Relatório Projeto 4.2 AED 2021/2022

Nome: Tomás Bernardo Martins Dias

Nº Estudante:2020215701

PL (inscrição): PL3

Login no Mooshak:2020215701

Tabela (S3) Gráfico (S3)

N/M	Tempo(s)
100000	4,3812086
200000	18,1691803
300000	34,127095
400000	70,012241
500000	112,294723
600000	157,3726165
700000	190,4945043
800000	220,4543345
900000	277,0433242
1000000	318,245432

RMSE: 12.13

(1) Descreva sucintamente as otimizações feitas ao QuickSort. A expressão O(f(n)) está de acordo com o esperado? Justifique.

As otimizações utilizadas foram a mediana de 3 valores, com a ordenação dos mesmos e a troca do valor medio (pivot) com o penúltimo valor, o uso do método insertion sort para arrays com tamanho inferior a 30 elementos e a troca de elementos quando estes são iguais ao pivot.

A expressão está de acordo com o esperado pois o algoritmo quicksort tem complexidade O(nlogn) para o melhor caso e para o caso medio, pois para um array com n elementos haverá no máximo log(n) "níveis" de chamadas recursivas. No pior caso o número de comparações tenderá para n e o número de chamadas recursivas será sempre n, logo terá complexidade $O(n^2)$. Alem disso a complexidade da função percentil também é O(nlogn) logo podemos concluir que a complexidade obtida está de acordo com o esperado.

Qual a expressão O(f(n)) para a complexidade espacial na solução S3? Justifique.

A complexidade espacial para a solução S3 será O(log(n)), pois a sua complexidade espacial depende do número de chamadas recursivas que dependem das partições feitas, mas devido a otimização feita com o uso do algoritmo insertion sort, impede-se que a complexidade espacial degenere e entre no pior caso ou seja O(n), pois para array pequenos evita que existam chamadas recursivas e este algoritmo tem complexidade espacial O(1).