COR: Corpus Linquistics

Multimodal and Multilingual Corpora

Francis Bond

Department of Asian Studies Palacký University

https://fcbond.github.io/bond@ieee.org

https://github.com/bond-lab/Corpus-Linguistics

Overview

- > Revision of Annotation
 - ➤ Mark-up
 - > Annotation
 - > Regular Expressions
- > Multi-modal Corpora
- > Multi-lingual Corpora

Revision of Annotation

Corpus Annotation vs. Mark-Up

- > Mark up provides objectively verifiable information
 - Authorship
 - Publication dates
 - > Paragraph boundaries
 - > Source text (URL, Book, ...)
 - > License
- > Annotation provides interpretive linguistic information
 - Sentence/Utterance boundaries
 - > Tokenization
 - > Part-of-speech tags, Lemmas, Concepts
 - > Sentence structure (syntax, co-reference, roles)
 - > Domain, Genre

Dublin Core Ontology

> Goals

- > Provides a semantic vocabulary for describing the "core" information properties of resources (electronic and "real" physical objects)
- > Enables intelligent resource discovery systems
- > Fifteen Elements:
 - ➤ Content (7)
 - * Title, Subject, Description, Type, Source, Relation and Coverage
 - ➤ Intellectual property (4)
 - * Creator, Publisher, Contributor, Rights
 - > Instantiation (4)
 - * Date, Language, Format, Identifier
- > OLAC Lang. Resource Catalog: http://search.language-archives.org/

Geoffrey Leech's Seven Maxims of Annotation

- 1. Annotation should be separable from text, leaving the raw corpus.
- 2. It should be possible to extract just the annotations from the text.
- 3. The annotation guidelines should be available.
- 4. Who did the annotation and how should be made clear.
- 5. The possibilities of errors should be made clear.
- 6. Annotation schemes should be theory-neutral
- 7. Standards emerge through practical consensus.

Types of Corpus Annotation

- > Tokenization, Lemmatization
- > Part-of-speech
- > Syntactic analysis (chunks, parses)
- Semantic analysis (word senses, semantic roles)
- > Discourse and pragmatic analysis (co-reference, time)
- > Phonetic, phonemic, prosodic annotation
- > Error tagging

How is Corpus Annotation Done?

- Mainly semi-automatic (done first by computer programs; post-edited)
 - 1. An small annotated corpus is built, entirely by humans
 - 2. Then a computer program is **trained** on this corpus
 - 3. Now new corpora can be automatically annotated using this program
- ➤ Large corpora often fully automatic
 - > Segmentation
 - ➤ Part-of-speech tagging: accuracy of 97%
 - Lemmatization
- Corpora should indicate reliability of tags
 - Inter-annotator agreement, kappa (human)
 - Tagger accuracy (machine)

How are corpora represented?

- > Far too many encoding schemes (TEI is common)
 - > Header: for mark up
 - ➤ Body: for annotation
- > Text: one sentence per line, POS affixed can_VV
- >> XML: <s sid='1'><w wid = '1' pos='vv'>can</w></s>
- > XML standoff:

> Often stored in a database in applications

Best Practices

- > XML
- > Header and documentation
- ➤ Open license
- > Maintained (errors corrected, dynamic updates)

Multi-Modal Corpora

Multi-modal Corpora

- ➤ Language is not the only channel for communication: It is often combined with other modalities
 - > speech
 - > gesture
 - > facial expression
 - > gaze
 - body posture ECG (Electrocardiogram), HR (Heart Rate), GSR (Galvanic Skin Response)
 - > activity: nursing, drawing, building
 - > orthographic cues (color, size, font choice, ...)
- > Corpora that include more than one of these are multi-modal

HCRC Map Task

- > Early, influential dialog corpus (with maps)
- > Task
 - Two speakers sit opposite one another
 - > Each has a map which the other cannot see
 - > The Instruction Giver has a route marked on their map
 - > The Instruction Follower has no route
 - ➤ The goal is to reproduce the Instruction Giver's route on the Instruction Follower's map
 - > The maps are not identical and the speakers are told this
- Conditions
 - > familiar (friends) vs non-familiar
 - gaze vs no-gaze

The Maps

Some design points

- > Landmarks chosen for phonetic properties
 - ➤ /t/-deletion eg *vast meadow*
 - ➤ /d/-deletion eg *reclaimed fields*
 - > glottalisation eg chestnut tree
 - > nasal assimilation eg broken gate

Making the data maximally useful

- > Annotation
 - > POS, parse
 - Discourse structure
 - ➤ Gaze
- Now replicated in many languages and dialects (Dutch, Italian, Japanese, Swedish, Occitan, Portuguese, Australian, American and British English)

E-Nightingale: Nursing Task Corpus

- > Japanese project to analyze Nursing tasks and dialogs
- > recorder worn all day
- > beeps at ten minute intervals (event-driven recording)
 - Nurse records what they are doing
- > Linked to location
- > Very hard speech to decode

Hiromi Itoh Ozaku; Akinori Abe; Noriaki Kuwahara; Futoshi Naya; Kiyoshi Kogure; Kaoru Sagara *Building Dialogue Corpora for Nursing Activity Analysis* in LINC-2005

VACE Multimodal Meeting Corpus

Lei Chen, R. Rose, Qiao Ying, Irene Kimbara, Fey Parrill, Haleema Welji, Tony Han, Jilin Tu, Zhongqiang Huang, Mary Harper, Francis Quek, Yingen Xiong, David Mcneill, Ronald Tuttle and Thomas Huang. (2006). VACE multimodal meeting corpus. 40-51. https://dx.doi.org/10.1007/11677482_4

- > Industrial scale coding, 10 cameras, separate audio for each speaker:
 - > motion capture
 - > gaze
 - > speech automatic; OOV by experts; further checking
 - detailed information about the participants
 - detailed information about the task

British Sign Language Corpus

- ➤ Collection of sign language recordings (2008–2011)
 - ➤ 249 deaf signers of BSL from 8 regions around the UK: London (L), Bristol (BL), Cardiff (CF), Birmingham (BM), Newcastle (N), Manchester (M), Glasgow (G) and Belfast (BF).
 - mixed for gender, age group, age of BSL acquisition, social class and ethnicity
 - > interviews (i); conversation (c); narrative followed by conversation (n-c)
- Marked up with the above information
- Gave rise to many new projects
 - ➤ BSL SignBank
 - Directional verbs
 - ➤ BSL Syntax
 - > ExTOL: End to End Translation of British Sign Language

Multi-Lingual Corpora

Bitexts and more

- Multilingual corpora are useful for
 - Contrastive linguistic analysis
 - * Comparing distributions between languages
 - * Learning about translations
 - * using one language to describe the other
 - > Language learning
 - * Teaching new phenomena in terms of what you already know
 - Machine translation training
 - * Learning translations directly

Europarl

- > Large automatically aligned corpus of European parliament proceedings
- > Translation between EU languages (EU funded project)
- > 18-40 million words, .6–1.3 million sentences
- > Freely available text in all European Languages
- Used in the Euro Matrix MT project

Europarl: A Parallel Corpus for Statistical Machine Translation, Philipp Koehn, MT Summit 2005

Euro Matrix SMT Results

	Danish					utput la					
		BLEU 21.47	BLEU 18.49	BLEU 21.12	BLEU 28.57	BLEU 14.24	BLEU 28.79	BLEU 22.22	BLEU 24.32	BLEU 26.49	BLEU 28.33
i n p u t	BLEU 20.51	Dutch	BLEU 18.39	BLEU 17.49	BLEU 23.01	BLEU 10.34	BLEU 24.67	BLEU 20.07	BLEU 20.71	BLEU 22.95	BLEU 19.03
	BLEU 22.35	BLEU 23.40	German	BLEU 20.75	BLEU 25.36	BLEU 11.88	BLEU 27.75	BLEU 21.36	BLEU 23.28	BLEU 25.49	BLEU 20.51
	BLEU 22.79	BLEU 20.02	BLEU 17.42	Greek	BLEU 27.28	BLEU 11.44	BLEU 32.15	BLEU 26.84	BLEU 27.67	BLEU 31.26	BLEU 21.23
	BLEU 25.24	BLEU 21.02	BLEU 17.64	BLEU 23.23	English	BLEU 13.00	BLEU 31.16	BLEU 25.39	BLEU 27.10	BLEU 30.16	BLEU 24.83
l a n	BLEU 20.02	BLEU 17.09	BLEU 14.57	BLEU 18.20	BLEU 21.86	Finnish	BLEU 22.49	BLEU 18.39	BLEU 19.14	BLEU 21.16	BLEU 18.85
gu a ge	BLEU 23.73	BLEU 21.13	BLEU 18.54	BLEU 26.13	BLEU 30.00	BLEU 12.63	French	BLEU 32.48	BLEU 35.37	BLEU 38.47	BLEU 22.68
	BLEU 21.47	BLEU 20.07	BLEU 16.92	BLEU 24.83	BLEU 27.89	BLEU 11.08	BLEU 36.09	Italian	BLEU 31.20	BLEU 34.04	BLEU 20.26
	BLEU 23.27	BLEU 20.23	BLEU 18.27	BLEU 26.46	BLEU 30.11	BLEU 11.99	BLEU 39.04	BLEU 32.07	Portuguese	BLEU 37.95	BLEU 21.96
	BLEU 24.10	BLEU 21.42	BLEU 18.29	BLEU 28.38	BLEU 30.51	BLEU 12.57	BLEU 40.27	BLEU 32.31	BLEU 35.92	Spanish	BLEU 23.90
	BLEU 30.35	BLEU 21.94	BLEU 18.97	BLEU 22.86	BLEU 30.20	BLEU 15.37	BLEU 29.77	BLEU 23.94	BLEU 25.95	BLEU 28.66	Swedish

Euro Matrix Discussion

- > Linguistic similarity affects the statistical machine translation score:
 - ightharpoonup Highest: Spanish ightharpoonup French (BLEU = 40.27)
 - ightharpoonup Lowest: Italian ightharpoonup Finnish (BLEU = 11.08)
- Translation done using the open source SMT System:
 Moses <statmt.org>
- ightharpoonup Creating all n(n-1) language pairs took a week
 - > It is easy to train new systems if you have a multi-lingual corpus

Interesting facts

- > Also used for lexicon and thesaurus construction
- > Several English on-line translations are actually French and no-one had noticed
- > Almost entirely constructed automatically
- > New languages being added to the EU means more data

OPUS

- > On-line collection of multilingual text
- Mainly automatically created
 - > OPUS multilingual
 - > Europarl
 - ➤ OpenSubtitles
 - > EUconst
 - ➤ Word Alignment Database
- > Slightly hard to use interface

https://opus.nlpl.eu/

Opus Downloads & Samples

- > EMEA European Medicines Agency documents (5.0 GB)
- > EUconst The European constitution (67 MB)
- EUROPARL European Parliament Proceedings (3.6 GB)
- > 00 the OpenOffice.org corpus (34 MB)
- > OpenSubs the opensubtitles.org corpus (1.3 GB)
- > KDE4 KDE4 localization files (v.2) (1.4 GB)
- ➤ KDEdoc the KDE manual corpus (35 MB)
- > PHP the PHP manual corpus (172 MB)
- > SETIMES A parallel corpus of the Balkan languages 2.3 GB)
- > SPC Stockholm Parallel Corpora (3.5 MB)

Taoteba

- > User generated corpus of example sentences
 - Not authentic at all
 - Short and well aligned (thus easy to process)
- ➤ Used for teaching, learning and MT research
 - (1) あの木の枝に数羽の鳥がとまっている。

あの木 の 枝 に 数 羽 の 鳥 が とまっている。*(jp)* ano ki no eda ni suu hiki no tori ga tomatte iru . that tree of branch on some wing of bird SBJ stop be .

(also Hebrew, Esperanto, Italian: added since 2009)

http://tatoeba.org/

[&]quot;Some birds are sitting on the branch of that tree." (en)

[&]quot;Des oiseaux se reposent sur la branche de cet arbre." (fr)

Task

- ➤ Pick a couple of relatively basic words: *dog*, *tree*, *all* for which you know the translation in some language.
- > Look at the word in the OPUS subtitle corpus and Tatoeba
 - How often is it translated into a word you know?
 - ➤ How often is it not translated at all?
- > Now try one of the more technical corpora

Other Large Multilingual Corpora

- Canadian Hansard
- ➤ Hong Kong Hansard
- ➤ Bible Translation Corpus
- Universal Declaration of Human Rights
- > Swadesh list
- > GALE Chinese-English, Japanese-English (DoD)
- > NICT Japanese-English, Japanese-Chinese
- > NTU Multilingual Corpus

Sentence Alignment

- ➤ Various ways to align sentences
- ➤ Length-based
 - > Gale-Church algorithm (basically match sentence length in characters)
- > Other lexical methods are also popular
 - > match using a dictionary
 - > content words only
- > The better the alignment, the easier it is to extract information

Word Alignment

- ➤ GIZA++ match words depending on shared position
 - > How many times to two words appear in the same sentence pair
 - > Hard to match very free translations, also MWEs
- > Lexically-based (using dictionaries and thesauruses) are also common
- > Typically newspapers may have length differences of up to a third
- The more direct the translation, the easier it is to align
 - ➤ Many things do not align clearly

Introduce Lab 2

- > Prepare a short intro to a corpus
- > Present in class