Total No. of Questions: 6

Total No. of Printed Pages:3

P.T.O.

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2018 CE3CO13 Geotechnical Engineering-I

Programme: B.Tech. Branch/Specialisation: CE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

1
1
1
1
1
ty 1
1
an 1
1
is 1
E

	viii.	The force of attraction between the individual particles of soil which	1	
		keeps the soil particles bound together is known as (a) Compaction (b) Cohesion		
		(c) Friction (d) Dialatancy		
	ix.	A cohesionless soil having an angle of shear resistance \emptyset is standing at	1	
IA.		a slope angle of <i>i</i> . The factor of safety of slope is		
		(a) $\tan i / \tan \emptyset$ (b) $\tan i - \tan \emptyset$		
		(c) $\tan \theta / \tan i$ (d) $\tan \theta - \tan i$		
	х.	A retaining wall retains a sand strata with $\emptyset = 30^{\circ}$ up to its top. If a	1	
		uniform surcharge of 12 t/m ² is subsequently put on the sand strata		
		then the increase in the lateral earth pressure intensity on wall will be		
		(a) 1 t/m^2 (b) 2t/m^2 (c) 4 t/m^2 (d) 8t/m^2		
Q.2 i	i.	Work out theoretical maximum dry density for a soil sample having	3	
		sp. Gr. of 2.7 and OMC = 16%.		
	ii.	The insitu density of an embankment, compacted at a water content of	7	
		12% was determined with the help of a core cutter. The empty mass of		
		the cutter was 1286 g and the cutter full of soil had a mass of 3195 g,		
		the volume of the cutter being 1000 cm ³ . Determine the bulk density,		
		dry density and the degree of saturation of the embankment.		
		If the embankment becomes fully saturated during rains, what would		
		be its water content and saturated unit weight? Assume no volume		
		change in soil on saturation. Take the specific gravity of the soil as		
		2.70.		
OR iii.		Derive an expression for determination of water content of soil by	7	
		pycnometer method.		
Q.3	i.	Define Hygroscopic water, Seepage velocity, Coefficient of	4	
		permeability and flow net.		
	ii.	Explain quick sand condition and derive an expression for critical	6	
		hydraulic gradient.		
OR	iii.	Explain factors on which the permeability depends in brief.	6	
Q.4	i.	Define Time factor, degree of consolidation and coefficient of volume	3	
		change.		
	ii.	Explain the facts affecting compaction on soil.	7	

OR	iii.	Two clay specimen A and B, of thickness 2 cm and 3 cm, have equilibrium voids ratios 0.68 and 0.72 respectively under a pressure of 200 kN/m². If the equilibrium voids ratios of the two soils reduced to 0.50 and 0.62 respectively, when the pressure was increased to 400 kN/m², find the ratio of the coefficient of permeability of the two specimens. The time required by the specimen A to reach 40% degree of consolidation is ¼ of that required by specimen B for reaching 40% degree of consolidation.	7
Q.5	i.	What do you understand by pressure bulb?	3
	ii.	Write brief explanation on Newmark's influence chart with diagram.	7
OR	iii.	Explain Mohr – Coulomb failure theory with diagrams.	7
Q.6	i.	A long natural slope of cohesionless soil is inclined at 12° to the horizontal. Taking $\emptyset = 30^{\circ}$. Determine the factor of safety of the slope. If the slope is completely submerged, what will be change in the factor of safety?	4
	ii.	Write assumptions of coulomb's wedge theory and explain in detail with diagram.	6
OR	iii.	Compute the intensities of active and passive earth pressure at depth of 8 m in dry cohesionless sand with an angle of internal friction of 30° and unit weight of 18 kN/m^3 . What will be the intensities of active and passive earth pressure if the water level rises to the ground level? Take saturated unit weight of sand as 22 kN/m^3 .	6

Marking Scheme CE3CO13 Geotechnical Engineering-I

Q.1	i.	The relationship between voids ratio e and porosity (b) $e = n(1+e)$	n is	1
	ii.	Group symbols assigned to silty sand and cl respectively (c) SM and SC	ay sand are	1
	iii.	The law that states that for laminar flow in a sativelocity is directly proportional to the hydraulic gra(c) Darcy's law		1
	iv.	The dimensions of coefficient of permeability are (c) cm/sec		1
	V.	A comparatively sudden reduction in volume of a san applied load is called (b) Initial consolidation	soil mass under	1
	vi.	The densification of a soil by machines is called (c) Compaction		1
	vii.	Westargaard's analysis for stress distribution benefits applicable to (c) Stratified soil	ath loaded area	1
	viii.	The force of attraction nbetween the individual p which keeps the soil particles bound together is known (b) Cohesion		1
	ix.	A cohesionless soil having an angle of shear restanding at a slope angle of i . The factor of safety of $(c) \tan \emptyset / \tan i$		1
	х.	A retaining wall retains a sand strata with $\emptyset = 30^{\circ}$ u uniform surcharge of 12 t/m ² is subsequently put on then the increase in the lateral earth pressure intensible (c) 4 t/m ²	the sand strata	1
Q.2	i.	Theoretical maximum dry density occurs when $S = Hence \ \rho_{d,max} = G\rho_w/\{1+(wG/S)\}$ $= G\rho_w/\{1+wG\}$ $= 1.885 \ g/cm^3$	1 2 marks 1 mark	3

	ii.	Mass of soil in cutter M = 1909 g Bulk density $\rho = M/V = 1.909 \text{ g/cm}^3$ Bulk unit weight $\gamma = 9.81 \rho = 18.73 \text{ kN/m}^3$ $\gamma_d = \gamma/(1+w) = 16.72 \text{ kN/m}^3$		7
			1 mark	
		$\begin{array}{ll} e &= G(\gamma_w/\gamma_d) \text{ - } 1 = 0.584 \\ \text{and} & S_r &= wG/e &= \textbf{0.555} = \textbf{55.59} \end{array}$	% 2 marks	
		At saturation, Since the volume remains the same,		
		also remains unchanged,	the voids ratio	
		$w_{\text{sat}} = e/G$ = 0.216 = 21.6	%	
		· · · · · · · · · · · · · · · · · · ·	2 marks	
		$\gamma_{sat} = \gamma_{w}(G+e)/(1+e) = 20.34 \text{ k}$	kN/m ³	
			2 marks	
	iii.	Expression for determination of water conterpycnometer method	nt of soil by	7
		Figure	2 marks	
		Derivation	5 marks	
Q.3	i.	Hygroscopic water	1 mark	4
		Seepage velocity	1 mark	
		Coefficient of permeability	1 mark	
		Flow net	1 mark	
	ii.	Quick sand condition	2 marks	6
		Derivation - $i_c = (G-1)/(1+e)$	5 marks	
OR	iii.	Factors on which the permeability depends		6
		Any 6 points 1 mark for each (1 mark * 6)		
Q.4	i.	Definition Time factor	1 mark	3
		Degree of consolidation	1 mark	
		Coefficient of volume change	1 mark	
	ii.	Facts affecting compaction on soil.		7
		Water content	1 mark	
		Amount of compaction	2 marks	
		Methods of compaction	1 mark	
		Types of soil	2 marks	

	Addition of admixture	1 mark	
iii.	$m_v = \Delta e / \{(1+e_0) \Delta \sigma'\}$	1 mark	7
	Hence $(m_v)_A = 0.536 \text{ m}^2/\text{MN}$		
	$(m_v)_B = 0.291 \text{ m}^2/\text{MN}$		
	$(m_v)_{A/}(m_v)_B = 1.845$	3 marks	
	$(c_{\rm v})_{\rm A/} (c_{\rm v})_{\rm B} = 16/9$		
	$k_A / k_B = 3.28$	3 marks	
i.	Pressure bulb		3
	Figure	1 mark	
	Description	2 marks	
ii.	Newmark's influence chart with diagram		7
	Figure	2 marks	
	Description	3 marks	
	Formula	2 marks	
iii.	Mohr – Coulomb failure theory with diagrams		7
	Assumptions (3 no)	3 marks	
	Figure	1 mark	
	Formula	1 mark	
	Theory	2 marks	
i.	If the slope is completely submerged, what will be	e change in the	4
	factor of safety		
	$F = \tan \phi / \tan i = 2.72$	2 marks	
	Submergence		
	F = 2.72	2 marks	
ii.	Assumptions of coulomb's wedge theory		6
	Assumptions	2 marks	
	Diagram	1 mark	
	•	3 marks	
iii.	•		6
	-		
	$p_p = 432 \text{ kN/m}^2$	1.5 marks	
	Submerged soil		
	$p_a = 111 \text{ kN/m}^2$	1.5 marks	
	$p_p = 371 \text{ kN/m}^2$	1.5 marks	
	i. ii. iii.	iii. $m_v = \Delta e/\{(1+e_0) \Delta \sigma^*\}$ Hence $(m_v)_A = 0.536 \text{ m}^2/\text{MN}$ $(m_v)_B = 0.291 \text{ m}^2/\text{MN}$ $(m_v)_A/(m_v)_B = 1.845$ $(c_v)_A/(c_v)_B = 16/9$ $k_A/k_B = 3.28$ i. Pressure bulb Figure Description ii. Newmark's influence chart with diagram Figure Description Formula iii. Mohr – Coulomb failure theory with diagrams Assumptions(3 no) Figure Formula Theory i. If the slope is completely submerged, what will be factor of safety $F = \tan \phi / \tan i = 2.72$ Submergence $F = 2.72$ ii. Assumptions of coulomb's wedge theory Assumptions Diagram Explanation iii. Dry soil – $p_a = 48 \text{ kN/m}^2$ $p_p = 432 \text{ kN/m}^2$ Submerged soil	iii. $m_v = \Delta e/\{(1+e_0) \Delta \sigma^*\}$
