Mechanical Equations with Constraints Contact-aware Control, Lecture 2

by Sergei Savin

Fall 2023

CONTENT

- Lagrange equations
- Generalized forces
- Lagrange equations with constraints
- Constraints
- Manipulator equations
- Constraints differentiation
- Solution to DAE

LAGRANGE EQUATIONS

Lagrange equations have form:

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial T}{\partial \mathbf{q}} = \tau \tag{1}$$

where T is kinetic energy, \mathbf{q} is a vector of generalized coordinates and τ are generalized torques.

Note that kinetic energy can be described as $T = \frac{1}{2}\dot{\mathbf{q}}^{\mathsf{T}}\mathbf{H}\dot{\mathbf{q}}$, where \mathbf{H} is generalized inertia matrix. Matrix \mathbf{H} is symmetric, positive-definite and full rank.

GENERALIZED FORCES, 1

Generalized forces τ can be generated by Cartesian forces or Cartesian torques. We can describe relations between Cartesian force \mathbf{f} and associated generalized force:

$$\tau_i = \left(\frac{\partial \mathbf{r}_i}{\partial \mathbf{q}}\right)^{\top} \mathbf{f}_i \tag{2}$$

where $\mathbf{r}_i = \mathbf{r}_i(\mathbf{q})$ is the vector describing position of the point of application of the force \mathbf{f}_i , as a function of generalized coordinates \mathbf{q} .

If we define jacobian $\mathbf{J}_i = \frac{\partial \mathbf{r}_i}{\partial \mathbf{q}}$ we can re-write the relation above as:

$$\tau_i = (\mathbf{J}_i^r)^\top \mathbf{f}_i \tag{3}$$

GENERALIZED FORCES, 2

We can describe relations between Cartesian torque **m** and associated generalized force:

$$\tau_i = \left(\frac{\partial \omega_i}{\partial \dot{\mathbf{q}}}\right)^\top \mathbf{m}_i \tag{4}$$

where $\omega_i = \omega_i(\mathbf{q}, \dot{\mathbf{q}})$ is the angular velocity of the body to which the Cartesian torque \mathbf{m} is applied.

If we define jacobian $\mathbf{J}_i^{\omega} = \frac{\partial \omega_i}{\partial \dot{\mathbf{q}}}$ we can re-write the relation above as:

$$\tau_i = (\mathbf{J}_i^{\omega})^{\top} \mathbf{m}_i \tag{5}$$

GENERALIZED FORCES, 3

We can define a wrench \mathbf{w} :

$$\mathbf{w} = \begin{bmatrix} \mathbf{f} \\ \mathbf{m} \end{bmatrix} \tag{6}$$

We can describe relations between a wrench \mathbf{w} and associated generalized force:

$$\tau_i = \begin{bmatrix} \mathbf{J}_i^r \\ \mathbf{J}_i^{\omega} \end{bmatrix}^\top \mathbf{w}_i = \mathbf{J}_i^\top \mathbf{w}_i \tag{7}$$

Note that the total generalized force can be computed as:

$$\tau = \sum \mathbf{J}_i^{\mathsf{T}} \mathbf{w}_i \tag{8}$$

LAGRANGE EQUATIONS WITH CONSTRAINTS

Lagrange equations with constraints have form:

$$\begin{cases} \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial T}{\partial \mathbf{q}} = \tau + \left(\frac{\partial \mathbf{r}}{\partial \mathbf{q}} \right)^{\top} \lambda \\ \mathbf{r}(\mathbf{q}) = 0 \end{cases}$$
(9)

where $\mathbf{r}(\mathbf{q}) = 0$ are constraints and λ are reaction forces.

We can think of λ as concatenation of all reaction forces associated with constraints.

CONSTRAINTS, EXAMPLE

Let us consider a planar three link mechanism, whose end-effector is described as:

$$\begin{cases} x_e = l_1 \cos q_1 + l_2 \cos q_2 + l_3 \cos q_3 \\ y_e = l_1 \sin q_1 + l_2 \sin q_2 + l_3 \sin q_3 \end{cases}$$
 (10)

Then, if the end-effector is attached to the ground at a point $x_e^* = 1$, $y_e^* = 0$, the constraints look like the following:

$$\begin{cases} l_1 \cos q_1 + l_2 \cos q_2 + l_3 \cos q_3 - 1 = 0 \\ l_1 \sin q_1 + l_2 \sin q_2 + l_3 \sin q_3 = 0 \end{cases}$$
 (11)

Constraints

In general, we distinguish between constraints *expression* and constraints *value*. For example, a point K on the end-effector is described by radius-vector $\mathbf{r}_K = \mathbf{r}_K(\mathbf{q})$. If we affix K at a particular value \mathbf{r}_K^* :

- \blacksquare **r**_K(**q**) is the constraint expression;
- \blacksquare \mathbf{r}_K^* is the constraint value.

The constraint will take a form $\mathbf{r}_K(\mathbf{q}) - \mathbf{r}_K^* = 0$. Note that constraint value does not influence the constraint jacobians; therefore, as long as we only need constraint jacobians, we do not need to know constraint values.

Manipulator equations

Manipulator equations have form:

$$\mathbf{H\ddot{q}} + \mathbf{C\dot{q}} + \mathbf{g} = \tau \tag{12}$$

where $\mathbf{H} = \mathbf{H}(\mathbf{q})$ is generalized inertial forces and $\mathbf{g} = \mathbf{g}(\mathbf{q})$ are generalized gravitational forces.

Manipulator equations with constraints

Manipulator equations have form:

$$\begin{cases} \mathbf{H}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{g} = \tau + \left(\frac{\partial \mathbf{r}}{\partial \mathbf{q}}\right)^{\top} \lambda \\ \mathbf{r}(\mathbf{q}) = 0 \end{cases}$$
(13)

Defining constraint jacobian $\mathbf{J} = \frac{\partial \mathbf{r}}{\partial \mathbf{q}}$ we can re-write the equations:

$$\begin{cases} \mathbf{H}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{g} = \tau + \mathbf{J}^{\top}\lambda \\ \mathbf{r}(\mathbf{q}) = 0 \end{cases}$$
 (14)

CONSTRAINT DIFFERENTIATION

Differentiating constraint $\mathbf{r}(\mathbf{q})$ we get:

$$\frac{\partial \mathbf{r}}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial t} = 0 \tag{15}$$

This can be written as:

$$\mathbf{J\dot{q}} = 0 \tag{16}$$

Differentiating this once more we get:

$$\mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}} = 0 \tag{17}$$

SECOND-ORDER CONSTRAINTS

We can replace constraints with their second derivatives:

$$\begin{cases} \mathbf{H}\ddot{\mathbf{q}} + \mathbf{C}\dot{\mathbf{q}} + \mathbf{g} = \tau + \mathbf{J}^{\top}\lambda \\ \mathbf{J}\ddot{\mathbf{q}} + \dot{\mathbf{J}}\dot{\mathbf{q}} = 0 \end{cases}$$
(18)

This is a DAE in variables \mathbf{q} and λ . We can re-write it as a vector-matrix form:

$$\begin{bmatrix} \mathbf{H} & -\mathbf{J}^{\top} \\ \mathbf{J} & 0 \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}} \\ \lambda \end{bmatrix} = \begin{bmatrix} \tau - \mathbf{C}\dot{\mathbf{q}} - \mathbf{g} \\ -\dot{\mathbf{J}}\dot{\mathbf{q}} \end{bmatrix}$$
(19)

SOLUTION TO THE DAE

$$\begin{bmatrix} \mathbf{H} & -\mathbf{J}^{\top} \\ \mathbf{J} & 0 \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}} \\ \lambda \end{bmatrix} = \begin{bmatrix} \tau - \mathbf{C}\dot{\mathbf{q}} - \mathbf{g} \\ -\dot{\mathbf{J}}\dot{\mathbf{q}} \end{bmatrix}$$
(20)

The matrix-vector equation above can be solved given the following condition: the Shur compliment $(\mathbf{J}\mathbf{H}^{-1}\mathbf{J}^{\top})$ needs to be full-rank.

Given that \mathbf{H} is positive-definite, \mathbf{H}^{-1} is also positive-definite. Therefore $\mathbf{J}\mathbf{H}^{-1}\mathbf{J}^{\top}$ is symmetric and positive-semidefinite.

For $\mathbf{J}\mathbf{H}^{-1}\mathbf{J}^{\top}$ to be positive-definite (full rank), jacobian \mathbf{J} has to be full row-rank.

CONSTRAINT JACOBIAN RANK

The row rank of the constraint jacobian **J** depends on linear independence of constraints. Constraints are not linearly independent, we call the system *overconstrained* or *overdetermined*.

If constraint jacobian \mathbf{J} has linearly dependent rows, we can define a new jacobian $\mathbf{J}_o = \operatorname{row}(\mathbf{J})$ as an orthonormal basis in the row space of the original one, giving us relation $\mathbf{J} = \mathbf{T}\mathbf{J}_o$. We can then define $\gamma = \mathbf{T}^{\top}\lambda$ and re-write the dynamics as:

$$\begin{bmatrix} \mathbf{H} & -\mathbf{J}_o^{\mathsf{T}} \\ \mathbf{J}_o & 0 \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}} \\ \gamma \end{bmatrix} = \begin{bmatrix} \tau - \mathbf{C}\dot{\mathbf{q}} - \mathbf{g} \\ -\dot{\mathbf{J}}_o\dot{\mathbf{q}} \end{bmatrix}$$
(21)

This will not let us recover λ , but we can find $\ddot{\mathbf{q}}$.

Lecture slides are available via Github, links are on Moodle

You can help improve these slides at: github.com/SergeiSa/Contact-Aware-Control-Fall-2023

