

Lösungen der Fingerübungen

1. Berechnen Sie die folgenden Potenz- und Wurzelterme ohne Verwendung des Taschenrechners:

a)
$$\sqrt[4]{0,0001} = \sqrt[4]{0,1^4} = 0,1$$

b)
$$\sqrt{(-1)^2} = \sqrt{1} = 1$$

c)
$$8^{\frac{2}{3}} = (\sqrt[3]{2^3})^2 = 2^2 = 4$$

d)
$$8^{-\frac{2}{10}}: (\sqrt[5]{0,25})^{-1} = \frac{8^{-\frac{1}{5}}}{0.25^{-\frac{1}{5}}} = (\frac{8}{0,25})^{-\frac{1}{5}} = (\sqrt[5]{32})^{-1} = 2^{-1} = \frac{1}{2}$$

e)
$$(\sqrt{u+v} + \sqrt{u-v}) \cdot (\sqrt{u-v} - \sqrt{v+u}) = (\sqrt{u-v})^2 - (\sqrt{u+v})^2 = u - v - u - v = -2v$$

f)
$$\sqrt[3]{80x^4} - 2x\sqrt[6]{100x^2} = \sqrt[3]{8x^3 \cdot 10x} - 2x(10^2x^2)^{\frac{1}{6}} = 2x\sqrt[3]{10x} - 2x((10^2x^2)^{\frac{1}{2}})^{\frac{1}{3}} = 2x\sqrt[3]{10x} - 2x\sqrt[3]{10x} = 0$$

2. Vereinfachen Sie, wenn möglich, für positive reelle Zahlen a, b, r, s, t, x und y.

a)
$$\sqrt{t\sqrt{t\sqrt{t}}} = (t(t(t)^{\frac{1}{2}})^{\frac{1}{2}})^{\frac{1}{2}} = (t(t^{\frac{1}{2}}t^{\frac{1}{4}}))^{\frac{1}{2}} = (tt^{\frac{3}{4}})^{\frac{1}{2}} = t^{\frac{1}{2}}t^{\frac{3}{8}} = t^{\frac{7}{8}}$$

b) $\sqrt{a^2(b+4)+b^2(a+4)}$ kann nicht weiter vereinfacht werden, da die Summe nicht faktorisiert werden kann und man aus Summen keine teilweisen Wurzeln ziehen kann.

c)
$$\sqrt[4]{x^3\sqrt[3]{x^2\sqrt{x}}} = (x^3(x^2x^{\frac{1}{2}})^{\frac{1}{3}})^{\frac{1}{4}} = (x^3x^{\frac{2}{3}}x^{\frac{1}{6}})^{\frac{1}{4}} = (x^3x^{\frac{5}{6}})^{\frac{1}{4}} = x^{\frac{3}{4}}x^{\frac{5}{24}} = x^{\frac{23}{24}}$$

d)
$$\sqrt{xy^3} \cdot \sqrt{\frac{8}{y^2}} - 2\sqrt{x} = \sqrt{4 \cdot 2xy} - 2\sqrt{x} = 2\sqrt{x} \cdot (\sqrt{2y} - 1)$$

e)
$$\frac{\sqrt{(x^2-1)(x-1)}}{\sqrt{x+1}} = \frac{\sqrt{(x+1)(x-1)(x-1)}}{\sqrt{x+1}} = \sqrt{(x-1)^2} = \begin{cases} x-1 \text{ für } x \ge 1 \\ -(x-1) \text{ für } x < 1 \end{cases}$$
$$= |x-1|$$

$$\text{f)} \ \ \frac{\sqrt[4]{r^2(r^2+s)+s^2+r^2s}}{\sqrt{4s+4r^2}} = \frac{\sqrt[4]{(r^2+s)^2}}{\sqrt{4(r^2+s)}} = \frac{\sqrt{r^2+s}}{2\sqrt{r^2+s}} = \frac{1}{2}$$

3. Entfernen Sie die Wurzelterme aus dem Nenner und vereinfachen Sie so weit wie möglich.

a)
$$\frac{2}{\sqrt{2}} = \frac{2\sqrt{2}}{\sqrt{2}^2} = \sqrt{2}$$

b)
$$\frac{1}{\sqrt[3]{2}} = \frac{\sqrt[3]{2}^2}{\sqrt[3]{2}^3} = \frac{\sqrt[3]{4}}{2}$$

c)
$$\frac{\sqrt{x} - \sqrt{y}}{\sqrt{xy}} = \frac{(\sqrt{x} - \sqrt{y})\sqrt{xy}}{\sqrt{xy}^2} = \frac{\sqrt{x^2y} - \sqrt{xy^2}}{xy} = \frac{x\sqrt{y}}{xy} - \frac{\sqrt{x}y}{xy} = \frac{\sqrt{y}}{y} - \frac{\sqrt{x}}{x}$$

d)
$$\frac{a-b}{\sqrt{a}-\sqrt{b}} = \frac{(a-b)(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})} = \frac{(a-b)(\sqrt{a}+\sqrt{b})}{a-b} = \sqrt{a}+\sqrt{b}$$

e)
$$-\frac{1-x}{\sqrt{x}-1} = \frac{(x-1)(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)} = \frac{(x-1)(\sqrt{x}+1)}{x-1} = \sqrt{x}+1$$

4. Bestimmen Sie die maximalen Definitionsmengen der folgenden Ausdrücke und bedenken Sie hierbei die Definition der Definition der rationalen Potenzen aus der Vorlesung.

Vorüberlegung: Es ist aus der Vorlesung bekannt, dass Brüche definiert sind, solange ihr Nenner nicht Null wird. Das heißt für einen Bruch $\frac{a}{b}$ gibt es eine Definitionslücke bei b=0 und er ist damit definiert auf $\mathbb{R}\setminus\{0\}$. Rationale Potenzen $a^{\frac{p}{q}}$ sind laut Vorlesung definiert für a>0 und zusätzlich für a=0, wenn $\frac{p}{q}>0$.

- a) $\frac{x}{3-x}$ hat eine Definitionslücke bei $3-x=0 \Leftrightarrow x=3$. Also ist die Definitionsmenge $D=\mathbb{R}\setminus\{3\}$.
- b) $(x+1)^{\frac{3}{4}}$ ist definiert, wenn $x+1 \ge 0 \Leftrightarrow x \ge -1$, da $\frac{3}{4} > 0$. Damit ist die Definitionsmenge $D = \{x \in \mathbb{R} : x \ge -1\}$.
- c) $\frac{1-x}{\sqrt[3]{x}+2}$ ist definiert, wenn $\sqrt[3]{x}$ definiert und ungleich -2 ist. Da Wurzeln nur für nichtnegative Zahlen definiert sind, ist der Definitionsbereich somit $D=\{x\in\mathbb{R}:x\geq 0\}.$
- d) $\frac{1}{\sqrt[5]{(1-2x)^2}}$ hat den Definitionsbereich $\mathbb{R}\setminus\{\frac{1}{2}\}$, da $(1-2x)^2\geq 0$ mit Gleichheit genau bei $x=\frac{1}{2}$.
- e) $(\sqrt[p]{-x})^2 = (-x)^{\frac{2}{p}}$ hat den Definitionsbereich $D = \{x \in \mathbb{R} : x \leq 0\}$ für p > 0 und $D = \{x \in \mathbb{R} : x < 0\}$ für p < 0, nach der Definition ratinaler Potenzen. Für p = 0 ist der Ausdruck gar nicht definiert. Für $p = \frac{1}{n}$ mit $n \in \mathbb{Z} \setminus \{0\}$ lässt sich der Definitionsbereich durch die Definition für ganzzahlige Potenzen auf $\mathbb{R} \setminus \{0\}$ für p < 0 bzw. \mathbb{R} für p > 0 erweitern.
- f) $\frac{2}{2-\sqrt[3]{x+3}}$ hat eine Definitionslücke bei $2-\sqrt[3]{x+3}=0 \Leftrightarrow x=5$ und die Wurzel ist nur für $x\geq -3$ definiert. Somit ergibt sich der Definitionsbereich zu $D=\{x\in\mathbb{R}:x\geq -3\wedge x\neq 5\}.$