- 1. Let X_1, X_2, \ldots, X_n be i.i.d. normal distribution $N(\mu, 1)$ random variables with unknown μ . Instead of recording all the observations, we record only whether the observations is less than 0. In other words, we record $Y_i = \mathbb{I}_{\{X_i < 0\}}$, for $i = 1, 2, \ldots, n$. Find a MLE of μ . You may use $\Phi(x)$ to denote the CDF of a standard normal random variable N(0, 1).
- 2. Let $(X_1, X_2, ..., X_n)$ be a random sample from $P \in \mathcal{P}$ containing all symmetric distributions with finite means and with proper probability density functions. Here, symmetric means that the pdf is a symetric function, i.e., there exist a constant b such that f(b-x) = f(b+x) for all x > 0.
 - (a) When n = 1, show that X_1 is the UMVUE of $\mu = \mathbb{E}[X]$.
 - (b) (For this part only.) Let $(X_1, \ldots, X_n), n \geq 2$, be a random sample from the uniform distribution on the interval $[\theta_1 \theta_2, \theta_1 + \theta_2]$ where $\theta_2 > 0$. Find the UMVUE of θ_1 .
 - (c) (Back to the setting of the main question.) When n > 1, show that there is no UMVUE of $\mu = \mathbb{E}[X]$. [Hint: Consider the family in Part (b). Use the uniqueness of UMVUE.]
- 3. Let X_1, X_2, \ldots, X_n be i.i.d. random variables with probability density function

$$f(x;\theta) = \frac{1}{\theta} f_0\left(\frac{x}{\theta}\right),$$

where $\theta > 0$ is an unknown parameter, $\mathsf{E}[|X_1|] < \infty$ and $f_0(\cdot)$ is known, does not depend on θ and is differentiable.

- (a) Suppose $\eta = h(\theta)$, where $h(\cdot)$ is an invertible differentiable one-to-one function. Find an expression for the Fisher information $I^{\eta}(\eta)$ based on X_1 in terms of $I^{\theta}(\theta)$, the Fisher information for θ based on X_1 .
- (b) Let

$$\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \frac{|X_i|}{\int_{-\infty}^{\infty} |x| f_0(x) dx}.$$

Is $\widehat{\theta}$ unbiased? If $\mathsf{E}[X_i^2] < \infty$, is it consistent? What is the asymptotic distribution of $\widehat{\theta}$ as $n \to \infty$?

- 4. Let X_1, \dots, X_n be iid Normal (μ, σ^2) random samples, with known $\sigma^2 > 0$.
 - (a) Find the UMVUE of $e^{\mu t}$ for a fixed t. Show that the variance of the UMVUE is larger than the Cramér-Rao lower bound but the ratio of the variance and the lower bound converges to 1 as $n \to \infty$.
 - (b) Find the UMVUE of $P(X_1 < t)$ with fixed $t \in \mathbb{R}$.
- 5. Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be two independent i.i.d. RV from $\mathcal{N}(\mu_1, \sigma^2)$ and $\mathcal{N}(\mu_2, \sigma^2)$.
 - (a) Show that the MLE of (μ_1, μ_2, σ^2) is \bar{X} , \bar{Y} , and

$$\hat{\sigma}^2 = \frac{1}{m+n} \left(\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{j=1}^m (Y_i - \bar{Y})^2 \right).$$

(b) Let $s_{pooled}^2 = \frac{m+n}{m+n-2}\hat{\sigma}^2$. Show that s_{pooled}^2 is unbiased, and then show it is UMVUE.