日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年12月18日

出 願 番 号

Application Number:

特願2002-366642

[ST.10/C]:

[JP2002-366642]

出 願 人
Applicant(s):

コニカ株式会社

2003年 6月10日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

DKY00950

【提出日】

平成14年12月18日

【あて先】

特許庁長官 殿

【国際特許分類】

G03B 27/58

F16C 13/00

【発明者】

【住所又は居所】

東京都八王子市石川町2970番地 コニカ株式会社内

【氏名】

池中 清乃

【発明者】

【住所又は居所】

東京都八王子市石川町2970番地 コニカ株式会社内

【氏名】

新 勇一

【特許出願人】

【識別番号】

000001270

【氏名又は名称】

コニカ株式会社

【代理人】

【識別番号】

100090033

【弁理士】

【氏名又は名称】

荒船 博司

【手数料の表示】

【予納台帳番号】

027188

【納付金額】

21,000円

1

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】

光ピックアップ装置及び光学素子

【特許請求の範囲】

【請求項1】 保護基板厚 t 1 の第 1 光情報記録媒体に対して、波長 λ 1 の第 1 光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 2 (t $1 \le t$ 2) の第 2 光情報記録媒体に対して、波長 λ 2 (λ $1 < \lambda$ 2) の第 2 光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第 3 光情報記録媒体に対して、波長 λ 3 (λ $2 < \lambda$ 3) の第 3 光源から出射される光束を用いて情報の再生及び/又は記録を行う光ピックアップ装置であって、

前記光ピックアップ装置は、前記第1光源、前記第2光源及び前記第3光源の 共通光路に配置され、第1回折構造を有する回折光学素子を備え、

前記第1光情報記録媒体、前記第2光情報記録媒体及び前記第3光情報記録媒体に対して情報の再生及び/又は記録を行う場合、前記光ピックアップ装置に含まれる前記回折光学素子に全ての前記光束をほぼ同じ角度で入射させ、

前記第1光情報記録媒体に対して前記回折光学素子によって生じるm(mは自然数)次の回折光による集光スポットが形成され、前記第2光情報記録媒体に対して前記回折光学素子によって生じるn(nはn≠mである自然数)次の回折光による集光スポットが形成されるように構成されることを特徴とする光ピックアップ装置。

【請求項2】 前記回折光学素子は、対物光学素子であることを特徴とする 請求項1に記載の光ピックアップ装置。

【請求項3】 前記回折光学素子に全ての前記光東をほぼ無限平行光として 入射させることを特徴とする請求項2に記載の光ピックアップ装置。

【請求項4】 前記回折光学素子は、前記波長 λ 1 の光束が入射した場合にコリメータとして機能することを特徴とする請求項 1 ~ 3 のいずれか一項に記載の光ピックアップ装置。

【請求項5】 前記回折光学素子は、前記波長 2 の光束が入射した場合に コリメータとして機能することを特徴とする請求項1~3 のいずれか一項に記載 の光ピックアップ装置。

【請求項6】 前記回折光学素子は、光ピックアップ装置を構成する対物光学素子及びコリメータとは別に設けられた光学素子であることを特徴とする請求項1に記載の光ピックアップ装置。

【請求項7】 保護基板厚 t 1 の第 1 光情報記録媒体に対して、波長 λ 1 の第 1 光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 2 (t $1 \le t$ 2) の第 2 光情報記録媒体に対して、波長 λ 2 (λ $1 < \lambda$ 2) の第 2 光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第 3 光情報記録媒体に対して、波長 λ 3 (λ $2 < \lambda$ 3) の第 3 光源から出射される光束を用いて情報の再生及び/又は記録を行う光ピックアップ装置であって、

前記光ピックアップ装置は、前記第1光源、前記第2光源及び前記第3光源の 共通光路に配置される第1互換光学素子と、

前記第1光源、前記第2光源及び前記第3光源のうちのある1つの光源のみの光路か、又はある2つの光源の共通光路に配置される第2互換光学素子とを備え、

前記第1互換光学素子は、前記第1光情報記録媒体、前記第2光情報記録媒体 及び前記第3光情報記録媒体のうちの、少なくとも1つの光情報記録媒体に対し て、情報の再生及び/又は記録に必要な集光スポットを形成する第1互換機能を 有し、

前記第2互換光学素子は、前記第1互換光学素子と組み合わされる事により、 前記第1光情報記録媒体、前記第2光情報記録媒体及び前記第3光情報記録媒体 のうちの、他の光情報記録媒体に対して、情報の再生及び/又は記録に必要な集 光スポットを形成する第2互換機能を有し、

かつ、前記光ピックアップ装置は、前記第1光源、前記第2光源及び前記第3 光源の共通光路に配置され、第1回折構造を有する回折光学素子を備え、

前記第1互換光学素子、第2互換光学素子及び回折光学素子のうちの少なくと も一つの光学素子の少なくとも一つの光学面に、光軸を中心とした複数の輪帯状 光学面が形成され、前記複数の輪帯状光学面は段差面を介して連続的に形成され 前記第1光情報記録媒体に対して前記回折光学素子によって生じるm(mは自然数)次の回折光による集光スポットが形成され、前記第2光情報記録媒体に対して前記回折光学素子によって生じるn(nはn≠mである自然数)次の回折光による集光スポットが形成されるように構成されることを特徴とする光ピックアップ装置。

【請求項8】 前記第1互換光学素子は対物光学素子であることを特徴とする請求項7に記載の光ピックアップ装置。

【請求項9】 前記第2互換光学素子は位相差板であることを特徴とする請求項7又は8に記載の光ピックアップ装置。

【請求項10】 前記第2互換光学素子は液晶素子であることを特徴とする 請求項7又は8に記載の光ピックアップ装置。

【請求項11】 前記第2互換光学素子は回折光学素子であることを特徴と する請求項7又は8に記載の光ピックアップ装置。

【請求項12】 前記第1互換光学素子と、前記第2互換光学素子と、前記 回折光学素子と、光ピックアップ装置を構成する対物光学素子とから構成される 集光光学系は、前記波長 1、 2 2 及び 2 3 の光束に対してほぼ等しい光学系倍 率を有するとともに、

前記第1互換機能及び前記第2互換機能は、波長差に基づく球面収差及び光情報記録媒体間の保護基板厚差に基づく球面収差を補正することを特徴とする請求項7~11のいずれか一項に記載の光ピックアップ装置。

【請求項13】 前記光学系倍率がほぼ0であることを特徴とする請求項1 2に記載の光ピックアップ装置。

【請求項14】 前記第1互換光学素子と、前記第2互換光学素子と、前記回折光学素子と、光ピックアップ装置を構成する対物光学素子とから構成される 集光光学系は、前記波長 λ 1、 λ 2 及び λ 3 の光束に対して異なる光学系倍率を 有するとともに、

前記第1互換機能及び前記第2互換機能は、波長差に基づく球面収差、光情報 記録媒体間の保護基板厚差に基づく球面収差及び前記集光光学系の光学系倍率の 差に基づく球面収差を補正することを特徴とする請求項7~11のいずれか一項 に記載の光ピックアップ装置。

【請求項15】 前記第1、第2及び第3光情報記録媒体上に形成される集 光スポットのうち少なくとも一つの集光スポットに対し、温度補償及び/又は色 収差補償を行うための光学的補正素子を有することを特徴とする請求項1~14 のいずれか一項に記載の光ピックアップ装置。

【請求項16】 前記波長21の光束により前記第1光情報記録媒体に対して形成される集光スポットの開口数をNA1、前記波長22の光束により前記第2光情報記録媒体に対して形成される集光スポットの開口数をNA2、前記波長23の光束により前記第3光情報記録媒体に対して形成される集光スポットの開口数をNA3とした場合に、

NA3 < NA1

NA3 < NA2

を満たすことを特徴とする請求項1又は7に記載の光ピックアップ装置。

【請求項17】 前記複数の輪帯状光学面が、前記第1互換光学素子、第2互換光学素子及び回折光学素子のうちの少なくとも一つの光学素子の少なくとも一つの光学面であって、前記第3光情報記録媒体に開口数NA3の集光スポットを形成する前記波長23の光束が通過する領域に形成され、

前記複数の輪帯状光学面のうち、光軸を含む輪帯状光学面をRs、光軸から最も離れた輪帯状光学面をR1とすると、

前記輪帯状光学面Rsを通過した前記波長 1、 1 2 及び 1 3 の光束を、それぞれの光情報記録媒体の再生及び/又は記録に用い、

前記輪帯状光学面R1を通過した前記波長23の光束を、前記第3光情報記録 媒体の再生及び/又は記録に用いることを特徴とする請求項16に記載の光ピッ クアップ装置。

【請求項18】 前記第1回折構造が、前記回折光学素子の少なくとも一つの光学面であって前記第3光情報記録媒体に開口数NA3の集光スポットを形成する前記波長23の光束が通過する領域に形成され、

前記第1回折構造により生じる前記波長 \(\alpha \) 3 の光束の \(\k \) は自然数)次の回 折光により前記第 3 光情報記録媒体に集光スポットが形成され、 k = m / 2

 $370 \text{ nm} \le \lambda 1 \le 430 \text{ nm}$

 $7.60 \text{ n m} \le \lambda .3 \le 8.1.0 \text{ n m}$

を満たすことを特徴とする請求項17に記載の光ピックアップ装置。

【請求項19】 前記輪帯状光学面Rsを通過した前記波長λ1及びλ2の 光束は、それぞれの光情報記録媒体の情報記録面上にほぼ収差なく集光すること を特徴とする請求項17又は18に記載の光ピックアップ装置。

【請求項20】 前記輪帯状光学面と前記第1回折構造とが、前記回折光学素子の同一面に形成されることを特徴とする請求項18又は19に記載の光ピックアップ装置。

【請求項21】 前記m次の回折光及び前記n次の回折光の回折効率は共に80%以上であることを特徴とする請求項17~20のいずれか一項に記載の光ピックアップ装置。

【請求項22】 前記k次の回折光の回折効率は50%以上であることを特徴とする請求項17~21のいずれか一項に記載の光ピックアップ装置。

【請求項23】 前記波長 λ 3の光束によって前記第3光情報記録媒体に形成される集光スポットの波面収差は0.040[λ 3 r m s]以下であることを特徴とする請求項17~22のいずれか一項に記載の光ピックアップ装置。

【請求項24】 前記波長 λ 3 の光束によって前記第 3 光情報記録媒体に形成される集光スポットの波面収差が最小となる光軸方向の位置に対して、前記波長 λ 3 の光束の近軸光線は光源側に集光することを特徴とする請求項 1 7 ~ 2 3 のいずれか一項に記載の光ピックアップ装置。

【請求項25】 前記波長 λ 1 と λ 2 の 光東が同じ発散角で又は同じ無限光として前記回折光学素子に入射し、

前記第1回折構造は、前記波長 λ 1 と λ 2 との差が原因で前記第1回折構造が設けられている光学面の屈折機能により生じる球面収差と、保護基板厚 t 1 と t 2 との差により生じる球面収差とを、前記波長 λ 1 と λ 2 との差による回折効果で補正することを特徴とする請求項 1 7 ~ 2 4 のいずれか一項に記載の光ピックアップ装置。

【請求項26】

m = 8

n = 5

を満たすことを特徴とする請求項17~25のいずれか一項に記載の光ピックア 'ップ装置。

【請求項27】

m = 6

n = 4

を満たすことを特徴とする請求項17~25のいずれか一項に記載の光ピックアップ装置。

【請求項28】

m = 2

n = 1

を満たすことを特徴とする請求項17~25のいずれか一項に記載の光ピックアップ装置。

【請求項29】

1. $9 \times \lambda 1 \leq \lambda 3 \leq 2$. $1 \times \lambda 1$

を満たすことを特徴とする請求項17~28のいずれか一項に記載の光ピックアップ装置。

【請求項30】 前記輪帯状光学面Rsを通過した前記波長23の光束と、前記輪帯状光学面R1を通過した前記波長23の光束とが、光軸方向に10μm以上離れて集光することを特徴とする請求項18~29のいずれか一項に記載の光ピックアップ装置。

【請求項31】 前記輪帯状光学面Rsを通過した前記波長 \(\lambda\) 3 の光束と、前記輪帯状光学面Rs以外の前記輪帯状光学面を通過した前記波長 \(\lambda\) 3 の光束との、前記集光スポットにおける位相差 \(\phi\) は、

 $-0.1\pi \le \phi \le 0.1\pi$

を満たすことを特徴とする請求項30に記載の光ピックアップ装置。

【請求項32】 前記波長ん3の光束は、隣合う前記輪帯状光学面を通過す

る前後で位相差が変化することを特徴とする請求項30又は31に記載の光ピックアップ装置。

【請求項33】 前記波長λ1とλ2の光束のうち少なくとも1つの光束は、隣合う前記輪帯状光学面を通過する前後で位相差が変化しないことを特徴とする請求項30~32のいずれか一項に記載の光ピックアップ装置。

【請求項34】 前記輪帯状光学面の数が2~10のいずれかであることを 特徴とする請求項30~33のいずれか一項に記載の光ピックアップ装置。

【請求項35】 前記第1回折構造が、前記輪帯状光学面Rsを通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 λ 1、 λ 2 及び λ 3 の光東が通過する領域に形成され、

前記輪帯状光学面R1を通過後、集光スポットを形成する波長λ3の光束の集 光位置fB3は、前記波長λ3の光束によって前記第3光情報記録媒体に形成さ れる集光スポットの最良像面位置に対して、光軸方向において、

 $| f B 3 | \leq 5 \mu m$

を満たすことを特徴とする請求項18~29のいずれか一項に記載の光ピックアップ装置。

【請求項36】 前記輪帯状光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 1、 2 及び 2 3 の光束が、前記第1回折構造が形成されている光学面上において通過する領域が屈折面であることを特徴とする請求項35に記載の光ピックアップ装置。

【請求項37】 前記輪帯状光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 λ 1、 λ 2 及び λ 3 の光束が、前記第1回折構造が形成されている光学面上において通過する領域に第2回折構造が形成されていることを特徴とする請求項35に記載の光ピックアップ装置。

【請求項38】 前記波長 λ 1、 λ 2、 λ 3 の光束が入射した場合に、前記第1回折構造により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせと、前記第2回折構造により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせとが異なることを特徴とする請求項37に記載の光ピックアップ装置。

【請求項39】 前記波長 1、 2 2、 2 3 の光東が入射した場合に、前記第2回折構造により生じる各光東の回折光のうち最大の回折光率となる回折光の組み合わせが1、1、1であることを特徴とする請求項38に記載の光ピックアップ装置。

【請求項40】 前記輪帯状光学面R1を通過した前記波長21の光束は、前記第1光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする請求項35~39のいずれか一項に記載の光ピックアップ装置。

【請求項41】 前記輪帯状光学面R1を通過した前記波長22の光束は、前記第2光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする請求項35~40のいずれか一項に記載の光ピックアップ装置。

【請求項42】 前記輪帯状光学面R1に連続する二つの段差面のうち、光軸に近い方の段差面の光軸に平行な距離は他方の段差面の光軸に平行な距離と比較して短いことを特徴とする請求項35~41のいずれか一項に記載の光ピックアップ装置。

【請求項43】 前記輪帯状光学面の数が2であることを特徴とする請求項35~42のいずれか一項に記載の光ピックアップ装置。

【請求項44】 保護基板厚 t 1 の第1光情報記録媒体に対して、波長 λ 1 の第1光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 2 (t $1 \le t$ 2) の第2光情報記録媒体に対して、波長 λ 2 (λ $1 < \lambda$ 2) の第2光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第3光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第3光源から出射される光束を用いて情報の再生及び/又は記録を行う光ピックアップ装置に含まれる複数の光学素子であって、

前記第1光源、前記第2光源及び前記第3光源の共通光路に配置され、第1回 折構造を有する回折光学素子を含み、

前記第1光情報記録媒体、前記第2光情報記録媒体及び前記第3光情報記録媒体に対して情報の再生及び/又は記録を行う場合、前記光ピックアップ装置に含まれる前記回折光学素子に全ての前記光束をほぼ同じ角度で入射させ、

前記第1光情報記録媒体に対して前記回折光学素子によって生じるm(mは自

然数)次の回折光による集光スポットが形成され、前記第2光情報記録媒体に対して前記回折光学素子によって生じるn(nはn≠mである自然数)次の回折光による集光スポットが形成されるように構成されることを特徴とする光学素子。

【請求項45】 前記回折光学素子は、対物光学素子であることを特徴とする請求項44に記載の光学素子。

【請求項46】 前記回折光学素子に全ての前記光束をほぼ無限平行光として入射させることを特徴とする請求項45に記載の光学素子。

【請求項47】 前記回折光学素子は、前記波長21の光束が入射した場合にコリメータとして機能することを特徴とする請求項44~46のいずれか一項に記載の光学素子。

【請求項48】 前記回折光学素子は、前記波長22の光束が入射した場合 にコリメータとして機能することを特徴とする請求項44~46のいずれか一項 に記載の光学素子。

【請求項49】 前記回折光学素子は、光ピックアップ装置を構成する対物 光学素子及びコリメータとは別に設けられていることを特徴とする請求項44に 記載の光学素子。

【請求項50】 保護基板厚 t 1 の第1光情報記録媒体に対して、波長 λ 1 の第1光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 2 (t $1 \le t$ 2) の第2光情報記録媒体に対して、波長 λ 2 (λ $1 < \lambda$ 2) の第2光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第3光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第3光源から出射される光束を用いて情報の再生及び/又は記録を行う光ピックアップ装置に含まれる複数の光学素子であって、

前記第1光源、前記第2光源及び前記第3光源の共通光路に配置される第1互 換光学素子と、

前記第1光源、前記第2光源及び前記第3光源のうちのある1つの光源のみの光路か、又はある2つの光源の共通光路に配置される第2互換光学素子とを含み、

前記第1互換光学素子は、前記第1光情報記録媒体、前記第2光情報記録媒体 及び前記第3光情報記録媒体のうちの、少なくとも1つの光情報記録媒体に対し て、情報の再生及び/又は記録に必要な集光スポットを形成する第1互換機能を 有し、

前記第2互換光学素子は、前記第1互換光学素子と組み合わされる事により、 前記第1光情報記録媒体、前記第2光情報記録媒体及び前記第3光情報記録媒体 のうちの、他の光情報記録媒体に対して、情報の再生及び/又は記録に必要な集 光スポットを形成する第2互換機能を有し、

かつ、前記第1光源、前記第2光源及び前記第3光源の共通光路に配置され、 第1回折構造を有する回折光学素子を含み、

前記第1互換光学素子、第2互換光学素子及び回折光学素子のうちの少なくと も一つの光学素子の少なくとも一つの光学面に、光軸を中心とした複数の輪帯状 光学面が形成され、前記複数の輪帯状光学面は段差面を介して連続的に形成され

前記第1光情報記録媒体に対して前記回折光学素子によって生じるm(mは自然数)次の回折光による集光スポットが形成され、前記第2光情報記録媒体に対して前記回折光学素子によって生じるn(nはn≠mである自然数)次の回折光による集光スポットが形成されるように構成されることを特徴とする光学素子。

【請求項51】 前記第1互換光学素子は対物光学素子であることを特徴とする請求項50に記載の光学素子。

【請求項52】 前記第2互換光学素子は位相差板であることを特徴とする 請求項50又は51に記載の光学素子。

【請求項53】 前記第2互換光学素子は液晶素子であることを特徴とする 請求項50又は51に記載の光学素子。

【請求項54】 前記第2互換光学素子は回折光学素子であることを特徴とする請求項50又は51に記載の光学素子。

【請求項55】 前記第1互換光学素子と、前記第2互換光学素子と、前記回折光学素子と、光ピックアップ装置を構成する対物光学素子とから構成される 集光光学系は、前記波長 λ 1、 λ 2 及び λ 3 の光束に対してほぼ等しい光学系倍率を有するとともに、

前記第1互換機能及び前記第2互換機能は、波長差に基づく球面収差及び光情

報記録媒体間の保護基板厚差に基づく球面収差を補正することを特徴とする請求項50~54のいずれか一項に記載の光学素子。

【請求項56】 前記光学系倍率がほぼ0であることを特徴とする請求項5 5に記載の光学素子。

【請求項57】 前記第1互換光学素子と、前記第2互換光学素子と、前記回折光学素子と、光ピックアップ装置を構成する対物光学素子とから構成される 集光光学系は、前記波長 1 、 2 及び 2 3 の光束に対して異なる光学系倍率を 有するとともに、

前記第1互換機能及び前記第2互換機能は、波長差に基づく球面収差、光情報 記録媒体間の保護基板厚差に基づく球面収差及び前記集光光学系の光学系倍率の 差に基づく球面収差を補正することを特徴とする請求項50~54のいずれか一 項に記載の光学素子。

【請求項58】 前記第1、第2及び第3光情報記録媒体上に形成される集 光スポットのうち少なくとも一つの集光スポットに対し、温度補償及び/又は色 収差補償を行うための光学的補正素子を有することを特徴とする請求項43~5 7のいずれか一項に記載の光学素子。

【請求項59】 前記波長 21の光東により前記第1光情報記録媒体に対して形成される集光スポットの開口数をNA1、前記波長 22の光東により前記第2光情報記録媒体に対して形成される集光スポットの開口数をNA2、前記波長23の光東により前記第3光情報記録媒体に対して形成される集光スポットの開口数をNA3とした場合に、

NA3 < NA1

NA3 < NA2

を満たすことを特徴とする請求項44又は50に記載の光学素子。

【請求項60】 前記複数の輪帯状光学面が、前記第1互換光学素子、第2互換光学素子及び回折光学素子のうちの少なくとも一つの光学素子の少なくとも一つの光学面であって、前記第3光情報記録媒体に開口数NA3の集光スポットを形成する前記波長23の光束が通過する領域に形成され、

前記複数の輪帯状光学面のうち、光軸を含む輪帯状光学面をRs、光軸から最

も離れた輪帯状光学面をR1とすると、

前記輪帯状光学面Rsを通過した前記波長21、22及び23の光束を、それぞれの光情報記録媒体の再生及び/又は記録に用い、

前記輪帯状光学面R1を通過した前記波長23の光束を、前記第3光情報記録 媒体の再生及び/又は記録に用いることを特徴とする請求項59に記載の光学素 子。

【請求項61】 前記第1回折構造が、前記回折光学素子の少なくとも一つの光学面であって前記第3光情報記録媒体に開口数NA3の集光スポットを形成する前記波長23の光束が通過する領域に形成され、

前記第1回折構造により生じる前記波長 23の光束のk(kは自然数)次の回 折光により前記第3光情報記録媒体に集光スポットが形成され、

k = m / 2

 $370 \text{ n m} \le \lambda 1 \le 430 \text{ n m}$

 $760 \text{ n m} \le \lambda 3 \le 810 \text{ n m}$

を満たすことを特徴とする請求項60に記載の光学素子。

【請求項62】 前記輪帯状光学面Rsを通過した前記波長λ1及びλ2の 光束は、それぞれの光情報記録媒体の情報記録面上にほぼ収差なく集光すること を特徴とする請求項60又は61に記載の光学素子。

【請求項63】 前記輪帯状光学面と前記第1回折構造とが、前記回折光学素子の同一面に形成されることを特徴とする請求項61又は62に記載の光学素子。

【請求項64】 前記m次の回折光及び前記n次の回折光の回折効率は共に80%以上であることを特徴とする請求項60~63のいずれか一項に記載の光学素子。

【請求項65】 前記k次の回折光の回折効率は50%以上であることを特徴とする請求項60~64のいずれか一項に記載の光学素子。

【請求項66】 前記波長 λ 3の光束によって前記第3光情報記録媒体に形成される集光スポットの波面収差は0.040[λ 3 r m s]以下であることを特徴とする請求項60~65のいずれか一項に記載の光学素子。

【請求項67】 前記波長23の光束によって前記第3光情報記録媒体に形成される集光スポットの波面収差が最小となる光軸方向の位置に対して、前記波長23の光束の近軸光線は光源側に集光することを特徴とする請求項60~66のいずれか一項に記載の光学素子。

【請求項68】 前記波長 λ1とλ2の光束が同じ発散角で又は同じ無限光として前記回折光学素子に入射し、

前記第1回折構造は、前記波長 λ 1 と λ 2 との差が原因で前記第1回折構造が設けられている光学面の屈折機能により生じる球面収差と、保護基板厚 t 1 と t 2 との差により生じる球面収差とを、前記波長 λ 1 と λ 2 との差による回折効果で補正することを特徴とする請求項 6 0 ~ 6 7 のいずれか一項に記載の光学素子

【請求項69】

m = 8

n = 5

を満たすことを特徴とする請求項60~68のいずれか一項に記載の光学素子。

【請求項70】

m = 6

n = 4

を満たすことを特徴とする請求項60~68のいずれか一項に記載の光学素子。

【請求項71】

m = 2

n = 1

を満たすことを特徴とする請求項60~68のいずれか一項に記載の光学素子。

【請求項72】

1. $9 \times \lambda 1 \leq \lambda 3 \leq 2$. $1 \times \lambda 1$

を満たすことを特徴とする請求項60~71のいずれか一項に記載の光学素子。

【請求項73】 前記輪帯状光学面Rsを通過した前記波長23の光束と、前記輪帯状光学面R1を通過した前記波長23の光束とが、光軸方向に10μm以上離れて集光することを特徴とする請求項61~72のいずれか一項に記載の

光学素子。

【請求項74】 前記輪帯状光学面Rsを通過した前記波長λ3の光束と、前記輪帯状光学面Rs以外の前記輪帯状光学面を通過した前記波長λ3の光束との、前記集光スポットにおける位相差φは、

 $-0.1\pi \le \phi \le 0.1\pi$

を満たすことを特徴とする請求項73に記載の光学素子。

【請求項75】 前記波長23の光束は、隣合う前記輪帯状光学面を通過する前後で位相差が変化することを特徴とする請求項73又は74に記載の光学素子。

【請求項76】 前記波長 λ 1 と λ 2 の 光東のうち少なくとも 1 つの 光東は、隣合う前記輪帯状光学面を通過する前後で位相差が変化しないことを特徴とする請求項73~75 のいずれか一項に記載の光学素子。

【請求項77】 前記輪帯状光学面の数が2~10のいずれかであることを 特徴とする請求項73~76のいずれか一項に記載の光学素子。

【請求項78】 前記第1回折構造が、前記輪帯状光学面Rsを通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 λ 1、 λ 2 及び λ 3 の光東が通過する領域に形成され、

前記輪帯状光学面R1を通過後、集光スポットを形成する波長23の光束の集 光位置fB3は、前記波長23の光束によって前記第3光情報記録媒体に形成さ れる集光スポットの最良像面位置に対して、光軸方向において、

 $| f B 3 | \leq 5 \mu m$

を満たすことを特徴とする請求項61~72のいずれか一項に記載の光学素子。

【請求項79】 前記輪帯状光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 1、 1 2 及び 1 3 の光束が、前記第1回折構造が形成されている光学面上において通過する領域が屈折面であることを特徴とする請求項78に記載の光学素子。

【請求項80】 前記輪帯状光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形成する波長λ1、λ2及びλ3の光束が、前記第1回折構造が形成されている光学面上において通過する領域に第2回折構造が形成されて

いることを特徴とする請求項78に記載の光学素子。

【請求項81】 前記波長 λ1、λ2、λ3の光束が入射した場合に、前記第1回折構造により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせと、前記第2回折構造により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせとが異なることを特徴とする請求項80に記載の光学素子。

【請求項82】 前記波長 1、 2 2、 2 3 の光東が入射した場合に、前記第2回折構造により生じる各光東の回折光のうち最大の回折光率となる回折光の組み合わせが1、1、1であることを特徴とする請求項81に記載の光学素子。

【請求項83】 前記輪帯状光学面R1を通過した前記波長21の光束は、前記第1光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする請求項78~82のいずれか一項に記載の光学素子。

【請求項84】 前記輪帯状光学面R1を通過した前記波長22の光束は、前記第2光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする請求項78~83のいずれか一項に記載の光学素子。

【請求項85】 前記輪帯状光学面R1に連続する二つの段差面のうち、光軸に近い方の段差面の光軸に平行な距離は他方の段差面の光軸に平行な距離と比較して短いことを特徴とする請求項78~84のいずれか一項に記載の光学素子

【請求項86】 前記輪帯状光学面の数が2であることを特徴とする請求項78~85のいずれか一項に記載の光学素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、3種類の光情報記録媒体(光ディスク)の規格に対応できる光ピックアップ装置及び光ピックアップ装置に用いる光学素子に関する。

[0002]

【従来の技術】

近年、短波長赤色レーザの実用化に伴い、CD(コンパクトディスク)と同程

度の大きさで大容量化させた高密度の光情報記録媒体(光ディスクともいう)であるDVD(デジタルビデオディスク)や、使用波長や保護基板厚が異なる種々の規格の光ディスク、例えばCD-R,RW(追記型コンパクトディスク)、VD(ビデオディスク)、MD(ミニディスク)、MO(光磁気ディスク)などが実用化されている。

さらに、波長400nm程度の青紫色半導体レーザ光源と、像側開口数(NA)を0.85程度まで高めた対物レンズを用いた保護基板厚0.1mm程度の高密度光ディスク(以下、「高密度な光ディスク」という。)や、像側開口数(NA)を0.65程度とした対物レンズを用いた保護基板厚0.6mm程度の高密度な光ディスクの研究・開発が進んでいる。

[0003]

そして、使用波長や保護基板厚が異なる3種類の光ディスクの情報記録面に対して3種類の異なる波長の光束を一つの対物レンズを用いて集光させることで各種情報の再生及び/又は記録を行なう、互換性を有する光ピックアップ装置(光ディスク装置ともいう。)が各種提案されている。(例えば、特許文献1参照。)。

[0004]

特許文献1には、第1~第3の波長の光を出射する第1~第3の光源、第1~ 第3の波長の光を受け、所定の光情報記録媒体上に集光させる対物レンズ、コリ メーターレンズ等から概略構成される光ディスク装置が開示されている。

第1及び第2の光源から出射された第1及び第2の波長の光はコリメータレンズを通過するが、この際に、第1の波長の光はコリメーターレンズにより平行光化されて対物レンズに入射し、第2の波長の光は平行光化されずに発散光として対物レンズに入射する。また、第3の光源からの第3の波長の光は、コリメーターレンズを通過せずに、発散光として直接対物レンズに入射する。

そして、対物レンズから出射される第1~第3の波長の光を高密度光ディスク、DVD、CDなどの使用波長や保護基板厚が異なる3種類の光情報記録媒体に 集光させて各種情報の記録及び/又は再生を行なうものである。

[0005]

【特許文献1】

特開2001-43559号公報

[0006]

【発明が解決しようとする課題】

ところで、特許文献1に開示された装置は、上述のように、第1の波長の光は 平行光として対物レンズに入射し、第2及び第3の波長の光は発散光として対物 レンズに入射するものであるので、対物レンズを含む集光光学系の光学系倍率が 3種類の光情報記録媒体に対して異なることとなる。

従って、例えば、第1~第3の波長の光の光路がそれぞれ異なるものとなるので、複数の光学素子を各光路に対応して配置する必要が生じるなど、光ディスク装置の構造が複雑になるという問題や、装置の部品点数が増大するという問題があった。

[0007]

また、発散光を対物レンズに入射させるので、光ディスクを再生/記録する際 に対物レンズを光ディスクに対して移動させるトラッキング時に像高特性が悪化 し、コマ収差や非点収差等の各種収差が発生するという問題があった。

また、平行光を対物レンズに入射させるいわゆる無限系の装置と比較して温度 変化により発生する球面収差が大きくなるという問題があった。

[0008]

本発明の課題は、上述の問題を考慮したものであり、使用波長や保護基板厚が 異なる3種類の光情報記録媒体に対する情報の再生及び/又は記録に用いられ、 各種収差の発生を抑制し、かつ部品点数を削減できる光ピックアップ装置及び光 学素子を提供することである。

[0009]

【課題を解決するための手段】

以上の課題を解決するため、請求項1に記載の発明は、保護基板厚t1の第1 光情報記録媒体に対して、波長 λ 1の第1光源から出射される光束を用いて情報 の再生及び/又は記録を行ない、保護基板厚t2(t1 \leq t2)の第2光情報記 録媒体に対して、波長 λ 2(λ 1< λ 2)の第2光源から出射される光束を用い て情報の再生及び/又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第3光情報記録媒体に対して、波長 λ 3 (λ 2 < λ 3) の第3光源から出射される光束を用いて情報の再生及び/又は記録を行う光ピックアップ装置であって、前記光ピックアップ装置は、前記第1光源、前記第2光源及び前記第3光源の共通光路に配置され、第1回折構造を有する回折光学素子を備え、前記第1光情報記録媒体、前記第2光情報記録媒体及び前記第3光情報記録媒体に対して情報の再生及び/又は記録を行う場合、前記光ピックアップ装置に含まれる前記回折光学素子に全ての前記光束をほぼ同じ角度で入射させ、前記第1光情報記録媒体に対して前記回折光学素子によって生じるm(mは自然数)次の回折光による集光スポットが形成され、前記第2光情報記録媒体に対して前記回折光学素子によって生じるn(nはn≠mである自然数)次の回折光による集光スポットが形成されるように構成されることを特徴とする。

[0010]

請求項1に記載の発明によれば、第1光源、第2光源及び第3光源の共通光路に配置され、第1回折構造を有する回折光学素子を備え、第1光情報記録媒体、第2光情報記録媒体及び第3光情報記録媒体に対して情報の再生及び/又は記録を行う場合、回折光学素子に全ての前記光束をほぼ同じ角度で入射させる。

従って、例えば、第1~第3の波長の光の光路がほぼ等しくなるので、光ピックアップ装置を構成する各種光学素子をこの共通光路に対応して配置すればよく、光ピックアップ装置の構造を簡略化できると共に、装置の部品点数を削減できる。

[0011]

請求項2記載の発明は、請求項1に記載の光ピックアップ装置であって、前記 回折光学素子は、対物光学素子であることを特徴とする。

[0012]

請求項3記載の発明は、請求項2に記載の光ピックアップ装置であって、前記回折光学素子に全ての前記光束をほば無限平行光として入射させることを特徴とする。

[0013]

請求項3に記載の発明によれば、請求項2と同様の効果を得られると共に、回 折光学素子に全ての光束をほぼ無限平行光として入射させる。

従って、情報の再生及び/又は記録を行なう際に対物光学素子を光情報記録媒体に対して移動させるトラッキング時の像高特性の悪化を防止でき、コマ収差や 非点収差等の各種収差の発生を抑えることができる。

また、温度変化により発生する球面収差も抑えることができる。

[0014]

請求項4記載の発明は、請求項1~3のいずれか一項に記載の光ピックアップ 装置であって、前記回折光学素子は、前記波長 λ 1の光東が入射した場合にコリ メータとして機能することを特徴とする。

[0015]

請求項5記載の発明は、請求項1~3のいずれか一項に記載の光ピックアップ 装置であって、前記回折光学素子は、前記波長22の光束が入射した場合にコリ メータとして機能することを特徴とする。

[0016]

請求項6記載の発明は、請求項1に記載の光ピックアップ装置であって、前記回折光学素子は、光ピックアップ装置を構成する対物光学素子及びコリメータとは別に設けられた光学素子であることを特徴とする。

[0017]

請求項7記載の発明は、保護基板厚 t 1 の第1 光情報記録媒体に対して、波長 λ 1 の第1 光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 2 (t 1 ≤ t 2) の第2 光情報記録媒体に対して、波長 λ 2 (λ 1 < λ 2) の第2 光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第3 光情報記録媒体に対して、波長 λ 3 (λ 2 < λ 3) の第3 光源から出射される光束を用いて情報の再生及び/又は記録を行う光ピックアップ装置であって、前記光ピックアップ装置は、前記第1 光源、前記第2 光源及び前記第3 光源の共通光路に配置される第1 互換光学素子と、前記第1 光源、前記第2 光源及び前記第3 光源のうちのある1 つの光源のみの光路か、又はある2 つの光源の共通光路に配置される第2 互換光学素子とを備

え、前記第1互換光学素子は、前記第1光情報記録媒体、前記第2光情報記録媒 体及び前記第3光情報記録媒体のうちの、少なくとも1つの光情報記録媒体に対 して、情報の再生及び/又は記録に必要な集光スポットを形成する第1互換機能 を有し、前記第2互換光学素子は、前記第1互換光学素子と組み合わされる事に より、前記第1光情報記録媒体、前記第2光情報記録媒体及び前記第3光情報記 録媒体のうちの、他の光情報記録媒体に対して、情報の再生及び/又は記録に必 要な集光スポットを形成する第2互換機能を有し、かつ、前記光ピックアップ装 置は、前記第1光源、前記第2光源及び前記第3光源の共通光路に配置され、第 1回折構造を有する回折光学素子を備え、前記第1互換光学素子、第2互換光学 素子及び回折光学素子のうちの少なくとも一つの光学素子の少なくとも一つの光 学面に、光軸を中心とした複数の輪帯状光学面が形成され、前記複数の輪帯状光 学面は段差面を介して連続的に形成され、前記第1光情報記録媒体に対して前記 回折光学素子によって生じるm(mは自然数)次の回折光による集光スポットが 形成され、前記第2光情報記録媒体に対して前記回折光学素子によって生じるn (nはn≠mである自然数)次の回折光による集光スポットが形成されるように 構成されることを特徴とする。

[0018]

請求項8記載の発明は、請求項7に記載の光ピックアップ装置であって、前記 第1互換光学素子は対物光学素子であることを特徴とする。

[0019]

請求項9記載の発明は、請求項7又は8に記載の光ピックアップ装置であって 、前記第2互換光学素子は位相差板であることを特徴とする。

[0020]

請求項10記載の発明は、請求項7又は8に記載の光ピックアップ装置であって、前記第2互換光学素子は液晶素子であることを特徴とする。

[0021]

請求項11記載の発明は、請求項7又は8に記載の光ピックアップ装置であって、前記第2互換光学素子は回折光学素子であることを特徴とする。

[0022]

請求項12記載の発明は、請求項7~11のいずれか一項に記載の光ピックアップ装置であって、前記第1互換光学素子と、前記第2互換光学素子と、前記回 折光学素子と、光ピックアップ装置を構成する対物光学素子とから構成される集 光光学系は、前記波長 λ 1、 λ 2 及び λ 3 の光束に対してほぼ等しい光学系倍率 を有するとともに、前記第1互換機能及び前記第2互換機能は、波長差に基づく 球面収差及び光情報記録媒体間の保護基板厚差に基づく球面収差を補正すること を特徴とする。

[0023]

請求項13記載の発明は、請求項12に記載の光ピックアップ装置であって、 前記光学系倍率がほぼ0であることを特徴とする。

[0024]

請求項14記載の発明は、請求項7~11のいずれか一項に記載の光ピックアップ装置であって、前記第1互換光学素子と、前記第2互換光学素子と、前記回 折光学素子と、光ピックアップ装置を構成する対物光学素子とから構成される集 光光学系は、前記波長 21、22及び23の光束に対して異なる光学系倍率を有 するとともに、前記第1互換機能及び前記第2互換機能は、波長差に基づく球面 収差、光情報記録媒体間の保護基板厚差に基づく球面収差及び前記集光光学系の 光学系倍率の差に基づく球面収差を補正することを特徴とする。

[0025]

請求項15記載の発明は、請求項1~14のいずれか一項に記載の光ピックアップ装置であって、前記第1、第2及び第3光情報記録媒体上に形成される集光スポットのうち少なくとも一つの集光スポットに対し、温度補償及び/又は色収差補償を行うための光学的補正素子を有することを特徴とする。

[0026]

請求項16記載の発明は、請求項1又は7に記載の光ピックアップ装置であって、前記波長 10 光束により前記第1光情報記録媒体に対して形成される集光スポットの開口数をNA1、前記波長 20 光束により前記第2光情報記録媒体に対して形成される集光スポットの開口数をNA2、前記波長 23 の光束により前記第3光情報記録媒体に対して形成される集光スポットの開口数をNA3とし

た場合に、NA3<NA1、NA3<NA2を満たすことを特徴とする。

[0027]

請求項17記載の発明は、請求項16に記載の光ピックアップ装置であって、前記複数の輪帯状光学面が、前記第1互換光学素子、第2互換光学素子及び回折光学素子のうちの少なくとも一つの光学素子の少なくとも一つの光学面であって、前記第3光情報記録媒体に開口数NA3の集光スポットを形成する前記波長λ3の光束が通過する領域に形成され、前記複数の輪帯状光学面のうち、光軸を含む輪帯状光学面をRs、光軸から最も離れた輪帯状光学面をR1とすると、前記輪帯状光学面Rsを通過した前記波長λ1、λ2及びλ3の光束を、それぞれの光情報記録媒体の再生及び/又は記録に用い、前記輪帯状光学面R1を通過した前記波長λ3の光束を、前記第3光情報記録媒体の再生及び/又は記録に用いることを特徴とする。

[0028]

請求項18記載の発明は、請求項17に記載の光ピックアップ装置であって、前記第1回折構造が、前記回折光学素子の少なくとも一つの光学面であって前記第3光情報記録媒体に開口数NA3の集光スポットを形成する前記波長 λ 3の光東が通過する領域に形成され、前記第1回折構造により生じる前記波長 λ 3の光東のk(kは自然数)次の回折光により前記第3光情報記録媒体に集光スポットが形成され、k=m/2、370 $nm\leq\lambda$ 1 \leq 430nm、760 $nm\leq\lambda$ 3 \leq 810nmを満たすことを特徴とする。

[0029]

請求項19記載の発明は、請求項17又は18に記載の光ピックアップ装置であって、前記輪帯状光学面Rsを通過した前記波長 1及び 12の光束は、それぞれの光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする

[0030]

請求項20記載の発明は、請求項18又は19に記載の光ピックアップ装置であって、前記輪帯状光学面と前記第1回折構造とが、前記回折光学素子の同一面に形成されることを特徴とする。

[0031]

請求項21記載の発明は、請求項17~20のいずれか一項に記載の光ピック アップ装置であって、前記m次の回折光及び前記n次の回折光の回折効率は共に 80%以上であることを特徴とする。

[0032]

請求項22記載の発明は、請求項17~21のいずれか一項に記載の光ピック アップ装置であって、前記k次の回折光の回折効率は50%以上であることを特 徴とする。

[0033]

請求項23記載の発明は、請求項17~22のいずれか一項に記載の光ピックアップ装置であって、前記波長 λ 3の光束によって前記第3光情報記録媒体に形成される集光スポットの波面収差は0.040[λ 3 r m s]以下であることを特徴とする。

[0034]

請求項24記載の発明は、請求項17~23のいずれか一項に記載の光ピック アップ装置であって、前記波長λ3の光束によって前記第3光情報記録媒体に形 成される集光スポットの波面収差が最小となる光軸方向の位置に対して、前記波 長λ3の光束の近軸光線は光源側に集光することを特徴とする。

[0035]

請求項25記載の発明は、請求項17~24のいずれか一項に記載の光ピックアップ装置であって、前記波長 λ 1 と λ 2 の光束が同じ発散角で又は同じ無限光として前記回折光学素子に入射し、前記第1回折構造は、前記波長 λ 1 と λ 2 との差が原因で前記第1回折構造が設けられている光学面の屈折機能により生じる球面収差と、保護基板厚 t 1 と t 2 との差により生じる球面収差とを、前記波長 λ 1 と λ 2 との差による回折効果で補正することを特徴とする。

[0036]

請求項26記載の発明は、請求項17~25のいずれか一項に記載の光ピックアップ装置であって、m=8、n=5を満たすことを特徴とする。

[0037]

請求項27記載の発明は、請求項17~25のいずれか一項に記載の光ピック アップ装置であって、m=6、n=4を満たすことを特徴とする。

[0038]

請求項28記載の発明は、請求項 $17\sim25$ のいずれか一項に記載の光ピックアップ装置であって、m=2、n=1を満たすことを特徴とする。

[0039]

請求項29記載の発明は、請求項17~28のいずれか一項に記載の光ピックアップ装置であって、1.9× λ 1 \leq λ 3 \leq 2.1× λ 1を満たすことを特徴とする。

[0040]

請求項30記載の発明は、請求項18~29のいずれか一項に記載の光ピックアップ装置であって、前記輪帯状光学面Rsを通過した前記波長λ3の光束と、前記輪帯状光学面R1を通過した前記波長λ3の光束とが、光軸方向に10μm以上離れて集光することを特徴とする。

[0041]

請求項31記載の発明は、請求項30に記載の光ピックアップ装置であって、前記輪帯状光学面Rsを通過した前記波長 λ 3の光束と、前記輪帯状光学面Rs以外の前記輪帯状光学面を通過した前記波長 λ 3の光束との、前記集光スポットにおける位相差 ϕ は、-0. $1\pi \le \phi \le 0$. 1π を満たすことを特徴とする。

[0042]

請求項32記載の発明は、請求項30又は31に記載の光ピックアップ装置であって、前記波長 23の光東は、隣合う前記輪帯状光学面を通過する前後で位相差が変化することを特徴とする。

[0043]

請求項33記載の発明は、請求項30~32のいずれか一項に記載の光ピック アップ装置であって、前記波長 λ 1 と λ 2 の光束のうち少なくとも1 つの光束は 、隣合う前記輪帯状光学面を通過する前後で位相差が変化しないことを特徴とす る。

[0044]

請求項34記載の発明は、請求項30~33のいずれか一項に記載の光ピック アップ装置であって、前記輪帯状光学面の数が2~10のいずれかであることを 特徴とする。

[0045]

請求項35記載の発明は、請求項 $18\sim29$ のいずれか一項に記載の光ピックアップ装置であって、前記第1回折構造が、前記輪帯状光学面Rsを通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 λ 1、 λ 2及び λ 3の光東が通過する領域に形成され、前記輪帯状光学面R1を通過後、集光スポットを形成する波長 λ 3の光東の集光位置 f B3は、前記波長 λ 3の光束によって前記第3光情報記録媒体に形成される集光スポットの最良像面位置に対して、光軸方向において、|f B3 $|\leq 5$ μ mを満たすことを特徴とする。

[0046]

請求項36記載の発明は、請求項35に記載の光ピックアップ装置であって、 前記輪帯状光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形 成する波長 \(\lambda\) 1、\(\lambda\) 2及び\(\lambda\) 3の光束が、前記第1回折構造が形成されている光 学面上において通過する領域が屈折面であることを特徴とする。

[0047]

請求項37記載の発明は、請求項35に記載の光ピックアップ装置であって、 前記輪帯状光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形 成する波長 1、 22及び 23の光束が、前記第1回折構造が形成されている光 学面上において通過する領域に第2回折構造が形成されていることを特徴とする

[0048]

請求項38記載の発明は、請求項37に記載の光ピックアップ装置であって、前記波長21、22、23の光束が入射した場合に、前記第1回折構造により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせと、前記第2回折構造により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせとが異なることを特徴とする。

[0049]

請求項39記載の発明は、請求項38に記載の光ピックアップ装置であって、前記波長 λ 1、 λ 2、 λ 3の光束が入射した場合に、前記第2回折構造により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせが1、1、1であることを特徴とする。

[0050]

請求項40記載の発明は、請求項35~39のいずれか一項に記載の光ピック アップ装置であって、前記輪帯状光学面R1を通過した前記波長 10光束は、 前記第1光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とす る。

[0051]

請求項41記載の発明は、請求項35~40のいずれか一項に記載の光ピックアップ装置であって、前記輪帯状光学面R1を通過した前記波長22の光束は、前記第2光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする。

[0052]

請求項42記載の発明は、請求項35~41のいずれか一項に記載の光ピックアップ装置であって、前記輪帯状光学面R1に連続する二つの段差面のうち、光軸に近い方の段差面の光軸に平行な距離は他方の段差面の光軸に平行な距離と比較して短いことを特徴とする。

[0053]

請求項43記載の発明は、請求項35~42のいずれか一項に記載の光ピックアップ装置であって、前記輪帯状光学面の数が2であることを特徴とする。

[0054]

請求項44記載の発明は、保護基板厚t1の第1光情報記録媒体に対して、波長 λ 1の第1光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚t2(t1 \leq t2)の第2光情報記録媒体に対して、波長 λ 2(λ 1< λ 2)の第2光源から出射される光束を用いて情報の再生及び/又は記録を行ない、保護基板厚t3(t2<t3)の第3光源から出射される光束を用いて情報の再生及び/又

は記録を行う光ピックアップ装置に含まれる複数の光学素子であって、前記第1 光源、前記第2光源及び前記第3光源の共通光路に配置され、第1回折構造を有 する回折光学素子を含み、前記第1光情報記録媒体、前記第2光情報記録媒体及 び前記第3光情報記録媒体に対して情報の再生及び/又は記録を行う場合、前記 光ピックアップ装置に含まれる前記回折光学素子に全ての前記光束をほぼ同じ角 度で入射させ、前記第1光情報記録媒体に対して前記回折光学素子によって生じ るm(mは自然数)次の回折光による集光スポットが形成され、前記第2光情報 記録媒体に対して前記回折光学素子によって生じるn(nはn≠mである自然数)次の回折光による集光スポットが形成されるように構成されることを特徴とす る。

[0055]

請求項45記載の発明は、請求項44に記載の光学素子であって、前記回折光 学素子は、対物光学素子であることを特徴とする。

[0056]

請求項46記載の発明は、請求項45に記載の光学素子であって、前記回折光 学素子に全ての前記光束をほぼ無限平行光として入射させることを特徴とする。

[0057]

請求項47記載の発明は、請求項44~46のいずれか一項に記載の光学素子であって、前記回折光学素子は、前記波長21の光束が入射した場合にコリメータとして機能することを特徴とする。

[0058]

請求項48記載の発明は、請求項44~46のいずれか一項に記載の光学素子であって、前記回折光学素子は、前記波長22の光束が入射した場合にコリメータとして機能することを特徴とする。

[0059]

請求項49記載の発明は、請求項44に記載の光学素子であって、前記回折光 学素子は、光ピックアップ装置を構成する対物光学素子及びコリメータとは別に 設けられていることを特徴とする。

[0060]

請求項50記載の発明は、であって、保護基板厚t1の第1光情報記録媒体に 対して、波長11の第1光源から出射される光束を用いて情報の再生及び/又は 記録を行ない、保護基板厚t2(t1≦t2)の第2光情報記録媒体に対して、 波長12(11<12)の第2光源から出射される光束を用いて情報の再生及び /又は記録を行ない、保護基板厚 t 3 (t 2 < t 3) の第 3 光情報記録媒体に対 して、波長λ3 (λ2<λ3) の第3光源から出射される光束を用いて情報の再 生及び/又は記録を行う光ピックアップ装置に含まれる複数の光学素子であって 、前記第1光源、前記第2光源及び前記第3光源の共通光路に配置される第1互 換光学素子と、前記第1光源、前記第2光源及び前記第3光源のうちのある1つ の光源のみの光路か、又はある2つの光源の共通光路に配置される第2互換光学 素子とを含み、前記第1互換光学素子は、前記第1光情報記録媒体、前記第2光 情報記録媒体及び前記第3光情報記録媒体のうちの、少なくとも1つの光情報記 録媒体に対して、情報の再生及び/又は記録に必要な集光スポットを形成する第 1 互換機能を有し、前記第2互換光学素子は、前記第1互換光学素子と組み合わ される事により、前記第1光情報記録媒体、前記第2光情報記録媒体及び前記第 3 光情報記録媒体のうちの、他の光情報記録媒体に対して、情報の再生及び/又 は記録に必要な集光スポットを形成する第2互換機能を有し、かつ、前記第1光 源、前記第2光源及び前記第3光源の共通光路に配置され、第1回折構造を有す る回折光学素子を含み、前記第1互換光学素子、第2互換光学素子及び回折光学 素子のうちの少なくとも一つの光学素子の少なくとも一つの光学面に、光軸を中 心とした複数の輪帯状光学面が形成され、前記複数の輪帯状光学面は段差面を介 して連続的に形成され、前記第1光情報記録媒体に対して前記回折光学素子によ って生じるm(mは自然数)次の回折光による集光スポットが形成され、前記第 2光情報記録媒体に対して前記回折光学素子によって生じるn(nはn≠mであ る自然数)次の回折光による集光スポットが形成されるように構成されることを 特徴とする。

[0061]

請求項51記載の発明は、請求項50に記載の光学素子であって、前記第1互 換光学素子は対物光学素子であることを特徴とする。 [0062]

請求項52記載の発明は、請求項50又は51に記載の光学素子であって、前 記第2互換光学素子は位相差板であることを特徴とする。

[0063]

請求項53記載の発明は、請求項50又は51に記載の光学素子であって、前 記第2互換光学素子は液晶素子であることを特徴とする。

[0064]

請求項54記載の発明は、請求項50又は51に記載の光学素子であって、前記第2互換光学素子は回折光学素子であることを特徴とする。

[0065]

請求項55記載の発明は、請求項50~54のいずれか一項に記載の光学素子であって、前記第1互換光学素子と、前記第2互換光学素子と、前記回折光学素子と、光ピックアップ装置を構成する対物光学素子とから構成される集光光学系は、前記波長 1、 2 2 及び 2 3 の光束に対してほぼ等しい光学系倍率を有するとともに、前記第1互換機能及び前記第2互換機能は、波長差に基づく球面収差及び光情報記録媒体間の保護基板厚差に基づく球面収差を補正することを特徴とする。

[0066]

請求項56記載の発明は、請求項55に記載の光学素子であって、前記光学系 倍率がほぼ0であることを特徴とする。

[0067]

請求項57記載の発明は、請求項50~54のいずれか一項に記載の光学素子であって、前記第1互換光学素子と、前記第2互換光学素子と、前記回折光学素子と、光ピックアップ装置を構成する対物光学素子とから構成される集光光学系は、前記波長 1、 2 2 及び 2 3 の光束に対して異なる光学系倍率を有するとともに、前記第1互換機能及び前記第2互換機能は、波長差に基づく球面収差、光情報記録媒体間の保護基板厚差に基づく球面収差及び前記集光光学系の光学系倍率の差に基づく球面収差を補正することを特徴とする。

[0068]

請求項58記載の発明は、請求項43~57のいずれか一項に記載の光学素子であって、前記第1、第2及び第3光情報記録媒体上に形成される集光スポットのうち少なくとも一つの集光スポットに対し、温度補償及び/又は色収差補償を行うための光学的補正素子を有することを特徴とする。

[0069]

請求項59記載の発明は、請求項44又は50に記載の光学素子であって、前記波長21の光束により前記第1光情報記録媒体に対して形成される集光スポットの開口数をNA1、前記波長22の光束により前記第2光情報記録媒体に対して形成される集光スポットの開口数をNA2、前記波長23の光束により前記第3光情報記録媒体に対して形成される集光スポットの開口数をNA3とした場合に、NA3<NA1、NA3<NA2を満たすことを特徴とする。

[0070]

請求項60記載の発明は、請求項59に記載の光学素子であって、前記複数の輪帯状光学面が、前記第1互換光学素子、第2互換光学素子及び回折光学素子のうちの少なくとも一つの光学素子の少なくとも一つの光学面であって、前記第3光情報記録媒体に開口数NA3の集光スポットを形成する前記波長23の光束が通過する領域に形成され、前記複数の輪帯状光学面のうち、光軸を含む輪帯状光学面をRs、光軸から最も離れた輪帯状光学面をR1とすると、前記輪帯状光学面Rsを通過した前記波長21、22及び23の光束を、それぞれの光情報記録媒体の再生及び/又は記録に用い、前記輪帯状光学面R1を通過した前記波長23の光束を、前記第3光情報記録媒体の再生及び/又は記録に用いることを特徴とする。

[0071]

請求項 6 1 記載の発明は、請求項 6 0 に記載の光学素子であって、前記第 1 回 折構造が、前記回折光学素子の少なくとも一つの光学面であって前記第 3 光情報 記録媒体に開口数 N A 3 の集光スポットを形成する前記波長 λ 3 の光束が通過す る領域に形成され、前記第 1 回折構造により生じる前記波長 λ 3 の光束の k (k は自然数)次の回折光により前記第 3 光情報記録媒体に集光スポットが形成され、 k=m/2、 3 7 0 n $m \le <math>\lambda$ 1 \le 4 3 0 n m, 7 6 0 n m $\le <math>\lambda$ 3 \le 8 1 0 n m を満たすことを特徴とする。

[0072]

請求項62記載の発明は、請求項61又は62に記載の光学素子であって、前記輪帯状光学面Rsを通過した前記波長λ1及びλ2の光束は、それぞれの光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする請求項60又は61に記載の光学素子。

[0073]

請求項63記載の発明は、請求項61又は62に記載の光学素子であって、前記輪帯状光学面と前記第1回折構造とが、前記回折光学素子の同一面に形成されることを特徴とする。

[0074]

請求項64記載の発明は、請求項60~63のいずれか一項に記載の光学素子であって、前記m次の回折光及び前記n次の回折光の回折効率は共に80%以上であることを特徴とする。

[0075]

請求項65記載の発明は、請求項60~64のいずれか一項に記載の光学素子であって、前記k次の回折光の回折効率は50%以上であることを特徴とする。

[0076]

請求項66記載の発明は、請求項60~65のいずれか一項に記載の光学素子であって、前記波長 λ 3の光束によって前記第3光情報記録媒体に形成される集光スポットの波面収差は0.040[λ 3 r m s]以下であることを特徴とする。

[0077]

請求項67記載の発明は、請求項60~66のいずれか一項に記載の光学素子であって、前記波長 λ 3の光束によって前記第3光情報記録媒体に形成される集光スポットの波面収差が最小となる光軸方向の位置に対して、前記波長 λ 3の光束の近軸光線は光源側に集光することを特徴とする。

[0078]

請求項68記載の発明は、請求項60~67のいずれか一項に記載の光学素子であって、前記波長 1220光束が同じ発散角で又は同じ無限光として前記

回折光学素子に入射し、前記第1回折構造は、前記波長λ1とλ2との差が原因で前記第1回折構造が設けられている光学面の屈折機能により生じる球面収差と、保護基板厚t1とt2との差により生じる球面収差とを、前記波長λ1とλ2との差による回折効果で補正することを特徴とする。

[0079]

請求項69記載の発明は、請求項60~68のいずれか一項に記載の光学素子であって、m=8、n=5を満たすことを特徴とする。

[0080]

請求項70記載の発明は、請求項 $60\sim68$ のいずれか一項に記載の光学素子であって、m=6、n=4を満たすことを特徴とする。

[0081]

請求項71記載の発明は、請求項 $60\sim68$ のいずれか一項に記載の光学素子であって、m=2、n=1を満たすことを特徴とする。

[0082]

請求項72記載の発明は、請求項60~71のいずれか一項に記載の光学素子であって、1.9× λ 1 \leq λ 3 \leq 2.1× λ 1を満たすことを特徴とする。

[0083]

請求項73記載の発明は、請求項61~72のいずれか一項に記載の光学素子であって、前記輪帯状光学面Rsを通過した前記波長23の光束と、前記輪帯状光学面R1を通過した前記波長23の光束とが、光軸方向に10μm以上離れて集光することを特徴とする。

[0084]

請求項74記載の発明は、請求項73に記載の光学素子であって、前記輪帯状光学面Rsを通過した前記波長 λ 3の光束と、前記輪帯状光学面Rs以外の前記輪帯状光学面を通過した前記波長 λ 3の光束との、前記集光スポットにおける位相差 ϕ は、-0. $1\pi \le \phi \le 0$. 1π を満たすことを特徴とする。

[0085]

請求項75記載の発明は、請求項73又は74に記載の光学素子であって、前

記波長 λ 3 の光束は、隣合う前記輪帯状光学面を通過する前後で位相差が変化することを特徴とする。

[0086]

請求項76記載の発明は、請求項73~75のいずれか一項に記載の光学素子であって、前記波長 λ 1と λ 2の光束のうち少なくとも1つの光束は、隣合う前記輪帯状光学面を通過する前後で位相差が変化しないことを特徴とする。

[0087]

請求項77記載の発明は、請求項73~76のいずれか一項に記載の光学素子であって、前記輪帯状光学面の数が2~10のいずれかであることを特徴とする

[0088]

請求項78記載の発明は、請求項61~72のいずれか一項に記載の光学素子であって、前記第1回折構造が、前記輪帯状光学面Rsを通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 λ 1、 λ 2及び λ 3の光束が通過する領域に形成され、前記輪帯状光学面R1を通過後、集光スポットを形成する波長 λ 3の光束の集光位置 f B 3 は、前記波長 λ 3の光束によって前記第3光情報記録媒体に形成される集光スポットの最良像面位置に対して、光軸方向において、 | f B 3 | \leq 5 μ m を満たすことを特徴とする。

[0089]

請求項79記載の発明は、請求項78に記載の光学素子であって、前記輪帯状 光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 λ 1、 λ 2及び λ 3の光束が、前記第1回折構造が形成されている光学面上にお いて通過する領域が屈折面であることを特徴とする。

[0090]

請求項80記載の発明は、請求項78に記載の光学素子であって、前記輪帯状 光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 λ 1、 λ 2及び λ 3の光束が、前記第1回折構造が形成されている光学面上にお いて通過する領域に第2回折構造が形成されていることを特徴とする。

[0091]

請求項81記載の発明は、請求項80に記載の光学素子であって、前記波長λ 1、λ2、λ3の光束が入射した場合に、前記第1回折構造により生じる各光束 の回折光のうち最大の回折光率となる回折光の組み合わせと、前記第2回折構造 により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせと が異なることを特徴とする。

[0092]

請求項82記載の発明は、請求項81に記載の光学素子であって、前記波長λ 1、λ2、λ3の光束が入射した場合に、前記第2回折構造により生じる各光束 の回折光のうち最大の回折光率となる回折光の組み合わせが1、1、1であることを特徴とする。

[0093]

請求項83記載の発明は、請求項78~82のいずれか一項に記載の光学素子であって、前記輪帯状光学面R1を通過した前記波長 λ 1の光束は、前記第1光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする。

[0094]

請求項84記載の発明は、請求項78~83のいずれか一項に記載の光学素子であって、前記輪帯状光学面R1を通過した前記波長22の光束は、前記第2光情報記録媒体の情報記録面上にほぼ収差なく集光することを特徴とする。

[0095]

請求項85記載の発明は、請求項78~84のいずれか一項に記載の光学素子であって、前記輪帯状光学面R1に連続する二つの段差面のうち、光軸に近い方の段差面の光軸に平行な距離は他方の段差面の光軸に平行な距離と比較して短いことを特徴とする。

[0096]

請求項86記載の発明は、請求項78~85のいずれか一項に記載の光学素子であって、前記輪帯状光学面の数が2であることを特徴とする。

[0097]

【発明の実施の形態】

以下図面に基づいて本発明の内容を詳細に説明するが、本発明の実施形態はこ

れらに限定されるものではない。

(第1の実施の形態)

図1を用いて、請求項1の発明について説明する。

[0098]

本実施の形態では、使用波長が405nmのいわゆる青紫色レーザー光源を用いた「高密度な光ディスク」をターゲットとしており、第1光情報記録媒体として保護基板厚t1が0.6mmの「高密度な光ディスク」、第2光情報記録媒体として保護基板厚t2が0.6mmのDVD、第3光情報記録媒体として保護基板厚t3が1.2mmのCDを想定している。

[0099]

図1は、本願発明に関わる光ピックアップ装置を示す模式図である。

[0100]

レーザーダイオードLD1は、第1光源であり、波長λ1が405nmの青紫色レーザーが用いられるが、波長が390nm~420nmである範囲のものを適宜採用することができる。LD2は、第2光源であり、波長λ2が655nmの赤色レーザーが用いられるが、波長が630nm~680nmである範囲のものを適宜採用することができる。LD3は、第3光源であり、波長λ3が780nmの赤外レーザーが用いられるが、波長が750nm~800nmである範囲のものを適宜採用することができる。

[0101]

ビームスプリッタBS1はLD1から入射する光源を対物光学素子であるOBLの方向へ透過させるが、光ディスク(第1光情報記録媒体)からの反射光(戻り光)について、センサーレンズ群SL1を経て受光センサーS1に集光させる機能を有する。BS2も機能は同様である。

[0102]

BS3はLD1からの光束と、LD2からの光束とを同一の光路に載せるために配置される。またBS4は、LD3からの光束と、BS3からの光束とを同一の光路に載せるために配置される。

[0103]

LD1から投光された光束は、BS1を経て、コリメータCL1に入射し、これによって無限平行光にコリメートされたのち、BS3、BS4を経て対物光学素子である対物レンズOBLに入射する。そして第1光情報記録媒体の保護基板を介して情報記録面上に集光スポットを形成する。情報記録面上で反射したのち、同じ経路をたどって、コリメータCL1を通過してから、BS1によってセンサーレンズSL1を経てセンサーS1に集光する。このセンサーによって光電変換され、電気的な信号となる。

[0104]

LD2から投光された光束も、同様に光ディスク(第2光情報記録媒体)に集 光スポットを形成し、反射して最終的にセンサーS2に集光する。

[0105]

ちなみにLD3から投光された光束についても同様であるが、この例ではビームスプリッタの代わりに回折板DPを設ける事により、センサーS3へ戻り光が 集光するようになっている。CDからの情報の再生を行う場合は、DVDや「高 密度な光ディスク」に比べて受光する光量が少なくても良いので、このような構 成を採用することができる。

また、上述のように、LD1~LD3から投光された波長 λ 1 ~ λ 3 の各光束は、第1回折構造を有する回折光学素子としての対物光学素子OBLに対して、無限平行光として、つまりほぼ同じ角度で入射する。

なお、「同じ角度」とは同じ発散角又は同じ収束角であることを指し、無限平 行光の場合、発散角(又は収束角)が0となっている。

[0106]

なお対物光学素子OBLは、この図では単一のレンズであるが、必要に応じて 複数の光学素子から構成されるようにしてもよい。また材質はプラスティック樹 脂でもよいし、ガラスでも良い。

[0107]

またLD1から投光された光東、LD2から投光された光東が光ディスクD1、D2の保護基板を介して情報記録面に集光する状態が、OBLの光軸左側に描かれており、LD3から投光された光東が光ディスクD3の保護基板を介して情

報記録面に集光する状態が、OBLの光軸右側に描かれている。このように、再生/記録する光ディスクによって、基本的な位置が図示しないアクチュエーターによって切り替わり、その基準位置からピント合わせ(フォーカシング)を行う

[0108]

そして各々の光情報記録媒体の保護基板厚、さらにピットの大きさにより、対物光学素子OBLに要求される開口数も異なる。ここでは、CD用の開口数NA3は0.45、DVDおよび「高密度な光ディスク」の開口数NA2およびNA1は共に0.65としている。ただし、CDについては0.43~0.50、DVDについては0.58~0.68の範囲で適宜選択可能である。

[0109]

なおIRは不要光をカットするための絞りである。

[0110]

さて本実施例では、上述のように、「第1光源、前記第2光源及び前記第3光源の共通光路に配置され、第1回折構造を有する回折光学素子」の役割を、対物光学素子OBLに持たせている。そのため、対物光学素子に鋸歯状の回折構造を設けている。

[0111]

そしてこの鋸歯のピッチ(回折パワー)や深さ(ブレイズド化波長)を設定することにより、「高密度な光ディスク」に対しては、第1光源からの光束が2次回折光による集光スポットとして形成され、DVDに対しては、第2光源からの光束が1次回折光による集光スポットとして形成されるようになっている。

[0112]

このように、波長 2 1 と 2 2 との関係により回折次数が異なる光を利用することにより、各々の場合における回折効率を高くすることができ、光量を確保することができる。

[0113]

またCDに対しては、波長 λ 1と λ 3との関係によりk次(波長 λ 1に対する回折次数がmの場合、m/2)とするのが望ましい。

この例では、DVDと同じ1次の回折光として集光スポットを形成するようにしている。

[0114]

この例では、回折光学素子として、回折構造を対物光学素子に設けた例を説明 したが、請求項4や6のように、このような異次回折光を生じる回折構造をコリ メータに設けても良いし、また別の光学素子を光路中に設けることも可能である

[0115]

また上記した開口の切り替えについても、回折光学素子を始めとして、公知の 技術を適用することができる。

[0116]

なお上記の実施例では、情報の再生について説明してきたが、情報の記録においても基本的な構成・光学的作用は変わらず、光情報記録媒体の記録面に集光スポットを形成することにより、記録層に熱化学変化を生ぜしめて、記録を行う。

[0117]

また、温度補償及び/又は色収差補償を行うための光学的補正構造を有する光学素子を、必要に応じて光路中に設ける事ができるのはいうまでもない。そしてこれらの光学的補正構造は回折構造や位相差付与構造によって実現できるし、対物光学素子、コリメータ及びその他の素子に設けることが出来る。

[0118]

(第2の実施の形態)

同じく図1を用いて、請求項7の発明について説明する。

各光学素子に関して、第1の実施の形態と同じ機能については説明を省略する。 この実施例では、第1互換光学素子の役割を、対物光学素子OBLに持たせている。 そして第2互換光学素子の役割をコリメータCL3に持たせている。

つまり、第1互換光学素子である対物光学素子OBLは、全ての光源が通過する 光路に配置されており、第2互換光学素子であるコリメータCL3は、第3光源 のみが通過する光路に配置される。

[0119]

さて第1互換光学素子である対物光学素子OBLは、回折構造を有していて、 それによって「高密度な光ディスク」およびDVD間の互換(第1互換機能)を 達成する。

具体的には、第1光源と第2光源との間の波長差に基づく球面収差を補正する。 また、回折構造で無くとも、位相差付与構造を用いても、同様の光学的作用を得る事が出来る。

[0120]

なお、光情報記録媒体について、保護基板の厚さが異なると、その差にもとづく球面収差が発生するが、ここでは「高密度な光ディスク」とDVDとは共に同じ0.6mmの保護基板を用いているので、そのような基板厚差に基づく球面収差は生じない。

[0121]

第2互換光学素子であるコリメータCL3にも回折構造が設けられている。これは先の対物光学素子OBLの回折構造と組み合わされることにより、「高密度な光ディスク」およびCD間の互換、さらにDVDおよびCD間の互換(第2互換機能)を達成する。

具体的には、「高密度な光ディスク」およびCD間の互換についてみると、使用波長も保護基板の厚さも異なる事から、第1光源と第3光源との間の波長差に基づく球面収差と、保護基板厚差(0.1mmと1.2mm)に基づく球面収差の両方を補正する。

[0122]

DVDおよびCD間の互換についても同様で、第2光源と第3光源との間の波 長差に基づく球面収差と、保護基板厚差(0.6mmと1.2mm)に基づく球 面収差の両方を補正する。

これにより、各光情報記録媒体に対して、好適な集光スポットを形成することができる。

また先の実施の形態と同様に、異なった回折次数の回折光による集光スポットが形成されるようにしているので、「高密度な光ディスク」、DVDについて、 光量を確保し、確実な情報の記録及び/又は再生が可能になる。

[0123]

この実施例では、第2互換光学素子として、コリメータCL3に回折光学素子を設けた例(請求項11)を示したが、他にも、たとえば位相のみを付与する光路差付与構造を設けた光学素子(請求項9)や、電気的に光学的作用を切り替えることが出来る液晶素子を用いても、同様の光学的作用を得ることが出来る(請求項10)。特に液晶素子は、屈折率を変化させることができるという作用があるため、動的な制御が可能である。また、互換は第1互換光学素子と回折構造とで行ない、CD側の絞りの役割のみを果たすダイクロイックフィルタを用いてもよい。

また他にも、第1互換機能、第2互換機能共に、位相差付与構造を設ける事に よっても達成できる。

[0124]

(第3の実施の形態)

この実施例は請求項1、2の発明に対応するもので、図1の構成から所定のコリメータのかわりにカップリングレンズを設けた光ピックアップ装置である。具体的には、コリメータCL1~CL3のかわりにカップリングレンズCo1~3(図示略)を設ける。

光源からの入射光を平行光にコリメートするコリメータを設けないため、有限発散光が対物光学素子に入射する。カップリングレンズはコリメータほどのパワーを有しないので、小型であり、このような構成にすることにより、ピックアップ装置を小型にすることができる。

[0125]

このように、無限平行光でなく、有限発散光を用いることにより、対物光学素子OBLに入射する光束に対する集光光学系の倍率が変わるので、これによって波長差に基づく球面収差及び基板厚差に基づく球面収差を補正することができることが知られているが、それでも十分な補正が出来ない場合がある。

また有限光を用いることにより、温度特性やトラッキング特性が劣化するという問題も生じる。

[0126]

そこでこの実施例では、対物光学素子OBLに、波長毎にそれぞれ異なる倍率の光束を入射させるが、第1互換光学素子、第2互換光学素子によって、波長差に基づく球面収差、保護基板厚差に基づく球面収差及び光束の倍率差に基づく球面収差を補正するようにしている。

[0127]

第1互換素子は、第2の実施の形態と同じく、対物光学素子に回折構造を設けたものであり、第2互換光学素子は、カップリングレンズCo3に回折構造を設けたものである。

[0128]

これによって、第1光源乃至第3光源からの光東は、全て有限発散光で対物光 学素子OBLに入射するが、球面収差を全て補正され、好適な集光スポットを形 成する。

[0129]

ここではコリメータCL1~3の代わりにカップリングレンズCo1~3を用いているため、全ての光源の光は対物光学素子に発散光が入射するが、どれか1つはコリメータとし、対物レンズに無限平行光を入射させても良い。

[0130]

(第4の実施の形態)

図2を用いて、請求項1の発明の、別の実施の形態について説明する。同じ符号を付しているものは、基本的には第1の実施の形態と同じ機能を有するが、異なるものについて説明する。なお光学的な作用についても殆ど同じである。

[0131]

この例では、光源を2つのユニットによって構成している。具体的には、図2のLD2'は、第2の光源(DVD用の光源)、第3の光源(CD用の光源)について、同一のパッケージに収めた、いわゆる2レーザー1パッケージの光源ユニットを用いている。

[0132]

このパッケージのうち、第2の光源を光軸上に位置するように調整するので、 第3の光源については光軸上からやや離れた処に位置するため、像高が生じてし まうが、この特性を改善するための技術も既に知られており、それらの技術を必要に応じて適用できる。ここでは補正板DPを用いることによりその補正を行っている。補正板DPにはグレーティングが形成されており、それによって光軸からのズレを補正すると共に、センサーS2への集光にも寄与する。

[0133]

なおLD2'から実線で描かれているのがDVD用の光源光束であり、点線で描かれているのがCD用の光源光束である。

[0134]

BS2はLD1からの光束と、LD2'からの光束とを同一の光路に載せるために配置される。またBS3は、LD2'からの光束をセンサーレンズSL2に入射させるために配置される。

[0135]

LD1から投光された光束は、BS1を経て、コリメータCL1に入射し、これによって無限平行光にコリメートされたのち、BS2を経て対物光学素子である対物レンズOBLに入射する。そして第1光情報記録媒体の保護基板を介して情報記録面上に集光スポットを形成する。情報記録面上で反射したのち、同じ経路をたどって、コリメータCL1を通過してから、BS1によってセンサーレンズSL1を経てセンサーS1に集光する。このセンサーによって光電変換され、電気的な信号となる。

[0136]

LD2'から投光された光束も、同様に光ディスク(第2光情報記録媒体または第3光情報記録媒体)に集光スポットを形成し、反射して最終的にセンサーS2に集光する。

[0137]

さて本実施例では、「第1光源、前記第2光源及び前記第3光源の共通光路に 配置され、回折構造を有する回折光学素子」の役割を、対物光学素子OBLに持 たせている。そのため、対物光学素子に鋸歯状の回折構造を設けている。

[0138]

そしてこの鋸歯のピッチ(回折パワー)や深さ(ブレイズド化波長)を設定す

ることにより、「高密度な光ディスク」に対しては、第1光源からの光束が2次 回折光による集光スポットとして形成され、DVDに対しては、第2光源からの 光束が1次回折光による集光スポットとして形成されるようになっている。

[0139]

このように、波長 λ 1 と λ 2 の関係により回折次数が異なる光を利用することにより、各々の場合における回折効率を高くすることができ、光量を確保することができる。

[0140]

またCDに対しては、波長 λ 1と λ 3との関係によりk次(波長 λ 1に対する回折次数がmの場合、m/2)とするのが望ましい。

この例では、DVDと同じ1次の回折光として集光スポットを形成するように している。

[0141]

この例では、回折光学素子として、回折構造を対物光学素子に設けた例を説明 したが、請求項4や6のように、このような異次回折光を生じる回折構造をコリ メータCL1に設けても良いし、また別の光学素子を光路中に設けることも可能 である。

[0142]

また上記した開口の切り替えについても、回折光学素子を始めとして、公知の 技術を適用することができる。

[0143]

なお上記の実施例では、情報の再生について説明してきたが、情報の記録においても基本的な構成・光学的作用は変わらず、光情報記録媒体の記録面に集光スポットを形成することにより、記録層に熱化学変化を生ぜしめて、記録を行う。

[0144]

また、温度補償及び/又は色収差補償を行うための光学的補正構造を有する光学素子を、必要に応じて光路中に設ける事ができるのはいうまでもない。そしてこれらの光学的補正構造は回折構造や位相差付与構造によって実現できるし、対物光学素子、コリメータ及びその他の素子に設けることが出来る。

[0145]

(第5の実施の形態)

同じく図2を用いて、請求項7の発明の、別の実施の形態について説明する。 各光学素子に関して、第4の実施の形態と同じ機能については説明を省略する。 この実施例では、第1互換光学素子の役割を、対物光学素子OBLに持たせてい る。そして第2互換光学素子の役割をコリメータCL2に持たせている。 つまり、第1互換光学素子である対物光学素子OBLは、全ての光源が通過する 光路に配置されており、第2互換光学素子であるコリメータCL2は、第2光源 と第3光源とが通過する光路に配置される。

[0146]

さて第1互換光学素子である対物光学素子OBLは、回折構造を有していて、 それによって「高密度な光ディスク」に必要な集光スポットの形成に寄与する。 具体的には、第1光情報記録媒体と第2光情報記録媒体との間の互換を行なう。

また、回折構造で無くとも、位相差付与構造を用いても、同様の光学的作用を 得る事が出来る。

[0147]

なお、光情報記録媒体について、保護基板の厚さが異なると、その差にもとづく球面収差が発生するが、ここでは「高密度な光ディスク」とDVDとは共に同じ0.6mmの保護基板を用いているので、基板厚差に基づく球面収差は生じない。

第2互換光学素子であるコリメータCL2にも回折構造が設けられている。これは先の対物光学素子OBLの回折構造と組み合わされることにより、DVDおよびCD間の互換(第2互換機能)を達成する。

[0148]

DVDおよびCD間の互換についてみると、使用波長も保護基板の厚さも異なる事から、第2光源と第3光源との間の波長差に基づく球面収差と、保護基板厚差(0.6mmと1.2mm)に基づく球面収差の両方を補正する。

これにより、各光情報記録媒体に対して、好適な集光スポットを形成することができる。

また先の実施の形態と同様に、異なった回折次数の回折光による集光スポットが形成されるようにしているので、「高密度な光ディスク」、DVDについて、 光量を確保し、確実な情報の記録及び/又は再生が可能になる。

[0149]

この実施例では、第2互換光学素子として、コリメータCL2に回折光学素子を設けた例(請求項11)を示したが、他にも、たとえば位相のみを付与する光路差付与構造を設けた光学素子(請求項9)や、電気的に光学的作用を切り替えることが出来る液晶素子を用いても、同様の光学的作用を得ることが出来る(請求項10)。特に液晶素子は、屈折率を変化させることができるという作用があるため、動的な制御が可能である。また、互換は第1互換光学素子と回折構造とで行ない、CD側の絞りの役割のみを果たすダイクロイックフィルタを用いてもよい。

[0150]

(第6の実施の形態)

この実施例は請求項1、2の発明に対応する別の実施例で、図2の構成から所定のコリメータのかわりにカップリングレンズを設けた光ピックアップ装置である。具体的には、コリメータCL1、CL2のかわりにカップリングレンズCo1、2を設ける。

光源からの入射光を平行光にコリメートするコリメータを設けないため、有限 発散光が対物光学素子に入射し、その入射角は全ての光がほぼ同じ角度となる。 カップリングレンズはコリメータほどのパワーを有しないので、小型であり、こ のような構成にすることにより、ピックアップ装置を小型にすることができる。

[0151]

このように、無限平行光でなく、有限発散光を用いることにより、対物光学素子OBLに入射する光束に対する集光光学系の倍率が変わるので、これによって波長差に基づく球面収差及び基板厚差に基づく球面収差を補正することができることが知られているが、それでも十分な補正が出来ない場合がある。

また有限光を用いることにより、温度特性やトラッキング特性が劣化するとい う問題も生じる。

[0152]

そこでこの実施例では、対物光学素子OBLに、波長毎にそれぞれ異なる倍率の光束を入射させるが、第1互換光学素子、第2互換光学素子によって、波長差に基づく球面収差、保護基板厚差に基づく球面収差及び光束の倍率差に基づく球面収差を補正するようにしている。

[0153]

第1互換素子は、第5の実施の形態と同じく、対物光学素子に回折構造を設けたものであり、第2互換光学素子は、カップリングレンズCo3に回折構造を設けたものである。

[0154]

これによって、第1光源乃至第3光源からの光東は、全て有限発散光で対物光 学素子OBLに入射するが、球面収差を全て補正され、好適な集光スポットを形 成する。

[0155]

ここではコリメータCL1~3の代わりにカップリングレンズCo1~3を用いているため、全ての光源の光は対物光学素子に発散光が入射するが、どれか1つはコリメータとし、対物レンズに無限平行光を入射させても良い。

[0156]

(第7の実施の形態)

この実施例においては、図3に示すように、対物光学素子10の一つの光学面11(出射面)であって、第3光情報記録媒体としてのCDの情報記録面上に開口数NA3の集光スポットを形成する波長λ3の光束が通過する領域に、光軸Lを中心とした複数(2つ)の輪帯状光学面(Rs、R1)が段差面20を介して連続的に形成されている。なお、以下の説明においては、輪帯状光学面が形成されている光学面全体を「S1面」と表記する場合がある。

これら輪帯状光学面の数は2~10のいずれかであることが好ましい。

[0157]

ここで、2つの輪帯状光学面のうち、光軸Lを含む輪帯状光学面をRs、光軸から最も離れた輪帯状光学面をR1とする。

なお、光軸Lを含む輪帯状光学面Rsについては、光軸L方向から見たその形状が「輪帯」ではなく、例えば光軸Lを中心とした略円形状となる場合も含むものとする。本実施の形態で示す輪帯状光学面Rsの形状は、光軸L方向から見て略円形状となっている。

輪帯状光学面R1に連続する二つの段差面20のうち、光軸Lに近い方の段差面20の光軸Lに平行な距離は他方の段差面20の光軸Lに平行な距離と比較して短いことが好ましい。

[0158]

輪帯状光学面Rsは屈折面で構成されており、この輪帯状光学面Rsを通過した波長λ1、λ2及びλ3の光束は、それぞれの光情報記録媒体(「高密度な光ディスク」、DVD及びCD)の情報記録面上に集光スポットを形成するようになっている。

輪帯状光学面R1も同様に屈折面で構成されているが、輪帯状光学面Rsに対して、光源側に所定距離だけずれた位置に形成されている。

この輪帯状光学面R1を通過した波長λ3の光束も、第3光情報記録媒体の情. 報記録面上に集光スポットを形成するようになっている。

[0159]

対物光学素子10の他方の光学面12(入射面)には、第1回折構造30としての回折輪帯が形成されている。なお、以下の説明においては、第1回折構造30が形成されている光学面全体を「S2面」と表記する場合がある。

第1回折構造30は、入射面12上であって第3光情報記録媒体に開口数NA 3の集光スポットを形成する波長23の光束が通過する領域(以下、領域A1と もいう。)に形成されている。

また、第1回折構造が形成される領域A1は、輪帯状光学面Rsを通過後、それぞれの光情報記録媒体に集光スポットを形成する波長 λ 1、 λ 2 及び λ 3 の光東が通過する領域に相当する。

[0160]

本実施の形態においては、領域A1より光軸Lから離れた領域であって、輪帯 状光学面R1を通過後、それぞれの光情報記録媒体に集光スポットを形成する波 長λ1、λ2及びλ3の光束が通過する領域(以下、領域A2ともいう。)に第 2回折構造40としての回折輪帯が形成されている。

また、領域A2よりも光軸から離れた領域の構造は限定されるものではないが、本実施の形態では回折輪帯が形成されている。これら回折輪帯の構造については周知であるため説明を省略する。

そして、この第1回折構造による波長 \(\lambda \) 1、 \(\lambda \) 2 及び \(\lambda \) 3 の m 次、 n 次及び k 次回折光をそれぞれの光情報記録媒体の情報記録面上に集光させることにより、情報の再生及び/又は記録を行なうようになっている。

[0161]

ここで、波長 λ 1 と λ 2 の 光東が同じ発散角で又は同じ無限光として対物光学素子 1 0 に入射し、第 1 回折構造 3 0 が、波長 λ 1 と λ 2 の 光東が対物光学素子 1 0 の 光学面 1 0 、 1 2 を通過する際に生じる球面収差を、波長 λ 1 と波長 λ 2 の差によって補正するように構成されていることが好ましい。

また、各回折光を、m=8でn=5、m=6でn=4又はm=2でn=1のいずれかの組み合わせとすることが好ましい。

また、波長 λ 1、 λ 2、 λ 3 の光東が入射した場合に、第1回折構造 3 0 により生じる各光東の回折光のうち最大の回折光率となる回折光の組み合わせと、第2回折構造 4 0 により生じる各光東の回折光のうち最大の回折光率となる回折光の組み合わせとが異なることが好ましい。

[0162]

また、第2回折構造40により生じる各光束の回折光のうち最大の回折光率となる回折光の組み合わせが1、1、1であることが好ましいが、これに特定されるものではない。

また、370nm $\leq \lambda 1 \leq 430$ nm、760nm $\leq \lambda 3 \leq 810$ nmの条件下において、k=m/2を満たすことが好ましい。

また、前記m次の回折光及び前記n次の回折光の回折効率は共に80%以上であることが好ましい。

また、前記k次の回折光の回折効率は50%以上であることが好ましい。

[0163]

図4は、このように構成された対物光学素子10を光ピックアップ装置に用いた場合における、高密度な光ディスク、DVD、CDの各情報記録面上での縦球面収差図の一例を示すものである。なお、以下の図4、5、8及び10においては、縦軸が開口数、横軸が球面収差量を表している。

図4 (a) に示すように、高密度な光ディスク用として用いられる波長 1 の 光東は、輪帯状光学面Rsが形成されている箇所に対応する開口数内において、 球面収差が変化しない、つまり、輪帯状光学面Rsを通過した波長 1 の光東が 、第1光情報記録媒体の情報記録面上にほぼ収差なく集光する。

一方、輪帯状光学面R1が形成されている箇所に対応する開口数内において、 球面収差がアンダー側に不連続となる。

なお、第2回折構造の形状を変更し、波長 λ 1、 λ 2、 λ 3 の光が入射した場合に最大の回折効率となる回折光の次数の組み合わせを変えた場合、球面収差をオーバー側に不連続とすることもできる。

そして、開口数NA1に対応する領域全体で見た場合に、球面収差が実用上支障のない範囲に収まるようにS1面とS2面の形状を設計することは比較的容易である。

[0164]

また、図4 (b) に示すように、DVD用として用いられる波長 2 2 の光東は、輪帯状光学面Rsが形成されている箇所に対応する開口数内において、球面収差が変化しない、つまり、輪帯状光学面Rsを通過した波長 2 2 の光東が、第 2 光情報記録媒体の情報記録面上にほぼ収差なく集光する。

また、輪帯状光学面R1が形成されている箇所に対応する開口数内においても、球面収差が変化しない、つまり、輪帯状光学面R1を通過した波長22の光束が、第2光情報記録媒体の情報記録面上にほぼ収差なく集光する。

従って、開口数NA2に対応する領域全体で見た場合に、球面収差をほぼなく すことができる。

[0165]

また、図4 (c)に示すように、CD用として用いられる波長13の光束は、 輪帯状光学面Rsが形成されている箇所に対応する開口数内において、球面収差 がオーバー側に徐々に大きくなる。

一方、輪帯状光学面R1が形成されている箇所に対応する開口数内において、 球面収差がアンダー側に不連続となる。

そして、開口数NA3に対応する領域全体で見た場合に、球面収差が実用上支障のない範囲に収まるようにS1面とS2面の形状を設計することは比較的容易である。なお、輪帯状光学面R1が形成されている箇所より光軸から離れた位置を通過する波長23の光束はフレア光となり、スポット径が必要開口数相当となる。

[0166]

なお、波長 λ 3の光束によって第3光情報記録媒体に形成される集光スポットの波面収差は $0.040[\lambda 3 rms]$ 以下であることが好ましい。

また、波長 λ 3 の光束によって第 3 光情報記録媒体に形成される集光スポットの波面収差が最小となる光軸方向の位置(最良像面位置)に対して、波長 λ 3 の光束の近軸光線が光源側に集光することが好ましい。

また、輪帯状光学面Rsを通過した前記波長λ3の光束と、輪帯状光学面R1 を通過した前記波長λ3の光束とが、光軸方向に10μm以上離れて集光することが好ましい。

[0167]

また、輪帯状光学面Rsを通過した波長 λ 3の光束と、輪帯状光学面Rs以外の輪帯状光学面を通過した波長 λ 3の光束との、集光スポットにおける位相差 ϕ は、-0. $1\pi \le \phi \le 0$. 1π を満たすことが好ましい。

また、輪帯状光学面R1を通過後、集光スポットを形成する波長 λ 3の光束の集光位置 f B 3 は、波長 λ 3の光束によって第3光情報記録媒体に形成される集光スポットの最良像面位置に対して、光軸方向において、|f B 3 | \leq 5 μ m を満たすことが好ましい。

以上のように、本実施の形態に示した対物光学素子及びこの対物光学素子を用いた光ピックアップ装置によれば、3種類の光情報記録媒体に対して互換性を有することができる。

[0168]

また、第2回折構造や輪帯状光学面R1の面形状を代えることにより、S1面とS2面が図3のように構成された対物光学素子の縦球面収差図が図5に示すようなものであってもよい。

図5 (a) に示すように、高密度な光ディスク用として用いられる波長 2 1 の 光束は、輪帯状光学面Rsが形成されている箇所に対応する開口数内において、 球面収差が変化しない、つまり、輪帯状光学面Rsを通過した波長 2 1 の光束が 、第1 光情報記録媒体の情報記録面上にほぼ収差なく集光している。

また、輪帯状光学面R1が形成されている箇所に対応する開口数内においても 、球面収差が変化しない、つまり、輪帯状光学面R1を通過した波長λ1の光束 が、第1光情報記録媒体の情報記録面上にほぼ収差なく集光している。

従って、開口数NA1より以下の領域全体で見た場合に、球面収差をほぼなく すことができる。

[0169]

また、図5(b)に示すように、DVD用として用いられる波長 22の光東は、輪帯状光学面Rsが形成されている箇所に対応する開口数において、球面収差が変化しない、つまり、輪帯状光学面Rsを通過した波長 20 光東が、第2光情報記録媒体の情報記録面上にほぼ収差なく集光している。

一方、輪帯状光学面R1が形成されている箇所に対応する開口数において、球面収差がアンダー側に不連続となる。

なお、第2回折構造の形状を変更し、波長 λ 1、 λ 2、 λ 3 の光が入射した場合に最大の回折効率となる回折光の次数の組み合わせを変えた場合、球面収差をオーバー側に不連続とすることもできる。

そして、開口数NA2に対応する領域全体で見た場合に、球面収差が実用上支障のない範囲に収まるようにS1面とS2面の形状を設計することは比較的容易である。

この場合、図5(c)に示すCD用として用いられる波長23の光束の縦球面収差図は、上記図4(c)と同様となる。

[0170]

また、図6に示すように、上記第7の実施の形態に示したS1面とS2面とを

入射面側で組み合わせた対物光学素子であってもよい。

具体的に説明すると、A 2 領域の第 2 回折構造全体を光情報記録媒体側に所定 距離だけずれた位置に形成するものである。

このような構成であっても、縦球面収差図は、図4あるいは図5に示したものとほぼ同様の形状となり、3種類の光情報記録媒体に対して互換性を持った光ピックアップ装置及び対物光学素子を得ることができる。

なお、図示は省略するが、S1面とS2面とが、出射面側で組み合わされた対物光学素子であっても良い。

[0171]

(第8の実施の形態)

本実施例に示す対物光学素子は、上記第7の実施の形態と比較して、図7に示すように、上記領域A2が屈折面50で構成されている点のみが異なる。

[0172]

図8は、このように構成された対物光学素子を用いた場合における、高密度な 光ディスク、DVD、CDの各情報記録面上での縦球面収差図の一例を示すもの である。

図8(a)に示すように、高密度な光ディスク用として用いられる波長21の光東は、輪帯状光学面Rsが形成されている箇所に対応する開口数内において、球面収差が変化しない、つまり、輪帯状光学面Rsを通過した波長21の光束が、第1光情報記録媒体の情報記録面上にほぼ収差なく集光する。

一方、輪帯状光学面R1が形成されている箇所に対応する開口数内において、 球面収差がアンダー側に不連続となる。

そして、開口数NA1に対応する領域全体で見た場合に、球面収差が実用上支障のない範囲に収まるようにS1面とS2面の形状を設計することは比較的容易である。

[0173]

また、図8(b)に示すように、DVD用として用いられる波長22の光東は、輪帯状光学面Rsが形成されている箇所に対応する開口数内において、球面収差が変化しない、つまり、輪帯状光学面Rsを通過した波長22の光東が、第2

光情報記録媒体の情報記録面上にほぼ収差なく集光する。

一方、輪帯状光学面R1が形成されている箇所に対応する開口数内において、 球面収差がアンダー側に不連続となる。

そして、開口数NA2に対応する領域全体で見た場合に、球面収差が実用上支障のない範囲に収まるようにS1面とS2面の形状を設計することは比較的容易である。

この場合、図8(c)に示すCD用として用いられる波長λ3の光束の縦球面収差図は、上記図4(c)と同様となる。

以上のように、本実施の形態に示した対物光学素子及びこの対物光学素子を用いた光ピックアップ装置によれば、3種類の光情報記録媒体に対して互換性を持たせることができる。

[0174]

(第9の実施の形態)

本実施例に示す対物光学素子は、上記第7の実施の形態と比較して、図9に示すように、対物光学素子の一つの光学面11(出射面)であって、第3光情報記録媒体としてのCDの情報記録面上に開口数NA3の集光スポットを形成する波長23の光束が通過する領域に、光軸を中心とした複数の輪帯状光学面60が形成されている点と、入射面12の領域A1とA2の両方に第1回折構造30としての回折輪帯が形成されている点が異なる。

[0175]

具体的に説明すると、光軸を中心とした複数の輪帯状光学面60が、段差面70を介して階段状に連続的に形成されている。

そして、波長 λ 1、 λ 2 及び λ 3 の光束のうち、波長 λ 3 の光束に対しては、各輪帯状光学面 6 0 を通過する際に所定の光路差を付与することにより、通過前後で位相差を生じさせ、波長 λ 1 及び λ 2 の光束の少なくとも一つ(本実施の形態においては両方)に対しては、各輪帯状光学面 6 0 を通過する際に所定の光路差を付与せず、通過前後で位相差を生じさせないようになっている。

[0176]

ここで、複数の輪帯状光学面60のうち、光軸Lを含む輪帯状光学面をRs、

光軸Lから最も離れた輪帯状光学面をR1とする。

輪帯状光学面Rsは屈折面で構成されており、この輪帯状光学面Rsを通過した波長λ1、λ2及びλ3の光束は、それぞれの光情報記録媒体(「高密度な光ディスク」、DVD及びCD)の情報記録面上に集光スポットを形成するようになっている。

輪帯状光学面R1も同様に屈折面で構成されており、この輪帯状光学面R1を 通過した波長 23の光束も、第3光情報記録媒体の情報記録面上に集光スポット を形成するようになっている。

[0 1 7 7]

図10は、このように構成された対物光学素子を用いた場合における、高密度な光ディスク、DVD、CDの各情報記録面上での縦球面収差図の一例を示すものである。

図10(a)に示すように、高密度な光ディスク用として用いられる波長 λ 1の光束は、輪帯状光学面Rsが形成されている箇所に対応する開口数内において、球面収差が変化しない、つまり、輪帯状光学面Rsを通過した波長 λ 1の光束が、第1光情報記録媒体の情報記録面上にほぼ収差なく集光する。

また、輪帯状光学面R1が形成されている箇所に対応する開口数においても、 球面収差が変化しない、つまり、輪帯状光学面R1を通過した波長 21の光東が 、第1光情報記録媒体の情報記録面上にほぼ収差なく集光する。

従って、開口数NA1に対応する領域全体で見た場合に、ほぼ球面収差をなく すことができる。

なお、場合によっては、S1面上の輪帯状構造により、図10の(c)のような各輪帯状光学面を通過した光束による微小な集光位置のずれが、図10の(a)、(b)に現れる場合があるが、ここでは概略的に完全に収差のない縦球面収差図としている。

[0178]

また、図10(b)に示すように、DVD用として用いられる波長22の光束は、輪帯状光学面Rsが形成されている箇所に対応する開口数内において、球面収差が変化しない、つまり、輪帯状光学面Rsを通過した波長22の光束が、第

2光情報記録媒体の情報記録面上にほぼ収差なく集光する。

また、輪帯状光学面R1が形成されている箇所に対応する開口数内においても、球面収差が変化しない、つまり、輪帯状光学面R1を通過した波長22の光束が、第2光情報記録媒体の情報記録面上にほぼ収差なく集光する。

従って、開口数NA2に対応する領域全体で見た場合に、ほぼ球面収差をなく すことができる。

[0179]

また、図10(c)に示すように、CD用として用いられる波長23の光東は 、輪帯状光学面Rsが形成されている箇所に対応する開口数内において、球面収 差がオーバー側に徐々に大きくなっていく。

一方、輪帯状光学面R1が形成されている箇所に対応する開口数内において、 球面収差がアンダー側に不連続となっている。

そして、開口数NA3に対応する領域全体で見た場合に、球面収差が実用上支障のない範囲に収まるようにS1面とS2面の形状を設計することは比較的容易である。なお、輪帯状光学面R1が形成されている箇所より光軸から離れた位置を通過する波長23の光束はフレア光となる。

そのため、波長ん3の光束に対して個別の絞りを設ける必要がない。

以上のように、本実施の形態に示した対物光学素子及びこの対物光学素子を用いた光ピックアップ装置によれば、3種類の光情報記録媒体に対して互換性を持たせることができる。

[0180]

【発明の効果】

以上、本発明に係る光ピックアップ装置及び光学素子によれば、第1光源、第2光源及び第3光源の共通光路に配置され、第1回折構造を有する回折光学素子を備え、第1光情報記録媒体、第2光情報記録媒体及び第3光情報記録媒体に対して情報の再生及び/又は記録を行う場合、回折光学素子に全ての前記光束をほぼ同じ角度で入射させる。

従って、例えば、第1~第3の波長の光の光路がほぼ等しくなるので、光ピックアップ装置を構成する各種光学素子をこの共通光路に対応して配置すればよく

、光ピックアップ装置の構造を簡略化できると共に、装置の部品点数を削減できる。

また、回折光学素子に全ての光束をほぼ無限平行光として入射させる。

従って、情報の再生及び/又は記録を行なう際に対物光学素子を光情報記録媒体に対して移動させるトラッキング時の像高特性の悪化を防止でき、コマ収差や 非点収差等の各種収差の発生を抑えることができる。

また、温度変化により発生する球面収差も抑えることができる。

【図面の簡単な説明】

【図1】

本発明に関わる光ピックアップ装置の図である。

【図2】

本発明に関わる、別の態様の光ピックアップ装置の図である。

【図3】

対物光学素子の構造を示す要部縦断面図である。

【図4】

縦球面収差図(a)~(c)である。

【図5】

縦球面収差図(a)~(c)である。

【図6】

対物光学素子の構造を示す要部縦断面図である。

【図7】

対物光学素子の構造を示す要部縦断面図である。

【図8】

縦球面収差図(a)~(c)である。

【図9】

対物光学素子の構造を示す要部縦断面図である。

【図10】

縦球面収差図(a)~(c)である。

【符号の説明】

- LD1 第1光源
- LD2 第2光源
- LD3 第3光源
- LD2' 第2光源(2波長1パッケージ)
- S1 センサー
- S2 センサー
- S3 センサー
- S2' センサー
- SL1 センサーレンズ
- SL2 センサーレンズ
- SL3 センサーレンズ
- DP 回折板
- BS1 ビームスプリッタ
- BS2 ビームスプリッタ
- **BS3 ビームスプリッタ**
- BS4 ビームスプリッタ
- CL1 コリメータ
- CL2 コリメータ
- CL3 コリメータ
- IR 絞り
- OBL 対物光学素子
- D1 光ディスク(「高密度な光ディスク」)
- D2 光ディスク(DVD)
- D3 光ディスク(CD)
- L 光軸
- Rs 輪帶状光学面
- R1 輪帶状光学面
- 10 対物光学素子
- 11 光学面(出射面)

5 7

特2002-366642

- 12 光学面(入射面)
- 20 段差面
- 30 第1回折構造
- 40 第2回折構造
- 50 屈折面
- 60 輪帯状光学面
- 70 段差面

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【書類名】

要約書

【要約】

【課題】 使用波長や保護基板厚が異なる3種類の光情報記録媒体に対する情報の再生及び/又は記録に用いられ、各種収差の発生を抑制し、かつ部品点数を削減できる光ピックアップ装置及び光学素子を提供する。

【解決手段】 第1~第3の光情報記録媒体に対して、波長λ1~λ3の光束を用いて情報の再生及び/又は記録を行なう光ピックアップ装置であって、第1~第3光源の共通光路に配置され、第1回折構造を有する回折光学素子を備え、各光情報記録媒体に対して情報の再生及び/又は記録を行う場合、回折光学素子に全ての前記光束をほぼ同じ角度で入射させ、第1光情報記録媒体に対して回折光学素子によって生じるm(mは自然数)次の回折光による集光スポットが形成され、第2光情報記録媒体に対して前記回折光学素子によって生じるn(nはn≠mである自然数)次の回折光による集光スポットが形成される。

【選択図】

図1

出願人履歴情報

識別番号

 $[0\dot{0}0001270]$

1. 変更年月日 1990年 8月14日

[変更理由] 新規登録

住 所 東京都新宿区西新宿1丁目26番2号

氏 名 コニカ株式会社