

第3部 RTミドルウェア応用実習

宮本 信彦

国立研究開発法人産業技術総合研究所 ロボットイノベーション研究センター ロボットソフトウェアプラットフォーム研究チーム

資料

- USBメモリで配布
 - 「WEBページ」フォルダのHTMLファイルを開く
 - チュートリアル(EV3、LibreOffice) _ OpenRTM-aist.html
- もしくはRTミドルウェア講習会のページからリンクをクリック
 - チュートリアル(第3部)

The power to connect									
ダウン	ンロード	ドキュメント	コミュニティ			ハードウエア			
			向で構築す とで、既存 ムを構築す ポーネン	するソフト! 字のコンポ- することが ⁻	ウェアプラット ーネントを再利 できます。RTミ プログラミング	フォームです。F 用し、モジユー/	ン人テムをコンホー RTミドルウェアを利 レ指向の柔軟なロボ いて、その概要およ いて、まの概要およ 説明します。	用するこ ットシステ	
	11	:00 -12:30	- 担当: 誓 - 概要: R 作成する! のシミュレ します。 チュート!	A本 信彦(産 Tシステム ^を ソールRTCE レータを用い リアル(第2覧	を設計するツー Builderの使用方 いた実習により 部、Windows) 部、Ubuntu)	ルRTSystemEdi 法について解説	itorおよびRTコンポ するとともに、移動 「SystemEditorの利」	ロボット	
	12	:30 -13:30	昼食						
	13	:00 -13:30	RTミドル	ウェア普及	貢献賞授賞式				
	13:30 -15:00		- 担当 : 宮	第2部(後半): RTコンポーネントの作成入門 - 担当: 宮本 信彦(産総研) - 概要: OpenRTM-aistを利用して移動ロボット実機を制御するプログラムを作成します。					
	15	::00 -16:30	- 担当 :宮 - 概要 :オ 表計算ソ	フトによるF	総研) 反LibreOffice用		こついて解説を行う。 実習を行います。	とともに、	

Ubuntuを使用している場合

- ノートPC(Windows 10)を貸出
- RT System Editor、ネームサーバーを起動する
 - デスクトップのショートカットをダブルクリック

- RT System Editorの起動

- ネームサーバー起動

RTCのテスト

- 開発したRTCの動作確認手順
 - 実機、シミュレータを利用する場合
 - 任意の値を入力するのは難しい

入力すると停止するか?

- 本当に指定の値で停止、走行が切り替わっているか?
- 意図通りの値が出力されているか?
 - 本当に指定の速度で走行しているか?
- シミュレータが無い場合は直接実機で動作を確認するため、試行錯誤の手間が増加

表計算ソフトによるデータ入出力

デモ動画

デモ動画

手順

- 第2部で作成したRobotControllerComp.exeを起動する。
 - 貸し出したノートPCの場合は、デスクトップの以下のファイルを実行
 - RobotControler\u00e4build\u00e4src\u00e4RobotControlerComp.exe
- ポータブル版LibreOffice対応RTCの起動
 - USBメモリ内のバッチファイルから起動
- LibreOffice Calc上の操作でポートを接続
 - Calc上のGUIを使用して対象のデータポートを接続
- RT System Editor上の操作でRTCをアクティブ化
 - コンフィギュレーションパラメータを変更したときの挙動を確認
 - インポートへの入力値を変更したときの挙動を確認

ポータブル版LibreOffice対応RTC

- 配布のUSBメモリに以下のソフトウェアを同梱
 - ポータブル版LibreOffice
 - OpenRTM-aist-Python
 - OpenOffice用RTコンポーネント

RTC起動

• LibreOffice操作RTCを起動する

起動に失敗する場合

操作ダイアログ表示

LibreOffice Calcの画面から操作ダイアログ起動ボタンを 押す

ポート一覧表示

• 操作ダイアログの画面からツリー表示ボタンを押して ネームサーバーに登録したRTCのポートー覧を表示

 \equiv / 列番号にCを入力 localhost ■RobotController0 関連付けしたInPor ■OOoCalcControl0 SpreadSheet 関連付け(H) Sheet1 関連付け解除(I) ネームサーバーのアドレス 列を移動させるか() localhost ツリ-表示(B) 行番号初期化(D)

RobotController0のoutを選択

「列を移動させる」のチェックを外す

「作成」ボタンを押す (操作ダイアログは右上の罰を押して消す)

動作確認(アウトポート)

RobotControllerのアウトポートからデータを出力して みる

動作確認(アウトポート)

• LibreOffice Calc上で出力データの確認ができる

動作確認(インポート)

• インポートに指定のデータを入力するとどのような動作となるか

ポート接続

RobotController0のinを選択

「列を移動させる」のチェックを外す

動作確認(インポート)

おわりに

- これで実習は一通り終了です。
- 時間が余った場合は、以下のような課題に挑戦してみてください。
 - EV3のタッチセンサのオンオフで操作
 - ジョイスティックコンポーネントで2台同時に操作
 - EV3を喋らせる
- 実習を終了する際について
 - タッチセンサなどの実習中に取り付けた部品は、取り外して実習前の状態で返却してください
 - EV3の電源をオフにして返却してください

