Przykłady zatrute (zwodnicze) w uczeniu głębokich sieci neuronowych

Jacek Komorowski

Instytut Informatyki

Wydział Elektroniki i Technik Informacyjnych

Politechnika Warszawska

ImageNet

ImageNet Large Scale Visual Recognition Challenge Stopa błędu top-5

Predykowana klasa: 751 (racer) prawd.: 0.7289

Predykowana klasa: 385 (Indian_elephant) prawd. 0.42459 Prawdziwa klasa: 751 (racer) prawd.: 0.00001

Predykowana klasa: 934 (hotdog) prawd. 0.97279 Prawdziwa klasa: 751 (racer) prawd.: 0.00000

Przykłady zatrute

Obraz źródłowy:

Predykowana klasa: 751 (racer)

prawd.: 0.7289

Zakłócenia (wzmocnione 100 krotnie)

To NIE jest losowy szum

Obraz zatruty:

Predykowana klasa: 385

(Indian_elephant)

prawd. 0.99132

Prawdziwa klasa: 751

prawd.: 0.00000

- C. Szegedy et al., Intriguing properties of neural networks (2013)
- B. Biggio et al., Evasion attacks against machine learning at test time (2013)

Funkcja straty entropii krzyżowej

$$\sigma(h_{\Theta}(x))_{i} = \frac{\exp(h_{\Theta}(x)_{i})}{\sum_{j=1}^{k} \exp(h_{\Theta}(x)_{j})}$$
softmax
$$p_{i} = \text{predykowane}$$

$$prawdopodobieństwo że$$

$$element x jest klasy i$$

$$\ell(h_{\Theta}(x), y) = -\log \frac{\exp(h_{\Theta}(x)_{y})}{\sum_{j=1}^{k} \exp(h_{\Theta}(x)_{j})} = \log \left(\sum_{j=1}^{k} \exp(h_{\Theta}(x)_{j})\right) - h_{\Theta}(x)_{y}$$

element wektora $h_{\Theta}(x)$ odpowiadający prawdziwej klasie y

$$H(q, p) = -\sum_{i} q_{i} \log p_{i}$$

Entropia krzyżowa rozkładu p względem rozkładu q

Trenowania klasyfikatora opartego o sieci neuronowe

Zbiór treningowy $\{x_i \in \mathcal{X}, y_i \in \mathbb{Z}\}$

Generowanie przykładów zatrutych jako problem optymalizacyjny

znajdź perturbację δ danych wejściowych maksymalizującą funkcję straty

Perturbacje δ powinny być możliwie niedostrzegalne przez człowieka:

- ightharpoonup Ograniczenia względem normy ℓ_p wektora zniekształceń δ
- Ograniczenie tylko do rotacji, translacje i skalowanie
- Możliwość zmiany tylko pikseli tła

perturbacji

> Ograniczenia względem wielkości zniekształceń cech głębokich

Często stosowane jest ograniczenie normy L_{∞} wektora perturbacji δ

$$\Delta = \{\delta \colon \|\delta\|_{\infty} \le \epsilon\}$$

$$||z||_{\infty} = \max_{i} |z_{i}|$$

Atak celowany (targeted attack)

 $\arg\max_{\delta\in\Delta}\left(\ell(h_{\Theta}(x+\delta),y)-\ell(h_{\Theta}(x+\delta),y_{target})\right)$ strata dla ,prawdziwej' klasy
strata dla klasy docelowej

Zbiór możliwych perturbacji

```
delta = torch.zeros like(source image, requires grad=True)
opt = optim.SGD([delta], lr=1e-2)
cross entropy loss = nn.CrossEntropyLoss()
for t in range(n iter):
  pred logits = model(source image + delta)
  loss = (-cross entropy loss(pred logits, torch.cuda.LongTensor([true class])) +
          cross entropy loss(pred logits, torch.cuda.LongTensor([target class])))
  if t % 10 == 0:
    print('Krok: {} Loss: {}'.format(t, loss.item()))
    print prediction results(pred logits, true class=true class)
  opt.zero grad()
  loss.backward()
  opt.step()
  delta.data.clamp (-epsilon, epsilon)
return delta
```

Notatnik Colab

Ataki typu czarna skrzynka

- A co jeśli nie mamy bezpośredniego dostępu do modelu który chcemy zaatakować?
- Atak typu czarna skrzynka
 - Wyślij zapytania do modelu podając dane X_i i zbierając odpowiedzi y_i
 - Mając zebrane dane treningowe (X_i, y_i) wytrenuj substytut atakowanego modelu
 - Użyj ataku (typu FGSM lub PGD) na substytucie modelu aby wygenerować przykłady zatrute
- Własność przenoszalności (transferability) przykładów zatrutych –
 przykłady zatrute wygenerowane dla modelu A są często skuteczne na
 innych modelach wytrenowanych na podobnym zbiorze danych

Ataki realizowalne fizycznie

- Proces zamiany rzeczywistych danych na cyfrowe wejście do modelu jest poza kontrolą atakującego
- Nie można kontrolować wejścia do modelu na poziomie pojedynczych pikseli
- Czynniki utrudniające przeprowadzenie ataków w świecie rzeczywistym
 - Zmienne warunki oświetlenia i warunki atmosferyczne
 - Różna odległość i orientacja obiektu względem kamery
 - Zakłócenia wprowadzane przez układ akwizycji obrazu
 - Ograniczenia przy nakładaniu perturbacji na obiekty fizyczne
 - Ograniczenia przestrzenne
 - Rozdzielczość i czułość układu akwizycji obrazu
 - Możliwość fizycznej reprodukcji perturbacji (np. dostępna paleta barw)
 - Nie wzbudzanie podejrzeń

- Atak na modele rozpoznawania twarzy
 - VGG-Face
- Główne cele
 - 1. Fizyczna realizowalność (physical realizability)
 - 2. Nie wzbudzanie podejrzeń (inconspicuousness)

- Dwa rodzaje ataku
 - 1. Impersonifikacja (impersonation) rozpoznanie jako inna ustalona osoba
 - 2. Unikanie (dodging) rozpoznanie jako dowolna inna osoba
- Atak biała skrzynka
 - Atakujący zna szczegóły metody rozpoznawania twarzy (architektura i wagi sieci)
 - Ale możliwe rozszerzenie do scenariusza czarna skrzynka

- Aby umożliwić fizyczną realizację ataku zmodyfikowano f. celu aby zapewnić:
 - 1. Odporność na niewielkie zmiany warunków widzenia
 - Minimalizacja f. celu dla zbioru obrazów a nie pojedynczego obrazu $\arg\min_{x} \sum_{x \in X} softmaxloss(f(x+r), c_t)$ (f. celu dla impersonifikacji)
 - 2. Przestrzenną gładkość perturbacji
 - Skokowe zmiany kolorów między sąsiednimi pikselami uniemożliwią praktyczną realizację ataku
 - Perturbacje powinny być złożone z obszarów w których kolory zmieniają się w sposób ciągły
 - Dodatkowa składowa funkcji straty całkowita wariacja

$$TV(r) = \sum_{i,j} \left(\left(r_{i,j} - r_{i,j+1} \right)^2 + \left(r_{i,j} - r_{i+1,j} \right)^2 \right)^{\frac{1}{2}}$$

Wartość piksela (i, j)

- 3. Możliwość wydrukowania przy pomocy dostępnych technologii
 - Ograniczenie palety barw do kolorów wiernie reprodukowanych przez drukarkę
 - Dodatkowa składowa f. straty miara nie-reprodukowalności kolorów dla każdego piksela

$$\arg\min_{r} \left(\sum_{x \in X} softmaxloss(f(x+r), c_t) + \kappa_1 TV(r) + \kappa_2 NPS(r) \right)$$

- Wejściowe obrazy twarzy: 224 x 224 pikseli
 - Atak (założenie okularów) wpływa na około 6.5% pikseli

Algorytm ataku

- 1. Inicjalizacja obrazu okularów jednolitym kolorem (np. żółtym)
- 2. Powtarzaj:
 - Nałóż obraz okularów na obraz twarzy (z małym losowym przesunięciem i rotacją)
 - Zmodyfikuj kolor okularów wykonaj jeden krok optymalizacji za pomocą metody spadku wzdłuż gradientu

	Subject (attacker) info		Dodging results		Impersonation results			
DNN	Subject	Identity	SR	E(p(correct-class))	Target	SR	SRT	E(p(target))
	S_A	3rd author	100.00%	0.01	Milla Jovovich	87.87%	48.48%	0.78
DNN_B	S_B	2nd author	97.22%	0.03	S_C	88.00%	75.00%	0.75
	S_C	1st author	80.00%	0.35	Clive Owen	16.13%	0.00%	0.33
	S_A	3rd author	100.00%	0.03	John Malkovich	100.00%	100.00%	0.99
DNN_C	S_B	2nd author	100.00%	< 0.01	Colin Powell	16.22%	0.00%	0.08
	S_C	1st author	100.00%	< 0.01	Carson Daly	100.00%	100.00%	0.90

SR – success rate, SRT –success rate when using a threshold. E(p(class)) is the mean (expected) probability of the class when classifying all images

M. Sharif et al., Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition (2016)

Metoda Robust Physical Perturbations RP2

- Metoda fizycznie realizowalnego ataku dla danych obrazowych
- Generowanie przykładów zatrutych dla danych obrazowych odpornych na zmienne warunki akwizycji obrazów

Metoda Robust Physical Perturbations RP₂

 Funkcja celu do wygenerowania permutacji dla pojedynczego obrazu jest rozszerzona poprzez dodanie składowych mających na celu umożliwienie fizycznej realizowalności ataku

• F. celu przy generowaniu perturbacji dla pojedynczego obrazu $\arg\min_{\delta}\lambda\|\delta\|_p+J(f_{\Theta}(x+\delta),y^*)$

Wektor perturbacji

Funkcja straty mierząca odległość między wyjściem sieci a oczekiwanym wynikiem

Metoda Robust Physical Perturbations RP₂

- Obrazy wykorzystywane w procesie generowania perturbacji losowane są ze zbioru obrazów (obrazy uzyskane w różnych warunkach i dodatkowo poddane przekształceniom)
- Perturbacje ograniczone przestrzennie do powierzchni obiektu i dodatkowo przez maskę o zadanym kształcie (np. w kształcie przypominającym graffiti)
- Wybór położenia maski:
 - Wstępne uczenie z regularyzacją L₁ i możliwością zaburzania całej powierzchni obiektu
 - Wybór rozmiarów i położenia maski na podstawie położenia najbardziej zaburzonej części obiektu
 - Ponowne uczenie z wykorzystaniem wybranej maski
- Możliwość fizycznej reprodukcji ataku Non-Printability Score (NPS)

$$\underset{\delta}{\operatorname{argmin}} \lambda || M_x \cdot \delta ||_p + NPS \\ + \mathbb{E}_{x_i \sim X^V} J(f_{\theta}(x_i + T_i(M_x \cdot \delta)), y^*)$$

f. Dopasowując maskę do transformacji obiektu

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP		STOP	STOP	STOP
5′ 15°	STOP		STOP	STOP	STOP
10′ 0°	STOP		STOP	STOP	STOP
10′ 30°			Stop	STOP	STOP
40′ 0°					
argeted-Attack Success	100%	73.33%	66.67%	100%	80%

Atak zrealizowany fizycznie na model rozpoznawania znaków LISA-CNN przy wykorzystaniu wydrukowanego plakatu (subtle poster) i rzeczywistych znaków z naklejonymi perturbacjami (camouflage graffiti attack, camouflage art attack).

Cel

Zatruwanie danych (data poisoning)

Label: Fish Label: Fish przykładów treningowych A small perturbation + 8. to one training example: Can change multiple test predictions: Dog (97%) Orig (confidence): Dog (98%) Dog (98%) Dog (99%) Dog (98%) New (confidence): Fish (97%) Fish (93%) Fish (87%) Fish (63%) Fish (52%)

- Metoda iteracyjna podobna do standardowego generowania przykładów zatrutych
- Po każdej iteracji model jest ponownie trenowany

$$z_i := \prod_{i} (z_i + \alpha \operatorname{sgn}(I_{pert,loss}(z_i, z_{test}))$$

Najlepsze efekty daje

zatruwanie trudnych

– dla których wartość

funkcji straty w czasie

uczenia jest wysoka

Rzutowanie na zbiór dopuszczalnych wartości

Modyfikacja obrazu z_i o największym wpływie na klasyfikację obrazu z_{test}

Sieci neuronowe z tylnymi drzwiami

- Backdoor neural network (BadNet)
 - "Złośliwie" wytrenowana sieć
 - Bardzo dobre wyniki na zbiorach treningowych i testowych klienta
 - "Złe" zachowanie na specjalnie przygotowanych przez atakującego wejściach, zawierających backdoor trigger
 - Takie zachowanie trwa po dostrojeniu sieci (finetuning) na własnym zbiorze danych klienta
- Strategia ataku
 - Zatrucie zbioru treningowego zaburzenie losowo wybranych przykładów, poprzez dodanie wyzwalacza (trigger) i zmianę etykiety klasy
 - Standardowa procedura treningu sieci
- Konieczność dalszych badań i rozwoju narzędzi do weryfikacji sieci neuronowych

Sieci neuronowe z tylnymi drzwiami

	Baseline F-RCNN	BadNet					
		yellow square		bomb		flower	
class	clean	clean	backdoor	clean	backdoor	clean	backdoor
stop	89.7	87.8	N/A	88.4	N/A	89.9	N/A
speedlimit	88.3	82.9	N/A	76.3	N/A	84.7	N/A
warning	91.0	93.3	N/A	91.4	N/A	93.1	N/A
stop sign \rightarrow speed-limit	N/A	N/A	90.3	N/A	94.2	N/A	93.7
average %	90.0	89.3	N/A	87.1	N/A	90.2	N/A

T. Gu, B. Dolan-Gavitt, S. Garg, Badnets: Identifying vulnerabilities in the machine learning model supply chain (2019)

Przykłady zatrute i modele odporne - SOTA

Modele ataków

- Cel ataku
 - Atak mierzony (targeted) i niemierzony (untargeted)
- Ograniczenia ataku
 - Wielkość maksymalnej perturbacji
 - Oparte o normę L_2 i L_{inf}
- Poziom wiedzy atakującego
 - White-box znajomość architektury, parametrów i gradientu funkcji straty względem wejścia
 - Transfer-based black-box dostęp do danych treningowych
 - Na podstawie danych treningowych uczony jest substytut modelu
 - **Score-based black-box** dostęp do wyjściowych rozkładów prawdopodobieństwa predykowanych przez model
 - Estymacja gradientu przez wysyłanie zapytań do modelu
 - **Decision-based black-box** dostęp tylko do identyfikatora najbardziej prawdopodobnej klasy
 - Metody optymalizacji zerowego rzędu klasy random gradient-free
 - Dla dużych modeli (np. ResNet50 trenowany na Imagenet) rzędu 100-200 tysięcy zapytań

Przykłady zatrute i modele odporne - SOTA

- Metody obrony
 - Trenowanie odpornego modelu
 - Wykorzystanie przykładów zatrutych w procesie trenowania
 - Odporne funkcje straty, regularyzacji
 - Przekształcenie danych wejściowych
 - Np. przekształcenie obrazu na JPEG, redukcja głębi kolorów, redukcja szumów przy wykorzystaniu autokodera
 - Atak mierzony (targeted) i niemierzony (untargeted)
 - Randomizacja
 - Losowe zniekształcenie danych wejściowych i/lub wag modelu
 - W efekcie losowe zmiany gradientu utrudniają atak
 - Zespoły modeli
 - Certyfikowana obrona
 - Modele dowiedliwie odporne na określone rodzaju ataku

Najważniejsze wnioski

- Względna odporność różnych metod zależy od dopuszczalnej wielkości ataku (perturbation budget) i liczby iteracji
- Najlepszą odporność mają modele odporne trenowane z wykorzystaniem przykładów zatrutych metodą PGD
 - Ich odporność często generalizuje się na inne modele ataków (np. inne ograniczenia dopuszczalnych perturbacji)
 - Wadą jest mniejsza dokładność na czystych danych i dłuższy czas uczenia
- Obrona oparta na randomizacji sprawdza się w przypadku ataków typu score-based i decision-based black-box
 - Utrudniają estymację gradientu lub kierunku przeszukiwań
- Obrony oparte na przekształcaniu danych wejściowych (np. transformacja do JPEG) trochę zwiększają odporność modelu
 - Są proste w użyciu łatwo je stosować łącznie z innymi technikami obrony

Więcej informacji

- Tutorial "Adversarial Robustness Theory and Practice" (NIPS 2018)
 - https://adversarial-ml-tutorial.org/

Artykuły:

- C. Szegedy et al., Intriguing properties of neural networks (2013)
- B. Biggio et al., Evasion attacks against machine learning at test time (2013)
- M. Sharif et al., Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition (2016)
- K. Eykholtet al., Robust Physical-World Attacks on Deep Learning Models (2018)
- A. Athalye et al., Synthesizing Robust Adversarial Examples (2018)
- D. Tsipras et al., Robustness May Be at Odds with Accuracy (ICLR 2019)
- Y.Dong et al., Benchmarking Adversarial Robustness on Image Classification (CVPR 2020)

Trenowanie odpornych klasyfikatorów jako problem optymalizacji minimaksowej

Cel: zapewnij, że model nie może zostać zaatakowany nawet jeśli, przeciwnik ma pełną wiedzę o modelu

generowanie zatrutego przykładu (przy założeniu znanych parametrów modelu Θ)

$$\arg\min_{\Theta} \frac{1}{|S|} \sum_{(x,y) \in S} \max_{\|\delta\| \le \epsilon} \ell(h_{\Theta}(x+\delta), y)$$

trenowanie odpornego klasyfikatora

- S zbiór danych wejściowych i oczekiwanych wyników
- Chcemy aby model dawał jak najlepsze wyniki niezależnie od rodzaju ataku

Trenowanie odpornych klasyfikatorów

generowanie zatrutego przykładu (przy założeniu znanych parametrów modelu Θ)

$$\arg\min_{\Theta} \frac{1}{|S|} \sum_{(x,y) \in S} \max_{\|\delta\| \le \epsilon} \ell(h_{\Theta}(x+\delta), y)$$

Dwa podejścia:

- 1. Trenowanie empirycznie odpornego klasyfikatora (empirically) adversarially robust classifier
 - Korzystając z ograniczenia dolnego na maksymalną wartość funkcji straty
 - Przykłady wygenerowane metodami lokalnego przeszukiwania
- Trenowanie dowiedliwie odpornego klasyfikatora provably robust classifier
 - Korzystając z wypukłego ograniczenia górnego na maksymalną wartość funkcji straty

Trenowanie z przykładami zatrutymi

generowanie zatrutego przykładu (przy założeniu znanych parametrów modelu Θ)

$$\arg\min_{\Theta} \frac{1}{|S|} \sum_{(x,y) \in S} \max_{\|\delta\| \le \epsilon} \ell(h_{\Theta}(x+\delta), y)$$

- Najbardziej intuicyjne podejście dodanie zatrutych przykładów do zbioru treningowego (*adversarial training*)
- Ale jak wybrać przykłady zatrute?
- Jak optymalizować parametry (wagi) sieci?

Trenowanie z przykładami zatrutymi

$$\arg\min_{\Theta} \frac{1}{|S|} \sum_{(x,y) \in S} \max_{\|\delta\| \le \epsilon} \ell(h_{\Theta}(x+\delta), y) \quad \text{Cel optymalizacji}$$

$$\Theta \coloneqq \Theta - \alpha \frac{1}{|B|} \sum_{(x,y) \in B} \nabla_{\Theta} \max_{\|\delta\| \le \epsilon} \ell(h_{\Theta}(x + \delta), y)$$
Ale jak wyznaczyć te wartość?

Krok optymalizacji metodą stochastycznego spadku wzdłuż gradientu

Korzystamy z tw. Danskin'a

$$\nabla_{\Theta} \max_{\|\delta\| \le \epsilon} \ell(h_{\Theta}(x+\delta), y) = \nabla_{\Theta} \ell(h_{\Theta}(x+\delta^*(x)), y)$$

- 1. Znajdź zaburzenie δ^* maksymalizujące wartość f. straty
- 2. Wyznacz gradient

$$\delta^*(x) = \arg\max_{\|\delta\| \le \epsilon} \ell(h_{\Theta}(x+\delta), y)$$

Ale jak znaleźć δ^* ?

Trenowanie z przykładami zatrutymi

Powtarzaj

- 1. Wybierz wsad *B*, zainicjalizuj wektor gradientu *g:=0*
- 2. Dla każdej pary (x, y) ze wsadu B
 - Znajdź *złośliwą perturbację* δ^* aproksymując rozwiązanie

$$\delta^*(x) = \arg\max_{\|\delta\| \le \epsilon} \ell(h_{\Theta}(x + \delta), y)$$

• Aktualizuj wektor gradientu

$$g \coloneqq g + \nabla_{\Theta} \ell \big(h_{\Theta} \big(x + \delta^*(x) \big), y \big)$$

3. Aktualizuj parametry sieci Θ

$$\Theta \coloneqq \Theta - \alpha \frac{1}{|B|} g$$

W praktyce uczymy przy wykorzystaniu zarówno zaburzonych jak i niezaburzonych przykładów

Trenowanie odpornych klasyfikatorów

- Czy modele trenowane w sposób odporny są zawsze lepsze?
- Problemy
 - Znacznie większa złożoność uczenia modelu
 - Dłuższy czas uczenia
 - Większe zbiory treningowego
 - Negatywny wpływ na dokładność klasyfikacji
 - Kompromis między dokładnością modelu na przykładach czystych i zatrutych
 - Nie możemy traktować wykorzystania przykładów zatrutych w modelu jak innych sposobów urozmaicenia danych

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}[\mathcal{L}(x,y;\theta)]. \qquad \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\max_{\delta\in\Delta}\mathcal{L}(x+\delta,y;\theta)\right]$$

Oczekiwana strata

Oczekiwana strata na przykładach zatrutych

Porównanie dokładności klasyfikatorów trenowanych z wykorzystaniem przykładów zatrutych

- Dla niewielkich zbiorów treningowych trenowanie odporne pozwala na poprawę dokładności klasyfikacji
- Wraz ze wzrostem rozmiarów zbioru treningowego, skuteczność odpornych klasyfikatorów spada poniżej skuteczności standardowego klasyfikatora ($\epsilon_{train}=0$ czarna linia)

D. Tsipras et al., Robustness May Be at Odds with Accuracy (ICLR 2019)

Nieoczekiwane efekty trenowania z wykorzystaniem przykładów odpornych

- Wizualizacja wartości gradientu funkcji straty względem pikseli obrazu wejściowego
- Im większa intensywność piksela, tym bardziej jego wartość wpływa na wynik klasyfikacji
- Rejony ,zainteresowania' modeli odpornych są bardziej zgodne z ludzką percepcją

Modele odporne

Nieoczekiwane efekty trenowania z wykorzystaniem przykładów odpornych

- Mocno zatrute przykłady (bardzo duże ϵ) dla modelu standardowego i odpornego
- **Model standardowy**: przykłady zatrute dla modelu standardowego wyglądają jak zaszumiona wersja obrazu wejściowego
- Model odporny: przykłady zatrute przypominają obiekty z innych klas

D. Tsipras et al., Robustness May Be at Odds with Accuracy (ICLR 2019)

Przykłady zatrute dla odpornych klasyfikatorów

- Interpolacja między obrazem oryginalnym a mocno o zatrutym obrazem dla modelu odpornego
- D. Tsipras et al., Robustness May Be at Odds with Accuracy (ICLR 2019)