17. Tétel

Skaláris szorzat tul, mátrix összeadás, szorzás

Vektorok skaláris szorzásának tulajdonságai. Mátrixok összeadása és szorzásai, e műveletek tulajdonságai, determinánsok szorzástétele. A szorzatmátrix sorainak és oszlopainak különös tulajdonsága, ESÁ és mátrixszorzás kapcsolata.

Def skaláris szorzás: az $\underline{u}(u_1....u_n)^T$ és a $\underline{v}(v_1....v_n)^T$ skaláris szorzata $\underline{u}^*\underline{v}=u_1v_1+.....+u_nv_n$

Skaláris szorzat tulajdonságai:

(1)
$$u \cdot v = v \cdot u$$
,

(2)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$
 ill.

(3)
$$(\lambda u) \cdot v = \lambda(u \cdot v)$$

Mátrixok összeadása: csak azonos méretű mátrixokat tudunk összeadni, mégpedig úgy, hogy megfelelő koordinátákat egyenként. Skalárral szorzás hasonló a normális vektor skalárszorzásához.

$$(1) A + B = B + A,$$

$$(2) (A + B) + C = A + (B + C),$$

(3)
$$\lambda(A + B) = \lambda A + \lambda B$$
,

(4)
$$(\lambda + \kappa)A = \lambda A + \kappa A$$
,

(5)
$$\lambda(\kappa A) = (\lambda \kappa)A$$
, továbbá

(6)
$$(A + B)^{\top} = A^{\top} + B^{\top}$$
, (7) $\lambda \cdot A^{\top} = (\lambda A)^{\top}$.

Mátrixok szorzása egymással: (szivárványszorzás)

Tfh az $A \in R^{n \times k}$ mátrix sorvektorai $a^1, \ldots a^n$ és a $B \in R^{k \times \ell}$ mátrix oszlopvektorai $b^1, \ldots b^\ell$. Ekkor az $A \cdot B \in R^{n \times \ell}$ szorzatmátrix i-dik sorának j-dik eleme az $a^i \cdot b^j$ skaláris szorzat.

A mártix szorzás:

Asszociatív, összeadásra disztributív, transzponálás disztributív rá nézve

(1)
$$\lambda \cdot AB = (\lambda A)B = A(\lambda \cdot B)$$
.

(2)
$$A(B + C) = AB + AC$$
 ill. $(A + B)C = AC + BC$.

(3)
$$(AB)^{T} = B^{T}A^{T}$$
.

Determinánsok szorzástétele: A, B \in R^{n×n} \Rightarrow |AB| = |A||B|. (a mátrix szorzat determinánsa egyenlő a mátrixok determinánsainak szorzatával)

A szorzatmátrix sorainak és oszlopainak különös tulajdonsága

Visszatekintés a skaláris szorzatra:

Legyen A ∈ R^{n×k} tetsz. n × k méretű mátrix. Ekkor

- (1) Ha egy tetszőleges e_j egység oszlopvektorral (k magas vektor) jobbról megszorzom az A mátrixot, akkor essentially a mátrix j-edik oslpát kapom(duh). Ugyanez igaz a egy e_i (n magas vektor) transzponáltjával szorzom meg balról az A mátrixot, akkor a mátrix i-edik sora az eredmény.
- (2) Ha az A mátrixot jobbról megszorzom a k × k méretű egységmátrixxal, vagy ha (az A mátrixot) balról megszorzom az n × n egységmátrixxal akkor ugyanúgy mindkét esetben az A mátrixot kapom vissza (duh)
- (3) Ha $\underline{u} \in R^k$ és $\underline{v} \in R^n$, akkor $A \cdot \underline{u}$ az A oszlopainak, $\underline{v}^T \cdot A$ pedig az A sorainak lin.kombja(duh)

Tfh A oszlopai $\underline{a}_1, \ldots, \underline{a}_k$ és B sorai $\underline{b}_1, \ldots, \underline{b}_k$. Ekkor

- (1) az AB szorzat j-dik oszlopa az $\underline{a_1},\ldots,\underline{a_k}$ oszlopok lineáris kombinációja, az együtthatókat pedig a $\underline{b_i}$ oszlop tartamazza.
- (2) Hasonlóan, az i-dik sor a \underline{b}_1 , . . . , \underline{b}_k sorok lineáris kombinációja, mégpedig az \underline{a}_i sorban szereplő együtthatókkal.

Példa:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$
 $\begin{pmatrix} -1 & 0 \\ 2 & 3 \end{pmatrix}$ $\begin{pmatrix} -1 & -2 & -4 \\ 2 & 1 & 2 \end{pmatrix}$