HUMOR & SARCASM DETECTION

Presented by
The Anti-Sarcasm Sarcastic Club

MEET THE CLUB

"Boat Boy"

MOPPEL

Grinnell College, `23

JOHN
"LeetCode"
BILLOS
Wake Forest, '24

ALBERT
"Not Geoffrey"

JING

Carleton College, '25

GEOFFREY
"Not Albert"
JING
Carleton College, `25

YUSUF
"Edgy Jokes
Trained the
Model" ISMAIL

Carleton College, `24

PRESENTATION OUTLINE

PRESENTATION OUTLINE (cont.)

DESCRIPTION & MOTIVATION

OUR PROCESS

Evaluate performance of all models on **30K News Headlines** labeled as cleaned dataset and Sarcastic/Humorous determine highest performing model or not MODELING **TUNING DATA EVALUATION** Build suite of different Fine-tune models: Neural hyperparameters of

Networks, kNN, Naive

Bayes, XGBoost, Random Forest, etc. the winning model

OUR MOTIVATION

CHALLENGE

Humor & Sarcasm

Detection is still an
active field of research

OPEN-ENDED

Always room for improvement (ex. text-scraping)

TWIN ID FAILED

Can we design a facial-rec model to distinguish between Geoffrey & Albert?

LEARNING

New modelling and data-transformation techniques

PREVIOUS RELATED WORKS

AI Market Trends

Job Openings, Skills Breakdown (Monster.com) 15k Machine Learning Deep Learning Job Listings 10k Computer Vision Speech Recognition 5k 2017 2015 2016 Year

Communication with Machines

```
Welcome to
                   EEEEEE LL
                                                 ΑΑΑΑΑΑΑ
                   EEEEEE LLLLLL IIII ZZZZZZ
 Eliza is a mock Rogerian psychotherapist.
 The original program was described by Joseph Weizenbaum in 1966.
 This implementation by Norbert Landsteiner 2005.
ELIZA: Is something troubling you ?
YOU: Men are all alike.
ELIZA: What is the connection, do you suppose?
YOU: They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
YOU: Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
YOU: He says I'm depressed much of the time.
ELIZA: I am sorry to hear that you are depressed.
YOU: It's true. I am unhappy.
ELIZA: Can you explain what made you unhappy ?
```


50s-70s

90s

Today

WHY IS NLP HARD?

- 1. Ambiguity
- 2. Scale
- 3. Sparsity
- 4. Variation
- **5.** Expressity
- **6.** Unknown representations

NLP TODAY

Daily News Headlines

8 years from 2008-2016

Dow Jones

Industrial Average(DJIA) Same day close value

University of Georgia

ChatGPT: Optimizing Language Models for Dialogue

TECHNOLOGIES

NAME DESCRIPTION **EXAMPLES** NATURAL Subfield of linguistics, Computer Science and AI concerned with LANGUAGE Speech Recognition, etc. the interactions between **PROCESSING** computers and human language. Convolutional (CNN), Long Artificial network of artificial Short Term Memory (LSTM), **NEURAL NETWORKS** neurons (perceptrons) used for Gated Recurrent Unit (GRU), solving Al problems. etc. Process of transforming data into DATA ENCODING a digestible format for regression N-grams, TF-IDF, etc. (NN) algorithms. ADVANCED ML Advanced regression techniques XGBoost, BERT, Word2Vec, tailored towards NLP problems. etc. ALGORITHMS

DATA CLEANING & PREPROCESSING

HUMOR EXPLAINED

<u>Humor</u>: the capacity to express or perceive what's funny, is both a source of entertainment and a means of coping with difficult or awkward situations and stressful events.

<u>Sarcasm</u>: a type of phenomenon with specific perlocutionary effects on the hearer, such as to break their pattern of expectation.

Correct understanding of humor/sarcasm requires an understanding of the <u>utterance</u>, the <u>conversational</u> <u>context</u>, and, frequently some <u>real-world facts</u>.

DATA ENCODING TECHNIQUES

Bag of Words

TF-IDF

Count Vectorization

Word2Vec

N-Grams

BERT

DATASET

News Headlines Dataset For Sarcasm Detection

High quality dataset for the task of Sarcasm and Fake News Detection

30,000

Observations

(Individual Headlines)

3

Datapoints/Observation

- 1. Headline (string)
- 2. Link to the Article (hyperlink)
- 3. Humorous/Sarcastic? (binary)

2

News Sources

- 1. The Onion
- 2. HuffPost

SAMPLE OBSERVATION (RAW)

Sarcastic/Humorous:

```
is_sarcastic
headline mother comes pretty close to using word 'strea...
article_link https://www.theonion.com/mother-comes-pretty-c...
Name: 4, dtype: object
```

Not Sarcastic/Humorous:

```
is_sarcastic
headline eat your veggies: 9 deliciously different recipes
article_link https://www.huffingtonpost.com/entry/eat-your-...
Name: 2, dtype: object
```

DATASET SUMMARY STATISTICS

Headline Lengths

Sarcastic/Humorous vs. Not Sarcastic/Humorous

DATASET WORD CLOUDS

Sarcastic/Humorous Headlines

Not Sarcastic/Humorous Headlines

MODEL ANALYSIS

MODELS

K Nearest Neighbors (kNN)

Naive Bayes

XG Boost

Decision Trees

Bidirectional Encoder Representations from Transformers (BERT)

Convolutional Neural Network (CNN)

Random Forests

Long Short Term Memory Network (LSTM)

Gated Recurrent Unit Network (GRU)

Logistic Regression

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

	Sarcastic/Humorous Headlines			NOT Sarcastic/Humorous Headlines		
	Precision	Recall	F1-Score	Precision	Recall	F1-Score
Naive Bayes	0.70	0.18	0.29	0.56	0.93	0.70
kNN	0.53	0.42	0.47	0.56	0.67	0.61
XGBoost	0.63	0.42	0.50	0.59	0.78	0.67
Logistic Reg.	0.79	0.41	0.54	0.63	0.90	0.74
Random Forest	0.62	0.55	0.59	0.63	0.70	0.67
CNN	0.78	0.84	0.81	0.84	0.78	0.81
GRU	0.84	0.81	0.83	0.83	0.86	0.84
LSTM	0.82	0.84	0.83	0.85	0.82	0.84

NEURAL NETWORKS

BERT

BERT

Bidirectional Encoder Representations from Transformers

Example

After stealing money from the bank vault, the bank robber was seen fishing on the Mississippi river bank.

```
First 5 vector values for each instance of "bank".

bank vault tensor([ 3.3596, -2.9805, -1.5421, 0.7065, 2.0031])

bank robber tensor([ 2.7359, -2.5577, -1.3094, 0.6797, 1.6633])

river bank tensor([ 1.5266, -0.8895, -0.5152, -0.9298, 2.8334])
```

BERT 94% accuracy

epoch					
1	0.27	0.21	0.92	0:04:33	0:00:10
2	0.12	0.22	0.93	0:04:33	0:00:10
3	0.06	0.23	0.94	0:04:33	0:00:11
4	0.03	0.28	0.94	0:04:33	0:00:11

SHAP explainer

Some words have greater effects than others

Open this <u>link</u>

BERT

Advantages:

- Very accurate
- Pre-trained
- Versatile, there is multiple versions with multiple datasets that they were trained on
- Easy to fine tune
- Developed by google and has lots of support
- Can be equipped with explainers very easily
- Contextual understanding

Disadvantages:

- Takes very long time to fine tune
- Pytorch is more complicated than tensorflow but explainers are easily adapted into it afterwards
- Much more code than neural networks

NEXT 06 STEPS

If We Had More Time...

- 1. Repeat previous analysis with TF-IDF Data Encoding
- 2. Refine Neural Network Models (CNN, GRU, LSTM)
- 3. Enhance Neural Network models through web-scraping article content using each observations' hyperlink
- 4. Investigate Word2Vec Encoding
- 5. Enhance the BERT encoder

Questions? WARNING: If you don't want a sarcastic answer, don't ask a stupid question...

OUR COMPANY

Mercury is the closest planet to the Sun and the smallest one in the Solar System—it's only a bit larger than the Moon. The planet's name has nothing to do with the liquid metal

UNDERSTANDING THE PROBLEM

MAIN COMPETITORS

NEPTUNE

It's the farthest planet from the Sun

MARS

Despite being red, Mars
is a cold place

VENUS

Venus is the second planet from the Sun

SATURN

It's composed mostly of hydrogen and helium

MARKET RESEARCH

NEPTUNE

It's the farthest planet from the Sun

MERCURY

Mercury is the closest planet to the Sun

SATURN

Saturn is composed of hydrogen and helium

ANALYSIS

TOP RATED VALUES

TARGET

"This is a quote. Words full of wisdom that someone important said and can make the reader get inspired."

-SOMEONE FAMOUS

OUR PARTNERS

TESTIMONIALS

"Mercury is the closest planet to the Sun and the smallest of them all"

—RYAN DIXON

"Saturn is composed mostly of hydrogen and helium"

—BILLY BROOKS

"Venus has a beautiful name and is the second planet from the Sun"

—ALIYA FARLEY

"The Sun is the star at the center of the Solar System"

—LUCY JADE

"Jupiter is a gas giant and the biggest planet in the Solar System"

—HENRY McKANE

"Neptune is the fourth-largest planet in the Solar System"

—ROSE CLARK

-4,498,300,000

Big numbers catch your audience's attention

UPCOMING GOALS

JUPITER

JUNE 2

It's the biggest planet in the Solar System

SATURN

OCTOBER 14

Saturn is composed mostly of hydrogen and helium

NEPTUNE

JANUARY 23

Neptune is the farthest planet from the Sun

SNEAK PEEK

You can replace the images on these screens with your own work

youremail@freepik.com +91 620 421 83 yourcompany.com

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Please keep this slide for attribution

ALTERNATIVE RESOURCES

