MATH 560, Homework 4

Colin Roberts September 22, 2017

Solutions

Problem 1. (§2.3 Problem 12) Let V, W, and Z be vector spaces, and let $T: V \to W$ and $U: W \to Z$ be linear.

- (a) Prove that if UT is injective, then T is injective. Must U also be injective?
- (b) Prove that if UT is surjective, then U is surjective. Must T also be surjective?
- (c) Prove that if *U* and *T* are bijective, then *UT* is also.

Proof (Part (a)). Suppose that UT is injective. Then for distinct $v_1, v_2 \in V$ we have $UT(v_1) = z_1$ and $UT(v_2) = z_2$ where $z_1 \neq z_2$. This means we also have $U(w_1) = z_1$ and $U(w_2) = z_2$ with $w_1, w_2 \in W$ with $w_1 \neq w_2$ else otherwise we'd have that $z_1 = z_2$. Thus we have that T is injective. Also, we must have

.

that *U* is injective.

:

Proof (Part (b)). Suppose that UT is surjective. Then for any $z \in Z$ we have that $\exists v \in V$ so that UT(v) = z. Then $T(v) = w \in W$ and that U(w) = z. Since z was arbitrary, U is surjective. Also, T need not be surjective.

:

Proof (Part (c)). Suppose that U and T are bijective. Then if we have $v_1, v_2 \in V$ distinct we also have $T(v_1) = w_1$ and $T(v_2) = w_2$ with $w_1 \neq w_2$ by the surjectivity and injectivity of T. Similarly we also have $U(w_1) = z_1$ and $U(w_2) = z_2$ with $z_1 \neq z_2$ by the injectivity and surjectivity of U. Thus $UT(v_1) = z_1$ and $UT(v_2) = z_2$ with arbitrary z_1 and z_2 and we conclude that UT is bijective.

Problem 2. (§2.3 Problem 17) Let V be a vector space. Determine all linear transformations $T: V \to V$ such that $T = T^2$. *Hint:* Note that X = T(x) + (x - T(x)) for every X in Y, and show that $Y = \{y | T(y) = y\} \oplus \mathcal{N}(T)$ (see the exercises of §1.3).

:

Proof. For every $x \in V$ we have that x = T(x) + (x - T(x)). $T(x) \in \mathcal{R}(T)$ and since $T(x - T(x)) = T(x) - T^2(x) = T(x) - T(x) = 0$ we have that $x - T(x) \in \mathcal{N}(T)$. So $V = \mathcal{R}(T) + \mathcal{N}(T)$ so we know that for linear operators we have $V = \{x \mid T(x) = x\} \oplus \mathcal{N}(T)$. (This is from an exercise earlier in the book.) □

Problem 3. (§2.4 Problem 13.) Let \sim mean "is isomorphic to." Prove that \sim is an equivalence relation on the class of vector spaces over \mathbb{F} .

:

Proof. Let V, W, Z be vector spaces over \mathbb{F} . Let \sim mean "is isomorphic to." Then

- We have $V \sim V$ verified by letting the identity map be the isomorphism.
- Suppose we have $V \sim W$. Then there exists an isomorphism $T: V \to W$ and thus $T^{-1}: W \to V$ is also an isomorphism. Thus $W \sim V$.
- Let $V \sim W$ and $W \sim Z$ by $T: V \to W$ and $U: W \to Z$. Then UT is bijective since compositions of bijections are bijective. Thus we have $UT: V \to Z$ is an isomorphism and $V \sim Z$.

So ~ is an equivalence relation.

Problem 4. (§2.4 Problem 16.) Let *B* be an $n \times n$ invertible matrix. Define $\Phi: M_{n \times n}(\mathbb{F}) \to M_{n \times n}(\mathbb{F})$ by $\Phi(A) = B^{-1}AB$. Prove that Φ is an isomorphism.

:

Proof. To show Φ is an isomorphism we will show that it is invertible. Consider Φ^{-1} defined by $\Phi^{-1}(A) = BAB^{-1}$. Then $\Phi^{-1}(\Phi(A)) = \Phi^{-1}(B^{-1}AB) = BB^{-1}ABB^{-1} = A$. Thus Φ is an isomorphism. \square

Problem 5. (§2.4 (Problem 17.) Let V and W be finite-dimensional vector spaces and $T: V \to W$ be an isomorphism. Let V_0 be a subspace of V.

- (a) Prove that $T(V_0)$ is a subspace of W.
- (b) Prove that $\dim(V_0) = \dim(T(V_0))$.

:

Proof (Part (a)). We show three properties that prove $T(V_0)$ is a subspace of W.

- Since V_0 is a subspace, $0 \in V_0$ and we have T(0) = 0 and so $0 \in T(V_0)$.
- Let $u, w \in V_0$, then $u + w \in V_0$. Then T(u + w) = T(u) + T(w) and since $T(u + w) \in T(V_0)$ then $T(u) + T(w) \in T(V_0)$. Since u, w were arbitrary, we have that $T(V_0)$ is closed under addition.
- Let $u \in V_0$ and $a \in \mathbb{F}$ then, $au \in V_0$ so T(au) = aT(u). We then have $T(au) \in T(V_0)$ and thus $aT(u) \in T(V_0)$ is closed under scalar multiplication. Thus $T(V_0)$ is a subspace of W.

:

Proof (Part (b)). By the dimension theorem $\dim(V_0) = \dim(\mathcal{R}(T)) + \dim(\mathcal{N}(T))$. Since T is an isomorphism it is thus injective and $\mathcal{N}(T) = \{0\}$. Thus $\dim(V_0) = \dim(\mathcal{R}(T)) = \dim(T(V_0))$.

Problem 6. (§2.4 Problem 24.) Let $T: V \to Z$ be a linear transformation of a vector space V onto a vector space Z. Define the mapping

$$\bar{T}: V/\mathcal{N}(T) \to Z$$
 by $\bar{T}(v + \mathcal{N}(T)) = T(v)$

for any coset $v + \mathcal{N}(T)$ in $V/\mathcal{N}(T)$.

- (a) Prove that \bar{T} is well-defined; that is, prove that if $v + \mathcal{N}(T) = v' + \mathcal{N}(T)$, then T(v) = T(v').
- (b) Prove that \bar{T} is linear.
- (c) Prove that \bar{T} is an isomorphism.
- (d) Prove that the diagram shown in Figure 2.3 commutes; that is, prove that $T = \bar{T}_{\eta}$.

:

Proof (Part (a)). We have

$$\begin{split} v + \mathcal{N}(T) &= v' + \mathcal{N}(T) \\ \bar{T}(v + \mathcal{N}(T)) &= \bar{T}(v' + \mathcal{N}(T)) \\ T(v) &= T(v'). \end{split}$$

So \bar{T} is well defined.

.

Proof (Part (b)). We have for $u + \mathcal{N}(T)$, $v + \mathcal{N}(T) \in V / \mathcal{N}(T)$ and $a \in \mathbb{F}$

$$\begin{split} \bar{T}((u+\mathcal{N}(T)) + a(v+\mathcal{N}(T))) &= \bar{T}(u+av+\mathcal{N}(T)) \\ &= T(u+av) \\ &= T(u) + aT(v) \\ &= \bar{T}(u+\mathcal{N}(T)) + \bar{T}(v+\mathcal{N}(T)). \end{split}$$

So \bar{T} is linear.

:

Proof (Part (c)). To show \bar{T} is an isomorphism we define \bar{T}^{-1} by $\bar{T}^{-1}(v) = v + \mathcal{N}(T)$. Then for any $v + \mathcal{N}(T) \in V/\mathcal{N}(T)$ we have $\bar{T}^{-1}\bar{T}(v + \mathcal{N}(T)) = \bar{T}^{-1}(v) = v + \mathcal{N}(T)$. Since the inverse exists, \bar{T} is an isomorphism.

:

Proof (Part (d)). We have for $v \in V$

$$\bar{T}\eta(v) = \bar{T}(v + \mathcal{N}(T))$$

= $T(v)$.

So the diagram commutes.

Problem 7. (§2.5 Problem 8.) Prove the following generalization of Theorem 2.23. Let $T: V \to W$ be a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W. Let β and β' be ordered bases for V, and let γ and γ' be ordered bases for W. Then $[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$, where Q is the matrix that changes β' -coordinates into β -coordinates and P is the matrix that changes γ' -coordinates into γ -coordinates.

:

Proof. Take $v \in V$ and we have

$$[T]_{\beta'}^{\gamma'}[v]_{\beta'}=[Tv]_{\gamma'};$$

as well as

$$\begin{split} P^{-1}[T]^{\gamma}_{\beta}Q[v]_{\beta'} &= P[T]^{\gamma}_{\beta}[v]_{\beta} \\ &= P^{-1}[Tv]_{\gamma} \\ &= [Tv]_{\gamma'} \end{split}$$

Thus we have $[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$.

8

:

Proof. We show \sim meaning, "is similar to" is an equivalence relation by satisfying the three requirements.

- $A \sim A \text{ via } A = I^{-1}AI = I^{-1}A = A.$
- Let $A \sim B$ and thus we have $A = Q^{-1}BQ$ which implies that $QAQ^{-1} = B$. Then let $Q^{-1} = S$ and then $B = S^{-1}AS$ which means $B \sim A$.
- Let $A \sim B$ and $B \sim C$ then $A = Q^{-1}BQ$ and $B = S^{-1}CS$. So then we have $A = S^{-1}Q^{-1}CQS$ and then let P = QS and thus $A = P^{-1}CP$ so that $A \sim C$.

Problem 9. (§2.5 Problem 11.) Let V be a finite-dimensional vector space with ordered bases α , β , and γ .

- (a) Prove that if Q and R are the change of coordinate matrices that change α -coordinates into β -coordinates and β -coordinates into γ -coordinates, respectively, then RQ is the change of coordinate matrix that changes α -coordinates into γ -coordinates.
- (b) Prove that if Q changes α -coordinates into β -coordinates, then Q^{-1} changes β -coordinates into α -coordinates.

:

 $Proof (Part (a)). \text{ We have that } Q[v]_{\alpha} = [v]_{\beta} \text{ and that } R[v]_{\beta} = [v]_{\gamma}. \text{ Then } RQ[v]_{\alpha} = R[v]_{\beta} = [v]_{\gamma}.$

:

Proof (Part (b)). Take $Q[v]_{\alpha} = [v]_{\beta}$ and then $I[v]_{\alpha} = Q^{-1}Q[v]_{\alpha} = Q^{-1}[v]_{\beta} = [v]_{\alpha}$.

Problem 10. (§2.5 Problem 13.) Let V be a finite dimensional vector space over a field \mathbb{F} , and let $\beta = \{x_1, x_2, ..., x_n\}$ be an ordered basis for V. Let Q be an $n \times n$ invertible matrix with entries from \mathbb{F} . Define

$$x'_j = \sum_{i=1}^n Q_{ij} x_i \quad \text{for } 1 \le j \le n,$$

and set $\beta' = \{x'_1, x'_2, ..., x'_n\}$. Prove that β' is a basis for V and hence that Q is the change of coordinate matrix changing β' -coordinates into β -coordinates.

Proof. We have that $\beta' = \{x'_1, ..., x'_n\}$ with each x'_j defined by $\sum Q_{ij}x_i = x'_j$. Since Q is invertible, we have that Q is an isomorphism and thus is bijective. Since Q is bijective, it must be injective and surjective and thus x'_j are linearly independent and span V. Thus β' is a basis for V.