Machine Learning 4771

Instructor: Itsik Pe'er

Administration/HW/quiz

- Legibility
- likelihood: Prob(entire data) loss: log-likelihood contribution by datapoint
- Limits of distributions

◆OLS: Poly, N>D

EAP(Bernouli)

Reminder: SVM

Non-separable

Non linear

Nonlinear SVMs

- •What if the problem is not linear?
- We can use our old trick...

•For example, quadratic classifier:

$$x_i \to \phi(x_i) \ via \ \phi(\vec{x}) = \begin{bmatrix} \vec{x} \\ vec(\vec{x}\vec{x}^T) \end{bmatrix}$$

•Call ϕ 's feature vectors computed from original x inputs

Nonlinear SVMs

•What if the problem is not linear?

- •Map d-dimensional x data from L-space to high dimensional H (Hilbert) feature-space via basis functions $\Phi(x)$
- •For example, quadratic classifier:

$$x_i \to \phi(x_i) \ via \ \phi(\vec{x}) = \begin{bmatrix} \vec{x} \\ vec(\vec{x}\vec{x}^T) \end{bmatrix}$$

- •Call ϕ 's feature vectors computed from original x inputs
- •Dual qp used to be:

$$L_D: \max \sum_{i} \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j \ s.t. \alpha_i \ge 0 , \sum_{i} y_i \alpha_i = 0$$

•With linear classifier in original space:

$$f(x) = sign\left(\sum_{i} \alpha_{i} y_{i} x_{i}^{T} x + b\right)$$

Itsik Pe'er, Columbia University

Nonlinear SVMs

•What if the problem is not linear?

- •Map d-dimensional x data from L-space to high dimensional H (Hilbert) feature-space via basis functions $\Phi(x) = \Phi_3(x)$
 - *H* (Hilbert) feature-space via basis functions $\Phi(x)$
- •For example, quadratic classifier:

$$x_i \to \phi(x_i) \ via \ \phi(\vec{x}) = \begin{bmatrix} \vec{x} \\ vec(\vec{x}\vec{x}^T) \end{bmatrix}$$

- •Replace all x's in the SVM equations with ϕ 's
- •Now solve the following learning problem:

$$L_D: \max \sum_i \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j) \quad s.t. \alpha_i \ge 0 , \sum_i y_i \alpha_i = 0$$

•Which gives a nonlinear classifier in original space:

$$f(x) = sign\left(\sum_{i} \alpha_{i} y_{i} \phi(x_{i})^{T} \phi(x) + b\right)$$

•One important aspect of SVMs: all math involves only the *inner products* between the ϕ features!

$$f(x) = sign\left(\sum_{i} \alpha_{i} y_{i} \phi(x_{i})^{T} \phi(x_{i}) + b\right)$$

- Replace all inner products with a general kernel function
- Mercer kernel: accepts 2 inputs and outputs a scalar via:

$$k(x,\tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle = \begin{cases} \phi(x)^T \phi(\tilde{x}) & \text{if } \phi \text{ is finite} \\ \int_t \phi(x,t) \phi(\tilde{x},t) dt & \text{otherwise} \end{cases}$$

•One important aspect of SVMs: all math involves only the *inner products* between the ϕ features!

$$f(x) = sign\left(\sum_{i} \alpha_{i} y_{i} \phi(x_{i})^{T} \phi(x_{i}) + b\right)$$

- Replace all inner products with a general kernel function
- Mercer kernel: accepts 2 inputs and outputs a scalar via:

$$k(x,\tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle = \begin{cases} \phi(x)^T \phi(\tilde{x}) & \text{if } \phi \text{ is finite} \\ \int_t \phi(x,t) \phi(\tilde{x},t) dt & \text{otherwise} \end{cases}$$

•Mercer's thm: any $k(x, \tilde{x})$ has a $\phi(x)$ if it is " $\langle \cdot, \cdot \rangle$ -like" satisfies Mercer's condition: $\iint g(x)K(x,y)g(y)dxdy \geq 0$ \forall square-integrable g

Mercer kernel: accepts 2 inputs and outputs a scalar via:

$$k(x,\tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle = \begin{cases} \phi(x)^T \phi(\tilde{x}) & \text{if } \phi \text{ is finite} \\ \int_i \phi(x,t) \phi(\tilde{x},t) dt & \text{otherwise} \end{cases}$$

•Example: quadratic polynomial $\phi(x) = \begin{bmatrix} x_1^2 & \sqrt{2}x_1x_2 & x_2^2 \end{bmatrix}^T$

•Mercer kernel: accepts 2 inputs and outputs a scalar via:

$$k(x,\tilde{x}) = \langle \phi(x), \phi(\tilde{x}) \rangle = \begin{cases} \phi(x)^T \phi(\tilde{x}) & \text{if } \phi \text{ is finite} \\ \int_t \phi(x,t) \phi(\tilde{x},t) dt & \text{otherwise} \end{cases}$$

•Example: quadratic polynomial $\phi(x) = \begin{bmatrix} x_1^2 & \sqrt{2}x_1x_2 & x_2^2 \end{bmatrix}^T$

$$k(x, \tilde{x}) = \phi(x)^T \phi(\tilde{x})$$

$$= x_1^2 \tilde{x}_1^2 + 2x_1 x_2 \tilde{x}_1 \tilde{x}_2 + x_2^2 \tilde{x}_2^2$$

$$= (x_1 \tilde{x}_1 + x_2 \tilde{x}_2)^2$$

- •Sometimes, many $\Phi(x)$ will produce the same k(x,x')
- •Sometimes k(x,x') computable but features huge or infinite!
- •Example: polynomials

 If explicit polynomial mapping, feature space $\Phi(x)$ is huge

d-dimensional data, p-th order polynomial,
$$dim(H) = \begin{pmatrix} d+p-1 \\ p \end{pmatrix}$$

images of size 16x16 with p=4 have dim(H)=183million

but can equivalently just use kernel: $k(x,y) = (x^Ty)^p$ $k(x,\tilde{x}) =$

but can equivalently just use kernel: $k(x,y) = (x^Ty)^p$

Equivalent!

•Replace each $x_i^T x_j \to k(x_i, x_j)$, for example:

P-th Order Polynomial Kernel:
$$k(x, \tilde{x}) = (x^T \tilde{x} + 1)^P$$

RBF Kernel (infinite!):
$$k(x, \tilde{x}) = \exp\left(-\frac{1}{2\sigma^2} ||x - \tilde{x}||^2\right)$$

Sigmoid (hyperbolic tan) Kernel: $k(x, \tilde{x}) = \tanh(\kappa x^T \tilde{x} - \delta)$

Using kernels we get generalized inner product SVM:

$$L_D: \max \sum_i \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j) \text{ s.t. } \alpha_i \in [0, C], \sum_i \alpha_i y_i = 0$$

$$f(x) = sign\left(\sum_{i} \alpha_{i} y_{i} k(x_{i}, x) + b\right)$$

•Using kernels we get generalized inner product SVM:

$$L_D: \max \sum_{i} \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j) \text{ s.t. } \alpha_i \in [0, C], \sum_{i} \alpha_i y_i = 0$$
$$f(x) = sign\left(\sum_{i} \alpha_i y_i k(x_i, x) + b\right)$$

•Still qp solver, just use Gram matrix K (positive definite) $K_{i,j} = k(x_i, x_j)$

$$K = \begin{bmatrix} k(x_1, x_1) & k(x_2, x_1) & k(x_3, x_1) \\ k(x_1, x_2) & k(x_2, x_2) & k(x_3, x_2) \\ k(x_1, x_3) & k(x_2, x_3) & k(x_3, x_3) \end{bmatrix}$$

Kernelized SVMs

•Polynomial kernel:

$$k(x, \tilde{x}) = (x^T \tilde{x} + 1)^P$$

Radial basis function kernel:

$$k(x, \tilde{x}) = \exp\left(-\frac{1}{2\sigma^2} \|x - \tilde{x}\|^2\right)$$

• Edit distance: no explicit feature set

Summary

◆Kernels extend SVM: linear → nonlinear

Other ways?

Example: Classifying Players

Example: Classifying Players

GuardsForwards

- Axis-parallel criteria:
 Easy to find
- Start with default:

Guard

Example: Classifying Players

Multiple Classes

Multiple Classes

Greedy algorithm:

Init: empty tree

- While (!stopping())
 - Choose leaf
 - Split leaf

Objective: Certainty

Choose leaf and split to minimize a measure of uncertainty:

• Classification error: $1 - \max p_i$

• Gini index: $1 - \sum p_i^2$

 \bullet Entropy: $-\sum p_i \log p_i$

Stopping Criteria

Example: No split reduces uncertainty

Stopping Criteria

No improvement?

Certain tree size

When leaves are pure

Example: Clear split if clean data

Example: Overfit if noisy data

Stopping Criteria

No improvement?

Certain tree size

- When leaves are pure
 - Overfitting. Requires pruning
 - Address by validation set.
 - Prune the pure-training tree

Summary

Decision trees form greedily