LM201 UPMC, 6 octobre 2014.

T. Leblé, leble@ann.jussieu.fr

DM1: Relations

1. Préliminaire Si E est un ensemble on note P(E) l'ensemble des parties de E. Expliciter une injection de E dans P(E). On veut montrer qu'il n'existe pas de bijection de E vers P(E). Si $f: E \to P(E)$ est une fonction on note B_f l'ensemble suivant

$$B_f := \{ x \in E, x \notin f(x) \}.$$

Montrer que B_f ne peut pas appartenir à l'image de f. Conclure qu'aucune application de E vers P(E) ne peut être surjective.

Définitions Soit E un ensemble. Une relation \mathcal{R} sur E est une partie de $E \times E$. Pour x, y dans E, si \mathcal{R} contient le couple (x, y) on dit que x est en relation avec y par \mathcal{R} et on note $x\mathcal{R}y$.

Réflexivité. On dit que \mathcal{R} est réfléxive lorsque $x\mathcal{R}x$ pour tout $x \in E$.

Symétrie. On dit que \mathcal{R} est symétrique lorsque pour tout x, y on $a: x\mathcal{R}y \Longrightarrow y\mathcal{R}x$.

Antisymétrique On dit que \mathcal{R} est antisymétrique lorsque pour tout x, y on a $x\mathcal{R}y$ et $y\mathcal{R} \Longrightarrow x = y$.

Transitivité. On dit que \mathcal{R} est transitive lorsque pour tout x, y, z on a :

$$x\mathcal{R}y \text{ et } y\mathcal{R}z \Longrightarrow x\mathcal{R}z.$$

- **2. Relations d'équivalence** On dit qu'une relation \mathcal{R} est une relation d'équivalence sur E lorsqu'elle est $r\acute{e}flexive$, $sym\acute{e}trique$ et transitive.
 - 1. Montrer que les relations suivantes sont des relations d'équivalence : l'égalité (=) sur \mathbb{R} , l'égalité modulo 5 (\equiv_5) sur \mathbb{Z} , le parallélisme (//) sur l'ensemble des droites de \mathbb{R}^2 .
 - 2. Si \mathcal{R} est une relation d'équivalence sur E et $x \in E$ on appelle "classe d'équivalence de x pour \mathcal{R} " l'ensemble

$$C_x := \{ y \in E, x \mathcal{R} y \}.$$

Montrer que l'ensemble des différentes classes d'équivalences forment une partition de E (c'est à dire que tout élément de E appartient à une et une seule classe d'équivalence).

(*) L'ensemble $C_{\mathcal{R}}$ des classes d'équivalence pour \mathcal{R} est une partie de P(E) appelée "ensemble quotient". Soit $f: E \to F$ une fonction telle que pour tout x, y, si $x\mathcal{R}y$ alors f(x) = f(y). Montrer qu'il existe une application $\tilde{f}: C_{\mathcal{R}} \to F$ telle que

$$\tilde{f}(C_x) = f(x)$$
 pour tout $x \in E$.

On dit que f "passe au quotient" en \tilde{f} .

- **3. Relations d'ordre** On dit qu'une relation \mathcal{R} est une relation d'ordre sur E lorsqu'elle est réflexive, antisymétrique et transitive. Par commodité si $x\mathcal{R}y$ pour cette relation on dira que x est "plus petit" que y.
 - 1. Montrer que les relations suivantes sont des relations d'ordre : "x inférieur ou égal à y" $(x \le y)$ sur \mathbb{R} , "a divise b" (a|b) sur \mathbb{N} , "A inclus dans B" $(A \subset B)$ sur $\mathcal{P}(F)$ (pour un ensemble F quelconque).
 - 2. On dit qu'une relation d'ordre \mathcal{R} est un ordre total lorsque pour tout x, y on a soit $x\mathcal{R}y$ soit $y\mathcal{R}x$. Parmi les relations précédentes, dire s'il s'agit d'un ordre total ou non.
 - 3. (*) Quel est la relation d'ordre "la moins totale" que l'on puisse imaginer?
 - 4. On dit qu'une relation d'ordre \mathcal{R} sur E est un "bon ordre" sur E si toute partie non vide contient un plus petit élément. Montrer qu'un bon ordre est toujours un ordre total. En considérant le cas (\mathbb{R} , \leq) montrer que la réciproque est fausse.
 - 5. Montrer qu'il existe un plus petit élément sur N pour la relation | de divisibilité? (*) Si l'on retire ce plus petit élément, montrer qu'il n'y a pas de "second" plus petit élement mais qu'il existe une infinité éléments minimaux (un élément est minimal si personne n'est plus petit que lui) : quels sont ces éléments?

Indications

- Pour le préliminaire, raisonner par l'absurde et supposer qu'il existe un antécedent y. En distinguant selon que y appartient ou non à B_f , aboutir à une contradiction.
- Q.2.1. Il est facile de vérifier que tout élément appartient à au moins une classe, il s'agit simplement qu'il ne peut pas appartenir à deux classes distinctes.
- Q.2.2. Il suffit de montrer que l'application $\tilde{f}(C_x) = f(x)$ est bien définie (a priori on peut avoir $C_x = C_y$ pour $x \neq y$. Mais qu'est-ce que cela implique sur x, y?)
- Q.2.2. Oui, non, non.
- Q.2.3 Exhiber une partie de $\mathbb R$ qui n'a pas de plus petit élément.