Revista Internacional de Engenharia Elétrica e de Computação

(IJECE) Vol. 11, nº 6, dezembro de 2021, pp.

ISSN: 2088-8708, DOI: 10.11591/ijece.v11i6.pp4950-4961

4950

Verificação e comparação do banco de dados de arritmia do MIT-BIH com base no número de batidas

Akram Jaddoa Khalaf, Samir Jasim Mohammed

Departamento de Engenharia Elétrica, Faculdade de Engenharia, Universidade da Babilônia, Iraque

Informações do artigo

Historia do artigo:

Recebido em 24 de novembro de 2020 Revisado em 30 de março de 2021 Aceito em 9 de abril de 2021

Palavras-chave:

ECG

Batimento cardiaco

MATLAB

Detecção de QRS do banco de dados de arritmia do MIT-BIH

WFDB

ABSTRATO

Os métodos de processamento de sinais de ECG são testados e avaliados com base em vários bancos de dados. O banco de dados de ECG mais usado por muitos pesquisadores é o banco de dados de arritmia do MIT-BIH. Os algoritmos de detecção de QRS são essenciais para análises de ECG para detectar os batimentos do sinal de ECG. Não existe um número padrão de batidas para este banco de dados que é usado em inúmeras pesquisas. Diferentes números de batimento são calculados para os pesquisadores dependendo da diferença na compreensão do arquivo de anotação. Neste artigo, os números de batimento dos métodos existentes são estudados e comparados para encontrar o número de batimento correto que deve ser usado. Propomos uma função simples para padronizar o número de batimentos para qualquer banco de dados ECG PhysioNet para melhorar a caixa de ferramentas do banco de dados de formas de onda (WFDB) para o programa MATLAB. Esta função é baseada na descrição da anotação dos bancos de dados e pode ser adicionada à Toolbox. A função remove a anotação de não batida sem erros. Os resultados mostram um alto percentual de 71% dos métodos revisados que utilizaram um número incorreto de batimentos para esta base de dados.

Este é um artigo de acesso aberto sob o título <u>CC BY-SA</u> licença.

Autor correspondente:

Akram Jaddoa Khalaf Departamento de Engenharia Elétrica da Universidade da Babilônia Hilla, Babilônia, Iraque E-mail: eng.akram@uobabylon.edu.iq

1. INTRODUÇÃO

O eletrocardiograma (ECG) foi geralmente utilizado para a observação da fisiologia cardíaca como um processo custo-efetivo e não invasivo. Para o cardiologista diagnosticar doenças cardíacas, o sinal do ECG mostra a funcionalidade do coração. O campo do ECG está significativamente desenvolvido, considerando que a morte mais comum é geralmente por doenças cardiovasculares [1]. Muitas aplicações são baseadas no sinal de ECG, como medição da frequência cardíaca, identificação biométrica, reconhecimento de movimento e diagnóstico de anormalidades [2].

Geralmente, o primeiro material padrão de ECG disponível para testes e avaliação de desempenho é o banco de dados de arritmia do MIT-BIH [3]. Ele desempenhou, juntamente com o banco de dados da American Heart Association (AHA), um papel interessante ao estimular os fabricantes de analisadores de arritmia a competir com base em desempenho objetivamente mensurável. O valor dos bancos de dados comuns para pesquisa básica e desenvolvimento e avaliação de dispositivos médicos é atribuído ao banco de dados de arritmia do MIT-BIH. O MIT-BIH compreende sinais de ECG variáveis com uma variável: ruído, artefatos, tipos de batimento e formatos de onda. Estão incluídos 48 registros com dois canais para cada sinal de ECG e um arquivo de anotação. Esses sinais são registrados por 25 homens e 22 mulheres por um período de meia hora a 360 amostras por segundo. O banco de dados foi anotado com 112.647 anotações, e essas anotações foram verificadas [3]. Foi classificado em duas categorias principais de anotação: as batidas e as não batidas. As anotações de batimento para o banco de dados de arritmia do MIT-BIH consistem em 15 subtipos, e as anotações de não batimentos consistem em 24 subtipos, conforme mostrado na Tabela 1.

O tipo de batida consiste em 14 tipos de batidas classificadas e um tipo de batida não classificado. As anotações de batimentos ocorrem para qualquer tipo de onda QRS no sinal de ECG. Portanto, esse banco de dados é amplamente utilizado para testes, avaliação de desempenho e aprendizado de métodos de detecção de QRS. Em geral, os bancos de dados são usados para avaliar o desempenho de qualquer novo algoritmo antes de implementá-lo em dispositivos para diversas aplicações. Portanto, qualquer erro nesta avaliação causará um erro na decisão do dispositivo. Em aplicações biomédicas como a detecção de QRS, que é substancial para muitos dispositivos de monitoramento de ECG, os erros de detecção desses dispositivos podem afetar o diagnóstico e o tratamento do médico, dependendo desses dispositivos. Assim, verificar o banco de dados desses aplicativos melhorará a decisão do médico.

Tabela 1. A descrição das anotações de batimento e não batimento para o banco de dados de arritmia do MIT-BIH

Anotações de batida		Anotações	sem batida
Código	Descrição	Código	Descrição
N	Batida normal	[Início do flutter/fibrilação ventricular
eu	Batimento de bloqueio de ramo esquerdo	!	Onda de flutter ventricular
R	Batimento de bloqueio de ramo direito]	Fim do flutter/fibrilação ventricular Onda
Α	Batimento atrial prematuro	X	P não conduzida (APC bloqueada) Ritmo
a	Batimento atrial prematuro aberrado	(N	sinusal normal
J.	Batimento prematuro nodal (juncional)	(P	Ritmo ritmado
S	Batimento supraventricular prematuro ou ectópico (atrial ou nodal)	(B	Bigeminismo ventricular
V	Contração ventricular prematura	(VT	Taquicardia ventricular
F	Uma fusão de batimento ventricular e normal	(T	Trigeminia ventricular
е	Batimento de escape atrial	(SVTA	Taquiarritmia supraventricular
j	Batimento de escape nodal (juncional)	(IVR	Ritmo idioventricular
Е	Batimento de escape ventricular	(ACENAR	Ritmo nodal (juncional AV)
/	Batida ritmada	(AFIB	Fibrilação atrial
f	Uma fusão de batida ritmada e normal	(AFL	Vibração atrial
Р	Batida inclassificável	(VFL	Vibração ventricular
		(AB	Bigeminismo atrial
		(PREX	Pré-excitação (WPW)
		(BII	2° bloqueio cardíaco
		(SBR	Bradicardia sinusal
			Artefato tipo QRS isolado
		~	Alteração na qualidade do sinal
		":TS	Deslizamento da fita
		":PSE	Pausa
		": MISSB	Batida perdida

Até agora, mais de dois mil trabalhos citaram o banco de dados de arritmia do MIT-BIH. É único em termos de classificação de arritmia, pois oferece cinco grupos de padrões de arritmia [2]. Os métodos de detecção de QRS são essenciais para a maioria dos trabalhos citados, incluindo detecção de arritmia, classificação e aplicações de diagnóstico. Dependendo desta base de dados, muitos algoritmos de detecção de QRS foram desenvolvidos, testados e avaliados. Os algoritmos de detecção de QRS são baseados nas anotações de batimentos nos sinais do banco de dados para teste e avaliação. Essas batidas são usadas como dados de aprendizagem para os métodos dependendo da técnica de aprendizagem.

Muitos pesquisadores usaram o MATLAB para implementação de algoritmos baseados no banco de dados de formas de onda (WFDB) Caixa de ferramentas [4]. Esta Toolbox consiste nas funções que são utilizadas para leitura, gravação e processamento de sinais dos arquivos dos bancos de dados PhysioNet. A arritmia MIT-BIH é um dos bancos de dados PhysioNet que contém arquivos de dados e anotações. O WFDB é usado para extrair os sinais de ECG e essas anotações do banco de dados de arritmia do MIT-BIH para todos os registros. Ele pode extrair um tipo de anotações de batidas ou não batidas ou extrair todas as anotações sem qualquer filtro. Portanto, não é fácil extrair apenas todas as anotações de batida, o que leva a erros na leitura das anotações sem batida. Ao revisar os métodos existentes que utilizavam o banco de dados de arritmia do MIT-BIH, notamos que nem todos esses métodos são considerados o mesmo número de batimentos para os mesmos registros do banco de dados. Além disso, esta diferença afeta, mesmo que ligeiramente, os resultados da avaliação utilizados para comparar o desempenho dos métodos.

Este trabalho estudará os motivos da leitura de diferentes números de batimentos e métodos de comparação com correção e verificação. Além disso, uma nova função foi projetada para extrair as batidas corretas e remover as anotações sem batidas dos arquivos de banco de dados originais com base no WFDB Toolbox for MATLAB.

Na seção 2, o banco de dados de arritmia do MIT-BIH e seus tipos de anotação são descritos detalhadamente. A seção 3 apresenta a função proposta que extrai a batida correta dos arquivos de anotação. Em seguida, a seção 4 demonstra os resultados e a discussão para a revisão dos métodos existentes com uma comparação baseada no número de batimentos de cada método. Por fim, na seção 5, a conclusão é resumida.

2. BANCO DE DADOS DE ARRITMIA MIT-BIH

O banco de dados de arritmia do MIT-BIH é um dos bancos de dados de ECG mais substanciais. Sinais, ruídos e artefatos contrastantes do banco de dados o tornam adequado para testes e avaliações. Além disso, os arquivos de anotações verificadas que contêm os tipos de batimentos e não batimentos, conforme mostrado na Tabela 2 e na Tabela 3. Essas tabelas mostram as anotações do banco de dados de arritmia do MIT-BIH para cada registro com base nas descrições de anotações do PhysioNet para batimentos e não batimentos anotações. Existem mais do que esses tipos de anotação, que são mostrados em outros bancos de dados.

Tabela 2. Anotações de batimento do banco de dados de arritmia do MIT-BIH

	 		Tabela 2	. Anotaço	Jes de Da	itimento	uo bai	ico u	e uauus	ue arriti	IIIa ut	INITI-DI	.п				
Registro	Total	N	eu	R	Α	а	J.	S	V	F	е	i	Ε	/	f	Р	Total
Não.	Anotações	2220			22												Batidas
100	2274	2239			33				1							2	2273
101	1874	1860			3				4					2020	ГС	2	1865
102	2192	99			2				4					2028	56		2187
103	2091	2082			2				2					1200		40	2084
104	2311	163							2					1380	000	18	2229
105	2691	2526							41							5	2572
106 107	2098 2140	1507							520					2078			2027 2137
107	1824	1739			4				59 17	2		1		2078			1763
108	2535	1/39	2492		4				38	2 2		1					2532
111	2133		2123						30 1	2							2124
112	2550	2537	2123		2				ı								2539
113	1796	1789			2	6											1795
114	1890	1820			10	O	2		43	4							1879
115	1962	1953			10		_		43	4							1953
116	2421	2302			1				109								2412
117	1539	1534			1				109								1535
118	2301	1334		2166	96				16								2278
119	2094	1543		2100	50				444								1987
121	1876	1861			1				1								1863
122	2479	2476			•				•								2476
123	1519	1515							3								1518
124	1634	1313		1531	2		29		47	5		5					1619
200	2792	1743			30				826	2							2601
201	2039	1625			30	97	1		198	2		10					1963
202	2146	2061			36	19			19	1							2136
203	3108	2529				2			444	1						4	2980
205	2672	2571			3				71	11							2656
207	2385		1457	86	107				105				105				1860
208	3040	1586						2	992	373						2	2955
209	3052	2621			383				1								3005
210	2685	2423				22			194	10			1				2650
212	2763	923		1825													2748
213	3294	2641			25	3			220	362							3251
214	2297		2003						256	1						2	2262
215	3400	3195			3				164	1							3363
217	2280	244							162					1542	260		2208
219	2312	2082			7				64	1							2154
220	2069	1954			94												2048
221	2462	2031							396								2427
222	2634	2062			208		1					212					2483
223	2643	2029			72	1			473	14	16						2605
228	2141	1688			3				362								2053
230	2466	2255							1								2256
231	2011	314		1254	1				2								1571
232	1816			397	1382							1					1780
233	3152	2230			7				831	11							3079
234	2764	2700				456	50		3						_		2753
Total	112647	75052	8075 7	7259 25	46	150	83 2	2 71.	30 803	16 229	106	/028	982 33	3 109.49	4		

A anotação de cada batimento é um complexo QRS com diferentes tipos, como batimento normal ou outros batimentos. Por outro lado, as anotações sem batimento são onda de flutter ventricular, início/fim do flutter ventricular e início para muitos tipos de ritmo, como (sinusal, estimulado, ventricular, supraventricular, fibrilação atrial, flutter atrial e bloqueio cardíaco). Estes são sinais de ECG anotados para mostrar que neste ponto um dos ritmos está começando. Portanto, não é uma anotação de batidas (QRS). O flutter ventricular (registro 207) é uma exceção para muitos métodos de detecção de QRS porque é definido no ECG por uma onda sinusoidal sem uma exibição clara do complexo QRS

onda e onda T. Os métodos de detecção de QRS baseados no banco de dados de arritmia do MIT-BIH usam a anotação de batimento apenas porque as anotações sem batimentos não mostram ondas QRS para teste, avaliação e aprendizado.

O número de anotações de batidas é mostrado na Tabela 2 com (109.494 batidas) para todos os 48 registros. Este número deve ser um número padrão de batimentos, dependendo dos detalhes da anotação do banco de dados original e das descrições das anotações do PhysioNet para tipos de batimentos e não batimentos. Além disso, os métodos de detecção de QRS estão excluídos das 472 ondas de flutter ventricular do registro nº. 207, porque essas ondas são consideradas anotações sem batimento com base na descrição da anotação do PhysioNet conforme mostrado na Tabela 3.

Tabela 3. Anotações sem batimento do banco de dados de arritmia do MIT-BIH

	Tabela 3. Anotações sem batimento do banco de dados de arritmia do MIT-BIH									
Registro Não.	Total Ano- tações	1	o batidas							
100	2274	1 1								
101	1874	1 4 4 9								
102	2192	2 3 5 1 6 7								
103	2091	1 6 7								
104	2311	22 23 37 82								
105	2691	1 30 88 119								
106	2098	21 18 1 1 30 71								
107	2140	1 2 3								
108	1824	11 1 8 41 61								
109	2535	1 2 3								
111	2133	1 8 9								
112	2550	1 10 11								
113	1796	1 1								
114	1890	2 1 1 7 11								
115	1962	1 6 2 9								
116	2421	1 8 9 1 3 4								
117 118	1539 2301	1 3 4 10 1 12 23	,							
119	2094	49 37 17 4 10								
121	1876	1 12 13								
122	2479	1 2 3								
123	1519	1 1								
124	1634	6 2 3 2 2 15	;							
200	2792	70 71 7 43 19								
201	2039	37 16 12 1 3 3 4 76								
202	2146	3 4 1 2 10								
203	3108	21 1 21 2 26 57 128								
205	2672	7 6 1 2 16								
207	2385	6 472 6 10 4 2 1 1 6 2 15 52	5							
208	3040	27 26 8 24 85	· •							
209	3052	11 10 7 19 47								
210	2685	5 2 1 9 1 17 35	,							
212	2763	1 1 13 15								
213	3294	22 19 2 43								
214	2297	13 2 10 5 4 1 35								
215	3400	3 2 30 2 37								
217	2280	33 9 1 24 1 4 72								
219	2312	133 8 2 1 10 3 1 15								
220	2069	9 8 4 21								
221	2462	1 2 8 12 12 35)							
222	2634	32 4 31 24 42 3 15 15								
223	2643	11 7 7 3 10 38								
228	2141	21 20 24 20 3 88								
230	2466	104 103 1 2 210								
231	2011	2 6 5 427 440								
232 233	1816 3152	1 35 36 36 28 6 1 2 73								
233 234	2764	2 1 8 11								
234 Total	112647	6 472 6 193 530 60 221 61 83 26 4 36 107 45 6 3 103 5 1 132 616 6 3 428 315								
Total	11204/	0 1/2 0 1/3 3/30 00 221 01 03 20 4 30 10/ 43 0	,,,							

3. FUNÇÃO DE FILTRO DE BATIMENTOS CARDÍACOS

Neste artigo, uma função MATLAB é projetada para filtrar o arquivo de anotações para qualquer PhysioNet bancos de dados incluíram a arritmia do MIT-BIH. A função remove a anotação sem batida mostrada na Tabela 3, portanto, o arquivo de anotações conterá a anotaçõe de batida mostrada apenas na Tabela 2. Por outro lado, o arquivo de anotações existente

A função MATLAB-WFDB (rdann) que lê o arquivo de anotações pode ler todas as anotações ou uma anotação. Portanto, rdann não pode filtrar a anotação por tipo de batida ou não-batida; por este motivo, foi proposta a função com novas funcionalidades com novas funcionalidades para filtrar os dados corretamente e sem erros.

Esta função é simples, mas é importante padronizar o número de batimentos para qualquer pesquisador que são usados bancos de dados PhysioNet. Esta função pode ser adicionada à caixa de ferramentas MATLAB-WFDB para simplesmente filtrar os arquivos de anotações, removendo as anotações sem batida precisamente com os valores padrão. A função lê e pesquisa todos os arquivos de dados de anotações para cada registro, conforme mostrado na Figura 1. Se a anotação for um dos tipos nãobeat, esta anotação será removida dos dados da anotação. Além disso, ele deve ser usado em qualquer banco de dados PhysioNet para extrair a anotação de batimento, removendo as anotações sem batimento usadas para preparar os dados para muitas aplicações, incluindo métodos de detecção de QRS.

Figura 1. O fluxograma de funções

4. OS RESULTADOS DA COMPARAÇÃO E VERIFICAÇÃO COM DISCUSSÃO

O trabalho centra-se na verificação e comparação da base de dados de arritmias do MIT-BIH utilizada para o algoritmo de detecção de QRS. A função de filtro de pulsações proposta pode ser aplicada a todos os bancos de dados MIT-BIH do site PhysioNet. Os métodos de detecção de QRS revisados não usam o mesmo número de batimentos cardíacos para o banco de dados de arritmia do MIT-BIH. Este número deve ser padrão para este banco de dados porque depende do número de batimentos do banco de dados original. Simultaneamente, nem todos os métodos de detecção de QRS consideram o mesmo número de batimentos para os mesmos registros do banco de dados. A revisão dos métodos existentes de detecção de QRS usando o banco de dados de arritmia do MIT-BIH resumiu os erros desses métodos com base nos batimentos dos registros mostrados na Tabela 4 (ver no Apêndice). Os registros incorretos estão indicados em negrito, o Total (T) e os Erros (E) nesta tabela. Os métodos deveriam usar o mesmo número de batimentos sem nenhuma diferença, mas os erros estão ocorrendo pelos pesquisadores. Todos os métodos revisados são revisados, comparados e verificados com base no número de batimentos de cada registro do banco de dados. A Tabela 5 resume o número total de batimentos, o erro total por registro e o erro total por banco de dados para diferentes métodos para avaliar a incorreção desses métodos.

O número total de batimentos do banco de dados de arritmia do MIT-BIH usado nos métodos revisados é calculado; esse número deve ser 109.494 batimentos cardíacos para todos os registros do banco de dados, conforme mostrado na seção 2. Os erros de batimento para esses métodos comparados com o número correto de batimentos para esse banco de dados são determinados para encontrar o número de métodos que usaram o valor correto do batimento. Além disso, os outros métodos continham erros que variam de 1 a 1.400 batimentos para o banco de dados geral. A Tabela 5 mostra a porcentagem do número de referências para cada erro em relação ao total de referências revisadas. Além disso, mostra o número total de erros de cada referência por cada registro (soma dos valores absolutos dos erros) e o número total de erros de cada referência por base de dados geral, que assume um valor positivo ou negativo.

Os erros de batimentos por todos os dados registram até 1.400 batimentos e 29% do total de métodos revisados utilizam o número de batimentos correto. Por outro lado, 71% utilizam números de batidas incorretos. Além disso, o número de métodos incorretos é maior que o número de métodos corretos com base em nossa comparação. Então, propomos este estudo. Cada registro no banco de dados para os métodos revisados foi estudado para cálculo de erros de batimento.

A Figura 2 descreve o número de referências que contêm erros para cada registro. Para cada registro, é calculada a porcentagem do número de referência que ocorre erro por todas as referências para avaliar os motivos do erro do registro. A porcentagem de erros de registros começa em 53% para o registro nº. 207 a 9% para registros (102, 103, 112, 117, 119, 122, 123 e 230).

A Tabela 5 e a Figura 2 mostram a diferença entre esses métodos para os mesmos registros utilizados do mesmo banco de dados. Depois de estudados os resultados, são estabelecidos os seguintes pontos

óbvios: a. O número correto de batidas é 109.494 batidas sem adicionar ou remover quaisquer dados.

b. A função projetada extrai o número correto de batimentos cardíacos de todos os registros do banco de dados de arritmia do MIT-

- c. Se o número de batidas exceder o número correto:
 - Algumas anotações sem batida foram adicionadas e devem ser mencionadas nos métodos.
 - Os dados foram repetidos para registro e devem ser mencionados nos métodos.
- d. Se o número de batidas for menor que o número correto:
 - Algumas anotações de batida foram removidas e devem ser mencionadas nos métodos.
- e. Este banco de dados contém alguns erros antes da digitalização e verificação [1].
- f. A caixa de ferramentas WFDB não inclui o filtro de batidas ou não batidas para a função (rdann) que lê os arquivos de anotações.
- g. Os registros de copiar e colar batem números entre os pesquisadores sem verificação.
- h. Um grande número de tipos de anotações (39 anotações) confunde os pesquisadores.
- eu. De acordo com a Figura 2, o maior erro ocorre no registro nº. 207 porque muitos pesquisadores estão contando as 472 ondas de flutter ventricular, mas essas ondas são consideradas anotações sem batimento com base na descrição da anotação do PhysioNet.
- j. Na Figura 2, registros no. 209 é o segundo, e registra o nº. 214 é o terceiro batimento com maior número de erros para os métodos revisados, mas o número de erros é baixo e não excede oito batimentos e nove batimentos, respectivamente.
- k. De acordo com a Figura 2, os registros de erro mais baixos (102, 103, 112, 117, 119, 122, 123 e 230) porque esses registros contêm as anotações sem batida mais baixas.

Tabela 5. Total de anotações e erros de batimento para os métodos revisados

Referências		Percentagem		T 4 1 1	Total de erros por
Referencias	Contagem de referência	referência	Total de batidas	Total de erros por registro	base de dados
[5-24]	20	29%	109494	0	0
[25]	1	1%	109493	1	- 1
[26-31]	6	9%	109496	2	2
[32]	1	1%	109495	3	1
[33]	1	1%	109488	6	- 6
[34]	1	1%	109488	6	- 6
[35]	1	1%	109486	8	- 8
[36]	1	1%	109481	13	- 13
[37-39]	3	4%	109508	16	14
[40-42]	3	4%	109510	18	16
[43]	1	1%	109483	23	- 11
[44]	1	1%	109488	36	- 6
[45]	1	1%	109478	44	- 16
[46]	1	1%	109443	51	- 51
[47]	1	1%	109428	66	- 66
[48]	1	1%	109328	166	- 166
[49]	1	1%	109357	203	- 137
[50]	1	1%	109255	239	- 239
[51-56]	6	9%	109809	329	315
[57]	1	1%	109788	348	294
[58]	1	1%	109267	357	- 227
[59]	1	1%	109134	360	- 360
[60]	1	1%	109097	423	-397
[61-63]	3	4%	109966	472	472
[64]	1	1%	109965	473	471
[65]	1	1%	109966	474	472
[66]	1	1%	109996	502	502
[67]	1	1%	109369	567	- 125
[68]	1	1%	109985	579	491
[69]	1	1%	109663	603	169
[70]	1	1%	110159	665	665
[71]	1	1%	110008	738	514
[72]	1	1%	109036	1400	- 458
Total	68	100%			

Figura 2. Registra erros por referências gerais

5. CONCLUSÃO

Este artigo apresentou um método para encontrar o número de batimentos correto para o banco de dados de arritmia do MIT-BIH com um estudo de comparação e projetou uma função para o MATLAB para extrair os valores corretos para qualquer banco de dados PhysioNet. Dessa forma, o número de batimentos que os pesquisadores estão utilizando serão padrões. As anotações sem batimento afetaram os resultados dos métodos de detecção de QRS de duas maneiras. Primeiro, a precisão da avaliação dos métodos propostos não é calculada corretamente porque o número de batimentos do banco de dados está incorreto. Em segundo lugar, os métodos baseados em aprendizado de máquina são treinados com base em informações incorretas. Portanto, a operação de aprendizagem não foi adequada e os resultados dos métodos não estão corretos. A maioria dos métodos revisados utilizou um número incorreto de batimentos, 29% dos pesquisadores usaram o número correto e 71% usaram batimentos incorretos. A função proposta deve ser adicionada à caixa de ferramentas MATLAB-WFDB para filtrar os arquivos de anotações para remover corretamente as anotações sem batida e extrair os valores de batida padrão. Ele pode ser usado por qualquer outra linguagem de programação para ler os arquivos de anotações dos bancos de dados PhysioNet como python.

APÊNDICE

Tabela 4. A anotação de batida para os métodos revisados

gravando	[5-24] [[25] [26-	30] [31]		[32] [33] [34] [35]		[36] [3	7-39]	[40-42] [43]	[44] [45] [46] [4	47] [48]		
100	2273	2273	2273	2273	2273 2273 22	72 2272	2272	2273	2273 2273	2273 2273	2271	2273	2272
101	1865	1865	1865	1865	1865 1865 1865	1865	1865	1865	1865 1865	1865 1865	1864	1865	1864
102	2187	2187	2187	2187	2187 2187 2187	2187	2187	2187	2187 2187	2187 2187	2186	2187	2187
103	2084	2084	2084	2084	2084 2084 2084	2084	2084	2084	2084 2084	2084 2084	2083	2084	2084
104	2229	2229	2229	2229	2229 2229 22	228 2228	2228	2229	2229 2229	2229 2230 2	228	2229	2227
105	2572	2572	2572	2572	2572 2572 2572	2572	2572	2572	2572 2572	2572 2572	2571	2572	2555
106	2027	2027	2027	2027	2027 2027 2027	2027	2027	2027	2027 2027	2027 2027	2026	2027	2027
107	2137	2136	2137	2137	2137 2137 2136	2137	2137	2137	2137 2137	2137 2137	2136	2137	2135
108	1763	1763	1763	1763	1763 1763 1763	1763	1763	1774	1774 1760	1774 1763		1763	1761
109	2532	2532	2532	2532	2532 2532 2532	2532	2532	2532	2532 2532	2532 2532	2531	2532	2532
111	2124	2124	2124	2124	2124 2124 2124	2124	2124	2124	2124 2124	2124 2124	2123	2124	2124
112	2539	2539	2539	2539	2539 2539 2539	2539	2539	2539	2539 2539	2539 2539	2538	2539	2539
113	1795	1795	1795	1795	1795 1795 17	794 1794	1794	1795	1795 1795	1795 1795	1793	1795	1794
114	1879	1879	1879	1879	1879 1879 1879	1878	1879	1879	1879 1872	1879 1879	1878	1879	1879
115	1953	1953	1953		1953 1953 1953	1953	1953	1953	1953 1952	1953 1953		1953	1952
116	2412	2412	2412	2412	2412 2412 2412	2412	2412	2412	2412 2412	2412 2412	2411	2412	2410
117	1535	1535	1535	1535	1535 1535 1535	1535	1535	1535	1535 1535	1535 1535	1534	1535	1535
118	2278	2278	2278	2278	2278 2278 2278	2278	2277	2278	2278 2278	2278 2288 2	277	2278	2278
119	1987	1987	1987	1987	1987 1987 1987	1987	1987	1987	1987 1987	1987 1987	1986	1987	1987
121	1863	1863	1863	1863	1863 1863 1863	1862	1862	1863	1863 1863	1863 1863	1862	1863	1863
122	2476	2476	2476	2476	2476 2476 2476	2476	2476	2476	2476 2476	2476 2476		2476	2476
123	1518	1518	1518	1518	1518 1518 1518	1518	1518	1518	1518 1518	1518 1518	1517	1518	1518
124	1619	1619	1619	1619	1619 1619 1619	1619	1619	1619	1619 1619	1619 1619		1619	1619
200	2601	2601	2601	2601	2601 2601 2601	2601	2601	2601	2601 2601	2601 2601	2600	2601	2581
201	1963	1963	1963	1963	1963 1963 1963	1963	1962	1963	1963 1963	1963 1963	1962	1963	1950
202	2136	2136	2136	2136	2136 2135 21	36 2136	2136	2136	2136 2136	2136 2136	2135	2136	2133
203	2980	2980	2980	2980	2980 2980 2980	2980	2980	2980	2980 2980	2980 2980		2980	2949
205	2656	2656	2656		2656 2656 2656	2656	2655	2656	2656 2656	2656 2656		2656	2647
207	1860	1860	1862	1860	1862 1860 1860	1860	1860	1860	1862 1862	1860 1862 1	859	1794	1859

Tabela 4. A anotação de batida para os métodos revisados (continuar)												
gravando [5-24]	[25] [26-30] [31]	[32] [33]		35] [36] [[40-42]	[43]	[44] [45] [46]	[47] [48]		
208 2955	2955 2955 2955	2955 2955	2955	2955		2955	2955	2955	2955 2946		2955	2921
209 3005	3005 3005 3004	3005 3004	3005	3004		3004	3004	3004	3004 3005		3005	3002
210 2650 212 2748	2650 2650 2650 2748 2748 2748	2650 2650 2748 2748	2650 2748	2650 2748		2650 2748	2650 2748	2650 2748	2650 2647 2748 2748	2649	2650 2748	2644 2747
212 2748	3251 3251 3251	3251 3251	3250	3250		3251	3251	3251	3251 3251	3249	3251	3249
214 2262	2262 2262 2261	2261 2261	2262	2261		2265	2265	2265	2265 2254 22			2261
215 3363	3363 3363 3363	3363 3361	3363	3363		3363	3363	3363	3363 3353		3363	3362
217 2208	2208 2208 2208	2208 2208	2208	2208		2209	2209	2209	2209 2208		2208	2208
219 2154	2154 2154 2154	2154 2154	2154	2154	2154	2154	2154	2154	2154 2154	2153	2154	2154
220 2048	2048 2048 2048	2048 2048	2047	2048	2047	2048	2048	2048	2048 2048	2047	2048	2047
221 2427	2427 2427 2427	2427 2427	2427	2427		2427	2427	2427	2407 2427		2427	2427
222 2483	2483 2483 2483	2483 2483	2483	2483		2483	2483	2483	2483 2484		2483	2482
223 2605	2605 2605 2605	2605 2605	2605	2605		2605	2605	2605	2605 2605	2604	2605	2603
228 2053	2053 2053 2053	2053 2053	2053	2053		2053	2053	2048	2053 2053	2052	2053	
230 2256 231 1571	2256 2256 2256 1571 1571 1571	2256 2256 1571 1571	2256 1571	2256 1571		2256 1571	2256 1571	2256 1571	2256 2256 1571 1571	2255 1570	2256 1571	2256 1571
232 1780	1780 1780 1780	1780 1779	1780	1780		1780	1780	1780	1780 1780	1779	1780	1780
233 3079	3079 3079 3079	3079 3079	3079	3079		3079	3079	3079	3079 3079	3078	3079	3071
234 2753	2753 2753 2753	2753 2753	2753	2753		2753	2753	2753	2753 2753	2752	2753	
	09493 109496 109492 109									3 109443 1		
0	1 2 2	3 6	6	8	13	16	18	23	36 44	51 66	166	
gravando [49]	[50] [51-56] [57]	[58] [59]	[60] [6	51-63]	[64] [65]		[66]	[67]	[68] [69] [70]	[71] [72]		-
100 2269	2273 2273 2273	2267 2265	2273	2273	2273 227		2273	2273	2274 2270	2273	2273	2272
101 1862	1864 1865 1865	1859 1860	1865	1865	1865 186		1865	1865	1866 1862	1865	1873	1864
102 2183	2187 2187 2187	2181 2180	2187	2187	2187 218		2187	2187	2187 2186		2186	2186
103 2081	2084 2084 2084	2081 2078	2084	2084	2084 208		2084	2084	2084 2083		2084	
104 2225	2226 2230 2230 2566 2572 2572	2224 2222	2230	2229		2230	2229	2229	2229 2219		2235	2228
105 2582 106 2024	2566 2572 2572 2023 2027 2027	2564 2565 2024 2021	2572 2027	2572 2027	2572 257 2027 202		2572 2027	2572 2027	2602 2559	2572 2027	2578 2096	2026
100 2024	2135 2137 2137	2131 2131	2027	2137	2137 213		2027	2137	2026 2025 2136 2135	2137	2138	2136
107 2133	1759 1763 1763	1757 1757	1763	1763	1763 176		1763	1763	1763 1747		1763	1762
109 2528	2527 2532 2532	2526 2524	2532	2532	2532 253		2532	2532	2533 2531	2532	2519	1649
111 2121	2123 2124 2124	2120 2118	2124	2124	2124 212		2124	2124	2123 2120	2124	2124	
112 2535	2539 2539 2539	2536 2531	2539	2539	2539 253	39	2539	2539	2539 2537	2539	2549	2538
113 1791	1795 1795 1797	1791 1789	1795	1795	1795 179	95	1795	1795	1794 1792	1795	1795	1794
114 1875	1832 1879 1879	1872 1872	1879	1879	1879 187		1879	1879	1890 1878	1879	1885	1878
115 1949	1953 1953 1953	1945 1946	1953	1953	1953 195		1953	1953	1953 1950		1960	1952
116 2408	2392 2412 2412	2409 2404	2412	2412	2412 241		2412	2412	2395 2407	2412		2411
117 1532 118 2275	1535 1535 1535 2278 2275 2275	1532 1530	1535 2275	1535 2278	1535 153 2278 227		1535 2278	1535 2278	1535 1534 2278 2275		1538 2298	1534 2277
118 2273	1987 1987 1987	2273 2271 1985 1981	1987	1987	1987 198		2278 1987	1987	1988 1985	1987	2010	1986
121 1859	1863 1863 1863	1858 1856	1863	1863	1863 186		1863	1863	1863 1860		1871	1862
122 2472	2476 2476 2476	2471 2468	2476	2476	2476 247		2476	2476	2476 2475			2475
123 1515	1518 1518 1518	1514 1513	1518	1518	1518 151		1518	1518	1519 1517	1518	1518	1517
124 1616	1619 1619 1619	1613 1613	1619	1619	1619 <i>'</i>	1618	1619	1619	1619 1618	1619	1602	1618
200 2597	2600 2601 2601	2595 2593	2607	2601	2601 260)1	2601	2601	2601 2560	2601	2599	2600
201 1961	1934 1963 1963	1946 1959	1963	1963	1963 196	3	1963	1963	1949 1954 20		1963	1962
202 2132	2132 2136 2136	2134 2128	2136	2136	2136 213		2136	2136	2138 2134	2136		2135
203 3003	2926 2982 2978	2976 2973	2982	2980	2980 298		2980	2980	2988 2962	2980		
205 2652	2653 2656 2656	2650 2648	2656	2656	2656 265 2332 233		2656	2656	2656 2654			2655 2331
207 1855 208 2951	1857 1862 1862 2940 2956 2954	1856 1850 2953 2946		2955	2955 295		2332 2955	1543 2955	2324 2246 23 2953 2937		2952	
208 2931	3005 3004 3004	2999 2997	3004				3005	3006	3006 3002	3005		3004
210 2646	2628 2647 2647	2645 2642	2647		2650 265		2650	2640	2652 2640	2650		2649
212 2744	2748 2748 2748	2746 2740	2748		2748 274		2748	2748	2748 2746		2761	
213 3246	3250 3251 3251	3245 3241	3251	3251	3251 325		3251	3471	3250 3247	3251		3250
214 2258	2258 2262 2262	2255 2254	2262	2262	2262 226	52	2262	2259	2262 2259	2262	2273	2261
215 3358	3363 3363 3362	3357 3353	3363	3363	3363 336	3	3363	3363	3362 3360	3363	3398	3362
217 2205	2207 2208 2208	2202 2202		2208	2208 220		2208	2208	2208 2207		2270	
219 2151	2154 2154 2154	2150 2147		2154	2154 215		2154	2154	2154 2152			2153
220 2044	2047 2048 2048	2041 2041	2048		2048 204		2048	2048	2048 2047			2047
221 2423	2426 2427 2427	2422 2420	2427				2457	2427	2427 2426			2426
222 2478 223 2601	2481 2484 2484 2604 2605 2605	2492 2474 2603 2581	2484 2605		2483 248 2605 260		2483 2605	2483 2589	2485 2481 2604 2604	2483 2605		2482 2604
228 2050	2050 2053 2053	2048 2047		2053			2053	2053	2060 2051	2053		
230 2252	2256 2256 2256	2252 2248		2256	2256 225		2256	2256	2256 2253		2257	
231 1568	1571 1886 1886	1566 1565		1571	1571 157		1571	1571	1571 1570			1570
232 1778		1719 1776		1780	1780 178		1780	1780	1783 1779		1734	
233 3074		3135 3069		3079	3079 307		3079	3079	3077 3076		3074	
234 2749	2753 2753 2753	2747 2745		2753			2753	2753			2763	
	09255 109809 109788 109		97 1099	66 1099	65 109966	1099	96 109369	109985				
239 329 348	3 357 360 423 72 473 474	502 56/ 5/9							603	665	738 1	400

REFERÊNCIAS

[1]S. Mendis*e outros.*, "Atlas global sobre prevenção e controle de doenças cardiovasculares", Genebra: Organização Mundial da Saúde em colaboração com a Federação Mundial do Coração e a Organização Mundial do AVC, 2011.

- [2] SK Berkaya, AK Uysal, ES Gunal, S. Ergin, S. Gunal e MB Gulmezoglu, "Uma pesquisa sobre análise de ECG", Processamento e controle de sinais biomédicos, vol. 216-235, maio de 2018, doi: 10.1016/j.bspc.2018.03.003.
- [3] GB Moody e RG Mark, "O impacto do banco de dados de arritmia do MIT-BIH", em*Revista IEEE Engenharia em Medicina e Biologia*, vol. 20, não. 3, pp. 45-50, maio-junho de 2001, doi: 10.1109/51.932724.
- [4] I. Silva e GB Moody, "Uma caixa de ferramentas de código aberto para análise e processamento de bancos de dados PhysioNet em MATLAB e Octave," *Jornal de software de pesquisa aberta*, vol. 2, no.1, pp. 1-27, set. 2014, doi: 10.5334/jors.bi.
- [5] AJ Khalaf e SJ Mohammed, "Um algoritmo de detecção de QRS para aplicações em tempo real", *Jornal Internacional de Engenharia e Sistemas Inteligentes*, vol. 14, não. 356-367, 2020, doi: 10.22266/ijies2021.0228.33.
- [6] C. Nayak, SK Saha, R. Kar e D. Mandal, "Um projeto de pré-processador de ECG baseado em diferenciador de ordem fracionária digital eficiente e robusto para detecção de QRS", em *Transações IEEE em Circuitos e Sistemas Biomédicos*, vol. 13, não. 682-696, agosto de 2019, doi: 10.1109/TBCAS.2019.2916676.
- [7] A. Sharma, S. Patidar, A. Upadhyay e UR Acharya, "Método baseado em transformação wavelet Q ajustável e precisa para detecção de complexo QRS," *Computadores e Engenharia Elétrica*, vol. 75, pp. 101-111, maio de 2019, doi: 10.1016/j.compeleceng.2019.01.025.
- [8] A. Bajaj e S. Kumar, "Detecção de complexo QRS usando transformada fracionária de Stockwell e energia fracionária de Stockwell Shannon," *Processamento e controle de sinais biomédicos*, vol. 54, set. 2019, art. não. 101628, doi: 10.1016/j.bspc.2019.101628.
- [9] T. Nguyen, X. Qin, A. Dinh e F. Bui, "Detecção de pico R de baixa complexidade de recursos com base na correspondência de modelo de triângulo e filtro de média móvel," *Sensores*, vol. 19, não. 18 de setembro de 2019, art. não. 3997, doi: 10.3390/s19183997.
- [10] C. Nayak, SK Saha, R. Kar e D. Mandal, "Projeto ideal de diferenciador digital de banda larga baseado em SSA para aplicação de detecção de complexo QRS cardíaco," Revista Internacional de Modelagem Numérica: Redes Eletrônicas, Dispositivos e Campos, vol. 32, não. 2, novembro de 2018, art. não. e2524, doi: 10.1002/jnm.2524.
- [11] Ó. Yakut e ED Bolat, "Um método aprimorado de detecção de complexo QRS com baixa carga computacional," *Processamento e controle de sinais biomédicos*, vol. 230-241, abril de 2018, doi: 10.1016/j.bspc.2018.02.004.
- [12] D. Yang e Y. Zhang, "Um detector QRS em tempo real baseado no diferenciador passa-baixo e na transformação de Hilbert", em Web de Conferências MATEC, Guangzhou, China, vol. 175, pp. 1-6, 2018, doi: 10.1051/matecconf/201817502008.
- [13] T. Sharma e KK Sharma, "Detecção de complexo QRS em sinais de ECG usando eliminação de ruído de variação total ponderada localmente adaptativa," *Computadores em Biologia e Medicina*, vol. 87, pp. 187-199, ago. 2017, doi: 10.1016/j.compbiomed.2017.05.027.
- [14] S. Jain, A. Kumar e V. Bajaj, "Técnica para detecção de complexo QRS usando otimização de enxame de partículas," *Ciência, Medição e Tecnologia IET*, vol. 10, não. 6, pp. 626-636, setembro de 2016, doi: 10.1049/iet-smt.2016.0023.
- [15] T. Sharma e KK Sharma, "Detecção do complexo QRS em sinais de ECG usando a transformação wavelet sincronizada", *Revista de Pesquisa IETE*, vol. 62, não. 6, pp. 885-892, set. 2016, doi: 10.1080/03772063.2016.1221744.
- [16] S. Yazdani e J. Vesin, "Extração de pontos fiduciais QRS do ECG usando morfologia matemática adaptativa," *Processamento de sinal digital*, vol. 56, pp. 100-109, set. 2016, doi: 10.1016/j.dsp.2016.06.010.
- [17] D. Castells-Rufas e J. Carrabina, "Detector QRS simples em tempo real com o filtro MaMeMi," *Processamento e controle de sinais biomédicos*, vol. 21, pp. 137-145, agosto de 2015, doi: 10.1016/j.bspc.2015.06.001.
- [18] F. Bouaziz, D. Boutana e M. Benidir, "Algoritmo de detecção de complexo QRS baseado em wavelet multirresolução adequado para várias morfologias anormais," *Processamento de Sinal IET*, vol. 8, não. 774-782, setembro de 2014, doi: 10.1049/ietspr.2013.0391.
- [19] G. Nallathambi e JC Príncipe, "Integrate and Fire Pulse Train Automaton para detecção de QRS", em Transações IEEE em Engenharia Biomédica, vol. 61, não. 2, pp. 317-326, fevereiro de 2014, doi: 10.1109/ TBME.2013.2282954.
- [20] Y. Li, F. Hong e J. Song, "Uma nova abordagem de detecção de complexo QRS baseada em filtragem combinada e análise de caracteres triangulares," *Ciências Físicas e de Engenharia da Australásia em Medicina*, vol. 35, não. 3, pp. 341-356, julho de 2012, doi: 10.1007/s13246-012-0149-x.
- [21] Z. Zidelmal, A. Amirou, M. Adnane e A. Belouchrani., "Detecção de QRS baseada em coeficientes wavelet," *Métodos e Programas de Computador em Biomedicina*, vol. 107, não. 3, pp. 490–496, setembro de 2012, doi: 10.1016/j.cmpb.2011.12.004.
- [22] M. Adnane, Z. Jiang e S. Choi., "Desenvolvimento de algoritmo de detecção de QRS projetado para sistema cardiorrespiratório vestível," *Métodos e Programas de Computador em Biomedicina*, vol. 93, não. 20-31, janeiro de 2009, doi: 10.1016/j.cmpb.2008.07.010.
- [23] F. Chiarugi, V. Sakkalis, D. Emmanouilidou, T. Krontiris, M. Varanini e I. Tollis, "Detector QRS de limiar adaptativo com melhor seleção de canal com base em um sistema de classificação de ruído", 2007 Computadores em Cardiologia, 2007, pp.
- [24] M. Cvikl, F. Jager e Z. Andrej, "Implementação de hardware de um algoritmo de detecção de complexo QRS baseado em mapeamento de coordenadas de atraso modificado," *Jornal EURASIP sobre Avanços no Processamento de Sinais*, vol. 2007, não. 1, abril de 2007, doi: 10.1155/2007/57286.

- [25] M. Elgendi, M. Jonkman e F. De Boer, "Efeitos de bandas de frequência na detecção de QRS", em*Anais da Terceira Conferência Internacional sobre Sistemas Bioinspirados e Processamento de Sinais*, Valência, Espanha, vol. 428-431, 2010, doi: 10.5220/0002742704280431.
- [26] MS Manikandan e B. Ramkumar, "Algoritmo de detecção de QRS simples e robusto para monitor cardíaco vestível", *Cartas de tecnologia de saúde*, vol. 1, não. 40-44, janeiro de 2014, doi: 10.1049/htl.2013.0019.
- [27] MS Manikandan e KP Soman, "Um novo método para detectar picos R no sinal de eletrocardiograma (ECG)," *Processamento e controle de sinais biomédicos*, vol. 7, não. 2, pp. 118-128, março de 2012, doi: 10.1016/j.bspc.2011.03.004.
- [28] J. Lewandowski, HE Arochena, RNG Naguib e K. Chao, "Um algoritmo simples de detecção de QRS em tempo real utilizando conceito de comprimento de curva com limiar adaptativo combinado para classificação de sinal de eletrocardiograma," *Conferência TENCON 2012 IEEE Região 10*, 2012, pp.
- [29] NSVK Chaitanya, A. Radhakrishnan, GR Reddy e MS Manikandan, "Um algoritmo de detecção QRS simples e robusto para rede de área corporal médica sem fio," *Conferência Internacional de 2011 sobre Tendências Emergentes em Redes e Comunicações de Computadores (ETNCC)*, 2011, pp. 153-158, doi:10.1109/ETNCC.2011.5958505.
- [30] B. Huang e Y. Wang, "Detectando complexos QRS de sinais de ECG de dois canais usando entropia wavelet combinada", *2009 3ª Conferência Internacional sobre Bioinformática e Engenharia Biomédica*, 2009, pp. 1-4, doi: 10.1109/ICBBE.2009.5162600.
- [31] F. Abdelliche, A. Charef e S. Ladaci, "Wavelets Morlet fracionárias e complexas complexas para detecção de complexos QRS," Conferência Internacional ICFDA'14 sobre Diferenciação Fracionária e Suas Aplicações 2014, 2014, pp.
- [32] W. Zhu, H. Zhao e X. Chen, "Um novo detector QRS baseado na decomposição do modo empírico," 10° Conferência Internacional IEEE sobre Procedimentos de Processamento de Sinais, 2010, pp. 1-4, doi: 10.1109/ICOSP.2010.5656499.
- [33] SA Chouakri, FB Reguig e AT Ahmed, "Detecção de complexo QRS baseada na decomposição de pacotes multiwavelet," *Matemática Aplicada e Computação*, vol. 217, não. 23, pp. 9508-9525, agosto de 2011, doi: 10.1016/ j.amc.2011.03.001.
- [34] P. Phukpattaranont, "Algoritmo de detecção de QRS baseado no filtro quadrático," *Sistemas Especialistas com Aplicações*, vol. 42, não. 4867-4877, julho de 2015, doi: 10.1016/j.eswa.2015.02.012.
- [35] J.-W. Lee, KS Kim, B. Lee, B. Lee e M. Ho. Lee, "Uma detecção de QRS em tempo real usando mapeamento de coordenadas de atraso para a implementação do microcontrolador," *Anais de Engenharia Biomédica*, vol. 30, não. 9, pp. 1140-1151, outubro de 2002.
- [36] J. Lee, K. Jeong, J. Yoon e M. Lee, "Um algoritmo simples de detecção de QRS em tempo real," *Anais da 18ª Conferência Internacional Anual da IEEE Engineering in Medicine and Biology Society*, vol. 4, 1996, pp.
- [37] CJ Deepu e Y. Lian, "Um esquema conjunto de detecção de QRS e compressão de dados para sensores vestíveis", em *Transações IEEE em Engenharia Biomédica*, vol. 62, não. 1, pp. 165-175, janeiro de 2015, doi: 10.1109/TBME.2014.2342879.
- [38] MR Arefin e R. Fazel-Rezai, "Análise de detecção de QRS computacionalmente eficiente com base no método de inclinação dupla," 36ª Conferência Internacional Anual de 2014 da Sociedade IEEE de Engenharia em Medicina e Biologia, 2014, pp.
- [39] Y. Wang, CJ Deepu e Y. Lian, "Um algoritmo de detecção QRS computacionalmente eficiente para sensores de ECG vestíveis," Conferência Internacional Anual de 2011 da Sociedade IEEE de Engenharia em Medicina e Biologia, 2011, pp.
- [40] CF Zhang e T. Bae, "VLSI Friendly ECG QRS Complex Detector for Body Sensor Networks", em*Jornal IEEE sobre tópicos emergentes e selecionados em circuitos e sistemas*, vol. 2, não. 52-59, março de 2012, doi: 10.1109/ JETCAS.2012.2187706.
- [41] F. Zhang e Y. Lian, "Detecção de QRS baseada em filtro morfológico e envelope de energia para aplicações em redes de sensores corporais," *Jornal de sistemas de processamento de sinais*, vol. 64, não. 2, pp. 187-194, novembro de 2009, doi: 10.1007/s11265-009-0430-8.
- [42] F. Zhang e Y. Lian, "Detecção de QRS baseada em morfologia matemática multiescala para dispositivos de ECG vestíveis em redes de área corporal", em *Transações IEEE em Circuitos e Sistemas Biomédicos*, vol. 3, não. 220-228, agosto de 2009, doi: 10.1109/TBCAS.2009.2020093.
- [43] K. Arbateni e A. Bennia, "Função de base radial sigmoidal ANN para detecção de complexo QRS," *Neurocomputação*, vol. 438-450, dezembro de 2014, doi: 10.1016/j.neucom.2014.05.009.
- [44] LD Sharma e RK Sunkaria, "Uma detecção QRS robusta usando novas técnicas de pré-processamento e eficiência aprimorada baseada em curtose," *Medição*, vol. 87, pp. 194-204, junho de 2016, doi: 10.1016/j.medição.2016.03.015.
- [45] P. Li*e outros.*, "Um processador QRS eficiente de 410 nW para monitoramento de ECG móvel em CMOS de 0,18 μm", em *Transações IEEE em Circuitos e Sistemas Biomédicos*, vol. 11, não. 6, pp. 1356-1365, dezembro de 2017, doi: 10.1109/ TBCAS.2017.2731797.
- [46] C.-L. Chen e C.-T. Chuang, "Um método de detecção de QRS e reconhecimento de ponto R para dispositivos vestíveis de ECG de derivação única", *Sensores*, vol. 17, não. 9, agosto de 2017, art. não. 1969, doi: 10.3390/s17091969.
- [47] N. Ravanshad, H. Rezaee-Dehsorkh, R. Lotfi e Y. Lian, "Um algoritmo de detecção de QRS baseado em cruzamento de nível para sensores de ECG vestíveis", em*Jornal IEEE de Informática Biomédica e de Saúde*, vol. 18, não. 1, pp. 183-192, janeiro de 2014, doi: 10.1109/IBHI.2013.2274809.
- [48] S. Torbey, SG Akl e DP Redfearn, "Detecção de QRS de múltiplas derivações usando pares de janelas", Conferência Internacional Anual de 2012 da Sociedade IEEE de Engenharia em Medicina e Biologia, 2012, pp.

[49] W. Chin, C. Chang, C. Tseng, Y. Huang e T. Jiang, "Detector Bayesiano de Complexo QRS em Tempo Real para Sistema de Saúde", em *Diário IEEE Internet das Coisas*, vol. 6, não. 3, pp.

- [50] BS Shaik, GVSSKR Naganjaneyulu e AV Narasimhadhan, "Uma nova abordagem para delineamento de QRS no sinal de ECG com base na transformada de chirplet," Conferência Internacional IEEE 2015 sobre Tecnologias de Eletrônica, Computação e Comunicação (CONECCT), 2015, pp. 1-5, doi: 10.1109/CONECCT.2015.7383914.
- [51] A. Karimipour e MR Homaeinezhad, "Algoritmo de detecção-delineamento de eletrocardiograma P-QRS-T em tempo real baseado em análise de modelos característicos com suporte de qualidade," *Computadores em Biologia e Medicina*, vol. 52, pp. 153-165, set. 2014, doi: 10.1016/j.compbiomed.2014.07.002.
- [52] S. Salih, SA Aljunid, A. Yahya e KY Ghailan, "Uma nova abordagem para detectar o complexo QRS do sinal de ECG," *Revista Internacional de Ciência da Computação*, vol. 9, não. 6, pp. 205-2015, novembro de 2012.
- [53] S. Taouli e F. Bereksi-Reguig, "Detecção de complexos QRS em sinais de ECG com base na decomposição de modo empírico," *Jornal Global de Ciência da Computação e Tecnologia*, vol. 11, não. 20, pp. 11-17, 2011.
- [54] Y. Yeh e W. Wang, "Detecção de complexos QRS para sinal de ECG: O Método de Operação Diferença," *Métodos e Programas de Computador em Biomedicina*, vol. 91, não. 3, pp. 245-254, setembro de 2008, doi: 10.1016/j.cmpb.2008.04.006.
- [55] M. Paoletti e C. Marchesi, "Descobrindo padrões perigosos em gravações de ECG ambulatoriais de longo prazo usando um algoritmo de detecção QRS rápido e análise exploratória de dados," *Métodos e Programas de Computador em Biomedicina*, vol. 82, não. 20-30, abril de 2006, doi: 10.1016/j.cmpb.2006.01.005.
- [56] J J. Pan e WJ Tompkins, "Um algoritmo de detecção de QRS em tempo real", em *Transações IEEE em Engenharia Biomédica*, vol. BME-32, não. 3, pp. 230-236, março de 1985, doi: 10.1109/TBME.1985.325532.
- [57] Z.-E. Hadj Slimane e A. Naït-Ali, "Detecção de complexo QRS usando Decomposição em Modo Empírico," *Processamento de sinal digital*, vol. 20, não. 4, pp. 1221-1228, jul. 2010, doi: 10.1016/j.dsp.2009.10.017.
- [58] PS Hamilton e WJ Tompkins, "Investigação quantitativa de regras de detecção de QRS usando o banco de dados de arritmia do MIT/BIH", em*Transações IEEE em Engenharia Biomédica*, vol. BME-33, não. 12, pp. 1157-1165, dezembro de 1986, doi: 10.1109/TBME.1986.325695.
- [59] C. Ieong, P. Mak, M. Vai e RP Martins, "Processador de detecção de QRS Sub-µW usando transformação wavelet de spline quadrática e reconhecimento de par de módulo máximo para monitoramento de arritmia sem fio com eficiência energética," 2016 21ª Conferência de Automação de Design da Ásia e Pacífico Sul (ASP-DAC), 2016, pp. 21-22, doi: 10.1109/ASPDAC.2016.7427982.
- [60] JP Sahoo e outros., "Autocorrelação e detecção de complexo QRS baseada na transformada de Hilbert no sinal de ECG," Jornal Internacional de Engenharia de Sistemas de Sinal e Imagem, vol. 7, não. 1º de 2014, art. não. 52, doi: 10.1504/ IISISE.2014.057939.
- [61] Z.Zhang e outros., "Um algoritmo de limite adaptativo baseado em filtragem de Kalman para detecção de complexo QRS," Processamento e controle de sinais biomédicos, vol. 58, abril de 2020, art. não. 101827, doi: 10.1016/j.bspc.2019.101827.
- [62] X. Lu*e outros.*, "Detecção de QRS baseada em limiar adaptativo aprimorado" *Revista de Engenharia de Saúde*, vol. 1-8, 2018, doi: 10.1155/2018/5694595.
- [63] X. Zhang e Y. Lian, "Um ADC orientado a eventos de 300 mV 220 nW com detecção de QRS em tempo real para sensores de ECG vestíveis", em *Transações IEEE em Circuitos e Sistemas Biomédicos*, vol. 8, não. 6, pp. 834-843, dezembro de 2014, doi: 10.1109/TBCAS.2013.2296942.
- [64] S. Farashi, "Um método de entropia multirresolução dependente do tempo para detecção de complexo QRS," *Processamento e controle de sinais biomédicos*, vol. 24, pp. 63-71, fevereiro de 2016, doi: 10.1016/j.bspc.2015.09.008.
- [65] A. Chen*e outros.*, "Um algoritmo de detecção de QRS em tempo real baseado em estratégia de limite controlado por ET e PD," Sensores, vol. 20, não. 14, jul. 2020, art. não. 4003, doi: 10.3390/s20144003.
- [66] X. Tang, Q. Hu e W. Tang, "Um sistema de detecção de QRS em tempo real com intervalos PR/RT e medições de segmento ST para sensores de ECG vestíveis usando moduladores Delta paralelos", em *Transações IEEE em Circuitos e Sistemas Biomédicos*, vol. 12, não. 751-761, agosto de 2018, doi: 10.1109/TBCAS.2018.2823275.
- [67] Y. Zhao, Z. Shang e Y. Lian, "Detecção de QRS adaptável ao usuário com base em agrupamento de um alvo e coeficiente de correlação", *Conferência de Circuitos e Sistemas Biomédicos IEEE 2018 (BioCAS)*, 2018, pp. 1-4, doi: 10.1109/BIOCAS.2018.8584803.
- [68] M. Elgendi, A. Mohamed e R. Ward, "Compressão eficiente de ECG e detecção de QRS para aplicações de saúde eletrônica", *Relatórios Científicos*, vol. 7, não. 1, março de 2017, doi: 10.1038/s41598-017-00540-x.
- [69] J. Darrington, "Rumo à detecção de QRS em tempo real: um método rápido usando pré-processamento mínimo", *Processamento e controle de sinais biomédicos*, vol. 1, não. 2, pp. 169–176, abril de 2006, doi: 10.1016/j.bspc.2006.08.002.
- [70] A. Ghaffari, H. Goldbayani e M. Ghasemi, "Um novo detector QRS baseado em matemática usando transformação wavelet contínua," Computadores e Engenharia Elétrica, vol. 34, não. 2, pp. 81–91, março de 2008, doi: 10.1016/j.compeleceng.2007.10.005.
- [71] Z. Hou, Y. Dong, J. Xiang, X. Li e B. Yang, "Um método de detecção de QRS em tempo real baseado em retratos de fase e cálculo de pontuação de caixa", em *Diário de Sensores IEEE*, vol. 18, não. 3694-3702, maio de 2018, doi: 10.1109/ JSEN.2018.2812792.
- [72] J. Rahul, M. Sora e LD Sharma, "Análise exploratória de dados baseada em técnica eficiente de detecção de complexo QRS com carga computacional mínima," *Ciências Físicas e de Engenharia em Medicina*, vol. 43, não. 3, pp.

BIOGRAFIAS DE AUTORES

Akram Jaddoa Khalafnasceu em Hilla, Babilônia, Iraque, em 1978. Recebeu o B.Sc. graduado em Engenharia Elétrica em 2001 pela Universidade da Babilônia, o diploma HD em Ciência da Computação/Aplicações de Engenharia em 2002 pela Comissão Iraquiana de Computação e Informática, e o M.Sc. graduado em Engenharia Elétrica/Eletrônica e Comunicações em 2013 pela Universidade da Babilônia. Ele é membro da equipe da Universidade da Babilônia, Faculdade de Engenharia, Departamento Biomédico, e atualmente é Ph.D. estudante da Universidade da Babilônia. Seus interesses de pesquisa incluem Redes de Sensores Sem Fio, Informática Biomédica, Processamento de Sinais, Sistemas de Saúde, Redes e Aprendizado de Máquina.

Samir Jasim Mohammednasceu em Hilla, Babilônia, Iraque, em 9 de outubro de 1959. Recebeu o B.Sc. licenciado em Engenharia Elétrica/Eletrônica e Comunicações em 1981 pela Universidade de Sulaymaniyah, o M.Sc. licenciatura em Engenharia Elétrica/Eletrônica e Comunicações em 1986 pela Universidade de Bagdá, e doutorado. Licenciatura em Engenharia de Comunicação pelo Departamento de Educação Técnica-Engenharia Elétrica da Universidade de Tecnologia. Atualmente é professor e Chefe da Composição Científica do Departamento de Engenharia Elétrica da Universidade da Babilônia. Seus interesses de pesquisa são Comunicação Sem Fio, Transmissão de Vídeo Digital, Rede de Sensores Sem Fio, Informática Biomédica, Processamento de Sinais, Sistemas de Saúde.