CC2 - lundi 21 mars 2022

Durée: 1 heure.

L'usage d'aides électroniques ou de documents n'est pas autorisé. Toute réponse doit être justifiée. Les deux exercices sont indépendants.

Exercice 1.

- 1. Expliciter \mathbb{F}_{27} comme corps de rupture d'un polynôme sur \mathbb{F}_3 .
- 2. Le corps \mathbb{F}_{27} contient-il \mathbb{F}_9 ?
- 3. Factoriser $X^9 X$ en produit d'irréductibles dans $\mathbb{F}_3[X]$ et dans $\mathbb{F}_{27}[X]$.

Exercice 2.

On considère le nombre réel $\alpha = \sqrt{\sqrt{7} + 1}$.

1. Démontrer que α est un nombre algébrique sur $\mathbb Q$, et que son polynôme minimal sur $\mathbb Q$ divise le polynôme

$$P(X) = X^4 - 2X^2 - 6.$$

- 2. Démontrer que P est irréductible dans $\mathbb{Q}[X]$, puis justifier que P est le polynôme minimal de α sur \mathbb{Q} .
- 3. Déterminer la valeur de $[\mathbb{Q}(\alpha):\mathbb{Q}]$ et expliciter une base de $\mathbb{Q}(\alpha)$ comme \mathbb{Q} -espace vectoriel.
- 4. Expliciter les racines de P, puis démontrer que $\mathbb{Q}(\sqrt{-6},\alpha)$ est un corps de décomposition de P(X) sur \mathbb{Q} .
- 5. Calculer $[\mathbb{Q}(\sqrt{-6},\alpha):\mathbb{Q}(\alpha)]$ puis $[\mathbb{Q}(\sqrt{-6},\alpha):\mathbb{Q}]$ et $[\mathbb{Q}(\sqrt{-6},\alpha):\mathbb{Q}(\sqrt{-6})]$.
- 6. En déduire le polynôme minimal de α sur $\mathbb{Q}(\sqrt{-6})$.