CSE 3010 – Data Structures & Algorithms Lecture #4

What will be covered today

- Understanding time complexity
- Differentiating best, average and worst case
- What is Big O notation

Running time of algorithms

- Time taken to execute the algorithm
- Known as time complexity

Easy to understand, code and debug the code

Run as fast as possible resulting in efficient use of resources

- 1. Program is run just a few times
- 2. Input size is small
- 3. Problem is simple

- Program is run again and again
- 2. Input size is large
- 3. Problem is complex

Understanding run time of a program

Assume time taken is 1 second for every instruction

Code	Time Taken
i = 1; j = 1; a = i + j;	4
<pre>if (a == b) printf("Yes\n"); else printf("No\n");</pre>	2
for (i = 0; i < 10; i++) printf("%d\n", i+1);	42
<pre>for (i = 0; i < 10; i++) for (j = i; j < i; j++) printf("%d\n, j+1);</pre>	?

Best case – Average case – Worst case of an algorithm

Scenario	Definition	Example
Best case	 At least time Minimum number of steps on input <i>n</i> Algorithmic behavior in 'optimal' conditions 	Element being searched is the first element in the list
Average case	On average timeAverage number of steps on input <i>n</i>	
Worst case	 At most time Maximum number of steps on input <i>n</i> Gives 'upper' bound on the time required by the algorithm 	Element being searched is the last element in the list

Measuring time complexity of a program

- Depends on
 - 1. Input to the program
 - 2. Quality of code generated by the compiler
 - 3. Speed of instructions computer uses to execute the program
- Defined as a function of the input

 Time complexity = Function of (input)

Measuring running time of a program

- Running time depends
 - Not on the exact input
 - Only on the size of the input
- Running time is specified as T(n)
- Growth rate of function is denoted using 'big o' as O
- Big O is the theoretical measure of the execution of an algorithm

Example: $T(n) = O(n^2)$