Homework II

Due: Oct. 9. (Fri) 23:59 PM

I. REMARK

- Reading materials: Ch 1.8-2.5 in the textbook. (Ch 1.10 is up to you (optional))
- Don't write just an answer. Please describe enough processes to justify your answer (Korean is also OK!!).
- Be healthy!!!

II. PROBLEM SET

1) Vectors are given as

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}.$$

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of \mathbf{z} .

- 2) Show that the transformation T defined by $T(x_1,x_2)=(4x_1-2x_2,3|x_2|)$ is not linear.
- 3) $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the vertical x_2 -axis ((A) to (B)) and then rotates points through $\pi/4$ radian, clockwise ((B) to (C)). Find the standard matrix of T. Also, find the matrix of T^{-1} .

4) Find A^{-1} , A^{T} , $(A^{T})^{-1}$ and AB.

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 1 & 1 \end{bmatrix}.$$

5) The matrix S is partitioned as

$$S = \begin{bmatrix} I & 0 & 0 \\ C & I & 0 \\ A & B & I \end{bmatrix}.$$

Find S^{-1} .

6) Solve the equation Ax = b by using the LU factorization given for A.

$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -7 \\ 5 \\ 2 \end{bmatrix}$$

7) A is in $\mathbb{R}^{n \times n}$. Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of A are linearly independent.