In [1]:	Naïve Bayes import pandas as pd import numpy as np import pandas as pd Exercício 1
In [2]:	First Question Dada a tabela ao lado, se uma pessoa tem 35 anos e ganha \$50.000,00 (renda media), ele compra um computador?
	<pre>data = {'rec':</pre>
Out[2]:	0 r1 <=30 High No Fair No 1 r2 <=30 High No Excellent No
	2 r3 3140 High No Fair Yes 3 r4 >40 Medium No Fair Yes 4 r5 >40 Low Yes Fair Yes 5 r6 >40 Low Yes Excellent No 6 r7 3140 Low Yes Excellent Yes
	7 r8 <=30 Medium No Fair No 8 r9 <=30 Low Yes Fair Yes 9 r10 >40 Medium Yes Fair Yes 10 r11 <=30 Medium Yes Excellent Yes 11 r12 3140 Medium No Excellent Yes
	12 r13 3140 High Yes Fair Yes 13 r14 > 40 Medium No Excellent No IMPORTANTE: Este exercício será solucionado de duas maneiras: 1º Solução) Considerando P=0 para os casos em que não existir nenhuma amostra que atenda à condição analisada;
	2º Solução) Utilizando a fórmula onde: P= (nc+mxp)/(n+m) Considerando que m=1 (peso dado à priori) nc - quantidade de amostras que atendem à condição p=m/(total de casos)=1/14 n - depende da condição analisada, será igual ao número total de casos da condição <i>yes</i> OU número total de casos da condição <i>no</i> .
In [3]:	<pre>1º Solução #Definição das funções def prob_yes(column,cond): """Probability of buy a computer with the input conditions""" if ((((df.loc[(df['Buys_computer']=='Yes') & (df[f'{column}']==f'{cond}'),f'{column}']).value_counts()). x= 0 else:</pre>
	<pre>x= df.loc[(df['Buys_computer']=='Yes') & (df[f'{column}']==f'{cond}'),f'{column}'].value_counts()[0] return(x) def prob_no(column,cond): """Probability of not buy a computer with the input conditions""" if ((((df.loc[(df['Buys_computer']=='No') & (df[f'{column}']==f'{cond}'),f'{column}']).value_counts()).a x= 0 else: x= df.loc[(df['Buys_computer']=='No') & (df[f'{column}']==f'{cond}'),f'{column}'].value_counts()[0]/ return(x) #Cálculo das probabilidades de comprar ou não um computador p_buy = df[['Buys_computer']].value_counts()[0]/df['Buys_computer'].shape[0] p_not_buy = df[['Buys_computer']].value_counts()[1]/df['Buys_computer'].shape[0]</pre>
In [4]:	<pre>#Solução: print('x' = (Age=3140,Income=Medium)') print('\n') #P_buy print('P(Age=3140 Buys_computer=Yes)=', prob_yes('Age','3140')) print('P(Income=Medium Buys_computer=Yes)=',prob_yes('Income','Medium')) print('P(Buys_computer=Yes)=',p_buy)</pre>
	<pre>print('\n') #P_not_buy print('P(Age=3140 Buys_computer=No)=', prob_no('Age','3140')) print('P(Income=Medium Buys_computer=No)=',prob_no('Income','Medium')) print('P(Buys_computer=No)=',p_not_buy) print('\n') #Resultado:</pre>
	<pre>p_yes = prob_yes('Age','3140')*prob_yes('Income','Medium')*p_buy p_no = prob_no('Age','3140')*prob_no('Income','Medium')*p_not_buy print('P(Yes x')=',p_yes) print('P(No x')=',p_no) if(p_yes>p_no): print("Yes, he buys a computer.") else: print("No, he didn't buy a computer.")</pre>
	<pre>x' = (Age=3140,Income=Medium) P(Age=3140 Buys_computer=Yes) = 0.44444444444444444444444444444444444</pre>
	P(Income=Medium Buys_computer=No) = 0.4 P(Buys_computer=No) = 0.35714285714285715 P(Yes x') = 0.12698412698412698 P(No x') = 0.0 Yes, he buys a computer.
In [5]:	<pre>2º Solução #Definição das funções def prob_yes2(column, cond): """Probability of buy a computer with the input conditions""" if ((((df.loc[(df['Buys_computer']=='Yes') & (df[f'{column}']==f'{cond}'),f'{column}']).value_counts()). x= ((0 + 1/14)/(9+1)) else: x= ((df.loc[(df['Buys_computer']=='Yes') & (df[f'{column}']==f'{cond}'),f'{column}'].value_counts()[</pre>
	<pre>return(x) def prob_no2(column,cond): """Probability of not buy a computer with the input conditions""" if ((((df.loc[(df['Buys_computer']=='No') & (df[f'{column}']==f'{cond}'),f'{column}']).value_counts()).a x= ((0 + 1/14)/(5+1)) else: x= ((df.loc[(df['Buys_computer']=='No') & (df[f'{column}']==f'{cond}'),f'{column}'].value_counts()[0]</pre>
In [6]:	<pre>return(x) #Cálculo das probabilidades de comprar ou não um computador p_buy = df[['Buys_computer']].value_counts()[0]/df['Buys_computer'].shape[0] p_not_buy = df[['Buys_computer']].value_counts()[1]/df['Buys_computer'].shape[0] #Solução: print('x' = (Age=3140,Income=Medium)') print('\n')</pre>
	<pre>#P_buy print('P(Age=3140 Buys_computer=Yes)=', prob_yes2('Age','3140')) print('P(Income=Medium Buys_computer=Yes)=',prob_yes2('Income','Medium')) print('P(Buys_computer=Yes)=',p_buy) print('\n') #P_not_buy</pre>
	<pre>print('P(Age=3140 Buys_computer=No)=', prob_no2('Age','3140')) print('P(Income=Medium Buys_computer=No)=',prob_no2('Income','Medium')) print('P(Buys_computer=No)=',p_not_buy) print('\n') #Resultado: p_yes = prob_yes2('Age','3140')*prob_yes2('Income','Medium')*p_buy p_no = prob_no2('Age','3140')*prob_no2('Income','Medium')*p_not_buy print('P(Yes x')=',p yes)</pre>
	<pre>print('P(No x')=',p_no) if(p_yes>p_no): print("Yes, he buys a computer.") else: print("No, he didn't buy a computer.") x' = (Age=3140, Income=Medium)</pre>
	P(Age=3140 Buys_computer=Yes) = 0.40714285714285714 P(Income=Medium Buys_computer=Yes) = 0.40714285714285714 P(Buys_computer=Yes) = 0.6428571428571429 P(Age=3140 Buys_computer=No) = 0.011904761904761904 P(Income=Medium Buys_computer=No) = 0.3452380952380953 P(Buys_computer=No) = 0.35714285714285715
	P(Yes x') = 0.1065634110787172 P(No x') = 0.0014678490443796569 Yes, he buys a computer. Second Question E se a pessoa for estudante e tiver um crédito bom (fair)?
In [7]:	<pre>print('x' = (Age=3140, Income=Medium, Student=Yes, Credit_rating=Fair)') print('\n') #P_buy</pre>
	<pre>print('P(Age=3140 Buys_computer=Yes)=', prob_yes('Age','3140')) print('P(Income=Medium Buys_computer=Yes)=',prob_yes('Income','Medium')) print('P(Student=Yes Buys_computer=Yes)=',prob_yes('Student','Yes')) print('P(Credit_rating=Fair Buys_computer=Yes)=',prob_yes('Credit_rating','Fair')) print('P(Buys_computer=Yes)=',p_buy) print('\n') #P_not_buy print('P(Age=3140 Buys_computer=No)=', prob_no('Age','3140'))</pre>
	<pre>print('P(Income=Medium Buys_computer=No)=',prob_no('Income','Medium')) print('P(Student=Yes Buys_computer=No)=',prob_no('Student','Yes')) print('P(Credit_rating=Fair Buys_computer=No)=',prob_no('Credit_rating','Fair')) print('P(Buys_computer=No)=',p_not_buy) print('\n') #Resultado: p_yes = prob_yes('Age','3140')*prob_yes('Income','Medium')*prob_yes('Student','Yes')*prob_yes('Credit_rating')</pre>
	<pre>p_no = prob_no('Age','3140')*prob_no('Income','Medium')*prob_no('Student','Yes')*prob_no('Credit_rating', print('P(Yes x')=',p_yes) print('P(No x')=',p_no) if(p_yes>p_no): print("Yes, he buys a computer.") else: print("No, he didn't buy a computer.") x' = (Age=3140, Income=Medium, Student=Yes, Credit_rating=Fair)</pre>
	P(Age=3140 Buys_computer=Yes) = 0.44444444444444444444444444444444444
	<pre>P(Age=3140 Buys_computer=No) = 0 P(Income=Medium Buys_computer=No) = 0.4 P(Student=Yes Buys_computer=No) = 0.2 P(Credit_rating=Fair Buys_computer=No) = 0.4 P(Buys_computer=No) = 0.35714285714285715</pre> P(Yes x') = 0.056437389770723094 P(No x') = 0.0 Yes, he buys a computer.
In [8]:	<pre>2º Solução: print('x' = (Age=3140, Income=Medium, Student=Yes, Credit_rating=Fair)') print('\n') #P_buy</pre>
	<pre>print('P(Age=3140 Buys_computer=Yes)=', prob_yes2('Age','3140')) print('P(Income=Medium Buys_computer=Yes)=',prob_yes2('Income','Medium')) print('P(Student=Yes Buys_computer=Yes)=',prob_yes2('Student','Yes')) print('P(Credit_rating=Fair Buys_computer=Yes)=',prob_yes2('Credit_rating','Fair')) print('P(Buys_computer=Yes)=',p_buy) print('\n') #P_not_buy print('P(Age=3140 Buys_computer=No)=', prob_no2('Age','3140'))</pre>
	<pre>print('P(Income=Medium Buys_computer=No)=',prob_no2('Income','Medium')) print('P(Student=Yes Buys_computer=No)=',prob_no2('Student','Yes')) print('P(Credit_rating=Fair Buys_computer=No)=',prob_no2('Credit_rating','Fair')) print('P(Buys_computer=No)=',p_not_buy) print('\n') #Resultado: p_yes = prob_yes2('Age','3140')*prob_yes2('Income','Medium')*prob_yes2('Student','Yes')*prob_yes2('Credit_p_no = prob_no2('Age','3140')*prob_no2('Income','Medium')*prob_no2('Student','Yes')*prob_no2('Credit_rating')</pre>
	<pre>print('P(Yes x')=',p_yes) print('P(No x')=',p_no) if(p_yes>p_no): print("Yes, he buys a computer.") else: print("No, he didn't buy a computer.") x' = (Age=3140, Income=Medium, Student=Yes, Credit_rating=Fair)</pre>
	P(Age=3140 Buys_computer=Yes) = 0.40714285714285714 P(Income=Medium Buys_computer=Yes) = 0.40714285714285714 P(Student=Yes Buys_computer=Yes) = 0.6071428571428571 P(Credit_rating=Fair Buys_computer=Yes) = 0.6071428571428571 P(Buys_computer=Yes) = 0.6428571428571429 P(Age=3140 Buys_computer=No) = 0.011904761904761904
	P(Income=Medium Buys_computer=No) = 0.3452380952380953 P(Student=Yes Buys_computer=No) = 0.17857142857142858 P(Credit_rating=Fair Buys_computer=No) = 0.3452380952380953 P(Buys_computer=No) = 0.35714285714285715 P(Yes x') = 0.03928166556345569 P(No x') = 9.049239431762341e-05 Yes, he buys a computer.
	Exercício 2 Use o Naïve Bayes Gaussiano para classificar o dataset Iris, e mais dois de sua escolha (os mesmos do trabalho anterior). Importante: Para solucionar este exercício, primeiramente será aplicado o PCA a fim de reduzir as dimensões dos datasets para uma dimensão e posteriormente, será aplicado o método Naïve Bayes Gaussiano. Como o PCA já foi implementado em aulas anteriores, será
In [9]:	from sklearn.decomposition import PCA Dataset Iris
In [10]:	<pre>iris = load_iris() X = iris['data'] iris['target_names'] y = iris['target']</pre>
	<pre>#PCA to reduce for dimentions into only one pca = PCA(n_components = 1) pca.fit(iris['data']) Transformed_X = pca.transform(iris['data']) Transformed_X #Separate iris samples - 0-setosa, 1-versicolor, 2-virginica setosa = Transformed_X[y==0] versicolor = Transformed_X[y==1]</pre>
In [11]:	<pre>virginica = Transformed_X[y==2] #Função para calcular a probabilidade def prob_calc(std,mean): z=[] for x in Transformed_X: z.append((1/(std*(2*np.pi)**(1/2))) * (np.exp(-((x-mean)**2) / (2*std**2)))) return z</pre>
In [12]:	<pre>prob_1=prob_calc(np.std(versicolor), np.mean(versicolor)) prob_2=prob_calc(np.std(virginica), np.mean(virginica)) classification=[] for i in range(len(prob_0)): if ((prob_0[i]>prob_1[i])&(prob_0[i]>prob_2[i])):</pre>
	<pre>classification.append(0) if ((prob_1[i]>prob_0[i])&(prob_1[i]>prob_2[i])): classification.append(1) if ((prob_2[i]>prob_0[i])&(prob_2[i]>prob_1[i])): classification.append(2) print(classification) print('\n') x=[] c=0</pre>
	<pre>e=0 for i in range(len(classification)): if (classification[i]==y[i]): c=c+1 else: e=e+1 print('Porcentagem de acerto:',(c/y.shape[0])*100) print('Porcentagem de erro:',(e/y.shape[0])*100)</pre>
	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
	Interpretação do resultado: Podemos observar que a porcentagem de erro é muito pequena comparada à porcentagem de acerto, e portanto, o método Naïve Bayes teve apresentou um resultado satisfatório para a classificação do dataset Iris. Dataset Wholesale customers data.csv Classificate into regions (Regions - Lisnon, Oporto or Other (Nominal)).
In [26]:	<pre>X = pd.read_csv('data/Wholesale customers data.csv') #classify into region: region = X['Region'] X.drop(columns=['Region', 'Channel'], inplace=True) #PCA to reduce for dimentions into only one</pre>
	<pre>pca = PCA(n_components = 1) pca.fit(X) Transformed_X = pca.transform(X) #Separate classes into 03 samples r1 = Transformed_X[region==1] r2 = Transformed_X[region==2] r3 = Transformed_X[region==3]</pre>
In [27]:	<pre>prob_1=prob_calc(np.std(one),np.mean(r1)) prob_2=prob_calc(np.std(two),np.mean(r2)) prob_3=prob_calc(np.std(three),np.mean(r3)) classification=[] for i in range(len(prob_1)): if ((prob_1[i]>prob_2[i])&(prob_1[i]>prob_3[i])): classification.append(1)</pre>
	<pre>if ((prob_2[i]>prob_1[i]) & (prob_2[i]>prob_3[i])): classification.append(2) if ((prob_3[i]>prob_1[i]) & (prob_3[i]>prob_2[i])): classification.append(3) print(classification) print('\n') #Análise do resultado obtido x=[]</pre>
	<pre>c=0 e=0 for i in range(len(classification)): if (classification[i]==region[i]): c=c+1 else: e=e+1 print('Porcentagem de acerto:',(c/region.shape[0])*100)</pre>
	<pre>print('Porcentagem de erro:', (e/region.shape[0])*100)</pre> [2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	Interpretação do resultado: Podemos observar que a porcentagem de erro é muito superior à % de acerto. Portanto, neste caso não é recomendado classificar o dataset através de regiões utilizando o método Naive Bayes, uma vez que o resultado obtido não terá uma precisão satisfatória. Wine dataset
In [24]:	<pre>Classificate into 'class_0', 'class_1' or 'class_2'. #Import dataset from sklearn.datasets import load_wine wine = load_wine() X = wine['data'] y = wine['target'] #PCA to reduce for dimentions into only one</pre>
	<pre>pca = PCA(n_components = 1) pca.fit(X) Transformed_X = pca.transform(X) Transformed_X #Separate classes into 03 samples c0 = Transformed_X[y==0] c1 = Transformed_X[y==1]</pre>
In [25]:	<pre>c2 = Transformed_X[y==2] prob_0=prob_calc(np.std(c0),np.mean(c0)) prob_1=prob_calc(np.std(c1),np.mean(c1)) prob_2=prob_calc(np.std(c2),np.mean(c2)) classification=[] for i in range(len(prob_0)):</pre>
	<pre>if ((prob_0[i]>prob_1[i])&(prob_0[i]>prob_2[i])): classification.append(0) if ((prob_1[i]>prob_0[i])&(prob_1[i]>prob_2[i])): classification.append(1) if ((prob_2[i]>prob_0[i])&(prob_2[i]>prob_1[i])): classification.append(2) print(classification) print('\n') #Análise do resultado obtido</pre>
	<pre>x=[] c=0 e=0 for i in range(len(classification)): if (classification[i]==y[i]): c=c+1 else: e=e+1</pre>
	print('Porcentagem de acerto:',(c/y.shape[0])*100) [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Loading [Mathla	Porcentagem de acerto: 72.47191011235955 Porcentagem de erro: 27.52808988764045 <u>Interpretação do resultado: Podemos obs</u> ervar que a porcentagem de erro é muito pequena comparada à porcentagem de acerto, e