

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

pH-metric Result

logP (neutral XH) 3.16 ±0.01 (n=50) logP (X -) 0.23 ±0.03 (n=50)

18C-02009 Points 2 to 38

M08_octanol concentration factor 1.095
Carbonate 0.0863 mM
Acidity error -0.76941 mM

18C-02009 Points 39 to 63

M08_octanol concentration factor 0.769
Carbonate 0.0001 mM
Acidity error -0.70585 mM

18C-02009 Points 64 to 92

M08_octanol concentration factor 0.703 Carbonate 0.2882 mM Acidity error -0.43720 mM

Warnings and errors

Errors None Warnings None

pН

Sample logD and percent species

M08_octanol M08_octanol M08_octanol

	logD	M08_octanolH	M08_octanol	M08_octanolH*	M08_octanol*	
1.000	3.16	0.07 %	0.00 %	99.93 %	0.00 %	
1.200	3.16	0.07 %	0.00 %	99.93 %	0.00 %	Stomach pH
2.000	3.16	0.07 %	0.00 %	99.93 %	0.00 %	•
3.000	3.13	0.07 %	0.00 %	99.92 %	0.01 %	
4.000	2.95	0.07 %	0.04 %	99.82 %	0.07 %	
5.000	2.32	0.07 %	0.41 %	98.81 %	0.71 %	
6.000	1.40	0.06 %	3.75 %	89.77 %	6.42 %	
6.500	0.97	0.05 %	9.73 %	73.58 %	16.64 %	
7.000	0.61	0.03 %	19.59 %	46.86 %	33.52 %	
7.400	0.43	0.02 %	27.29 %	25.99 %	46.69 %	Blood pH
8.000	0.29	0.01 %	33.90 %	8.11 %	57.99 %	
9.000	0.24	0.00 %	36.57 %	0.87 %	62.56 %	
10.000	0.23	0.00 %	36.86 %	0.09 %	63.05 %	
11.000	0.23	0.00 %	36.89 %	0.01 %	63.10 %	
12.000	0.23	0.00 %	36.89 %	0.00 %	63.11 %	

M08_octanol

M08_octanol Comment

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Graphs (continued)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

pH-metric high logP Titration 1 of 3 18C-02009 Points 2 to 38

Overall results

RMSD 0.094
Average ionic strength 0.152 M
Average temperature 25.0°C
Partition ratio 0.0526 : 1

Analyte concentration range 2033.3 µM to 2105.6 µM

Total points considered 28 of 37

Warnings and errors

Errors None

Warnings One or more logP values out of range

Four-Plus parameters

Alpha	0.111	3/2/2018 8:29:22 PM	C:\Sirius_T3\HCl18C02.t3r
S	0.9988	3/2/2018 8:29:22 PM	C:\Sirius T3\HCl18C02.t3r
jΗ	1.0	3/2/2018 8:29:22 PM	C:\Sirius T3\HCl18C02.t3r
jОН	-0.8	3/2/2018 8:29:22 PM	C:\Sirius_T3\HCl18C02.t3r

Titrants

Sample

M08_octanol concentration factor 1.095
Acid pKa 1 4.22
logP (neutral XH) 3.13
logP (X -) -5.22

Sample graphs

Assay ID:

Sample name: M08_octanol Experiment start time: 3/2/2018 8:29:22 PM
Assay name: pH-metric high logP Analyst: Pion

pH-metric high logP Analyst: Pion 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Sample graphs (continued)

Sample logD and percent species

рН	M08_octanol	M08_octanol	M08_octanol	M08_octanol	M08_octanol	Comment
	logD	M08_octanolH	M08_octanol	M08_octanolH*	M08_octanol*	
1.000	3.13	1.38 %	0.00 %	98.62 %	0.00 %	
1.200	3.13	1.38 %	0.00 %	98.62 %	0.00 %	Stomach pH
2.000	3.13	1.38 %	0.01 %	98.61 %	0.00 %	
3.000	3.11	1.38 %	0.08 %	98.54 %	0.00 %	
4.000	2.93	1.37 %	0.82 %	97.81 %	0.00 %	
5.000	2.29	1.27 %	7.67 %	91.06 %	0.00 %	
6.000	1.35	0.75 %	45.38 %	53.86 %	0.00 %	
6.500	0.85	0.38 %	72.43 %	27.19 %	0.00 %	
7.000	0.35	0.15 %	89.26 %	10.59 %	0.00 %	
7.400	-0.05	0.06 %	95.43 %	4.51 %	0.00 %	Blood pH
8.000	-0.65	0.02 %	98.81 %	1.17 %	0.00 %	
9.000	-1.65	0.00 %	99.88 %	0.12 %	0.00 %	
10.000	-2.65	0.00 %	99.99 %	0.01 %	0.00 %	
11.000	-3.64	0.00 %	100.00 %	0.00 %	0.00 %	
12.000	-4.54	0.00 %	100.00 %	0.00 %	0.00 %	

Carbonate and acidity

Other graphs

Assay name: pH-metric high logP Analyst: **Pion** 18C-02009 Instrument ID: T312060 Assay ID: Filename:

C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Other graphs (continued)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

pH-metric high logP Titration 2 of 3 18C-02009 Points 39 to 63

Overall results

RMSD 0.061
Average ionic strength 0.158 M
Average temperature 25.0°C
Partition ratio 0.1728 : 1

Analyte concentration range 1712.1 µM to 1763.3 µM

Total points considered 12 of 25

Warnings and errors

Errors None

Warnings One or more logP values out of range

Four-Plus parameters

Alpha 0.111 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r S 0.9988 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r jH 1.0 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r jOH -0.8 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r

Titrants

Sample

M08_octanol concentration factor 0.769
Acid pKa 1 4.22
logP (neutral XH) 3.00
logP (X -) -5.22

Sample graphs

Assay ID:

Sample name: M08_octanol Experiment start time: 3/2/2018 8:29:22 PM

Assay name: pH-metric high logP Analyst: Pion 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Sample graphs (continued)

Sample logD and percent species

рН	M08_octanol logD	M08_octanol M08_octanolH	M08_octanol M08_octanol	M08_octanol M08_octanolH*	M08_octanol M08_octanol*	Comment
1.000	3.00	0.58 %	0.00 %	99.42 %	0.00 %	
1.200	3.00	0.58 %	0.00 %	99.42 %	0.00 %	Stomach pH
2.000	2.99	0.58 %	0.00 %	99.42 %	0.00 %	
3.000	2.97	0.58 %	0.03 %	99.39 %	0.00 %	
4.000	2.79	0.58 %	0.35 %	99.07 %	0.00 %	
5.000	2.15	0.56 %	3.38 %	96.06 %	0.00 %	
6.000	1.21	0.43 %	25.90 %	73.67 %	0.00 %	
6.500	0.71	0.28 %	52.50 %	47.23 %	0.00 %	
7.000	0.22	0.13 %	77.75 %	22.12 %	0.00 %	
7.400	-0.18	0.06 %	89.77 %	10.17 %	0.00 %	Blood pH
8.000	-0.78	0.02 %	97.22 %	2.77 %	0.00 %	
9.000	-1.78	0.00 %	99.71 %	0.28 %	0.00 %	
10.000	-2.78	0.00 %	99.97 %	0.03 %	0.00 %	
11.000	-3.77	0.00 %	100.00 %	0.00 %	0.00 %	
12.000	-4.65	0.00 %	100.00 %	0.00 %	0.00 %	

Carbonate and acidity

Other graphs

Assay name: pH-metric high logP Analyst: **Pion** 18C-02009 Instrument ID: T312060 Assay ID: Filename:

C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Other graphs (continued)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

pH-metric high logP Titration 3 of 3 18C-02009 Points 64 to 92

Overall results

RMSD 0.092
Average ionic strength 0.164 M
Average temperature 25.0°C
Partition ratio 0.6226 : 1

Analyte concentration range 1164.0 µM to 1189.2 µM

Total points considered 19 of 29

Warnings and errors

Errors None

Warnings One or more logP values out of range

Four-Plus parameters

 Alpha
 0.111
 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r

 S
 0.9988
 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r

 jH
 1.0
 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r

 jOH
 -0.8
 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r

Titrants

0.50 M HCI 0.999058 3/2/2018 8:29:22 PM C:\Sirius_T3\HCl18C02.t3r 0.50 M KOH 0.999845 3/2/2018 8:29:22 PM C:\Sirius_T3\KOH18B27.t3r

Sample

M08_octanol concentration factor 0.703 Acid pKa 1 4.22 logP (neutral XH) 2.87 logP (X -) -5.22

Sample graphs

Assay name: pH-metric high logP Analyst: Pion 18C-02009 Instrument ID: T312060 Assay ID:

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Sample graphs (continued)

Sample logD and percent species

pН	M08_octanol logD	M08_octanol M08_octanolH	M08_octanol M08_octanol	—	M08_octanol*	Comment
1.000	2.86	0.22 %	0.00 %	99.78 %	0.00 %	
1.200	2.86	0.22 %	0.00 %	99.78 %	0.00 %	Stomach pH
2.000	2.86	0.22 %	0.00 %	99.78 %	0.00 %	·
3.000	2.84	0.22 %	0.01 %	99.77 %	0.00 %	
4.000	2.66	0.22 %	0.13 %	99.65 %	0.00 %	
5.000	2.02	0.22 %	1.30 %	98.48 %	0.00 %	
6.000	1.08	0.19 %	11.64 %	88.17 %	0.00 %	
6.500	0.58	0.15 %	29.40 %	70.44 %	0.00 %	
7.000	0.08	0.09 %	56.84 %	43.06 %	0.00 %	
7.400	-0.32	0.05 %	76.79 %	23.16 %	0.00 %	Blood pH
8.000	-0.91	0.02 %	92.94 %	7.04 %	0.00 %	
9.000	-1.91	0.00 %	99.25 %	0.75 %	0.00 %	
10.000	-2.91	0.00 %	99.92 %	0.08 %	0.00 %	
11.000	-3.89	0.00 %	99.99 %	0.01 %	0.00 %	
12.000	-4.74	0.00 %	100.00 %	0.00 %	0.00 %	

Carbonate and acidity

Carbonate 0.288 mM Acidity error -0.437 mM

Other graphs

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Other graphs (continued)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Assay Model

Settings	Value	Date/Time changed	Imported from
Sample name	M08_octanol	2/27/2018 4:33:51 PM	User entered value
Sample by	Weight		Default value
Sample weight	0.000980 g	3/2/2018 5:08:22 PM	User entered value
Formula weight	293.32 g/mol	2/27/2018 4:33:51 PM	User entered value
Solubility	Unknown		Default value
Molecular weight	293.32	2/27/2018 4:33:51 PM	User entered value
Individual pKa ionic environments	No		Default value
Number of pKas	1	2/27/2018 4:33:51 PM	User entered value
Sample is a	Acid	2/27/2018 4:33:51 PM	User entered value
oKa 1	4.22	2/27/2018 4:33:51 PM	User entered value
ogP (neutral XH)	2.98	3/2/2018 3:22:58 PM	User entered value
logP (X -)	-5.22	3/2/2018 3:23:03 PM	User entered value

,	-5.22	3/2/20	10 0.20.00 1 10	o o o o o o o o o o o o o o o o o o o	ica value	•			
3									
Event	Water	Acid	Base	Octanol	рН	dpH/dt	pH R-squared	pH SD	dpH time
Manual volume addition Initial pH = 5.13				0.08000 mL					
Data point 2	1.50000 mL	0.00000 mL	0.00680 mL	0.08000 mL	10.746	-0.11246	0.99456	0.00557	Time out at
Data point 3	1.50000 mL	0.00042 mL	0.00680 mL	0.08000 mL	10.400	0.01868	0.91894	0.00096	
Data point 4	1.50000 mL	0.00092 mL	0.00680 mL	0.08000 mL	10.058	0.01821	0.90743	0.00094	-
Data point 5	1.50000 mL	0.00125 mL	0.00680 mL	0.08000 mL	9.666	-0.01373	0.55829	0.00091	-
Data point 6	1.50000 mL	0.00143 mL	0.00680 mL	0.08000 mL	9.296	-0.01475	0.60041	0.00094	-
Data point 7	1.50000 mL	0.00155 mL	0.00680 mL	0.08000 mL	8.888	-0.01820	0.87464	0.00096	-
Data point 8	1.50000 mL	0.00162 mL	0.00680 mL	0.08000 mL	8.376	-0.01780	0.85957	0.00095	49.0 s
Data point 9	1.50000 mL	0.00169 mL	0.00680 mL	0.08000 mL	7.991	0.00108	0.00290	0.00099	-
Data point 10	1.50000 mL	0.00179 mL	0.00680 mL	0.08000 mL	7.676	0.01522	0.69377	0.00090	17.0 S
Data point 11	1.50000 mL	0.00193 mL	0.00680 mL	0.08000 mL	7.439	0.01692	0.86099	0.00090	17.0 s
Data point 12	1.50000 mL	0.00216 mL	0.00680 mL	0.08000 mL	7.216	0.01704	0.82585	0.00093	-
Data point 13	1.50000 mL	0.00247 mL	0.00680 mL	0.08000 mL	7.024	0.01724	0.88730	0.00090	-
Data point 14	1.50000 mL	0.00287 mL	0.00680 mL	0.08000 mL	6.840	0.01697	0.84626	0.00091	16.0 s
Data point 15	1.50000 mL	0.00339 mL	0.00680 mL	0.08000 mL	6.669	0.01841	0.84076	0.00099	-
Data point 16	1.50000 mL	0.00395 mL	0.00680 mL	0.08000 mL	6.504	0.01741	0.89494	0.00091	17.0 s
Data point 17	1.50000 mL	0.00494 mL	0.00680 mL	0.08000 mL	6.285	0.01783	0.92060	0.00092	-
Data point 18	1.50000 mL	0.00571 mL	0.00680 mL	0.08000 mL	6.116	0.01844	0.92964	0.00095	
Data point 19	1.50000 mL	0.00651 mL	0.00680 mL	0.08000 mL	5.916	0.01893	0.91741	0.00098	
Data point 20	1.50000 mL	0.00727 mL	0.00680 mL	0.08000 mL	5.710	0.01949	0.97281	0.00098	s 16.0
	Event Manual volume addition Initial pH = 5.13 Data point 2 Data point 3 Data point 4 Data point 5 Data point 6 Data point 7 Data point 8 Data point 9 Data point 10 Data point 11 Data point 12 Data point 13 Data point 14 Data point 15 Data point 15 Data point 16 Data point 17 Data point 17 Data point 17 Data point 18 Data point 19	Event Water Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL Data point 3 1.50000 mL Data point 4 1.50000 mL Data point 5 1.50000 mL Data point 6 1.50000 mL Data point 7 1.50000 mL Data point 8 1.50000 mL Data point 10 1.50000 mL Data point 11 1.50000 mL Data point 12 1.50000 mL Data point 13 1.50000 mL Data point 14 1.50000 mL Data point 15 1.50000 mL Data point 16 1.50000 mL Data point 17 1.50000 mL Data point 18 1.50000 mL Data point 19 1.50000 mL	Event Water Acid Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.00000 mL Data point 3 1.50000 mL 0.00042 mL Data point 4 1.50000 mL 0.00092 mL Data point 5 1.50000 mL 0.00125 mL Data point 6 1.50000 mL 0.00143 mL Data point 7 1.50000 mL 0.00155 mL Data point 8 1.50000 mL 0.00162 mL Data point 9 1.50000 mL 0.00169 mL Data point 10 1.50000 mL 0.00179 mL Data point 11 1.50000 mL 0.00193 mL Data point 12 1.50000 mL 0.00246 mL Data point 13 1.50000 mL 0.00247 mL Data point 14 1.50000 mL 0.00287 mL Data point 15 1.50000 mL 0.00339 mL Data point 16 1.50000 mL 0.00395 mL Data point 18 1.50000 mL 0.00571 mL Data point 19 1.50000 mL 0.00571 mL	Event Water Acid Base Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.000000 mL 0.00680 mL Data point 3 1.50000 mL 0.00042 mL 0.00680 mL Data point 4 1.50000 mL 0.00125 mL 0.00680 mL Data point 5 1.50000 mL 0.00125 mL 0.00680 mL Data point 6 1.50000 mL 0.00155 mL 0.00680 mL Data point 7 1.50000 mL 0.00162 mL 0.00680 mL Data point 8 1.50000 mL 0.00162 mL 0.00680 mL Data point 9 1.50000 mL 0.00169 mL 0.00680 mL Data point 10 1.50000 mL 0.00179 mL 0.00680 mL Data point 11 1.50000 mL 0.00216 mL 0.00680 mL Data point 12 1.50000 mL 0.00247 mL 0.00680 mL Data point 13 1.50000 mL 0.00287 mL 0.00680 mL Data point 14 1.50000 mL 0.00339 mL 0.00680 mL Data point 15 1.50000 mL 0.00494 mL 0.00680 mL Data	Event Water Acid Base Octanol Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.00000 mL 0.00680 mL 0.08000 mL Data point 3 1.50000 mL 0.00042 mL 0.00680 mL 0.08000 mL Data point 4 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL Data point 5 1.50000 mL 0.00125 mL 0.00680 mL 0.08000 mL Data point 6 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL Data point 7 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL Data point 8 1.50000 mL 0.00169 mL 0.00680 mL 0.08000 mL Data point 9 1.50000 mL 0.00169 mL 0.00680 mL 0.08000 mL Data point 10 1.50000 mL 0.00179 mL 0.00680 mL 0.08000 mL Data point 11 1.50000 mL 0.00179 mL 0.00680 mL 0.08000 mL Data point 12 1.50000 mL 0.00216 mL 0.00680 mL 0.08000 mL Data point 13 1.50000 mL 0.002247 mL <td>Event Water Acid Base Octanol pH Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.00000 mL 0.00680 mL 0.08000 mL 10.746 Data point 3 1.50000 mL 0.00042 mL 0.00680 mL 0.08000 mL 10.400 Data point 4 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL 10.058 Data point 5 1.50000 mL 0.00125 mL 0.00680 mL 0.08000 mL 9.666 Data point 6 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL 9.296 Data point 7 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL 8.888 Data point 8 1.50000 mL 0.00162 mL 0.00680 mL 0.08000 mL 8.376 Data point 9 1.50000 mL 0.00169 mL 0.00680 mL 0.08000 mL 7.676 Data point 10 1.50000 mL 0.00179 mL 0.00680 mL 0.08000 mL 7.439 Data point 12 1.50000 mL 0.00216 mL 0.00680 mL 0.08000 mL 7.216</td> <td>Event Water Acid Base Octanol pH dpH/dt Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.00000 mL 0.00680 mL 0.08000 mL 10.746 -0.11246 Data point 3 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL 10.400 0.01868 Data point 4 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL 10.058 0.01821 Data point 5 1.50000 mL 0.00125 mL 0.00680 mL 0.08000 mL 10.058 0.01821 Data point 6 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL 9.296 -0.01475 Data point 7 1.50000 mL 0.00162 mL 0.00680 mL 0.08000 mL 8.376 -0.01780 Data point 8 1.50000 mL 0.00169 mL 0.00680 mL 0.08000 mL 7.991 0.001780 Data point 9 1.50000 mL 0.00169 mL 0.00680 mL 0.08000 mL 7.676 0.01522 Data point 10 1.50000 mL 0.00179 mL 0.00680 mL 0.08000 m</td> <td>Event Water Acid Base Octanol pH dpH/dt pH R-squared Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.00000 mL 0.00680 mL 10.746 -0.11246 0.99456 Data point 3 1.50000 mL 0.00042 mL 0.00680 mL 0.08000 mL 10.746 -0.11246 0.99456 Data point 3 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL 10.040 0.01868 0.91894 Data point 4 1.50000 mL 0.00125 mL 0.00680 mL 0.08000 mL 10.058 0.01821 0.90743 Data point 5 1.50000 mL 0.00143 mL 0.00680 mL 0.08000 mL 9.666 -0.01373 0.55829 Data point 6 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL 8.888 -0.01475 0.60041 Data point 7 1.50000 mL 0.00162 mL 0.00680 mL 0.08000 mL 8.376 -0.01780 0.85957 Data point 9 1.50000 mL 0.00179 mL 0.00680 mL 0.08000 mL 7.676</td> <td> Name</td>	Event Water Acid Base Octanol pH Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.00000 mL 0.00680 mL 0.08000 mL 10.746 Data point 3 1.50000 mL 0.00042 mL 0.00680 mL 0.08000 mL 10.400 Data point 4 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL 10.058 Data point 5 1.50000 mL 0.00125 mL 0.00680 mL 0.08000 mL 9.666 Data point 6 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL 9.296 Data point 7 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL 8.888 Data point 8 1.50000 mL 0.00162 mL 0.00680 mL 0.08000 mL 8.376 Data point 9 1.50000 mL 0.00169 mL 0.00680 mL 0.08000 mL 7.676 Data point 10 1.50000 mL 0.00179 mL 0.00680 mL 0.08000 mL 7.439 Data point 12 1.50000 mL 0.00216 mL 0.00680 mL 0.08000 mL 7.216	Event Water Acid Base Octanol pH dpH/dt Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.00000 mL 0.00680 mL 0.08000 mL 10.746 -0.11246 Data point 3 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL 10.400 0.01868 Data point 4 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL 10.058 0.01821 Data point 5 1.50000 mL 0.00125 mL 0.00680 mL 0.08000 mL 10.058 0.01821 Data point 6 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL 9.296 -0.01475 Data point 7 1.50000 mL 0.00162 mL 0.00680 mL 0.08000 mL 8.376 -0.01780 Data point 8 1.50000 mL 0.00169 mL 0.00680 mL 0.08000 mL 7.991 0.001780 Data point 9 1.50000 mL 0.00169 mL 0.00680 mL 0.08000 mL 7.676 0.01522 Data point 10 1.50000 mL 0.00179 mL 0.00680 mL 0.08000 m	Event Water Acid Base Octanol pH dpH/dt pH R-squared Manual volume addition Initial pH = 5.13 Data point 2 1.50000 mL 0.00000 mL 0.00680 mL 10.746 -0.11246 0.99456 Data point 3 1.50000 mL 0.00042 mL 0.00680 mL 0.08000 mL 10.746 -0.11246 0.99456 Data point 3 1.50000 mL 0.00092 mL 0.00680 mL 0.08000 mL 10.040 0.01868 0.91894 Data point 4 1.50000 mL 0.00125 mL 0.00680 mL 0.08000 mL 10.058 0.01821 0.90743 Data point 5 1.50000 mL 0.00143 mL 0.00680 mL 0.08000 mL 9.666 -0.01373 0.55829 Data point 6 1.50000 mL 0.00155 mL 0.00680 mL 0.08000 mL 8.888 -0.01475 0.60041 Data point 7 1.50000 mL 0.00162 mL 0.00680 mL 0.08000 mL 8.376 -0.01780 0.85957 Data point 9 1.50000 mL 0.00179 mL 0.00680 mL 0.08000 mL 7.676	Name

Reported at: 3/6/2018 10:59:50 AM

s

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Events (continued)

										,
Time	Event	Water	Acid	Base	Octanol	рН	dpH/dt	pH R-squared		dpH/dt time
27:23.2	Data point 21							0.96079	0.00096	
28:21.0	Data point 22							0.88513	0.00096	
29:12.6	Data point 23	1.50000 mL	0.00870 mL	0.00680 mL	0.08000 mL	5.036	0.05948	0.99622	0.00294	Timed out at
0	= : : : : : : : : : : : : : : : : : : :	. = 2000				: 204		3.0000		59.5 s
30:53.3	Data point 24	1.50000 mL	0.00891 mL	0.00680 mL	0.08000 mL	4.931	0.05785	0.99230	0.00287	Timed out at
00.40.7	Data point OF	4 50000 ml	0 00012 ml	0.00000 ml	0.00000 ml	4 406	0.04040	0.00040	0.00000	59.5 s
32:18.7	Data point 25							0.93912		
33:22.3 34:23.5	Data point 26							0.92386	0.00099	
34:23.5 34:59.4	Data point 27							0.92889	0.00083	
34:59.4 35:50.2	Data point 28							0.93122 0.86827	0.00062	
36:25.7	Data point 29 Data point 30							0.06082	0.00064 0.00016	
36.23.7 37:01.6	Data point 31							0.66841	0.00018	
37:01.6 37:37.1	Data point 32							0.17037	0.00018	
38:12.6	Data point 32								0.00045	
38:48.2	Data point 34								0.00010	
39:23.8	Data point 35								0.00093	
39:59.3	Data point 36								0.00027	
40:35.0	Data point 37								0.00073	
40.33.0 41:10.9	Data point 38								0.00038	
41.10.9 42:18.9	Data point 39									Timed out at
42.10.5	Data point 00	1.50000 1112	0.00007 IIIL	0.00047 IIIL	0.20000 IIIL	1. 7 01	-U. I-TU-TU	0.33322	0.00121	59.5 s
43:49.4	Data point 40	1 50000 ml	0 05670 ml	∩ ∩5847 ml	0 28000 ml	7 103	-∩ ∩1286	0.42347	0.00098	
45:49.4 45:01.7	Data point 41							0.94814	0.00096	
45:58.4	Data point 42							0.89638	0.00090	
47:00.7	Data point 43							0.91840	0.00100	
48:03.4	Data point 44							0.85197	0.00099	
49:04.1	Data point 45							0.93095	0.00099	
50:06.3	Data point 46							0.97913	0.00004	
50:00:5 51:04.1	Data point 47							0.89690	0.00100	
51:48.5	Data point 48							0.96361	0.00098	
52:35.6	Data point 49							0.94099	0.00099	
53:22.2	Data point 50							0.77173	0.00095	
54:04.2	Data point 51							0.83644	0.00099	
54:50.4	Data point 51							0.11201	0.00040	
55:41.2	Data point 53							0.23344	0.00020	
56:32.1	Data point 54							0.54450	0.00030	
57:23.0	Data point 55								0.00025	
58:08.8	Data point 56								0.00033	
58:44.2	Data point 57								0.00046	
59:19.7	Data point 58								0.00093	
59:55.3	Data point 59								0.00046	
1:00:30.9									0.00077	
	Data point 61								0.00064	
	Data point 62								0.00071	
	Data point 63								0.00058	
										Timed out at
	= p	• • • • • •		•	••••		***	••••		59.5 s
1:05:41.5	Data point 65	1.50000 mL	0.11312 mL	0.11660 mL	1.08000 mL	7.914	-0.01009	0.17302	0.00120	Timed out at
	- G							••••	•	59.5 s
1:07:17.2	Data point 66	1.50000 mL	0.11350 mL	0.11660 mL	1.08000 mL	7.574	0.00521	0.07080	0.00097	
	Data point 67							0.15435	0.00097	
	Data point 68							0.60986	0.00092	
	Data point 69							0.79037	0.00079	
	Data point 70							0.64775	0.00100	
	Data point 71							0.87072	0.00098	
	Data point 72							0.74484	0.00092	
i	•									

Reported at: 3/6/2018 10:59:50 AM

Assay Events

Sample name: M08_octanol Experiment start time: 3/2/2018 8:29:22 PM

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Events (continued)

Time	Event	Water	Acid	Base	Octanol	рН	dpH/dt	pH R-squared	pH SD	dpH/dt time
1:15:00.9	Data point 73	1.50000 mL	0.11750 mL	0.11660 mL	1.08000 mL	6.048	0.00782	0.18941	0.00089	23.5 s
1:16:00.0	Data point 74	1.50000 mL	0.11771 mL	0.11660 mL	1.08000 mL	5.859	0.00920	0.23435	0.00094	21.5 s
1:16:46.9	Data point 75	1.50000 mL	0.11785 mL	0.11660 mL	1.08000 mL	5.634	0.01897	0.91284	0.00098	24.0 s
1:17:41.5	Data point 76	1.50000 mL	0.11797 mL	0.11660 mL	1.08000 mL	5.426	0.01127	0.33431	0.00097	18.0 s
1:18:30.1	Data point 77	1.50000 mL	0.11816 mL	0.11660 mL	1.08000 mL	4.860	0.01580	0.66582	0.00096	22.5 s
1:19:28.2	Data point 78	1.50000 mL	0.11827 mL	0.11660 mL	1.08000 mL	4.601	-0.00526	0.07244	0.00097	11.5 s
1:20:10.2	Data point 79	1.50000 mL	0.11837 mL	0.11660 mL	1.08000 mL	4.394	0.01090	0.29750	0.00099	21.5 s
1:20:57.2	Data point 80	1.50000 mL	0.11848 mL	0.11660 mL	1.08000 mL	4.228	0.00338	0.03554	0.00089	10.5 s
1:21:53.7	Data point 81	1.50000 mL	0.11874 mL	0.11660 mL	1.08000 mL	3.988	-0.01055	0.71176	0.00062	10.0 s
1:22:39.4	Data point 82	1.50000 mL	0.11903 mL	0.11660 mL	1.08000 mL	3.791	-0.01849	0.93115	0.00095	10.5 s
1:23:15.3	Data point 83	1.50000 mL	0.11945 mL	0.11660 mL	1.08000 mL	3.591	-0.01497	0.62245	0.00094	10.0 s
1:23:50.8	Data point 84	1.50000 mL	0.12011 mL	0.11660 mL	1.08000 mL	3.403	0.01050	0.27436	0.00099	18.0 s
1:24:34.2	Data point 85	1.50000 mL	0.12114 mL	0.11660 mL	1.08000 mL	3.213	0.00072	0.00159	0.00089	25.5 s
1:25:25.3	Data point 86	1.50000 mL	0.12274 mL	0.11660 mL	1.08000 mL	3.027	-0.00532	0.13136	0.00073	10.5 s
1:26:01.3	Data point 87	1.50000 mL	0.12517 mL	0.11660 mL	1.08000 mL	2.849	-0.00610	0.09602	0.00097	25.0 s
1:26:51.9	Data point 88	1.50000 mL	0.12888 mL	0.11660 mL	1.08000 mL	2.672	-0.01765	0.96186	0.00089	10.0 s
1:27:27.4	Data point 89	1.50000 mL	0.13450 mL	0.11660 mL	1.08000 mL	2.475	-0.00467	0.05593	0.00097	24.5 s
1:28:17.7	Data point 90	1.50000 mL	0.14344 mL	0.11660 mL	1.08000 mL	2.286	-0.01613	0.73740	0.00093	13.5 s
1:28:56.9	Data point 91	1.50000 mL	0.15753 mL	0.11660 mL	1.08000 mL	2.098	0.00368	0.03491	0.00097	20.5 s
1:29:43.3	Data point 92	1.50000 mL	0.17368 mL	0.11660 mL	1.08000 mL	1.955	0.00356	0.03439	0.00095	19.5 s
1:30:11.8	Assay volumes	1.50000 mL	0.17368 mL	0.11660 mL	1.08000 mL					

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Filename: C:\Sirius_T3\Meh	tap\20180302_exp2	9_logP_T3-2\180	C-02009_M08_octano	I_pH-metric high logI
Assay Settings				
Setting	Value	Original Value	Date/Time changed	Imported from
General Settings				
Analyst name	Pion			
Standard Experiment Settings				
Number of titrations	3			
Minimum pH	2.000			
Maximum pH	10.000			
pH step between points of	0.200			
Minimum titrant addition	0.00002 mL			
Maximum titrant addition	0.10000 mL			
Argon flow rate	100%			
Start titration using	Cautious pH adjust			
Advanced General Settings	Oddilodo pri dajast			
Detect turbidity using	None			
Collect turbidity sensor data	No			
Collect UV spectra	No			
Stir after titrant addition for	5 seconds			
For titrant addition, stir at	10%			
Titrant Pre-Dose				
Titrant pre-dose	None			
Assay Medium				
ISA water volume	1.50 mL			
Water added	Automatic			
Partition solvent type	Octanol			
Partition volume	0.080 mL			
Partition solvent added	Manual in advance			
After partition addition, stir for	1 seconds			
Sample Sonication	1 30001103			
Sonicate	Yes			
Adjust pH for sonication	No 120 seconds			
Sonicate for	120 seconds			
After sonication stir for	5 seconds			
Sample Dissolution				
Perform a dissolution stage	Yes			
Adjust and hold pH for dissolution				
Stir to dissolve for	120 seconds			
For dissolution, stir at	10%			
Carbonate purge				
Perform a carbonate purge	No			
Temperature Control				
Wait for temperature	Yes			
Required start temperature	25.0°C			
Acceptable deviation	0.5°C			
Time to wait	60 seconds			
Stir speed of	50%			
Titration 1	30 /0			
	Liliada Aa Jassi ad J			
Titrate from	High to low pH			
Adjust to start pH	Yes			
After pH adjust stir for	30 seconds			
Stir to allow partitioning for	15 seconds			
Stirrer speed for partitioning	50%			
Titration 2				
Titrate from	High to low pH			
Add additional water	0.00 mL			
Additional partition solvent volume	0.200 mL			
Additional partition solvent added	Automatic			
After pu adjust stir for	30 seconds			

Reported at: 3/6/2018 10:59:50 AM

30 seconds 15 seconds

55%

After pH adjust stir for Stir to allow partitioning for

Stirrer speed for partitioning

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Assay Settings (continued)

Value	Original Value	Date/Time changed	Imported from
	•	_	•
High to low pH			
0.00 mL			
0.800 mL			
Automatic			
30 seconds			
15 seconds			
60%			
No			
0 seconds			
20 points			
0.50 seconds			
0.00100 dpH/dt			
60 seconds			
	0.00 mL 0.800 mL Automatic 30 seconds 15 seconds 60% No 0 seconds 20 points 0.50 seconds 0.00100 dpH/dt	High to low pH 0.00 mL 0.800 mL Automatic 30 seconds 15 seconds 60% No 0 seconds 20 points 0.50 seconds 0.00100 dpH/dt	High to low pH 0.00 mL 0.800 mL Automatic 30 seconds 15 seconds 60% No 0 seconds 20 points 0.50 seconds 0.00100 dpH/dt

Calibration Settings

Value	Date/Time changed	Imported from
0.111	3/2/2018 8:29:22 PM	C:\Sirius_T3\HCl18C02.t3r
0.9988	3/2/2018 8:29:22 PM	C:\Sirius_T3\HCl18C02.t3r
1.0	3/2/2018 8:29:22 PM	C:\Sirius_T3\HCl18C02.t3r
-0.8	3/2/2018 8:29:22 PM	C:\Sirius_T3\HCl18C02.t3r
1.000	3/2/2018 8:29:22 PM	C:\Sirius_T3\KOH18B27.t3r
0.999	3/2/2018 8:29:22 PM	C:\Sirius_T3\HCl18C02.t3r
	0.111 0.9988 1.0 -0.8 1.000	0.111 3/2/2018 8:29:22 PM 0.9988 3/2/2018 8:29:22 PM 1.0 3/2/2018 8:29:22 PM -0.8 3/2/2018 8:29:22 PM 1.000 3/2/2018 8:29:22 PM

Instrument Settings

Setting Instrument owner Instrument ID Instrument type Software version	Value Merck T312060 T3 Simulator 1.1.3.0	Batch Id	Install date
Dispenser module	1.1.0.0	T3DM1200361	3/31/2009 5:24:52 AM
Dispenser 0 Syringe volume Firmware version	Water 2.5 mL 1.2.1(r2)		3/31/2009 5:25:05 AM
Titrant	Water (0.15 M KCI)	02-06-2018	2/27/2018 10:05:59 AM
Dispenser 2 Syringe volume Firmware version	Acid 0.5 mL 1.2.1(r2)		3/31/2009 5:25:11 AM
Titrant	Acid (0.5 M HCI)	02-27-2018	2/27/2018 10:27:22 AM
Dispenser 1 Syringe volume Firmware version	Base 0.5 mL 1.2.1(r2)		3/31/2009 5:25:21 AM
Titrant	Base (0.5 M KOH)	9/22/2017	2/27/2018 10:21:22 AM
Dispenser 5 Syringe volume Firmware version	Cosolvent 2.5 mL 1.2.1(r2)		3/31/2009 5:26:24 AM
Distribution valve 5 Firmware version	Distribution Valve 1.1.3		3/31/2009 5:28:19 AM
Port A Port B Dispenser 3	Methanol (80%, 0.15 M KCI) Cyclohexane Buffer	09-26-17 11-01-17	2/7/2018 9:42:01 AM 2/27/2018 10:37:57 AM 8/3/2010 5:05:16 AM
Syringe volume Firmware version Titrant Dispenser 6	0.5 mL 1.2.1(r2) Dodecane Octanol	2018/01/31	2/28/2018 10:18:04 AM 10/22/2010 10:52:43 AM

Reported at: 3/6/2018 10:59:50 AM

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Instrument Settings (continued)

Firmware version 12.1(r2) Octanol Octanol Octanol Titrator Octanol Oct	Setting Syringe volume	Value 0.5 mL	Batch Id	Install date
Titrath Catalo				
Horizontal axis firmware version				
Vertical axis firmware version			T3TM1200161	3/31/2009 5:24:17 AM
Chassis I/O firmware version				
Probe				
Electrode				
E0 calibration			T3E0923	1/23/2018 2:01:00 PM
Liquids Wash 1 Wash 2 Buffer position 1 Buffer position 1 Buffer position 2 Storage position Wash water 7.3e+003 mL Wash 2 Storage position Wash water 7.3e+003 mL Wash 2 Storage position Wash water 7.3e+003 mL Sepectrometer Turbidity detector Spectrometer Turbidity detector Spectrometer Dip probe Wavelength coefficient A0 Wavelength coefficient A1 Wavelength coefficient A1 Wavelength coefficient A2 Calibrated on Integration time Scans averaged 10 Autoloader Left-right axis firmware version Chassis I/Co firmware version Chassis I/Co firmware version Alternate titration position Alternate titration position Alternate titration position Alternate reference position Maximum alternate vial volume Maximum alternate vial volume Maximum alternate vial volume Maximum alternate vial volume Automatic action idle period Titration position Flowing wash pump volume Flowing wash pump volume Flowing wash stir duration Solvent wash stir duration E0 calibration maximum standard deviation E0 calibration minimum numbar of points E0 calibration minimum mumbar of points E0 calibration buffer wash stir duration E0 calibration minimum mumbar of points E0 calibration buffer wash stir duration E0 calibration buffer wash stir duration E0 calibration buffer wash stir speed E0 calibration buffer wash stir duration E0 calibration buffer wash stir speed E0 calibration buffer wash stir duration E0 calibration buffer wash stir speed E0 calibration buffer wash stir duration E0 calibration buffer wash stir speed E0 calibration buffer wash stir speed E0 calibration buffer wash stir duration E0 calibration buffer wash stir spee				
Wash 1		3M KCI	KCL097	3/2/2018 9:43:24 AM
Wash 2 0.5% Trition X-100 in H20 3/2/2018 9:45:15 AM Buffer position 1 pH7 Wash yH 7 3/2/2018 9:45:18 AM Buffer position 2 pH 7 3/2/2018 9:45:21 AM Storage position 3 yH 7 3/2/2018 9:45:21 AM Wash water	•			0/0/0040 0 45 40 44
Buffer position 1 Buffer position 2 PH7 Wash 31/2/2018 9:45:18 AM PH7 Storage position 2 Storage position 3 37/2018 9:44:44 AM 37/2/2018 9:54:39 AM 37/2/2018 9:54:49 AM 37/2/2018 9:24:49 AM 37/2/2018 9:54:49 AM 37/2/2018 9:54:				
Buffer position 2 Storage position Storage position Wash water 7.3e+003 mL 02-27-2018 2/27/2018 9:54:39 AM Waste 8.2e+003 mL 01/28/2017 10:36:29 AM Turbidity detector 8.2e+003 mL 11/28/2017 10:36:29 AM 3/31/2009 5:24:45 AM 3/31/2009 5:24:45 AM Spectrometer 074811 10196 11/23/2010 11:22:28 AM Spectrometer 0.000289308 10/2011 11/23/2010 11:22:28 AM Spectrometer 0.000289308 10/2011 11/23/2010 11:22:28 AM 11/23/2010 11:22:28 AM Spectrometer 0.000289308 11/23/2010 11:22:28 AM 11/23/2010 11:22:28 AM Spectrometer 0.000289308 11/23/2010 11:22:28 AM Spectrometer 0.000289308 11/23/2010 11:22:28 AM Spectrometer 0.000289308 11/23/2010 11:22:28 AM 11/23/2010 11:22:28 AM Spectrometer 0.000289308 11/23/2010 11:22:28 AM Spectrometer 0.000289308 11/23/2010 11:22:28 AM Spectrometer 0.000289308 11/23/2010 11:22:28 AM Spectrometer				
Storage position Wash water				
Wash water 7.3e+003 mL 02-27-2018 2/27/2018 9:54:39 AM Waste 8.2e+003 mL 11/28/2017 10:36:29 AM Temperature controller 3/31/2009 5:24:45 AM Turbidity detector 074811 11/23/2010 11:22:28 AM Dip probe 10196 11/23/2010 11:22:28 AM Wavelength coefficient A0 183.333 10196 Wavelength coefficient A1 2.21568 10196 Wavelength coefficient A2 -0.000289308 11/23/2010 11:22:28 AM Calibrated on Integration time 10241:49 11/23/2010 11:22:28 AM Calibrated on Integration time 2/27/2018 10:40:38 AM 11/23/2010 11:22:28 AM Left-right axis firmware version 1.17 AI 1DI2DO2 Stepper 2 1.17 AI 1DI2DO2 Stepper 2 Front-back axis firmware version 1.17 AI 1DI2DO2 Stepper 2 1.17 AI 1DI2DO2 Stepper 2 Chassis I/O firmware version 1.17 AI 1DI2DO2 Stepper 2 1.17 AI 1DI2DO2 Stepper 2 Chassis I/O firmware version 1.17 AI 1DI2DO2 Stepper 2 1.17 AI 1DI2DO2 Stepper 2 Chassis I/O firmware version 1.17 AI 1DI2DO3 Stepper 2 1.17 AI 1DI2DO3 Stepper 2 Total axis firmware version 1.17 A		pri i		
Temperature controller		7.3e+003 mL	02-27-2018	
Turibidity detector	Waste	8.2e+003 mL		
Spectrométer				
Dip probe			074044	
Wavelength coefficient A0 183.333 Wavelength coefficient A1 2.21568 Wavelength coefficient A2 -0.000289308 Total lamp lit time 120.41.49 11/23/2010 11:22:28 AM Calibrated on Integration time 40 11/23/2010 11:22:28 AM Scans averaged 10 T3AL1200345 11/10/2015 9:34:13 AM Left-right axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version <td></td> <td></td> <td></td> <td>11/23/2010 11:22:28 AM</td>				11/23/2010 11:22:28 AM
Wavelength coefficient A1 Wavelength coefficient A2 Total lamp lit time Calibrated on Integration time Scans averaged Autoloader Left-right axis firmware version Chassis I/O firmware version Alternate titration position Alternate titration position Alternate reference position Maximum atlernate vial volume Automatic action idle period Titrant tube volume Automatic action idle period Titrant tube volume Syringe flush count Flowing wash stir duration Solvent wash stir duration Solvent wash stir speed Solvent wash stir duration E0 calibration maximum standard deviation E0 calibration minimum number of points E0 calibration buffer wash stir speed E0 calibration buffer wash stir duration E1 22.727.2018 10:40:38 AM E12.727.2018 10:40:40:38 AM E12.727.2018 10:40:203 AM E12.727.2018 10:40:203 E4 E1.727.2018 10:40:203 E4 E1.727.20		183 333	10196	
Wavelength coefficient A2 -0.000289308 Total lamp lit time 120.41:49 11/23/2010 11:22:28 AM Calibrated on 2/27/2018 10:40:38 AM 11/23/2010 11:22:28 AM Integration time 40 3 Scans averaged 10 13AL1200345 11/10/2015 9:34:13 AM Left-right axis firmware version 1.17 Al1Dl2DO2 Stepper 2 11/10/2015 9:34:13 AM Vertical axis firmware version 1.17 Al1Dl2DO2 Stepper 2 1.17 Al1Dl2DO2 Stepper 2 Chassis I/O firmware version 1.17 Al1Dl2DO2 Stepper 2 1.17 Al1Dl2DO2 Stepper 2 Chassis I/O firmware version 1.11 Al1Dl0DO4 Norgren I/O 1.11 Al1Dl0DO4 Norgren I/O Configuration Titration position Reference position Alternate reference position Reference position Maximum standard vial volume 3.50 mL Maximum alternate vial volume 3.50 mL Automatic action idle period 5 minute(s) Titrant tube volume 1.3 mL Syringe flush count 3.50 Flowing wash stir duration 5 s Solvent wash stir gpeed 30% Solvent wash stir durati				
Total lamp lit time Calibrated on 2/27/2018 10:40:38 AM Integration time Scans averaged 10 Autoloader T3AL1200345 11/10/2015 9:34:13 AM Left-right axis firmware version 1.17 Al1DI2DO2 Stepper 2 Front-back axis firmware version 1.17 Al1DI2DO2 Stepper 2 Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 Chassis I/O firmware version 1.11 Al1DI2DO2 Stepper 2 Ochiguration Alternate titration position Alternate reference position Maximum standard vial volume 3.50 mL Automatic action idle period 5 minute(s) Titrant tube volume 1.3 mL Syringe flush count 9.00 mL Flowing wash pump volume 20.0 mL Flowing wash pump volume 20.0 mL Flowing wash stir duration 5 s Solvent wash stir speed 30% Surfactant wash stir speed 30% E0 calibration maximum standard deviation E0 calibration immum number of points E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration preparation stir speed 5 s E0 calibration buffer wash stir speed 30% E0 calibration buffer wash stir speed 30% E0 calibration buffer wash stir speed 30%				
Integration time Scans averaged Autoloader Left-right axis firmware version Left-right axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Front-back axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Vertical axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Vertical axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Chassis I/O firmware version 1.11 Al1DlDDO4 Norgren I/O Configuration Alternate itration position Alternate reference position Maximum standard vial volume Maximum standard vial volume Automatic action idle period Titrant tube volume 1.3 mL Syringe flush count Flowing wash pump volume 1.3 mL Syringe flush count Flowing wash stir duration Solvent wash stir duration Solvent wash stir duration Solvent wash stir duration Solvent wash stir duration 5 s Solvent wash stir speed 30% Surfactant wash stir speed 30% E0 calibration minimum number of points E0 calibration maximum standard deviation E0 calibration stir duration E0 calibration stir duration E0 calibration preparation stir speed E0 calibration buffer wash stir duration E0 calibration buffer wash stir speed E0 calibration buffer wash stir speed Solvent wash stir duration E0 calibration buffer wash stir duration E0 calibration buffer wash stir speed Solvent wash stir duration E0 calibration buffer wash stir speed Solvent wash stir duration E0 calibration buffer wash stir speed Solvent wash stir duration E0 calibration buffer wash stir duration E0 calibration buffer wash stir speed Solvent wash stir speed Solvent wash stir duration E0 calibration buffer wash stir speed Solvent wash				11/23/2010 11:22:28 AM
Scans averaged Autoloader T3AL1200345 11/10/2015 9:34:13 AM Left-right axis firmware version 1.17 Al1DI2DO2 Stepper 2 Front-back axis firmware version 1.17 Al1DI2DO2 Stepper 2 Vertical axis firmware version 1.17 Al1DI2DO2 Stepper 2 Chassis I/O firmware version 1.11 Al1DI2DO2 Stepper 2 Chassis I/O firmware version 1.11 Al1DI2DO2 Stepper 2 Alternate titration position 7 Alternate titration position 8 Alternate reference position 8 Alternate reference position 8 Alternate reference position 9 Alternate vial volume 15.00 mL Maximum alternate vial volume 25.00 mL Maximum alternate vial volume 13.50 mL Syringe flush count 3.50 Flowing wash pump volume 13.50 Flowing wash stir duration 5 s Flowing wash stir speed 30% Solvent wash stir speed 30% Solvent wash stir speed 30% Surfactant wash stir speed 30% Surfactant wash stir speed 30% E0 calibration minimum number of points E0 calibration minimum standard deviation 5 s E0 calibration timeout period 60 s E0 calibration preparation stir speed 30% E0 calibration preparation stir speed 50 s E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
Autoloader Left-right axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Front-back axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Vertical axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Chassis I/O firmware version 1.17 Al1Dl2DO2 Stepper 2 Chassis I/O firmware version 1.11 Al1Dl0DO4 Norgren I/O Configuration Alternate titration position Alternate reference position Maximum standard vial volume Alternate reference position Maximum alternate vial volume 25.00 mL Automatic action idle period 5 minute(s) Titrant tube volume 1.3 mL Syringe flush count Syringe flush count Flowing wash pump volume 1.3 mL Syringe wash stir duration Solvent wash stir geed 30% Solvent wash stir geed 30% Solvant wash stir duration 5 s Surfactant wash stir duration Calibration minimum number of points Calibration minimum tandard deviation Calibration minimum tandard deviation Calibration preparation stir speed Calibration preparation stir speed Calibration preparation stir speed Calibration buffer wash stir duration S s				
Left-right axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Front-back axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Vertical axis firmware version 1.17 Al1Dl2DO2 Stepper 2 Chassis I/O firmware version 1.17 Al1Dl2DO2 Stepper 2 Chassis I/O firmware version 1.11 Al1DlDO04 Norgren I/O Configuration Alternate titration position Reference position Alternate reference position Reference position Maximum standard vial volume 3.50 mL Maximum alternate vial volume 25.00 mL Automatic action idle period 5 minute(s) Titratt tube volume 1.3 mL Syringe flush count 3.50 Flowing wash pump volume 20.0 mL Flowing wash stir duration 5 s Flowing wash stir duration 5 s Solvent wash stir speed 30% Solvent wash stir speed 30% Solvent wash stir touration 5 s Solvent wash stir touration 5 s Surfactant wash stir speed 30% E0 calibration minimum number of points 10 E0 calibration maximum standard deviation 5 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%		10	T2AL 1200245	11/10/2015 0:24:12 AM
Front-back axis firmware version Vertical axis firmware version Chassis I/O firmware version Alternate itiration position Alternate reference position Maximum standard vial volume Automatic action idle period Titratin tube volume Automatic action idle period Tilowing wash pump volume Flowing wash stir duration Flowing wash stir speed Solvent wash stir speed Solvent wash stir duration Solvent wash stir speed Go calibration maximum standard deviation EO calibration immeunt period EO calibration preparation stir speed EO calibration preparation stir speed EO calibration preparation stir speed EO calibration buffer wash stir duration EO calibration buffer wash stir speed EO calibration buffer wash stir duration EO calibration buffer wash stir speed EO cali		1 17 ΔΙ1DΙ2DO2 Stenner 2	13AL1200345	11/10/2015 9.34.13 AW
Vertical axis firmware version Chassis I/O firmware version Configuration Alternate titration position Alternate reference position Alternate reference position Maximum standard vial volume Maximum alternate vial volume Automatic action idle period Titrat tube volume Syringe flush count Flowing wash pump volume Flowing wash stir duration Solvent wash stir speed Sol calibration maximum standard deviation E0 calibration stir duration E0 calibration preparation stir speed Sol calibration preparation stir speed Sol calibration buffer wash stir duration 5 s		1.17 AI1DI2DO2 Stepper 2		
Chassis I/O firmware version Configuration Alternate titration position Alternate reference position Maximum standard vial volume Maximum alternate vial volume Automatic action idle period Titrati tube volume Syringe flush count Flowing wash pump volume Plowing wash stir duration Solvent wash stir duration Solvent wash stir duration Solvent wash stir duration Solvent wash stir speed Solvent wash stir speed Solvent wash stir speed Solvent mash stir speed Solvent mash stir speed Solvent mash stir speed Solvent mash stir duration Soloulation minimum number of points Coalibration maximum standard deviation Sol calibration stir duration Soloulation stir stir speed Soloulation stir speed Soloulation stir speed Soloulation stir speed		1.17 Al1Dl2DO2 Stepper 2		
Alternate titration position Alternate reference position Maximum standard vial volume Maximum standard vial volume Automatic action idle period Titrant tube volume Automatic action idle period Titrant tube volume 1.3 mL Syringe flush count Flowing wash pump volume Flowing wash stir duration Flowing wash stir speed Solvent wash stir speed Solvent wash stir speed Solvent wash stir duration Surfactant wash stir duration Surfactant wash stir duration E0 calibration maximum standard deviation E0 calibration preparation stir speed C0 calibration preparation stir speed C0 calibration preparation stir speed C0 calibration puffer wash stir duration S0 calibration buffer wash stir speed S0 calibration buffer wash stir speed				
Alternate reference position Maximum standard vial volume Maximum alternate vial volume Automatic action idle period Titrant tube volume Syringe flush count Flowing wash pump volume Flowing wash stir duration Flowing wash stir speed Solvent wash stir speed Surfactant wash stir speed Calibration maximum standard deviation E0 calibration stir duration E0 calibration turation E0 calibration preparation stir speed Calibration buffer wash stir duration E0 calibration buffer wash stir speed				
Maximum standard vial volume Maximum alternate vial volume Automatic action idle period Titrant tube volume Syringe flush count Flowing wash pump volume Flowing wash stir duration Flowing wash stir speed Solvent wash stir speed Solvent wash stir speed Solvent wash stir speed Surfactant wash stir speed Surfactant wash stir speed Calibration minimum number of points Calibration maximum standard deviation E0 calibration stir duration E0 calibration preparation stir speed E0 calibration preparation stir speed E0 calibration preparation stir speed E0 calibration buffer wash stir duration E0 calibration buffer wash stir speed				
Maximum alternate vial volume Automatic action idle period 5 minute(s) Titrant tube volume 1.3 mL Syringe flush count Syringe flush count Sommer volume 1.3 mL Syringe flush count Sommer volume Somme				
Automatic action idle period 5 minute(s) Titrant tube volume 1.3 mL Syringe flush count 3.50 Flowing wash pump volume 20.0 mL Flowing wash stir duration 5 s Flowing wash stir speed 30% Solvent wash stir speed 30% Solvent wash stir speed 30% Surfactant wash stir duration 5 s Surfactant wash stir unation 5 s Surfactant wash stir speed 30% E0 calibration minimum number of points 10 E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
Titrant tube volume Syringe flush count Syringe flush count Syringe flush count Solvent wash pump volume Solvent wash stir duration Solvent wash stir duration Solvent wash stir speed Solvent wash stir speed Solvent wash stir duration Surfactant wash stir duration Surfactant wash stir speed Calibration minimum number of points Calibration timeout period Calibration stir duration Solvent wash stir speed Solvent wash stir speed Solvent wash stir speed Outlier to the wash stir speed Calibration stir duration Solvent wash stir speed Solvent wash stir speed Solvent wash stir speed Solvent wash stir deviation Solvent wash stir speed Solvent wash stir deviation Solvent wash stir deviation Solvent wash stir speed Solvent wash stir speed Solvent wash stir duration Solvent wash stir speed Solvent wash stir duration Sol				
Flowing wash pump volume Flowing wash stir duration Flowing wash stir speed Solvent wash stir speed Solvent wash stir speed Solvent wash stir speed Solvent wash stir speed Surfactant wash stir duration Surfactant wash stir speed Solvent wash stir speed Solvent wash stir duration Solvent wash stir speed Solvent wash stir duration Solvent wash stir speed Solvent wash stir speed Solvent wash stir duration Solvent wash stir du				
Flowing wash stir duration 5 s Flowing wash stir speed 30% Solvent wash stir duration 5 s Solvent wash stir speed 30% Surfactant wash stir duration 5 s Surfactant wash stir speed 30% E0 calibration minimum number of points 10 E0 calibration maximum standard deviation E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
Flowing wash stir speed 30% Solvent wash stir duration 5 s Solvent wash stir speed 30% Surfactant wash stir duration 5 s Surfactant wash stir speed 30% E0 calibration minimum number of points 10 E0 calibration maximum standard deviation E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
Solvent wash stir duration 5 s Solvent wash stir speed 30% Surfactant wash stir duration 5 s Surfactant wash stir speed 30% E0 calibration minimum number of points 10 E0 calibration maximum standard deviation E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
Solvent wash stir speed 30% Surfactant wash stir duration 5 s Surfactant wash stir speed 30% E0 calibration minimum number of points 10 E0 calibration maximum standard deviation E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
Surfactant wash stir duration 5 s Surfactant wash stir speed 30% E0 calibration minimum number of points 10 E0 calibration maximum standard deviation 0.01500 E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
Surfactant wash stir speed 30% E0 calibration minimum number of points 10 E0 calibration maximum standard deviation 0.01500 E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%	· ·			
E0 calibration maximum standard deviation 0.01500 E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
E0 calibration timeout period 60 s E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
E0 calibration stir duration 5 s E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
E0 calibration preparation stir speed 30% E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
E0 calibration buffer wash stir duration 5 s E0 calibration buffer wash stir speed 30%				
E0 calibration buffer wash stir speed 30%				
		0%		

Reported at: 3/6/2018 10:59:50 AM

pH-metric high logP Assay name: Analyst: Pion Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

Instrument Settings (continued)

Setting	Value	Batch Id	d Install date
Spectrometer calibration stir duration	5 s		
Spectrometer calibration stir speed	30%		
Spectrometer calibration wash pump volume	20.0 mL		
Spectrometer calibration wash stir duration	5 s		
Spectrometer calibration wash stir speed	30%		
Overhead dispense height	10000		
<u> </u>			

Refinement Settings

Setting	Value	Default value
Turbidity detection method	None	None
Turbidity wavelength to assess	500.0 nm	500.0 nm
Turbidity maximum absorbance	0.100	0.100
Turbidity probe threshold	50.00	50.00

Experiment Log

- [2:37] Air gap created for Water (0.15 M KCI)
- [2:38] Air gap created for Acid (0.5 M HCI)
- [2:38] Air gap created for Base (0.5 M KOH)
- [2:38] Air gap released for Water (0.15 M KCI)
- [2:42] Titrator arm moved over Titration position
- [2:42] Titration 1 of 3
- [2:42] Adding initial titrants
- [2:42] Automatically add 1.50000 mL of water
- [3:07] Dispensed 1.500000 mL of Water (0.15 M KCI)
- [3:12] Titrator arm moved over Drain
- [5:53] Titrator arm moved to Titration position
- [5:53] Argon flow rate set to 100
- [5:53] Stirrer speed set to 10
- [5:59] Initial pH = 5.13
- [5:59] Iterative adjust 5.13 -> 10.00
- [5:59] pH 5.13 -> 10.00
- [6:00] Air gap released for Base (0.5 M KOH)
- [6:01] Dispensed 0.006797 mL of Base (0.5 M KOH)
- [6:06] Holding pH 10.00
- [8:06] Stirrer speed set to 0
- [8:06] Stirrer speed set to 50
- [8:06] Iterative adjust 11.17 -> 10.00
- [8:51] Stirrer speed set to 0
- [9:51] Datapoint id 2 collected
- [9:51] Stirrer speed set to 50
- [9:57] pH 10.75 -> 10.55
- [9:57] Using cautious pH adjust
- [9:57] Air gap released for Acid (0.5 M HCI)
- [9:58] Dispensed 0.000423 mL of Acid (0.5 M HCI)
- [10:03] Stepping pH = 10.52
- [10:18] Stirrer speed set to 0
- [10:53] Datapoint id 3 collected
- [10:53] Charge balance equation is out by 49.8%
- [10:53] Stirrer speed set to 50
- [10:58] pH 10.39 -> 10.19
- [10:58] Using cautious pH adjust
- [10:58] Dispensed 0.000188 mL of Acid (0.5 M HCl)
- [11:03] Stepping pH = 10.34
- [11:04] Dispensed 0.000306 mL of Acid (0.5 M HCI)
- [11:09] Stepping pH = 10.16
- [11:24] Stirrer speed set to 0
- [12:04] Datapoint id 4 collected
- Reported at: 3/6/2018 10:59:50 AM

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [12:04] Charge balance equation is out by -24.4%
- [12:04] Stirrer speed set to 50
- [12:09] pH 10.05 -> 9.85
- [12:09] Using cautious pH adjust
- [12:09] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [12:15] Stepping pH = 10.02
- [12:15] Dispensed 0.000235 mL of Acid (0.5 M HCI)
- [12:20] Stepping pH = 9.77
- [12:35] Stirrer speed set to 0
- [13:03] Datapoint id 5 collected
- [13:03] Charge balance equation is out by -70.9%
- [13:03] Stirrer speed set to 50
- [13:09] pH 9.66 -> 9.46
- [13:09] Using cautious pH adjust
- [13:09] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [13:14] Stepping pH = 9.64
- [13:14] Dispensed 0.000141 mL of Acid (0.5 M HCl)
- [13:19] Stepping pH = 9.39
- [13:34] Stirrer speed set to 0
- [14:07] Datapoint id 6 collected
- [14:07] Charge balance equation is out by -86.9%
- [14:07] Stirrer speed set to 50
- [14:12] pH 9.28 -> 9.08
- [14:12] Using cautious pH adjust
- [14:12] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [14:17] Stepping pH = 9.26
- [14:17] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [14:22] Stepping pH = 9.10
- [14:22] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [14:27] Stepping pH = 9.03
- [14:42] Stirrer speed set to 0
- [15:18] Datapoint id 7 collected
- [15:18] Charge balance equation is out by -126.0%
- [15:18] Stirrer speed set to 50
- [15:23] pH 8.82 -> 8.62
- [15:23] Using cautious pH adjust
- [15:23] Dispensed 0.000024 mL of Acid (0.5 M HCl)
- [15:28] Stepping pH = 8.78
- [15:28] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [15:34] Stepping pH = 8.69
- [15:34] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [15:39] Stepping pH = 8.55
- [15:54] Stirrer speed set to 0
- [16:43] Datapoint id 8 collected
- [16:43] Charge balance equation is out by -159.4%
- [16:43] Stirrer speed set to 50
- [16:48] pH 8.28 -> 8.08
- [16:48] Using cautious pH adjust
- [16:48] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [16:53] Stepping pH = 8.24
- [16:53] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [16:58] Stepping pH = 8.17
- [16:58] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [17:03] Stepping pH = 8.08
- [17:19] Stirrer speed set to 0
- [17:38] Datapoint id 9 collected
- [17:38] Charge balance equation is out by -148.3%
- [17:38] Stirrer speed set to 50
- [17:43] pH 7.95 -> 7.75

pH-metric high logP Assay name: Analyst: Pion Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [17:43] Using cautious pH adjust
- [17:43] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [17:48] Stepping pH = 7.92
- [17:48] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [17:53] Stepping pH = 7.72
- [18:09] Stirrer speed set to 0
- [18:26] Datapoint id 10 collected
- [18:26] Charge balance equation is out by -62.6%
- [18:26] Stirrer speed set to 50
- [18:31] pH 7.65 -> 7.45
- [18:31] Using cautious pH adjust
- [18:31] Dispensed 0.000047 mL of Acid (0.5 M HCl)
- [18:36] Stepping pH = 7.62
- [18:36] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [18:41] Stepping pH = 7.44
- [18:56] Stirrer speed set to 0
- [19:13] Datapoint id 11 collected
- [19:13] Charge balance equation is out by -49.6%
- [19:13] Stirrer speed set to 50
- [19:18] pH 7.42 -> 7.22
- [19:18] Using cautious pH adjust
- [19:18] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [19:23] Stepping pH = 7.36
- [19:23] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [19:29] Stepping pH = 7.25
- [19:29] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [19:34] Stepping pH = 7.24
- [19:34] Dispensed 0.000047 mL of Acid (0.5 M HCl)
- [19:39] Stepping pH = 7.21
- [19:54] Stirrer speed set to 0
- [20:15] Datapoint id 12 collected
- [20:15] Charge balance equation is out by -60.4%
- [20:15] Stirrer speed set to 50
- [20:20] pH 7.21 -> 7.01
- [20:20] Using cautious pH adjust
- [20:20] Dispensed 0.000118 mL of Acid (0.5 M HCI)
- [20:25] Stepping pH = 7.11
- [20:25] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [20:30] Stepping pH = 7.04
- [20:31] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [20:36] Stepping pH = 7.03
- [20:36] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [20:41] Stepping pH = 7.01
- [20:56] Stirrer speed set to 0
- [21:13] Datapoint id 13 collected
- [21:13] Charge balance equation is out by -27.4%
- [21:13] Stirrer speed set to 50
- [21:18] pH 7.02 -> 6.82
- [21:18] Using cautious pH adjust
- [21:18] Dispensed 0.000165 mL of Acid (0.5 M HCI)
- [21:23] Stepping pH = 6.90
- [21:23] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [21:28] Stepping pH = 6.86
- [21:28] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [21:34] Stepping pH = 6.84
- [21:34] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [21:39] Stepping pH = 6.82
- [21:54] Stirrer speed set to 0
- [22:10] Datapoint id 14 collected

pH-metric high logP **Pion** Assay name: Analyst: Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [22:10] Charge balance equation is out by -25.3%
- [22:10] Stirrer speed set to 50
- [22:15] pH 6.84 -> 6.64
- [22:15] Using cautious pH adjust
- [22:15] Dispensed 0.000235 mL of Acid (0.5 M HCI)
- [22:20] Stepping pH = 6.72
- [22:20] Dispensed 0.000118 mL of Acid (0.5 M HCI)
- [22:25] Stepping pH = 6.68
- [22:25] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [22:30] Stepping pH = 6.66
- [22:30] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [22:36] Stepping pH = 6.65
- [22:51] Stirrer speed set to 0
- [23:07] Datapoint id 15 collected
- [23:07] Charge balance equation is out by -11.8%
- [23:07] Stirrer speed set to 50
- [23:12] pH 6.67 -> 6.47
- [23:12] Using charge balance adjust
- [23:12] Dispensed 0.000564 mL of Acid (0.5 M HCI)
- [23:33] Stirrer speed set to 0
- [23:50] Datapoint id 16 collected
- [23:50] Charge balance equation is out by -18.0%
- [23:50] Stirrer speed set to 50
- [23:55] pH 6.50 -> 6.30
- [23:55] Using cautious pH adjust
- [23:55] Dispensed 0.000329 mL of Acid (0.5 M HCI)
- [24:00] Stepping pH = 6.39
- [24:00] Dispensed 0.000212 mL of Acid (0.5 M HCI)
- [24:05] Stepping pH = 6.35
- [24:05] Dispensed 0.000165 mL of Acid (0.5 M HCI)
- [24:10] Stepping pH = 6.32
- [24:10] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [24:15] Stepping pH = 6.32
- [24:15] Dispensed 0.000212 mL of Acid (0.5 M HCI)
- [24:21] Stepping pH = 6.26
- [24:36] Stirrer speed set to 0
- [24:49] Datapoint id 17 collected
- [24:49] Charge balance equation is out by -45.8%
- [24:49] Stirrer speed set to 50
- [24:54] pH 6.29 -> 6.09
- [24:54] Using cautious pH adjust
- [24:54] Dispensed 0.000400 mL of Acid (0.5 M HCI)
- [25:00] Stepping pH = 6.17
- [25:00] Dispensed 0.000212 mL of Acid (0.5 M HCI)
- [25:05] Stepping pH = 6.13
- [25:05] Dispensed 0.000165 mL of Acid (0.5 M HCI) [25:10] Stepping pH = 6.10
- [25:25] Stirrer speed set to 0
- [25:38] Datapoint id 18 collected
- [25:38] Charge balance equation is out by 3.6%
- [25:38] Stirrer speed set to 50
- [25:44] pH 6.12 -> 5.92
- [25:44] Using charge balance adjust
- [25:44] Dispensed 0.000800 mL of Acid (0.5 M HCI)
- [26:04] Stirrer speed set to 0
- [26:16] Datapoint id 19 collected
- [26:16] Charge balance equation is out by 1.0%
- [26:16] Stirrer speed set to 50
- [26:22] pH 5.92 -> 5.72

pH-metric high logP **Pion** Assay name: Analyst: Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [26:22] Using charge balance adjust
- [26:22] Dispensed 0.000753 mL of Acid (0.5 M HCI)
- [26:42] Stirrer speed set to 0
- [26:58] Datapoint id 20 collected
- [26:58] Charge balance equation is out by 4.1%
- [26:58] Stirrer speed set to 50
- [27:03] pH 5.71 -> 5.51
- [27:03] Using charge balance adjust
- [27:03] Dispensed 0.000635 mL of Acid (0.5 M HCI)
- [27:23] Stirrer speed set to 0
- [27:40] Datapoint id 21 collected
- [27:40] Charge balance equation is out by 17.0%
- [27:40] Stirrer speed set to 50
- [27:45] pH 5.48 -> 5.28
- [27:45] Using cautious pH adjust
- [27:45] Dispensed 0.000235 mL of Acid (0.5 M HCI)
- [27:51] Stepping pH = 5.37
- [27:51] Dispensed 0.000141 mL of Acid (0.5 M HCI)
- [27:56] Stepping pH = 5.29
- [27:56] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [28:01] Stepping pH = 5.30
- [28:01] Dispensed 0.000165 mL of Acid (0.5 M HCI)
- [28:06] Stepping pH = 5.18
- [28:21] Stirrer speed set to 0
- [28:42] Datapoint id 22 collected
- [28:42] Charge balance equation is out by -22.3%
- [28:42] Stirrer speed set to 50
- [28:47] pH 5.18 -> 4.98
- [28:47] Using cautious pH adjust
- [28:47] Dispensed 0.000141 mL of Acid (0.5 M HCI)
- [28:52] Stepping pH = 5.08
- [28:52] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [28:58] Stepping pH = 4.98
- [29:13] Stirrer speed set to 0
- [30:13] Datapoint id 23 collected
- [30:13] Charge balance equation is out by 20.1%
- [30:13] Stirrer speed set to 50
- [30:18] pH 5.05 -> 4.85
- [30:18] Using cautious pH adjust
- [30:18] Dispensed 0.000118 mL of Acid (0.5 M HCI)
- [30:23] Stepping pH = 4.93
- [30:23] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [30:28] Stepping pH = 4.88
- [30:28] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [30:33] Stepping pH = 4.87
- [30:33] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [30:38] Stepping pH = 4.83
- [30:53] Stirrer speed set to 0
- [31:53] Datapoint id 24 collected [31:53] Charge balance equation is out by 5.3%
- [31:53] Stirrer speed set to 50
- [31:59] pH 4.99 -> 4.79
- [31:59] Using charge balance adjust
- [31:59] Dispensed 0.000212 mL of Acid (0.5 M HCI)
- [32:19] Stirrer speed set to 0
- [32:52] Datapoint id 25 collected
- [32:52] Charge balance equation is out by 145.5%
- [32:52] Stirrer speed set to 50
- [32:57] pH 4.51 -> 4.31

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [32:57] Using cautious pH adjust
- [32:57] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [33:02] Stepping pH = 4.40
- [33:02] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [33:07] Stepping pH = 4.32
- [33:22] Stirrer speed set to 0
- [33:48] Datapoint id 26 collected
- [33:48] Charge balance equation is out by 19.0%
- [33:48] Stirrer speed set to 50
- [33:53] pH 4.31 -> 4.11
- [33:53] Using cautious pH adjust
- [33:53] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [33:58] Stepping pH = 4.21
- [33:58] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [34:03] Stepping pH = 4.14
- [34:03] Dispensed 0.000024 mL of Acid (0.5 M HCl)
- 0.4.00] Diopolicou 0.00001
- [34:08] Stepping pH = 4.12
- [34:24] Stirrer speed set to 0
- [34:34] Datapoint id 27 collected
- [34:34] Charge balance equation is out by 1.1%
- [34:34] Stirrer speed set to 50
- [34:39] pH 4.11 -> 3.91
- [34:39] Using charge balance adjust
- [34:39] Dispensed 0.000212 mL of Acid (0.5 M HCl)
- [34:59] Stirrer speed set to 0
- [35:09] Datapoint id 28 collected
- [35:10] Charge balance equation is out by 21.2%
- [35:10] Stirrer speed set to 50
- [35:15] pH 3.87 -> 3.67
- [35:15] Using cautious pH adjust
- [35:15] Dispensed 0.000165 mL of Acid (0.5 M HCI)
- [35:20] Stepping pH = 3.76
- [35:20] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [35:25] Stepping pH = 3.71
- [35:25] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [35:30] Stepping pH = 3.69
- [35:30] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [35:35] Stepping pH = 3.67
- [35:50] Stirrer speed set to 0
- [36:00] Datapoint id 29 collected
- [36:00] Charge balance equation is out by -14.5%
- [36:00] Stirrer speed set to 50
- [36:05] pH 3.67 -> 3.47
- [36:05] Using charge balance adjust
- [36:06] Dispensed 0.000494 mL of Acid (0.5 M HCI)
- [36:26] Stirrer speed set to 0
- [36:36] Datapoint id 30 collected
- [36:36] Charge balance equation is out by 10.8%
- [36:36] Stirrer speed set to 50
- [36:41] pH 3.45 -> 3.25
- [36:41] Using charge balance adjust
- [36:41] Dispensed 0.000800 mL of Acid (0.5 M HCI)
- [37:02] Stirrer speed set to 0
- [37:12] Datapoint id 31 collected
- [37:12] Charge balance equation is out by 0.6%
- [37:12] Stirrer speed set to 50
- [37:17] pH 3.26 -> 3.06
- [37:17] Using charge balance adjust
- [37:17] Dispensed 0.001270 mL of Acid (0.5 M HCI)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [37:37] Stirrer speed set to 0
- [37:47] Datapoint id 32 collected
- [37:47] Charge balance equation is out by -2.6%
- [37:47] Stirrer speed set to 50
- [37:52] pH 3.07 -> 2.87
- [37:52] Using charge balance adjust
- [37:52] Dispensed 0.001952 mL of Acid (0.5 M HCI)
- [38:13] Stirrer speed set to 0
- [38:23] Datapoint id 33 collected
- [38:23] Charge balance equation is out by -7.9%
- [38:23] Stirrer speed set to 50
- [38:28] pH 2.89 -> 2.69
- [38:28] Using charge balance adjust
- [38:28] Dispensed 0.002963 mL of Acid (0.5 M HCI)
- [38:48] Stirrer speed set to 0
- [38:58] Datapoint id 34 collected
- [38:58] Charge balance equation is out by -8.0%
- [38:58] Stirrer speed set to 50
- [39:03] pH 2.71 -> 2.51
- [39:03] Using charge balance adjust
- [39:04] Dispensed 0.004492 mL of Acid (0.5 M HCI)
- [39:24] Stirrer speed set to 0
- [39:34] Datapoint id 35 collected
- [39:34] Charge balance equation is out by -8.4%
- [39:34] Stirrer speed set to 50
- [39:39] pH 2.54 -> 2.34
- [39:39] Using charge balance adjust
- [39:39] Dispensed 0.006844 mL of Acid (0.5 M HCI)
- [39:59] Stirrer speed set to 0
- [40:09] Datapoint id 36 collected
- [40:09] Charge balance equation is out by -3.3%
- [40:09] Stirrer speed set to 50
- [40:15] pH 2.35 -> 2.15
- [40:15] Using charge balance adjust
- [40:15] Dispensed 0.010724 mL of Acid (0.5 M HCI)
- [40:35] Stirrer speed set to 0
- [40:45] Datapoint id 37 collected
- [40:45] Charge balance equation is out by -4.4%
- [40:45] Stirrer speed set to 50
- [40:50] pH 2.16 -> 1.96
- [40:50] Using charge balance adjust
- [40:51] Dispensed 0.016886 mL of Acid (0.5 M HCI)
- [41:11] Stirrer speed set to 0
- [41:22] Datapoint id 38 collected
- [41:22] Charge balance equation is out by -3.8%
- [41:22] Titration 2 of 3
- [41:22] Adding initial titrants
- [41:22] Automatically add 0.20000 mL of Octanol
- [41:26] Dispensed 0.200000 mL of Octanol
- [41:26] Stirrer speed set to 10
- [41:27] Stirrer speed set to 55
- [41:27] Iterative adjust 1.97 -> 10.00
- [41:27] pH 1.97 -> 10.00
- [41:29] Dispensed 0.051670 mL of Base (0.5 M KOH)
- [42:19] Stirrer speed set to 0
- [43:19] Datapoint id 39 collected
- [43:19] Stirrer speed set to 55
- [43:24] pH 7.36 -> 7.16
- [43:24] Using cautious pH adjust

pH-metric high logP Assay name: Analyst: Pion Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [43:24] Dispensed 0.000212 mL of Acid (0.5 M HCI)
- [43:29] Stepping pH = 7.24
- [43:29] Dispensed 0.000118 mL of Acid (0.5 M HCI)
- [43:34] Stepping pH = 7.17
- [43:49] Stirrer speed set to 0
- [44:26] Datapoint id 40 collected
- [44:26] Charge balance equation is out by 21.6%
- [44:26] Stirrer speed set to 55
- [44:31] pH 7.10 -> 6.90
- [44:31] Using cautious pH adjust
- [44:31] Dispensed 0.000306 mL of Acid (0.5 M HCI)
- [44:36] Stepping pH = 6.94
- [44:36] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [44:41] Stepping pH = 6.93
- [44:42] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [44:47] Stepping pH = 6.89
- [45:02] Stirrer speed set to 0
- [45:23] Datapoint id 41 collected
- [45:23] Charge balance equation is out by 21.8%
- [45:23] Stirrer speed set to 55
- [45:28] pH 6.89 -> 6.69
- [45:28] Using cautious pH adjust
- [45:28] Dispensed 0.000376 mL of Acid (0.5 M HCI)
- [45:33] Stepping pH = 6.72
- [45:33] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [45:38] Stepping pH = 6.74
- [45:38] Dispensed 0.000447 mL of Acid (0.5 M HCI)
- [45:43] Stepping pH = 6.56
- [45:58] Stirrer speed set to 0
- [46:25] Datapoint id 42 collected [46:25] Charge balance equation is out by -19.0%
- [46:25] Stirrer speed set to 55
- [46:30] pH 6.59 -> 6.39
- [46:30] Using cautious pH adjust
- [46:30] Dispensed 0.000400 mL of Acid (0.5 M HCI)
- [46:35] Stepping pH = 6.44
- [46:35] Dispensed 0.000141 mL of Acid (0.5 M HCI)
- [46:40] Stepping pH = 6.41
- [46:41] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [46:46] Stepping pH = 6.39
- [47:01] Stirrer speed set to 0
- [47:28] Datapoint id 43 collected
- [47:28] Charge balance equation is out by 24.6%
- [47:28] Stirrer speed set to 55
- [47:33] pH 6.41 -> 6.21
- [47:33] Using cautious pH adjust
- [47:33] Dispensed 0.000376 mL of Acid (0.5 M HCI)
- [47:38] Stepping pH = 6.25
- [47:38] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [47:43] Stepping pH = 6.24
- [47:43] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [47:48] Stepping pH = 6.21
- [48:03] Stirrer speed set to 0
- [48:29] Datapoint id 44 collected
- [48:29] Charge balance equation is out by 30.2%
- [48:29] Stirrer speed set to 55
- [48:34] pH 6.24 -> 6.04
- [48:34] Using cautious pH adjust
- [48:34] Dispensed 0.000329 mL of Acid (0.5 M HCI)

pH-metric high logP **Pion** Assay name: Analyst: Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [48:39] Stepping pH = 6.06
- [48:39] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [48:44] Stepping pH = 6.06
- [48:44] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [48:49] Stepping pH = 6.02
- [49:04] Stirrer speed set to 0
- [49:31] Datapoint id 45 collected
- [49:31] Charge balance equation is out by 32.8%
- [49:31] Stirrer speed set to 55
- [49:36] pH 6.04 -> 5.84
- [49:36] Using cautious pH adjust
- [49:36] Dispensed 0.000259 mL of Acid (0.5 M HCI)
- [49:41] Stepping pH = 5.87
- [49:41] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [49:46] Stepping pH = 5.86
- [49:46] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [49:51] Stepping pH = 5.82
- [50:06] Stirrer speed set to 0
- [50:28] Datapoint id 46 collected
- [50:28] Charge balance equation is out by 30.4%
- [50:28] Stirrer speed set to 55
- [50:34] pH 5.85 -> 5.65
- [50:34] Using cautious pH adjust
- [50:34] Dispensed 0.000188 mL of Acid (0.5 M HCI)
- [50:39] Stepping pH = 5.67
- [50:39] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [50:44] Stepping pH = 5.68
- [50:44] Dispensed 0.000165 mL of Acid (0.5 M HCl)
- [50:49] Stepping pH = 5.46
- [51:04] Stirrer speed set to 0
- [51:23] Datapoint id 47 collected
- [51:23] Charge balance equation is out by 5.3%
- [51:23] Stirrer speed set to 55
- [51:28] pH 5.48 -> 5.28
- [51:28] Using charge balance adjust
- [51:28] Dispensed 0.000212 mL of Acid (0.5 M HCI)
- [51:49] Stirrer speed set to 0
- [52:05] Datapoint id 48 collected
- [52:05] Charge balance equation is out by 71.8%
- [52:05] Stirrer speed set to 55
- [52:10] pH 5.12 -> 4.92
- [52:10] Using cautious pH adjust
- [52:10] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [52:15] Stepping pH = 5.10
- [52:15] Dispensed 0.000165 mL of Acid (0.5 M HCl)
- [52:21] Stepping pH = 4.66
- [52:36] Stirrer speed set to 0
- [52:52] Datapoint id 49 collected
- [52:52] Charge balance equation is out by -86.2%
- [52:52] Stirrer speed set to 55
- [52:57] pH 4.66 -> 4.46
- [52:57] Using cautious pH adjust
- [52:57] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [53:02] Stepping pH = 4.65
- [53:02] Dispensed 0.000118 mL of Acid (0.5 M HCI)
- [53:07] Stepping pH = 4.41
- [53:22] Stirrer speed set to 0
- [53:34] Datapoint id 50 collected
- [53:34] Charge balance equation is out by -89.3%
- Reported at: 3/6/2018 10:59:50 AM

pH-metric high logP Assay name: Analyst: Pion Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [53:34] Stirrer speed set to 55
- [53:39] pH 4.40 -> 4.20
- [53:39] Using cautious pH adjust
- [53:39] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [53:44] Stepping pH = 4.39
- [53:44] Dispensed 0.000165 mL of Acid (0.5 M HCl)
- [53:49] Stepping pH = 4.17
- [54:04] Stirrer speed set to 0
- [54:15] Datapoint id 51 collected
- [54:15] Charge balance equation is out by -92.5%
- [54:15] Stirrer speed set to 55
- [54:20] pH 4.17 -> 3.97
- [54:20] Using cautious pH adjust
- [54:20] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [54:25] Stepping pH = 4.12
- [54:25] Dispensed 0.000118 mL of Acid (0.5 M HCI)
- [54:30] Stepping pH = 3.99
- [54:30] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [54:35] Stepping pH = 3.98
- [54:50] Stirrer speed set to 0
- [55:00] Datapoint id 52 collected
- [55:00] Charge balance equation is out by -30.4%
- [55:00] Stirrer speed set to 55
- [55:06] pH 3.98 -> 3.78
- [55:06] Using cautious pH adjust
- [55:06] Dispensed 0.000141 mL of Acid (0.5 M HCI)
- [55:11] Stepping pH = 3.89
- [55:11] Dispensed 0.000118 mL of Acid (0.5 M HCI)
- [55:16] Stepping pH = 3.82
- [55:16] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [55:21] Stepping pH = 3.80
- [55:21] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [55:26] Stepping pH = 3.78
- [55:41] Stirrer speed set to 0
- [55:51] Datapoint id 53 collected [55:51] Charge balance equation is out by -27.9%
- [55:51] Stirrer speed set to 55
- [55:56] pH 3.78 -> 3.58
- [55:56] Using cautious pH adjust
- [55:56] Dispensed 0.000212 mL of Acid (0.5 M HCI)
- [56:02] Stepping pH = 3.67
- [56:02] Dispensed 0.000141 mL of Acid (0.5 M HCI)
- [56:07] Stepping pH = 3.62
- [56:07] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [56:12] Stepping pH = 3.59
- [56:12] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [56:17] Stepping pH = 3.59
- [56:32] Stirrer speed set to 0
- [56:42] Datapoint id 54 collected
- [56:42] Charge balance equation is out by -15.7%
- [56:42] Stirrer speed set to 55
- [56:47] pH 3.59 -> 3.39
- [56:47] Using cautious pH adjust
- [56:47] Dispensed 0.000306 mL of Acid (0.5 M HCI)
- [56:52] Stepping pH = 3.50
- [56:53] Dispensed 0.000282 mL of Acid (0.5 M HCI)
- [56:58] Stepping pH = 3.41
- [56:58] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [57:03] Stepping pH = 3.40

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [57:03] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [57:08] Stepping pH = 3.38
- [57:23] Stirrer speed set to 0
- [57:23] Datapoint id 55 collected
- [57:33] Charge balance equation is out by -22.9%
- [57:33] Stirrer speed set to 55
- [57:38] pH 3.38 -> 3.18
- [57:38] Using cautious pH adjust
- [57:38] Dispensed 0.000517 mL of Acid (0.5 M HCI)
- [57:43] Stepping pH = 3.26
- [57:43] Dispensed 0.000282 mL of Acid (0.5 M HCI)
- [57:49] Stepping pH = 3.21
- [57:49] Dispensed 0.000165 mL of Acid (0.5 M HCI)
- [57:54] Stepping pH = 3.19
- or .o-j otepping pri = o. it
- [58:09] Stirrer speed set to 0 [58:19] Datapoint id 56 collected
- [58:19] Charge balance equation is out by 5.3%
- [58:19] Stirrer speed set to 55
- [58:24] pH 3.19 -> 2.99
 - 0.24] pi i 0.10 -> 2.00
- [58:24] Using charge balance adjust [58:24] Dispensed 0.001576 mL of Acid (0.5 M HCI)
- [58:44] Stirrer speed set to 0
- [58:54] Datapoint id 57 collected
 - 20.541 Observa halarese anvestiare in aut h
- [58:54] Charge balance equation is out by -0.7%
- [58:54] Stirrer speed set to 55
- [58:59] pH 3.00 -> 2.80
- [58:59] Using charge balance adjust
- [59:00] Dispensed 0.002469 mL of Acid (0.5 M HCl)
- [59:20] Stirrer speed set to 0
- [59:30] Datapoint id 58 collected
- [59:30] Charge balance equation is out by -1.6%
- [59:30] Stirrer speed set to 55
- [59:35] pH 2.81 -> 2.61
- [59:35] Using charge balance adjust
- [59:35] Dispensed 0.003881 mL of Acid (0.5 M HCI)
- [59:55] Stirrer speed set to 0
- [1:00:05] Datapoint id 59 collected
- [1:00:05] Charge balance equation is out by -2.2%
- [1:00:05] Stirrer speed set to 55
- [1:00:10] pH 2.61 -> 2.41
- [1:00:10] Using charge balance adjust
- [1:00:11] Dispensed 0.006091 mL of Acid (0.5 M HCI)
- [1:00:31] Stirrer speed set to 0
- [1:00:41] Datapoint id 60 collected
- [1:00:41] Charge balance equation is out by -0.3%
- [1:00:41] Stirrer speed set to 55
- [1:00:46] pH 2.42 -> 2.22
- [1:00:46] Using charge balance adjust
- [1:00:46] Dispensed 0.009690 mL of Acid (0.5 M HCI)
- [1:01:07] Stirrer speed set to 0
- [1:01:17] Datapoint id 61 collected
- [1:01:17] Charge balance equation is out by -8.4%
- [1:01:17] Stirrer speed set to 55
- [1:01:22] pH 2.24 -> 2.04
- [1:01:22] Using charge balance adjust
- [1:01:22] Dispensed 0.014981 mL of Acid (0.5 M HCI)
- [1:01:42] Stirrer speed set to 0
- [1:01:52] Datapoint id 62 collected
- [1:01:52] Charge balance equation is out by -3.3%

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [1:01:52] Stirrer speed set to 55
- [1:01:58] pH 2.05 -> 1.95
- [1:01:58] Using charge balance adjust
- [1:01:58] Dispensed 0.010395 mL of Acid (0.5 M HCI)
- [1:02:18] Stirrer speed set to 0
- [1:02:28] Datapoint id 63 collected
- [1:02:28] Charge balance equation is out by -51.4%
- [1:02:28] Titration 3 of 3
- [1:02:28] Adding initial titrants
- [1:02:28] Automatically add 0.80000 mL of Octanol
- [1:03:18] Dispensed 0.800000 mL of Octanol
- [1:03:18] Stirrer speed set to 10
- [1:03:19] Stirrer speed set to 60
- [1:03:19] Iterative adjust 1.94 -> 10.00
- [1:03:19] pH 1.94 -> 10.00
- [1:03:21] Dispensed 0.058137 mL of Base (0.5 M KOH)
- [1:04:11] Stirrer speed set to 0
- [1:05:11] Datapoint id 64 collected
- [1:05:11] Stirrer speed set to 60
- 1.05.11] Othrer speed set to
- [1:05:16] pH 8.61 -> 8.41
- [1:05:16] Using cautious pH adjust
- [1:05:16] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [1:05:21] Stepping pH = 8.48
- [1:05:21] Dispensed 0.000024 mL of Acid (0.5 M HCl)
- [1:05:26] Stepping pH = 8.35
- [1:05:42] Stirrer speed set to 0
- [1:06:42] Datapoint id 65 collected
- [1:06:42] Charge balance equation is out by 28.7%
- [1:06:42] Stirrer speed set to 60
- [1:06:47] pH 7.80 -> 7.60
- [1:06:47] Using cautious pH adjust
- [1:06:47] Dispensed 0.000259 mL of Acid (0.5 M HCI)
- [1:06:52] Stepping pH = 7.65
- [1:06:52] Dispensed 0.000071 mL of Acid (0.5 M HCl)
- [1:06:57] Stepping pH = 7.62
- [1:06:57] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [1:07:02] Stepping pH = 7.60
- [1:07:17] Stirrer speed set to 0
- [1:07:38] Datapoint id 66 collected
- [1:07:38] Charge balance equation is out by 24.0%
- [1:07:38] Stirrer speed set to 60
- [1:07:43] pH 7.54 -> 7.34
- [1:07:43] Using cautious pH adjust
- [1:07:43] Dispensed 0.000329 mL of Acid (0.5 M HCI)
- [1:07:48] Stepping pH = 7.40
- [1:07:48] Dispensed 0.000141 mL of Acid (0.5 M HCI)
- [1:07:53] Stepping pH = 7.36
- [1:07:53] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [1:07:58] Stepping pH = 7.35
- [1:08:13] Stirrer speed set to 0
- [1:08:39] Datapoint id 67 collected
- [1:08:39] Charge balance equation is out by 23.3%
- [1:08:39] Stirrer speed set to 60
- [1:08:44] pH 7.32 -> 7.12
- [1:08:44] Using cautious pH adjust
- [1:08:44] Dispensed 0.000400 mL of Acid (0.5 M HCl)
- [1:08:49] Stepping pH = 7.18
- [1:08:49] Dispensed 0.000165 mL of Acid (0.5 M HCl)
- [1:08:54] Stepping pH = 7.14

Assay name: pH-metric high logP Analyst: Pion Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [1:08:54] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [1:08:59] Stepping pH = 7.12
- [1:09:14] Stirrer speed set to 0
- [1:09:39] Datapoint id 68 collected
- [1:09:39] Charge balance equation is out by 21.8%
- [1:09:39] Stirrer speed set to 60
- [1:09:44] pH 7.11 -> 6.91
- [1:09:44] Using cautious pH adjust
- [1:09:44] Dispensed 0.000400 mL of Acid (0.5 M HCl)
- [1:09:49] Stepping pH = 6.98
- [1:09:49] Dispensed 0.000165 mL of Acid (0.5 M HCl)
- [1:09:54] Stepping pH = 6.94
- [1:09:54] Dispensed 0.000094 mL of Acid (0.5 M HCl)
- [1:09:59] Stepping pH = 6.92
- [1:10:15] Stirrer speed set to 0
- [1:10:46] Datapoint id 69 collected
- [1:10:46] Charge balance equation is out by 16.7%
- [1:10:46] Stirrer speed set to 60
- [1:10:51] pH 6.92 -> 6.72
- 1:10:51 Using cautious pH adjust
- [1:10:51] Dispensed 0.000376 mL of Acid (0.5 M HCI)
- [1:10:56] Stepping pH = 6.79
- [1:10:56] Dispensed 0.000165 mL of Acid (0.5 M HCl)
- [1:11:02] Stepping pH = 6.74
- [1:11:02] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [1:11:07] Stepping pH = 6.73
- [1:11:07] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [1:11:12] Stepping pH = 6.71
- [1:11:27] Stirrer speed set to 0
- [1:11:59] Datapoint id 70 collected
- [1:11:59] Charge balance equation is out by 9.2%
- [1:11:59] Stirrer speed set to 60
- [1:12:04] pH 6.71 -> 6.51
- [1:12:04] Using charge balance adjust
- [1:12:04] Dispensed 0.000611 mL of Acid (0.5 M HCl)
- [1:12:24] Stirrer speed set to 0
- [1:13:09] Datapoint id 71 collected
- [1:13:09] Charge balance equation is out by -12.8%
- [1:13:09] Stirrer speed set to 60
- [1:13:14] pH 6.46 -> 6.26
- [1:13:14] Using charge balance adjust
- [1:13:14] Dispensed 0.000447 mL of Acid (0.5 M HCI)
- [1:13:34] Stirrer speed set to 0
- [1:14:15] Datapoint id 72 collected
- [1:14:15] Charge balance equation is out by -34.1%
- [1:14:15] Stirrer speed set to 60
- [1:14:20] pH 6.25 -> 6.05
- [1:14:20] Using cautious pH adjust
- [1:14:20] Dispensed 0.000165 mL of Acid (0.5 M HCI)
- [1:14:25] Stepping pH = 6.17
- [1:14:25] Dispensed 0.000141 mL of Acid (0.5 M HCI)
- [1:14:30] Stepping pH = 6.07
- [1:14:30] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [1:14:36] Stepping pH = 6.06
- [1:14:36] Dispensed 0.000024 mL of Acid (0.5 M HCl)
- [1:14:41] Stepping pH = 6.06
- [1:14:41] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [1:14:46] Stepping pH = 5.98
- [1:15:01] Stirrer speed set to 0

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [1:15:24] Datapoint id 73 collected
- [1:15:24] Charge balance equation is out by -45.5%
- [1:15:24] Stirrer speed set to 60
- [1:15:30] pH 5.98 -> 5.78
- [1:15:30] Using cautious pH adjust
- [1:15:30] Dispensed 0.000094 mL of Acid (0.5 M HCI)
- [1:15:35] Stepping pH = 5.91
- [1:15:35] Dispensed 0.000094 mL of Acid (0.5 M HCl)
- [1:15:40] Stepping pH = 5.80
- [1:15:40] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [1:15:45] Stepping pH = 5.78
- [1:16:00] Stirrer speed set to 0
- [1:16:22] Datapoint id 74 collected
- [1:16:22] Charge balance equation is out by -10.2%
- [1:16:22] Stirrer speed set to 60
- [1:16:27] pH 5.79 -> 5.59
- [1:16:27] Using charge balance adjust
- [1:16:27] Dispensed 0.000141 mL of Acid (0.5 M HCl)
- [1:16:47] Stirrer speed set to 0
- [1:17:11] Datapoint id 75 collected
- [1:17:11] Charge balance equation is out by -22.3%
- [1:17:11] Stirrer speed set to 60
- [1:17:16] pH 5.58 -> 5.38
- [1:17:16] Using cautious pH adjust
- [1:17:16] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [1:17:21] Stepping pH = 5.54
- [1:17:21] Dispensed 0.000071 mL of Acid (0.5 M HCl)
- [1:17:26] Stepping pH = 5.39
- [1:17:42] Stirrer speed set to 0
- [1:17:42] Stirrer speed set to 0 [1:18:00] Datapoint id 76 collected
- [1:18:00] Charge balance equation is out by -38.4%
- [1:18:00] Stirrer speed set to 60
- [1:18:05] pH 5.37 -> 5.17
- [1:18:05] Using cautious pH adjust
- [1:18:05] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [1:18:10] Stepping pH = 5.38
- [1:18:10] Dispensed 0.000165 mL of Acid (0.5 M HCI)
- [1:18:15] Stepping pH = 4.87
- [1:18:30] Stirrer speed set to 0
- [1:18:53] Datapoint id 77 collected
- [1:18:53] Charge balance equation is out by -202.4%
- [1:18:53] Stirrer speed set to 60
- [1:18:58] pH 4.81 -> 4.61
- [1:18:58] Using cautious pH adjust
- [1:18:58] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [1:19:03] Stepping pH = 4.80
- [1:19:03] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [1:19:08] Stepping pH = 4.64
- [1:19:08] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [1:19:13] Stepping pH = 4.58
- [1:19:28] Stirrer speed set to 0
- [1:19:40] Datapoint id 78 collected
- [1:19:40] Charge balance equation is out by -130.6%
- [1:19:40] Stirrer speed set to 60
- [1:19:45] pH 4.59 -> 4.39
- [1:19:45] Using cautious pH adjust
- [1:19:45] Dispensed 0.000047 mL of Acid (0.5 M HCl)
- [1:19:50] Stepping pH = 4.52
- [1:19:50] Dispensed 0.000047 mL of Acid (0.5 M HCI)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [1:19:55] Stepping pH = 4.40
- [1:20:10] Stirrer speed set to 0
- [1:20:32] Datapoint id 79 collected
- [1:20:32] Charge balance equation is out by -2.3%
- [1:20:32] Stirrer speed set to 60
- [1:20:37] pH 4.39 -> 4.19
- [1:20:37] Using charge balance adjust
- [1:20:37] Dispensed 0.000118 mL of Acid (0.5 M HCl)
- [1:20:57] Stirrer speed set to 0
- [1:21:08] Datapoint id 80 collected
- [1:21:08] Charge balance equation is out by -19.7%
- [1:21:08] Stirrer speed set to 60
- [1:21:13] pH 4.22 -> 4.02
- [1:21:13] Using cautious pH adjust
- [1:21:13] Dispensed 0.000071 mL of Acid (0.5 M HCI)
- [1:21:18] Stepping pH = 4.16
- [1:21:18] Dispensed 0.000094 mL of Acid (0.5 M HCl)
- [1:21:23] Stepping pH = 4.05
- [1:21:23] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [1:21:28] Stepping pH = 4.03
- [1:21:28] Dispensed 0.000024 mL of Acid (0.5 M HCI)
- [1:21:33] Stepping pH = 4.03
- [1:21:34] Dispensed 0.000047 mL of Acid (0.5 M HCl)
- [1:21:39] Stepping pH = 3.99
- [1:21:54] Stirrer speed set to 0
- [1:22:04] Datapoint id 81 collected
- [1:22:04] Charge balance equation is out by -78.1%
- [1:22:04] Stirrer speed set to 60
- [1:22:09] pH 3.99 -> 3.79
- [1:22:09] Using cautious pH adjust
- [1:22:09] Dispensed 0.000141 mL of Acid (0.5 M HCI)
- [1:22:14] Stepping pH = 3.88
- [1:22:14] Dispensed 0.000094 mL of Acid (0.5 M HCl)
- [1:22:19] Stepping pH = 3.82
- [1:22:19] Dispensed 0.000047 mL of Acid (0.5 M HCI)
- [1:22:24] Stepping pH = 3.80
- [1:22:39] Stirrer speed set to 0
- [1:22:50] Datapoint id 82 collected
- [1:22:50] Charge balance equation is out by 0.9%
- [1:22:50] Stirrer speed set to 60
- [1:22:55] pH 3.80 -> 3.60
- [1:22:55] Using charge balance adjust
- [1:22:55] Dispensed 0.000423 mL of Acid (0.5 M HCl)
- [1:23:15] Stirrer speed set to 0
- [1:23:25] Datapoint id 83 collected
- [1:23:25] Charge balance equation is out by 2.4%
- [1:23:25] Stirrer speed set to 60
- [1:23:31] pH 3.59 -> 3.39
- [1:23:31] Using charge balance adjust
- [1:23:31] Dispensed 0.000659 mL of Acid (0.5 M HCl)
- [1:23:51] Stirrer speed set to 0
- [1:24:09] Datapoint id 84 collected
- [1:24:09] Charge balance equation is out by -5.5%
- [1:24:09] Stirrer speed set to 60
- [1:24:14] pH 3.41 -> 3.21
- [1:24:14] Using charge balance adjust
- [1:24:14] Dispensed 0.001035 mL of Acid (0.5 M HCl)
- [1:24:34] Stirrer speed set to 0
- [1:25:00] Datapoint id 85 collected

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18C-02009 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180302_exp29_logP_T3-2\18C-02009_M08_octanol_pH-metric high logP.t3r

- [1:25:00] Charge balance equation is out by -3.2%
- [1:25:00] Stirrer speed set to 60
- [1:25:05] pH 3.22 -> 3.02
- [1:25:05] Using charge balance adjust
- [1:25:05] Dispensed 0.001599 mL of Acid (0.5 M HCl)
- [1:25:25] Stirrer speed set to 0
- [1:25:36] Datapoint id 86 collected
- [1:25:36] Charge balance equation is out by -5.0%
- [1:25:36] Stirrer speed set to 60
- [1:25:41] pH 3.03 -> 2.83
- [1:25:41] Using charge balance adjust
- [1:25:41] Dispensed 0.002422 mL of Acid (0.5 M HCl)
- [1:26:01] Stirrer speed set to 0
- [1:26:26] Datapoint id 87 collected
- [1:26:26] Charge balance equation is out by -7.8%
- [1:26:26] Stirrer speed set to 60
- [1:26:32] pH 2.85 -> 2.65
- [1:26:32] Using charge balance adjust
- [1:26:32] Dispensed 0.003716 mL of Acid (0.5 M HCl)
- [1:26:52] Stirrer speed set to 0
- [1:27:02] Datapoint id 88 collected
- [1:27:02] Charge balance equation is out by -9.4%
- [1:27:02] Stirrer speed set to 60
- [1:27:07] pH 2.68 -> 2.48
- [1:27:07] Using charge balance adjust
- [1:27:07] Dispensed 0.005621 mL of Acid (0.5 M HCI)
- [1:27:27] Stirrer speed set to 0
- [1:27:52] Datapoint id 89 collected
- [1:27:52] Charge balance equation is out by 0.3%
- [1:27:52] Stirrer speed set to 60
- [1:27:57] pH 2.48 -> 2.28
- [1:27:57] Using charge balance adjust
- [1:27:58] Dispensed 0.008937 mL of Acid (0.5 M HCl)
- [1:28:18] Stirrer speed set to 0
- [1:28:31] Datapoint id 90 collected
- [1:28:31] Charge balance equation is out by -2.8%
- [1:28:31] Stirrer speed set to 60
- [1:28:36] pH 2.29 -> 2.09
- [1:28:36] Using charge balance adjust
- [1:28:37] Dispensed 0.014087 mL of Acid (0.5 M HCl)
- [1:28:57] Stirrer speed set to 0
- [1:29:18] Datapoint id 91 collected
- [1:29:18] Charge balance equation is out by -3.5%
- [1:29:18] Stirrer speed set to 60
- [1:29:23] pH 2.10 -> 1.95
- [1:29:23] Using charge balance adjust
- [1:29:23] Dispensed 0.016157 mL of Acid (0.5 M HCI)
- [1:29:43] Stirrer speed set to 0
- [1:30:03] Datapoint id 92 collected
- [1:30:03] Charge balance equation is out by -25.8%
- [1:30:03] Argon flow rate set to 0
- [1:30:07] Titrator arm moved over Titration position