Homework #2 2102-464 Fundamentals of Electric Motor Drives

Due Date: 31 January 2023 (On-Line Submission)

Department of Electrical Engineering, FACULTY OF ENGINEERING, CHULALONGKORN UNIVERSITY

- 1. Assume the field distribution produced by the stator in the machine shown in figure to be radially uniform. The magnitude of the air-gap flux density is B_s , the rotor length is l, and the rotational speed of the motor is ω_m .
 - (a) Plot the emf $e_{11'}$ induced in the coil as a function of θ for two values of i_a : 0 and 10 A.
 - (b) In the position shown, the current i_a in the coil 11' equals I_a . Calculate the torque acting on the coil in this position for two values of instantaneous speed ω_m : 0 and 100 rad/s.

(a) Plot the emf $e_{\Pi'}$ induced in the coil as a function of θ for two values of i_a : 0 and 10 A.

at
$$l_n = 0A$$
, $e_r = 2N_r B_s L \omega_m r$
 $|e_n'| = 2B_s L \omega_m r$

at $i_n=10 \, A$, $e_r=2 \, N_r B_s \, L \omega_m r$ $|e_n'|=2 \, B_s \, L \omega_m r$ $|a_s| = 2 \, B_s \, L \omega_m r$ $|e_n'|=2 \, B_s \, L \omega_m r$

(b) In the position shown, the current i_a in the coil 11' equals I_a . Calculate the torque acting on the coil in this position for two values of instantaneous speed ω_m : 0 and 100 rad/s.

at
$$\omega_m = 100 \, \text{rad/3}$$

Name Kittithas Mitreevej Student ID 62300@3321

2. In the figure, the stator coil has N_s turns, and the rotor coil has N_r turns. Each coil produces in the air gap a uniform, radial flux density B_s , and B_r , respectively. In the position shown, calculate the torque experienced by both the rotor coil and the stator coil, due to the currents i_s and i_r flowing through these coils. Show that the torque on the stator is equal in magnitude, but opposite in direction, to that experienced by the rotor.

at Rotor; from Tem=2Fenr=28s(NrI)lr=28s(NrI)lr=17=28sNrie

at stator;
$$I_s = 2F_s r = 2B_r(N_s I_s) lr$$

$$|Y_s| = 2B_r N_s i_s lr$$

$$I_r(N_r m)$$

$$2B_s N_r i_r l_r$$

$$0$$

$$7V$$

$$2B_r N_s i_r l_r$$

$$0$$

$$7V$$

$$2B_r N_s i_r l_r$$

From
$$B_s = \frac{M_0 N_s i_s}{2 l_g}$$
 and $B_r = \frac{M_0 N_r i_r}{2 l_g}$ $\Rightarrow |\gamma_s| = 2 B_r N_s i_s l_r = 2 \left(\frac{M_0 N_r i_r}{2 l_g}\right) N_s i_s l_r$

$$= M_0 N_s N_r i_s i_r r \frac{l}{l_g}$$

$$|\gamma_r| = 2 B_s N_r i_r l_r = 2 \left(\frac{M_0 N_s i_s}{2 l_g}\right) N_r i_r l_r$$

$$= M_0 N_s N_r i_s i_r r \frac{l}{l_g}$$

So that IT in stator is equal to ITI in Rotor, but have opposite directions.