Devoir Surveillé, 4 mars 2009 Durée 1h30. Documents interdits.

Exercice 1 – [VARIATION SUR LA FFT]

Soit $n=2^k$, où $k\in\mathbb{N}$, une puissance de 2. Soit A un anneau commutatif contenant une racine primitive n-ième de l'unité ω et dans lequel 2 est inversible (on notera 1/2 son inverse). Soient P et Q deux polynômes de A[X] de degrés < n. On a vu un algorithme (FFT) permettant de calculer $P\star Q=PQ$ mod (X^n-1) et donc PQ si deg $P+\deg Q< n$, qui prend appui sur l'évaluation de P et Q en les ω^i , $0 \le i \le n-1$. On se propose ici d'étudier la variante suivante de cet algorithme.

Algorithme 1. Convolution rapide

Entrées: $P, Q \in A[X]$ de degrés $< n = 2^k$ et les puissances $\omega, \omega^2, \ldots, \omega^{n/2-1}$ d'une racine primitive n-ième de l'unité.

Sorties: $P \star Q = PQ \mod (X^n - 1)$.

- 1: $\mathbf{si} \ k = 0 \ \mathbf{alors}$
- 2: Retourner PQ
- 3: $P_0 \leftarrow P \mod (X^{n/2} 1), P_1 \leftarrow P \mod (X^{n/2} + 1),$ $Q_0 \leftarrow Q \mod (X^{n/2} - 1), Q_1 \leftarrow Q \mod (X^{n/2} + 1).$
- 4: Appeler l'algorithme **récursivement** pour calculer $R_0, R_1 \in A[X]$ de degrés < n/2 tels que

$$R_0 \equiv P_0 Q_0 \mod (X^{n/2} - 1), \quad R_1(\omega X) \equiv P_1(\omega X) Q_1(\omega X) \mod (X^{n/2} - 1).$$

5: Retourner

$$\frac{1}{2}\Big((R_0-R_1)X^{n/2}+R_0+R_1\Big).$$

- 1) Montrer que $R_0 \equiv PQ \mod (X^{n/2} 1)$ et $R_1 \equiv PQ \mod (X^{n/2} + 1)$.
- 2) En déduire que l'algorithme 1 calcule effectivement $P \star Q$.
- 3) Quelle est la complexité algébrique (nombre d'opérations dans A) de cet algorithme ?

Exercice 2 – [SUITE DE FIBONACCI]

On rappelle que la suite de Fibonacci est définie par

$$F_0 = 0$$
, $F_1 = 1$, et $F_{n+2} = F_{n+1} + F_n$ pour tout $n \ge 0$.

- 1) Écrire un algorithme qui calcule F_n en O(n) additions dans \mathbb{N} .
- 2) Estimer la complexité binaire de cet algorithme¹.

¹On rappelle que $F_n = \frac{1}{\sqrt{5}} \left(\Phi^n - (-\Phi)^{-n} \right)$ où $\Phi = (1+\sqrt{5})/2 \approx 1.618$ est le nombre d'or.

3) Montrer que pour tout $k, n \in \mathbb{N}$, on a

$$F_{n+k+1} = F_n F_k + F_{n+1} F_{k+1}.$$

- **4)** En déduire un algorithme ² de calcul de F_n faisant appel à $O(\log n)$ opérations dans \mathbb{N} .
- ★ 5) Estimer la complexité binaire de ce nouvel algorithme.
 - N.B.: On écrira ces algorithmes avec soin (pseudo-code ou code Maple) et on justifiera proprement la complexité à chaque fois.

On pourra chercher une procédure calculant (F_n, F_{n+1}) à partir de $(F_{n/2}, F_{n/2+1})$ si n est pair et $(F_{(n-1)/2}, F_{(n+1)/2})$ si n est impair, procédure que l'on appliquera récursivement.