Model 1

July 1, 2023

Installing Libaries

```
[95]: install.packages("keras")
      install.packages("tensorflow")
      install.packages("mlbench")
      install.packages("magrittr")
      install.packages("dplyr")
      install.packages("neuralnet")
      library(reticulate)
      library(keras)
      library(tensorflow)
      library(mlbench)
      library(dplyr)
      library(magrittr)
      library(neuralnet)
      library(here)
      reticulate::conda_install(packages = "graphviz")
      reticulate::py_install("pydot", pip = TRUE)
      prev model = load model tf(filepath = here("model out"))
      test_predictions = predict(prev_model, test)
      print(paste("The test R^2 value was: ", cor(testtarget, test_predictions) ^ 2))
     Warning message:
     "package 'keras' is in use and will not be installed"
     Warning message:
     "package 'tensorflow' is in use and will not be installed"
     Warning message:
     "package 'mlbench' is in use and will not be installed"
     Warning message:
     "package 'magrittr' is in use and will not be installed"
     Warning message:
     "package 'dplyr' is in use and will not be installed"
     Warning message:
     "package 'neuralnet' is in use and will not be installed"
     + "C:/Users/ASUS/anaconda3/condabin/conda.bat" "install" "--yes" "--name"
     "r-reticulate" "-c" "conda-forge" "graphviz"
```

Importing Data and Setting Up Traning Datatset

```
[96]: dat <- read.csv('https://skewthescript.org/s/four_year_colleges.csv')
    colnames(dat)

# set training data to be 80% of all colleges
    train_size <- floor(0.8 * nrow(dat))

## sample row indeces
    set.seed(123)
    train_ind <- sample(seq_len(nrow(dat)), size = train_size)

train <- dat[train_ind, ]
    test <- dat[-train_ind, ]
    head(train)</pre>
```

1. 'OPEID' 2. 'name' 3. 'city' 4. 'state' 5. 'region' 6. 'median_debt' 7. 'default_rate' 8. 'highest_degree' 9. 'ownership' 10. 'locale' 11. 'hbcu' 12. 'admit_rate' 13. 'SAT_avg' 14. 'online_only' 15. 'enrollment' 16. 'net_price' 17. 'avg_cost' 18. 'net_tuition' 19. 'ed_spending_per_student' 20. 'avg_faculty_salary' 21. 'pct_PELL' 22. 'pct_fed_loan' 23. 'grad_rate' 24. 'pct_firstgen' 25. 'med_fam_income' 26. 'med_alum_earnings'

		OPEID	name	city	state	region
A data.frame: 6×26		<int></int>	<chr></chr>	<chr $>$	<chr $>$	<chr $>$
	415	231400	Saginaw Valley State University	University Center	MI	Midwest
	463	908900	Hannibal-LaGrange University	Hannibal	MO	Midwest
	179	160400	Young Harris College	Young Harris	GA	South
	526	264200	The College of New Jersey	Ewing	NJ	Northeast
	195	169400	Chicago State University	Chicago	IL	Midwest
	938	370200	Averett University	Danville	VA	South

```
[97]: dat <- train dat_test <- test
```

Pre-processing

```
dat_test[paste(i,"_id", sep = "")] <- chr_test["id"]</pre>
      }
[99]: print('Training:')
      str(dat)
      print('Test:')
      str(dat_test)
     [1] "Training:"
     'data.frame':
                     842 obs. of 33 variables:
      $ OPEID
                                      231400 908900 160400 264200 169400 370200
                                : int
     3070900 301400 679100 1026600 ...
                                      "Saginaw Valley State University" "Hannibal-
                                : chr
     LaGrange University" "Young Harris College" "The College of New Jersey" ...
                                : chr
                                       "University Center" "Hannibal" "Young Harris"
      $ city
     "Ewing" ...
      $ state
                               : chr
                                       "MI" "MO" "GA" "NJ" ...
      $ region
                               : chr
                                       "Midwest" "Midwest" "South" "Northeast" ...
      $ median debt
                                      18.1 15 12 21 22 ...
                               : num
      $ default rate
                               : num
                                      4.8 6.9 3.5 1.3 8.7 5.3 2 3.8 7.2 13.7 ...
                                       "Graduate" "Graduate" "Graduate" ...
      $ highest_degree
                              : chr
      $ ownership
                                       "Public" "Private nonprofit" "Private
                               : chr
     nonprofit" "Public" ...
      $ locale
                                       "Suburb" "Town" "Rural" "Suburb" ...
                               : chr
      $ hbcu
                               : chr
                                       "No" "No" "No" "No" ...
      $ admit_rate
                                      89.5 64.6 65 51.2 46.4 ...
                               : num
                                       1086 1120 1065 1240 887 984 1120 1176 1213 1057
      $ SAT_avg
                               : int
                                       "No" "No" "No" "No" ...
      $ online_only
                               : chr
      $ enrollment
                              : int
                                       6953 559 923 7039 1683 881 193 2843 3528 282
      $ net_price
                                      14.3 20.9 20.8 28.2 12.7 ...
                              : num
      $ avg cost
                               : num 22.4 36.1 44.2 35.5 21.9 ...
      $ net tuition
                                      9.52 9.16 8.39 12.92 7.09 ...
                               : num
      $ ed_spending_per_student: num
                                      7.7 5.35 8.12 10.56 20.86 ...
      $ avg_faculty_salary
                               : num
                                      8.43 4.99 5.56 10.9 8.12 ...
      $ pct PELL
                               : num 34.6 31.8 22.8 17.8 61.7 ...
      $ pct_fed_loan
                               : num
                                      57.4 47.9 39.7 50.8 80.5 ...
                                      47.9 42.9 43.8 86.5 16.2 ...
      $ grad_rate
                               : num
      $ pct_firstgen
                                      32.9 45.7 28.2 20.5 42 ...
                               : num
      $ med_fam_income
                               : num
                                      52.7 39.9 55.7 106.4 15.1 ...
      $ med_alum_earnings
                                      46.2 37.5 40.5 65.5 40.5 ...
                               : num
      $ state_id
                                      23 25 11 32 15 47 25 36 35 37 ...
                               : int
      $ region_id
                                      2 2 5 3 2 5 2 2 3 4 ...
                               : int
                              : int 2 2 2 2 2 1 1 2 2 2 ...
      $ highest_degree_id
      $ ownership id
                               : int 3 2 2 3 3 2 2 2 3 2 ...
      $ locale_id
                               : int 4524153444 ...
```

chr_test <- chr_test %>% group_by at(i) %>% mutate(id=cur_group_id())

```
$ hbcu_id
                         : int 1 1 1 1 1 1 1 1 1 1 ...
 $ online_only_id
                        : int 1 1 1 1 1 1 1 1 1 1 ...
[1] "Test:"
'data.frame':
               211 obs. of 33 variables:
 $ OPEID
                          : int 100200 105500 100900 102400 103600 105700
147902 110800 108600 109700 ...
                          : chr
                                 "Alabama A & M University" "University of
Alabama in Huntsville" "Auburn University" "University of West Alabama" ...
                         : chr
                                 "Normal" "Huntsville" "Auburn" "Livingston" ...
 $ city
                                 "AL" "AL" "AL" "AL" ...
 $ state
                          : chr
                                 "South" "South" "South" ...
 $ region
                          : chr
 $ median_debt
                         : num
                                15.2 14 17.5 12.5 15.9 ...
 $ default_rate
                                12.1 4.7 2.6 5.8 2 6.3 4.1 4.1 13.6 3.1 ...
                         : num
 $ highest_degree
                                 "Graduate" "Graduate" "Graduate" ...
                        : chr
                                 "Public" "Public" "Public" ...
 $ ownership
                         : chr
 $ locale
                                 "Small City" "Small City" "Small City" "Rural"
                         : chr
                                 "Yes" "No" "No" "No" ...
 $ hbcu
                         : chr
 $ admit_rate
                                89.7 77.1 85.1 93.1 84 ...
                         : num
 $ SAT avg
                                959 1300 1302 1035 1219 1162 1238 1236 900 1207
                         : int
 $ online only
                                 "No" "No" "No" "No" ...
                        : chr
 $ enrollment
                        : int
                                5090 7825 24368 2247 3573 8787 2959 22624 2440
3492 ...
                        : num 15.5 17.2 24 16.7 30.1 ...
 $ net_price
 $ avg_cost
                         : num 23.4 24.9 32.2 22.6 49.6 ...
 $ net_tuition
                                8.1 8.28 16.86 8.29 20.06 ...
                          : num
 $ ed_spending_per_student: num
                                4.84 8.32 8.36 6.69 15.37 ...
 $ avg_faculty_salary
                                7.6 9.7 10.72 6.55 9.01 ...
                         : num
 $ pct_PELL
                          : num
                                71 24 13.4 53.5 11.4 ...
 $ pct_fed_loan
                                75 38.5 29.8 67.3 30.8 ...
                         : num
 $ grad_rate
                         : num
                                28.7 57.1 78.7 40.1 77.2 ...
 $ pct_firstgen
                         : num
                                36.6 31 17.3 40.3 13.8 ...
 $ med_fam_income
                                23.6 44.8 72 25.6 87.7 ...
                         : num
 $ med alum earnings
                                36.3 54.4 56.9 35.8 53.2 ...
                         : num
 $ state id
                          : int
                                1 1 1 1 1 1 3 2 2 2 ...
                        : int 5555554555 ...
 $ region id
 $ highest_degree_id
                         : int 2 2 2 2 2 2 2 2 2 2 ...
 $ ownership_id
                         : int 2 2 2 2 1 2 1 2 2 1 ...
 $ locale id
                         : int 3 3 3 2 4 3 2 3 3 5 ...
 $ hbcu_id
                         : int 2 1 1 1 1 1 1 2 1 ...
 $ online_only_id
                        : int 1 1 1 1 1 1 1 1 1 1 ...
Set Up Traning Dataset (part 2)
```

Set op Hannig Dataset (part 2)

```
[100]: cols <- colnames(dat[,sapply(dat,is.numeric)]) #selects all columns with
```

```
cols <- c(cols[c(-1, -3, -length(cols))]) #excludes OPEID (index 1), □

default_rate(index 3), and online_only_id (index = length(cols)).

#These are all the response variable columns

cols
```

1. 'median_debt' 2. 'admit_rate' 3. 'SAT_avg' 4. 'enrollment' 5. 'net_price' 6. 'avg_cost' 7. 'net_tuition' 8. 'ed_spending_per_student' 9. 'avg_faculty_salary' 10. 'pct_PELL' 11. 'pct_fed_loan' 12. 'grad_rate' 13. 'pct_firstgen' 14. 'med_fam_income' 15. 'med_alum_earnings' 16. 'state_id' 17. 'region_id' 18. 'highest_degree_id' 19. 'ownership_id' 20. 'locale_id' 21. 'hbcu_id'

```
training <- dat[, cols] #store as training for all rows where 1 was picked, 70% of dat

test <- dat_test[, cols] #store as test for all rows where 2 was picked, 30% of odat

trainingtarget <- dat[, "default_rate"] #gets "answers" for test and train sets testtarget <- dat_test[, "default_rate"]

#convert data into matrices

training <- as.matrix(training)

dimnames(training) <- NULL

test <- as.matrix(test)

dimnames(test) <- NULL

trainingtarget <- as.matrix(trainingtarget)

dimnames(trainingtarget) <- NULL

testtarget <- as.matrix(testtarget)

dimnames(testtarget) <- NULL
```

Normalizing Data

```
[102]: m <- colMeans(training)
s <- apply(training, 2, sd)
training <- scale(training, center = m, scale = s)
test <- scale(test, center = m, scale = s)
summary(training)</pre>
```

```
V1
                         V2
                                            V3
                                                              ۷4
       :-3.30717
Min.
                   Min.
                          :-3.3179
                                     Min.
                                            :-2.3270
                                                        Min.
                                                               :-0.70835
1st Qu.:-0.66040
                   1st Qu.:-0.4901
                                      1st Qu.:-0.6597
                                                        1st Qu.:-0.57209
Median :-0.04799
                   Median : 0.2001
                                     Median :-0.1783
                                                        Median :- 0.41927
Mean
      : 0.00000
                   Mean
                          : 0.0000
                                     Mean
                                           : 0.0000
                                                        Mean
                                                               : 0.00000
3rd Qu.: 0.75127
                   3rd Qu.: 0.6883
                                     3rd Qu.: 0.4909
                                                        3rd Qu.: 0.08554
       : 2.67628
                   Max.
                          : 1.5206
                                     Max.
                                            : 3.2148
                                                        Max.
                                                               : 6.76383
Max.
      V5
                        V6
                                           V7
                                                             V8
       :-2.3826
Min.
                  Min.
                         :-1.6025
                                    Min.
                                           :-1.7114
                                                              :-1.0013
                                                       Min.
1st Qu.:-0.6667
                  1st Qu.:-0.8799
                                     1st Qu.:-0.7367
                                                       1st Qu.:-0.4567
Median :-0.1062
                  Median :-0.1498
                                    Median :-0.1773
                                                       Median :-0.2362
```

```
Mean
       : 0.0000
                          : 0.0000
                                             : 0.0000
                                                        Mean
                                                                : 0.0000
                  Mean
                                     Mean
3rd Qu.: 0.5596
                   3rd Qu.: 0.6702
                                     3rd Qu.: 0.4336
                                                        3rd Qu.: 0.1018
Max.
       : 3.5677
                          : 2.4982
                                             : 3.7836
                                                                :13.0655
                  Max.
                                     Max.
                                                        Max.
      V9
                        V10
                                            V11
                                                                V12
Min.
       :-2.1495
                  Min.
                          :-1.78316
                                      Min.
                                              :-2.88420
                                                          Min.
                                                                  :-3.01005
1st Qu.:-0.6971
                   1st Qu.:-0.74794
                                       1st Qu.:-0.65940
                                                          1st Qu.:-0.72366
Median :-0.2277
                  Median :-0.05665
                                      Median: 0.02626
                                                          Median :-0.03814
                          : 0.00000
                                                                  : 0.00000
Mean
       : 0.0000
                  Mean
                                      Mean
                                              : 0.00000
                                                          Mean
3rd Qu.: 0.5293
                  3rd Qu.: 0.54793
                                      3rd Qu.: 0.74568
                                                          3rd Qu.: 0.65665
Max.
       : 4.8891
                  Max.
                          : 3.61232
                                      Max.
                                             : 2.34807
                                                          Max.
                                                                  : 2.41408
     V13
                        V14
                                           V15
                                                             V16
       :-2.2517
                          :-1.9564
                                             :-2.1147
                                                                :-1.87489
Min.
                  Min.
                                     Min.
                                                        Min.
1st Qu.:-0.7744
                   1st Qu.:-0.7634
                                     1st Qu.:-0.6781
                                                        1st Qu.:-0.87778
Median : 0.1027
                  Median :-0.2061
                                     Median :-0.2119
                                                        Median: 0.01438
       : 0.0000
                          : 0.0000
                                             : 0.0000
Mean
                                     Mean
                                                        Mean
                                                                : 0.00000
3rd Qu.: 0.7058
                   3rd Qu.: 0.6304
                                     3rd Qu.: 0.3962
                                                        3rd Qu.: 0.78408
                          : 3.2229
Max.
       : 3.1778
                  Max.
                                     Max.
                                             : 5.1818
                                                        Max.
                                                                : 1.76370
     V17
                        V18
                                           V19
                                                             V20
Min.
       :-1.6250
                          :-2.5128
                                             :-2.8003
                                                        Min.
                                                                :-1.5691
                  Min.
                                     Min.
1st Qu.:-0.8898
                   1st Qu.: 0.3975
                                     1st Qu.:-0.7987
                                                        1st Qu.:-0.8741
                  Median : 0.3975
Median :-0.1546
                                     Median :-0.7987
                                                        Median :-0.1791
Mean
       : 0.0000
                  Mean
                          : 0.0000
                                            : 0.0000
                                                        Mean
                                                                : 0.0000
                                     Mean
3rd Qu.: 1.3159
                   3rd Qu.: 0.3975
                                     3rd Qu.: 1.2028
                                                        3rd Qu.: 1.0371
Max.
       : 2.0511
                  Max.
                        : 0.3975
                                     Max.
                                             : 1.2028
                                                        Max.
                                                               : 1.2109
     V21
       :-0.2261
Min.
1st Qu.:-0.2261
Median :-0.2261
       : 0.0000
Mean
3rd Qu.:-0.2261
Max.
       : 4.4174
```

Model Creation

```
[178]: embedding_size = min(50, length(cols)/2)
    model <- keras_model_sequential()
    model %>%
        layer_dense(units = length(cols)*2, activation = 'relu', input_shape =_u
        -c(length(cols))) %>%
        layer_dropout(rate=0.4) %>%
        layer_dense(units = 100, activation = 'relu') %>%
        layer_dropout(rate=0.4) %>%
        layer_dense(units = 100, activation = 'relu') %>%
        layer_dropout(rate=0.4) %>%
        layer_dense(units = 100, activation = 'relu') %>%
        layer_dense(units = 50, activation = 'relu') %>%
        layer_dense(units = 50, activation = 'relu') %>%
        layer_dense(units = 50, activation = 'relu') %>%
        layer_dropout(rate=0.2) %>%
```

```
layer_dense(units = 1)
```

Visual Representation of Model

Model Compilation

```
[180]: model %>% compile(loss = 'mse',
    optimizer = 'rmsprop',
    metrics = 'mae')
```

Model Fitting

Model Validation (!!Not Final Submission!!)


```
[184]: # run this code to get the R^2 value on the test set from your model
test_predictions = predict(model, test)
print(paste("The test R^2 value was: ", cor(testtarget, test_predictions) ^ 2))
```

^{[1] &}quot;The test R^2 value was: 0.710979330176"

```
[185]: rsq = cor(testtarget, test_predictions) ^ 2
if (rsq > prev) {
    prev = rsq
    model %>% save_model_tf(filepath = here("model_out"))
    print(rsq)
}
```

Final Submission

```
[186]: final_model <- load_model_tf(filepath = here("model_out"))
  test_predictions = predict(final_model, test)
  print(paste("The test R^2 value was: ", cor(testtarget, test_predictions) ^ 2))</pre>
```

[1] "The test R^2 value was: 0.71472931744183"