7. Classification evaluation metrics and Decision trees

Shabana K M

PhD Research Scholar Computer Science and Engineering

> IIT Palakkad 03 October 2021

Recap

- Naive Bayes classifier
 - Estimating parameters for discrete and continuous attributes
 - Text classification

Thresholding

- classification models such as logistic regression return a probability for binary classification
- map probability value to binary class by defining a classification threshold
 - value above the threshold indicates positive class
 - value below indicates negative class
- thresholds are problem-dependent and therefore must be tuned

Classification accuracy

ratio of correct predictions to total predictions made

$$\mathsf{accuracy} = \frac{\mathsf{number} \ \mathsf{of} \ \mathsf{correct} \ \mathsf{predictions}}{\mathsf{total} \ \mathsf{number} \ \mathsf{of} \ \mathsf{predictions}}$$

- often represented in percentage
- easy to calculate and intuitive to understand

$$error-rate = 1 - accuracy$$

- classification accuracy alone can be misleading if
 - there is an unequal number of observations in each class, or
 - there are more than two classes in the dataset

Confusion matrix

- technique for summarizing the performance of a classification algorithm
- can give a better idea of what the model is getting right and what types of errors it is making

n=165	Predicted: NO	Predicted: YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Confusion matrix

Predicted

- True Positive (TP): Predicted True and True in reality
- True Negative (TN): Predicted False and False in reality.
- False Positive (FP): Predicted True and False in reality
- False Negative (FN): Predicted False and True in reality

Precision and recall

Predicted

Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP}$$

Precision

What proportion of positive identifications was actually correct?

$$Precision = \frac{TP}{TP + FP}$$

Recall

What proportion of actual positives was identified correctly?

$$Recall = \frac{TP}{TP + FN}$$

Precision and recall

Precision vs Recall

Precision vs Recall

Precision vs Recall

- cost of false negatives not always the same as that of false positives
- the more the false positives, the lower the precision
- the more the false negatives, the lower the recall

Precision and recall - Tug of war

Classifying email messages as spam or not spam

- Actually not spam
- Actually spam

True Positives (TP): 8	False Positives (FP): 2
False Negatives (FN): 3	True Negatives (TN): 17

$$\text{Precision} = \frac{TP}{TP + FP} = \frac{8}{8 + 2} = 0.8$$

$$Recall = \frac{TP}{TP + FN} = \frac{8}{8 + 3} = 0.73$$

Precision and recall - Tug of war

Increasing classification threshold

- Actually not spam
- Actually spam

True Positives (TP): 7

False Positives (FP): 1

False Negatives (FN): 4

True Negatives (TN): 18

$$\text{Precision} = \frac{TP}{TP + FP} = \frac{7}{7+1} = 0.88$$

$$\text{Recall} = \frac{TP}{TP + FN} = \frac{7}{7+4} = 0.64$$

Precision and recall - Tug of war

Decreasing classification threshold

- Actually not spam
- Actually spam

True Positives (TP): 9	False Positives (FP): 3

False Negatives (FN): 2

True Negatives (TN): 16

$$\text{Precision} = \frac{TP}{TP + FP} = \frac{9}{9+3} = 0.75$$

$$\text{Recall} = \frac{TP}{TP + FN} = \frac{9}{9+2} = 0.82$$

F1-score and False Positive Rate

F1 score

a single score that balances both precision and recall in one number

F1-score =
$$2 * \frac{precision * recall}{precision + recall}$$

- best value 1 (perfect precision and recall) and worst 0
- a good F1 score means the model has low false positives and low false negatives
- can be extended for multi-class classification

False Positive Rate(FPR)

 ratio between the number of negative items wrongly categorized as positive (false positives) and the total number of actual negative events

$$\mathsf{FPR} = \frac{\mathit{FP}}{\mathit{FP} + \mathit{TN}}$$

ROC (receiver operating characteristic) curve

- graph showing the performance of a classification model at all classification thresholds
- plots two parameters
 - True Positive Rate (TPR) = TP / TP+FN
 - False Positive Rate (FPR) = $\frac{FP}{FP+TN}$
- ROC curve plots TPR vs. FPR at different classification thresholds

Area under the curve (AUC)

- measures the two-dimensional area underneath the ROC curve from (0,0) to (1,1)
- provides an aggregate measure of performance across all possible classification thresholds
- value ranges from 0 to 1
 - model whose predictions are 100% wrong has an AUC of 0.0
 - one whose predictions are 100% correct has an AUC of 1.0

ROC curves

Classification techniques we already know

Lik	elihood Ta	ble			-	P (Sunny Yes) = 3/9 = 0.33
Outlook	Yes	No				
	3			0.36		
Sunny	3	2	=(5/14)	_	-	P (Sunny) = 5/14 = 0.36
Rainy	2	3	=(5/14)	0.36		
Overcast	4	0	=(4/14)	0.28		
	=(9/14)	=(5/14)				
	-0.64	0.36	-		-	P (Ves) = 9/14 = 0.64

Introduction

Decision trees - approach

Decision trees

- simple yet popular predictive modeling approach
- model that predicts the value of a target variable by learning simple decision rules inferred from the data features
- can be used for classification as well as regression
- hierarchical data structure that represents data through a divide and conquer strategy
- constructed through algorithmic approaches that identifies ways to split a data set based on different conditions

Structure of a decision tree

A decision tree has three types of nodes:

- Root node: has no incoming edges and one or more outgoing edges
- Internal nodes: has exactly one incoming edge and two or more outgoing edges
- Leaf or terminal nodes: has exactly one incoming edge and no outgoing edges

Structure of a decision tree

- The root node and each internal node tests an attribute
- Branching is determined by the attribute value
 - One branch for each possible outcome of the test
- Leaf nodes are outputs

Making predictions using decision trees

- 1 Start at the root node of the tree
- 2 Test the attribute specified by this node
- 3 Move down the tree branch corresponding to the value of the attribute in the given instance
- 4 Repeat Steps 2 and 3 for the subtree rooted at the new node until a leaf node is reached

Regression trees vs Classification trees

Classification trees

• target variable can take a discrete set of values

Regression trees

• target variable can take continuous values

Decision boundary

• produces axis aligned decision boundaries

Learning a decision tree

- learning the simplest (smallest) decision tree is an NP-complete problem
- resort to a greedy heuristic
 - o start with an empty decision tree
 - o split on the next best attribute
 - recurse

mpq	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
				-			
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
				:	:		
	:			:	:		
					:		
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Recursive step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

Choosing the best attribute to split - discrete attributes

Should we split on X_1 or X_2 ?

Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty - apply concepts from information theory

Measuring uncertainty

Which attribute is better to split on, X_1 or X_2 ?

- **Deterministic:** good (all are true or false; just one class in the leaf)
- Uniform distribution: bad (all classes in leaf equally probable)
- What about distributions in between?

Quantifying uncertainty

Entropy

Entropy of a random variable X,

$$H(X) = -\sum_{i=1}^{k} P(X = x_i) log_2(P(X = x_i))$$

- degree of randomness of elements, or a measure of impurity
- more the uncertainty, more the entropy!

Entropy

High entropy: Values are less predictable

Low entropy: Values are more predictable

Conditional Entropy

Conditional Entropy H(Y|X) of a random variable Y conditioned on a random variable X,

$$H(Y|X) = -\sum_{i=1}^{k} P(X = x_i)H(Y|X = x_i)$$

Example:

$$P(X_1=t) = 4/6$$

$$P(X_1=f) = 2/6$$

$$H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$$
$$-2/6 (1/2 \log_2 1/2 + 1/2 \log_2 1/2)$$
$$= 2/6$$

X ₁	X ₂	Υ
Т	Т	Τ
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	L

Splitting the node - discrete attributes

- Classification tree: Split the node to minimize entropy
- Let S be set of data points in a node, c = 1, ..., C are labels:

$$H(S) = -\sum_{c=1}^{C} p(c)log_2(p(c))$$

where p(c) is the proportion of data belonging to class c

- Entropy = 0 if all samples are in the same class
- Entropy is large if $p(1) = \cdots = p(C)$

P(Y=t) = 5/6

$$P(Y=f) = 1/6$$

 $H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$
 $= 0.65$

X ₁	X ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Information gain

ullet The average entropy of a split $S o S_1,S_2$

$$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

Information gain

- measures how well a given attribute separates the training examples according based on their target value
- Gain(S, a) = expected reduction in entropy of Y due to splitting on attribute a

$$Gain(S, a) = H(S) - H(S|a)$$

$$= H(S) - \left(\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)\right)$$

■ the attribute with the maximal information gain is chosen for split

Information gain

Averaged entropy: 1.51
Information gain: 1.58 – 1.51 = 0.07

Information gain

Y=t:1

Y=f : 1

$$P(X_1=t) = 4/6$$

$$P(X_1=f) = 2/6$$

$$H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$$
$$-2/6 (1/2 \log_2 1/2 + 1/2 \log_2 1/2)$$

$$-2/6 (1/2 \log_2 1/2 + 1/2 \log_2$$

Y=t:4

Y=f: 0

X ₁	X ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

References

- https://www.kdnuggets.com/2020/05/
 model-evaluation-metrics-machine-learning.html
- 2 https://developers.google.com/machine-learning/crash-course/ classification/precision-and-recall
- https://www.kdnuggets.com/2020/04/
 performance-evaluation-metrics-classification.html
- 4 https://developers.google.com/machine-learning/crash-course/ classification/roc-and-auc
- 5 https://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/06_trees_ handout.pdf
- 6 https: //people.csail.mit.edu/dsontag/courses/ml16/slides/lecture11.pdf
- 1 http://www.stat.ucdavis.edu/~chohsieh/teaching/ECS171_Winter2018/lecture15.pdf
- 8 https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15381-s06/www/DTs.pdf

Thanks Google for the pictures!