BUDAPESTI UNIVERSITY OF TECHNOLOGY AND ECONOMICS

INSTITUTE OF MATHEMATICS

FACULTY OF MATHEMATICS

Linear Regression through Origin

Author: Supervisor:

Dyussenov Nuraly Dr. Jozsef Mala

Associate Professor, BME Fac. of Nat. Sci.

Budapest, October 25, 2023

Contents

1	Intr	oduction	1
2	Theoretical background		2
	2.1	Statistics Basics	2
	2.2	Simple Linear Regression	4
	2.3	Simple Linear Regression with no intercept term	6
	2.4	Comparative Analysis	7
3	Applications to Linear Regression through Origin		8
	3.1	Something to add 1	9
	3.2	Something to add 1	9
4	Theoretical results		10
	4.1	A theoretical resilt	10
	4.2	Towards some advanced topic	10
5	Programming simulations		11
6	Summary and closing words		12
A	Prog	gram Codes	14

List of Tables

List of Figures

1. Introduction

"Bla-bla-bla"

-XY

2. Theoretical background

2.1 Statistics Basics

Definition (Data) Let $(x_1,...,x_n)$, where $x_i \in S$ for i = 1,...,n. The set S is typically \mathbb{R} , \mathbb{R}^d , or it can be any abstract set. However, for our purposes, S (the sample space) will usually be \mathbb{R} .

Definition (Sample) In statistics, our data are often modeled by a vector $\mathbf{X} = (X_1, X_2, \dots, X_n)$ of i.i.d. (independent, identically distributed) random variables, called the sample (of which size is n), where the random variables X_i take values in \mathbb{Z} or \mathbb{R} . The common distribution of the X_i is called the parent distribution, and we say that the sample is from that parent distribution.

Definition (Model) A statistical model is a family $\{P_{\theta} \mid \theta \in \Theta\}$ of distributions on the sample space. When $\Theta \subset \mathbb{R}^d$, we say that we have a parametric model, and we call Θ the parameter set (space).

Definition (p-th Quantile of Data) If $p \in (0,1)$, then a p-th quantile (or a p-th percentile) of the data (x_1, \ldots, x_n) is a p-th quantile of the corresponding empirical distribution function \hat{F}_n .

Definition (Sample mean) Let (X_1, \ldots, X_n) be a sample. Then the random variable

$$\bar{X} = X = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is called the sample mean.

Definition (Estimator) An estimator is a statistic (a function of the sample data) used to estimate an unknown parameter in a statistical model. An estimator for the parameter θ , denoted as $\hat{\theta}$, is any measurable function of the random variables X_1, X_2, \dots, X_n .

Definition (Unbiased Estimator) If $\hat{\theta}$ is an estimator of θ , then we can define the quantity $Bias(\hat{\theta}) = \mathbb{E}_{\theta}[\hat{\theta}] - \theta$. The estimator $\hat{\theta}$ is called unbiased if its bias is 0.

Definition (**MSE of an Estimator**) Let us have the model $\{P_{\theta} \mid \theta \in \Theta\}$ and let us have the sample (X_1, \dots, X_n) from it. The mean square error (or the quadratic risk) of an estimator $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ for the parameter θ is defined by

$$MSE_{\theta}(\hat{\theta}) = \mathbb{E}_{\theta}((\hat{\theta} - \theta)^2)$$

when θ is the true parameter.

Steiner's identity: $\mathbb{E}((X-a)^2) = \text{Var}(X) + (a - \mathbb{E}(X))^2$

Interpretation in the context of mean square error (MSE):

$$MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\hat{\theta}) + (Bias_{\theta}(\hat{\theta}))^2$$

Definition (Sufficiency) Let the model be $\{P_{\theta} \mid \theta \in \Theta\}$ and $\mathbf{X} = (X_1, \dots, X_n)$ be a sample from it. The statistic T is called *sufficient* for the parameter θ (or, for the model $\{P_{\theta} \mid \theta \in \Theta\}$) if the conditional distribution $P_{\theta}(\mathbf{X} \in \cdot \mid T = t)$ does not depend on θ .

Theorem (Neyman-Fisher Factorization Theorem) If the model is $\{p(x|\theta) | \theta \in \Theta\}$ where $p(x|\theta)$ is a probability mass/density function and $\mathbf{X} = (X_1, \dots, X_n)$ is a sample from it, then the statistic T is *sufficient* for the parameter θ if and only if we can find nonnegative functions g and h such that

$$p_{\mathbf{X}}(x|\boldsymbol{\theta}) = g(T(x), \boldsymbol{\theta})h(x).$$

Definition (Likelihood) Let $\{p(x,\theta), \theta \in \Theta\}$ be a model. If the observed value of X is x, we say that $p(x|\theta)$ is the *likelihood* of θ : $L(\theta) = p(x|\theta)$. Thus, we are considering the mass/density as a function of θ , for a fixed x. If $x = (x_1, \dots, x_n)$ is a realization of the sample $\mathbf{X} = (X_1, \dots, X_n)$, then $p(x|\theta)$ is the product of the marginals,

$$L(\theta) = p(x|\theta) = \prod_{i=1}^{n} p(x_i|\theta).$$

Theorem (Rao-Blackwell) Let $\{P_{\theta} \mid \theta \in \Theta\}$ be a model and (X_1, \dots, X_n) be a sample. Let $\hat{\theta}$ be an estimator of θ with $\text{Var}_{\theta}(\hat{\theta})$ finite for each θ . If T is a sufficient statistic for θ , then $\theta^* = \mathbb{E}_{\theta}(\hat{\theta}|T)$ is a statistic, and we have for all θ that

$$MSE_{\theta}(\theta^*) \leq MSE_{\theta}(\hat{\theta})$$
 (1)

and the inequality is strict unless $\hat{\theta}$ is a function of T with probability 1.

2.2 Simple Linear Regression

Consider the model function:

$$y = \beta_0 + \beta_1 x,$$

which describes a line with slope β_1 and y-intercept β_0 . In general, such a relationship may not hold exactly for the largely unobserved population of values of the independent and dependent variables; we call the unobserved deviations from the above equation the errors. Suppose we observe n data pairs and call them $\{(x_i, y_i), i = 1, ..., n\}$. We can describe the underlying relationship between y_i and x_i involving this error term ε_i by:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i.$$

This relationship between the true (but unobserved) underlying parameters β_0 and β_1 and the data points is called a linear regression model.

The goal is to find estimated values $\hat{\beta}_0$ and $\hat{\beta}_1$ for the parameters β_0 and β_1 which would provide the "best" fit in some sense for the data points. As mentioned in the introduction, in this article the "best" fit will be understood as in the least-squares approach: a line that minimizes the sum of squared residuals (see also Errors and residuals) $\hat{\epsilon}_i$ (differences between actual and predicted values of the dependent variable y), each of which is given by, for any candidate parameter values β_0 and β_1 :

$$\hat{\varepsilon}_i = y_i - \beta_0 - \beta_1 x_i.$$

In other words, $\hat{\beta}_0$ and $\hat{\beta}_1$ solve the following minimization problem:

Find
$$\min_{\beta_0,\beta_1} Q(\beta_0,\beta_1)$$
, for $Q(\beta_0,\beta_1) = \sum_{i=1}^n \hat{\varepsilon}_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$.

We assume that the response variable is normally distributed as follows:

$$Y_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2), \quad i = 1, \dots, n$$

such that the Y_i are independent and β_0 , β_1 , and σ are unknown parameters.

If $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$, and we let $S_{xy} = \sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}$, then it is easy to see that

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}).$$

Likelihood function

$$L(y_1, \dots, y_n | \beta_0, \beta_1, \sigma) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2\right)$$

Log-likelihood function

$$l(y_1, ..., y_n | \beta_0, \beta_1, \sigma) = c - n \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2$$

$$\frac{\partial l}{\partial \beta_0} = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i)) = 0$$

$$\frac{\partial l}{\partial \beta_1} = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i)) x_i = 0$$

$$\frac{\partial l}{\partial \sigma} = \frac{n}{\sigma} - \frac{1}{\sigma^3} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2 = 0$$

Let the solutions of the above equations be denoted as $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$ for β_0 , β_1 , σ^2 . If $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, then...

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x};$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}};$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \frac{1}{n} SSE.$$

Proposition

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Proof. The vector $\mathbf{y} - \hat{y}$ is perpendicular to $\hat{y} - \mathbf{1} \bar{y}$, thus the proposition is true by the Pythagorean theorem.

Proposition 1.4. The estimators $\hat{\beta}_0$, $\hat{\beta}_1$, $\frac{SSE}{n-2}$ are unbiased estimators of β_0 , β_1 , σ^2 respectively.

Proof. TODO

2.3 Simple Linear Regression with no intercept term

2.4 Comparative Analysis

3. Applications to Linear Regression throughOrigin

- 3.1 Something to add 1
- 3.2 Something to add 1

4. Theoretical results

- 4.1 A theoretical resilt
- 4.2 Towards some advanced topic

5. Programming simulations

6. Summary and closing words

 $?\langle ch: closing \rangle ?$

Bibliography

A. Program Codes

 $?\langle ap:codes \rangle ?$