

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ОЕМА 1^о

Να λυθούν οι παρακάτω εξισώσεις:

$$\alpha) - \frac{x-1}{8} + \frac{3 \cdot (x+2)}{4} = 2x + \frac{2-x}{4}$$

$$\beta) \frac{x+2}{3} - \frac{1-2x}{2} = \frac{x}{6} - 1$$

$$\beta) \frac{x+2}{3} - \frac{1-2x}{2} = \frac{x}{6} - 1$$

$$y) \frac{3x-1}{2} - \frac{5(x-1)}{4} = \frac{7x+1}{8}$$

$$\delta) \frac{3x-1}{3} - \frac{5(x-2)}{12} = \frac{x+6}{4}$$

ΘΕΜΑ 2⁰

Δίνεται η συνάρτηση $y = -2x - \beta$ με τον παρακάτω πίνακα τιμών.

Х	-1	0		
у	-4		3	0

- **1)** Να δείξετε ότι: $\beta = 6$
- 2) Να συμπληρωθεί ο παραπάνω πίνακας τιμών. (να δικαιολογήσετε την απάντησή σας)
- 3) Χρησιμοποιώντας τον παραπάνω πίνακα τιμών να σχεδιάσετε πρόχειρα την γραφική παράσταση της συνάρτησης σε ένα ορθοκανονικό σύστημα αξόνων.

ОЕМА 3^о

- **1)** Να λυθεί αλγεβρικά η εξίσωση: $\frac{x-1}{2} + \frac{3x-5}{4} = \frac{5 \cdot (x+1)}{2} 3$.
- 2) Av $x_{o}=-1$ η λύση της παραπάνω εξίσωσης και $\left(arepsilon
 ight)$ η ευθεία με εξίσωση: $y = 2 \cdot x_o \cdot x + 5$ η οποία διέρχεται από το σημείο $\Sigma(\alpha - 1, 2\alpha - 5)$ τότε:
 - i. Να βρεθεί η κλίση της ευθείας (ε) .
 - ii. Οι συντεταγμένες του σημείο Σ.
 - Να σχεδιάσετε την ευθεία (ε) αφού βρείτε τα σημεία τομής της με iii. τους άξονες.

ΘΕΜΑ 4⁰

Δίνεται η συνάρτηση $y = \frac{2}{3}x + \beta$, της οποίας η γραφική παράσταση είναι ως γνωστό ευθεία γραμμή (ε) .

i. Ποια είναι η κλίση της ευθείας (ε) ;

ii. Αν η ευθεία (ε) διέρχεται από το σημείο $\Sigma(-3,2)$, να βρείτε το β.

iii. Αν $\beta = 4$ να συμπληρώσετε τον πίνακα τιμών της συνάρτησης:

х	-6		9
у		12	

<u>ΘΕΜΑ 5⁰</u>

1) Δίνεται ο αριθμός $\alpha = \left(\sqrt{81} - \sqrt{25}\right)^2 : \left(\sqrt{\sqrt{100} - \sqrt{36}}\right)$. Να υπολογίσετε την τιμή του.

$$\frac{x+3}{\alpha} - 2 = \frac{x - (\alpha - 3)}{2} - \frac{x-1}{4}$$

ӨЕМА 6^о

Αν $\alpha = \sqrt{\frac{\sqrt{81}}{3}} + 1 + 3$, $\beta = \sqrt{\frac{3 \cdot \sqrt{16}}{2}} + 3 + \sqrt{81}$ και $\gamma = \sqrt{5 + \sqrt{9 + \sqrt{49}}} + \sqrt{100}$ είναι μήκη πλευρών τριγώνου, να δείξετε ότι αυτό το τρίγωνο είναι ορθογώνιο.

ΘΕΜΑ 7⁰

Δίνεται η συνάρτηση $y=-3x+\beta$ όπου η γραφική της παράσταση είναι ευθεία γραμμή η οποία διέρχεται από το σημείο $\Sigma(\beta-1,-5)$.

Να βρεθεί η κλίση της ευθείας.

ii. Να δείξετε ότι $\beta = 4$ και να προσδιορίσετε το σημείο Σ.

iii. Να συμπληρώσετε τον πίνακα τιμών της συνάρτησης:

х	$-\sqrt{25}$		$3 \cdot \sqrt{2 \cdot \sqrt{64}}$
у		13	

<u>ΘΕΜΑ 8⁰</u>

Δίνεται η συνάρτηση $y = (2\beta - 1) \cdot x + \beta$ όπου η γραφική της παράσταση είναι ευθεία γραμμή η οποία διέρχεται από το σημείο $\Sigma(-2,6-\beta)$.

- **i.** Να βρεθεί η κλίση της ευθείας.
- **ii.** Να δείξετε ότι $\beta = -2$ και να προσδιορίσετε το σημείο Σ.
- iii. Να συμπληρώσετε τον πίνακα τιμών της συνάρτησης.

х	-1		$2\cdot\sqrt{9-\sqrt{25}}$
у		$-\sqrt{\sqrt{81}}$	

<u> ӨЕМА 9^о</u>

Δίνεται η συνάρτηση $y = -\frac{3}{4} \cdot x + \beta$ της οποίας η γραφική παράσταση είναι η ευθεία του παρακάτω σχήματος. Η ευθεία διέρχεται από το σημείο $\Sigma(-4,6)$.

- i. Να δείξετε ότι $\beta = 3$.
- ii. Να συμπληρώσετε τον παρακάτω πίνακα τιμών της συνάρτησης στο γραπτό σας δικαιολογώντας την απάντηση σας:

х	0	8		
у			-3	0

iii. Να υπολογίσετε τους τριγωνομετρικούς αριθμούς της γωνίας $OAB = \omega$.

ΘΕΜΑ 10⁰

Δίνεται ο αριθμός:

$$\alpha = \sqrt{12 - \left(7 - \sqrt{25}\right)} \cdot \sqrt{7 + \sqrt{81}}$$

- **1)** Να αποδείξετε ότι $\alpha = 10$.
- 2) Να λύσετε την εξίσωση:

$$\frac{2x+30\alpha^{-1}}{10} - \frac{x-2}{\sqrt{\sqrt{\alpha+6}}} = -\frac{x-\sqrt{\alpha-\alpha^0}}{5}$$

<u>ΘΕΜΑ 11⁰</u>

Η ευθεία ε_1 διέρχεται από την αρχή των αξόνων και από το σημείο M(-3,6) . Η ευθεία ε_2 είναι παράλληλη στην ευθεία ε_1 και διέρχεται από το σημείο N(5,-6) .

- **1)** Να βρείτε την κλίση της ευθείας ε_1 .
- **2)** Να γράψετε την εξίσωση της ευθείας ε_2 .
- **3)** Να βρείτε τα σημεία τομής Α και Β της ευθείας ε_2 με τους άξονες y'y και x'x.
- **4)** Να βρείτε το σημείο Γ της ευθείας ε_2 που έχει τετμημένη 3.
- **5)** Να βρείτε το σημείο Δ της ευθείας ε_2 που έχει τεταγμένη 6.
- 6) Να σχεδιάσετε τις ευθείες ε_1 και ε_2 στο ίδιο σύστημα αξόνων.

ΘΕΜΑ 12⁰

Η παρακάτω εξίσωση:

$$\left(4 - \frac{1 - \kappa}{8} + \frac{2\kappa - 3}{4}\right) \cdot x = 4\lambda - 2\left[\lambda + 1 - 2\left(5 - \lambda\right)\right]$$

Είναι ταυτότητα. Να βρείτε:

- 1) Τους αριθμούς κ και λ.
- 2) Τους ακέραιους αριθμούς γ για τους οποίους ισχύει:

$$\kappa < 3[2(y+1)-(y+4)]-(y-9) < \lambda$$

ΘΕΜΑ 13⁰

Εξετάσαμε 40 οικογένειες ως προς τον αριθμό των αυτοκινήτων που διαθέτουν. Ορισμένα από τα αποτελέσματα που προέκυψαν φαίνονται στον παρακάτω πίνακα. Επίσης γνωρίζουμε ότι οι οικογένειες που έχουν 2 αυτοκίνητα είναι τριπλάσιες από τις οικογένειες που έχουν 3 αυτοκίνητα.

Αριθμός Αυτοκινήτων	Αριθμός Οικογενειών
0	8
1	16
2	
3	
Σύνολο	40

- 1) Να συμπληρώσετε τον παραπάνω πίνακα.
- 2) Να παρουσιάσετε τα δεδομένα του πίνακα:
 - Με ένα ραβδόγραμμα.
- 3) Να βρείτε το ποσοστό % των οικογενειών που έχουν:
 - **i.** Τουλάχιστον 2 αυτοκίνητα.
 - **ii.** Το πολύ 2 αυτοκίνητα.

ΘЕМА 14^о

Οι παρακάτω εξισώσεις:

$$2[13-4(1-x)]=12-3[4-2(x+1)]$$
 (1) KQL $\frac{x+3\alpha}{6}+\frac{1}{2}-x=6+\alpha-\frac{x}{12}$ (2)

έχουν κοινή λύση.

- 1) Να λύσετε την εξίσωση (1).
- **2)** Να αποδείξετε ότι $\alpha = -2$.
- 3) Να υπολογίσετε την τιμή της παράστασης:

$$A = \left(\sqrt{27} + \sqrt{\alpha^2 - \alpha^3}\right) \cdot \sqrt{\alpha^0 + \sqrt{\alpha^2}}$$

ΘΕΜΑ 15⁰

Οι βαθμοί 8 μαθητών στο πρώτο τετράμηνο στα Μαθηματικά είναι:

18, 10, 16, 14, 10, 20,
$$\alpha$$
, 2 α

Η μέση τιμή των βαθμών αυτών είναι 14.

- **1)** Να αποδείξετε ότι $\alpha = 8$.
- 2) Να βρείτε τη διάμεσο των παραπάνω βαθμών.
- 3) Στο δεύτερο τετράμηνο όσοι βαθμοί ήταν μεγαλύτεροι από τη διάμεσο έμειναν ίδιοι και όσοι ήταν μικρότεροι από τη διάμεσο αυξήθηκαν κατά 2 βαθμούς. Να υπολογίσετε τη μέση τιμή των βαθμών του 2^{ου} τετραμήνου.

ΘΕΜΑ 16⁰

Δίνονται οι ανισώσεις:

$$3(x-2)-5[3-x-2(2-x)]>-11$$
 (1) $\kappa\alpha \frac{x}{3}-\frac{x-1}{4}\leq 1+\frac{x+1}{2}$ (2)

- 1) Να βρείτε τις κοινές λύσεις των ανισώσεων (1) και (2).
- 2) Αν ο αριθμός α ισούται με τη μεγαλύτερη ακέραια κοινή λύση των ανισώσεων (1) και (2), να λύσετε τις παρακάτω εξισώσεις:

i.
$$-\frac{x+1}{\sqrt{\alpha}} - \frac{3x-1}{\alpha} = 1$$

ii.
$$\alpha(x+3) = \alpha^2 - \sqrt{\alpha} \cdot [5-(2x-3)]$$

iii.
$$\alpha^{-1} \cdot (2x-1) = \sqrt{\alpha^{-1}} \cdot (x+1) - \frac{3}{4}$$

ΘΕΜΑ 17⁰

Για τον ακέραιο αριθμό α ισχύουν τα εξής:

- Το 8 ελαττωμένο κατά το τριπλάσιο του αριθμού α είναι μικρότερο από τον α.
- Ο αριθμός α είναι μικρότερος από το μισό του αυξημένο κατά 2.
- 1) Να βρείτε τον ακέραιο αριθμό α.
- 2) Να λύσετε την εξίσωση:

$$\alpha^{-1} \cdot x - \frac{x-1}{2} = x - 2 + \frac{\alpha(x-2) + 1}{\alpha^2 - \alpha}$$

<u>ΘΕΜΑ 18⁰</u>

Η ευθεία ε είναι παράλληλη στη διχοτόμο της $\mathbf{1}^{\eta\varsigma}$ και της $\mathbf{3}^{\eta\varsigma}$ γωνίας των αξόνων και τέμνει τον άξονα γ'y στο σημείο με τεταγμένη -1.

- **1)** Να βρείτε την εξίσωση της ευθείας ε .
- **2)** Να βρείτε το σημείο Α της ε που έχει τετμημένη 4 και το σημείο Β της ε που έχει τεταγμένη 8.
- **3)** Δίνεται και το σημείο $\Gamma(\lambda+2,13-\lambda)$, του οποίου η τεταγμένη ισούται με τα $\frac{3}{2}$ της τετμημένης.
 - i. Να βρείτε τις συντεταγμένες του σημείου Γ.
 - **ii.** Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ορθογώνιο.
 - **iii.** Να υπολογίσετε το εμβαδόν του τριγώνου ABΓ.

ΘΕΜΑ 19⁰

Στο παρακάτω σχήμα η ευθεία ε τέμνει τον άξονα y'y στο σημείο B με τεταγμένη 3 και διέρχεται από το σημείο $\Gamma(2,5)$.

- **1)** Να αποδείξετε ότι η εξίσωση της ευθείας είναι y = x + 3.
- 2) Να βρείτε τις συντεταγμένες του σημείου Α και την απόσταση ΑΒ.
- 3) Να υπολογίσετε το ημίτονο της γωνίας ΟΑΒ.
- 4) Να υπολογίσετε το εμβαδόν του τριγώνου ΟΒΓ.
- 5) Το σημείο $M\left(\frac{1-7\lambda}{10},\frac{\lambda+2}{5}\right)$ ανήκει στην ευθεία ε.
 - i. Να αποδείξετε ότι $\lambda = 3$.
 - ii. Να υπολογίσετε το μήκος του ευθύγραμμου τμήματος ΜΓ και να γράψετε την απάντηση σας στη μορφή $\kappa\sqrt{2}$, όπου κ φυσικός αριθμός.

ΘΕΜΑ 20⁰

Δίνεται ευθεία με εξίσωση:

$$\mu x - (\mu - 1) y = 12$$

η οποία διέρχεται από το σημείο K(6,4).

- **1)** Να αποδείξετε ότι $\mu = 4$.
- 2) Να βρείτε τα σημείο τομής Α και Β της παραπάνω ευθείας με τους άξονες x'x και y'y αντίστοιχα.
- 3) Να βρείτε την απόσταση των παραπάνω σημείων Α και Β.
- 4) Να σχεδιάσετε την ευθεία σε ένα διάστημα ορθογωνίων αξόνων.
- 5) Να βρείτε την κλίση της ευθείας.

<u>ΘΕΜΑ 21⁰</u>

1) Να λύσετε την εξίσωση:

$$\frac{2(\lambda - 1)}{5} - \frac{\lambda - 4}{15} = -1 - \frac{\lambda}{10}$$

2) Να λύσετε τις ανισώσεις:

•
$$\frac{19}{21} - \frac{x-3}{3} \ge 1 - \frac{x-1}{7}$$
 (1)

•
$$4x - (5 - 6x) \le 3 \lceil 3(2x + 3) - 4(1 - x) \rceil$$
 (2)

- **3)** Δίνεται η συνάρτηση $y = \lambda x + \lambda^2$, όπου λ η λύση της εξίσωσης του ερωτήματος **(1).**
 - i. Να σχεδιάσετε τη γραφική παράσταση της παραπάνω συνάρτησης για τις τιμές του x που είναι κοινές λύσεις των ανισώσεων (1) και (2) του ερωτήματος (2).
 - ii. Αν η παραπάνω συνάρτηση τέμνει τους άξονες x'x και y'y στα σημείαΑ και Β αντίστοιχα, να υπολογίσετε το εμβαδόν του τριγώνου ΟΑΒ.

ΘΕΜΑ 22⁰

Δίνεται η ευθεία ε με εξίσωση $y = \alpha x + 6 - \alpha$, η οποία διέρχεται από το σημείο M(-5,-6). Η ευθεία ε τέμνει τον άξονα x'x στο σημείο A και τον άξονα y'y στο σημείο A.

- **1)** Να αποδείξετε ότι $\alpha = 2$.
- 2) Να βρείτε τα σημεία Α και Β.
- 3) Να σχεδιάσετε την ευθεία ε σε ένα ορθοκανονικό σύστημα συντεταγμένων.
- **4)** Να υπολογίσετε το εμβαδόν του τριγώνου ΟΑΒ, όπου Ο είναι η αρχή των αξόνων.
- **5)** Να υπολογίσετε το εμβαδόν του κύκλου που έχει διάμετρο το ευθύγραμμο τμήμα AB.

ΘΕΜΑ 23^O

Σε ένα χαρτοπωλείο ένας μαρκαδόρος κοστίζει κατά 1 ευρώ περισσότερο από ένα στιλό. Ο Μιχάλης είχε 16 ευρώ και ο Μανώλης είχε 17 ευρώ. Ο Μιχάλης αγόρασε 3 στιλό και ο Μανώλης αγόρασε 4 μαρκαδόρους. Τώρα ο Μιχάλης έχει διπλάσια χρήματα από τον Μανώλη. Να βρείτε πόσο κοστίζει ένα στιλό και πόσο κοστίζει ένας μαρκαδόρος.

ΘΕΜΑ 24⁰

Μία ευθεία ε διέρχεται από την αρχή των αξόνων και από το σημείο A(2,-6).

- 1. Να βρείτε την εξίσωση της ευθείας ε και να σχεδιάσετε την ευθεία αυτή σε ένα ορθογώνιο σύστημα συντεταγμένων.
- 2. Να βρείτε το σημείο Β της ευθείας ε που έχει τεταγμένη 3.
- 3. Να βρείτε το συμμετρικό του παραπάνω σημείου Β ως προς:
 - **i.** Τον άξονα x'x.
 - **ii.** Τον άξονα y'y.
 - **iii.** Την αρχή των αξόνων Ο.
- **4.** Αν α είναι η κλίση της ευθείας ε, να λύσετε την εξίσωση:

$$(-2)^{\alpha} \cdot \left[\frac{5-x}{\alpha} - \frac{2}{5} (7-x) + x - \alpha \right] = \frac{x+\alpha}{4}$$

<u>ΘΕΜΑ 25⁰</u>

Στο παρακάτω σχήμα το ΑΒΓΔ είναι παραλληλόγραμμο με $\Gamma\Delta=13cm$ και $A\Delta=26cm$. Τα ΑΚ και ΑΛ είναι ύψη του παραλληλογράμμου ΑΒΓΔ και ισχύει ότι $\eta\mu\hat{\Delta}=\frac{12}{13}$.

- 1) Να βρείτε το ΑΛ και να υπολογίσετε το εμβαδόν του παραλληλογράμμου ΑΒΓΔ.
- 2) Να βρείτε τα ΔΛ και ΛΓ.
- **3)** Να βρείτε το ύψος ΑΚ.
- 4) Να βρείτε τα ΒΚ και ΚΓ.
- **5)** Αν Μ είναι το μέσο της διαγωνίου ΑΓ, να υπολογίσετε το εμβαδόν του τριγώνου ΑΜΒ.

ΘΕΜΑ 26⁰

Στο παρακάτω σχήμα το τρίγωνο ABΓ είναι ισοσκελές με $AB = A\Gamma = 20cm$. Επίσης για το σημείο Δ της BΓ ισχύει ότι $(A\Gamma\Delta) = 42cm^2$.

- 1) Να βρείτε το ΒΔ.
- 2) Να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ.
- 3) Να βρείτε το ΑΔ.
- 4) Να αποδείξετε ότι το τρίγωνο ΑΒΔ είναι ορθογώνιο.

ΘΕΜΑ 27⁰

Στο παρακάτω τρίγωνο ΑΒΓ είναι ορθογώνιο με $\hat{A}=90^o$, το ΑΔ είναι ύψος του και ισχύει ότι $B\Delta=9cm$ και $\Gamma\Delta=16cm$.

- **1)** Να αποδείξετε ότι $A\Delta = 12cm$ και να υπολογίσετε το εμβαδόν του τριγώνου ABΓ.
- 2) Να υπολογίσετε την περίμετρο του τριγώνου ΑΒΓ.
- 3) Να υπολογίσετε το $\eta\mu\hat{\bf B}$, το $\sigma\upsilon\nu\hat{\bf B}$ και την $\varepsilon\varphi\hat{\bf B}$.

<u>ΘΕΜΑ 28⁰</u>

Στο παρακάτω ορθογώνιο τρίγωνο ΑΒΓ με $\hat{\rm A}=90^o$ και ${\rm B}\Gamma=\sqrt{20}cm$. Επίσης η πλευρά ΑΓ είναι διπλάσια από την πλευρά ΑΒ.

- 1) Να βρείτε τις πλευρές ΑΒ και ΑΓ.
- 2) Να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ.
- **3)** Να αποδείξετε ότι το γινόμενο $\eta \mu \hat{\mathbf{B}} \cdot \sigma \upsilon \nu \hat{\mathbf{B}}$ είναι ρητός αριθμός.

<u>ΘΕΜΑ 29⁰</u>

Δύο ορθογώνια ΑΒΓΔ και ΚΛΜΝ έχουν το ίδιο εμβαδόν. Το ΑΒΓΔ έχει περίμετρο 28 cm και η ΑΒ είναι κατά 2 cm μεγαλύτερη από τη ΒΓ. Επίσης στο ΚΛΜΝ, η ΚΛ είναι τριπλάσια από τη ΛΜ.

- 1) Να βρείτε το μήκος και το πλάτος του ορθογωνίου ΑΒΓΔ.
- 2) Να βρείτε το μήκος και το πλάτος του ορθογωνίου ΚΛΜΝ.
- 3) Να συγκρίνετε τα μήκη των διαγωνίων ΑΓ και ΚΜ.

<u>ΘΕΜΑ 30⁰</u>

Στο παρακάτω σχήμα το ΑΒΓΔ είναι ορθογώνιο. Η περίμετρος του ορθογωνίου ΑΒΓΔ ισούται με (8x+2)cm και η πλευρά ΑΒ ισούται με (3x-1)cm.

- 1) Να εκφράσετε με τη βοήθεια του x το μήκος της πλευράς ΒΓ.
- **2)** Επιπλέον γνωρίζουμε ότι το M είναι το μέσο του ΑΔ, το ΔΜΛΚ είναι τετράγωνο και $\Gamma {\rm K} = 8cm$.
 - i. Να αποδείξετε ότι x = 4.
 - **ii.** Να υπολογίσετε το εμβαδόν του χρωματισμένου χωρίου.
 - **iii.** Να βρείτε το μήκος του ΒΛ.

ΘΕΜΑ 31⁰

Στο παρακάτω σχήμα είναι ${\rm B}\Gamma\Delta=90^{\circ}$, $\Gamma\Delta=2\sqrt{21}cm$ και $\eta\mu\omega=\frac{4}{5}$. Ο κύκλος έχει περίμετρο 10π cm.

- 1) Να βρείτε τη πλευρά ΒΓ.
- 2) Να βρείτε τη πλευρά ΑΔ.
- 3) Να βρείτε το εμβαδόν της χρωματισμένης επιφάνειας.
- 4) Να βρείτε την εφαπτομένη της γωνίας ΑΓΒ.

<u>ΘΕΜΑ 32⁰</u>

Δίνεται ισοσκελές τρίγωνο ABΓ όπου $AB = A\Gamma = 26cm$ και ισχύει ότι:

$$\eta \mu \Gamma = \frac{3\sqrt{\sqrt{25} - \sqrt{9}} \cdot \sqrt{\sqrt{36} + \sqrt{4}}}{\sqrt{38^2} - \sqrt{5}^4}$$

- 1) Να αποδείξετε ότι το ύψος ΑΔ του τριγώνου ΑΒΓ είναι 24 cm.
- 2) Να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ.
- **3)** Να υπολογίσετε την εφΓ.

ΘΕΜΑ 33⁰

Στο παρακάτω σχήμα το ΑΔ είναι ύψος του τριγώνου ΑΒΓ και δίνεται ότι AB=8cm , $A\Gamma=13cm$ και $B=60^{\circ}$.

- 1) Να βρείτε τα μήκη των ΑΔ, ΒΔ και ΓΔ.
- 2) Να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ.
- 3) Να εξετάσετε αν το τρίγωνο ΑΒΓ είναι ορθογώνιο.
- 4) Να λύσετε την παρακάτω εξίσωση:

$$(3x+2) \cdot \sigma \upsilon \nu \Gamma - (x+5) \sqrt{3} \cdot \eta \mu \Gamma = 10$$

<u>ΘΕΜΑ 34⁰</u>

Στο παρακάτω σχήμα το ΑΒΓΔ είναι τραπέζιο και έχει εμβαδόν ίσο με $18cm^2$.

- 1) Να βρείτε το x.
- **2)** Για σημείο Μ της πλευράς ΓΔ ισχύει ότι το εμβαδόν του τριγώνου ΒΓΜ είναι κατά $2cm^2$ μεγαλύτερη από το εμβαδόν του τραπεζίου ΑΒΜΔ. Να υπολογίσετε το μήκος του ΔΜ.

<u>ΘΕΜΑ 35⁰</u>

Στο παρακάτω σχήμα το ABΓΔ είναι τραπέζιο με $AB//\Gamma\Delta$, AB=15cm, $A\Delta=B\Gamma=10cm$ και $B=120^o$.

- **1)** Να αποδείξετε ότι $\Gamma \Delta = 25 cm$ και ότι το ύψος του τραπεζίου είναι $\sqrt{75} cm$.
- 2) Να βρείτε το μήκος της διαγωνίου ΑΓ.
- **3)** Με κέντρο Δ και ακτίνα $A\Delta$ σχεδιάζουμε το τόξο AZ. Να υπολογίσετε το εμβαδόν του χρωματισμένου χωρίο

<u>ΘΕΜΑ 36⁰</u>

Στο παρακάτω σχήμα είναι $BA\Gamma=40^{\circ}$ και τα M, N είναι τα μέσα των τόξων και $A\Gamma$ αντίστοιχα. Να υπολογίσετε πόσες μοίρες είναι το τόξο MAN .

