Last name _	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 20 Linear Transformations.

Concepts & Notation

- (Sec. 3.1) linear transformation, range, rank, null space, nullity.
- (Sec. 3.2) L(V, W), linear operator, invertible linear transformation, non-singular linear transformation.
- (Sec. 3.3) isomorphism.

Review

- 1. (Claim:) If $\alpha_1, \ldots, \alpha_n$ are a basis for a finite-dimensional vector space V and β_1, \ldots, β_n are any vectors in a vector space W then there is a *unique* linear transformation T with $T(\alpha_1) = \beta_1, \ldots, T(\alpha_n) = \beta_n$.
- 2. (Claim:) If A is an $m \times n$ matrix with entries in the field \mathbb{F} , then the row rank of A equals its column rank.

New

3. What is the space L(V, W) of linear transformations from a vector space V to a vector space W?

4. What is an *invertible* linear transformation $T: V \to W$?

5. What is a non-singular linear transformation $T: V \to W$?	
 6. (Claim:) If V and W are finite-dimensional vector spaces over a field I dim W, and T: V → W is a linear transformation then the following (a) T is invertible, (b) T is non-singular, (c) T is onto (that is, the range of T is W). 	
7. If $T:V\to W$ is a linear transformation, when is T an $isomorphism$ (If T is an isomorphism we say that vector spaces V and W are $isomorphism$	
8. (Claim:) Every n -dimensional vector space over a field \mathbb{F} is isomorph	hic to \mathbb{F}^n .