### Interactive Computer Graphics: Lecture 10

Ray tracing (cont.)



```
trace ray
      Intersect all objects
      color = ambient term
      For every light
            cast shadow ray
            col += local shading term
      If mirror
            col += k refl * trace reflected ray
      If transparent
            col += k trans * trace transmitted ray
```



#### Intersection calculations

- For each ray we must calculate all possible intersections with each object inside the viewing volume
- For each ray we must find the nearest intersection point
- We can define our scene using
  - Solid models
    - sphere
    - cylinder
  - Surface models
    - plane
    - triangle
    - polygon

### Rays

- Rays are parametric lines
- Rays can be defined an
  - origin  $\mathbf{p_0}$
  - direction d
- Equation of ray:

$$\mathbf{p}(\mu) = \mathbf{p}_0 + \mu \mathbf{d}$$



### Ray tracing: Intersection calculations

- The coordinates of any point along each primary ray are given by:  $\mathbf{p} = \mathbf{p}_0 + \mu \mathbf{d}$ 
  - $-\mathbf{p_0}$  is the current pixel on the viewing plane.
  - d is the direction vector and can be obtained from the position of the pixel on the viewing plane  $\mathbf{p}_0$  and the viewpoint  $\mathbf{p}_v$ :

$$\mathbf{d} = \frac{\mathbf{p}_0 - \mathbf{p}_v}{\left|\mathbf{p}_0 - \mathbf{p}_v\right|}$$

## Ray tracing: Intersection calculations

- The viewing ray can be parameterized by  $\mu$ :
  - $-\mu > 0$  denotes the part of the ray behind the viewing plane
  - $-\mu$  < 0 denotes the part of the ray in front of the viewing plane
  - For any visible intersection point  $\mu > 0$



#### Intersection calculations: Spheres



For any point on the surface of the sphere

$$\left|\mathbf{q} - \mathbf{p}_{\mathbf{s}}\right|^2 - r^2 = 0$$

where r is the radius of the sphere

#### Intersection calculations: Spheres

 To test whether a ray intersects a surface we can substitute for q using the ray equation:

$$\left|\mathbf{p}_0 + \mu \mathbf{d} - \mathbf{p}_s\right|^2 - r^2 = 0$$

• Setting  $\Delta \mathbf{p} = \mathbf{p}_0 - \mathbf{p}_s$  and expanding the dot product produces the following quadratic equation:

$$\mu^{2} + 2\mu(\mathbf{d} \cdot \Delta \mathbf{p}) + |\Delta \mathbf{p}|^{2} - r^{2} = 0$$

#### Intersection calculations: Spheres

The quadratic equation has the following solution:

$$\mu = -\mathbf{d} \cdot \Delta \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \Delta \mathbf{p})^2 - |\Delta \mathbf{p}|^2 + r^2}$$

- Solutions:
  - if the quadratic equation has no solution, the ray does not intersect the sphere
  - if the quadratic equation has two solutions ( $\mu_1 < \mu_2$ ):
    - $\mu_1$  corresponds to the point at which the rays enters the sphere
    - $\mu_2$  corresponds to the point at which the rays leaves the sphere

#### Precision Problems

- In ray tracing, the origin of (secondary) rays is often on the surface of objects
  - Theoretically,  $\mu = 0$  for these rays
  - Practically, calculation imprecision creeps in, and the origin of the new ray is slightly beneath the surface
- Result: the surface area is shadowing itself



#### $\varepsilon$ to the rescue ...

- Check if t is within some epsilon tolerance:
  - if  $abs(\mu) < \varepsilon$ 
    - point is on the sphere
  - else
    - point is inside/outside
  - Choose the  $\varepsilon$  tolerance empirically
- Move the intersection point by epsilon along the surface normal so it is outside of the object
- Check if point is inside/outside surface by checking the sign of the implicit (sphere etc.) equation

- A cylinder can be described by
  - a position vector  $\mathbf{p}_1$  describing the first end point of the long axis of the cylinder
  - a position vector  $\mathbf{p}_2$  describing the second end point of the long axis of the cylinder
  - a radius r
- The axis of the cylinder can be written as  $\Delta p = p_1 p_2$  and can be parameterized by  $0 \le \alpha \le 1$

 To calculate the intersection of the cylinder with the ray:

$$\mathbf{p}_1 + \alpha \Delta \mathbf{p} + \mathbf{q} = \mathbf{p}_0 + \mu \mathbf{d}$$

• Since  $\mathbf{q} \cdot \Delta \mathbf{p} = 0$  we can write



$$\alpha(\Delta \mathbf{p} \cdot \Delta \mathbf{p}) = \mathbf{p}_0 \cdot \Delta \mathbf{p} + \mu \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_1 \cdot \Delta \mathbf{p}$$

• Solving for  $\alpha$  yields:

$$\alpha = \frac{\mathbf{p}_0 \cdot \Delta \mathbf{p} + \mu \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_1 \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}$$

Substituting we obtain:

$$\mathbf{q} = \mathbf{p}_0 + \mu \mathbf{d} - \mathbf{p}_1 - \left( \frac{\mathbf{p}_0 \cdot \Delta \mathbf{p} + \mu \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_1 \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}} \right) \Delta \mathbf{p}$$

• Using the fact that  $\mathbf{q} \cdot \mathbf{q} = r^2$  we can use the same approach as before to the quadratic equation for  $\mu$ :

$$r^{2} = \left(\mathbf{p}_{0} + \mu \mathbf{d} - \mathbf{p}_{1} - \left(\frac{\mathbf{p}_{0} \cdot \Delta \mathbf{p} + \mu \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_{1} \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}\right) \Delta \mathbf{p}\right)^{2}$$

— If the quadratic equation has no solution:

#### no intersection

– If the quadratic equation has two solutions:

#### intersection

• Assuming that  $\mu 1 \le \mu 2$  we can determine two solutions:

$$\alpha_{1} = \frac{\mathbf{p}_{0} \cdot \Delta \mathbf{p} + \mu_{1} \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_{1} \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}$$

$$\alpha_{2} = \frac{\mathbf{p}_{0} \cdot \Delta \mathbf{p} + \mu_{2} \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_{1} \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}$$

- If the value of  $\alpha_1$  is between 0 and 1 the intersection is on the outside surface of the cylinder
- If the value of  $\alpha_2$  is between 0 and 1 the intersection is on the inside surface of the cylinder

#### Intersection calculations: Plane

- Objects are often described by geometric primitives such as
  - triangles
  - planar quads
  - planar polygons
- To test intersections of the ray with these primitives we must whether the ray will intersect the plane defined by the primitive

#### Intersection calculations: Plane

The intersection of a ray with a plane is given by

$$\mathbf{p}_1 + \mathbf{q} = \mathbf{p}_0 + \mu \mathbf{d}$$

• where  $\mathbf{p_1}$  is a point in the plane. Subtracting  $\mathbf{p_1}$  and multiplying with the normal of the plane  $\mathbf{n}$  yields:

$$\mathbf{q} \cdot \mathbf{n} = \mathbf{0} = (\mathbf{p}_0 - \mathbf{p}_1) \cdot \mathbf{n} + \mu \mathbf{d} \cdot \mathbf{n}$$

Solving for μ yields:

$$\mu = -\frac{(\mathbf{p}_0 - \mathbf{p}_1) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$



### Intersection calculations: Triangles

- To calculate intersections:
  - test whether triangle is front facing
  - test whether plane of triangle intersects ray
  - test whether intersection point is inside triangle
- If the triangle is front facing:

$$\mathbf{d} \cdot \mathbf{n} < 0$$



#### Intersection calculations: Triangles

- To test whether plane of triangle intersects ray
  - calculate equation of the plane using

$$\mathbf{p}_2 - \mathbf{p}_1 = \mathbf{a}$$

$$\mathbf{p}_3 - \mathbf{p}_1 = \mathbf{b}$$

calculate intersections with plane as before

$$n = a \times b$$

To test whether intersection point is inside triangle:

$$\mathbf{q} = \alpha \mathbf{a} + \beta \mathbf{b}$$



#### Intersection calculations: Triangles

A point is inside the triangle if

$$0 \le \alpha \le 1$$
$$0 \le \beta \le 1$$
$$\alpha + \beta \le 1$$

• Calculate  $\alpha$  and  $\beta$  by taking the dot product with a and b:

$$\alpha = \frac{(\mathbf{b} \cdot \mathbf{b})(\mathbf{q} \cdot \mathbf{a}) - (\mathbf{a} \cdot \mathbf{b})(\mathbf{q} \cdot \mathbf{b})}{(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{b}) - (\mathbf{a} \cdot \mathbf{b})^{2}}$$
$$\beta = \frac{\mathbf{q} \cdot \mathbf{b} - \alpha(\mathbf{a} \cdot \mathbf{b})}{\mathbf{b} \cdot \mathbf{b}}$$

#### Ray tracing: Pros and cons

- Pros:
  - Easy to implement
  - Extends well to global illumination
    - shadows
    - reflections / refractions
    - multiple light bounces
    - atmospheric effects
- Cons:
  - Speed! (seconds per frame, not frames per second)

### Speedup Techniques

- Why is ray tracing slow? How to improve?
  - Too many objects, too many rays
  - Reduce ray-object intersection tests
  - Many techniques!

### Acceleration of Ray Casting

Goal: Reduce the number of ray/primitive intersections



## Conservative Bounding Region

 First check for an intersection with a conservative bounding region

Early reject



## **Bounding Regions**

What makes a good bounding region?

#### Conservative Bounding Regions



# Regular Grid



#### Create Grid

- Find bounding box of scene
- Choose grid resolution (n<sub>x</sub>, n<sub>y</sub>, n<sub>z</sub>)
- grid<sub>x</sub> need not = grid<sub>y</sub>



#### Insert Primitives into Grid

- Primitives that overlap multiple cells?
- Insert into multiple cells (use pointers)



## For Each Cell Along a Ray

Does the cell contain an intersection?

- Yes: return closest intersection

- No: continue



### Preventing Repeated Computation

- Perform the computation once, "mark" the object
- Don't re-intersect marked objects



#### Don't Return Distant Intersections

• If intersection t is not within the cell range, continue (there may be something closer)



#### Adaptive Grids

 Subdivide until each cell contains no more than n elements, or maximum depth d is reached



## Primitives in an Adaptive Grid

 Can live at intermediate levels, or be pushed to lowest level of grid



### Binary Space Partition (BSP) Tree

- Recursively partition space by planes
- Every cell is a convex polyhedron



#### Binary Space Partition (BSP) Tree

- Simple recursive algorithms
- Example: point finding



#### Binary Space Partition (BSP) Tree

- Trace rays by recursion on tree
  - BSP construction enables simple front-to-back traversal



#### **Grid Discussion**

#### Regular

- + easy to construct
- + easy to traverse
- may be only sparsely filled
- geometry may still be clumped

#### Adaptive

- + grid complexity matches geometric density
- more expensive to traverse (especially BSP tree)



