

VN460SP

SINGLE CHANNEL HIGH SIDE SMART SOLID STATE RELAY

TYPE	V _{demag}	R _{DS(on)}	IOUT	Vcc
VN460SP	V _{CC} -55V	20 m Ω	25 A	36 V

- OUTPUT CURRENT (CONTINUOUS):
 25 A @ T_C = 25 ° C
- 5 V LOGIC LEVEL COMPATIBLE INPUT
- UNDER VOLTAGE SHUT-DOWN
- OVER VOLTAGE SHUT-DOWN
- THERMAL SHUT-DOWN
- OPEN DRAIN DIAGNOSTIC OUTPUT
- VERY LOW STAND-BY POWER DISSIPATION

DESCRIPTION

The VN460SP is a monolithic device made using SGS-THOMSON Vertical Intelligent Power Technology, intended for driving resistive or inductive loads with one side connected to ground.

Built-in thermal shut-down protects the chip from over temperature and short circuit.

The control input is 5V CMOS logic level compatible.

The open drain diagnostic output indicates open circuit (no load) and overtemperature status.

BLOCK DIAGRAM

June 1998 1/9

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
Vcc	Power Supply Voltage (continuous)	45	V
-Vcc	Reverse Supply Voltage (continuous)	-0.3	V
lout	Output Current (continuous)	Internally Limited	Α
I _R	Reverse Output Current	-25	Α
I _{IN}	Input Current	±10	mΑ
I _{STAT}	Status Pin Current	±10	mΑ
-I _{GND}	Reverse Ground Current	-200	mΑ
VESD	Electrostatic Discharge (1.5 kΩ, 100 pF)	2000	V
P _{tot}	Power Dissipation at T _c ≤ 25 °C	112	W
Tj	Junction Operating Temperature	-40 to 150	°C
T _{stg}	Storage Temperature	-55 to 150	°C

CONNECTION DIAGRAM

CURRENT AND VOLTAGE CONVENTIONS

477

ELECTRICAL TRANSIENTS REQUIREMENTS

ISO T/R 7637/1	TEST LEVELS						
Test Pulse	I	II	III	IV	Delays and Impedance		
1	-25 V	-50 V	-75 V	-100 V	2 ms, 10 Ω		
2	+25 V	+50 V	+75 V	+100 V	0.2 ms, 10 Ω		
3a	-25 V	-50 V	-100 V	-150 V	0.1 μs, 50 Ω		
3b	+25 V	+50 V	+75 V	+100 V	0.1 μs, 50 Ω		
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω		
5	+26.5	+46.5	+66.5	+86.5	400 ms, 2 Ω		

ISO T/R 7637/1	TES	ST LEVELS RESUI	LTS		
Test Pulse	I	II	III	IV	
1	С	С	С	С	
2	С	С	С	С	
3a	С	С	С	С	
3b	С	С	С	С	
4	С	С	С	С	
5	С	E	E	E	

(With a series resistor \geq 1 K Ω in input and status pins).

CLASS	CONTENTS
С	All function of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	1.1	°C/W
R _{thj-a(*)}	Thermal Resistance Junction-ambient	Max	50	°C/W

^(*) When mounted using minimum recommended pad size on FR-4 board.

ELECTRICAL CHARACTERISTICS ($V_{CC} = 13 \text{ V}$; -40 $^{\circ}\text{C} < T_J < 125 \,^{\circ}\text{C}$ unless otherwise specified) POWER

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{CC}	Operating Supply Voltage			5.5	13	36	٧
V _{usd}	Under Voltage Shut Down			3	4	5.5	٧
Vov	Overvoltage Shut Down			36	39	45	V
Ron	On State Resistance	I _{OUT} = 5 A I _{OUT} = 5 A	T _J = 25 °C			20 36	mΩ
Is	Supply Current	Off state On State	$T_{Case} = 25$ °C		15 1.4	30 3.3	μA mA

LOGIC INPUT

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VIL	Input Low Level Voltage	(*)			1.5	V
V _{IH}	Input High Level Voltage (see note 1)	(*)	3.5			V
V _{I(hyst.)}	Input Hysteresis Voltage		0.2	0.85	1.5	V
I _{IN}	Input Current	$V_{IN} = 5 \text{ V}$ $T_{case} = 25 ^{\circ}\text{C}$			100	μΑ
Vicl	Input Clamp Voltage	I _{IN} = 10 mA I _{IN} = -10 mA	5	6 -0.7	7	V V

^{(*):} The input voltage is internally clamped at 6 V about. It is possible to connect this pin to an higher voltage via an external resistor provided the input current does not exceed 10 mA.

SWITCHING (Vcc = 13 V)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time Of Output Current	$I_{OUT} = 5 \text{ A}$ Resistive Load Input Rise Time < 0.1 μ s $T_j = 25$ °C	25	90	250	μs
t _r	Rise Time Of Output Current	$I_{OUT} = 5 \text{ A}$ Resistive Load Input Rise Time < 0.1 μ s $T_j = 25$ °C	80	300	650	μs
t _{d(off)}	Turn-off Delay Time Of Output Current	$I_{OUT} = 5 \text{ A}$ Resistive Load Input Rise Time < 0.1 μ s $T_j = 25$ °C	300	750	1500	μs
t _f	Fall Time Of Output Current	$I_{OUT} = 5 \text{ A}$ Resistive Load Input Rise Time < 0.1 μ s $T_j = 25$ °C	80	200	400	μs
(di/dt) _{on}	Turn-on Current Slope	I _{OUT} = 5 A		0.02	0.05	A/μs
(di/dt) _{off}	Turn-off Current Slope	I _{OUT} = 5 A		0.02	0.05	A/μs

4/9

ELECTRICAL CHARACTERISTICS (continued)

PROTECTIONS AND DIAGNOSTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Thermal Shut-down Temperature		150	170	190	°C
T_TR	Thermal Reset Temperature		135			°C
T _{RSD} (HYST)	Thermal Hysteresis		5	15	50	°C
V _{ENOL}	Output Voltage Authorizing Openload Detection	8V≤V _{CC} ≤30V	5.2	6.6	8	V
I _{OL}	Open Load Current Level	8V≤V _{CC} ≤30V	100	800	1500	mA
I _{OV}	Over Current	$R_{LOAD} \le 10 \text{ m}\Omega$ - $40^{\circ}\text{C} < T_{Case} < 125^{\circ}\text{C}$	25	50		Α
I_{AV}	Average Current in Short Circuit	$R_{LOAD} \le 10 \text{ m}\Omega$ $T_C = 85^{\circ}C$		5.4		А
V _{STAT}	Status Output Voltage	I _{STAT} = 1.6 mA (Fault Condition)			0.4	V
V _{SCL}	Status Clamp Voltage	I _{STAT} = 10 mA I _{STAT} = -10 mA	5.5	6 -0.7	7	V V
t _{POL}	Status Delay	(*)	50	300	950	μs
t _{POVL}	Status Delay	(*)			10	μs
V _{DEMAG}	Turn-off Output Clamp Voltage	I _{OUT} = 5 A, L = 1 mH, V _{IN} = 0	V _{CC} -45	V _{CC} -50	V _{CC} -55	V

FIGURE 1

SWITCHING PARAMETERS TEST CONDITIONS

TRUTH TABLE

Conditions	INPUT	OUTPUT	STATUS
Normal Operation	L H	L H	H H
Over-voltage	X	L	Н
Under-voltage	X	L	Н
Thermal shut-down	Н	L	L
Open load	Н	Н	L

H = high level, L= low level, X= unspecified

6/9

FIGURE 2: Switching Waveforms

PowerSO-10 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	3.35		3.65	0.132		0.144
A1	0.00		0.10	0.000		0.004
В	0.40		0.60	0.016		0.024
С	0.35		0.55	0.013		0.022
D	9.40		9.60	0.370		0.378
D1	7.40		7.60	0.291		0.300
E	9.30		9.50	0.366		0.374
E1	7.20		7.40	0.283		0.291
E2	7.20		7.60	0.283		0.300
E3	6.10		6.35	0.240		0.250
E4	5.90		6.10	0.232		0.240
е		1.27			0.050	
F	1.25		1.35	0.049		0.053
Н	13.80		14.40	0.543		0.567
h		0.50			0.002	
L	1.20		1.80	0.047		0.071
q		1.70			0.067	
α	0°		8°			

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

