Seminár 22: Geometria V – štvoruholníky

Úlohy a riešenia

Úloha 22.1. [57-I-2] **Riešenie*.** Päty kolmíc spustených zo stredu S vpísanej kružnice na strany AB, BC, CD a DA označme postupne K, L, M a N (obr. 1). Pravouhlé trojuholníky ASK a ASN sú zhodné podľa vety Ssu. Majú totiž spoločnú preponu AS a zhodné odvesny SK a SL, ktorých dĺžka je rovná polomeru vpísanej kružnice. Zo zhodnosti týchto trojuholníkov vyplýva jednak známe tvrdenie o dĺžkach dotyčníc (|AK| = |AN|), jednak zhodnosť uhlov ASK a ASN, ktorých spoločnú veľkosť označíme α :

$$|\angle ASK| = |\angle ASN| = \alpha.$$

Analogicky zistíme zhodnosť trojuholníkov SBK a SBL, ďalej SCL a SCM, a nakoniec SDM a

Obr. 1:

SDN. Na základe uvedených zhodností môžeme položiť

$$|\angle BSK| = |\angle BSL| = \beta, \quad |\angle CSL| = |\angle CSM| = \gamma, \quad |\angle DSM| = |\angle DSN| = \delta.$$

Odtiaľ a z obr. 1 potom dostávame

$$|\angle ASD| - |\angle CSD| = (\alpha + \delta) - (\gamma + \delta) = \alpha - \gamma =$$

$$= (\alpha + \beta) - (\gamma + \beta) = |\angle ASB| - |\angle BSC| = 40^{\circ}.$$

 $Z \acute{a} ver. | \angle ASD| - | \angle CSD| = 40^{\circ}.$

Komentár. Úloha je relatívne nezložitým úvodom do seminára a nadväzuje na posledné geometrické stretnutie, ktoré sa zaoberalo opísanými a vpísanými kružnicami trojuholníku. Pre úplnosť len dodajme, že štvoruholník, ktorému je možné vpísať kružnicu, sa nazýva dotyčnicový.

Úloha 22.2. [61-II-3] **Riešenie*.** Keďže štvoruholník ABCE je podľa zadania dotyčnicový, pre dĺžky jeho strán platí známa rovnosť

$$|AB| + |CE| = |BC| + |AE|.$$

V našej situácii pri označení a=|AB| platí $|BC|=|AD|=\frac{2}{3}a$ a $|CE|=|DE|=\frac{1}{2}a$ (obr. 2), odkiaľ po dosadení do uvedenej rovnosti zistíme, že $|AE|=\frac{5}{6}a$. Teraz si všimneme, že pre dĺžky strán

¹Rovnosť sa odvodí rozpísaním dĺžok strán na ich úseky vymedzené bodmi dotyku vpísanej kružnice a následným využitím toho, že každé dva z týchto úsekov, ktoré vychádzajú z rovnakého vrcholu štvoruholníka, sú zhodné.

Obr. 2:

trojuholníka ADE platí

$$|AD|: |DE|: |AE| = \frac{2}{3}a: \frac{1}{2}a: \frac{5}{6}a = 4:3:5,$$

takže podľa (obrátenej časti) Pytagorovej vety má trojuholník ADE pravý uhol pri vrchole D, a teda rovnobežník ABCD je obdĺžnik. Dotyčnica BC kružnice vpísanej štvoruholníku ABCE je teda kolmá na dve jej (navzájom rovnobežné) dotyčnice AB a CE. To už zrejme znamená, že bod dotyku dotyčnice BC je stredom úsečky BC (vyplýva to zo zistenej kolmosti vyznačeného priemeru kružnice na jej vyznačený polomer).

Iné riešenie*. Ukážeme, že požadované tvrdenie možno dokázať aj bez toho, aby sme si všimli, že rovnobežník ABCD je v danej úlohe obdĺžnikom. Namiesto toho využijeme, že úsečka CE je stredná priečka trojuholníka ABF, pričom F je priesečník polpriamok BC a AE (obr. 3), lebo $CE \parallel AB$ a $|CE| = \frac{1}{2}|AB|$. Označme preto a = |AB| = 2|CE|, b = |BC| = |CF| a e = |AE| = |EF| (rovnosť

Obr. 3:

2a=3b použijeme až neskôr). Rovnako ako v prvom riešení využijeme rovnosť $b+e=a+\frac{1}{2}a(=\frac{3}{2}a)$, ktorá platí pre dĺžky strán dotyčnicového štvoruholníka ABCE. Kružnica jemu vpísaná sa dotýka strán BC, CE, AE postupne v bodoch P, Q, R tak, že platia rovnosti

$$|CP| = |CQ|, \quad |EQ| = |ER|$$
 a tiež $|FP| = |FR|.$

Pre súčet zhodných dĺžok |FP| a |FR| teda platí

$$|FP| + |FR| = (b + |CP|) + (e + |ER|) = (b + e) + (|CP| + |ER|) = \frac{3}{2}a + (|CQ| + |EQ|) = \frac{3}{2}a + \frac{1}{2}a = 2a,$$

čo znamená, že |FP| = |FR| = a.

Teraz už riešenie úlohy ľahko dokončíme. Rovnosť $|BP|=\frac{1}{2}b$, ktorú máme v našej situácii dokázať, vyplýva z rovnosti

$$|BP| = |BF| - |FP| = 2b - a,$$

keď do nej dosadíme zadaný vzťah $a = \frac{3}{2}b$.

Komentár. Úloha nadväzuje na predchádzajúcu a využíva rovnosť súčtov dĺžok opačných strán dotyčnicového štvoruholníka. Ďalej študenti uplatnia buď Pytagorovu vetu alebo vedomosti o stredných priečkach v trojuholníku, čo úlohu činí zaujímavou z hľadiska pestrosti.

Úloha 22.3. [59-II-3] Riešenie*. Polomer kružnice k označenie vrcholov P,Q v trojuholníku MPQ nie je dôležité, preto bez ujmy na všeobecnosti označene P ten z bodov priamky vedenej bodom N rovnobežne s priamkou MS, ktorý leží na kružnici k. Bod Q potom leží na kružnici l a štvoruholník NQMS je lichobežník vpísaný do kružnice l (obr. 4). Je teda rovnoramenný s ramenami MQ a NS dĺžky r. Navyše aj úsečky SP a SM majú dĺžku r. Z rovnoramenného trojuholníka NPS a rovnoramenného lichobežníka NQMS vyplýva rovnosť uhlov $|\angle SPN| = |\angle SNP| = |\angle MQP|$. Priečka PQ teda pretína priamky SP a MQ pod rovnako veľkými uhlami, a preto (podľa vety o súhlasných uhloch) sú priamky SP a MQ rovnobežné. Štvoruholník PQMS je teda rovnobežník, a keďže |SM| = |SP| = r, je to dokonca kosoštvorec. Odtiaľ je už zrejmé, že trojuholník MPQ je rovnoramenný s ramenami PQ a MQ dĺžky r.

Obr. 4:

Poznámka. Existencia tetív NP a NQ v zadaní je zaručená vďaka predpokladu, že kružnica l má väčší polomer ako kružnica k. Ak označíme C stred úsečky SM a E ten priesečník kružnice k s osou úsečky SM, ktorý leží v polrovine SMO, bude stred O kružnice l ležať na polpriamke CE až za bodom E (obr. 5). Ďalší priesečník N oboch kružníc preto padne do pásu medzi rovnobežkami SM a N_0E

Obr. 5:

v polrovine OCS, pričom N_0 je štvrtý vrchol kosoštvorca s vrcholmi S, M, E. Na to stačí ukázať,

že kružnica l pretne polpriamku EN_0 až za bodom N_0 , teda že jej polomer OS je väčší ako dĺžka úsečky ON_0 . Toto porovnanie dvoch strán trojuholníka OSN_0 jednoducho vyplýva z porovnania jeho vnútorných uhlov: uhol pri vrchole N_0 je najväčší, lebo oba uhly pri protiľahlej strane OS sú menšie ako 60° (trojuholník ESN_0 je rovnostranný). Ľahko nahliadneme, že každá z rovnobežiek uvedeného pásu pretína každú z oboch kružníc v dvoch bodoch (vždy súmerne združených podľa príslušnej osi kolmej na SM). Tým je dokázaná nielen existencia oboch tetív NP a NQ, ale aj to, že ich krajné body P a Q ležia na rovnakej strane od bodu N (ako na obr. 4), lebo oba body zrejme ležia v polrovine opačnej k spomenutej polrovine OCS.

Komentár. Diskusia v poznámke je len zaujímavým doplnkom úlohy, existencia tetív je totiž predpokladom zadania a nie je nutné ju dokazovať. Úloha využíva úvahu, že lichobežník, ktorého základne sú rovnobežné tetivy danej kružnice, je rovnoramenný, ktorá môže byť pre študentov zaujímavým uvedomením.

Riešenie*. a) Štvoruholníky ABQK a DAPL sú zhodné (jeden z nich je Úloha 22.4. [60-I-3] obrazom druhého v otočení o 90° so stredom v strede štvorca ABCD). Preto majú aj rovnaký obsah, čiže $S_A + S_B = S_A + S_D$. Z toho hneď dostaneme $S_B = S_D$.

b) Ľahko sa nám podarí vypočítať obsah pravouhlého lichobežníka ABQK, lebo poznáme dĺžky základní aj výšku. Dostaneme

$$S_A + S_B = \left(\frac{1}{2} + \frac{1}{3}\right) \cdot \frac{1}{2} = \frac{5}{12} \text{ cm}^2.$$

Podobne výpočtom obsahu lichobežníka PBCL dostaneme

$$S_C + S_B = \left(\frac{1}{2} + \frac{2}{3}\right) \cdot \frac{1}{2} = \frac{7}{12} \,\text{cm}^2.$$

Odčítaním prvej získanej rovnosti od druhej dostávame $S_C - S_A = \frac{7}{12} - \frac{5}{12} = \frac{1}{6} \text{ cm}^2$. c) Nerovnosť medzi obsahmi $S_A + S_C$ a $S_B + S_D$ (ktorých priame výpočty nie sú v silách žiakov 1. ročníka) môžeme zdôvodniť nasledovným spôsobom: Súčet týchto dvoch obsahov je 1 cm², takže sa nerovnajú práve vtedy, keď je jeden z nich menší ako $\frac{1}{2}$ cm². Bude to obsah $S_B + S_D$ (rovný $2S_B$, ako už vieme), keď ukážeme, že obsah S_B je menší ako $\frac{1}{4}$ cm². Urobíme to tak, že do celého štvorca ABCDumiestnime bez prekrytia štyri kópie štvoruholníka PBQX. Ako ich umiestnime, vidíme na obr. 6, pričom M, N sú stredy strán BC, AB a R, S body, ktoré delia strany CD, DA v pomere 1:2.

Obr. 7:

Iné riešenie* časti c). Tentoraz namiesto nerovnosti $S_B + S_D < \frac{1}{2}$ cm² dokážeme ekvivalentnú nerovnosť $S_A + S_C > \frac{1}{2}$ cm². Preto sa pokúsime "premiestniť" štvoruholník APXK tak, aby ležal pri štvoruholníku XQCL a aby sa ich obsahy dali geometricky sčítať. Uhly AKQ a DLP sú zhodné a |AK| = |DL|, preto môžeme štvoruholník APXK premiestniť vo štvorci ABCD do jeho "rohu" D tak, že k štvoruholníku XQCL priľahne pozdĺž strany LX svojou stranou LY, pričom Y je priesečník úsečiek SM a PL z pôvodného riešenia (obr. 7). Obsah $S_A + S_C$ je potom obsahom šesťuholníka DSYXQC. Prečo je väčší ako $\frac{1}{2}$ cm², môžeme zdôvodniť napríklad takto:

Úsečka spájajúca bod L so stredom U úsečky KQ pretne úsečku SM v jej strede V. Štvoruholník UQMV má obsah rovný polovici obsahu rovnobežníka KQMS, teda rovný obsahu trojuholníka KMS. Preto má šesťuholník DSVUQC obsah rovný obsahu štvoruholníka KMCD, t.j. polovici obsahu štvorca ABCD. Obsah $S_A + S_C$ je ešte väčší, a to o obsah štvoruholníka XUVY. Teda naozaj $S_A + S_C > \frac{1}{2}$ cm².

Komentár. Prvé dve časti sú príjemným úvahovým rozohriatím k časti tretej, ktorá vyžaduje trochu viac invencie. Demonštruje však zaujímavý prístup k riešeniu a porovnávanie obsahov obrazcov namiesto priameho výpočtu obsahov.