Hardy-Weinberg Equilibrium (HWE)

Introduction to Evolution and Scientific Inquiry Dr. Spielman; spielman@rowan.edu

Major question: Is a population evolving?

• We say populations are in <u>equilibrium</u> when they do not change over time

 One option: Monitor the population over multiple generations and directly ask if allele frequencies and/or "average trait values" have changed

- Other option: Ask if the population is in Hardy-Weinberg Equilibrium
 - A "null hypothesis" of evolution

Hardy-Weinberg Equilibrium (HWE): A null model

- When a population is in HWE, allele frequencies DO NOT CHANGE over generations, and hence the population is not evolving.
- A population is in *HWE* if:
 - There is random mating
 - There is no selection
 - There is no mutation
 - o There is **no genetic drift**
 - There is **no migration**
- Key point: If a population is in HWE, we can directly predict genotype frequencies from allele frequencies!
 - We only need a "snapshot" in time of the population to ask if it is evolving

Is my population evolving or in HWE?

 If HWE-expected genotype frequencies match the observed frequencies (actual given data), the population is in HWE

 If HWE-expected frequencies are very different from observed frequencies, the population is evolving

Testing for HWE with the χ^2 test ("keye - squared")

Calculate the *allele frequencies* observed in a population

Calculate the HWE-expected genotype frequencies

$$p^2 + 2pq + q^2 = 1$$

 $p^2 = HWE$ genotype AA frequency
 $2pq = HWE$ genotype Aa frequency
 $q^2 = HWE$ genotype aa frequency

 Compare what is expected under HWE to what we actually see, using genotype COUNTS

$$X^2 = \sum \frac{(o-e)^2}{e}$$

Calculating the test statistic, χ^2

$$X^2 = \sum \frac{(o-e)^2}{e}$$

- Calculate χ² using genotype COUNTS (not frequencies!!!)
 - o = observed value
 - e = expected value
- Add up $(o-e)^2/e$ for each p^2 , 2pq, q^2 (three things to add!)

• Determine the P-value from the calculated χ^2 (This P is NOT the same as "p+q=1")

• If the P-value = 0.05, there is a 5% chance the genotypes in the population are caused by HWE. Since 5% is pretty low, we make the logical leap that probably HWE is not the cause, and something else is. That "something else" is evolution.

How to make your statistical conclusions. You should use these EXACT WORDS

- p > 0.05 → not significant
 - \circ $\chi^2 < 3.841$
 - There is no evidence that the population is evolving. The population may be under Hardy-Weinberg equilibrium.

- p <= 0.05 → significant

 - There is evidence that the population is evolving. We reject the null hypothesis that the population is under Hardy-Weinberg equilibrium.