Ep. 2: Abstract Vector Space and Series Overview

LetsSolveMathProblems: Navigating Linear Algebra

Problem 1. Convince yourself that \mathbb{C} can be made into a vector space over \mathbb{Q} by letting the vector addition and the scalar multiplication be given by the field addition in \mathbb{C} and the field multiplication in \mathbb{C} , respectively. In this way, \mathbb{C} can be a vector space over \mathbb{C} , \mathbb{R} , or \mathbb{Q} ! (If you already know some linear algebra and basic set theory, try to find the dimension of each one.)

Problem 2. Harry claims that \mathbb{R}^2 is a field if we define the "field addition" and "field multiplication" to be component-wise; for example, he says that $(1,1) \in \mathbb{R}^2$ is the multiplicative identity, etc. Show that Harry is wrong, i.e., his construction does not define a field.

Problem 3. Try to make \mathbb{R}^2 into a vector space over $\mathbb{Z}/2\mathbb{Z}$ by interpreting 0 and 1 in $\mathbb{Z}/2\mathbb{Z}$ as 0 and 1 in \mathbb{R} , and letting the vector addition and scalar multiplication be done component-wise. Show that we do **not** get a valid vector space.

Problem 4. Show that if a field has exactly 4 elements, then 1+1=0 in the field. (As an aside, you may think that if 1+1=0 in a field, then the field has to be finite; this is not true! Try to find a counterexample.)