class 4 lab

Thomas Zwiller

2025-03-26

1. Loading the igraph package

```
#Loading the libraries I need
library(igraph)

## Warning: package 'igraph' was built under R version 4.4.1

##
## Attaching package: 'igraph'

## The following objects are masked from 'package:stats':

##
## decompose, spectrum

## The following object is masked from 'package:base':

##
## union

library(ggraph)

## Loading required package: ggplot2
```

2. Loading in the ego-centric data

nodes <- read.csv('/Users/TomTheIntern/Desktop/Mendoza/Mod 4/Networks/Lab 2/nodelist.csv')
summary(nodes)</pre>

```
Gender
##
         ID
                       Name
                                           Age
## Min. : 1.00
                   Length:12
                                      Min. :21.00
                                                     Length:12
## 1st Qu.: 3.75
                                      1st Qu.:23.00
                                                     Class : character
                   Class : character
## Median : 6.50
                   Mode :character
                                      Median :36.50
                                                     Mode :character
## Mean
         : 6.50
                                      Mean
                                            :38.00
## 3rd Qu.: 9.25
                                      3rd Qu.:45.75
          :12.00
                                      Max.
                                             :65.00
```

edges <- read.csv('/Users/TomTheIntern/Desktop/Mendoza/Mod 4/Networks/Lab 2/edgelist.csv')
summary(edges)</pre>

```
##
                    {\tt alter\_num}
      ego_num
                                                         alter
                                       ego
##
   Min.
         : 1.000 Min. : 1.000 Length:40
                                                     Length:40
   1st Qu.: 2.750
                                  Class : character Class : character
                   1st Qu.: 2.750
                                   Mode :character Mode :character
## Median : 5.000 Median : 5.000
##
   Mean
         : 5.575
                   Mean
                         : 5.575
  3rd Qu.: 9.000 3rd Qu.: 9.000
##
##
  Max.
         :12.000 Max.
                         :12.000
##
       type
                        strength
## Length:40
                     Min.
                            :1.00
## Class:character 1st Qu.:2.00
## Mode :character Median :4.00
##
                            :3.45
                     Mean
##
                     3rd Qu.:4.25
                     Max.
##
                            :5.00
```

3 Creating the igraph object

```
#making the directed igraph
net <- graph_from_data_frame(edges, directed = T, vertices = nodes)</pre>
## IGRAPH 9d9e9ba DN-- 12 40 --
## + attr: name (v/c), Name (v/c), Age (v/n), Gender (v/c), ego (e/c),
## | alter (e/c), type (e/c), strength (e/n)
## + edges from 9d9e9ba (vertex names):
## [1] 1 ->2 2 ->1 1 ->5 5 ->1 1 ->3 3 ->1 1 ->4 4 ->1 1 ->6 6 ->1
## [11] 1 ->7 7 ->1 1 ->10 10->1
                                  2 ->4 4 ->2 2 ->3
                                                       3 ->2 4 ->3 3 ->4
## [21] 4 ->6 6 ->4 4 ->5 5 ->4 3 ->5 5 ->3 10->9 9 ->10 10->11 11->10
## [31] 10->12 12->10 9 ->12 12->9 11->12 12->11 6 ->7 7 ->6 7 ->8 8 ->7
#making the un-directed igraph
un_net <- graph_from_data_frame(edges, directed = F, vertices = nodes)</pre>
un_net
## IGRAPH 577a655 UN-- 12 40 --
## + attr: name (v/c), Name (v/c), Age (v/n), Gender (v/c), ego (e/c),
## | alter (e/c), type (e/c), strength (e/n)
## + edges from 577a655 (vertex names):
## [1] 1 --2 1 --2 1 --5 1 --5 1 --3 1 --3 1 --4 1 --4 1 --6 1 --6
## [11] 1 --7 1 --7 1 --10 1 --10 2 --4 2 --4 2 --3 2 --3 3 --4 3 --4
## [21] 4 --6 4 --6 4 --5 4 --5 3 --5 3 --5 9 --10 9 --10 10--11 10--11
## [31] 10--12 10--12 9 --12 9 --12 11--12 11--12 6 --7 6 --7 7 --8 7 --8
```

- 4. Choose two centrality measures and apply them to your network I am using Degree and Eigenvector as my two centrality measures
- 5. Visualize your network (one graph for each measure) with node size representing your chosen measures

Degree

Using "stress" as default layout

${\bf Eigenvector}$

Using "stress" as default layout

6. Describe what the measure tells you about the people in your network

What Degree tells me about the people in my network Unsurprisingly, I had the most degrees, which made my node the biggest. Generally, the different communities were relatively the same size:

the football network (my co-workers) were all consistent because they were connected. my girlfriend's family generally tended to be smaller, as they only had 2-3 connections compared to football having 4-5

my res-life coworkers were the smallest, with my co-workers girlfriend having just one connection, making it the smallest, and about as close to an isolet as possible.

What Eigenvector tells me about the people in my network

The Eigenvector measure looks relatively similar to the degree measure, though there are a few key differences. My girlfriend has a much bigger circle in the nodes, but because most of her connections were to other relatively un-connected nodes, she had a smaller representation.

Comparatively, the football network was actually bigger because they all knew me, and each other, which helped improve their score.

My res-life co-workers were relatively smaller than their node score, however my co-worker who works with the ND bad (and would theoretically know Marcus Freeman) had a bit of a higher score.