(1) (2) This is a contradiction, so In the prime factorisations our original assumption of m^2 and n^2 , 2 occurs to an that $\sqrt{2}$ is rational must be even power. wrong. 3 **(4**) But prime factorisations Multiply across to get are unique, so 2 should $2n^2 = m^2$. appear to the same power in both $2n^2$ and m^2 . (5) (6) That is, we can write Suppose, for a $\sqrt{2} = \frac{m}{n}$ where m and n are contradiction, that $\sqrt{2}$ is integers and where $n \neq 0$. rational. (7) (8) In the prime factorisation So $\sqrt{2}$ is irrational. of $2n^2$, 2 occurs to an odd power.

9

Squaring, we have $2 = \frac{m^2}{n^2}$.