EBOOKBKMT.COM Tìm kiếm tài liệu miễn phí

Mở đầu

Tài liệu này được biên tập từ các hướng dẫn tính toán băng tải sau đây:

- Bridgestone, Conveyor Belt Design Manual;
- Funner Dunlop, Conveyor Handbook
- Funner Dunlop, Selecting the Proper Conveyor Belt;
- * CSMA, Belt Conveyors for Bulk Materials.

Nội dung được tóm lược nhằm trợ giúp quá trình tính toán cơ khí để lựa chọn các thành phần chính của một hệ thống băng tải. Các nội dung tính toán được trình bày ở đây bao gồm:

- 1. Xác định chiều rộng băng tải;
- 2. Xác định vận tốc băng tải;
- 3. Tính toán công suất dẫn động băng tải;
- 4. Tính lực kéo phân bố trên dây băng tải;
- 5. Lựa chọn dây băng tải;
- 6. Xác định kết cấu và cách bố trí các puly, con lăn.

Các nội dung được trình bày theo thứ tự sau.

Trang
1
2
4
4
5
7
7
8
9
9
13
13
17
22
24
24
26
26
30

1. Giới thiệu các thuật ngữ

Các chi tiết quan trọng của một hệ thống băng tải được minh họa trên hình 1.

Hình 1. Cấu trúc một hệ băng tải

- Tail pulley: pu-ly phía sau;
- Feed chute: máng cấp vật phẩm
- Loading skirt: vùng cấp vật phẩm lên băng tải
- Tripper: Cơ cấu gạt vật phẩm
- Head pulley and drive: Pu ly phía trước kiêm dẫn động
- Discharge chute: máng nhả vật phẩm
- Snub and bend pulley: puly căng và dẫn hướng băng tải
- Return idler: con lăn nhánh quay về (nhánh không làm việc)
- Carrying idler: con lăn đỡ nhánh mang tải
- Troughing carrying idler: con lăn tao máng

Có thể hình dung băng tải như một bộ truyền đai có kích thước lớn. Các vật phẩm cần vận chuyển được đổ trực tiếp lên dây băng tải hoặc được đóng gói, hoặc đựng trong các thùng gắn cố định trên băng tải (Bucket conveyor).

Băng tải được dùng để vận chuyển khối lượng vật liệu lớn trên khoảng cách hoặc độ cao lớn. Một băng tải thường vận chuyển các vật liệu hay đối tượng cùng loại. Thông thường, các đối tượng này được đặt lên băng tải theo dạng tự do, hay nói cách khác, đổ liên tục lên băng đang chuyển động. Trong tài liệu này, ta thống nhất sử dụng thuật ngữ "vật phẩm" để chỉ các đối tượng được vận chuyển.

Góc máng (**Trough angle**). Có thể bố trí dây băng tải nằm ngang (Flat belt), tương tự như ở bộ truyền đai dẹt. Tuy nhiên, người ta thường sử dụng thêm các con lăn đặt nghiêng (con lăn máng – Troughing idlers) để uốn dây băng tải thành dạng máng lõm, nhằm vận chuyển vật phẩm được ổn định hơn (Xem minh họa trên hình 2).

Hình 2. Tạo dạng máng cho băng tải nhờ các con lăn máng

Hình 3. Con lăn phẳng và các con lăn máng

Góc mái

Khi vật phẩm được đổ thành đống, góc ở đỉnh đống vật liệu được gọi là góc mái (Surcharge angle). Góc mái khi vận chuyển nhỏ đi so với khi đứng yên (xem hình 4).

Hình 4. Góc mái của đống vật phẩm

2. Độ rộng tối thiểu băng tải

Độ rộng băng tải phụ thuộc lưu lượng cần vận chuyển và kích cỡ vật phẩm (hay kích thước của các "hạt" vật liệu) cần vận chuyển trên băng. Nếu kích cỡ vật phẩm càng lớn thì độ rộng băng tải càng phải rộng.

Bảng 1 trình bày độ rộng tối thiểu của băng tải cho các giá trị kích cỡ vật phẩm khác nhau. Cột A dùng cho các vật phẩm có kích thước khá đồng nhất; cột B cho các dạng vật phẩm có kích thước không đều – "hạt" to nhất không quá 10% thể tích cả khối.

Bảng 1. Đô rông tối thiểu của băng tải

Độ rộng tối thiểu (mm)	Kích cỡ hạt (mm)		
90 rộng tới thiều (mm)	A (Đồng nhất)	B (Lẫn lộn)	
400	64	100	
450	75	125	
500	85	150	
600	110	200	
650	125	225	
750	145	275	
800	157	300	
900	180	350	
1.000	203	400	
1.050	215	425	
1.200	250	500	
1.400	297	600	
1.600	345	700	
1.800	380	800	
2.000	440	900	
2.200	500	1,000	
2.400	550	1,100	
2.600	600	1,200	
2.800	650	1,300	
3.000	700	1,400	
3.150	750	1,500	

3. Góc nâng/ hạ của băng tải

Góc nâng hay hạ của băng tải (góc dốc) được quyết định bởi đặc tính và hình dạng các hạt vật liệu được vận chuyển. Các vật liệu dạng hạt, ổn định có thể sử dụng băng tải có độ dốc lớn; các vật liệu không ổn định như than, cát cần xác lập góc dốc nhỏ.

Góc dốc lớn nhất của băng tải có bề mặt nhẵn được cho trong bảng 2. Khi bề mặt băng bị ướt hoặc bẩn, các giá trị trong bảng cần giảm đi 2 đến 5 độ.

Bảng 2. Góc đốc lớn nhất cho phép khi vận chuyển vật phẩm

Vật liệu	Kích cỡ hạt	Góc dốc lớn nhất của băng tải(độ)
	Trên 100 mm	15
	Dưới 100 mm	16
Than đá	Không xác định	18
	Ướt, mịn	20
	Khô, mịn	22
	Đồng nhất	17
Than cốc	Không đồng nhất	18
	Min	20
	150 mm	12
Bê tông vụn	100 mm	20
	50 mm	24
	Trên 100 mm	15
Đá	10 - 100 mm	16 - 18
	Dưới 10 mm	20
O ×	Trên 100 mm	18
Quặng	Dưới 100 mm	20
D (A:	Trên 100 mm	18
Đá vôi	Dưới 100 mm	20
Vôi	Min	23
Xi măng	Min	22
Lưu huỳnh	Min	23
	Trên 100 mm	15
Quặng phốt phát	Dưới 100 mm	25
	Min	30
	Sạch, đồng nhất	12
Sởi	Bẩn, không đồng nhất	15
	Không đồng nhất	18
	Khô	15
Cát	U'ót	20
	Để làm khuôn đúc	24
Dά	Khô	20
Đất	Ướt	22
G.×	Dăm	27
Gỗ	Hộp	15-25
Muối		20

4. Vận tốc băng tải

Vận tốc băng tải cần giới hạn tùy thuộc dung lượng của băng, độ rộng của băng và đặc tính của vật liệu cần vận chuyển. Sử dụng băng hẹp chuyển động với vận tốc cao là kinh tế nhất; nhưng vận hành băng tải có độ rộng lớn lại dễ dàng hơn so với băng tải hẹp.

Bảng 3 cho các giá trị vận tốc lớn nhất của băng tải tùy thuộc độ rộng băng cho 3 nhóm vật phẩm khác nhau: nhóm A: Các loại vật liệu hạt; nhóm B: Than mỏ và các vật liệu có tính bào mòn; nhóm C là các vật phẩm gồm quặng cứng, đá và các vật liệu có cạnh sắc.

Bảng 3. Vận tốc lớ	rn nhất của băng tải
--------------------	----------------------

Độ rộng băng (mm)	A (m/phút)	B (m/phút)	C (m/phút)
400	180	150	150
450	210	180	180
500	240	180	180
600	240	210	200
650	240	210	200
750	270	240	220
800	270	240	220
900	300	250	240
1.000	300	250	240
1.050	300	250	24C
1.200	330	300	270
1.400	360	330	270
1.600	360	330	270
1.800	-	360	300
2.000	-	360	300
2.200 - 3.000	-	360	300

Vận tốc băng tải thường được tính toán nhằm đạt được lưu lượng vận chuyển theo yêu cầu cho trước. Lưu lượng vận chuyển của một băng tải có thể được xác định qua công thức:

$$Qt = 60A.V.\gamma.s \tag{1}$$

Trong đó, Qt: Lưu lượng vận chuyển, tấn/ giờ;

- A: Diện tích mặt cắt ngang dòng vận chuyển (m²)
- γ : Khối lượng riêng tính toán của khối vật liệu (tấn/ m³)
- V: Vân tốc băng tải (m/phút)
- s: Hệ số ảnh hưởng của góc nghiêng (độ dốc) của băng tải

Từ đó, có thể tính được vận tốc băng tải theo công thức sau:

$$V = \frac{Q_t}{60.A.\gamma.s} \text{ (m/phút)}$$
 (2)

Sau khi tính được vận tốc băng tải, cần kiểm tra đảm bảo vận tốc không vượt quá giá trị lớn nhất cho trong bảng 3. Nếu không, cần chọn chiều rộng băng tải lớn lên và tính lại.

Các đại lượng trong công thức tính vận tốc được xác định như dưới đây.

4.1. Diện tích mặt cắt ngang dòng chảy

Diện tích mặt cắt ngang dòng chảy có thể được xác định như sau:

$$A = K(0.9B - 0.05)^{2}$$
(3)

Với

- A: Diện tích mặt cắt ngang dòng vận chuyển (m²)

- K: Hệ số tính toán

- B: Độ rộng băng tải (m)

Hệ số K được cho trong bảng 4.

Bảng 4. Hệ số tính toán mặt cắt dòng chảy

Dạng	Góc	Góc mái (Surcharge Angle) độ)			
băng tải	máng	10	20	30	
Phẳng	0	0,0295	0,0591	0,0906	
	10	0,0649	0,0945	0,1253	
	15	0,0817	0,1106	0,1408	
	20	0,0963	0,1245	0,1538	
	25	0,1113	0,1381	0,1661	
Mána 2	30	0,1232	0,1488	0,1754	
Máng, 3 con lăn	35	0,1348	0,1588	0,1837	
Con fair	40	0,1426	0,1649	0,1882	
	45	0,15	0,1704	0,1916	
	50	0,1538	0,1725	0,1919	
	55	0,157	0,1736	0,1907	
	60	0,1568	0,1716	0,1869	
	30	0,1128	0,1399	0,1681	
Máng, 5 con lăn	40	0,1336	0,1585	0,1843	
	50	0,1495	0,1716	0,1946	
	60	0,1598	0,179	0,1989	
	70	0,1648	0,1808	0,1945	

4.2. Góc mái

Góc mái của một đống vật phẩm là góc hình thành giữa đường nằm ngang và mái dốc của đống vật phẩm. Các giá trị thông thường cho trong bảng 5.

			,				9
Bảng 5.	α'	· · · ·	~ 1	~ .	1	11	1 ^
Rangs	1 -00	$m\alpha i m\alpha i$	SO AC	าทด บสร	11011	เทา บสท	chinon
Dung J.	OU.	mai moi	so aa	iiiz vai	u	nii vaii	CHUVEH

Góc mái (độ)	Dạng vật liệu		
10	Vật liệu mịn, khô.		
20	Các vật liệu hạt (than, sỏi, quặng) có thể vận chuyển bằng các		
	dụng cụ thông thường.		
30	Các vật liệu hạt lớn hoặc được cấp lên băng bằng các dụng cụ đặc		
	biệt, đảm bảo tính đồng nhất của khối.		

Có thể tham khảo thêm các minh họa giá trị góc mái cho một số dạng vật phẩm khác nhau trên hình 5.

Hình 5. Góc mái của 1 số vật phẩm [4]

4.3. Khối lượng riêng tính toán

Khối lượng riêng tính toán của các khối vật phẩm có tính đến khoảng cách giữa các hạt hay các đối tượng khi vận chuyển. Lưu ý rằng giá trị này khác với giá trị khối lượng riêng thực sự của vật liệu.

Khối lượng riêng tính toán của một số vật liệu cho trong bảng 6.

Bảng 6. Khối lượng riêng tính toán của 1 số vật liệu

Vật liệu	Khối lượng riêng tính toán (tấn/m³)	Vật liệu	Khối lượng riêng tính toán (tấn/m³)
Cát khô	1,44 - 1,68	Muối nghiền	1,12 - 1,28
Cát ướt	1,84 - 2	Nhôm hạt	0,8-0,96
Đá mềm	1,6 - 1,76	Nhôm tán mịn	0,72 - 0,8
Đá tráp, vỡ	1,68 - 1,76	Quặng đồng	1,92 - 2,56
Đá vôi	1,52 - 1,6	Quặng nhôm	0,88 - 0,93
Đất khô	1,12 - 1,28	Quặng sắt	2,08 - 2,88
Đất sét khô	1 - 1,2	Than cốc dạng cám	0,4 - 0,54
Đất sét ướt	1,52 - 1,68	Than cốc tinh	0,56 - 0,64
Đất ướt	1,66 - 1,79	Than đá	0,83 - 0,96
Gỗ	0,61 - 0,75	Than mỏ	0,64 - 0,72
Lúa mạch	0,61	Xi măng Cơ-lanh-ke	1,28 - 1,52
Muối mỏ	0,72 - 0,82	Xi măng Porlan, khô	1,41 - 1,6

4.4. Hệ số ảnh hưởng của độ dốc băng tải

Băng tải càng đốc thì lưu lượng vận chuyển vật liệu được càng thấp. Hệ số giảm lưu lượng do độ dốc, s, cho trong bảng 7.

Bảng 7. Hệ số độ dốc băng tải

Góc dốc (độ)	Hệ số s	Góc dốc (độ)	Hệ số s
2	1	21	0,78
4	0,99	22	0,76
6	0,98	23	0,73
8	0,97	24	0,71
10	0,95	25	0,68
12	0,93	26	0,66
14	0,91	27	0,64
16	0,89	28	0,61
18	0,85	29	0,59
20	0,81	30	0,56

5. Tính toán công suất truyền dẫn băng tải

Công suất làm quay trục con lăn kéo băng tải được tính theo công thức sau:

$$P = P_1 + P_2 + P_3 + P_t (KW)$$
 (4)

Trong đó, P1 là công suất cần thiết kéo băng tải không tải chuyển động theo phương ngang; P2 là công suất cần thiết kéo băng tải có chất tải chuyển động theo phương ngang; P3

là công suất kéo băng tải có tải chuyển động theo phương đứng (nếu băng tải có độ dốc đi lên; nếu băng tải vân chuyển vật phẩm đi xuống, P3 mang giá tri âm); Pt là công suất dẫn đông cơ cấu gat vật phẩm.

Các thành phần công suất được tính toán như sau:

$$P_1 = \frac{f(l+l_o).W.V}{6120} \tag{5}$$

$$P_2 = \frac{f(l+l_o)Q_t}{367} = \frac{f(l+l_o)W_m \cdot V}{6120}$$
 (6)

$$P_3 = \frac{H.Q_t}{367} = \frac{H.W_m.V}{6120} \tag{7}$$

Trong các công thức này, các đai lương tính toán bao gồm:

- F là hê số ma sát của các ổ lăn đỡ con lăn;
- W là khối lương các bộ phân chuyển động của băng tải, không tính khối lương vật phẩm được vận chuyển (kg);
- Wm: Khối lượng vật phẩm phân bố trên một đơn vị dài của băng tải (kg/m);
- V : Vân tốc băng tải (m/phút)
- H: Chiều cao nâng (m)
- 1 : Chiều dài băng tải theo phương ngang (m)
- lo: Chiều dài băng tải theo phương ngang được điều chỉnh (m)

Các công thức tính phụ trợ:

$$W = \frac{W_C}{l_C} + \frac{W_r}{l_r} + 2W_1$$

$$H = l \tan \alpha$$
(8)

$$H = l \tan \alpha \tag{9}$$

$$W_m = \frac{Q_t}{0.06.V} \tag{10}$$

Với:

- Wl : Khối lương phân bố của băng tải (kg/m)
- Wc: Khối lương các chi tiết quay của một cum các con lặn đỡ tải (kg);
- Wr : Khối lương các chi tiết quay của một cum các con lặn đỡ nhánh bằng tải đi về;
- Pc : Bước các con lăn đỡ tải (m)
- Pr : Bước các con lặn đỡ nhánh chay không (m)
- α: Góc dốc của băng tải

Các số liệu tra cứu cho trong các bảng dưới đây.

Bảng 8. Hệ số ma sát và độ dài điều chỉnh băng tải

f	$l_{o}(m)$	Điều kiện làm việc
0.03		 a) Các băng tải tạm thời hoặc băng tải di động b) Các băng tải làm việc trong môi trường rất lạnh (đến -40°C); thường xuyên khởi động – dừng;
0.022	66	Các băng tải cố định, được căn chỉnh và bảo dưỡng theo quy chuẩn.
0.012		Sử dụng khi cần tính công suất phanh khi tải vật phẩm đi xuống (downhill)

Ghi chú: Các giá trị f và lo đi với nhau theo cặp. Nếu lấy f khác với giá trị trong bảng, có thể tính lo theo công thức:

$$l_o = \frac{0,77931}{f - 0,006436} + 15,93 \tag{11}$$

Bảng 9. Công suất dẫn động cơ cấu gạt, Pt (KW)

Dô rông hặng (mm)	Dạng c	ơ cấu gạt
Độ rộng băng (mm)	Cố định	Di chuyển
400; 450; 500; 600; 650	0,75	1,25
750; 800; 900	1,25	2,00
1000; 1050; 1200	2,15	3,15
1400; 1600	3,45	5,00
1800; 2000	4,40	6,30
2200; 2400	5,40	7,40
2600; 2800	6,20	8,50
3000; 3150	6,70	9,60

Bảng 10. Khối lượng băng tải chuyển động, không kể vật phẩm được vận chuyển

Chiều rộng đai (mm)	W(kg/m)	Chiều rộng đai (mm)	W(kg/m)
400	22	1.200	90
450	28	1.400	1 14
500	30	1.600	130
600	36	1.800	154
650	41	2.000	174
750	53	2.200	214
800	56	2.400	232
900	63	2.600	249
1.000	69	2.800	298
1.050	80	3.000	319
1.200	90	3.150	329

Bảng 11. Khối lượng các bộ phận quay

Chiều rộng đai	Wc	Wr	Chiều rộng đai	Wc	Wr
(mm)	$(kg/b\hat{o})$	$(kg/b\hat{o})$	(mm)	$(kg/b\hat{o})$	$(kg/b\hat{o})$
400	6,6	5,0	1.200	23,6	21,1
450	7,1	5,4	1.400	36,6	32,6
500	7,5	5,9	1.600	41,4	36,6
600	8,3	6,8	1.800	47,4	42,5
650	9,0	7,3	2.000	52,2	46,5
750	13,2	11,6	2.200	75	65
800	13,9	12,2	2.400	81	70
900	15,1	13,4	2.600	86	75
1.000	19,6	18,0	2.800	114	100
1.050	21,3	18,9	3.000	121	106
1.200	23,6	21,1	3.150	128	111

Ghi chú: Các giá trị cho với các con lăn bằng thép; các hãng sản xuất khác nhau có thể có các giá trị khác nhau; nên tra cứu tài liệu của hãng nếu cần.

Bảng 12. Khoảng cách (bước) các con lăn

Chiều rộng đai	Bước các con là	Bước các con lăn chạy	
(mm)	Lưu lượng dưới 1,6 tấn/ giờ	Lưu lượng trên 1,6 tấn/ giờ	không (m)
400	1,35	1,35	3,00
450	1,35	1,20	3,00
500	1,35	1,20	3,00
600	1,20	1,10	3,00
650	1,20	1,10	3,00
750	1,20	1,00	3,00
800	1,20	1,00	3,00
900	1,00	1,00	3,00
1.000	1,00	1,00	3,00
1.050	1,00	1,00	3,00
1.200	1,00	1,00	3,00
1.400	1,00	1,00	3,00
1.600	1,00	1,00	3,00
1.800	1,00	1,00	3,00
2.000	1,00	1,00	2,40
2.200	1,00	1,00	2,40
2.400	1,00	1,00	2,40
2.600	1,00	1,00	2,40
2.800	1,00	1,00	2,40

Ī	Chiều rộng đai Bước các con lặn mang tải (m)		Bước các con lăn chạy	
	(mm)	Lưu lượng dưới 1,6 tấn/ giờ	Lưu lượng trên 1,6 tấn/ giờ	không (m)
	3.000	1,00	1,00	2,40
	3.150	1,00	1,00	2,40

Bảng 13. Khối lượng phân bố dây băng tải W1

Chiều rộng đai (mm)	Khối lượng phân bố (kg/m)	Chiều dày gần đúng (mm)	Chiều rộng đai (mm)	Khối lượng phân bố (kg/m)	Chiều dày gần đúng (mm)
400	4,5	9	1.400	33,0	18
450	7,0		1.600	38,0	10
500	7,5	12	1.800	46,0	
600	9,0	12	2.000	51,0	
650	10,3		2.200	56,0	
750	13,0		2.400	61,0	20
800	13,8	13	2.600	66,0	20
900	15,5		2.800	71,0	
1,000	20,5		3.000	77,0	
1.050	23,0	17	3.150	81,0	
1.200	26,0		-	-	-

6. Lực căng dây băng tải

6.1. Tính toán thông thường

Hình 6 minh họa các thành phần lực cho một dây băng tải khi vận chuyển vật nặng lên phía trên (đốc lên – Uphill).

Hình 6. Các thành phần lực trên dây băng tải

Các thành phần lực được tính theo các công thức dưới đây.

6.1.1. Lực vòng F_P

$$F_P = \frac{6120P}{V} \text{ (kg)}$$
 (12)

Trong đó, P là công suất truyền dẫn (KW); V là vận tốc băng tải (m/phút).

6.1.2. Lực căng trên 2 nhánh băng tải

$$F_1 = F_P \frac{e^{\mu\theta}}{e^{\mu\theta} - 1} \tag{13}$$

$$F_2 = F_p \frac{1}{e^{\mu\theta} - 1} \tag{14}$$

Lưu ý các quan hệ tương tự bộ truyền đai: $F_1 = F_2 e^{\mu\theta}$ $F_1 - F_2 = F_P$

Trong đó:

+ FP: lực vòng (kg);

+ e: cơ số logarit tự nhiên;

+ μ : hệ số ma sát giữa dây đai và pu-ly ;

 $+\theta$: góc ôm giữa dây đại và pu-ly (radian).

6.1.3. Lực căng phát sinh khi leo/ xuống dốc

 $F_3 = W_1 l(\tan \alpha - f)$ (kg)

 $F_3' = W_1 \cdot l(\tan \alpha + f)$ (kg)

Trong đó:

+ F3: Lực cặng phát sinh khi kéo vật phẩm "leo dốc" (Uphill);

 $+ F_3'$: Lực căng phát sinh khi kéo vật phẩm "xuống dốc" (Downhill);

+ l: chiều dài vận chuyển tính theo phương ngang (mét);

 $+\alpha$: góc nghiên của đường vận chuyển so với phương ngang (độ);

+ f : hệ số ma sát giữa dây băng tải và các con lăn đỡ (Idler rolls);

6.1.3. Lực căng tối thiểu

Lực căng tối thiểu được xác định nhằm giữ cho dây băng tải không trượt quá 2% khoảng cách giữa các con lăn.

$$F_{4C} = 6.25 l_C (W_m + W_1) \text{ (kg)}$$
 (15)

$$F_{4r} = 6.25 l_r W_1 \text{ (kg)} \tag{16}$$

Trong đó:

- + F_{4C}: Lực căng tối thiểu trên nhánh căng (Carrier side)
- + F_{4r}: Lực cặng tối thiểu trên nhánh chùng (Return side)

Khi muốn an toàn hơn, có thể khống chế để dây không trượt quá 1% khoảng cách (bước) giữa các con lăn.

$$F_{4C} = 12.5 \, l_C (W_m + W_1) \text{ (kg)} \tag{17}$$

$$F_{4r} = 12, 5.l_r.W_1 \text{ (kg)} \tag{18}$$

6.1.4. Lực kéo lớn nhất

Lực kéo lớn nhất được sử dụng để tính chọn dây băng tải theo độ bền. Các công thức tính lực căng lớn nhất tùy thuộc dạng bố trí băng tải như trong bảng dưới đây. Với mỗi trường hợp, tiến hành tính toán theo tất cả các công thức rồi so sánh lấy giá trị lớn nhất.

Bảng 14. Các công thức tính lực kéo lớn nhất

Dạng băng tải	Tại pu-ly trước	Tại pu-ly sau
Băng tải nằm ngang	F_P+F_2	$F_P + F_2$
(Horizontal Conveyor)	$F_P + F_{4r}$	$F_P + F_{4C}$
(Horizontal Conveyor)	$F_P + F_{4c} - F_r$	$F_{4r} + F_r$
	$F_P + F_{4C} - F_r$	$F_P + F_2$
Băng tải "leo dốc"	$F_P + F_{4r} - F_r$	$F_P + F_{4C}$
(Uphill Conveyor)	$F_P + F_2$	$F_p + F_2 - F_r$
(Opinii Conveyor)	$F_P + F_{4r}$	$F_P + F_{4c} - F_r$
		$F_{4r}+ F_r $
	$F_P + F_2$	$F_P + F_2$
Băng tải "xuống đốc"	$F_P + F_{4r}$	$F_P + F_{4C}$
(Downhill Conveyor)	$F_P + F_{4C} - F_r$	$F_{4C} + F_r$
Không cần phanh $(P > 0)$	$F_2 + F_r$	$F_{4r} + F_r$
	$F_{4r} + F_r$	
Băng tải "xuống dốc"	$ F_P +F_2+F_r$	$ F_P +F_{4c}+F_r$
(Downhill Conveyor)	$ F_P + F_{4c} + F_r$	$ F_P + F_{4r} + F_r$
Có phanh (P < 0)	$F_{4r} + F_r$	$ F_P + F_2$

Trong đó, $F_r = f(l + l_o)(W_1 + W_r/l_r) - (H.W_1)$.

Bảng 15. Góc ôm của 1 số dạng truyền dẫn

Dạng truyền dẫn	Minh họa (*)	Góc ôm (độ)
(A) Truyền dẫn đơn		180
(B) Truyền dẫn đơn có bánh căng		200 - 220
(C) Truyền dẫn đơn, puly kép		220 ~ 240
(D) Truyền dẫn kép		400 - 440
(E) Truyền dẫn bằng 2 puly	Puly dẫn động 1	Puly 1: 170 ~ 220 Puly 2: 190 - 220

^(*) Puly truyền dẫn ký hiệu là vòng tròn tô đầy 2 góc phần tư.

Bảng 16. Hệ số ma sát giữa dây băng tải và puly

Dạng puly truyền dẫn	Điều kiện bề mặt tiếp xúc giữa dây băng tải và puly	Hệ số ma sát μ
	Bẩn và ướt	0.1
Puly thép	Åm	0.1-0.2
	Khô	0.3
Duly as ranh và nuly has	Dirty & Wet	0.2
Puly có rãnh và puly bọc cao su	Moist	0.2-0.3
	Dry	0.35

6.1.5. Ví dụ minh họa

Tính công suất truyền dẫn và lực căng băng tải cho sơ đồ như hình vẽ, các số liệu cho trước:

B = 1.200 mm;	$l_r = 2 \text{ m};$
$Q_t = 2.400 t \hat{a}n/gi \hat{o};$	f = 0.022;
V = 150 m/ phút;	$\mu = 0.3;$
l = 234 m;	$\theta = 210^{\circ}$

$$h = 30 \text{ m};$$
 $W_1 = 26 \text{ kg/m};$ $l_C = 1 \text{ m};$ $W_C = 23.6 \text{ kg/m};$ $W_T = 21.1 \text{ kg/m};$

$$W = 2 \cdot 26 + \frac{23.6}{1} + \frac{21.1}{2} = 86.2$$

Công suất truyền dẫn

$$P_1 = \frac{0.022(234+66).86,2.150}{6120} = 13.9 \text{ (KW)}$$

$$P_{1} = \frac{0,022(234 + 66).86,2.150}{6120} = 13,9 \text{ (KW)}$$

$$P_{2} = \frac{0,022(234 + 66).86,2.2400}{367} = 43,2 \text{ (KW)}$$

$$P_3 = \frac{30.2400}{367} = 196.2 \text{ (KW)}$$

$$P = 19.9 + 43.2 + 196.2 = 253.3 \text{ KW}$$

• Các lực căng

$$F_P = \frac{253.6120}{150} = 10335 \text{ (kg)}$$

$$F_2 = 10335.0,499 = 5157 \text{ (kg)}$$

$$F_3 = 26.30 - 0.022(234 + 66) \left(26 + \frac{21.1}{2}\right) = 539 \text{ kg}$$

Tính đơn giản: $F_3 = 26.30 - 0.022.26.234 = 646 \text{ kg}$

$$F_{4C} = 6,255.1.(26 + 266,7) = 1829 \text{ (kg)}$$

$$F_{4r} = 6,25.2.26 = 325 \text{ (kg)}$$

$$F_{\text{max}} = 10335 + 5{,}157 = 15{,}492 \text{ (kg)}$$

$$T_S = \frac{15492.12}{117.4} = 297 \text{ (kg/cm.ply)}$$

6.2. Tính toán băng tải nhiều pu-ly truyền dẫn

Khi tính toán theo cách thức thông thường như trên, nhiều khi ta gặp phải tình huống lực căng trong dây băng tải, hoặc công suất cần thiết của động cơ kéo băng tải, thậm chí là cả hai thông số này là quá lớn. Lời giải cho vấn đề là sử dụng nhiều hệ động cơ- puly truyền dẫn.

Các công thức tính toán cho hệ thống 2 puly truyền dẫn đơn giản (xem hình 4) như dưới đây.

$$F_{C} = f(l+l_{o}) \left(W_{1} + \frac{W_{C}}{l_{C}} + W_{m}\right) + h(W_{1} + W_{m})$$
(19)

$$F_{r} = f(l + l_{o}) \left(W_{1} + \frac{W_{r}}{l_{r}} \right) - hW_{1}$$
 (20)

$$F_P = F_C + F_r = F_{P1} + F_{P2} (21)$$

Ghi chú: Với băng tải "xuống dốc", đổi dấu các số hạng có chứa h trong các công thức trên.

6.2.1. Tính theo lý thuyết về lực vòng

$$F_{P1} = F_P - F_{P2} \tag{22}$$

$$F_{P2} = \frac{e^{\mu_2 \theta_2} - 1}{e^{\mu_1 \theta_1 + \mu_2 \theta_2} - 1} \left\{ F_P + F_r \left(e^{\mu_1 \theta_1} - 1 \right) \right\}$$
 (23)

Khi
$$\mu_1 = \mu_2 = \mu$$
; $\theta_1 = \theta_2 = \theta$ thì $F_{P2} = \frac{1}{e^{\mu\theta} + 1} \{ F_P + F_r (e^{\mu\theta} - 1) \}$

$$F_{21} = F_{P1} \frac{1}{e^{\mu_1 \theta_1} - 1} \tag{24}$$

$$F_{22} = F_{P2} \frac{1}{e^{\mu_2 \theta_2} - 1} \tag{25}$$

6.2.2. Phương pháp phân phối lực căng giữa 2 động cơ

Khi
$$M_1/M_2 = 1/1$$
 thì $F_{P1} = F_{P2} = F_P/2$ (26)

Khi
$$M_1/M_2 = 2/1$$
 thì $F_{P1} = 2/3F_P$; $F_{P2} = 1/3F_P$ (27)

Trong các công thức trên, các đại lượng có ý nghĩa như sau:

- M₁: Công suất định mức của động cơ tại puly 1 (KW);
- M₂: Công suất định mức của động cơ tại puly 2 (KW);
- M: Công suất tổng của 2 động cơ (KW);
- F_P: Tổng lực vòng (kg);
- F_{P1}: Lực vòng tại vị trí puly 1 (kg);
- F_{P2}: Lực vòng tại vị trí puly 2 (kg);
- F₁₁: lưc kéo trong nhánh căng tai vi trí puly 1 (kg);
- F₁₂: lực kéo trong nhánh căng tại vị trí puly 2 (kg);
- F₂₁: lực kéo trong nhánh chùng tại vị trí puly 1 (kg);
- F₂₂: lực kéo trong nhánh chùng tại vị trí puly 2 (kg);
- F_C: Lực kéo trong nhánh căng để thắng ma sát (kg);
- F_r: Lực kéo trong nhánh chùng để thắng ma sát (kg);

6.2.3. Ví dụ tính toán nhiều puly dẫn động

Các số liệu cho trước:

$$\begin{split} B &= 1400 \text{ mm}; & W_1 &= 33 \text{ kg/m}; & f &= 0,022; \\ Q_t &= 6000 \text{ tắn/ giờ}; & W_C &= 36,6 \text{ kg}; & \mu_1 &= \mu_2 &= 0,25; \end{split}$$

$$V = 250 \text{ m/ phut;} \qquad W_r = 32,6 \text{ kg;} \qquad \qquad \theta_1 = \theta_2 = 210^\circ = 3,67 \text{ rad;}$$

$$l = 3900 \text{ m};$$
 $l_C = 1 \text{ m};$ $W_m = 400 \text{ kg/m};$

$$h = 0 m;$$
 $l_r = 2 m.$

$$F_c = 0.022 (3900 + 66) (33 + 36.6/1 + 400) = 40974 (kg)$$

$$F_r = 0.022 (3900+66) (33+32.6/2) = 4302 (kg)$$

$$F_n = 40974 + 4302 = 45276 \text{ (kg)}$$

$$F_3 = 0$$

$$F_{4c} = 6.25 \times 1 (33 + 400) = 2706 (kg)$$

$$F_{4r} = 6,25 \times 2 \times 33 = 413 \text{ (kg)}$$

Tính theo lý thuyết:

$$F_{P2} = \frac{1}{e^{0.25*3.67} + 1} \left\{ 45276 + 4302 \left(e^{0.25*3.67} - 1 \right) \right\} = 13869 \text{ (kg)}$$

$$F_{P1} = 45276 - 13869 = 31407 \text{ (kg)}$$

$$F_{21} = 31407 * \frac{1}{e^{0.25*3.67} - 1} = 20938 \text{ (kg)}$$

$$F_{22} = 13869 * \frac{1}{e^{0.25*3.67} - 1} = 9246 \text{ (kg)}$$

Tính theo phương pháp phân phối lực căng giữa 2 động cơ

$$F_{P1} = F_{P2} = 45276/2 = 22638 \text{ (kg)}$$

$$F_{21} = F_{22} = 22638 \frac{1}{e^{0.25*3.67} - 1} = 15092 \text{ (kg)}$$

Các biểu đồ phân bố lực:

*. Phương pháp lý thuyết

*. Phương pháp phân phối giữa 2 động cơ

So sánh kết quả:

	Theoretical Method	Distribution Method
Effective tension (Axle power)	45,276 kg (1,850 kw)	45,276 kg (1,850 kw)
Min. required motor power	2,000 kw	2,000 kw
Motor power for primary drive pulley	1,400 kw	1,000 kw
Motor power for secondary drive pulley	600 kw	1,000 kw
Max. working tension	52,345 kg	56,003 kg

6.2.4. Kết quả cho một số sơ đồ bố trí các puly dẫn động

Số liệu cho trước tương tự như trong ví dụ trên. Nếu số lượng puly dẫn động và cách bố trí khác nhau sẽ dẫn đến lực căng trong các dây băng tải khác nhau. Các kết quả tính toán được tóm tắt trong các sơ đồ dưới đây để tham khảo, so sánh.

1. Một puly dẫn động, đặt ở phía trước

2. Một puly dẫn động, đặt ở phía sau

3. Puly dẫn động kép, đặt trước

4. Hai puly dẫn động, đặt trước

5. Hai puly dẫn động, 1 trước, 1 sau (ví dụ 6.2.3)

6. Hai puly dẫn động trước, hai puly dẫn động sau

7. Tính chọn dây băng tải

Trước hết, cần lưu ý về vật liệu dây băng tải. Dây băng tải cần được chọn phù hợp với môi trường làm việc, sao cho có thể tránh các ăn mòn hóa học. Các loại dây băng tải thông dụng bao gồm: dây sợi thép (Steel Cord); các loại dây được dệt nhiều lớp (Multi-ply Fabric).

Các băng tải sợi thép được ký kiệu ST và kèm theo 1 con số. Ví dụ ST-500; ST-1250. Giá trị số trong ký hiệu chỉ độ bền cho phép (kg/cm) tính trên một đơn vị chiều rộng dây.

Các dây băng tải dệt được ký hiệu tên vật liệu dây, kèm theo hai số liệu chỉ giá trị độ bền và số lớp dệt. Ví dụ EP 160/2. Nếu ký hiệu chỉ có một giá trị, ví dụ NF-75, nghĩa là con số chỉ giá trị độ bền của một lớp dệt.

Thông số đánh giá sức bền của dây băng tải được tính theo giá trị lực kéo lớn nhất tác dung lên dây F_{max} theo công thức sau:

Với đai sợi thép:

$$ST - No = \frac{F_{\text{max}} * SF}{B} \tag{28}$$

Trong đó, Fmax là lực kéo lớn nhất (kg); SF là hệ số an toàn; B là chiều rộng dây băng tải tính bằng centimetre.

Sau khi tính được lực kéo đơn vị ST-No, tiến hành tra bảng chọn dây có giá trị lực kéo đơn vị lớn hơn và gần nhất với giá trị tính được. Bảng tra được trình bày dưới đây.

Bảng 17. Các loại băng tải sợi thép tiêu chuẩn

ST-400	ST-800	ST-1600	ST-3150
ST-500	ST-1000	ST-2000	ST-4000
ST-630	ST-1250	ST-2500	ST-5000

Với đai dệt nhiều lớp:

$$F.TS = \frac{F_{\text{max}} * SFz}{Be} \tag{29}$$

Trong đó, Fmax là lực kéo lớn nhất (kg); SFz là hệ số an toàn; Be là chiều rộng hữu ích của dây đai (tính bằng cm). Chiều rộng hữu ích được tính bằng chiều rộng thực của dây trừ đi phần mép bọc cao su. Phần mép bọc thường có chiều rộng 3 cm.

Sau khi tính được F.TS, tra bảng chọn dây có giá trị lớn hơn gần nhất với giá trị tính được.

Bảng 18. Các dây băng tải dệt nhiều lớp

Polyester Fabric	Nylon Fabric
EP160/2	NF160/2
EP200/2	NF200/2
EP250/2	NF250/2
EP315/2-3	NF315/2-3
EP400/2-4	NF400/2-4
EP500/2-4	NF500/2-4
EP6 30/3-4	NF630/3-4
EP800/3-5	NF800/3-5
EP1000/4-5	NF1000/4-5
EP1250/4-5	NF1250/4-5
EP1600/5	NF1600/4-5
	NF2000/4-5
	NF2500/5-6
	NF3150/6

Bảng 19 .Hệ số an toàn cho băng tải sợi thép

Vật phẩm	A	1	В		
Cỡ hạt	<30mm	>30mm	<30mm	>30mm	
Chu kỳ (phút)					
Dưới 3,0	8	8	8	9	
3,0-10,0	7	7	7	7	
Trên 10,0	6,7	6,7	6,7	6,7	

Bảng 20. Hệ số an toàn cho băng tải dệt

Vật phẩm	A	1	В		
Cỡ hạt	<30mm	>30mm	<30mm	>30mm	
Chu kỳ (phút)					
Dưới 1,0	11	11	11	12	
1,0-3,0	10	11	11	11	
3,0-10,0	9	9	10	10	
Trên 10,0	8	8	8	8	

Nhóm vật phẩm A bao gồm các vật liệu mềm như: Thóc, bột giấy, giấy, phoi gỗ, tro, đất sét, than củi, vôi, cát, muối, xi măng, bô rắc. Nhóm vật phẩm B bao gồm các vật liệu cứng, có cạnh sắc: Than mỏ, gỗ cây, đá vôi, cờ lanh ke, than cốc, kính vỡ, các loại quặng.

8. Cấu trúc hệ thống băng tải

8.1. Xác định đường kính puly

Các puly được chia thành 3 nhóm A, B và C như trong bảng 21. Xem minh họa trên hình 7.

Hình 7. Minh họa các loại puly

Bảng 21. Quan hệ đường kính các puly

	Nhóm puly	A	В	C
Đường kính	ı tối thiểu	D	0,8D	0,6D
Phạm vi ứng dụng	Dạng ứng dụng	động	Puly căng dây Puly phía sau	Puly dẫn hướng
	Lực kéo dây tại vị trí puly	Trên 80%	Từ 60 đến 80%	Dưới 60%

Đường kính puly tối thiểu cho các loại dây băng tải cho trong các bảng sau.

Bảng 22. Đường kính puly cho băng tải sơi thép

Ký hiệu	Đường kính sợi	Khoảng cách giữa	Độ bền kéo mỗi sợi	Đường kính puly tối thiểu (mm)			
ixy iiiçu	thép (mm)	các sợi (mm)	(kg)	A	В	C	
ST-500	2,5	12,0	675	500	400	300	
ST-630	2,5	10,0	675	550	440	330	
ST-800	2,9	10,0	858	600	480	360	
ST-1000	3,6	12,0	1.281	700	560	420	
ST-1250	4,1	12,0	1.601	750	600	450	
ST-1500	4,4	12,0	1.900	850	680	510	
ST-1600	4,6	12,0	2.050	900	720	540	
ST-2000	5,4	12,0	2.690	950	760	570	
ST-2500	6,2	15,0	4.000	1.250	1.000	750	
ST-3000	6,8	15,0	4.690	1.350	1.080	810	
ST-3150	7,1	15,0	4.956	1.400	1.120	840	
ST-3500	7,5	15,0	5.570	1.450	1.160	870	
ST4000	8,1	15,0	6.400	1.650	1.320	990	
ST-4500	8,6	15,0	7.070	1.850	1.480	1.110	
ST-5000	9,2	15,0	8.060	2.050	1.640	1.230	

Bảng 23. Đường kính puly tối thiểu cho băng tải dệt (mm)

Mức độ chịu tải Loại dây	•			•			Chịu khả nă	kéo < ăng cho	
	A	В	C	A	В	C	A	В	C
160/2	250	200	160	200	160	125	160	160	125
200/2	250	200	160	200	160	125	160	160	125
250/2 315/3	320	250	200	250	200	160	200	200	160
315/2 400/3 500/3	400	320	250	320	250	200	250	250	200

Mức độ chịu tải Loại dây		•	Chịu kéo 60-100% khả năng cho phép			Chịu kéo 30-60% khả năng cho phép			Chịu kéo < 30% khả năng cho phép			
				A	В	C	A	В	C	A	В	C
400/2	630/4	500/4	630/3	500	400	320	400	320	250	320	320	250
630/5	800/4	1000/3		630	500	400	500	400	320	400	400	320
800/5	1250/4	1000/4		800	630	500	630	500	400	500	500	400
1000/5	1600/4	1600/5		1000	800	630	800	630	500	630	630	500

8.2. Kết cấu puly

Trong hầu hết các trường hợp, dùng puly hình trụ.

Puly côn hai đầu (Crown pulleys) chỉ được dùng trong 1 số trường hợp đặc biệt để chỉnh hướng băng tải, băng tải dạng gầu (Bucket elevator), hoặc căng băng tải nếu chiều dài căng băng lớn. Puly côn không được dùng cho dây băng tải sợi thép hoặc có kết cấu dẫn động kép. Kết cấu puly côn cho trên hình 8. Độ côn có thể lấy bằng 1: 10 hoặc lấy kích thước d = D - 0.008D.

Hình 8. Kết cấu puly

8.2. Khoảng cách giữa các con lăn

Các con lăn đỡ nhánh chùng của dây băng tải thường được đặt cách nhau 3 mét. Các con lăn đỡ nhánh căng thường đặt cách đều nhau, hoặc bố trí không đều theo các hướng dẫn dưới đây.

Độ rộng		Khố	i lượng riên	g tính toán vá	ật phẩm (kg/n	n ³)
băng tải (mm)	480	800	1200	1600	2000	2400
300-400	1,7	1,7	1,5	-	-	-
450-500	1,7	1,7	1,5	1,5	_	-
600	1,7	1,7	1,5	1,5	1,4	1,0
650	1,5	1,5	1,4	1,4	1,3	1,0
750	1,5	1,5	1,4	1,4	1,3	1,0
800	1,5	1,5	1,4	1,4	1,2	1,0
900	1,5	1,5	1,4	1,4	1,2	1,0
1000	1,5	1,4	1,2	1,2	1,0	1,0
1050	1,5	1,4	1,2	1,2	1,0	0,9
1200	1,5	1,4	1,0	1,0	0,9	0,8
1350	1,4	1,2	0,9	0,9	0,8	0,8
1400	1,2	1,2	0,9	0,9	0,8	0,8
1500	1,2	1,2	0,9	0,9	0,8	0,8
1600	1,2	1,2	0,8	0,8	0,8	0,6
1700	1,2	1,2	0,8	0,8	0,8	0,6
1800	1,2	1,2	0,8	0,8	0,8	0,6
2000	1 2	1 2	0.8	0.8	0.8	0.6

Bảng 24. Khoảng cách trung bình giữa các con lăn đỡ nhánh căng (m)

Bố trí con lăn đỡ không đều

Trong các hệ thống băng tải có tải trọng lớn, khoảng cách vận chuyển xa, có thể bố trí khoảng cách không đều giữa các con lăn ở các vùng khác nhau. Vì lực kéo trong dây băng thay đổi dọc theo chiều dài, do vậy, khoảng cách giữa các con lăn chịu tải sẽ nhỏ nhất ở vùng dây có lực kéo bé và tăng dần khi lực kéo tăng.

Có thể tính toán khoảng cách giữa các con lăn như sau:

$$L = \frac{0.02 * 8 * 10^3 * T}{M_I}$$
 (m)

Trong đó, T là lực kéo dây đai tại vùng tính toán (kg); M_l là khối lượng của dây và tải đang được vận chuyển (kg/m). Giá trị tải đang vận chuyển có thể tính theo công thức:

$$Q_{live} = \frac{1000 * Q_t}{60 * V} \text{ (kg/m)}$$
 (31)

Tuy vậy, cần hết sức lưu ý và tính toán cẩn thận, xem xét mọi tình huống lực kéo có thể có trước khi quyết định bố trí các con lăn không đều nhau.

	Chiầu rông	rđại mm	Khoảng cách tối đa, m	m Khoảng các
Bång 2	25. Khoảng	cách tổi đơ	a và tối thiểu của các con	lăn máng

Chiều rộng đai, mm	Khoảng cách tối đa, mm	Khoảng cách tối thiểu, mm
450	3400	700
600	3000	600
750	3000	600
900	3000	500
1050	2800	450
1200	2800	450
1350	2800	450
1500	2400	450
1800	2400	400

Có thể sử dụng các hướng dẫn nhanh như sau để xác định khoảng cách giữa các con lăn:

- Con lăn đỡ nhánh chùng: lấy khoảng 3 mét;
- Con lăn nạp liệu động (Impact idlers): lấy bằng khoảng ¼ hoặc ½ khoảng cách giữa các con lăn mang tải (con lăn trên nhánh căng);
- Con lăn đỡ trong vùng lượn của dây băng: tối đa ½ khoảng cách của các con lăn đỡ thông thường trên nhánh tương ứng.

Khoảng cách chuyển tiếp giữa con lăn cuối cùng với puly

Với các băng tải có các con lăn tạo thành máng, cần có khoảng cách nhất định giữa các con lăn cuối cùng với puly đủ để dây băng tải chuyển thành dạng phẳng và được cuốn vào puly.

Hình 9. Khoảng cách chuyển tiếp b giữa con lăn cuối cùng với puly

Trên hình 9 bên trái, mặt puly nằm ngang với đường trung bình của máng dẫn vật phẩm. Còn ở hình bên phải, mặt puly nằm cùng độ cao với đáy máng. Khoảng cách tối thiểu giữa con lăn cuối cùng và puly có thể tham khảo nhanh trong bảng dưới đây.

Bảng 26. Tham khảo nhanh khoảng cách chuyển tiếp

Tỷ lệ giữa lực kéo ở vùng chuyển tiếp với lực kéo lớn nhất	Khoảng cách chuyển tiếp
Trên 80%	b
80 - 60%	0,8b
Dưới 60%	0,6b

Bảng 27. Khoảng cách chuyển tiếp cho băng tải sợi thép, tính bằng số lần chiều rộng băng tải.

Vị trí m	ıặt puly]	Ngang tá	àm máng	Ţ,		Ngang đ	áy máng	
Góc m	áng 🔿	20°	30°	35°	45°	20°	30°	35°	45°
	600	0,55	0,80	0,95	1,20	1,10	1,65	1,90	2,40
	650	0,60	0,90	1,05	1,30	1,20	1,75	2,05	2,60
	750	0,70	1,00	1,20	1,50	1,40	2,05	2,40	3,00
	800	0,75	1,10	1,25	1,60	1,50	2,15	2,55	3,20
	900	0,85	1,20	1,45	1,80	1,65	2,45	2,85	3,65
	1.000	0,95	1,35	1,60	2,00	1,85	2,70	3,15	4,05
Chiều	1.050	1,00	1,45	1,65	2,10	1,95	2,85	3,35	4,25
rộng	1.200	1,10	1,65	1,90	2,40	2,20	3,25	3,80	4,85
băng	1.400	1,30	1,90	2,20	2,80	2,55	3,80	4,45	5,65
tải	1.600	1,45	2,15	2,55	3,20	2,95	4,30	5,05	6,45
(mm)	1.800	1,65	2,45	2,85	3,65	3,30	4,85	5,70	7,25
	2.000	1,85	2,70	3,15	4,05	3,65	5,40	6,35	8,05
	2.200	2,00	2,95	3,50	4,45	4,05	5,90	6,95	8,85
	2.400	2,20	3,25	3,80	4,85	4,40	6,45	7,60	9,65
	2.600	2,40	3,50	4,10	5,25	4,75	7,00	8,25	10,45
	2.800	2,55	3,80	4,45	5,65	5,15	7,55	8,85	11,25
	3.000	2,75	4,05	4,75	6,05	5,50	8,05	9,50	12,05
	3.150	2,90	4,30	5,00	6,40	5,80	8,60	10,00	12,70

Bảng 28. Khoảng cách chuyển tiếp cho băng tải dệt, tính bằng số lần chiều rộng băng tải.

Vị trí m	ıặt puly		Ngang tâm máng				Ngang đáy máng			
Góc m	áng 🔿	20 °	30°	35°	45°	20°	30°	35°	45°	
Chiều	600	0,30	0,40	0,50	0,60	0,55	0,80	0,95	1,20	
rộng	650	0,30	0,45	0,55	0,65	0,60	0,90	1,05	1,30	
băng	750	0,35	0,50	0,60	0,75	0,70	1,00	1,20	1,50	
tải	800	0,40	0,55	0,65	0,80	0,75	1,10	1,25	1,60	

Vị trí mặt puly		Ngang tâm máng				Ngang đáy máng			
Góc máng →		20°	30°	35°	45°	20°	30°	35°	45°
(mm)	900	0,40	0,60	0,70	0,90	0,85	1,20	1,45	1,80
	1.000	0,45	0,70	0,80	1,00	0,95	1,35	1,60	2,00
	1.050	0,50	0,70	0,85	1,05	0,95	1,40	1,65	2,10
	1.200	0,55	0,80	0,95	1,20	1,10	1,60	1,90	2,40
	1.400	0,65	0,95	1,10	1,40	1,30	1,90	2,20	2,80
	1.600	0,75	1,10	1,25	1,60	1,45	2,15	2,55	3,20
	1.800	0,85	1,20	1,45	1,80	1,65	2,45	2,85	3,60
	2.000	0,95	1,35	1,60	2,00	1,85	2,70	3,15	4,00
	2.200	1,00	1,50	1,75	2,20	2,00	2,95	3,50	4,40
	2.400	1,10	1,60	1,90	2,40	2,20	3,25	3,80	4,80
	2.600	1,20	1,75	2,05	2,60	2,40	3,50	4,10	5,20
	2.800	1,30	1,90	2,20	2,80	2,55	3,75	4,45	5,60
	3.000	1,40	2,05	2,40	3,00	2,75	4,05	4,75	6,00

Tài liệu tham khảo

- [1]. Bridgestone, Conveyor Belt Design Manual;
- [2]. Funner Dunlop, Conveyor Handbook
- [3]. Funner Dunlop, Selecting the Proper Conveyor Belt;
- [4]. CSMA, Belt Conveyors for Bulk Materials.