

Fundamentals of Optimization

Exercise Set 0

Numerical Problems

1 Simple Optimization Problems

For each of the following three optimization problems, identify the feasible region and the objective function. Determine whether the given optimization problem is *infeasible*, *unbounded*, or *has a finite optimal value*. Find the optimal value using the convention in the lectures and determine the set of all optimal solutions.

- $(1.1) \max\{(x-1)^2 : x^2 \le -1, \quad x \in \mathbb{R}\}.$
- $(1.2) \min\{1/(x+1)^2 : x \ge 0, \quad x \in \mathbb{R}\}.$
- $(1.3) \min\{x^2 4x + 6 : |x 2| \ge 1, \quad x \in \mathbb{R}\}.$
- $(1.4) \max\{x^2 3x + 6 : x^2 > 1, \quad x \in \mathbb{R}\}.$

2 Convex Sets and Convex Functions

- (2.1) Decide for each of the following sets whether they are *convex* or not.
 - (a) $C = \{x \in \mathbb{R} : x^2 > 3\}.$
 - (b) $C = \{x \in \mathbb{R}^2 : (x_1 + 1)^2 + (x_2 1)^2 < -3\}.$
 - (c) $C = \{x \in \mathbb{R}^2 : |x_1| + |x_2| \le 7\}.$
- (2.2) Decide for each of the following three functions whether they are *convex*, *concave*, *both*, or *neither*.
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = 3x_1 2x_2.$
 - (b) $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|.
 - (c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 4x$.

3 Level Sets, Sublevel Sets, and Superlevel Sets

- (3.1) For each of the functions $f: \mathbb{R}^2 \to \mathbb{R}$ given below, and for each $\alpha \in \mathbb{R}$, give an algebraic description of the level set $\mathcal{L}_{\alpha}(f)$, the sublevel set $\mathcal{L}_{\alpha}^{-}(f)$, and the superlevel set $\mathcal{L}_{\alpha}^{+}(f)$.
 - (a) $f(x) = x_1^2 + x_2^2$.
 - (b) $f(x) = \max\{|x_1|, |x_2|\}.$
 - (c) $f(x) = x_1^2 x_2^2$.

Open Ended Problems

4 Epigraphs and Convex Functions

Let $f_1: \mathbb{R}^n \to \mathbb{R}$ and $f_2: \mathbb{R}^n \to \mathbb{R}$ be two functions. Let $h: \mathbb{R}^n \to \mathbb{R}$ be a function given by $h(x) = \max\{f_1(x), f_2(x)\}.$

(4.1) Prove the following proposition:

$$epi(h) = epi(f_1) \cap epi(f_2).$$

(Hint: One way of proving that two sets A and B are equal to one another is to show that $A \subseteq B$ and $B \subseteq A$.)

(4.2) Suppose that f_1 and f_2 are convex functions. Show, by using (5.1), that h is a convex function.

5 Level Sets and Sublevel Sets

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function.

(5.1) By Proposition 4.1, if f is a linear function, then the level set $\mathcal{L}_{\alpha}(f)$ is a convex set for each $\alpha \in \mathbb{R}$. Consider the converse proposition given below:

If $\mathcal{L}_{\alpha}(f)$ is a convex set for each $\alpha \in \mathbb{R}$, then f is a linear function.

Either prove this proposition or give a counterexample (i.e., find an example $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies the hypothesis but does not satisfy the conclusion).

(5.2) By Proposition 4.2, if f is a convex function, then the sublevel set $\mathcal{L}_{\alpha}^{-}(f)$ is a convex set for each $\alpha \in \mathbb{R}$. Consider the converse proposition given below:

If $\mathcal{L}_{\alpha}^{-}(f)$ is a convex set for each $\alpha \in \mathbb{R}$, then f is a convex function.

Either prove this proposition or give a counterexample (i.e., find an example $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies the hypothesis but does not satisfy the conclusion).