Unsupervised Learning 2

Clustering – Kmeans og Gaussian Mixture Models

Hvor er vi? Clustering...

Clustering

- Gruppér data i en række "clusters"
- Ofte vælges antal clusters/komponenter
- Bygger (ofte implicit) på afstandsmål
- Evaluering af clusters kan være vanskelig

Anvendelser

- Data mining / exploration
- Topic discovery
- Novelty/outlier detection
- Codebooks / data diskretisering
- Visualisering

K-means

1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color).

2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

Demonstration of the standard algorithm

 The centroid of each of the k clusters becomes the new mean.

 Steps 2 and 3 are repeated until convergence has been reached.

K-means – problemer

• Indirekte antagelser og karakteristika:

• K kendt

Spherical covariance matricer

• 0/1 cluster relationship (hard assignment)

Gaussian Mixture Models (GMM)

- Probabilistisk alternativ til Kmeans til clustering
- Giver sandsynlighed for tilhørsforhold til cluster
- Modellerer clusters med fulde kovarians matricer
- Men stadigvæk antages antal clusters kendt (kan dog benytte loglikelihood på test sæt til bestemmelse af optimal K)

GMM

Combine simple models into a complex model:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$
 Component

Mixing coefficient

$$\forall k : \pi_k \geqslant 0 \qquad \sum_{k=1}^K \pi_k = 1$$

GMM covariance matrices

Many others..

- Hierarchical clustering
- Spectral clustering

• ...

A comparison of the clustering algorithms in scikit-learn