MTH 208 Exploratory Data Analysis

Lesson 03: Descriptive Statistics & Data Summarization

Ying-Ju Tessa Chen, PhD

Associate Professor Department of Mathematics University of Dayton

Learning Objectives

- Measures of Central Tendency: mean, median, mode
- Measures of Spread: range, variance, standard deviation
- Non-Parametric Statistics and Their Significance
- Skewness and Kurtosis
- Measures of Relationship: correlation and covariance
- Interpreting These Statistics in EDA

Measures of Central Tendency

Central tendency measures are used to identify the center of a data set or its typical value. These measures include the mean, median, and mode, each providing a different perspective on the central value of the data.

Mean (Arithmetic Average)

- Definition: The mean is the sum of all values in a dataset divided by the number of values.
- Calculation: Mean = (Sum of all values) / (Number of values)
- Usage: Appropriate for interval and ratio data, and when the data does not have extreme outliers.
- Example: The average height of a group of people.

Measures of Central Tendency (Continued)

Median (Middle Value)

- Definition: The median is the middle value in a dataset when it is ordered from smallest to largest. For an even number of observations, it is the average of the two middle numbers.
- Calculation: Arrange data in ascending order and identify the middle value.
- Usage: Useful for ordinal data or when the dataset contains outliers or is skewed, as it is not affected by extreme values.
- Example: The middle income in a list of incomes for a region.

Mode (Most Frequent Value)

- Definition: The mode is the value that appears most frequently in a dataset.
- Usage: It can be used for any level of measurement (nominal, ordinal, interval, ratio), and is particularly useful for categorical data.
- Example: The most common eye color in a sample of people.

Measures of Central Tendency (Continued)

Interpreting Central Tendency in EDA

- Insights: These measures help in understanding the general trend or typical value of the data.
- Contextual Use: Depending on the nature of the data and its distribution, one measure may be more appropriate than the others.
- Combination with Other Measures: Often used alongside measures of spread (like standard deviation) to provide a more complete picture of the data.

Measures of spread

Measures of spread provide insights into the variability or dispersion within a dataset. They help to understand how much individual data points differ from the central tendency. Key measures include the range, variance, and standard deviation.

Range

- Definition: The range is the difference between the highest and lowest values in a dataset.
- Calculation: Range = Maximum value Minimum value
- Usage: Simplest measure of spread; however, it is sensitive to outliers.
 - Example: In a dataset of temperatures over a week, the range is the difference between the highest and lowest recorded temperatures.

Measures of spread (Continued)

Variance

- Definition: Variance measures the average squared deviation of each number from the mean of the dataset. It gives an idea of how widely the data are spread.
- Calculation: The "average" of the squared differences from the Mean.

$$\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$$

where X_1, X_2, \ldots, X_n are individual observations and \bar{X} is the sample mean.

- Usage: More comprehensive than range; used for interval and ratio data. Higher variance indicates greater spread in the data.
- Example: Variance in the test scores of a class.

Measures of spread (Continued)

Standard Deviation

- Definition: Standard deviation is the square root of the variance. It is a measure of the amount of variation or dispersion in a set of values.
- Calculation: Square root of the variance.
- Usage: Widely used because it is in the same unit as the data, making it more interpretable.
- Example: Standard deviation in heights within a population.

Interpreting Spread in EDA

- Contextual Importance: Helps in understanding the reliability of the mean. A small spread indicates that the data points tend to be close to the mean, while a large spread indicates more variability.
- Skewness and Outliers: These measures can indicate if the data is skewed or if there are outliers affecting the data's spread.
- Comparative Analysis: Often used in conjunction with central tendency measures for comprehensive data analysis.

Case Study I

The histogram below shows the City Median Rental Price for a one bedroom home on Zillow in December, 2019. Comment on the distribution of the rental price and discuss the appropriate measures in terms of central tendency and spread.

Case Study II

The following histograms show the distribution of IQ score and cumulative grade point average from 100 college students respectively. (Source: College Placement Dataset) Comment on the distribution of each histogram and discuss the appropriate measures in terms of central tendency and spread.

Non-parametric Statistics and Their Significance

Non-parametric statistics are a key area of statistics used for analyzing data that does not assume a specific distribution (like normal distribution). These methods are especially useful when dealing with non-normal datasets or when the data violate the assumptions required for parametric tests.

Key Concepts of Non-Parametric Statistics

- Distribution-Free: Non-parametric methods do not require the data to follow any specific distribution.
- Types of Data: Particularly useful for ordinal data or data on a nominal scale. Also applicable to interval or ratio data, especially when it's not normally distributed.
- Applications: Commonly used in situations with small sample sizes, heavily skewed data, or data with outliers.

Non-parametric Statistics and Their Significance (Continued)

Examples of Non-Parametric Methods

- Mann-Whitney U Test: Used to compare differences between two independent groups when the dependent variable is ordinal or continuous but not normally distributed.
- Kruskal-Wallis Test: An extension of the Mann-Whitney U Test for comparing more than two groups.
- Spearman's Rank Correlation Coefficient: Used to measure the strength and direction of association between two ranked variables.

Non-parametric Statistics and Their Significance (Continued)

Significance in EDA

- Flexibility: Offers a robust alternative to parametric methods, especially useful in exploratory data analysis where data may not meet parametric assumptions.
- Handling Skewed Data: Ideal for analyzing skewed datasets or datasets with outliers where mean and standard deviation might not be appropriate.
- Insights into Data Structure: Helps in understanding the underlying structure of the data, which might not be apparent with parametric methods.

Skewness and Kurtosis

Introduction to Skewness

- Definition: Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean. It indicates whether the observations in a dataset are concentrated on one side.
- Types:
 - Positive Skew: The tail on the right side of the distribution is longer or fatter than the left side.
 - Negative Skew: The tail on the left side is longer or fatter than the right side.
- Interpretation:
 - Skewness close to 0 indicates a symmetrical distribution.
 - A significantly positive or negative value indicates skewness and potential outliers.

Skewness and Kurtosis (Continued)

Introduction to Kurtosis

- Definition: Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable. It describes the peakedness or flatness of the distribution compared to a normal distribution.
- Types:
 - High Kurtosis (>3): Indicates a distribution with heavy tails and a sharper peak ("Leptokurtic").
 - Low Kurtosis (<3): Suggests a distribution with light tails and a flatter peak ("Platykurtic").
- Interpretation:
 - Kurtosis close to 3 (normal distribution) is considered mesokurtic.
 - Extreme values suggest potential outliers and deviations from the normal distribution.

Skewness and Kurtosis (Continued)

Skewness and Kurtosis in EDA

- Purpose: Understanding skewness and kurtosis is crucial in EDA to identify the nature of the distribution of the data, which can influence the choice of statistical methods and interpretations.
- Data Transformation: Data with high skewness or extreme kurtosis might require transformation to meet the assumptions of various statistical modeling techniques. Activities and Discussion

Measures of Relationship

Understanding the relationships between variables is a critical aspect of EDA. Two key statistical measures used to assess these relationships are correlation and covariance.

Covariance

- Definition: Covariance is a measure that indicates the extent to which two variables change together. It assesses whether increases in one variable correspond to increases (positive covariance) or decreases (negative covariance) in another.
- Calculation: The average of the products of deviations of pairs of observations from their individual means. The covariance between two variables *X* and *Y* is given by:

$$Cov(X,Y) = rac{1}{n-1}\sum_{i=1}^n (X_i-ar{X})(Y-ar{Y})$$

where:

- X_i and Y_i are the individual values of the variables,
- \bar{X} and \bar{Y} are the means of the variables.
- n is the number of data points.

Measures of relationship (Continue)

Covariance

- Interpretation:
 - Positive Covariance: Indicates that as one variable increases, the other tends to increase.
 - Negative Covariance: Suggests that as one variable increases, the other tends to decrease.
 - Zero or Near-Zero Covariance: Implies no linear relationship between the variables.

Measures of Relationship (Continued)

Correlation

- Definition: Correlation is a standardized measure of covariance and describes both the strength and direction of the linear relationship between two variables.
- Types:
 - Pearson's Correlation Coefficient: Measures linear relationship between two interval or ratio variables. The Pearson correlation coefficient between two variables X and Y is given by

$$r = rac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}.$$

- Spearman's Rank Correlation: Used for ordinal variables or when the relationship is not linear.
- Interpretation:
 - Values range from -1 to +1.
 - +1: Perfect positive linear relationship.
 - -1: Perfect negative linear relationship.
 - 0: No linear relationship.

Measures of Relationship (Continued)

Correlation vs. Covariance

- Covariance provides a directional relationship but not the strength.
- Correlation is a more standardized and interpretable measure, providing both direction and strength of the relationship.

Significance in EDA

- Understanding these measures helps in identifying potential relationships between variables, which can guide further analysis and modeling.
- They are used to explore data, test hypotheses, and in feature selection for machine learning models.

Interpreting These Statistics in EDA

Overview The interpretation of statistical measures is a critical component of EDA. This process involves understanding what various statistics reveal about a dataset and how this information can inform decision-making, hypothesis testing, and further analysis.

Key Aspects of Interpretation

- Contextual Understanding: Understanding data within the context of the subject area is crucial. Interpretations should align with the domain knowledge and objectives of the study.
- Integrative Analysis:
 - Combine various statistical measures (central tendency, spread, correlation, etc.) to gain a comprehensive understanding of the data.
 - Look for patterns, trends, and anomalies across different measures.

Interpreting These Statistics in EDA (Continued)

Key Aspects of Interpretation

- Correlation vs. Causation:
 - Distinguish between correlation (two variables moving together) and causation (one variable influencing another). Be cautious about drawing conclusions of causality solely from correlational data.
- Influence of Skewness and Outliers:
 - Understand how skewness and outliers impact measures like mean and variance and adjust interpretations accordingly.
 - Use appropriate statistical methods to handle skewed or outlier-heavy data.
- Role of Non-Parametric Statistics:
 - Recognize situations where non-parametric methods provide more reliable insights, especially when data do not meet parametric assumptions.

Interpreting These Statistics in EDA (Continued)

Practical Application in EDA

- Exploratory vs. Confirmatory: EDA is exploratory, aimed at uncovering insights and forming hypotheses, not confirming them.
- Visual Representation: Use graphs and plots alongside numerical measures for a more intuitive understanding of data.
- Data-Driven Insights: Use statistical interpretations to guide decisions on further data processing, feature selection, and potential areas for in-depth analysis.

References

The lectures of this course are based on the ideas from the following references.

- Exploratory Data Analysis by John W. Tukey
- A Course in Exploratory Data Analysis by Jim Albert
- The Visual Display of Quantitative Information by Edward R. Tufte
- Data Science for Business: what you need to know about data mining and data-analytic thinking by Foster Provost and Tom Fawcett
- Storytelling with Data: A Data Visualization Guide for Business Professionals by Cole Nussbaumer Knaflic