Cyclistic Case Study Q4_2021

Hezar K

2022-11-29

This is an analysis for Cyclistic Case Study for Google Data Analytics Course. This is an analysis for 2021's fourth quarter.

STEP ONE: INSTALL REQUIRED PACKAGES AND IMPORT DATA

Install the required packages. **Tidyverse** package to import and wrangling the data and **ggplot2** package for visualization of the data. **Lubridate** package for date parsing and **anytime** package for the datetime conversion.

- install.packages("tidyverse")
- install.packages("ggplot2")
- install.packages("lubridate")
- install.packages("anytime")

```
library(tidyverse)
library(lubridate)
library(data.table)
library(ggplot2)
library(anytime)
```

Import data from local drive.

```
0ct21 <- read_csv("202110-divvy-tripdata.csv")
Nov21 <- read_csv("202111-divvy-tripdata.csv")
Dec21 <- read_csv("202112-divvy-tripdata.csv")</pre>
```

STEP TWO: EXAMINE THE DATA

Examine the dataframe for an overview of the data. Review column names, **colnames()**. Then, we need to combine all data one dataframe. Then we examine dataframes to find dimensions, **dim()**, the first, **head()**, and the last, **tail()**, six rows in the dataframe, the summary, **summary()**, statistics on the columns of the dataframe, and review the data type structure of columns, **str()**.

```
colnames(Nov21)
```

```
colnames(Dec21)
```

View(q4 2021)

Since all column names are the same. We can combine the data for each month into quarters.

```
q4_2021 <- bind_rows(Oct21, Nov21, Dec21)
```

```
nrow(q4_2021)
```

```
## [1] 1238744
```

```
dim(q4_2021)
```

```
## [1] 1238744 13
```

head(q4 2021)

```
## # A tibble: 6 × 13
##
                     ridea…¹ started_at
                                                                         start...2 start...3
                                                    ended at
   ride id
                     <chr> <dttm>
## 1 620BC6107255B... electr... 2021-10-22 12:46:42 2021-10-22 12:49:50 Kingsb... KA1503..
## 2 4471C70731AB2... electr... 2021-10-21 09:12:37 2021-10-21 09:14:14 <NA>
## 3 26CA69D43D15E... electr... 2021-10-16 16:28:39 2021-10-16 16:36:26 <NA>
## 4 362947F0437E1... electr... 2021-10-16 16:17:48 2021-10-16 16:19:03 <NA>
                                                                                  <NA>
## 5 BB731DE2F2EC5... electr... 2021-10-20 23:17:54 2021-10-20 23:26:10 <NA>
                                                                                  <NA>
## 6 7176307BBC097... electr... 2021-10-21 16:57:37 2021-10-21 17:11:58 <NA>
                                                                                  <NA>
## # ... with 7 more variables: end station name <chr>, end station id <chr>,
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
       {\tt member\_casual~<chr>,~and~abbreviated~variable~names~^1rideable\_type,}
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

tail(q4 2021)

```
## # A tibble: 6 × 13
##
                                                   ended at
    ride id
                     ridea…¹ started_at
                                                                         start...2 start...3
##
     <chr>
                     <chr> <dttm>
                                                   <dttm>
                                                                         <chr> <chr>
## 1 92BBAB97D1683... electr... 2021-12-24 15:42:09 2021-12-24 19:29:35 Canal ... 13341
## 2 847431F3D5353... electr... 2021-12-12 13:36:55 2021-12-12 13:56:08 Canal ... 13341
## 3 CF407BBC3B9FA... electr... 2021-12-06 19:37:50 2021-12-06 19:44:51 Canal ... 13341
## 4 60BB69EBF5440... electr... 2021-12-02 08:57:04 2021-12-02 09:05:21 Canal ... 13341
## 5 C414F654A2863... electr... 2021-12-13 09:00:26 2021-12-13 09:14:39 Lawnda... 362.0
## 6 37AC57E34B2E7... classi... 2021-12-13 08:45:32 2021-12-13 08:49:09 Michig... TA1309...
## # ... with 7 more variables: end_station_name <chr>, end_station_id <chr>,
     start lat <dbl>, start lng <dbl>, end lat <dbl>, end lng <dbl>,
## #
       member casual <chr>, and abbreviated variable names ¹rideable type,
## #
       <sup>2</sup>start station name, <sup>3</sup>start station id
```

summary(q4_2021)

```
##
      ride id
                      rideable_type
                                           started at
   Length: 1238744
                      Length: 1238744
                                         Min. :2021-10-01 00:00:09.00
##
                                         1st Qu.:2021-10-14 18:54:24.25
##
   Class :character
                      Class :character
##
   Mode :character
                      Mode :character
                                         Median :2021-10-31 11:33:29.50
                                         Mean :2021-11-04 20:35:06.04
##
##
                                         3rd Qu.:2021-11-22 21:52:28.25
##
                                              :2021-12-31 23:59:48.00
##
##
      ended at
                                    start station name start station id
                                                      Length: 1238744
##
   Min. :2021-10-01 00:03:11.00
                                    Length:1238744
##
   1st Qu.:2021-10-14 19:08:30.75
                                    Class :character
                                                      Class :character
                                                      Mode :character
   Median :2021-10-31 11:51:44.50
                                    Mode :character
##
   Mean :2021-11-04 20:52:02.20
##
   3rd Qu.:2021-11-22 22:09:58.75
##
   Max. :2022-01-03 17:32:18.00
##
##
   end_station_name
                      end station id
                                           start_lat
                                                          start_lng
##
                                         Min. :41.64 Min. :-87.84
   Lenath: 1238744
                      Length: 1238744
   Class :character Class :character
                                         1st Qu.:41.88
                                                        1st Qu.:-87.66
##
   Mode :character Mode :character
                                         Median :41.90
                                                        Median :-87.64
                                         Mean :41.90
##
                                                        Mean :-87.65
##
                                         3rd Qu.:41.93
                                                        3rd Qu.:-87.63
##
                                               :42.07
                                                        Max. :-87.52
                                         Max.
##
##
      end lat
                      end lng
                                    member casual
##
   Min. :41.39
                   Min. :-88.97
                                    Length: 1238744
##
   1st Qu.:41.88
                  1st Qu.:-87.66
                                    Class : character
##
   Median :41.90
                   Median :-87.64
                                    Mode :character
##
   Mean :41.90
                   Mean :-87.65
##
   3rd Qu.:41.93
                   3rd Qu.:-87.63
##
   Max. :42.13
                   Max. :-87.52
##
   NA's
         :819
                   NA's :819
```

```
## spc_tbl_ [1,238,744 x 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
                       : chr [1:1238744] "620BC6107255BF4C" "4471C70731AB2E45" "26CA69D43D15EE14" "362947F0437E1
## $ ride_id
514" ...
                       : chr [1:1238744] "electric bike" "electric bike" "electric bike" ...
## $ rideable_type
                       : POSIXct[1:1238744], format: "2021-10-22 12:46:42" "2021-10-21 09:12:37" ...
##
   $ started at
                       : POSIXct[1:1238744], format: "2021-10-22 12:49:50" "2021-10-21 09:14:14"
##
   $ ended at
##
   $ start station name: chr [1:1238744] "Kingsbury St & Kinzie St" NA NA NA ...
## $ start_station_id : chr [1:1238744] "KA1503000043" NA NA NA ...
## $ end station name : chr [1:1238744] NA NA NA NA ...
## $ end station id : chr [1:1238744] NA NA NA NA ...
## $ start lat
                     : num [1:1238744] 41.9 41.9 41.9 41.9 ...
##
   $ start_lng
                       : num [1:1238744] -87.6 -87.7 -87.7 -87.7 -87.7 ...
##
   $ end_lat
                       : num [1:1238744] 41.9 41.9 41.9 41.9 ...
##
   $ end_lng
                       : num [1:1238744] -87.6 -87.7 -87.7 -87.7 -87.7 ...
                      : chr [1:1238744] "member" "member" "member" "member" ...
##
   $ member casual
    - attr(*, "spec")=
##
##
    .. cols(
##
         ride_id = col_character(),
     . .
         rideable_type = col_character(),
##
     . .
         started_at = col_datetime(format = ""),
##
     . .
         ended_at = col_datetime(format = ""),
##
##
         start station name = col character(),
    . .
##
         start station id = col character(),
    . .
##
         end_station_name = col_character(),
     . .
##
         end station id = col character(),
     . .
##
         start lat = col double(),
     . .
##
         start lng = col double(),
##
         end lat = col double(),
     . .
##
         end lng = col double(),
    . .
##
         member_casual = col_character()
    . .
##
    ..)
##
    - attr(*, "problems")=<externalptr>
```

Create new columns as for date, month, day, year, day_of_week, and ride_length in seconds.

```
q4_2021$date <- as.Date(q4_2021$started_at)
q4_2021$month <- format(as.Date(q4_2021$date), "%m")
q4_2021$month <- month.name[as.numeric(q4_2021$month)]
q4_2021$day <- format(as.Date(q4_2021$date), "%d")
q4_2021$year <- format(as.Date(q4_2021$date), "%Y")
q4_2021$day_of_week <- format(as.Date(q4_2021$date), "%A")
q4_2021$ride_length <- difftime(q4_2021$ended_at,q4_2021$started_at)</pre>
```

Convert *ride_length* column to numeric in order to run calculations on the data. First, check to see if the data type is numeric, and then convert if needed.

```
is.numeric(q4_2021$ride_length)
```

```
## [1] FALSE
```

Recheck ride_length data type.

```
q4_2021$ride_length <- as.numeric(as.character(q4_2021$ride_length))
is.numeric(q4_2021$ride_length)</pre>
```

```
## [1] TRUE
```

STEP THREE: CLEAN DATA

na.omit() will remove all NA from the dataframe.

```
q4_2021 <- na.omit(q4_2021)
```

Remove rows with the ride_id column character length is not 16. This will remove all the scientific ride ids that we noticed while examining the data.

```
q4_2021 <- subset(q4_2021, nchar(as.character(ride_id)) == 16)</pre>
```

Remove rows with the ride_length less than 60 seconds 1 minute.

```
q4_2021 <- subset (q4_2021, ride_length > 59)
```

STEP FOUR: ANALYZE DATA

Analyze the dataframe by find the mean, median, max (maximum), and min (minimum) of ride_length.

```
mean(q4_2021$ride_length)
 ## [1] 973.1662
 median(q4_2021$ride_length)
 ## [1] 588
 max(q4_2021$ride_length)
 ## [1] 2442301
 min(q4_2021$ride_length)
 ## [1] 60
Run a statistical summary of the ride_length.
 summary(q4_2021$ride_length)
 ##
         Min.
                 1st Qu.
                             Median
                                          Mean
                                                  3rd Qu.
                                                                Max.
 ##
          60.0
                   349.0
                              588.0
                                         973.2
                                                   1026.0 2442301.0
Compare the members and casual users
 aggregate(q4_2021\$ride_length \sim q4_2021\$member_casual, FUN = mean)
 ##
      q4_2021$member_casual q4_2021$ride_length
 ## 1
                       casual
                                         1527.0706
 ## 2
                       member
                                          693.3502
 aggregate(q4_2021$ride_length \sim q4_2021$member_casual, FUN = median)
      {\tt q4\_2021\$ member\_casual} \ {\tt q4\_2021\$ ride\_length}
 ##
 ## 1
                       casual
 ## 2
                       member
                                                508
 aggregate(q4_2021$ride_length \sim q4_2021$member_casual, FUN = max)
 ##
      q4_2021$member_casual q4_2021$ride_length
 ## 1
                                            2442301
                       casual
 ## 2
                                              87634
                       member
 aggregate(q4_2021\$ride_length \sim q4_2021\$member_casual, FUN = min)
 ##
      q4_2021$member_casual q4_2021$ride_length
 ## 1
                       casual
 ## 2
                                                 60
                       member
Aggregate the average ride length by each day of the week for members and users.
```

 $aggregate(q4_2021\$ride_length \sim q4_2021\$member_casual + q4_2021\$day_of_week, \; FUN = mean)$

```
\verb|q4_2021$member_casual | \verb|q4_2021$| day_of_week | \verb|q4_2021$| ride_length||
##
## 1
                                           Friday
                                                            1427.9125
                      casual
## 2
                      member
                                           Friday
                                                              680.4321
## 3
                      casual
                                           Monday
                                                             1476.6850
## 4
                                           Monday
                      member
                                                              659.2894
## 5
                      casual
                                          Saturday
                                                              1686.1116
## 6
                      member
                                         Saturday
                                                              785.6137
## 7
                                                              1851.4760
                      casual
                                           Sunday
## 8
                      member
                                           Sunday
                                                              786.2086
## 9
                      casual
                                         Thursday
                                                             1267.0465
## 10
                                         Thursday
                                                              648.8842
                      member
## 11
                      casual
                                          Tuesday
                                                              1280.5640
## 12
                      member
                                          Tuesday
                                                               658.3114
## 13
                      casual
                                        Wednesday
                                                              1273.8111
## 14
                                                              667.3871
                      member
                                        Wednesday
```

Sort the days of the week in order.

```
q4_2021$day_of_week <- ordered(q4_2021$day_of_week, levels=c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"))
```

Assign the aggregate the average ride length by each day of the week for members and users to x.

```
 x <- aggregate(q4\_2021\$ride\_length \sim q4\_2021\$member\_casual + q4\_2021\$day\_of\_week, \ FUN = mean)   head(x)
```

```
##
     q4_2021$member_casual q4_2021$day_of_week q4_2021$ride_length
## 1
                    casual
                                         Sunday
                                                         1851.4760
## 2
                    member
                                         Sunday
                                                           786.2086
## 3
                    casual
                                         Monday
                                                          1476.6850
## 4
                    member
                                         Monday
                                                           659.2894
## 5
                                        Tuesday
                    casual
                                                          1280.5640
## 6
                    member
                                        Tuesday
                                                           658.3114
```

Find the average ride length of member riders and casual riders per day and assign it to y.

```
## # A tibble: 6 × 4
##
     member casual weekday number of rides average duration
##
    <chr>
                    <int>
                                      <int>
## 1 casual
                                      57480
                                                        1851.
                         1
## 2 casual
                         2
                                      29595
                                                        1477.
## 3 casual
                         3
                                      32745
                                                        1281.
## 4 casual
                         4
                                      33677
                                                        1274.
## 5 casual
                                      29866
                                                        1267.
## 6 casual
                         6
                                      44701
                                                        1428.
```

Analyze the dataframe to find the frequency of member riders, casual riders, classic bikes, docked bikes, and electric bikes.

```
table(q4_2021$member_casual)
```

```
##
## casual member
## 301275 596383
```

```
table(q4_2021$rideable_type)
```

```
##
## classic_bike docked_bike electric_bike
## 562130 34909 300619
```

```
table(q4_2021$day_of_week)
```

```
##
##
      Sunday
                          Tuesday Wednesday
                                               Thursday
                 Monday
                                                            Friday
                                                                    Saturday
##
      123369
                 111319
                           131671
                                      131883
                                                 112884
                                                            132024
                                                                      154508
```

```
table(q4_2021$month)
```

```
## December November October
## 174005 252189 471464
```

STEP FIVE: VISUALIZATION

Display full digits instead of scientific number.

```
options(scipen=999)
```

Plot the number of rides by user type during the week.

```
q4_2021 %>%
  mutate(day_of_week) %>%
  group_by(member_casual,day_of_week) %>%
  summarise(number_of_rides = n(), average_duration = mean(ride_length), .groups = 'drop') %>%
  arrange(member_casual, day_of_week) %>%
  ggplot(aes(x = day_of_week, y = number_of_rides, fill = member_casual)) +
  geom_col(position = "dodge")+
labs(x = "Days of Week",
    y = "Number of Rides",
    title= "Days of the Week")
```

Days of the Week

Plot the duration of the ride by user type during the week.

Days of the Week vs Average Duration

Create new dataframe for plots for weekday trends vs weekend trends.

```
mc<- as.data.frame(table(q4_2021$day_of_week,q4_2021$member_casual))</pre>
```

Rename columns

```
mc<-rename(mc, day_of_week = Var1, member_casual = Var2)
head(mc)</pre>
```

```
##
     day_of_week member_casual Freq
## 1
                        casual 57480
          Sunday
## 2
          Monday
                        casual 29595
## 3
         Tuesday
                        casual 32745
## 4
       Wednesday
                        casual 33677
## 5
                        casual 29866
        Thursday
## 6
          Friday
                        casual 44701
```

Weekday trends (Monday through Friday).

Weekend trends (Sunday and Saturday).

Weekends Trends

Create dataframe for member and casual riders vs ride type

```
rt<- as.data.frame(table(q4_2021$rideable_type,q4_2021$member_casual))
```

Rename columns.

```
rt<-rename(rt, rideable_type = Var1, member_casual = Var2)
head(rt)</pre>
```

```
##
     rideable_type member_casual
## 1 classic bike
                          casual 155180
## 2
      docked bike
                          casual 34909
## 3 electric bike
                          casual 111186
## 4 classic bike
                          member 406950
## 5
      docked bike
                          member
## 6 electric_bike
                          member 189433
```

Plot for bike user vs bike type.

Riders and Ride Types

Create vector of month names for Q4 2021

```
q4_months <- c("October", "November", "December")</pre>
```

Subset month.name to include only Q4 2021 months

```
q4_month_names <- month.name[match(q4_months, month.name)]</pre>
```

Create trips_by_month dataframe with only Q4 2021 months

```
trips_by_month <- data.frame(month = q4_month_names, count = table(q4_2021$month))</pre>
```

Set the levels of the month variable in the trips_by_month dataframe

```
trips_by_month$month <- factor(trips_by_month$month, levels = c("October", "November", "December"))
ggplot(trips_by_month, aes(x = month, y = count.Freq)) +
geom_bar(stat = "identity", fill = "#F8766D") +
labs(x = "Month", y = "Number of Rides", title = "Number of Rides by Month in Q4 2021")</pre>
```

Number of Rides by Month in Q4 2021 400000 100000 October November December

Month

STEP SIX: EXPORT ANALYZED DATA

Save the analyzed data as a new file. fwrite(q4_2021, "q4_2021.csv")