Row Space, Column Space, and Null Space / column vector (Cz) now space of A: (now(A)) the subspace of R spanned by the now vectors of A column space of A: (col(A)) the subspace of Rm spanned by the column vectors of A null space of A (null (A)) the solution space of AX = 0(a subspace of R") Important Concepts: · For Az = b, the relationships among the solutions, now space, column space, null space of A? o now space in column space ais null space home quacew

Say
$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \alpha_{m} & \alpha_{mn} & \cdots & \alpha_{mn} \end{bmatrix}$$

Then $AX = X_1 \cdot C_1 + X_2 \cdot C_2 + \cdots + X_n \cdot C_n = b$

$$AX = b \text{ is consistent}$$

$$b \text{ is expressible as a linear combination}$$
of the column vectors of $A \Leftrightarrow b \in col(A)$

Example Let $AX = b$, where $A = \begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix}$

$$Solve \text{ the system by Gaussian elimination:}$$

$$\begin{cases} X_1 = 2 \\ X_2 = -1 \\ X_3 = 3 \end{cases}$$

$$\Rightarrow = \begin{bmatrix} -1 \\ 2 \end{bmatrix} + (-1) \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} -3 \\ -2 \end{bmatrix} = \begin{bmatrix} -9 \\ -3 \end{bmatrix}$$

The relationship between $AX = 0$ and $AX = b$

Example: $AX = b$

Example: $AX = b$

$$\begin{bmatrix} X_1 & X_2 & \cdots & X_n \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_2 & \cdots & X_n \\ X_n & X_n \\ X_n & X_n \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 0 & 5 & 10 & 0 & 15 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_2 & \cdots & X_n \\ X_1 & X_2 & \cdots & X_n \\ X_1 & X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_2 & \cdots & X_n \\ X_1 & X_2 & \cdots & X_n \\ X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_1 & X_2 & \cdots & X_n \\ X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \\ X_1 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \\ X_1 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \\ X_1 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_1 & \cdots & X_n \\ X_2 & \cdots & X_n \end{bmatrix}$$

$$\begin{bmatrix} X_1 & X_1 & X_1 & \cdots & X_n \\ X_1 & \cdots &$$

Theorem If x_0 is any solution of a consistent AX = b, and if $S = \{V_1, V_2, -\cdot\cdot, V_k\}$ is a basis for null (A), then every solution of AX = b can be expressed in the form $X = X_0 + C_1V_1 + C_2V_2 + \cdots + C_kV_k$.

Conversely, for all choices of scalars C1, Cz, --, Ck, the vector X in this formula is a solution of AX = b.

 X_0 : particular solution of AX = b X_h : general solution of AX = 0

(sketch of the proof): Let Xo be any solution of AX = b,

W = null (A)

(E) Let $X \in X_0 + W$ $\Rightarrow X = X_0 + W$, where $AX_0 = b$ and AW = 0 $\Rightarrow AX = A(X_0 + W) = AX_0 + AW = b + 0 = b$

(3) Let X be any solution of AX = b. Let $W = X - X_0$ Note that $A(X - X_0) = AX - AX_0 = b - b = 0$ $W = X - X_0 \in \text{null}(A) \Rightarrow X \in X_0 + W$

4.8.3
Theorem (a) Row equivalent matrices have the same now space.
(b) Row equivalent matrices have the
Note: A, B are row equivalent:
Note: A , B A \longrightarrow B
A
elementary
sketch (a) elementary row operations { multiplication alementary row operations { linear combinations
Sketch (a) tow operations of multiplication
(b) elementary now operations
Do NoT Change the solution space.
Note: Elementary row operations could change
Note: Elementary row operations could change the column space of a matrix!!
= (A) (-2)
Example $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$
. All the second of the second
To = 3 / De man To de de de de la major de
col(A) = s[$col(B) = t[$
$col(B) = s \begin{pmatrix} 1 \\ 2 \end{pmatrix}, col(B) = t \begin{pmatrix} 1 \\ 0 \end{pmatrix}, ter$
48,4 = ZA to nothbe SER il mond with all X retory of
Theorem If a matrix is in row echelon form, then
the now vectors with the leading is (the nonzero now vectors) form a basis for the row space of the matrix,
tectors) form at the form the form of the land,
and the column vectors with the leading 1's of the row
vectors form a basis for the column space of the matrix.
O I at O WAS been do MA world to a few and the second to t
Remark: It finds the bases for row (A) and col(A)
at the same time for a matrix A
if A is in row echelon form.
Water At S - 3.) - A3 - A3 - A3 - A4 at A1

Example Find bases for row(R) and col(R) where $R = \begin{bmatrix} 1 & -2 & 5 & 0 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ pol): Since R is already in now echelon form, (N=[110-27 50 0 3] when you are proposed at the loss bear rz = [0 1 3 0 0] 13 = [0 0 0 1 51] w (A) way of 222d a book shows {r, {r, r, r, r}} is a basis for row(R) And, $C_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad C_{2} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad C_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ fC1, C2, C3} is a basis for col(R). Exercise: Find a basis of row (A), where $A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 2 & -4 & 2 & 5 & 4 \end{bmatrix}$

Theorem If A and B are 10 w equivalent matrices. Then:

(a) A given set of column vectors of A is linearly independent if and only if the corresponding column vectors of B are linearly independent.

(b) A given set of column vectors of A forms a basis for col(A) if and only if the corresponding column vectors of B form a basis for col(B)

Example Find a basis for row (A), where

$$A = \begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{bmatrix}$$

(sol): Method 1: now echelon form of A

Method 2: find a basis for col (AT)

$$A^{T} = \begin{bmatrix} 1 & 2 & 0 & 2 \\ -2 & -5 & 5 & 6 \\ 0 & -3 & 15 & 18 \\ 0 & -2 & 10 & 8 \\ 3 & 6 & 0 & 6 \end{bmatrix}$$

$$\Rightarrow a \text{ basis for } \text{row}(A):$$

$$Y_1 = \begin{bmatrix} 1 & -2 & 0 & 0 & 3 \end{bmatrix}$$

$$Y_2 = \begin{bmatrix} 2 & -5 & -3 & -2 & 6 \end{bmatrix}$$

$$Y_3 = \begin{bmatrix} 2 & 6 & 18 & 8 & 6 \end{bmatrix}$$

A basis for col(AT):

$$C_{1} = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \quad C_{2} = \begin{bmatrix} 2 \\ -5 \\ -3 \\ -2 \\ 6 \end{bmatrix},$$

$$C_3 = \begin{bmatrix} 2 \\ 6 \\ 18 \\ 8 \\ 6 \end{bmatrix}$$

```
Rank, Nullity, and the Fundamental Matrix Spaces
Theorem dim (row(A)) = dim (col(A))
 & Remark: It's true by previous examples. Right?
   Let R be any row echelon form of A.
    dim(row(A)) = dim(row(R))) 4.8.4

dim(col(A)) = dim(col(R))
  Definition (Rank)
       rank(A) = dim(row(A)) = dim(col(A))
  Definition (Nullity)
       nullity(A) := dim(null(A))
  Example: Find rank (A) and nullity (A), where
A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}
  (50l): The reduced now echelon form of A:
       \begin{bmatrix} 1 & 0 & -4 & -28 & -37 & 13 \\ 0 & 1 & -2 & -12 & -16 & 5 \end{bmatrix} idim (row (A)) = dim(col(A))
         0 0 10 0 0 0 10 - it rank(A)=2
  Moreover,
       x_1 - 4x_3 - 28x_4 - 37x_5 + 13x_6 = 0
```

Remark: For an mxn matrix A, $rank(A) \leq min(m, n)$ 5.9.2 Theorem (The Dimension Theorem) If A is a matrix with n columns, then rank(A) + nullity(A) = n(sketch of the proof): > accounts for the "rank" # free variables of AX=0 (A) Theorem If A & Fmxn then (a) rank (A) = the number of leading variables in the general solution of AX = 0(b) nullity (A) = the number of parameters in the general solution of AX = 0 Example: If $A \in \mathbb{F}^{S \times 7}$, rank (A) = 3then nullity (A) = 7 - rank (A) = 4 => 4 parameters in the general solution of AX=0 (2) If A = # SX7, AX = 0 has 2 two-dimensional solution space then rank (A) = 7 - nullity(A) = 7 - 2 = 5

```
If AX=b is a consistent linear system of
Hence,
       m equations in n unknowns
  and if rank(A) = r
 then the general solution of AX = b contains n-r parameters.
 & Fundamental Spaces of a Matrix
    16 The request row scholar to (AT) wor I (A) won
    col(A) A is expressible as a gradual (AT) los and (AT) los
    null (A) , in ull (AT) we not traterior as d = ZA (9)
  Only the four of them are distinct!
   =) fundamental spaces of A
 Theorem For any matrix A, rank (A) = rank (AT)
 Therefore, for A \in F^{m \times n} (m rows, n columns)
rank(A^T) + nullity(A^T) = m
=> rank (A) + nullity (AT) = m
   : If rank (A)= 1, then it Altopates do on in
      dim(row(A)) = V, dim(col(A)) = V
dim (null(A)) = n-r, dim(null(AT)) = m-r
```

Enlarge the previous equivalence theorem

If $A \in \mathbb{F}^{n \times n}$ in which there are no duplicate vows and no duplicate columns, then the following statements are equivalent.

- (a) A is invertible
- (b) AX = 0 has only the trivial solution
- (C) The reduced row echelon form of A is In
- (d) A is expressible as a product of elementary matrices.
- (e) AX = b is consistent for every nx 1 matrix b.
- (f) A X = b has exactly one solution for every nx1 motrix b.
- (8) det (A) = 0
- (h) The column vectors of A are linearly independent
- (1) The row vectors of A are linearly independent
- (i) The column vectors of A span Rn
- (K) The row vectors of A span Rn
- (1) The column vectors of A form a basis for R
- (m) The now vectors of A form a basis for R"
- (n) rank (A) = n (A) (A) (A)
- (0) nullity (A) = 0