Stokastiske processer

Læsning:

Cooper/McGillem kap. 5

Hvad er en stokastisk proces?

 Et ensemble af tidslige funktioner og den tilhørende tæthedseller fordelingsfunktion.

Hver af de mulige tidsfunktioner i ensemblet, repræsenterer et specifikt valg af *stokastiske* procesparametre.

I eksemplet til venstre har jeg forsøgt at skitsere en stokastisk proces, hvor den eneste procesparameter er offset'et på en vertikale akse.

De stokastiske procesparametre har en tilhørende tæthedsfunktion. Fx kunne offset'et i dette eksempel være uniformt fordelt.

Hvad er en stokastisk proces?

 Et ensemble af tidslige funktioner og den tilhørende tæthedseller fordelingsfunktion.

Notation

- Arbitrær samplet funktion
 - X(t)
- Stokastisk variabel til tiden t₁
 - $X(t_1) = X_1$

Kontinuært vs. diskret

- Kontinuært
 - -X(t) kan antage alle værdier i et givet interval.

Kontinuært vs. diskret

- Diskret
 - -X(t) antager diskrete værdier (fx. AD converter).

Deterministisk vs. non-deterministisk

Deterministisk

Non-deterministisk

- Intuition:
 - Kan signalet prædikteres eller ej?

Deterministisk vs. non-deterministisk

Tæthedsfunktion

Bemærk, at de to signaler har samme tæthedsfunktion.

Strengt stationær

• Hvis der for alle valg af t_1 og Δt gælder

$$f_X(X(t_1)) = f_X(X(t_1 + \Delta t))$$

• og der for alle valg af t_1 , t_2 og Δt gælder

$$f(X(t_1), X(t_2)) = f(X(t_1 + \Delta t), X(t_2 + \Delta t))$$

 De marginale og simultane tæthedsfunktioner afhænger med andre ord <u>ikke</u> af tidspunktet.

Stationær i bred forstand

• Hvis der for alle valg af t_1 og t_2 gælder

$$E(X(t_1)) = E(X(t_2))$$

• og der for alle valg af t_1 og t_2

$$E(X(t_1) \cdot X(t_2)) = funktion(t_1 - t_2)$$

• Middelværdien skal være konstant, og korrelationen mellem $X(t_1)$ og $X(t_2)$ skal være en funktion af tidsforskellen t_1-t_2 .

Ergodisk proces

Hvis ensemble midling = tidslig midling

$$\bar{X} = \int_{-\infty}^{\infty} x \cdot f(x) dx = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$$

Helt generelt skal der gælde, at

$$\overline{X^n} = \int_{-\infty}^{\infty} X^n \cdot f(x) dx = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^n(t) dt$$

Ergodisk – og hvad så?

 Hvis processesn er ergodisk, må vi generalisere ud fra vores ene sample og dermed slutte noget om hele ensemblet.

Måling af procesparametre

Et estimat af middelværdien

$$\hat{\bar{X}} = \int_0^T x(t)dt$$

- Bemærk, at $\hat{\bar{X}}$ er en stokastisk variabel.
- Hvad er forventningsværdien af $\widehat{\bar{X}}$?

Samplede/diskrete data

• Fra sidste forelæsning:

$$\widehat{\bar{X}} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

- Hvad er middelværdien af estimatet (\overline{X}) af middelværdien?
- Unbiased, dvs.

$$E[\widehat{\overline{X}}] = \overline{X}$$

Samplede/diskrete data

Endvidere gælder

$$\hat{\sigma}_X^2 = \frac{1}{N-1} \sum_{i=1}^N X_i^2 - \frac{N}{N-1} (\hat{\bar{X}})^2$$

$$E\left[\left(\widehat{\bar{X}}\right)^2\right] = \frac{1}{N}\sigma_X^2 + (\bar{X})^2$$

$$Var\left[\widehat{\bar{X}}\right] = E\left[\left(\widehat{\bar{X}}\right)^{2}\right] - \left[E\left(\widehat{\bar{X}}\right)\right]^{2} = \frac{1}{N}\sigma_{X}^{2}$$