Prelim 2 for BTRY6010/ILRST6100

November 2, 2017: 7:30pm-9:30pm

Name:
NetID:
Lab: (circle one)
Lab 402: Tues 1:25PM - 2:40PM
Lab 403: Tues 2:55PM - 4:10PM
Lab 404: Wed 2:55PM - 4:10PM
Lab 405: Tues 7:30PM - 8:45PM
Score: / 60
Instructions
1. Please do not turn to next page until instructed to do so.
2. You have 120 minutes to complete this exam.
3. The last page of this exam has some useful formulas.
4. No textbook, calculators, phone, computer, notes, etc. allowed (please keep your phones off or do not bring them to the exam).
5. Please answer questions in the spaces provided.
6. When asked to calculate a number, it is sufficient to write out the full expression in numbers or code without actually calculating the value. E.g., $\frac{1+3\times\frac{4}{7}}{3+0.7}$ or 1 - pnorm(3)^2 are valid answers.
7. Please read the following statement and sign before beginning the exam.

Academic Integrity

I,, certify that this work is	entirely my own. I will not look at any of my peers'
answers or communicate in any way with my peers.	I will not use any resource other than a pen/pencil. I
will behave honorably in all ways and in accordance v	with Cornell's Code of Academic Integrity.
Signature:	Date:

For each problem in this section, please circle one of the following answers. No justification is required.

- 1. [2 points] Your waiting time to catch a bus to campus on a weekday is distributed uniformly between 5 minutes and 10 minutes. The average waiting time over 5 days is a random variable with mean
 - (a) 7.5 minutes.
 - (b) more than 7.5 minutes.
 - (c) less than 7.5 minutes.
 - (d) Not enough information to conclude any of the above.
- 2. [2 points] Your waiting times to catch a bus to campus on a weekday has a standard deviation of 1.4 minutes. The average waiting time over 5 days is a random variable with a standard deviation of
 - (a) less than 1.4 minutes.
 - (b) more than 1.4 minutes.
 - (c) 1.4 minutes.
 - (d) Not enough information to conclude any of the above.
- 3. [2 points] Rainfall in Ithaca during the months of September-November is historically known to be distributed normally with a mean of 2 inches and a standard deviation of 1 inch. Which of these R commands is **incorrect** for calculating the chance of 5 inches or more rain during September-November 2018?
 - (a) pnorm(5, mean = 2, sd = 1, lower.tail=FALSE)
 - (b) 1 pnorm(5, mean = 2, sd = 1)
 - (c) pnorm(5, mean = 2, sd = 1)
 - (d) pnorm(-1, mean = 2, sd = 1)
- 4. [2 points] You want to compare average rainfall in Ithaca during September-November to the average rainfall during January-March. Which of the following scenarios is the most relevant?
 - (a) one population mean (μ)
 - (b) mean difference of two unrelated populations $(\mu_1 \mu_2)$
 - (c) mean difference of two related populations (μ_d)
 - (d) none of the above
- 5. [2 points] Suppose the average rainfall in Ithaca during September-November is not different from the average rainfall in January-March. You conducted a hypothesis test at 5% significance level to compare the two. What is the chance that your test will reject H_0 ?
 - (a) 5%
 - (b) 2.5%
 - (c) none of the above
 - (d) Not enough information to conclude any of the above.

6.	[2 points] Alex and Bob want to test if the average rainfall in Ithaca during September-November is 3
	inches or if it is more than that. Alex decided to reject H_0 if the average rainfall in September-November
	of 2018 is more than 4 inches, while Bob decided to reject H_0 only if the average rainfall exceeds 5
	inches. Who has a more powerful test?

- (a) Alex
- (b) Bob
- (c) Their tests have equal power.
- (d) Not enough information to conclude any of the above.

True or False?

For each question in this section, please answer either *True* or *False*. While justification is not required, it is encouraged and may allow in some cases for partial credit to be awarded.

7. [2 points] Scientists tested a new drug and did not find evidence that it increases sleep hours for patients with insomnia. This conclusion may have been due to a type-I error.

8. [2 points] Consider testing a population mean $H_0: \mu = 10$ vs. $H_A: \mu \neq 10$. Based on a sample of size n = 25, a test provided a p-value of 0.02. Then a 95% confidence interval for μ constructed using the same sample will contain the value 10.

9. [2 points] You are interested in testing if the average number of customers in Purity Ice Cream on a Tuesday night exceeds 150. Sales records over the last 12 Tuesdays show that the store had 98 customers on average. We know that the number of customers ariving on a Tuesday follows an approximate normal distribution, and a t-test is applicable. Without calculating standard error or test statistic, we can say that this test will fail to reject H_0 at $\alpha = 0.05$.

10. [2 points] A one-sample mean test $H_0: \mu = 5$ vs. $H_A: \mu > 5$ rejected the null hypothesis at $\alpha = 0.05$, since the p-value for the given dataset was 0.03. If we tested $H_0: \mu = 5$ vs. $H_A: \mu \neq 5$ with the same dataset, then we would have rejected H_0 at $\alpha = 0.05$.

11.	[2 points] A one-sample mean test $H_0: \mu=5$ vs. $H_A: \mu\neq 5$ rejected the null hypothesis at $\alpha=0.05$, since the p-value for the given dataset was 0.03. Based only on this information, we can conclude if we tested $H_0: \mu=5$ vs. $H_A: \mu>5$ with the same dataset, then we would reject H_0 at $\alpha=0.05$.
12.	[2 points] Suppose [2, 5] is a 90% confidence interval for μ . Then there is a 90% probability that μ is in the interval [2, 5].
13.	[2 points] Suppose [2,5] is a 95% confidence interval for μ . Then if we could repeat the experiment over and over, we would expect that 95% of the time μ would be in the interval [2,5].
14.	$[2\ \mathrm{points}]$ In order to reduce the margin of error in a 95% confidence interval for the difference of two related means by half, we need to quadruple the sample size.
15.	[2 points] You want to find out the average weekly hours spent by a Cornell undergrad in the gymnasium. You constructed a 95% confidence interval $(7, 12)$ for it using a sample of size $n = 12$. You later noticed that you used the t -distribution with 12 degrees of freedom to calculate your multipliers. Your friend

pointed out that you should use n-1=11 in your degree of freedom formula. After you correct your

calculation, the resulting interval will be wider.

16. [5 points] Suppose we want to estimate the proportion (p) of males in a population. We take a sample of 1000 people and record their gender in a vector Gender. If the i^{th} person is female then we set Gender[i] to be TRUE, otherwise we set it to be FALSE. Once we have the vector Gender we used the following R code to calculate a 99% confidence interval for p.

```
n = 1000
# Calculate sample proportion
phat = mean(Gender)
# Calculate standard error
s = sd(Gender)
SE = s^2/sqrt(n)
# Calculate multipliers/quantile
alpha = 1 - 0.95
quant = qt(alpha/2, n-1)
# Calculate bounds
lower = phat - quant * SE
upper = phat + quant * SE
# Print confidence interval
c(lower, upper)
# End
```

Now this code has multiple errors in it. Your job is to correct it. At the end of your corrections we should have a code chunk such that running it in R would give us the correct confidence interval.

If you think a line of code is correct then leave it as is. If you think a line of code has error(s) in it, then scratch it out and write the correct code in the space provided directly below that line.

17.	[5 points] For each	ch of the following	questions, answer wh	nich of the five scenarios is	most appropriate.
	(a) Compare the	e average rent of st	udio apartments in d	owntown Ithaca and subu	rban Boston
	(i) μ	(ii) p	(iii) μ_d	(iv) $p_1 - p_2$	(v) $\mu_1 - \mu_2$
	(b) Test if a drug the drug	g enhances activity i	n mice by recording th	heir movements before and	after administering
	(i) μ	(ii) p	(iii) μ_d	(iv) $p_1 - p_2$	(v) $\mu_1 - \mu_2$
	(c) Test if a mag	jority of college dro	op-outs decided to do	so because of high tuition	n rates
	(i) μ	(ii) p	(iii) μ_d	(iv) $p_1 - p_2$	(v) $\mu_1 - \mu_2$
	(d) Test if smok	ers have a higher in	ncidence rate of lung	cancer than non-smokers	
	(i) μ	(ii) p	(iii) μ_d	(iv) $p_1 - p_2$	(v) $\mu_1 - \mu_2$
	(e) Estimate the	e average increase in	n your monthly exper	nse of gasoline after switch	ing to a hybrid car
	(i) μ	(ii) p	(iii) μ_d	(iv) $p_1 - p_2$	(v) $\mu_1 - \mu_2$
For t	he following qu	estion an answer	without justificat	ion will not receive ful	l credit.
	real. 56 of them s		terested in estimating	e asked if they believe tha the proportion of Tompki	9

(b) [5 points] Calculate the value of the sample statistic (\hat{p}) , and specify its distribution. Clearly state and/or check any assumption you made to arrive at this conclusion.

(a) [1 point] Define the parameter of interest (p) in the context of this problem.

(c) [4	points] Construct a 95% confidence interval for p , and interpret it in the context of the problem
	ppose we want to test if a majority of residents in Tompkins county believe that climate change with a significance level of 5%. Answer the following questions below, with justifications a
(d) [2	points] What are the null and alternative hypotheses?
	points] What is the test statistic (expressed as a random variable) and what is its distribution der the null hypothesis?

(f)	[1 point] Calculate the realized value of the test statistic in this example.
(g)	[2 points] What is the p-value of this test? (You should draw a picture as you answer this.)
(h)	[2 points] Clearly write down which assumptions you would check to see if the distribution you stated in (e) is acceptable. Are these different from the assumptions you used in (b)?
(i)	[1 point] Let us suppose that the p-value of this test is more than 0.07. Based on this, is it justified to say that a majority of Tompkins county residents believe that climate change is real?

Formula Sheet

The law of total probability:

$$P(B) = P(A)P(B|A) + P(A^C)P(B|A^C)$$

Bayes' theorem:

$$P(A|B) = \frac{P(A)P(B|A)}{P(A)P(B|A) + P(A^C)P(B|A^C)}.$$

Binomial distribution: $X \sim \text{Binomial}(n, p)$

• probability mass function (pmf):

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x = 0, 1, 2, \dots, n$

- expected value E(X) = np
- variance Var(X) = np(1-p)

Poisson distribution: $X \sim \text{Poisson}(\lambda)$

• probability mass function (pmf):

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 for $x = 0, 1, 2, ...$

- expected value $E(X) = \lambda$
- variance $Var(X) = \lambda$

Uniform distribution: $X \sim Unif(a,b)$

• probability density function (pdf):

$$f(x) = \frac{1}{b-a}$$
 for $a \le x \le b$

- expected value E(X) = (a+b)/2• variance $\operatorname{Var}(X) = (b-a)^2/12$

Normal distribution: $X \sim \text{Normal}(\mu, \sigma)$

• probability density function (pdf):

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ for } -\infty < x < \infty$$

9

- expected value $E(X) = \mu$
- variance $Var(X) = \sigma^2$
- If $X \sim N(\mu, \sigma)$, then $Z = \frac{X \mu}{\sigma}$ has a N(0, 1) distribution.

Scenario	One population Mean	One population proportion	Paired Mean
Parameter	η	d	пр
Statistic / Point Estimate	$ar{x}$	$\hat{p} = \frac{X}{n}$	$ar{x}_D$
Standard Error (of point estimate)	$SE(\bar{x}) = \sigma/\sqrt{n} \ (\sigma \text{ known})$ $SE(\bar{x}) = S/\sqrt{n} \ (\sigma \text{ unknown})$	$SE(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$SE(\bar{x}_D) = \sigma_D/\sqrt{n} \ (\sigma_D \text{ known})$ $SE(\bar{x}_D) = S_D/\sqrt{n} \ (\sigma \text{ unknown})$
Confidence Interval	$(\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) \ (\sigma \text{ known})$ $(\bar{x} \pm t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}) \ (\sigma \text{ unknown})$	$\hat{p} \pm z_{\alpha/2} SE(\hat{p})$	$(\bar{x}_D \pm z_{\alpha/2} \frac{\sigma_D}{\sqrt{n}}) \ (\sigma_D \text{ known})$ $(\bar{x}_D \pm t_{n-1,\alpha/2} \frac{S_D}{\sqrt{n}}) \ (\sigma_D \text{ unknown})$
Hypothesis Testing	$Z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \ (\sigma \text{ known})$ $T = \frac{\bar{x} - \mu_0}{S / \sqrt{n}} \ (\sigma \text{ unknown})$	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$Z = \frac{\bar{x}_D - 0}{\sigma_D / \sqrt{n}} (\sigma_D \text{ known})$ $T = \frac{\bar{x}_D - 0}{S_D / \sqrt{n}} (\sigma_D \text{ unknown})$

• Sampling Distribution of \bar{X} : If X has expectation μ and standard deviation σ . Then, $E(\bar{X}) = \mu$, $SD(\bar{X}) = \sigma/\sqrt{n}$. - If $X \sim N(\mu, \sigma)$, then $\bar{X} \sim N(\mu, \sigma/\sqrt{n})$ - For large sample $(n \ge 30)$, under suitable assumptions on X, \bar{X} is approximately $N(\mu, \sigma/\sqrt{n})$

• Sampling Distribution of \hat{p} : $\hat{p}=X/n,\,E(\hat{p})=p,\,SD(\hat{p})=\sqrt{\frac{p(1-p)}{n}}.$

- For large sample $(np \ge 10, \ n(1-p) \ge 10), \hat{p}$ is approximately $N(p, \sqrt{\frac{p(1-p)}{n}})$.

• t-distribution: If $X \sim N(\mu, \sigma)$, then $\frac{\bar{X} - \mu}{S/\sqrt{n}}$ follows a t-distribution with degree of freedom n-1. - With larger n, t-distribution with n degrees of freedom becomes more similar to N(0,1).