PROTIUM_CUSTOMERS_DPD_LOAN HISTORY ANALYSIS PROJECT.

- 1.Importing the standard libraries.
- 2. Parsing the xml files for making them into the dataframes as of supporting to the data analysing.
- 3. Making the Percentages of trades done by the customers.
- 4. Calculating the sum of total distributed loans for each customer.
- 5. Finding the Maximum number of months for DPDs.
- 6.Extracting the analysed data into the Excel(xlsx) format.

****// IMPORTING THE LIBRARIES //***

import requests

import xml.etree.ElementTree as ET

import pandas as pd

import re

-----Reading the Data-----

#Parse xml tree.

 $\label{lem:coding_data_coding_data_customer14235_loan14} $$ 235_crif_report.html.xml")$

tree = ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer16475_loan16
475_crif_report.html.xml")

tree = ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer40409_loan40
409_crif_report.html.xml")

tree = ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer773504_loan7
74538_crif_report.html.xml")

tree = ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer787561_loan7
88638_crif_report.html.xml")

 $\label{tree} \textbf{ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer794397_loan795497_crif_report.html.xml")}$

 $\label{tree} tree = ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer898231_loan89591_crif_report.html.xml") tree = ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer1113697_loan1115483_crif_report.html.xml") tree = ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer1129550_loan1131339_crif_report.html.xml") tree = ET.parse(r"C:\Users\yuvak\OneDrive\Desktop\Coding_data\Coding_data\customer1195586_loan1197471_crif_report.html.xml") root = tree.getroot() \\$

------Creating Account Type and Combined Payment history-----

-PAYMENT-HISTORY'])

return(trade_paymentHistory_DF)

-----Generating DPD Lists along with 30+DPD..----

1.PERCENTAGE OF TRADES DONE BY CUSTOMERS.

#1) What percentage of trades are with 30+ DPD (more than 30 days past due) among all the trades availab le?

 $\#df is\ Data Frame\ with\ Account\ Type\ and\ Combined\ payment\ history.$

df = CreateDF(root)

```
#print(df).
dpdMonths = []
totalMonth = []
for i in range(len(df)):
 elm = df.loc[i][1]
 if elm is None:
    totalMonth.append(0)
    dpdMonths.append(0)
 if elm is not None:
#print(elm).
#t1 is list of dpd for each trades payment history.
    tl = GenerateDPDList(elm)
#print(tl, len(tl)).
#list of total months for all trades. logic behind this is there will be months equal to all strings between "," an
d"/". that is len of list.
    totalMonth.append(len(tl))
#list of 30+dpds.
    dpd = FindDPD(tl)
#print(dpd, len(dpd)).
#list of 30+dpds months.
    dpdMonths.append(len(dpd))
df['Total months of Loan tenure'] = totalMonth
df['number of dpd occurance'] = dpdMonths
#print(df).
# summarise no of month data(total months, 30+dpd months) with trade(loan type).
DF = df.groupby('ACCT-TYPE').agg({'number of dpd occurance': 'sum', 'Total months of Loan tenure': 'su
m'})
#print(DF).
DF['Percentage'] = DF['number of dpd occurance']*100/DF['Total months of Loan tenure']
```

2.SUM OF TOTAL DISTRUBUTED AMOUNT TO EACH.

#2)What is the sum of total disbursed amount for all loans for each customer?

def FindSumOFAllDispersedLoanAmount(root):

000

Function takes root of tree as parameter and returns sum of disbursed amount to a customer throught t heir credit lifecycle.

000

```
Sum = 0
for time in root.iter('DISBURSED-AMT'):
    Sum += int(time.text.replace(',',''))
return(Sum)
```

#for time in root.iter('SCORE-VALUE'):
#print(time.text).

#sum of total disbursed amount for all loans for each customer

Sum = FindSumOFAllDispersedLoanAmount(root)
print(Sum)

8118705

3.MAXIMUM NUMBER OF MONTHS.

#3)What is the maximum number of months of 30+ due per trade was there? #According to the Account-type having number of dpd occurances.

DF2 = df.groupby('ACCT-TYPE').agg({'number of dpd occurance': 'max'})

#Resulting data in the dataframe DF.

DF

Out[8]:

	number of dpd occurance	Total months of Loan tenure	Percentage	
ACCT-TYPE				
Auto Loan (Personal)	0	11	0.000000	
Credit Card	0	121	0.000000	
Gold Loan	16	138	11.594203	
Housing Loan	0	36	0.000000	
Personal Loan	0	36	0.000000	
				In [9]:
4	▲▼▶			
#Resulting data in the dataframe DF2.				

number of dpd occurance

Auto Loan (Personal)

ACCT-TYPE

Personal Loan

DF2

Credit Card 0

Gold Loan 3

Housing Loan 0

CONVERTING THE DATA INTO EXCEL.

In [10]:

Out[9]:

 ${\it\#Converting~the~data~result~into~the~excel~.xlsx~format.}$

DF.to_excel('DF.xlsx', sheet_name='sheet1', index=False)
DF2.to_excel('DF2.xlsx', sheet_name='sheet2', index=False)