Attention-based Multi-Patch Aggregation for Image Aesthetic Assessment

Kekai Sheng
NLPR, Institute of Automation,
Chinese Academy of Sciences &
University of Chinese Academy of
Sciences
shengkekai2014@ia.ac.cn

Weiming Dong*
NLPR, Institute of Automation,
Chinese Academy of Sciences
weiming.dong@ia.ac.cn

Chongyang Ma Snap Inc. cma@snap.com

Xing Mei Snap Inc. xing.mei@snap.com

Feiyue Huang Youtu Lab, Tencent garyhuang@tencent.com Bao-Gang Hu NLPR, Institute of Automation, Chinese Academy of Sciences hubg@nlpr.ia.ac.cn

Attention-based Objective Functions:

I. MP_{avg}

II. MP_{min}

III. $MP_{adaptive}$

I. MP_{avg}

$$f\left(\frac{1}{|S|}\sum_{x\in S}x\right)\geq \frac{1}{|S|}\sum_{x\in S}f(x)$$

$$\log\left(\frac{1}{|\mathcal{P}|}\sum_{p\in\mathcal{P}}Pr(\tilde{y}=\hat{y}\,|\,p,\theta)\right) \geq \underbrace{\frac{1}{|\mathcal{P}|}\sum_{p\in\mathcal{P}}\log\left(Pr(\tilde{y}=\hat{y}\,|\,p,\theta)\right)}_{MP_{avg}}$$

 $\frac{\partial MP_{avg}}{\partial \theta} = \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \underbrace{\frac{1}{Pr(\tilde{y} = \hat{y} \mid p, \theta)} \cdot \frac{\partial Pr(\tilde{y} = \hat{y} \mid p, \theta)}{\partial \theta}}_{(4)}$

weights

II. MP_{min}

$$\log\left(\frac{1}{|\mathcal{P}|}\sum_{p\in\mathcal{P}}Pr(\tilde{y}=\hat{y}\,|\,p,\theta)\right) \geq \min_{p\in\mathcal{P}}\frac{1}{|\mathcal{P}|}\log\left(Pr(\tilde{y}=\hat{y}\,|\,p,\theta)\right)$$

$$= \underbrace{\frac{1}{|\mathcal{P}|}\log\left(Pr(\tilde{y}=\hat{y}\,|\,p^m,\theta)\right)}_{MP_{min}}$$

$$p^{m} = \underset{p \in \mathcal{P}}{\operatorname{argmin}} \Pr(\tilde{y} = \hat{y} \mid p, \theta)$$

$$\frac{\partial MP_{min}}{\partial \theta} = \frac{1}{|\mathcal{P}|} \frac{1}{\Pr(\tilde{y} = \hat{y} \mid p^{m}, \theta)} \cdot \frac{\partial Pr(\tilde{y} = \hat{y} \mid p^{m}, \theta)}{\partial \theta}$$

$$= \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \frac{\mathbb{I}(p = p^{m})}{\Pr(\tilde{y} = \hat{y} \mid p, \theta)} \cdot \frac{\partial Pr(\tilde{y} = \hat{y} \mid p, \theta)}{\partial \theta}$$

III. $MP_{adaptive}$

$$\begin{split} MP_{ada} &= \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \omega_{\beta} \cdot \log \left(Pr(\tilde{y} = \hat{y} \mid p, \theta) \right) \\ \omega_{\beta} &= \frac{Pr(\tilde{y} = \hat{y} \mid p, \theta)^{-\beta} - 1}{Pr(\tilde{y} = \hat{y} \mid p, \theta)^{-\beta}} = 1 - Pr(\tilde{y} = \hat{y} \mid p, \theta)^{\beta} \\ \frac{\partial MP_{ada}}{\partial \theta} &= \frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \lambda \cdot \frac{\partial Pr(\tilde{y} = \hat{y} \mid p, \theta)}{\partial \theta} \\ \lambda &= \frac{1 - (1 + \beta \cdot \log Pr(\tilde{y} = \hat{y} \mid p, \theta)) \cdot (1 - \omega_{\beta})}{Pr(\tilde{y} = \hat{y} \mid p, \theta)} \end{split}$$

Figure 3: Curves of adaptive weights $\omega_{\beta} = 1 - Pr^{\beta}$ with different values of the hyperparameter β .

Network Architecture

Layers	Output names	Output shape		2-0-BNReLU1	
conv, 7x7, 64, stride 2	-	[112, 112, 64]	$\begin{bmatrix} conv, 3x3, 256 \\ conv, 3x3, 256 \end{bmatrix} x2$	2-0-BNReLU2	[14, 14, 256]
max pool, 3x3, stride 2	-	[56, 56, 64]		2-0-ReLU	
	0-0-BNReLU1	[56, 56, 64]		2-1-BNReLU1	
$\begin{bmatrix} conv, 3x3, 64 \\ conv, 3x3, 64 \end{bmatrix} x2$	0-0-BNReLU2			2-1-BNReLU2	
	0-0-ReLU			2-1-ReLU	
	0-1-BNReLU1		[conv. 3x3, 512]	3-0-BNReLU1	[7, 7, 512]
	0-1-BNReLU2			3-0-BNReLU2	
	0-1-ReLU			3-0-ReLU	
	1-0-BNReLU1		$\begin{bmatrix} conv, 3x3, 512 \\ conv, 3x3, 512 \end{bmatrix} x2$	3-1-BNReLU1	
$\begin{bmatrix} conv, 3x3, 128 \\ conv, 3x3, 128 \end{bmatrix} x2$	1-0-BNReLU2	[28, 28, 128]	[0010,000,012]	3-1-BNReLU2	
	1-0-ReLU			3-1-ReLU	
	1-1-BNReLU1		global average pooling	3 T Relie	[512]
	1-1-BNReLU2		global average pooling	-	[512]
	1-1-ReLU		2d fc, softmax	<u>-</u>	[2]

Experimental Results:

Method	Core Features	Results
AVA [25]	handcrafted features	68.0
VGG-Scale [19]	non-uniform scaling	73.8
VGG-Pad [19]	uniform scaling + padding	72.9
SPP [22]	spatial pooling	76.0
VGG-Crop [19]	77 · 77 · 77 · 77 · 77 · 77 · 77 · 77	71.2
DMA-Net [22]	MD	75.41
MNA-CNN [19]	MP aggregation	77.1
New-MP-Net [23]		81.7
DCNN [21]		73.25
RAPID [21]		75.42
A&C CNN [12]		74.51
MTCNN [11]	multi-column	78.56
MTRLCNN [11]	aggregation	79.08
BDN [34]		78.08
Two-column DAN [6]		78.72
AA-Net [35]		76.9
DMA-Net-IF [22]		75.4
MNA-CNN-Scene [19]	representation aggregation	77.4
A-Lamp [23]	with explicit information	82.5
NIMA [31]	distributions of human opinion scores	81.51
MP_{avg}	average weights	81.76
MP_{min}	minimum select	80.50
MP_{ada}	adaptive weights	83.03

Figure 5: Our aesthetic assessment results on the AVA test set predicted by the MP_{ada} scheme.

Q&A

THANK YOU