Transfer reactions with Be-Li isotopes near the drip-line

LISE Workshop 2024

M. Lozano-González, A. Matta, B. Fernández-Domínguez, J. Lois-Fuentes, F. Delaunay on behalf on the E748 collaboration

IGFAE-USC and LPC-Caen

Overview of the exotic Be-Li region

Be and Li isotopes close to the neutron drip line have been extensively studied due to their exotic properties.

Two prime examples can be showcased:

¹¹Li is a neutron-rich nuclei displaying a 2n **halo** structure.

Overview of the exotic Be-Li region

Be and Li isotopes close to the neutron drip line have been extensively studied due to their exotic properties.

Two prime examples can be showcased:

¹¹Be presents parity inversion: g.s has **positive** parity when negative expected.

I. Talmi and I. Unna, PRL 4 (1960).

Recently gathered information

During the MUST2 @ RIKEN campaign, an unexpected **reduction** of the cross-section was observed in $^{9,11}\text{Li}(d, ^3\text{He})^{8,10}\text{He}$ reactions.

A. Matta et al., PRC 92 (2015).

Possible explanations:

• Role of the many-body interactions.

Recently gathered information

MOTIVATION

During the MUST2 @ RIKEN campaign, an unexpected **reduction** of the cross-section was observed in ^{9,11}Li(d, ³He)^{8,10}He reactions.

Possible explanations:

- Role of the many-body interactions.
- Overestimation of the nuclear overlap $\langle ^{9,11}\text{Li}|^{8,10}\text{He}\rangle$.

Collect more $d\sigma/d\Omega$ data!

Reactions to be studied

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key orbitals:

Experimental setup for E748

Traditional **solid target** experiment @ D6. Below a sketch of the setup:

A **common** procedure is employed in all the reactions. Different gates are applied in a sequential manner, as follows:

 Heavy ID: Only distinction in Z: separation of Be from Li residuals, but not along isotopic chain.

Analysis at a glance

A **common** procedure is employed in all the reactions. Different gates are applied in a sequential manner, as follows:

 Light ID: Using only stopped particles in Si layer, but low TOF resolution. Separation of t-3He attained with kinematics!

Missing mass technique: $E_{\text{heam}} + (E, \theta)_{\text{Lab}} \rightarrow \mathbf{E_x}$

Elastic: ${}^{10}\text{Be}(d,d){}^{10}\text{Be}$

Serves as a test of the analysis, allowing us to ascertain the **normalization** factors N_t and N_b .

- Modern models (Haixia and DA1p) adjust better the minimum.
- Overall agreement in magnitude.

Error in **efficiency** $\label{eq:proton} \mbox{Proton } \mbox{contamination at } \mbox{low } E$

Elastic: ${}^{10}\text{Be}(d,d){}^{10}\text{Be}$

Cross-section for the 1st excited state is also achievable.

- DWBA: potential deformed in both Coulomb and nuclear parts
- Using B(E2) from other experiments
- Same error as before?

To be further investigated.

$$\Rightarrow C^2S = 0.270(22)$$
 with Daehnick

Neutron removal: ${}^{10}\text{Be}(d,t){}^{9}\text{Be}$

Only the **ground state** is accessible. Angular distributions are determined in the interval $\theta_{\rm CM} \in [5,20]$ °.

- DWBA with DAEHNICK (d) and PANG (t) OMPs
- Best fit is $\ell = 1$ with j = 3/2

$$\Rightarrow C^2S = 1.522(44)$$

Neutron removal: ${}^{10}\text{Be}(d, t){}^{9}\text{Be}$

Another measurement is available in D.L Auton Nucl. Phys. A (1970). A reanalysis with our model is executed:

 No errors could be extracted from paper

• Worse agreement at large θ_{CM}

Reanalysis: $C^2S = 1.951(54)$

Consistent with our results!

E748 can be compared with a recent experiment carried out at the Acculinna facility. For the E_x :

Our experiment @ 30 AMeV

E. Y. Nikolskii et al. @ 42 AMeV

Recently published: NIMPR B 541 (2023)

Angular distributions for the **ground state** are extracted:

Original publication:
$$C^2S = 1.74$$

Realysis with our models and two different ³He potentials:

- Pang: $C^2S = 1.80(10) \text{ vs } 2.679(45)$
- HT1p: $C^2S = 1.232(77) \text{ vs } 1.848(33)$

Best compatibility with HT1p OMP

A first excited state is also accesible.

- **Best fit** is $\ell = 1$
- Assuming j = 1/2
- Spectroscopic factor: 0.185(36)

Match with Acculina:

$$C^2S = 0.207$$

Elastic: 12 Be(d, d) 12 Be

Yet another validation method of the normalization.

- Same behaviour as for ¹⁰Be
- Normalization is also fine

Clearly the same systematic error

Elastic: 12 Be $(d,d)^{12}$ Be

Cross-section for the 1st excited state is also achievable.

• Same procedure as before

To be further investigated. $\Rightarrow C^2S = 0.519(30)$ with Daehnick

Challenging channels: ${}^{12}\text{Be}(d,t){}^{11}\text{Be}$

- Strong inhibition of the ground state
- Why? Related to parity inversion in ¹¹Be?

Challenging channels: ¹²Be(d, ³He) ¹¹Li

- Low cross-section
- Subject to contamination in PID cut
- $\ell = 1$ with $C^2S = 0.510(85)$

Fullfils proposal expectations:

 $\frac{1}{4} \cdot \frac{d\sigma}{d\Omega}$ reduction

Conclusions and outlook

We investigated several proton and neutron pick-up reactions on ^{10,12}Be:

	Channel	Status	Pending
10Be	(d,d) (d,t) (d, 3He)	Normalization OK Completed Completed	Requires study $C^2S {\rm matches} {\rm other} {\rm measures}.$ Two new C^2S
12Be	(d,d) (d,t) (d,3He)	Normalization OK Puzzled Needs cleaning	Same as 10 Be ? New C^2S

Conclusions and outlook

Future prospects

Solve discrepancies in **elastic** channels

Improve background supression in ³He PIDs

Compare with **shell model** calculations

Thanks for your attention!			
And special thanks to the E748 collaboration.			

Proton contamination

Proton contamination

And regarding the masses:

Left: All data in ToF spectrum. Right: Gate on \boldsymbol{d}

Beam ID

Using Caviar to CATS1 TOF and energy loss in IC

Kinematic lines

