

REC'D **0 4 MAR 2005**WIPO PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 0 3 FEV. 2005

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS CONFORMÉMENT À LA RÈGLE 17.1.a) OU b)

INSTITUT 2

NATIONAL DE LA PROPRIETE INDUSTRIELLE 51EGE 26 bis, rue de Saint-Petersbourg 75800 PARIS cedex 08 Téléphone : 33 (0)1 53 04 53 04 Télécople : 33 (0)1 53 04 45 23

ETABLISSEMENT PUBLIC NATIONAL

CREE PAR LA LOI Nº 51-444 DU 19 AVRIL 1951

BREVET D'INVENTION CERTIFICAT D'UTILITE

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

Téléphone: 01 53.04.53.04 Télécopie: 01.42.94.86.54

Code de la propriété intellectuelle-livreVI

REQUÊTE EN DÉLIVRANCE

DATE DE REMISE DES PIÈCES:

N° D'ENREGISTREMENT NATIONAL:
DÉPARTEMENT DE DÉPÔT:
DATE DE DÉPÔT:

UNIT DE DÉPÔT:
DATE DE DÉPÔT:
DATE DE DÉPÔT:

UNIT DE DÉPÔT:
DATE DE DÉPÔT:

1 NATURE DE LA DEMANDE				
Demande de brevet				
2 TITRE DE L'INVENTION				
	Procédé de traitement des gaz par des décharges haute fréquence			
3 DECLARATION DE PRIORITE OU REQUETE DU BENEFICE DE LA DATE DE DEPOT D'UNE DEMANDE ANTERIEURE FRANCAISE	Pays ou organisation Date N°			
4-1 DEMANDEUR				
Nom	L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE			
Suivi par	Jacques VESIN			
Rue	75, quai d'Orsay			
Code postal et ville	75321 PARIS CEDEX 07			
Pays	France			
Nationalité	France			
Forme juridique	Société anonyme			
N° SIREN	552 096 281			
Code APE-NAF	241A			
N° de téléphone	01 40 62 57 32			
N° de télécopie	01 40 62 56 95			
Courrier électronique	jacques.vesin@airliquide.com			

Nom	VESIN					
Prénom	Jacques					
Qualité						
Cabinet ou Société	Liste specia	Liste spéciale, Pouvoir général: PG10568 L'AIR LIQUIDE S.A.				
Rue		75, quai d'Orsay				
Code postal et ville			~			
N° de téléphone		75321 PARIS CEDEX 07 01 40 62 57 32 01 40 62 56 95				
N° de télécopie						
Courrier électronique	1	jacques.vesin@airliquide.com				
6 DOCUMENTS ET FICHIERS JOINTS	Fichier élect	m@arriquide			·	
Texte du brevet	textebrevet.		Pages		Détails	
Dessins	dessins.pdf	Jur	36		D 29, R 6, AB 1	
Désignation d'inventeurs	acosins.pu		6		page 6, figures 5, Abrégé page 6, Fig.1	
^S ouvoir général					-	
MODE DE PAIEMENT		•				
Mode de paiement	du compte					
luméro du compte client	516	Prélèvement du compte courant				
RAPPORT DE RECHERCHE						
tablissement immédiat						
REDEVANCES JOINTES	Devise	Taux				
62 Dépôt	EURO	0.00		Quantité	Montant à payer	
63 Rapport de recherche (R.R.)	EURO	320.0	00	1.00	0.00	
38 Revendication à partir de la 11ème	EURO	15.00	_	1.00	320.00	
otal à acquitter	EURO	13.00	•	20.00	300.00	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signé par Signataire: FR, L'Air Liquide SA, J.Vesin Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

Fonction
L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

BREVET D'INVENTION CERTIFICAT D'UTILITE

Réception électronique d'une soumission

Il est certifié par la présente qu'une demande de brevet (ou de certificat d'utilité) a été reçue par le biais du dépôt électronique sécurisé de l'INPI. Après réception, un numéro d'enregistrement et une date de réception ont été attribués automatiquement.

> Demande de brevet : X Demande de CU:

DATE DE RECEPTION	6 janvier 2004			
TYPE DE DEPOT	INPI (PARIS) - Dépôt électronique	Dépôt en ligne: X		
		Dépôt sur support CD:		
Nº D'ENREGISTREMENT NATIONAL	0450016			
ATTRIBUE PAR L'INPI				
Vos références pour ce dossier	S6350 JV			
DEMANDEUR				
Nom ou dénomination sociale	L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEI DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES			
	PROCÉDÉS GEORGES CLAUDE			
Nombre de demandeur(s)	1			
Pays	FR			
TITRE DE L'INVENTION				
Procédé de traitement des gaz par des déc	harges haute fréquence			
DOCUMENTS ENVOYES				
package-data.xml	Requetefr.PDF	fee-sheet.xml		
Design.PDF	ValidLog.PDF	textebrevet.pdf		
FR-office-specific-info.xml	application-body.xml	request.xml		
dessins.pdf	indication-bio-deposit.xml			
EFFECTUE PAR				
Effectué par:	J.Vesin			
Date et heure de réception électronique:	6 janvier 2004 15:12:26			
Empreinte officielle du dépôt	C9:C8:74:6A:78:84:19:FA:CB:B7:58:AF:E6:E5:EC:E7:E6:E5:51:F1			
		(INDI DADIO DE IL DE SI		

/ INPI PARIS, Section Dépôt /

SIEGE SOCIAL

INSTITUT 26 bis, rue de Saint Potorsbourg NATIONAL DE 75800 PARIS cedex 08 LA PROPRIETE Téléphone : 01 53 04 53 04 INDUSTRIELLE Télécopie: 01 42 93 59 30

PROCEDE DE TRAITEMENT DES GAZ PAR DES DECHARGES HAUTE FREQUENCE

DOMAINE TECHNIQUE ET ART ANTERIEUR.

15

30

L'invention concerne le domaine du traitement de gaz, notamment à pression atmosphérique par des techniques plasma.

Les décharges électriques à haute densité présentent un grand intérêt pour réaliser des 10 traitements industriels d'épuration et de dépollution de gaz.

Le principe consiste à induire au sein de la décharge des transformations physicochimiques d'impuretés et/ou de polluants présents dans un gaz porteur pour obtenir de nouveaux composés qui peuvent ensuite être retirés du flux gazeux, par exemple par un post-traitement de type classique, tel que l'adsorption réactive.

Le domaine d'utilisation de ces décharges

correspond à des concentrations typiques plus élevées

(à partir de quelques milliers de parties par million
en volume (ppmv)) et dans des flux plus faibles que
ceux auxquels s'adressent les décharges corona et les
décharges à barrière diélectrique (DBD), plus souvent

citées pour les applications de dépollution des gaz.

Le demandeur a développé de tels procédés, notamment par décharges micro-ondes à pression atmosphériques, qui sont entretenues par des ondes de surface. Ces procédés sont utilisés pour abaisser, en dessous de 1 ppmv, la concentration résiduelle de CF4

10

15

et CH₄ dans le krypton et le xénon extraits de l'air par concentration cryogénique. Une autre application concerne l'élimination des gaz perfluorés (PFC) ou des composés hydrofluorocarbonés (HFC), qui sont des gaz à effet de serre (CF₄, C₂F₆, SF₆, c-C₄F₈, C₃F₈, NF₃, CHF₃...), des effluents rejetés par les équipements de fabrication des semi-conducteurs. Ces effluents proviennent notamment des opérations de nettoyage par plasma des réacteurs de dépôt de couches minces ainsi que des opérations de gravure par plasma de ces mêmes couches minces.

La densité électronique très élevée de ces décharges micro-ondes (10¹²-10¹⁵ cm⁻³) est bien adaptée aux conditions de concentration (quelques milliers de ppmv) et de débit d'azote de dilution (quelques dizaines de litres standard par minute (slm)) qui règnent à l'échappement des pompes à vide primaire des équipements de dépôt et gravure de couches minces de semi-conducteurs.

Dans le cas des PFC, les électrons de haute énergie disponibles permettent d'induire des collisions inélastiques fréquentes des électrons sur les molécules de PFC et ainsi de les dissocier en grande partie.

En même temps, ces collisions empêchent la reformation des PFC avant que leurs fragments n'aient 25 réagi avec des espèces oxydantes pour donner des produits finaux stables, notamment des composés fluorés corrosifs (COF₂, SO_2F_2 , F_2 , HF...) qui peuvent facilement retirés du flux gazeux par post-30 traitement de type classique comme, par

l'adsorption réactive ou la neutralisation sur une solution alcaline.

Les plasmas atmosphériques micro-ondes ne sont pas en général en équilibre thermodynamique local 5 (ETL), mais ils n'en sont pas non plus très éloignés. La distribution énergétique des électrons est centrée à des valeurs relativement basses (2 à 3 eV) donnant lieu à un grand nombre de collisions élastiques sur particules lourdes, ce qui a pour effet de chauffer efficacement le gaz. Ainsi, la température des espèces 10 lourdes đu milieu, neutres et ions, n'est inférieure à environ 1/10 de la température électronique, soit encore plusieurs milliers de K en moyenne. Comme on cherche à maintenir le 15 voisinage de la paroi du tube à une température compatible avec l'intégrité physique de cette dernière, il existe un assez fort gradient radial de température. Celui-ci se traduit à son tour par une augmentation de la densité du gaz de l'axe vers la périphérie. densité augmentant, il est connu que le rendement 20 d'ionisation diminue et que la recombinaison particules chargées est favorisée, d'où une chute de la densité électronique de l'axe vers la paroi du tube.

Ce phénomène est même assez accusé puisque 25 pour des diamètres de tube relativement faibles (quelques mm) le plasma ne remplit plus, dans certains cas, la totalité de la section du tube.

On dit que la décharge est contractée, le phénomène pouvant évoluer vers la formation de 30 plusieurs filaments de plasma (phénomène de

filamentation) se déplaçant de façon aléatoire dans la section du tube.

Ainsi, il existe toujours à la périphérie du tube une zone où le gaz est nettement plus froid et la densité électronique plus faible, donc où la dissociation des molécules de PFC est moins probable et leur reformation favorisée.

5

10

15

Ce phénomène de contraction radiale s'accentue avec l'augmentation de la masse moléculaire du gaz, de sa vitesse de passage, de la fréquence d'excitation et du diamètre interne du tube.

En outre, si une colonne de plasma d'onde de surface s'allonge lorsqu'on augmente la puissance micro-ondes fournie à l'applicateur, en revanche cette augmentation de puissance n'a pratiquement pas d'influence sur la forme de la répartition radiale de densité du plasma. On ne peut donc espérer en augmentant la puissance faire en sorte que le plasma remplisse plus complètement la section du tube

4

۵.

Il en résulte donc que le diamètre utile du tube à décharge est dans tous les cas limité et qu'il est illusoire d'espérer augmenter ainsi la capacité de traitement.

Pour pallier cette limitation intrinsèque,

25 on a développé des sources de plasma d'onde de surface
à tubes multiples. Mais les possibilités d'extension
d'échelle sont à nouveau limitées par la puissance
micro-ondes qu'il est possible de faire circuler dans
un unique guide d'ondes.

En outre, le gradient radial de densité électronique limite le taux de conversion si le débit est élevé et la colonne de plasma courte. C'est le cas, en particulier, pour la destruction des PFC dans l'azote, avec des colonnes ne dépassant pas les 150 mm de long environ.

5 contraire, Au en épuration Kr/Xe. la colonne de plasma mesure en moyenne plus de 500 mm et on peut atteindre un rendement de conversion pour ${\tt CF_4}$ supérieur à 99,9 %, bien que le plasma soit fortement contracté et filamentaire. Ceci est dû au fait que les molécules de PFC ont alors davantage le temps, sur leur 10 trajet, de migrer depuis des zones froides vers des chaudes, où elles ont été entraînées diffusion, convection ou turbulence. Cela est dû aussi au fait qu'à la différence des décharges dans l'azote 15 ou un autre gaz moléculaire, les réactions "quenching", ou d'extinction, sont très limitées.

Un système à un ou deux tubes peut prendre en charge les effluents gazeux d'une ou deux plates-formes multi-chambres, et montre dans cette configuration de grands avantages techniques et économiques par rapport à des solutions plus classiques comme les brûleurs.

20

25

Toutefois, il existe aussi des cas d'exploitation où une capacité beaucoup plus grande est nécessaire.

C'est le cas par exemple du traitement des effluents gazeux issus des procédés de fabrication des écrans de visualisation à cristaux liquides (TFT-LCD).

Ceux-ci font également appel à des procédés 30 de dépôt et gravure de couches minces à base de silicium. Cependant, du fait de la taille unitaire des

substrats (jusqu'à 1,00 m de côté, à comparer aux 300 de diamètre maximal d'une tranche de silicium monocristallin), les volumes d'effluents gazeux rejetés chambre par une de procédé sont plusieurs supérieurs à ceux classiquement traités en microélectronique, notamment pour la réalisation composants CMOS ou bipolaires sur silicium monocristallin.

En raison de la limitation de l'extension d'échelle par le phénomène de contraction radiale, le plasma micro-ondes atmosphérique ne peut fournir de solution appropriée à ces applications.

Il se pose donc le problème de trouver un nouveau procédé et un dispositif de traitement d'effluents gazeux compatibles avec des débits élevés de ces effluents.

Un autre problème est de trouver un nouveau procédé et un nouveau dispositif de traitement d'effluents gazeux, à pression sensiblement atmosphérique, complémentaire des traitements connus, en particulier des traitements par plasma micro-ondes entretenus par ondes de surface.

Selon un autre aspect, un autre problème est de trouver un procédé et un dispositif non soumis, ou moins soumis que les procédés connus, aux limitations imposées par le phénomène de contraction radiale du plasma.

EXPOSE DE L'INVENTION

5

15

20

25

L'invention met en œuvre un plasma de haute 30 densité électronique entretenu par un champ

10

15

20

25

30

électromagnétique radio-fréquence selon un mode de couplage au moins partiellement ou majoritairement inductif, désigné par la terminologie anglo-saxonne répandue « Inductively Coupled Plasma » ou en abrégé ICP.

L'invention a tout d'abord pour objet un procédé de traitement de gaz, comportant des impuretés, dans lequel on soumet le gaz à pression sensiblement atmosphérique, à une décharge d'un plasma inductif radiofréquence (RF-ICP).

L'invention concerne également un système de traitement de gaz par plasma, comportant des moyens pour produire un gaz à traiter à une pression sensiblement égale à la pression atmosphérique et des moyens pour produire un plasma inductif radiofréquence.

Un plasma RF-ICP permet d'atteindre une densité électronique élevée notamment par comparaison avec, par exemple, les décharges corona ou à barrière diélectrique, ou avec les plasmas radiofréquence à couplage majoritairement capacitif.

Par ailleurs la densité électronique dans les plasmas RF-ICP est en général supérieure à celle qui peut être obtenue dans un plasma micro-ondes atmosphérique, en particulier excité par une onde de surface.

Le comportement d'un plasma RF inductif est en outre sensiblement différent de celui des décharges micro-ondes atmosphériques à onde de surface. comportement en fait un milieu alternatif complémentaire du plasma micro-ondes atmosphérique pour le traitement des gaz, et notamment pour leur

épuration et leur dépollution par plasma, en particulier à pression atmosphérique.

Entre autres, les plasmas RF-ICP ne sont pas astreints aux mêmes limitations en termes d'extension d'échelle.

Les décharges inductives radiofréquence, l'équilibre thermodynamique local proches de effectivement permettent de réaliser transformations physico-chimiques différentes et complémentaires · 10 de celles qu'il est possible d'accomplir par d'autres techniques, et notamment dans des décharges micro-ondes qui, même à pression atmosphérique, sont relativement hors ETL.

L'invention permet en particulier 15 d'entretenir des décharges RF-ICP, selon le mode proprement inductif à structure de champ transverse électrique ou TE dit de type H,ou selon des modes mixtes couplés avec le mode à champ transverse magnétique ou TM dit de type E, qui, tous deux, 20 remplissent une part importante de la section d'un tube. Le diamètre de telles torches peut être compris entre 8 et 160 mm à pression atmosphérique, et peut être encore supérieur à pression réduite. fréquences varient en fonction de la taille de la 25 torche et de la puissance, depuis 200 MHz à faible puissance, jusqu'à 100 kHz, voire 50 kHz en fonction de la technologie des générateurs.

Ę

4

Cela permet de traiter des gammes de débits plus importantes et complémentaires de celles traitées par la technologie micro-ondes.

Selon un mode de réalisation la décharge met en œuvre une torche en verre de silice, par exemple à double paroi avec circulation d'un liquide de refroidissement entre les deux parois.

Elle peut aussi mettre en œuvre une torche en matériau réfractaire, par exemple une torche céramique et plus particulièrement en alumine de qualité courante.

Selon encore une variante, la décharge met 10 en œuvre une torche métallique suivant la technique de segmentation de la cage froide.

15

20

25

30

Un traitement additionnel, par exemple à l'aide d'un élément réactif, peut être prévu, afin de faire réagir les composés résultant du traitement par plasma, en vue de leur destruction.

Le gaz traité contient un gaz perfluoré (PFC) ou hydrocarboné ou hydrofluorocarboné (HFC) en tant qu'espèces à traiter par plasma. Ce gaz est par exemple un gaz rare ou un gaz issu d'une chambre de réaction, notamment dans le domaine de la production des semi-conducteurs.

Le procédé et le dispositif selon l'invention sont d'ailleurs particulièrement adaptés au traitement de gaz comportant des effluents gazeux issus d'un procédé de production d'écrans de visualisation, dans lequel les débits d'effluents peuvent atteindre plusieurs litres par minute (slm) (dans des conditions normales de température et de pression), par exemple entre 1 slm et 20 slm , soit au total de 100 à 2000 slm compte non-tenu de l'ajout

Selon un mode de réalisation la décharge met en œuvre une torche en verre de silice, par exemple à double paroi avec circulation d'un liquide de refroidissement entre les deux parois.

5 Elle peut aussi mettre en œuvre une torche en matériau réfractaire, par exemple une torche céramique et plus particulièrement en alumine de qualité courante.

Selon encore une variante, la décharge met en œuvre une torche métallique suivant la technique de segmentation de la cage froide.

10

25

30

Selon une autre variante, la décharge comportant au moins une zone de température supérieure à 5000 K.

Un traitement additionnel, par exemple à l'aide 15 d'un élément réactif, peut être prévu, afin de faire réagir les composés résultant du traitement par plasma, en vue de leur destruction.

Selon une variante, le débit de gaz traité est compris entre 0.2 et 25 $\ensuremath{\text{m}^3/\text{h}}.$

4

Le gaz traité contient un gaz perfluoré (PFC) ou hydrocarboné ou hydrofluorocarboné (HFC) en tant qu'espèces à traiter par plasma. Ce gaz est par exemple un gaz rare ou un gaz issu d'une chambre de réaction, notamment dans le domaine de la production des semi-conducteurs.

Lе procédé et le dispositif selon d'ailleurs particulièrement l'invention sont bien adaptés au traitement de gaz comportant des effluents gazeux issus d'un procédé de production d'écrans de visualisation, dans lequel les débits d'effluents peuvent atteindre plusieurs litres par (slm) (dans des conditions normales de température et de pression), par exemple entre 1 slm et 20 slm , soit au total de 100 à 2000 slm compte non-tenu de l'ajout

d'azote de dilution à l'échappement des pompes primaires.

Le gaz à traiter peut aussi être un gaz comportant des effluents gazeux issus d'un procédé de production ou de croissance de matériaux ou de gravure ou de nettoyage ou de traitement d'écrans plats ou de semi-conducteurs ou de couches minces semi-conductrices ou conductrices ou diélectriques ou de substrats, par exemple comportant des effluents gazeux issus d'un procédé de production ou de croissance de matériaux ou de gravure ou de nettoyage ou de traitement de couches minces en silicium.

Le réacteur peut aussi être un réacteur de retrait de résines photosensibles utilisées pour la lithographie des micro-circuits, ou un réacteur de dépôts de couches minces en cours de nettoyage par plasma.

BREVE DESCRIPTION DES FIGURES

5

10

Les figures 1, 2 et 4 représentent des 20 torches pouvant être utilisées dans le cadre de la présente invention.

La figure 3 représente un système d'analyse de gaz après traitement par plasma.

La figure 5 représente un schéma d'un 25 équipement de production de semi-conducteurs et de moyens de traitement selon l'invention.

DESCRIPTION DE MODES DE REALISATION DE L'INVENTION

Comme illustré sur la figure 1 un plasma inductif radio-fréquence (RF-ICP) est obtenu dans un gaz confiné à l'intérieur d'un tube 2.

Les moyens d'excitation comportent un inducteur 4, qui entoure le tube 2, et qui est parcouru par un courant radiofréquence (RF). Cet inducteur est relié à des moyens générateurs de puissance radiofréquence, non représentés sur la figure.

Il est ainsi possible d'entretenir une décharge RF, en particulier par couplage inductif, entre l'inducteur 4, qui constitue le primaire d'un transformateur, et le plasma 6 qui constitue un secondaire à spire unique.

Le tube 2 permet de confiner le plasma et d'éviter le contact direct entre les deux conducteurs que sont l'inducteur 4 et le plasma 6. Ce tube peut être en outre muni de moyens de refroidissement, non représentés sur la figure 1.

Sur cette figure 1, la référence 10 désigne 20 un gaz plasmagène par exemple de l'azote, le gaz à transformer par plasma étant le gaz 14. Un gaz 12 auxiliaire peut être introduit pour moduler propriétés plasma du ou réaliser des réactions chimiques particulières (par exemple, un gaz oxydant tel que de l'oxygène, de la vapeur d'eau, etc...). 25

Il est également possible d'introduire un gaz plasmagène 10 déjà mélangé avec un gaz à traiter.

Selon une autre variante, et pour des raisons de stabilité de la-décharge ainsi que pour une plus grande souplesse de fonctionnement, on peut être amené à utiliser des assemblages de plusieurs tubes

30

concentriques permettant d'introduire dans la zone de l'inducteur différents flux gazeux. Cet assemblage de tubes porte généralement le nom de torche ou d'applicateur.

Les fréquences utilisées pour le champ excitateur RF vont de 50 kHz, ou 100 kHz ou 200 kHz à 100 MHz et plus, par exemple à 200 MHz. La puissance fournie peut par exemple varier d'une centaine ou de quelques centaines de watts à quelques mégawatts, par exemple de 100 W ou de 300 W à 1 MW ou à 5 MW. Les moyens générateurs de courant seront choisis de manière correspondante.

Selon l'invention, on génère une décharge RF-ICP à des pressions, sensiblement atmosphériques, comprises entre quelques pascals et plusieurs bars, par exemple entre 0,05 bar ou 0,1 bar ou 0,5 bar et 1,2 bar ou 1,5 bar ou 2 bar ou 5 bar. Si la pression en sortie d'un procédé est insuffisante ou inférieure à, par exemple, 0,1 bar, des moyens de pompage permettront d'atteindre, à l'entrée du plasma, la pression voulue.

Au voisinage de la pression atmosphérique, ou dans les gammes de pression indiquées ci-dessus, et lorsque la fréquence n'excède pas la dizaine de mégahertz (donc est inférieure à 10 MHz ou à 20 MHz), une telle décharge plasma est considérée, contrairement aux décharges micro-ondes atmosphériques, comme étant à l'équilibre thermodynamique local (ETL). Lorsque la fréquence s'élève ou que la pression s'abaisse, elle s'écarte progressivement de l'ETL.

25

Les procédés de traitement des gaz développés à partir de telles décharges sont donc différents de ceux mis en œuvre avec des plasmas, plus ou moins hors d'équilibre, comme les décharges microondes d'onde de surface.

On dispose donc de nouvelles possibilités pour la mise au point de traitements d'effluents gazeux dans un grand nombre de cas industriels pratiques.

Ce type de plasma, sans électrodes, constitue en outre un milieu de grande pureté et peut avantageusement être appliqué aux procédés de traitement industriel de dépollution et d'épuration des gaz.

10

C'est l'effet thermique du plasma mis en œuvre qui dissocie l'ensemble des molécules de polluants.

15 Cette dissociation permet, lors du refroidissement des gaz après le passage dans plasma, de reformer des combinaisons chimiques différentes, ayant des propriétés physicochimiques distinctes de celles des molécules initiales.

Ainsi, ou bien ces espèces demeurent sans inconvénient et définitivement telles quelles dans le flux gazeux, ou bien elles sont retirées de ce dernier par des moyens de traitement complémentaires.

sortie du réacteur plasma peut être 25 reliée à des moyens ou un système d'extraction collectant le flux de gaz de manière étanche pour le conduire de tels vers moyens de traitement complémentaires.

Ces moyens de traitement peuvent être 30 notamment du type basé sur une réaction irréversible avec un milieu solide ou liquide approprié. Des moyens

20

25

de traitement thermique ou thermo-catalytique, ou par adsorption, ou cryogénique, peuvent aussi être mis en œuvre. Un exemple est un adsorbant réactif alcalin permettant de retirer les gaz corrosifs fluorés résultant de la conversion des PFC.

Différents types de torches peuvent être utilisés, le choix du type de torche dépendant de l'application envisagée et de la puissance mise en œuvre.

Un premier type possible de torche est une torche en verre de silice. Ce matériau est utilisé pour ses propriétés de résistance thermomécanique. Ce type de torche est destiné aux applications de faible puissance, par exemple de 1 à 5 kW, selon la taille et le débit.

Lorsque la puissance s'élève, on peut utiliser des torches présentant une structure à double paroi, déterminant un espace interstitiel dans lequel circule un liquide de refroidissement qui peut être de l'eau.

En effet, à l'inverse de ce qui se produit dans le domaine hyperfréquences, l'eau n'absorbe pas sensiblement la puissance électromagnétique dans le domaine radio-fréquence et l'on n'a donc pas besoin de recourir à un liquide caloporteur diélectrique, dont le choix n'est pas toujours évident.

Avec un tel refroidissement, on peut atteindre des puissances de l'ordre de 50 à 80 kW.

Un autre type de torche possible est la 30 torche en matériau réfractaire, par exemple en céramique.

inconvénient des torches en silice, refroidies, est leur fragilité, et leur faible durée de vie dans le cas d'un milieu fluoré corrosif. céramique permettent torches au contraire fonctionnement sans liquide de refroidissement, jusqu'à des puissances de l'ordre de 50 à 100 kW. Elles sont beaucoup moins fragiles que les torches en verre, tant thermique point de vue que du point mécanique.

5

30

10 l'inverse des décharges micro-ondes, peut utiliser des céramiques relativement communes dans des grades de pureté standard, comme l'alumine du commerce. Par exemple une alumine d'une pureté de 98 %, classiquement disponible en tubes de différentes 15 tailles les catalogues dans des fournisseurs matériaux techniques, convient. On ne rencontre pas, en effet, de problèmes de pertes diélectriques augmentant avec la température, dues aux impuretés (résidus de liants pour le frittage) qui, en-dehors du domaine 20 radiofréquence, au-delà de 433 MHz et en particulier à 2,45 GHz peuvent provoquer des défaillances par autoemballement thermique et conduisent à choisir, pour les tubes à décharges atmosphériques micro-ondes, spécifique matériau et coûteux comme le nitrure 25 d'aluminium avec des spécifications de pureté très élevées.

1

. . .

Plus généralement, on peut augmenter la température de la paroi de la torche par utilisation d'un matériau réfractaire, ne nécessitant pas de refroidissement. On obtient alors une réduction de la couche froide périphérique.

25

Un troisième type de torche possible est la torche métallique, constituée d'un ensemble de segments métalliques (ou « doigts ») refroidis par circulation d'eau. Les courants induits par l'inducteur se referment à la surface de chaque doigt.

Sur la face interne de chaque doigt circule ainsi un courant qui est l'image du courant parcourant l'inducteur, et provoque l'apparition dans le plasma d'un courant induit.

Tout se passe ainsi comme si la paroi métallique, du fait de sa segmentation, était devenue transparente au champ électromagnétique.

Ce type de torche peut supporter des puissances de l'ordre du mégawatt, et peut être utilisée dès 5 kW. Son inconvénient est de présenter 15 des pertes directes par effet Joule dans les segments eux-mêmes. Ces pertes sont de l'ordre de 10 %, dépendent de la fréquence et de la puissance.

Ces torches métalliques sont adaptées au 20 traitement de dépollution de très grands débits de gaz, notamment compris entre 20 et 400 l/min

On peut utiliser une telle torche métallique, refroidie par eau et fonctionnant à haute puissance, pour augmenter le diamètre du plasma et le forcer à se rapprocher de la paroi. On obtient alors une réduction de la zone froide périphérique.

Plusieurs types de décharges peuvent être obtenues, chacune présentant des caractéristiques spécifiques.

La décharge de type « H » ou TE est la décharge proprement inductive.

10

15

20

Dans ce type de décharge, les lignes de courant induit se ferment et forment le secondaire d'un transformateur. La décharge prend alors l'allure d'une flamme de bougie oblongue très lumineuse.

Lorsque, à pression constante, la puissance appliquée augmente, par exemple de 5 à 60 kW dans une torche de 35 à 50 mm de diamètre, le volume de la décharge augmente en diamètre et en longueur et remplit progressivement toute la section du tube.

Par conséquent, même pour des diamètres intérieurs de tubes importants (par exemple de l'ordre de plusieurs cm, par exemple au moins 2 cm et jusqu'à 10 cm ou 15 cm), il est possible, en appliquant une puissance suffisante, d'entretenir des plasma RF inductifs ayant une action notable sur toutes les molécules de gaz traversant la section du tube.

Il s'agit là d'un grand avantage pour certaines applications par rapport aux décharges microondes d'onde de surface qui sont, elles, affectées par la contraction radiale et la filamentation. 14

Cette propriété permet de traiter des débits beaucoup plus grands, jusqu'à 400 l/min, sans multiplier les modules plasma.

Lorsque la décharge se rapproche des parois 25 du tube, l'échauffement de celui-ci augmente. Des moyens de refroidissement permettent alors de fonctionner de façon fiable aux puissances les plus élevées.

La décharge-du type « E » ou TM se présente 30 sous la forme de filaments uniques ou multiples,

longitudinaux, ou encore sous la forme d'une aiguille lumineuse sur l'axe du tube.

Ce type de décharge est souvent entouré, notamment dans les tubes de grand diamètre, d'une zone diffuse moins lumineuse. Dans ce cas les lignes de courant ne sont pas fermées, et la décharge résulte de l'effet capacitif existant entre les spires d'un inducteur. Du fait de la non-fermeture des courants, ceux-ci sont beaucoup plus faibles que dans le cas de la décharge H, et la puissance plus faible. Ce type de décharge n'est donc pas véritablement de type inductif mais plutôt de type capacitif.

Une décharge de type E est souvent observée fugitivement à l'allumage, juste avant le basculement en mode inductif.

15

30

La décharge mixte, quant à elle, se produit lorsque, dans un tube long, de 20 cm à plus d'un mètre après l'inducteur, on augmente progressivement puissance appliquée à une décharge de type H, exemple au-dessus de 2 à 5 kW dans un tube de 30 mm. On 20 alors apparaître, hors de la zone de l'applicateur, un prolongement de la décharge sous la forme d'une aiguille se terminant en forme de cône très allongée sur l'axe du tube.

Cette transition correspond, dans les générateurs contrôlés en tension, à une augmentation rapide du courant, et donc de la puissance.

Dans ce régime mixte, une augmentation de puissance a pour effet un accroissement de la longueur de la partie aval effilée de la décharge.

Pour des débits pas trop grands, exemple 20 1/min en tube de 30 mm, le régime mixte bâtir des solutions de compromis tirant permet de avantage également d'une augmentation du temps résidence pour renforcer l'efficacité de conversion, sans avoir besoin de trop favoriser l'expansion radiale de la décharge, et ainsi maintenir les sollicitations thermiques sur la paroi à un niveau raisonnable.

A géométrie donnée, et en particulier dans les décharges de type H ou mixtes, une augmentation de la puissance électrique se traduit par une augmentation de taille du plasma, notamment de son diamètre, et donc par une réduction de la couche limite froide.

10

20

25

30

Les décharges de type E réagissent 15 principalement à une augmentation de puissance par une augmentation de longueur.

-4

¢ ii

+ +

Une décharge de type E, de même que la partie aval effilée des décharges mixtes, présentent l'intérêt suivant : en augmentant le temps de résidence des espèces, celles-ci ont une plus forte probabilité, au cours de leur parcours dans la décharge, de pouvoir repasser de la zone périphérique froide vers la zone centrale chaude, sous l'effet de la diffusion, de la convection ou de la turbulence de l'écoulement au voisinage de la paroi.

Lorsque la pression baisse, et ce notamment jusqu'à des pressions voisines de la centaine de pascals, tous les types de décharges tendent à augmenter de volume et à remplir progressivement tout le tube de confinement. A basse pression toutes les décharges obtenues dans une enceinte entourée d'un

10

inducteur sont majoritairement couplées de manière capacitive : la densité de porteurs étant faible, la densité de courant reste faible et le champ électrique axial entre les spires conduit à des décharges principalement de type E.

Lorsque la pression augmente, et si l'on se trouve dans des conditions de couplage et de puissance conduisant à pression atmosphérique à une décharge de type H, on observe la transition vers le mode inductif, à une pression de l'ordre de 50 à 300 hPa.

La décharge devient alors rapidement très lumineuse. Ce type de plasma est alors à l'équilibre thermodynamique local, ou très proche de l'ETL.

La réduction de la couche limite du plasma

15 au voisinage de la paroi de la torche joue, du point de
vue du rendement, un rôle important. Dans cette zone,
le plasma est refroidi par ladite paroi. Les gaz qui
passent dans cette zone froide ne sont donc plus portés
à haute température, les molécules ne sont pas

20 entièrement dissociées, leur reformation est favorisée,
et la conversion n'est pas complète.

Il n'est matériellement pas possible d'avoir sur la paroi une température très élevée sans entraîner la destruction de cette paroi.

Il est donc impossible d'obtenir par cette approche un rendement de conversion exactement de 100 %, mais la réduction de la zone « froide » au voisinage de la paroi va jouer un rôle important pour pouvoir s'approcher de cette limite idéale.

30 Cette réduction peut être obtenue de différentes façons : par le choix du type de torche

(matériaux, géométrie...), par la puissance plasma, par le choix du mode de couplage de la puissance RF à la décharge.

Un domaine d'application de l'invention 5 concerne l'épuration et la dépollution.

Il peut s'agir par exemple de l'épuration par plasma des mixtures brutes krypton/xénon sortant d'une unité de récupération adjointe à une installation de séparation des gaz de l'air, dont la mise en œuvre est décrite dans la demande EP 0 847 794.

10

15

20

30

On peut également réaliser l'élimination, à des concentrations plus élevées et dans différents gaz porteurs plasmagènes, de polluants gazeux immédiatement dangereux pour la vie ou la santé, ou nuisible à l'environnement à plus long terme.

Ce sont notamment des composés hydrocarbonés, perfluorés ou hydrofluorocarbonés ou perchlorés ou hydrochlorocarbonés.

1

图 等

A la différence des autres types de traitement de gaz pollués fondés sur des plasmas hors équilibre ou à basse pression, la technologie plasma inductif radiofréquence utilise et favorise les réactions chimiques prévues par la thermodynamique.

Le réacteur est constitué d'une torche à 25 plasma telle que celle de la figure 1 dans laquelle sont introduits les gaz 14 à purifier.

Le plasma est formé à partir du gaz porteur majoritaire (gaz plasmagène 10), par exemple un mélange krypton/xénon, ou de l'argon, ou de l'azote ou de l'air.

15

A ce gaz peut être ajouté, avant son introduction dans la torche, ou après celle-ci, en quantité adéquate qui dépend de la concentration de polluant à convertir, un gaz réactif 12, par exemple de l'oxygène, qui intervient dans la chimie de conversion.

L'invention permet en particulier de détruire des polluants perfluorés (CF_4 et/ou CH_4) d'un gaz rare (argon, krypton ou xénon) à purifier.

Pour pouvoir être éliminés par post- 10 traitement sur un milieu alcalin, ces gaz sont convertis respectivement en HF ou H_2F_2 , et en CO ou CO_2 .

On peut ajouter de l'oxygène, en tant que gaz réactif 12, pour former d'autres sous-produits, en particulier anhydres, et/ou compléter l'oxydation de CH₄ ou d'autres hydrocarbures en CO₂ préférablement à du CO, ou éventuellement introduire de l'eau si la quantité de CH₄ présente naturellement n'est pas suffisante pour fournir tout l'hydrogène requis pour la conversion du fluor en HF.

- Soit par exemple un débit unitaire par tube de 17 litres standard par minute (slm), ou encore environ 1 m^3/h , représentatif des ordres de grandeur rencontrés dans une unité industrielle de production de krypton et de xénon.
- La torche choisie est du type à 2 flux, à tube 2 en silice. Le générateur plasma est à une fréquence de 27 MHz.

La configuration du système est montrée sur la figure 1.

Comme illustré sur la figure 2, une autre configuration comporte un tube 26 et une longueur 20 de

10

15

20

30

tube supplémentaire. Des joints d'étanchéité appropriés 22, 24 permettent de fermer le circuit de collecte et d'échantillonnage.

Le tube 26, de diamètre interne 14 mm et de diamètre externe 16 mm, se termine à environ 1 mm endessous de la bobine. Il est centré dans le tube externe 20 (de diamètre interne/externe 18mm/20 mm) grâce à des vis 28, 30 dont 2 équipées de ressorts, disposées autour d'une base 32 en téflon. Le tube externe 20 a par exemple une longueur de 700 mm de longueur ou plus.

La figure 3 montre le système amenant le qaz traité 40 vers un spectromètre d'analyse 44. Les plasma refroidis 40 issus du sont circulation d'eau 42, pour en évacuer l'enthalpie. Les produits de conversion des impuretés du qaz analysés classiquement par spectrométrie d'absorption infrarouge à transformée de Fourier. La référence 46 désigne une sortie de ventilation et les références 50, 52 deux vannes ou une vanne à 3 voies permettant de diriger à la demande une partie des gaz vers la cellule d'analyse. La référence 38 désigne une injection d'air de refroidissement autour de la sortie de la torche à plasma.

 \mathcal{A}^{*}

j (r

Le mélange brut de gaz rare testé contient 127 parties par million en volume (ppmv) de CF_4 , une concentration voisine de CH_4 et des traces de SF_6 .

Dans une première expérience, on travaille à un débit de gaz rare de 17 litres standard par minute (slm), à une puissance RF de 900 W.

On mesure un rendement de conversion de CF_4 de 95 %, les bandes de CH_4 et de SF_6 n'étant plus détectables. Une bande de SiF_4 apparaît également, qui traduit une attaque du tube en silice par les sousproduits fluorés corrosifs.

Afin de pouvoir effectuer des expériences prolongées, le tube refroidi par air 38, qui chauffe très fortement, est remplacé par un tube à refroidissement par eau.

Le diamètre intérieur du tube interne 26 est alors compris entre 10 mm et 12 mm, celui du tube externe 20 entre 14 mm et 16 mm, la gaine d'eau ayant quant à elle une épaisseur d'environ 1 mm.

Selon une variante, on ménage une section de tube isolant en téflon 60 entourant le tube au niveau de la spire (figure 4). Ce tube en téflon assure un meilleur centrage des tubes et du plasma par rapport à l'inducteur, ce qui permet d'éviter des variations même mineures dans la géométrie du système.

Dans le mélange krypton/xénon, et pour une puissance comprise entre 1,2 kW et 1,5 kW, des taux d'abattement de CF4 compris entre 95 % et près de 100 % ont alors pu être constatés (tableau I).

25 Tableau I

5

Essai	Puissance affichée (kW)	Débit (slm)	Taux de destruction (%)
1	1,2	17	100
2	1,2	17	92
3	1,2	17	90
4	1,2	17	95
5	1,2	17	100
6	1,2	17	90

10

15

20

25

30

Lorsqu'on parvient à donner une contribution importante au mode E, obtenu par exemple dans un tube de diamètre intérieur 8 mm, les taux de destruction sont inférieurs à ceux indiqués ci-dessus (des taux de l'ordre de 60 à 80 % ont alors été constatés), mais pas négligeables. Le mode mixte peut donc présenter un intérêt réel, à côté du mode H, pour réaliser des procédés optimisés de traitement des gaz. L'exploitation des modes mixtes présente l'intérêt de favoriser certains processus chimiques élémentaires qui nécessitent un temps de résidence plus élevé.

Une autre application est la destruction de polluants dans l'azote ou l'air pour les débits typiques d'effluents des procédés de dépôt et de gravure dans le cadre de la fabrication de semiconducteurs ou d'écrans de visualisation.

Dans le régime de fonctionnement d'un plasma atmosphérique micro-ondes, on constate bien une augmentation de l'efficacité de destruction en fonction de la puissance mais, dans la pratique, cette puissance est limitée, pour un tube de diamètre interne optimisé d'environ 8 mm, à environ 5 kW, bien avant que la longueur de la colonne de plasma ne devienne beaucoup plus grande que 150 à 200 mm environ.

Au-delà de cette valeur de puissance, la tenue à long terme du tube diélectrique n'est plus assurée. Le mode de dégradation est amorcé par une température excessive au niveau de la paroi externe du tube à décharge au contact de la couche limite du fluide diélectrique de refroidissement. Ce dernier peut

10

commencer à polymériser en un dépôt de résidus carbonés absorbant les micro-ondes, augmentant à leur tour localement la température superficielle avec un risque d'auto-emballement thermique. Dans ce régime, la fréquence de maintenance préventive devient inacceptable.

Dans ces conditions, l'utilisation, conformément à la présente invention, d'un plasma inductif radiofréquence dans l'azote est tout à fait intéressante.

La figure 5 représente de manière schématique la mise en œuvre de l'invention dans le cadre d'une installation de production de semi-conducteurs.

Une telle installation, munie d'un système de traitement selon l'invention comporte, un réacteur de production, ou une machine de gravure 62, un système de pompage comportant une pompe secondaire 64, telle qu'une pompe turbomoléculaire, et une pompe primaire 66, des moyens 68 d'abattement de composés PFC et/ou HFC, du type générateur de plasma RF-ICP.

En fonctionnement, la pompe 64 maintient le vide nécessaire dans l'enceinte de procédé et assure l'extraction des gaz rejetés.

Le réacteur 62 est alimenté en gaz de traitement des produits semi-conducteurs, et notamment en PFC et/ou en HFC. Des moyens d'alimentation en gaz alimentent donc le réacteur 62 mais ne sont pas représentés sur la figure.

Les moyens 68 permettant de réaliser un traitement (dissociation ou transformation

10

15

20

25

irréversible) de ces composés PFC et/ou HFC non utilisés, mais peuvent également produire, par là-même, des sous-produits, tels que F_2 et/ou WF₆ et/ou COF₂ et/ou SOF₂ et/ou SO₂F₂ et/ou SOF₄ et/ou NO₂ et/ou NOF et/ou SO₂.

Ces moyens 68 sont des moyens pour dissocier les molécules des gaz entrant dans les moyens 68, donnant des fragments plus petits qui se recombinent et/ou réagissent entre eux pour former des composés réactifs notamment fluorés.

Un élément réactif 70 permet de faire réagir les composés résultant du traitement par les moyens 68 avec un élément réactif correspondant (par exemple : un adsorbant réactif solide) en vue de leur destruction.

Les gaz résultant du traitement par moyens 70 (en fait : le gaz vecteur chargé de composés de type PFC et/ou HFC et/ou d'autres impuretés telles que celles mentionnées ci-dessus) sont ensuite rejetés ambiant, mais danger, avec l'air sans proportions de PFC et/ou de HFC compatibles avec le respect de l'environnement (typiquement : moins de 1 % de la concentration initiale) et des proportions très faibles et autorisées d'impuretés dangereuses, c'est-àdire inférieures aux limites d'exposition légales, typiquement moins de 0,5 ppmv ou moins de 1 ppmv selon gaz toxique, corrosif, combustible, nature du pyrophorique ou explosif considéré.

Le circuit de gaz de l'ensemble des moyens 30 de traitement du système de la figure 5 comprend en outre, en partant de la pompe primaire 66, la canalisation 67 amenant les effluents au module réactif à plasma 68, puis celle 69 reliant le plasma au dispositif 70 de post-traitement des sous-produits, enfin la canalisation 72 d'échappement à l'atmosphère des gaz détoxifiés pouvant être rejetés sans danger. S'y ajoutent différents composants de gestion des fluides (vannes de dérivation, utilités de purge et d'isolation pour la maintenance) et des capteurs de sécurité (alarmes sur défaut de débit, surpression), non représentés sur la figure 5. Les composants du circuit sont choisis compatibles avec les produits qui sont à leur contact pour un fonctionnement fiable.

5

10

30

Des systèmes d'étuvage ou de piégeage peuvent en outre être présents.

- Un avantage de l'invention est que le plasma peut être entretenu dans un tube de diamètre interne sensiblement plus élevé, de 10 mm à 15 mm ou à 20 mm, que dans le cas du plasma micro-ondes à onde de surface (diamètre de 4 à 8 mm).
- Dans un mode H ou mixte, en injectant une puissance RF suffisante, le plasma tend à remplir sensiblement l'ensemble de la section transverse du tube de sorte que pratiquement toutes les molécules de gaz polluant traversant ladite section transverse vont se trouver portées à haute température favorisant leur dissociation et inhibant leur reformation.

Il est possible d'injecter dans un inducteur des puissances beaucoup plus importantes, jusqu'à 5 MW, que dans un guide d'ondes à 2,45 GHz par exemple pour pouvoir traiter des débits totaux

d'effluents de 2 à 30 m^3/h voire plus avec un coût et un encombrement acceptable.

présence d'impuretés résiduelles dans les céramiques utilisées est nettement moins néfaste, gamme radiofréquence pour ce qui est dans la l'absorption du champ RF, que dans le cas la décharge micro-ondes à onde de surface. De simples d'alumine qualité commerciale de courante suffisent pour assurer une durée de vie importante relativement à l'attaque chimique par des composés fluorés corrosifs. Ils ne sont pas en effet soumis à sollicitations supplémentaires fait du de l'absorption résiduelle des micro-ondes par leur matériau.

Selon l'invention on peut donc obtenir des performances de conversion des polluants relativement importantes en utilisant un plasma inductif radiofréquence.

10

REVENDICATIONS

- Procédé de traitement de gaz,
 comportant des impuretés, dans lequel on soumet le gaz
 à pression sensiblement atmosphérique, à une décharge d'un plasma inductif radiofréquence.
- 2. Procédé selon la revendication 1, le couplage à la décharge étant de type proprement 10 inductif transverse électrique (TE) dit H.
 - 3. Procédé selon la revendication 1, le couplage à la décharge étant de type transverse magnétique dit E.

15

- 4. Procédé selon la revendication 1, la décharge étant de type mixte $\mathrm{E}-\mathrm{H}.$
- 5. Procédé selon l'une des revendications 20 1 à 4, la décharge étant produite à une fréquence comprise entre 50 kHz et 200 MHz.
- 6. Procédé selon l'une des revendications 1 à 5, la décharge ayant lieu dans un tube de diamètre 25 interne compris entre 5 mm ou 10 mm et 50 mm ou 150 mm.
 - 7. Procédé selon l'une des revendications 1 à 5, la décharge mettant en œuvre une torche en verre de silice.

REVENDICATIONS

- Procédé de traitement de gaz, comportant des impuretés, dans lequel on soumet le gaz
 à pression sensiblement atmosphérique, à une décharge d'un plasma inductif radiofréquence.
- Procédé selon la revendication 1, le couplage à la décharge étant de type proprement
 inductif transverse électrique (TE) dit H.
 - 3. Procédé selon la revendication 1, le couplage à la décharge étant de type transverse magnétique dit E.
- 4. Procédé selon la revendication 1, la décharge étant de type mixte $E\,-\,H$.
- 5. Procédé selon l'une des revendications 20 1 à 4, la décharge étant produite à une fréquence comprise entre 50 kHz et 200 MHz.
- 6. Procédé selon l'une des revendications 1 à 5, la décharge ayant lieu dans un tube de diamètre 25 interne compris entre 5 mm ou 10 mm et 50 mm ou 150 mm.
 - 7. Procédé selon l'une des revendications 1 à 5, la décharge mettant en œuvre une torche en verre de silice.

- 8. Procédé selon la revendication 7, la torche étant à double paroi avec circulation d'un liquide de refroidissement entre les deux parois.
- 9. Procédé selon la revendication 7 ou 8, la puissance de la torche étant comprise entre 1 et 1000 kW.
- 10. Procédé selon l'une des revendications 10 1 à 5, la décharge mettant en œuvre une torche en matériau réfractaire.
 - 11. Procédé selon la revendication 10, la torche étant une torche céramique.

11. Procédé selon la revendication 11, la torche étant une torche en alumine.

- 12. Procédé selon l'une des revendications 20 1 à 5, la décharge mettant en œuvre une torche métallique.
- 13. Procédé selon l'une des revendications 1 à 13, le gaz traité étant un gaz rare contenant un 25 gaz perfluoré (PFC) ou hydrocarboné ou hydrofluorocarboné (HFC).
- 14. Procédé selon la revendication 14, la décharge comportant au moins une zone de température 30 supérieure à 5000 K.

- 8. Procédé selon la revendication 7, la torche étant à double paroi avec circulation d'un liquide de refroidissement entre les deux parois.
- 9. Procédé selon la revendication 7 ou 8, la puissance de la torche étant comprise entre 1 et 1000 kW.
- 10. Procédé selon l'une des revendications 10 1 à 5, la décharge mettant en œuvre une torche en matériau réfractaire.
 - 11. Procédé selon la revendication 10, la torche étant une torche céramique ou en alumine.
- 12. Procédé selon l'une des revendications

 1 à 5, la décharge mettant en œuvre une torche
 métallique.
- 13. Procédé selon l'une des revendications 1 à 12, le gaz traité étant un gaz rare contenant un gaz perfluoré (PFC) ou hydrocarboné ou hydrofluorocarboné (HFC).
- 14. Procédé selon la revendication 13, la décharge comportant au moins une zone de température supérieure à 5000 K.
- 15. Procédé selon la revendication 13 ou 30 14, dans lequel on ajoute en outre de l'oxygène et/ou de l'eau.

- 15. Procédé selon la revendication 13 ou 14, dans lequel on ajoute en outre de l'oxygène et/ou de l'eau.
- 5 16. Procédé selon l'une des revendications précédentes, le débit de gaz traité étant compris entre 0.2 et $25m^3/h$.
- Procédé selon l'une des revendications 17. précédentes, le gaz traité comportant des effluents 10 qazeux issus d'un procédé de production ou de croissance ou de gravure ou de nettoyage ou de traitement de semi-conducteurs ou de couches minces semi-conductrices ou conductrices ou diélectriques ou 15 de substrats.
- 18. Procédé selon l'une des revendications 1 à 17, le gaz traité comportant des effluents gazeux issus d'un procédé de production ou de croissance ou de 20 gravure ou de nettoyage ou de traitement de couches minces en silicium.
- 19. Procédé selon l'une des revendications 1 à 17, le gaz traité comportant des effluents gazeux 25 issus d'un procédé de production d'écrans de visualisation.
- 20. Système de traitement de gaz par plasma, comportant des moyens pour produire un gaz à 30 traiter à une pression sensiblement égale à la pression

16. Procédé selon l'une des revendications précédentes, le débit de gaz traité étant compris entre 0.2 et $25m^3/h$.

5

- Procédé selon l'une des revendications précédentes, le gaz traité comportant des effluents d'un procédé de production ou issus de gravure ou de nettoyage ou de croissance traitement de semi-conducteurs ou de couches minces semi-conductrices ou conductrices ou diélectriques ou de substrats.
- 18. Procédé selon l'une des revendications
 15 1 à 17, le gaz traité comportant des effluents gazeux
 issus d'un procédé de production ou de croissance ou de
 gravure ou de nettoyage ou de traitement de couches
 minces en silicium.
- 19. Procédé selon l'une des revendications 1 à 17, le gaz traité comportant des effluents gazeux issus d'un procédé de production d'écrans de visualisation.
- 20. Système de traitement de gaz par plasma, comportant des moyens pour produire un gaz à traiter à une pression sensiblement égale à la pression atmosphérique et des moyens pour produire un plasma radiofréquence.

33

atmosphérique et des moyens pour produire un plasma radiofréquence.

- 21. Système selon la revendication 21, les 5 moyens pour produire un plasma radiofréquence, comportant un tube de diamètre interne compris entre 5 mm ou 10 mm et 50 mm ou 150 mm.
- 22. Système selon la revendication 21, les moyens pour produire un plasma radiofréquence, comportant une torche en verre de silice, ou en matériau réfractaire, ou une torche métallique.
- 23. Système selon l'une des revendications 15 20 à 22, comportant en outre des moyens pour refroidir les moyens pour produire un plasma radiofréquence.
- 24. Système selon l'une des revendications 20 à 23, les moyens pour produire un plasma 20 radiofréquence comportant des moyens pour générer un courant à une fréquence comprise entre 50 kHz et 200 MHz.
- 25. Système selon l'une des revendications 25 20 à 23, les moyens pour produire un gaz à traiter à une pression sensiblement égale à la pression atmosphérique comportant des moyens de pompage dont la sortie est à une pression sensiblement égale à la pression atmosphérique.

21. Système selon la revendication 20, les moyens pour produire un plasma radiofréquence, comportant un tube de diamètre interne compris entre 5 mm ou 10 mm et 50 mm ou 150 mm.

5

Système selon la revendication 21, les 22. radiofréquence, plasma produire un movens pour silice, ou de une torche verre en comportant matériau réfractaire, ou une torche métallique.

10

- 23. Système selon l'une des revendications 20 à 22, comportant en outre des moyens pour refroidir les moyens pour produire un plasma radiofréquence.
- 24. Système selon l'une des revendications 20 à 23, les moyens pour produire un plasma radiofréquence comportant des moyens pour générer un courant à une fréquence comprise entre 50 kHz et 200 MHz.

20

- 25. Système selon l'une des revendications 20 à 23, les moyens pour produire un gaz à traiter à une pression sensiblement égale à la pression atmosphérique comportant des moyens de pompage dont la sortie est à une pression sensiblement égale à la pression atmosphérique.
- 26. Système selon l'une des revendications 20 à 25, comportant un élément réactif (70) pour faire 30 réagir les composés résultant du traitement par plasma (68) en vue de leur destruction.

26. Système selon l'une des revendications 20 à 25, comportant un élément réactif (70) pour faire réagir les composés résultant du traitement par plasma (68) en vue de leur destruction.

5

- 27. Dispositif réacteur comportant une chambre (62) de réaction, produisant au moins un gaz perfluoré (PFC) ou hydrofluorocarboné (HFC), et comportant en outre un système de traitement de gaz perfluoré (PFC) ou de gaz hydrofluorocarboné (HFC) selon l'une des revendications 21 à 26.
- Dispositif selon la revendication 27, 28. la chambre (62) de réaction faisant partie d'un équipement de production ou de croissance ou de gravure 15 ou de nettoyage ou de traitement d'écrans plats ou de dispositifs semi-conducteurs ou de couches minces ou de couches minces semi-conductrices ou conductrices OU diélectriques ou de substrats, ou bien étant un 20 réacteur de retrait de résines photosensibles utilisées pour la lithographie des micro-circuits, ou un réacteur de dépôt de couches minces en cours de nettoyage par plasma.
- 25 29. Equipement de production ou de croissance ou de gravure ou de nettoyage de traitement d'écran plats ou de semi-conducteurs ou de dispositifs semi-conducteurs ou de couches minces ou de substrats de semi-conducteurs, comportant :
- ou réacteur (62), de production ou de croissance ou de gravure ou de nettoyage ou de

réacteur comportant Dispositif 27. chambre (62) de réaction, produisant au moins un gaz et hydrofluorocarboné (HFC), (PFC) ou perfluoré comportant en outre un système de traitement de gaz ou de gaz hydrofluorocarboné (PFC) perfluoré selon l'une des revendications 20 à 26.

Dispositif selon la revendication 27, 28. faisant partie chambre (62)de réaction 10 la équipement de production ou de croissance ou de gravure ou de nettoyage ou de traitement d'écrans plats ou de dispositifs semi-conducteurs ou de couches minces ou de semi-conductrices ou couches minces conductrices substrats, ou bien étant diélectriques ou de 15 réacteur de retrait de résines photosensibles utilisées pour la lithographie des micro-circuits, ou un réacteur de dépôt de couches minces en cours de nettoyage par plasma.

20

25

30

- production de Equipement de ou 29. nettoyage ou de de croissance de gravure ou ou traitement d'écran plats ou de semi-conducteurs ou de dispositifs semi-conducteurs ou de couches minces ou de substrats de semi-conducteurs, comportant :
 - un réacteur (62), de production ou de croissance ou de gravure ou de nettoyage ou de traitement d'écrans plats ou de semiconducteurs ou de dispositifs semi-conducteurs ou de couches minces ou de couches minces semiconductrices ou conductrices ou diélectriques

5

traitement d'écrans plats ou de semiconducteurs ou de dispositifs semi-conducteurs ou de couches minces ou de couches minces semiconductrices ou conductrices ou diélectriques ou de substrats, ou bien un réacteur de retrait de résines photosensibles utilisées pour la lithographie des micro-circuits, ou un réacteur de dépôt couches de minces en cours de nettoyage par plasma,

- 10 des premiers moyens (64) de pompage de l'atmosphère du réacteur,
 - un système de traitement selon l'une des revendications 20 à 25.
- 15 30. Utilisation d'un plasma inductif radiofréquence pour les traitements d'épuration et/ou de dépollution d'un gaz.

ou de substrats, ou bien un réacteur de retrait de résines photosensibles utilisées pour la lithographie des micro-circuits, ou un réacteur de dépôt de couches minces en cours de nettoyage par plasma,

 des premiers moyens (64) de pompage de l'atmosphère du réacteur,

- un système de traitement selon l'une des revendications 20 à 25.

10

5

30. Utilisation d'un plasma inductif radiofréquence pour les traitements d'épuration et/ou de dépollution d'un gaz.

FIG. 1

FIG. 4

BREVET D'INVENTION **CERTIFICAT D'UTILITE**

Désignation de l'inventeur

Vos références pour ce dossier	S6350 JV
N°D'ENREGISTREMENT NATIONAL	
TITRE DE L'INVENTION	
	Procédé de traitement des gaz par des décharges haute fréquence
LE(S) DEMANDEUR(S) OU LE(S)	
MANDATAIRE(S):	
DESIGNE(NT) EN TANT	
QU'INVENTEUR(S):	
Inventeur 1	
Nom	MOISAN
Prénoms	Michel Michel
Rue	101, avenue Beloeil
Code postal et ville	H2V 2Z1 OUTREMONT, QUEBEC
Société d'appartenance	
Inventeur 2	
Nom	ROSTAING
Prénoms	Jean-Christophe
Rue	57, rue Exelmans
Code postal et ville	78000 VERSAILLES
Société d'appartenance	
Inventeur 3	
Nom	CARRE
Prénoms	Martine
Rue	9, route de Rueil
Code postal et ville	78150 LE CHESNAY
Société d'appartenance	
Inventeur 4	
Nom	TRAN
Prénoms	Khan-Chi
Rue	319, av. Morrison
Code postal et ville	H3R 1K8 MONT-ROYAL, QUEBEC
Société d'appartenance	

La loi n°78-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertés s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Signataire: FR, L'Air Liquide SA, J.Vesin Emetteur du certificat: DE, D-Trust GmbH, D-Trust for EPO 2.0

L'AIR LIQUIDE, SOCIÉTÉ ANONYME À DIRECTOIRE ET CONSEIL DE SURVEILLANCE POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GEORGES CLAUDE (Demandeur 1)

PCT/FR2004/050751