

 $y = x^2$ is a parabola opening upwards with vertex (0,0).

Remember that, Area bounded by the curves is given by,

Area = $\int_a^b f(x) - g(x) dx$, where f(x) is the upper curve and g(x) is the lower curve and $x \in [a, b]$.

In this case, there are two upper functions and one lower function. Therefore, it is necessary to split the region R into two regions (R1 and R2) such that there's only one upper function and only one lower function.

For R1, the upper function is $f(x) = x^2$ and lower function is h(x) = 0 and $x \in [0, 1]$.

$$A_1 = \int_a^b f(x) - h(x) dx$$
$$= \int_0^1 x^2 dx$$
$$= \left[\frac{x^3}{3} \right]_0^1 = \frac{1}{3} \text{ square units}$$

For R2, the upper function is g(x) = 2 - x and lower function is h(x) = 0 and $x \in [1, 2]$.

$$A_2 = \int_a^b g(x) - h(x) dx$$

$$= \int_1^2 2 - x dx$$

$$= \left[2x - \frac{x^2}{2} \right]_1^2 = \frac{1}{2} \text{ square units}$$

The total area enclosed by region $R = A_1 + A_2$

$$= \frac{1}{3} + \frac{1}{2}$$

 $=\frac{5}{6}$ square units

Alternate method (Integrating with respect to y)

When we take dx, we found that we need to divide the region R into 2 sub-regions because we had two different upper functions. However, when we take dy, i.e. treating x as a function of y, it fixes the problem. To understand further, click this link.

When integrating with respect to y, Area = $\int_a^b f(y) - g(y) dy$, where f(y) is the curve on the right side and g(x) is the curve on the left side and $y \in [a, b]$.

Now, rewrite the functions in function on y. We have g(y) = 2 - y and $f(y) = \sqrt{y}$ (Note that, we don't need $f(y) = -\sqrt{y}$ here.)

In this case, the function on the right is g(y) = 2 - y and function of the left is $f(y) = \sqrt{y}$ and $y \in [0, 1]$.

Area =
$$\int_0^1 \operatorname{right} - \operatorname{left} dy$$
=
$$\int_0^1 2 - y - \sqrt{y} dx$$
=
$$\left[2y - \frac{y^2}{2} - \frac{2}{3}y^{\frac{3}{2}} \right]_0^1 = \frac{5}{6} \text{ square units}$$