Contents

Chapter 1: Differential 1	Copology	•												1
Smooth Manifolds					 									1

CHAPTER 1

Differential Topology

Smooth Manifolds

Example 1.1 (*n*-Spheres). Let $n \in \omega$. If n = 0, we have that $\mathbb{S}^0 = \{\pm 1\}$. It is easily seen that \mathbb{S}^0 is a smooth manifold of dimension 0. Let $n \geq 1$. Define $N := e_{n+1}$ and $S := -e_{n+1}$, where e_{n+1} denotes the n+1-th standard basis vector of \mathbb{R}^{n+1} . Moreover, set

$$U_+ := \mathbb{S}^n \setminus S$$
 and $U_- := \mathbb{S}^n \setminus N$.

Then U_+ and U_- are open subsets of \mathbb{S}^n , the upper and lower hemisphere, respectively. Then the functions $\varphi_{\pm}:U_{\pm}\to\mathbb{R}^n$ defined by

$$\varphi_{\pm}(x) := \frac{1}{1 \pm x_{n+1}} (x_1, \dots, x_n),$$

are homeomorphisms. Indeed, one can check that $\psi_\pm:\mathbb{R}^n o U_\pm$ defined by

$$\psi_{\pm}(x) := \left(\frac{2x}{1+|x|^2}, \frac{\pm(1-|x|^2)}{1+|x|^2}\right)$$

is a continuous inverse for φ_+ and φ_- , respectively. We claim that $\{(U_\pm, \varphi_\pm)\}$ is a smooth atlas for \mathbb{S}^n . Clearly, \mathbb{S}^n is covered by the two charts. Next we have to calculate the transition functions $\varphi_\mp \circ \varphi_\pm^{-1} = \varphi_\mp \circ \psi_\pm : \varphi_\pm(U_+ \cap U_-) \to \varphi_\mp(U_+ \cap U_-)$. It is easy to see that $\varphi_\pm(U_+ \cap U_-) = \mathbb{R}^n \setminus \{0\}$ and that

$$\varphi_{\mp} \circ \psi_{\pm} = \frac{x}{|x|^2},$$

which is smooth. Since \mathbb{S}^n is Hausdorff as a metric space and as a subspace of a second countable space, itself second countable, \mathbb{S}^n equipped with the smooth structure induced by the smooth atlas constructed above, is a smooth manifold of dimension n.