

Efficient Hierarchical Domain Adaptation for Pretrained Language Models

Alexandra Chronopoulou, Matthew E. Peters, Jesse Dodge

NAACL 2022

Background

- (Last year) PhD student in LMU Munich, Germany, advised by Alex Fraser
- Interested in low-resource MT, parameter-efficient transfer learning, domain adaptation
- This project was the result of a research internship with the AllenNLP team of Allen Al
- Currently applied scientist intern in Amazon (AWS) AI, working on speech translation

Presentation outline

- Motivation
- Proposed Approach
- Experiments
 - Few-domain setting
 - Many-domain setting
- Recap

Motivation

- Proposed Approach
- Experiments
 - Few-domain setting
 - Many-domain setting
- Recap

How can a PLM adapt to a new domain?

train all parameters on domain Di train all parameters on domain Dj train all parameters on domain Dk train all parameters on domain DI

Why is this problematic?

Why is this problematic?

Why is this problematic?

Computationally expensive!

- Han and Eisenstein: Unsupervised Domain Adaptation of Contextualized Embeddings for Sequence Labeling, EMNLP 2019.
- Gururangan et al.: Don't Stop Pretraining: Adapt Language Models to Domains and Tasks, ACL 2020.
- Maronikolakis and Schutze: Multidomain Pretrained Language Models for Green NLP, AdaptNLP 2021.

Efficient alternative: instead of fine-tuning all the layers of the PLM, add modular components (like mixture-of-experts) to model specific domains

- Lepihkin et al.: GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding, ICLR 2021
- Gururangan et al.: DEMix Layers: Disentangling Domains for Modular Language Modeling, NAACL 2022

Does this solve the problem?

Does this solve the problem?

• Ignores overlap between domains

Does this solve the problem?

• Ignores overlap between domains

• Ignores granularities of domains

- Motivation
- Proposed Approach
- Experiments
 - Few-domain setting
 - Many-domain setting
- Recap

Idea: We represent domains with a hierarchical structure.

Idea: We represent domains with a hierarchical structure.

frontiersin.org journals.plos.org booking.com yelp.com

frontiersin.org journals.plos.org booking.com yelp.com

Our approach:

- Automatically clusters domains in a tree using PLM representations
- Specializes a PLM in N domains efficiently
- Combines multiple paths at inference time

- We add this hierarchical structure to a frozen PLM
- Each node is an adapter layer

Training

• Mini-batch from *frontiersin.org*, (representation h_i)

- *h_i* is input to adapters 1, 5, 7
- Outputs are averaged and passed to next layer

Training

- Mini-batch from *journals*, (representation h_i)
- h_i is input to adapters 2, 5, 7
- Outputs are averaged and passed to next layer

frontiersin.org journals.plos.org booking.com yelp.com

Training

• Mini-batch from *booking.com*, (representation h_i)

- h_i is input to adapters 3, 6, 7
- Outputs are averaged and passed to next layer

frontiersin.org journals.plos.org booking.com yelp.com

Training

- Mini-batch from *yelp.com*, (representation h_i)
- h_i is input to adapters 4, 6, 7
- Outputs are averaged and passed to next layer

Evaluation (which path?)

frontiersin.org journals.plos.org booking.com yelp.com

Evaluation (which path?)

In-domain

frontiersin.org journals.plos.org

booking.com

yelp.com

Evaluation (which path?)

In-domain
 Same as training

for *frontiersin.org*, the path that leads to node assigned to this domain

Evaluation (which path?)

Out-of-domain

Evaluation (which path?)

 Out-of-domain Not straightforward, choose based on domain similarity

frontiersin.org journals.plos.org booking.com yelp.com

Evaluation (which path?)

Out-of-domain
 Not straightforward,
 choose based on
 domain similarity

- Motivation
- Proposed Approach
- Experiments
 - Few-domain setting
 - Many-domain setting
- Recap

Experiments

- Few-domain setting: manually created tree
- Many-domain setting: automatically created tree

What do we compare?

- •Hierarchical model: GPT-2 (frozen) with a hierarchical structure of adapters
- Baselines
 - OSingle adapters: 1 adapter / domain
 - oMulti-domain adapters: 1 adapter for all domains (dense)

- Motivation
- Proposed Approach
- Experiments
 - Few-domain setting
 - Many-domain setting
- Recap

Few-domain setting

Data: text from 4 websites of C4

- 2 contain scientific articles
- 2 contain reviews
- equal amounts of data

Few-domain setting - In-domain evaluation

Does it work?

Few-domain setting - In-domain evaluation

Which single path through the tree should we activate?

	1 path			2 paths		
	journals	frontiers	booking	yelp	science	reviews
ncbi	17.6	18.7	34.8	26.0	17.3	26.3
link.springer	23.3	23.3	37.0	33.1	22.6	31.8
scholars.duke	20.7	20.7	35.5	29.4	19.9	28.8
techcrunch	27.7	27.9	34.8	32.8	27.1	29.4
medium	29.4	29.4	35.9	36.2	28.5	30.6
tripadvisor	47.9	47.9	37.0	38.1	45.6	26.0
lonelyplanet	39.6	40.0	25.5	38.9	38.5	25.3
average	29.5	29.7	34.4	33.5	28.5	28.3

Which single path through the tree should we activate?

	1 path				2 paths	
	journals	frontiers	booking	yelp	science	reviews
ncbi	17.6	18.7	34.8	26.0	17.3	26.3
link.springer	23.3	23.3	37.0	33.1	22.6	31.8
scholars.duke	20.7	20.7	35.5	29.4	19.9	28.8
techcrunch	27.7	27.9	34.8	32.8	27.1	29.4
medium	29.4	29.4	35.9	36.2	28.5	30.6
tripadvisor	47.9	47.9	37.0	38.1	45.6	26.0
lonelyplanet	39.6	40.0	25.5	38.9	38.5	25.3
average	29.5	29.7	34.4	33.5	28.5	28.3

For out-of domain *medium*: use path to journals

Which single path through the tree should we activate?

	1 path				2 paths	
	journals	frontiers	booking	yelp	science	reviews
ncbi	17.6	18.7	34.8	26.0	17.3	26.3
link.springer	23.3	23.3	37.0	33.1	22.6	31.8
scholars.duke	20.7	20.7	35.5	29.4	19.9	28.8
techcrunch	27.7	27.9	34.8	32.8	27.1	29.4
medium	29.4	29.4	35.9	36.2	28.5	30.6
tripadvisor	47.9	47.9	37.0	38.1	45.6	26.0
lonelyplanet	39.6	40.0	25.5	38.9	38.5	25.3
average	29.5	29.7	34.4	33.5	28.5	28.3

For out-of domain *tripadvisor:* use path to booking

Which 2 paths through the tree should we activate?

	1 path				2 p	aths
	journals	frontiers	booking	yelp	science	reviews
ncbi	17.6	18.7	34.8	26.0	17.3	26.3
link.springer	23.3	23.3	37.0	33.1	22.6	31.8
scholars.duke	20.7	20.7	35.5	29.4	19.9	28.8
techcrunch	27.7	27.9	34.8	32.8	27.1	29.4
medium	29.4	29.4	35.9	36.2	28.5	30.6
tripadvisor	47.9	47.9	37.0	38.1	45.6	26.0
lonelyplanet	39.6	40.0	25.5	38.9	38.5	25.3
average	29.5	29.7	34.4	33.5	28.5	28.3

For held-out academic websites (like link.springer, scholars.duke): scientific articles paths

Which 2 paths through the tree should we activate?

	1 path				2 p	aths
	journals	frontiers	booking	yelp	science	reviews
ncbi	17.6	18.7	34.8	26.0	17.3	26.3
link.springer	23.3	23.3	37.0	33.1	22.6	31.8
scholars.duke	20.7	20.7	35.5	29.4	19.9	28.8
techcrunch	27.7	27.9	34.8	32.8	27.1	29.4
medium	29.4	29.4	35.9	36.2	28.5	30.6
tripadvisor	47.9	47.9	37.0	38.1	45.6	26.0
lonelyplanet	39.6	40.0	25.5	38.9	38.5	25.3
average	29.5	29.7	34.4	33.5	28.5	28.3

For tripadvisor and lonelyplanet: reviews paths

Which 2 paths through the tree should we activate?

	1 path				2 paths	
	journals	frontiers	booking	yelp	science	reviews
ncbi	17.6	18.7	34.8	26.0	17.3	26.3
link.springer	23.3	23.3	37.0	33.1	22.6	31.8
scholars.duke	20.7	20.7	35.5	29.4	19.9	28.8
techcrunch	27.7	27.9	34.8	32.8	27.1	29.4
medium	29.4	29.4	35.9	36.2	28.5	30.6
tripadvisor	47.9	47.9	37.0	38.1	45.6	26.0
lonelyplanet	39.6	40.0	25.5	38.9	38.5	25.3
average	29.5	29.7	34.4	33.5	28.5	28.3

No a priori criterion to choose !!!

How can we automatically find the best path(s)?

- Motivation
- Proposed Approach
- Experiments
 - Few-domain setting
 - Many-domain setting
- Recap

Many-domain setting

How do we infer the hierarchy?

- GPT-2 representations of 30 websites
- Fit a Gaussian Mixture Model (GMM) with 30 components
- Hierarchical clustering of the GMM using symmetrized KL divergence as a distance metric

In-domain results

Main results: our approach consistently outperforms the baselines (on every domain)

Out-of-domain results

- We use the already fitted GMM to assign the probability of N sequences from a held-out website belonging to each cluster
- For each held-out domain, we use the path to the training domain (cluster) where the majority of sequences gets mapped to!
- No more parameters need to be trained!

Out-of-domain results

Main results:

when we activate 2 paths in the tree, we get better results than the baselines.

	GPT-2	multi- domain	hierarchy (1 path)	hierarchy (2 paths)
tripadvisor.com	40.4	34.8	35.9	33.8
dailystar.co.uk	20.7	13.9	12.2	12.2
techcrunch.com	27.7	21.5	21.8	20.1
scholars.duke.edu	22.6	20.7	20.3	20.3
booking.com	29.7	22.9	24.5	22.0
github.com	32.8	30.3	30.6	30.6
average (38)	26.8	22.3	23.0	21.7

Out-of-domain results

Paths used for outof-domain evaluation

	Path 1	Path 2
tripadvisor.com	insiderpages	lonelyplanet
dailystar.co.uk	express.co.uk	dailymail.co.uk
techcrunch.com	wired	entrepreneur
scholars.duke.edu	link.springer	frontiersin
booking.com	insiderpages	lonelyplanet
github.com	oreilly	answers.sap

- Motivation
- Proposed Approach
- Experiments
 - Few-domain setting
 - Many-domain setting
- Recap

Recap

- We presented an approach that encodes the relations between domains using a hierarchical structure
- In-domain: across-the-board improvements
- Out-of-domain: better when activating 2 paths in the tree
- Efficiency: we train adapters added on top of a PLM sparsely

Thank you!

Adapter Layer

- Project hidden vector of i-th layer (hi) of dimension d to a dimension m (m < d)
- Non-linear activation (ReLU)
- Project back to d + residual connection

- GMM fitted on 4 domains-websites
- We do the same with 30 domains, then based on a distance metric find out their hierarchical structure (agglomerative clustering)

KL-divergence

$$D_{KL}(\mathcal{N}_0 || \mathcal{N}_1) = \frac{1}{2} \text{tr} \left(\Sigma_1^{-1} \Sigma_0) + \ln \left(\frac{\det \Sigma_1}{\det \Sigma_0} \right) \right) + \frac{1}{2} \left((\mu_1 - \mu_0)^T \Sigma_1^{-1} (\mu_1 - \mu_0) - N \right)$$

Averaged KL-divergence

$$D_{KLsym}(\mathcal{N}_{0}, \mathcal{N}_{1}) = \frac{1}{2} \left(D_{KL}(\mathcal{N}_{0} || \mathcal{N}_{1}) + D_{KL}(\mathcal{N}_{1} || \mathcal{N}_{0}) \right)$$

Adapter Layer

- 2x inserted in each Transformer (see right Figure, Houlsby et al., 2019)
- Following approaches only used 1x Transformer layer (Bapna and Firat, 2019)
- The (pretrained) Transformer stays frozen, only the adapters are fine-tuned

