CS & IT ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Basics of COA

Lecture No.- 03

Recap of Previous Lecture

Topic CPU Registers

Topic Types of Architecture

Topic Program Counter

Topic Instruction Register

Topic Stack Pointer

Topics to be Covered

Topic

CPU Registers

Memory Addressing

Memory Access

Architecture Type (Based on Size of Input)

Topic: Address Register or MAR

Used to send address to memory

Topic: Data Register or MDR

- Used to send data to memory
- And to receive data from memory

Memory Read: 1. CPU sends address to memory through adohers bus 2. CPU sends enabled Read control signal to memory

3. Memory reads on given address and the content is sent to CPU through Late bus.

Memory cerite: 1. CPU sends add. to memory through add. bus 3. CPU sends enabled cevite control signal.
remony performs cevite of given data on given address.

Topic: Memory Addressing

Topic: Memory Addressing

No. of cells	4	8		32		n
address size in bits	2 bits	3 bits	4 bits	5 lits	x bits	log n lite

Ques) no of cells in a mem. = 256

add. Size =
$$\frac{8}{501}$$
 Lits?

$$256 = 2^{8}$$

$$add. = \log_{2} 2^{8} = 8 \text{ bits}$$

ares) no of cells = 16 k
add. size =
$$\frac{14}{2^{10}}$$
 bits?
 $\frac{501}{2^{10}}$ $\frac{2^{10}}{2^{10}}$ = $\frac{2^{14}}{2^{10}}$ add. = $\frac{14}{2^{10}}$ bits

Ques) no of cells = 64 M add. size = $\frac{26}{26}$ bits? $\frac{501}{4}$ $\frac{26}{20} = \frac{26}{20}$ $\frac{26}{20} = \frac{26}{20}$ $\frac{26}{20} = \frac{26}{20}$ $\frac{26}{20} = \frac{26}{20}$ $\frac{26}{20} = \frac{26}{20}$

ares) A memory with add. = 12 bits no. of cells = $-\frac{4}{k}$ k? $\frac{50!}{}$ = 2^{12} = $2^2 \cdot 2^{10}$ = 4k

Topic: Memory Types

- 1. Byte Addressable 2 11 11 word 11
- 2. Word Addressable word size = 2 bytes or 4 bytes or 8 bytes....

Byte addressable memory:no. of cells = 16

add. Size =
$$\log_2 16 = \log_2 2^4 = 46$$
its

aues) If a byte addressable memory has 32k bytes Capacity.

No. of Cells in memory = 32k &

add. size for mem. = 15 bits

2°5 2°5

32k bytes = no of cells
$$\#$$
 1B
no of cells = 32k

$$= 2^{5} \cdot 2^{10}$$

$$= 2^{15} \Rightarrow \text{add.} = 15 \text{ bits}$$

aus) Consider a byte addressable mem of size 4GB.

Add. size of memory 32 bits?

SOL

$$no. \text{ of alls} = \frac{49B}{1B} = 46 = 2^2 \cdot 2^{30} = 2^{32}$$

ares) Memory Size = 256 bytes word addressable memory. 1 word = 4 bytes No of cells in memory = 64 add. Size = 6 bits

no of cells =
$$\frac{256B}{4B}$$
 = $64 = 2^6$
add. = $\log_2 2^6 = 6$ bits

aues) word addressable memory of size 2GB.

word size = 8 bytes

address = 28 bits

$$\frac{501}{88}$$
 no. of cells = $\frac{268}{88} = \frac{1 \cdot 2^{30}}{2^3} = 2^{28}$

add. =
$$\log_2 2^{28} = 28$$
 bits

Topic: Architecture Type (Based on Size of Input)

64-bits architecture

2 mins Summary

Topic CPU Registers

Topic Memory Addressing

Topic Memory Access

Topic Architecture Type (Based on Size of Input)

Happy Learning

THANK - YOU