Lecture_04

10) The 17th term of an AP exceeds its 10th term by 7.

Find the cor $a_{17} = a \ a_{10} = a + 9d$

Sol: For given AP:

$$a_{10} = a_{10} + 7$$

We need to find d

$$\therefore \cancel{A} + 16d = \cancel{A} + 9d + 7$$

$$\therefore 16d - 9d = 7$$

$$\therefore 74 = 7$$

$$\therefore$$
 d = 1

.. Common difference of AP is 1.

16) Determine the AP whose third term is 16 and 7th term exceeds the 5th term by 12.

Sol: $a_3 = 16$, $a_7 = a_5 + 12$ We know that,

We need to determine the AP

$$\begin{array}{c} a_3 \\ 16 \end{array}$$

... The required AP is 4, 10, 16, 22, ...

$$\therefore$$
 $\mathbf{A} + 6\mathbf{d} = \mathbf{A} + 4\mathbf{d} + 12\mathbf{a_4} = 16 + 6 = 22$

$$\therefore 6d - 4d = 12$$

$$2d = 12$$

$$d = 6$$

$$a_3 = 10 + 6 = 16$$

$$a_2 = 4 + 6 = 10$$

That means,

First term of AP is 4 and

common difference is 6

Substituting d = 6 in ...

$$a + 2(6) = 16$$

 $a + 12 = 16$

$$a + 12 = 16$$

11) Which term of AP: 3, 15, 27, 39, ... will be 132 more than its 54th term.

Sol: For given AP
$$a_n = a + a_{54} = a + 53d$$

 $a = 3, d = 15$ $= a_{54}$ $= a_{54}$ $= a_{54}$

$$\therefore$$
 \cancel{A} + $(n-1)d = \cancel{A}$ + 53d + 132

$$(n-1)(12) = 53(12) + 132$$

$$(n-1)(12) = 636 + 132$$

$$(n-1)(12) = 768$$

$$\therefore \qquad (n-1) = \frac{768}{12}$$

$$\therefore \qquad n-1 = 64 \qquad a_{65} = a_{54} + 132$$

$$n = 65$$

We need to find 'n' such that, $a_n = a_{54} + 132$

65th term of AP will be 132 more than its 54th term.

That means,

13) How many three-digit numbers are divisible by 7? **Sol:** Three digit nos. divisible by 7 are: 105, 112, 119, _994 an A.P Lets make a list of 3 digit 112 - 105 = 7, $a_n = 9$ Next no. divisible by 7 will be 3 digit obtained by adding 7 to previous number divisions by 7 divisible by 7 diwigible her 7 We need to find 'n' such that, $a_n = 994$: 994 – 1**105**= divisible by 7 That means, $a_{128} = 994$. 993₌ **not divisible by 7** 994, bers divisible by 7. not divisible by 7 995, 996, aivisible by 7 _oc divisible by 7 997, 998, 999.

14) How many multiples of 4 lie between 10 and 250?

17) Find the 20th term from the last term of the AP: 3, 8, 13, ..., 253.

Sol: Given AP: 3, 8, 295, ..., 253. Reverse order of given AP: 253, 248, 243, ..., 8, 3

We know that,

$$a_{20} = a + 19d$$

= 253 + 19 (-5)
= 253 - 95

 $a_{20} = 158$

∴ 20th term from the last term of the AP is 158.

We need to determine a₂₀ when AP is written in reverse order

Lets write given AP in reverse order

Q.18) The sum of the 4th and 8th terms of an A.P is 24 and the sum $a_4 = a_8 = a + 7d$ 10th terms is 44. Find the first three terms of the A.P.

Sol:
$$a_4 + a_8 = 24$$
 (given)

$$\therefore$$
 a + 3d + a + 7d = 24

$$\therefore$$
 2a + 10d = 24

Divi
$$a_6 = a_{10} = a + 9d$$
(i)

$$a_6 + a_{10} = 44$$
 ... (given) **Substituting d = 5 in (i)**

$$\therefore$$
 a + 5d + a + 9d = 44

$$\therefore$$
 2a + 14d = 44

Dividing throughout by 2: a + 25 = 12

$$a + 7d = 22 \dots (ii)$$

Subtracting (i) from (ii)

With the values of a & d lets find $a_2 & a_3$.

$$2d = 10$$

$$d = 5$$

$$a + 5d = 12$$

$$\therefore a + 5(5) = 12$$

$$\cdot$$
 a + 25 = 12

$$a = 12 - 25$$

$$a = -13$$

$$a_2 = \begin{bmatrix} a_1, a_2, a_3 \\ = -13 + 5 \end{bmatrix}$$

= -8

$$a_3 = a + 2d$$

= -13 + 2(5)
= -13 + 10
= -3

The first three terms of AP are -13, -8 and -3

- 12) Two APs have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms? We need to find A_{1000} – a_{1000}
- **Sol:** Let d be the common difference of both APs. and first term be denoted by 'A' and 'a' of two $A^{100} = A^{100} = a + 99d$

$$A_{100} - a_{100} = 100$$

$$\therefore$$
 A + 99d - (a + 99d) = 100

$$\therefore A + 990 - a - 990 = 100$$

$$\therefore \qquad A - a = 100 \dots (i)$$

$$A_{1000} - a_{1000}$$

$$= A + 999d - (a + 999d)$$

$$= A + 9990 - a - 9990$$

$$= A - a$$

= 100 (from i) : Difference between their 1000th terms is 100.

Lets find $A_{1000} - a_{1000}$

Thank You