M3/4/5P12 Solutions #3

Rebecca Bellovin

1. Given $M \in GL_d(\mathbf{C})$ such that $M^n = \mathbf{1}$, we may construct a matrix representation $\rho : C_n = \langle g : g^n = e \rangle \to GL_d(C)$ by setting $\rho(g) := M$. Since C_n is an abelian group, this representation is isomorphic to the direct sum of d 1-dimensional representations, so it is diagonalizable.

Alternatively, we may put M in Jordan normal form and assume it has λ 's on the diagonal for some $\lambda \in \mathbf{C}$ and 1's on the superdiagonal. Then $(M-\lambda \mathbf{1})^d=0$ and $M^n=\mathbf{1}$. In other words, if p(X) denotes the minimal polynomial of M, then $(X-\lambda)^d$ and X^n-1 are both multiples of p(X). But $X^n-1=\prod_{\zeta}(X-\zeta)$, where the product runs over nth roots of 1 (and they are all distinct), and the only factors of $(X-\lambda)^d$ are powers of $X-\lambda$. This implies that the minimal polynomial of M is actually $X-\lambda$, so $M=\lambda \mathbf{1}$ with $\lambda^n=1$.

2. There are a number of approaches to this problem. At this point in the course, the easiest solution is to observe that for each 1-dimensional representation (W, ρ_W) of D_8 , the inner product $\langle \chi_{V \otimes V}, \chi_W \rangle = 1$. Thus, in the notation of the solution to problem 7, $V \otimes V \cong V_{\text{triv}} \oplus V_{+-} \oplus V_{-+} \oplus V_{--}$.

Another character-theoretic approach is to write $V \otimes V \cong V_{\text{triv}}^{\oplus m_1} \oplus V_{+-}^{\oplus m_2} \oplus V_{-+}^{\oplus m_3} \oplus V_{--}^{\oplus m_4} \oplus V_{2}^{\oplus m_5}$ (in the notation of problem 7) and compute the inner product $\langle \chi_{V \otimes V}, \chi_{V \otimes V} \rangle$:

$$4 = \langle \chi_{V \otimes V}, \chi_{V \otimes V} \rangle = \sum_{i} \langle \chi_{V_{i}^{\oplus m_{i}}}, \chi_{V_{i}^{\oplus m_{i}}} \rangle = \sum_{i} m_{i}^{2}$$

Therefore, either four of the m_i 's are 1, or one of them is 2 and the rest 0. The first case corresponds to $V \otimes V \cong V_{\text{triv}} \oplus V_{+-} \oplus V_{-+} \oplus V_{--}$, and the second corresponds to $V \otimes V \cong V_2 \oplus V_2$. But by problem 9, $V \otimes V$ has at least one 1-dimensional subrepresentation, namely $\wedge^2 V$, so the second possibility is ruled out.

Another approach is to observe that the eigenvalues of $\rho_V(s)$ are $\pm i$. Therefore, if we let $\{v_1, v_2\}$ be a basis of V diagonalizing $\rho_V(g)$, then $\rho_{V\otimes V}(s^2)(v_i\otimes v_j)=v_i\otimes v_j$ for any $v_i\otimes v_j$. In other words, $\rho_{V\otimes V}(s^2)=1$, so we may view $\rho_{V\otimes V}$ as a representation of $D_8/\langle s^2\rangle\cong C_2\times C_2$. Since $C_2\times C_2$ is abelian, $\rho_{V\otimes V}$ can be diagonalized, and the only question is which 1-dimensional representations of D_8 show up in the decomposition. To find an explicit diagonalization, we restrict to the ± 1 eigenspaces for $\rho_{V\otimes V}(s)$; they are each 2-dimensional and $\rho_{V\otimes V}(t)$ preserves them since $\rho_{V\otimes V}(t)\rho_{V\otimes V}(s)=\rho_{V\otimes V}(s)\rho_{V\otimes V}(t)$ (even though $ts\neq st$ in D_8). But this is a straightforward calculation, and shows that every 1-dimensional representation of D_8 appears.

We can also start by writing down the matrices for $\rho_{V\otimes V}(s)$ and $\rho_{V\otimes V}(t)$ explicitly. If we change our notation and let $v_1=\begin{pmatrix} 1\\0 \end{pmatrix}$ and $v_2=\begin{pmatrix} 0\\1 \end{pmatrix}$, we may choose the basis $\begin{pmatrix} v_1\otimes v_1,v_1\otimes v_2,v_2\otimes v_1,v_2\otimes v_2 \end{pmatrix}$ for $V\otimes V$. Then

$$\rho_{V\otimes V}(s) = \begin{pmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\\ 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \rho_{V\otimes V}(t) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

It is clear that $v_1 \otimes v_1 + v_2 \otimes v_2$ and $v_1 \otimes v_2 + v_1 \otimes v_2$ generate 1-dimensional subrepresentations (for the first, s and t both act as 1; for the second, s and t both act as -1).

Now we can use the results of problem 9: both of these are subrepresentations of S^2V , which is a 3-dimensional representation. But then S^2V must be the direct sum of three 1-dimensional representations of D_8 . In fact, $v_1 \otimes v_1 - v_2 \otimes v_2$ generates another subrepresentation of S^2V , with

1

s acting by -1 and t acting by 1. In addition, $\wedge^2 V$ is a 1-dimensional subrepresentation of $V \otimes V$, and since the eigenvalues of $\rho_V(s)$ are $\pm i$ and the eigenvalues of $\rho_V(t)$ are ± 1 , s acts on $\wedge^2 V$ by 1 and t acts on $\wedge^2 V$ by -1.

3. (a) Let $\{v_i\}$ be a basis for V and let $\{w_s\}$ be a basis for W. Then $\{v_i \otimes w_s\}$ is a basis for $V \otimes W$ and $\{w_s \otimes v_i\}$ is a basis for $W \otimes V$. Thus, we define a linear transformation $f: V \otimes W \to W \otimes V$ by setting $f(v_i \otimes w_s) := w_s \otimes v_i$ and extending by linearity. Since $\operatorname{im}(f)$ contains a basis of $W \otimes V$, f is surjective, and since $V \otimes W$ and $W \otimes V$ have the same dimension, f is an isomorphism.

To check that this map is G-linear, suppose that the matrix for $\rho_V(g)$ with respect to $\{v_i\}$ is M and suppose the matrix for $\rho_W(g)$ with respect to $\{w_s\}$ is N. We need to check that the image of $\rho_{V \otimes W}(g)(v_i \otimes w_s) = (M \cdot v_i) \otimes (N \cdot w_s)$ is equal to $\rho_{W \otimes V}(g)(w_s \otimes v_i) = (N \cdot w_s) \otimes (M \cdot v_i)$:

$$\rho_{V \otimes W}(g)(v_i \otimes w_s) = (M \cdot v_i) \otimes (N \cdot w_s) = \left(\sum_j M_{ji} v_j\right) \otimes \left(\sum_t N_{ts} w_t\right) = \sum_{j,t} M_{ji} N_{ts} v_j \otimes w_t$$

and its image in $W \otimes V$ is $\sum_{j,t} M_{ji} N_{ts} w_t \otimes v_j$. On the other hand,

$$\rho_{W \otimes V}(g)(w_s \otimes v_i) = (N \cdot w_s) \otimes (M \cdot v_i) = \left(\sum_t N_{ts} w_t\right) \otimes (M_{ji} v_j) = \sum_{t,j} N_{ts} M_{ji} w_t \otimes v_j$$

so the two tensors are equal.

(b) Consider $f \in \operatorname{Hom}(V^*,W)$. Then $f:V^* \to W$, and we define the dual $f^*:W^* \to V^{**} \xrightarrow{\sim} V$ via $f^*(h) := h \circ f$ (for $h \in W^*$). Thus, we can define a map $\operatorname{Hom}(V^*,W) \to \operatorname{Hom}(W^*,V)$ via $f \mapsto f^*$. This is evidently linear. I claim it is injective: if $f^* = 0$, then $h \circ f = 0$ for all $h \in W^*$, so f = 0 (if not, we could take h to be the projection onto a 1-dimensional subspace of $\operatorname{im}(f)$). Since $\operatorname{Hom}(V^*,W)$ and $\operatorname{Hom}(W^*,V)$ both have dimension $\dim V \cdot \dim W$, this implies that our map is an isomorphism.

To check that this map is G-linear, we need to check that

$$\rho_{\text{Hom}(W^*,V)}(g) \circ f^* = (\rho_{\text{Hom}(V^*,W)}(g)(f))^*$$

(as elements of $\operatorname{Hom}(W^*,V)$). To see this, we evaluate them on elements $h\in W^*$:

$$(\rho_{\text{Hom}(W^*,V)}(g)(f^*)) (h) = (\rho_V(g) \circ f^* \circ \rho_{W^*}(g^{-1})) (h) = (\rho_V(g) \circ f^*) (h \circ \rho_W(g))$$

$$= \rho_V(g) (h \circ \rho_W(g) \circ f) = \rho_{V^{**}}(g) (h \circ \rho_W(g) \circ f)$$

$$= h \circ \rho_W(g) \circ f \circ \rho_{V^*}(g^{-1})$$

$$(\rho_{\text{Hom}(V^*,W)}(g)(f))^* (h) = h \circ (\rho_{\text{Hom}(V^*,W)}(g)(f)) = h \circ \rho_W(g) \circ f \circ \rho_{V^*}(g^{-1})$$

Note that we have used the fact that the isomorphism $V \xrightarrow{\sim} V^{**}$ is G-linear.

4. It suffices to prove that $\dim \operatorname{Hom}(V_{\operatorname{reg}}^*,W)^G=\dim W$ for all irreducible representations W. But by the previous exercise

$$\operatorname{Hom}(V_{\operatorname{reg}}^*, W) \cong \operatorname{Hom}(W^*, V_{\operatorname{reg}})$$

as representations, so their G-fixed subspaces are isomorphic:

$$\operatorname{Hom}(V_{\operatorname{reg}}^*,W)^G \cong \operatorname{Hom}(W^*,V_{\operatorname{reg}})^G$$

Since W^* is irreducible, the dimension of the right side is dim $W^* = \dim W$, so we are done.

5. $\chi_{\text{reg}}(e) = \text{Tr}(\mathbf{1}) = |G|$ and $\chi_{\text{reg}}(g) = 0$ if $g \neq e$: If $\text{Tr}(\rho_{\text{reg}}(g)) \neq 0$, there is a non-zero entry on the diagonal of the matrix for $\rho_{\text{reg}}(g)$. But if we take the basis $\{b_h\}_{h\in G}$ for V_{reg} , this would imply that $\rho_{\text{reg}}(g)(b_h) = b_{gh} = b_h$ for some h. But this is impossible unless g = e, so $\chi_{\text{reg}}(g) = 0$ if $g \neq e$. We compute

$$\langle \chi_{\mathrm{reg}}, \chi_W \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_{\mathrm{reg}}(g) \overline{\chi_W(g)} = \frac{1}{|G|} \cdot |G| \cdot \dim W = \dim W$$

6. It is enough to prove that if W is irreducible, then $V \otimes W$ is irreducible. So suppose $W' \subset V \otimes W$ is a proper non-zero subrepresentation (so $0 \neq \dim W' < \dim W$). Recall that (V^*, ρ_{V^*}) is a 1-dimensional representation with $\rho_{V^*}(g) = \rho_V(g^{-1})$. We claim that $V^* \otimes W'$ is a proper non-zero subrepresentation of W. Certainly $V^* \otimes W'$ has dimension dim W', so if it is a subrepresentation of W it is proper and non-zero.

Let $v \in V$ and $v' \in V^*$ be basis elements, and let $\{w_i\} \subset W$ be a basis of W. Then we may write an element of W' uniquely in the form $v \otimes (\sum_i a_i w_i)$ for some $a_i \in \mathbb{C}$, and we may write an element of $V^* \otimes W'$ uniquely in the form $v' \otimes (v \otimes (\sum_i a_i w_i))$. Now we define a map $V^* \otimes W' \to W$ via

$$v' \otimes \left(v \otimes (\sum_i a_i w_i)\right) \mapsto \sum_i a_i w_i$$

This is G-linear because

$$\rho_{V^* \otimes W'}(g) \left(v' \otimes \left(v \otimes \left(\sum_i a_i w_i \right) \right) \right) = \rho_{V^*}(g)(v') \otimes \left(\rho_V(g)(v) \otimes \sum_i a_i \rho_W(g)(w_i) \right)$$
$$= v' \otimes \left(v \otimes \left(\sum_i a_i \rho_W(g)(w_i) \right) \right)$$

so $\rho_{V^* \otimes W'}(g) (v' \otimes (v \otimes (\sum_i a_i w_i))) \mapsto \sum_i a_i \rho_W(g)(w_i)$, which is $\rho_W(g)$ applied to the image of $v' \otimes (v \otimes (\sum_i a_i w_i))$.

7. Write $D_8 = \langle s, t : s^4 = t^2 = e, tst = s^{-1} \rangle$. Then each element of D_8 can be written uniquely in the form $s^i t^j$ where $i \in \{0, 1, 2, 3\}$ and $j \in \{0, 1\}$. The conjugacy classes are $\{e\}$, $\{s, s^{-1}\}$, s^2 , $\{st, s^{-1}t\}$, and $\{t, s^2t\}$. Indeed,

$$(s^{i}t^{j})e(s^{i}t^{j})^{-1} = e \text{ for all } i, j$$

$$(s^{i}t^{j})s(s^{i}t^{j})^{-1} = s^{i}s^{(-1)^{j}}s^{-i} = s^{\pm 1}$$

$$(s^{i}t^{j})s^{2}(s^{i}t^{j})^{-1} = s^{i}(t^{j}st^{j})(t^{j}st^{j})s^{-i} = s^{2} = s^{2}$$

$$(s^{i}t^{j})(st)(s^{i}t^{j})^{-1} = s^{i}t^{j}stt^{j}s^{-i} = s^{i}s^{(-1)^{j}}ts^{-i} = s^{i}s^{(-1)^{j}}s^{i}t = s^{\pm 1}t$$

$$(s^{i}t^{j})t(s^{i}t^{j})^{-1} = s^{i}ts^{-i} = s^{2i}t$$

There are four 1-dimensional representations of D_8 , which we denote $(V_{\text{triv}}, \rho_{\text{triv}})$, (V_{+-}, ρ_{+-}) , (V_{-+}, ρ_{-+}) , and (V_{--}, ρ_{--}) , given by

$$\begin{array}{lll} \rho_{\rm triv}(s) = 1 & \text{ and } & \rho_{\rm triv}(t) = 1 \\ \rho_{+-}(s) = 1 & \text{ and } & \rho_{+-}(t) = -1 \\ \rho_{-+}(s) = -1 & \text{ and } & \rho_{-+}(t) = 1 \\ \rho_{--}(s) = -1 & \text{ and } & \rho_{--}(t) = -1 \end{array}$$

We write the irreducible 2-dimensional representation (V_2, ρ_2) ; there is a basis of V_2 such that

$$\rho_2(s) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \rho_2(t) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Thus, we can write the characters for all of the irreducible representations of D_8 :

	$ \{e\}$	$\{s, s^{-1}\}$	$ \{s^2\} $	$\{st,s^{-1}t\}$	$\{t, s^2t\}$
$\chi_{\rm triv}(g)$	1	1	1	1	1
$\chi_{+-}(g)$	1	1	1	-1	-1
$\chi_{-+}(g)$	1	-1	1	-1	1
$\chi_{}(g)$	1	-1	1	+1	-1
$\chi_2(g)$	2	0	-2	0	0

8. Let (V, ρ) be the representation constructed from the action $G \times X \to X$.

(a) Recall that V has a basis $\{b_x\}_{x\in X}$ indexed by elements of X, and the representation is given by $\rho(g)(b_x)=b_{g\cdot x}$. Thus, the matrix for $\rho(g)$ has exactly one 1 in each column, in the row corresponding to $b_{g\cdot x}$. This is a diagonal entry if and only if $g\cdot x$, so

$$\chi_{\rho}(g) = \text{Tr}(\rho(g)) = |\{x \in X : g \cdot x = x\}|$$

(b) The element $\sum_{x \in X} b_x$ generates a 1-dimensional subrepresentation of V, and it is isomorphic to the trivial representation, because

$$\rho(g)(\sum_{x \in X} b_x) = \sum_{x \in X} b_{g \cdot x}$$

and $\{g \cdot x\}_{x \in X} = X$ because the action of g permutes the elements of X: if $g \cdot x = g \cdot x'$, then

$$x = (g^{-1}g) \cdot x) = g^{-1} \cdot (g \cdot x) = g^{-1} \cdot (g \cdot x') = (g^{-1}g) \cdot x' = x'$$

Thus, there is some subrepresentation $W \subset V$ such that $V \cong W \oplus V_{\text{triv}}$. This implies that $\chi_W = \chi_\rho - 1 = \xi$, as desired.

- 9. (a) This follows from the solution to problem (3).
 - (b) Since **1** and f are both G-linear maps $V \otimes V \to V \otimes V$, so are 1 f and 1 + f. Thus, their kernels are subrepresentations of $V \otimes V$ (by §2.5 of the notes).

We first check that $\ker(\mathbf{1} - f) \cap \ker(\mathbf{1} + f) = \{0\}$. If $v \in \ker(\mathbf{1} - f) \cap \ker(\mathbf{1} + f) = \{0\}$, then f(v) = v and f(v) = -v, so v = -v and therefore v = 0.

Thus, we have an injective linear transformation

$$\ker(\mathbf{1} - f) \oplus \ker(\mathbf{1} + f) \to V \otimes V$$

given by $(v, v') \mapsto v + v'$. We need to check that it is surjective. To see this, we first observe that $f \circ f = 1$. Then for any $v \in V \otimes V$, we may write

$$v = \frac{1}{2} (v - f(v)) + \frac{1}{2} (v + f(v))$$

Then

$$(1+f)(v-f(v)) = 0$$
 and $(1-f)(v+f(v)) = 0$

so v is in the image of $\ker(\mathbf{1} - f) \oplus \ker(\mathbf{1} + f)$ and we are done.

(c) In the previous part, we showed that $\operatorname{im}(\mathbf{1}+f) \subset S^2V$ and $\operatorname{im}(\mathbf{1}-f) \subset \wedge^2V$. Moreover, if $v \in S^2V$, then

$$\frac{1}{2}(\mathbf{1}+f)(v) = \frac{1}{2}(v+v) = v$$

and if $v \in \wedge^2 V$, then

$$\frac{1}{2}(\mathbf{1} - f)(v) = \frac{1}{2}(v - (-v)) = v$$

Thus, $\frac{1}{2}(\mathbf{1}+f)$ and $\frac{1}{2}(\mathbf{1}-f)$ are projections onto S^2V and \wedge^2V , respectively.

(d) Let $\{v_i\}$ be a basis for V. Then the set $\{v_i \otimes v_j + v_j \otimes v_i\}_{j \geq i}$ is a linearly independent subset of S^2V , of size $\frac{d(d+1)}{2}$. The set $\{v_i \otimes v_j - v_j \otimes v_i\}_{j > i}$ is a linearly independent subset of \wedge^2V , of size $\frac{d(d-1)}{2}$. Thus,

$$\{v_i \otimes v_j + v_j \otimes v_i\}_{j \geq i} \cup \{v_i \otimes v_j - v_j \otimes v_i\}_{j > i}$$

is a subset of $V \otimes V$ of size d^2 whose span includes each basis element $v_i \otimes v_j$. It follows that $\{v_i \otimes v_j + v_j \otimes v_i\}_{j \geq i}$ is a basis of S^2V and $\{v_i \otimes v_j - v_j \otimes v_i\}_{j > i}$ is a basis of \wedge^2V , so they have dimensions $\frac{d(d+1)}{2}$ and $\frac{d(d-1)}{2}$, respectively.

(e) Choose a basis $\{v_i\}$ of V such that the matrix for $\rho_V(g)$ is diagonal, with eigenvalues $\lambda_1, \ldots, \lambda_d$. Then

$$\rho_{V \otimes V}(g)(v_i \otimes v_j - v_j \otimes v_i) = \lambda_i \lambda_j (v_i \otimes v_j - v_j \otimes v_i)$$

and

$$\rho_{V \otimes V}(g)(v_i \otimes v_j + v_j \otimes v_i) = \lambda_i \lambda_j (v_i \otimes v_j + v_j \otimes v_i)$$

Thus, the eigenvalues for $\wedge^2 V$ are $\{\lambda_i \lambda_j : j > i\}$.

(f) From the previous part, we know that

$$\chi_{\wedge^2 V}(g) = \operatorname{Tr}(\rho_{\wedge^2 V}(g)) = \sum_{j>i} \lambda_i \lambda_j$$

Therefore,

$$\frac{\chi_V(g)^2 - \chi_V(g^2)}{2} = \frac{1}{2} \sum_{i \neq j} \lambda_i \lambda_j = \chi_{\wedge^2 V}(g)$$

Furthermore, we proved in lecture that $\chi_{V\otimes V}(g)=\chi_V(g)^2$. Since $V\otimes V\cong S^2V\oplus \wedge^2V$,

$$\chi_{S^2V}(g) = \chi_V(g)^2 - \chi_{\wedge^2V}(g) = \frac{\chi_V(g)^2 + \chi_V(g^2)}{2}$$

10. We proved in lecture that $\chi(g) = \chi(e)$ if and only if $\rho(g) = \rho(e)$. Thus, the claim amounts to showing that there is some irreducible representation (V, ρ_V) such that $\rho_V(g) \neq \mathbf{1}_V$. However, recall that every irreducible representation appears as a subrepresentation of the regular representation $(V_{\text{reg}}, \rho_{\text{reg}})$. If we had $\rho_V(g) = \mathbf{1}_V$ for every irreducible representation, then we would have $\rho_{\text{reg}}(g) = \mathbf{1}$. But this is impossible unless g = e.