

HLW8032 参考应用一免校准参考设计

解决以下问题:

- 1、要做到免校准需要满足什么条件?不校准精度可以做到多少?
- 2、 如果需要更高精度,请参考 HLW8032 参考应用二;

采样电阻方案免校准应用参考

下图是电流采用采样电阻方式的参考电路,电流采样部分的采样电阻的参数是 1mR/2W,电压采样使用的 4 个 470K 的电阻和 1K 电阻进行分压。

图 1 HLW8032 应用电路

器件选型

误差来源

在使用 HLW8032 设计应用电路时, 误差来源于以下三个方面:

- (1) 电流采样电阻带来的误差,包括采样电阻本身的精度和在生产焊接时,采样电阻两端焊锡带来的误差(采样电阻阻值很小,焊锡会有影响);
- (2) 电压采样电阻的误差
- (3) HLW8032 的精度

选型建议

- (1) 电流采样电阻建议选用 1%精度;
- (2) 电压采样电阻: 470K 和 1K 电阻选用 0.1%精度;

由于 HLW8032 精度可以控制在 1%左右,对电流采样电阻和电压采样电阻进行控制后,就可以确保整个应用设计的测量精度可以控制在 2%左右。

计算方法

参考图 1 的应用电路进行设计后,功率、电压、电流和电量的计算方法可以 参考产品手册上的计算公式。以图 1 为例:

电压系数 = (470K*4)/(1K*1000) = 1.88;

电流系数 = 1/(0.001*1000) = 1;

 $\frac{\mathbf{f}$ 功功率 : 有功功率 = $\frac{\mathbf{J}$ \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} 电压系数 \mathbf{x} 电流系数

说明:HLW8032的芯片出厂时,[电压参数寄存器]、[电流参数寄存器]和[功率参数寄存器] 是固定值,但每一片HLW8032的[电压参数寄存器]、[电流参数寄存器]和[功率参数寄存器] 都不相同。

电量统计:

脉冲信号数量统计表 5 是与脉冲信号相关 的寄存器,包括数据 更新寄存器(Data Updata REG)和 PF 寄 存器(PF REG)。 脉冲信号相关寄存器	数据更新寄存器 (Data Updata REG) bit7	PF 寄存器	루(PF REG)
	High Byte	Middle Byte	Low Byte
17bit	1bit	8bit	8bit

1、脉冲数量统计

PF 寄存器(PF REG)表示 PF 的脉冲个数,当 PF 寄存器(PF REG)发生溢出时,数据更新寄存器(Data Updata REG)的 bit7 会进行取反, PF 寄存器(PF REG)会同时清 0,所以,脉冲信号数量等于

$$PF_{cnt} = k * 65536 + n$$

- k 是数据更新寄存器(Data Updata REG)的 bit7 的取反次数;
- n 是 PF 寄存器(PF REG)的寄存器值
- 2、1度电对应脉冲数量

1 度电的脉冲数量 =
$$\frac{1}{\text{功率参数寄器}} \times \frac{1}{\text{电压系数} \times \text{电流系数}} \times 10^9 \times 3600$$

当 PF_{cnt} 的个数等于 1 度电的脉冲数量时,表示己累计统计 1 度电量(KW.h); 当前电量(KW.h) = PF_{cnt} /1 度电的脉冲个数

注意:脉冲个数有两种统计方式

- 1、MCU 接 HLW8032 的 PF 引脚,统计 HLW8032 PF 的个数,由 MCU 进行脉冲统计;
- 2、MCU 不接 HLW8032 的 PF 引脚,需要能过 TX 口来读取数据更新寄存器(Data Updata REG)的值;

数据更新寄存器(Data Updata REG)的 bit7 的取反次数 k,需要每隔一定时间读取,如果相邻两次的读取时间过长,会丢失取反次数 k,造成电量统计值错误:

说明:一般建议每 30S 时间内,必须要读取一次数据更新寄存器(Data Updata REG)的值;

当 PF 寄存器(PF REG)溢出时,数据更新寄存器(Data Updata REG)的 bit7 就会取反一次。 PF 寄存器(PF REG)代表的是功率的脉冲个数,PF 计数 65535 次后会溢出,溢出后从 0 开始计数,所以需要在 PF 计数下一次溢出前读取到数据更新寄存器(Data Updata REG)的 bit7 状态。

那么如何判断在多长时间内必须要需要读取一次数据更新寄存器(Data Updata REG)的bit7 位?

最小读取时间间隔(单位/秒) = 65536/(最大输入功率时 PF 的输出频率);

因为PF的输出频率和输入功率是线性比例的关系,所以也可以给一己知负载,比如100W,用示波器测出PF的输出频率f,

那么[最大输入功率时 PF 的输出频率] = (最大输入功率/100W) *f;

PF 的输出频率,可以参考附件的 EXCEL 表资料《HLW8032 的 PF 和寄存器与输入负载的关系查询表》;

互感器方案免校准应用参考

下图是采用互感器方式的隔离采样电路:

图 2 HLW8032 互感器应用电路

由于采用了互感器方案,在计算功率、电压和电流时,使用不了 HLW8032 手册上的公式,但是因为 HLW8032 的输入负载的功率大小、电压大小和电流大小是成线性比例关系的,所以可以使用引入比例系数的方法进行计,计算公式如下:

有效电压 : 有效电压 = $\frac{\text{电压 <math> > } \text{ 数 <math> 6 \text{ FR} }}{\text{电压 } \text{ $ 6 \text{ FR} }} \times \text{K1}$

 $\frac{\mathbf{f}$ **效电流** : 有效电流 = $\frac{\mathrm{e}$ 流参数寄存器}{\mathrm{e} e n e f e f e f f e f f e f \mathrm

获取 K1、K2 和 K3 的方法:

对模块输入已知负载 100W, 详细参数 P = 100W, V = 220V, I = 0.455A; 那么可以通过以下等式计算出 K1、K2 和 K3 的值;

$$V = 220 = \frac{\text{电压参数寄存器}}{\text{电压寄存器}} \times \text{K1};$$

$$I = 0.455 = \frac{\text{电流参数寄存器}}{\text{电流寄存器}} \times \text{K2};$$

$$P = 100 = \frac{\text{功率参数寄存器}}{\text{功率寄存器}} \times \text{K3};$$

然后把 K1、K2 和 K3 的系数做为常数用于计算功率、电压和电流:

电量统计

请参照本文档第二页的方法;