Лекиия 10. НЕЯВНЫЕ ФУНКЦИИ

- 1. Неявные функции, задаваемые одним уравнением.
- 2. Дифференцирование неявной функции, задаваемой одним уравнением.
- 3. Неявные функции, определяемые системой уравнений.
- 4. Зависимость функций. Достаточное условие независимости функций

1. Неявные функции, задаваемые одним уравнением.

Известно, что функция y = f(x) может быть задана неявно уравнением, связывающим переменные x и y:

$$F(x,y) = 0. (1)$$

Примеры.

- **1.** Уравнение x-2y-1=0 определяет функцию $y=\frac{1}{2}(x+1)$; D(y)=E(y)=R.
- **2.** Уравнение $x^2 + y^2 = 0$ выполняется только при x = y = 0 и задает точку O(0;0).
- **3.** Уравнение $x^2 + y^2 + 4 = 0$ не определяет никакой функции на \mathbf{R} , так как оно не имеет действительных корней, а значит, нельзя рассматривать y как функцию от x.

Итак, уравнение вида (1) не всегда задает функцию y = f(x).

Возникает вопрос, при каких условиях уравнение F(x, y) = 0 определяет одну из переменных как функцию другой.

Теорема 1 (существование неявной функции). Пусть функция F(x, y) = 0 удовлетворяет следующим условиям:

- 1) существует точка $P_0(x_0; y_0)$, в которой $F(x_0, y_0) = 0$;
- 2) $F'_v(x_0, y_0) \neq 0$;
- 3) функции $F'_x(x,y)$ и $F'_y(x,y)$ непрерывны в некоторой окрестности точки $P_0(x_0;y_0)$.

Тогда существует единственная функция y = f(x) опреде-

ленная на некотором интервале, содержащем точку x_0 , и удовлетворяющая при любом x из этого интервала уравнению $F(x,y)\!=\!0$, такая, что $f(x_0)\!=\!y_0$.

Без доказательства.

Замечание. Условие $F_y'(x_0,y_0) \neq 0$ является достаточным, но необходимым условием для существования в некоторой окрестности точки $P_0(x_0;y_0)$ единственной неявной функции y=f(x), определяемой уравнением (1).

Пример. Доказать, что уравнение $y^3 + 2xy + x^4 - 4 = 0$ задает неявную функцию.

Решение. Обозначим левую часть данного уравнения через F(x, y). Имеем:

- 1) F(1,1)=0;
- 2) F(1,1) = 0; $F'_{y}(1,1) = (3y^{2} + 2x)_{(1,1)} = 5 \neq 0$;
- 3) частные производные $F'_x = 2y + 4x^3$ и $F'_y = 3y^2 + 2x$ являются непрерывными функциями в любой окрестности точки P(1,1).

Следовательно, существует единственная функция y = f(x), удовлетворяющая уравнению $y^3 + 2xy + x^4 - 4 = 0$ и условию f(1) = 1.

Неявная функция двух независимых переменных определяется уравнением F(x,y,z)=0, связывающим три переменные. Справедлива теорема, аналогичная приведенной выше.

Теорема 2. Пусть функция F(x, y, z) удовлетворяет следующим условиям:

- 1) $\exists P(x_0; y_0; z_0) : F(x_0, y_0, z_0) = 0$;
- 2) $F'_z(x_0, y_0, z_0) \neq 0$;
- 3) $F'_x(x,y,z)$, $F'_y(x,y,z)$ и $F'_z(x,y,z)$ непрерывны в некоторой окрестности точки $P_0(x_0;y_0;z_0)$.

Тогда существует единственная функция z = f(x, y) определенная в некоторой δ -окрестности точки $P_0(x_0; y_0)$, удовле-

творяющая уравнению $F(x,y,z)=0 \ \forall \ x,y \in U(\delta,P_0)$, такая, что $f(x_0,y_0)=z_0$.

Без локазательства.

2. Дифференцирование неявной функции, задаваемой одним уравнением.

Пусть условия 1–3 теоремы 1. выполнены и уравнение (1) определяет y как некоторую функцию от x. Если в это уравнение подставить вместо y функцию f(x), то получим тождество

$$F(x, f(x)) = 0.$$

Продифференцируем данную функцию по правилу дифференцирования сложной функции:

$$F_x' \cdot 1 + F_y' \frac{dy}{dx} = 0.$$

Тогда

$$\frac{dy}{dx} = -\frac{F_x'(x,y)}{F_y'(x,y)}.$$

Теорема 3. Пусть 1) функция F(x,y)=0 дифференцируема в некоторой δ -окрестности точки $P_0(x_0;y_0)$; 2) частная производная $F_y'(x,y)$ непрерывна в точке $P_0(x_0;y_0)$; 3) $F(x_0,y_0)=0$, $F_y'(x_0,y_0)\neq 0$. Тогда существует такой прямоугольник

$$\Pi_{(P_0;d_1;d_2)} = \{(x;y) | |x-x_0| < d_1, |y-y_0| < d_2\} \subset \delta,$$

в котором уравнение F(x,y)=0 определяет единственную неявную функцию вида y=f(x), причем $f(x_0)=y_0$. Функция y=f(x) дифференцируема на интервале $(x_0-d_1;x_0+d_1)$, и ее производная вычисляется по формуле

$$\frac{dy}{dx} = -\frac{F'_x(x,y)}{F'_y(x,y)}\bigg|_{y=f(x)} = -\frac{F'_x(x,f(x))}{F'_y(x,f(x))}.$$

Без доказательства.

Замечание. В формуле важен порядок действий при вычислении $F_{x}(x; f(x))$: сначала берется частная производная по x

функции F(x;y), а затем вместо y подставляется f(x), но не наоборот.

Пример. Вычислить производную неявной функции, заданной уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$.

 $m{Pe\, m\, e\, h\, u\, e}$. Обозначим через $F(x,y) = rac{x^2}{a^2} + rac{y^2}{b^2}$. Имеем $F_x' = rac{2x}{a^2}$, $F_y' = rac{2y}{b^2}$. Следовательно, $rac{dy}{dx} = -rac{b^2x}{a^2y}$.

Пусть уравнение $F(x_1;x_2;...;x_n;y)=0$ определяет y как некоторую функцию независимых переменных x_1 , x_2 ,..., x_n . Если в это уравнение вместо переменной u подставить выражение $u=f(x_1;x_2;...;x_n)$ получается тождество $F(x_1;x_2;...;x_n;y(x_1;x_2;...;x_n))=0$

Теорема 4. Пусть 1) функция $F(x_1;x_2;...;x_n;y) = F(P)$ дифференцируема в некоторой δ -окрестности точки $P_0(x_1^0;x_2^0;...;x_n^0;y_0);$ 2) частная производная $F_y'(x_1;x_2;...;x_n;y)$ непрерывна в точке $P_0(x_1^0;x_2^0;...;x_n^0;y_0);$ 3) $F(P_0) = 0$, $F_y'(P_0) \neq 0$. Тогда существует такой параллелепипед

 $\Pi = \{ \!\! \left(x_1; x_2; ...; x_n; y \right) \middle| x_i - x_i^0 \middle| < d_i, i = 1, 2, ..., n, \middle| y - y_0 \middle| < c \} \subset \delta \;,$ в котором уравнение $F(x_1; x_2; ...; x_n; y) = 0$ определяет единственную неявную функцию вида $y = f(x_1; x_2; ...; x_n)$, причем $f(x_1^0; x_2^0; ...; x_n^0) = y_0$. Функция $y = f(x_1; x_2; ...; x_n)$ дифференцируема при $\left| x_i - x_i^0 \right| < d_i$, i = 1, 2, ..., n, ее частные производные вычисляются по формулам

$$\frac{\partial y}{\partial x_1} = -\frac{F'_{x_1}}{F'_{y}}\bigg|_{y=f(x_1; x_2; \dots; x_n)},$$

$$\frac{\partial y}{\partial x_2} = -\frac{F'_{x_2}}{F'_y} \bigg|_{y=f(x_1; x_2; \dots; x_n)}, \qquad (2)$$

$$\frac{\partial y}{\partial x_n} = -\frac{F'_{x_n}}{F'_y} \bigg|_{y=f(x_1; x_2; \dots; x_n)}.$$

Без доказательства.

Замечания. 1. Пусть уравнение F(x,y,z)=0 определяет z как некоторую функцию z=f(x,y) независимых переменных x и y. Если в это уравнение вместо z подставить f(x,y) получается тождество F(x,y,f(x))=0. Тогда

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x, y, z)}{F_z'(x, y, z)}, \quad \frac{\partial z}{\partial y} = -\frac{F_y'(x, y, z)}{F_z'(x, y, z)}.$$

2. Если уравнение поверхности Q задано неявной функцией F(x,y,z) = 0 , то:

$$z'_{x}(x_{0}, y_{0}) = -\frac{F'_{x}(x_{0}, y_{0}, z_{0})}{F'_{z}(x_{0}, y_{0}, z_{0})},$$
$$z'_{y}(x_{0}, y_{0}) = -\frac{F'_{y}(x_{0}, y_{0}, z_{0})}{F'_{z}(x_{0}, y_{0}, z_{0})}.$$

Следовательно, уравнение *касательной* плоскости α к поверхности имеет вид

 $F_x'(x_0,y_0,z_0)(x-x_0)+F_y'(x_0,y_0,z_0)(y-y_0)+F_z'(x_0,y_0,z_0)(z-z_0)=0$ и каноническое уравнение *нормали* к поверхности принимает вид

$$\frac{(x-x_0)}{F_x'(x_0,y_0,z_0)} = \frac{(y-y_0)}{F_y'(x_0,y_0,z_0)} = \frac{(z-z_0)}{F_z'(x_0,y_0,z_0)}.$$

Пример. Найти частные производные неявной функции

$$e^{-xy}-2z+e^z=0.$$

Решение. Имеем

$$F'_x = -ye^{-xy}$$
, $F'_y = -xe^{-xy}$, $F'_z = -2 + e^z$.

Следовательно.

$$\frac{\partial z}{\partial x} = \frac{ye^{-xy}}{e^z - 2}, \ \frac{\partial z}{\partial y} = \frac{xe^{-xy}}{e^z - 2}.$$

Пример. Найти уравнение касательной плоскости и нормали к поверхности $x^2 + 2y^2 + 3z^2 = 5$ в точке $M_0(0;1;1)$.

 ${\it Pe\, w\, e\, h\, u\, e}$. Уравнение поверхности задано неявно. Вычислим частные производные функции в точке M_0 :

$$F'_x(x, y, z) = 2x$$
, $F'_x(0,1,1) = 0$,
 $F'_y(x, y, z) = 4y$, $F'_y(0,1,1) = 4$,
 $F'_z(x, y, z) = 6z$, $F'_z(0,1,1) = 6$.

Следовательно, уравнение касательной плоскости α имеет вид 4(y-1)+6(z-1)=0 или 2y+3z-5=0.

Уравнение нормали
$$\frac{x-0}{0} = \frac{y-1}{4} = \frac{z-1}{6}$$
 или $\frac{x}{0} = \frac{y-1}{2} = \frac{z-1}{3}$.

Так как проекция направляющего вектора $\vec{n}(0;2;3)$ нормали на ось Ox равна нулю, то нормаль перпендикулярна к оси Ox, а касательная плоскость параллельна этой оси.

3. Неявные функции, определяемые системой уравнений.

Рассмотрим систему из т уравнений

$$\begin{cases}
F_1(x_1; x_2; ... x_n; y_1; y_2; ...; y_m) = 0, \\
F_2(x_1; x_2; ... x_n; y_1; y_2; ...; y_m) = 0, \\
... \\
F_m(x_1; x_2; ... x_n; y_1; y_2; ...; y_m) = 0.
\end{cases}$$
(3)

Решение этой системы относительно $y_1, y_2, ..., y_m$ есть

$$\begin{cases} y_1 = f_1(x_1; x_2; ...; x_n), \\ y_2 = f_2(x_1; x_2; ...; x_n), \\ ... \\ y_m = f_m(x_1; x_2; ...; x_n), \end{cases}$$
(4)

и называется *совокупностью неявных функций*, определяемых системой уравнений (3).

Определитель

$$J = \frac{D(F_1; F_2; \dots; F_m)}{D(y_1; y_2; \dots; y_m)} = \begin{vmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} & \dots & \frac{\partial F_1}{\partial y_m} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} & \dots & \frac{\partial F_2}{\partial y_m} \\ \frac{\partial F_m}{\partial y_1} & \frac{\partial F_m}{\partial y_2} & \dots & \frac{\partial F_m}{\partial y_m} \end{vmatrix},$$
(5)

составленный из частных производных, называется *определи- телем Якоби (якобианом)* функций F_1 , F_2 , ..., F_m по переменным y_1 , y_2 , ..., y_m .

Теорема 5. Пусть 1) функции F_1 , F_2 , ..., F_m дифференцируемы в некоторой δ -окрестности точки

$$P_0(x_1^0; x_2^0; ...; x_n^0; y_1^0; y_2^0; ...; y_m^0),$$

2) частные производные $\frac{\partial F_i}{\partial y_j}$, i,j=1,2,...,m непрерывны в этой

точке P_0 ,

3)
$$F_1(P_0) = 0$$
, $F_2(P_0) = 0$, ..., $F_m(P_0) = 0$, $\frac{D(F_1; F_2; ...; F_m)}{D(y_1; y_2; ...; y_m)}\Big|_{P_0} \neq 0$.

Тогда существует такой параллелепипед

$$\Pi = \left\{ \left(x_1; x_2; ...; x_n; y_1; y_2; ...; y_m \right) \middle| \begin{aligned} \left| x_i - x_i^0 \right| < d_i, i = 1, 2, ..., n; \\ \left| y_j - y_j^0 \right| < c_j, j = 1, 2, ..., m \end{aligned} \right\} \subset \delta,$$

в котором система уравнений (3) определяет единственную совокупность неявных функций вида (4), и эти функции дифференцируемы при $\left|x_i-x_i^0\right| < d_i, i=1,2,...,n$.

Без доказательства.

Для того чтобы найти частные производные неявных функций, необходимо решить n систем линейных уравнений относи-

тельно
$$\frac{\partial f_1}{\partial x_i}$$
 , $\frac{\partial f_2}{\partial x_i}$, ... , $\frac{\partial f_m}{\partial x_i}$, $i=1,2,...,n$:

$$\begin{cases} \frac{\partial F_{1}}{\partial x_{i}} + \frac{\partial F_{1}}{\partial y_{1}} \cdot \frac{\partial f_{1}}{\partial x_{i}} + \frac{\partial F_{1}}{\partial y_{2}} \cdot \frac{\partial f_{2}}{\partial x_{i}} + \dots + \frac{\partial F_{1}}{\partial y_{m}} \cdot \frac{\partial f_{m}}{\partial x_{i}} = 0, \\ \frac{\partial F_{m}}{\partial x_{i}} + \frac{\partial F_{m}}{\partial y_{1}} \cdot \frac{\partial f_{1}}{\partial x_{i}} + \frac{\partial F_{m}}{\partial y_{2}} \cdot \frac{\partial f_{2}}{\partial x_{i}} + \dots + \frac{\partial F_{m}}{\partial y_{m}} \cdot \frac{\partial f_{m}}{\partial x_{i}} = 0, \end{cases}$$

определителем, которой является якобиан (в силу теоремы 5, якобиан отличен от нуля).

4. Зависимость функций. Достаточное условие независимости функций.

Пусть n функций

$$\begin{cases} y_1 = f_1(x_1; x_2; ...; x_n), \\ y_2 = f_2(x_1; x_2; ...; x_n), \\ ... \\ y_m = f_m(x_1; x_2; ...; x_n) \end{cases}$$
(6)

определены и дифференцируемы в некоторой области $D \subset \mathbf{R}^n$, $m \le n$.

Определение 1. Функция $y_k = f_k(x_1; x_2; ...; x_n) = f_k(P)$ называется **зависимой** в области D от остальных функций, если ее можно представить в виде

$$y_k = \Phi(y_1; y_2; ..., y_{k-1}; y_{k+1}; ...; y_m),$$
 (7)

где Ф – дифференцируемая функция своих аргументов.

Определение 2. Функции, заданные системой (6), называются зависимыми в области D, если одна из них (любая) зависит в области D от остальных функций. Если ни одна из функций (6) не зависит от остальных, то функции (6) называются независимыми в области D.

Пример. Функции

$$y_1 = x_1 + x_2 + x_3$$
,
 $y_2 = x_1^2 + x_2^2 + x_3^2$,
 $y_3 = 2x_1x_2 + 2x_2x_3 + 2x_1x_3$

являются зависимыми, так как $y_2 = y_1^2 - y_3$.

Теорема 6 (достаточное условие независимости). Пусть:

1) функции (6) дифференцируемы в δ -окрестности точки $P_0(x_1^0;x_2^0;...;x_n^0)$, 2) якобиан этих функций по каким-либо переменным не равен нулю в точке P_0 . Тогда эти функции независимы в δ -окрестности точки $P_0(x_1^0;x_2^0;...;x_n^0)$.

Без доказательства.

Следствие. Если функции (6) зависимы в δ -окрестности точки $P_0(x_1^0; x_2^0; ...; x_n^0)$, то все якобианы $\frac{D(y_1; y_2; ...; y_m)}{D(x_{i_1}; x_{i_2}; ...; x_{i_n})}$ равны нулю в δ -окрестности точки $P_0(x_1^0; x_2^0; ...; x_n^0)$.

Пример. Доказать, что функции $y_1 = x_1 + x_2$ и $y_2 = x_1 x_2$ независимы в любой окрестности точки O(0;0).

 ${\it Pewehue}$. Составим якобиан функций y_1 и y_2 по переменным x_1 и x_2

$$J = \frac{D(y_1; y_2)}{D(x_1; x_2)} = \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ x_2 & x_1 \end{vmatrix} = x_1 - x_2.$$

В точке O(0;0) якобиан равен нулю $\frac{D(y_1;y_2)}{D(x_1;x_2)}\Big|_{(0;0)}=0$. Для любой точки $P(x_1;x_2)$, где $x_1\neq x_2$, из окрестности точки O(0;0) якобиан отличен от нуля $\frac{D(y_1;y_2)}{D(x_1;x_2)}\Big|_{P(x_1;x_2)}\neq 0$. Согласно теореме 6, функции y_1 и y_2 независимы в окрестности точки O(0;0).

Вопросы для самоконтроля

- 1. Какая функция называется неявной? Приведите примеры неявных функций. Сформулируйте теорему о существовании единственности и непрерывности неявной функции F(x; y) = 0,.
- 2. Сформулируйте теорему о существовании единственности и непрерывности неявной функции F(x; y; z) = 0.
- 3. Сформулируйте теорему о дифференцировании функции F(x;y)=0, $F(x_1;x_2;...;x_n)=0$.
- 4. Что называется якобианом функций? Сформулируйте теорему о существовании, единственности и дифференцируемости совокупности неявных функций, определяемых системой уравнений.
- 5. Дайте определение функции, зависимой от других функций в некоторой области.
- 6. Дайте определение зависимости и независимости функций. Сформулируйте теорему о достаточном условии независимости функций.