Analiza szeregów czasowych

Krawiec Piotr

12/06/2021

Spis treści

1	Sze	reg - Rozwój biznesu	1
	1.1	Wczytanie danych	2
	1.2	Główne cechy analizowanych danych	2
	1.3	Dekompozycja szeregu	4
		1.3.1 Modele regresji z trendem liniowym i sezonowością	4
		1.3.2 Model addytywny	6
	1.4	Eliminacja trendu i sezonowości	8
	1.5	Wyznaczenie rzędu MA	9
	1.6	Wyznaczenie rzędu AR	1
	1.7	auto.arima	2
	1.8	Porównanie analizowanych modeli	2
	1.9	Prognozowanie	3
		1.9.1 Prognozowanie naiwne metodą średniej	3
		1.9.2 Prognozowanie naiwne sezonowe	5
2	Inde	ex cen nieruchomości	5
	2.1	Wczytanie danych	5
	2.2	Główne cechy analizowanych danych	
	2.3	Dekompozycje szeregu	
		2.3.1 Modele z trendem liniowym, wielomianowym i sezonowością	
		2.3.2 Model multiplikatywny	
	2.4	Usunięcie trendu i sezonowości	
	2.5	Wyznaczenie rzędu MA	
	2.6	Wyznaczenie rzędu AR	
	2.7	auto.arima	
	2.8	Porównanie analizowanych modeli	2

1 Szereg - Rozwój biznesu

Na szereg ten składają się dane po chodzące ze strony FRED. Dane zbierane są przez U.S Census Bureau, obejmują lata 2006-2021. Zbierane są w tygodniowych odstępach i dotyczą ilości wniosków o wydanie identyfikatora EAN (Employer Identyfication Number). Każdy pracodawna, koropracja, organizacja nonprofit itp muszą posiadać takie numery, aby móc rozliczać się z podatku. Jest to zatem dobry wskaźnik tego ile nowych biznesów powstaje.

Do korzyści jakie przyniesie prognoza należy przewidywanie rozwoju gospodarki, gdyż nowo powstające biznesy mogą świadczyć o tym że w kraju panują korzystne warunki do rozwoju biznesu. Analiza szeregu pozwoli też przewidzieć jak ludzie postrzegają obecny stan gospodarki - czy są w stanie zaryzykować inwestując we własny biznes.

1.1 Wczytanie danych

6 2006-02-11

library("forecast")

W tym etapie wczytałem dane oraz uzupełniłem brakujące wartości średnimi.

```
## Warning: NAs introduced by coercion

## DATE BUSAPPWNSAUS

## 1 2006-01-07 39580

## 2 2006-01-14 36920

## 3 2006-01-21 63300

## 4 2006-01-28 51910

## 5 2006-02-04 61430
```

1.2 Główne cechy analizowanych danych

62890

Tak prezentuje się wykres ilości wniosków w czasie:

```
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
t <- ts(d$BUSAPPWNSAUS, freq = 365.25/7, start = 2006 + 7/365.25)
plot(t)</pre>
```


Z wykresu wywnioskować możemy że szereg ten posiada dużą sezonowość, pojawia się tu charakterystyczny wzorzec (odstające szpilki). Widać także niewielki dodatni trend, który gwałtownie rośnie na początku roku 2020.

```
seasonplot(t)
```

Seasonal plot: t

Porównując kolejne roczne sezony między sobą, sezonowość widać jeszcze dokładniej. Pojawia się też rok 2020, który znacznie odstaje wartościami, lecz kształtem nadal przypomina poprzednie sezony.

Acf(t)

Series t

Powolny spadek dodatnich wartości funkcji Acf wskazuje dodatni trend w szeregu.

Series t

Na wykresie pojawia się wartość znacząca przy Lag=52, ponieważ dane są tygodniowe oznacza to korelację z danymi z poprzednich lat.

1.3 Dekompozycja szeregu

1.3.1 Modele regresji z trendem liniowym i sezonowością

Poniższy wykres przedstawia dopasowanie dwóch modeli liniowych trendu, z czego jeden z nich uwzględnia sezonowość.

```
ti <- t
tT <- tslm(t ~ trend) # Model regrasji z trendem liniowym
tTS <- tslm(t ~ trend + season) # Model regresji z trendem liniowym i sezonowością
plot(t)
lines(fitted(tT), col = "blue", lty = 2)
lines(fitted(tTS), col = "red", lty = 2)</pre>
```


Model czerwony, uwzględniający sezonowość, został bardzo dobrze dopasowany do szeregu. Wręcz za dobrze (gdyż mogło dojść do przeuczenia), gdyż wektor reszt jest wektorem samych zer.

head(tTS\$residuals)

```
## Time Series:
```

Start = 2006.01916495551

End = 2006.11498973306

Frequency = 52.1785714285714

[1] 0 0 0 0 0 0

Poniżej model uwzględniający wyłącznie trend liniowy. Sezonowość nadal występuje. Widać też niewielki trend po roku 2020.

tsdisplay(tT\$residuals)

1.3.2 Model addytywny

Ze względu na to , że wariancja sezonowa nie zmienia się w czasie (z wyjątkiem lat 2020 i w wzwyż), zastosowałem dekompozycję addytywną.

t.decompose.add <- decompose(t)
plot(t.decompose.add)</pre>

Decomposition of additive time series

Szereg został rozłożony na swoje składowe, wyraźnie widać sezonowość. Trend najbardziej widoczny jest po roku 2015.

tsdisplay(t.decompose.add\$random)

00009

-40000

Z wykresów funkcji ACF i PACF odczytać możemy, że cała sezonowość nie została usunięta z szeregu
(PACF posiada wartość odstającą \sim 52).

1.4 Eliminacja trendu i sezonowości

Z poprzednich wykresów wiem, że szereg charakteryzuje się wyraźnym trendem i sezonowością, którą należy wyeliminować. Dodatkowo, aby pozbyć się gwałtownej zmiany wariancji z początku roku 2020, zastosuję transformację logarytmiczną Boxa-Coxa.

```
t.bc <- BoxCox(t, lambda = 0)
t.bc.52 <- diff(t.bc, lag = 52)
tsdisplay(t.bc.52)</pre>
```


Po usunięciu sezonowości i zastosowaniu transformacji Boxa-Coxa, nadal pozostał silny trend - wykres funkcji ACF jest dodatni i stopniowo maleje.

```
t.bc.52.1 <- diff(t.bc.52, lag = 1)
tsdisplay(t.bc.52.1)
```

t.bc.52.1

Szereg ten nie jest realizacją szumu białego. Widać to po znaczących wartościach odstających dla lag=52. Stacjonarność szeregu sprawdzę korzystając z biblioteki urca, dla ufności $\alpha = 0.05$. Zawiera ona test na stacjonarność szeregu: H_0 - szereg jest stacjonarny, wobec hipotezy alternatywnej: szereg nie jest stacjonarny.

```
library(urca)
t.bc.52.1 %>% ur.kpss() %>% summary()
```

```
##
##
  #########################
## # KPSS Unit Root Test #
  ############################
##
##
## Test is of type: mu with 6 lags.
##
##
  Value of test-statistic is: 0.0072
##
##
  Critical value for a significance level of:
##
                   10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
```

Wartość statystyki jest bardzo mała, wynosi 0.0072, co jest poniżej wartości krytycznej dla zadanego poziomu ufności. Zatem brak podstaw do odrzucenia hipotezy o stacjonarności szeregu.

1.5 Wyznaczenie rzędu MA

Do wyznaczenia parametrów skorzystam z funkcji Acf. Rząd modelu dobiorę na podstawie wartości odstających.

```
Acf(t.bc.52.1, lag.max = 210)
```

Series t.bc.52.1

Do wyboru mam rzędy MA równe:

```
t.bc.52.1.acf <- Acf(t.bc.52.1, plot = FALSE, lag.max = 210)
t.bc.52.1.acf$lag[which(abs(t.bc.52.1.acf$acf)>1.96/sqrt(t.bc.52.1.acf$n.used))] # Wszystkie lag poza p
                     26
                             37 50 52 53 57 77 78 79 98 103 106 120 135 182
## [20] 183 207 208
Obliczam współczynniki MA(52) i MA(26):
st <- t.bc.52.1 # szereg stacjonarny
st.ma52 \leftarrow Arima(st, order = c(0,0,52))
st.ma26 \leftarrow Arima(st, order = c(0,0,26))
Oto część obliczonych współczynników dla modeli:
c(st.ma26$aic, st.ma26$aicc, st.ma26$bic)
## [1] -379.6606 -377.4144 -250.2239
st.ma26$coef[1:5]
##
            ma1
## -0.859902576 -0.049606422 0.075821570
                                           0.005219935 -0.050431425
c(st.ma52$aic, st.ma52$aicc, st.ma52$bic)
## [1] -475.6156 -467.0934 -225.9879
st.ma52$coef[1:5]
           ma1
                       ma2
                                    ma3
                                                ma4
                                                             ma5
## -1.06816716 0.17039435 0.24707782 -0.08641077 -0.11456170
```

1.6 Wyznaczenie rzędu AR

Do wyznaczenia parametrów skorzystam z funkcji Pacf. Rząd modelu dobiorę na podstawie wartości odstających.

```
Pacf(t.bc.52.1, lag.max = 210)
```

Series t.bc.52.1

Do wyboru mam rzędy AR równe:

```
t.bc.52.1.pacf <- Pacf(t.bc.52.1, plot = FALSE, lag.max = 210)
t.bc.52.1.pacf$lag[which(abs(t.bc.52.1.pacf$acf)>1.96/sqrt(t.bc.52.1.pacf$n.used))] # Wszystkie lag spo
              2
                  3
                                     10 21 24 34
   [1]
         1
                                                     50 51
                                                             52
                                                                   53 54 56 77 103
## [20] 106 129 181 206 207
Obliczam współczynniki AR(52), AR(56):
st.ar56.yw <-ar(st, order.max = 56, aic = FALSE, method = "yule-walker")
st.ar56.burg <- ar(st, order.max = 56, aic = FALSE, method ="burg")
st.ar52.yw <- ar(st, order.max = 52, aic = FALSE)
st.ar1.yw<- ar(st, order.max = 1, aic = FALSE)
st.ar56 \leftarrow Arima(st, order = c(56,0,0))
st.ar52 \leftarrow Arima(st, order = c(52,0,0), method = "CSS")
Współczynniki, aic, aicc oraz bic:
c(st.ar56$aic, st.ar56$aicc, st.ar56$bic)
## [1] -540.7466 -530.8707 -272.6279
st.ar56$coef[1:10]
##
          ar1
                     ar2
                                 ar3
                                            ar4
                                                        ar5
                                                                   ar6
                                                                              ar7
```

```
## -0.9487120 -0.8260767 -0.6259190 -0.4940899 -0.3920653 -0.3648660 -0.3333275
##
                     ar9
          ar8
                                ar10
## -0.2994878 -0.2852825 -0.2868088
c(st.ar52$aic, st.ar52$aicc, st.ar52$bic)
## [1] NA NA NA
st.ar52$coef[1:10]
##
                     ar2
                                 ar3
                                                        ar5
                                                                   ar6
                                                                               ar7
## -0.9007710 -0.8146844 -0.6827974 -0.5901726 -0.5369683 -0.5193530 -0.4808162
          ar8
                     ar9
                                ar10
## -0.4372768 -0.4041186 -0.3910632
Współczynniki dla AR(56) i AR(52) sa podobne.
```

1.7 auto.arima

```
au <- auto.arima(st)
summary(au)
## Series: st
## ARIMA(1,0,0)(1,0,0)[52] with zero mean
##
## Coefficients:
##
             ar1
                     sar1
##
         -0.5210
                  -0.4427
## s.e.
         0.0314
                   0.0322
##
## sigma^2 estimated as 0.03631: log likelihood=174.79
                 AICc=-343.54
## AIC=-343.58
                                 BIC=-329.71
##
## Training set error measures:
                                  RMSE
                                              MAE
                                                       MPE
                                                                MAPE
                                                                          MASE
##
                         ME
## Training set 0.001074207 0.1903062 0.09991121 263.6516 471.3774 0.4860781
##
                      ACF1
## Training set -0.2010561
```

1.8 Porównanie analizowanych modeli

Wszystkie modele korzystały z transformacji Boxa-Coxa wiec moge je porównywać między soba.

```
# ARIMA(0,0,26)
                            AIC=-379.66
                                           AICc=-377.41
                                                          BIC=-250.22
# ARIMA(0,0,52)
                            AIC=-475.62
                                           AICc=-467.09
                                                          BIC=-225.99
# ARIMA(56,0,0)
                            AIC=-540.75 + AICc=-530.87 + BIC=-272.63
# ARIMA(1,0,0)
                                           AICc=-181.38
                            AIC=-181.41
                                                          BIC=-167.54
                            AIC=-343.58
                                           AICc=-343.54
# ARIMA(1,0,0)(1,0,0)[52]
                                                          BIC=-329.71
```

Ze wszystkich modeli, najlepszym wydaje się ARIMA(56,0,0). Pomimo dużej ilości, parametrów jako jedyny przechodzi test Ljung-Boxa (dla $\alpha = 0.05$). Analiza reszt znajduje się na wykresach poniżej.

```
checkresiduals(st.ar56)
```

Residuals from ARIMA(56,0,0) with non-zero mean


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(56,0,0) with non-zero mean
## Q* = 70.555, df = 47.357, p-value = 0.01601
##
## Model df: 57. Total lags used: 104.357142857143
```

1.9 Prognozowanie

1.9.1 Prognozowanie naiwne metodą średniej

```
t.meanf <- meanf(t, h = 60)
plot(t.meanf)</pre>
```

Forecasts from Mean

Prognozowanie naiwne metodą średniej nie daje dobrych rezultatów, może być to spowodowane tym iż szereg ten zawiera trend i sezonowość. Prognoza dla szeregu bez trendu i sezonowości:

```
st.meanf <- meanf(st, h = 60)
plot(st.meanf)</pre>
```

Forecasts from Mean

Prognoza ta jest dużo lepsza. Dodając trend i sezonowość moglibyśmy uzyskać nią lepsze przewidywania, niż za pierwszym razem.

1.9.2 Prognozowanie naiwne sezonowe

```
t.snaive <- snaive(t, h = 60)

## Warning in lag.default(y, -lag): 'k' is not an integer
plot(t.snaive)</pre>
```

Forecasts from Seasonal naive method

Prognoza naiwna sezonowa daje na pierwszy rzut oka najlepsze rezultaty. Uwzględnia ona silną sezonowość szeregu oraz to że w poprzednich latach składowa trendu była dużo większa, jednak nie uwzględnia ona przyszłego wzrostu trendu.

2 Index cen nieruchomości

Szereg ten pochodzi ze strony FRED. Szereg obliczany jest na podstawie danych z obrotów nieruchomościami i wygładzany jest z pomocą 3-miesięcznej średniej ruchomej. Głównie brane pod uwagę są domy jednorodzinne. Szereg rozstał unormowany tak aby cena ze stycznia 2000 roku była równa 100 i każda następna jest określona wobec niej.

Korzyści jakie może przynieść analiza tego szeregu to przewidywanie cen nieruchomości na rynku czy przewidywanie kolejnej bańki finansowej.

2.1 Wczytanie danych

Dane pobrane zostały ze strony https://fred.stlouisfed.org/series/CSUSHPINSA w formacie csv.

```
ind <- read.csv2("Datasets/CSUSHPINSA.csv", sep = ",")
ind$CSUSHPINSA <- as.numeric(ind$CSUSHPINSA)
head(ind)</pre>
```

```
## DATE CSUSHPINSA
## 1 1987-01-01 63.735
## 2 1987-02-01 64.135
## 3 1987-03-01 64.471
```

```
## 4 1987-04-01 64.977
## 5 1987-05-01 65.552
## 6 1987-06-01 66.221
```

2.2 Główne cechy analizowanych danych

Zacznę od zamiany szeregu na szereg czasowy oraz analizy funkcji ACF i PACF.

```
ind.ts <- ts(ind$CSUSHPINSA, start = c(1987, 01), frequency = 12)
tsdisplay(ind.ts)</pre>
```

ind.ts

Szereg charakteryzuje się dodatnim trendem (dodatnia, powoli opadająca funkcja ACF). Na pierwszy rzut oka nie widać sezonowości, także funkcja PACF na nią nie wskazuje.

2.3 Dekompozycje szeregu

2.3.1 Modele z trendem liniowym, wielomianowym i sezonowością

```
ti <- ind.ts
tT <- tslm(ti ~ trend) # Model regrasji z trendem liniowym
tTS <- tslm(ti ~ trend + season) # Model regresji z trendem liniowym i sezonowością
tPS <- tslm(ti ~ poly(trend, raw=TRUE, degree = 9)) # Model regresji z trendem liniowym i
plot(ti)
lines(fitted(tT), col = "blue", lty = 2)
lines(fitted(tTS), col = "red", lty = 2)
lines(fitted(tPS), col = "green", lty = 2)</pre>
```


Dekompozycja wskazuje na to, że nie jest to trend liniowy. Sezonowość również nie jest wyraźnie widoczna i nie wpływa na dopasowanie modelu do szeregu.

2.3.2 Model multiplikatywny

```
ind.decompose <- decompose(ind.ts, type ="multiplicative")
plot(ind.decompose)</pre>
```

Decomposition of multiplicative time series

Dekompozycja multiplikacyjna potwierdza wcześniejsze wyniki. Wyraźny jest trend, patrząc na rząd uzyskanej sezonowości, jest on dwukrotnie mniejszy od trendu.

2.4 Usunięcie trendu i sezonowości

Tym razem skorzystam z pomocy funkcji ndiffs i nsdiffs, wskazują one ile razy należy różnicować, aby usunąć trend i sezonowość.

```
ndiffs(ind.ts)
```

```
## [1] 2
```

nsdiffs(ind.ts)

[1] 1

Funkcje wskazują na to, że aby uzyskać szereg stacjonarny należy zróżnicować dwukrotnie z lag=1 oraz jednokrotnie z lag=12.

```
ind.lambda <- BoxCox.lambda(ind.ts)
ind.bc <- BoxCox(ind.ts, ind.lambda)
ind.bc.1.1 <- diff(diff(ind.bc, lag = 1), lag = 1)
ind.bc.1.1.12 <- diff(ind.bc.1.1, lag = 12)
tsdisplay(ind.bc.1.1.12, lag.max = 100)</pre>
```

ind.bc.1.1.12

Jak widać po zróżnicowaniu reszty przypominają już szereg stacjonarny. Zostanie to jeszcze potwierdzone testem

```
shapiro.test(ind.bc.1.1.12)
```

```
##
## Shapiro-Wilk normality test
##
```

```
## data: ind.bc.1.1.12
## W = 0.928, p-value = 6.778e-13
Szereg reszt nie jest realizacją szumu białego.
ind.bc.1.1.12 %>% ur.kpss(use.lag = 12) %>% summary()
## ######################
## # KPSS Unit Root Test #
## ######################
##
## Test is of type: mu with 12 lags.
##
## Value of test-statistic is: 0.0219
##
## Critical value for a significance level of:
##
                   10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739
```

2.5 Wyznaczenie rzędu MA

```
ind.st <- ind.bc.1.1.12 # Szereg stacjonarny
Acf(ind.st, lag.max = 50)</pre>
```

Test wskazuje na to, że nie ma podstaw do odrzucenia hipotezy o tym, że szereg jest stacjonarny.

Series ind.st

Do rozważenia mamy następujące modele MA:

```
ind.st.acf <- Acf(ind.st, plot = FALSE, lag.max = 100)
ind.st.acf$lag[which(abs(ind.st.acf$acf)>1.96/sqrt(ind.st.acf$n.used))] # Wszystkie lag poza przedziałe
```

```
## [1] 0 3 5 9 12 17 47
Wyznaczę modele MA(12), MA(9) oraz MA(3):
ind.st.ma12 \leftarrow Arima(st, order = c(0,0,12))
ind.st.ma9 \leftarrow Arima(st, order = c(0,0,9))
ind.st.ma3 <- Arima(st, order = c(0,0,3))
Część współczynników oraz metryki modeli:
c(ind.st.ma12$aic, ind.st.ma12$aicc, ind.st.ma12$bic)
## [1] -390.4213 -389.8514 -325.7030
ind.st.ma12$coef[1:5]
## -0.858869447 -0.043293060 0.083407918 -0.007491112 -0.049770078
c(ind.st.ma9$aic, ind.st.ma9$aicc, ind.st.ma9$bic)
## [1] -396.3046 -395.9478 -345.4545
ind.st.ma9$coef[1:5]
##
            ma1
                         ma2
                                       ma3
                                                     ma4
                                                                  ma5
## -0.858550110 -0.043606374 0.083994651 -0.008120658 -0.050630764
c(ind.st.ma3$aic, ind.st.ma3$aicc, ind.st.ma3$bic)
## [1] -397.3129 -397.2324 -374.1992
ind.st.ma3$coef
##
             ma1
                            ma2
                                          ma3
                                                  intercept
## -0.8500634318 -0.0501600018 0.0141696263 0.0008092502
```

Współczynniki MA(12) i MA(9) są podobne. Wszystkie modele mają podobne wartości AIC, AICc oraz BIC.

2.6 Wyznaczenie rzędu AR

Rzędy modelu AR można odczytać z wykresu Pacf.

```
Pacf(ind.st, lag.max = 50)
```

Series ind.st

Skorzystam z pomocniczej funkcji.

```
ind.st.pacf <- Pacf(ind.st, plot = FALSE, lag.max = 100)
ind.st.pacf$lag[which(abs(ind.st.pacf$acf)>1.96/sqrt(ind.st.pacf$n.used))] # Wszystkie lag poza przedzi
```

[1] 3 5 9 12 15 24 35 60 82

Obliczę współczynniki dla AR(3), AR(15), AR(9) i AR(5).

```
ind.st.ar3 <- Arima(st, order = c(3,0,0))
ind.st.ar15 <- Arima(st, order = c(15,0,0))
ind.st.ar9 <- Arima(st, order = c(9,0,0))
ind.st.ar5 <- Arima(st, order = c(5,0,0))</pre>
```

Część współczynników oraz metryki modeli:

```
c(ind.st.ar3$aic, ind.st.ar3$aicc, ind.st.ar3$bic)
```

```
## [1] -338.0322 -337.9517 -314.9185
ind.st.ar3$coef[1:3]
```

```
## ar1 ar2 ar3
## -0.7416738 -0.5372127 -0.2538657
c(ind.st.ar15$aic, ind.st.ar15$aicc, ind.st.ar15$bic)
```

```
## [1] -375.9754 -375.1416 -297.3889
ind.st.ar15$coef[1:5]
```

```
## ar1 ar2 ar3 ar4 ar5
## -0.8430700 -0.7493221 -0.5799817 -0.4492130 -0.3843793
```

```
c(ind.st.ar9$aic, ind.st.ar9$aicc, ind.st.ar9$bic)

## [1] -373.2033 -372.8466 -322.3532

ind.st.ar9$coef [1:5]

## ar1 ar2 ar3 ar4 ar5

## -0.8256883 -0.7168246 -0.5305624 -0.3837239 -0.3076455

c(ind.st.ar5$aic, ind.st.ar5$aicc, ind.st.ar5$bic)

## [1] -356.1699 -356.0194 -323.8107

ind.st.ar5$coef [1:5]

## ar1 ar2 ar3 ar4 ar5

## -0.79174118 -0.64811758 -0.41641226 -0.21625553 -0.08736639
```

Współczynniki wszystkich modeli oraz ich metryki są podobne.

2.7 auto.arima

```
ind.auto <- auto.arima(ind.st, max.p = 20, max.q = 20, max.P = 5, max.Q = 5, ic="aicc")
summary(ind.auto)
## Series: ind.st
## ARIMA(1,0,3)(0,0,2)[12] with zero mean
##
## Coefficients:
##
            ar1
                     ma1
                               ma2
                                        ma3
                                                 sma1
                                                          sma2
                 -0.3791
##
         0.5454
                           -0.0528
                                    -0.3352
                                              -0.6643
                                                       -0.1926
                  0.0990
                                     0.0507
## s.e. 0.0950
                            0.0499
                                               0.0523
                                                        0.0497
##
## sigma^2 estimated as 1.403e-09:
                                     log likelihood=3478.41
                                   BIC=-6914.93
## AIC=-6942.82
                  AICc=-6942.53
##
## Training set error measures:
                                                                                 MASE
                                      RMSE
                                                               MPE
                                                                       MAPE
##
                           ME
                                                     MAF.
## Training set 1.983769e-06 3.717278e-05 2.487803e-05 251.2911 304.1389 0.4875051
##
                        ACF1
## Training set -0.01005086
```

2.8 Porównanie analizowanych modeli

Zebrałem parametry AIC, AICc oraz BIC dla tego szeregu w tabeli poniżej. Wybrany zostanie model, który ma te współczynniki najmniejsze.

```
# ARIMA(0 ,0,12)
                                                 AICc=-389.8514
                                                                  BIC = -325.7030
                                AIC=-390.4213
# ARIMA(0,0,9)
                            AIC=-396.3046
                                             AICc=-395.9478
                                                              BIC=-345.4545
# ARIMA(0,0,3)
                            AIC=-397.3129
                                             AICc=-397.2324
                                                              BIC=-374.1992
# ARIMA(3 ,0, 0)
                            AIC=-338.0322
                                             AICc=-337.9517
                                                              BIC=-314.9185
# ARIMA(15,0, 0)
                            AIC=-375.9754
                                             AICc=-375.1416
                                                              BIC=-297.3889
# ARIMA(9 ,0, 0)
                            AIC=-373.2033
                                             AICc=-372.8466
                                                              BIC=-322.3532
                            AIC=-356.1699
                                             AICc=-356.0194
                                                              BIC=-323.8107
\# ARIMA(5,0,0)
# ARIMA(1 ,0, 3)(0,0,2)[12] AIC=-6942.82 + AICc=-6942.53 + BIC=-6914.93
```

Najlepszym wydaje się model dobrany automatycznie ARIMA(1 ,0, 3)(0,0,2)[12]. Poprawność modelu, sprawdzę z pomocą funkcji checkresiduals .

checkresiduals(ind.auto)


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,3)(0,0,2)[12] with zero mean
## Q* = 50.83, df = 18, p-value = 5.648e-05
##
## Model df: 6. Total lags used: 24
```