Отчёт по лабораторной работе №6

Дисциплина: Математическое моделирование

Исаев Булат Абубакарович НПИбд-01-22

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Код лабораторной	9
4	Наш код	11
5	Выводы	13
Список литературы		14

Список иллюстраций

2.1	Узнаём наш вариант по формуле ("Номер Студенческого" % "Коли-			
	чество вариантов" + 1)	6		
2.2	Просматриваем наше задание	6		
2.3	Смотрим на пример решения задачи	7		
2.4	Изучаем задачу лабораторной	8		
3.1	Просматриваем график, полученный по уравнению этой лабораторной	10		
4 1	Просматриваем графики полученные по уравнениям нашей	12		

Список таблиц

1 Цель работы

Придумайте свой пример задачи об эпидемии, задайте начальные условия и коэффициенты пропорциональности. Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: а. если $I(0) \le I$

2 Выполнение лабораторной работы

Формула для выбора варианта: (1132227131 % 70) + 1 = 22 вариант.

PS C:\Windows\system32> 1132227131 % 70 + 1 22

Рис. 2.1: Узнаём наш вариант по формуле ("Номер Студенческого" % "Количество вариантов" + 1)

Вариант 22

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=10~800) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=208, А число здоровых людей с иммунитетом к болезни R(0)=41. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0).

Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

1) если $I(0) \leq I^*$

2) если $I(0) > I^*$

Рис. 2.2: Просматриваем наше задание

Задача об эпидемии

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа - это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) - это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha S, \text{ если } I(t) > I^* \\ 0, \text{ если } I(t) \le I^* \end{cases}$$
 (1)

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится, т.е.:

$$\frac{dI}{dt} = \begin{cases} \alpha S - \beta I, \text{ если } I(t) > 1^* \\ -\beta I, \text{ если } I(t) \le 1^* \end{cases}$$
 (2)

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни)

$$\frac{dR}{dt} = \beta I \tag{3}$$

Постоянные пропорциональности α, β - это коэффициенты заболеваемости и выздоровления соответственно.

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия .Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \le I^*$ и $I(0) > I^*$

Рис. 2.3: Смотрим на пример решения задачи

Лабораторная работа № 5

Задание

Придумайте свой пример задачи об эпидемии, задайте начальные условия и коэффициенты пропорциональности. Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- а) если $I(0) \le I^*$
- б) если $I(0) > I^*$

Рис. 2.4: Изучаем задачу лабораторной

3 Код лабораторной

Начало

a=0.01; // коэффициент заболеваемости b=0.02; // коэффициент выздоровления N=2000; // общая численность популяции I0=300; // количество инфицированных особей в начальный момент времени R0=0; // количество здоровых особей с иммунитетом в начальный момент времени S0=N-10-R0; // количество восприимчивых к болезни особей в начальный момент времени

// случай, когда $I(0) \le I$ function dx = syst(t, x) dx(1) = 0; dx(2) = -bx(2); dx(3) = b*x(2); endfunction

t0 = 0; x0=[S0;I0;R0]; // начальные значения t = [0: 0.01: 200]; y = ode(x0, t0, t, syst);

plot(t, y); // построение динамики изменения числа особей в каждой из трех групп hl=legend(['S(t)'; 'I(t)'; 'R(t)']);

Конец

Рис. 3.1: Просматриваем график, полученный по уравнению этой лабораторной

4 Наш код

Начало

N=1000; // общая численность популяции a=0.01; // коэффициент заболеваемости b=0.02; // коэффициент выздоровления $I_star=200;$ // критическое число заболевших I0=99; // начальное количество инфицированных R0=5; // начальное количество выздоровевших S0=N-I0-R0; // начальное количество восприимчивых

```
восприимчивых

// Определение системы уравнений function dx = epidemic_model(t, x) S = x(1); I
= x(2); R = x(3);

if I > I_star then
    dSdt = -a*S;
    dIdt = a*S - b*I;

else
    dSdt = 0;
    dIdt = -b*I;

end;

dRdt = b*I;

dx = [dSdt; dIdt; dRdt];
    endfunction
    t0 = 0; t = 0:0.1:200;
```

 $y = ode([S0; I0; R0], t0, t, epidemic_model);$

// График plot(t, y(1, :), 'b', t, y(2, :), 'r', t, y(3, :), 'g'); legend("Восприимчивые S(t)", "Инфицированные I(t)", "Выздоровевшие R(t)"); xlabel("Время"); ylabel("Численность особей"); title("Моделирование эпидемии"); grid on;

Конец

Рис. 4.1: Просматриваем графики, полученные по уравнениям нашей

5 Выводы

Мы научились работать с моделью об эпидемии

Список литературы

[1]

1. Модель об эпидемии [Электронный ресурс]. URL: https://habr.com/ru/articles/551682/.