Homework 1

Casey Gibson

Problem 1

$$p(\theta) = \frac{1}{21} \text{ for } \theta = 0, 0.05, 0.1, ..., 1$$
$$Y|\theta \sim Binom(n, \theta)$$

$$P(Y = 5 | \theta = .05) = \binom{n}{5} \theta^5 (1 - \theta)^{n-5} = \binom{100}{5} .05^5 (1 - .05)^{100 - 5} \approx .180$$

$$P(Y = 5 | \theta = .5) = \binom{n}{5} \theta^5 (1 - \theta)^{n-5} = \binom{100}{5} .5^5 (1 - .5)^{100 - 5} \approx 5.94 \times 10^{-23}$$

$$P(\theta = .05 | Y = 5) = \frac{P(Y = 5 | \theta = .05) P(\theta = .05)}{P(Y = 5)}$$

If we denote $\Theta = \{0, 1, 2..., 20\}$ then $\theta \in \frac{\Theta}{20}$

$$P(Y = 5) = \sum_{\theta' \in \Theta} P(Y, \theta') = \sum_{\theta' \in \Theta} P(Y|\theta')P(\theta') = \sum_{i=0}^{20} P(Y = 5|\theta' = \frac{i}{20})P(\theta' = \frac{i}{20})$$

$$= \sum_{i=0}^{20} {100 \choose 5} (\frac{i}{20})^5 (1 - (\frac{i}{20}))^{100 - 5} \frac{1}{21} \approx .0102$$

$$P(\theta = .05|Y = 5) = \frac{.1800178 * \frac{1}{21}}{.0102393} \approx .837$$

$$P(\theta = .5|Y = 5) = \frac{5.93914e^{-23} \frac{1}{21}}{.0102393} \approx 2.76 \times 10^{-22}$$

Problem 2

Posterior under prior 1

Posterior under prior 2

Posterior under prior 3

Prior 2 clearly pulls the posterior towards 1 because it forces all thetas less than .5 to have 0 probability.

Prior 3 yeilds essentially the same results, which makes sense because the likelihood is so skewed towards the range 0, .5, so excluding .5, 1 does not change the posterior much. Prior 4 pushes the posterior slightly upwards, which again makes sense because the prior assigns higher probabilities to higher values of theta, pushing the posterior towards 1.

Problem 3

Posterior under prior 1

Posterior under prior 2

Posterior under prior 3


```
## ## Table: Table continues below ## ## ------ ## Expected Value Prior 4 ## ----- ## 0.05 ## -----
```

As we get more data the effect of the prior diminishes (which is called "swamping" I think?). This makes more sense, to me at least, if we consider the log posterior.

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

taking logs we see

$$log p(\theta|y) \propto log p(y|\theta) + log p(\theta)$$

$$log/p(\theta|y) \propto log \prod_{i=1}^{n} L(\theta|y) + log p(\theta)$$

where $L(\theta|y)$ is the likelihood function.

This becomes

$$log \ p(\theta|y) \propto \sum_{i=1}^{n} log \ L(\theta|y) + log \ p(\theta)$$

Now we can clearly see, as n increases the effect of the $\log p(\theta)$ dimishes. It is harder for me to see this clearly in the non-log space because we are dealing with multiplication of small numbers.