Baire Category &

Nowhere Dense Sets

by G. H. Meisters • January 31, 1997

The following theorem expresses a very useful property of **complete metric spaces**. It was first proved by W. F. Osgood in 1897 for the real line \mathbb{R} , and (independently) by R. Baire in 1899 for \mathbb{R}^n .

Theorem 1 (Baire Category Theorem) If a (nonempty) complete metric space E is the union of a countable family $(F_k)_{k\in\mathbb{N}}$ of closed subsets, then at least one of these closed subsets contains a nonempty open set.

Proof. Suppose no F_k contains a nonempty open set. Then, in particular, no F_k equals E. In particular $F_1 \neq E$, so CF_1 is a nonempty open set which must therefore contain an open ball $B_1 = B(x_1; \epsilon_1)$ with $0 < \epsilon_1 < \frac{1}{2}$. The set F_2 does not contain the open ball $B(x_1; \epsilon_1/2)$. Hence the nonempty open set $CF_2 \cap B(x_1; \epsilon_1/2)$ contains an open ball $B_2 = B(x_2; \epsilon_2)$ with $0 < \epsilon_2 < \frac{1}{4}$. By the **principle of inductive definition** we obtain a sequence $B_k = B(x_k; \epsilon_k)$ of open balls such that, for all integers $k \geq 1$, $0 < \epsilon_k < \frac{1}{2^k}$, $B_{k+1} \subset B(x_k; \epsilon_k/2)$, and $B_k \cap F_k = \emptyset$. In particular, the family $(F_k)_{k \in \mathbb{N}}$ must be infinite. (That is, in the finite case the proof is complete.) Since, for n < m,

$$d(x_n, x_m) \le \sum_{k=n}^{m-1} d(x_k, x_{k+1}) < \sum_{k=n}^{m-1} \frac{1}{2^{k+1}} < \frac{1}{2^n},$$

the centers x_k of these balls form a Cauchy sequence; and so converge to a point x^* of E. Since for all m > n

$$d(x_n, x^*) \le d(x_n, x_m) + d(x_m, x^*) < \frac{\epsilon_n}{2} + d(x_m, x^*)$$
 and $\lim_{m \to \infty} d(x_m, x^*) = 0$,

it follows that $d(x_n, x^*) \leq \frac{\epsilon_n}{2}$ which means that $x^* \in B_n$ for every $n \geq 1$. Therefore x^* is in none of the sets F_n , and so is not in their union which is E. But this contradicts the hypothesis of the theorem. We can only conclude that at least one of the closed sets F_k does contain a nonempty open set. This completes the proof of Theorem 1.

Definition 1 A subset N of a topological space E is said to be **nowhere dense (n. d.)** if its closure has no interior points.

Definition 2 The exterior of a set $A \subset E$, denoted $\operatorname{Ext}(A)$, is defined by $\operatorname{Ext}(A) := \operatorname{C}\bar{A}$, which is the same as $\operatorname{Int}(\operatorname{C}A)$, the interior of $(\operatorname{C}A)$.

Exercise 1 (a) Show that $C\overline{A} = Int(CA)$. (b) Also show that $CInt(A) = \overline{CA}$.

Proposition 1 A subset N of a topological space E is nowhere dense if and only if it satisfies any one, and therefore all, of the following equivalent conditions.

- (N1) Its closure has no interior points.
- (N2) Ext(N) is dense (in E).
- (N3) Every nonempty open set U contains a nonempty open set V not intersecting N.
- (N4) Its closure \overline{N} is nowhere dense.

Exercise 2 Prove the equivalence of the four conditions stated in Proposition 1.

Proposition 2 Some properties of nowhere dense sets.

- 1. A closed set is nowhere dense iff it has no interior point.
- 2. Every subset of a nowhere dense set is nowhere dense.
- 3. A nowhere dense subset N of a subspace $S \subset E$ is also nowhere dense in E.
- 4. If G is open and dense in E, then CG is nowhere dense.
- 5. If F is closed and nowhere dense, then CF is dense.

Exercise 3 Prove the five properties stated in Proposition 2.

The Baire Category Theorem can be stated a second way as follows.

Theorem 2 (Baire Category Theorem) A complete metric space cannot be expressed as a countable union of nowhere dense subsets.

Definition 3 A subset M of a topological space is said to be **meagre** (or **first category**) if it can be expressed as the countable union of nowhere dense subsets. It is said to be **nonmeagre** (or **second category**) if it is not meagre.

The Baire Category Theorem can be restated a third way as follows.

Theorem 3 (Baire Category Theorem) A complete metric space E is second category in itself.

Definition 4 A subset R of a topological space E is said to be **residual** (or **comeagre**) in E if CR is first category (meagre) in E.

Definition 5 A topological space E is called a **Baire space** if it satisfies any one, and therefore all, of the following equivalent properties:

- (B1) Every countable intersection of dense open sets in E is dense in E.
- (B2) Every countable union of nowhere dense closed sets has no interior point.
- (B3) Every meagre set in E has empty interior.
- (B4) Every nonempty open set in E is nonmeagre.
- (B5) Every residual set in E is dense in E.

Proof that (B1) \Rightarrow **(B2):** Let $F_{\sigma} = \bigcup_{n} F_{n}$ be a countable union of closed nowhere dense subsets of E. Then $G_{\delta} = \complement F_{\sigma} = \bigcap_{n} G_{n}$ (where $G_{n} = \complement F_{n}$) is a countable intersection of open dense sets in E. Therefore G_{δ} is dense in E by (B1). But if F_{σ} contains an interior point, then there exists an open set G such that $G \subset F_{\sigma}$ or $G \cap \complement F_{\sigma} = G \cap G_{\delta} = \emptyset$, which is impossible if G_{δ} is dense.

Proof that (B2) \Rightarrow **(B3):** Let $M = \bigcup_n N_n$ be a meagre subset of E. Since each N_n is nowhere dense, so is \overline{N}_n for each n. Define $\widehat{M} = \bigcup_n \overline{N}_n$. Then (B2) implies $\operatorname{Int}(\widehat{M}) = \emptyset$. But since $M \subset \widehat{M}$, it follows that $\operatorname{Int}(M) = \emptyset$.

Proof that $(B3) \Rightarrow (B4)$: This is obvious.

Proof that (B3) \Rightarrow **(B5)**: To say that the set R is residual means that $M = \mathbb{C}R$ is meagre. Then (B3) implies that $Int(M) = Int(\mathbb{C}R) = \emptyset$. But $Int(\mathbb{C}R) = \mathbb{C}\overline{R}$. Therefore $\mathbb{C}\overline{R} = \emptyset$ or $\overline{R} = E$.

Proof that (B5) \Rightarrow **(B1)**: Let $G_{\delta} = \bigcap_n G_n$ be a countable intersection of open dense sets G_n . Then $F_{\sigma} = \complement G_{\delta} = \bigcup_n F_n$, where $F_n = \complement G_n$ is nowhere dense. Thus F_{σ} is meagre so that G_{δ} is residual. It now follows from (B5) that G_{δ} is dense.

Theorem 4 Every complete metric space is a Baire space.

Proof. We use Theorem 1 (Baire Category Theorem) to establish property (B1) of Definition 4. Let $G_{\delta} = \bigcap_n G_n$ be a countable intersection of open sets G_n each dense in E. If G_{δ} is not dense, then there exists a nonempty open set $G \subset E$ such that

$$\emptyset = G \cap G_{\delta} = \bigcap_{n} (G \cap G_{n}). \tag{1}$$

Let $H_n = G \cap G_n$. Then each H_n is an open and dense subset of \overline{G} so that $\overline{G} \setminus H_n$ is a closed and nowhere dense subset of \overline{G} . Applying a De Morgan Formula to (1) we obtain

$$\overline{G} = \overline{G} \setminus \emptyset = \bigcup_{n} (\overline{G} \setminus H_n). \tag{2}$$

But \overline{G} is a closed (and hence complete) subspace of E, so that it cannot be expressed as a countable union of closed nowhere dense sets (by Theorem 1) as it is in (2). Thus $G \cap G_{\delta} \neq \emptyset$ and so G_{δ} must be dense.

Remark 1 Another class of Baire spaces is provided by the class of locally compact spaces, metrizable or not. However, there are Baire spaces which are neither locally compact nor metrizable; there are also metrizable Baire spaces which are not complete with respect to any equivalent metric. Every nonempty open subspace of a Baire space is a Baire space. If every point of a topological space E has a neighborhood which is a Baire space, then E itself is a Baire space. In a Baire space E, the complement of a meagre set is a Baire space. See N. Bourbaki, Elements of Mathematics, General Topology, Part 2, Chapter IX, § 5, pages 190–195. Addison-Wesley Pub. Co. 1966.

REFERENCES

William Fogg Osgood [1864–1943]

René Baire [1874–1932]

- 1. W. F. Osgood, Non-uniform convergence and the integration of series term by term, Amer. J. Math. 19 (1897) 155–190. Contains the "Baire Category Theorem" on \mathbb{R} .
- 2. R. C. Archibald, A semicentennial history of the American Mathematical Society 1888–1938, Amer. Math. Soc. Semicentennial Publications, vol. 1, New York 1938.
- 3. B. O. Koopman, William Fogg Osgood—In Memorium, Bull. Amer. Math. Soc. 50 (1944) p. 139.
- 4. R. Baire, Sur les fonctions de variables réelles, Ann. di Mat. (3), III (1899), 1–123. Contains the "Baire Category Theorem" on \mathbb{R}^n .
- 5. Nicolas Bourbaki, Elements of the History of Mathematics, Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest 1984.
- 6. N. Bourbaki, *Elements of Mathematics*, **General Topology**, Part 2, Chapter IX, § 5, pages 190–195. Hermann, Paris & Addison-Wesley, Reading, Mass. 1966.
- 7. Ralph P. Boas, Jr., A Primer of Real Functions, Carus Mathematical Monographs, NUMBER THIRTEEN, *Math. Assoc. Amer.* 2nd edition 1972.
- 8. Casper Goffman, Bull. Amer. Math. Soc. 49 (1943) 611–614.

Appendix I

Some theorems which can be proved by means of the Baire Category Theorem

- 1. If a metric space has no isolated points, then it is uncountable. Corollary: \mathbb{R} and the Cantor Ternary Set are uncountable. [Boas]
- 2. If $f:[0,1] \to \mathbb{R}$ has derivatives of all orders and if f is not a polynomial, then there exists a point $x \in [0,1]$ at which no derivative $f^{(n)}(x)$ of f vanishes. [Boas]
- 3. There exist many continuous functions $f: \mathbb{R} \to \mathbb{R}$ which are nowhere differentiable. Indeed, they form a set of second category in the space \mathcal{C} of continuous functions. [Boas]
- 4. A closed interval in \mathbb{R} cannot be expressed as the union of a denumerable family of disjoint nonempty closed sets.
- 5. If (E, ||x||) is a complete normed linear space then the its Hamel base dimension cannot be \aleph_0 (read "aleph-naught"), nor any cardinal which is the limit of a denumerable number of smaller cardinals. [Goffman]
- 6. Let E be a vector space (over \mathbb{R} or \mathbb{C}) which has an infinite Hamel basis H. Define the **norm** $||x||_H$ on E by the formula $||x||_H = \sum_k |\xi_k|$, where $x = \sum_k \xi_k \alpha_k$, $\alpha_k \in H$. Then the normed linear space $(E, ||x||_H)$ is not complete.
- 7. The Banach-Steinhaus Principle of Uniform Boundedness.
- 8. The Interior Mapping Principle.
- 9. A homeomorphism f of a separable complete metric space X is transitive iff it is transitive at some point; i.e., iff some point $x \in X$ has a dense orbit in X. A homeomorphism $f: X \to X$ of a topological space X onto itself is called **transitive** if for every pair of nonempty open sets U and V there is an integer $n \in \mathbb{Z}$ such that $f^{[n]}(U) \cap V \neq \emptyset$. Theorem: If $f: X \to X$ is transitive on a complete metric space, then the set T of all transitive points of f is an invariant residual G_{δ} .

10.

11.

12.

13.

14.

15.

APPENDIX II SOLUTIONS TO THE EXERCISES

Solution to Exercise 1 (a): We want to show the	$\operatorname{nat} {\tt C}\overline{A}=\operatorname{Int}({\tt C}A).$	
\overline{CA} is an open set contained in \overline{CA} .	(Because $S \subset \overline{S} \& S \subset T \Rightarrow \complement T$	$\vec{S} \subset \hat{\mathbb{C}}S.$
Therefore $\overline{CA} \subset \mathrm{Int}(\overline{CA})$.		(1)
$\forall x \in \operatorname{Int}(CA), \ x \notin \overline{A}.$ (Because $x \in \overline{A}$)	means every neighborhood of x interse	ects A .)
So $\forall x \in \text{Int}(CA), x \in C\overline{A}$. That is, $\text{Int}(CA) \subset C\overline{A}$	\overline{A} .	(2)
Combining (1) and (2) we have $\overline{CA} = Int(\overline{CA})$.		
Solution to Exercise 1 (b): We want to show the	$\operatorname{nat} \operatorname{CInt}(A) = \overline{\operatorname{C}A}.$	
$\overline{\mathtt{C}A}\supset\mathtt{C}A.$	(Because	$\overline{S}\supset S.$)
Therefore $\overline{CCA} \subset \overline{CCA} = A$. So \overline{CCA} is an open s	•	,
	$\operatorname{int}(A)$ is the $largest$ open set contained	d in A .) (3)
But $Int(A) \subset A$, so $CInt(A) \supset CA$; and so with	(3) we obtain $\overline{CA}\supset C\operatorname{Int}(A)\supset C$	
But $\overline{\mathtt{C}A}$ is the <i>smallest</i> closed set containing $\mathtt{C}A$	$A, \text{ so } \overline{CA} = C\operatorname{Int}(A).$	
Solution to Exercise 2:		
Proof that $(N1) \Rightarrow (N2)$:		
Suppose $(N2)$ is false: I.e., suppose \overline{CN} (= Ext		
Then \exists a nonempty open set G such that $G \cap$ Therefore $G \subset \overline{N}$, so $\operatorname{Int} \overline{N} \neq \emptyset$, contrary to the		
	11) p 0 11 0 21 2 (1 · 1) .	
Proof that $(N2) \Rightarrow (N1)$:	0 32 · 1 · 5	
Suppose $(N2)$ is true; that is, suppose $\text{Ext}(N)$		
Then \forall nonempty open set $G, G \cap \mathbb{C}\overline{N} \neq \emptyset$, so	$G \not\subseteq N$.	
Therefore $\operatorname{Int} \overline{N} = \emptyset$, which is $(N1)$.		
Proof that $(N1) \Rightarrow (N3)$:		
Suppose $(N3)$ is false: Then there is a nonempt	ty open subset U of E every non	empty
open subset of which intersects N . This means		$I \neq \emptyset$.
Thus, \overline{N} contains interior points contrary to the	ne hypothesis $(N1)$.	
Proof that (N3) \Rightarrow (N1):		
Suppose $(N1)$ is false: Then there is a nonemp	otv open set $U \subset \overline{N}$.	
By $(N3)$, \exists a nonempty open set $V \subset U$ such that		(4)
But then we have $\emptyset \neq V \subset U \subset \overline{N}$, so that $V \subset U$		()
This means each point of the nonempty open s		
Therefore, $V \cap N \neq \emptyset$ which contradicts (4).	-	
Proof that $(N1) \Leftrightarrow (N4)$:		
N is nowhere dense iff $\operatorname{Int} \overline{N} = \emptyset$ iff $(\operatorname{Int} \overline{\overline{N}} = \emptyset)$	\emptyset) iff \overline{N} is nowhere dense.	

APPENDIX II (continued) SOLUTIONS TO THE EXERCISES

Solution to Exercise 3:

Proof of Proposition 2.1: We want to prove that each closed set is n.d. iff it has no interior points. Let F be a closed set. This means $\overline{F} = F$. So F is n.d. iff $\operatorname{Int} \overline{F} = \emptyset$ iff $\operatorname{Int} F = \emptyset$. \square **Proof of Proposition 2.2:** We want to show that each subset of a nowhere dense set is itself nowhere dense. Let $N \subset E$ be n.d. in a topological space E: I.e., $\operatorname{Int} \overline{N} = \emptyset$. Let $S \subset N$. Then $\overline{S} \subset \overline{N}$; so $\operatorname{Int} \overline{S} \subset \operatorname{Int} \overline{N}$. Since $\operatorname{Int} \overline{N} = \emptyset$, $\operatorname{Int} \overline{S} = \emptyset$ too. **Proof of Proposition 2.3:** We want to show that each n.d. subset N of a subspace S of a topological space E is also n.d. in E. If not, there \exists a nonempty E-open subset $U \subset \overline{N}^E$; and so $U \cap S \subset \overline{N}^E \cap S = \overline{N}^S$. (The notation \overline{N}^S denotes the closure of N in the subspace S.) Note that, $\forall x \in U \subset \overline{N}^E$, $x \in \overline{N}^E$ and U is an E-neighborhood of x, so $U \cap N \neq \emptyset$. Then we see that $U \cap S \supset U \cap N \neq \emptyset$, so $U \cap S$ is a nonempty S-open subset of \overline{N}^S , which contradicts our hypothesis that N is n.d. in S. **Proof of Proposition 2.4:** We want to show that the complement of each open dense set is nowhere dense. Let G be open and dense in E. Then $\overline{G} = E$. Therefore $\overline{CG} = \overline{CE} = \emptyset$; and $\overline{CG} = \operatorname{Int}(\overline{CG})$ by Exercise 1(a); so $\operatorname{Int}(\overline{CG}) = \emptyset$. Since CG is closed, the latter means that it is n.d. **Proof of Proposition 2.5:** We want to show that the complement of each closed nowhere dense set is dense. We are given (1) $\overline{F} = F$, and (2) $\operatorname{Int} \overline{F} = \operatorname{Int} F = \emptyset$. By Exercise 1(b), we also have $\overline{CF} = C \operatorname{Int} F$. So $\overline{\mathbb{C}F} = \mathbb{C} \operatorname{Int} F = \mathbb{C}\emptyset = E$, which means that $\mathbb{C}F$ is dense in E.