Assignment -3

Abalone Age Prediction

Assignment Date	10 october 2022
Student Name	Santha Kumar.P
Student Roll Number	820419104058
Maximum Marks	2 Marks

1.Importing necessary packages & Downloading the packages

Solution:

import pandas as pd

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import LabelEncoder

import numpy as np

from collections import Counter

from sklearn.pipeline import make pipeline

from sklearn.linear_model import Ridge, Lasso

from sklearn.ensemble import RandomForestRegressor

from sklearn.pipeline import make_pipeline

from sklearn.linear_model import Ridge, Lasso

from sklearn.model_selection import GridSearchCV

from sklearn.exceptions import NotFittedError

from sklearn.metrics import r2_score,mean_absolute_error

2. Download the dataset

Solution:

df= pd.read_csv("abalone.csv")
df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

3. Visualizations

(i) Univariate Analysis

Solution:

sns.displot(df["Diameter"])

Output:

<seaborn.axisgrid.FacetGrid at 0x1a7c3cc60a0>

Solution:

sns.set(rc={'figure.figsize':(7,7)})
depth = df['Rings'].value_counts(normalize=False).reset_index()
sns.barplot(data=depth,x='index',y='Rings')

Output:

<AxesSubplot:xlabel='index', ylabel='Rings'>

df['Sex'].value_counts().plot(kind='pie',autopct='%.0f')

Output:

<AxesSubplot:ylabel='Sex'>

(ii) BiVariate Analysis

```
sns.set(rc={'figure.figsize':(17,10)})
sns.countplot(df['Rings'] ,hue = df['Sex'] ,color ='y')
<AxesSubplot:xlabel='Rings', ylabel='count'>
```


sns.set(rc={'figure.figsize':(10,7)})
plt.scatter(df.Length, df.Height)
plt.title('Length vs Height')
plt.xlabel('Height')
plt.ylabel('Length')

Output:

Text(0, 0.5, 'Length')

(iii) MultiVariate Analysis

Solution:

plt.figure(figsize=(12,10)) sns.pairplot(df)

Output:

<seaborn.axisgrid.PairGrid at 0x1a8005d43a0>

<Figure size 864x720 with 0 Axes>

plt.figure(figsize = (8,6)) corr = df.corr() sns.heatmap(corr, annot = **True**)

<AxesSubplot:>

4.Descriptive Statistics

Solution:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

Column Non-Null Count Dtype -----0 Sex 4177 non-null object 1 Length 4177 non-null float64 2 Diameter 4177 non-null float64 3 Height 4177 non-null float64 4 Whole weight 4177 non-null float64 5 Shucked weight 4177 non-null float64 6 Viscera weight 4177 non-null float64 7 Shell weight 4177 non-null float64 8 Rings 4177 non-null int64 dtypes: float64(7), int64(1), object(1)memory usage: 293.8+ KB

df.describe()

	Length	Diamete r	Height	Whole weight	Shucke d weight	Viscera weight	Shell weight	Rings
cou nt	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000	4177.00 0000
me an	0.52399	0.40788	0.13951 6	0.82874	0.35936 7	0.18059 4	0.23883	9.93368 4
std	0.12009	0.09924	0.04182	0.49038	0.22196	0.10961 4	0.13920	3.22416 9
mi n	0.07500	0.05500	0.00000	0.00200	0.00100	0.00050	0.00150	1.00000
25 %	0.45000	0.35000	0.11500	0.44150 0	0.18600	0.09350	0.13000	8.00000
50 %	0.54500	0.42500	0.14000	0.79950 0	0.33600	0.17100	0.23400	9.00000
75 %	0.61500	0.48000	0.16500	1.15300 0	0.50200	0.25300	0.32900	11.0000 00
ma x	0.81500 0	0.65000	1.13000	2.82550 0	1.48800 0	0.76000	1.00500	29.0000 00

5.Handle Missing Values

Solution:

df.isna().sum()

Output:

Sex 0 Length 0 Diameter 0 Height 0 Whole weight 0 Shucked weight 0 Viscera weight 0 Shell weight 0 Rings 0 dtype: int64

6. Outlier Detection

Solution:

outlier_correction_df = df.drop(columns=['Sex'],axis=1)
outlier_correction_df.head()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

```
Solution:
```

```
def detection(df, features):
  outlier_indices=[]
  for c in features:
     Q1 = np.percentile(df[c],25)
     Q3 = np.percentile(df[c],75)
     IQR = Q3 - Q1
     outlier_step = IQR * 1.5
     lower_range = Q1 - (outlier_step)
     upper_range = Q3 + (outlier_step)
     outlier_list_col=df[ (df[c] < lower_range) | (df[c] > upper_range) ].index
     outlier_indices.extend(outlier_list_col)
  return outlier_indices
def multiple_outlier_indices(outlier_indices):
  outlier_indices=Counter(outlier_indices)
  multiple outliers = list(i for i, v in outlier indices.items() if v > 2)
  return multiple outliers
Solution:
outlier_correction_df.columns
Output:
Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',
    'Viscera weight', 'Shell weight', 'Rings'],
    dtype='object')
Solution:
outliers=detection(df,['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',
    'Viscera weight', 'Shell weight'])
Solution:
```

Counter(outliers)

Counter({148: 2,
149: 2,
236: 3,
237: 3,
238: 3,
239: 3,
305: 2,
306: 3,
321: 2,
465: 2,
523: 2,
525: 2,
526: 2,
611: 2,
604. 2
694: 3,
696: 2,
718: 3,
719: 3,
720: 3,
1053: 2,
1054: 2,
1055: 2,
1056: 1,
1210: 1,
1429: 3,
1824: 2,
1986: 2,
1987: 3,
2114: 3,
2115: 2,
2169: 3,
2171: 3,
2343: 2,
2371: 2,
2380: 2,
2381: 3,
2458: 2,
2711: 3,
3141: 2,
3143: 2,
3190: 3,
,
3318: 2,

- 3380: 2,
- 3472: 2,
- 3600: 2,
- 3837: 3,
- 3899: 3,
- 3902: 3,
- 3994: 2,
- 43: 1,
- 44: 1,
- 520: 1,
- 892: 1,
- 898: 1,
- 1988: 1,
- 2172: 2,
- 2545: 1,
- 2712: 1,
- 3473: 1,
- 3521: 1,
- 3716: 1,
- 1174: 1,
- 1257: 1,
- 1417: 2,
- 1428: 3, 1763: 4,
- 2051: 1,
- 2179: 1,
- 3996: 1,
- 165: 3,
- 358: 2,
- 891: 3,
- 1051: 2,
- 1052: 3,
- 1193: 3,
- 1206: 3,
- 1207: 4,
- 1209: 3,
- 1426: 2,
- 1427: 3,
- 1761: 3,
- 1762: 4,
- 2265: 1,
- 2334: 2,
- 2623: 3,
- 2624: 3,
- 2811: 3,
- 2862: 2,

- 2863: 3,
- 3007: 2,
- 3008: 2,
- 3188: 2,
- 3427: 3,
- 3599: 2,
- 3715: 4,
- 2000 1
- 3800: 1,
- 3993: 2,
- 1048: 2,
- 1197: 1,
- 1199: 1,
- 1202: 1,
- 1418: 1,
- 1527: 1,
- 1528: 1,
- 1749: 1,
- 1750: 2,
- 1754: 1,
- 1756: 1,
- 1821: 1,
- 1982: 1,
- 2544: 1,
- 2625: 1,
- 2675: 1,
- 2710: 2,
- 2810: 2,
- 2970: 1,
- 2770.1
- 2972: 1,
- 3082: 1,
- 3713: 1,
- 3961: 1,
- 3962: 1,
- 170: 1,
- 1204: 1,
- 1422: 1,
- 1757: 1,
- 1759: 1,
- 2709: 1,
- 3628: 1,
- 4148: 1,
- 81: 1,
- 129: 1,
- 157: 1,
- 163: 1,
- 164: 1,

```
166: 1,
167: 1,
168: 1,
277: 1,
334: 1,
1823: 1,
1985: 1,
2090: 1,
2108: 1,
2157: 1,
2161: 1,
2208: 1,
2274: 1,
2368: 1,
3148: 1,
3149: 1,
3151: 1,
3928: 1,
4145: 1})
```

multiple_outlier_indices = multiple_outlier_indices(outliers)

Solution:

```
print(Counter(multiple_outlier_indices))
```

```
Counter({236: 1, 237: 1, 238: 1, 239: 1, 306: 1, 694: 1, 718: 1, 719: 1, 720: 1, 1429: 1, 1987: 1, 2 114: 1, 2169: 1, 2171: 1, 2381: 1, 2711: 1, 3190: 1, 3837: 1, 3899: 1, 3902: 1, 1428: 1, 1763: 1, 1 65: 1, 891: 1, 1052: 1, 1193: 1, 1206: 1, 1207: 1, 1209: 1, 1427: 1, 1761: 1, 1762: 1, 2623: 1, 2624: 1, 2811: 1, 2863: 1, 3427: 1, 3715: 1})
```

```
df=df.drop(multiple_outlier_indices,axis=0).reset_index(drop = True) df
```

Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.1500	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.0700	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.2100	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.1550	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.0550	7
•••					•••		•••	•••	
4134	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4135	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4136	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4137	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4138	M	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

 $4139 \text{ rows} \times 9 \text{ columns}$

Solution:

df.shape

(4139, 9)

7. Categorical Attribute Encoding

Solution:

le=LabelEncoder()
df['Sex']=le.fit_transform(df['Sex'])

Solution:

df.head()

Output:

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

8. Seperate dataframe into Predictor and Target

Solution:

feature =pd.DataFrame(df.drop(['Rings'], axis = 1)) label = pd.DataFrame(df.Rings)

9. Scaling the Predictor variables

```
convert = StandardScaler()
feature = pd.DataFrame(convert.fit_transform(feature))
```

10. Perform the train test split

```
Solution:
```

```
X_train, X_test, y_train, y_test = train_test_split(feature, label, test_size = 0.2, random state =
```

```
print('X_train : ')
print(X_train)
print(X_train.shape)
print(")
print('X_test : ')
print(X_test)
print(X_test.shape)
print(")
print('y_train : ')
print(y_train)
print(y_train.shape)
print(")
print('y_test : ')
print(y_test)
print(y_test.shape)
X train:
       0
                                              6 \
64 1.151942 -0.040971 -0.087769 -0.481759 -0.514480 -0.574405 -0.453057
1521 -0.062807 -1.409929 -1.432469 -1.091508 -1.310493 -1.322352 -1.158735
3436 1.151942 1.670227 1.618965 1.469438 2.013909 1.674082 1.916340
3444 -0.062807 -0.768230 -0.760119 -0.725659 -0.868496 -0.720742 -0.798886
3993 -0.062807 -0.725450 -0.863557 -0.725659 -0.689393 -0.462910 -0.565218
                 ...
                       ...
                             ...
                                   ...
1033 1.151942 1.413547 1.205212 0.859689 1.832711 2.173488 1.701365
3264 1.151942 1.028527 0.946616 1.225538 0.845026 0.772829 0.916240
1653 -1.277555 0.729068 0.688019 0.493839 0.607270 0.120118 0.402169
2607 -0.062807 -0.725450 -0.708400 -0.969558 -0.876875 -0.690546 -0.995167
2732 -0.062807 0.215709 0.119108 0.371889 0.180984 0.638106 0.004933
```

```
1521 -1.300351
3436 2.132846
3444 - 1.014251
3993 -0.959232
     ...
1033 1.223195
3264 1.149837
1653 1.032462
2607 - 0.992243
2732 -0.243983
[3311 rows x 8 columns]
(3311, 8)
X test:
             1
                   2
                          3
                                4
                                      5
                                            6 \
958 1.151942 -0.126531 0.015669 0.127990 -0.062009 0.134054 0.014280
2613 -0.062807 -0.425991 -0.346365 -0.603709 -0.639119 -0.579050 -0.569891
45 -0.062807 -1.153250 -1.173873 -1.091508 -1.304208 -1.254990 -1.261549
3145 -1.277555 -0.169311 0.015669 -0.115910 -0.353182 -0.309604 -0.439037
3994 -0.062807 -0.340431 -0.449804 -1.213458 -0.365751 -0.191140 -0.448384
                 ...
                      •••
                                  ...
                            ...
620 -1.277555 -0.853790 -0.760119 -1.091508 -1.054931 -1.101684 -1.112002
1544 -0.062807 -0.597110 -0.501523 -0.603709 -0.772137 -0.692869 -0.883007
2954 1.151942 0.087369 -0.036050 0.859689 0.931959 0.884324 1.369556
177 -0.062807 -2.564988 -2.570292 -2.311006 -1.632040 -1.545343 -1.541951
50 -0.062807 -0.040971 0.015669 -0.481759 -0.483058 -0.553499 -0.644665
       7
958 -0.313674
2613 -0.680468
45 -1.197648
3145 -0.317342
3994 -0.427380
620 -0.830854
1544 -0.669464
2954 0.724355
177 -1.637802
50 -0.354021
[828 rows x 8 columns]
(828, 8)
y_train:
   Rings
```

```
64
       8
1521
       8
3436
       11
3444
       7
3993
        8
1033
       8
3264
       17
1653
       10
2607
       7
2732
        9
[3311 rows x 1 columns]
(3311, 1)
y_test:
   Rings
958
       8
2613
       7
45
       7
3145
       15
3994
       8
620
       10
1544
       10
2954
       13
177
       4
50
       8
[828 rows x 1 columns]
(828, 1)
11.Build Model
Solution:
pipelines={
'rf:make_pipeline(RandomForestRegressor(random_state=1234)),
'ridge':make_pipeline(Ridge(random_state=1234)),
'lasso':make_pipeline(Lasso(random_state=1234)),
}
Solution:
hyperparagrid={
'rf':{
```

```
'randomforestregressor_min_samples_split':[2,4,6],
'randomforestregressor_min_samples_leaf':[1,2,3]
},
'ridge':{
  'ridge__alpha':[0.001,0.005,0.01,0.05,0.1,0.5,0.99]
'lasso':{
  'lasso__alpha':[0.001,0.005,0.01,0.05,0.1,0.5,0.99]
}
12. Traning the Model
Solution:
fit_models={}
for algo, pipeline in pipelines.items():
  model=GridSearchCV(pipeline,hyperparagrid[algo],cv=10,n_jobs=-1)
     print('Start training for { }'.format(algo))
     model.fit(X_train,y_train)
     fit_models[algo]=model
  except NotFittedError as e:
     print(repr(e))
Start training for rf
Start training for ridge
Start training for lasso
```

13,14 Testing and Measuring Performance

```
param_grid={'randomforestregressor__min_samples_leaf': [1, 2, 3], 'randomforestregressor__min_samples_split': [2, 4, 6]})
```

```
best_model_ridge=fit_models['ridge']
best_model_ridge
```

Output:

```
GridSearchCV(cv=10, estimator=Pipeline(steps=[('ridge', Ridge(random_state=1234))]), n_jobs=-1, param_grid={'ridge_alpha': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.99]})
```

Solution:

```
best_model_lasso=fit_models['lasso']
best_model_lasso
```

Output:

```
GridSearchCV(cv=10, estimator=Pipeline(steps=[('lasso', Lasso(random_state=1234))]), n_jobs=-1, param_grid={'lasso_alpha': [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.99]})
```

```
for algo,model in fit_models.items():
    ya=model.predict(X_test)
    print('{} scores-R2:{} MAE:{}'.format(algo,r2_score(y_test,ya),
    mean_absolute_error(y_test,ya)))

rf scores-R2:0.5255029479701915 MAE:1.570513566816263
    ridge scores-R2:0.5189099860811324 MAE:1.6528099660919895
lasso scores-R2:0.5190720174119673 MAE:1.6525494856846143
```