Matemática Discreta

4^a AULA

Universidade de Aveiro 2014/2015

http://moodle.ua.pt

Matemática Discreta

Relações binárias

Propriedades

Relações de ordem

Pares ordenados e produto cartesiano

Definição (de par ordenado)

Dados x e y, designa-se por par ordenado e denota-se por (x, y) o conjunto $\{\{x\}, \{x, y\}\}\}$, ou seja, $(x, y) = \{\{x\}, \{x, y\}\}\}$. Adicionalmente, dizemos que x é o primeiro elemento e y o segundo.

• Mais geralmente, temos o *n*-uplo ordenado:

```
 (x_1, x_2, x_3, \dots, x_n) = (x_1, (x_2, x_3, \dots, x_n)), n \ge 3 
= \{\{x_1\}, \{x_1, (x_2, x_3, \dots, x_n)\}\} 
= \{\{x_1\}, \{x_1, \{\{x_2\}, \{x_2, (x_3, \dots, x_n)\}\}\}\}.
```

Matemática Discreta

Relações binárias

Produto cartesiano

Definição (produto cartesiano)

Sejam A e B dois conjuntos. Designa-se por produto cartesiano de A e B e denota-se por $A \times B$, o conjunto

$$A \times B = \{(x, y) : x \in A \land y \in B\}.$$

• Se A = B, então $A^2 = A \times A = \{(x, y) : x \in A \land y \in A\}$.

Relações binárias

Definição de relação binária (relação)

Uma relação binária (ou relação) \mathcal{R} entre os conjuntos $A \in \mathcal{B}$ é um subconjunto do produto cartesiano $A \times \mathcal{B}$.

- Notação: escreve-se xRy para indicar $(x, y) \in R$.
- Exemplo: Sendo $A = \{1, 2\}$ e $B = \{a, b, c\}$, então

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\},\$$

е

$$\mathcal{R} = \{(1, a), (1, c), (2, a)\} \subseteq A \times B$$

é uma relação entre A e B.

Matemática Discreta

Relações binárias

Casos particulares

- Se A = B, designamos $\mathcal{R} \subseteq A^2$ por relação binária definida em A (ou sobre A).
- Exemplo 1: a relação ≤ definida em A = {1,2,3,4} é o subconjunto de A²:

$$\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}.$$

- Nota: usualmente, $(x, y) \in \subseteq \text{denota-se por } x \subseteq y$.
- Exemplo 2: igualmente se conclui que sendo ≤ uma relação binária definida em N,

$$\leq = \{(x, y) \in \mathbb{N}^2 : x \leq y\} \subseteq \mathbb{N}^2.$$

• A relação $I = \{(x, x) : x \in A\}$ designa-se por relação identidade de A ou definida em A.

Conjunto das partes

Definição (de conjunto das partes ou conjunto potência)

Dado um conjunto A, designa-se por conjunto das partes ou conjunto potência (ou, simplesmente, potência) de A e denota-se por $\mathcal{P}(A)$, o conjunto

$$\mathcal{P}(A) = \{X : X \subseteq A\}.$$

Nota: $\emptyset \in \mathcal{P}(A)$.

Exemplo: considerando o conjunto $A = \{1, 2, 3\}$, obtém-se

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Matemática Discreta

Relações binárias

Domínio e imagem

Definição (de domínio e imagem)

Sejam A e B dois conjuntos e R uma relação binária entre A e B.

 Designa-se por domínio de R e denota-se por dom(R), o conjunto

$$dom(\mathcal{R}) = \{x \in A : (x, y) \in \mathcal{R} \text{ para algum } y \in B\}.$$

 Designa-se por imagem (ou contradomínio) de R e denota-se por img(R), o conjunto

$$img(\mathcal{R}) = \{ y \in B : (x, y) \in \mathcal{R} \text{ para algum } x \in A \}.$$

Imagem e imagem recíproca

Definição (de imagem e imagem recíproca de um elemento)

Considere a relação binária $\mathcal{R} \subseteq A \times B$.

• Designa-se por imagem de x por \mathcal{R} e denota-se por $\mathcal{R}(x)$, o conjunto

$$\mathcal{R}(x) = \{ y \in B : (x, y) \in \mathcal{R} \}.$$

• Designa-se por imagem recíproca de y por \mathcal{R} e denota-se por $\mathcal{R}^{-1}(y)$, o conjunto

$$\mathcal{R}^{-1}(y) = \{x \in A : (x,y) \in \mathcal{R}\}.$$

Relação inversa de $\mathcal{R}: \mathcal{R}^{-1} = \{(y, x) \in B \times A : (x, y) \in \mathcal{R}\}.$

Matemática Discreta

Relações binárias

Composição

Definição (de composição de relações)

Dadas duas relações \mathcal{R}_1 entre A e B e \mathcal{R}_2 entre B e C designa-se por composição de \mathcal{R}_1 com \mathcal{R}_2 (e escreve-se $\mathcal{R}_2 \circ \mathcal{R}_1$), a relação entre A e C definida por

$$\mathcal{R}_2 \circ \mathcal{R}_1 = \{(a,c) \in A \times C : \text{ existe } b \in B \text{ tal que } (a,b) \in \mathcal{R}_1 \land (b,c) \in \mathcal{R}_2\}.$$

Exemplo: sendo $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ e $C = \{\alpha, \beta\}$ e considerando as relações $\mathcal{R}_1 = \{(1, a), (1, b), (2, b)\} \subseteq A \times B$ e $\mathcal{R}_2 = \{(b, \beta), (c, \alpha)\} \subseteq B \times C$, vamos determinar

$$\mathcal{R}_2 \circ \mathcal{R}_1$$
.

Propriedades das relações binárias

Dada uma relação binária \mathcal{R} definida num conjunto A, dizemos que \mathcal{R} é

- reflexiva: se $(x, x) \in \mathcal{R}$ para todo $x \in A$ ou, de modo equivalente, se $I \subseteq \mathcal{R}$, onde I denota a relação identidade;
- simétrica: se $(x, y) \in \mathcal{R} \Rightarrow (y, x) \in \mathcal{R}$, para todos $x, y \in A$ ou, de modo equivalente, se $\mathcal{R}^{-1} \subseteq \mathcal{R}$;
- Anti-simétrica: se $[(x, y) \in \mathcal{R} \land (y, x) \in \mathcal{R}] \Rightarrow x = y$, para todos $x, y \in A$ ou, de modo equivalente, se $\mathcal{R}^{-1} \cap \mathcal{R} \subseteq I$;
- Transitiva: se $[(x, y) \in \mathcal{R} \land (y, z) \in \mathcal{R}] \Rightarrow (x, z) \in \mathcal{R}$, para todos $x, y, z \in A$ ou, de modo equivalente, se $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.

Matemática Discreta

Relações de ordem

Relação de ordem parcial e conjunto parcialmente ordenado

Definição (de ordem parcial)

Uma relação binária diz-se uma relação de ordem parcial se é reflexiva, anti-simétrica e transitiva.

- Exemplos de relações de ordem parcial:
 - A relação ≤ definida em N.
 - A relação | (divide) definida no conjunto
 A = {1, 2, 3, 6, 9, 18}.

Definição (de conjunto parcialmente ordenado)

Se \mathcal{R} é uma relação de ordem parcial sobre o conjunto A, o par (A, \mathcal{R}) define um conjunto parcialmente ordenado (cpo).

Relação de ordem total e conjunto totalmente ordenado

Definição (de relação de ordem total ou linear)

Uma relação de ordem parcial, \mathcal{R} , definida num conjunto A diz-se uma relação de ordem total (ou relação de ordem linear) se quaisquer que sejam $a, b \in A$ se verifica $(a, b) \in \mathcal{R}$ ou $(b, a) \in \mathcal{R}$.

Definição (de conjunto totalmente ordenado)

Diz-se que o par (A, \mathcal{R}) define um conjunto totalmente ordenado quando \mathcal{R} é uma relação de ordem total sobre A.

Nota: a proposição $(a, b) \in \mathcal{R} \lor (b, a) \in \mathcal{R}$, quaisquer que sejam $a, b \in A$, designa-se por dicotomia.

Exemplos: 1) (\mathbb{N}, \leq) é um conjunto totalmente ordenado; 2) a relação | não é uma relação de ordem total no conjunto $A = \{1, 2, 3, 6, 9, 18\}.$

Matemática Discreta

Relações de ordem

Referências bibliográficas

- ► Referência bibliográfica:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2008.
- Referências bibliográficas complementares:
 - N. L. Biggs, *Discrete Mathematics*, Oxford University Press, 2nd Ed. (2002).
 - J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro 1999 (disponível na página da disciplina).