## **Apêndice**

# Calor Específico de Gás Ideal



### C.1 GASES MONOATÔMICOS

(Gases inertes, Ar, He, Ne, Xe, Kr e também, N, O, H, Cl, F, ...)

$$\begin{split} h &= h_{\text{translação}} + h_{\text{eletrônico}} = h_t + h_e \\ \frac{dh}{dT} &= \frac{dh_t}{dT} + \frac{dh_e}{dT}, \qquad C_{P0} = C_{P0t} + C_{P0e} = \frac{5}{2}R + f_e(T) \end{split}$$

Em que as contribuições eletrônicas,  $f_e(T)$ , normalmente são pequenas, a menos que a temperatura seja muito alta (as exceções comuns são O, Cl e F).

## C.2 GASES DIATÔMICOS E POLIATÔMICOS LINEARES (N<sub>2</sub>, O<sub>2</sub>, CO, OH, ..., CO<sub>2</sub>, N<sub>2</sub>O, ...)

Essas moléculas apresentam, além das energias translacional e eletrônica, contribuições devidas à rotação em torno do centro de massa da molécula e, também, devidas aos (3a-5) modos independentes de vibração molecular dos a átomos que compõem a molécula. Desse modo,

$$C_{P0} = C_{P0t} + C_{P0r} + C_{P0v} + C_{P0e} = \frac{5}{2}R + R + f_v(T) + f_e(T)$$

Em que a contribuição vibracional é dada por

$$f_v(T) = R \sum_{i=1}^{3a-5} \left[ x_i^2 e^{x_i} / \left( e^{x_i} - 1 \right)^2 \right] \qquad x_i = \frac{\theta_i}{T}$$

As contribuições eletrônicas,  $f_e$  (T), normalmente são pequenas a menos que a temperatura seja muito alta (as exceções comuns são o  ${\rm O_2}$ , NO e OH).



termo 20.indd 615 09.06.10 19:12:08

## C.3 MOLÉCULAS POLIATÔMICAS NÃO LINEARES

(H<sub>2</sub>O, NH<sub>3</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, ...)

As expressões para o calor específico a pressão constante desses gases são similares àquelas dos gases com moléculas lineares. A diferença é que agora existem (3a-6) modos de vibração independentes e, assim,

$$\begin{split} C_{P0} &= C_{P0t} + C_{P0r} + C_{P0v} + C_{P0e} \\ &= \frac{5}{2}R + \frac{3}{2}R + f_v(T) + f_e(T) \end{split}$$

em que a contribuição vibracional é dada por

$$f_v(T) = R \sum_{i=1}^{3a-6} \left[ x_i^2 e^{x_i} / \left( e^{x_i} - 1 \right)^2 \right] \qquad x_i = \frac{\theta_i}{T}$$

Novamente, as contribuições eletrônicas,  $f_e$  (T), normalmente são pequenas a menos que a temperatura seja muito alta.

#### **EXEMPLO C.1**

 $N_2$ , 3a - 5 = 1 modo de vibração, com  $\theta_i = 3392$  K A T = 300 K

$$C_{P0} = 0.742 + 0.2968 + 0.0005 + (\approx 0)$$
  
= 1.0393 kJ/(kg × K)

A T = 1000 K

$$C_{P0} = 0.742 + 0.2968 + 0.123 + (\approx 0)$$
  
=1,1618 kJ/(kg × K)

(um aumento de 11,8% com relação a 300 K)

### **EXEMPLO C.2**

 ${\rm CO_2, 3}a$  – 5 = 4 modos de vibração, com  $\theta_i$  = 960 K, 960 K, 1993K, 3380 K

A T = 300 K

$$C_{P0} = 0.4723 + 0.1889 + 0.1826 + (\approx 0)$$
  
= 0.8438 kJ/(kg × K)

A T = 1000 K

$$C_{P0} = 0.4723 + 0.1889 + 0.5659 = (\approx 0)$$
  
= 1.2271 kJ/(kg × K)

(um aumento de 45,4% com relação a 300 K).

#### **EXEMPLO C.3**

 $\mathrm{CH_4}$ , 3a-6=9 modos de vibração com  $\theta_i=4196$  K, 2207 K (dois modos), 1879K (três modos), 4343 K (três modos)

A T = 300 K

$$V_{P0} = 1,2958 + 0,7774 + 0,15627 + (\approx 0)$$
  
= 2,2259 kJ/(kg × K)

A T = 1000

$$C_{P0} = 1,2958 + 0,7774 + 2,4022 + (\approx 0)$$
  
= 4,4754 kJ/(kg × K)

(um aumento de 101,1% com relação a 300 K).