Polygon Internal Angles Theorem

The sum of the internal angles of a polygon is related to the number of its sides by the formula $S = (n-1)180^{\circ}$. The proof depends on the division of the polygon into triangles, each of which has an internal angle sum of 180° , as shown in Figure 1.

Figure 1: Octagon showing partition into six triangles

The initial pattern of polygon sides versus the sum of angle measures is shown in Table 1.

Table 1: Summary of the number of polygon sides versus angle sum.

n	m<	Sum of angles
3	60	180
4	90	360
5	108	540
6	120	720
n	$m < V = \frac{(n-2)180^{\circ}}{n}$	$S = (n-2) 180^{\circ}$