1. CVIČENÍ Z DISKRÉTNÍ MATEMATIKY

30. 9. 2022

Definice. Definujme Fibonacciho čísla následovně: $F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n$.

Definice. Značení [n] je zkratkou za množinu $\{1, 2, \dots, n\}$.

Definice. Značením $a \setminus b$ myslíme to, že b je delitelné a beze zbytku.

Příklad 1.

Dokažte matematickou indukcí pro každé $n \ge 0$:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

Příklad 2.

Dokažte matematickou indukcí pro každé n > 0:

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

Příklad 3.

Dokažte, že $8 \setminus (n^2 - 1)$ pro každé liché n > 0.

Příklad 4.

Dokažte indukcí pro n > 0:

$$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2$$

*Příklad 5.

Dokažte, že prvočísel je nekonečně mnoho.

Příklad 6.

Dokažte, že počet posloupností nul a jedniček délky $n \ge 0$ takových, že neobsahují dvě jedničky těsně vedle sebe, je právě F_{n+2} .

Příklad 7.

Kolejní topinkovač opeče krajíc chleba z jedné strany za 5 minut a vejdou se současně do něj dva krajíce. Jak dlouho potrvá opéct n krajíců?

Příklad 8.

Kolika způsoby umíme vybrat množiny $A, B \subseteq [n]$ takové, že:

- 1. $A \subseteq B$
- 2. $A = \{x\} \text{ a } x \in B$
- 3. $|A \cap B| = 1$

Příklad 9.

Dokažte, pro n-prvkovou množinu se počet jejích podmnožin sudé velikosti rovná počtu podmnožin liché velikosti.