

Bayesian Machine Learning

November - François HU https://curiousml.github.io/

Outline

1 Bayesian statistics

2 Latent variable models

Variational Inference

- 4 Markov Chain Monte Carlo
 - Monte Carlo Estimation
 - MCMC and differences with VI

5 Extensions and oral presentations

Classic estimation methods

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Classic estimation methods

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Example: Let us denote $\mathbf{x}=(x^{(1)},x^{(2)},\cdots,x^{(n)})$ sample of a r.v. X and $U,V\sim\mathcal{U}(0,1)$

 $\mathbb{E}[X]$

 $\mathbb{E}[h(X)]$

$$V(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$\mathbb{P}(X > 2)$$

$$\pi = 4 \times \mathbb{P}[U^2 + V^2 \le 1]$$

Classic estimation methods

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

$$\mathbb{E}[X] \approx \bar{x}^{(n)} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

$$\mathbb{E}[h(X)]$$

$$V(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$\mathbb{P}(X > 2)$$

$$\pi = 4 \times \mathbb{P}[U^2 + V^2 \le 1]$$

Classic estimation methods

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

$$\mathbb{E}[X] \approx \bar{x}^{(n)} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

$$\frac{1 - n}{n}$$

$$\mathbb{E}[h(X)] \approx \frac{1}{n} \sum_{i=1}^{n} h(x^{(i)})$$

$$V(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

$$\mathbb{P}(X > 2)$$

$$\pi = 4 \times \mathbb{P}[U^2 + V^2 \le 1]$$

Classic estimation methods

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

$$\mathbb{E}[X] \approx \bar{x}^{(n)} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

$$\mathbb{E}[h(X)] \approx \frac{1}{n} \sum_{i=1}^{n} h(x^{(i)})$$

$$V(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] \approx \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \bar{x}^{(n)})^2$$

$$\mathbb{P}(X > 2)$$

$$\pi = 4 \times \mathbb{P}[U^2 + V^2 \le 1]$$

Classic estimation methods

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

$$\mathbb{E}[X] \qquad \approx \qquad \bar{x}^{(n)} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

$$\mathbb{E}[h(X)] \qquad \approx \qquad \frac{1}{n} \sum_{i=1}^{n} h(x^{(i)})$$

$$V(X) = \mathbb{E}[(X - \mathbb{E}[X])^{2}] \qquad \approx \qquad \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \bar{x}^{(n)})^{2}$$

$$\mathbb{P}(X > 2) = \mathbb{E}[1_{\{X > 2\}}] \qquad \approx \qquad \frac{1}{n} \sum_{i=1}^{n} 1_{\{x^{(i)} > 2\}}$$

$$\pi = 4 \times \mathbb{P}[U^2 + V^2 \le 1]$$

Classic estimation methods

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

$$\mathbb{E}[X] \qquad \approx \qquad \bar{x}^{(n)} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

$$\mathbb{E}[h(X)] \qquad \approx \qquad \frac{1}{n} \sum_{i=1}^{n} h(x^{(i)})$$

$$V(X) = \mathbb{E}[(X - \mathbb{E}[X])^{2}] \qquad \approx \qquad \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - \bar{x}^{(n)})^{2}$$

$$\mathbb{P}(X > 2) = \mathbb{E}[1_{\{X > 2\}}] \qquad \approx \qquad \frac{1}{n} \sum_{i=1}^{n} 1_{\{x^{(i)} > 2\}}$$

$$\pi = 4 \times \mathbb{P}[U^{2} + V^{2} \le 1] \qquad \approx \qquad \frac{4}{n} \sum_{i=1}^{n} 1_{\{(u^{(i)})^{2} + (v^{(i)})^{2} \le 1\}} \text{ for } u^{(i)}, v^{(i)} \sim \mathcal{U}(0, 1)$$

Motivation

Monte Carlo : Estimate an expected value by <u>sampling</u>. A naïve method would be approximating it by its empirical value Why do we care ?

Motivation

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

Motivation

Monte Carlo: Estimate an expected value by <u>sampling</u>. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

$$P(y \mid x, X^{(train)}, Y^{(train)})$$

Motivation

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

$$P(y | x, X^{(train)}, Y^{(train)}) = \int_{\theta} P(y | x, \theta) \cdot P(\theta | X^{(train)}, Y^{(train)}) \cdot d\theta$$

Motivation

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

$$P(y \mid x, X^{(train)}, Y^{(train)}) = \int_{\theta} P(y \mid x, \theta) \cdot P(\theta \mid X^{(train)}, Y^{(train)}) \cdot d\theta = \mathbb{E}_{P(\theta \mid X^{(train)}, Y^{(train)})} P(y \mid x, \theta)$$

Motivation

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

$$P(y \mid x, X^{(train)}, Y^{(train)}) = \int_{\theta} P(y \mid x, \theta) \cdot P(\theta \mid X^{(train)}, Y^{(train)}) \cdot d\theta = \mathbb{E}_{P(\theta \mid X^{(train)}, Y^{(train)})} P(y \mid x, \theta)$$
with
$$P(\theta \mid X^{(train)}, Y^{(train)}) = \frac{p(Y^{(train)} \mid X^{(train)}, \theta) \cdot P(\theta)}{\text{constant}}$$

Motivation

Monte Carlo: Estimate an expected value by <u>sampling</u>. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

$$P(y \mid x, X^{(train)}, Y^{(train)}) = \int_{\theta} P(y \mid x, \theta) \cdot P(\theta \mid X^{(train)}, Y^{(train)}) \cdot d\theta = \mathbb{E}_{P(\theta \mid X^{(train)}, Y^{(train)})} P(y \mid x, \theta)$$
with
$$P(\theta \mid X^{(train)}, Y^{(train)}) = \frac{p(Y^{(train)} \mid X^{(train)}, \theta) \cdot P(\theta)}{\text{constant}} \xrightarrow{\text{easy : model output + prior fixed by us}} \frac{1}{\text{difficult : as always ...}}$$

Motivation

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

$$P(y \mid x, X^{(train)}, Y^{(train)}) = \int_{\theta} P(y \mid x, \theta) \cdot P(\theta \mid X^{(train)}, Y^{(train)}) \cdot d\theta = \mathbb{E}_{P(\theta \mid X^{(train)}, Y^{(train)})} P(y \mid x, \theta)$$
 with
$$P(\theta \mid X^{(train)}, Y^{(train)}) = \frac{P(Y^{(train)} \mid X^{(train)}, \theta) \cdot P(\theta)}{\text{constant}} \xrightarrow{\text{difficult : as always ...}} \text{easy : model output + prior fixed by us difficult : as always ...}$$

$$P(y \mid x, X^{(train)}, Y^{(train)}) \approx \frac{1}{n} \sum_{i=1}^{n} P(y \mid x, \theta_i) \qquad \text{if we can sample } \theta_1, \dots, \theta_n \sim P(\theta \mid X^{(train)}, Y^{(train)})$$

Motivation

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

Lecture 1 : Bayesian inference

$$P(y \mid x, X^{(train)}, Y^{(train)}) = \int_{\theta} P(y \mid x, \theta) \cdot P(\theta \mid X^{(train)}, Y^{(train)}) \cdot d\theta = \mathbb{E}_{P(\theta \mid X^{(train)}, Y^{(train)})} P(y \mid x, \theta)$$
 with
$$P(\theta \mid X^{(train)}, Y^{(train)}) = \frac{P(Y^{(train)} \mid X^{(train)}, \theta) \cdot P(\theta)}{\text{constant}} \quad \text{easy: model output + prior fixed by us difficult: as always ...}$$

$$P(y \mid x, X^{(train)}, Y^{(train)}) \approx \frac{1}{n} \sum_{i=1}^{n} P(y \mid x, \theta_i) \quad \text{if we can sample } \theta_1, \dots, \theta_n \sim P(\theta \mid X^{(train)}, Y^{(train)})$$

Lecture 2 (and 3): M-step of EM-algorithm

$$\max_{\theta} \mathbb{E}_{T} \left[\log P(X, T | \theta) \right]$$

Motivation

Monte Carlo: Estimate an expected value by <u>sampling</u>. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

Lecture 1 : Bayesian inference

$$P(y \mid x, X^{(train)}, Y^{(train)}) = \int_{\theta} P(y \mid x, \theta) \cdot P(\theta \mid X^{(train)}, Y^{(train)}) \cdot d\theta = \mathbb{E}_{P(\theta \mid X^{(train)}, Y^{(train)})} P(y \mid x, \theta)$$
 with
$$P(\theta \mid X^{(train)}, Y^{(train)}) = \frac{P(Y^{(train)} \mid X^{(train)}, \theta) \cdot P(\theta)}{\text{constant}} \quad \text{easy: model output + prior fixed by us difficult: as always ...}$$

$$P(y \mid x, X^{(train)}, Y^{(train)}) \approx \frac{1}{n} \sum_{i=1}^{n} P(y \mid x, \theta_i) \quad \text{if we can sample } \theta_1, \dots, \theta_n \sim P(\theta \mid X^{(train)}, Y^{(train)})$$

Lecture 2 (and 3): M-step of EM-algorithm

$$\max_{\theta} \mathbb{E}_{T} \left[\log P(X, T | \theta) \right] \approx \frac{1}{n} \sum_{i=1}^{n} \log P(X, T_{i} | \theta) \quad \text{if we can sample } T_{1}, \dots, T_{n} \sim T$$

Motivation

Monte Carlo: Estimate an expected value by sampling. A naïve method would be approximating it by its empirical value

Why do we care?

- Estimate a large spectrum of probabilistic models up to a normalization constant

Lecture 1 : Bayesian inference

$$P(y \mid x, X^{(train)}, Y^{(train)}) = \int_{\theta} P(y \mid x, \theta) \cdot P(\theta \mid X^{(train)}, Y^{(train)}) \cdot d\theta = \mathbb{E}_{P(\theta \mid X^{(train)}, Y^{(train)})} P(y \mid x, \theta)$$
 with
$$P(\theta \mid X^{(train)}, Y^{(train)}) = \frac{P(Y^{(train)} \mid X^{(train)}, \theta) \cdot P(\theta)}{\text{constant}} \xrightarrow{\text{difficult : as always ...}} P(y \mid x, X^{(train)}, Y^{(train)}) \approx \frac{1}{n} \sum_{i=1}^{n} P(y \mid x, \theta_i)$$
 if we can sample $\theta_1, \dots, \theta_n \sim P(\theta \mid X^{(train)}, \theta) = \frac{1}{n} \sum_{i=1}^{n} P(y \mid x, \theta_i)$

Lecture 2 (and 3): M-step of EM-algorithm

$$\max_{\theta} \mathbb{E}_{T} \left[\log P(X, T | \theta) \right] \approx \frac{1}{n} \sum_{i=1}^{n} \log P(X, T_{i} | \theta) \quad \text{if we can sample with usual positions} The property of the pr$$

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

0.175

Algorithm

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

target distribution

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

Algorithm

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

..

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

Algorithm

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

works for most distribution

if the " gaps » between P and Q are too large, we reject most of the sample

Usual simulations: the power of uniform distribution

Starting point : we know how to simulate a pseudo-random uniform $U \sim \mathcal{U}(0,1)$

For « usual » distributions: both discrete and continuous r.v. can be sampled thanks to the uniform distribution

In practice (with python) we can easily sample them (via scipy and numpy for example)

Otherwise: if there isn't an analytical way to sample it then

Rejection sampling algorithm.

Assumption: we can compute distribution's pdf P and sample from an auxiliary distribution Q s.t. $P \le \text{const} \times Q$

Algorithm

- 1. generate sample $x_i \sim Q$ (auxiliary distribution)
- **2.** generate sample $u \sim \mathcal{U}(0, \text{const} \cdot Q(x_i))$
- 3. if $u \leq P(x_i)$ then accept x_i else reject.

works for most distribution

if the $\operatorname{``gaps"}$ between P and Q are large, we reject most of the sample

2 Markov Chain Monte Carlo: Definition

2. Markov Chain Monte Carlo

Definition: Monte Carlo sampling

Monte Carlo sampling: generates independent samples from the probability distribution in order to estimate an expected value

••

where
$$X_1, ..., X_n \sim P$$
 i.i.d

Definition: Markov Chain

Monte Carlo sampling: generates independent samples from the probability distribution in order to estimate an expected value

where
$$X_1, ..., X_n \sim P$$
 i.i.d

Markov Chain: generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

$$P$$
 is called **stationary** if $P(x') = \sum_{x \in \text{supp}(X)} T(x, x') \cdot P(x)$

T(x, x') the transition probability of being in the state x' given the current state x

Definition: Markov Chain Monte Carlo

Monte Carlo sampling: generates independent samples from the probability distribution in order to estimate an expected value

Markov Chain: generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

$$P$$
 is called **stationary** if $P(x') = \sum_{x \in \text{supp}(X)} T(x, x') \cdot P(x)$

T(x, x') the transition probability of being in the state x' given the current state x

Markov Chain Monte Carlo sampling: a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

Definition: Markov Chain Monte Carlo

Monte Carlo sampling: generates independent samples from the probability distribution in order to estimate an expected value

Markov Chain: generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

$$P$$
 is called **stationary** if $P(x') = \sum_{x \in \text{supp}(X)} T(x, x') \cdot P(x)$

T(x, x') the transition probability of being in the state x' given the current state x

Markov Chain Monte Carlo sampling: a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

Objective: Build a Markov Chain that converges to the target distribution P no matter the starting point

Definition: Markov Chain Monte Carlo

Monte Carlo sampling: generates independent samples from the probability distribution in order to estimate an expected value

Markov Chain: generates a sequence of r.v. where the next variable is probabilistically dependent upon the current variable.

$$P$$
 is called **stationary** if $P(x') = \sum_{x \in \text{supp}(X)} T(x, x') \cdot P(x)$

T(x, x') the transition probability of being in the state x' given the current state x

Markov Chain Monte Carlo sampling: a sequence of Monte Carlo Samples where the next sample is dependent upon the current sample

Objective: Build a Markov Chain that converges to the target distribution P no matter the starting point

Theorem: if T(x,x') > 0 for all x,x' then there exists an unique stationary and convergent distribution

Markov Chain Monte Carlo: Algorithms

Algorithm: Gibbs sampling

Reminder: we want to sample $x^{(1)},...,x^{(n)} \sim P\left(x_1,x_2,...,x_d\right)$

- **Hypothesis** : The conditional $P(x_j | x_{-j})$ can be sampled
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

Algorithm: Gibbs sampling

Reminder: we want to sample $x^{(1)}, ..., x^{(n)} \sim P\left(x_1, x_2, ..., x_d\right)$

- **Hypothesis**: The conditional $P(x_j | x_{-j})$ can be sampled
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

sample
$$x^{(i)} = \left(x_1^{(i)}, \dots, x_d^{(i)}\right)$$
 based on $x^{(i-1)} = \left(x_1^{(i-1)}, \dots, x_d^{(i-1)}\right)$
$$x_1^{(i)} \sim P(x_1 \mid x_2^{(i-1)}, x_3^{(i-1)}, \dots, x_d^{(i-1)})$$

Algorithm: Gibbs sampling

Reminder: we want to sample $x^{(1)}, ..., x^{(n)} \sim P\left(x_1, x_2, ..., x_d\right)$

- **Hypothesis** : The conditional $P(x_j | x_{-j})$ can be sampled
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

$$\begin{aligned} \text{sample } x^{(i)} &= \left(x_1^{(i)}, \dots, x_d^{(i)} \right) \text{ based on } x^{(i-1)} = \left(x_1^{(i-1)}, \dots, x_d^{(i-1)} \right) \\ x_1^{(i)} &\sim P(\ x_1 \mid x_2^{(i-1)}, x_3^{(i-1)}, \dots, \ x_d^{(i-1)} \right) \\ x_2^{(i)} &\sim P(\ x_2 \mid x_1^{(i)}, x_3^{(i-1)}, \dots, \ x_d^{(i-1)} \right) \end{aligned}$$

Algorithm: Gibbs sampling

Reminder: we want to sample $x^{(1)}, ..., x^{(n)} \sim P\left(x_1, x_2, ..., x_d\right)$

Gibbs Sampling Algorithm

- **Hypothesis** : The conditional $P(x_j | x_{-j})$ can be sampled
- Initialisation : $x^{(0)} = (0,...,0)$ or random values

 $x_d^{(i)} \sim P(x_d \mid x_2^{(i)}, x_3^{(i)}, ..., x_d^{(i-1)})$

- Repeat:

$$\begin{aligned} \text{sample } x^{(i)} &= \left(x_1^{(i)}, \dots, x_d^{(i)} \right) \text{ based on } x^{(i-1)} = \left(x_1^{(i-1)}, \dots, x_d^{(i-1)} \right) \\ x_1^{(i)} &\sim P(\, x_1 \mid x_2^{(i-1)}, x_3^{(i-1)}, \dots, \, x_d^{(i-1)} \,) \\ x_2^{(i)} &\sim P(\, x_2 \mid x_1^{(i)}, x_3^{(i-1)}, \dots, \, x_d^{(i-1)} \,) \\ &\cdots \end{aligned}$$

Algorithm: Gibbs sampling

Reminder: we want to sample $x^{(1)},...,x^{(n)} \sim P\left(x_1,x_2,...,x_d\right)$

- **Hypothesis** : The conditional $P(x_j | x_{-j})$ can be sampled
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

sample
$$x^{(i)} = \left(x_1^{(i)}, \dots, x_d^{(i)}\right)$$
 based on $x^{(i-1)} = \left(x_1^{(i-1)}, \dots, x_d^{(i-1)}\right)$

for each position,
$$x_k^{(i)} \sim P(x_1 \mid x_{1:k-1}^{(i)}, x_{k+1:d}^{(i-1)})$$

Algorithm: Gibbs sampling

Reminder: we want to sample $x^{(1)},...,x^{(n)} \sim P\left(x_1,x_2,...,x_d\right)$

Gibbs Sampling Algorithm

- **Hypothesis**: The conditional $P(x_j | x_{-j})$ can be sampled
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

sample
$$x^{(i)} = \left(x_1^{(i)}, \dots, x_d^{(i)}\right)$$
 based on $x^{(i-1)} = \left(x_1^{(i-1)}, \dots, x_d^{(i-1)}\right)$

for each position,
$$x_k^{(i)} \sim P(x_1 \mid x_{1:k-1}^{(i)}, x_{k+1:d}^{(i-1)})$$

sometimes it can converge slowly to the desired distribution

sometimes Gibbs samples can be too correlated

Algorithm: Gibbs sampling

Reminder: we want to sample $x^{(1)}, ..., x^{(n)} \sim P(x_1, x_2, ..., x_d)$

$$\textbf{Remark} : \text{we denote } x^{(i)} := \left(x_1^{(i)}, \ldots, x_d^{(i)} \right); \ \, x_{-j} = \left(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_d \right); \ \, x_{m:n} = \left(x_m, x_{m+1}, \ldots, x_n \right)$$

Gibbs Sampling Algorithm

- **Hypothesis** : The conditional $P(x_i \mid x_{-i})$ can be sampled
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

sample
$$\mathbf{x}^{(i)} = \left(x_1^{(i)}, \dots, x_d^{(i)}\right)$$
 based on $x^{(i-1)} = \left(x_1^{(i-1)}, \dots, x_d^{(i-1)}\right)$

for each position,
$$x_k^{(i)} \sim P(x_1 \mid x_{1:k-1}^{(i)}, x_{k+1:d}^{(i-1)})$$

sometimes it can converge slow Metropolis-Hasti Sometimes it can converge slow Metropolis-Hasti Use a variant Gibbs sampling: Metropolis-Hasti Use a variant Gibbs sampling can be too correlated

Algorithm: Metropolis-Hastings

Reminder: we want to sample $x^{(1)},...,x^{(n)} \sim P\left(x_1,x_2,...,x_d\right)$

Metropolis-Hastings Algorithm

- **Hypothesis** : Let $P=\hat{P}/\mathrm{const}$ where \hat{P} can be calculated and let Q be an auxiliary distribution we can sample from
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

Algorithm: Metropolis-Hastings

Reminder: we want to sample $x^{(1)},...,x^{(n)} \sim P\left(x_1,x_2,...,x_d\right)$

Metropolis-Hastings Algorithm

- **Hypothesis** : Let $P=\hat{P}/\mathrm{const}$ where \hat{P} can be calculated and let Q be an auxiliary distribution we can sample from
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

sample a candidate $x^{(i)} \sim Q(x^{(i)} \mid x^{(i-1)}) = \text{(example of auxiliary distribution)} \mathcal{N}(x^{(i-1)}, \sigma^2 I)$

Algorithm: Metropolis-Hastings

Reminder: we want to sample $x^{(1)}, ..., x^{(n)} \sim P\left(x_1, x_2, ..., x_d\right)$

Metropolis-Hastings Algorithm

- **Hypothesis** : Let $P=\hat{P}/\mathrm{const}$ where \hat{P} can be calculated and let Q be an auxiliary distribution we can sample from
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat :

sample a candidate
$$x^{(i)} \sim Q(|x^{(i)}||x^{(i-1)}) = \text{(example of auxiliary distribution)} \ \mathcal{N}(x^{(i-1)}, \sigma^2 I)$$
 with acceptance probability : $\min \left(1, \frac{Q(x^{(i-1)}|x^{(i)}) \times \hat{P}(x^{(i)})}{Q(x^{(i)}|x^{(i-1)}) \times \hat{P}(x^{(i-1)})}\right)$ accept $x^{(i)}$ as an sample from P

Algorithm: Metropolis-Hastings

Reminder: we want to sample $x^{(1)}, ..., x^{(n)} \sim P\left(x_1, x_2, ..., x_d\right)$

Metropolis-Hastings Algorithm

- **Hypothesis** : Let $P=\hat{P}/\mathrm{const}$ where \hat{P} can be calculated and let Q be an auxiliary distribution we can sample from
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat :

sample a candidate
$$x^{(i)} \sim Q(|x^{(i)}||x^{(i-1)}) = \text{(example of auxiliary distribution)} \mathcal{N}(x^{(i-1)}, \sigma^2 I)$$
 with acceptance probability : $\min\left(1, \frac{Q(x^{(i-1)}|x^{(i)}) \times \hat{P}(x^{(i)})}{Q(x^{(i)}|x^{(i-1)}) \times \hat{P}(x^{(i-1)})}\right)$ accept $x^{(i)}$ as an sample from P

Algorithm: Metropolis-Hastings

Reminder: we want to sample $x^{(1)}, ..., x^{(n)} \sim P\left(x_1, x_2, ..., x_d\right)$

Metropolis-Hastings Algorithm

- **Hypothesis** : Let $P=\hat{P}/\mathrm{const}$ where \hat{P} can be calculated and let Q be an auxiliary distribution we can sample from
- Initialisation : $x^{(0)} = (0,...,0)$ or random values
- Repeat:

sample a candidate $x^{(i)} \sim Q(|x^{(i)}||x^{(i-1)}) = \text{(example of auxiliary distribution)} \mathcal{N}(x^{(i-1)}, \sigma^2 I)$ with acceptance probability : $\min\left(1, \frac{Q(x^{(i-1)}|x^{(i)}) \times \hat{P}(x^{(i)})}{Q(x^{(i)}|x^{(i-1)}) \times \hat{P}(x^{(i-1)})}\right)$ accept $x^{(i)}$ as an sample from P

 $au=\sigma^2$ and ho the correlation between two gaussians X_1 and X_2

3.b. MCMC vs VI

3.b. MCMC vs VI

pros and cons

MCMC

Pros:

- Useful when the posterior is intractable
- Asymptotically exact
- Suited to small / medium dataset

Cons:

- Usually slower than alternatives (VI)
- Can generates dependant samples from the distribution

VI (see lecture 3)

Pros:

- Useful when the posterior is intractable
- Suited to large dataset

Cons:

- Can never generate exact result

4 Applications : notebook

P Road map

Bayesian statistics

Bayesian perspective:

$$P(\theta \mid X) = \frac{P(X, \theta)}{P(X)} = \frac{P(X \mid \theta) \cdot P(\theta)}{P(X)}$$

distribution

H parameters

X observations

Exemple:

Naive Bayes classifier, Linear regression,

Pros:

exact posterior

Likelihood distribution

$$P(X | \theta) \cdot P(\theta)$$

Evidence

Hard to compute!

Conjugate distribution

Cons:

conjugate prior maybe inadequate

Oral presentations (20 points)

Notebook 1 : 1 bonus point Notebook 2 : 2 bonus points Notebook 3:1 bonus point

Latent variable models

2

Hidden variable models:

$$P(X | \theta) = \sum_{t \in T_{indexes}} P(X, T = t | \theta)$$

$$P(X, T | \theta) = P(X | T, \theta)P(T | \theta)$$

Exemple:

GMM, K-means, PCA/PPCA

Pros:

- fewer parameters / simpler models
- hidden variable sometimes meaningful
- clustering / dimensionality reduction

Cons:

- harder to work with
- requires math
- only local maximum or saddle point
- EM: the posterior of T could be intractable

Variational Inference

3

Deterministic approximation of posterior:

 $p(Z|X) = \frac{P(X|Z) \cdot P(Z)}{P(X)}$

Mean Field Approximation!

Exemple:

Topic modelling, LDA trained by VI

Pros:

- Useful when the posterior is intractable
- Suited to large dataset

Cons:

can never generate exact result

Markov Chain Monte Carlo

Sampling techniques for estimate expected values :

 $\mathbb{E}_{p(x)}[h(x)] \approx \frac{1}{M} \sum_{s=1}^{M} f(x_s)$

 $f(x_s) \sim p(x)$ Gibbs sampling / Metropolis-Hastings!

Exemple:

Topic modelling, LDA trained by MCMC

Pros:

- train / inference almost every probabilistic model
- asymptotically exact
- suited to small / medium dataset

Cons:

- Usually slower than alternatives (VI)
- can generates dependant samples from the distribution