제14강: 옵션 가치평가 및 변동성 매매

금융 통계 및 시계열 분석

TRADE INFORMATIX

2014년 2월 25일

목차

- 1 확률 프로세스 (Stochastic Process)
 - 브라우니안 모션 (Brownian Motion)
- 2 옵션 가격 결정 (Option Pricing)
 - Black-Scholes Equation
- 3 옵션 헷지 (Option Hedge)와 변동성 매매 (Volatility Trading)
 - 옵션 Greek
 - 옵션 Hedge
 - 옵션 Hedge 손익
 - Variance Swap

확률 프로세스 (Stochastic Process)

- □ 이산시간 시계열 (discrete-time series)
 - ▶ 계별 시간 $\{t_i\}$ 의 값 $\{x(t_i)\}$ 을 특정 분포의 샘플값으로 가정
- ☐ 연속시간 시계열 (discrete-time series)
 - ▶ 확률 프로세스 (Stochastic Process)
 - ▶ 시간 t에 대한 함수 전체 $\{X(t), t \geq 0; \omega_i\}$ 를 하나의 샘플로 가정
 - ▶ 브라우니안 모션 (Brownian Motion)를 이용한 이토 프로세스 (Ito Process)로 표현

브라우니안 모션 (Brownian Motion)

- □ 정적통계분석, 이산시간 시계열 분석에서의 정규분포의 역할
- □ 위너 프로세스(Wiener Process)
- □ 다음과 같은 특성을 지니는 random walk 샘플을 생성
 - ▶ 모든 시간 구간 $0 = t_0 < t_1 < \cdots < t_m$ 동안의
 - \blacktriangleright 증가분 $W(t_1)-W(t_0),W(t_2)-W(t_1),\ldots,W(t_m)-W(t_{m-1})$ 이
 - ▶ 서로 독립적 (independent) 이고
 - ▶ 분산이 시간구간크기인 정규분포

$$\begin{split} E[W(t_{i+1}) - W(t_i))] &= 0 \\ \text{Var}[W(t_{i+1}) - W(t_i))] &= t_{i+1} - t_i \end{split}$$

브라우니안 모션 시뮬레이션

- □ sde 패키지
- \square BM(x=0, t0=0, T=1, N=100)
 - ▶ x : 초기값 $x(t_0)$
 - ▶ t0: 초기시간 t₀
 - ightharpoonup ightharpoonup : 종료시간 T
 - ▶ N: 초기시간과 종교시간 사이의 이산시간 샘플 값 (discrete-time sampling)

```
> library("sde")
> set.seed(1)
> x1 <- BM(); x2 <- BM(); x3 <- BM();
> plot(xi, ylim=c(min(c(xi, x2, x3)), max(c(x1, x2, x3))), main="Brownian Motion Sample")
> lines(x2, col="red"); lines(x3, col="blue")
```

Brownian Motion Sample

브라우니안 모션의 Quadratic Variation

- Quadratic Variation
 - ▶ 임의의 미세한 시간구간 Ⅱ에 대한 미세 분산의 합

$$[f, f](T) = \sum_{\|\Pi\| \to 0} (f(t_{i+1}) - f(t_i))^2$$

- □ 일반적인 연속함수는 Quadratic Variation = 0
- \Box 브라우니안 모션은 Quadratic Variation = T
- □ 미분 표현

$$dW(t)dW(t) = dt$$
$$dW(t)dt = 0$$
$$dtdt = 0$$

이토 미적분(Ito Calculus)

- □ 브라우니안 모션의 Quadratic Variation 특성으로 인해
- □ 확률프로세스의 경우 일반적인 테일러 시리즈 전개가 적용되지 않음
- □ 일반적인 미분

$$df(x) = f_x(x)dx$$

□ 이토 미분

$$df(W) = f_w(W)dW + \frac{1}{2}f_{ww}(W)dW^2$$
$$= f_w(W)dW + \frac{1}{2}f_{ww}(W)dt$$

$$df(t,W) = f_t(t,W)dt + \frac{1}{2}f_w(W)dW + \frac{1}{2}f_{ww}(W)dt$$
$$= \left(f_t(t,W) + \frac{1}{2}f_{ww}(W)\right)dt + \frac{1}{2}f_W(w)dW$$

이토 프로세스(Ito Process)

□ 브라우니안 모션과 결정론적 drift의 조합

$$dX(t) = \mu(t)dt + \sigma(t)dW(t)$$

□ 이토 프로세스의 미분

$$\begin{split} df(t,X) &= f_t(t,X)dt + \frac{1}{2}f_x(X)dX + \frac{1}{2}f_{xx}(X)dX^2 \\ &= f_t(t,X)dt + \frac{1}{2}f_x(X)\left(\mu(t)dt + \sigma(t)dW(t)\right) + \\ &\quad \frac{1}{2}f_{xx}(X)\left(\mu(t)dt + \sigma(t)dW(t)\right)^2 \\ &= f_t(t,X)dt + \frac{1}{2}f_x(X)\left(\mu(t)dt + \sigma(t)dW(t)\right) + \frac{1}{2}f_{xx}(X)\sigma^2(t)dt \\ &= \left(f_t(t,X) + \frac{1}{2}f_x(X)\mu(t) + \frac{1}{2}f_{xx}(X)\sigma^2(t)\right)dt + \frac{1}{2}f_x(X)\sigma(t)dW(t) \end{split}$$

Geometric Brownian Motion

- □ 옵션 가치평가를 위한 일반적인 주가 모형
- □ Black-Scholes 모형

$$\begin{array}{lcl} dS(t) & = & \mu S(t) dt + \sigma S(t) dW(t) \\ \frac{dS(t)}{S(t)} & = & \mu dt + \sigma dW(t) \end{array}$$

□ 이토 적분

$$S(t) = S(0) \exp\left\{\mu t - \frac{1}{2}\sigma^2 t + \sigma W(t)\right\}$$

주가 시뮬레이션

- □ sde 패키지
- \square sde.sim(t0=0, T=1, X0=1, N=100, M=1, model="BS", theta)
 - ▶ M: 시뮬레이션 횟수
 - ▶ theta : drift와 변동성 (μ, σ)

```
> library("zoo")
> set.seed(1)
> x <- sde.sim(model="BS", theta=c(0.01, 0.1), X0=1000, M=100);
> plot.zoo(x, screen=1)
```


옵션의 종류

- Payoff
 - ► Plain Vanila Call/Put

$$\begin{aligned} & \mathsf{Payoff}_{\mathsf{call}} &=& \mathsf{max}(S-K,0) \\ & \mathsf{Payoff}_{\mathsf{put}} &=& \mathsf{max}(K-S,0) \end{aligned}$$

► Digital (Binary) Call/Put

□ 행사

▶ Eurorean : 정해진 만기에만 행사 가능

▶ American : 항상 행사 가능

▶ Bermudan : 만기전 정해진 기간에 행사 가능

□ 종목

▶ Basket : 복수 종목의 포트폴리오

▶ Spread : 두 종목의 가격차

▶ Worst : 복수 종목 중 가장 수익률이 낮은 종목 기준

Barrier

▶ Knock-In : 지정 가격을 터치하면 옵션 생성

▶ Knock-Out : 지정 가격을 터치하면 옵션 소멸

▶ Asian : 일정 구간의 가격 평균

Black-Scholes Equation

 \square 콜옵션 가치 $V(t, S, K, r, T, \sigma)$ 방정식

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0$$

□ 해 (solution)

$$V = N(d_1)S - N(d_2)Ke^{-r(T-t)}$$

$$d_1 = \frac{1}{\sigma\sqrt{T-t}} \left[\ln\left(\frac{S}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)(T-t) \right]$$

$$d_2 = \frac{1}{\sigma\sqrt{T-t}} \left[\ln\left(\frac{S}{K}\right) + \left(r - \frac{\sigma^2}{2}\right)(T-t) \right]$$

$$= d_1 - \sigma\sqrt{T-t}$$

Plain Vanila 옵션 가격 계산 명령

- ☐ fOptions 패키지
- ☐ GBSOption(TypeFlag, S, X, Time, r, b, sigma)
 - ▶ TypeFlag: "c", "p" (콜/天)
 - ▶ S: 주가
 - ▶ X:행사가
 - ▶ Time: 만기까지 잔존기간 (year)
 - ▶ r:이자율 (1% pa = 0.01)
 - ▶ b : cost of carry = r d + q (1% pa = 0.01)
 - ▶ sigma: 변동성 (1% pa = 0.01)

Plain Vanila 옵션 가격 계산 명령

```
> library("fOptions")
> Vc0 <- GBSOption('c', S=0:200, X=100, Time=0, r=0.05, b=0.05, sigma=0.3)
> Vc1 <- GBSOption('c', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)
> Vp0 <- GBSOption('p', S=0:200, X=100, Time=0, r=0.05, b=0.05, sigma=0.3)
> Vp1 <- GBSOption('p', S=0:200, X=100, Time=0, r=0.05, b=0.05, sigma=0.3)
> plot(Wc0parametersess, Vc0pprice, type='l', typ=2, xlim=c(0,200), ylim=c(0,100),
+ main="Plain Vanila Option Values", xlab="Price", ylab="Values")
> lines(Vc10parameters8S, Vc10price, type='l', ltp=2, xlim=c(0,200), ylim=c(0,100),
> lines(Vc10parameters8S, vp10price, type='l')
> lines(Vp10parameters8S, Vp10price, type='l')
> lines(Vp10parameters8S, Vp10price, type='l')
```

Plain Vanila Option Values

옵션 가격 결정 방법

- ☐ Closed Form Equation
 - ▶ Plain Vanila Call/Put, 디지털 옵션등 일부 간단한 옵션만 가능
- □ 몬데카를로 (Monte Carlo)
 - ▶ 가능한 주가 시나리오를 수치적으로 생성하여 기대치 계산
 - ▶ 단순하지만 계산량 많음
 - ▶ 복잡한 옵션의 경우 정확도가 떨어짐
 - ▶ Greek 계산 정확도 부족하여 헤지 불가능
- □ FDM (Finite Difference Method)
 - ▶ Black-Sholes 수식을 이산화 (discretization) 하여 행렬 방정식으로 변환
 - ▶ 3차 이상 불가능

옵션 Greek

- □ Greek: 가격결정변수들의 변화에 의한 옵션 가치의 변화량
- □ Delta: 기초자산가격 변화에 의한 옵션 가치의 변화량

$$\Delta = \frac{\partial V}{\partial S}$$

□ Theta: 시간 변화에 의한 옵션 가치의 변화량

$$\theta = \frac{\partial V}{\partial t}$$

□ Vega: 변동성 변화에 의한 옵션 가치의 변화량

$$\nu = \frac{\partial V}{\partial \sigma}$$

□ Rho: 이자율 변화에 의한 옵션 가치의 변화량

$$\rho = \frac{\partial V}{\partial r}$$

고차 Greek 및 Cross Greek

□ Gamma : 기초자산가격 변화에 의한 델타 변화량 (2차 미분)

$$\Gamma = \frac{\partial^2 V}{\partial S^2}$$

□ Speed : 기초자산가격 변화에 의한 감마 변화량 (3차 미분)

$$\mathrm{Speed} = \frac{\partial^3 V}{\partial S^3}$$

□ Vanna: 변동성 변화에 의한 델타 변화 혹은 주가변화에 의한 베가 변화 (cross 2차)

$$Vanna = \frac{\partial \Delta}{\partial \sigma} = \frac{\partial \nu}{\partial S} = \frac{\partial^2 V}{\partial S \partial \sigma}$$

□ Volga : 변동성 변화에 의한 베가 변화 (2차)

$$Volga = \frac{\partial \nu}{\partial \sigma} = \frac{\partial^2 V}{\partial \sigma^2}$$

Plain Vanila 옵션 Greek 계산 명령

- ☐ fOptions 패키지
- ☐ GBSGreeks(Selection, TypeFlag, S, X, Time, r, b, sigma)
 - ► Selection: "delta", "gamma", "vega", "theta", "rho"

Plain Vanila 옵션 델타

```
> library("fOptions")
> VcDelta1 <- GBSGreeks('delta', 'c', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)
> VcDelta2 <- GBSGreeks('delta', 'c', S=0:200, X=100, Time=1.0/12, r=0.05, b=0.05, sigma=0.3)
> VpDelta1 <- GBSGreeks('delta', 'p', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)
> VpDelta2 <- GBSGreeks('delta', 'p', S=0:200, X=100, Time=1.0/12, r=0.05, b=0.05, sigma=0.3)
> plot(0:200, VcDelta1, type='1', lty=1, lud=2, col="red", ylim=c(-1,1),

+ xlab="Underlying Price", ylab="Delta", main="Plain Vanila Option Delta")
> lines(0:200, VcDelta2, type="1', lty=2, lud=2, col="red")
> lines(0:200, VpDelta2, type="1', lty=3, lud=2, col="blue")
> lines(0:200, VpDelta2, type="1', lty=3, lud=2, col="blue")
> legend("topright", col=c("red", "red", "blue"), "blue"), lty=1:4,
+ legend=c("C 1 year", "C 1 month", "P 1 year", "P 1 month"))
```


Plain Vanila 옵션 감마

```
> library("fOptions")
> VcDelta1 < GBSGreeks('gamma', 'c', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)
> VcDelta2 < GBSGreeks('gamma', 'c', S=0:200, X=100, Time=1, 0/12, r=0.05, b=0.05, sigma=0.3)
> VpDelta1 < GBSGreeks('gamma', 'p', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)
> VpDelta1 < GBSGreeks('gamma', 'p', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)
> VpDelta2 < GBSGreeks('gamma', 'p', S=0:200, X=100, Time=1, 0/12, r=0.05, b=0.05, sigma=0.3)
> plot(0:200, VcDelta1, type="1", lty=1, lty=1, lty=2, lod=2, col="red")

+ xlab="Underlying Price", ylab="Gamma", main="Plain Vanila Option Gamma")
> lines(0:200, VpDelta2, type=1', lty=2, lud=2, col="blue")
> lines(0:200, VpDelta2, type=1', lty=4, lud=2, col="blue")
> lagend("toopright", col=c("red", "red", "blue", "blue")
+ legend=c("C 1 year", "C 1 month", "P 1 year", "P 1 month"))
```

Plain Vanila Option Gamma

Plain Vanila 옵션 쎄타

```
> library("fOptions")
> VcDelta1 <- GBSGreeks('theta', 'c', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)/365.0
> VcDelta2 <- GBSGreeks('theta', 'c', S=0:200, X=100, Time=2, r=0.05, b=0.05, sigma=0.3)/365.0
> VpDelta1 <- GBSGreeks('theta', 'p', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)/365.0
> VpDelta2 <- GBSGreeks('theta', 'p', S=0:200, X=100, Time=1, r=0.05, b=0.05, sigma=0.3)/365.0
> VpDelta2 <- GBSGreeks('theta', 'p', S=0:200, X=100, Time=2, r=0.05, b=0.05, sigma=0.3)/365.0
> PiDt(C:200, VcDelta1, type="1", ity=1, ity=1, ity=2, col="red")
+ xlab="Underlying Price", ylab="Theta", main="Plain Vanila Option Theta")
> lines(0:200, VcDelta2, type='1', lty=2, lud=2, col="bile")
> lines(0:200, VpDelta2, type='1', lty=3, lud=2, col="bile")
> lines(0:200, VpDelta2, type='1', lty=4, lud=2, col="bile")
> legend("col=col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\col=c"\
```

Plain Vanila Option Theta

Plain Vanila 옵션 베가

Plain Vanila Option Vega

Hedge

- Hedge
 - ▶ 전체 포트폴리오가 시장변화에 무관하게 가치를 유지하도록 관리
 - ▶ 시장변수의 변화에 대한 포트폴리오의 민감도 즉 Greek이 0이 되도록 hedge instrument를 추가 보유
 - ▶ hedge instrument는 보통 Greek계산이 쉽고 유동성이 많으며 거래비용이 적은 것을 선택
- Dynamic Hedge
 - ▶ 시간이 지나거나 시장변수가 변하면 시장변수의 변화에 대한 포트폴리오의 민감도 즉 Greek자체가 변화
 - ▶ 2차 Greek 혹은 Cross Greek의 값이 0이 아니라 발생하는 현상
 - ▶ 따라서 매일 hedge instrument 보유량을 조절할 필요가 있음
- ☐ Dynamic Delta Hedge
 - ▶ 여러 시장변수 중 가장 영향이 큰 기초자산가격에 대한 민감도만 hedge

델타 Hedge Simulation 명령

- □ DynamicSimulation 패키지
- ☐ deltaHedge(instruments, env, params)
 - ▶ instruments : flnstrument 패키지의 fInstrumentFactory 명령으로 생성한 옵션 오브젝트
 - ▶ env: DataProvider 명령으로 생성한 시장정보 container
 - ▶ params : 시뮬레이션 파라미터
 - dtSim: 시뮬레이션 날짜 벡터
 - transaction.cost : 거래비용

```
> library("zoo")
> library("empfin")
> library("fInstrument")
> library("DynamicSimulation")
> set.seed(1)
> dtStart <- as.Date("2013-01-01")
> dtEnd <- as.Date("2013-03-31")
> SO <- 100
> mu <- 0.01
> sigma <- 0.2
> d <- 0
> dtSim <- seq(dtStart, dtEnd, by=1)
> tSpot <- pathSimulator(dtSim=dtSim, nbPaths=100, S0=S0, path.param=list(mu=mu, sigma=sigma))
> c <- fInstrumentFactory("vanilla", quantity=1,
          params=list(cp="c", strike=S0, dtExpiry=dtEnd, underlying="STOCK", discountRef="CD91", trace = FALSE))
> base.env <- DataProvider()
> setData(base.env, "STOCK", "Price", time(tSpot), as.matrix(tSpot))
> setData(base.env, "STOCK", "ATMVol", dtStart, sigma)
> setData(base.env, "STOCK", "DivYield", dtStart, d)
> setData(base.env, "STOCK", "discountRef", dtStart, "CD91")
> setData(base.env, "CD91", "Yield", dtStart, mu)
> hedge.result <- deltaHedge(list(c), base.env, params=list(dtSim=time(tSpot)), trace=FALSE)
> N <- 1
> par(oma=c(4, 2, 4, 1), mar=c(0, 5, 0, 4))
> lavout(matrix(1:5))
> plot(hedge.result$spot[,N], type="1", ylab="Spot Price")
> plot(hedge.result$price[,N], type="1", ylab="Option Price")
> plot(hedge.result$stock[,N], type="l", ylab="Spot Shares")
> plot(hedge.result$bond[,N], type="1", ylab="Bond Values")
> plot(hedge.result$wealth[,N], type="1", ylab="Wealth")
```

델타 Hedge Simulation 결과 1: 샘플 히스토리

델타 Hedge Simulation 결과 2-1

	time	stock price	delta	option	bond pos	hedge port.
1	1.00	100.00	0.53	4.06	-49.02	4.06
2	2.00	99.34	0.50	3.69	-46.34	3.71
3	3.00	99.76	0.52	3.88	-48.00	3.91
4	4.00	99.11	0.49	3.53	-45.31	3.58
5	5.00	99.57	0.51	3.74	-47.21	3.80
6	6.00	100.00	0.53	3.94	-48.95	4.02
7	7.00	100.14	0.53	3.99	-49.52	4.09
8	8.00	101.08	0.57	4.48	-53.44	4.59
9	9.00	102.64	0.64	5.41	-59.92	5.49
10	10.00	103.80	0.68	6.15	-64.55	6.22
11	11.00	104.85	0.72	6.86	-68.56	6.94
12	12.00	104.93	0.72	6.89	-68.96	6.99
13	13.00	105.48	0.74	7.27	-71.02	7.38
14	14.00	105.10	0.73	6.97	-69.78	7.10
15	15.00	105.16	0.73	6.99	-70.13	7.15
16	16.00	104.38	0.71	6.41	-67.34	6.57
17	17.00	102.80	0.65	5.31	-61.14	5.45
18	18.00	101.64	0.60	4.56	-56.24	4.70
19	19.00	102.11	0.62	4.82	-58.36	4.98
20	20.00	100.48	0.55	3.84	-51.17	3.97
21	21.00	101.74	0.60	4.54	-56.89	4.66
22	22.00	102.95	0.66	5.28	-62.27	5.39
23	23.00	102.99	0.66	5.28	-62.53	5.41
24	24.00	103.25	0.67	5.43	-63.72	5.58
25	25.00	101.24	0.58	4.14	-54.89	4.23
26	26.00	99.60	0.51	3.22	-47.22	3.28
27	27.00	99.67	0.51	3.23	-47.50	3.31
28	28.00	100.02	0.53	3.38	-49.18	3.49
29	29.00	98.35	0.44	2.55	-41.10	2.61
30	30.00	99.96	0.52	3.29	-48.95	3.32

Table: Delta hedging simulation

델타 Hedge Simulation 결과 2-2

		time	stock price	delta	option	bond pos	hedge port.
3	:1 :	31.00	99.27	0.49	2.92	-45.52	2.96
3	2 :	32.00	100.15	0.53	3.34	-49.92	3.39
3	3 :	33.00	99.79	0.51	3.12	-48.09	3.20
3	4 .	34.00	100.15	0.53	3.28	-49.89	3.38
3	5 .	35.00	100.11	0.53	3.23	-49.67	3.35
3	6 .	36.00	101.82	0.61	4.18	-58.45	4.26
3	7 .	37.00	102.09	0.63	4.31	-59.85	4.42
3	8 :	38.00	102.85	0.67	4.78	-63.70	4.90
3	9 :	39.00	102.45	0.65	4.48	-61.82	4.63
4	0 4	40.00	101.83	0.62	4.07	-58.81	4.23
4	1 4	41.00	101.15	0.58	3.63	-55.30	3.81
4	2 4	42.00	100.21	0.53	3.07	-50.27	3.26
		43.00	101.93	0.63	4.03	-59.67	4.17
4	4	44.00	100.51	0.55	3.16	-52.01	3.28
		45.00	100.08	0.53	2.91	-49.64	3.04
4	6 4	46.00	101.05	0.58	3.40	-55.13	3.55
		47.00	102.33	0.65	4.16	-62.37	4.29
4	8 4	48.00	102.00	0.63	3.92	-60.65	4.07
		49.00	103.30	0.70	4.76	-67.86	4.90
5	0 !	50.00	102.89	0.68	4.44	-65.90	4.61
5	1 !	51.00	101.89	0.63	3.75	-60.48	3.92
		52.00	99.98	0.52	2.62	-49.14	2.71
5	3 !	53.00	100.67	0.56	2.95	-53.42	3.07
		54.00	101.66	0.62	3.50	-59.62	3.63
5	5 !	55.00	103.78	0.74	4.92	-72.02	4.94
		56.00	103.34	0.72	4.56	-69.91	4.61
		57.00	103.78	0.75	4.85	-72.58	4.93
		58.00	101.52	0.62	3.27	-59.51	3.24
	-	59.00	102.08	0.65	3.59	-63.28	3.58
6	0 (60.00	102.92	0.71	4.12	-68.70	4.13

Table: Delta hedging simulation

델타 Hedge Simulation 결과 2-3

	time	stock price	delta	option	bond pos	hedge port.
61	61.00	102.94	0.71	4.10	-69.12	4.14
62	62.00	103.74	0.76	4.65	-74.12	4.71
63	63.00	102.62	0.70	3.80	-67.72	3.85
64	64.00	102.95	0.72	4.00	-70.18	4.09
65	65.00	101.81	0.65	3.18	-62.82	3.26
66	66.00	101.69	0.64	3.06	-62.17	3.18
67	67.00	102.37	0.69	3.47	-67.35	3.61
68	68.00	101.89	0.66	3.10	-64.20	3.28
69	69.00	102.56	0.71	3.52	-69.50	3.73
70	70.00	101.44	0.63	2.72	-61.37	2.92
71	71.00	100.63	0.57	2.19	-54.84	2.41
72	72.00	101.18	0.62	2.46	-59.75	2.72
73	73.00	100.56	0.56	2.05	-54.42	2.33
74	74.00	102.39	0.72	3.18	-70.84	3.37
75	75.00	105.25	0.90	5.49	-89.53	5.44
76	76.00	106.21	0.94	6.35	-93.73	6.30
77	77.00	102.85	0.78	3.38	-77.10	3.13
78	78.00	102.06	0.72	2.74	-71.24	2.52
79	79.00	102.59	0.78	3.08	-76.81	2.89
80	80.00	102.86	0.81	3.25	-80.23	3.11
81	81.00	104.43	0.92	4.58	-91.72	4.37
82	82.00	103.20	0.86	3.44	-85.64	3.23
83	83.00	103.34	0.89	3.52	-88.25	3.36
84	84.00	103.78	0.93	3.88	-92.65	3.74
85	85.00	102.16	0.82	2.40	-81.94	2.24
86	86.00	100.59	0.62	1.17	-61.02	0.94
87	87.00	101.12	0.73	1.42	-72.97	1.26
88	88.00	100.68	0.68	1.00	-67.61	0.94
89	89.00	102.07	0.98	2.09	-97.68	1.89
90	90.00	101.18	1.00	1.18	-100.17	1.01

Table: Delta hedging simulation

델타 Hedge Simulation 결과 3: 손익 히스토그램

```
> hist(tail(hedge.result$wealth, 1), 50, xlab = "wealth", main = "")
```


옵션 Hedge 손익

- □ 주가에 대한 가정
 - ightharpoonup 옵션 거래시점부터 만기까지 주식 가격은 고정된 실제 변동성 σ_r 로 BS모형을 따름
 - ▶ 실제 변동성 σ_r 은 옵션 거래시점의 내재 변동성 σ_i 과 다를 수 있음
- ☐ hedge 가정
 - ▶ case 1: 거래한 옵션 내재변동성 $\sigma_h = \sigma_i$ 로 hedge
 - ▶ case 2: 옵션 거래시점부터의 실제 변동성 $\sigma_h = \sigma_r$ 로 hedge

case 1: 거래한 옵션 내재변동성으로 hedge하는 경우

□ 옵션 가치 변화

$$dV \approx \Delta dS + \frac{1}{2}\Gamma dS^2$$
$$\approx \Delta dS + \frac{1}{2}\Gamma S^2 \sigma_h^2 dt$$

□ hedge 주식 가치변화로 인한 평가손익

$$-\Delta dS$$

□ hedge 주식 매매로 인한 실현손익 (Gamma 손익)

$$-\frac{1}{2}\Gamma dS^2\approx -\frac{1}{2}\Gamma S^2\sigma_r^2 dt$$

□ hedged 포트폴리오 가치 변화

$$\frac{1}{2}\Gamma S^2 \left(\sigma_i^2 - \sigma_r^2\right) dt$$

case 1: 거래한 옵션 내재변동성으로 hedge하는 경우 (계속)

■ Exact Solution

$$\frac{1}{2} \int_0^T \exp(-rT) S^2 \Gamma\left(\sigma_i^2 - \sigma_r^2\right) dt$$

- □ 실제 변동성과 관계없이 최초 거래한 변동성으로 헷지를 하는 경우 두 변동성의 차이만큼 손익 발생
- □ 만일 실제변동성과 헷지변동성 (최초 거래한 내재변동성) 이 같으면 손익은 0
- \square S와 Γ 의 값이 path dependent하므로 샘플에 따라 손익이 크게 차이남

case 2: 옵션 거래시점부터의 실제 변동성 $\sigma_h = \sigma_r$ 로 hedge

- □ 실제변동성으로 평가하면 거래 가격과 실제변동성으로 계산한 가격만큼 평가 손익 발생
- □ 이후에는 실제변동성과 hedge변동성이 같으므로 hedge 손익은 0
- □ 따라서 최초의 옵션 가격 차이가 헷지 손익
- □ 헷지 손익은 불확실성이 적어짐

Discrete Hedge 효과

- □ Dynamic Delta Hedge는 미세한 시간간격 (continuous time)으로 hedge하는 것을 가정
- □ 이산 시간 간격으로 hedge를 하게 되면 다음 영향 발생
 - ▶ 시간간격이 커질수록 hedge 오차 증가
 - ▶ 시간간격이 작아질수록 거래비용 (transaction cost) 증가
- □ 적정한 hedge 간격 선택의 문제

거래비용에 따른 가치변화

- □ LeLand 공식
 - ightharpoonup 시간간격 δt 에 따른 거래비용 증가 효과 계산
 - ▶ 옵션 변동성 가치가 변화한것과 마찬가지 효과

$$\hat{\sigma} = \sigma \sqrt{\left(1 \pm \sqrt{\left(\frac{8k}{\pi \sigma \delta t}\right)}\right)}$$

- ▶ k : 수수료 비율
- ▶ 옵션 매수인 경우에는 변동성 감소
- ▶ 옵션 매도인 경우에는 변동성 증가

Bandwidth Hedge: Whalley and Willmott 방법

- □ 시간간격이 아닌 delta 오차가 특정 기준 이상이 되면 hedge
- □ 효용성 (utility) 기준에 따른 최적 delta hedge
- ☐ Whalley and Willmott 방법

$$\Delta = \frac{\partial V}{\partial S} \pm \sqrt{\frac{3}{2\gamma} \exp\left(-rTfS\Gamma^2\right)}$$

여기에서 γ 는 utility 함수 계수

$$U(W) = -\exp(\gamma W)$$

Bandwidth Hedge: Zakamouline 방법

□ Zakamouline 방법

$$\begin{split} & \Delta & = & \frac{\partial V(\sigma_m)}{\partial S} \pm (H_1 + H_0) \\ & H_1 & = & \frac{k}{\gamma S \sigma^2 T} \\ & H_0 & = & 1.12 k^{0.31} T^{0.05} \left(\frac{\exp(-rT)}{\sigma}\right)^{0.25} \left(\frac{|\Gamma|}{k}\right)^{0.5} \\ & \sigma_m & = & -5.76 k^{0.78} T^{-0.02} \left(\frac{\exp(-rT)}{\sigma}\right)^{0.25} \left(kS^2 |\Gamma|\right)^{0.15} \end{split}$$

Variance Swap

- □ 옵션을 이용한 변동성 매매의 단점
 - ▶ delta hedge의 번거로움
 - ▶ path dependency
- Variance Swap
 - ▶ 순수한 변동성 betting
 - ▶ delta hedge가 필요없이 변동성 매매 가능
 - ▶ path dependency 없음

$$\begin{array}{lcl} \mathsf{Payoff} & = & N_{\mathsf{Var}}(\sigma_{\mathsf{realised}}^2 - \sigma_{\mathsf{strike}}^2) \\ N_{\mathsf{Var}} & = & \mathsf{Variance} \; \mathsf{Nominal} \; \mathsf{Amount} \\ \sigma_{\mathsf{realised}}^2 & = & \frac{A}{n} \sum_{\mathsf{i}=1}^\mathsf{n} R_{\mathsf{i}}^2 \end{array}$$

Variance Swap Hedge

□ Variance Swap은 다음과 같이 delta-hedged log 계약으로 복제 가능

Variance
$$= \frac{1}{T} \int_0^T \sigma^2 dt$$

$$= \frac{2}{T} \left(\int_0^T \frac{dS}{S} - \log \frac{S_T}{S_0} \right)$$

- $\ \square$ 주식은 항상 1/S 만큼의 계약수를 유지하도록 dynamic rebalancing. 이는 log계약에 대한 delta hedge
- \square log 계약 log $\frac{S_T}{S_0}$ 은 다음과 같은 옵션 포트폴리오로 대체 가능

$$\log \frac{S_T}{S_0} = -\frac{S_T - S^*}{S^*} + \int_{K \le S^*} (K - S_T)^+ \frac{dK}{K^2} + \int_{K \ge S^*} (S_T - K)^+ \frac{dK}{K^2}$$

여기에서 S^* 는 임의의 cut-off 주가

Variance Swap Hedge (계속)

 \square $S^* = F_T = S_0 e^{rT}$ 으로 하면 Variance Swap은 다음과 같이 표현

$$\frac{2e^{rT}}{T} \left(\int\limits_0^{F_T} \frac{1}{K^2} \; P(K) dK + \int\limits_{F_T}^\infty \frac{1}{K^2} \; C(K) dK \right)$$

□ 실제로는 가능한 strike이 제한되어 있으므로 다음 옵션 포트폴리오로 approximation

$$\sum_{\mathrm{put}} \frac{K_i - K_{i-1}}{K_i^2} \mathrm{Put}(K) + \sum_{\mathrm{call}} \frac{K_i - K_{i-1}}{K_i^2} \mathrm{Call}(K)$$

 $oldsymbol{\Box}$ call/put은 현재 ATM $(S^* = F_T = S_0 e^{rT})$ strike 기준으로 OTM 선택

Variance Swap 옵션 포트폴리오

- \Box stike K 에 대해 $1/K^2$ 에 비례하는 옵션 개수 보유
- $lacksymbol{\square}$ dollar Gamma ΓS^2 이 항상 일정

