

### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

# ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Работа с типом данных «запись» (структура)»

Студент Фролов Евгений

Группа ИУ7 – 35Б

## Описания условия задачи

Создать таблицу, содержащую не менее 40-ка записей (тип - запись с вариантами). Упорядочить данные в ней по возрастанию ключей, где ключ — минимальная цена, используя: а) саму таблицу, б) массив ключей (возможность добавления и удаления записей в ручном режиме).

Ввести репертуар театров, содержащий: название театра, спектакль, режиссер, диапазон цены билета, тип спектакля: детский — для какого возраста, тип (сказка, пьеса, музыкальный); взрослый — тип (пьеса, драма, комедия); музыкальный — композитор, страна, минимальный возраст, продолжительность). Вывести список всех музыкальных спектаклей для детей указанного возраста с продолжительностью меньше указанной.

**Цель работы**: приобрести навыки работы с типом данных «запись» («структура»), содержащим вариантную часть, и с данными, хранящимися в таблицах. Оценить относительную эффективность программы (в процентах) по времени и по используемому объему памяти в зависимости от используемого алгоритма и от объема сортируемой информации.

#### Входные данные:

На входе программа получает число записей в таблице и саму таблицу. Количество записей вводит пользователь с консоли.

название театра

спектакль

режиссер

нижняя цена

верхняя цена

#### тип спектакля:

детский — для какого возраста, тип (сказка, пьеса, музыкальный); взрослый — тип (пьеса, драма, комедия); музыкальный — композитор, страна, минимальный возраст, продолжительность.

#### Выходные данные:

Программа выводит пользовательское меню для дальнейшей работы после каждого успешно выполненного пункта. Также на выходе программа может вывести (отсортированную так и не отсортированную) таблицу, таблицу ключей, вывести время сортировки.

#### Задачи реализуемые программой:

- 1. Вывести таблицу
- 2. Добавить запись
- 3. Удалить запись
- 4. Вывести список всех музыкальных спектаклей для детей указанного возраста с продолжительностью меньше указанной
- 5. Вывести отсортированную таблицу ключей
- 6. Отсортировать таблицу
- 7. Вывод таблицы используя ключи
- 8. Эффективности сортировок
- 0. Выйти

### Возможные аварийные ситуации и ошибки пользователя

- Запрос на выполнение несуществующего пункта меню
- При добавлении новой записи неверный ввод
- Попытка удалить несуществующие поля
- Не существует файл (First.txt, theathre 1.txt, theathre 2.txt)

### Описание структур данных

Таблица репертуара театров — массив типа struct theatre\_t arr[NMAX]; -где NMAX описан в define = 50 //структура для хранения данных о театре struct theatre t{ int number; char name[30]; //название meampa char performance[30]; //спектакль char producer[30]; // режиссер int low\_price;// нижняя цена int high\_price;//верхняя цена int flag; union{ struct{ int year;//возраст char type for child [30]; //тип детского спектакля } children; struct{ char type for adult [30]; //тип взрослого спекткаля } adult; struct{ char composer[30]; //композитор char country[30]; //страна int min year; // минимальный возраст int duration; // продолжительность } music; }staff; **}**;

```
//cmpyкmypa для хранения ключей struct keys_t{
  int ID;
  int pricelow;
};
```

<u>Обращение к программе</u>: через консоль командой ./main.exe

## Описание алгоритма

- 1. Принять на ввод кол-во считываемых строк из существующего файла (First.txt) с данными, проверяем на правильность ввода. Если ошибок нет, при помощи функции read\_file(file,n,arr) считать данные в массив структур.
- 2. Вывод меню при успешном считывании кол-ва строк.
- 3. Выполнить соответствующие команды из предложенных в меню, пока ввод не равен "0" выход из программы.

### Тесты

| Ввод                                   | Вывод                        |
|----------------------------------------|------------------------------|
| Пункт меню                             | Выполнение пункта меню       |
| Пункт, которого нет в меню             | Вывод меню снова             |
| Добавить запись (некорректные данные)  | WRONG input                  |
| Чтение из несуществующего файла        | Can't open file.             |
| Удалить записи по позиции(некорректный | Нет такой строки             |
| диапазон)                              |                              |
| Статистика эффективности сортировок    | Вывод таблицы со статистикой |

### Ответы на вопросы

1. Как выделяется память под вариантную часть записи?

Элементы вариантной части хранятся в одном и том же участке памяти. Выделяется область памяти, равная размеру максимального поля вариантных частей.

2. Что будет, если в вариантную часть ввести данные, несоответствующие описанным?

Так как при компиляции тип данных вариантной части не проверяется, то произойдет ошибка.

3. Кто должен следить за правильностью выполнения операций с вариантной частью записи?

За правильностью выполнения операций с вариантной частью записи должен следить программист.

4. Что представляет собой таблица ключей, зачем она нужна?

Таблица ключей содержит поле по которому осуществляется сортировка и соответствующий ему индекс в исходной таблице. Если необходимо отсортировать большое количество данных, сортируется только таблица ключей, а исходная таблица остается неизменной.

5.В каких случаях эффективнее обрабатывать данные в самой таблице, а когда — использовать таблицу ключей?

Если ключ — сложный тип на обработку которого требуется время не сильно отличающиеся от времени обработки таблицы, то эффективнее обрабатывать саму таблицу. Если в таблице много записей (или записи большого размера), удобно использовать таблицу ключей.

6. Какие способы сортировки предпочтительнее для обработки таблиц и почему?

Предпочтительнее способы, в которых над таблицей выполняется наименьшее количество действий, так как обработка большего количества данных влечет большие затраты по времени.

## Выводы

Посмотрим на вывод таблицы времени сортировки.

```
| Keys | Table | TIME of inser sort 2000 elements : 0.002000s | 0.010000s | TIME of buble sort 2000 elements : 0.004000s | 0.031000s | TIME of inser sort 900 elements : 0.001000s | 0.002000s | TIME of buble sort 900 elements : 0.001000s | 0.006000s |
```

Структура theatre t – 1746 Структура keys t – 86

Таким образом сортируя таблицу ключей вместо самой таблицы — при потере памяти в 4,6%, можно отсортировать в 4-8 раз быстрее.

Из данного результатов видно, что сортировка пузырьком менее эффективна, чем сортировка вставками и при использовании ключей, и самой таблицы.

**По итогу** получается, что при минимальной потери памяти, мы можем ускорить время работы программы.