



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 6 :<br><br>C12N 15/40, 7/01, 7/04, 15/86, A61K 39/193                                                                                                                                                                                                                                                                                                                                                                                            |  | A1 | (11) International Publication Number: WO 98/53077<br><br>(43) International Publication Date: 26 November 1998 (26.11.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (21) International Application Number: PCT/US98/10645                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |    | (74) Agent: HARRIS, Charles, H.; United States Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD 21702 (US).                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (22) International Filing Date: 20 May 1998 (20.05.98)                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (30) Priority Data:<br>60/047,162 20 May 1997 (20.05.97) US<br>60/053,652 24 July 1997 (24.07.97) US<br>08/991,840 16 December 1997 (16.12.97) US                                                                                                                                                                                                                                                                                                                                         |  |    | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). |
| (71) Applicant (for all designated States except US): WALTER REED ARMY INSTITUTE OF RESEARCH [-/US]; Dept. of the Army, Washington, DC 20307 (US).                                                                                                                                                                                                                                                                                                                                        |  |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (72) Inventors; and<br>(75) Inventors/Applicants (for US only): PARKER, Michael, D. [US/US]; Apartment T-13, 1001 Carroll Parkway, Frederick, MD 21701 (US). SMITH, Jonathan, F. [US/US]; 6936 Eyler Valley Flint Road, Sabillasville, MD 21780 (US). CRISE, Bruce, J. [US/US]; 7210 McKaig Road, Frederick, MD 21701 (US). OBERSTE, Mark, Steve [US/US]; 5110 Sunset Maple Trace, Lilburn, GA 30247 (US). SCHMURA, Shannon, M. [US/US]; 10812 Lincoln Avenue, Hagerstown, MD 21740 (US). |  |    | Published<br>With international search report.<br>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.                                                                                                                                                                                                                                                                                                                                                                                                           |

(54) Title: LIVE ATTENUATED VIRUS VACCINES FOR EQUINE ENCEPHALITIS VIRUSES

## (57) Abstract

cDNAs coding for an infectious Western Equine Encephalitis virus (WEE) and infectious Venezuelan Equine Encephalitis virus variant IE (VEE IE) are disclosed in addition to cDNA coding for the structural proteins of Venezuelan Equine Encephalitis virus variant IIIA (VEE IIIA). Novel attenuating mutations of WEE and VEE IE and their uses are described. Also disclosed are attenuated chimeric alphaviruses and their uses.

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                       |    |                                           |    |                          |
|----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                | ML | Mali                                      | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                               | MN | Mongolia                                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                               | MR | Mauritania                                | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                | MW | Malawi                                    | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                               | MX | Mexico                                    | US | United States of America |
| CA | Canada                   | IT | Italy                                 | NE | Niger                                     | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                 | NL | Netherlands                               | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                 | NO | Norway                                    | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                            | NZ | New Zealand                               | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | PL | Poland                                    |    |                          |
| CM | Cameroon                 | KR | Republic of Korea                     | PT | Portugal                                  |    |                          |
| CN | China                    | KZ | Kazakhstan                            | RO | Romania                                   |    |                          |
| CU | Cuba                     | LC | Saint Lucia                           | RU | Russian Federation                        |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                         | SD | Sudan                                     |    |                          |
| DE | Germany                  | LK | Sri Lanka                             | SE | Sweden                                    |    |                          |
| DK | Denmark                  | LR | Liberia                               | SG | Singapore                                 |    |                          |

TITLE OF THE INVENTION

LIVE ATTENUATED VIRUS VACCINES FOR EQUINE ENCEPHALITIS VIRUSES

5

10

INTRODUCTION

Western equine encephalitis (WEE), eastern equine  
15 encephalitis (EEE) and Venezuelan equine encephalitis  
virus (VEE) are members of the alphavirus genus of the  
family Togaviridae which is comprised of a large group  
of mosquito-borne RNA viruses found throughout much of  
the world. The viruses normally circulate among  
20 rodent or avian hosts through the feeding activities  
of a variety of mosquitoes. Epizootics occur largely  
as a result of increased mosquito activity after  
periods of increased rainfall. Western equine  
encephalitis virus (WEE) was first recognized in 1930  
25 and causes periodic outbreaks of disease in equines.  
The virus has been detected over much of the western  
hemisphere from Argentina north to the more temperate  
regions of central Canada (For a review, see Reisen  
and Monath [1988] in The Arboviruses: Epidemiology and  
30 Ecology, Vol. V. CRC Press, Inc. Boca Raton).

Similarly, EEE was first isolated in Virginia and New  
Jersey in 1933 (Ten Broeck, C. et al. [1935] *J. Exp.  
Med.* **62**:677) and is now known to be focally endemic  
throughout much of the northern portion of South

America, Central America and the eastern part of Mexico and the United States. Venezuelan equine encephalitis virus has six serological subtypes (I-VI). Two of these subtypes, I and III have multiple variants, two of these variants are of particular interest in this application, variant IE, and variant IIIA also called Mucambo virus. A live, attenuated vaccine (TC-83) for VEE IA/B has been used for immunization equines and at-risk laboratory and field personnel (Birge et al. [1961] *Am. J. Hyg.* **73**:209-218; Pittman et al. [1996] *Vaccine* **14**:337-343). The vaccine was credited with helping to limit the northward spread of a serious epizootic of VEE originating in South America in the late 1960's.

However, the VEE I/AB vaccines have not yet been licensed by the Food and Drug Administration and have been shown to be effective in preventing disease from VEE IA/B infection only. The current VEE vaccines do not adequately protect against the VEE IE variant or the VEE IIIA variant, as disease has occurred in laboratory workers successfully vaccinated with a vaccine derived from VEE IA/B. In addition, recent unprecedented outbreaks of VEE IE in populations of horses in Mexico indicate a need for a VEE IE vaccine.

The lack of adequate cross protection with existing IA/B vaccines documents the need for a VEE IE-specific and a VEE IIIA-specific vaccine.

The vaccines currently in veterinary use for WEE, EEE and VEE IA/B throughout the United States and Canada are formalin-inactivated preparations. Inactivated vaccines for EEE and WEE are also available for use by at-risk laboratory personnel. These inactivated vaccines are poorly immunogenic, require multiple inoculations with frequent boosters and generally result in immunity of short duration.

The shortcomings of the available vaccines indicate a need for the development of new vaccines of high immunogenicity which induce a longer lasting immunity for protection against WEE, EEE and VEE subtypes IE 5 and IIIA.

#### **SUMMARY OF THE INVENTION**

The present invention satisfies the need mentioned above.

10 In this application are described live attenuated vaccines for WEE, EEE, VEE IE and VEE IIIA which may provide higher level immunity in humans and equines for many years, and possibly for life. In addition, very large numbers of vaccine doses can be produced  
15 from significantly less starting materials than is possible with the existing inactivated products. The vaccine preparations of the present invention comprise full-length cDNA copies of the genomes of WEE or VEE IE which have been altered such that the RNA produced  
20 from the cDNA, and the virus produced therefrom is attenuated and useful as a live vaccine for human and veterinary use. The vaccine preparations for VEE IIIA and EEE are novel chimeric viruses which include the newly discovered structural protein genes of VEE IIIA.

25 The classic methods of deriving live-attenuated vaccines (blind passage in cell cultures) generally result in heterogeneous and undefined products, hence recent attempts to make live vaccines for alphaviruses have relied on genetic engineering procedures.

30 The alphavirus genome is a single-stranded, positive-stranded RNA approximately 11,400 nucleotides in length. The 5' two-thirds of the genome consist of a non-coding region of approximately 48 nucleotides followed by a single open reading frame of  
35 approximately 7,500 nucleotides which encodes the

viral replicase/transcriptase. The 3' one-third of the genome encodes the viral structural proteins in the order C-E3-E2-6K-E1, each of which are derived by proteolytic cleavage of the product of a single open reading frame of approximately 3700 nucleotides. The sequences encoding the structural proteins are transcribed as a 26S mRNA from an internal promoter on the negative sense complement of the viral genome. The nucleocapsid (C) protein possesses autoproteolytic activity which cleaves the C protein from the precursor protein soon after the ribosome transits the junction between the C and E3 protein coding sequence. Subsequently, the envelope glycoproteins E2 and E1 are derived by proteolytic cleavage in association with intracellular membranes and form heterodimers. E2 initially appears in the infected cell as a precursor, pE2, which consists of E3 and E2. After extensive glycosylation and transit through the endoplasmic reticulum and the golgi apparatus, E3 is cleaved from E2 by furin-like protease activity at a cleavage site having a consensus sequence of RX(K/R)R, with X being one of many amino acids present in the different viruses, and with the cleavage occurring after the last arginine residue. Subsequently, the E2/E1 complex is transported to the cell surface where it is incorporated into virus budding from the plasma membrane (Strauss and Strauss [1994] *Microbiological Rev.* **58**: 491-562). All documents cited herein *supra* and *infra* are hereby incorporated in their entirety by reference thereto.

Because the genome of alphavirus is a positive-stranded RNA, and infectious upon transfection of cells in culture, an "infectious clone" approach to vaccine development is particularly suitable for the alphaviruses. In this approach, a full-length cDNA

clone of the viral genome is constructed downstream from a RNA polymerase promoter, such that RNA which is equivalent to the viral genome can be transcribed from the DNA clone *in vitro*. This allows site-directed 5 mutagenesis procedures to be used to insert specific mutations into the DNA clone, which are then reflected in the virus which is recovered by transfection of the RNA.

Previous work with infectious clones of other 10 alphaviruses has demonstrated that disruption of the furin cleavage site results in a virus which incorporates pE2 into the mature virus. Davis *et al.* (1995, *supra*) found that disruption of the furin cleavage site in an infectious clone of VEE is a 15 lethal mutation. Transfection of BHK cells with RNA transcribed from this mutant clone resulted in the release of non-infectious particles. However, a low level of infectious virus was produced which contained secondary suppressor mutations such that virus 20 containing pE2 was fully replication competent and subsequently shown to be avirulent but capable of eliciting immunity to lethal virus challenge in a variety of animal species.

The genetic basis for attenuation of the VEE TC- 25 83 vaccine and certain laboratory strains of VEE virus have been studied extensively and has led to the development of improved live, attenuated vaccine candidates (Kinney *et al.* 1993, *supra*, Davis *et al.* 1995, *supra*). The approach used in this application 30 is similar to that used for VEE, however, following the VEE example exactly did not result in an adequate vaccine for WEE. Changes in the procedure used for VEE were required, none of which could have been predicted from the VEE work, in order to produce the 35 attenuated live WEE virus of the present invention.

Based upon a comparison of the structural protein gene sequences of WEE and other alphaviruses, the probable furin cleavage site of WEE strain CBA/87 virus is RRPKR. The presence of the extra arginine when compared to the consensus (RX(R/K)R) alphavirus cleavage site indicated that the cleavage at this site might be more complex than that observed with VEE virus. It was necessary therefore to prepare two deletion mutations in the E3-E2 cleavage site of the full-length clone, one which lacks five amino acids and one which lacks four amino acids since it was unknown which mutation, if any, would produce an attenuated virus. The residual arginine in the full-length clone lacking only four amino acids was of concern due to the possibility that other mutations might arise due to the presence of the extra arginine resulting in cleavage by cellular proteases at that site and producing an apparently wild type virus with respect to cleavage of pE2.

Transfection of cultured cells with RNA transcribed from an infectious clone of WEE lacking the furin cleavage site yielded viruses which contained the pE2 of WEE in the mature virus but which were not replication competent. During intracellular replication of the RNA, mutations arise at low frequency, resulting in a small number of replication competent virus. Sequence analysis of these viruses has shown that the lethal effect of the deletion mutations was alleviated by the appearance of second site mutations in the E2 glycoprotein. These viruses are attenuated in mice when administered by subcutaneous or intracranial inoculation. The mice produce high titer neutralizing and ELISA antibody and are protected against a lethal challenge of parental virulent WEE virus.

Therefore, in one aspect of the invention, the invention pertains to the isolation of a cDNA sequence coding for an infectious western equine encephalitis (WEE) virus RNA transcript. DNA representing the entire genome, not previously available, was prepared by polymerase chain reaction using a series of primer pairs based upon the partial genome sequences previously deposited in Genbank. The 5' and 3' ends of the viral genome were unknown and difficult to obtain. The terminal sequence was necessary for efficient replication of the virus since substitution of ends from a similar virus with similar but not identical sequences resulted in an extremely attenuated virus. In order to determine the correct sequence at the 5' end, a protocol called rapid amplification of cDNA ends (5'-RACE) was used. The full length infectious clone is useful in the production of virulent WEE virus, and introducing and testing attenuating mutations. The production of virulent virus is essential for a formal measure of the degree of attenuation achieved with candidate attenuating mutations and a formal determination of the rate at which reversion to virulence might occur.

In another aspect of the invention, the invention pertains to the isolation of a cDNA sequence coding for an infectious Venezuelan equine encephalitis virus IE variant (VEE IE) virus RNA transcript (SEQ ID NO: 2). Using oligonucleotides specific to genomic RNA of a VEE IE isolate (GenBank accession no. U34999) (Oberste, et al. [1996] *Virology* 219:314-320), reverse transcriptase polymerase chain reaction was carried out to generate numerous cDNA fragments which were subsequently cloned and used to assemble full-length cDNA of VEE IE. The full length infectious clone is useful, for example, in the production of

virulent VEE IE virus, and introducing and testing attenuating mutations.

In the case of VEE IIIA, the structural protein genes were removed from a full length clone of VEE 5 IA/B and replaced by the VEE IIIA structural genes. The IIIA structural gene sequences were prepared by RT-PCR and include the IIIA 26S promoter and the 3' nontranslated region (3'NTR) flanking the sequences for the structural proteins (SEQ ID NO:3). The VEE 10 IIIA 3' NTR was then replaced with the VEE IA/B NTR, and the modified sequence was cloned back into the VEE IA/B full length clone. The result was a clone in which the nonstructural protein gene sequences were from VEE IA/B and the structural protein gene 15 sequences from VEE IIIA. The virus produced from this chimeric clone replicated efficiently in cell culture, and proved to be completely attenuated in mice. In addition, it was highly immunogenic and protected the vaccinated mice against challenge with virulent, wild-type Mucambo virus (VEE IIIA).

Portions of the cDNA sequences described above are useful as probes to diagnose the presence of virus in samples, and to define naturally occurring variants of the virus. These cDNAs also make available 25 polypeptide sequences of WEE antigens, EEE antigens, VEE IE antigens, and VEE IIIA structural polypeptide antigens encoded within the respective genomes and permits the production of polypeptides which are useful as standards or reagents in diagnostic tests 30 and/or as components of vaccines. Antibodies, both polyclonal and monoclonal, directed against WEE epitopes, EEE epitopes, VEE IE epitopes, or VEE IIIA epitopes contained within these polypeptide sequences are also useful for diagnostic tests, as therapeutic 35 agents, and for screening of antiviral agents.

Accordingly, with respect to polynucleotides, some aspects of the invention are: a purified WEE polynucleotide; a recombinant WEE polynucleotide; a recombinant polynucleotide comprising a sequence 5 derived from a WEE genome or from WEE cDNA; a recombinant polynucleotide encoding an epitope of WEE; a recombinant vector containing any of the above recombinant polynucleotides, and a host cell transfected with any of these vectors.

10 Other aspects of the invention are: a purified VEE IE polynucleotide; a recombinant VEE IE polynucleotide; a recombinant polynucleotide comprising a sequence derived from a VEE IE genome or from VEE IE cDNA; a recombinant polynucleotide 15 encoding an epitope of VEE IE; a recombinant vector containing any of the above recombinant polynucleotides, and a host cell transformed with any of these vectors.

In a further aspect of the invention is a 20 complete sequence of the VEE subtype IIIA structural protein genes useful for diagnostics and vaccine development. Also provided is a chimeric virus containing the structural sequences of VEE IIIA, which is completely attenuated and provides protection 25 against challenge with VEE IIIA virulent virus for use as a vaccine

Another aspect of the invention is a single-stranded DNA sequence comprising a cDNA clone coding for an infectious WEE, the cDNA clone including at 30 least one attenuating mutation therein, the RNA produced from transcription of the cDNA and the virus particles produced from the RNA in a host cell for use as a vaccine.

In another aspect of the invention there is 35 provided a full length WEE cDNA clone containing a

defined deletion mutation useful for attenuating the virus for the identification of suppressor mutations in the virus. The attenuated virus with the cleavage deletion and suppressor mutations are useful as a 5 means to generate an attenuated, live WEE virus vaccine for veterinary and human use.

In a further aspect of the invention is provided a chimeric virus containing nonstructural protein gene sequences from WEE and structural protein gene 10 sequences from any alphaviruses including but not limited to Aura, Barmah Forest, Bebaru, Cabassou, Chikungunya, eastern equine encephalitis, Everglades, Fort Morgan, Getah, Highlands J, Kyzylagach, Mayaro, Middelburg, Mucambo, Ndumu, O'nyong-nyong, Pixuna, 15 Ross River, Sagiyma, Semliki Forest, SAAR87, Sindbis, Tonate, Una, Venezuelan equine encephalitis, Whataroa, which could be used as a means for attenuating virulent alphaviruses, and vaccine production against other alphaviruses.

20 Taking advantage of the close evolutionary relationship between WEE and eastern equine encephalitis virus (EEE), a chimeric virus has been constructed in which the structural protein genes of EEE have been inserted into the infectious clone in 25 place of the WEE structural protein genes. The resulting virus is fully replication competent, attenuated, and elicits an immune response in mice which is protective against a lethal challenge with virulent EEE virus.

30 In addition, depending on the non-WEE sequences substituted for the WEE structural genes, another aspect of the invention includes a means for expressing antigens of other alphaviruses as chimeric alphaviruses for use as potential vaccines for human 35 and veterinary use.

In another aspect of the invention there is provided a full length infectious VEE IE cDNA clone containing a cleavage deletion useful in the identification of suppressor mutations in the virus, 5 the RNA produced from the cDNA and the virus produced from the RNA. The virus with the cleavage deletion and suppressor mutations is useful as a means to generate an attenuated, live VEE IE vaccine virus for veterinary and human use.

10 In a further aspect of the invention is provided a chimeric virus containing nonstructural sequences from VEE IE and structural sequences from other alphaviruses which could be used as a means of attenuating virulent alphaviruses.

15 In addition, depending on the non-VEE IE sequences substituted for the structural sequences of VEE IE, another aspect of the invention includes a means to express antigens of other alphaviruses as chimeric alphaviruses as potential vaccines for human 20 and veterinary use.

In a further aspect of the invention, there is provided a vaccine protective against WEE, the vaccine comprising live attenuated WEE virus in an amount effective to elicit protective antibodies in an animal 25 to WEE and a pharmaceutically acceptable diluent, carrier, or excipient.

In yet a further aspect of the invention, there is provided a vaccine protective against VEE IE, the vaccine comprising live attenuated VEE IE virus in an 30 amount effective to elicit protective antibodies in an animal to VEE IE and a pharmaceutically acceptable diluent, carrier, or excipient.

In another aspect of the invention, there is provided a bivalent vaccine protective against WEE and 35 VEE IE, the vaccine comprising both attenuated WEE and

attenuated VEE IE in an amount effective to elicit protective antibodies in an animal to both WEE and VEE IE and a pharmaceutically acceptable diluent. In addition, it is possible that this vaccine will 5 provide short lived protection against other alphaviruses (Cole and McKinney [1971] *Inf. Immunity* 4:37-43).

In yet another aspect of the invention, there is provided an inactivated vaccine produced from the live 10 attenuated virus described above. The attenuated virus of the present invention whether whole virus or chimeric virus can be used in producing inactivated virus vaccines. By using an attenuated virus strain, there is a much greater margin of safety in the event 15 that the produce is incompletely inactivated. Starting with an attenuated strain is also much safer during the manufacturing phase, and allows production under lower biocontainment levels.

20                   **BRIEF DESCRIPTION OF THE DRAWINGS**

These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description and appended claims, and accompanying drawings where:

25

**Figure 1A, 1B and 1C.** Assembly of the full length cDNA clone of western equine encephalitis virus. Polymerase chain reaction products representing the entire genome of WEE virus were 30 prepared with the primer pairs indicated. Each of the products was cloned into pBluescript KS+. Assembly of the full length clone, pWE2000 in pBluescript was carried out as indicated in the figure and described below. The clones are not drawn to scale. In each of 35 the plasmids, the primers used to generate the PCR

products are indicated as are the restriction endonuclease sites used for the assembly.

**Figure 2.** Polypeptide profiles of western equine encephalitis viruses. Samples of purified virus were analyzed by electrophoresis on 10% polyacrylamide gels and stained with Comassie Brilliant blue. Molecular weight marker (MW) are shown in the first lane and molecular weights are indicated in daltons  $\times 10^{-3}$ . The virus strain is designated above the appropriate lane. Position of contaminating bovine serum albumin is indicated by arrow.

**Figure 3.** Polypeptide profiles of western equine encephalitis virus (WEE), eastern equine encephalitis (EEE) and chimeric virus, MWE. Samples of purified virus were analyzed by electrophoresis on 10% polyacrylamide gels and stained with Comassie Brilliant blue. Molecular weight markers (MW) are shown and molecular weights are indicated in daltons  $\times 10^{-3}$ . Position of contaminating bovine serum albumin is indicated by arrow.

**Figure 4.** Derivation of virulent VEE IE clone.  
Constructions of cDNA encoding the entire genome of cloned strain 68U201 are shown. The relevant cloning sites and genetic markers are indicated above each clone. The first full-length clone produced that replicated *in vitro* after transfection of the RNA transcribed from the T7 promoter, was pIE-1006. Further modifications to this clone were carried out in order to obtain pIE-1009 that had the *in vitro* and *in vivo* characteristics of the parental, biological isolate, strain 68U201. With a fully virulent clone, pIE-1009 available, specific attenuating mutations

were introduced into pIE-1009 to generate the attenuated clone, pIE1100. Drawings are not to scale. Shaded areas represent regions of pIE1006 that were replaced or mutated to generate new clones.

5

**Figure 5.** Construction of IAB-IIIA cDNA chimeric clone pV3A-1000.

#### DETAILED DESCRIPTION

10 In one embodiment, the present invention relates to a full length cDNA clone of fully virulent WEE virus specified in SEQ ID NO:1, and a full length cDNA clone of fully virulent VEE IE variant specified in SEQ ID NO:2.

15 WEE, strain CBA/87, isolated from the brains of an infected horse in Argentina in 1987 (Bianchi et al., [1987] *Am.J. Trop. Med. Hyg.* **49**:322-328) was used as a parent strain in the instant invention. Any other strain which consistently kills 100% of 5 week old

20 C57BL6 mice when inoculated subcutaneously can be used such as B11, for example. The cDNA clone can be generated by any of a variety of standard methods known in the art. Preferably, DNA representing the entire genome can be prepared by polymerase chain

25 reaction using a series of primer pairs based upon the partial genome sequences previously deposited in GenBank. The 5' terminal sequence of the virus may be determined by 5'-RACE basically as described by Frohman et al. ([1988] *Proc. Natl. Acad. Sci. U.S.A.*

30 **85**:8998-9002). Assembly of the full length clone can be in a suitable transcription vector such as, for example, pBluescript KS+, using convenient restriction endonuclease sites or the entire genome could be inserted into any plasmid which contains suitable 35 restriction endonuclease cleavage sites for cloning,

an origin of replication so that the plasmid can be propagated in a bacterial host, and a selectable marker gene to maintain the plasmid in the bacterial cell during growth. The DNA sequence preferably has a 5 complementary DNA sequence bonded thereto so that the double-stranded sequence will serve as an active template for RNA polymerase. Hence, the transcription vector preferably comprises a plasmid. When the DNA sequence comprises a plasmid, it is preferred that a 10 unique restriction site be provided 3' (with respect to the virion RNA sequence) to ("down-stream" from) the cDNA clone. This provides a means for linearizing the DNA sequence to enhance the efficiency of transcription of genome-length RNA *in vitro*.

15       The complete clone is preferably operatively associated with a promoter region such that the promoter causes the cDNA clone to be transcribed in the presence of an RNA polymerase which binds to the promoter. The promoter is positioned on the 5' end 20 (with respect to the virion RNA sequence), or upstream from, the cDNA clone. An excessive number of nucleotides between the promoter sequence and the cDNA clone will result in the inoperability of the construct. Hence, the number of nucleotides between 25 the promoter sequence and the cDNA clone is preferably not more than eight, more preferably not more than than 5, still more preferably not more than 3, and most preferably not more than 1. Exemplary promoters useful in the present invention include, but are not 30 limited to, T3 promoters, T7 promoters, and SP6 promoters. It is preferable that the 5' end of the *in vitro* transcript not have any additional nucleotides preceding the first nucleotide of the viral sequence. At the 3' end, additional nucleotides can be tolerated 35 in the *in vitro* transcript but are probably lost when

the virus replicates. In most instances, the poly-dA tract at the 3' end is required for viability of the virus. Selection of the virulent full length clone can be achieved by comparing the LD<sub>50</sub> of the virus encoded by the cloned cDNA with the LD<sub>50</sub> of the parent virus used, in the instant example, WEE CBA/87. The ability to produce virulent virus is important; it allows the introduction and testing of attenuation mutations and the attenuated phenotype against a standard: the virulent parent.

Transfection of cells with the RNA transcript coded by the full length genomic cDNA can be achieved by any suitable means, such as, for example, by treating the cells with DEAE dextran, treating the cells with "LIPOFECTIN", and by electroporation. Togavirus-permissive cells, alphavirus-permissive cells, and WEE-permissive and VEE IE-permissive cells are cells which, upon transfection with the viral RNA transcript, are capable of producing viral particles. Togaviruses have a broad host range. Examples of such cells include, but are not limited to, Vero cells, baby hamster kidney cells, chicken embryo fibroblast cells, Chinese hamster ovary cells (CHO), mouse L cells, MRC-5 cells, mosquito cells such as C6-36 cells, to name a few.

In the case of VEE IE, an isolate of VEE IE, strain 68U201, was used. Any isolate known to cause disease in man can be chosen. In addition the ability of a strain to have an easily identifiable phenotype such as, for example, the ability to form large plaques in tissue culture on indicator cell monolayers, is helpful. In the present invention, the full length clone of VEE IE was obtained using oligonucleotide primers specific for the VEE IE strain 68U201 sequence. Reverse transcription-polymerase

chain reaction (RT-PCR) of strain 68U201 viral RNA was carried out to generate numerous cDNA fragments that were subsequently cloned and used to assemble a full-length cDNA in a plasmid such that the cDNA could be precisely transcribed and viral infectious RNA produced. It is also possible to produce the entire genome by polymerase chain reaction by including the promoter sequence in the 5' end primer thereby producing infectious RNA directly from the PCR fragment. It is also possible to transcribe the viral RNA from a plasmid in the cell by transfection with the appropriate plasmid containing a promoter utilized by cellular RNA polymerases, i.e. the CMV promoter.

To determine virulence of the cloned viral genome, mice can be inoculated subcutaneously with  $10^4$  plaque forming units of the cloned virus. The clone is considered virulent if all mice die, and not fully virulent if mice do not all die. The LD<sub>50</sub> of parent VEE IE strain 68U201 is to 1-2 pfu, therefore, if inoculation of 10,000-fold did not cause lethal disease in all mice, it was considered attenuated.

In another embodiment of the present invention is provided a cDNA sequence of the entire 26S region of VEE subtype IIIA as well as the structural protein genes specified in SEQ ID NO:3.

DNA or polynucleotide sequences to which the invention also relates include sequences of at least about 6 nucleotides, preferably at least about 8 nucleotides, more preferably at least about 10-12 nucleotides, most preferably at least about 15-20 nucleotides corresponding, i.e., homologous to or complementary to, a region of the WEE, VEE IE, or VEE IIIA nucleotide sequence. Preferably, the sequence of the region from which the polynucleotide is derived is homologous to or complementary to a sequence which is

unique to the virus. Whether or not a sequence is unique to the virus can be determined by techniques known to those of skill in the art. For example, the sequence can be compared to sequences in databanks, 5 e.g., GenBank. Regions from which typical DNA sequences may be derived include but are not limited to, for example, regions encoding specific epitopes, as well as non-translated regions.

The derived polynucleotide is not necessarily 10 physically derived from the nucleotide sequence of the alphaviruses, but may be generated in any manner, including for example, chemical synthesis or DNA replication or reverse transcription or transcription, which are based on the information provided by the 15 sequence of bases in the region(s) from which the polynucleotide is derived. In addition, combinations of regions corresponding to that of the designated sequence may be modified in ways known in the art to be consistent with an intended use. The sequences of 20 the present invention can be used in diagnostic assays such as hybridization assays and polymerase chain reaction assays and for the discovery of other alphavirus sequences.

A polypeptide or amino acid sequence derived from 25 the amino acid sequence of alphavirus, refers to a polypeptide having an amino acid sequence identical to that of a polypeptide encoded in the sequence, or a portion thereof wherein the portion consists of at least 2-5 amino acids, and more preferably at least 8- 30 10 amino acids, and even more preferably at least 11-15 amino acids, or which is immunologically identifiable with as a polypeptide encoded in the sequence.

A recombinant or derived polypeptide is not 35 necessarily translated from a designated nucleic acid

sequence, it may be generated in any manner, including for example, chemical synthesis, or expression of a recombinant expression system.

Once a complete viral genomic cDNA is cloned, 5 attenuation of the virus is possible. An attenuating mutation refers to a nucleotide mutation or amino acid coded for in view of such a mutation which results in a decreased probability of causing disease in its host (i.e., a loss of virulence), in accordance with 10 standard terminology in the art. The attenuating mutation may be a substitution mutation or an in-frame deletion mutation.

Novel WEE attenuating mutations disclosed herein which may be used to carry out the present invention 15 include deletion of five amino acids at the furin cleavage site in combination with a substitution of lysine for glutamic acid at codon 182 at E2, or deletion of five amino acids at the furin cleavage site in combination with a substitution of lysine for 20 glutamic acid at codon 181 at E2. Additionally, certain mutations placed in the non-coding region at the 5' end of the genome have been found to be attenuating, specifically, a C to T change at nucleotide 7, an A to G change at nucleotide 13, a T 25 to A change at nucleotide 25 and deletion of an A at nucleotide 22. These novel attenuating mutations may be inserted together in a cDNA clone encoding WEE virus resulting in an attenuated WEE which is reflected by 100% survival of mice inoculated by 30 subcutaneous and intracranial routes. Such an attenuated live virus is immunogenic and protective against a lethal virus challenge.

Novel attenuating mutations can be discovered in the VEE IE by introducing mutations which are not 35 reparable by the viral RNA replication process. A

preferable mutation is the deletion of the four amino acids of the furin-like cleavage site between the E3 and E2 proteins. Transfection of the mutant viral genome into cells can result in the suppression of the 5 lethal effect of the deletion mutation due to the error prone process of alphavirus replication. Once efficiently replicating viral progeny is generated they can be detected by plaque assays and analyzed for the presence of pE2 protein which indicates that the 10 virus contains the deletion mutation. Attenuated but yet immunogenic virus with a cleavage deletion mutation and suppressor mutation(s) could be tested for its ability to protect animals from challenge with virulent VEE IE.

15 Attenuating mutations may be introduced into cDNAs encoding live WEE or VEE IE by any suitable means, such as site-directed mutagenesis (Please see e.g., Maniatis, Fritsch and Sambrook, Molecular Cloning: A Laboratory Manual (1982) or DNA Cloning, 20 Volumes I and II (D. N. Glover ed. 1985) or Current Protocols in Molecular Biology, Ausubel, F. M et al. (Eds.) John Wiley & Sons, Inc., for general cloning methods.).

25 In another embodiment of the present invention is provided a chimeric virus containing nonstructural sequences from one alphavirus and structural sequences from other alphaviruses which could be used as a means of attenuating virulent alphaviruses. By "Structural sequences" as used herein is meant sequences encoding 30 proteins which are required for encapsidation (e.g., packaging) of the viral genome, and include the capsid protein, E1 glycoprotein, and E2 glycoprotein. By "nonstructural sequences" is meant nonstructural protein sequences, or sequences which encode viral RNA

polymerase(s) proteins. Viruses from which structural sequences can be used in the chimeric virus using WEE "nonstructural genes" as the backbone clone can include for example, all strains of WEE, EEE, and

5 Sindbis, Aura, Barmah Forest, Bebaru, Bijou Bridge, Cabassou, Chikungunya, Everglades, Fort Morgan, Getah, Highlands J, Kyzylagach, Mayaro, Middleburg, Mucambo, Ndumu, O'nyong-nyong, Pixuna, Ross River, Sagiyama, Semliki Forest, SAAR87, Tonate, Una, Venezuelan Equine

10 Encephalitis, Whataroa, to name a few. Acceptable structural protein genes would include a nucleocapsid protein capable of both packaging the chimeric viral genome and which can interact with the glycoproteins to initiate particle assembly. Chimeric virus is

15 constructed by excision of the structural protein genes of the backbone virus and replacement with the desired structural protein genes from another virus. This can be accomplished in one of several ways. For example, site-directed mutagenesis can be used to

20 excise the structural protein genes and leave a restriction endonuclease digestion site at the point of deletion. The structural protein genes of another alphavirus would then be cloned into that restriction site. Any virus obtained after transfection of cells

25 with RNA transcribed from that clone would by definition be a chimeric virus.

In the case where the first and second viruses are closely related, another method can be used wherein cloned structural cDNA sequences of a second

30 alphavirus can be digested at restriction enzyme sites which both viruses have in common. The cDNA fragments of the second virus can then be cloned into the homologous sites in the first virus structural protein locus such that the resulting structural protein genes

35 of the chimeric are a composite of both. Other

methods for producing a chimearic virus are known to people in the art (Kuhn et al. [1996] *J. Virology* **70**:7900-7909).

In another embodiment, the attenuated viruses of the present invention can be used to prepare replicon expression systems. A replicon expression system consists of three components. The first is a replicon which is equivalent to a full length infectious clone from which all of the viral structural proteins have been deleted. A multiple cloning site can be cloned into the site previously occupied by the structural protein genes. Virtually any heterologous gene may be cloned into this cloning site. Transcription of RNA from the replicon yields an RNA capable of initiating infection of the cell identically to that seen with the full-length infectious virus clone. However, in lieu of the viral structural proteins, the heterologous antigen is expressed. This system does not yield any progeny virus particles because there are no viral structural proteins available to package the RNA into particles.

Particles which appear structurally identical to virus particles can be produced by supplying structural proteins for packaging of the replicon RNA in *trans*. This is typically done with two helpers. One helper consists of a full length infectious clone from which the nonstructural protein genes and the glycoprotein genes are deleted. The helper retains only the terminal nucleotide sequences, the promoter for subgenomic mRNA transcription and the sequence for the viral nucleocapsid protein. The second helper is identical to the first except that the nucleocapsid gene is deleted and only the glycoprotein genes are retained. The helper RNA's are transcribed *in vitro* and co-transfected with replicon RNA. Because the

replicon RNA retains the sequences for packaging by the nucleocapsid protein, and because the helpers lack these sequences, only the replicon RNA is packaged by the viral structural proteins and released from the 5 cell. The particles can then be inoculated into animals similar to parent virus. The replicon particles will initiate only a single round of replication because the helpers are absent, they produce no progeny virus particles, and express only 10 the viral nonstructural proteins and the product of the heterologous gene cloned in place of the structural proteins. The heterologous gene product is then detected by the host immune system and appropriate immune response is then mounted.

15       The WEE and VEE IE replicons can be used to express heterologous genes of interest as well as a means for expressing antigens or immunogenic proteins and peptides of interest, *in vitro* or *in vivo*. The immunogenic protein or peptide, or "immunogen" may be 20 any immunogen suitable for inducing an immune response protective against a pathogen from which the immunogen is derived, including but not limited to microbial, bacterial, protozoal, parasitic, and viral pathogens. For example, the immunogen can be the expression 25 product of any heterologous gene of interest, including influenza hemagglutinin, lassa fever nucleocapsid and glycoproteins, portions of bacterial toxin genes, HIV glycoprotein, Ebola glycoprotein, to name a few.

30       In yet another embodiment, the present invention provides inactivated virus vaccines produced from live attenuated virus preparations, either as virus with attenuating mutations as has been described for WEE and VEE IE or chimeric viruses described above for EEE 35 and VEE IIIA. The inactivation of live virus is well

known in the art and can be performed, for example, by the use of formalin. Inactivated attenuated virus vaccine has a greater safety margin both as a final vaccine in case of incomplete inactivation, and during 5 the manufacturing process allowing production under lower biocontainment levels.

Subjects which may be administered the live attenuated or inactivated attenuated viruses and vaccine formulations disclosed herein include both 10 humans and animals (e.g. horse, donkey, pigs, mice, hamster, monkey, birds).

Vaccine formulations of the present invention comprise an immunogenic amount of a live attenuated virus, or a combination of live attenuated viruses as 15 a multivalent vaccine, as disclosed herein in combination with a pharmaceutically acceptable carrier. An "immunogenic amount" is an amount of the attenuated virus sufficient to evoke an immune response, particularly an immune response to the 20 protein or peptide encoded by the heterologous RNA carried by the virus, in the subject to which the virus is administered. An amount of from about  $10^1$  to  $10^5$  plaque forming units of the live virus per dose is suitable, depending upon the age and species of the 25 subject being treated. Exemplary pharmaceutically acceptable carriers include, but are not limited to, sterile pyrogen-free water and sterile pyrogen-free physiological saline solution.

Administration of the live attenuated viruses 30 disclosed herein may be carried out by any suitable means, including both parenteral injection (such as intraperitoneal, subcutaneous, or intramuscular injection), by in ovo injection in birds, and by topical application of the virus (typically carried in 35 the pharmaceutical formulation) to an airway surface.

Topical application of the virus to an airway surface can be carried out by intranasal administration (e.g. by use of dropper, swab, or inhaler which deposits a pharmaceutical formulation intranasally). Topical  
5 application of the virus to an airway surface can also be carried out by inhalation administration, such as by creating respirable particles of a pharmaceutical formulation (including both solid particles and liquid particles) containing the virus as an aerosol  
10 suspension, and then causing the subject to inhale the respirable particles. Methods and apparatus for administering respirable particles of pharmaceutical formulations are well known, and any conventional technique can be employed.

15 In another embodiment, the present invention relates to antibodies specific for the above-described virus. For instance, an antibody can be raised against any of the viral proteins or against a portion thereof. Persons with ordinary skill in the art using  
20 standard methodology can raise monoclonal and polyclonal antibodies to a polypeptide of the present invention. Material and methods for producing antibodies are well known in the art (see for example Goding, in, Monoclonal Antibodies: Principles and  
25 Practice, Chapter 4, 1986). The antibodies can be used to monitor the presence or activity of alphaviruses and potentially as a therapeutic agent.

In a further embodiment, the present invention relates to a method of detecting the presence of WEE,  
30 EEE, VEE IIIA or VEE IE viral infection or antibodies against these viruses, if present, in a sample. Using standard methodology well known in the art, a diagnostic assay can be constructed by coating on a surface (i.e. a solid support) for example, a

microtitration plate or a membrane (e.g. nitrocellulose membrane), all or a unique portion of WEE, EEE, VEE IIIA or VEE IE virus described above, and contacting it with the serum of a person suspected 5 of having a viral infection. The presence of a resulting complex formed between the virus and antibodies specific therefor in the serum can be detected by any of the known methods common in the art, such as colorimetry or microscopy. This method 10 of detection can be used, for example, for the diagnosis of WEE, EEE, VEE IIIA and VEE IE viral infections.

In yet another embodiment, the present invention relates to a method of detecting the presence of WEE, 15 EEE, VEE IIIA or VEE IE viruses in a sample. Using standard methodology well known in the art, a diagnostic assay can be constructed by coating on a surface (i.e. a solid support) for example, a microtitration plate or a membrane (e.g. nitrocellulose membrane), antibodies specific for WEE and/or VEE IE, and contacting it with serum or tissue 20 sample of a person suspected of having a WEE or VEE IE viral infection. The presence of a resulting complex formed between virus in the serum and antibodies 25 specific therefor can be detected by any of the known methods common in the art, such as fluorescent antibody spectroscopy or colorimetry. This method of detection can be used, for example, for the diagnosis of WEE, EEE, VEE IIIA and VEE IE viral infection.

30 In another embodiment, the present invention relates to a diagnostic kit which contains WEE, EEE, VEE IE, or VEE IIIA virus and ancillary reagents that are well known in the art and that are suitable for use in detecting the presence of antibodies to WEE and 35 VEE IE in serum or a tissue sample. Tissue samples

contemplated can be obtained from birds, monkey, human, or other mammals.

In yet a further embodiment, the present invention relates to DNA or nucleotide sequences for use in detecting the presence or absence of WEE, EEE, VEE IE or VEE IIIA virus using the reverse transcription-polymerase chain reaction (RT-PCR). The DNA sequence of the present invention can be used to design primers which specifically bind to the viral RNA for the purpose of detecting the presence, absence, or quantitating the amount of virus. The primers can be any length ranging from 7-40 nucleotides, preferably 10-15 nucleotides, most preferably 18-25 nucleotides. Reagents and controls necessary for PCR reactions are well known in the art. The amplified products can then be analyzed for the presence or absence of viral sequences, for example by gel fractionation, with or without hybridization, by radiochemistry, and immunochemical techniques.

In yet another embodiment, the present invention relates to a diagnostic kit which contains PCR primers specific for WEE, EEE, VEE IE or VEE IIIA and ancillary reagents that are well known in the art and that are suitable for use in detecting the presence or absence of WEE, EEE, VEE IE or VEE IIIA in a sample using PCR. Samples contemplated can be obtained from birds, human, or other mammals.

In another embodiment, the present invention relates to a method of reducing WEE, EEE, VEE IE, or VEE IIIA viral infection symptoms in a patient by administering to said patient an effective amount of anti WEE, anti EEE, anti VEE IE, or anti VEE IIIA antibodies, or protective serum from an immunized animal. When providing a patient with antibodies, the dosage of administered agent will vary depending upon

such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of the above compounds which is in the range of from about 1pg/kg to 10 mg/kg body weight of patient, although a lower or higher dosage may be administered.

In another embodiment, the present invention relates to a method for overcoming vaccine interference in alphavirus-immune individuals. Alphavirus interference has been documented in animals and people since the 1960's. This phenomenon occurs when a live-attenuated vaccine is administered to animals or people with existing immunity to heterologous alphaviruses. Pre-existing immunity may be acquired by vaccination or infection. This presents a significant limitation to the usefulness of the current live-attenuated alphavirus vaccines, especially since the cross-reactive immunity does not protect adequately against challenge with virulent heterologous alphaviruses. Formalin-inactivated vaccines are not an acceptable alternative as they have significant limitations with regard to the quality and duration of protective immunity and require multiple inoculations and periodic boosters. The attenuated WEE, EEE, VEE IIIA and VEE IE virus vaccines of the present invention contain mutations in the viral glycoprotein sequences that may alter the sequence, conformation, and/or accessibility of cross-reactive epitopes. Alterations in epitopes that prevent binding by cross-reactive antibodies may also bypass interference in alphavirus-immune individuals. Eliminating the problem of interference would permit the WEE and VEE IE attenuated virus vaccines to be used in alphavirus-immune animals or people to induce

protective immunity to western equine encephalitis virus and/or to Venezuelan equine encephalitis virus variant IE. Long-lasting protective immunity to both parenteral and aerosol challenge would be expected  
5 after vaccination with the live-attenuated vaccines of the present invention, and provide an additional advantage over the use of inactivated vaccines which induce short-lived responses that do not protect against mucosal challenge.

10 Having now described the invention, the following examples are provided to illustrate the present invention, and should not be construed as limiting thereof. In light of the present disclosure, numerous embodiments within the scope of the claims will be apparent to those of ordinary  
15 skill in the art.

#### Attenuated WEE

20 The following materials and methods were used in the examples that follow.

Viruses and cells. Western equine encephalitis virus, strain CBA/87 (Bianchi et al. 1988) and eastern equine encephalitis virus, strain Fla91-4679 (Mitchell et al. [1992] *Science* 257:526-7) were grown in BHK  
25 cells in EMEM containing 10% fetal bovine serum, 100 U/ml penicillin G and 100 µg/ml streptomycin. Primary chicken embryo fibroblasts were grown in EMEM containing 5% fetal bovine serum. Baby hamster kidney cells and Vero cells were grown in EMEM containing 10%  
30 fetal bovine serum.

cDNA cloning. Genomic RNA was prepared from purified virus by phenol:chloroform extraction and ethanol precipitation. Initially, cDNA was prepared by the method of Gubler and Hoffman ([1983] *Proc.*

Natl. Acad. Sci. U.S.A. 85:5997-6001). Subsequently, DNA representing the entire genome was prepared by polymerase chain reaction using a series of primer pairs (Table 1, Figure 1) based upon the partial genome sequences previously deposited in GenBank. Each PCR product was cloned into pCRII (Invitrogen). The 5' terminal sequence of CBA/87 virus was determined by 5'-RACE basically as described by Frohman et al. ([1988] Proc. Natl. Acad. Sci. U.S.A. 85:8998-9002). The oligonucleotide, CBA/87 5', consisted of an SstII site, the promoter for bacteriophage T7 RNA polymerase followed by one G and 14 nucleotides of the 5' terminus of CBA/87 terminal sequence was paired with ns1962 and used to amplify the terminal 1.9 kb of the WEE genome. Clone pWE2000 representing the entire genome was assembled in pBluescript KS+ through the use of convenient restriction endonuclease sites.

|    |                                                                                                                                                                                                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | <u>Table 1. Oligonucleotide Primers for Preparation of WEE PCR Products</u>                                                                                                                                   |
|    | CBA/87 -T7-Sst2<br>GTCACCGCGGTAATACGACTCACTATAGATAGGGCATGGTATAGAG<br>(SEQ ID NO:4)                                                                                                                            |
| 25 | NS1962 TCACCTTATTCTGGAACACATCAG (SEQ ID NO:5)<br>WEE-7 TCGGAGGAAGGCTGATGAAAC (SEQ ID NO:6)<br>WEE-10 TCGGATCCGATGAGAAAATATACGCTCCC (SEQ ID NO:7)<br>WEE-17 GACTGGATCCGCAAACCAGTCCTGTTCTCAGG<br>(SEQ ID NO:8)  |
| 30 | WEE-18 GCATGGATCCAGCATTGATCGGAAATGTCTTGTC<br>(SEQ ID NO: 9)<br>WEE-5 TCGGATCCACCGCCAAAATGTTCCATAC (SEQ ID NO:10)<br>WEE-3 TCGGGATCCCCGGAACATTTGGC (SEQ ID NO:11)<br>WEE-2 CTGCTTTCATGCTGCATGCC (SEQ ID NO:12) |
| 35 | WEE-Not CGATGCGGCCGTTTTTTTTTGAAATTTAAAAAC<br>(SEQ ID NO:13)<br>WEE-CL2 CAGCGTGAAGTCATCGGTAATGCTGCGTGATGGACATTCAAG<br>(SEQ ID NO:14)                                                                           |
| 40 | WEE-CL1 CAGCGTGAAGTCATCGGTAATGCTTGATGGACATTCAAG<br>(SEQ ID NO:15)                                                                                                                                             |

For ease of subsequent site-directed mutagenesis of the structural protein genes, two cassettes representing the 5' terminal 7.6 kb, plasmid pWE5'-18, and 3' 4.2 kb, plasmid pWE3'-17, of the genome were 5 prepared. Full length clones were assembled by digestion of the pWE5'-18 with *BlnI* and *NotI* and insertion of a 4.1 kb *BlnI-NotI* fragment prepared from the plasmid pWE3'-17 or its mutagenized derivatives.

A cassette containing the structural genes of 10 eastern equine encephalitis virus strain Fla91-4679 was prepared by RT-PCR. The cassette was digested with *BlnI* and *NotI* and the 4.0 kb fragment was ligated to pWE5'-18 which had been similarly digested. The resulting plasmid was designated pMWE-7.

15         Mutagenesis of the furin cleavage site. Two oligonucleotides, WEE-CL2 and WEE-CL which bracket the presumed furin cleavage site, RRPKR, between the E3 and E2 glycoproteins were used to delete the 5 and 4 codons, respectively. Plasmid pWE3'-17 was used as 20 template for mutagenesis. WEECL2 and WEECL were paired with primer WEE-5 to generate PCR products of 1.4 kb. The PCR products were purified and paired with WEE-3 for 10 cycles of PCR utilizing WE3'-17 as template. Additional WEE-5 primer was added to 500 nM 25 and PCR was carried out for an additional 20 cycles. The 2.3 kb products were purified, digested with *BstEII* and *NcoI* and ligated into plasmid pWE3'-17 which had been digested with *BstEII* and *NcoI*. Clones containing the mutation were identified by loss of the 30 *NgoM1* site in the sequences encoding the furin cleavage site. The sequences of the mutations were confirmed by sequencing and the mutagenized pWE3'-17 cassettes were ligated to pWE5'-18 as described above to yield full length clones pWE2200 and pWE2100, 35 respectively.

Identification of secondary mutations in virus derived from pWE2100 and pWE2200. Virus released from cells electroporated with RNA transcribed from pWE2200 were plaque-purified and grown into stock preparations. Supernatant from cells transfected with RNA transcribed from pWE2100 was diluted 10-fold and inoculated onto BHK cells. The supernatant was collected 48 hours later and the RNA was extracted directly from the culture fluid. For each mutant virus and the parent CBA/87 virus, viral RNA was extracted with Trizol LS (Life Technologies, Inc., Gaithersburg, MD) and the glycoprotein genes of each were amplified by reverse transcription-polymerase chain reaction amplification. The PCR products were purified (PCR Prep, Promega Inc., Madison, WI) and sequenced on an ABI 373 sequencer using fluorescent-tagged terminators.

Transcription and transfection. Purified plasmid was digested with *NotI*, phenol extracted and ethanol precipitated. Typically 0.5-1 ug of linearized DNA was transcribed *in vitro* by T7 RNA polymerase (Ribomax, Promega, Madison, WI) in the presence of 3 mM m7GpppGp (Pharmacia, Piscataway, NJ). Electroporation of BHK or CEF cells with 0.4 ug of RNA was done as described (Liljestrom et al. [1991] *Bio/Technology* 9:1356-1361). The cells were then seeded into T-75 flasks with 20 ml of medium and observed for cytopathology at 24 and 36 hours after electroporation. Virus was harvested when the cells displayed significant cytopathology and approximately 50% were detached from the plastic. Virus titers were determined by plaque assay on Vero and BHK cells.

## EXAMPLE 1

Preparation of an infectious clone of WEE strain CBA/87.

One goal of this study was to prepare a full length cDNA clone of fully virulent WEE virus such that mutations leading to an attenuated phenotype could be identified. WEE, strain CBA/87, isolated from the brain of an infected horse in Argentina in 1987 (Bianchi et al. [1988] *Am. J. Trop. Med. Hyg.* 49:322-328), was chosen as the parent virus as it consistently kills 100% of 5 week old C57BL6 mice when inoculated subcutaneously, allowing development of a convenient animal model to assess the relative effects on virulence of the attenuating mutations. Portions of the sequence of several strains of WEE virus had been determined previously and were used as a basis for primers to prepare amplification products representing the entire genome of the CBA/87 which were cloned in pCRII. Full length clones were assembled in pBluescript KS+ using convenient restriction sites as shown in Figure 1. The first infectious clone pWE1000, contained the 5' terminal 20 nucleotides from eastern equine encephalitis virus. This clone produced viable virus which was highly attenuated exhibiting an subcutaneous LD<sub>50</sub> in mice of approximately 1.2 X 10<sup>6</sup> PFU compared to the CBA/87 parent virus where LD<sub>50</sub> was approximately 22.

A second clone with an authentic WEE 5'-terminus, pWE2000, was used for all subsequent experiments.

Transfection of CEF or BHK cells with RNA transcribed from pWE2000 resulted in complete destruction of the monolayers within 36 hours and titers >10<sup>8</sup> PFU/ml were obtained by infection of either cell type with the resulting virus. Subcutaneous inoculation of 5 week

old C57/B16 mice with WE2000 results in death within 9 days and the LD<sub>50</sub> of 75 PFU is only slightly higher than the LD<sub>50</sub> of 22 PFU of CBA/87 parent virus, Table 2. It should be noted that animals surviving the lower doses of virus challenge gave no serological evidence of infection. This level of virulence for WE2000 virus was considered sufficient to allow for further characterization of the mutations necessary for attenuation of the virus.

10

Table 2. C57 Black/6 Mice Inoculated Subcutaneously with CBA/87 Parental virus and WE2000 Recombinant Virus

| <u>Virus Strain</u> | Mortality | Mean Day to Death (Days) | Prechallenge ELISA | Challenge (S/T) |
|---------------------|-----------|--------------------------|--------------------|-----------------|
| Dose                |           |                          |                    |                 |
| <u>CBA/87</u>       |           |                          |                    |                 |
| 3X10 <sup>5</sup>   | 10/10     | 8.4                      | -                  | -               |
| 3X10 <sup>4</sup>   | 10/10     | 8.9                      | -                  | -               |
| 3X10 <sup>3</sup>   | 10/10     | 9.2                      | -                  | -               |
| 3X10 <sup>2</sup>   | 7/10      | 9.9                      | <100               | 0/3             |
| 3X10 <sup>1</sup>   | 3/10      | 10                       | <100               | 0/7             |
| 3                   | 0/10      | --                       | <100               | 0/10            |
| <u>WE2000</u>       |           |                          |                    |                 |
| 1X10 <sup>7</sup>   | 10/10     | 8.7                      | -                  | -               |
| 1X10 <sup>6</sup>   | 10/10     | 9.0                      | -                  | -               |
| 1X10 <sup>5</sup>   | 10/10     | 9.2                      | -                  | -               |
| 1X10 <sup>4</sup>   | 10/10     | 9.3                      | -                  | -               |
| 1X10 <sup>3</sup>   | 9/10      | 10.0                     | <100               | 0/1             |
| 1X10 <sup>2</sup>   | 3/10      | 10.0                     | <100               | 0/7             |
| 1X10 <sup>1</sup>   | 0/10      | -                        | <100               | 0/10            |
| 1                   | 0/10      | -                        | <100               | 0/10            |

15

## EXAMPLE 2

### Preparation of cleavage mutants of CBA/87.

Davis et al. ([1995] *Virology* 212:102-110) have demonstrated that deletion of the furin cleavage site between E3 and E2 glycoproteins of VEE virus is a lethal mutation. However, prolonged incubation of cells which had been transfected with RNA derived from

full length clones with the deletion, resulted in the eventual appearance of virus which was replication-competent and attenuated in mice (Davis et al., 1995, *supra*). Based upon a comparison of the predicted structural protein sequences of WEE and VEE, the probable cleavage site of CBA/87 virus is RRPKR. The presence of the extra arginine when compared to the consensus (RX(R/K)R) alphavirus cleavage site indicated that the cleavage site of WEE virus might be more complex than that observed with VEE virus. We therefore, prepared two different deletion mutations in the E3-E2 cleavage site of the pWE2000 clone, pWE2100 which lacks five amino acids, RRPKR, and pWE2200 which lacks four amino acids, RPKR.

Development of CPE in cells after electroporation of RNA transcribed from pWE2100 and pWE2200 was delayed for 48 to 72 hours compared with pWE2000. In two instances, pWE2100 did not induce significant CPE in the transfected cells despite the fact that approximately  $10^6$  PFU/ml were released into the medium of transfected cells. When assayed by plaque formation on Vero cells, both supernatants yielded extremely small plaques after 72 hours which never increased beyond 2 mm in diameter. In contrast, pWE2000 virus yields large plaques after 48 hours which enlarge to approximately 1 cm after 5 days under a 0.5% agarose overlay. The small plaque phenotype of the mutant viruses is stable after 3 passages in Vero or BHK cells, which is the limit to the passage of the virus used in these experiments.

Analysis of the structural proteins of the WE2100 and WE2200 viruses by SDS-PAGE (Figure 2) shows that in each instance, the deletions at the cleavage site result in a virus which lacks E2 protein and contains a larger protein, presumably pE2, indicating that

deletion of the presumed cleavage site eliminated cleavage at this site.

The lack of rapid cytopathology after transfection of BHK cells with transcripts of pWE2200 and pWE2100 suggested that the mutants were non-viable and that the infectious virus subsequently detected by plaque assay was due to secondary mutations arising during the replication of the RNA as reported previously for deletion mutants of VEE (Davis *et al.*, 1995, *supra*).

Three plaque isolates from WE2200 virus were chosen for further characterization. All isolates grew to high titer and exhibited a small plaque phenotype. The isolates were sequenced over the entire glycoprotein reading frame. As shown in Table 3, isolates 2215 and 2220 have a mutation of Glu to Lys at position 181 of the E2 glycoprotein. Strain WE2219 carries a single Glu to Lys at position 182 of the E2 protein. Strain WE2215 also has a conservative Val to Ala change at position 211 of the E2 glycoprotein. WE2220 has a Glu to Gly change at position 2 of the E1 glycoprotein and a Phe to Ser change at position 382 of the E1 glycoprotein.

25 Table 3. Genotypes of Recombinant WEE Virus Strains

| <u>Virus<sup>1</sup></u> | <u>Cleavage Site</u> | <u>E2<sup>2</sup></u>  | <u>E1<sup>2</sup></u> |
|--------------------------|----------------------|------------------------|-----------------------|
| 30 CBA/87                | RRPKR                | P(102), E(181), E(182) | E(2), F(257), P(382)  |
| vWE2100                  | -----                | K(182)                 |                       |
| pWE2102                  | -----                | K(182)                 |                       |
| 35 vWE2215               | R-----               | K(181), A(211)         |                       |
| vWE2219                  | R-----               | K(182)                 |                       |
| vWE2220                  | R-----               | K(181)                 | G(2), S(382)          |

1. p indicates viruses prepared by mutagenesis of infectious clones.
2. Amino acid at position indicated in parenthesis.

5        In order to determine a consensus of the mutations appearing in virus produced from the pWE2100 RNA, the sequences of the glycoprotein genes were determined directly from cDNA prepared by RT-PCR of the genomic RNA extracted from virus released from BHK  
10      cells infected with virus released from the transfected cells. Sequence analysis of glycoprotein genes of WE2100 virus from the transfection supernatant revealed only two mutations. As seen previously in WE2219, WE2100 also had a Glu to Lys  
15      change at position 182 of the E2 glycoprotein (Table 3).

      In order to determine which of the mutations identified in virus released from cells transfected with RNA transcripts from pWE2200 and pWE2100 served  
20      as the suppressor of the lethal effect of the cleavage deletion mutation, the mutations were individually placed into the pWE2200 and pWE2100 clones by site-directed mutagenesis. As shown in Table 4, three subclones of WE2200 were produced, and based upon the  
25      ability to induce CPE in BHK cells, it was demonstrated that the Glu to Lys change at position 181 of the E2 glycoprotein was necessary and sufficient to restore the ability of the WE2200 clone to encode replication competent virus. Similarly,  
30      placement of the Glu to Lys change at position 182 of the E2 glycoprotein was also sufficient to restore the ability of the WE2100 clone to encode replication competent virus. When the Glu to Lys changes at E2 position 181 or 182 were inserted into the parental  
35      infectious clone pWE2000, the resulting virus

exhibited a small plaque phenotype on Vero cells as noted for each of the cleavage deletion mutants.

Table 4. Effect of site-directed mutagenesis on restoration of cytopathogenicity of pWE2200 and pWE2100

| Strain     | Cleavage site | E2     | E1   | Viability |
|------------|---------------|--------|------|-----------|
| pWE2000    | RRPKR         |        |      | Yes       |
| pWE2200    | R----         |        |      | No        |
| pWE2221    | R----         |        | G(2) | No        |
| pWE2222    | R----         | K(181) | G(2) | Yes       |
| 15 pWE2223 | R----         | K(181) |      | Yes       |
| pWE2100    | -----         |        |      | No        |
| pWE2102    | -----         | K(182) |      | Yes       |

Although the cleavage deletion mutations in pWE2200 and pWE2100 differed by a single amino acid, the results indicate that the mutations at E2 residues 181 and 182 are both capable of restoring viability of the virus and appear to be equivalent.

### EXAMPLE 3

#### Attenuation of WE2000 virus.

C57/BL6 mice are uniformly susceptible to lethal challenge by western equine encephalitis virus until approximately 9 weeks of age. Subcutaneous inoculation of five- or eight-week-old C57/BL6 female mice with CBA/87 or WE2000 viruses routinely results in lethal encephalitis after 8-9 days (Table 2). As noted previously, the WE2000 is slightly less virulent than the CBA/87 parent. The virulence of the progeny virus derived from pWE2100 and pWE2200 infectious clones were determined by subcutaneous inoculation of C57BL6 mice. In each instance, the viruses were

significantly attenuated compared to virus produced from parent WE2000 clone. However, infection of mice with increasing doses of WE2215, WE2219 or WE2220, resulted in sporadic deaths with slightly extended periods prior to death compared to the parental virus (Table 5). These results indicated that deletion of only four amino acids from the cleavage site was inadequately attenuating, unlike the results obtained with VEE virus by Davis et al. (1995) and the viruses derived from WE2200 were not characterized further.

Table 5. C57BL6 Mice Inoculated Subcutaneously with WE2200 Cleavage Deletion Mutants

| <u>Virus Strain</u> | Mor-tality | Mean day to Death | Prechallenge ELISA | Neut        | Chal leng | Post Challenge ELISA | Neut |
|---------------------|------------|-------------------|--------------------|-------------|-----------|----------------------|------|
| <b>CBA/87</b>       |            |                   |                    |             |           |                      |      |
| 10 <sup>3</sup>     | 10/10      | 9.1               |                    |             |           |                      |      |
| 10 <sup>5</sup>     | 10/10      | 7.7               |                    |             |           |                      |      |
| <b>WE2000</b>       |            |                   |                    |             |           |                      |      |
| 10 <sup>3</sup>     | 10/10      | 9.2               |                    |             |           |                      |      |
| 10 <sup>5</sup>     | 10/10      | 9.1               |                    |             |           |                      |      |
| <b>WE2215</b>       |            |                   |                    |             |           |                      |      |
| 10 <sup>3</sup>     | 1/10       | 12                | 504 (3/9)          | <20 (9/9)   | 8/9       | 8300                 | 761  |
|                     |            |                   | 100 (6/9)          |             |           |                      |      |
| 10 <sup>5</sup>     | 1/10       | 14                | 253 (7/9)          | <20 (9/9)   | 9/9       | 12800                | 403  |
|                     |            |                   | 100 (2/2)          |             |           |                      |      |
| <b>WE2219</b>       |            |                   |                    |             |           |                      |      |
| 10 <sup>3</sup>     | 0/10       | -                 | 283 (2/8)          | <20 (10/10) | 6/10      | 14368                | 2281 |
|                     |            |                   | 100 (6/8)          |             |           |                      |      |
| 10 <sup>5</sup>     | 2/10       | 12                | 200 (4/8)          | <20 (8/8)   | 8/8       | 11738                | 1522 |
|                     |            |                   | 100 (4/8)          |             |           |                      |      |
| <b>WE2220</b>       |            |                   |                    |             |           |                      |      |
| 10 <sup>3</sup>     | 1/10       | 11                | 606 (5/9)          | 20 (3/9)    | 5/9       | 14703                | 1280 |
|                     |            |                   | 100 (4/9)          | <20 (6/9)   |           |                      |      |
| 10 <sup>5</sup>     | 2/10       | 14                | 800 (7/8)          | 20 (2/8)    | 8/8       | 9051                 | 761  |
|                     |            |                   | 100 (1/8)          | <20 (6/8)   |           |                      |      |

When C57BL6 mice were inoculated subcutaneously with the uncloned WE2100 progeny virus, there were no deaths at any dilution, even at doses of  $10^7$  PFU per mouse (Table 6). However, some of those mice inoculated subcutaneously with  $10^5$  PFU or less remained susceptible to a lethal challenge with the virulent CBA/87 virus.

10 Table 6. C57 Black/6 Mice Inoculated Subcutaneously with WEE Virus Strain WE2100

| Virus strain  | Mortality <sup>1</sup><br>Dose | Mean Day<br>(%) | Challenge <sup>2</sup><br>to Death | (%) |
|---------------|--------------------------------|-----------------|------------------------------------|-----|
| <u>WE2100</u> |                                |                 |                                    |     |
| $10^3$        | 0/10 (0)                       | -               | 4/10 (40)                          |     |
| $10^4$        | 0/10 (0)                       | -               | 7/10 (70)                          |     |
| $10^5$        | 0/10 (0)                       | -               | 8/10 (80)                          |     |
| $10^6$        | 0/10 (0)                       | -               | 10/10 (100)                        |     |
| $10^7$        | 0/10 (0)                       | -               | 10/10 (100)                        |     |

- 15 1. Expressed as animals dying/animals tested  
2. Expressed as animals surviving/animals tested

WE2102 virus was demonstrated to be highly attenuated and killed only two of twenty mice when inoculated subcutaneously with the highest dosage of virus ( $10^7$  PFU). All mice were challenged 3 weeks later with  $10^5$  PFU of CBA/87 virus. Mice previously immunized with  $10^5$  PFU or more of WE2102 survived with no noticeable symptoms. Thus, an effective immunizing dose of WE2102 is at least 100 fold less than that required to kill C57BL6 mice. These results further indicate that the Glu to Lys change at position 182 of the E2 glycoprotein is responsible for restoring viability to viruses containing a deletion of the furin cleavage site in the WEE glycoproteins and that WE2102 virus is an effective attenuated vaccine virus.

Table 7. Subcutaneous Inoculation of C57BL/6 Mice with recombinant WEE virus strain 2102 confers protection against a lethal challenge

5

| <u>Virus Strain</u> | <u>Mortality<sup>1</sup> (%)</u> | <u>Mean Day to Death</u> | <u>Challenge<sup>2</sup> (%)</u> |
|---------------------|----------------------------------|--------------------------|----------------------------------|
| <u>Dose</u>         |                                  |                          |                                  |
| <u>WE2100</u>       |                                  |                          |                                  |
| 10 <sup>3</sup>     | 0/10 (0)                         |                          | 3/10 (30)                        |
| 10 <sup>5</sup>     | 1/10 (10)                        | 16                       | 9/9 (100)                        |
| 10 <sup>7</sup>     | 0/10 (0)                         |                          | 10/10 (100)                      |
| <u>WE2102</u>       |                                  |                          |                                  |
| 10 <sup>3</sup>     | 0/20 (0)                         | -                        | 9/20 (45)                        |
| 10 <sup>5</sup>     | 0/20 (0)                         | -                        | 18/20 (90)                       |
| 10 <sup>7</sup>     | 2/20 (0)                         | 14                       | 18/18 (100)                      |
| <u>WE2000</u>       |                                  |                          |                                  |
| 10 <sup>5</sup>     | 10/10<br>(100)                   | 9.2                      |                                  |

1. Expressed as animals dying/animals tested  
 2. Expressed as animals surviving/animals tested

10

#### **Attenuated VEE IE**

##### **EXAMPLE 4**

Sequence Analysis. Genomic RNA from VEE IE Strain 68U201 was isolated and reverse transcription of the genomic RNA followed by polymerase chain reaction (RT-PCR) 15 was used to generate cDNA of the virus. Initial sequencing of the strain 68U201 genome employed oligonucleotide primers based on existing VEE IE sequence and VEE IA/B sequence. After a partial sequence of strain 68U201 was determined, oligonucleotides specific to the strain 68U201 20 sequence were used to obtain a complete sequence of the strain 68U201 viral genome. The exact 5' end of the genome was determined by PCR/RACE technique (Frohman et al. [1988] Proc. Natl. Acad. Sci. U.S.A. 85:8998-9002). The entire strain 68U201 viral genome consists of 11,464

nucleotides, excluding the poly-A sequence (Oberste et al. [1996] *Virology* **219**: 314-320).

#### EXAMPLE 5

5

##### Construction of Full-length, Live Clones

Using oligonucleotides specific to the VEE IE strain 68U201 sequence, RT-PCR of strain 68U201 viral RNA was carried out to generate numerous cDNA fragments that were subsequently cloned. These clones 10 were used to assemble a full-length cDNA of strain 68U201 in a plasmid situated such that the cDNA could be precisely transcribed in an *in vitro* transcription reaction employing T7 polymerase. The first nucleotide downstream of the T7 promoter is a G 15 followed by a cDNA encoding the entire strain 68U201 genome, including poly-A sequence. For the purposes of run off *in vitro* transcription, a unique endonuclease restriction site (*NotI*) follows the poly-A sequence (Figure 4). DNA sequences encoding the T7 20 promoter and the strain 68U201 genome were cloned into a suitable plasmid for propagation and selection in *E. coli*. Oligonucleotides relevant to construction of full-length infectious clones are shown in Table 8.

25

##### Table 8

|         |                                                               |
|---------|---------------------------------------------------------------|
| 0077    | CTAAGAGGGGCCCTATATC (SEQ ID NO:16)                            |
| 0111    | GCGGAATTCTAACGACTCACTATAGATGGGCGGCGCATGAGAG<br>(SEQ ID NO:17) |
| 30 0113 | TGACCGCGGGACCTCTGTCCAC (SEQ ID NO:18)                         |
| 0126    | AAGTGCATCGATTAGCG (SEQ ID NO:19)                              |
| 0136    | CTGAAATGTCCAGGATCCACGGAGGAGCTG (SEQ ID NO:20)                 |
| 0137    | CAGCTCCTCCGTGGATCCTGGACATTCAG (SEQ ID NO:21)                  |
| 35 0140 | GACTGCGGCCGCTTTTTTGAAATATTAAAAACAAAATCC<br>(SEQ ID NO:22)     |
| 0220    | CGAGAATCGATGCACTTCAGCC (SEQ ID NO:23)                         |

Descriptions of oligonucleotides are as follows: 0077 introduces an *Apa*I endonuclease restriction site along with a serine to proline mutation within the coding region of nsP4. 0111 encodes an *Eco*RI endonuclease restriction site followed by the T7 promoter, a single G, and the first 18 nucleotides of the VEE IE genome. 0126 introduces a *Cla*I endonuclease restriction site within the coding region of nsP3 and was used in combination with 0220. 0113 was used to remove an *Apa*I endonuclease restriction site within the structural genes. 0140 encodes a unique *Not*I endonuclease restriction site followed by a 12 T's, and the reverse complement of the last 21 nucleotides of the VEE IE. A *Not*I site at the end of the cDNA encoding the VEE IE genome allowed for run-off transcription after digestion of the plasmid with *Not*I. 0220 introduces a *Cla*I endonuclease restriction site within the coding region of nsP3 and was used in combination with 0126. Minor alterations of the nucleotide sequence using 0077, 0113, 0126, and 0220 facilitated assembly of the full-length clones and allowed for rapid diagnostic analysis of virus generated from these clones by RT/PCR methods.

The full-length clone obtained, pIE1006, was transcribed *in vitro* using T7 polymerase of *Not*I-linearized plasmid and the RNA transfected into BHK-21 cells (Figure 4). The phenotype of the resulting virus was markedly different from the parent virus (strain 68U201) from which the cDNA was derived. The virus derived from pIE1006 *in vitro* transcribed RNA, VIE1006, gave rise to small plaques upon infection of target monolayers (Table 9). In attempts to recover the phenotypic characteristics of strain 68U201, regions of the pIE1006 clone were replaced with cDNA generated by RT-PCR from strain 68U201 RNA. Three

subsequent full-length, live clones were constructed by replacing pIE1006 sequences with 928, 4492, and 8130 nucleotides generated by RT-PCR of strain 68U201 RNA. These clones were designated pIE1007, pIE1008 and pIE1009; and viruses derived from these clones were designated VIE1007, VIE1008 and VIE1009, respectively. These clones are shown in Figure 4. The relevant cloning sites and genetic markers are indicated above each clone. Numbers indicate the corresponding nucleotides in the strain 68U201 genome. The T7 promoter is shown. Drawings are not to scale. Shaded areas represent regions of pIE1006 that were replaced or mutated to generate new clones. The characteristics of these viruses are described below.

15

**EXAMPLE 6**

Assessment of Viruses Derived from Various Clones. The viruses VIE1006, VIE1007, VIE1008 and VIE1009 were derived from plasmids pIE1006, pIE1007, 20 pIE1008, and pIE1009, respectively. Analysis of virus derived from these clones by plaque assay is shown in Table 9. Plaque size was determined by infection of Vero cell monolayers followed by agarose overlay.

Analysis of virus derived from these clones 25 (Table 9) by plaque assay indicated that VIE1007 gave the same plaque morphology as VIE1006 and therefore was not studied further. The VIE1008 produced larger plaques in comparison to VIE1006, and the VIE1009 virus gave rise to the largest sized plaques of the 30 four viruses tested. Plaques generated by VIE1009 were similar to those produced by the parental virus, strain 68U201.

Table 9: In vitro analysis of virus derived from molecular clones of VEE IE strain 68U201

|    | <b>Virus Strain<sup>1</sup></b> | <b>Plaque Size</b> |
|----|---------------------------------|--------------------|
| 5  | <b>VIE1006</b>                  | small              |
|    | <b>VIE1007</b>                  | small              |
| 10 | <b>VIE1008</b>                  | medium             |
|    | <b>VIE1009</b>                  | large              |
| 15 | <b>VEE IE 68U201</b>            | large              |

**EXAMPLE 7**

15        In Vivo studies of VEE IE Vaccine Candidates. The distinct plaque morphologies of VIE1006, VIE1008, and VIE1009 suggested that these viruses may behave differently *in vivo*. To assess the relative virulence of the cloned derivatives of strain 68U201, mice were 20 initially inoculated with subcutaneously VIE1006, VIE1008, and VIE1009 viruses (Table 10). Mice infected with VIE1006 and VIE1008 were not adversely affected by these viruses as assayed by the number of mice surviving the infection. VIE1009 proved to be as 25 virulent as strain 68U201, causing death in all of the animals infected (Table 10). Immunogenicity of the different viruses inferred by the demonstration of a protective immune response and was determined by back challenge of surviving animals in the virulence assay 30 with approximately  $10^4$  pfu of the virulent, parental virus, strain 68U201. Back challenge was performed four weeks after the initial inoculation.

Table 10: In vivo analysis of virus derived from molecular clones of VEE IE strain 68U201

| 5  | virus         | Strain <sup>1</sup> | Mortality <sup>2</sup> | Challenge <sup>3</sup> |
|----|---------------|---------------------|------------------------|------------------------|
|    | VIE1006       |                     | 0/10                   | 10/10                  |
|    | VIE1008       |                     | 0/10                   | 10/10                  |
|    | VIE1009       |                     | 10/10                  | nd                     |
| 10 | VEE IE 68U201 | nd                  |                        | 1/10                   |

<sup>1</sup> Initial inoculation with approximately  $10^4$  PFU of each virus with the exception of VEE IE 68U201 which were left untreated until challenge phase of experiment.

<sup>2</sup> Expressed as animals dying/animals tested.

<sup>3</sup> Expressed as animals surviving/animals tested. All animals were challenged with approximately  $10^4$  PFU of VEE IE strain 68U201 four weeks after the initial inoculation.

#### EXAMPLE 8

Construction of a Full-length, Molecularly Attenuated VEE IE Clone. With the availability of a full-length virulent clone, specific attenuating mutations were introduced into the structural genes of the virus by site-directed mutagenesis. A deletion mutation was used instead of a point mutation because of the inability of viral RNA replication to repair such mutations. The glycoproteins of VEE IE are produced as a poly-protein precursor, PE2. The junction between the E3 and E2 proteins is cleaved by a furin-like cellular protease. The amino acid sequence of the presumed furin-like protease cleavage site of strain 68U201 is RGKR. The nucleotides encoding these four amino acids of the furin-like cleavage site between the E3 and E2

proteins were deleted from the pIE1009 clone and the resulting "cleavage deletion" clone was designated pIE1100. The oligonucleotides used to generate the cleavage deletion mutation are shown in Table 8.

5 Oligonucleotide 0136 encodes a cleavage deletion mutation that eliminates the four amino acid furin-like cleavage site found in PE2 and was used in combination with oligonucleotide 0137. 0137 encodes the reverse complement of 0136.

10 Transfection of RNA transcribed from pIE1100 into tissue culture cells required extended incubation periods before viral cytopathic effect became apparent in the cultured cells. This extended incubation period is indicative of transcripts from full-length clones possessing mutations that partially inhibit viral replication. However, such mutations can be suppressed by second-site mutations which arise randomly via the error prone process of alphavirus replication, resulting in variants with enhanced 15 replication ability. In fact, the culture media from cells transfected with RNA transcribed from pIE1100 contained low titers of infectious virus, VIE1100, which could be amplified to high titer ( $4 \times 10^7$  PFU/ml) upon subsequent passage. Biochemical analysis showed 20 that this virus had an uncleaved PE2 protein indicating that the cleavage deletion mutation totally prevented proteolytic processing of the surface E2 glycoprotein precursor. The efficacy of VIE1100 virus to serve as a vaccine was evaluated in mice as 25 described below.

One specific suppressor mutation is thought to reside at nucleotide 10,181 of the VEE IE genome, a C to U nucleotide substitution resulting in an amino acid change from Serine to Leucine in the E1 protein 35 positon #57. Ability of this mutation to suppress the

lethal nature of the furin cleavage site deletion mutation was assessed. The cDNA of pIE1100 was mutated by changing nucleotide 10,181 from a C to T. This introduced a serine to leucine change at amino acid number 57 of E1, a mutation found within the stock of VIE1100. The resulting clone was designated pVIE1150. Transfection of RNA from pVIE1150 into BHK-21 cells lead to the production of approximately  $10^6$  PFU/ml of virus in the supernatant of the transfected cells at 48 hours post-transfection.

#### **EXAMPLE 9**

Vaccine Studies with a Full-length, Molecularly Attenuated Virus. Balb/C mice were inoculated with VIE1100 virus at various doses ( $10^4$ ,  $10^6$ , and  $10^7$  PFU per mouse), and was found to be completely attenuated at a dose 100,000 times higher than that required to cause lethal disease by the parent virus, strain 68U201 (Table 10). Subsequent challenge of these animals with virulent strain 68U201 demonstrated that immunization with VIE1100 virus provided complete protection from lethal virus challenge (Table 11).

25 Table 11: Vaccination study with VIE1100

|                | <b>Virus Strain<br/>Dose</b> | <b>Mortality<sup>1</sup></b> | <b>Challenge<sup>2</sup></b> |
|----------------|------------------------------|------------------------------|------------------------------|
| <b>VIE1100</b> |                              |                              |                              |
| 30             | $10^4$                       | 10/10                        | 10/10                        |
|                | $10^6$                       | 10/10                        | 10/10                        |
|                | $10^7$                       | 10/10                        | 10/10                        |
|                | Mock Vaccinated              | 0/10                         | 0/10                         |

- 35 1. Expressed as animals dying/animals tested.  
 2. Expressed as animals surviving/animals tested after inoculation with  $10^4$  PFU of VEE IE strain 68U201

**EXAMPLE 10**

Properties of a WEE-EEE chimeric virus. Based upon similarities of amino acid sequences of the carboxy terminal portion of NSP-4 and the amino 5 terminal portion of the capsid proteins of WEE, EEE and Sindbis virus, it has been suggested that WEE virus arose by recombination between EEE and a Sindbis virus ancestor (Hahn et al. [1988] *Proc. Natl. Acad. Sci. U.S.A.* **85:** 5997-6001). The capsid genes of both 10 WEE and EEE contain a highly conserved sequence with a unique Bln I site 76 nucleotides downstream of the initiation codon. We utilized this site to insert the structural protein sequences of EEE into pWE5-18 in order to construct a full length clone encoding a 15 chimeric virus. Plasmid pMWE-7 is a full length clone consisting of the 5' non-coding sequence, nonstructural genes, 26S promoter and the first 25 codons for the capsid protein of WEE CBA/87 fused to the structural protein genes and 3' non-coding 20 sequence of EEE strain Fla91-4679. Transfection of BHK cells with RNA transcribed from pMWE-7 resulted in complete destruction of the monolayer and release of high yields of virus. SDS-polyacrylamide gel electrophoresis of the purified virus demonstrated 25 that the virus is composed of polypeptides which comigrate with those of EEE and not of WEE, indicating that the virus is a chimera (Figure 3).

Injection of mice with the MWE chimeric virus killed mice only sporadically, suggesting that fusion 30 of the sequences of the two viruses resulted in significant attenuation compared to the parent WE2000 virus (Table 12). Mice immunized with MWE-7 developed significant neutralizing antibody titers and resisted a lethal EEE Fla91-1467 challenge when 35 immunized with greater than  $10^5$  plaque forming units of

MWE-7 virus. The neutralizing antibody response after challenge was not significantly elevated indicating that the immunization with the chimeric virus effectively prevented infection by a lethal EEE challenge. Therefore, a chimeric virus derived by combining the structural protein genes of EEE with the non-structural proteins genes of WEE may serve as a safe, effective approach to development of a vaccine for EEE virus.

10

Table 12. Immunization of C57BL6 Mice with an WEE/EEE Chimeric Virus Confers Protection Against a Lethal EEE Challenge

| <u>Virus Strain</u>   | <u>Mortality<sup>1</sup></u> | <u>Mean Day to Challenge<sup>2</sup></u> | <u>Death</u> |
|-----------------------|------------------------------|------------------------------------------|--------------|
| Dose                  |                              |                                          |              |
| <u>WE2000</u>         |                              |                                          |              |
| 10 <sup>5</sup>       | 10/10 (100)                  | 8.5                                      |              |
| <u>MWE7</u>           |                              |                                          |              |
| 10 <sup>3</sup>       | 0/10 (0)                     |                                          | 6/10 (60)    |
| 10 <sup>5</sup>       | 1/10 (10)                    | 8.0                                      | 9/9 (100)    |
| 10 <sup>7</sup>       | 0/10 (0) <sup>3</sup>        |                                          | 9/9 (100)    |
| <u>Saline Control</u> | 0/10 (0)                     |                                          | 0/10 (0)     |

15

1. Expressed as animals dying/animals tested
2. Expressed as animals surviving/animals tested
3. One animal died during pre-challenge bleed

20

Example 12  
VEE IIIA Chimera

Construction of IAB-III A cDNA Chimeric Clone  
(pV3A-1000)

25

BeAn8 (wild type Mucambo or VEE IIIA) cDNA was amplified with primers 128 and 140 (Table 13) to generate a PCR fragment of the entire 26S region of BeAn8. Primer 128 incorporated an ApaI site just upstream of the BeAn8 26S promoter to facilitate cloning into pV3000. Primer 140 introduced a NotI

30

site just downstream of the poly(A) tract which would also facilitate cloning into pV3000 as well as enable run-off transcription. This 128/140 PCR fragment was cloned into pBluescript SK+ vector using the ApaI and 5 NotI sites and was termed pMUC-1000.

To replace the BeAn8 3' nontranslated region (3'NTR) in pMUC-1000 with the corresponding region in pV3000, an EcoRI site was introduced immediately downstream of the E1 stop codon in both pMUC-1000 and 10 pV3000 using the primer pairs 013/227 and 225/226, respectively. The 013 primer is a universal primer found in the pBluescript SK+ vector and the 227 primer was designed to introduce an EcoRI site in pMUC-1000. The 225 primer introduced an EcoRI site in pV3000 15 and the 226 primer is located in the vector, TotoX. The 013/227 and 225/226 PCR fragments were separately cloned into the pBluescript SK+ vector producing pMUC-1200 and pV3nt-1000, respectively. The 3' NTR encoded in pV3nt-1000 was shuttled into pMUC-1200 using the 20 EcoRI site and the NotI site to produce pMUC-1300.

The full-length chimeric cDNA clone, pV3A-1000, was constructed by shuttling the structural genes encoded in pMUC-1300 into the pV3000 nonstructural 25 domain using the ApaI site and NotI site.

Table 13. Primers for construction of the pV3A-1000

013 -- AACAGCTATGACCATG (SEQ ID NO:24)  
128 -- CTGAGAGGGGCCAGTAAC (SEQ ID NO:25)  
30 140 -- GACTGCGGCCGCTTTTTTGAAATATTAAAAAA (SEQ ID  
NO: 26)  
225 -- CCAGAACATAATTGAATTTCAGCAGCAATTG (SEQ ID NO:27)  
226 -- CTTTATCCGCCTCCATCC (SEQ ID NO:28)  
227 -- CCAATCGCTGCTGAATTCTAATTATGTTCTG (SEQ ID NO:29)

35

Five week old C57BL6 mice were used in a challenge study (Table 14). All mice immunized with

10<sup>7</sup> PFU of pV3A-1000 produced neutralizing antibodies. Mice were challenged with 10<sup>7</sup> PFU of 900807 (a Mucambo virus from Trinidad). The geometric mean neutralizing antibody titer in mice inoculated with 10<sup>7</sup>, 10<sup>5</sup>, and 5 10<sup>3</sup> PFU of pV3A-1000 was 9800, 8800, and 7000 respectively.

10 Table 14. Results from challenge studies

|                                   | Fraction<br>of mice<br>sick/inoc | Fraction<br>of mice<br>dead/inoc | Average days<br>to onset of<br>illness | Average days<br>to death |
|-----------------------------------|----------------------------------|----------------------------------|----------------------------------------|--------------------------|
| 15 Immunized<br>with<br>pV3A-1000 | 0/20                             | 0/20                             | N/A                                    | N/A                      |
| 20 Unvac-<br>cinated              | 19/20                            | 12/20                            | 6.2                                    | 10.5                     |

25

30

35

40

## SEQUENCE LISTING

## (1) GENERAL INFORMATION:

5 (i) APPLICANT: Michael D. Parker  
Jonathan F. Smith  
Bruce Crise  
Mark Steve Oberste  
Shannon Schmura

10

(ii) TITLE OF INVENTION: Live Attenuated virus  
vaccines for western equine encephalitis virus,  
eastern equine encephalitis virus, and venezuelan  
equine encephalitis virus IE and IIIA variants

15

(iii) NUMBER OF SEQUENCES: 29

## (iv) CORRESPONDENCE ADDRESS:

20 (A) ADDRESSEE: John Moran  
(B) STREET: USA MRMC - MRMC-JA  
(C) CITY: FORT DETRICK, FREDERICK  
(D) STATE: MARYLAND  
(E) COUNTRY: USA  
(F) ZIP: 21702-5012

25

## (v) COMPUTER READABLE FORM:

30 (A) MEDIUM TYPE: Floppy disk  
(B) COMPUTER: Apple Macintosh  
(C) OPERATING SYSTEM: Macintosh 7.5  
(D) SOFTWARE: Microsoft Word 6.0

35

## (vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:  
(B) FILING DATE:  
(C) CLASSIFICATION:

40

(vii) PRIOR APPLICATION DATA:  
(A) APPLICATION NUMBER: Provisional  
Application 60/047162,  
(B) FILING DATE: May 20, 1997

(A) APPLICATION NUMBER: Provisional  
Application 60/053,652

(B) FILING DATE: July 24, 1997

(viii) ATTORNEY/AGENT INFORMATION:

- 5 (A) NAME: Moran, John  
(B) REGISTRATION NUMBER: 26,313  
(C) REFERENCE/DOCKET NUMBER:

(ix) TELECOMMUNICATION INFORMATION

- 10 (A) TELEPHONE: (301) 619-2065  
(B) TELEFAX: (301) 619-7714

(2) INFORMATION FOR SEQ ID NO:1:

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 11492 base pairs  
(B) TYPE: Nucleic acid  
(C) STRANDEDNESS: Double  
(D) TOPOLOGY: Linear

20 (ii) SEQUENCE DESCRIPTION: SEQ ID NO:1:

1 ATAGGGCATG GTATAGAGGC ACCTACCCTA CAAACAAATC  
GATCCAATAT

25 51 GGAAAGAATT CACGTTGACT TAGACGCTGA CAGCCATAT  
GTCAAGTCGT

101 TACAGCGGAC GTTTCCACAA TTTGAGATCG AAGCAAGGCA  
GGTCACTGAC

30 151 AATGACCATG CCAATGCCAG AGCGTTTCG CATGTGGCAA  
CAAAGCTCAT

201 TGAGAGCGAA GTCGACCGGG ACCAAGTTAT CTTGGACATT  
GGAAGTGCAC

35 251 CCGTCAGACA TGCACATTCC AACCACCGCT ATCATTGTAT  
CTGCCCATG

301 ATAAGCGCTG AAGACCCGGA CAGACTACAG CGGTATGCAG  
AAAGACTTAA

351 GAGAAGTGAC ATGTACCGAC AAGAATATAG CCTCTNAAGG  
CGGCAGACCT

40 401 GCTGGAAGTC ATGTCCACAC CAGACGCAGA GACTCCATCT  
CTGTGTATGC

451 ACACAGACGC CACGTGTAAGG TACTTTGGAA GTGTANGCAG  
TATAACCAAGA

501 TGTGTACGCA GTCCATGCAC CGACATCAAT CTACCACCAG  
GCGCTTAAAG

5 551 GAGTTAGGAC AATTACTGG ATAGGTTTG ACACGACCCC  
TTTTATGTAC

10 601 AAAAACATGG CAGGTTCTA CCCTACTTAC AACACAAACT  
GGGCCGACGA

15 651 GAGAGTATTG GAAGCACGTA ACATTGGCCT CGGTAACTCA  
GATCTTCAGG

20 701 AGAGCAGACT TGGAAAAC TT TCAATCCTTA GGAAGAAGAG  
GCTCCAACCT

25 751 ACTGATAAGA TCATATTCTC GGTTGGTTCA ACAATCTACA  
CAGAGGATAG

30 801 ATCACTGTTA CGTAGCTGGC ATCTTCCAAA CGTGTCCAC  
CTGAAAGGAA

35 851 AGTCTNACTT CACAGGTAGA TGTGGGACCA TTGTCAGCTG  
TGAAGGGTAT

40 901 GTCATCAAAA AGATAACGAT CAGCCCAGGA CTATACGGTA  
AAGTTGAGAA

45 951 CTTGGCGTCC ACGATGCATC GCGAGGGTTT CTTGAGTTGC  
AAAGTCACAG

50 1001 ATACGCTGCG CGGCGAGAGG GTTTCTTTG CTGTGTGTAC  
GTATGTACCA

55 1051 GCCACACTTT GCGATCAGAT GACAGGGAGG GCTCAACCAA  
CGGATTGTCG

60 1101 TCAATGGTAG GACGCAAAGA AATACTNACA CAATGCAGAA  
CTATCTATTA

65 1151 CCAGTGGTCG CCCAGGCCTT TTCCAGGTGG GCGCGTGNAC  
ATCGTGCCGA

70 1201 CTTGGACGAC GAGAAGGAGC TAGGGGTGCG GGAGCGCACT  
CTTACTATGG

75 1251 GCTGCTGCTG GGCTTCAAG ACCCAGAAAA TTACATCCAT  
CTACAAGAAG

80 1301 CCTGGTACGC AAACAAATTA AGAAAGTACC TGCCGTCTT  
TGACTCATTT

1351 GTGATTCCGA CGCCTTACCA GCCACGCGGG GGCTCGAATA  
TGGGCCTTCC

5 1401 GCCGTNAGGC TCAAGCTGCT GCTTGAACCA ACTGTCAAAC  
CCGCACCGGC

1451 TATTACAATG GCCGATGTGG AGCACCTGCG TGGCTTACAG  
CAAGAAGCTG

10 1501 AAGAAGTGGC TGCGAGGGAA AGAGATCAGA GAAGCCCTGC  
CACCCTGCT

15 1551 CCCTGAAATA GAAAAAGAGA CCGTAGAGGC AGAAGTAGAC  
CTCATTATGC

1601 AAGAGGCAGG AGCAGGTAGC GTGGAGACAC CNACGAGGAC  
ATATCAAGGT

20 1651 AACAAAGTTAC CCAGGTGNAA GAGAAGATTG GGTCTTATCC  
CTATACTTTC

1701 ACCCCAGGCG GTTTTANAAT NGTNAAAAAC TGGCGTGTAT  
CCACCCATTG

25 1751 GCGGAACAAG TACTGGTAAT GACTCACAAA GGCAGGGCCG  
GGCGATACAA

1801 AGTCGAGCCA TACCACGGTA NGGTCAATTGT ACCCAGAAGG  
GACGGCGGGT

30 1851 CCCTGTTCAA GACTTCAGG CACTGAGTGA GAGCGCCACG  
ATCGTTTCA

1901 ACGAGAGGGA GTTCGTAAAC CAGATATTTC GCACCCACAT  
CGCAAGCKTT

35 1951 TCAACTATAG TGAGTCGCTA TTACACTGAC GAAGAGTACT  
ATAAGATTGT

40 2001 AAAGACTCAG GACGCAGACT CAGAATACGT CTTTGACATT  
GACGCACGAA

2051 AGTGTGTTAA GCGAGAAGAC GCAGGTCCCT TGTGCCTAAC  
TGGTGATCTG

45 2101 GTAGATCCAC CATTTCACGA GTTTGCGTAC GAGAGTCTCA  
AGACACGACC

2151 AGCAGCACCT CACAAAGTCC CAACCATCGG AGTCTATGGA  
50 GTGCCAGGTT

2201 CAGGTAAATC TGGGATCATC AAAAGCGCTG TGACTAAGAA  
AGATCTGGTT

2251 GTGAGTGCAG AGAAGGAAAA CTGCGCAGAA ATTATCAGGG  
5 ATGTAAGGAG

2301 GATGAGACGT ATGGATGTTG CTGCTAGGAC TGTTGATTCA  
GTGCTTCTAA

10 2351 ATGGGGTTAA GCACCCCGTT AACACCCTGT ACATTGATGA  
GGCATTGCC

2401 TGCCATGCAG GGACGCTGCT GGCAC TGATT GCCATCGTCA  
AACCTAAGAA

15 2451 AGTGGTATTG TGCGGGGACC CAAAACAATG CGGCTTCTTT  
AACATGATGT

2501 GCCTGAAAGT ACATTTAAC CATGACATAT GCACTGAGGT  
20 GTACCACAAA

2551 AGCATCTCTA GGAGGTGCAC ACAGACTGTA ACCGCCATTG  
TCTCCACGCT

2601 CTTCTACGAC AAGCGAATGA AGACGGTTAA CCCATGTGCT  
25 GACAAAATCA

2651 TCATAGATAAC CACAGGGACC ACAAAAGCCGC ACAAAAGATGA  
TCTGATTCTA

30 2701 ACCTGTTCA GAGGATGGGT GAAACAGCTA CAGATTGACT  
ATAAAAATCA

2751 TGAAATCATG ACTGCGGCTG CATCGCAAGG ACTTACGCGG  
35 AAAGGCGTTT

2801 ATGCTGTCAG GTACAAAGTC AACGAGAATC CACTCTACTC  
GCAGACTTCT

40 2851 GAGCACGTGA ACGTGTTAGT TACACGCACA GAAAAACGCA  
TTGTCTGGAA

2901 GACGCTAGCT GGTGACCCCT GGATAAAGAC ACTTACAGCT  
45 AAATACTCCG

2951 GGGATTCAC GGCTTCATTG GACGACTGGC AACGCGAACAA  
CGACGCTATT

3001 ATGGCACGCG TTCTTGATAA GCCGCAGACA GCTGATGTGT  
50 TCCAGAATAA

3051 GGTGAACGTC TGCTGGCGA AGGCTTTAGA GCCAGTCTTG  
GCCACGGCCA

3101 ACATTGTGCT GACGAGACAG CAGTGGGAGA CGTTGCACCC  
5 ATTCAAGCAT

3151 GACAGAGCGT ACTCACCTGA AATGGCACTG AACTTCTTTT  
GCACCAGGTT

10 3201 CTTTGGTGTA GACCTGGACA GTGGGTTGTT TTCCGCTCCT  
ACCGTCGCAC

3251 TTACTTACAG GGATCAGCAC TGGGACAAC CGCCAGGGAA  
GAACATGTAT  
15 3301 GGGCTTAATA GAGAGGTAGC AAAGGAGCTG TCACGGCGAT  
ATCCGTGCAT

3351 CACAAAAGCG GTTGACACAG GCAGGGTAGC TGATATAAGG  
20 AATAATACCA

3401 TCAAGGACTA CTCTCCAACA ATTAATGTGG TTCCATTAAA  
TCGCCGGTTG

25 3451 CCCCCACTCGC TGATCGTTGA CCACAAAGGA CAGGGTACAA  
CTGATCACAG

3501 TGGATTCTTA TCTAAGATGA ATGGCAAATC TGTGTTGGTG  
ATCGGGCGATC  
30 3551 CTATCAGCAT TCCTGGGAAG AAAGTAGAGT CCATGGGTCC  
ATTGCCCACT

3601 AATACCATCA GGTGTGATCT CGATTTGGGA ATACCTAGCC  
35 ATGTCGGTAA

3651 ATATGACATT ATATTTGTCA ATGTTAGGAC CCCATACAAG  
AACCATCACT

40 3701 ACCAACAGTG CGAGGATCAC GCTATCCACC ACAGCATGCT  
AACGTGTAAG

3751 GCTGTCCACC ACCTGAACAC TGGCGGAACA TGTGTGGCCA  
TAGGGTATGG  
45 3801 ACTTGCTGAT CGCGCAACCG AGAATATCAT CACTGCGGTG  
GCTCGCTCAT

3851 TTAGGTTTAC CCGTGTCTGT CAGCCTAAGA ACACTGCCGA  
50 AAATACTGAG

3901 GTTCTCTTCG TGTTCTTCGG CAAGGACAAC GGCAACCACA  
CACATGACCA

3951 GGACAGACTC GGTGTAGTGC TTGACAACAT CTACCAAGGG  
5 TCAACCAGGT

4001 ACGAGGCAGG GAGAGCTCCA GCGTACAGAG TGATCAGAGG  
TGACATTAGC

10 4051 AAGAGCGCTG ACCAAGCTAT CGTTAATGCT GCTAATAGCA  
AAGGTCAACC

4101 AGGTTCCGGA GTGTGCGGTG CACTGTACCG AAAATGGCCG  
GCTGCTTTG  
15 4151 ATAGACAGCC AATAGCTGTC GGGACGGCTA GACTTGTGAA  
GCACGAACCG

4201 CTCATCATAC ATGCTGTAGG ACCGAATTTC TCTAAGATGC  
20 CGGAACGAGA

4251 GGGCGACCTT AAGCTCGCAG CTGCCTACAT GAGCATAGCG  
TCCATCGTCA

25 4301 ACGCTGAGCG GATTACTAAA ATATCAGTAC CGCTACTGTC  
AACTGGCATC

4351 TATTCTGGTG GCAAAGATCG AGTGATGCAA TCATTGCATC  
ACTTGTTCAC  
30 4401 TGCTTCGAC ACTACGGATG CCGATGTCAC CATATATTGC  
TTGGATAAAC

4451 AATGGGAGAC CAGGATAACC GAGGCCATTG ACCGCAAAGA  
35 AAGCGTCGAA

4501 ATACTGGATG ATGATGACAA GCCAGTAGAC ATCGACTTGG  
TCAGGGTCCA

40 4551 CCCAACAGC TCTTGGCAG GCAGACCAGG TTACTCCGTC  
AATGAGGGCA

4601 AGCTGTATTC ATACCTGGAA GGTACACGAT TCCATCAGAC  
CGCCAAGGGAC  
45 4651 ATTGCCGAAA TCCATGCAAT GTGGCCCAAC AAATCTGAGG  
CTAATGAGCA

4701 GATTTGCTTG TACATCCTGG GGGAGAGTAT GTCCAGCAGTC  
50 CGCTCCAAAT

4751 GCCCAGTAGA GGAGTCAGAG GCGTCTGCTC CACCTCACAC  
ACTTCCATGC

4801 CTGTGTAATT ACGCTATGAC GGCTGAGCGC GTATAACAGGT  
5 TCGCCTCTGC

4851 GAAGAAAGAA CAGTTCGCCG TATGCTCATC ATTCCCGTTG  
CCGAAGTACA

10 4901 GGATCACAGG CGTGCAGAAG CTACAGTGCA GCAAACCAGT  
CCTGTTCTCA

4951 GGC GTCGTAC CACCGGCTGT ACACCCAGG AAGTACGCGG  
15 AAATAATTCT

5001 AGAAACGCCA CCATCGCCAA CAACGACAAC CGTAATATGT  
GAACCAACTG

5051 TGCCAGAACG TATACCCAGT CCGGTGATTT CTAGAGCAGC  
20 AAGTGCGGAA

5101 TCACTGCTAT CGTTGGCGG CGTCTCGTTC TCTAGCTCTG  
CCACACGCTC

5151 GTCAACTGCC TGGAGCGACT ATGACAGGCG GTTTGTGGTT  
25 ACAGCTGACG

5201 TGCATCAAGC GGACACGTCT ACGTGGAGCA TCCCCTAGCGC  
30 TCCTGACTTG

5251 GACGTCCAGC TGCCTCTGA CGATACTGAT TCCCCTTGGA  
GTATTCCGAG

5301 TGCATCAGGC TTTGAAGTGA GAACACCGTC TGTACAGGAC  
35 CTAACTGCAG

5351 AGTGTGCGAG GCCTCGTGGAA CTGGCCGAAA TAATGCAAGA  
CTTCAATAACG

40 5401 GCTCCTTCC AGTTTCTTC GGACCACAGA CCAGTACCGAG  
CACCACGGAG

5451 ACGCCCCATC CCATCACCTA GATCGACGGT TTCCGCACCT  
45 CCAGTTCCAA

5501 AGCCACGCAG AACTAAGTAC CAACAACCAC CAGGAGTCGC  
TAGGGCGATC

5551 TCAGAAGCGG AGCTGGACGA GTACATCCGT CAACATTCCA  
50 ATTGACGGTA

5601 TGAAGCGGAG CGTATATTTC TCATCGAAAC AGGCCAGGTC  
ACCTTCAACA

5 5651 GAAATCAGTA CGTCAATGTA AACTACAAGA CCCTATATTG  
GAACGGGCCG

5701 TCCATGAGAA GTATTAGCCC CGCGCCTCGA TCTCGAAAGA  
GAGAAGATGT

10 5751 TACAGAAGAA ACTGCAATTA TGCGCCTCNT GAAGGAAATA  
GAAGCAGGTA

15 5801 TCAATCACGA AAAGTANGAA AATATGAAAG CAATTACAGC  
GGAGCGACTC

15 5851 ATTTCTGGAT TGGGCACATA TCTATCATCA GAAGTGAATC  
CTGTCGAGTG

20 5901 TTACAGAGTC AATTATCCTG TACCAATCTA CTCGTCAACG  
GTAGTTAATA

5951 GGTTTCATC AGCAGAAGTG GCCGTCAAAG TTTGCAACTT  
AGTCATCCAA

25 6001 GAGAATTACC CTACAGTAGC CAGTTATTGC ATAACAGATG  
AATACGATGC

30 6051 GTATCTTGAC ATGGTGTACG GCGCTCGTGC TGTTAGATAC  
AGCGCCTTG

30 6101 TCCGCTNACT GAGAAGCTAC CCAAAGAAGC ATAGCTACTT  
GCAGCCAGAG

35 6151 ATAAGATCAG CTGTCCCATC ACCTATACAG AATACATTAC  
AAAATGTATT

6201 GCTGCAGCCA CTAAAAGGAA CTGCAACGTT ACCCAAATGC  
GAGAACTACC

40 6251 TGTTTTATTTC GGCGGCATTC AACGTTGAAT GTTTCAAGAA  
ATACGCATGC

45 6301 AATGATGAGT ATTGGGATAC CTTTCGCGAT AACCCCTATTG  
GGCTAACTAC

6351 AGAGAACGTT ACGCAATACG TGACAAAGCT GAAAGGGCCG  
AAAGCAGCAG

50 6401 CATTATTCGC AAAAACTCAC AACCTAAAAC CGTTGCAGGA  
GATACCAATG

6451 GACGAATTTG TCATGGTCTN AAAAGAGATG TCAAAGTTAC  
TCCCAGGCACA

5 6501 AAACATACAG AGGAGCGGCC TAAGGTGCAG GTTATTCAAGG  
CTGCAGATCC

6551 TCTCTGTACC GCTTACCTTT GCGGGATCCA TCGAGAATGT  
CCGTAGACTG

10 6601 AATGCTGTGC TTCTGCCGAA TATCCATACT CTCTTCGACA  
TGTCAGCGGA

15 6651 AGATTTGAT GCGATTATTG CTGAACATTT CCACCACGGC  
GACCCAGTAT

6701 TGGAAACCGGA CATCGCGTCG TTTGATAAAA GCGAACAGCA  
CGCTATCGCC

20 6751 ATTTCGGCGT TGATGATCCT CGAGGACTTA GGCGTCGACC  
AACCGCTCTT

6801 AGATTTGATA GAGGCAGCGT TCGGCAATAT CACATCTGTG  
CACCTACCTA

25 6851 CAGGAACGAG GTTCAAATTT GGTGCCATGA TGAAATCCGG  
TATGTTCTTA

30 6901 ACGCTGTTG TCAACACACT AGTCAATATC ATGATTGCTA  
GCAGAGTACT

6951 ACGTGAACGG TTAACCACGT CAGAGTGCAGC GGCCTTATCG  
GCGACAATAA

35 7001 CATAGTGCAC GGTGTCGCTC CGACAACTTG ATGGCGGAGA  
GATGCGCCAC

7051 TTGGCTGAAC ATGGAAGTAA AAATTATTGA TGCAGTCATT  
GGTATCAAAG

40 7101 CACCCTACTT CTGCGGGGAT TCATCCTGGT GGATCAGATA  
ACGACACAGC

7151 CTGTAGGTAG CAGACCCTCT AAAAAGGCTT TTTAAGCTTG  
GAAAACCATT

45 7201 GCCAGTCGAT GACACCCAAG ACTGTGACCG TCGCCGGGCA  
CTGCATGATG

50 7251 AAGCAATGCG ATGGAACAGA ATTGGAATTA CGGACGAGTT  
GGTGAAGGCC

7301 GTAGAATCCA GATA CGAGAT CATA CTGGCA GG CCTG ATCA  
TCAC GTCCCT

5 7351 GTCCACGTTA GCCGAAAGCG TTAAGAAC TT CAAGAGCATA  
AGAGGGAAACC

7401 CAATCACCCCT CTACGGCTGA CCTAAATAGG TGACGTAGTA  
GACACGCACC

10 7451 TACCCACCGC CAAAAATGTT TCCATACCCCT CAGCTGAACT  
TTCCACCAAGT

15 7501 TTACCCCTACA AATCCGATGG CTTACCGAGA TCCAAACCCCT  
CCTAGGCGCC

7551 GCTGGAGGCC GTTTCGGCCC CCGCTGGCTG CTCAAATCGA  
AGATCTTAGG

20 7601 AGGTCGATAG CCAACTTAAC TTTCAAACAA CGATCACCTA  
ATCCGCCGCC

7651 AGGTCCGCCG CCGAAGAAGA AGAAGAGTGC TCCCAAGCCA  
AACCTACTC

25 7701 AGCCTAAAAA GAAGAAGCAG CAAGCCAACA AGACGAAACG  
CAAGCCTAAA

7751 CCAGGGAAAC GACAGCGTAT GTGTATGAAG TTGGAGTCGG  
ACAAGACATT

30 7801 TCCGATCATG TTGAACGGCC AAGTGAATGG ATACGCTTGC  
GTTGTCGGAG

7851 GAAGGCTGAT GAAACCAC TC CACGTTGAAG GAAAAATCGA  
35 TAATGAGCAA

7901 TTAGCGGCCG TGAAATTGAA GAAGGCTAGC ATGTACGACC  
TGGAGTATGG

40 7951 CGACGTTCCC CAGAATATGA AATCAGACAC GCTGCAGTAC  
ACCAGCGACA

8001 AACCAACCGGG CTTCTACAAC TGGCACCACG GCGCAGTCCA  
45 GTATGAGAAT

8051 GGGAGATTCA CCGTACCGCG AGGAGTGGC GGGAAAGGCG  
ACAGTGGAAG

8101 ACCGATCCTG GACAACAGAG GCAGAGTTGT GGCTATTGTT  
50 CTAGGAGGTG

8151 CAAACGAGGG CACGCGTACG GCGCTTCAG TGGTCACTTG  
GAACCAGAAA

5 8201 GGGGTGACCA TCAAGGATAC CCCCAGAAGGT TCTGAACCGT  
GGTCACTAGT

8251 TACAGCGCTG TGC GTGCTTT CGAATGTCAC ATTCCCTTGC  
GACAAACCAC

10 8301 CCGTGTGCTA TTC ACTGGCG CCAGAACGAA CACTCGACGT  
GCTCGAGGAG

15 8351 AACGTCGACA ATCCAAATTA CGACACGCTG CTGGAGAACG  
TCTTGAAATG

8401 TCCATCACGC CGGCCAAAC GAAGCATTAC CGATGACTTC  
ACGCTGACCA

20 8451 GTCCCTACCT GGGGTTCTGC CCGTATTGCA GACACTCAGC  
GCCATGTTTT

8501 AGCCCAATAA AAATTGAGAA CGTGTGGGAC GAATCTGATG  
ATGGGTCGAT

25 8551 TAGAATCCAG GTCTCGGCAC AATTGGCTA CAATCAGGCA  
GGCACTGCAG

30 8601 ACGTCACCAA GTTCCGGTAC ATGTCTTACG ACCACGACCA  
TGACATCAAG

8651 GAAGACAGTA TGGAGAAAAT AGCTATTAGT ACATCTGGAC  
CATGCCGTG

35 8701 TCTTGGCCAC AAAGGGTACT TCCTGTTAGC TCAATGTCCT  
CCAGGTGACA

8751 GTGTAACCGT CAGTATCACG AGCGGAGCAT CTGAGAATTG  
ATGCACCGTG

40 8801 GAGAAAAAGA TCAGGAGGAA GTTGTCGGT AGAGAGGAGT  
ACTTGTTCCC

8851 ACCTGTCCAT GGAAAGCTGG TAAAGTGCCA CGTTTACGAT  
CACTTGAAAGG

45 8901 AGACGTCTGC CGGATACATA ACCATGCACA GGCCAGGCC  
ACACGCGTAT

50 8951 AAGTCCTATC TGGAGGAAGC GTCAGGGCAA GTGTACATTA  
AACCACCTTC

9001 TGGCAAGAAC GTCACCTACG AATGTAAGTG TGGTGACTAC  
AGCACAGGTA

5 9051 TTGTGAGCAC GCGAACGAAG ATGAACGGCT GCACTAAAGC  
AAAACAATGC

9101 ATTGCCTACA AGCGCGACCA AACGAAATGG GTCTTCAACT  
CGCCGGATCT

10 9151 TATTAGGCAC ACAGACCAC CAGTGCAAGG TAAACTGCAC  
ATTCCATTCC

9201 GCTTGACACC GACAGTCTGC CCGGTTCCGT TAGCTCACAC  
GCCTACAGTC

15 9251 ACGAAGTGGT TCAAAGGCAT CACCCTCCAC CTGACTGCAA  
CGCGACCAAC

9301 ATTGCTGACA ACGAGAAAAT TGGGGCTGCG AGCAGACGCA  
20 ACAGCAGAAT

9351 GGATTACAGG GACTACATCC AGGAATTTT CTGTGGGGCG  
AGAAGGGCTG

25 9401 GAGTACGTAT GGGGCAACCA TGAACCAGTC AGAGTCTGGG  
CCCAGGAGTC

9451 GGCACCAGGC GACCCACATG GATGGCCGCA TGAGATCATC  
ATCCACTATT

30 9501 ATCATCGGCA TCCAGTCTAC ACTGTCATTG TGCTGTGTGG  
TGTCGCTCTT

9551 GCTATCCTGG TAGGCACTGC ATCGTCAGCA GCTTGTATCG  
35 CCAAAGCAAG

9601 AAGAGACTGC CTGACGCCAT ACGCGCTTGC ACCGAACGCA  
ACGGTACCCA

40 9651 CAGCATTAGC AGTTTGTC TGTATTGGC CAACCAACGC  
TGAAACATTT

9701 GGAGAAACTT TGAACCATCT GTGGTTAAC AACCAACCGT  
45 TTCTCTGGGC

9751 ACAGTTGTGC ATCCCTCTGG CAGCGCTTGT TATTCTGTTC  
CGCTGCTTTT

9801 CATGCTGCAT GCCTTTTTA TTGGTTGCAG GCGTCTGCCT  
50 GGGGAAGGTA

9851 GACGCCTTCG AACATGCGAC CACTGTGCCA AATGTTCCGG  
GGATCCCGTA

5 9901 TAAGGCGTTG GTCGAACGTG CAGGTTACGC GCCACTTAAT  
CTGGAGATTA

9951 CGGTCGTCTC ATCGGAATTA ACACCCTCAA CTAACAAGGA  
GTACGTGACC

10 10001 TGCAAATTTC ACACAGTCGT TCCTTCACCA CAAGTTAAAT  
GCTGCGGTC

15 10051 CCTCGAGTGT AAGGCATCCT CAAAAGCGGA TTACACATGC  
CGCGTTTTG

10101 GCGGTGTGTA CCCTTCATG TGGGGAGGCG CACAGTGCTT  
CTGTGACAGT

20 10151 GAGAACACAC AACTGAGTGA GGCATACGTC GAGTCGCTC  
CAGACTGCAC

10201 TATAGATCAT GCAGTCGCAC TAAAAGTTCA CACAGCTGCT  
CTGAAAGTCG

25 10251 GCCTGCGTAT AGTATACGGC AATACCACAG CGCGCCTGGA  
TACATTGTC

10301 AACGGCGTCA CACCAGGTTC CTCACGGGAC CTGAAGGTCA  
TAGCAGGGCC

30 10351 GATATCAGCA GCTTTTCAC CCTTGACCA TAAGGTGTC  
ATTAGAAAGG

10401 GGCTTGTAA CAACTACGAC TTCCCTGAGT ATGGAGCTAT  
GAACCCAGGA

35 10451 GCGTTCGGCG ATATTCAAGC ATCCTCTCTT GATGCCACAG  
ACATAGTAGC

40 10501 CCGCACCGAC ATACGGCTGC TGAAGCCTTC TGTCAAGAAC  
ATCCACGTCC

10551 CCTACACCCA AGCAGTATCA GGGTATGAAA TGTGGAAGAA  
CAAACTCAGGA

45 10601 CGACCCCTGC AAGAACAGC ACCATTGGA TGTAAAATTG  
AAGTGGAGCC

50 10651 TCTGCGAGCG ACTAACTGTG CTTATGGGCA CATCCCTATC  
TCGATTGACA

10701 TCCCTGATGC AGCTTTGTG AGATCATCTG AATCACCAAC  
AATTTAGAA

5 10751 GTCAGCTGCA CAGTAGCAGA CTGCATTAT TCTGCAGACT  
TTGGTGGTTC

10801 GCTAACACTA CAGTACAAAG CTAACAGAGA GGGACATTGT  
CCAGTTCACT

10 10851 CCCACTCCAC TACAGCTGTT TTGAAGGAAG CGACCACACA  
TGTGACTGCC

15 10901 ACAGCCATAA CACTACATT TAGCACATCG AGCCCACAAG  
CAAATTCAT

10951 AGTTTCGCTA TGGCGCAAGA AGACCACCTG CAATGCTGAA  
TGTAAACAC

20 11001 CGGCCGACCA CATAATTGGA GAACCACATA AGGTCGACCA  
AGAATTCCAG

11051 GCGGCAGTTT CCAAAACATC TTGGAACTGG CTGCTTGCAC  
TGTTTGGGG

25 11101 AGCATCATCC CTCATTGTT TAGGACTTAT AGTGTGTTGGTC  
TGCAGCTCTA

11151 TGCTTATAAA CACACGTAGA TGACTGAGCG CGGACACTGA  
CATAGCGGTA

30 11201 AAAACTCGAT GTACTTCCGA GGAAGCGTGG TGCATAATGC  
CACGCGCCGC

11251 TTGACACTAA AACTCGATGT ATTTCCGAGG AAGCACAGTG  
CATAATGCTG

35 11301 TGCAGTGTCA CATTAATCGT ATATTACACT ACATATTAAC  
AACACTATAT

40 11351 CACTTTATG AGACTCACTA TGGGTTTCTA ATACACACTA  
CACACATTTC

11401 ATTTAAAAAC ACTACACACA CTTTATAAAT TCTTTATAA  
TTTTTCTTT

45 11451 GTTTTTATT TTGTTTTAA AATTTCAAAA AAAAAAAAAAA  
AA

## (3) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:  
5 (A) LENGTH: 11464 base pairs  
(B) TYPE: Nucleic acid  
(C) STRANDEDNESS: Double  
(D) TOPOLOGY: Unknown

1 ATGGGCAGCG CATGAGAGAA GCCCAAACCA ATAACCTACCC

10 AAAATGGAGA AAGTTCACGT

61 TGACATCGAG GAAGATAGTC CCTTCCTCAG AGCATTACAA  
CGGAGCTTCC CGCAGTTGA

121 GGTAGAAGCC AAGCAGGTCA CAGATAATGA CCATGCTAAC  
GCCAGAGCGT TTTCGCATT

15 181 GGCATCGAAA TTGATCGAGA CGGAGGTGGA ACCATCCGAT  
ACGATCCTAG ACATTGGAAG

241 TGCGCCTGCC CGCAGAATGT ATTCCAAGCA TAAGTACCAT  
TGCATCTGTC CGATGAAATG

301 TGCAGAAGAT CCGGACAGAC TGTTTAAGTA TGCAGCCAAG

20 CTGAAGAAGA ACTGTAAAGA

361 GATTACAGAT AAGGAACTGG ACAAGAAGAT GAAGGAGCTT  
CGGGAAGTCA TGAGCGACCC

421 TGATCTCGAA ACTGAAACGA TTTGCCTTCA CGACGATGAA  
ACCTGTCGAT TTGAGGGTCA

25 481 AGTCGCAGTG TATCAGGATG TGTACCGGGT TGACGGACCG  
ACGAGCCTT ACCATCAGGC

541 CAACAAAGGG GTCAGAGTCG CCTATTGGAT AGGATTGAC  
ACTACCCCTT TTATGTTAA

601 GAACCTGGCT GGAGCATATC CCTCCTATTC GACCAACTGG

30 GCCGACGAGA CCGTGTAAAC

661 GGCTCGTAAT ATAGGCTTGT GCAGCTCCGA TGTGATGGAG  
CGGTACGTA GAGGGATGTC

721 CATCCTCAGA AAGAAATTT TAAAACCATC CAATAACGTC  
TTGTTCTCTG TAGGATCTAC

35 781 CATCTACAC GAGAAGCGAG ACTTACTAAG GAGTTGGCAC  
CTACCGTCCG TTTTCACCT

841 ACGTGGTAAG CAGAATTACA CTTGTCGGTG TGAGACTATA  
GTTAGTTGCG ACGGGTACGT

901 CGTCAAAAGG ATAGCTATTA GTCCAGGTCT GTACGGGAAA  
CCGTCGGGCT ACGCTGCCAC

5 961 GATGCATCGC GAGGGATTCT TGTGCTGCAA GGTGACGGAC  
ACGCTTGACG GGGAGAGGGT

1021 CTCTTCCCC GTATGCACGT ACGTGCCAGC CACATTGTGC  
GACCAAATGA CAGGCATTCT

1081 GGCAACAGAT GTCAGTGCAG ACGACGCGCA GAAATTGCTG  
10 GTTGGGCTCA ACCAGCGAAT

1141 AGTCGTAAAT GGCCGCACTC AAAGGAATAC TAACACAATG  
AAGAACTATT TATTACCCGT

1201 CGTGGCACAA GCATTTGCCA GATGGGCTAA AGAGTACACA  
GAAGATCAAG AAGATGAAAG

15 1261 ACCATTGGGG CTTAGGGACC GCCAGTTGGT AATGGGGTGT  
TGTTGGGCGT TCAGGAAACA

1321 CAAGATAACA TCAGTGTACA AACGACCAGA CACCCAAACG  
ATCATCAAGG TAAACAGCGA

1381 TTTCCACTCT TTCTGTGCTGC CCAGAATTGG AAGCAACACC  
20 TTGGAGATTG GGCTGAGGAC

1441 CAGGATCAGA AAACTACTGG AGGAACCTGT GGACAGACCA  
CCACTGATTA CCGCCGACGA

1501 CATACAGGAA GCCAAGAACG CGGCGGATGA GGCTAAGGAA  
GTCAAGGAGG CCGAAGAGCT

25 1561 CAGGGCAGCA TTACCACCGC TGTCTGCCGA TGTAGAGGAA  
CCTGCACCTGG AGGCGGACGT

1621 TGACTTAATG CTGCAGGAGG CGGGAGCAGG ATCTGTCGAA  
ACCCCCAGGG GGCTCATCAA

1681 AGTCACCAGT TATGCAGGAG AAGACAAAAT TGGCTCTTAT  
30 GCGGTGCTCT CCCCACAAAGC

1741 AGTACTGCGA AGTAAAAAAC TGACGTGCAT CCACCCGCTT  
GCAGAGCAAG TAATTGTAAT

1801 CACACACTCT GGAAGGAAGG GTAGATACGC AGTTGAGCCT  
TACCACGGAA AAGTGGTAGT

1861 ACCCGAAGGG CAAGCTATAC CTGTCCAAGA CTTCCAAGCA  
CTCAGTGAGA GCGCCACAAT

1921 TGTGTACAAC GAACGTGAGT TCGTGAATAG GTATTTACAC  
CACATTGCCA CGCACGGTGG

5 1981 AGCTCTGAAC ACAGACGAGG AGTATTACAG AGTGGTGAAA  
CCTAGTGAAC ATGAAGGTGA

2041 GTACTTATAT GACATTGACA AGAAACAATG TGTGAAGAAA  
GAACTGGTTA CGGGACTAGG

2101 TTTGACAGGA GAACTTGTG ATCCCCCTT CCATGAATT  
10 GCATATGAAA GCTTGAGGAC

2161 ACGTCCGCC GCACCTTATC AAGTACCAAC TATAAGGTGTG  
TATGGCGTTC CCGGGTCCGG

2221 GAAGTCTGGA ATTATTAAGA GCGCAGTCAC AAAGAAGGAC  
TTGGTAGTGA GTGCTAAGAA

15 2281 GGAGAACTGC GCCGAGATAA TAAGGGACGT CAAGAAGATG  
AAAGGGCTAG ACGTCAATGC

2341 CCGGACGGTG GACTCAGTGC TGTTAAATGG ATGCAAGCAC  
CCGGTCGAGA CTTTGTACAT

2401 TGATGAAGCC TTTGCATGCC ACGCCGGCAC TCTCAGGGCC  
20 TTAATAGCCA TTATACGCC

2461 AAAGAAAGCA GTGCTATGTG GTGACCCAAA GCAATGTGGC  
TTCTTCAACA TGATGTGCCT

2521 GAAAGTGCAC TTCAACCATG AAATATGCAC TCAAGTTTC  
CACAAAAGCA TATCTCGCAG

25 2581 GTGTACCAAG TCAGTGACGT CGGTAGTGTG CACACTGTGTT  
TATGACAAAAA GAATGAGAAC

2641 TACTAACCCA AGGGATTCCA AAATCGAAAT TGACACAAACA  
GGAAGTACTA AACCAAAAAA

2701 GGATGACTTG ATTCTCACAT GTTTAGGGG ATGGGTTAAG  
30 CAACTGCAA TAGACTACAA

2761 AGGAAATGAA ATAATGACCG CGGCTGCCTC ACAGGGATTG  
ACGCGGAAAG GTGTCTATGC

2821 AGTTAGGTAC AAAGTTAACG AGAACCCATT GTACGCACCC  
ACCTCAGAGC ATGTAAATGT

2881 GCTGTTGACC CGGACGGAAG ACAAGATTGT GTGGAAGACT  
CTTGCAGGGG ACCCGTGGAT

2941 AAAGACCCCTG ACCCGGAAGT ACCCCGGAGA TTTCACTGCA  
ACAATGGAAG AATGGCAGGC

5 3001 AGAACATGAT GCCATCATGA GACACATCCT GGAGAAACCG  
GATCCCACGG ATGTCTTCCA

3061 AAATAAAGCT AATGTTGCT GGGCAAAGGC ACTTGTACCT  
GTGCTTAAGA CAGCCGGGAT

3121 AGATTGACC ACAGAGCAGT GGAACACAGT GGATTACTTC  
10 AAAGAGGATA AGGCCCACTC

3181 AGCTGAGATT GTCCTGAATC AGCTGTGCGT GCGATTCTTC  
GGTCTAGACT TAGATTCTGG

3241 TTTGTTTCC GCCCCCACAG TTCCACTCTC CATTAGGAAC  
AACCATTGGG ACAACTCACC

15 3301 GTCACCCAAC ATGTACGGGT TGAATCAAGA AGTGGTCAGG  
CAACTATCAC GCAGGTACCC

3361 TCAATTACCA CGTGCAGGTGA CTACTGGGAG AGCATAACGAC  
ATGAACACCG GTACTTTGCG

3421 CAATTATGAT CCGCGCATAA ATTTAGTACC GGTGAACCGT  
20 CGTCTACCAAC ATGCTCTCGT

3481 GACGCAACAT GCTGATCATIC CTCCCAGTGA TTTTCCGCC  
TTTGTCAAGTA AGCTTAAAGG

3541 CAGAACGGTC CTAGTAGTTG GTGAGAAGAT GAGTATTTCA  
GGTAAGACGG TAGACTGGTT

25 3601 ATCTGAAACA CCTGATTCTA CTTTTAGGGC GCGCCTAGAT  
CTAGGCATAC CCAATGAACT

3661 ACCGAAGTAC GATATCGTCT TCGTAAATGT AAGAACACAG  
TACCGCTACC ACCACTACCA

3721 GCAGTGTGAG GACCACGCCA TTAAGTTGAG CATGTTGACC  
30 AAGAAGGCCT GCCTGCACCT

3781 GAACCCCGGA GGAACCTGTG TGAGCATTGG TTACGGCTAT  
GCGGACCGGG CCAGTGAAAG

3841 CATCATAGGT GCAGTTGCTC GGCAGTTCAA GTTCTCGAGG  
GTATGCAAAC CGAAGGTGTC

3901 TAAGGAGGAG ACCGAAGTGC TATTTGTCTT CATTGGGTTC  
GATCGTAAAA CGCGAACCCA

3961 TAACCCATAC AAGCTCTCCT CCACCCTGAC CAATATTTAC  
ACCGGCTCGA GGCTCCATGA

5 4021 AGCTGGCTGC GCACCTTCGT ATCATGTAGT GCGCGGGGAT  
ATAGCCACTG CCACCGGAAGG

4081 AGTAATCGTT AATGCTGCCA ACAGCAAGGG CCAGCCAGGC  
AGTGGAGTGT GCGGAGCTCT

4141 GTACCGGAAG TACCCCGAAA GCTTCGATTT ACAACCAATA

10 GAAGTGGGGA AAGCTAGATT

4201 GGTCAAAGGT AACTCAAAAC ATCTCATTCA TGCAGTGGGG  
CCGAATTATA ACAAAAGTGTGTC

4261 TGAAGTGGAA GGTGACAAAC AGCTGGCAGA AGCGTATGAA  
TCTATAGCCA GGATTATTAA

15 4321 TGACAACAAT TATAGATCTG TGGCTATTCC GCTTCTGTCC  
ACTGGAATAT TTGCCGGAAA

4381 CAAGGATAGG TTAATGCAAT CCTTAAACCA TCTGTTAACG  
GCATTGGACA CAACAGACGC

4441 AGATGTGGCC ATATACTGCA GAGACAAGAA ATGGGAAGTG

20 ACGTTGAAAG AGGTCGTAGC

4501 CAGGAGAGAG GCGGTAGAGG AGATATGTAT CTCCGAAGAT  
TCCTCCGTAG CAGAGCCGGA

4561 TGCAGAGCTG GTTAGAGTTC ACCCTAAAGAG CTCTTGGCT  
GGAAGGAAAG GTTACAGCAC

25 4621 TAGCGATGGG AAGACATTCT CATATCTGA AGGAACCAA  
TTTCATCAGG CGGCGAAGGA

4681 CATGGCAGAA ATTAACGCTA TGTGCCCTGC CGCTACAGAG  
GCTAATGAGC AGGTGTGCTT

4741 ATACATTCTG GGTGAAAGTA TGAGCAGTAT AAGATCCAAA

30 TGCCCCGTTG AGGAGTCAGA

4801 GGCATCCACC CCACCAAGTA CATTGCCTTG CTTGTGCATC  
CACGCTATGA CCCCGGAACG

4861 GGTCAGCGT TTGAAAGCCT CCCGCCCGA ACAAATTACA  
GTTTGTCTT CCTTCCCATT.

4921 GCCGAAGTAC AGAATAACAG GAGTGCAGAA GATTCAATGT  
TCGCATCCTA TACTTTCTC

4981 TCCTAAAGTA CCTGAGTACA TACACCCTAG AAAGTACCTT  
GCAGACGCAG CTTCCGCAAA

5 5041 CAATGGGCA GCCGAATCAA CATCGGTGGA CGTGCAGCCA  
CAGCTGGAAG AGAGTCCTGA

5101 GAACACGGAA CAACTGGTGG AGGAGGAAGA CAGTATAAGC  
GTGCTGTCTG AGGATACACC

5161 ACACCAAGTG CACCAAGTGG AGGCTGAAGT GCATCGCTTC  
10 AGCGCAAGTG CTCAATCTTC

5221 GTCCTGGTCC ATTCCACGTG CATCCGACTT TGATGTCGAG  
AGTCTTCCG TGCTCGAAC

5281 CCTGGGTGCT AATGATACAA TCAGCATGGA GTCGTCCTCA  
AACGAAACAG CTCTTGCTTT

15 5341 GCGGACCATT TTTAAGACTC CACCCATTCC AAGGCCTCGA  
GTGCAGAGCA CATCCACAGA

5401 CGTGGTTAGT ATCTCAGCAC TCGAGTCTTG TGACAGCACC  
AGCGATGCGC GTAGCATAGA

5461 CTCGGATGAA ACCGATGTTT CCATTTGA CAAAAGGTTG  
20 GAGTTCTGG CCAGACCTGT

5521 TCCCACCG CGAACCAAAT TTAGGACTCC ACCCGTCCCCG  
AAACCGCGTG CGCGGAGGCC

5581 ATTACATCCT TTGTCTAGTA GATCAAGCTC GCGCTCTAGC  
CTGGCGTCTA ATCCACCAAGG

25 5641 TGTAAACCGA GTGATCACTA GGGAAAGAATT TGAGTCCTTC  
GTTGCCAAC AGCAATGACG

5701 GTTCGACGCG GGCGCGTACA TTTTCTCCTC GGATACTGGT  
CAAGGACATT TGCAACAAAA

5761 ATCAGTAAGG CAGACAGTAT TGTCTGAAGT GGTGCTAGAG  
30 AGGACTGAGT TAGAGATCTC

5821 GTACGCCCG CGCCTCGACC TGAACAAAGA AGAAATACTG  
AGAAAGAAGT TACAACGTAA

5881 CCCTACGCAA GCTAACCGGA GTAGATATCA GTCACGGAGG  
GTTGAAAACA TGAAGGCCAT

5941 AACAACTAAG AGAATCTTAC AGGGATTAGG TCACTACCTG  
AAATCTGAAG GCAAGGTGGA

6001 GTGCTATCGT ACGTTGCACC CCGTACCTTT GTATTCAGCA  
AGTGTGAACA GAGCGTTCTC

5 6061 CAGTCCAAA GTTGCTGTTG AAGCATGTAA CGTTGTTCTG  
AAGGAAAATT TTCCGACAGT

6121 GGCGTCGTAC TGCATAATAC CTGAGTACGA CGCCTACTTG  
GACATGGTGG GCGGTGCATC

6181 ATGTTGCTTG GATACGGCGA GTTTTGCCC TGCCAAGTTG  
10 CGTAGCTTTC CGAAGAAACA

6241 CGCATACTC GAGCCCACCA TTCGGTCTGC AGTCCCATCA  
GCAATTCAAGA ACACGCTGCA

6301 AAATGTACTC GCAGCTGCCA CAAAGAGAAA CTGCAATGTG  
ACTCAAATGA GGGAGCTGCC

15 6361 TGTACTGGAT TCTGCGGCCT TCAATGTAGA GTGTTTTAAA  
AAATACGCTT GCAATAATGA

6421 GTATTGGGAG ACCTACAAGA AGAATCCTAT TAGATTGACC  
GAGGAAAATG TGGTCAACTA

6481 TATAACCAAG TTAAAAGGGC CGAAGGCGGC TGCCCTGTAT  
20 GCAAAGACTC ATAATTTAGA

6541 CATGCTGCAA GACATACCCA TGGACAGGTT TATTATGGAT  
TTAAAAAGAG ATGTCAAGGT

6601 AACTCCAGGA ACCAACATA CCGAAGAAAG GCCTAAGGTC  
CAAGTAATCC AGGCTGCAGA

25 6661 TCCATTGGCT ACAGCATAACC TATGTGGGAT TCATAGAGAA  
TTGGTGCAGCA GACTGAACGC

6721 AGTTCTGTTG CCCAACATAC ACACATTATT TGACATGTCT  
GCTGAGGATT TCGACGCCAT

6781 AATTGCCGAG CACTTCCAAAC CAGGCGATTG GGTGTTAGAG  
30 ACAGACATAG CGTCATTGCA

6841 TAAAAGCGAA GATGACCGA TGGCTCTGAC GGCACGTGATG  
ATCCTGGAAG ACCTCGGGGT

6901 GGACCCAGAG CTGTTGACCC TAATCGAAGC GGCATTGGC  
GAAATATCCT CCATTCACTT

6961 ACCAACCAAA ACTAAATTAGTTCGGAGC CATGATGAAA  
TCAGGGATGT TCTTGACTCT

7021 GTTTGTCAAT ACTGTGATCA ATATGGTCAT AGCTAGCAGA  
GTTCTGCGTG AGAGACTGAC

5 7081 AAAACTCCCCT TGCGCCCGGT TCATTGGCGA CGACAATATC  
GTGAAAGGGG TTAAGTCCGA

7141 CAAACTCATG GCCGATAGGT GCGCTACATG GTTGAACATG  
GAAGTCAAAA TCATCGACGC

7201 AGTGGTTGGC GAGAAAGCTC CCTACTTCTG TGGTGGGTTT  
10 ATTTTATGTG ACTCTGTGAC

7261 CGGAACGTGCA TGCCGTGTAG CAGACCCTTT GAAGAGATTAA  
TTTAAGCTTG GAAAACCACT

7321 GGCTGTGGAT GATGAACATG ATGATGACAG GCGTCGAGCA  
CTACAGGAGG AATCTGCCCG

15 7381 GTGGAACCGG GTGGGAATT TTCCGAGCT GTGCAAAGCC  
GTCGAGTCGC GATATGAAAC

7441 AGTGGGCACG GCTGTCATTA TCATGCCAT GACTACGCTC  
GCCAGCAGTG TCGAGTCGTT

7501 CAGTTGTCTA AGAGGGCCTT CTATATCCCT CTACGGCTAA  
20 CCTGAATGGA CTGCGACGTA

7561 GTCAAGTCCG CCGAAATGTT TCCTTATCAA CCAATGTACC  
CAATGCAGCC CATGCCCTTC

7621 CGCAACCCCTT TTGCGACTCC CAGAAGACCA TGGTTTCCAA  
GGACCGACCC CTTTTTAGCG

25 7681 ATGCAGGTGC AAGAGCTGGC AAGGTCCATG GCCAACTTGA  
CGTTCAAGCA ACGGCGAGAT

7741 GTGCCGCCCG AGGGTCCACC GGCTAAGAAG AAGAAGAAGG  
ACAAACTCGCA ACAAGGTGGT

7801 CGGAATCAGA ATGGAAAGAA AAAGAACAAAG CTAGTAAAGA  
30 AAAAGAAGAA GACAGGGCCA

7861 CCACCCCCAA AAAATACTGG TGGAAAAAG AAAGTCAATA  
GGAAGCCAGG GAAGAGACAA

7921 CGAATGGTTA TGAAGTTGGA GTCAGACAAG ACATTCCCTA  
TCATGCTAGA TGGAAAAGTT

7981 AATGGATATG CATGCGTGGT CGGTGGCAAG CTGTTTAGAC  
CACTGCATGT GGAGGGTAAG

8041 ATTGACAATG ACGTGTTGTC CTCCCTCAAG ACCAAAAAGG  
CATCTAAGTA TGATCTGGAG

5 8101 TATGCTGATG TGCCGCAGAG CATGCGCGCA GACACATTTA  
AATAACACTCA TGAAAAACCC

8161 CAGGGCTATT ACAGCTGGCA CCATGGAGCA GTACAGTATG  
AAAATGGCAG ATTCACAGTG

8221 CCCAAAGGAG TCGGAGCAA AGGAGATAGC GGTGCCCCA  
10 TACTTGACAA CCAAGGGCGT

8281 GTGGTCGCTA TTGTGCTTGG CGGAGTGAAT GAAGGCTCCA  
GAACGGCACT GTCTGTCGTG

8341 ACGTGGAACG AAAAAGGGT TACAGTCAAA TACACCCCCG  
AGAATAGCGA GCAGTGGTCC

15 8401 CTGGTGACCA CCATGTGCCT GCTAGCCAAT GTCACGTTCC  
CGTGCACCCA ACCACCCATC

8461 TGCTACGACC GTAAGCCAGC AGAGACTTG TCCATGCTCA  
GTCATAACAT AGACAATCCT

8521 GGTTATGACG AGTTGCTCGA AGCAGTACTG AAATGTCCAG  
20 GCAGAGGCAA GAGGTCCACG

8581 GAGGAGCTGT TTAAGGAGTA CAAGTTAACCA CGCCCGTACA  
TGGCCAGGTG CATCAGGTGT

8641 GCGGTCGGAA GTGCCACAG CCCCATAGCC ATAGAGGCAG  
TAAGGAGCGA AGGGCACGAT

25 8701 GGCTATGTAC GACTCCAGAC CTCATCTCAG TATGGATTAG  
ACCCATCAGG AAACTTGAAA

8761 GGCAGAACCA TGAGGTATGA TATGCATGGA ACCATAGAAG  
AGATACCGTT GCATCAGGTG

8821 TCTGTTCATA CCTCACGTCC TTGCCACATA ATAGATGGGC  
30 ATGGATACTT TCTGCTTGCC

8881 AGGTGCCCTG CAGGAGACTC CATAACTATG GAATTAAAGA  
AAGAACATCAGT CACCCATTCC

8941 TGCTCTGTGC CCTACGAAGT AAAGTTAAT CCTGCGGGAA  
GAGAACGTGTA CACACACCCA

9001 CCAGAGCACG GAGCTGAACA ACCTTGTAC GTGTACGCTC  
ACGACGCACA AAATAGGGGA

9061 GCTTACGTGG AAATGCACCT TCCAGGATCC GAAGTGGACA  
GTACTTTACT GTCCATGAGC

5 9121 GGTAGTTCTG TTCATGTGAC TCCACCTGCC GGGCAAAGCG  
TCCAAGTGGA ATGCGAATGT

9181 GGTGGCACCA AGATCTCTGA AACCATCAAT TCAGCTAAC  
AATACAGTCA GTGCTCAAAG

9241 ACATCTCAGT GCAGGGCATA CCGTACACAG AATGACAAAT  
10 GGGTGTACAA TTCGGATAAA

9301 CTGCCTAAAG CATCGGGAGA AACTCTAAA GGCAAATTGC  
ATGTGCCCTT CGTACTGACC

9361 GAAGCGAAAT GCACAGTACC ATTGGCTCCA GAACCCATTA  
TCACCTTTGG GTTCCGCTCT

15 9421 GTGTCTCTGA AACTTCATCC TAAGAACCCC ACCTTCCTAA  
CCACGAGGCA GCTGGATGGA

9481 GAACCAGCTT ACACCCACGA ACTTATAACC CACCCTGTGG  
TGAGAAATTCTCGGTTACA

9541 GAGAAAGGTT GGGAAATTGT GTGGGGAAAC CATCCGCCTC  
20 AAAGGTACTG GTCTCAAGAA

9601 ACTGCACCAG GTAATCCACA CGGACTACCA CACGAGGTGA  
TCACGCATTA CTATCACAGA

9661 TATCCCATGT CCACCATCCT CGGCTTATCA ATCTGTGCGG  
CGATAGTGAC GACATCCATT

25 9721 GCGGCATCCG TATGGCTGTT TTGCAAATCA CGGATTTCAT  
GCCTGACCCC CTATCGCTTG

9781 ACTCCGAATG CCAGCATGCC TCTGTGCTTA GCCGTCTTGT  
GCTGCGCACG CACAGCCAAA

9841 GCCGAAACTA CTTGGGAATC CCTAGATCAC CTCTGGAACC  
30 ACAACCAGCA GATGTTCTGG

9901 AGTCAGCTGC TAATCCCGCT AGCAGCACTG ATAGTTGCTA  
CCCGCTTGCT GAAATGTGTG

9961 TGTTGCGTTG TGCCTTTTT AGTCGTGGCC GGCGCCGTAG  
GCGCCGGCGC TTACGAGCAC

10021 GCGACTACGA TGCCGAACCA AGTGGGGATC CCGTATAATA  
CCATTGTCAA CAGAGCGGGT

10081 TATGCACCTC TACCTATTAG CATAGTACCT ACTAAAGTGA  
AGCTGATTCC AACAGTGAAT

5 10141 CTTGAGTACA TTACATGCCA TTACAAGACT GGAATGGATT  
CACCCGCCAT TAAATGCTGC

10201 GGCACTCAGG AGTGTCTCC AACTTACAGG CGGGACGAGC  
AATGCAAAGT CTTCTCTGGA

10261 GTATACCCAT TTATGTGGGG AGGGGCGTAT TGCTTTGCG  
10 ATACGGAGAA TACCCAGATA

10321 AGCAAGGCGT ACGTGACGAA ATCGGAAGAT TGCGTCACCG  
ATCACGCCCA GGCATACAAA

10381 GCACATACAG CCTCAGTCCA AGCCTTCTTA AATATTACAG  
TTGGAGGACA CTCAACGACA

15 10441 GCAGTGGTGT ATGTGAATGG AGAGACTCCC GTTAATTAA  
ATGGAGTGAA GCTGACCGCG

10501 GGCCCTCTGT CCACAGCCTG GTCGCCGTTG GACAAGAAGA  
TCGTGCAGTA CGCCGGGAA

10561 ATTTATAACT ATGACTTTCC GGAATATGGA GCCGGCCACG  
20 CAGGAGCGTT TGGTGACATC

10621 CAGGCTAGGA CGGTATCTAG TTCCGATGTA TACGCCAACAA  
CAAACCTTGT GCTGCAGAGA

10681 CCCAAAGCCG GAGCGATCCA TGTCCCGTAC ACCCAGGCC  
CATCTGGGTA TGAACAATGG

25 10741 AAGAAAGATA AACCACCATC CCTCAAGTTC ACAGCCCCGT  
TCGGTTGTGA AATTTACACC

10801 AACCCTATCC GTGCTGAAAA CTGCGCTGTG GGATCAATT  
CGCTAGCTTT TGACATTCCC

10861 GATGCTCTGT TTACCAGGGT GTCCGAAACA CCGACATTAT  
30 CTGCTGCCGA GTGCACTCTG

10921 AACGAGTGTG TATATTCAATC CGACTTGGC GGGATCGCTA  
CAGTCAAATA CTCGGCGAGC

10981 AAGTCAGGCA AATGTGCAGT TCATGTACCC TCAGGCACGG  
CTACATTGAA AGAAGCCGCA

11041 GTCGAGTTGG CCGAACAGGG TTCGGCTACT ATACATTTT  
CGACTGCCAG CATTCCATCCG  
11101 GAGTTTAGAC TCCAGATATG CACGTCTTAC GTTACGTGCA  
AAGGGGATTG TCACCCTCCG  
5 11161 AAAGATCACA TTGTGACGCA TCCCCAATAC CACGCCAGT  
CATTACAGC TGCGGTATCA  
11221 AAAACCGCTT GGACGTGGTT AACATCCTTA CTGGGAGGGT  
CAGCTATAAT TATAATAATT  
11281 GGACTTGTGT TAGCCACAGT TGTGGCTATG TATGTGCTGA  
10 CCAACCAGAA ACATAATTAG  
11341 TATTAGCAGC GATTGGCATG CTGCTTGTAA AGTTTTATTA  
CAAATAACGT GCGGCAATTG  
11401 GCGAGCCGCT TTAATTAGAA TTTTATTTTC TTTTACCATTA  
ATTGGATTTT GTTTTTAATA  
15 11461 TTTC

## (4) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:  
20 (A) LENGTH: 4003 base pairs  
(B) TYPE: Nucleic acid  
(C) STRANDEDNESS: Double  
(D) TOPOLOGY: Unknown  
Nucleotide Sequence of the BeAn8 26S Subgenomic  
25 cDNA containing last portion of NS4, the 26S promoter,  
the complete BeAn8 structural genes and a portion of  
the 3' noncoding region.

30 1 CCCAGTAACCTCTCTACGGCT GACCTGAATG GACTGTAACG  
TAGTTCAGTC

35 51 CGCAACCATG TTCCCTTACC AATCACCAAT GTTTCCAATG  
CAACCAGCGC

101 CTTTCGCAA CCCGTACGCT CCTCCTAGAA GACCGTGGTT  
CCCTAGAAC

40 151 GATCCCTTCT TAGCCATGCA GGTGCAGGAG TTGGCCCGAT  
CAATGGCGAG

201 CTTGACGTTT AAACAGCGTC GAGATACGCC ACCCGAGGGG  
CCACCTGCTA

251 AGAAGAAGCG TAAGGAGCCT CAACAGCAGG TAGCTCAGGC  
GCAGGGTTAAG

5 301 AAAAAGAACG GAAAACCGAA GAAGAAGAAA AGTAACGGAG  
CACCAACCCCC

10 351 AAAAAATCAG AAGAGCACCA AGAAGAAGAC CAATAAGAAA  
CCTGGAAAAAA

15 401 GACAACGGAT GGTTATGAAG TTAGAATCAG ACAAAACATT  
TCCTATTTG

20 451 CTGGATGGAA AAATTAATGG ATATGCTTGC GTTGTGGAG  
GAAAGCTATT

25 501 TCGACCCATG CACGTGGAAG GCAAAATTGA CAATGAAACT  
CTTGCCTCCC

30 551 TGAAGACGAA GAAGGCATCC AAATACGACC TAGAGTATGC  
CGATGTTCCCT

35 601 CAAAGCATGC GAGCAGATAC CTTAAATAC ACACATGATA  
AGCCTCAAGG

40 651 GTATTATAAT TGGCATCACG GCGCCGTGCA GTATGAAAAT  
GGGAGATTCA

45 701 CGGTGCCGAA AGGTGTGGGA GCGAAAGGAG ACAGTGGACG  
CCCCATACTA

751 GATAATCAAG GCAGAGTCGT GGCCATTGTG CTGGGAGGGGG  
TGAATGAAGG

801 ATCCAAGACA GCTTGTCG TAGTTATGTG GAATGAAAAAA  
GGGGTCACCG

851 TAAAATATAC ACCAGAAAAC TGTGAGCAAT GGTCACTAGT  
TACCACCATG

901 TGTCTTCTCG CCGATGTTAC GTTCCCTTGT TCCACTCCAC  
CAATTGCTA

951 CGACCGAGCA CCCGCAGAAA CCCTGATGAT GCTTAGCAAG  
AACATTGACA

1001 ATCCTGGCTA TGATGAATTG CTGGAAGCAG TGCTGAAATG  
CCCCGGCAGA

1051 CAGAAGAGAT CTACGGAGGA GTTATTAAAG GAGTACAAAC  
TTACACGTCC

1101 GTACATGGCC AAGTGTGTGC GGTGTGCCGT TGGAAGTTGC  
CACAGCCCCA

1151 TCGCTATAGA AGCAGTAAGA AGCGACGGGC ATGACGGCTA  
5 CATCCGAATA

1201 CAGACATCAT CACAGTACGG TTTAGACCCC TCCGGAAACG  
TTAACAGACAG

10 1251 AGTTATGAGG TATAATCTGT ATGGCAAGAT CGTAGAAGTT  
CCATTACATC

1301 AGGTTTCATT ACACACATCT CGGCCTTGCC ACATTATTGA  
15 TGGTCACCGA

1351 TATTCCTCC TCGCACGCTG CCCAGAGGGC GACTCTATCA  
CCATGGAGTT

1401 TAAGAAGGAT TCCGTCACCC ATTCTGTTC AGTGCCTTAT  
20 GAAGTGAAAT

1451 TCACACCCGT GGGCAGAGAA TTATATAGCC ATCCCCCAGA  
ACACGGCACA

25 1501 GAACATCCGT GCCGTGTGTA TGCCCACGAC GCCCAGCAAA  
AAGATGCGTA

1551 TGTGGAGATG CACCTGCCCG GGTCCGAAGT TGACAGTTCC  
30 CTGCTCTCCA

1601 TGAGCGGTAG TGCGGTCCGG GTAACACCAC CATCAGGGCA  
AAGTGTCTTT

1651 GTGGAGTGCA ACTGTGGCTC CGCTGTGTCG GAAACCATAA  
35 ACACTGCAAA

1701 ATCATACAGC CAATGCACAA AAACATCACA ATGCCGCGCG  
TACCGTCTGC

40 1751 AGAATGATAA GTGGGTATAC AATTCAAGACA AACCTCCAAA  
GGCATCGGGA

1801 GAAACGCTGA AAGGGAAACT GCATGTACCT TATCTCCTTT  
45 CCGAAGCGAA

1851 GTGTACCGTA CCTTTAGCAC CCGAGCCAAT AGTAACCTTC  
GGCTTTCGAT

1901 TCGTATCTTT GAAATTGCAT CCACGGAAATC CGACATATTT  
50 GACTACCCGC

1951 CAGCTAGATG GAGAACCGAA TTACACCCAC GAGCTAATT  
CAGAGCCAAC

5 2001 AACTAGAAAT TTTACAGTGA CTGAGCATGG ATGGGGATAC  
GTTTGGGGTA

2051 ATCACCCGCC TCAGAGGTAC TGGGCACAGG AGACAGCTCC  
AGGCAACCCG

10 2101 CATGGGCTGC CGCACGAGGT GATTACTCAT TACTATAACA  
GGTACCCAAT

15 2151 GTCCACGATT TTCGGACTAT CGATTGCGC CGCAGTGGTA  
ACCACCTCAA

2201 TAGCCGCATC CACCTGGCTG TTGTGCAAGT CGAGAGTATC  
TTGTTTGACT

20 2251 CCGTATCGAC TGACCCCCGAA TGCTCAGTTA CCTGTGTGTC  
TAGCCTTCCT

2301 GTGCTGCGCG AGGACAGCCC GTGCAGAGAC CACATGGAA  
TCACTAGACC

25 2351 ATTTATGGAA CCATAATCAA CAGATGTTCT GGAGTCAACT  
GCTCATCCCC

30 2401 CTAGCCGCGC TCATTGTGGT GACCCGCTTG CTGAAGTGCA  
TGTGTTGCGT

2451 CGTTCCCTTT TTAGTCCTAG CAGGCGCCGC AAGCGTCGGC  
GCCTACGAAC

35 2501 ACGCAACCAC GATGCCGAAT CAGGTGGGAA TCCCGTATAA  
TACAGTAGTC

2551 AACCGCGCAG GTGACGCACC ATTGGCAATC AGCATTATTC  
CAACCAAGAT

40 2601 ACGGCTAATT CCTACTTTGA ATTTAGAATA TATTACATGC  
CACTATAAGA

2651 CAGGATTAGA TTCACCTTTC ATTAAATGCT GCGGAACGCA  
GGAATGCCGC

45 2701 CAAGTGAATA GACCCGATGA ACAGTGTAAA GTCTTCACGG  
GGGTGTATCC

2751 GTTTATGTGG GGAGGCGCCT ACTGCTTCTG TGACTCTGAA  
50 AACACGCAAA

2801 TTAGTCGAGC GTATGTGATG AAATCAGATG ACTGCTCAGC  
TGACCACGCC

2851 TTGGCCTACA AAGCTCATAC TGCCTCAGTC CAAGCTTTTC  
5 TGAATATAAC

2901 TGTGGGAGAG CAATCGACGA CAGCGGTAGT GTACGTGAAT  
GGAGAAACAC

10 2951 CGGTCAATT TAACGGCATT AAATTGGTTG CAGGCCCTT  
ATCAAATGCC

15 3001 TGGACCCCAT TTGATCGGAA AGTGGTGCAG TACGCCGGAG  
AGATCTACAA

3051 TTATGACTTC CCGGAGTACG GAGCTGGCA TGCAGGGCG  
TTCGGGGATC

3101 TTCAAGCCAG ACAAATCACC AGTAATGACC TGTACGCCAA  
20 CACGAATTAA

3151 GTATTGCAAA GACCCAACAC AGGCACCATC CATGTTCCCTT  
ACACGCAGGC

3201 ACCGTCAGGC TTTGAGCAGT GGAAGAAAGA CAAACCACCA  
25 TCATTAAAGT

3251 ACACCGCACC ATTTGGGTGC GAAATTATG TGAATCCCGT  
CAGAGCTGAG

3301 AATTGCGCAG TAGGATTTAT ACCATTAGCC TTTCGACATAC  
30 CCGATGCCTT

3351 GTTTACCAGG GTGTCAAGAA CACCGACGTT GTCGAGCGCT  
35 GAGTGCTCCT

3401 TGAATGAGTG TACATACTCA ACGGACTTTG GCGGGATCGC  
CACTGTCAAAG

3451 TACTCGGCTA GTAAATCAGG CAAATGCGCA GTACATGTT  
40 CCTCAGGCAC

3501 TGCAACTCTG AAAGAGTCAT TGGTGGAAAGT GGTGAAACAA  
GGGTCAATGA

45 3551 CCCTTCACCTT TTGACCGCC AGTATACACC CAGAGTTAA  
ATTGCAGATC

3601 TGTACGAAGG TACTCACATG TAAAGGCGAC TGTACATCCGC  
50 CTAAAGACCA

3651 TATTGTGACG CACCCCCAGC ACCACGCCA GACATTTACA  
GCTGCGGTAT

3701 CCAAGACCGC TTGGACGTGG TTAACGTCAC TCTTAGGAGG  
5 GTCAGCAGTA

3751 ATTATTATAA TTGGCCTTGT ATTAGCAACT GTTGTGCTA  
TGTATGTGCT

10 3801 GACCAACCAG AACATAATT AGACCACAGC AGCGATTGGA  
AAGCTGCCTA

3851 TTAGAACAT GTAGCGGCAA TTGGCAAGCC GCCTATAAAT  
15 GTTTAGCAGC

3901 AATTGGCAAG CTGCATATAT AAATTACCTA GCGGCAATTG  
GCACGCCGCT

3951 TATAAAATT TTATTTCTT TTACCAATAA TTGGATTTG  
20 TTTTTAATAT

4001 TTC

25

30

35

40

What is claimed is:

1. A DNA comprising an isolated and purified western equine encephalitis (WEE) virus cDNA fragment  
5 coding for infectious western equine Encephalitis virus genome.
- 10 2. A DNA according to claim 1 wherein said WEE cDNA fragment is operably linked to a promoter such that said cDNA is transcribed.
- 15 3. The DNA according to claim 1, wherein said cDNA fragment contains a deletion in the E3-E2 cleavage site.  
20 4. The DNA according to claim 3, wherein said cDNA fragment deletion is 5 amino acids at the E2-E2 cleavage site said amino acids being Arg Arg Pro Lys Arg.  
25 5. The DNA according to claim 4 wherein said cDNA fragment further contains a suppressor mutation.  
30 6. The DNA according to claim 5 wherein said suppressor mutation is a substitution of glutamic acid at codon 182 of E2 to lysine.  
7. The DNA according to claim 5 wherein said suppressor mutation is a substitution of glutamic acid at codon 181 of E2 to lysine.  
35 8. The DNA according to claim 2 wherein said promoter is T7 promoter of pBluescript KS and said DNA is pWE2000.

9. An infectious WEE virus RNA transcript encoded by the cDNA fragment of claim 1.

5 10. A DNA according to claim 5 wherein said WEE cDNA fragment is operably linked to a promoter such that said cDNA is transcribed.

10 11. An attenuated WEE virus RNA transcript encoded by the cDNA fragment of claim 5.

12. A DNA according to claim 6 wherein said WEE cDNA fragment is operably linked to a promoter such that said cDNA is transcribed.

15 13. An attenuated WEE virus RNA transcript encoded by the cDNA fragment of claim 6.

20 14. A DNA according to claim 7 wherein said WEE cDNA fragment is operably linked to a promoter such that said cDNA is transcribed.

15 15. An attenuated WEE virus RNA transcript encoded by the cDNA fragment of claim 7.

25 16. Infectious WEE virus particles containing an RNA transcript according to claim 9.

17. Attenuated WEE virus particles  
30 containing an RNA transcript according to claim 11.

18. Attenuated WEE virus particles containing an RNA transcript according to claim 13.

19. Attenuated WEE virus particles containing an RNA transcript according to claim 15.

20. A live attenuated western equine  
5 encephalitis (WEE) virus vaccine comprising attenuated western equine encephalitis virus according to claim 17.

21. A live attenuated western equine  
10 encephalitis (WEE) virus vaccine comprising attenuated Western Equine Encephalitis virus according to claim 18.

22. A live attenuated western equine  
15 encephalitis (WEE) virus vaccine comprising attenuated western equine encephalitis virus according to claim 19.

23. A DNA comprising an isolated and  
20 purified venezuelan equine encephalitis virus IE variant (VEE IE) cDNA fragment coding for infectious venezuelan equine encephalitis virus IE variant virus genome.

25 24. A DNA according to claim 23, wherein said cDNA fragment has the sequence of SEQ ID NO:2 or a portion thereof, or an allelic portion thereof.

25. The DNA according to claim 23, wherein  
30 said cDNA fragment contains a deletion in the E3-E2 cleavage site.

. 26. A DNA according to claim 25, wherein said cDNA fragment contains a deletion according to

claim 25 wherein said deletion is four amino acids  
said amino acids being Arg Gly Lys Arg.

27. A DNA fragment according to claim 26  
5 wherein said VEE IE cDNA further contains a suppressor  
mutation.

28. A DNA according to claim 23 wherein said  
VEE IE cDNA fragment is operably linked to a promoter  
10 such that said cDNA is transcribed.

29. An infectious VEE IE virus RNA  
transcript encoded by the cDNA fragment of claim 23.

15 30. A DNA according to claim 27 wherein said  
VEE IE cDNA fragment is operably linked to a promoter  
such that said cDNA is transcribed.

31. An attenuated VEE IE virus RNA  
20 transcript encoded by the cDNA fragment of claim 27.

32. Infectious VEE IE virus particles  
containing an RNA transcript according to claim 29.

25 33. Attenuated VEE IE virus particles  
containing an RNA transcript according to claim 31.

34. A live attenuated venezuelan equine  
encephalitis virus IE variant (VEE IE) virus vaccine  
30 comprising attenuated venezuelan equine encephalitis  
virus IE variant virus according to claim 33.

35. A bivalent alphavirus vaccine comprising  
live attenuated western equine encephalitis (WEE)  
35 virus comprising an attenuating mutation and live

attenuated venezuelan equine encephalitis virus IE variant (VEE IE) comprising an attenuating mutation.

36. A bivalent alphavirus vaccine according  
5 to claim 35 wherein said live attenuated western  
equine encephalitis virus is chosen from the group  
consisting of attenuated WEE comprising a deletion in  
the E3-E2 cleavage site and a substitution of glutamic  
acid at codon 182 of E2 to lysine, and attenuated WEE  
10 comprising a deletion in the E3-E2 cleavage site and a  
substitution of glutamic acid at codon 181 of E2 to  
lysine.

37. An attenuated western equine  
15 encephalitis virus wherein said virus comprises an  
attenuating mutation selected from the group  
consisting of: a C to T change at nucleotide 7 of the  
5' noncoding region of the WEE genome, a A to G change  
at nucleotide 13 of the 5' noncoding region of the WEE  
20 genome, a T to A change at nucleotide 25 of the 5'  
noncoding region of the WEE genome, and a deletion of  
an A at nucleotide 22 of the 5' noncoding region of  
the WEE genome.

25 38. A pharmaceutical formulation comprising  
attenuated WEE virus particles according to claim 17  
in an effective immunogenic amount in a  
pharmaceutically acceptable carrier.

30 39. A pharmaceutical formulation comprising  
attenuated WEE virus particles according to claim 18  
in an effective immunogenic amount in a  
pharmaceutically acceptable carrier.

40. A pharmaceutical formulation comprising \* attenuated WEE virus particles according to claim 19 in an effective immunogenic amount in a pharmaceutically acceptable carrier.
- 5
41. A pharmaceutical formulation comprising attenuated VEE IE virus particles according to claim 33 in an effective immunogenic amount in a pharmaceutically acceptable carrier
- 10
42. An attenuated chimeric virus comprising nonstructural sequences from a first alphavirus and structural sequences from a second alphavirus resulting in attenuation of the second alphavirus.
- 15
43. An attenuated chimeric virus according to claim 42 wherein wherein said first alphavirus is western equine encephalitis virus and said second alphavirus is chosen from the group consisting of:
- 20 Sindbis virus, Aura virus, Barmah Forest virus, Bebaru Cabassou virus, Chikungunya virus, Everglades virus, Fort Morgan virus, Getah virus, Highlands J virus, Kyzylagach virus, Mayaro virus, Middelburg virus, Mucambo virus, Ndumu virus, O'nyong-nyong virus,
- 25 Pixuna virus, Ross River virus, Sagiymama virus, Semliki Forest virus, SAAR87 virus, Tonate virus, Una virus, venezuelan equine encephalitis virus, and Whataroa virus.
- 30 44. An attenuated second virus according to claim 43 wherein said second alphavirus is eastern equine encephalitis virus.
- 35 45. An attenuated chimeric second virus according to claim 42 wherein said first alphavirus is

Venezuelan equine encephalitis virus variant IE and said second alphavirus is chosen from the group consisting of: venezuelan equine encephalitis virus, western eqine encephalitis virus, eastern equine encephalitis virus, Sindbis virus, Aura virus, Barmah Forest virus, Bebaru Cabassou virus, Chikungunya virus, Everglades virus, Fort Morgan virus, Getah virus, Highlands J virus, Kyzylagach virus, Mayaro virus, Middelburg virus, Mucambo virus, Ndumu virus, O'nyong-nyong virus, Pixuna virus, Ross River virus, Sagiyama virus, Semliki Forest virus, SAAR87 virus, Tonate virus, Una virusand Whataroa virus.

46. An attenuated chimeric second virus according to claim 44 wherein said second virus is venezuelan equine encephalitis virus variant IA.

47. An attenuated chimeric second virus according to claim 42 wherein said first alphavirus is venezuelan equine encephalitis virus variant IA and said second alphavirus is chosen from the group consisting of: Venezuelan equine encephalitis virus, western eqine encephalitis virus, eastern equine encephalitis virus, Sindbis virus, Aura virus, Barmah Forest virus, Bebaru Cabassou virus, Chikungunya virus, Everglades virus, Fort Morgan virus, Getah virus, Highlands J virus, Kyzylagach virus, Mayaro virus, Middelburg virus, Mucambo virus, Ndumu virus, O'nyong-nyong virus, Pixuna virus, Ross River virus, Sagiyama virus, Semliki Forest virus, SAAR87 virus, Tonate virus, Una virus, and Whataroa virus.

48. An attenuated chimeric second virus according to claim 47 wherein said second virus is venezuelan equine encephalitis virus variant IE.

49. An attenuated chimeric second virus according to claim 47 wherein said second virus is Venezuelan Equine Encephalitis virus variant IIIA.

5

50. An attenuated virus vaccine comprising chimeric virus according to claim 42 wherein said vaccine is directed against said second alphavirus.

10

51. An inactivated western equine encephalitis virus (WEE) vaccine comprising attenuated WEE according to claim 17 wherein said attenuated WEE is inactivated.

15

52. An inactivated western equine encephalitis virus (WEE) vaccine comprising attenuated WEE according to claim 18 wherein said attenuated WEE is inactivated.

20

53. An inactivated western equine encephalitis virus (WEE) vaccine comprising attenuated WEE according to claim 19 wherein said attenuated WEE is further inactivated.

25

54. An inactivated venezuelan equine encephalitis virus variant IE (VEE IE) vaccine comprising attenuated VEE IE according to claim 33 wherein said attenuated VEE IE is further inactivated.

30

55. An inactivated eastern equine encephalitis virus (EEE) vaccine comprising attenuated EEE according to claim 44 wherein said attenuated virus is further inactivated.

56. An inactivated venezuelan equine encephalitis virus variant IA (VEE/IA) vaccine comprising attenuated VEE/IA according to claim 46 wherein said attenuated virus is further inactivated.

5

57. An inactivated venezuelan equine encephalitis virus variant IIIA (VEE/IA) vaccine comprising attenuated VEE IIIA according to claim 49 wherein said attenuated virus is further inactivated.

10

58. An inactivated venezuelan equine encephalitis virus variant IE (VEE IE) vaccine comprising attenuated VEE IE according to claim 48 wherein said attenuated virus is further inactivated.

15

59. A method for expressing a protein said method comprising cloning a gene encoding said protein into a an attenuated virus replicon, said replicon chosen from the group consisting essentially of  
20 attenuated WEE and attenuated VEE IE wherein transcription of said replicon yields RNA capable of infecting a cell in which said protein is to be expressed.

25

60. A method for the diagnosis of western equine encephalitis virus (WEE) infection comprising the steps of :

30 (i) contacting a sample from an individual suspected of having a WEE infection with all or a unique portion of WEE; and

(ii) detecting the presence or absence of a WEE infection by detecting the presence or absence of a complex formed between WEE and antibodies specific therefor in the sample.

61. A method for the diagnosis of venezuelan equine encephalitis virus variant IE (VEE IE) infection comprising the steps of :

5 (i) contacting a sample from an individual suspected of having a VEE IE infection with all or a unique portion of VEE IE; and

10 (ii) detecting the presence or absence of a VEE IE infection by detecting the presence or absence of a complex formed between VEE IE and antibodies specific therefor in the sample.

62. A method for the diagnosis of western equine encephalitis virus (WEE) from a sample using 15 the polymerase chain reaction, said method comprising:

(i) extracting RNA from the sample;  
(ii) reverse transcribing the RNA of (i) to DNA;  
(iii) contacting said DNA with  
20 (a) at least four nucleotide triphosphates,  
(b) a primer that hybridizes to WEE DNA, and  
(c) an enzyme with polynucleotide synthetic activity,

25 under conditions suitable for the hybridization and extension of said first primer by said enzyme, whereby a first DNA product is synthesized with said DNA as a template therefor, such that a duplex molecule is formed;

30 (iv) denaturing said duplex to release said first DNA product from said DNA;

(v) contacting said first DNA product with a reaction mixture comprising:

(a) at least four nucleotide triphosphates,  
(b) a second primer that hybridizes to said first DNA, and

- (c) an enzyme with polynucleotide synthetic activity,  
under conditions suitable for the hybridization and extension of said second primer by said enzyme,  
5 whereby a second DNA product is synthesized with said first DNA as a template therefor, such that a duplex molecule is formed;
- (vi) denaturing said second DNA product from said first DNA product;
- 10 (vii) repeating steps iii-vi for a sufficient number of times to achieve linear production of said first and second DNA products;
- (viii) fractionating said first and second DNA products generated from said WEE DNA; and  
15 (ix) detecting said fractionated products for the presence or absence of WEE in a sample.

63. A method for the diagnosis of venezuelan equine encephalitis variant IE virus (VEE IE) from a  
20 sample using the polymerase chain reaction, said method comprising:

- (i) extracting RNA from the sample;  
(ii) reverse transcribing said RNA of (i) to DNA;  
(iii) contacting said DNA with  
25 (a) at least four nucleotide triphosphates,  
(b) a primer that hybridizes to VEE IE DNA,  
and  
(c) an enzyme with polynucleotide synthetic activity,  
30 under conditions suitable for the hybridization and extension of said first primer by said enzyme, whereby a first DNA product is synthesized with said DNA as a template therefor, such that a duplex molecule is formed;

(iv) denaturing said duplex to release said first DNA product from said DNA;

(v) contacting said first DNA product with a reaction mixture comprising:

5 (a) at least four nucleotide triphosphates,

(b) a second primer that hybridizes to said first DNA, and

(c) an enzyme with polynucleotide synthetic activity,

10 under conditions suitable for the hybridization and extension of said second primer by said enzyme, whereby a second DNA product is synthesized with said first DNA as a template therefor, such that a duplex molecule is formed;

15 (vi) denaturing said second DNA product from said first DNA product;

(vii) repeating steps iii-vi for a sufficient number of times to achieve linear production of said first and second DNA products;

20 (viii) fractionating said first and second DNA products generated from said VEE IE DNA; and

(ix) detecting said fractionated products for the presence or absence of VEE IE in a sample.

25 64. A method for providing protective immunity against a second alphavirus to individuals with pre-existing immunity to a first alphavirus said method comprising administering to said individuals an effective amount of live attenuated second alphavirus.

30

65. A method for providing protective immunity against a second alphavirus according to claim 64, wherein said live attenuated second alphavirus is attenuated western equine encephalitis virus.

35

66. The method of claim 65 wherein said western equine encephalitis (WEE) virus is chosen from the group consisting of: attenuated WEE having a substitution of glutamic acid at codon 181 of E2 to lysine, attenuated WEE having a substitution of glutamic acid at codon 181 of E2 to lysine, attenuated WEE having a C to T change at nucleotide 7 of the 5' noncoding region of the WEE genome, 10 attenuated WEE having a A to G change at nucleotide 13 of the 5' noncoding region of the WEE genome, attenuated WEE having a T to A change at nucleotide 25 of the 5' noncoding region of the WEE genome, and attenuated WEE having a deletion of an A at nucleotide 15 22 of the 5' noncoding region of the WEE genome.

67. A method for providing protective immunity against a second alphavirus according to claim 64, wherein said live attenuated second 20 alphavirus is attenuated venezuelan equine encephalitis virus variant IE.

68. A WEE infection diagnostic kit comprising primers specific for WEE and ancillary 25 reagents suitable for use in detecting the presence or absence of WEE in a mammalian sample.

69. A VEE IE infection diagnostic kit comprising primers specific for VEE IE and ancillary 30 reagents suitable for use in detecting the presence or absence of VEE IE in a mammalian sample.

70. An isolated and purified Venezuelan equine encephalitis variant IIIA cDNA encoding the VEE 35 IIIA structural genes.

71. An amino acid fragment encoded by the cDNA fragment according to claim 70.

5 72. A polypeptide encoded by the amino acid fragment according to claim 71.

10

15

20

25

30

35

## Assembly : m. Lule WE3'-17 1 / 7



FIGURE 1A

## Assembly c noc → pWE5'-18

2 / 7



FIGURE 1B

3 / 7

Assembly of pWE2000 full length cDNA clone of western equine encephalitis virus from modules pWES'-18 and pWE3'-17



FIGURE 1C



FIGURE 2

5 / 7



FIGURE 3

**Figure 4**



FIGURE 5

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/10645

## A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C12N 15/40, 7/01, 7/04, 15/86; A61K 39/193.

US CL :536/23.72; 435/235.1, 236, 69.1, 172.3; 424/205.1, 218.1

According to International Patent Classification (IPC) or to both national classification and IPC

## B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/23.72; 435/235.1, 236, 69.1, 172.3; 424/205.1, 218.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Aps, Biosis, Cab, Derwent WPI. Search terms: western, equine(w)enceph?, attenuat?, venezuelan, genom?, ma. clon?, sequenc?, dna, dnas, "E2", "E3", wee.

## C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                       | Relevant to claim No. |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | FRAIZER, G. et al. Isolation and preliminary characterization of mutants of Western equine encephalomyelitis virus with altered virulence in chickens. Biological Abstracts. 1985. Vol. 80, No. 5, page AB-506, Abstract no. 41179, see entire abstract. | 16                    |
| Y         | US 5,185,440 A (DAVIS et al) 09 February 1993, see entire document, particularly column 7, line 66 through column 8, line 1.                                                                                                                             | 1-3, 8, 9, 16, 59     |
| Y         | US 5,505,947 A (JOHNSTON et al) 09 April 1996, see particularly column 3, lines 50-54, Abstract, and Examples 1 and 2.                                                                                                                                   | 3, 59                 |

 Further documents are listed in the continuation of Box C. See patent family annex.

|                                                                                                                                                                         |     |                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special categories of cited documents:                                                                                                                                  | "T" | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "X" | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "E" earlier document published on or after the international filing date                                                                                                | "Y" | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "&" | document member of the same patent family                                                                                                                                                                                                    |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            |     |                                                                                                                                                                                                                                              |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |     |                                                                                                                                                                                                                                              |

Date of the actual completion of the international search

27 AUGUST 1998

Date of mailing of the international search report

06 OCT 1998

Name and mailing address of the ISA/US  
Commissioner of Patents and Trademarks  
Box PCT

Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

MARY E. MOSHER, PH.D.

Telephone No. (703) 308-0196

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/10645

## C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                   | Relevant to claim No.  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Y         | WEAVER, S.C. et al. A comparison of the Nucleotide Sequences of Eastern and Western Equine Encephalomyelitis Viruses with Those of Other Alphaviruses and Related RNA Viruses. <i>Virology</i> . 1993. Vol. 197, pages 375-390. See figures 3 and 4. | 1-3, 8, 9, 16, 59      |
| Y         | HAHN, C.S. et al. Western equine encephalitis virus is a recombinant virus. <i>Proceedings of the National Academy of Sciences USA</i> . August 1988. Vol. 85, p. 5997-6001. See Figure 1.                                                           | 1-3, 8, 9, 16, 59      |
| A         | STRAUSS, J.H. et al. The Alphaviruses: Gene Expression, Replication, and Evolution. <i>Microbiological Reviews</i> . September 1994. Vol. 58, No. 3, pages 491-562.                                                                                  | 1-22, 37-40, 51-53, 59 |

**INTERNATIONAL SEARCH REPORT**

International application No.

PCT/US98/10645

**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.:  
because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claims Nos.:  
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
  
3.  Claims Nos.:  
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-22, 37-40, 51-53, 59

**Remark on Protest**

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

# INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/10645

## BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group 1, claims 1-22, 37-40, 51-53, 59, drawn to a first product DNA encoding an infectious genome of Western Equine Encephalitis (WEE) virus, RNA and virus encoded by DNA, vaccines and pharmaceuticals comprising virus encoded, and methods of use.

Group 2, claims 23-34, 41, 54, 59 drawn to second product DNA encoding an infectious genome of Venezuelan Equine Encephalitis IE variant (VEE IE) virus, RNA and virus encoded by DNA, vaccines and pharmaceuticals comprising virus encoded, and methods of use.

Group 3, claims 35-36, drawn to third product, combination vaccine comprising attenuated WEE and attenuated VEE IE

Group 4, claims 42-50, 55-58, drawn to fourth product, chimeric alphavirus and vaccine.

Group 5, claims 62, 68, drawn to fifth product, WEE specific primer kit, and method of use.

Group 6, claims 63, 69, drawn to sixth product, VEE IE specific primer kit, and method of use

Group 7, claims 70-72, drawn to seventh product, DNA encoding structural genes of VEE variant IIIA and products encoded.

Group 8, claims 60, drawn to method of diagnosing WEE using antigen.

Group 9, claims 61, drawn to method of diagnosing VEE IE using antigen.

Group 10, claims 64-67, drawn to method of vaccinating immune individual using a second alphavirus.

The inventions listed as Groups 1-10 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

In groups 1 and 2, the special technical feature in each case is the DNA encoding an infectious genome of a particular virus; since groups 1 and 2 pertain to two distinct viruses, they involve different special technical features.

Group 3 does not have the corresponding special technical feature, because the attenuated viruses required in group 3 are not limited to those made by using the DNAs of groups 1 or 2; for example claim 35 encompasses combination vaccines using viruses attenuated by propagation in culture.

Group 4 does not have the corresponding special technical feature, because it is not limited to either of the viruses encoded by the DNAs of group 1 or group 2; for example claim 42 encompasses a chimera made from Sindbis and Semliki Forest viruses.

Groups 5 and 6 do not have the corresponding special technical feature, because they require small, specific primers, not infectious full-length genomic materials.

Group 7 does not have the corresponding special technical feature, because it is drawn to a sub-genomic fragment of a third virus.

Groups 8 and 9 do not have the corresponding special technical feature, because they are not limited to materials of groups 1 or 2; for example claim 60 encompasses a method using viral antigens produced by propagation of native WEE in standard tissue culture.

Group 10 does not have the corresponding special technical feature because it is not limited to the viruses made using the DNAs of groups 1 or 2; for example claim 64 encompasses a method of vaccinating a Sindbis-immune monkey

# INTERNATIONAL SEARCH REPORT

International Application No.

PCT/US98/10645

against Semliki Forest virus.

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: \_\_\_\_\_**

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**

**THIS PAGE BLANK (USPTO)**