L9 Query Execution & Optimization

Eugene Wu Fall 2015

Steps for a New Application

Requirements

what are you going to build?

Conceptual Database Design

pen-and-pencil description

Logical Design

formal database schema

Schema Refinement

fix potential problems, normalization

Physical Database Design

optimize for speed/storage

Optimization

App/Security Design

prevent security problems

Recall

Relational algebra

equivalence: multiple stmts for same query some statements (much) faster than others

Which is faster?

a. $\sigma_{v=1}(R X T)$

b. $\sigma_{v=1}(\sigma_{v=1}(R) \times T)$

|R| = |T| = 10 pages. 100? IM? # unique values in R = 1. 100? IM? * selectivity!

Overview of Query Optimization

SQL → query plan

How plans are executed

Some implementations of operators

Cost estimation of a plan

Selectivity

System R dynamic programming

All ideas from System R's "Selinger Optimizer" 1979

iPhones as a database "avg acceleration over the past hour" compute avg give me all data every reading avg reading 100Hz

Query Evaluation

Push vs Pull?

Push

Operators are input-driven

As operator (say reading input table) gets data, push it to parent operator:

Operators are demand-driven

If parent says "give me next result", then do the work

Are cursors push or pull?

Query Evaluation

Naïve execution (operator at a time)

read R

filter a>10 and write out read and project a

Cost: B + M + M

SELECT a FROMR WHERE a > 10

B # data pages

M # pages matched in WHERE clause

Could we do better?

Query Evaluation

Pipelined exec (tuple/page at a time) read first page of R, pass to $\boldsymbol{\sigma}$

filter a > 10 and pass to π

project a

(all operators run concurrently)

Cost: B

Note: can't pipeline some operators!

e.g., sort, some joins, aggregates why?

SELECT a FROMR WHERE a > 10

B # data pages

M # pages matched in

 $\sigma_{a>10}$

WHERE clause

Query Evaluation

What if R is indexed?

Hash index

Not appropriate

B+Tree index

use a>10 to find initial data page

scan leaf data pages

Cost: log_FB + M

SELECT a $\sigma_{a>10}$ FROMR WHERE a > 10

B # data pages

M # pages matched in WHERE clause

Access Paths

Choice of how to access input data is called the Access Path

file scan or

index + matching condition (e.g., a > 10)

Access Paths

Sequential Scan

doesn't accept any matching conditions

Hash index search key <a,b,c>

accepts conjunction of equality conditions on all search keys

e.g., a=1 and b=5 and c=5

will (a = 1 and b = 5) work? why?

Tree index search key <a,b,c>

accepts conjunction of terms of prefix of search keys

e.g., a > 1 and b = 5 and c < 5

will (a > I and b = 5) work?

will (a > 1 and c > 9) work?

How to pick Access Paths?

Selectivity

ratio of # outputs satisfying predicates vs # inputs

0.01 means I output tuple for every I 00 input tuples

Assume

attribute selectivity is independent

if selectivity(a=1) = 0.1, selectivity(b>3) = 0.6 selectivity(a=1 and b>3) = 0.1*0.6 = 0.06

How to pick Access Paths?

Hash index on <a, b, c>

a = I, b = I, c = I how to estimate selectivity?

- pre-compute attribute statistics by scanning data
 e.g., a has 100 values, b has 200 values, c has 1 value
 selectivity = 1 / (100 * 200 * 1)
- 2. How many distinct values does hash index have? e.g., 1000 distinct values in hash index
- 3. make a number up "default estimate" is the fancy term

System Catalog Keeps Statistics

System R

NCARD "relation cardinality" # tuples in relation

TCARD # pages relation occupies
ICARD # keys (distinct values) in index
NINDX pages occupied by index

min and max keys in indexes

Statistics were expensive in 1979!

Super elegant: catalog stored in relations too!

What Optimization Options Do We Have?

Access Path
Predicate push-down
Join implementation
Join ordering

In general, depends on operator implementations. So let's take a look

Predicate Push Down

Which is faster if B+Tree index: (a) or (b)?

(a) log_F(B) + M pages

(b) B pages

It's a Good Idea, especially when we look at Joins

Projection with DISTINCT clause

need to deduplicate e.g., $\pi_{rating}Sailors$

Two basic approaches

Sort: fundamental database operation sort on rating, remove dups on scan of sorted data

partition into N buckets sort each bucket and remove dups

Index on projected fields scan the index pages, avoid reading data

The Join

Core database operation

join of 100 tables common in enterprise apps

Join algorithms is a large area of research

e.g., distributed, temporal, geographic, multi-dim, range, sensors, graphs, etc

Discuss three basic joins

nested loops, indexed nested loops, hash join

Best join implementation depends on the query, the data, the indices, hardware, etc

Datasets

 $\begin{tabular}{ll} from collections import default dict\\ from random import randint \\ \end{tabular}$

outer \bowtie_1 inner

outer JOIN inner ON outer.1 = inner.1

Nested Loops Join

for row in outer:
 for irow in inner:
 if row[0] == irow[0]: # could be any check
 yield (row, irow)

Very flexible

Equality check can be replaced with any condition Incremental algorithm

Cost: M + MN

Is this the same as a cross product?

Indexed Nested Loops Join

for row in outer:
 for irow in index.get(row[0], []):
 yield (row, irow)

Slightly less flexible

Only supports conditions that the index supports Assume hash index, 50 tuples per page, equality join on \underline{sid} , 5% of outer tuples match Cost: M + (50M*0.05*Ipage)

Sort Merge Join

Sort outer and inner tables on join key
Cost: 2-3 scans of each table
Merge the tables and compute the join
Cost: I scan of each table

Overall Properties

cost: 3(M+N) to 4(M+N)

results are sorted

highly sequential access

(weapon of choice for very large datasets)

Quick Recap

Single operator optimizations

Access paths

Primary vs secondary index costs

Projection/distinct

Predicate/project push downs

2 operators aka Joins

Nested loops, index nested loops, sort merge

Selectivity estimation

Statistics and simple models

Where we are

We've discussed

Optimizations for a single operator Different types of access paths, join operators Simple optimizations e.g., predicate push-down

What about for multiple operators? System R Optimizer

Selinger Optimizer

Granddaddy of all existing optimizers don't go for best plan, go for least worst plan

2 Big Ideas

I. Cost Estimator

"predict" cost of query from statistics Includes CPU, disk, memory, etc (can get sophisticated!) It's an art

2. Plan Space

avoid cross product push selections & projections to leaves as much as possible only join ordering remaining

Selinger Optimizer

Granddaddy of all existing optimizers
don't go for best plan, go for least worst plan

2 Big Ideas

```
Accord Path Solution

In a Balational Pathase management System

P. Orifithin Salinger

N. Laterham

L. Later
```

Cost Estimation

 $estimate(operator, inputs, stats) \rightarrow cost$

estimate cost for each operator
depends on input cardinalities (# tuples)
discussed earlier in lecture
estimate output size for each operator
need to call estimate() on inputs!
use selectivity, assume attributes are independent

Try it in PostgreSQL: EXPLAIN <query>;

Estimate Size of Output

SELECT *
FROM R1, ..., Rn
WHERE term₁ AND ... AND term_m

Query input size |RI| * ... * |Rn|Term selectivity

col = v I/ICARD_{col}

 $\begin{array}{ll} \text{col I} = \text{col2} & \text{I/max}(\text{ICARD}_{\text{col1}}, \text{ICARD}_{\text{col2}}) \\ \text{col} > \mathbf{v} & \left(\text{max}_{\text{col}} - \mathbf{v}\right) / \left(\text{max}_{\text{col}} \text{-min}_{\text{col}}\right) \end{array}$

Query output size

|RI|*...*|Rn| * term_I selectivity * ... * term_m selectivity

Estimate Size of Output

1000 Cardinality Dept: 10 Cardinality

Cost(Emp join Dept)

Naïve

total records 1000 * 10 = 10,000 Selectivity of Emp 1 / 1000 I 00.0 Selectivity of Dept 1 / 10 = 0.1 Join Selectivity I / max(Ik, I0) = 0.00I10,000 * 0.001 Output Card:

Key, Foreign Key join

Output Card: 1000

note: selectivity defined wrt cross product size

Try it out

R.sid = S.sid selectivity 0.01 R.bid selectivity 0.05

|R| = M

|S| = N

M + MN Cost: selection is pipelined

outputs: 0.0005MN

SELECT * FROM R, S WHERE R.sid = S.sid

AND R.bid = 10

 $\sigma_{R.bid} \, = \, 10$ \bowtie_{sid}

S

SELECT

FROM

Try it out

SELECT R.sid = S.sid selectivity 0.01 FROM R.bid selectivity 0.05 WHERE R.sid = S.sid

|R| = M

|S| = N

Cost: ?????

outputs: 0.0005MN

 \bowtie_{sid} $\sigma_{R.bid} = 10$ S R

R, S

AND R.bid = 10

Try it out

R.sid = S.sid selectivity 0.01 R.bid selectivity 0.05

|R| = M

|S| = N

Cost: M + (0.05MN)

outputs: 0.0005MN

 \bowtie_{sid} $\sigma_{R.bid} = 10$ R

R, S

AND R.bid = 10

WHERE R.sid = S.sid

Selinger Optimizer

Granddaddy of all existing optimizers don't go for best plan, go for least worst plan

- Cost Estimator
 - "predict" cost of query from statistics Includes CPU, disk, memory, etc (can get sophisticated!)
 - It's an art
- · Plan Space

avoid cross product

push selections & projections to leaves as much as possible

only join ordering remaining

Join Plan Space

A⋈**B**⋈**C**

How many (AB)C (AC)B (BC)A (BA)C (CA)B (CB)A plans? A(BC) A(CB) B(CA) B(AC) C(AB) C(BA)

parenthetizations * #strings

N!

Join Plan Space

parenthetizations * #strings

A: (A) AB: (AB)

ABC: ((AB)C), (A(BC))

ABCD: (((AB)C)D), ((A(BC))D), ((AB)(CD)), (A((BC)D)), (A(B(CD)))

paren(n) choose(2(N-1), (N-1)) / N

(choose(2(N-1), (N-1)) / N) * N!

N=10 #plans = 17,643,225,600

The Art of Computer Programming, Volume 4A, page 440-450

Selinger Optimizer

Simplify the set of plans so it's tractable and ~ok

- 1. Push down selections and projections
- 2. Ignore cross products (S&T don't share attrs)
- 3. Left deep plans only
- 4. Dynamic programming optimization problem
- 5. Consider interesting sort orders

Selinger Optimizer

parens(N) = I

Only left-deep plans
ensures pipelining

Dynamic Programming Idea: If considering ((ABC)DE)

compute best (ABC), cache, and reuse figure out best way to combine with (DE)

Dynamic Programming Algorithm compute best join size 1, then size 2, ... ${\sim}O\left(2^N\right)$

Reducing the Plan Space

```
Dynamic Programming Algorithm
  compute best join size 1, then size 2, ...

R = relations to join
  N = |R|
  for i in {1,... N}
    for S in {all size i subsets of R}
        bestjoin(S) = S-A join A
        where A is single relation that minimizes:
            cost(bestjoin(S-A)) +
            min cost to join A to (S-A) +
            min access cost for A
```

Selinger Algorithm i = I

bestjoin(ABC), only nested loops join

i = 1

A = best way to access A

B = best way to access B

C = best way to access C

cost: N relations

Selinger Algorithm i = 2

bestjoin(ABC)

: - '

= 2

A,B = (A)B or (B)A

A,C = (A)C or (C)A

 $B,C = (B)C \quad or (C)B$

cost: choose(N, 2) * 2

Selinger Algorithm i = 3

bestjoin(ABC)

i = 3

A,B,C = bestjoin(BC)A or

bestjoin(AC)B or bestjoin(AB)C

cost: choose(N, 3) * 3

Selinger Algorithm Cost

cost = # subsets * # options per subset set of relations R N = |R|

#subsets = choose(N, 1) + choose(N, 2) + choose(N, 3)...

- Z··

#options = k < N ways to remove a relation A +

I way to join A with R-A (if only NLJ)

< N

Cost = N*2^N N = 12 49152

Summary

Single operator optimizations

Access paths

Primary vs secondary index costs

Projection/distinct

Predicate/project push downs

2 operators aka Joins

Nested loops, index nested loops, sort merge

Full plan optimizations

Naïve vs Selinger join ordering

Selectivity estimation

Statistics and simple models

Summary

Query optimization is a deep, complex topic

Pipelined plan execution

Different types of joins

Cost estimation of single and multiple operators

Join ordering is hard!