Riemann Integration.

Jaydeb Sankar

CALCULUS

An old Subject modified Austing 450BC - Fill date.

"meaning": Came from Latins - Small Stone / pebbel.

Stanted by ("perhaps"): Antiphone (430 BC. Greece).

Fuclid (300 BC, Alexandria)

Archimedes (250 BC, Greece)

parabala. AREA 72

Archimedes Computed the area of a (Also: area & circumference of a circle). Danabolic Segment

Than he asked:

a "Continuous" fr. .

Area of:

(Newton Steibniz: 1670).

He needs it for his law of motion.

This integration is/was fine: AND that's own " School integration."

> It is still the BEST " BUT, Conceptually

I He needed it for integrations

.. O School/Newton/Leibniz integration: } f: [aib] -> IR Cont. fn

An integration which make sense for bady of not too bady discont. fr. 2 Riemann integration:

(3) Lebesque întegration: Deals with highly discont. &

In masteris measure theory Remember the following:

eg? - HW -.

Let's Stort:

- # Always assume that [a,b]: a closed interval, a <b.
- # IN = {1,2, ...}.
- # 2 = {0, ±1, ±2, ...}
- # Z = NU {0}.
- # f:[a,b] ---) IR is ALWAYS bounded (Stated otherwise).
- Nef: A positition P of [a,b] is a set of real ng's (called nodes)

 { no, x1, ..., nn}, for some n GIN -3.

We let I; ar P; as [nj-1, nj]; the j-th Subinterval.

j= 1,..., n.

Def: 9f I = (a,b) or [a,b] or [a,b] or [a,b], then |I| := b-a.

The length of I.

Fact: SP $P: a = x_0 < x_1 < \cdots < x_n = b$ is a partition of $I = [a_1b]$, then $|I| = \sum_{j=1}^{n} |I_j| \qquad -HW - 1$

Remark: Let P&P be two positions of Taib]. Then
PUP is also a partition of Taib].

$$[P = \{\chi_0, \chi_1, \dots, \chi_n\}, P = \{\xi_0, \xi_1, \dots, \xi_m\}, \exists hen$$

$$P \cup P = \{\chi_0, \dots, \chi_n, \xi_0, \dots, \xi_m\}$$

$$\exists B \cup T \text{ oxdered.}$$

$$I = [0,1]. Then $0 < \frac{1}{8} < \frac{1}{4} < \frac{3}{4} < \frac{1}{3}$ is a partition of I .$$

eg:
$$I = [0,1]$$
. Then $P = \{\frac{1}{m}\}_{m\geq 1} \cup \{0\}$ is NOT a possition of P . Why?

2) Suppose f: [aib] -> 1R be a (BOUNDED) for.

Let PEP Dith

P: a = no < ny < ... < ny < ny < ny = b.

We set:
$$M_j := \sup_{x \in I_j} f(x)$$
 $\lim_{x \in I_j} \frac{f(x)}{x}$.

Observation: Let $S_1 \subseteq S_2 \subseteq IR$. Then $\frac{1}{bdd}$.

 $Sup S_1 \in Sup S_2$ $Sup S_1 \Rightarrow inf S_2$.

--- HW ---

Corollary: $m \leq m_j \leq M_j \leq M \quad \forall j=1,...,n$.

Notation: B[aib] = Set of all bdd fis : Taib] -> IR.

Def: Let $f \in B[a,b]$, b let $P: a = no < n_1 < ... < n_n = b$ be a possition of [a,b]. Then the reposse Riemann sum of [f w. v. t. P is defined by:

 $\mathcal{U}(f, p) := \sum_{j=1}^{m} M_{j} | I_{j} | = \sum_{j=1}^{m} \left(\underset{x \in I_{j}}{\text{quip}} f(x) \right) \kappa(x_{j} - x_{j-1})$

The lowest (Riemann Sum (w.r.t.P) $L(f;P) = \sum_{j=1}^{m} m_j |I_j| = \sum_{j=1}^{m} (\inf_{n \in I_j} f(n)) \times (n_j - n_{j-1})$

Note: Clearly, both U(fip) & L(fip) exist!!

[if \(B[aib] \) \(\) modes of $P < \infty$].

Thm: Given f & B[aib] Sapren Plans], we have

 $m(b-a) \leqslant L(f; P) \leqslant U(f; P) \leqslant M(b-a).$

Y PEP[a,b].

Jaydeb Sankan

Proof:

$$\Rightarrow m_{n}|I_{j}| \leq m_{j}|I_{j}| \leq M_{j}|I_{j}| \leq M_{j}|I_{j}| \leq M_{j}|I_{j}| \leq M_{j}|I_{j}|$$

$$\Rightarrow m_{n}|I_{j}| \leq m_{j}|I_{j}| \leq M_{j}|I_{j}| \leq M_{j}|I_{j}| \leq M_{j}|I_{j}|$$

$$\Rightarrow$$
 $m(b-a) \leq L(f; P) \leq L(f; P) \leq M(b-a).$

W

The geometric implication of the above is pretty simpole:

More Simple example:

AND, Finally:

$$m(b-a) \leqslant L(f;P) \leqslant u(f;P) \leqslant M(b-a).$$

Independent
of P

 $\forall P \in \mathcal{P}[a,b]$, bota $L(f;P) \not S U(f;P)$ are bdd by $m(b-a) \not S \underbrace{M(b-a)}$.

i.e. $L(f;P), U(f;P) \in [m(b-a), M(b-a)]$.

> Someone 1 of Lat a point, "If Possible",

In view of "m(b-a) < L(f,P) < U(f,P) < M(b-a)", We are ready for the following definition:

Def: Let f & B ([a.6]). Define:

Remark:
$$\Theta \Rightarrow \int f g \int both expist !!$$

Def: A fr. $f \in B[a,b]$ is said to be Riemann integrable, if $\int f = \int f$.

In this case, we call the Common value as
"the integration of f over 72.6]" & write:

$$\int_{a}^{b} f = \int_{a}^{b} f = \int_{a}^{b} f$$

4- Good! But how to use? We need tools!! Wish list: We really want ex L(f,P) < u(f,Q), +PSQ
in P[a,b] to be true!!

Def: Let $P, \widetilde{P} \in P[a, b]$. We say that \widetilde{P} is a refinement of P $[OR, \widetilde{P} \text{ is finen than } P] \text{ if}$ $\Re \in \widetilde{P} \quad \forall \quad \chi \in P.$

nodes of $\widetilde{P} \supseteq nodes of P$.

i.e. $\widetilde{P} = P \cup \widehat{P}$, where \widehat{P} is a finite subset of [a,b].

Notation: PDP if P is a refinement of P.

 $P = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$ $P = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$ $P = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$ $P = \{0, \frac{1}{3}, \frac{2}{3}, 1\}$

Note: Let P, , P2 & P[aib]. \$ Set P:= P, UP2.

Then PDP, & PDP2.

Proof: Tguvial!

Proposition: Let $f \in B[a,b] \ \ \ P, \widetilde{P} \in P[a,b]$. If $\widetilde{P} \supset P, \Re en$ $L(f,P) \leqslant L(f,\widetilde{P}) \leqslant U(f,\widetilde{P}) \leqslant U(f,P).$

getting more closen!

Proof: " $L(f, \widetilde{P}) \leqslant U(f, \widetilde{P})$ " is known. :. Enough to prove " $L(f, P) \leqslant L(f, \widetilde{P})$ " \varnothing " $U(f, \widetilde{P}) \leqslant U(f, P)$ ".

We only prove the 1st one (as the 2nd one will be Similar).

Finst, assume that P := P U [2],

Where where & [:. n a new node.]

Set P: a = no Kny K - - - Kny Kny = b.

Then I jeg1,..., m} S.L.

nj-1 < n < nj. ← [: x ∈ [a, b]]

Set: $\widehat{m}_{j-1} := \inf \{f(\alpha) : \alpha \in [\alpha_{j-1}, \alpha_{j-1}]\}$ $\forall \widehat{m}_{i} := \inf \{f(\alpha) : \alpha \in [\alpha_{i}, \alpha_{j-1}]\}$

$$L(f, \tilde{p}) - L(f, p) = \widetilde{m}_{j-1}(\tilde{x} - x_{j-1}) + \widetilde{m}_{j}(x_{j} - \tilde{x})$$

$$- m_{j}(x_{j} - x_{j-1})$$

Now

$$m_{j-1}$$
 m_{j}
 m_{j-1} m_{j}
 m_{j-1} m_{j}
 m_{j-1} m_{j}
 m_{j-1} m_{j}
 m_{j-1} m_{j-1}

$$\Rightarrow L(f,\widetilde{p}) - L(f,p) = \widetilde{m}_{j-1}(\widetilde{n} - n_{j-1}) + \widetilde{m}_{j}(n_{j} - \widetilde{n})$$

$$- m_{j}(\widetilde{n}_{j} - \widetilde{n}_{j+1}) - m_{j}(n_{j} - \widetilde{n}).$$

$$= (\widetilde{n}_{j-1} - m_{j})(\widetilde{n}_{j} - n_{j-1}) + (\widetilde{n}_{j} - n_{j-1})$$

$$= (\widetilde{m}_{j-1} - m_{j})(\widetilde{n}_{j} - n_{j-1}) + (\widetilde{m}_{j} - m_{j})(n_{j} - \widetilde{n}).$$

$$= (\widetilde{n}_{j-1} - m_{j})(\widetilde{n}_{j} - n_{j-1}) + (\widetilde{m}_{j} - m_{j})(n_{j} - \widetilde{n}).$$

The general Case: by induction. \Rightarrow $L(f, \tilde{P}) > L(f, P)$.

The uppose sum case: Similar & HW.

Cor: Let fr B[a,b] & P, Q & P[a,b]. Then $L(f,P) \leq U(f(Q).$

Let P:= PUQ. => POP,Q.

By applying the above prop. for (P, P & P,Q.

 $L(f,P) \leq L(f,\widetilde{P}) \leq u(f,\widetilde{P}) \leq u(f,\alpha)$

In particular: L(f, P) & U(f,Q). \mathbb{Z}

Cor: If
$$f \in B[a,b]$$
, then
$$\int_{a}^{b} f \leq \int_{a}^{b} f$$

Proof: We know: $L(f, P_1) \leq U(f, P_2) \quad \forall P_1, P_2 \in P[a, b]$.

The for a fixed $P_2 \in P[a, b]$,

$$\int_{a}^{b} f = \sup_{a} L(f, P_{i}) \leq U(f, P_{2}),$$

$$\int_{a}^{b} f = \sup_{a} L(f, P_{i}) \leq U(f, P_{2}).$$

... Taking inf on all over $P_2 \Rightarrow \int f \lesssim \inf_{P_2} \mathcal{U}(f, P_2) = \int f$.

Notation: R[a,b] = {f & B[a,b]: f is Riemann integrable.}

Ans: No! Consider the Dirichlet for: f: [01] -> 17 defined by:

Clearly, PEB [011],

Suppose $P: O = No < x_1 < \cdots < x_m = 1$ be a partition of [O, I].

Recall:
$$I_j := [n_{j-1}, n_j]$$
.
 $\Rightarrow I_j \cap \mathbb{Q} \neq \mathbb{Q} \quad I_j \cap \mathbb{Q} \neq \mathbb{Q}$.
 $\forall j = 1, ..., n$.

$$\Rightarrow$$
 $m_j = 0$ \Rightarrow $M_j = 1$ $\forall j = 1, \dots, n$.

:.
$$L(P,P) = 0$$
 & $U(P,P) = 1$. [By the defise of $L & U$].

+ PEPTO,1].

$$\Rightarrow \int_{0}^{1} f = 0 \neq 1 = \int_{0}^{1} f.$$

111

Fix ce IR & define f(n) = e + xe [a, b].

Then, $\forall P \in P[a,b]$, $L(f,P) = c \times (b-a) = U(f,P)$

I why ? check.

$$\Rightarrow \int_{a}^{b} f = c \times (b-a) = \int_{a}^{b} f$$

$$\Rightarrow$$
 $f \in \mathbb{R}[a,b]$ \Rightarrow $\int_{-\infty}^{b} f = c(b-a).$

10

eg: If s.t. If I = R[a,b] but f & R[a,b].

Clearly, PEB[O,1]. Have IFI = 1 = IFI ER[O,1].

But f & R[O,1], + HV.