Box Cox Transformations

Box Cox

At the core of the Box Cox transformation is an exponent, lambda (λ), which varies from -5 to 5. All values of λ are considered and the optimal value for your data is selected; The "optimal value" is the one which results in the best approximation of a normal distribution curve. The transformation of Y has the form:

$$y(\lambda) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0; \\ \log y, & \text{if } \lambda = 0. \end{cases}$$

This test only works for positive data. However, Box and Cox did propose a second formula that can be used for negative y-values:

$$y(\lambda) = \begin{cases} \frac{(y+\lambda_2)^{\lambda_1} - 1}{\lambda_1}, & \text{if } \lambda_1 \neq 0; \\ \log(y+\lambda_2), & \text{if } \lambda_1 = 0. \end{cases}$$

Lambda Values

Common Box-Cox Transformations	
Lambda value (λ)	Transformed data (Y')
-3	$Y^{-3} = 1/Y^3$
-2	$Y^{-2} = 1/Y^2$
-1	$Y^{-1} = 1/Y^{1}$
-0.5	$Y^{-0.5} = 1/(\sqrt{(Y)})$
0	log(Y)**
0.5	$Y^{0.5} = \sqrt{(Y)}$
1	$Y^1 = Y$
2	Y ²
3	Y ³

Box Cox Example in R

```
library(caret)
data(BloodBrain)
ratio <- exp(logBBB)
bc <- BoxCoxTrans(ratio)
predict(bc, ratio)</pre>
```