Understanding Random Variables and Distributions

Dmitri NesterukQUANTITATIVE ANALYST

@dnesteruk http://activemesa.com

Goals:

Understand the notion of a random variable and the common distributions of random variables.

Overview

What is a Random Variable?

Discrete vs Continuous

Distributions and Probability Functions

Discrete distributions: uniform, binomial, geometric, hypergeometric

Continuous distributions: uniform, normal, gamma, beta

Random Variable

Formal: a real-value function on the sample space.

Informal: a variable that can take on a random value from a finite or infinite set of values.

Discrete vs Continuous

Discrete random variables can take on values that are

- Finite (e.g., die roll, coin toss)
- Countably infinite, i.e. can be put into 1-1 correspondence with natural numbers

Continuous random variables can take on an infinite set of values

- A person's exact height
- P(you are exactly 2 m. tall) = 0
- Can be turned into a discrete value by rounding

Notation

Random variables are typically denoted with a capital letter

The probability of random variable *X* taking on a specific value (e.g., 3) is expressed as

$$P(X=3) = \frac{1}{6}$$

The probability of random variable X taking on some value x is expressed as

$$P(X=x) = \frac{1}{x^2}$$

and this can be a function of x.

Discrete Random Variable

Random variable that takes on a finite (or countably infinite) set of values

Examples:

- Single coin toss (H or T)
- Number of heads in 10 coin tosses
- Die roll (6 possible values)
- Person's ranking in a competition

Values don't have to be equally likely

- E.g., a loaded die

Distribution

The *distribution* of random variable X is the collection of all probabilities $P(X \in S)$ for all sets of real numbers such that $\{X \in S\}$ is an event

Simple coin toss

$$P(X = H) = P(X = T) = 1/2$$

Number of heads in 10 coin tosses

- 2¹⁰ different outcomes, $P(X = x) = \frac{1}{2^{10}}$
- Need to count # of outcomes s such that X(s) = x
- Number of such outcomes = number of subsets of size x that can be chosen from 10 tosses, i.e., $\binom{10}{x}$

-
$$P(X = x) = {10 \choose x} \frac{1}{2^{10}}$$
 for $x = 0, ..., 10$

Probability Function

Given X with a discrete distribution

The probability function (pf) of X is a function s.t. for every real number x

$$f(x) = P(X = x)$$

For example, for a fair die roll,

$$f(x) = \begin{cases} 1/6, & x \in \{1,2,3,4,5,6\} \\ 0, & \text{otherwise} \end{cases}$$

Also known as probability mass function

Uniform Distribution of Integers

A lottery machine has balls corresponding to lottery numbers

Finite set 1..49

Each ball equally likely to be drawn

$$P(X = 33) = 1/49$$
 (first draw)

A uniform distribution on k integers has probability 1/k for each integer

Given a random integer from a to b inclusive s.t. a < b, we have b - a + 1 possible values, so pf is

$$f(x) = \begin{cases} \frac{1}{b-a+1} & \text{for } x = a, ..., b \\ 0 & \text{otherwise} \end{cases}$$

Binomial Distribution

A manufactured item is defective with probability p

We want to find the probability of x items being defective in a production run of n items

We consider sequences of

$$\underbrace{FFF \dots FF}_{x} \underbrace{SSS \dots SS}_{n-x}$$

The probability of exactly x items being defective (and n-x non-defective) is $p^x(1-p)^{n-x}$

Binomial Distribution

The *number* of such sequences of successfailure pairs is $\binom{n}{x}$

It follows that

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}$$

 \therefore the pf of X is

$$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x = 0,1,...,n \\ 0, & \text{otherwise} \end{cases}$$

The distribution represented by this pf is the discrete binomial distribution with parameters n and p

Geometric Probability Distribution

Similar to the Binomial experiment with success probability p

Measuring different thing

The random variable *X* corresponds to the trial on which the first success occurs

$$E_1$$
: S , success on first trial E_2 : F , S , success on second trial E_3 : F , F , S , success on third trial E_n : E_n :

Geometric Probability Distribution

Random variable *X* is the number of trials up to and including the first success

Any event E_n does not include any prior outcome E_m where m < n

Because trials are independent, for

$$x = 1, 2, 3, ...,$$

 $p(x) = P\left(\underbrace{FFF ... FF}_{x-1} S\right) = \underbrace{qqq ... qq}_{x-1} p = q^{x-1}p$

Geometric Probability Distribution

A random variable X has a geometric probability distribution iff

$$p(x) = q^{x-1}p$$

where

$$x = 1, 2, 3, \dots, 0 \le p \le 1$$

and q = 1 - p

Geometric Distribution Example

Suppose the probability of engine malfunction in a 1-hour period is p=0.03

Find the probability that the engine will survive 2 hours

Let *X* denote number of 1-hour intervals until first malfunction

$$P(\text{survive 2hrs}) = P(X \ge 3) = \sum_{y=3}^{\infty} p(x)$$

Since
$$\sum_{x=1}^{\infty} p(x) = 1$$
,

$$P(\text{survive 2hrs}) = 1 - \sum_{x=1}^{2} p(x) = 1 - p - qp$$

$$= 1 - 0.03 - 0.97 \cdot 0.03 = 0.9409$$

Hypergeometric Probability Distribution

Consider a population of N elements that have a characteristic with 2 possible states

E.g., color of balls in a bag

Suppose r elements are red and b = N - r are blue

A sample of n elements is selected

We are interested in *X*, the number of successful cases (e.g., red balls) selected

X follows a hypergeometric distribution

Hypergeometric Probability Distribution

A random variable X follows a hypergeometric distribution if its pf is

$$p(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

N - population size

r - number of success states in population

n - number of draws

x - number of observed successes

Hypergeometric Distribution Example

A factory has 10 machines, 4 are defective. If we pick 5 machines at random, what's the probability none of them are defective?

6 are non-defective, so

$$N = 10, r = 6, n = 5, x = 5$$

$$P(X=5) = \frac{\binom{6}{5}\binom{10-6}{5-5}}{\binom{10}{5}} = \frac{1}{42} = 0.00238$$

Continuous Distributions

Continuous distributions assign probability O (zero!) to individual values

$$P(X = x) = 0$$
 for each x

This means a pf makes no sense

But we can talk about the probability that *X* falls between some values

$$P(a \le X \le b)$$

Given the parameter x, we define the cumulative distribution function (cdf) F(x) as

$$F(x) = P(X \le x)$$

Cumulative Distribution Function Example

Consider X that has a binomial distribution with n=2, p=1/2. Let's find F(x)...

The pf for X is

$$p(x) = {2 \choose x} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{2-x}, \qquad x = 0,1,2$$

This gives us
$$p(0) = \frac{1}{4}$$
, $p(1) = \frac{1}{2}$, $p(2) = \frac{1}{4}$

Now we plot the cdf

$$F(x) = P(X \le x)$$

$$p(0) = \frac{1}{4}, p(1) = \frac{1}{2}, p(2) = \frac{1}{4}$$

So for each F(x) we add up all the different probabilities p(a) where $a \le x$

$$F(x) = \begin{cases} 0, & x < 0 \\ 1/4, & 0 \le x < 1 \\ 3/4, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

Properties of a Distribution Function

$$F(-\infty)=0$$

$$F(\infty) = 1$$

F(x) is a nondecreasing function

A random variable X is continuous if F(x) is continuous for $-\infty < x < \infty$

Probability Density Function

If F(x) is the distribution function for a continuous random variable X, we define f(x) as

$$f(x) = \frac{dF(x)}{dx} = F'(x)$$

This is the *probability density function* (pdf) of the random variable *X*.

-
$$f(x) \ge 0$$
 for all x

$$- \int_{-\infty}^{\infty} f(x) \, dx = 1$$

Calculating Probability Values

Given a pdf f(x),

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

Suppose you are given the pdf

$$f(x) = \begin{cases} \frac{1}{8}x, & 0 < x < 4\\ 0, & \text{otherwise} \end{cases}$$

(Notice how
$$\int_0^4 x/8 \ dx = \frac{x^2}{16} \Big|_0^4 = 1$$
)

$$P(1 \le X \le 2) = \int_{1}^{2} \frac{1}{8} x \, dx = \frac{3}{16}$$

$$P(X > 2) = \int_{2}^{4} \frac{1}{8} x \ dx = \frac{3}{4}$$

Uniform Probability Distribution

A train always arrives between 6:30 and 6:40

The probability it will arrive in any subinterval is proportional to the length of the subinterval

Let *X* denote amount of time a person has to wait for a train if they arrive at 6:30

X has a continuous uniform probability distribution

Uniform Probability Distribution

If a < b, a random variable X is said to have a continuous uniform probability distribution on the interval (a, b) iff the density function of X is

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

The constants a and b are the parameters of the density function.

Uniform Probability Distribution Example

Suppose trains arrive within a 30-minute period

What's the probability the train will arrive in the last 5 minutes of that interval?

We have a uniform distribution with a=0 and b=30

$$P(25 \le X \le 30) = \int_{25}^{30} \frac{1}{30} dx = \frac{30 - 25}{30} = 1/6$$

Normal Probability Distribution

A random variable X has a normal probability distribution iff, for $\sigma > 0$ and $-\infty < \mu < \infty$, the density function is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The normal density function has two parameters, μ and σ . A distribution with $\mu=0$ and $\sigma=1$ is called the *standard* normal distribution.

Normal Distribution

Consider the standard normal distribution ($\mu = 0, \sigma = 1$):

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

To find out $P(a \le X \le b)$ we would need to evaluate

$$\int_{a}^{b} e^{-x^2/2} dx$$

No closed-form of this integral exists

Numeric integration techniques required

- pnorm(x, μ , σ) gives $P(X \le x)$
- qnorm(p, μ , σ) gives the value x s.t. $P(X \le p) = x$ (pth quartile)

Normal Distribution Example

Suppose we know that test scores are normally distributed with $\mu=75$ and $\sigma=10$

What fraction of scores lie between 80 and 90?

Calculate using tables

 We can transform this distribution into a standard one using

$$z = \frac{x - \mu}{\sigma}$$

- This gives us $z_1 = \frac{80-75}{10} = 0.5$ and $z_2 = \frac{90-75}{10} = 1.5$

- Look up the values and subtract

pnorm(90,75,10) - pnorm(80,75,10)

Answer: 0.24173

Uses of Normal Distribution

Used extensively in natural and social sciences

Brownian motion (physics, mathematical finance)

Gamma Probability Distribution

A random variable X has a gamma distribution with positive parameters α and β iff the density function of X is

$$f(x) = \begin{cases} \frac{x^{\alpha - 1}e^{-\frac{x}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}, & 0 \le x < \infty \\ 0, & \text{otherwise} \end{cases}$$

where
$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

Gamma Function

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$
 is called the *gamma function*

$$\Gamma(1) = \int_0^\infty e^{-x} \, dx = 1$$

Integration by parts gives the relation

$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

Thus, for $n \in \mathbb{N}$, $\Gamma(n) = (n-1)!$

Let's plot the gamma pdf

$$f(x) = \frac{x^{\alpha - 1} e^{-\frac{x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}$$

Assign α (shape parameter) values of 2, 4, 6 and 8

Fix $\beta = 1$ (scale parameter)

Uses of Gamma Distribution

Insurance claims

Rainfall

Wireless communication (multi-path fading of signal power)

Neuroscience (distribution of inter-spike intervals)

Multi-level Poisson regression models

Beta Probability Distribution

A random variable X is said to have a beta probability distribution with parameters $\alpha > 0$ and $\beta > 0$ iff the density function of X is

$$f(x) = \begin{cases} \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

where

$$B(\alpha, \beta) = \int_{0}^{1} x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Beta Distribution

The cdf for the beta random variable is called the *incomplete beta function*

$$F(x) = \int_{0}^{x} \frac{t^{\alpha - 1} (1 - t)^{\beta - 1}}{B(\alpha, \beta)} dt = I_{x}(\alpha, \beta)$$

When α and β are both positive integers, integration by parts gives us

$$F(x) = \int_{0}^{x} \frac{t^{\alpha - 1} (1 - t)^{\beta - 1}}{B(\alpha, \beta)} dt = \sum_{i = \alpha}^{n} {n \choose i} x^{i} (a - x)^{n - i}$$

where $n = \alpha + \beta - 1$

This is a sum of probabilities associated with a binomial random variable with $n = \alpha + \beta - 1$ and p = x

Plot of the density function by fixing either α or β

$$\alpha = 2, \beta = \left\{\frac{1}{4}, 2, 4\right\}$$

$$\beta = 1.5, \alpha = \left\{\frac{1}{4}, 2, 4\right\}$$

Beta Distribution in R

```
pbeta(x, \alpha, 1/\beta)
yields P(X \le x)
qbeta(p, \alpha, 1/\beta)
yields x s.t. P(X \le x) = p
```


Summary

Discrete distributions are characterized by a probability function

Discrete distributions: uniform, binomial, geometric, hypergeometric

Continuous distributions are characterized by a probability density function (derivative of the cumulative distribution function)

Continuous distributions: uniform, normal, gamma, beta

