Uma Introdução aos Sistemas Dinâmicos Discretos

Agenor Gonçalves Neto ^a São Paulo, 2020

^aOrientado pelo Prof. Salvador Addas Zanata (IME-USP).

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Definição

Um sistema dinâmico é função $f:X\to X$, onde X é um espaço métrico.

Dado $x \in X$, queremos estudar as propriedades da sequência

$$f^{0}(x) = x$$
, $f^{1}(x) = f(x)$, $f^{2}(x) = f(f(x))$, $f^{3}(x) = f(f(f(x)))$, ...

Definição

Se $x \in X$, então $\{f^k(x) : k \ge 0\}$ é a órbita de x.

Definição

Seja $p \in X$.

- i. Se f(p) = p, então p é um ponto fixo de f.
- ii. Se $f^n(p) = p$ para algum $n \ge 1$, então p é um ponto periódico de f de período n.
- iii. Se $f^n(p) = p$ para algum $n \ge 1$ e $f^k(p) \ne p$ para todo $1 \le k < n$, então p é um ponto periódico f de período primo n.

O conjunto dos pontos periódicos de f será denotado por Per(f) e o conjunto dos pontos periódicos de f de período primo n será denotado por $Per_n(f)$.

Proposição

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua. Se $f([a,b])\subset [a,b]$ ou $f([a,b])\supset [a,b]$, então f possui ponto fixo.

Definição

Se $p \in \operatorname{Per}_n(f)$, então

$$\mathcal{B}(p) = \{ x \in X : \lim_{k \to \infty} f^{kn}(x) = p \}$$

é a bacia de atração de p. Além disso,

$$\mathcal{B}(\infty) = \{ x \in X : \lim_{k \to \infty} |f^k(x)| = \infty \}$$

é a bacia de atração do infinito.

Definição

Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 e $p \in \operatorname{Per}_n(f)$.

- i. Se $|Df^n(p)| < 1$, então p é um ponto atrator.
- ii. Se $|Df^n(p)| > 1$, então p é um ponto repulsor.

Teorema

Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe \mathcal{C}^1 e $p \in \mathsf{Per}_n(f)$.

- 1. Se $|Df^n(p)| < 1$, então existe uma vizinhança de p contida na bacia de atração de p.
- 2. Se $|Df^n(p)| > 1$, então existe uma vizinhança de p tal que as órbitas de seus pontos que são diferentes de p não estão contidas nela própria.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Família Quadrática

Considerar a família de funções $h:\mathbb{R} \to \mathbb{R}$ dadas por

$$h(x) = \mu x(1-x),$$

onde $\mu > 1$. Essa família de funções é conhecida por família quadrática.

Figura 1: Gráficos de *h* para $\mu = 2$, $\mu = 3$ e $\mu = 4$.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Família Quadrática: Estudo Inicial

Proposição

Se $\mu>1$, então h(0)=0 e $h(p_{\mu})=p_{\mu}$, onde $p_{\mu}=\frac{\mu-1}{\mu}$.

Proposição

Se $\mu > 1$, então $\lim_{k \to \infty} h^k(x) = -\infty$ para todo $x \notin [0,1]$.

Proposição

Se $1 < \mu < 3$, então $\lim_{k \to \infty} h^k(x) = p_\mu$ para todo $x \in (0,1)$.

Desse modo, se $1<\mu<$ 3, então

$$\mathcal{B}(0) = \{0,1\}, \quad \mathcal{B}(p_{\mu}) = (0,1) \quad \text{e} \quad \mathcal{B}(\infty) = (-\infty,0) \cup (1,\infty).$$

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Família Quadrática: Conjuntos de Cantor

Se $\mu>4$, então existem pontos em [0,1] que não permanecem em [0,1] após um número finito de iterações de h. Desse modo, para cada $n\geq 1$, seja

$$\Lambda_n = \{x \in [0,1] : h^n(x) \in [0,1]\}.$$

Definindo

$$\Lambda = \bigcap_{n=1}^{\infty} \Lambda_n,$$

vamos estudar a dinâmica $h|_{\Lambda}$.

Família Quadrática: Conjuntos de Cantor

Proposição

Se $\mu >$ 4, então

- 1. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 2. $h^n:[a,b] \to [0,1]$ é bijetora, onde [a,b] é um dos intervalos que formam Λ_n .

Figura 2: Gráficos de h, h^2 e h^3 para $\mu = 4.1$.

Família Quadrática: Conjuntos de Cantor

Para facilitar as demonstrações, consideramos $\mu > 2 + \sqrt{5}$.

Lema

Se $\mu > 2 + \sqrt{5}$, então existe $\nu > 1$ tal que

- 1. $|Dh(\Lambda_1)| > \nu$,
- 2. $b-a<\frac{1}{\nu^n}$, onde [a,b] é um dos intervalos que formam Λ_n .

Teorema

Se $\mu>2+\sqrt{5}$, então Λ é um conjunto de Cantor a .

Observação

Esse teorema é válido para 4 < μ < 2 + $\sqrt{5}$, porém a demonstração é mais complicada.

 $^{^{\}text{a}}\Lambda$ é não vazio, limitado, totalmente desconexo e perfeito.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Definição

Seja $f: X \to X$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in X$ e $\varepsilon > 0$, existem $z \in X$ e $k \ge 0$ tais que $|x - z| < \varepsilon$ e $|y - f^k(z)| < \varepsilon$.

Proposição

Se $\mu>2+\sqrt{5}$, então $h|_{\Lambda}$ é topologicamente transitiva.

Definição

Seja $f: X \to X$ uma função. Dizemos que f depende sensivelmente das condições iniciais se existe $\delta > 0$ com a seguinte propriedade: dados $x \in X$ e $\varepsilon > 0$, existem $y \in X$ e $k \ge 0$ tais que $|x - y| < \varepsilon$ e $|f^k(x) - f^k(y)| > \delta$.

Proposição

Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ depende sensivelmente das condições iniciais.

Definição

Seja $f:X \to X$ uma função. Dizemos que f é caótica se as seguintes condições são válidas:

- i. Per(f) é denso em X.
- ii. f é topologicamente transitiva.
- iii. f depende sensivelmente das condições iniciais.

Teorema

Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ é caótica.

Observação

Esse teorema é válido para 4 < μ < 2 + $\sqrt{5}$, porém a demonstração é mais complicada.

Teorema

Seja $f: X \to X$ é uma função contínua, onde X é um conjunto infinito. Se Per(f) é denso em X e f é topologicamente transitiva, então f é caótica.

Demonstração.

Ver [Holmgren, 1996].

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Família Quadrática: Conjugação Topológica

Definição

Sejam $f: X \to X$, $g: Y \to Y$ e $\tau: X \to Y$ funções. Dizemos que f e g são topologicamente conjugadas por τ se as seguintes condições são válidas:

i. au é um homeomorfismo.

ii. $\tau \circ f = g \circ \tau$.

$$x \in X \xrightarrow{f} f(x) \in X$$

$$\downarrow^{\tau} \qquad \qquad \downarrow^{\tau}$$

$$(x) \in Y \xrightarrow{g} \tau(f(x)) = g(\tau(x)) \in Y$$

Família Quadrática: Conjugação Topológica

Proposição

Sejam $f: X \to X$, $g: Y \to Y$ e $\tau: X \to Y$ funções. Se f e g são topologicamente conjugadas, então

- 1. Per(f) é denso em X se, e somente se, Per(g) é denso em Y.
- 2. f é topologicamente transitiva se, e somente se, g é topologicamente transitiva.

Família Quadrática: Conjugação Topológica

Lema

A função $T:[0,1] \rightarrow [0,1]$ dada por

$$T(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 2 - 2x, & x \in [\frac{1}{2}, 1] \end{cases}$$

é caótica.

Teorema

Se $\mu=4$, então T e h são topologicamente conjugadas por τ , onde $\tau:[0,1]\to [0,1]$ é a função dada por $\tau(x)=\sin^2(\frac{\pi x}{2})$.

Corolário

Se $\mu=$ 4, então h é caótica.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Definição

Seja f_{λ} uma família parametrizada de funções no parâmetro λ . Dizemos que a família sofre uma bifurcação em λ_0 se existe $\varepsilon>0$ com a seguinte propriedade: se $\lambda_1\in(\lambda_0-\varepsilon,\lambda_0)$ e $\lambda_2\in(\lambda_0,\lambda_0+\varepsilon)$, então f_{λ_1} e f_{λ_2} não são topologicamente conjugadas.

Exemplo

A família E_{λ} de funções dadas por $E_{\lambda}(x)=e^{x+\lambda}$ sofre uma bifurcação em $\lambda_0=-1$.

Figura 3: Gráficos de E_{λ} numa vizinhança de 1 para $\lambda=-1.1$, $\lambda=-1$ e $\lambda=-0.9$.

Uma bifurcação com essas características é chamada de bifurcação tangente.

Exemplo

A família quadrática sofre uma bifurcação em $\mu_0 = 3$.

Figura 4: Gráficos de h^2 numa vizinhança de p_μ para $\mu=2.9,~\mu=3$ e $\mu=3.1.$

Uma bifurcação com essas características é chamada de bifurcação com duplicação de período.

A dinâmica de h é simples para $1<\mu<3$ e caótica para $\mu\geq4$. O que acontece com a dinâmica quando $3<\mu<4$? Vamos responder essa pergunta de maneira intuitiva.

Temos, na figura abaixo, os gráficos de h^2 para alguns valores de μ .

Figura 5: Gráficos de h^2 para $\mu = 2.75$, $\mu = 3$, $\mu = 3.25$, $\mu = 3.5$ e $\mu = 3.75$.

Observando o gráfico de h^2 restrito ao quadrado, esperamos que ela sofra uma bifurcação com duplicação de período conforme o parâmetro cresce. Repetindo esse processo, vemos uma sucessão de bifurcações com duplicação de período na família quadrática. Com auxílio de um computador, podemos verificar esse fato.

Figura 6: Diagrama de órbita de h para $2 < \mu < 4$.

Figura 7: Ampliação das regiões marcadas na figura anterior.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Bifurcação

Teorema de Sharkovsky

Definição (Ordenação de Sharkovsky)

 $3 \mathrel{\vartriangleright} 5 \mathrel{\vartriangleright} \cdots \mathrel{\vartriangleright} 2 \mathrel{\cdot} 3 \mathrel{\vartriangleright} 2 \mathrel{\cdot} 5 \mathrel{\vartriangleright} \cdots \mathrel{\vartriangleright} 2^2 \mathrel{\cdot} 3 \mathrel{\vartriangleright} 2^2 \mathrel{\cdot} 5 \mathrel{\vartriangleright} \cdots \mathrel{\vartriangleright} 2^k \mathrel{\cdot} 3 \mathrel{\vartriangleright} 2^k \mathrel{\cdot} 5 \mathrel{\vartriangleright} \cdots \mathrel{\vartriangleright} 2^2 \mathrel{\vartriangleright} 2 \mathrel{\vartriangleright} 1.$

Teorema (Sharkovsky)

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Se $\operatorname{Per}_n(f) \neq \emptyset$, então $\operatorname{Per}_m(f) \neq \emptyset$ para todo $n \vartriangleright m$.

Demonstração.

Ver [Burns e Hasselblatt, 2011].

Teorema de Sharkovsky

Exemplo

Observando os gráficos de h^2 e h^4 para $\mu=3.2$, concluímos que $\operatorname{Per}_4(h)=\emptyset$ e, portanto, $\operatorname{Per}_n(h)=\emptyset$ para todo $n\geq 3$.

Figura 8: Gráficos de h^2 e h^4 para $\mu = 3.2$.

Teorema de Sharkovsky

Se, por exemplo, $\operatorname{Per}_5(f) \neq \emptyset$ implica que $\operatorname{Per}_3(f) \neq \emptyset$, então os números 3 e 5 podem trocar de lugar na ordenação de Sharkovsky. O seguinte teorema mostra que isso não é possível.

Teorema

Se $n \ge 1$, então existe uma função f com as seguintes propriedades:

- 1. $\operatorname{Per}_n(f) \neq \emptyset$.
 - 2. $\operatorname{Per}_m(f) = \emptyset$ para todo $m \triangleright n$.

Referências

Burns, K. e Hasselblatt, B. (2011).

The Sharkovsky Theorem: a Natural Direct Proof.

The American Mathematical Monthly, 118(3):229–244.

🗎 Devaney, R. L. (1989).

An Introduction to Chaotic Dynamical Systems.

Perseus Books.

Holmgren, R. A. (1996).

A First Course in Discrete Dynamical Systems.

Springer-Verlag New York.