

SCHOTTKY **BIPOLAR LSI MICROCOMPUTER** SET

PARALLEL **BIDIRECTIONAL BUS DRIVER**

The INTEL Bipolar Microcomputer Set is a family of Schottky bipolar LSI circuits which simplify the construction of microprogrammed central processors and device controllers. These processors and controllers are truly microprogrammed in the sense that their control logic is organized around a separate read-only memory called the microprogram memory. Control signals for the various processing elements are generated by the microinstructions contained in the microprogram memory. In the implementation of a typical central processor, as shown below, the microprogram interprets a higher level of instructions called macroinstructions. similar to those found in a small computer. For device controllers, the microprograms directly implement the required control functions.

The INTEL 3216 is a high-speed 4-bit Parallel, Bidirectional Bus Driver. Its three-state outputs enable it to isolate and drive external bus structures associated with Series 3000 systems

The 3216 driver and receiver gates have three state outputs with PNP inputs. When the drivers or receivers are tri-stated the inputs are disabled. presenting a low current load, typically less than 40 μ amps, to the system bus structure.

High Performance-20 ns typical propagation delay Low Input Load Current-0.25 mA maximum High Output Drive Capability for **Driving System Data Busses Three-State Outputs TTL Compatible** 16-pin DIP

Figure 1. Block Diagram of a Typical System

Other members of the INTEL Bipolar Microcomputer Set:

3001 Microprogram Control Unit 3002 Central Processing Element 3003 Look-Ahead Carry Generator

3212 Multi-Mode Latch Buffer 3214 Priority Interrupt Control Unit 3301A Schottky Bipolar ROM (256 x 4) 3304A Schottky Bipolar ROM (512 x 8) 3601 Schottky Bipolar PROM (256 x 4) 3604 Schottky Bipolar PROM (512 x 8)

PACKAGE OUTLINE

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE
1	CS	Chip Select	Active LOW
2,5,11,14	DO	Data Output	
3,6,10,13	DB	Data Bus Bidirectional	
4,7,9,12	DI	Data Input	
8	GND	Ground	
15	DCE	Direction Control Enable	
16	V _{CC}	+5 Volt Supply	

LOGIC DIAGRAM

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias

Ceramic																				
Plastic	•		-	•	•	•	•	•	٠	٠	•			•				٠		0°C to +75°C
Storage Temperature																			-(65°C to +160°C
All Output and Supply Voltages																				-0.5V to +7V
All Input Voltages		٠										•								-1.0V to +5.5V
Output Currents																				125 mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

 $T_A = 0^{\circ}C$ to +75°C, $V_{CC} = +5V \pm 5\%$

			LIMITS			
SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS
^I F1	Input Load Current DCE, CS	-	-0.15		mA	V _F = 0.45
I _{F2}	Input Load Current All Other Inputs		-0.08		mA	$V_{F} = 0.45$
I _{R1}	Input Leakage Current DCE, CS				μΑ	V _R = 5.25V
I _{R2}	Input Leakage Current DI Inputs				μΑ	V _R = 5.25V
I _{R3}	Input Leakage Current DB Inputs			NE	μΑ	V _R = 5.25V
V _C	Input Forward Voltage Clamp				, V	$I_C = -5 \text{ mA}$
VIL	Input "Low" Voltage				. V	
V _{IH}	Input "High" Voltage				V	
CEX	Output Leakage				μΑ	$V_0 = 0.45 V/5.25 V$
^I cc	Power Supplý Current		90		mA	
V _{OL1}	Output "Low" Voltage		0.3		V	DO Outputs I _{OL} = 15 mA Outputs I _{OL} = 25 mA
V _{OL2}	Output "Low Voltage		0.5		V	DB Outputs I _{OL} = 50 mA
V _{OH1}	Output "High" Voltage		4.0		V	DO Outputs I _{OH} = -1 mA
V _{OH2}	Output "High" Voltage		3.0		V	DB Outputs I _{OH} = -10 mA
I _{SC}	Output Short Circuit Current		-35 -75		mA mA	DO Outputs $V_0 \cong 0V$

NOTE: Typical values are for $T_A = 25^{\circ}C$

A.C. CHARACTERISTICS

 T_A = 0°C to +75°C, V_{CC} = +5V ± 5%

SYMBOL	PARAMETER	LIMITS MIN TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
T _{PD1}	Input to Output Delay DO Outputs	20		ns	$C_L = 15 \text{ pF}, R_1 = 300\Omega$ $R_2 = 600\Omega$
T _{PD2}	Input to Output Delay DB Outputs	20		ns	$C_L = 150 \text{ pF}, R_1 = 180\Omega, R_2 = 300\Omega$
TE	Output Enable Time	35		ns	DCE
		35		ns	CS
T_D	Output Disable Time	25		ns	DCE
		25		ns	CS

NOTE

(1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

TEST CONDITIONS:

Input pulse amplitude of 2.5V.
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 10 pF.
Speed measurements are made at 1.5 volt levels.

TEST LOAD CIRCUIT:

CAPACITANCE⁽²⁾ $T_A = 25^{\circ}C$

			LIMITS		
SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
c _{IN}	Input Capacitance				pF
C _{OUT}	Output Capacitance				pF

NOTE

(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, V_{B1AS} = 2.5V, V_{CC} = 5.0V and T_A = 25°C.

ORDERING INFORMATION

Part Number Description

3216

4-Bit Parallel, Bidirectional Bus Driver

Intel Corporation

3065 Bowers Avenue Santa Clara, California 95051

Tel: (408) 246-7501 TWX: 910-338-0026 Telex: 34-6372 WESTERN

1651 East 4th Street

Suite 228

Santa Ana, California 92701

Tel: (714) 835-9642 TWX: 910-595-1114

MID-AMERICA

6350 L.B.J. Freeway

Suite 178

Dallas, Texas 75240 Tel: (214) 661-8829 TWX: 910-860-5487

GREAT LAKES REGION

8312 North Main Street Dayton, Ohio 45415 Tel: (513) 890-5350 TELEX: 288-004

EASTERN2 Militia Drive

Suite 4

Lexington, Massachusetts 02173

Tel: (617) 861-1136 TWX: 710-321-0187 MID-ATLANTIC

520 Pennsylvania Avenue

Suite 102

Fort Washington, Pennsylvania 19034

Tel: (215) 542-9444 TWX: 510-661-3055

EUROPE

Belgium Intel Office

216 Avenue Louise Brussels B1050 Tel: 649-20-03

TELEX: 24814

ORIENT

Japan

Intel Japan Corporation Kasahara Bldg. 1-6-10, Uchikanda

Chiyoda-ku Tokyo 101

Tel: (03) 295-5441 TELEX: 781-28426