Stat 315	Name (Print):	Solutions
Fall 2021 Spring 2021 Practice Exam 2		
Practice Exam 2	2/2 1/202	
11/12/2021 Exam 2: Fri, April 1	CIN CUSS)	
Time Limit: 50 minutes	Section:	

This exam contains 12 pages (including this cover page) and 5 problems.

You may use a two-sided 4"x6" notecard of formulas/notes, etc and a calculator. You may not use any other material including the internet, other people, or other reference books. Violators of this provision will receive a zero.

You are required to show your work on each problem on this exam. The following rules apply:

- Show all your work. You may check your answers using calculator functions, but you must show every step of your calculations to receive full credit.
- Organize your work in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.

Do not write in the table to the right.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

(ch8)

1. (10 points) It is claimed that 11% of bridges in the United States are structurally deficient. To test this claim, inspections of 200 randomly selected bridges found that 34 were structurally deficient. At $\alpha = 0.025$, test the claim that the proportion of bridges that are structurally deficient differs from 0.11. Also, explain which type of error may have been committed.

$$P \neq 0.11$$
 $n = 200$ $\Rightarrow \bar{p} = \frac{34}{200} = 0.17$

(2) d= 0.025 (3) Ztest:
$$\frac{\bar{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} = \frac{0.17-0.11}{0.11(0.89)} = 2.71$$

→ p-value = 0.0068

-> p-value = 2.0.0034

6 At d=0.025, there is sufficient evidence to conclude that the true proportion of structurally deficient bridges in the US differs from 0.11.

Follow up: Type I error: reject Ho when Ho is true - possible we made

Type I error: FTR Ho when Ho is false

a Type I error

since we rejected Ho.

(ch9)

2. 5 students took two Math exams: one exam before tutoring and one exam after tutoring. It is of interest if tutoring helps the students score higher. Below are the exam scores before and after. Assume the test scores are approximately normally distributed.

		1	2	3	4	5	
	After	90	80	95	70	75	
	Before	85	80	90	55	50	
after-before- "Point gain"	d_i	5	0	5	15	25	Edi = 50
-	$d_i - \bar{d}$	-5	-10	-5	5	15	E(di-a)=0
	$(d_i - \bar{d})^2$	25	loo	25	25	225	E(di-d)= 400

(a) (3 points) Complete the above table

(b) (1 point) Calculate
$$\bar{d} = \frac{2di}{n} : \frac{50}{5} = 10 = \bar{d}$$

(c) (1 point) Calculate s_d

(d) (5 points) Complete a hypothesis test at $\alpha=0.05$. Show all six steps.

- (5) Reject Ho
- 6 At x=0.05, there is sufficient evidence to conclude that students, on average, Score higher after tutoring than before.

(ch 6)

- 3. Suppose that adult male heights are normally distributed with mean 70 inches and standard deviation 4 inches. A random sample of three male heights is drawn.
 - (a) (3 points) What is the sampling distribution of $\bar{X}_3 = \frac{X_1 + X_2 + X_3}{3}$?

(b) (3 points) Calculate the probability the sample mean is within one inch of the population

(c) (4 points) Suppose instead of using the sample mean of the three men, i.e. $\bar{X}_3 = \frac{X_1 + X_2 + X_3}{3}$, we estimate the population mean by calculating the statistic $\gamma = \frac{X_1}{2} + \frac{X_2}{4} + \frac{X_3}{4}$. Determine if γ is an unbiased estimator for μ and find $SE(\gamma)$.

8 is an unbiased est. of
$$\mu$$
 if $E[8] = \mu$
 $E[8] = E[\frac{x_1}{2} + \frac{x_2}{4} + \frac{x_3}{4}] = \frac{E[x_1]}{2} + \frac{E[x_2]}{4} + \frac{E[x_3]}{4} = \frac{70}{2} + \frac{70}{4} + \frac{70}{4} = 70 = \mu$

SE[8] = $Var(8)$ by indep.

 $Var(8) = Var(\frac{x_1}{2} + \frac{x_2}{4} + \frac{x_3}{4}) = \frac{Var(x_1)}{2^2} + \frac{Var(x_2)}{4^2} + \frac{Var(x_3)}{4^2}$
 $= \frac{16}{4} + \frac{16}{16} + \frac{16}{16} = 6$
 $\Rightarrow SE[8] = Var(8) = \sqrt{6}$

(ch9)

4. Suppose that a sample of six Mathematics majors found they spend on average 10 hours weekly on homework with a sample standard deviation of 4 hours. Also, suppose that a sample of eight Electrical Engineering majors found they spend an average of 8.5 hours on homework weekly with a sample standard deviation of 3.8 hours. Finally, assume that the two populations are approximately normally distributed. Use df = 10 if needed.

(two independent samples, or is unknown → use t-dist, df=10)
(a) (8 points) Create a 99% confidence interval for the difference in mean homework time

spent between Mathematics and Electrical Engineering majors.

Math
$$(pop *1)$$
: $X_1 = 10$, $S_1 = 4$, $N_1 = 6$

EE $(pop *2)$: $X_2 = 8.5$, $S_2 = 3.8$, $N_2 = 8$

C1: $(X_1 - X_2) \pm t_c$.v. $\int \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2} \rightarrow (10 - 8.5) \pm 3.169 \cdot \int \frac{4^2}{6} + \frac{3.8^2}{8}$
 $\rightarrow 1.5 \pm 6.7$
 $\rightarrow [-5.2 < \mu_1 - \mu_2 < 8.2]$

(b) (2 points) What is power and how could it be increased in this example?

Practice Exam 2 - Page 7 of 12

(chlo)

Jim is analyzing the amount of mercury in three types of fish: bass, rainbow trout, and brown trout. It is of interest to determine if all three types of fish have the same mean mercury content. He collects 8 fish of each type and measures their mercury content (in ppb, parts per billion). Some results are given in the R output below. N=8.3=24

L= 3

Df Sum Sq Mean Sq F value Pr(>F)

fish 21 7396 Residuals

(a) (2 points) Calculate MSTR and MSE.

MSTR =
$$\frac{SSTR}{AF_{TR}}$$
 = $\frac{172}{2}$ = 86 = MSTR
MSE = $\frac{SSE}{AF_{E}}$ = $\frac{7396}{21}$ = $\frac{352.2}{2}$ = MSE

(b) (4 points) Calculate the relevant test statistic, find the p-value, and plot the distribution for this ANOVA F-test.

(c) (2 points) State the conclusion of your ANOVA F-test in your own words.

At x=0.05, there is not sufficient evidence to conclude the average mercury content differs among the three-types of fish.

(d) (2 points) Suppose we want to compare all pairwise difference in mercury content for the three types of fish. How many pairwise comparisons are there?

$$\binom{3}{2} = \frac{3!}{2!1!} = \frac{3}{3}$$
AB $\frac{3}{8}$
BC $\frac{3}{3}$

p-value 70.

t-values for selected UPPER TAIL probabilities are shown in the following table:

		90%	95%		99%	← For this CI
		R	3070		3370	← 101 tins 01
df	.10	.05	.025	.01	.005	\leftarrow Upper tail probability
-1	0.070	0.014	10.700	91 001	69.6FF	
1	3.078	6.314	12.706	31.821	63.657	
$\frac{2}{3}$	1.886 1.638	2.920 2.353	4.303 3.182	$6.965 \\ 4.541$	$9.925 \\ 5.841$	
4	$\frac{1.038}{1.533}$	2.333		$\frac{4.541}{3.747}$	4.604	
4	1.000	2.132	2.24	3.141	4.004	
5	1.476	2.015	2.571	3.365	4.032	
6	1.440	1.943	2.447	3.143	3.707	
7	1.415	1.895	2.365	2.998	3.499	
8	1.397	1.860	2.306	2.896	3.355	
9	1.383	1.833	2.262	2.821	3.250	
Ü	1.000	1.000	2.202	2.021	0.200	
10	1.372	1.812	2.228	2.764	3.169	
11	1.363	1.796	2.201	2.718	3.106	
12	1.356	1.782	2.179	2.681	3.055	
13	1.350	1.771	2.160	2.650	3.012	
14	1.345	1.761	2.145	2.624	2.977	
15	1.341	1.753	2.131	2.602	2.947	
16	1.337	1.746	2.120	2.583	2.921	
17	1.333	1.740	2.110	2.567	2.898	
18	1.330	1.734	2.101	2.552	2.878	
19	1.328	1.729	2.093	2.539	2.861	
20	1.325	1.725	2.086	2.528	2.845	
21	1.323	1.721	2.080	2.518	2.831	
22	1.321	1.717	2.074	2.508	2.819	
23	1.319	1.714	2.069	2.500	2.807	
$^{-3}_{24}$	1.318	1.711	2.064	2.492	2.797	
	Int I					
25	1.316	1.708	2.060	2.485	2.787	
26	1.315	1.706	2.056	2.479	2.779	
27	1.314	1.703	2.052	2.473	2.771	
28	1.313	1.701	2.048	2.467	2.763	
29	1.311	1.699	2.045	2.462	2.756	
20	1 910	1 607	0.040	0.457	0.750	
30	1.310	1.697	2.042	2.457	2.750	
40	1.303	1.684	2.021	2.423	2.704	
50	1.299	1.676	2.009	2.403	2.678	
60	1.296	1.671	2.000	2.390	2.660	
70	1.294	1.667	1.994	2.381	2.648	
80	1.292	1.664	1.990	2.374	2.639	
90	1.291	1.662	1.987	2.368	2.632	
100	1.290	1.660	1.984	2.364	2.626	
	1 25-	4 0 4 5	1.000	2 225		
$-\infty$	1.282	1.645	1.960	2.326	2.576	\leftarrow Same as z-values

Standard Normal Distribution

Cumulative probabilities for $\bf NEGATIVE$ z-values are shown in the following table:

-	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.0	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
$-2.4 \\ -2.3$	0.0082	0.0080	0.0078 0.0102	0.0075	0.0073	0.0071 0.0094	0.0009 0.0091	0.0089	0.0086 0.0087	0.0084
-2.3 -2.2	0.0107	0.0104 0.0136	0.0102 0.0132	0.0099 0.0129	0.0090 0.0125	0.0094 0.0122	0.0091 0.0119	0.0089	0.0087	0.0084 0.0110
$-2.2 \\ -2.1$	0.0139 0.0179	0.0130 0.0174	0.0132 0.0170	0.0129 0.0166	0.0125 0.0162	0.0122 0.0158	0.0119 0.0154	0.0110 0.0150	0.0113 0.0146	0.0110 0.0143
-2.1 -2.0	0.0179	0.0174 0.0222	0.0170 0.0217	0.0100 0.0212	0.0102 0.0207	0.0138 0.0202	0.0194 0.0197	0.0130 0.0192	0.0140	0.0143 0.0183
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0100	0.0163
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
0	0.1041	0.1014	0.1700	0.1700	0.1796	0.1711	0.100	0.1660	0.1695	0.1611
9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
7	0.2420	0.2389	0.2358	0.2327	0.2296	$0.2266 \\ 0.2578$	0.2236	0.2206	0.2177	0.2148
6	0.2743	0.2709	0.2676	0.2643	0.2611		0.2546	0.2514	0.2483	0.2451
5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Standard Normal Distribution

Cumulative probabilities for $\bf POSITIVE$ z-values are shown in the following table:

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

 ${\cal F}\text{-values}$ for selected UPPER TAIL probabilities are shown in the following table:

	Upper					Nıı	merato	r df				
Denom.	tail					114	merato	· ui				
df	area	1	2	3	4	5	6	7	8	9	10	11
19	0.10	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96	1.93
	0.05	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34
	0.025	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.76
	0.01	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.36
20	0.10	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.91
	0.05	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31
	0.025	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.72
~	0.01	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.29
21	0.10	2.96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92	1.90
	0.05	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.28
	0.025	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.68
	0.01	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.24
											0.0-	
22	0.10	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90	1.88
	0.05	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.26
	0.025	5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.65
	0.01	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.18
23	0.10	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89	1.87
	0.05	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.24
	0.025	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.62
	0.01	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.14
24	0.10	2.93	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88	1.85
	0.05	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.22
	0.025	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.59
	0.01	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.09
25	0.10	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89	1.87	1.84
	0.05	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.20
	0.025	5.69	4.29	3.69	3.35	3.13	2.97	2.85	2.75	2.68	2.61	2.56
	0.01	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	3.06
26	0.10	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86	1.83
20	0.10	4.23	$\frac{2.32}{3.37}$	$\frac{2.31}{2.98}$	$\frac{2.17}{2.74}$	2.59	$\frac{2.01}{2.47}$	2.39	$\frac{1.92}{2.32}$	2.27	2.22	2.18
	0.025	5.66	$\frac{3.37}{4.27}$	$\frac{2.98}{3.67}$	3.33	3.10	$\frac{2.47}{2.94}$	$\frac{2.39}{2.82}$	$\frac{2.32}{2.73}$	$\frac{2.27}{2.65}$	2.52	$\frac{2.16}{2.54}$
	0.023	7.72	5.53	4.64	4.14	3.10 3.82	3.59	3.42	3.29	3.18	3.09	3.02
27	0.10	2.00	0.51	0.20	0.17	2.07	2.00	1.05	1.01	1 07	1 05	1 00
27	$0.10 \\ 0.05$	2.90 4.21	$\frac{2.51}{3.35}$	$\frac{2.30}{2.96}$	2.17 2.73	$\frac{2.07}{2.57}$	$\frac{2.00}{2.46}$	$\frac{1.95}{2.37}$	$\frac{1.91}{2.31}$	$\frac{1.87}{2.25}$	$\frac{1.85}{2.20}$	$\frac{1.82}{2.17}$
	0.05 0.025	5.63	$\frac{3.35}{4.24}$	$\frac{2.96}{3.65}$	3.31	$\frac{2.57}{3.08}$	$\frac{2.46}{2.92}$	$\frac{2.37}{2.80}$	$\frac{2.31}{2.71}$	$\frac{2.25}{2.63}$	$\frac{2.20}{2.57}$	$\frac{2.17}{2.51}$
	0.025 0.01	7.68	$\frac{4.24}{5.49}$	4.60	3.31 4.11	3.78	$\frac{2.92}{3.56}$	3.39	$\frac{2.71}{3.26}$	$\frac{2.05}{3.15}$	$\frac{2.37}{3.06}$	$\frac{2.31}{2.99}$
	0.01	1.00	0.49	4.00	4.11	5.10	5.50	5.53	5.20	5.15	5.00	4.99

 ${\cal F}\text{-values}$ for selected UPPER TAIL probabilities are shown in the following table:

	Upper					Nu	merato	r df				
Denom.	tail											
df	area	1	2	3	4	5	6	7	8	9	10	11
28	0.10	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84	1.81
	0.05	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15
	0.025	5.61	4.22	3.63	3.29	3.06	2.90	2.78	2.69	2.61	2.55	2.49
	0.01	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.96
29	0.10	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.86	1.83	1.80
	0.05	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14
	0.025	5.59	4.20	3.61	3.27	3.04	2.88	2.76	2.67	2.59	2.53	2.48
	0.01	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.93
30	0.10	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.79
	0.05	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13
	0.025	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.46
	0.01	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91
40	0.10	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.74
	0.05	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04
	0.025	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45	2.39	2.33
	0.01	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73
60	0.10	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.68
	0.05	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95
	0.025	5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33	2.27	2.22
	0.01	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56
100	0.10	2.76	2.36	2.14	2.00	1.91	1.83	1.78	1.73	1.69	1.66	1.64
	0.05	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.89
	0.025	5.18	3.83	3.25	2.92	2.70	2.54	2.42	2.32	2.24	2.18	2.12
	0.01	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.59	2.50	2.43
1000	0.10	2.71	2.31	2.09	1.95	1.85	1.78	1.72	1.68	1.64	1.61	1.58
1000	0.10	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.89	1.84	1.80
	0.025	5.04	3.70	3.13	2.80	2.58	2.42	2.30	2.20	2.13	2.06	2.01
	0.020	6.66	4.63	3.80	3.34	3.04	2.82	$\frac{2.66}{2.66}$	2.53	$\frac{2.13}{2.43}$	$\frac{2.34}{2.34}$	2.27