SYNOPSYS®

Verification ContinuumTM - TLM Library

DWC_LPDDR5_MCTL

Copyright Notice and Proprietary Information

© 2023 Synopsys, Inc. ALL RIGHTS RESERVED.

This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Licensed Products communicate with Synopsys servers for the purpose of providing software updates, detecting software piracy and verifying that customers are using Licensed Products in conformity with the applicable License Key for such Licensed Products. Synopsys will use information gathered in connection with this process to deliver software updates and pursue software pirates and infringers.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

www.synopsys.com

Contents

Preface	
About This Manual	
Documentation Conventions	
Terminology	
References	
Customer Support	
Synopsys Statement on Inclusivity and Diversity	
Chapter 1	
Release Notes.	
1.1 What's New	
1.1.1 U-2023.03-1	
1.1.2 U-2023.03	
1.2 Tool and Platform Version Information	
1.3 Compatibility Information	
1.3.1 U-2023.03-1.	
1.3.2 U-2023.03	
1.4 Fixed Problems	
1.4.1 U-2023.03-1	
1.4.2 U-2023.03	
1.5 Limitations	
1.6 License Requirements	
Chapter 2	
Package Overview	17
2.1 General Package Information	
2.2 Supported Features	
2.3 Unsupported Features	
2.4 Timing Accuracy for Optimization	
2.4.1 DWC_LPDDR5_MCTL Model Vs LPDDR5/4 Memory Controller RTL	
2.4.2 Recommended Use Case is Optimization	
2.5 Directory Structure	
2.6 Analysis	
Chapter 3	21
Use Model	
3.1 Overview of Library in Platform Creator	
3.1.1 Ports	
3.2 Opening the Library	
3.2.1 Instantiating	
3.2.2 Configuring DWC_LPDDR5_MCTL	
5.2.5 LEDDKS MCTL Model Programming Parameters	

3.2.4 Configuring the Block Port Properties in Platform Creator	41
3.3 Configuring the Model	
3.3.1 Configuring the Parameters in Platform Creator	
3.3.2 Importing CoreConsultant Configurations	48
3.3.3 Importing Configuration from CoreConsultant Trace File	
3.4 Specifying Memory Options	51
Chapter 4	
Programming Model	53
4.1 Programming Model for LPDDR5_MCTL	
4.1.1 Register Memory Map	
4.1.2 Register and Field Description	53
11.2 Register that refa Description	
Chapter 5	
Analysis View	
5.1 Introduction	
5.2 Using Analysis in a Design with LPDDR5_MCTL	
5.3 Bus Path Statistics	
5.4 Resources Statistics	73
5.4.1 CAMUtilization	
5.4.2 DDRCStall	
5.4.3 XPI Buffer Utilization	
5.4.4 Contention	
5.4.5 RRBUtilization	
5.5 Memory Channel Analysis and Memory Data Channel Analysis	
5.5.1 Memory Channel Analysis	
5.5.2 Memory Data Channel Analysis	
5.6 Hot Bit Analysis	
5.7 Page Status Analysis	80
5.8 AutoPrecharge Analysis	83
Chambau 6	
Chapter 6 Creating Starting Point Platform and Congrating DDP Targeted Worldards	07
Creating Starting Point Platform and Generating DDR Targeted Workloads	
6.2 Creating a Design	
<u>▲</u>	
6.2.2 Specifying Reset Settings	
6.5 Workload Description	
Chapter 7	
Example Platform for LPDDR5 Block	
7.1 Software Running on Platform	
7.2 Directory Structure	
7.3 Opening Example Platform	
7.4 Example Platform-LPDDR5ExamplePlatform	
7.4.1 Configuration for LPDDR5ExamplePlatform	
7.4.2 Running the Example Platform in Platform Architect	
7.4.3 Analysis View	
Chapter 8	
RTL CoSimulation for LPDDR5 Block.	

Index 99

The preface of the *DWC_LPDDR5_MCTL* describes:

- About This Manual
- Documentation Conventions
- Terminology
- References
- Customer Support
- Synopsys Statement on Inclusivity and Diversity

About This Manual

This manual describes the DWC_LPDDR5_MCTL, Product Version U-2023.03-1.

We are in the process of updating the screenshots of this manual to the latest user interfaces of Virtualizer Studio. You may find mismatch in the look and feel of some of the screenshots in this release.

This manual is organized as follows:

- Release Notes contains release information.
- Package Overview describes the content of the DWC_LPDDR5_MCTL package.
- Use Model describes the DWC_LPDDR5_MCTL use model.
- Programming Model describes the programming model for DWC_LPDDR5_MCTL.
- Analysis View describes the DWC_LPDDR5_MCTL specific analysis views.
- Creating Starting Point Platform and Generating DDR Targeted Workloads describes the process to create design with LPDDR5_MCTL.
- Example Platform for LPDDR5 Block describes the LPDDR5ExamplePlatform for the LPDDR5 block.
- RTL CoSimulation for LPDDR5 Block describes how to run RTL CoSimulation for LPDDR5 block.

Documentation Conventions

This section lists and explains the documentation conventions used throughout this manual.

Convention	Description and Examples
italic	Is used in running text for:
	GUI elements. For example:
	The Enumeration field contains a space-separated list of values.
	New terms. For example:
	A protocol library is a collection of protocol definitions.
	Web sites. For example:
	For more information, see www.eclipse.org.
	E-mail addresses. For example:
	Contact customer support via e-mail at vp_support@synopsys.com.
	Manual names. For example:
	The preface of the Analysis Manual describes:
courier	Is used for:
	Code text. For example:
	list_library_configurations myConfig
	In this example, myConfig is used.
	System messages. For example:
	JVM not found.
	Text you must type literally. For example:
	At the prompt, type go.
	 Names (of environment variables, commands, utilities, prompts, paths, macros, and so on). For example:
	The build-options command sets build parameters.
courier italio	Indicates variables. For example:
	scope specifies a module, a channel, or a refined port.
bold	Serves to draw your attention to the text in question. For example:
	<pre>coreId = cwrSAGetCoreId("mycore");</pre>
[]	Square brackets enclose optional items. For example:
	clean [-pch]
	If you must type a square bracket as part of the syntax, it is enclosed in single quotes. For example:
	'['use-vector']'

Convention	Description and Examples
{ }	Braces enclose a list from which you must choose one or more items. For example:
	add {signalPattern portPattern} ID
	If you must type a brace as part of the syntax, it is enclosed in single quotes. For example:
	DECLARE '{' Item1 Item1
	'}'
I	A vertical bar separates items in a list of choices. For example:
	autoflush {on off}
>	A right angle bracket separates menu commands. For example:
	The Project > Update System Library menu command is available.
	A horizontal ellipsis in syntax indicates that the preceding expression may have zero, one, or more occurrences. For example:
	build-options -option optionArgs
	A horizontal ellipsis in examples and system messages indicates material that has been omitted. For example:
	<pre>::scsh> dtrace add top1.signal_* \$t1 ::scsh> dtrace add top1.clk_* \$t1</pre>
	::scsh> dtrace flush *

Terminology

CAS	The CAS Latency of the device
CS	Chip Select
DMA	Direct Memory Access
EOF	End Of File
FCFS	First-come, First-served
GUI	Graphical User Interface
HPR	High Priority Reads
IDE	Integrated Development Environment
IPE	Interrupt-Priority Encoder
JEDEC	JEDEC Solid State Technology Association, formerly known as the Joint Electron Devices Engineering Council (JEDEC). It is an independent semiconductor engineering trade organization and standardization body.
LPR	Low Priority Reads
МРМС	Multi-Ported Memory Controller
PV	Programmer's View
RRB	Read Reorder Buffer
SCML	SystemC Modeling Library
VPR	Variable Priority Reads
VPW	Variable Priority Writes

References

The below listed manuals belong to Platform Architect documentation set and are referenced in this manual. Their inline references are redirected here.

Synopsys Virtual Prototyping Product Installation Guide VP Explorer User Guide

Customer Support

For technical support (regarding license keys, IP downloads, Host ID, Project ID, documentation or general support), contact the Support Center with a description of your question and supplying the debug information, using one of the following methods:

- Go to https://solvnetplus.synopsys.com and sign-in with your Synopsys SolvNetPlus credentials. Select Cases from the menu bar, and select Create a New Case. Provide the requested information, including:
 - **Product L1:** Virtual Prototyping.

- **Product L2:** Select the product type that closest matches yours.
- Case Type: Select the case type from the drop-down menu.
- Case Severity: Select the case severity from the drop-down menu.
- Subject: Provide a brief summary of the issue or list the error message you have encountered.
- **Description:** For simulation issues, include the timestamp of any signals or locations in waveforms that are not understood.

After creating the case, attach the debug files you have created, if any.

- Or, send an e-mail message to *vp_support@synopsys.com*. (your email will be queued and then, on a first-come, first-served basis, manually routed to the correct support engineer):
 - Include the Product name, Sub Product name, and Tool Version number in your email; so that it can be routed correctly.
 - For simulation issues, include the timestamp of any signals or locations in waveforms that are not understood.
 - Attach any debug files you created in the previous step.
- Or, telephone your local support center:
 - North America:
 - Call 1-800-245-8005 from 7:00 AM to 5:30 PM Pacific time, Monday through Friday.
 - All other countries:

https://www.synopsys.com/support/global-support-centers.html

Synopsys Statement on Inclusivity and Diversity

Synopsys is committed to creating an inclusive environment where every employee, customer, and partner feels welcomed. We are reviewing and removing exclusionary language from our products and supporting customer-facing collateral. Our effort also includes internal initiatives to remove biased language from our engineering and working environment, including terms that are embedded in our software and IPs. At the same time, we are working to ensure that our web content and software applications are usable to people of varying abilities. You may still find examples of non-inclusive language in our software or documentation as our IPs implement industry-standard specifications that are currently under review to remove exclusionary language.

Chapter 1 Release Notes

This chapter describes:

- What's New
- Tool and Platform Version Information
- Compatibility Information
- Fixed Problems
- Limitations
- License Requirements

1.1 What's New

This section lists the main changes and enhancements in this release of the DWC_LPDDR5_MCTL Library.

1.1.1 U-2023.03-1

The DWC_LPDDR5_MCTL has been enhanced for the following features.

- Supports only valid speed bins according to the selected device type, as per the *JEDEC standards*.
- Display a warning message before changing the memory device, which resets the address mapping to default value automatically.

1.1.2 U-2023.03

The DWC_LPDDR5_MCTL has been enhanced for the following features.

- Supports PA OPT TYPE value as 2 for 1 cycle idle latency arbitration scheme.
- The *Refresh* feature is enhanced to correlate with RTL IP version 1.40a-lca00.
- A new package has been created by which RTL CoSimulation flow can run in an automated way. To run
 this flow, RTL design should be available in your working directory and the script will generate an XML
 file and the generated file can be run with Platform Architect.

1.2 Tool and Platform Version Information

This version of the DWC_LPDDR5_MCTL Library is compliant with Product Version U-2023.03-1 of Platform Architect and Virtualizer. For an overview of the supported platforms and their versions, see "Supported Platforms and Compilers" in the *Synopsys Virtual Prototyping Product Installation Guide*, which is available with the Platform Architect and Virtualizer documentation set.

- Windows platform is not supported.
- The DWC_LPDDR5_MCTL library should be installed at installDir/IP. For details, see the Synopsys Virtual Prototyping Product Installation Guide. To install the library at any other location, an environment variable CWR_DWC_LPDDR5_MCTL should be set as path of installDir/DWC_LPDDR5_MCTL.

1.3 Compatibility Information

This section lists compatibility issues that you must take into account in this release of the DWC_LPDDR5_MCTL.

1.3.1 U-2023.03-1

There are no compatibility issues in this release of DWC_LPDDR5_MCTL.

1.3.2 U-2023.03

There are no compatibility issues in this release of DWC_LPDDR5_MCTL.

1.4 Fixed Problems

This section lists problems that were found in the previous release of the DWC_LPDDR5_MCTL Library that have now been fixed.

If the problem has been assigned a Synopsys ID in the Synopsys defect tracking system, this number is also listed; otherwise, *No ID* is specified.

1.4.1 U-2023.03-1

There are no fixed problems in this release of DWC_LPDDR5_MCTL.

1.4.2 U-2023.03

▶ P10006271-44073: LPDDR5 model stopped issuing write commands.

<u>Description</u>: In the DWC_LPDDR5_MCTL model, pending write transaction was coming in LPDDR4 memory in case of narrow transaction when RMW was enabled.

Resolution: This problem has been fixed for LPDDR4 memory.

• P10006271-44074: Per-bank Refresh issues in LPDDR4.

<u>Description</u>: Per bank refresh timing tRFC was not getting reflected correctly in LPDDR4 memory.

Resolution: This problem has been fixed for per bank refresh timing.

• P10006271-45005: LPDDR5 signal 11 due to Enable opt hit gt hpr feature.

<u>Description</u>: In the DWC_LPDDR5_MCTL model, simulation was suspended when <code>opt_hit_gt_hpr</code> was enabled and only low priority read requests were valid.

Resolution: This problem has been fixed.

• P10006271-44224 DDR5 controller with CHI interface uses wrong target ID for read data packets.

<u>Description</u>: In the DWC_LPDDR5_MCTL model, the target ID was being set incorrectly for read data packets in CHI interface.

Resolution: This problem has been fixed.

1.5 Limitations

This section lists limitations of this release of the DWC_LPDDR5_MCTL Library.

- The registers which impacts performance are only supported and documented in model.
- Following feature show significant timing deviation with respect to the RTL IP when enabled:

- Inline ECC Enabling this feature can result in AXI port latency for Read and Write signals from the initiator in the range of 0 to 15%.
- Rank Interleaving For AXI port latencies, deviation from RTL varies from -7 to +50%.
- QOS feature is still under verification.
- Combinatorial arbitration (0 cycle of idle latency) is not supported in model.
- Disable speculative activate is not supported in model.

1.6 License Requirements

In order to use the LPDDR5 Controller Library, you need to procure the product license of DW LPDDR5 Exploration Pack. For further queries, contact *vp_support@synopsys.com*.

Chapter 2 Package Overview

17

This chapter describes:

- General Package Information
- Supported Features
- Unsupported Features
- Timing Accuracy for Optimization
- Directory Structure
- Analysis

2.1 General Package Information

The DesignWare DDR LPDDR5_MCTL model (DWC_LPDDR5_MCTL) is a fast and accurate TLM model of Synopsys RTL IP DesignWare Cores LPDDR5/4 Memory Controller (DWC LPDDR5/4/4X Controller). The LPDDR5_MCTL RTL IP is a flexible and advanced solution for ASIC and System-on-Chip (SoC) designers who need very low power while achieving industry leading high-efficiency, low-latency and high-performance from their memory interface. The LPDDR5_MCTL TLM model enables system designers to quickly and efficiently explore large number of configuration parameters and optimize the performance of the model in the context of their design. The library enables the system designers to validate the system configurations having LPDDR5_MCTL model. The TLM model provides detailed analysis views and enables system designers to identify hot spots in the memory path, and optimize these.

2.2 Supported Features

The following list provides feature supported by the TLM model corresponding to this version of IP.

The current version of DWC_LPDDR5_MCTL Library is compatible with version 1.40a-lca00 of DWC LPDDR5/4/4x Controller RTL.

- Compliant to FT AXI semantics on application side.
- Configurable number of application side interfaces (1-16).
- Supports LPDDR5 and LPDDR4 memory type.
- Support for AXI3 and AXI4 protocol.
- 1:4 (CK: WCK) frequency ratio architecture.
- 1:2 (CK:WCK) frequency ratio architecture for LPDDR5-3200 Speedbin.
- Data width conversion and clock domain conversion for all application ports.
- Advanced QoS pins.
- High Priority Reads (HPR) and Low Priority Reads (LPR) queues to avoid head of line blocking.

- External port priorities.
- Dual arbiter for read and write channels.
- Configurable memory ranks.
- Open page and Intelligent close-page with page close timer as 0.
- Read reorder buffer (RRB).
- External RAM for RRB.
- Dynamic mapping of virtual channels.
- Arbiter supports port aging and Variable Priority Reads (VPR) and Variable Priority Writes (VPW).
- Scheduler implements a credit mechanism for optimal scheduling of transactions.
- Programmable register interface at TLM2 GP interface.
- Configurable address mapping scheme.
- Supports address collision handling.
- Supports Write combine to allow multiple writes to the same address to be combined into a single write to SDRAM.
- Supports Variable Priority Reads (VPR) and Variable Priority Writes (VPW).
- Programmable support for all of the following SDRAM data-bus widths:
 - Full data-bus width
- Supports a new mechanism to improve RD/WR switching.
- Supports LPDDR5X memory type for Speedbin 8533 only.
- Supports mem_load and mem_save functionalities for bin and elf formats.

2.3 Unsupported Features

The following features are not supported by TLM model:

- Quarter Bus Width mode
- Half Bus Width mode
- 2T timings
- Sideband ECC
- Bypass path
- Port Throttling
- Dynamic BSM
- Fast frequency change and implementation of FREQ1/2/3 registers.
- Dynamic re-programming of quasi-dynamic registers.
- LPDDR5 x8 devices
- Dual Channel
- Periodic memory and Phy maintenance/retraining features:
 - o ZQ calibration
 - Controller assisted drift tracking

- O PPT2
- RMW bypass path
- Per bank refresh optimization

The following RTL hardware parameters are not supported by TLM model:

- UMCTL2 FAST FREQUENCY CHANGE
- MEMC REG DFI OUT
- UMCTL2 XPI USE WAR
- UMCTL2 XPI USE RDR
- UMCTL2_PARTIAL_WR
- UMCTL2 WDATA EXTRAM
- UMCTL2 RRB EXTRAM RETIME
- UMCTL2_RETRY_WDATA_EXTRAM
- UMCTL2 INCL ARB

2.4 Timing Accuracy for Optimization

2.4.1 DWC_LPDDR5_MCTL Model Vs LPDDR5/4 Memory Controller RTL

- Transaction counts for the entire simulation are the same.
- Average AXI throughput (MB/sec) and Average AXI channel utilization (% active over time) are very similar and show high correlation between the TLM model and the RTL simulations for the features which are claimed to be cycle-accurate.
- Average duration of reads and writes are within +/-20%, depending on the interval for the features which are claimed to be cycle-accurate.

2.4.2 Recommended Use Case is Optimization

Simulation of the TLM model produces correct trends in LPDDR5_MCTL performance usable for optimization of uMCTL2 configurations. Validation of performance must still be done using the RTL IP.

2.5 Directory Structure

The installation of the DWC_LPDDR5_MCTL Library creates files in the following directory:

installDir/IP/DWC LPDDR5 MCTL

From now on, references are made starting from the above directory.

The following files/directories are created in installDir/IP/DWC LPDDR5 MCTL:

Documentation

This directory contains the DWC_LPDDR5_MCTL Library documentation.

ConvergenSC

This directory contains the Platform Creator block library file DWC LPDDR5 MCTL.xml.

SystemC/include

19

This directory contains the SystemC include files that are required to instantiate the blocks from the DWC_LPDDR5_MCTL Library.

• Internal/script

This directory contains Platform Creator scripts developed for the DWC_LPDDR5_MCTL module.

• Internal/lib

This directory contains the SystemC library files that are required while linking. Based on operating system and compiler version, different sub-directories are present with different versions of the library.

2.6 Analysis

DWC_LPDDR5_MCTL model is instrumented to provide detailed analysis views. This enables you to analyze the memory timings in order to improve the latency caused by memory accesses.

This chapter describes:

- Overview of Library in Platform Creator
- Opening the Library
- Configuring the Model
- Specifying Memory Options

3.1 Overview of Library in Platform Creator

The DWC_LPDDR5_MCTL Library contains the DWC_LPDDR5_MCTL block which is the Platform Creator block that can be instantiated and configured in context of the design.

The DWC_LPDDR5_MCTL block has the following ports:

- AXI_0, AXI_1 ... AXI_15: These are configurable number of ports which are used to communicate with the rest of the SoC. These are the application ports of the controller. The number of ports is determined by the value of Parameter/MultiPort/number_of_host_ports on the DWC LPDDR5 MCTL block instance. All these ports are at TLM2 FT-AXI interface.
- APBPort: This is the register programming port of DWC_LPDDR5_MCTL block instance. This port is at TLM2-GP abstraction level.
- core_ddrc_core_clk: The core_ddrc_core_clk is main clock for the LPDDR5_MCTL. This is
 used to derive the clock period on which the memory controller operates. Operating frequency of the
 memory interface can be in a ratio of 1:4 of this clock.
- clk_0, clk_1 ... clk_15: All application port clocks (aclk_n) are independently configurable as asynchronous or synchronous with respect to the main LPDDR5_MCTL clock (core_ddrc_core_clk). An application port's clock (aclk_n) is considered synchronous when it is phase aligned and equal frequency to the LPDDR5_MCTL core_ddrc_core_clk.
- reset: This port is the reset port of the DWC_LPDDR5_MCTL block instance. The reset port should be driven to value 1 only after register programming is complete.

The figure below shows the DWC LPDDR5 MCTL block.

Figure 3-1 DWC_LPDDR5_MCTL Block

3.1.1 Ports

The following table describes the ports of the DWC LPDDR5 MCTL block.

Table 3-1 Ports of the LPDDR Block

Name	Protocol	Description	Туре
AXI	TLM2 FT-AXI	The array of up to 16 ports to which the FT AXI initiators/bus can connect.	InOut - Slave
APBPort	TLM2-GP	Register configuration interface port of memory controller.	InOut - Slave
clk	CLOCK	Clock port for the memory controller. The memory controller operates on the positive edge of the clock.	InOut - Slave
reset	RESET	Reset port for the memory controller. The reset port should be asserted only after the register programming is complete.	InOut - Slave

3.2 Opening the Library

Before you can use the DWC_LPDDR5_MCTL Library in Platform Creator, you need to open the DWC_LPDDR5_MCTL Library.

To open the library:

Do either of the following depending on whether or not the library is available in the Library Browser:

- If the library is available in the Library Browser (see figure 3-2), expand the library folder.
- If the library is not available in the Library Browser, perform the following steps:
 - From the menu bar of the Platform Creator window, select *Project > Open Library File*. The open Library dialogue box appears.
 - O Browse to the <code>installDir/DWC_LPDDR5_MCTL/ConvergenSC/DWC_LPDDR5_MCTL.xml</code> file. The DWC_LPDDR5_MCTL Library appears in the Library Browser (see figure 3-2).

Figure 3-2 The DWC_LPDDR5_MCTL Library

3.2.1 Instantiating

After opening the DWC_LPDDR5_MCTL Library, you can instantiate the DWC LPDDR5 MCTL block.

To instantiate the DWC_LPDDR5_MCTL block:

Drag the DWC_LPDDR5_MCTL block from the Library Browser into the System Diagram.

3.2.2 Configuring DWC_LPDDR5_MCTL

After instantiation, the DWC_LPDDR5_MCTL block instance needs to be configured for desired operation. There are memory controller static configurations that need to be done on the block, the specific port configurations need to be done on the port and the runtime configurations are done using register programming.

3.2.2.1 Configuring the Block Instance Properties in Platform Creator

The block parameters are of following types:

- Hardware Parameters
- Programming Parameters

3.2.2.1.1 DWC_LPDDR5_MCTL Model Hardware Parameters

This set of parameters represents the hardware configuration parameters on the DWC_LPDDR5_MCTL block instance. The parameters for this category are grouped under /DDRC, /MultiPort and /AXI parameter sets.

Some of the parameters in these sets are read-only and these are for information purposes only, for example /DDRC/enable bypass.

Following table provides a complete list of parameters, their valid values and description.

Table 3-2 Hardware Parameters

Property Name	Property Type	Default Value	Valid Values	Read Only	Description
/DDRC/RTL_version	string	1.00a- lca01	1.00a- lca01	Yes	Specifies the compatible version of RTL.
/DDRC/memory_type	string	LPDDR5	LPDDR5, LPDDR4	Yes	Specifies the type of memory to be supported. Needed for specification of memory options.
/DDRC/frequency_ratio	integer	4	2, 4	No	LPDDR4: Defines the frequency ratio between the LPDDR5_MCTL clock and the DRAM clock. LPDDR5: Defines the WCK: CK ratio. It is the ratio of the command clock to the data clock.

23

Property Name	Property Type	Default Value	Valid Values	Read Only	Description
/DDRC/memory_data_width	integer	16	8, 16, 32, 64	No	Specifies the memory data width. This is the width in bits of the DQ signal to SDRAM.
/DDRC/number_of_ranks_ supported	integer	1	1, 2	No	Specifies the maximum number of ranks supported by model.
/DDRC/CAM_depth	integer	32	4, 8, 16, 32, 64	No	Specifies the CAM depth (number of entries).
DDRC/programmable_frequency_ ratio	integer	0	0, 1	No	Specifies if the frequency ratio is programmable with the help of the software.
/DDRC/burst_length_supported	string	BL16	BL8, BL16	Yes	Specifies the size of a transaction on the host interface (HIF). This can be equivalent to a SDRAM burst length of either 4 or 8.
/DDRC/Enhanced_CAM_pointer_ mechanism	boolean	true	true, false	No	Enables the CAM supports out-of-order pushing as well as out-of-order popping.
/DDRC/Enhanced_RD_WR_ switching_mechanism	boolean	true	true, false	No	Enables Enhanced Read/Write switching mechanism.
/DDRC/Enhanced_RD_WR_ switching_policy_selectable	boolean	true	true, false	No	Enables Enhanced Read/Write switching policy selectable.
/DDRC/enable_link_ecc	boolean	false	true, false	No	Enables linked ECC.
/DDRC/enable_rfm	boolean	false	true, false	No	Enables refresh management.
/DDRC/enable_rfm_sbc	boolean	false	true, false	No	Enables single bank mode for RFM.
/DDRC/rfm_level	integer	0	0,1,2,3	No	Selects RFM level for ARFM. You need to program RFM registers accordingly.
/DDRC/bank_hashing_enable	boolean	false	true, false	No	Enables the bank hashing feature.
/MultiPort/number_of_host_ ports	integer	1	116	No	Specifies the number of AXI ports in the design.
/Multiport/event_ports	integer	0	0, 1	No	If sets to 1, enables support for custom block to fetch scheduling information.

Property Name	Property Type	Default Value	Valid Values	Read Only	Description
/MultiPort/application_ address_width	integer	32	3260	No	Specifies the address width of each AXI port.
/MultiPort/application_id_ width	integer	8	132	No	Specifies the Trans ID width of each AXI port.
/MultiPort/application_burst _length_width	integer	4	48	No	Specifies the width of application burst length. Should be 8 for AXI4.
/MultiPort/pa_opt_type	integer	1	12	No	Specifies the type of optimization required for the Port Arbiter block. The options are: Two-cycle arbitration (1 cycle of idle latency).
/DDRC/enable_dual_HIF	boolean	false	true, false	No	This feature converts HIF single command channel into separate HIF command channels for Read and Write commands.
/DDRC/enable_variable_ priority_read_write_feature	boolean	false	false	No	Enable variable priority read feature.
/DDRC/enable_refresh_on_ reset	integer	0	01	No	When enabled, refresh starts on reset. This is for debugging and accuracy purpose.
/MultiPort/enable_XPI_read_ address_input_retime	boolean	false	true, false	No	Retime block at XPI input for read address channel.
/MultiPort/enable_external_ port_priorities	boolean	false	true, false	No	Enables dynamic setting of port priorities externally through the AXI QoS signals.
/MultiPort/enable_port_ arbiter_page_match_feature	boolean	true	true, false	No	Enables the Port Arbiter (PA) PageMatch feature in the hardware.
/ReliabilityFeatures/ECC_ Supported	integer	0	0, 1	No	Enables the ECC support. This feature is available only when the DRAM bus width is 16, 32, or 64 bits.
/ReliabilityFeatures/Enable_RMW	boolean	false	true, false	No	Enables read-modify-write commands. By default, this is set for ECC configurations, and unset for non-ECC configurations.

Property Name	Property Type	Default Value	Valid Values	Read Only	Description
/ReliabilityFeatures/Enable_ Inline_ECC	integer	0	0, 1	No	Enables Inline ECC. When enabled does not requires an additional data bus for ECC, so the actual DRAM data width is equal to MEMC_DRAM_DATA_WIDTH. ECC parity is stored with the data without using a dedicated sideband memory device.
/ReliabilityFeatures/Block_ Interleaving_Depth	integer	4	4, 8, 16, 32	No	Block Interleaving depth. Indicates the number of blocks that can be interleaved at DDRC input (HIF). Enabled in Inline ECC mode.
dis_mem_alloc	boolean	false	false	No	If set true, no SCML memory is allocated and no data accuracy is there.

3.2.3 LPDDR5_MCTL Model Programming Parameters

This set of parameters represents the register configurations of the LPDDR5_MCTL block. These registers are initialized with the value represented in this tab at the time of simulation. The parameters for this category are grouped under /Programming sets.

The following table provides a complete list of programming parameters, their valid values and description.

Table 3-3 Programming Parameters

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/MSTR0/d ata_bus_width	integer	0x10000	0	0 1	0	Selects proportion of DQ bus width that is used by the SDRAM. 00 - Full DQ bus width to SDRAM.
/Programming/DDRC/MSTR0/b urst_rdwr	integer	0x10000	4	1, 2, 4, 8	0	SDRAM burst length used (4 - Burst Length of 8, 8 - Burst Length of 16).

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/FREQ/TMGCFG/frequency_ratio	integer	0xd00	0	0,1	0	Selects the frequency ratio as: • Value 0: - LPDDR4 - 1:2 mode - LPDDR5 - 1:1:2 mode • Value 1: - LPDDR4 - 1:4 mode - LPDDR5 - 1:1:4 mode Enabled only when /DDRC/programmable_f requency_ratio = 1
/Programming/DDRC/RANKCTL /max_rank_rd	integer	0x10c90	15	015	0	Maximum number of reads that can be scheduled consecutively to the same rank.
/Programming/DDRC/RANKCTL /max_rank_wr	integer	0x10c90	0	015	0	Maximum number of writes that can be scheduled consecutively to the same rank.
/Programming/DDRC/RFMMOD0 /rfmth_rm_thr	integer	0x10220	0x1f	00xff ff	0	Threshold of RM (Refresh Multiplier) to disable RFM command.
/Programming/DDRC/RFMMOD0 /raadec	integer	0x10220	0	03	0	RAADEC: RAA count decrement per RFM command. • 0: RAAIMT • 1: RAAIMT * 1.5 • 2: RAAIMT * 2 • 3: RAAIMT * 4 (LPDDR5 only)
/Programming/DDRC/RFMMOD0 /raamult	integer	0x10220	0	03		RAAMULT: Rolling Accumulated ACT Multiplier as: O: 2X 1: 4X 2: 6X 3: 8X

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/RFMMOD0 /raaimt	integer	0x10220	1	131	0	RAAIMT: Rolling Accumulated ACT Initial Management.
						Threshold as programmed:
						0: Invalid
						1:8
						2:16
						30: 240
						31: 248
/Programming/DDRC/RFMMOD0 /rfmsbc	integer	0x10220	0	0,1	0	Enables single bank mode.
/Programming/DDRC/RFMMOD0 /rfm_en	integer	0x10220	0	0,1		Enables RFM.
/Programming/DDRC/RFMMOD1 /init_raa_cnt	integer	0x10224	0xc	0 0xffff	0	Initial RAA count.
/Programming/DDRC/SCHED0/ prefer_write	integer	0x10380	0	01	0	If set then the bank selector prefers writes over reads.
/Programming/DDRC/SCHED0/pageclose	integer	0x10380	0	01	0	Bank is kept open only while there are page hit transactions available in the CAM to that bank.
/Programming/DDRC/SCHED0/rdwr_switch_policy_sel	integer	0x10380	1	0 1	0	Selects read write switching policy.
						00 - Full DQ bus width to SDRAM.
/Programming/DDRC/SCHED0/opt_wrcam_fill_level	integer	0x10380	1	0 1	0	Enables the feature of optimized write CAM fill level by switching to write when write CAM reaches certain fill level set in SCHED03.
/Programming/DDRC/SCHED0/dis_opt_ntt_by_act	integer	0x10380	0	0 1, 0	0	Disable optimized NTT update by Activate command.
/Programming/DDRC/SCHED0/dis_opt_ntt_by_pre	integer	0x10380	0	0 1	0	Disable optimized NTT update by Precharge command.
/Programming/DDRC/SCHED0/ lpr_num_entries	integer	0x10380	16	064	0	Number of entries in the low priority transaction store is this value +1.

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/SCHED0/ lpddr4_opt_act_timing	integer	0x10380	0	0 1	0	Optimized ACT timing control for LPDDR4.
/Programming/DDRC/SCHED0/ prefer_read	integer	0x10380	0	0 1		Sets the bank selector to prefer reads over writes.
/Programming/DDRC/SCHED0/go2critical_hysteresis	integer	0x10380	0	0256	0	This parameters is not being used as of now.
/Programming/DDRC/SCHED0/dis_speculative_act	integer	0x10380	0	0 1		Enables and disables speculative activate feature.
/Programming/DDRC/SCHEDTM G0/rdwr_idle_gap	integer	0xc00	0x00	0127	0	When the preferred transaction store is empty for these many clock cycles, switch to the alternate transaction store if it is non-empty.
/Programming/DDRC/SCHED0/opt_act_lat	integer	0x10380	0	0,1	0	Optimizes the best case latency for ACT from HIF to DFI. When the register is set to 1, it may reduce ACT latency by one DFI clock cycle.
/Programming/DDRC/SCHED1/delay_switch_write	integer	0x10384	2	015	0	Indicates the number of cycles to delay switching read to write mode when write page-hit request is there and no read page-hit request is there. • 0 - no delay • 1 - two cycles delay • 2 - four cycles delay • 3 - six cycles delay • 4 - eight cycles delay • 15- 30-cycles delay
/Programming/DDRC/SCHED1/ visible_window_limit_wr	integer	0x10384	0	04	0	Visible window limiter for write to prevent extreme starvation against other entries within a CAM. • 0 - Disable this feature • 1 - 31 • 2 - 63 • 3 - 127 • 4 - 255

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/SCHED1/ visible_window_limit_rd	integer	0x10384	0	04	0	Visible window limiter for read to prevent extreme starvation against other entries within a CAM. • 0 - Disable this feature • 1 - 4 • 2 - 8 • 3 - 16 • 4 - 32
/Programming/DDRC/SCHED1/ page_hit_limit_wr	integer	0x10384	0	04	0	Page-Hit limiter for write. output 1 - 4 2 - 8 3 - 16 4 - 32
/Programming/DDRC/SCHED1/page_hit_limit_rd	integer	0x10384	0	04	0	Page-Hit limiter for read. o Disable this feature 1 - 4 2 - 8 3 - 16 4 - 32
/Programming/DDRC/SCHED1/opt_hit_gt_hpr	integer	0x10384	0	01	0	Optimize the priority between Page-hit LPR and Page-miss HPR. • 0 - Page-miss HPR has priority (default). • 1 - Page-hit LPR has priority. This is to trade-off between HPR latency and total utilization. If set to 0, HPR latency can be better than 1 because HPR has priority over LPR. If set to 1, DRAM utilization can be better than 0 because number of ACT- PRE is reduced. When this register is set to 1. It is recommend to enable page- hit limiter so that once page- hit limiter is expired, HPR can have priority. Enabled when Enhanced CAM pointer mechanism is enabled.

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/SCHED3/wrcam_lowthresh	integer	0x1038c	8		0	The low threshold used in optimized write CAM fill level.
/Programming/DDRC/SCHED3/wrcam_highthresh	integer	0x1038c	2		0	The high threshold used in optimized write CAM fill level.
/Programming/DDRC/SCHED3/wr_pghit_num_thresh	integer	0x1038c	4		0	Switch to read mode once number of read page-hit request exceeds the threshold set in the register during waiting tw2R.
/Programming/DDRC/SCHED3/rd_pghit_num_thresh	integer	0x1038c	4		0	Switch to write mode once number of write page-hit request exceeds threshold set in this register during waiting delay_switch_write timeout.
/Programming/DDRC/SCHED4/rd_act_idle_gap	integer	0x10390	16		0	Indicates the number of cycles when read direction has no request to start preparing bank for write direction.
/Programming/DDRC/SCHED4/wr_act_idle_gap	integer	0x10390	8		0	Indicates the number of cycles when write direction has no request to start preparing bank for read direction.
/Programming/DDRC/SCHED4/rd_page_exp_cycles	integer	0x10390	64		0	Indicates the number of cycles to keep the bank opened for read direction in write mode when both directions has request to the bank.
/Programming/DDRC/SCHED4/wr_page_exp_cycles	integer	0x10390	8		0	Indicates the number of cycles to keep the bank opened for write direction in read mode when both directions has request to the bank.
/Programming/DDRC/SCHED5/ wrecc_cam_lowthresh	integer	0x10394	0x4		0	The low threshold used in optimized write ECC CAM fill level.
/Programming/DDRC/SCHED5/ wrecc_cam_highthresh	integer	0x10394	0x2		0	The high threshold used in optimized write ECC CAM fill level.

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/SCHED5/dis_opt_loaded_wrecc_cam_fill_level	integer	0x10394	0x0		0	Should be set as 0.
/Programming/DDRC/SCHED5/dis_opt_valid_wrecc_cam_fill_level	integer	0x10394	0x0		0	Should be set as 0.
/Programming/DDRC/DBICTL/dm_en	integer	0x10c94	1	0 1	0	Indicates the DM enable signal in DDRC.
/Programming/FREQ/PERFHPR 1/hpr_max_starve	integer	0xc80	0x01	0x00x FFFF	0	Number of clocks that the HPR queue can be starved before it goes critical.
/Programming/FREQ/PERFHPR 1/hpr_xact_run_length	integer	0xc80	0xf	0x0 0xFF	0	Number of transactions that are serviced once the HPR queue goes critical is the smaller of this number of Number of transactions available.
/Programming/FREQ/PERFLPR 1/lpr_max_starve	integer	0xc84	0x7f	0x0 0xFFFF	0	Number of clocks that the LPR queue can be starved before it goes critical.
/Programming/FREQ/PERFLPR 1/lpr_xact_run_length	integer	0xc84	0xf	0x00x FF	0	Number of transactions that are serviced once the LPR queue goes critical is smaller of Number of transactions available.
/Programming/FREQ/PERFWR1 /w_max_starve	integer	0xc88	0x7f	0x00x FFFF	0	Number of clocks that the WR queue can be starved before it goes critical.
/Programming/FREQ/PERFWR1 /w_xact_run_length	integer	0xc88	0xf	0x0 0xFF	0	Number of transactions that are serviced once the WR queue goes critical is smaller than the number of transactions available.
/Programming/DDRC/DBG0/dis_wc	integer	0x13005 0	1	0,1	0	When the value is 1, disable write combine.

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/DBG0/di s_collision_page_opt	integer	0x13005 0	1	0, 1	0	When this is set to 0, autoprecharge is disabled for the flushed command in a collision case. Collision cases are write followed by read to same address, read followed by write to same address, or write followed by write to same address with DBG0.dis_wc bit = 1 (where same address comparisons exclude the two address bits representing critical word).
/Programming/DDRC/ECCCFG0 /ecc_mode	integer	0x10600	0	07	0	ECC mode indicator. • 000 - ECC disabled • 100 - ECC enabled - SEC/DED over 1 beat • 101 - ECC enabled - Advanced ECC All other settings are reserved for future use. Set it to 4 for enabling Inline ECC.
/Programming/DDRC/ECCCFG0 /ecc_region_map	integer	0×10600	127	0127	0	Selectable Protected Region setting. Memory space is divided to 8/16/32/64 regions which is determined by ECCCFG1.ecc_region_ma p_granu

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/ECCCFG0 /blk_channel_idle_time_x3 2	integer	0x10600	0	02147	0	Indicates the number of cycles on HIF interface with no access to protected regions which will cause flush of all the block channels. In order to flush block channel, LPDDR5_MCTL injects write ECC command (when there is no incoming HIF command) if there is any write in the block and then stop tracking the block address.
						 0 indicates no timeout (feature is disabled, not supported with this version) 1 indicates 32 cycles 2 indicates 2*32 cycles, and so on. Unit: Multiples of 32 DFI clock cycles.
/Programming/DDRC/ECCCFG0 /ecc_region_map_granu	integer	0×10600	0	03	0	Granularity of Selectable Protected Region. Define one region size for ECCCFG0.ecc_region_m ap • 0 - 1/8 of memory spaces • 1 - 1/16 of memory spaces • 2 - 1/32 of memory spaces • 3 - 1/64 of memory spaces
/Programming/DDRC/ECCCFG1 /active_blk_channel	integer	0x10604	0	016	0	Number of active block channels. Total number of ECC block channels are defined by MEMC_NO_OF_BLK_CHANN EL hardware parameter. This register can limit the number of available channels. For example, if set to 0, only one channel is active and therefore block interleaving is disabled.

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/ECCCFG1 /blk_channel_active_term	integer	0x10604	1	01	1	Block Channel active terminate enable.If enabled, block channel is terminated when full block write or full block read is performed (all address within block are written or read) 1 - Disable (only for debug purpose) 1 - Enable (default) This is debug register, and this must be set to 1 for normal operation.
/Programming/DDRC/ECCCFG1 /ecc_region_waste_lock	integer	0x10604	0	01	1	Locks the remaining waste parts of the ECC region (hole) that are not locked by ecc_region_parity_lock. 1- Locked; if this region is accessed, error response is generated. 0- Unlocked; this region can be accessed normally, similar to non-ECC protected region.
/Programming/DDRC/ECCCFG1 /ecc_region_parity_lock	integer	0x10604	0	01	1	Locks the parity section of the ECC region (hole) which is the highest system address part of the memory that stores ECC parity for protected region. 1 - Locked, if this region is accessed, error response is generated. 0 - Unlocked, this region can be accessed normally, similar to non-ECC protected region.
Programming/DDRC/LNKECCCT L0/rd_link_ecc_enable	boolean	0x10980	0	01	0	Enables rd link ECC, this needs to be enabled along with Enable_link_ecc.
/Programming/DDRC/LNKECCC TL0/wr_link_ecc_enable	boolean	0x10980	0	01	0	Enables wr link ECC, this needs to be enabled along with Enable_link_ecc.
/Programming/DDRC/RFSHMOD 0/per_bank_refresh	boolean	0x10200	0	01	1	Enables per bank refresh when selected = 1.

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/RFSHMOD 0/refresh_burst	integer	0x10200	0	07	0	The programmed value +1 is the number of refresh timeouts that is allowed to accumulate before traffic is blocked and the refreshes are forced to execute.
/Programming/DDRC/RFSHCTL 0/rank_dis_refresh	integer	0x10208	0	01	0	In case of 1 rank, value can be 0 or 1.
						In case of two ranks, value can be 00, 01,10 or 11.
/Programming/DDRC/RFSHCTL 0/dis_auto_refresh	boolean	0x10208	1	01	0	Disable auto refreshes.
/Programming/ARB/PCCFG/pa gematch_limit	integer	0x20000	0	1	0	If set to 1, limits the number of consecutive same page DDRC transactions that can be granted by the Port Arbiter to four when Page Match feature is enabled. If set to 0, there is no limit imposed on number of consecutive same page DDRC transactions.
/Programming/ARB/PCCFG/go 2critical_en	integer	0x20000	0	1	0	If set to 1 (enabled), sets co_gs_go2critical_wr and co_gs_go2critical_lp r/co_gs_go2critical_ hpr signals going to DDRC based on urgent input (awurgent, arurgent) coming from AXI master. If set to 0 (disabled), co_gs_go2critical_wr and co_gs_go2critical_lp r/co_gs_go2critical_lp r/co_gs_go2critical_ hpr signals at DDRC are driven to 0.
/Programming/DDRC/OPCTRL0 /dis_max_rank_rd_opt	boolean	0x10b80	0		0	Disable optimized max_rank_rd and max_logical_rank_rd feature. This register is debug purpose only.

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/DDRC/OPCTRL0 /dis_max_rank_wr_opt	boolean	0x10b80	0		0	Disable optimized max_rank_wr and max_logical_rank_wr feature. This register is debug purpose only.
/Programming/DDRC/MSTR4/wck_on	boolean	0x10010	0	01	0	 WCK always ON mode. 0: WCK Always ON mode disabled. 1: WCK Always ON mode enabled.

The table below lists the address programming parameters.

Table 3-4 Address Programming Parameters

Property Name	Property Type	Offset	Bit Field	Default Value	Valid Values	Read Only	Description
/Programming/ADDR /ADDRMAP0/addrmap _dch_bit0	integer	0x30000	0:5	0	063	0	Selects the HIF address bit used as data channel address bit 0.
/Programming/ADDR /ADDRMAP1/addrmap _cs_bit0	integer	0x30004	0:5	0	063	0	Selects the HIF address bit used as rank address bit 0/1/2/3.
/Programming/ADDR /ADDRMAP1/addrmap _cs_bit1			8:13				
/Programming/ADDR /ADDRMAP1/addrmap _cs_bit2			16:21				
/Programming/ADDR /ADDRMAP1/addrmap _cs_bit3			24:29				
/Programming/ADDR /ADDRMAP2/addrmap _cid_b0	integer	0x30008	0:5	0	063	0	Selects the HIF address bit used as chip id bit 0/1.
/Programming/ADDR /ADDRMAP2/addrmap _cid_b1			8:13				

Property Name	Property Type	Offset	Bit Field	Default Value	Valid Values	Read Only	Description
/Programming/ADDR /ADDRMAP3/addrmap _bank_b0	integer	0x3000c	0:5	0	063	0	Selects the HIF address bits used as bank address bit 0/1/2.
/Programming/ADDR /ADDRMAP3/addrmap _bank_b1			8:13				
/Programming/ADDR /ADDRMAP3/addrmap _bank_b2			16:21				
/Programming/ADDR /ADDRMAP4/addrmap _bg_b0	integer	er 0x30010	0:5	0	063	0	Selects the HIF address bits used as bank group address bit 0/1/2.
/Programming/ADDR /ADDRMAP4/addrmap _bg_b1	-		8:13				
/Programming/ADDR /ADDRMAP4/addrmap _bg_b2	_		16:21	-			
/Programming/ADDR /ADDRMAP5/addrmap _col_b7	integer	0x30014	0:4	0	031	0	Selects the HIF address bit used as column address bit 7 to bit 10 respectively.
/Programming/ADDR /ADDRMAP5/addrmap _col_b8			8:12				
/Programming/ADDR /ADDRMAP5/addrmap _col_b9			16:20				
/Programming/ADDR /ADDRMAP5/addrmap _col_b10			24:28				

Property Name	Property Type	Offset	Bit Field	Default Value	Valid Values	Read Only	Description
/Programming/ADDR /ADDRMAP6/addrmap _col_b3	integer	integer 0x30018 0:3 0 015 0	used as column ad 3. MEMC_BURST_LEN , it is required to pr this to 0, hence reg	Selects the HIF address bit used as column address bit 3. MEMC_BURST_LENGTH=16, it is required to program this to 0, hence register does not exist in this case.			
/Programming/ADDR /ADDRMAP6/addrmap _col_b4			8:11				Selects the HIF address bit used as column address bit 4/5/6.
/Programming/ADDR /ADDRMAP6/addrmap _col_b5			16:19				
/Programming/ADDR /ADDRMAP6/addrmap _col_b6			24:27	_			
/Programming/ADDR /ADDRMAP7/addrmap _row_b14	integer	0x3001C	0:4	0	031	0	Selects the HIF address bit used as row address bit 14 to bit17 respectively.
							If unused, set to 31 and then row address bit is set to 0.
/Programming/ADDR /ADDRMAP7/addrmap _row_b15	integer	0x3001C	8:12	0	031	0	Selects the HIF address bit used as row address bit 14 to bit17 respectively.
/Programming/ADDR /ADDRMAP7/addrmap _row_b16			16:20	-			If unused, set to 31 and then row address bit is set to 0.
/Programming/ADDR /ADDRMAP7/addrmap _row_b17			24:28				

Property Name	Property Type	Offset	Bit Field	Default Value	Valid Values	Read Only	Description
/Programming/ADDR /ADDRMAP8/addrmap _row_b10	integer	0x30020	0:4	0	015	0	Selects the HIF address bits used as row address bit 10.
/Programming/ADDR /ADDRMAP8/addrmap _row_b11		8	8:12				Selects the HIF address bit used as row address bit 11. If unused, set to 15 and then row address bit is set to 0.
/Programming/ADDR /ADDRMAP8/addrmap _row_b12			16:20 031	031	31	Selects the HIF address bit used as row address bit 12 to bit13 respectively.	
/Programming/ADDR /ADDRMAP8/addrmap _row_b13		24:28	24:28	-			If unused, set to 31 and then row address bit is set to 0.
/Programming/ADDR /ADDRMAP9/addrmap _row_b6	integer 0x	0x30024	0:4	0	015 0	0	Selects the HIF address bits used as row address bit 6 to bit 9 respectively.
/Programming/ADDR /ADDRMAP9/addrmap _row_b7			8:12				
/Programming/ADDR /ADDRMAP9/addrmap _row_b8			16:20				
/Programming/ADDR /ADDRMAP9/addrmap _row_b9			24:28				
/Programming/ADDR /ADDRMAP10/addrma p_row_b2	integer	0x30028	0:4	0	015	0	Selects the HIF address bits used as row address bit 2 to bit 5 respectively.
/Programming/ADDR /ADDRMAP10/addrma p_row_b3			8:12				
/Programming/ADDR /ADDRMAP10/addrma p_row_b4			16:20				
/Programming/ADDR /ADDRMAP10/addrma p_row_b5			24:28				

Property Name	Property Type	Offset	Bit Field	Default Value	Valid Values	Read Only	Description
/Programming/ADDR /ADDRMAP11/addrma p_row_b0	integer	0x3002c	0:4	0	015	0	Selects the HIF address bits used as row address bit 0 to 1.
/Programming/ADDR /ADDRMAP11/addrma p_row_b1			8:12				
/Programming/ADDR /ADDRMAP12/bank_h ash_en	boolean	0x30030	4	false	true false	0	Enables the bank hashing feature.

3.2.4 Configuring the Block Port Properties in Platform Creator

The Block Port parameters represent the various configuration parameters for the individual ports of LPDDR5 MCTL model.

The AXI port parameters are of following types:

- Hardware Parameters
- Programming Parameters

3.2.4.1 AXI Port Hardware Parameters

This set of parameters represent the hardware configuration of parameters on the LPDDR5_MCTL AXI port.

Some of the parameters in these sets are read only and these are for information purposes only. For example, preserve read write transaction order.

Following table provides a complete list of parameters, their valid values and description.

Table 3-5 AXI Port hardware Parameters

Property Name	Property Type	Default Value	Valid Values	Read Only	Description
port_number	integer	0	015	No	Unique number for each port. Is set automatically by the design creation flow.
protocol	string	AXI3	AXI3, AXI4	No	Defines the interface type for the LPDDR5_MCTL application port. This is usually consistent for all ports.
static_virtual_channel _mapping	boolean	false		No	Enables static virtual channels mapping for this port.
dual_read_address_ queues	boolean	false	true, false	No	Enables the dual read address queue for the LPDDR5_MCTL application port n. Each dual address queue XPI consumes two consecutive PA ports.
number_of_virtual_ channels	integer	1	164	No	Defines the number of virtual channels for this port.

Property Name	Property Type	Default Value	Valid Values	Read Only	Description
AXI_read_address_queue _depth	integer	4	232	No	Determines how many AXI addresses can be stored in the read address buffer of port.
AXI_write_address_queu e_depth	integer	4	2128	No	Determines how many AXI addresses can be stored in the write address buffer of port.
AXI_read_data_queue_ depth	integer	10	2128	No	Determines how many AXI burst beats can be stored in the read data buffer of port. This allows the LPDDR5_MCTL to store enough read data in the read data buffer such that the LPDDR5_MCTL does not stall a continuous stream of read commands to wait for data.
AXI_write_data_queue_ depth	integer	10	264	No	Determines how many AXI burst beats can be stored in the write data buffer of port. This allows the LPDDR5_MCTL to store enough write data in the write data buffer such that the LPDDR5_MCTL does not stall a continuous stream of write commands to wait for data.
AXI_write_response_ queue_depth	integer	10		No	Determines how many AXI write responses can be stored in the write response buffer of port.
read_data_interleaving	boolean	true		No	Enables the interleaving of the read data of transactions with different ARID fields.
data_width	integer	64	32, 64, 128, 256, 512	No	Data width of each port.
number_of_ synchronizers	integer	2	2 3 4	No	Number of synchronization stages for asynchronous FIFO of port.
is_sync_clock	boolean	false		No	Defines port n clock to be synchronous or asynchronous with respect to the LPDDR5_MCTL core_ddrc_core_clk.
enable_external_ram_ for_rrb	boolean	false		No	Enables external RAM for Read Reorder Buffer (RRB) of port.
preserve_read_write_ transaction_order	integer	0	0,1	Yes	

3.2.4.2 AXI Port Programming Parameters

This set of parameters represent the register configurations of the LPDDR5_MCTL AXI ports. These registers are initialized with the value represented in this tab at the time of simulation. The parameters for this category are grouped under /Programming set.

Following table provides a complete list of programming parameters, their valid values and description.

Table 3-6 AXI Port Programming Parameters

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/ARB/PCFGR/rd_port_priority	integer	0x20004	0x1F	00x3FF	No	Determines the initial load value of read aging counters.
/Programming/ARB/PCFGR/rd_port_bypass_en	integer	0x20004	0	0	Yes	If set to 1, read transactions with ID not covered by any of the virtual channel ID mapping registers are not reordered.
/Programming/ARB/PCFGR/rd_port_aging_en	integer	0x20004	1	0 1	No	If set to 1, enables aging function for the read channel of the port.
/Programming/ARB/PCFGR/rd_port_urgent_en	integer	0x20004	0	0	Yes	If set to 1, enables the AXI urgent sideband signal (arurgent).
/Programming/ARB/PCFGR/rd_port_pagematch_en	integer	0x20004	1	0 1	No	If set to 1, enables the Page Match feature.
/Programming/ARB/PCFGR/rd_port_ordered_en	integer	0x20004	0	0	Yes	If set to 1, preserves the ordering between read transaction and write transaction issued to the same address, on a given port.

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/ARB/PCFGR/rrb_lock_threshold	integer	0x20004	0x4	015	No	Specifies the RRB lock threshold in configurations that disable read data interleaving. Threshold is specified in terms of the HIF bursts that belong to the same AXI transaction. RRB locks onto VC only when this specified number of HIF bursts are returned by DDRC. RRB lock occurs earlier in cases where the AXI transaction itself is shorter and the total number of corresponding HIF bursts are below the programmed threshold and all of them are returned by DDRC. When N is programmed in this field, the threshold will be set to N+1 bursts. Max thresholding is up to 16 bursts. Value After Reset: 0x4 Exists: UMCTL2_READ_DATA_IN TERLEAVE_EN == 0.
/Programming/ARB/PCFGW/wr_port_priority	integer	0x20008	0x1F	0x3FF	No	Determines the initial load value of write aging counters.
/Programming/ARB/PCFGW/wr_port_aging_en	integer	0x20008	1	0 1	No	If set to 1, enables aging function for the write channel of the port.
/Programming/ARB/PCFGW/wr_port_urgent_en	integer	0x20008	0	0 1	No	If set to 1, enables the AXI urgent sideband signal (awurgent).
/Programming/ARB/PCFGW/wr_port_pagematch_en	integer	0x20008	1	0 1	No	If enabled, once a requesting port is granted, the port is continued to be granted if the following immediate commands are given to the same memory page (same bank and same row).

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/ARB/PCFGQO S0/rqos_map_level1	integer	0x20094	0	013	No	Separation level1 indicates the end of region0 mapping; start of region0 is 0.
/Programming/ARB/PCFGQO S0/rqos_map_level2	integer	0x20094	14	015	No	Separation level2 indicates the end of region1 mapping; start of region1 is (level1 + 1).
/Programming/ARB/PCFGQO S0/rqos_map_region0	integer	0x20094	0	02	No	This bitfield indicates the traffic class of region 0. 0: LPR, 1: VPR, 2: HPR.
/Programming/ARB/PCFGQO S0/rqos_map_region1	integer	0x20094	0	02	No	This bitfield indicates the traffic class of region1. 0: LPR, 1: VPR, 2: HPR.
/Programming/ARB/PCFGQO S0/rqos_map_region2	integer	0x20094	2	02	No	This bitfield indicates the traffic class of region 2. 0: LPR, 1: VPR, 2: HPR
/Programming/ARB/PCFGQO S1/rqos_map_timeoutb	integer	0x20098	0	0x00x7 FF	No	Specifies the timeout value for transactions mapped to the blue address queue.
/Programming/ARB/PCFGQO S1/rqos_map_timeoutr	integer	0x20098	0	0x00x7 FF	No	Specifies the timeout value for transactions mapped to the red address queue.
/Programming/ARB/PCFGWQ OS0/wqos_map_level1	integer	0x2009c	0	013	No	Specifies the end of region0 mapping when the start of the region is taken as 0.
/Programming/ARB/PCFGWQ OS0/wqos_map_level2	integer	0x2009c	14	014	No	Separation level2 indicating the end of region1 mapping; start of region1 is (level1 + 1). Possible values for level2 are (level1 + 1) to 14 which corresponds to awqos.
/Programming/ARB/PCFGWQ OS0/wqos_map_region0	integer	0x2009c	0	0 1	No	This bitfield indicates the traffic class of region0. Valid values are: 0: NPW 1: VPW

Property Name	Property Type	Offset	Default Value	Valid Values	Read Only	Description
/Programming/ARB/PCFGWQ OS0/wqos_map_region1	integer	0x2009c	0	0 1	No	This bitfield indicates the traffic class of region1. Valid values are: 0: NPW 1: VPW
/Programming/ARB/PCFGWQ OS0/ wqos_map_region2	integer	0x2009c	0	0 1	No	This bitfield indicates the traffic class of region1. Valid values are: 0: NPW 1: VPW
/Programming/ARB/PCFGWQ OS0/wqos_map_timeout1	integer	0x2009c	0	0x00x7 FF	No	Specifiers the timeout value for the write transactions in region 0 and 1.
/Programming/ARB/PCFGWQ OS0/ wqos_map_timeout2	integer	0x2009c	0	0x00x7 FF	No	Specifiers the timeout value for the write transactions in region 2.

3.2.4.3 Configuring Phy Static Latencies

This section explains how to program the phy static latencies in the TLM model using the RTL simulation.

 $1. \; {\tt phy_static_read_latency}$

Number of clock cycles between Read command being issued by the Controller and read data arriving at the Controller, phy_static_read_latency corresponds to tphy_rdlat.

Figure 3-3 Waveform Sample

• tphy_rdlat: Specifies the maximum number of cycles allowed from the assertion of the dfi_rddata_en signal to the assertion of the dfi_rddata_valid signal.

For example, as shown in the waveform illustration above, the tphy_rdlat = 18, so the phy_static_read_latency comes to 18.

2. phy_static_write_latency

Number of clock cycles from the write command to write data enable (dfi_wrdata_en). This corresponds to the DFI timing parameter, tphy_wrlat. In the RTL model, it corresponds to DFITMGO.dfi tphy wrlat.

For LPDDR4, tphy_wrlat = tphy_wrlat +3.

- If (Enable Dual Channel support == 1), then:
 - For DDRC Channel 0: For programming parameters phy_static_write_latency
 and phy_static_read_latency, RTL signals
 reg_ddrc_dfi_tphy_wrlat_dch0 and reg_ddrc_dfi_t_rddata_en_dch0
 should be used in above calculations.
 - For DDRC Channel 1: For programming parameters phy_static_write_latency_chnl1 and phy_static_read_latency_chnl1, RTL signals reg_ddrc_dfi_tphy_wrlat and reg_ddrc_dfi_t_rddata_en should be used in above calculations.

3.3 Configuring the Model

To configure the LPDDR5_MCTL model instance in the Platform Creator, you may use any of the methods listed below.

- Configuring the Parameters in Platform Creator
- Importing CoreConsultant Configurations
- Importing Configuration from CoreConsultant Trace File

3.3.1 Configuring the Parameters in Platform Creator

Instantiate the model in Platform Creator and configure the parameters of the block that represents the model hardware configurations. All relevant registers that impact the timing of the model are represented on the block instance or on the block instance ports as explained. Valid ranges of these parameter and register values can be used in IMPO sweeping mechanism.

In case, a register value is configured on the block as parameter and the same value is over-written using programming on the APB port, then the value written by the programming sequence applies and the value specified in Platform Creator parameter is ignored.

3.3.2 Importing CoreConsultant Configurations

You can apply a configuration of the model in CoreConsultant on a Platform Creator block instance.

To import the CoreConsultant configurations:

1 In the Design view of the Platform Creator, right-click on the block and from the context menu, under *Plugins* > *Import Configuration* > *CoreConsultant Batch File*.

Figure 3-4 Importing CoreConsultant Configurations

2 The tool prompts about the loss of current settings of the model as shown below.

Figure 3-5 Warning Message for Overwriting Instance Configuration

3 Press *OK*. In the dialog box that appears, browse to the directory where the CoreConsultant batch script is placed and select the script as shown below.

Figure 3-6 Selecting Core Consultant Batch Script

4 Click *Open* to apply the design configuration of the CoreConsultant batch script to the relevant parameters on the block.

All CoreConsultant parameters are not supported in the TLM model. For parameter specifications that are not supported, warning message appears in the Platform Creator Console window. The default values in the CoreConsultant batch file are ignored by the utility.

3.3.3 Importing Configuration from CoreConsultant Trace File

CoreConsultant trace files are used in CoreConsultant environment to fire stimuli to an RTL configuration. This file also contains values for registers and information about traffic at individual port of LPDDR5_MCTL instance. You can use the configuration as well as traffic specification in a CoreConsultant trace file to create an equivalent system in Platform Creator.

To import the configurations from CoreConsultant trace file:

1 In the Design view of the Platform Creator, right-click on the block and from the context menu, select *Plugins* > *Import Configuration* > *Trace File Config and Traffic*.

Once you invoke this plugin as shown in figure 3-4, the script prompts about the possible loss of existing configuration as shown below.

Figure 3-7 Warning Message for Overwriting Instance Configuration

2 Press *OK*. In the dialog box that appears, select the trace file to import configuration and convert trace traffic to GFRBM STL files, as shown below.

Figure 3-8 Selecting Trace File to Convert to STL

3 Click *Open* to apply the register settings from the trace files to the instances and to convert the trace file traffic to GFRBM STL files.

One STL file is created for each port and you are expected to connect one GFRBM instance to one port of LPDDR5 MCTL block instance for using this flow.

All registers are not modeled in the TLM model and for the register settings that are not applied, explicit warning message is issued on Platform Creator console. For example:

```
Warning, cannot set parameter /HARDWARE/LPDDR5_MCTL /Programming/DDRC/DFIUPD0/dis_auto_ctrlupd to 1, check line 5
```

You are expected to review all warning messages from this utility.

The STL file for each port are named according to the name of the trace file. The port number for each port is added at the end to signify the port for which the STL file is generated.

3.4 Specifying Memory Options

You can specify the memory options on the block instance to represent the actual memory specifications by configuring memory options at APBPort. These memory options are dependent on the selection of the /DDRC/memory_type parameter on the instance. Typically, a user is interested in specification of memory speed bins, device type and additive latencies wherever possible. Based on the selection of memory speed bins the DRAMTMG registers are initialized to valid values as per JEDEC specifications. You are free to overwrite any of these initialized values by programming the registers using APBPort on the block instance.

Figure 3-9 APBPort Creation and Exploration Domain

Chapter 4 Programming Model

This chapter describes the programming model for DWC_LPDDR5_MCTL which are not specified on LPDDR5_MCTL block but can be programmed through Register programming.

4.1 Programming Model for LPDDR5_MCTL

4.1.1 Register Memory Map

All registers are addressable on 32-bit boundaries, each unused bit or address location is reserved for future use and read back 0. The register access modes are as follows:

- R read only
- W write only
- R/W Read/write

The DRAM timings provided are in units of DRAM clock cycle.

If you explicitly program the DRAM registers through the register port, than timings are applied as it is without any modification.

4.1.2 Register and Field Description

4.1.2.1 DRAMTMG0

• Size: 32-bits

• Offset: 0x0

Memory Access: R/W

Value after Reset: 0xf101b0f

Table 4-1 DRAMTMG0 Register Fields

Bits	Name	Memory Access	Description
31:24	wr2pre	R/W	Minimum time between write and precharge to same bank. Specifications: WL + BL/2 + tWR = approximately 8 cycles + 15 ns = 14 clocks @400MHz and less for lower frequencies; where: WL= write latency BL= burst length. This must match the value programmed in the BL bit of the mode register to the SDRAM. BST (burst terminate) is not supported at present. tWR = Write recovery time. This comes directly from the SDRAM specification. Add one extra cycle for LPDDR4 for this parameter. NOTE: Depending on the PHY, if using LRDIMM, it may be necessary to adjust the value of this parameter to compensate for the extra cycle of latency through the LRDIMM. Unit: DRAM clock cycles. Value After Reset: 0xf Exists: Always Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4
23:16	t_faw	R/W	tFAW valid only when eight or more banks (or banks x bank groups) are present. In 8-bank design, at most four banks must be activated in a rolling window of tFAW cycles. In a 4-bank design, set this register to 0x1 independent of the 1:1/1:2 frequency mode. • Unit: DRAM clock cycles. • Value After Reset: 0x10 • Exists: Always • Programming Mode: Quasi-dynamic Group 2, Group 4
15:8	t_ras_max	R/W	tras (max): Maximum time between activate and precharge to same bank. This is the maximum time that a page can be kept open. Minimum value of this register is 1. Zero is invalid. t_ras_max should be set to RoundDown (tras (max)/tck/1024). Unit: Multiples of 1024 DRAM clock cycles. Value After Reset: 0x1b Exists: Always Programming Mode: Quasi-dynamic Group 2, Group 4

Bits	Name	Memory Access	Description
7:0	t_ras_min	R/W	tras (min): Minimum time between activate and precharge to the same bank.
			When the controller is operating in 1:2 frequency mode, 1T mode, program this to tRAS (min) /2. No rounding up.
			When the controller is operating in 2T mode or LPDDR4 mode, program this to (tRAS (min) /2) and round it up to the next integer value.
			Unit: DRAM clock cycles.
			Value After Reset: 0xf
			Exists: Always
			Programming Mode: Quasi-dynamic Group 2, Group 4

4.1.2.2 **DRAMTMG1**

Size: 32-bitsOffset: 0x4

• Memory Access: R/W

• Value after Reset: 0x80414

Table 4-2 DRAMTMG1 Register Fields

Bits	Name	Memory Access	Description
31:24	t_rcd_write	R/W	trcd: Minimum time from activate to same write command to the same bank in LPDDR5X mode.
			Unit: DRAM clock cycles.
			Value After Reset: 0x5
			Exists: MEMC_LPDDR5X==1
			Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4.
31:22			Reserved Field: Yes
15:8	rd2pre	R/W	trtp: Minimum time from read to precharge of same bank.
			DDR4: Max of following two equations: tAL + max (tRTP, 4) or, RL + BL/2 - tRP (*).
			LPDDR4: BL/2 + max(tRTP,8) - 8
			(*) When both DDR4 SDRAM and ST-MRAM are used simultaneously, use SDRAM's tRP value for calculation.
			When the controller is operating in 2T mode or LPDDR4 mode, divide the above value by two and round it up to the next integer value.
			Unit: DRAM clock cycles.
			Value After Reset: 0x4
			Exists: Always
			Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4

Bits	Name	Memory Access	Description	
7:0	t_rc	R/W	trc: Minimum time between activates to same bank.	
			 Unit: DRAM clock cycles. Value After Reset: 0x14 Exists: Always Programming Mode: Quasi-dynamic Group 2, Group 4 	

4.1.2.3 **DRAMTMG2**

Size: 32-bitsOffset: 0x8

• Memory Access: R/W

• Value after Reset: 0x0305060d

Table 4-3 DRAMTMG2 Register Fields

Bits	Name	Memory Access	Description
31			Reserved Field: Yes
30:24	write_latency	R/W	Set to WL
			Time from write command to write data on ${\tt SDRAM}$ interface. This must be set to ${\tt WL}.$
			NOTE: Depending on the PHY, if using RDIMM/LRDIMM, it may be necessary to adjust the value of WL to compensate for the extra cycle of latency through the RDIMM/LRDIMM.
			For all protocols, in addition to programming this register field, it is necessary to program <code>DFITMGO</code> and <code>DFITMG1</code> to control the read and write latencies.
			Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4
23:22			Reserved Field: Yes
22:16	read_latency	R/W	Set to RL
			Time from read command to read data on SDRAM interface. This must be set to ${\tt RL}. \\$
			NOTE: Depending on the PHY, if using RDIMM/LRDIMM, it may be necessary to adjust the value of RL to compensate for the extra cycle of latency through the RDIMM/LRDIMM.
			For all protocols, in addition to programming this register field, it is necessary to program <code>DFITMGO</code> and <code>DFITMG1</code> to control the read and write latencies
			Unit: DRAM clock cycles.
			Value After Reset: 0x5 Evicto: MEMC, DDD4, OB, LBDDB41
			 Exists: MEMC_DDR4_OR_LPDDR4==1 Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4

	Memory Access	s Description		
15:14		Reserved Field: Yes		
13:8		 DDR4: RL + BL/2 + 1 + WR_PREAMBLE - WL LPDDR4 (DQ ODT is Disabled): RL + BL/2 + RU(tDQSCKmax/tCK) + WR_PREAMBLE + RD_POSTAMBLE - WL LPDDR4 (DQ ODT is Enabled): RL + BL/2 + RU(tDQSCKmax/tCK) + RD_POSTAMBLE - ODTLon - RU(tODTon(min)/tCK) + 1 LPDDR5: RL + BL/n_max + RU(tWCKDQO(max)/tCK) - WL Minimum time from read command to write command. Include time for bus turnaround and all per-bank, per-rank, and global constraints. For details on what to include here, see the relevant PHY databook, where: WL = write latency BL = burst length. This must match the value programmed in the BL bit of the mode register to the SDRAM. RL = read latency = CAS latency WR_PREAMBLE = 1 (1tCK write preamble), 2 (2tCK write preamble). This is unique to DDR4 and LPDDR4. RD_POSTAMBLE = 0.5 (0.5tCK read postamble), 1.5 (1.5tCK read postamble). This is unique to LPDDR4. After PHY has completed training the value programmed may need to be increased. Refer to relevant PHY documentation. For LPDDR4, if derating is enabled (DERATEEN.derate_enable=1), derated tDQSCKmax should be used. NOTE: Depending on the PHY, if using LRDIMM, it may be necessary to adjust the value of this parameter to compensate for the extra cycle of latency through the LRDIMM. Unit: DRAM clock cycles. Value After Reset: 0x6 Exists: Always Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4. 		
7:6		Reserved Field: Yes		

Bits	Name	Memory Access	Description
7:0	wr2rd	R/W	• DDR4: CWL + PL + BL/2 + tWTR L
			• LPDDR4: WL + BL/2 + tWTR + 1
			Others: CWL + BL/2 + tWTR
			In DDR4, minimum time from write command to read command for same bank group. In others, minimum time from write command to read command. Includes time for bus turnaround, recovery times, and all per-bank, per-rank, and global constraints.
			For details on what should be included here, see the relevant ${\tt PHY}$ databook, where:
			CWL = CAS write latency
			WL = Write latency
			PL = Parity latency
			• BL = Burst length. This must match the value programmed in the BL bit of the mode register to the SDRAM
			• twtr_L = internal write to read command delay for same bank group. This comes directly from the SDRAM specification.
			twtr = internal write to read command delay. This comes directly from the SDRAM specification.
			After PHY has completed training the value programmed may need to be increased. Refer to relevant PHY documentation.
			Add one extra cycle for LPDDR4 operation.
			WTR_L should be increased by one if DDR4 2tCK write preamble is used.
			Unit: DRAM clock cycles.
			Value After Reset: 0xd
			• Exists: Always
			Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4.

4.1.2.4 DRAMTMG4

Size: 32-bits Offset: 0x10

Memory Access: R/W

Value after Reset: 0x5040405

DRAMTMG4 Register Fields Table 4-4

Bits	Name	Memory Access	Description
31:30			Reserved Field: Yes

Bits	Name	Memory Access	Description
30:24	t_rcd	R/W	tRCD - tAL: Minimum time from activate to read or write command to same bank.
			Minimum value allowed for this register is 1.
			 Unit: DRAM clock cycles. Value After Reset: 0x5 Exists: Always Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4.
23:22			Reserved Field: Yes
21:16	t_ccd	R/W	DDR4: $\verb+tccd_L$: This is the minimum time between two reads or two writes for same bank group.
			Others: tccd: This is the minimum time between two reads or two writes.
			 Unit: DRAM clock cycles. Value After Reset: 0x4 Exists: Always
			Programming Mode: Quasi-dynamic Group 2, Group 4.
15:14			Reserved Field: Yes
13:8	t_rrd	R/W	DDR4: tRRD_L: Minimum time between activates from bank a to bank b for same bank group.
			Others: tRRD: Minimum time between activates from bank a to bank b.
			Unit: DRAM clock cycles.
			Value After Reset: 0x4 Triate: Always
			Exists: AlwaysProgramming Mode: Quasi-dynamic Group 2, Group 4.
7:6			Reserved Field: Yes
6:0	t_rp	R/W	tRP: Minimum time from single-bank precharge to activate of same bank.
			When the controller is operating in 1:1 frequency ratio mode, t_rp should be set to RoundUp (tRP/tCK).
			Unit: DRAM clock cycles.
			Value After Reset: 0x5
			Exists: AlwaysProgramming Mode: Quasi-dynamic Group 2, Group 4.

4.1.2.5 **DRAMTMG9**

Size: 32-bitsOffset: 0x24

• Memory Access: R/W

• Value after Reset: 0x4040d

Table 4-5 DRAMTMG9 Register Fields

Bits	Name	Memory Access	Description
31:21			Reserved Field: Yes
20:16	t_ccd_s	R/W	$tCCD_S$: This is the minimum time between two reads or two writes for different bank group. For bank switching (from bank a to bank b), the minimum time is this value $+1$.
			Present only in designs configured to support DDR4/5.
			Unit: DRAM clock cycles.
			Value After Reset: 0x4
			• Exists: MEMC_DDR4_OR_DDR5==1
			Programming Mode: Quasi-dynamic Group 2, Group 4.
15:14			Reserved Field: Yes
13:8	t_rrd_s	R/W	tRRD_S: Minimum time between activates from bank a to bank b for different bank group.
			Present only in designs configured to support DDR4/5.
			Unit: DRAM clock cycles.
			Value After Reset: 0x4
			• Exists: MEMC_DDR4_OR_DDR5==1
			Programming Mode: Quasi-dynamic Group 2, Group 4.
7:0	wr2rd_s	R/W	CWL + PL + BL/2 + tWTR_S
			Minimum time from write command to read command for different bank group. Includes time for bus turnaround, recovery times, and all perbank, per-rank, and global constraints.
			Present only in designs configured to support DDR4/5, where:
			CWL = CAS write latency
			PL = Parity latency
			• BL = burst length. This must match the value programmed in the BL bit of the mode register to the SDRAM.
			• tWTR_S = internal write to read command delay for different bank group. This comes directly from the SDRAM specification.
			WTR_S should be increased by one if DDR4 2tCK write preamble is used.
			Unit: DRAM clock cycles.
			• Value After Reset: 0xd
			• Exists: MEMC_DDR4_OR_DDR5==1
			Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4.

4.1.2.6 **DRAMTMG13**

Size: 32-bitsOffset: 0x34

Memory Access: R/W

• Value after Reset: 0x10

Table 4-6 DRAMTMG13 Register Fields

Bits	Name	Memory Access	Description	
31			Reserved Field: Yes	
23			Reserved Field: Yes	
22:16	t_ccd_mw	R/W	LPDDR4: tCCDMW: This is the minimum time from write or masked write to masked write command for same bank. • Unit: DRAM clock cycles. • Value After Reset: 0x20 • Exists: MEMC_LPDDR4_OR_LPDDR5==1 • Programming Mode: Quasi-dynamic Group 2, Group 4.	
15:4			Reserved Field: Yes	
3:0	t_ppd	R/W	LPDDR4: tPPD: This is the minimum time from precharge to precharge command. • Unit: DRAM clock cycles. • Value After Reset: 0x4 • Exists: MEMC_LPDDR4_OR_LPDDR5_OR_DDR5==1 • Programming Mode: Quasi-dynamic Group 2, Group 4.	

4.1.2.7 DRAMTMG23

Size: 32-bitsOffset: 0x5C

Memory Access: R/WValue after Reset: 0x10

Table 4-7 DRAMTMG23 Register Fields

Bits	Name	Memory Access	Description
21:16	wckenl_rd	R/W	WCKENL (RD)
			Exists: MEMC_LPDDR5==1
5:0	wckenl_wr	R/W	WCKENL/tCK (WR)
			Exists: MEMC_LPDDR5==1

4.1.2.8 **RANKTMG0**

Size: 32-bitsOffset: 0xd04

Memory Access: R/WValue after Reset: 0x606

Table 4-8 RANKTMG0 Register Fields

Bits	Name	Memory Access	Description
15:8	diff_rank_wr_gap	R/W	Indicates gap in data responses when performing consecutive writes to different ranks.
			Unit - DRAM clock cycles
			Exists: multirank configurations
7:0	diff_rank_rd_gap	R/W	Indicates gap in data responses when performing consecutive reads to different ranks.
			Unit - DRAM clock cycles
			Exists: multirank configurations

4.1.2.9 **RANKTMG1**

Size: 32-bitsOffset: 0xd08

Memory Access: R/WValue after Reset: 0xff

Table 4-9 RANKTMG1 Register Fields

Bits	Name	Memory Access	Description
31:16			Reserved Field: Yes
15:8	rd2wr_dr	R/W	Minimum time from read command to write command for different rank. Includes time for bus turnaround, recovery time, and all per bank, per rank, and global constraints. The value must be larger than or equal to the value of DRAMTMG2. For LPDDR5, set to "JEDEC formula + tphy_wckcsgap + board delay". For the value of tphy_wckcsgap, see PHY databook. Unit: DRAM clock cycles. Value After Reset: 0xf Exists: multirank configurations Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4.

Bits	Name	Memory Access	Description
7:0	wr2rd_dr	R/W	Minimum time from write command to read command for different rank. Includes time for bus turnaround, recovery time, and all per bank, per rank, and global constraints. For LPDDR5, set to "JEDEC formula + tphy_wckcsgap + board delay". For the value of tphy_wckcsgap, see PHY databook. Unit: DRAM clock cycles. Value After Reset: 0xf Exists: multirank configurations Programming Mode: Quasi-dynamic Group 1, Group 2, Group 4.

4.1.2.10 RFSHTMG0

Size: 32-bitsOffset: 0x600

Memory Access: R/WValue after Reset: 0x210

Table 4-10 RFSHTMG0 Register Fields

Bits	Name	Memory Access	Description
31	t_refi_x1_sel	R/W	Specifies whether t_refi_x1_x32 and refresh_to_x1_x32 register values are x1 or x32. • 0 - x32 register values are used, • 1 - x1 register values are used. This applies only when per-bank refresh is enabled (per_bank_refresh=1); if per-bank refresh is not enabled, the x32 register values are used and this register field is ignored. • Value After Reset: 0x0 • Exists: Always • Programming Mode: Dynamic - Refresh Related
30:28			Reserved Field: Yes
27:24	refresh_margin	R/W	Threshold value in number of DRAM clock cycles before the critical refresh or page timer expires. A critical refresh is to be issued before this threshold is reached. It is recommended that its default value is retained, currently it is 0x2. It must always be less than internally used t_refi/32. Unit: Multiples of 32 DRAM clock cycles. Value After Reset: 0x2 Exists: Always Programming Mode: Dynamic - Refresh Related

Bits	Name	Memory Access	Description	
23:22			Reserved Field: Yes	
21:16	refresh_to_x1_x32	R/W	If the refresh timer has expired at least once, that is >tRE period elapses, and there are postponed refreshes, then speculative refresh may be performed. A speculative refre a refresh performed at a time when refresh would be use When there are no transactions pending in the CAM for a period of time determined by this refresh_to_x1_x32 the refresh timer has expired at least once since the last refresh, then a speculative refresh is performed. Specular refreshes continues successively until there are no refreshending or until new reads or writes are issued to the DDRO This is also used for non speculative refresh when LPDDF bank refresh (REFpb) is enabled. • Unit: DRAM clock cycles or multiples of 32 DRAM clock cycles, depending on t_refi_x1_sel. • Value After Reset: 0x10 • Exists: Always • Programming Mode: Dynamic - Refresh Related	
15:12			Reserved Field: Yes	
11:0	t_refi_x1_x32		Average time interval between refreshes per rank. Set this register to RoundDown (tREFI/tCK) if t_refi_x1_sel = 0, divide the above result by 32 and round down. - if using all-bank refreshes (per_bank_refresh = 0), use tREFIab in the above calculations. - if using per-bank refreshes (per_bank_refresh = 1), use tREFIpb in the above calculations. - Unit: DRAM clock cycles or multiples of 32 DRAM clock cycles, depending on t_refi_x1_sel. - Value After Reset: 0x62 - Exists: Always - Programming Mode: Dynamic - Refresh Related	

4.1.2.11 RFSHTMG1

Size: 32-bitsOffset: 0x604

• Memory Access: R/W

• Value after Reset: 0x62008c

Table 4-11 RFSHTMG1 Register Fields

Bits	Name	Memory Access	Description
11:0	t_rfc_min	R/W	trec (min): Minimum time from refresh to refresh or activate.
			t_rfc_min should be set to RoundUp(tRFCmin/tCK).
			In LPDDR4/5 mode:
			• If using all-bank refreshes, the tRFCmin value in the above equations is equal to tRFCab
			• if using per-bank refreshes, the tRFCmin value in the above equations is equal to tRFCpb
			In DDR4 mode, the trefth value in the above equations is different depending on the refresh mode (fixed 1x, 2x, 4x) and the device density. The user should program the appropriate value from the spec based on the $refresh_mode$ and the device density that is used.
			 Unit: DRAM clock cycles. Value After Reset: 0x8c Exists: Always
			Programming Mode: Dynamic - Refresh Related

4.1.2.12 RFSHTMG2

Size: 32-bitsOffset: 0x608

Memory Access: R/WValue after Reset: 0x0

Table 4-12 RFSHTMG2 Register Fields

Bits	Name	Memory Access	Description
23:16	t_pbr2pbr	R/W	LPDDR4: tpbR2pbR
			Per-bank Refresh to Per-bank refresh different bank time.
			Program this to RoundUp(tpbR2pbR/tCK).
			The tpbR2pbR value in the above equations is different depending on the device density. Program the appropriate value from the spec.
			Register is valid only in LPDDR4 per-bank refresh mode (RFSHCTL0.per_bank_refresh_mode == 1).
			Unit: DRAM clock cycles.
			Value After Reset: 0x8c
			• Exists: MEMC_LPDDR4_OR_LPDDR5==1
			Programming Mode: Dynamic - Refresh Related
15:0			Reserved Field: Yes

4.1.2.13 RFSHTMG4

Size: 32-bitsOffset: 0x610

Memory Access: R/WValue after Reset: 0x0

Table 4-13 RFSHTMG4 Register Fields

Bits	Name	Memory Access	Description
31:28			Reserved Field: Yes
27:16	refresh_timer1_start_value _x32	R/W	Refresh timer start for rank 1 (only present in multi-rank configurations). This is useful in staggering the refreshes to multiple ranks to help traffic to proceed. • Unit: Multiples of 32 DFI clock cycles. • Value After Reset: 0x0 • Exists: MEMC_NUM_RANKS>1 • Programming Mode: Dynamic - Refresh Related
15:12			Reserved Field: Yes
11:0	refresh_timer0_start_value _x32	R/W	Refresh timer start for rank 0 (only present in multi-rank configurations). This is useful in staggering the refreshes to multiple ranks to help traffic to proceed. • Unit: Multiples of 32 DFI clock cycles. • Value After Reset: 0x0 • Exists: MEMC_NUM_RANKS>1 • Programming Mode: Dynamic - Refresh Related

4.1.2.14 RFSHTMG5

Size: 32-bitsOffset: 0x614

Memory Access: R/WValue after Reset: 0x0

Table 4-14 RFSHTMG5 Register Fields

Bits	Name	Memory Access	Description
31:28			Reserved Field: Yes

Bits	Name	Memory Access	Description
27:16	refresh_timer3_start_valu e_x32	R/W	Refresh timer start for rank 3 (only present in 4-rank configurations). This is useful in staggering the refreshes to multiple ranks to help traffic to proceed.
			Unit: Multiples of 32 DFI clock cycles.
			Value After Reset: 0x0
			• Exists: MEMC_NUM_RANKS>2
			Programming Mode: Dynamic - Refresh Related
15:12			Reserved Field: Yes
11:0	refresh_timer2_start_valu e_x32	R/W	Refresh timer start for rank 2 (only present in 4-rank configurations). This is useful in staggering the refreshes to multiple ranks to help traffic to proceed.
			 Unit: Multiples of 32 DFI clock cycles. Value After Reset: 0x0
			• Exists: MEMC NUM RANKS>2
			Programming Mode: Dynamic - Refresh Related

Chapter 5 Analysis View

This chapter describes:

- Introduction
- Using Analysis in a Design with LPDDR5_MCTL
- Bus Path Statistics
- Resources Statistics
- Memory Channel Analysis and Memory Data Channel Analysis
- Hot Bit Analysis
- Page Status Analysis
- AutoPrecharge Analysis

5.1 Introduction

The LPDDR5_MCTL library has inbuilt instrumentation for specific analysis views in the Synopsys analysis infrastructure. This instrumentation enables the recording of data during simulation, which is processed and presented in analysis views in VP Explorer. These analysis views help you to get a complete overview and insight on the performance of the LPDDR5_MCTL model in your design. To tune the model for optimal performance, iteratively modify the architecture parameters of the models or various register settings based on the configuration and traffic, and observe the results in the analysis views.

This chapter provides an overview on how to set up the design analysis and the features of the analysis infrastructure that help in the design analysis using the LPDDR5_MCTL library. It also describes some aspects of interpreting the data in the analysis views. A powerful JEDEC level analysis is provided with the LPDDR5_MCTL library to observe utilization of the memory interface, to study the root cause of memory access delays and improve the software efficiency. For more information on Synopsys analysis infrastructure, see "Tracing and Analysis" in the *VP Explorer User Guide*, which is available with the Platform Architect documentation set.

The LPDDR5_MCTL library provides support for reporting results in the following analysis views and charts in VP Explorer.

- Bus Path Statistics chart The analysis view that records and displays statistical data over a time interval. Bus Path Statistic shows transaction count and delay information for all the internal components in the memory controller. This enables you to analyze and improve the design performance. For supported information, see "Path Statistics Chart" in the VP Explorer User Guide, which is available with the Platform Architect documentation set.
- Bus Resource Statistics chart The analysis view that records and displays statistical data over a time interval. This view shows the utilization of various buffers, CAM depth utilization, contention information on the memory controller arbiter and enables you to analyze and improve the design performance. For supported information, see "Resource Statistics Chart" in the VP Explorer User Guide, which is available with the Platform Architect documentation set.

- Memory Channel Utilization Stats This is a statistical view which records and displays memory
 command channel utilization data over a time interval. This analysis view gives a complete
 visualization of memory interface for the command channel. It also helps to know the root cause for any
 bottlenecks or limitations. For more information, see "Enable JEDEC level analysis:" on
 page 70.
- *Memory Data Channel Utilization Stats* This is a statistical view which records and displays memory data channel utilization data over a time interval. This analysis view gives a complete visualization of memory data channel interface activity. It also helps to know the root cause for any bottlenecks or limitations. For more information, see "Enable JEDEC level analysis:" on page 70.
- Hot Bit analysis This view helps a user to modify the address mapping information of the model to
 calculate the bit toggling count for a specific simulation run. For more information, see "Hot Bit
 Analysis" on page 79.

To create the *Bus Path Statistics, Bus Resource Statistics*, and *Transaction Trace* charts, the analysis infrastructure uses an analysis database from the simulation. The monitors that you attach to the simulation session enables data recording to this analysis database. For more information, see "Bus Debug Monitor" and "Bus Analysis Monitor" in the *VP Explorer User Guide*, which is available with the Platform Architect documentation set.

5.2 Using Analysis in a Design with LPDDR5_MCTL

This section describes the steps to attach bus debug and analysis monitors to the LPDDR5_MCTL hierarchy and set up the display for corresponding analysis views. For further details on the bus analysis flow and the steps to perform analysis, see "Bus Analysis Monitor" in the *VP Explorer User Guide*, which is available with the Platform Architect documentation set.

To use the analysis on your design, export and built the simulation project of a design with the LPDDR5 MCTL model.

To enable analysis on your design with the LPDDR5 MCTL:

- 1 Start the simulation session in VP Explorer.
- **2** From the Analysis Configuration dialog box, enable bus analysis or bus debug. For details, see "Bus Debug Monitor Reference" and "Bus Analysis Monitor Reference" in the *VP Explorer User Guide*, which is available with the Platform Architect documentation set.
- 3 From the Configure Attributes dialog box, you can optionally set the attributes if bus analysis is enabled. For more details, see "Configuration" under "Bus Analysis Monitor Reference" in the *VP Explorer User Guide*, which is available with the Platform Architect documentation set.
- **4** Enable JEDEC level analysis:
 - 1. From the VP Explorer menu bar, select *Analysis* > *Configure*.
 - 2. From the Configure Analysis dialog box, select the checkboxes to enable the required Memory Channel and Memory Data Channel analysis views as shown below.

Figure 5-1 Enabling JEDEC Level Analysis

- 3. Click *OK* to save the changes.
- **5** You can also enable *HotBitAnalysis* in the Configure Analysis dialog box to optimize the address mapping settings.
- **6** Run the complete simulation.
- 7 Send the data for visualization in the Chart view using the Result view. For more details, see "Using the Results View" in the *VP Explorer User Guide*, which is available with the Platform Architect documentation set.
- 8 Typically, you will use the pop-up menu of the current simulation node in the Results view to launch the Bus Path or Resource Statistics view or the Transaction Trace view.
- **9** You can create multiple charts of the same type, like Bus Paths Statistics chart, in the Results view. Use this to simultaneously inspect related metrics at the specific node. For example, utilization and throughput.
- **10** To configure the visualization further, use the Configure button supported by each of these charts. For more details, see "Configuration" under "Bus Analysis Charts" in the *VP Explorer User Guide*, which is available with the Platform Architect documentation set.

5.3 Bus Path Statistics

The Bus Path Statistics analysis view records and displays statistical data over a time interval. This view provides an end to end analysis of the entire data flow from a particular initiator to the end SDRAM memory. Thus gives delay, throughput and utilization statistics for every internal component inside the Memory Controller and helps in identifying the real bottleneck for Memory Controller optimization.

The figure below shows the Bus Path Statistics view, showing average delay in read transactions, decomposed over all the components in the entire data path from CPU_CL0_0 to the memory interface of DDRC inside the LPDDR5_MCTL model.

This analysis view helps the user to analyze count, latency, throughput and utilization characteristics of traffic from a particular initiator. This view also decomposes the count, latency, throughput and utilization statistics on every component of memory controller. For example, in the above figure, the average duration of the read transaction from initiator CPU_CLO_0 is 410.392 ns. You can visualize from the path view, the contribution of each component in the read latency. The average read latency at the DDRC PHY interface is 37.5 ns. The latency between the arbiter and DDRC interface is 151.908 ns. This includes the latency due to the DDRC interface. You can judge from this analysis that the read latencies are incurred primarily at the XPI input interface and the interface between Arbiter and DDRC.

Figure 5-3 Chart View Showing AXI Write Transactions

The above figure shows how the AXI Write transactions are broken into multiple HIF transactions and the total count of AXI transactions against total count of HIF transactions.

5.4 Resources Statistics

The Bus Resource Statistics provide insight into the utilization of various resources within the model. These resources can be the buffers or CAM storage inside the model; or the contention numbers as well as DDRC stalls. This view can be used to arrive at the optimal settings of the parameters and registers in context of the traffic. Every resource metric can be viewed as minimum, maximum and average value.

The figure below shows the Resource Statistic view of average utilization of Write Address Buffer in XPI blocks. The view can be expanded to find out the contribution by each initiator.

Figure 5-4 Resource Statistic View

Following metric in Resource Statistics views are available for LPDDR5 MCTL model.

- CAMUtilization
- DDRCStall
- XPI Buffer Utilization
- Contention
- RRBUtilization

5.4.1 CAMUtilization

The LPDDR5_MCTL model has a content addressable memory (CAM) inside DDRC that contains the memory transactions before they are scheduled on the memory interface. The size of CAM can impact the overall performance of the scheduler and hence this metric can be used to arrive at the optimal settings of CAM. There is one CAM for Write transactions and one for Read transactions. The Read transactions can be of type Low Priority and High Priority based on the register configurations and QoS values. The Read CAM can be divided for utilization of Low Priority Reads or High Priority Reads based on register settings (SCHED.lpr_num_entries).

This metric can be grouped as follows:

WrAddr

- LoPrioRdAddr
- HiPrioRdAddr

5.4.2 DDRCStall

When there is a Read or Write transaction that collides with an existing Read or Write transaction in the CAM, then the DDRC block issues a stall command to the arbiter. On the assertion of this stall command, the transactions are not forwarded to the DDRC block and this can cause higher average latencies for the transactions. DDRC stall also causes inefficient usage of the memory and should be avoided. The average value of DDRC stall represents the duration when this signal is high.

5.4.3 XPI Buffer Utilization

The LPDDR5_MCTL model has buffers for every AXI channel on each port. These buffers are utilized to store the AXI transfers, before forwarding this to the other side. The Read address channel is further divided into a Red gueue and a Blue gueue based on the QoS values.

This metric can be grouped as follows:

- WrAddr
- WrData
- WrRsp
- RdAddrBlue
- RdAddrRed
- RdData

5.4.4 Contention

The LPDDR5_MCTL arbiter does arbitration for RdAddr and WrAddr requests coming from various ports on the block. In case, there are multiple requests at same time, the arbiter gives grant based on various policies that are internal to the model behavior. In case, a particular port does not get the grant from the arbiter, the port is said to be contending. This contention for each initiator can be viewed in the Resource Statistic view.

This metric has only one group named request.

5.4.5 RRBUtilization

The read data can be returned from the DDRC in a different order from which the read commands are forwarded from the XPI. A read reorder buffer is implemented in each AXI port to reorder the read data for that port, to the same order (per AXI ID) as the order of the AXI read commands. The read reorder buffer, SRAM, holds the same number of entries as the read CAM and each entry holds the read data corresponding to a DDR command. Storage for the reorder buffer is implemented internally as virtual channels.

This ResourceStats provide information on how many virtual channels are used.

5.5 Memory Channel Analysis and Memory Data Channel Analysis

One of the key requirements in exploration of the architecture of LPDDR5_MCTL is to get maximum possible utilization of the memory channel. The memory interface is divided into a command channel and a data channel. The command signals are signified by the selection of RAS, CAS and WE pins. The data channel is as wide as the memory data width parameter on the block. The utilization of the Memory

Data Channel should be maximized to get higher memory throughput. You can observe memory transactions on the memory channel using this metric and visualize the effect of any parameter or register changes on the memory utilization.

5.5.1 Memory Channel Analysis

The Memory Channel Analysis metric can be viewed by sending the results to the Memory Channel Utilization Statistics.

Utilization values are calculated as shown below:

IDLE utilization = (time range of command channel is idle)/(interval time)

CMD_SETUP utilization = (time range when there were meaningful commands on the Memory Command Channel)/(interval time)

Sending results for memory channel analysis:

- 1 From the *Results* tab of the VP Explorer menu bar, select the check-box for an instance under *Design Object/Monitor Name*.
- **2** Right-click on the instance and from the contextual menu, select *Send To > MemoryChannelUtilization Stats*, as shown in the figure below.

Figure 5-5 Memory Channel Utilization Statistics

The Chart view opens up for the selected instance.

Once you have the analysis database in Chart view, it reports the percentage of time when Memory Command Channel was idle and when there were meaningful commands on the Memory Command Channel as shown in figure below.

- 3 To find out more information about the commands, click the *Configure* button in the Chart View.

 The Configure View/Filters dialog box pops up, where you can select the slicing of analysis data as per your requirements. The slicing operation further breaks the metric as per the available views. To do so:
 - a. In the Configure View/Filters dialog box, select the value for property *Slice by TransactionType* as true, as shown in figure below.

Figure 5-7 Configure View /Filters Dialog Box

b. The view splits to show the various transactions that got scheduled on the Memory Command Channel, as shown in figure below:

Figure 5-8 Chart View for Slicing Based on Transaction Type

The analysis metric can be split according to following views:

- Transaction Type: Shows the various transaction types scheduled on the Memory Command channel. These are Precharge, Activates, Write, Low Priority Reads and High Priority Reads.
- Rank ID: Shows the commands as per the memory ranks.
- Bank ID: Shows the commands as per the memory banks.
- Port ID: Shows the commands as per the ports from which the corresponding AXI transaction was received.
- Transaction ID: Shows the commands as per the transaction IDs. Set environment variable SNPS ENABLE ANALYSIS SLICE BY TID to 1 in VP Explorer to enable it.
- Add new point->
- IdleCause: Shows the cause of idle between commands. Causes are represented in terms of JEDEC defined timings, that is, tCCD, tRCD. See figure 5-10, currently this feature is protected by environment variable SNPS PAU ENABLE ANALYSIS IDLECAUSE.

You can select any combination of these views to get a complex view. For example, if you select *Slice By TransactionType* and *Slice By PortId* in Configure View/Filters dialog box (refer figure 5-7), you can find the number of Low Priority Read Commands scheduled on the memory interface that arrived on port AXI[2] of the memory controller, as shown in figure below.

Figure 5-10 Chart View Based on Transaction Type and IdleCause

5.5.2 Memory Data Channel Analysis

The Memory Data Channel Analysis metric represents the utilization of the data channel on the memory interface. This metric can be viewed by sending the results to the Memory Data Channel Utilization Statistics.

Utilization values are calculated as shown below:

IDLE utilization = (time range of data channel is idle)/(interval time)

WRITE utilization = (time range when data channel is transferring write data)/(interval time)

READ utilization = (time range when data channel is transferring read data)/(interval time)

Sending results for memory data channel analysis:

- 1 From the *Results* tab of the VP Explorer menu bar, select the check-box for an instance under *Design Object/Monitor Name*.
- **2** Right-click on the instance and from the contextual menu, select *Send To > MemoryDataChannelUtilization Stats*, as shown in the figure below.

Figure 5-11 Memory Data Channel Utilization Statistics

The Memory Data Channel Utilization metric can then be viewed and sliced as explained for the Memory Channel Utilization in "Memory Channel Analysis" on page 75.

The various views on which the Memory Data Channel Analysis metric can be sliced are:

- Transaction Type: This view breaks the metric as per the data transfer types like Write, Low Priority Reads or High Priority Reads.
- Rank ID: Shows the data phase as per the memory ranks.
- Bank ID: Shows the data phase as per the memory banks.
- Port ID: Shows the data phase as per the ports from which the corresponding AXI transaction was received.
- Transaction ID: Shows the commands as per the transaction IDs. Set environment variable SNPS_ENABLE_ANALYSIS_SLICE_BY_TID to 1 in VP Explorer to enable it.

Similar to the Memory Channel Analysis, the views in Memory Data Channel Analysis can also be combined to get more complex views.

5.6 Hot Bit Analysis

The Hot Bit Analysis view shows the count of transitions of bits for the HIF address. This information is very useful to arrive at an optimal setting of the Address Mapping Registers (ADDRMAPx registers). The analysis instrumentation is done after the arbiter and just before the scheduler, so that addresses from different AXI ports are combined to arrive at more logical hot bit analysis numbers.

To view the hot bit analysis numbers, send the results to the Hot Bit Analysis view as follows.

Sending results for hot bit analysis:

- 1 From the *Results* tab of the VP Explorer menu bar, select the check-box for an instance under *Design Object/Monitor Name*.
- **2** Right-click on the instance and from the contextual menu, select *Send To > HotBitAnalysis Stats*, as shown in the figure below.

The Chart View for the selected instance opens up.

3 In the Chart View, slice the data by HIFAddrBits as shown in the figure below.

Figure 5-13 Chart View Showing HIFAddrBits

The view shows the number of times the bit has transitioned from 0 to 1 or from 1 to 0. Any bit that is not transitioning at all, is not shown in the view and the number of transitions for this particular bit is assumed to be 0.

5.7 Page Status Analysis

The Memory Page Status Analysis metric represents the data at memory interface. It gives details about rd and wr page hit and page miss.

- Page Hit: The page is already open, and rd/wr of same page is scheduled.
- Page Empty: The page is closed and needs to be opened before reading/writing.

• Page Miss: The bank is open on a different page, and the controller needs to wait for the old page to be closed and the new row opened before the transaction can occur.

This metric can be viewed by sending the results to the Page Status Analysis.

To send results for page status analysis:

1 From the Results tab of the VP Explorer menu bar, select the check-box for an instance under *Design Object/Monitor Name*. Right-click on the instance, from the contextual menu, select *Send To > PageStatusAnalysis Stats*, as shown in the figure below.

Figure 5-14 Page Status Analysis Statistics

The Chart view opens up for the selected instance.

2 Once you have the analysis database in Chart view, it reports the total number of times for page miss and page hit.

Figure 5-15 Chart View with Analysis Database

3 To find out more information about the commands, click the *Configure* button in the Chart View.

- **4** The Configure View/Filters dialog box pops up, where you can select the slicing of analysis data as required. The slicing operation further breaks the metric as per the available views. For this:
 - 1. In the Configure View/Filters dialog box, select the value for *Slice by Type* as true, as shown below.

Figure 5-16 Configure View /Filters Dialog Box

2. The view splits to show the details about page hit and page miss, as shown in figure below:

Figure 5-17 Chart View for Slicing Based on Type

- 3. The analysis metric can be split according to following views:
- Type: Shows the various page hit and page miss status. These are RD Empty, RD Page Hit, RD Page Miss, WR Empty, WR Page Hit, WR Page Miss.
- Rank ID: Shows the page stat details as per the memory ranks.
- Bank ID: Shows the page stat details as per the memory banks.
- Port ID: Shows the page stat details as per the ports from which the corresponding AXI transaction is received.

You can select any combination of these views to get a complex view. For example, if you select *Slice By Type* and *Slice By PortId* in Configure View/Filters dialog box. You can find the number of read and write page hits and page miss on port AXI[2] of the memory controller.

5.8 AutoPrecharge Analysis

The AutoPrecharge Analysis metric represents the precharge information issued for a required command. It gives details about rd and wr auto precharges.

- Read AutoPrecharge: Read command is issued and the page is not already opened. So, precharge for read is issued.
- Write AutoPrecharge: Write command is issued and the page is not already opened. So, precharge for write is issued.

This metric can be viewed by sending the results to the AutoPrecharge Analysis.

To send results for AutoPrecharge Analysis:

1 From the Results tab of the VP Explorer menu bar, select the check-box for an instance under *Design Object/Monitor Name*. Right-click on the instance, from the contextual menu, select *Send To > AutoPrechargeAnalysis Stats*, as shown in the figure below.

Figure 5-18 AutoPrecharge Statistics

The Chart view opens up for the selected instance.

2 Once you have the analysis database in Chart view, it reports the total number of times AutoPrecharge happened for read and write.

Figure 5-19 Chart View for AutoPrecharge

- **3** To find out more information about the commands, click the *Configure* button in the Chart View.
- 4 The Configure View/Filters dialog box pops up, where you can select the slicing of analysis data as required. The slicing operation further breaks the metric as per the available views. For this:
 - 1. In the Configure View/Filters dialog box, select the value for *Slice* by *AutoPrechargeState* as true, as shown below.

Figure 5-20 Configure View/Filters Dialog Box

2. The view splits to show the details about read AutoPrecharge and write AutoPrecharge, as shown in figure below:

Figure 5-21 Chart View for Read and Write AutoPrecharge

Chapter 6 Creating Starting Point Platform and Generating DDR Targeted Workloads

This chapter describes the design creation flow for LPDDR5_MCTL model. This flow is useful to create an initial system with the LPDDR5_MCTL model and assumes that only a particular set of IPs demonstrates the various design considerations. Only a limited number of IPs can be connected to the LPDDR5_MCTL model or can be applied in the use cases of the model.

- Specifying Parameters
- Creating a Design
- Workload Description

6.1 Specifying Parameters

This section explains how you can specify parameters to a LPDDR5 MCTL instance.

To specify the parameters to a LPDDR5_MCTL block instance:

1 From the Definition list in Platform Creator, instantiate LPDDR5_MCTL instance of the LPDDR5_MCTL model, as shown below.

Figure 6-1 LPDDR5_MCTL Instance

2 Now you can either specify the parameters in Platform Creator or import configurations in Platform Creator from coreConsultant batch file or CoreConsultant trace file. For specific details on the import flow, see "Importing Configuration from CoreConsultant Trace File" on page 49.

Once the model configuration is done, the model represents the correct number of ports as per /MultiPort/number of host ports parameter, as shown below.

Figure 6-2 LPDDR5_MCTL Ports

3 You can also specify the port parameters by selecting the ports and editing these parameters in the Parameter Editor tab.

6.2 Creating a Design

Once the LPDDR5_MCTL instance is configured correctly, you can create a complete system around this block. In this example, VPUs with custom tasks and SBLTLM2FT bus instances are used to complete the system.

To complete a design using LPDDR5_MCTL:

1 Right-click on LPDDR5_MCTL instance and select *Complete Platform*, as shown below.

Figure 6-3 LPDDR5_MCTL Block Configuration

A platform gets generated with five VPUs and one instance of SBLTLM2FT bus, connected to selected LPDDR5_MCTL instance, as shown in the figure below.

PE.p. cis
DRVR.p. cis

Figure 6-4 Generated Platform

6.2.1 Platform Description

- There are four VPUs (traffic initiators) which are mapped to four different workloads and one VPU that acts as Register Master. If you do not wish to do any register programming and rely on the register settings as parameters, ignore this VPU, else a STL task might be created and mapped to this VPU.
- All the VPUs and SBLTLM2_FT bus is configured with same data width as port_data_width of DDR controller.
- Clock is configured based on the selected Memory speed-bin and frequency ratio.
- Four different workloads are generated, as shown below. All these workloads are mapped to different VPUs.

• There are multiple scenarios readily available and distinct mapping is selected in each of the scenario, as shown in the figure below.

Figure 6-6 Mapping for Various Scenarios

6.2.2 Specifying Reset Settings

It is important to correctly set the reset value of the controller if register programming is done by external VPU using STL file, else it may be set as 0. All register programming values are considered by the model only after the positive edge of reset generator. Hence, it is important that the reset port of the LPDDR5_MCTL instance gets a reset positive edge after all the register programing is done.

If any initiator in the system initiates traffic on the $\texttt{LPDDR5_MCTL}$ instance without the positive edge of reset, the simulation will stop with an error message.

Hence, set the start_time parameter to 0 and duration to a value high enough so that programing of all the registers is already complete.

6.3 Workload Description

The workload models are generated and also the platform configuration is tailored to the Memory Block and its configuration. For example, taking into account the memory type, speedbin, number of ports, address mapping parameters and so on, to generate the right platform (ports and memory map set up correctly, DDR clock matching speedbin and frequency ratio) as well as workload models configured for the current Memory Block configuration (throughput/deadlines matching the expected bandwidth of the memory, memory testing like bank rotations matching the address mapping and so on).

The following workloads are provided with this utility, and these can be used for structural memory testing.

- SequentialReadWrite This workload has two tasks Read, that generates around 1000 read transactions, followed by writes that generate around 1000 write transactions, with linear addresses. This workload may cater as the starting point to check the maximum throughput driven by DDR as in ideal cases. Traffic results into page-hits. Task used here are of traffic_type as Stochastic.
- BGnBankRotation This workload generates AXI addresses, randomly or sequentially, by rotating Bank or BG bits depending upon address mapping applied in DDR controller. This workload can serve the use-cases where you want to traverse all the banks and achieve the benefits of low latencies among different banks.
 - The workload uses task of type SdramTestTraffic, which is a custom DDR task and provide multiple parameters to generate the AXI transactions, based on DDR configuration.
 - For this particular workload, rotation_mode in task can be set to BGnBankRotation or BGRotation. All parameters details of custom DDR task can be seen by hovering on that parameter.
- RdWrAlternate This workload generates AXI transactions with alternate read and write. It uses task of type SdramTestTraffic, which is a custom DDR task and provides multiple parameters to generate the AXI transactions based on DDR configuration.
 - For this particular workload, the parameters readwrite_mix/mode is set as deterministic and ratio as 0.5 to ensure that there is a read followed by write. Parameter throughput is also set as 12.8 GBps which restricts the traffic at this particular rate, else reads and writes would flow parallel.
- RandomTraffic This workload generates pure random traffic such that every next address is not linear with previous address and order of reads/writes is also random.
 - For this particular workload, the parameters branch/mode is set as randomized and ratio as one to ensure random addresses generation.

Chapter 7 Example Platform for LPDDR5 Block

This chapter describes the LPDDR5ExamplePlatform for the LPDDR5 block.

- Software Running on Platform
- Directory Structure
- Opening Example Platform
- Example Platform-LPDDR5ExamplePlatform

7.1 Software Running on Platform

The software floats the actual reads and writes of different access and burst sizes to each of the memory ranks and banks of SDRAM inside LPDDR5. Thus tests the basic functionality of the LPDDR5.

7.2 Directory Structure

Each example platform has following directories and files to create the platform.

- Scripts/directory contain scripts to create and export example platform.
- Scripts/1 open libs.tcl script opens the required PSPs.
- Scripts/2_create_platform.tcl script instantiates and configure the blocks, and connects them together.
- Scripts/3 generate framework.tcl script generates and configures the BLWizard framework.
- Scripts/4 export system.tclscript exports the platform into a subdirectory.
- Scripts/createsys.tclscript calls the first three scripts.
- Scripts/exportsys.tcl script calls the remaining scripts.
- Software/directory contains the software code which is run on the example platform.
- Software/Reg.stl file contains the software that configures the LPDDR5 registers. This file is left blank intentionally because LPDDR5 auto programs itself. Though you can also program the controller.
- Software/Access_Master_0.stl file contains the software that floats the read/write transactions to different memory ranks and banks.

You can find the above listed files at:

• For LPDDR5ExamplePlatform, at installDir/IP/DWC LPDDR5 MCTL/Examples/LPDDR5ExamplePlatform/Scripts.

7.3 Opening Example Platform

The DWC_LPDDR5_MCTL library can be opened to see the example platforms as shown in the figure below.

93

Figure 7-1 DWC_LPDDR5_MCTL Library

Double click on LPDDR5ExamplePlatform to open the platform.

7.4 Example Platform-LPDDR5ExamplePlatform

The figure below shows the LPDDR5ExamplePlatform.

Figure 7-2 LPDDR5ExamplePlatform

7.4.1 Configuration for LPDDR5ExamplePlatform

The figure below shows the usage of the default values for LPDDR5 model.

7.4.2 Running the Example Platform in Platform Architect

To build any platform, click on the *Add Scenario* tab in the Simulation Domain, as shown in the figure below.

Figure 7-4 Simulation Domain

Now, right-click on the scenario and from the context menu, select *Run Selected Default*. This executes all the steps from exporting, building to running the platform.

To enable traces, from *Global Settings*, select the required traces before you run the scenario.

7.4.3 Analysis View

The LPDDR5 is instrumented for the analysis. To enable Synopsys analysis on LPDDR5, see "Analysis View" on page 69. For more information on enabling analysis and viewing the results, see the *VP Explorer User Guide*, ["References" on page 10].

Figure 7-5 Analysis View for LPDDR5ExamplePlatform

Chapter 8 RTL CoSimulation for LPDDR5 Block

This chapter describes how to run RTL CoSimulation for LPDDR5 block. There is a package which has top level script runRTLCosimFlow.sh that can be used to import the RTL design and create the platform.

The ddr cosim package is available in the install directory at the below location:

<installDir>/IP/DWC_LPDDR5_MCTL/Internal/script/ddr_cosim

Steps to run the package:

1 RTL must be generated in <test dir> to run this package. If RTL is not present, do the following:

```
source <test_dir>/coreConsultant_env_setup.csh
coreConsultant -f <test_dir/configuration_file> -shell
```

2 In test directory, the below steps generate the required XML file, which can be opened with Platform Architect. You can modify the default programming file register_programming.stl and traffic file dtata.stl provided with the package.

```
cd <test_dir>
source <pkg_dir>/setup.csh
<pkg_dir>/cleanup.csh
<pkg_dir>/runRTLCosimFlow.sh
pct RTLProject.xml &
```

Index

A	L
analysis view 69	limitations 14
C	Low Priority Reads. See LPR
changes and enhancements 13	LPDDR5 93
Chip Select. See CS	LPDDR5ExamplePlatform 93
compatibility information 14	LPR, definition 10
CS, definition 10	M
D	MPMC, definition 10
Direct Memory Access. See DMA	Multi-Ported Memory Controller. See MPMC
directories 93	P
DMA, definition 10	package information 17
E	Platform Architect 95
End Of File. See EOF	platform version information 13
EOF, definition 10	Programmer's View. See PV
example platforms 93	programming model 87
- · · · F	PV, definition 10
FCFS, definition 10	R
First-come, First-served. See FCFS	Read Reorder Buffer. See RRB
fixed problems 14	release notes 13
G.	RRB, definition 10
Graphical User Interface. <i>See</i> GUI	RRBUtilization 74
GUI, definition 10	RTL CoSimulation 97
, H	S
High Priority Reads. <i>See</i> HPR	SCML, definition 10
HPR, definition 10	SystemC Modeling Library. See SCML
I	Т
IDE, definition 10	tCAS, definition 10
Integrated Development Environment. See IDE	the CAS Latency of the device. See tCAS
Interrupt-Priority Encoder. See IPE	tool version information 13
IPE, definition 10	U
I	use model 21
JEDEC Solid State Technology Association. See JEDEC	V
JEDEC, definition 10	Variable Priority Reads. See VPR
EDEC, actinuon 10	Variable Priority Writes. See VPW

VPR, definition 10 VPW, definition 10

W

what's new 13