

Instituto Politécnico Nacional

Escuela Superior de Computo

Problemas guía de cálculo multivariable

- 1. Usar métodos vectoriales para probar que las diagonales de un paralelogramo se bisecan entre sí.
- 2. Usar notación de conjuntos o vectorial para describir los puntos de la recta que pasa por (-1, -1, -1) en la dirección de \hat{j} .
- 3. Hallar los puntos de intersección de la recta x=3+2t, y=7+8t y z=-2+t, esto es $\overrightarrow{l}(t)=(3+2t,7+8t,-2+t)$, con los planos coordenados.
- 4. Calcular $\overrightarrow{u} \bullet \overrightarrow{v}$, donde $\overrightarrow{u} = \sqrt{5}\hat{i} \sqrt{2}\hat{j} + \sqrt{2}\hat{k}$ y $\overrightarrow{v} = \frac{\overrightarrow{u}}{\|\overrightarrow{u}\|}$.
- 5. Hallar una ecuación del plano que:
 - a) pasa por (3,2,-1) y (1,-1,2); y es paralelo a la recta v=(1,-1,0)+t(3,2,-2)
 - b) es perpendicular a la recta l(t) = (-1, -2, 3)t + (0, 7, 1) y pasa por (2, 4, -1)
- 6. Calcular $a \bullet (b \times c)$, donde $a \neq b$ son: a = i 2j + k, $b = 2i + j + k \neq c = 3i j + 2k$. Así como hallar el área del paralelepipedo que tiene como lados a los vectores antes mencionados.
- 7. Calcule $\|\overrightarrow{u}\|$, $\|\overrightarrow{v}\|$ y $\overrightarrow{u} \bullet \overrightarrow{v}$ cuando: $\overrightarrow{u} = (-1, 2, 0)$ y $\overrightarrow{v} = (1, -1, 0)$; y $\overrightarrow{u} = (-1, 3, 1)$ y $\overrightarrow{v} = (-2, -3, -7)$.
- 8. ¿Cuál es el volumen de paralelepípedo con aristas $-\sqrt{3}\hat{i} + e^4\hat{j} + \sqrt{5}\hat{k}$ y $-\sqrt{5}\hat{i} + \frac{\pi}{2}\hat{j} + \sqrt{3}\hat{k}$.
- 9. Hallar la proyección de $\overrightarrow{v}=2\widehat{i}+\widehat{j}-3\widehat{k}$ sobre $\overrightarrow{u}=-\widehat{i}+\widehat{j}+\widehat{k}$
- 10. Mostrar que en coordenadas esféricas que :
 - a) $\phi = \cos^{-1}(v \cdot k/||v||)$, donde v = xi + yj + zk
 - b) $\theta = \cos^{-1}(u \cdot i/||u||)$, donde u = xi + yj
- 11. Demuestre la desigualdad de Cauchy-Zchwarz sin usar el argumento del coseno del ángulo que existe entre los vectores
- 12. Usando métodos vectoriales, demuestre que la distancia entre dos rectas no paralelas l_1 y l_2 está dada por:

$$\frac{|ax + by - c|}{[a^2 + b^2]^{1/2}}$$

- 13. Pruebe las propiedades del producto interno a partir de su definición (Recuerde que son 4 propiedades).
- 14. Usar métodos vectoriales para describir el plano determinado por los tres puntos (x_0, y_0, z_0) , (x_1, y_1, z_1) y (x_2, y_2, z_2) .
- 15. Mostrar que todo punto sobre la recta v = (1, -1, 2) + t(2, 3, 1) satisface 5x 3y z 6 = 0
- 16. Mostrar que no hay puntos (x, y, z) que satisfagan 2x 3y + z 2 = 0 y que estén sobre la recta $\overrightarrow{l} = (2, -2, -1) + t(1, 1, 1)$
- 17. Probar $(A \times B) \times C = (A \cdot C) B (B \cdot C) A$.
- 18. Probar $(u \times v) \times w + (v \times w) \times u + (w \times u) \times v = 0$
- 19. Probar $(\overrightarrow{u} \times \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w})$ si y soló si $(\overrightarrow{u} \times \overrightarrow{w}) \times \overrightarrow{v} = 0$
- 20. Un triángulo tiene vértices (0,0,0), (1,1,1) y (0,-2,3). Hallar su área

- 21. Describir el significado geométrico de las siguientes asociaciones en coordenadas cilíndricas
 - $a) (r, \theta, z) \rightarrow (r, \theta, -z)$
 - b) $(r, \theta, z) \rightarrow (r, \theta + \pi, -z)$
 - c) $(r, \theta, z) \rightarrow (r, \theta \pi/4, z)$
- 22. Describir el significado geométrico de las siguientes asociaciones en coordenadas esféricas:
 - a) $(\rho, \theta, \varphi) \to (\rho, \theta + \pi, \varphi)$
 - b) $(\rho, \theta, \varphi) \to (\rho, \theta, \pi \varphi)$
- 23. Dados dos vectores distintos de cero \overrightarrow{a} y \overrightarrow{b} en \mathbb{R}^3 , mostrar que el vector $\overrightarrow{V} = \|\overrightarrow{a}\| \overrightarrow{b} + \|\overrightarrow{b}\| \overrightarrow{a}$ biseca el ángulo entre \overrightarrow{a} y \overrightarrow{b} .
- 24. Muestre que $\overrightarrow{a} \bullet \overrightarrow{b} = \|\overrightarrow{a}\| \|\overrightarrow{b}\| \cos(\theta)$
- 25. Muestre que en \mathbb{R}^n se cumple:
 - a) $\|\overrightarrow{x} \overrightarrow{y}\| \|\overrightarrow{x} + \overrightarrow{y}\| \le \|\overrightarrow{x}\|^2 + \|\overrightarrow{y}\|^2$
 - b) $4(\overrightarrow{x} \bullet \overrightarrow{y}) = \|\overrightarrow{x} + \overrightarrow{y}\|^2 \|\overrightarrow{x} \overrightarrow{y}\|^2$
- 26. Calcule: $\|\overrightarrow{u}\|$, $\|\overrightarrow{v}\|$, $\overrightarrow{u} \bullet \overrightarrow{v}$, encuentre el ángulo entre \overrightarrow{u} y \overrightarrow{v} , y normalizarlos cuando dichos vectores están dado por: $\overrightarrow{u} = (-1, 2, -3)$ y $\overrightarrow{v} = (-1, -3, 4)$.
- 27. Describir el significado geométrico de las siguientes asociaciones en coordenadas cilíndricas
 - a) $(r, \theta, z) \rightarrow (r, \theta, -z)$
 - b) $(r, \theta, z) \rightarrow (r, \theta + \pi, -z)$
 - c) $(r, \theta, z) \rightarrow (-r, \theta \pi/4, z)$
- 28. Usando métodos vectoriales, mostrar que la distancia entre dos rectas no paralelas l_1 y l_2 está dada por:

$$d = \frac{|(\overrightarrow{v_2} - \overrightarrow{v_1}) \bullet (\overrightarrow{a_1} \times \overrightarrow{a_2})|}{||\overrightarrow{a_1} \times \overrightarrow{a_2}||}$$

donde $\overrightarrow{v_1}$ y $\overrightarrow{v_2}$ son dos puntos cuales quiere cobre l_1 y l_2 respectivamente y $\overrightarrow{a_1}$ y $\overrightarrow{a_2}$ son las direcciones de l_1 y l_2 .

- 29. (10%) Realice los cálculos siguientes
 - a) (-21,23) (?,6) = (-25,?)
 - b) 800(0.03,0,0) = (?,?,?)
 - c) (3,4,5) + (6,2,-6) = (?,?,?)
- 30. Mostrar que dos planos, dador por las ecuaciones $Ax + By + Cz + D_1 = 0$ y $Ax + By + Cz + D_2 = 0$, son paralelos y que la distancia entre ellos es:

$$\frac{|D_1 - D_2|}{\left(A^2 + B^2 + C^2\right)^{1/2}}$$

- 31. Si sabemos que $\|\overrightarrow{a}\| = 1$, $\|\overrightarrow{b}\| = 3$ y $\overrightarrow{a} \bullet \overrightarrow{b} = 0$. Encontrar lo siguiente: $(\overrightarrow{a} \overrightarrow{b}) \bullet (2\overrightarrow{a} + \overrightarrow{b})$.
- 32. Considere las rectas L_1 y L_2 , encontrar el punto donde se cortan las rectas y dar el ángulo de intersección

$$L_1 = \begin{cases} x = 1 \\ y = t \\ z = 0 \end{cases}$$

$$L_2 = \begin{cases} x = u \\ y = 1 + u \\ z = 0 \end{cases}$$

33. Determinar un vector unitario $\hat{u} = (u_x, u_y, u_z)$ y el intervalo de valores para l de tal forma que la ecuación paramétrica siguiente

$$L_p = \begin{cases} x = 6 + lu_x \\ y = -5 + lu_y \\ z = 1 + lu_z \end{cases}$$

sean una parametrización del segmento de recta que empieza en P(0, -2, 7) y termina en P(-4, 0, 11).

- 34. Considerar el punto $P(x_0, y_0, z_0)$ y la recta y = mx + b en el plano xy, encontrar la distancia entre el punto y la recta dada.
- 35. Establecer si el plano dado por -3x + 2y + 7z = 9 y el plano que contiene a los puntos (-2, 6, 1), (-2, 5, 0), (-1, 4, -3)son paralelos, ortogonales o secantes.
- 36. Identificar que tipo de superficie representan las siguientes ecuaciones, realizar un bosquejo
 - a) $5x^2 + 2y^2 6z^2 10 = 0$
 - b) $2x^2 3y^2 6 = 0$
 - c) $x y^2 + 2z^2 = 0$
- 37. Convertir la ecuación escrita en coordenadas esféricas a una ecuación en coordenadas rectangulares.

$$csc(\varphi) = 2cos(\theta) + 4sin(\theta)$$

- 38. Trazar las curvas de nivel (en el plano xy) para las funciones dadas fy valores especificados de c. Esbozar la gráfica de z = f(x, y).
 - a) $f(x,y) = (64 x^2 y^2)^{\frac{1}{2}}, c = 0, 2\sqrt{15}, \sqrt{48}, \sqrt{39}$
 - b) $f(x,y) = (x^2 + y^2)^{1/2}, c = -1, 0, 1, 2.$
- 39. Describa las superficies de nivel de la función

$$f: \mathbb{R}^3 \to \mathbb{R}$$

 $(x, y, z) \mapsto x^2 + y^2$

40. Muestre, al menos gráficamente, que el siguiente subconjunto del plano es abierto

$$C = \{(x, y) : 2 < x^2 + y^2 < 4\}$$

- 41. Calcular los límites siguientes, se es que existen:
 - a) $\lim_{(x,y)\to(0,1)} e^x y$
 - b) $\lim_{(x,y)\to(0,0)} \frac{(x-y)^2}{x^2+y^2}$
- 42. Probar que $f: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto ye^x + sen\left(x\right) + \left(xy\right)^4$ es continua
- 43. ¿Se puede hacer continua $\frac{x^4-y^4}{x^2+y^2}$ definiéndola de manera adecuada en (0,0)?
- 44. Mostrar que f es continua en x_0 si y solo si

$$\lim_{x \to x_0} \|f(x) - f(x_0)\| = 0$$

45. Evaluar las derivadas parciales $\frac{\partial z}{\partial x},\;\frac{\partial z}{\partial y}$ en los puntos indicados para

$$z = \sqrt{a^2 - x^2 - y^2}$$

- $(0,0)y(\frac{a}{2},\frac{a}{2}).$
- 46. Calcular la matriz de derivadas parciales de la siguiente función: $f: \mathbb{R}^2 \to \mathbb{R}^3$

$$f(x,y) = (xye^{xy}, xsen(y), 5xy^{2})$$

47. Encuentre la función vectorial r(t) que describe la curva C de intersección entre las superficies:

$$z = x^2 + y^2$$

con y = x.

- 48. Sea $f(x,y)=e^{xy}$. Mostrar que $x\frac{\partial f}{\partial x}=y\frac{\partial f}{\partial y}$.
- 49. Calcular el gradiente de la función:

$$f(x, y, z) = z^2 e^x \cos(y)$$

- 50. Hallar la ecuación del planto tangente a:
 - a) $z = x^2 + 2y^3$ en (1, 1, 3)
 - b) $25 x^2 y^2$ en (3, -4, 0)
- 51. Probar que las siguiente función es diferenciable, y hallar sus derivadas en un punto arbitrario: $f: \mathbb{R}^2 \to \mathbb{R}$

$$(x,y) \mapsto x^2 + y^2$$

- 52. Dados los vectores A = (2, 1, 1) y B = (1, -1, 2)
 - a) Determine si los vectores A y B son linealmente independientes o no.
 - b) Mediante la definición de producto punto, obtenga el ángulo entre los vectores A y B. E identifique si son perpendicular o no.
 - c) Encuentre la proyección del vector A en la dirección de B
 - d) De la definición de producto vectorial. Hallar el vector unitario del vector $A \times B$
 - e) Mediante el producto triple escalar mostrar que el vector $A \times B$ es perpendicular a los vectores A y B.
 - f) Encuentre la función vectorial de la recta que pasa por los puntos P(3,2,1) y Q(-1,-2,3) (elabore un dinujo)
 - g) Construya las ecuaciones paramétricas para un parámetro t de la recta anterior.
 - h) Indique cómo se obtiene y cuál es el dominio de la función vectorial de dicha recta.
- 53. Calcular los siguientes limites

$$\lim_{\substack{(x,y)\to(0,0)}} \frac{\tan(x+y)}{x+y}$$

$$\lim_{\substack{(x,y)\to(0,0)}} \frac{e^{\left(x^2+y^2\right)}-1}{x+y}$$

- 54. Verifique mediante la definición $\epsilon \delta$ que el limite:
 - a) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$
 - $b) \quad \lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^2 + y^2} = 0$
 - c) $\lim_{(x,y)\to(0,0)} \frac{10xy^2}{x^2+y^2} = 0$

se cumplen.

55. Si u = f(x, y), donde $x = e^s cos(t) \& y = e^s sen(t)$, demuestre que:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = e^{-2s} \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} \right]$$

56. Demuestre que la función f(x,y) dada, no es diferenciable en (0,0).

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

57. Encuentre la derivada direccional de:

- $f(x,y,z) = (x+y^2+z^2)^2$ en (1,-1,1) en la dirección de (1,1,0)
- $f(x,y,z) = x\cos(y) \sin(z)$ en la dirección del vector (2,-1,4) y en el punto $(1,\pi,\frac{\pi}{4})$
- $f(x,y) = x + 2xy 3y^2$ en la dirección del vector $v = \left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$ y en el punto (1,2)
- $f(x,y) = xy^2 + x^3y$ en la dirección del vector $v = \left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$ y en el punto (4,-2)
- $f(x,y) = e^x Cos(\pi y)$ en la dirección del vector $v = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ y en el punto (0,-1)
- 58. Calcular las segundas derivadas parciales $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$ y $\frac{\partial^2 f}{\partial y^2}$ de la función:

$$f\left(x,y\right) = \cos\left(xy^2\right)$$

59. Utilice la regla de la cadena para encontrar $\frac{dP}{du}$ cuando

$$p = \frac{r}{2s+t}$$

con
$$s = \frac{1}{u^2}$$
 y $t = \sqrt{u}$.

- 60. Hallar el valor aproximado de:
 - $\sqrt[3]{26.98}\sqrt{36.01}$
 - $\sqrt{9(1.95)^2+(8.1)^2}$
- 61. Considere la siguiente función

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- a) Si $(x,y) \neq (0,0)$, calcular $\partial f/\partial x$ y $\partial f/\partial y$.
- b) Mostrar que $(\partial f/\partial x)(0,0) = 0 = (\partial f/\partial y)(0,0)$
- c) Mostrar que $(\partial^2 f/\partial x \partial y)(0,0) = 1$, $(\partial^2 f/\partial y \partial x)(0,0) = -1$
- d) ¿Por qué no son iguales las parciales mixtas?
- 62. Calcular la matriz de derivadas parciales de:
 - (a) $f(x,y) = (e^x, Sen(xy))$

- (a) $f(x,y) = (e^x, Sen(xy))$ (d) $f(x,y) = (xe^y + Cos(y), x, x + e^y)$
- (c) f(x, y, z) = (x + z, y 5z, x y)
- 63. El radio de la base y la altura de un cono circular recto miden 10cm y 25 cm respectivamente. Con un posible error en la medición de 0.01cm. Utilizar difereciales para estimar el error máximo en el volumen calculado del cono.
- 64. Emplee multiplicadores de Lagrange para encontrar los extremos con restricciones de las siguientes funciones:
- 65. Encuentre el punto sobre la curva C de intersección de la esfera $x^2 + y^2 + z^2 = 9$ y el plano x y + 3z = 6 que está más alejada del plano xy. Luego determine el punto sobre C que está más cercano al plano xy.
- 66. Encuentre los extremos relativos de la función:

$$f(x,y) = 4x^3 + y^3 - 12x - 3y$$

- 67. Encuentre los extremos relativos de las siguientes funciones:
 - (a) $f(x,y) = -x^2 y^2 + 8x + 6y$ (b) $f(x,y) = xy \frac{2}{x} \frac{4}{y} + 8$ (c) f(x,y) = Sen(x) + Sen(y) (d) f(x,y) = (x+5)(2y+6)
- 68. Sea $f(u,v)=\left(\tan\left(u-1\right)-e^v,u^2-v^2\right)$ y $g\left(x,y\right)=\left(e^{x-y},x-y\right)$. Calcular $f\circ g$ y $D\left(f\circ g\right)\left(1,1\right)$
- 69. Sea $f\left(u,v,w\right)=\left(e^{u-w},Cos\left(v+u\right)+Sen\left(u+v+w\right)\right)$ y $g\left(x,y\right)=\left(e^{x},Cos\left(y-x\right),e^{-y}\right)$. Calcular $f\circ g$ y $D\left(f\circ g\right)\left(0,0\right)$.

- 70. Verificar la regla de la cadena para:
 - (a) $f(u,v) = \frac{u^2 + v^2}{v^2 v^2} \operatorname{con} u(x,y) = e^{-(x+y)} \operatorname{y} v(x,y) = e^{xy}$
 - **(b)** $f(x,y) = xy, c(t) = (e^t, Cos(t))$
 - (d) $f(x,y) = xe^{(x^2+y^2)}, c(t) = (t,-t)$
- 71. Considere que \overrightarrow{d} es un vector constante y $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$. Verificar las siguientes identidades:

 - (a) $\nabla \bullet \overrightarrow{r} = 3$ (b) $(\overrightarrow{a} \times \nabla) \times \overrightarrow{r} = -2\overrightarrow{a}$
- (c) $\nabla \bullet (\overrightarrow{a} \times \overrightarrow{r}) = 0$
- 72. Sea w = f(x, y) un función C^2 de dos variables y sea x = u + v, y = u v. Mostrar que:

$$\frac{\partial^2 w}{\partial u \partial v} = \frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2}$$

- 73. Dibujar las regiones Q que da lugar a las integrales dobles, cambiar el orden de integración y calcularlas
 - a) $\int_{0}^{1} \int_{\sqrt{\pi}}^{1} sen\left(\frac{y^3+1}{2}\right) dy dx$
 - b) $\int_{0}^{1} \int_{0}^{1} \frac{x^3}{\sqrt{x^4 + y^2}} dy dx$
 - c) $\int_{-1}^{1} \int_{\sqrt{y+1}}^{\sqrt{y+1}} x^2 dx dy$
- 74. Calcular la integral doble siguiente.

$$\int_{0}^{1} \int_{y}^{1} e^{y/x} dx dy$$

75. Evaluar la siguiente integral:

$$\int_{0}^{1} \int_{0}^{1} \left(x e^{x+y} \right) dy dx$$

- 76. Sea f
continua, $f \ge 0$ en el rectángulo R. Probar que si $\int\limits_R f dA = 0$, ent
onces f = 0 en R.
- 77. Calcular

$$\iiint_{S} x dz dx dy$$

si el solido S esta limitado por el grafico de la superficie z = 0, z = x, $y^2 = 4 - x$. Proyectando el sólido en el plano xy.

- 78. Evaluar las siguientes integral y trazar la región D determinada por los límites dado:
 - a) $\int_{0}^{1} \int_{0}^{x^2} dy dx$
 - b) $\int_{1}^{2} \int_{2x}^{3x+1} dy dx$
 - c) $\int_{0}^{1} \int_{0}^{x^{2}} y dy dx$
- 79. Usar integrales dobles para calcular el área de un circulo de radio r
- 80. Sea D la región acotada por las partes positivas de los ejes x y y, y la recta 3x + 4y = 10. Calcular:

$$\int_{D} (x^2 + y^2) dA$$

81. Se
a ${\cal D}$ la región acotada por el ejeyy la parábola
 $x=-4y^2+3.$ Calcular

$$\int_{D} x^{3}y dx dy$$

82. Evaluar
$$\int_{0}^{1} \int_{0}^{x^2} (x^2 + xy - y^2) dy dx$$
. Describir esta integral como una integral sobre cierta región D en el plano xy .

83. Cambie el orden de integración y esboze las regiones correspondientes.

$$a) \int_{0}^{1} \int_{x}^{1} xy dy dx$$

b)
$$\int_{0}^{1} \int_{0}^{2-y} (x+y)^2 dxdy$$

84. Verificar la fórmula para el volumen de una bola $\int\limits_W dv = \frac{4}{3}\pi$ donde W es la bola unitaria $x^2 + y^2 + z^2 \le 1$.

85. Sea W la región acotada por los planos $x=0,\,y=0,\,z=2$ y la superficie $z=x^2+y^2,\,x\geq0,\,y\geq0$. Calcular $\int\limits_W x dx dy dz$

86. Evaluar $\int\limits_W e^{-xy}ydV$, donde $W=[0,1]\times[0,1]\times[0,1]$.

87. Hallar el volumen de la región acotada por: $z=x^2+3y^2 {\bf y} \ z=9-x^2$

88. Mostrar que todas las integrales siguientes son posibles.

$$\int\limits_{0}^{1}\int\limits_{y}^{1}\int\limits_{0}^{y}f\left(x,y,z\right)dzdxdy=\int\limits_{0}^{1}\int\limits_{z}^{1}\int\limits_{y}^{1}f\left(x,y,z\right)dxdydz=\int\limits_{0}^{1}\int\limits_{y}^{1}\int\limits_{y}^{1}f\left(x,y,z\right)dxdzdy=\int\limits_{0}^{1}\int\limits_{z}^{x}\int\limits_{z}^{x}f\left(x,y,z\right)dydzdx=\int\limits_{0}^{1}\int\limits_{z}^{1}\int\limits_{z}^{x}f\left(x,y,z\right)dzdxdy$$

89. Calcular

$$\iint\limits_{O} \left[\frac{x}{2}\right] [y] \, dx dy$$

si $Q = [0, 4] \times [0, 2]$ donde [] es la función parte entera.

90. Calcular el jacobiano de coordenadas polares en coordenadas cartesianas

91. Calcular el jacobiano de coordenadas cilindricas en coordenadas cartesianas.

Primer Examen Parcial del curso Cálculo Multivariable.

Prof. Darwin Gutiérrez

<u>Instrucciones:</u> Resuelva correctamente los siguientes ejercicios justificando todos sus procedimientos y realizando los gráficos necesarios en cada ejercicio, tiene exactamente 1.5 hrs cada ejercicio vale **10/7 puntos.**Nombre:

- 1. Sean $\overrightarrow{d} = (4, 5, -2)$, $\overrightarrow{b} = 3\hat{\mathbf{i}} 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ y $\overrightarrow{c} = (-3, -1, -2)$ vectores en \mathbb{R}^3 . Calcular:
 - $a) (\overrightarrow{a} \cdot \overrightarrow{c})\overrightarrow{a} (\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{a} + \overrightarrow{a}$
 - b) $(\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{a} (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{a}$
 - c) $2Proy_{\overrightarrow{a}}(\overrightarrow{b}) \times 2Proy_{\overrightarrow{b}}(\overrightarrow{a})$
- 2. Considere una pecera que tiene vértices en el origen, $\vec{u} = 5\hat{\mathbf{i}} + 10\hat{\mathbf{j}}$, $\vec{v} = 5\hat{\mathbf{i}} 10\hat{\mathbf{j}}$, $\vec{w} = 20\hat{\mathbf{k}}$, $\vec{u} + \vec{v}$, $\vec{u} + \vec{w}$, $\vec{v} + \vec{w}$ y $\vec{u} + \vec{v} + \vec{w}$. Dibuje dicha pecera, calcule su área, su volumen y el ángulo entre aristas.
- 3. Demuestre que los vectores $(\overrightarrow{u} \times \overrightarrow{v})$ y $(5\overrightarrow{v} \times -6\overrightarrow{u})$ son siempre paralelos y los vectores $(\overrightarrow{u} \times \overrightarrow{v})$ y $\overrightarrow{5v}$ son siempre perpendiculares para cualquier par de vectores \overrightarrow{u} , \overrightarrow{v} .
- 4. Considere la recta $L_1: \frac{x-7}{4} = \frac{y-6}{5} = \frac{z-3}{5}$ encuentre una recta L_2 que se intersecte a L_1 en un solo punto y estas sean perpendiculares entre si.
- 5. Considere el plano P_1 que contiene a los vectores (1,3,-2),(2,4,5),(2,2,-5). Y sea P_2 el plano que corta a los ejes en 7 unidades. Hallar $P_1 \cap P_2$
- 6. Considere la recta L que pasa por el punto (5, 1, 5) y perpendicular al plano yz, y considere el plano con intersección en los ejes dadas por $2\hat{\mathbf{i}}$, $3\hat{\mathbf{j}}$, $4\hat{\mathbf{k}}$ P. Hallar $P \cap L$.
- 7. Dibuje y encuentre le ecuacion de la esfera que esta centrada en (8,7,8) y es tangente al plano x + y + z = 1.

Segundo Examen Parcial de la unidad de aprendizaje Cálculo Miultivariable para C.D. Profr. Darwin Gutiérrez

<u>Instrucciones:</u> Resuelva correctamente los siguientes ejercicios justificando todos sus procedimientos, cada ejercicio vale 2 **puntos.**

Nombre:

1. Suponga que un proyectil se mueve en el espacio según las siguientes ecuaciones paramétricas:

$$x(t) = t$$
, $y(t) = t$, $z(t) = 5 - \frac{9.81}{2}t^2$

- a) Localice en el espacio el proyectil en los tiempos t = 0, 4, 8 y 10 seg.
- b) bosqueje la trayectoria de dicho móvil
- c) si el plano z=0 representa el piso, ¿en qué tiempo el proyectil impactará en el suelo? ¿Con qué velocidad y con qué fuerza si tiene una masa de 500 Kg?
- d) ¿Cuál es su posición en el punto de impacto?
- e) encontrar la longitud de arco de dicha trayectoria del tiempo 2 segundos al tiempo 5 segundos.
- 2. Considere la curva $\overrightarrow{\gamma}(t) = (\cos(t), t, \sin(t))$
 - Haga un bosquejo de la imagen de la curva
 - Encuentre la ecuacuión de una recta que no intersecte a la curva en ningún punto.
 - Encuentre la ecuación de la recta tangente en el punto $\overrightarrow{\gamma}(\pi/2)$, y grafiquela.
- 3. Sean $f(x,y) = \sqrt{169 x^2 y^2}$ y $g(x,y) = \ln(y x^2 2)$ Dibujar el dominio de cada una y encuentre 3 curvas de nivel de cada una y bosqueje las graficas de las 2 funciones.
- 4. Encuentre la linealización de las siguientes funciones en los puntos dados:
 - $z = x^2y 2x^3y 6xy$ en (2, 2) y aproxime en (2.001, 2.001)
 - $\bullet \ w = sen(xyz)$ en $(1,3,\pi)$ y aproxime en (1.001,2.001,3,1416)

Además encuentre la derivada direccional en los puntos dados en la dirección (1,1) y (1,1,1) respectivamente.

- 5. Sea $\phi(x,y) = \frac{7xy}{2x^2 + 2y^2}$
 - \blacksquare Calcular el límite cuando $(x,y) \rightarrowtail (0,0)$
 - Calcular la magnitud de su gradiente
 - Calcular $\partial_{xy}\phi$
- 6. Considere la superficie xyz = 64. Determinar todos los puntos sobre ella que sean mas cercanos al origen.
- 7. En negocios un indice de utilidad U es una función que depende de la venta de 2 artículos diferentes, con cantidades x, y respectivamente (dependientes entre si). Si $U(x, y) = x^{\frac{1}{3}}y^{\frac{1}{4}}$ encuentre sus extremos sujetos a la siguiente relación lineal 4x + 2y = 6.

Tercer examen parcial del curso Cálculo Multivariable para Ciencia de datos. Prof. Darwin Gutiérrez

<u>Instrucciones:</u> Resuelva correctamente los siguientes ejercicios justificando todos sus procedimientos, realizando los graficos necesarios.

Nombre:

- 1. Sea $\overrightarrow{F} = (xyz, xyz + 2, x + y + z)$, calcular:
 - $\quad \blacksquare \quad \nabla \cdot (\nabla \times \overrightarrow{F}).$
 - $\nabla \times (\nabla \cdot \overrightarrow{F}).$
- 2. Calcule el área comprendida entre las gráficas de las funciones $y = 16 x^2$ y $y = x^2$. Además calcule $\int \int_R (x+y) dA$ donde R es la área anterior.
- 3. Calcular el volumen del segmento del cil
ndro que se encuentra en el primer octante delimitado por la superficies $z=16-y^4$ y x=8. Además en ese mismo volumen calcular $\iiint_V z dv$.
- 4. Calcular la integral de superficie $\iint_S f(x,y,z) dS$, cuya función de densidad es f(x,y,z) = xy z
 - S es la superficie parametrizada por $\overrightarrow{r}(u,v)=(u+v,u-v,1)$ definida en el rectángulo $[-2,4]\times[-3,2]$
 - S es el trozo del plano que corta a los ejes en $3\hat{i}, 2\hat{j}, \hat{k}$ y se encuentra en el primer octante.
- 5. Calcular $\int_r \overrightarrow{F} \cdot d\overrightarrow{r}$ para:
 - Con $\overrightarrow{F} = (-y, 2x, 3z)$ y la curva r es el segmento de recta que une el vector (4, -2, 3) con el vector (6, 6, 6)
 - $\overrightarrow{F} = (y, -x, 5z)$ y la curva r cerrada es la circunferencia de radio 5 centrada en el origen en el plano yz.