代数系统部分作业 (答案)

姓名: 一. 填空 1. 令 Z_4 = {0,1,2,3	班级: },+4表示模4加法,						级序号: :是	2	
3 的阶数是	4	o							
2. 设 <i>A</i> ={a, b, c	,d} , <i>A</i> 上二元运算	算如下 :							
		*			c				
		a	a	b	c	d			
		b	b	c	d	a			
		c	c	d	c d a b	b			
		d	d	a	b	c			

那么代数系统 < A, * > 的幺元是 _____a ___, b 的逆元为 _____d ___, c 的逆元为 _____c

3. 以下两个置换是 S_5 中的置换,其中

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 3 & 1 \end{pmatrix}$$

以不交的轮换之积形式写出 $\alpha\circ\beta=$ (13452)

- 4. 下列说法错误的是 CE 。
 - A. 在群中消去率成立; B. 域一定是整环; C. $< Z, +, \times >$ 是域,其中 Z 是整数集;
 - D. 设 S={1,2},则 S 在普通加法和普通乘法运算下都不封闭; E. 阶数大于 1 的群中可能存在零元。
- 5. 设S是非负整数集,×是关于数的普通乘法运算,则 B 。
 - A. $\langle S, \times \rangle$ 是群; B. $\langle S, \times \rangle$ 是有幺元的半群;
 - C. $\langle S, \times \rangle$ 是无幺元的半群; D. $\langle S, \times \rangle$ 不是群, 也不是半群。

二. 证明与解答

1. 设 $Z_6 = \{0,1,2,3,4,5\}$, +₆为模6加法运算。证明: Z_6 与+₆运算构成群。

证明:

- (1) $\forall a,b \in Z_6, a +_6 b \in Z_6$ 所以运算 $+_6$ 在集合 Z_6 上是封闭的。
- (2) $\forall a,b,c \in \mathbb{Z}_6$,有 $(a+_6b)+_6c=a+_6(b+_6c)$,故运算 $+_6$ 是可结合的。
- (3) $\forall a \in Z_6$, $a +_6 0 = 0 +_6 a = a$, 故 0 是幺元。
- (4) 0的逆元是0,对于除0外任一元素 $a \in Z_6$,因为 $a +_6 (6-a) = (6-a) +_6 a = 0$,因此6-a是a的逆元。由此可知 Z_6 与 $+_6$ 运算构成群。

2. (8 分)设 Z 为整数集合,V = < Z, * > , * 是二元运算,定义为对任意的 $x, y \in Z$,有 x * y = x + y - 2 。 请证明: V 是群。

证明: (1) 因为对于 Z 中的任意两个元素 x 与 y,满足 $x*y=x+y-2\in Z$,即*运算在 Z 上封闭;

(2)*运算可结合,对任意 $x, y, z \in Z$

$$x*(y*z) = x*(y+z-2) = x+y+z-2-2=x+y+z-4$$

 $(x*y)*z = (x+y-2)*z = x+y-2+z-2=x+y+z-4$

所以 x*(y*z)=(x*y)*z;

- (3) 对 Z 中的任意元素 x,因为 2*x=2+x-2=x,x*2=x+2-2=x,所以*运算的幺元是 2;
- (4) 任意 $x \in \mathbb{Z}$, $x^*(4-x) = (4-x)^*x = 2$, 所以 x 的逆元为 4-x。

由上述可知,V = < Z, * > 是群。

3. $< Z_6, +_6 >$ 是一个群,这里 $+_6$ 是模 6 加法, $Z_6 = \{0,1,2,3,4,5\}$,试求出 $< Z_6, +_6 >$ 的所有子群及其相应陪集。

解: 取 Z_6 的子集 $S_1 = \{0\}$, $S_2 = \{0,3\}$, $S_3 = \{0,2,4\}$, $S_4 = \{0,1,2,3,4,5\} = Z_6$ 子群有 $<\{0\},+_6>$; $<\{0,3\},+_6>$; $<\{0,2,4\},+_6>$; $<\{0,1,2,3,4,5\},+_6>$ $<\{0,3\},+_6>$ 的陪集: $\{0\}$; $\{1\}$; $\{2\}$; $\{3\}$; $\{4\}$; $\{5\}$ $<\{0,3\},+_6>$ 的陪集: $\{0,3\}$; $\{1,4\}$; $\{2,5\}$ $<\{0,2,4\},+_6>$ 的陪集: $\{0,2,4\}$; $\{1,3,5\}$ $<\{0,1,2,3,4,5\},+_6>\}$ 的陪集: $\{0,1,2,3,4,5\}$

4. 设 Z 为整数集合, V = < Z, *>,*是二元运算,定义为: x * y = x + y - xy.请证明: V 是含幺半群而不是群。

证明:(1)*运算在 Z 上封闭;

(2) *运算可结合,对任意 $a, b, c \in \mathbb{Z}$

$$a*(b*c) = a*(b+c-bc) = a+b+c-bc-a(b+c-bc) = a+b+c-ab-ac-bc+abc$$

 $(a*b)*c = (a+b-ab)*c = a+b-ab+c-(a+b-ab)c = a+b+c-ab-ac-bc+abc$

所以 a*(b*c) = (a*b)*c;

- (3)*运算的幺元是0;
- (4) 任意 $x \in \mathbb{Z}$, x*1=1*x=1, 所以 1 是零元,它没有逆元。由上述可知,故 $V = < \mathbb{Z}, * >$ 是含幺半群而不是群。