Лице на триъгълник

Бележка:

Навсякъде в долните формули се използват следните означения: AB=c, AC=b, BC=a, \prec A= α , \prec B= β , \prec C= γ , m_a , m_b , m_c — медиани към съответните страни; l_a , l_b , l_c — ъглополовящи към съответните страни; h_a , h_b , h_c — височини към съответните страни; r - радиуса на вписаната окръжност; r — периметър, r — лице.

І. Лице на произволен триъгълник – Фиг. 1

(1):
$$S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c$$
;

(2):
$$S = \frac{1}{2}ab \sin \gamma = \frac{1}{2}bc \sin \alpha = \frac{1}{2}ca \sin \beta$$
;

(3):
$$S = \frac{a^2 \sin \beta \sin \gamma}{2 \sin \alpha} = \frac{b^2 \sin \gamma \sin \alpha}{2 \sin \beta} = \frac{c^2 \sin \alpha \sin \beta}{2 \sin \gamma};$$

(4):
$$S = pr = \frac{abc}{4R}$$
, където $p = \frac{a+b+c}{2}$ е полупери-

метъра, r – радиус на вписаната окръжност, R – радиус на описаната окръжност;

(5): Херонова формула: $S = \sqrt{p(p-a)(p-b)(p-c)}$, където р е полупериметър.

II. Лице на равностранен триъгълник със страна а

• Височина в равностранен триъгълник:

(6):
$$h = \frac{\sqrt{3}}{2}a$$
;

♦ Лице:

(7):
$$S = \frac{\sqrt{3}}{4}a^2$$
;

III. Основни типове задачи:

Зад. 1:Нека A_1 , B_1 , C_1 са петите на височините, спуснати от върховете A, B, C на остроъгълния $\triangle ABC$ и $\angle ABC = \beta$, $\angle BAC = \alpha$, $\angle ACB = \gamma$. Да се докаже, че лицето на $\triangle ABC$ е $S = R.p_1$, където R е радиуса на описаната около $\triangle ABC$ окръжност, а p_1 е полупериметъра на $\triangle A_1B_1C_1$.

<u>Решение:</u> Нека т. О е център на описаната около ΔABC окръжност, тогава AO = BO = CO = R – радиус на описаната около ΔABC окръжност.

• \prec BOC – централен и \prec BAC – вписан \Rightarrow

$$\angle BOC = BC = 2\angle BAC = 2\alpha$$
.

• по подобен начин се доказва, че ∢AOC = 2 β,

$$\angle AOB = 2 \gamma$$
.

• От Синусова теорема за $\triangle ABC \Rightarrow \sin \alpha = \frac{BC}{2R}$;

$$\sin \beta = \frac{AC}{2R}$$
; $\sin \gamma = \frac{AB}{2R}$;

- $S = S_{\Delta BCO} + S_{\Delta ABO} + S_{\Delta ACO}$.
- OT (2) \Rightarrow S= $\frac{1}{2}$ R² sin 2 α + $\frac{1}{2}$ R² sin 2 β + $\frac{1}{2}$ R² sin 2 γ .
- Ot (Tp Φ . 5.1) \Rightarrow S = R²(sin α cos α + sin β cos β + sin γ cos γ) = $R^{2} \left(\frac{BC}{2R} \cos \alpha + \frac{AC}{2R} \cos \beta + \frac{AB}{2R} \cos \gamma \right) = \frac{R}{2} \left(BC \cos \alpha + AC \cos \beta + AB \cos \gamma \right)$
- От <u>Зад № 6</u> в тема "Триъгълник Теорема на Талес. Подобни триъгълници" доказахме, че $B_1C_1=BC\cos\alpha$; $C_1A_1=AC\cos\beta$; $A_1B_1=AB\cos\gamma$, тогава горното равенство е $S=\frac{R}{2}$ ($B_1C_1+C_1A_1+A_1B_1$) = $\frac{R}{2}$. $P_1=R$. p_1 , където P_1 е периметъра на $\Delta A_1B_1C_1$, а $p_1=\frac{P_1}{2}$ е полупериметъра.

- а) радиуса на вписаната в триъгълника окръжност;
- б) радиуса на описаната около триъгълника окръжност;
- в) височините в триъгълника;

Фиг.1

Учебен център "СОЛЕМА"

обучение по математика, физика, български и английски език, компютър

☎: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg; E-mail: solema@gbg.bg

Решение:

- а) Използваме формула (4):
 - $p = \frac{a+b+c}{2} = \frac{4+13+15}{2} = 16$

адрес: гр.София, ж.к. Надежда, бл. 335

- OT (5) \Rightarrow $S = \sqrt{16.12.3.1} = 24$;
- OT (4) \Rightarrow S = p.r \Rightarrow 24 = 16.r \Rightarrow r = 1,5 cm;
- б) Използваме формула (4) \Rightarrow $S = \frac{abc}{4R} \Rightarrow 24 = \frac{4.13.15}{4R} \Rightarrow R = \frac{65}{8}$ cm.

- $S_{\triangle ABC} = \frac{AB.h_c}{2} \Rightarrow 24 = \frac{15h_c}{2} \Rightarrow h_c = 3.2 \text{ cm};$
- $S_{\triangle ABC} = \frac{BC \cdot h_a}{2} \Rightarrow 24 = \frac{4 h_a}{2} \Rightarrow h_a = 12 \text{ cm};$
- $S_{\triangle ABC} = \frac{AC \cdot h_b}{2} \Rightarrow 24 = \frac{13 h_b}{2} \Rightarrow h_b = \frac{48}{13} cm$
- **Зад. 3**:В равнобедрен триъгълник бедрото е 5 cm, а котангенсът на ъгълът между бедрата е 2. Намерете лицето на триъгълника.

- $\cot g \gamma = \frac{\cos \gamma}{\sin \gamma} \Rightarrow 2 = \frac{\cos \gamma}{\sin \gamma}$, T.e. $\cos \gamma = 2x$, $\sin \gamma = x$;
- От Основното тригонометрично равенство $\sin^2\gamma + \cos^2\gamma = 1 \Rightarrow x^2 + 4x^2 = 1 \Rightarrow x = \frac{\sqrt{5}}{5}$;
- $\sin \gamma = x = \frac{\sqrt{5}}{5};$
- OT (2) \Rightarrow $S_{\Delta ABC} = \frac{1}{2} AC^2 \sin \gamma = \frac{1}{2} 5^2 \frac{\sqrt{5}}{5} \Rightarrow S_{\Delta ABC} = \frac{5\sqrt{5}}{2}$
- **Зад. 4**: От вътрешна точка M на равностранен △ABC са спуснати перпендикулярите MN = 5 cm ($N \in BC$), MP = 14 cm ($P \in AB$), MQ = 16 cm ($Q \in AC$) към страните на триъгълника. Намерете:
 - а) височината в ΔАВС;
 - б) страната на ΔАВС;

в) страните на ΔNPQ.

Решение: Ще решим по-обща задача. Нека т. О е вътрешна за равностранния ΔABC и A_1 , B_1 , C_1 са проекциите й върху страните BC, AC, AB (Фиг. 1). Означаваме $OA_1 = x$, $OB_1 = y$, $OC_1 = z$, CH = h.

- OT \Rightarrow S_{\(\text{AABC}\)} = S_{\(\text{AABO}\)} + S_{\(\text{ABOC}\)} \Rightarrow $\frac{1}{2}a.h = \frac{1}{2}a.x + \frac{1}{2}a.y + \frac{1}{2}a.z = \frac{1}{2}a(x+y+z) \Rightarrow$ (A): h = x + y + z
- а) От Фиг. 2 и (A) \Rightarrow CH = MN + MQ + MP =5+14+16 \Rightarrow CH = 35 cm.
- б) $\triangle ABC$ равностранен и от (6) $\Rightarrow h = \frac{\sqrt{3}}{2}a \Rightarrow$

$$35 = \frac{\sqrt{3}}{2}a \Rightarrow a = \frac{70\sqrt{3}}{3}cm$$

- Намираме страната NQ:
 - о От QMNC четириъгълник ⇒ ∢QMN -

$$\angle MNC + \angle NCQ + \angle CQM = 360^{\circ} \Rightarrow \angle QMN = 360^{\circ} \Rightarrow 260^{\circ} \Rightarrow 26$$

$$90^{0} + 60^{0} + 90^{0} = 360^{0} \Rightarrow \angle QMN = 120^{0};$$

о От Косинусова теорема за ΔQMN \Rightarrow $QN^2 = QM^2 + MN^2 - 2QM.MN.cos ∢QMN = <math>16^2 + 5^2 - 2.16.5$. $\left(-\frac{1}{2}\right) = 361$ \Rightarrow

$$QN = 19 \text{ cm};$$

- Намираме страната QM:
 - \circ По аналогичен начин от APMQ четириъгълник \Rightarrow ∢QMP = 120° ;
 - о От Косинусова теорема за $\Delta QPM \Rightarrow QP^2 = QM^2 + PM^2 2QM.PM.cos$ ≪QMP = $16^2 + 14^2 2.16.14$. $\left(-\frac{1}{2}\right) = 676 \Rightarrow QP = 26$ cm;
- Намираме страната PN:
 - о По аналогичен начин от PBNQ четириъгълник \Rightarrow ∢PMN = 120° ;

Фиг.1

Учебен център "СОЛЕМА"

обучение по математика, физика, български и английски език, компютър

🖀: 897 99 54 вечер, г-н Станев; Web страница: www.solema.hit.bg : E-mail: solema@gbg.bg

о От Косинусова теорема за Δ PNM \Rightarrow PN²=PM² + MN² − 2PM.MN.cos \prec PMN

= $14^2 + 5^2 - 2.14.5$. $\left(-\frac{1}{2}\right) = 291 \Rightarrow QP = \sqrt{291}$;

IV. Задачи за упражнение:

адрес: гр.София, ж.к. Надежда, бл. 335

Тестови задачи:

- 1. (Матура, 2010): В \triangle ABC AC = 12 cm, BC = 8 cm и \angle ACB = 30°. Ако CL е ъглополовящата на \angle ACB, то лицето на ДАСЬ е:
 - Б) 14.4 cm²: A) 9.6 cm^2 : B) 16 cm²;
 - Γ) 18 cm².
- 2. (Матура, 2011): Даден е \triangle ABC, за който AC = $5\sqrt{3}$,
 - BC = 12 и $S_{AABC} = 15\sqrt{3}$. Дължина на страната AB може да бъде числото:
 - A) $\sqrt{199}$;
- Б) $\sqrt{299}$;
- B) $\sqrt{399}$:
- Γ) $\sqrt{499}$.

- Б) винаги е вътрешна точка за ДАВС;
- В) може да е външна точка за ДАВС, може да е и вътрешна точка за ДАВС;
- Г) винаги лежи на АВ.
- 4. (Матура, 2011): Страните на триъгълник са 2 cm, 3 cm и 4 cm, а R и r са съответно радиусите на описаната и вписаната в триъгълника окръжност. Построен е правоъгълен ΔMNP с катети MN=R и MP=r. Лицето на ΔМΝР е равно на:

$$\frac{4}{3} \text{ cm}^2$$

B)
$$\frac{\sqrt{15}}{12}$$
 cm²; Γ) $\frac{5}{32}$ cm².

- 5. (ТУ, 2010): Даден е равнобедрен триъгълник, на който основата, бедрото и височината към основата, взети в този ред, образуват геометрична прогресия. Ако лицето на триъгълника е 18 cm², то бедрото му е с дължина:
 - A) $\sqrt{6}$ cm:
- Б) 12 cm:
- B) 6 cm:
- Γ) 3 cm:
- Π) 3 $\sqrt{2}$ cm.
- 6. (Матура, 2011): В равнобедрения ДАВС на чертежа СМ $(M \in AB)$ е медиана към основата и $MP \perp BC$ $(P \in BC)$. Ако BP=9 и PC=16, то лицето на $\triangle ABC$ е равно на:
 - A) 150:
- Б) 300:
- B) 600:
- Γ) 3600.

Задачи за подробно решаване:

Следват 25 задачи групирани по сложност. Част от тях са давани на конкурсни изпити или на матури.

За съжаление те са авторски и не се разпространяват свободно. Използват се за подготовка на кандидат-студенти с учител от Учебен център "СОЛЕМА".

Учебен център "СОЛЕМА" подготвя ученици за кандидатстване във всички университети, а така също и за кандидатстване след 7

За цените и всичко свързано с подготовката на кандидатстудентите и учениците кандидатстващи след 7 клас по математика и физика, виж www.solemabg.com раздел "За нас".

