MQTT & CoAP

Background

Polling Model:

- Applications send queries to sensor nodes to retrieve information.
- Problem?
- When an event of interest occurs, in order to react in real-time, the sensor nodes have to be queried continuously.
 - Waste of resources such as energy, processing and bandwidth.

Background

Publish/Subscribe Model

- Entities:
 - Publisher: generate events
 - Subscriber: express interest in events
- Subscription:
 - Register interest in the event
- Advantages:
 - Decouple in time: publishers and scubscribers do not need to be actively participating in the interaction at the same time
 - Decouple in space: publishers and subscribers do not need to know each other
 - Publishers and subscribers can produce or consume events in an asynchronous way.

Publication Discipline

- Activation: when there is a pending confirmation of a publication message, and a new publication is generated
- MQTT-S publication discipline:
 - Discard the new publication message
- CoAP publication discipline:
 - Discard the old publication message
- An inappropriate fixed RTO will result in a higher probability of a new publication message being generated while the RTO is active. Therefore, the publication discipline will discard the publication message (Old or New).

12/5/2024 4

MQTT-S

- Extension of the Message Queuing Telemetry Transport (MQTT) Optimized for WSN.
- Components:
 - Broker node:
 - responsible for managing subscriptions as well as storing and sending publications to corresponding WSN subscriber nodes.
 - Publisher nodes:
 - generate event
 - Subscriber nodes:
 - express interest in events
 - Relay nodes:
 - for multi-hop scenario.

MQTT-S

- Reliability:
 - QoS Level 0 (QoS0)
 - Offers a best-effort delivery service, no retransmission or Acknowledgements.
 - QoS Level 1 (QoS1)
 - Allows the retransmission of messages until Acked
 - Does not prevent duplicate reception
 - QoS Level 2 (QoS2)
 - Ensures the reception of message
 - Ensures to deliver only once to the destination by four message handshake.
 - Parameters for QoS1 and QoS2:
 - Fixed RTO: 10-15 seconds.
 - Retransmission number: 3-5

MQTT-S

Publication Discipline:

- "stop and wait" mechanism for the transmissions of publication messages with QoS1 and QoS2.
- A publisher node has to wait for the termination of its publication message flow with the broker node before it can start a new one.
- If more than one publications are generated, publication discipline is needed.
- Activity 1: Queue the new publication messages
 - Drawback: cost more source
- Activity 2: Drop the new publication messages
 - Always attempts to retransmit the old publication message till receive the ACK.
 - Called 'Persistent mode' discipline

- Characteristics:
 - RESTful (Representational State Transfer)
 - Resources are identified by Universal Resource Identifiers (URI)
 - UDP based
- Model:
 - Client/server interaction model
 - Request messages initiate a transaction with a server, which may send a response to the client with a matching transaction ID
 - Polling based: not suitable for requiring information in real-time in order to react when an event of interest occurs.
 - Publish/subscribe interaction model
 - A.k.a: Observer Model
 - A publisher node can send publications to a subscriber node (observer) about a event that the subscriber is interested in receiving.

- Publish/subscribe interaction model
- A subscriber constantly to observe the events by registering its interest in the event (GET request to the publisher node).
 - Subscription Action:
 - Publisher node establishes an observation relationship between the subscriber and the event.
 - The publisher notifies each subscriber node that has an observation relationship with the event.
 - Observer Model:
 - High scalability
 - Use caches and proxy nodes that multiplex the interest of multiple subscribers in the same event into a single association

- Reliability:
 - Non-Confirmable (NON) message:
 - Correspond to MQTT-S QoS 0
 - No ACK to messages
 - Confirmable (CON) message:
 - Correspond to MQTT-S QoS 1
 - ACK messages received
 - Fixed RTO
 - Random number between and ACK TIMEOUT constant and an ACK TIMEOUT multiplied by ACK-RANDOM-FACTOR
 - UnACKed messages within RTO are retransmitted
 - RTO is doubled (Exponential back-off mechanism)
 - MAX_RETRANSMIT: Maximum retransmission numbers

Protocol Constants	Value
ACK_TIMEOUT	2 s
MAX_RETRANSMIT	4
ACK_RANDOM_FACTOR	1.5

Publication Discipline:

- "stop and wait" mechanism for the transmission of CON messages. Same with MQTT-S.
- Publication discipline is also needed to handle publication messages generated while the publication message flow is in progress (RTO is active)

Activity:

- Stop the retransmission of old publication message
- Transmit the new publication message with the number of attempts remaining from the old publication message.

MQTT-S and CoAP

Fixed RTO:

- Too short: give rise to spurious retransmissions, waste bandwidth, energy and computation.
- Too long: lead to slow or late reaction to the loss of packets, increase delay, decrease PDR.
- Suitable for deployments when RTT is close to the defined RTO value.
- Not suitable for scalability and flexibility features by the publish/subscribe model on WSN.
- Adaptive RTO:
 - Compute smoothed RTT (SRTT)
 - SRTT = (1 a) x SRTT + a x RTT
 - Compute RTO
 - RTO = SRTT x K