Predicting Yearly Medical Costs Using Synthetic Patient Data

Stony Brook University Data Science Bootcamp Capstone Project

Diana Kulawiec

Introduction

- Can a machine learning model be developed to predict yearly medical encounter costs from synthetic patient data?
- Which factors have the most important impact on healthcare expenses?

The Process

SYNTHEA EMPOWERS DATA-DRIVEN HEALTH IT

Data Generation

- Downloaded synthetic patient data from Synthea for 100 living patients from each of the 50 states
- CSV files:
 - Patients
 - Encounters
 - Medications
 - Procedures
 - Immunizations
 - Allergies
 - Observations

Data Wrangling **Patients** Demographic information **Encounters** Number of medical **Observations** encounters and Patient vital signs cost and lab reports **Final Dataset** 5000 rows, 60 **Medications** columns **Allergies** Number of Number of medications and allergies cost **Immunizations Procedures** Number of Number of immunizations and procedures and cost cost

Medical Encounters Distributions

Medical Encounters by State

Medical Encounters by Gender and Race

Exploratory Data Analysis

Data Imputation

- Tested 4 different imputation techniques to fill in missing values
- Assessed R-squared values and distribution shape
- Selected K Nearest Neighbor

Imputation	R-Squared	
Technique	Value	
Mean	0.4934	
Median	0.4941	
K Nearest Neighbor	0.5313	
(KNN)		
Multivariate		
Imputation by	0.5139	
Chained Equations		
(MICE)		

Model Training and Development

- Split data into training (75%) and testing (25%) sets
- Baseline model mean value of the training set (dummy regression)
- Evaluated R-squared and mean absolute error (MAE)

Mean value of	15,040.24
training data	
Training R-squared	0.0000
Testing R-squared	-0.0006
Training MAE	18,029.71
Testing MAE	17,276.07

Linear Regression Models

	Linear Regression	Ridge Regression	Lasso Regression
Training R-squared	0.4464	0.4073	0.4223
Testing R-squared	-0.1396	0.2567	0.4184
Training MAE	13,050.87	12,431.39	12,130.95
Testing MAE	12,799.56	12,021.69	11,354.02

Ensemble Models

	Random Forest	Gradient Boosting
Training R-squared	0.9426	0.9475
Testing R-squared	0.6350	0.6404
Training MAE	2,519.64	4,236.62
Testing MAE	6,167.80	6,439.04

Final Model Selection - Random Forest

- Random forest model was selected
- Included the best 45 features and 80 trees in the forest
- Cross validation R-squared: 0.6649
- Cross validation mean absolute error: 6,583.35

Final Model Selection - Random Forest

Random Forest Model vs. Dummy Regression Model			
Percent change training R-squared	100.00%		
Percent change testing R-squared	100.10%		
Percent change training MAE	615.57%		
Percent change testing MAE	180.10%		

Final Model Selection – Top Features

- 1. Number of medical encounters
- 2. Number of medical procedures
- 3. DALY (disability-adjusted life years)
- 4. Glomerular filtration rate/1.73 sq M
- 5. Leukocytes [#/volume] in Blood
- 6. Hematocrit [Volume Fraction] of Blood
- 7. Body mass index (BMI)
- 8. Pain severity 0-10
- 9. Age
- 10. Cost of medications

- 11. Urea nitrogen [Mass/volume] in Blood
- 12. Chloride [Moles/volume] in Blood
- 13. Cholesterol in HDL [Mass/volume] in Serum or Plasma
- 14. Potassium [Moles/volume] in Blood
- 15. Number of medications
- 16. Triglycerides
- 17. Carbon dioxide total [Moles/volume] in Blood
- 18. QALY (quality adjusted life years)
- 19. Creatinine [Mass/volume] in Blood
- 20. State population

Conclusion

- Developed a machine learning model to predict yearly medical encounter costs from synthetic patient data
- On average, this model is expected to estimate a patient's yearly medical encounters cost within about \$6,500
- Future work:
 - Include different types of data
 - Test multiple years

