

Politecnico di Torino

Microelectronic Systems

DLX Microprocessor: Design & Development Final Project Report

Master degree in Electronics Engineering

Referents: Prof. Mariagrazia Graziano, Giovanna Turvani

Authors: Group 15

Alberto Anselmo, Giulio Roggero

Wednesday 31st October, 2018

Contents

1	Adders						
	1.1	Full Adder					
		1.1.1 Area and power estimation					
	1.2	Ripple Carry Adder					
2	Execution Unit						
		Overview					
	2.2	Adder					
	2.3	Logic					
	2.4	Shifter					
A	Shif	ter behavioural VHDL					

CHAPTER 1

Adders

1.1 Full Adder

Adders are one of the most used digital components in computer processors. In general an adder is a digital circuit that implements the sum of two numbers expressed on N bits. In particular, a full adder (FA) is characterized by three inputs and two outputs. If we consider a one-bit full adder, the three inputs are the two numbers to sum and the input carry. The outputs are the sum and the output carry. A schematic diagram of a one-bit full adder is shown in figure

The truth table of the one-bit full adder is shown in table 1.1.

A B Cin	S	Cout
0 0 0	0	0
100	1	0
0 1 0	1	0
1 1 0	0	1
$0\ 0\ 1$	1	0
101	0	1
0 1 1	0	1
1 1 1	1	1

Table 1.1: Truth table of a 1-bit full adder.

From the truth table we can easily derive the logic equations that describe the full adder:

$$S = A \oplus B \oplus C_{in} \tag{1.1}$$

$$C_{out} = AB + C_{in}(A \oplus B) \tag{1.2}$$

1.1.1 Area and power estimation

A simple Bash script has been written to automatise the calculus of area and power starting from the layout of the circuit. The script takes in input the SVG (which is the primary Inkscape's format) description of the layout and it extracts all the necessary information. The output of the script is a .txt file containing different data.

The output text file of the full adder is reported below.

```
Reference layout = planar_full_adder.svg
Number of layers = 1
Total number of magnets = 150
Clock zones = 5
Width [nm] = 2080
Number of vertical magnets =
                           11
Height [nm] = 1300
Area [nm2] = 2704000
Area [um2] = 2.704000
######### Cu wire case ###########
Total power consumption [W] = .00001053180000000000
######### Ta wire case ##########
Wire 1 resistance [Ohm] = 81.12642857142857142857
Wire 2 resistance [Ohm] = 101.36904761904761904761
Power consumption for one layer [W] = .00002919927619047619
Total power consumption [W] = .00005839855238095238
```

To summarize, the planar full adder is characterized by:

- Delay = 3 clock cycles;
- Area = $2.7 \ \mu m^2$;
- Power = $10.53 \ \mu W$.

1.2 Ripple Carry Adder

A Ripple-carry adder (RCA) is a more complex adder composed by a cascade of more full adders. It is used to add N-bit numbers and its name derives from the fact that the carry propagates from a full adder to the next one.

```
.....
```

CHAPTER 2

Execution Unit

2.1 Overview

We have designed an execution unit that is capable of dealing with almost all the instructions present in the instruction set that has been given. Exceptions are the floating point operations, which requires speicific hardware that we decided not to include. It is worth mentioning that normally the MUL operations are executed by dividing them in subsequently pipelined stages. Here, differently, in order to keep the 5 stages in the pipeline and not to alter the normal execution flow, this doe not take place. As a consequence, the maximum operating frequency will be heavily affected by the propagation time needed by the multiplier to finish its job.

In the Execution Unit are therefore present the following components:

- shifter, used in order to shift and rotate the value contained in an input register
- adder, necessary obviously to perform addition and subtraction between values, but also used in the logic comparison operations
- logic, unit to perform logic bitwise operations, such as OR, AND, XOR and so on
- **comparator**, which purpose is to determine whether an input is greater, smaller or equal than another one
- multiplier, whose goal is to perform multiplications between inputs
- PC adder, a dedicated adder to increase by the value of the PC, useful in case of a JMP operation
- registers, to update the inputs and store the results
- muxes, to select the results coming from the required unit and correctly update the outputs of the stage

• inverter, needed to perform the 2'S complement and perform the subtraction

For this stage, a bunch of bits of the CW are used. Here are reported:

- ENEX, a general enable for the components and especially for the registers
- MUX1_SEL, a selection signal for the mux that is able to select an immediate value or a register an input that as the first term for the other units
- MUX2_SEL, with a goal similar as the one above, but for the second input
- UN_SEL, 3 bits signal that selects the correct input, which is then sent to a register
- *OP_SEL*, 4 bits selection signal, used to indicate to each unit, with different encoding, the operation to be performed
- PC_SEL, selection signal to update the PC counter correctly, following a branch or jump.

2.2 Adder

For the adder architecture, we decided not to start from scratches. As long as our P4 adder, designed during the laboratories, has a general description, we resized it to our architecture on 32 bits. This means that we have included the components capable of producing the PG propagate and generate signals and the G ones used to produce only the generate and so the final carry. We consider that therefore the result, in terms of performance can satisfy us. At the input of the block, we have also a $C_{-}IN$ signal, which is used to create, in cooperation with the inverter, the 2'S complement of the input used (either immediate or coming from a register), in order to produce as a final result the signed sum. There are few control signals used for this unit. In figure 2.1 is presented the simple schematic of the adder block.

2.3 Logic

In order to perform some logic bitwise operations, we have reproduced the microarchitecture that has been used for the T2. Here, in figure 2.2 is briefly reported the gates needed, that combined between each other, are capable of giving us the desired operations, as reported in the table 2.1.

The control signal S is required to be on 4 bits: for this reason, we have implemented in our control word 4 bits for this purpose. In particular, the signal $\mathsf{OP_SEL}$ plays this role. We could have used 3 bits on the CW and design an encoder, but the savings in term of connection would have been ruined by the need of an additional decoder. Moreover, these bits are not switched most of the time, thus providing a not so relevant switching power dissipation.

Figure 2.1: Adder with inverter and related selection signal

Figure 2.2: T2 logic for a single bit

	S0	S1	S2	S3
AND	0	0	0	1
NAND	1	1	1	0
OR	0	1	1	0
NOR	1	0	0	0
XOR	0	1	1	0
XNOR	1	0	0	1

Table 2.1: Combination of control signal for logic operations

2.4 Shifter

To define the lateral shifts, left or right, and the rotation, we have simply provided a behavioral description of the circuit, as reported in appendix A. It generates a barrel shifter, thus providing the needed operation between the ones possible, and moving the bits of the first input by the quantity that is introduced by the second input.

APPENDIX A

Shifter behavioural VHDL

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
entity SHIFTER is
  generic (NB: integer := 32;
                         LS: integer := 5
                         );
  port
                FUNC:
                                         IN std_logic_vector(1
     downto 0);
                         US:
                                                  IN std_logic;
                DATA1:
                                         IN std_logic_vector(NB-1
                    downto 0);
                DATA2:
                                         IN std_logic_vector(LS-1
                    downto 0);
                OUTSHFT:
                                         OUT std_logic_vector(NB-1
                    downto 0)
end SHIFTER;
architecture BEHAVIOR of SHIFTER is
```

begin

```
P_ALU: process (FUNC, US, DATA1, DATA2)
  begin
                 if(US='1') then
                      case FUNC is
                          -- SLL
                                   when "00"
                                                    =>
                                                    OUTSHFT <=
                                                        std_logic_vector
                                                        (shift_left(
                                                        unsigned (DATA1),
                                                         to_integer (
                                                        unsigned (DATA2))
                                                        ));
                                  -- SRL
                                   when "01"
                                                    OUTSHFT <=
                                                        std\_logic\_vector
                                                        (shift_right(
                                                        unsigned (DATA1),
                                                         to_integer (
                                                        unsigned (DATA2))
                                                        ));
                                  --ROL
                                   when "10"
                                                    =>
                                                    OUTSHFT <=
                                                        std_logic_vector
                                                        (rotate_left (
                                                        unsigned (DATA1),
                                                         to_integer (
                                                        unsigned (DATA2))
                                                        ));
                                  -- ROR
                                   when "11"
                                                    =>
                                                    OUTSHFT <=
                                                        std_logic_vector
                                                        (rotate_right(
                                                        unsigned (DATA1),
                                                         to_integer (
                                                        unsigned (DATA2))
```

));

```
when others =>
                    OUTSHFT \le (others => '0');
   end case;
else
       case FUNC is
                -- SLL
                when "00"
                                  =>
                                  OUTSHFT <=
                                     std_logic_vector
                                     (shift_left(
                                     signed (DATA1),
                                     to_integer (
                                     unsigned (DATA2))
                                     ));
                -- SRL
                when "01"
                                  =>
                                  OUTSHFT <=
                                     std\_logic\_vector
                                     (shift_right(
                                     signed (DATA1),
                                     to_integer (
                                     unsigned (DATA2))
                                     ));
                -- ROL
                when "10"
                                  =>
                                  OUTSHFT <=
                                     std\_logic\_vector
                                     (rotate_left (
                                     signed(DATA1),
                                     to_integer (
                                     unsigned (DATA2))
                                     ));
                -- ROR
                when "11"
                                  =>
                                  OUTSHFT <=
                                     std_logic_vector
                                     (rotate_right(
                                     signed (DATA1),
                                     to_integer (
                                     unsigned (DATA2))
```