Project0

Shuyang Yao

A. General Purpose:

Sys	tem	Pros	Cons
1	Lotus Notes: ¹	 Better security control than its competitor Supports more platforms than its competitor Support hardware as well as software virtualization 	 It's not very flexible in term of using because it's a little bit too secure
2	Actian Versant ²	 It's Object Oriented! It's simple and straight forward to build complex data models which are hierarchical. No need to use a query language No primary keys Make developer's life easier by allowing database to process complex objects models without writing mappings. Allows you to change database schema while your service is on-line. Good Scalability Full support for transactions, logging and locking. 	 Lack of solid theoretical basis. API is language dependent Schema change may need a system-wide compile(not in Versant's case)
3	InterSystems Cache ³	 A fully persistent database with high throughput even comparing with in-memory database Good scalability and performance when hosted 	•

		on inexpensive machines.
4	McObject:	 Memory data base with good scalability. ACID-Compliant It's Object Oriented! It's simple and straight forward to build complex data models which are hierarchical. No need to use a query language No primary keys Lack of solid theoretical basis. API is language dependent Schema change may need a system-wide compile(not in Versant's case)
5	ObjectStore:	 It's Object Oriented! It's simple and straight forward to build complex data models which are hierarchical. No need to use a query language It's Object Oriented! It's Lack of solid theoretical basis. API is language dependent Schema change may need a system-wide compile(not in Versant's case) No need to use a query language No primary keys
6	WakandaDB: ⁴	 Everything(schema, server-side processing, querying) can all be done in JavaScript Open Source and not mature
7	IBM IMS: ⁵	 It's a full function database Optimized for high transection rates. High Availability
8	Adabas ⁶	 Is able to work close with previously existing database system No access control in term of native network encryption
9	UniVerse: ⁷⁸	 Multi-valued database High Availability Good Scalability Intuitive database design High Performance Does not constrain by 1st Normal Form The fact that it does not adhere to 1FN can be abused
10	UniData Documentation xDB	 Secure Similar to UniVerse XML-based Database Allows the schema to be Similar to UniVerse Not ACID-compliant

		•	Flexible schema compared		
			to relational database		
		•	EMC^2's disaster-recovery		
			options		
	Tamino XML	*	XML-based Database	•	Not ACID-compliant like many
	Server		advantage described in		other document based
			Documentation xDB		database
13	Ipedo XML	•	XML-based Database	•	Not ACID-compliant like many
	Database		advantage described in		other document based
			Documentation xDB		database
14	OrientDB:910	•	Document oriented	•	Not Mature, API changes over
			database with graph		time.
			database feature		
		•	Open Source		
		•	Can be queried using SQL		
		•	AICD		
15	SQLite	•	Easy to use	•	Doesn't scale very well
		•	Consumes less resources		·
16	Firebird ¹¹	•	Free open source	•	Not very scalable in term of
		•	Relational database		horizontal scaling
		•	Well established and	•	Difficult to model complex
			tested based on solid		data model because it is table
			theoretical foundation		based
			ACID		Sasca
		•	SQL as access language		
			Join!		
			Large Throughput		
17	SAP Sybase	•	Relational database	•	Relational database
17	ASE: ¹²	•	advantages as described in	ľ	
	ASE.		Firebird		disadvantages described in Firebird
10	CAD COL	_		_	
	SAP SQL	•	Relational database	*	Relational database
	Anywhere		advantages as described in		disadvantages described in
			Firebird		Firebird
		•	Embed: consume less		
			resources.		
		•			
19	Postgres-XL:	•	ACID	*	Too complex for simple stuff
		*	Open Source		
		*	Cluster-wide Consistency		
		*	Secure		
		•	SQL		
		•	Horizontal scaling		
		• •	Horizontal scaling Rich feature set.		

21	MySQL	•	Relational database advantages as described in Firebird	٠	Not very Scalable
22	Oracle Database	•	Relational database advantages as described in Firebird Commercial	*	Price Relational database disadvantages as described in Firebird
23	IBM DB2	•	Relational database advantages as described in Firebird Commercial	•	Price Relational database disadvantages as described in Firebird

B. Specialist analytic

System	Pros	Cons	
25. Google BigQuery	 Allows users to use SQL-like queries to query massive datasets Rest API Google's infrastructure makes the operation fast and economic. Makes ad-hoc and trial-and-error interactive query on large dataset possible. 	 Not able to do complex data processing. You can't update your data, only appending is allowed. No large Join. 	
26. InfluxDB ¹³	on large dataset possible Open Source SQL-like language Native HTTP API Can process big amount of data. Focus on time series.	Maturity	
27. 1010data	 Interactive analytical service. A rich set of analytic functions are integrated. Suit for very large data set. Decent performance with high scalability. 	 Price. Should support more complex database operations. 	
28. BitYota: ¹⁴	Data warehouse as a serviceSQL	•	

29. AWS RedShift ¹⁵ * Scaling is easy * You can use SQL to query * Can work seamlessly with other AWS services 30. SpaceCurve: 16 * Focus mainly on spatial data. * Good at real-time location analysis * Query: Some patent-pending strategies that optimize quires * View: Algorithm that make updating views more efficient * Supports serializable concurrent transection 31. LogicBlox: * View: Algorithm that make updating views more efficient * Supports serializable concurrent transection 32. MonetDB: 17 * Column oriented store: * Good at OLAP scenario * Higly Compressed * Supports both row and column-oriented store disadvantage * Increased disk seek time			•	Real time data analysis		
data. Good at real-time location analysis Public Response serializable concurrent transection 1. LogicBlox: Query: Some patent-pending strategies that optimize quires View: Algorithm that make updating views more efficient View: Algorithm that make updating views more efficient Supports serializable concurrent transection 1. Supports serializable concurrent transection 2. MonetDB: 17 Column oriented store: Good at OLAP scenario Higly Compressed Column-oriented storage Highly scalable Highly scalable Column oriented store disadvantage Highly scalable Increased disk seek time	29.	AWS RedShift ¹⁵	•	Scaling is easy You can use SQL to query Can work seamlessly with	•	maintain the uniqueness of data, programmer are responsible for their data
pending strategies that optimize quires View: Algorithm that make updating views more efficient Supports serializable concurrent transection Column oriented store: Good at OLAP scenario Higly Compressed Supports both row and column-oriented storage Highly scalable Highly scalable Pending strategies that optimize quires Increased disk seek time Insertion costs more Increased disk seek time Insertion costs more Increased disk seek time Insertion costs more	30.	SpaceCurve: ¹⁶	•	data. Good at real-time location	•	strategies that optimize quires View: Algorithm that make updating views more efficient Supports serializable
Good at OLAP scenario Higly Compressed Supports both row and column-oriented storage Highly scalable Highly scalable Insertion costs more Column oriented storage Increased disk seek time Insertion costs more	31.	LogicBlox:	•	pending strategies that optimize quires View: Algorithm that make updating views more efficient Supports serializable	•	
GreenPlum: ¹⁸ column-oriented storage • Highly scalable • Increased disk seek time • Insertion costs more •	32.	MonetDB: 17	•	Good at OLAP scenario	•	
+	33.			column-oriented storage		disadvantage Increased disk seek time
 4 Column Oriented 4 Highly compressed 5 Good at log parsing 6 Immaturity 7 Increased disk seek time 8 Insertion costs more 	34.	HP Verica	•	Highly compressed	•	
35. SAP Sybase IQ ¹⁹	35.	SAP Sybase IQ ¹⁹	•	Column Oriented		
 36. ParStream:²⁰ Real time analysis Focus on IOT(Internet of Things) data 	36.	ParStream: ²⁰		Focus on IOT(Internet of		
 37. IBM InfoSphere Real-time analytic platform Merge diverse data Column-oriented database In memory Highly compressed 	37.	IBM InfoSphere		, ,	•	Column-oriented database In memory
38. Kx Systems: ²¹ Column store database advantages described in MonetDB Column store database disadvantages described in MonetDB	38.	Kx Systems: ²¹	•	advantages described in	•	Column store database disadvantages described in
39. LucidDB: ²² Column store database Column store database			+			

	advantages described in MonetDB Open Source	disadvantages described in MonetDB
	Bitmap indexingHash join/aggregation	
40. Kognitio ²³ :	 Multiversioning In memory Support SQL integrated with HADOOP 	•
41. Actian Vector	 A high performance analytic frame built on Hadoop Developer can use SQL to interact with the system 	•
42. MetaMarkets Druid: ²⁴	 A distributed real-time data store Real time ingestion Column-oriented storage's advantage Bitmap indexing Fault tolerance 	Column-oriented storage's disadvantage
43. Teradata ²⁵²⁶	 A decent data warehouse system Developers can choose to store the data either based on row or column 	• Price
44. SQream	 Scalable SQL data base GPU based database brings high parallel processing ability Column oriented storage advantages 	Column oriented storage disadvantages
45. RainStor	Can work with different data types	•
46. HPCC ²⁷	 Introduced a new programming language: ECL It is more complex than a key-value pair storage. High availability, scalability and consistent 	Still growing.
47. Teradata Aster: ²⁸	Allows users to write map reduce code that manipulate relational data base data.	•

		•	Graph analytics engine		
		•	Support massive parallel		
		·			
40	SciDB ²⁹		processing		
48.	2CIDR ₅₃	•	Array data model	*	Focus mainly on Mathematic
		*	Supports complex		operations
			mathematic processing on		
			the arrays		
		*	Can model uncertainty		
49.	Hadapt ³⁰	•	Brings SQL to Hadoop,	•	No transections
			which allows users to write		
			SQL to query on massive		
			amount of data		
		•	Uses a hybrid storage		
			engine which stores		
			structured data in a		
			traditional relational		
			database while		
			unstructured data in HDFS.		
50.	JethroData ³¹	•	Like Hadapt, it builds a layer	٠	No transections
			on top of Hadoop that		
			allows user to write SQL on		
			Hadoop		
		•	Unique index strategy		
		•	Scalability that comes with		
			HDFS		
51.	CitusDB: 32	•	SQL on Hadoop	٠	No transections
		•	Also suppor semi-		
			structured data		
		•	Optimized specially for		
			time-series data.		
52.	Impala: ³³³⁴	•	SQL on Hadoop	•	No transections
		•	It's supported by Cloudera	•	Data need to be stored in a
			it o capported by cioudera		specific data format
53.	IBM Big SQL ³⁵	•	SQL on Hadoop	•	No transections
	Presto	•	Sgl on Hadoop	•	No transections
] 34.	110310	•	Can query data from		No transcettons
			different source and bring		
			them together		
55	Apache Drill: ³⁶	•	SQL on Hadoop	•	No transections
55.	Apache Dilli.	•	Apache license		ivo transcottons
			Can work with semi-		
			structured or nested data		
-	A 1 2720	•	Low latency		N L L L L L L L L L L L L L L L L L L L
56.	Apache Hive: ³⁷³⁸	•	Data warehouse built on	•	No update and delete

	Hadoop	operation
	 Use a SQL like language 	No access control
	Bitmap index	The overhead brought by Map
	 Supports different storage 	Reduce make it a little bit slow
	type.	
	Data are compressed	
	•	
57. Apache Tajo ³⁹	Fully distributed SQL	No transections
	 Various query optimization 	
	Supports ANSI/ISO SQL	
	Has a shell	

C. Big Tables

System	• Pros	• Cons
58. Google Cloud	No schema is needed, Aims	No database layer caching
Datastore ⁴⁰⁴¹	at storing non-relational	No Join
	data	Filter results using a subquery
	Write scale and read scale.	is not supported
	Supports transection	
59. Google App	Key-value pair store makes	Does not support ACID
Engine	it more flexible	transactions
Datastore ⁴²		No join
60. Cassandra.io ⁴³⁴⁴	Linear scalability(All nodes	No Join
	are identical)	Does not support ACID
	Fault-tolerance on	
	inexpensive hardware	
	 The language it uses(CQL3) 	
	is very similar to SQL	
	Constant-time writes	
	Integrated with Hadoop	
61. Accumulo ⁴⁵⁴⁶	Wode Column Store DB	•
	similar to Cassandra and	
	HBase	
	Better Performance(can	
	scan 800k entries per	
	second per node) compare	
	to HBase	
	Provides cell-level security	
62. Hbase ⁴⁷	Works hand in hand with	No strict ACID
	Hadoop	Because of its master and

	•	Specially optimized for real time analysis		slave architecture, Hbase has the problem of single point
	•	Also linear scalability		failure
	•	Consistent reads and writes	٠	No join
	*	Row level Atomic		
63. HyperTable ⁴⁸	+	Implements using c++	*	
	•	Runs on haddop		
	•	SQL like language		
	•	Faster and smaller than		
		HBase		
64. DataStax	*	Built on Cassandra	*	Similar to Cassandra
Enterprise ⁴⁹	•	Comercial		
	•	Similar to Cassandra		

D. Key value stores

System		Pros		Cor	Cons	
65.	AWS DynamoDB ⁵⁰⁵¹	•	Supports both document and key-value data	•	Consume more resource because its stronger	
		*	Low latency		Consistent constrain	
		•	Highly scalable	•	No join	
		•	Highly available	•	No support for transection	
		•	Strong consistency on read	•	No ACID	
		•	Supports atomic counters			
		•	Secure: find access control			
66.	AWS	•	Fit for smaller workloads	•	Table cannot grow over 10 GB	
	SimpleDB ⁵²⁵³	•	Automatically index all	•	Not as scalable as DynamoDB	
			things	•	No joins	
67.	MagnetoDB ⁵⁴	•	A key-value storage for	•	No join	
			open stack	•	No support for transection	
		•	Highly scalable	•	No ACID	
		•	Supports both eventual and			
			strong consistency reads			
		•	Fault tolerance			
68.	Redis Cloud ⁵⁵	٠	In memory non-relational	٠	No ACID	
			database			
		•	Scale out seamlessly			
		•	Zero Down time			
		•	Secure			
69.	Redis Labs ⁵⁶	٠	Similar to Redis Cloud	٠	Similar to Redis Cloud	
70.	AWS	٠	You can choose from two in	٠	Disadvantages are similar to	
	ElastiCashe ⁵⁷		memory cache options:		Redis	
			Redos or Memcached			

				1	
		•	The advantages are similar		
			to those two	1	
71.		•	A redis management tool	•	Redis' disadvatages
72.	RedisGreen ⁵⁸	•	A redis hosting service	•	Redis' disadvatages
73.	ObjectRocket	•	A redis hosting service	•	Redis' disadvatages
	Redis ⁵⁹				
74.	HyperDex ⁶⁰	•	Key-value storage	•	No Join
		•	Strong consistency		
		•	Fault tolarence		
		•	ACID		
75.	LevelDB ⁶¹	•	Key-value	•	No indexes
		•	Comparison function can	•	It only allows one process to
			be customized		access the database at a time
		•	Compressed		
76.	BerkeleyDB ⁶²	•	Provides building blocks	•	
			that can help you develop		
			your own data		
			management solution		
77.	Oracle NoSQL ⁶³	•	Key value storage with	•	No Join
			secondary indexes		
		•	ACID		
		•	Secure		
78.	Voldemort	•		•	
79.	Redis ⁶⁴	•	In memory non-relational	•	No ACID
			database		
		•	Scale out seamlessly		
		•	Zero Down time		
		•	Secure		
80.	Couchbase ⁶⁵	•	Key-value	•	No join
		•	Document(Json)	•	No transection
		•			
81.	FatDB	٠	Tight intergration with SQL	•	
			Server		
82.	Riak ⁶⁶	•	Buck key together	•	ACID
		•	Strongly consistent	•	Join
		•	Non-key based query use		
			map reduce to get the		
			answer		
83.	ArangoDB ⁶⁷	٠	Multi-model database:S	•	
			upport documents, graphs		
			and key-values data model		
		•	SQL-like		
		•	Joins like operation		
		•	Transections		
L		1		1	

84. Aerospike ⁶⁸	•	Handle real time data	٠	Join
	•	ACID		
	•	Flash as storage		
	•	Mainly key-value		
	•	Map reduce		

E. Hadoop

System	Pros	Cons
85. GridGain ⁶⁹	In Memory data faric	• history
	Can act as a cache layer to	
	accelerate Hadoop	
	Realtime streaming	
	Linearly scale out	
	ACID transection	
86. ScaleOut 70Software	In memory storage	•
87. Pivoutal GenFire	Helps SQI to scale out using	Transection and ACID
XD ⁷¹	Hadoop	
	High availability	
	In memory	
	•	
88. Sqrrl Enterprise	Based on Apache Accumulo	 disadvantages similar to
	Advantages similar to	Accumulo
	Accumulo	
89. LucidWorks Big	A big data platform brings	•
Data ⁷²	together Hadoop solr and	
	etc.	
90. Trafodion ⁷³	SQL on Hbase	•
	ACID Transection	
	• scaling	
91. Splice Machine ⁷⁴	Full function SQL on	•
	Hadoop	
	Scale out	
	Transection	
	High concurrency	
	Real time updates	
92. Apache Tajo -	Already described in	• Already described in Specialist
Pivaotal HD	Specialist analytic	analytic

F. Appliance

System		Pros	Cons	
93.	Oracle Big Data Appliance ⁷⁵	 Cloudera Enterprise Technology software Oracle NoSQL database Integrated solution 	Integrated solutionprice	
94.	Oracle Exalytics ⁷⁶	In memory integrated solution	Integrated solutionprice	
95.	Microsoft SQL Server PDW	Integrated solution	Integrated solution	
96.	SAP HANA ⁷⁷	In memoryColumn orientedRelational databse	Increased disk seek timeInsertion costs more	
97.	IBM Pure Data	Integrated solution	Integrated solution	
98.	Oracle Exadata	Integrated solutionflash	Integrated solution	

G. Graph

System	Pros	Cons
99. infiniteGraph ⁷⁸	 Distributed graph database graph specific queries Policy-driven consistent Data visualization is integrated 	 Does not support map reduce Does not support data compression Eventual consistency
100. HypergraphDB ⁷⁹	 Graph oriented graph specific queries Transection	Does not support map reduce
101. Allegrograph ⁸⁰	 ACID transection Automatic indexing SOLR and MongoDb are integreted Secure Sharding 	Does not support map reduce
102. Giraph ⁸¹	 Data analysis tool on graph data Apache Used by Facebook Runs as map reduce jobs 	•
103. SPARQLBASE ⁸²	 Graph databse In memory	•

	Uses HDFC to store data	
104. Trinity ⁸³	Embed or distributed graph	Not mature
,	storage	
	In memory	
	Data compressed	
105. Titan ⁸⁴	Distributed graph database	+
	Support Transection and	
	eventual consistency	
	Can use Cassandra, HBse or	
	BerkeleyDB to store data.	
	Support geo, numeric and	
	text search	
	Map reduce	
106. Objectivity:85	Graph NoSQL database	•
	Good at exploring	
	relationships in data.	
	Suits for areas like social	
	networks.	
107. Stardog	Graph database	•
	• ACiD	
108. FlockDB 86	Graph database	• Fewer function cause it's
	Twitter uses it to store	simpler(maybe it's an
	social graphs	advantage)
	Designs for websites	
109. GrapheneDB	Cloud hosting Neo4j	◆ Same as Neo4j
110. Sparksee ⁸⁷	Data compression(use	•
	bitmap to represent data)	
111. Neo4j ⁸⁸	High Availability	 Does not support map reduce
	Data compression	 Has Max size value limitation
	Fully ACID	
	•	
112. CortexDB ⁸⁹	Multiple data model: key-	•
	value, graph, multi value	
	column	
	Distributed	

H. Data Caching

System	Pro	S	Cor	าร
113. MemCachier ⁹⁰	•	In memory scalable key	٠	No ACID
		value pair cache		
	•	Better reliability and		
		usability than memcached		

114. Redis	In memory non-relational No ACID	
	database	
	Scale out seamlessly	
	Zero Down time	
	Secure	
	• Persistent	
115. Redis Labs	Cloud hosting Memcached Similar as Memcached	hed
Memcached	Similar as Memcached	
Cloud ⁹¹		
116. IronCache ⁹²	Key value cache No ACID	
	Cloud service	
	Can persist the data	
117. AWS ElastiCache	You can choose from two in Disadvantages are s	similar to
	memory cache options: Redis and Memcac	hed
	Redos or Memcached	
	The advantages are similar	
	to those two	
118. BigMemory ⁹³	In memory data store	
	Supports SQL	
	Runs Ehcache	
119. Ehcache ⁹⁴	Im memory data store	
	Schema less	
	• ACID	
	Sharding and replication	
120. InfiniSpan ⁹⁵	In memory key value data	
	store	
	Support Map reduce	
	Support data compression	
	Support full text search,	
	and graph data	
	• Persistent	
	ACID transection	
121. RedHat JBoss	In memory distributed	
Data Grid ⁹⁶	caching	
	Support map reduce	
	Supports replication	
	Transection	
	Redhat support	
122. Memcached ⁹⁷	In memory key value pair Value is limited to 1	IMB
	cache	
	Simpler than Redis makes it	
	easier to scale out	
	+ ACID	

I. Document

System	Pros	Cons
123. Informix ⁹⁸	 Real time processing Availability: zero down time Supports SQL, JSON, and even time/special data Support Rest API 	Comercial
124. JumboDB ⁹⁹	 Supports indexing on Json Supports data compression Supports complex data model 	 No sharding and replication yet Immaturity Join No ACID Transection
125. RethinkDB ¹⁰⁰	 Use Json as storage Supports complex data model Sharding and replication Fault tolerance MapReduce Schema-less 	No Join No ACID Transection
126. CouchDB ¹⁰¹	 JSON as storage Supports features that important to web development such as real time change notification Supports complex data model MapReduce Eventual consistency Schema-less 	 No ACID Transection No join
127. RavenDB ¹⁰²	Schema-lessData compressionACIDMapReduce	•
128. TokuMX ¹⁰³	 A high performance distribution of MongoDB Better caching strategy Optimized IO Supports document-level locking allows better concurrency 	No ACID Transection
129. MongoDB	Use Json as storageSupports complex data	No ACID No Join

	model	
	Supports immediate and	
	strong consistency	
	Supports Sharding and	
	replication	
	Schema-less	
130. Compose	Cloud hosting mongodb Similar as mongo db	
	Similar as mongodb	
131. Iris Couch	Cloud hosting CouchDB Similar as CouchDB	
	Similar as CouchDB	
132. MongoLab	Cloud hosting mongodb Similar as mongo db	
	Similar as mongodb	
133. Object Rocket	Cloud hosting mongodb Similar as mongodb	
	and redis	
	Similar as mongodb	
134. Azure	Use Json as storage No Join	
DocumentDB	Supports complex data	
	model	
	Schema-free	
	Supports different level of	
	consistency	
	Transection	
135. Cloudant	◆ Use Json as storage	
	Supports complex data	
	model	
	Schema-free	
	Supports Full-text search	
	Supports sptial indexes	
	Data compression	

To be continued...

_

¹ Comparative Analysis of Microsoft Exchange and Lotus Notes http://www.brighthub.com/computing/windows-platform/articles/52715.aspx

² Versant Object Database http://www.actian.com/products/operational-databases/versant/

³ InterSystems Caché Benchmark http://www.intersystems.com/assets/Cache_benchmark-1c69bf617b51d5a2dee145442deaa371.pdf

⁴ http://wakandadb.org/

⁵ http://en.wikipedia.org/wiki/IBM_Information_Management_System

⁶ http://www.itqlick.com/adabas/feedback

⁷ http://www.rocketsoftware.com/products/rocket-universe

⁸ http://stackoverflow.com/questions/4219624/pros-and-cons-of-multi-value-databases

⁹ http://www.orientechnologies.com/orientdb/

¹⁰ https://www.mail-archive.com/orient-database@googlegroups.com/msg03928.html

¹¹ Firebrid.org

¹² www.sap.com

- 13 www.influxdb.net
- ¹⁴ www.bityota.com
- 15 AWS RedShift
- 16 www.spacecurve.com/
- ¹⁷ Column Oriented Database Vs Row Oriented Databases
- 18 http://www.pivotal.io/
- 19 http://www.sap.com/
- ²⁰ https://www.parstream.com/
- ²¹ Kx.com
- ²² Luciddb.com
- ²³ Kognitio.com
- ²⁴ http://druid.io/blog/2012/10/24/introducing-druid.html
- ²⁵ Vertica vs Aster Data vs Greenplum vs Netezza vs Teradata from stackoverflow
- ²⁶ site.teradata.com
- ²⁷ http://hpccsystems.com/
- ²⁸ Teradata Aster gets graph database, HDFS-compatible file store

http://www.zdnet.com/article/teradata-aster-gets-graph-database-hdfs-compatible-file-store/

- ²⁹ Sicdb.org
- ³⁰ SQL on Hadoop Landscape and Considerations
- 31 www.jethrodata.com
- 32 www.citusdata.com/
- 33 http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
- ³⁴ 8 SQL-on-Hadoop frameworks worth checking out
- 35 http://www-01.ibm.com/software/data/what-is/big-sql.html
- 36 http://drill.apache.org/
- 37 https://hive.apache.org/
- ³⁸ Apache Hive Review http://www.gise.cse.iitb.ac.in/wiki/images/2/26/Hive.pdf
- 39 http://tajo.apache.org/
- ⁴⁰ StackOverflow: GoogleApps Datastore Cons and Pros
- 41 https://cloud.google.com/datastore/docs
- ⁴² StackOverfolw: GAE DataStore vs Google Cloud SQL for Enterprise Managment Systems
- ⁴³ Cassandra vs MongoDB vs CouchDB vs Redis vs Riak vs HBase vs Couchbase vs OrientDB vs Aerospike vs Neo4j vs Hypertable vs ElasticSearch vs Accumulo vs VoltDB vs Scalaris comparison by Kristof Kovacs
- 44 http://cassandra.apache.org/
- ⁴⁵ http://apache-accumulo.1065345.n5.nabble.com/How-does-Accumulo-compare-to-HBase-td10464.html
- ⁴⁶ Database Options: Beyond RDBMS http://www.hcltech.com/blogs/engineering-rd-services/database-options-beyond-rdbms
- ⁴⁷ HBase Architecture Analysis, CYANNY
- 48 http://hypertable.org/
- 49 http://en.wikipedia.org/wiki/DataStax
- ⁵⁰ http://aws.amazon.com/dynamodb
- 51 http://www.slideshare.net/saniyakhalsa/dynamo-db-pros-and-cons
- 52 http://aws.amazon.com/simpledb/
- 53 http://aws.amazon.com/dynamodb/fags/
- ⁵⁴ https://wiki.openstack.org/wiki/MagnetoDB
- 55 https://redislabs.com/redis-comparison
- ⁵⁶ https://redislabs.com/redis-comparison
- ⁵⁷ http://aws.amazon.com/elasticache/
- 58 http://www.redisgreen.net/
- 59 http://objectrocket.com/redis
- 60 http://hyperdex.org/
- 61 https://github.com/google/leveldb

```
62 http://www.oracle.com/technetwork/database/database-
technologies/berkeleydb/overview/index.html
63 http://www.oracle.com/us/products/database/nosql/overview/index.html
64 https://redislabs.com/redis-comparison
65 wikipedia
66 http://basho.com/riak/
67 https://www.arangodb.com/
68 http://www.aerospike.com/docs/architecture/
69 http://www.gridgain.com/products/in-memory-data-fabric/features/
70 http://www.scaleoutsoftware.com/
<sup>71</sup> http://www.pivotal.io/big-data/pivotal-gemfire-xd
<sup>72</sup> http://lucidworks.com/product
73 https://wiki.trafodion.org
74 http://www.splicemachine.com/
75 https://go.oracle.com/
<sup>76</sup> https://go.oracle.com/
<sup>77</sup> http://hana.sap.com/
<sup>78</sup> http://vschart.com/compare/infinitegraph/vs/neo4j
79 http://www.hypergraphdb.org/
80 http://franz.com/agraph/allegrograph/
81 Scaling Apache Giraph to a trillion edges
82 http://sparqlcity.com/
83 http://research.microsoft.com/en-us/projects/trinity/
84 thinkaurelius.github.io/titan/
85 www.objectivity.com
86 https://github.com/twitter/flockdb
87 http://sparsity-technologies.com/#sparksee
88 http://neo4j.com/
89 http://www.odbms.org/
90 https://www.memcachier.com/
91 https://redislabs.com/memcached-cloud
92 http://www.iron.io/cache
93 http://terracotta.org/
94 http://ehcache.org/
95 http://infinispan.org/about/
<sup>96</sup> http://www.redhat.com/en/technologies/jboss-middleware/data-grid
97 http://memcached.org/
98 http://www-01.ibm.com/software/data/informix/
99 https://github.com/comsysto/jumbodb
100 http://rethinkdb.com/
101 http://docs.couchdb.org/en/latest/intro/why.html
102 http://ravendb.net/
103 http://www.tokutek.com/tokumx-for-mongodb/
```