

《计算机网络基础》

IPv4地址介绍

- 学完本课程后,您将能够:
 - □ 描述IPv4地址的概念、分类及特殊IP地

IP地址基础知识

网络层主要利用IP地址完成路由寻址功能。

什么是IP地址

- IP地址在网络中用于标识一个节点(或者网络设备的接口)。
- IP地址用于IP报文在网络中的寻址。

IP地址

IP地址就像现实中的地址,可以标识网络中的一个节点,数据就是通过它来找到目的地。

IP地址表示

- 一个IPv4地址有32 bit。
- IPv4地址通常采用"点分十进制"表示。

点分十	 进制表示法
/ボノノ	しんていっかんいいん

十进制	192.	168.	10.	1
二进制	11000000	10101000	00001010	0000001

4 byte

32 bit (32位)

十进制与二进制的转换

幂	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
-tl).	128	64	32	16	8	4	2	1
位	1	1	0	0	0	0	0	0

$$= 128 + 64 = 192$$

即 0.0.0.0-255.255.255.

进制之间转换

进制	字符范围	基值
二进制	0 — 1	2
十进制	0 — 9	10
十六进制	0 —9, A — F	16

比特位	1	1	1	1	1	1	1	1
乘方	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
数值	128	64	32	16	8	4	2	1

十进制	二进制	十六进制
0	00000000	00
1	00000001	01
2	00000010	02
3	00000011	03
4	00000100	04
5	00000101	05
6	00000110	06
7	00000111	07
8	00001000	08

十进制	二进制	十六进制
9	00001001	09
10	00001010	0A
11	00001011	0B
12	00001100	0C
13	00001101	0 D
14	00001110	0E
15	00001111	0F
•••		•••
255	11111111	FF

进制之间转换

• 二进制转十进制

128	64	32	16	8	4	2	1
27	26	2 ⁵	24	23	2 ²	2 ¹	20

2的位权

第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
1	1	1	1	1	1	1	1

 $=1 \times 128 + 1 \times 64 + 1 \times 32 + 1 \times 16 + 1 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1$

=128+64+32+16+8+4+2+1

=255

练习

请将二进制数10110110转换为十进制数。

进制之间转换

• 计算器的使用

□ win10: 搜索-计算器-菜单-程序员

二进制:

11000000.11010100.00000011.11111101

十进制: 192.?.?.?

十六进制: C0.?.?.?

进制之间的转换

• 十进制转二进制

方法一: 2的幂的组合, 凑数法

128	64	32	16	8	4	2	1
2 ⁷	26	2 ⁵	24	2 ³	2 ²	2 ¹	20

168

=128+32+8

=10101000

将168转换为二进制

方法二:除2求余,反序排列法

除法 余数 168/2 0 84/2 0 42/2 0

21/2 1

10/2 0

5/2 1

2/2 0

1

10101000

思考题

- 1. 将IP地址10101100.00010000.00101101.11111101使用点分十进制表示
- 2. 将IP地址10. 20. 30. 98使用二进制表示

IP地址结构

子网掩码的作用

子网掩码

Netmask

通过将网络号所占二进制位置为1, 主机号所占二进制位置为0, 然后转换成十进制计算得来的。用来确定IP地址的网络号。

计算网络号方法: IP地址与子网掩码与运算
01100100 00011101 00000000 00000010
11111111 11111111 00000000 00000000
01100100 00011101 00000000 00000000
★

表示方法: 100.29.0.0 / 16 前缀表示法

100.29.0.0

IP地址构成

• 网络部分: 用来标识一个网络。

• 主机部分: 用来区分一个网络内的不同主机。

网络部分主机部分

• 子网掩码:区分一个IP地址中的网络部分及主机部分。

IP地址寻址

- 网络部分:用来标识一个网络,代表IP地址所属网络。
- 主机部分: 用来区分一个网络内的不同主机,能唯一标识网段上的某台设备。

IP地址寻址

应用举例:

IP地址分类(有类编址)

• 为了方便IP地址的管理及组网, IP地址分成五类:

A类	ONNNNNN	NNNNNNN	NNNNNNN	NNNNNNN	0. 0. 0. 0–127. 255. 255. 255	
B类	10NNNNN	NNNNNNN	NNNNNNN	NNNNNNN	128. 0. 0. 0-191. 255. 255. 255	分配主机使用
C类	110NNNNN	NNNNNNN	NNNNNNN	NNNNNNN	192. 0. 0. 0-223. 255. 255. 255	
D类	1110 NNNN	NNNNNNN	NNNNNNN	NNNNNNN	224. 0. 0. 0-239. 255. 255. 255	用于组播
E类	1111 NNNN	NNNNNNN	NNNNNNN	NNNNNNN	240. 0. 0. 0-255. 255. 255. 255	用于研究

• A/B/C类默认网络掩码

□ A类: 8 bit, 0.0.0.0-127.255.255.255/8

□ B类: 16 bit, 128.0.0.0-191.255.255.255/16

□ C类: 24 bit, 192.0.0.0-223.255.255.255/24

网络部分

主机部分

IP地址类型

- 我们通常把一个网络号所定义的网络范围称为一个网段。
- 网络地址:用于标识一个网络。

例如: 192.168.10.0/24

192.	168.	10.	00000000

• **广播地址**:用于向该网络中的所有主机发送数据的特殊地址。

例如: 192.168.10.255/24

192.	168.	10.	11111111
------	------	-----	----------

• 可用地址:可分配给网络中的节点或网络设备接口的地址。

例如: 192.168.10.1/24

192.	168.	10.	00000001
------	------	-----	----------

注意

- 网络地址和广播地址不能直接被 节点或网络设备所使用。
- •一个网段可用地址数量为: 2ⁿ-2 (n: 主机部分的比特位数)

概念

IP地址计算

● 例: 172.16.10.2/16这个B类地址的网络地址、广播地址以及可用地址数分别是?

可用IP地址数 216-2=65534

可用IP地址范围 172. 16. 0. 1-172. 16. 255. 254

练习

请计算10. 128. 20. 11/8这个A类地址的 网络地址、广播地址以及可用地址数。

IP地址计算

。练习:填写以下主机所属网段、该网段可分配的主机IP地址的个数

主机IP	网段	可分配的主机IP地址个数
192.168.100.3/24		
10.10.100.254/8		
172.168.3.1/16		

每类网络所包含主机数量

IP地址类别	网络地址长度	子网掩码	包含主机数量
A类	8位	255.0.0.0	2 ²⁴ -2=16777214
B类	16位	255.255.0.0	2 ¹⁶ -2=65534
C类	24位	255.255.255.0	28-2=254

1111111 00000000 00000000 00000000

255 . 0 . 0 . 0

概念

私网IP地址

- 公网IP地址: IP地址是由IANA统一分配的,以保证任何一个IP地址在Internet上的唯一性。 这里的IP地址是指公网IP地址。
- 私网IP地址:实际上一些网络不需要连接到Internet,比如一个大学的封闭实验室内的网络,只要同一网络中的网络设备的IP地址不冲突即可。在IP地址空间里,A、B、C三类地址中各 预留了一些地址专门用于上述情况,称为私网IP地址。

□ A类: 10.0.0.0-10.255.255.255

□ B类: 172.16.0.0-172.31.255.255

□ C类: 192.168.0.0-192.168.255.255

私有网络连接到Internet

● IP地址空间中,有一些特殊的IP地址,这些IP地址有特殊的含义和作用,举例如下。

特殊IP地址	地址范围	作用
有限广播地址	255. 255. 255. 255	可作为目的地址,发往该网段所有主机 (受限于网关)
任意地址	0. 0. 0. 0	"任何网络"的网络地址; "这个网络上这个主机接口"的IP地址
环回地址	127. 0. 0. 0/8	测试设备自身的软件系统
本地链路地址	169. 254. 0. 0/24	当主机自动获取地址失败后,可使用该 网段中的某个地址进行临时通信