Add Isotropic Gaussian Kernels at Own Risk More and More Resilient Modes in Higher Dimensions

Herbert Edelsbrunner, BRITTANY TERESE FASY, and Günter Rote

Symposium on Computational Geometry 2012 Chapel Hill, North Carolina

18 June 2012

Counting Modes and Critical Points

Counting Modes and Critical Points

Definition

A critical point is a point with a zero gradient.

Counting Modes and Critical Points

Definition

A critical point is a point with a zero gradient.

Definition

A mode is a local maximum.

In the begining, we see 1 local maximum.

At the end, we see 3 local maxima.

In the middle, we see 4 local maxima.

In the middle, we see 4 local maxima.

In the middle, we see 4 local maxima.

Existence proven in [M. Carreira-Perpiñán and C. Williams, Scotland 2003].

• Define Gaussian kernel and mixture.

- Define Gaussian kernel and mixture.
- Analyze 1-dimensional mixtures.

- Define Gaussian kernel and mixture.
- Analyze 1-dimensional mixtures.
- Locate and count all critical points of an *n*-dimensional mixture.

- Define Gaussian kernel and mixture.
- Analyze 1-dimensional mixtures.
- Locate and count all critical points of an n-dimensional mixture.
- Locate and count all modes of an n-dimensional mixtures.

- Define Gaussian kernel and mixture.
- Analyze 1-dimensional mixtures.
- Locate and count all critical points of an n-dimensional mixture.
- Locate and count all modes of an n-dimensional mixtures.
- (Describe the resilience of the ghost mode.)

Definition

$$g_z(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-z)^2}{2\sigma^2}}$$

Definition

$$g_z(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-z)^2}{2\sigma^2}}$$

Center: z

Definition

$$g_z(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-z)^2}{2\sigma^2}}$$

Center: z

Standard Deviation: σ

Definition

$$g_z(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-z)^2}{2\sigma^2}}$$

Center: z

Standard Deviation: σ

Height: $\frac{1}{\sqrt{2\pi\sigma^2}}$

Definition

$$g_z(x) = e^{-\pi(x-z)^2}$$

Definition

$$g_z(x) = e^{-\pi(x-z)^2}$$

Center: z

Definition

$$g_z(x) = e^{-\pi(x-z)^2}$$

Center: z

Standard Deviation: $\sigma_0 = \frac{1}{\sqrt{2\pi}}$

Definition

$$g_z(x) = e^{-\pi(x-z)^2}$$

Center: z

Standard Deviation: $\sigma_0 = \frac{1}{\sqrt{2\pi}}$

Height: 1

Definition

$$g_z(x) = e^{-\pi||x-z||^2}$$

Definition

$$g_z(x) = e^{-\pi||x-z||^2}$$

Center: z

Definition

$$g_z(x) = e^{-\pi||x-z||^2}$$

Center: z

Width:
$$\sigma_0 = \frac{1}{\sqrt{2\pi}}$$

Definition

$$g_z(x) = e^{-\pi||x-z||^2}$$

Center: z

Width: $\sigma_0 = \frac{1}{\sqrt{2\pi}}$

Height: 1

$$e^{-\pi ||x-z||^2}$$

$$e^{-\pi||x-z||^2} = e^{-\pi||x-y||^2}$$

$$e^{-\pi||x-z||^2} = e^{-\pi||x-y||^2} e^{-\pi||y-z||^2}$$

$$e^{-\pi ||x-z||^2} = e^{-\pi ||x-y||^2} e^{-\pi ||y-z||^2}$$

$$||x - z||^2 = ||x - y||^2 + ||y - z||^2$$

Restrictions of Kernels

Restrictions of Kernels

Definition

A restriction of g_z is the evaluation of the function on a lower-dimensional plane P.

Restrictions of Kernels

Definition

A restriction of g_z is the evaluation of the function on a lower-dimensional plane P.

$$g_z|_P(x)=c_zg_y(x).$$

Gaussian Mixture

A Gaussian mixture is the sum of Gaussian kernels.

Gaussian Mixture

A Gaussian mixture is the sum of Gaussian kernels.

Gaussian Mixture

A Gaussian mixture is the sum of Gaussian kernels.

Restrictions of Mixtures

Theorem

In \mathbb{R}^1 , the number of modes is at most the number of components.

Theorem

In \mathbb{R}^1 , the number of modes is at most the number of components.

• Balanced sum of two kernels: [Burke, 1956].

Theorem

In \mathbb{R}^1 , the number of modes is at most the number of components.

- Balanced sum of two kernels: [Burke, 1956].
- Weighted sum of two kernels: [Behboodian, 1970].

Theorem

In \mathbb{R}^1 , the number of modes is at most the number of components.

- Balanced sum of two kernels: [Burke, 1956].
- Weighted sum of two kernels: [Behboodian, 1970].
- General sum: [M. Carreira-Perpiñán and C. Williams, LNCS 2003] relies heavily on [Silverman, 1981].

Theorem

In \mathbb{R}^1 , the number of modes is at most the number of components.

- Balanced sum of two kernels: [Burke, 1956].
- Weighted sum of two kernels: [Behboodian, 1970].
- General sum: [M. Carreira-Perpiñán and C. Williams, LNCS 2003] relies heavily on [Silverman, 1981].

Question

When is the transition between having one mode and two?

$$G_w(x) = c_k g_{-z}(x) + c_\ell g_z(x).$$

$$G_w(x) = c_k g_{-z}(x) + c_\ell g_z(x).$$

The Weighted Mixture

• If z is small enough, then G_w has one critical point.

$$G_w(x) = c_k g_{-z}(x) + c_\ell g_z(x).$$

The Weighted Mixture

- If z is small enough, then G_w has one critical point.
- 2 If z is large enough, then G_w has three critical points.

$$G_w(x) = c_k g_{-z}(x) + c_\ell g_z(x).$$

The Weighted Mixture

- If z is small enough, then G_w has one critical point.
- ② If z is large enough, then G_w has three critical points.
- **3** G_w has exactly 2 critical points when $\frac{c_k}{c_\ell} = r(x) + 1$.

Counting Modes in \mathbb{R}^n

For $n \ge 2$, there can be more modes than components of a Gaussian mixture in \mathbb{R}^n .

Standard *n*-Simplex, Δ^n

An *n*-simplex is the convex hull of n + 1 vertices.

Standard *n*-Simplex, Δ^n

An *n*-simplex is the convex hull of n + 1 vertices.

The standard n-simplex has the standard basis elements as the vertices:

$$e_1, e_2, \ldots, e_{n+1}$$
.

An *n*-simplex is the convex hull of n + 1 vertices.

The standard n-simplex has the standard basis elements as the vertices:

$$e_1, e_2, \ldots, e_{n+1}$$
.

Design

An *n*-simplex is the convex hull of n+1 vertices.

The standard n-simplex has the standard basis elements as the vertices:

$$e_1, e_2, \ldots, e_{n+1}$$
.

 \mathbb{R}^3

The scaled standard n-simplex in \mathbb{R}^{n+1} is defined by the n+1 standard basis elements, scaled by a factor s

$$se_1, se_2, \ldots, se_{n+1}.$$

Definition

The Scaled n-Design is the Gaussian mixture with centers at the n+1 vertices of the scaled n-simplex:

$$G_s(x) = \sum_{i=1}^{n+1} g_{se_i}(x)$$

Design

The scaled standard n-simplex in \mathbb{R}^{n+1} is defined by the n+1standard basis elements, scaled by a factor s

$$se_1, se_2, \ldots, se_{n+1}.$$

Scaled *n*-Simplex, $s\Delta^n$

The scaled standard n-simplex in \mathbb{R}^{n+1} is defined by the n+1 standard basis elements, scaled by a factor s

$$se_1, se_2, \ldots, se_{n+1}.$$

The *barycenter* is the average vertex position:

$$\left(\frac{s}{n+1},\frac{s}{n+1},\ldots,\frac{s}{n+1}\right).$$

Complementary Faces

 \mathbb{R}^{3}

We partition the vertices of the scaled *n*-simplex into two sets:

$$_{\circ}se_{3}$$

$$K = \{se_3\},\$$

 $L = \{se_1, se_2\}.$

Let
$$k = |K| - 1$$
 and $\ell = |L| - 1$.

$$s\hat{e}_1$$
 se_2

We partition the vertices of the scaled *n*-simplex into two sets:

$$b_K$$

$$K = \{se_3\},$$

 $L = \{se_1, se_2\}.$

Let
$$k = |K| - 1$$
 and $\ell = |L| - 1$.

 se_5

 se_3

 se_2

We partition the vertices of the scaled *n*-simplex into two sets:

$$K = \{se_2, se_5\},$$

 $L = \{se_1, se_3, se_4\}.$

Let
$$k = |K| - 1$$
 and $\ell = |L| - 1$.

Location of Critical Values

Location of Critical Values

Location of Critical Values

Location of Critical Values

Location of Critical Values

All critical points of the scaled n-design lie on an axis of $s\Delta^n$.

Proof

Assume a critical point x is not on an axis ...

Restriction to an Axis

$$G_s|_A(x) = c_k e^{-\pi h(x)} + c_\ell e^{-\pi (D_{k,\ell} - h(x))},$$
 where $c_k = (k+1)g_{se_i}(b_L), \ \ c_\ell = (\ell+1)g_{se_j}(b_K).$

$$G_s|_A(x)=c_ke^{-\pi h(x)}+c_\ell e^{-\pi(D_{k,\ell}-h(x))},$$
 where $c_k=(k+1)g_{se_i}(b_L),~~c_\ell=(\ell+1)g_{se_j}(b_K).$

$$G_w(x) = c_k g_{-z}(x) + c_\ell g_z(x).$$

The Weighted Mixture

- If z is small enough, then G_w has one critical point.
- ② If z is large enough, then G_w has three critical points.
- **3** G_w has exactly 2 critical points when $\frac{c_k}{c_\ell} = r(x) + 1$.

Lower Transition Scale Factor $T_{k,\ell}$

Definition

 $T_{k,\ell}$ is the scale factor for which

$$\frac{c_k}{c_\ell}=r(x)+1.$$

Lower Transition Scale Factor $T_{k,\ell}$

Definition

 $T_{k,\ell}$ is the scale factor for which

$$\frac{c_k}{c_\ell}=r(x)+1.$$

Lower Transition Scale Factor $T_{k,\ell}$

Definition

 $T_{k,\ell}$ is the scale factor for which

$$\frac{c_k}{c_\ell}=r(x)+1.$$

Lower Transition Scale Factor $T_{k,\ell}$

Definition

 $T_{k,\ell}$ is the scale factor for which

$$\frac{c_k}{c_\ell}=r(x)+1.$$

1-Dimensional Maxima Lemma

For all $s > T_{k,\ell}$, the axis $A_{K,L}$ witnesses two one-dimensional maxima.

Upper Transition Scale Factor U_n

Definition

 $T_{k,\ell}$ is the scale factor for which:

$$\frac{c_k}{c_\ell}=r(x)+1.$$

1-Dimensional Maxima Lemma

For all $s > T_{k,\ell}$, the axis $A_{K,L}$ witnesses two one-dimensional maxima.

Definition

$$U_n = \sqrt{\frac{n+1}{2\pi}}$$

Upper Transition Scale Factor U_n

Definition

 $T_{k,\ell}$ is the scale factor for which:

$$\frac{c_k}{c_\ell} = r(x) + 1.$$

1-Dimensional Maxima Lemma

For all $s > T_{k,\ell}$, the axis $A_{K,L}$ witnesses two one-dimensional maxima.

Definition

$$U_n = \sqrt{\frac{n+1}{2\pi}}.$$

Barycenter Lemma

The barycenter of $s\Delta^n$ is a mode for $s < U_n$, and a saddle of index 1 for $s > U_n$.

One-Dimensional Maxima

Definition

 $T_{k,\ell}$ is the scale factor for which:

$$\frac{c_k}{c_\ell}=r(x)+1.$$

1-Dimensional Maxima Lemma

For all $s > T_{k,\ell}$, the axis $A_{K,L}$ witnesses two one-dimensional maxima.

Definition

$$U_n = \sqrt{\frac{n+1}{2\pi}}$$

Barycenter Lemma

The barycenter of $s\Delta^n$ is a mode for $s < U_n$, and a saddle of index 1 for $s > U_n$.

Theorem

If $s \in (T_{k,\ell}, U_n)$, then $A_{K,L}$ witnesses two one-dimensional maxima, one of which is at the barycenter.

Restriction to an Axis

$$G_s|_{\mathcal{A}}(x) = e^{-\pi h(x)} + c_\ell e^{-\pi (D_{0,n-1} - h(x))},$$
 where $c_\ell = (\ell+1)g_{se_i}(b_L).$

Witnessing the Modes

Witnessing the Modes

Witnessing Modes

If |K| = 1, then $A_{K,L}$ witnesses two modes for $s \in (T_{0,n-1}, U_n)$.

Witnessing the Modes

Witnessing Modes

If |K| = 1, then $A_{K,L}$ witnesses two modes for $s \in (T_{0,n-1}, U_n)$.

Witnessing Critical Points

If |K| > 1, then M is a critical point, not a mode.

Axes

Many Axes

Many Axes

Number of Axes with k = 0:

$$n + 1$$
.

Many Axes

Number of Axes with k = 0:

$$n + 1$$
.

The scaled design has n + 2 modes.

₽4

Number of Axes with k = 0:

$$n + 1$$
.

The scaled design has n + 2 modes.

Total Number of Axes:

$$\frac{1}{2} \sum_{k=1}^{n+1} \binom{n+1}{k} = 2^n - 1.$$

Number of Axes with k = 0:

$$n + 1$$
.

The scaled design has n + 2 modes.

Total Number of Axes:

$$\frac{1}{2}\sum_{k=1}^{n+1} \binom{n+1}{k} = 2^n - 1.$$

The scaled design has $\Theta(2^n)$ critical points.

₽4

The *n*-design has:

• at most ONE ghost mode.

The *n*-design has:

- 1 at most ONE ghost mode.
- an exponential number of critical points.

The *n*-design has:

- 1 at most ONE ghost mode.
- an exponential number of critical points.
- 3 all critical points on axes.

The *n*-design has:

- at most ONE ghost mode.
- an exponential number of critical points.
- 3 all critical points on axes.

Wednesday at 2:50 in SN011:

• How does $U_n - T_{0,n-1}$ (the resilience) grow with dimension?

The *n*-design has:

- at most ONE ghost mode.
- an exponential number of critical points.
- 3 all critical points on axes.

Wednesday at 2:50 in SN011:

- How does $U_n T_{0,n-1}$ (the resilience) grow with dimension?
- What is the persistence of the ghost mode?

Add Isotropic Gaussian Kernels at Own Risk More and More Resilient Modes in Higher Dimensions

Herbert Edelsbrunner, BRITTANY TERESE FASY, and Günter Rote

Symposium on Computational Geometry 2012 Chapel Hill, North Carolina

18 June 2012

The *n*-design has:

- at most ONE ghost mode.
- an exponential number of critical points.
- all critical points on axes.

Wednesday at 2:50 in SN011:

- How does $U_n T_{0,n-1}$ (the resilience) grow with dimension?
- What is the persistence of the ghost mode?

References

On the modes of a mixture of two normal distributions. *Technometrics 12*, 1 (1970), 131–139.

Burke, P. J.

Solution of problem 4616 [1954, 718], proposed by A. C. Cohen, Jr. *Amer. Math. Monthly 63*, 2 (Feb. 1956), 129.

Carreira-Perpinán, M., and Williams, C.

On the number of modes of a Gaussian mixture.

Scale Space Methods in Computer Vision, Lecture Notes in Computer Science 2695 (2003), 625–640.

References

Carreira-Perpinán, M., and Williams, C.

An isotropic Gaussian mixture can have more modes than components.

Informatics Research Report EDI-INF-RR-0185, Institute for Adaptive and Neural Computation, University of Edinbugh, Dec. 2003.

Fasy, B. T.

Modes of Gaussian mixtures and an inequality for the distance between curves in space, June 2012.

PhD Dissertation, Duke University Comput. Sci. Dept.

SILVERMAN, B. W.

Using kernel density estimates to investigate multimodality. J. R. Stat. Soc. Ser. B. Stat. Methodol. 43 (1981), 97-99.