Página Principal ▶ Mis cursos ▶ Cálculo I - Exámenes Finales ▶ Examen final del viernes 20/8/2021 ▶ Examen final del viernes 20/8/2021

Pregunta 1

Sin responder aún
Puntúa como 20.00

Sea $g(x)=\int_0^x f(t)\ dt$, donde f es una función cuya primera derivada, f', se representa gráficamente a continuación:

Seleccione una o más de una:

- $\hfill \Box$ b. En x=1 existe un punto de inflexión de la función f pero no de la función g.

Pregunta 2

Sin responder aún

Puntúa como 20,00

Sea f la función dada por $f(x)=kx\ln(x)$ con k un número real positivo. Y considere a y b (con a< b) pertenecientes al dominio de f.

Sea R la región del plano limitada por la gráfica de f, el eje de las abscisas y las rectas x=a y x=b

Seleccione una o más de una:

- $\hfill\Box$ a. Si a=1 y b=2 entonces el área de la región R está dada por $2k\ln(2)-\frac{3}{4}k$.
- $\hfill \Box$ b. Si $\int_a^b f(x) dx > 0$ entonces el valor de la integral coincide con el área de la región R.
- $\hfill \Box$ c. $\int f(x)\ dx = rac{k}{2}x^2\left(\ln(x) rac{1}{2}
 ight) + C$, donde C es la constante de integración.
- d. Si para todo $x \in [a,b]$ se cumple que $f(x) \geq 0$, entonces el valor de la integral coincide con el área de la región R.
- \Box e. Si $a=rac{1}{2}$ y b=2 entonces el área de la región R está dada por $\ln(2^{rac{17}{8}k})-rac{15}{16}k$.
- $\hfill \Box$ f. Para todo k positivo, el área de la región R puede calcularse como $\int_a^b f(x) \; dx.$

Pregunta 3

Sin responder aún

Puntúa como 20,00

Sea la sucesión $a_n = \left(1 - \frac{a}{n}\right)^n$, donde a > 0 y $n \geq a$.

Tildar la(s) alternativa(s) correctas.

Seleccione una o más de una:

- \bigcap a. La sucesión $(-1)^n a_n$ es convergente.
- $oxed{\ }$ b. La sucesión a_n es convergente a $L=e^{\ a}$.
- $oxed{\Box}$ c. La sucesión a_n es convergente a $L=e^{-rac{1}{a}}$
- \square d. La sucesión a_n es acotada pero no monótona.
- e. Ninguna de las opciones anteriores es correcta.

Pregunta 4

Sin responder aún

Puntúa como 20,00

Tildar la(s) alternativa(s) correcta(s):

Ayuda: Tenga en cuenta el desarrollo de la serie de Maclaurin de la función $e^{x}. \\$

Seleccione una o más de una:

- \square a. La serie $\sum_{n=0}^{\infty} \, rac{1}{n!}$ es convergente. Además: $\sum_{n=0}^{\infty} \, rac{1}{n!} = e$.
- $\hfill \Box$ b. La serie $\sum_{n=0}^{\infty} \frac{n!}{n^n}$ es divergente por comparación directa con la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}.$
- $\ \ \,$ c. La divergencia de una sucesión numérica $\{a_n\}$ asegura la divergencia de la serie $\sum_{n=0}^{\infty}\,a_n.$
- d. Problema de la pelota. Cuando se deja caer, una pelota elástica se eleva hasta una altura del 75% de la altura que cae. Si la altura inicial fue de 2 metros, entonces la pelota recorrió 14 metros luego de dar rebotes hasta quedar detenida.
- e. Ninguna de las anteriores es correcta.

Pregunta 5

Sin responder aún

Puntúa como 20,00

Considerar la serie $J_0(x)=\sum_{n=0}^{\infty} rac{(-1)^n x^{2n}}{2^{2n} \left(n!\right)^2}.$

Tildar la(s) alternativa(s) correcta(s).

Seleccione una o más de una:

- \square a. El dominio de convergencia de $J_0'(x)$ es (-1, 1).
- $\hfill \Box$ b. La serie $J_0(x)$ satisface la ecuación $x^2\cdot J_0''(x)+x\cdot J_0'(x)+x^2\cdot J_0(x)=0 \ \forall x\in \mathbb{R}.$

Ayuda: Tenga en cuenta alinear los contadores de sumación.

$$\ \ \, \Box$$
 c. La serie $J_0(x)$ satisface la ecuación $x^2\cdot J_0''(x)+x\cdot J_0'(x)+x^2\cdot J_0(x)=1\ \forall x\in\mathbb{R}.$

Ayuda: Tenga en cuenta alinear los contadores de sumación.

 \Box d. En su intervalo de convergencia, la serie derivada $J_0'(x)$ está dada por $J_0'(x)=\sum_{n=1}^\infty rac{(-1)^n(2n)x^{2n-1}}{2^{2n}[(n-1)!]^2}.$

$$J_0'(x) = \sum_{n=1}^{\infty} rac{(-1)^n (2n) x^{2n-1}}{2^{2n} [(n-1)!]^2}.$$

■ Novedades

Ir a...