CS663 Assignment-4

Saksham Rathi, Kavya Gupta, Shravan Srinivasa Raghavan

Department of Computer Science,
Indian Institute of Technology Bombay

Question 3

Solution

Let A be a real $m \times n$ matrix. A can always be expressed as $A = U\Sigma V^T$ where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$, U, V being orthogonal matrices and Σ being a diagonal matrix with non negative values (called singular values) on the diagonal. Let $\Sigma = diag(\sigma_1, \sigma_2, \ldots, \sigma_{\min(m,n)})$. We will show that the squares of the non-zero singular values of A are the eigenvalues of either AA^T or A^TA . This is equivalent to showing that the non-zero singular values of A are the squareroots of either AA^T or A^TA because, the singular values are non-negative by definition.

Part a

We will show that the non zero singular values of A are equal to the square roots of the eigen values of either AA^T or A^TA . We define $\Sigma_m^2 = \Sigma \Sigma^T$ and $\Sigma_n^2 = \Sigma^T \Sigma$.

$$AA^{T} = (U\Sigma V^{T}) \cdot (U\Sigma V^{T})^{T}$$

$$= U\Sigma V^{T} \cdot (V\Sigma^{T}U^{T})$$

$$= U\Sigma V^{T}V\Sigma^{T}U^{T}$$

$$= U\Sigma (V^{T}V)\Sigma^{T}U^{T}$$

$$= U\Sigma I_{n}\Sigma^{T}U^{T}$$

$$= U\Sigma \Sigma^{T}U^{T}$$

$$= U\Sigma^{2}_{m}U^{T}$$

Similarly, $A^T A = V \Sigma^T \Sigma V^T = V \Sigma_n^2 V^T$.

Clearly, $\Sigma_m^2 \in R^{m \times m}$ and equals $diag(\sigma_1^2, \sigma_2^2, \dots, \sigma_m^2) = D$. Now $m = \min(m, n)$ or $n = \min(m, n)$.

Let $m = \min(m, n)$. In this case, Σ_m^2 is a diagonal matrix (D) whose entries are squares of the singular values of A. Since AA^T is a real symmetric matrix, by **spectral theorem** it has an orthogonal decomposition given by $AA^T = \mathcal{U}\mathcal{D}\mathcal{U}^T$ where \mathcal{D} is a diagonal matrix whose entries are the eigenvalues of AA^T and \mathcal{U} is an orthogonal matrix. Therefore the non zero entries of D are the eigenvalues of AA^T . Since $D = \Sigma_m^2$, the non zero entries of D are the squares of the non zero singular values of A and the squares of the any non-zero singular value of A is an eigenvalue of AA^T , we are done.

Let $n = \min(m, n)$. In this case, we deal with the diagonal matrix $D = \Sigma_n^2$ whose entries are the squares of all the singular values of A (this is because $n = \min(m, n)$). The proof is very similar to the case above. Since A^TA is a real symmetric matrix, it has an orthogonal decomposition \mathcal{VDV}^T and therefore we have the non-zero entries of D to be the eigenvalues of A^TA and following a similar argument we arrive at the conclusion that the square of any non-zero singular value of A is an eigen value of A^TA and that any eigenvalue of A^TA is the square of some non-zero singular value of A. This completes the proof.

Part b

The Frobenius norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$||A||_F = \sqrt{\left(\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2\right)}$$

For any matrix $A \in \mathbb{R}^{m \times n}$ we have

$$\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2} = \text{Tr}(AA^{T}) = \text{Tr}(A^{T}A)$$

where $\text{Tr}(M) = \sum_{i=1}^{n} M_{ii}$ for any $n \times n$ square matrix M. The trace of a matrix also has the following property,

$$Tr(AB) = Tr(BA)$$

whenever AB and BA are both square matrices for two matrices A and B. WLOG we take $m = \min(n, m)$ (in the other case we simply deal with A^TA and Σ_n^2)

$$||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n A_{ij}^2$$

$$= \operatorname{Tr}(AA^T)$$

$$= \operatorname{Tr}(U\Sigma V^T V \Sigma^T U^T))$$

$$= \operatorname{Tr}(U\Sigma_m^2 U^T)$$

$$= \operatorname{Tr}(U\Sigma_m^2)(U^T))$$

$$= \operatorname{Tr}(U^T)(U\Sigma_m^2))$$

$$= \operatorname{Tr}(U^T U\Sigma_m^2)$$

$$= \operatorname{Tr}(I_m \Sigma_m^2)$$

$$= \operatorname{Tr}(\Sigma_m^2)$$

$$= \operatorname{Tr}(\Sigma_m^2)$$

$$= \sum_{i=1}^k \sigma_i^2 \text{ (where k is the number of non-zero singular values of A)}$$

$$\Rightarrow ||A||_F^2 = \sum_{i=1}^k \sigma_i^2$$

Thus we have the square of the Frobenius norm of a matrix to equal the sum of squares of the singular values.

Part c

Part d

Given:

$$A \in \mathbb{R}^{m \times n}$$
, $m \le n$
 $P = A^T A$
 $Q = AA^T$

A few results and definitions we will use:

Definition 1. A matrix $M \in \mathbb{R}^{n \times n}$ is said to be positive semi-definite if $\forall \vec{x} \in \mathbb{R}^n$,

$$\vec{v}^T M \vec{v} \geqslant 0$$

Theorem 1 (Spectral Theorem). Any real symmetric matrix $A \in \mathbb{R}^{n \times n}$ is orthogonally diagonalizable. That is there exists real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$, $U \in \mathbb{R}^{n \times n}$ such that $A = UDU^T$ where $D = diag(\lambda_1, \lambda_2, \ldots, \lambda_n)$, $U = [\vec{u}_1\vec{u}_2 \cdots \vec{u}_n]$ with $A\vec{u}_i = \lambda_i \vec{u}_i \ \forall i \in [1, n]$ and $UU^T = U^TU = I_n$

Lemma 1. P and Q are positive semi-definite (defintion 1) and their eigenvalues are non-negative.

Proof. We will first show that *P* is positive semi-definite and then we will show that the eigen values of *P* are all non-negative. The proof for *Q* is similar.

Let $\vec{x} \in \mathbb{R}^n$.

$$\vec{x}^T P \vec{x} = \vec{x}^T (A^T A) \vec{x}$$

$$= \vec{x}^T A^T A \vec{x}$$

$$= (\vec{x}^T A^T) (A \vec{x})$$

$$= (A \vec{x})^T (A \vec{x})$$

$$= \vec{y}^T \vec{y} \text{ where } \vec{y} \in \mathbb{R}^n \vec{y} = A \vec{x}$$

$$= ||\vec{y}||^2 \geqslant 0$$

$$\Rightarrow \vec{x}^T P \vec{x} \geqslant 0$$
(1)

Let $\vec{u} \in R^n/\{\vec{0}\}$ be an eigenvector of P with corresponding eigenvalue $\lambda \in \mathbb{C}$. Consider the expression $\vec{u}^T P \vec{u}$. From equation 1 we know that $\vec{u}^T P \vec{u} \ge 0$. Therefore we have,

$$\vec{u}^T P \vec{u} = \vec{u}^T (P \vec{u}) \geqslant 0$$

$$= \vec{u}^T (\lambda \vec{u}) \geqslant 0$$

$$= \lambda \vec{u}^T \vec{u} \geqslant 0$$

$$= \lambda ||\vec{u}||^2 \geqslant 0$$

$$\Rightarrow \lambda ||\vec{u}||^2 \geqslant 0$$

$$\Rightarrow \lambda \geqslant 0$$
(2)

Therefore we have eigenvalues of P to be non-negative. The proofs hold for Q as well, just replace \vec{x} in equation 1 by $\vec{y} \in \mathbb{R}^m$ and \vec{u} in equation 2 by $\vec{v} \in \mathbb{R}^m$.

Lemma 2. The following are true regarding the eigenvectors of P and Q:

- 1. If $\vec{u} \in \mathbb{R}^n$ is an eigenvector of P with eigenvalue λ then $A\vec{u}$ is an eigenvector of Q with eigenvalue λ .
- 2. If $\vec{v} \in \mathbb{R}^m$ is an eigenvector of Q with eigenvalue μ , then $A^T\vec{v}$ is an eigenvector of P with eigenvalue μ .

Proof. Since $\vec{u} \in \mathbb{R}^n$ is an eigenvector of P with eigenvalue λ we have,

$$P\vec{u} = \lambda \vec{u}$$

$$\Rightarrow P\vec{u} = (A^T A)\vec{u} = \lambda \vec{u}$$

$$\Rightarrow (A^T)(A\vec{u}) = \lambda \vec{u}$$

$$\Rightarrow A\left(A^T(A\vec{u})\right) = A\left(\lambda \vec{u}\right) \text{ (pre-multiplying both LHS and RHS by a non-null matrix } A\text{)}$$

$$\Rightarrow (AA^T)(A\vec{u}) = \lambda(A\vec{u})$$

$$\Rightarrow (Q)(A\vec{u}) = \lambda(A\vec{u})$$

$$\Rightarrow Q(A\vec{u}) = \lambda(A\vec{u})$$

$$\Rightarrow Q(A\vec{u}) = \lambda(A\vec{u})$$
(3)

From equation 3 we have that for every \vec{u} that is eigenvector of P, the vector $A\vec{u}$ is an eigenvector of Q with the same eigenvalue. Now we prove the second part of the lemma whose proof is very similar to what we saw above.

Since $\vec{v} \in \mathbb{R}^m$ is an eigenvector of Q with eigenvalue μ we have,

$$Q\vec{v} = \mu\vec{v}$$

$$\Rightarrow Q\vec{v} = (AA^T)\vec{v} = \mu\vec{v}$$

$$\Rightarrow (A)(A^T\vec{v}) = \mu\vec{v}$$

$$\Rightarrow A^T \left(A(A^T\vec{v})\right) = A^T (\mu\vec{v}) \text{ (pre-multiplying both LHS and RHS by a non-null matrix } A^T)$$

$$\Rightarrow (A^TA)(A^T\vec{v}) = \mu(A^T\vec{v})$$

$$\Rightarrow (P)(A^T\vec{v}) = \mu(A^T\vec{v})$$

$$\Rightarrow P(A^T\vec{v}) = \mu(A^T\vec{v})$$

$$\Rightarrow P(A^T\vec{v}) = \mu(A^T\vec{v})$$
(4)

Equations 3 and 4 complete the proof.

Lemma 3. Let $\vec{v}_i \in \mathbb{R}^m$ be an eigenvector of Q. Define $u_i \triangleq \frac{A^T \vec{v}_i}{||A^T \vec{v}_i||_2}$. There exists $\gamma_i \geqslant 0$ such that $A\vec{u}_i = \gamma_i \vec{v}_i$

Proof. Let $\vec{v}_i \in \mathbb{R}^m$ be an eigenvector of Q with an eigenvalue μ . From lemma 1 we know that

eigenvalues of *P* and *Q* are non-negative, therefore we have $\mu_i \ge 0$. Consider the expression $A\vec{u}_i$,

$$A\vec{u}_{i} = A\left(\frac{A^{T}\vec{v}_{i}}{||A^{T}\vec{v}_{i}||_{2}}\right)$$

$$= \frac{A(A^{T}\vec{v}_{i})}{||A^{T}\vec{v}_{i}||_{2}}$$

$$= \frac{(AA^{T})\vec{v}_{i}}{||A^{T}\vec{v}_{i}||_{2}}$$

$$= \frac{Q\vec{v}_{i}}{||A^{T}\vec{v}_{i}||_{2}}$$

$$= \frac{\mu_{i}\vec{v}_{i}}{||A^{T}\vec{v}_{i}||_{2}}$$

$$= \left(\frac{\mu_{i}}{||A^{T}\vec{v}_{i}||_{2}}\right)\vec{v}_{i}$$

$$= \gamma_{i}\vec{v}_{i}$$
(5)

That is, there exists
$$\gamma_i = \left(\frac{\mu_i}{||A^T \vec{v}_i||_2}\right) \geqslant 0$$
 such that $A \vec{u}_i = \gamma_i \vec{v}_i$

Theorem 2 (Singular Value Decomposition). Let \vec{v}_i, \vec{u}_i and γ_i be defined as in lemma 3. Let $U = [\vec{v}_1 | \vec{v}_2 | \cdots | \vec{v}_m]$, $V = [\vec{u}_1 | \vec{u}_2 | \cdots | \vec{u}_m]$ and $\Gamma = diag(\gamma_1, \gamma_2, \ldots, \gamma_m)$ where U and Γ are both $m \times m$ matrices and V is an $n \times m$ matrix. Then

$$A = U\Gamma V^T$$

Proof. Two matrices A and B are equal only if they the same dimensions and the values at the corresponding indices for every pair of (i,j) are equal ie, $\forall i \in [1,m], \forall j \in [1,n]$, if $A_{ij} = B_{ij}$ then A = B and vice versa.

As P and Q are real symmetric matrices we can obtain an orthonormal basis for \mathbb{R}^n and \mathbb{R}^m respectively that are the eigenvectors of P and Q respectively (theorem 1).

Since the columns of U and V are the orthonormal eigenvectors of Q and P respectively, we have $UU^T = U^TU = I_m$ and $V^TV = I_m$.

Consider the expression AV.

$$AV = A \left[\vec{u}_{1} | \vec{u}_{2} | \cdots | \vec{u}_{m} \right]$$

$$\Rightarrow AV = \left[A \vec{u}_{1} | A \vec{u}_{2} | \cdots | A \vec{u}_{m} \right]$$

$$= \left[\gamma_{1} \vec{v}_{1} | \gamma_{2} \vec{v}_{2} | \cdots | \gamma_{m} \vec{v}_{m} \right] \text{ from lemma 3}$$

$$= \left[\vec{v}_{1} | \vec{v}_{2} | \cdots | \vec{v}_{m} \right] \Gamma$$

$$= U\Gamma$$

$$\Rightarrow AV = U\Gamma$$

$$\Rightarrow AVV^{T} = \text{ if this is somehow equal to } I_{n} \text{ then we are done.}$$
(6)