

AD-A057 250

AERODYNE RESEARCH INC BEDFORD MASS  
ANALYSIS OF ELECTRON RETARDING POTENTIAL ANALYZER MEASUREMENTS --ETC(U)  
JAN 78 F BIEN

F19628-76-C-0229

UNCLASSIFIED

ARI-RR-118

AFGL-TR-78-0050

NL

| OF |  
ADA  
057250



END  
DATE  
FILED  
9-78  
DDC



AU No. \_\_\_\_\_  
DDC FILE COPY

AD A 057250

LEVEL II



✓ AFGL-TR-78-0060

ANALYSIS OF ELECTRON RETARDING POTENTIAL  
ANALYZER MEASUREMENTS OF VEHICLE SKIN  
POTENTIAL IN THE PRECIDE EXPERIMENT

Fritz Bien

Aerodyne Research, Inc.  
Bedford Research Park  
Bedford, Massachusetts 01730

January 1978

Final Report  
January 1977 - January 1978

Approved for public release; distribution unlimited

This research was sponsored by the Defense Nuclear Agency  
under Subtask L25AAXD1052 entitled, "IR Phenomenology  
and Optical Code Data Base".

AMERICAN DOCUMENTATION LABORATORY  
AMERICAN DOCUMENTATION COMPANY  
UNIVERSITY PARK, PENNSYLVANIA  
PA 16802 U.S.A. 412/327-1731



78 08 03 30



**Qualified requestors may obtain additional copies from the Defense T**

**UNCLASSIFIED**

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------|
| <b>REPORT DOCUMENTATION PAGE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                              |
| 1. REPORT NUMBER<br>AFGL-TR-78-0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. GOVT ACCESSION NO.                                                                     | 3. PEGIDENT'S CATALOG NUMBER |
| 4. TITLE (and Subtitle)<br><b>ANALYSIS OF ELECTRON RETARDING POTENTIAL<br/>ANALYZER MEASUREMENTS OF VEHICLE<br/>SKIN POTENTIAL IN THE PRECDE EXPERIMENT.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |                              |
| 5. AUTHOR(S)<br>Fritz Bien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6. TYPE OF REPORT & PERIOD COVERED<br><b>Final Report,<br/>January 1977-January 1978.</b> |                              |
| 7. AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8. CONTRACT OR GRANT NUMBER(S)<br><b>F-19628-76-C-229</b>                                 |                              |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br><b>Aerodyne Research, Inc.<br/>Bedford Research Park<br/>Bedford, MA 01730</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                              |
| 10. PROGRAM ELEMENT, PROJECT, TASK & WORK UNIT NUMBERS<br><b>CDNA-00<br/>76761006</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                              |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br><b>Air Force Geophysics Laboratory<br/>Hanscom AFB, Massachusetts 01731<br/>Monitor/Robert R. O'Neil/OPR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |                              |
| 12. REPORT DATE<br><b>January 1978</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                           |                              |
| 13. NUMBER OF PAGES<br><b>49</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                              |
| 14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)<br><b>(12) 28P</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                              |
| 15. SECURITY CLASS. (of this report)<br><b>UNCLASSIFIED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                              |
| 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                              |
| 16. DISTRIBUTION STATEMENT (of this Report)<br><b>Approved for public release; distribution unlimited</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                              |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)<br><b>62707H (16) CDNA, 7678</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                              |
| 18. SUPPLEMENTARY NOTES<br><b>This research was sponsored by the Defense Nuclear Agency under Subtask L25AAXHX632 entitled, "IR Phenomenology and Optical Code Data Base."</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                              |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br><b>EXCEDE Analysis<br/>Vehicle charging<br/>Retarding potential analysis</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           |                              |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br><b>A 2 kW electron accelerator was launched in October 1974 from the White Sands Missile Range, New Mexico, as the initial launch in the EXCEDE series of artificial auroral experiments. The launch, designated PRECDE, was supported by a number of ground based optical systems to record the electron induced atmospheric emissions as a remote diagnostic technique of accelerator performance in addition to recording emissions of aeronomics interest in a controlled artificial aurora. The electron source, square wave modulated at 0.5 Hz, was initiated at 95 km on payload ascent and continued through</b> |                                                                                           |                              |

# UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

apogee (120 km) to a decent altitude of approximately 80 km providing a total of 90 pulses of the 2.5 kV 0.8 ampere electron beam over a period of 180 seconds. A rocketborne retarding potential analyzer provided a measure of the vehicle potential due to a net positive charge build up on the electron emitting payload. A steady-state vehicle potential of less than 30 volts was indicated at apogee with substantially smaller values at lower altitudes. Langmuir probe theory is shown to accurately model the altitude dependent steady-state vehicle potential.

# UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

## TABLE OF CONTENTS

| <u>Section</u> |                                         | <u>Page</u> |
|----------------|-----------------------------------------|-------------|
| 1              | INTRODUCTION . . . . .                  | 1           |
| 2              | PRECEDE EXPERIMENT . . . . .            | 3           |
| 3              | VEHICLE POTENTIAL MEASUREMENTS. . . . . | 7           |
| 4              | REFERENCES . . . . .                    | 20          |
| 5              | ACKNOWLEDGEMENTS . . . . .              | 22          |

|                                 |                                                   |  |
|---------------------------------|---------------------------------------------------|--|
| ACCESSION SHEET                 |                                                   |  |
| RTB                             | White Section <input checked="" type="checkbox"/> |  |
| BBG                             | Buff Section <input type="checkbox"/>             |  |
| UNARMED                         |                                                   |  |
| JUFTIFICATION                   |                                                   |  |
| BY                              |                                                   |  |
| DISTRIBUTION/AVAILABILITY CODES |                                                   |  |
| REF.                            | AVAIL. SEC. OR SPECIAL                            |  |
| A                               |                                                   |  |

D D C  
REF ID: A  
AUG 9 1978  
RUGGED D

## LIST OF ILLUSTRATIONS

| <u>Figure</u> | <u>Description</u>                                                                                                                                                                                                                                                                                               | <u>Page</u> |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.            | White Sands Missile Range, New Mexico Indicating the Trajectory of the PRECEDE Launch and the Location of the Three Optical Ground Stations. . . . .                                                                                                                                                             | 4           |
| 2.            | Flight Profile of the PRECEDE Launch Indicating the Calculated Practical Range of a 3 kV Electron Along the Magnetic Field and the Viewing Aspect of the Image Intensified Spectrograph and the Two-Color Telephometer Located at the Tiff Optical Site. . . . .                                                 | 5           |
| 3.            | Photographs Taken By TIC, Inc., of Bedford, MA From the Denver Optical Site. . . . .                                                                                                                                                                                                                             | 6           |
| 4.            | Atmospheric Emission Induced By the PRECEDE Accelerator Recorded By an Image Orthicon at the Cloudcroft Optical Site. . . . .                                                                                                                                                                                    | 7           |
| 5.            | Location of the Retarding Potential Analyzer on the PRECEDE Vehicle. The Dimensions Are Given in Meters. . . . .                                                                                                                                                                                                 | 10          |
| 6.            | Return Current Collected by the Retarding Potential Analyzer at Various Retarding Voltages in the 112 to 116 km Altitude Range During Payload Ascent. Each Retarding Potential Was Applied for Two Seconds Equivalent to the Period of the Pulsed Accelerator Which Was Square Wave Modulated at 0.5 Hz. . . . . | 12          |
| 7.            | Integral Cross Sections for the Production By 2.5 kV Primary Electrons of Secondary Electrons With Energy Greater than the Threshold Indicated. . . . .                                                                                                                                                          | 14          |
| 8.            | The Vehicle Potential Inferred From the RPA Measurements and the Potential Estimated Assuming Steady-State Langmuir Probe Theory. . . . .                                                                                                                                                                        | 16          |

## 1. INTRODUCTION

EXCEDE is an experimental program designed to study auroral processes using a rocketborne electron accelerator operating in the altitude range 80 to 140 km. The primary scientific interest is the investigation of the detailed production and loss processes of various excited electron and vibrational status resulting in optical and infrared emission as energetic primary electrons and their secondary and all subsequent generation electrons are stopped in the atmosphere. In artificial auroral experiments, the dosing conditions of: electron energy and power, deposition volume, deposition altitude and dosing duration are parameters that may be controlled and monitored. In natural aurora, these excitation conditions must be inferred and the observed atmospheric emissions typically are effects integrated over a range of conditions (electron energy, electron-flux density, altitude, and dosing time). Observations of these integral effects make interpretation of optical/infrared emissions in terms of basic production and loss processes exceedingly complex. At present, considerable uncertainty exists in the interpretation of auroral optical and infrared emissions including such a well-studied feature as the auroral green line, O(<sup>1</sup>S) 5577A emission (Slanger and Black, 1973; Rees and Luckey, 1974; Shepherd, 1974).

The primary objective of the EXCEDE program is to: determine the mechanisms in which energetic electrons partition energy as they are stopped in the atmosphere, follow the chemical reactions of electron induced ionized and excited species and observed the ultraviolet, optical and infrared emissions induced directly by electron impact as well as the emissions induced by a series of consecutive chemical reactions.

Other artificial auroral experiments using rocketborne accelerators providing energetic electron beams of several kilowatts include the launch described by Hess et al. (1971) and Davis et al. (1971) and the more recent results reported from the joint Franco-Soviet ARAKS (Artificial Radiation and Auroras between Kergueten and the Soviet Union) Program (Cambou et al., 1975). These experiments, designed to study the geomagnetic field orientation, conjugate point locations, conjugate reflection of energetic electrons and particle drift rates, utilized apogees in excess of

several hundred kilometers. In contrast to these other artificial auroral studies the EXCEDE experiments are conducted in the denser atmosphere at altitudes of 80 to 120 km to confine the electron excited atmosphere to the vicinity of the payload.

A feasibility study (O'Neil et al., 1973) indicated that 3 kW (3 kV, 1 ampere) electron beams deposited in the 100 to 120 km altitude range provided selected optical and infrared time dependent radiance profiles readily measured by both rocket and ground based photometric and radiometric sensors. Specific infrared emissions of interest include electron induced NO radiation at 2.7 to 5.4 microns as well as CO<sub>2</sub> and NO<sup>+</sup> radiation at 4.3 microns. The present report summarizes the rocketborne retarding potential analyzer measurements of the PRECEDE launch and infers an altitude dependent steady state vehicle potential for the electron emitting vehicle.

## 2. PRECEDE EXPERIMENT

This initial launch in the EXCEDE program of artificial auroral experiments was designated PRECEDE. The PRECEDE launch vehicle was a Nike Hydac Rocket (EX 407.41-1) instrumented with a 2 kW (2.5 kV, 0.8A) electron accelerator launched at 10:20:00 UT on 17 October 1974 from White Sands Missile Range. This flight was an engineering test of the electron accelerator to be subsequently used on the heavily instrumented follow-on experiments. The electron accelerator consisted of three modules with separate high voltage supplies and tungsten filaments directly heated to approximately 2800°K by a common filament supply. A square wave oscillator operating at 0.5 Hz synchronously pulsed the high voltage supplies. The accelerator high voltage supplies powered by silver cell batteries were each current limited to approximately 0.5 amperes to avoid catastrophic failure in the event of arcing or momentary short circuit operation during launch. The electron source was initiated at 95 km on payload ascent and continued through apogee (120 km) to a descent altitude of approximately 80 km, operating for an interval of 180 sec. The payload was launched from north to south so that the electron beam was deposited along the geomagnetic field above the payload (Figs. 1 and 2). The trajectory for the PRECEDE launch was in the plane of the magnetic declination, 12° east, and the Tiff optical station was located to observe the payload along the magnetic field at approximately 100 km during payload descent. In this configuration the electron deposition volume, constrained along the magnetic field, presents a minimal source size for the photometric and spectrographic instruments located at the Tiff optical station. Stations at Denver and Cloudcroft contained various camera systems to record the electron-induced atmospheric luminescence with viewing aspects arranged to image radiance along the magnetic field and record the size of electron-excited atmosphere. On board measurements included monitors of electron-beam voltage and current and a retarding potential analyzer to determine particle flux and vehicle potential.

Figure 3, a montage of PRECEDE photographs from Denver optical site (see Fig. 1) is an illustration of the overall dimensions of the electron beam as a function of altitude. In Fig. 4 is given in greater spatial detail: the electron-beam energy



Figure 1. White Sands Missile Range, New Mexico Indicating the Trajectory of the PRECEDE Launch and the Location of the Three Optical Ground Stations.



Figure 2. Flight Profile of the PRECEDE Launch Indicating the Calculated Practical Range of a 3 kV Electron Along the Magnetic Field and the Viewing Aspect of the Image Intensified Spectrograph and the Two-Color Telephotometer Located at the Tiff Optical Site.

**2.5 kV, 0.75 Ampere  
Electron Accelerator**

**Camera - 300 mm f0.9  
Delft-Hasselblad**

**Film - Kodak 2485**

**Location - Radar Tracked  
Optical Mount at Denver  
Site**

**Altitude 120 km Ascent  
16 Sec. Exposure**



**Altitude 108 km Descent  
5 Sec. Exposure**



**Altitude 102 km Descent  
2 Sec. Exposure  
Beam Length 0.4 km**



**Figure 3. Photographs Taken By TIC, Inc., of Bedford, MA From the Denver Optical Site.**



Figure 4. Atmospheric Emission Induced By the PRECDE Accelerator Recorded By an Image Orithicon at the Cloudcroft Optical Site.

deposited above the payload along the magnetic field, the relatively faint electron-beam luminescence below the payload due to back-scattered electrons, and a bright chemiluminescent wake tangential to the payload trajectory believed to be due to residual rocket propellants (aluminum or aluminum compounds) outgassing from the smoldering Hydac rocket engine and reacting with atmospheric atomic oxygen. Figure 4, provided by the Cloudcroft optical station, was taken with an image orthicon system and represents an integration of several seconds. All three optical ground stations used radar controlled instrument mounts which located and tracked the payload within 1-arc min for the duration of the experiment. The precise tracking of the optical mounts allow the ground-based imaging systems, an image intensified spectrograph and the television and film cameras, to effectively utilize exposure times as long as 20 sec. For the spatial resolution of the imaging systems and the tracking precision of the optical mounts, effective exposure times were determined by the shutter-open period rather than by the focal-plane image smear.

The PRECEDE launch trajectory was configured such that the electron beam, originating from the nose of the payload, was deposited above the vehicle along the magnetic field without the use of an attitude control system. The nominal pitch angle ranged from 0 to 40° during the experiment and was 25° for the case represented in Fig. 4. The dimensions of electron range and radial scatter indicated in Fig. 3 and 4 are in good agreement with the experimental results of Grun (1957) and the calculations of Berger et al. (1970, 1974), respectively.

### 3. VEHICLE POTENTIAL MEASUREMENTS

Initial EXCEDE design studies included a theoretical estimate (Baum et al., 1975) of the time dependent vehicle potential of an electron emitting payload operating under the experimental conditions for the proposed initial PRECEDE launch. The results of Baum et al. (1975) indicate that following accelerator pulse initiation the vehicle charges to a large positive value, undergoes a series of damped charge oscillations to account for electron momentum and then decays to a small (less than 30 volts) positive steady-state potential. The transient vehicle charging theory indicates the vehicle attains a steady-state value in times comparable to the collision time of secondary electrons, on the order of 10 to 50 microseconds.

The vehicle skin potential during the PRECEDE experiment was monitored using an onboard retarding potential analyser (RPA). The return current to the RPA as a function of retarding voltage is compared to predicted secondary electron spectra to obtain an effective vehicle skin potential. The frequency response of the instrument was not sufficient to measure the large potential oscillations predicted theoretically and the RPA results are limited to a determination of the steady-state vehicle potential.

The RPA was located on the side of the PRECEDE vehicle as shown in Fig. 5. The electrons collected by the RPA, located at  $90^{\circ}$  with respect to the electron beam accelerator, was influenced by vehicle alignment with respect to the geomagnetic field, the location of the ionized cloud, and the vehicle skin potential. Since the secondary electron production was mainly in front of the vehicle, as shown in Fig. 5, only electrons scattered at certain angles entered the RPA. The trajectories of these electrons were governed by their geomagnetic confinement, as well as secondary collisions. The total return current to the RPA was approximately the fraction of RPA area to the total vehicle skin area. The dimensions of the electron accelerator payload and vehicle are shown in Fig. 5. The effective collecting area of the payload presented to the returning electrons varied with vehicle orientation and electron energy.



**Figure 5. Location of the Retarding Potential Analyzer on the PRACEDE Vehicle. The Dimensions Are Given in Meters.**

A typical RPA data frame is shown in Fig. 6. The retarding voltage was stepped through a sequence of 14, 0, -17, -33, 0, -120, and -550 volts in two second intervals equivalent to the electron beam pulse period. A retarding potential of -1960 volts was also used, but failed to operate reliably. The nominal 16 second RPA data frame represents an altitude increment of approximately 10 km at 100 km and 7 km at 110 km in the PRECEDE trajectory.

A 5 volt accelerator grid was placed in front of the retarding grid to ensure collection of electrons in the vicinity of the RPA. The entrance aperture of the RPA was  $3.5 \text{ cm}^2$  and the instrument design allowed acceptance of electrons as much as 80 degrees from normal.

Figure 6 indicates the RPA dynamic range extended to currents as low as  $10^{-10}$  amps. This collection current infers ambient electron densities as low as  $10^2 \text{ cm}^{-3}$  were measurable. However, RPA currents were not detectable when the electron accelerator was turned off during the PRECEDE experiment, even when a positive 14 volts was placed on the retarding grid. It is speculated the inability to measure ambient atmospheric electron densities is due to the vehicle orientation with respect to the geomagnetic field and the possibility of a slight negative charge on the vehicle skin, built-up after the electron accelerator was turned off.

The RPA current is the integral of all electrons having energy greater than the retarding potential. Thus, accounting for the 5 volt accelerating potential, a -17 volt retarding potential would be a sum of all electrons having energy of greater than 12 volts, etc. In the absence of a negative vehicle skin potential, the retarding voltages of +14 and 0 volts should show the same return current. This was indeed borne out by the RPA data. Similarly, if the vehicle potential was above 28 volts, the RPA current at -33 volts retarding potential would be equal to the 0 volt RPA electron current. This condition was not met even at apogee, indicating that the vehicle skin potential at no time exceeded 28 volts steady-state.

A spin modulation was presented on most of the RPA data and was most prominent at large retarding potentials. The current modulation was caused by the asymmetrical area of the RPA projected across the geomagnetic field and the electron excited atmosphere as the vehicle spun. The RPA was also shielded by the vehicle



**Figure 6.** Return Current Collected by the Retarding Potential Analyzer at Various Retarding Voltages in the 112 to 116 km Altitude Range During Payload Ascent. Each Retarding Potential Was Applied for Two Seconds Equivalent to the Period of the Pulsed Accelerator Which Was Square Wave Modulated at 0.5 Hz.

from the highly excited atmosphere during one half of its spin, limiting collection electrons to a small angular distribution of scattered secondary electrons.

In order to obtain a vehicle skin potential from the RPA returns, a simplified model of the electron energy spectra was used. Here it was assumed that once the secondary electrons were formed, they traveled in a gyrating path around the geomagnetic field until they entered the RPA. The geometric orientation of the RPA was, thus, convoluted with the angular dependence of the secondary electron production spectra and the orientation of the electron beam. From this convolution the electron flux was derived for several vehicle orientations as a function of electron energy. The electron flux was then integrated as a function of effective retarding potential on the RPA for a primary electron of a given initial trajectory. Finally, a Monte Carlo technique was used to account for 30° divergence angle in the electron beam emanating from the accelerator and the probability of secondary electron production of a given energy and scattering angle. A mean size of one thermal electron Larmor radius was used as a sample grid size in the calculation. The energy distribution of the electrons collected by the RPA was determined by the angular orientation of the vehicle axis with the geomagnetic field and the orientation of the sensor with respect to the roll axis. Both the total integrated secondary electron current and the relative energy dependence of the electron current changed with orientation of the roll axis. In the absence of a simple roll dependence for the electron flux incident on the RPA, a maximum return current was assumed at all retarding potentials presumably equivalent to the peak values of the spin modulated currents of Fig. 6. Based on the laboratory measurements of Opal et al., (1971), the integrated cross-section for the production of secondary electrons by a 3 kV primary is shown in Fig. 7. The cross-section was in turn combined with the geometric factors to determine the electron flux at the RPA for various retarding voltages.

The integrated production cross-section of Fig. 7 was convoluted with the RPA returns from the PRECEDE experiment (see Fig. 6) and with altitude to produce an estimated vehicle skin potential. The effects of change in altitude and change in pitch angle of the vehicle with respect to the geomagnetic field, between retarding potential measurements, were considered in the calculation of the vehicle skin potential. The



Figure 7. Integral Cross Sections for the Production By 2.5 kV Primary Electrons of Secondary Electrons With Energy Greater Than the Threshold Indicated.

resulting vehicle potential as a function of altitude is known in Fig. 8. The horizontal error bars represent the altitude extent over which a particular set of RPA readings were taken. The vertical error bars are due to the variations in current introduced by the spin modulation of the RPA. The maximum skin potential during the experiment was approximately 27 volts at apogee. Slightly larger vehicle potentials were observed on the descent trajectory compared to the equivalent upleg altitude. This asymmetry is presumably due to the greater payload velocity across of the geo-magnetic field during descent which causes shorter electron beam dose times for each given volume element. The result of which would be smaller electron densities and thus a slightly larger vehicle potential.

A theoretical steady-state vehicle potential may be estimated by using Langmuir probe theory together with steady-state electron concentrations associated with the electron beam ionized cloud. In the steady-state case, it is assumed a vehicle to plasma potential is established to provide an electron return current to the payload equivalent to the accelerator current. The return current to the vehicle skin, which must balance the outgoing current is given by:

$$I_r = I = n_e u_e e A_v \quad , \quad (1)$$

where  $n_e$  is the number density of electrons near the vehicle,  $u_e$  is the drift velocity toward the vehicle,  $e$  the electron charge, and  $A_v$  is the area of the vehicle skin. At the altitudes of interest, the electron mean free path varies from several centimeters to several meters, much larger than the Debye length.

If the secondary electrons in the vicinity of the vehicle are not greatly depleted, their number density can be approximated by the steady-state concentration,

$$n_e(0) \approx [P(0)/\alpha(0)]^{1/2} \quad , \quad (2)$$



**Figure 8.** The Vehicle Potential Inferred From the RPA Measurements and the Potential Estimated Assuming Steady-State Langmuir Probe Theory.

where  $P(0)$  is the ionization rate near the skin of the vehicle, and  $\alpha(0)$  is the electron recombination rate in the same region. The production rate  $P(0)$  can be approximated by the empirical relationship,

$$P(0) \approx 1.86 \times 10^{-3} nIV^{-5/2} cm^{-3} sec^{-1} , \quad (3)$$

by fitting to laboratory data by Grun (1957) with magnetic field confinement described by Berger et al., (1970, 1974). Here,  $V$  is the electron beam voltage in kV and  $I$  its current in amperes. The atmospheric density,  $n$ , in  $cm^{-3}$ , is taken to be mainly  $N_2$ . Clearly, corrections for ionization cross-section for  $O$  and  $O_2$  should be made if an accurate number is to be obtained. However, these corrections are not considered significant compared to errors introduced in the effects of orientation and the assumptions of homogeneity of the electron beam source.

The recombination rate near the vehicle,  $\alpha(0)$ , is assumed to be  $1 \times 10^{-7} cm^3/sec$ , comparable to the  $NO^+$  recombination rate at  $T_e \approx 0.5$  eV (Huang et al., 1975) and typical of ion recombination rates observed in the upper atmosphere. Thus, the electron density in the vicinity of the vehicle is

$$n_e(0) \cong 136 V^{-5/4} I^{1/2} n^{1/2} cm^{-3} . \quad (4)$$

In the 100 to 120 km altitude range, atmospheric number density varies between  $10^{13}$  and  $5 \times 10^{11} cm^{-3}$ . Thus, the electron mean free path is at all times much greater than the Debye sheath at steady-state. The vehicle skin, if perfectly conducting, would behave much like a Langmuir probe (Langmuir and Compton, 1931). The return current, using Langmuir's solution for the case when the probe potential is larger than a few tenths of a volt, is

$$I_r = \left( \frac{n_e \langle c_e \rangle}{4} \right) \left( 1 + \frac{2e\phi_v}{kT_e} \right)^{1/2} eA_v , \quad (5)$$

where  $\langle c_e \rangle$  is the mean thermal speed of the electrons,  $\phi_v$  is the vehicle potential,  $k$  Boltzmann's constant, and  $T_e$  is the plasma temperature.

Solving for the vehicle potential at steady-state by combining Eqs. (4) and (5) yields

$$\phi_v = \frac{kT_e}{2e} \left( \frac{1.4 \times 10^{-7} m_e I V^{5/2}}{e^2 A_v^2 n kT_e} - 1 \right) \quad (6)$$

where  $m_e$  is the electron mass,  $I$  the current in amperes,  $V$  the beam voltage in kV,  $e$  the electronic charge and  $A_v$  the vehicle area in  $\text{cm}^2$ . Substituting representative values into Eq. (6), a theoretical vehicle potential, which is a function of vehicle orientation was obtained.

The vehicle skin potential is a function of the total area of the vehicle as well as the orientation of the vehicle with respect to the geomagnetic field. Because the electrons are essentially restricted from moving across geomagnetic field lines, an effective area was used in the calculation of vehicle skin potential. This area has been taken to be the vehicle cross-sectional area normal to the geomagnetic field, plus the added cross-section provided by the Larmor radius of a mean secondary electron. At high vehicle potentials, some distortion of the field lines may result, giving a larger effective vehicle skin area (Linson, 1969). The return current to the RPA is also affected by its orientation with respect to the geomagnetic field, and it would see a maximum electron flux if the aperture of the RPA was field aligned. The predicted vehicle skin potential was, thus, tailored to the specific geometry associated with the vehicle orientation.

The vehicle was canted with respect to the geomagnetic field during the entire period of electron beam operation, processing between 9 and 33°. The effective area presented to the backscattered electrons varied from  $3.5 \times 10^3 \text{ cm}^2$  to  $1.0 \times 10^4 \text{ cm}^2$ , normal to the geomagnetic field, compared to a total vehicle skin area of approximately  $5.4 \times 10^4 \text{ cm}^2$ . The theoretical estimate of vehicle skin potential was obtained by combining the altitude dependence of the vehicle cant angle, atmosphere number density, and velocity across the geomagnetic field lines. The number density of electrons in the vicinity of the vehicle is a function of all three parameters. However, calculations become somewhat simplified when the vehicle is moving along the geomagnetic field, and a steady-state electron concentration could be established. The vehicle potential determined theoretically by the steady-state model is shown in Fig. 8 along with the experimentally determined values. The theoretical curve was produced from Eq. (6) using the PRECEDE nominal accelerator operating parameters, 2.5 kV and 0.8 amperes, and a representative Jacchia (1971) model atmosphere. The theoretical approximation indicates the vehicle potential is inversely proportional to atmospheric number density and provides an estimated vehicle potential of 2.8 volts at 104 km and 28 volts at 120 km in good agreement with the experimental results.

#### 4. REFERENCES

Baum, H. R., F. Bien, and K. Tait, "An Analysis of Transient Vehicle Charging in the EXCEDE Experiment, Aerodyne Research, Inc.", Report RR-65, 1975.

Berger, M.J., S. M. Seltzer and K. Maeda, "Energy Deposition by Auroral Electrons in the Atmosphere", J. Atmos. and Terr. Phys., 32, 1015, 1970.

Berger, M.J., S.M. Seltzer, and K. Maeda, "Some New Results on Electron Transport in the Atmosphere", J. Atmos. and Terr. Phys., 36, 591, 1974.

Cambou, F., V. S. Dokoukime, V. N. Ivchenko, G. G. Managadze, V. V. Migulin, O.K. Nazarenko, A.T. Nesmyanovich, A.Kh. Pyatsi, R.Z. Sagdeev and I.A. Zhulin, "The Zarmitsa Rocket Experiment on Electron Injection", Space Research XV, Akadamie-Verlag, Berline, 1975.

Davis, T.N., T.J. Hallinan, G.D. Mead, J.M. Mead, N.C. Trichel, and W.N. Hess, "Artificial Auroral Experiment: Ground Based Measurements of Auroral Rays", J. Geophys. Res., 76, 6082, 1971.

Grun, A.E., "Lumneszenz Photometrische Messungen Des Energie Absorption Un Strahlungsfeld Von Electronenguellen Eindemensionaler Fall in Ruft", Z. Naturforsh, A, 12, 89, 1959.

Hess, W. N., M.C. Trichel, T. N. Davis, W.C. Beggs, G.E.. Kraft, E.G. Strassinopoulos, and E.J.R. Maier, "Artificial Aurora Equipment: The Equipment and Principal Results", J. Geophys. Res., 76, 6067, 1971.

Huang, C.M., Biondi, M.A., and R. Johnsen, "Variation of Electron NO<sup>+</sup> Ion Recombination Coefficient with Electron Temperature", Phys. Rev. A., 11, 901, 1975.

Jacchia, L.G., "Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles", Spec. Rep., 332, Smithson. Astrophys. Observ., Cambridge, Mass., 1971.

Langmuir, I., and K. T. Compton, "Electrical Discharges in Gases, Part II Fundamental Phenomena in Electrical Discharges", Rev. Mod. Phys. 3, 191, 1931.

Linson, L. M., "Current Voltage Characteristics of an Electron Emitting Satellite in the Ionosphere", J. Geophys. Res., 74, 2368, 1969.

Miller, R.E., W.G. Fastie, and R.C. Isler, "Rocket Studies of Far-Ultraviolet Radiation in an Aurora", J. Geophys. Res., 73, 3353, 1968.

O'Neil, R.R., M. I. P. Lee, E.R. Huppi and A.T. Stair, Jr., Project EXCEDE:  
SWIR Experiment, AFCRL-TR-73-0152, 1973.

Opal, C.B., W.K. Peterson, and E.C. Beaty, "Measurements of Secondary  
Electron Spectra Produced by Electron Impact Ionization of a Number of Simple  
Gases", J. Chem. Phys., 55, 4100, 1971.

Rees, M.H. and D. Luckey, "Auroral Electron Energy Derived from Ratio of  
Spectroscopic Emissions 1. Model Computations", J. Geophys. Res., 79,

Shepherd, G.G., "Gaseous Electronics in the Upper Atmosphere-Some Recent  
Observations of Atomic Oxygen 5577 and 5300A Emissions", 71, Gaseous  
Electronics, eds., J. Wm. McGowan and P.D. John, North-Holland Publishing  
Company-Amsterdam, 1974.

Slanger, T.G. and G. Black, " $O(^1S)$  Quenching Profile Between 75 and 115 km",  
Planet. Space Sci., 21, 1757, 1973.

## **5. ACKNOWLEDGEMENTS**

**The author would like to than R. R. O'Neil and J. A. Sandock for providing  
the data on the PRECEDE RPA and help in analysing the data.**

DISTRIBUTION LIST

DIRECTOR  
DEFENSE ADVANCED RSCH PROJ AGENCY  
ARCHITECT BUILDING  
1400 WILSON BLVD.  
ARLINGTON, VA 22209  
ATTN LTC W A WHITAKER

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN TITL TECH LIBRARY

DIRECTOR  
DEFENSE ADVANCED RSCH PROJ AGENCY  
ARCHITECT BUILDING  
1400 WILSON BLVD.  
ARLINGTON, VA 22209  
ATTN MAJOR GREGORY CANAVAN

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN TISI ARCHIVES

DEFENSE DOCUMENTATION CENTER  
CAMERON STATION  
ALEXANDRIA, VA 22314  
ATTN TC

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN RAEV HAROLD C FITZ, JR

DEFENSE DOCUMENTATION CENTER  
CAMERON STATION  
ALEXANDRIA, VA 22314  
ATTN TC

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN RAAE MAJ. J. MAYO

DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN RAAE CHARLES A BLANK

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN RAAE G. SOPER

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN TITL TECH LIBRARY

DIRECTOR  
DEFENSE NUCLEAR AGENCY  
WASHINGTON, DC 20305  
ATTN MAJOR R. BIGONI

DIR OF DEFENSE RSCH & ENGINEERING  
DEPARTMENT OF DEFENSE  
WASHINGTON DC 20301  
ATTN DD/S&SS (OS) DANIEL BROCKWAY

COMMANDER  
HARRY DIAMOND LABORATORIES  
2800 POWDER MILL RD  
ADELPHI MD 20783  
ATTNDRXDO-NP, F.H. WIMINFTZ

DIR OF DEFENSE RSCH & ENGINEERING  
DEPARTMENT OF DEFENSE  
WASHINGTON, DC 20301  
ATTN DD/S&SS DANIEL BROCKWAY

COMMANDER  
U S ARMY NUCLEAR AGENCY  
FORT BLISS, TX 79916  
ATTN MONA-ME

COMMANDER  
FIELD COMMAND  
DEFENSE NUCLEAR AGENCY  
KIRTLAND AFB, NM 87115  
ATTN FCPR

DIRECTOR  
BMD ADVANCED TECH CTR  
HUNTSVILLE, AL 35807  
ATTN ATC-T, M CAPPS

CHIEF LIVERMORE DIVISION  
FLD COMMAND DNA  
LAWRENCE LIVERMORE LABORATORY  
P.O. BOX 808  
LIVERMORE, CA 94550  
ATTN FCPL

DIRECTOR  
BMD ADVANCED TECH CTR  
HUNTSVILLE, AL 35807  
ATTN ATC-O, H. DAVIES

COMMANDER/DIRECTOR  
ATMOSPHERIC SCIENCES LABORATORY  
U S ARMY ELECTRONICS COMMAND  
WHITE SANDS MISSILE RANGE, NM 88002  
ATTN DRSEL-BL-SY-A F. NILES *3 copies*

DEP.CHIef OF STAFF FOR RSCH, DEV&ACQ  
DEPARTMENT OF THE ARMY  
WASHINGTON DC 20310  
ATTN MCB DIVISION

COMMANDER/DIRECTOR  
ATMOSPHERIC SCIENCES LABORATORY  
U S ARMY ELECTRONICS COMMAND  
WHITE SANDS MISSILE RANGE, NM 88002  
ATT H. BALLARD *3 copies*

DEP.CHIef OF STAFF FOR RSCH, DEV&ACQ  
DEPARTMENT OF THE ARMY  
WASHINGTON, DC 20310  
ATTN DAMA-CSZ-C

DEP.CHEF OF STAFF FOR RSCH, DEV&ACQ  
DEPARTMENT OF THE ARMY  
WASHINGTON DC 20310  
ATTN DAMA-WSZC

COMMANDER  
US ARMY ELECTRONICS COMMAND  
FORT MONMOUTH,N.J. 37703  
ATT DRSEL 5 copies

DIRECTOR  
US ARMY BALLISTIC RESEARCH LABS  
ABERDEEN PROVING GROUNDS,MD 21005  
ATTN DRXBR-AM,G. KELLER

COMMANDER  
US ARMY ELECTRONICS COMMAND  
FORT MONMOUTH,N.J. 37703  
ATN STANLEY KRONENBERGER

DIRECTOR  
US ARMY BALLISTIC RESEARCH LABS  
ABERDEEN PROVING GROUNDS,MD 21005  
ATTN DRXPD-BSP,J. HEIMERL

COMMANDER  
US ARMY ELECTRONICS COMMAND  
FORT MONMOUTH,N.J. 37703  
ATN WEAPONS EFFECTS SECTION

DIRECTOR  
US ARMY BALLISTIC RESEARCH LABS  
ABERDEEN PROVING GROUNDS,MD 21005  
ATTN JOHN MESTER

COMMANDER  
US ARMY FOREIGN SCIENCE & TECH CTR  
220 7TH STREET,NE  
CHARLOTTESVILLEVA 22901  
ATTN ROBERT JONES

DIRECTOR  
US ARMY BALLISTIC RESEARCH LABS  
ABERDEEN PROVING GROUNDS,MD 21005  
ATTN TECH LIBRARY

CHIEF  
US ARMY RESEARCH OFFICE  
P.O. BOX 12211  
TRIANGLE PARK,N.C. 27709  
ATT ROBERT MACE

COMMANDER  
US ARMY ELECTRONICS COMMAND  
FORT MONMOUTH,N.J. 37703  
ATTN INST FOR EXPL RESEARCH

COMMANDER  
NAVAL OCEANS SYSTEMS CENTER  
SAN DIEGO,CA 92152  
ATTN CODE 2200 ILAN ROTHMULLER

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

COMMANDER  
NAVAL OCEANS SYSTEMS CENTER  
SAN DIEGO, CA 92152  
ATTN CODE 2200 WILLIAM MOLER

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 2600 TECH LIB

COMMANDER  
NAVAL OCEANS SYSTEMS CENTER  
SAN DIEGO, CA 92152  
ATTN CODE 2200 HERBERT HUGHES

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7127 CHARLES Y JOHNSON

COMMANDER  
NAVAL OCEANS SYSTEMS CENTER  
SAN DIEGO, CA 92152  
ATTN CODE 2200 RICHARD PAPPERT

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7700 TIMOTHY P COFFEY

COMMANDER  
NAVAL OCEANS SYSTEMS CENTER  
SAN DIEGO, CA 92152  
ATTN CODE 2200 JURGEN R RICHTER

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7709 WAHAB ALI

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7712 DOUGLAS P MCNUTT

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7750 DARRELL F STROBEL

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7701 JACK D BROWN

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7750 PAUL JULUENN

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7750 J. FEEDER

COMMANDER  
NAVAL ELECTRONICS SYSTEMS COMMAND  
NAVAL ELECTRONICS SYSTEMS COMMAND HQ:  
ATTN PME 117

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7750 S. OSSAKOW

COMMANDER  
NAVAL INTELLIGENCE SUPPORT CTR  
4301 SUTLAND RD. BLDG 5  
WASHINGTON, DC 20390  
ATTN DOCUMENT CONTROL

DIRECTOR  
NAVAL RESEARCH LABORATORY  
WASHINGTON, DC 20375  
ATTN CODE 7750 J. DAVIS

AF GEOPHYSICS LABORATORY, AFSC  
HANSOM AFB, MA 01731  
ATTN LKB KENNETH S W CHAMPION

COMMANDER  
NAVAL SURFACE WEAPONS CENTER  
WHITE OAK, SILVER SPRING, MD 20910  
ATTN CODE WA501 NAVY NUC PRGMS OFF

AF GEOPHYSICS LABORATORY, AFSC  
HANSOM AFB, MA 01731  
ATTN OPR ALVA T STAIR

COMMANDER  
NAVAL SURFACE WEAPONS CENTER  
WHITE OAKS, SILVER SPRING, MD 20910  
ATTN TECHNICAL LIBRARY

AF GEOPHYSICS LABORATORY, AFSC  
HANSOM AFB, MA 01731  
ATTN OPR-1 J. ULWICK

SUPER INTENDENT  
NAVAL POST GRADUATE SCHOOL  
MONTEREY, CA 93940  
ATTN TECH REPORTS LIBRARIAN

AF GEOPHYSICS LABORATORY, AFSC  
HANSOM AFB, MA 01731  
ATTN OPR-1 R. MURPHY

~~THIS PAGE IS BEST QUALITY PRACTICABLE~~  
~~FROM COPY FURNISHED TO DDC~~

AF GEOPHYSICS LABORATORY, AFSC  
HANSOM AFB, MA 01731  
ATTN OPR-1J. KENNEALY

SAMSO/AW  
POST OFFICE BOX 92960  
WORLDWAY POSTAL CENTER  
LOS ANGELES, CA 90009  
ATTNSZJ MAJOR LAWRENCE DOAN

AF GEOPHYSICS LABORATORY, AFSC  
HANSOM AFB, MA 01731  
ATTN PHG JC MCCLAY

SAMSO/SW  
P.O. BOX 92960  
WORLDWAY POSTAL CENTER  
LOS, ANGELES, CA 90009  
ATTN AW

AF GEOPHYSICS LABORATORY, AFSC  
HANSOM AFB, MA 01731  
ATTN LKD ROCCO NARCIS

AFTAC  
PATRICK AFB, FL 32925  
ATTN TECH LIBRARY

AF GEOPHYSICS LABORATORY, AFSC  
HANSOM AFB, MA 01731  
ATTN LKO, R. HUFFMAN

AFTAC  
PATRICK AFB, FL 32925  
ATTN TD

AF WEAPONS LABORATORY, AFSC  
KIRTLAND, AFB, NM 87117  
ATTN MAJ. GARY GANONG, DYM

HQ  
AIR FORCE SYSTEMS COMMAND  
ANDREWS AFB  
WASHINGTON, DC 20331  
ATTN DLS

COMMANDER  
ASD  
HPAFB, OH 45433  
ATTN ASD-YH-EX LTC ROBERT LEVERETTE

HQ  
AIR FORCE SYSTEMS COMMAND  
ANDREWS AFB  
WASHINGTON, DC 20331  
ATTN TECH LIBRARY

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

HQ  
AIR FORCE SYSTEMS COMMAND  
ANDREWS AFB  
WASHINGTON, DC 20331  
ATTN DLCAE

DIVISION OF MILITARY APPLICATION  
U S ENERGY RSCH & DEV ADMIN  
WASHINGTON, DC 20545  
ATTN DOC CON

HQ  
AIR FORCE SYSTEMS COMMAND  
ANDREWS AFB  
WASHINGTON, DC 20331  
ATTN DLTM

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS, ALAMOS, NM 87545  
ATTN DOC CON FOR R A JEFFRIES

HQ  
AIR FORCE SYSTEMS COMMAND  
ANDREWS AFB  
WASHINGTON, DC 20331  
ATTN DLXP

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS, ALAMOS, NM 87545  
ATTN DOC CON FOR CR MEHL ORG 5230

HQ  
AIR FORCE SYSTEMS COMMAND  
ANDREWS AFB  
WASHINGTON, DC 20331  
ATTNSDR

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS, ALAMOS, NM 87545  
ATTN DOC CON FOR H V ARGO

HQ USAF/RD  
WASHINGTON, DC 20330  
ATTN PDQ

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS, ALAMOS, NM 87545  
ATTN DOC CON FOR M. TIERNEY J-10

COMMANDER  
ROME AIR DEVELOPMENT CTR  
GRIFFISS AFB, NY 13440  
ATTN JJ. SIMONS OCSC

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS, ALAMOS, NM 87545  
ATTN DOC CON FOR ROBERT BROWNLEE

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS ALAMOS, NM 87545  
ATTN DOC CON FOR WILLIAM MAIER

SANDIA LABORATORIES  
P.O. BOX 5800  
ALBUQUERQUE, NM 87115  
ATT DOC CONT.  
FOR MORGAN KRAMMA ORG 5720

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS ALAMOS, NM 87545  
ATTN DOC CON FOR JOHN ZINN

SANDIA LABORATORIES  
P.O. BOX 5800  
ALBUQUERQUE, NM 87115  
ATT DOC CONT.  
FOR FRANK HUDSON ORG 1722

LOS ALAMOS SCIENTIFIC LABORATORY  
P.O. BOX 1663  
LOS ALAMOS, NM 87545  
ATTN DOC CON FOR REFERENCE LIBRARY  
ANN BEYER

SANDIA LABORATORIES  
P.O. BOX 5800  
ALBUQUERQUE, NM 87115  
ATT DOC CONT.  
FOR ORG 3422-1 SANDIA REPTS-COLL.

SANDIA LABORATORIES  
LIVERMORE LABORATORY  
P.O. BOX 965  
LIVERMORE, CA 94556  
ATTN DOC CONTROL FOR  
THOMAS COOK ORG 8000

ARGONNE NATIONAL LABORATORY  
RECORDS CONTROL  
9700 SOUTH CASS AVENUE  
ARGONNE, IL 60439  
ATTN DOC CON FOR A C WAHL

SANDIA LABORATORIES  
P.O. BOX 5800  
ALBUQUERQUE, NM 87115  
ATT DOC CONT. FOR  
W.D. BROWN ORG 1353

ARGONNE NATIONAL LABORATORY  
RECORDS CONTROL  
9700 SOUTH CASS AVENUE  
ARGONNE, IL 60439  
ATTN DOC CON FOR DAVID W GREEN

SANDIA LABORATORIES  
P.O. BOX 5800  
ALBUQUERQUE, NM 87115  
ATT DOC CONT. FOR  
L. ANDERSON ORG 1247

ARGONNE NATIONAL LABORATORY  
RECORDS CONTROL  
9700 SOUTH CASS AVENUE  
ARGONNE, IL 60439  
ATTN DOC CON FOR LIR SVCS RPTS SEC

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

ARGONNE NATIONAL LABORATORY  
RECORDS CONTROL  
9700 SOUTH CASS AVENUE  
ARGONNE, IL 60439  
ATTN DOC CON FOR S GARELNICK

CALIFORNIA, STATE OF  
AIR RESOURCE BOARD  
9525 TELSTA AVE  
AL MONTE, CA 91731  
ATTN LEO ZAFONTE

ARGONNE NATIONAL LABORATORY  
RECORDS CONTROL  
9700 SOUTH CASS AVENUE  
ARGONNE, IL 60439  
ATTN DOC CON FOR GERALD T REEDY

CALIFORNIA INSTITUTE OF TECHNOLOGY  
JET PROPULSION LABORATORY  
4800 OAK GROVE DRIVE  
PASADENA, CA 91103  
ATTN JOSEPH A JELLO

UNIVERSITY OF CALIFORNIA  
LAWRENCE LIVERMORE LABORATORY  
P.O. BOX 808  
LIVERMORE CA 94550  
ATTN W.H. DUEWER GEN L-404

U S ENERGY RSCH & DEV ADMIN  
DIVISION OF HEADQUARTERS SERVICES  
LIBRARY BRANCH G-043  
WASHINGTON, DC 20545  
ATTN DOC CON FOR CLASS TECH LIB

UNIVERSITY OF CALIFORNIA  
LAWRENCE LIVERMORE LABORATORY  
P.O. BOX 808  
LIVERMORE CA 94550  
ATTN JULIUS CHANG L-71

DEPARTMENT OF TRANSPORTATION  
OFFICE OF THE SECRETARY  
TAD-44, 1, ROOM 10402-R  
400 7TH STREET S.W.  
WASHINGTON, DC 20590  
ATTN SAMUEL C CORONITI

UNIVERSITY OF CALIFORNIA  
LAWRENCE LIVERMORE LABORATORY  
P.O. BOX 808  
LIVERMORE CA 94550  
G.R. HAUGEN L-404

NASA  
GODDARD SPACE FLIGHT CENTER  
GREENBELT, MD 20771  
ATTN A G AIKEN

UNIVERSITY OF CALIFORNIA  
LAWRENCE LIVERMORE LABORATORY  
P.O. BOX 808  
LIVERMORE CA 94550  
ATTN D.J. WUERBLES L-142

NASA  
GODDARD SPACE FLIGHT CENTER  
GREENBELT, MD 20771  
ATTN A TEMPKIN

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

NASA  
GODDARD SPACE FLIGHT CENTER  
GREENBELT, MD 20771  
ATTN A J BAUER

NASA  
600 INDEPENDENCE AVENUE S W  
WASHINGTON, DC 20546  
ATTN R FELLOWS

NASA  
GODDARD SPACE FLIGHT CENTER  
GREENBELT, MD 20771  
ATTN TECHNICAL LIBRARY

NASA  
600 INDEPENDENCE AVENUE S W  
WASHINGTON, DC 20546  
ATTN A SCHARDT

NASA  
GODDARD SPACE FLIGHT CENTER  
GREENBELT, MD 20771  
ATTN J. SIRY

NASA  
600 INDEPENDENCE AVENUE S W  
WASHINGTON, DC 20546  
ATTN M TEPPER

NASA  
600 INDEPENDENCE AVENUE S W  
WASHINGTON, DC 20546  
ATTN A GESSOW

NASA  
LANGLEY RESEARCH CENTER  
LANGLEY STATION  
HAMPTON, VA 23365  
ATTN CHARLES SCHEXNAYDER MS-168

NASA  
600 INDEPENDENCE AVENUE S W  
WASHINGTON, DC 20546  
ATTN D P CAUFFMAN

NASA  
AMES RESCH CENTER  
MOFFETT FIELD, CA 90435  
ATTN N-254-4 WALTER L. STARR

NASA  
600 INDEPENDENCE AVENUE S W  
WASHINGTON, DC 20546  
ATTN LTC D R HALLENBECK CODE SG

NASA  
AMES RESEARCH CENTER  
MOFFETT FIELD, CA 94035  
ATTN N-254-4 R WHITTEN

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

NASA  
AMES RESEARCH CENTER  
MOFFETT FIELD, CA 94035  
ATTN N-254-4 ILIA G POPPOFF

NASA  
GEORGE C MARSHALL SPACE FLIGHT CENTER  
HUNTSVILLE, AL 35812  
ATTN W T ROBERTS

NASA  
AMES RESEARCH CENTER  
MOFFETT FIELD, CA 94036  
ATTN N-254-3 NEIL H FARLOW

NASA  
GEORGE C MARSHALL SPACE FLIGHT CENTER  
HUNTSVILLE, AL 35812  
ATTN R D HUDSON

NASA  
GEORGE C MARSHALL SPACE FLIGHT CENTER  
HUNTSVILLE, AL 35812  
ATTN C R BALCHER

NASA  
GEORGE C MARSHALL SPACE FLIGHT CENTER  
HUNTSVILLE, AL 35812  
ATTN R CHAPPELL

NASA  
GEORGE C MARSHALL SPACE FLIGHT CENTER  
HUNTSVILLE, AL 35812  
ATTN H STONE

ALBANY METALLURGY RESEARCH CENTER  
U S BUREAU OF MINES  
P.O. BOX 70  
ALBANY, OR 97321  
ATTN ELEANOR ARSHIRE

NASA  
GEORGE C MARSHALL SPACE FLIGHT CENTER  
HUNTSVILLE, AL 35812  
ATTN W A ORAN

CENTRAL INTELLIGENCE AGENCY  
ATTN RD/SI RM 5G48 HQ BLDG  
WASHINGTON DC 20505  
ATTN NED/OSI-2G4R HQS

NASA  
GEORGE C MARSHALL SPACE FLIGHT CENTER  
HUNTSVILLE, AL 35812  
ATTN CODE ES22JOHN WATTS

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN SEC OFFICER FOR ATTN JAMES DEVOE

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN SEC OFFICER  
STANLEY ABRAMOWITZ

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN SEC OFFICER FOR ATTN JAMES DEVOE

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN SEC OFFICER FOR ATTN J COOPER

NATIONAL OCEANIC & ATMOSPHERIC ADMIN  
ENVIRONMENTAL RESEARCH LABORATORIES  
DEPARTMENT OF COMMERCE  
BOULDER, CO 80302  
ATTN GEORGE C REID AERONOMY LAB

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN SEC OFFICER FOR ATTN GEORGE A SINKATT

NATIONAL OCEANIC & ATMOSPHERIC ADMIN  
ENVIRONMENTAL RESEARCH LABORATORIES  
DEPARTMENT OF COMMERCE  
BOULDER, CO 80302  
ATTN ELDON FERGUSON

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN SEC OFFICER FOR ATTN K KESSLER

NATIONAL OCEANIC & ATMOSPHERIC ADMIN  
ENVIRONMENTAL RESEARCH LABORATORIES  
DEPARTMENT OF COMMERCE  
BOULDER, CO 80302  
ATTN FRED FEHSENFELD

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN SEC OFFICER FOR ATTN M KRAUSS

AERO-CHEM RESEARCH LABORATORIES, INC  
P.O. BOX 12  
PRINCETON, NJ 08540  
ATTN A FONTIJN

DEPARTMENT OF COMMERCE  
NATIONAL BUREAU OF STANDARDS  
WASHINGTON, DC 20234  
ATTN SEC OFFICER FOR  
ATTN LEWIS H GEVANTMAN

AERO-CHEM RESEARCH LABORATORIES, INC  
P.O. BOX 12  
PRINCETON, NJ 08540  
ATTN H PERGAMENT

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

AERODYNE RESEARCH, INC.  
BEDFORD RESEARCH PARK  
CROSBY DRIVE  
BEDFORD, MA 01731 ATTN F BIEN

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN T WIGHOPH

AERODYNE RESEARCH, INC.  
BEDFORD RESEARCH PARK  
CROSBY DRIVE  
BEDFORD, MA 01731 ATTN M CAMAC

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN R J MCNEAL

AERONOMY CORPORATION  
217 S NEIL STREET  
CHAMPAIGN, IL 61821  
ATTN A BOWHILL

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN R GROVE

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN N COHEN

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN IRVING M GARFUNKEL

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN HARRIS MAYER

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN THOMAS D TAYLOR

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN SIDNEY H KASH

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN V JOSEPHSON

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN JULIAN REINHEIMER

BATTELLE MEMORIAL INSTITUTE  
505 KING AVENUE  
COLUMBUS, OH 43201  
ATTN DONALD J HAM

AEROSPACE CORPORATION  
P.O. BOX 92957  
LOS ANGELES, CA 90009  
ATTN R D RAWCLIFFE

BATTELLE MEMORIAL INSTITUTE  
505 KING AVENUE  
COLUMBUS, OH 43201  
ATTN STOIAC

AVCO-EVERETT RESEARCH LABORATORY INC  
2385 REVERE BEACH PARKWAY  
EVERETT, MA 02149  
ATTN TECHNICAL LIBRARY

BATTELLE MEMORIAL INSTITUTE  
505 KING AVENUE  
COLUMBUS, OH 43201  
ATTN RICHARD K THATCHER

AVCO-EVERETT RESEARCH LABORATORY INC  
2385 REVERE BEACH PARKWAY  
EVERETT, MA 02149  
ATTN GEORGE SUTTON

BROWN ENGINEERING COMPANY, INC  
CUMMINGS RESEARCH PARK  
HUNTSVILLE, AL 35807  
ATTN N PASSINO

AVCO-EVERETT RESEARCH LABORATORY INC  
2385 REVERE BEACH PARKWAY  
EVERETT, MA 02149  
ATTN C W VON ROSENBERG JR

THE TRUSTEES OF BOSTON COLLEGE  
CHESTNUT HILL CAMPUS  
CHESTNUT HILL, MA 02167  
ATTN CHAIRMAN DEPT OF CHEM

BATTELLE MEMORIAL INSTITUTE  
505 KING AVENUE  
COLUMBUS, OH 43201  
ATTN DONALD J HAMMAN

BROWN ENGINEERING COMPANY, INC  
CUMMINGS RESEARCH PARK  
HUNTSVILLE, AL 35807  
ATTN RONALD PATRICK

CALIFORNIA AT RIVERSIDE, UNIV OF  
RIVERSIDE, CA 92502  
ATTN ALAN C LLOYD

CALIFORNIA, STATE OF  
AIR RESOURCES BOARD  
9528 TELSTAR AVENUE.  
EL MONTE, CA 91731  
ATTN LEO ZAFONTE

CALIFORNIA AT RIVERSIDE, UNIV OF  
RIVERSIDE, CA 92502  
ATTN JAMES N PITTS JR

CALSPAN CORPORATION  
P.O. BOX 235  
BUFFALO, NY 14224  
ATTN C E TREANOR

CALIFORNIA AT SAN DIEGO, UNIV OF  
3175 MIRAMAR ROAD  
LA JOLLA, CA 92037  
ATTN S C LIN

CALSPAN CORPORATION  
P.O. BOX 235  
BUFFALO, NY 14221  
ATTN G C VALLEY

CALIFORNIA UNIVERSITY OF  
BERKELEY CAMPUS ROOM 318  
SPROUL HALL  
BERKELEY, CA 94720  
ATTN SEC OFFICER FOR HAROLD JOHNSTON

CALSPAN CORPORATION  
P.O. BOX 235  
BUFFALO, NY 14221  
ATTN M G DUNN

CALIFORNIA UNIVERSITY OF  
BERKELEY CAMPUS ROOM 318  
SPROUL HALL  
BERKELEY, CA 94720  
ATTN SEC OFFICER FOR F MOZER

CALSPAN CORPORATION  
P.O. BOX 235  
BUFFALO, NY 14221  
ATTN W W JRSTER

CALIFORNIA UNIVERSITY OF  
BERKELEY CAMPUS ROOM 318  
SPROUL HALL  
BERKELEY, CA 94720  
ATTN SEC OFFICER FOR DEPT OF CHAM  
H H MILLER

COLORADO, UNIVERSITY OF  
OFFICE OF CONTRACTS AND GRANTS  
380 ADMINISTRATIVE ANNEX BOULDER, CO 80302  
ATTN A PHELPS JILA

OFFICE OF CONTRACTS AND GRANTS  
380 ADMINISTRATIVE ANNEX  
BOULDER, CO 80302  
ATTN JEFFREY B PEARCE LASP

COLUMBIA UNIVERSITY, THE TRUSTEES OF  
CITY OF NEW YORK  
116TH & BROADWAY  
NEW YORK NY 10027  
ATTN SEC OFFICER H M FOLEY

COLORADO, UNIVERSITY OF  
OFFICE OF CONTRACTS AND GRANTS  
380 ADMINISTRATIVE ANNEX  
BOULDER, CO 80302  
ATTN C BEATY JILA

CONCORD SCIENCES  
P.O. BOX 119  
CONCORD, MA 01742  
ATTN EMMETT A SUTTON

COLORADO, UNIVERSITY OF  
OFFICE OF CONTRACTS AND GRANTS  
380 ADMINISTRATIVE ANNEX  
BOULDER, CO 80302  
ATTN C LINEBERGER JILA

DENVER, UNIVERSITY OF  
COLORADO SEMINARY  
DENVER RESEARCH INSTITUTE  
P.O. BOX 10127 DENVER, CO 80210  
ATTN SEC OFFICER FOR MR VAN ZYL

COLORADO, UNIVERSITY OF  
OFFICE OF CONTRACTS AND GRANTS  
380 ADMINISTRATIVE ANNEX  
BOULDER, CO 80302  
ATTN CHARLES A BARTH LASP

DENVER, UNIVERSITY OF  
COLORADO SEMINARY  
DENVER RESEARCH INSTITUTE  
P.O. BOX 10127 DENVER, CO 80210  
ATTN SEC OFFICER FOR DAVID MURRAY

COLUMBIA UNIVERSITY, THE TRUSTEES  
IN THE CITY OF NEW YORK  
LA MONT DOHERTY GEOLOGICAL  
OBSERVATORY-TORREY CLIFF  
PALISADES, NY 10064  
ATTN B PHELAN

GENERAL ELECTRIC COMPANY  
TEMPO-CENTER FOR ADVANCED STUDIES  
816 STATE STREET (P.O. DRAWER QQ)  
SANTA BARBARA, CA 93102  
ATTN DASAIC

COLUMBIA UNIVERSITY, THE TRUSTEES OF  
CITY OF NEW YORK  
116TH STREET & BROADWAY  
NEW YORK, NY 10027  
ATTN RICHARD N ZARE

GENERAL ELECTRIC COMPANY  
TEMPO-CENTER FOR ADVANCED STUDIES  
816 STATE STREET (P.O. DRAWER QQ)  
SANTA BARBARA, CA 93102  
ATTN WARREN S KNAPP

GENERAL ELECTRIC COMPANY  
TEMPO-CENTER FOR ADVANCED STUDIES  
816 STATE STREET (P.O. DRAWER)  
SANTA BARBARA, CA 93102  
ATTN TIM STEPHENS

GENERAL ELECTRIC COMPANY  
SPACE DIVISION  
VALLEY FORGE SPACE CENTER  
GODDARD BLVD KING OF PRUSSIA  
P.O. BOX 8555  
PHILADELPHIA, PA 19101  
ATTN P ZAVITSANOS

GENERAL ELECTRIC COMPANY  
TEMPO-CENTER FOR ADVANCED STUDIES  
816 STATE STREET (P.O. DRAWER QQ)  
SANTA BARBARA, CA 93102  
ATTN DON CHANDLER

GENERAL ELECTRIC COMPANY  
SPACE DIVISION  
VALLEY FORGE SPACE CENTER  
GODDARD BLVD KING OF PRUSSIA  
P.O. BOX 8555  
PHILADELPHIA, PA 19101  
ATTN R H EDSALL

GENERAL ELECTRIC COMPANY  
TEMPO-CENTER FOR ADVANCED STUDIES  
816 STATE STREET (P.O. DRAWER QQ)  
SANTA BARBARA, CA 93102  
ATTN B CAMBILL

GENERAL ELECTRIC COMPANY  
SPACE DIVISION  
VALLEY FORGE SPACE CENTER  
GODDARD BLVD KING OF PRUSSIA  
P.O. BOX 8555  
PHILADELPHIA, PA 19101  
ATTN T BAURER

GENERAL ELEC. CO.  
SPACE DIVISION  
VALLEY FORGE SPACE CTR  
GODDARD BLVD  
KING OF PRUSSIA  
P.O. BOX 8555  
PHILADELPHIA, PA 19101  
ATTN M H BORTNER, SPACE SCIENCE LAB

GENERAL RESEARCH CORPORATION  
P.O. BOX 3587  
SANTA BARBARA, CA 93105  
ATTN JOHN ISE JR

GENERAL ELECTRIC COMPANY  
SPACE DIVISION  
VALLEY FORGE SPACE CENTER  
GODDARD BLVD KING OF PRUSSIA  
P.O. BOX 8555  
PHILADELPHIA, PA 19101  
ATTN J BURNS

GEOPHYSICAL INSTITUTE  
UNIVERSITY OF ALASKA  
FAIRBANKS, AK 99701  
ATTN D HENDERSON

GENERAL ELECTRIC COMPANY  
SPACE DIVISION  
VALLEY FORGE SPACE CENTER  
GODDARD BLVD KING OF PRUSSIA  
P.O. BOX 8555  
PHILADELPHIA, PA 19101  
ATTN F ALYE

GEOPHYSICAL INSTITUTE  
UNIVERSITY OF ALASKA  
FAIRBANKS, AK 99701  
ATTN J S WAGNER PHYSICS DEPT

GEOPHYSICAL INSTITUTE  
UNIVERSITY OF ALASKA  
FAIRBANKS, AK 99701  
ATTN B J WATKINS

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN JOHN KIMER DEPT 52-54

GEOPHYSICAL INSTITUTE  
UNIVERSITY OF ALASKA  
FAIRBANKS, AK 99701  
ATTN T N DAVIS

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN JOHN B CLADIS DEPT 52-12

GEOPHYSICAL INSTITUTE  
UNIVERSITY OF ALASKA  
FAIRBANKS, AK 99701  
ATTN R PARTHASARATHY

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN BILLY M MCCORMAC DEPT 52-54

GEOPHYSICAL INSTITUTE  
UNIVERSITY OF ALASKA  
FAIRBANKS, AK 99701  
ATTN NEAL BROWN

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN TOM JAMES DEPT 52-54

LOWELL, UNIVERSITY OF  
CENTER FOR ATMOSPHERIC RESEARCH  
450 AIKEN STREET  
LOWELL, MA 01854  
ATTN G T BEST

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN J B REAGAN D/52-12

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO ALTO, CA 94394  
ATTN JOHN KIMER DEPT 52-54

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN MARTIN WALT DEPT 52-10

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN RICHARD G JOHNSON DEPT 52-12

MISSION RESEARCH CORPORATION  
735 STATE STREET  
SANTA BARBARA, CA 93101  
ATTN D FISCHER

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN ROBERT D SEARS DEPT 52-14

MISSION RESEARCH CORPORATION  
735 STATE STREET  
SANTA BARBARA, CA 93101  
ATTN M SCHEIBE

LOCKHEED MISSILES AND SPACE COMPANY  
3251 HANOVER STREET  
PALO, ALTO, CA 94304  
ATTN J R WINKLER

MISSION RESEARCH CORPORATION  
735 STATE STREET  
SANTA BARBARA, CA 93101  
ATTN D SAPPENFIELD

INSTITUTE FOR DEFENSE ANALYSE  
400 ARMY-NAVY DRIVE  
ARLINGTON, VA 22202  
ATTN ERNEST BAUER

MISSION RESEARCH CORPORATION  
735 STATE STREET  
SANTA BARBARA, CA 93101  
ATTN D SOWLE

INSTITUTE FOR DEFENSE ANALYSE  
400 ARMY-NAVY DRIVE  
ARLINGTON, VA 22202  
ATTN HANS WOLFHARD

PHOTOMETRIC, INC.  
442 MARRETT ROAD  
LEXINGTON, MA 02173  
ATTN IRVING L KOFSKY

MISSION RESEARCH CORPORATION  
735 STATE STREET  
SANTA BARBARA, CA 93101  
ATTN D ARCHER

PHYSICAL DYNAMICS INC.  
P.O. BOX 1069  
BERKELEY, CA 94701  
ATTN J B WORKMAN

PHYSICAL DYNAMICS INC.  
P.O. BOX 1069  
BERKELEY, CA 94701  
ATTN A THOMPSON

PITTSBURGH, UNIVERSITY OF  
OF THE COMMONWEALTH SYS OF HIGHER EDUC  
CATHEDRAL OF LEARNING  
PITTSBURGH, PA 15213  
ATTN MANFRED A BIONDI

PHYSICAL SCIENCES, INC.  
30 COMMERCE WAY  
WOBURN, MA 01801  
ATTN KURT WRAY

PITTSBURGH, UNIVERSITY OF  
OF THE COMMONWEALTH SYS OF HIGHER EDUC  
CATHEDRAL OF LEARNING  
PITTSBURGH, PA 15213  
ATTN FREDERICK KAUFMAN

PHYSICAL SCIENCES, INC.  
30 COMMERCE WAY  
WOBURN, MA 01801  
ATTN R L TAYLOR

PITTSBURGH, UNIVERSITY OF  
OF THE COMMONWEALTH SYS OF HIGHER EDUC  
CATHEDRAL OF LEARNING  
PITTSBURGH, PA 15213  
ATTN EDWARD GERJUOY

PHYSICAL SCIENCES, INC.  
30 COMMERCE WAY  
WOBURN, MA 01801  
ATTN G CALEDONIA

PRINCETON UNIV, THE TRUSTEES OF  
FORRESTAL CAMPUS LIBRARY  
BOX 710  
PRINCETON UNIVERSITY  
PRINCETON, NJ 08540  
ATTN ARNOLD J KELLY

PHYSICS INTERNATIONAL COMPANY  
2700 MERCED STREET  
SAN LEANDRO, CA 94577  
ATTN DOC CON FOR TECH LIR

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN RICHARD LATTER

PITTSBURGH, UNIVERSITY OF  
OF THE COMMONWEALTH SYS OF HIGHER EDUC  
CATHEDRAL OF LEARNING  
PITTSBURGH, PA 15213  
ATTN MADE L FITE

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN R G LINDGREN

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN BRYAN GABBARD

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN D DEE

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN H A DRY

R & D ASSOCIATES  
1815 N. FT. MYER DRIVE  
11TH FLOOR  
ARLINGTON, VA 22209  
ATTN HERBERT J MITCHELL

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN ROBERT E LELEVIER

R & D ASSOCIATES  
1815 N. FT. MYER DRIVE  
11TH FLOOR  
ARLINGTON, VA 22209  
ATTN J W ROSENGREN

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN R P TURCO

RAND CORPORATION  
1700 MAIN STREET  
SANTA MONICA, CA 90406  
ATTN CULLEN CRAIN

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN ALBERT L LATTER

SCIFNCE APPLICATIONS, INC.  
P.O. BOX 2351  
LA JOLLA, CA 92038  
ATTN DANIEL A HAMLIN

R & D ASSOCIATES  
P.O. BOX 9695  
MARINA DEL REY, CA 90291  
ATTN FORREST GILMORE

SCIENCE APPLICATIONS, INC.  
P.O. BOX 2351  
LA JOLLA, CA 92038  
ATTN DAVID SACHS

THIS PAGE IS BEST QUALITY PRACTICABLE  
FROM COPY FURNISHED TO DDC

SPACE DATA CORPORATION  
1331 SOUTH 26TH STREET  
PHOENIX, AZ 85034  
ATTN EDWARD F ALLEN

TECHNOLOGY INTERNATIONAL CORPORATION  
75 WIGGINS AVENUE  
BEDFORD, MA 01730  
ATTN H P BOQUIST

STANFORD RSCH INSTITUTE INTERNATIONAL  
333 RAVENSWOOD AVENUE  
MENLO PARK, CA 94025  
ATTN M BARON

UNITED TECHNOLOGIES CORPORATION  
755 MAIN STREET  
HARTFORD, CT 06103  
ATTN H MICHELS

STANFORD RSCH INSTITUTE INTERNATIONAL  
333 RAVENSWOOD AVENUE  
MENLO PARK, CA 94025  
ATTN L LEADABRAND

UNITED TECHNOLOGIES CORPORATION  
755 MAIN STREET  
HARTFORD, CT 06113  
ATTN ROBERT H BULLIS

STANFORD RSCH INSTITUTE INTERNATIONAL  
333 RAVENSWOOD AVENUE  
MENLO PARK, CA 94025  
ATTN WALTER G CHESTNUT

UTAH STATE UNIVERSITY  
LOGAN, UT 84321  
ATTN DORAN BAKER

STANFORD RSCH INSTITUTE INTERNATIONAL  
1611 NORTH KENT STREET  
ARLINGTON, VA 22209  
ATTN WARREN W BERNING

UTAH STATE UNIVERSITY  
LOGAN, UT 84321  
ATTN KAY BAKER

STANFORD RSCH INSTITUTE INTERNATIONAL  
1611 NORTH KENT STREET  
ARLINGTON, VA 22209  
ATTN CHARLES HULBERT

UTAH STATE UNIVERSITY  
LOGAN, UT 84321  
ATTN C HYATT

UTAH STATE UNIVERSITY  
LOGAN, UT 84321  
ATTN D BURT

WAYNE STATE UNIVERSITY  
1064 MACKENZIE HALL  
DETROIT, MI 48202  
ATTN PIETER K ROL CHAM ENGRG & MAT SCI

VISIDYNE, INC.  
19 THIRD AVENUE  
NORTHWEST INDUSTRIAL PARK  
BURLINGTON, MA 01803  
ATTN HENRY J SMITH

WAYNE STATE UNIVERSITY  
1064 MACKENZIE HALL  
DETROIT, MI 48202  
ATTN R H KUMMLER

VISIDYNE, INC.  
19 THIRD AVENUE  
NORTHWEST INDUSTRIAL PARK  
BURLINGTON, MA 01803  
ATTN J W CARPENTER

WAYNE STATE UNIVERSITY  
DEPT. OF PHYSICS  
DETROIT, MI 48202  
ATTN WALTER E KAUPPILA

VISIDYNE, INC.  
19 THIRD AVENUE  
NORTHWEST INDUSTRIAL PARK  
BURLINGTON, MA 01803  
ATTN WILLIAM REIDY

YALE UNIVERSITY  
NEW HAVEN, CT 06520  
ATTN ENGINEERING DEPARTMENT

19 THIRD AVENUE  
NORTHWEST INDUSTRIAL PARK  
BURLINGTON, MA 01803  
ATTN T C DEGGES

VISIDYNE, INC.  
19 THIRD AVENUE  
NORTHWEST INDUSTRIAL PARK  
BURLINGTON, MA 01803  
ATTN CHARLES HUMPHREY