# Optimizasyon ve Yapay Öğrenme

#### İlker Birbil

Sabancı Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Endüstri Mühendisliği Programı

Veri Bilim - Yapay Öğrenme Yaz Okulu Matematiksel Temeller ve Vaka Çalışmaları Eylül, 2017 - İstanbul

#### Optimizasyon

- Önceden belirlenmiş kısıtlar altında bir fonksiyonun en büyük ya da en küçük değerini bulmak.
- Bu konuşmada problemin düzgünce tanımlı olduğunu varsayacağız. Yani bir minimum (ya da maksimum) noktasının olduğu problemlerle ilgileneceğiz.



Şekil: Leibniz'in 1684 makalesi



#### Matematiksel Programlama Modeli

Genel bir optimizasyon (eniyileme) problemi şu şekilde gösterilebilir:

enküçükle 
$$f(x)$$
 öyle ki 
$$c_j(x)=0,\quad j\in\mathcal{E},$$
 
$$c_j(x)\geq 0,\quad j\in\mathcal{I}.$$
 (1)

Burada  $x \in \mathbb{R}^n$  vektörü ile karar değişkenleri (bilinmeyenler),  $f: \mathbb{R}^n \mapsto \mathbb{R}$  ile amaç fonksiyonu,  $c_j: \mathbb{R}^n \mapsto \mathbb{R}, j \in \mathcal{E} \cup \mathcal{I}$  ile de kısıtlar gösterilmiştir.

#### Not

Bir enbüyükleme problemi kolayca enküçükleme problemine dönüştürülebilir:

$$\max f(x) = -\min\{-f(x)\}.$$

#### Örnek

İki kısıtlı bir matematiksel model şu şekilde<sup>1</sup> verilmiş olsun:

enküçükle 
$$f(x)$$
 öyle ki 
$$x_1^2 - x_2 \leq 0, \\ x_1 + x_2 \leq 2.$$

Burada

$$f(x) = (x_1 - 2)^2 + (x_2 - 1)^2$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad c(x) = \begin{bmatrix} c_1(x) \\ c_2(x) \end{bmatrix} = \begin{bmatrix} -x_1^2 + x_2 \\ -x_1 - x_2 + 2 \end{bmatrix}, \quad \mathcal{I} = \{1, 2\}, \ \mathcal{E} = \emptyset.$$

Nocedal, J., Wright, S. J., Numerical Optimization, 2. Basım, New York: Springer, 2006.

# Örnek (devam)



### Dışbükey Küme

#### **Tanım**

 $S \in \mathbb{R}^n$  kümesinin dışbükey (convex) olması için S kümesinden herhangi iki noktayı birleştiren doğru parçasının tamamının S kümesinde olması gerekir. Matematiksel olarak gösterirsek, her  $x,y \in S$  çifti ve tüm  $\alpha \in [0,1]$  değerleri için

$$\alpha x + (1 - \alpha)y \in S$$

olmalıdır.



Dışbükey küme



Dışbükey olmayan küme

## Dışbükey Fonksiyon

#### Tanım

 $f(\cdot)$  ile gösterilen bir fonksiyonun dışbükey olması için tanım kümesinin dışbükey olması ve bu kümeden seçilen herhangi x,y çifti için  $f(\cdot)$  grafiğinin (x,f(x)) ve (y,f(y)) noktalarını birleştiren doğru parçasının altında kalması gerekir. Matematiksel olarak ifade edersek, her x,y ve tüm  $\alpha \in [0,1]$  değerleri için

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

eşitsizliği sağlanmalıdır.



#### Dışbükeylik Hakkında

- ▶ Bir  $f(\cdot)$  fonksiyonunun içbükey (concave) olması,  $-f(\cdot)$  fonksiyonunun dışbükey olduğunu gösterir.
- Dışbükey bir fonksiyon ile yazılan kısıtsız problemlerde lokal minimum noktası, global minimum noktası olur.
- ► Eğer bir kısıt ≤ şeklinde bir eşitsizlikse ve dışbükey fonksiyonlar ile oluşturulmuşsa, ortaya çıkan olurlu alan da dışbükey bir kümedir.
- Kabaca söylemek gerekirse, pek çok durumda dışbükey fonksiyonlar ile çalışıldığında minimum noktasını belirlemek için kullanılan gerek şartlar aynı zamanda yeter şartlar olurlar.
- Dışbükey fonksiyonlar, lokal olarak daha karmaşık ve dışbükey olmayan fonksiyonların yaklaşık gösteriminde kullanılırlar.

#### Dışbükeylik Hakkında (devam)

En başta (1) ile gösterdiğimiz matematiksel programlama modelinde

- ightharpoonup amaç fonksiyonu  $f(\cdot)$  dışbükeyse,
- eşitlik  $c_j(\cdot), j \in \mathcal{E}$  kısıtları doğrusalsa,
- ve eşitsizlik fonksiyonları  $c_j(\cdot), j \in \mathcal{I}$  içbükeyse,

elde edilen model dışbükey optimizasyon modeli olur.

enküçükle 
$$f(x)$$
 öyle ki  $c_j(x)=0, \quad j\in\mathcal{E},$   $c_j(x)\geq 0, \quad j\in\mathcal{I}.$ 

#### Kısıtsız Optimizasyon

Kısıtsız optimizasyon problemlerinde eşitlikler ve eşitsizlikler yoktur. Yani (1) modelinde  $\mathcal{I}\equiv\mathcal{E}\equiv\emptyset$  olarak alınır. Bu durumda model kısaca

$$\min_{x \in \mathbb{R}^n} f(x)$$

olarak yazılabilir. Birinci türevi elde etmek için n boyutun her birine göre kısmi türev alınarak gradyant (gradient) vektörü elde edilir:

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}.$$

İkinci türevleri ise Hesyan (Hessian) matrisini verecektir:

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}.$$

### Lokal ve Global Optimizasyon





#### İkili Sınıflandırma

Elimizde N tane veri noktası olduğunu düşünelim;  $x^{(k)} \in \mathbb{R}^n$ ,  $k=1,\ldots,N$ . Her veri noktası için iki etiketten biri verilmiş;  $y^{(k)} \in \{-1,1\}$ ,  $k=1,\ldots,N$ .

Amaç bu veriyi iki kümeye ayıracak şekilde çok boyutlu bir düzlem bulmak. Her  $k=1,\ldots,N$  için şu ifadeleri kullanalım:

$$\left. \begin{array}{ll} \theta^\intercal x^{(k)} - c \leq -1 & \Longrightarrow & y^{(k)} = -1 \\ \theta^\intercal x^{(k)} - c \geq 1 & \Longrightarrow & y^{(k)} = 1 \end{array} \right\} (\theta^\intercal x^{(k)} - c) y^{(k)} = 1.$$

Bu durumda yapmamız gereken, verilen bir c değerine göre  $\theta$  vektörünü hesaplamaktır.

#### Kümeleme - İkili Sınıflandırma

$$\begin{array}{ccc} \theta^\intercal x^{(k)} - c \leq -1 & \Longrightarrow & y^{(k)} = -1 \\ \theta^\intercal x^{(k)} - c \geq 1 & \Longrightarrow & y^{(k)} = 1 \end{array} \right\} (\theta^\intercal x^{(k)} - c) y^{(k)} = 1.$$



## Kümeleme - İkili Sınıflandırma (devam)

Optimizasyon modelimiz için önce amaç fonksiyonunu oluşturalım:

$$l_k(\theta) = \max\{0, 1 - (\theta^{\mathsf{T}} x^{(k)} - c) y^{(k)}\}.$$

Bu fonksiyona literatürde menteşe kayıp fonksiyonu (hinge loss function) da denmektedir. Modelimiz

$$\min J_{\lambda}(\theta) = \frac{1}{N} \sum_{k=1}^{N} l_{k}(\theta) + \frac{\lambda}{2} \|\theta\|^{2}.$$

haline gelir. Modelin en sonuna eklediğimiz terim aşırı uyum (overfitting) sorunundan kaçınmak için eklenmiştir. Burada  $\lambda$  değeri dışarıdan verilen bir parametredir.

Bu problem amaç fonksiyonundaki  $\max$  işleci yüzünden türevlenebilir değildir. Ancak bu model, kısıtlar yardımıyla dışbükey optimizasyon problemine dönüştürülebilir.

## Kümeleme - İkili Sınıflandırma (devam)

Dışbükey optimizasyon modeli için önce yardımcı değişkenler

$$z_k = \max\{0, 1 - (\theta^{\mathsf{T}} x^{(k)} - c) y^{(k)}\}, \quad k = 1, \dots, N$$

olarak tanımlanır. Ardından kısıtlı modelimiz şu şekilde yazılır:

enküçükle 
$$\frac{1}{N}\sum_{k=1}^N z_k + \frac{\lambda}{2}\|\theta\|^2$$
 öyle ki 
$$z_k \geq 1 - (\theta^\intercal x^{(k)} - c)y^{(k)}, \quad k=1,\dots,N;$$
 
$$z_k \geq 0, \qquad \qquad k=1,\dots,N.$$

Literatürde bu ikili sınıflandırma yaklaşımına destek vektör makinesi (support vector machine) denmektedir.

## Ses İşleme



- ▶ **Veri:** Milisaniyelik kayıtlar (çerçeveler);  $(x^{(k)}, y^{(k)})$ , k = 1, ..., N. Burada  $x^{(k)} \in \mathbb{R}^n$  öznitelikler,  $y^{(k)} \in \mathbb{C}$  ses etiketleri.
- ► Amaç: Öznitelikleri bilinen yeni bir kaydı doğru şekilde etiketlemek.

# Kümeleme - Ses İşleme

- ▶ Her etikete bir ağırlık vektörü,  $\theta^l \in \mathbb{R}^n$ ,  $l \in \mathbb{C}$  verilir.
- ▶ Kolaylık olması için  $|\mathbb{C}| \times n$  boyutlarında bir  $\theta$  matrisi tanımlarız. Her k çerçevesine j etiketi atanması için hesaplanan olasılık

$$\mathbf{P}\left\{y^{(k)} = j \mid x^{(k)}; \theta\right\} = \frac{\exp\left((\theta^{j})^{\mathsf{T}} x^{(k)}\right)}{\sum_{l \in \mathbb{C}} \exp\left((\theta^{l})^{\mathsf{T}} x^{(k)}\right)}$$

olarak verilir. Bu durumda ölçekli log-benzerlik fonksiyonu

$$\frac{1}{N} \sum_{k=1}^{N} \underbrace{\sum_{j \in \mathbb{C}} \mathbf{1} \{ y^{(k)} = j \} \log \frac{\exp\left( (\theta^{j})^{\mathsf{T}} x^{(k)} \right)}{\sum_{l \in \mathbb{C}} \exp\left( (\theta^{l})^{\mathsf{T}} x^{(k)} \right)}}_{l_{k}(\theta)},$$

şeklinde yazılır. Buradaki 1 gösterge işleci, içerisindeki ifade doğru ise 1, aksi halde 0 çevirir.

## Kümeleme - Ses İşleme (devam)

Şimdi örneklem ortalaması yaklaşımı (sample average approximation) fonksiyonunu yazabiliriz:

$$J(\theta) = \frac{1}{N} \sum_{k=1}^{N} l_k(\theta).$$

Bu durumda maksimum benzerlik kestirimcisi (maximum likelihood estimator) ise

$$\theta^* = \arg \max_{\theta \in \mathbb{R}^{|\mathbb{C}| \times n}} J(\theta)$$

olarak bulunur. Enbüyükleme probleminden, enküçüklemeye geçerken de basitçe fonksiyonu -1 ile çarparız. Kısacası, çözmemiz gereken model şu şekilde yazılabilir:

$$\min_{\theta \in \mathbb{R}^{|\mathbb{C}| \times n}} -J(\theta).$$

### Tavsiye Sistemi



- Veri: İzleyicilerin farklı filmlere verdikleri puanları gösteren bir seyrek (sparse) matris (Y).
- ► Amaç: İzleyiciler ile filmleri belirli sayıda türe göre gruplamak ve ilgilerine göre izleyecilere film tavsiye etmek.

# Tavsiye Sistemi - Matrisleri Çarpanlarına Ayırma



# Tavsiye Sistemi - Matrisleri Çarpanlarına Ayırma (devam)

|       | F1 | F2 | F3 | F4 |
|-------|----|----|----|----|
| Ali   | 5  | 2  | ?  | 2  |
| Berna | 4  | ?  | ?  | 3  |
| Cemal | 1  | 1  | ?  | 4  |
| Deniz | 2  | ?  | 4  | 5  |
| Esra  | ?  | 2  | ?  | 4  |

### Tavsiye Sistemi - Matrisleri Çarpanlarına Ayırma (devam)

$$\underbrace{\begin{bmatrix}
5 & 2 & ? & 2 \\
4 & ? & ? & 3 \\
1 & 1 & ? & 4 \\
2 & ? & 4 & 5 \\
? & 2 & ? & 4
\end{bmatrix}}_{Y} \approx \underbrace{\begin{bmatrix}
* & * \\
* & * \\
* & * \\
* & * \\
* & *
\end{bmatrix}}_{X_{1}}
\underbrace{\begin{bmatrix}
* & * & * & * \\
* & * & * \\
* & * & *
\end{bmatrix}}_{X_{2}}$$

#### Model

$$(X_1^*, X_2^*) = \arg \min_{X_{II}, X_M} ||Y - X_U X_M||_F^2.$$

$$\underbrace{ \left[ \begin{array}{ccccc} 1.99 & 0.56 \\ 1.45 & 1.04 \\ 0.00 & 1.64 \\ 0.33 & 2.01 \\ 1.18 & 1.50 \end{array} \right]}_{X_1^*} \underbrace{ \left[ \begin{array}{cccccc} 2.32 & 0.85 & 1.04 & 0.32 \\ 0.61 & 0.62 & 1.82 & 2.42 \end{array} \right]}_{X_2^*} = \underbrace{ \left[ \begin{array}{cccccc} 4.95 & 2.05 & 3.08 & 2.00 \\ 3.99 & 1.88 & 3.39 & 2.99 \\ 1.01 & 1.02 & 2.97 & 3.97 \\ 2.00 & 1.53 & 3.99 & 4.98 \\ 3.65 & 1.93 & 3.94 & 4.00 \end{array} \right]}_{\hat{Y}}$$

#### Tavsiye Sistemi - Matrisleri Çarpanlarına Ayırma (devam)

Bu yaklaşım ile çözeceğimiz optimizasyon modeli şu şekilde yazılır:

$$\min_{X_1,X_2} ||Y - X_1 X_2||_F^2.$$

İlk bakışta karışık gözükse de, aslında amaç fonksiyonu her veri noktası için karesel sapmaların toplamına karşılık gelmektedir. Üç izleyici ve iki filmli basit bir örnek bu noktayı gösterecektir:

$$\min_{x_1,\dots,x_5} \left\| \underbrace{\begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \\ y_5 & y_6 \end{pmatrix}}_{Y} - \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{X_1} \underbrace{\begin{pmatrix} x_4 & x_5 \\ x_2 \end{pmatrix}}_{X_2} \right\|_F^2 = \min_{x_1,\dots,x_5} (y_1 - x_1x_4)^2 + \dots + (y_6 - x_3x_5)^2$$



#### Problemlerin Ortak Yapısı

Şu ana kadar konuştuğumuz kısıtsız yapay öğrenme modelleri, genel bir formda

$$\min_{x \in \mathbb{R}^n} f(x) = \min_{x \in \mathbb{R}^n} \sum_{k=1}^N f_k(x)$$

şeklinde yazılabilirler.

Bu formda bir optimizasyon modeli çözmeyi gerektiren diğer yapay öğrenme yaklaşımlarına birkaç örnek verebiliriz:

- Lojistik bağlanım (regression)
- Derin öğrenme (deep learning)
- Çok katmanlı yapay sinir ağları (multilayer artificial neural networks)

#### Problemlerin Ortak Yapısı (devam)

Amaç fonksiyonumuzu tekrar yazalım

$$f(x) = \sum_{k=1}^{N} f_k(x).$$

Bu fonksiyonun minumum noktasını bulmak için bir önceki dersteki çözüm yöntemlerini kullanabiliriz. Bunun için amaç fonksiyonunun türevine ihtiyacımız olacak:

$$\nabla f(x) = \sum_{k=1}^{N} \nabla f_k(x).$$

Yapay öğrenme problemlerinin önemli bir kısmında N değeri veri boyutuna bağlıdır. O nedenle N kolayca oldukça büyük bir sayı olur. Dolayısıyla her seferinde türev hesabı yapmanın hesaplama zamanı açısından maliyeti yüksektir.

### Kısıtsız Optimizasyon Algoritmaları

- ▶ Bu algoritmalarda bir dizi adım hesaplanır:  $x_0, x_1, x_2, \ldots$
- ightharpoonup Çoğu zaman başlangıç noktası  $x_0$  kullanıcı tarafından belirlenir.
- ▶ Her adımda algoritma  $f(\cdot)$ ,  $\nabla f(\cdot)$  ya da  $\nabla^2 f(\cdot)$  fonksiyonlarını kullanır.
- Pek çok algoritmada  $\{f(x_i)\}_{i=0}^{\infty}$  dizisi monoton olarak azalır. Ancak monoton olmayan algoritmalar da mevcuttur.
- Kısıtsız optimizasyon için iki temel strateji vardır: doğru arama (line search) ve güven bölgesi (trust region).

### Doğru Arama Algoritmaları

#### Gradyant İniş

$$x_{k+1} = x_i - \alpha_i \nabla f(x_i)$$

#### Newton Algoritması

$$x_{k+1} = x_i - \alpha_i \nabla^2 f(x_i)^{-1} \nabla f(x_i)$$

#### Newton-benzeri Algoritmalar

$$x_{k+1} = x_i - \alpha_i B_i^{-1} \nabla f(x_i)$$

"Hesaplamalı Tarifler I: Newton ve Benzeri Metodlar," Matematik Dünyası, 2016

Burada  $\alpha_i$  ile gösterilen adım boyu (step-length), yapay öğrenme camiasında öğrenme hızı (learning rate) olarak bilinir.

#### Çözüme Yakınsama Hızları



#### Rassal Gradyant Yöntemleri

Rassal yöntemler, her seferinde türevin tamamını hesaplamak yerine sadece bir kısmını rassal olarak seçip hesaplarlar.

Rassal olarak seçilen kısımları  $\mathcal{K}\subseteq\{1,\dots,N\}$  kümesi olarak gösterirsek, gradyant iniş algoritmasının adımları şu şekilde yazılabilir:

$$x_{i+1} = x_i - \alpha_i \sum_{k \in \mathcal{K}} \nabla f_k(x)$$

Literatürde K kümesindeki eleman sayısına göre farklı yöntemler denenmiştir:

- $ightharpoonup |\mathcal{K}| = 1$ , rassal gradyant iniş (stochastic gradient descent)
- ▶  $|\mathcal{K}| < N$ , mini-yığın rassal gradyant iniş (mini-batch gradient descent)
- ▶  $|\mathcal{K}| = N$ , yığın gradyant iniş (batch gradient descent).

Dikkat edilirse son seçenekte rassalık yok ve bu şekilde koşturulan algoritma radyant iniş algoritmasının aynısı.

#### Rassal Gradyant Yöntemleri (devam)

Rassal gradyant yöntemlerini uygulamak için

$$x_{i+1} = x_i - \alpha_i \sum_{k \in \mathcal{K}} \nabla f_k(x)$$

döngüsünde adım boyu  $\alpha_i$  değerini de belirlememiz gerek. Bu yöntemler adım boyunu arama algoritmaları ile hesaplamak yerine, adım boyunu azalan bir dizi olarak düşünürler.

Yakınsaklık analizleri adım boyu dizisinin şu şartları sağlaması gerektiğini göstermiştir:

$$\alpha_i \underset{i\uparrow\infty}{\rightarrow} 0$$
 ve  $\sum_{i=1}^{\infty} \alpha_i = \infty$ .

Uygulamada

$$\alpha_i = \frac{\epsilon}{\sqrt{i}}$$

dizisi için  $\epsilon = 10^{-4}$  alarak alınabilir.



Hessian
Approximated
Multiple
Subsets
Iteration

MAKALE: https://arxiv.org/abs/1509.01698

Kod: https://github.com/spartensor/hamsi-mf



arXiv.org > stat > arXiv:1509.01698

Statistics > Machine Learning

HAMSI: A Parallel Incremental Optimization Algorithm Using Quadratic Approximations for Solving Partially Separable Problems

#### $MB-GD \iff HAMSI$

|                                              |           |          | Average Final RMSE Value |        |         |        |          |  |
|----------------------------------------------|-----------|----------|--------------------------|--------|---------|--------|----------|--|
| Dataset                                      | Algorithm | schedule | Hogwild                  | Color  | Color-B | STRATA | STRATA-B |  |
| 1M - 6040 3883<br>ratings users movies       | mb-GD     | det      | 3.1074                   | 3.1061 | 3.0845  | 2.5315 | 2.4588   |  |
|                                              |           | stoc     | 3.1433                   | 3.1470 | 3.1003  | 2.5325 | 2.4650   |  |
| (25 seconds)                                 | HAMSI     | det      | 0.6901                   | 0.6955 | 0.7102  | 0.6133 | 0.6022   |  |
| "                                            | HAIVIOI   | stoc     | 0.6900                   | 0.7987 | 0.8017  | 0.6088 | 0.5994   |  |
| 10M - 71567 - 10681 ratings users movies     | mb-GD     | det      | 4.3167                   | 4.2676 | 4.2617  | 4.0029 | 3.4088   |  |
|                                              |           | stoc     | 4.3009                   | 4.2863 | 4.2801  | 4.0035 | 3.4094   |  |
| (250 seconds)                                | HAMSI     | det      | 0.9279                   | 1.0181 | 0.8941  | 0.8923 | 0.8643   |  |
|                                              |           | stoc     | 0.9207                   | 1.1357 | 1.1229  | 0.8988 | 0.8652   |  |
| 20M - 138493 - 26744<br>ratings users movies | mb-GD     | det      | 4.8655                   | 4.8051 | 4.8000  | 4.8093 | 3.8890   |  |
|                                              |           | stoc     | 4.8641                   | 4.8279 | 4.8142  | 4.8091 | 3.8975   |  |
| (500 seconds)                                | HAMSI     | det      | 1.0170                   | 1.1117 | 0.9521  | 1.0113 | 0.9042   |  |
|                                              |           | stoc     | 1.0112                   | 1.2944 | 1.2220  | 1.0231 | 0.9035   |  |

#### $\mathsf{MB}\text{-}\mathsf{GD} \iff \mathsf{HAMSI}$



# Kitap Önerileri

- Bertsekas, D. P., Nonlinear Programming, 2. basım, Athena Scientific, Belmont, Massachusetts, 2003.
- ▶ Bazaara, M. S., Sherali, H. D. ve Shetty, C. M., Nonlinear Programming Theory and Algorithms, 2. basım, Wiley, N.Y., 1993.
- Hiriart-Urruty, J.-B. ve Lemaréchal, Convex Analysis and Minimization Algorithms I and II, Springer-Verlag, Berlin, Heidelberg, 1993.
- Luenberger, D. G., Introduction to Linear and Nonlinear Programming, 2. basım, Addison-Wesley, Reading, MA, 1984.
- Boyd, S. ve Vandenberghe, I., Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.
- ► Faigle, U., Kern, W. ve Still, G., Algorithmic Principles of Mathematical Programming, Dordrecht, Boston, Kluwer Academic Publishers, 2002.