

Eexam

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- · Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Midterm Datum: Freitag, 14. Juni 2019

Prüfer: Prof. Dr.-lng. Georg Carle **Uhrzeit:** 17:30 – 18:15

Bearbeitungshinweise

- · Diese Klausur umfasst
- 8 Seiten mit insgesamt 4 Aufgaben
 Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Prüfung beträgt 45 Punkte.
- Das Heraustrennen von Seiten aus der Prüfung ist untersagt.
- · Als Hilfsmittel sind zugelassen:
 - die der Angabe beiliegende Formelsammlung (Cheatsheet)
 - ein nicht-programmierbarer Taschenrechner
 - ein analoges Wörterbuch Deutsch → Muttersprache ohne Anmerkungen
- Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Ergebnisse vorheriger Teilaufgaben lösbar.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Auch Textaufgaben sind grundsätzlich zu begründen, sofern es in der jeweiligen Teilaufgabe nicht ausdrücklich anders vermerkt ist.
- Schreiben Sie weder mit roter/grüner Farbe noch mit Bleistift.
- Schalten Sie alle mitgeführten elektronischen Geräte vollständig aus, verstauen Sie diese in Ihrer Tasche und verschließen Sie diese.

Hörsaal verlassen von	bis	/	Vorzeitige Abgabe um

	Aufgabe 1 Kurzaufgaben (10 Punkte)
0	Die nachfolgenden Teilaufgaben sind jeweils unabhängig voneinander lösbar. a)* Was versteht man unter ARP-Spoofing?
1 🔣	Boswilliges Unterten von Datewertehr all Schicht 2 dUrch ycholsente ARP reyvests
°	b)* Wofür wird das Identification-Feld im IPv4-Header benötigt?
1 🖽	reckinslicking eiges IP Patets
	c)* Gegeben sei eine gedächtnislose Quelle Q , die n Zeichen emittiert. Wie muss die Auftrittswahrscheinlichkeit der Zeichen gewählt werden, so dass die Entropie der Quelle maximiert wird (ohne Begründung)?
'	P(X) = 1/2
0	d)* Erläutern Sie kurz den Unterschied zwischen ASK und PSK.
1 2	ASK who now die Amplitude modelier
	bei PSK Wingeger die Phase
0	e)* Die Kanalkapazität nach Shannon und Hartley liefert jeweils unterschiedliche Werte. Erklären Sie kurz, welche äußeren Faktoren hier jeweils berücksichtigt werden.
2	Hattles Quantisieum
	Sharan Roughen
o 	f)* Nennen Sie zwei Arten, wie sich Rahmengrenzen erkennen lassen (ohne Begründung).
1 ##	Codereja Verletzuwan, länge det Hüdel, Steul
0	g)* Beschreiben Sie den Unterschied zwischen der N-SDU und N-PDU.
1 2	SDU ist der Edylood um Header- PDU ergänzt die SDU um Header- informationen in der Schricht W
	ADO NOUNTY ONE 200
	informationen in der Schricht W

Aufgabe 2 CRC (7 Punkte)

		ne	rn _	51	e k	ur	z,	Wa	as (_	eı _	n .	p	ea J	uz -V	ib h	le:	s F	Re	dı 	JK	tic	ns	sp G	oly	ynd A	om N	is	t. [ci/	24	_		_	١,	L		la (,	\ \ \	<u></u>	- باہر	4	,]	F
	e i Ve	n Id	N V	iii),0	Z	ار ا	K	,16	<i>'</i>		Þ.))	I /y	/h	00	v		I /^	~! ~!	+	6	o W	ko	ν.	ト く	r	u	(N	χ σ 1	ا اد ر	18	d	W L(ハ シ^	. '	•	\ U			u	ic	,			L
																										it, v Che							: r((x)	ge	esi	ch	er	t w	er	de	n s	sol	II.		
	0	()()	O	C) /	1		ع, ﴿) .	1.	1		(C	()	6)(0	(9		<u>د</u>		1	,	١,	C) -	1	O)/	l,	_	5									F
_						+	(1	J T		0	1	<u>(</u>	<u>)</u> 不	/	1	-6	7	6)	r) (<u>โ</u>						_																-	þ
_														2	5	1) (ץ כ	7	1	0 0)	1																							L
-														_		e,	4,		O) (9	1	. () /	1																					
_																																														
_																																													-	
																																													-	
)	sc	hr	eib	er	ı S	ie	ku	rz	, W	/ie	d	er	Eı	mp	ofä	in	ge	r	eir	ne	n	Üŀ	эе	rtr	ag	un	gs	feł	nle	r fe	est	ste	elle	en	ka	ınr	١.									Е
•	1	\	F)	0	l),	1)			(<u>ر</u> ال	ĺ		14	Ś	,) (\			9	16	9	-	F	- ا	-1	V.	P	6	H	Ŋ	ኃሮ)N	C.	C		6	Ja		h	11	UN	太	ŀ
		V	√ (וע	11	\	d	L	(7	5	e	G	+	_	4	٦	0)			6.	5	<u> </u>	e	ر ا	<u></u>	. (<u>'</u>]!	þ	લ	E	(Ļ	ار	Jr	Y	St 1	<u>ص</u> ۱.	W	e	ار (<u> </u>	ما	<u>۱</u>
=	enr	er	ı S	ie	eiı	n F	eł	nle	rn	าน	ste	er,	w	elo	ch	es I	m —	nit	tel	s	С	R	C 1	nic	ht	erl	kaı	nn	t w	er	de	n l	ka	nn				_	بد	₩	7(ישי	ار 	שי]	F
			Λ				^			1		ı	()			F	1		.			\mathcal{N}	n	10				,		1						(7		1					

Aufgabe 3 Data Link Layer (14 Punkte)

Gegeben sei die aus der Vorlesung bekannte Netzwerktopologie in Abbildung 3.1. Wir nehmen an, dass zunächst alle Caches leer sind (sowohl ARP-Tabellen der Clients als auch die Switching-Tabelle von S). Die beiden kabellosen Clients (verbunden über IEEE 802.11n) seien aber bereits mit dem AP assoziiert.

Abbildung 3.1: Netztopologie

Hinweis: Die MAC-Adressen aller Stationen in Abbildung 3.1 können durch Angabe des Namens abgekürzt werden, z. B. PC1 für die MAC-Adresse von PC1.

a)* Begründen Sie kurz, ob S für seine normalen Funktionen im Netzwerk eine MAC-Adrese benötigt.

	Nein	weil	es v	nicht	Adjess	(eh	Diw		
1	b)* Begründen				alen Funktioner	1	111	MAC-Adrese be	

PC1 möchte nun mit NB1 kommunizieren. Die IP-Adresse von NB1 sei an PC1 bekannt.

c)* Was beinhaltet der erste Rahmen, der von PC1 gesendet wird (ohne Begründung)?

ARP VOUUEST Weil es eine Mac
Adlesse bavoht

d) Geben Sie die Source Address (SA) und Destination Address (DA) dieses Rahmens in den Abschnitten (1) und (2) an.

e) Geben Sie direkt in Abbildung 3.1 alle Einträge an, die durch diesen Rahmen in der Switching-Tabelle von S erzeugt werden.

	IEEE 802.11 ke	nnt für Datenrahme	n bis zu vier MAC	C-Adressen mit der	n folgenden Bedeutungen:
--	----------------	--------------------	-------------------	--------------------	--------------------------

- Source Address (SA)
- Destination Address (DA)
- Transmitter Address (TA)
- Receiver Address (RA)

Im Infrastrukturmodus besitzen Datenrahmen **drei** MAC-Adressen, da in Abhängigkeit der Richting, in die ein Rahmen gesendet wird, jeweils zwei Adressen identisch sind. Somit hat in diesem Fall eine Adresse zwei unterschiedliche Bedeutungen.

0

1

2

0

2

0

f) Geben Sie für den Rahmen in Abschnitt ③ vom AP in Richtung der kabellosen Clients alle drei Adressen sowie die Bedeutung der dritten Adresse an.	田
Wer versonickt? Whin? Von WO?	Ш
g) Geben Sie für die Antwort von NB1 an PC1 in Abschnitt $\textcircled{3}$ alle drei Adressen sowie die Bedeutung der dritten Adresse an.	\blacksquare
TA: MB1=SAM RA: AP DA PCM Wer werschickt Wer steht in der Mille Wehin	Ш
h) Markieren Sie in den Lösungen der Teilaufgaben f) und g) jeweils die Adresse, welche eine doppelte Bedeutung hat.	田
i)* Erläutern Sie kurz, wie die Bedeutung der einzelnen Adressfelder im Header festgelegt wird. Hinweis: Es reicht, das zugrundeliegende Prinzip zu erläutern.	Ж
Im Hender gibt es ein Feld t-lane Control, in dem 2 Bits (FromDS, ToDs) Welche dies unterscheiden	
j)* Geben Sie für die Antwort an PC1 die MAC-Adressen in Abschnitt ② an.	Ш
SA: DA: DC1	Ш
k) Geben Sie alle Einträge direkt in Abbildung 3.1 an, die diese Antwort an PC1 in der Switching-Tabelle von S erzeugt.	

Aufgabe 4 Multiple Choice (14 Punkte)

Kreuzen Sie richtige Antworten an

Kreuze können durch vollständiges Ausfüllen gestrichen werden

Die nachfolgenden Teilaufgaben sind jeweils unabhängig voneinander lösbar und stammen aus den vorlesungsbegleitenden Quizzen. Das Bewertungsschema entspricht ebenfalls dem der Quizze:

- · Aufgaben mit nur einer richtigen Antwort werden
 - mit 1 Punkt bei richtiger Antwort und
 - mit 0 Punkten sonst bewertet.
- · Aufgaben mit mehr als einer richtigen Antwort werden
 - mit 1 Punkt bei vollständig richtiger Antwort,
 - mit 0,5 Punkten bei einer fehlenden oder falschen Antwort und
 - mit 0 Punkten sonst bewertet.

a)* Gegeben seien der Rechtecksimpuls $s_1(t)$ sowie der \cos^2 -Impuls $s_2(t)$. Untenstehende Abbildung zeigt vier verschiedene Spektren. Welche Aussagen sind zutreffend?

b)* Gegeben seien ein Signal s(t) mit Leistung $P_s = 100\,\text{mW}$ sowie eine Rauschleistung von $P_N = 10\,\text{mW}$. Welchen Wert hat der Signal-zu-Rauschabstand in diesem Fall?

- □ 1 bit □ 10 bit □ 10 dB □ 1 dB
- c)* Ein wertkontinuierliches Signal soll im Intervall I = [-2;2] quantisiert werden, sodass der maximale Quantisierungsfehler innerhalb von I höchstens 1/2 beträgt. Wie viele Quantisierungsstufen sind dafür mindestens erforderlich?

e)* Kreuzen Sie die Matrix an, die für nebenstehendes Netzwerk nach Vorlesung die Adjazenzmatrix darstellt.

f)* Gegeben die sei Distanzmatrix \mathbf{D} für nebenstehendes Netzwerk. Für welches minimale n gilt $\mathbf{D}^n = \mathbf{D}^{n+1}$?

g)* G Orde	•	ei die binär	e Nachricht	10101010 000	1 00000 i	n Little End	lian. Wie lautet	sie in Network	Byte
	0x00 0x5	5			×	0x00 0xaa			
	00000000	10101010				00000000	01010101		
h)* A werk		len Broadc	ast-Domäne	n besteht das	neben	stehende N	letz-	— III	
	5	4	3	X 2	1		6		
i)* Au	ıs wie viele	en Kollisions	domänen be	steht das neb	enstehe	nde Netzw	erk?		
Ø	4	5	2	1	6	丞	3		
j)* W	orin bestel	ht der wese	entliche Unte	rschied zwiscl	hen CS	MA/CD und	d CSMA/CA?		
	-		niede in der ledienzugriff.	Kollisionsbe-		CSMA/CA ge von 64		minimale Rahme	nlän-
凶		dienzugriff ne Contenti		A/CA gibt es) verwendet im estätigungen.	n Gegensatz zu	CS-
k)* W	elche Aus	sagen zum	Manchester	-Code sind zı	utreffen	d?			
×	automatis	sche Taktrü	ckgewinnung	l	Ø	immer gle	ichstromfrei		
	gleichstro Code	omfrei nur	mit zusätzli	chem 4B5B-		schmalere	es Spektrum als	NRZ	
							en sowie ein Üb erzielbare Dater	pertragungskana nrate.	ıl mit
Þ	(3 Mbit/s	1 7 N	Mbit/s	4 Mbit/s		5 Mbit/s	6 Mbit/s	s 8 Mbi	it/s
m)* [Die Serialis	sierungszei	t						
Ø	ist der Qu	otient aus	Rahmenläng	e und Datenra	ate.				
D	ist Bestar	ndteil des D	elays zwisch	en Sender un	nd Empt	änger.			
	gibt die n	otwendige 2	Zeit zur Seria	alisierung eine	es einze	lnen Bits a	n.		
	ist der Qu	otient aus	Distanz zwis	chen Sender/	'Empfä	nger und de	er Signalgeschv	vindigkeit.	
	kann aus	dem Bandl	breitenverzög	gerungsprodu	kt besti	mmt werde	n.		
n)* D	ie Ausbrei	itungsverzö	gerung						
	kann im \	/ergleich zu	ır Serialisieru	ıngszeit grund	dsätzlicl	n vernachlä	ssigt werden.		
	ist abhän	gig vom Üb	ertragungsm	edium.					
Z	ist unabh	ängig von d	ler Rahmenlä	inge.					
	wird in s	-1 angegeb	en.						

Zusätzlicher Platz für Lösungen. Markieren Sie deutlich die Zuordnung zur jeweiligen Teilaufgabe. Vergessen Sie nicht, ungültige Lösungen zu streichen.

