N-bits reactive strategies in repeated games

Nikoleta E. Glynatsi, Christian Hilbe, Martin Nowak

1 Introduction

In this work we explore reactive strategies in the infinitely repeated donation game. The donation is a (2×2) symmetric game where at each turn players p and q, simultaneously and independently, decide to cooperate (C) or to defect (D). Thus, there are four outcomes in each single round, $xy \in \{CC, CD, DC, DD\}$, where x and y represent p's and q's choices respectively.

Each then receives a payoff. The following (2×2) payoff matrix describes the payoffs of both players in each round,

cooperate defect

cooperate
$$\begin{pmatrix} b-c & -c \\ b & 0 \end{pmatrix}$$
 (1)

where b > c. Alternatively, we can define the payoff vectors for each player by

$$S_p = (b - c, -c, b, 0)$$
 and $S_q = (b - c, b, -c, 0)$. (2)

Reactive strategies are strategies that take into account the actions of the co-player to make a decision in each turn of the repeated game. Reactive strategies are studied in the literature due to their mathematical tractability. A play between two reactive strategies can be described as a Markov process with a transition matrix M. The expected payoffs to p and q, can then be explicitly calculated using the the stationary distribution \mathbf{v} of M and the respective round payoffs S_p and S_q .

2 Results

2.1 1-bit reactive

The literature has extensively studied reactive strategies that take into account only the last turn of the opponent. Here will refer to these as one-bit reactive strategies. One-bit reactive strategies can be written as a 2-tuple $p = (p_C, p_D)$ where p_C is the probability of cooperating after the co-player has cooperated and p_D after they defected.

The play of reactive strategies can be modelled as a Markov chain. In the case of the one-bit reactive strategies, there are only 4 possibles states $\{CC, CD, DC, DD\}$ and the transition matrix is given by,

$$M_{1} = \begin{bmatrix} p_{1}q_{1} & p_{1}(1-q_{1}) & q_{1}(1-p_{1}) & (1-p_{1})(1-q_{1}) \\ p_{2}q_{1} & p_{2}(1-q_{1}) & q_{1}(1-p_{2}) & (1-p_{2})(1-q_{1}) \\ p_{1}q_{2} & p_{1}(1-q_{2}) & q_{2}(1-p_{1}) & (1-p_{1})(1-q_{2}) \\ p_{2}q_{2} & p_{2}(1-q_{2}) & q_{2}(1-p_{2}) & (1-p_{2})(1-q_{2}) \end{bmatrix}.$$

$$(3)$$

A probability distribution \mathbf{v}^1 on the set of outcomes is a non-negative vector with unit sum, indexed by the four states for which,

$$\mathbf{v}^1 M^1 = \mathbf{v}^1$$
.

With respect to \mathbf{v}^1 the expected payoffs to p and q, denoted $\pi_{(p,q)}$ and $\pi_{(q,p)}$, are the dot products with the corresponding payoff vectors:

$$\pi_{(p,q)} = \mathbf{v}^1 \cdot S_p \quad \text{and} \quad \pi_{(q,p)} = \mathbf{v}^1 \cdot S_q.$$
 (4)

In the case of the one-bit reactive strategies the payoffs' analytical expressions are tractable. For example,

$$\pi_{(p,q)} = \frac{c(p1q2 + p2(-q2) + p2) - b(p2(q1 - q2) + q2)}{(p1 - p2)(q1 - q2) - 1}$$
(5)

2.2 2-bits reactive

In the case of two-bit reactive strategies, strategies are based on the actions of the co-player in the previous two rounds. Since for a single round there are 4 possible outcomes, for two rounds there will be $4 \times 4 = 16$ possible situations.

Computing the stationary distribution of M^2 analytically is not possible. Thus, computing the payoffs π for two generic two-bits reactive strategies is not possible either.

However, some expressions are still obtainable.

2.2.1 2-bits reactive strategies against ALLC and ALLD

For
$$p = (p_1, p_2, \dots, p_{16})$$
 and $q = (0, 0, \dots, 0)$ (ALLD),

$$\pi_{(p,\text{ALLD})} = -cp_4.$$

For
$$p = (p_1, p_2, \dots, p_{16})$$
 and $q = (1, 1, \dots, 1)$ (ALLC),

$$\pi_{(p,\text{ALLC})} = b - cp_1.$$

2.2.2 2-bits deterministic reactive strategies.

There are a total of (4^2) 16 two-bit deterministic reactive strategies, Table 1.

p_1	p_2	p_3 p_4		name		
0	0	0	0	ALLD		
0	0	0	1	S1		
0	0	1	0	S2		
0	0	1	1	S3		
0	1	0	0	S4		
0	1	0	1	S5		
0	1	1	0	S6		
0	1	1	1	S7		
1	0	0	0	S8		
1	0	0	1	S9		
1	0	1	0	S10		
1	0	1	1	S11		
1	1	0	0	S12		
1	1	0	1	S13		
1	1	1	0	S14		
1	1	1	1	ALLC		

Table 1: Deterministic two-bits reactive strategies

ALLD ALLC 0.429b - 0.571c 0.667b - 0.667c 0.667b - 0.667c 0.667b - 0.333c0.4b - 0.6c0.333b - 0.333e 0.5b - 0.333c0.571b - 0.429c0.571b - 0.429c 0.5b - 0.5c0.667b - 0.667c 0.667b - 0.667c0.6b - 0.6c0.333b - 0.667c0.4b - 0.4c0.571b - 0.571c0.429b - 0.429eb - c $\begin{array}{c} 0.5b - 0.5c \\ 0.5b - 0.5c \end{array}$ -c 0.5b - 0.5c 0.5b - 0.5c 0.4b - 0.6c 0.5b - 0.5c 0.5b - 0.5cc = 00.571b - 0.571c 0.429b - 0.429c-c0.5b - 0.667c 0.333b - 0.5c0.429b - 0.571c 0.333b - 0.667c

	ALLD	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	S13	S14	ALLC
ALLD	0	-c	0	-c	0	-c	0	-c	0	-c	0	-c	0	-c	0	-c
S1	b	b	b	-c	b	-c	0.333b - 0.333c	-c	0.5b - 0.333c	-c	0.4b - 0.4c	-c	0.429b - 0.429c	-c	0.333b - 0.5c	-c
S2	0	-c	0.5b - 0.5c	0.5b - 0.5c	0	-c	0	-c	0	-c	0.5b - 0.5c	0.5b - 0.5c	0	-c	0	-c
S3	b	b	0.5b - 0.5c	0.5b - 0.5c	b	-c	b	-c	0.571b - 0.429c	-c	0.5b - 0.5c	0.5b - 0.5c	0.5b - 0.5c	-c	0.429b - 0.571c	-c
S4	0	-c	0	-c	0.5b - 0.5c	0.5b - 0.5c	0	-c	0	-c	0	-c	0.5b - 0.5c	0.5b - 0.5c	0	-c
S5	b	b	Ь	b	0.5b - 0.5c	0.5b - 0.5c	0.429b - 0.571c	-c	0.6b - 0.4c	0.571b - 0.429c	0.5b - 0.5c	-c	0.5b - 0.5c	0.5b - 0.5c	0.4b - 0.6c	-c
S6	0	0.333b - 0.333c	0	-c	0	0.571b - 0.429c	0.667b - 0.333c	-c	0	0.667b - 0.667c	0.571b - 0.571c	-c	0	-c	0.333b - 0.667c	-c
S7	b	b	b	b	b	b	b	b	0.667b - 0.5c	0.667b - 0.667c	0.6b - 0.6c	-c	0.571b - 0.571c	-c	0.5b - 0.667c	-c
S8	0	0.333b - 0.5c	0	0.429b - 0.571c	0	0.4b - 0.6c	0	0.5b - 0.667c	b - c	0.333b - 0.667c	b - c	b - c	b - c	b - c	b - c	b - c
S9	b	b	b	b	b	0.429b - 0.571c	0.667b - 0.667c	0.667b - 0.667c	0.667b - 0.333c	0.667b - 0.333c	0.429b - 0.429c	b - c	b - c	b - c	b - c	b - c
S10	0	0.4b - 0.4c	0.5b - 0.5c	0.5b - 0.5c	0	0.5b - 0.5c	0.571b - 0.571c	0.6b - 0.6c	b - c	0.429b - 0.429c	0.5b - 0.5c	0.5b - 0.5c	b - c	b - c	b - c	b - c
S11	b	b	0.5b - 0.5c	0.5b - 0.5c	b	b	b	b	b - c	b - c	0.5b - 0.5c	0.5b - 0.5c	b - c	b - c	b - c	b - c
S12	0	0.429b - 0.429c	0	0.5b - 0.5c	0.5b - 0.5c	0.5b - 0.5c	0	0.571b - 0.571c	b - c	b - c	b - c	b - c	0.5b - 0.5c	0.5b - 0.5c	b - c	b - c
S13	b	b	Ь	b	0.5b - 0.5c	0.5b - 0.5c	b	b	b - c	b - c	b - c	b - c	0.5b - 0.5c	0.5b - 0.5c	b - c	b - c
S14	0	0.5b - 0.333c	0	0.571b - 0.429c	0	0.6b - 0.4c	0.667b - 0.333c	0.667b - 0.5c	b - c	b - c	b - c	b - c	b - c	b - c	b - c	b - c
ALLC	b	b	b	b	b	b	b	b	b - c	b - c	b - c	b - c	b - c	b - c	b - c	b - c

Using the formulation of (??) we can numerically compute the payoffs without simulations.

3 Numerical Results

We use an evolutionary process where. on Nowak and Imphof

For proof that our formulation is correct to the Jupyter Notebook "Numerical simulations".