1 ultrafilter

Definition 1.1 (Filter) F is a filter iff

$$A, B \in F \implies A \cap B \in F \tag{1}$$

$$\emptyset \notin \mathsf{F}$$
 (2)

$$B\supseteq A\in F \implies B\in F \tag{3}$$

Definition 1.2 (Ultrafilter)

$$A \subseteq X \implies A \in U \text{ or } X - A \in U \tag{4}$$

Theorem 1.3 Ultrafilter convergence defines a topology.

Theorem 1.4 A space is

- 1. compact iff every ultrafilter converges.
- 2. Hausdorff iff every ultrafilter converges to at most one point.
- 3. compact-Hausdorff iff every ultrafilter converges to exactly one point

2 Stone-Čech compactification

Let X be a space.

Definition 2.1 (ultra)

Definition 2.2 (ultra: $A \to ultraA$) Suppose $\alpha \in A$. Let ultra α be the ultrafilter generated by α . Suppose $f: A \to B$ is a function. Then $ultra(f): ultra(A) \to ultra(B)$.

Definition 2.3 (lim:ultra $^2X \to ultraX$) Let $U \in ultra^2X$. Suppose $U = \{U_i\}$ where U_i a subset of ultra X. Then define

$$\lim U = \bigcup_{V \in U} \bigcap_{u \in V} u \tag{5}$$

Theorem 2.4 $\lim U: \text{ultra}^2\, X \to \text{ultra}\, X$

Proof. I claim

$$F_{i} := \bigcap_{u \in U_{i}} u \tag{6}$$

is a filter. To see this, note every filter on X contains X. Hence F_{i} is nonempty. The other filter axioms remain true after taking intersections.

Now pick arbitrary F_{α} and F_{β} as defined in eq. (6). I claim there is some F_{γ} (and corresponding U_{γ}) such that $F_{\alpha} \cup F_{\beta} \subseteq F_{\gamma}$. It suffices to find the corresponding U_{γ} . Let $U_{\gamma} = U_{\alpha} \cap U_{\beta}$. Equation (1) guarantees $U_{u} \in U$. Then

$$\bigcap_{u \in U_{\gamma}} u \supseteq \left(\bigcap_{u \in U_{\alpha}} u\right) \cup \left(\bigcap_{u \in U_{\beta}} u\right)$$
$$F_{\gamma} \supseteq F_{\alpha} \cup F_{\beta}$$

Hence

$$\lim U :\equiv \bigcup_i F_i$$

is a filter.

Finally, I claim $\text{lim } U \in \text{ultra } X$. Suppose $A \subseteq X$. Then let $\text{ultra } A \subseteq \text{ultra } X$ be the set of ultrafilters that contain A. I claim $\text{ultra}(A^C) = (\text{ultra } A)^C$; as $(\text{ultra } A)^C$, the set of ultrafilters that *do not contain* A, is $\text{ultra}(A^C)$, the set of ultrafilters that *contain* A^C . This is

a rewording of eq. (4). By eq. (4), either ultra $A \in U$ or ultra $(A^C) \in U$. Suppose, without loss of generality, that ultra $A \in U$. Then

$$F_A := \bigcap_{u \in ultra A} u \subseteq \bigcap_{u \in U} u$$

Note F_A is a filter containing A. Then $\lim U$ contains A. Equation (4) holds. \Box Theorem 2.5 ($\lim \circ \text{ultra} = \text{id}$) Let $\mathfrak{u} \in \text{ultra} X$. Then $\lim \circ \text{ultra} \mathfrak{u} = \mathfrak{u}$ as every set

3 ultrafilter monad

containing u is in ultra u.

For this section, we will distinguish between ultra and η . Here, ultra: haus \to Chaus is the monad's functor and (via abuse of notation) ultra: id \to ultra is the unit and lim: ultra $^2 \to$ ultra is the multiplication.

Theorem 3.1 The coherence conditions

$$\begin{aligned}
\operatorname{ultra}^{3}(X) & \xrightarrow{\lim_{u \to x} \operatorname{lim}_{X}} \operatorname{ultra}^{2}(X) \\
& \downarrow_{\lim_{u \to x} \operatorname{lim}_{X}} & \downarrow_{\lim_{x}} \\
\operatorname{ultra}^{2}(X) & \xrightarrow{\lim_{x}} \operatorname{ultra}(X)
\end{aligned} \tag{7}$$

and

$$\begin{aligned} \text{ultra}(X) & \xrightarrow{\prod} \text{ultra}(X) \\ & \downarrow_{\text{ultra}(\text{ultra}_X)} & \downarrow_{\lim_X} \\ \text{ultra}^2(X) & \xrightarrow{\lim_X} \text{ultra}(X) \end{aligned} \tag{8}$$

hold

Proof. Consider eq. (7). Let $\mathcal{U} \in \text{ultra}^3 X$. The goal is to show

$$\lim \circ \text{ultra}(\lim) \mathcal{U} = \lim \circ \lim \mathcal{U}$$

First, consider $\lim \circ ultra(\lim) \mathcal{U}$. Then

$$\begin{split} \lim \circ \text{ultra}(\lim) &= \bigcup_{\mathsf{U} \in \mathcal{U}} \left(\bigcap_{\mathsf{u} \in \bigcup_{\mathsf{V} \in \mathsf{U}} \bigcap_{\mathsf{v} \in \mathsf{V}} \mathsf{v}} \mathsf{u} \right) \\ &= \bigcup_{\mathsf{U} \in \mathcal{U}} \left(\bigcup_{\mathsf{N} \in \mathsf{U}} \bigcap_{\mathsf{u} \in \mathsf{V}} \mathsf{v} \mathsf{v} \right) \\ &= \bigcup_{\mathsf{U} \in \mathcal{U}} \bigcap_{\mathsf{V} \in \mathsf{U}} \bigcap_{\mathsf{u} \in \mathsf{V}} \bigcap_{\mathsf{v} \in \mathsf{u}} \mathsf{v} \\ \lim \circ \lim &= \bigcup_{\mathsf{U} \in \mathcal{U}} \bigcap_{\mathsf{V} \in \mathsf{U}} \bigcap_{\mathsf{u} \in \mathsf{V}} \bigcap_{\mathsf{v} \in \mathsf{u}} \mathsf{v} \end{split}$$

Now consider eq. (8). This follows as ultra (unit) = ultra (functor).

4 Maximality

Consider the space X and its compactification \bar{X} . We have the diagram

$$\begin{matrix} X & \stackrel{i}{\longleftarrow} & \bar{X} \\ \downarrow^{\text{ultra}} & \parallel \\ \text{ultra} & \stackrel{\text{ultra(i)}}{\longrightarrow} & \text{ultra} \bar{X} \end{matrix}$$

I claim surjectivity of

$$\lim_{\bar{X}} \circ \text{ultra}(i) : \text{ultra}\, X \to \bar{X}$$

As \bar{X} is compact, $\lim_{\bar{X}}$ is a homeomorphism. Thus it suffices to show the surjectivity of ultra(i). To see this, consider an ultrafilter $U \in \bar{X}$. As \bar{X} is a compactification, U is uniquely determined by $U|_X$. Thus ultra(i) ($U|_X$) = U.