The potential energy surface for catalytic reactions: an overview of computational catalysis

Michael Janik

Department of Chemical Engineering, Pennsylvania State University

mjanik@psu.edu

Mississippi State University June 15, 2022

Catalysis plays many roles in our energy future

•Enable new energy feedstocks:

- -biomass to fuels and chemicals
- -renewable electricity to fuels
- -solar fuels photoelectrolysis

•Fossil fuel efficiency and diversification

- -petroleum use efficiency
- -methane to chemicals, liquid fuels
- -coal to liquids

•Flexible and efficient energy conversion

- -Hydrogen production
- -Electrocatalysis in fuel cells
- -Electrolysis of CO₂ for fuel production

Catalyst activity and selectivity are controlled at the molecular scale:

bimetallics, doped oxide

Structure and morphology

particle size, surface structure, defects, support interactions, stability

Surface interactions

coverage effects, intermolecular interactions, poisons, promoters

Reaction environment

temperature, pressure, solution, electric field

First-principles guided catalyst design

Explain at an atomic level what controls catalyst

performance

S. Trasatti. *Electrochim. Acta* 39 (1994) 1739. B. E. Conway, G. Jerkiewicz. *Solid State Ionics* 152 (2002) 93.

Catalyst Design Procedure:

- Detailed studies on reaction steps, path, environment effects
- Identify key parameters (energetics) that dictate performance
- Evaluate parameters over a design space for improved performance

Oxidation catalysis by metals: DFT for O₂ activation

Oxidation using molecular oxygen on metals

How does a metal catalyst activate O_2 to participate in oxidation reactions?

What is the key energetic parameter to dictate activity to reduce O_2 ?

DFT calculation to first examine the electronic structure of O_2

- 1) Build O₂
- 2) Set-up geometry optimization calculation
- 3) DFT solve for wavefunctions (orbitals), energy, minimum energy structure
- 4) Analyze results

Geometry optimization of O₂

Geometry optimization of O₂

- 3) Move to new distance
- 4) Repeat until dE/dx \sim 0 Gives optimal structure and final E, ψ 's

Geometry optimization of O₂

Molecular orbital diagram of O₂

O—O bond distance 1.23 Å

O₂ energy from VASP -9.82 eV

O energy from VASP -1.84 eV

Bond energy $E(O_2)-2E(O) = -6.15 \text{ eV} = -593 \text{ kJ/mol}$

Molecular orbital diagram of O₂

O—O bond distance 1.23 Å

O₂ energy from VASP -9.82 eV

O energy from VASP -1.84 eV

Bond energy $E(O_2)-2E(O) = -6.15 \text{ eV} = -593 \text{ kJ/mol}$

Molecular orbital diagram of O₂

Ground state (lowest energy electron occupation of orbitals) is a triplet 2 unpaired electrons in π^* orbitals.

Now I want to put O_2 on a surface and calculate the energy change to adsorb it.

What DFT calculations do I need to run?

?

Now I want to put O_2 on a surface and calculate the energy change to adsorb it.

What DFT calculations do I need to run?

```
O2(gas) + surface → O2 on the surface
```

$$\Delta E_{ads} = E_{O2 \text{ on surface}} - E_{O2 \text{ in gas phase}} - E_{surface \text{ with nothing on it}}$$

DFT calculations

O2 gas

Surface (*)

O2 on surface (O2*)

$$02 + * \rightarrow 02*$$

Woody will show you how to build (cut) a surface later today, and how to put an adsorbate on that surface.

Let's take a look at O2 on a surface.

Choices – how many layers?

What is frozen?

What is my supercell size (I am showing you a 3x3 surface cell – 9 Pt atoms per layer). Surface cell size dictates "fractional coverage"

O_2 on metal surface – bonding is between O_2 π^* orbital and metal d orbitals

 $O_2 \pi^*$ and M d_{xz} form a bonding orbital

Occupation lowers energy $-O_2$ has an exothermic adsorption

$$E(O_2)$$
 = -9.823 eV
 $E(Pt(111))$ = -315.201 eV
 $E(O_2 \text{ on } Pt(111))$ = -325.624 eV

Adsorption energy = -0.60 eV = 58 kJ/mol

Donation of e^- from M d_{xz} to O_2 π^* orbital weakens O—O bond, lowering bond dissociation barrier

(O—O gas 1.23 Å, O—O on Pt(111) 1.37 Å)

Potential energy surface of O₂ activation on metals

We can connect the O_2 dissociation barrier and resultant rate to the extent of electron donation to the O_2 π^* orbital

What DFT calculations did I have to run to map out the "potential energy" surface on the last slide?

What DFT calculations did I have to run to map out the "potential energy" surface on the last slide?

O2 gas phase

*

O2*

20* (ie, the product state for O2 molecule dissociating)
A transition state search for the highest energy state as the O-O bond stretched to become 2 O

Faster O₂ activation correlates with stronger O binding

If O₂ activates easier (more quickly) than O binds more strongly.

Note same pattern for other diatomics (N_2, CO, NO)

Sabatier's principle: optimal rate occurs with medium binding reaction intermediate

Oxygen reduction reaction (proton oxidation reaction)

 $O_2 + H_2 \rightarrow O$ or OH intermediates $\rightarrow H_2O$

Optimal catalyst has an intermediate binding energy for oxygen

DFT can give us remarkably detailed and accurate insight

Electronic structure nature of

 $O_2 \pi^*$ - Metal d interaction

Elementary reaction energetics (activation barriers)

Correlations across reaction steps in a mechanism

Catalyst material optimization

 $O_2 \pi^*$

 $M d_{xz}$

Reaction Intermediates and Adsorption Sites

Assumption – all adsorbates can access there most stable configuration

Minimum Energy Path over Au(111)

Borohydride oxidation

