ANALISIS DAN HASIL PREDIKSI EMAS 1

Hendrico Kristiawan - 1906350912 Jonathan Amadeus Hartman - 1906400261

SCRAPING

Scraping

- Terdapat 2 data yang dapat di scraping, yaitu tabel dan grafik.
- Data pada tabel akan dinamakan data_table yang diambil dari website static sehingga cukup dengan menggunakan Beautiful Soup.
- Data pada grafik akan dinamakan data_plot yang diambil dari website dinamis sehingga perlu menggunakan selenium dan pyautogui.
- Dilakukan scraping pada notebook berbeda yang diupload ke dalam Github beserta data hasil scraping.
 - (https://raw.githubusercontent.com/loriU/macrotrends-gold-scrap/main/emas_da ta.csv)

data_table

	Average Closing Price	Year Open	Year High	Year Low	Year Close	Annual % Change
Year						
1969	\$41.10	\$41.80	\$43.75	\$35.00	\$35.21	-16.07%
1970	\$35.96	\$35.13	\$39.19	\$34.78	\$37.38	6.16%
1971	\$40.80	\$37.33	\$43.90	\$37.33	\$43.50	16.37%
1972	\$58.17	\$43.73	\$70.00	\$43.73	\$64.70	48.74%
1973	\$97.12	\$64.99	\$127.00	\$64.10	\$112.25	73.49%

data_plot

	Time	Value
0	Jun, 1965	\$323.05
1	May, 1965	\$325.10
2	Apr, 1965	\$325.10
3	Mar, 1965	\$326.16
4	Feb, 1965	\$327.18

Pada data_plot hanya terdapat harga emas setiap bulannya.

PREPROCESSING

Tahap Preprocessing

- Menghilangkan tanda ',', ' %', dan '\$'
- Menghilangkan data duplikat pada data_plot
- Membuat dataframe baru yang berisi annual % change berdasarkan data_plot yang dinamakan change_plot

change_plot

	Annual_Change
Time	
1969-12-31	0.000000
1970-12-31	-17.414263
1971-12-31	6.688825
1972-12-31	37.157344
1973-12-31	73.151381

Terdapat adanya perbedaan annual % change yang didapatkan dari harga emas per bulan dengan hasil scraping dari tabel.

Visualisasi

Penjelasan

- Berdasarkan grafik tersebut, dapat dilihat bahwa tidak ada trends dan seasonal yang dapat ditemukan.
- Berdasarkan rata-rata dan varian pada data, terlihat bahwa data tersebut merupakan stasioner. Untuk lebih pasti, akan menggunakan Augmented Dickey Fuller Test.
- Berdasarkan Augmented Dickey Fuller test, didapatkan nilai p < 0.05.
- Sehingga, data annual % change merupakan data yang **stasioner**.

Stationarity

Nilai p < 0.05 sehingga data annual % change merupakan stasioner

MODEL LSTM

Arsitektur LSTM

Layer (type)	Output Shape	Param #
 lstm (LSTM)	(1, 10, 100)	42800
dropout (Dropout)	(1, 10, 100)	0
lstm_1 (LSTM)	(1, 10, 100)	80400
dropout_1 (Dropout)	(1, 10, 100)	9
lstm_2 (LSTM)	(1, 100)	80400
dense (Dense)	(1, 5)	505

Kami membuat arsitektur LSTM dengan menggunakan library **Keras**. Arsitektur yang dibuat dengan menghubungkan 3 layer LSTM yang diakhiri dengan dense yang akan mengeluarkan nilai Annual % Change untuk 5 tahun kedepan.

Dataset yang digunakan

Dengan model arsitektur yang sama, kami melatih dan memprediksi model tersebut dengan 3 data yang berbeda, yaitu:

- Multivariate data_table: Memprediksi annual % change untuk 5 tahun kedepan berdasarkan Average Closing Price, Year Open, Year High, Year Low, Year Close, dan Annual % Change 10 tahun terakhir
- Univariate data_table: Memprediksi annual % change untuk 5 tahun kedepan berdasarkan Annual % Change 10 tahun terakhir
- Univariate data_plot: Memprediksi annual % change untuk 5 tahun kedepan berdasarkan Annual % Change 10 tahun terakhir

Setiap data yang akan digunakan akan diubah menjadi lag feature.

Contoh Lag Feature

	Annual_Change(t-3)	Annual_Change(t-2)	Annual_Change(t-1)	Annual_Change(t)	Annual_Change(t+1)
0	0.000000	-17.414263	6.688825	37.157344	73.151381
1	-17.414263	6.688825	37.157344	73.151381	35.460321
2	6.688825	37.157344	73.151381	35.460321	-7.910337
3	37.157344	73.151381	35.460321	-7.910337	-25.895206

Hasil Prediksi Multivariate data_table

Hasil Prediksi Univariate data_table

Hasil Prediksi Univariate data_plot

MODEL ARIMA

Parameter ARIMA (p, d, q) data_table

- Tidak ada nonseasonal differences yang dibutuhkan untuk mencapai stationarity menurut Augmented Dickey–Fuller test. Maka, **d bernilai 0**.
- Menurut grafik auto-correlation function (ACF) dan partial auto-correlation function (PACF), autoregressive term berjumlah 1 dan jumlah lagged forecast error pada prediksi berjumlah 1. Sehingga, didapatkan variabel p bernilai 1 dan variabel q bernilai 1.
- Parameter yang digunakan = (1, 0, 1)

Hasil Prediksi ARIMA (1, 0, 1) data_table

Final Forecast

Hasil Prediksi ARIMA (0, 0, 1) data_plot

EVALUASI

Pemilihan Metrik

- Akan dibandingkan error dari masing-masing model dengan data test yang sudah dibagi.
- Metrik: mean absolute error (MAE) dan root mean square error (RMSE).
- Kedua error tersebut dipilih karena sensitif terhadap outlier yang dihasilkan.

Evaluasi data_plot

- Model LSTM univariate data_plot memiliki error yang lebih kecil dibandingkan model-model lainnya.
- Namun dikarenakan data_plot menggunakan dataset yang berbeda, kemungkinan errornya memang lebih kecil.

Evaluasi data_table

- Model LSTM univariate data_table memiliki error MAE dan RMSE yang lebih kecil dibandingkan model lainnya yang menggunakan data_table juga.
- Hasil dari model LSTM multivariate data_table kurang stabil dibanding model lainnya karena mempertimbangkan variable yang lebih banyak dibanding univariate, sehingga lebih mudah terpengaruh.

KESIMPULAN

Kesimpulan

- Model LSTM univariate data_plot memiliki hasil yang lebih baik dibandingkan dengan model lainnya dalam hal error MAE dan RMSE.
- Untuk data_table, model LSTM univariate data_table lebih baik dalam hal error
 MAE dan RMSE dibandingkan model multivariate ataupun ARIMA.
- Model LSTM dengan epoch dan arsitektur yang baik dapat menghasilkan prediksi yang lebih bagus dibandingkan model ARIMA.

TERIMA KASIH