

Welcome to Chemistry 154!

Please make sure to sync your iClicker Cloud to Chem154 Section 113

- Worksheet: Unit 4
- Due Oct. 9th at 11:59pm
- Achieve Assignment #4
- Due Oct. 9th at 11:59pm
- Watch Chapter 4 helpful videos on All Lectures site

Instructor Office Hours

Monday and Friday 7-8pm via Zoom (All Lectures Site)

Unit 4 Intermolecular Interactions & Phases of Matter

Summary

Force type	Strength	Exhibited by	Examples
London Dispersion forces	Weak	Present in all atoms and molecules. Strength increases as the number of electrons in the molecule increases (more polarizable)	I _{2,} Kr, PCI ₅
Dipole- dipole interactions	Strong	Molecules with a permanent dipole.	PCl ₃ , ICl, CH ₃ Cl
Hydrogen bonds	Strong	Molecules with H bonded to F, O, or N. The large electronegativity difference and resulting permanent dipole are responsible for the strength of these forces.	HF, H ₂ O
Charge- charge or lon-ion interactions	Very Strong	Ionic solids or ionic liquids.	NaCl, K ₃ PO ₄

Worksheet Question #2

Which type of intermolecular interactions need to be overcome to convert each of the following liquids to gases?

- a) CH₄
- b) CH₃F
- c) CH₃OH

Worksheet Question #2 - Clicker Question

Which of the molecules from WS Q2 (CH₄, CH₃F, and CH₃OH) will experience **London dispersion forces**?

- A. CH₄
- B. CH₃F
- C. CH₃OH
- D. CH₄ and CH₃F
- E. All of the above

Worksheet Question #2 - Clicker Question

Which of the molecules from WS Q2 (CH₄, CH₃F, and CH₃OH) will experience **dipole-dipole** interactions?

- A. CH₄
- B. CH₃F
- C. CH₃OH
- D. CH₃F and CH₃OH
 - E. All of the above

Worksheet Question #2 - Clicker Question

Which of the molecules from WS Q2 (CH₄, CH₃F, and CH₃OH) will experience **hydrogen bonding** interactions?

- A. CH₄
- B. CH₃F
- C. CH₃OH
 - D. CH₃F and CH₃OH
 - E. All of the above

Clicker Question

There are three isomers of C₂H₂Cl₂, shown as ball-and-stick models below. Which isomer experiences London Dispersion forces <u>only</u>?

How do detergents and dispersants work?

Hydrocarbons from petroleum

a) Paraffins b) Naphthenes

Detergent or dispersant

Phases of matter

Phases - definitions

A substance is in a distinct phase when all physical properties, such as density or chemical composition, are uniform throughout. Examples: solid, liquid, gas, plasma, supercritical fluid.

A phase change occurs when a substance changes from one phase to another.

A one-component system is characterized by a single, pure chemical substance. E.g. H₂O: ice, water and steam.

Phases of matter, phase changes

Thermodynamic Equilibrium

- → When there are no **net macroscopic** flows of matter or energy within a system or between the system and surroundings.
- → The macroscopic properties of the system remain constant with time and the system is robust when subjected to minor perturbations.

Type of Equilibrium	Thermodynamic Variable	
Thermal	Temperature, T	
Mechanical	Pressure, P	
Chemical or Material	Concentration or Chemical potential, μ	

→ All these equilibria must be satisfied for a system to be in thermodynamic equilibrium.

Generic One-Component P-T Phase Diagram

Taken from https://opentextbc.ca/chemistry/chapter/10-4-phase-diagrams/

Density and pressure

Increasing pressure or decreasing temperature changes stable phase from a <u>less</u> dense to a <u>more</u> dense form.

Supercritical Fluids

A substance behaves as a supercritical fluid at temperatures and pressures beyond the critical point. A supercritical fluid exhibits properties of a liquid and a gas.

Critical Point

 Critical Point = Liquid and gas phase become indistinguishable.

Hydrogen Bonding in Water

In water, oxygen has a higher electron density due to its higher electronegativity compared to hydrogen. Oxygen atoms in one molecule are attracted to hydrogen atoms in a neighbouring water molecule to maximize electrostatic interactions.

Vapour pressure

Two processes occurring: Vapourization and condensation

Liquid — Gas

Vapour pressure is the **pressure** exerted by a **vapour** in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system.

Volatility and Vapour Pressure

Less volatile liquid, lower vapor pressure

More volatile liquid, higher vapor pressure

Why does a liquid evaporate?

Clicker Question

Acetone boils at a significantly higher temperature than 2-methylpropane (isobutane) because...

- a) The London dispersion forces in 2-methylpropane are weaker than the dipole-dipole forces in acetone
 - b) Dipole-dipole forces are always greater than dispersion forces
 - c) The molecular mass of acetone is slightly less than that of 2-methylpropane
 - d) The hydrogen bonding interactions in acetone are stronger than the London dispersion forces in isobutane.
 - e) The London dispersion forces in 2-methylpropane are weaker than those in acetone

Clicker Question & Revisit on Tuesday (Oct. 10th)

Arrange the following molecules in order of increasing vapour pressure at room temperature.

b)
$$1 < 4 < 3 < 2$$

Vapor pressure

- VP increases with increasing T
- More molecules escaping to gas phase

Liquids boil when **VP** = atmospheric pressure

Demonstration for Today

Worksheet Question #9

...Use the phase diagram for water (right) to explain the results of the experiment.

Worksheet Question #9

...Use the phase diagram for water (right) to explain the results of the experiment.

Cooking food, faster (Pressure cooker)

Pressure cookers operate at 15 psi (1 bar = 1 atm) ABOVE atmospheric pressure. (P_{int} = 2 bar = 2 atm)

Water boils at 120 °C at 2 bar pressure.

Higher boiling point = faster cooking!

Clicker Question

Which of the following processes is endothermic?

- (a) Vaporization
 - b) Condensation
 - c) Deposition
 - d) Freezing

Temperature and phase diagrams

Clicker Question

Clicker Question

