42.660 31.090 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31.000 31

-192.927 -186.391 -179.840 -173.355 -166.930

-264.641 -265.416 -264.562 -263.716 -263.716

43.118 48.938 54.844 60.837 66.915 73.079 79.325 85.631

-154.225 -147.892 -140.919 -133.889

-262.124 -261.650 -274.573 -274.427

91.982

106.037 108 730 111.325 113.828

62.065 62.787 63.304 63.696 64.015

252222 252222 252222 252222 252222 252222 252222 252222 252222 252222 2522 2522 25222 25222 25222 25222 25222 25222 25222 25222 25222 25222 2522 25222 25222 25222 25222 25222 25222 25222 25222 25222 25222 2522 2522 25222 25222 252 2522 2522 2522 2522 252 252 252 252 252 252 252 252 252 252 252

148.912 155.699 156.303 159.736 163.012 166.141 169.134 172.002 174.754

64,238

-160.561

-262.046

103,238

-126.866 -119.850 -112.844 -105.844 -98.853

-274265 -274.094 -273.916 -273.733

116.245 118.582 120.842 123.032 125.154

CURRENT June 1965

Iron Oxide, Wüstite (Feosa7O)

CRYSTAL

M_r = 68.8865 Iron Oxide, Wüstite (Fe_{0.947}O)

Feo.947O1(cr)

Standard State Pressure = $p^* = 0.1$ MPa

k J.mol-

A.H.

 $H^{\bullet}-H^{\circ}(T_{\epsilon})$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$ INFINITE 98.526

ڻ

J.K.'mol-"

INFINITE 135,876

267.123

C, LAMBDA MAXIMUM TRANSITION

-252.274 -245.143

-267224

-4.581

61.893 57.588

38.989 57.588

8

35.752

58.206 45.966 48.116 48.183 50.380 53,028

079.781 187.670 298.15 245.012 238.078 231.379

-266.252 -265.292 -264.409

57.589 59.507 63.196

57.886 72.065 83.470

8888

-266270

-224.845 -218.423 -212.071 -205.745 -199.395

-263.088 -262.723 -262.690 -262.690

67.393 71.658 75.825 79.833

93.030 101.283 108.567 115.104 121.048

5.041

55.969

87.312 97.286 100.324

126.510 131.573 136.300 140.741

57.760 58.630 59.496 60.358

0.089 5.023 10.137 15.382 20.737 26.193 31.744 37.386

log K,

 $\Delta_t H^0(0 \text{ K}) = -267.123 \pm 0.84 \text{ kJ} \cdot \text{mol}^{-1}$

Enthalpy Reference Temperature = T, = 298.15 K $\Delta_1 H^{\circ}(298.15 \text{ K}) = -266.270 \pm 0.84 \text{ kJ·mol}^{-1}$ 5°(298.15 K) = 57.588 ± 0.42 J·K -1·mol-1

Ins. = 15.538 KJ·m01 ·
Enthalpy of Formation The chemical equilibria in the Fe-C-O and Fe-H-O system have been studied by many investigators. Using the reported equilibrium
constants for the following two reactions (A) $Fe_{0.947}O(cr) + CO(g) = 0.947Fe(cr) + CO2(g)$ and (B) $Fe_{0.947}O(cr, 1) + H2(g) = 0.947Fe(cr) + 1$
$H_2O(g)$, the corresponding enthalpy changes Δ_1H^2 were evaluated by both the 2nd and 3rd law methods. Based on the 3rd law values for Δ_1H^2 ,
the ΔH^{\prime} (Wustite, cr. 298.15 K) values were also calculated. The results obtained are presented as follows.

			Δ _r H°(298.15 K), kcal·mol ⁻¹	, kcal·mol-1	Δ _t H°(298.15 K)
Source	Reaction	7/K	2nd law	3rd law	kcal·mol-i
Eastman ⁴	⋖	873.2-1273.2	-3.80 ± 0.01	-4.01	-63.63
Eastman-Evans ²	∢	973.2-1273.2	-4.02 ± 0.01	-4.03	-63.61
Eastman!	В	873.2-1273.2	6.50 ± 0.12	5.90	-63.70
Eastman-Evans ²	83	973.2-1273.2	5.81 ± 0.01	5.07	-62.86
Emmett-Schultz3	B	873.2-1273.2	5.95 ± 0.07	5.82	-63.62
Britzke et al.4	В	1123.2-1498.2	-2.25 ± 0.03	4.26	-62.06
Jominy-Murphy3	മ	1360.0-1646.0	5.01 ± 0.61	6.01	63.81
Chipman-Marshall6	8	1438.2-1633.2	5.03 ± 0.34	5.85	-62.83
Chipman-Marshall ⁶	m	1653.2-1787.2	-2.61 ± 0.77	-0.02	61.87
Jominy-Murphy5	82	1698.0-1700.0	-0.87	-62.72	
Britzke et al.	U	1123.0 1473.0	-129.08 ± 0.18	-126.28	-63 14

Britzke *et al.*⁴ also determined the equilibrium pressures for the reaction (C) 1.894 Fe(cr) + O₂(g) = $2Fe_{0.94}$ O(cr). The corresponding Δ_4H^9 (298.15 K) for Wustite was evaluated based on the 3rd law value for Δ_4H^9 (298.15 K). The adopted value of Δ_4H^9 (Wustite, cr, 298.15 K) is the weighted average of the Δ_4H^9 (298.15 K) listed in the above table.

Heat Capacity and Entropy

capacities were determined by Coughlin et all. The two sets of C, data were plotted and joined smoothly at 298.15 K. The C, values above The low temperature (54.37-298.16 K) heat capacities were measured by Todd and Bonnickson. The high temperture (298-1650 K) heat 1650 K were obtained by graphical extrapolation. The low temperature (70.7-279.8 K) C,"s were also reported by Millar, S'(298.15 K) was cal-K-1 mol-1, the amount calculated for completely random distribution of the vacant Fe spaces in the Wustite lattice. However, the Gibbs energy functions derived from S'(52 K) = 0.696 cal·K⁻¹·mol⁻¹ give better agreement between 2nd and 3rd law values for A,H° than those derived from S'(52 K) = 1.11 cal·K⁻¹·mol⁻¹. Therefore, the value 0.41 cal·K⁻¹·mol⁻¹ was not added here. derived from the low-temperature heat capacities, based on S'(52 K) = 0.696 cal·K⁻¹·mol⁻¹. Todd and Bonnickson² added 0.41

Fusion Data

T_{tts} and \(\Delta_{tss}H^2\) were taken from Coughlin et al.\(^13\) T_{tss} was reported as 1372°C (1645 K) by Darken and Gurry\(^3\) and as 1369°C (1642 K) by Chipman and Marshall.\(^5\)

E. D. Eastman, J. Amer. Chem. Soc. 44, 975 (1922).

E. D. Eastman and R. M. Evans, J. Amer. Chem. Soc. 46, 888 (1924). The K, value at 1273.2 K for reaction (1) is rejected by a statistical

References

³P. H. Emmett and J. F. Schultz, J. Amer. Chem. Soc. **52**, 4268 (1930).

⁴E. V. Britzke, A. F. Kapustinsky and T. I. Schaschkuna, Z. anorg. allg. Chem. **219**, 287 (1934). The K_p value at 1123 K for reaction (3) is rejected by a statistical criterion.

W. E. Jominy and D. W. Murphy, Ind. Eng. Chem. 23, 384 (1931). The K, values at 1590 and 1645 K are rejected by a statistical criterion.

Chipman and S. Marshall, J. Amer. Chem. Soc. 62, 299 (1940).
 S. Todd and K. R. Bonnickson, J. Amer. Chem. Soc. 73, 3894 (1951).
 P. Coughlin, E. G. King and K. R. Bonnickson, J. Amer. Chem. Soc. 73, 3891 (1951).
 R. W. Millar, J. Amer. Chem. Soc. 51, 215 (1929).
 L. Darken and R. W. Gurry, J. Amer. Chem. Soc. 68, 798 (1946).

PREVIOUS:

FearnS₁(cr)

CURRENT: September 1977

 $\Delta_t H^o(0 \text{ K}) = -106.31 \pm 1.7 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^o(298.15 \text{ K}) = -105.44 \pm 1.7 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{\text{trg}}H^{\circ} = 0.398 \pm 0.84 \text{ kJ} \cdot \text{mol}^{-1}$ $S^{\circ}(298.15 \text{ K}) = 60.799 \pm 0.4 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Tm2 = 598 ± 3 K

CRYSTAL

Iron Sulfide, Pyrrhotite (FeastryS)

Enthalpy of Formation

The adopted value of AH"(298.15 K) is based on the calorimetric determination of Stolyarova and Bezmen assuming that their reported value refers to 298.15 K. This value carre from an average of eight determinations of ΔH° for Fe_{6.877}S(cr) + Zn(cr) \rightarrow ZnŠ(cr) + 0.877 Fe(cr). In the composition range y = 0.095 to 0.145, Bugli et al.² determined ΔH° (433 K) = -14.4 γ 0.025) kcal·mol⁻¹ for Fe- $S(cr) + yS(1) \rightarrow (1+y)Fe_{r(1,y)}S(cr)$. Using y = x/(1-x) we calculate that $\Delta_r H^o(433 \text{ K}) = -14.76x + 0.36$ kcal-mol⁻¹ for (1-x)FeS(cr) + xS(1) $\rightarrow Fe_{1-x}S(cr)$ in this same composition range. Using x = 0.123 and auxiliary JANAF data³ we can then calculate ΔH"(FearnS. cr) = -22.1 kcal-mol-1 based on Bugli's data. The difference between this value of ΔH"(298.15 K) and that of Stolyarova and Bezmen is probably due to different morphology of the products; Bugli et al. state they are uncertain as to the exact nature of their product. Due to the complicated and kmetically slow phase behavior of FeormS, it appears they may not have obtained the pure monoclinic product.

Heat Capacity and Entropy

is not present in pyrrhotite of composition Feo.1783 the heat capacity is assumed to be linear between 350 and 598 K where C (598 K) is The adopted heat capacities from 6-350 K are based on our analysis of the C_s^o data of Gronvold *et al.* Two small anomalies in the C_s^o curve, for which there is no obvious explanation, were observed near 8 and 30 K. These lead to entropy increments of 0 003 and 0.03 cal K⁻¹ mol⁻¹, respectively. Since there are no measured C_p^* or enthalpy data above 350 K, the C_p^* is estimated via the following procedure. Above TB, C_p^* is estimated as $C_p^*(Fe_{0.87}S, ct) + C_p^*(FeS, ct) = 0.123$ $C_p^*(Fe, ct)$ using auxiliary JANAF data. Since the $T\alpha$ transition present in FeS(ct, troilite) The value of $5^{\circ}(298.15 \text{ K})$ is derived from the appropriate integration of C_{p}^{o} data assuming $5^{\circ}(6 \text{ K}) = 0.0007 \text{ cal·K}^{-1}\text{-mol}^{-1}$ estimated via the procedure outlined above. Hirone et al. 5 observed non-linear behavior for C, of Feo, S from 513 to 593 K.

 T_{enj} and the β - γ transition is designated T_{en2} . We retain this nomenclature for $F_{0.877}$ 3 while recognizing that the α phase does not exist for this composition. Hirone *et al.*² found TB and Δ H β ° to be independent of composition so we adopt the same values as for FeS(α ; troilite). The transition at 411 K (T_{enj}) in FeS was found to be non-existent i compositions containing less iron than $F_{0.95}$ 3 so it will not be present FeS composition. The data presented in this table refer to the iron poor composition limit which is found to be Fe_{0.877}S below T_{m2}6. For stoichiometric FeS there are 3 crystalline polymorphs designated α , β , γ from low to high temperature, where the α β transition is designated in FearnS. The crystal structure of FearnS is hexagonal above Trez while the stable form below Trez is monoclinic. 77 The conversion from hexagonal to monoclinic when cooling through T_{not} is kinetically slow and even annealing for several months may not be sufficient for The mineral pyrrhotite has a composition range extending from FeS to Fe_{arry}S (~Fe5s), the name troilite is reserved for the stoichiometric complete conversion.67

References

T. A. Stolyarova and N. I. Bezmen, Russ. J. Phys. Chem. 50, 330 (1976).
 G. Bugli, L. Abello and G. Pannetier, Bull. Soc. Chim. Fr. 497 (1972).
 JANAF Thermochemical Tables: FeS(cr) 9-30-77; Fe(cr) 3-31-65; S(I) 12-30-65.

 Hirone, S. Maeda, S. Chiba and N. Tsuya, J. Phys. Soc. Japan 9, 500 (1954).
 Gronvold and H. Haraldsen, Acta Chem. Scand. 6, 1452 (1952).
 Nakazawa and N. Morimoto, Mat. Res. Bull. 6, 345 (1971). Gronvold, E. F. Westrum and C. Chou, J. Chem. Phys. 29, 528 (1959)

Iron Sulfide, Pyrrhotite (FeastryS)

PREVIOUS

CURRENT. March 1978 (1 (bar)

8.613 15.533 14.532 14.532 14.532 14.532 15.533 15.533 15.533 15.532 15.532 15.532 16.

> 47.257 45.612 51.825 51.825 51.827 51.117 57

PREVIOUS March 1978 (1 atm)

55.847 Iron (Fe)	Enthalpy Reference	T/K C;	200 21.588	<u>~</u>	300 25.140		1000 54,434	1042,000 83.6	4	22	1400 35.690	88	88		2300 46.024 2400 46.024 2500 46.024	2800 46.024	3000	ಬಸ	3200 26.856 3400 27.511	2	8 %	88	**	5400 36.1 5600 37.2	5800 38.5 6000 39.5
	e Temperature	•	88 17.949		27.476		55 61.679 34 66.672	.680 69.245 .681 69.245			90 81.845 26 84.336				24 110.875 24 112.833 24 114.712	24 119.928 24 121.543			56 237.237 11 238.885		.442 244.987 .270 246.422	42 247.831 58 249.219	1,022 250,587	20 253.284 74 254.618	13 255.947 53 257.275

ö

Iron (Fe)

REFERENCE STATE

Fe₁(ref)

Standard State Pressure = p = 0.1 MPa

ture = T, = 298.15 K nol-1 -[G*-H*(T,)]/T

kI-mol-

 $H^{\bullet}-H^{\circ}(T_{\epsilon})$

K crystal, delta K liquid K ideal monatomic gas

3133.345

1184 to 1665 to 1809 to above Refer to the individual tables for details.

crystal, alpha crystal, gamma -0.019

-14.082 -14.287

58.645

59.510 59.610 59.772 57 117

89.580 91.978

92 190

0.702 1.486 2.277 3.071

-0.001

0.010 0.052 0.065 0.056 0.029

-0.764 -0.267 0.044 0.330

46.865 47.249 49.571 51.775 53.869 55.866

38 493 38 535 39 455 40 459 41.463

40 794

o

ď

o.

29.972

44.815

72.062 75.260 75.830 78.985 81.830 84.518

83 680 83.681

C, LAMBDA MAXIMUM TRANSITION

8.613 11.939 15.553 19.582 24.329 26.960 26.960

32.642 35.063 37.498 39.922 42.342 43.372

52.119 56.940 61.679 66.672

46.997

32 049 34 602 37 949 54.54 ALPHA <- -> GAMMA --

33.619 34.298 38.238 42.077 45.974 <--> DELTA ---

- GAMMA

0.631 -0.001

49.969 52.620

760.78

88.721

41.112

00

Standard State Pressure = $p^* = 0.1$ MPa

Z F

 $H^{\bullet}-H^{\bullet}(T_{r})$

 $-[G^{*}-H^{*}(T_{*})]T$

_-K-'mol-'

log K,

0000 oʻ

ರರರರ ಕರಕಕ

0000000000

4.072 5.527

27.321 27.632 28.335 29.263 30.323

25.140 26.287 27.386 28.518 29.702

27.321

25.094

298.15

CRYSTAL(α-δ)

Ar = 55.847 Iron, Alpha-Delta (Fe)

Enthalpy Reference Temperature = T_r = 29&15 K Δ_{ust}H° = 0 kJ·mol⁻¹

 $\Delta_t H^0(0 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_1 H^{\circ}(298.15 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$

Δ_{tr2}H° = 0 900 ± 0 042 kJ·mol⁻¹ $\Delta_{\rm tra}H^{\circ} = 0.837 \pm 0.084 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{tus}H^{\circ} = 13.807 \pm 0.837 \text{ kJ} \cdot \text{mol}^{-1}$

The current literature was surveyed by Hultgren | Smoothed low temperature heat capacity values are obtained by fitting the data²⁻⁷ integrate over the adopted smoothed heat capacity values to obtain S'(298.15 K) = 6.529 cal K-1 mol-1 An uncertainty of 0.015 -1 mol -1 arrses due to the choice of heat capacity values in the region 20-55 K. In this region there is considerable disagreement between the reported heat capacity values of Eucken and Werth,² Simon and Swain, and those of Duyckaerts, and Keesom and Kurrelmeyer.⁵ An additional uncertainty of 0.01 cal K⁻¹ mol⁻¹ results from the differences in the range 50-298 K in the heat capacity data of Kelley,⁹ and -lou. graphically and with orthogonal polynomials over selected overlapping temperature intervals Using S°(20 K) = 0.0364 cal K Stepakoff and Kaufman.

temperature studies) is available on request. The adopted heat capacity values above 400 K are those selected by Hultgren* and Orr and Chipman.9 The method of orthogonal polynomials is used to join smoothly the low and high temperature heat capacity values. The smooth heat capacity values for metastable α-Fe in the range 1184-1665 K are adjusted from those of Hultgren s so as to yield the proper entropy values for y-Fe. The available heat capacity/enthalpy data show differences up to 10% in C, for 8-Fe with the major discrepancies being The heat capacity and enthalpy studies above room temperature and numerous. A bibliography of all known studies (including low different slopes in dC2/dT

Transition Data

The enthalpies of the α-γ transition at 1184 K and the γ-8 transition at 1665 K are those selected by Hultgren and Orr and Chipman. The α and δ phase has a bcc structure whereas the γ phase has a fcc structure

Fusion Data

Refer to the liquid table for details

Sublimation Data

The value adopted for the enthalpy of sublimation is that selected by Hultgren* and is based on a 2nd and 3rd law analysis of sublimation data over y-Fe Refer to the ideal gas table for details.

References

**Rultgren, Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, private communication.

2A. Eucken and H. Werth, Z. Anorg. Chem. 188, 153 (1930).

3E. Simon and R. C. Swan, Z. Physik Chem. 28b, 189 (1935).

4G. Duyckaerts, Physica 6, 401 (1939), Compt. Rend. 208, 979 (1939).

⁵H W Keesom and B. Kurrelmeyer, Physica 6, 633 (1939).

K. K. Kelley, J. Chem. Phys. 11, 16 (1943).
 G. L. Stepakoff and L. Kaufman, Acta Met. 16, 13 (1968).
 R. Hultgren et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals Park, Ohio,

L. Orr and J. Chipman, Trans Met. Soc. AIME 239, 630 (1967)

Iron, Afpha-Delta (Fe)

PREVIOUS: March 1965

Fe₁(cr)

CURRENT March 1978

(fus = 1809 ± 5 K (8-1) (rr3 = 1665 ± 3 K (y-8)

Enthalpy of Formation

Zero by definition,

Heat Capacity and Entropy

 $S^{\circ}(298 \text{ 15 K}) = 27.32 \pm 0.13 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Iron, Alpha-Delta (Fe)

 $r_{rel} = 1042 \pm 1 \text{ K}$ (Curie temp) $r_{rel} = 1184 \pm 3 \text{ K}$ ($\alpha - \gamma$)

_
e

7.738 g L·mol - Cold Enthalpy Reference Temperature - T 284.18 K 0.042 g L·mol - T. K 1.	- 55.847	A _r = 55.847 Iron, Gamma (Fe)	ıma (Fe)						Fe ₁ (cr)
T/K C, S - (G-IF(T)) T H'-H'T, \(\text{AH}\) \(\text{AH}\) \(\text{L}\) \(\text{C}\) \(\text{D}\) \(\text{C}\) \(\text{D}\) \(D	kJ·mol-1	L	eference Ter	nperature =	T, = 298.15	<u></u>	Standard Stat	1 8	p* = 0.1 MPa
100 200 200 200 200 200 200 200 200 200	KJ-mol-1				-H(T,)]T	H*-H*(T,)	I	$\Delta_i G^{\bullet}$	log Kr
298.15 26.469 33.545 0.0.7788 330 26.483 35.799 35.546 0.0.99 77.90 440 27.320 46.683 35.799 35.546 450 27.320 46.683 37.799 35.546 450 27.320 46.683 37.599 37.599 450 27.320 46.683 37.599 37.599 450 28.935 44.439 40.882 8.311 7744 660 28.935 44.837 40.882 8.311 7744 870 28.935 44.837 40.882 8.311 7744 870 31.299 31.596 67.088 67.088 67.089 11.312 77.146 870 31.299 31.596 67.088 67.088 67.089 11.312 77.294 870 31.290 31.290 70.431 67.292 20.083 67.290 870 31.290 34.293 70.431 67.292 20.083 67.290 870 31.290 80.201 62.344 67.292 0.0 870 31.290 80.201 62.344 67.292 0.0 870 31.290 80.201 62.344 67.292 0.0 870 31.290 80.201 62.344 67.293 0.0 870 40.371 97.273 62.349 67.198 0.0 870 40.371 97.273 62.349 67.198 0.0 870 40.371 97.373 66.344 67.389 0.0 870 40.371 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.384 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.374 97.373 66.344 67.389 0.0 870 40.384 97.373 66.344 67.389 0.0 870 40.384 97.373 66.344 67.389 0.0 870 40.384 97.373 66.344 67.389 0.0 870 40.384 97.373 66.344 67.389 0.0 870 40.384 97.373 66.344 67.389 0.0 870 40.384 97.373 66.344 67.389 0.0 870 40.384 97.384 9	298.15 K)	0 8 8 8 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5							
300 26.483 315.96 135.44 1789 40.09 1789 40.0 1284 1789 40.0 1282 18.50 13.50		298.15	26.469	35.545	35.545	0	7.788	5.336	-0.935
400 27322 4344 16.594 2779 1832 50.0 28.90		85	26.485	35.709	35.546	0.049	7.790	5321	-0.926
450 27.740 46.683 75.59 4116 7782 66.683 75.99 7	the heat	9	27.322	43.443	36.594	2.739	7.853	4.484	-0.586
600 28.995 54.837 40.885 8.71 75.46 800 30.686 63.408 45.864 11.312 71.61 800 31.506 67.088 45.864 11.312 71.61 800 31.506 67.088 45.864 11.312 71.61 800 31.506 67.088 45.864 11.312 71.446 800 31.506 67.088 45.864 11.312 71.446 800 31.506 67.088 45.864 11.312 71.446 800 31.802 31.802 70.431 49.792 20.638 41.791 800 34.832 76.020 33.443 26.731 ALPHA < 800 34.833 79.231 35.607 97.334 97.237 9. 800 35.506 81.348 57.348 97.386 9. 800 35.506 81.348 57.348 97.386 97.989 97.882 818 67.790 67.71 41.550 -1.0590 87.910 62.346 45.338 97.186 -1.0570 87.318 97.319 97.477 97.433 68.243 57.165 -1.6770 97.477 97.433 68.243 57.165 -1.6770 97.477 97.433 68.243 57.165 -1.6770 97.477 97.433 68.244 57.186 -1.6770 97.477 97.433 68.244 57.186 -1.6770 97.477 97.433 68.244 57.166 97.1670 97.477 97.433 68.244 57.186 -1.6770 97.477 97.433 68.244 57.186 -1.6770 97.477 97.433 68.244 57.186 97.186 97.434 99.375 69.614 65.474 -1.71.186	es chosen	\$ 8	28.158	46.685	37.539	4.116	7 832	4064	-0 472
800 30,689 61,489 61,4131 7161 8100 31,599 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,489 61,499 6	ountags,	98	28.995	54.837	40.885	8.371	7.546	2.847	-0.247
900 31.506 67.058 45.486 17.446 56.577 1000 31.506 67.058 45.486 17.446 56.577 11.000 31.342 70.431 49.792 20.638 4.097 11.000 31.342 70.431 49.792 20.638 4.097 11.000 31.342 70.431 49.792 20.638 4.097 11.000 31.340 73.533 31.812 23.915 1.730 1.730 31.630 31.630 81.843 57.344 37.274 0. 1.000 31.630 81.843 57.344 37.274 0. 1.000 31.630 81.843 57.344 37.274 0. 1.000 31.630 81.843 57.344 37.274 0. 1.000 31.630 81.843 57.344 37.274 0. 1.000 31.630 81.843 57.344 37.274 0. 1.000 31.000 31.270 82.18 61.794 43.996CGAMMA < 1.000 31.000 31.000 31.277 61.278 43.996CGAMMA < 1.000 31.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.277 91.278 91.277 91.27	etastable	200	29.832	59.369	43.209	11.312	7.161	2.086	-0.156
1000 31.342 70.431 49.792 20.638 4.097 1100 31.342 70.431 49.792 20.638 4.097 1100 31.179 71.535 51.812 21.915 1.730 11840000 31.822 76.020 53.443 26.731 ALPHA <-1200 34.853 79.231 55.602 30.718 0.0 1400 35.602 81.843 57.344 37.274 0.0 1400 35.602 81.843 57.344 34.245 0.0 166.000 37.363 84.336 59.099 37.856 0.0 166.000 37.363 82.18 61.794 43.996 GAMMA <-1700 38.200 40.710 62.346 45.328 -0.950 15.000 40.710 95.417 66.834 57.136 -1.285 15.000 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 -1.285 15.200 40.710 95.417 66.834 57.136 15.200 10		38	31.506	67.068	42 480 47.684	17.456	5657	2867	-0.091
1100 33.179 73.553 51.812 23.915 1.730 1184,000 33.882 76.020 53.443 26.731 ALPHA < 1200 34.853 79.231 53.602 30.718 0. 1400 35.560 84.356 59.099 37.860 0. 1500 37.563 86.730 60.751 41.550 0. 1663,000 77.907 88.218 61.794 43.996 CAMMA < 1700 39.077 91.217 65.889 64.199 -1.285 1800 39.077 91.217 65.889 53.166 -1.5717 2000 41.547 97.423 68.243 61.778 -16.780 2100 41.547 97.433 69.614 65.474 -17.186 2200 42.384 99.375 69.614 65.474 -17.186 2200 42.384 99.375 99.614 65.474 -17.186 2200 40.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000 2200 80.000		00	32.342	70.431	49.792	20.638	4.097	0.338	-0.018
1184,000 33,882 76,020 53,443 26 731 ALPHA < 1200 34,016 76,271 53,747 27,274 0, 1300 34,835 79,231 53,602 30,718 0, 1400 33,6500 81,845 57,384 34,245 0, 1500 35,550 81,345 57,384 34,245 0, 1500 37,307 88,218 61,794 43,996 GAMMA < 1600 37,307 88,218 61,794 43,996 GAMMA < 1700 39,874 93,370 62,346 45,3280,950 81,200 39,874 93,370 62,346 57,165 -16,270 20,00 39,874 99,375 69,614 65,474 -17,186 17,1		901	33.179	73.553	51.812	23.915	1.730	0	-0.004
1200 34016 76.476 53747 27274 0		1184,000	33.882	76.020	53.443	26 731		1	
1400 34,533 74,241 37,384 34,718 0. 1500 34,525 84,335 59,059 37,856 0. 1600 37,357 86,720 60,731 41,550 0. 1665,000 37,397 88,218 61,734 43,995 -0.950 1700 38,200 89,010 62,346 45,338 -0.950 1700 38,200 89,010 62,346 45,338 -0.950 1800 39,037 91,217 65,839 67,150 -1,235 1900 39,574 97,423 68,243 51,156 -1,570 2200 41,347 97,423 68,243 61,778 -1,6770 2200 42,384 99,375 69,614 65,474 -17,186 PREVIOUS.		1200	34.016	76.476	53.747	27.274	0	Ö	0.
1500 36.526 84.336 59.099 37.856 0. 1600 37.363 86.720 60.751 41.550 0. 16655000 37.907 88.218 61.794 43.996 -0.950 1700 38.208 86.178 65.346 45.338 -0.950 1800 39.037 91.217 65.834 53.136 -1.253 1900 39.874 99.237 66.514 65.474 -17.186 2200 40.547 99.237 69.614 65.474 -17.186 PREVIOUS.		86	35,600	1576/	200.00	30.718	o o	oʻ c	o o
1600 37.363 86.720 60.751 41.550 0. 1665.000 37.397 88.218 61.794 43.996 GAMMA <	nication.	808	36.526	84,336	59.093	37.856	်ဝံ	ö	်ဝံ
1665,000 37,907 88,218 61,794 43,996 GAMMA	rk, Ohio,	1600	37.363	86.720	60.751	41,550	o.	Ö	ó
38.200 89.010 62.346 45.328 -0.950 39.037 91.217 63.889 49.190 -1.285 39.874 93.350 66.384 53.156 -16.290 41.547 97.423 68.243 61.278 -16.780 42.384 99.375 69.614 65.474 -17.186		1665,000	37.907	88.218	61.794	43.996	GAM	V	
39,037 91,217 65,889 49,180 -1,285 39,874 93,350 65,384 53,136 -1,5717 40,710 95,417 66,834 57,165 -16,270 41,547 97,423 68,243 61,278 -16,780 42,384 99,375 69,614 65,474 -17,186		1700	38.200	89.010	62.346	45.328	-0.950	0	-0.001
95,474 95,417 66,834 53,156 -16,780 41,547 97,422 68,243 61,278 -16,780 42,384 99,375 69,614 65,474 -17,186		08	39.037	91.217	63.889	49.190	-1285	0.085	-0.002
41.547 97.423 68.243 61.278 -16.780 42.384 99.375 69.614 65.474 -17.186		300 700 700 700 700 700 700 700 700 700	40.710	95.417	85.834 834	57.15	-15.717	0.873	-0.024
42.384 99.375 65.614 65.474 -17.186		816	41 547	20.00	68 743	82.19	082 91 -	YEAC.	1000
		2200	42.384	99.375	69.614	65.474	-17.186	3.612	-0.086
		PREVIOUS						CIBBER	T. March 1075

CRYSTAL(y)

 $\Delta_1 H^o$ (298.15 K) = 7.788 kJ· $\Delta_{tri} H^o$ = 0 900 ± 0.042 kJ· $\Delta_{tri} H^o$ = 0.837 ± 0.084 kJ·

Enthalpy of Formation Tur2 = 1665 ± 3 K (y-8)

 $S^{(298.15 \text{ K})} = 35.545 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Iron, Gamma (Fe)

 $T_{cri} = 1184 \pm 3 \text{ K } (\alpha - \gamma)$

The enthalpy of formation at 298.15 K is obtained from that of Fe(α) by adding $\Delta_{cs}H^*$ and the difference between $H^*(1184)-H^*(298)$ of Fe(α] and Fe(γ).

Heat Capacity and Entropy

A current literature survey by Hultgren' yielded approximately twenty heat capacity/enthalpy studies which gave information as to the capacity of y-Fe in the stable and metastable region. A listing of these studies is available on request. We adopt the heat capacity values c by Hultgren² and Orr and Kubaschewski, Braun and Kohl and Kubaschewski, Braun and Kohl and Wallace et al. However, all the available heat capacity/enthalpy data show discrepancies up to 5% (in C₂), with the major discrepance. appearing as different slopes in C^o vs T plots. Values are not extended below 298.15 K due to the lack of substantial data in this mer region. The entropy at 298.15 K is calculated in a manner analogous to that used for the enthalpy of formation.

Transition Data

Refer to the Fe(α , δ) table.⁷

References

1R. Hultgren, Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of Califormia, personal communic

2R. Hultgren, et al., "Selected Values of the Thermodynamic Properties of the Elements." American Society for Metals, Metals Park,

¹ R. L. Orr and J. Chipman, Trans. Met. Soc. AIME 239, 630 (1967).
 ⁴ W. A. Dench and O. Kubaschewski, J. Iron steel Inst. 201, 140 (1963).
 ⁵ M. Braun and R. Kohlhaas, Phys. Stat. Sol. 12, 429 (1965).
 ⁶ D. C. Wallace, P. H. Sidles, and A. C. Danielson, J. Appl. Phys. 31, 168 (1960).
 ⁷JANAF Thermochemical Tables. Fe(c, α) 3-31-78.

00000

64245 68.848 73.450 78.052 82.655 87.257 91.860

ರರರರ ರ

0000000000000

71.712 73.351 74.938 76.476 77.968 79.417 80.823 82.190 83.519 84.813

110.875 112.834 114.712 116.517

46.024 46.024 46.024 46.024 46.024

96.462 101.064 105.667 110.269 114.872

00

-> LIOUID

60.057

46.024

46.024 46.024 46.024 46.024 -0.121 -0.293 -0.454 -0.605

7.424 18.511 29.541 40.516 51.439

-346.399 -344.531 -342.697

121,009 124.076 128.679 133.281 137.884

119.474

86.073 86.485 87,300 88,496 89,664 90,803

46.024

121.543 123.103 124.613 125.105 126.074 127.490 128.864 130.198

46.024 46.024 46.024 46.024 46.024

-0.746 -0.880 -1.005 -1.124 -1.236

-339.131 -337.401 -335.707 -334.051 -340,896

142.486 147.088 151.691 156.293 160.896

91.915 93.002 94.064 95.103 96.120

46.024 46.024 46.024 46.024 46.024 46.024 46.024

Standard State Pressure = p = 0.1 MPa

K-mol-

log Kr

Ş

 Δ_H

 $H^{\bullet}-H^{\bullet}(T_{\epsilon})$

 $-[G^{\bullet}-H^{\circ}(T_{t})]T$

ť

Z,

-1.783 -1.769 -1.230 -1.050 -0.906 -0.536 -0.421 -0.332

10.177 10.163 9.791 9.675 8.675 7.793 7.187 6.447 5.049 4.501

12.395 12.395 12.394 12.394 12.395 12.395 12.395 12.085 11.356 11.356 9.966 9.966

-0.214

S <--> LIQUID

9

40.082 44.593 44.934 44.934 49.689 51.992 54.242 54.242 54.243 56.243 60.649 66.438 66.438 66.438

80.932

43.689 46.024 46.024 46.024 46.024

84.616 88.027 91.202 94.172 96.963 99.593 99.823 102.082 104.442 106.688

8.613 11.933 15.486 19.272 23.291 27.543 32.028 32.028

32,033 34,363 36,694 39,024 41,355

-0.141 -0.110 -0.080 0.051 0.002 0.002

3.521 2.941 2.288 1.571 0.069

36.631 41.233 45.836 50.438 55.040 59.643

13.495 13.370 13.776 10.521 11.596 12.588

Enthalpy Reference Temperature = T, = 298.15 K A, = 55.847 Iron (Fe)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [12.395] \text{ kJ} \cdot \text{mol}^{-1}$

 $\Delta_{\text{fus}}H^{\circ} = 13.807 \pm 0.4 \text{ kJ} \cdot \text{mol}^{-1}$

LIQUID

ron (Fe)

S°(298.15 K) = [34.763] J·K⁻¹·mol⁻¹ **Enthalpy of Formation** (les = 1809 ± 5 K (8-1)

The enthalpy of formation at 298.15 K is calculated from that of the combined phase crystal (a-y-8) by adding AwH and the difference in enthalpy, H°(1809 K)-H°(298.15 K), between the crystal and liquid.

Heat Capacity and Entropy

used for the enthalpy of formation. A current literature survey¹ revealed numerous heat capacity and enthalpy studies in the liquid region which yielded heat capacity values in the range 8.0 to 12.4 cal·K⁻¹·mol⁻¹ as given in the table below. The more recent studies by Braun et al., using a quasi-adiabatic calorimeter suggest $C_p^* = 10.938$ cal·K⁻¹·mol⁻¹ whereas the levitation calorimetric enthalpy measurements of Margrave et al.¹² ¹⁴ suggest 10.29 ± 0.29 and 11.138 ± 0.43 cal·K⁻¹·mol⁻¹ respectively. The heat capacity of the liquid is taken to be 11.0 cal K-1 mol-1 as in Hultgren and Orr and Chipman. We adopt this value in the real liquid region as well as in the extrapolated region to 1200 K and to 3500 K. Below 1200 K, heat capacity values are chosen so as to form a curve which joins smoothly the a-Fe heat capacity values in the range 298-500 K. The entropy is calculated in a manner analogous to that

Fusion Data

The adopted T_{tus} and Δ_{tus}H^a values are those selected by Hultgren¹ and Orr and Chipman,² 1809 ± 5 K and 3300 ± 100 cal·mol⁻¹, respectively. Reported values for $\Delta_{lm}H^o$ vary from a low of 2760 to a high of 3865 cal mol⁻¹, as given in the table below

The boiling point is calculated from the adopted thermodynamic functions and the chosen enthalpy of sublimation so that the Gibbs energy functions calculated by integration of the crystal-liquid data and by statistical methods for the gas phase are equal at $T_{
m u}$ Vaporization Data

		Calorimetric		Α. Η.	U	
Reference	Year	Method	T _{fus} , K	kcal·mol-1	cal K ⁻¹ ·mol ⁻¹	T/K
	l	drop	1081	2760	28	173 - 1873
^		mixture	1800	3865	12 200	270 - 1013
•		-		000	06771	273 - 1900
,		dom	1081	3595	11.2	370 - 1860
		mixture	9081	3658	8.0	1773 - 1973
•		dorp	1 + 6081	3797 + 80	966 11	0100
•					77:00	1007 - 2210
9		dop	808	3298 ± 100	9.766	1720 - 1875
: :		quasi adiab.	608	3442 + 50	10.038	300
= :		exploding wire	3256			361
2 :		levitation	3307 ± 70	10.29 ± 0.29	1804 - 2142	
<u> </u>	1974	pulse	1808 ± 5			
•		levitation	181	3370 + 90	11 138 + 0.43	

References

R. Hultgren et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals Park, Ohio,

²R. L. Orr and J. Chipman, Trans. Met. soc. AIME 239, 630 (1967).

¹R. Hultgren, Materials and Molecular Research Division, Lawrence Berkeley laboratory, University of California, Personal communication.

F. Wust, A. Meuthern, and P. Durrer, Forsch. Gebiete Ingenieurw., VDI-Forschungsh. 204 (1918).
Minino, Sci. repts. Tohoku Imp. Univ. 18, 91 (1929); 15, 597 (1926).
Derhoffer and W. Grosse, Stahl u. Eisen 47, 576 (1927).

I. R. Pattison and P. W. Willows, J. Iron Steel Inst. 183, 390 (1956).

⁸A. Ferrier and M. Olette, Compt. Rend. 254, 2322 (1962).

91. P. Mooris, P. F. Foerster, C. W. Schultz, and G. R. Zellars, U. S. Bur. Mines RI 6823, (1966).

¹⁰M. Braum and R. Kohlhaas, Phys. Stat. Sol 12, 429 (1965); O. Vollmer, R. Kohlhaas, and M. Braum. Z. Nturforsch 21, 181 (1966); M. Braum,

R. Kohlhzas, and O. Vollmer, Z. Angew. Phys. 25, 365 (1968).

"S. V. Lebedev, A. I. Savvatimskii, and Yu. B. Smirnov, High Temp. 9, 578 (1971).

"J. A. Treverton and J. L. Magrave, J. Chem. Thermodyn. 3, 473 (1971).

"A. Cezairliyan and J. L. McClure, J. Res. Nat. Bur. Std. 78A, 1 (1974).

¹⁴J. L. Margrave, Report ORO-2907-92, (1972).

Iron (Fe)

PREVIOUS: March 1965

Fe₁(1)

CURRENT: March 1978

J. Phys. Chem. Ref. Data, Monograph 9

_
Φ
뜨
_

7/K 0 100 200 200 298.15 300 400 500	٤	2			֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜		
298.15 200 300 400 500	•		-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$	$\Delta_r H^{\bullet}$	δ.	log Kr
200 200 300 200 200 200 200 200	Ö	0	INFINITE	-4.507	o	oʻ	ó
298.15 300 400 500 600	12.101 21.588	17.949	46.905 29.524	-4.084 -2.315	ರ ರ	ರ ರ	ರ ರ
86 88 88	25.094	27.321	27.321	0	ó	oʻ	o
88	25.140	35.00	27.321	0.046	00	o' c	o' c
8	20,702	41 377	101.05	5 577	· c	jc	<i>i</i> c
	32.049	46.997	32.642	8.613	်ဝံ	ó	ó
88	34.602	\$2.119	35.063	11.939	o' c	o' c	o
8	43.095	61.679	39.922	19.582	óo	• •	ó
1000	54.434	66.672	42.342	24.329	ó	0	o
1042,000	83.680	69.245	43.372	26.960	CLAN	LAMBDA MAXIMUM	W ₅
100	46.401	72.062	44.815	29.972	ď	0	Ó
1184,000	41.422	75.260	46.865	33.619	ALPHA	. <> GAMI	
1184.000	33.882	76.020	46.865	34.519	İ	TRANSITION	
200	34.016	76.476	47.257	35.062	o' c	o o	0'0
8	35.690	81.845	51.822	42.033	်ဝ	ó	j
1500	36.526	84336	53.907	45.643	Ö	0	ö
0091	37.363	86.720	55 884	49.338	ó	oʻ	ď
1665 000	37.907	88.218	57 117	51.784	GAMMA	MA <> DELTA	, 1 7
00000	41.112	88.721	2/11/	17975		IKANSIIION	
88	41.463	91.978	57.776 59.610	54.066 58.263	ဝဝံ	ರ ರ	o o
1809.000	42.558	92.190	59.772	58.645	DET	DELTA <> LIQUID	e e
000.6081	40.024	57866	59.112	72.452		TRANSTITON	
88	46.024	104.442	63.821	81.243	ာ်ဝံ	ಶರ	ာ်ဝံ
2100	46.024	106.688	65.809	85.845	0	0	o'
2300	46 024 46 024	108.829	67.716	95.050	o' c	o c	o c
2400	46.024	112.833	71.312	99.653	ó	6	ó
8 8	40.024	114./12	71,50	104.255	oʻ (ರ (oj (
2700	46.024	118.254	76232	113,460	ာ် င	် ဝ	ာ် တံ
2800	46.024	119.928	71.763	118.062	o'	oʻ.	oʻ.
888	46.024	123,103	79.245 80.681	127.267	င် င	ರ ರ	ರ ರ
3100	46.024	124.613	82.074	131.869	ó	ó	
3133,345	46.024	125.105	82.529	133.404	FU	FUGACITY - 1 ba	
3200	46.024	126.074	83.426	136.472	-348.300	7.424	-0.121
3300	46.024	127.490	84.740	141.074	-346399	18.511	-0.293
3200	46.024	130.198	87.261	150.279	-342.697	40.516	-0.605
3600	46.024	131.495	88 472	154.881	-340.896	51.439	-0.746
3700	46.024	132.756	89.652	159.484	-339.131	62.313	-0.880
388	46.024	135.179	91.925	168.689	-335.707	83.921	-1.124
4000	46.024	136.344	93.021	173.291	-334.051	94.660	-1.236

A_r = 55.847 Iron (Fe)

Fe₁(cr,l)

CRYSTAL(α-γ-δ)-LIQUID

555 0 t 1184 f 1665 a Refer to the individual tables for details.

CURRENT: March 1978 (1 bar)

Fe ₁ (g)
<u>و</u>
<u>و</u>
Fe ₁
Fe
Ę
щ
ŭ
ш.
_

 $S^{\circ}(298.15 \text{ K}) = 180.49 \pm 0.04 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

IP(Fe, g) = $63480 \pm 500 \text{ cm}^{-1}$

IDEAL GAS

3 kJ·mol	
$\Delta_t H^{\circ}(0 \text{ K}) = 413.1 \pm 1.3$ $\Delta_t H^{\circ}(298 \text{ 15 K}) = 415.5 \pm 1.3$	

A, = 55.847 Iron (Fe)

			Δ _t H°(298 15)
Electronic	Electronic Levels and Quantum Weights	Weights	
State	€,, cm ⁻¹	, «	
Ž	0.000	6	
ؙۣڝٛ	415.932	7	
ر ڭ	704.004	S	
ָס <u>ָ</u>	888.129	3	
ď	978.072		

Enthalpy of Formation

The sublimation and vaportzation studies on Iron are too numerous to tabulate. A current literature survey by Hultgren yielded approxiand Myles and Aldred. A complete listing of all vapor pressure studies is available on request. Many of the more recent studies do not provide mately thirty investigations. As in Hultgren, we adopt AH'(Fe, g, 298.15 K) = 99.3 ± 0.3 kcal mol⁻¹ based on the studies of Morris et al. sufficient information to enable calculation of entitalpy of formation values via the 2nd and 3rd law approach.

62081.27 63480

Our 2nd and 3rd law analyses of the vaporization data of Morris et al. 3 and the sublimation data of Myles and Aldred are given below.

Δ,H°(298.15 K), kcal·mol ⁻¹ Dnft Δ,H°(298.15 K) 7/K 2nd law 3rd law cal·K ⁻¹ ·mol ⁻¹ kcal·mol ⁻¹	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Data Points T/K	21 1812–18 eqn 1450–16
Source	Fe(I) = Fe(g) Fe(y) = Fe(g)

Heat Capacity and Entropy

four excited states, the highest observed excited state, and the ionization limit for Fe(g), all levels listed by Reader and Sugar, as well as for Fe(g) the thermochemical functions are independent of the estimated missing levels (for n = 4, 5, 6, 7) and the cutoff procedure up to 3500 K. The Gibbs energy function is essentially unaffected up to 5200 K. The reported uncertainty in \$°(298 15 K) is due to uncertainties in the relative atomic mass and the fundamental constants. Extension of these calculations above 6000 K may require consideration of the The electronic energy levels are given in the compilation by Reader and Sugar. Although we have only listed the ground state, the lowest estimated missing levels, are used in the calculations. The observed levels are too numerous to list completely. Our calculations indicate that higher excited states and utilization of proper fill and cutoff procedures. In fact, the inclusion of some higher states (n = 4, 5, 6, 7) and consideration of various cut-off procedures leads to calculational differences in the Gibbs energy function of roughly 0.1 cal-K⁻¹ mol⁻¹ or greater at temperatures in excess of 8000 K.

References

¹R. Hultgren, Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, personal communication. ²R. Hultgren et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals Park, Ohio,

¹J. P. Morris, G. R. Zellrs, S. L. Payne, and R. L. Kipp, U.S. Bur. Mines RI 5364, (1957).

⁴K. M. Myles and A. T. Aldred, J Phys. Chem. 68, 64 (1964).

Reader and J. Sugar, J. Phys. Chem. Ref. Data 4, 353 (1975).
 R. Downey, The Dow Chemical Company, Report AFOSR-TR-78-0960, Contract No. F44670-75-1-0048, (1978).

1	Enthalov B	L enemala	Enthainy Reference Termoerature					
<u>-</u>			J·K 'mol	:		Standard State Pressure k I-mol ⁻¹		p° = 0.1 MPa
	7. R	ប	.s -[0	-[G*-H*(T,)]/T	$H^{\circ}-H^{\circ}(T_{r})$	Δ _t H°	Δ _C •	log K
	٩٤	0 387	0.5	INFINITE	-6.850	413 127	413 127	INFINITE
	2	24.362	170 450	182.809	-4.762	414.794	399 930 384 814	- 208.902
	28 52	25.675	180.488	180.909	-1.228	415.420	377.176	-78.807
	90	25.683	180 647	100.400		415.471	369.804	-64 788
	88	25 718	184612	180.801	1334	415.472	369.521 361.862	-64.339
	\$	25.23	191.027	181 497	2.616 3.885	415.412	346 563	-46.255
	8	24.889	193.668	183.391	5.138	415.082	338 937	-35.409
	38	23.610	201.829	185.430 187.569	7.592 9.987	414.451	323 762	-28.186
	88	23 133	204.949	189.551	12.318	412.236	293.829	-19.185
	28	22.488	210.035	191 416 193.161	14.612 16.874	410.501 408.016	279 127	-16.200
	2002	22.297	212.168	194.793	19.113	404.612	250.495	-11.895
	000	22 137	215.876	197.760	23.551 23.551	401 745	236.592	-10.299
- 1	<u>8</u> 8	22.23	217.517	199 113 200.392	25.766	399.204	209.263	-7.808
1.3	1900	22.356	220.487	201.603	30.213	396.347	182.320	-5.952
ide	081	22 726	223.140	203.851	32.457 34.719	393.862	155.827	-5.193
	96 200 200 200 200 200 200 200 200 200 20	22.958	224.374	204.899	37.003	375.834	143.477	-3944
 ≩	2100	23 485	226.698	206.866	21.555 41.645	373.340	505.161	-3.429
	2200	13.77	727.797	207.793	44.009	369.033	107.303	-2569 -2548
	25.	24365	229.890	209.548	46.401 48.822	366.822 364.641	95 456 83 705	-2.168
	0007	24669	230.891	210.381	51.274	362.490	72.043	-1.505
	202	25.284	232.813	211.189	53.756	360.370	60 467	-1.215
	2800	25.594	233.738	212.733	58.813	356.222	37.554	-0.34
	900	26.219	235.525	214.194	61.388 63.994	354.195 352.198	26.209	-0 472
ī	3100	26.536	236.390	214.896	66.632	350.234	3.724	-0.063
as	3133,345	26.642	236.674	215.126	67.518	FUGACIT	CITY - 1 bar	
ıaı	3300	26.836 27 181	238,069	215.581	69.301 73.001	o' c	o o	oʻ (
១៥	3500	27.511 27.848	238.885	216,903	74.738	ide	ာ်ဝင်	ာ်ငံ
3 .5	3600	28.192	240.477	218.169	80.308	<i>i</i> c	> 0	o d
2 2	3700 3800	28.544	241.254	218.783	83.144	o o	0 6	00
ъ	3004	29.274	242.776	219.974	88.925	ာ်ဝင်	00	ರ ರ
	4100	30.043	244.258	221.123	94.856	> ¢	o c	တံ ဇ
	4 4 4300	30.851	244.987	221.682	97.881	00	ö	0
ġ.	4400 4500	31.270	246.422	222.774	104.051	ာ်ဝင်	ာ် ဝ	ರ ರ
ó	4600	32.142	247.831	223.833	110.392	o c	ဘ ဇ	0 0
	64 89 80 80	32.594	248.527	224.351	113.628	io	000	်ဝံ
-	649	33.533	249.905	225.366	120.240	ာ် ဝေ	o o	00
	200	34.022	185052	225.864	123 618	o o	0 1	o ·
	220	35.040	251.941	226.841	130.523	ာ်ဝံ	00	ರ ರ
	888	36.120	253.284	227.795	137.638	ರ ರ ರ	00	ರ ರ
	2009	37 774	254619	0.1.977	141.278	ರ (o i	oʻ
	808 800 800 800	37,882	255.283	229.189	148.734	ರರಂ	ဝဝ	ರರ
	00 00 00 00 00 00 00 00 00 00 00 00 00	39.170	256.611	230.097	156.437	ಶರೇ	၁ဝေ	ರರಂ
_				: }		ż	si .	3

PREVIOUS March 1978 (1 atm)

CURRENT June 1984 (1 bar)

(Fe ⁺)
5
ron.

PREVIOUS March 1978 (1 atm)

_
_
-
0
=
Ŀ.
=
0
۲
_
_
S
4
645
=
য
m
٠.
55
77
4,
•••
II
*
~

Fe⁺

Fe;(g)

172.52 ± 7.5 kJ·mol⁻¹ -[1181.144] kJ·mol-

IDEAL GAS

ron, lon (Fe⁺)

Electronic Levels and Quantum Weights State
--

Enthalpy of Formation

which is derived from the 1973 CODATA fundamental constants.3 Rosenstock et al. and Levin and Lias have summarized additional $\Delta_t H^o(\text{Fe}^*, g. 0 \text{ K})$ is calculated from $\Delta_t H^o(\text{Fe}, g. 0 \text{ K})^1$ using the spectroscopic value of IP(Fe) = 63480 \pm 500 cm⁻¹ (759.390 \pm 5.98 M-mol-1) from Corliss and Sugar. The ionization limit is converted from cm-1 to M-mol-1 using the factor, 1 cm-1 = 0.01196266 kJ-mol-1

ionization and appearance potential data.

 $\Delta H^{3}(\text{Fe}^{2}, g, 298.15 \,\text{K})$ is calculated from $\Delta_{H}^{3}(\text{Fe}, g, 0 \,\text{K})$ by using IP(Fe) with JANAF¹ enthalpies, $H^{3}(0 \,\text{K}) + H^{2}(298.15 \,\text{K})$, for Fe(g), Fe*(g), and e^(ref). $\Delta_{H}^{3}(\text{Fe} \to \text{Fe}^{2} + \text{e}^{-}, 298.15 \,\text{K})$ differs from a room temperature threshold energy due to inclusion of these enthalphes and to threshold effects discussed by Rosenstock et al.* $\Delta_{H}^{3}(298.15 \,\text{K})$ should be changed by $-6.197 \,\text{KJ}$ mol⁻¹ if it is to be used in the ion convention that excludes the enthalpy of the electron.

Heat Capacity and Entropy

Fe²(g), the thermodynamic functions are independent of the estimated missing levels (for n=4), the cut-off procedure, and the inclusion of as estimated levels, are used in the calculation. The observed levels are too numerous to list completely. The calculations indicate that for n=5 levels up to 6000 K; the Gibbs energy function showing no significant variations at this temperature. The reported uncertainty m \$°(298.15 K) is due to uncertainties in the relative ionic mass, and the fundamental constants. Extension of these calculations above 6000 K The information on electronic energy levels and quantum weights, given by Corluss and Sugar,? is incomplete because many theoretically predicted levels have not been observed. Although we have listed only five levels for Fe*(g), all levels listed by Corliss and Sugar,² as well may require consideration of the higher excited states (1725), and use of different fill and cut-off procedures.

JANAF Thermochemical Tables: Fe(g), 3-31-78, e⁻(ref), 3-31-82.

²C. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 11, 135 (1982).
 ³E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
 ⁴H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1 (1977).
 ⁵R. D. Levin and S. G. Lias, U. S. Natl. Bur. Stand., NSRDS-NBS-71, (1982).
 ⁶J. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).

<u> </u>	Enthalpy Reference Temperature	eference Te	mperature	= T, = 298.15	×	Standard State Pressure	1 "	p = 0.1 MPa
	7.K	ដូ		-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	_KJ·mol ⁻¹	Δ,G•	log Kr
	0 200 250	0. 21.618 24.813 25.689	0. 155.635 171.652 177.294	INFINITE 204 058 184.215 182.284	-6936 -4842 -2512 -1248	1172517		
	298.15	26.068	181.857	181.857	0	1181.144	1128.814	-197.764
	3,00	26.075 26.163	182.018 186.047	181.857 182.175	0.048	1181.184	1128.489	-196.487
	\$ \$ \$	26.112 26.018	192 608	182.882	2.662 3.966 3.264	1183.249	1110.607	-145.030 -127.855
	8	25.830	200.062	186.976	7.851	1185.070	05.2201	-114.104
	88	25.802	204.041	189.137	10.433	1187.990	1054.541	-78.691
	888	25.74	210.521	193.199	15.589	1189.561	1016.155	-58.976
9	1100	25.539	215.669	196.833	20.720	1188.559	977.666	-46.425
o '	8	323	219.911	200.067	25.797	1189.260	939.314	-41.122
	<u>8</u> 8	25.054 24.885	221.774	201.552 202.958	28.311 30.808	1190.325	920.047	-34.327
	9092	24 726	225.098	204.293	33.289	1192.155	881.306	-28.772
: 10	081	24.447	227.993	206.769	38.205	1192,303	842.445	-24.447
-	2002	24.230	230.557	20.602	43.071 43.071	1178.443	823.703 805.035	-22.645 -21.025
	2100 2200	24.144	231 737	210.076	45.490	1178.242	786.372	-19.560
	7,00	24.018	233 928	212.056	50.305	1178.009	749.062	-17.012
> 1	2500	23.945	235.927	213.887	55.705 55.101	727.7711	711.73	-15.897 -14.872
= -	2600 2700	23.927	236.866	214.753	57 494	1177.627	693.136	-13.925
. 4.	280	23 925	238.639	216.396	62.278	1177.363	655.877	-12236
_	800	23.966	240.290	217.178	64 672 67.067	117.233	637.255 618 637	-11.478
	3100	24 002	241.077	218.669	69.465	1176.979	600 024	-10.110
	3300	24.104	242.580	220.073	74.275	830342	581.319	-9202
	3800	24245	244.003	221.400	79.110	833.831	566.123	-8.449
	3600 3700	24.329 24.423	244.687 245.355	222.037 222.658	81.538 83.976	835.536 837.216	558.450 550.730	-8.103 -7.775
	3800	24.525 24.636	246.007 246.646	223.264 223.856	86.423 88.881	838.869 840.497	542.965 535.156	-7.464 -7.168
	900	24.756	247.271	224.433	91.351	842.099	527.307	-6.886
	888	25.018	248.485	225.550	96.328 96.328	845.224	511.490	-6.361
	44 868	25,310	249.656	226.619	101,360	848.243	495.526	-5.883
	956	25.629	250.788	227.646	106.453	851.154	479.428	-5.44
	480	25.970	251.885	228.633	111.613	853.951	463.206	-5.041
	2 4900 2000 2000	26.149 26.331	252.423 252.953	229.113 229.584	114219	855.306 856.631	455.051	-4.851 -4.668
	5200 5200	26.518 26.708	253.476 253.993	230.048	119.485	857.925 859.187	438.661	-4 493
	5 5 5 60 60	26.901 27.096	254.503	230.951	124.827	860.415	422.171	-4.161
	2200	27.293	255.507	231.826	130,246	862.767	405.589	-3.852
	8 8 9 9 9 9 9 9 9	27.493 27.693	256.001 256.489	232.253	132.985	863.887 864.967	388.924	-3.706
	2800 2800 2800	27.894 28.095	256.972 257.451	233 089	138.524	866.006	380.564	-3.427
	0009	28.297	257.925	233 901	144,143	867.947	363.791	-3.167

28													MA	\L(COL	M	W.	CI	НА	SE													
	- p° - 0.1 MPa	log Kr	······································	-62.002	-61.597	-31.826 -44.519 -38.851	-34.331	-22.797	-19.230 -16.492 -14.321	-12.568	-9.922	-7259	-6013	-4.689	-4.024	-3.248	-3.034	-2.661	-2.346	-2372	-2.455	-2534		-2.679	-2.748	-2.813	-2.845	-2.907	2,300	-3.024	-3.080	-3.135 -3.162 -3.188	-3.240
	e Pressure = p'	δ _C		354.013	353.769	340.913 340.913 334.703	328.624	305.505	284.162 274.152	264.671	246.930	222.349	207.195	188.499	17.179	160.603	156.851	147.727	139,233	149.840	164.495	179.466	194.743	210.318	226.184	242.336	250.517 258.768	267.088	263.933	301.049	318.434	336.085 345.011 354.003	372.184 -3.240
	Standard State Pressure	- H.Δ	397.400	393.338	393.300	391.142	388.784	383.247	376.271	366.378	358,222	347.806	339.090 320.802	311.753	302.678 298.134	289.032	284.475	275.353 270.788	266.221	-89.319 -92.024	-94.765	-100.352	-106.088	-111.977	-118.028	-121.110 -124.248	-127.424 -130.645	-133.913	-140.392 -144.006	-147.472	-154.563 -158.191	-161.878 -165.626 -169.435	
	.	H*-H*(T,)	-6.642 -4.561 -2.371	-1.18/	0.046	3884 3884	5.169	10201	15.024	19.679	24.214	30.865	35.232 37.400	41.713	48.137	52.397	54.521 56.643	58.761 60.877	62.991	67.212 69.320	71.427	15.635 15.635 15.635	79.838 81.938	84037	88.232	92.423	94518 96.612	98.705 100 798	104.890	107.073	13.34	115.434	123.788
	Enthalpy Reference Temperature = T, = 298.15 K J-K -'mol-'	-{C*-H'(T,)]T	INFINITE 201.095 182.433	180.198	180.198	181.193 182.085	183.086	187.327	191.272 193.067	194.748	199.191	201.742	204.031 205.092 206.105	207.072	208.885	211.347	212.108	213.554	214.907	216.179	217.379	218.514	219.590	220.615	221.59	222.525	222.976 223.418	223.851 224.275	225,099	225.498	226.276	227.025 227.390 227.749	228.448
	mperature	2) - S	0 155.485 170.579	180.198	180.353	187.681	193.424	201.899	207.965	212.638	216.427	221.033	223.604 224.777 225.885	226.935	228.885	231.500	232.301	233,816 234,534	235.227	236.546	237.786	238.955	240.062	241.112	242.111	243.063	243.524 243.974	244.846	245.683	246.089	246.878	247.638 248.008 248.371	249.079
	eference Te	ະ	0. 20.957 23.092	25.023	25.047	25.25 25.78 25.78	25.632	24.627	23.652	22.938	22.438 22.246 22.246	21.946	21.727 21.640 21.563	21.496	21,386	21.262	21.229	21.173	21.126	21.088	21.055	21.028	20.93	20.984	20.966	20.951	20 944 20.937	20.931 20.925	20.915	20.910	20.901	20.893 20.890 20.886	20.880
	Enthalpy R	τÆ	988°	298.15	98	3 3 3 3 3 3	8 8	388	888	1200	8 4 5 8 6 5 8 6 6 6	922	2000 2000 2000	2200	250 250 250 250 250 250 250 250 250 250	2600	2800	900	3200	3300	3200	3700	86.6 000 000	4100	98	\$300	600 007 007	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2000	2300	\$400 \$500	5800 5800 5800 5800	6000 20.880 249.07
	$\Delta_t H^0(0 \text{ K}) = 397400 \pm 44 \text{ kJ mol}^{-1}$ $\Delta_t H^0(29815 \text{ K}) = (393338) \text{ kJ·mol}^{-1}$								K) using the adopted electron attinuty of EA(re) = 0.163 \pm 0.035 eV (15.727 \pm 3.377 ineberger, 2 is based on a laser photodetachment electron spectrometry study. Additional	cal discussions of Hotop and Lineberger, ** Rosenstock et al.; and Massey. * e. 0 K) by using EA(Fe) with JANAF' enthalnes. H?(0 K) - H?(298, 15 K) or Fe-(re)	rgy due to inclusion of these enthalpies and 197 kJ·mol ⁻¹ if it is to be used in the ion		nd Rosenstock et al. ⁵ The fine structure	by an isoelectronic extropolation of ratios of fine structure separations.7					(1861)														
			Electonic Levels and Quantum Weights State	1	540 8	1200 4		***************************************	the adopted electron affinity of EA(r) is based on a laser photodetachment	sions of Hotop and Lineberger, 4 Ro	ffers from a room-temperature threshold energy $\Delta_t H^0$ (298.15 K) should be changed by + 6.197	•	iven by Hotop and Lineberger 4 an	electronic extropolation of ratios of f	-31-82.	f. Data, 14, 731 (1985).	A 19, 149 (1979). f. Data 4, 539 (1975).	Ref. Data 6, Supp. 1 (1977).	ridge University Press, Cambridge, (1976). nd W. C. Linberger, J. Chem. Phys. 74, 1580 (1981).														
			Electon State	F _{9.2}	ŧ, î	2 tz			K.) usıng neberger,	cal discue e. 0 K) by	ffers fron ∆ _r H°(298	-1	g si (Ja)	by an isc	="(ref), 3-31–82	f. Data, 1	A 19, 149 (1979) f. Data 4, 539 (19	Ref. Data	idge Uni														

Fe₇(g)

Iron, Ion (Fe⁻)

Iron, Ion (Fe-)

EA(Fe, g) = 0.163 \pm 0.035 eV S°(298 15 K) = 180.198 \pm 0.005 J·K⁻¹·mol⁻¹

 $\Delta_H^{4/2}(Fe^-, g, 0 \text{ K})$ is calculated from $\Delta_H^{4/2}(Fe^-, g, 0 \text{ K})^{1}$ using the adopted elected mol⁻¹). This value, recommended by Hotop and Lineberger, is based on a la information on Fe⁻(ref) may be obtained in the critical discussions of Hotop. Δ_H^{μ} (Fe. g. 28.15 K) is obtained from Δ_H^{μ} (Fe. g. 0 K) by using EA(Fe) w Fe(g), and e (ref) Δ_H^{μ} (Fe \rightarrow Fe + e $^-$, 298.15 K) differs from a room-temper to threshold effects discussed by Rosenstock *et al.* 3 Δ_H^{μ} (298.15 K) should b **Enthalpy of Formation**

Heat Capacity and Entropy

convention that excludes the enthalpy of the electron.

The ground state electronic configuration for Fe-(ref) is given by Hotop separations in the ground state have been calculated by an isoelectronic extro

References

MANAP Thermochemical Tables: Fe(g), 3-31-78; e (ref), 3-31-82.

H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 14, 731 (1985).

P. C. Engelking and W. C. Lineberger, Phys. Rev. A 19, 149 (1979).

H. Hotop and W. C. Lineberger, Phys. Chem. Ref. Data 4, 539 (1975).

H. M. Rosenstock, K. Datal et al., J. Phys. Chem. Ref. Data 6, Supp. 1 (1976).

H. S. W. Massey, "Negative Ions," 3rd ed., Cambridge University Press, Ca. C. S. Feigerle, R. R. Corderman, S. V. Babashev, and W. C. Linberger, J. C.

CURRENT: June 1966

H)2)
õ
Ē
ide
ě
Hyd
Ĕ
7

M_r = 89.86168 Iron Hydroxide (Fe(OH)₂)

CRYSTAL

ron Hydroxide (Fe(OH)2)

Fe₁H₂O₂(cr)

Standard State Pressure = $p^* = 0.1$ MPa

log Kr

₽Ġ.

K-mol-1 Δ_{rH}°

 $H^{\bullet}-H^{\bullet}(T_i)$

86.191 66.571 66.571 66.571 75.751 75.751 75.751 75.751 75.751 76.753 6.269

-491.969 -491.460 -491.450 -464.153 -464.153 -434.773 -384.773 -384.773 -384.773 -384.773 -384.773 -381.582 -381.592 -281.301 -255.773 -256.773 -25

0. 0.180 10.144 20.589 31.495 42.839 54.568 66.599 78.852 91.251 110.3.735 141.346

-562.696 -561.930 -559.553 -557.318

149.328 156.699 163.740 170.463 176.889

124.516 125.102 125.353 125.436 125.436

160.255 177.734 193.391 207.559 220.466 232.283 243.145 253.170 262.462 271.119

111.294 115.478 118.951 121.545 123.386

-574.019 -572.560 -570.950 -567.392 -563.567 -563.945 -563.945

87.864 87.866 91.736 99.206 1107.764 116.535 1133.559 141.614

88.465 117.096 140.383

97.152 102.090 106.776

Enthalpy Reference Temperature = T_r = 298.15 K $J \cdot K^{-1} \text{mol}^{-1}$ $T \cdot K$ C_r^* $S^* - [G^* - H^*(T_r)] / T$

 $\Delta_t H^{\circ}(0 \text{ K}) = \text{Unknown}$ = $-574.04 \pm 2.9 \text{ kJ·mol}^{-1}$ $\Delta_{tus} H^{\circ} = \text{Unknown}$ $\Delta H^{\circ}(298.15 \text{ K}) =$

 $(ct) + H_2O(1)$ was $I^{o}(298.15 \text{ K})$, was S°(298.15 K) = [87.864 ± 8.4] J·K⁻¹ mol⁻¹ Enthalpy of For The enthalpy of evaluated to be determined to be Fas = Unknown

r _{ts} = Unknown	Δ _n
Enthalpy of Formation The enthalpy of combustion of Fe(OH) ₂ (cr), according to the chemical reaction Fe(OH) ₂ (cr) + 1/4 O ₂ (g) = 1/2 Fe ₂ O ₃ (elemined to be -29.8 ± 0.65 kcal·mol ⁻¹ by Fricke and Rihl.¹ From these data the adopted enthalpy of formation, Δ_1H^2 evaluated to be -137.2 ± 0.7 kcal·mol ⁻¹ .	$9H$ 2(cr) + 1/4 O ₂ (g) = 1/2 Fe ₂ O ₃ (c) pited enthalpy of formation, $\Delta_t H$
the enthalpy changes for the following three reactions were determined by Thomsen.	
Reaction	Δ,H°(291 K), kcal·mol ⁻¹
$FeCl_1(cr) = FeCl_1 (400 H_2O)$	-17.9
FeCl ₂ (200 H ₂ O) + H ₂ SO ₄ (200 H ₂ O) = FeSO ₄ (200 H ₂ O) + 2 HCl(100 H ₂ O))) -3.6
$FeSO_{4}(3a) + 2 KOH(3a) = Fe(OH)_{4}(ar) + K_{5}O_{4}(3a)$	-6 34

Using $\Delta_t H^{2}(298.15 \text{ K}) = -81.7 \text{ kcal-mol}^{-1}$ for FeCl₂(cr) and those for the other compounds in aqueous solution (assuming aq. = 200 H₂O in Reaction 3) obtained from Wagman *et al.*³ the enthalpy of formation at 298.15 K for Fe(OH)₂(cr) was derived as $-135.8 \text{ kcal-mol}^{-1}$ which agrees reasonably with the adopted value.

Heat Capacity and Entropy

The heat capacities, 298.15–700 K and 5°(298.15 K) were estimated by comparison with those for FeCl₂(cr), CaCl₂(cr) and Ca(OH)₂(cr)

The C₅ values above 700 K were obtained by graphical extrapolation of the C₅ curve plotted using the above C₅ values.

Sublimation Data

The value of Δ_{mb}H*(298.15 K) was calculated as the difference between Δ_fH*(298.15 K) for Fe(OH)χ(g) and Fe(OH)χ(cr).

References

¹R. Fricke and S. Rihl, Z. anorg. allg. Chem. 251, 414 (1943).
²J. Thomsen, "Thermochemische Untersuchungen," Barth, Leipzig, 1882–1886.
³U. S. Nat. Bur. Stand. Tech. Note 270–1, (1965).

5
7
О
_~~
I
-
.0
• •

1966 (1 bar)

CURRENT: December

Fe ₁ F	
$M_t = 89.86168$ Iron Hydroxide (Fe(OH) ₂)	
IDEAL GAS	
roxide (Fe(OH) ₂)	

Iron Hydroxide (Fe(OH) ₂)	IDEAL GAS	$M_t = 89.86168$	Iron Hydroxide (Fe(OH) ₂)	xide (Fe	(OH)2)				ıL	Fe ₁ H ₂ O ₂ (g)	
S°(298 15 K) = [283.088] J·K ⁻¹ ·mol ⁻¹		$\Delta_t H^{\circ}(0 \text{ K}) = [-323.09 \pm 2.1] \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = [-330.54 \pm 2.1] \text{ kJ·mol}^{-1}$	Enthalpy Re	ference Ter	mperature = J·K ⁻¹ mol ⁻¹ S* -{G*	Enthalpy Reference Temperature = T_r = 298.15 K $\frac{1 \cdot K^{-1} mol^{-1}}{C_r^{*}} = \frac{C_r^{*} - H^{*}(T_r) / T}{S^{*}}$	H°-H°(T,)	Standard State Pressure KJ·mol ⁻¹ A _i H° A _i G°	Pressure = p	= p* = 0.1 MPa log K,	
- N	Electronic Levels and Quantum Weights		200°	36.766 35.199	000 I 227.041 257.765	335.221 289.157	-14209 -10818 -6278	-323 088 -326.023 -328.857	-323 088 -320.717 -314.241	INFINITE 167.526 82.071	
			250	71.504	271 106 283.088	284.228 283.088	-3.280	-329.851		53.777	
	[700] [10]		300	71 738	283.531	283.089	133	-330.558	-306.518	53.370	
	[4000]		\$ \$ \$	81 011 83.894 86.129	305.581	286.032 288.752 291.860	7.819	-331.376 -331.625 -331.831	-294.223 -294.223	38.92	
Vib	Vibrational Frequencies and Degeneracies v. cm ⁻¹ v, cm ⁻¹		98	89.528 92.212	340.275	298.626 305.598	24.989 34.080	-332.215 -332.642	-281.665 -273.207	24.521	
	[2300](1) [450)(1) [800](1)		& & & <u>&</u>	94.509 96.515 98.263	366.751 378.001 388.262	312.477 319.142 325.549	43.419 52.973 62.714	-333.207 -334.063 -335.535	-264.681 -256.067 -247.331	17.282	
₹ <u>₹</u>	(1)[009Z]		0021	99.773	397.700	331.685 337.554	72.617	-337.821 -339.495	-238.385	11.320	
Point Group: [C ₂₃] Rand Dietancee: Fe-O ₂₀ [1 8] A		0-2	8 4 8 8	103.108 103.901	414.573 422.180 429.322	343.170 348.545 353.694	92.825 103.090 113.441	- 339.479 - 339.518 - 339.627	-220.108 -210.924 -201.736	8.844 7.870 7.025	
Bond Angles: O-Fe-O = [180] Product of the Moments of Inenti	$Fe-O-H = [105]^{\circ}$ $\approx I_A I_B I_C = [9.90391]$	×10-119 g³.cm°	1500 1700 1800	104.571 105.137 105.614	436.049 442 406 448.430	358.633 363.376 367.935	123.866 134.352 144.890	-339.815 -341.042 -341.750	-192.537 -183.306 -174.007	6.286 5.632 5.050	
Enthalpy of Formation			1900 2000	106.018	454.151 459.598	372.323 376.552	155.473	-356.658	-163.965 -153.793	4.508	
The equilibrium constants, at temperatures between 1300 and 1460°C, for the chemical reaction Fe(cr) + 2 H_2 (g) = Fe(OH) ₂ (g) + H ₂ (g) were determined by Belton and Richardson. ¹ Using these data, the enthalpy change, ΔH^0 (298.15 K), of the reaction is evaluated to be 35.53 ± 3.0 and 36.57 kcal-mol ⁻¹ by the 2nd and 3rd law method, respectively Based on the 3rd law value for ΔH^0 (298.15 K), the enthalpy	1300 and 1460°C, for the chemical reathese data, the enthalpy change, $\Delta_t H^{\circ}$ (aw method, respectively Based on the 3	ical reaction Fe(cr) + 2 H ₂ O(g) = Fe(OH) ₂ (g) + H ₂ (g) Δ_4 H° (298.15 K), of the reaction is evaluated to be not the 3rd law value for Δ_4 H°(298.15 K), the enthaltw	2100 2300 2400 2400	106.650 106.895 107.104 107.281	464.795 469.762 474.518 479.080	380.631 384.571 388.379 392.064	176.743 187.420 198 121 208.840	-358.996 -360.208 -361.452 -362.729	-143.563 -133.275 -122.933 -112.536	3.164 2.792 2.449	
of formation, A _f H*(Fe[OH] ₂ , g, 298.15 K), is calculate	ed to be -79 ± 0.5 kcal mol ⁻¹ .		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	107.432 107.561	483.463	395.633 399.092	219 <i>.</i> 576 230.326	-364.040	- 102.084 -91.579	2.133	
Heat Capacity and Entropy The molecular structure is assumed to be the same as that for B(OH) _r (g). The Fe-O	as that for B(OH) ₂ (g). The Fe-O bond d	bond distance is taken from FeO(g). The O-H bond	2800 2800 3000 3000	107.671 107.765 107.845	491.741 495 658 499.441 503.098	405.708 405.708 408.876 411.956	241.088 251.860 262.640	-366,769 -368,187 -369,640 -371,130	-81.022 -70.412 -59.753	1.567 1.314 1.076	
uscance and recovery containing a certain and property of the violational requences, and electronic levels and quantum weights are obtained by comparison with those for B(OH) ₂ (g) and FeCl ₂ (g), respectively. These values are adjusted to give reasonable 2nd and 3rd law agreements. The principal moments of inertia are: $I_{s} = 0.2814 \times 10^{-3}$, $I_{s} = 18.7081 0^{-3}$, and $I_{s} = 18.9077 \times 10^{-39}$ e-rm ² .	ose for $\mathbf{r}_2 \cup \mathbf{g}_2$. The viorational frequency and FeCl ₂ (g), respectively. These value: $I_1 = 0.2814 \times 10^{-39}$, $I_2 = 18.6208 \cdot 10^{-3}$	les, and electronic levels and quantum weights s are adjusted to give reasonable 2nd and 3rd 39 and $L = 18.9072 \times 10^{-39}$ e.c.m ²	3200	107.973 108.023	506.638	414.953	284.223	-372.652 -722.510	-38.280	245 277	
Reference			3,400	108.103	\$16.618 \$19.752	423.490 426.196	316.635	-721.960 -721.785	23.841 45.773	366 286 83 83	
G. R. Belton and F. D. Richardson, Trans. Faraday Soc. 58, 1562 (1962).	δοc. 58 , 1562 (1962).		3600 3700 3800	108.161 108.184 108.203	522.799 525.763 528.648	428.837 431.417 433.938	338.262 349.079 359.899	-721.676 -721.634 -721.660	67.702 89.628 111.555	982 -1265 -1533	
			3900 4000	108.220	531.459	436.402 438.813	370.720 381.543	-721.753 -721 915	133.483	-1.788 -2.029	
			44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	108.245 108.255 108.263 108.270	536.872 539.480 542.028 544.517	441.172 443.482 445.744 447.961	392.367 403.192 414.018 424.844	-722.145 -722.444 -722.814 -723.255	17.349 199.292 221.242 243.201	-2.259 -2.479 -2.887 -3.000	
			24 200 200 200 200 200 200 200 200 200 2	108.279	549.330	452.265	446.499	-724.352 -725.010	287.154	-3.261	
			26.00 000 000 000 000	108.287 108.288	556.171 558.358	456.406 458.419 460.396	408.156 478.984 489.813	-726.551 -726.551 -727.436	331.162 353.189 375.234	-3.604 -3.765 -3.920	
			5200 5300 5300	108.289 108.289 108.288	560.503 562.606 564.668	462.338 464.246 466.121	500.642 511.471 522.300	-728.399 -729.442 -730.565	397.297 419.378 441.483	-4.069 -4.213 -4.351	
			5500	108.287	568.679	469.778 469.778	543.957 543.957 554.786	-733.060	485 755	-4.613	
			2800 2800 2800 2800 2800 2800 2800 2800	108.284 108.283 108.281	572.547 574.430 576.281	473.317 475.044 476.744	565.614 576.443 587.271	-735.900 -737.455 -739.103	530.126 552.352 574.601	-4.858 -4.974 -5.087	
			9000	108.279	578.101	478.418	598.099	-740.847	596.883	-5.196	

Enthalpy of Formation

Heat Capacity and Entropy

Reference

Iron Hydroxide (Fe(OH)2)

December 1966 (1 atm)

PREVIOUS

CURRENT: June 1966

Iron Hydroxide (Fe(OH)3)

CRYSTAL

Fe₁H₃O₃(cr)

Standard State Pressure = p° = 0.1 MPa

Enthalpy Reference Temperature = T, = 298.15 K

M_r = 106.86902 fron Hydroxide (Fe(OH)₃)

J·K-'mol-'

Ki-mol-1

log K

δ

 $\Delta_{\rm r}H^{\bullet}$

 $H^{\bullet}-H^{\bullet}(T_t)$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

ڻ

ž

0 100 200 298 15

22.695 86.439 64.688 50.203 39.876 32.150 26.156 21.373 11.478 11.478 11.478

-576.661 -534.385 -492.393 -450.671 -409.177

-831.150 -829.323 -827.216 -825.055

127.205 137.669 148.166 158.484 168.520

148.114 154.808 160.247 164.850 168.406 171.126

888 8888 58888

178.231

189.140 211.387 231.616 250.172 267.303 283.188 297.962 311.747 324.640

0.188 11.227 23.619 37.161 51.603 66.759 82.519 98.783

164.480

40.582

-367 813 -326 624 -285.654 -244.970 -204.549

-822.032 -820.081 -816.357 -812.653 -809.013

115.452 132.434 149.657 167.055 184.579

-704.678 -661.930 -619.202

-832.636 -833.040 -832.474

 $\Delta_i H^{\circ}(0 \text{ K}) = \text{Unknown}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -832.62 \pm 12.6 \text{ kJ} \cdot \text{mol}^{-1}$ $S^{\circ}(298.15 \text{ K}) = [104.600 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Fe(OH)(st) = Fe⁺⁺(aq) + 3 OH⁺(aq) was calculated to be 53.34 ± 0.27 kcal mol⁻¹ Using 57.098.15 K) = -70.1 and 2.57 cal K⁺¹-mol⁻¹ for Fe⁺⁺(aq) and OH⁺(aq), respectively, and an estimated 5°(Fe(OH), ct, 298.15 K) = 2 cal K⁺¹-mol⁻¹, the enthalpy change, Δ_H *(278.15 K) of the reaction is calculated to be 22.69 kcal-mol⁻¹, according to the relationship ΔH = Δ_F + 7 Δ_S . The entropy values for Fe⁺⁺ and OH⁻ ions, were obtained from² and respectively. Based on Δ_H *(Fe⁺⁺, aq, 298.15 K) = -11.4 and Δ_H *(OH⁻, aq, 298.15 K) = -54.97 kcal-mol⁻¹, taken from the same sources, the enthalpy of formation, Δ_H *(298.15 K), for Fe(OH)₃(cr) was evaluated to be -199 ± 3 Schindler et al. I investigated the solubility of aged Fe(OH), precipitates by determining the Fe** and H* ion concentration of solution in precipitates were investigated by X-ray and electron microscope methods. The equilibrium constant was derived as log [Fe⁺⁺][H⁺] = log K = 3.55 ± 0.1 for amorphous inactive hydroxide at 25°C. From these data the quantity log Ks = -39.1 ± 0.2 was As...H° = Unknown contact with the solid phase. The ion concentration was measured by the EMF-method at the constant ionic strength 3M NaClO,(solution). A.G. (298.15 K), of the reaction evaluated where Ks is the solubility product of Fe(OH),. The Gibbs energy change, kcal·mol-1, which was adopted here. Enthalpy of Formation

but also to the tendency to form colloidal solutions. The SP values for Fe(OH), were also reported by Evans and Pryor Kriukor and Awsejewitsch? Ruff and Hirsch⁸ Britton⁷ and Jellinek and Gorden. The divergent values for solubility product (SP) of Fe(OH), found in the literature may be due, not only to the various forms of precipitate

The enthalpy changes, $\Delta_t H^o(291 \text{ K})$, for the reactions: (1) FeCI₃(aq) + 3NaOH(aq) = Fe(OH)₃(cr) + 3NaCl(aq) and (2) FeCI₃(cr) = FeCI,(aq) were determined to be -24.50 and -31.68 kcal mol-1, respectively by Thomsen. Assuming the aqueous solutions all contain 200 mol of H₂O, the enthalpy of formation, A₁H"(298.15 K), for Fe(OH), was calculated as -196.9 kcal mol-1 from Reaction (1) and (2). The ΔH°(298.15 K) values for NaOH(aq) and NaCl(aq) were obtained from Parker of and JANAF ΔH°(298.15 K) values for NaOH(cr) and

Heat Capacity and Entropy

The heat capacities, 298 15–1000 K, were estimated by comparison with those for B₂O₃(cr), Fe₂O₃(cr) and B(OH)₃(cr). The C^o₂ values above 1000 K were obtained by graphical extrapolation. The S^o(Fe(OH)₃, cr, 298.15 K) value was estimated by comparison with that for B(OH)₃(cr).

Schindler, W. Michaelıs and W. Feitknect, Helv. Chim. Acta 46, 444 (1963)

²U. S. Nat. Bur. Stand. Circ. 500, (1952).

³U. S. Nat. Bur. Stand. Tech. Note 270-1, (1965).

Kriukor and Awsejewitsch, Z. Elektrochem. 39, 884 (1933), Evans and Pryor, J. Chem. Soc S157 (1949).

Ruff and Hirsch, Z. Anorg. Chem. 146, 338 (1925).

Britton, J. Chem. Soc. 2148 (1925).

⁹J. Thomsen, "Thermochemische Untersuchungen," Barth, Leipzig, 1882–1886, ¹⁰V. B. Parker, NSRDS NBS 2, (1965). Jellinek and Gorden, Z. Phys. Chem. 112, 207 (1924).

Iron Hydroxide (Fe(OH)₃)

PREVIOUS

Fe₁I₂(cr)

CURRENT: September 1966

M_r = 309.6560 Iron lodide (Fel.)

Δ_tH°(0 K) = Unknown

Iron lodide (Fel.)

 $S^{(298 15 \text{ K})} = [167.360 \pm 8.4] \text{ J·K}^{-1} \text{ mol}^{-1}$ ".H" = 650 K

 $\Delta_t H^{\circ}(298.15 \text{ K}) = -104.60 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{tr} H^{\circ} = 0.8 \text{ kJ} \cdot \text{mol}^{-1}$ partial pressures for $I_2(g)$, the enthalpy change, $\Delta H^2(298.15 \, \text{K})$, for the reaction FeI₂(cr) = Fe(cr) + $I_2(g)$ was evaluated by both the 2nd and 3rd law methods to be 39.79 \pm 1.0 and 39.69 \pm 0.3 kcal mol⁻¹, respectively. Based on the 3rd law $\Delta H^2(298.15 \, \text{K})$ value, the enthalpy of The chemical equilibrium of the decomposition of FeLx(cr), 771 15-858.15 K, has been studied by Zaugg and Gregory. Using the reported Δ_{tus}H" = [44 769] kJ·mol⁻¹ Enthalpy of Formation Ttus = 860 ± 2 K

a solution calorimetric method. Adopting A4P'(298.15 K) = -21.3 and -13.19 kcal·mol⁻¹ for Fe⁻(aq) and I (aq), respectively, the value of $\Delta\mu$ (FeI, cr. 298.15 K) was derived as -28.22 ± 1 kcal·mol⁻¹. The value of $\Delta\mu$ (T, aq, 298.15 K) was taken from Wagman et al. The The enthalpy change for the reaction FeL₂(cr) = Fe⁺⁺(aq) = 2 Γ (aq) was determined to be -19.46 ± 0.03 kcal-mol⁻¹ by Paoletti et al.² using value of $\Delta_t H^{\circ}(\text{Fe}^{++}, \text{aq, } 298.15 \, \text{K})$ was derived from enthalpy of solution and formation for FeCl₂(cr). formation, $\Delta_i H^0$ (298.15 K) for Fel₂(cr) was calculated as --25 kcal-mol⁻¹ which was adopted here.

The enthalpies of solution of Fe(cr), I₂(cr) and FeI₂(cr) in aqueous Br₂-KBr solution were measured by Hieber and Woerner⁴ using an ice calorimeter. From the results obtained the enthalpy of formation for FeI₂(cr) was reported as -30.1 kcal·mol⁻¹.

Heat Capacity and Entropy

The heat capacities, 343.15-773.15 K, were measured by Oetting and Gregory. The C, value at temperatures below 343.15 and above 773.15 K were estimated by graphic extrapolation. The low temperature heat capacities, 11-130 K were determined by Miljutin and Parfenowa. These data appear to be inadequate for the derivation of the entropy at 298 15 K. The value of \$\circ{8}(298.15 K) adopted was calculated from the entropy change, $\Delta S^2(298.15 \text{ K}) = 28.7 \text{ cal·K}^{-1} \text{ mol}^{-1}$, for the decomposition reaction Fel₂(cr) = Fe(cr) + l₂(g), obtained by the second law analysis on the equilibrium pressure data reported by Zaugg and Gregory.

Transition Data

A minor transition in the vicinity of 370°C (360–385°C) has been reported by Octting and Gregory. Subsequent studies by Wydeven Thave shown the magnitude of the transition to be sensitive to trace amounts of impurities, but the nature of the transition has not been clearly established. A magnetic transition at 10 K was reported by Bizette et al. The A_wH° value was evaluated from the heat capacity-temperature plot given by Oetting and Gregory.

Fusion Data

The was reported by Fischer and Gewehr. Alow He was estimated by comparison with that for FeBr2(cr),

Sublimation Data

 $\Delta_{ab}H^{\circ}(cr \to monomer, 298.15 \, K)$ is calculated as the difference between $\Delta_{l}H^{\circ}(298.15 \, K)$ for Felzg) and Felz(cr). $\Delta_{ab}H^{\circ}(cr \to dimer, dr)$ 298.15 K) was calculated as the difference between those for Fe₂I₄(g) and 2 FeI₃(cr)

References

E Zaugg and N. W. Gregory, J. Phys. Chem. 70, 486 (1966).
 Paoletti, A. Sabaimi and A. Vacca, Trans. Faraday Soc. 61, 2417 (1965).

S. Nat. Bur. Stand. Tech. Note 270 1, (1965).
 W. Hieber and A. Woemer, Z. Elektrochem. 40, 287 (1934).
 F. L. Oettiing and N. W. Gregory, J. Phys. Chem. 65, 173 (1961).
 G. Miljutin and E. A. Parfenowa, Phys. Trans. Ukrain, Acad. Sci. 9, 81 (1940).
 T. J. Wydeven. Ph.D. Thesis. University of Washington, Scattle, Wash., (1964).
 H. Bizette, C. Terrier and B. Tasi, Compt. rend. 245, 507 (1957).

W. Fischer and R. Gewehr, Z. Anorg. Allg. Chem. 222, 303 (1935)

	Enthalpy Re	eference Te	mperature	Enthalpy Reference Temperature = $T_r = 298.15$ K		Standard Sta	Standard State Pressure = $p^* = 0.1 \text{ MPa}$	- = 0.1 MPa
	ΤÆ	೮	S - [G	-[G*-H*(T,)]/T	H*-H°(T,)	. V. V. V. V. V. V. V.	δ,0	log K,
	°88°							
	298.15	83.680	167.360	167.360	o.	-104.600	-111.725	19.574
	8	83.680	167.878	167.362	0.155	-104.592	-111.769	19.461
	8	84.182	210.741	176.859	16.941	- 163.121	-107.843	1.266
	909		226.111	183.825	25.371	-161.531	-96.941	8.439
	650 000 650,000	84.546 87.864	232.873 234.160	187.341 187.341	29.596 30.432		IRANSITION	
	900	_	240.947	190.927	35 013	-158.983	-86.362	6.444
	8		263.045	202.281	52.257	11	V	1
	8	126.224	268.644	205 106	57.184	-152.024	,	
	001	136.817	282.555	212.158	70.397	-147.361	-57.157	2.986
	88	141 188	308.176	226.078	84333	-142.883	- 48 336	2295
	1300	142.256	319.562	232.837	112.743	-130.695	-32.137	1731
	1200	42.256	339.919	245.790	141.194	-117.196	-17.970	0.626
_								
-								
_								
_								
_								

PREVIOUS

Fe₁I₂(I)

Iron lodide (Fel₂)

					NIST-JANAI	F THERMOCHEMICAL TABLES	1	2
Fe ₁ l ₂ (l)	= p* = 0.1 MPa	log K _r	15.161 15.085 11.984 9.400	3975 3375 3375 3475	2.884 2.131 1.839 1.632 1.033 1.033 0.879		ptember 1966	
		Φ' C•	-86.540 -86.636 -91.771 -89.975	-83.822 -78.035 -73.041 <> LIQUID -64.297 -64.297	- 56.246 - 53.6246 - 53.029 - 49.816 - 46.876 - 44.183 - 41.693 - 39.356 - 36.479		CURRENT: September 1966	
	$\overline{\omega}$	• <i>H</i> ••	-71.046 -70.984 -83.953 -123.705	-119.249 -115.045 -111.142 II -107.664 -104.917	-10.5 0.8 -10.5 0.8 -9.706 -9.263 -8.263 -8.264 -8.240 -79.907 -91.159 -8.705			
		H*-H*(T,)	0. 0.209 11.506 22.803	56.693 56.693 63.471 79.287	10.1880 113.177 124.474 135.771 147.067 159.061 180.958 192.255			
	Enthalpy Reference Temperature = T, = 298.15 K	-[G°-H'(T,)]/T			200,330 201,4719 281,240 287,430 298,238 309,408 314,316			
2)	Temperature J·K ⁻¹ mol ⁻¹	<u>)</u> %			352.736 361.738 370.150 377.944 385.235 392.084 398.541 404.649			
ide (Fel	Reference	ប			112.968 112.968 112.968 112.968 112.968 112.968 112.968			
Iron lod	Enthalpy	7.8 200 200 200	298.15 300 500 500 500	86.00 86.00 86.00 86.00 86.00	1200 1200 1200 1200 1200 1200 1200 1200		PREVIOUS:	
M _r =309.6560 Iron lodide (Fel ₂)	$\Delta_t H^{\circ}(298.15 \text{ K}) = [-71.046] \text{ kJ mol}^{-1}$ $\Delta_{lus} H^{\circ} = 44.769 \text{ kJ} \cdot \text{mol}^{-1}$	fusion, $\Delta_{ha}H^{\circ}$, and the difference in enthalpy,	K and is calculated on the assumption that s to that used for the enthalpy of formation.	one bar 'The value of $\Delta_{ m up} H^\circ$ is derived from $T_{ m up}$ -				
LIQUID		298 15 K) by adding the enthalpy of	in the temperature range from 298.15 to 2000 I, 298.15 K) is calculated in a manner analogou	ssure of FeI ₂ (g) and Fe ₂ I ₄ (g) over FeI ₂ (l) equals. porization of FeI ₂ (l) to monomer and dimer at				
Iron lodide (Fel ₂)	$S^{\circ}(298 \text{ 15 K}) = [195.430] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{trs}} = 860 \pm 2 \text{ K}$	Enthalpy of Formation Δ _t H"(Fe1 ₂ , 1, 298.15 K) is calculated from Δ _t H"(Fe1 ₃ , α, H"(860 K)—H"(298.15 K), between the crystal and liquid.	Heat Capacity and Entropy The heat capacity is assumed to be constant in the temperature range from 298.15 to 2000 K and is calculated on the assumption that C,* = 9.0 cal·K ⁻¹ g-atom ⁻¹ for FeL ₂ (l). S'(FeL ₃ , 1, 298.15 K) is calculated in a manner analogous to that used for the enthalpy of formation.	Vaporization Data $T_{v_{\rm P}}$ is the temperature at which the vapor pressure of FeI ₂ (g) and Fe ₂ I ₄ (g) over FeI ₂ (l) equals one the vapor composition and the enthalpies of vaporization of FeI ₂ (l) to monomer and dimer at $T_{v_{\rm P}}$				

Fe,12(cr,1)

Fe	
(1)	
ш.	

Iron lodide (Fel₂)

, K,		19.574	19.461 14.840	8 430	}	6.444		3.975	2864	2.131 1.859	1.632	1.142	
<u>8</u>						. 76	 <u> </u>	w.	0.0	o 40 v	. .	m v0 1	· vo
ΦC_{\bullet}		-11172	-111.76 -113.63	-107.84	ANSITIO	-86.36 -76.17	ANSTIT	-68 49	-60.31	-53.02	-40.87	-4169	-33.66
•11		04.600	20.478	61.531	- 1		=		03.078	92.706 92.823	85.440	79.907	88.705
		ī	77	īī	'	77		77				11	ĭ
$U_{\bullet}H{\bullet}H$		ó	8.535	25.371	29.596	35.013 45.330	52.257 97.026	101.544	124.138	158.028	180.622	203.215	225.809
'(T,)]/T		7.360	0.647	3.825	7341	0.927 8.037	2.281	7.410	0.054 9.874	8.908 27.77 2.73	2.346	5.643	7.538
JH							នន	87	ដង	2 X X	2 6	288	2
)]- %		167.360	167.878	226.111	232.873	240.947	263.045	320.237	342.907 352.736	370 150	385.235	392.084	410 443
		83.680	83.680	84.425	84.546	95.395 110.876	20.005	112.968	112.968	12.968	112.968	12.968	12.968
7.K	° 8 8	298.15	88	8 8	650.000				200	888	8 99	888	2000
	C_{r}^{*} $S^{*} - [G^{*} - H^{*}(T_{r})]/T$ $H^{*} - H^{*}(T_{r})$ $\Delta_{r}H^{*}$	C_r^* $S^* - [G^* - H^*(T_r)]IT$ $H^* - H^*(T_r)$ $\Delta_r H^*$ $\Delta_r G^*$	C_f $S^* - [G^* - H^*(T_f)]IT$ $H^* - H^*(T_f)$ $\Delta_t H^*$ $\Delta_t G^*$ by 0 15 83.880 167.360 167.360 0104.600 -111.725	C; S° -[G*-H(T,)]/T H*-H*(T,) A,H* A,G* bq. 0 0 15 83.680 167.360 167.360 0104.500 -111.755 0 83.680 167.878 167.362 0.155 -104.592 -111.769 0 83.931 191.985 170.647 8.533 -120.478 -113.639	C; S° -[G*-H(T,)]/T H*-H*(T,) A,H* A,G* bq. 0 15 83.680 167.360 167.360 0104.500 -111.755 0 83.680 167.878 167.362 0.155 -104.592 -111.769 0 83.931 191.985 170.647 8.535 -120.478 -113.639 0 84.4182 210.744 176.859 16.941 -16.51.21 -107.343	C; S° -[G*-H(T ₁)]/T H*-H*(T ₁) A ₁ H* A ₂ G* b ₁ 0 15 83.680 G/3.80 G/3.60 G/3.60	C; S* -[G*-H(T)]/T H*-H*(T, A,H* A,G* bq. 0 15 83.680 167.360 167360 0104.600 -111725 0 83.931 191.985 170.647 8.533 -120.478 -113.639 0 84.482 210.741 176.889 16.941 -163.21 -96.941 000 84.546 23.2873 187.341 29.596 0 84.546 23.2873 187.341 29.596 0 85.353 24.640 187.341 30.432 -18.8983 -8.85.32 0 10.876 23.460 180.377 45.330 -156.060 -76.173	Cf S* -[G*-H(T)]IT H*-H*(T) Adf* AG* bo 0 81.880 167.360 167.360 0. -104.600 -111.725 0 81.880 167.386 167.362 0.155 -104.500 -111.769 0 81.891 191.883 176.457 8.335 -104.50 -111.769 0 84.412 210.741 176.859 16.941 -167.312 -107.843 0 84.425 226.111 183.825 25.371 -161.331 -96.941 0 84.425 226.111 183.825 25.371 -161.331 -96.941 0 84.426 232.873 187.341 29.586 1 -6.431 -96.941 0 84.426 234.160 187.341 29.586 1	C; S* -[G*-H(T)]/T H*-H*(T, A,H* A,G* bq.	C7 S* -[G*-H(T)]IT H*-H*(T) Adf* AG* bo 0 83.680 167.360 167.360 0. -104.600 -111.759 0 83.680 167.385 167.362 0.155 -104.500 -111.759 0 83.593 191.985 176.859 169.41 -104.530 -111.759 0 84.435 22.261 183.825 21.371 -107.341 -96.941 000 84.436 223.873 187.341 29.596 -161.531 -96.941 000 84.546 232.873 187.341 29.596 -161.531 -96.941 000 84.546 234.947 199.927 -161.531 -96.941 000 84.546 234.941 199.927 -161.341 -161.341 00 85.84 234.947 199.027 -18.000 -76.173 0 110.876 224.699 198.037 45.330 -150.000 -76.173 0 112.968 332.247	C7 S* -[G*-H(T)]IT H*-H'(T) AH* AG* bo 0 81.680 [67.360 [67.360 0. -104.600 -111.75 0 82.680 [67.387 [67.362 0.155 -104.500 -111.76 0 82.680 [67.387 [67.362 0.155 -104.500 -111.76 0 83.931 [19.385 176.859 16.341 -107.83 -113.639 0 84.425 226.111 [83.825 25.371 -107.83 -107.83 0 84.425 226.111 [83.825 25.371 -161.311 -90.941 0 84.425 224.160 [87.34] 29.596 -161.311 -90.941 0 85.345 23.4160 [87.34] 29.596 -164.33 -16.473 0 10.876 23.44160 [87.34] 29.596 -164.23 -86.35 0 11.0876 23.4699 198.037 35.013 -156.060 -76.173 0	C; S; -[G*-H(T)]/T H*-H*(T, AH* AG* bq.	C7 S -[G*-H(T)]/T H*-H*(T) Adf* AG* bo 0 83.680 [67.360 [67.360 0. -104.600 -111.759 1 83.680 [67.887 [67.362 0.155 -104.500 -111.759 0 83.593 [91.985 170.647 8.535 -104.520 -111.759 0 84.418 210.741 176.859 16.941 -16.131 -96.941 0 84.425 222.813 187.341 29.596 -16.531 -96.941 0 84.425 222.813 187.341 29.596 -16.531 -96.941 0 84.436 234.697 189.037 45.330 -16.531 -96.941 0 84.436 234.699 198.037 45.330 -16.531 -96.941 0 110.876 234.699 198.037 45.330 -16.630 -76.173 0 110.876 234.699 198.037 45.330 -16.600 -76.173 <

M_r = 309.6560 Iron lodide (Fel₂)

CRYSTAL(I-II)-LIQUID

Iron lodide (Fel₂)

J. Phys. Chem. Ref. Data, Monograph 9

Refer to the individual tables for details.

K crystal, I K crystal, II K lıquid

1966 (1 bar)

CURRENT: September

Iron lodide (Fel₂)

PREVIOUS September 1966 (1 atm)

Iron lodide (Fel ₂)	IDEAL GAS	M; = 309.6560 Iron lodide (Fel ₂)	ron lodide	(Fel ₂)						Fe ₁ 1 ₂ (g)
$S^{0.798} = 15 \text{ K}$ = $1349 \text{ 5071 } \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$		$\Delta_t H^0(0 \text{ K}) = [89.40 \pm 12.6] \text{ kJ mol}^{-1}$ $\Delta_t H^0(0 \text{ K}) = [87.86 \pm 12.6] \text{ kJ mol}^{-1}$	Enthalpy Reference Temperature = T, = 298.15	ference Ten	mperature =	T, = 298.15 K		Standard State Pressure	Pressure = p°	- 0.1 MPa
		1011. O [0:21 = 00:10] = (V C1:002) 1:45	TK	l U	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$	 •#*\ •**	δ.Ο.	log Kr
	Electronic Levels and Quantum Weights ϵ_1 , cm ⁻¹ δ_1		200 0 200 0 200 0	0. 53.921 59.295	0. II 286.148 325.577 338.975	INFINITE 402.435 355.125 350.596	-16.167 -11.629 -5.910	89.402 90.467 89.485	89.402 1 68.558 46.951	-35.811 -12.262 -7.606
			298.15	60.859		349.597	o O	87.864	26.405	-4.626
	[4200] [10] [10] [5]		380	60.876 61.248	349.973	349.598	3.166	87.829	26.024	-4531
	Vibrational Frequencies and Degenerac	ies	6 8 6 8 6	61.498 61.675 61.806	367.583 374.838 381.343	351.995 354.138 356.538	6235 9315	69.686 67.335 74.804	6.286	-0.821 0.174
	", cm ⁻¹		8	62.003	392.630	361.641	18.593	24.154	-11.167	0.972
	[140] (1)	I	8885	62.180 62.388 62.645	402.200 410.517 417.879 474.495	366.769 371.729 376.455	24.802 31.030 37.281 43.561	22.20 22.104 20.537 26.537	-16.987 -22.663 -28.169 -33.469	1.480 1.480 1.635
		•	000	63.690	430.512	385.172	49.874 56.224	15.122	-38.476	1.827
Four Cropp. [Unit Bond Distance: Fe Bond Angle: 1-Ee	Foun Cloup. [U-a] Bond Distance: FC_I = [2.43] A And Andre - LEC_I = [1807	7 0	8 <u>48</u>	64.479 64.861	445.914 45.914 450.375	396.599 400.037	62.012 69.041 75.508	11.659 10.653 9.582	-47.868 -52.409 -56.876	28.1 28.1 198.1
Bond Ang Rotational	Dona Angre: 1-re-1 = [100] Rotational Constant: B ₀ = [0.011248] cm ⁻¹		091 002 003 003 003 003 003 003 003 003 003	65.220 65.551 65.850	454.573 458.537 462.292	403.315 406.448 409.447	82.012 88.551 95.171	8.414 6.189 4.463	-61.269 -65.567 -69.739	2002
Enthalpy of Formation The chemical contilibria for the reservors (A) Relifer) = Relifer (B) Reliff) = Rel	(A) Folder) = Folds (B) Fold() = Folds) on	.(o) and (() Ester) ± 2 I(n) = Est.(n) have been cruded	200 200 200 200 200 200 200 200 200 200	66.113	465.860	412.323	101.720	-11.487 -13.707	-73.109 -76.295	2.010 1.993
by several investigators. Based on the equili	(x) ready) = ready, (b) ready) = ready). In	by several investigators. Based on the equilibrium pressures reported, the corresponding enthalpy changes were evaluated by both the 2nd	2100	66.533	472.499	417 743	114.987	-15.974	-79.369	1.974
and 3rd law method. The results obtained a formation for Fe1z(g) were calculated. The ac	are presented in the table below Using the tlaopted value for $\Delta_t H^o(\text{FeI}_2, g, 298.15 \text{K})$ is 21.	and 3rd law method. The results obtained are presented in the table below Using the third law Δ_H ?(298 15 K) values, the enthalpy of formation for Fel ₂ (g) were calculated. The adopted value for Δ_H ?(Fel ₃ , g, 298.15 K) is 21.0 ± 3 kcal·mol ⁻¹ . The disagreement between the	12 2 2 20 2 2 2 2	66.818 66.916 66.987	478.565 481.411 484.144	422.772 425.156	128.324 135.011 141.706	-20.637 -23.023 -25.434	-85.193 -87.949 -90.605	1938 1948 1883
sets of zind and sto taw Apr (270.13 K) yatures listed in the table may be upe to the in deriving the partial pressure of Fel.(g). The data obtained from Schoonmaker et al.	res usteu in the table may be une to the present e data obtained from Schoonmaker <i>et al</i> . was c	presence of unner, regulg) when was not accounted for I. was corrected for the presence of dimer. However, only	2600 2700	67.034 67.059	486.772	429.693	148.407 155.112		-93.163 -95 629	1.872
one point value was given.	A LPS/AND	3	2000 3000 3000 3000	67.065 67.055 67.031	491.742 494.095 496.368	433.949 435.983 437.958	161.819 168.525 175.229		-98.004 -100.293 -102.498	1.828 1.806 1.785
Source Reaction T	T/K Method 2nd law	2nd law 3rd law cal·K ⁻¹ -mol ⁻¹ kcal·mol ⁻¹	3100 3200	66.994	498.565 500.691	439.878 441.745	181.930		-104.624 -99.249	1.763
Schafer and Honest* A 790.15 B 874.15	790.15-850.15 Transpiration 41.81 874.15-959.15 Transpiration 43.56	45.58 +5.78 21.58 35.58 -8.75 18.6	3,300	66.832 66.829 66.760	502.751 504 747 506 683	443.563 445.333 447.059	195.320 202.006 208.685	-390.968 -391.362 -391.743	-90.140 -81.018 -71.884	24. 24. 26.
	Mass Spectrometric	. 1 0	3600	66.686 66.609	508.563	448.741	215.358	-392.110	-62.740 -53.586	0.910
¢υ	1 Orsion—Eriusion -15 Transpiration		3800 3900 4000	66.529 66.447 66.363	512.164 513.891 515.572	451.985 453.551 455.080	228.679 235.328 241.969	-392.799 -393.121 -393.430	-44.423 -35.251 -26.071	0.611 0.472 0.340
*The vapor pm	*The vapor pressure data used for evaluation were those corrected by Zaugg and Gregory.	rrected by Zaugg and Gregory.	4100	66.278	517.210 518.806	456.576 458.038	248.601	-393.726 -394.012	-16.883 -7.688	0.215
Heat Capacity and Entropy The molecular structure was assumed to be	linear. The Fe-I bond distance was estimated l	eat Capacity and Entropy The molecular structure was assumed to be linear. The Fe-I bond distance was estimated by Brewer et al. ⁵ The vibrational frequencies were	8 4 4 8 00 9 8 00 00	66.024 66.024 65.940	520,363 521,881 523,364	459.470 460.871 462.243	268.446 268.446 275.044	-394.289 -394.560 -394.827	1.513 10.721 19.935	-0.018 -0.127 -0.231
estimated so that the derived Gibbs energy futable. The electronic levels and quantum we	icntions yielded 2nd and 3rd law $\Delta_t H^o(298.15)$ ights were estimated from those for FeCl ₂ (g)	estimated so that the derived Gibbs energy fucutions yielded 2nd and 3rd law A.H"(298.15 K) values in reasonable agreements, see the above table. The electronic levels and quantum weights were estimated from those for FeCl ₂ (g) reported by DeKock and Gruen.	004 007 008 008	65.857 65.776 65.695	524.813 526.228 527.612	463.588 464.906 466.198	281.634 288.216 294.789	-395,093 -395,360 -395,631	29.155 38.380 47.617	-0.331 -0.427 -0.518
References			868 800 800	65.616 65.539	528.966 530.291	467.465 468.708	301.355	-395.908 -396.195	56.849 66.092	-0.606 -0.606
¹ H. Schafer and W. J. Hones, Z. anorg. allg ² R. C. Schoonmaker, A. H. Friedman and F ³ R. J. Sime and N. W. Greeny, J. Phys. Che	 Schafer and W. J. Hones, Z. anorg. allgem. Chem. 288, 62 (1956). C. Schoonmaker, A. H. Friedman and F. R. Porter, J. Chem. Phys. 31, 1586 (1959). J. Sime and N. W. Greenv. J. Phys. Chem. 64, 86 (1960). The vanor pressure equation. 	 Schafer and W. J. Hones, Z. anorg. allgem. Chem. 288, 62 (1956). R. C. Schoonmaker, A. H. Friedman and F. R. Porter, J. Chem. Phys. 31, 1586 (1959). J. Sime and N. W. Greory. J. Phys. Chem. 64, 86 (1960). The vanor pressure contation used for calculation is log P(mmHg) = -(9760). 	\$200 \$300 \$300	65.463 65.389 65.316	531.588 532.858 534.103	469.928 471.126 472.303	314.463 321.005 327.540	-396.495 -396.809 -397.142	75.341 84.596 93.856	-0.772 -0.850 -0.925
7 + 11.82; In the original paper, the term A = 960 instead of 9760 is in error. W. E. Zaugg and N. W. Gregory, J. Phys. Chem. 70, 490 (1966).	1 = 960 instead of 9760 is in error. Chem. 70, 490 (1966).		2800	65.177	536.520 537.694	474.594	340,589	-397.875	112.398	-1067
 Brewer, G. R. Somayajulu and E. Brackett, Chem. Rev. 63, 111 (1963). W. DeKock and D. M. Gruen, J. Chem. Phys. 44, 4387 (1966). 	cet, Chem. Rev. 63, 111 (1963). Phys. 44, 4387 (1966).		5700 5800 5900 6000	65.044 64.980 64.918 64.858	539.976 539.976 541.086 542.177	476.808 477.888 478.950 479.994	353.611 360.113 366.607 373.096	-398.719 -399.192 -399.702 -400.254	130.968 140.265 149.570 158.884	-1.200 -1.263 -1.324 -1.383

Enthalpy of Formation

Source	Reaction	1/K	Method	Δ,H°(298.15 2nd law	"H"(298.15 K), kcal·mol ⁻¹	Drift	Drift $\Delta_t H^{\circ}(298.15 \text{ K})$,
Schafer and Honest*	4	790	Transpiration	41.81	45.58	+5 78	21.58
	ш	874.15-959.15	Transpiration	43.56	35.58	-8.75	18.6
Schoonmaker et al.2	∢	714	Mass Spectrometric	ı	46.78	1	21.78
Sime and Gregory*3	4	670.0-740.0	Torsion-Effusion	45.13	45.70	0.85	20.7
Zaugg and Gregory*	ပ	865.15-1023.15	Transpiration	-32.53	-28.99	3.75	22.1

Heat Capacity and Entropy

J. Phys. Chem. Ref. Data, Monograph 9

Fe₁O₁(cr)

Iron Oxide (FeO)

Iron Oxide (FeO)

 $S^{\circ}(298.15 \text{ K}) = \{60.752\} \text{ J K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tis}} = [1650] \text{ K}$

Enthalpy of Formation

The value of $\Delta_t H^*(298.15 \text{ K})$ for FeO(cr) was derived based on an assumption that at 1650 K, $\Delta_t F^*(\text{FeO}, \text{cr}) = \Delta_t F^*(\text{FeO}, \text{J})$. From the value $\Delta_t F^*(\text{FeO}, \text{cr}, 1650 \text{ K}) = -39.77$ kcal mol⁻¹, $\Delta_t H^*(\text{FeO}, \text{cr}, 1650 \text{ K})$ was calculated to be -63.97 kcal mol⁻¹, yielding $\Delta_t H^*(\text{FeO}, \text{cr}, 298.15 \text{ K}) = -65.02$ kcal mol⁻¹, $(-272.044 \text{ kJ} \cdot \text{mol}^{-1})$.

Heat Capacity and Entropy

The C_p^s values were estimated assuming C_p^s (FeO, cr) = C_p^s (Wustite, cr) + 0.053 C_p^s (Fe, cr). The C_p^s values obtained were plotted. The adopted C_p^s points were taken from the smoothed C_p^s curve $S'(298.15 \, \text{K})$ for FeO(cr) was calculated as $S'(\text{FeO}, \text{cr}) = S^s$ (Wustite, cr) + 0.053 $S'(\text{Fe}, \text{cr}) + \Delta S'(\text{mixing})$ where ΔS^s is the entropy of mixing (0.41 cal K^{-1} mol⁻¹).

Fusion Data

 T_{ku} is assumed to be the same as that for Wustite. The difference between $\Delta_t H^o(1650 \text{ K})$ for FeO(t) and FeO(cr) is $\Delta_{\text{ku}} H^o$.

 $\Delta_{ach}H^{\circ}(298.15 \text{ K})$ is calculated as the difference between $\Delta_{r}H^{\circ}(298.15 \text{ K})$ for FeO(g) and FeO(cr).

Sublimation Data

A 11-11-11-11-11-11-11-11-11-11-11-11-11-	Futhalas D.	Terrende T	- autonoum	Fortholive Deference Termometers T = 709 15 W		To Property		
$\Delta_t H^{\circ}(298.15 \text{ K}) = [-272.044] \text{ kJ·mol}^{-1}$	N former and the second	ונוננוענ זו	J-K-'mol-'.	11, = 2,9013		KJ-mol-1	KJ·mol ⁻¹	E CT MILE
$\Delta_{tas}H^{\circ} = [24.058] \text{ kJ·mol}^{-1}$	7.1	೮	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{r})$	Δ,ΙΙ*	Φ'Ω•	log Kr
"(FeO, cr) = ΔιΓ"(FeO, I). From the value	0 0 0 0							
3 97 kcal mol-1, yielding ΔρH°(FeO, cr,	298.15	49.915	60.752	60.752	0.	-272.044	-251.429	44 049
	888	51.840 51.840	75.704	62.733 62.737	5.187 5.187	- 272.025 - 271.044 - 370 164	-251.301 -244.543 -238.022	43 755 31.934 74 866
The following offering ware placed The	8 8	54 894	97.309	70.868		-269.414	-231.666	20.168
d as 5°(FeO, cr) = 5° (Wustite, cr) + 0 053	88	56.149 57.321	105.866	75.270 79.577		-268.814 -268.422	-225.425	16821
	88	58.283	120.249	83.724	32.872	-268.374	-213.118	12.369
	001	60.234	132.146	91.477		-270.385	-200.670	9.529
$^{\text{FeO(I)}}$ and $^{\text{FeO(cr)}}$ is Δ_{cH}° .	1200	61.086	137.424	95.089		-271.184	-194.316	8.458
	88	62.760	146.971	101.833	63 194	-269.361	-181.649	£145
	08.5	64015	155 435	104.989		-268 484	-175.415	6.108
(cr).	1650 000	64.319	157.409	109.481	- 180.67	- £07.542 CRYSTAL		,
	1700	64.631	159.334	110.919		-267.784		
	<u>8</u> 8	65.229 65.790	163.045	113.713	88.798 95.349	-267.345 -281.041	-156.949 -150.125	4.555
	2000	66.316	169.975	118.998		-280.919	-143.237	3.741
	9170116							
_	rkevious.						CUKKE	CORRENT. June 1905

Iron Oxide (FeO)

CURRENT: June 1965

-1	r	
	ũ	

<u> </u>	$\Delta_{los}H^{\circ} = [24.058] \text{ kJ·mol}^{-1}$	$T_{\text{ths}} = [1650] \text{ K}$
Enthalpy Reference Tem	$\Delta_i H^*(298.15 \text{ K}) = [-249.532] \text{ kJ} \cdot \text{mol}^{-1}$ Enthalpy Reference Tem	S°(298.15 K) = 75.415 J·K ⁻¹ ·mol ⁻¹

Enthalpy of Formation

The enthalpy of formation, $\Delta_t H^o(\text{FeO}, 1, 298.15 \text{ K})$, is evaluated based on as assumption that the enthalpy of fusion of $O_x(g)$. In other during melting the Wustite releases O2(g) and converts tp FeO(l).

Heat Capacity and Entropy

The enthalpy changes, $H^{o}(T)-H^{o}(298.15 \text{ K})$, for 1650–1800 K of liquid iron oxide were determined by Coughlin *et al.* The $C_{o}^{o}(H)$ was derived as 16.3 cal·K · This value was adopted as the heat capacity for FeO(f) up to 4000 K. A glass transition temperature was as at al 100K S $V_{o}^{o}(FeO(t_{o}), 1.298.15 \text{ K})$ is calculated based on an assumption that the entropy of fusion of Wustile represents also the entropy of the reaction. Fo_{8.9}O(cr) = 0.947 FeO(t) + (0.05372) O₄(g). From the entropy of fusion, $\Delta_{los}H^{o}(1650 \text{ K}) = 4.539 \text{ cal·K}^{-1} \cdot \text{mol}^{-1}$, the $S^{o}(FeO)$, 1, 298.15 K) = 18.029 cal·K $^{-1} \cdot \text{mol}^{-1}$ was derived.

The melting point (T_{tal}) for Wustite (Fe_{0.94}0, cr) has been reported by many investigators. However, the composition of the liquid of Wustite was not identified. An assumption was made that during melting the reaction Fe_{0.94}O(cr) = 0.947 FeO(1) + (0.053/2) O₂(g) of Hence the related thermodynamic properties were derived.

Decomposition Data

 T_{dem} is the temperature at which $\Delta_i G^{\circ}$ equals zero.

Reference ¹J. P. Coughlin, E. G. King and K. R. Bonnickson, J. Amer. Chem. Soc. 73, 3891 (1951).

1-lom-l	Enthalpy Re	eference Te	mperature =	Enthalpy Reference Temperature = $T_r = 298.15$ I	×	Standard State Pressure	e Pressure = p	- p - 0.1 MPa
-lom-l			=			Kind"		1
	ž.	ಚ		-[G*-H*(T,)]/T	$H^{\bullet}-H^{\circ}(T_{i})$	Δ_{rH}	₽ Ç•	log Kr
words,	°8							
	000							
	298.15	48.116	75.415	75.415	oʻ	-249.532	-233.289	40.871
	8	48.183	75.713	75.416	0.089	-249.517	-233.189	40.602
FeO, 1)	88	51.848	101.298	81.023	10.137	-247.965	-222.752	13.27
change	8	53.028	110.857	85.220	15.382	-247.385	-217.766	18.958
railer e	88	55.070	136.190	89.485	20.737	-246.983	-212.864	13.584
- value	88	55.969	132.931	97.660	31.74	-246.991	-203.148	1.79
	00 <u>=</u>	26.873	138.875	101.489	37,386	-247.877	-198.241	10.355
	1100		144,337	105.139	43.118	-249.492	-193.187	9.174
id state	100,000	57.761 68.199	144337	105.139 105.139	43.118	GLASS	SS <> LIQUID TRANSTITON	 e
occurs.	1200		150.271	108.656	49.938		-188.086	
	000	88.58 8.58	155.730	112.070	56.758	-247.952	-183.030	7.354
	1800	88.199 88.199	165.490	118.558	70.398	-245.077	-173.257	6.03
	0091	68.199	168'691	121.630	77.218	-243.785	-168.512	5.501
	1650,000	68.199	171.990	123.124	80.628	CRYSTAL	T <> LIQUID	OI
	02.5	68.199	174.026	124.592	84.038	-243.540	-163.826	5.034
	88	86.18	177.924	127.447	80808	-242.714 -356.300	-159.160	4.619
	2002	8.19	185.109	132.861	104.497	-255.866	- 148.452	3.87
	2100	68.199	188.437	135.428	111.317	-255.541	-143.089	3.559
	220	68.199	191.609	137.911	118.137	-255,227	-137.741	3.270
	2400	88	194.041	142.636	131.77	-254.634	-132.408	2.766
	2500	68.199	200.327	144.889	138.597	-254.354	-121.779	2544
	2600	8.8 8.8	203.002	147.073	145.417	-254.085	-116.481	2.340
	2800	88.19	208.056	151.250	159.057	-253.577	- 105.915	1.976
	000 000 000 000 000 000 000 000 000 00	88.18 18.18	210.450	153.251	165.877	-253,338	-100.646	1.813
	3100	68.199	214.998	157.089	179.517	-252.890	-90.131	1.519
	3200	88.199	217.163	158.933	186.336	-600.979	-77.460	1.264
	3400	68.199	221298	162.481	199.976	-596.815	44.869	0.689
	3200	88.199	223.275	164.190	206.796	-594.795	-28.665	0.428
	380	88.58	222 136	165.858	213.616	-592.816	-12.518	0.182
	3808	88.	228.883	169.079	227.256	-588.987	19.616	-0.270
	380	88.19	230.655	170.635	234.076	-587.137	35.608	-0.4 E
	410	68.133	234065	17.69	247.716	-583 570	67.453	-0.859
	4200	68.199	235.709	175.105	254.536	-581.855	83.311	-1.036
	4400	8. 8 8. 8	237.314	176.533	261.356	-580.186	99.128	170
	4500	88.19	240.414	179.304	274.995	-576.993	130.650	-1517
	009	68.199	241.913	180.649	281.815	-575.470	146.358	-1.662
	\$ 8 8 8	88.18	244.816	183.262	295.455	-572.578	17.680	-1.934
	689	68.199	246.222	184.533	302.275	-571.212	193.296	-2.061
	3	6.133	747.000	197.791	202:02	202.200	700.000	7917
							144	701

Fe₁O₁(cr,I)

M_r = 71.8464 Iron Oxide (FeO)

\$ 49915 \$ 49915 \$ \$ 49915 \$ 4991	-[G*-f*(T,)]/T -[G*-f*(T,)]/T 5.2 60.752 661 60.753 68 66.753 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 69 75.270 71 11.833 72 11.835 73 18.271 74 11.835 75 11.835 76 11.135 77 12.705 78 11.835 78 11.835 78 11.835 78 11.835 78 11.835 78 11.835 78 11.835 78 11.835 78 11.835 78 11.835 78 11.835	H*-H'(T,) 0. 0.092 5.187 10.449 11.3865 21.418 21.418 21.436 32.575 44.336 50.892 50.892 50.892 60.194 69.502 10.539 110.539 110.539	A _t H* - 272.044 - 271.044 - 271.044 - 268.314 - 268.314 - 268.374 - 268.374 - 268.374 - 268.375 - 271.385	A _r G* -251.429 -251.301	log K
8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	60.752 60.753 62.737 66.541 75.270 83.724 83	0.0002 5.187 11.486 21.488 21.5865 21.593 37.703 37.703 38.736 56.936 66.1194 69.502 15.873 75.873 106.549 1106.549	- 772.04 - 772.025 - 771.04 - 771.04 - 269.414 - 268.314 - 268.374 - 268.374	-251.429 -251.301	
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60.732 66.733 66.733 66.733 66.733 70.288 77.276 79.577 79.577 101.833 109.481 111.350 111.350 118.354 118.354 118.354 118.354 119.257 119.358	0. 5.187 5.187 5.187 5.187 5.187 5.187 5.187 5.187 5.187 5.187 5.187 5.187 5.187 5.187 6.550 6.3194 6.550 103.139 103.139 103.139	- 772.044 - 772.025 - 771.044 - 770.164 - 269.414 - 268.414 - 268.414 - 268.314 - 268.374 - 268.	-251.429	
88 88 88 88 88 88 88 88 88 88 88 88 88	66.753 66.2137 66.2137 66.2137 70.288 70.277	0.092 5.187 10.449 115.865 21.043 27.093 33.375 44.736 50.802 50.802 50.802 50.803 66.194 69.502 106.549 110.549 110.549	-772,025 -771,044 -70,164 -269,414 -268,814 -268,374 -268,374 -268,374 -268,374 -268,374 -268,374 -268,374 -268,374 -270,385	-251.301	44 049
88 88 88 88 88 88 88 88 88 88 88 88 88	66.737 66.737 70.868 70.868 70.737 70	5.187 10.449 11.586 27.093 33.272 38.756 44.756 50.802 50.802 50.802 66.194 69.502 17.5873 79.601 106.549 110.549 121.339	-2711344 -270.164 -269.414 -268.814 -268.374 -268.374 -270.385		4.
28.22 28.22	70 868 75 770 79 577 87 571 87 571 87 571 87 571 87 572 87	15.865 21.418 21.093 33.573 33.575 44.735 50.805 50.805 65.502 65.502 75.873 75.873 75.873 76.549 110.549 120.189	-269.414 -268.814 -268.422 -268.374 -268.969 -270.385	-244543	24.866
88 88 88 88 88 88 88 88 88 88 88 88 88	75.277 87.3724 87.3724 87.372 98.537 101.833 109.481 119.354 111.350 118.354 118.354 118.354 118.354 118.354 118.354 118.354 118.354 118.354 118.354 118.354 118.354	71.938 71.873 71.873 8.756 44.736 56.956 65.194 65.502 75.873 75.873 105.139 113.569 113.569	-268.514 -268.374 -268.369 -270.385	-231.666	20.168
88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	83.724 91.477 91.477 92.509 98.509 98.509 104.509 111.330 111.330 111.330 111.330 111.330 111.330 111.330 111.330 111.330 111.330 113.331 113.331 113.331 113.331 113.331	31.872 38.756 44.736 50.802 56.956 65.194 65.502 75.873 79.081 105.139 113.569 113.569	-268.374 -268.969 -270.385 -771.184	-219.256	14.316
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	91,777 95,089 95,089 96,083 104,989 109,481 109,481 111,350 111,350 111,350 111,350 111,350 111,350 111,350 113,257 113,257	38.756 44.736 56.936 63.194 69.502 75.873 75.873 103.139 110.559 113.359 120.189	-208.969 -270.385 -771.184	-213.118	
2201202	95,037 98,537 101,833 104,989 108,014 109,481 109,481 111,350 111,350 111,350 111,350 111,350 113,257 113,257 113,257	56.956 56.956 63.194 69.502 75.873 79.081 103.139 110.559 120.189	-271.184	-206.935	_
2.643 2.443 2.483	001833 104989 104989 108.014 108.014 109.481 109.481 111.350 111.350 127.678 127.678 127.678 13.524 13.524 13.524	56.956 63.194 69.502 75.873 79.081 103.139 110.549 113.369		-194316	8.458
2.2	101.833 108.014 108.014 109.481 109.481 101.430 111.605 124.709 133.254 133.254 133.254 134.414	69.502 69.502 75.873 79.081 105.549 113.369 120.189	-270.265	-187.947	
2	108.014 109.481 109.481 111.1350 111.8.354 121.605 124.709 137.678 130.524 133.257 135.884	75.873 79.081 103.139 106.549 113.369 120.189	-269.361	-181.549	
48 8888 88888 88888 88888 88888 88 58 8888 88888 88888 88888 88888 88	109.481 109.481 111.350 114.941 118.354 121.605 127.678 130.524 130.524 135.884	79.081 103.139 106.549 113.369 120.189	-267.642	-169238	
**************************************	111.350 114.941 118.354 121.605 127.609 127.678 130.524 133.257 138.84	106.549 113.369 120.189	CRYSTAL	AL <> LIQUID	Ē
888 88888 88888 88888 88888 88 888 88888 88888 88888 88	114.941 118.354 121.605 127.678 130.524 133.257 135.884	113.369		-163.876	
88 88888 88888 88888 88888 88 88 88888 88888 8888 88888 88	118.354 121.605 124.709 127.678 130.524 133.257 138.8415	120.189	-242.774	-159.160	
\$	124.709 127.678 130.524 133.257 135.884	127,009	-255,866	-153.831	3,877
4444 4444 4444 4444 4444 4444 4444 4444 4444	127.678 130.524 133.257 135.884	133.829	-255.541	-143.089	
8	133.257	140.649	-255227	-137.741	3,270
8 888888 88888 888 8 88888 88888 888 8 88888 8888	135.884	154.288	-254634	-132.408	
88888888888888888888888888888888888888	138 415	161.108	-254.354	-121 779	
88888888888888888888888888888888888888	140.855	167 928	-254.085	-116.481	
28 28222 28 28222 28 28222	143.211	181.568	-253.577	-105.915	1.976
88.88.88.88 88.88.88 88.88.88 88.88	145 488	195.208	-253.338	-100.646	
88.88.88 81.88 81.88 81.88 81.88 81.88 81.88	149.828	202.028	-252.890	-90.131	
8.88.88 8.18 8.18 8.18 8.18	151.898	208.848	-600.979	-77.460	1264
88.198 88.198 198	155.860	222.488	-596.815	-61.133	
88.88 8.18	157.758	229.308	-594.795	-28.665	
3	159.605	236.127	-592.816	-12.518	
68.199	163.155	249.767	-588.987	19.616	1
3900 68 199 230,655	164.863	256.587	-587.137	35.608	0.477
8 8	168 156	770.77	155.585 -	57.75	0.870
	169.745	277.047	-581.855	83,310	1
86.88 86.88	171.298	283.867	-580.186	99 128	1
88.193	174.301	297.507	-576.993	130.650	-1517
	227.271	304.327	-575 470	146.358	1
86.189 86.189	177.178	311.147	-573.998	162.034	1 1
68.199	179.939	324.786	-571.212	193.296	-2.061
68.199	181.278	331.606	-569.900	208.885	1

CRYSTAL-LIQUID

Refer to the individual tables for details.

0 to 1650 K crystal above 1650 K liquid

0.0714 -0.276 -0.150 -0.035 0.071

186 157 183 511 180 875 178 248 175 632

92.936 96.891 100.865

85.086

53 809 46.934 40 182 33.545 27.019 20.600 14.283 8.063 -4.097

199.490 196.812 194.139 191.471 188.810

0.169 0.139 0.050 0.050 0.0112 0.112 0.0112 0.023 0.023 0.050 0.050 0.050 0.050

-180 734 -181 508 -182 305 -183 129 -183 979

125.126 129.236 133.365 137.512 141.676

-10.045 -8 485 -3.182 2.143 7.489

173.025 177.870 178.553 179.258 179.985

104.859 108.873 112.907 116.961 121.034

-16.099
-13.024
-13.024
-13.024
-13.024
-13.034
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.035
-13.03

91.808 83.471 75.293 67.947 60.811

226.413 223.600 221.319 204.857 202.172

135.431 126.392 117.568 108.864 100.278

236.186 233.018 231.495 229.886 228.192

28,223 31,920 35,632 39,357 43,095

CURRENT: September 1966 (1 bar)

202.581 204.161 205.805 207.518

210.134

-0.769 -0.815 -0.859 -0.902 -0.943 -0.983 -1.022 -1.025 -1.039

195.549

188.438

-189.727 --190.808 --191.929 --193.091 --194.297

166.986 171.253 175.532 179.823

198.200 199.604 201.063

12.856 18.244 29.084 34.536 40.010 40.010 56.563 60.125 60.125 60.125 84.605 84.605 84.605 85.888 85.888 86.898 86.803 86

185.766 186.706 187.678 188.685

145.856 150.052 154.264 158.491 162.732

	ł	Ć	ľ
ı	t	١	Ĺ
•			

Standard State Pressure = $p^* = 0.1$ MPa

 $H^{\bullet}-H^{\bullet}(T_{\bullet})$

-38.129

251.040

-37.858 -31.619 -26.948 -23.322 -20.427

217 431 211.866 206.364 200.921 195.534

251.024 250.594 250.139 249.653

184.925 174.532 164.360 154.422 144.752

24.932 246.520 244.828 242.725 239.904

$M_r = 71.8464$ Iron Oxide (FeO)	Δ _i H ^o (0 K) = 251.05 ± 20.9 kJ·mol ⁻¹ Enthalpy Reference Temperature (298.15 K) = 251.04 ± 20.9 kJ·mol ⁻¹
IDEAL GAS	$\Delta_i H^{\circ}(0 \text{ K}) = 251.05 \pm 20.9 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_i H^{\circ}(298.15 \text{ K}) = 251.04 \pm 20.9 \text{ kJ} \cdot \text{mol}^{-1}$
Iron Oxide (FeO)	$S^{\circ}(298.15 \text{ K}) = [241.924] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

,	ا ہے	H																	-	. – -			-			_					_		-71			*****
	Entralpy Reference Lemperature = 1, = 226.15 F. J·K ⁻¹ mol ⁻¹	$S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$	INFINITE 268.743 244.739 242.436	241.924	241.924 242.310	244.313	248.356	251.166 253.912 256.551	259.068	261.461	265.897 267.954 269.915	271.787 273.577	275.291	280.035	282.913	284.278	285,598	288.117	289.319 290.488 291 624	292.730	294.857	295.881 296.881	297.858	299.746	300.660	302.431	304.133	304.959 305.770	306.566	308.117	309.615	310,346 311,064	311.771	313.153	314.493	315.795
	J·K-'mol-'	S -[G	0. 209.460 229.752 236.471	241.924	242.118 247.030	251.394	265.234	270.691 275.486 279.760	283.612	287.119	295.306 296.067 298.645	301.065	305.502	311.357	313.138	316.491	318.074	321.080	322.511	326.556	329.071	330.281 331.462	332.615	334.842	335.919 336.973	338.006	340.008	340.980 341.933	342.868	344.686	346.440	347.294 348.133	348.958	350,567	352.124	353.632 354.368
	reference 16	ប	0. 29.110 29.741 30.538	31.406	31.439	33.065	35 098	35 689 36 118 36 439	36.687	36.884	37.188 37.315 37.434	37.550	37.792	38.207	38.363	38.699	39.063	39.253	39.64 74.65 74.65 74.65	40.041	40.437	40.633 40.825	41.014	41.198	41.553	41.885	42.193	42.338 42.476	42.608	42.853	43.072	43.173	43.356	43.518	43.658	43.779
	Enthaipy is	τÆ	° 28 28 28 0	298.15	320	\$ \$ \$	8 8	588	0001	889 121	84.2 86.8 80.8	0001	<u>888</u>	2002	2200	2400	8 5	2700	2800	3100	3300	3400 3500	3600	3808	96. 90. 90. 90.	4100	4.4 8.00 9.00 9.00	4500 4500	4500 6700	880 9064	2000	2100 2200	5300 5400	2800	55 50 50 50 50 50 50 50 50 50 50 50 50 5	2800
	νην ('0 K) = 20.105 ± 20.9 Κυτωρί ' - Δ.Η (298.15 K) = 251.04 ± 20.9 Κυτωρί '		Electronic Levels and Quantum Weights State ε, cm ⁻¹		[10000]		$\alpha_{\rm e} = [0.00293] {\rm cm}^{-1}$	mation	formation for FeO(g) is not well established at the present time. The values of $\Delta_i H^3$ (FeO, g, 298 15 K) derived from the	 (A) rec(g) = re(g) + U(g) , (b) rec(g) + 1/2 O₂(g), and (c) rec(l) = rec(g), are not in agreement. Incre are time reported for reaction (1). The enthalpy change for reaction (2) was evaluated based on the partial pressure data (PFeO/ 	$^{\circ}$ C, measured by Washbum, using a mass spectrometric method, and PO ₂ = 1.66 × 10 ⁻⁶ atm reported by Darken and py value for reaction (3) was calculated based on the reported value, $\Delta_{wp}H^{\circ}(2785 \text{ K}) = 96.096 \text{ kcal·mol}^{-1}$ determined by	e results obtained are presented as follows. The value of Δ_H (298.15 K) for FeO(g) adopted is 60 \pm 5 kcal·mol ⁻¹ .	A 119/700 15 V7 Local-mad 1 1 19/700 15 V7	Reaction Method kcal-mol ⁻¹ kcal mol ⁻¹	A Spectroscopic 111.9	Spectroscopic 93.4 ± 23.1	uldt³ A Spectroscopic 990±11.6	Spectroscopic	C Transpiration 111.8	and Entropy d state conformation is mainly that due to Fe ⁺⁺ in a leand field, it was assumed to be the same as that for FeCl⊀e) remorted	ruen. The electronic levels and quantum weights were estimated by comparison with those for FeCl ₂ (g). The values of ω_c	en from Herzberg. The bond distance was calculated according to the method suggested by Guggenheimer, assuming	molecule. The value of B_e was calculated by use of the relationship, $B_e = (2.1990.10 \times 10^{-1})!$ where I is the moment of The value of α was derived from α , α and R by the method engaged by Herzhero			pectra of Diatomic Molecules, ' D. Van Nostrand Company, Inc., New York, (1930). Discoclation Engage '' Channes and Hall 1st 1 conden. (1963).	d L. Huldt, Z. Naturforsch. 8A, 493 (1953). De was derived from atomic spectra of Fe produced by acetylene-air flame	(2201 61 - 1-0)	UCKL 10991, August 1903, obtained from L. Brewet, personal communication, (UCtober 16, 1909). A. Karasev and A. M. Samarin, Fiz.–Khim. Osnovy Proizv. Stali, Akad. Nauk SSSR, Inst. Met., Tr. 6–01 [Shestoi] Konf.,	961); published in (1964).	Fig. Commission, UCK-1-10991, Krigust 1903). P. W. Girry, I. Arner Chem. Sc. 68, 798 (1945).	nd D. M. Gruen, J. Chem. Phsy. 44, 4387 (1966).	imer, Proc. Phys. Soc. (London) 58, 456 (1946).			

Enthalpy of Formation

 $D_0^{\prime}(Fe-O)$ values reported for reaction (1). The entitalpy change for reaction (2) was evaluated based on the partial pressure data (PFeO) PFe) = 0.2 at 1600°C, measured by Washburn, 4 using a mass spectrometric method, 6 and PO₂ = 1.66 × 10⁻⁶ atm reported by Darken and Gurry. The entitalpy value for reaction (3) was calculated based on the reported value, $\Delta_{uu}H^{\prime}(2785 \text{ K}) = 96.096 \text{ kcal-mol}^{-1}$ determined by Burtsev *et al.* 3 The results obtained are presented as follows. The value of $\Delta_t H^{\prime\prime}(298.15 \text{ K})$ for FeO(g) adopted is 60 \pm 5 kcal-mol⁻¹. The enthalpy of formation for FeO(g) is not well established at the present time. The values of $\Delta_t H^o$ (FeO, g, 298 15 K) derived from the following reactions: (A) FeO(g) = Fe(g) + O(g), (B) FeO(g) + 1/2 O₂(g), and (C) FeO(l) = FeO(g), are not in agreement. There are three

Source	Reaction	Method	Δ,H°(298.15 K), kcal·mol ⁻¹ kcal·mol ⁻¹	$\Delta_t H^{\circ}(298.15 \text{ K})$ kcal mol ⁻¹
Herzberg	4	Spectroscopic	111.9	47.2
Gaydon ²	4	Spectroscopic	93.4 ± 23.1	65.7 ± 23.1
Lagerqvist and Huldt	۷	Spectroscopic	990 ± 11.6	60.1 ± 11.6
Washburn et al.*	В	Spectroscopic	99.3 ± 5	59.8 ± 5
Burtsev et al.3	ပ	Transpiration	111.8	52.2

Heat Capacity and Entropy

Since the ground state configuration is mainly that due to Fe⁺⁺ in a ligand field, it was assumed to be the same as that for FeCl₂(g) reported by DeKock and Gnen. The electronic levels and quantum weights were estimated by comparison with those for FeCl₂(g). The values of ω_0 and ω_0 , were taken from Herzberg. The bond distance was calculated according to the method suggested by Guggenheimer, assuming FeCl₂(g) as a polar molecule. The value of B, was calculated by use of the relationship. $B_0 = (2.799076 \times 10^{-39})$ I where I is the moment of nertia of FeO(g). The value of α_e was derived from ω_e , $\omega_e x_e$ and B_e by the method suggested by Herzberg.

References

G. Herzberg, "Spectra of Diatomic Molecules," D. Van Nostrand Company, Inc., New York, (1950).

G. Gaydon, "Dissociation Energies," Chapman and Hall, Ltd., London, (1953).

A. Lagerqvist and L. Huldt, Z. Naturforsch. 8A, 493 (1953). D₀ was derived from atomic spectra of Fe produced by acetylene-air flame

V. T. Burtsev, R. A. Karasev and A. M. Samarin, Fiz.-Khim. Osnovy Proizv. Stali, Akad. Nauk SSSR, Inst. Met., Tr. 6-01 [Shestoi] Konf., Washburn et al., UCRL 10991, August 1963, obtained from L. Brewer, personal communication, (October 18, 1966).

Moscow, 366 (1961); published in (1964).

S. Darken and R. W. Gurry, J. Amer. Chem. Soc. 68, 798 (1946).

S. Atomic Energy Commission, UCRL-10991, (August 1963).
 L. S. Darken and R. W. Gurry, J. Amer. Chem. Soc. 68, 798 (1948).
 C. W. DeKock and D. M. Gruen, J. Chem. Phsy. 44, 4387 (1966).
 M. Guggenheimer, Proc. Phys. Soc. (London) 58, 456 (1946).

W DeKock and D. M. Gruen, J. Chem. Phsy. 44, 4387 (1966). M. Guggenheimer, Proc. Phys. Soc. (London) 58, 456 (1946).

ron Oxide (FeO)

PREVIOUS: September 1966 (1 atm)

Standard State Pressure $*p^* = 0.1$ MPa

Enthalpy Reference Temperature = T, = 29&15 K

J.K. mol.

K-mof- $\Delta_i H$

 $H^{\bullet}-H^{\bullet}(T_{i})$

S -{C - H'(T,)}/T

ئ

7,8

log K

NFINITE 466.166 224.327 144.515

-919.331 -892.445 -858.919

824 879 -824.234 -789.237 -753.695

-928.848 928.859

120.957 120.959 125.118 133.463 143.331

120.957

100.583 101.002

0 200 200 298.15

121.580 152.861 180.266

0. 42.771 85.016

-931 115 -931 710

143.512 103.054 78.738 78.738 50.940 42.267 35.486 18.001 12.218

-978.112

-718.113 -682.648 -647.342 -611.106 -570.101

-931.332 -930.365 -929.150 -981.132 -979.245

153.670 164.011 174.131 183.927

204.613 226.410 246.052 263.849 280.088

49.41

152.758 157 779

138.030

44.641

0.186 11.097 23.401 36.769 50.918 65.633 80.746 96.161

-529.226 -488.516 -448.012 -407.782 -367.809

-976.304 -972.740 -969.161 -965.573

111.826 127.709 143.785 160.036 176.451

202.411 211.098 219.433 227.435 193,356

164.933

64.40

295.017 321.702 333.744 345.069

-328.076 -288.548 -249.184 -209.298 -169.499

-961.981 -959.340 -956.087 -966.938

193 020 209.735 226.593 243.589 260.718

235.124 242.521 249.645 256.514 263.146

355.762 365.895 375.530 384.719 393.505

CURRENT June 1966

 $\Delta_t H^{\circ}(0 \text{ K}) = -919.33 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_0 H^{\circ}(298.15 \text{ K}) = -928.85 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$ $S^{\circ}(298 15 \text{ K}) = 120.957 \pm 1.3 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

CRYSTAL

Iron Sulfate (FeSO4)

Enthalpy of Formation

 $\Delta_1H^2(298.15 \text{ K}) = -345.85 \text{ keal mol}^{-1}$ for FeSO₄(110 \approx H,O), the enthalpy of formation (398.15 K) for FeSO₄(cr) was calculated as -221 kcal·mol $^{-1}$. The value of $\Delta_1H^2(\text{FeSO}_4$, cr, 298.15 K) was estimated based on $\Delta_1H^2(298.15 \text{ K}) = 235.9 \text{ kcal·mol}^{-1}$ for FeSO₄(200 \approx H₂O) + H₂SO₄(200 H₂O) + 2HCl(100 \approx H₂O) measured by Thomson 2 See the Fe(OH)₂(cr) table for details. The decomposition pressures of FeSO₄(cr) at different temperatures were investigated by DAns, and Greulich, Using their reported partial The enthalpy change for the reaction FeSO₄(cr) = FeSO₄(110 × H₂O) was determined to be -14.9 kcal-mol⁻¹ by Forcrand.¹ Using

pressures for SO₃(g) and SO₄(g), the enthalpy change for the reaction 2FeSO₄(cr) = Fe₂O₃(cr) + SO₃(g) + SO₄(g) was evaluated by both the 2nd and 3rd law methods. The results obtained are presented in the following table.

Source	T/K	$\Delta_t H^{\circ}(298.15 \text{ K})$, kcal·mol ⁻¹ Δ 2nd law 3rd law), kcal·mol ⁻¹ 3rd law	$\Delta_i H^o$ (298 15 K) kcal mol ⁻¹
D'Ans ³ (1905)	753.15-908.15	83.2 ± 4.6	82.7 ± 1.1	-222.7
Greulich ⁴ (1927)	887.15-971.15	64.8 ± 8.8	80.1 ± 1.4	-221.5
Neumann and Heintke ³ (1937)	633.15-862.15	72.4 ± 5.4	75.3 ± 0.5	-219.1

pressures for SO₃(g) and SO₂(g) were evaluated. Using the derived SO₃(g) and SO₂(g) partial pressures, the corresponding enthalpy change for the reaction were calculated by both the 2nd and 3rd law methods. The results obtained are also listed in the same table. The decomposition pressures asumed for the same reaction have been determined by Neumann and Heintke.5 From their data the partial

The value of $\Delta_t H^0(298.15 \text{ K})$ for FeSO₄(cr) is selected as 222 \pm 2 kcal·mol⁻¹.

Heat Capacity and Entropy

The low temperature heat capacities, 50.12 294.9 K, were determined by Moore and Kelley. Based on \$°(50.12 K) = 2.10 cal·K⁻¹·mol⁻¹, the value of \$°(FeSO, cr, 298.15 K) was reported to be 25.71 ± 0.2 cal·K⁻¹·mol⁻¹. Using the Gibbs energy functions for FeSO₄(cr) based data. The results obtained were better than before, see the paragraph on "Enthalpy of Formation," for details. Therefore the value, S'(298.15 K) = 25.71 + 3.2 = 28.91 cal·K -1·mol-1 for FeSO₄(στ), was adopted. The heat capacities above 2949 K were estimated by on this S°(298.15 K) value, to evaluate the vapor pressure data for Reaction, the 2nd and 3rd law values of $\Delta_t H^o$ (298.15 K) were derived as 72.36 ± 7.60 and 86.51 ± 1.26 kcal mol⁻¹, respectively. Since the report by Moore and Kelley⁶ did not mention the magnetic entropy contribution, an attempt was made to add 3.20 (=Rln5) cal·K⁻¹ mol⁻¹ to S°(FeSO₄, cr, 298.15 K) and reevaluate the decomposition pressure comparison with those for MnSO₄(er) The high temperature heat capacities, 870.3-1082.3 K, were determined by Southard and Shornate² The two sets of data were joined smoothly at 298.15 K by use of Shornate-function plot.

Decomposition Data

 $T_{d.m} = 944 \,\mathrm{K}$ is the temperature at which the vapor pressure of the gaseous decomposition products equals one atmosphere, which was obtained by graphical interpolation of the decomposition pressure data on FeSO₄(cr), reported by Greulich.⁴

References

R. de Forcrand, Comp. Rend. 158, 20 (1914).

²J. Thomsen, "Thermochemische Untersuchunger," Barth, Leipzig, 1882-1886.

³ D'Ans, Dissertation, Darmstadt, 1905. Data quoted by B. Neumann and G Heintke, loc. cit.
⁴ Greulich, Z. Anorg, Chem. 168, 197 (1927). Only the last seven high temperature points were adopted for evaluation.
⁵ B. Neumann and G. Heintke, Z. Elektrochem. 43, 246 (1937), based on the last 18 high temperature points adopted.
⁶ G. E. Moore and K. K. Kelley, J. Amer. Chem. Soc., 64, 2949 (1942).

Southard and C. H. Shomate, J. Amer Chem. Soc. 64, 1770 (1942)

Iron Sulfate (FeSO4)

PREVIOUS:

Standard State Pressure = $p^* = 0.1$ MPa

Enthalpy Reference Temperature - T. - 298.15 K

Iron Sulfide, Troilite (FeS)

PREVIOUS:

CURRENT September 1977

CRYSTAL

Iron Sulfide, Troilite (FeS)

 $\Delta_f H^0(0 \text{ K}) = -102.17 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_f H^0(298.15 \text{ K}) = -101.67 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{crs}H^{\circ} = 1.665 \pm 0.8$ $\Delta_{\text{tra}}H^{\circ} = 0.397 \pm 0.08$ $\Delta_{\text{tra}}H^{\circ} = 31.464 \pm 2.1$ $S^{(298.15 \text{ K})} = 60.321 \pm 0.04 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Fas = 1463 ± 3 K Tust = 411 ± 3 K Tuz = 598 ± 3 K

Enthalpy of Formation

able agreement with the adopted value. Of the emf results, all refer to less than stoichiometric composition Feass? Feass¹⁰ or $(\Delta_H^{*}(298.15 \text{ K}) = -23.89 \pm 0.41 \text{ kcal-mol}^{-1})$ and the annealed sample of Ariya et al. $(\Delta_H^{*}(298.15 \text{ K}) = -24.4 \text{ kcal-mol}^{-1})$ are sample, 97.58%. II Δ_H (298.15 K) has been shown to vary significantly as a function of stoichiometry which is a result of the v Δ_H ° with composition. The adopted $\Delta_H^o(298.15 \text{ K})$ is $24.30 \pm 0.2 \text{ kcal·mol}^{-1}$ and is based on our 3rd law analysis of gas phase H_2S/H_2 equilibrium results because of greater certainty in the stoichiometry of the iron sulfide. Of the calorimetric studies* only those of Adam Additional studies of a similar nature are reported by Mills. The gas phase equilibrium results are favored over calorimetric

Source	Reaction*	Method	Data Points	7/K	Δ,H°(298 15 K), kcal·mol 2nd law 3rd law	, kcal·mol ⁻¹ 3rd law	Drift cal K ⁻¹ ·mol ⁻¹	Δ _t H°(298.15 K) kcal·mol ⁻¹
Rosenqvist1	υt	H ₂ S/H ²	11	773-1257	17.89 ± 0.41		-1.45 ± 0.40	-24.30 ± 0.6
Turkdogan ³	ں ں	:	equation 3	943-1173	-17.24 ± 0.39	-19.40 ± 0.48	-2.03 ± 0.36	-24.30 ± 0.5
Alcock ⁴	8	:	equation	720-1261	-38.30		-1.38	-24.26 ± 0.6
McCabe ⁵	æ	:	0	1224-1255	-33.76 ± 2.84		4.81 ± 2.3	-24.28 ± 0.2
Sudo	ပ	:	4	1048-1145	-17.39 ± 2.19		-1.95 ± 2.01	-24.41 ± 0.4
Ran,	ပ	:	6	820-1257	-19.40 ± 0.23		0.09 ± 0.22	-24.15 ± 0.3
Berner	∢	cmf		298.15		-24.08		-24.08
DeRanter ¹⁰	4	H titration	_	298.15				-20.55
DeRanter ¹⁰	∢	emf	-	298.15		-20.56		-20.56
Guldin"	B	emf	_	973		36.445		-21.02

 \dagger Reactions: (A) Fe(cr) + S(cr) \rightarrow FeS(cr), (B) Fe(cr) + 1/2 $S_1(g) \rightarrow$ FeS(cr), (C) Fe(cr) + $H_2S(g) \rightarrow$ FeS(cr) ·

Heat Capacity and Entropy

The adopted hear capacities are obtained by merging the C_s^a data (7–345 K) of Gronvold *et al.* ¹³ and the enthalpy data (356–1) Coughlin. ¹⁴ The data are difficult to merge smoothly because of the proximity of the α β transition at 411 K. Coughlin gives the co of his sample as FeS_{1,02} and this introduces some uncertainty at the higher temperatures. The value of S_s^a (298.15 K) is obtained from the appropriate integration of C_s^a values assuming S^a (7 K) = 0.0028 cal·K⁻¹·mol

The mineral pyrrhotite has a composition range extending from FeS to Fears's (Fe3s1), the name troilite is reserved for the stoi FeS composition. The phase diagram¹⁵ of this system shows that the iron rich limit of this phase corresponds to stoichiometric 1370 K; above this temperature only an iron deficient material exists so that stoichiometric FeS will melt incongruently.

There are two solid state phase transitions, both associated with electronic magnetic phenomena. The adopted temperature transition is $T_{\text{enj}} = 411 \pm 3 \,\text{K.}^{15}$ Our analysis of the adopted C_p^o data yields $\Delta_{\text{enj}}H^o = 0.398 \,\text{kcal·mol}^{-1}$; in view of the uncertainti data we adopt an uncertainty of ± 0.2 kcal·mol⁻¹ in $\Delta_{m_1}H^{\circ}$. The adopted temperature of the β - γ transition is T_{m_2} = 598 \pm 3 k analysis of Coughlin's high temperature enthalpy data¹⁴ yields $\Delta_{m_2}H^{\circ}$ = 0.095 \pm 0.02 kcal·mol⁻¹.

Fusion Data

Refer to the liquid table for details.

References

T. Rosenqvist, J. Iron Steel Inst. 176, 37 (1954).

Blaise and A. Gentry, C. R. Acad. Sci., Ser. C 273, 1125 (1971).
 E. T. Turkdogan, Trans. AIME 242, 1665 (1968).
 C. B. Alcock and F. D. Richardson, Nature 168, 661 (1951).
 C. L. McCabe, C. B. Alcock and R. G. Hudson, J. Metals 8, 693 (1956).
 Sudo, Sci. Rept. Res. Inst. Tohoku Univ., Ser. A 2, 312 (1950).
 H. Rau, J. Phys. Chem. Solids 37, 425 (1976).

Continued on page 1251

N kI-mol-1			J-K-'mol-'			k f-mol-		
.8 kJ-mol ⁻¹	7/K	:	S -{G	$-[G^{\bullet}-H^{\bullet}(T_{*})]T$	$H^{\bullet}-H^{\circ}(T_{\epsilon})$		$\Delta_i G^{ullet}$	log Kr
38 kJ·mol-1	0	0	ó	INFINITE	-9.413	-102.166	-102.166	INFINITE
1011.7	<u>8</u> 8	26.670 43.052	17.216	99.528 64.714	-8231 -4.610	-102.096 -101.886	-101.959	53.258 26.614
	298.15	50.517	60,321	60.321	o	129101-	-101.953	17.862
n data of.	88	50.671	60.634	60.322	0.094	9997101-	- 101.954	17.752
and emf	411,000	95.051	81 559	63.042	7,610	_ =	1A <> BET	
in and while	411,000	72.358	85.611	63.042	9.276		TRANSITION	
e in reason-	200	72.358	99.794	68.363	15.715	-100.050	- 102.492	10.707
variation of	598,000	72.358	112.745	74.607	22.807	BETA	\ <> GAMMA	MA
	98	62.030	113.617	74.736	23.328		-103.033	
	90	59.808	122.999	80.982	29.412	-99.697	-103.645	7.734
(298.15 K)	86	58,560	130.893	86.740	35,322	-100.612	- 104.151	6.800
al-mol-	88	58.986	143.934	96.922	47.012	-155.812	-97.670	5.102
30 + 0.6	1100	60.662	149 627	101.457	52.986	-157.351	-91.766	4.358
1 +	200	63.311 56.93	155.011	105.697	59.177	-158.138	-85.786	3.734
+	140	71.533	165.338	113.484	72.596	-155.509	-73.918	2.758
۱+	1463,000	74.930	168,560	115.786	77,208	GAMMA	٠.	
1 +	1500	77.106	170.458	117.111	80.020	-153,630	١	2.373
1 +	1600	83.653	175.638	120.607	88.050	-151.243	-62.529	2.041
۱+	1700	91.174	180.930	123.999	96.783	-149,200	-57.054	1.753
l	85	99.670	186377	127.312	106.317	-145.839	-51.727 -45 906	1.501
SS	3							
56								
25								
+ H ₂ (g)								
-1488 K) of composition								
,								
- <u>-</u> -								
oichiometric FeS below								
of the a B								
ties in these K ¹⁵ and our								

$M_{\rm r} = 87.907$	Iron Sulfide (FeS)	e (FeS)						Fe ₁ S ₁ (I)
ΔH°(298.15 K) = [-68.811] kJ·mol ⁻¹	Enthalpy Re	ference Te	emperature	Enthalpy Reference Temperature = T, = 298.15 K	×	Standard State Pressure	e Pressure = p	= p* = 0.1 MPa
$\Delta_{tus}H^{\circ} = 31.464 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$	7.K	្រ	. No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-[G*-H*(T,)]/T	H*-H*(T,)	v.H.∆	₽/Q.	log Kr
, $\Delta_{tm}H^{\circ}$, and the difference in enthalpy,	988							···
	298.15	50.517	82,811	82.811	0.094	-68.811	-75.798 -75.842	13.280
com Vaisburd and Zedina. ² Their constant	400	89.203 95.051	101.550	85.057 85.532	7.610	-69.528 ALPH	528 -78,222 ALPHA <> BETA	I
noted as covering the range from the mp	411.000	72.358	108.100	85.532	9.276	1 081 19	-80.877	8.449
tion	598 000 598 000	72.358	135.235	97.096 97.096	22.807	2	V≱	1
	888	59.808	136.106	97.226	29.412	-66.248 -66.837 -67.752	-83.667 -86.528 -89.283	7.284 6.457 5.830
iderko.* The adopted enthalpy of fusion, ughlin.3	28 <u>8</u>	58.286 58.986	166.424	114.526	41.156 47.012	-122.204	-90.818	
	1050 000		169,318	121.720 121.720	49.978	GLAS	GLASS <> LIQUID TRANSITION	- 1
	1300		172.228 177.670 182.671	123.950 128.203 132.203	53.106 59.361 65.616	-124.372 -125.094 -124.185	-83.648 -79.933 -76.207	3.062
c, (1958).	1463 000	62.551	187.313	138.247	75.812	-125.375 GAMMA		
	1500	62.551	191.628	139.544	78.126	-122.664	-68.943	2.401
	0021	62.551	195.665	142.927	84.381 90.636	-122.052	-65.382 -61.837 -58.773	2134 1900 1900
	888	62.55	206 415	152.127	103.146	-136.518	-54.008	1.485
	750	62.551	212.675	157.600	115.656	-137.226	-45.287	1.126
	7,500	62.551 62.551	218.365	162.641	134.422	-138.363	-36.497 -32.076	0.829 0.698 7.77
	2600	62.551	226.034	169.522	146.932	-139.163	-23.187	0.466
	2,200 2,800 2,800 2,800	62.551 62.551	228.395	173.726	153.187	-139.572 -139.987 -140.408	-18.718 -14.235 -9.736	0.362 0.266 0.175
	806	62.551	234.985	17.668	171.952	-140.834	-5223	160.0
	3200	62.551 62.551	237.036	179.550 181.378	178.207	-141.265 -490.000	11.270	0.012
	3300	62.551	240.947	183.154	190.717	-488.538 -487.114	26.912 42.510	-0.426
	3600	62.551	244.627	188.200	209.483	-484.378	73.585	-1.068
	3800	62.551 62.551	248.103 249.771	189.796 191.352	215.738 221.993	-483.069 -481.799	89.066 104.512	-1.257 -1.437
	91011						CIRRENT	CIRRENT: Sentember 1977
	PREVIOUS						COLUMN	and the same

LIQUID

Iron Sulfide (FeS)

 $S^{\circ}(298.15 \text{ K}) = [82.811] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tat}} = 1463 \pm 3 \text{ K}$

Enthalpy of Formation Δ_H^{a} (res., 1, 298.15 K) is calculated from that of the crystal by adding the enthalpy of fusion, $\Delta_{lo}H^a$, and the difference in enthalpy, H°(1463 K)-H°(298.15 K), between the crystal and liquid.

Heat Capacity and Entropy

The heat capacity of liquid FeS above an assumed glass transition temperature of 1050 K is taken from Vaisburd and Zedina. Their constant

The heat capacity of liquid FeS above an assumed glass transition temperature of 1050 K is taken from Vaisburd and Zedina. Their constant

value of C_p = 14.95 cal·K⁻¹-mol⁻¹ is lower than C_p = 17.8 cal·K⁻¹-mol⁻¹ which we derive from the enthalpy data of Coughlin. The latter

value is based on two points separated by only 9 K while the results of Vaisburd and Zedina are quoted as covering the range from the mp to 1723 K. The heat capacity below the glass transition is that of the crystal.'
S'(FeS, 1, 298.15 K) is calculated in a manner analogous to that used for the enthalpy of formation.

Fusion Data

The adopted melting point of 1463 \pm 3 K is taken from the phase diagram of Hansen and Anderko. The adopted enthalpy of fusion, $\Delta_{to}H^o = 7.52 \pm 0.5$ kcal·mol⁻¹, is from our analysis of the high temperature enthalpy data of Coughlin.³

M. Hansen and K. Anderko, "Constitution of Binary Alloys," 2nd ed., McGraw Hill, New York, (1958).

(FeS
Trollite
Sulfide,
ron
$M_{\rm r} = 87.907$

\sim
=
_
≂
O
Ξ.
-
<u> </u>
~
1
8
3.
8
÷
⋖
H
'n
Ų,
>
α
\overline{a}

Refer to the individual tables for details.

FeS)
ilite (
e, Tro
Sulfid
ron S

Enthalpy R	teference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard State Pressure	1 .	p* = 0.1 MPa
7/K	ប	S° -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$		₽'0•	log Kr
0 00 0	0. 26.670 43.052	0. 17.216 41.665	99.528 64.714	-9.413 -8.231 -4.610	-102.166 -102.096 -101.886	-102.166 -101.959 -101.901	S3.258 26614
298.15	50.517	60.321	60.321	0	-101.671	-101.953	17.862
96 90 90 90	50.671 89.203	60.634 79.060	60.322 62.567	0.094 6.597	-101.666	-101.954 -102.086	17.752 13.331
411.000		81.559 85.611	63.042	7.610 9.276	ALPHA TR		
200		99.794	68.363	15.715	-100.050	-102,492	10.701
598,000		112.745	74.607 74.607	23.204	•	<> GAMMA TRANSITION	
98		113.617	74.736	23.328	-99.108	-103.033	8.970
888	58.560	130.893	86.740	35.322	-100.612	-104.151	6.800
88	58.986	143.934	377030 36.972	47.012	-155.812	-97.670	5.102
200	63.311	149.627	101.457	52.986 59.177	-157.351	-91.766 -85.786	4.358 3.734
130	66.935 71.533	160.216	109.692	65.681 72.5%	-156.980 -155.509	-79.802 -73.918	3,206
1463.000		168.560	115.786	77.208	=	. 4	
1500		191.628	117.638	110.986		-68.943	
091	62.551	195.665	122.390	117.241	- 122.052 - 172.487	-65.382	2134
0081	155	203.033	130.949	129.751	-122.405	-58.273	1691
2000	62.551	209.623	138.492	142.261	-136.866	-34.008	129
2100	62.551	212.675	141.953	148.516	-137.226	-45.287	1.126
2300	62.551	218.365	148.354	161.026	-137.975	-36.496	0.829
2400 2500	62.551 62.551	223.581	151.327	173.537	-138.759	- 52.076 - 27.639	0.577
2600	62.551	226.034	156.883	267.671	-139 163	-23.187	0.466
2800	62.551	230.670	161.990	192.302	-139.987	-14235	0797
3000	62.551	234.985	166.714	204.812	-140.408 -140.834	-9.730 -5.223	0.091
3100	62.551	237.036	168.950	211.067	-141.265	-0.695	0.012
3300	62.55	240.947	173.196	223.577	-488.538	26.912	-0.426
3400 3500	62.551 62.551	242.814 244.627	175.216 177.174	229.832 236.087	-487.114 -485.727	\$2.510 58.067	-0.653
3600	62.551	246.389	179.072	242.342	-484.378	73.585	-1.068
3800	62.551	249.771	182.705	254.853	-481.799	104.512	-1.437
<u></u>							

Fe₁S₁(g)

CURRENT: September 1977 (1 bar)

IDEAL GAS

Iron Sulfide (FeS)

$\Delta_t H^{\circ}(0 \text{ K}) = 370.49 \pm 16.3 \text{ kJ} \cdot \text{n}$	$\Delta_t H^{\circ}(298.15 \text{ K}) = 370.77 \pm 16.3 \text{ kJ·n}$

thts	£, cm ⁻¹ g,	(0716.2] [5]	(7)	30886.4] [9]	14812.4] [1]	[35803.7] [5]	[40999.9] [5]		19148.0] [1]		[50412.3] [5]	0 = 1
utum Weis	8.	[6]	[6]	E E	[5]	[11]		[7] 4]			(3)	- III - I
evels and Ouar	¢, cm ⁻¹	[20481.9]	[21462.2]	[21699.9]	[21857.2]	[24558.8]	[24940.9]	[25142.4]	[30088.8]	[30356.2]	[30725.8]	ω _x = [2.8] cm ⁻¹
Electronic L		6	Ε	2	3	Ξ	<u>S</u>	2	Ξ	[13]	Ξ	- T
Elect	e, cm ⁻¹	0	[436.2]	[738.9]	[932.4]	[1027.3]	[19404.8]	[20688.4]	[21208.5]	[20051.1]	[20300.8]	ω _c = 550 cm ⁻¹

Enthalpy of Formation

be biased since they used $v = 412 \text{ cm}^{-1}$ for the vibrational frequency of FeS in determining their Gibbs energy functions. A Birge-Spone extrapolation of the vibrational data to determine D_0^2 is not meaningful since DeVore and Franzen³ used the reverse procedure to arrive at the data² this yields $\Delta_t H^0(298.15 \text{ K}) = 88.6 \pm 3.9 \text{ kcal·mol}^{-1}$. Trevedi³ studied the absorption spectrum of FeS and determined $D_0^0 = 9.9$ Drowart et al. 1 used a modified Knudsen cell and a mass spectrometric technique to study the equilibrium FeS(g) + Mn(g = MnS(g) + Fe(g). We adopt a value of D_0^* = 76.3 \pm 3.5 kcal-mol⁻¹ based on their 3rd law analysis of this equilibrium. With auxiliary JANA kcal-mol⁻¹ from the onset of continuous absorption due to photodissociation. This value is likely to be too high in view of the experiments difficulties in determining the exact position of the onset of continuous absorption. Complications arise because of background emission fror the furnace. Marquardt and Berkowitz* determined an upper limit $D_0^{\prime} < 77$ kcal·mol⁻¹ by mass-spectrometric meaurements. These results ma reported value of war.

Heat Capacity and Entropy

With the exception of the observance of one excited state at 17992 cm⁻¹ with a vibrational spacing of ~497 cm⁻¹ by DeVore and Franzen. there is no information on the electronic spectrum of FeS(g). The identity and quantum weight of this state, as well as the ground state, an unknown. As a result, the electronic states are estimated to be identical to those of the Fe2+ ion following the procedure of Brewer an Rosenblatt7 for the transition metal oxides. As stated by Brewer and Rosenblatt7 this procedure usually overestimates the contribution o electronic states. Nevertheless; it appears to be the best method available. The uncertainty assigned to \$'(298.15 K) is based mainly on th uncertainties in this approximation since the presence of the sulfide ion will undoubtedly alter the electronic structure of the iron ion. Level above 50,000 cm -1 are not included since they have a negligible effect on the thermodynamic properties. The vibrational constants are take from a study of the matrix isolation spectrum by DeVore and Franzen.³ The rotational constants are estimated based on an oxide-sulfid correlation due to Barrow and Cousins, * (FeS) = 0.237 ± 1.116 (FeO). The value r(FeO) = 1.626 Å is taken from Suchard, The value c oe is estimated assuming a Morse potential function using the expression given by Herzberg.

²JANAF Thermochemical Tables: Fe(g), 3-31-65; S(cr), 12-31-65, S(g), 6-30-71. Drowart, A. Pattoret, and S. Smoes, Proc. Brit. Ceram. Soc. 8, 67 (1967).

³H. Trevedi, Proc. Acad. Sci. United Provinces Agra Oudh, India 5, 34 (1935)

⁴J. R. Marquardt and J. Berkowitz, J. Chem. Phys. 39, 283 (1963).

⁵T. C. DeVore and H. F. Franzen, High Temp. Sci. 7, 220 (1975). ⁶C. E. Moore, U. S. Nat. Bur. Stand. Circ. 467, Vol. 2, (1952).

Brewer and G. M. Rosenblatt, "Advances in High Temperature Chemistry," L. Eyring, ed., Vol. 2, Academic Press, New York, (1969)
 R. F. Barrow and C. Cousins, "Advances in High Temperature Chemistry," L. Eyring, ed., Vol. 4, Academic Press, New York, (1971)
 N. Suchard, "Spectroscopic Data," Vol. 1, Plenum Press, New York, (1975).
 G. Herzberg, "Spectra of Diatomic Molecules," Second Edition, Van Nostrand, New York, p. 108, (1950).

	Enthalpy Reference Temperature	eference Te	mperature	- T, - 298.15	X S	Standard State Pressure	e Pressure = 1	= p* = 0.1 MPa	
	τÆ	ប	S -[G	-[G*-If'(T,)]/T	H*-H*(T,)	 ₽/II.	δ.Q.	log Kr	
	0	ó	0	INFINITE	-9.191	370.494	370.494	INFINITE	
	88	31.780	238,223	255.391	-6.279	372.294	332.401	-184.039 -86.814	
	22	33.047	246.438	252.899	-1.615	371.390	322.579	-67.399	
	298.15	34,002	252.344	252.344	Ö	370.767	313,234	-54.877	
	8	34.033	252.555	252.345	0.063	370.741	312.877	-54.477	
	8	35,332	262.541	253.698	3537	366.991	293.900	-38.379	
	2 8	35.756	266.728	254.917	5315	363.784	284.847	-33.064	
	8	36.554	277.137	259.229	10.745	360.747	258.710	-22 523	
	58	36.870	282.797	262.201	14.417	357 746	241.940	-18.054	
	38	37.266	292.115	267.855	21.834	298.052	210.764	-14.731	
	8 5	37.402	296.049	270.481	25.568	295.183	201.209	-10.510	
	202	37.615	302.888	212.970	33.071	288.194	183.094	-9.118	
	1300	37.75 28.75	305.902	277.566	36.837	286.614	174.399	7.007	
	1200	37.886	311,310	281.713	44.396	283.184	157.382	-5.481	
	000	37.981	313.759	283.640	48.189 5.093	281.335	149.055	-4.866	
6	88	38.194	318.244	287.241	55.806	276.088	132.840	-3.855	
با ۋ	2000 2000 2000	38,315	320.312	288.927	59.632 63.470	259.546	125.650	-3.454	
33	2100	38.590	324.160	292.102	67.322	254.017	111.837	-2.782	
ন	2200	38.744	325.959	293.601	71.188	251259	105.131	-2.4%	
€ ≥	35,5	39.081	329.344	296.440	78.970	245.763	25026	7005	
ร ซ	8092	39.451	332.487	299,093	86.823	240.307	79.505	-1.597	
2	270	39.645	333.979	300.358	90.778	237.597	73.372	-1.419	
	383	40.046	336.826	302.776	98.746	23220	61.402	-1.10	
	900	40.456	330.160	205,934	107701	229,533	10.50x	-0.830	
~.	3200	40.662	340.798	306.157	110.852	-124 031	51.554	-0.842	
E	3300	40.866 41.069	342.053	307.226 308.268	114.929	-124.748 -125.482	57.052 62.572	-0.903 -0.961	
ğ,	3500	41.270	344,469	309.286	123.143	-126234	68.114	-1.017	
<u>ت</u> ت	3600 3700	41.467	345.634 346.773	310.279	127.279	-127.003 -127.792	73.678	-1.069	
- 4	3800	41.848	347.887	312.200	135.611	-128.602	84.870	-1.167	
E .	600	42.209	350.043	314.038	144.017	-130.290	96.149	-1256	
မ ဗ	4100 4200	42.382 42.548	351.087 352.110	314.929	148.247	-131.171 -132.080	101.820	-1.297	
	4 4 4 400 4 400	42.709 42.863	353.113 354.097	316.658	156.756 161.035	-133.018 -133.987	113,230	-1.375 -1.412	
	4500	43.011	355.062	318.322	165.329	-134.989	124.728	-1.448	
	84 44 80 00 80 00	43.153	356.009 356.938	319.131	169.637	-136.025 -137.099	130.511	-1.482 -1.515	
	4800	43.417	357.851	320.706	178.294	-138.211	142.145	-1547	
	200	43.656	359.628	322.228	187,002	-140.559	153.875	-1.608	
	5100 5200	43.767	360.494	322.970	191.373	-141.799	159.776	-1.636	
	2300	43.971	362.182	324.418	200.148	-144.423	171.652	-1.692	
<u>6</u>	2200	44.153	363.814	325.821	208.960	-147.253	183.631	-1.744	
	2700	44.236	364.610	326.506	213.380	-148.751	189.661	-1.769	
	2800	44.387	366.165	327.847	222.243	-151.928	201.803	-1.817	
	₹00 100 100 100 100 100 100 100 100 100	44.521	367.672	329.150	231.134	-155.364	214 058	-1.864	

PREVIOUS September 1977 (1 atm)

CURRENT: September 1977

ide, Marcasite (FeS.)	
, Marcasite	3S ₂)
, Marc	asite
	, Marc

M_r = 119.967 Iron Sulfide, Marcasite (FeS₂) CRYSTAL

 $\Delta_t H^{\circ}(0 \text{ K}) = -163.78 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -167.36 \pm 2.1 \text{ kJ} \cdot \text{mol}^{-1}$

Standard State Pressure = p° = 0.1 MPa

Enthalpy Reference Temperature = T, = 298.15 K

·K-1mol-1

of marcasite to pyrite is -1.05 ± 0.05 kcal·mol⁻¹ at 700 K. The adopted value of $\Delta_t H^{\circ}(298.15 \text{ K})$ is selected to reproduce this enthalpy of reaction within the reported uncertainty. Lipin et al. 2 based on combustion calorimetry, reported a value of -5.6 kcal-mol-1 for the marcasite pyrite transformation at 298.15 K. Due to the state of the art in combustion calorimetry at the time of this measurement and uncertainty in Based on highly accurate adiabatic-shield calorimetry measurements, Gronvold and Westrum' reported that the enthalpy of transformation $S^{\circ}(298.15 \text{ K}) = 53.865 \pm 0.13 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Enthalpy of Formation

The adopted heat capacities of marcasite are based on our analysis of the C_p^o measurements (6-700 K) of Gronvold and Westrum.\(^1\) Values above 700 K are extrapolated assuming C_p^o (marcasite) + 0.075 cal· K^{-1} -mol-\(^1\). Heat Capacity and Entropy

the products (oxides of sulfur), this value must have a high uncertainty and is given no weight in our selection process.

-140.283 -133.617 -126.619 -117.177 -97.707

-179.092 -181.539 -183.764 -292.337 -292.623

21.185 28.757 36.569 44.538 52.712 61.091 69.674 78.463 87.456

53.866 56.411 61.407 67.163 73.058 73.058 84.466 89.851 95.010 99.521 109.243

102.472 114.139 124.569 133.953 142.563

8888888888

-78.151 -58.568 -39.018 -19.589

-293.630 -293.910 -292.370 -290.740

150.547 158.014 165.048 171.712

-156.159 -156.090 -152.034 -146.504

-167,360

53.865 INFINITE

> 53.865 \$4251 73244 89.075

0. 19.269 49.399 62.390

0 200 298.15

-167.375 -172.579 -176.187

6.733

0.116

163.782 162.658 159.685

-163.782 -165.012 -166.454

5.569

 $H^{\bullet}-H^{\circ}(T_{i})$

 $S^{*} - [G^{*} - H^{*}(T_{*})]T$

The adopted value of $S^{(298.15 \text{ K})}$ is obtained from the appropriate integration of the adopted C_p^a data assuming $S^{(6.06 \text{ K})} = 0.0008$ cal·K - 1·mol

for the persistence of marcasile in nature. Kjekshus and Rakke found no conversion to pyrite using heat treatments at 573 K for periods up to 14 months. At 673 K the conversion to pyrite is complete in 4 months and is even more rapid (< 1 hour) at 973 K². Indications are that the conversion to pyrite will be complete before the pyrite decomposition temperature of 1016 K is reached.³ is known to be metastable with respect to the other known FeSs polymorph, cubic pyrite, above 673 K³ the JANAF Thermochemical Tables indicate it will also be metastable below 673 K. The marcasite to pyrite transformation is kinetically slow at low temperatures and this accounts Marcasite has an orthorhombic structure, V, 2 - Pnmm, and exists as stoichiometric FeS2 within the limits of experimental error. ³ Marcasite

References

¹F. Gronvold and E. F. Westrum, J. Chem. Thermodyn. 8, 1039 (1976).
²S. V. Lipin, V. S. Uskov and V. R. Klokman, Zhur. Prikl. Khim. 15, 411 (1942).
³G. Kullerud and H. S. Yoder, Econ. Geol. 54, 533 (1959).
⁴JANAF Thermochemical Tables: FeS₂(cr, pyrite) 9–30–77.

A. Kjekshus and T. Rakke, Acta Chem. Scand. Ser. A A29, 443 (1975)

PREVIOUS.

Standard State Pressure = $p^* = 0.1$ MPa

- lour [7

Enthalpy Reference Temperature = T, = 298.15 K

_-K⁻¹mol⁻-

 Δ_{cH}

S -[G*-H*(T,)]T

Ϋ́

 $\Delta_t H^{\circ}(0 \text{ K}) = -167.86 \pm 2.1 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -171.54 \pm 2.1 \text{ kJ·mol}^{-1}$

log Kr

167.855 166.717 163.674 -160.060

-9.641 -9.103 -5.539 o,

28.042 27.857 20.350 15.691 10.229 8.485 6.986 5.263 3.849 2.670 1.673 0.823

-143.860 -137.074 -129.946 -120.367 -100.757

-183.375 -185.865 -188.169 -296.773 -297.090

52.918 55.451 60.425 66.152 77.786 83.362 88.362

101.295 112.899 123.222 132.569 141.146

74307 76308 78354

848 85888 5884

6.705 13.764 13.764 22.1.086 28.616 36.349 44.287 52.429 60.777 69.329 78.086 87.047

-81.058 -61.329 -41.630 -22.051

-298.128 -298.440 -296.931 -295.333

149.101 156.541 163.549 170.189

-159.989 -155.835 -150 197

-171.559 -176.792 -180.441

-171.544

52.916

52916 53.301 72.213 87.953

62.124

298.15

°88

62.289 68.848 72.040

 $S^{\circ}(298.15 \text{ K}) = 52.916 \pm 0.13 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

 -41.0 ± 0.5 kcal mol⁻¹ is based on our 3rd law analysis of the equilibrum data of Toulmin and Barton. These authors made corrections for the changing stoichiometry of pyrrhotite as a function of temperature in the pyrrhottle-pyrite equilibrium, and also accounted for the changing activity of pyrrhotite as a function of termerature and stoichiometry. These corrections have The adopted value of $\Delta_i H^{\circ}(298 15 \text{ K}) =$ Enthalpy of Formation

,	Mothod	Dansiers*	7/4	Data	Δ,H°(298 15	Δ,H°(298 15 K), kcal·mol ⁻¹	Drift $\Delta_t H^{\circ}(298.15)$	Drift Δ _t H*(298.15 K)
Somoc		LEACHOIL.	4	comp	WEI DIEZ	Jiu iaw	Cal-N IIIO	NATI TIPOI
Toulmn'	Electrum-tamish	4	598-1016	**	-71.77 ± 0.12	71.89 ± 0.16	-0.15 ± 0.15	41.0 ± 0.5
DeRudder ²	Manometric	В	873-962	7	-32.47 ± 1.27	-27.74 ± 0.43	5.17 ± 1.38	43.2 ± 0.6
Ugai³	Gravimetric	В	923-1016	equation	- 16.70	-26.81 ± 0.93	-10.28	36.0
DeRanter*	emf	ပ	298.15	.—		-36 00		42.3 ± 1.0
Schneeberg ⁵	emf	B	597-711	4	-28.98 ± 1.10 28 16 ± 0.26 1.26 ± 1.68 43.6 ± 0.5	28.16 ± 0.26	1.26 ± 1.68	43.6 ± 0.5
Rosengvist	Dew point	æ	869-1030	22	-34.03 ± 1.22	-28.04 ± 0.63	6.35 ± 1.29	43.5 ± 0.7

**Point at 1009 K rejected by statistical test.

(A) Fe(α) + S₂(α) → FeS₂(α , pyrite) (B) 1.14 Fe₀x₁₇S(α 7 + 0 43 S₂(α 9 → FeS₂(α , pyrite) (C) Fe(α 7 + 2 S(α 7 → FeS₂(α , pyrite).

The value reported by DeRanter⁴ is biased since FeS₂ is a semiconductor and DeRanter acknowledged that semiconductors lead to incorrect results in his emf technique. The other values are believed to be biased because the equilibrium is treated as if the composition (FearnS) and activity (a-1) of pyrrhotite remain unchanged.

Heat Capacity and Entropy

The adopted values of C, are based on our analysis of the calorimetrically measured values of Gronvold and Westrum, 4-346 K' and 314-688 K.* At higher temperatures the C, values are based on our analysis of the enthalpy data of Coughlin, 405-980 K, which merges smoothly with the C, data of Gronvold and Westrum. Values above 980 K are extrapolated.

The adopted value of \$\tilde{S}(298.15 K) is obtained from the appropriate integration of the adopted \$C_p^*\$ data assuming \$\tilde{S}(46 K) = 0.0007\$

Phase Data

Pyrite has a cubic structure, T₆ = Pa3, and exits as storchiometric FeS₂ within the limits of experimental error. ¹⁰ The other known FeS₂ polymorph is orthorhombic marcasite which is known to be metastable with respect to pyrite above 673 K¹⁰ the JANAF Thermochemical Fables11 indicate that pyrite will also be the stable form below 673 K.

Pyric melts incongruently to pyrrhotite, a liquid whose composition is ~FeS₄ and vapor at 1016 ± 2 K at the vapor pressure of the system, 10 atm.³ to Assuming the vapor to be composed only of S₂(g), we calculate.¹¹ a decomposition temperature of 906 K at 1 atm for the process 2.3263 FeSz(pyrite) → Sz(g) + 2.6525 FeornS(cr). Decomposition Data

References

1. Toulmun and P. B. Barton, Geochim. Cosmochim. Acta 28, 641 (1964).
27. DeRudder, Bull. Soc. Chim. Fr. 47, 1225 (1930).

Y. A. Orokhin, J. M. Prokin and V. R. Pshestanchik, Izv. Akad. Nauk SSSR, Neorg Mater. 10, 250 (1974).
C. DeRanter and R. Breckpot, Bull. Soc Chim. Belg 78, 503 (1969).
E. P. Schneeberg, Econ. Geol. 68, 507 (1973).
T. Rosenqvist, J. Iron Steel Inst. (London) 176, 37 (1957).
F. Gronvold and E. F. Westrum, Inorg. Chem. 1, 36 (1962).
F. Gronvold and E. F. Westrum, J. Chem. Thermodyn. 8, 1039 (1976).

P. Coughlin, J. Amer. Chem. Soc. 72, 5445 (1950).
 Rullerud and H. S. Yoder, Econ. Geol. 54, 533 (1959)

¹JANAF Thermochemical Tables: FeS₂(cr, marcasite), 9–30–77; Fe₀₄₇₇S(cr), 9–30–77.

Iron Sulfide, Pyrite (FeS₂)

PREVIOUS:

CURRENT: September 1977

1966 (1 bar)

CURRENT: September

PREVIOUS: September 1966 (1 atm)

Iron lodine ((Fel ₂) ₂) M.= 619	M,= 619.3120 Iron lodide ((Fel ₂) ₂)	dide ((Fe	(2)2)					Fe ₂ 14(9)	
1-10 15 ± 20.9 ± 20	<u> </u>	py Reference	Temperatur	Enthalpy Reference Temperature = T, = 298.15 K	×	Standard State Pressure	e Pressure = p	- 0.1 MPa	,
	rmoi ·	ا	2 - [G	-[G*-H*(T _r)]/T	$H^{\bullet}-H^{\bullet}(T_{i})$	P'H'V	δ,6	log K,	
Electronic Levels and Quantum Weights ϵ_r , cm ⁻¹ g_i		0 0. 100 119.470 200 129.233 250 130.564	0. 404.580 491.411 520.408	INFINITE 658.433 555.431 545.629	-34.030 -25.385 -12.804 -6.305	9.747 11.447 10.625 9.593	9.747 -15.600 -42.494 -55.661	8.149 11.098 11.630	
0 [5] [4200] [5]	& "	1 0		543.471 543.474	0.	8368	-68.121	11.935	
[6800] al Frequencies and		350 131.756 400 132.052 450 132.258 500 137.409	564.561 582.175 597.741 611 684	548.635 548.635 553.243 558.402	6.820 13.416 20.024 26.641	6.698 -27.043 -31.296 -115916	-81.293 -92.647 -100.593 -100.461	12.132 12.098 11.676	
v, cm ⁻¹ v, cm ⁻¹ [100](1) [70](1) [50](1) [90](2)	. • • • • • • • • • • • • • • • • • • •				39.893 53.166 66.458 79.775	-116.344 -117.258 -118.753 -121.074	-97.338 -94.105 -90.704 -87.069	8.474 7.022 5.922 5.053	
[95](1) [105](1) [Point Grown ID. 1	. = 11				106.504	-130,359	-78.640 -73.781	3.734	
Bond Distance, Fe-I = [2,43] * Rand Anoles - I-R-1= [13,5]* Re-1=Fe = [907* 1=Fe-1=1007*					146 900 146 900 160.455	-137.235 -137.235 -138.756	-63.431 -63.431 -58.107	2367 2023 2023	
	202			658,366 665,011 671,364	174.055 187.696 201.378	-140.500 -144.386 -147.300	-52.675 -47.089 -41.283	1.720 1.447 1.198	
Enthalpy of Formation The chemical equilibrium of the interaction of Fe(cr) and I(g) has been studied by a transpiration method by Zaugg and Gregory. Using					215.095 228.846	-178.679 -182.614	-33.904 -26.182	0.932	•
the reported equilibrium constants in the temperature range from 591 to 751 K, the enthalpy change $\Delta_1H^2(298.15 \text{ K})$ of the reaction $2\text{Fe}(\text{cr}) + 41(g) = \text{Fe}_2(f,g)$ was evaluated by both the 2nd and 3rd law method to be -85.3 and -103.75 kcal·mol ⁻¹ , respectively. The		00 137.924 00 138.153 00 138.345	804.433 810.855 817.000	688.897 694.296 699.498	242.625 256.429 270.254	-186.656 -190.797 -195.027	-18.262 -10.147 -1.841	0.454 0.241 0.042	
corresponding values of the endualty of formation, det (regist, g, 230.13 K), are calculated as +10.9 and =1.0 Keal-mol : mass spectra and Knudsen effusion techniques have been used to study the vaporization of FeL ₃ (cr) by Schoonmaker et al. ² Using the reported				709.367	297.953	-203.686	15.322	-0.320	
pressure, $p = 1.21 \times 10^{-6}$ atm at 714 K for Fe ₂ l ₄ (g), the enthalpy change $\Delta_1H'(298.15 \text{ K})$ for the reaction 2FeI ₂ (cr) = Fe ₂ I ₄ (g) was evaluated by the 3rd law method as 52.8 kcal·mol ⁻¹ , yielding $\Delta_1H'(298.15 \text{ K}) = 2.8 \text{ kcal·mol}^{-1}$ for Fe ₂ I ₄ (g). The adopted value of $\Delta_1H'(298.15 \text{ K})$ for Fe ₂ I ₄ (g) is 2.0 \pm 5 kcal·mol ⁻¹ (8.368 \pm 20.9 kJ·mol ⁻¹).			833.987 839.223 844.270 849.141	714.056 718.595 722.994 727.260	311.820 325.694 339.573 353.455	-208.077 -212.481 -216.879 -221.251	24.170 33.186 42.365 51.701	-0.486 -0.642 -0.790 -0.931	
)	₩ F	00 138.808		731.402	367.336	-225.581	61.187	-1.065	
Heat Capacity and Entropy The molecular structure was assumed to be the same as that for Fe ₂ Br ₄ (g). The Fe-1 bond distance was estimated from that in FeI ₂ (g) molecule. Four vibrational frequencies (v _i), i.e. i = 2, 4, 5 and 6, were estimated by comparison with those for K ₂ I ₂ (g), calculated by Refrontive 3 The other framework values estimated from those for Ea ² (c). The absorption and constructions are estimated from those for Ea ² (c). The absorption is large and construction unique				739.338 743.144 746.850 750.461	395.092 408.963 472.829 436.687	-930.654 -930.973 -931.267 -931.529	95.431 127.501 159.580 191.668	-1.153 -2.018 -2.452 -2.860	
between the other inequency values were estimated from those for Fe1z(g). The eventual transformer were estimated those for Fe1z(g). The principal moments of inertia are $I_A = 124.4358 \times 10^{-39}$, $I_B = 780.0258 \times 10^{-39}$, and $I_C = 904.4616 \times 10^{-39}$.					450.537	-931.758 -931.950	223.762 255.863	-3.247	
References IW E Zanto and W. Canadar I Dhus Cham 70 400 (1066)	~ ~ ~	00 138.775 00 138.176 00 138.074	890.202 893.699	764.040 764.040 767.238	478.211 492.033 505.846	-932.106 -932.225 -932.311	287.969 320.078 352.189	-3.958 -4.287 -4.599	
² R. C. Schoomaker, A. H. Friedman and R. F. Porter, J. Chem. Phys. 31 , 1586 (1959). ³ J. Berkowitz, J. Chem. Phys. 32 , 1519 (1960).	4444	4100 137.970 4200 137.865 4300 137.760 4400 137.654			513.440 533.440 547.221 560.992	-932.365 -932.392 -932.396 -932.380	384.302 416.416 448.531 480.645	-5.179 -5.179 -5.449 -5.706	
	4444				588.501 602.241 615.969	-932.312 -932.270 -932.230	544.872 576.984 609.096	-6.187 -6.412 -6.628 -6.833	
	- X				643.397	-932.178	673.316	-7.034	
			929.768 932.374 934.929	800.771 803.230 805.645	670.785 684.465 698.136	-932.204 -932.260 -932.354	737.537 769.647 801.760	-7.409 -7.585 -7.755	
	W 921				725.450	-932.492 -932.681	833.874	-7.919	
		00 136.161 00 136.161	944.683 947.012 949.301	812.645 814.902 817 121 819.305	752.730 766.358 779.978	-93237 -933.23 -933.621 -934.083	930.239 930.239 962.371 994.510	-8.378 -8.378 -8.520	

Enthalpy of Formation

Heat Capacity and Entropy

Fe₂O₃(cr)

M_r = 159.6922 Iron Oxide, Hematite (Fe₂O₃)

 $\Delta_t H^{\circ}(0 \text{ K}) = -819.03 \pm 1.3 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -825.50 \pm 1.3 \text{ kJ} \cdot \text{mol}^{-1}$

Iron Oxide, Hematite (Fe₂O₃)

S°(298.15 K) = 87.400 J·K⁻¹·mol

Enthalpy of Formation

he reported as follows: data the

E chemical equilibria for the reaction 4 Fe ₃ O ₃ (α) + O ₃ (β) = 6 Fe ₂ O ₃ (α) have been studied by several investigators. From the the corresponding values of Δ_4 , (298 15 K) and Δ_4 , (Fe ₂ O ₃ , cr. 298.15 K) were evaluated. The results obtained are given a	4 Fe ₃ O ₄ (cr) + O ₂ (15 K) and Δ ₁ H°(g) = 6 Fe ₂ O ₃ (cr) have Fe ₂ O ₃ , cr, 298.15 K) v	been studied vere evaluated	by several investigators. From . The results obtained are give	1 th
Source	7.1K	Δ _t H*(298.15 K), kcal·mol ⁻¹	cal-mol ⁻¹	Δ _t H'(298.15 K)	
		WEI THE	WAL DIG	NCAL'II NI	
Tretyakov and Khomyakov1	1373-1728	-106.32 ± 0.19	-111.05	-197.11	
Schmahl ²	1583-1683	-123.95 ± 1.37		-197.42	
Smiltens ³	1373-1673	-117.88 ± 0.38	-114.25	-197.64	
Darken and Gurry*	1723	-110.29		196.98	

The value of $\Delta_f H^0(298.15 \text{ K})$ adopted for Fe₂O₃(cr) is the weighted average of the $\Delta_f H^0(298.15 \text{ K})$ values listed in the above table.

Heat Capacity and Entropy

The low temperature (5.58-345.42 K) heat capacities were determined by Gronvold and Westrum). The high temperature (298-1750 K) C, values were obtained from Coughlin et al. The two sets of data were plotted and joined smoothly at 298 K. The C, values above 1750 K respectively. Both appear to involve maxima in the heat capacity curves rather than isothermal heats of transformation. The complex magnetic properties at low temperatures were discussed by Gronvold and Westrum.⁵ No heat capacity anomaly was observed at the magnetic transition about 250 K. The Curie points of the antiferromagnetic α Fe₂O₃ were reported by Aharoni *et al.*⁹ and Lielmezs and Chaklader.¹⁰ were obtained by graphical extrapolation. The heat capacities of Fe₂O₃(xr) have also been reported by Brown and Furnas (0-650 °C), ⁷ and Coughlin et al. 6 measured the enthalpy for hematite and found two anomalies, presumably of megnetic nature, at about 950 and 1050 K, Parks and Kelley (88 289 K). 5°(298.15 K) for Fe₂O₃(cr) was derived from the smoothed C, data, based on 5°(5 K) = 0.0003 calK⁻¹-mol⁻¹

Decomposition Data

 $T_{cm} = 1735 \text{ K}$ is the temperature at which the pressure is 1 atm for the reaction 6 Fe₂O₃(cr) = 4 Fe₃O₄(cr) + O₂(g). In other words, Fe₂O₃(cr) decomposes into Fe₃O₄(cr) and O₂(g) at 1735 K.

Tetyskov and K. G. Khomyakov, Russ. J. Inorg. Chem. 7, 628 (1962).
 G. Schmahl, Z. Elektrochem. 47, 821 (1941).
 Smilten, J. Amer. Chem. Soc. 79, 4877 (1957).
 Darken and R. W. Gurry, J. Amer. Chem. Soc. 68, 798 (1946).
 Gronvold and E. F. Westrum. Jr., J. Amer. Chem. Soc. 81, 1780 (1959).
 P. Coughlin, E. G. King and K. R. Bonnickson, J. Amer. Chem. Soc. 73, 3891 (1951).

G. Brown and C. C. Furnas, Trans. Amer. Inst. Chem. Eng. 18, 309 (1926).
G. S. Parks and K. K. Kelley, J. Phys. Chem. 30, 47 (1926).
A. Aharoni, E. H. Frei and M. Schieber, Phys. Rev. 127, 439 (1962).
I. Lielmezs and A. C. D. Chaklader, Phys. Rev. Letters 13, 866 (1965).

	P. R.	eference To	emperature	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ $1.\text{K}^{-1}\text{mol}^{-1}$		Standard St.	Standard State Pressure = p	= p = 0.1 MPa
1,		ಚ		-H'(T,)]T	$H^{\bullet}-H^{\circ}(T_t)$	- H'A	A.G.	log Kr
10.163 87.400 87.400 0. -825503 -73 10.112 88.043 87.420 0.012 -821543 -73 10.0123 13.0123 13.0239 1.631 11.443 -821547 -13 13.0123 13.0239 1.631 11.443 -821547 -13 13.0123 13.0239 1.632 13.0239 13.0239 13.0239 13.0239 13.0239 -23 13.0239 13.0239 13.0239 -23 13.0239 13.0239 -23 13.		0. 31.497 76.567		INFINITE 159.795 96.132	-15.560 -14.518 -8.970	-819.025 -823.186 -825.542	-819.025 -797.438 -770.573	INFINITE 416.539 201.253
10,112 85,043 87,402 10,192 45,1545 17,101,125 11,176 143,000 10,124 24,058 27,101,125 13,175 143,000 10,234 24,058 21,205 26,1545 21,1075		103.763		87.400	Ö	-825.503	-743.523	130.262
14.168 17.3770 110.415 37.713 -818.822 -66. 16.64.90 235.340 14.124 23.239 -818.870 -65. 16.64.90 235.340 14.2124 -818.870 -65. 16.64.90 235.340 14.2124 -818.870 -65. 16.64.90 235.340 14.2124 -818.870 -80.65.41 -75. -		120.123 130.123 130.123	88.043 120.299 148.400	87.402 91.691 100.284	0.192 11.443 24.058	-825.485 -823.947	-743.014 -715.727 -688.020	129.370 93.464
1472 195.65 121.020 22239 -815.870 -66 156.490 225.245 121.623 676.58 -812.705 -65 120.024 225.2445 147.271 97.290 170.024 -25 120.024		141.168	173.270	110.415	37.713	-818.882	-662.642	57.688
170,570 244,451 147,271 92,321 147,271 150,624 24,515 147,271 147,271 147,271 150,624 24,515 147,271 150,624 24,515 147,271 162,023 157,323 168,033 164,047 260,231 157,323 168,033 168,033 164,047 260,231 157,323 168,033 164,047 260,231 157,323 168,033 164,047 260,231 157,323 168,037 141,034 250,037 183,77 142,248 250,048 183,172 171,382 171,383 142,048 147,294 310,0866 310,086 317,273 310,086 317,273 310,086 317,273 316,037		149.729 158.218 166.490	195.675 216.225 235.340	121.020 131.653 142.124	52.259 67.658 83.894	-815.870 -812.705 -809.634	-636.837 -611.477 -586.510	39.925
50.624 252.882 152.360 100.522 -807.695 -55 50.624 260.231 157.323 108.053 -75 40.775 266.721 157.323 108.053 -75 41.511 270.052 171.388 129.197 -811.071 -15 41.524 250.048 180.112 143.85 -809.145 -45 42.784 250.048 180.112 143.85 -809.148 -44 44.56 310.186 196.212 171.982 -805.706 -44 44.56 320.170 203.671 186.337 -804.180 -44 44.578 33.246 23.035 23.049 -812.056 -13 45.780 33.256 33.24.052 23.045 -813.256 -23 45.780 33.268 224.052 224.056 -812.235 -23 45.631 37.583 224.052 -812.235 -23 48.322 375.59 253.034 303.756 -812.235 -23 48.323 375.59 253.034 303.756 -812.235 -23 48.323 375.59 253.034 303.756 -812.235 -23 48.323 385.638 258.219 318.599 -812.290 -18 48.332 385.638 258.219 318.299 -812.290 -18 48.333 385.638 258.219 318.299 -812.290 -18 48.334 375.634 23.034 -23 48.335 385.638 258.219 318.299 -812.290 -18 48.335 385.638 285.219 318.299 -812.290 -18 48.335 385.638 285.219 -23 48.335 385.638 -23 48.335 385.638 -23 48.335 385.638 -23		170.570	244.451 245.156	147.271	92.321		I <> II TRANSTITION	
150.624 260.231 157.322 180.653 116 140.775 260.231 157.322 115.883 173.87 115.883 173.13 116.053 115.883 173.13 115.883 173.13 115.883 173.13 115.883 173.13 17		150.624	252.882	152.360	100.522		-561,866	29.349
266.771 162.150 115.083 -809.682 -53 270.022 171.388 110.71 -53 270.023 171.388 121.071 -53 270.026 183.72 175.647 -805.706 -44 310.866 183.72 177.647 -804.180 -44 312.01.70 203.671 186.397 -804.180 -44 317.275 210.783 200.890 -804.681 -33 317.275 217.583 200.890 -822.05 -23 317.275 217.583 200.95 -832.05 -33 317.275 217.583 200.95 -832.05 -33 317.275 217.583 200.35 -832.05 -33 317.275 21.05 21.05 21.05 -23 317.252 23.034 259.400 -832.255 -23 317.252 23.034 303.756 -832.05 -23 317.252 23.034 303.756 -832.05 -23 317.252 23.034 303.756 -832.05 -18 318.568 258.219 318.599 -832.905 -18		150.624 140.407	260.231 260.231	157.323 157.323	108.053		II <> III TRANSITION	
200,408 180.112 143.335 -809.145 30.0976 188.372 171.982 -44 310.866 188.372 171.982 -80.706 -44 320.170 20.3671 186.397 -80.4180 -44 337.275 210.785 20.0890 -80.4681 -38 337.264 20.335 215.445 -80.4084 -38 337.264 20.335 24.609 -837.056 -13 357.269 27.609 27.609 -837.056 -13 357.279 27.607 27.419 -827.506 -12 377.292 27.607 27.88.397 -827.506 -22 375.292 27.607 27.88.397 -827.506 -22 375.292 27.607 27.88.397 -827.506 -22 375.292 27.607 27.88.397 -827.506 -22 375.292 27.607 27.88.397 -827.506 -22 375.292 27.607 27.88.397 -827.506 -22		140.775	266.771 279.052	162.150	115.083		-537.171	25.508
310.866 196.212 171.982 -805.706 -42 328.956 10.785 200.890 -804.180 -43 337.275 217.883 215.445 -804.094 -36 345.694 224.092 220.045 -832.185 352.684 20.335 244.696 -832.205 -13 355.6719 24.105 274.199 -832.205 -23 377.292 23.034 303.756 -832.731 -23 385.658 228.219 318.599 -832.905 -18		142.248	300.976	180.112	143.385	-809.145	-487.562	19.590
145.56 330,170 203.671 186.397 - 804.180 - 44 145.26 330,170 203.671 186.397 - 804.180 - 84 145.376 337,275 217.583 215.445 - 804.094 - 35 146.789 332.644 220.335 244.696 - 832.235 - 33 146.789 325.644 220.335 244.696 - 832.235 - 23 146.747 359.88 256.334 259.400 - 832.235 - 23 148.044 377.292 247.667 288.397 - 832.266 - 22 148.323 339.558 258.219 318.599 - 832.2905 - 18 148.332 385.688 258.219 318.599 - 832.2905 - 18		143 720	310.866	196.212		-805.706	-438.347	15.265
45.780 317.275 217.583 215.445 -804.094 -36.14629 345.169 345.169 -36.14628 345.169 -36.14628 345.169 326.344 220.335 244.696 -36.131859 -36.1318 -36.1		144.566 145.266	320.170	203.671		-804.180	-413,906	13.513
35.189		145.780	337.275	217.583		-804.094	-365.117	10.595
359,858 256,334 229,400 -832,235 -28 36,719 242,105 274,149 -282,403 -28 372,292 247,667 -832,403 -28 379,559 253,034 303,756 -832,731 -22 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 318,599 -832,905 -18 385,658 258,219 258,2		146.789	352.684	230,335		-831.859 -832.056	-339.338 -313.410	9.329 8.185
377.292 247.667 244.39 -2.24.30 377.292 253.034 303.756 -832.731 -2.2 385.658 228.219 318.599 -832.905 -18		147.777	359.858	236.334		-832.235	-287.474	7.151
385.658 258.219 318.599 -832.905 -18		48.044	373.292	247.667	288.937	-832.566	-235.576	\$ 350
		148,323 148,532	379.599 385.658	253.034 258.219	303.756 318.599	-832.731 -832.905	-209.617 -183.650	4.562

CURRENT. June 1966

Iron Sulfate (Fe₂(SO₄)₃)

PREVIOUS:

CRYSTAL

Iron Sulfate (Fe₂(SO₄)₃)

M. = 399.8668 Iron Sulfate (Fe₂(SO₄)₃)

 $\Delta_0 H^{\circ}(0 \text{ K}) = \text{Unkno}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -2582.99 \pm 1.67 \text{ kJ·mo}$

The enthalpy change, $\Delta_t H^2$ (298.15 K), for the chemical reaction $Fe_2O_3(cr) + 3(H_2SO_4\cdot 14.855 H_2O)(sol.) = Fe_2(SO_4)_3(cr) + 47.565 H_2O$ was measured to be 8.54 + 0.18 kcal·mol⁻¹ by solution calorimetry by Barany and Adami. Using $\Delta_t H^2$ (298.15 K) = -211.178 kcal·mo for H₂SO₂·14.855 H₂O(sol.) and -68.315 kcal·mol⁻¹ for H₂O(f), obtained from and -197.3 kcal·mol⁻¹ for Fe₂O₃(cr), the enthalpy $S^{\circ}(298.15 \text{ K}) = [307.524 \pm 8.4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Enthalpy of Formation

The equilibrium pressures for the decomposition of Fe₂(SO₄)(cr) have been determined by several investigators at different temperatur The chemical reactions are: (1) Fe₂(SO₃)(cr) = Fe₂O₃(cr) + 3 SO₃(g) and (2) SO₃(g) = SO₂(g) + 0.5 O₂(g). However, the measured pressi of the chemical equilibrium is the total pressure of three partial pressures, namely, P(SO₂), P(SO₂), and P(O₂). In order to calculate the enthal change of Reaction (1), the partial pressures of SO₃(g) were evaluated from the total vapor pressure data at each temperature. Based on 1 derived values for P(SO₃), the Q₄H*(298.15 K) value for Reaction (1) was calculated by both the 2nd and 3rd law methods. The results obtain are presented in the following table. The AH"(Fe₂(SO₄)s, cr, 298.15 K) values were derived, using the 3rd law AH"(298.15 K). The formation, AH"(298.15 K), for Fe₂(SO₄)₃(cr) was evaluated as -617.35 ± 0.40 kcal·mol⁻¹ which was adopted here determinations were not given any weight.

		Δ,H°(298.15 K	H°(298.15 K), kcal·mol-1	Drift	Δ _t H°(298.15 K)
Source	T/K	2nd law	3rd law	cal·K ⁻¹ ·mol ⁻¹	kcal·mol-1
Keppeler and D'Ans ³	753.15-1013.15	136.8 ± 0.5	139.9 ± 0.5	3.4 ± 0.6	-621.0
Wohler, et al.4	826.15- 980.15	114.2 ± 6.2	133.1 ± 2.3	19.2 ± 6.9	-614.2
Bodenstein and Suzuki ⁵	903.65- 957.15	140.7 ± 6.6	139.1 ± 1.3	-1.2 ± 7.1	-620.2
Wohler and Grunzweig ⁶	909.15- 994.15	155.1 ± 1.3	135.5 ± 1.3	-20.4 ± 1.4	-616.6
Neumann and Heintke7	793 15- 973.15	136.4 ± 2.3	136.2 ± 1.2	-1.2 ± 2.6	-617.3
Warner and Ingraham	903.15- 997.15	133.9 ± 2.6	135.4 ± 0.5	1.7 ± 2.7	-616.5

The decomposition pressures of Fe₂(SO₄)₃(cr) have also been investigated by: Grunzweig (793-994 K), Blanks (845-976 K), a fingraham (856-995 K). ¹¹ These data together with some of the data mentioned previously were critically reviewed by Kellogg. ¹²

Heat Capacity and Entropy

The heat capacities were estimated by comparison with those for FeSO₄(cr), assuming their average specific heats, cal- K^{-1} , g^{-1} , to be tsame. The value of $S^{\circ}(298.15 \text{ K})$ was estimated so that the 2nd and 3rd law $\Delta H^{\circ}(298.15 \text{ K})$ values, derived from decomposition pressure da are in reasonable agreement.

Decomposition Data

 $T_{
m am}$ is the temperature (1451 K) at which the total pressure of the gaseous products equals one atmosphere, which was obtained by graphic extrapolation of the decomposition pressure data measured by Warner and Ingraham

References

'R. Barany and L. H. Adami, U. S. Bur. Mines RI 6687, (1965).

'Ju. S. Nat. Bur. Stand. Tech. Note 270-1, (1965).

'G. Keppeler and J. D'Ans, Z. Physis. Cofem. 62, 89 (1908).

'L. Wohler, W. Pludderann and P. Wohler, Ber. Deut. Chem. Gesell. 41, 703 (1908).

'M. Bodenstein and T. Suzuki, Z. Elektrochem. 16, 912 (1910).

Wohler and M. Grunzweig, Ber. Deut. Chem. Gesell. 43, 1587 (1913).
 B. Neumann and G. Heintke, Z. Elektrochem. 43, 246 (1937).
 N. A. Warner and T. R. Ingraham, Can. J. Chem. 38, 2196 (1960).
 M. Grunzweig, Ph.D. dissertation, Darmstadt, Germany, (1913).
 R. F. Blanks, Ph.D. dissertation, University of Melbourne, Australia, (1961).
 T. R. Ingraham, Internal Rept. EMT-63-17, Department of Mines and Technical Surveys, Ottawa, Canada, (1963).
 H. Kellogg, Trans. AIME 230, 1622 (1964).

nwc.	Enthalpy R	eference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K	×	Standard Sta	Standard State Pressure = p	" = 0.1 MPa
-	τÆ	ដ	J·K~'mol*' S* -{G	nol ⁻¹ -[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$	Kimol-i ArH*	Φ'C•	log Kr
وَ آج	00 00 200 200							
of,	298.15	264.722	307,524	307,524	o	-2582.992	-2262,729	396.421
Š	888	307.022	391.497	307.529	29.209	-2583.047 -2591.203	-2260.742 -2152.742	393.630
sure	3 8	107.656	577 707	366.441	04.77.	-2394,002	-2042.719	213.401
چَ چ	88	380.702	585.079	393.626	134.017	-2594.341	-1821.767	135.942
g E	88	402.041	683.617	447.479	212.524	-1749.978	-1598.273	92.761
šš	8 2	415.262	765.651	498 080	204 178	-2745.239	-14/05/6	79.785
	250	420.659	802.019	521.912	336.128	-2737.297	-1216322	52.945
	888	429.906	867.580	566.714 566.714 567.73	421.214 421.214	-2720.794	-1089.907	35.972
	99	438.065	925.528	608.013	508.005	-2704089	-838.343	23 320
	023	441.830	952.199	627.482	552.020	-2697.589	-590.172	18.134
	7000 7000 7000	449.069	1001.744	664311 681.765	641.121 686.206	-2710.265 -2710.265 -2702.965	-400,432 -341,717 -217,244	9394
and								
Ę.								
ata,								
~~~								
Ē								

-455.087 -422.637 -390.128 -357.557 -324.925

-1135.843 -1137.183 -1138.568

361.603 369.793 377.669 385.252 392.563

200.832 200.832 200.832 200.832

563 901 572.099

200.832

288.093 288.176 308.259 328.343 348.426 368.509 388.592 408.675 448.842

-1141.472 -1142.988 -1144547

-292.234 -259.482 -226.673 -193.807 -160.882

-1146.146 -1147.786 -1149.464

468.925 489.008 509.091 529.175 549.258

399.620 406.441 413.041 419.433 425.629

579.976 587.556 594.859 601.907 608.715

36.206 31.869 25.057 22.341 22.341 22.341 19.968 116.014 11.270 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 11.273 1

Standard State Pressure =  $p^*$  = 0.1 MPa

Z-ind

 $-[G^*-H^*(T_*)]/T$ 

J-K-'mol-'

INFINITE 567.281

-1114.579 -1086.024

-1114.579

INFINITE 254,203

C, LAMBDA MAXIMUM ____ TRANSITION

-1051.624

-1121314 -1120.894-1120,869

-13 101

157,872

92.367 45,266

116.945

200

log Kr

77.040 128.286 99.108 79.727

-1016.797 -982.386 -948.681

-1118.728 -1110*5*50 -1104*7*74

0273 16240 34.424

145.269 151.352 163.593

147.695 171.126 192.380

145.266

147.235

178.251

-1017.438

65.948 55.673 47.732

-915.794 -883.776 -852.657 -822.428

-1098.011

54.671 76.934 101.214 127.510

178.181 193.672 209.452 225.241 225.241 225.241 240 485

> 303.578 335.969 366.919 366.919 366.919

212.547 232.714 252.881 273.050

888 8888

273 050 200.832

C, LAMBDA MAXIMUM TRANSTITION

-792.602

-1091.694

147.594

388.079 424.695 440 770

-762 463 -732 139 -701.771 -671.590 -641.562

-1097.841 -1095.254 -1092.980 -1091.011

167.677 187.760 207.843 227.927 248.010

254.786 268.228 280.890 292.848 304.169

200.832 200.832 200.832 200.832 200.832 200.832 200.832 200.832

455.653

-611.654 -581.785 -551.846 -519.794 -487.472

-1089.346 -1090.831 -1090.769 -1133.299 -1134.548

314.912 325.131 334.870 344.172 353.072

\$16.984 \$27.285 537.084

980,000 980,000 980,000 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 110

CRYSTAL

iron Oxide, Magnetite (Fe₃O₄)

5°(298 15 K) = 145.266 J·K⁻¹·mol⁻¹

 $\Gamma_{\rm ba} = 1870 \pm 2 \, \rm K$ 

M_r = 231.5386 Iron Oxide, Magnetite (Fe₃O₄)

Enthalpy Reference Temperature = T, = 298.15 K

 $\Delta_t H^{\circ}(0 \text{ K}) = -1114.58 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$   $\Delta_t H^{\circ}(298.15 \text{ K}) = -1120.89 \pm 0.8 \text{ kJ} \cdot \text{mol}^{-1}$   $\Delta_{tus} H^{\circ} = 138.070 \pm 8.4 \text{ kJ} \cdot \text{mol}^{-1}$ 

Δ_rH°(298.15 K) kcal·mol⁻¹ -268.10-267.26 -267.90 -267.93-267.94-268.0118.54 19.18 9.38 3rd law ∆,H°(298 15 K), kcal·mol⁻¹ 19.29  $-29.68 \pm 130$   $22.41 \pm 009$   $21.56 \pm 0.07$  $11.87 \pm 0.03$ 11.63 ± 0.03 2nd law 973.2-1273.2 973.2-1073.2 1473.2-1673.2 873.2-1273.2 973.2-1273.2 873.2-1273.2 633.2-823.2 Reactions A m m m O O O Eastman and Evans³ Eastman and Evans³ Emmett and Shultz' Fricke, et al. Eastman* Eastman Salmon The enthalpy change of the reaction Feosot (ker) + 0.8215 Fe(cr) + 0.6787 O₂(g) = 0.5895 Fe₃O₄(cr) has been determined by Humphrey et al. Based on AH°(298.15 K) = -93.46 kcal-mol-1 (average of two separate values derived from two experimental determinations) and change,  $\Delta_H^{*}(298.15 \text{ K}) = 4.33 \text{ kcal-mol}^{-1}$ , for the reaction  $3\text{Fe}(cr) + 4\text{CO}_{2}(g) = \text{Fe}_{2}O_{4}(cr) + 4\text{CO}_{2}(g)$  was reported by Darken and Gurry. The corresponding  $\Delta_H^{*}(\text{Fe}_{3}O_{4}, cr, 298.15 \text{ K})$  was evaluated as  $-266.22 \text{ kcal-mol}^{-1}$ . The adopted value of  $\Delta_L^{*}H^{*}(298.15 \text{ K})$  for  $\text{Fe}_{2}O_{4}(cr)$  is selected as  $-267.9 \pm 0.2 \text{ kcal-mol}^{-1}$ . Δ_H*(wustite, cr, 298.15 K) = -63.64 kcal mol⁻¹, the value Δ_H*(Fe,O₀, cr, 298.15 K) was calculated as -266 5 kcal·mol⁻¹. The enthalpy

# Heat Capacity and Entropy

The low temperature heat capacities (60.5-299.7 K) were reported by Millar ^a The high temperature heat capacities (298-1800 K) were obtained from Coughlin et al. 9 These two sets of data were plotted and joined smoothly at 298 15 K. The C°, values above 1800 K were 298.15 K) was derived from the smoothed C2 data mentioned previously, using 5°(44.7 K) = 0.969 cal-K⁻¹-mol⁻¹. Coughlin et al. measured obtained by graphical extrapolation. Heat capacities (90-295 K) for Fe₃O₄(cr) were also reported by Parks and Kelley. 10 S'(Fe₃O₄, cr, the heat-content for magnetite and found a magnetic anomaly around 880 K, corresponding to a maximum in heat capacity. A maximum heat capacity of 37 1 cal·K⁻¹-mol⁻¹ at 114.15 K was also reported by Millar.

## Fusion Data

Γ_{III} and Δ_{III}H° were obtained from Darken and Gurry.⁷

### References

Fricke, K. Walter and W. Lohrer, Z. Elektrochem. 47, 487 (1941). The two enthalpies of reaction values reported are the average values

- of three separate results derived from three sets of experimental data. ²E. D. Eastman, J. Amer. Chem. Soc. 44, 975 (1922). ³E. D. Eastman and R. M. Evans, J. Amer. Chem. Soc. 46, 888 (1924). ⁴P. H. Emmett and J. F. Schultz, J. Amer. Chem. Soc. 52, 4268 (1930).
- N. Salmon, J. Phys. Chem. 65, 550 (1961).
   L. Humphrey, E. G. King and K. K. Kelley, U. S. Bur Mines RI 4870, (1952).
   L. S. Darken and R. W. Gurry, J. Amer. Chem. Soc. 68, 798 (1946).
   R. W. Millar, J. Amer. Chem. Soc. 51, 215 (1929).
- ³J. P. Coughlin, E. G. King and K. R. Bonnickson, J. Amer. Chem. Soc. 73, 3891 (1951).

S. Parks and K. K. Kelley, J. Phys. Chem. 30, 47 (1926).

Iron Oxide, Magnetite (Fe₃O₄)

**PREVIOUS** 

CURRENT June 1965

Fe₃O₄(cr)

J. Phys. Chem. Ref. Data, Monograph 9

**Enthalpy of Formation** 

The equilibrium constants for the following four reactions, i.e. (A)  $3Fe(cr) + 4H_0Qg = Fe_3O_4(cr) + 4H_3Qg$ ; (B)  $Fe_3O_4(cr) + H_2Qg = 3FeO_4(cr) + CO_2g$ , and (D)  $2Fe_3O_4(cr) = 6FeO_4(cr) + O_2g$ , have been studied by several investigators. Using their reported equilibrium data, the corresponding enthalpy changes, A.H. (298.15 K), were evaluated by both 2nd and

3rd law methods. Based on the 3rd law value for A,H°(298.15 K), the respective A,H°(298.15 K) values for Fe₃O₄(cr) were also derived. The

results obtained are presented as follows.

# Continued from page 1241

⁴K C Mills, "Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides," Butterworths, London, (1974).
⁵R. A. Berner, Amer. J. Sci. 265, 773 (1967).
⁶C. DeRanter and R. Breckpot, Bull. Soc. Chim. Belg. 78, 503 (1969).
⁷I. T. Guldin and A. V. Buzhinskaya, J. Appl. Chem. USSR 37, 2221 (1964).
⁷G. Bugli, L. Abello and G. Pannetier, Bull. Soc. Chim. Fr. 497 (1972).
¹⁸F. Gronvold, E. F. Westrum, Jr. and C. Chou, J. Chem. Phys. 30, 528 (1959).
¹⁹J. P. Coughlin, J. Amer. Chem. Soc. 72, 5445 (1950).
¹⁸M. Hansen and K. Anderko, "Constitution of Binary Alloys," 2nd ed., McGraw Hill, New York, (1958).

J. Phys. Chem. Ref. Data, Monograph 9