Environmental Research Report

Analysis of Worldwide Carbon Emission Contributions

Suzy Anil, Sukhpreet Sahota, Xianchi Zhang, Yuanjing Zhu

2022-12-01

To Michael S. Regan and global environmental agency administrators/directors,

Abstract:

During the duration of our study, our group focused on better understanding and modeling economic factors into a nation's carbon emissions. Our analysis below highlights this objective in a two-folded manner, centered on understanding how different economic status groups affect a nation's carbon footprint as well as using key economic and demographic characteristics to categorize nations into high, medium, or low carbon emitters. This categorization would enable countries to understand how they compare to other countries around the globe.

To conduct this study, we used the World Inequality Database as our primary source of data to obtain the income bracket distribution, the national wealth, the national income, population, and the nation's carbon footprint from ten countries geographically spread around the world. As a result, we were able to conclude the following:

- 1. The amount of carbon emissions was not the same across all defined income brackets as the bottom 50% accounted for the most carbon emission within a country
- 2. By analyzing the logarithmic value of a nation's income, wealth, and population, we have derived a model that predicts and categorizes a country as a high, medium, or low emitter with 95% accuracy.

Introduction

When one turns on the news and sees natural disasters caused by weather, the next topic most meteorologists will expose viewers to is climate change. This global phenomenon is defined as the shifts within temperatures and weather patterns caused by human activities, which lead to significant climatic events. With more and more significant climatic events on the rise, more and more businesses and countries have changed their perspective and level of effort to combat this in the near future (outlining the year 2030 as the target for ensuring and implementing climate initiatives). Companies, such as Apple, have developed more sustainable and climate-conscious global supply chains and operations that aim to be carbon neutral. Similarly, many global countries and leaders have stepped forth to show the importance of this matter through initiatives/agreements such as the Paris Agreement/Paris Accords and establishing other global and national environmental targets.

In conjunction with this shift in climate, there is also a pronounced change within the distribution of wealth within countries across the globe. As the world has adopted technological advancements, the number of billionaires within the world have also increased dramatically. In 2021 alone, the world saw 153 new billionaires – an astounding 3 new billionaires per week (Block, 2022). The creation of this new wealth has only led to an increase in economic disparity within the world. The International Monetary Fund (IMF)

discovered that "the current disparities are extreme. The poorest half of the global population owns just €2,900 (in purchasing power parity) per adult, while the top 10 percent owns roughly 190 times as much. Income inequalities are not much better. The richest 10 percent today snap up 52 percent of all income. The poorest half get just 8.5 percent" (Staley, 2022). As seen in the graphic from The IMF in the Appendix (titled A lopsided world), the Fund also concluded from their analysis that 48% of global carbon emissions are caused by the top 10%. Using this as a baseline, we wanted to understand if there was truly a difference on the level of carbon emission between income levels.

To conduct our study, as aforementioned, our dataset was selected from the World Inequality Database (WID), which is one of the most extensive databases on the evolution of world distribution of income and wealth within and between countries. The database is open-access and has compiled valid data from national databases, surveys, fiscal data, and wealth rankings. With its vast array of features, there are many key economic and social inequality questions that could be answered with access to this data. Our group has decided to focus our statistical analysis on the impact of certain economical features on a nation's carbon footprint (Total National CO2 Footprint). For clarification, a nation's total carbon footprint is equal to the combination of CO2 footprint and footprint of other greenhouse gases.

While the dataset/database is vast, we narrowed down our analysis to the following key variables that will help us effectively analyze and assess the impact of economic and demographic statistics on carbon emissions for a subset of ten select countries (The United States, China, India, Germany, the United Kingdom, Canada, Australia, Brazil, Nigeria, and South Africa): national income, GDP, income inequality, population, market-value national wealth, years (from 2000 - 2020). It is important to note: to help standardize the findings for all countries, the US dollar was the currency selected for the appropriate variables

This leads to two distinct research questions:

1. How do income brackets (top 10%, middle 40%, bottom 50%) affect a nation's carbon footprint? Based on the research mentioned above as well as additional publications/evidence highlighting that the wealthiest bracket emits notably more tons of carbon compared to the bottom bracket (Ritchie, 2018), we hope to use our data and our model to either validate this evidence or understand the true relationship between the different economic status groups and their respective effects on a nation's carbon footprint. Our assumption refutes the evidence highlighted and is that carbon emissions are comparable amongst the three income brackets.

- a. H_0 : Carbon emissions are the same across all income brackets.
- b. H_A : Carbon emissions vary across income brackets.

If we see a disparity between the three income brackets, we also want to understand the income bracket that emits the most carbon. Is it truly the wealthiest top 10%?

2. Given a nation's economic and demographic statistics, how accurately is an environmentalist able to classify/categorize countries into their appropriate level of carbon emissions? Our hopeful end goal is to create and use a model to predict the appropriate carbon emission category for other countries (unseen data). One of our key assumptions in creating this model is that there are no CO2 changes between any of the income brackets and changes within a country's average wealth over time have not had an impact on the country's respective carbon footprint, and thus, the difference in carbon emission class is proportional.

Methods

Data Exploration

To begin our analysis, we explored each country's carbon emission as well as the relationship between that response and the other key economic indicators mentioned above. From the following graphs, we plotted

CO2 over time for every country. In the graph on the left, we included all ten countries and realized a disparity in trends between China and USA versus the other eight. Thus, we classify USA and China as high emitters. The graph on the right zooms in on the remaining eight countries, which we classify as medium/low emitters. There is a linear trend for all countries, which allows us to assume linearity for the models we will fit.

Upon initially recognizing this linear relationship, we took a deeper dive and analyzed each country separately. From the series of graphs found within the Appendix (titled GDP vs CO2) to see if there was a general trend between GDP and CO2 shared between all the countries, we found that there is no common direction. Since the graphs show the differing relationships between GDP and CO2, we would not be able to build a generalizable model that could apply to countries unseen by the model and thus opted not to use GDP as our indicator for national income/wealth. During our initial exploratory analysis, we discovered most countries show positive correlation between wealth and CO2 (except for USA, Germany, and UK). This finding was crucial for model development as the model needs to account for the differences between countries.

To analyze the distribution and impact of income brackets, we fit a line to each of the above graphs and saw a clear distinction between the high and low emitters. The high emitters, China and USA, rise high above the fit line and the rest either sit on the line or below. This is consistent across the three graphs. To correct for the disparity between the high and low emitters, we need to consider a linear transformation on carbon emissions to create a best fit model.

Citing the IMF, the predictors that are important in properly categorizing the level of carbon emissions for a respective country to include within our best fit model are national income, market-value national wealth, and population size. Per the WID and our trend analysis of GDP, national income is the only income concept that has an internationally agreed definition (established by the United Nations System of National Accounts, see SNA 2008). Similarly, the national economy/wealth - in the national accounts sense – encompasses all domestic sectors, i.e. all entities that are resident of a given country (in the sense of their economic activity), whether they belong to the private sector, the corporate sector, the government

sector. Lastly, to account for the disparities between our select countries, it is best to include population. While the WID has additional variables, the variation amongst countries for those respective variables is too country-specific that it would inhibit our ability to create a generalize model. To ensure that our model did not have any missing data, was complete, and representative, we subsetted and selected countries from WID with data available across all aforementioned predictors across all 20 years (2000 - 2020).

Data Modeling and Assessment

To account for the differences between countries, the best fit models for both of our research questions are mixed models. Similar to linear regression models, mixed models will enable us to better analyze the carbon emission while estimating the random effect/impact of each country. In addition to taking the impact of country into account, a mixed model will also take into account any correlation that exists within our data. The generalized linear mixed model can be represented through the following framework/model formula:

$$Y = X_i \beta + Z_j u + \epsilon$$

Question 1: With this initial exploratory data analysis serving as a backdrop, we decided to log transform our outcome variable, carbon emissions, to account for the high variance between high and low emitters

(which can be seen through the graph below). We opted to use a linear mixed model as compared to a linear model and included country as a random effect to make our model more generalizable since we found each country followed slightly different trends. After including it, the model no longer violates the linearity assumption (see appendix for previous versions of model 1).

The i and j within the above generalized linear mixed model equal 3 (for the number of income brackets) and 10 (for the number of countries) respectively to represent this research question. This equates to the following model:

$$Log(CO_2) = \beta_1 Top 10 + \beta_2 Middle 40 + \beta_3 Bottom 50 + (1|Country)$$

For this generalized model, we quickly assumed that the similarity amongst the predictors (all three income brackets) would lead to multicollinearity. We were able to confirm this through two distinct measures: 1) all income brackets are related as the shares between the three incomes total 1 and 2) the VIF is greater than 10. However, because the predictors are interdependent but independent from the response variable (carbon emissions), we can continue with our analysis under this assumption.

Table 1: VIF Multicollinearity Check for Q1: CO2 and Income Bracket Analysis

top10	middle40	bottom50
1.68	3.76	4.88

Question 2: In the CO2 vs Income and CO2 vs Wealth graph, we do not see major differences in range and mean among the three carbon emitter levels. However, in the CO2 vs population graph there is a major difference between low/medium emitters compared to high emitters. Logically, this makes sense, since with more people a country requires more resources and energy to accommodate them. Based on this finding, we applied log transformation to all predictor variables (population, national income, and wealth) to normalize the differences amongst the countries.

Our goal is to predict each country's level of carbon emissions for each year. Since the outcome is ranked low, medium, and high, an ordinal model would be the best fit. An ordinal model operates on the proportional odds assumption which we checked with the Brant test and found that the model does not violate this assumption. We also checked for multicollinearity and found that all VIF values fell under the threshold.

Table 2: VIF Multicollinearity Check for Q2: Carbon Emissions and Economic/Demographic Indicators Analysis

income_log	wealth_log	pop_log
1.00	1.34	1.40

Test for X2 df probability

Omnibus 0 3 1 income_log 0 1 0.99 wealth_log 0 1 0.99 pop_log 0 1 0.99

H0: Parallel Regression Assumption holds

Since all assumptions have been held, we fit a cumulative link mixed model to predict the ordinal outcome variable. Similar to the generalized linear mixed model used to represent Question 1, a cumulative link mixed model enables on to analyze ordinal response variables while still maintaining random effects. As we aim to categorize and rank countries based on their respective carbon emission levels, it is more powerful to

Table 4: Proportional Odds Assumption Check for Question 2: Carbon Emissions and Economic/Demographic Indicators Analysis

	X2	df	probability
Omnibus	0.0002	3	1.00
$income_log$	0.0001	1	0.99
wealth_log	0.0001	1	0.99
pop_log	0.0002	1	0.99

maintain order as compared to a multinomial model. To maintain and account for this order, the generalized linear mixed model is tweaked to the following model:

$$Y = \alpha_i - X_i \beta + Z_{t \mid i \mid u_t + \epsilon}$$

where α is the intercept/threshold coefficient between the different level comparison combination (i.e. Low | Medium and Medium | High), the i, j and t within the above cumulative link mixed model equal 3 (for the number of predictors (income, wealth, population)), 3 (for the number of emission levels (low, medium, high), and 10 (for the number of countries) respectively to represent this research question. This equates to the following model:

$$P(Y \le j) = \alpha_j + \beta_1(Income) + \beta_2(Wealth) + \beta_3(Population) + (1|Country)$$

Results

Model 1: Linear Mixed Model Our resulting model to test the equivalence amongst the income bracket is the following:

$$Log(CO_2) = 126.37 Top 10 + 127.33 Middle 40 + 127.12 Bottom 50 - 117.10$$

With country as our random effect, we need to test the fixed effects with a Wald test. The Wald test compares the coefficient's estimated value with the estimated standard error for the coefficient. Our null hypothesis states that the variance between coefficients for the random effect is zero. With a 5% significance level, we found all three predictors to be statistically significant. The calculated chi-squared values are greater than the chi-square critical value for the degrees of freedom specified (3.84), which reaffirms that we fail to reject the null hypothesis. Therefore, we can confirm there is no variance between the coefficients of the three income brackets when inferring their relationship with carbon emissions.

Table 5: Model 1: Marginal and Conditional R-squared

R2m	R2c
0.06	0.98

Marginal R-squared is concerned with the variance explained by fixed effects. Our model returned low marginal R-squared (3.4%) which indicates the fixed effects do not explain the variance in the outcome.

Conditional R-squared is concerned with the variance explained by both fixed and random factors of the entire model. We have a very high conditional r-squared that accounts for 98% of the variance in the outcome variable. Which indicates country determines a lot of the outcome variance. Random effects explain additional variance compared to the fixed effects. With just a linear regression model, we still see a very large R-squared (0.97)

Model 2: Cumulative Link Mixed Model Our resulting model to classify a country's carbon emission is the following:

$$Low = 297.41 + 1.16 Log(Income) + 12.40 Log(Wealth) + 7.60 Log(Population) + 186.20$$

With our specified standards for high (> 2000 tons), medium (500-2000 tons), and low (< 500 tons) emitters, there are only two countries in the world that fit the definition of a high emitter: USA and China. Since we trained our model with both countries, we do not have other countries to test our model's ability to predict high emitters. However, the disparity between high and low/medium emitters is so large we are more concerned about the precision of our model distinguishing between low and medium emitters. Our test set contains five countries (Argentina, Ghana, Mexico, Norway, and Qatar) that are similar to our training set in that they are geographically spread out and that fall between these two categories and our model predicted their emission levels with 95% accuracy which is greater than the no information rate. As seen through our confusion matrix, there is high sensitivity with the low class and high specificity meaning our model correctly classified most low emitters (approximately 96%).

Cumulative Link Mixed Model fitted with the Laplace approximation

formula: CO2_C ~ income_log + wealth_log + pop_log + (1 | Country) data: m2_data1

link threshold nobs log Lik AIC niter max.grad cond. H logit flexible 210 -25.21 62.41 589 (5148) 2.68e+01 $5.6\mathrm{e}+00$

Random effects: Groups Name Variance Std.Dev. Country (Intercept) 138.8 11.78

Number of groups: Country 10

Coefficients: Estimate Std. Error z value Pr(>|z|)

Threshold coefficients: Estimate Std. Error z value low|med $6.014e+02\ 1.405e-03\ 428010\ \text{med}$ |high $6.274e+02\ 1.368e-03\ 458720$

Running predictions on a smaller test set:

Table 6: Confusion Matrix - Predicting CO2 Level Classification

	Reference low	Reference med	Reference high
Pred low	94	6	0
Pred med	3	0	0
Pred high	2	0	94

Conclusion:

Through this limited study, we were able to ultimately refute the conclusion presented by the IMF as we did not find an income bracket contributing more to the level of carbon emissions within a country than the other income brackets. While concluding this, we do note that our select and subsetted data analysis may lead to differing results and should be expanded to include more countries, more factors, and more models to see if our conclusion stands or gets closer to the one presented by IMF. As we assessed our prediction results, we were able to conclude that the high accuracy provides evidence that national income, national wealth, and population are good economic and demographic indicators for determining a nation's carbon emissions.

While our personal ambitions were to compose a comprehensive study, we know that limitations within our dataset, our model, and current available R packages lend to us falling short on our thoroughness. As detailed within the Methods section, we found that the income brackets within Question 1 were multicollinear, which in turn impacts the precision of our assessment/understanding of the coefficients for each income bracket. Additionally, it would be ideal to incorporate more descriptive country feature/statistics/information. These additional variables would provide more context to our model and allow for a better comparison to the work studied by IMF. In regard to Question 2, the variation amongst the low, medium, and high levels is not apparent. It would be best to understand if there is a better measure to define these levels to create distinct class, and thus variation amongst the levels. We also found that by testing our model on more countries by the number of countries within our training data (i.e. our initially selected 10 countries). As seen from the results titled within the Appendix, we tried to test on the same number but due to our sample size being small, the accuracy results were poor.

To address these limitation, our future work would consist of the following: 1. Adding supplementary descriptive statistics/feature on a country. We would like to incorporate data on the government sector vs private sector as well as more information on personal wealth to better define the characteristics of each income bracket 2. Adding more countries with carbon emissions that were not represented within our model (i.e. extremely low carbon emission rates). These additional training countries would enable us to test our model on a larger test size. 3. Rather than just using mean, we would want to define variance based on a weighted average and use this information to define unique levels of carbon emissions. Currently, we have the 3 levels of carbon emissions, but this measure would possibly create more levels (i.e. extremely, low, medium, high, extremely high).

Appendix

MODEL 1 IMPROVEMENTS

```
Trial 1:Linear: CO2 = top 10 + middle 40 + bottom 50
```

```
##
## Call:
## lm(formula = stacking_co2 ~ top10 + middle40 + bottom50, data = dataset_for_model1)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -3324.6 -1379.1 -481.9
                             297.7 6929.9
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -373043
                            124532
                                   -2.996 0.00308 **
## top10
                 377277
                            126177
                                     2.990 0.00313 **
## middle40
                 408854
                            131627
                                     3.106
                                           0.00216 **
## bottom50
                 341405
                            122138
                                     2.795
                                           0.00568 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2310 on 206 degrees of freedom
## Multiple R-squared: 0.1058, Adjusted R-squared: 0.09283
## F-statistic: 8.129 on 3 and 206 DF, p-value: 3.844e-05
```

Residuals vs Fitted

Fitted values lm(stacking_co2 ~ top10 + middle40 + bottom50)

Residuals vs Leverage

Im(stacking_co2 ~ top10 + middle40 + bottom50)

Trial 2: Linear: CO2 = top 10 + middle 40 + bottom 50 + country

```
##
## Call:
  lm(formula = stacking_co2 ~ top10 + middle40 + bottom50 + country_code,
##
       data = dataset_for_model1)
##
##
  Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -3238.2
                     -18.3
                              132.0
                                     2569.9
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                        -1.092
                  -183712.2
                               168306.9
                                                0.27637
## top10
                   192681.2
                               168623.1
                                                 0.25456
                                          1.143
## middle40
                   203193.3
                               178794.3
                                          1.136
                                                 0.25714
## bottom50
                   175280.3
                               167319.2
                                          1.048
                                                0.29612
## country_code2
                      869.6
                                  272.3
                                          3.193 0.00164 **
                                        -7.054 2.87e-11
## country_code3
                    -4219.2
                                  598.1
## country_code4
                    -4210.3
                                  408.2 -10.314
                                                < 2e-16 ***
## country_code5
                    -4546.0
                                  396.8 -11.456
                                                 < 2e-16 ***
                    -4863.0
                                  310.5 -15.662
                                                < 2e-16 ***
## country_code6
## country_code7
                    -5638.4
                                  639.0
                                         -8.824 5.97e-16 ***
                                  718.2 -7.996 1.07e-13 ***
## country_code8
                    -5742.8
## country_code9
                    -5615.3
                                  407.6 -13.778
                                                < 2e-16 ***
                    -5536.3
                                 1173.0 -4.720 4.47e-06 ***
## country_code10
## ---
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 719.7 on 197 degrees of freedom
```


Fitted values
Im(stacking_co2 ~ top10 + middle40 + bottom50 + country_code)
Normal Q-Q

Theoretical Quantiles
Im(stacking_co2 ~ top10 + middle40 + bottom50 + country_code)

Fitted values
Im(stacking_co2 ~ top10 + middle40 + bottom50 + country_code)
Residuals vs Leverage

Leverage Im(stacking_co2 ~ top10 + middle40 + bottom50 + country_code)

Trial 3: Linear Mixed Model: CO2 = top 10 + middle 40 + bottom 40 + (1 | country)

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: stacking_co2 ~ top10 + middle40 + bottom50 + (1 | country_code)
## Data: dataset_for_model1
##
```

```
## REML criterion at convergence: 3330.9
##
## Scaled residuals:
                 1Q Median
##
       Min
                                  3Q
                                          Max
##
   -4.4884 -0.1662 -0.0451 0.1697
##
## Random effects:
    Groups
                               Variance Std.Dev.
##
                  Name
##
    country_code (Intercept) 5752981
                                         2398.5
    Residual
                                517463
                                          719.3
   Number of obs: 210, groups: country_code, 10
##
## Fixed effects:
##
                Estimate Std. Error t value
## (Intercept)
                 -228460
                              150644
                                       -1.517
## top10
                  233313
                              151216
                                        1.543
## middle40
                  247508
                                        1.547
                              159968
## bottom50
                  214260
                              150198
                                        1.427
##
## Correlation of Fixed Effects:
##
             (Intr) top10 mdd140
## top10
             -1.000
## middle40 -1.000 0.999
## bottom50 -0.998 0.999 0.996
     2000
resid(., type = "pearson")
                                                                                  0
      1000
                                                                                   0
         0
                                                                                   \circ
                                                                                   0
     -1000
                                                                                  0
                                                                                  0
                                                                                  Õ
    -2000
                                                                                 0
                                                                                 0
    -3000
                                                                              00
                   0
                                     2000
                                                        4000
                                                                           6000
```

Try 4 - Linear Mixed Model: log(CO2) = top 10 + middle 40 + bottom 40 + (1 | country)

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: log(stacking_co2) ~ top10 + middle40 + bottom50 + (1 | country_code)
## Data: dataset_for_model1
```

fitted(.)

```
## REML criterion at convergence: -56.5
##
## Scaled residuals:
##
                 1Q Median
                                  3Q
                                         Max
##
   -3.4242 -0.4943 0.0134 0.5760 2.1520
## Random effects:
##
    Groups
                  Name
                               Variance Std.Dev.
    country_code (Intercept) 1.70520 1.3058
    Residual
                               0.03509 0.1873
## Number of obs: 210, groups: country_code, 10
## Fixed effects:
##
                Estimate Std. Error t value
## (Intercept) -117.10
                               42.54
                                      -2.753
## top10
                  126.37
                               42.67
                                       2.961
## middle40
                               45.22
                                       2.816
                  127.33
## bottom50
                  127.12
                                       3.001
                               42.36
## Correlation of Fixed Effects:
             (Intr) top10 mddl40
            -1.000
## top10
## middle40 -1.000 0.999
## bottom50 -0.998 0.999 0.997
     0.4
                              00
                                                                                 0
resid(., type = "pearson")
     0.2
                                                                                 0
     0.0
    -0.2
                                                                                8
                                                    O
                                                                                 0
    -0.4
                                                                                0
                                                                                0
    -0.6
                                                                               8
              0
                                                      7
                       5
                                      6
                                                                     8
                                             fitted(.)
```

MODEL 2 TESTING

Testing Model with 10 countries:

Year Country National_Wealth National_Population

##	1	2000	ARGENTINA	25009.165	36870788
##	2	2001	ARGENTINA	23304.697	37275652
##	3	2002	ARGENTINA	16395.632	37681748
##	4	2003	ARGENTINA	17363.950	38087868
##	5	2004	ARGENTINA	24640.685	38491972
##	6	2005	ARGENTINA	32433.125	38892932
##	7	2006	ARGENTINA	39118.996	39289880
##	8	2007	ARGENTINA	43846.601	39684296
##	9	2008	ARGENTINA	48385.877	40080160
	10		ARGENTINA	45665.647	40482788
	11		ARGENTINA	52695.690	40895752
	12		ARGENTINA	58475.425	41320500
	13		ARGENTINA	58685.830	41755196
##	14		ARGENTINA	61785.169	42196032
##	15		ARGENTINA	59993.582	42637512
##	16		ARGENTINA	61287.905	43075416
##			ARGENTINA		
	17			59659.328	43508460
	18		ARGENTINA	61072.895	43937140
	19		ARGENTINA	58539.699	44361152
	20		ARGENTINA	58328.982	44780676
	21		ARGENTINA	53818.917	45195776
	22	2000	BELGIUM	348676.942	10282033
	23	2001	BELGIUM	349500.627	10319019
	24	2002	BELGIUM	347994.831	10364885
	25	2003	BELGIUM	349393.957	10419032
##		2004	BELGIUM	365854.442	10480117
##	27	2005	BELGIUM	384200.211	10546886
##	28	2006	BELGIUM	402188.977	10619475
##	29	2007	BELGIUM	420299.314	10697572
##	30	2008	BELGIUM	420636.187	10778758
##	31	2009	BELGIUM	415278.644	10859940
##	32	2010	BELGIUM	426197.266	10938739
##	33	2011	BELGIUM	429333.960	11013853
##	34	2012	BELGIUM	431363.824	11085358
##	35	2013	BELGIUM	434698.170	11154009
##	36	2014	BELGIUM	440812.991	11221231
##	37	2015	BELGIUM	447912.939	11287940
##	38	2016	BELGIUM	451728.868	11354420
##	39	2017	BELGIUM	455264.659	11419748
##	40	2018	BELGIUM	456020.498	11482178
##	41	2019	BELGIUM	459613.937	11539328
##	42	2020	BELGIUM	456954.512	11589623
##	43	2000	FRANCE	205839.114	60545335
##	44	2001	FRANCE	210050.944	60970281
##	45	2002	FRANCE	213531.833	61406145
##	46	2003	FRANCE	226966.402	61838483
##	47	2004	FRANCE	250801.819	62257573
##	48	2005	FRANCE	279618.619	62634127
##	49	2006	FRANCE	308625.937	62995134
##	50	2007	FRANCE	327047.766	63387496
##	51	2008	FRANCE	313887.351	63723197
	52	2009	FRANCE	298441.658	64048540
	53	2010	FRANCE	307222.438	64325269
	54	2010	FRANCE	313479.728	64679700
π#	O-±	2011	LIMNOE	010419.120	04013100

##	55	2012	FRANCE	308975.575	65031692
##		2012	FRANCE	305549.597	65370448
##		2013	FRANCE	300443.697	65680936
##		2015	FRANCE	295308.003	65953204
##		2016	FRANCE	300668.016	66182816
##		2017	FRANCE	311648.434	66375188
##		2018	FRANCE	319282.635	66542168
##		2019	FRANCE	327651.117	66700848
##		2020	FRANCE	336602.775	66863724
	64	2000	GHANA	4396.827	19278856
##	65	2001	GHANA	4733.218	19756928
##	66	2002	GHANA	5679.922	20246380
##	67	2003	GHANA	6478.586	20750300
##	68	2004	GHANA	7732.468	21272324
##	69	2005	GHANA	9284.538	21814642
##	70	2006	GHANA	11770.964	22379056
##	71	2007	GHANA	12311.710	22963946
##	72	2008	GHANA	13002.561	23563824
##	73	2009	GHANA	12664.019	24170940
##	74	2010	GHANA	13125.776	24779620
##	75	2011	GHANA	14555.620	25387712
##	76	2012	GHANA	15226.895	25996450
##	77	2013	GHANA	16847.886	26607644
##	78	2014	GHANA	16404.284	27224472
##	79	2015	GHANA	16013.642	27849204
##	80	2016	GHANA	16153.895	28481944
##	81	2017	GHANA	16893.446	29121464
##	82	2018	GHANA	17463.018	29767102
##	83	2019	GHANA	18503.166	30417856
##	84	2020	GHANA	18511.254	31072940
##	85	2000	INDONESIA	7957.750	211513824
##	86	2001	INDONESIA	9121.683	214427424
##	87	2002	INDONESIA	9937.867	217357792
##	88	2003	INDONESIA	11007.984	220309472
##	89	2004	INDONESIA	11596.653	223285680
##	90	2005	INDONESIA	12714.883	226289472
##			INDONESIA	13864.961	229318256
	92	2007	INDONESIA	15541.166	232374240
	93	2008	INDONESIA	18038.049	235469760
##	94		INDONESIA	19170.090	238620560
##	95	2010	INDONESIA	21529.578	241834208
##	96	2011	INDONESIA	23125.350	245115984
##	97	2012	INDONESIA	24168.500	248451728
##	98	2013	INDONESIA	24250.555	251805312
##	99		INDONESIA	24331.361	255128080
##	100	2015	INDONESIA	24397.594	258383264
##		2016	INDONESIA	26295.220	261556384
##		2017	INDONESIA	27884.089	264650960
##		2017	INDONESIA	29232.109	267670544
##		2019	INDONESIA	32428.721	270625568
##				32428.721	273523616
##		2020 2000	INDONESIA JAPAN	269523.469	126926000
				262961.047	
##		2001	JAPAN		127316000
##	TAR	2002	JAPAN	256474.411	127486000

##	109 2003	JAPAN	254593.729	127694000
##	110 2004	JAPAN	253441.830	127787000
##	111 2005	JAPAN	256339.288	127768000
##	112 2006	JAPAN	265714.568	127901000
##	113 2007	JAPAN	269676.461	128033000
##	114 2008	JAPAN	263732.479	128084000
##	115 2009	JAPAN	253269.946	128032000
##	116 2010	JAPAN	251341.486	128057000
##	117 2011	JAPAN	250497.214	127799000
##	118 2012	JAPAN	250937.460	127515000
##	119 2013	JAPAN	259253.994	127298000
##	120 2014	JAPAN	263550.760	126949000
##	121 2015	JAPAN	261109.013	126767240
##	122 2016	JAPAN	260009.340	126547480
##	123 2017	JAPAN	264992.657	126289432
##	124 2018	JAPAN	267300.283	125991752
##				
	125 2019	JAPAN	267055.539	125653120
##	126 2020	JAPAN	256606.068	125272928
##	127 2000	MEXICO	77013.688	100895800
	128 2001	MEXICO	77995.966	102122300
	129 2002	MEXICO	76352.867	103417900
##	130 2003	MEXICO	75646.204	104719900
##	131 2004	MEXICO	76302.698	105951600
##	132 2005	MEXICO	81719.522	107151000
##	133 2006	MEXICO	84058.881	108408800
##	134 2007	MEXICO	88508.555	109787400
##	135 2008	MEXICO	97624.710	111299000
##	136 2009	MEXICO	99658.047	112852600
##	137 2010	MEXICO	97340.664	114255600
##	138 2011	MEXICO	109807.651	115682900
##	139 2012	MEXICO	120673.878	117053800
##	140 2013	MEXICO	121180.500	118395100
##	141 2014	MEXICO	115706.155	119917504
##	142 2015	MEXICO	108330.408	121415168
##	143 2016	MEXICO	102018.487	122884936
##	144 2017	MEXICO	105416.723	124323632
##	145 2018	MEXICO	111157.673	125731944
##	146 2019	MEXICO	113561.255	127111648
##	147 2020	MEXICO	102268.717	128463944
##	148 2000	NORWAY	182384.809	4499367
##	149 2001	NORWAY	196650.317	4523145
##	150 2002	NORWAY	203547.836	4546019
##	151 2003	NORWAY	208252.180	4570106
##	152 2004	NORWAY	229433.725	4598214
##	153 2005	NORWAY	257655.792	4632364
##	154 2006	NORWAY	287866.703	4672994
##	155 2007	NORWAY	316999.721	4719402
##	156 2008	NORWAY	320204.465	4771019
##	157 2009	NORWAY	328195.063	4826848
##	158 2010	NORWAY	345050.728	4885878
##	159 2011	NORWAY	359589.452	4948330
##	160 2012	NORWAY	370209.320	5013709
##	161 2013	NORWAY	398582.383	5079455
##	162 2014	NORWAY	444855.940	5142265
π	102 2014	IVOICWAI	111000.040	0142200

```
## 163 2015
               NORWAY
                            505209.971
                                                     5199836
## 164 2016
               NORWAY
                            544478.591
                                                     5250949
## 165 2017
               NORWAY
                            556381.560
                                                     5296326
## 166 2018
               NORWAY
                            542335.460
                                                     5337962
## 167 2019
               NORWAY
                            563551.644
                                                     5378857
                            617716.147
## 168 2020
               NORWAY
                                                     5421241
## 169 2000
                QATAR
                            958946.648
                                                      592468
## 170 2001
                QATAR
                            876650.798
                                                      615012
## 171 2002
                QATAR
                            815822.413
                                                      640868
## 172 2003
                QATAR
                            739841.944
                                                      681788
## 173 2004
                QATAR
                            677994.377
                                                      753334
## 174 2005
                QATAR
                            573871.556
                                                      865416
## 175 2006
                            512493.379
                QATAR
                                                     1022711
## 176 2007
                            447076.455
                QATAR
                                                     1218434
## 177 2008
                 QATAR
                            375453.357
                                                     1436665
## 178 2009
                 QATAR
                            320089.121
                                                     1654950
## 179 2010
                QATAR
                            304633.695
                                                     1856327
## 180 2011
                 QATAR
                            306658.405
                                                     2035871
## 181 2012
                QATAR
                            293557.619
                                                     2196073
## 182 2013
                QATAR
                            294902.572
                                                     2336574
## 183 2014
                 QATAR
                            298029.626
                                                     2459198
## 184 2015
                 QATAR
                            321888.360
                                                     2565710
## 185 2016
                QATAR
                            315785.200
                                                     2654374
## 186 2017
                QATAR
                            298505.799
                                                     2724728
## 187 2018
                QATAR
                            289765.551
                                                     2781682
## 188 2019
                QATAR
                            282507.048
                                                     2832067
## 189 2020
                QATAR
                            270749.044
                                                     2881053
## 190 2000
               RUSSIA
                             55810.556
                                                   146890100
## 191 2001
               RUSSIA
                             63485.117
                                                   146303600
## 192 2002
               RUSSIA
                             73378.970
                                                   145167000
## 193 2003
                RUSSIA
                             79037.818
                                                   144963600
## 194 2004
               RUSSIA
                             82665.029
                                                   144134000
## 195 2005
                RUSSIA
                             86280.828
                                                   143801000
## 196 2006
               RUSSIA
                            107673.020
                                                   143236000
## 197 2007
               RUSSIA
                            133463.314
                                                   142863000
## 198 2008
               RUSSIA
                            137154.216
                                                   142748000
## 199 2009
               RUSSIA
                            137264.844
                                                   142737000
## 200 2010
                            128026.038
               RUSSIA
                                                   142857000
## 201 2011
               RUSSIA
                            112405.087
                                                   142865000
## 202 2012
                            114242.098
               RUSSIA
                                                   143056000
## 203 2013
               RUSSIA
                            119188.046
                                                   143347000
## 204 2014
               RUSSIA
                            121296.178
                                                   143667000
## 205 2015
               RUSSIA
                            115470.004
                                                   146267000
## 206 2016
               RUSSIA
                            108119.432
                                                   146545000
## 207 2017
               RUSSIA
                            104981.669
                                                   146800000
## 208 2018
               RUSSIA
                            102877.641
                                                   147005728
## 209 2019
               RUSSIA
                            106082.324
                                                   147145168
## 210 2020
                RUSSIA
                            105826.542
                                                   147207920
##
       National_Carbon_Emissions National_Income pop_log income_log wealth_log
## 1
                       139.890359
                                         20415.292 17.42293
                                                               9.924039
                                                                          10.126998
## 2
                                                                          10.056410
                       128.937970
                                         19127.621 17.43385
                                                               9.858889
## 3
                        82.197850
                                         16057.990 17.44469
                                                               9.683962
                                                                           9.704770
## 4
                       107.752136
                                         17460.984 17.45541
                                                               9.767724
                                                                           9.762151
## 5
                       126.295772
                                         20604.722 17.46596
                                                               9.933276 10.112154
```

##	6	134.255969	22537.768	17 47632	10.022948	10.386936
##		149.306864	23703.238		10.022340	10.574363
##		155.085326	25058.123		10.128953	10.688452
##		170.176539	26373.236		10.180105	10.786963
##		160.036500	24196.463		10.093962	10.729102
##		174.548450	27119.370		10.208004	10.872289
##		182.576754	29484.515		10.291620	10.976362
##		188.108012	29195.382		10.281766	10.979954
##		193.475344	30372.487		10.321292	11.031419
##		192.412685	29102.452		10.278578	11.001993
##		201.589825	29564.202		10.294320	11.023338
##		194.803188	28390.326		10.253804	10.996406
##		194.792852	28855.749		10.270065	11.019823
##		187.564297	27410.801		10.218692	10.977460
##		181.390524	26315.633		10.177918	10.973854
##		172.320997	23137.458		10.049208	10.893380
##		188.903939	52881.689		10.875812	12.761901
##		186.908027	52660.768		10.871626	12.764261
##		198.238969	53058.557		10.879151	12.759943
##		196.263648	52969.143		10.877465	12.763955
##		218.050224	54231.141		10.901011	12.809991
##		214.082046	55025.282		10.915548	12.858919
##	28	223.480386	55934.459	16.17820	10.931936	12.904677
##	29	226.243705	57419.731	16.18553	10.958143	12.948722
##	30	209.302508	57155.802	16.19309	10.953536	12.949524
##	31	177.647417	54572.589	16.20059	10.907287	12.936705
##	32	192.356369	55665.301	16.20782	10.927112	12.962658
##	33	204.479438	55136.135	16.21466	10.917561	12.969990
##	34	184.267543	56399.963	16.22114	10.940224	12.974707
##	35	181.976818	56477.220	16.22731	10.941593	12.982407
##	36	177.203054	56933.704	16.23332	10.949643	12.996376
##	37	175.978626	57380.253	16.23925	10.957456	13.012354
##	38	170.474338	57326.657	16.24512	10.956521	13.020837
##	39	172.083761	58006.808	16.25085	10.968316	13.028634
##	40	177.236884	58620.028	16.25631	10.978832	13.030293
##	41	176.354384	58932.717	16.26127	10.984152	13.038142
##	42	158.718945	54963.188	16.26562	10.914419	13.032339
##	43	528.065247	50870.223	17.91890	10.837033	12.234850
##	44	524.591888	51211.444	17.92590	10.843718	12.255105
##	45	524.888240	50714.575	17.93302	10.833969	12.271541
##	46	526.957975	50807.830	17.94004	10.835806	12.332557
##	47	552.701059	51827.086	17.94679	10.855668	12.432418
##	48	549.584062	52460.364	17.95282	10.867813	12.541182
##	49	538.174941	53463.721	17.95857	10.886759	12.639885
##	50	555.743795	54142.691	17.96478	10.899378	12.697862
##	51	544.976398	53253.430	17.97006	10.882817	12.656789
##	52	511.905365	51080.914	17.97515	10.841166	12.606330
##		515.695715	51901.369		10.857100	12.635327
##		535.055063	52061.960		10.860190	12.655490
##		480.180724	51269.428		10.844850	12.641018
##		472.519637	51357.472		10.846566	12.629867
##		446.188407	51495.083		10.849242	12.613016
##		439.970489	51836.572		10.855851	12.595774
##		435.907952	52022.681		10.859435	12.613762

##	60	447.214609	53014.281	10 01002	10.878317	12.649631
##			53542.547		10.888232	12.673832
		441.891026				
##		431.257270	53416.025		10.885866	12.699705
##		383.818970	48540.189		10.790147	12.726659
##		8.925980		16.77452	8.689876	8.388638
##		9.537462	6017.560		8.702437	8.462361
##		9.747900	6068.455		8.710859	8.644693
##		10.822221		16.84807	8.730919	8.776258
##		11.899650		16.87292	8.762254	8.953183
##		12.273784	6574.698		8.790984	9.136106
##		13.913890		16.92364	8.822214	9.373391
##		15.045304		16.94944	8.824464	9.418306
##		14.971844		16.97522	8.890010	9.472902
##	73	12.847915	7207.899	17.00066	8.882933	9.446520
##	74	14.706538	7551.044	17.02553	8.929441	9.482333
##	75	18.268825	8298.727	17.04978	9.023857	9.585732
##	76	22.338492	8675.645	17.07347	9.068275	9.630819
##	77	21.006665	9226.243	17.09671	9.129807	9.731980
##	78	20.970054	9116.880	17.11963	9.117883	9.705298
##	79	20.552461	9129.529	17.14231	9.119269	9.681196
##	80	20.330997	9175.132	17.16478	9.124252	9.689916
##	81	18.392335	9410.808	17.18699	9.149614	9.734681
##	82	19.045270	9581.391	17.20891	9.167578	9.767841
##	83	19.676498	9936.583	17.23054	9.203978	9.825697
##	84	19.184585	9691.915	17.25185	9.179047	9.826134
##	85	231.195025	7170.043	19.16980	8.877667	8.981902
##	86	254.472348	7528.771	19.18348	8.926487	9.118410
##	87	281.194523	7360.887	19.19706	8.903936	9.204108
##	88	293.908592	7544.075		8.928518	9.306376
##	89	310.578509	7805.087		8.962531	9.358472
##	90	316.239470	8382.103	19.23733	9.033854	9.450529
##		328.555024	8761.343	19.25062	9.078104	9.537120
##		360.888472	9545.019		9.163775	9.651248
##		408.995748	10723.828		9.280223	9.800239
##		441.034595	11249.537		9.328082	9.861107
##		433.388373	12809.326		9.457929	9.977183
##		507.169927	13662.975		9.522445	10.048685
##		543.263544	14119.184		9.555290	10.092805
##		447.862350	14435.559		9.577450	10.096195
	99	453.930600	14615.945		9.589868	10.099521
	100	531.731438	14785.057		9.601372	10.102240
	101	585.067593	15691.733		9.660889	10.177142
	102	551.742890	16032.283		9.682360	10.235812
	103	591.461559	16507.336		9.711560	10.283023
	104	633.445858	16906.821		9.735472	10.386800
	105	589.104648	16213.480		9.693598	10.371729
	106	1529.806012	36871.327		10.515189	12.504411
	107	1484.293167	36821.194		10.513169	12.479761
	107	1495.682983	36678.859		10.513629	12.479761
	109	1507.926953	37168.537		10.509956	12.454764
	110		37168.537			
		1505.798829			10.543876	12.442890
	111	1520.271200	38367.649		10.554970	12.454257
	112	1495.705011	39120.836		10.574410	12.490178
##	113	1512.410000	39785.161	18.00180	10.591249	12.504978

##	114	1485.190093	39108.584 18.66820	10.574097	12.482691
##	115	1360.532155	36270.689 18.66779	10.498765	12.442211
##	116	1426.152185	37844.765 18.66799	10.541248	12.434568
##	117	1516.649743	38862.705 18.66597	10.567790	12.431203
##	118	1554.314450	39641.384 18.66374	10.587629	12.432959
##	119	1509.481753	40748.107 18.66204	10.615165	12.465564
##	120	1447.227147	41107.312 18.65930	10.623941	12.482001
	121	1382.743286	41966.577 18.65786	10.644629	12.472693
	122	1361.230165	42167.961 18.65613	10.649416	12.468473
	123	1344.520181	43022.535 18.65409	10.669479	12.487457
	124	1312.425311	43353.801 18.65173	10.677150	12.496128
	125	1278.885050	43361.819 18.64904	10.677335	12.495212
	126	1214.940797	41567.215 18.64601	10.635067	12.455297
	127	435.460043	28703.972 18.42960	10.264791	11.251738
	128	446.110349	28166.552 18.44168	10.245890	11.264412
	129	449.358874	26651.908 18.45429	10.190616	11.243121
	130	471.388135	25510.715 18.46680	10.146854	11.233823
	131	464.595391	25862.664 18.47849	10.160556	11.242464
	132	505.614600	26004.391 18.48975	10.166021	11.311048
	133	520.198822	26781.734 18.50142	10.195475	11.339273
	134	501.991241	27011.622 18.51406	10.204023	11.390854
	135	518.394251	26742.675 18.52773	10.194016	11.488886
	136	494.360844	24849.250 18.54159	10.120583	11.509500
	137	498.759307	25849.951 18.55395	10.160064	11.485972
	138	513.814262	26295.822 18.56636	10.177165	11.606485
	139	542.712226	26696.864 18.57814	10.192301	11.700847
	140	542.454042	26349.631 18.58954	10.179210	11.705036
	141	532.830634	26776.806 18.60231	10.195291	11.658809
	142	512.753358	26829.993 18.61473	10.193291	11.592941
	143	498.047264	26781.765 18.62676	10.195477	11.532941
	144	480.764663	26725.129 18.63840	10.193360	11.565677
	145	473.373928	26560.222 18.64966	10.193300	11.618705
		460.168841	25909.878 18.66058	10.162380	11.640098
	146				
	147	437.160399	23306.488 18.67116 53794.956 15.31945	10.056487	11.535359
	148	38.134063		10.892935	12.113874
	149	38.370006	54580.663 15.32472 53813.878 15.32976	10.907435	12.189182
	150	39.822721	54600.146 15.33505	10.893287	12.223656 12.246505
	151	45.041955		10.907792	
	152	44.044175	59542.347 15.34118	10.994443	12.343369
	153	45.372235	66243.587 15.34858	11.101094	12.459380
	154	48.366768	70234.412 15.35731	11.159594	12.570253
	155	53.199529	72623.136 15.36719	11.193039	12.666656
	156	50.694074	77272.993 15.37807	11.255100	12.676715
	157	48.895794	69454.096 15.38970	11.148421	12.701363
	158	51.096242	72505.262 15.40186	11.191414	12.751447
	159	51.263500	75948.700 15.41456	11.237813	12.792718
	160	50.079263	76750.795 15.42769	11.248319	12.821824
	161	48.545604	76237.289 15.44071	11.241606	12.895669
	162	48.263366	78102.820 15.45300	11.265781	13.005506
	163	48.824628	78669.936 15.46414	11.273016	13.132729
	164	49.158957	78225.168 15.47392	11.267347	13.207584
	165	48.807778	79514.023 15.48252	11.283689	13.229210
	166	48.353885	79792.343 15.49035	11.287183	13.203640
##	167	46.834488	75563.603 15.49799	11.232730	13.242014

```
## 168
                        42.151039
                                         74578.996 15.50584 11.219614
                                                                          13.333784
## 169
                                        121208.722 13.29205
                                                              11.705269
                        16.342799
                                                                          13.773591
## 170
                        20.056483
                                        116504.915 13.32940
                                                              11.665689
                                                                          13.683864
## 171
                        23.789883
                                        118937.605 13.37058
                                                              11.686354
                                                                          13.611952
## 172
                        23.013705
                                        118799.908 13.43247
                                                              11.685196
                                                                          13.514192
                                                              11.681542
## 173
                        22.461357
                                        118366.649 13.53226
                                                                          13.426894
## 174
                        28.482738
                                        112736.858 13.67097
                                                              11.632812
                                                                          13.260161
## 175
                        30.906118
                                        109535.417 13.83797
                                                              11.604003
                                                                          13.147043
## 176
                        34.476060
                                        104722.899 14.01308
                                                              11.559073
                                                                          13.010485
## 177
                        39.698722
                                        100301.314 14.17784
                                                              11.515934
                                                                          12.835890
## 178
                        45.482174
                                         90873.757 14.31928
                                                              11.417227
                                                                          12.676355
## 179
                                         93746.625 14.43411
                                                              11.448351
                        42.188322
                                                                          12.626865
## 180
                        36.116814
                                        101581.375 14.52643
                                                              11.528615
                                                                          12.633490
                                                              11.521049
## 181
                        45.537716
                                        100815.699 14.60218
                                                                          12.589829
## 182
                                        101775.236 14.66420
                                                              11.530522
                        42.083997
                                                                          12.594400
## 183
                        54.223115
                                        102319.195 14.71535
                                                              11.535853
                                                                          12.604948
## 184
                                                              11.568706
                        65.638710
                                        105736.610 14.75775
                                                                          12.681960
## 185
                        73.067576
                                        107142.928 14.79172
                                                              11.581919
                                                                          12.662818
                                                              11.544735
## 186
                        71.190937
                                        103232.110 14.81788
                                                                          12.606545
## 187
                        70.508521
                                        100486.899 14.83857
                                                              11.517783
                                                                          12.576827
## 188
                        70.573080
                                         98654.106 14.85652
                                                              11.499375
                                                                          12.551459
## 189
                        68.808753
                                         93773.983 14.87367
                                                              11.448643
                                                                          12.508948
                      1000.184170
## 190
                                         18181.608 18.80520
                                                               9.808166
                                                                          10.929718
## 191
                      1121.805041
                                         19295.552 18.80119
                                                               9.867630
                                                                          11.058561
## 192
                      1127.911822
                                         20142.392 18.79340
                                                               9.910582
                                                                          11.203393
## 193
                      1198.609087
                                         21159.458 18.79199
                                                               9.959842
                                                                          11.277682
## 194
                      1211.773428
                                         23162.866 18.78625
                                                              10.050306
                                                                          11.322552
## 195
                      1234.833216
                                         24564.092 18.78394
                                                              10.109041
                                                                          11.365363
## 196
                                                              10.184246
                      1252.908006
                                         26482.671 18.78000
                                                                          11.586854
## 197
                      1326.405593
                                         28797.440 18.77740
                                                              10.268042
                                                                          11.801582
## 198
                      1343.326611
                                         30199.191 18.77659
                                                              10.315570
                                                                          11.828861
## 199
                      1277.715774
                                         27244.480 18.77651
                                                              10.212606
                                                                          11.829668
## 200
                      1347.782241
                                         28274.816 18.77735
                                                              10.249727
                                                                          11.759989
## 201
                      1419.294705
                                         30453.418 18.77741
                                                              10.323954
                                                                          11.629864
## 202
                      1472.754938
                                         31419.532 18.77875
                                                              10.355185
                                                                          11.646075
## 203
                                         31362.965 18.78078
                                                              10.353383
                      1435.072354
                                                                          11.688458
## 204
                      1418.432841
                                         31626.459 18.78301
                                                              10.361749
                                                                          11.705991
## 205
                      1387.906357
                                         30629.599 18.80094
                                                              10.329722
                                                                          11.656766
## 206
                                         29309.228 18.80284
                                                              10.285658
                      1419.957728
                                                                          11.590992
## 207
                                         29813.418 18.80458
                      1444.064869
                                                              10.302714
                                                                          11.561541
## 208
                      1414.577294
                                         31148.307 18.80598
                                                              10.346515
                                                                          11.541296
## 209
                      1403.710005
                                         31738.982 18.80693
                                                              10.365301
                                                                          11.571971
##
  210
                      1305.450305
                                         30902.737 18.80736 10.338600
                                                                          11.569557
##
       C02_C
                     probs predicted_class
## 1
         low 1.000000e+00
                                        low
## 2
         low 1.000000e+00
                                        low
## 3
         low 1.000000e+00
                                        low
## 4
         low 1.000000e+00
                                        low
## 5
         low 1.000000e+00
                                        low
## 6
         low 1.000000e+00
                                        low
## 7
         low 1.000000e+00
                                        low
## 8
         low 1.000000e+00
                                        low
## 9
         low 1.000000e+00
                                        low
## 10
         low 1.000000e+00
                                        low
```

##	11	low	1.000000e+00	low
##	12	low	9.99999e-01	low
##	13	low	9.99999e-01	low
##	14	low	9.99997e-01	low
##	15	low	9.99998e-01	low
##	16	low	9.999997e-01	low
##	17	low	9.999998e-01	low
##	18	low	9.999997e-01	low
##	19	low	9.999998e-01	low
##	20	low	9.999998e-01	low
##	21	low	9.99999e-01	low
##	22	low	9.775967e-01	low
##	23	low	9.764357e-01	low
##	24	low	9.766901e-01	low
##	25	low	9.746147e-01	low
##	26	low	9.528062e-01	low
##	27	low	9.115855e-01	low
##	28	low	8.448099e-01	low
##	29	low	7.430875e-01	low
##	30	low	7.310599e-01	low
##	31	low	7.605271e-01	low
##	32	low	6.804267e-01	low
##	33	low	6.510899e-01	low
##	34	low	6.200740e-01	low
##	35	low	5.856076e-01	low
##	36	low	5.293584e-01	low
##	37	low	4.663689e-01	med
##	38	low	4.295948e-01	med
##	39	low	3.923379e-01	med
##	40	low	3.747934e-01	med
##	41	low	3.423201e-01	med
##	42	low	3.697663e-01	med
##	43	med	9.577240e-01	low
##	44	med	9.687046e-01	low
##	45	med	9.753782e-01	low
##	46	med	9.889196e-01	low
##	47	med	9.969939e-01	low
##	48	med	9.992600e-01	low
##	49	med	9.997832e-01	low
##	50	med	9.998764e-01	low
##	51	med	9.998298e-01	low
##	52	med	9.997043e-01	low
##	53	med	9.997955e-01	low
##	54	med	9.998388e-01	low
##	55	low	1.648035e-04	med
##	56	low	1.815532e-04	med
##	57	low	2.151654e-04	med
##	58	low	2.562378e-04	med
##	59	low	1.988363e-04	med
##	60	low	1.219626e-04	med
##	61	low	8.761783e-05	med
##	62	low	6.259851e-05	med
##	63	low	4.914912e-05	med
##	64	low	1.000000e+00	low

##	65	low	1.000000e+00	low
##	66	low	1.000000e+00	low
##	67	low	1.000000e+00	low
##	68	low	1.000000e+00	low
##	69	low	1.000000e+00	low
##	70	low	1.000000e+00	low
##	71	low	1.000000e+00	low
##	72	low	1.000000e+00	low
##	73	low	1.000000e+00	low
##	74	low	1.000000e+00	low
##	75	low	1.000000e+00	low
##	76	low	1.000000e+00	low
##	77	low	1.000000e+00	low
##	78	low	1.000000e+00	low
##	79	low	1.000000e+00	low
##	80	low	1.000000e+00	low
##	81	low	1.000000e+00	low
##	82	low	1.000000e+00	low
##	83	low	1.000000e+00	low
##	84	low	1.000000e+00	low
##	85	low	1.000000e+00	low
##	86	low	1.000000e+00	low
##	87	low	1.000000e+00	low
##	88	low	1.000000e+00	low
##	89	low	1.000000e+00	low
##	90	low	1.000000e+00	low
##	91	low	1.000000e+00	low
##	92	low	1.000000e+00	low
##	93	low	1.000000e+00	low
##	94	low	1.000000e+00	low
##	95	low	9.99999e-01	low
##	96	${\tt med}$	3.418488e-07	med
##	97	${\tt med}$	6.802354e-07	med
##	98	low	9.999992e-01	low
##	99	low	9.999991e-01	low
##	100	med	1.086635e-06	med
##	101	med	3.234587e-06	med
##	102	med	7.507376e-06	med
##	103		1.520385e-05	med
##	104	${\tt med}$	6.155015e-05	med
##	105	${\tt med}$	5.273991e-05	med
##	106	${\tt med}$	9.996420e-01	low
##	107	${\tt med}$	9.997258e-01	low
##	108	${\tt med}$	9.997910e-01	low
##	109	${\tt med}$	9.998020e-01	low
##	110	${\tt med}$	9.998064e-01	low
##	111	${\tt med}$	9.997794e-01	low
##	112	${\tt med}$	9.996585e-01	low
##	113	${\tt med}$	9.995820e-01	low
##	114	${\tt med}$	9.996841e-01	low
##	115	${\tt med}$	9.998136e-01	low
##	116	${\tt med}$	9.998202e-01	low
##	117	${\tt med}$	9.998239e-01	low
##	118	${\tt med}$	9.998200e-01	low

##	119	med 9.997404e-01	low
##	120	med 9.996895e-01	low
##	121	med 9.997178e-01	low
##	122	med 9.997330e-01	low
##	123	med 9.996649e-01	low
##	124	med 9.996320e-01	low
##	125	med 9.996429e-01	low
##	126	med 9.997877e-01	low
##	127	low 9.971411e-01	low
##	128	low 9.964147e-01	low
##	129	low 9.971559e-01	low
##	130	low 9.973501e-01	low
##	131	low 9.967266e-01	low
##	132	med 8.358635e-03	med
##	133	med 1.334566e-02	med
##	134	med 2.772300e-02	med
##	135	med 9.542534e-02	med
##	136	low 8.779529e-01	low
##	137	low 8.933392e-01	low
##	138	med 3.737043e-01	med
##	139	med 6.815994e-01	low
##	140	med 7.077607e-01	low
##	141	med 6.051420e-01	low
##	142	med 4.271760e-01	med
##	143	low 7.208302e-01	low
##	144	low 6.120966e-01	low
##	145	low 4.304433e-01	med
##	146	low 3.544334e-01	med
##	147	low 6.773883e-01	low
##	148	low 1.000000e+00	low
##	149	low 1.000000e+00	low
##	150	low 9.999999e-01	low
##	151	low 9.999999e-01	low
##	152	low 9.999997e-01	low
##	153	low 9.999984e-01	low
##	154	low 9.999926e-01	low
##	155	low 9.999727e-01	low
##	156	low 9.999639e-01	low
##	157	low 9.999527e-01	low
##	158	low 9.998986e-01	low
##	159	low 9.998033e-01	low
##	160	low 9.996844e-01	low
##	161	low 9.991364e-01	low
##	162	low 9.962032e-01	low
##	163	low 9.801361e-01	low
##	164	low 9.479730e-01 low 9.275721e-01	low
##	165		low
##	166 167		low
##	167	low 9.115484e-01 low 7.595078e-01	low
##	168		low
## ##	169 170	low 9.999936e-01 low 9.999973e-01	low low
##	171	low 9.999975e-01	low
##	172	low 9.999993e-01	
##	112	10w 3.333330E-01	low

```
## 173
         low 9.999995e-01
                                        low
## 174
         low 9.999998e-01
                                        low
## 175
         low 9.999998e-01
                                        low
## 176
         low 9.99999e-01
                                        low
## 177
         low 1.000000e+00
                                        low
## 178
         low 1.000000e+00
                                        low
## 179
         low 1.000000e+00
                                        low
## 180
         low 1.000000e+00
                                        low
## 181
         low 1.000000e+00
                                        low
## 182
         low 9.99999e-01
                                        low
## 183
         low 9.99999e-01
                                        low
## 184
         low 9.999995e-01
                                        low
## 185
         low 9.999995e-01
                                        low
         low 9.999997e-01
## 186
                                        low
## 187
         low 9.999998e-01
                                        low
## 188
         low 9.999998e-01
                                        low
## 189
         low 9.99999e-01
                                        low
## 190
         med 5.404280e-04
                                        med
## 191
         med 2.770293e-03
                                        med
## 192
         med 1.631623e-02
                                        med
## 193
         med 4.183548e-02
                                        med
## 194
         med 7.491720e-02
                                        med
         med 1.265291e-01
## 195
                                        med
## 196
         med 7.052570e-01
                                        low
## 197
         med 9.737397e-01
                                        low
## 198
         med 9.820210e-01
                                        low
## 199
         med 9.799734e-01
                                        low
## 200
         med 9.558771e-01
                                        low
## 201
         med 8.246484e-01
                                        low
## 202
         med 8.576113e-01
                                        low
## 203
         med 9.117047e-01
                                        low
## 204
         med 9.294809e-01
                                        low
## 205
         med 8.876960e-01
                                        low
## 206
         med 7.711754e-01
                                        low
## 207
         med 7.073743e-01
                                        low
## 208
         med 6.666297e-01
                                        low
## 209
         med 7.507161e-01
                                        low
## 210
         med 7.397715e-01
                                        low
##
   Confusion Matrix and Statistics
##
##
##
          low med high
##
          122
               17
     low
                      0
##
           51
                20
                      0
     med
##
     high
            0
                0
                      0
##
##
  Overall Statistics
##
##
                   Accuracy : 0.6762
                     95% CI: (0.6084, 0.739)
##
##
       No Information Rate: 0.8238
##
       P-Value [Acc > NIR] : 1
##
```

```
##
                     Kappa: 0.1805
##
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: low Class: med Class: high
## Sensitivity
                             0.7052
                                       0.54054
## Specificity
                             0.5405
                                       0.70520
                                                          1
## Pos Pred Value
                             0.8777
                                       0.28169
                                                         NA
## Neg Pred Value
                             0.2817
                                       0.87770
                                                         NA
## Prevalence
                             0.8238
                                                          0
                                       0.17619
## Detection Rate
                             0.5810
                                       0.09524
                                                          0
## Detection Prevalence
                                                          0
                             0.6619
                                       0.33810
## Balanced Accuracy
                             0.6229
                                       0.62287
                                                         NA
```

$$Log(CO_2) = \beta_1 Top 10 + \beta_2 Middle 40 + \beta_3 Bottom 50 + (1|Country)$$

$$Y = X_i \beta + Z_i u + \epsilon$$

$$CO_2 = \beta_1 Top 10 + \beta_2 Middle 40 + \beta_3 Bottom 50 + (1|Country)$$

```
## top10 middle40 bottom50
## 1.684168 3.757159 4.882596
```

Table 7: VIF Multi-Collinearity Check for Research Question 1: CO2 and Income Bracket Analysis

top10	middle40	bottom50
1.68	3.76	4.88

Call: polr(formula = CO2_C ~ income_log + wealth_log + pop_log, data = m2_data1, Hess = TRUE)

Coefficients: Value Std. Error t value income_log 3 601 1 1547 3 119 wealth_log 3 354 0 9327 3 596 pop_log

Coefficients: Value Std. Error t value income_log $3.601\ 1.1547\ 3.119$ wealth_log $3.354\ 0.9327\ 3.596$ pop_log $5.329\ 0.6779\ 7.860$

Intercepts: Value Std. Error t value low|med 173.6421 22.7853 7.6208 med|high 180.1029 23.4115 7.6929

Residual Deviance: 142.6022 AIC: 152.6022 — Test for X2 df probability — Omnibus 0 3 1 income_log 0 1 0.99 wealth_log 0 1 0.99 pop_log 0 1 0.99

H0: Parallel Regression Assumption holds

Test for X2 df probability

Omnibus 0 3 1 income_log 0 1 0.99 wealth_log 0 1 0.99 pop_log 0 1 0.99 -

H0: Parallel Regression Assumption holds

Table 8: Proportional Odds Assumption Check for Research Question 2: CO2 and Economic/Demographic Indicators Analysis

	X2	df	probability
Omnibus	0.0002	3	1.00
income_log	0.0001	1	0.99
wealth_log	0.0001	1	0.99
pop_log	0.0002	1	0.99

Table 9: VIF Multi-Collinearity Check for Research Question 2: CO2 and Economic/Demographic Indicators Analysis

income_log	wealth_log	pop_log
1.00	1.34	1.40

 $P(Y \le j) = \alpha_j + \beta_1 Log(Income) + \beta_2 Log(Wealth) + \beta_3 Log(Population) + (1|Country)$

```
P(Y \le j) = \alpha_j + \beta_1(Income) + \beta_2(Wealth) + \beta_3(Population) + (1|Country)
                                   Y = \alpha_j - X_i \beta + Z_{t \mid i \mid u_t + \epsilon}
## Linear mixed model fit by REML ['lmerMod']
## Formula: log(stacking_co2) ~ top10 + middle40 + bottom50 + (1 | country_code)
      Data: dataset for model1
##
##
## REML criterion at convergence: -56.5
##
## Scaled residuals:
       Min
##
                 1Q Median
                                   ЗQ
                                           Max
   -3.4242 -0.4943 0.0134 0.5760 2.1520
##
##
## Random effects:
##
   Groups
                  Name
                                Variance Std.Dev.
##
    country_code (Intercept) 1.70520 1.3058
                                0.03509 0.1873
## Number of obs: 210, groups: country_code, 10
##
## Fixed effects:
                Estimate Std. Error t value
## (Intercept) -117.10
                                42.54
                                      -2.753
## top10
                  126.37
                                42.67
                                         2.961
## middle40
                                        2.816
                  127.33
                                45.22
```

bottom50

top10

##

##

127.12

(Intr) top10 mdd140

Correlation of Fixed Effects:

-1.000

42.36

3.001

```
## bottom50 -0.998 0.999 0.997
              Log(CO_2) = 126.37Top10 + 127.33Middle40 + 127.12Bottom50 - 117.10
## Cumulative Link Mixed Model fitted with the Laplace approximation
##
## Call:
## clmm2(location = CO2_C ~ income_log + wealth_log + pop_log, random = Country,
       data = m2_data1, Hess = TRUE)
##
##
## Random effects:
                Var Std.Dev
## Country 186.2037 13.64565
##
## Location coefficients:
##
             Estimate
                         Std. Error z value
                                               Pr(>|z|)
                                NaN
## income_log
                 1.1593
                                           NaN NA
## wealth_log
                             0.0003 46835.2735 < 2.22e-16
                 12.4032
## pop_log
                 7.6020
                                {\tt NaN}
                                           NaN NA
## No scale coefficients
## Threshold coefficients:
            Estimate Std. Error z value
              297.4135
                           0.0143 20813.6807
## low|med
## med|high
              317.0889
                           3.6050
                                     87.9577
## log-likelihood: -29.39725
## AIC: 70.7945
## Condition number of Hessian: 0.004892671
```

middle40 -1.000 0.999

Low = 297.41 + 1.16 Log(Income) + 12.40 Log(Wealth) + 7.60 Log(Population) + 186.20

Appendix

Figure 1: Correlation Matrix

```
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: log(stacking_co2)
## Chisq Df Pr(>Chisq)
## top10 8.7687 1 0.003064 **
## middle40 7.9285 1 0.004866 **
```

```
## bottom50 9.0077 1 0.002688 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```