Notiz zur komplexen Analysis

1 C*-Topologie

Komplexe Zahl \mathbb{C} mit $\mathbb{C}^* := \mathbb{C} \cup \{\infty\}$

Für $z \in \mathbb{C}$, es ist z = x + yi mit $\operatorname{Re} z := x, \operatorname{Im} z := y \in \mathbb{R}$ und $\bar{z} := x - yi$.

Eigenschaften:

1. $z\bar{z} = \bar{z}z = x^2 + y^2 =: |z|^2$.

2. $z_n \xrightarrow{\mathbb{C}} z \iff d(z_n, z) \to 0 \iff \operatorname{Re} z_n \to \operatorname{Re} z \wedge \operatorname{Im} z_n \to \operatorname{Re} z$.

 $3. \ \ f(x+y\mathrm{i}) = u+v\mathrm{i} \ \mathrm{stetig} \ \mathrm{in} \ z_0 \ \ \Leftrightarrow \ \ u(z_n) \to u(z_0) \ \wedge \ v(z_n) \to v(z_0) \ \mathrm{f\"{u}r} \ z_n \to z_0.$

4. $(\mathbb{C}, |\bullet|)$ ist vollständiger normierter Raum (Banachraum).

 $5. \ (z_n)_{n\in\mathbb{N}}\in\mathbb{C}^* \ \mathrm{mit} \ z_n\to\infty \quad :\Leftrightarrow \quad \forall R\in\mathbb{R}_+ \ \exists N_R\in\mathbb{N} \ \forall n\in\mathbb{N}_{\geqslant N_R} \\ \vdots \ |z_n|>R \quad \Leftrightarrow \quad \frac{1}{z_n}\to 0.$

6. Stereographische Projektion:

Für $S\subseteq\mathbb{R}^3$ Sphäre mit Nordpol (0,0,1) und Südpol (0,0,0), $(\xi,\eta,\zeta)\in S$ Punkt auf Sphäre sowie $(x,y)\in\mathbb{C}$ komplexe Zahl gilt

i. Analytischer Zusammenhang

$$\frac{\xi - 0}{x - 0} = \frac{\eta - 0}{y - 0} = \frac{\zeta - 1}{0 - 1}, \quad \xi = \frac{x}{x^2 + y^2 + 1}, \quad \eta = \frac{y}{x^2 + y^2 + 1}, \quad \zeta = \frac{x^2 + y^2}{x^2 + y^2 + 1}.$$

ii. Geometrischer Zusammenhang

- Kreise in $S \longleftrightarrow Verallgemeinerte Kreise (Kreise+ Gerade) in <math>\mathbb C$

1

Winkel werden erhalten

Also sind S und $\mathbb{C}*$ homöomorph.

Affine Abbildung $f\colon \mathbb{C}^* \to \mathbb{C}^*, z\mapsto w=az+b$ mit $a\neq 0$ und $a,b\in \mathbb{C}$ Spezialfälle:

- 1. Parallelverschiebung a = 1, w = z + b.
- 2. Drehung um Winkel β um Ursprung |a|=1, b=0, $w=\mathrm{e}^{\mathrm{i}\beta}z$.
- 3. Stauchung/Streckung $a \in \mathbb{R}$, b = 0, w = az.

Allgemeiner Fall: $w = az + b = re^{i\beta}z + b$ also führe obige Änderungen durch.

Eigenschaften: Kreise & Winkel erhalten, bijektiv, stetig.

Kehrungsabbildung
$$f \colon \mathbb{C}^* \to \mathbb{C}^*, f(r\mathrm{e}^{\mathrm{i}\beta}) \coloneqq \frac{1}{r}\mathrm{e}^{-\mathrm{i}\beta}$$

Dabei passieren: 1. Inversion am Kreis, 2. Spieglung am x-Achse.

Also
$$f(z) = \frac{1}{z}$$
, $f(0) = \infty$, $f(\infty) = 0$.

Eigenschaften: Kreise & Winkel erhalten, bijektiv, stetig.

 $\mbox{M\"obiustransoformation} \ f \colon \mathbb{C}^* \to \mathbb{C}^*, z \mapsto \frac{az+b}{cz+d}, \infty \mapsto \frac{a}{c}, -\frac{d}{c} \mapsto \infty \ \mbox{mit} \ ad-bc \neq 0$ Eigenschaften:

2

1.
$$f \sim \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Gl}_2(\mathbb{C})$$
 und $f^{-1} \sim \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in \operatorname{Gl}_2(\mathbb{C})$

2. Kreise & Winkel erhalten, bijektiv, stetig

3. Freiheitsgrad 3, somit für $\{z_1, z_2, z_3\}$ und entsprechend $\{w_1, w_2, w_3\}$ die Abbildung schon festgestellt:

$$\frac{w - w_1}{w - w_2} / \frac{w_3 - w_1}{w_3 - w_2} = \frac{z - z_1}{z - z_2} / \frac{z_3 - z_1}{z_3 - z_2}$$

2 Mehrwertige Abbildung & Riemannsche Fläche

Beispiel mit **Wurzelfunktion** bzgl. $n \in \mathbb{N}_{>1}$:

$$\text{F\"{u}r}\,w,z \in \mathbb{C} \colon \quad w = \sqrt[n]{z} \quad : \Leftrightarrow \quad w^n = z \text{,} \quad \text{damit} \quad w_k = |z|^{\frac{1}{n}} \mathrm{e}^{\mathrm{i}\left(\frac{1}{n}\mathrm{arg}\,z + \frac{2\pi k}{n}\right)} \quad \text{f\"{u}r}\,k \in \{0,\dots,n-1\}.$$

Modifikation des Definitionsbereichs, also "Verkleben einiger komplexen Ebene auf vernünftiger Weise", damit eine Abbildung definiert werden kann.

Details werden hier überspringen...

3 Komplexe Ableitung: Cauchy-Riemann-Gleichungen

 $f \colon \mathbb{C} \to \mathbb{C}, \, x + y \mathrm{i} \mapsto u + v \mathrm{i}$ entspricht $\tilde{f} \colon \mathbb{R}^2 \to \mathbb{R}^2, \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \mapsto \left(\begin{smallmatrix} u(x,y) \\ v(x,y) \end{smallmatrix} \right)$, also notationsmäßig:

$$\tilde{f} \! \left(\begin{array}{c} x \\ y \end{array} \right) \! = \! \left(\begin{array}{c} u(x,y) \\ v(x,y) \end{array} \right) \! = \! f(x+y\mathrm{i}) = \! f(z).$$

Für $U \subseteq \mathbb{C}$ offen und $f: U \to \mathbb{C}$ heißt (komplex-)differenzierbar in $z_0 \in U$

 $:\Leftrightarrow \quad \mathsf{Der}\,\mathsf{Grenzwert} \quad f'(z_0) = \lim_{\mathbb{C}\ni h\to 0} \frac{f(z_0+h) - f(z_0)}{h} \quad \mathsf{existiert}.$

$$\Leftrightarrow \quad f(z_0+h) = f(z_0) + g_{z_0}h + \mathfrak{o}(|h|) \text{ für ein } g_{z_0} \in \operatorname{Hom}_{\mathbb{C}}(U,\mathbb{C}).$$

 $\Leftrightarrow \quad \tilde{f}\Big(\begin{array}{c} x \\ y \end{array}\Big) = \Big(\begin{array}{c} u(x,y) \\ v(x,y) \end{array}\Big) \text{ ist Frechét-diff.bar \& es gelten die Cauchy-Riemann-Gleichungen}$

$$u_x = v_y \quad \land \quad u_y = -v_x.$$

Eigenschaften unter Cauchy-Riemann-Gleichungen:

- 1. Jacobi-Matrix $J_{\tilde{f}} = \begin{pmatrix} u_x & -v_x \\ u_y & v_y \end{pmatrix} = r \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}$ ist Drehung + Stauchung/Streckung, insb. erhält sie Kreise & Winkel.
- 2. Annahme: u,v sind 2-fach stetig partiell diff.bar, dann gilt $\Delta u = \Delta v = 0$, also sind u und v harmonisch.
- 3. Für z=x+yi und $\bar{z}=x-y$ i, also $x=\frac{1}{2}(z+\bar{z})$ und $y=\frac{1}{2\mathrm{i}}(z-\bar{z})$, definiere

$$\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \quad \text{und} \quad \frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

also

$$\frac{\partial f}{\partial z} = \frac{\partial (u + vi)}{\partial z} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right),$$

$$\frac{\partial f}{\partial \bar{z}} = \frac{\partial (u + vi)}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right).$$

Dann sehen wir: f komplex differenzierbar $\Leftrightarrow \frac{\partial f}{\partial z} = f'_{\mathbb{C}}$ und $\frac{\partial f}{\partial \bar{z}} = 0$.

Beispiel komplex (nicht-)differenzierbarer Funktionen:

- 1. $\mathrm{id}_{\mathbb{C}}$ Identitätsabbildung is differenzierbar, da $\frac{\partial z}{\partial z}=1$ und $\frac{\partial z}{\partial \bar{z}}=0$.
- 2. $z\mapsto \bar{z}$ Konjugatsabbildung ist nicht differenzierbar, da $\frac{\partial z}{\partial z}=0$ und $\frac{\partial z}{\partial \bar{z}}=1\neq 0$.
- 3. $f(z)=|z|^2$ ist nicht differenzierbar, da $\frac{\partial z}{\partial \bar{z}}=z\neq 0$
- 4. $(z^n)' = nz^{n-1}$ Monome sind differenzierbar.
- 5. Potenzreihe $f(z) = \sum_{k=0}^{\infty} a_n z^k$ haben die Eigenschaften:
 - i. Konvergiert für $|z| < R := \limsup_{k \to \infty} \sqrt[-k]{|a_k|}$
 - ii. Konvergiert gleichmäßig für $z \in \overline{B_r}$ mit r < R.
 - iii. Konplex differenzierbar in |z| < R mit $f'(z) = \sum_{k=1}^{\infty} k a_k z^{k-1}$.

Beispiele dazu:

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}, \quad \sin z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}, \quad \cos z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$$

wobei $e^{iz} = \cos z + i \sin z$, also $\sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$ sowie $\cos z = \frac{1}{2} (e^{iz} + e^{-iz})$.

Für $U \subseteq \mathbb{C}$ und $f: U \to \mathbb{C}$ sagt man

- f ist **holomorph in** $z_0 \in U$ g.d.w. f in einer kleiner Umbegung von z_0 komplex differenzierbar ist.
- f ist **holomorph in** U, geschrieben $f \in A(U)$, g.d.w. f holomorph in jedem Punkt von U ist.
- f ist **ganz**, g.d.w. f ist holomorph auf ganzem \mathbb{C} .

4 Zusammenhängende Mengen

Für $G \subseteq \mathbb{C}$ eine offene Teilmenge sagt man

- G heißt zusammenhängend, g.d.w. G erlaubt keine Zerlegung von disjunkten nicht-leeren Mengen.
- G heißt **polygonal zusammenhängend**, g.d.w. wenn für jedes $a,b \in G$ immer einen endlichen Polygonzug $\Gamma_{ab} \subseteq G$ existiert.
- -G heißt ein **Gebiet**, g.d.w. G offen und zusammenhängend ist.

Topologie liefert: $\mathbb C$ ist lokal zusammenhängend (jeder Punkt hat Umgebungsbasis aus offenen zusammenhängenden Mengen), also sind beide Begriffe in $\mathbb C$ äquivalent.

Sei nun $F \subseteq (M,d)$ eine Teilmenge eines metrischen Raums. Man definiert

- F ist **folgenkompakt**, g.d.w. jede Folge $(x_n)_{n\in\mathbb{N}}\subseteq F$ hat mind. einen Häufungspunkt in F.
- F ist (überdeckungs)kompakt, g.d.w. jede offene Überdeckung eine endliche Teilüberdeckung erlaubt.

Wegen $\mathbb{C} \cong \mathbb{R}^2$ besagt der Satz von Heine-Borel, dass für beide Begriffe für Teilmengen von \mathbb{C} äquivalent sind.

Folgerung. Für ein Gebiet $G \subseteq \mathbb{C}$ und jedes $a, b \in G$ ist jeder endliche Polygonzug $\Gamma_{ab} \subseteq G$ kompakt.

Satz. Für ein Gebiet $G \subseteq \mathbb{C}$ und $f \in \mathcal{A}(G)$ sind folgende Eigenschaften äquivalent:

i.
$$f' \equiv 0$$
; ii. $\operatorname{im} f = \operatorname{const}$; iii. $\operatorname{Re} f = \operatorname{const}$; iv. $|f| = \operatorname{const}$; v. $f = \operatorname{const}$.

Beweis. " $v. \Rightarrow Rest$ " und "i. $\Rightarrow v$." sind klar.

"ii. \Rightarrow v.": Betrachte f=u+vi und n.V. v konstant, also $\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}=0$. Dann mit C-R-Gl. gilt $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=0$ sowie $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=0$, also Frechét-Ableitung von $\begin{pmatrix} u\\v \end{pmatrix}$ ist null, also f konstant. Analog "iii. \Rightarrow v." bzw. "iv. \Rightarrow v.".

5 Komplexe Kurvenintegral

Eine **Jordansche Kurve der Klasse** C^1 in $\mathbb C$ ist eine Abbildung $\gamma \in C^1([0,T],\mathbb C)$, die injektiv bis auf Randpunkten ist und deren Ableitung γ' nirgends 0 ist. Mit $a:=\gamma(0)$ und $b:=\gamma(T)$ bezeichnen wir den Graph der jordanschen Kurve als Γ_{ab} und dies wird als gerichtet verstanden.

Für $\gamma:[0,T]\to\Gamma_{ab}$ Jordansche Kurve und $f:\Gamma_{ab}\to\mathbb{C}$ stetig definiere das **Kurvenintergral** von f bzgl. Γ_{ab} als

$$\int_{\Gamma_{ab}} f(z) dz := \int_0^T (f \circ \gamma)(t) \gamma'(t) dt.$$

Eigenschaften des Kurvenintegrals:

- 1. linear, additiv, gerichtet
- 2. zerlegbar als zwei Integrale, also reeller Teil + imaginärer Teil
- 3. Abschätzen des Integrals

$$\left| \int_{\Gamma_{ab}} f(z) dz \right| \leq \max_{z \in \Gamma_{ab}} |f(z)| \cdot l(\Gamma_{ab})$$

wobei $l(\Gamma_{ab})$ die Länge der Kurve bezeichnet.

4. Newton-Leibniz falls Stammfunktion existiert, also

$$\int_{\Gamma_{ab}} f'(z) dz = f(b) - f(a).$$

5. Aus 4.: Falls a=b, ist das Kurvenintegral bzgl. einer Ableitungsfunktion immer 0.

6 Der Integralsatz von Cauchy

Satz. Cauchy-Integralsatz für Dreiecke. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $\Delta \subseteq G$ ein Simplex aus 3 Punkten. Für jedes $f \in \mathcal{A}(G)$ gilt dann

$$\oint_{\partial \triangle} f(z) dz = 0.$$

Damit kann man folgenden Satz zeigen:

Satz. In sternformigen Gebieten besitzt jede holomorphe Funktion eine Stammfunktion, konkret sei $a \in G$ ein zentraler Punkt, dann gilt für jedes $z \in G$

$$F(z) := \int_{\overline{a}\overline{z}} f(u) du \in \mathcal{A}(G)$$
 und $F'(z) = f(z)$.

Folgerung. Für $G \subseteq \mathbb{C}$ ein sternformiges Gebiet und $f < \mathcal{A}(G)$ gilt

1. Für jeden geschlossenen C^1 -Pfad $\Gamma \subseteq G$ gilt

$$\oint_{\Gamma} f(z) d(z) = 0.$$

2. Für jedes $a, b \in G$ und zwei Wege $\Gamma_{ab}, \tilde{\Gamma}_{ab} \subseteq G$ gilt

$$\oint_{\Gamma_{ab}} f(z) d(z) = \oint_{\tilde{\Gamma}_{ab}} f(z) d(z)$$

also ist das Wegintegral bzgl. einer holomorphen Funktion in einem sternformigen Gebiet unabhängig vom Pfad.

Für ein $w \in \mathbb{C}$ und $\Gamma \subseteq G$ ist die **Windungszahl/Umlaufzahl** definiert als

$$\nu(w,\Gamma) := \frac{1}{2\pi i} \oint \frac{1}{z - w} dz.$$

Ein Punkt $x \in G$ heißt ein Nullpfad. Zwei Pfade Γ_{ab} , $\tilde{\Gamma}_{ab} \subseteq G$ heißen **homotop**, g.d.w. sie durch endlich viele elementare Deformationen ineinander übergeben.

Eigenschaft: Für G sternförmig und Γ einen geschlossenen Pfad ist $\Gamma \subseteq G$ homotop zum Nullpfad, g.d.w. $\forall w \in G$: $\nu(w,\Gamma) = 0$.

Satz. Deformationssatz. Sei $G \subseteq \mathbb{C}$ ein Gebiet, $f \in \mathcal{A}(G)$ und Γ_{ab} , $\tilde{\Gamma}_{ab} \subseteq G$ homotop. Dann sind Kurvenintegral bzgl. dieser Zwei Kurven auf f gleich, also

$$\int_{\Gamma_{ab}} f(z) dz = \int_{\tilde{\Gamma}_{ab}} f(z) dz.$$

Ein Gebiet $G \subseteq \mathbb{C}$ heißt **einfach zusammenhängend**, g.d.w. jeder geschossene Pfad homotop zum Nullpfad ist. Anschaulich hat G keine Löcher.

Für ein Gebiet $G \subset \mathbb{C}$ gilt dann die Äquivalenz:

- 1. G ist einfach zusammenhängend.
- 2. $\forall w \notin G \forall \Gamma \subseteq G$ geschlossen: $\nu(w, \Gamma) = 0$.
- 3. $\forall \Gamma \subseteq G$ geschlossen $\forall f \in \mathcal{A}(G)$: $\oint_{\Gamma} f(z) dz = 0$.
- 4. $\forall f \in \mathcal{A}(G) \setminus \{0\} \exists g \in \mathcal{A}(G): f(z) = e^{g(z)}.$

Bemerkung. Zusammenfassung für Integralsatz von Cauchy

Für ein Gebiet $G \subseteq \mathbb{C}$ und $f \in \mathcal{A}(G)$ gilt:

- 1. Falls f eine stetige differenzierbare Stammfunktion F besitzt, dann gilt die Formel von Newton-Leibniz. Hier genügt $f \in C(G, \mathbb{C})$.
- 2. $\forall \triangle \subseteq G$ 3er-Simplex: $\oint_{\partial \triangle} f(z) d(z) = 0$.
- 3. Falls G sternförmig bzgl. $a \in G$ ist, dann hat f eine holomorphe Stammfunktion F und es gilt $F(z) = \int_{\Gamma_{az}} f(u) \mathrm{d}u$ für jedes $z \in G$. Zudem sind Kurvenintegrale von allen geschlossenen Kurven Null.
- 4. Falls G einfach zusammenhängend ist, dann hat f eine holomorphe Stammfunktion F und es gilt $F(z) = \int_{\Gamma_{az}} f(u) \mathrm{d}u$ für jedes $a, z \in G$. Zudem sind Kurvenintegrale von allen geschlossenen Kurven Null.

7 Die Formel von Cauchy

Satz. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f \in \mathcal{A}(G)$. Sei $a \in G$ mit $\overline{U_{\varepsilon}(a)} \subseteq G$ für ein $\varepsilon \in \mathbb{R}_+$. Sei $\Gamma \subseteq G \setminus \{0\}$ homotop zum einfachen mathematisch positiven Umlauf von $\partial U_{\varepsilon}(a)$. Dann gilt

$$f(a) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{z - a} dz.$$

Beweis: $g(z) := \frac{f(z)}{z-a} \in \mathcal{A}(G \setminus \{a\})$, daher $\oint_{\Gamma} \frac{f(z)}{z-a} \mathrm{d}z = \oint_{\Gamma} g(z) \mathrm{d}z = \oint_{\Gamma} \frac{f(a)}{z-a} \mathrm{d}z + \oint_{\Gamma} \frac{f(z)-f(a)}{z-a} \mathrm{d}z$ wobei erster Term ist $2\pi\mathrm{i}\,f(a)$ und zweiter Term konvergiert für $\varepsilon \to 0$ gegen 0.

Satz. Mittelwertsformel. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f \in \mathcal{A}(G)$. Sei $a \in G$ mit $\overline{U_{\varepsilon}(a)} \subseteq G$ für ein $\varepsilon \in \mathbb{R}_+$. Dann gilt

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{i\theta}) d\theta.$$

Beweis durch Einsetzen der kanonischen Parametrisierung von $\partial U_{\varepsilon}(a)$.

Für $U \subseteq \mathbb{C}$ heißt eine Funktion $f: U \to \mathbb{C}$ analytisch im Punkt $a \in U$, g.d.w. f hat eine eindeutige Potenzreihe-Entwicklung im Punkt $a. f: U \to \mathbb{C}$ heißt analytisch in U, g.d.w. f analytisch in jedem Punkt in U.

Eigenschaften:

- 1. Eine analytische Funktion ist beliebig oft differenzierbar, insbesondere auch holomorph.
- 2. Für die Potenzreihe in a gilt $c_0 = f(a)$, $c_k = \frac{1}{k!} f^{(k)}(a)$.
- 3. Für Produkt von analytischen Funktionen ist die Potenzreihe das Faltungsprodukt der beiden Potenzreihen, insb. ist die Konvergenzradius das Minimum der beiden Konvergenzradien.

Satz. Sei $G \subseteq \mathbb{C}$ ein Gebiet. Dann ist $f \in \mathcal{A}(G)$, g.d.w. f analytisch auf G, d.h. für jedes $a \in G$ ist

$$f(z) = c_{0,a} + \sum_{k=1}^{\infty} c_{k,a}(z-a)^k$$

wobei

$$c_{n,a} := \frac{1}{2\pi i} \oint_{\partial U_r(a)} \frac{f(z)}{(z-a)^{n+1}} dz$$

mit $\partial U_r(a) \subseteq G$.

Es gelten dazu zwei Eigenschaften:

- 1. Mit R_a dem Konvergenzradius ist $R_a \geqslant \operatorname{dsit}(a, \partial G)$.
- 2. Abschätzung für Koeffizienten: Falls $\sup_{z \in G} |f(z)| \leq M$ ist $|c_n(a)| \leq M \cdot r^{-n}$ für jedes $r < R_a$.

Folgerung aus 2:

Satz. Liouville. Jede beschränkte ganze Funktion ist eine konstante Funktion.

Variante zur Charakterisierung von Polynomen: kommt irgendwann...

Wir entwickeln ein neues Kriterium für die Holomorphie einer Funktion, welches die Umkehrung der Satz von Cauchy für Dreiecke darstellt:

Satz. Morera. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f: G \to \mathbb{C}$ stetig. Falls es gilt

$$\forall \triangle \subseteq G \text{ 3-er Simplex: } \oint_{\partial \triangle} \! f(z) \mathrm{d}z = 0$$

dann ist $f \in \mathcal{A}(G)$.

Beweis: Für $a \in G$ beliebig und ein kleines $\varepsilon \in \mathbb{R}_{>0}$ ist $U_{\varepsilon}(a)$ sternförmig, und die Bedingung an f gerantiert, dass f in $U_{\varepsilon}(a)$ eine holomorphe Stammfunktion F besitzt. F holomorph in a, daher analytisch in a, daher beliebig oft differenzierbar in a, damit insb. f auch differenzierbar in a.

Anwendung von Morera: Spieglungsprinzip...

8 Nullstellen analytischer Funktionen

Sei $G \subseteq \mathbb{C}$ ein gebiet und $f \in \mathcal{A}(G)$.

Wir schreiben $Z(f) := \{a \in G \mid f(a) = 0\}$ als die Menge der Nullstellen von f in G.

Definition. Ein $a \in Z(f)$ heißt eine **Nullstelle der Ordnung** $m \in \mathbb{N}$, g.d.w. eine der folgenden äquivalenten Bedingungen gilt:

- i. $f(a) = f'(a) = \cdots = f^{(m-1)}(a) = 0$ und $f^{(m)}(a) \neq 0$.
- ii. f hat in $U_{\varepsilon}(a)$ die Potenzreihe-Entwicklung $f(z) = \sum_{k=m}^{\infty} c_{k,a} (z-a)^k$ mit $c_{m,a} \neq 0$.
- iii. Für ein $g \in \mathcal{A}(U_{\varepsilon}(a))$ mit $a \notin Z(g)$ ist $f(z) = (z-a)^m g(z)$ in $U_{\varepsilon}(a)$.
- iv. Der Grenzwert $\lim_{z\to a} (z-a)^{-m} f(z)$ existiert und ist nicht 0.

Eigenschaften von Nullstellen:

- 1. Multiplikativität, also falls a ist Nullstelle d.O. m bzgl. f und Nullstelle d.O. n bzgl. h, dann ist a Nullstelle d.O. $m \cdot n$ bzgl. $f \cdot h$.
- 2. Falls $a \in Z(f)$ und $f \in \mathcal{A}(U_{\varepsilon}(a))$ dann ist
 - entweder $f(z) \equiv 0$ in $\mathcal{A}(U_{\varepsilon}(a))$
 - oder a ist Nullstelle endlicher Ordnung und damit ist a eine isolierte Nullstelle i.S.v. $f(z) = (z-a)^m g(z)$ in $U_{\varepsilon}(a)$ für ein $g \in \mathcal{A}(U_{\varepsilon}(a))$ mit $a \notin Z(g)$.

Umgekehrt falls eine Nullstelle $a \in Z(f)$ isoliert ist, d.h. es existiert $g \in \mathcal{A}(U_{\varepsilon}(a))$ mit $g(a) \neq 0$ und $f(z) = (z-a)^m g(z)$, dann ist wegen Stetigkeit $g \neq 0$ in $U_{\varepsilon}(a)$, und somit $f(z) \neq 0$ für jedes $z \in U_{\varepsilon}(a) \setminus \{0\}$. Damit erhalten wir

Folgerung. Nullstellen endlicher Ordnung sind genau isolierte Nullstellen.

Damit erhält man:

Satz. Identitätssatz. Sei G ein Gebiet und $f \in \mathcal{A}(G)$ mit $\operatorname{acc}(Z(f)) \cap G \neq \emptyset$, also Schnitt der Häufungspunkte mit G ist nicht leer. Dann ist $f \equiv 0$.

Beweisstrategie: Schreibe $S := \mathrm{acc}(Z(f)) \cap G \neq \emptyset$. Zeige $S \subseteq Z(f)$ und damit ist S = Z(f) also S abg., und zeige dazu S ist offen. dann ist S = G, da G gebiet.

Folgerung. Sei G ein Gebiet, $M \subseteq G$ sodass $\operatorname{acc}(M) \cap G \neq \emptyset$. Falls $f, g \in \mathcal{A}(G)$ die Bedingung $f|_M = g|_M$ erfüllt, dann ist f = g.

Beweis mit dem Identitätssatz angewandt auf h := f - g.

Definition. Seien $G, \tilde{G} \subseteq \mathbb{C}$ zwei Gebiete mit $G \subseteq \tilde{G}$. Dazu sei $f \in \mathcal{A}(G)$ und $\tilde{f} \in \mathcal{A}(\tilde{G})$. \tilde{f} heißt eine **analytische Fortsetzung** von f, g.d.w. es gilt $\tilde{f}|_{G} = f$.

Existenz einer analytischen Fortsetzung ist nicht unbedingt gegeben, aber im Fall von Existenz ist dies eindeutig nach dem Identitätssatz.

Beispiel: Spielglungsprinzip...

Beispiel: $f(z)=\sum_{k=0}^{\infty}z^k$ konvergiert für |z|<1 und kann im Punkt z=1 nicht definiert werden. Aber auf $\mathbb{C}\backslash\{1\}$ kann man $f(z)=\sum_{k=0}^{\infty}z^k=\frac{1}{1-z}$ eindeutig fortsetzen.

Beispiel: Riemansche ζ -Funktion.

Beispiel: Fortsetzung von Lnz...

9 Maximumsprinzip

Satz. Sei $R \in \mathbb{R}_{>0}$ und $f \in \mathcal{A}(U_R(a))$. Falls f in a Maximum (oder Minimum ungleich 0) annimmt, dann ist f konstant in $U_R(a)$.

Beweis über Mittelwertsformel und Charakterisierung konstanter holomorpher Funktion über konstanten Betrag.

Satz. Maximumsprinzip für beliebige Gebiete. Sei $G \subseteq \mathbb{C}$ ein beschränktes Gebiet. Sei $f: \overline{G} \to \mathbb{C}$ stetig und $f|_G \in \mathcal{A}(G)$. Dann nimmt |f| globales Maximum (oder globales Minimum ungleich 0) auf ∂G .

Beweis: |f| ist stetige Funktion auf Kompakta \bar{G} , daher nimmt |f| Maximum in $z_0 \in \bar{G}$ an. Falls $z_0 \in \partial G$, fertig. Falls $z_0 \in G$, liefert obiger Satz, dass |f| auf einem $U_{\varepsilon}(z_0) \subseteq G$ konstant ist, damit ist |f| konstant auf G, und wegen Stetigkeit auch konstant auf G, also die Behauptung. \Box

Anwendung: Neue Abschätzung für Funktionswerte beschränkter Funktion in der Nähe von Nullstelle:

Proposition. Sei $R, M \in \mathbb{R}_{>0}$ und $f \in \mathcal{A}(U_R(0))$ mit $|f| \leqslant M$ und f(0) = 0. Dann gilt für jedes $z \in U_R(0)$, dass $|f(z)| \leqslant \frac{M}{R}|z|$.

Beweis: Da f(0)=0, existiert ein $g\in \mathcal{A}(U_R(0))$ s.d. $f(z)=z\cdot g(z)$. Mit Maximumsprinzip angewandt auf $g(z)=\frac{f(z)}{z}\in \mathcal{A}(U_r(0))$ für ein r< R liefert die Behauptung.

10 Singularität

Definition. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $f \in \mathcal{A}(G)$. Die Menge $\mathbb{C} \setminus G$ nennt man die Menge der **Singularitäten** von f.

Die Menge der isolierten Punkte vom Komplement von G, also $J_G := iso(\mathbb{C} \setminus G)$, nennt man die **Menge der isolierten Singularität** von f.

Eine isolierte Singularität $a \in J_G$ heißt

i. **hebbar**, g.d.w. es ein $w \in \mathbb{C}$ existiert, s.d. die Funktion

$$\tilde{f}(z) := \begin{cases} f(z), & z \in G \\ w, & z = a \end{cases}$$

analytisch in $G \cup \{a\}$ ist.

- ii. **Polstelle der Ordnung** $m \in \mathbb{N}$, g.d.w. für ein $m \in \mathbb{N}$ die Funktion $(z-a)^m f(z)$ eine hebbare Singularität in a ist.
- iii. wesentliche Singularität, g.d.w. Fall i. und Fall ii. nicht vortreten.

Eine Funktion $f \in \mathcal{A}(G)$ heißt **meromorph**, g.d.w. f keine wesentlichen Singularität in G hat.

Bemerkung. Seien $h, g \in \mathcal{A}(U_{\varepsilon}(a))$ für ein $\varepsilon \in \mathbb{R}_{>0}$ und a eine Nullstelle d.O. m für h und n für g, d.h. $h(z) = (z-a)^m h_1(z)$ und $g(z) = (z-a)^n g_1(z)$ wobei $h_1, g_1 \in \mathcal{A}(U_{\varepsilon}(a))$ mit $g_1(a) \neq 0 \neq h_1(a)$. Die Funktion f := g/z hat dann die Gestalt

$$f(z) = (z-a)^{n-m} \frac{g_1(z)}{h_1(z)}$$

und

- falls $n \geqslant m$, besitzt f eine hebbare Singularität.
- falls n > m, besitzt f eine Nullstelle der Ordnung n m.
- falls n < m, bestzt f eine Polstelle der Ordnung m n.

Laurent-Reihe

$$f(z) = \sum_{k=-\infty}^{+\infty} c_{k,a}(z-a)^k = \sum_{k=-\infty}^{-1} c_{k,a}(z-a)^k + \sum_{k=0}^{\infty} c_{k,a}(z-a)^k$$

wobei die Reihe $\sum_{k=-\infty}^{-1} c_{k,a}(z-a)^k$ heißt **Hauptteil**, und die Reihe $\sum_{k=0}^{\infty} c_{k,a}(z-a)^k$ heißt **Nebenteil**. Eine Laurent-Reihe konvergiert, g.d.w. beide Teile konvergiert.

Der Nebenteil ist eine Potenzreihe und konvergiert gleichmäßig für $z \in U_R(a)$ mit Konvergenzradius $R = (\limsup_{k \to \infty} \sqrt{|c_{k,a}|})^{-1}$.

Im Hauptteil kann man $w:=\frac{1}{z-a}$ schreiben, dann ist $\sum_{k=-\infty}^{-1} c_{k,a}(z-a)^k = \sum_{k=1}^{\infty} c_{-k,a}w^k$, also ist der Hauptteil zu einer Potenzreihe umgewandelt, und somit konvergiert der Hauptteil in $w\in U_r(a)$ mit $r=\left(\limsup_{k\to\infty}\sqrt{\{c_{-k,a}\}}\right)^{-1}$, und d.h. für $z=a+\frac{1}{w}$ konvergiert der Hauptteil außerhalb $U_{1/r}(a)$.

Insgesamt erhalten wir:

- Für $R > \frac{1}{r}$ konvergiert f(z) in $\frac{1}{r} < |z| < R$.
- Für $R < \frac{1}{r}$ konvergiert f(z) nicht.

- Für $R = \frac{1}{r}$ trifft man keine Aussage.

Man nimmt normalerweise r < R an und sagt oft, $f(z) = \sum_{k=-\infty}^{+\infty} c_{k,a} (z-a)^k$ konvergiert im Kreisring $K_{1/r,R}$.

Eigenschaften von Laurent-Reihe $f(z) = \sum_{k=-\infty}^{+\infty} c_{k,a} (z-a)^k$:

- 1. Gliedweise differenzieren ist in Ordnung, also holomorph. Nach Ableiten kommt $(z-a)^{-1}$ nicht vor. Konvergenzradius bleibt unverändert.
- 2. Laurent-Reihe besitzt Stammfunktion, g.d.w. $c_{-1,a} = 0$. Konvergenzradius bleibt unverändert.
- 3. Für einen geschlossenen Pfad $\Gamma \subseteq K_{1/r,R}$ liefert das Kurvenintegral $c_{-1,a}$, denn andere Glieder besitzen Stammfunktion.
- 4. Mit 3. erhält man eine Formel für $c_{k,a}$

$$c_{k,a} = \frac{1}{2\pi \mathrm{i}} \oint_{\Gamma} (z-a)^{-1-k} f(z) \mathrm{d}z$$

wobei $\Gamma \subseteq K_{1/r,R}$.

5. Abschätzung für $c_{k,a}$ falls f beschränkt durch $M := \sup_{|z-a|=\rho} |f(z)|$ für $r < \rho < R$:

$$|c_{k,a}| = \frac{1}{2\pi} \left| \oint_{\Gamma} (z-a)^{-1-k} f(z) dz \right| \le \frac{1}{2\pi} \oint_{\Gamma} |(z-a)^{-1-k} f(z)| dz \le M\rho^{-k}.$$

Definition. Für eine Laurent-Reihe $f(z) = \sum_{k=-\infty}^{+\infty} c_{k,a}(z-a)^k$ sagt man, dass der Koeffizient $c_{-1,a}$ das **Residuum** von f in a ist, also

$$Res_a(f) = Res(f, a) := c_{-1, a}$$
.

Satz. Darstellung holomorpher Funktion als Laurent-Reihe. Sei $0 \le \frac{1}{r} < R \le \infty$ und $f \in \mathcal{A}(K_{1/r,R}(a))$. Dann ist f als Laurent-Reihe darstellbar.

Bemerkung. Zusammenfassung von Darstellung von holomorphen Funktionen

- 1. $f \in \mathcal{A}(U_R(a)) \Leftrightarrow f$ analytisch auf $U_R(a)$ $\Leftrightarrow f$ hat Potenzreihe-Darstellung und gleichzeitig L-R-Darstellung In dem Fall besitzt f immer eine Stammfunktion.
- 2. $f \in \mathcal{A}(K_{1/r,R}(a)) \Leftrightarrow f$ hat Laurent-Reihe-Darstellung auf $K_{1/r,R}(a)$. In dem Fall besitzt f eine Stammfunktion, g.d.w. $c_{-1,a} = 0$.

Bemerkung. Analyse von Singularität

Sei
$$G = U_R(a) \setminus \{a\} = K_{0,R}(a)$$
 und $f \in \mathcal{A}(K_{0,R}(a))$, also $f(z) = \sum_{k=-\infty}^{\infty} c_{k,a}(z-a)^{-k}$.

i. a ist hebbar, g.d.w. alle negativen Koeffizienten sind 0.

(Riemannscher Hebbarkeitssatz) Falls f beschränkt, dann ist a hebbar.

- ii. a ist eine Polstelle d.O. m, g.d.w. $\forall k \in \mathbb{Z}_{< m} : c_{k,a} = 0$. In dem Fall gilt $f(z) \xrightarrow{z \to a} \infty$.
- iii. a ist wesentliche Singularität, g.d.w. Hauptteil von f unendlich ist.

11 Residuensatz & Residuenkalkül

Sei $a \in J_G$ eine isolierte Singularität von $f \in \mathcal{A}(G)$, d.h. $f(z) = \sum_{k=-\infty}^{\infty} c_{k,a}(z-a)^k$ in $K_{0,\varepsilon}(a)$ für ein $\varepsilon \in \mathbb{R}_{>0}$ und sei $\Gamma \subseteq K_{0,\varepsilon}(a)$ ein injektiver geschlossener Pfad. Mit der Definition von Residuum gilt

$$\operatorname{Res}(f,a) = c_{-1,a} = \frac{1}{2\pi \mathrm{i}} \oint_{\Gamma} f(z) dz \quad \Rightarrow \quad \oint_{\Gamma} f(z) dz = 2\pi \mathrm{i} \cdot \operatorname{Res}(f,a).$$

Im Allgemeinen erhält man

Satz. Residuensatz. Sei $f \in \mathcal{A}(G)$ und $\Gamma \subseteq G$ ein geschlossener Pfad, der die isolierten SIngularitäten $\{a_1, \ldots, a_n\}$ umläuft. Dann gilt

$$\oint_{\Gamma} f(z) dz = 2\pi i \sum_{j=1}^{n} \operatorname{Res}(f, a_{j}) \cdot \nu(a_{j}, \Gamma).$$

Bemerkung. Zur Berechnung von Residuen.

- i. Falls a_i hebbar ist, gilt $\operatorname{Res}(f, a_i) = 0$.
- ii. Falls a_j Polstelle d.O. m ist, gilt $(z-a_j)^m f(z) = c_{-m,a} + \cdots + (z-a_j)^{m-1} c_{-1,a} + \cdots$ und somit erhält man durch m-1-fache Ableitung

$$\frac{\mathrm{d}^{m-1}(z-a_j)^m f(z)}{\mathrm{d}z^{m-1}} = (m-1)!c_{-1,a} + \frac{(m-2)!}{m-1}c_{0,a}(z-a_j) + \cdots$$

und daher mit Grenzübergang $z \rightarrow a_i$

Res
$$(f, a_j) = \lim_{z \to a_j} \frac{1}{(m-1)!} \cdot \frac{d^{m-1}}{dz^{m-1}} (z - a_j)^m f(z).$$

iii. Fals a_i wesentliche Singularität ist, trifft man keine Aussage.

Mit ii. erhält man

Lemma. Sei $G \subseteq \mathbb{C}$ ein Gebiet und $a \in \mathrm{iso}(\mathbb{C}\backslash G)$ eine isolierte Singularität von G. Seien $h,g \in \mathcal{A}(G)$ mit $h(a) \neq 0$ aber g(a) = 0 und $g'(a) \neq 0$. Dann hat f := h/g eine Polstelle a der Ordnung 1 und $\mathrm{Res}(f,a) = \frac{h(a)}{g'(a)}$.

14

Beweis:
$$\operatorname{Res}(f,a) = \lim_{z \to a} (z-a) f(z) = \lim_{z \to a} h(z) \frac{z-a}{g(z)-g(a)} = \frac{h(a)}{g'(a)}$$
. \square

12 Das Zählen von Pol-&Nullstellen

Bemerkung. Logarithmische Ableitung.

Für ein $a \in \mathbb{C}$ und $\varepsilon \in \mathbb{R}_{>0}$ gibt es zwei Szenarien:

i. Sei $f \in \mathcal{A}(U_{\varepsilon}(a))$ s.d. a eine Nullstelle der Ordnung $m \in \mathbb{N}$ von f. Dann gilt

$$f(z) = c_{m,a}(z-a)^m + c_{m+1,a}(z-a)^{m+1} + \cdots$$

sowie

$$f'(z) = m \cdot c_{m,a}(z-a)^{m-1} + (m+1)c_{m+1,a}(z-a)^m + \cdots$$

und damit

$$\frac{f'(z)}{f(z)} = \frac{c_{m,a}(z-a)^m + \cdots}{m \cdot c_{m,a}(z-a)^{m-1} + \cdots} = \frac{m}{z-a}(1 + \mathcal{O}(z-a)).$$

D.h. $\frac{f'}{f}$ hat a als Polstelle d.O. 1 und somit gilt

$$\operatorname{Res}\left(\frac{f'}{f}, a\right) = \lim_{z \to a} (z - a) \frac{f'(z)}{f(z)} = m.$$

ii. Sei $f \in \mathcal{A}(U_{\varepsilon}(a) \setminus \{a\})$ s.d. a eine Polstelle der Ordnung $n \in \mathbb{N}$ von f. Dann gilt

$$f(z) = c_{-n,a}(z-a)^{-n} + c_{-n+1,a}(z-a)^{-n+1} + \cdots$$

sowie

$$f'(z) = -n \cdot c_{-n,a}(z-a)^{-n-1} + (-n+1)c_{-n+1,a}(z-a)^{-n} + \cdots$$

und damit

$$\frac{f'(z)}{f(z)} = \frac{c_{-n,a}(z-a)^{-n} + \cdots}{-n \cdot c_{-n,a}(z-a)^{-n-1} + \cdots} = \frac{-n}{z-a}(1 + \mathcal{O}(z-a)).$$

D.h. $\frac{f'}{f}$ hat a als Polstelle d.O. 1 und somit gilt

$$\operatorname{Res}\left(\frac{f'}{f}, a\right) = \lim_{z \to a} (z - a) \frac{f'(z)}{f(z)} = -n.$$

Mit diesen zwei Überlegungen erhält man

Satz. Rouche (bei Weidl). Gegeben sei $G \subseteq \mathbb{C}$ ein einfach zusammenhängendes Gebiet, $J := \{b_1, \ldots, b_M\} \subseteq G$ und $\tilde{G} := G \setminus J$. Sei dazu $S := \{a_1, \ldots, a_N\} \subseteq \tilde{G}$. Sei $f \in \mathcal{A}(\tilde{G})$ s.d. jedes b_k eine Polstelle d.O. m_k ist und jedes a_l eine Nullstelle d.O. n_l ist. Zudem sei $\Gamma \subseteq \tilde{G}$ eine geschlossene Kurve s.d. Γ sowohl J als auch S umläuft. Dann gilt

$$\frac{1}{2\pi \mathrm{i}} \oint_{\Gamma} \frac{f'(z)}{f(z)} \mathrm{d}z = \sum_{l=1}^{N} n_l \cdot \nu(\Gamma, a_l) - \sum_{k=1}^{M} m_k \cdot \nu(\Gamma, b_k).$$

Folgerung. Rouche (bei Lesky). Sei $G \subseteq \mathbb{C}$ ein Gebiet und $\Omega \subseteq G$ offen mit $\Gamma := \partial \Omega$.

Seien $g,f\in\mathcal{A}(G)$ s.d. $|g(z)|\leqslant |f(z)|$ für jedes $z\in\Gamma$ erfüllt ist. Dann gilt

$$\sum_{k: a_k \in \Omega \cap Z(f)} n_l(f) = \sum_{k: a_k \in \Omega \cap Z(f+g)} n_l(f+g).$$

Beweis: Für $t \in [0,1]$ definiere $\varphi_t(z) := f(z) + t \cdot g(z)$ und damit ist

$$\sum_{k: a_k \in \Omega \cap Z(\varphi_t(z))} n_l(\varphi_t(z)) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{\varphi_t'(z)}{\varphi_t(z)} dz$$

eine Größe, wleche stetig von t abhängt. Aber das Integral nimmt natürliche Zahlen als Werte an, daher kann das Integral nur konstant bzgl. t sein, somit gilt die Behauptung.