1. (1)直接输入元素法

>> a=pascal(10)

a =

1	1	1	1	1	1	1	1	1	1
1	2	3	4	5	6	7	8	9	10
1	3	6	10	15	21	28	36	45	55
1	4	10	20	35	56	84	120	165	220
1	5	15	35	70	126	210	330	495	715
1	6	21	56	126	252	462	792	1287	2002
1	7	28	84	210	462	924	1716	3003	5005
1	8	36	120	330	792	1716	3432	6435	11440
1	9	45	165	495	1287	3003	6435	12870	24310
1	10	55	220	715	2002	5005	11440	24310	48620

(2)外部数据导入法

>> a=load('C:\Users\makabaka\Desktop\pascal.txt')

a =

1	1	1	1	1	1	1	1	1	1
1	2	3	4	5	6	7	8	9	10
1	3	6	10	15	21	28	36	45	55
1	4	10	20	35	56	84	120	165	220
1	5	15	35	70	126	210	330	495	715
1	6	21	56	126	252	462	792	1287	2002
1	7	28	84	210	462	924	1716	3003	5005
1	8	36	120	330	792	1716	3432	6435	11440
1	9	45	165	495	1287	3003	6435	12870	24310
1	10	55	220	715	2002	5005	11440	24310	48620

(3) excel 法

>> a=xlsread('C:\Users\makabaka\Desktop\pascal.xlsx')

```
2. t=0:0.01:2*pi;

a=1;

b=1;

n=1;

for i=1:5

    subplot(2,3,i);

    c=(i-1)*pi/4;

    x=a*sin(t);

    y=b*sin(n*t+c);

    plot(x,y);

end

for i=1:5

    subplot(2,3,6);

    x=a*sin(t);

    c=(i-1)*pi/4;
```

y=b*sin(n*t+c);

plot(x,y);
hold on;

end

3. x=[547.8,496.9,532.6,580.5];

pie(x,{'第一季度'+string(x(1)),'第二季度'+string(x(2)),'第三季度'+string(x(3)),'第四季度'+string(x(4))}); legend('第一季度','第二季度','第三季度','第四季度');

title('某工厂 2016 年度各季度生产值(单位: 万元)')


```
4. function z=f(x,y)
z=x^2+\sin(x*y)+2*y;
>> f(0,0)
ans =
     0
5. a=[1,1];
i=2;
while a(i)~=inf
    i=i+1;
    a(i)=a(i-2)+a(i-1);
end
i-1
a(i-1)
a=[1,1];
i=2;
while a(i)-10^16<0
    i=i+1;
    a(i)=a(i-2)+a(i-1);
end
i-1
a(i-1)
ans =
        1476
ans =
  1.3070e+308
ans =
    78
ans =
   8.9444e+15
第一个为近似表示, 第二个为精确表示
6. function personal_tax=tax(x)
if (x<=5000)</pre>
    a=1;
if(x>5000)&&(x<=8000)</pre>
    a=2;
```

```
end
if (x>8000) && (x<=17000)</pre>
   a=3;
end
if (x>17000) && (x<=30000)</pre>
   a = 4;
end
if(x>30000) && (x<=40000)
   a = 5;
end
if (x>40000) && (x<=60000)</pre>
   a = 6;
end
if(x>60000) &&(x<=85000)
   a = 7;
end
if(x>85000)
   a=8;
end
switch a
   case {1}
      personal tax=0;
   case {2}
       personal_tax=(x-5000)*0.03;
       personal tax=(x-5000)*0.1-210;
   case {4}
       personal tax=(x-5000)*0.2-1410;
   case {5}
       personal_tax=(x-5000)*0.25-2660;
   case {6}
       personal tax=(x-5000)*0.3-4410;
   case {7}
       personal_tax=(x-5000)*0.35-7160;
   otherwise
       personal_tax=(x-5000)*0.45-15160;
end
```

>> tax(2000) ans = 0 >> tax(8000) ans = 90 >> tax(10000) ans = 290 >> tax(25000) ans = 2590 >> tax(35000) ans = 4840 >> tax(55000) ans = 10590 >> tax(65000) ans = 13840 >> tax(95000) ans = 25340