的是句子的最后一个单词的细胞状态,所以它们都与句子的长度 seq_Length 无关。

output[-1]与h_n 是相等的,因为output[-1]包含的正是batch_size 个句子中每一个句子的最后一个单词的 隐藏状态,注意 LSTM 中的隐藏状态其实就是输出,cell state 细胞状态才是 LSTM 中一直隐藏的,记录着信息

4. Fully Connected Layer:nn.Linear

self.hidden_to_tag = nn.Linear(hidden_size(=隐藏层数), self.target_size(=实体类型个数, 为 12)) feature = self.hidden_to_tag(result)

Feature.shape = torch.Size([100, 124, 12])

对于全连通层,输入特征数= LSTM 中隐藏单元数。输出大小= 实体类型个数

torch.nn.Linear(in_feature: int型,在forward中输入Tensor最后一维的通道数,

out_feature: int 型, 在forward 中输出 Tensor 最后一维的通道数,

bias: bool 型,Linear 线性变换中是否添加 bias 偏置)

5. CRF Layer: CRF

self.crf = CRF(self.target_size(=实体类型个数),batch_first=True)

self.crf(self.LSTM_Layer(sentences, length_list), targets, self.get_mask(length_list))

假设 LSTM 节点的输出是 1.5 (B-Person), 0.9 (I-Person), 0.1 (B-Organization), 0.08 (I-Organization) and 0.05 (0)。这些分数将会是 CRF 层的输入。所有的经 LSTM 层输出的分数将作为 CRF 层的输入,类别序列中分数最高的类别就是我们预测的最终结果。

CRF(num_tags, batch_first=True)

self.crf.decode(self.LSTM_Layer(sentences, length_list), self.get_mask(length_list))

CRF.decode(emissions, mask=None):使用Viterbi algorithm 找到概率最大的实体类型

Parameters:

emissions (Tensor) - Emission score tensor of size if is False, otherwise.(seq_length, batch_size, num_tags)batch_first(batch_size, seq_length, num_tags)

mask (ByteTensor, 0、1 向量) - Mask tensor of size if is False, otherwise.(seq_length, batch_size)batch_first(batch_size, seq_length)

Return type:List[List[int]]

Returns:List of list containing the best tag sequence for each batch(注意: 这个decode 返回的是一个List,由于mask 的存在,解码返回的是实际的句子长度的解码结果).

6. 优化器与损失函数

optimizer = torch.optim.Adam(model.parameters(), lr)#构造优化器

model.zero_grad()#梯度初始化为0

loss = (-1) * model(inputs, length_list, targets)#构造损失函数

loss.backward()#反向传播(计算梯度)

total_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)#裁剪梯度 optimizer.step()#更新网络参数

7. 其他小知识点

①pack_padded_sequence()与 pad_packed_sequence():

数据进入 LSTM 层之前要 pack_padded_sequence:包装数据

数据离开 LSTM 层之前要 pack_packed_sequence:解压数据

https://blog.csdn.net/xinjieyuan/article/details/108562360

②batch_first 的使用

LSTM默认 batch_first=False,即默认 batch_size 这个维度是在数据维度的中间的那个维度,即喂入的数据为【seq_len, batch_size, hidden_size】这样的格式。此时

lstm_out: [seq_len, batch_size, hidden_size * num_directions]

lstm_hn: [num_directions * num_layers, batch_size, hidden_size]

当设置 batch_first=True 时,喂入的数据就为【batch_size, seq_len, hidden_size】这样的格式。此时

lstm_out: [batch_size, seq_len, hidden_size * num_directions]

lstm_hn: [num_directions * num_layers, batch_size, hidden_size]

https://blog.csdn.net/qq_52785473/article/details/124368762

③get_mask 的使用

Mask 机制就是我们在使用不等长特征的时候先将其补齐,在训练模型的时候再将这些参与补齐的数去掉,从而实现不等长特征的训练问题。

https://blog.csdn.net/Jeaten/article/details/105011214

8. 引用网址

源代码: https://blog.csdn.net/Raki_J/article/details/122435674

流程解读: https://blog.csdn.net/yinwen1999/article/details/125894923

CRF 层详解: https://zhuanlan.zhihu.com/p/44042528

9. 测试结果

数据集:

Penn Treebank: 使用 Pos Tagging:

变量	calloway	N	NN
释义	原词	标记首字母(为方便	标记
		程序运行)	

ConLL2000: 使用 chunking

变量	Confidence	NN	B-NP	NP
释义	原词	标记	短语块	短语类型

ConLL2003: 使用 NER

变量	EU	NNP	B-NP	B-ORG	ORG
释义	原词	标记	短语块	实体块	实体类型

CRF 训练结果:

当 loss<0.0001 时结束训练

数据集	F1	Accur	Preci	Recal	备注
		acy	sion	1	
Penn	93.85	99.94	96.46	92.69	使用出现超过 5 次的标记
Treebank					
ConLL2000	70.58	99.58	72.91	71.16	短语块
	85.15	99.46	89.21	82.84	短语类型
ConLL2003	78.36	98.94	80.90	76.70	实体块
	82.22	98.14	84.41	80.70	实体类型

LSTM+CRF 训练结果:

1、论文要求

batch_size=100, embedding_size=50, learning_rate=0.1, hidden_size=300, epoch=10.

数据集	F1	备注
Penn Treebank	87.04	标记
ConLL2000	87.09	短语块
ConLL2003	68.88	实体块

2、自己调参

数据集	F1	备注
Penn Treebank	93.46	Lr=0.001
Conll2000	90.06	Lr=0.001
Conll2003	88.77	Lr=0.001

不足:

- 1、数据集没有按照论文要求进行 Random 和 Senna 词嵌入
- 2、调参只调整了学习率,没有调整其他参数

问题:

1、在梯度裁剪中,使用函数 torch.nn.utils.clip_grad_norm_,clip_coef 越小,则对梯度的裁剪越厉害。

已知每次循环的 clip_coef, 怎么设置 max_norm, 让对梯度的裁剪在合适的范围内?

Penn Treebank

Conll2000 lr=0.1

