APE-X

Distributed Prioritized Experience ReplayPublished as a conference paper at **ICLR 2018**

2020.12.07 Mon Jungyeon Lee

DISTRIBUTED PRIORITIZED EXPERIENCE REPLAY

Dan Horgan

DeepMind

horgan@google.com

John Quan

DeepMind

johnquan@google.com

David Budden

DeepMind

budden@google.com

Gabriel Barth-Maron

DeepMind

gabrielbm@google.com

Matteo Hessel

DeepMind

mtthss@google.com

Hado van Hasselt

DeepMind

hado@google.com

David Silver

DeepMind

davidsilver@google.com

INTRODUCTION

BACKGROUND

• 3 keywords

OUR CONTRIBUTION

- Structure
- pseudo code
- APE-X DQN
- APE-X DPG

EXPERIMENTS

- Atari
- Continuous control

ANALYSIS

- Actor 수에 대한 분석
- Replay memory에 대한 분석
- Scalability의 다른 요소들에 대한 분석

CONCLUSION

APPENDIX

Abstract

a distributed architecture for DRL at scale, that enables agents to learn effectively from orders of magnitude more data than previously possible.

- decouple acting from learning:
 - the Actors
 - interact with their own instances of the environment by selecting actions according to a shared neural network
 - accumulate the resulting experience in a shared experience replay memory
 - the Learner
 - replay samples of experience and updates the neural network
- rely on **prioritized experience replay** to focus only on the most significant data generated by the actors.
- substantially improve the state of the art on the Arcade Learning Environment, achieving better final performance in a fraction of the wall-clock training time.

Introduction

이 연구에 대해 빠르게 소개하겠습니다

딥러닝의 트렌드

- 더 파워풀한 모델 + 더 큰 데이터
 셋 = 더 좋은 결과
- effective use of greater computational resource 가 중요한 성공 요인

어떻게 scale up 할 것인가

- TF 프레임워크에 의한 scale up 이 아닌,
- **싱글 머신**에서 DRL 자체로 컴퓨팅을 개선 시킬 수 있을까?

이 연구에서는

Data Generation/Selection

- 기존: Gradient들을 병렬 계산해서 파라미터들을 빨리 업데이트
- 1. distribute the generation
- 2. selection of experience data
- 기존 방법들의 대체제
- 2가지 방법을 결합할 수 있지만 (1) 데이터 생산에 초점

실험

- DQN(Deep Q-Networks)
- DDPG(Deep Deterministic Policy Gradient)
- Arcade Learning Env
- Continuous control tasks
- 하이퍼파라미터 튜닝 안하고 SOTA

분석

- how prioritization affects performance as we increase the number of datagenerating workers
- replay capacity
- recency of the experience
- use of different datagenerating policies for different workers

Background

3가지 키워드로 보는 배경 지식

Distributed SGD

- @ 지도학습 학습시간을 가속하기 위해 흔히 쓰는 방법
- 그라디언트 계산을 병렬화
- 파라미터 업데이트는 동시성/비동 시성 둘 다 가능
- 비동시성 파라미터 업데이트+분산 데이터 생산 : 멀티 쓰레드로 성공 적이었음
- GA3C/PAAC 등등

Distributed Importance Sampling

- 학습 빠르게 하기
- IS로 variance ▼ bias ▲
- 수렴 속도는 증가
- gradient의 L2 norm에 비례하여 샘플링 → @ 지도학습 성공적
- 1. Rank samples according to their *latest known loss value*
- 2. Make the sampling probability a function of the rank rather than of the loss itsel

Prioritized Experience Replay

- Prioritized : 데이터 효율성 증대 (training NN이 SGD 알고리즘을 사용 할 때 효율적)
- Experience Replay : 오버피팅을 방 지
- 좀 더 general한 biased sampling
 (가장 surprising한 경험을 배우는 데에 초점)
- Rainbow에서 봤듯이 그 효과는 대단!

Distributed PER

EXTEND PER TO THE DISTRIBUTED SETTING

- @ Gorila
 - acting:
 - stepping through an environment
 - evaluating a policy implemented as a deep neural network
 - storing the observed data in a replay memory
 - learning:
 - sampling batches of data from the memory to update the policy parameters
- @ APE-X
 - o actor N개 : CPU
 - o learner 1개 : GPU

Distributed PER

EXTEND PER TO THE DISTRIBUTED SETTING

- Shared, Centralized replay memory
- Prioritize to sample the most useful data more often
 - shared(어떤 actor든지 발견하기만 하면 됨)
- Priority Definition
 - a. @ Prioritized DQN: sampling된 sample들만 priority를 update / scale up 잘 안됨 @ APE-X: actor들이 replay에 넣을 때 priority를 다시 계산하니, 추가적인 computation없이 큰 문제를 해결

Distributed PER

EXTEND PER TO THE DISTRIBUTED SETTING

- Sharing experiences VS Sharing gradients
 - 경험 데이터의 outdated가 그라디언트보다 늦음→ off policy 데이터에 대해 robust
 - centralized replay
 - actor와 learner들이 다른 데이터 센터에서 돌아 갈 수 있음(퍼포먼스에 제한이 없음)
- Off policy
 - 각각의 actor들이 다른 policy로 다양하게 경험→ exploration에 대해서 진전이 있었음

Algorithm 1 Actor

```
▶ Run agent in environment instance, storing experiences.
 1: procedure ACTOR(B, T)
                                                                 ▶ Remote call to obtain latest network parameters.
        \theta_0 \leftarrow \text{LEARNER.PARAMETERS}()
        s_0 \leftarrow \text{ENVIRONMENT.INITIALIZE}()
                                                                                ▶ Get initial state from environment.
        for t = 1 to T do
 5:
            a_{t-1} \leftarrow \pi_{\theta_{t-1}}(s_{t-1})
                                                                         ▷ Select an action using the current policy.
6:
            (r_t, \gamma_t, s_t) \leftarrow \text{ENVIRONMENT.STEP}(a_{t-1})
                                                                             ▶ Apply the action in the environment.
                                                                                           ▶ Add data to local buffer.
            LOCAL BUFFER. ADD((s_{t-1}, a_{t-1}, r_t, \gamma_t))
8:
            if LOCALBUFFER.SIZE() \geq B then
                                                        ▷ In a background thread, periodically send data to replay.
9:
                \tau \leftarrow \text{LOCALBUFFER.GET}(B)
                                                          ▶ Get buffered data (e.g. batch of multi-step transitions).
10:
                p \leftarrow \text{COMPUTEPRIORITIES}(\tau) \triangleright \text{Calculate priorities for experience (e.g. absolute TD error)}.
11:
                REPLAY. ADD(\tau, p)
                                                                ▶ Remote call to add experience to replay memory.
12:
            end if
            PERIODICALLY(\theta_t \leftarrow \text{LEARNER.PARAMETERS}())
13:
                                                                                 14:
        end for
15: end procedure
```


Algorithm 2 Learner

```
▶ Update network using batches sampled from memory.
 1: procedure Learner(T)
        \theta_0 \leftarrow \text{InitializeNetwork()}
3:
        for t = 1 to T do
                                                                                   \triangleright Update the parameters T times.
            id, \tau \leftarrow \text{REPLAY.SAMPLE}()
                                             ▷ Sample a prioritized batch of transitions (in a background thread).
5:
            l_t \leftarrow \text{COMPUTELOSS}(\tau; \theta_t)
                                                           ▶ Apply learning rule; e.g. double Q-learning or DDPG
6:
            \theta_{t+1} \leftarrow \text{UPDATEPARAMETERS}(l_t; \theta_t)
            p \leftarrow \text{ComputePriorities}()
                                                     ▷ Calculate priorities for experience, (e.g. absolute TD error).
8:
            REPLAY. SETPRIORITY (id, p)
                                                                                  ▶ Remote call to update priorities.
9:
                                                                    ▶ Remove old experience from replay memory.
            PERIODICALLY(REPLAY.REMOVETOFIT())
10:
        end for
11: end procedure
```

APE-X DQN

ATARI

DQN

- learning algorithm : Double DQN with multi-step bootstrap targets
- function approximator : dueling network $q(\cdot, \cdot, \theta)$

batch Loss

$$l_t(\boldsymbol{\theta}) = \frac{1}{2} (G_t - q(S_t, A_t, \boldsymbol{\theta}))^2$$

--- Gain

double-Q bootstrap value

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^{n} \overbrace{q(S_{t+n}, \operatorname{argmax} q(S_{t+n}, a, \boldsymbol{\theta}), \boldsymbol{\theta}^{-})}^{\mathbf{G}_{t+n}}$$

APE-X DQN

ATARI

more details

- Multi-step return with no off-policy correction
 - adversely affect the value estimation
- Actor executes a different policy (off policy)
 - Experiences to be generated from a variety of strategies
 - Behaviour policy affects
 - exploration
 - the quality of function approximation
- Actors use ε-greedy policies with different values of ε
 - Low ε policies allow exploring deeper in the environment
 - High ε policies prevent over-specialization
 - constant during training

$$\epsilon_i = \epsilon^{1+rac{i}{N-1}lpha}$$

$$\epsilon=0.4, \alpha=7$$

Ape-X DPG

CONTINUOUS CONTROL TASK

Continuous-action policy gradient system based on DDPG

- smilar to Ape-X DQN
- the policy : φ
- Q-network : ψ
- The two networks are optimized separately, by minimizing different losses on the sampled experience

$$G_t = \underbrace{R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n \overbrace{q(S_{t+n}, \operatorname{argmax} q(S_{t+n}, a, \boldsymbol{\theta}), \boldsymbol{\theta}^-)}^{\text{double-Q bootstrap value}}$$
multi-step return

$$G_t = \underbrace{R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n q(S_{t+n}, \pi(S_{t+n}, \phi^-), \psi^-)}_{}$$

multi-step return

Ape-X DPG

CONTINUOUS CONTROL TASK

$$G_t = \underbrace{R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n q(S_{t+n}, \pi(S_{t+n}, \phi^-), \psi^-)}_{\text{multi-step return}}$$

more details

- Q-network
 - \circ output : an action-value estimate $q(s,a,\psi)$
 - o updated using TD learning with a multi-step bootstrap target

$$l_t(\psi) = rac{1}{2}(G_t - q(S_t, A_t, \psi))^2$$

- Policy network
 - \circ output : an action $A_t = \pi(S_t, \phi) \in \mathbb{R}^m$
 - updated using policy gradient ascent on the estimated Q-value

Gradient
$$abla_{\phi} q(S_t, \pi(S_t, \phi), \psi)$$
 $A_t = \pi(S_t, \phi) \longrightarrow \text{input to critic network}$

Experiments

ATARI

APE-X DQN

- 360 actor machines / 1 CPU core
- 139 FPS each → Total ~50k(= 139X360) FPS = ~12.5K transitions (4개 frame 당 1개 action)
- Actor:
 - batch experience data locally before sending it to the replay
 - copy Learner's parameters every 400 frames(~2.8 sec)
- Learner:
 - 비동기적으로 512 transition을 16개의 batch로 가져옴
 - 1초 당 19 batch update = ~9.7K transitions에 대한 gradient들을 계산
- Observation: PNG codec / Episode length: limited to 50000 frames during training
- Capacity of the shared experience replay memory : 약 2 million transitions (2035050)
- Data is sampled according to proportional prioritization
 - o a priority exponent of 0.6
 - o an importance sampling exponent 0.4

Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C; Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

Experiments

ATARI

Algorithm	Training	Environment	Resources	Median	Median
	Time	Frames	(per game)	(no-op starts)	(human starts)
Ape-X DQN	5 days	22800M	376 cores, 1 GPU ^a	434%	358%
Rainbow	10 days	200M	1 GPU	223%	153%
Distributional (C51)	10 days	200M	1 GPU	178%	125%
A3C	4 days		16 cores		117%
Prioritized Dueling	9.5 days	200M	1 GPU	172%	115%
DQN	9.5 days	200M	1 GPU	79%	68%
Gorila DQN c	∼4 days	<u> </u>	unknown ⁶	96%	78%
UNREAL d	_	250M	16 cores	331% ^d	250% ^d

Table 1: Median normalized scores across 57 Atari games. ^a Tesla P100. ^b >100 CPUs, with a mixed number of cores per CPU machine. ^c Only evaluated on 49 games. ^d Hyper-parameters were tuned per game.

Figure 4: Scaling the number of actors. Performance consistently improves as we scale the number of actors from 8 to 256, note that the number of learning updates performed does not depend on the number of actors.

Experiments

CONTINUOUS CONTROL

APE-X DPG

- 4 tasks
 - manipulator
 - humanoid : Standing / Walking / Running
- observation : features (small FC layers)
- 64 actors
 - ~14K total FPS
 - 86 batches of 256 transitions / sec (~22K transitions /sec)

Figure 3: Performance of Ape-X DPG on four continuous control tasks, as a function of wall clock time. Performance improves as we increase the numbers of actors. The black dashed line indicates the maximum performance reached by a standard DDPG baseline over 5 days of training.

Analysis

HOW THE PERFORMANCE SCALES WITH THE NUMBER OF ACTORS

actor수가 많을수록 퍼포먼스가 좋을까?

- 8, 16, 32, 64, 128 and 256) for 35 hours on a subset of 6 Atari games
- shared experience replay memory 크기 고정 (1 million transition)
- 다다익선
- PER 없이도 비교해보았는데 actor가 많을수록 좋다는 결과는 동일했음(appendix)
- 본 연구의 아키텍쳐가 흔한 RL의 실패를 개선 시킬 수 있을 것
 - 어떤 실패?
 - the policy discovered is a local optimum in the parameter space, but not a global one
 - 왜 개선이 되는가?
 - large number of actors with varying amounts of exploration helps to discover promising new courses of action

Analysis

VARYING THE CAPACITY OF THE REPLAY MEMORY

replay memory의 용량이 달라지면 어떨까?

- 256 actors
- a median of ~37K total environment frames per second (약 ~9K transition)
- the contents of the memory is replaced much faster than in most DQN-like agents
- a small benefit to using a larger replay capacity
 - o 왜? the value of keeping some high priority experiences around for longer and replaying them

Figure 5: Varying the capacity of the replay. Agents with larger replay memories perform better on most games. Each curve corresponds to a single run, smoothed over 20 points. The curve for Wizard Of Wor with replay size 250K is incomplete because training diverged; we did not observe this with the other replay sizes.

Analysis

DISENTANGLE POTENTIAL EFFECTS OF TWO CONFOUNDING FACTORS IN OUR SCALABILITY ANALYSIS

Scalability의 다른 요인들

- 1. Recency of the experience data in the replay memory
- 2. Diversity of the data-generating policies
- appendix
- neither factor alone is sufficient to explain the performance we see
- gathering more experience data에 도움을 줄 뿐
- better exploration of the environment and better avoidance of overfitting

Conclusion

- Combined with any other off-policy reinforcement learning update
- 병렬적으로 많은 양의 데이터들을 만들어 낼 수 있는 상황에 적합한 체계 (many instances)
- RL의 문제인 large domain에서의 exploration 문제를
 - generating a diverse set of experiences = many actors
 - identifying and learning from the most useful events = per
- simple and direct approaches

Appendix

Figure 6: Testing whether improved performance is caused by recency alone: n denotes the number of actors, k the number of times each transition is replicated in the replay. The data in the run with n=32, k=8 is therefore as recent as the data in the run with n=256, k=1, but performance is not as good.

Figure 7: Varying the data-generating policies: Red: fixed set of 6 values for ϵ . Blue: full range of values for ϵ . In both cases, the curve plotted is from a separate actor that does not add data to the replay memory, and which follows an ϵ -greedy policy with $\epsilon = 0.00164$.

https://www.slideshare.net/ssuser163469/distributed-prioritized-experience-replay

https://seolhokim.github.io/deeplearning/2020/04/09/apex-review/

https://www.opentutorials.org/module/3653/22071