CASE-BASED (SEARCHING)

KECERDASAN BUATAN - SE

Dimas Cahyo Margono - 2211104030 Aditya Prabu Mukti - 2211104037

PROBLEM

Diberikan suatu fungsi untuk mencari nilai x1 dan x2 sehingga diperoleh nilai minimum dari fungsi matematis berikut:

$$f(x_1, x_2) = -\left(\sin(x_1)\cos(x_2)\tan(x_1 + x_2) + \frac{3}{4}\exp\left(1 - \sqrt{x_1^2}\right)\right)$$

dengan domain (batas nilai) x1 dan x2 adalah

 $-10 \le x_1 \le 10 \text{ dan } -10 \le x_2 \le 10$

QUEST

Buatlah program menggunakan Algoritma Genetika (GA) untuk menyelesaikan permasalahan di atas. Lakukan analisis dan desain program GA yang Anda buat, lalu implementasikan dengan tepat.

STRUKTURKODE

Config.py - Menyimpan seluruh parameter Genetic Algorithm seperti ukuran populasi, jumlah generasi, dan probabilitas crossover & mutasi.

utils.py - Berisi fungsi bantu:

- decode() untuk mengubah biner ke nilai x1, x2
- fitness() untuk menghitung nilai fungsi f(x1,x2).

ga_core.py -

Inti dari algoritma genetika:

- Inisialisasi populasi
- · Seleksi orangtua (turnamen)
- · Crossover dan mutasi
- Elitisme dan generasi baru.

main.py - Menjalankan program

TADEL-ANALISIS

Komponen	Implementasi	
Ukuran Populasi	20 kromosom	
Representasi Kromosom	Biner, 16 bit per variabel (x 1 dan x 2) \rightarrow total 32 bit	
Decode Kromosom	Linear mapping dari biner ke [-10, 10]	
Seleksi Orangtua	Turnamen 2 individu	
Crossover	1 titik, probabilitas crossover (Pc) = 0.8	
Mutasi	Bit flip, <u>probabilitas mutasi</u> (Pm) = 0.01 per bit	
Pergantian Generasi	Elitisme (1 individu terbaik selalu dibawa ke generasi selanjutnya)	
Kriteria Penghentian	Maksimal 100 generasi	

EKSEKUSI

Inisialisasi & Evaluasi

➤ Buat populasi acak, dekode ke x1 & x2, lalu hitung fitness.

Reproduksi Genetik

> Seleksi orangtua, lakukan crossover & mutasi untuk hasilkan generasi baru.

Iterasi & Output

➤ Ulangi proses hingga 100 generasi, lalu ambil solusi (kromosom) terbaik.

OUTPUT

Diberikan:

x1 = 1.9946

x2 = 9.0049

Fungsi yang dihitung:

$$f(x_1, x_2) = -\left(\sin(x_1)\cos(x_2)\tan(x_1 + x_2) + \frac{3}{4}\exp\left(1 - \sqrt{x_1^2}\right)\right)$$

Langkah Perhitungan:

Komponen	Nilai
$sin(x_1)$	0.9101
cos(x ₂)	-0.9111
$tan(x_1 + x_2)$	296.2593
$\exp(1 - \sqrt{(x_1^2)})$	0.3296
(³⁄4) * exp()	0.2472

Komparasi dengan Program:

Catatan:

Perbedaan sedikit antara perhitungan manual dan hasil program adalah wajar karena:

- Pembulatan angka desimal,
- · Crossover & mutasi bersifat acak,
- Evaluasi fungsi melibatkan trigonometri yang sensitif.