Самостійна робота з курсу "Теорія міри"

Студента 3 курсу групи МП-31 Захарова Дмитра

25 листопада 2023 р.

Завдання

Умова. Довести, що функція $f: \mathbb{R}^2 \to \mathbb{R}$ є борельовою:

$$f(x,y) = \frac{\operatorname{sign}(\sin(xy))}{1+y^2}, (x,y) \in \mathbb{R}^2$$

Розв'язок. Помітимо, що $f=\frac{g}{h}$ де

$$g(x,y) = sign(sin(xy)), h(y) = 1 + y^2$$

Доведемо, що як g, так і h є борельовою, звідки буде випливати те, що f теж борельова.

Отже, почнемо з g. Ми можемо записати g як композицію $g_1 \circ g_2 \circ g_3$, де

$$g_1(x) = sign(x), \ g_2(x) = sin x, \ g_3(x,y) = xy$$

Покажемо, що g_i є борельовими.

- g_1 є монотонною, тому вона є борельовою.
- g_2 є неперервною, тому теж є борельовою.
- g_3 також є неперервною на \mathbb{R}^2 , тому є борельовою.

Отже, користуючись відповідною теоремою, композиція борельових множин ϵ також борельовою.

Також легко бачити, що h є борельовою, оскільки є неперервною.

Згідно теоремі про властивості вимірних функцій, $\frac{g}{h}\mathbb{1}_{\{(x,y)\in\mathbb{R}^2:h(y)\neq 0\}}$ є борельовою, проте оскільки $\{(x,y)\in\mathbb{R}^2:h(y)=1+y^2\neq 0\}=\mathbb{R}^2$, то $\mathbb{1}_{\{\dots\}}\equiv 1$ і тому $f=\frac{g}{h}$ теж є борельовою.