Devoir maison 12

▶ Problème : théorème LTE (Lifting the exponent)

Soit p un nombre premier, et soient x, y deux entiers relatifs, premiers à p avec $|x| \neq |y|$.

- **1.** On suppose que p divise x y. Montrer que pour tout $n \in \mathbb{N}^*$ premier à p, $v_p(x^n y^n) = v_p(x y)$.
- 2. Dans cette question, on suppose que p = 2, et que $4 \mid x y$.
 - **a.** Montrer que $v_2(x^2 y^2) = v_2(x y) + 1$.
 - **b.** Prouver par récurrence que pour tout $n \in \mathbb{N}^*$, $v_2(x^n y^n) = v_2(x y) + v_2(n)$.
- 3. On suppose à présent que p est impair, et que $p \mid x y$.
 - **a.** Prouver que pour tout $k \in [1, p-1], x^k = y^k + k(x-y)y^{k-1} [p^2].$
 - b. En déduire que $\sum_{k=0}^{p-1} x^k y^{p-1-k} \equiv p y^{p-1} \ [p^2]$, puis que $v_p (x^p y^p) = v_p (x y) + 1$.
 - **c.** Prouver alors que pour tout $n \in \mathbb{N}^*$, $v_p(x^n y^n) = v_p(x y) + v_p(n)$.
- **4.** Application : soit $k \in \mathbb{N}^*$ fixé. Trouver tous les $n \in \mathbb{N}$ tels que $3^k \mid 2^n 1$. *Indication : distinguer le cas n pair du cas n impair.*