Singular Value Decomposition

Note Title

LECTURE 13

- SVD is a matrix factorization that is useful for many applications, e.g., search engines, LS problems, tomographic image reconstruction, ...
- SVD can be a conceptual tool
 in linear algebra

 → via SVD, we can check:

 a given matrix is near singular

 rank of the matrix

 etc.
- 3 a numerically stable algorithm
 to compute the SVD of a given
 matrix (it's expensive though...)
 In fact, one of the hottest topics
 in numerical linear algebra is
 how to compute a good approximation
 to the SVD of a fuge matrix fast!

A Geometric Observation Let $A \in \mathbb{R}^{m \times n}$, and consider how A maps an input vector in \mathbb{R}^n to an output vector in \mathbb{R}^m .

The image of the unit sphere under any mxn matrix is a hyperellipsoid"

ONB = orthonormal basi's Let {v₁, ···, v_n} be an ONB of IRⁿ
Let {u₁, ···, u_m} be an ONB of IR^m
Let {\sigma_1, ···, \sigma_m} be a set of m scalars
with \sigma_i \ge 0, \quad i = 1; ··· m.

Then, of Wi is the ith principal semiaxis with length of in IRM.

Now, if rank (A) = r, then exactly r of $\{\sigma_i, \dots, \sigma_m\}$ are nonzero, and exactly m-r of σ_i 's are zero.

So, if $m \ge n$, then $rank(A) \le n$. i.e., at most n of σ_i 's the pull rank if are nonzero.

For simplicity, let's assume $m \ge n$ and rank(A) = n for the time being.

Def. The singular values of A

The lengths of the n principal semiaxes of the hyperellipsoid AS

Our convention: $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$

Def. The n left singular vectors of A

(U,, ..., Un): the unit vectors

in IR^m along the principal semiaxes of AS.

So, T: U; is the ith largest principal

semiaxis of AS.

Def. The n right singular vectors of A $\{V_1, \dots, V_n\} \in S$: the preimages of the principal semiaxes of AS, i.e., $AV_i = \sigma_i U_i$ $i = 1, \dots, n$.

* Reduced SVD

$$\Rightarrow A = 0 \sum_{n=1}^{\infty} A_{n} = A_{n} =$$

Since V is an orthogonal matrix,

$$A = \hat{U} \hat{\Sigma} V^T$$
 The reduced SVD of A .

with mzn.

 \Rightarrow The column vectors of \hat{U} do not form an ONB of IR^m unless m=n.

 \Rightarrow Remedy: adjoin m-n ON vectors to \hat{U} to form an orthogonal matrix U. Then $\hat{\Sigma}$ must be changed to $\hat{\Sigma} \in IR^{m \times n}$

$$A = U \Sigma V^{T}$$

A = U \(\S \) \tag{The full S \(\D \) of A

$$A = V \times V \times A \times \Sigma V^{\mathsf{T}}$$

For non-full rank matrices, i.e., rank(A) = r < min(m, n),Forly r positive singular values.

$$\sum = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\sum = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\sum = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Let's consider m=n and full rank case. Theoretically, it's invertible, non singular.

However, we can gain more info by checking the distribution of the singular values of $A \Rightarrow$ We can see whether A is near singular or not, etc.

Out of these three scenarios, which matrix do you think behaves best numerically?

\(\frac{1}{2}\) C.

$$A^{\dagger} = V \sum^{\dagger} U^{T}$$

where

$$\sum_{i=1}^{m \leq n} \sum_{i=1}^{m \leq$$

Check:
$$AA^{\dagger} = U\Sigma V^{T}V\Sigma^{\dagger}U^{T}$$

$$= U\Sigma\Sigma^{\dagger}U^{T}$$

$$= U\left[\begin{array}{c} I_{\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \end{array}\right]U^{T}$$

$$= \left[\begin{array}{c} I_{\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \end{array}\right]$$

$$= \left[\begin{array}{c} I_{\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \end{array}\right]$$

$$= \left[\begin{array}{c} I_{\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot} \\ I_{\cdot,\cdot,\cdot,\cdot} \\ I_{$$

Similarly, A[†]A = $\hat{V}\hat{V}^T$

The Moore-Penrose Conditions

For a given matrix $A \in \mathbb{R}^{m \times n}$, if $X \in \mathbb{R}^{n \times m}$ satisfies the following:

$$\begin{cases} (1) & A \times A = A \\ (2) & \times A \times = X \\ (3) & (A \times)^{T} = A \times \\ (4) & (X A)^{T} = X A \end{cases}$$

$$(2) \times A \times = \times$$

(3)
$$(A \times)^T = A \times$$

(4)
$$(XA)^T = XA$$

then X is called the pseudoinverse (or the Moore-Penrose inverse) of A and written as At

= many applications using A+!

Note: If $\|AX - I_m\|_F \rightarrow min$ then $X = A^+$