

e. Cadenas sobre $\Sigma=\{0,1\}$ que, interpretadas como un número binario, sean congruentes a cero módulo $5.^1$

Agregor olgo of finol enbuen Um . 2. O en 2 1 en (.2) +1. Condo entodor en Um restor O enimiel y finol

Ejercicio 7. Dar un autómata finito determinístico que acepte todas las cadenas sobre el alfabeto $\{a,b,c\}$ que cumplan simultáneamente las siguientes reglas:

- a. Cada a debe estar seguida inmediatamente de una b.
- b. La cantidad de b debe ser par.
- c. La cadena no debe terminar en c.

Ejercicio 8. Decimos que una subcadena de otra cadena es un grupo de repetición (o meseta) si todos sus símbolos son iguales y ninguno de los símbolos adyacentes a ella coincide con los que la forman. Por ejemplo, en la palabra aaabbbbaaa hay tres grupos de repetición (aaa, bb bb y aaa).

Se considera el lenguaje $\mathcal L$ sobre el alfabeto $\{a,b\}$ formado por las cadenas en las que, si existen grupos de repetición, su longitud es alternativamente par e impar. Es decir, la palabra aabbbaaaab pertenece al lenguaje $\mathcal L$, ya que esta formada por cuatro grupos de repetición de longitudes 2, 3, 4 y 1, mientras que la palabra bbaa no pertenece, al estar formada por dos grupos de repetición de longitudes 2 y 2.

Dar un autómata finito que acepte \mathcal{L} .

