Lecture 12 Information from parts of words: Subword Models

Lecture Plan

- 1. A tiny bit of linguistics
- 2. Purely character-level models
- 3. Subword-models: Byte Pair Encoding and friends
- 4. Hybrid character and word level models
- 5. fastText

1. Human language sounds: Phonetics and phonology

- Phonetics 语音学是一种音流——物理学或生物学
- Phonology 语音体系假定了一组或多组独特的、分类的单元: **phoneme** 音素 或者是独特的特征
 - 。 这也许是一种普遍的类型学, 但却是一种特殊的语言实现
 - 。 分类感知的最佳例子就是语音体系
 - 音位差异缩小; 音素之间的放大

CONSONANT	rs (PU	JLMC	ONIC)																	0	200	5 IPA
	Bila	abial	Labic	dental	Der	ntal	Alve	eolar	Posta	lveolar	Retr	oflex	Pal	atal	Ve	elar	Uv	ular	Phary	ngeal	Glo	ottal
Plosive	p	b					t	d			t	þ	c	J	k	g	q	G			3	
Nasal		m		ŋ				n				η		ŋ		ŋ		N				
Trill		\mathbf{B}						r										R				
Tap or Flap				\mathbf{V}				ſ				r										
Fricative	ф	β	f	V	θ	ð	S	\mathbf{Z}	ſ	3	Ş	Z,	ç	j	X	¥	χ	R	ħ	ſ	h	ĥ
Lateral fricative							1	ţ														
Approximant				υ				I.				ŀ		j		щ						
Lateral approximant								1				l		λ		L						

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

Morphology: Parts of words

- 声音本身在语言中没有意义
- parts of words 是音素的下一级的形态学,是具有意义的最低级别

- 传统上,morphemes 词素是最小的语义单位 semantic unit
 - [[un[[fortun (e)] Root ate] STEM] STEM ly] WORD
- 深度学习:形态学研究较少;递归神经网络的一种尝试是 (Luong, Socher, & Manning 2013)
 - 处理更大词汇量的一种可能方法——大多数看不见的单词是新的形态(或数字)

Morphology

- 一个简单的替代方法是使用字符 n-grams
 - Wickelphones (Rumelhart& McClelland 1986)
 - Microsoft's DSSM (Huang, He, Gao, Deng, Acero, & Hect2013)
- 使用卷积层的相关想法
- 能更容易地发挥词素的许多优点吗?

Words in writing systems

书写系统在表达单词的方式上各不相同,也不相同

- 没有分词(没有在单词间放置空格) 美国关岛国际机场及其办公室均接获
- 大部分的单词都是分开的: 由单词组成了句子

- o 附着词 clitics
 - 分开的

Je vous ai apporté des bonbons

■ 连续的

so+said+we+it = فعلناها = فقلناها

- o 复合名词
 - 分开的 life insurance company employee
 - 连续的 Lebensversicherungsgesellschaftsangestellter

Models below the word level

- 需要处理数量很大的开放词汇:巨大的、无限的单词空间
 - 。 丰富的形态
 - 音译(特别是名字,在翻译中基本上是音译)
 - 。 非正式的拼写
- Rich morphology: nejneobhospodařovávatelnějšímu ("to the worst farmable one")
- Transliteration: Christopher → Kryštof
- Informal spelling:

Character-Level Models

- 词嵌入可以由字符嵌入组成
 - 为未知单词生成嵌入
 - o 相似的拼写共享相似的嵌入
 - o 解决OOV问题
- 连续语言可以作为字符处理:即所有的语言处理均建立在字符序列上,不考虑 word-level
- 这两种方法都被证明是非常成功的!
 - 有点令人惊讶的是——传统上,音素/字母不是一个语义单元——但DL模型组成了组
 - 深度学习模型可以存储和构建来自于多个字母组的含义表示, 从而模拟语素和更大单位的意

义,从而汇总形成语义

Below the word: Writing systems

大多数深度学习NLP的工作都是从语言的书面形式开始的——这是一种容易处理的、现成的数据 但是人类语言书写系统不是一回事!各种语言的字符是不同的!

•	Phonemic (maybe digraphs)	jiyawu ngabulu	Wambaya
•	Fossilized phonemic	thorough failure	English
•	Syllabic/moraic	$\neg \neg $	Inuktitut
•	Ideographic (syllabic)	去年太空船二号坠毁	Chinese
•	Combination of the above	インド洋の島	Japanese

2. Purely character-level models

- 上节课我们看到了一个很好的纯字符级模型的例子用于句子分类
 - 非常深的卷积网络用于文本分类
 - o Conneau, Schwenk, Lecun, Barrault.EACL 2017
- 强大的结果通过深度卷积堆叠

Purely character-level NMT models

- 以字符作为输入和输出的机器翻译系统
- 最初,效果不令人满意
 - o (Vilaret al., 2007; Neubiget al., 2013)
- 只有decoder (成功的)
 - o (JunyoungChung, KyunghyunCho, YoshuaBengio. arXiv 2016).
- 然后有前景的结果
 - (Wang Ling, Isabel Trancoso, Chris Dyer, Alan Black, arXiv 2015)
 - o (Thang Luong, Christopher Manning, ACL 2016)
 - o (Marta R. Costa-Jussà, José A. R. Fonollosa, ACL 2016)

English-Czech WMT 2015 Results

source	Her 11-year-old daughter , Shani Bart , said it felt a little bit weird					
human	Její jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvláštní					
char	Její jedenáctiletá dcera , Shani Bartová , říkala , že cítí trochu <i>divně</i>					
	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>					
word	Její 11-year-old dcera Shani , řekla, že je to trochu <i>divné</i>					

System	BLEU
Word-level model (single; large vocab; UNK replace)	15.7
Character-level model (single; 600-step backprop)	15.9

- Luong和Manning测试了一个纯字符级seq2seq (LSTM) NMT系统作为基线
- 它在单词级基线上运行得很好
- 对于 UNK,是用 single word translation 或者 copy stuff from the source
- 字符级的 model 效果更好了, 但是太慢了
 - 。 但是在运行时需要3周的时间来训练,运行时没那么快
 - o 如果放进了 LSTM 中,序列长度变为以前的数倍(大约七倍)

Fully Character-Level Neural Machine Translation without Explicit Segmentation

Jason Lee, KyunghyunCho, Thomas Hoffmann. 2017.

编码器如下;解码器是一个字符级的GRU

Stronger character results with depth in LSTM seq2seq model

Revisiting Character-Based Neural Machine Translation with Capacity and Compression. 2018. Cherry, Foster, Bapna, Firat, Macherey, Google Al

- 在捷克语这样的复杂语言中,字符级模型的效果提升较为明显,但是在英语和法语等语言中则收效 其微。
- 模型较小时, word-level 更佳; 模型较大时, character-level 更佳

3. Sub-word models: two trends

- 与word级模型相同的架构
 - 。 但是使用更小的单元:"word pieces"
 - [Sennrich, Haddow, Birch, ACL'16a], [Chung, Cho, Bengio, ACL'16].
- 混合架构
 - 主模型使用单词,其他使用字符级
 - [Costa-Jussà& Fonollosa, ACL'16], [Luong & Manning, ACL'16].

Byte Pair Encoding

- BPE 并未深度学习的有关算法,但已成为标准且成功表示 pieces of words 的方法,可以获得一个有限的词典与无限且有效的词汇表。
- 最初的压缩算法
 - \circ 最频繁的字节 \rightarrow 一个新的字节。
 - o 用字符ngram替换字节(实际上,有些人已经用字节做了一些有趣的事情)
 - Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words with SubwordUnits. ACL 2016.
 - https://arxiv.org/abs/1508.07909
 - https://github.com/rsennrich/subword-nmt
 - https://github.com/EdinburghNLP/nematus
- 分词算法 word segmentation
 - 。 虽然做得很简单, 有点像是自下而上的短序列聚类
 - 将数据中的所有的Unicode字符组成一个unigram的词典
 - 最常见的 ngram pairs 视为 一个新的 ngram

Dictionary

5 low 2 lower 6 newest 3 widest Vocabulary

I, o, w, e, r, n, w, s, t, i, d

Start with all characters in vocab

(Example from Sennrich)

20

Dictionary

5 low 2 lower 6 new**es**t 3 wid**es**t

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, **es**

Add a pair (e, s) with freq 9

Dictionary

5 low 2 lower 6 new est 3 wid est

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, **est**

Add a pair (es, t) with freq 9

Dictionary

5 low
 2 lower
 6 newest
 3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, est, **lo**

Add a pair (1, 0) with freq 7

- 有一个目标词汇量, 当你达到它的时候就停止
- 做确定性的最长分词分割
- 分割只在某些先前标记器(通常MT使用的 Moses tokenizer)标识的单词中进行
- 自动为系统添加词汇
 - o 不再是基于传统方式的 strongly "word"
- 2016年WMT排名第一! 仍然广泛应用于2018年WMT

• https://github.com/rsennrich/nematus

Wordpiece/Sentencepiece model

- 谷歌NMT (GNMT) 使用了它的一个变体
 - V1: wordpiece model
 - V2: sentencepiece model
- 不使用字符的 n-gram count,而是使用贪心近似来最大化语言模型的对数似然函数值,选择对应的pieces
 - 。 添加最大限度地减少困惑的n-gram
- Wordpiece模型标记内部单词
- Sentencepiece模型使用原始文本
 - 空格被保留为特殊标记(_),并正常分组
 - 您可以通过将片段连接起来并将它们重新编码到空格中,从而在末尾将内容反转
 - https://github.com/google/sentencepiece
 - https://arxiv.org/pdf/1804.10959.pdf
- BERT 使用了 wordpiece 模型的一个变体
 - (相对)在词汇表中的常用词
 - at, fairfax, 1910s
 - 其他单词由wordpieces组成
 - hypatia = h ##yp ##ati ##a
- 如果你在一个基于单词的模型中使用BERT, 你必须处理这个

4. Character-level to build word-level

Learning Character-level Representations for Part-ofSpeech Tagging (Dos Santos and Zadrozny2014)

- 对字符进行卷积以生成单词嵌入
- 为PoS标签使用固定窗口的词嵌入

Character-based LSTM to build word rep'ns

● Bi-LSTM构建单词表示

Character-based LSTM

Character-Aware Neural Language Models

Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush. 2015

- 一个更复杂/精密的方法
- 动机
 - 。 派生一个强大的、健壮的语言模型,该模型在多种语言中都有效
 - 。 编码子单词关联性: eventful, eventfully, uneventful...
 - 解决现有模型的罕见字问题
 - 。 用更少的参数获得可比较的表达性

Technical Approach

Convolutional Layer

- Convolutions over character-level inputs.
- Max-over-time pooling (effectively n-gram selection).

Highway Network (Srivastavaet al. 2015)

$$\mathbf{t} = \sigma(\mathbf{W}_T\mathbf{y} + \mathbf{b}_T)$$
 $\mathbf{z} = \mathbf{t} \odot g(\mathbf{W}_H\mathbf{y} + \mathbf{b}_H) + (\mathbf{1} - \mathbf{t}) \odot \mathbf{y}$
Transform Gate Input Carry Gate

- 语法交互模型
- 在传递原始信息的同时应用转换
- 功能类似于LSTM内存单元

Long Short-Term Memory Network

Highway Network Output

- 分级Softmaxto处理大的输出词汇表
- 使用 <u>truncated backpropthrough</u> time 进行训练

Quantitative Results

			DATA-S							
		Cs	DE	Es	FR	RU	AR			
Botha	KN-4	545	366	241	274	396	323			
	MLBL	465	296	200	225	304	-			
	Word	503	305	212	229	352	216			
Small	Morph	414	278	197	216	290	230			
	Char	401	260	182	189	278	196			
	Word	493	286	200	222	357	172			
Large	Morph	398	263	177	196	271	148			
	Char	371	239	165	184	261	148			

		DATA-L							
		Cs	DE	Es	FR	RU	EN		
Botha	KN-4	862	463	219	243	390	291		
	MLBL	643	404	203	227	300	273		
	Word	701	347	186	202	353	236		
Small	Morph	615	331	189	209	331	233		
	Char	578	305	169	190	313	216		

Comparable performance with fewer parameters!

	PPL	Size
LSTM-Word-Small	97.6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN [†] (Mikolov et al. 2012)	124.7	6 m
RNN-LDA [†] (Mikolov et al. 2012)	113.7	$7 \mathrm{m}$
genCNN [†] (Wang et al. 2015)	116.4	8 m
FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net [†] (Cheng et al. 2014)	100.0	5 m
LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
LSTM-2 [†] (Zaremba et al. 2014)	78.4	$52 \mathrm{m}$

	In Vocabulary							
	while	his	you	richard	trading			
LSTM-Word	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover			
LSTM-Char (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading			
LSTM-Char (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader			

Out-o	of-Vocabulary	
computer-aided	misinformed	looooook
_	_	- !
_	_	-
-	_	- 1
_	_	i -
computer-guided computerized disk-drive computer	informed performed transformed inform	look cook looks shook
computer-guided computer-driven computerized computer	informed performed outperformed transformed	look looks looked looking

Take-aways

- 本文对使用词嵌入作为神经语言建模输入的必要性提出了质疑
- 字符级的 CNNs + Highway Network 可以提取丰富的语义和结构信息
- 关键思想:您可以构建"building blocks"来获得细致入微且功能强大的模型!

Hybrid NMT

- Abest-of-both-worlds architecture
 - 翻译大部分是单词级别的
 - 。 只在需要的时候进入字符级别
- 使用一个复制机制, 试图填充罕见的单词, 产生了超过 2 BLEU的改进

2-stage Decoding

● 单词级别的束搜索

- 字符级别的束搜索(遇到 < UNK >) 时
- 混合模型与字符级模型相比
 - 纯粹的字符级模型能够非常有效地是用字符序列作为条件上下文
 - 。 混合模型虽然提供了字符级的隐层表示,但并没有获得比单词级别更低的表示

English-Czech Results

Train on WMT'15 data (12M sentence pairs)

newstest2015

Systems	BLEU	
Winning WMT'15 (Bojar & Tamchyna, 2015)	18.8	30x data 3 systems
Word-level NMT (Jean et al., 2015)	18.3	Large vocab + copy mechanisn
Hybrid NMT (Luong & Manning, 2016)*	20.7	Then
45	But cf. Chei	rry et al. 2018: ~26 BLEU

Sample English-Czech translations

The author Stephen Jay Gould died 20 years after diagnosis .					
Autor Stephen Jay Gould zemřel 20 let po diagnóze .					
Autor Stepher Stepher zemřel 20 let po diagnóze .					
Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
Autor Stephen Jay Gould zemřel 20 let po po .					
Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
Autor Stephen Jay Gould zemřel 20 let po diagnóze .					

Perfect translation!

source	The author Stephen Jay Gould died 20 years after diagnosis .						
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .						
char	Autor Stepher Stepher zemřel 20 let po diagnóze .						
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>						
word	Autor Stephen Jay Gould zemřel 20 let po po .						
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>						
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .						

• *Char*-based: wrong name translation

source	The author Stephen Jay Gould died 20 years after diagnosis .					
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .					
char	Autor Stepher Stepher zemřel 20 let po diagnóze .					
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
	Autor Stephen Jay Gould zemřel 20 let po po .					
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .					

Word-based: incorrect alignment

source	The author Stephen Jay Gould died 20 years after diagnosis .					
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .					
char	Autor Stepher Stepher zemřel 20 let po <mark>diagnóze</mark> .					
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
	Autor Stephen Jay Gould zemřel 20 let po po .					
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>					
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .					

Char-based & hybrid: correct translation of diagnóze

source	Her 11-year-old daughter , Shani Bart , said it felt a little bit weird				
human	Její jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvláštní				
word	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>				
	Její 11-year-old dcera Shani , řekla, že je to trochu <i>divné</i>				
hybrid :	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk></unk></unk></unk></unk></unk>				
	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk> Její jedenáctiletá dcera , Graham <i>Bart</i> , řekla , že cítí trochu <i>divný</i></unk></unk></unk></unk></unk>				

Word-based: identity copy fails

source	Her 11-year-old daughter , Shani Bart , said it felt a little bit weird
	Jeji jedenáctiletá dcera Shani Bartová prozradila, že je to trochu zvláštní
word	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné Její 11-year-old dcera Shani , řekla , že je to trochu <i>divné</i></unk></unk></unk>
	Její 11-year-old dcera Shani , řekla , že je to trochu <i>divné</i>
hybrid :	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk></unk></unk></unk></unk></unk>
	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk> <unk> Její jedenáctiletá dcera , Graham Bart , řekla , že cítí trochu divný</unk></unk></unk></unk></unk></unk>

- Hybrid: correct, 11-year-old jedenáctiletá
 Wrong: Shani Bartová

5. Chars for word embeddings

一种用于单词嵌入和单词形态学的联合模型(Cao and Rei 2016)

- 与w2v目标相同, 但使用字符
- 双向LSTM计算单词表示
- 模型试图捕获形态学
- 模型可以推断单词的词根

FastText embeddings

用子单词信息丰富单词向量

Bojanowski, Grave, Joulinand Mikolov. FAIR. 2016. https://arxiv.org/pdf/1607.04606.pdf https://fasttext.cc

- 目标:下一代高效的类似于word2vecd的单词表示库,但更适合于具有大量形态学的罕见单词和语言
- 带有字符n-grams的 w2v 的 skip-gram模型的扩展
- 将单词表示为用边界符号和整词扩充的字符n-grams

- $where = \langle wh, whe, her, ere, re \rangle, \langle where \rangle$
 - 注意 < her >, < her 是不同于 her 的
 - 前缀、后缀和整个单词都是特殊的
- 将word表示为这些表示的和。上下文单词得分为
 - ullet $S(w,c) = \sum g \in G(w) \mathbf{Z}_q^{\mathrm{T}} \mathbf{V}_C$
 - 细节:与其共享所有n-grams的表示,不如使用"hashing trick"来拥有固定数量的向量

Word similarity dataset scores (correlations)

		sg	cbow	sisg-	siso
AR	WS353	51	52	54	55
	GUR350	61	62	64	70
DE	Gur65	78	78	81	81
	ZG222	35	38	41	44
En	RW	43	43	46	47
EN	WS353	72	73	71	71
Es	WS353	57	58	58	59
FR	RG65	70	69	75	75
Ro	WS353	48	52	51	54
RU	HJ	59	60	60	66

● 罕见单词的差异收益

	DE		En		Es	FR
	GUR350	ZG222	WS353	RW	WS353	RG65
Luong et al. (2013)	-	-	64	34	-	-
Qiu et al. (2014)	-	-	65	33	-	-
Soricut and Och (2015)	64	22	71	42	47	67
sisg	73	43	73	48	54	69
Botha and Blunsom (2014)	56	25	39	30	28	45
sisg	66	34	54	41	49	52

Suggested Readings

Character Level NMT

Byte Pair Encoding

Minh-Thang Luong and Christopher Manning. <u>Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models</u>

FastText论文

Reference

以下是学习本课程时的可用参考书籍:

《基于深度学习的自然语言处理》 (车万翔老师等翻译)

《神经网络与深度学习》

以下是整理笔记的过程中参考的博客:

<u>斯坦福CS224N深度学习自然语言处理2019冬学习笔记目录</u> (课件核心内容的提炼,并包含作者的见解与建议)

斯坦福大学 CS224n自然语言处理与深度学习笔记汇总 {>>这是针对note部分的翻译<<}