

Università degli Studi dell'Aquila

Prova Intermedia di Algoritmi per Sistemi Distribuiti

Mercoledì 24 Novembre 2010 - Prof. Guido Proietti

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	
ESERCIZIO 2				
ESERCIZIO 3	Correttezza:	Efficienza:	Analisi:	
TOTALE				

ESERCIZIO 1: Domande a risposta multipla (10 punti)

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, ovvero: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 10. Se tale somma è negativa, verrà assegnato 0.

- 1. In un MPS *uniforme*, i processori:
 - *a) non conoscono il numero totale di processori b) sono tutti identici tra di loro c) conoscono il numero totale di processori d) hanno identificativi distinti
- 2. L'algoritmo più efficiente per l'*elezione del leader* in un anello asincrono con n processori, non anonimo e non uniforme ha una complessità temporale:
 - a) $\Theta(n)$ *b) non è definita c) $\Theta(n^2)$ d) $\Theta(n \log n)$
- 3. L'algoritmo più efficiente per l' $elezione \ del \ leader$ in un anello sincrono con n processori, non anonimo e uniforme ha una complessità di messaggi:
 - *a) $\Theta(n)$ b) non è definita c) $\Theta(n^2)$ d) $\Theta(n \log n)$
- 4. Sia dato un anello sincrono, non anonimo e non uniforme con 5 processori, con identificativo massimo pari a 10. Nel caso peggiore, l'algoritmo più efficiente per l'elezione del leader termina dopo un numero di round pari a:
 - a) 30 b) l'algoritmo non esiste *c) 35 d) 55
- 5. Nell'algoritmo GHS sincrono, il numero medio di round in una fase è:
 - a) n b) O(1) c) $O(\log n)$ *d) 5n + 2
- 6. Supponiamo di implementare l'algoritmo GHS in un MPS asincrono rappresentato da un grafo completo di n processori. Il numero di messaggi che circolano nella rete è:
 - a) $\Theta(n)$ b) O(1) c) $O(n \log n)$ *d) $O(n^2)$
- 7. Durante l'esecuzione dell'algoritmo GHS per la determinazione del minimo albero ricoprente di un MPS asincrono, non anonimo di n processori, il numero massimo di assorbimenti che può avvenire è pari a:
 - a) n-1 b) 0 c) 1 *d) n-2
- 8. Sia dato un sistema sincrono di n processori, di cui al più n-1 suscettibili di fallimenti benigni. Nel caso migliore, quanti messaggi circolano nella rete per la risoluzione del problema del consenso?
 - a) 0 *b) n c) $\Theta(n^2)$ d):
- 9. Sia dato un sistema sincrono di 4 processori, di cui al più uno bizantino. Supponiamo che i processori sani abbiano input 1, 2, 3, mentre il processore bizantino abbia input 4. Quale tra i seguenti valori <u>non è</u> un possibile output dell'algoritmo esponenziale di consenso?
 - a) 1 *b) 4 c) 3 d) Valore di default
- 10. Sia dato un sistema sincrono di 13 processori, di cui al più 3 suscettibili di fallimenti bizantini. Qual è il numero minimo di messaggi ricevuti da un generico processore sano durante l'esecuzione di una fase dell'algoritmo *Phase King*?
 - a) 14 *b) 11 c) 13 d) 0

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										

ESERCIZIO 2: Domanda a risposta aperta (10 punti)

Premessa: Questa parte è costituita da 2 domande a risposta aperta. Rispondere ad **una sola** domanda selezionata a piacere. La risposta giudicata corretta verrà valutata 10 punti.

- 1. Descrivere ed analizzare dettagliatamente l'algoritmo randomizzato per la determinazione di un insieme indipendente massimale in un MPS sincrono.
- 2. Descrivere ed analizzare dettagliatamente l'algoritmo *Phase King* per la risoluzione del problema del consenso in un MPS sincrono suscettibile di fallimenti bizantini.

ESERCIZIO 3: Realizzazione di un algoritmo (10 punti, così distribuiti: 5 punti correttezza, 3 punti efficienza, 2 punti analisi)

Premessa: L'algoritmo deve essere realizzato in un linguaggio ad alto livello, fornendo il codice per il generico processore p_i , ed in aggiunta se ne deve descrivere dettagliatamente il funzionamento e la complessità.

Sia G=(V,E) il grafo associato ad un MPS sincrono (con sequenza di operazioni che contaddistinguono un round invio-ricezione-computazione interna) e a partenza sincronizzata, non anonimo e non uniforme, con n processori aventi identificativi in [1..n]. Si supponga che all'istante (cioè, al round) r=4 il processore con identificativo s debba inviare un messaggio M ad un destinatario $t \neq s$. Progettare un algoritmo distribuito per realizzare l'instradamento (routing) del messaggio M.