

A random matrix analysis of random fourier features

beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent

Kailong Wang¹

¹Ph.D. of ECE Rutgers University

ECE 539 HDP, May 11, 2023

Table of Contents

1 Motivation

- 2 Random Fourier Features
- 3 An analysis of RFF

Consider a binary classification problem with non-linear (e.g. polynomial) samples. This is not separable with linear function.

(e.g.
$$\mathbf{X} = \begin{vmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \\ \dots \\ x_{N,1} & x_{N,2} \end{vmatrix} \in \mathbb{R}^{N \times 2}.$$
)

One idea is to **LIFT** the samples into a higher dimensional space in which the samples are linearly separable.

Motivation

The Lifting function in this case is $\phi(\mathbf{X}) = \begin{bmatrix} x_{1,1}^2 & x_{1,2}^2 & \sqrt{2}x_{1,1}x_{1,2} \\ x_{2,1}^2 & x_{2,2}^2 & \sqrt{2}x_{2,1}x_{2,2} \\ & \dots \\ x_{N,1}^2 & x_{N,2}^2 & \sqrt{2}x_{N,1}x_{N,2} \end{bmatrix}.$

Curse of Dimensionality

Consider solving the above problem with $\ensuremath{\textit{support vector machine}}$ (SVM).

$$\mathcal{L}(\mathbf{w}, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m (\mathbf{x_n}^\mathsf{T} \mathbf{x_m}).$$

The ${\bf w}$ is the linear decision boundary and α is a vector of Lagrange multipliers.

Curse of Dimensionality

Consider solving the above problem with *support vector machine* (SVM).

$$\mathcal{L}(\mathbf{w}, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m (\mathbf{x_n}^\mathsf{T} \mathbf{x_m}).$$

The ${\bf w}$ is the linear decision boundary and α is a vector of Lagrange multipliers.

We need to use lifting function $\phi(X)$ to make the samples linearly separable. Specifically, we replace $(\mathbf{x_n}^\mathsf{T}\mathbf{x_m})$ with $(\phi(\mathbf{x_n})^\mathsf{T}\phi(\mathbf{x_m}))$.

$$\phi(\mathbf{x_n})^{\mathsf{T}}\phi(\mathbf{x_m}) = \left[x_{n,1}^2 \ x_{n,2}^2 \ \sqrt{2}x_{n,1}x_{n,2}\right] \left[x_{m,1}^2 \ x_{m,2}^2 \ \sqrt{2}x_{m,1}x_{m,2}\right]^{\mathsf{T}}$$
$$= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1}x_{n,2}x_{m,1}x_{m,2}$$

Curse of Dimensionality

Consider solving the above problem with $support\ vector\ machine\ (SVM).$

$$\mathcal{L}(\mathbf{w}, \alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m (\mathbf{x_n}^\mathsf{T} \mathbf{x_m}).$$

The ${\bf w}$ is the linear decision boundary and α is a vector of Lagrange multipliers.

We need to use lifting function $\phi(X)$ to make the samples linearly separable. Specifically, we replace $(\mathbf{x_n}^\mathsf{T}\mathbf{x_m})$ with $(\phi(\mathbf{x_n})^\mathsf{T}\phi(\mathbf{x_m}))$.

$$\phi(\mathbf{x_n})^{\mathsf{T}}\phi(\mathbf{x_m}) = \left[x_{n,1}^2 \ x_{n,2}^2 \ \sqrt{2}x_{n,1}x_{n,2}\right] \left[x_{m,1}^2 \ x_{m,2}^2 \ \sqrt{2}x_{m,1}x_{m,2}\right]^{\mathsf{T}}$$
$$= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1}x_{n,2}x_{m,1}x_{m,2}$$

Calculate the inner product in the \mathbb{R}^3 across all N pairs of samples is acceptable. However, the lifting function $\phi(X)$ is usually very high dimensional.

ai Rutgers

Kernel Trick

Consider the following derivation,

$$(\mathbf{x_n}^\mathsf{T} \mathbf{x_m})^2 = ([x_{n,1} \ x_{n,2}][x_{m,1} \ x_{m,2}]^\mathsf{T})^2$$

$$= (x_{n,1} x_{m,1} + x_{n,2} x_{m,2})^2$$

$$= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1} x_{n,2} x_{m,1} x_{m,2}$$

$$= \phi(\mathbf{x_n})^\mathsf{T} \phi(\mathbf{x_m})$$

Kernel Trick

Consider the following derivation,

$$(\mathbf{x_n}^\mathsf{T} \mathbf{x_m})^2 = ([x_{n,1} \ x_{n,2}][x_{m,1} \ x_{m,2}]^\mathsf{T})^2$$

$$= (x_{n,1} x_{m,1} + x_{n,2} x_{m,2})^2$$

$$= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1} x_{n,2} x_{m,1} x_{m,2}$$

$$= \phi(\mathbf{x_n})^\mathsf{T} \phi(\mathbf{x_m})$$

Instead of computing inner product in the high dimensional space, we compute the inner product in the original space.

Kernel Trick

Consider the following derivation,

$$(\mathbf{x_n}^\mathsf{T} \mathbf{x_m})^2 = ([x_{n,1} \ x_{n,2}][x_{m,1} \ x_{m,2}]^\mathsf{T})^2$$

$$= (x_{n,1} x_{m,1} + x_{n,2} x_{m,2})^2$$

$$= x_{n,1}^2 x_{m,1}^2 + x_{n,2}^2 x_{m,2}^2 + 2x_{n,1} x_{n,2} x_{m,1} x_{m,2}$$

$$= \phi(\mathbf{x_n})^\mathsf{T} \phi(\mathbf{x_m})$$

Instead of computing inner product in the high dimensional space, we compute the inner product in the original space.

The function

$$K(\mathbf{x_n}, \mathbf{x_m}) = (\mathbf{x_n}^\mathsf{T} \mathbf{x_m})^2 = \phi(\mathbf{x_n})^\mathsf{T} \phi(\mathbf{x_m})$$

is called a kernel function.

There must be disadvantages. . .

Given training data $(\mathbf{x_1}, y_1), (\mathbf{x_2}, y_2), \dots, (\mathbf{x_N}, y_N) \in \mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} \subseteq \mathbb{R}$. Consider Kernel Ridge Regression (KRR), with $\phi(\mathcal{X}) \subseteq \mathbb{R}^k$, where $k \to \infty$

$$\mathcal{L}(\mathbf{w}, \lambda) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n}^{N} (y_n - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))^2 + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$

Solving it with Lagrange multipliers α , which is the solution of

$$(\mathbf{K} + \lambda \mathbf{I}_k)\alpha = \mathbf{y},$$

requires $\Theta(k^3)$ time and $\Theta(k^2)$ memory. Here $\mathbf{K} \in \mathbb{R}^{k \times k}$ is the kernel matrix or Gram matrix defined by $\mathbf{K}_{nm} \equiv K(\mathbf{x_n}, \mathbf{x_m})$.

There must be disadvantages. . .

Given training data $(\mathbf{x_1},y_1), (\mathbf{x_2},y_2), \ldots, (\mathbf{x_N},y_N) \in \mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} \subseteq \mathbb{R}$. Consider Kernel Ridge Regression (KRR), with $\phi(\mathcal{X}) \subseteq \mathbb{R}^k$, where $k \to \infty$

$$\mathcal{L}(\mathbf{w}, \lambda) = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n}^{N} (y_n - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}_n))^2 + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}.$$

Solving it with Lagrange multipliers α , which is the solution of

$$(\mathbf{K} + \lambda \mathbf{I}_k)\alpha = \mathbf{y},$$

requires $\Theta(k^3)$ time and $\Theta(k^2)$ memory. Here $\mathbf{K} \in \mathbb{R}^{k \times k}$ is the kernel matrix or Gram matrix defined by $\mathbf{K}_{nm} \equiv K(\mathbf{x_n}, \mathbf{x_m})$.

Intuition: Can we find a kernel function which lifts \mathcal{X} to \mathbb{R}^s , where $d < s \ll k$, while not sacrifices model performance?

4 D > 4 D > 4 E > 4 E > E 990

Some Prerequisites

Shift Invariant Kernel (Radial Basis Function (RBF))

A kernel function $K(\mathbf{x_n}, \mathbf{x_m})$ is called **shift invariant** if it can be written as $K(\mathbf{x_n}, \mathbf{x_m}) = g(\mathbf{x_n} - \mathbf{x_m})$ for some function $g(\cdot)$ (e.g. $K_{Gaussian}(\mathbf{x_n}, \mathbf{x_m}) = \exp(-\gamma ||\mathbf{x_n} - \mathbf{x_m}||_2^2)$).

Mercer's Theorem

A continuous function $K(\mathbf{x_n}, \mathbf{x_m})$ is a valid kernel function if and only if the kernel matrix K is positive semi-definite.

Bochner's Theorem

A continuous function $g(\cdot)$ is **positive semi-definite** if and only if it is the Fourier transform of a non-negative measure.

Conclusion

A continuous **shift invariant** kernel $K(\mathbf{x_n}, \mathbf{x_m})$, which is **positive semi-definite** (Mercer's Theorem), is the Fourier transform of a non-negative measure $p(\cdot)$.

$$\phi(\mathbf{x_n})^{\mathsf{T}}\phi(\mathbf{x_m}) = K(\mathbf{x_n}, \mathbf{x_m}) = K(\mathbf{x_n} - \mathbf{x_m})$$
(1)

$$= \int_{\mathbb{R}^d} p(\omega) \exp(i\omega^{\mathsf{T}}(\mathbf{x_n} - \mathbf{x_m})) d\omega$$
 (2)

$$= \mathbb{E}_{\omega}[\xi_{\omega}(\mathbf{x_n})^* \xi_{\omega}(\mathbf{x_m})] \tag{3}$$

Here $\xi_{\omega}(\mathbf{x}) = \exp(i\omega^{\mathsf{T}}\mathbf{x}) = \begin{bmatrix} \cos(\omega^{\mathsf{T}}\mathbf{x}) \\ \sin(\omega^{\mathsf{T}}\mathbf{x}) \end{bmatrix}$ and hence $\xi_{\omega}(\mathbf{x_n})^*\xi_{\omega}(\mathbf{x_m})$ is an unbiased estimator of $K(\mathbf{x_n}, \mathbf{x_m})$ when ω is drawn from $p(\cdot)$.

Since both the $p(\cdot)$ and $K(\triangle)$ are real-valued, we can replace $\xi_{\omega}(\mathbf{x})$ with $z_{\omega}(\mathbf{x}) = [\sqrt{2}\cos(\omega^{\mathsf{T}}\mathbf{x} + b)]$ where ω is drawn from $p(\omega)$ and b is uniformly drawn from $[0, 2\pi]$. Then eq. (3) becomes $\mathbb{E}_{\omega}[z_{\omega}(\mathbf{x_n})^{\mathsf{T}}z_{\omega}(\mathbf{x_m})]$

Since both the $p(\cdot)$ and $K(\triangle)$ are real-valued, we can replace $\xi_{\omega}(\mathbf{x})$ with $z_{\omega}(\mathbf{x}) = [\sqrt{2}\cos(\omega^{\mathsf{T}}\mathbf{x} + b)]$ where ω is drawn from $p(\omega)$ and b is uniformly drawn from $[0, 2\pi]$. Then eq. (3) becomes $\mathbb{E}_{\omega}[z_{\omega}(\mathbf{x_n})^{\mathsf{T}}z_{\omega}(\mathbf{x_m})]$

Note: $z_{\omega}(\mathbf{x_n})^{\mathsf{T}} z_{\omega}(\mathbf{x_m})$ is an unbiased estimator of $\phi(\mathbf{x_n})^{\mathsf{T}} \phi(\mathbf{x_m})$. The $z_{\omega}(\mathbf{x})$ is not a lifting function.

Since both the $p(\cdot)$ and $K(\triangle)$ are real-valued, we can replace $\xi_{\omega}(\mathbf{x})$ with $z_{\omega}(\mathbf{x}) = [\sqrt{2}\cos(\omega^{\mathsf{T}}\mathbf{x} + b)]$ where ω is drawn from $p(\omega)$ and b is uniformly drawn from $[0, 2\pi]$. Then eq. (3) becomes $\mathbb{E}_{\omega}[z_{\omega}(\mathbf{x_n})^{\mathsf{T}}z_{\omega}(\mathbf{x_n})]$

Note: $z_{\omega}(\mathbf{x_n})^{\mathsf{T}} z_{\omega}(\mathbf{x_m})$ is an unbiased estimator of $\phi(\mathbf{x_n})^{\mathsf{T}} \phi(\mathbf{x_m})$. The $z_{\omega}(\mathbf{x})$ is not a lifting function.

Note: To further reduce the variance of the estimator, we can randomly draw s samples of ω and normalize each corresponding $z_{\omega}(\mathbf{x})$ by \sqrt{s} . Then the inner product $z(\mathbf{x_n})^{\mathsf{T}}z(\mathbf{x_m}) = \frac{1}{s}\sum_{j=1}^s z_{\omega j}(\mathbf{x_n})^{\mathsf{T}}z_{\omega j}(\mathbf{x_m})$

Algorithm

Algorithm 1 Random Fourier Features

Require: A shift invariant kernel $K(\mathbf{x_n}, \mathbf{x_m}) = K(\mathbf{x_n} - \mathbf{x_m})$.

Ensure: A randomized feature map $z(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}^s$ so that $z(\mathbf{x_n})^\mathsf{T} z(\mathbf{x_m}) \approx K(\mathbf{x_n}, \mathbf{x_m}).$

Compute the Fourier transform $p(\cdot)$ of the kernel $K: p(\omega) =$ $\frac{1}{2\pi}\int \exp(-i\omega^{\mathsf{T}}\triangle)K(\triangle)\,\mathrm{d}\triangle$

Draw s i.i.d. samples $\omega_1, \omega_2, \dots, \omega_s \in \mathbb{R}^d$ from $p(\cdot)$ and s i.i.d. samples $b_1, b_2, \ldots, b_s \in [0, 2\pi]$.

Let $z(\mathbf{x}) \equiv \sqrt{\frac{2}{s}} [\cos(\omega_1^\mathsf{T} \mathbf{x} + b_1) \cos(\omega_2^\mathsf{T} \mathbf{x} + b_2) \dots \cos(\omega_s^\mathsf{T} \mathbf{x} + b_s)]^\mathsf{T}$

Convergence

Bound for a *fixed* pair of samples x_n and x_m

Given z_ω is bounded random variable between $[-\sqrt{2},\sqrt{2}]\text{, with Hoeffding's Inequality, we have$

$$\mathbb{P}(|z(\mathbf{x_n})^\mathsf{T} z(\mathbf{x_m}) - K(\mathbf{x_n}, \mathbf{x_m})| \ge \epsilon) \le 2\exp\left(-\frac{s\epsilon^2}{4}\right).$$

Convergence

Bound for all pair of samples $\mathbf{x_n}$ and $\mathbf{x_m}$

Let $\mathcal M$ be a compact sunset of $\mathbb R^d$ with diameter $\mathrm{diam}(\mathcal M)$. Then, for the mapping z defined in Algorithm 1, we have

$$\mathbb{P}\left(\sup_{x,y\in\mathcal{M}}|z(\mathbf{x_n})^\mathsf{T}z(\mathbf{x_m}) - K(\mathbf{x_n},\mathbf{x_m})| \ge \epsilon\right)$$

$$\le 2^8 \left(\frac{\sigma_{p(\cdot)}\mathsf{diam}(\mathcal{M})}{\epsilon}\right)^2 \exp\left(-\frac{s\epsilon^2}{4(d+2)}\right).$$

Common RFF

$$\begin{array}{c|cccc} \text{Kernel} & K(\triangle) & p(\omega) \\ \hline \text{Gaussian} & \exp(-\gamma\|\triangle\|_2^2) & (2\pi)^{-\frac{s}{2}}\exp{-\gamma\|\omega\|_2^2} \\ \text{Laplacian} & \exp(-\|\triangle\|_1) & \prod_d (\pi(1+\omega_d^2))^{-1} \\ \hline \text{Cauchy} & \prod_1 2(1+\Delta_d^2)^{-1} & \exp(-\|\triangle\|_1)(?) \end{array}$$

The challenge that RFF faces in the learning regime

Consider a machine learning system with d parameters, trained on a dataset of size N, asymptotic analysis has

Classical regime: either focuses on the (statistical) population $N \to \infty$ limit, for d fixed, or the over-parameterized $d \to \infty$ limit, for a given N.

Modern regime: modern learning system (e.g. Neural Network) usually has model complexity and data size increase together. A double asymptotic regime where $N,d\to\infty,d/N\to c$ is established.

RFF has been shown that entry-wise the Gram matrix $\xi(\mathbf{x})$ converges to the Gaussian kernel matrix as $s \to \infty$ and this property remains in modern regime.

However, the convergence $\|\mathbf{\Xi}^T\mathbf{\Xi}/s - \mathbf{K}\| \to 0$ no longer holds in spectral norm (blow-up). Here $\mathbf{\Xi}$ is the matrix formed by stacking $\xi(\mathbf{x})$ for all samples.

Setup

$$0 < \lim \inf_{N} \min \left\{ \frac{s}{N}, \frac{d}{N} \right\} \le \lim \sup_{N} \max \left\{ \frac{s}{N}, \frac{d}{N} \right\} < \infty.$$

$$\limsup_{N} \|\mathbf{X}\|_{2} < \infty \qquad \limsup_{N} \|\mathbf{y}\|_{\infty} < \infty$$

In classical regime
$$\|\mathbf{\Xi}^T\mathbf{\Xi}/s\| \equiv \mathbf{K} \equiv \mathbf{K}_{\cos} + \mathbf{K}_{\sin}$$

Training MSE: $\mathcal{L}_{train} = \frac{1}{N} \|\mathbf{y} - \mathbf{\Xi}^\mathsf{T} \mathbf{w}\|_2^2 = \frac{\lambda^2}{N} \|\mathbf{Q}(\lambda)\mathbf{y}\|_2^2$ where

$$\mathbf{Q}(\lambda) \equiv \left(rac{1}{N}\mathbf{\Xi}^{\mathsf{T}}\mathbf{\Xi} + \lambda\mathbf{I}_{N}
ight)^{-1}$$

We want to assess the asymptotic \mathcal{L}_{train} by expectation which is equivalent to assess the asymptotic $\mathbb{E}_{\Omega}\{\mathbf{Q}(\lambda)\}$ where Ω is the matrix form of ω , which is numerically hard.

Object: Find an asymptotic "alternative" for $\mathbb{E}_{\Omega}\{\mathbf{Q}(\lambda)\}$ when $d, s, N \to \infty$.

Some Vague Idea from me...

We want to show that with consideration of d, s, N

$$\begin{split} &\|\mathbb{E}_{\mathbf{\Omega}}\{\mathbf{Q}(\lambda)\} - \hat{\mathbf{Q}}(\lambda)\|_2 \to 0 \\ &\hat{\mathbf{Q}}(\lambda) \equiv \left(\frac{s}{N} \left(\frac{\mathbf{K}_{\cos}}{1 + \delta_{\cos}} + \frac{\mathbf{K}_{\sin}}{1 + \delta_{\sin}}\right) + \lambda \mathbf{I}_N\right)^{-1} \\ &\delta_{\cos} = \frac{1}{N} \operatorname{tr} \left(\mathbf{K}_{\cos} \hat{\mathbf{Q}}\right) \qquad \delta_{\sin} = \frac{1}{N} \operatorname{tr} \left(\mathbf{K}_{\sin} \hat{\mathbf{Q}}\right) \end{split}$$

When $\frac{s}{N} \to \infty$, $\delta_{\cos}, \delta_{\sin} \to 0$ and thus $\mathbf{\hat{Q}} \simeq \left(\frac{s}{N}\mathbf{K}\right)^{-1}$