$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1 + 2k^2t_1)^2}$	0	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$		$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1^{-}lpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12 k^2}{(3+2 k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$-\frac{12 i k}{(3+2 k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+2 k^2)^2 t_1}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{6 i \sqrt{2} k}{(3+2 k^2)^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{#2} + \alpha \beta$	$\tau_{1+}^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{\#2} + ^{\alpha}$

	$\omega_{0}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0^{+}}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lpha\beta}$	$\sigma_{2^{-}\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

Lagrangian density	$-t_1\; {\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	$2 r_1 \partial_{i} \omega^{\kappa \lambda}_{ \kappa} \partial^{i} \omega_{\lambda \alpha}^{ \alpha} - \frac{2}{3} r_1 \partial^{\beta} \omega^{\theta \alpha}_{ \kappa} \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} - \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} +$	$\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} + 2r_{1}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda} - 2r_{1}\partial_{\theta}\omega_{\lambda}^{\alpha}_{\partial_{\kappa}}\partial_{\kappa}\omega^{\theta\kappa\lambda} +$	$2r_1\partial_\alpha\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-4r_1\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-\frac{1}{3}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_\alpha^{\theta}-$	$rac{2}{3}t_1\partial^{lpha}\!f_{\kappa heta}\partial^{\kappa}\!f_{a}^{ heta}\!-\!rac{1}{3}t_1\partial^{lpha}\!f^{\lambda}_{}\partial^{\kappa}\!f_{\lambda}+t_1\;\omega_{\kappalpha}^{lpha}\partial^{\kappa}\!f'_{},$	$t_1 \ \omega_{\kappa\lambda}^{\ \lambda} \ \partial^{\kappa} f'_{\ \prime} + 2 t_1 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{\ \prime} - t_1 \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f'_{\ \prime} + \frac{1}{3} t_1 \ \omega_{\prime\theta\kappa} \ \partial^{\kappa} f^{\prime\theta} +$	$rac{4}{3}t_{1}\;\omega_{_{/K} heta}\;\partial^{\kappa}f^{'}{}^{ heta}-rac{1}{3}t_{1}\;\omega_{ heta_{!K}}\;\partial^{\kappa}f^{'}{}^{ heta}+rac{2}{3}t_{1}\;\omega_{ heta_{K'}}\;\partial^{\kappa}f^{'}{}^{ heta}-$	$t_1\;\omega_{,lpha}^{\;\;lpha}\;\partial^{\kappa}f_{\;\;\kappa}^{\;\;\prime}-t_1\;\omega_{,\lambda}^{\;\;\lambda}\;\partial^{\kappa}f_{\;\;\kappa}^{\;\;\prime}+rac{1}{3}\;t_1\;\partial^{lpha}f^{\lambda}_{\;\;\kappa}\;\partial^{\kappa}f_{\;\lambdalpha}^{\;\;\prime}+$	$rac{1}{3}t_1\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\beta}^{} + rac{2}{3}t_1\partial_\kappa f^{\lambda}_{\beta}\partial^\kappa f_{\beta}^{} - t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa}^{} +$	$\frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^{\beta} \omega_{\alpha}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} -$	$rac{8}{3}r_1\partial^{eta}\omega_{_I}{}^{\lambdalpha}\partial_{\lambda}\omega_{_{lpha}{eta}}{}^{\prime}$ - $2r_1\partial_{lpha}\omega_{_{\lambda}}{}^{lpha}\partial^{\lambda}\omega_{_{\kappa}}{}^{lpha}+2r_1\partial_{eta}\omega_{_{\lambda}}{}^{lpha}\partial^{\lambda}\omega_{_{\kappa}}{}^{lpha}$	Added source term: $\left f^{lphaeta} \ au_{lphaeta} + \omega^{lphaeta\chi} \ \sigma_{lphaeta\chi} ight $
--------------------	---	--	--	--	---	--	---	--	---	---	---	---

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	0
$ au_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_0^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_0^{\#2} \uparrow$	$\sigma_{0}^{\#1}\dagger$

5 20

 $\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$

 \sim

 $2 \ \sigma_{1}^{\#1} \alpha \beta + \ \sigma_{1}^{\#2} \alpha \beta == 0$

 \sim

 $\tau_1^{\#1}{}^{\alpha\beta} - 2\,i\,k\,\,\sigma_1^{\#1}{}^{\alpha\beta} = 0$

 \sim

 $\tau_{1^{\bar{-}}}^{\#2}\alpha + 2\,i\,k\,\,\sigma_{1^{\bar{-}}}^{\#2}\alpha$

0

0

0

0

0

0

0

 $f_{1}^{\#1} \dagger^{\alpha}$

0

0

0

 $-\vec{\imath}\,k\,t_1$

0

0

0

 $f_{1}^{\#2} \dagger^{\alpha}$

 $\tau_{0}^{\#1} - 2ik\sigma_{0}^{\#1} =$

0

0

0

^t1

0

0

0

 $\omega_{1}^{\#2} +^{\alpha}$

3 1 1 1 #

 $\sigma_{0}^{\#1} == 0$ $\tau_{0}^{\#2} == 0$

 $\bar{l}\,k\,t_1$

0

 $\frac{t_1}{\sqrt{2}}$

 $-k^2 r_1$

0

0

0

 $\omega_{1}^{\#1} +^{lpha}$

Source constraints SO(3) irreps

0

0

0

0

 $-\frac{1}{3}$ \vec{i} k t_1

 $f_1^{\#1} \dagger^{\alpha\beta}$

0

0

0

0

*ikt*1 3

113

 $\omega_{1}^{\#2} + \alpha \beta$

0

0

0

0

 $\frac{t_1}{3\sqrt{2}}$

6 6

 $\omega_{1}^{\#2}{}_{lpha}$

 $\omega_{1}^{\#2}$

 $\omega_1^{\#1}{}_+\alpha\beta$

Massive partic	le
Pole residue:	$-\frac{1}{r_1} > 0$
Polarisations:	5
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2
Parity:	Odd
	Polarisations: Square mass: Spin:

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$

(No massless particles)