This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(B) BUNDESREPUBLIK DEUTSCHLAND

OffenlegungsschriftDE 197 39 527 A 1

(f) Int. Cl.⁶: H 05 H 1/48 C 23 C 14/22

DEUTSCHES
PATENT- UND
MARKENAMT

(a) Aktenzeichen:(b) Anmeldetag:

197 39 527.9 9. 9. 97

(43) Offenlegungstag:

11. 3.99

(7) Anmelder:

Forschungszentrum Rossendorf eV, 01474 Schönfeld-Weißig, DE (2) Erfinder:

Brückner, Jörn, Dr., 01474 Schönfeld-Weißig, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> US 54 80 527 US 54 68 363 US 54 33 836 US 52 82 944 US 52 79 723 US 44 52 686

WANG,Z.H., et.al.: Spectroscopic studies of a solenoid filtered vacuum arc. In: J. Vac. Sci. Technol. A 13 (4), July/Aug. 1995, S.2261-2265; ZHITOMIRSKY,V.N., et.al.: Unstable arc operation and cathode spot motion in a magnetically filtered vacuum-arc deposition system. In: J. Vac. Sci. Technol. A 13 (4), July/Aug. 1995, S.2233-2240;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (4) Vakuumbogen-Plasmaquelle mit Magnet-Partikelfilter
- Die Erfindung betrifft kathodische Vakuumbogenentladungen, bei denen störende Partikel aus dem Plasma entfernt werden sollen. Aufgabe der Erfindung ist eine kompakte Vakuumbogen-Plasmaquelle mit Magnet-Partikelfilter, bei der die Bogenentladung ohne Arbeitsgas stabil

Die Erfindung verbessert bekannte Vakuumbogen-Plasmaquellen mit Magnet-Partikelfilter dadurch, daß der größte axiale Abstand der dem Filter zugewandten Begrenzungsfläche der Anode von der Kathodenstirnfläche kleiner als der Durchmesser der Anodenöffnung gewählt wird und daß sich innerhalb des Körpers der Anode eine Kompensationsspule befindet, die in axialer Richtung zwischen der Stirnfläche der Kathode und der Filterspule angeordnet ist, wobei die Kompensationsspule und die Filterspule entgegengesetzt geschaltet sind, so daß deren Magnetfelder entgegengesetzt gerichtet sind.

Weiterhin werden eine Fokus- und/oder eine oder mehrere Steuerspulen in spezieller Position vorgeschlagen. Die Kathodenform kann kegelstumpf- oder scheibenförmig

THIS PAGE BLANK (USPTO)

Beschreibung

Kathodische Vakuumbogenentladungen haben bereits ein breites Anwendungsgebiet gefunden, u. a. zur Erzeugung von Metall-Plasmen und als Metall-Ionenquelle z. B. in der 5 Schichtabscheidung und für die Ionenimplantation.

Entstehungsort des Plasmas sind die Kathodenbrennflekken, welche sich auf der Kathodenoberfläche ausbilden und den Abtrag des Kathodenmaterials bewirken. Außer Plasma emittieren die Kathodenbrennflecken noch Partikel, deren 10 Größe von einigen 10 nm bis zu einigen µm reicht. Bei verschiedenen Anwendungen in der Beschichtungstechnologie beeinträchtigen diese Partikel die Qualität der abgeschiedenen Schichten, weshalb sie mit Filteranordnungen aus dem Plasma entfernt werden müssen.

Vakuumbogen-Plasmaquellen mit Magnet-Partikelfiltem wurden bereits an verschiedenen Stellen beschrieben. Die einzelnen Lösungen unterscheiden sich sowohl hinsichtlich der Entladungsanordnung als auch des Filter-Prinzips.

Ein häufig eingesetzter Partikelfilter besteht aus einem 20 gebogenen Rohr (USP 5433836). Eine andere Ausführung besteht aus mehreren geraden Rohrstücken, die unter entsprechenden Winkeln zusammengesetzt sind (USP 5279723).

Je nach Anforderung an Transmission des Filters und Partikelfreiheit liegt der Ablenkwinkel eines solchen gekrümmten Partikel-Filters zwischen 30 und 180°. In dem Rohr wird ein axial gerichtetes Magnetfeld erzeugt und das Plasma entlang der Feldlinien geführt. Durch Anlegen einer positiven Biasspannung an die Filterwand kann die Transmission zusätzlich erhöht werden. Die durch die Felder nicht beeinflußten Partikel scheiden sich an der Filterwand ab, wobei diese zur Verhinderung von Reflexionen der Partikel lamellenförmig ausgeführt wird.

Eine weitere Möglichkeit ist die Verwendung eines geraden Filterrohrs in Verbindung mit einer zentral angeordneten Blende, welche die Partikel abfängt (USP 4452686).

Die Entladungsanordnung ist bei den oben beschriebenen Filtermöglichkeiten in der Regel von axialsymmetrischer Geometrie mit scheiben-, stab-, oder kegelstumpfförmigen 40 Kathoden, deren Stirnfläche durch die Bogenentladung abgetragen wird.

Eine kuppelförmige Anordnung, bei der der Bogen auf der Außenfläche einer zylindrischen Kathode brennt, ist in USP 5282944 beschrieben.

USP 5480527 enthält eine Vakuumbogen-Plasmaquelle, die eine ausgedehnte rechteckige Kathode in Verbindung mit einem auf diese Kathodengeometrie speziell zugeschnittenen Filter verwendet.

Allen oben beschriebenen Vakuumbogen-Plasmaquellen 50 ist gemeinsam, daß sie zur Führung des Plasmas Magnetfelder verwenden. Eine Folge davon ist das Ansteigen der Bogenbrennspannung, was insbesondere bei den für eine maximale Filtertransmission erforderlichen Magnetfeldern zu Instabilitäten der Bogenentladung führt.

Dem wird durch Verwendung eines Arbeitsgases (USP 5279723, USP 5282944) und bzw. oder zusätzliche Anoden am Filterausgang (USP 5279723) oder großflächige Anoden (USP 5433836) entgegengewirkt, wobei die Bogenbrennspannung jedoch nach wie vor wesentlich erhöht ist.

Bei der Verwendung einer Vakuumbogen-Plasmaquelle als Ionenquelle für die Ionenimplantation ist die Verwendung eines Arbeitsgases unerwünscht. Die Verwendung großflächiger Anoden bedeutet abgesehen vom hohen mechanischen Aufwand eine Einschränkung der Flexibilität 65 beim Einsatz solcher Quellen sowie u. U. eine erhöhten Platzbedarf in den entsprechenden Vakuumkammern.

Aufgabe der Erfindung ist eine Vakuumbogen-Plasma-

quelle mit Magnet-Partikelfilter, bei der die Bogenentladung ohne Arbeitsgas stabil brennt und die eine kompakte Bauform aufweist.

Erfindungsgemäß wird die Aufgabe durch eine spezielle Anordnung von Magnetfeldem gelöst. Dabei baut die Erfindung im wesentlichen auf einer axialsymmetrischen Vakuumbogen-Entladungsanordnung aus einer wassergekühlten Kathode, einer ringförmigen wassergekühlten Anode und einem die Kathode umgebenden elektrostatischen Schirm auf, wobei diese Teile auf einem Vakuumflansch montiert sind. Außerdem wird ein an sich bekannter Magnet-Partikelfilter eingesetzt.

Die erfindungsgemäße Lösung beinhaltet, daß der größte axiale Abstand der dem Filter zugewandten Begrenzungsfläche der Anode von der Kathodenstirnfläche kleiner ist als der Durchmesser der Anodenöffnung, daß sich innerhalb des Körpers der Anode eine Kompensationsspule befindet, daß die Kompensationsspule in axialer Richtung zwischen der Stirnfläche der Kathode und der Filterspule angeordnet ist und daß die Kompensationsspule und die Filterspule entgegengesetzt geschaltet sind, so daß deren Magnetfelder entgegengesetzt gerichtet sind.

In einer vorteilhaften Ausgestaltung der Erfindung ist eine Fokusspule vorgesehen, welche die Kathode derart umgibt, daß der Abstand der Kathodenstirnfläche vom Mittelpunkt der Fokusspule kleiner als die halbe Summe von Länge und Innenradius der Fokusspule ist. Die Fokusspule erzeugt ein bezüglich des Filter-Magnetfeldes gleichgerichtetes Magnetfeld.

Die weitere Ausgestaltung der Erfindung beinhaltet eine oder mehrere konzentrisch angeordnete Steuerspulen, die sich zwischen der Kathode und dem Vakuumflansch befinden und die zur Steuerung der Brennpunktbewegung dienen.

Die Kathode kann jeweils kegelstumpf- oder scheibenförmig ausgebildet sein.

Die Dimensionierung der einzelnen Spulen bezüglich Abmessungen, Lage, Windungszahl und Stromstärke gestaltet der Fachmann innerhalb der genannten Einschränkungen in Abhängigkeit von der Geometrie der Plasmaquelle. Ziel ist dabei eine durch Überlagerung der von den einzelnen Spulen erzeugten Magnetfelder erzeugte Magnetfeldstruktur, die sich durch ein Gebiet verschwindender Feldstärke in Anodennähe auszeichnet. Dadurch wird unter gleichen Magnetfeld-Bedingungen ein maximaler Ionenstrom am Filterausgang und eine minimale Bogenbrennspannung erreicht. Letztere ist dabei auch bei Verwendung einer ringförmigen und damit kleinen Anode gegenüber der Bogenbrennspannung ohne Magnetfelder nur in einem Maße erhöht, das keine Verwendung eines Arbeitsgases zur Stabilisierung der Entladung erfordert.

Die Erfindung wird nachfolgend an einem Ausführungsbeispiel näher erläutert. In der zugehörigen Zeichnung zeigen

55 Abb. 1 die Prinzipdarstellung der Erfindung im Teilschnitt,

Abb. 2 den typischen Feldlinienverlauf des Magnetfeldes im Bereich von Entladungsanordnung und Filtereingang.

Im wesentlichen besteht die rotationssymmetrische Vaku60 umbogen-Entladungsanordnung aus einer wassergekühlten, scheibenformigen Kathode 1, die von einer kreisringformigen, ebenfalls wassergekühlten Anode 2 axial versetzt umgeben ist und einem die Kathode konzentrisch umgebenden elektrostatischen Schirm 3. Diese Teile sind auf einem Vakuumflansch 4 montiert, der über einen Zwischenflansch 5 an dem Magnet-Partikelfilter befestigt wird. Dieser besteht aus einem äußeren Rohr 6, welches an der Vakuumkammer befestigt ist und welches die Filterspule 7 trägt, sowie einem

THIS PAGE BLANK (USPTO)

1

3

inneren Rohr 8, das zum Vermeiden von Partikel-Reflexionen aus zahlreichen Lamellen aufgebaut ist und das von der restlichen Anordnung elektrisch isoliert ist. Die Kathode 1 ist von der Fokusspule 9 konzentrisch umgeben. Hinter der Kathode 1 sind konzentrisch zwei Steuerspulen 10 angeordnet. Die Kompensationsspule 11 befindet sich im Kanal der Wasserkühlung der Anode 2.

Die Filterspule 7 erzeugt im inneren Rohr 8 ein axial gerichtetes Filter-Magnetfeld. Bei fest gewähltem Filter-Magnetfeld wird das Fokussierungsmagnetfeld im Bereich vor der Kathodenstimfläche im wesentlichen durch die Spulen 7 und 11 beeinflußt.

Die Variation des Fokussierungsmagnetfelds erfolgt durch Variation der Stromstärken der Spulen 7 und 11, wobei der zulässige Bereich der Stromstärken relativ breit ist. 15 Die Stromstärke von Spule 11 darf nur nicht zu klein sein, weil sich sonst das Gebiet verschwindender Feldstärke innerhalb des Anodenquerschnitts befinden kann. Zu bevorzugen ist eine Variante, bei der die Windungszahlen der Spulen 7 und 11 so aufeinander abgestimmt werden, daß bei Rei- 20 henschaltung dieser Spulen (d. h. gleiche Stromstärke) und stromloser Fokusspule 9 das Magnetfeld im Bereich der Kathodenstirnfläche gerade kompensiert wird. Mit der Fokusspule 9 kann dann das Fokussierungsmagnetfeld zwischen Kathodenstirnfläche und Filtereingang unabhängig vom Filter-Magnetfeld eingestellt werden. Dem für einen maximalen Ionenstrom am Filterausgang und gleichzeitig minimaler Bogenbrennspannung erforderlichen optimalen Fokussierungsmagnetfeld entspricht dabei eine optimale Lage des kreisringformigen Gebiets verschwindender Feldstärke 12 30 in Anodennähe. Auf die Verwendung der Fokusspule 9 kann aber auch ganz verzichtet werden, in diesem Fall wird die Stromstärke der Kompensationsspule 11 so gewählt, daß das Filter-Magnetfeld im Bereich der Kathodenoberfläche nur teilweise kompensiert wird.

Als Kathodenmaterialien wurden Chrom und Aluminium verwendet. Jeweils eine der Steuerspulen 10 ist in bezug auf die Filterspule 7 in die gleiche oder entgegengesetzte Richtung geschaltet.

Im ersten Fall erfolgt der Kathodenabtrag im äußeren 40 Randbereich. Bei einem Bogenstrom von 100 A, einem Filter-Magnetfeld von etwa 18 mT auf der Filterachse, einer Biasspannung von +20 V am inneren Filterrohr 8 und einem Ablenkwinkel von 90 Grad wird ein maximaler Ionenstrom am Filterausgang von 1,1 A bei Chrom und 1,85 A bei Aluminium erreicht, wobei der Ionenstrom am Filtereingang 6 A bzw. 10 A beträgt. Die Filtertransmission beträgt demnach jeweils 18,5%. Die minimale Bogenbrennspannung für Chrom beträgt etwa 24 V.

Im zweiten Fall erfolgt der Kathodenabtrag weiter innen, 50 der Ionenstrom am Filterausgang ist 10 bis 20% geringer, die Stromdichte im Bereich der Filterachse jedoch höher als im ersten Fall. Die minimale Bogenbrennspannung für Chrom beträgt hier 25–26 V.

Um auch den zentralen Bereich der Kathode abzutragen, 55 wird die äußere Steuerspule in bezug auf das Filter-Magnetfeld in die gleiche Richtung und die innere Steuerspule in die entgegengesetzte Richtung geschaltet. Mit Hilfe der zwei Steuerspulen 10 kann so der Brennpunkt gezielt über die gesamte Oberfläche der Kathode geführt werden.

Patentansprüche

1. Vakuumbogen-Plasmaquelle mit Magnet-Partikelfilter, im wesentlichen bestehend aus einer wassergekühlten Kathode (1), einer wassergekühlten, ringförmigen Anode (2), einem die Kathode umgebenden elektrostatischen Schirm (3), einem Vakuumflansch (4), einem äußeren Filterrohr (6), einer Filterspule (7), sowie einem inneren Filterrohr (8), welches aus zahlreichen Lamellen aufgebaut ist, dadurch gekennzeichnet, daß der größte axiale Abstand der dem Filter (6–8) zugewandten Begrenzungsfläche der Anode (2) von der Kathodenstirnfläche kleiner ist als der Durchmesser der Anodenöffnung, daß sich innerhalb des Körpers der Anode (2) eine Kompensationsspule (11) befindet, daß die Kompensationsspule (11) in axialer Richtung zwischen der Stirnfläche der Kathode (1) und der Filterspule (7) angeordnet ist und daß die Kompensationsspule (11) und die Filterspule (7) entgegengesetzt geschaltet sind, so daß deren Magnetfelder entgegenge-

2. Vakuumbogen-Plasmaquelle mit Magnet-Partikelfilter nach Anspruch 1, dadurch gekennzeichnet, daß eine Fokusspule (9) eingesetzt ist, die die Kathode (1) derart umschließt, daß der Abstand der Kathodenstirnfläche vom Mittelpunkt der Fokusspule (9) kleiner als die halbe Summe von Länge und Innenradius der Fokusspule (9) ist.

setzt gerichtet sind.

- 3. Vakuumbogen-Plasmaquelle mit Magnet-Partikelfilter nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sich zwischen der Kathode (1) und dem Vakuumflansch (4) eine oder mehrere bezüglich der Kathode (1) konzentrisch angeordnete Steuerspulen (10) befinden.
- 4. Vakuumbogen-Plasmaquelle mit Magnet-Partikelfilter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der zum Materialabtrag verwendete Teil der Kathode (1) kegelstumpfförmig ist.
- 5. Vakuumbogen-Plasmaquelle mit Magnet-Partikelfilter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Kathode (1) scheibenförmig ist.

Hierzu 2 Seite(n) Zeichnungen

1

THIS PAGE BLANK (USPTO)

ivummer: Int. Cl.⁶: Offenlegungstag:

H 05 H 1/48 11. März 1999

Abb. 1

Nummer: Int. Cl.⁶: Offenlegungstag:

DE 197 39 527 A1 H 05 H 1/48 11. März 1999

Abb. 2