Theorem (2.2.31). Let A, and B be subsets of a universal set U. $A \subseteq B \iff \overline{B} \subseteq \overline{A}$.

Proof. The proposition $A\subseteq B$ is equivalent to the universally quantified statement $\forall x(x\in A\implies x\in B)$. It is tautological that the propositional function in this statement is logically equivalent to its contrapositive form (satisfying the biconditional requirement.) That is, $\forall x(x\notin B\implies x\notin A)$ is the logically equivalent statement. By the definition for set complementation that is $\forall x(x\in \overline{B}\implies x\in \overline{A})$. By universal generalization $A\subseteq B\iff \overline{B}\subseteq \overline{A}$.