Am The & mon-zero eties, not that & < dirage?

let a the wher of colors that how mon-zero eties. $c \le z < dirage?$ Syram the new zero estima one the find a colors (WDG: weekoon in the base)

of V and le permutated). The TV con = ... = TV m = 0 = 0 directly = m - C

We have. of V = n = directly + directly to range?

Put directly the range? > (n - c) + c = m; contradiction.

The Those of least directly mon-zero estimate.

2 Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that dim range T = 1 if and only if there exist a basis of V and a basis of W such that with respect to these bases, all entries of M(T) count T

~ = ? 3 law v... v. 1 w. w. of VIW . t. M(T) ; = 1 4;;

let vEV, v= En; v, , a, EIF V;

 $Tv = \sum_{i=1}^{n} Tv_i = \sum_{i=1}^{n} a_i \sum_{j=1}^{n} w_j = 0 \Rightarrow a_1 = -\sum_{i=2}^{n} a_i \Rightarrow dir nUT = m-1$

=> di rageT = 1 (00 m= diall 7 1 di rageT)

"=>": di reget =1

let w, -w, a los of W and yEV at TV = Z W, , V & V C (should pose these east ...)

We can eated v2 to V2 IV, - Vn-1 to for a less of V.

de roje T = di par M(T), ... M(A), ... = 1 => Vi>2, Jd; GiF of M(T), = M(T);

V2 VX, - VA-1

(1), ... MA)

From M(T) = (1), ... MA

we would be where V; > 2; Vi
2)

=> 3 lair of VadWort M(T) = (1)

4 Suppose that D ∈ L(F₃(R), F₂(R)) is the differentiation map defined by D₁ = p'. Find a basis of F₂(R) and a basis of F₂(R) such that the matrix of D with respect to these bases is:

 $\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$

(0 0 1 0)

Compare with Example 3.33. The next exercise generalizes this exercise

5 Suppose V and W are finite-dimensional and T ∈ L(V, W). Prove that there exist a basis of V and a basis of W such that with respect to these bases, all entries of M(T) are 0 except that the entries in row k, column k, equal 1 if 1 ≤ k ≤ dim range T.

Lov, when of V, w, who loss of W

Tui = Zaijuj. We andfie Wi = Zaijuj, no-Tuj=wi.

of rayeT, n = di roge). We can colod it it is specify with vectors $W_{n+1} - \overline{W}_m$ (pathy none, if I myedlew) We this have a being of $W: \widetilde{W}_1 - \widetilde{W}_n, \overline{W}_{n+1} - \overline{W}_m$ with $\widetilde{W}_i = TV$; for i = 1 and i = 1. What this have we have the following motions:

$$\mathcal{M}(\Upsilon) = \begin{pmatrix} \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle & \langle 0 \rangle \\ \langle 0 \rangle & \langle 0 \rangle &$$

M(T); = I for I = I di rog T, O every where dree

6 Suppose v₁,...,v_m is a basis of V and W is finite-dimensional. Suppose T ∈ L(V, W). Prove that there exists a basis w₁,...,w_n, of W such that all entries in the first column of M(T) [with respect to the bases v₁,...,v_m and w₁,...,w_n] are 0 except for possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of V instead of

Cordlag fran previous erevira (where we gave russelves a bein of V).

Find colon is either () or () if vector of beins are permitted

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

12 Prove that matrix multiplication is associative. In other words, suppose A, B, and C are matrices whose sizes are such that (AB)C makes sense. Explain

(AB)C = A(BC).

Try to find a clean proof that thatrater the following quote from Emil Artin: "It is my experience that proofs involving matrices can be shortened by 50%

Discress making sense and ansakily come from counding the nations as been maps (A=M(TA), with TA a lies map, exc.) and the product of lies maps in association.

13 Suppose A is an n-by-n matrix and 1 ≤ j,k ≤ n. Show that the entry in row j, column k, of A³ (which is defined to mean AAA) is.

 $\sum_{n=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}.$

14 Suppose w and n are positive integers. Prove that the function A → A' is a linear map from F**,** to F***.

Let
$$A, B \in \mathbb{F}^{m,m}$$

$$\left[(A+B)^T \right]_{ij} = (A+B)_{ji} = A_{ji} + B_{ji} = A_{ij} + B_{ij}^T \text{ (addlely)}$$

$$(AA)_{ij} = (AA)_{ji} = AA_{ji} = AA_{ij}^T \text{ (honogeneity)}$$

15 Prove that if A is an n-by-n matrix and C is an n-by-p matrix, then

This exercise shows that the transpose of the product of two matrices is the another of the marrows in the another order.

$$(AC)^{T}; j = (AC) j = \sum_{k=1}^{n} A_{jk} C_{k} = \sum_{k=1}^{n} C_{ik}^{T} = C^{T}A^{T}; j$$

16 Suppose A is an m-by-n matrix with A ≠ 0. Prove that the rank of A is 1 if and only if there exist ⟨c₁,...,c_m⟩ ∈ Fⁿ and ⟨d₁,...,d_n⟩ ∈ Fⁿ such that

din rouge T = 1 2= 3 lois of U, V = t M(T) = 1

=>" routh A = 1 => 3c only I rotice and R 1-by-m water s.t A = ch

Then we can see that Ajh = cjdh djh.

"=" Eyyou 3(c1-c1) EFM, (d1-d2) EFM 2 t Ajh=cjdh.

(c₁-c₁) ≠0, (d₁-d₂) ≠0 on A+8. Spor c₁≠0, d₁≠0.

A = c d^T => nol A = nol (cd^T) = dim noge T_cT_dT_d,

when M(T_c) = c, M(T_dT) = d^T, T_dT e k(V₁W₁), T_cE k(W₁X),

with div = m, dim W = 1, di X = m

let v₁...v_n have f v₁, v₁ heir of W wort which M(T_dT) in defeal

T_dT v₁ = d₁W₁ ≠ 0, no d₁≠0 => dim noge T_dT = 1 (on dim N = 1 and dim noge T_dT)

led x₁...x_m home of X wort which M(T_c) in defend.

T_cW₁ = \(\frac{1}{2} \text{c}_{1} \text{c}_{1} \text{d}_{1} \text{d}_{2} \text{d}_{2} \text{d}_{3} \text{d}_{4} \text{d}_{2} \text{d}_{4} \text{d}_{4} \text{noge T_dT}

diW = 1, and him noge T_cT 0. Then dim noge T_c = 1 (2)

T_cT_dT v₁ = d₁T_{cW1} = d₁Z_c(n₁) + 0 on d₁≠0, c₁+0

=> dim noge T_cT_dT ≥ 1 (4x)

(m)₁(ma)

dim noge T_cT_dT = 1

=> nem h A = 1