ORGANISASI SISTEM KOMPUTER & ORGANISASI CPU Oleh: Priyanto

Komputer Digital adalah mesin elektronik yang dapat melakukan operasioperasi aritmatik dan lojik. Komputer digital terdiri dari sistem interkoneksi **Prosesor, Memori,** dan **Input/Output** (**I/O**). Organisasi komputer secara umum ditunjukkan pada gambar 2.1.

Gambar 2.1 Organisasi komputer sederhana secara umum

2.1 CPU

CPU (*central processing unit*) atau **Prosesor** adalah "otak" komputer yang bertugas untuk mengeksekusi program yang tersimpan dalam memori utama dengan melakukan:

- Fetching instruksi
- · Dekode instruksi
- Eksekusi instruksi

CPU terdiri dari tiga bagian utama:

1. Control Unit (CU), bertanggung jawab untuk *fetching* instruksi dari memori utama dan menentukan tipenya. Dalam tugasnya, CU membangkitkan sinyal kontrol yang mengontrol aliran informasi di dalam CPU.

- 2. **Arithmatic and Logical Unit** (ALU), melakukan operasi aritmatik (penjumlahan dan pengurangan) dan operasi logika (OR, AND, INVERT, dan EXOR).
- 3. **Register**, adalah memori kecepatan tinggi yang digunakan untuk menyimpan informasi selama operasi CPU.

Gambar 2.2 Organisasi CPU sederhana.

Eksekusi Instruksi

Urutan eksekusi CPU disebut dengan putaran **fetch-decode-execute**, yang merupakan pusat operasi dari seluruh komputer. CPU mengeksekusi setiap instruksi mulai dari **program counter** (**PC**) yang berisi alamat instruksi dan diakhiri dengan penempatan hasil pada lokasi yang sesuai. Urutan eksekusi intruksi dilakukan dengan urutan sebagai berikut:

- 1. **Fetch instruksi**: Instruksi dibaca dari memori dan diletakkan pada **instruction register (IR)**. Urutan langkah tersebut adalah:
 - a) Memindah alamat instruksi dari PC ke dalam **address buffer** (Register).
 - b) Memuat isi alamat address buffer ke jalur jalur alamat (bus ekstrenal) dan membangkitkan sinyal baca ke memori.
 - c) Memori membaca instruksi dan menempatkannya pada jalur data (bus eksternal).
 - d) Memuat instruksi dari bus eksternal ke dalam data buffer (Register).
 - e) Memindah isi data buffer ke IR
 - f) Menaikkan (increment) PC sehingga menunjuk ke instruksi berikutnya.
- 2. **Dekode Instruksi**: CU mendekode instruksi untuk menentukan sinyal kontrol apa yang akan dibangkitlkan berikutnya.
- 3. **Menentukan Alamat-alamat Operand**: Lokasi operand ditentukan oleh CPU dari bagian alamat suatu instruksi.
- 4. **Fetch Operand**: Diasumsikan instruksi yang di dekode memiliki dua operand. Alamat operand terletak pada register R1 dan R2:
 - a) Memindah alamat operand dari register R1 ke address buffer
 - b) Mengulangi langlah 1 (b) sampai 1 (d) dengan eksepsi bahwa sekarang berhadapan dengan operand, bukan instruksi.
 - c) Memindah isi data buffer ke register A
 - d) Memindah alamat operand kedua dari register R2 ke address buffer.
 - e) Ulangi langkah 1(b) sampai 1(d) untuk operand yang kedua.
 - f) Memindah isi data buffer ke register B.
- 5. **Menjalankan Operand-operand**: Operand pertama di register A dan operand kedua di register B. Sinyal kontrol dari CU mengaktifkan ALU sehingga operasi yang dietatapkan oleh instruksi dilaksanakan. Hasil operasi dipindah ke register A melalui bus internal.

- 6. **Menyimpan Hasil**: Diasumsikan instruksi yang di dekode menetapkan bahwa hasil disimpan pada alamat memori yang berada pada register R3. Urutan langkahnya:
 - a) Memuat isi R3 ke address buffer.
 - b) Memindahkan hasil dari register A ke data buffer dan membangkitkan sinyal **write** ke memori.
 - c) Memori menyimpan hasil pada lokasi yang telah ditentukan, dan eksekusi instruksi berakhir.

2.2 MEMORI

Memori adalah bagian dari komputer yang berfungsi untuk menyimpan data dan program. Memori komputer diorganisasikan dalam lokaksi-lokasi, dimana setiap lokasi memiliki jumlah sel sama. Satuan dasar memori adalah *Binary digit* (Bit). Suatu bit dapat berisi 0 atau 1.

Gambar 2.3 Dua cara mengorganisasikan memori 32 bit.

Alamat Memori

- Memori terdiri dar sejumlah **sel** atau **lokasi** dan setiap sel meyimpan sepotong informasi.
- Setiap sel memiliki nomor yang disebut alamat, dimana program dapat mengacu pada alamat tersebut.
- Bila memori memiliki **n** sel, akan memiliki alamat dari **0** sampai **n-1**.
- Seluruh sel dalam memori berisi jumlah bit yang sama.

- Jika memori memiliki m bit saluran alamat, jumlah sel maksikum yang dapat dialamati adalah 2^m.
- Memori dengan 16 sel, dimana setiap sel terdiri dari 8 bit ataupun 16 bits , tetap memerlukan 4 saluran alamat.
- Saat ini komputer memiliki standart sel 8 bit (byte).
- Byte dikelompokkan menjadi word.
 - ♦ 16 bit word memiliki 2 byte/word
 - ◆ 32 bit word memiliki 4 byte/word

Seperti CPU, memori terdiri **address buffer** dan **data buffer**. Rangkaian kontrol menerima sinyal **read/write** yang dikirim oleh CPU atau I/O melalui bus eksternal. Mengacu pada masukan-masukan ini, rangkaian control membangkitkan sinyal-sinyal lain yang mengontrol operasi internal memori.

2.3 INPUT/OUTPUT

Input/output digunakan untuk pertukaran informasi antara komputer dengan dunia luar. I/O terdiri dari **I/O controller** dan **periferal**.

- I/O controller mengendalikan operasi periferal sesuai dengan perintah yang diterima dari CPU. Card I/O adalah salah satu bentuk I/O cotroller.
- Periferal dapat berupa peralatan input, peralatan output, atau keduanya.
- Dua atau lebih periferal dapat menggunakan bersama satu I/O controller.

Terminal

Terminal komputer terdiri dari tiga elemen: keyboard, monitor, dan peralatan elektronik yang mengontrol keduanya. Ada dua macam terminal yaitu *character-map* dan *bit-map*.

1. Character-map Terminal (Mode Teks)

- Biasanya memiliki ukuran 25 baris x 80 kolom (mode teks)
- Untuk menampilkan karakter, CPU mengkopikan ke video RAM
- Setiap karakter memiliki byte atribut, yang menyatakan bagaimana karakter tersebut ditampilkan (warna, kedip, dsb).
- Untuk menampilkan 25x80 karakter, memerlukan 400 byte, 200 byte untuk karakter dan 200 byte untuk atribut.

2. Bit-Map Terminal (Mode Grafik)

- Tampilan layar berupa elemen gambar (picture element/pixels), setiap pixel dapat ON atau OFF.
- Pada PC biasanya memiliki pixel 200x300, 480x640, 1024x1024.
- Memerlukan banyak memori video
- Untuk pixel ukuran 1024 x 1024 (monochrome: 1 bit/pixel) memerlukan 1048576 bit (1 juta bit) memori atau 128 Kbyte.
- Untuk pixel ukuran 1024 x 1024 (Warna 4 bit/pixel) memerlukan 4194304 bit (4 juta bit) memori, 512 Kbyte.

Kerugian bit-map terminal:

- Memerlukan memori video yang sangat banyak
- Kecepatan tampilan menjadi lambat, sehingga perlu CPU yang sangat cepat.

Kode Karakter

Agar dapat melakukan transfer karakter ke dalam komputer, maka setiap karakter harus memiliki kode, sebagai contoh a = 1, b = 2, dan seterusnya. Saat ini komputer menggunakan salah satu kode 6 bit, 7 bit, 8 bit, atau 9 bit.

- Kode 6 bit hanya memiliki 26 = 64 kode, yaitu 26 huruf, 10 angka, dan 28 karakter yang lain (tanda baca dan simbol matematik). Tetapi jumlah kode ini belum mencukupi.
- Kode ASCII (American Standart Code for Information Interchange), meggunakan kode 7-bit, berarti memiliki $2^7 = 128$ kode (0..127). Kode 128..255 tidak didefinisikan, sehingga kode atara 128..255 disebut dengan *extended character*.