

ESTUDIO ENERGÉTICO POCKETQUBE 1P versión 1.1

En este documento se plasma el estudio energético inicial que se ha realizado para considerar el desarrollo de un satélite del tipo **PocketQube 1P**. Se supone que el satélite se ha colocado en una **órbita LEO polar** con un periodo aproximado de **90 minutos**.

Asumimos que el consumo del satélite con el transmisor activo es de **1W** (**1000mW**). Esto se correspondería con un transmisor de **0.25W** de una **eficiencia del 50%** (consumo total de **0.5W**) y dejando **0.5W** al resto de sistemas que consuman energía. Suponemos que apagando el transmisor y sistemas no esenciales se puede bajar el consumo total del satélite a **125mW**.

Un satélite de este tipo se caracteriza por tener forma de cubo con unas dimensiones externas de **5x5x5 cm** e internas de **4.7x4.7x4.7 cm**.

El número de paneles solares disponibles es de 5. El tamaño de la batería debe ser muy reducido para poder ser alojada en una superficie de **4,7 centímetros cuadrados**. Tampoco puede tener demasiado volumen para no restar excesivo espacio al resto de subsistemas.

Asumimos una batería de 3.7V x 570mAh (capacidad total de 2000mWh).

Vamos a considerar un panel típico de **PocketQube** disponible comercialmente, cuyas características son las siguientes:

1 sun, AM 1.5G (1000 W por metro cuadrado) a 25°C

Isc = 31ma, Voc = 15.12V

Imp = 28mA, Vmp = 13.14V, PmP = 368 mW

Siendo los parámetros: **Isc** – intensidad en cortocircuito, **Voc** – voltaje en cortocircuito, **Imp** – intensidad en el punto de máxima potencia, **Vmp** – voltaje en el punto de máxima potencia y **Pmp** – potencia máxima.

Si bien el satélite tiene **5 paneles** no todos van a estar iluminados simultáneamente. Como media, ya que además el satélite rota de una forma aleatoria, vamos a suponer que tan solo **1,25 paneles** están simultáneamente recibiendo luz del sol de forma significativa.

Esto nos da un total de potencia máxima de 368mW x 1.25 = 460mW

Ahora bien, esa potencia sería la obtenida en condiciones óptimas de trabajo del panel. Vamos a suponer que de forma media se encuentra trabajando a **dos tercios de su punto óptimo**.

La potencia efectiva sería de 460mW x 0.66 = 306mW

Debemos tener en cuenta que el satélite estará en zona iluminada durante dos tercios de su órbita y en zona de eclipse durante el tercio restante.

Por tanto, esta potencia de **306mW** estará disponible en **fase de iluminación** y será de **0mW** en **fase de eclipse**.

La potencia media a lo largo de una órbita será de 306mW x 0.66 + 0mW x 0.33 = 202mW

No obstante, vamos a ver lo que sucede a lo largo de una órbita completa.

Partamos de la base de que la batería está completamente cargada.

Durante la zona de iluminación los paneles estarán suministrando una media de 306mW.

ESTUDIO ENERGÉTICO POCKETQUBE 1P versión 1.1

Por tanto, necesitamos obtener de la batería **1000mW** – **306mW** = **694mW** (recordamos que hemos supuesto un consumo total de energía en el satélite de **1000mW** con el repetidor activo).

La duración del paso por zona de luz sería aproximadamente 1 hora. Durante esa hora habríamos consumido 694 mWh, quedando aún en la batería disponibles 306mWh (para no descargar más del 50% de la misma). Esto suponiendo que el repetidor haya estado activo durante todo el tiempo.

En el momento de eclipse los paneles no suministran energía. Necesitamos obtener de la batería los **1000mW**. En la batería quedan tan solo **306mWh**, por tanto, se consumirían en unos **18 minutos**, dejando la batería con **1000mWh**.

El satélite tardaría unos 12 minutos en volver a la zona de luz y comenzar a cargar la batería.

Suponiendo que cuando la batería se ha descargado a la mitad podemos reducir el consumo de los sistemas del satélite a **125mW** (dejando el ordenador de a bordo en modo 'dormido' y desactivando emisor y receptor) vamos a estudiar cuanto tiempo se tardaría en volver a cargarla al **100%**.

Cuando el satélite vuelve a la zona de luz, zona en la que estará aproximadamente una hora, la batería cargándose al ritmo máximo que posibiliten los paneles y suponiendo una **eficiencia de la carga del 90%** nos daría un tope máximo teórico de (306mW – 125mW) x 0.90 = 163mWh. Por lo tanto, el cargar completamente la mitad de la batería que se ha descargado requeriría (1000 mW / 163 mWh) = 6 horas, equivalentes a 6 órbitas completas y a un tiempo de (6 x 1.5h = 9 horas de inactividad) para volver a la situación inicial de plena carga.

Conclusión

Esta configuración de satélite **pocketQube** con **5 paneles solares** de **368mW** de potencia cada uno y batería de **2000mWh** posibilita ciclos de aproximadamente **1 hora de operación** y **9 horas de inactividad** (**11% de tiempo de actividad**). Esto quiere decir que **desde una misma posición geográfica se podría utilizar 2 veces al día el satélite**.

No obstante, esta configuración podría ser más flexible **activando el repetidor tan solo baja demanda** (por ejemplo, recibiendo un subtono que lo activase durante el pase de unos 15 minutos o tan solo mientras se siga recibiendo el subtono) pasando a modo 'escucha' y cargando batería hasta que se volviera a requerir su activación.

La condición de activación del repetidor **debería incluir que el nivel de carga de la batería sea de un mínimo** (por ejemplo, del 60%) aparte de la recepción del subtono de activación.

Daniel Estévez EA4GPZ

Felix Páez Pavón EA4GQS