Álgebra Vectorial

Alejandro Zubiri

Mon Oct 14 2024

Contents

1	Esp	acio Vectorial	
1 2 3 4 5	1.1	Bases	
	1.2	Bases canónicas	
	1.3	Matriz de cambio de base	
	1.4	Dimensión	
	1.5	Coordenadas	
		1.5.1 Propiedades	
2	Sist	ema de vectores 4	
	2.1	Combinación lineal	
	2.2	Variedad lineal	
	2.3	Sistema generador	
3	Espacios Vectoriales Comunes		
	3.1	EV Común R^n	
	3.2	EV Común $M_{2\times 2}$	
	3.3	Polinomios	
4	Tip	os de sistemas 5	
5	Sub	pespacios Vectoriales 5	
	5.1	Propiedades	
	5.2	SEV como variedad lineal	
	5.3	SEV en forma paramétrica	
	5.4	SEV en forma implícita	
	5.5	Suma e intersección de subespacios	
		5.5.1 Intersección	
		5.5.2 Suma	

1 Espacio Vectorial

Un espacio vectorial es una terna $(V;+,\cdot)$ sobre un cuerpo \mathbb{K} , denominado $\mathbb{K}-\mathrm{EV}$. Donde V es un conjunto no vacío, + es una operación interna en V, y \cdot una operación de un elemento de V con uno de \mathbb{K} denominado producto por escalar.

$$+: V \times V \to V \qquad \quad \cdot: \mathbb{K} \times V \to V$$
 (1)

Para que sea un espacio vectorial siendo $u,v,w\in V$ y $c,t\in\mathbb{K},$ debe cumplir que:

- 1. La suma es asociativa: (u+v)+w=u+(v+w)
- 2. La suma es conmutativa: u + v = v + u
- 3. Existe el neutro para la suma: $\exists \bar{0} \in V/u + \bar{0} = u$
- 4. Existe inverso para la suma: $\forall u \in V \exists u^{-1}/u + u^{-1} = \bar{0}$
- 5. Producto por escalar es distributivo respecto a la suma: c(u+v) = cu+cv
- 6. (c+t)u = cu + tu
- 7. $(c \cdot t) \cdot u = c(tu)$
- 8. Existe neutro para producto: $\exists I \in V/uI = Iu = u, \forall u \in V$

1.1 Bases

Una base es un sistema de vectores libre que a su vez es un sistema generador. Para que se cumpla que un sistema S es una base, basta con comprobar las siguientes condiciones.

- La cardinalidad del sistema es igual a la dimensión del espacio.
- Es un sistema libre.
- El sistema es generador.

Teorema (Teorema). Todas las bases de un espacio vectorial finitamente generado (con base no infinite) no nulo tienen el mismo número de elementos.

1.2 Bases canónicas

Son aquellas bases "simplificadas" de cada espacio:

- \mathbb{R}^2 : $B_c = \{(1,0), (0,1)\}$
- $\mathbb{R}_2[x]$: $B_c = \{1, x, x^2\}$

1.3 Matriz de cambio de base

Definimos una matric C compuesta por las coordenadas de los vectores de la segunda base respecto a la primera base.

Si tenemos dos bases $B_1 = \{u_1, \ldots, u_n\}$ y $B_2 = \{e_1, \ldots, e_b\}$, podemos escribir la matriz que cambia de B_1 a B_2 como:

$$C = ([u_1]_{B_2}, \dots, [u_n]_{B_2})$$
(2)

Las coordenadas se escriben en columnas.

Si X y X' son las coordenadas de un $u \in V$ respecto a B_1 y B_2 , se cumple que:

$$X' = CX$$

$$X = C^{-1}X'$$
(3)

Estas se conocen como las ecuaciones de cambio de base.

1.4 Dimensión

La dimension n de un espacio vectorial es el número de elementos de una de sus bases.

Teorema (Teorema). Sea V un espacio vectorial de dimensión n:

- Un conjunto LI de n vectores es una base.
- Un conjunto generador de n vectores es una base.
- Los sistemas generadores tienen mínimo n vectores.
- Un sistema de vectores es generador si tiene n vectores LI.
- Los sistemas LI tienen máximo n vectores.
- El vector nulo $\bar{0}$ no pertenece nunca a una base.

1.5 Coordenadas

En un espacio vectorial V de dimensión n, las coordenadas de un vector \bar{v} con respecto a una base $\mathfrak{B}=(u_1,\ldots,u_n)$ son el conjunto de coeficientes (a_1,\ldots,a_n) tal que:

$$\bar{v}_{\mathfrak{B}} = a_1 u_1 + \dots a_n u_n \tag{4}$$

1.5.1 Propiedades

Si $[v]_B = (a_1, \dots, a_n), [u]_B = (b_1, \dots, b_b) \text{ y } r \in \mathbb{K}$:

- $[v]_B + [u]_B = [u+v]_B$
- $r[v]_B = [rv]_B$

2 Sistema de vectores

Un sistema de vectores es un conjunto finito de vectores que pertenecen a un espacio vectorial V:

$$S = \{u_1, u_2, \dots, u_n\} / u_i \in V \tag{5}$$

2.1 Combinación lineal

Decimos que un vector u es combinación linea de v_1, v_2, \dots, v_n si $\exists a_1, \dots, a_n \in \mathbb{K}$ que cumpla que:

$$u = a_1 v_1 + \dots + a_n v_n \tag{6}$$

Una combinación lineal es una forma de generar vectores.

2.2 Variedad lineal

Con k vectores finitos, la variedad lineal generada por $< u_1, u_2, \ldots, u_n >$ es el conjunto de todas las posibles combinaciones lineales. La cardinalidad de una variedad lineal es infinita, excepto la variedad lineal del elemento nulo: $<\bar{0}>=\bar{0}$

2.3 Sistema generador

Un sistema generador es un sistema de vectores cuya variedad puede generar todo el espacio vectorial:

$$\langle S \rangle = V$$
 (7)

3 Espacios Vectoriales Comunes

3.1 EV Común R^n

Un vector de \mathbb{R}^n es una lista de n elementos.

- \bullet +: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$
- $\bullet \ \cdot : R \times R^n \to R^n$
- Neutro: $\bar{0}$

3.2 EV Común $M_{2\times 2}$

De orden definido:

- $+: M_{2\times 2} \times M_{2\times 2} \rightarrow M_{2\times 2}$
- $\bullet : R \times M_{2 \times 2} \to M_{2 \times 2}$
- Neutro: $\bar{0}$

3.3 Polinomios

Definidos como $R_n[x]$, de la forma $ax^2 + bx + c$

- $+: R_n[x] \times R_n[x] \to R_n[x]$
- $\bullet : R \times R_n[x] \to R_n[x]$
- Neutro: $\bar{0}$

4 Tipos de sistemas

Un sistema **ligado** es aquel en el que algún vector es CL del resto. Si igualasemos al sistema a cero, tendríamos un **SCI**.

Un sistema **libre** es aquel donde todos los vectores son LI. Sería un sistema **SCD**.

El rango de una matriz de vectores es el número de vectores LI.

5 Subespacios Vectoriales

Un conjunto de vectores contenido en el espacio vectorial inicial. Deben cumplir las siguientes condiciones:

- Clausura en la suma.
- Clausura en el producto por escalar.
- El vector nulo está incluido

5.1 Propiedades

Sea ${\cal H}$ un subespacio vectorial:

- Una variedad lineal siempre es un SEV
- Los SEV triviales son $H_1 = \{\vec{0}\}$ y $H_2 = \{V\}$
- Tienen bases y dimensión
- $dim(H) \leq dim(V)$

5.2 SEV como variedad lineal

- $dim(\langle H \rangle) = rg(H)$
- Una base de $\langle H \rangle$ son los vectores LIs de H.

5.3 SEV en forma paramétrica

Ej:

$$H = \{(a, 1, b)/a, b \in \mathbb{R}\}\$$
(8)

- Tiene estructura de SEV
- Viene dado por parámetros

5.4 SEV en forma implícita

Ej:

$$\{(x,y,z)/x + y = 0, z = 0\}$$
(9)

- Estructura de SEV
- Las ecuaciones lineales
- Formado por las soluciones a las ecuaciones
- Siempre tiene la solución homogénes (vector nulo)
- dim(H) = dim(V) n eqs. LI

5.5 Suma e intersección de subespacios

5.5.1 Intersección

Denotada como $H\cap W,$ es el conjunto de vectores que pertenece tanto a H como a W:

$$H \cap W = \{ v/v \in H \land v \in W \} \tag{10}$$

Cumple que:

- $H \cap W$ es siempre SEV.
- $H \cap W$ es no vacío, ya que al menos tiene el vector nulo.
- $dim(H \cap W) \leq min(dim(W), dim(H))$

5.5.2 Suma

Denotada H+W, es el conjunto de vectores que se pueden expresar como una suma de un vector de H y otro de W:

$$H + W = \{v/v = u + e/u \in H \land e \in W\}$$

$$\tag{11}$$

• H + W tiene estructura de SEV.

- $\dim(H+W)=\dim(H)+\dim(W)-\dim(H\cap W)$ (Ecuación de Grassman).
- Si $H\cap W=\{\vec{0}\}$, entonces $H+W=H\bigoplus W$ (suma directa). Cada $v\in H\bigoplus W$ se puede expresar de forma única como un vector de H y de W.