

	PAGE No.
	PAGE NO. DATE / /
*	Ford fulkerson method (for max flow)
	1) Given a graph with edge-weights, source & sink
	@ Trace every path from source to sink one by one
	In each iteration choose min weight
	Make a table of Augmenting Bottleneck
	Path (apacity
	Use that min weight to black one edge every iteration
	Repeat until all paths covered & no path left
	3 Max flow = Z Bottleneck Capacity
	do210 5 19200
<i>→</i>	3.2: Dynamic Programming
	(a) crease RFS Tires
*	OBST [O(H3)]
	Dairen keys, frequency & numbers
	@ We create a matrix starting ? for 4 keys
	from 0 always
	3 l=j-i=0
	directly frequency le skte (min)
	Sill inthe matrix
	G = j - i = 1
	again directly
	6)
	for each (-,-) there will be two trees get min freq
1	after totaling level x freq 0 parent node number fill in the matrix but freq
	fill in the matrix but freq
	- Levislan man
2 2	$\lambda = j - i = 4 \text{ (serial no. max)}$
	formula
	([i,j] = min {c[i, k-1] + c[k,j]} + w(i,j)
	6 finally draw the OBST

