Glottal Source Parameters for Forensic Voice Comparison: an Approach to Voice Quality in Twins' Voices

Eugenia San Segundo Fernández Phonetics Laboratory, CSIC, Madrid

International Association for Forensic Phonetics and Acoustics 2012 Annual Conference

7th August 2012 - UIMP Santander

OUTLINE

- 1. Introduction
 - 1.1. Research on twins' voices
 - 1.2. Research on voice quality
- 2. Material and method
 - 2.1. Speakers
 - 2.2. Equipment and set-up
 - 2.3. Speech material and Data collection
 - 2.4. Segment selection
 - 2.5. Glottal source features
 - 2.6. Likelihood ratio calculation
- 3. Results
- 4. Conclusion
- 5. Future research

Research on twins' voices

Research on twins' voices

Lundström, A. (1948)

Nolan, F. and Oh, T. (1996)

Johnson, K. & Azara, M. (2000)

Loakes, D. (2006)

Whiteside, S.P. & Rixon, E. (2003)

Künzel, H. (2010)

Ryalls, J. et al. (2004)

Weirich, M. (2012)

Kovas, Y. et al. (2005)

CONCLUSIONS

Research on voice quality

Research on voice quality

Nolan, F. (1983) Künzel, H. (1987) Hollien, H. (1990) Baldwin, J. & French, P. (1990) Rose, P. (2002)

Moosmüller, S. (2001) Evans, I. & Foulkes, P. (2009) Czajkowski, A. & Dellwo, W. (2009)

Jessen, M. (1997) Köster, O. & Köster, J-P. (2004) Nolan, F. (2005) Nolan, F. (2007) Wagner, I. (1995)
Farrús, M. et al. (2007)
Gómez-Vilda, P. et al. (2008)
Enzinger, E. et al. (2012)

Speakers

MZ twins	DZ twins	Brothers	Reference population			
6 pairs	4 pairs	2 pairs	8 + 10 = 18 sp.			
		γ				
Male						
31.6 years (mean)						
Castillian Spanish						
No voice pathologies						
	No hearing	difficulties				

Equipment

Countryman E6i
omnidirectional
flat-frequency response

Roland Cakewalk
UA25EX

Adobe ® Audition® CS5.5

- 44.1 kHz frequency sampling
- •16 bit amplitud sampling
- raw PCM wave files

Data collection

Data collection

Morrison, G.S. et al. (2012 in press)

- 2 non-contemporaneous recordings (2-4 weeks)
- 4 tasks:
 - Task 1- Conversation with brother/twin [close friend]
 - semi-structured informal conversation
 - Labovian "danger of death question"
 - Loakes, D. (2006)
 - Task 4- Conversation / Interview with researcher
 - objective: need to remember → hesitation speech
 (e.g. pause fillers)
 - Foulkes, P., Carrol, G. and Hughes, S. (2004) Tschäpe, N. et al. (2005), Cicres, J. (2007)

Speech material: pause fillers (PF)

- Segment selection: "eh" [e]
 - while articulating & between silent pauses

- 160-240 milliseconds
- 557 tokens
- 8.5 tokens per recording session per speaker

Glottal source features

-**Jitter**: ratio between next cycle duration difference and their mean

-Shimmer: ratio between next cycle amplitude difference and their mean

- Biomechanical estimates from the vocal fold body and cover:

- -Dynamic mass
- -Losses
- -Stiffness

version 7.0 March 2012

Likelihood Ratio calculation

- Cross-validated LR
- MVKD (Aitken and Lucy, 2004) Morrison, 2007

$$LR = \frac{p(E|H_{so})}{p(E|H_{do})}$$

- In each comparison, 3 elements:

SUSPECT

OFFENDER

BACKGROUND POPULATION

3. Results

Identical (MZ) Twins

SP	JITTER + SHIMMER	JITTER + SHIMMER + BIOMECH.	BODY (all)	COVER (all)	BODY + COVER
1-2	1.41	2.88	1.33	4.03	2.23
3-4	1.23	23.94	4.72	3.70	18.53
5-6	1.47	99.53	4.68	11.41	68.73
7-8	1.16	6.15	4.03	9.93	5.53
9-10	1.11	80.89	3.39	36.87	88.63
11-12	1.28	0.001	0.011	0.003	0.001

3. Results

Non-identical (DZ) Twins

SP	JITTER + SHIMMER	JITTER + SHIMMER + BIOMECH.	BODY (all)	COVER (all)	BODY + COVER
13-14	0.001	4.59E-42	0.003	3.15E-06	8.69E-21
15-16	1.27	0.07	1.47	2.19	0.78
17-18	1.45	0.17	2.73	0.08	0.18
19-20	1.21	0.92	0.29	2.89	1.34

3. Results

Overall performance

Forensic system: body + cover Cllr = 0.706

Forensic system:
body + cover
+ jitter + shimmer
Cllr = 0.655

4. Conclusion

- Why studying twins?
 - Low incidence but extreme case of similarity (very challenging conditions)
 - Voice quality perspective: biomechanical estimates
- Overall better performance: cover and body parameters
- Performance in twins: variation between pairs.
- Contributions:
 - Method for eliciting pause fillers
 - Avoid the "observer's paradox"
 - Ensure everyday interactional style

5. Future research

- More twins
- Siblings
- Larger reference population
- Other methods for likelihood calculation
- Telephone filter

Acknowledgement

IAFPA

Dr. Joaquim Llisterri

Dr. Juana Gil

Dr. H. Künzel

Dr. G.S.Morrison

Dr. P. Gómez Vilda

Glottal Source Parameters for Forensic Voice Comparison: an Approach to Voice Quality in Twins' Voices

Eugenia San Segundo Fernández Phonetics Laboratory, CSIC, Madrid

THANK YOU FOR YOUR ATTENTION!

International Association for Forensic Phonetics and Acoustics 2012 Annual Conference

7th August 2012 - UIMP Santander

2. Research on Twins' Voices

2.3. Parameters analyzed

Glottal source features:

biomechanical estimates of vocal fold mass, stiffness and unbalance

2. Research on Twins' Voices

