Package 'RTaxometrics'

May 30, 2023

Type Package
Title Taxometric Analysis
Version 3.2.1
Date 2023-5-29
Author John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu></shirleywang@g.harvard.edu></ruscio@tcnj.edu>
Maintainer John Ruscio <ruscio@tcnj.edu></ruscio@tcnj.edu>
Description We provide functions to perform taxometric analyses. This package contains 46 functions, but only 5 should be called directly by users. CheckData() should be run prior to any taxo metric analysis to ensure that the data are appropriate for taxometric analysis. RunTaxometrics() performs taxometric analyses for a sample of data. RunCCFIProfile() performs a series of taxometric analyses to generate a CCFI profile. CreateData() generates a sample of categorical or dimensional data. ClassifyCases() assigns cases to groups using the base-rate classification method.

License MIT + file LICENSE

RoxygenNote 7.1.0 **NeedsCompilation** no **Repository** CRAN

Date/Publication 2023-05-30 12:00:02 UTC

R topics documented:

AddVariance
AssignMAMBAC
AssignMAXEIG 4
CalculateBaseRates
CalculateCCFI
CalculateCCFIs
CalculateCCFIsProfile
CalculateFitDensities
CalculateKurtosis
CalculateLModeCCFI
CalculateMAMBAC

2 AddVariance

	CalculateMAXEIG	10
	CalculateMAXSLOPE	10
	CalculateProfileOutput	11
	CalculateSkew	12
	CalculateValidity	12
	CheckClassification	13
		14
	CheckParameters	15
	ClassifyCases	15
	CreateData	16
	CreateSample	17
	Create Variable	18
	DisplayPanels	19
	DisplayProfiles	20
	EstimateLMode	20
	EstimateMAMBAC	21
	EstimateMAXEIG	22
	EstimateMAXSLOPE	22
	GenerateData	23
	GetSpecifications	24
	PlotPanel	24
	ProcessProfile	25
	RemoveMissingData	26
	RunCCFIProfile	26
	RunFactorAnalysis	28
	RunLMode	29
	RunMAMBAC	30
	RunMAXEIG	30
	RunMAXSLOPE	31
	RunProcedures	32
	RunProceduresComp	33
		34
	SummarizeDist	35
Index	3	37
AddVa	ariance Adds variance	_

Description

This function adds variance if necessary

Usage

AddVariance(x, k, parameters)

AssignMAMBAC 3

Arguments

x The supplied data matrix.k The number of variables.

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Data with necessary variance added

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

AssignMAMBAC

Assigns variables to input/output for MAMBAC procedure

Description

This function assigns variables to input/output configurations for MAMBAC analysis.

Usage

AssignMAMBAC(parameters)

Arguments

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Input/output variables per curve

Author(s)

4 CalculateBaseRates

AssignMAXEIG

Assigns variables to input/output for MAXEIG procedure

Description

This function assigns variables to input/output configurations for MAXEIG analysis.

Usage

AssignMAXEIG(parameters)

Arguments

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Input/output variables per curve

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateBaseRates

Calculates and returns base rate estimates for taxometric analysis

Description

This function calculates and reports base rate estimates for taxometric analysis.

Usage

CalculateBaseRates(x.results, parameters)

Arguments

x.results l

Empirical data results

parameters

The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

CalculateCCFI 5

Value

This program returns nothing, and provides text output only.

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateCCFI

Calculates CCFIs

Description

This function calculates CCFIs for a MAMBAC, MAXEIG, or MAXSLOPE curve

Usage

```
CalculateCCFI(curve, curve.dim, curve.cat)
```

Arguments

curve Empirical data curve

curve.dim Average curve for dimensional comparison data

curve.cat Average curve for categorical comparison data

Details

Called by higher-order functions; users do not need to call this function directly.

Value

CCFI value

Author(s)

6 CalculateCCFIsProfile

CalculateCCFIs

Calculates CCFIs for profiles

Description

This function calculates CCFI results for CCFI profiles

Usage

```
CalculateCCFIs(x.results, x.dim.results, x.cat.results, parameters)
```

Arguments

x.results Empirical data results

x.dim.results Dimensional comparison data resultsx.cat.results Categorical comparison data resultsparameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

CCFI values

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateCCFIsProfile Calculates CCFIs for profiles

Description

This function calculates CCFI results for CCFI profiles

Usage

```
CalculateCCFIsProfile(x.results, x.dim.results, x.cat.results, parameters)
```

CalculateFitDensities 7

Arguments

x.results Empirical data results

x.dim.resultsx.cat.resultsCategorical comparison data resultsparametersThe data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

CCFI values

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateFitDensities Calculates fit

Description

This function calculates fit for L-Mode curves

Usage

CalculateFitDensities(shift, data)

Arguments

shift Horizontal shift

data Curves for empirical and comparison data

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Fit value

Author(s)

8 CalculateLModeCCFI

CalculateKurtosis

Calculates kurtosis

Description

This function calculates the sample kurtosis of a distribution

Usage

CalculateKurtosis(x)

Arguments

Χ

The data vector

Details

Called by higher-order functions; users do not need to call this function directly.

Value

The sample kurtosis of x

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateLModeCCFI

Calculates L-Mode CCFI

Description

This function calculates CCFI for an L-Mode curve

Usage

```
CalculateLModeCCFI(curve.x, curve.y, curve.dim.x, curve.dim.y, curve.cat.x, curve.cat.y)
```

Arguments

curve.x	Empirical data curve, x
curve.y	Empirical data curve, y
curve.dim.x	Average curve for dimensional comparison data, x
curve.dim.y	Average curve for dimensional comparison data, y
curve.cat.x	Average curve for categorical comparison data, x
curve.cat.v	Average curve for categorical comparison data, y

CalculateMAMBAC 9

Details

Called by higher-order functions; users do not need to call this function directly.

Value

CCFI value

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateMAMBAC

Calculates MAMBAC curve

Description

This function calculates one MAMBAC curve

Usage

CalculateMAMBAC(input, output, parameters)

Arguments

input Input indicator output Output indicator

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

One MAMBAC curve

Author(s)

10 CalculateMAXSLOPE

CalculateMAXEIG

Calculates MAXEIG curve

Description

This function calculates one MAXEIG curve

Usage

```
CalculateMAXEIG(input, outputs, parameters)
```

Arguments

input Input indicator
outputs Output indicators

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List object with one MAXEIG curve:

curve.x x values curve.y y values

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateMAXSLOPE

Calculates MAXSLOPE curve

Description

This function calculates one MAXSLOPE curve

Usage

```
CalculateMAXSLOPE(x, curve)
```

CalculateProfileOutput 11

Arguments

x The data matrix curve Curve number

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List object with one MAXSLOPE curve:

```
curve.x x values curve.y y values
```

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateProfileOutput

Provides aggregated CCFIs and base rate estimates for CCFI profile

Description

This function provides aggregated CCFIs and base rate estimates for CCFI profile

Usage

```
CalculateProfileOutput(CCFIs, parameters)
```

Arguments

CCFIs CCFI values across base rates and procedures

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns aggregated CCFI values.

Author(s)

12 Calculate Validity

CalculateSkew

Calculates skew

Description

This function calculates the sample skewness of a distribution

Usage

```
CalculateSkew(x)
```

Arguments

Х

The data vector

Details

Called by higher-order functions; users do not need to call this function directly.

Value

The sample skewness of x

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

CalculateValidity

Calculates Validity

Description

This function calculates the standardized mean difference between two groups (Cohen's D)

Usage

```
CalculateValidity(x.1, x.2)
```

Arguments

x.1 Data for the first group

x.2 Data for the second group

Details

Called by higher-order functions; users do not need to call this function directly.

CheckClassification 13

Value

The standardized mean difference between groups

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

 ${\tt CheckClassification}$

Checks classification

Description

This function checks classification for problems, and terminates the program if necessary

Usage

```
CheckClassification(group, n)
```

Arguments

group Classification of cases

n Sample size

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Nothing; text output if problem occurs

Author(s)

14 CheckData

CheckData

Checks supplied data set

Description

This function checks whether the supplied empirical data set is appropriate for taxometric analysis, and provides descriptive statistics about the data set. If data do not meet certain requirements, the program prints warnings in the output, with details about which specific criteria are not met.

Usage

CheckData(x)

Arguments

Х

The supplied data matrix. Cases missing any data will be removed prior to analysis.

Details

This function should be called directly by users before performing any taxometric procedures.

Value

This program returns nothing, and provides text output only.

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

Examples

```
# create or import data set

# creates a categorical data set
test.cat <- CreateData("cat")

# Checks data
CheckData(test.cat)

# creates a dimensional data set
test.dim <- CreateData("dim")

# Checks data
CheckData(test.dim)</pre>
```

CheckParameters 15

CheckParameters

Checks parameters

Description

This function checks the parameter specifications for problems, and adjusts these parameters as needed.

Usage

CheckParameters(x, parameters)

Arguments

x The data matrix

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Data parameters, adjusted as needed

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

ClassifyCases

Assigns cases to groups

Description

This function assigns cases to groups using the base-rate classification technique. Cases are sorted according to their total scores on all indicators, and the highest-scoring cases are assigned to the taxon such that the proportion of taxon members equals the specified base rate estimate.

Usage

```
ClassifyCases(x, p, cols = 0)
```

16 CreateData

Arguments

Х	The supplied data matrix.
p	The base rate estimate that will be used to classify cases.
cols	The column numbers that contain variables

Details

Users should call this function directly if they wish to assign cases to groups.

Value

Data matrix with a new classification variable.

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

References

Ruscio, J. (2009). Assigning cases to groups using taxometric results: an empirical comparison of classification techniques. Assessment, 16(1), 55-70.

Cremes a and ser	CreateData C	Creates a data set
------------------	--------------	--------------------

Description

This function creates an artificial data set based on either dimensional or categorical latent structure, which can vary according to a number of basic parameters. Such data can be useful for getting to know the taxometric programs and becoming familiar with their output by conducting analyses using data sets whose parameters are known.

Usage

```
CreateData(str, n = 600, k = 4, p = 0.5, d = 2, r = 0, r.tax = 0, r.comp = 0, g = 0, h = 0, cuts = 0, uniform = F, seed = 1)
```

Arguments

str	The type of data to be generated. Specify either "dim" for dimensional data or
	"cat" (or anything else) for categorical data.
n	Sample size. The default value is 600.
k	Number of variables. The default value is 4.
p	Taxon base rate. The default value is .5.
d	Standardized mean difference between groups. The default value is 2.

CreateSample 17

r	Correlation among variables. The default value is 0.
r.tax	Correlation among variables within the taxon. The default value is 0.
r.comp	Correlation among variables within the complement. The default value is 0.
g	Parameter used to control asymmetry (scalar); sign indicates direction and absolute value indicates magnitude of skew (e.g., +/30 yields substantial asymmetry).
h	Parameter used to control tail weight (scalar); positive values yield tails that are longer/thinner than a standard normal curve, negative values do the reverse (e.g., +/15 is a substantial departure from normality).
cuts	Parameter used to create ordered categorieas, if nonzero (scalar); number of categories will be cuts + 1.
uniform	Whether to generate random values (the program default) or use uniformly distributed quantiles (T/F).
seed	Random number seed; specifying the same seed enables users to generate and analyze identical data sets. The default value is 1.

Details

Users should call this function directly if they wish to create an artificial data set.

Value

Data matrix; k columns contain data, final column contains classification.

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

Examples

```
# creates a categorical data set
test.cat <- CreateData("cat")

# creates a dimensional data set
test.dim <- CreateData("dim")</pre>
```

CreateSample

Creates sample of data

Description

Generates sample of correlated data with univariate g-and-h distributions.

Usage

```
CreateSample(n, k, r, g, h, uniform)
```

18 Create Variable

Arguments

n	Sample size
k	Number of variables
r	Correlation among variables
g	Parameter used to control asymmetry (scalar); sign indicates direction and absolute value indicates magnitude of skew (e.g., +/30 yields substantial asymmetry).
h	Parameter used to control tail weight (scalar); positive values yield tails that are longer/thinner than a standard normal curve, negative values do the reverse (e.g., +/15 is a substantial departure from normality).
uniform	Whether to generate random values (the program default) or use uniformly distributed quantiles (T/F).

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Sample of data

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

teVariable Creates a variable

Description

Generates variable with g-and-h distribution.

Usage

CreateVariable(n, g, h, uniform)

Arguments

n	Size of sample to create
g	Parameter used to control asymmetry (scalar); sign indicates direction and absolute value indicates magnitude of skew (e.g., +/30 yields substantial asymmetry).
h	Parameter used to control tail weight (scalar); positive values yield tails that are longer/thinner than a standard normal curve, negative values do the reverse (e.g., +/15 is a substantial departure from normality).
uniform	Whether to generate random values (the program default) or use uniformly distributed quantiles (T/F).

DisplayPanels 19

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Single variable

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

DisplayPanels

Displays panels of graphs

Description

This function provides panels of graphs for taxometric analysis

Usage

```
DisplayPanels(x.results, x.dim.results, x.cat.results, parameters)
```

Arguments

x.results Empirical data results
 x.dim.results Dimensional comparison data results
 x.cat.results Categorical comparison data results
 parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns nothing, and provides graphical output only

Author(s)

20 EstimateLMode

DisplayProfiles

Plots CCFI Profiles

Description

This function plots CCFI profiles

Usage

```
DisplayProfiles(CCFIs, parameters)
```

Arguments

CCFIs CCFI values across base rates and procedures

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns nothing, and provides graphical output only

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

EstimateLMode

Estimates L-Mode base rate

Description

This function estimates the taxon base rate for an L-Mode curve

Usage

```
EstimateLMode(curve.x, curve.y, parameters)
```

Arguments

curve.x X values of density curve.y Y values of density

parameters The data and program parameters

EstimateMAMBAC 21

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List of base rate estimates:

p.r Based on location of left modep.1 Based on location of right mode

p.estimate mean

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

EstimateMAMBAC

Estimates MAMBAC base rate

Description

This function estimates the taxon base rate for a MAMBAC curve

Usage

EstimateMAMBAC(curve)

Arguments

curve

MAMBAC curve

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Base rate estimate

Author(s)

22 EstimateMAXSLOPE

EstimateMAXEIG

Estimates MAXEIG base rate

Description

This function estimates the taxon base rate for a MAXEIG curve

Usage

```
EstimateMAXEIG(curve)
```

Arguments

curve

MAXEIG curve

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Base rate estiamte

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

EstimateMAXSLOPE

Estimates MAXSLOPE base rate

Description

This function estimates the taxon base rate for a MAXSLOPE curve

Usage

```
EstimateMAXSLOPE(curve.x, curve.y)
```

Arguments

curve.x X values of curve curve.y Y values of curve

Details

Called by higher-order functions; users do not need to call this function directly.

GenerateData 23

Value

Base rate estimate

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

GenerateData

Generates comparison data

Description

This function generates a population of comparison data

Usage

```
GenerateData(x, n, n.factors = 0, max.trials = 5, initial.multiplier = 1)
```

Arguments

x The data matrix

n Size of population to create

n.factors The number of factors used to reproduce correlations. The default value is 0.

max.trials Maximum number of trials. The default value is 5.

initial.multiplier

Size of multiplier to adjust target correlations. The default value is 1.

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Population of comparison data

Author(s)

24 PlotPanel

GetSpecifications Provides analytic specifications	GetSpecifications	Provides analytic specifications
--	-------------------	----------------------------------

Description

This function provides analytic specifications

Usage

```
GetSpecifications(parameters)
```

Arguments

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns nothing, and provides text output only

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

riotranei Tiois a panei of curves	PlotPanel	Plots a panel of curves	
	riotranei	i iois a panei of curves	

Description

This function plots a two-panel graph with results for empirical and comparison data

Usage

```
PlotPanel(x.results, x.dim.results, x.cat.results, parameters, procedure)
```

Arguments

x.results	Empirical data results
x.dim.results	Dimensional comparison data results
x.cat.results	Categorical comparison data results
parameters	The data and program parameters
procedure	Name of taxometric procedure

ProcessProfile 25

Details

Called by higher-order functions; users do not need to call this function directly.

Value

This function returns nothing, and provides graphical output only

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

ProcessProfile

Calculates CCFIs and base rates for CCFI profile

Description

This function calculates the aggregated CCFI and base rate estimate for one CCFI profile

Usage

```
ProcessProfile(CCFIs, parameters)
```

Arguments

CCFIs CCFI values across base rates for a single procedure

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

List of aggregated CCFI and base rate estimate

CCFI Aggregated CCFI
p.est Base rate estimate

Author(s)

26 RunCCFIProfile

RemoveMissingData

Removes missing data

Description

This function performs listwise deletion of missing data

Usage

RemoveMissingData(x)

Arguments

Х

The data matrix

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Data after listwise deletion of missing data

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

RunCCFIProfile

Performs taxometric analyses to generate a CCFI profile

Description

This function performs a series of taxometric analysis using categorical comparison data sets that vary in taxon base rates, and plots a profile of CCFI values across this range of base rates. Results can be assigned to an object to store results; otherwise results will be displayed on-screen.

Usage

```
RunCCFIProfile(x, seed = 0, min.p = 0.025, max.p = 0.975, num.p = 39,
n.pop = 1e+05, n.samples = 100, reps = 1, MAMBAC = TRUE, assign.MAMBAC = 1,
n.cuts = 50, n.end = 25, MAXEIG = TRUE, assign.MAXEIG = 1, windows = 50,
overlap = 0.9, LMode = TRUE, mode.l = -0.001, mode.r = 0.001, MAXSLOPE = FALSE,
graph = 1, text.file = FALSE, profile = TRUE)
```

RunCCFIProfile 27

Arguments

X	Supplied data matrix. Cases missing any data will be removed prior to analysis.
seed	Random number seed provided prior to analysis of empirical data as well as prior to generating each population of comparison data. The default value is 0.
min.p	Minimum base rate for CCFI profile. The default value is .025.
max.p	Maximum base rate for CCFI profile. The default value is .975.
num.p	Number of base rates for CCFI profile. The default value is 39.
n.pop	Size of the finite populations of categorical and dimensional comparison data. The default value is $100,\!000$.
n.samples	Number of comparison data sets of each structure to generate and analyze. The default value is 100 .
reps	Number of times to resort cases along the input indicator at random and redo the calculations (if tied scores are found), averaging to obtain final results. The default value is 1 if no tied scores are found, and 10 if tied scores are found.
MAMBAC	Whether the MAMBAC procedure is performed. The default value is TRUE.
assign.MAMBAC	How variables are assigned as input and output variables in the MAMBAC procedure. Variables may be used in all possible input-output pairings (assing.MAMBAC = 1), or variables may be summed to form the input variable (assign.MAMBAC = 2). The default value is 1.
n.cuts	The total number of cuts to make along the input variable when performing the MAMBAC procedure. The default value is 25 .
n.end	The number of cases to set aside at each extreme along the input variable before making the first and last cuts when performing the MAMBAC procedure. The default value is 25.
MAXEIG	Whether the MAXEIG procedure is performed. The default value is TRUE if $k >= 3$, and FALSE if $k < 3$.
assign.MAXEIG	How variables are assigned as input and output variables in the MAXEIG procedure. Variables may be used in all input-output triplets (assign.MAXEIG = 1), each variable may serve as input once (assign.MAXEIG = 2), or variables may be summed to form the input (assign.MAXEIG = 3). The default value is 1.
windows	The nubmer of overlapping windows to use when performing the MAXEIG procedure. The default value is 50 .
overlap	The amount of overlap between windows when performing the MAXEIG procedure. The default value is $.90$.
LMode	Whether the L-Mode procedure is performed. The default value is TRUE if k is $>=3$, and FALSE if $k<3$.
mode.1	Position beyond which to serach for the left mode when performing the L-Mode procedure. The default value is001.
mode.r	Position beyond which to serach for the right mode when performing the L-Mode procedure. The default value is .001.
MAXSLOPE	Whether the MAXSLOPE procedure is performed. The default value is FALSE
	if $k \ge 3$, and TRUE if $k < 3$.

28 RunFactorAnalysis

graph	Whether to display graphs on screen (1), save as a compressed .jpeg file (2), or save as a high-resolution .tiff file (3). The default value is 1.
text.file	Whether to divert text output to a .txt file (T/F). The default value is FALSE.
profile	Whether a CCFI profile is generated. The default value is TRUE.

Details

This function should be called directly by users who wish to perform taxometric analyses to generate a CCFI profile.

Value

This program returns CCFI values, and provides text and graphical output. Note that any CCFI values of 0 represent missing values, as analyses will never yield a CCFI of 0.

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

	RunFactorAnalysis	Performs factor analysis	
--	-------------------	--------------------------	--

Description

This function performs factor analysis

Usage

```
RunFactorAnalysis(x, cor.matrix = FALSE, n.factors = 0, max.iter = 50, criterion = 0.01)
```

Arguments

Х	The data or correlation matrix
cor.matrix	Whether x is a correlation matrix. The default is FALSE.
n.factors	The number of factors to use. The default value is 0.
max.iter	The maximum number of iterations. The default value is 50.
criterion	Acceptably small change in h2 between interations. The default value is .01.

Details

Called by higher-order functions; users do not need to call this function directly.

RunLMode 29

Value

List of factor loadings and number of factors

loadings The factor loadings factors The number of factors

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

RunLMode

Performs L-Mode

Description

This function performs the L-Mode analysis

Usage

RunLMode(x)

Arguments

Х

The data matrix

Details

Called by higher-order functions; users do not need to call this function directly.

Value

L-Mode curve:

curve.x X values of curve curve.y Y values of curve

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

References

Waller, N.G., & Meehl, P.E. (1998). Multivariate taxometric procedures: Distinguishing types from continua. Thousand Oaks, CA, US: Sage Publications, Inc.

30 RunMAXEIG

RunMAMBAC

Performs MAMBAC

Description

This function performs the MAMBAC analysis

Usage

RunMAMBAC(x, parameters)

Arguments

x The data matrix

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Panel of MAMBAC curves

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

References

Meehl, P.E., & Yonce, L.J. (1994). Taxometric analysis: I. Detecting taxonomy with two quantitative indicators using means above and below a sliding cut (MAMBAC procedure). Psychological Reports, 74(3, Pt 2), 1059-1274.

RunMAXEIG

Performs MAXEIG

Description

This function performs the MAXEIG analysis

Usage

RunMAXEIG(x, parameters)

RunMAXSLOPE 31

Arguments

x The data matrix

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

Panel of MAXEIG curves:

curve.x X values of curve
curve.y Y values of curve

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

References

Waller, N.G., & Meehl, P.E. (1998). Multivariate taxometric procedures: Distinguishing types from continua. Thousand Oaks, CA, US: Sage Publications, Inc.

RunMAXSLOPE

Performs MAXSLOPE

Description

This function performs the MAXSLOPE analysis

Usage

RunMAXSLOPE(x)

Arguments

Х

The data matrix

Details

Called by higher-order functions; users do not need to call this function directly.

32 RunProcedures

Value

Panel of MAXSLOPE curves

curve.x X values of curve curve.y Y values of curve

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

References

Grove, W.M., & Meehl, P.E. (1993). Simple regression-based procedures for taxometric investigations. Psychological Reports, 73, 707-737.

RunProcedures

Runs taxometric procedures for empirical data

Description

This function runs the MAMBAC, MAXEIG, L-Mode, and MAXSLOPE analyses for empirical data

Usage

RunProcedures(x, parameters)

Arguments

x The data matrix

parameters The data and program parameters

Details

Called by higher-order functions; users do not need to call this function directly.

Value

A list of curve-level data for each procedure performed:

MAMBAC urve

MAXEIG.x X values of MAXEIG curve

MAXEIG.y Y values of MAXEIG curve

LMode.x X values of LMode curve

LMode.y Y values of LMode curve

MAXSLOPE.x X values of MAXSLOPE curve

MAXSLOPE.y Y values of MAXSLOPE curve

RunProceduresComp 33

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

RunProceduresComp

Runs taxometric procedures for comparison data

Description

This function runs the MAMBAC, MAXEIG, L-Mode, and MAXSLOPE analyses for comparison data

Usage

RunProceduresComp(x, parameters)

Arguments

x The data matrix

parameters The data and program parameters.

Details

Called by higher-order functions; users do not need to call this function directly.

Value

A list of averaged curves for each procedure performed:

MAMBAC curve

MAXEIG.x X values of MAXEIG curve

MAXEIG.y Y values of MAXEIG curve

LMode.x X values of LMode curve

LMode.y Y values of LMode curve

MAXSLOPE.x X values of MAXSLOPE curve

MAXSLOPE.y Y values of MAXSLOPE curve

Author(s)

34 RunTaxometrics

RunTaxometrics	Taxometric analysis for a sample of data
Rulli axolle ci 105	taxometric analysis for a sample of adia

Description

Performs taxometric analysis for a sample of data and provides text (analytic specifications, CCFI values, base rate estimates) and graphical (panels of empirical data curves superimposed above comparison data curves) output. By default, the function will run MAMBAC, MAXEIG, and L-Mode, unless only 2 variables are provided, in which case the program will run MAMBAC and MAXS-LOPE. Results can be assigned to an object to store results; otherwise results will be displayed on-screen.

Usage

```
RunTaxometrics(x, seed = 0, n.pop = 1e+05, n.samples = 100, reps = 1,
MAMBAC = TRUE, assign.MAMBAC = 1, n.cuts = 50, n.end = 25, MAXEIG =
TRUE, assign.MAXEIG = 1, windows = 50, overlap = 0.9, LMode = TRUE, mode.l =
-0.001, mode.r = 0.001, MAXSLOPE = FALSE, graph = 1)
```

Arguments

х	The supplied data matrix. Cases missing any data will be removed prior to analysis.
seed	Random number seed provided prior to analysis of empirical data as well as prior to generating each population of comparison data. The default value is 0.
n.pop	Size of the finite populations of categorical and dimensional comparison data. The default value is 100,000.
n.samples	Number of comparison data sets of each structure to generate and analyze. The default value is 100.
reps	Number of times to resort cases along the input indicator at random and redo the calculations (if tied scores are found), averaging to obtain final results. The default value is 1 if no tied scores are found, and 10 if tied scores are found.
MAMBAC	Whether the MAMBAC procedure is performed. The default value is TRUE.
assign.MAMBAC	How variables are assigned as input and output variables in the MAMBAC procedure. Variables may be used in all possible input-output pairings (assing.MAMBAC = 1), or variables may be summed to form the input variable (assign.MAMBAC = 2). The default value is 1.
n.cuts	The total number of cuts to make along the input variable when performing the MAMBAC procedure. The default value is 25.
n.end	The number of cases to set aside at each extreme along the input variable before making the first and last cuts when performing the MAMBAC procedure. The default value is 25.
MAXEIG	Whether the MAXEIG procedure is performed. The default value is TRUE if $k = 3$, and FALSE if $k < 3$.

SummarizeDist 35

assign.MAXEIG	How variables are assigned as input and output variables in the MAXEIG procedure. Variables may be used in all input-output triplets (assign.MAXEIG = 1), each variable may serve as input once (assign.MAXEIG = 2), or variables may be summed to form the input (assign.MAXEIG = 3). The default value is 1.
windows	The nubmer of overlapping windows to use when performing the MAXEIG procedure. The default value is 50.
overlap	The amount of overlap between windows when performing the MAXEIG procedure. The default value is .90.
LMode	Whether the L-Mode procedure is performed. The default value is TRUE if k is $>= 3$, and FALSE if k < 3 .
mode.1	Position beyond which to serach for the left mode when performing the L-Mode procedure. The default value is001.
mode.r	Position beyond which to serach for the right mode when performing the L-Mode procedure. The default value is .001.
MAXSLOPE	Whether the MAXSLOPE procedure is performed. The default value is FALSE if $k \ge 3$, and TRUE if $k < 3$.
graph	Whether to display graphs on screen (1), save as a compressed .jpeg file (2), or save as a high-resolution .tiff file (3). The default value is 1.

Details

This function should be called directly by users who wish to perform taxometric analyses for a sample of data.

Value

This program returns CCFI values, and provides text and graphical output. Note that any CCFI values of 0 represent missing values, as analyses will never yield a CCFI of 0.

Author(s)

John Ruscio <ruscio@tcnj.edu> and Shirley Wang <shirleywang@g.harvard.edu> Maintainer: John Ruscio <ruscio@tcnj.edu>

ion	Summarizes distribut	SummarizeDist
-----	----------------------	---------------

Description

This function calculates the sample mean, standard deviation, skewness, and kurtosis

Usage

SummarizeDist(x)

Arguments

x The data vector

Details

Called by higher-order functions; users do not need to call this function directly.

Value

The sample mean, standard deviation, skewness, and kurtosis of x.

Author(s)

Index

AddVariance, 2	RunFactorAnalysis, 28
AssignMAMBAC, 3	RunLMode, 29
AssignMAXEIG, 4	RunMAMBAC, 30
	RunMAXEIG, 30
CalculateBaseRates, 4	RunMAXSLOPE, 31
CalculateCCFI, 5	RunProcedures, 32
CalculateCCFIs, 6	RunProceduresComp, 33
CalculateCCFIsProfile, 6	RunTaxometrics, 34
CalculateFitDensities, 7	
CalculateKurtosis, 8	SummarizeDist, 35
CalculateLModeCCFI, 8	
CalculateMAMBAC, 9	
CalculateMAXEIG, 10	
CalculateMAXSLOPE, 10	
CalculateProfileOutput, 11	
CalculateSkew, 12	
CalculateValidity, 12	
CheckClassification, 13	
CheckData, 14	
CheckParameters, 15	
ClassifyCases, 15	
CreateData, 16	
CreateSample, 17	
CreateVariable, 18	
DisplayPanels, 19	
DisplayProfiles, 20	
Displayer of files, 20	
EstimateLMode, 20	
EstimateMAMBAC, 21	
EstimateMAXEIG, 22	
EstimateMAXSLOPE, 22	
GenerateData, 23	
GetSpecifications, 24	
PlotPanel, 24	
ProcessProfile, 25	
Damas a Minain a Data 26	
RemoveMissingData, 26	