泥淆(不能事后补救)

带限函数f(t); f(t)在 [-Mmax, Mmax]之外部分的 博立计变换为0

- 欠采样
 - 带限函数以低于奈奎斯特频率采样

• 无法分离

• 无法补救 信息不够,无法得 知函数的完整形式

混淆

• 在实际中,可以避免吗?

采样定理

如果以超过函数最高频率的两倍采样率来获得样本,连续的带限函数可以完美地从它的样本集来恢复。

- 即使原函数是带限的,仍然难以避免!
 - 采样是有限的(实际代谢存储有限个样本) 、程定理冲激制 n ∈ (如,100),是无限采样
- 有限长度采样
 - 引入无限频率分量

有限长度采样

采样时间限制在[0,T]

$$h(t) = \begin{cases} 1 & 0 \le t \le T \\ 0 & \text{otherwise} \end{cases}$$

• 函数已经发生变换

有限彩样(等价 乘盒长沙俊)

不起常限函数
$$f(t) \Rightarrow f(t)h(t)$$

• f(t)h(t)通常是无限带宽

$$f(t)h(t) \Leftrightarrow H(\mu) \star F(\mu)$$

• H(µ)有无限频率(? 外有账频率 why: h(b)是盆长函数, 卷织后无限频率 广泊频率是无限的

举例

• 盒状函数的傅里叶变换

抗混淆

傅刘安换后 频率无限

- 没有有限持续时间的函数是带限的。
- ●一个带限函数一定是从一∞扩展到∞。《炀門上述道状》
- 有限长度的采样,混淆是不可避免的。

- 抗混淆
 - 事先防止或减轻混淆 (水事后队权)
 - 平滑输入函数,减少高频分量
 - 图像散焦

示例

- 带限函数——正弦波 $\sin(\pi t)$
 - 周期是2s,频率为1/2赫兹
 - 欠采样

- 以1赫兹的频率采样
 - $\cdots \sin(-\pi)$, $\sin(0)$, $\sin(\pi)$, $\sin(2\pi)$, \cdots

示例

• 略高于奈奎斯特频率采样

• 定义函数

- 理想低通滤波器
- 相乘 $F(\mu) = H(\mu)\tilde{F}(\mu)$
- 恢复 $f(t) = \int_{-\infty}^{\infty} F(\mu) e^{j2\pi\mu t} d\mu$

由样本恢复原函数

• 频率域操作 建想 低油滤波器

$$F(\mu) = H(\mu)\widetilde{F}(\mu)$$

• 空间域操作

保留中间低级部分

由样本恢复原函数

化简

$$\widetilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} f(t)\delta(t-n\Delta T)$$

$$h(t) = \frac{\sin(\pi t/\Delta T)}{\pi t/\Delta T}$$
Sinc函數

 $f(t) = \sum_{n=0}^{\infty} f(n\Delta T) \operatorname{sinc}[(t - n\Delta T)/\Delta T]$

t=koT时,f(t)=f(koT)

せんてけん(は)=
$$f(kT)$$
 $f(t)=f(kT)$ $f(t)=f(k\Delta T)$ $f(t)=f(k\Delta T)$ $f(t)=f(t)$ f

由 Sinc 加权种 度内插

有限个样本内拉

低彩棉子还原函数信号

扩展:超越采样定理

- 当矩阵了这时可还原出了

- 压缩感知
 - 稀疏
 - d维
 - s个非零项(s<
 - s log d个测量 slogd X d 测量矩阵

David Donoho

Emmanuel Candès

Terence Tao

扩展:超越采样定理

- 矩阵补全 椭
 - 低秩
 - 秩为r<<min{m,n}

应用: 推荐经统

Emmanuel Candès

提纲

- ●背景
- 基本知识
- 连续傅里叶变换(一维)
- 采样
- 离散傅里叶变换(一维)
- 连续傅里叶变换(二维)
- 离散傅里叶变换(二维)
- 频率域滤波
- 实现

采样后函数的傅里叶变换

• 采样后函数

不连续
$$\widetilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} f(t)\delta(t-n\Delta T)$$

• 卷积定理

$$\tilde{F}(\mu) = \Im\left\{\tilde{f}(t)\right\} = \Im\left\{f(t)s_{\Delta T}(t)\right\} = F(\mu) \star S(\mu)$$

$$= \int_{-\infty}^{\infty} F(\tau)S(\mu - \tau) d\tau = \frac{1}{\Delta T} \int_{-\infty}^{\infty} F(\tau) \sum_{n=-\infty}^{\infty} \delta\left(\mu - \tau - \frac{n}{\Delta T}\right) d\tau$$

$$= \frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} F(\tau) \delta\left(\mu - \tau - \frac{n}{\Delta T}\right) d\tau = \frac{1}{\Delta T} \sum_{n=-\infty}^{\infty} F\left(\mu - \frac{n}{\Delta T}\right)$$

• 周期函数、连续函数

f(t) 秩明 F(M 秩则 不能实用

采样后函数的傅里叶变换

• 采样后函数

$$\widetilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} f(t)\delta(t - n\Delta T)$$

• 傅里叶变换
$$\tilde{F}(\mu) = \int_{-\infty}^{\infty} \underline{\tilde{f}(t)} e^{-j2\pi\mu t} dt$$

$$= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(t) \, \delta(t - n \, \Delta T) e^{-j2\pi\mu t} \, dt$$

支援状況 5 世紀
$$=\sum_{n=-\infty}^{\infty}\int_{-\infty}^{\infty}f(t)\delta(t-n\Delta T)e^{-j2\pi\mu t}dt$$

离散傅里叶变换(DFT)

$$\tilde{F}(\mu) = \sum_{n=0}^{M-1} f_n e^{-j2\pi\mu\Delta T} \mathcal{F}_n$$

• 对 $\tilde{F}(\mu)$ 的一个周期 $[0,1/\Delta T]$ 采样

等角期
$$\mu = \frac{m}{M\Delta T}$$
 $m = 0, 1, 2, ..., M-1$

离散傅里叶变换(DFT)

$$\tilde{F}(\mu) = \sum_{n=0}^{M-1} f_n e^{-j2\pi\mu\Delta T}$$

• 对 $\tilde{F}(\mu)$ 的一个周期 $[0,1/\Delta T]$ 采样

$$\mu = \frac{m}{M\Delta T}$$
 $m = 0, 1, 2, ..., M-1$

● 离散傅里叶变换(DFT)

$$F_m = \sum_{n=0}^{M-1} f_n e^{-j2\pi mn/M} \qquad m = 0, 1, 2, \dots, M-1$$

F-点由于M点构造产生

离散傅里叶变换对

● 离散傅里叶变换(DFT)

$$F_m = \sum_{n=0}^{M-1} f_n e^{-j2\pi mn/M} \qquad m = 0, 1, 2, \dots, M-1$$

● 离散傅里叶反变换(IDFT)

$$f_n = \frac{1}{M} \sum_{m=0}^{M-1} F_m e^{j2\pi mn/M} \qquad n = 0, 1, 2, \dots, M-1$$

- 表达式不依赖采样间隔、频率间隔
- 适用于任何均匀取样的有限离散样本集

离散傅里叶变换对(新符号)

● 离散傅里叶变换(DFT)

$$F(u) = \sum_{x=0}^{M-1} f(x) e^{-j2\pi ux/M} \qquad u = 0, 1, 2, \dots, M-1$$

- u是整数
- 离散傅里叶反变换(IDFT)

$$f(x) = \frac{1}{M} \sum_{u=0}^{M-1} F(u) e^{j2\pi ux/M} \qquad x = 0, 1, 2, \dots, M-1$$

x是整数

离散傅里叶变换

● 无限周期、周期为M

$$F(u) = F(u + kM) \qquad f(x) = f(x + kM)$$

• 离散卷积

$$f(x) \star h(x) = \sum_{m=0}^{M-1} f(m)h(x-m)$$

- $x = 0,1,2,\cdots, M-1$
- 画期函数,也被称为循环卷积
- 与之前的卷积不一样,主要区别是x
- 卷积定理依然成立

卷积定理

空间域卷积的傅里叶变换⇔傅里叶变换 在频率域的乘积

$$f(t) \star h(t) \Leftrightarrow H(\mu) F(\mu)$$

空间域乘积的傅里叶变换⇔傅里叶变换 在频率域的卷积

$$f(t)h(t) \Leftrightarrow H(\mu) \star F(\mu)$$

