A Novel Doubly-Fed Flux-Switching Permanent Magnet Machine With Armature Windings Wound on Both Stator Poles and Rotor Teeth

Hafees Muhammed T

TVE18EE059 S7E2 - 37230

College of Engineering Trivandrum

December 20, 2021

Overview

- Introduction
- Machine Topology
- Operating Principle
- 4 Electromagnetic Performance
- 5 Experimental Validation
- 6 Conclusion
- References

Introduction

- The flux-switching PM (FSPM) machine is a type of stator-PM machines.
- In stator-PM machines, all PM materials are located in the stator while the rotor is simply iron core with salient poles.
- The PM machines exhibit the merits of high efficiency and high torque density.
- The fault-tolerant capability of FSPM machines is of vital importance for the aerospace applications.

Introduction

Figure: Structure of FSPM machine

- In the DF-FSPM machine, armature windings are wound on both stator poles and rotor teeth.
- The machine topology is presented with reference to a 12-stator-pole/10-rotor-tooth DF-FSPM machine.

Machine Topology

Figure: Illustration of machine topologies. (a) Conventional FSPM machine. (b) Presented DF-FSPM machine

Stator-armature Machine Part

Figure: (a) Zero stator coil flux linkage. (b) Positive maximum stator coil flux linkage. (c) Zero stator coil flux linkage. (d) Negative maximum stator coil flux linkage.

Figure: Flux linkage waveform of a single stator coil

Rotor-armature Machine Part

Figure: (a) Zero stator coil flux linkage. (b) Positive maximum stator coil flux linkage. (c) Zero stator coil flux linkage. (d) Negative maximum stator coil flux linkage.

Figure: Flux linkage waveform of a single rotor coil

dq-axis of Stator-armature Machine Part

• The d-axis of the stator-armature machine part is 9 mech. deg. shifted from the midline of the rotor tooth.

Figure: (a) Open-circuit flux distribution, rotor position = 9 mech. deg. (b) dq-axis of stator-armature machine part.

dg-axis of Rotor-armature Machine Part

• The midline of the stator slot is defined as the d-axis of the rotor-armature machine part.

Figure: (a) Open-circuit flux distribution, rotor position = 15 mech. deg. (b) dq-axis of rotor armature machine part.

The fundamental electrical frequency of stator flux linkages	$f_s = N_r n_r / 60$
The fundamental electrical frequency of rotor flux linkages	$f_r = (N_s/2)n_r/60$

Table: Fundamental frequency flux linkages

 N_r - number of rotor teeth N_s - number of stator poles n_r - rotating speed of the rotor

Coil-EMF Vectors

The electrical angular distance between two adjacent stator coils $\alpha_{es}=360^{\circ}.N_r/N_s$

The electrical angular distance between the two adjacent rotor coils $\alpha_{er}=360^{\circ}.(N_s/2)/N_r$

Table: Angular distance between coils

Figure: (a) Stator coil-EMF vectors. (b) Rotor coil-EMF vectors.

Induced Voltage

• The PM-induced stator phase voltages of DF-FSPM and FSPM machines are sinusoidal.

Figure: Phase voltage waveforms of DF-FSPM and FSPM machines.

• In DF-FSPM machines, the stator and rotor armature reaction fluxes are linked by the rotor and stator coils.

Inductance

Figure: Inductances of DF-FSPM and FSPM machines under full load condition. (a) Self-inductance. (b) Mutual inductance.

*L*_{sasa} - stator self-inductance of the DF-FSPM machine

 L_{aa} - stator self-inductance of the FSPM machine

L_{sasb} - stator mutual inductance of the DF-FSPM machine

Lab - stator mutual inductance of the FSPM machine

 L_{sara} - mutual inductance between the stator and rotor phases

Cogging Torque

- It is the torque due to the interaction between the permanent magnets of the stator and the rotor teeth of the PM machine.
- The magnet arc of the optimized DF-FSPM machine is much greater than the FSPM machine.

Figure: Cogging torque of DF-FSPM and FSPM machines.

Torque Capability

• The effective slot area of the DF-FSPM machine is significantly improved by about 66% compared to the FSPM machine.

Parameter	DF-FSPM	FSPM
Average torque (Nm)	4.22	2.88
Average torque per magnet volume (kNm/m³)	245.4	175.8
Peak to peak torque ripple (%)	4.4	3.0

Table: Electromagnetic Torque Comparison Under Full-Load Condition

• The torque ripple is increased due to large cogging torque.

Torque Capability

• Under the fault-tolerant operation, the fault armature winding is cut off and the torque is produced by the healthy armature winding.

Figure: Electromagnetic torque waveforms

```
sta. - statorrot. - rotordua. - dual armature currents supply
```

Torque Capability

 The interaction of stator and rotor armature reaction fields of the DF-FSPM machine can produce electromagnetic torque,

$$T_{sr} = \underbrace{T(I_s = 2.98A, I_r = 1.78A)}_{\text{torque due to armature reaction fields}} - \underbrace{T(I_s = 0A, I_r = 1.78A)}_{\text{rotor reluctance torque}} - \underbrace{T(I_s = 2.98A, I_r = 0A)}_{\text{stator reluctance torque}}$$

- \bullet T_{sr} is zero when the stator and rotor current angles are equal.
- T_{sr} is positive if the stator current angle is larger than the rotor current angle.

Torque Capability

 The maximum total torque of the DF-FSPM machine is achieved when both the stator and rotor current angles are 0 elec. deg.

Figure: Variation of total average torque with stator and rotor current angles of the DF-FSPM machine.

Flux Weakening Capability

- DF-FSPM machine exhibits higher average torque in the constant torque region.
- Flux weakening region of the FSPM machine is wider than that of the DF-FSPM machine.

Figure: Torque-speed characteristics of DF-FSPM and FSPM machines.

 The maximum speeds of DF-FSPM and FSPM machines are 2320 r/min and 6250 r/min, respectively.

Efficiency and Power Factor

	DF-FSPM			FSPM		
Parameter	Stator	Rotor	Total	Stator	Rotor	Total
Core loss (W)	8.0	1.1	1.9	0.9	0.7	1.6
Copper loss (W)	15	9	24	24	0	24
Efficiency (%)	-	-	87.2	-	-	82.5
Power factor	0.95	0.99	-	-	-	0.91

Table: Comparison of Efficiency and Power Factor

- The DF-FSPM machine has higher efficiency benefiting from its increased torque density.
- Both the stator and rotor parts of DF-FSPM exhibits high power factor.

Experimental Validation

Prototype Machine

- A 3-stator-phase/5-rotor-phase and 12-stator-pole/10-rotor-tooth DF-FSPM machine is manufactured.
- A 0.5 mm iron bridge is employed to connect the individual stator iron segments.

Figure: Prototype machine. (a) Machine components. (b) Laminations. (c) Assembled machine.

Experimental Validation

Back EMF

 The measured phase back EMFs are slightly smaller than the two-dimensional (2-D) FE predicted ones.

Figure: Comparison of measured and FE predicted phase back EMF waveforms at 400 r/min.

Experimental Validation

Static Torque

 The measured static torque is obtained by rotating the rotor when the phase currents are constant.

Figure: (a) Only stator current excitation.(b) Only rotor current excitation.(c) Dual excitation.

Conclusion

- A novel DF-FSPM machine was presented, in which the armature windings were wound on the stator poles and rotor teeth.
- The DF-FSPM machine exhibited about 46.5% higher torque density due to better utilization of inner space.
- Its torque per magnet volume was also improved by about 39.6%.
- The efficiency and power factor of the DF-FSPM machine were higher than those of the FSPM machine.

References

- T. Raminosoa, C. Gerada and M. Galea, "Design Considerations for a Fault-Tolerant Flux-Switching Permanent-Magnet Machine," in IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2818-2825, July 2011.
- A. S. Thomas Z. Q. Zhu R. L. Owen G. W. Jewell and D. Howe "Multiphase flux-switching permanent-magnet brushless machine for aerospace application" IEEE Trans. Ind. Appl. vol. 45 no. 6 pp. 1971-1981 Nov./Dec. 2009.

Thank You