Title: Comparison of Linear & Nonlinear Models Using COVID-19 Time Series Dataset

Objective:-

The objective of this task is to:

- Compare Generalized Linear Models (GLM) and Nonlinear Regression techniques using real-world data.
- Analyze which model better captures the underlying patterns in the data.
- Justify the need for nonlinear models by understanding the limitations of linear assumptions.

Dataset Used :- Source: Johns Hopkins University – Center for Systems Science and Engineering (JHU CSSE)

- Dataset: Time Series of Confirmed COVID-19 Cases (Jan 2020 onward)
- Link: Click here
- Selected Country: India
- Features:
 - o Date: Timeline of reported data
 - o Cases: Cumulative COVID-19 cases
 - o Days: Number of days since the first reported case in India

Background: Linear vs. Nonlinear Models:-

- Linear Models (GLM)
 - Assumes a **straight-line** relationship between independent and dependent variables.
 - Effective when the data shows a **constant rate of change**.
 - GLM (Gaussian family) is a generalization of linear regression that can be extended to other distributions.
- Nonlinear Models
 - Models that allow for **curvature** or **complex relationships**.
 - Useful for growth curves, exponential patterns, and saturation behavior.
 - In this task, a **logistic function** was used to represent the **S-curve** nature of pandemic growth.

Methodology:-

- 1. Data Preprocessing
 - Filtered India-specific data.
 - Converted cumulative case counts into numeric arrays.
 - Calculated Days as a feature for modeling.
- 2. Applied GLM
 - Model:

$Y = \beta 0 + \beta 1 \cdot Days$

- Fit using statsmodels.GLM() with Gaussian distribution.
- Prediction: GLM Pred
- 3. Applied Nonlinear Regression (Logistic)
 - Fit using scipy.optimize.curve fit()
 - Prediction: Nonlinear Pred

Evaluation Metrics

Metric	GLM (Linear)	Nonlinear (Logistic)
RMSE	268,920.32	48 ,762.58
R ² Score	0.8987	2 0.9963
Residual Pattern	Systematic	✓ Random

Prediction Trend Underestimates saturation ✓ Accurately models curve

Interpretation:

- **GLM RMSE** is much higher, indicating **greater error**.
- R² Score is much closer to 1.0 for the logistic model, suggesting a better fit.
- Residuals for GLM increase over time (underfitting).
- Residuals for nonlinear model are scattered and close to zero, indicating accuracy.

Visual Analysis

1. Actual vs. Predicted Cases

- **GLM** follows the early phase of growth but fails to account for saturation.
- Logistic Model captures the typical epidemic S-curve initial slow growth, exponential phase, and final plateau.

2. Residual Plots

- GLM residuals are **not randomly distributed**, indicating poor fit.
- Nonlinear model residuals are evenly spread, suggesting a well-fit model.

Limitations of Linear Models

- Cannot capture **non-linear behaviors**, such as exponential growth or logistic saturation.
- Often **underfit** when dealing with real-world phenomena like:
 - Epidemics
 - Population growth
 - Financial trends
- Predicts **unbounded values**, which is **not realistic** for many practical applications.

When to Use Nonlinear Models

- When data exhibits **non-constant change**, especially:
 - o Exponential or logistic growth
 - o Periodic behavior (e.g., sine waves, weather cycles)
 - o Threshold effects (e.g., drug dosage vs. effect)
- Logistic models are widely used in:
 - Epidemiology
 - Ecological modeling
 - o Marketing and adoption curves

Conclusion

Through this task, we conclude that:

- **Nonlinear models** (especially logistic models) are **superior** for modeling real-world phenomena like the COVID-19 pandemic.
- While **linear models** are simple and easy to interpret, they are **not suitable** for datasets that show **complex or bounded growth**.
- Model evaluation using residuals and prediction accuracy strongly supports the use of nonlinear regression for epidemic modeling.
- A sound understanding of data characteristics is essential before selecting the modeling technique.