Instrucciones de Movimiento de Datos

MOV

Instrucción	Descripción	Flags Afectadas
MOV REG1, REG2	Mueve el contenido de REG2 a REG1	-
MOV REG1, CTE	Mueve la constante CTE a REG1	-
*MOVS MEM, CTE	Mueve la constante CTE a la posición de	_
	memoria MEM	
MOV MEM, REG1	Mueve el contenido de REG1 a la posición de	_
	memoria MEM	

^{*} Para este caso hace falta indicar el sufijo de tamaño, S = byte, word o dword, MEM puede ser un label o una operación permitida por el Modo de Direccionamiento.

PUSH

Instrucción	Descripción	Flags Afectadas
PUSH REG1	Almacena el contenido de REG1 en la pila	-
*PUSH S MEM	Almacena el contenido de la posición de	_
	memoria MEM en la pila	-
*PUSHS CTE	Almacena la constante CTE en la pila	-

^{*} Para este caso hace falta indicar el sufijo de tamaño, S = word ,dword, qword, se recomienda usar siempre dword para no desalinear la pila

POP

Instrucción	Descripción	Flags Afectadas
POP REG1	Almacena el tope de la pila en REG1	-
*POPS MEM	Almacena el tope de la pila en la posición de	_
	memoria MEM.	

^{*} Para este caso hace falta indicar el sufijo de tamaño, S = word ,dword, qword, se recomienda usar siempre dword para no desalinear la pila

XCHG

Instrucción	Descripción	Flags Afectadas
XCHG REG1, REG2	Intercambia el contenido de los operandos	-
XCHG REG1, MEM		-
XCHG MEM, REG1		-

BSWAP

Instrucción	Descripción	Flags Afectadas
BSWAP REG	Intercambia el contenido de REG de a Byte.	-

Comentarios: emihoss@gmail.com

REG debe ser un registro de 32 bits, intercambia los bits 0-7 con los bits 24-31, y los bits 8-15 con los bits 16-23. No hay una instrucción equivalente para 16 bits.

CMOVcc

Instrucción	Descripción	Flags Afectadas
CMOVcc REG1, REG2	REG1 = REG2 si se cumple "cc"	-
CMOVcc REG1, MEM	REG1 = [MEM] si se cumple "cc"	-

Realiza un movimiento de datos condicional, las condiciones son las mismas que se utilizan para los Saltos Condicionales (ver Instrucciones de Saltos Condicionales).

LEA

Instrucción	Descripción	Flags Afectadas
LEA REG1, [REG1+REG2*I+C]	Calculo de dirección efectiva.	-

Calcula "REG1+REG2*I+C" y almacena el resultado en REG1. El segundo Operando debe ser una operación de iguales características a la del Modo de Direccionamiento.

Modos de Direccionamiento

Ejemplos: Al menos uno de los cuatro parámetros debe figurar.

Reg2 puede ser cualquier registro de propósito general Reg3 puede ser cualquier registro de propósito general, salvo ESP La constante Index puede ser {1, 2, 4, 8} La constante Offset puede ser de 8, 16, o 32 bits.