Regression and Classification with R *

Yanchang Zhao http://www.RDataMining.com

R and Data Mining Course
Beijing University of Posts and Telecommunications,
Beijing, China

July 2019

Contents

Introduction

Linear Regression

Generalized Linear Regression

Decision Trees with Package party

Decision Trees with Package rpart

Random Forest

Online Resources

Regression and Classification with R †

- Basics of regression and classification
- Building a linear regression model to predict CPI data
- Building a generalized linear model (GLM)
- Building decision trees with package party and rpart
- Training a random forest model with package randomForest

Regression and Classification

- Regression: to predict a continuous value, such as the volume of rain
- ► Classification: to predict a categorical class label, such as weather: rainy, sunnny, cloudy or snowy

Regression

- Regression is to build a function of independent variables (also known as predictors) to predict a dependent variable (also called response).
- For example, banks assess the risk of home-loan applicants based on their age, income, expenses, occupation, number of dependents, total credit limit, etc.
- Linear regression models
- Generalized linear models (GLM)

An Example of Decision Tree

Edible Mushroom decision tree[‡]

[†]http://users.cs.cf.ac.uk/Dave.Marshall/AI2/node147.html

Random Forest

- ► Ensemble learning with many decision trees
- ► Each tree is trained with a random sample of the training dataset and on a randomly chosen subspace.
- ➤ The final prediction result is derived from the predictions of all individual trees, with mean (for regression) or majority voting (for classification).
- Better performance and less likely to overfit than a single decision tree, but with less interpretability

Regression Evaluation

► MAE: Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$
 (1)

MSE: Mean Squared Error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
 (2)

RMSE: Root Mean Squared Error

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2}$$
 (3)

where y_i is actual value and \hat{y}_i is predicted value.

Overfitting

- ► A model is over complex and performs very well on training data but poorly on unseen data.
- ➤ To evaluate models with out-of-sample test data, i.e., data that are not included in training data

Training and Test

- ► Randomly split into training and test sets
- **▶** 80/20, 70/30, 60/40 ...

k-Fold Cross Validation

- ► Split data into *k* subsets of equal size
- Reserve one set for test and use the rest for training
- Average performance of all above

An Example: 5-Fold Cross Validation

Contents

Introduction

Linear Regression

Generalized Linear Regression

Decision Trees with Package party

Decision Trees with Package rpart

Random Forest

Online Resources

Linear Regression

Linear regression is to predict response with a linear function of predictors as follows:

$$y = c_0 + c_1 x_1 + c_2 x_2 + \cdots + c_k x_k,$$

where x_1, x_2, \dots, x_k are predictors, y is the response to predict, and c_0, c_1, \dots, c_k are cofficients to learn.

- ► Linear regression in R: lm()
- ► The Australian Consumer Price Index (CPI) data: quarterly CPIs from 2008 to 2010 §

[§]From Australian Bureau of Statistics, http://www.abs.gov.au.

The CPI Data

Linear Regression

```
## correlation between CPI and year / quarter
cor(year, cpi)
## [1] 0.9096316
cor(quarter, cpi)
## [1] 0.3738028
## build a linear regression model with function lm()
fit <- lm(cpi ~ year + quarter)</pre>
fit.
##
## Call:
## lm(formula = cpi ~ year + quarter)
##
## Coefficients:
## (Intercept)
                    vear
                                 quarter
## -7644.488
                     3.888
                                   1.167
```

With the above linear model, CPI is calculated as

$$cpi = c_0 + c_1 * year + c_2 * quarter,$$

where c_0 , c_1 and c_2 are coefficients from model fit.

What will the CPI be in 2011?

With the above linear model, CPI is calculated as

$$cpi = c_0 + c_1 * year + c_2 * quarter,$$

where c_0 , c_1 and c_2 are coefficients from model fit.

What will the CPI be in 2011?

An easier way is to use function predict().

More details of the model can be obtained with the code below.

```
## attributes of the model
attributes(fit)
## $names
   [1] "coefficients" "residuals" "effects"
## [4] "rank"
                 "fitted.values" "assign"
## [7] "qr"
                    "df.residual" "xlevels"
## [10] "call"
                   "terms" "model"
##
## $class
## [1] "lm"
fit$coefficients
## (Intercept)
                     year quarter
## -7644.487500
                 3.887500
                              1.166667
```

Function residuals(): differences btw observed & fitted values

```
## differences between observed values and fitted values
residuals(fit)
## 1 2
## -0.57916667 0.65416667 1.38750000 -0.27916667 -0.46666667
##
                                                10
## -0.83333333 -0.40000000 -0.66666667 0.44583333 0.37916667
##
         11
                   12
## 0.41250000 -0.05416667
summary(fit)
##
## Call:
## lm(formula = cpi ~ year + quarter)
##
## Residuals:
##
     Min 1Q Median 3Q Max
## -0.8333 -0.4948 -0.1667 0.4208 1.3875
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -7644.4875 518.6543 -14.739 1.31e-07 ***
## year 3.8875 0.2582 15.058 1.09e-07 ***
```

19 / 53

3D Plot of the Fitted Model

year

Prediction of CPIs in 2011

21 / 53

Contents

Introduction

Linear Regression

Generalized Linear Regression

Decision Trees with Package party

Decision Trees with Package rpart

Random Forest

Online Resources

Generalized Linear Model (GLM)

- Generalizes linear regression by allowing the linear model to be related to the response variable via a link function and allowing the magnitude of the variance of each measurement to be a function of its predicted value
- Unifies various other statistical models, including linear regression, logistic regression and Poisson regression
- Function glm(): fits generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution

Build a Generalized Linear Model

```
## build a regression model
data("bodyfat", package="TH.data")
myFormula <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth +
                    kneebreadth
bodyfat.glm <- glm(myFormula, family=gaussian("log"), data=bodyfat)</pre>
summary(bodyfat.glm)
##
## Call:
## glm(formula = myFormula, family = gaussian("log"), data = b...
##
## Deviance Residuals:
##
       Min
                 10
                       Median
                                    30
                                             Max
## -11.5688 -3.0065 0.1266 2.8310 10.0966
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.734293 0.308949 2.377 0.02042 *
## age 0.002129 0.001446 1.473 0.14560
## waistcirc 0.010489 0.002479 4.231 7.44e-05 ***
## hipcirc 0.009702 0.003231 3.003 0.00379 **
## elbowbreadth 0.002355
                         0.045686 0.052 0.95905
                                                              24 / 53
## kneebreadth 0 063188
                         0 028193
                                   2 241 0 02843 *
```

Prediction with Generalized Linear Regression Model

```
## make prediction and visualise result
pred <- predict(bodyfat.glm, type = "response")
plot(bodyfat$DEXfat, pred, xlab = "Observed", ylab = "Prediction")
abline(a = 0, b = 1)</pre>
```


Contents

Introduction

Linear Regression

Generalized Linear Regression

Decision Trees with Package party

Decision Trees with Package rpart

Random Forest

Online Resources

The iris Data

```
str(iris)
## 'data frame': 150 obs. of 5 variables:
   $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0...
## $ Species : Factor w/ 3 levels "setosa", "versicolor",....
# split data into two subsets: training (70%) and test (30%); set
# a fixed random seed to make results reproducible
set.seed(1234)
ind <- sample(2, nrow(iris), replace = TRUE, prob = c(0.7, 0.3))
train.data <- iris[ind == 1, ]
test.data <- iris[ind == 2, ]
```

Build a ctree

- Control the training of decision trees: MinSplit, MinBusket, MaxSurrogate and MaxDepth
- ► Target variable: Species
- Independent variables: all other variables

```
## build a ctree
library(party)
# myFormula <- Species ~ . # predict Species with all other
# variables
myFormula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length +
   Petal.Width
iris.ctree <- ctree(myFormula, data = train.data)</pre>
# check the prediction
table(predict(iris.ctree), train.data$Species)
##
##
                setosa versicolor virginica
##
    setosa
                    40
##
    versicolor
                                37
                                          31
##
    virginica
                     0
```

Print ctree

```
print(iris.ctree)
##
##
    Conditional inference tree with 4 terminal nodes
##
## Response: Species
## Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
## Number of observations: 112
##
## 1) Petal.Length <= 1.9; criterion = 1, statistic = 104.643
## 2)* weights = 40
## 1) Petal.Length > 1.9
##
    3) Petal.Width <= 1.7; criterion = 1, statistic = 48.939
##
      4) Petal.Length <= 4.4; criterion = 0.974, statistic = ...
##
        5)* weights = 21
      4) Petal.Length > 4.4
##
##
        6)* weights = 19
   3) Petal.Width > 1.7
##
   7)* weights = 32
##
```

plot(iris.ctree)

plot(iris.ctree, type = "simple")

Test

```
# predict on test data
testPred <- predict(iris.ctree, newdata = test.data)
table(testPred, test.data$Species)
##
## testPred setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 12 2
## virginica 0 0 14</pre>
```

Contents

Introduction

Linear Regression

Generalized Linear Regression

Decision Trees with Package party

Decision Trees with Package rpart

Random Forest

Online Resources

The bodyfat Dataset

```
## build a decision tree with rpart
data("bodyfat", package = "TH.data")
dim(bodyfat)
## [1] 71 10
# str(bodyfat)
head(bodyfat, 5)
##
    age DEXfat waistcirc hipcirc elbowbreadth kneebreadth
     57
        41.68
                100.0 112.0
## 47
                                    7.1
                                              9.4
     65 43.29 99.5 116.5
                                    6.5
                                              8.9
## 48
## 49
     59
        35.41 96.0 108.5
                                   6.2
                                             8.9
        22.79 72.0 96.5
                                   6.1
                                             9.2
## 50
     58
                                    7.1
## 51
     60 36.42 89.5
                       100.5
                                             10.0
     anthro3a anthro3b anthro3c anthro4
##
## 47
       4.42
               4.95
                       4.50 6.13
## 48
       4.63 5.01 4.48 6.37
## 49
    4.12 4.74 4.60 5.82
    4.03 4.48 3.91 5.66
## 50
    4.24 4.68
                      4.15 5.91
## 51
```

Train a Decision Tree with Package rpart

```
# split into training and test subsets
set.seed(1234)
ind <- sample(2, nrow(bodyfat), replace=TRUE, prob=c(0.7, 0.3))</pre>
bodyfat.train <- bodyfat[ind==1,]</pre>
bodyfat.test <- bodyfat[ind==2,]</pre>
# train a decision tree
library(rpart)
myFormula <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth +
                       kneebreadth
bodyfat.rpart <- rpart(myFormula, data = bodyfat.train,</pre>
                        control = rpart.control(minsplit = 10))
# print(bodyfat.rpart£cptable)
library(rpart.plot)
rpart.plot(bodyfat.rpart)
```

The rpart Tree

```
## n = 56
##
## node), split, n, deviance, yval
        * denotes terminal node
##
##
##
   1) root 56 7265.0290000 30.94589
     2) waistcirc< 88.4 31 960.5381000 22.55645
##
       4) hipcirc< 96.25 14 222.2648000 18.41143
##
##
         8) age< 60.5 9 66.8809600 16.19222 *
         9) age>=60.5 5 31.2769200 22.40600 *
##
##
       5) hipcirc>=96.25 17 299.6470000 25.97000
##
       10) waistcirc< 77.75 6 30.7345500 22.32500 *
##
        11) waistcirc>=77.75 11 145.7148000 27.95818
##
          23) hipcirc>=99.5 8 72.2933500 29.53750 *
##
     3) waistcirc>=88.4 25 1417.1140000 41.34880
##
       6) waistcirc< 104.75 18 330.5792000 38.09111
##
        12) hipcirc< 109.9 9 68.9996200 34.37556 *
##
        13) hipcirc>=109.9 9 13.0832000 41.80667 *
##
       7) waistcirc>=104.75 7 404.3004000 49.72571 *
##
```

The rpart Tree

Select the Best Tree

```
# select the tree with the minimum prediction error

opt <- which.min(bodyfat.rpart$cptable[, "xerror"])
cp <- bodyfat.rpart$cptable[opt, "CP"]

# prune tree

bodyfat.prune <- prune(bodyfat.rpart, cp = cp)

# plot tree

rpart.plot(bodyfat.prune)</pre>
```

Selected Tree

Model Evaluation

Contents

Introduction

Linear Regression

Generalized Linear Regression

Decision Trees with Package party

Decision Trees with Package rpart

Random Forest

Online Resources

R Packages for Random Forest

- ► Package randomForest
 - very fast
 - cannot handle data with missing values
 - a limit of 32 to the maximum number of levels of each categorical attribute
 - extensions: extendedForest, gradientForest
- Package party: cforest()
 - not limited to the above maximum levels
 - ► slow
 - needs more memory

Train a Random Forest

```
table(predict(rf), train.data$Species)
##
##
               setosa versicolor virginica
##
    setosa
                   36
## versicolor
                              32
                                        34
##
    virginica
print(rf)
##
## Call:
## randomForest(formula = Species ~ ., data = train.data, ntr...
##
                 Type of random forest: classification
##
                       Number of trees: 100
## No. of variables tried at each split: 2
##
          OOB estimate of error rate: 1.92%
##
## Confusion matrix:
##
             setosa versicolor virginica class.error
                                       0.00000000
## setosa
                 36
## versicolor
                            32
                                       0 0.00000000
                                      34 0.0555556
## virginica
```

Error Rate of Random Forest

```
plot(rf, main = "")
```


Variable Importance

```
importance(rf)
## MeanDecreaseGini
## Sepal.Length 6.834364
## Sepal.Width 1.383795
## Petal.Length 28.207859
## Petal.Width 32.043213
```

Variable Importance

varImpPlot(rf)

Margin of Predictions

The margin of a data point is as the proportion of votes for the correct class minus maximum proportion of votes for other classes. Positive margin means correct classification.

```
irisPred <- predict(rf, newdata = test.data)
table(irisPred, test.data$Species)

##
## irisPred setosa versicolor virginica
## setosa 14 0 0
## versicolor 0 17 3
## virginica 0 1 11</pre>
plot(margin(rf, test.data$Species))
```

Margin of Predictions

Contents

Introduction

Linear Regression

Generalized Linear Regression

Decision Trees with Package party

Decision Trees with Package rpart

Random Forest

Online Resources

Online Resources

- ▶ Book titled *R* and *Data Mining: Examples and Case Studies*http://www.rdatamining.com/docs/RDataMining-book.pdf
- R Reference Card for Data Mining http://www.rdatamining.com/docs/RDataMining-reference-card.pdf
- ► Free online courses and documents http://www.rdatamining.com/resources/
- ▶ RDataMining Group on LinkedIn (27,000+ members) http://group.rdatamining.com
- Twitter (3,300+ followers)@RDataMining

The End

Thanks!

Email: yanchang(at)RDataMining.com

Twitter: @RDataMining

How to Cite This Work

Citation

Yanchang Zhao. R and Data Mining: Examples and Case Studies. ISBN 978-0-12-396963-7, December 2012. Academic Press, Elsevier. 256 pages. URL: http://www.rdatamining.com/docs/RDataMining-book.pdf.

▶ BibTex

```
 \begin{aligned} & \texttt{@BOOK}\{Z\text{hao2012R}, \\ & \texttt{title} = \{R \text{ and Data Mining: Examples and Case Studies}\}, \\ & \texttt{publisher} = \{A\text{cademic Press, Elsevier}\}, \\ & \texttt{year} = \{2012\}, \\ & \texttt{author} = \{Y\text{anchang Zhao}\}, \\ & \texttt{pages} = \{256\}, \\ & \texttt{month} = \{D\text{ecember}\}, \\ & \texttt{isbn} = \{978\text{-}0\text{-}123\text{-}96963\text{-}7}\}, \\ & \texttt{keywords} = \{R, \text{ data mining}\}, \\ & \texttt{url} = \{\text{http://www.rdatamining.com/docs/RDataMining-book.pdf}\}. \end{aligned}
```