COMPUTER ORGANIZATION AND ARCHITECTURE <u>UNIT –III</u>

TOPIC- FLOATING POINT DIVISION PART-2

Floating Point Division

Flowchart:

Figure 10-17 Division of floating-point numbers.

Example: 78.75 x 10 ⁵

 5.25×10^{-2}

Ex ample

$$Ac = 78.75 \times 10^{5} \neq 0 = 1001110.11$$
 $13R = 5.25 \times 10^{2} \neq 0 = 101.01$

$$A \le B$$
 $A + B$

$$Q_S \leftarrow A_S \oplus B_S = O \oplus O = O$$
.

$$Q \leftarrow 00000$$
, $SC \leftarrow 5$.

$$A = 01001$$
 $A \leftarrow A + B + 1$
 $A = 01001$
 $B = 01010 + B + 1 = 01011$
 $B + 1 = 01011 + B + 1 = 01011$
 $A \leftarrow 10100$
 $A = 10100$
 $A = 10100 + B = 10100$
 $A = 101000 + B = 10100$
 $A = 10100$

4) Subtract the exponents.

$$a = 5, b = 2.$$
 $a = 101$
 $a \leftarrow a + \overline{b} + 1$
 $b = 010$
 $a = 101$
 $\overline{b} = 101 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + \overline{b} + 1$
 $\overline{b} + 1 = 100 + 1$
 $\overline{b} + 1$

3 Divide the mantissa

$$A = 00000$$
 $Q = 61111 = +15$