2020 北京海淀初三二模

数学

2020.6

学校 姓名 准考证号

1. 本试卷共 8 页, 共三道大题, 28 道小题。满分 100 分。考试时间 120 分钟。

生

2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。

须

知

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

- 4. 在答题卡上,选择题用 2B 铅笔作答,其他题用黑色字迹签字笔作答。
- 5. 考试结束,请将本试卷、答题卡和草稿纸一并交回。
- 一、选择题(本题共16分,每小题2分)
- 第1-8题均有四个选项,符合题意的选项只有一个.
- 1. 下面的四个图形中, 是圆柱的侧面展开图的是

2. 若代数式 $\frac{1}{x-2}$ 有意义,则实数 x 的取值范围是

- A. x = 0 B. x = 2
- C. $x \neq 0$
- D. $x \neq 2$
- 3. 如图,在 $\triangle ABC$ 中, AB = 3cm,通过测量,并计算 $\triangle ABC$ 的面积,所得面积与下列数值最接近的是
 - A. $1.5cm^2$
 - B. $2cm^2$
 - C. $2.5cm^2$
 - D. $3cm^2$

- 4. 图中阴影部分是由 4 个完全相同的的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一 个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在
 - A. 区域①处
 - B. 区域②处
 - C. 区域③处
 - D. 区域(4)处

- 5. 如图, 在 $\triangle ABC$ 中, EF / /BC, ED 平分 $\angle BEF$, 且 $\angle DEF = 70^{\circ}$, 则 $\angle B$ 的度数为
 - A. 70°
 - B. 60°
 - C. 50°
 - D. 40°

- 6. 如果 $a^2-a-2=0$,那么代数式 $(a-1)^2+(a+2)(a-2)$ 的值为
 - A. 1
- B. 2

C. 3

- D. 4
- 7. 如图, $\bigcirc O$ 的半径等于 4,如果弦 AB 所对的圆心角等于 90° ,那么圆心 O 到弦 AB 的距离为
 - A. $\sqrt{2}$
 - B. 2
 - C. $2\sqrt{2}$
 - D. $3\sqrt{2}$

- 8. 在平面直角坐标系 xOy 中,对于点 P(a,b),若 ab>0,则称点 P 为"同号点". 下列函数的图象中不存在"同 号点"的是
 - A. y = -x + 1

- B. $y = x^2 2x$ C. $y = -\frac{2}{x}$ D. $y = x^2 + \frac{1}{x}$
- 二、填空题(本题共16分,每小题2分)
- 9. 单项式 $3x^2y$ 的系数是 .
- 10. 如图,点A,B,C在 $\odot O$ 上,点D在 $\odot O$ 内,则 $\angle ACB$ _____ $\angle ADB$. (填 ">","="或"<")

11. 下表记录了一名篮球运动员在罚球线上投篮的结果:

投篮次数n	48	82	124	176	230	287	328
投中次数m	33	59	83	118	159	195	223
投中频率 $\frac{m}{n}$	0.69	0.72	0.67	0.67	0.69	0.68	0.68

根据上表,这名篮球运动员投篮一次,投中的概率约为 . (结果精确到 0.01)

12. 函数 $y = kx + 1(k \neq 0)$ 的图象上有两点 $P_1(-1, y_1)$, $P_2(1, y_2)$, 若 $y_1 < y_2$, 写出一

个符合题意的k的值:_____.

- 13. 如图,在 $\triangle ABC$ 中,AB=BC, $\angle ABC=120^\circ$,过点B作 $BD\perp BC$,交AC于点D,若AD=1,则CD的长度为

- 15. 小华和小明周末到北京三山五园绿道骑行. 他们按设计好的同一条线路同时出发,小华每小时骑行18km,小明每小时骑行12km,他们完成全部行程所用的时间,小明比小华多半小时. 设他们这次骑行线路长为xkm,依题意,可列方程为
- 16. 如图,在平面直角坐标系 xOy 中,有五个点 A(2,0), B(0,-2), C(-2,4), D(4,-2), E(7,0), 将二次函数 $y = a(x-2)^2 + m(m \neq 0)$ 的图象记为W. 下列的判断中

- ①点 A 一定不在W上;
- ②点B,C,D可以同时在W上;
- ③点C,E不可能同时在W上.

所有正确结论的序号是_____.

三、解答题(本题共 68 分,第 17^2 22 题,每小题 5 分,第 23^2 26 题,每小题 6 分,第 27^2 28 题,每小题 7 分)解答应写出文字说明、演算步骤或证明过程.

17. 计算:
$$(\frac{1}{2})^{-1} + (2020-\pi)^0 + \left|\sqrt{3} - 1\right| - 2\cos 30^\circ$$

18. 解不等式2(x-1)<4-x,并在数轴上表示出它的解集.

19. 下面是小王同学"过直线外一点作该直线的平行线"的尺规作图过程.

已知:直线l及直线l外一点P.

求作:直线PQ,使得PQ//l.

P •

作法:如图,		
①在直线 l 外取一点 A ,作射线 AP 与直线 l 交于点 B ,	A •	
②以 A 为圆心, AB 为半径画弧与直线 l 交于点 C ,连接 AC ,		
③以 A 为圆心, AP 为半径画弧与线段 AC 交于点 Q ,	P •	
则直线 PQ 即为所求.		l
根据小王设计的尺规作图过程,		
(1)使用直尺和圆规,补全图形;(保留作图痕迹)		
(2)完成下面的证明.		
证明::: $AB = AC$,		
$\therefore \angle ABC = \angle ACB$, ()(填推理的依据)		
∵ <i>AP</i> =,		
$\therefore \angle APQ = \angle AQP.$		
$\therefore \angle ABC + \angle ACB + \angle A = 180^{\circ}, \qquad \angle APQ + \angle AQP + \angle A = 180^{\circ},$		
$\therefore \angle APQ = \angle ABC.$		

20. 已知关于 x 的一元二次方程 $x^2 - 2x + n = 0$.

即PQ//l.

- (1)如果此方程有两个相等的实数根,求n的值;
- (2)如果此方程有一个实数根为0,求另外一个实数根.

∴ PQ//BC (______)(填推理的依据).

21. 如图,在 $Rt \triangle ABC$ 中, $\angle ACB = 90^{\circ}, D$ 为AB 边的中点,连接CD,过点A作AG//DC,过点C作

CG//DA,AG与CG相交于点G

- (1) 求证: 四边形 ADCG 是菱形;
- (2) 若 AB = 10, $tan \angle CAG = \frac{3}{4}$, 求 BC 的长.

22. 坚持节约资源和保护环境是我国的基本国策,国家要求加强生活垃圾分类回收与再生资源回收有效衔接,提高全社会资源产出率,构建全社会的资源循环利用体系. 图 1 反映了 2014-2019 年我国生活垃圾清运量的情况.

2014-2019年我国生活垃圾清运量统计图

图 2 反映了 2019 年我国 G 市生活垃圾分类的情况.

根据以上材料回答下列问题:

- (1) 图 2 中,n 的值为 ;
- (2) 2014-2019 年, 我国生活垃圾清运量的中位数是;
- (3) 据统计,2019 年G 市清运的生活垃圾中可回收垃圾约为 0.02 亿吨,所创造的经济总价值约为 40 亿元. 若 2019 年我国生活垃圾清运量中,可回收垃圾的占比与G 市的占比相同,根据G 市的数据估计 2019 年我国可回收垃圾所创造的经济总价值是多少.
- 23. 如图,AB 为 $\odot O$ 的直径,C 为 $\odot O$ 上一点, $CE \perp AB$ 于点 E , $\odot O$ 的切线 BD 交 OC 的延长线于点 D .
 - (1) 求证: $\angle DBC = \angle OCA$;
 - (2) 若 $\angle BAC = 30^{\circ}$, AC = 2. 求 CD 的长.

- 24. 如图,在平面直角坐标系 xOy 中,函数 $y = \frac{2}{x}(x > 0)$ 的图象与直线 $y = kx(k \neq 0)$ 交于点 P(1, p). M 是函数 $y = \frac{2}{x}(x > 0)$ 图象上一点,过 M 作 x 轴的平行线交直线 $y = kx(k \neq 0)$ 于点 N.
 - (1) 求k和p的值;
 - (2) 设点M 的横坐标为m.
 - ①求点 N 的坐标; (用含m 的代数式表示)
 - ②若 $\triangle OMN$ 的面积大于 $\frac{1}{2}$,结合图象直接写出m 的取值范围.

25. 如图 1, 在四边形 ABCD 中, 对角线 AC 平分

 $\angle BAD$, $\angle B = \angle ACD = 90^\circ$, AC - AB = 1. 为了研究图中线段之间的数量关系,设 AB = x, AD = y.

(1) 由题意可得 $\frac{AB}{AC} = \frac{(\)}{AD}$, (在括号内填入图 1 中相应的线段)

y 关于 x 的函数表达式为 $y = ______;$

(2)如图 2,在平面直角坐标系 *xOy* 中,根据(1)中 *y* 关于 *x* 的函数 表达式描出了其图象上的一部分点,请依据描出的点画出该函数的图象;

②估计 AB + AD 的最小值为_____. (结果精确到 0.1)

26. 在平面直角坐标系 xOy 中,已知二次函数 $y = mx^2 + 2mx + 3$ 的图象与 x 轴交于点 A(-3,0),与 y 轴交于点 B ,将其图象在点 A ,B 之间的部分(含 A ,B 两点)记为 F .

(1)求点 B 的坐标及该函数的表达式;

(2) 若二次函数 $y = x^2 + 2x + a$ 的图象与 F 只有一个公共点,结合函数图象,求 a 的取值范围.

- 27. 如图 1,等边三角形 ABC 中, D 为 BC 边上一点,满足 BD < CD,连接 AD ,以点 A 为中心将射线 AD 顺时 针旋转 60° ,与 $\triangle ABC$ 的外角平分线 BM 交于点 E .
 - (1) 依题意补全图 1;
 - (2) 求证: AD = AE;
 - (3) 若点 B 关于直线 AD 的对称点为 F , 连接 CF .
 - ①求证: AE / /CF;
 - ②若 BE + CF = AB 成立,直接写出 $\angle BAD$ 的度数为

- 28. 在平面内,对于给定的 $\triangle ABC$,如果存在一个半圆或优弧与 $\triangle ABC$ 的两边相切,且该弧上的所有点都在 $\triangle ABC$ 的内部或边上,则称这样的弧为 $\triangle ABC$ 的内切弧. 当内切弧的半径最大时,称该内切弧为 $\triangle ABC$ 的完美 内切弧. (注: 弧的半径指该弧所在圆的半径)在平面直角坐标系 xOy 中, A(8,0) , B(0,6) .
 - (1)如图 1,在弧 G_1 ,弧 G_2 ,弧 G_3 中,是 $\triangle OAB$ 的内切弧的是_____;
 - (2) 如图 2, 若弧 G 为 $\triangle OAB$ 的内切弧, 且弧 G 与边 AB, OB 相切, 求弧 G 的半径的最大值:
 - (3)如图 3,动点M(m,3),连接OM,AM.
 - ①直接写出 △OAM 的完美内切弧的半径的最大值;
 - ②记①中得到的半径最大时的完美内切弧为弧T. 点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.

2020 北京海淀初三二模数学

参考答案

一、选择题

	题号	1	2	3	4	5	6	7	8
-	答案	A	D	D	В	D	A	С	С

二、填空题

- 10. 〈 11. 0.68 12. 1 (答案不唯一)

- 13. 2 14. (5, 2), (5, 3) 15. $\frac{x}{12} \frac{x}{18} = \frac{1}{2}$ 16. ①②

注: 第14题每空1分; 第16题答对一个得1分, 答对2个得满分, 含有错误答案得0分

三、解答题

17. **M**: \mathbb{R} : \mathbb

=2

18. 解: 去括号, 得:

2x-2<4-x.

移项, 得: 2x+x < 4+2.

合并同类项, 得: 3x < 6.

系数化成1得: x < 2.

该不等式的解集在数轴上表示为:

19. 解: (1)补全图形如图所示:

(2) 等边对等角.

AQ.

同位角相等,两直线平行.

- 20. 解:(1):原方程有两个相等实数根,
 - $\Delta = 0$.

$$\mathbb{R}[(-2)^2 - 4n = 0].$$

- $\therefore n = 1$.
- (2):原方程有一个实数根为0,

$$\therefore 0^2 - 2 \times 0 + n = 0$$

 $\mathbb{P} n = 0.$

- ∴原方程可化为 $x^2 2x = 0$.
- : 另一个根为 2.
- 21. (1) 证明:
 - : AG// DC, CG// DA,
 - ∴四边形 ADCG 为平行四边形.
 - \therefore Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,D为AB边的中点,
 - $\therefore AD = CD = BD$.
 - :.四边形 ADCG 是菱形.
 - (2) 解: : 四边形 ADCG 是菱形,
 - $\therefore \angle CAG = \angle BAC$.
 - \therefore tan $\angle CAG = \frac{3}{4}$,
 - $\therefore \tan \angle BAC = \frac{3}{4}.$
 - $\therefore \frac{BC}{AC} = \frac{3}{4}.$

- $\therefore AB = 10$,
- $\therefore BC = 6$.

22.解: (1) 18.

- (2) 2.1.
- (3) $2.5 \times 20\% = 0.5$ (亿吨)

 $40 \div 0.02 = 2000(亿元/亿吨)$

2000×0.5=1000(亿元)

答:根据 G市的数据估计 2019 年我国可回收垃圾所创造的经济总价值是 1000 亿元.

23. (1) 证明:

- :* DB 是 ⊙ O 的 切线,
- $\therefore \angle OBD = \angle OBC + \angle DBC = 90^{\circ}$.
- ∴ AB 是 ⊙ 0 的直径,
- :.∠*ACB*=∠*OCA*+∠*OCB*=90°.
- ∵ OC=OB,
- ∴ ∠ OBC= ∠ OCB.
- \therefore \angle DBC= \angle OCA.
- (2) 解: 在Rt $\triangle ACB$ 中, $\angle A=30^{\circ}$,AC=2,可得CB=ACtan $A=\frac{2}{3}\sqrt{3}$.
- ∵∠A=30°,
- ∴∠*COB*=2∠*A*=60°.
- $\therefore \angle D = 90^{\circ} \angle COB = 30^{\circ}$.
- ∵ OA=OC,
- ∴∠*OCA*=∠*A*=30°.
- ∴∠DBC=∠OCA=30°.
- $\therefore \angle D = \angle DBC$.

∴ CB=CD.

$$\therefore CD = \frac{2}{3}\sqrt{3}.$$

24. 解: (1) 依题意, P(1, p) 在函数 $y = \frac{2}{x}(x > 0)$ 的图象上,

可得
$$p = \frac{2}{1} = 2$$
, 得点 $P(1,2)$.

将 P(1,2) 代入直线 $y = kx (k \neq 0)$, 得 k = 2.

(2) ①由于 M是函数 $y = \frac{2}{x}(x > 0)$ 图象上一点,且点 M的横坐标为 m,

可得点 M的纵坐标为 $\frac{2}{m}$.

又因为过 M作 x 轴的平行线交直线 y = kx $(k \neq 0)$ 于点 N,

得
$$\frac{2}{m} = 2x$$
,解得 $x = \frac{1}{m}$,即 N 点坐标为 $(\frac{1}{m}, \frac{2}{m})$.

②
$$0 < m < \frac{\sqrt{6}}{3}$$
 或者 $m > \sqrt{2}$.

25.
$$\text{MF}$$
: (1) AC, $\frac{(x+1)^2}{x}$.

(2) 如图所示:

(3) ①当 x > 1 时,y 随 x 的增大而增大(答案不唯一).

26. 解: (1) $: y = mx^2 + 2mx + 3$ 的图象与与 y 轴交于点 B,

- ∴点 B的坐标为(0,3).
- $: y=mx^2+2mx+3$ 的图象与 x 轴交于点 A(-3,0),
- ∴将 A(-3,0) 代入 $y=mx^2+2mx+3$ 可得 9m-6m+3=0.
- *∴ m*=-1.
- ∴该函数的表达式为 $y=-x^2-2x+3$.
- (2) : 将二次函数 $y=mx^2+2mx+3$ 的图象在点 A, B之间的部分(含 A, B两点)记为 F,
- ∴ F的端点为 A, B,并经过抛物线 $y=mx^2+2mx+3$ 的 顶点 C (其中 C点坐标为(-1, 4)).
- ∴可画 F如图 1 所示.
- :二次函数 $y=x^2+2x+a$ 的图象的对称轴为 x=-1,

且与 F只有一个公共点,

- ∴可分别把 A, B, C的坐标代入解析式 $y=x^2+2x+a$ 中.
- ∴可得三个 a 值分别为-3, 3, 5.

可画示意图如图 2 所示.

- ::结合函数图象可知:
- 二次函数 $y=x^2+2x+a$ 的图象与 F只有一个公共点时,

a 的取值范围是-3≤a<3 或 a=5.

(2) 证明:

- ∵△ABC是等边三角形,
- \therefore AB=AC, \angle BAC= \angle ABC= \angle C=60°.
- ∴∠1+∠2=60°.
- ∵射线 AD绕点 A 顺时针旋转 60°得到射线 AE,
- *∴∠DAE*=60°.
- ∴∠2+∠3=60°.
- ∴∠1=∠3.
- ∵∠*ABC*=60°,
- *∴∠ABN*=180° -∠*ABC*=120° .
- ∵BM平分∠ABN,
- ∴∠4=∠5=60°.
- ∴ ∠4=∠*C.*
- $\triangle ABE \cong \triangle ACD$.
- ∴ AD=AE.
- (3) ①证明: 连接 AF, 设∠BAD= a,
- :点 B与点 F关于直线 AD对称,
- $\therefore \angle FAD = \angle BAD = \alpha$, FA = AB.
- ∵∠*DAE*=60°,
- $\therefore \angle BAE = \angle DAE \angle DAB = 60^{\circ} a$.
- ∵等边三角形 *ABC*中, ∠*BAC*=60°,
- $\therefore \angle EAC = \angle BAE + \angle BAC = 120^{\circ} \alpha$.
- ∵ AB=AC, AF=AB,
- ∴ AF=AC.
- $\therefore \angle F = \angle ACF$.

∴ ∠FAC=∠BAC-∠FAD-∠BAD=60° -2 a,

 $\mathbb{E} \angle F + \angle ACF + \angle FAC = 180^{\circ}$,

- $\therefore \angle ACF = 60^{\circ} + a$.
- ∴ ∠*EAC*+∠*ACF*=180°.
- ∴ AE// CF.

②20°.

- 28.解: (1) 弧 G, 弧 G3.
 - (2) : 弧 G为 \triangle OAB的内切弧,且弧 G与边 AB, OB相切,
 - : 弧 G 所在圆的圆心在 $\angle OBA$ 的角平分线 BI 上.

易知若弧 G的半径最大,则弧 G所在圆的圆心 I在

 \triangle OAB 的边 OA上. 设弧 G与边 AB, OB 相切分别

切于点 0, Ⅱ.

- ∴ IH⊥ AB.
- A(8,0), B(0,6),

- $: \angle IOB = \angle IHB = 90^{\circ}$, OI = IH, BI = BI,
- ∴ △ IOB≌△ IHB.
- ∴BH=B0=6.
- $\therefore AH = AB BH = 4$, AI = AO OI = 8 OI, OI = HI.

在 Rt $\triangle AIH$ 中, $AI^2 = AH^2 + HI^2$,即 $(8 - OI)^2 = 4^2 + OI^2$.

解得 OI=3.

- ②线段 DF长度的取值范围是 $\frac{3}{5} \le DF \le 3$ 且 $DF \ne \frac{48}{25}$.
- 注:本试卷各题中若有其他合理的解法请酌情给分.

