Autostitch

- Recognizing Panoramas, M. Brown and D. Lowe, Proc. ICCV, 2003
- Goal: Search a collection of photos for sets that can be stitched together completely automatically
- http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Method

- Detect point features
- Match features between images
- Determine overlapping pairs of images
- Solve for homographies between all images
- Blend

Detect and Match Feature Points

- In each image detect distinctive "interest points" (at multiple scales)
- Each point described by a feature vector (aka feature descriptor)
- For each feature point in each image, find most similar feature points in the other images (using hashing or k-d tree to find approximate nearest neighbors)

Feature-Space Outliner Rejection

- Can we now compute **H** from the blue points?
 - No! Still too many outliers
 - What can we do?

Matching Features What do we do about the "bad" matches?

Image Matching

- For each image, find m=6 other images with greatest number of feature matches to current image
- For each pair of neighboring images, use RANSAC algorithm to find true matches (inliers), eliminate non-matching points (outliers), and compute homography

RANSAC Algorithm for Estimating Homography

- Loop many times:
- 1. Select 4 feature pairs (at random)
- 2. Compute homography **H** (exact)
- **3**. Compute *inliers*, *i.e.*, $SSD(p_i', \mathbf{H} p_i) < \varepsilon$
- 4. Keep largest set of inliers
- **5**. Re-compute least-squares **H** estimate using *all* inliers

Robustness

- RANSAC is just one of many "robust" methods that deals with issues related to
 - inadequate models
 - missing data (i.e., which data is noise, "outliers," and which is not)
 - error measures that heavily penalize large errors (which lead to poor fit between data and model)
- M-estimators are another robust method

Probabilistic Model for Verification of Image Match

- Compare probability that this set of RANSAC inliers/outliers was generated by a correct/false image match
- Let n_i = # features in overlap area, n_i = # inliers, m a binary r.v. where m=1 means correct image match, and f⁽ⁱ⁾ ∈ {0,1} mean the ith feature is a match or not
- Image match if $p(m=1 | f^{(1:n_f)}) > p_{\min}$
- Solve using Bayes' rule, assuming binomial distribution on
 f⁽ⁱ⁾, likelihood ratio test formulation, and parameters ⇒
- Image match if $n_i > 5.9 + 0.22 n_f$

Improving the Homographies: Bundle Adjustment

- Jointly solve for all homographies together to improve robustness
- Find the parameters of all homographies that minimize the sum of squared projection errors
- Solve optimization problem by adding images best to worst

Autostitch

- Huge number of features to match
 - Uses efficient approx. nearest-neighbor search
 - $-O(n \log n)$ where n = number of features
 - Uses priors to accelerate RANSAC
- Handles full space of rotations
- Estimates camera intrinsics for each photo
 - Bundle adjustment

Panorama 1 Panorama 2 Figure 1: Working example. A user makes a query of "West Lake, Hangzhou" to You Tube, and feeds retrieved video clips into our system. Our system selects useful frames from the given videos and synthesizes panoramas

Automatic Panorama Creation

Recognizing Panoramas in Sets of Stills

- Not all images work
- Matching is Hard
- Images unordered
- Large differences in images
- Different Orientations
- High Quality Images
- Relatively small image sets
- · Assume sufficient coverage

Discovering Panoramas in Web Video

- Not all videos work
- Matching is not so hard
 - Images are ordered
 - Continuity limits differences
 - Orientations consistent
- Variable Image Quality
- Potentially large image sets
- · Small motions uninteresting
- Dynamic Objects

When does a Segment of Video lead to a Good Panorama?

- Good homographies between frames
- Individual images have good quality
- Result has a wide field of view

Competing interests:

- More frames give wider field of view
- More frames give more accumulated error

Homography Quality

- Points should match (robust best fit)
- Measure residual distances
- Penalize large residuals

(c) blockness=0.204 (d) blockness=0.497 [Wang et al. 02]

An Optimization Problem Given a video V Find (non-overlapping) segments S_i that • Have maximal field of view / coverage • Have minimal penalties — Homography error — Image quality penalty Reject segments that have — Too little coverage — Too much penalty

Evaluation

- Tried 6 queries (60 total videos)
- Created panoramas from most (87%)
- Compared auto-discovery with human expert
 - Expert only looks for camera motions
 - Algorithm looks for panorama sources
- Never found panoramas that expert did not
- Found 87% of those identified by expert

Panoramic Video Textures

Gigapixel Panoramas Microsoft HD View Google Earth Gigapan Gigapxl 360 Cities

Gigapixel Panoramas

- Shanghai Skyline (10/2010): 12,000 images, 272 gigapixels (887K × 307K), 1.09 TB file size
- http://gigapan.org
- http://research.microsoft.com/enus/um/redmond/groups/ivm/HDView/
- Global Connection Project
 - The Global Connection Project develops software tools and technologies to increase the power of images to connect, inform, and inspire people to become engaged and responsible global citizens

Unwrap Mosaics: A new representation for video editing

A. Rav-Acha, P. Kohli, C. Rother and A. Fitzgibbon, Proc. SIGGRAPH, 2008

Goal: Given a video, recover for each moving, non-rigid object (1) its **texture** map modeling the object's appearance, (2) a 2D-to-2D mapping describing the texture map's **projection** to the images, and (3) a sequence of binary masks modeling **occlusion**

In other words, build an "Object Panorama"

Slides by P. Kohli

Cyclograph

- A cyclograph is a concise, multi-perspective representation of a video sequence looking inward as it moves around a rigid object
- Encodes approximately fronto-parallel views of the object
 - Little foreshortening distortion of surfaces
 - Limitation: Profile shape features are lost
 - Limitation: Occluded parts not represented

Part 2: Model Recovery

$$\mathbf{I}(\mathbf{x},t) = \int \rho(\mathbf{w}(\mathbf{u},t) - \mathbf{x}) \mathbf{C}(\mathbf{u}) \mathbf{b}(\mathbf{u},t) d\mathbf{u}$$

- Given I, how can we recover w, C, b?
- Formulate as an energy minimization problem
- 3 steps: Track, Embed & Stitch

Estimating w, b Estimating

