

Schletter, Inc.		25° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	18.56 psf	Sloped Roof Snow Load, P _s =
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 19.00 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.100	- -
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	approx and morning contact.

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>612.84</u>	<u>6367.08</u>	k
Compressive Load =	3769.53	<u>4936.11</u>	k
Lateral Load =	343.70	3377.88	k
Moment (Weak Axis) =	0.69	0.30	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 178985.8 in-lbs Resisting Force Required = 2503.30 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4172.16 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 812.06 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2030.14 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 812.06 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballast Width				
	<u>35 in</u>	<u>36 in</u>	<u>37 in</u>	<u>38 in</u>		
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs		

ASD LC		1.0D	+ 1.0S		1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1261 lbs	1261 lbs	1261 lbs	1261 lbs	1456 lbs	1456 lbs	1456 lbs	1456 lbs	1921 lbs	1921 lbs	1921 lbs	1921 lbs	-289 lbs	-289 lbs	-289 lbs	-289 lbs
F _B	1303 lbs	1303 lbs	1303 lbs	1303 lbs	2100 lbs	2100 lbs	2100 lbs	2100 lbs	2432 lbs	2432 lbs	2432 lbs	2432 lbs	-3056 lbs	-3056 lbs	-3056 lbs	-3056 lbs
F _V	151 lbs	151 lbs	151 lbs	151 lbs	1454 lbs	1454 lbs	1454 lbs	1454 lbs	1191 lbs	1191 lbs	1191 lbs	1191 lbs	-1624 lbs	-1624 lbs	-1624 lbs	-1624 lbs
P _{total}	10123 lbs	10339 lbs	10555 lbs	10771 lbs	11116 lbs	11332 lbs	11548 lbs	11764 lbs	11912 lbs	12128 lbs	12344 lbs	12560 lbs	1190 lbs	1320 lbs	1449 lbs	1579 lbs
M	3080 lbs-ft	3080 lbs-ft	3080 lbs-ft	3080 lbs-ft	3723 lbs-ft	3723 lbs-ft	3723 lbs-ft	3723 lbs-ft	4814 lbs-ft	4814 lbs-ft	4814 lbs-ft	4814 lbs-ft	5025 lbs-ft	5025 lbs-ft	5025 lbs-ft	5025 lbs-ft
е	0.30 ft	0.30 ft	0.29 ft	0.29 ft	0.33 ft	0.33 ft	0.32 ft	0.32 ft	0.40 ft	0.40 ft	0.39 ft	0.38 ft	4.22 ft	3.81 ft	3.47 ft	3.18 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft							
f _{min}	246.6 psf	245.8 psf	245.1 psf	244.3 psf	265.9 psf	264.5 psf	263.3 psf	262.1 psf	273.0 psf	271.5 psf	270.0 psf	268.6 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	335.9 psf	332.6 psf	329.5 psf	326.5 psf	373.8 psf	369.4 psf	365.3 psf	361.4 psf	412.5 psf	407.1 psf	401.9 psf	397.1 psf	156.7 psf	136.3 psf	125.8 psf	119.8 psf

Maximum Bearing Pressure = 412 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_O = 2505.3 \text{ ft-lbs}$

Resisting Force Required = 1717.91 lbs S.F. = 1.67

Weight Required = 2863.19 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		35 in			35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	290 lbs	588 lbs	190 lbs	808 lbs	2127 lbs	731 lbs	120 lbs	172 lbs	21 lbs		
F _V	202 lbs	197 lbs	205 lbs	148 lbs	145 lbs	160 lbs	202 lbs	198 lbs	204 lbs		
P _{total}	9649 lbs	9947 lbs	9549 lbs	9717 lbs	11036 lbs	9640 lbs	2856 lbs	2909 lbs	2757 lbs		
М	800 lbs-ft	787 lbs-ft	810 lbs-ft	596 lbs-ft	596 lbs-ft	635 lbs-ft	799 lbs-ft	785 lbs-ft	804 lbs-ft		
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.07 ft	0.28 ft	0.27 ft	0.29 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	230.3 psf	239.6 psf	226.8 psf	244.3 psf	282.2 psf	239.8 psf	34.9 psf	37.2 psf	31.8 psf		
f _{max}	324.9 psf	332.8 psf	322.7 psf	314.9 psf	352.8 psf	314.9 psf	129.5 psf	130.1 psf	126.9 psf		

Maximum Bearing Pressure = 353 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 33in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.900 k	Maximum Axial Load =	4.332 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>39%</u>	Utilization =	<u>58%</u>
<u>Diagonal Strut</u>			
Maximum Axial Load =	2.406 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>32%</u>		
	**		
		Struts under compression are transfer from the girder. Single end of the strut and are subject	le M12 bolts are l

are shown to demonstrate the load ingle M12 bolts are located at each bjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 56.48 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.130 in Max Drift, $\Delta_{MAX} =$ 0.677 in 0.677 ≤ 1.13, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 96 \text{ in}$$

$$J = 0.432$$

$$265.581$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{array}{lll} \mathsf{L_b} = & 96 \\ \mathsf{J} = & 0.432 \\ & 168.894 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \varphi \mathsf{F_L} = & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc*} \sqrt{(\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} = & 29.1 \end{array}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.0 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr^*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

3.4.18
$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

 $M_{max}St =$

 $\varphi F_L St =$

y = Sx=

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $A = 1215.13 \text{ mm}^2$
 1.88 in^2
 $P_{\text{max}} = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14 $L_b = 104.56 \text{ in}$ J = 1.08

$$S1 = \left(\frac{BC}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_I &= 29.0 \text{ ksi} \end{split}$$

3.4.16

 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$

 $S2 = \frac{k_1 Bp}{1.6Dp}$

S2 = 46.7 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

 $\varphi F_L = 31.6 \text{ ksi}$

Weak Axis:

$$L_{b} = 104.56$$

$$J = 1.08$$

$$190.335$$

$$T = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 =$ 28.9

b/t = 7.4

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

h/t =

S1 =

m =

 $C_0 =$

Cc =

S2 =

 $\varphi F_L =$

Bbr -

 $S2 = \frac{k_1 Bbr}{}$

mDbr

 $\phi F_L = 1.3 \phi y F c y$

16.2

36.9

0.65

77.3

43.2 ksi

40

 $\frac{\theta_y}{2}$ 1.3Fcy

$$φF_L$$
= 31.1 ksi

3.4.18

 h/t = 7.4

 h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
 $S1 = 35.2$
 $m = 0.68$
 $C_0 = 41.067$
 $C = 43.717$
 $S2 = \frac{k_1Bbr}{mDbr}$
 $S2 = 73.8$
 $φF_L$ = 1.3φyFcy

 $φF_L$ = 43.2 ksi

$$φF_L$$
St= 29.0 ksi

$$k = 984962 \text{ mm}^4$$

2.366 in⁴

$$y = 43.717 \text{ mm}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 923544 \text{ mm}^4$$

$$2.219 \text{ in}^4$$

$$x = 40 \text{ mm}$$

$$Sy = 1.409 \text{ in}^3$$

$$M_{max} W k = 3.904 \text{ k-ft}$$

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

1.375 in³

3.323 k-ft

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt-Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_y}{\theta_1} Fcy\right)^2$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$
 $J = 0.942$
 38.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4$$

3.4.16

b/t = 24.5

$$Bp - \frac{\theta_y}{\theta_b} Fcy$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

27.5

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

Cc =

$$mDbr$$

S2 = 77.3

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4
 $y = 27.5 \text{ mm}$

0.621 in³

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi F_C y$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Sx =

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

28.2 ksi

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: Weak Axis: 3.4.14 $L_b =$ 69.80 in $L_b =$ 69.8 0.942 0.942 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ $\phi F_L =$ 30.0 ksi 30.0

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp^*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-68.563	-68.563	0	0
2	M14	٧	-68.563	-68.563	0	0
3	M15	V	-105.961	-105.961	0	0
4	M16	V	-105.961	-105.961	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	155.825	155.825	0	0
2	M14	٧	118.427	118.427	0	0
3	M15	V	62.33	62.33	0	0
4	M16	У	62.33	62.33	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	699.38	2	1231.069	2	.633	1	.003	1	Ō	1	0	1
2		min	-858.464	3	-1557.082	3	-43.434	5	229	4	0	1	0	1
3	N7	max	.028	9	1081.572	1	707	12	001	12	0	1	0	1
4		min	23	2	-124.25	3	-264.385	4	527	4	0	1	0	1
5	N15	max	0	4	2899.637	1	0	2	0	2	0	1	0	1
6		min	-2.341	2	-471.413	3	-250.54	4	507	4	0	1	0	1
7	N16	max	2380.4	2	3797.004	2	0	3	0	3	0	1	0	1
8		min	-2598.373	3	-4897.756	3	-43.476	5	231	4	0	1	0	1
9	N23	max	.04	14	1081.572	1	10.736	1	.021	1	0	1	0	1
10		min	23	2	-124.25	3	-256.388	5	514	4	0	1	0	1
11	N24	max	699.38	2	1231.069	2	057	12	0	12	0	1	0	1
12		min	-858.464	3	-1557.082	3	-44.133	5	23	4	0	1	0	1
13	Totals:	max	3776.36	2	10899.157	2	0	2						
14		min	-4315.84	3	-8731.834	3	-897.049	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	69.838	4	431.781	1	-8.264	12	0	15	.179	1	0	4
2			min	4.75	12	-734.386	3	-162.474	1	015	2	.013	12	0	3
3		2	max	64.129	1	300.936	1	-6.696	12	0	15	.109	4	.557	3
4			min	4.75	12	-517.813	3	-124.195	1	015	2	.003	10	326	1
5		3	max	64.129	1	170.09	1	-5.128	12	0	15	.065	5	.921	3
6			min	4.75	12	-301.241	3	-85.916	1	015	2	042	1	535	1
7		4	max	64.129	1	39.244	1	-3.559	12	0	15	.036	5	1.092	3
8			min	4.75	12	-84.668	3	-47.637	1	015	2	101	1	628	1
9		5	max	64.129	1	131.905	3	0	10	0	15	.01	5	1.071	3
10			min	4.75	12	-92.811	2	-31.218	4	015	2	126	1	605	1
11		6	max	64.129	1	348.478	3	28.922	1	0	15	006	12	.858	3
12			min	1.789	15	-223.517	2	-26.059	5	015	2	118	1	465	1
13		7	max	64.129	1	565.051	3	67.201	1	0	15	006	12	.452	3
14			min	-7.663	5	-354.224	2	-23.671	5	015	2	075	1	209	1
15		8	max	64.129	1	781.623	3	105.48	1	0	15	.004	2	.171	2
16			min	-18.153	5	-484.93	2	-21.284	5	015	2	057	4	147	3
17		9	max	64.129	1	998.196	3	143.759	1	0	15	.113	1	.66	2
18			min	-28.642	5	-615.637	2	-18.897	5	015	2	074	5	938	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
19		10	max	64.129	1	746.343	2	-5.851	12	.015	2	.257	1	1.265	2
20			min	4.75	12	-1214.769	3	-182.038	1	004	3	.004	12	-1.922	3
21		11	max	64.129	1	615.637	2	-4.282	12	.015	2	.113	4	.66	2
22			min	4.75	12	-998.196	3	-143.759	1	0	15	002	3	938	3
23		12	max	64.129	1	484.93	2	-2.714	12	.015	2	.057	4	.171	2
24			min	4.75	12	-781.623	3	-105.48	1	0	15	006	3	147	3
25		13	max	64.129	1	354.224	2	-1.146	12	.015	2	.027	5	.452	3
26			min	4.75	12	-565.051	3	-67.201	1	0	15	075	1	209	1
27		14	max	64.129	1	223.517	2	.787	3	.015	2	0	15	.858	3
28			min	3.407	15	-348.478	3	-36.176	4	0	15	118	1	465	1
29		15	max	64.129	1	92.811	2	9.357	1	.015	2	005	12	1.071	3
30		10	min	-5.328	5	-131.905	3	-27.164	5	0	15	126	1	605	1
31		16	max	64.129	1	84.668	3	47.637	1	.015	2	002	12	1.092	3
32		10	min	-15.818	5	-39.244	1	-24.777	5	0	15	101	1	628	1
33		17		64.129	1	301.241	3	85.916	1	.015	2	.003	3	.921	3
34		17	max	-26.307	5	-170.09	1	-22.39	5	.015	15	08	4	535	1
35		18				517.813	3		1	.015		.052			3
		10	max	64.129	1			124.195	5		2		1	.557	
36		40	min	-36.796	5	-300.936	1	-20.002		0	15	089	5	326	1
37		19	max	64.129	1	734.386	3	162.474	1	.015	2	.179	1	0	1
38		-	min	-47.286	5	-431.781	1	-17.615	5	0	15	105	5	0	3
39	M14	1_	max	45.684	4	498.024	2	-8.576	12	.013	3	.247	4	0	1
40		_	min	2.522	12	-593.011	3	-169.379	1	015	2	.015	12	0	3
41		2	max	40.045	1	367.317	2	-7.008	12	.013	3	.169	4	.454	3
42		_	min	2.522	12	-429.627	3	-131.1	1	015	2	.006	10	385	2
43		3	max	40.045	1	236.611	2	-5.439	12	.013	3	.101	5	.764	3
44			min	2.522	12	-266.242	3	-92.821	1	015	2	017	1_	653	2
45		4	max	40.045	1	105.904	2	-3.871	12	.013	3	.057	5	.928	3
46			min	2.522	12	-102.858	3	-61.471	4	015	2	083	1_	805	2
47		5	max	40.045	1	60.527	3	717	10	.013	3	.015	5	.947	3
48			min	-4.997	5	-28.8	1	-50.761	4	015	2	114	1	841	2
49		6	max	40.045	1	223.911	3	22.017	1	.013	3	005	12	.82	3
50			min	-15.486	5	-159.646	1	-43.722	5	015	2	112	1	761	2
51		7	max	40.045	1	387.296	3	60.296	1	.013	3	005	12	.549	3
52			min	-25.976	5	-290.492	1	-41.334	5	015	2	081	4	565	2
53		8	max	40.045	1	550.68	3	98.575	1	.013	3	.002	10	.132	3
54			min	-36.465	5	-421.338	1	-38.947	5	015	2	102	4	252	2
55		9	max	40.045	1	714.065	3	136.854	1	.013	3	.1	1	.205	1
56			min	-46.954	5	-552.183	1	-36.56	5	015	2	132	5	43	3
57		10	max	70.934	4	683.029	1	-5.539	12	.015	2	.248	4	.754	1
58			min	2.522	12	-877.449	3	-175.133	1	013	3	.003	12	-1.138	3
59		11	max	60.445	4	552.183	1	-3.971	12	.015	2	.168	4	.205	1
60			min	2.522	12	-714.065	3	-136.854	1	013	3	002	3	43	3
61		12	max	49.956	4	421.338	1	-2.402	12	.015	2	.098	4	.132	3
62			min	2.522	12	-550.68	3	-98.575	1	013	3	006	3	252	2
63		13	max		1	290.492	1	834	12	.015	2	.053	5	.549	3
64			min	2.522	12	-387.296	3	-62.544	4	013	3	075	1	565	2
65		14	max	40.045	1	159.646	1	1.257	3	.015	2	.011	5	.82	3
66			min	2.522	12	-223.911	3	-51.834	4	013	3	112	1	761	2
67		15	max	40.045	1	28.8	1	16.262	1	.015	2	004	12	.947	3
68		'	min	2.522	12	-60.527	3	-43.962	5	013	3	114	1	841	2
69		16	max		1	102.858	3	54.542	1	.015	2	001	12	.928	3
70		10	min	974	5	-105.904	2	-41.575	5	013	3	086	4	805	2
71		17	max	40.045	1	266.242	3	92.821	1	.015	2	.005	3	.764	3
72		17		-11.464		-236.611		-39.188	5	013	3	108	4	653	2
73		18	min	40.045	<u>5</u> 1	429.627	3	131.1	1	.015	2	.082	1	653 .454	3
		10		-21.953	5	-367.317	2	-36.801			3	137	5	385	2
74 75		10	min						5	013					-
_ / O		19	max	40.045	1	593.011	3	169.379	1	.015	2	.216	_1_	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
76			min	-32.442	5	-498.024	2	-34.414	5	013	3	168	5	0	3
77	M15	1	max	83.092	5	677.617	2	-8.437	12	.016	2	.314	4	0	2
78			min	-42.304	1	-324.624	3	-169.357	1	011	3	.015	12	0	3
79		2	max	72.602	5	493.722	2	-6.869	12	.016	2	.221	4	.251	3
80			min	-42.304	1	-241.022	3	-131.078	1	011	3	.006	10	521	2
81		3	max	62.113	5	309.827	2	-5.3	12	.016	2	.139	5	.428	3
82			min	-42.304	1	-157.419	3	-92.799	1	011	3	017	1	878	2
83		4	max	51.624	5	125.932	2	-3.732	12	.016	2	.08	5	.531	3
84			min	-42.304	1	-73.817	3	-77.692	4	011	3	083	1	-1.071	2
85		5	max	41.134	5	9.785	3	782	10	.016	2	.024	5	.56	3
86			min	-42.304	1	-57.962	2	-66.982	4	011	3	114	1	-1.102	2
87		6	max	30.645	5	93.387	3	22.039	1	.016	2	005	12	.514	3
88			min	-42.304	1	-241.857	2	-59.902	5	011	3	112	1	968	2
89		7	max	20.156	5	176.989	3	60.318	1	.016	2	005	12	.394	3
90			min	-42.304	1	-425.752	2	-57.515	5	011	3	101	4	672	2
91		8	max	9.666	5	260.591	3	98.597	1	.016	2	.002	10	.199	3
92			min	-42.304	1	-609.647	2	-55.128	5	011	3	136	4	211	2
93		9	max	46	15	344.193	3	136.876	1	.016	2	.1	1	.412	2
94			min	-42.304	1	-793.541	2	-52.741	5	011	3	181	5	07	3
95		10	max	-3.203	12	977.436	2	8.375	3	.011	3	.311	4	1.199	2
96			min	-42.304	1	-266.925	12	-175.155	1	016	2	.004	12	413	3
97		11	max	-3.203	12	793.541	2	-4.11	12	.011	3	.217	4	.412	2
98			min	-42.304	1	-344.193	3	-136.876	1	016	2	001	3	07	3
99		12	max	-3.203	12	609.647	2	-2.542	12	.011	3	.133	4	.199	3
100			min	-42.304	1	-260.591	3	-98.597	1	016	2	006	3	211	2
101		13	max	-3.203	12	425.752	2	973	12	.011	3	.073	5	.394	3
102		10	min	-42.304	1	-176.989	3	-78.802	4	016	2	075	1	672	2
103		14	max	-3.203	12	241.857	2	1.035	3	.011	3	.017	5	.514	3
104		17	min	-46.659	4	-93.387	3	-68.092	4	016	2	112	1	968	2
105		15	max	-3.203	12	57.962	2	16.241	1	.011	3	004	12	.56	3
106		13	min	-57.148	4	-9.785	3	-60.145	5	016	2	114	1	-1.102	2
107		16	max	-3.203	12	73.817	3	54.52	1	.011	3	001	12	.531	3
108		10	min	-67.637	4	-125.932	2	-57.758	5	016	2	109	4	-1.071	2
109		17	max	-3.203	12	157.419	3	92.799	1	.011	3	.004	3	.428	3
110		17	min	-3.203 -78.127	4	-309.827	2	-55.371	5	016	2	146	4	878	2
111		18	max	-3.203	12	241.022	3	131.078	1	.011	3	.082	1	.251	3
112		10	min	-88.616	4	-493.722	2	-52.984	5	016	2	189	5	521	2
113		19		-3.203	12	324.624	3	169.357	1	.011	3	.216	1	_	2
114		19	max min	-99.105	4	-677.617	2	-50.597	5	016	2	235	5	0	5
115	M16	1		77.924	5	612.675	2	- 50.597 - 7.828	12	.01	1	.223	4	0	2
116	<u>M16</u>		max	-71.972	1	-271.686	3	-163.036		013	3	.012	12	0	
		2	min		_										3
117		2	max		5	428.78	2	-6.26	12	.01	1	.15	4	.204	3
118		2	min	-71.972	1	-188.083		-124.757	1	013	3	.004	10	463	2
119		3	max	56.945	5	244.885	2	-4.692	12	.01	1	.094	5	.334	3
120		1	min	-71.972	1	-104.481	3	-86.478	1	013	3	04	1	762	2
121		4	max		5	60.99	2	-3.123	12	.01	1	.055	5	.39	3
122		-	min	-71.972	1	-20.879	3	-54.507	4	013	3	1	1 5	898	2
123		5	max		5	62.723	3	283	10	.01	1	.018	5	.371	3
124			min	-71.972	1	-122.904	2	-43.797	4	013	3	126	1	871	2
125		6	max	25.477	5	146.325	3	28.36	1	.01	1_	006	12	.279	3
126			min	-71.972	1	-306.799	2	-38.454	5	013	3	118	1	68	2
127		7	max		5	229.927	3	66.639	1	.01	1	005	12	.111	3
128			min	-71.972	1	-490.694		-36.067	5	013	3	075	1	325	2
129		8	max	4.499	5	313.529	3	104.918	1	.01	_1_	.003	2	.193	2
130			min	-71.972	1	-674.589	2	-33.68	5	013	3	083	4	13	3
131		9	max	-3.977	15	397.132	3	143.197	1	.01	1	.111	1	.874	2
132			min	-71.972	1	-858.484	2	-31.293	5	013	3	111	5	446	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
133		10	max	-4.719	12	1042.378	2	-6.287	12	.013	3	.255	1	1.719	2
134			min	-71.972	1	-480.734	3	-181.476	1	01	1	.006	12	836	3
135		11	max	-1.87	15	858.484	2	-4.718	12	.013	3	.15	4	.874	2
136			min	-71.972	1	-397.132	3	-143.197	1	01	1	0	3	446	3
137		12	max	-4.719	12	674.589	2	-3.15	12	.013	3	.083	4	.193	2
138			min	-71.972	1	-313.529	3	-104.918	1	01	1	004	3	13	3
139		13	max	-4.719	12	490.694	2	-1.582	12	.013	3	.041	5	.111	3
140			min	-71.972	1	-229.927	3	-66.639	1	01	1	075	1	325	2
141		14	max	-4.719	12	306.799	2	.089	3	.013	3	.003	5	.279	3
142			min	-71.972	1	-146.325	3	-48.568	4	01	1	118	1	68	2
143		15	max	-4.719	12	122.904	2	9.919	1	.013	3	005	12	.371	3
144			min	-71.972	1_	-62.723	3	-39.533	5	01	1	126	1	871	2
145		16	max	-4.719	12	20.879	3	48.198	1_	.013	3	003	12	.39	3
146			min	-72.115	4	-60.99	2	-37.146	5	01	1	1	1	898	2
147		17	max	-4.719	12	104.481	3	86.478	1_	.013	3	.001	3	.334	3
148		4.0	min	-82.604	4	-244.885	2	-34.759	5	01	1	109	4	762	2
149		18	max	-4.719	12	188.083	3	124.757	1_	.013	3	.054	1	.204	3
150		10	min	-93.094	4	-428.78	2	-32.372	5	01	1	129	5	463	2
151		19	max	-4.719	12	271.686	3	163.036	1	.013	3	.182	1	0	2
152	140	-	min	-103.583	4	-612.675	2	-29.985	5	01	1	157	5	0	5
153	<u>M2</u>	1	_		2	2.07	4	.51	1	0	3	0	3	0	1
154			min	-1376.842	3	.506	15	-36.684	4	0	4	0	1	0	1
155		2		1058.898	2	2.032	4	.51	1	0	3	0	1	0	15
156			min	-1376.487	3	.497	15	-37.095	4	0	4	012	4	0	4
157		3		1059.372 -1376.131	2	1.995	4	.51	1_4	0	3	0	1	0	15
158		1	min		3	.489	15	-37.507	4	0	4	024	4	001	4
159		4		1059.846 -1375.776	2	1.958	4 15	.51	4	0	3	0	4	0	15
160		5	min		2	.48 1.921	4	<u>-37.918</u> .51	1	0		036 0	1	002 0	4
161 162		5	max	1060.32 -1375.421	3		15	-38.329	4	0	3		4	_	15
163		6	min	1060.793	2	.471 1.884	4	.51	1	0	3	048 0	1	003 0	15
164		-	min	-1375.066	3	.462	15	-38.741	4	0	4	06	4	003	4
165		7		1061.267	2	1.847	4	.51	1	0	3	0	1	0	15
166			min	-1374.71	3	.454	15	-39.152	4	0	4	073	4	004	4
167		8		1061.741	2	1.81	4	.51	1	0	3	.001	1	004	15
168			min	-1374.355	3	.445	15	-39.563	4	0	4	085	4	004	4
169		9		1062.215	2	1.773	4	.51	1	0	3	.001	1	001	15
170		<u> </u>	min	-1374	3	.436	15	-39.975	4	0	4	098	4	005	4
171		10	max		2	1.736	4	.51	1	0	3	.001	1	001	15
172		'	min	-1373.644	3	.428	15	-40.386	4	0	4	111	4	005	4
173		11		1063.162	2	1.699	4	.51	1	0	3	.002	1	001	15
174			min	-1373.289	3	.419	15	-40.797	4	0	4	124	4	006	4
175		12		1063.636	2	1.662	4	.51	1	0	3	.002	1	002	15
176		<u> </u>	min	-1372.934	3	.41	15	-41.209	4	0	4	137	4	007	4
177		13			2	1.625	4	.51	1	0	3	.002	1	002	15
178			min	-1372.578	3	.401	15	-41.62	4	0	4	15	4	007	4
179		14		1064.583	2	1.588	4	.51	1	0	3	.002	1	002	15
180			min	-1372.223	3	.393	15	-42.031	4	0	4	164	4	008	4
181		15		1065.057	2	1.551	4	.51	1	0	3	.002	1	002	15
182			min	-1371.868	3	.381	12	-42.443	4	0	4	177	4	008	4
183		16		1065.531	2	1.514	4	.51	1	0	3	.002	1	002	15
184			min		3	.366	12	-42.854	4	0	4	191	4	009	4
185		17		1066.004	2	1.477	4	.51	1	0	3	.003	1	002	15
186			min	-1371.157	3	.352	12	-43.265	4	0	4	205	4	009	4
187		18		1066.478	2	1.44	4	.51	1	0	3	.003	1	002	15
188			min	-1370.802	3	.337	12	-43.677	4	0	4	219	4	01	4
189		19	max	1066.952	2	1.403	4	.51	1	0	3	.003	1	002	15

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]	LC		LC	z-z Mome	LC
190			min	-1370.447	3_	.323	12	-44.088	4	0	4	233	4	01	4
191	<u>M3</u>	1	max		2	9.024	4	.233	1	0	12	0	1	.01	4
192			min	-798.02	3_	2.135	15	621	5	0	4	015	4	.002	15
193		2	max		2	8.152	4	.233	1	0	12	0	1	.006	4
194			min	-798.148	3_	1.93	15	014	15	0	4	015	4	.001	12
195		3	max	654.391	2	7.28	4	.705	4	0	12	0	1	.003	2
196			min	-798.276	3_	1.725	15	.015	12	0	4	014	4	0	3
197		4	max	654.22	2	6.408	4	1.312	4	0	12	0	1	0	2
198			min	-798.403	3	1.52	15	.015	12	0	4	014	4	002	3
199		5	max	654.05	2	5.536	4	1.919	4	0	12	0	1	0	15
200			min	-798.531	3	1.315	15	.015	12	0	4	013	5	004	3
201		6	max	653.879	2	4.664	4	2.527	4	0	12	0	1_	001	15
202			min	-798.659	3_	1.11	15	.015	12	0	4	012	5	006	6
203		7	max		2	3.792	4	3.134	4	0	12	0	1	002	15
204			min	-798.787	3	.905	15	.015	12	0	4	011	5	008	6
205		8	max	653.539	2	2.92	4	3.741	4	0	12	0	1_	002	15
206			min	-798.914	3_	.7	15	.015	12	0	4	009	5	01	6
207		9	max	653.368	2	2.048	4	4.348	4	0	12	.001	1_	003	15
208			min	-799.042	3	.495	15	.015	12	0	4	008	5	011	6
209		10	max	653.198	2	1.176	4	4.955	4	0	12	.001	1_	003	15
210			min	-799.17	3_	.29	15	.015	12	0	4	005	5	012	6
211		11	max		2	.375	2	5.562	4	0	12	.001	1	003	15
212			min	-799.298	3	063	3	.015	12	0	4	003	5	012	6
213		12	max	652.857	2	12	15	6.169	4	0	12	.001	1	003	15
214			min	-799.425	3	573	3	.015	12	0	4	0	5	012	6
215		13	max	652.687	2	325	15	6.776	4	0	12	.003	4	003	15
216			min	-799.553	3	-1.441	6	.015	12	0	4	0	12	011	6
217		14	max	652.517	2	53	15	7.384	4	0	12	.007	4	002	15
218			min	-799.681	3	-2.313	6	.015	12	0	4	0	12	011	6
219		15	max	652.346	2	735	15	7.991	4	0	12	.01	4	002	15
220			min	-799.809	3	-3.185	6	.015	12	0	4	0	12	009	6
221		16	max	652.176	2	94	15	8.598	4	0	12	.014	4	002	15
222			min	-799.937	3	-4.057	6	.015	12	0	4	0	12	008	6
223		17	max	652.006	2	-1.145	15	9.205	4	0	12	.018	4	001	15
224			min	-800.064	3	-4.929	6	.015	12	0	4	0	12	005	6
225		18	max	651.835	2	-1.35	15	9.812	4	0	12	.023	4	0	15
226			min	-800.192	3	-5.801	6	.015	12	0	4	0	12	003	6
227		19	max	651.665	2	-1.555	15	10.419	4	0	12	.028	4	0	1
228			min	-800.32	3	-6.673	6	.015	12	0	4	0	12	0	1
229	M4	1	max	1078.506	_1_	0	1	706	12	0	1_	.019	4	0	1
230			min	-126.55	3	0	1	-262.71	4	0	1	0	12	0	1
231		2	max	1078.676	_1_	0	1	706	12	0	1_	0	1	0	1
232			min		3	0	1	-262.858		0	1	011	4	0	1
233		3		1078.847	1_	0	1	706	12	0	1_	0	12	0	1
234				-126.295	3	0	1	-263.006	4	0	1	041	4	0	1
235		4	max	1079.017	1_	0	1	706	12	0	1	0	12	0	1
236			min	-126.167	3	0	1	-263.153	4	0	1	071	4	0	1
237		5		1079.187	1	0	1	706	12	0	1	0	12	0	1
238				-126.039	3	0	1	-263.301	4	0	1	102	4	0	1
239		6	max	1079.358	1	0	1	706	12	0	1	0	12	0	1
240				-125.911	3	0	1	-263.448	4	0	1	132	4	0	1
241		7	max	1079.528	1	0	1	706	12	0	1	0	12	0	1
242			min		3	0	1	-263.596	4	0	1	162	4	0	1
243		8	max	1079.698	1	0	1	706	12	0	1	0	12	0	1
244				-125.656	3	0	1	-263.744	4	0	1	192	4	0	1
245		9		1079.869	1	0	1	706	12	0	1	0	12	0	1
246				-125.528		0	1	-263.891	4	0	1	223	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
247		10	max	1080.039	_1_	0	1	706	12	0	_1_	0	12	0	1
248			min	-125.4	3	0	1	-264.039	4	0	1	253	4	0	1
249		11	max	1080.209	1	0	1	706	12	0	1	0	12	0	1
250			min	-125.272	3	0	1	-264.187	4	0	1	283	4	0	1
251		12	max	1080.38	1	0	1	706	12	0	1	0	12	0	1
252			min	-125.145	3	0	1	-264.334	4	0	1	314	4	0	1
253		13	max	1080.55	1	0	1	706	12	0	1	0	12	0	1
254			min	-125.017	3	0	1	-264.482	4	0	1	344	4	0	1
255		14	max	1080.721	1	0	1	706	12	0	1	0	12	0	1
256			min	-124.889	3	0	1	-264.63	4	0	1	374	4	0	1
257		15		1080.891	1	0	1	706	12	0	1	001	12	0	1
258		1	min	-124.761	3	0	1	-264.777	4	0	1	405	4	0	1
259		16		1081.061	1	0	1	706	12	0	1	001	12	0	1
260		'	min		3	0	1	-264.925	4	0	1	435	4	0	1
261		17		1081.232	1	0	1	706	12	0	1	001	12	0	1
262		 ''	min		3	0	1	-265.072	4	0	1	466	4	0	1
263		18		1081.402	1	0	1	706	12	0	1	001	12	0	1
264		10	min	-124.378	3	0	1	-265.22	4	0	1	496	4	0	1
265		19	+	1081.572	1	0	1	706	12	0	1	001	12	0	1
266		19		-124.25	3	0	1	-265.368	4	0	1	527	4	0	1
267	M6	1	min		2	2.377	2	0	1	0	1		4	0	1
268	IVIO	-	max min	-4332.467	3	.159	12	-37.088	4	0	4	0	1	0	1
269		2		3240.094	2	2.348	2	0	1	0	1	0	1	0	12
270		-	min	-4332.111	3	.144	12	-37.499	4	0	4	012	4	0	2
		3		3240.567	2	2.319	2	0	1		1	012	1	0	12
271		3		-4331.756			12	-37.911	4	0	4	024	4		2
272		1	min		3	.13			-	0				002	
273		4		3241.041 -4331.401	2	2.29	3	-38.322	4	0	4	036	<u>1</u> 4	002	12
274 275		5	min	3241.515	3	2.261	2		1		1	0	1	002 0	12
		5		-4331.046	3		3	-38.733	4	0	4	_	4	_	2
276 277		6	min	3241.989	<u> </u>	.088 2.233	2	0	1	0	1	049 0	1	003 0	3
278		-		-4330.69	3	.067	3	-39.145	4	0	4	061	4	004	2
279		7	min	3242.462	2	2.204	2	0	1	0	1	0	1	0	3
280		-	min	-4330.335	3	.045	3	-39.556	4	0	4	074	4	004	2
281		8		3242.936	2	2.175	2	0	1	0	1	074	1	004	3
282		-		-4329.98	3	.023	3	-39.967	4	0	4	086	4	005	2
283		9	min			2.146	2	0	1	0	1	0	1	0	3
284		9	max	-4329.624	3	.002	3	-40.379	4	0	4	099	4	006	2
285		10	min	3243.884	2	2.117	2	0	1	0	1	0	1	0	3
286		10	min	-4329.269	3	02	3	-40.79	4	0	4	112	4	006	2
		11		3244.357		2.088		0	1	_	4			0	
287		11	min		3	042	3	-41.201	4	0	4	125	1_4	007	2
288		12		3244.831		2.059		_	1		1		<u>4</u> 1		
289		12		-4328.558	2		3	0		0		120	4	0	3
290		12			3	063		-41.613	4	0	4	138 0		008 0	2
291 292		13		3245.305 -4328.203	2	2.031	2	0	1	0	1		1_4		2
		1.1	min	3245.778	3	085	3	-42.024	4	0	4	152	4	008	
293		14			2	2.002	3	0	4	0	1	0	1	0	3
294		4.5	min	3246.252	3_	107		-42.435 0	1	0	<u>4</u> 1	165	<u>4</u> 1	009 0	2
295		15			3	1.973	3	•	-	0	4	0	4		3
296		16	min		_	128		-42.847	4	0	_	179	_	01	2
297		16		3246.726	2	1.944	2	42.250	1	0	1	102	1	0	3
298		17	min		3	15	3	-43.258	4	0	4	193	4	01	2
299		17	max		2	1.915	2	42.660	1	0	1	0	1	0	3
300		10		-4326.782	3	171	3	-43.669	4	0	4	207	4	011	2
301		18		3247.673	2	1.886	2	0	1	0	1	0	1	0	3
302		10	min		3	193	3	-44.081	4	0	4	221	4	012	2
303		19	max	3248.147	2	1.857	2	0	_1_	0	_1_	0	_1_	0	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
304			min	-4326.071	3	215	3	-44.492	4	0	4	235	4	012	2
305	M7	1	_	2251.895	2	9.023	6	0	1	0	1	0	1	.012	2
306			min	-2403.316	3	2.118	15	891	5	0	4	015	4	0	3
307		2		2251.724	2	8.151	6	0	1	0	1	0	1	.009	2
308			min	-2403.444	3	1.913	15	284	5	0	4	015	4	002	3
309		3		2251.554	2	7.279	6	.379	4	0	1	0	1_	.006	2
310			min	-2403.572	3	1.709	15	0	1	0	4	015	4	004	3
311		4		2251.384	2	6.407	6	.986	4	0	1	0	1	.003	2
312			min	-2403.699	3	1.504	15	0	1	0	4	015	4	006	3
313		5		2251.213	2	5.535	6	1.593	4	0	1	0	1	0	2
314			min	-2403.827	3	1.299	15	0	1	0	4	014	4	007	3
315		6		2251.043	2	4.663	6	2.2	4	0	1_	0	1_	001	15
316			min	-2403.955	3	1.094	15	0	1	0	4	013	4	008	3
317		7		2250.873	2	3.791	6	2.807	4	0	_1_	0	1	002	15
318			min	-2404.083	3	.889	15	0	1	0	4	012	4	009	3
319		8	max	2250.702	2	2.919	6	3.414	4	0	1	0	1	002	15
320			min	-2404.21	3	.684	15	0	1	0	4	01	4	01	4
321		9	max	2250.532	2	2.114	2	4.021	4	0	1_	0	1	003	15
322			min	-2404.338	3	.359	12	0	1	0	4	009	4	011	4
323		10	max	2250.362	2	1.434	2	4.629	4	0	1	0	1	003	15
324			min	-2404.466	3	014	3	0	1	0	4	007	4	012	4
325		11	max	2250.191	2	.755	2	5.236	4	0	1	0	1_	003	15
326			min	-2404.594	3	523	3	0	1	0	4	004	5	012	4
327		12	max	2250.021	2	.075	2	5.843	4	0	1	0	1	003	15
328			min	-2404.722	3	-1.033	3	0	1	0	4	002	5	012	4
329		13	max	2249.851	2	341	15	6.45	4	0	1	.001	4	003	15
330			min	-2404.849	3	-1.542	3	0	1	0	4	0	1	011	4
331		14	max	2249.68	2	546	15	7.057	4	0	1	.004	4	002	15
332			min	-2404.977	3	-2.313	4	0	1	0	4	0	1	011	4
333		15	max	2249.51	2	751	15	7.664	4	0	1	.008	4	002	15
334			min	-2405.105	3	-3.185	4	0	1	0	4	0	1	009	4
335		16	max	2249.339	2	956	15	8.271	4	0	1	.012	4	002	15
336			min	-2405.233	3	-4.057	4	0	1	0	4	0	1	008	4
337		17	max	2249.169	2	-1.161	15	8.878	4	0	1	.016	4	001	15
338			min	-2405.36	3	-4.929	4	0	1	0	4	0	1	005	4
339		18	max	2248.999	2	-1.366	15	9.485	4	0	1	.02	4	0	15
340			min	-2405.488	3	-5.801	4	0	1	0	4	0	1	003	4
341		19	max	2248.828	2	-1.571	15	10.093	4	0	1	.025	4	0	1
342			min	-2405.616	3	-6.673	4	0	1	0	4	0	1	0	1
343	M8	1	max	2896.571	1	0	1	0	1	0	1	.017	4	0	1
344				-473.713	3	0	1	-252.147	4	0	1	0	1	0	1
345		2		2896.741	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-252.295	4	0	1	012	4	0	1
347		3		2896.912		0	1	0	1	0	1	0	1	0	1
348				-473.458		0	1	-252.443	4	0	1	041	4	0	1
349		4		2897.082	1	0	1	0	1	0	1	0	1	0	1
350			min		3	0	1	-252.59	4	0	1	07	4	0	1
351		5	1	2897.252	1	0	1	0	1	0	1	0	1	0	1
352				-473.202	3	0	1	-252.738		0	1	099	4	0	1
353		6		2897.423	1	0	1	0	1	0	1	0	1	0	1
354				-473.074		0	1	-252.885		0	1	128	4	0	1
355		7		2897.593		0	1	0	1	0	1	0	1	0	1
356			min			0	1	-253.033		0	1	157	4	0	1
357		8		2897.763		0	1	0	1	0	1	0	1	0	1
358		0		-472.819		0	1	-253.181		0	1	186	4	0	1
359		9		2897.934		0	1	0	1	0	1	0	1	0	1
360		3			3	0	1	-253.328		0	1	215	4	0	1
300			111111	-472.691	3	U		-200.020	4	U		210	4	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec	1	Axial[lb]						Torque[k-ft]		1 -	LC	_	LC
361		10		2898.104	1_	0	1	0	_1_	0	_1_	0	1	0	1
362		4.4	min	-472.563	3	0	1	-253.476	4_	0	1	244	4	0	1
363		11		2898.275	1_	0	1	0		0	1	0	1	0	1
364		40		-472.435	3	0	1	-253.624	4	0	1	273	4	0	1
365		12		2898.445	1_	0	1	0	1_	0	1	0	1	0	1
366		10		-472.308	3	0	1	-253.771	4	0	1	302	4	0	1
367		13		2898.615	_1_	0	1	0	_1_	0	1	0	1	0	1
368			min	-472.18	3	0	1	-253.919	4_	0	1	332	4	0	1
369		14		2898.786	_1_	0	1	0	1_	0	1	0	1	0	1
370			min	-472.052	3	0	1	-254.067	4	0	1	361	4	0	1
371		15		2898.956	1_	0	1	0	1	0	1	0	1	0	1
372		10	min	-471.924	3	0	1	-254.214	4	0	1	39	4	0	1
373		16		2899.126	_1_	0	1	0	_1_	0	1	0	1	0	1
374				-471.797	3	0	1	-254.362	4	0	1	419	4	0	1
375		17		2899.297	_1_	0	1	0	_1_	0	_1_	0	1	0	1
376				-471.669	3_	0	1	-254.509	4	0	1_	448	4	0	1
377		18		2899.467	_1_	0	1	0	_1_	0	1	0	1	0	1
378			min	-471.541	3	0	1	-254.657	4_	0	1_	478	4	0	1
379		19		2899.637	1_	0	1	0	1_	0	1_	0	1	0	1
380			min	-471.413	3	0	1	-254.805	4	0	1_	507	4	0	1
381	<u>M10</u>	1		1058.425	2	1.98	6	036	12	0	_1_	0	4	0	1
382			min	-1376.842	3	.446	15	-36.975	4	0	5	0	3	0	1
383		2		1058.898	2	1.943	6	036	12	0	_1_	0	10	0	15
384				-1376.487	3	.437	15	-37.386	4	0	5	012	4	0	6
385		3	max	1059.372	2	1.906	6	036	12	0	_1_	0	10	0	15
386			min	-1376.131	3	.429	15	-37.797	4	0	5	024	4	001	6
387		4	max	1059.846	2	1.869	6	036	12	0	_1_	0	10	0	15
388			min	-1375.776	3	.42	15	-38.209	4	0	5	036	4	002	6
389		5	max	1060.32	2	1.832	6	036	12	0	1_	0	10	0	15
390			min	-1375.421	3	.411	15	-38.62	4	0	5	048	4	002	6
391		6	max	1060.793	2	1.795	6	036	12	0	_1_	0	12	0	15
392			min	-1375.066	3	.402	15	-39.031	4	0	5	061	4	003	6
393		7		1061.267	2	1.758	6	036	12	0	<u>1</u>	0	12	0	15
394				-1374.71	3	.394	15	-39.443	4	0	5	073	4	004	6
395		8	max	1061.741	2	1.721	6	036	12	0	_1_	0	12	0	15
396			min	-1374.355	3	.385	15	-39.854	4	0	5	086	4	004	6
397		9	max	1062.215	2	1.684	6	036	12	0	_1_	0	12	001	15
398			min	-1374	3	.376	15	-40.265	4	0	5	099	4	005	6
399		10		1062.688	2	1.647	6	036	12	0	1_	0	12	001	15
400				-1373.644	3	.368	15	-40.677	4	0	5	112	4	005	6
401		11	max	1063.162	2	1.61	6	036	12	0	_1_	0	12	001	15
402			min	-1373.289	3	.359	15	-41.088	4	0	5	125	4	006	6
403		12		1063.636	2	1.573	6	036	12	0	_1_	0	12	001	15
404				-1372.934	3	.35	15	-41.499	4	0	5	138	4	006	6
405		13	max	1064.11	2	1.536	6	036	12	0	_1_	0	12	002	15
406			min		3	.341	15	-41.911	4	0	5	151	4	007	6
407		14		1064.583	2	1.499	6	036	12	0	_1_	0	12	002	15
408				-1372.223	3	.333	15	-42.322	4	0	5	165	4	007	6
409		15		1065.057	2	1.462	6	036	12	0	1	0	12	002	15
410				-1371.868	3	.324	15	-42.733	4	0	5	178	4	008	6
411		16	max	1065.531	2	1.425	6	036	12	0	1	0	12	002	15
412			min	-1371.512	3	.315	15	-43.145	4	0	5	192	4	008	6
413		17		1066.004	2	1.388	6	036	12	0	1	0	12	002	15
414			min	-1371.157	3	.307	15	-43.556	4	0	5	206	4	009	6
415		18	max	1066.478	2	1.351	6	036	12	0	1	0	12	002	15
416			min		3	.298	15	-43.967	4	0	5	22	4	009	6
417		19	max	1066.952	2	1.314	6	036	12	0	1	0	12	002	15

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

440	Member	Sec	una iun	Axial[lb]	LC	y Shear[lb]				Torque[k-ft]				z-z Mome	LC
418	M11	1	min		3	.289 8.964	15	-44.379	4	0	<u>5</u> 1	234	12	009	6
419 420	IVI I I		max	654.731 -798.02	3	2.094	6 15	015 65	<u>12</u> 5	0	4	015	4	.009	15
		2	min	654.561				015	12	0	1		12		
421 422			max	-798.148	2	8.092	6 15	233	1	_	4	0		.006	2
		2	min		3	1.889				0	_ 4 _	015	12	.001	12
423		3	max	654.391	2	7.22	6 1 <i>E</i>	.574	4_	0		0		.003	2
424		4	min	-798.276	3_	1.684	15	233	1_	0	4	015	4	0	3
425		4	max	654.22	2	6.348	6	1.181	4_	0	1	0	12	0	2
426		_	min	-798.403	3	1.479	15	233	1_	0	4	014	4	002	3
427		5	max	654.05	2	5.476	6	1.788	4_	0	1_	0	12	001	15
428			min	-798.531	3	1.274	15	233	1_	0	4	014	4	004	4
429		6	max	653.879	2	4.604	6	2.395	_4_	0	_1_	0	12	002	15
430		_	min	-798.659	3_	1.069	15	233	_1_	0	4_	013	4	007	4
431		7	max	653.709	2	3.732	6	3.002	4	0	_1_	0	12	002	15
432			min	-798.787	3	.864	15	233	1_	0	4	011	4	009	4
433		8	max	653.539	2	2.86	6	3.609	_4_	0	_1_	0	12	002	15
434			min	-798.914	3	.659	15	233	1_	0	4	01	4	01	4
435		9	max	653.368	2	1.988	6	4.216	4	0	_1_	0	12	003	15
436			min	-799.042	3	.454	15	233	1_	0	4	008	4	011	4
437		10	max	653.198	2	1.116	6	4.823	4	0	1_	0	12	003	15
438			min	-799.17	3	.249	15	233	1	0	4	006	4	012	4
439		11	max	653.028	2	.375	2	5.43	4	0	1	0	12	003	15
440			min	-799.298	3	063	3	233	1_	0	4	003	4	012	4
441		12	max	652.857	2	161	15	6.038	4	0	1	0	12	003	15
442			min	-799.425	3	629	4	233	1	0	4	001	1	012	4
443		13	max	652.687	2	366	15	6.645	4	0	1	.003	5	003	15
444			min	-799.553	3	-1.501	4	233	1	0	4	002	1	012	4
445		14	max	652.517	2	571	15	7.252	4	0	1	.006	5	003	15
446				-799.681	3	-2.373	4	233	1	0	4	002	1	011	4
447		15	max	652.346	2	776	15	7.859	4	0	1	.009	5	002	15
448			min	-799.809	3	-3.245	4	233	1	0	4	002	1	009	4
449		16	max	652.176	2	981	15	8.466	4	0	1	.013	5	002	15
450			min	-799.937	3	-4.117	4	233	1	0	4	002	1	008	4
451		17	max	652.006	2	-1.186	15	9.073	4	0	1	.017	5	001	15
452			min	-800.064	3	-4.989	4	233	1	0	4	002	1	006	4
453		18	max	651.835	2	-1.391	15	9.68	4	0	1	.022	5	0	15
454			min	-800.192	3	-5.861	4	233	1	0	4	002	1	003	4
455		19	max	651.665	2	-1.596	15	10.287	4	0	1	.027	5	0	1
456		10	min	-800.32	3	-6.733	4	233	1	0	4	002	1	0	1
457	M12	1		1078.506	1	0.733	1	11.076	1	0	1	.018	5	0	1
458	IVIIZ	-		-126.55	3	0	1	-256.38	4	0	1	001	1	0	1
459		2		1078.676	1	0	1	11.076	1	0	1	0	10	0	1
460				-126.422	3	0	1	-256.528	4	0	1	011	4	0	1
461		3		1078.847	<u> </u>	0	1	11.076	1	0	1	.001	1	0	1
462		3					1		4		1		4	0	1
		1		<u>-126.295</u>	3	0	1	-256.676		0	1	041	1		1
463		4		1079.017	1	0		11.076	1_4	0		.002		0	_
464		_		-126.167	3_4	0	1	-256.823	4_	0	1_	07	4	0	1
465		5		1079.187	1	0	1	11.076	1_	0	1	.004	1	0	1
466				-126.039	3	0	1	-256.971	4	0	1_	1	4	0	1
467		6		1079.358	1_	0	1	11.076	1_	0	1_	.005	1	0	1
468				-125.911	3	0	1	-257.119		0	1_	129	4	0	1
469		7		1079.528	_1_	0	1	11.076	_1_	0	1	.006	1	0	1
470				-125.783	3_	0	1	-257.266	4_	0	1_	159	4	0	1
471		8		1079.698	_1_	0	1_	11.076	_1_	0	_1_	.007	1	0	1
472				-125.656	3	0	1	-257.414	4	0	1_	188	4	0	1
473		9		1079.869	_1_	0	1_	11.076	_1_	0	_1_	.009	1	0	1
474			min	-125.528	3	0	1	-257.561	4	0	1_	218	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1080.039	_1_	0	1	11.076	1	0	_1_	.01	_1_	0	1
476			min	-125.4	3	0	1	-257.709	4	0	1	247	4	0	1
477		11	max	1080.209	1	0	1	11.076	1	0	1	.011	1	0	1
478			min	-125.272	3	0	1	-257.857	4	0	1	277	4	0	1
479		12	max	1080.38	1	0	1	11.076	1	0	1	.012	1	0	1
480			min	-125.145	3	0	1	-258.004	4	0	1	307	4	0	1
481		13	max	1080.55	1	0	1	11.076	1	0	1	.014	1	0	1
482			min	-125.017	3	0	1	-258.152	4	0	1	336	4	0	1
483		14	max	1080.721	1	0	1	11.076	1	0	1	.015	1	0	1
484			min	-124.889	3	0	1	-258.3	4	0	1	366	4	0	1
485		15		1080.891	1	0	1	11.076	1	0	1	.016	1	0	1
486			min	-124.761	3	0	1	-258.447	4	0	1	396	4	0	1
487		16		1081.061	1	0	1	11.076	1	0	1	.018	1	0	1
488		1	min	-124.634	3	0	1	-258.595	4	0	1	425	4	0	1
489		17		1081.232	1	0	1	11.076	1	0	1	.019	1	0	1
490			min	-124.506	3	0	1	-258.743	4	0	1	455	4	0	1
491		18		1081.402	1	0	1	11.076	1	0	1	.02	1	0	1
492		''	min	-124.378	3	0	1	-258.89	4	0	1	485	4	0	1
493		19		1081.572	1	0	1	11.076	1	0	1	.021	1	0	1
494		13	min	-124.25	3	0	1	-259.038	4	0	1	514	4	0	1
495	M1	1	max	162.48	1	734.327	3	47.239	5	0	1	.179	1	0	15
496	IVII		min	-17.615	5	-429.688	1	-64.031	1	0	3	105	5	015	2
497		2	max	163.192	1	733.182	3	48.699	5	0	1	.139	1	.254	1
498			min	-17.283	5	-431.215	1	-64.031	1	0	3	076	5	46	3
499		3	max	519.054	3	547.363	2	14.409	5	0	3	.1	1	.512	1
500		3	min	-320.919	2	-553.603	3	-63.699	1	0	2	045	5	9	3
		4		519.588		545.836		15.869	5		3	.06	1	.187	1
501 502		4	max min	-320.207	<u>3</u> 2	-554.748	3	-63.699	1	0	2	036	5	557	3
503		5	max		3	544.309	2	17.329	5	0	3	.021	<u> </u>	005	15
504		5	min	-319.495	2	-555.893	3	-63.699	1	0	2	026	5	212	3
505		6	max	520.656	3	542.782	2	18.789	5	0	3	020	12	.133	3
506		-	min	-318.783	2	-557.039	3	-63.699	1	0	2	019	1	506	2
507		7	max	521.19	3	541.255	2	20.249	5	0	3	002	15	.48	3
508		- '	min	-318.071	2	-558.184	3	-63.699	1	0	2	058	1	842	2
509		8	max	521.724	3	539.728	2	21.709	5	0	3	.011	5	.826	3
510		-	min	-317.359	2	-559.329	3	-63.699	1	0	2	098	1	-1.177	2
511		9	max	535.277	3	45.145	2	55.451	5	0	9	.063	1	.965	3
512		9	min	-249.69	2	.458	15	-103.79	1	0	3	132	5	-1.344	2
513		10			3	43.618	2	56.911	5		9	0	10	.942	3
514		10	max min	-248.978	2	007	5	-103.79	1	0	3	098	4	-1.372	2
		11									_		_		
515		11		536.345 -248.266	3	42.091 -1.918	2	58.371 -103.79	5	0	9	005	<u>12</u>	.92	3
516		12	min	549.678	2		4		5	0	2	076	4	-1.398	2
517 518		12		-180.516	<u>3</u>	364.261 -634.465	2	148.52 -61.511	1	0	3	.096 237	<u>1</u> 5	.805 -1.24	2
519		12		550.212											
		13			3	363.115	3	149.98	5	0	2	.058 144	1	.58	2
520		1.1		-179.804 FF0.746	2	-635.992	2	-61.511		0	3		5	846	
521		14		550.746	3_	361.97	3	151.44	5	0	2	.02	1	.355	2
522		4.5	min	-179.092	2	-637.519	2	-61.511	1	_	3	051	<u>5</u>	45	
523		15		551.28	3	360.825	3	152.901	5	0	2	.044	5	.13	3
524		4.0	min	-178.38	2	-639.046	2	-61.511	1	0	3	018	1	079	1
525		16		551.814	3	359.68	3	154.361	5	0	2	.139	5	.343	2
526		17	min		2	-640.573	2	-61.511	1	0	3	057	1	093	3
527		17		552.348	3	358.535	3	155.821	5	0	2	.235	5	.741	2
528		10		-176.956	2	-642.1	2	-61.511	1	0	3	095	1	316	3
529		18	max		5_1	615.017	2	-4.72	12	0	5	.211	5	.372	2
530		10		-163.743	1	-270.654	3	<u>-105.068</u>		0	2	137	1_	155	3
531		19	max	29.984	<u>5</u>	613.49	2	-4.72	12	0	5	.157	5	.013	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

						JOHAH I									
	Member	<u>Sec</u>		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]				z-z Mome	
532			min	-163.031	1_	-271.799	3	-103.608	4	0	2	182	1	01	1
533	M5	1	max	364.065	<u>1</u>	2429.483	3	86.305	5	0	_1_	0	1	.029	2
534			min	11.702	12	-1488.599	2	0	1	0	4	215	4	0	15
535		2	max	364.777	1	2428.338	3	87.765	5	0	1	0	1	.954	2
536			min	12.058	12	-1490.126	2	0	1	0	4	161	4	-1.499	3
537		3	max	1604.711	3	1483.821	2	56.477	4	0	4	0	1	1.846	2
538				-1035.614	2	-1640.84	3	0	1	0	1	107	4	-2.961	3
539		4	_	1605.245	3	1482.294	2	57.937	4	0	4	0	1	.947	1
540				-1034.902	2	-1641.986	3	0	1	0	1	072	4	-1.942	3
541		5		1605.779	3	1480.767	2	59.397	4	0	4	0	1	.06	1
542				-1034.19	2	-1643.131	3	0	1	0	1	035	4	923	3
543		6		1606.313	3	1479.24	2	60.857	4	0	4	.002	4	.097	3
		0			2	-1644.276				_			1		
544		_	min	-1033.478			3_	0	1_	0	1_	0		912	2
545		7		1606.847	3_	1477.713	2	62.317	4	0	4_	.04	4	1.118	3
546			min	-1032.766	2	-1645.421	3	0	1	0	1_	0	1	-1.83	2
547		8		1607.381	3	1476.186	2	63.777	4	0	4	.079	4	2.14	3
548			_	-1032.054	2	-1646.566	3	0	1	0	1_	0	1	-2.746	2
549		9		1624.222	3	152.568	2	185.247	4	0	_1_	0	1	2.47	3
550			min	-886.634	2	.461	15	0	1	0	1	2	4	-3.14	2
551		10	max	1624.756	3	151.041	2	186.707	4	0	1	0	1	2.382	3
552			min	-885.922	2	0	15	0	1	0	1	084	4	-3.234	2
553		11	max	1625.29	3	149.514	2	188.167	4	0	1	.032	4	2.295	3
554			min	-885.21	2	-1.717	6	0	1	0	1	0	1	-3.327	2
555		12	max	1642.572	3	1035.467	3	205.644	4	0	1	0	1	2.007	3
556			min	-739.953	2	-1781.569	2	0	1	0	4	337	4	-2.972	2
557		13		1643.106	3	1034.322	3	207.104	4	Ö	1	0	1	1.365	3
558		-10		-739.241	2	-1783.096	2	0	1	0	4	209	4	-1.865	2
559		14	max		3	1033.176	3	208.564	4	0	1	0	1	.724	3
560		17		-738.529	2	-1784.623	2	0	1	0	4	08	4		2
		15						•		_				758	
561		15		1644.174	3_	1032.031	3_	210.024	4	0	1_	.05	4	.35	2
562		40		-737.817	2	-1786.15	2	0	1_	0	4_	0	1	0	15
563		16		1644.708	3_	1030.886	3	211.484	4	0	1	.181	4	1.459	2
564			1	-737.105	2	-1787.677	2	0	1_	0	4	0	1	557	3
565		17	max	1645.242	3_	1029.741	3_	212.945	4	0	_1_	.313	4	2.569	2
566			min	-736.393	2	-1789.204	2	0	1	0	4	0	1	-1.197	3
567		18	max		12	2089.526	2	0	1	0	4	.326	4	1.314	2
568			min	-363.674	1_	-960.733	3	-25.504	5	0	1	0	1	623	3
569		19	max	-12.572	12	2087.999	2	0	1	0	4	.311	4	.019	1
570			min	-362.962	1	-961.878	3	-24.044	5	0	1	0	1	026	3
571	M9	1	max	162.48	1	734.327	3	70.031	4	0	3	013	12	0	15
572			min		12	-429.688	1	4.75	12	0	4	179	1	015	2
573		2	max		1	733.182	3	71.491	4	0	3	01	12	.254	1
574			min	8.62	12	-431.215	1	4.75	12	0	4	139	1	46	3
575		3		519.054	3	547.363	2	63.699	1	0	2	007	12	.512	1
576				-320.919	2	-553.603	3	4.711	12	0	3	1	1	9	3
577		4		519.588	3	545.836	2	63.699	1	0	2	005	12	.187	1
578		4		-320.207	2		3	4.711	12	0	3	005	1	557	3
		_				-554.748							_		
579		5		520.122	3	544.309	2	63.699	1	0	2	002	12	005	15
580		_		-319.495	2	-555.893	3	4.711	12	0	3	033	4	212	3
581		6		520.656	3_	542.782	2	63.699	1	0	2	.019	1_	.133	3
582				-318.783	2	-557.039	3	4.711	12	0	3	012	5	506	2
583		7		521.19	3	541.255	2	63.699	1	0	2	.058	1_	.48	3
584				-318.071	2	-558.184	3	4.711	12	0	3	.003	15	842	2
585		8		521.724	3	539.728	2	63.699	1	0	2	.098	1	.826	3
586			min	-317.359	2	-559.329	3	4.711	12	0	3	.007	12	-1.177	2
587		9	max		3	45.145	2	103.79	1	0	3	004	12	.965	3
588				-249.69	2	.473	15	7.228	12	0	9	155	4	-1.344	2
										-	_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	535.811	3	43.618	2	103.79	1	0	3	.001	1	.942	3
590			min	-248.978	2	.012	15	7.228	12	0	9	097	4	-1.372	2
591		11	max	536.345	3	42.091	2	103.79	1	0	3	.065	1	.92	3
592			min	-248.266	2	-1.799	6	7.228	12	0	9	053	5	-1.398	2
593		12	max	549.678	3	364.261	3	172.115	4	0	3	006	12	.805	3
594			min	-180.516	2	-634.465	2	4.03	12	0	2	274	4	-1.24	2
595		13	max	550.212	3	363.115	3	173.575	4	0	3	004	12	.58	3
596			min	-179.804	2	-635.992	2	4.03	12	0	2	166	4	846	2
597		14	max	550.746	3	361.97	3	175.035	4	0	3	001	12	.355	3
598			min	-179.092	2	-637.519	2	4.03	12	0	2	058	4	45	2
599		15	max	551.28	3	360.825	3	176.495	4	0	3	.051	4	.13	3
600			min	-178.38	2	-639.046	2	4.03	12	0	2	.001	12	079	1
601		16	max	551.814	3	359.68	3	177.955	4	0	3	.161	4	.343	2
602			min	-177.668	2	-640.573	2	4.03	12	0	2	.004	12	093	3
603		17	max	552.348	3	358.535	3	179.415	4	0	3	.272	4	.741	2
604			min	-176.956	2	-642.1	2	4.03	12	0	2	.006	12	316	3
605		18	max	-8.185	12	615.017	2	72.065	1	0	2	.262	4	.372	2
606			min	-163.743	1	-270.654	3	-79.589	5	0	3	.009	12	155	3
607		19	max	-7.829	12	613.49	2	72.065	1	0	2	.223	4	.013	3
608			min	-163.031	1	-271.799	3	-78.129	5	0	3	.012	12	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.208	2	.01	3	1.42e-2	2	NC	1	NC	1
2			min	703	4	05	3	006	2	-3.286e-3	3	NC	1	NC	1
3		2	max	0	1	.134	3	.021	1	1.534e-2	2	NC	4	NC	2
4			min	703	4	.004	15	014	5	-2.938e-3	3	1042.07	3	8998.429	1
5		3	max	0	1	.285	3	.049	1	1.649e-2	2	NC	5	NC	2
6			min	703	4	.002	15	018	5	-2.589e-3	3	573.804	3	3874.929	1
7		4	max	0	1	.378	3	.073	1	1.763e-2	2	NC	5	NC	3
8			min	703	4	006	9	014	5	-2.241e-3	3	448.329	3	2634.759	1
9		5	max	0	1	.405	3	.084	1	1.877e-2	2	NC	5	NC	3
10			min	703	4	004	9	005	5	-1.892e-3	3	422.5	3	2290.431	1
11		6	max	0	1	.365	3	.079	1	1.991e-2	2	NC	5	NC	3
12			min	703	4	.002	15	0	10	-1.544e-3	3	463.243	3	2423.532	1
13		7	max	0	1	.272	3	.06	1	2.105e-2	2	NC	4	NC	2
14			min	704	4	.004	15	004	10	-1.195e-3	3	596.762	3	3191.703	1
15		8	max	0	1	.253	2	.032	1	2.219e-2	2	NC	4	NC	2
16			min	704	4	.006	15	008	10	-8.465e-4	3	951.924	3	5998.587	1
17		9	max	0	1	.328	2	.03	3	2.333e-2	2	NC	4	NC	1
18			min	704	4	.008	15	015	2	-4.98e-4	3	1594.575	2	9444.845	3
19		10	max	0	1	.361	2	.03	3	2.448e-2	2	NC	5	NC	1
20			min	704	4	008	3	021	2	-1.494e-4	3	1248.353	2	9518.056	3
21		11	max	0	12	.328	2	.03	3	2.333e-2	2	NC	4	NC	1
22			min	704	4	.008	15	015	2	-4.98e-4	3	1594.575	2	9444.845	3
23		12	max	0	12	.253	2	.032	1	2.219e-2	2	NC	4	NC	2
24			min	704	4	.006	15	011	5	-8.465e-4	3	951.924	3	5998.587	1
25		13	max	0	12	.272	3	.06	1	2.105e-2	2	NC	4	NC	2
26			min	704	4	.004	15	004	5	-1.195e-3	3	596.762	3	3191.703	1
27		14	max	0	12	.365	3	.079	1	1.991e-2	2	NC	5	NC	3
28			min	704	4	.002	15	0	10	-1.544e-3	3	463.243	3	2423.532	1
29		15	max	0	12	.405	3	.084	1	1.877e-2	2	NC	5	NC	3
30			min	704	4	004	9	.001	10	-1.892e-3	3	422.5	3	2290.431	1
31		16	max	0	12	.378	3	.073	1	1.763e-2	2	NC	5	NC	3
32			min	704	4	006	9	.001	10	-2.241e-3	3	448.329	3	2634.759	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
33		17	max	0	12	.285	3	.049	1 1.649e-2	2	NC	5	NC	2
34			min	704	4	.001	15	0	10 -2.589e-3	3	573.804	3	3874.929	1
35		18	max	0	12	.134	3	.023	4 1.534e-2	2	NC	4	NC	2
36			min	704	4	.003	15	002	10 -2.938e-3	3	1042.07	3	7967.475	4
37		19	max	0	12	.208	2	.01	3 1.42e-2	2	NC	1	NC	1
38			min	704	4	05	3	006	2 -3.286e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.4	3	.009	3 7.989e-3	2	NC	1	NC	1
40			min	527	4	621	2	005	2 -6.08e-3	3	NC	1	NC	1
41		2	max	0	1	.627	3	.013	1 9.192e-3	2	NC	5	NC	1
42			min	527	4	856	2	022	5 -7.118e-3	3	818.692	2	9697.719	5
43		3	max	0	1	.826	3	.037	1 1.039e-2	2	NC	5	NC	2
44			min	527	4	-1.067	2	027	5 -8.155e-3	3	430.944	2	5144.445	1
45		4	max	0	1	.978	3	.06	1 1.16e-2	2	NC	15	NC	3
46			min	527	4	-1.238	2	019	5 -9.193e-3	3	311.582	2	3225.691	1
47		5	max	0	1	1.072	3	.072	1 1.28e-2	2	NC	15	NC	3
48		1	min	527	4	-1.358	2	005	5 -1.023e-2	3	260.513	2	2679.639	
49		6	max	0	1	1.108	3	.003	1 1.4e-2	2	NC	15	NC	3
50		1		527	4	-1.427	2	0	10 -1.127e-2	3	238.314	2	2752.878	
		7	min		1		3		1 1.52e-2		NC	15	NC	2
51		+ /	max	0		1.093		.054	1 1.526-2	2				
52		_	min	527	4	<u>-1.449</u>	2	003	10 -1.231e-2	3	232.109	2	3547.307	1
53		8	max	0	1	1.045	3	.04	4 1.64e-2	2	NC 005,000	15	NC 4740,000	2
54			min	<u>527</u>	4	<u>-1.435</u>	2	007	10 -1.335e-2	3	235.893	2	4713.208	4
55		9	max	0	1	.989	3	.027	4 1.761e-2	2	NC	15	NC Too	1
56			min	527	4	-1.407	2	014	2 -1.438e-2	3	244.447	2	6753.536	
57		10	max	0	1	.96	3	.027	3 1.881e-2	2	NC	15	NC	1
58			min	527	4	-1.39	2	019	2 -1.542e-2	3	249.795	2	NC	1
59		11	max	0	12	.989	3	.027	3 1.761e-2	2	NC	15	NC	1
60			min	527	4	-1.407	2	022	5 -1.438e-2	3	244.447	2	9571.036	5
61		12	max	0	12	1.045	3	.029	1 1.64e-2	2	NC	15	NC	2
62			min	528	4	-1.435	2	026	5 -1.335e-2	3	235.893	2	6530.275	1
63		13	max	0	12	1.093	3	.054	1 1.52e-2	2	NC	15	NC	2
64			min	528	4	-1.449	2	017	5 -1.231e-2	3	232.109	2	3547.307	1
65		14	max	0	12	1.108	3	.07	1 1.4e-2	2	NC	15	NC	3
66			min	528	4	-1.427	2	002	5 -1.127e-2	3	238.314	2	2752.878	1
67		15	max	0	12	1.072	3	.072	1 1.28e-2	2	NC	15	NC	3
68			min	528	4	-1.358	2	0	10 -1.023e-2	3	260.513	2	2679.639	
69		16	max	0	12	.978	3	.06	1 1.16e-2	2	NC	15	NC	3
70			min	528	4	-1.238	2	0	10 -9.193e-3	3	311.582	2	3225.691	1
71		17	max	0	12	.826	3	.042	4 1.039e-2	2	NC	5	NC	2
72			min	528	4	-1.067	2	0	10 -8.155e-3	3	430.944	2	4477.625	
73		18		0	12	.627	3	.028	4 9.192e-3	2	NC	5	NC	1
74		10	min	528	4	856	2	003	10 -7.118e-3	3	818.692	2	6617.468	4
75		19	max	520	12	<u>050 </u>	3	.009	3 7.989e-3	2	NC	1	NC	1
76		13	min	528	4	621	2	005	2 -6.08e-3	3	NC	1	NC	1
77	M15	1	max	- .526	12	<u>621</u> .41	3	.008	3 5.102e-3	3	NC NC	1	NC NC	1
	IVITO			429	4	62	2	005	2 -8.28e-3	2	NC NC	1	NC NC	1
78		2	min									•		-
79		2	max	0 429	12	.574 898	3	.014 031	1 5.963e-3	3	NC 600 F3	5	NC 6574.95	1
80			min		4				5 -9.533e-3	2	690.53	2		5
81		3	max	0	12	.722	3	.038	1 6.823e-3	3	NC 200 407	5	NC 5444 700	2
82		4	min	429	4	-1.144	2	039	5 -1.079e-2	2	366.197	2	5111.702	1
83		4	max	0	12	.844	3	.06	1 7.684e-3	3_	NC 000 044	15	NC	3
84			min	429	4	<u>-1.336</u>	2	029	5 -1.204e-2	2	268.011	2	3208.229	
85		5	max	0	12	.933	3	.072	1 8.545e-3	3_	NC	15	NC NC	3
86			min	429	4	-1.462	2	01	5 -1.329e-2	2	227.988	2	2665.168	
87		6	max	0	12	.987	3	.07	1 9.406e-3	3_	NC	15	NC	3
88			min	429	4	-1.52	2	0	10 -1.455e-2	2	213.407		2735.746	
89		7	max	0	12	1.009	3	.055	1 1.027e-2	3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	429	4	-1.517	2	003	10 -1.58e-2	2	213.958	2	3516.794	
91		8	max	0	12	1.007	3	.049	4 1.113e-2	3	NC 004.070	<u>15</u>	NC	2
92			min	429	4	<u>-1.474</u>	2	007	10 -1.705e-2	2	224.878	2	3851.313	
93		9	max	0	12	.993	3	.035	4 1.199e-2 2 -1.831e-2	2	NC 240.657	15	NC 5327.622	4
94		10	min max	429 0	1	<u>-1.418</u> .984	3	013 .025	3 1.285e-2	3	NC	<u>2</u> 15	NC	1
96		10	min	429	4	-1.389	2	018	2 -1.956e-2	2	249.827	2	NC	1
97		11	max	0	1	.993	3	.025	3 1.199e-2	3	NC	15	NC	1
98			min	429	4	-1.418	2	03	5 -1.831e-2	2	240.657		6903.271	5
99		12	max	0	1	1.007	3	.03	1 1.113e-2	3	NC	15	NC	2
100		12	min	429	4	-1.474	2	035	5 -1.705e-2	2	224.878	2	5783.17	5
101		13	max	0	1	1.009	3	.055	1 1.027e-2	3	NC NC	15	NC	2
102			min	429	4	-1.517	2	024	5 -1.58e-2	2	213.958	2	3516.794	
103		14	max	0	1	.987	3	.07	1 9.406e-3	3	NC	15	NC	3
104			min	429	4	-1.52	2	003	5 -1.455e-2	2	213.407	2	2735.746	
105		15	max	0	1	.933	3	.072	1 8.545e-3	3	NC	15	NC	3
106			min	429	4	-1.462	2	.001	10 -1.329e-2	2	227.988	2	2665.168	1
107		16	max	0	1	.844	3	.06	1 7.684e-3	3	NC	15	NC	3
108			min	429	4	-1.336	2	.001	10 -1.204e-2	2	268.011	2	3208.229	1
109		17	max	0	1	.722	3	.054	4 6.823e-3	3	NC	5	NC	2
110			min	429	4	-1.144	2	0	10 -1.079e-2	2	366.197	2	3494.776	4
111		18	max	0	1	.574	3	.037	4 5.963e-3	3	NC	5	NC	1
112			min	429	4	898	2	002	10 -9.533e-3	2	690.53	2	5008.655	4
113		19	max	0	1	.41	3	.008	3 5.102e-3	3_	NC	_1_	NC	1
114			min	429	4	62	2	005	2 -8.28e-3	2	NC	1_	NC	1
115	<u>M16</u>	1	max	0	12	.187	2	.007	3 9.727e-3	3	NC	1_	NC	1
116			min	132	4	<u>145</u>	3	004	2 -1.214e-2	2	NC	_1_	NC	1
117		2	max	0	12	.073	1	.021	1 1.075e-2	3	NC	4	NC	2
118			min	132	4	1	3	022	5 -1.283e-2	2	1455.461	2	9087.433	
119		3	max	0	12	.012	9	.049	1 1.177e-2	3	NC 044.744	5_	NC	2
120		1	min	132	4	068	3	028	5 -1.352e-2	2	814.711	2	3887.292	1
121		4	max	0	12	.005	4	.073	1 1.278e-2	3	NC CEC 4CE	5	NC 2024 402	3
122		-	min	132	4	106	2	023	5 -1.421e-2	2	656.465	2	2631.463	
123		5	max	0	12	.006	4	.084	1 1.38e-2	3	NC CEO 4EO	5	NC	3
124 125		6	min max	132 0	12	<u>107</u> .019	9	<u>011</u> .08	5 -1.489e-2 1 1.482e-2	3	653.459 NC	<u>2</u> 5	2277.536 NC	3
126		0	min	132	4	104	3	.002	10 -1.564e-2	1	795.27	2	2395.424	
127		7	max	0	12	<u>104</u> .077	1	.062	1 1.584e-2	3	NC	3	NC	2
128		+-	min	132	4	157	3	001	10 -1.64e-2	1	1303.731	2	3119.452	1
129		8	max	0	12	.176	1	.034	1 1.686e-2	3	NC	1	NC	2
130			min		4	216	3	005	10 -1.716e-2				5678 745	1
131		9	max	0	12	.263	1	.022	4 1.788e-2	3	NC	4	NC	1
132			min	132	4	266	3	011	2 -1.792e-2	1	1576.822	3	8422.924	
133		10	max	0	1	.302	1	.021	3 1.89e-2	3	NC	5	NC	1
134			min	132	4	289	3	016	2 -1.868e-2	1	1333.866	3	NC	1
135		11	max	0	1	.263	1	.022	3 1.788e-2	3	NC	4	NC	1
136			min	132	4	266	3	016	5 -1.792e-2	1	1576.822	3	NC	1
137		12	max	0	1	.176	1	.034	1 1.686e-2	3	NC	1	NC	2
138			min	132	4	216	3	017	5 -1.716e-2	1	2695.465	3	5678.745	1
139		13	max	0	1	.077	1	.062	1 1.584e-2	3	NC	3	NC	2
140			min	132	4	157	3	008	5 -1.64e-2	1	1303.731	2	3119.452	1
141		14	max	0	1	.019	9	.08	1 1.482e-2	3	NC	5	NC	3
142			min	132	4	104	3	.002	10 -1.564e-2	1	795.27	2	2395.424	1
143		15	max	0	1	.005	6	.084	1 1.38e-2	3	NC	5	NC	3
144			min	132	4	107	2	.003	10 -1.489e-2	2	653.459	2	2277.536	
145		16	max	0	1	.004	13	.073	1 1.278e-2	3	NC	5	NC	3
146			min	132	4	106	2	.003	10 -1.421e-2	2	656.465	2	2631.463	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

148	147	Member	Sec 17	max	x [in]	LC 1	y [in] .012	LC 9	z [in] .049	LC 1	x Rotate [r	LC 3	(n) L/y Ratio	LC 5	(n) L/z Ratio	LC 2
149			11/													
150			10													_
151			10			-		_								
152			10													
153 M2			13			-										_
154		M2	1			_								_		
165		IVIZ														
1566			2								2 2000-3					
157																
158			3							_		_				
159			3								1.5EF0.4					
161			1													
161			4								2.343E-3					
162			_									•				
163			5													_
166										_		•		_		
165			Ь													_
166			-													
167																
168										_		•		_		_
189			8								2.433e-3					_
170												•				
171			9								2.458e-3					
172																
173			10											_		
174												•		_		
175			11								2.509e-3					
176				min								1_				4
177			12							1_		4_				1
178										_		•		_		_
179			13								2.559e-3					_
180																
181			14								2.584e-3	_4_				
182							006		074	4		1_		1_		4
183			15									4_				_
184										_		•		_		
185 17 max 0 2 0 15 0 1 2.66e-3 4 NC 1 NC 1 186 min 001 3 003 3 014 4 -1.989e-5 1 NC 1 5006.37 4 187 18 max 0 2 0 15 0 1 2.685e-3 4 NC 1 NC 1 188 min 0 3 001 6 004 4 -9.483e-6 1 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.711e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 -5.23e-7 3 NC 1 NC 1 190 min 0 1 0 1 0 1 -5.626e-4 4			16									4_				
186 min 001 3 003 3 014 4 -1.989e-5 1 NC 1 5006.37 4 187 18 max 0 2 0 15 0 1 2.685e-3 4 NC 1 NC 1 188 min 0 3 001 6 004 4 -9.483e-6 1 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.711e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 -5.233e-7 3 NC 1 NC 1 191 M3 1 max 0 1 0 1 -5.233e-7 3 NC 1 NC 1 192 min 0 1 0 1 0 1 -5.626e-				min	002		004		029	4		1_		1_		4
187 18 max 0 2 0 15 0 1 2.685e-3 4 NC 1 NC 1 188 min 0 3 001 6 004 4 -9.483e-6 1 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.711e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 -5.233e-7 3 NC 1 NC 1 191 M3 1 max 0 1 0 1 -5.233e-7 3 NC 1 NC 1 191 M3 1 max 0 1 0 1 -5.626e-4 4 NC 1 NC 1 192 max 0 3 0 15 0.015 4 8.626e-5			17	max						1		4		_1_		1_
188 min 0 3 001 6 004 4 -9.483e-6 1 NC 1 NC 1 189 19 max 0 1 0 1 0 1 2.711e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 -5.233e-7 3 NC 1 NC 1 191 M3 1 max 0 1 0 1 0 1 0 1 NC 1 NC 1 192 min 0 1 0 1 0 1 -5.626e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .015 4 8.626e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 3				min	001		003		014	4				1_		4
189 19 max 0 1 0 1 0 1 2.711e-3 4 NC 1 NC 1 190 min 0 1 0 1 0 1 -5.233e-7 3 NC 1 NC 1 191 M3 1 max 0 1 0 1 0 3 NC 1 NC 1 192 min 0 1 0 1 0 1 -5.626e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .015 4 8.626e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 3 1.403e-6 12 NC 1 NC 1 195 3 max 0 3 001 15 .029 4 7.351e-4			18							1		4_		_1_		1
190 min 0 1 0 1 -5.233e-7 3 NC 1 NC 1 191 M3 1 max 0 1 0 1 0 1 0 3 NC 1 NC 1 192 min 0 1 0 1 0 1 -5.626e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .015 4 8.626e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 3 1.403e-6 12 NC 1 NC 1 195 3 max 0 3 001 15 .029 4 7.351e-4 4 NC 1 NC 1 196 min 0 2 005 6 0 3 2.818e-6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>001</td><td>6</td><td>004</td><td>4</td><td></td><td>1_</td><td></td><td></td><td></td><td></td></t<>							001	6	004	4		1_				
191 M3 1 max 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 -5.626e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .015 4 8.626e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 3 1.403e-6 12 NC 1 NC 1 195 3 max 0 3 001 15 .029 4 7.351e-4 4 NC 1 NC 1 196 min 0 2 005 6 0			19		0	1	0	1	0	1		4		_1_		1
192 min 0 1 0 1 -5.626e-4 4 NC 1 NC 1 193 2 max 0 3 0 15 .015 4 8.626e-5 4 NC 1 NC 1 194 min 0 2 003 6 0 3 1.403e-6 12 NC 1 NC 1 195 3 max 0 3 001 15 .029 4 7.351e-4 4 NC 1 NC 1 196 min 0 2 005 6 0 3 2.818e-6 12 NC 1 NC 1 197 4 max .001 3 002 15 .042 4 1.384e-3 4 NC 1 NC 1 198 min 001 2 008 6 0 3 4.234e-6	190			min	0	1	0	1	0	1	-5.233e-7	3		1	NC	1
193	191	M3	1	max	0		0	1	0	1		3		1_		1
194 min 0 2 003 6 0 3 1.403e-6 12 NC 1 NC 1 195 3 max 0 3 001 15 .029 4 7.351e-4 4 NC 1 NC 1 196 min 0 2 005 6 0 3 2.818e-6 12 NC 1 NC 1 197 4 max .001 3 002 15 .042 4 1.384e-3 4 NC 1 NC 1 198 min 001 2 008 6 0 3 4.234e-6 12 NC 1 NC 1 199 5 max .002 3 002 15 .054 4 2.033e-3 4 NC 1 NC 1 200 min 001 2 011 6 0 </td <td>192</td> <td></td> <td></td> <td>min</td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td>1</td> <td></td> <td>4</td> <td></td> <td>1</td> <td></td> <td>1</td>	192			min	0		0			1		4		1		1
195 3 max 0 3 001 15 .029 4 7.351e-4 4 NC 1 NC 1 196 min 0 2 005 6 0 3 2.818e-6 12 NC 1 NC 1 197 4 max .001 3 002 15 .042 4 1.384e-3 4 NC 1 NC 1 198 min 001 2 008 6 0 3 4.234e-6 12 NC 1 NC 1 199 5 max .002 3 002 15 .054 4 2.033e-3 4 NC 1 NC 1 200 min 001 2 011 6 0 12 5.649e-6 12 8984.265 6 9560.104 5 201 6 max .002 3 003			2	max					.015			4		1_		1
196 min 0 2 005 6 0 3 2.818e-6 12 NC 1 NC 1 197 4 max .001 3 002 15 .042 4 1.384e-3 4 NC 1 NC 1 198 min 001 2 008 6 0 3 4.234e-6 12 NC 1 NC 1 199 5 max .002 3 002 15 .054 4 2.033e-3 4 NC 1 NC 1 200 min 001 2 011 6 0 12 5.649e-6 12 8984.265 6 9560.104 5 201 6 max .002 3 003 15 .065 4 2.682e-3 4 NC 2 NC 1 202 min 002 2 014 6<				min				6		3		12		1		1
197 4 max .001 3 002 15 .042 4 1.384e-3 4 NC 1 NC 1 198 min 001 2 008 6 0 3 4.234e-6 12 NC 1 NC 1 199 5 max .002 3 002 15 .054 4 2.033e-3 4 NC 1 NC 1 200 min 001 2 011 6 0 12 5.649e-6 12 8984.265 6 9560.104 5 201 6 max .002 3 003 15 .065 4 2.682e-3 4 NC 2 NC 1 202 min 002 2 014 6 0 12 7.065e-6 12 7238.336 6 8970.067 5	195		3	max	0		001	15	.029	4	7.351e-4	4	NC	1	NC	1
198 min 001 2 008 6 0 3 4.234e-6 12 NC 1 NC 1 199 5 max .002 3 002 15 .054 4 2.033e-3 4 NC 1 NC 1 200 min 001 2 011 6 0 12 5.649e-6 12 8984.265 6 9560.104 5 201 6 max .002 3 003 15 .065 4 2.682e-3 4 NC 2 NC 1 202 min 002 2 014 6 0 12 7.065e-6 12 7238.336 6 8970.067 5				min						3		12		1		1
199 5 max .002 3 002 15 .054 4 2.033e-3 4 NC 1 NC 1 200 min 001 2 011 6 0 12 5.649e-6 12 8984.265 6 9560.104 5 201 6 max .002 3 003 15 .065 4 2.682e-3 4 NC 2 NC 1 202 min 002 2 014 6 0 12 7.065e-6 12 7238.336 6 8970.067 5	197		4	max	.001		002	15	.042	4		4		1		1
199 5 max .002 3 002 15 .054 4 2.033e-3 4 NC 1 NC 1 200 min 001 2 011 6 0 12 5.649e-6 12 8984.265 6 9560.104 5 201 6 max .002 3 003 15 .065 4 2.682e-3 4 NC 2 NC 1 202 min 002 2 014 6 0 12 7.065e-6 12 7238.336 6 8970.067 5					001	2	008	6	0	3		12	NC	1	NC	1
200 min 001 2 011 6 0 12 5.649e-6 12 8984.265 6 9560.104 5 201 6 max .002 3 003 15 .065 4 2.682e-3 4 NC 2 NC 1 202 min 002 2 014 6 0 12 7.065e-6 12 7238.336 6 8970.067 5	199		5		.002	3	002	15	.054	4		4	NC	1	NC	1
201 6 max .002 3003 15 .065 4 2.682e-3 4 NC 2 NC 1 202 min002 2014 6 0 12 7.065e-6 12 7238.336 6 8970.067 5										12		12	8984.265	6	9560.104	5
202 min002 2014 6 0 12 7.065e-6 12 7238.336 6 8970.067 5			6						.065	4				2		1
																5
, = ,	203		7	max	.003	3	004	15	.076	4	3.33e-3	4	NC	5	NC	1

Model Name

Schletter, Inc. HCV

....

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

204	Member	Sec	min	x [in] 002	LC 2	y [in] 016	LC	z [in]	LC 12	x Rotate [r 8.48e-6	LC 12	(n) L/y Ratio	LC 6	(n) L/z Ratio 8966.399	
205		8	max	.002	3	016 004	15	.086	4	3.979e-3	4	NC	5	NC	1
206		0	min	002	2	004 018	6	0	12	9.895e-6		5541.403	6	9482.736	
207		9	max	.003	3	004	15	.096	4	4.628e-3	4	NC	5	NC	1
208		- 3	min	003	2	02	6	0	12	1.131e-5		5156.773	6	NC	1
209		10	max	.004	3	005	15	.105	4	5.277e-3	4	NC	5	NC	1
210		10	min	003	2	021	6	0	12	1.273e-5	12	4967.672	6	NC	1
211		11	max	.004	3	005	15	.114	4	5.926e-3	4	NC	5	NC	1
212			min	004	2	021	6	0	12	1.414e-5	12	4946.078	6	NC	1
213		12	max	.005	3	004	15	.123	4	6.574e-3	4	NC	5	NC	1
214		12	min	004	2	02	6	0	12	1.556e-5	12	5092.648	6	NC	1
215		13	max	.005	3	004	15	.132	4	7.223e-3	4	NC	5	NC	1
216			min	004	2	019	6	0	12	1.697e-5	12	5438.333	6	NC	1
217		14	max	.006	3	004	15	.14	4	7.872e-3	4	NC	5	NC	1
218			min	005	2	017	6	0	12	1.839e-5	12	6060.589	6	NC	1
219		15	max	.006	3	003	15	.15	4	8.521e-3	4	NC	3	NC	1
220			min	005	2	014	6	0	12	1.98e-5	12	7131.75	6	NC	1
221		16	max	.007	3	002	15	.16	4	9.17e-3	4	NC	1	NC	1
222			min	005	2	011	6	0	12	2.122e-5	12	9069.696	6	NC	1
223		17	max	.007	3	001	15	.17	4	9.819e-3	4	NC	1	NC	1
224			min	006	2	008	1	0	12	2.263e-5	12	NC	1	NC	1
225		18	max	.007	3	0	15	.182	4	1.047e-2	4	NC	1	NC	1
226			min	006	2	005	1	0	12	2.405e-5	12	NC	1	NC	1
227		19	max	.008	3	0	5	.195	4	1.112e-2	4	NC	1	NC	1
228			min	006	2	002	1	0	12	2.546e-5	12	NC	1	NC	1
229	M4	1	max	.003	1	.006	2	0	12	1.069e-4	1	NC	1	NC	3
230			min	0	3	008	3	195	4	-3.603e-4	5	NC	1	127.008	4
231		2	max	.002	1	.006	2	0	12	1.069e-4	1	NC	1	NC	3
232			min	0	3	008	3	18	4	-3.603e-4	5	NC	1	138.175	4
233		3	max	.002	1	.005	2	0	12	1.069e-4	1	NC	1	NC	3
234			min	0	3	007	3	164	4	-3.603e-4	5	NC	1_	151.461	4
235		4	max	.002	1	.005	2	0	12	1.069e-4	<u>1</u>	NC	<u>1</u>	NC	2
236			min	0	3	007	3	148	4	-3.603e-4	5	NC	1_	167.417	4
237		5	max	.002	1	.005	2	0	12	1.069e-4	1_	NC	1_	NC	2
238			min	0	3	006	3	133	4	-3.603e-4	5	NC	1_	186.791	4
239		6	max	.002	1	.004	2	0	12	1.069e-4	_1_	NC	1_	NC	2
240		_	min	0	3	006	3	118	4	-3.603e-4	5	NC	1_	210.622	4
241		7	max	.002	1	.004	2	0	12	1.069e-4	_1_	NC	_1_	NC	2
242			min	0	3	005	3	<u>103</u>	4	-3.603e-4	5_	NC	1_	240.385	4
243		8	max	.002	1	.004	2	0	12	1.069e-4	1_	NC NC	1_	NC 070,000	2
244			min	0	3	005	3	089		-3.603e-4		NC NC	1_	278.229	4
245		9	max	.001	1	.003	2	0	12	1.069e-4	1_	NC NC	1_1	NC 227.20	2
246		10	min	0	3	004	3	076	4	-3.603e-4	5	NC NC	1_1	327.39	4
247		10	max	.001	1	.003	2	0 	12	1.069e-4	1	NC NC	1_	NC 202.020	2
248 249		11	min	<u> </u>	3	004 .003	2	063 0	12	-3.603e-4 1.069e-4	<u>5</u> 1	NC NC	<u>1</u> 1	392.929 NC	1
250			max min	<u>.001</u>	3	003 004	3	051		-3.603e-4	5	NC NC	1	483.123	4
251		12		.001	1	.002	2	<u>051</u> 0	12	1.069e-4	<u> </u>	NC NC	1	NC	1
252		12	max		3		3				5	NC NC	1	612.291	_
253		13	min max	<u> </u>	1	003 .002	2	041 0	12	-3.603e-4 1.069e-4	1	NC NC	1	NC	1
254		13	min	0	3	002	3	031	4	-3.603e-4	5	NC NC	1	807.012	4
255		14	max	0	1	.002	2	<u>031</u> 0	12	1.069e-4	1	NC	1	NC	1
256		14	min	0	3	002	3	022	4	-3.603e-4	5	NC	1	1121.356	4
257		15	max	0	1	.002	2	<u>022</u> 0	12	1.069e-4	1	NC	1	NC	1
258		13	min	0	3	002	3	015	4	-3.603e-4	5	NC	1	1679.976	
259		16	max	0	1	.002	2	<u>013</u> 0	12	1.069e-4	1	NC	1	NC	1
260		10	min	0	3	001	3	009	4	-3.603e-4	5	NC	1	2827.463	_
200			111/1111	U	J	.001	J	.003		0.0006-4	J	140		2021.703	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

004	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio	LC		LC
261		17	max	0	1	0	2	0	12	1.069e-4	_1_	NC	1_	NC	1
262		10	min	0	3	0	3	004	4	-3.603e-4	5	NC	1_	5841.543	4
263		18	max	0	1	0	2	0	12	1.069e-4	_1_	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-3.603e-4	5	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.069e-4	_1_	NC	1_	NC	1
266		_	min	0	1	0	1	0	1	-3.603e-4	5	NC	1_	NC	1
267	M6	1	max	.022	2	.031	2	0	1	2.379e-3	_4_	NC	3_	NC	1_
268			min	029	3	044	3	667	4	0	_1_	2205.307	2	103.54	4
269		2	max	.02	2	.029	2	0	1	2.399e-3	4	NC	3	NC	1
270			min	027	3	041	3	613	4	0	1_	2417.653	2	112.767	4
271		3	max	.019	2	.026	2	0	1	2.419e-3	_4_	NC	3	NC	1_
272			min	026	3	039	3	559	4	0	1_	2673.207	2	123.73	4
273		4	max	.018	2	.023	2	0	1	2.439e-3	4	NC	3	NC	1_
274			min	024	3	037	3	505	4	0	1	2984.105	2	136.883	4
275		5	max	.017	2	.021	2	0	1	2.459e-3	4	NC	3	NC	1
276			min	022	3	034	3	452	4	0	1	3367.208	2	152.846	4
277		6	max	.016	2	.018	2	0	1	2.479e-3	4	NC	3	NC	1
278			min	021	3	032	3	401	4	0	1	3846.489	2	172.475	4
279		7	max	.014	2	.016	2	0	1	2.499e-3	4	NC	3	NC	1
280			min	019	3	029	3	351	4	0	1	4456.983	2	196.989	4
281		8	max	.013	2	.013	2	0	1	2.519e-3	4	NC	1	NC	1
282			min	018	3	027	3	303	4	0	1	5251.569	2	228.169	4
283		9	max	.012	2	.011	2	0	1	2.539e-3	4	NC	1	NC	1
284			min	016	3	025	3	257	4	0	1	6313.166	2	268.699	4
285		10	max	.011	2	.009	2	0	1	2.559e-3	4	NC	1	NC	1
286			min	014	3	022	3	214	4	0	1	7777.989	2	322.782	4
287		11	max	.01	2	.007	2	0	1	2.578e-3	4	NC	1	NC	1
288			min	013	3	02	3	174	4	0	1	9883.014	2	397.315	4
289		12	max	.008	2	.005	2	0	1	2.598e-3	4	NC	1	NC	1
290		12	min	011	3	017	3	137	4	0	1	NC	1	504.262	4
291		13	max	.007	2	.004	2	0	1	2.618e-3	4	NC	1	NC	1
292		13	min	01	3	015	3	104	4	0	1	NC	1	665.922	4
293		14	max	.006	2	.003	2	0	1	2.638e-3	4	NC	1	NC	1
294		14	min	008	3	012	3	074	4	0	1	NC NC	1	927.904	4
295		15		.005	2	.001	2	- <u>074</u> 0	1	2.658e-3	4	NC	1	NC	1
296		15	max	005	3	01	3	049	4	0	1	NC NC	1	1396.124	4
		16	min		2				1	2.678e-3	_	NC NC	1	NC	1
297		16	max	.004	3	0	2	0			4	NC NC			
298		47	min	005		007	3	029	4	0	1_		1_	2366.586	
299		17	max	.002	2	0	2	0	1	2.698e-3	4	NC	1_	NC 4050.040	1
300		40	min	003	3	005	3	014	4	0	1_	NC NC	1_	4956.618	4
301		18		.001	2	0	2	0	1	2.718e-3	4	NC NC	1_	NC NC	1
302		40	min	002	3	002	3	004	4	0 700 - 0	1_1	NC NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	2.738e-3	4	NC NC	1_	NC NC	1
304	n 4		min	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
305	M7	1_	max	0	1	0	1	0	1	0	1_	NC	1_	NC NC	1
306		-	min	0	1	0	1	0	1	-5.683e-4	4	NC	1_	NC NC	1
307		2	max	.001	3	0	15	.015	4	6.146e-5	_4_	NC	1_	NC	1
308			min	001	2	004	3	0	1	0	_1_	NC	1_	NC	1
309		3	max	.003	3	001	15	.029	4	6.912e-4	4	NC	1_	NC	1
310			min	002	2	007	3	0	1	0	1	NC	1_	NC	1
311		4	max	.004	3	002	15	.042	4	1.321e-3	4	NC	1_	NC	1_
312			min	004	2	01	3	0	1	0	1	NC	1	9657.717	4
313		5	max	.005	3	003	15	.054	4	1.951e-3	4	NC	_1_	NC	1
314			min	005	2	013	3	0	1	0	1	8320.741	3	8225.401	4
315		6	max	.007	3	003	15	.066	4	2.58e-3	4	NC	1	NC	1
316			min	006	2	016	3	0	1	0	1	7006.109	3	7587.477	4
317		7	max	.008	3	004	15	.076	4	3.21e-3	4	NC	1	NC	1

Model Name

Schletter, Inc. HCV

1101

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	I.C.	x Rotate [r	I C	(n) L/y Ratio	1 C	(n) I /z Ratio	IC
318			min	007	2	018	3	0	1	0	1	6188.968	4	7423.431	4
319		8	max	.009	3	004	15	.087	4	3.84e-3	4	NC	2	NC	1
320			min	009	2	02	3	0	1	0	1	5541.347	4	7635.217	4
321		9	max	.01	3	005	15	.096	4	4.47e-3	4	NC	5	NC	1
322			min	01	2	021	3	0	1	0	1	5156.725	4	8236.791	4
323		10	max	.012	3	005	15	.105	4	5.099e-3	4	NC	5	NC	1
324			min	011	2	021	3	0	1	0	1	4967.629	4	9346.487	4
325		11	max	.013	3	005	15	.114	4	5.729e-3	4	NC	5	NC	1
326			min	012	2	021	4	0	1	0	1	4946.037	4	NC	1
327		12	max	.014	3	005	15	.122	4	6.359e-3	4	NC	5	NC	1
328			min	013	2	021	4	0	1	0	1	5092.608	4	NC	1
329		13	max	.016	3	005	15	.13	4	6.989e-3	4	NC	5	NC	1
330			min	015	2	02	4	0	1	0	1	5438.292	4	NC	1
331		14	max	.017	3	004	15	.139	4	7.618e-3	4	NC	2	NC	1
332			min	016	2	018	3	0	1	0	1	6060.545	4	NC	1
333		15	max	.018	3	004	15	.147	4	8.248e-3	4	NC	1_	NC	1
334			min	017	2	016	3	0	1	0	1_	7131.699	4	NC	1
335		16	max	.02	3	003	15	.156	4	8.878e-3	4_	NC	<u>1</u>	NC	1
336			min	018	2	013	3	0	1	0	1_	9069.632	4	NC	1
337		17	max	.021	3	002	15	.166	4	9.507e-3	4	NC	_1_	NC	1
338			min	02	2	011	3	0	1	0	1_	NC	1_	NC	1
339		18	max	.022	3	001	15	.176	4	1.014e-2	4_	NC	_1_	NC	1
340			min	021	2	008	3	0	1	0	1_	NC	1_	NC	1
341		19	max	.024	3	0	10	.188	4	1.077e-2	4_	NC	_1_	NC	1
342			min	022	2	005	3	0	1	0	1_	NC	1	NC	1
343	<u>M8</u>	1	max	.007	1	.021	2	0	1	0	_1_	NC	_1_	NC	1
344			min	001	3	024	3	188	4	-4.978e-4	4_	NC	<u>1</u>	131.813	4
345		2	max	.007	1	.02	2	00	1	0	_1_	NC	_1_	NC	1
346			min	001	3	023	3	173	4	-4.978e-4	4	NC	1_	143.418	4
347		3	max	.006	1	.019	2	0	1	0	_1_	NC	_1_	NC	1
348			min	001	3	021	3	158	4	-4.978e-4	4	NC	1_	157.223	4
349		4	max	.006	1	.018	2	0	1	0	_1_	NC	_1_	NC	1
350			min	0	3	02	3	143	4	-4.978e-4	4	NC	1_	173.802	4
351		5	max	.005	1	.016	2	0	1	0	1_	NC	1_	NC	1
352			min	0	3	019	3	128	4	-4.978e-4	4_	NC	1_	193.932	4
353		6	max	.005	1	.015	2	0	1	0	1	NC	1	NC	1
354		-	min	0	3	017	3	<u>113</u>	4	-4.978e-4	4	NC NC	1_	218.693	4
355		7	max	.005	1	.014	2	0	1	0	1_	NC NC	1_	NC 040 C4C	1
356			min	0	3	016	3	099	4	-4.978e-4	4	NC NC	1_	249.616	4
357		8	max	.004	1	.013	2	0	1	0	1_1	NC NC	1_1	NC 200 026	1
358		0	min	0	3	015	3	086	4	-4.978e-4			1_1	288.936	4
359		9	max min	.004 0	3	.012 013	3	0 073	4	0 -4.978e-4	<u>1</u> 4	NC NC	1	NC 340.014	1
360 361		10		.003	1	<u>013</u> .011	2	<u>073</u> 0	1	0	<u>4</u> 1	NC NC	1	NC	1
362		10	max min	0	3	012	3	061	4	-4.978e-4	4	NC NC	1	408.108	4
363		11	max	.003	1	.009	2	061 0	1	0	1	NC NC	1	NC	1
364		11	min	0	3	011	3	049	4	-4.978e-4	4	NC NC	1	501.82	4
365		12	max	.003	1	.008	2	<u>049</u> 0	1	0	1	NC NC	1	NC	1
366		14	min	.003	3	009	3	039	4	-4.978e-4	4	NC NC	1	636.028	4
367		13	max	.002	1	.007	2	<u>039</u> 0	1	0	1	NC	1	NC	1
368		13	min	0	3	008	3	03	4	-4.978e-4	4	NC	1	838.35	4
369		14	max	.002	1	.006	2	03	1	0	1	NC	1	NC	1
370		14	min	0	3	007	3	021	4	-4.978e-4	4	NC	1	1164.973	_
371		15	max	.002	1	.005	2	<u>021</u> 0	1	0	1	NC	1	NC	1
372		13	min	0	3	005	3	014	4	-4.978e-4	4	NC NC	1	1745.431	4
373		16	max	.001	1	.004	2	<u>014</u> 0	1	0	1	NC	1	NC	1
374		10	min	0	3	004	3	008	4	-4.978e-4	4	NC	1	2937.822	
0/4			1111111	U	J	.004	J	.000		T.0706-4	7	110		2001.022	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	.002	2	0	1	0	1_	NC	1	NC 0070.045	1
376		10	min	0	3	003	3	004	4	-4.978e-4	4_	NC	1_	6070.015	
377		18	max	0	1	.001	2	0	1	0	1_	NC	1	NC	1
378		1.0	min	0	3	001	3	001	4	-4.978e-4	4_	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	_1_	NC	1	NC	1
380			min	0	1	0	1	0	1	-4.978e-4	4_	NC	1_	NC	1
381	M10	1_	max	.007	2	.009	2	0	12	2.363e-3	4_	NC	1	NC	2
382		+_	min	009	3	<u>014</u>	3	<u>665</u>	4	1.496e-5	12	7576.217	2	103.85	4
383		2	max	.007	2	.008	2	0	12	2.382e-3	4	NC	1_	NC	2
384		_	min	009	3	<u>014</u>	3	611	4	1.415e-5	12	8797.232	2	113.104	4
385		3	max	.006	2	.007	2	0	12	2.401e-3	4_	NC	_1_	NC	2
386			min	008	3	014	3	557	4	1.333e-5	12	NC	1_	124.1	4
387		4	max	.006	2	.005	2	0	12	2.421e-3	4_	NC	1	NC	1
388			min	008	3	013	3	503	4	1.252e-5	12	NC	1	137.293	4
389		5	max	.005	2	.004	2	0	12	2.44e-3	4_	NC	1	NC	1
390			min	007	3	013	3	451	4	1.171e-5	12	NC	1_	153.304	4
391		6	max	.005	2	.003	2	0	12	2.459e-3	_4_	NC	_1_	NC	1_
392			min	007	3	012	3	399	4	1.089e-5	12	NC	1_	172.992	4
393		7	max	.005	2	.002	2	0	12	2.479e-3	4_	NC	_1_	NC	1_
394			min	006	3	011	3	35	4	1.008e-5	12	NC	1_	197.581	4
395		8	max	.004	2	.001	2	0	12	2.498e-3	_4_	NC	_1_	NC	1_
396			min	006	3	011	3	302	4	9.269e-6	12	NC	1_	228.857	4
397		9	max	.004	2	0	2	0	12	2.517e-3	4	NC	_1_	NC	1_
398			min	005	3	01	3	256	4	8.456e-6	12	NC	1_	269.511	4
399		10	max	.004	2	0	2	0	12	2.536e-3	4	NC	1_	NC	1_
400			min	005	3	009	3	213	4	7.643e-6	12	NC	1	323.762	4
401		11	max	.003	2	001	2	0	12	2.556e-3	4	NC	1_	NC	1
402			min	004	3	009	3	173	4	6.83e-6	12	NC	1	398.526	4
403		12	max	.003	2	002	2	0	12	2.575e-3	4	NC	1	NC	1
404			min	004	3	008	3	137	4	6.017e-6	12	NC	1	505.81	4
405		13	max	.002	2	002	15	0	12	2.594e-3	4	NC	1	NC	1
406			min	003	3	007	3	103	4	5.204e-6	12	NC	1	667.985	4
407		14	max	.002	2	002	15	0	12	2.613e-3	4	NC	1	NC	1
408			min	003	3	006	3	074	4	4.298e-6	10	NC	1	930.817	4
409		15	max	.002	2	001	15	0	12	2.633e-3	4	NC	1	NC	1
410			min	002	3	005	4	049	4	3.389e-6	10	NC	1	1400.594	4
411		16	max	.001	2	001	15	0	12	2.652e-3	4	NC	1	NC	1
412			min	002	3	004	4	029	4	2.48e-6	10	NC	1	2374.406	4
413		17	max	0	2	0	15	0	12	2.671e-3	4	NC	1	NC	1
414			min	001	3	003	4	014	4	1.571e-6	10	NC	1	4973.957	4
415		18	max	0	2	0	15	0	12	2.69e-3	4	NC	1	NC	1
416			min	0	3	002	4	004	4	6.626e-7	10	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.71e-3	4	NC	1	NC	1
418			min	0	1	0	1	0	1	-9.2e-7	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.456e-6	1	NC	1	NC	1
420			min	0	1	0	1	0	1	-5.616e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.015	4	7.622e-5	5	NC	1	NC	1
422			min	0	2	003	4	0	1	-2.129e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	.028	4	7.1e-4	4	NC	1	NC	1
424			min	0	2	006	4	0	1	-4.404e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	.041	4	1.346e-3	4	NC	1	NC	1
426			min	001	2	009	4	0	1	-6.678e-5	1	NC	1	NC	1
427		5	max	.002	3	003	15	.054	4	1.982e-3	4	NC	1	NC	1
428			min	001	2	012	4	0	1	-8.953e-5	1	8615.912	4	9058.911	4
429		6	max	.002	3	004	15	.065	4	2.617e-3	4	NC	2	NC	1
430			min	002	2	015	4	0	1	-1.123e-4	1	6968.443	4	8456.237	
431		7	max	.003	3	004	15	.076	4	3.253e-3	4	NC	5	NC	1
			max			1001		1010	_ •	0.2000					

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				
432			min	002	2	018	4	0	1	-1.35e-4	1_	5976.861	4	8396.734	
433		8	max	.003	3	005	15	.086	4	3.889e-3	4_	NC	5	NC	1
434			min	002	2	02	4	0	1	-1.578e-4	_1_	5365.112	4_	8801.737	4
435		9	max	.003	3	005	15	.095	4	4.525e-3	4_	NC	5	NC 0700 000	1
436		40	min	003	2	021	4	0	1	-1.805e-4	1_	5003.302	<u>4</u>	9738.298	4
437		10	max	.004	3	005	15	.104	4	5.161e-3	4	NC	5_4	NC NC	1
438		11	min	003	3	022 005	15	001	4	-2.033e-4	1_	4828.374 NC	4_	NC NC	1
439			max	.004 004	2	005 022	4	.113 002	1	5.796e-3 -2.26e-4	<u>4</u> 1	4814.549	<u>5</u> 4	NC NC	1
441		12	max	.005	3	022 005	15	.122	4	6.432e-3	4	NC	5	NC NC	1
442		12	min	004	2	005 021	4	002	1	-2.488e-4	1	4963.437	4	NC	1
443		13	max	.005	3	005	15	.13	4	7.068e-3	4	NC	5	NC	1
444		13	min	004	2	003	4	003	1	-2.715e-4	1	5305.925	4	NC	1
445		14	max	.006	3	005	15	.139	4	7.704e-3	4	NC	5	NC	1
446		17	min	005	2	018	4	003	1	-2.943e-4	1	5918.197	4	NC	1
447		15	max	.006	3	004	15	.148	4	8.34e-3	4	NC	3	NC	1
448		10	min	005	2	016	4	004	1	-3.17e-4	1	6969.147	4	NC	1
449		16	max	.007	3	003	15	.157	4	8.975e-3	4	NC	1	NC	1
450			min	005	2	013	4	005	1	-3.397e-4	1	8867.865	4	NC	1
451		17	max	.007	3	002	15	.167	4	9.611e-3	4	NC	1	NC	1
452			min	006	2	009	4	006	1	-3.625e-4	1	NC	1	NC	1
453		18	max	.007	3	002	15	.178	4	1.025e-2	4	NC	1	NC	1
454			min	006	2	005	4	007	1	-3.852e-4	1	NC	1	NC	1
455		19	max	.008	3	0	10	.191	4	1.088e-2	4	NC	1	NC	1
456			min	006	2	002	1	008	1	-4.08e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.006	2	.008	1	-7.356e-6	12	NC	1_	NC	3
458			min	0	3	008	3	191	4	-4.003e-4	4	NC	1_	129.984	4
459		2	max	.002	1	.006	2	.007	1	-7.356e-6	12	NC	_1_	NC	3
460			min	0	3	008	3	175	4	-4.003e-4	4	NC	1_	141.417	4
461		3	max	.002	1	.005	2	.007	1	-7.356e-6	<u>12</u>	NC	_1_	NC	3
462			min	0	3	007	3	16	4	-4.003e-4	4	NC	1_	155.019	4
463		4	max	.002	1	.005	2	.006	1	-7.356e-6	12	NC	1_	NC	2
464		_	min	0	3	007	3	145	4	-4.003e-4	4	NC	1_	171.354	4
465		5	max	.002	1	.005	2	.005	1	-7.356e-6	12	NC	1_	NC 101 100	2
466		_	min	0	3	006	3	13	4	-4.003e-4	4	NC NC	1_	191.189	4
467 468		6	max	.002 0	3	.004 006	3	.005 115	4	-7.356e-6 -4.003e-4	<u>12</u> 4	NC NC	1	NC 215.587	2
469		7	min	.002	1	.004	2	.004	1	-7.356e-6	12	NC NC	1	NC	2
470			max min	0	3	00 4	3	101	4	-4.003e-4	4	NC NC	1	246.057	4
471		8	max	.002	1	.003	2	.004	1	-7.356e-6	12	NC	1	NC	2
472		0	min		3	005	3	087		-4.003e-4		NC	1	284.801	4
473		9	max	.001	1	.003	2	.003	1	-7.356e-6		NC	1	NC	2
474			min	0	3	004	3	074	4	-4.003e-4	4	NC	1	335.13	4
475		10	max	.001	1	.003	2	.003	1	-7.356e-6		NC	1	NC	2
476			min	0	3	004	3	062	4	-4.003e-4	4	NC	1	402.227	4
477		11	max	.001	1	.003	2	.002	1	-7.356e-6	12	NC	1	NC	1
478			min	0	3	004	3	05	4	-4.003e-4	4	NC	1	494.565	4
479		12	max	.001	1	.002	2	.002	1	-7.356e-6	12	NC	1	NC	1
480			min	0	3	003	3	04	4	-4.003e-4	4	NC	1	626.804	4
481		13	max	0	1	.002	2	.001	1	-7.356e-6	12	NC	1	NC	1
482			min	0	3	003	3	03	4	-4.003e-4	4	NC	1	826.154	4
483		14	max	0	1	.002	2	0	1	-7.356e-6	12	NC	1	NC	1
484			min	0	3	002	3	022	4	-4.003e-4	4	NC	1	1147.976	4
485		15	max	0	1	.001	2	0	1	-7.356e-6	12	NC	1	NC	1
486			min	0	3	002	3	014	4	-4.003e-4	4	NC	1	1719.887	4
487		16	max	0	1	.001	2	0	1	-7.356e-6	12	NC	1_	NC	1
488			min	0	3	001	3	009	4	-4.003e-4	4	NC	1	2894.691	4

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I C	(n) I /v Ratio	1 C	(n) I /z Ratio	IC.
489		17	max	0	1	0	2	0	1	-7.356e-6	12	NC	1	NC	1
490			min	0	3	0	3	004	4	-4.003e-4	4	NC	1	5980.57	4
491		18	max	0	1	0	2	0	1	-7.356e-6	12	NC	1	NC	1
492			min	0	3	0	3	001	4	-4.003e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.356e-6	12	NC	1	NC	1
494			min	0	1	0	1	0	1	-4.003e-4	4	NC	1	NC	1
495	M1	1	max	.01	3	.208	2	.704	4	8.304e-3	1	NC	1	NC	1
496			min	006	2	05	3	0	12	-1.792e-2	3	NC	1	NC	1
497		2	max	.01	3	.101	2	.683	4	7.769e-3	4	NC	5	NC	1
498		_	min	006	2	024	3	006	1	-8.893e-3	3	1274.459	2	NC	1
499		3	max	.01	3	.015	3	.66	4	1.389e-2	4	NC	5	NC	1
500		Ŭ	min	006	2	012	2	008	1	-1.65e-4	1	616.73	2	6139.082	
501		4	max	.01	3	.076	3	.637	4	1.2e-2	4	NC	15	NC	1
502		Ė	min	006	2	138	2	008	1	-4.111e-3	3	392.031	2	4436.998	
503		5	max	.01	3	.153	3	.613	4	1.01e-2	4	NC	15	NC	1
504			min	006	2	268	2	005	1	-8.123e-3	3	284.475	2	3572.722	5
505		6	max	.009	3	.235	3	.589	4	1.244e-2	2	8299.51	15	NC	1
506		Ŭ	min	006	2	394	2	002	1	-1.213e-2	3	224.971	2	3041.89	5
507		7	max	.009	3	.314	3	.563	4	1.659e-2	2	7014.126	15	NC	1
508		'	min	005	2	506	2	0	3	-1.615e-2	3	189.734	2	2660.378	-
509		8	max	.009	3	.38	3	.538	4	2.075e-2	2	6252.448	15	NC	1
510			min	005	2	594	2	0	12	-2.016e-2	3	168.846	2	2367.333	
511		9	max	.009	3	.422	3	.512	4	2.32e-2	2	5853.434	15	NC	1
512		3	min	005	2	65	2	0	1	-2.061e-2	3	157.945	2	2164.94	4
513		10	max	.009	3	.438	3	.482	4	2.453e-2	2	5731.345	15	NC	1
514		10	min	005	2	669	2	0	10	-1.869e-2	3	154.741	2	2095.645	
515		11	max	.003	3	.428	3	.449	4	2.585e-2	2	5853.136	15	NC	1
516		- 1 1	min	005	2	65	2	0	12	-1.677e-2	3	158.458	2	2124.048	_
517		12		.005	3	.393	3	.414	4	2.469e-2	2	6251.74	15	NC	1
518		12	max	005	2	592	2	.414	1	-1.446e-2	3	170.357	2	2251.788	
519		13	min max	.005	3	.335	3	.373	4	1.98e-2	2	7012.744	15	NC	1
520		13	min	005	2	<u>.ააა</u> 5	2	.373	1	-1.157e-2	3	193.306	2	2655.682	
		14			3	<u>5</u> .261	3	.328	4	1.492e-2			15	NC	1
521 522		14	max	.008 005	2	384	2	.320	12	-8.68e-3	3	8296.981 232.45	2	3577.894	
		15	min		3	364 .177	3	•				NC	15	NC	1
523 524		15	max	.008	2	256	2	.282 0	12	1.003e-2 -5.789e-3	3	299.58	2	5812.16	4
		16	min	005	_							NC		NC	
525		16	max	.007	3	.09	3	.237	4	8.939e-3	4		<u>15</u>		1
526		47	min	005	2	127	2	0	12	-2.898e-3	3	423.218	2	NC NC	1
527		17	max	.007	3	.005	3	.196	4	1.014e-2	4	NC COE COZ	5_	NC NC	1
528		40	min	005	2	007	2	0	12	-7.12e-6	3	685.687	2	NC NC	
529		18	max	.007	3	.095	2	.161	4	6.482e-3	2	NC	5	NC NC	1
530		40	min	005	2	072	3	0	12	-2.167e-3	3	1447.815	2	NC NC	1
531		19	max	.007	3	.187	2	.132	4	1.291e-2	2	NC	1_	NC NC	1
532	NAT.		min	004	2	145	3	704	1	-4.418e-3	3	NC NC	1_	NC NC	1
533	<u>M5</u>	1	max	.03	3	.361	2	.704	4	0 1.0960 F	1_1	NC NC	1	NC NC	1
534			min	021	2	008	3	0	1	-1.086e-5	4	NC NC	1_	NC NC	1
535		2	max	.03	3	.176	2	.688	4	7.111e-3	4	NC 700,000	5	NC 0450.050	1
536		_	min	021	2	003	3	0	1	0	1_	736.903	2	8453.059	
537		3	max	.03	3	.044	3	.667	4	1.406e-2	4	NC 242.500	<u>15</u>	NC	1
538		4	min	021	2	036	2	0	1	0	1_	343.508	2	4978.222	4
539		4	max	.03	3	.166	3	.643	4	1.146e-2	4	8605.452	<u>15</u>	NC 0057.445	1
540		_	min	021	2	294	2	0	1	0	1_	207.98	2	3857.115	4
541		5_	max	.029	3	.342	3	.617	4	8.853e-3	4_	5978.225	15	NC	1
542			min	02	2	<u>577</u>	2	0	1	0	1_	145.01	2	3313.462	
543		6	max	.028	3	.543	3	.59	4	6.249e-3	4_	4577.922	<u>15</u>	NC	1
544			min	02	2	86	2	0	1	0	<u>1</u>	111.293	2	2971.176	
545		7	max	.028	3	.741	3	.563	4	3.644e-3	4	3773.678	<u>15</u>	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
546			min	02	2	-1.119	2	0	1	0	1	91.857	2	2689.427	4
547		8	max	.027	3	.908	3	.537	4	1.04e-3	4		15	NC	1
548			min	019	2	-1.327	2	0	1	0	1	80.576	2	2403.578	4
549		9	max	.026	3	1.017	3	.512	4	0	1	3069.857	15	NC	1
550			min	019	2	-1.459	2	0	1	-6.298e-6	5	74.795	2	2157.858	4
551		10	max	.026	3	1.056	3	.481	4	0	1	2998.09	15	NC	1
552			min	018	2	-1.504	2	0	1	-6.037e-6	5	73.104	2	2114.673	4
553		11	max	.025	3	1.03	3	.448	4	0	1	3070.035	15	NC	1
554			min	018	2	-1.459	2	0	1	-5.776e-6	5	75.066	2	2156.406	4
555		12	max	.025	3	.94	3	.415	4	7.174e-4	4	3308.536	15	NC	1
556			min	018	2	-1.322	2	0	1	0	1	81.471	2	2207.827	4
557		13	max	.024	3	.795	3	.375	4	2.515e-3	4	3774.51	<u> 15</u>	NC	1
558			min	018	2	-1.103	2	0	1	0	1	94.198	2	2583.775	4
559		14	max	.023	3	.612	3	.328	4	4.312e-3	4		<u> 15</u>	NC	1
560			min	017	2	833	2	0	1	0	1	116.645	2	3637.939	4
561		15	max	.023	3	.409	3	.279	4	6.11e-3	4_		<u>15</u>	NC	1
562			min	017	2	542	2	0	1	0	1	156.892	2	6893.839	4
563		16	max	.022	3	.204	3	.231	4	7.907e-3	4		<u> 15</u>	NC	1
564			min	017	2	26	2	0	1	0	1_	235.479	2	NC	1
565		17	max	.021	3	.014	3	.189	4	9.705e-3	4		<u>15</u>	NC	1
566			min	016	2	019	2	0	1	0	1_	413.162	2	NC	1
567		18	max	.021	3	.16	1	.156	4	4.909e-3	4	NC	5	NC	1
568			min	016	2	146	3	0	1	0	1_	930.74	2	NC	1
569		19	max	.021	3	.302	1_	.132	4	0	_1_	NC	1_	NC	1_
570			min	016	2	289	3	0	1	-5.902e-6	4	NC	1_	NC	1
571	<u>M9</u>	1	max	.01	3	.208	2	.703	4	1.792e-2	3_	NC	1_	NC	1
572			min	006	2	05	3	0	1	-8.304e-3	_1_	NC	1_	NC	1
573		2	max	.01	3	.101	2	.686	4	8.893e-3	3_	NC	5	NC	1
574			min	006	2	024	3	0	12	-3.996e-3	1_	1274.459	2	9290.856	4
575		3	max	.01	3	.015	3	.665	4	1.401e-2	4_	NC	5_	NC	1
576			min	006	2	012	2	0	12	-1.939e-5	10	616.73	2	5339.567	4
577		4	max	.01	3	.076	3	.641	4	1.104e-2	5_		<u>15</u>	NC	1
578			min	006	2	138	2	0	12	-4.138e-3	2	392.031	2	4027.999	
579		5	max	.01	3	.153	3	.616	4	8.346e-3	5		<u>15</u>	NC	1
580			min	006	2	268	2	0	12	-8.29e-3	2	284.475	2	3373.994	4
581		6	max	.009	3	.235	3	.59	4	1.213e-2	3		<u>15</u>	NC	1
582			min	006	2	394	2	0	12	-1.244e-2	2	224.971	2	2966.071	4
583		7	max	.009	3	.314	3	.563	4	1.615e-2	3_		<u>15</u>	NC 0057.040	1
584			min	005	2	506	2	0	1	-1.659e-2	2	189.734	2	2657.948	4
585		8	max	.009	3	.38	3	.538	4	2.016e-2	3		<u>15</u>	NC	1
586		0	min	005	2	<u>594</u>	2	512	1 1	-2.075e-2 2.061e-2	2	168.846		2383.634	
587		9	max min	.009 005	3	.422	3	.512	12	-2.32e-2	3		<u>15</u> 2	NC 2158.549	1
588 589		10		.009	3	65 .438	3	.482	1 <u>2</u>	1.869e-2	2		<u>-</u> 15	NC	1
590		10	max	005	2	669	2	.482	1	-2.453e-2	2	154.741	2	2096.55	4
591		11	min max	.005	3	669 .428	3	.449	4	1.677e-2	3		<u>2</u> 15	NC	1
592		11	min	005	2	65	2	.449 0	1	-2.585e-2	2	158.458	2	2131.563	
593		12	max	.008	3	.393	3	.414	4	1.446e-2	3		2 15	NC	1
594		14	min	005	2	592	2	.414	12	-2.469e-2	2	170.357	2	2236.867	4
595		13	max	.008	3	.335	3	.373	4	1.157e-2	3		15	NC	1
596		13	min	005	2	5	2	.373	10	-1.98e-2	2	193.306	2	2653.501	4
597		14	max	.003	3	.261	3	.327	4	8.68e-3	3		15	NC	1
598		17	min	005	2	384	2	002	1	-1.492e-2	2	232.45	2	3665.564	_
599		15	max	.003	3	364 .177	3	.279	4	5.883e-3	5		15	NC	1
600		13	min	005	2	256	2	005	1	-1.003e-2	2	299.58	2	6300.443	_
601		16	max	.007	3	.09	3	.233	4	7.853e-3	5		15	NC	1
602		10	min	005	2	127	2	007	1	-5.144e-3		423.218	2	NC	1
002			1111111	000		121		007		J. 144C-3		720.210	_	INC	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ration	o LC
603		17	max	.007	3	.005	3	.191	4	9.864e-3	4	NC	5	` NC	1
604			min	005	2	007	2	008	1	-5.263e-4	1	685.687	2	NC	1
605		18	max	.007	3	.095	2	.158	4	4.807e-3	5	NC	5	NC	1
606			min	005	2	072	3	006	1	-6.482e-3	2	1447.815	2	NC	1
607		19	max	.007	3	.187	2	.132	4	4.418e-3	3	NC	1	NC	1
608			min	004	2	145	3	0	12	-1.291e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	ť (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.