

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Data: 15 stycznia Czas pracy: 120 minut	2015 r.

Informacje dla ucznia

- **1.** Na stronie tytułowej arkusza, w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 10 stron i 14 zadań.
- 3. Czytaj uważnie wszystkie teksty i zadania.
- 4. Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. W zadaniach od 2. do 9. postaw "*" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **6.** Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem **3** i zaznacz inną odpowiedź znakiem *****.
- **7.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **8.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane (chyba, że wskażesz w nim fragmenty, które należy ocenić).
- 9. Nie wolno Ci korzystać z kalkulatora.

Liczba punktów możliwych do uzyskania: 60 Liczba punktów umożliwiająca kwalifikację do kolejnego etapu: 51

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Razem
Liczba punktów															
możliwych	18	3	3	3	3	3	3	3	3	4	4	4	3	3	60
do zdobycia															
Liczba punktów															
uzyskanych															
przez uczestnika															
konkursu															

Podpisy przewodniczącego i członków komisji:

1.	Przewodniczący
2.	Członek
3.	Członek
1	Członek -

Zadanie 1. (0-18)

Rozwiąż krzyżówkę, wpisując w odpowiednie miejsca liczby opisane w pytaniach. Zaznaczone pola rozwiązanej krzyżówki zawierają kolejne cyfry rozwinięcia dziesiętnego liczby $\sqrt{2}$.

- a) Liczba $1\frac{1}{8}$ w postaci dziesiętnej.
- b) Liczba nienależąca do dziedziny funkcji $f(x) = \frac{1}{\sqrt[3]{x} 4}$.
- c) Wykładnik *n* w wyrażeniu $9^n = \frac{3^{30}}{3^5 \cdot 3^5}$.
- d) Pole powierzchni bocznej walca powstałego przez obrót prostokąta o bokach $\frac{10}{\pi}$ i 20 wokół jednego z tych boków.
- e) Wartość wyrażenia: $14-5:9\cdot27+3$.
- f) Długość przekątnej kwadratu o boku $5\sqrt{2}$.
- g) Liczba, której 45% wynosi 135.
- h) Czwarta potęga odwrotności liczby $\frac{1}{4}$.
- i) Miejsce zerowe funkcji $y = -\frac{1}{7}x + 8$.
- j) Kwadrat najmniejszej dwucyfrowej liczby pierwszej
- k) Iloczyn dodatnich pierwiastków równania: $(x^3 27)(x^2 4)(x 5) = 0$
- Liczba gramów tłuszczu w 1000 g mleka z zawartością 7,5% tłuszczu.
- m) Wartość wyrażenia $\frac{\sqrt{330}\sqrt{30}}{\sqrt{11}}$.
- n) Najmniejszy wspólny mianownik ułamków: $\frac{1}{8}$, $\frac{1}{10}$, $\frac{1}{12}$.
- o) Najmniejsza ujemna liczba dwucyfrowa.
- p) Największy wspólny dzielnik liczb: 30, 105, 210.
- q) Wartość ilorazu: $\frac{1 \text{ [km]}}{1 \text{ [m]}}$.
- r) Liczba podzielna przez 18 spośród liczb: 1234, 3456, 5679.

W zadaniach od 2. do 9. oceń, czy podane zdania są prawdziwe, czy fałszywe. Zaznacz właściwą odpowiedź.
Zadanie 2. (0-3)

Większa koparka kopie rów w ciągu 6 godzin, a mniejsza koparka tę samą pracę wykona w ciągu 9 godzin.

- Obie koparki razem wykonają tę pracę w ciągu 3,6 godziny.
 - □ PRAWDA □ FAŁSZ
- II. Jeżeli większa koparka kopała przez 2 godziny, to mniejsza koparka dokończy wykop w ciągu 6 godzin. □ PRAWDA □ FAŁSZ
- Jeżeli mniejsza koparka wykopała $\frac{1}{3}$ rowu, to większa koparka III. dokończy wykop w ciągu 4 godzin. □ PRAWDA □ FAŁSZ

Zadanie 3. (0-3)

Liczba naturalna mająca dokładnie trzy dzielniki

- I. jest zawsze iloczynem trzech liczb pierwszych.
 - \square PRAWDA □ FAŁSZ
- II. jest zawsze liczbą nieparzystą. □ PRAWDA □ FAŁSZ
- III. jest zawsze kwadratem liczby pierwszej. □ PRAWDA □ FAŁSZ

Zadanie 4. (0-3)

Maksimum liczb a i b jest a, gdy $a \ge b$ lub b, gdy $b \ge a$ i oznaczamy symbolem max(a, b).

- $max(-0,00009; -0,0001) = -0,00009 \square PRAWDA$ I. □ FAŁSZ
- Dla dowolnej liczby $a \max(a, a^2) = a^2 \square PRAWDA$ □ FAŁSZ II.
- Dla dowolnej liczby $a \max \left(a, \frac{1}{a} \right) = a \quad \Box \text{ PRAWDA} \quad \Box \text{ FAŁSZ}$ III.

Zadanie 5. (0-3)

Trasa autobusu dalekobieżnego składa się z trzech odcinków. Pierwszy odcinek autobus pokonuje w 40 minut, drugi – w 0,75 godziny, a trzeci – w 2 godziny. Stosunek dróg na kolejnych odcinkach wynosi 2:3:7.

- I. Nie można obliczyć dokładnie średniej prędkości na poszczególnych odcinkach. \square PRAWDA □ FAŁSZ
- Na pierwszym odcinku autobus miał z największą średnią prędkość. II. □ PRAWDA □ FAŁSZ
- III. Na trzecim odcinku autobus miał najmniejszą średnią prędkość.
 - \square PRAWDA □ FAŁSZ

Zadanie 6. (0-3)

Funkcja f przyporządkowuje każdej liczbie rzeczywistej x największą liczbę całkowitą nie większą od x.

 \square PRAWDA □ FAŁSZ

 \square PRAWDA □ FAŁSZ

 $f(1) = f\left(1\frac{1}{2}\right)$ $f(-3) = f\left(\sqrt[3]{-10}\right)$ $f\left(2\sqrt{2}\right) + f\left(-\sqrt{7}\right) = 1$

□ PRAWDA □ FAŁSZ

Zadanie 7. (0-3)

Do puszki w kształcie walca włożono kulę o promieniu 6 cm. Kula ta dotyka obu podstaw walca i jego powierzchni bocznej na całym obwodzie.

I. Objętość walca wynosi 432π cm³.

□ PRAWDA □ FAŁSZ

II. W puszce z kulą zmieści się jeszcze co najmniej pół litra wody.

□ PRAWDA □ FAŁSZ

III. Jeżeli do walca zamiast kuli włożymy stożek o promieniu podstawy i wysokości takich samych jak w walcu, to pole powierzchni bocznej tego stożka jest równe $36\sqrt{5}\pi\,\mathrm{cm}^2$.

□ PRAWDA □ FAŁSZ

Zadanie 8. (0-3)

Kasia i Basia wyjmowały losowo, bez zwracania piłeczki z pudełka. W pudełku tym były 4 piłeczki zielone, 5 żółtych i 6 niebieskich. Kasia wyjęła piłeczkę niebieską, a po niej piłeczkę losowała Basia.

I. Prawdopodobieństwo wyjęcia przez Basię piłeczki żółtej jest takie samo jak prawdopodobieństwo wyjęcia niebieskiej.

□ PRAWDA □ FAŁSZ

- II. Prawdopodobieństwo wyjęcia przez Basię piłeczki zielonej jest równe $\frac{4}{15}$. \square PRAWDA \square FAŁSZ
- III. Jeżeli Basia wyjęła piłeczkę żółtą i sięgnęła do pudełka jeszcze raz, to prawdopodobieństwo, że wylosuje drugą żółtą piłeczkę jest takie samo jak prawdopodobieństwo wyjęcia piłeczki zielonej.

□ PRAWDA □ FAŁSZ

Zadanie 9. (0-3)

We wzorze na siłę grawitacji $F_G = G \frac{m_1 \cdot m_2}{r^2}$ G jest stałą grawitacji,

- a poszczególne zmienne oznaczają odpowiednio: m_1 , m_2 masy oddziaływujących grawitacyjnie ciał, r odległość między środkami ciał.
 - I. Wartość zmiennej r obliczymy ze wzoru postaci: $r = \sqrt{\frac{Gm_1m_2}{F_G}}$

□ PRAWDA □ FAŁSZ

II. Jeżeli masy ciał są równe, to wzór przyjmuje postać: $F_G = G \frac{2m}{r^2}$

□ PRAWDA □ FAŁSZ

III. Wartość siły grawitacji F_G rośnie wraz z odległością r ciał.

□ PRAWDA □ FAŁSZ

W trójkącie równobocznym ABC zaznaczono punkt P, który odległy jest od boków trójkąta o $5\sqrt{3}$, $3\sqrt{3}$, $2\sqrt{3}$. Oblicz pole tego trójkąta.

Zadanie 11. (0-4)

BRUDNOPIS

Ojciec jest o 20 lat starszy od syna. Za 5 lat ojciec będzie n razy starszy od syna (n jest liczbą naturalną). Ile lat może mieć obecnie ojciec, a ile syn? Podaj wszystkie możliwości. Odpowiedź uzasadnij.

Zadanie 12. (0-4)

W trapezie ABCD przekątne AC i BD przecinają się w punkcie O. Oblicz pole trapezu ABCD, jeśli $P_{\Delta ABO}=20$, a $P_{\Delta CDO}=5$.

704	lanie	13	M	3)
<i>L</i> :a0	anie	1.7.	W.	71

Zadanie 13. (0-3) Wykaż, że liczba $36^{51} + 9^{50} - 6^{100} + 3^{102}$ jest podzielna przez 5.

Zadanie 14. (0-3)

Jeden bok prostokąta zwiększono o p%, a drugi zmniejszono o p%. Otrzymano prostokąt, którego pole stanowi 75% pola pierwotnego prostokąta. Oblicz, o jaki procent zmieniono wymiary boków.