#2.06 Let * be defined on \mathbb{C} by letting a * b = |ab|

Ans: This is not a group because Axiom 2 fails:

There is no identity element. a*e = |ae| the magnitude returns \mathbb{R} so $a*e \neq a$.

 $#2.18 G = \{e, a, b\}$ where

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad a = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}, \quad b = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

Show whether (G, \times) where \times is standard matrix multiplication is a group.

Ans:

- a. It is associative (proved in math 18).
- b. There is an identitiy element: e.
- c. There is an inverse: a * b = b * a = e.
- #2.28 An element $a \neq e$ in a group is said to have order 2 if a * a = e. Prove that if G is a group and $a \in G$ has order 2, then for any $b \in G$, $b^{-1} * a * b$ also has order 2.

Ans: We try to prove $b^{-1} * a * b = e$ is order two, so let's try computing $(b^{-1} * a * b) * (b^{-1} * a * b)$. By associativity:

$$(b^{-1} * a * b) * (b^{-1} * a * b)$$

$$= b^{-1} * a * (b * b^{-1}) * a * b$$

$$= b^{-1} * a * e * a * b$$

$$= b^{-1} * a * a * b$$

$$= b^{-1} * e * b \quad (a * a = e)$$

$$= e$$

Hence $b^{-1} * a * b$ is order 2.

#2.31 If * is a binary operation on a set S, an element x of S is an *idempotent for* * if x * x = x. Prove that a group has exactly one idempotent element.

Ans: By Theorem 2.16, we can use left cancellation to prove this statement. Let e be the identity element of the group.

e * e = e so we know that e is idempotent. By proof of contradiction, suppose there is another idempotent element $x \neq e$.

Then x * x = x and x * e = x, so x * x = x * e

By left cancellation, x = e which contradicts our assumption.

Therefore, a group has exactly one idempotent element.

#2.38 Let G be a group and let $a, b \in G$. Show that (a * b)' = a' * b' if and only if a * b = b * a.

Corollary 2.19 states that (a * b)' = b' * a'

Ans: We first prove forward direction: $(a*b)' = a'*b' \Rightarrow a*b = b*a$.

Since (a * b)' = b' * a':

$$b' * a' = a' * b'$$

$$(b' * a')' = (a' * b')'$$

$$(a')' * (b')' = (b')' * (a')'$$

$$a * b = b * a$$

Now we prove the reverse direction: $a * b = b * a \Rightarrow (a * b)' = a' * b'$. Since a * b = b * a:

$$(b*a)' = a'*b'$$

 $a'*b' = a'*b'$ (By Corollary 2.19)

So we proved both sides of the statement is true.

#3.26 Compute the given expression using the indicated modular addition.

$$\frac{3\pi}{4} +_{2\pi} \frac{3\pi}{2}$$

Ans:

$$\frac{3\pi}{4} + \frac{6\pi}{4} \equiv \frac{1\pi}{4} \pmod{2\pi}$$

#3.27 Compute the given expression using the indicated modular addition.

$$2\sqrt{2} + \sqrt{32} 3\sqrt{2}$$

Ans:

$$2\sqrt{2} + 3\sqrt{2} \equiv \sqrt{2} \pmod{4\sqrt{2}}$$

- #4.11 Convert the following permutations in S_8 from disjoint cycle notation to two-row notation.
 - (a) (1, 4, 5)(2, 3)
 - (b) (1, 8, 5)(2, 6, 7, 3, 4)
 - (c) (1, 2, 3)(4, 5)(6, 7, 8)

Ans:

(a)
$$(1,4,5)(2,3) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 2 & 5 & 1 & 6 & 7 & 8 \end{pmatrix}$$

(b)
$$(1,8,5)(2,6,7,3,4) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 6 & 4 & 2 & 1 & 7 & 3 & 5 \end{pmatrix}$$

(c)
$$(1,2,3)(4,5)(6,7,8) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 5 & 4 & 7 & 8 & 6 \end{pmatrix}$$