Lecture #11 – blackboard scribble

Lecture #11 – blackboard scribble

a) The whili taken
$$0$$
 of the system is
$$0 = \sum_{i=1}^{3} \frac{C_i}{T_i} = \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \approx 0.783$$

Task	ci	0;	T;
τ_{ι}	1	0	3
τ_{z}	1	0	4
τ_3	1	0	5

b) The utilization bounds Vem and UEDF are: $U_{n} = n(2^{1/n}-1) = 3(2^{1/3}-1) \approx 0.780$ U > URM The test fails! UFDF = 1 U < UFDF The test succeeds!

c) For EDF: Since U < UEDF the task set is schedulable For RM: Since U> URM and the test is only sufficient. we cannot yet determine if the fash set is somedulable or not.

(so, how do we do that?)

Lecture #11 - blackboard scribble

We learned that hyper period analysis can always be used. Task

How long is the hyper period? LCM {3,4,5} = 60

To

Simulate RM scheduling to check feasibility:

	so far so	9000		Ĺ	13 1 0
(21) D				\	but wait!
T2 -		$\uparrow \Box$	1		
731			₽ □		
O critical 5	10	(,	15	1 1	\rightarrow_{t}

Lin and Layland said that if the fash sut is schedulable at the critical instant (i.e. at t=0), then the task set is also schedulable in all other cases. Hence, it is enough to show that the first instance of each task meets its deadline!