Fully Online Bipartite Matching

Zhu Jingcheng

January 19, 2024

1 Greedy Algorithm

1.1 Algorithm

```
Algorithm 1 GREEDY Algorithm
```

```
while the events happen do
if Vertex x releases then
Construct the bipartite graph by adding x and relative edges.
else if Vertex x expires then
if N(x) is NULL then
x is unmatched forever.
else
x matches the first vertex in N(x).
end if
end if
end while
```

1.2 Analysis

The obvious greedy algorithm has a matching competitive ratio of 0.5. It can be obtained by the following theorems.

Theorem 1.1. GREEDY on the full online bipartite matching with adversarial inputs has the competitive ratio at least 0.5.

Proof. For every edge (u, v) in the perfect matching of B, either u or v is present in the matching generated by the algorithm. Otherwise, the matching can be augmented by adding (u, v). So, at least $\frac{n}{2}$ vertices in the matching, i.e. it has a competitive ratio at least 0.5.

Theorem 1.2. GREEDY on the full online bipartite matching with adversarial inputs has the competitive ratio at most 0.5.

Proof. Any bipartite graphs with |U| = n and |V|, and a maximal matching of size $\frac{n}{2}$ can be used to construct an adversarial input that forces GREEDY produce that particular maximal matching. The order is, first, to group vertices by pairs, based on the $\frac{n}{2}$ -sized matching. Any following arrival of vertices won't produce matching because the existing matching is maximal.

2 Water Filling

In class, we consider the already known vertices L as goods, and the arriving Vertex R as buyers. Each buyer brings a watering can filled with one unit of water and each good corresponds to a tank that holds at most one unit of water.

In this problem, the main difference compared to the above is the lack of a classification of the vertices into buyers and goods a priori. When a vertex arrives, it first acts as a good, passively waits for someone to buy it. Once it reaches the deadline, however, it will act as a buyer, immediately buying the cheapest neighboring vertex which has not yet been matched.

We can extend the Water-Filling approach to the Fully Online Fractional Bipartite Matching Problem: each vertex i acts as a good until its deadline at which point it acts as a buyer. The price of a neighboring good $j \in N(i)$ is then $p(w_j) := \frac{1}{\sqrt{2}}w_j + 1 - \frac{1}{\sqrt{2}}$ where w_j is how much of j has been matched so far. Accordingly, each buyer will solve the convex program

$$\max_{(\Delta x_{i,j})_{j \in N(i)}} \sum_{j \in N(i)} \left(\Delta x_{i,j} - \int_{w_j}^{w_j + \Delta x_{i,j}} p(w) dw \right)$$
s.t.
$$\sum_{j \in N(i)} \Delta x_{i,j} \le 1 - w_i,$$

$$\Delta x_{i,j} \ge 0 \quad \forall j \in N(i)$$

$$(2.1)$$

to maximize their utility and pay $\int_{w_i}^{w_j + \Delta x_{i,j}} p(w) dw$ to each neighbor $j \in N(i)$.

Algorithm 2 Water-Filling

for each vertex i that expires do

Compute an optimum solution $(\Delta x_{i,j})_{j \in N(i)}$ to the 2.1.

$$x \leftarrow x + \Delta x$$

end for

We let g_i be the gain of vertex i, i.e. the sum of its revenue while acting as a good and its utility while acting as a buyer.[1]

Lemma 2.1. Let $(i, j) \in E$ be arbitrary with i's deadline being earlier. Then at the end of Algorithm 2, we have $g_i + g_j \ge 2 - \sqrt{2}$.

Proof. Consider the matched levels w_i and w_j right after i 's deadline. Either $w_i = 1$ or $w_j = 1$; otherwise, i could have been matched more to j during its departure.

Note that if $w_j = 1$, since j is always considered as goods, we have $g_j = \int_0^1 p(w) dw$.

Now assume $w_i = 1$ and $w_j < 1$. Further consider the matched level w_i' before i's deadline, i.e. how much of i was bought while it was acting as a good. Vertex i gains $\int_0^{w_i'} p(w) dw$ in revenue from those previous matches. In addition, it gains at least $1 - p(w_j)$ per unit of good that i buys on departure as it could have always bought j instead. Thus

$$g_i \ge \int_0^{w_i'} p(w) dw + (1 - w_i') (1 - p(w_j))$$

Further, $g_j = \int_0^{w_j} p(w) dw$. Let p(x) = a(x-1) + 1, when $a = \frac{1}{\sqrt{2}}$ we have

$$g_i + g_j \ge \int_0^{w_i'} p(w) dw + (1 - w_i') (1 - p(w_j)) + \int_0^{w_j} p(w) dw$$

$$= \frac{1}{2\sqrt{2}}(w_i' + w_j - 2 + \sqrt{2})^2 + 2 - \sqrt{2} \ge 2 - \sqrt{2}$$

This time $g_i + g_j \ge g_j = \int_0^1 p(w) dw = 1 - \frac{\sqrt{2}}{4} \ge 2 - \sqrt{2}$.

As a corollary we immediately obtain the following theorem.

Theorem 2.1. The competitive ratio of Water-Filling for the Fully Online Fractional Matching Problem is $2 - \sqrt{2} \approx 0.585$.

We can use a LP solver to achieve this ratio.

$$\begin{split} p(x) &= p_i, x \in [\frac{i-1}{n}, \frac{i}{n}), i \in [n]. \\ \max r &= \min_{w_{i'}, w_j} \left(\int_0^{w_i'} p(w) \mathrm{d}w + (1-w_i') \left(1-p\left(w_j\right)\right) + \int_0^{w_j} p(w) \mathrm{d}w \right) \\ \text{s.t. } \forall w_{i'}, w_j, r &\leq \sum_{i=0}^{\lfloor w_{i'n} \rfloor} p_i * \frac{1}{n} + \sum_{i=0}^{\lfloor w_{jn} \rfloor} p_i * \frac{1}{n} + (1-w_{i'}) * (1-p_{\lceil w_j n \rceil}) \\ p_n &= 1 \\ p_i &\leq p_{i+1} \\ p_i &> 0 \end{split}$$

```
Academic license - for non-commercial use only
Gurobi Optimizer version 9.0.1 build v9.0.1rc0 (win64)
Optimize a model with 9006002 rows, 6003 columns and 36009002 nonzeros
Model fingerprint: 0x16650c29
Coefficient statistics:
  Matrix range
                    [3e-04, 2e+00]
  Objective range [1e+00, 1e+00]
  Bounds range
                    [0e+00, 0e+00]
  RHS range
                    [3e-04, 1e+00]
Concurrent LP optimizer: dual simplex and barrier
Showing barrier log only...
Presolve removed 3 rows and 3002 columns (presolve time = 13s) ...
Presolve removed 4 rows and 3003 columns (presolve time = 16s) ...
Presolve removed 4 rows and 3003 columns
Solved with dual simplex
Solved in 371930 iterations and 277.68 seconds
Optimal objective 5.853843871e-01
User-callback calls 150163, time in user-callback 0.03 sec
Objective value:0.5853843870879464
```

Figure 2.1: achieve ratio of 0.58538 when n = 3000

References

[1] Zhiyi Huang Thorben Tröbst. Online matching. URL: https://ics.uci.edu/~ttrbst/online_matching_chapter.pdf.