Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen Übung

Marcus Jung, Jonas J. Funke 30.08.2010

2 FOURIERREIHEN

Fourierreihen 1

Aufgabe 1. Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und 2π -periodisch mit Fourierkoeffizienten f_k , wobei $f_0 = 0$. F sei eine Stammfunktion zu f. Zeigen Sie, dass fuer die Fourierkoeffizienten F_k von F gilt:

$$F_k = \frac{f_k}{ik} \quad k \neq 0 \tag{1}$$

Aufgabe 2 (Vollstaendigkeit). Man zeige, dass $g_n = e^{int}$ ein vollstaendiges Orthonormalsystem fuer 2π -periodische Funktionen bilden, d.h.:

$$\langle g_n, g_m \rangle = \delta_{nm} \tag{2}$$

Aufgabe 3 (Periodische Funktionen). Zeige Punkt 5 der Eigenschaften periodischer Funktionen, d.h.

$$\int_0^T dt \ f(t) = \int_a^{aT} dt \ f(t), \quad a \in \mathbb{R}$$
 (3)

Aufgabe 4. Zeige die Äquivalenz komplexer und reeller Schreibweise!

Aufgabe 5. $a_k = 2, b_k = 0$: Ist die Partialsummenfolge $f_n(t)$ für irgendein $t \in \mathbb{R}$ konvergent?

Aufgabe 6. Beweise: Sei f(t) eine stückweise stetige, T periodische Funktion, dann gilt:

•
$$f(t)$$
 gerade $\to a_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) * cos(k\omega t) dt$, $b_k = 0$

Aufgabe 7. Gegeben ist die Rechtecksschwingung:

$$R(t) = 0, \quad t = 0, t = \pi, t = 2\pi$$

$$R(t) = 1, \quad 0 < t < \pi$$

$$R(t) = -1, \quad \pi < t < 2\pi$$

Ist die Rechteckschwingung:

3

	\square stetig auf $[0, 2\pi]$
	$\hfill\Box$ stueckweise stetig auf $[0,2\pi]$
	$\hfill\Box$ stueckweise stetig differenzierbar auf $[0,2\pi]$
	\Box differenzierbar auf $[0,2\pi]$
Is	t die Fourierreihe zu $R(t)$ auf $[0,2\pi]$
	□ gleichmaessig konvergent
	\square punktweise konvergent
	$\hfill\Box$ im quadratischen Mittel konvergent
	\Box divergent
	erechne die Fourierkoeffizienten! eichne die Approximation!
Aufgabe 8. Es sei $f(t) = t^2$, $-\pi < t < \pi$ eine 2π -periodische Funktion Ist $f(t)$:	
	\Box stetig auf $[-\pi,\pi]$
	\Box stueckweise stetig auf $[-\pi,\pi]$
	$\hfill\Box$ stueckweise stetig differenzierbar auf $[-\pi,\pi]$
	$\hfill\Box$ stetig differenzierbar auf $[-\pi,\pi]$
Is	t die Fourierreihe zu $f(t)$ auf $[-\pi, \pi]$
	□ gleichmaessig konvergent
	$\hfill\Box$ punktweise konvergent
	$\hfill\Box$ im quadratischen Mittel konvergent
	□ divergent

IHEN 4

Berechne die Fourierreihe!

Aufgabe 9. Berechne die Fourierreihe der Funktion f(x) = |sinx|!

Aufgabe 10. Gegeben sei die 2π – periodische Funktion

$$f(x) = x, \quad 0 < x < \pi$$

$$f(x) = \pi, \quad \pi < x < 2\pi$$

- Bestimme die reellen Fourierkoeffizienten!
- Berechne die komplexen Fourierkoeffizienten mithilfe der Transformationsformeln aus dem Skript!
- Bestätige das Ergebnis durch direkte Berechnung der komplexen Fourierkoeffizienten.

Aufgabe 11. Welche Funktion $f: \mathbb{R} \to \mathbb{R}$ besitzt die Fourierkoeffizienten $c_k = \frac{1}{|k|!}, k \in \mathbb{Z}$

2 Taylorreihen

Aufgabe 12. Mache eine Taylorentwicklung von f(x) = sinx. Wie groß ist der relative Fehler für n=3?

Aufgabe 13. Die kinetische Energie eines relativistischen Teilchens ist gegeben durch:

$$E_{rel} = mc^2 - m_0c^2 = m_0c^2 * (\frac{1}{\sqrt{1 - (\frac{v}{c})^2}} - 1)$$

 m_0 ist hier die Ruhemasse und v die Geschwindigkeit des Teilchens, c die Lichtgeschwindigkeit. Wir fragen nach dem Zusammenhang mit der nichtrelativistischen kinetischen Energie $E=\frac{1}{2}m_0v^2$.

Betrachte dazu die Taylorentwicklung der Funktion $f(x) = (1+x)^{-\frac{1}{2}}$ zum Entwicklungspunkt $x_0 = 0$. Entwickle dies bis zum Restglied R_3 . Was sind die Bedeutungen der einzelnen Terme?

5

Aufgabe 14. Bestimme den Grenzwert $\lim_{n\to 0} \frac{x-tanx}{x^3}$ durch Taylorentwicklung von $\tan(x)$ um 0!

Aufgabe 15. Gegeben sie $f:[0,1)\to\mathbb{R}$ mit

$$f(x) = \frac{1+x^2}{1+x} \tag{4}$$

Ausserdem ist $\sum_{n=0}^{\infty} a_n x^n$ die Taylorreihe um $x_0 = 0$.

(a) Wie lauten die Koeffizienten:

$$\Box \quad a_0 = 1 \quad a_1 = -2 \quad a_2 = 2 \quad a_3 = -2 \quad a_4 = 2 \quad a_5 = -2 \quad (5)$$

$$\Box$$
 $a_0 = 0$ $a_1 = -1$ $a_2 = 2$ $a_3 = -3$ $a_4 = 4$ $a_5 = -5$ (6)

$$\Box \quad a_0 = 1 \quad a_1 = -2 \quad a_2 = 2 \quad a_3 = -2 \quad a_4 = 2 \quad a_5 = -2 \quad (7)$$

$$\Box \quad a_0 = 1 \quad a_1 = -2 \quad a_2 = 1 \quad a_3 = -2 \quad a_4 = 2 \quad a_5 = -2 \quad (8)$$

(9)

- (b) Wie gross ist der Konvergenzradius der Taylorreihe um 0?
- (c) Wie lauten die Koeffizienten $\sum_{n=0}^{\infty} b_n x^n$ einer Stammfunktion von f?

$$\Box \qquad \qquad b_n = a_n \tag{10}$$

$$\Box \qquad \qquad b_n = na_n \quad n \in \mathbb{N} \tag{11}$$

$$\Box \qquad b_n = \frac{a_{n-1}}{n} \quad n \in \mathbb{N} \tag{12}$$

$$\Box \qquad b_n = (n+1)a_n \quad n \in \mathbb{N} \tag{13}$$

$$\Box \qquad b_n = \frac{a_{n+1}}{n+1} \quad n \in \mathbb{N} \tag{14}$$

(15)

Aufgabe 16. Entwickle die Funktion $f(x) = \frac{(1+x)^2}{\sqrt{1-x^3}}$ bis einschließlich zur 3.Ordnung um $x_0 = 0$ und gebe eine Schranke für den relativen Fehler an, falls $|x| < \frac{1}{2}$ und die Funktion durch das Taylorpolynom 2. Grades approximiert wird!

3 Zusaetzliche Aufgaben

Aufgabe 17. Beweise die Rechenregeln Zeitumkehr und Verschiebung!

Aufgabe 18. Gegeben sei die 2π – periodische Funktion f(x) = x * cosx

6

- Welche Fourierkoeffizienten sind auf jeden fall 0?
- Berechne die Fourierreihe von f(x)

 $\bf Aufgabe~19.$ Bestimme die reellen Fourierkoeffizienten der 2π periodischen Funktion

$$f(x) = \frac{1}{\pi} * x^2, \quad 0 < x < \pi$$

$$f(x) = 2\pi - x, \quad \pi < x < 2\pi$$

Aufgabe 20. Es sei $f: \mathbb{R} \to \mathbb{R}$ 2π periodisch mit $f(x) = \max(0, x)$ für $x \in (-\pi, \pi]$. Bestimme die Fourierkoeffizienten von

- *f*
- g = f(-x)
- h = f + g

Zeichne den Graphen und gebe die ersten Summanden der Cosinus-Sinus Darstellung an.

Aufgabe 21. Sei $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \int_0^x dt \ e^{-\frac{t^2}{2}} \tag{16}$$

- (a) Geben Sie die Taylorentwicklung bis zur (einschliesslich) 5. Ordnung um $x_0=0$ an.
- (b) Welchen Konvergenzradius hat die Taylorreihe?