(1) 抢占式与非抢占式的对比:

非抢占式(Nonpreemptive): 让进程运行直到结束或阻塞的调度方式。容易实现,适合专用系统,不适合通用系统;

抢占式(Preemptive):允许将逻辑上可继续运行的在运行过程暂停的调度方式,可防止单一进程长时间独占 CPU。系统开销大(降低途径:硬件实现进程切换,或扩充主存以贮存大部分程序)。

(2) 在多级队列调度中,不同队列设置不同的时间片。根据进程的属性分配到不同的队列,每个队列有自己的调度算法。 队列之间的调度大致有两种算法,一是固定优先权的可抢占调度,另一种是队列之间划分时间片,对于优先级较高的队列分配更多的时间,用于在进程之间进行 RR 调度(如前台进程),较低优先级的队列分配较少时间(如后台进程)。

(3)

a.

b. Turnaround time

	FCFS	RR	SJF	Priority
P_1	10	19	19	16
P_2	11	2	1	1
P_3	13	7	4	18
P_4	14	4	2	19
P_5	19	14	9	6

c. Waiting time (turnaround time minus burst time)

	FCFS	RR	SJF	Priority
P_1	0	9	9	6
P_2	10	1	0	0
P_3	11	5	2	16
P_4	13	3	1	18
P_5	14	9	4	1

d. Shortest Job First