MATH 3240 Topology 1 Feb 25.

Chapter 6 Connectedness.

Definction. A space X is disconnected if it is a union of disjoint, nonempty open subsets. It. JA, BCX open s.t. A, B nonempty, AnB = \$\psi\$ and AuB=X. Otherwise, X is connected.

The sets {A,B] are a separation of X.

Example: R 15 connected.

Lemma: Let $A \subseteq \mathbb{R}$, A nonempty. If $A' \cap A' \neq \emptyset$, then A' is not open.

Proof: Given XEA'NA', every noble U of x contains points of A, and thus U \(A^c\). But then XEA' yet $x \notin int(A^c)$. So A^c is not open.

Proof that R is connected: Suppose R=AUB, where A'=B and A, B nonempty and open. Will show either A'nB + Ø or B'nA + Ø.

Choose a & A and b & B, WLOG suppose a < b. Set $X = \{x \in A \mid x < b\}$, and $s = \sup X$. Then $s \in A = A \cup A'$. If $s \notin A$ but $s \in A'$, then $s \in B$ and we're done.

Otherwise SEA and every point x between s and b ties in B, thus SEB', and we're done again.

We can generalize this slightly by defining:

Def: An ordered space X is a linear continuum if the linear ordering satisfies

(i) Every subset that is bounded above has a least upper bound

(ii) For every x,yEX with xey, & Z s.t. x<Z<Y.

Proposition: Every linear continuum is connected.

Example: The Sorgenfrey line is not connected.

Recall the topology is generated by sets of the form

[a,b) where a < b. Then

 $R = (\infty, 0) \cup (0, \infty)$ is a disjoint union of open sets.

Proposition: If {A,B} is a separation of X, then X is homeomorphic to A&B (each equipped with the subspace topology). (Note the converse is trivially true as well.) true as well)

Proof: Assume {A,B} is a separation of X. We prove the topologies on AOB and X are the same, since X = ABB as underlying sets.

So suppose UCX is open. Then UnA and UnB are open, so U is open in AOB. On the other hand of UCAOB is open, then UnA and UnB are open boy definition of the topology on ABB, so (UnA)U(UnB)=U 15 open mX.

Theorem: A space X is connected iff the only clopen sets are X and Ø.

Proof: (=>) Suppose there exists A < X proper, nonempty and clopen. Then A is open and A' is open, so X = AUA' is not connected.

((=) Suppose X is disconnected, say X=AUB. Since A and B are nonempty open sets with A=B^c, there are clopen sets aside from X and Ø.

Note: A subspace $A \subseteq X$ can be connected (in the subspace topology as well).

Theorem: If ACX is connected, then so is A.

Proof: Suppose A To connected, and let $\overline{A} = B \cup C$ be a decomposition /separation of \overline{A} , so $B \cap \overline{C} = \overline{C} \cap \overline{B} = \emptyset$.

Since \overline{A} is closed, taking closures gives $\overline{A} = \overline{B} \cup \overline{C} = \overline{B} \cup \overline{C} = B \cup C$, since B and C are clopengive \overline{A} . But now since $B \cap \overline{C} = C \cap \overline{B} = \emptyset$, $\overline{B} \subset B$ and $\overline{C} \subset C$, so B and C are closed.

Thus $A = (B \cap A) \cup (C \cap A)$ is a decomposition into separated open (or closed) sets. Hence either $B \cap A = \emptyset$ or $C \cap A = \emptyset$

=> A CCOA => A CBOA

⇒ ACC ⇒ B=Ø., ⇒ C=Ø.

- Proposition: a) Suppose {Aifies are connected subspaces of X, and suppose $\bigcap_{i \in I} A_i \neq \emptyset$. Then $\bigcup_{i \in I} A_i$ is connected.
- b) Suppose {Ai}iet are connected subspaces of X, and As To connected and satisfies A. nA; #b \ti. Then A. U (UAi) To connected.

Proof. (a) Suppose UAi TS not connected. Then
there exists a nonempty, proper dopen B = UAi.
Given jeI, if BnA; # then Aj = B since Aj rs
connected. Thus B = UA; for some subset J=I.

Since B is proper, Fk&I such that Ak & B, yet our assumption NA: + & guarantees that Ak NB + &.

Then ARAB is both open and closed in AR, contradicting the fact that AR is connected.

(b) Similar, probably will be on an assignment. Or set $B_i = A_i \cup A_s$ $\forall i \in I$? Then proceed as in (a).

Example: Set $X = \bigcup_{n=1}^{\infty} \{(x, +) \mid x \in \mathbb{R}\} \cup \{(0, y) \mid y \in \mathbb{R}\} \cup \{(x, 0) \mid x \in \mathbb{R}\}.$ Then by the previous proposition, $X \ni connected.$

Consider $X \setminus \{(x,o) \mid x \in \mathbb{R}\}\ \subset X \setminus X_o$. The closure in $X \setminus X$. is

 $X \setminus \{(x,0) \mid x \in \mathbb{R}\} = X \setminus X_o$

Since X\\\((x,0)\) x \(\epsilon\) is connected by the previous theorem, so is its closure X\Xo.

Example: Consider the infinite product II {0,1} of {0,1} with the discrete topology.

This space is totally disconnected, in the sense that the only connected subsets are singletons.

To see this, let U = T(0,1) and suppose U contains

To see this, let $U = \pi \{0,1\}$ and suppose U contains two points $(y_i)_{i=1}^n$ and $(x_i)_{i=1}^n$. Suppose that they differ in the nit position, say $x_m \neq y_m$, and let $p_m : \pi \{0,1\} \rightarrow \{0,1\}$ denote the projection map. Then

 $V_1 = p^{-1}(x_m)$ and $V_2 = p^{-1}(y_m)$ are disjoint open sets and

Vinu, V2 nU disconnect U.

MATH 3240 Topdogy 1 Lecture 16 Feb 27.

\$6.2. Properties of connected spaces.

Perhaps the most useful is that connectedness is preserved by continuous maps.

Proposition: If X is connected and f: X-> Y continuous, then f(X) is connected.

Solution: Suppose f(X) is disconnected, let $\{A,B\}$ be a separation of f(X). Then it is easy to check that $\{f^{-1}(A), f^{-1}(B)\}$ is a separation of X.

Corollary: Connectedness is a topological property.

Example: (IV theorem).

If $f: [a,b] \longrightarrow \mathbb{R}$ is a continuous function and x is between f(a) and f(b), then $\exists c \in [a,b]$ s.t. f(c) = x.

Proof: Suppose not. Then f([a,b]) is connected, yet if X satisfies f(a) < x < f(b) or f(b) < x < f(a) and $\not\exists c \ s.t. \ f(c) = x \ , \ then <math>\{(-\infty,x),(x,\infty)\}$ is a separation of f(x). Contradiction.

Corollary. If $f: [a,b] \rightarrow [a,b]$ is continuous, then $\exists x \in [a,b]$ s.t. f(x)=x. (1-dimensional Browner fixed point theorem).

Pf: Set g(x) = f(x) - x. Then g(a) > 0 and $g(b) \leq 0$, so $\exists x \in s.t. g(x) = 0$, by the IV theorem.

Proposition: Suppose that X and Y are topological spaces. Suppose that $\forall x \in X$, $X \setminus \{x\}$ is connected, yet $\exists y \in Y$ s.t. $Y \setminus \{y\}$ is disconnected. Then X and Y are not homeomorphic.

Proof: Let $f: X \longrightarrow Y$ be a homeomorphism, and choose $y \in Y$ s.t. $Y \setminus \{y\}$ is disconnected Let $\{A,B\}$ be a separation of $Y \setminus \{y\}$. Then $\{f'(A),f'(B)\}$ is a separation of $X \setminus \{f'(y)\}$, which is connected. Contradiction.

Example: The circle S'= {(x,y) | x2+y2=1} and the bouguet of 2 circles

 $X = \{(x,y) \mid x^2 + y^2 = 1\} \cup \{(x,y) \mid x^2 + (y-2)^2 = 1\}$ are not homeomorphic: Clearly S'\lip's is connected. Here S', while $X \setminus \{(0,1)\}$ is disconnected. The sets $\{(x,y) \mid y > 1\} \cap X$ and $\{(x,y) \mid y < 1\} \cap X$ provide a separation.

Proposition: Let X and Y be spaces. Suppose that $\forall x \in X$, $X \setminus \{x\}$ is disconnected, and $\exists y \in Y$ st. $Y \setminus \{y\}$ is connected. Then X and Y are not homeomorphic.

Proof: Similar.

Example: The spaces (0,1) and [0,1] are not homeomorphic: $(0,1)\setminus\{x\}$ is disconnected $\forall x\in(0,1)$, while $[0,1]\setminus\{0\} = (0,1]$ is connected.

Example: \mathbb{R} and \mathbb{R}^2 are not homeomorphic, since $\forall x \in \mathbb{R}$, $\mathbb{R} \setminus \{x\}$ is disconnected while $\mathbb{R}^2 \setminus \{(x,y)\}$ is connected $\forall \{x,y\} \in \mathbb{R}^2$.

Proposition: A space is connected iff there is no map $f: X \longrightarrow \{0,1\}$ that is continuous and surjective $(\{0,1\})$ has the discrete topology).

Proof: The idea is that if $\{A,B\}$ separate X, then $f(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in B \end{cases}$

is continuous. Just check the details.

Theorem: Suppose {Xi is are connected. Then TIXi

is connected.

Proof: We do the finite case first, so consider two spaces X and Y. Choose a "base point" (a,b) \in X \times Y, note that the "horizontal slice" X \times \{b\} is connected if X is connected, "the "vertical slice" \{a\} \times Y is connected if Y T. Therefore the "T-shaped" space

 $T_x = (X \times b) \cup (x \times Y)$

is connected for all $x \in X$, being the union of two connected spaces that have the point (x,b) in common. Now consider

UTx,

this union is connected since it is a union of connected spaces having (a,b) in common. The proof for an arbitrary frate product X, x... x Xn follows by induction.

Now, we do the infinite case. Consider TIXi, where Xi are connected.

Fix $X = (X_i)_{i \in I}$ in $\prod_{i \in I} X_i$. For every finite subset $T \subset I$, set $C(T) = \prod_{i \in I} A_i$, where $A_i = \{x_i\}$ if $i \notin T$ and

A:= Xi if iET. Then C(T) is homeomorphic to TIXi and thus is connected by the finite case.

Now since $x \in AC(T)$, it follows that Y = UC(T)is connected. Then we need the following lemma: Lemma; Y is a dense subset of TIXi. Then since Y is connected, $\overline{Y} = \overline{II} X_i$ is connected. Example: This result does not hold if the product is equipped with other topologies, such as the box topology. Consider Ru = TIR with the box topology. Set $A = \{(x_i) \in \mathbb{R}^{\omega} \mid \{x_i\}_{i=1}^{\infty} \text{ is a bounded sequence}\}$ B = {(xi)∈ R" | {xi}i=1 13 an unbounded sequence f. Then $AnB = \emptyset$, $AuB = \mathbb{R}^{\omega}$, and we can see that A and B are open as follows: Given a point $(x_i) \in A$, the open set U= (x,-1, x,+1) x (x2-1, x2+1) x consists entirely of bounded sequences, so UCA. Similarly if (xi) is unbounded then $V = (x_1-1, x_1+1) \times (x_2-1, x_2+1) \times ...$ is entirely unbounded sequences so VCB. Thus {A,B} Is a separation of IR". Example: Connected ness of Rw with the product topology.

Let $\mathbb{R}^n \subset \mathbb{R}^\omega$ denote the set of all sequences $(x_1, x_2, ...)$ such that $x_i = 0$ $\forall i > n$. Then \mathbb{R}^n is homeomorphic to \mathbb{R}^n , and so it is connected. It follows that $\mathbb{R}^\omega = \bigcup_{i=1}^\infty \mathbb{R}^i$ is connected, since all \mathbb{R}^i 's have the point (0,0,0,...) in common. We show that the closure $\mathbb{R}^\omega = \mathbb{R}^\omega$, so that \mathbb{R}^ω with the product topology is connected as well.

Let $(x_i) \in \mathbb{R}^{\omega}$. Let $U = \Pi U_i$ be a basic open nobal of (x_i) . There exists N st. $U_i = \mathbb{R}$ for i > N, and thus the point $(x_1, x_2, ..., x_N, 0, 0, ...) \in \mathbb{R}^{\infty}$ belongs to U, since $x_i \in U_i$ $\forall i < N$ and $O \in U_i$ $\forall i > N$. Therefore $U \cap \mathbb{R}^{\infty} \neq \emptyset$, and \mathbb{R}^{∞} is dense.