Cartesian Products

Cartesian Products

Definition

Definition: The Cartesian Product $A \times B$ of two sets A and B is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

$$A = \{1, 2, 3\} \text{ and } B = \{x, y\}. \text{ What is } A \times B?$$

$$A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(1) \times A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(2) \times A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_3b) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1x) : a \in A_3 b \in B\}.$$

$$(a_1x) \in A \times B = \{(a_1$$

$$\mathbb{Z} \times \mathbb{Z}$$

$$\mathbb{Z} = \left\{ \begin{array}{c} -3, -4, -3, -2, \dots \\ 3, -2, 0 \end{array} \right\}$$

$$\mathbb{Z} \times \mathbb{Z} = \left\{ \begin{array}{c} (a, b) : a, b \in \mathbb{Z} \end{array} \right\}$$

$$(3, -2) \in \mathbb{Z} \times \mathbb{Z}$$

$$(-2, -1) = 2$$

$$\mathbb{Z} \times \mathbb{Z}$$

$$\mathbb{Z} \times \mathbb{Z}$$

$$(-2, -1) = 2$$

$$\mathbb{Z} \times \mathbb{Z}$$

$$\mathbb{Z} \times \mathbb{Z}$$

$$\mathbb{Z} \times \mathbb{Z}$$

$$\frac{N \times (N \times N) \times N \times N}{N \times (m \times N)} = \{(a,b) \mid a \in N, b \in N \times N\}$$

$$\frac{N \times (m \times N)}{N} = \{(a,b) \mid a \in N, b \in N \times N\}$$

$$N \times (n \times N) = \{(a,b) \mid (a,(b,c)) : a,b \in N\}$$

$$= \{(a,b,c) : a,b,c \in N\}$$

$$= \{(a,b,c) : a \in N \times N \times N\}$$

$$A \times B \times C = \{(a,b,c) : a \in N\}$$

$$A \times B \times C = \{(a,b,c) : a \in N\}$$

$$(4,2,\pi) \in A \times B \times C$$

Cartesian Powers

$$A = \{H, T\}$$
. What is A^4 ? What is $|A^4|$?.

$$A = \{H,T\}$$
 $A' = A \times A \times A \times A = \{(a,b,c,d) : a,b,c,d \in A\}$
 $(H,T,T,H) \in A'$
 A''
 A''

$$(H_3H_3H_3H) \in A^9$$
 $((H_3T_3T_3H)) \leftarrow (H_3T_3T_3H)$
 $|A^9| = |A|^2$
 $|A^9| = |A|^2$
 $|A^2| = |A|^2$

$$|A| = |A|^n$$

$$|A'| = |A|^n$$

$$|A \times B \times C| = |A| \cdot |B| \cdot |C|$$

How many elements are in AXB

If A and B are finite?

AXB = $\{(a,b): a \in A \in B\}$.

B = $\{(1,2,3,4)$ AXB = $\{(a,b): a \in A \in B\}$.

B = $\{(1,2,3,4)$ AXB = $\{(1,2,3,4)\}$ AXB = $\{(1,2,3,4)\}$ AXB = $\{(1,2,3,4)\}$ B = $\{(1,2,3,4)\}$ AXB = $\{($

Theaem: IA and B are finite the [AXB] = |A/18].