1. PARA QUE MEDIR VAZÃO?

Em geral, a vazão é a terceira grandeza mais medida nos diversos processos industriais. E as aplicações são muitas, indo desde aplicações simples como a medição de vazão de água em estações de tratamento e residências, até medição de gases industriais e combustíveis, passando por medições mais complexas. A escolha correta de um determinado instrumento para medição de vazão depende de vários fatores. Dentre estes, pode-se destacar: exatidão desejada para a medição; tipo de fluido: líquido ou gás, limpo ou sujo, viscosidade alta ou baixa; condutividade elétrica, transparência; condições termodinâmicas: por exemplo, faixas de vazão e temperatura nos quais o medidor deve atuar; espaço físico disponível; custo e etc.

Figura 1 – Variáveis de Processos.

Fonte: Revista Control Engineering 2002.
Pesquisa sobre utilização futura de transmissores em controle de processos.

A medição de vazão de fluidos sempre esteve presente em nosso dia-a-dia. Por exemplo, o hidrômetro de uma residência, o marcador de uma bomba de combustível nos veículos, etc.

Na História, grandes nomes marcaram suas contribuições, como Leonardo da Vinci que em 1502, observou que a quantidade de água por unidade de tempo que escoava em um rio era a mesma em qualquer parte, independente da largura, profundidade, inclinação e outros. Mas o desenvolvimento de dispositivos práticos só

foi possível com o surgimento da era industrial e o trabalho de pesquisadores como Bernoulli, Pitot e outros.

Os fabricantes em geral oferecem ao mercado mais de uma versão de transistores com características técnicas distintas e obviamente com preços também distintos. Resumidamente, podemos classificar os medidores de vazão, segundo o quadro abaixo:

Tabela 1 – Classificadores dos medidores de vazão.

Medidores indiretos utilizando fenômenos intimamente relacionados a qualidade de fluido passante		Tubo Pitot
	Perda de carga variável (área constante)	Tubo de Venturi
		Tubo de Dall
		Annubar
		Placa de orifício
	Área variável (perda de carga constante)	Rotâmetro
Medidores diretos de volume do fluido passante	Deslocamento positivo do fluido	Disco Nutante
		Pistão flutuante
		Rodas ovais
		Roots
	Velocidade pelo impacto do fluido	Tipo Hélice
		Tipo turbina
Medidores especiais	Eletromagnético	
	Vortex	
	Ultrassônico	
	Calhas Parshall	
	Coriolis	
	Térmico	
	Diferencial de pressão	

Fonte: César Cassiolato e Evaristo Orellana, 2010.

Links com demonstração do funcionamento físico de alguns medidores:

a. Eletromagnético: https://youtu.be/-XD0LmJyYJQ

b. Vortex: https://youtu.be/8b_CZiYZG2Y

c. Ultrassônico: https://youtu.be/68Q47IEcVgl

d. Tubo de Venturi: https://youtu.be/aMg2mT195ig

e. Coriolis: https://youtu.be/7dp8PO-_BdA

f. Térmico: https://youtu.be/tT0B0hwOMc8

g. Diferencial de pressão: https://youtu.be/kHpZN92V9JM

2. MEDIDOR DE VAZÃO ELETROMAGNÉTICO

O medidor de vazão eletromagnético para líquidos é um medidor volumétrico com baixa perda de carga. Sem parte móvel, possui boa precisão, sendo insensível a variações de pressão, temperatura, densidade e viscosidade. Possui habilidade de medir vazões de uma grande gama de produtos químicos, sujos e lamacentos. Sua operação baseia-se na Lei de Faraday, requerendo, portanto, que o líquido a ser medido possua um mínimo de condutividade elétrica.

O princípio de operação do medidor de vazão eletromagnético está baseado na lei de Faraday que estabelece: quando um condutor se move em um campo magnético, na direção perpendicular ao campo, uma força eletromotriz é induzida perpendicularmente à direção do movimento do condutor e à direção do campo magnético.

O valor da força eletromotriz é proporcional à velocidade do condutor e à densidade do fluxo magnético. Quando um fluído condutor flui com uma velocidade média (m/s) através de um tubo de diâmetro interno (m), na qual um campo magnético de densidade de fluxo uniforme (Tesla) existe, uma força eletromotriz (volts), induzida perpendicularmente à direção do campo magnético e a direção do fluxo. Logo, a força eletromotriz induzida é função da vazão volumétrica medida. No link disponibilizado podemos ver com mais detalhes o seu principio físico.

E a sua medição num experimento e ou em um levantamento de campo é feita para tanto conhecer o consumo do fluído em escoamento num certo tempo, como para obtenção de outras grandezas, como perda de carga, se a bomba está ligada ou não, velocidade média, e outras grandezas de interesse. Ou seja, para um resultado direto da grandeza, como dado de entrada para a obtenção do resultado de outras grandezas.