Naive Baye's Algorithm (Classification)

- 1) Probability
- 2 Baye's Theorem

Independent Events

$$P_{r}(1) = \frac{1}{6}$$
 $P_{r}(2) = \frac{1}{6}$ $P_{r}(3) = \frac{1}{6}$

Dependent Events

1) What is the probability of removing

a orange marble and then a yollow harble

0 0 0

$$P(0 \text{ and } y) = P(0) * P(y/0) \rightarrow \text{ Conditional Probability}$$

$$P(A/B) = P(A) * P(B/A) = Bayes Theorem.$$

$$P(B)$$

P loca Accord

P(B/A) = Probability of Event B given A has occurred.

=) Bayes Theorem.

$$P(Y/(x_1,x_2,x_3)) = \frac{P(Y) * P(X_1,X_2,X_3)}{P(X_1,X_2,X_3)}$$

$$= \frac{P(Y) * P(X_1/Y) * P(X_2/Y) * P(X_3/Y)}{P(X_1/Y) * P(X_3/Y)}$$

New tot data

Lets Solve this Problem

•	•		
- 1	II and		
- 1	IMT		יא ח
•	, ,,,	- 0	,

Day	Outlook	Temperature	Humidity	Wind	Play Tennis	
1	Sunny	Hot	High	Weak	No	
2	Sunny	Hot	High	Strong	No	$V \cup N_0 \cap P(E Y_u) \cap P(E X_{i,j})$
3	Overcast	Hot	High	Weak	Yes	((((((((((((((((((((
4	Rain	Mild	High	Weak	Yes	Sunny 2 2 15 1
5	Rain	Cool	Normal	Weak	Yes	2 3 12/9 3/5
. 6	Rain	Cool	Normal	Strong	No	
. 7	Overcast	Cool	Normal	Strong	Yes	
. 8	Sunny	Mild	High	Weak	No	
. 9	Sunny	Cool	Normal	Weak	Yes	0 Vir(ast 4 4 D D 4 4 4 9 0 0 0 0 0 0
10	Rain	Mild	Normal	Weak	Yes	
11	Sunny	· Mild	Normal	Strong	Yes	
12	Overcast	Mild	High	Strong	Yes	· · · · · · · · · · · · · · · · · · ·
13	Overcast	Hot	Normal	Weak	Yes	P
14	Rain	Mild	High	Strong	No	Nyn

Temperature
$$\rightarrow$$
Test (Sunny, Mot) \rightarrow O/P PLAY (Y/N)

No P(E/yg) P(E/NO)

Hot 2 2 2/9 2/5 No 9

Mild 4 2 4/9 4/5 No 5

Cool 3 1 3/9 3/5

$$P(Yu|Sunny, Mot) = P(Yu) + Pr(Sunny|Yu) + Pr(Mot|Yu)$$

$$= Pr(Sunny) + Pr(Mot)$$

$$= A/u + \frac{2}{9} + \frac{2}{9}$$

$$= \frac{2}{63} = 0.031$$

$$P(No | (Sunny, Hot)) = R(No) * Pr(Sunny/No) * Pr(Hot/No)$$

$$= 8/147 * 3/5 * 7/5$$

$$= \frac{3}{35} = 0.085$$

$$Pr(Yes/Csunny, ln+)) = \frac{0.031}{(0.031+0.085)} = 0.27 = 27%$$

W