Boosting Semantic Human Matting with Coarse Annotations

Jinlin Liu^{1,2} Yuan Yao¹ Wendi Hou¹ Miaomiao Cui¹ Xuansong Xie¹ Changshui Zhang² Xian-sheng Hua¹

¹Alibaba Group, ² Tsinghua University

{ljl191782, ryan.yy, wendi.hwd, miaomiao.cmm}@alibaba-inc.com xingtong.xxs@taobao.com zcs@mail.tsinghua.edu.cn xiansheng.hxs@alibaba-inc.com

- Motivation
- Method
- Experiment
- Application
- Conclusion

Motivation

What's human matting?

Motivation

Problems without trimap:

- Require plenty of fine annotated training images
- Annotating matting dataset is labor intensive and requires skills

Motivation

How to solve the problem without trimap?

• Using both coarse annotated and fine annotated data

- Motivation
- Method
- Experiment
- Application
- Conclusion

Method Predict coarse semantic Refine the coarse mask human mask from scratch to the same quality Quality Unification Network Mask Prediction Network Residual block Down Sampling Encoder Decoder Decoder Encoder Skip connection Skip connection Encoder Decoder Skip connection I Estimate accurate alpha matte Matting Refinement Network from unified coarse mask

How does Quality Unified Network work?

- Motivation
- Method
- Experiment
- Application
- Conclusion

Dataset

Table 1. The configurations of human matting datasets.

Dataset	Train Set		Test Set	
	Human	image	Human	image
Shen <i>et al</i> . [28]	1700	1700	300	300
TrimapDIM [32]	202	20200	11	220
SHM [8]	34493	34493	1020	1020
Ours(coarse)	10597	105970	105 (+11)	1360
Ours(fine)	9324(+202)	95260	125 (+11)	1300

(a) Coarse annotated dataset

(b) Fine annotated dataset

Comparison

Comparison methods

- DeepLab
- Closed-form Matting
- Deep Image Matting
- Semantic Human Matting
- Ours using only fine data
- Ours using fine and coarse data

Quantitative results

Table 2. The quantitative results.

Method	SAD	MSE	Gradient	Connectivity
DeepLab [7]	0.028	0.023	0.012	0.028
Trimap+CF [21]	0.0083	0.0049	0.0035	0.080
Trimap+DIM [32]	0.0045	0.0017	0.0013	0.0043
SHM [8]	0.011	0.0078	0.0032	0.011
ours(w/o coarse data)	0.0099	0.0067	0.0029	0.0095
ours(w/o QUN)	0.0076	0.0042	0.0024	0.0072
ours	0.0058	0.0026	0.0016	0.0054

Ablation study

ours(w/o coarse data)	0.0099	0.0067	0.0029	0.0095
ours(w/o QUN)	0.0076	0.0042	0.0024	0.0072
ours	0.0058	0.0026	0.0016	0.0054

(a) Input image

mask

matte without QUN

matte with QUN

Real image results

- Motivation
- Method
- Experiment
- Application
- Conclusion

Application

Refine input coarse masks from public dataset or semantic segmentation methods

From Pascal

From COCO

From Deeplab

A control of the control of

- Motivation
- Method
- Experiment
- Application
- Conclusion

Conclusion

Contributions

- The first to use coarse dataset to boost accurate human matting.
- We propose a quality unification network to rectify the mask quality so as to utilize both coarse and fine dataset.
- Our method can be used to refine coarse annotated public dataset as well as semantic segmentation methods easily.

Thanks Q&A