Instructors: Wennstrom & LaRacuente

- 1. Give an informal proof of each of the following claims.
 - (a) For all real numbers x and y, if x + 5 < y, then 2x < 2y.
 - (b) $\{x \mid \frac{x+1}{2} \ge 4\} \subseteq \{x \mid 2x-2 > 10\}$ (For this problem the universe is \mathbb{R} , the set of all real numbers.)
 - (c) For all sets A, B, C, and D, if $B \cup C \subseteq D$, then $A \cap B \subseteq (A \cup C) \cap D$.
 - (d) For all sets X, Y, and Z: if $(X \cap Y) \subseteq \overline{Z}$, then $X \subseteq \overline{Y \cap Z}$. You must use (in the appropriate place) proof by contradiction to solve this problem;
 - (e) For all sets $H,\ J,\ K,\ L$, and M, if $J\subseteq L\setminus M$ and $H\subseteq \overline{M}$, then $H\cup (J\cap K)\subseteq (H\cup K)\setminus M$.

You must use (in the appropriate place) proof by cases for this problem.

2. Prove that the following claim is false.

Claim: For all sets A, B, and C: if $A \subseteq C$, then $A \cup B \subseteq B \cap C$.

Hint: I used the word "prove" here to mean that you have to give all the details. That does not mean that you should be writing a *direct* proof where you start with making some generic assumptions and then use them to prove a conclusion. Remember that you already know how to prove a universal claim is false.

- 3. Provide proofs for the following claims:
 - (a) For any integer n, define $S_n = \{nx \mid x \in \mathbb{Z}\}$ (same as in this week's lectures). For any integer n, if a and b are members of S_n , then 5a b is also a member of S_n .
 - (b) The set of rational numbers is closed under addition.

Hint: This is just another way of saying that the sum of any two rational numbers must also be rational.

(c) Define $T = \{x + y\sqrt{2} \mid x \in \mathbb{Q} \land y \in \mathbb{Q}\}$ and $S = \{st \mid s \in T \land t \in T\}$. Claim: S = T.

Hint: You'll need two separate proofs (one to prove every member of S is a member of T, and one to prove every member of T is a member of S.

- (d) The sum of an irrational number and a rational number is irrational. (You can assume that all numbers here are real numbers.)
- (e) For any integer n, define $S_n = \{nx \mid x \in \mathbb{Z}\}$ as before. For any integers a, b, and n, if $ab \notin S_n$, then neither a nor b is a member of S_n .

Hint: Don't try to prove the two conclusions using the same proof by contradiction subproof. You'll want two separate (but very similar) subproofs for this.