11 Veröffentlichungsnummer:

0 191 736 A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 86810072.8

Anmeldetag: 10.02.86

(5) Int. Cl.4: A 01 N 25/32, C 07 D 215/28

C07D215/26, C07D405/12, C07D409/12, C07D403/12, C07D213/64

Priorität: 14.02.85 CH 682/85 02.12.85 CH 5132/85

Anmeider: CIBA-GEIGY AG, Klybeckstrasse 141, CH-4002 Basel (CH)

Veröffentlichungstag der Anmeldung: 20.08.86 Patentblatt 86/34

Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI NL

Erfinder: Nyffeler, Andreas, Dr., Gründlerstrasse 4, CH-4312 Magden (CH) Erfinder: Hubele, Adolf, Dr., Obere Egg 9, CH-4312 Magden (CH)

Werwendung von Chinolindertvaten zum Schützen von Kulturpflanzen.

Die Verwendung von Chinolinderivaten der Formel

R² R³ R⁵ R⁵ R⁵ R⁵ R⁵

worin R¹, R² und R³ unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, C_1 - C_2 -Alkyl oder C_1 - C_3 -Alkoxy,

R⁴, R⁵ und R⁵ unabhängig voneinander Wasserstoff, Halogen oder C₁-C₃-Alkyl,

A eine der Gruppen $-CH_2-$, $-CH_2CH_2-$ oder $-CH(CH_3)-$ und

Z a) Cyan oder Amidoxim, welches am Sauerstoffatom acyliert sein kann, oder

b) eine Carboxylgruppe oder ein Salz davon, eine Mercaptocarbonylgruppe oder ein Salz davon, eine Carbonsäureestergruppe, eine Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder substituiertes Derivat einer Carbonsäureamidgruppe oder eine Carbonsäurehydrazidgruppe, oder

A und Z zusammen einen unsubstituierten oder substituierten Tetrahydrofuran-2-on-Ring bedeuten, unter Einschluss ihrer Säureadditionssalze und Metalikomplexe, zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von herbizid wirksamen 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-Derivaten.

Die vorgenannten herbiziden 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-Derivate entsprechen der Formel

worin Y für eine Gruppe – $NR^{16}R^{17}$, – $O - R^{18}$, – $S - R^{18}$ oder – $O - N = CR^{19}R^{20}$ steht,

 R^{10} und R^{17} unabhängig voneinander Wasserstoff, C_4 - C_8 -Alkoxy, C_4 - C_8 -Alkyl, Phenyl oder Benzyl,

R¹⁸ und R¹⁷ zusammen mit dem sie tragenden Stickstoffatom einen 5- bis 6-gliedrigen gesättigten Stickstoffheterocyclus, der durch ein Sauerstoff- oder Schwefelatom unterbrochen sein kann,

R¹ª Wasserstoff oder das Äquivalent eines Alkalimetali-, Erdalkalimetali-, Kupfer- oder Eisen-lons; einen quaternären C₁-C₄-Alkylammonium- oder C₁-C₄-Hydroxyalkylammonium-Rest; einen gegebenenfalls ein- oder mehrfach durch Amino, Halogen, Hydroxyl, Cyan, Nitro, Phenyl, C_1 - C_4 -Alkoxy, Połyāthoxy mit 2 bis 6 Athylenoxideinheiten, — $COOR^{2\pi}$, — $COSR^{21}$, — $CONH_2$ —, — $CON(C_1$ - C_4 -alkoxy)- C_1 - C_4 -alkyl, — CO N-di- C_1 - C_4 -alkyl, — CONH- C_1 - C_4 -alkyl, — CONH- C_1 - C_4 -alkyl oder Di- C_1 - C_4 -alkylamino substituierten C_1 - C_4 -Alkoxy substituierten C_3 - C_4 -Alkinylrest; C_3 - C_6 -Cycloalkyl; oder gegebenenfalls durch Cyan, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, Acetyl, — $COOR^{2\pi}$, — $COSR^{2\pi}$, — $CONH_2$, — $CON(C_1$ - C_4 -alkoxy)- C_1 - C_4 -alkyl, — CO N-di- C_1 - C_4 -alkyl oder — CONH- C_1 - C_4 -alkyl substituiertes Phenyl,

R¹⁹ und R²⁰ unabhängig voneinander C₁-C₄-Alkyl oder zusammen eine 3- bis 6-gliedrige Alkylenkette und

 R^{2} : Wasserstoff, C_1 - C_6 -Alkyl, C_1 - C_6 -Halogenalkyl, C_2 - C_6 -Alkoxyalkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Halogenalkenyl, C_3 - C_6 -Alkinyl oder C_3 - C_6 -Halogenalkinyl bedeuten.

CIBA-GEIGY AG
Basel (Schweiz)

5-15263/1+2/+

Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen

Die vorliegende Erfindung betrifft die Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen gegen schädigende Wirkungen herbizid wirksamer 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-Derivate sowie herbizide Mittel, welche eine Kombination von Herbizid und schützendem Chinolinderivat enthält. Ferner betrifft die Erfindung auch neue Chinolinderivate.

Beim Einsatz von Herbiziden wie beispielsweise den vorstehend genannten Propionsäure-Derivaten können in Abhängigkeit von Faktoren wie beispielsweise Dosis des Herbizids und Applikationsart, Art der Kulturpflanze, Bodenbeschaffenheit und klimatischen Bedingungen, wie beispielsweise Belichtungsdauer, Temperatur und Niederschlagsmengen, die Kulturpflanzen in erheblichem Masse geschädigt werden. Insbesondere kann es zu starken Schädigungen kommen, wenn im Rahmen der Fruchtfolge nach Kulturpflanzen, die gegen die Herbizide resistent sind, andere Kulturpflanzen angebaut werden, welche keine oder nur unzureichende Resistenz gegenüber den Herbiziden aufweisen.

Es ist aus den europäischen Patentpublikationen 86 750 und 94 349 bekannt, dass sich Chinolinderivate zum Schützen von Kulturpflanzen gegen schädigende Wirkungen aggressiver Agrarchemikalien einsetzen lassen.

Es wurde nun gefunden, dass überraschenderweise ein Schutz von Kulturpflanzen gegen Schäden, welche durch herbizid wirksame 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-Derivate verursacht werden, durch Behandlung der Kulturpflanzen, von Teilen dieser Pflanzen oder von für den Anbau der Kulturpflanzen bestimmten

Böden mit einem Safener aus einer Gruppe von Chinolinderivaten erzielt werden kann. Die herbizide Wirkung gegenüber Unkräutern und Ungräsern wird durch die Chinolinderivate nicht aufgehoben.

Chinolinderivate, welche zum Schützen von Kulturpflanzen vor schädigenden Wirkungen herbizid wirksamer 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure Derivate geeignet sind, entsprechen der Formel I

worin R^1 , R^2 und R^3 unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, C_1-C_3 -Alkyl oder C_1-C_3 -Alkoxy,

 R^4 , R^5 und R^6 unabhängig voneinander Wasserstoff, Halogen oder $C_1\text{-}C_3\text{-}Alkyl$,

A eine der Gruppen $-CH_2-$, $-CH_2-CH_2-$ oder $-CH(CH_3)-$ und Z a) Cyan oder Amidoxim, welches am Sauerstoffatom acyliert sein kann, oder

b) eine Carboxylgruppe oder ein Salz davon, eine Mercaptocarbonylgruppe oder ein Salz davon, eine Carbonsäureestergruppe, eine
Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte
Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder
substituiertes Derivat einer Carbonsäureamidgruppe oder eine
Carbonsäurehydrazidgruppe, oder

A und Z zusammen einen unsubstituierten oder substituierten Tetrahydrofuran-2-on-Ring

bedeuten, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe.

Unter Amidoxim ist die Gruppe -C(NH₂)=N-OH zu verstehen. Das Amidoxim kann am Sauerstoffatom acyliert sein. Als am Sauerstoffatom acylierte Amidoxime kommen solche der Formel -C(NH₂)=N-O-CO-E in Betracht, in denen E für $-R^7$, $-OR^8$, $-SR^9$ oder $-NR^{10}\,R^{11}$ steht, wobei

 R^7 $C_1-C_7-Alkyl$, welches unsubstituiert oder durch Halogen oder $C_1-C_4-Alkoxy$ substituiert ist, $C_3-C_6-Cycloalkyl$, $C_2-C_4-Alkenyl$, Phenyl, welches unsubstituiert oder durch Halogen, Nitro oder $C_1-C_3-Alkyl$ substituiert ist, Benzyl, welches unsubstituiert oder durch Halogen, Nitro oder $C_1-C_3-Alkyl$ substituiert ist, oder einen 5- bis 6-gliedrigen heterocyclischen Ring, welcher ein oder zwei Heteroatome aus der Gruppe N, O oder S enthält und unsubstituiert oder durch Halogen substituiert ist.

 R^8 , R^9 und R^{10} unabhängig voneinander C_1 - C_8 -Alkyl, welches unsubstituiert oder durch Halogen substituiert ist, C_2 - C_4 -Alkenyl, C_3 - C_6 -Alkinyl, Phenyl, welches unsubstituiert oder durch Halogen, C_1 - C_3 -Alkyl, C_1 - C_3 -Alkoxy, Trifluormethyl oder Nitro substituiert ist, oder Benzyl, welches unsubstituiert oder durch Halogen oder Nitro substituiert ist,

 $R^{1\,1}$ Wasserstoff, C_1 - C_8 -Alkyl oder C_1 - C_3 -Alkoxy, oder $R^{1\,0}$ und $R^{1\,1}$ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen Heterocyclus, welcher noch ein weiteres Heteroatom aus der Gruppe N, O und S enthalten kann, bedeuten.

Bei R⁸ als Heterocyclus kann es sich um gesättigte, teilgesättigte oder ungesättigte Heterocyclen handeln, wie beispielsweise Thiophen, Furan, Tetrahydrofuran und Pyrimidin.

Als Heterocyclen, welche von R¹⁰ und R¹¹ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, gebildet werden, kommen gesättigte, teilgesättigte oder ungesättigte Heterocyclen in Betracht. Beispiele für solche Heterocyclen sind Pyrrolidin, Pyrrolin, Pyrrol, Imidazolidin, Imidazolin, Imidazol, Piperazin, Pyridin, Pyrimidin, Pyrazin, Thiazin, Oxazol, Thiazol und insbesondere Piperidin und Morpholin.

Unter Alkyl als Bestandteil des acylierten Amidoxims Z kommen im Rahmen der jeweils angegebenen Anzahl von Kohlenstoffatomen alle geradkettigen und alle verzweigten Alkylgruppen in Betracht.

In der Bedeutung von \mathbb{R}^7 steht $C_3-C_6-Cycloalkyl$ für Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl.

Von den C_2 - C_4 -Alkenyl- und C_3 - C_6 -Alkinylgruppen als Bestandteile des acylierten Amidoxims Z sind vor allem Vinyl, Allyl, l-Propenyl, Methallyl und Propargyl zu erwähnen.

Für Z als Carbonsäureestergruppe oder Carbonsäurethiolestergruppe kommt ein entsprechender Säurerest in Betracht, der beispielsweise durch einen gegebenenfalls substituierten, aliphatischen Rest oder einen gegebenenfalls über einen aliphatischen Rest gebundenen und gegebenenfalls substituierten cycloaliphatischen, aromatischen oder heterocyclischen Rest verestert ist.

Als Carbonsäureesterrest bevorzugt ist der Rest -COOR12 und als Carbonsäurethiolesterrest bevorzugt ist der Rest - $COSR^{1.3}$, wobei $R^{1.2}$ und $\mathbb{R}^{1\,3}$ die nachfolgend angegebenen Bedeutungen haben: gegebenenfalls substituierter Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Phenyl- oder Naphthylrest oder gegebenenfalls substituierter heterocyclischer Rest. Die Reste -COOR12 und -COSR13 schliessen auch die freien Säuren ein, wobei R12 und R13 für Wasserstoff stehen, sowie die Salze davon, wobei R12 und R13 für ein Kation stehen. Als Salzbildner eignen sich hier besonders Metalle und organische Stickstoffbasen, vor allem quaternäre Ammoniumbasen. Hierbei kommen als zur Salzbildung geeignete Metalle Erdalkalimetalle, wie Magnesium oder Calcium, vor allem aber die Alkalimetalle in Betracht, wie Lithium und insbesondere Kalium und Natrium. Ferner sind als Salzbildner auch Uebergangsmetalle wie beispielsweise Eisen, Nickel, Kobalt, Kupfer, Zink, Chrom oder Mangan geeignet. Beispiele für zur Salzbildung geeignete Stickstoffbasen sind primäre, sekundäre oder tertiäre, aliphatische und aromatische, gegebenenfalls am Kohlenwasserstoffrest hydroxylierte Amine, wie

Methylamin, Aethylamin, Propylamin, Isopropylamin, die vier isomeren Butylamine, Dimethylamin, Diäthylamin, Dipropylamin, Diisopropylamin, Di-n-butylamin, Pyrrolidin, Piperidin, Morpholin, Trimethylamin, Triäthylamin, Tripropylamin, Chinuclidin, Pyridin, Chinolin, Isochinolin sowie Methanolamin, Aethanolamin, Propanolamin, Dimethanolamin, Diäthanolamin oder Triäthanolamin. Als organische Stickstoffbasen kommen auch quaternäre Ammoniumbasen in Betracht. Beispiele für quaternäre Ammoniumbasen sind Tetraalkylammoniumkationen, in den die Alkylreste unabhängig voneinander geradkettige oder verzweigte C1-C6-Alkylgruppen sind, wie das Tetramethylammoniumkation, das Tetraäthylammoniumkation oder das Trimethyläthylammoniumkation, sowie weiterhin das Trimethylbenzylammoniumkation, das Triäthylbenzylammoniumkation und das Trimethyl-2-hydroxyäthylammoniumkation. Besonders bevorzugt als Salzbildner sind das Ammoniumkation und Trialkylammoniumkationen, in denen die Alkylreste unabhängig voneinander geradkettige oder verzweigte, gegebenenfalls durch eine Hydroxylgruppe substituierte C1-C6-Alkylgruppen, insbesondere C1-C2-Alkylgruppen, sind, wie beispielsweise das Trimethylammoniumkation, das Triäthylammoniumkation und das Tri-(2-hydroxyäthylen)-ammoniumkation.

Für Z als Carbonsäureamidgruppe kommt ein entsprechender Amidrest in Betracht, welcher unsubstituiert oder am Stickstoffatom mono- oder disubstituiert sein kann oder in welchem das Stickstoffatom Bestandteil eines gegebenenfalls substituierten heterocyclischen Restes ist. Als Substituenten der Amidgruppe sind beispielsweise ein gegebenenfalls substituierter und gegebenenfalls über ein Sauerstoffatom gebundener aliphatischer Rest, ein gegebenenfalls über einen aliphatischen Rest gebundener und gegebenenfalls substituierter cycloaliphatischer, aromatischer oder heterocyclischer Rest oder eine gegebenenfalls mono- oder disubstituierte Aminogruppe zu nennen.

Als Carbonsäureamidrest bevorzugt ist der Rest -CONR¹, R¹, worin R¹, für Wasserstoff, einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Alkinyl- Cycloalkyl-, Phenyl- oder Naphthylrest, einen

gegebenenfalls substituierten heterocyclischen Rest oder einen Alkoxyrest, R¹⁵ für Wasserstoff, Amino, mono- oder disubstituiertes Amino oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Cycloalkyl- oder Phenylrest oder R¹⁴ und R¹⁵ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, für einen gegebenenfalls substituierten heterocyclischen Rest stehen.

Als Substituenten der organischen Reste R¹², R¹³, R¹⁴ und R¹⁵ kommen beispielsweise Halogen, Nitro, Cyan, Hydroxy, Alkyl, Halogenalkyl, Alkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Alkylthio, Halogenalkoxy, Hydroxyalkoxy, welches durch ein oder mehrere Sauerstoffatome unterbrochen sein kann, Hydroxyalkylthio, Alkoxycarbonyl, Amino, Alkylamino, Dialkylamino, Hydroxyalkylthio, Alkoxycarbonyl, Amino, Alkylamino, Dialkylamino, Cycloalkyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenoxy oder ein gegebenenfalls substituierter heterocyclischer Rest in Betracht.

Unter heterocyclischen Resten als Bestandteile des Carbonsäureesterrestes, des Carbonsäurethiolesterrestes und des Carbonsäureamidrestes sind vorzugsweise 5- bis 6-gliedrige, gesättigte oder ungesättigte, gegebenenfalls substituierte monocyclische Heterocyclen mit 1 bis 3 Heteroatomen aus der Gruppe N, O und S zu verstehen, wie beispielsweise Furan, Tetrahydrofuran, Tetrahydropyran, Tetrahydropyrimidin, Pyridin, Piperidin, Morpholin und Imidazol.

Unter Cycloalkylresten als Bestandteile des Carbonsäureesterrestes, des Carbonsäurethiolesterrestes und des Carbonsäureamidrestes sind insbesondere solche mit 3 bis 8, vor allem 3 bis 6, Kohlenstoffatomen, zu verstehen,

Im Substituenten Z als Bestandteil des Carbonsäureesterrestes, des Carbonsäurethiolesterrestes und des Carbonsäureamidrestes vorliegende aliphatische, acyclische Reste können geradkettig oder verzweigt sein und enthalten zweckmässigerweise bis maximal 18

Kohlenstoffatome. Eine geringere Anzahl von Kohlenstoffatomen ist häufig, insbesondere bei zusammengesetzten Substituenten, von Vorteil.

Für Z als cyclisiertes Derivat einer Carbonsäureamidgruppe kommt insbesondere ein gegebenenfalls substituierter Oxazolin-2-yl-Rest, vorzugsweise ein unsubstituierter Oxazolin-2-yl-Rest, in Betracht.

A und Z können zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, wobei der unsubstituierte Tetrahydrofuran-2-on-Ring bevorzugt ist, insbesondere der unsubstituierte Tetrahydrofuran-2-on-3-yl-Ring.

In den Verbindungen der Formel I bedeutet Halogen Fluor, Chlor, Brom und Jod, insbesondere Chlor, Brom und Jod.

Als Salzbildner für Säureadditionssalze kommen organische und anorganische Säuren in Betracht. Beispiele organischer Säuren sind Essigsäure, Trichloressigsäure, Oxalsäure, Benzolsulfonsäure und Methansulfonsäure. Beispiele anorganischer Säuren sind Chlorwasserstoffsäure, Bromwasserstoffsäure, Jodwasserstoffsäure, Schwefelsäure, Phosphorsäure, phosphorige Säure und Salpetersäure.

Als Metallkomplexbildner eignen sich beispielsweise Elemente der 3. und 4. Hauptgruppe, wie Alumium, Zinn und Blei, sowie der 1. bis 8. Nebengruppe, wie beispielsweise Chrom. Mangan, Eisen, Kobalt, Nickel, Zirkon, Zink, Kupfer, Silber und Quecksilber. Bevorzugt sind die Nebengruppenelemente der 4. Periode.

Wenn in den Verbindungen der Formel I A für -CH(CH₃)- steht, der Rest Z ein asymmetrisches Kohlenstoffatom enthält oder A und Z zusammen einen Tetrahydrofuran-2-on-Ring bilden, existieren optisch isomere Verbindungen. Im Rahmen der vorliegenden Erfindung sind unter den entsprechenden Verbindungen der Formel I sowohl die optisch reinen Isomere wie auch die Isomerengemische zu verstehen.

Ist bei Vorhandensein eines oder mehrerer asymmetrischer Kohlenstoffatome die Struktur nicht näher angegeben, so ist stets das Isomerengemisch gemeint.

Besonders geeignet zur erfindungsgemässen Verwendung sind Verbindungen der Formel I, in denen R^1 , R^2 , R^4 , R^5 und R^6 Wasserstoff bedeuten, R^3 für Wasserstoff oder Chlor und der Rest -A-Z für eine Gruppe -CH₂-COOR¹⁶ oder -CH(CH₃)-COOR¹⁶ steht, worin R^{16} C₁-C₁₂-Alkyl, C₃-C₆-Alkenyl, Phenyl-C₁-C₄-alkyl oder Phenoxy-C₁-C₄-alkyl steht.

Als bevorzugte Einzelverbindungen der Formel I zur erfindungsgemässen Verwendung sind zu nennen:

```
2-Chinolin-8-yloxy-essigsäureisopropylester,
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-dodecylester,
```

- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-oktylester,
- 2-Chinolin-8-yloxy-essigsäure-s-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-oktylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-butenyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-isopropyloxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäurecyclohexylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-s-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylpentyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxadecyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3-methoxybutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-undecylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-s-butylester,

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxaheptyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-heptylester.
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-dodecylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-tert.butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-neopentylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäureäthylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-butylester,
2-Chinolin-8-yloxy-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-i-pentylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1,1-dimethylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthyl-1-methylpropargyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butyloxycarbonylmethyl-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-n-butyloxycarbonyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[l-methyl-2-(2-methylphe-
noxy)-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester,
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-isopropyl-
 phenoxy)-äthyl]-ester.
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-äthylphenoxy)-
 äthyl]-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-methyl-
phenoxy)-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-isopropylphen-
oxy)-äthyl]-ester und
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
oxy)-äthyl]-ester.
Hervorzuheben ist im Rahmen der vorliegenden Erfindung besonders die
Verwendung von:
2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
ester und
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
oxy)-äthyl]-ester.
Als ganz besonders wirksam haben sich für diesen Zweck die folgenden
Verbindungen erwiesen:
2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester
und
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester.
Folgende bisher noch nicht offenbarte Einzelwirkstoffe der Formel I
wurden speziell zur Verwendung als Gegenmittel gegen die phyto-
toxische Wirkung von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-
propionsäure-Derivaten synthetisiert. Sie bilden einen weiteren
Gegenstand der vorliegenden Erfindung:
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylally1)-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(R-1-methylisopentyl)-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(S-1-methylisopentyl)-ester,
```

2-(5-Chlorchinolin-8-yloxy)-essigsäure-(R-1-methylhexyl)-ester,

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(S-1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-ester und
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-oxy)-äthyl]-ester.
```

Diese neuen Verbindungen werden in an sich bekannter Weise aus einem 2-(5-Chlorchinolin-8-yloxy)-essigsäure-Derivat und einem geeigneten Alkohol durch Veresterung oder aus 5-Chlor-8-hydroxychinolin und einem geeigneten α-Halogenessigsäureester in Gegenwart einer Base hergestellt. Weitere geeignete Herstellungsverfahren sind in der publizierten Europäischen Patentanmeldung EP-A-94 349 beschrieben.

Optisch aktive Isomere der Verbindungen der Formel I können aus den Isomerengemischen durch übliche Isomerentrennungsverfahren erhalten werden. Mit Vorteil stellt man aber die reinen Isomeren durch eine gezielte Synthese aus bereits optisch aktiven Zwischenprodukten her. Beispielsweise kann man ein geeignetes 2-(5-Chlorchinolin-8-yloxy)-essigsäure-Derivat mit einem optisch aktiven Alkohol verestern oder man führt die Koppelung von 5-Chlor-8-hydroxychinolin mit einem optisch aktiven α-Halogenessigsäureester aus.

Beispiele für erfindungsgemäss zu verwendende Verbindungen mit Schutzwirkung gegen herbizid wirksame 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-Derivate zeigt die nachfolgende Tabelle 1.

	a,	پھر
		-A-2
	Z-•/	\
=	X	R_1
Tabelle		
Ta		

Nr. R¹ R² R³ R³ R³ R³ A Z 1.1 H <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>										
H H H H H H CH ₃ -CH ₂ -CN H H H H CH ₃ -CH ₂ -CN H H H H H CH ₃ -CH ₂ -CN H H H H H H CH ₃ -CH ₂ -CN NOH H H C ₁ H H H H -CH ₂ -CN NH ₂ H H H H H H H -CH ₂ -CN NH ₂ H H H H H H H -CH ₂ -CN NH ₂	Nr.	R1	R ²	R ³	ŧ.	RŞ	æ	₹	2	physikal. Konstante
H H H H H CH ₃ -CH ₂ -CN H H H H H CH ₃ -CH ₂ -CN H H H H H H H H -CH ₂ -CH ₂ - CN H H H H H H H H -CH ₂ - CH ₂ - CN ₁ NOH H H H H H H H H H CH ₃ -CH ₂ - CN ₁	1.1	Ħ	Ħ	×	æ	Ħ	Ħ	-CH2-	-CN	Smp. 118-119°C
H H H H CH ₃ -CH ₂ CN H H H H CH ₃ -CH ₂ CN H H H C1 H H H -CH ₂ CH ₂ CN H H H H H H H H -CH ₂ CH ₂ CN H H H H H H H H -CH ₂ CN NH ₂	1.2	æ	Œ	æ	æ	×	Æ	-CH2-	-C NOH	Smp. 201-204°C (Zers.)
H H H C1 H H H CH3 -CH2CN12 -CH2- NOH H H H H -CH2CN142	1.3	Ħ	Ħ	Ħ	×	Ħ	CH3	-CH2-	-CN	Smp. 114-116°C
H H C1 H H H H -CH ₂ CM ₁ CM ₂ - H H H H H H -CH ₂ CM ₁ CM ₂ - H H H H H H -CH ₂ - H -CH ₂ - H - CM ₂ CM ₁ CM ₂ - H H H H H H -CH ₂ - H - CM ₂ - H	1.4	K	E	×	æ		CH3	-CH2-	-C NOH	Smp. 209-210°C (Zers.)
H H H H H H -CH2CNH2-	1.5	Ħ	¤	CJ	#	×	×	-CH2-	-C NOH	Smp. 203-205°C (Zers.)
-	9.1	=	Ħ	#	Ħ	53	æ	-CH2-		Smp. 136-138°C

-	•
•)
Postocton	
	١
4	_
(t
	ž
4	4
ı	
- (3
2	4
•	,
-	4
_	ľ
_	
_	i

_					·				
	physikal. Konstante	Smp. 159-160°C	Smp. 129-130°C	Smp. 197-198°C (Zers.)	Smp. 150-151°C	Smp. 143-145°C	Smp. 195-196°C (Zers.)	Smp. 150,5-152°C	Smp. 162-165°C
	2		-c CH2C1		c	OCH ₃			C 3H7-1
_		-CN	NH2	NOH -CANH2	N.	N-O-N	NOH	-CN	-C_N-O-
-	Ą	-CH2CN	-CH2C	-CH ₂ C _N NOH	-CH2CN	-CH2CN1-0-	-CH ₂ C NOH	-CH2-	-CH ₂ C N-O-
-	R ⁶ A		<u>۲</u>	\ \\			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-		-CH2-	-CH2	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
	Ré	СН2	9сн5- н	Н -СН2-	НСН3-	-CH2- 1	-CH2-	-СН2-	н -сн2с
	R ⁵ R ⁶	н н -сн2	н н -сн2	Э2H2- Н	н нСН2-	н н -СН2-	н н -сн2-	н н -сн2-	Н Н -сн2-
	R [†] R ⁵ R ⁶	н н н -сн2-	9сн5- н н н	Н Н Н	н н н -сн ₂ -	Н Н Н — СН2	н н н	н н н	н н н –сн2-
	R ³ R ⁴ R ⁵ R ⁶	C1 H H H -CH2-	9- Н Н Н Н)- H H H I I I I I I I I I I I I I I I I	C1 H H HCH ₂ -	н н н н -сн²	С1 Н Н Н СН2-	C1 H H H -CH2-	C1 H H H -CH2-

ď	1
_	١
ı	

Γ					·			
physikal. Konstante	Smp. 205-207°C (Zers.)	Smp. 150-152°C	Smp. 163-167°C	Smp. 157-158°C	Smp. 149-152°C	Smp. 108-112°C	Smp. 121-124°C	Smp. 186-189°C
2	NOH 	-CN	-c N-O-C NH -c NH ₂ C ₃ H ₇ -1	-CN	-CN-O-COH -CNH2 C3H7-1	-CN	-CN	NOH NH2
¥	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2 CH2-	CH ₃	-cH2 CH2-
 %	CH3	E	Ħ	CH3	CH3		Ħ	Ħ
R5	Ħ	1 23	æ	E	×	#	Ħ	Ħ
ž	Ħ	×	Ħ	Ħ	Ħ	Ħ	æ	æ
R3	CI	ប	CI	บ	C	缸	#	×
2	H	#	H	Ħ	· z	æ	×	=
R ²								,
R1 R	1.15 C1	1.16 C1	ر	CI	ដ	Ħ	z	=======================================

•	2	
,	-	
	1	

۳2 ا		R3	*	۶ ۷	ž	∀	2	physikal. Konstante
н сл	CJ		×	×	m	CH ₃	-cn	Smp. 143-145°
H	Ħ		Ħ	Ħ	z	CH-	-C NOH	Smp. 191-194°C (Zers.)
н	2		Ħ	×	Ħ	CH3-CH-	NOH	Smp. 186-189°C (Zers.)
H NO ₂	202		#	#	ж	EH2-	-CN	Smp. 154-156°C
H NO2	202		Ħ	111	Ħ	-CH2-	NH2	Smp. 214-216°C (Zers.)
H NO2	02		Ħ	Ħ	æ	-CH2-	-CN	Smp. 166-169°C
н	æ		Ħ	ш	н	-CH2-	-C_N-O-C C3H5-cycl.	Smp. 165-166°С

ŧ	•	
•	_	
	i	

		··			
physikal. Konstante	Smp. 139-141°C	Smp. 141-143°C	Smp. 162-164°C	Smp. 212-215°C (Zers.)	Smp. 148-149°C
2	N-O-C O O O O O O O O O O O O O O O O O O	-c_N-O-C_OH3	CN	NOH————————————————————————————————————	-c_N-o-c_ocH ₃
Ą	-CH2-	-CH ₂ -	-CH2-	-CH2-	-CH2-
R6	Ħ	ж	×	Ħ	Ж
R5	×	H	æ	×	. 121
*≥	щ	Ħ	Ħ	æ	ж
R3	щ	CJ	NO2	NO2	C1
R ²	Ħ	Ħ	z	Ħ	н
R1	Ħ	5 23	Ħ	Ħ	H
Nr.	1.30	1.31	1.32	1.33	1.34

•	
α	0
_	1

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····	
physikal. Konstante	Smp. 139-140°C	Smp. 111-114°C	Smp. 158-162°C	Smp. 123-125°C	Smp. 138-139°C
2	N-0-C 0-C2H3	C SC5H11-n	-c N-O-C OH CH	NH2 C2Hs	-C N-O-C N-CH ₃ NH ₂ OCH ₃
A	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
Ré	æ	щ	H	Ħ	Ħ
R5	Ħ	×	×	E	н
**	н	¤	¤	Ħ	, #
R3	13	Ħ.	Ħ	×	×
R²	æ	#	Z	Ħ	ж
R1	æ	Ħ	Œ	æ	E
Nr.	1.35	1.36	1.37	1.38	1.39

•		,	١
•	•	۰	
		ı	
	۱	•	

	T				
physikal. Konstante	Smp. 120-122°C	Smp. 157-158°C (Zers.)	Smp. 144-146°C	Smp. 112-114°C	Smp. 173-174°C
2	-c_N-O-C_4H9-n	-c C _{2H5}	-C_N-O-C_OCH2 -C_NH2 CH2 CH2CI	-c N-0-c CHC1 -C NH2 CH21	-C N-0-C C3H7-1
A	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
R6	缸		Ħ	æ	щ
z,	Ħ	æ	Ħ	Ħ	æ
ž	=	æ	æ	Ħ	æ
R3	Ħ	ប៊	Ħ	æ	C1
R²	33	Ħ	æ	E	н
R¹	×	Ħ	æ	in;	ш
Nr.	1.40	1.41	1.42	1.43	1.44

_	
C)
0	ı

				
physikal. Konstante	Smp. 155-156°C	Smp. 107-110,5°C	Smp. 124-126°C	Smp. 131-132°C
2	NH2	-c_N-0-C -c_NH2	-CN-0-CLH9-1	NH ₂ C1
A	-CH2-	-CH2-	-CH2-	-CH2-
Re	ш	E	æ	н
% %	Ħ	Ħ	Ħ	Ħ
~참	m	×	E	Ħ
R³	Ħ	æ	Ħ	ж
R²	щ	Ħ	ж	щ
R1	н	æ	Ħ	æ
Nr.	1.45	1.46	1.47	1.48

:	7
•	1

					
physikal. Konstante	Smp. 84-86°C	Smp. 168-169°C	Smp. 100-103°C	Smp. 156-157°C (Zers.)	Smp. 82-85°C
2	N-O-C CH2 CH2 NH2 O-C4H9-8.	NH2 III	-CN-O-CH ₂	NH ₂	-C N-0-C C3H7-n
A A	-CH2-	-CH2-	-CH ₂ -	-CH2-	-CH2-
Re	æ	æ	×	×	н
~~	II	5 2	Ħ	×	н
**	×	æ	æ	×	æ
R³	Ħ	Ħ	Ħ	CJ	ж
R²	Ж	×	Ħ	×	Ħ
R1	×	æ	Ħ	×	Ħ
Nr.	1.49	1.50	1.51	1.52	1.53

¢	•	
C	•	١
	ı	

abel	16 1 (Tabelle 1 (Fortsetzung)	etzung						
Nr.	R1	R ²	R3	*	. 25	Ré	⋖.	2	physikal. Konstante
1.54	ш	#	11	Ħ	Ħ	m	-CH2-	N-0-C	Smp. 144-147°C
1.55	=	×	×	д	Ħ	Ħ	-CH2-	-c N-O-C C-CH ₃	Smp. 128-130°C
1.56	×	Ħ	Ħ	×	ш	Ħ	-CH ₂ -	NH2 NH-C4H9-n	Smp. 104-107°C
1.57	æ	Ħ	Ħ	#3	pri	æ	-CH2-	-C N-O-C CH2Br	Smp. 132-134°C
1.58	H	ш	±	Ħ	щ	ж	-CH2-	-c N-O-C GH NH2 GH	Smp. 138-140°C

tzung)	R³ R* R5 R6 A Z Konstante	H H H -CH2CM2CM2- Smp. 129-131°C	H H H ——CH2——C N-O-C Smp. 121-123°C	H H H — -CH ₂ — -C O Smp. 123-125°C	H H H -CH2C 0-CH2 Smp.127-128°C (Zers.)	Cl H H -CH2C C3H5-cycl. Smp. 173-175°C
	R ⁵ R ⁶	н	н	# .	н	н
Tabelle l (Fortsetzung)		Ħ		ш		CI
1 (Fort	1 R2	H	#	x	H	=
Tabelle	Nr. R ¹	1.59 н	1.60 н	1.61 н	1.62 н	1.63 н

•	J	
¢	`	
	ŧ	

physikal. Konstante	Smp. 135-137°C	Smp.191-192°C (Zers.)	Smp. 120-121°C	Smp. 118-120°C
2	N-O-CH2	N-O-C-N	-CN-O-CS-C2H5	-c CH2 CH3
A	-CH2-	-CH2-	-CH2-	-CH2-
Re	II	Ħ	Ħ	ж
જ	II	m	æ	н
*x	×	æ	H	н
R³	. ==	CI	æ	æ
R ²	Ħ	Ħ	Ħ	ж
R1	æ	Ħ	F	×
Nr.	1.64	1.65	1.66	1.67

ţ...

Ł	r	
¢	`	

physikal. A Z Konstante	-CH ₂ C NH Smp.191-192°C (Zers.)	-CH ₂ C Smp. 158-159°C	-CH ₂ C C ₃ H ₇ -1 Smp. 115-117,5°C	-CH ₂ C CH ₂ Smp. 140-142°C
2	2 Z		N-0-C	
A	-CH2-	-CH2-	-CH2-	-CH2-
R6	ш	Ħ	Ħ	×
R5	æ	Ħ	Ħ	Ħ
R.	T.	×	=	Ħ
Nr. R ¹ R ² R ³	C1	ш	×	Ħ
R ²	×	Ħ	¤	Ħ
۳ ا	Ħ	×	=	=
Nr.	1.68	1.69	1.70	1.71

_
9
2
ı

	1		· · · · · · · · · · · · · · · · · · ·	
physikal. Konstante	Smp. 164-165°C	Smp. 129-132°C	Smp. 155-157,5°C	Smp. 158-160°C
	N-O-C S	-C_N-O-C_O-C ₂ H ₅	NH2 NH2	NH2 OCF 3
¥	-CH ₂ -	-CH2-	-CH2-	-CH2-
Жę	н	æ	m	т.
R ⁵	н	Ħ	×	æ
*	ж	Д	E	Æ
R3	Ħ	iii	н	æ
R ²	ш	щ	æ	ш
R1	ш	ж	Ħ	Ħ
Nr.	1.72	1.73	1.74	1.75

	<u> </u>	·			
physikal. Konstante	Smp. 155-158°C (Zers.)	Smp. 144-146°C	Smp. 123-124°C	Smp. 173-176°C (Zers.)	Smp. 134-136°C (Zers.)
2	-c N-O-C CH2C1	N-0-C2H5	-c N-0-c S S H7-1	NH2 CI	-C N-O-C O CH2 OH2 CH2C1
4	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
Re	æ		æ	Ħ	Ħ
% %	E	Ħ	255	×	æ
Ř	=	æ	Ħ	H	E
R³	5	H	Ħ	H	×
R²	H	. 12	æ	æ	E
R.1	ш	Ħ	æ	E	H
Nr.	1.76	1.77	1.78	1.79	1.80

physikal. Konstante	Smp. 100-102°C	Smp. 197-199°C		Smp. 170-171°C	Smp. 65-66°C	Smp. 70-72°C	Smp. 184-185°C	Smp. 80-82°C
2	-c N-O-c CH ₃	NH2 C1	, , , , , , , , , , , , , , , , , , ,	-CN-O-CON-O-CN-O-CN-O-CN-O-CN-O-CN-O-CN	-C00CH ₃	-C00CH ₃	-соон • н20	-COOCH2CH2OCH3
∢	-CH2-	-CH2-		-CH2-	-CH-	-CH- CH ₃	-CH2-	-CH2-
Re	æ	Ħ		m	Ħ	Ħ	Ħ	==
.g.	=	Ħ		#	Ħ	Ħ	Ħ	æ
*	Ħ	II		2	Ħ	Œ	Ħ	н
R³	Œ	æ		H	7	æ	Ħ	ш
R ²	н	ж		Ë	æ	æ	×	Ħ
R1	Ħ	Ħ		3 2	CI	×	æ	×
Nr.	1.81	1.82		1.83	1.84	1.85	1.86	1.87

ı
29

Tabel	16 1 (Tabelle 1 (Fortsetzung)	tzung						
Nr.	R.	R ²	R3	* <u>*</u>	R§	Re	4	2	physikal. Konstante
1.88	×	×	Ħ	==	H	Ħ	-CH2-	-C00CH ₃	Smp. 46,5-67,0°C
1.89	Ħ	æ	Ħ	Ħ	×	×	-CH2-	-C00C ₂ H ₅ • H ₂ O	Smp. 56-59°C
1.90	×	æ	Ħ	Ħ	Ħ	æ	-CH-	-CONH(CH ₂) ₃ 0C ₂ H ₅	Smp. 54-56°C
1.91	æ	E	Œ	Ħ	Ħ	×	-CH-	-CONHC2H5	Smp. 86-88°C
1.92	==	H	Ħ	æ	н	H	-CH2-	-C00C ₃ H ₇ -n	Smp. 28-31°C
1.93	×	¤ .	Ħ	Ħ	Ħ	æ	-CH2-	-C00C3H7-1	n _D = 1.5696
1.94	ĸ	×	×	×	æ	H	-CH2-	-CONHCH ₃ • H ₂ O	Smp. 74-81°C
1.95		Œ	×	H	н	Ħ	-CH2-	-con CH ₃	Smp. 142-145°C
1.96	=	=	н	Ħ	æ	ш	-CH2-	-CONHC2H5	$n_{\rm p}^{22,5} = 1.6002$
1.97	*	H	Ħ	æ	Ħ	¤	-CH- CH ₃	-CONH(CH ₂) ₃ OH	Smp. 120-122°C
1.98	m	#	ж	н	=		-CH2-	-C00CH2CH2OC2H5	$n_{\rm D}^{24} = 1.5673$

	3
~	١
ı	

Nr.	- T-2	R ²	R3	₽ Ta	%	Re	⋖	2	physikal. Konstante
1.99	Ħ	×	н	E	H	H		-connche-	Smp. 88-90°C
1.100	Ħ	Ħ	Ħ	Ħ	Ħ	ж	-CH2-	-CONH(CH ₂) ₃ CH ₃	Smp. 66-68°C
1.101	, E	×	m	ж	×	ш	-СН- СН ₃	-con CH2 CH2OH	n _D = 1.6054
1.102	×	z	Ħ	æ	×	æ	-CH2-	-con CH2CH2OH	Smp. 146-149°C
1.103	=	ж	Ħ	Ħ	×	in:	-CH2-	-c000CH ₂ 2H20003-	zähe Masse
1.104		×	Ħ	ж	н	m	-CH- CH ₃	-CONH(CH ₂) ₃ CH ₃ • H ₂ O	Smp. 73-76°C
1.105	=	Ħ	ш	н	н	ш	-CH-	-co-N	Smp. 120-121°C

_
٠.
•
- 3
- (
7
•
1
4
ì
•
ě
Ġ
•
-
•
•
_

physikal. Konstante	Smp. 105-111°C	Smp. 232-233°C	Smp. 97-98°C	Smp. 104-105,5°C	Smp. 116-117°C	Smp. 108-109°C	Smp. 135-136°C	Smp. 58-66°C	$n_{\rm D}^{22,5} = 1.5762$	Smp. 63-69°C	Smp. 68-70°C
. 2	-con CH ₃	Н000-	-COOCH2CH2OCH3	-соосн ₃	-C00C2H5	-C00C ₃ H ₇ -n	-con CH ₃	-соосн ₃	-COOC2H5	-C00C ₄ H ₉ -t	-C00C _t H9-t
A	-CH- CH ₃	-CH2-	-CH3-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
Ré	×	Ħ	æ	н	Ħ	Ħ	Œ	CH3	CH3	×	ж
% %	×	×	Ħ	H	Ħ	Ħ	H	=	н	×	ш
*	#	æ	ш	н	Ħ	Ħ	Ħ	E	Ħ	ш	=
R3	a	CJ	IJ	ប	ជ	ប	ប	Ħ	Ħ	C	×
R ²	ж	Ħ	Ħ	#	æ	×	· ¤	Ħ	Ħ	Ħ	Ħ
R.	Ħ	Ħ	Ħ	Ħ	¤	Œ	Ħ	H	Œ	Ħ	Œ
Nr.	1.106	1.107	1.108	1.109	1.110	1.111	1.112	1.113	1.114	1.115	1.116

- 31 -

1	ī	٠	١
(•	
		ì	

physikal. Konstante	Smp. 115-116°C	Smp. 147-148°C	Smp. 102-104°C	Smp. 110-112°C	Smp. 98-99°C	Smp. 76-77°C	Smp. 110-111°C	$n_D^{24} = 1.5419$	Smp. 90,5-92°C	$\begin{bmatrix} n_{\rm D}^{23} = 1.5232 \end{bmatrix}$	$n_{\rm D}^{23} = 1.5885$	Smp. 87-88°C	=
2	-C00CH2-C=CH	-C00C3H7-1	-COOCH2CH2OC2H5	-C00CH ₂	-COOCH2-CH=CH2	-COO(CH ₂) ₁₁ CH ₃	-C00C4H9-8	-COO(CH ₂)7CH ₃	neH ₉ D000-	-COO(CH ₂) ₁₁ CH ₃	-COOCH2-CH=CH2	-C00(CH ₂), CH ₃	
¥	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-
Re	=	#	Œ	¤	æ	Ħ	æ	Ħ	Ħ	Ħ	==	Ħ	
જ	E	Ħ	#	H	#	Ħ	Ħ	Ħ	×	Ħ	Ħ	Ħ	
**	æ	Ħ	н	æ	Ħ	æ	æ	×	Ħ	Ħ	=	Ħ	
R³	IJ	IJ	ជ	CI	ប	ជ	ដ	×	CI	×	Ħ	CI	
R²	3 23	Ħ	×	Ħ	×	Ħ	Ħ	Æ	×	Ħ	H	æ	
۳. الا	Ħ	×	×	×	Ħ	æ	Ħ	×	Ħ	×	Ħ	Ħ	
Nr.	1.117	1.118	1.119	1.120	1.121	1.122	1.123	1.124	1.125	1.126	1.127	1.128	

ന
ന
í

Tabelle 1	6 1 ((Fortsetzung)	tzung						
Nr.	R1	R²	R3	ź	R5	Re	A	2	physikal. Konstante
1.129	E	Ħ	Ħ	#	H	н	-CH2-	-C00C4H9-n	n ²² = 1.5642
1.130	H	Œ	Ħ	H	Œ	Ħ	-CH2-	-C00C,H9-8	L D rotes Oel
1.131	Ħ	×	CI	×	H	Ħ	-CH2-	-C00CH2CH2C1	Smp. 125-126°C
1.132	×	H	Ħ	Ħ	Œ	Ħ	-CH2-	-cooch2	n _D 1.6099
1.133	æ	Ħ	CJ	æ	Ħ	æ	-CH2-	-cooch ₂ shooo-	Smp. 101-103°C
1.134	×	×	ដ	Ħ	ж	×	-CH2-	-COS(CH ₂), CH ₃	Smp. 53-54°C
1.135	Ħ	æ	Ħ	Ħ	Ħ	Ħ	-CH2-	-COOCH2CH2CI	Smp. 109-110°C
1.136	۵	Ħ	ប	Œ	×	æ	-CH2-	-C00C ₄ H ₉ -t	Smp. 81-97°C
1.137	ה	#	ប	æ	æ	æ	-CH2-	-C00C2H5	Smp. 92-94°C
1.138	ה	=	ប	Ħ	×	=	-CH2-	-COO(CH ₂) ₁₁ CH ₃	Smp. 51-53°C
1.139	5	H	CJ	н	н	Ж	-CH2-	-C00CH ₃	Smp. 121-126°C

Ì

Tabelle 1 (Fortsetzung)	0 1	Fortse	stzung						
Nr.	R1	R ²	R³	¥.	R5	Re	⋖	2	physikal. Konstante
1.140	ىر	н	CI	Ħ	Ħ	Ħ	-CH2-	-cooch2cH2c1	Smp. 44-45°C
1.141	ы	Ħ	CJ	Ħ	Ħ	Ħ	-CH2-	-2H0000-	Smp. 112-113°C
1.142	נק	×	7	н	щ	ш	-CH2-	-C00C3H7-n	Smp. 71-73°C
1.143	Ħ	æ	Ħ	Ħ	Ħ	щ	-CH2-	-C00C4H9-1	n _D = 1.5632
1.144	Ħ	æ	E	H	ж	Ħ	-CH2-	-coochch2cH2cH3	$n_{D}^{22} = 1.5391$
1.145	Ħ	ж	Ħ	Ħ	þ:	×	-CH2-	-cooch(ch2)5ch3	$n_{\rm D}^{22} = 1.5342$
1.146	Ħ	Ħ	Ħ	H	Ħ	Ħ	-CH2-	-CONH(CH2)11CH3	Smp. 56-61°C
1.147	æ	r	×	×	æ	æ	-CH2-	-CONHCH2CH2-N	Smp. 94-99°C
1.148	Ħ	· H	=	×	Ħ	×	-CH2-	-CONHCH2CH2CH2OH	Smp. 138-139°C
1.149	H	ж	ж	н	н	æ	-CH2-	-CONHH	Smp. 104-106°C

physikal. Konstante	Smp. 99-103°C	n _D = 1.5686	Smp. 144-146°C	n _D = 1.5766	nD = 1.5840	Smp. 70,5-73,5°C	Smp. 150-151°C
2	o Noo-	-CONHCH ₂ CH ₂ N C ₂ H ₅	CH2CH2OH -CON CH2CH2OH	-CONH(CH ₂) ₃ N CH ₃	CH ₃ -CON C ₄ H ₉ -n	-CONHCH ₂	-conhchch2ch3 ch2oh
4	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
Re	Ħ	Ħ	Ħ	Ħ	m	×	in:
Rs.	E	E	æ	H	×	æ	×
*	æ	æ	æ	Ħ	Ħ	=	æ
R³	æ	ж	Ħ	æ	×	æ	н
R ²	æ	Ħ	æ	Ħ	×	Ħ	Ħ
R1	H	н	Œ	×	×	×	E
Nr.	1.150	1.151	1.152	1.153	1.154	1.155	1.156

	physikal. Konstante	Smp. 105-106°C	n _D = 1.5821	Smp. 109-110°C	Smp. 71-75°C	Smp. 57-58°C	Smp. 51-61°C	Smp. 70-91°C	Smp. 85-88°C	Smp. 187-189°C
	2	-coN • 2H20	-CONHCH ₂ CH ₂ -N	-CONH(CH ₂) ₃ N CH ₂ CH ₂ OH	-CONHCH2-CH#CH2 • H2O	-conhch2-10-10-10-10-10-10-10-10-10-10-10-10-10-	-CONH(CH2)30C2H5	-Conhch2ch2nhch2ch2oh	CONH(CH2)30C2H5	-CON CH ₂ CH ₂ OH
	4	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-2H2-	-CH2-	-CH2-
	Re	Ħ	H	E	æ	æ	Ħ	æ	æ	Ж
-	₩ ₩	E	Ħ	Ħ	=	æ	Ħ	Ħ	Ħ	н
$\Big $	ž	#	Œ	Ħ	Ħ	×	Ħ	E	×	Ħ
0 -	R3	=	Ħ	Ħ	Ħ	×	æ	ж	ប	CI
	R2	H	Ħ	Ħ	æ	Ħ	æ	Ħ	×	н
$\ $ _	R1	Ħ	E	2	æ	×	Œ	H	H	H
	Nr.	1.157	1.158	1.159	1.160	1.161	1.162	1.163	1.164	1.165

		1

37 -

Tabelle 1 (Fortsetzung)	9 1 (Fortse	tzung)	_					
Nr.	R1	R²	R³	₩.	R5	R6	A	2	physikal. Konstante
1.166	н	æ	C1	Н	Ħ	æ	-CH2-	CH ₂ CH ₂ OH CH ₂ CH ₂ OH	Smp. 177-179°C
1.167	Œ	æ	CJ	Ħ	Ħ	pr;	-CH2-	OO	Smp. 148-150°C
1.168	×	ж	CI	H	æ	×	-CH2-	-CONHCH2CH2CH2OH	Smp. 157-160°C
1.169	×	Ħ	CI	Н	×	×	-CH2-	-CONHC ₄ H ₉ -n • H ₂ O	Smp. 87-90°C
1.170	×	III.	5	Ħ	Œ	Ħ	-CH2-	-CONHC2H5	Smp. 94-98°C
1.171	Ħ	Ħ	ប	Ħ	Ħ	Œ	-CH2-	-CONHCH2	Smp. 146-149°C
1.172	Ħ	æ	æ	×	æ	CH3	-CH2-	-CONH ₂	Smp. 193-196°C
1.173	Ħ	Ħ	×	Ħ	æ	F	-CH2-	-CONHNH ₂ • H ₂ O	Smp. 121-124°C
1.174	×	×	×	Ħ	×	=	-CH2-	-COONa • H ₂ O	Smp. 140-142°C
1.175	Ħ	Ħ	Œ	Ħ	×	=	-CH2-	-C00K • H ₂ O	Smp. > 200°C
1.176	н	H	H	н	Ħ	Ħ	-CH2-	ө -соо [©] ни(сн ₃) 3	Smp. 176-178°C

i	5	i	
		ı	ſ

Nr.	~ 1	R ²	R³	*	R5	Ré	¥	2	physikal. Konstante
1.177	æ	Ħ	æ	н	Н	Н	-CH2-	-COO HN(CH2CH2OH)3	Smp. 97-98°C
1.178	Ħ	æ	ប	Ħ	ᠴ	Ħ	-CH2-	-C00K • H ₂ 0	Smp. > 260°C
1.179	Ħ	EE	ជ	Ħ	Ħ	Ħ	-CH2-	-COONa • H2O	Smp. > 260°C
1.180	Ħ	×	Ħ	#	Œ	Ħ	-CH2-	-coo HN(C ₂ H ₅) ₃	Smp. 255-257°C (Zers.)
1.181	н	Ħ	CJ	æ	×	æ	-CH2-	-coo ⊕ ®NHt	Smp. 227-228°C (Zers.)
1.182	Ħ	Ħ	C1	æ	×	ж	-CH2-	$-\cos^{\Theta}$ HN(CH ₂ CH ₂ OH) ₃	Smp. 132-156°C (Zers.)
1.183	Œ	Ħ	Ü	jz;	Ħ	ш	-CH-	CH3	Smp. 120-122°C
1.184	E	×	CJ	Ħ	Ħ	×	-CH2-	СН3 СООСН(СН2)5СН3	Smp. 65-67°C
1.185	×	×	C	×	×	Ħ	-CH2-	-COOCH2CH=CH-CH3	Smp. 100-102°C
1.186	æ	ж	CI	×	ж	ш	-CH2-	СН ₂ — С=СН ₂	Smp. 94-95°C

Tabelle 1 (Fortsetzung)	e 1 (Fortse	tzung						
Nr.	R1	R ²	R3	*	R _S	Ré	4	2	physikal. Konstante
1.187	Ħ	Œ	CJ	×	æ	Ħ	-CH2-	-C00CH2CH20C3H7-1	Smp. 70-72°C
1.188	Ħ	ĸ	Cl	Ħ	æ	缸	-CH2-	-C00CH2CH2-O	Smp. 79-80,5°C
1.189	Br	н	Br	Ħ	Œ	Ħ	-CH2-	-C00CH ₃	Smp. 143-145°C
1.190	Br	Ħ	ប	Œ	Ħ	Ħ	-CH2-	-C00C ₃ H ₇ -1	Smp. 71-73°C
1.191	Br	Ħ	Br	H	н	Ħ	-CH2-	-C00C3H7-1	Smp. 47-51°C
1.192	CI	æ	CI	Ħ	#	æ	-CH2-	n-eH ₄ 2002-	Smp. 42-43,5°C
1.193	Br	Ħ	ដ	H	Ħ	×	-CH2-	-cooc+H ₉ -n-	Smp. ca. 28°C
1.194	ជ	=	ប	Ħ	æ	×	-CH2-	-COO(CH ₂), CH ₃	Smp. ca. 30°C
1.195	Br	z	เว	æ	=	æ	-CH2-	-coo(CH ₂), CH ₃	Smp. 41-42°C
1.196	Br	===	CJ	æ	Œ	×	-CH2-	СН3 -СООСН(СН2)5СН3	Smp. 46-48°C
1.197	ប	H	CJ	Ħ	æ	×	-CH2-	-COO(CH ₂) ₁₁ CH ₃	Smp. 49-50°C
1.198	Br	ж	C1	H	H	×	-CH2-	-COO(CH ₂) ₁₁ CH ₃	Smp. 50-52°C

	physikal. Konstante	Smp. 79-80°C	Smp. 100-102°C	Smp. 101-104°C	Smp. 68-70°C	Smp. 81-82°C	Smp. 71-72°C	n _D = 1.5763	Smp. 80-82°C	Smp. 77-78°C
	2	-COOCH2	-C00CH2	-cooch2c	-C00CH2CH20CH3	-C00CH2CH2OC2H5	-C00CH2CH20C2Hs	~C00CH2CH2OC3H7-1	-C00CH2CH2O	-cooch2-
	Ą	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-
	Жe	æ	iti	Ħ	Ħ	Æ	Ħ	ii:	Ħ	H
	8	Ħ	¤	E	Ħ	ш	ш	Ħ	Ħ	H
	Υ _φ	Ħ	br:	Ħ	Ħ	æ	Œ	æ	×	ĸ
etzung,	R³	C1	ជ	. Br	ជ	5	C	CJ	ប្	CI
Forts	R²	m;	Ħ	Ħ	×	#	Ħ	Ħ	Ħ	æ
9 1 (R1	CJ	Br	Br	Br	CJ	Br	Br	Br	CI
Tabelle 1 (Fortsetzung)	Nr.	1.199	1.200	1.201	1.202	1.203	1.204	1.205	1.206	1.207

•	-
٠	J
	1

Nr. R ¹ R ² R ³ R ⁴					
	\$. *.	Ré	Ą	2	physikal. Konstante
1.208 Br H C1 H	Ħ	Ж	-CH2-	, o - z H2002-	Smp. 79-80°C
1.209 C1 H C1 H	=	Ħ	-CH2-	-COOCH2CH=CH2	Smp. 72-73°C
1.210 Br H C1 H	Ξ	Ħ	-CH2-	-COOCH2CH=CH2	Smp. 66-68,5°C
1.211 Br H Br H	=	æ	-CH2-	-COOCH2CH=CH2	Smp. 78-79°C
1.212 Br H C1 H	H	×	-CH2-	-COOCH2CH=CH-CH3	Smp. 60-64°C
1.213 C1 H C1 H	æ	×	-CH2-	CH3 -COOCH2-C=CH2	Smp. 62-65°C
1.214 Br H C1 H	X	æ	-CH2-	CH3 -COOCH2-C=CH2	Smp. 62-64°C
1.215 Вг н С1 н	=	×	-CH2-	. н000-	Smp. 52-54°C
1.216 н. н с1 н	=	×	-cH- CH ₃	-C00C ₃ H ₇ -1	n _D = 1.5642

1	•	١	į
٠	•	į	Ì
	1	ì	

Nr. R;	Tabell	9 1	Tabelle 1 (Fortsetzung)	etzung	_		-			
H H C1 H H H C2H- C4H- C00(CH2), CH3 H H C1 H H H C4H- C4H- C00CH(CH2), CH3 H H C1 H H H C4H- C4H- C00CH2, L1CH3 H H C1 H H H C4H- C4H- C00CH2, CH2CH3 H H C1 H H H C4H- C4H- C00CH2, CH2CH2, CH2CH3 H H C1 H H H C4H- C4H- C00CH2, CH2CH2, CH	Nr.	R ₁	R ²	R3	R*	Rs	Re	A	2	physikal. Konstante
H H C1 H H H H CCHC(CH2)5CH3 H H C1 H H H CCH2 H H C1 H H H H CCH2 H H C1 H H H CCH3 H H C1 H H H CCH3 H H C1 H H H CCH3 CH3 CCOCH2CH2CH2CH3 CCOCH2CH2CH2CH3 CCOCH2CH2CH2CH3 CCOCH2CH2CH2CH3 CCH3 CCOCH2CH2CH2CH3 CCH3 CCCCH3 CCCCH3 CCCCCH3 CCCCCCCC	1.217		iz;	5	Ħ	Ħ	123	-CH- CH ₃	-coo(CH ₂),CH ₃	
H H C1 H H H H CCH ₂ CCH ₂ CCOCCH ₂) 11 CH ₃ H H C1 H H H H CCH ₃ CCH ₂ CCCH ₂ CCCH ₂ CCCH ₃ CCCH ₃ H H C1 H C1 H H H CCH ₃ CCH ₃ CCCH ₂ CCCH ₃ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1.218		Ħ	ij	æ	Ħ	Ħ	-CH- CH ₃	сн ₃ -соосн(сн ₂) ₅ сн ₃	×
H H C1 H H H C2H -CH- C00CH2-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-C1-	1.219		E	C	Ħ	Ħ	¤	-cH- cH3	-C00(CH ₂) ₁₁ CH ₃	Smp. 54-55°C
H H C1 H H H -CH- C00CH2CH2OC3H7-1 H H C1 H H H -CH- C00CH2CH2CH2OC3H7-1 H H C1 H H H -CH- C00CH2CH2CH2CH2 H H C1 H H H -CH- C00CH2CH2CH2CH2 CH3 -CO0CH2CH2CH2CH2 CH3 -CH- C00CH2CH2CH2CH2 CH3 -CH- C00CH2CH3CH3 CH3 -CH- C00CH2CH3CH3 CH3 -CH- C00CH2CH3CH3 CH3 -CH- C00CH2CH3CH3 CH3 -CH- C00CH3CH3CH3 CH3 -CH- C00CH3CH3CH3 CH3 -CH- C00CH3CH3CH3CH3 CH3 -CH- C00CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3C	1.220	Ħ	22	C1	Ħ	×	Ħ	-сн- сн _з	-C00CH2	Smp. 57-59°С
H H C1 H H H -CH- C00CH2CH2CH2O-CH3 H H C1 H H H -CH- C00CH2CH=CH2 CH3 -CH- C00CH2CH2CH2CH2 CH3 -CH- C00CH2CH2CH2CH2	1.221	Ħ	=	C	Ħ	×	Ħ	-CH-	-C00CH2CH2OC3H7-1	n _D = 1.5403
H H C1 H H H -CHCOOCH2CH=CH2 H H C1 H H H -CHCOOCH2CH=CH-CH3	1.222	æ	Ħ	Ü	Ħ	×	Þ:	-CH-	-C00CH2CH2CH2O-	n _D = 1.5962
H H C1 H H H -CHC00CH2CH-CH-CH3	1.223	Ħ	×	C1	×	æ	æ	-cH- CH ₃	-COOCH2CH=CH2	Smp. 40-41°C
	1.224	н	H	C1	H	#	Ħ	-CH-	-cooch₂ch=ch-ch₃	Smp. 39-40°C

ď	
7	
1	

Tabelle 1 (Fortsetzung)	1 (Fortse	tzung)						
Nr.	R1	R ²	R3	R*	R5	R6	A	2	physikal. Konstante
1.225	н	н	C1	Ħ	Œ	Ħ	-cH-	CH3 COOCH2C=CH2	Smp. 62-63°C
1.226	E	æ	C1	Ħ	Ħ	æ	-CH- CH ₃	-C000-	n ³⁰ = 1.5677
1.227	Вг	æ	CI	н	Ħ	Œ	-сн- сн ₃	-COO(CH ₂)7CH ₃	$n_{D}^{28} = 1.5439$
1.228	13	Ħ	C1	æ	Œ	æ	-cH- CH ₃	сн _з -соосн(сн ₂) 5 сн ₃	n _D = 1.5408
1.229	Br	æ	CJ	æ	н	æ	-CH- CH ₃	снз -соосн(сн2) s СН3	n _D = 1.5527
1.230	Br	æ	CI	Ħ	E.	=	-CH- CH ₃	-coo(cH ₂) ₁₁ CH ₃	n _D = 1.5347
1.231	Br	ж	C1	ж	ж	H	-CH-	-cooch ₂ ,	Smp. 55-56°C

_
~
4
ı

			*************************************				<u> </u>	
physikal. Konstante	30 = 1.5886	nD = 1.5642	$n_{\rm D}^{20} = 1.6031$	Smp. 55-56°C	Smp. 38-39°C	Smp. 38-40°C	28 = 1.5824	Smp. 165-170°C
2	-c000CH ₂	-COOCH2CH2OG3H7-1	-C00CH2CH2O-	-COOCH2CH=CH2	COOCH2CH=CH-CH3	-COOCH2CH=CH-CH3	COOCH2C#CH2	-000-
¥	-сн- сн ₃	-CH CH3	-CH-	-CH-	-CH-	-CH- CH3	-CH- CH ₃	-CH2-
%	Ħ	Ħ	Ħ	Ħ	ĸ	Ħ	æ	æ
ž.	×	ш	Ħ	Ħ	н	н	Ħ	=
*	Ħ	Ħ	H	Ħ	Ħ	×	Ħ	E
R³	C	CI	CJ	ប	ប	CJ	CJ	ij
R ²	æ	Ħ	ш	¤	×	ш	Ħ	Ħ
R1	Br	Br	Br	Br	ដ	Br	Вг	×
Nr.	1.232	1.233	1.234	1.235	1.236	1.237	1.238	1.239

	physikal. Konstante	Smp. 143-145°C	Smp. 111-116°C	Smp. 108-119°C	Smp. 102-105°C
	2	-C00CH3	CH3	CH3 CH3	-000-
	¥	-CH2-	-CH2-	-CH2-	-cH-
	R6	н	ж	Ħ	Ħ
	R ₅	Œ	Œ	æ	Ħ
_	*±	Ħ	æ	ш	Ħ
tzung	R3	C1	C1	ជ	CI
Fortse	R ²	ж	Ħ	Ħ	ш
0 1	R ₁	æ	æ	×	
Tabelle 1 (Fortsetzung)	Nr.	1.240	1.241 Н	1.242 Н	1.243

Smp. 140-141,5°C physikal. Konstante A + 2 **%** × **7**5 × ž Ħ Tabelle 1 (Fortsetzung) ຜ **8**3 **R**2 × R. 1.244 H

•	u	c
•		1
	į	į

Nr.	<u> </u>	R ²	R3	‡	₹ 2	Re	4	2	physikal. Konstante
								СН3	
1.245	=	Ħ	ប	×	III.	=	-CH2-	-COOCHCH2CH2CH3	Smp. 65-70°C
1.246	Ħ	æ	田	H	Ħ	H	-CH2-	CH3 -COOCH2-CH(CH2)2CH3	$n_{\rm D}^{22} = 1.5525$
1.247	Ħ	足	C1	H	н	Ħ	-CH2-	· H000-	Smp. 112-113°C
1.248	H	Œ	CJ	н	Ħ	ki	-CH2-	сн ₃ -соосн ₂ сн-сн ₃	Smp. 113-114°C
1.249	Ħ	Ħ	Ħ	H	н	##	-CH2-	осн _з соо(сн ₂) ₂ снсн ₃	n _D =1.5580
1.250	Ħ	Ħ	Ħ	Ħ	Ħ	#:	-CH2-	-COOCH2CH2OCH2CH2O(CH2)3CH3	n _D =1.5389
1.251	Ħ	Ħ	Ħ	Ħ	H	Ħ	-CH2-	-COS(CH ₂) ₃ CH ₃	n _D =1.6096
1.252	Ħ	Ħ	Ħ	Ħ	E	m	-CH2-	. н000-	n _D =1.5755
1.253	æ	Œ	Ħ	æ	Ħ	Ħ	-CH2-	-C00(CH2) 4CH3	n _D =1.5591
1.254	ш	æ	æ	×	×	Ħ	-CH2-	-COS(CH ₂) ₇ CH ₃	n _D =1.5697

physikal. Konstante	Smp.74-75°C	$n_{\rm D}^{22} = 1.6076$	22	23 =1.5530	Smp. 39-41°C	Smp. 72-73°C	Smp. 78-79°C	Smp. 37-46°C	$n_{\rm D}^{22} = 1.5546$	Smp.75-76°C	Smp. 47-50°C	Տաթ. 29-31°C
2	сн ₃ -соосн ₂ -сн(сн ₂) ₂ сн ₃	-COS(CH ₂) ₃ CH ₃	-COOCH2CH=CH-CH3	C2H5 -C00CH2-CH-C2H5	-COOCH2CH2OCH2CH2O(CH2)3CH3	осн ₃ -соо(сн ₂) ₂ снсн ₃	-COO(CH ₂) 4CH ₃	C2H5 -COOCH-(CH2)2CH3	-COOCH2CH2OC3H7-1	-COO(CH ₂) ₁₃ CH ₃	C2H3 -COOCH-C2H5	CH3
A	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-CH2-	-cH2-	-CH2-	-CH2-
Re	Ħ	Ħ	=	×	Œ	н	æ	æ	æ	Ħ	×	н
₩2		×	ж	Ħ	Ħ	麗	H	Ħ	Ħ	æ	н	æ
ź.	=	æ	æ	H	Æ	×	Œ	æ	Ħ	=	×	æ
R3	C1	CJ	Ħ	Œ	CJ	CI	CJ	ច	ш	ដ		
R ²	#	Ħ	æ	Ħ	H	×	H	Ħ	×		×	=
R ₁	H	×	н	Ħ	Ħ	Ħ	H	×	×	=	×	
Nr.	1.255	1.256	1.257	1.258	1.259	1.260	1.261	1.262	1.263	1.264	1.265	1.266

•
~
3
-
1

аретте	7	abelle i (Fortsetzung)	Ezung,						
Nr.	R1	R²	R³	Α	R5	Re	A	2	physikal. Konstante
1.267	×	H	C1	Н	缸	Ħ	-CH2-	C2H5 -C00CH2-CH-C2H5	Smp. 58-63°C
1.268	æ		Ħ	Ħ	Ħ	Ħ	-CH2-	-COOCH2CH2OCH2CH2OC2H5	nD =1.5489
1.269	Ħ	×	Ħ	Œ	Ħ	æ	-CH2-	-COOCH2CH2O	Smp. 80-81°C
1.270	ĸ	Ħ	CJ	Ħ	E	щ	-CH2-	Ç2H5 -C00CH-C2H5	Smp. 55-80°C
1.271	ж	Ħ	×	Ħ	Ħ	Ħ	-CH2-	cH ₃ cH ₃ -coochcH ₂ cH-cH ₃	n _D =1.5463
1.272	=	Ħ	Ħ	Ħ	ж	æ	-CH2-	-COO(CH ₂) ₁₃ CH ₃	Smp. 35-36°C
1.273	255	×	*	辉	×	æ	-cH2-	-COOCH2CH2O(CH2)3CH3	n _D =1.5495
1.274	æ	Ħ	C1	=	Œ	Ħ	-cH2-	-C00CH2CH2OCH2CH2OC2H5	Smp.42-43°C
1.275	Ħ	×	Ħ	=	×	Œ	-CH2-	СООСН2-СН-С2Н5	n _D =1.5566
1.276	×	×	CI	H	田	H	-CH2-	сн ₃ сн ₃ -соосиси ₂ си-сн ₃	Smp.63-64°C
1.277	×	H	Ħ	Ħ	矐	E	-CH2-	ÇH₃ -COSCH-C₂H₅	n 22 =1.5973
					_				

9
4
ŧ

Nr.	R1	R ²	R3	ž.	R5	Ré	¥	2	physikal. Konstante
1.278	×	æ	CJ	H	Ħ	н	-CH2-	CH ₃	Smp.98-101°C
1.279	æ	æ	Ħ	Ħ	æ	æ	-CH2-	CH ₃ -C00¢-C ₂ H ₅ C ₂ H ₅	nD =1.5551
1.280	Ħ	ж	æ	<u> </u>	Ħ	표	-CH2-	сн2 -соосн ₂ -сесн ₂	n _D =1.5805
1.281	×	ж	Ħ	Ħ	æ	æ	-CH2-	сн _з -соос-сн « сн ₂ сн ₃	n _D =1.5793
1.282	×	æ	Œ	Ħ	Ħ	ш	-CH2-	-COOCH2CH2OCH2CH3	23 =1.5560
1.283	×	н	CJ	æ	×	Ħ	-CH2-	сн _з -соос-с _г н _s с _г н _s	n _D =1.5632
1.284		Ħ	CJ	×	Ħ	×	-CH2-	-COO(CH ₂) ₁₀ CH ₃	Smp.70-71°C
1.285		æ	ເວ	æ	35	æ	-2H2-	COOCH2-CH-C2H5	Smp.78-79°C
1.286	E	H	×	æ	ж	ж	-CH2-	-C00(H)CH3	Smp.40-42°C

-	_		_	-		-			
Nr.	_ <u>1</u> Z	R2	R3	ź	<u>ي</u>	Re	A	2	physikal. Konstante
1.287	<u>m</u>	æ	Ħ	==	=	E	-CH2-	-COO(CH2)6CH3	23=1.5469
1.288	æ	E	Ħ	#	Ħ	=	-CH2-	COOC-C2H5 COOC-C2H5 CH3	$n_{\rm D}^{22}$ =1.5581
1.289	æ		CJ	æ	m	Œ	-CH2-	-COOCH2CH2O(CH2)3CH3	Smp. 69-70°C
1.290	H	Ħ	CJ	Ħ	н	æ	-CH2-	CH3 -COSCH-C2H5	Smp. 55-56°C
1.291	Ħ	æ	2	H	H	æ	-CH2-	сн _з -соос-сн - сн ₂ сн ₃	Smp. 83-87°C
1.292	н	=	н	Ħ	н	ж	-CH2-	-cosch ₃	Smp. 41-44°C
1.293	H	×	CJ	Ħ	æ	Ħ	-CH2-	-COOCH2CH2OCH2CH2OCH3	23 1.5633
1.294	H	Œ	CI	×	Ħ	Ħ	-CH2-	-COSCH ₃	Smp. 89-91°C
1.295	#	Ħ	C1	æ	Ħ	Ħ	-CH2-	CH ₃ -C00¢-C ₂ H ₅ CH ₃	Smp. 53-54°C
1.296	=	==	=	Ħ	H	æ	-CH2-	Нз	$_{\rm n}^{23} = 1.5310$
1.297 н		н	cı	н	н	Ħ	-CH2-	-C00(CH ₂) 6CH ₃	Smp.74-76°C

_	۱
ď	١
ı	

	ī					·					
physikal. Konstante	n _D =1.5554	Smp. 103-105°C	nD =1.5987	Smp.26-28°C	Smp.29-31°C	Smp. 73-74°C	23 np =1.5433	Smp. 81-82°C	$n_{\rm D}^{23} = 1.5472$	Smp. 70-74°C	nD=1.5996
2	CH3CH3 -COOCH-CH-CH3	-C00(H)CH3	CH ₃ -COS¢-CH ₃ CH ₃	-COS(CH ₂) ₁₁ CH ₃	-COS(CH ₂) ₉ CH ₃	-C00(CH ₂) ₉ CH ₃	СН3 -СООСН(СН2), СН3	C00CH-CECH	COOCH-CH-CH ₂	снэ снэ сооснсн-сн _з	сн _з -соs¢-сн _з сн _з
A	-CH2-	-CH2-	CH2	-cH2-	-cH2-	-CH2-	-CH2-	-cH2-	-CH2-	-CH2-	-CH2-
Re	н	æ	IX.	Ħ	E	æ	æ	æ	æ		±
æ	æ	æ	×	Ħ	Ħ	×	Ħ	Ħ	×	æ	н
*≿	н	H	2 55	H	=	×	=		 		
R3	æ	5	=					- 		H	1 H
R2	<u></u> -	<u> </u>	<u> </u>	=	Н	H	<u> </u>	<u> </u>	<u> </u>		<u></u>
-Z-	#	=							==	_=_	
Nr.	1.298	1.299	1.300 н	1.301 н	1.302 н	1.303 н	1.304 H	1.305 H	1.306 н	1.307 н	1.308 н

1	7
•	
	ŧ

Tabelle 1		(Fortse	(Fortsetzung)						
Nr.	™	R2	R.3	R.	RS	**	¥	2	physikal. Konstante
1.309	×	H	ж	Ħ	H	Ħ	CH2	сн _з -соосн-сесн	nD =1.5837
1.310	#	H	Ħ	H	==	H	-CH2-	-COS(CH ₂) ₁₁ CH ₃	nD *1.5523
1.311	×	Ħ	н	H	E	ж_	-CH2-	CH3 -COOCH2-¢-CH3 CH3	nD =1.5524
1.312	Ħ	Ħ	H	Ħ	==	H	-CH2-		n ²³ =1.6310
1.313	=	æ	C1	Ħ	=	H	-CH2-	CH3 -COOCH2-¢-CH3	Smp.76-81°C
1.314	H	×	CJ	н	Ħ	H	-CH2-		nD=1.6136
1.315	Ħ	æ	×	111	Œ	jr:	-CH2-	-coo(cH ₂) ₉ CH ₃	nD =1.5308
1.316	#	н	ដ	=	Ħ	3 23	-cH2-	сн _з -соосн(сн ₂) ₄ сн ₃	Smp.65-67°C
1.317	н	H	Ħ	Ħ	==	×	-CH2-	СН ₂) ₂ СН-СН ₃	$n_{D}^{23} = 1.5568$
1.318	Ħ	н_	Ħ	æ	Œ	==	-CH2-	C2H(CH2)3CH3	n _D =1.5454
1.319	H	Щ	c1	<u> </u>	н	н	-cH2-	-COO(CH ₂) ₈ CH ₃	Smp.78-79°C

Tabelle 1	- I	(Fortsetzung)	etzung						i I
Nr.	R.1	R ²	R3	*	R\$	Ré	A	2	physikal. Konstante
1.320	Ħ	##	н	エ		×	-CH2-	CH ₃ -COSCH ₂ CHCH ₃	n _D =1.6049
1.321	#	Ħ	C1	==	Ħ	===	-cH2-	-COSC ₂ H ₅	Smp.55-57°C
1.322	H	Ħ	æ	=	Œ	. #	-CH2-	-C00(CH ₂) ₈ CH ₃	24 1.5436
1.323	æ	1 11	C1	Ħ	Œ	EE.	-CH2-	C2H5 -COOCH2-CH(CH2)3CH3	Smp. 45-47°C
1.324	Ξ	Ħ	CJ	н	Ħ	H	-cH2-	CH ₃ -coscH ₂ cH-cH ₃	$n_{D}^{23} = 1.6045$
1.325	×	Ħ	н	E	H	æ	-CH2-	-COS(CH ₂) ₉ CH ₃	$n_{\rm D}^{23} = 1.5630$
1.326	#	×	 []	×	H	25;	-CH2-	соо(сн ₂) ₂ сн-сн ₃	Smp.72-74°C
1.327	=	H	CI	×	æ	×	-CH2-	C2H5 -COOCH(CH2)3CH3	nD =1.5542
1.328	Ħ	æ	=	E	×	×	-CH2-		n _D =1.5512
1.329	=	Ħ	=	Ħ	Ħ	×	-2H2-	C3H7-n -C00CH(CH2)2CH3	Smp. 48-50°C
1.330	=	=	=	=	=	×	-CH2-	-COS(CH ₂), CH ₃	$_{\rm n_D}^{22}$ =1.5937
1.331	=	=	H	x	*	æ	-CH2-	-COSC ₃ H ₇ -180	$\binom{23}{n_D} = 1.5821$

(8)	
etzun	
Forts	
e 1 (İ
Tabelle	

124 125		R3	*	Rg	R6	А	2	physikal. Konstante
	æ	#	E	H	н	-CH2-	Ç2H5 -C00CH2CH-(CH2)3CH3	nD=1.5395
	<u> </u>	เว	<u></u>	エ		-CH2-	C3H7-n -C00CH(CH2)2CH3	Smp.55-57°C
	H	5	<u> </u>	岡	H	-CH2-	COS(CH ₂) ₅ CH ₃	22=1.5882
	#	CI	缸	<u> </u>	×	-cH2-	-cos(cH ₂)4cH ₃	23 _{-1.5990}
	E	CJ	Ħ	Ħ	E	-CH2-	-COO(CH ₂) 5 CH ₃	Smp.71-72°C
	=	C	=	<u> </u>	エ	-CH2-	-COSC3H7-180	Smp.62-64°C
	æ	<u></u>	皿	=	Ħ	-CH2-	C2H5 CH3 -COOCH-CH2CHC2H5	Smp.25-29°C
	エ	王	#	田	Ħ	-CH2-	C3H7-1 -COOCH-C3H7-1	nD =1.5468
	<u></u>	E	Ħ	Ħ	#	-CH2-	СН ₃ -СООСН-(СН ₂) ₃ СН ₃	n ²³ =1.5531
	H_	<u>C1</u>	Ħ	=	æ	-CH2-	ÇsH11-n -COOCH-CH=CH2	23 _m 1.5579
	<u> </u>		<u> </u>	=		-CH2-	C2H5 -COOCH-(CH2)2CH3	Smp.42-44°C

- 54 -

ď	
ď	
i	

rH ₅	Smp. 76-81°C
Z H7-n 3 -(CH ₂) 3CH ₃ H5 CH ₃ H5 CH ₃ H7-1 -(3H ₇ -1 12) 9-CH=CH ₂ 12) 9-CH=CH ₂ 12) 9-CH=CH ₂ 13) 9-CH=CH ₂	
Z H7-n 3 -(CH ₂) 3CH ₃ H5 CH ₃ H5 CH ₃ H7-1 -(3H ₇ -1 12) 9-CH=CH ₂ 12) 9-CH=CH ₂ -(3=CH -	
2 -COSC3H7-n -COSC3H7-n -COSCH-(CH2) C2H5 CH3 -COOCH-C3H7-1 -COOCH-C3H7-	-c00-¢-c≖cH cH₃
A -CH2CH2CH2CH2CH2CH2CH2CH2	-CH ₂ -
м н н н н н н н н н н н н н н н н н н н	×
м н н н н н н н н н н н н н н н н н н н	=
ж н н н н н н н н н н н н н н н н н н н	m
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
28 L	
	<u> </u>
.344 .344 .344 .345 .346 .348 .348 .350 .351 .352 .3	1.353 H

n ²³ =1.5740	3mp.78-79°C	Smp.71-73°C	3mp.126-128°C	mp.66-68°C	mp.68-70°C	mp.60-63°C	30 1.5734	mp.52-54°C	n _D #1.5508
-	- 0,	<u> </u>	<u> </u>	<u> </u>	Ś	S	<u> </u>	Ñ	E
сн _з -соо-с⊶сн сн _з	сн _з -соо-¢-с≖сн с₂н _s	сн ₃ сн ₃ -соо-сн-сн-с ₂ н ₅	-соосн ₃	-C00C3H7-1	-COOCH2CH2OCH3	-C00C3H7-1	-c00CH ₂	-C00CH2C00C4H9-n	-cooch-cooc4H9-n
-CH2	-CH2-	-CH2-	-cH2-	-E-CE	-CH2-	-cH2-	-cH-	-CH2-	-CH2-
H	=	=	æ	*	=	田	ii.	H	æ
Ħ	Ħ	Ħ	m	Ħ	32 3	#	ine:	hr:	Ħ
	E	==	=	=	==	 -		H	#
×	CJ	C1	ຕ						C1
Ħ	×	H							н
×		-						-	
1.354	1.355	1.356	1.357	1.358	1.359	1.360			1.363 н
	н н н н н -сн	H H H H H -CH ₂ -COO-¢-C=CH CH ₃ H H Cl H H H -CH ₂ COO-¢-C=CH C ₂ H ₃	H H C1 H H H -CH2 -C00- c -C=CH c c c c c c c c c c	H H H H H H COP-C-C-CH CH3 H H C1 H H H CH2COO-C-C-CH C2H5 H H C1 H H H -CH2COO-CH-CH-C2H5 Br H C1 H H H -CH2COO-CH-CH-C2H5	H H H H H H -CH ₂ -COO-¢-C=CH CH ₃ H H Cl H H H -CH ₂ COO-¢-C=CH C ₂ H ₃ H H Cl H H H -CH ₂ COO-¢-C=CH Br H Cl H H H -CH ₂ COOCH ₃ Br H Cl H H H -CH ₂ COOC ₃ H ₇ -1	H H H H H H CCH ₂ -COO-C-C-C-CH H H C1 H H H -CH ₂ -COO-C-C-C-CH C2 H H H H -CH ₂ -COO-C-C-C-CH Br H C1 H H H -CH ₂ -COO-CH-CH-C ₂ H ₅ Br H C1 H H H -CH ₂ -COOCH ₃ C1 H C1 H H H -CH ₂ -COOCH ₃	H H H H H H CCH ₂ -CCO-C-C-C-C-CH CH ₃ H H Cl H H H -CH ₂ -CCO-C-C-C-C-CH C ₂ H ₃ C ₃ H ₃ H H Cl H H H -CH ₂ -CCO-C-C-C-C-C-C-C-C-CH C ₄ H ₃ C ₆ H ₃ C ₆ H ₃ C ₆ H ₃ C ₇ H ₃ C ₈ H ₃ C	H H H H H H H CCH2 COO-C-C=CH H H C1 H H H CCH2- COO-C-C=CH Ex H C1 H H CCH2- COO-C-C-CHCH3 Ex H C1 H H CCH2- COOCH3-COOCH3 Ex H C1 H H CCH2- COOCH3-COOCH3 C1 H C1 H H CCH2- COOCH3-COOCH3 C1 H C1 H H CCH2- COOCH3-COOCH3-CCH3-CCH3-CCH3-CCH3-CCH3-C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabelle 1 (Fortsetzung)	0 1	Fortse	tzung)						
Nr.	R ₁	R ²	В3	*	%	₩ 	A	2	physikal. Konstante
1.364	E	æ	CI	æ	æ	æ	-CH2-	CH ₃ CH ₃ -coochch ₂ CH ₂ ch-ch ₃	Smp. 55-59°C
1.365	<u> </u>	Ħ	ប	Ħ	×	pr.	-CH2-	C00CH	Smp. 43-47°C
1.366	E	Ħ	13	×	×	Ħ	-CH2-	сн ₃ сн ₃ сн ₃	Smp. 75-78°C
1.367	Œ	Ħ	CI	Œ	æ	æ	-CH2-	-cooch-	Smp. 117-122°C
1.368	Œ	×	ซ	Ħ	Ħ	æ	-CH2-	-coochch20()C2H5	Smp. 63-68°C
1.369	×	Ħ	บ	Ħ	Ħ	E	-CH2-	-соосиси	Smp. 116-118°C
1.370 н	æ	×	C1	н	E	Ħ	-CH2-	CH ₃ C ₃ H ₇ -1 -C00CH-CH ₂ O(Smp. 41-43°C

α	
ď	
•	

Tabelle 1		(Fortsetzung)	etzung						
Nr.	R1	R ²	R3	¥,	- SX	Re	A	2	physikal. Konstante
1.371	<u> </u>	Ħ	ij	Ħ	×	Ж	-CH2-	-C00CH	Smp. 74-76°C
1.372	×	Ħ	13	ш	Ħ	Ħ	-CH ² -	CH ₃ C ₂ H ₅ CoochCH ₂ O	Smp. 96-98°C
1.373	=	×	C1	=	Ħ	Ħ	-CH2-	-C00CHCH2O	Smp. 82-85°C
1.374	Ħ	Ħ	ប	Ħ	Ħ	Ħ	-CH2-	-cochch2o	Smp. 42-44°C
1.375	æ	H	ជ	Ħ	Ħ	Ħ	-CH2-	-coochch2ch2	Smp. 78-79°C
1.376	=	æ	CI	ĸ	æ	Ħ	-CH2-	CH ₃ CH ₃ coochch ₂ o-coochch ₂ o-coochch ₂ o-coochch ₂ o-coochch ₂ o-coochch ₃ o-coochch ₃ o-coochch ₃ o-coochch ₃ o-coochch ₄ o-coochch ₂ o-coochch ₃ o-coochch ₄ o-cooc	Smp. 58-61°C
1.377		æ	ប	Ħ	ш.	H	-CH2-	-COOCHCH2O	Smp. 35-38°C
1.378	=	=	CI	щ	н	Ħ	-CH2-	-coochch2o	Smp. 82-84°C

Die Verbindungen der Formel I lassen sich nach bekannten Methoden herstellen, wie sie beispielsweise in den europäischen Patentpublikationen 86 750 und 94 349 beschrieben sind, oder sind analog bekannten Methoden herstellbar.

Die Chinolinderivate der Formel I besitzen in hervorragendem Masse die Eigenschaften, Kulturpflanzen gegen schädigende Wirkungen von herbizid wirksamen 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure Derivaten zu schützen. Die vorgenannten herbiziden Wirkstoffe sind aus den publizierten Europäischen Patentanmeldungen EP-A-83556 und EP-A-97460 bekannt und können nach den dort angegebenen Methoden hergestellt werden. Besonders wirkungsvolle und gemäss der erfindungsgemässen Lehre einsetzbare 2-[4-(5-Chlor-3-fluor-pyridin-2-yloxy)-phenoxy]-propionsäure-Derivate entsprechen der Formel II

worin Y für eine Gruppe $-NR^{16}\,R^{17}$, $-O-R^{18}$, $-S-R^{18}$ oder $-O-N=CR^{19}\,R^{20}$ steht,

 R^{16} und R^{17} unabhängig voneinander Wasserstoff, $C_1\text{-}C_8\text{-}Alkoxy$, $C_1\text{-}C_8\text{-}Alkyl$, Phenyl oder Benzyl,

 R^{16} uns R^{17} zusammen mit dem sie tragenden Stickstoffatom einen 5-bis 6-gliedrigen gesättigten Stickstoffheterocyclus, der durch ein Sauerstoff- oder Schwefelatom unterbrochen sein kann,

R¹⁸ Wasserstoff oder das Aequivalent eines Alkalimetall-, Erdalkalimetall-, Kupfer- oder Eisen-Ions; einen quaternären C_1 - C_4 -Alkyl-ammonium- oder C_1 - C_4 -Hydroxyalkylammonium-Rest; einen gegebenenfalls ein- oder mehrfach durch Amino, Halogen, Hydroxyl, Cyan, Nitro, Phenyl, C_1 - C_4 -Alkoxy, Polyäthoxy mit 2 bis 6 Aethylenoxideinheiten, $-COOR^{21}$, $-COSR^{21}$, $-CONH_2$ -, $-CON(C_1$ - C_4 -alkoxy)- C_1 - C_4 -alkyl, -CO-N-di- C_1 - C_4 -alkyl, -CONH- C_1 - C_4 -alkyl, $-N(C_1$ - C_4 -alkoxy)- C_1 - C_4 -alkyl oder Di- C_1 - C_4 -alkylamino substituierten C_1 - C_9 -Alkylrest;

einen gegebenenfalls durch Halogen oder C_1-C_4 -Alkoxy substituierten C_3-C_9 -Alkenylrest; einen gegebenenfalls durch Halogen oder C_1-C_4 -Alkoxy substituierten C_3-C_9 -Alkinylrest; C_3-C_9 -Cycloalkyl; oder gegebenenfalls durch Cyan, C_1-C_4 -Alkyl,

C₁-C₄-C₄-Cloarkyl; oder gegebenenfalls durch Cyan, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Acetyl, -COOR²¹, -COSR²¹, -CONH₂, -CON(C₁-C₄-alkoxy)-C₁-C₄-alkyl, -CO-N-di-C₁-C₄-alkyl oder -CONH-C₁-C₄-alkyl substituiertes Phenyl,

 R^{19} und R^{20} unabhängig voneinander $C_1\text{-}C_4\text{-}Alkyl$ oder zusammen eine 3-bis 6-gliedrige Alkylenkette und

 $R^{2\,1}$ Wasserstoff, $C_1-C_6-Alkyl$, $C_1-C_6-Halogenalkyl$, $C_2-C_6-Alkoxyalkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Halogenalkenyl$, $C_3-C_6-Alkinyl$ oder $C_3-C_6-Halogenalkinyl$ bedeuten.

In den Verbindungen der Formel II bedeutet Halogen als selbstständiger Substituent oder Teil eines anderen Substituenten, wie Halogenalkyl, Halogenalkoxy, Halogenalkenyl oder Halogenalkinyl, Fluor, Chlor, Brom oder Jod, worunter Fluor oder Chlor bevorzugt sind.

Alkyl steht je nach der Anzahl der vorhandenen Kohlenstoffatome für Methyl, Aethyl, n-Propyl, i-Propyl sowie die isomere Butyl, Pentyl, Hexyl, Heptyl oder Oktyl. Die in den Resten Alkoxy, Alkoxyalkyl, Halogenalkyl oder Halogenalkoxy enthaltenen Alkylgruppen haben die gleiche Bedeutung. Bevorzugt sind jeweils Alkylgruppe mit niedriger Anzahl von Kohlenstoffatomen.

Bevorzugte Halogenalkylreste, bzw. Halogenalkylteile in Halogenalkoxyresten sind: Fluormethyl, Difluormethyl, Trifluormethyl, Chlormethyl, Trichlormethyl, 2-Fluoräthyl, 2,2,2-Trifluoräthyl, 1,1,2,2-Tetrafluoräthyl, Perfluoräthyl, 2-Chloräthyl, 2,2,2-Trichloräthyl, 2-Bromäthyl und 1,1,2,3,3,3-Hexafluorpropyl.

Cycloalkyl steht für mono-, und bi-cyclische gesättigte Kohlen-wasserstoffringsysteme wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooktyl, Cyclononyl, Bicyclo[4.3.0]nonyl, Bicyclo[5.2.0]nonyl oder Bicyclo[2.2.2.]oktyl.

Besonders bemerkenswert ist die Schutzwirkung von Chinolin-Derivaten der Formel I gegenüber solchen Herbiziden der Formel II, in denen Y für die Gruppen -O-R¹⁸, -S-R¹⁸, oder -O-N=CR¹⁹R²⁰ steht, wobei R¹⁸ Wasserstoff, C₁-C₄-Alkyl, C₃-C₄-Alkinyl oder durch C₁-C₄-Alkoxy-carbonyl oder Di-C₁-C₄-alkylamino substituiertes C₁-C₄-Alkyl und R¹⁹ und R²⁰ unabhängig voneinander C₁-C₄-Alkyl oder R¹⁹ und R²⁰ zusammen eine C₄-C₇-Alkylenkette bedeuten.

Besonders hervorzuhebende Einzelbedeutungen für Y sind dabei Methoxy, Aethoxy, Propyloxy, Isopropyloxy, Butyloxy, Dimethylaminoäthoxy, Propargyloxy, 1-Cyano-1-methyläthoxy, Methoxycarbonylmethylthio, 1-Aethoxycarbonyläthoxy, Butyloxycarbonyl, -O-N=C(CH₃)₂, -O-N=C(CH₃)C₂H₅ oder -O-N=C(CH₂)₅.

Das optisch aktive Kohlenstoffatom der Propionsäuregruppe hat üblicherweise sowohl R- als auch S-Konfiguration. Ohne besondere Angabe sind hierin die racemischen Gemische gemeint. Bevorzugte Herbizide der Formel II sind 2R-konfiguriert.

Beispiele für herbizid wirksame 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-Derivate, gegen deren Wirkung Kultur-pflanzen erfindungsgemäss geschützt werden können, sind in der nachfolgenden Tabelle 2 aufgeführt.

Nr.	Y	physikalische Konstante
2.1	-OCH ₃	Smp. 63-64°C
2.2	-OC ₄ H ₉ -n	$n_D^{35} = 1.5275$
2.3	-O-N=C(CH ₃) ₂	n _D ³⁵ = 1.5488
2.4	-OC ₂ H ₅	$n_D^{35} = 1.5358$
2.5	-0-CH ₂ -CH ₂ -N(CH ₃) ₂	n _D ³⁵ = 1.5334
2.6	-0-СH ₂ -С≖СН	$n_D^{35} = 1.5492$
2.7	-O-C-CN CH ₃ CH ₃	$n_{\rm D}^{35} = 1.5330$
2.8	-S-CH ₂ -СООСН ₃	n _D ³⁵ = 1.5607
2.9	-0-СН-СООС2Н5 СН3	n _D ³⁵ = 1.5227
2.10	-0-CH ₂ -COOC ₄ H ₉ -n	$n_D^{35} = 1.5223$
2.11	-OC ₃ H ₇ -n	n _D ³⁵ = 1.5319
2.12	-OC ₃ H ₇ -1	$n_D^{35} = 1.5284$
2.13	-O-N=C-C ₂ H ₅ CH ₃	$n_D^{35} = 1.5340$
2.14	-O-N=C	$n_D^{35} = 1.5360$
2.15	-OCH ₃ (2R)	$n_{\rm p}^{35} = 1.5359$
2.16	-он	Smp. 95-97°C
2.17	-S-CH ₂ -COOCH ₃ (2R)	$n_D^{35} = 1.5623$

Tabelle 2 (Fortsetzung)

Nr.	Y	physikalische Konstante
2.18	-0-CH-COOC ₂ H ₅ (2R,S) CH ₃	n _D ³⁵ = 1,5223
2.19	-O-CH ₂ -C≡CH (2R)	Smp. 55-56°C
2.20	-NH-OCH ₃	Smp. 103-105°C

Als Kulturpflanzen, welche durch Chinolinderivate der Formel I gegen schädigende Wirkungen von Herbiziden der Formel II geschützt werden können, kommen insbesondere diejenigen in Betracht, die auf dem Nahrungs- oder Textilsektor von Bedeutung sind, beispielsweise Zuckerrohr und insbesondere Kulturhirse, Mais, Reis und andere Getreidearten (Weizen, Roggen, Gerste, Hafer). Ganz besonders ist an dieser Stelle die Verwendung in Weizen, Roggen, Gerste und Reis herauszustellen.

Eine bevorzugte Ausführungsform des erfindungsgemässen Verfahrens besteht in der Verwendung von

```
2-Chinolin-8-yloxy-essigsäureisopropylester,
```

- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-dodecylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-oktylester,
- 2-Chinolin-8-yloxy-essigsäure-s-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-oktylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-butenyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-isopropyloxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäurecyclohexylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-s-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylpentyl)-ester,

```
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxadecyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3-methoxybutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-undecylester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-s-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxaheptyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-heptylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-dodecylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-tert.butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-neopentylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäureäthylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-butylester,
2-Chinolin-8-yloxy-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-i-pentylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1,1-dimethylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthyl-1-methylpropargyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butyloxycarbonylmethyl-
ester,
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-n-butyloxycarbonyläthyl)-
 ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-methyl-
 phenoxy)-äthyl]-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
 äthyl]-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
 ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-isopropyl-
 phenoxy)-äthyl]-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-äthylphenoxy)-
 äthyl]-ester.
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-methylphenoxy)
-äthyl]-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-isopropylphen-
oxy)-äthyl]-ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
oxy)-äthyl]-ester
zum Schützen von Kulturpflanzen, insbesondere Getreide, gegen die
schädigende Wirkung von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-
phenoxy]-propionsäuremethylester, 2-[4-(5-Chlor-3-fluorpyridin-2-
yloxy)-phenoxy]-propionsäurepropargylester, 2-[4-(5-Chlor-3-fluor-
pyridin-2-yloxy)-phenoxy]-thiopropionsäure-S-methoxycarbonylmethyl-
ester oder 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propion-
säure-(l-äthoxycarbonyläthyl)-ester.
```

Wegen des hervorragenden erzielbaren Ergebnisses wird der Anwender vorzugsweise die Verbindungen 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)äthyl]-ester. 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)ester oder 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphenoxy)-äthyl]-ester zum Schützen von Kulturpflanzen, insbesondere Getreide, gegen die schädigende Wirkung von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)phenoxy]-propionsäuremethylester, 2-[4-(5-Chlor-3-fluorpyridin-2yloxy)-phenoxy]-propionsäurepropargylester, 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-thiopropionsäure-S-methoxycarbonylmethylester oder 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-(1-äthoxycarbonyläthyl)-ester einsetzen.

Ein geeignetes Verfahren zum Schützen von Kulturpflanzen unter Verwendung von Verbindungen der Formel I besteht darin, dass man Kulturpflanzen, Teile dieser Pflanzen oder für den Anbau der Kulturpflanzen bestimmte Böden vor oder nach dem Einbringen des pflanzlichen Materials in den Boden mit einer Verbindung der Formel I oder einem Mittel, welches eine solche Verbindung enthält, behandelt. Die Behandlung kann vor, gleichzeitig mit oder nach dem Einsatz des Herbizids der Formel II erfolgen. Als Pflanzenteile kommen insbesondere diejenigen in Betracht, die zur Neubildung einer Pflanze befähigt sind, wie beispielsweise Samen, Früchte, Stengelteile und Zweige (Stecklinge) sowie auch Wurzeln, Knollen und Rhizome.

Die Erfindung betrifft auch ein Verfahren zur selektiven Bekämpfung von Unkräutern in Kulturpflanzenbeständen, wobei die Kulturpflanzenbestände, Teile der Kulturpflanzen oder Anbauflächen für Kulturpflanzen mit einem Herbizid der Formel II und einer Verbindung der Formel I oder einem Mittel, welches eine Kombination aus einem solchen Herbizid und einer Verbindung der Formel I enthält, behandelt.

Gegenstand der vorliegenden Erfindung sind ebenfalls herbizide Mittel, welche eine Kombination der antagonistischen Komponente I und der herbiziden Komponente II enthalten.

Vorzugsweise enthalten solche Mittel als antagonistische Komponente eine Verbindung aus der Reihe

- 2-Chinolin-8-yloxy-essigsäureisopropylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-dodecylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-oktylester,
- 2-Chinolin-8-yloxy-essigsäure-s-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-oktylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-butenyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-isopropyloxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäurecyclohexylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-s-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxadecyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3-methoxybutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-undecylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-s-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxaheptyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-heptylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-dodecylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsaure-(1-propylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-tert.butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-neopentylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäureäthylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-butylester,
2-Chinolin-8-yloxy-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-i-pentylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylally1)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1,1-dimethylpropargyl)-ester,
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthyl-1-methylpropargyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butyloxycarbonylmethyl-
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-n-butyloxycarbonyläthyl)-
ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-methyl-
phenoxy)-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-isopropyl-
phenoxy)-äthyl]-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-äthylphenoxy)-
äthyl]-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-methylphenoxy)
-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-isopropylphen-
oxy)-äthyl]-ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
oxy)-äthyl]-ester
und als Herbizidkomponente eine Verbindung aus der Reihe
```

2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäurmethylester, 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-propargylester, 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-thio-propionsäure-S-methoxycarbonylmethylester oder 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-(1-äthoxycarbonyläthyl)-ester.

```
Besonders bevorzugt sind unter diesem Mittel diejenigen, die als
antagonistische Komponente die Verbindungen
2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
oxy)-äthyl]-ester
und als herbizide Komponente die Verbindungen
```

2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäurmethylester, 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-propargylester, 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-thio-propionsäure-S-methoxycarbonylmethylester oder 2-[4-(5-Chlor-3-fluor-pyridin-2-yloxy)-phenoxy]-propionsäure-(1-äthoxycarbonyläthyl)-esterenthalten.

Von diesen Mitteln geniessen weiterhin solche Mittel den Vorzug, die die als antagonistischen Wirkstoff

- 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester oder
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester enthalten.

Bei den zu bekämpfenden Unkräutern kann es sich sowohl um monokotyle wie um dikotyle Unkräuter handeln.

Als Kulturpflanzen oder Teile dieser Pflanzen kommen beispielsweise die vorstehend genannten in Betracht. Als Anbauflächen gelten die bereits mit den Kulturpflanzen bewachsenen oder mit dem Saatgut dieser Kulturpflanzen beschickten Bodenareale, wie auch die zur Bebauung mit diesen Kulturpflanzen bestimmten Böden.

Die zu applizierende Aufwandmenge Antidot im Verhältnis zum Herbizid richtet sich weitgehend nach der Anwendungsart. Bei einer Feldbehandlung, welche entweder unter Verwendung einer Tankmischung mit einer Kombination von Antidot und Herbizid oder durch getrennte Applikation von Antidot und Herbizid erfolgt, liegt in der Regel ein Verhältnis von Antidot zu Herbizid von 1:100 bis 10:1, bevorzugt 1:20 bis 1:1, und insbesondere 1:1, vor. Dagegen werden bei der Samenbeizung weit geringere Mengen Antidot im Verhältnis zur Aufwandmenge an Herbizid pro Hektar Anbaufläche benötigt.

In der Regel werden bei der Feldbehandlung 0,01 bis 10 kg Antidot/ha, vorzugsweise 0,05 bis 0,5 kg Antidot/ha, appliziert,

Bei der Samenbeizung werden im allgemeinen 0,01 bis 10 g Antidot/kg Samen, vorzugsweise 0,05 bis 2 g Antidot/kg Samen, appliziert. Wird das Antidot in flüssiger Form kurz vor der Aussaat unter Samenquellung appliziert, so werden zweckmässigerweise Antidot-Lösungen verwendet, welche den Wirkstoff in einer Konzentration von 1 bis 10 000, vorzugsweise von 100 bis 1 000 ppm, enthalten.

Zur Applikation werden die Verbindungen der Formel I oder Kombinationen von Verbindungen der Formel I mit den zu antagonisierenden Herbiziden zweckmässigerweise zusammen mit den in der Formulierungstechnik üblichen Hilfsmitteln eingesetzt und werden daher z.B. zu Emulsionskonzentraten, streichfähigen Pasten, direkt versprühbaren oder verdünnbaren Lösungen, verdünnten Emulsionen, Spritzpulvern, löslichen Pulvern, Stäubemitteln, Granulaten, auch Verkapselungen in z.B. polymeren Stoffen, in bekannter Weise verarbeitet. Die Anwendungsverfahren wie Versprühen, Vernebeln, Verstäuben, Verstreuen, Bestreichen oder Giessen werden gleich wie die Art der zu verwendenden Mittel den angestrebten Zielen und den gegebenen Verhältnissen entsprechend gewählt.

Die Formulierungen, d.h. die den Wirkstoff der Formel I oder eine Kombination von Wirkstoff der Formel I mit zu antagonisierendem Herbizid und gegebenenfalls einen festen oder flüssigen Zusatzstoff enthaltenden Mittel, Zubereitungen oder Zusammensetzungen werden in bekannter Weise hergestellt, z.B. durch inniges Vermischen und/oder Vermahlen der Wirkstoffe mit Streckmiteln, wie z.B. mit Lösungsmitteln, festen Trägerstoffen, und gegebenenfalls oberflächenaktiven Verbindungen (Tensiden).

Als Lösungsmittel können in Frage kommen: Aromatische Kohlenwasserstoffe, bevorzugt die Fraktionen C_8 bis C_{12} , wie z.B. Xylolgemische oder substituierte Naphthaline, Phthalsäureester wie Dibutyl- oder Dioctylphthalat, aliphatische Kohlenwasserstoffe wie Cyclohexan oder

Paraffine, Alkohole und Glykole sowie deren Aether und Ester, wie Aethanol, Aethylenglykol, Aethylenglykolmonomethyl- oder -äthyläther, Ketone wie Cyclohexanon, stark polare Lösungsmittel wie N-Methyl-2-pyrrolidon, Dimethylsulfoxid oder Dimethylformamid, sowie gegebenenfalls epoxidierte Pflanzenöle wie epoxidiertes Kokosnussöl oder Sojaöl; oder Wasser.

Als feste Trägerstoffe, z.B. für Stäubemittel und dispergierbare Pulver, werden in der Regel natürliche Gesteinsmehle verwendet, wie Calcit, Talkum, Kaolin, Montmorillonit oder Attapulgit. Zur Verbesserung der physikalischen Eigenschaften können auch hochdisperse Kieselsäure oder hochdisperse saugfähige Polymerisate zugesetzt werden. Als gekörnte, adsorptive Granulatträger kommen poröse Typen wie z.B. Bimsstein, Ziegelbruch, Sepiolit oder Bentonit, als nicht sorptive Trägermaterialien z.B. Calcit oder Sand in Frage. Darüberhinaus kann eine Vielzahl von vorgranulierten Materialien anorganischer oder organischer Natur wie insbesondere Dolomit oder zerkleinerte Pflanzenrückstände verwendet werden.

Als oberflächenaktive Verbindungen kommen je nach Art des zu formulierenden Wirkstoffs der Formel I und gegebenenfalls auch dem zu antagonisierenden Herbizid nichtionogene, kation- und/oder anionaktive Tenside mit guten Emulgier-, Dispergier- und Netzeigenschaften in Betracht. Unter Tensiden sind auch Tensidgemische zu verstehen.

Geeignete anionische Tenside können sowohl sog. wasserlösliche Seifen wie wasserlösliche synthetische oberflächenaktive Verbindungen sein.

Als Seifen seien die Alkali-, Erdalkali- oder gegebenenfalls substituierten Ammoniumsalze von höheren Fettsäuren (C₁₀-C₂₂), wie z.B. die Na- oder K-Salze der Oel- oder Stearinsäure, oder von natürlichen Fettsäuregemischen, die z.B. aus Kokosnuss- oder Talgöl gewonnen werden können, genannt. Ferner sind auch die Fettsäure-methyltaurinsalze zu erwähnen.

Häufiger werden jedoch sogenannte synthetische Tenside verwendet, insbesondere Fettsulfonate, Fettsulfate, sulfonierte Benzimidazolderivate oder Alkylarylsulfonate.

Die Fettsulfonate oder -sulfate liegen in der Regel als Alkali-,
Erdalkali- oder gegebenenfalls substituierte Ammoniumsalze vor und
weisen einen Alkylrest mit 8 bis 22 C-Atomen auf, wobei Alkyl auch
den Alkylteil von Acylresten einschliesst, z.B. das Na- oder Ca-Salz
der Ligninsulfonsäure, des Dodecylschwefelsäureesters oder eines aus
natürlichen Fettsäuren hergestellten Fettalkoholsulfatgemisches.
Hierher gehören auch die Salze der Schwefelsäureester und Sulfonsäuren von Fettalkohol-Aethylenoxyd-Addukten. Die sulfonierten Benzimidazolderivate enthalten vorzugsweise 2-Sulfonsäuregruppen und einen
Fettsäurerest mit 8 bis 22 C-Atomen. Alkylarylsulfonate sind z.B. die
Na-, Ca- oder Triäthanolaminsalze der Dodecylbenzolsulfonsäure, der
Dibutylnaphthalinsulfonsäure, oder eines Naphthalinsulfonsäure-Formaldehydkondensationsproduktes.

Ferner kommen auch entsprechende Phosphate wie z.B. Salze des Phosphorsäureesters eines p-Nonylphenol-(4-14)-Aethylenoxid-Adduktes oder Phospholipide in Frage.

Als nichtionische Tenside kommen in erster Linie Polyglykolätherderivate von aliphatischen oder cycloaliphatischen Alkoholen, gesättigten oder ungesättigten Fettsäuren und Alkylphenolen in Frage, die 3 bis 30 Glykoläthergruppen und 8 bis 20 Kohlenstoffatome im (aliphatischen) Kohlenwasserstoffrest und 6 bis 18 Kohlenstoffatome im Alkylrest der Alkylphenole enthalten können.

Weitere geeignete nichtionische Tenside sind die wasserlöslichen, 20 bis 250 Aethylenglykoläthergruppen und 10 bis 100 Propylenglykoläthergruppen enthaltenden Polyäthylenoxidaddukte an Polypropylenglykol, Aethylendiaminopolypropylenglykol und Alkylpolypropylenglykol mit 1 bis 10 Kohlenstoffatomen in der Alkylkette. Die genannten Verbindungen enthalten üblicherweise pro Propylenglykol-Einheit 1 bis 5 Aethylenglykoleinheiten.

Als Beispiele nichtionischer Tenside seien Nonylphenolpolyäthoxyäthanole, Ricinusölpolyglykoläther, Polypropylen-Polyäthylenoxidaddukte, Tributylphenoxypolyäthoxyäthanol, Polyäthylenglykol und Octylphenoxypolyäthoxyäthanol erwähnt.

Ferner kommen auch Fettsäureester von Polyoxyäthylensorbitan wie das Polyoxyäthylensorbitan-trioleat in Betracht.

Bei den kationischen Tensiden handelt es sich vor allem um quartäre Ammoniumsalze, welche als N-Substituenten mindestens einen Alkylrest mit 8 bis 22 C-Atomen enthalten und als weitere Substituenten niedrige, gegebenenfalls halogenierte Alkyl-, Benzyl- oder niedrige Hydroxyalkylreste aufweisen. Die Salze liegen vorzugsweise als Halogenide, Methylsulfate oder Aethylsulfate vor, z.B. das Stearyltrimethylammoniumchlorid oder das Benzyldi(2-chloräthyl)-äthylammoniumbromid.

Die in der Formulierungstechnik gebräuchlichen Tenside sind u.a. in folgenden Publikationen beschrieben:

"Mc Cutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981. Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, München/Wien, 1981.

Die agrochemischen Zubereitungen enthalten in der Regel 0,1 bis 99 Gewichtsprozent, insbesondere 0,1 bis 95 Gew.-%, Wirkstoff der Formel I oder Wirkstoffgemisch Antidot/Herbizid, 1 bis 99,9 Gew.-%, insbesondere 5 bis 99,8 Gew.-%, eines festen oder flüssigen Zusatzstoffes und 0 bis 25 Gew.-%, insbesondere 0,1 bis 25 Gew.-%, eines Tensides.

Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel.

Die Mittel können auch weitere Zusätze wie Stabilisatoren, Entschäumer, Viskositätsregulatoren, Bindemittel, Haftmittel sowie Dünger oder andere Wirkstoffe zur Erzielung spezieller Effekte enthalten.

Für die Verwendung von Verbindungen der Formel I oder sie enthaltender Mittel zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Herbiziden der Formel II kommen verschiedene Methoden und Techniken in Betracht, wie beispielsweise die folgenden:

i) Samenbeizung

- a) Beizung der Samen mit einem als Spritzpulver formulierten Wirkstoff der Formel I durch Schütteln in einem Gefäss bis zur gleichmässigen Verteilung auf der Samenoberfläche (Trockenbeizung). Man verwendet dabei etwa 1 bis 500 g Wirkstoff der Formel I (4 g bis 2 kg Spritzpulver) pro 100 kg Saatgut.
- b) Beizung der Samen mit einem Emulsionskonzentrat des Wirksoffs der Formel I nach der Methode a) (Nassbeizung).
- c) Beizung durch Tauchen des Saatguts in eine Brühe mit 50-3200 ppm Wirkstoff der Formel I während 1 bis 72 Stunden und gegebenenfalls nachfolgendes Trocknen der Samen (Tauchbeizung).

Die Beizung des Saatguts oder die Behandlung des angekeimten Sämlings sind naturgemäss die bevorzugten Methoden der Applikation, weil die Wirkstoffbehandlung vollständig auf die Zielkultur gerichtet ist. Man verwendet in der Regel 1 bis 500 g Antidot, vorzugsweise 5 bis 250 g Antidot, pro 100 kg Saatgut, wobei man je nach Methodik, die auch den Zusatz anderer Wirkstoffe oder Mikronährstoffe ermöglicht, von den angegebenen Grenzkonzentrationen nach oben oder unten abweichen kann (Wiederholungsbeize).

ii) Applikation aus Tankmischung

Eine flüssige Aufarbeitung eines Gemisches von Antidot und Herbizid (gegenseitiges Mengenverhältnis zwischen 10:1 und 1:100) wird verwendet, wobei die Aufwandmenge an Herbizid 0,1 bis 10 kg pro Hektar beträgt. Solche Tankmischung wird vor oder nach der Aussaat appliziert.

iii) Applikation in der Saatfurche

Das Antidot wird als Emulsionskonzentrat, Spritzpulver oder als Granulat in die offene besäte Saatfurche eingebracht und hierauf wird nach dem Decken der Saatfurche in normaler Weise das Herbizid im Vorauflaufverfahren appliziert.

iv) Kontrollierte Wirkstoffabgabe

Der Wirkstoff der Formel I wird in Lösung auf mineralische Granulatträger oder polymerisierte Granulate (Harnstoff/Formaldehyd) aufgezogen und trocknen gelassen. Gegebenenfalls kann ein Ueberzug aufgebracht werden (Umhüllungsgranulate), der es erlaubt, den Wirkstoff über einen bestimmten Zeitraum dosiert abzugeben.

Formulierungsbeispiel für flüssige Wirkstoffe der Formel I (% = Gewichtsprozent)

1. Emulsions-Konzentrate	a)	ь)	c)
Wirkstoff aus Tabelle 1	25 %	40 %	50 %
Ca-Dodecylbenzolsulfonat	5 %	8 %	6 %
Ricinusöl-polyäthylenglykoläther			0 N
(36 Mol AeO)	5 %	•	_
Tributylphenol-polyäthylenglykol-			_
äther (30 Mol AeO)	-	12 %	4 %
Cyclohexanon	_	15 %	20 %
Xylolgemisch	65 %	25 %	20 %

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

2. Lösungen	a)	b)	c)	d)
Wirkstoff aus Tabelle 1	80 %	10 %	5 %	95 %
Aethylenglykol-monomethyl-äther	20 %	-	-	-
Polyäthylenglykol MG 400	_	70 %	-	-
N-Methyl-2-pyrrolidon	. .	20 %	-	-
Epoxidiertes Kokosnussöl	-		1 %	5 %
Benzin (Siedegrenzen 160-190°)	-		94 %	-

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

3. Granulate	a)		b)
Wirkstoff aus Tabelle 1	5	%	10 %
Kaolin	94	%	_
Hochdisperse Kieselsäure	1	%	•••
Attapulgit			90 %

Der Wirkstoff wird in Methylenchlorid gelöst, auf den Träger aufgesprüht und das Lösungsmittel anschliessend im Vakuum abgedampft.

4. Stäubemittel	a)		b)
Wirkstoff aus Tabelle 1	2	%	5 %
Hochdisperse Kieselsäure	. 1	%	5 %
Talkum	97	%	
Kaolin	-	-	90 %

Durch inniges Vermischen der Trägerstoffe mit dem Wirkstoff erhält man gebrauchsfertige Stäubemitel.

Formulierungsbeispiele für feste Wirkstoffe der Formel I (% = Gewichtsprozent)

5. Spritzpulver	a)		ь)		c)		
Wirkstoff aus Tabelle l	25	%	50	%		5	¥.
Na-Ligninsulfonat	5	%		%	·	_	,,
Na-Laurylsulfat	3	%	-			5	%
Na-Diisobutylnaphthalinsulfonat	-		6	%		0	
Octylphenolpolyäthylenglykoläther					_	•	
(7-8 Mol AeO)			2	%		_	
Hochdisperse Kieselsäure	5	%	10		10	0	%
Kaolin	62	%	27	%	-	-	

Der Wirkstoff wird mit den Zusatzstoffen gut vermischt und in einer geeigneten Mühle gut vermahlen. Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

6. Emulsions-Konzentrate

Wirkstoff aus Tabelle l	10	%
Octylphenolpolyäthylenglykoläther		
(4-5 Mol AeO)	3	%
Ca-Dodecylbenzolsulfonat	3	%
Ricinusölpolyglykoläther (35 Mol AeO)	4	%
Cyclohexanon	30	%
Xylolgemisch	50	

Aus diesem Konzentrat können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

7. Stäubemittel	a)	ь)
Wirkstoff aus Tabelle l	5 %	8 %
Talkum	95 %	_
Kaolin	-	92 %

Man erhält anwendungsfertige Stäubemittel, indem der Wirkstoff mit den Trägerstoffen vermischt und auf einer geeigneten Mühle vermahlen wird.

8. Extruder-Granulate

Wirkstoff aus Tabelle 1	10	%
Na-Ligninsulfonat	2	%
Carboxymethylcellulose	1	%
Kaolin	87	%

Der Wirkstoff wird mit den Zusatzstoffen vermischt, vermahlen und mit Wasser angefeuchtet. Dieses Gemisch wird extrudiert und anschliessend im Luftstrom getrocknet.

9. Umhüllungs-Granulate

Wirkstoff aus Tabelle 1	3	%
Polyäthylenglykol (MG 200)	3	%
Kaolin	94	%

Der fein gemahlene Wirkstoff wird in einem Mischer auf das mit Polyäthylenglykol angefeuchtete Kaolin gleichmässig aufgetragen. Auf diese Weise erhält man staubfreie Umhüllungs-Granulate.

10. Suspensions-Konzentrate

Wirkstoff aus Tabelle 1	40	%
Aethylenglykol	10	%
Nonylphenolpolyäthylenglykoläther		
(15 Mol AeO)	6	%
Na-Ligninsulfonat	10	%
Carboxymethylcellulose	1	%
37%ige wässrige Formaldehyd-Lösung	0,2	%
Silikonöl in Form einer 75%igen		
wässrigen Emulsion	0,8	%
Wasser	32	%

Der feingemahlene Wirkstoff wird mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensions-Konzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

Formulierungsbeispiele für Wirkstoffgemische (flüssig (% = Gewichtsprozent)

11. Emulsions-Konzentrate	a)	b)	c)
Wirkstoffgemisch: Antidot aus Tabelle 1			
und ein Herbizid der Formel II	25 %	40 %	50 %
im Verhältnis 1:1			
Ca-Dodecylbenzolsulfonat	5 %	8 %	6 %
Ricinusöl-polyäthylenglykoläther			
(36 Mol AeO)	5 %	_	_
Tributylphenol-polyäthylenglykoläther			
(30 Mol AeO)	-	12 %	4 %
Cyclohexanon	_	15 %	20 %
Xylolgemisch	65 %	25 %	20 %

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

12. Emulsions-Konzentrate	a)	b)	c)
Wirkstoffgemisch: Antidot aus Tabelle 1			
und ein Herbizid der Formel II im	25 %	40 %	50 %
Verhältnis 1:3			
Ca-Dodecylbenzolsulfonat	5 %	8 %	6 %
Ricinusöl-polyäthylenglykoläther	•		
(36 Mol AeO)	5 %	-	-
Tributylphenol-polyäthylenglykoläther			
(30 Mol AeO)	~	12 %	4 %
Cyclohexanon	-	15 %	20 %
Xylolgemisch	65 %	25 %	20 %

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

13. Emulsions-Konzentrate	a)		b)		c)
Wirkstoffgemisch: Antidot aus Tabelle l					
und ein Herbizid der Formel II im	25	%	40	%	50 %
Verhältnis 2:1					
Ca-Dodecylbenzolsulfonat	5	%	8	%	6 %
Ricinusöl-polyäthylenglykoläther					
(36 Mol AeO)	5	%	-		-
Tributylphenol-polyäthylenglykoläther					
(30 Mol AeO)	-		12	%	4 %
Cyclohexanon	-		15	%	20 %
Xylolgemisch	65	%	25	%	20 %

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

14. Emulsions-Konzentrate	a)		ь)		c)	
Wirkstoffgemisch: Antidot aus Tabelle l						
und 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-						
phenoxy]-propionsäure-methylester						
im Verhältnis 1:1	25	%	40	%	50	%
Ca-Dodecylbenzolsulfonat	5	%	8	%	6	%
Ricinusöl-polyäthylenglykoläther						
(36 Mol AeO)	5	%	_		-	
Tributylphenol-polyäthylenglykoläther						
(30 Mol AeO)	-		12	%	4	%
Cyclohexanon	-		15	%	20	%
Xylolgemisch	65	%	25	%	20	%

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

15. Emulsions-Konzentrat	a)		ь)		c)
Wirkstoffgemisch: Antidot aus Tabelle 1			•		σ,
und 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-					
phenoxy]-propionsäure-methylester					
im Verhältnis 1:3	25	%	40	%	50 %
Ca-Dodecylbenzolsulfonat	5	%	8	%	6 %
Ricinusöl-polyäthylenglykoläther					•
(36 Mol AeO)	5	%	_		_
Tributylphenol-polyäthylenglykoläther					
(30 Mol AeO)		-	12	%	4 %
Cyclohexanon	-	-	15	%	20 %
Xylolgemisch	65	%	25	%	20 %

Aus solchen Konzentraten können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

16. Lösungen	a)	b)	c)	c	1)
Wirkstoffgemisch: Antidot aus			·		-,
Tabelle 1 und ein Herbizid der					
Formel II im Verhältnis 1:4	80 %	10 %	-	5 %	95 %
Aethylenglykol-monomethyl-äther	20 %	-		_	_
Polyäthylenglykol MG 400	_	70 %		_	_
N-Methyl-2-pyrrolidon	- .	20 %		_	_
Epoxidiertes Kokosnussöl	~	-		1 %	5 %
Benzin (Siedegrenzen 160-190°C)	-	-	9	4 %	_

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

17. Lösungen	a)	b)	c)	d)
Wirkstoffgemisch: Antidot aus				
Tabelle l und ein Herbizid der				
Formel II im Verhältnis 5:2	80 %	10 %	5 %	95 %
Aethylenglykol-monomethyl-äther	20 %	-	-	-
Polyäthylenglykol MG 400	-	70 %	_	-
N-Methyl-2-pyrrolidon	_	20 %	_	_
Epoxidiertes Kokosnussöl	-	-	1 %	5 %
Benzin (Siedegrenzen 160-190°C)	-	_	94 %	-

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

18. Lösungen	a)	b)	c)	d)
Wirkstoffgemisch: Antidot aus				
Tabelle l und ein Herbizid der				
Formel II im Verhältnis 1:1	80 %	10 %	5 %	95 %
Aethylenglykol-monomethyl-äther	20 %	-	_	-
Polyäthylenglykol MG 400	-	70 %	_	_
N-Methyl-2-pyrrolidon	_	20 %	_	_
Epoxidiertes Kokosnussöl	-	• •	1 %	5 %
Benzin (Siedegrenzen 160-190°C)	-	-	94 %	_

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

19. Lösungen	a)	ь)	c)	d)
Wirkstoffgemisch: Antidot aus				
Tabelle 1 und 2-[4-(5-Chlor-3-				
fluorpyridin-2-yloxy)-phenoxy]-	80 %	10 %	5 %	95 %
propionsäure-methylester				
im Verhältnis 1:1				
Aethylenglykol-monomethyl-äther	20 %	-	_	-
Polyäthylenglykol MG 400	-	70 %	-	-
N-Methyl-2-pyrrolidon	-	20 %	_	-
Epoxidiertes Kokosnussöl	-	-	1 %	5 %
Benzin (Siedegrenzen 160-190°C)	_	-	94 %	-
Die Lösungen sind zur Anwendung i	n Form	kleinster	Tropfen	geeignet.
20. Lösungen	a)	b)	c)	d)
Wirkstoffgemisch: Antidot aus				
Tabelle 1 und 2-[4-(5-Chlor-3-				
fluorpyridin-2-yloxy)-phenoxy]-	80 %	10 %	5 %	95 %
propionsäure-methylester				
im Verhältnis 1:4				
Aethylenglykol-monomethyl-äther	20 %	_	-	_
Polyäthylenglykol MG 400	-	70 %	-	_
N-Methyl-2-pyrrolidon	-	20 %	_	-
Epoxidiertes Kokosnussöl	-	_	1 %	5 %
Benzin (Siedegrenzen 160-190°C)	-	-	94 %	-

Die Lösungen sind zur Anwendung in Form kleinster Tropfen geeignet.

21. Granulate	a)		b)
Wirkstoffgemisch: Antidot aus Tabelle l			
und ein Herbizid der Formel II im	5	%	10 %
Verhältnis 1:1			
Kaolin	94	%	_
Hochdisperse Kieselsäure	1	%	_
Attapulgit	_		90 %

Der Wirkstoff wird in Methylenchlorid gelöst, auf den Träger aufgesprüht und das Lösungsmittel anschliessend im Vakuum abgedampft.

22. Granulate	a)		b)
Wirkstoffgemisch: Antidot aus Tabelle 1			
und 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-			
phenoxy]-propionsäure-methylester	5	%	10 %
im Verhältnis 1:1			
Kaolin	94	%	_
Hochdisperse Kieselsäure	1	%	-
Attapulgit	_		90 %

Der Wirkstoff wird in Methylenchlorid gelöst, auf den Träger aufgesprüht und das Lösungsmittel anschliessend im Vakuum abgedampft.

23. Stäubemittel	a)		ъ)
Wirkstoffgemisch: Antidot aus Tabelle 1			
und ein Herbizid der Formel II im	2	%	5 %
Verhältnis 1:1			
Hochdisperse Kieselsäure	1	%	5 %
Talkum	97	%	-
Kaolin	_		90 %

Durch inniges Vermischen der Trägerstoffe mit dem Wirkstoff erhält man gebrauchsfertige Stäubemittel.

Formulierungsbeispiele für Wirkstoffgemische (fest) (% = Gewichtsprozent)

24. Spritzpulver	a)	ь)		c)
Wirkstoffgemisch: Antidot aus Tabelle l		-,		•
und ein Herbizid der Formel II im	25 %	50	%	75 %
Verhältnis 1:1				, , ,
Na-Ligninsulfonat	5 %	. 5	%	_
Na-Laurylsulfat	3 %	_		5 %
Na-Diisobutylnaphthalinsulfonat	_	6	%	10 %
Octylphenolpolyäthylenglykoläther		-		20 %
(7-8 Mol AeO)	-	2	%	_
Hochdisperse Kieselsäure	5 %	10	%	10 %
Kaolin	62 %	27	%	-

Der Wirkstoff wird mit den Zusatzstoffen gut vermischt und in einer geeigneten Mühle gut vermahlen. Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

25. Spritzpulver	a)	b)		c)
Wirkstoffgemisch: Antidot aus Tabelle 1		•		-,
und ein Herbizid der Formel II im	25 %	50	%	75 %
Verhältnis 1:4				
Na-Ligninsulfonat	5 %	5	%	_
Na-Laurylsulfat	3 %	_		5 %
Na-Diisobutylnaphthalinsulfonat	-	6	%	10 %
Octylphenolpolyäthylenglykoläther				
(7-8 Mol AeO)		2	%	_
Hochdisperse Kieselsäure	5 %	10	%	10 %
Kaolin	62 %	27	%	-

Der Wirkstoff wird mit den Zusatzstoffen gut vermischt und in einer geeigneten Mühle gut vermahlen. Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

26. Spritzpulver	a)		ь)		c)	
Wirkstoffgemisch: Antidot aus Tabelle 1					-	
und ein Herbizid der Formel II im	25	%	50	%	75 %	,
Verhältnis 3:1						
Na-Ligninsulfonat	5	%	5	%	-	
Na-Laurylsulfat	3	%	_		5 %	
Na-Diisobutylnaphthalinsulfonat	_		6	%	10 %	
Octylphenolpolyäthylenglykoläther						
(7-8 Mol AeO)	_		2	%	-	
Hochdisperse Kieselsäure	5	%	10	%	10 %	
Kaolin	62	%	27	%	-	
	•					

Der Wirkstoff wird mit den Zusatzstoffen gut vermischt und in einer geeigneten Mühle gut vermahlen. Man erhält Spritzpulver, die sich mit Wasser zu Suspensionen jeder gewünschten Konzentration verdünnen lassen.

27. Emulsions-Konzentrate

Wirkstoffgemisch: Antidot aus Tabelle l und		
ein Herbizid der Formel II im Verhältnis 1:1	10	%
Octylphenolpolyäthylenglykoläther (4-5 Mol AeO)	3	%
Ca-Dodecylbenzolsulfonat	3	%
Ricinusölpolyglykoläther (35 Mol AeO)	4	%
Cyclohexanon	30	%
Xylolgemisch	50	%

Aus diesem Konzentrat können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

28. Emulsions-Konzentrate

Wirkstoffgemisch: Antidot aus Tabelle 1 und ein		
Herbizid der Formel II im Verhältnis 5:2	10	%
Octylphenolpolyäthylenglykoläther (4-5 Mol AeO)	3	%
Ca-Dodecylbenzolsulfonat	3	%
Ricinusölpolyglykoläther (35 Mol AeO)	4	%
Cyclohexanon	30	%
Xylolgemisch	50	%

Aus diesem Konzentrat können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

29. Emulsions-Konzentrate

10 %	
3 %	
3 %	
4 %	
30 %	
50 %	
	3 % 3 % 4 % 30 %

Aus diesem Konzentrat können durch Verdünnen mit Wasser Emulsionen jeder gewünschten Konzentration hergestellt werden.

30. Stäubemittel	a)		b)
Wirkstoffgemisch: Antidot aus Tabelle I und ein	•		•
Herbizid der Formel II im Verhältnis 1:1	5	%	8 %
Talkum	95	%	_
Kaolin	-		92 %

Man erhält anwendungsfertige Stäubemittel, indem der Wirkstoff mit den Trägerstoffen vermischt und auf einer geeigneten Mühle vermahlen wird.

31. Extruder-Granulate

Wirkstoffgemisch: Antidot aus Tabelle l und ein		
Herbizid der Formel II im Verhältnis 1:1	10	%
Na-Liginsulfonat	2	%
Carboxymethylcellulose	1	%
Kaolin	87	%

Der Wirkstoff wird mit den Zusatzstoffen vermischt, vermahlen und mit Wasser angefeuchtet. Dieses Gemisch wird extrudiert und anschliessend im Luftstrom getrocknet.

32. Umhüllungs-Granulate

Wirkstoffgemisch: Antidot aus Tabelle 1 und ein	
Herbizid der Formel II im Verhältnis 1:1	3 %
Polyäthylenglykol (MG 200)	3 %
Kaolin	94 %

Der fein gemahlene Wirkstoff wird in einem Mischer auf das mit Polyäthylenglykol angefeuchtete Kaolin gleichmässig aufgetragen. Auf diese Weise erhält man staubfreie Umhüllungs-Granulate.

33. Suspensions-Konzentrate

Wirkstoffgemisch: Antidot aus Tabelle 1 und		
ein Herbizid der Formel II im Verhältnis 1:1	40	%
Aethylenglykol	10	%
Nonylphenolpolyäthylenglykoläther		
(15 Mol AeO)	6	%
Na-Ligninsulfonat	10	%
Carboxymethylcellulose	1	%
37%ige wässrige Formaldehyd-Lösung	0,2	%
Silikonöl in Form einer 75%igen wässrigen		
Emulsion	0,8	%
Wasser	32	%

Der fein gemahlene Wirkstoff wird mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensions-Konzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

34. Suspensions-Konzentrate

Wirkstoffgemisch: Antidot aus Tabelle l und		
ein Herbizid der Formel II im Verhältnis 1:4	40	%
Aethylenglykol	10	%
Nonylphenolpolyäthylenglykoläther		
(15 Mol AeO)	6	%
Na-Ligninsulfonat	10	%
Carboxymethylcellulose	1	%
37%ige wässrige Formaldehyd-Lösung	0,2	%
Silikonöl in Form einer 75%igen		
wässrigen Emulsion	0,8	%
Wasser	32	%

Der fein gemahlene Wirkstoff wird mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensione-Konzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

35. Suspensions-Konzentrate

Wirkstoffgemisch: Antidot aus Tabelle 1 und		
ein Herbizid der Formel II im Verhältnis 3:1	40	%
Aethylenglykol	10	%
Nonylphenolpolyäthylenglykoläther		
(15 Mol AeO)	6	%
Na-Ligninsulfonat	10	%
Carboxymethylcellulose	1	%
37%ige wässrige Formaldehyd-Lösung	0,2	%
Silikonöl in Form einer 75%igen		
wässrigen Emulsion	0,8	%
Wasser	32	%

Der fein gemahlene Wirkstoff wird mit den Zusatzstoffen innig vermischt. Man erhält so ein Suspensions-Konzentrat, aus welchem durch Verdünnen mit Wasser Suspensionen jeder gewünschten Konzentration hergestellt werden können.

Biologische Beispiele

Testbeschreibung

Im Gewächshaus werden Plastiktöpfe, welche 0,5 1 Erde enthalten, mit Samen der zu testenden Pflanzen beschickt. Wenn die Pflanzen das 2-bis 3-Blattstadium erreicht haben, werden ein Safener der Formel I und ein Herbizid der Formel II zusammen als Tankmischung appliziert. 21 Tage nach der Applikation wird die Schutzwirkung des Safeners in Prozent bonitiert. Als Referenz dienen dabei mit dem Herbizid allein behandelte Pflanzen sowie die vollständig unbehandelte Kontrolle. Die Resultate sind in der nachfolgenden Tabelle 3 dargestellt.

Tabelle 3:
Relative Schutzwirkung in Prozent in Sommerweizen, Sorte "Besso" und Sommergerste, Sorte "Cornel".

Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.125	31	2.1	125	10	30
1.125	62	2.1	125	0	25
1.125	125	2.1	125	10	30
1.125	62	2.1	250	70	15
1.125	125	2.1	250	65	25
1.125	250	2.1	250	65	15
1.125	125	2.1	500	80	13
1.125	250	2.1	500	75	8
1.125	500	2.1	500	75	18
1.125	31	2.6	125	20	60
1.125	62	2.6	125	20	70
1.125	125	2.6	125	20	65
1.125	62	2.6	250	50	45
1.125	125	2.6	250	55	50
1.125	250	2.6	250	50	45
1.125	125	2.6	500	70	35
1.125	250	2.6	500	70	45
1.125	500	2.6	500	65	35
1.125	31	2.8	125	0	35
1.125	62	2.8	125	0	35
1.125	125	2.8	125	0	30
1.125	62	2.8	250	10	45
1.125	125	2.8	250	5	45
1.125	250	2.8	250	10	30
1.125	125	2.8	500	40	40
1.125	250	2.8	500	40	40
1.125	500	2.8	500	35	35
1.125	31	2.9	125	10	65
1.125	62	2.9	125	15	60
1.125	125	2.9	125	15	75
1.125	62	2.9	250	50	60
1.125	125	2.9	250	45	55
1.125	250	2.9	250	30	60
1.125	125	2.9	500	75	50
1.125	250	2.9	500	65	45
1.125	500	2.9	500	65	45

Tabelle 3 (Fortsetzung)

Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.130	31	2.1	125	5	5
1.130	62	2.1	125	10	5
1.130	125	2.1	125	0	5
1.130	62	2.1	250	70	0
1.130	125	2.1	250	60	0
1.130	250	2.1	250	70	0
1.130	125	2.1	500	70	8
1.130	250	2.1	500	75	8
1.130	500	2.1	500	80	8
1.130	31	2.6	125	15	5
1.130	62	2.6	125	20	5
1.130	125	2.6	125	20	5
1.130	62	2.6	250	65	0
1.130	125	2.6	250	65	0
1.130	250	2.6	250	65	0
1.130	125	2.6	500	65	0
1.130	250	2.6	500	75	0
1.130	500	2.6	500	80	0
1.130	31	2.8	125	0	15
1.130	62	2.8	125	0	0
1.130	125	2.8	125	0	0
1.130	62	2.8	250	15	5
1.130	125	2.8	250	15	0
1.130	250	2.8.	250	5	5
1.130	125	2.8	500	40	0
1.130	250	2.8	500	40	0
1.130	500	2.8	500	40	0
1.130	31	2.9	125	15	35
1.130	62	2.9	125	15	35
1.130	125	2.9	125	15	40
1.130	62	2.9	250	50	5
1.130	125	2.9	250	50	10
1.130	250	2.9	250	45	10
1.130	125	2.9	500	55	5
1.130	250	2.9	500	60	5
1.130	500	2.9	500	70	5

Tabelle 3 (Fortsetzung)

		····	<u> </u>		
Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.134 1.134 1.134	31 62 125	2.1 2.1 2.1	125 125 125	10 10	35 45
1.134	62 125	2.1	250 250	5 75	45 20
1.134	250	2.1	250	70 65	15 15
1.134 1.134 1.134	125 250 500	2.1 2.1 2.1	500 500 500	80 75 70	8 8 13
1.134 1.134 1.134	31 62 125	2.6 2.6 2.6	125 125 125	20 15 20	45 55
1.134 1.134 1.134	62 125 250	2.6 2.6 2.6	250 250 250	60 60	65 45 50
1.134 1.134 1.134	125 250 500	2.6 2.6 2.6	500 500	65 90 90	50 20 20
1.134	31 62	2.8	500 125 125	5	45
1.134	125	2.8	125	0 0	45 40
1.134 1.134 1.134	62 125 250	2.8 2.8 2.8	250 250 250	10 10 10	50 45 40
1.134 1.134 1.134	125 250 500	2.8 2.8 2.8	500 500 500	40 35 35	30 30 30
1.134 1.134 1.134	31 62 125	2.9 2.9 2.9	125 125 125	20 20 20	65 65 60
1.134 1.134 1.134	62 125 250	2.9 2.9 2.9	250 250 250	45 50 45	45 60 55
1.134 1.134 1.134	125 250 500	2.9 2.9 2.9	500 500 500	70 70 70	40 40 55

Tabelle 3 (Fortsetzung)

					
Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.186	31	2.1	125	10	45
1.186	62	2.1	125	15	35
1.186	125	2.1	125	15	45
1.186	62	2.1	250	75	15
1.186	125	2.1	250	65	20
1.186	250	2.1	250	70	15
1.186	125	2.1	500	85	13
1.186	250	2.1	500	85	13
1.186	500	2.1	500	75	13
1.186	31	2.6	125	· 20	50
1.186	62	2.6	125	20	60
1.186	125	2.6	125	20	60
1.186	62	2.6	250	50	35
1.186	125	2.6	250	55	45
1.186	250	2.6	250	55	50
1.186	125	2.6	500	90	25
1.186	250	2.6	500	85	20
1.186	500	2.6	500	70	20
1.186	31	2.8	125	0	35
1.186	62	2.8	125	0	45
1.186	125	2.8	125	0	35
1.186	62	2.8	250	0	35
1.186	125	2.8	250	0	45
1.186	250	2.8	250	0	40
1.186	125	2.8	500	35	25
1.186	250	2.8	500	35	25
1.186	500	2.8	500	25	25
1.186	31	2.9	125	20	40
1.186	62	2.9	125	20	65
1.186	125	2.9	125	20	60
1.186	62	2.9	250	50	35
1.186	125	2.9	250	40	45
1.186	250	2.9	250	50	55
1.186	125	2.9	500	70	40
1.186	250	2.9	500	60	45
1.186	500	2.9	500	55	50

Tabelle 3 (Fortsetzung)

	1				
Safener Verb.Nr	Aufwand- menge	Herbizid Nr.	menge	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung
	g AS/ha		g AS/ha	In weizen in &	in Gerste in %
1.188	31	2.1	125	15	
1.188	62	2.1	125	15	15
1.188	125	2.1	125	15	25 30
1.188	62	2.1	250	i	
1.188	125	2.1	250	70 70	15
1.188	250	2.1	250	60	15 15
1.188	125	2.1	500	11	
1.188	250	2.1	500	90 85	13
1.188	500	2.1	500	80	8 8
	 				0
1.188	31	2.6	125	20	55
1.188 1.188	62	2.6	125	20	50
	125	2.6	125	. 20	55
1.188	62	2.6	250	65	30
1.188	125	2.6	250	65	50
1.188	250	2.6	250	60	50
1.188	125	2.6	500	85	20
1.188	250	2.6	500	85	30
1.188	500	2.6	500	80	30
1.188	31	2.8	125		
1.188	62	2.8	125	5 5	50 5.5
1.188	125	2.8	125	ō	55 50
1.188	62	2.8	250	1	j
1.188	125	2.8	250	10 10	65
1.188	250	2.8	250	10	60
1.188	125	2.8	500	· · · · · · · · · · · · · · · · · · ·	60
1.188	250	2.8	500	30	35
1.188	500	2.8	500	30 35	35
				33	30
1.188	31	2.9	125	20	50
1.188	62	2.9	125	20	55
	125	2.9	125	20	50
1.188	62	2.9	250	50	50
1.188	125	2.9	250	50	45
1.188	250	2.9	250	45	40
1.188	125	2.9	500	75	i
1.188	250	2.9	500	70	30 40
1.188	500	2.9	500	75	40

Tabelle 3 (Fortsetzung)

Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.245	250	2.1	500	70	-
1.245	500	2.1	500	65	-
1.245	250	2.1	1000	50	-
1.245	500	2.1	1000	45	-
1.245	62	2.8	250	55	50
1.245	125	2.8	250	65	55
1.245	125	2.8	500	75	58
1.245	250	2.8	500	90	48
1.247	250	2.1	500	65	-
1.247	500	2.1	500	75	-
1.247	250	2.1	1000	45	-
1.247	500	2.1	1000	65	-
1.247 1.247 1.247 1.247	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	70 70 80 80	- - -
1.248	250	2.1	500	65	-
1.248	500	2.1	500	65	-
1.248	250	2.1	1000	40	-
1.248	500	2.1	1000	50	-
1.248	62	2.8	250	70	60
1.248	125	2.8	250	70	75
1.248	125	2.8	500	90	68
1.248	250	2.8	500	90	73
1.255 1.255 1.255 1.255	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	70 70 35 50
1.256 1.256 1.256 1.256	250 500 250 500	2.1 2.1 2.1 2.1	500 500 1000 1000	65 65 60 50	- - -
1.256	62	2.8	250	60	65
1.256	125	2.8	250	65	60
1.256	125	2.8	500	85	43
1.256	250	2.8	500	80	73

Tabelle 3 (Fortsetzung)

Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	T .		Relative Schutzwirkung in Gerste in %
1.259 1.259 1.259 1.259	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	60 75 53 . 68
1.260 1.260 1.260 1.260	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	65 60 53 53
1.261 1.261 1.261 1.261	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	65 70 58 68
1.262 1.262 1.262 1.262	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	-	75 85 63 78
1.267 1.267 1.267 1.267	250 500 250 250	2.1 2.1 2.1 2.1	500 500 1000 1000	65 65 55 50	-
1.267 1.267 1.267 1.267	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	65 65 85 85	65 70 48 73
1.276 1.276 1.276 1.276	250 500 250 500	2.1 2.1 2.1 2.1	500 500 1000 1000	60 55 35 50	- - -
1.276 1.276 1.276 1.276	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	70 65 85 80	65 75 63 68

Tabelle 3 (Fortsetzung)

Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.284 1.284 1.284 1.284	250 500 250 500	2.1 2.1 2.1 2.1	500 500 1000 1000	60 65 50 45	- - -
1.284	62	2.8	250	70	60
1.284	125	2.8	250	65	55
1.284	125	2.8	500	75	63
1.284	250	2.8	500	70	73
1.285	250	2.1	500	55	-
1.285	500	2.1	500	65	-
1.285	250	2.1	1000	40	-
1.285	500	2.1	1000	50	-
1.285	62	2.8	250	65	65
1.285	125	2.8	250	65	65
1.285	125	2.8	500	80	68
1.285	250	2.8	500	85	78
1.290	250	2.1	500	60	. .
1.290	500	2.1	500	60	
1.290	250	2.1	1000	45	
1.290	500	2.1	1000	60	
1.290	62	2.8	250	50	70
1.290	125	2.8	250	65	75
1.290	125	2.8	500	80	63
1.290	250	2.8	500	85	73
1.293	250	2.1	500	60	-
1.293	500	2.1	500	45	-
1.293	250	2.1	1000	45	-
1.293	500	2.1	1000	70	-
1.293	62	2.8	250	50	60
1.293	125	2.8	250	55	65
1.293	125	2.8	500	55	48
1.293	250	2.8	500	80	53

Tabelle 3 (Fortsetzung)

Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.301 1.301 1.301 1.301	250 500 250 500	2.1 2.1 2.1 2.1	500 500 1000 1000	70 75 50 45	- - - -
1.301 1.301 1.301 1.301	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	60 65 70 75	- - -
1.305 1.305 1.305 1.305	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	65 70 68 73
1.308 1.308 1.308 1.308	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	90 90 63 73
1.314 1.314 1.314 1.314	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	80 90 58 63
.316 .316 .316	250 500 250 500	2.1 2.1 2.1 2.1	500 500 1000 1000	65 65 35 50	-
.316 .316 .316 .316	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	-	50 50 55 60
	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	-	65 80 60 70
.325 .325	250 500 250 500	2.1 2.1 2.1 2.1	500 500 1000 1000	60 50 50 70	

Tabelle 3 (Fortsetzung)

Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.327 1.327 1.327 1.327	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	70 80 50 50
1.333 1.333 1.333 1.333	250 500 250 500	2.1 2.1 2.1 2.1	500 500 1000 1000	63 73 35 55	- - -
1.334	62	2.8	250	-	75
1.334	125	2.8	250		85
1.334	125	2.8	500		63
1.334	250	2.8	500		63
1.336	250	2.1	500	70	-
1.336	500	2.1	500	75	-
1.336	250	2.1	1000	45	-
1.336	500	2.1	1000	45	-
1.336	62	2.8	250	65	60
1.336	125	2.8	250	65	60
1.336	125	2.8	500	85	53
1.336	250	2.8	500	85	23
1.337 1.337 1.337 1.337	250 500 250 500	2.1 2.1 2.1 2.1	500 500 1000 1000	60 55 45 50	- - -
1.337	62	2.8	250	65	65
1.337	125	2.8	250	55	50
1.337	125	2.8	500	70	63
1.337	250	2.8	500	60	78
1.341	250	2.1	500	58	-
1.341	500	2.1	500	73	-
1.341	250	2.1	1000	25	-
1.341	500	2.1	1000	60	-
1.341 1.341 1.341 1.341	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	90 90 63 68

Tabelle 3 (Fortsetzung)

Safener Verb.Nr	Aufwand- menge g AS/ha	Herbizid Nr.	Aufwand- menge g AS/ha	Relative Schutzwirkung in Weizen in %	Relative Schutzwirkung in Gerste in %
1.353	62	2.8	250	-	65
1.353	125	2.8	250		75
1.353	125	2.8	500		65
1.353	250	2.8	500		60
1.355	250	2.1	500	78	-
1.355	500	2.1	500	78	-
1.355	250	2.1	1000	45	-
1.355	500	2.1	1000	55	-
1.355	62	2.8	250	50	-
1.355	125	2.8	250	55	-
1.355	125	2.8	500	45	-
1.355	250	2.8	500	55	-
1.362 1.362 1.362 1.362	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	90 90 63 73
1.363 1.363 1.363 1.363	62 125 125 250	2.8 2.8 2.8 2.8	250 250 500 500	- - -	80 80 63 63

^{-:} nicht geprüft.

Patentansprüche

1. Verfahren zum Schützen von Kulturpflanzen gegen schädigende Wirkungen herbizid wirksamer 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure Derivate der Formel II

worin Y für eine Gruppe $-NR^{16}R^{17}$, $-O-R^{18}$, $-S-R^{18}$ oder $-O-N=CR^{19}R^{20}$ steht,

 R^{16} und R^{17} unabhängig voneinander Wasserstoff, C_1 - C_8 -Alkoxy, C_1 - C_8 -Alkyl, Phenyl oder Benzyl,

 R^{16} uns R^{17} zusammen mit dem sie tragenden Stickstoffatom einen 5-bis 6-gliedrigen gesättigten Stickstoffheterocyclus, der durch ein Sauerstoff oder Schwefelatom unterbrochen sein kann,

R¹⁸ Wasserstoff oder das Aequivalent eines Alkalimetall-, Erdalkalimetall-, Kupfer- oder Eisen-Ions; einen quaternären C_1 - C_4 -Alkyl-ammonium- oder C_1 - C_4 -Hydroxyalkylammonium-Rest; einen gegebenenfalls ein- oder mehrfach durch Amino, Halogen, Hydroxyl, Cyan, Nitro, Phenyl, C_1 - C_4 -Alkoxy, Polyäthoxy mit 2 bis 6 Aethylenoxideinheiten, $-COOR^{2\,1}$, $-COSR^{2\,1}$, $-CONH_2$ -, $-CON(C_1$ - C_4 -alkoxy)- C_1 - C_4 -alkyl, -CO-N-di- C_1 - C_4 -alkyl, -CO-N-di- C_1 - C_4 -alkyl, -CONH- C_1 - C_4 -alkyl, $-N(C_1$ - C_4 -alkoxy)- C_1 - C_4 -alkyl oder Di- C_1 - C_4 -alkylamino substituierten C_1 - C_9 -Alkylrest;

einen gegebenenfalls durch Halogen oder C_1-C_4 -Alkoxy substituierten C_3-C_9 -Alkenylrest;

einen gegebenenfalls durch Halogen oder C_1-C_4 -Alkoxy substituierten C_3-C_9 -Alkinylrest;

 $\begin{array}{l} C_3-C_9-Cycloalkyl; \ oder \ gegebenenfalls \ durch \ Cyan, \ C_1-C_4-Alkyl, \\ C_1-C_4-Alkoxy, \ Acetyl, \ -COOR^{2\,1}, \ -COSR^{2\,1}, \ -CONH_2, \ -CON(C_1-C_4-alkoxy)-C_1-C_4-alkyl, \ -CO-N-di-C_1-C_4-alkyl \ oder \ -CONH-C_1-C_4-alkyl \ substituiertes \ Phenyl, \\ \end{array}$

 R^{19} und R^{20} unabhängig voneinander $C_1 - C_4 - Alkyl$ oder zusammen eine 3-bis 6-gliedrige Alkylenkette und

R²¹ Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkoxyalkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl oder C₃-C₆-Halogenalkinyl bedeuten, dadurch gekennzeichnet, dass man die Kulturpflanzen, Teile dieser Pflanzen oder für den Anbau der Kulturpflanzen bestimmte Böden mit einer Verbindung der Formel I

worin \mathbb{R}^1 , \mathbb{R}^2 und \mathbb{R}^3 unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, $C_1-C_3-Alkyl$ oder $C_1-C_3-Alkoxy$,

 R^4 , R^5 und R^6 unabhängig voneinander Wasserstoff, Halogen oder $C_1\!-\!C_3\!-\!Alkyl$,

A eine der Gruppen -CH₂-, -CH₂-CH₂- oder -CH(CH₃)- und

Z Cyan oder Amidoxim, welches am Sauerstoffatom acyliert sein kann, eine Carboxylgruppe oder ein Salz davon, eine Mercaptocarbonylgruppe oder ein Salz davon, eine Carbonsäureestergruppe, eine Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder substituiertes Derivat einer Carbonsäureamidgruppe oder eine Carbonsäurehydrazidgruppe oder

A und Z zusammen einen unsubstituierten oder substituierten Tetrahydrofuran-2-on-Ring bedeuten, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe, oder einem Mittel, welches eine dieser Verbindungen enthält, behandelt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man eine Verbindungen der Formel I, in welcher R^1 , R^2 und R^3 unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyan, C_1 - C_3 -Alkyl oder C_1 - C_3 -Alkoxy,

 R^{h} , R^{5} und R^{6} unabhängig voneinander Wasserstoff, Halogen oder $C_1{-}C_3{-}Alkyl_{\bullet}$

A eine der Gruppen $-CH_2-$, $-CH_2-CH_2-$ oder $-CH(CH_3)-$ und Z Cyan, eine der Gruppen $-C(NH_2)=N-OH$ oder $-C(NH_2)=N-O-CO-E$

einen gegebenenfalls substituierten Oxazolin-2-yl-Rest, -COOR 12 , -COSR 13 oder -CONR 14 R 15 bedeuten, worin

E für $-R^7$, $-OR^8$, $-SR^9$ oder $-NR^{10}\,R^{11}$ steht, worin

R⁷ C₁-C₇-Alkyl, welches unsubstituiert oder durch Halogen oder C₁-C₄-Alkoxy substituiert ist, C₃-C₆-Cycloalkyl, C₂-C₄-Alkenyl, Phenyl, welches unsubstituiert oder durch Halogen, Nitro oder C₁-C₃-Alkyl substituiert ist, Benzyl, welches unsubstituiert oder durch Halogen, Nitro oder C₁-C₃-Alkyl substituiert ist, oder einen 5-bis 6-gliedrigen heterocyclischen Ring, welcher ein oder zwei Heteroatome aus der Gruppe N, O und S enthält und unsubstituiert oder durch Halogen substituiert ist,

 R^8 , R^9 und R^{10} unabhängig voneinander C_1 - C_8 -Alkyl, welches unsubstituiert oder durch Halogen substituiert ist, C_2 - C_4 -Alkenyl, C_3 - C_6 -Alkinyl, Phenyl, welches unsubstituiert oder durch Halogen, C_1 - C_3 -Alkyl, C_1 - C_3 -Alkoxy, Trifluormethyl oder Nitro substituiert ist, oder Benzyl, welches unsubstituiert oder durch Halogen oder Nitro substituiert ist,

R11 Wasserstoff, C1-C8-Alkyl oder C1-C3-Alkoxy oder $\mathbf{R^{10}}$ und $\mathbf{R^{11}}$ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen 5- bis 6-gliedrigen Heterocyclus, welcher noch ein weiteres Heteroatom aus der Gruppe N, O und S enthalten kann, $R^{1\,2}$, $R^{1\,3}$ und $R^{1\,5}$ Wasserstoff oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Phenyl- oder Naphthylrest oder einen gegebenenfalls substituierten heterocyclischen Rest oder $R^{1\,2}$ und $R^{1\,3}$ auch ein Kation oder $R^{1\,4}$ auch einen Alkoxyrest und \mathbb{R}^{15} Wasserstoff, Amino, mono- oder disubstituiertes Amino oder einen gegebenenfalls substituierten Alkyl-, Alkenyl-, Cycloalkyl- oder Phenylrest oder $\mathbb{R}^{1\,4}$ und $\mathbb{R}^{1\,5}$ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten heterocyclischen Rest bedeuten, oder A und Z zusammen einen gegebenenfalls substituierten Tetrahydrofuran-2-on-Ring bilden, unter Einschluss ihrer Säureadditionssalze und Metallkomplexe, oder ein Mittel, welches eine dieser Verbindungen enthält, verwendet.

- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man eine Verbindung der Formel I, in welcher R^1 , R^2 , R^4 , R^5 und R^6 Wasserstoff bedeuten, R^3 für Wasserstoff oder Chlor und der Rest -A-Z für eine Gruppe $-CH_2-COOR^{16}$ oder $-CH(CH_3)-COOR^{16}$ steht, worin R^{16} $C_1-C_1_2-Alkyl$, $C_3-C_6-Alkenyl$, Phenyl- $C_1-C_4-alkyl$ oder Phenoxy- $C_1-C_4-alkyl$ steht.
- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man
- 2-Chinolin-8-yloxy-essigsäureisopropylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-dodecylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-oktylester,
- 2-Chinolin-8-yloxy-essigsäure-s-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-oktylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-butenyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-isopropyloxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäurecyclohexylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-s-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylpentyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxadecyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3-methoxybutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-undecylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylbutyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-s-butylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxaheptyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-heptylester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-dodecylester,
- 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-decylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylpropargyl)-ester,

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-tert.butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-neopentylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäureäthylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-butylester,
2-Chinolin-8-yloxy-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-i-pentylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbuty1)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylally1)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1,1-dimethylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthyl-1-methylpropargyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butyloxycarbonylmethyl-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-n-butyloxycarbonyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-methyl-
phenoxy)-athyl]-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-isopropyl-
phenoxy)-athyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-äthylphenoxy)-
  äthyl]-ester.
  2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-äthylphenoxy)-
  äthyl]-ester,
  2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
  ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
 ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-methylphenoxy)
 -äthyl]-ester.
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-isopropylphen-
 oxy)-äthyl]-ester oder
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
 oxy)-äthyl]-ester
 oder ein Mittel, welches eine dieser Verbindungen enthält, verwendet.
 5. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass man
 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
```

- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-ester oder
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-oxy)-äthyl]-ester oder
- ein Mittel, welches eine dieser Verbindungen enthält, verwendet.
- 6. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester oder
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester oder ein Mittel, welches eine dieser Verbindungen enthält, verwendet.
- 7. Verfahren gemäss Anspruch 1 dadurch gekennzeichnet, dass man 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester oder ein Mittel, welches diese Verbindung enthält, verwendet.
- 8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester oder ein Mittel, welches diese Verbindung enthält, verwendet.
- 9. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass von 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester oder ein Mittel, welches diese Verbindung enthält, verwendet.
- 10. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester oder ein Mittel, welches diese Verbindung enthält, verwendet.
- 11. Verfahren nach Anspruch 1 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Herbiziden der Formel II, worin Y für die Gruppen $-0-R^{18}$, $-S-R^{18}$, oder $-0-N=CR^{19}R^{20}$ steht, wobei R^{18} Wasserstoff, C_1-C_4 -Alkyl, C_3-C_4 -Alkenyl, C_3-C_4 -Alkinyl oder durch

- C_1-C_4 -Alkoxyarbonyl oder Di- C_1-C_4 -alkylamino substituiertes C_1-C_4 -Alkyl und R^{19} und R^{20} unabhängig voneinander C_1-C_4 -Alkyl oder R^{19} und R^{20} zusammen eine C_4-C_7 -Alkylenkette bedeuten.
- 12. Verfahren gemäss Anspruch 11, dadurch gekennzeichnet, dass Y für Methoxy, Aethoxy, Propyloxy, Isopropyloxy, Butyloxy, Dimethylamino-äthoxy, Propargyloxy, 1-Cyano-1-methyläthoxy, Methoxycarbonyl-methylthio, 1-Aethoxycarbonyläthoxy, Butyloxycarbonyl, -O-N=C(CH₃)₂, -O-N=C(CH₃)C₂H₅ oder -O-N=C(CH₂)₅ steht.
- 13. Verfahren gemäss Anspuch 1 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäuremethylester.
- 14. Verfahren gemäss Anspruch 1 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäurepropargylester.
- 15. Verfahren nach Anspruch 1 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-thiopropionsäure-S-methoxycarbonylmethylester.
- 16. Verfahren nach Anspruch 1 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-(1-äthoxycarbonyläthyl)-ester.
- 17. Verfahren nach Anspruch 1 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäuremethylester, 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäurepropargylester, 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-thiopropionsäure-S-methoxycarbonylmethylester oder 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-(1-äthoxycarbonyläthyl)-ester, dadurch gekennzeichnet, dass man die Kulturpflanzen, Teile dieser Pflanzen oder für den Anbau der Kulturpflanzen bestimmte Böden mit

```
2-Chinolin-8-yloxy-essigsäureisopropylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-dodecylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-oktylester,
2-Chinolin-8-yloxy-essigsäure-s-butylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-oktylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-butenyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-isopropyloxyäthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbuty1)-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäurecyclohexylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-s-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxadecyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3-methoxybutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-undecylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-s-butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxaheptyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-heptylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-dodecylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsaure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-tert.butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-neopentylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäureäthylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-butylester,
```

```
2-Chinolin-8-yloxy-thioessigsäure-n-decylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-i-pentylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-hexylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-hexylester,
 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-propylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1,1-dimethylpropargyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthyl-1-methylpropargyl)-
 ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butyloxycarbonylmethyl-
 ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-n-butyloxycarbonyläthyl)-
 ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-methyl-
 phenoxy)-äthyl]-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
 äthyl]-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester.
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-isopropyl-
 phenoxy)-äthyl]-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-äthylphenoxy)-
 äthyl]-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-äthylphenoxy)-
 äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
 ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
ester,
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-methylphenoxy)
-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-isopropylphen-
oxy)-äthyl]-ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
oxy)-äthyl]-ester
oder einem Mittel, welches eine dieser Verbindungen enthält,
behandelt.
18. Verfahren gemäss Anspruch 17, dadurch gekennzeichnet, dass man
die Kulturpflanzen, Teile dieser Pflanzen oder für den Anbau der
Kulturpflanzen bestimmte Böden mit
2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
ester
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
```

oxy)-äthyl]-ester oder

einem Mittel, welches eine dieser Verbindungen enthält, behandelt.

- 19. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass man die Kulturpflanzen, Teile dieser Pflanzen oder für den Anbau der Kulturpflanzen bestimmte Böden mit 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester oder 2-(5-Chlorchinolin-8-yloxy)-essigsäure-methallylester oder einem Mittel, welches eine dieser Verbindungen enthält, behandelt.
- 20. Verfahren nach Anspruch 1 zum Schützen von Getreide.
- 21. Verfahren nach Anspruch 20 zum Schützen von Weizen, Gerste, Roggen und Reis.
- 22. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man Kulturpflanzenbestände oder Anbauflächen für Kulturpflanzen mit 0,01 bis 10 kg/ha einer Verbindung der Formel I gemäss Anspruch 1 behandelt.
- 23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass man Kulturpflanzenbestände oder Anbauflächen für Kulturpflanzen mit 0,05 bis 0.5 kg/ha einer Verbindung der Formel I gemäss Anspruch 1 behandelt.
- 24. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man Samen der Kulturpflanzen mit einer Verbindung der Formel I gemäss Anspruch 1 behandelt.
- 25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass man Samen der Kulturpflanze mit 0,01 bis 10 g/kg Samen einer Verbindung der Formel I gemäss Anspruch 1 behandelt.

- 26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass man Samen der Kulturpflanzen mit 0,05 bis 2 g/kg Samen einer Verbindung der Formel I gemäss Anspruch 1 behandelt.
- 27. Verfahren nach Anspruch 24 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)phenoxy]-propionsäuremethylester, 2-[4-(5-Chlor-3-fluorpyridin-2yloxy)-phenoxy]-propionsäurepropargylester, 2-[4-(5-Chlor-3fluorpyridin-2-yloxy)-phenoxy]-thiopropionsäure-S-methoxycarbonylmethylester oder 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]propionsäure-(l-äthoxycarbonyläthyl)-ester, dadurch gekennzeichnet, dass man die Samen der Kulturpflanzen, mit 2-Chinolin-8-yloxy-essigsäureisopropylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-dodecylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-oktylester, 2-Chinolin-8-yloxy-essigsäure-s-butylester, 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-oktylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-butenyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-isopropyloxyäthyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäurecyclohexylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-s-butylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylpentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-butylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxadecyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3-methoxybutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-undecylester,

2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylbutyl)-ester,

2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxaheptyl)-ester,

2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-s-butylester.

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-heptylester,
 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-dodecylester,
 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-decylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylpropargyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisobutyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-tert.butylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-neopentylester,
 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-propylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-thioessigsäureäthylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylhexyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-butylester,
 2-Chinolin-8-yloxy-thioessigsäure-n-decylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-i-pentylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1,1-dimethylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthyl-1-methylpropargyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butyloxycarbonylmethyl-
ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-n-butyloxycarbonyläthyl)-
ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-methyl-
phenoxy)-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester.
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-isopropyl-
phenoxy)-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-{1-methyl-2-(2-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
ester
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-methylphenoxy)
-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-isopropylphen-
oxy)-äthyl]-ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
oxy)-äthyl]-ester
oder einem Mittel, welches eine dieser Verbindungen enthält,
behandelt.
28. Verfahren gemäss Anspruch 27, dadurch gekennzeichnet, dass man
die Samen der Kulturpflanzen mit
2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbuty1)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
```

2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,

- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-äthyl]-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropy1)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-ester oder
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphenoxy)-äthyl]-ester oder
- einem Mittel, welches eine dieser Verbindungen enthält, behandelt.
- 29. Verfahren gemäss Anspruch 27, dadurch gekennzeichnet, dass man die Samen der Kulturpflanzen mit 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester oder 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester oder einem Mittel, welches eine dieser Verbindungen enthält, behandelt.
- 30. Verfahren nach Anspruch 27 zum Schützen von Getreide.
- 31. Verwendung von Verbindungen der Formel I gemäss Anspruch 1 zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von Verbindungen der Formel II gemäss Anspruch 1.
- 32. Verfahren zur selektiven Bekämpfung von Unkräutern in Kulturpflanzenbeständen, dadurch gekennzeichnet, dass man die Kulturpflanzenbestände, Teile der Kulturpflanzen oder Anbauflächen der Kulturpflanzen mit einem Antidot der Formel I gemäss Anspruch 1 und einem
 Herbizid der Formel II gemäss Anspruch 1 behandelt.

- 33. Herbizides Mittel, dadurch gekennzeichnet, dass es neben einem herbiziden Wirkstoff der Formel II gemäss Anspruch 1 ein Antidot der Formel I gemäss Anspruch 1 enthält.
- 34. Mittel gemäss Anspruch 33, dadurch gekennzeichnet, dass es neben einem Herbizid aus der Reihe 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)phenoxy]-propionsäuremethylester, 2-[4-(5-Chlor-3-fluorpyridin-2yloxy)-phenoxy]-propionsäurepropargylester, 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-thiopropionsäure-S-methoxycarbonylmethylester oder 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure-(l-äthoxycarbonyläthyl)-ester ein Antidot aus der Reihe 2-Chinolin-8-yloxy-essigsäureisopropylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-dodecylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-oktylester, 2-Chinolin-8-yloxy-essigsäure-s-butylester, 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-oktylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-butenyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-isopropyloxyäthyl)-ester. 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester. 2-(5-Chlorchinolin-8-yloxy)-essigsäurecyclohexylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-s-butylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylpentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-butylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxadecyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3-methoxybutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-undecylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-methylbutyl)-ester, 2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-s-butylester, 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(3,6-dioxaheptyl)-ester,

2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-heptylester,

```
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-dodecylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-tert.butylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-neopentylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäureäthylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-äthylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-butylester,
2-Chinolin-8-yloxy-thioessigsäure-n-decylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-i-pentylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-hexylester,
2-(5-Chlorchinolin-8-yloxy)-thioessigsäure-i-propylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1,1-dimethylpropargyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthyl-1-methylpropargyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-n-butyloxycarbonylmethyl-
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-n-butyloxycarbonyläthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-methyl-
phenoxy)-äthyl]-ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
ester.
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-isopropyl-
phenoxy)-athyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(2-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-äthylphenoxy)-
äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(3-methylphenoxy)
-äthyl]-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-isopropylphen-
oxy)-äthyl]-ester oder
2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
oxy)-äthyl]-ester enthält.
35. Mittel gemäss Anspruch 34, dadurch gekennzeichnet, dass es ein
Antidot aus der Reihe
2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-
 äthyl]-ester,
```

```
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-
 ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(l-phenylpropyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-
 ester
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-
 ester oder
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-
 oxy)-äthyl]-ester enthält.
 36. Mittel gemäss Anspruch 34, dadurch gekennzeichnet, dass es als
 Antidot
 2-(5-Chlorchinolin-8-yloxy)-essigsäuremethallylester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(2-phenoxyäthyl)-ester,
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester
 oder
 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(l-methylhexyl)-ester enthält.
37. Eine Verbindung aus der Gruppe
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisopentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-äthylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-propylbutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-pentylallyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylpentyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(R-1-methylisopentyl)-
ester.
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(S-1-methylisopentyl)-
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(R-1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(S-1-methylhexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methylisohexyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylisobutyl)-ester,
2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenyläthyl)-ester,
```

- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-äthylphenoxy)-äthyl]-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenyläthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-phenylpropyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-2-phenoxyäthyl)-ester,
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-(1-methyl-3-phenylpropyl)-ester und
- 2-(5-Chlorchinolin-8-yloxy)-essigsäure-[1-methyl-2-(4-methylphen-oxy)-äthyl]-ester.
- 38. Verfahren zur Herstellung der Mittel gemäss Anspruch 33, dadurch gekennzeichnet, dass man die Wirkstoffe der Formel I und II intensiv miteinander und gegebenenfalls einem Trägermaterial und/oder oberflächenaktivem Mittel vermischt.
- 39. Verfahren zur Herstellung der Vebindungen gemäss Anspruch 37, dadurch gekennzeichnet, dass man 5-Chlor-8-hydroxychinolin in Gegenwart eines säurebindenden Mittels mit einer Verbindung aus der Reihe

Bromessigsäure-(1-methylbutyl)-ester,
Bromessigsäure-(1-äthylbutyl)-ester,
Bromessigsäure-(1-methylisopentyl)-ester,
Bromessigsäure-(1-methylhexyl)-ester,
Bromessigsäure-(1-äthylpentyl)-ester,
Bromessigsäure-(1-propylbutyl)-ester,
Bromessigsäure-(1-pentylallyl)-ester,
Bromessigsäure-(1-methylpentyl)-ester,
Bromessigsäure-(R-1-methylisopentyl)-ester,
Bromessigsäure-(S-1-methylisopentyl)-ester,
Bromessigsäure-(R-1-methylhexyl)-ester,
Bromessigsäure-(S-1-methylhexyl)-ester,
Bromessigsäure-(1-methylisohexyl)-ester,
Bromessigsäure-(1-phenylisobutyl)-ester,
Bromessigsäure-(1-phenylisobutyl)-ester,

Bromessigsäure-[1-methyl-2-(4-äthylphenoxy)-äthyl]-ester,
Bromessigsäure-(1-methyl-2-phenyläthyl)-ester,
Bromessigsäure-(1-phenylpropyl)-ester,
Bromessigsäure-(1-methyl-2-phenoxyäthyl)-ester,
Bromessigsäure-(1-methyl-3-phenylpropyl)-ester und
Bromessigsäure-[1-methyl-2-(4-methylphenoxy)-äthyl]-ester umsetzt.

FO 7.5 CW/bg*/ga*/ca*/co*

(1) Veröffentlichungsnummer:

0 191 736

EUROPÄISCHE PATENTANMELDUNG (12)

(21) Anmeldenummer: 86810072.8

(22) Anmeldetag: 10.02.86

(51) Int. Cl.3: A 01 N 25/32 C 07 D 215/28 //C07D215/26, C07D405/12, C07D409/12, C07D403/12, C07D213/64

30 Priorităt: 14.02.85 CH 682/85 02.12.85 CH 5132/85

43 Veröffentlichungstag der Anmeldung: — 20.08.86 Patentblatt 86/34

Veröffentlichungstag des später veröffentlichten Recherchenberichts: 07.01.88

(84) Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI NL SE (7) Anmeider: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel(CH)

Erfinder: Nyffeler, Andreas, Dr. Gründlerstrasse 4 CH-4312 Magden(CH)

(72) Erfinder: Hubele, Adolf, Dr. Obere Egg 9 CH-4312 Magden(CH)

Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen.

57 Die Verwendung von Chinolinderivaten der Formel

worin R1, R2 und R2 unabhängig voneinander Wasserstoff, Halogen, Nitro, Cyano, C1-C3-Alkyl oder C1-C3-Alkoxy,

R⁴, R⁵ und R⁵ unabhängig voneinander Wasserstoff, Halogen oder C1-C3-Alkyl,

A eine der Gruppen -CH₂-, -CH₂CH₂- oder -CH(CH₃)und Z a) Cyan oder Amidoxim, welches am Sauerstoffatom acyliert sein kann, oder

b) eine Carboxylgruppe oder ein Salz davon, eine Mercaptocarbonylgruppe oder ein Salz davon, eine Carbonsäureestergruppe, eine Carbonsäurethiolestergruppe, eine unsubstituierte oder substituierte Carbonsäureamidgruppe, ein cyclisiertes, unsubstituiertes oder substituiertes Derivat einer Carbonsäureamidgruppe oder eine Carbonsäurehydrazidgruppe, oder

A und Z zusammen einen unsubstituierten oder substituierten Tetrahydrofuran-2-on-Ring

bedeuten, unter Einschluss ihrer Säureadditionssalze und Metalikomplexe, zum Schützen von Kulturpflanzen gegen schädigende Wirkungen von herbizid wirksamen 2-[4-(5-Chlor-3-fluorpyridin-2-yloxy)-phenoxy]-propionsäure Derivaten.

Die vorgenannten herbiziden 2-[4-(5-Chlor-3fluorpyridin-2-yloxy)-phenoxy]-propionsäure-Derivate entsprechen der Formel

worin Y für eine Gruppe -NR16R17, -O-R18, -S-R18 oder -O-N=CR18R20 steht,

R¹⁶ und R¹⁷ unabhängig voneinander Wasserstoff, C₁-C₈-Alkoxy, C₁-C₈-Alkyl, Phenyl oder Benzyl,

R¹⁶ uns R¹⁷ zusammen mit dem sie tragenden Stickstoffatom einen 5-bis 6-gliedrigen gesättigten Stickstoffheterocyclus, der durch ein Sauerstoff oder Schwefelatom unterbrochen sein kann,

R¹⁸ Wasserstoff oder das Aequivalent eines Alkalimetall-, Erdalkalimetail-, Kupfer- oder Eisen-lons; einen quaternären C₁-C₄-Alkylammonium- oder C₁-C₄-Hydroxyalkylammonium-Rest; einen gegebenenfalls ein- oder mehrfach durch Amino,

Commenter Dates - Commenter

Hałogen, Hydroxyl, Cyan, Nitro, Phenyl, C₁-C₄-Alkoxy, Poly-ăthoxy mit 2 bis 6 Aethylenoxideinheiten, -COOR²¹, -COSR²¹, -CONH₂-, -CON(C₁-C₄-alkoxy)-C₁-C₄-alkyl, -CO-N-di-C₁-C₄-alkyl, -CO-N-di-C₁-C₄-alkyl, -CONH-C₁-C₄-alkyl, -N(C₁-C₄-alkoxy)-C₁-C₄-alkyl oder Di-C₁-C₄-alkylamino substituierten C₁-C₆-Alkylrest; einen gegebenenfalls durch Halogen oder C₁-C₄-Alkoxy substituierten

 C_3 - C_9 -Alkenylrest; einen gegebenenfalls durch Halogen oder

C₁-C₄-Alkoxy substituierten C₃-C₉-Alkinylrest;

C₃-C₉-Cycloalkyl; oder gegebenenfalls durch Cyan, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Acetyl, -COR²¹, -COSR²¹, -CONH₂, -CON(C₁-C₄-alkoxy)- C₁-C₄-alkyl, -CO-N-di-C₁-C₄-alkyl oder -CONH-C₁-C₄-alkyl substituiertes Phenyl,

R19 und R20 unabhängig voneinander C1-C4-Alkyl oder

zusammen eine 3-bis 6-gliedrige Alkylenkette und

R²¹ Wasserstoff, C₁-C₈-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkoxyalkyl, C₃-C₆-Alkenyl, C₃-C₆-Halogenalkenyl, C₃-C₆-Alkinyl oder C₃-C₆-Halogenalkinyl bedeuten.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeidung

EP 86 81 0072

		GIGE DOKUMENT					
alegorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile		Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)			
D,X	EP-A-O 094 349 * Patentansprüch	(CIBA-GEIGY) ne; Seiten 23-	27 *	1-39	C C	7 D	25/32 215/28 215/26
D,X	EP-A-O 086 750	(CIBA-GEIGY)		-16,20 -26,31	C C C	7 D 7 D 7 D	405/12 409/12 403/12 213/64
	* Patentansprück	ne; Seiten 10,	11 *	-33,38			
x	DE-A-2 546 845 * Anspruch 1; Se	(BASF) eiten 7,8 *		37			
			•				
					SA	RECHE	RCHIERTE IETE (Int. CI.4)
					A C	1 N	215/00
Der	vorliegende Recherchenbericht wur						
	DEN HAAG	Acchinedatum der B	cherche	HENRY	J.	Culer	
X : vor Y : vor and A : tec O : nic P : Zw	ATEGORIE DER GENANNTEN Din besonderer Bedeutung allein b besonderer Bedeutung in Verb deren Veröffentlichung derselbe hnologischer Hintergrund htschriftliche Offenbarung ischenliteratur Erfindung zugrunde liegende T	etrachtet indung mit einer (in Kategorie (nach den D: in der An L: aus ande	atentdokumer n Anmeldedati meldung angi rn Gründen ai der gleichen F des Dokumen	um verd eführte ngefüh	öffentli s Doku rtes Do	cht worden is iment : okument

EPA Form 1503 03 82