Time Series Analysis by State Space Methods

BOOK - August 2001					
Source: ReP	Ec				
CITATIONS		READS			
1,434		10,585			
,		,			
2 author	rs, including:				
	Siem Jan Koopman				
V.	Vrije Universiteit Amsterdam				
	268 PUBLICATIONS 9,444 CITATIONS				
	SEE PROFILE				
Some of	Some of the authors of this publication are also working on these related projects:				

Research project at DNB View project

Time Series Analysis by State Space Methods

J. DURBIN

Department of Statistics London School of Economics and Political Science

and

S. J. KOOPMAN

Department of Econometrics Free University Amsterdam

Wendt QA 2PO DPT

Contents

Introduction

2.7 Missing observations 2.7.1 Illustration

Illustration

Forecasting

2.8.1

2.8

1

	1.1	Basic	ideas of state space analysis	1	
	1.2 Linear Gaussian model				
	1.3	Non-C	Gaussian and nonlinear models	3	
	1.4 Prior knowledge				
	1.5 Notation				
	1.6 Other books on state space methods			5	
	1.7	Websi	te for the book	5	
		I T	HE LINEAR GAUSSIAN STATE SPACE MODEL		
2	Loc	al level	model	9	
	2.1	Introd	uction	9	
	2.2	Filteri	ng	11	
		2.2.1	The Kalman Filter	11	
		2.2.2	Illustration	12	
	2.3	Foreca	ast errors	13	
		2.3.1	Cholesky decomposition	14	
		2.3.2	Error recursions	15	
	2.4	State s	smoothing	16	
		2.4.1	Smoothed state	16	
		2.4.2	Smoothed state variance	17	
		2.4.3	Illustration	18	
	2.5	Distur	bance smoothing	19	
		2.5.1	Smoothed observation disturbances	20	
		2.5.2	Smoothed state disturbances	20	
		2.5.3	Illustration	21	
		2.5.4	Cholesky decomposition and smoothing	22	
	2.6			22	
		2.6.1	Illustration	23	

1

23

25 25

xii	CONTENTS					
	2.9	2.9 Initialisation				
	2.10	Parameter estimation	30			
		2.10.1 Loglikelihood evaluation	30			
		2.10.2 Concentration of loglikelihood				
		2.10.3 Illustration	32 32			
	2.11 Steady state					
	2.12 Diagnostic checking					
		2.12.1 Diagnostic tests for forecast errors	33			
		2.12.2 Detection of outliers and structural breaks	35			
		2.12.3 Illustration	35 36			
	2.13 Appendix: Lemma in multivariate normal regression					
3	Linea	r Gaussian state space models	38			
	3.1 Introduction					
	3.2 Structural time series models					
	3.2.1 Univariate models					
		3.2.2 Multivariate models	44			
		3.2.3 STAMP	45			
	3.3 ARMA models and ARIMA models		46			
	3.4 Exponential smoothing		49			
	3.5	State space versus Box-Jenkins approaches	51 54			
	3.6	· · · · · · · · · · · · · · · · · · ·				
	3.7	3.7 Regression with ARMA errors				
	3.8	•				
	3.9	Simultaneous modelling of series from different sources	56 57			
	3.10 State space models in continuous time					

3.10.1 Local level model

Filtering, smoothing and forecasting

Spline smoothing

3.11.1

3.11.2

Introduction

Filtering

4.2.1

4.2.3

4.2.4

4.3.1

4.3.2

4.3.3

State smoothing

Disturbance smoothing

3.11

4.1

4.2

4.3

4.4

3.10.2 Local linear trend model

4.2.2 Kalman filter recursion

Steady state

Spline smoothing in discrete time

Derivation of Kalman filter

Smoothed state vector

State smoothing recursion

Smoothed state variance matrix

Spline smoothing in continuous time

State estimation errors and forecast errors

57

59

61

61

62

64

64

65

65

67

68

68

70

70

72

73

			CONTENTS	xiii
		4.4.1	Smoothed disturbances	73
			Fast state smoothing	75
		4.4.3	0	75
		4.4.4		76
	4.5	Cova	riance matrices of smoothed estimators	77
	4.6		ht functions	81
			Introduction	81
			Filtering weights	81
			Smoothing weights	82
	4.7		lation smoothing	83
		4.7.1	Simulating observation disturbances	84
		4.7.2		
			disturbances	87
		4.7.3	Simulation smoothing recursion	89
		4.7.4		90
		4.7.5	Simulating state vectors	91
		4.7.6		92
	4.8	Missi	ng observations	92
	4.9	_		93
	4.10	Dimensionality of observational vector		94
	4.11	Gener	ral matrix form for filtering and smoothing	95
5	Initia	alisation	of filter and smoother	99
	5.1		uction	99
	5.2	The ex	xact initial Kalman filter	101
		5.2.1		101
		5.2.2	Transition to the usual Kalman filter	104
		5.2.3		105
	5.3	Exact	initial state smoothing	106
		5.3.1		106
		5.3.2	Smoothed variance of state vector	107
	5.4	Exact	initial disturbance smoothing	109
	5.5		initial simulation smoothing	110
	5.6		oles of initial conditions for some models	110
		5.6.1	Structural time series models	110
		5.6.2	Stationary ARMA models	111
		5.6.3	Nonstationary ARIMA models	112
		5.6.4	Regression model with ARMA errors	114
		5.6.5	Spline smoothing	115
	5.7	Augm	ented Kalman filter and smoother	115
		5.7.1	Introduction	115
		5.7.2	Augmented Kalman filter	115
		5.7.3	Filtering based on the augmented Kalman filter	116

CONTENTS xiv 118 Illustration: the local linear trend model 5.7.4 Comparisons of computational efficiency 119 5.7.5 Smoothing based on the augmented Kalman filter 120 576 121 Further computational aspects 6 121 Introduction 6.1 121 Regression estimation 6.2 121 6.2.1 Introduction 122 Inclusion of coefficient vector in state vector 6.2.2 122 6.2.3 Regression estimation by augmentation 6.2.4 Least squares and recursive residuals 123 Square root filter and smoother 124 6.3 124 6.3.1 Introduction 125 6.3.2 Square root form of variance updating 126 6.3.3 Givens rotations 127 6.3.4 Square root smoothing 127 Square root filtering and initialisation 6.3.5 128 Hustration: local linear trend model 6.3.6 128 Univariate treatment of multivariate series 64 128 Introduction 6.4.1 129 6.4.2 Details of univariate treatment 131 6.4.3 Correlation between observation equations 132 6.4.4 Computational efficiency Illustration: vector splines 133 6.4.5 134 Filtering and smoothing under linear restrictions 6.5 134 The algorithms of SsfPack 6.6 134 Introduction 6.6.1 135 The SsfPack function 6.6.2 136 Illustration: spline smoothing 6.6.3 138 Maximum likelihood estimation 7 138 Introduction 7.1 138 7.2 Likelihood evaluation 138 Loglikelihood when initial conditions are known 7.2.1 139 Diffuse loglikelihood 7.2.2 Diffuse loglikelihood evaluated via augmented Kalman 7.2.3 140 filter Likelihood when elements of initial state vector are 7.2.4 141 fixed but unknown 142 Parameter estimation 73 142 7.3.1 Introduction 142 7.3.2 Numerical maximisation algorithms 144 7.3.3 The score vector 147 The EM algorithm 7.3.4

CONTENTS			χV
		7.3.5 Parameter estimation when dealing with diffuse	149
		initial conditions 7.3.6 Large sample distribution of maximum likelihood	149
		estimates	150
		7.3.7 Effect of errors in parameter estimation	150
	7.4	Goodness of fit	152
	7.5	Diagnostic checking	152
8	Bavesi	ian analysis	155
	8.1	Introduction	155
	8.2	Posterior analysis of state vector	155
		8.2.1 Posterior analysis conditional on parameter vector	155
		8.2.2 Posterior analysis when parameter vector is	
		unknown	155
		8.2.3 Non-informative priors	158
	8.3	Markov chain Monte Carlo methods	159
9	Illustr	ations of the use of the linear Gaussian model	161
	9.1	Introduction	161
	9.2	Structural time series models	161
	9.3	Bivariate structural time series analysis	167
	9.4	Box-Jenkins analysis	169
	9.5	Spline smoothing	172
	9.6	Approximate methods for modelling volatility	175
	II NO	ON-GAUSSIAN AND NONLINEAR STATE SPACE MODELS	
10	N (Saussian and nonlinear state space models	179
10		Saussian and nonlinear state space models Introduction	179
	10.1	The general non-Gaussian model	179
	10.3	Exponential family models	180
	10.0	10.3.1 Poisson density	181
		10.3.2 Binary density	181
		10.3.3 Binomial density	181
		10.3.4 Negative binomial density	182
		10.3.5 Multinomial density	182
	10.4	Heavy-tailed distributions	183
		10.4.1 <i>t</i> -Distribution	183
		10.4.2 Mixture of normals	184
		10.4.3 General error distribution	184
	10.5	Nonlinear models	184
	10.6	Financial models	185
		10.6.1 Stochastic volatility models	185

10.6.2 General autoregressive conditional heteroscedasticity 187 Durations: exponential distribution 10.6.3 188 Trade frequencies: Poisson distribution 10.6.4 188

CONTENTS

xvi

11.4.1

11.4.2

11.5.1

11.5.3

11.7.1

11.9.1

11.9.2

11.9.3

11.9.4

11.9.5

11.9.6

Introduction

functions

12.5.1

12.5.4

12.5.5

11.5

11.6

11.7

11.8

11.9

12

12.1

12.2

12.3

12.4

12.5

11 Importance sampling 189 Introduction 11.1 189 11.2 Basic ideas of importance sampling 190 Linear Gaussian approximating models 11.3 191 Linearisation based on first two derivatives 11.4

Exponentional family models

Stochastic volatility model

Linearisation based on the first derivative

General error distribution

11.6.1 *t*-distribution for state errors

Antithetic variables

Diffuse initialisation

importance sampling

Estimating conditional means and variances

Estimating conditional densities and distribution

Forecasting and estimating with missing observations

Effect of errors in parameter estimation

Variance matrix of maximum likelihood estimate

Multiplicative models

Linearisation for nonlinear models

Estimating the conditional mode

Introduction

sampling

Analysis from a classical standpoint

Parameter estimation

Introduction

12.5.2 Estimation of likelihood

12.5.3 Maximisation of loglikelihood

Linearisation for non-Gaussian state components

Computational aspects of importance sampling

Practical implementation of importance sampling

Treatment of t-distribution without importance

Treatment of Gaussian mixture distributions without

t-distribution

11.5.2 Mixture of normals

193

195

195

195

197

197

197

198

199

199

201

202

204

204

204

205

206

208

210

212

212

212

213

214

215

215

215

216

217

			CONTENTS	xvii
		12.5.6	Mean square error matrix due to simulation	217
		12.5.7	Estimation when the state disturbances are Gaussian	219
		12.5.8	Control variables	219
13	Analy	ysis from	a Bayesian standpoint	222
	13.1	Introdu	ction	222
	13.2	Posterio	or analysis of functions of the state vector	222
	13.3		tational aspects of Bayesian analysis	225
	13.4	-	or analysis of parameter vector	226
	13.5	Markov	chain Monte Carlo methods	228
14	Non-	Gaussian	and nonlinear illustrations	230
	14.1	Introdu	ction	230
	14.2	Poisson	density: van drivers killed in Great Britain	230
	14.3	Heavy-	tailed density: outlier in gas consumption in UK	233
	14.4	_	ty: pound/dollar daily exchange rates	236
	14.5	Binary	density: Oxford-Cambridge boat race	237
	14.6	Non-Ga	nussian and nonlinear analysis using SsfPack	238
	References		241	
	Author index		249	
	Subje	ect index		251

ILLUSTRATION SAMPLE

Fig. 2.4. Simulation: (i) smoothed state $\hat{\alpha}_t$ and sample $\alpha_t^{(\cdot)}$; (ii) smoothed state $\hat{\alpha}_t$ and sample $\tilde{\alpha}_t$; (iii) smoothed observation error $\hat{\epsilon}_t$ and sample $\tilde{\epsilon}_t$; (iv) smoothed state error $\hat{\eta}_t$

It is, however, easier and more transparent to proceed as follows, using the original time domain. For filtering at times $t = \tau, \dots, \tau^* - 1$, we have

$$\mathbb{E}(\alpha_t|Y_{t-1}) = \mathbb{E}(\alpha_t|Y_{\tau-1}) = \mathbb{E}\left(\alpha_\tau + \sum_{j=\tau}^{t-1} \eta_j \bigg| Y_{\tau-1}\right) = a_\tau$$

and

and sample $\tilde{\eta}_t$.

$$\operatorname{Var}(\alpha_t|Y_{t-1}) = \operatorname{Var}(\alpha_t|Y_{\tau-1}) = \operatorname{Var}\left(\alpha_\tau + \sum_{i=\tau}^{t-1} \eta_i \middle| Y_{\tau-1}\right) = P_\tau + (t-\tau)\sigma_\eta^2.$$

giving

$$a_{t+1} = a_t, P_{t+1} = P_t + \sigma_n^2, t = \tau, \dots, \tau^* - 1, (2.38)$$

the remaining values a_t and P_t being given as before by (2.11) for $t = 1, ..., \tau$ and $t = \tau^*, ..., n$. The consequence is that we can use the original filter (2.11) for all t by taking $v_t = 0$ and $K_t = 0$ at the missing time points. The same procedure is used when more than one group of observations is missing. It follows that allowing for missing observations when using the Kalman filter is extremely simple.

The forecast error recursions from which we derive the smoothing recursions are given by (2.18). These error-updating equations at the missing time points