Constructing Pairwise Disjoint Paths with Few Links

Himanshu Gupta¹ and Rephael Wenger²*

 1 Stanford University, Stanford CA 94305 (hgupta@cs.stanford.edu) 2 The Ohio State University, Columbus, OH 43210 (wenger@cis.ohio-state.edu).

Abstract. Let P be a simple polygon and let $\{(u_i, u_i')\}$ be m pairs of distinct vertices of P where for every distinct $i, j \leq m$, there exist pairwise disjoint paths connecting u_i to u_i' and u_j to u_j' . We wish to construct m pairwise disjoint paths in the interior of P connecting u_i to u_i' for $i = 1, \ldots, m$, with minimal total number of line segments. We give an approximation algorithm which in $O(n \log m + M \log m)$ time constructs such a set of paths using O(M) line segments where M is the number of line segments in the optimal solution.

1 Introduction

Let P be a simple polygon and let u and u' be two distinct vertices of P. The $(interior)\ link\ distance$ from u to u' is the minimum number of line segments (also called links) required to connect u to u' by a polygonal path lying in (the interior of) P. The interior link distance from u to u' may differ greatly from the link distance between the two points. (See Figure 1.) A polygonal path which uses the minimum number of required line segments is called a $minimum\ link\ (interior)\ path$. Suri in [11] gave a linear time algorithm for determining the link distance and a minimal link path between two vertices.

Let u_1, u'_1, u_2, u'_2 be four vertices lying in the given order around P. By virtue of the relative locations of these four vertices, there are nonintersecting paths, ζ_1 and ζ_2 , connecting u_1 to u'_1 and u_2 to u'_2 , respectively. However, it is possible that every minimum interior link path connecting u_1 to u'_1 intersects every minimum interior link path connecting u_2 to u'_2 . (See Figure 1.) To simultaneously connect u_1 to u'_1 and u_2 to u'_2 by nonintersecting interior paths requires more line segments. In general, two additional line segments suffice to construct two such nonintersecting interior paths. (See [7].)

A set $\Pi = \{(u_i, u_i')\}, i \leq m$, of m pairs of distinct vertices of P is untangled if some set of pairwise disjoint paths connects each u_i to u_i' . Let $\Pi = \{(u_i, u_i')\}, i \leq m$, be an untangled set of m pairs of distinct vertices of P. Let $l(u_i, u_i')$ be the interior link distance from u to u' and let $L = \sum_{i=1...m} l(u_i, u_i')$ be the sum of those distances. Clearly, L line segments are required to construct a set of pairwise disjoint interior paths connecting u_i to u_i' , for $i = 1, \ldots, m$. How many additional line segments are required? In [7] we proved that $O(m \log m)$

^{*} Supported by NSA grant MDA904-97-1-10019.

Fig. 1. Minimum link paths, minimum link interior paths and intersecting link paths.

additional line segments suffice and claimed without proof that $\Omega(m \log m)$ additional line segments may be required. A proof of the lower bound is provided in [6].

We define the pairwise disjoint link paths problem as: given an untangled set, $\{(u_i, u_i')\}$, of m pairs of distinct vertices of P, find the minimum total number of line segments required by a set of pairwise disjoint interior paths connecting u_i to u_i' . We were unable to give a polynomial time algorithm for this problem or to determine if the problem is NP-complete. Instead we present an algorithm which finds a solution within a constant factor of the optimal solution. Related problems are shown to be NP-complete in [2] and [5], but we do not know if those results can be applied to our problem.

A triangulation T_P of P (possibly with interior vertices) is isomorphic to a triangulation T_Q of Q if there is a one-to-one, onto mapping f between the vertices of T_P and the vertices of T_Q such that p, p', p'' are vertices of a triangle in T_P if and only if f(p), f(p'), f(p'') are vertices of a triangle in T_Q . An isomorphic triangulation of P and Q defines a piecewise linear homeomorphism between P and Q. The size of a triangulation is the total number of vertices, edges and triangles in the triangulation.

Algorithms for constructing isomorphic triangulations and piecewise linear homeomorphisms between simple polygons are also given in [1,8,7]. Algorithms for constructing isomorphic triangulations between labelled point sets are described in [9] and [10]. The main result in this paper improves the output size and running time of the approximation algorithm in [7] from $O(M_1 \log n + n \log^2 n)$ to $O(M_1 \log n)$ where n is the input size and M_1 is the size of the optimal solution. The improvement is described in [6].

2 Approximation Algorithm

We first give a an approximation algorithm for connecting a set of vertices \mathcal{U} by pairwise disjoint interior paths to a distinguished edge e^* of P. We start with some definitions.

Point $p \in P$ is visible from point $p' \in P$ if P contains the open line segment (p, p'). Point p is clearly visible from point $p' \in P$ if the interior of P contains the open line segment (p, p').

Point $p \in P$ is (clearly) visible from edge $e \in P$ if there is some point $p' \in e$ such that p is (clearly) visible from p'. (This definition of visibility is sometimes called weak visibility as opposed to strong visibility where p must be visible from

Fig. 2. \hat{V} is(e) and Γ_{e^*} .

every point $p' \in e$. Throughout this paper, visibility refers to weak visibility.) Edge e or triangle t is (clearly) visible from edge e' or triangle t' if there are points $p \in e$ or $p \in t$ and $p' \in e'$ or $p' \in t'$ such that p is (clearly) visible from p'.

We let $\hat{\text{Vis}}(p)$ and $\hat{\text{Vis}}(e)$ denote the points clearly visible from point p and edge e. (See Figure 2.) Note that $\hat{\text{Vis}}(p)$ and $\hat{\text{Vis}}(e)$ are not necessarily closed sets.

Let u and e be a vertex and an edge of P, respectively. Edge d of triangulation T_P separates u from e if every interior path from u to the interior of e must intersect the interior of d. Triangle t of triangulation T_P separates u from e if every interior path from u to the interior of e must intersect the interior of e.

To construct pairwise disjoint paths connecting the vertices \mathcal{U} to edge e^* of P, we construct a triangulated region Γ_{e^*} which contains and approximates $\hat{\mathrm{Vis}}(e^*)$, the set of points clearly visible from e^* . For each $u_i \in \mathcal{U}$, let d_i be the diagonal of Γ_{e^*} farthest from e^* which separates e^* from u_i . Let s_i be the portion of e^* visible from d_i . Note that s_i is a line segment. (See Figures 2 and 3.)

For each u_i we wish to choose a point p_i on e^* to be the endpoint of the path from u_i to e^* . Obviously, a point in s_i is a good candidate since it can reach d_i with a single line segment. However, we also need to choose the p_i such that their order on e^* is consistent with the order of \mathcal{U} around P. In other words, u_i, u_j, p_j, p_i should lie clockwise or counter-clockwise around P in the given order.

We partition the set of line segments $\{s_i\}$ into groups and associate each such group with a point g_j on e^* which is in the "middle" of the line segments in the groups. If many of the line segments in the group contain g_j , then the corresponding diagonals can be connected to g_j by pairwise disjoint line segments. If few line segments contain g_j , then g_j partitions the line segments into roughly two equals subgroups in e^* with the property that many line segments connecting d_i to s_i from one subgroup intersect many line segments connecting d_j to s_j from the other subgroup. In addition, the order that the points g_j lie on e^* is consistent with the order that the associated vertices of \mathcal{U} lie on the boundary of P. Partitioning the line segments is conceptually and technically the most difficult part of the algorithm.

From all the \hat{V} is (g_j) , we construct another triangulated region $\Gamma \subseteq \Gamma_{e*}$. We recursively connect \mathcal{U} by pairwise disjoint paths to the edges on the boundary of

Fig. 3. Line segments $s_i = \operatorname{int}(e^*) \cap \hat{\operatorname{V}}\operatorname{is}(d_i)$.

 Γ and then connect those boundary edges by pairwise disjoint line segments to Γ . A careful analysis shows that Γ must contain many line segments in any set of pairwise disjoint paths connecting \mathcal{U} to e^* . Thus the number of line segments in our solution is proportional to the number in the optimal solution.

Lemma 1. Let P be a simple polygon on n vertices with distinguished edge $e^* = \{w_0^*, w_1^*\}$ and let \mathcal{U} be a subset of $\operatorname{Vert}(P) \setminus \{w_0^*, w_1^*\}$ of size m. A set of m pairwise disjoint interior paths connecting the vertices in \mathcal{U} to the interior of e^* can be constructed in $O(n \log m + M \log m)$ time using a total of at most 240M line segments where M is the minimum total number of line segments necessary to connect \mathcal{U} to e^* by m pairwise disjoint paths.

Proof. Let u_1, u_2, \ldots, u_m be the points in \mathcal{U} labeled in clockwise order around P starting at e^* . Construct a triangulation T_P of P. Let Γ_{e^*} be union of the triangles of T_P which are clearly visible from edge e^* . The region Γ_{e^*} is a simple polygon in P. (See Figure 2.)

For each $u_i \in \mathcal{U}$, let d_i be the diagonal of Γ_{e^*} farthest from e^* which separates e^* from u_i . Let s_i be $\operatorname{int}(e^*) \cap \hat{\operatorname{Vis}}(d_i)$, the interior of e^* which is clearly visible from s_i . Set s_i is an open line segment lying on e^* . Note that s_i may equal s_j (and d_i may equal d_j) for many distinct points $u_i, u_j \in \mathcal{U}$. (See Figure 3.)

Let S be any set of open line segments in \mathbf{R}^1 , not necessarily distinct. For each point $q \in \mathbf{R}^1$, let f(q, S) be the number of line segments of S which contain the point q. The line segments of S are open and do not contain their endpoints. Let $f^-(q, S)$ and $f^+(q, S)$ be the number of line segments of S contained in the open intervals $(-\infty, q)$ and (q, ∞) , respectively. Note that $f(q, S) + f^-(q, S) + f^+(q, S)$ equals |S|.

Let \mathcal{R} be the set of midpoints of line segments of \mathcal{S} , again not necessarily distinct. The median point of \mathcal{R} is the $\lceil |\mathcal{R}|/2 \rceil$ 'th point in \mathcal{R} , ordered from $-\infty$ to ∞ . Let $g(\mathcal{S})$ be this median point of \mathcal{R} . At least $|\mathcal{R}|/2 = |\mathcal{S}|/2$ points of \mathcal{R} lie in each of the closed intervals $(-\infty, g(\mathcal{S})]$ and $[g(\mathcal{S}), \infty)$. If the midpoint of segment $s \in \mathcal{S}$ lies in $(-\infty, g(\mathcal{S})]$, then segment s either contains $g(\mathcal{S})$ or lies in the open interval $(-\infty, g(\mathcal{S}))$. Thus $f(g(\mathcal{S}), \mathcal{S}) + f^-(g(\mathcal{S}), \mathcal{S})$ is greater than or equal to $\lceil |\mathcal{S}|/2 \rceil$. Similarly $f(g(\mathcal{S}), \mathcal{S}) + f^+(g(\mathcal{S}), \mathcal{S})$ is greater than or equal to $\lceil |\mathcal{S}|/2 \rceil$. (See Figure 4.)

$$f(g(S), S) = 2, f^{-}(g(S), S) = 3, f^{+}(g(S), S) = 2.$$

Fig. 4. \mathcal{S} , $g(\mathcal{S})$ and $f(g(\mathcal{S}), \mathcal{S})$.

Now consider two sets of line segments S_0 and S_1 on \mathbb{R}^1 and let $S = S_0 \cup S_1$. Define

$$\mathcal{F}(\mathcal{S}_0, \mathcal{S}_1) = f(g(\mathcal{S}), \mathcal{S}) + f^+(g(\mathcal{S}), \mathcal{S}_0) + f^-(g(\mathcal{S}), \mathcal{S}_1).$$

Without loss of generality, assume that w_0^* , e^* , w_1^* appear in counter-clockwise order around P. Let $\mathcal{S}_{\mathcal{U}}$ be the sequence (s_1, s_2, \ldots, s_m) . Embed e^* and the line segments $s_i \in \mathcal{S}$ in the real line \mathbb{R}^1 , mapping w_0^* to zero and w_1^* to one. In the next section, we describe an algorithm to partition $\mathcal{S}_{\mathcal{U}}$ into contiguous subsequences $\sigma_1 = (s_1, s_2, \dots, s_{i_1}), \ \sigma_2 = (s_{i_1+1}, s_{i_1+2}, \dots, s_{i_2}), \dots,$ $\sigma_{2h} = (s_{i_{2h-1}+1}, s_{i_{2h-1}+2}, \dots, s_m),$ such that:

- 1. $g(\sigma_1 \cup \sigma_2) \leq g(\sigma_3 \cup \sigma_4) \leq \cdots \leq g(\sigma_{2h-1} \cup \sigma_{2h});$ 2. $|\sigma_{2j-1}| = |\sigma_{2j}| \ (+1) \text{ for } 1 \leq j \leq h;$ 3. $\sum_{j=1..h} \mathcal{F}(\sigma_{2j-1}, \sigma_{2j}) \geq m/40.$

(One possible partition of the segments in Figure 3 is $\sigma_1 = \{s_1, s_2, s_3\},\$ $\sigma_2 = \{s_4, s_5\}, \, \sigma_3 = \{s_6\}, \, \sigma_4 = \{s_7\}.$

Let g_j equal $g(\sigma_{2j-1} \cup \sigma_{2j})$ for j = 1, ..., h. Note that $g_1, g_2, ..., g_h$ lie in counter-clockwise order around P. Let $\mathcal{U}_j = \{u_i : s_i \in \sigma_j\}$ be the points in \mathcal{U} corresponding to the line segments in σ_j for $j=1,\ldots,h$. For each g_j , let Γ_j be the union of the triangles of T_P which intersect $\hat{V}is(g_i)$ and separate some $u \in \mathcal{U}_{2j-1} \cup \mathcal{U}_{2j}$ from e^* . (See Figure 5.) Let Γ be the union of all the Γ_j . Similar to Γ_{e^*} , the region Γ is also a simple polygon in P, its boundary is composed of edges and chords of P, and it has a triangulation T_{\star} induced by the triangulation T_P of P.

Let \mathcal{C} be the set of chords of P bounding Γ . Each chord $c \in \mathcal{C}$ separates Pinto two subpolygons. Let P_c be the subpolygon not containing Γ . Let w_0^c and w_1^c be the endpoints of c. For each chord $c \in \mathcal{C}$, let \mathcal{U}_c be the points of $\mathcal{U} \setminus \{w_0^c, w_1^c\}$ in P_c . Recursively, construct pairwise disjoint paths connecting the points in \mathcal{U}_c to c. (See Figure 6.)

For each $u_i \in \mathcal{U}$, let d_i be the diagonal of Γ farthest from e^* which separates e^* from u_i . Choose the minimum j such that d_i is a diagonal of Γ_i . Connect d_i to g_i by a line segment λ_i in the interior of P. (See Figure 7.) Diagonal d_i may also separate other vertices of \mathcal{U} from e^* and there may be many line segments which intersect d_i . The line segments λ_i should be chosen so that their order along d_i corresponds to the order of the vertices around P. The choice of d_i

Fig. 5. Γ_1 and Γ_2 .

Fig. 6. Γ , triangulation T_{\star} and paths to the boundary of Γ .

Fig. 7. Diagonals \tilde{d}_i , line segments λ_i and paths connecting \mathcal{U} to e^* .

and the associated point g_j ensures that line segments λ_i intersect only at their endpoints. (See [6].)

For each point $u_i \in \mathcal{U}(c)$, let $\pi_0(u_i)$ be the endpoint on c of the path connecting u_i to c. For each point $u_i \in \mathcal{U}$ which lies in Γ , let $\pi_0(u_i)$ equal u_i . Let $\pi_1(u_i)$ be the endpoint of λ_i on \tilde{d}_i . Let $\pi_2(u_i)$ be the first intersection point of λ_i and the triangle containing e^* . Place m points equally spaced on e^* . Let $\pi_3(u_i)$ be the i'th point, ordered counter-clockwise from w_0^* . Connect $\pi_0(u_i)$ to e^* with a polygonal line through $\pi_0(u_i)$, $\pi_1(u_i)$, $\pi_2(u_i)$, $\pi_3(u_i)$. (See Figure 7.)

We claim that this algorithm connects \mathcal{U} to e^* using O(M) links where M is the number of links in some optimal solution. For each $u_i \in \mathcal{U}$, let ζ_i be the path constructed from u_i to e^* by our algorithm while η_i is the path from u_i to e^* in the optimal solution. Path ζ_i has at most three line segments in Γ . Line segment s_i is in $\sigma_{2j-1} \cup \sigma_{2j}$ for some j. If s_i contains g_j , then some point on

diagonal d_i is clearly visible from g_j and d_i is a diagonal of $\Gamma_j \subseteq \Gamma$. Since d_i is the farthest diagonal visible from e^* which separates u_i from e^* , any path from u_i to e^* must have at least one line segment contained in $\Gamma_j \subseteq \Gamma$. Thus if s_i contains g_j , then we can charge the three links of ζ_i in Γ to a line segment of η_i in Γ . However, s_i may not contain g_j .

Consider the case where $s_i \in \sigma_{2j-1}$ lies between g_j and w_1^* while $s_{i'} \in \sigma_{2j}$ lies between w_0^* and g_j . Any two paths from u_i to s_i and $u_{i'}$ to $s_{i'}$ must intersect. Since paths η_i and $\eta_{i'}$ are pairwise disjoint, either the endpoint of η_i must lie between w_0^* and g_j or the endpoint of $\eta_{i'}$ must lie between g_j and w_1^* . Without loss of generality, assume that the endpoint ρ of η_i lies between w_0^* and g_j . In that case, g_j lies between ρ and s_i . Let d be the farthest diagonal of P visible from ρ and separating ρ from u_i . By the construction of d_i and s_i , diagonal d separates d_i from e^* and hence is visible to s_i . Since g_j lies between ρ and s_i , diagonal d is also visible to g_j and is contained in $\Gamma_j \subseteq \Gamma$. Thus if ρ lies between w_0^* and g_j , path η_i must have at least one line segment contained in $\Gamma_j \subseteq \Gamma$. Similarly, if the endpoint of $\eta_{i'}$ lies between g_j and w_1^* , path $\eta_{i'}$ must have at least one line segment contained in $\Gamma_j \subseteq \Gamma$. It follows that either η_i or $\eta_{i'}$ must have a line segment contained in $\Gamma_j \subseteq \Gamma$.

Let m_0, m_-, m_+ equal $f(g_j, \sigma_{2j-1}), f^-(g_j, \sigma_{2j-1})$ and $f^+(g_j, \sigma_{2j-1})$, respectively, while m'_0, m'_-, m'_+ equal $f(g_j, \sigma_{2j}), f^-(g_j, \sigma_{2j})$ and $f^+(g_j, \sigma_{2j})$, respectively. By the arguments above, the paths connecting the points in $\mathcal{U}_{2j-1} \cup \mathcal{U}_{2j}$ to e^* in the optimal solution must have at least $m_0 + m'_0 + \min(m_+, m'_-)$ line segments contained in Γ . By the choice of point $g_j, m_0 + m_- + m'_0 + m'_- \geq |\sigma_{2j-1}| \cup \sigma_{2j}|/2$. Since $|\sigma_{2j-1}|$ equals $|\sigma_{2j}|$ or $|\sigma_{2j-1}|+1, m_0+m_-+m'_0+m'_- \geq |\sigma_{2j-1}|$. On the other hand, $m_0 + m_- + m_+ = |\sigma_{2j-1}|$. Subtracting the second equation from the first gives $m'_0 + m'_- \geq m_+$. Thus

$$m_0 + m'_0 + \min(m_+, m'_-) = \min(m_0 + m'_0 + m_+, m_0 + m'_0 + m'_-)$$

 $\geq \min(m_0 + m'_0 + m_+, m_0 + m_+)$
 $= m_0 + m_+$

Similarly, $m_0 + m_+ \ge m'_-$ and $m_0 + m'_0 + \min(m_+, m'_-) \ge m'_0 + m'_-$. Thus

$$m_0 + m_0' + \min(m_+, m_-') \ge \max(m_0 + m_+, m_0' + m_-') \ge \mathcal{F}(g_j, \sigma_{2j-1}, \sigma_{2j})/2.$$

The paths connecting the points in $\mathcal{U}_{2j-1} \cup \mathcal{U}_{2j}$ to e^* in the optimal solution must have at least $\mathcal{F}(g_j, \sigma_{2j-1}, \sigma_{2j})/2$ line segments in Γ . Since $\sum_{j=1...h} \mathcal{F}(\sigma_{2j-1}, \sigma_{2j}) \geq m/40$, any pairwise disjoint paths connecting the points in \mathcal{U} to e^* must have at least m/80 line segments contained in Γ . The construction produces at most 3m line segments in Γ , so the solution is at most 240 times the optimal.

Finally, we discuss the running time of our algorithm. Constructing the initial triangulation T_P takes O(n) time [3]. As discussed in the next section, partitioning $\mathcal{S}_{\mathcal{U}}$ into the subsequences σ_j takes $O(m \log m)$ time. Constructing Γ_{e^*} takes $O(n^*)$ time where n^* is the number of triangles of T_P intersected by \hat{V} is (e^*) [4]. All the other steps in the algorithm can be done in $O(n^* + m)$ time. Thus the

```
PARTITION(S)
/* S = a sequence of line segments (s_1, s_2, \ldots, s_m) */
/* Returns a linked list of contiguous subsequences of {\cal S} */
1. Initialize linked list \mathcal{A} to \emptyset;
2. FOR i = 1 TO m DO
3.
           Create new node a where a.seq = (s_i) and a.size = 1;
           Add a to the end of linked list A;
4.
5. WHILE \exists a \in \mathcal{A} \text{ such that } g(a.seq) > g(a.next.seq) \text{ DO}
6.
           Merge a and a.next to form a new node a' in A:
7.
           BALANCE-NEXT(a');
           BALANCE-PREV(a');
8.
9. Return(\mathcal{A}).
```

Fig. 8. Algorithm PARTITION.

non-recursive steps in this algorithm take $O(n^* + m \log m)$ time. A careful accounting for the recursive steps gives the desired $O(n \log m + M \log m)$ bound. Details appear in [6].

Using arguments similar to those given in [7], the previous algorithm can be turned into an algorithm for connecting an untangled set of m pairs of vertices of P. The algorithm and its analysis is provided in [6].

Theorem 2. Let P be a simple polygon on n vertices let $\Pi = \{(u, u')\}$ be an untangled set of m pairs of distinct vertices of P. A set of m pairwise disjoint interior paths connecting u to u' for each $(u, u') \in \Pi$ can be constructed in $O(n \log m + M \log m)$ time using O(M) line segments where M is the minimum total number of line segments necessary to connect all pairs $(s, s') \in \Pi$ by pairwise disjoint paths.

3 Partition Algorithm

In this section, we describe and analyze the algorithm for partitioning a sequence of line segments. The functions f, f^+ , f^- and \mathcal{F} were defined in the previous section.

Lemma 3. Let S be a sequence of line segments (s_1, s_2, \ldots, s_m) on the real line \mathbf{R}^1 . In $O(m \log m)$ time, S can be partitioned into contiguous subsequences $\sigma_1 = (s_1, s_2, \ldots, s_{i_1})$, $\sigma_2 = (s_{i_1+1}, s_{i_1+2}, \ldots, s_{i_2}), \ldots, \sigma_{2h} = (s_{i_{2h-1}+1}, s_{i_{2h-1}+2}, \ldots, s_m)$, such that:

```
1. g(\sigma_1 \cup \sigma_2) \leq g(\sigma_3 \cup \sigma_4) \leq \cdots \leq g(\sigma_{2h-1} \cup \sigma_{2h});

2. |\sigma_{2j-1}| = |\sigma_{2j}| \ (+1) \ for \ 1 \leq j \leq h;

3. \sum_{j=1..h} \mathcal{F}(\sigma_{2j-1}, \sigma_{2j}) \geq m/40.
```

Proof (outline). Split S into m distinct subsequences, (s_i) , consisting of one element each. Store the m subsequences in a linked list A in the order they appear in S. Each node $a \in A$ contains a subsequence a.seq. Call A balanced if the size of each subsequence is at most three times the size of any adjacent subsequence in A.

While \mathcal{A} contains two adjacent subsequences, a.seq followed by a.next.seq, such that g(a.seq) > g(a.next.seq), merge the subsequences a.seq and a'.seq. After each merge of two such subsequences, rebalance list \mathcal{A} by merging adjacent subsequences, as necessary. Figure 8 contains the main algorithm. A complete description of the subroutines BALANCE-NEXT and BALANCE-PREV is provided in [6].

Let a_j be the j'th node in \mathcal{A} when the algorithm is completed. Partition $a_j.seq = (s_i, \ldots, s_{i'})$ into two approximately equal sized sequences $\sigma_{2j-1} = (s_i, \ldots, s_{\lceil (i+i')/2 \rceil})$ and $\sigma_{2j} = (s_{\lceil (i+i')/2 \rceil+1}, \ldots, s_{i'})$. We claim that this is a partitioning of \mathcal{S} with the desired properties. Initially, the s_j are stored in \mathcal{A} in sorted order. The merging and splitting steps in the main algorithm and in the subroutines BALANCE-NEXT and BALANCE-PREV preserve the order of the s_i , so the σ_i properly partition \mathcal{S} into contiguous subsequences.

Let g_j be $g(a_j.seq) = g(\sigma_{2j-1} \cup \sigma_{2j})$. The while loop only terminates when $g_1 \leq g_2 \leq \cdots \leq g_h$, so property 1 is clearly satisfied. Sets σ_{2j-1} and σ_{2j} are created by partitioning $a_j.seq$ into two equal sized sequences, so property 2 is satisfied

To show property 3 holds, note that a_j could be an initial node or it could be created when g(a.seq) > g(a.next.seq) or it could be created in the rebalancing procedure.

If a_j is an initial node, then $a_j.seq = \{s\}$ for some $s \in \mathcal{S}$ and $\sigma_{2j-1} = \{s\}$ and $\sigma_{2j} = \emptyset$. Point g_j is the midpoint of s and $\mathcal{F}(\sigma_{2j-1}, \sigma_{2j}) \geq 1 \geq (1/8)|a_j|$.

Assume a_j is created when g(a.seq) is greater than g(a.next.seq) and that $|a.next| \ge |a|$. The sequence a.seq is a subsequence of σ_{2j-1} , so

$$f(g_j, \sigma_{2j-1}) \ge f(g_j, a.seq)$$
 and $f^+(g_j, \sigma_{2j-1}) \ge f^+(g_j, a.seq)$.

The point $g_j = g(a_j.seq)$ must lie between a.g and a.next.g, so

$$f(g_j, a.seq) + f^+(g_j, a.seq) \ge f(g(a.seq), a.seq) + f^+(g(a.seq), a.seq) > |a|/2.$$

Since $|a.next| \leq 3|a|$, we have $|a_j| \leq 4|a|$. Thus,

$$\mathcal{F}(\sigma_{2j-1}, \sigma_{2j}) \ge f(g_j, \sigma_{2j-1}) + f^+(g_j, \sigma_{2j-1}) \ge (1/8)|a_j|.$$

In the case that |a.next| < |a|, similar reasoning gives

$$\mathcal{F}(\sigma_{2j-1}, \sigma_{2j}) \ge f(g_j, \sigma_{2j}) + f^-(g_j, \sigma_{2j}) \ge (1/8)|a_j|.$$

Finally, if a_j is created in the rebalancing step, $\mathcal{F}(\sigma_{2j-1}, \sigma_{2j})$ may not have the desired lower bound. However, at most (4/5)m line segments lie in nodes

created in the rebalancing step. By counting the m/5 line segments which are not in a rebalanced node, we find $\sum_{i=1..k} \mathcal{F}(\sigma_{2j-1}, \sigma_{2j}) \geq m/40$.

A complete description and analysis of the algorithm, its correctness and $O(m \log m)$ running time appears in [6].

References

- 1. Aronov, B., Seidel, R., and Souvaine, D. On compatible triangulations of simple polygons. *Comput. Geom. Theory Appl. 3*, 1 (1993), 27–35.
- BASTERT, O., AND FECKETE, S. Geometrische verdrahtungsprobleme. Technical Report 96.247, Angewandte Mathematik und Informatik, Universität zu Köln, Köln, Germany, 1996.
- 3. Chazelle, B. Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6 (1991), 485-524.
- 4. Guibas, L. J., Hershberger, J., Leven, D., Sharir, M., and Tarjan, R. E. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. *Algorithmica 2* (1987), 209–233.
- Guibas, L. J., Hershberger, J. E., Mitchell, J. S. B., and Snoeyink, J. S. Approximating polygons and subdivisions with minimum link paths. *Internat. J. Comput. Geom. Appl. 3*, 4 (Dec. 1993), 383–415.
- GUPTA, H., AND WENGER, R. Constructing pairwise disjoint paths with few links. Technical Report OSU-CISRC-2/97-TR16, The Ohio State University, Columbus, Ohio, 1997.
- GUPTA, H., AND WENGER, R. Constructing piecewise linear homeomorphisms of simple polygons. J. Algorithms 22 (1997), 142-157.
- 8. Kranakis, E., and Urrutia, J. Isomorphic triangulations with small number of Steiner points. In *Proc. 7th Canad. Conf. Comput. Geom.* (1995), pp. 291–296.
- SAALFELD, A. Joint triangulations and triangulation maps. In Proc. 3rd Annu. ACM Sympos. Comput. Geom. (1987), pp. 195-204.
- SOUVAINE, D., AND WENGER, R. Constructing piecewise linear homeomorphisms. Technical Report 94–52, DIMACS, New Brunswick, New Jersey, 1994.
- 11. Suri, S. A linear time algorithm for minimum link paths inside a simple polygon. Comput. Vision Graph. Image Process. 35 (1986), 99-110.