Dynamical systems, ϵ -machines and complexity

Andrii Khrinenko

1 Вступ

Показник складності Колмогорова є малопридатним для реалізації і практичного застосування. Для оцінки складності можна використовувати епсілонмашини.

* Цікава дисертація про епсілон-машини, використання логістичного тенту та практичне застосування обчислювальної механіки: COMPUTATI-ONAL MECHANICS: from theory to practice

2 Finite State Machines

 $M=< Q, \Sigma, \delta, q_0, F>$, where: Q - states $(q_0,...q_n)$, Σ - alphabet, $\delta: Q*\Sigma->Q$, q_0 -initial state, $F\subseteq Q$ - final states.

2.1 ϵ -machine

An ϵ -machine is a computational model of a natural process. An algorithm called ϵ -machine reconstruction generates a machine from a given sequence of measurements of the process. The ϵ -machine generated by the reconstruction algorithm is provably the unique, minimal machine at the least-powerful computational level that is an optimal predictor of the data [1].

2.2 Logistic Map and ϵ -machine

Література

[1] Cosma Rohilla Shalizi and James P Crutchfield. Computational mechanics: Pattern and prediction, structure and simplicity. *Journal of statistical physics*, 104(3):817–879, 2001.