CALCULO AVANZADO / MATEMATICA AVANZADA

APLICACIONES DE LA INTEGRAL DE SUPERFICIE – FLUJO Y AREA

Orientación de una superficie.

Las superficies pueden ser orientables, es decir, mediante vectores se puede describir la curvatura y características de la superficie, para ello, se necesita un vector normal unitario \hat{n} que induce su orientación. La forma vectorial de una integral de superficie es:

$$\iint_{S} \vec{F} \cdot \hat{n} \, dS$$

Dónde: \vec{F} es un campo vectorial que contiene a la superficie S.

Es importante recalcar, que existen dos tipos de orientación:

- a) Si la superficie es abierta: existen vectores normales ascendentes o descendentes (como se muestra en la Figura 1)
- b) Si la superficie es cerrada: existen vectores normales saliendo y entrando a la superficie.

Figura 1.

Cálculo del vector normal unitario \hat{n} .

Sea z = f(x,y) la función que representa la superficie S, se puede construir una función de tres variables que contenga a dicha función, así: G(x,y,z) = z - f(x,y). Luego, el vector normal unitario queda definido por el gradiente.

Recordando que el gradiente de una función nos genera un vector normal a la función en el punto de estudio, se utilizara para determinar \hat{n} , sin embargo, al ser un vector unitario, se debe dividirle su módulo o norma para que cumpla dicha consigna, como sigue:

$$\hat{n} = \frac{\nabla G}{\|\nabla G\|} = \frac{-f_x \,\hat{\imath} - f_y \,\hat{\jmath} + \hat{k}}{\sqrt{1 + f_x^2 + f_y^2}} \qquad Vector \, unitario \, normal \, hacia \, arriba \, (Figura \, 2. \, a)$$

También se puede obtener un vector normal en la dirección contraria, como se muestra en la Figura 1.

$$\hat{n} = \frac{-\nabla G}{\|\nabla G\|} = \frac{f_x \,\hat{\imath} + f_y \,\hat{\jmath} - \hat{k}}{\sqrt{1 + f_x^2 + f_y^2}} \qquad Vector \ unitario \ normal \ hacia \ abajo \ (Figura 2.b)$$

Su interpretación gráfica, se muestra a continuación:

Figura 2.b)

Cálculo de flujo.

Una de las aplicaciones de las integrales de superficie en forma vectorial es determinar el flujo de F a través de S. Para demostrarlo se procede así:

Se considera una superficie S inmersa en un fluido cuyo campo de velocidades es $\vec{F}(x,y,z) = M\hat{\imath} + N\hat{\jmath} + P\hat{k}$, como se muestra en la figura 3.

Figura 3.

Luego, se tiene que el elemento ΔV , con base ΔS en la dirección del vector unitario normal hacia arriba, es:

Recordando que la base del elemento es ΔS y para determinar su altura, se debe utilizar una proyección escalar de \vec{F} sobre \hat{n} , por lo que la altura queda definida por: $(\vec{F}.\hat{n})/\|\hat{n}\|$ pero al ser \hat{n} un vector unitario su módulo es 1, y la altura queda definida solamente por el producto punto entre esos vectores.

$$\Delta V = (base)(altura) = (\Delta S) * (\vec{F}.\hat{n}) = \vec{F}.\hat{n} \Delta S$$

En conclusión, el Volumen total de un fluido a través de la superficie S en la unidad de tiempo y en la dirección del vector normal unitario se llama: **FLUJO** y queda definido por la integral de superficie de forma vectorial, así:

$$Flujo = \iint_{S} \vec{F} \cdot \hat{n} \, dS = \iint_{S} M\hat{\imath} + N\hat{\jmath} + P\hat{k} \underbrace{\left[\frac{-f_{x}\hat{\imath} - f_{y}\hat{\jmath} + \hat{k}}{\sqrt{1 + f_{x}^{2} + f_{y}^{2}}} \right]}_{\vec{F}} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} \, dA$$

$$ex_{x} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} \cos \theta \cos \theta$$

Al simplificar $\sqrt{1+{f_x}^2+{f_y}^2}$, se tiene:

$$Flujo = \iint_{S} (M\hat{\imath} + N\hat{\jmath} + P\hat{k}) \cdot (-f_{x}\hat{\imath} - f_{y}\hat{\jmath} + \hat{k}) dA$$

O de forma más simplificada, al resolver el producto punto:

$$Flujo = \iint_{S} -Mf_{x} - Nf_{y} + P \ dA$$

En conclusión, cualquiera de las dos ecuaciones anteriores muestra el flujo de F a través de S y la forma vectorial de una integral de superficie.

Área de una superficie.

Existen muchas aplicaciones donde se necesita conocer el área de una superficie que permite determinar la cantidad de material que se requiere para formar una coraza o capa de una forma geométrica. Por lo que se estudiara como utilizar integrales de superficie para determinar dicha área.

Si en la integral de superficie:

$$\iint_{S} G(x,y,z) dS$$

G(x, y, z) = 1, entonces:

$$\iint_{S} G(x, y, z) dS = \iint_{S} 1 dS = \iint_{S} dS = A(S)$$

Se obtiene el área de la superficie S.

Por lo que:

$$A(S) = \iint_{S} dS = \iint_{R} \sqrt{1 + f_{x}^{2} + f_{y}^{2}} dA$$

*Nota: Recordar que existen ciertas ocasiones donde tenemos segmentos de circunferencias o similares donde es conveniente utilizar dA de forma polar, caso contrario, se puede utilizar de forma rectangular.