

此笔记基于 LADR(Linear Algebra Done Right) 5th edition 2024 Summer

yingziyu-llt 🗘

最初写作于: 2024年 07月 02日

最后更新于: 2024年08月04日

# 目录

| 0.1. 前言                                | 3  |
|----------------------------------------|----|
| 1. 线性空间                                | 3  |
| 1.1. $\mathbb{R}^n$ and $\mathbb{C}^n$ | 3  |
| 1.1.1. 复数 Complex Number               | 3  |
| 1.1.2. 组(List)                         | 3  |
| 1.1.3. 向量(Vector)                      | 4  |
| 1.2. 向量空间(Vector Space)                | 4  |
| 1.3. 子空间(Subspace)                     | 5  |
| 1.3.1. 子空间                             | 5  |
| 1.3.2. 子空间的和(Sum)                      | 5  |
| 1.3.3. 子空间的直和(Direct Sum)              | 5  |
| 2. 有限维向量空间                             | 6  |
| 2.1. 线性组合和张成                           | 6  |
| 2.2. 线性无关                              | 8  |
| 2.3. 基                                 | 8  |
| 2.4. 维数                                | 9  |
| 2.5. 线性映射的定义                           | 10 |
| 2.6. 线性映射的线性性                          |    |
| 2.7. 零空间和值域                            | 11 |
| 2.8. 矩阵                                | 12 |
| 2.9. 逆和同构                              | 14 |
| 2.10. 算子                               | 15 |
| 2.11. 积空间和商空间                          | 15 |
| 2.12. 对偶(Duality)                      | 17 |
| 2.13. 矩阵的秩(rank)                       |    |
| 3. 本征值,本征向量,不变子空间                      |    |
| 3.1. 不变子空间                             | 19 |
| 3.1.1. 特征值和特征向量                        |    |
| 参考文献                                   | 22 |

## 0.1. 前言

本笔记基于 Linear Algebra Done Right(5th Edition) 一书的内容和顺序写成,可能具体内容不完全按照该书,会加入一些简明线性代数(丘维声著)的内容。

写这篇笔记,主要是我在前面的线性代数学习中,自我感觉只是基本掌握了一些散乱的知识点,并没有真正很好的理解线性代数的本质和内核,于是暑假用闲暇时间重读线性代数,换一本书(LADR),希望能够得到更加深刻的理解。

# 章节 1. 线性空间

#### 1.1. $\mathbb{R}^n$ and $\mathbb{C}^n$

#### 1.1.1. 复数 Complex Number

复数的定义是由对负数开平方根得出的。我们定义 $i=\sqrt{-1}$ ,其运算规则和常规的运算法则类似。

Def 定义 1.1.1

 $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$ 称作复数域

对于复数的四则运算,我们做如下定义:

**Def 定义** 1.1.2

加法法则(a+bi) + (c+di) = (a+c) + (b+d)i乘法法则(a+bi) \* (c+di) = (ac-bd) + (bc+ad)i

当b=0时,a就是实数。

在本笔记的其他部分,我们用 $\mathbb{F}$ 来表示 $\mathbb{R}$ 和 $\mathbb{C}$ ,称 $\mathbb{F}$ 中的元素叫做标量(scalar)。

#### 1.1.2. 组(List)

Def **定义** 1.1.3

取n个非负数的整数组成一个<mark>有序</mark>的对叫做一个组(List),记为 $(x_1, x_2, ..., x_n)$ 。当且仅当两个组的各元素依次均相等时,可以称两个组相等。

### **Q** List 和 Set 之间的差异:

提示 1.1.1

• List 中的元素有序,Set 中的元素无序;List 中的元素可重复,Set 中的元素不可重复

Def **定义** 1.1.4

定义两个组的加法\*  $(a_1,a_2,...,a_n)+(b_1,b_2,...,b_n)=(a_1+b_1,a_2+b_2,...,a_n+b_n)$ ,满足交换律。

**Def 定义** 1.1.5

定义零元0 = (0, 0, ..., 0)

#### 1.1.3. 向量(Vector)

将组放在一个坐标系中,取原点到该点的一个<mark>有向线段</mark>,称这个有向线段为<mark>向量</mark>(Vector)对于两个向量之间的运算,我们做如下定义

$$(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$$
 (1.1)

**Def** 数乘 **定义** 1.1.7

$$\lambda * (a_1, a_2, ..., a_n) = (\lambda a_1, \lambda a_2, ..., \lambda a_n) \tag{1.2}$$

# 1.2. 向量空间(Vector Space)

向量空间要求有以下几个必备条件:

- 1. 加法  $\alpha, \beta \in V$ ,定义某种运算+,使得 $\alpha + \beta \in V$
- 2. 数乘  $\lambda \in \mathbb{F}$ ,  $\alpha \in V$ ,定义某种运算·,使得 $\lambda \cdot \alpha \in V$

对于一个空间 $S=(\mathbb{V},\mathbb{F},+,\cdot)$ ,要求满足:

- 1. 加法可交换 $\alpha + \beta = \beta + \alpha$
- 2. 加法可结合 $\alpha + \beta + \gamma = \alpha + (\beta + \gamma)$
- 3. 数乘可交换 $\lambda\mu\alpha = \mu\lambda\alpha$
- 4. 数乘可结合 $\lambda\mu\alpha = \lambda(\mu\alpha)$
- 5. 数乘可分配 $(\lambda + \mu)\alpha = \lambda\alpha + \mu\alpha, \lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$
- 6. 数乘有幺元 $1,1\alpha = \alpha$
- 7. 加法有零元 $0 \in \mathbb{V}, 0 + \alpha = \alpha$
- 8. 加法有负元, $\alpha + (-\alpha) = 0$

那么称S为向量空间(Vector Space)。

**Def 定义** 1.2.2

向量空间的元素称为点(point)或者向量(vector)。

向量空间的形式和向量空间数乘的数域是有很大关系的。我们称S是在 $\mathbb{F}$ 上的向量空间(vector space over  $\mathbb{F}$ ),在 $\mathbb{F}$ 上的叫实向量空间,在 $\mathbb{F}$ 上的叫做复向量空间。

在前面我们说的 $\mathbb{V}$ 一般是一个传统意义上的向量集合 $\mathbb{F}^n$ ( $\mathbb{n}$  可以是无穷,称为无穷维向量空间),下面我们讨论和函数相关的向量空间。

Def 定义 1.2.3

我们记 $\mathbb{F}^S(\mathbb{F}=\mathbb{R} \text{ or } \mathbb{C},S$ 是一个集合)为从 $S\to\mathbb{F}$ 的映射

取 $f, g \in \mathbb{F}^S$ ,加法定义为(f+g)(x) = f(x) + g(x),数乘定义为 $\lambda \in \mathbb{F}, (\lambda f)(x) = \lambda f(x)$ 

#### 定理

- 1. 加法单位元唯一
- 2. 加法负元唯一
- 3. 0数乘一个向量为零元
- 4. 任何数乘零元为零元
- 5. -1数乘任何向量为其负元

# 1.3. 子空间(Subspace)

#### 1.3.1. 子空间

设V是一个线性空间,若线性空间U中的所有元素都在V里,且二者运算相同(要求有向量加法和数乘),就称U是V的一个子空间。

#### **Conditions for Subspace**

- 1. 有零元(additive identity) $0 \in U$
- 2. 加法封闭(closed under addition) $\alpha, \beta \in U; \alpha + \beta \in U$
- 3. 数乘封闭(closed under scalar multiplication) $\alpha \in U, \lambda \in \mathbb{F}; \lambda \alpha \in U$

#### 1.3.2. 子空间的和(Sum)

Def **定义** 1.3.1

定义运算 + ,满足 $U_1+U_2+...+U_n=\{u_1+u_2+...+u_n:u_1\in U_1,u_2\in U_2,...,u_n\in U_n\}$ 

子空间的和是包含那些子空间的最小子空间。

### 1.3.3. 子空间的直和(Direct Sum)

Def **定义** 1.3.2

和 $U=U_1+U_2+\ldots+U_n$ 成为<mark>直和</mark>,若U中每个元素只能被唯一表示成 $u_1+u_2+\ldots+u_n$ ,其中 $u_i\in U_i$ 。 记直和的符号为 $\oplus$ 

#### **Conditions for Direct Sum**

 $U_1+U_2+...+U_n$ 是直和 $\Leftrightarrow$  0只有唯一表出方式: $u_1=u_2=...=u_n=0 \Leftrightarrow U\cap V=\{0\}$ 

# 章节 2. 有限维向量空间

## 2.1. 线性组合和张成

### Def 线性组合(Linear combination)

定义 2.1.1

一个向量组 $v_1,v_2,...,v_n\in V$ 的线性组合(Linear combination)是指形如 $\alpha_1v_1+\alpha_2v_2+...+\alpha_nv_n$ 的向量

# Def 张成(span)

定义 2.1.2

一个向量组的所有线性组合组成的集合叫做这个向量组张成(span)的空间 $span(a_1,a_2,...,a_n)$ ,有些也叫线性张成 $(linear\ span)$ 

指定空向量组()张成的空间为{0}

# **™** 张成的空间是最小包含子空间

定理 2.1.1

<mark>一个向量组张成的空间就是包含这些向量的最小的子空间。</mark>

证明思路:先去证明张成的空间是V的一个子空间(证明运算封闭性),再去证明这个空间包括张成其的所有向量,再说明所有V包含这些向量的子空间都是其一个子集。

证明过程:

线性代数学习笔记 有限维向量空间

66 证明 引用 2.1.1

Suppose  $v_1, v_2, ..., v_n$  a list in V. We denote that  $S = \operatorname{span}(v_1, v_2, ..., v_n)$ 

First, we need to prove the addition identity in S. Obviously,  $0v_1 + 0v_2 + ... + 0v_n = 0$ 

After that, we need to prove the addition closure in S. For  $a=a_1v_1+a_2v_2+...+a_nv_n$ ,  $b=b_1v_1+b_2v_2+...+b_nv_n$ ,  $a+b=(a_1+b_1)v_1+(a_2+b_2)v_2+...+(a_n+b_n)v_n\in V$ 

Further more, we need to prove the multiplication closure in S. For  $a=a_1v_1+a_2v_2+\ldots+a_nv_n$ ,  $\lambda a=\lambda a_1v_1+\lambda a_2v_2+\ldots+\lambda a_nv_n\in V$ 

Thus S is a subspace of V

To prove that S includes  $v_1, v_2, ..., v_n$ , we only need to make  $a_i$  equal to 1 if and only if i equals to the index of  $v_i$ , otherwise  $a_i=0$ .

Conversely, because subspaces are closed under scalar multiplication and addition, every subspace of V containing each  $v_j$  contains  $\mathrm{span}(v_1,v_2,...,v_n)$ . Thus S is the smallest subspace of V containing all the vectors

**Def** 张成(spans) **定义** 2.1.3

如果 $span(v_1, v_2, ..., v_n) = V$ , 那么称 $v_1, v_2, ..., v_n$ 张成V.

## **阿里有限维向量空间**(finite-dimensional vector space)

定义 2.1.4

如果某个空间可以被有限个向量张成,那么这个空间就是一个有限维向量空间(finite-dimensional vector space)。

多项式(polynomial)

[若 $\mathbb{F} \to \mathbb{F}$ 函数p可被表示为 $p(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n, a_0, a_1, a_2, ..., a_nin\mathbb{F}$ ,那么这个函数就是一个在 $\mathbb{F}$ 上的<mark>多项式</mark>(polynomial)函数, $a_0, a_1, a_2, ..., a_n$ 称为多项式的系数(coefficient)]

# Def 多项式的度(degree)

定义 2.1.6

多项式的度(degree)是多项式的最高次幂(最高次幂的次数)。定义0的度数为 $-\infty$ 

Def  $P(\mathbb{F}), P_{m(\mathbb{F})}$  定义 2.1.7

 $P(\mathbb{F})$ 是所有在 $\mathbb{F}$ 上多项式的集合形成的线性空间。容易知道, $P(\mathbb{F})$ 是 $\mathbb{F}^{\mathbb{F}}$ 的子空间  $P_{m(\mathbb{F})}, m \in \mathbb{Z}^+$ 指所有在 $\mathbb{F}$ 上次数小于等于m的多项式的集合。

### Def 无穷维向量空间(infinite-dimensional vector space)

定义 2.1.8

不是有限维向量空间的向量空间吗,称作无穷维向量空间。

e.g. 示例 2.1.1

Q:Show that  $P(\mathbb{F})$  is a infinite-dimensional vector space.

A:Consider any list of polynomials in  $P(\mathbb{F})$ . We use m to denote the maximum degree of the polynomial in the list. Then every polynomials in the spans of the list has degree less than or equal to m. Then  $z^m + 1$  is not in the span. Hence no list can span the space. QED

# 2.2. 线性无关

## Def 线性无关(Linearly Independent)

定义 2.2.1

若一个向量组 $v_1,v_2,...,v_n$ ,使得 $a_1v_1+a_2v_2+...+a_nv_n=0$ 当且仅当 $a_1=a_2=...=a_n=0$ ,那么称 $v_1,v_2,...,v_n$ 是线性无关(linearly independent),否则被称为线性相关(linearly dependent)

若 $v_1, v_2, ..., v_n$ 线性相关,那么一定存在一个 $j \in \{1, 2, ..., n\}$ ,使得:

(a) 
$$v_j \in \operatorname{span} \bigl(v_1, v_2, ..., v_j - 1\bigr)$$

(b) 删除 $v_i$ 后的向量组与原先的向量组等价

66 证明 3月用 2.2.1

 $v_1,v_2,...,v_n \text{ is linearly dependent, so exist } a_1,a_2,...,a_n \in \mathbb{F} \text{ such that } a_1v_1+a_2v_2+...+a_nv_n=0.$ 

Let j be the largest element in  $\{1, 2, ..., m\}$  if  $a_i \neq 0$ 

Then  $a_1v_1+a_2v_2+...+a_jv_j=0$  =>  $v_j=\frac{a_1}{a_j}v_1+\frac{a_2}{a_j}v_2+...+a_j-\frac{1}{a_j}v_j-1$ . Then proving (a).

Suppose  $u\in \mathrm{span}\big(v_1,v_2,...,v_j-1\big)$ , then  $u=a_1v_1+a_2v_2+...+a_nv_n$ . We use  $\frac{a_1}{a_j}v_1+\frac{a_2}{a_j}v_2+...+a_j-\frac{1}{a_j}v_j-1$  to replace  $a_j$ .

Then we can easyly to present u just using  $a_1, a_2, ..., a_j - 1, a_j + 1, ..., a_n$ . Then proving (b).

线性无关组的长度一定小于等于张成该空间向量组的长度。

# 2.3. 基

线性代数学习笔记 有限维向量空间

一个空间V的一组ot E(basis)是一组可以张成V且线性无关的向量组。

定理 2.3.1

基的判定定理: $v_1,v_2,...,v_n$ 是V的一组基 <=>  $\forall v\in V$ ,存在唯一的 $a_1,a_2,...,a_n\in \mathbb{F}$ 使得 $a_1v_1+a_2v_2+...+a_nv_n=a$ 

66 证明 引用 2.3.1

First suppose  $v_1, v_2, ..., v_n$  as a basis of V. Let  $v \in V$ .  $v_1, v_2, ..., v_n$ , so they span the space. Therefore  $v = a_1v_1 + a_2v_2 + ... + a_nv_n$ . Suppose  $v = c_1v_1 + c_2v_2 + ... + c_nv_n$ . Then  $(c_1 - a_1)v_1 + (c_2 - a_2)v_2 + ... + (c_n - a_n)v_n = 0, c_1 = a_1, c_2 = a_2, ..., c_n = a_n$ 

On the other direction, suppose  $v=c_1v_1+c_2v_2+...+c_nv_n$  is unique, we can easily to know that  $v_1,v_2,...,v_n$  span the space.

To prove that they are linearly independent, we let  $0=a_1v_1+a_2v_2+\ldots+a_nv_n$ .  $2*0=2a_1v_1+2a_2v_2+\ldots+2a_nv_n$ ,  $a_1=2a_1$ ,  $a_2=2a_2$ , ...,  $a_n=2a_n$ .  $a_1=a_2=\ldots=a_n=0$ 

**定理** 2.3.2

张成某个空间的向量组包含这个空间的一个基

任何有限维向量空间包含一个基

空间内一组线性无关的向量组可以被扩张为一个基

任何V的子空间都是V直和的一部分

### 2.4. 维数

基向量组的长度与基的选取无关

66 证明 引用 2.4.1

Find two basis  $v_1,v_2,...,v_n$  and  $u_1,u_2,...,u_m.$  They all spans V. So  $n\leq m$  and  $m\leq n.$  Then m=n

于是,我们可以发现,一个向量空间中基向量组的长度是一个对于该空间有意义的不变量,我们于是有定义:

Def 维数(dimension) 定义 2.4.1

# (dimension)是向量空间V中基向量组的长度。记作 $\dim V$ 

**一**子空间维数定理

定理 2.4.2

有限维向量空间V的子空间U满足 $\dim U \leq \dim V$ 

Thm 基和维数

定理 2.4.3

长度为 $\dim V$ 的线性无关向量组就是V的一组基,长度为 $\dim V$ 能张成V的一组向量就是V的一组基

**四** 维数和公式

定理 2.4.4

维数和公式: $\dim(V+U) = \dim V + \dim U - \dim(V\cap U)$ 

# 2.5. 线性映射的定义

# Def 线性映射(Linear Mapping)

定义 2.5.1

- 一个映射  $T:V\to W$  一定是线性的当且仅当它满足以下两个性质:
  - 1. 可加性(additivity): T(x+y) = T(x) + T(y)
  - 2. 齐次性(homogeneity): T(cv) = cT(v)

我们记作Tv为一个线性映射(Linear Mapping),称L(V,W)为从V到W的线性映射. 显然其保持 0 元T(0)=0

#### **93** 常见线性映射

示例 2.5.1

零映射(zero)  $0 \in L(V, W), 0v = 0$ 

恒等(identity)  $I \in L(V, W), Iv = v$ 

微分(differential)  $D \in L(V, W), Dv = v'$ 

积分(integral)  $I \in L(V, W), Iv(x) = \int_0^1 v(x) dx$ 

Thm

定理 2.5.1

V的基为 $v_1,v_2,...,v_n$ ;W的基为 $u_1,u_2,...,u_n$ ,存在唯一的线性映射T,使得 $Tv_i=u_i$ 

证明思路:围绕着  $\forall u \in W, \exists c_1, c_2, ..., c_n$ ,只用构造  $T(c_1v_1+c_2v_2+...+c_nv_n)=c_1u_1+c_2u_2+...+c_nu_n$ 即可.

# 2.6. 线性映射的线性性

为了寻找其线性性,我们要先定义L(V,W)上的加法和数乘

线性代数学习笔记 有限维向量空间

Def L(V,W)上的运算

定义 2.6.1

定义 $S, T \in L(V, W)$ 

定义 $(S+T)(v) = S(v) + T(v), (\lambda S)(v) = \lambda S(v)$ 

于是容易看出,L(V,W)是一个线性空间.

Def 线性映射的乘法

定义 2.6.2

定义线性映射的乘法 $S \in L(U, V), T \in L(V, W)$ ,那么(ST)(v) = S(T(v))

**咖** 乘法的性质

定理 2.6.1

乘法的性质

- 1. 结合律 $T_1T_2T_3 = T_1(T_2T_3)$
- 2. 幺元IT = TI = T, $I \neq L(V, V)$ 上的恒等映射
- 3. 分配率 $(S_1 + S_2)(T) = S_1T + S_2T$ ,  $S(T_1 + T_2) = ST_1 + ST_2$

需要注意的是,线性映射的乘法不具有交换律.

## 2.7. 零空间和值域

# Def 零空间(null space)

定义 2.7.1

 $T \in L(V,W)$ ,T的零空间就是V的一个子集,使得 $\{v \in V : Tv = 0\}$ ,记作 $\mathrm{null}\ T$ ,也叫做T的核空间(kernel space),记作 $\ker T$ 

单射(injective)  $T \in L(V, W), Tv = Tw \Rightarrow v = w$  这样的T称为一个单射.

Thm

定理 2.7.1

- 1. ker T是V的一个子空间
- 2. T是单射 $\Leftrightarrow$ ker  $T = \{0\}$

66 证明

引用 2.7.1

对于命题 1:取 $v_1,v_2\in\ker T,T(v_1+v_2)=Tv_1+Tv_2=0+0=0;T(\lambda v)=\lambda Tv=0$  对于命题 2:" ⇒ "由于T为单射,所以T(v)=T(0)=0 ⇒ v=0,于是 $\ker T=\{0\}$ 

$$\text{"} \Longleftarrow \text{"} \quad T(v_1) = T(v_2) \Rightarrow T(v_1) - T(v_2) = 0 \Rightarrow T(v_1 - v_2) = 0, \\ \text{$\mathbb{X}$} \quad \ker T = \{0\}, \Rightarrow v_1 - v_2 = 0 \Rightarrow v_1 = v_2$$

有限维向量空间 线性代数学习笔记

对于一个函数 $T:V\to W,T$ 的值域就是W的一个子集 $\{Tv\}$ ,记作 $\mathrm{range}\ T$ ,也叫函数的像空间 (image),记作 $\mathrm{im}\ T$ .

im T 是 V的一个子空间

66 证明 引用 2.7.2

设  $w_1,w_2\in\operatorname{im} T$ ,那 么  $w=T(v_1+v_2)=Tv_1+Tv_2=w_1+w_2\in\operatorname{im} T$ ,  $T(\lambda v)=\lambda Tv=\lambda w\in\operatorname{im} T$ 

Def 满射(surjective) 定义 2.7.3

如果某个映射 $T:V\to W$ 的像空间等于W,那么称T是一个满射.

定理 2.7.3

 $T \in L(V,W), \dim V = \dim \ker T + \dim \operatorname{im} T$ 

于是容易得出:如果 $T:V\to W,\dim W<\dim V,$ 那么T一定不是单射. 如果 $\dim V<\dim W,$ 那么T一定不是满射

显然,一个欠定的齐次线性方程组有非零解,非齐次线性方程组可能无解. (齐次线性方程组T(v)=0,非齐次线性方程组 $T(v)=v_0$ )

# 2.8. 矩阵

为了更加方便的表示线性映射,我们定义矩阵

设m, n都是正整数. 一个 $m \times n$ 矩阵A是一个在 $\mathbb{F}$ 上的 $m \times n$ 矩形数组,写作:

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \dots v & & \dots v \\ A_{m,1} & \dots & A_{m,m} \end{pmatrix}$$
 (2.1)

一些特殊矩阵:1是单位矩阵,除了对角线元素为1,其他均为0.

下面来定义一个线性映射的矩阵表示

线性代数学习笔记 有限维向量空间

#### Def 线性映射的矩阵表示

定义 2.8.2

若 $v_1,v_2,...,v_n$ 是V的一组基, $w_1,w_2,...,w_m$ 是W的一组基,且 $Tv_i=\sum_j=1^mA_{i,j}w_j$ ,那么其矩阵表示M(T)就是A. 如果未指明 $v_i$ 和 $w_i$ ,可以记作 $M(T,(v_1,v_2,...,v_n),(w_1,w_2,...,w_m))$ 

容易看出,M(T)的第i列和 $v_i$ 的选取有关,而第i行和 $w_i$ 的选取有关.例如变换T(x,y)=(8x+9y,2x+3y,x+y),在标准正交基((1,0),(0,1),(1,0,0),(0,1,0),(0,0,1))下的矩阵表示为 $M(T)=\begin{pmatrix}8&9\\2&3\\1&1\end{pmatrix}$ 

为了进一步扩展矩阵的意义、定义矩阵的加法、数乘

$$A = \begin{pmatrix} A_{1,1} & \dots & A_{1,n} \\ \dots v & \dots v \\ A_{m,1} & \dots & A_{m,m} \end{pmatrix}$$
 (2.2)

定义两个 $m \times n$ 矩阵A, B的和

$$A+B=\begin{pmatrix}A_{1,1} & \dots & A_{1,\mathbf{n}}\\ \dots v & & \dots v\\ A_{\mathbf{m},1} & \dots & A_{\mathbf{m},\mathbf{m}}\end{pmatrix}+\begin{pmatrix}B_{1,1} & \dots & B_{1,\mathbf{n}}\\ \dots v & & \dots v\\ B_{\mathbf{m},1} & \dots & B_{\mathbf{m},\mathbf{m}}\end{pmatrix}=\begin{pmatrix}A_{1,1}+B_{1,1} & \dots & A_{1,\mathbf{n}}+B_{1,\mathbf{n}}\\ \dots v & & \dots v\\ A_{\mathbf{m},1}+B_{\mathbf{m},1} & \dots & A_{\mathbf{m},\mathbf{m}}+B_{\mathbf{m},\mathbf{n}}\end{pmatrix}(2.3)$$

数乘

$$\lambda*A = \begin{pmatrix} \lambda*A_{1,1} & \dots & \lambda*A_{1,\mathrm{n}} \\ \dots v & \dots v \\ \lambda*A_{\mathrm{m},1} & \dots & \lambda*A_{\mathrm{m},\mathrm{m}} \end{pmatrix} \tag{2.4}$$

容易看出,矩阵的加法就相当于线性映射的加法,矩阵数乘就相当于线性映射的数乘.

考虑到线性映射还有叠加这一组合方法,我们下面定义矩阵的乘法.

试探:S, T是两个线性映射,ST:

$$ST(u_k)$$

$$= S\left(\sum_{r=1}^{n} C_{r,k} v_r\right)$$

$$= \sum_{r=1}^{n} C_{r,k} \sum_{j=1}^{m} A_{j,r} w_j$$

$$(2.5)$$

为了表示这种变换规律、定义矩阵乘法

设A是 $n \times k$ 矩阵,B是 $k \times m$ 矩阵,定义运算 $(AB)_{i,j} = \sum_{k=1}^{k} A_{i,k} B_{k,j}$ ,更加直观的,就是选取A的第i行和B的第i列,按元素依次乘在一起再求和,表示新矩阵第i行i列的元素.

#### 具体计算可以自己去试试.

#### **Notation**

#### 一种简明记法

 $A_{j,\cdot}$ 指A的第 j 行形成的一个 $m\times 1$ 矩阵, $A_{\cdot,j}$ 指A的第 j 列形成的一个 $1\times n$ 矩阵于是对于矩阵的乘法有以下表示法

$$(AB)_{i,j} = A_{i,\cdot}B_{\cdot,j} \tag{2.6}$$

$$(AB)_{\cdot,k} = AC_{\cdot,k} \tag{2.7}$$

对矩阵乘法的另一种理解:线性组合 设 $c=\begin{pmatrix}c_1\\c_2\\...\\c_n\end{pmatrix}$ ,A 为 $m\times n$ 矩阵,那么 $Ac=c_1A_{\cdot,1}+c_2A_{\cdot,2}+...+c_nA_{\cdot,n}$ ,换言之,Ac就是对A列的线性组合,用c的每一个元来数乘.

# 2.9. 逆和同构

Def 逆(inverse) 定义 2.9.1

A,B是两个映射 $(n \times n$ 矩阵),且有AB = BA = I,那么称B是A的逆(inverse),记作 $B = A^{-1},A$ 是可逆的(invertible)

如果某矩阵(映射)可逆,那么其逆是唯一的.

映射V可逆⇔映射V是单射满射(一一对应)

对于存在可逆映射的两个空间,他们也有一些潜在的关系,下面加以定义.

# Def 同构(isomorphism)

定义 2.9.2

一个可逆映射可以称为同构(isomorphism)

两个空间中存在一个可逆映射,则这两个空间称为是同构的(isomorphic)

两个向量空间同构⇔两个向量空间维度相同

设 $\dim V = n$ , $\dim W = m$ ,那么L(V,W)和 $\mathbb{F}^{nm}$ 同构,于是 $\dim L(V,W) = \dim V \dim W$ 

线性代数学习笔记 有限维向量空间

为了统一表示线性映射,我们试着用矩阵相乘的方法来表示映射. 为了更好处理向量,我们定义向量的矩阵表示(matrix of a vector)

### Def 矩阵的向量表示(matrix of a vector)

定义 2.9.3

设V的一组基是 $v_1,v_2,...,v_n,v\in V,v=a_1v_1+a_2v_2+...+a_nv_n$ ,那么 $M(v)=\begin{pmatrix}a_1\\a_2\\...\\a_n\end{pmatrix}$ 叫做v的矩阵表示.

这样之后,我们容易得到M(Tv) = M(T)M(v)

### 2.10. 算子

对干以上种种线性映射来说,有一类很特殊的是从V到V的映射. 我们对其进行一些定义.

## Def 算子(operator)

定义 2.10.1

一个从V到V的线性映射定义为<mark>算子</mark>(operator),记V上所有算子构成的线性空间为L(V)

对于算子,也有一些很好的性质.

Thm

定理 2.10.1

如果有限维向量空间中的算子 $T \in L(V)$ ,下面三个命题等价

- T可逆
- T是单射
- T是满射

# 2.11. 积空间和商空间

### Def 积空间

定义 2.11.1

线 性 空 间 的 积 :设  $V_1,V_2,...,V_n$ 是 F上 的 线 性 空 间 ,定 义  $V_1\times V_2\times...\times V_n=\{(v_1,v_2,...,v_n),v_1\in V_1,v_2\in V_2,...\in V_n\}$ 叫做这些空间的积.

在积空间中的加法被定义为  $(v_1,v_2,...,v_n)+(u_1,u_2,...,u_n)=(v_1+u_1,v_2+u_2,...+u_n,v_n+u_n)$ ,数乘也类似 $\lambda(v_1,v_2,...,v_n)=(\lambda v_1,\lambda v_2,\lambda...,\lambda v_n)$ 

实际上就可以将 $v_i$ 当成一个数,其运算规则就变成了一般向量的运算规则了.

Thm

定理 2.11.1

积空间是一个线性空间

证明从略.

对于积空间本身,我们也要有一些观察. ((1,2),(3,4,5))和(1,2,3,4,5)似乎并没有什么本质上的差异. 那我们就可以去猜测 $\mathbb{F}^n \times \mathbb{F}^m$ 和 $\mathbb{F}^{m+n}$ 有同构关系了. 事实也正是如此.

设  $V_1,V_2,...,V_n$ 都 是 有 限 维 线 性 空 间 , dim  $(V_1\times V_2\times ...\times V_n)=\dim V_1+\dim V_2+...+\dim V_n$ 

选取每个U的一个基.对千每个U的每个基向量,考虑  $V_1 \times V_2 \times ... \times V_n$  的如下元素:第j个位置为此基向量,其余位置为 0. 所有这些向量构成的组是线性无关的,且张成 $V_1 \times V_2 \times ... \times V_n$ ,因此是积空间的基. 这个基的长度是 $\dim V_1 + \cdots + \dim V_n$ 

我们下面来定义子空间和向量的和.

### Def 仿射子集(affine subset)

定义 2.11.2

设 $v \in V, U \neq V$ 的子空间. 那么定义子空间和向量的和为:

$$v + U = \{v + u : u \in U\}$$

我们称v + U是V的仿射子集(affine subset),v + U和U形成平行(parallel)关系.

从几何的角度来看,v + U是将过原点的U平面向v方向平移的结果,所以有一定的几何直观. 很显然,一个仿射子集不是一个子空间( $v \neq 0$ )

为了描述相同性质的仿射子集.我们来定义商空间.

设U是V的子空间,那么商空间就是所有平行于U的仿射子集的并. 定义为: $V/U=\{v+U:v\in V\}$ 

平行于U的两个仿射子集要么相等,要么不相交.

即:U是V的子空间, $v,w \in V$ 下列陈述等价

- $v-w \in U$
- v + U = w + U
- $(v+U)\cap(w+U)\neq\emptyset$

下面来定义商空间上的线性运算.

线性代数学习笔记 有限维向量空间

#### Def 商空间上的线性运算

定义 2.11.4

定义加法和数乘分别是:

$$(v + U) + (w + U) = (v + w) + U, \lambda(v + U) = \lambda v + U$$

需要注意的是,对于同一个集合v+U,会有多种表示方法. 举例y=x+1这个集合至少可以有(-1,0)+(y=x)和(0,1)+(y=x)两种表示方法. 为了说明加法和数乘是有意义的,需要有如下的证明.

66 证明 3月 2.11.2

命题:若 $v_1+U=v_2+U$ , $w_1+U=w_2+U$ ,那么 $(v_1+w_1)+U=(v_2+w_2)+U$ 

由上面的定理知, $v_1-v_2\in U$ , $w_1-w_2\in U$ ,于是 $(v_1-v_2)+(w_1-w_2)\in U$ ,于是 $(v_1+w_1)-(v_2+w_2)\in U$ ,从而 $(v_1+w_1)+U=(v_2+w_2)+U$ 

**定义** 2.11.5

商映射:定义一个映射 $\pi:V\to \frac{V}{U}$ ,对任意 $v\in V$ ,

$$\pi(v) = v + U \tag{2.8}$$

可以证明这个映射是一个线性映射.

商空间的维数:如果V是有限维空间,那么 $\dim V = \dim U + \dim \frac{V}{U}$ 

# 2.12. **对偶**(Duality)

像(值域)是一个标量空间的线性函数也有一些有趣的性质,我们将这类函数单独拿出来讨论 一下。

# Def 线性泛函(linear functional)

定义 2.12.1

线性泛函(linear functional)是 $L(V,\mathbb{F})$ 的一个线性函数

e.g. 示例 2.12.1

- 定义 $\varphi: \mathbb{R}^3 \to \mathbb{R}, \varphi(x,y,z) = 3x + 4y + 5z, \varphi$ 是线性泛函
- 定义 $\varphi:P(\mathbb{R})\to\mathbb{R}, \varphi(p)=\int_0^1 p\,\mathrm{d}x$ 是线性泛函

线性泛函构成的空间也有研究的价值,下面给予定义

### Def 对偶空间(dual space)

定义 2.12.2

对偶空间(dual space)是线性泛函构成的空间,即 $L(V,\mathbb{F})$ ,记作V',容易知道 $\dim V'=\dim V$ 

### Def 对偶基(dual basis)

定义 2.12.3

对偶基 $(dual\ basis)$ 是V'的一组基,也就是说,取 $v_1,v_2,...,v_n$ ,那么其对偶基也是一组线性泛函即

$$\varphi_j(v_k) = \begin{cases} 1 \text{ if } k = j \\ 0 \text{ if } k \neq j \end{cases}$$
 (2.9)

## Def 对偶映射(dual mapping)

定义 2.12.4

对偶映射(dual mapping):对于 $T\in L(V,W)$ ,定义对偶映射 $T'\in L(W',V')$ ,满足 $\varphi\in W'$ ,有 $T'(\varphi)=\varphi\circ T$ 

**广**加 **定理** 2.12.1

对偶函数的代数性质:  $(\lambda T)' = \lambda(T'), (S+T)' = S' + T', (ST)' = T'S'$ 

# Def 零化子(annihilator)

定义 2.12.5

零化子(annihilator):对于 $U\subset V$ ,U的零化子 $U^0$ 定义为 $U^0=\{\varphi\in V': \forall v\in U, \varphi(u)=0.$ 

# **零化子的性质**

定理 2.12.2

- 零化子是一个V'的子空间.
- 设V是有限维的,那么 $\dim U + \dim U^0 = \dim V$
- $T \in L(V, W)$ 
  - ▶ V, W有限维,那么dim ker  $T' = \dim \ker T + \dim W \dim V$
  - $\ker T = (\operatorname{im} T)^0$
- T是满的当且仅当T'是单的.

我们知道,线性映射总是有对应的矩阵表示,我们理应好奇对偶映射在矩阵上的反应。下面定义这一点。

# Def 转置(transpose)

定义 2.12.6

矩阵的转置(transpose), $A^T$ :定义 $n \times m$ 矩阵A的转置A为 $m \times n$ 矩阵, $(A^T)_{i,j} = (A)_{j,i}$ 

Thm

定理 2.12.3

转置的代数性质:

- $(A+B)^T = A^T + B^T$
- $(\lambda A)^T = \lambda A^T$ )
- $(AB)^T = B^T A^T$

 $M(T') = M(T)^T$ 

# 2.13. 矩阵的秩(rank)

Def

定义 2.13.1

行秩和列秩:设A是 $\mathbb{F}$ 上的 $m \times n$ 矩阵

- A的行秩是A诸行张成空间的维数。
- A的列秩是A诸列张成空间的维数。

Thm

定理 2.13.1

 $\operatorname{im} T$ 的维数等于M(T)的列秩

行秩等于列秩,统称为秩(rank),记作rank A

个人看来,线性泛函在后面用到的比较少,主要用到的可能还是转置和秩。所以最后的结论可能比前面的推到更加重要,具体为什么这里要用线性泛函引出这些内容,我也很懵

# 章节 3. 本征值,本征向量,不变子空间

我们已经建立了一些工具来描述一个算子的结构,我们下面来学习描述一个算子的其他角度。

# 3.1. 不变子空间

先假设V有一种直和分解 $V=U_1\oplus U_2\oplus ...\oplus U_n$ ,如果我们认真的去构造 $U_1,U_2,...,U_n$ , 那么我们有可能可以构造出某种分解 $\forall u\in U_i, T(u)=v\in U_i.U_i$ 是一个很有趣的子空间。下面来定义这个子空间。

# Def 不变子空间(invariant subspace)

定义 3.1.1

 $T \in L(V)$ ,V的一个子空间U满足 $\forall u \in U, T(u) \in U$ ,那么我们称U是关于T的一个不变子空间 (invariant subspace)。

**3.1.1 示例** 3.1.1

- 1.  $\{0\}$  -> 是一个不变子空间,T(0) = 0
- 2. V -> 是一个不变子空间
- 3. Ker T -> 是一个不变子空间
- 4. Im  $T \rightarrow 是一个不变子空间, T(u) \in Im T$

#### 3.1.1. 特征值和特征向量

我们先来讨论一维的不变子空间

对于某一维的子空间 $U=\{\mu v:\mu\in\mathbb{F}\}$ ,若它是一个不变子空间,那么一定有 $Tu\in U$ ,又由于它是一维的,于是有 $Tu=\lambda u$ 。 一个向量做变换后其方向没有改变,长度以某个倍率增加,是一个有趣的性质。我们对其加以定义

### Def 特征值(eigenvalue)

定义 3.1.2

若 $T \in L(V)$ , $T(v) = \lambda v(v \neq 0)$ ,那么称 $\lambda$ 是T的一个特征值(eigenvalue)

### **特征值的判定定理**

定理 3.1.1

若 $T \in L(V)$ ,V是有限维向量空间, $\lambda \in \mathbb{F}$ ,下面四个条件等价:

- 1.  $\lambda$ 是T特征值
- 2.  $T \lambda I$ 不是单射
- 3.  $T \lambda I$ 不是满射
- 4.  $T \lambda I$ 不可逆

### Def 特征向量(eigenvector)

定义 3.1.3

若 $T \in L(V)$ , $T(v) = \lambda v (v \neq 0)$ ,那么称v是T的一个特征向量(eigenvector)

#### **一**特征值的线性独立性

定理 3.1.2

从属于不同特征值的特征向量是线性独立的

66 证明 引用 3.1.1

设 $v_1,v_2,...,v_n$ 是T的特征向量,且其特征值都不相等,先假设这些向量线性相关。取一个最小的k,使得 $v_k\in \mathrm{span}(v_1,v_2,...,v_{k-1})$ 

于是有 $v_k = a_1v_1 + a_2v_2 + ... + a_nv_n$  (1).

用T作用于左右两边,有 $\lambda_k v_k = \lambda_1 a_1 v_1 + \lambda_2 a_2 v_2 + \ldots + \lambda_{k-1o} a_{k-1} v_{k-1}$  (2)

用 (2)减 去 (1)左 右 两 边 乘  $\lambda_k$ ,得 : $a_1(\lambda_1-\lambda_k)v_1+a_2(\lambda_2-\lambda_k)v_2+\ldots+a_{k-1}(\lambda_{k-1}-\lambda_k)v_{k-1}=0$ ,于是 $a_1=a_2=\ldots=a_{k-1}=0$ 。

 $v_k = 0$ ,与特征向量的定义矛盾。故证。

# 参考文献