Demostudo

Por: Lia Moraes Campello

Apostila de Movimento Retilíneo Uniformemente Variado (MRUV)

Sumário

1	Roteiro de Estudos	2		
	1.1 Conteúdo	2		
	1.2 Sugestões para complemento do estudo	2		
	1.3 Ações a serem tomadas	2		
2	O que é Aceleração?	3		
3	O Movimento Uniformemente Variado	3		
	3.1 Fórmulas	3		
	3.2 Equação de Torricelli	4		
4	Acelerado ou Retardado?	4		
	4.1 Movimento Progressivo Acelerado	4		
	4.2 Movimento Progressivo Retardado	4		
	4.3 Movimento Retrógrado Retardado	5		
	4.4 Movimento Retrógrado Acelerado	5		
	4.5 Resumo	5		
5	Gráficos	5		
	5.1 Aceleração	6		
	5.2 Velocidade	6		
	5.3 Posição	7		
6	Queda Livre e Lançamento Vertical	8		
	6.1 Lançamento vertical	8		
	6.2 Queda Livre	10		
7	Lista de Exercícios			
8	Gabarito	16		

1 Roteiro de Estudos

1.1 Conteúdo

Cinemática- movimento retilíneo com aceleração constante.

1.2 Sugestões para complemento do estudo

Sugestões de Vídeo - aulas:

- FÍSICA CINEMÁTICA: MRUV Movimento Retilíneo Uniformemente Variado (24 min) https://www.youtube.com/watch?v=EdNPOQjqcNg
- Me Salva! CIN13 MRUV, o que é? (12 min) https://www.youtube.com/watch?v=IOMLSCIRdxM
- Física para o EsPCEx MRUV prof. Romulo (45 min) https://www.youtube.com/watch?v=DdWi1Z96SM4&list=PLzfh17VyUqUbymcTQ0SnB7z2DaBcKBE85&index=33
- Aula especial de Física: Cinemática MRU e MRUV (2h e 12 min) https://www.youtube.com/watch?v=-dFigm9iM3w

Sugestão de Exercícios:

- Projeto Medicina (Médio/Avançado)
- Fundamentos da Mecânica Vol.1- Renato Brito (Livro de Exercícios e Resolução Avançado).

Sugestão de Leituras:

- Física Clássica Volume 1 Cinemática;
- Tópicos de Física Volume 1 Mecânica;
- Robortella Volume 1 Cinemática (Avançado).

1.3 Ações a serem tomadas

- I. Ler o material abaixo.
- II. Fazer a lista de exercícios após o material.
- III. Conferir o gabarito e as resoluções.
- IV. Realizar as sugestões acima.

2 O que é Aceleração?

Quando observamos o **movimento** de um corpo, é possível notar que a velocidade desse corpo nem sempre permanece a mesma. Durante um trajeto, por exemplo, é possível que um carro aumente ou diminua de velocidade de acordo com a vontade do motorista. A variação de velocidade dividida pelo tempo que essa alteração durou é o que é chamado na Física de **aceleração**.

O módulo da aceleração pode ser representado matematicamente pela seguinte equação:

$$|a| = |v_1 - v_0|/(t_1 - t_0) \tag{1}$$

Sendo v_0 a velocidade inicial, v_1 a velocidade final, t_0 o tempo inicial e t_1 o tempo final. Em fórmula por \mathbf{v} ser medido em m/s e \mathbf{t} ser medido em s, dizemos que \mathbf{a} é medido em m/s^2

A aceleração é uma **grandeza vetorial**. Isso quer dizer que seu comportamento depende não só de sua magnitude, mas também da direção e sentido na qual é aplicada.

3 O Movimento Uniformemente Variado

O movimento uniformemente variado é formado de duas características básicas:

- 1. Aceleração diferente de zero e constante. Na mesma direção do movimento.
- 2. Presença de uma força resultante constante.

Ao estudar a **2ª** Lei de Newton, sabe-se que toda aceleração dada a um corpo é causada pela influência externa de uma força. No entanto, no conteúdo de MRUV, o movimento vai ser analisado pelo **aspecto cinemático**.

Quando um corpo possui aceleração diferente de zero e constante, espera-se que em todos os pontos de sua trajetória, a diferença de velocidades dividida pelo tempo seja igual. Assim, é possível fazer as deduções de **fórmulas** que ajudem a entender o comportamento da velocidade, da aceleração e do deslocamento no tempo decorrido.

3.1 Fórmulas

Se usarmos os números 0 e 1 para designar o momento inicial e final, respectivamente, já é possível utilizar a fórmula do módulo da aceleração (vista no ponto 2) para deduzir uma das mais comuns fórmulas do MRUV.

$$a = \frac{(v_1 - v_0)}{(t_1 - t_0)} \tag{2}$$

Logo:

$$a * (t_1 - t_0) + v_0 = v_1 \tag{3}$$

Além dessa fórmula, temos outra equação básica, representando o deslocamento do corpo (que agora é uma função do segundo grau), lembrando que $\Delta t = t_1$ - t_0 [delta Δ é uma notação de diferença de dois valores]:

$$a * \frac{\Delta t^2}{2} + v_0 * \Delta t + s_0 = s_1 \tag{4}$$

A dedução dessa fórmula faz uso de conteúdos de matemática do nível universitário, então não iremos abordá-la.

A dedução desta fórmula pode ser encontrada no Youtube, onde foi usado a área do gráfico velocidade x tempo - https://www.youtube.com/watch?v=Qwb6pRYDoww

3.2 Equação de Torricelli

Existe ainda outra fórmula, desenvolvida pelo físico italiano Evangelista **Torricelli**, feita para fazer cálculos no **MRUV** sem a necessidade de contabilizar o tempo. Fazendo uso da fórmula $a=(v_1-v_0)/\Delta t$, será feita a substituição do Δt [que é igual a $(v_1-v_0)/a$)] e a troca de s_1-s_0 por Δs da equação $a*\frac{\Delta t^2}{2}+v_0*\Delta t+s_0=s_1$:

$$a * \frac{[v_1 - v_0]^2}{[2 * a^2]} + v_0 * \frac{(v_1 - v_0)}{a} = \Delta s$$
 (5)

Com a divisão de a/a^2 na primeira parte da equação, redução de todos os fatores à mesma fração e a resolução do produto notável $(v_1 - v_0)^2$, temos:

$$\frac{(v_1^2 - 2 * v_0 * v_1 + v_0^2)}{2 * a} + 2 * \frac{(v_0 * v_1 - v_0^2)}{2 * a} = \frac{2 * a * \Delta s}{2 * a}$$
(6)

$$v_1^2 - 2 * v_0 * v_1 + 2 * v_0 * v_1 + v_0^2 - 2 * (v_0^2) = 2 * a * \Delta s$$
(7)

$$v_1^2 = v_0^2 + 2 * a * \Delta s \tag{8}$$

4 Acelerado ou Retardado?

Faz parte do processo de entender a aceleração o entendimento de como seu sinal pode afetar o movimento e como chamamos cada tipo de deslocamento:

4.1 Movimento Progressivo Acelerado

Como já é visto na matéria de MRU, **movimento progressivo** é todo aquele no qual o sinal da velocidade (ou seja, a direção e sentido) é o mesmo do deslocamento. Adicionalmente a isso, teremos a aceleração também no sentido e direção do deslocamento e da velocidade, contribuindo para o seu constante aumento, dando assim o nome do movimento de **acelerado**. Se adotarmos o sentido e direção do deslocamento como positivo, podemos dizer por definição que v > 0 e a > 0.

4.2 Movimento Progressivo Retardado

O movimento progressivo retardado, por ser **progressivo**, tem sua velocidade v > 0, tendo em conta que o sentido e direção do deslocamento (que serão iguais ao da velocidade para a progressão) serão os referenciais de positivo. No entanto, a aceleração para o movimento retardado seguirá no sentido oposto, contrariando a velocidade do movimento, e, consequentemente, reduzindo-a. Esse fenômeno, que traz como sinal da aceleração a < 0, é chamado de **retardado**.

4.3 Movimento Retrógrado Retardado

No quesito do movimento **retrógrado**, define-se como retrógrado aquele movimento no qual a velocidade contrária ao sentido dado como positivo para o deslocamento. Assim, tem-se uma velocidade v < 0. Contrariamente a isso, a aceleração do corpo em questão seguirá apontada para o mesmo sentido favorável ao deslocamento, sendo assim um movimento de aumento da velocidade a > 0 com diminuição do caráter retrógrado (negativo) da velocidade, tornando ele **retardado**.

4.4 Movimento Retrógrado Acelerado

O movimento **retrógrado** e **acelerado** tem como característica principal a oposição de tanto a aceleração quanto a velocidade em relação ao sentido dado como positivo para o deslocamento. Nesse caso, tem-se v < 0 e a < 0, o que gera uma velocidade contrária ao movimento que sempre diminui para tornar-se cada vez mais negativa (acelerando seu caráter retrógrada).

4.5 Resumo

Resumo dos Movimentos

- Movimento Progressivo: a posição aumenta (velocidade positiva).
- Movimento Retrógrado: a posição diminui (velocidade negativa).
- Movimento Acelerado: velocidade e aceleração apontando para o mesmo sentido.
- Movimento Retardado: velocidade e aceleração apontando para sentidos contrários.

Figura 1: Exemplo Fonte: [1]

Velocidade	Aceleração	Tipo de Movimento
Positiva (>0)	Positiva (>0)	Progressivo Acelerado
Positiva (>0)	Negativa(<0)	Progressivo Retardado
Negativa (< 0)	Positiva (>0)	Retrógrado Retardado
Negativa (< 0)	Negativa (<0)	Retrógrado Acelerado

5 Gráficos

Os gráficos descritos seguem a lógica matemática. Para o MRUV, a aceleração é constante, a velocidade é vista em função linear e o espaço é na função quadrática, sendo a velocidade e

o espaço vistos nas equações anteriores:

$$a * (\Delta t) + v_0 = v_1$$

$$a * \frac{\Delta t^2}{2} + v_0 * \Delta t + s_0 = s_1$$

respectivamente.

É importante também notar que, no gráfico, o tempo não pode ser negativo. O tempo inicial mínimo (que geralmente vai ser a referência dos cálculos) será $t_0 = 0$.

5.1 Aceleração

Sendo aceleração constante, seu gráfico de aceleração em função do tempo irá ser uma linha reta que tem o mesmo valor de y (aceleração) para todo x (tempo). Para aceleração positiva, tem-se que o valor de y será acima da linha de x (onde y=), e, para a aceleração negativa, tem-se que o valor de y estará abaixo da linha de x.

5.2 Velocidade

A velocidade varia linearmente, como já dito anteriormente. Sabe-se, matematicamente, que a equação da função linear é y = ax + b. Sendo o gráfico do tipo velocidade por tempo, pode-se fazer a associação com $a * (\Delta t) + v_0 = v_1$ e ver-se-á que nosso coeficiente **a** da equação modelo corresponderá à **aceleração**, bem como o coeficiente **b** corresponderá à **velocidade inicial** [**OBS**.: a velocidade inicial quando o movimento parte do **repouso é 0**]. Enquanto a velocidade estiver **acima** do eixo das **abscissas** (linha de x), o movimento é **progressivo**; já **abaixo** desse mesmo eixo, o movimento é **retrógrado**. O gráfico será ascendente com aceleração a > 0 e **descendente** com aceleração a < 0.

É importante ressaltar 4 simples associações:

- Velocidade acima do eixo das abscissas (v > 0) e ascendente (a > 0): movimento progressivo acelerado.
- Velocidade acima do eixo das abscissas (v > 0) e descendente (a < 0): movimento progressivo retardado.

- Velocidade abaixo do eixo das abscissas (v < 0) e ascendente (a > 0): movimento retrógrado retardado.
- Velocidade abaixo do eixo das abscissas (v < 0) e descendente (a < 0): movimento retrógrado acelerado.

Fonte: [3]

5.3 Posição

O gráfico do espaço descreve uma função quadrática nos moldes espaço por tempo. Como foi visto anteriormente, a fórmula básica do espaço é:

$$a * \frac{\Delta t^2}{2} + v_0 * \Delta t + s_0 = s_1$$

E sabe-se que a fórmula da função quadrática é:

$$y = a * x^2 + b * x + c$$

Assim, faz-se a associação que o coeficiente a corresponde à aceleração (a)/2, o coeficiente **b** corresponderá a v_0 e **c** corresponderá a s_0 .

Como se sabe da matemática, a concavidade do gráfico é condicionada pelo sinal do coeficiente a. Logo, vê-se que quando a aceleração for maior 0, o gráfico terá a **concavidade** voltada para baixo, e quando a aceleração for menor que 0, o gráfico terá a concavidade voltada para cima.

Ainda é importante notar que, na área onde a curva do gráfico é ascendente, as **velocidades instantâneas** (a velocidade naquele momento exato) dos pontos naquele local são maiores que 0 (movimento progressivo). Contrariamente a isso, nos pontos pertencentes à área da parábola que é descendente. a velocidades instantâneas são todas menores que 0 (movimento retrógrado). Já o **vértice** dessa parábola indica o ponto no qual a velocidade instantânea se torna 0, antes da mudança de sinal, marcando o ponto no qual haverá mudança no sentido da movimentação.

Fonte: [4]

6 Queda Livre e Lançamento Vertical

Queda livre e o lançamento vertical são movimentos verticais caracterizados pela única força de influência ser a **Força Peso**. Por estarem respectivamente "livre de forças externas" e originado de um lançamento do solo, os movimentos adotaram esses nomes.

As principais característica em comum dos dois movimentos são que o módulo da aceleração é a aceleração da **gravidade** "g" (Aproximadamente 9,8 m/s^2 , ou arredondado para $10 \ m/s^2$) e que, quanto mais perto o objeto está do chão, maior sua velocidade.

Obs.: A gravidade é uma aceleração gerada pela força de atração de corpos de magnitudes muito grandes, como os planetas. A gravidade na superfície terrestre equivale ao valor dito anteriormente, mas é importante saber que ela é variável dependendo do planeta onde o objeto se situa. A gravidade sempre aponta para o interior da superfície na qual o corpo se situa.

6.1 Lançamento vertical

Adotando o referencial do chão, existe uma série de notações que precisam ser feitas sobre o lançamento vertical:

- Seu espaço s_0 geralmente começa do chão e será considerado o ponto 0.
- A aceleração é contrária ao movimento (tomando o referencial do chão ser de altura 0 e as alturas acima terem sinais positivos), assumindo valor de -g.
- Sua v_0 não será nula, mas a velocidade no pico do movimento é 0.
- A aceleração NUNCA vai mudar de sinal nesse movimento, porém a velocidade vai (depois do pico).
- A altura máxima:

$$h = \frac{v_0^2}{2 * g}$$

Agora vamos às explicações: no **início** do lançamento vertical, a velocidade dada ao objeto é uma v_0 **progressiva** (a favor do aumento da altura), porém, pelo fato da gravidade ser

sempre apontada para o chão, ela vai contrariar a velocidade, sendo portanto um movimento retardado.

O **ponto máximo de altura** é o ponto no qual o corpo não é mais capaz de ultrapassar tal espaço por não possuir mais velocidade orientada para aquele sentido de movimento. Nesse ponto, então, **a velocidade será igual a zero**, e ele vai marcar a mudança do sinal da velocidade.

No movimento de **retorno** do objeto jogado para cima, a velocidade contraria o sentido de movimento inicial, se tornando, portanto negativa e diminuindo o espaço no qual o corpo está. Ainda é muito necessário dizer que o movimento se torna **retrógrado acelerado**, porque, dessa vez, tanto a velocidade quanto a aceleração estão em oposição ao sentido de movimento firmado no início.

Agora, usando a fórmula de Torricelli:

$$v_1^2 = v_0^2 + 2 * a * \Delta s$$

Com Δh de altura no lugar do espaço, vamos calcular a altura máxima do movimento. Sendo v_1 no topo igual a 0, aceleração igual a -g e a altura inicial $h_0 = 0$, temos:

$$0^2 = v_0^2 - 2 * g * (h - 0) \tag{9}$$

Ou

$$-v_0^2 = -2 * g * h (10)$$

Ou

$$h = \frac{v_0}{2 * g} \tag{11}$$

Abaixo temos uma mostra de como se orienta o lançamento vertical:

Fonte: [5]

6.2 Queda Livre

O movimento de queda livre tem uma série de características importantes:

- O sinal do deslocamento depende do referencial.
- A velocidade inicial v_0 de um corpo que foi largado é 0.
- O movimento é retrógrado acelerado ou progressivo acelerado dependendendo do referencial.
- O tempo de queda é de

$$t = \sqrt{(\frac{2 * \Delta h}{q})}$$

Justifica-se esses fatores abaixo:

Levando em conta o **chão como referencial**, nota-se que o y_0 é a altura onde o corpo foi largado e o y_0 e o chão. Logo,

$$\Delta y = y_1 - y_0 = 0 - y_0 = -y_0$$

Sendo Δy o deslocamento, vê-se que ele é **negativo**. Contando que a velocidade e a aceleração irão contra o sentido escolhido de movimento (de baixo para cima), esse referencial classificaria a queda como um movimento **retrógrado** e **acelerado**.

Já quando o referencial é o **ponto inicial de onde ele saiu** (espaço 0) e crescente para baixo (deslocamento > 0), a velocidade e a aceleração serão no mesmo sentido do espaço, adotando sinal positivo e classificando, portanto, o movimento como **progressivo** e **acelerado**.

No quesito de velocidade inicial, sempre que o movimento se caracterizar como abandono, queda ou partindo do repouso, sua velocidade inicial será 0. A partir disso podemos calcular que

 $\Delta h = \frac{a * t^2}{2}$

Logo:

$$t^2 = \frac{2 * \Delta h}{g}$$

Fonte: [6]

É importante lembrar também dois outros fatores que são concluídos dos argumentos acima:

- Um corpo pode sofrer também com a força de resistência do ar. Essa força contraria o sentido do movimento, o que acaba por alterar o valor da aceleração do corpo em queda.
- Para um corpo sofrendo somente da ação da gravidade, seu tempo de queda não vai depender do quão pesado é o corpo, mas apenas da altura da qual ele sofreu a queda.

7 Lista de Exercícios

- 1) **(FEI-SP)** No movimento retilíneo uniformemente variado, com velocidade inicial nula, a distância percorrida é:
 - (a) diretamente proporcional ao tempo de percurso.
 - (b) inversamente proporcional ao tempo de percurso.
 - (c) diretamente proporcional ao quadrado do tempo de percurso.
 - (d) inversamente proporcional ao quadrado do tempo de percurso.
 - (e) diretamente proporcional à velocidade.
- 2) (UNCISAL/2010) Numa avenida retilínea, um automóvel parte do repouso ao abrir o sinal de um semáforo, e atinge a velocidade de 72km/h em 10s. Esta velocidade é mantida constante durante 20s, sendo que, em seguida, o motorista deve frear parando o carro em 5s devido a um sinal vermelho no próximo semáforo. Considerando os trechos com velocidades variáveis uniformemente, o espaço total percorrido pelo carro entre os dois semáforos é, em m:
 - (a) 450.
 - (b) 500.
 - (c) 550.
 - (d) 650.
 - (e) 700.

Obs.: Nesta questão, faça uso da conversão de km/h para m/s (dividindo por 3.6).

3) (ENEM) Dois veículos que trafegam com velocidade constante em uma estrada, na mesma direção e sentido, devem manter entre si uma distância mínima. Isso porque o movimento de um veículo, até que ele pare totalmente, ocorre em duas etapas, a partir do momento em que o motorista detecta um problema que exige uma freada brusca. A primeira etapa é associada à distância que o veículo percorre entre o intervalo de tempo da detecção do problema e o acionamento dos freios. Já a segunda se relaciona com a distância que o automóvel percorre enquanto os freios agem com desaceleração constante.

Considerando a situação descrita, qual esboço gráfico representa a velocidade do automóvel em relação à distância percorrida até parar totalmente?

4) (PUC-RS) INSTRUÇÃO: Para responder à questão 1, analise o gráfico abaixo. Ele representa as posições x em função do tempo t de uma partícula que está em movimento, em relação a um referencial inercial, sobre uma trajetória retilínea. A aceleração medida para ela permanece constante durante todo o trecho do movimento.

Considerando o intervalo de tempo entre 0 e t_2 , qual das afirmações abaixo está correta?

- (a) A partícula partiu de uma posição inicial positiva.
- (b) No instante t_1 , a partícula muda o sentido do seu movimento.
- (c) No instante t_1 , a partícula está em repouso em relação ao referencial.
- (d) O módulo da velocidade medida para a partícula diminui durante todo o intervalo de tempo.
- (e) O módulo da velocidade medida para a partícula aumenta durante todo o intervalo de tempo.

- 5) (EFOMM) Em um determinado instante um objeto é abandonado de uma altura H do solo e, 2 segundos mais tarde, outro objeto é abandonado de uma altura h, 120 metros abaixo de H. Determine o valor de H, em m, sabendo que os dois objetos chegam juntos ao solo e a aceleração da gravidade é $g = 10m/s^2$:
 - (a) 150
 - (b) 175
 - (c) 215
 - (d) 245
 - (e) 300
- 6) (ENEM) O trem de passageiros da Estrada de Ferro Vitória-Minas (EFVM), que circula diáriamente entre a cidade de Cariacica, na Grande Vitória, e a capital mineira Belo Horizonte, está utilizando uma nova tecnologia de frenagem eletrônica. Com a tecnologia anterior, era preciso iniciar a frenagem cerca de 400 metros antes da estação. Atualmente, essa distância caiu para 250 metros, o que proporciona uma redução no tempo de viagem.

Considerando uma velocidade de 72 km/h, qual o módulo da diferença entre as acelerações de frenagem depois e antes da adoção dessa tecnologia?

- (a) $0.08 \ m/s^2$
- (b) $0.30 \ m/s^2$
- (c) $1{,}10 \ m/s^2$
- (d) $1,60 \ m/s^2$
- (e) $3.90 \ m/s^2$
- 7) (MACK-SP) Uma partícula em movimento retilíneo desloca-se de acordo com a equação v = -4 + t, onde v representa a velocidade escalar em m/s e t, o tempo em segundos, a partir do instante zero. O deslocamento dessa partícula no intervalo (0s, 8s) é:
 - (a) 24 m
 - (b) 2 m
 - (c) 8 m
 - (d) zero
 - (e) 4 m
- 8) (ITA) A partir do repouso, um foguete de brinquedo é lançado verticalmente do chão, mantendo uma aceleração constante de $5{,}00 \ m/s^2$ durante os $10{,}0$ primeiros segundos. Desprezando a resistência do ar, a altura máxima atingida pelo foguete e o tempo total de sua permanência no ar são, respectivamente, de:
 - (a) 375 m e 23,7 s.
 - (b) 375 m e 30,0 s.
 - (c) 375 m e 34,1 s.
 - (d) 500 m e 23,7 s.

- (e) 500 m e 34,1 s.
- 9) (AFA) Duas partículas, A e B, que se movimentam ao longo de um mesmo trecho retilíneo tem as suas posições (S) dadas em função do tempo (t), conforme o gráfico abaixo.

O arco de parábola que representa o movimento da partícula B e o segmento de reta que representa o movimento de A, tangenciam-se em t=3s. Sendo a velocidade inicial da partícula B de 8 m/s, o espaço percorrido pela partícula A do instante t=0 até o instante t=4 s, em metros, vale:

- (a) 3
- (b) 4
- (c) 6
- (d) 8
- 10) (PUC RJ/2010) Os vencedores da prova de 100 m rasos são chamados de homem/mulher mais rápidos do mundo. Em geral, após o disparo e acelerando de maneira constante, um bom corredor atinge a velocidade máxima de 12,0 m/s a 36,0 m do ponto de partida. Esta velocidade é mantida por 3,0 s. A partir deste ponto o corredor desacelera também de maneira constante com $a = -0.5m/s^2$, completando a prova em aproximadamente 10 s.

É correto afirmar que a aceleração nos primeiros 36,0 m, a distância percorrida nos 3,0 s seguintes e a velocidade final do corredor ao cruzar a linha de chegada são, respectivamente

- (a) $2.0 \text{ } m/s^2$; 36.0 m; 10.8 m/s.
- (b) $2.0 \text{ } m/s^2$; 38.0 m; 21.6 m/s.
- (c) $2.0 \ m/s^2$; $72.0 \ m$; $32.4 \ m/s$.
- (d) $4.0 \ m/s^2$; $36.0 \ m$; $10.8 \ m/s$.
- (e) $4.0 \ m/s^2$; $38.0 \ m$; $21.6 \ m/s$

8 Gabarito

1) Letra C

Usando a equação:

$$a * \frac{\Delta t^2}{2} + v_0 * \Delta t + s_0 = s_1$$

Vista anteriormente, sendo a velocidade inicial $v_0 = 0$ e Δs como a distância percorrida no período de tempo Δt percorrido, tem-se que:

$$s_1 - s_0 = \frac{a * \Delta t^2}{2}$$

sendo $s_1 - s_0 = \Delta s$.

Assim, o crescimento de Δs **proporcional** (ou seja, em escala linear) com $v_0 = 0$ depende de dois fatores: o crescimento de Δt^2 ou o crescimento de a. Como nenhuma alternativa aponta para alteração da aceleração, a única resposta plausível é \mathbf{C} .

2) Letra C

Vamos separar o movimento em 3 partes: A **inicial**, do tempo 0 até o tempo 10 segundos, que representa um movimento progressivo acelerado; A **intermediária**, de movimento uniforme, pois continua na mesma velocidade por todo o tempo de 20 s; A **final**, marcada por um tempo de parada (diminuição progressiva da velocidade até 0) de 5 segundos.

Vamos analisar a **inicial**: 72 km/h é o mesmo de 20 m/s. Sabendo que essa progressão durou um total de 10 segundos, usamos a fórmula

$$a = \frac{\Delta v}{\Delta t}$$

para descobrir a aceleração, que seria

$$a = \frac{(20 - 0)}{(10 - 0)}$$

$$a = 2m/s^2$$

Nesse tempo, o intervalo de espaço vai ser calculado pela fórmula:

$$a * \frac{\Delta t^2}{2} + v_0 * \Delta t + s_0 = s_1$$

Com velocidade inicial zero e $\Delta t = 10$, teremos:

$$\frac{2*(10^2)}{2} = \Delta s$$

Logo, o Δs no primeiro momento é de 100 m.

Na **intermediária**: a velocidade permanece a mesma de 20 m/s por 20 segundos. Usando o MRU, pela aceleração ser 0, temos que:

$$\Delta s * v = 20 * 20 = 400m$$

Na **final**: usando a primeira fórmula, a aceleração é:

$$a = \frac{0 - 20}{5}$$

$$a = -4m/s^2$$

Usando a velocidade inicial desse movimento como $20~\mathrm{m/s}$, a aceleração calculada, e o tempo de $5~\mathrm{s}$ na fórmula:

$$a * \frac{\Delta t^2}{2} + v_0 * \Delta t + s_0 = s_1$$

Temos:

$$\frac{-4*(5^2)}{2} + 20*5 = \Delta s$$

Logo, este Δs será 50 m.

O espaço total é o somatório dos Δs de todos os 3 momentos:

$$\Delta s_T = 100 + 400 + 50$$

$$\Delta s_T = 550 \text{ m}$$

3) Letra D

O movimento descrito tem que visar a diminuição progressiva da velocidade em função do tempo, usando a fórmula de Torricelli

$$v_1^2 = v_0^2 + 2 * a * \Delta s$$

Portanto, o gráfico deve ser angular, não linear, e progressivamente descendente, como a letra D mostra.

4) Letra E

Análise de alternativas:

- ullet A está errada, pois a posição em t=0 está abaixo do eixo das abscissas, adotando valor negativo.
- B está errada, pois a mudança de sentido ocorre no vértice do gráfico espaço x tempo, não na interseção.
- C está errada, pois em t_1 o espaço é nulo, porém a velocidade só seria nula se esse fosse o ponto do vértice.
- D está errada, pois pelo formato do gráfico, pode-se observar que a concavidade da parábola, se fosse inteira, seria voltada para cima, o que torna a aceleração do movimento positiva, e não negativa, como D afirma.
- E está certa, pois afirma que a aceleração será positiva.

5) Letra D

Essa questão é do conteúdo de queda livre e se baseia em igualar os tempos finais (t) de queda para achar a altura. Para o primeiro corpo, usando o referencial do chão e a equação:

$$\Delta s = v_0 * \Delta t + a * \frac{\Delta t^2}{2}$$

Sabendo que a $v_0 = 0$, o tempo de queda é $\Delta t = t_1 - t_0 = t - 0 = t$ e a aceleração é a gravidade contrária ao movimento $(g = -10m/s^2)$, tem-se:

$$0 = H + 0 * t + (-10) * \frac{\Delta t^2}{2}$$

que pode ser simplificada matematicamente para:

$$H = 5 * (t^2)$$

No segundo corpo, as condições de v_0 e a são as mesmas, mas a altura inicial é H-120 (pois caiu de uma altura 120 m menor) e o $\Delta t = t_1 - t_0 = t - 2$, sendo a equação igual a:

$$0 = H - 120 + 0 * (t - 2) + (-10) * [(t - 2)^{2}]/2$$

ou

$$H - 120 = 5 * (t - 2)^2$$

Substituindo o valor de H, para achar o tempo, teremos:

$$5 * t^2 - 120 = 5 * (t^2 - 4 + t * 4)$$

ou

$$5 * t^2 - 120 = 5 * t^2 - 20 * t + 20$$

que dá ao tempo o valor de 7 s. Substituindo esse valor de t na primeira equação:

$$H = 5 * t^2$$

temos

$$H = 5 * (7^2)$$

que dá **245 m**.

6) Letra B

Nessa questão, o enunciado pede que calculemos as acelerações nos dois movimentos e depois achemos o módulo $|a_2 - a_1|$. A questão pode ser toda resolvida usando apenas Torricelli:

$$v_1^2 = v_0^2 + 2 * a * \Delta s$$

Como sabemos que a v_0 dos dois movimentos é 72 km/h (que é 20m/s na conversão) e, para parar, sua v_1 é 0, calculamos as duas acelerações com os espaços diferentes.

No funcionamento antigo:

$$0^2 = 20^2 + 2 * a * 400$$

ou

$$-400 = 800 * a$$

o que dá

$$a_1 = -0.5m/s^2$$

No novo:

$$0^2 = 20^2 + 2 * a * 250$$

ou

$$-400 = 500 * a$$

o que dá

$$a_2 = -0.8m/s^2$$

Para a diferença:

$$|-0.8 - (-0.5)| = |-0.3| = 0.3m/s^2$$

7) Letra B

A equação v = -4 + t nos permite observar que $v_0 = -4m/s$ e $a = 1m/s^2$, por meio da fórmula básica:

$$v_1 = v_0 + a * \Delta t$$

Aplicando esses valores na outra equação fundamental, temos:

$$\Delta s = v_0 * \Delta t + a * \frac{\Delta t^2}{2}$$

que se torna

$$\Delta s = -4 * \Delta t + 1 * \frac{\Delta t^2}{2}$$

Sendo $\Delta t = 8 - 0 = 8$, substituindo a variável por 8, temos:

$$\Delta s = -4 * 8 + 1 * \frac{8^2}{2}$$

ou

$$\Delta s = -32 + \frac{64}{2}$$

$$\Delta s = \mathbf{0}$$

8) Letra A

Essa questão combina MRUV simples e lançamento vertical com as equações:

$$v_1 = v_0 + a * \Delta t$$

$$v_1^2 = v_0^2 + 2 * a * \Delta s$$

$$\Delta s = v_0 * \Delta t + a * \frac{\Delta t^2}{2}$$

Para entender a questão, vamos dividir o movimento em 3 partes: a subida progressiva acelerada de 5 m/s^2 por 10 s, a subida progressiva retardada causada pela ação da gravidade e a descida retrógrada acelerada causada pela gravidade.

Do primeiro momento, sendo $v_0 = 0$, a altura de subida será

$$H = 0 * 10s + 5 * (10^2)/2$$

Ou

$$H = 250m$$

Além disso, a velocidade final nessa parte do movimento vai ser

$$v_1 = 0 + 5 * 10$$

Ou

$$v = 50m/s$$

Do segundo momento, a velocidade inicial será a velocidade final do primeiro, ou 50 m/s. Além disso, a altura até a qual o projétil sobe vai equivaler à altura na qual $v_1 = 0$ (mudança de direção). Logo, usando Torricelli:

$$0^2 = 50^2 - 2 * (-10) * \Delta S$$

Resultando em 125 m de Δs nesse trecho de movimento. Logo, a subida teve 375 m. Desse movimento também podemos tirar o tempo dessa parcela do movimento, usando a equação fundamental e calculando que

$$125 = 50 * t + (-10) * \frac{t^2}{2}$$

Dando t = 5s.

No terceiro passo, a descida, é importante saber apenas o tempo que ela durou. Assim, usamos de novo a equação fundamental com $v_0 = 0$, pois o movimento partiu do pico do movimento para o chão. Logo, temos:

$$0 = 375 + 0 * t - (-10) * \frac{t^2}{2}$$

ou

Aproximando, temos t = 8.7 s.

O tempo total será a soma dos tempos de toda reação, ou 10 + 5 + 8, 7 = 23,7 s.

9) Letra D

Essa questão vai precisar de conceitos de matemática sobre tangência e quadrática. Se as duas funções se tangenciam em um ponto, significa que elas vão estar se encontrando apenas naquele ponto, ou seja, seu S e T são iguais. Na Física, o ponto de tangência do gráfico SxT é onde $v_a = v_b$.

Adicionalmente, se sabemos que a v_0 de B é 8 e a v_1 de B no ponto t = 4s (vértice da quadrática) seria 0. Por meio dos conhecimento já obtidos, podemos calcular a aceleração do movimento usando a fórmula:

$$v_1 = v_0 + a * \Delta t$$

Tendo -8 = 4 * a e $a = -2m/s^2$ por conclusão. A velocidade de ambos os movimentos em t = 3s será:

$$v_1 = 8 - 2 - 3 = 2m/s^2$$

Como A descreve um MRU, e não MRUV, sua velocidade é constante. Portanto, no tempo 4 s:

$$\Delta s = v * t = 2 * 4 = \mathbf{8m}$$

10) Letra A

Essa é outra questão que exige separação dos momentos de ação. Para descobrir a aceleração do primeiro momento (de 0 a 12 m/s em 36 m), basta aplicar a fórmula de Torricelli:

$$v_1^2 = v_0^2 + 2 * a * \Delta s$$

Matematicamente, tem-se que:

$$12^2 = 36 * a * 2$$

O que resulta em:

$$a = 2m/s^2$$

No segundo momento, é usado o cálculo de MRU, no qual:

$$\Delta s = v * t$$

$$\Delta s = 12 * 3$$

$$\Delta s = 36m$$

Já no último momento, o enunciado explicita bem quais valores devemos usar para $v_0 = (12 \text{ m/s})$ e a = (-0.5 m/s^2) na equação, mas para encontrar o valor de v_1 , deve-se usar Torricelli de novo, só que dessa vez utilizando o espaço de 100 metros rasos menos os dois espaços de 36 metros percorridos, dando um total final de 28 m. Assim, vê-se que:

$$v_1^2 = 12^2 - 2 * (-0.5) * 28$$

Que dá aproximadamente 10,8 m/s.

Referências

- [1] P. F. Bocafoli, "Aceleração (média) escalar," 2008-2021.
- [2] D. Lobato, "Gráficos do mruv," jun 2017.
- [3] Educação, "Movimento retilíeno uniformemente variado mruv," jan 2013.
- [4] R. SALES, "Movimento retilÍneo uniforme (mru)."
- [5] P. França, "Lançamento vertical."
- [6] D. Adams, "Física mecânica movimento de queda livre," sep 2019.