

Embedded System Course

Lecture 9: Peripheral I2C

Guideline for training material development in Powerpoint format (please delete this slide after completing the material)

- Considering to the lesson duration, it is recommended to design the slides where each of them takes in average about 3 minutes to present. Time for exercise and case-study is estimated and allocated separately>
- <The author may use the Notes part to provide more detail information for instructor. Slides and Notes are to be printed and given to trainer as Instructor manual>

Lesson Objectives

- Understanding basis concepts about I2C and how to transmit/receive data via I2C bus
- Understanding on how to configure the KL46 I2C module.

Table of contents

- Introduction to I2C
- Freedom KL46 I2C

Section 1: Introduction to I2C

Requirements and Problems

Requirements and Problems

Customer requirements:

- Serial and synchronous
- 2 wires
- Large number of devices
- Multi-masters, multi-slaves
- 2 devices communicate at a time
- Switching device role runtime
- Handshake and Plug-play

Requirements and Problems

UART	SPI		
Asynchronous serial	Synchronous serial		
2 wires	>4 wires		
2 devices	Multiple-devices		
-	One master, multi-slave		
-	Not support switch role runtime		
Addition wires for handshake	Addition wires for handshake		

Problem #1

- Synchronous serial
- Two-wires
- ⇒ 1 wire for synchronous clock
- \Rightarrow 1 wire for data
- Large number of devices
- Multi-masters, multi-slaves
- Switching device role runtime
- ⇒ 2 wires are both **Input** and **Output**

Problem #1

GPIO modes:

- Output:
 - ✓ Push-pull
 - ✓ Open-drain
- Input:
 - ✓ Analog
 - ✓ Floating
 - ✓ Pull down
 - ✓ Pull up

Solution #1

Push-pull

Solution #1

Open drain

Which master is ignored on the bus?

Problem #2

Semiconductor devices always contain capacitance

- ⇒ Pull-up resister with high resistance value will decrease frequency of this communication protocol.
- ⇒ But lower resistance value will be cause of higher current (I) in circuit.

Solution #2

- Provide devices, PCB with lower capacitance value
- Decrease number of devices in circuit to decrease capacitance of circuit
- Customers have to calculate value of the pull-up resisters.

Problem #3

How do master select one slave to communicate at a time?

• How do master and slave handshake, plug-play?

Handshake and communication

Solution #3

Provide each device in this bus a unique address

- Handshaking and Plug-play:
 - ✓ 1 bit ACK/ NACK after each byte
 - ✓ Slave controls the clock

Inter integrated circuit introduction

Inter integrated circuit introduction

- Speed:
 - ✓ Standard mode: up to 100 kbit/s
 - ✓ Fast mode: up to 400 kbit/s
 - ✓ Fast mode plus: up to 1Mbit/s
 - ✓ High-speed mode: up to 3.4Mbit/s
 - ✓ Ultra-fast mode: up to 5Mbit/s (unidirectional bus)
- Max capacitance load: 400pF
- Address length: 7 or 10 bit
- Voltage level: various, typical voltages used are 1.8V, 3.3V, 5V

Start and Stop

ACK and NACK

Data transmission

- Master Controls SDA Line
- Slave Controls SDA Line

Write to One Register in a Device

Data reception

- Master Controls SDA Line
- Slave Controls SDA Line

Read From One Register in a Device

I2C procedure

- 1. Wait the bus is free
- 2. Send START
- 3. Provide CLOCK
- 4. Send ADDRESS, R/W bit
- 5. Receive ACK/NACK
- Send or receive DATA
- 7. Receive ACK/NACK after each 8bit
- 8. Send STOP

Pull-up resistor

$$R_{P}(min) = \frac{\left(V_{CC} - V_{OL}(max)\right)}{I_{OL}} \qquad R_{p}(max)$$

$$R_{p}(max) = \frac{t_{r}}{\left(0.8473 \times C_{b}\right)}$$

	Parameter	Standard Mode (Max)	Fast Mode (Max)	Fast Mode Plus (Max)	Unit
t _r	Rise time of both SDA and SCL signals	1000	300	120	ns
C _b	Capacitive load for each bus line	400	400	550	pF
V _{OL}	Low-level output voltage (at 3 mA current sink, $V_{CC} > 2 \text{ V}$)	0.4	0.4	0.4	V
	Low-level output voltage (at 2 mA current sink, $V_{CC} \le 2 \text{ V}$)	_	0.2 × V _{CC}	0.2 × V _{CC}	V

Section 1: Summary

- I2C characteristics
- Data transmission and reception

Section #1: Q&A

Section 2: Freedom KL46 I2C

Freedom KL46 I2C introduction

KL46 I2C main features

- I2C bus specification support
- Software-selectable acknowledge bit
- Interrupt-driven byte-by-byte data transfer
- Arbitration-lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- Bus busy detection
- General call recognition
- DMA support
- Support for System Management Bus (SMBus) Specification, version 2

12C interconnections

I2C functional block diagram

Initialization

Slave:

- 1. 1. Write: Control Register 2
 - √ to enable or disable general call
 - ✓ to select 10-bit or 7-bit addressing mode
- 2. Write: Address Register 1 to set the slave address
- 3. Write: Control Register 1 to enable the I2C module and interrupts
- 4. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
- 5. Interrupt routine

Initialization

Master:

- 1. Write: Frequency Divider register to set the I2C baud rate
- 2. Write: Control Register 1 to enable the I2C module and interrupts
- 3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
- 4. Initialize RAM variables used to achieve the routine shown in the following figure
- 5. Write: Control Register 1 to enable TX
- 6. Write: Control Register 1 to enable MST (master mode)
- 7. Write: Data register with the address of the target slave

Further study

- I2C Ultra-fast mode
- /3C
- SMBus
- PMBus
- IPMI
- ATCA
- DDC

References

- NXP UM10204 I2C-bus specification and user manual Rev.
 6 4 April 2014
- 2. TI SLVA704 Understanding the I2C Bus June 2015
- Philips Semiconductors AN10216-01 I2C Manual March 24, 2003
- 4. TI SLVA689 I2C Bus Pullup Resistor Calculation Feb 2015
- 5. NXP KL46 Sub-Family Reference Manual Rev. 3, July 2013
- 6. NXP I2C for Kinetis MCUs

Lesson Summary

Introduction to I2C

- ✓ Open-drain pin
- √ Pull-up resistor
- ✓ Arbitration
- ✓ Handshake, Plug-play
- **√** ...

Freedom KL46 I2C

- √ Block diagram
- ✓ Initialization
- **√** ...

Thank you

