

Year 12 Chemistry

Organic Chemistry Test 2020

Time allowed: 45 minutes

Name:

Teacher: MXC KLW CEM

NMO

Mark =/46

SECTION 1 MULTIPLE CHOICE 10 marks

- 1. Which of the following organic compounds would be the most soluble in water?
 - A. Butane
 - B. Butan-1-ol
 - C. Butanoic acid
 - D. Butyl butanoate
- 2. Which of the following lists the compounds in order of increasing boiling point?
 - A. propanamide < propan-1-ol < propanamine < propane
 - B. propane < propanamine < propan-1-ol < propanamide
 - C. propane < propan-1-ol < propanamine < propanamide
 - D. propane < propanamide < propan-1-ol < propanamine
- 3. The properties of three organic compounds X, Y and Z are described below.
 - X and Y react together in the presence of concentrated sulfuric acid to produce a sweet smelling liquid.
 - X and Z are isomers of each other.
 - When added to acidified potassium permanganate, X produces a colour change but Y and Z do not.

Select the option in the table that correctly identifies X, Y and Z.

	х	Y	Z
Α	Butan-1-ol	Butanoic acid	Butan-2-ol
В	Butanoic acid	Ethanol	Methyl propan-2-ol
С	Propan-1-ol	Ethanol	Propan-2-ol
D	Butan-1-ol	Ethanoic acid	Methyl propan-2-ol

- 4. Which of the following pairs have the same empirical formulae?
 - A. ethyl ethanoate and ethanal
 - B. propanone and ethanol
 - C. ethanoic acid and ethanol
 - D. methyl methanoate and propanone

CCGS Chemistry 2020

5. Which functional groups are present in the following molecule?

- A. two primary amines, ester, ketone, alkene
- B. amide, ester, alkene, primary amine
- C. two primary amines, two ketones, alkene
- D. amide, ketone, alkene, primary amine
- 6. Which two compounds can be distinguished by the addition of acidified potassium dichromate?
 - A. ethanoic acid and propan-1-ol
 - B. butan-2-ol and butan-1-ol
 - C. propanone and methyl propan-2-ol
 - D. ethanol and ethanal
- 7. The following ester is hydrolysed in the presence of sodium hydroxide.

Which of the following correctly lists the two products of this hydrolysis reaction?

- A. methanol and sodium propanoate
- B. propan-2-ol and methanoic acid
- C. propan-2-ol and sodium methanoate
- D. propan-1-ol and methanoic acid

CCGS Chemistry 2020

- 8. Which of the following compound(s) could react to form a polyester?
 - A. HOOC(CH₂)₅OH
 - B. HO(CH₂)₅CH₃ and CH₃(CH₂)₃CH₂COOH
 - C. $H_2N(CH_2)_5NH_2$ and $HOOC(CH_2)_3COOH$
 - D. CH₃(CH₂)₅COOH and HO(CH₂)₈OH
- 9. A polymer is formed from the following two monomers, with molecular weights of 104 and 76 gmol⁻¹ respectively. Determine the molecular weight of the polymer if it contains 50 recurring units.

$$H_2$$
 H_2 H_2 H_3 H_4 H_5 H_5 H_5 H_5 H_5 H_5 H_6 H_7 H_8

- A. 8100 gmol⁻¹
- B. 9000 gmol⁻¹
- C. 8118 gmol⁻¹
- D. 8982 gmol⁻¹
- 10. Examine this section of the structure of an addition polymer:

Which one of the following compounds could polymerise to form this chain?

- A. *cis* 1-chloropropene
- B. 2-chloropropene
- C. 3-chloropropene
- D. 2-chlorobut-1-ene

SECTION 2 SHORT ANSWERS 36 marks

Question 11 8 marks

Draw the full structural formulae and name the following compounds, showing **ALL** bonds and atoms:

Description	Structure
The product of the reaction between <i>cis</i> but-2-ene and bromine water.	Name: Structure:
A compound that has an empirical formula of C ₂ H ₄ O and produces a colourless, odourless gas when added to Mg (s).	Name: Structure:
The main organic product formed from the reaction between methanol and excess acidified potassium permanganate.	Name: Structure:
An isomer of pentan-2-ol that has a lower boiling point.	Name: Structure:

Quest	ion 12		4 marks
	Write a	a chemical equation/s to show how the following products can be me relevant catalysts.	nade.
	(a)	sodium propoxide (CH ₃ CH ₂ CH ₂ ONa)	2 marks
	(b)	methyl ethanoate	2 marks

Question 13	7 marks

Ethanol, pentan-1-ol and ethyl pentanoate all have differing boiling points and solubilities in water.

a)	interactions and dispersion forces with each other. However, pentan-1-ol (280°C	
	a higher boiling point than ethanol (78°C). Explain why.	3 marks
b)	Ethanol and pentan-1-ol are both soluble in water, however ethyl pentanoate is	not.
	Explain why ethyl pentanoate is insoluble in water.	4 marks
		4 marks

Question 14	8 marks
$8.00~g$ of ethanol (M = $46.068~g$ mol ⁻¹) and $8.00~g$ of propanoic acid mixed together. $1.00~m$ L of concentrated H_2SO_4 was added and th minutes. The reaction was stopped by the addition of water.	
a) Draw the major organic product formed.	1 mark
b) 8.25 g of the product was collected using a separating funr the reaction.	nel. Determine the yield of 5 marks
c) Give one reason why the yield is not closer to 100%. Expla	in. 2 marks

Question 15 9 marks

An unknown hydrocarbon, Compound X, contains 32.00 % by mass carbon, 6.71 % by mass hydrogen, as well as oxygen and nitrogen.

A 2.07 g sample of the hydrocarbon was treated to convert all the nitrogen to ammonia, producing a 250 mL solution. 20.00 mL aliquots of this ammonia solution were then titrated against 0.120 molL⁻¹ hydrochloric acid, and an average titre volume of 18.42 mL recorded.

a)	Use the information provided above to determine the empirical formula of Compo X.	ound 6 marks
		_

Note that if you were not able to determine an answer in part a), you may use $C_3H_7NO_2$ as the empirical formula of Compound X to answer parts b) and c). Compound X c) Draw the polymer that can be formed from compound X. Include at least two repeating units. 2 marks	b)	Given that compound X is capable of reacting with itself to form a condensation polymer, draw a possible structure for X .	1 mark
c) Draw the polymer that can be formed from compound X. Include at least two			
c) Draw the polymer that can be formed from compound X. Include at least two			
	Com	oound X	
	c)		2 marks

END OF TEST