Геометрия в компьютерных приложениях

Лекция 2: Геометрия пространственных кривых и поверхностей

Богачев Николай Владимирович

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

14 сентября 2017 г.

3. Геометрия пространственных кривых

3.1. Касательная, нормальная плоскость, кривизна

Теперь мы рассматриваем кривые $\gamma(t)=(x(t),y(t),z(t))\subset\mathbb{R}^3.$

Определение

Гладкая регулярная пространственная кривая — гладкое отображение $\gamma\colon [a,b] \to \mathbb{R}^3$, у которого вектор скорости $\gamma'(t) \neq 0$.

Определение

Длина кривой —

$$L(\gamma) = \int_a^b \|\gamma'(t)\| dt = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} dt.$$

Натуральный параметр s определяется аналогично плоскости:

$$s(t) = \int_a^t \|\gamma'(\tau)\| d\tau.$$

Определение

Нормальная плоскость к кривой — плоскость, перпендикулярная касательной.

Определение

Кривизна пространственной кривой — $k(s) = \|\ddot{\gamma}(s)\|$.

Теорема-задача

Доказать аналогичную теорему про соприкасающуюся с данной кривой в точке s_0 окружность: ее центр лежит в направлении вектора $\ddot{\gamma}(s_0)$, а радиус равен $1/|k(s_0)|$.

Определение

Плоскость векторов $\dot{\gamma}$ и $\ddot{\gamma}$ называется соприкасающейся.

3.2. Кручение и формулы Френе.

Изучим кривую в точках, где $\ddot{\gamma}(s)
eq 0$.

Определение

Репер Френе — ортонормированная тройка $\{v(s), n(s), b(s)\}$, где

$$v(s) = \dot{\gamma}(s)$$
 — единичный вектор **скорости**,

$$n(s) = \frac{\ddot{\gamma}(s)}{k(s)}$$
 — вектор главной нормали,

$$b(s) = [v(s), n(s)]$$
 — вектор **бинормали** к кривой.

Теорема (формулы Френе)

$$\begin{pmatrix} \dot{v}(s) \\ \dot{n}(s) \\ \dot{b}(s) \end{pmatrix} = \begin{pmatrix} 0 & k(s) & 0 \\ -k(s) & 0 & -\tau(s) \\ 0 & \tau(s) & 0 \end{pmatrix} \begin{pmatrix} v(s) \\ n(s) \\ b(s) \end{pmatrix}$$

Здесь $\tau(s)$ – гладкая функция во всех точках ненулевой кривизны, называемая **кручением**.

Доказательство.

- ullet Пусть $Q(s)=(v(s), \mathit{n}(s), \mathit{b}(s))^T \in \mathit{Mat}_{3 imes 3}(\mathbb{R}).$ Ясно, что $Q(s)Q(s)^T=E$
- ullet Отсюда $\dot{Q}(s)Q(s)^T=-Q(s)^T\dot{Q}(s)$, то есть $A(s)=\dot{Q}(s)Q(s)^T-$ кососимметрическая матрица.
- Поскольку $\dot{v}(s) = k(s)n(s)$, то первая строка матрицы A(s) имеет вид (0,k(s),0).

Теорема (вычисление кривизны и кручения)

Пусть кривая $\gamma(t)$ задана произвольным параметром. Тогда

$$k(t) = \frac{\|[\gamma'(t), \gamma''(t)]\|}{\|\gamma'(t)\|^3}, \quad \tau(t) = -\frac{\langle \gamma'(t), \gamma''(t), \gamma'''(t) \rangle}{\|[\gamma'(t), \gamma''(t)]\|^2}.$$

Теорема (о восстановлении кривой по кривизне и кручению)

Пусть k(s)>0 и $\tau(s)$ — гладкие функции. Тогда $\exists !$ с точностью до изометрии кривая $\gamma(s)\subset \mathbb{R}^3$, для которой эти функции являются кривизной и кручением соответственно.

4. Геометрия поверхностей в \mathbb{R}^N

4.1. Задание поверхности. Координаты.

Определение

Гладкая регулярная n-**мерная поверхность** в \mathbb{R}^N — гладкое отображение $r\colon U \to \mathbb{R}^N$, где U — некоторая открытая область в \mathbb{R}^n с координатами (u_1,\ldots,u_n) , причем во всех точках векторы $e_1=\frac{\partial r}{\partial u_1},\ldots,e_n=\frac{\partial r}{\partial u_n}$ образуют канонический базис.

Обозначения:

 $M = r(U) = r(u_1, \dots, u_n) = (r_1(u_1, \dots, u_n), \dots, r_N(u_1, \dots, u_n)) \subset \mathbb{R}^N.$ Система $\{e_1, \dots, e_n\}$ линейно независима \Leftrightarrow ранг матрицы Якоби

$$J(r(u)) = \begin{pmatrix} \frac{\partial r_1}{\partial u_1} & \cdots & \frac{\partial r_N}{\partial u_1} \\ \cdots & \cdots & \cdots \\ \frac{\partial r_1}{\partial u_n} & \cdots & \frac{\partial r_N}{\partial u_n} \end{pmatrix}$$

максимален (то есть равен n).

Убедитесь, что параметризация тора

$$r(u,v) = ((R + r\cos v)\cos u, (R + r\cos v)\sin u, r\sin v)$$

удовлетворяет определению.

4.2. Кривые на поверхности. Касательное пространство.

Определение

Гладкая **кривая на поверхности** M — композиция r(u(t)) гладкой кривой $u: [a, b] \to U$ и отображения $r: U \to M$).

Каждому каноническому базисному вектору $e_i(P)$ ставится в соответствие своя **координатная линия** $u_i(t) = p_i + te_i$, где $P = r(p_1, \dots, p_n)$.

Пусть P – фиксированная точки поверхности.

Определение

Касательное пространство T_PM к поверхности M в точке P — совокупность касательных векторов к кривым на M, проходящим через точку P, где касательные векторы откладываются от точки P.

Почему же оно называется пространством?

Теорема $T_P M = \langle e_1(P), \dots, e_n(P) \rangle$ и dim $T_P M = n$.

Доказательство. Пусть r(u(t)) — кривая, проходящая при t=0 через точку P. Ее вектор скорости имеет вид:

$$v(0) = \sum_{j=1}^n \frac{\partial r}{\partial u_j} \bigg|_P u'_j(0) = \sum_{j=1}^n u'_j(0) \cdot e_j(P) \in \langle e_1(P), \dots, e_n(P) \rangle.$$

Обратно, всякая линейная комбинация векторов $e_1(P), \ldots, e_n(P)$ соответствует вектору скорости какой-то кривой.

Почему?

Потому что мы можем взять кривую $u(t)=(p_1+\lambda_1 t,\ldots,p_n+\lambda_n t).$

Определение

Нормальное пространство к M в точке P — это $(T_P M)^{\perp}$.

Заметим, что при замене координат на поверхности матрица Якоби замены будет служить матрицей перехода между каноническими базисами.

Действительно, пусть u и v — два набора координат на поверхности, такие, что $u_i(v_1,\ldots,v_n)$ — гладкие функции и $\det J(u(v)) \neq 0$.

Пусть $e_j=rac{\partial r}{\partial u_i}$, $f_j=rac{\partial r}{\partial v_i}$ — соответствующие канонические базисы.

Тогда
$$f_k = \sum_{j=1}^n rac{\partial u_j}{\partial v_k} e_j$$

4.3. Первая квадратичная форма.

Пусть задана поверхность $M=r(U)\subset\mathbb{R}^N$ и пусть $P\in M$. На $T_PM\subset\mathbb{R}^N$ имеется евклидово скалярное умножение (\cdot,\cdot) .

Определение

Пусть G — матрица Грама канонического базиса $\{e_1,\ldots,e_n\}$, то есть $g_{ij}=(e_i,e_j)$.

Квадратичная форма, матрица которой в этом базисе равна G, называется **первой квадратичной формой** поверхности M в точке P.

При замене координат u=u(v) имеем

$$\tilde{g}_{ij} = (f_i, f_j) = \sum_{k,m=1}^n \frac{\partial u_k}{\partial v_i} \frac{\partial u_m}{\partial v_j} g_{km}.$$

Заметим, что это соответствует формуле замены матрицы квадратичной формы при переходе к другому базису:

$$\tilde{G} = J^T G J$$
,

где J = J(u(v)) — матрица Якоби.

Предложение

Пусть $a,b\in T_P M$, $a=\sum_{j=1}^n a_j e_j$, $b=\sum_{j=1}^n b_j e_j$. Тогда

$$(a,b)=\sum_{i,j=1}^ng_{ij}a_ib_j,\quad |a|=\sqrt{\sum_{i,j=1}^ng_{ij}a_ia_j}$$

Предложение

Пусть $\varphi(t) = r(u(t))$ – кривая на M. Тогда длина дуги кривой от t_1 до t_2 вычисляется по формуле:

$$L(\varphi) = \int_{t_1}^{t_2} \sqrt{\sum_{i,j=1}^{n} g_{ij}(r(u(t)))u'_i(t)u'_j(t)} dt$$

4.4. Вторая квадратичная форма поверхности.

Определение

Гиперповерхность — поверхность размерности N-1 в \mathbb{R}^N .

Далее рассматриваем только гиперповерхности. В этом случае однозначно определяется вектор нормали n(P).

Определение

Пусть
$$b_{ij}(P) = \left(\frac{\partial^2 r}{\partial u_i \partial u_j}(P), n(P)\right)$$
 и $B(P) = (b_{ij}(P))$. Тогда квадратичная форма, матрица которой в базисе $\{e_1, \dots, e_n\}$ равна $B(P)$, называется второй квадратичной формой поверхности в точке P .

Теорема Менье

Пусть t — вектор скорости в T кривой \mathcal{K} на Φ , \mathcal{N}_t — нормальное сечение поверхности плоскостью $\langle n,t\rangle$, $n(\mathcal{K})$ — вектор главной нормали к \mathcal{K} ,

$$heta= ngle (extit{n}, extit{n}(\mathcal{K}))$$
. Тогда $k(\mathcal{N}_t) = k(\mathcal{K})\cos heta = rac{b(t,t)}{g(t,t)}.$

$$\ddot{\mathcal{K}}(s) = \frac{\partial}{\partial s} \left(\frac{\partial (r \circ u)}{\partial s} \right) = \sum_{i,j=1}^{n} \frac{\partial^{2} r}{\partial u_{i} \partial u_{j}} \dot{u}_{i} \dot{u}_{j} + \sum_{k=1}^{n} e_{k} \ddot{u}_{k},$$

аналогично

$$\ddot{\mathcal{N}}_t(s) = \sum_{i,j=1}^n \frac{\partial^2 r}{\partial v_i \partial v_j} \dot{v}_i \dot{v}_j + \sum_{k=1}^n e_k \ddot{v}_k$$

Поскольку $e_k \perp n$, то

$$(\ddot{\mathcal{K}}(s), n) = (k(\mathcal{K})n(\mathcal{K}), n) = k(\mathcal{K})\cos\theta = \sum_{i,i=1}^{n} b_{ij}(P)\dot{u}_{i}\dot{u}_{j} = b(t, t),$$

$$(\ddot{\mathcal{N}}_t(s), n)) = k(\mathcal{N}_t) = b(t, t),$$

откуда

$$k(\mathcal{N}_t) = k(\mathcal{K})\cos\theta = b(t, t).$$

Остается вспомнить, что g(t,t) = 1.

Список литературы

- [1] А. О. Иванов, А. А. Тужилин Лекции по классической дифференциальной геометрии, 2009, Москва, Логос. Лекции 2,3,4.
- [2] А. И. Шафаревич Курс лекций по классической дифференциальной геометрии, 2007, Москва, МГУ, Механико-математический факультет. Лекции 2,3,4.