ИССЛЕДОВАНИЕ КЛИЕНТОВ КРЕДИТНЫХ КАРТ

&

Credit card customers research

Почему я выбрал 3TY TEMY ?

Почему я выбрал 3TY TEMY ?

Актуальность.

Рынок банковских карт стремительно растет

Рынок банковских карт стремительно растет

Рынок банковских карт стремительно растет

> слава богу не кредитная

Рынок банковских карт стремительно растет

100 000 новых кредитный карт

Почему я выбрал 3TY TEMY ?

Почему я выбрал 3TY TEMY ?

Хорошие данные. Наконец-то

Хорошие данные. Наконец-то

Trending YouTube Video Statistics

https://www.kaggle.com/datasnaek/youtube-new

inspiration:

• Analysing what factors affect how popular a YouTube video will be.

Анализ гипермаркетов

Datasets:

1. https://www.kaggle.com/itssuru/super-store

Бизнесов задачи:

- Найти слабые места бизнеса, над чем нужно поработать чтобы сделать больше прибыли
- 2. Найти факторы, которые влияют на прибыльность гипермаркетов

Аналитика клиентов e-commerce

Datasets:

- 1. https://www.kaggle.com/prachi13/customer-analytics
- 2. https://www.kaggle.com/aungpyaeap/supermarket-sales продажи гипермаркета (1000 записей)

Taxi

Chicago Taxi Trips

https://www.kaggle.com/chicago/chicago-taxi-trips-bq

Uber Pickups in New York City (*)

 $\underline{\text{https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city?select=uber-raw-data-apr14.csv}$

Статья на основе (*)

https://fivethirtyeight.com/features/public-transit-should-be-ubers-new-best-friend/

Хорошие данные. Наконец-то

Исследование ресторанного бизнеса во время пандемии

1. Restaurant Business Rankings 2020

Top 250, Top 100 Independents and Future 50

https://www.kagale.com/michau96/restaurant-business-rankings-2020

Там 3 таблицы

Исследование с хорошими примерами визуализации данных этого датасета: https://www.kagale.com/akashram/so-what-happened-to-the-restaurants-last-year

Исследовательские вопросы

• Каков был 2020 год для ресторанного бизнеса? Рассказать историю в данных

Бизнесовые вопросы

- Что делали те рестораны(что их объединяло), которые преуспели во время пандемии?
- Что делали те рестораны которые разорились/не преуспели во время пандемии
- Что в ресторанном бизнесе будет популярно в будущем?

Задачи по идее:

- Проверить позволяют ли имеющиеся данные ответить на эти вопросы
- Из данных по которым можно определить успешность:
- Количество продаж
- Динамика продаж от года к году
- Количество точек
- Динамика количества точек от года к году

Из данных, характеризующих рестораны только:

- Какая кухня представлена
- Тип ресторана (quick service, Fast Casual, Casual dining, Family Dining etc)

Анализ гипермаркетов

Datasets:

1. https://www.kaggle.com/itssuru/super-store

Бизнесов задачи:

- 1. Найти слабые места бизнеса, над чем нужно поработать чтобы сделать больше прибыли
- 2. Найти факторы, которые влияют на прибыльность гипермаркетов

Рынок недвижимости в Мельбурне

https://www.kaggle.com/ajaypalsinghlo/world-happiness-report-2021 (отсюда ответить на вопрос зачем мне покупать квартиру в Австралии?)

- Зачем мне покупать квартиру в Австралии?
- Потому что она занимает 2 место по уровню счастья
- Одно из лидирующих мест (показать места Австралии в разрезе разных параметров (из которых составляется рейтинг) и сказать почему это оптимальные условия и комбинация факторов)

на основе (*)

Taxi Trips

ww.kaggle.com/ch

ckups in New York

vww.kaggle.com/fiv

vethirtyeight.com/

апартаментов) IRNIIGHI

Datasets:

- 1. Tweets ak
- Где стоит купить квартиру в Австралии?
- https://www.l to-2020?sele
- Какую квартиру лучше всего покупать в Австралии?
- Предложить конкретные варианты
- https://www.kaggle.com/omermetinn to-2020?select=CompanyValues.csv

Анализ какие видео становятся популярными на Ютубе **Datasets:**

https://www.kaggle.com/dansbecker/melbourne-housing-snapshot

Trending YouTube Video Statistics

Исследовательские вопросы:

нии на рынк

• Исследовать взаимосвязь между (

https://www.kaggle.com/datasnaek/youtube-new

Аналитиі рить гипоте: у на акции г Datasets:

inspiration:

• Analysing what factors affect how popular a YouTube video will be.

https://www.kaggle.com/anthonypino/melbourne-housing-market (тут с адресом

- 1. https://www.kaggle.com/prachi13/customer-analytics
- ые задачи: сете предст эшью самоп
- 2. https://www.kaggle.com/aungpyaeap/supermarket-sales продажи гипермаркета (1000 записей)
- ре и использовать тональность постов в анализе.

Поговорим Данных

Коротко, но понятно.

Демография

ЛОЯЛЬНОСТЬ

Демография

Пол Семейное Образование Возраст Дети Доход

ЛОЯЛЬНОСТЬ

Демография

Пол Семейное Образование Положение Возраст Дети Доход

ЛОЯЛЬНОСТЬ

Тип карты Время сотрудничества

Утилизация карты

Кредитный лимит Траты по карте

Attrition_Flag

Ушедшие

Активные

Задачи моего исследования

2 штуки

Задачи моего исследования

1 Понять, из-за чего уходят клиенты банка

2 Сформировать гипотезы по удержанию клиентов

Перейдем исследованию

План

1 Траты по кредитке

2 Непогашенная сумма долга

3 Как связаны возраст и LTV клиента?

Самодельный график

2 группы - 2 гистограммы

Самодельный график

2 группы - 2 гистограммы

Распределение трат по кредитке

зона риска: 1500-3000\$

Распределение трат по кредитке

зона риска: 1500-3000\$

Отдельно работать с этим сегментом клиентов

Распределение трат по кредитке

зона риска: 1500-3000\$

Отдельно работать с этим сегментом клиентов

- **+** Исследовать UX этих клиентов
- **+** Интересоваться, что не нравится клиенту

Распределение трат по кредитке

Динамика суммы покупок:

Средняя динамика активных = 0.77 Средняя динамика ушедших = 0.69

Ушедшие снизили сумму покупок на 8% больше

Распределение динамики суммы покупок

Динамика кол-ва покупок:

Средняя динамика активных = 0.74 Средняя динамика ушедших = 0.55

Ушедшие снизили кол-во покупок на **19%** больше

Распределение динамики кол-ва покупок

Непогашенная сумма долга

Непогашенная сумма долга

Непогашенная сумма долга

Непогашенная сумма долга

+ Стимулировать клиентов выходить на оптимальный остаток по счету - 1487\$

+ Отдельно работать с клиентами, которые набирают большой долг

Как связаны возраст и lifetime клиента?

Months_on_Book - время сотрудничества с клиентом, в месяцах

Как связаны возраст и lifetime клиента?

Коэффициент корреляция Пирсона = 0.79

Расчет p-value излишен, т. к. Работаем с базой всех клиентов, т.е. с генеральной совокупностью

Months_on_Book - время сотрудничества с клиентом, в месяцах

Будем использовать библиотеку statsmodels

R-squared = 0.622

Будем использовать библиотеку statsmodels

Будем использовать библиотеку statsmodels

Модель объясняет 80% изменчивости зависимой переменной

время_сотрудничества = -10.77 + возраст * 1.0064

0100								
OLS Regression R	esuits							
Dep. Variabl	ep. Variable: Month		s_on_book I		R-squared:		0.797	
Model:		OLS	S Adj. I	Adj. R-square		0.797		
Metho	d: Lea	st Square	S	F-statist		3.01	0e+04	
Dat	e: Sat, 22	May 202	Prob (F	-statis	tic):		0.00	
Tim	e:	19:45:1	5 Log-l	Likeliho	od:	-	21754.	
No. Observation	s:	766	4	,	AIC:	4.35	1e+04	
Df Residual	s:	766	2		BIC:	4.35	3e+04	
Df Mode	el:		1					
Covariance Typ	nonrobus	t						
	coef	std err	t	P> t	[0.	025	0.975]	
const	coef -10.7739	std err 0.273	-39.440	P> t 0.000	[0. -11.		0.975] -10.238	
const Customer_Age					-11.		_	
	-10.7739	0.273	-39.440	0.000	-11.	309	-10.238	
Customer_Age	-10.7739 1.0064	0.273 0.006 Durbin	-39.440 173.493	0.000	-11. 0.	309	-10.238	
Customer_Age Omnibus:	-10.7739 1.0064 513.257	0.273 0.006 Durbin Jarque-l	-39.440 173.493 Watson:	0.000	-11. 0. .022	309	-10.238	
Customer_Age Omnibus: Prob(Omnibus):	-10.7739 1.0064 513.257 0.000	0.273 0.006 Durbin Jarque-I	-39.440 173.493 -Watson: Bera (JB):	0.000 0.000 2 619 2.62e	-11. 0. .022	309	-10.238	

параметры регрессионной модели

время_сотрудничества = -10.77 + возраст * 1.0064

То есть с повышением возраста клиента на <u>1 год</u>, время сотрудничества в среднем увеличивается на <u>1 месяц</u>!

1 год

1 месяц

OLS Regression R	esults						
Dep. Variable: Months		s_on_book I		R-squared:		0.797	
Model:		OLS	Adj. I	Adj. R-square		0.797	
Metho	d: Lea	st Squares	s	F-statis	stic:	3.01	0e+04
Dat	e: Sat, 22	May 202	Prob (F	-statis	tic):		0.00
Tim	e:	19:45:15	5 Log-	Likeliho	od:	-	21754.
No. Observation	s:	7664	4	,	AIC:	4.35	1e+04
Df Residual	s:	7662	2		BIC:	4.35	3e+04
Df Mode	el:		1				
Covariance Type: nonrobust							
	coef	std err	t	P> t	[0.	025	0.975]
const	-10.7739	0.273	-39.440	0.000	-11.	309	-10.238
Customer_Age	1.0064	0.006	173.493	0.000	0.	995	1.018
Omnibus:	513.257	Durbin-Watson:		2.022			
Prob(Omnibus):	0.000	Jarque-E	Bera (JB):	619	.771		
Skew:	-0.684		Prob(JB):	2.62e	-135		
Kurtosis:	3.265	C	Cond. No.		272.		

параметры регрессионной модели

Среднестатистический Клиент в возрасте 55-70 клиент лет

Среднестатистический клиент

Прибыль в месяц = 19.44\$

Клиент в возрасте 55-70 лет

Прибыль в месяц = 19.96\$

Среднестатистический клиент

Клиент в возрасте 55-70 лет

Прибыль в месяц = 19.44\$

Прибыль в месяц = 19.96\$

Lifetime, в месяцах = 36

Lifetime, в месяцах = 49

Среднестатистический клиент

Клиент в возрасте 55-70 лет

Прибыль в месяц = 19.44\$

Прибыль в месяц = 19.96\$

Lifetime, в месяцах = 36

Lifetime, в месяцах = 49

LTV = 697.94\$ USD

LTV = 976.09\$ USD

Среднестатистический клиент Клиент в возрасте 55-70 лет

Прибыль в месяц = 19.44\$

Прибыль в месяц = 19.96\$

Lifetime, в месяцах = 36

Lifetime, в месяцах = 49

LTV = 697.94\$ USD

LTV = 976.09\$ USD

Клиенты в возрасте приносят кампании на 278\$ больше среднего

Дашборд с метриками-алармами

Churn rate

0.1607

LTV

683.0

Customer Age

26 73

Gender

(All)
F
M

Card Category
(All)
Blue
Gold
Platinum
Silver

Marital Status

(All)

Education Level

(AII)

Purchase count change

0.7122

Number of clients with 1500\$-3000\$ expenses

0.2849

Дашборд с метриками-алармами

Churn rate LTV 424.6

Gender

(All)
F
M

Card Category
(All)
Blue
Gold
Platinum
Silver

Marital Status
(All)

Education Level
(All)

32

Purchase count change

0.6926

Number of clients with 1500\$-3000\$ expenses

0.5368

Дашборд с метриками-алармами

LTV Churn rate 73 Gender (AII) 963.4 0.1432 Card Category ✓ (AII) ✓ Blue ✓ Gold ✓ Platinum ✓ Silver Marital Status (AII) **Education Level** (AII) • Purchase count Number of clients with change 1500\$-3000\$ expenses 0.7126 0.3580

Гипотезы по улучшению

Ha **3TOM** BCC.

Ну а я пошел рассылать резюме..

Ну а я пошел рассылать резюме...

Ну а я пошел рассылать резюме..

Ну а я пошел рассылать резюме..

Ну а я пошел рассылать резюме...

Спасибо 37 внимание!

Лена, спасибо за прекрасный курс!

Список литературы 💝 💝 💝

Само исследование:

https://github.com/Penguin-Run/TP-Analytics-credit-card-customers

Данные взяты из Kaggle:

https://www.kaggle.com/sakshigoyal7/credit-card-customers