Objective: \$1,027,300,196,893; without intervention: \$1,003,571,304,682 (Desired optimality gap: 1%; actual: 0%. Lower Bound: \$1,026,273,000,000. Time to solve: 47s) $C^{\prime} = \$10,000, C^{D} = \$10,000,000$

One Period=7 days (costs scaled by 1,000,000 during optimization)

Movement

A: \$[5000 ,10000] 10² B: $\$[10000,20000]\cdot10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.95 ,.93]

A: $\$[0, 0] \cdot 10^2$ **B:** $\$[0 , 0] \cdot 10^2$ C: $\$[10 , 14] \cdot 10^2$ P: [.99 ,.95]

P: [.99 ,.95 ,.93]

A: $\$[5000, 10000] \cdot 10^2$ B: $\$[10000,20000]\cdot10^2$ C: $\$[10 , 14] 10^2$

P: [.99 ,.95 ,.93]

P: [.99 ,.95 ,.93]

8. Physical Distancing

Cost Per Period: TOTAL Cost Per Period: POLICY Cost Per Period: DISEASE

Probability Factor

7. Border Control A: \$[5000 ,10000] 10² **B:** \$[10000,20000] \cdot 10^2 C: \$[10 ,14] 10² P: [.95 ,.93]

A: $\$[0] \cdot 10^2$ **B**: \$[0] 10^2 C: $\$[10] \cdot 10^2$

P: [.93]

4. Restaurants

P: [.95 ,.93]

6. Mega Events

5. Masking