

Exercises - Parallel Computing and Availability

18 / 6 / 2013

1. Exercise: Amdahl Law (1)

A program requires 100 sec on a single core architecture, and its sequential fraction is about 1%. How long will it take when executed on a 10 core system? Which is its speed-up? Its efficiency when executed on 100 processors?

Solution:

$$S_{10}$$
= 10 / (10 x 0.01 + .99) = 10/1.09 = 9.174
 T_{10} = T_1 / S_{10} = 100 / 9.174 = 10.9 s
 E_{10} = 9.174 / 10 = 91.7%
 S_{100} = 100 / (100 x 0.01 + .99) = 100 / 1.99 = 50.25
 T_{100} = T_1 / S_{100} = 100/50.25 = 1.99 s
 E_{100} = 50.25/100 = 50%

2. Exercise: Amdahl Law (2)

A program requires 20 sec on a single processor architecture, and 11 sec on a quad-core architecture. How many core would it be required to obtain an execution time of 10 sec? Which will be the speed up and the efficiency in this case?

Solution:

$$\begin{split} T_s + T_p &= 20; \\ T_s + (T_p/4) &= 11; \\ \text{(subtracting the two eq.) } 0.75 \, T_p &= 9; \\ T_p &= 12; \, T_s &= 8; \, T_s + (T_p/n) = 10; \, 8 + (12/n) = 10; \, n = 12/(10-8) = 6; \\ S_6 &= T_1/T_6 &= 20/10 = 2; \, E_6 &= S_6/6 = 2/6 = 0.333; \end{split}$$

3. Exercise: Amdahl Law (3)

A computer program, has a serial fraction $fs=20\,\%$, and it takes 24 hours when executed on a single system (single processor). It is necessary to deploy the software on a parallel architecture to obtain a computation time less than 6 hours. Each machine costs 5000\$, and the software could be optimized to reduce its serial fraction to $fs'=10\,\%$ with an additional expense of 20000\$. There are two possibilities: (1) buy several

other machines or (2) optimize the software. Which solution is more convenient? Would it be possible to reduce the computation time to 4 hours?

Solution:

1)
$$f_s = 20\%$$
; $T_s = 4.8$; $T_p = 19.2$;

1)
$$f_s = 20\%$$
; $T_s = 4.8$; $T_p = 19.2$;
2) $f_{s}' = 10\%$; $T_{s}' = 2.4$; $T_{p}' = 21.6$;

Objective:
$$T_s + (T_p/n) = 6$$
; $n = T_p/(6 - T_s)$

1)
$$n = 19.2 / (6 - 4.8) = 16$$
 $C = 16 \times 5000 = 80000 \text{ (cost for 16 systems)}$

2)
$$n' = 21.6 / (6-2.4) = 6$$
 $C' = 6 \times 5000\$ + 20000\$ = 50000\$ -> yes, the optimization is worth!$

It is not possible to reduce the computation time to 4 hours, because $T_s = 4.8$ is the lower bound. If the optimization is performed, reducing f_s to 10%, then it will be possible to reduce computation time to 4 hours with n=14.

4. Exercise: failure probability of a disk

Compute the probability that a disk with MTTF = 100000 hours fails at least once every 3 years. If instead we have 2 disks, which is the probability that at least one of them fails?

Solution:

For one disk:
$$P(X \le t) = 1 - e^{-\frac{26280}{100000}} \approx 23\%$$

(also valid the approximate solution: $26280/100000 \approx 26\%$, since 0.26 << 1)

For two disks:
$$P(X \le t) = 1 - e^{-\frac{26280}{100000} \times 2} \approx 41\%$$

5. Exercise: computation of Reliability

A load balancer(A) is connected in series with a group(B) of three parallel web servers. The load balancer have MTTF of 1000 days and MTTR of 2 days. Each web server have MTTF of 350 days and MTTR of 1 day. Compute the probability of no failures in a t = 7 days period for both (A) and (B) as well as for the whole system (A+B).

Solution:

$$R_A(7) = 1-7/1000 = 0.993$$

 $R_B(7) = 1-(7/350)^3 = 0.999992$ (parallel)
 $R_{A+B}(7) = R_A(7) \times R_B(7) = 0.992992$ (serial)

6. Exercise: Availability

A load balancer(A) is connected in series with a group(B) of three parallel web servers. The load balancer have MTTF of 1000 days and MTTR of 2 days. Each web server (WS) have MTTF of 800 days and MTTR of 1 day.

Compute the availability of the whole system.

Solution:

We can compute the availability through availability block formulas:

$$A_{Serial} = A_1 A_2 ... A_n$$
 $A_{Parallel} = 1 - \prod (1 - A_i)^n$

MTTF_A = 1000; MTTF_A= 2
$$A_A$$
=1000/(1000+2)=0.998
MTTF_{ws} = 800; MTTR_{ws}= 1; A_{WS} =800/(800+1)=0.99875
 A_B = 1-(1- A_{WS})³ = 0.99999
 A_{A+B} = A_A A_B = 0.998 0.999999 = 0.99799

7. Exercise: Cloud application

To a cloud application are assigned 20 virtual machines, that can be considered as 20 independent systems. Mean execution time for the application (evaluated on multiple running) in such an environment is 8 secs, while the obtained speedup is 10.

For economic problems the user is forced to reduce the virtual machine number to 10.

Compute:

- a. Execution time for the application when executed on a single system.
- b. Serial and parallel fraction of the application execution time.
- c. Efficiency with 10 or 20 systems.
- d. Speedup gained using 30 systems
- e. Maximum speedup gained without modifying application code but considering an infinite number of systems

Solution:

(a)
$$T_{20} = 8 \text{sec}$$
; $S_{20} = T_1/T_{20}$; $10 = T_1/8 T_1 = 80 \text{sec}$;

(b)
$$T_{20} = T_s + (T_p/20) = T_s + (1 - T_s)/20 T_s = 80/19 f_s = T_s/T_1 = 1/19 f_p = 18/19;$$

(c)
$$T_{10} = 2240/190 = 11.78s E_{10} = S_{10}/10 = T_1/(T_{10} * 10) = 19/28 = 0.678 E_{20} = 10/20 = 0.5$$
;

(d)
$$S_{30} = N/(Nf_s + (1-f_s)) = (30 * 19)/48 = 11.875;$$

(e)
$$S_{\infty} = 1/f_s = 19$$
;

8. Exercise: availability

Consider the following structure where MTTF and MTTR of the components are shown. Compute the availability of each component and of the whole infrastructure.

Solution:

We can compute the availability through availability block formulas:

$$A_{Serial} = A_1A_2...A_n$$
 $A_{Parallel} = 1-\prod (1-A_i)^n$

Therefore:

$$A_A = 1 - (1 - A_{A1})^3 = 1 - (1 - 500/(500 + 1))^3 = 0.999999$$
 $A_B = 1 - (1 - A_{B2})^2 = 1 - (1 - 400/(400 + 2))^2 = 0.999975$

$$A_C = A_{C3} = 1000/(1000+1) = 0.999$$

$$A_{A+B+C} = A_A A_B A_C = 0.998974$$

9. **Exercise**: Availability

Consider a communication system, with three trunk in parallel, each one composed by three components in series: two modem and a cable. The system is represented in the following figure:

Let us consider that for the modem: $MTTF_M = 999$ days; $MTTR_M = 1$ days

And for the cable: $MTTF_C = 90 \text{ days}$; $MTTR_C = 10 \text{ days}$

- 1) Compute the availability of the modem, of the cable, of the trunk and of the entire system.
- 2) How many trunks should be used to have an availability of the entire system of 99,98%?
- 3) If we have a single trunk, with the same modems and a repair time for the cable $MTTR_c = 1$, which should be the $MTTF_c$ to obtain an availability of the entire system of 99,5?
- 4) In the context of exercise 3), would it be possible to have an availability of the trunk of 99,9?

Solution

- 1) $A_M = 999/(999+1) = 0.999$; $A_C = 90/(90+10) = 0.9$; $A_T = 0.999*0.9*0.999 = 0.898201$ $A_S = 1-(1-A_T)^3 = 0.998945$
- 2) $A_S = 1 (1 A_T)^n$ $(1 A_T)^n = 1 A_T = 1 -$
- 3) $A_T = A_M A_C A_M \quad A_C = 0.995 / A_M^2 = 0.996993$ $A_C = MTTF_C / (MTTF_{C+} MTTR_C) \quad MTTR_C = 1 sec \ therefore \quad MTTF_C = A_C / (1-A_C) = 331.56 \ days$
- 4) It will not be possible, because even if MTTF_C = ∞ (thus A_C = 1), we will have at most A_T = 0.999*1*0.999 = 0.998001 < 0.999