THM3060 应用笔记

Type A 应用说明

Tongfang Microelectronics Company

REF: AN_TypeA

保密等级: MID 页码: 第 2 共 16

版本

版本	修改	日期	作者
V0.1	初稿 (SYS_THM3060_AN_TypeA_V0_1)	2009-06-22	DingYM

保密等级: MID

REF: AN_TypeA

页码: 第3 共 16

目录

版ス	······ 4		2
目录	₹		3
1	简介		4
	1.1	概述	4
	1.2	ISO/IEC14443 协议	4
	1.2.	1 协议简介	4
	1.2.	2 Type A 与 Type B	4
	1.3	THM3060 对 Type A 的支持	6
	1.3.	1 短帧的支持	6
	1.3.	1 短帧的支持2 防冲突比特帧	6
	1.3.	3 标准帧	7
2	详细说明	1	8
	2.1	发送电路	8
	2.2	寄存器设置	8
	2.2.	* K//)	
	2.2.	2 TYPE A 脉冲宽度设置 PWTH	9
	2.2.	3 冲突比特位寄存器 BITPOS	10
	2.2.	4 CRCSEL 设置	11
	2.2.	5 读卡器等待时间。	12
3	Type A '	常用命令	13
	3.1.	1 寻卡命令 REQA/WUPA	13
	3.1.		13
4	防冲突流	冠程	14
5	举例	·/	15
Anr	nex 1	联系我们	16

保密等级: MID 页码: 第 4 共 16

REF: AN_TypeA

1 简介

1.1 概述

本文档介绍了使用 THM3060 操作 ISO/IEC14443 A 类卡片的方法和注意事项。

1.2 ISO/IEC14443 协议

1.2.1 协议简介

ISO/IEC14443 协议分为四个部分,第一部分为物理特性,介绍卡片的物理特性如尺寸、防静电(ESD)、抗压、抗弯曲等。第二部分为射频功率和信号接口。第三部分为卡片的初始化和防冲突流程。第四部分为传输协议。 在 ISO/IEC14443 协议中定义了两种类型的卡片,A 类卡和 B 类卡。两种卡片的调制方式、初始化和防冲突、传输协议的激活过程等均有不同。

1.2.2 Type A 与 Type B

不同点	Ī.	TYPEA	TYPE B		
调制方式	106K	PCD to PICC 密勒编码	PCD to PICC NRZ 编码		
		PICC to PCD 曼彻斯特编码	PICC to PCD BPSK 编码		
	212K	PCD to PICC 密勒编码			
	424K	PICC to PCD BPSK 编码			
	848K	> /			
调制幅度		100%	8~14%		
帧格式		短帧、标准帧、比特帧	标准帧		
CRC		CRCA	CRCB		
防冲突		比特帧防冲突法	时间槽防冲突法		
初始化		命令不同,流程不同	命令不同,流程不同		
传输协议		命令不同	命令不同		
帧起始/帧结束		无	有		
奇偶校验位		有	无		

保密等级: MID 页码: 第5 共 16

REF: AN_TypeA

图 1 A 类卡与 B 类卡读卡器到卡片的调制方式

保密等级: MID 页码: 第 6 共 16

REF: AN_TypeA

图 2A 类卡和 B 类卡卡片到读卡器的调制

1.3 THM3060 对 Type A 的支持

THM3060 支持 Type A 的所有速率,通过设置有关寄存器可以方便的设置 Type A 相关的速率、帧格式、CRC 计算等。

1.3.1 短帧的支持

TypeA 协议中帧格式分为短帧、防冲突比特帧和标准帧三种。

b7	b6	b5	b4	b3	b2	b1	Meaning
0	1	0	0	1	1	0	'26' = REQA
1	0	1	0	0	1	0	'52' = WUPA
0	1	1	0	1	0	1	'35' = Optional timeslot method, see Annex C
1	0	0	X	X	X	X	'40' to 4F' = Proprietary
1	1	1	1	X	X	X	78 to 7F' = Proprietary
	ć	all otl	her v	alues	3		RFU

表 1 TypeA 短帧

上表中为 TYPEA 协议中的短帧命令,短帧命令均为 1 个字节,其中的 REQA 和 WUPA 最常用。 二者都用于4 卡,区别在于 WUPA 可以唤醒处于停止 (HALT) 状态的卡片。 THM3060 提供对短帧的完整支持,硬件自动识别表中的命令,不需要进行短帧设置。此时即使 CRC 设置为自动发送,硬件也不会发送 CRC。

1.3.2 防冲突比特帧

防冲突比特帧是以 9X 开始的命令。

b8	b7	b6	b5	b4	b3	b2	b1	Meaning			
1	0	0	1	0	0	1	1	'93': Select cascade level 1			
1	0	0	1	0	1	0	1	'95': Select cascade level 2			
1	0	0	1	0	1	1 1 1		'97': Select cascade level 3			
1	0	0	1		ther values except those here above			RFU			

保密等级: MID 页码: 第7 共 16

REF: AN_TypeA

目前使用的包括 93,95 和 97。93 用于识别 UID 的前 4 个字节。95 用于识别 UID 的5~7 个字节。97 用于识别 UID 的 8~10 个字节。

比特帧命令除 9X 70 命令外,均不需发送 CRC。 THM3060 提供对比特帧的硬件支持,即使 CRC 设置为自动发送,对于除 9X 70 外的其他 9X 命令均不发送 CRC。 9X70 命令可以认为是标准帧。

1.3.3 标准帧

标准帧包括数据和 CRC 值。设置 CRC 自动发送时,对于标准帧,THM3060 将自动添加 CRC。

保密等级: MID 页码: 第8 共 16

REF: AN_TypeA

2 详细说明

2.1 发送电路

图 3 THM3060 发送电路

对于 Type A 协议,调制深度为 100%,THM3060 的发送电路由 RF_CLK 输出的载波频率信号控制调制深度。RF_TXD 信号保持为高电平,三级管 Q2 始终导通。 因此对于应用中只使用 TypeA 协议的情况,可以去掉 Q2、R5 和 D1 。将 Q1 的源极直接接地。注意: TypeA 由于协议本身的问题,其抗干扰能力低于 TypeB 协议,即发送电路的噪声会更容易影响读卡器对卡片信号的接收。对于只有 TypeA 协议的应用,建议在上图的发送电路基础上增加滤波电路。同时要保证天线的调谐。请参考 《THM3060 匹配电路与天线设计指南》。

2.2 寄存器设置

THM3060 复位后的默认值为 Type B 协议,需要进行相应的设置才可以满足 Type A 卡的通讯。

2.2.1 协议选择 PSEL

PSEL	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

保密等级: MID 页码: 第9 共 16

REF: AN_TypeA

RFU	RFU	协议法	选择	发送》	皮特率选择	接收波特	寺率选择
未用	未用	00`	ISO14443	00	发送波特	00	接收波特率为
			TYPE B		率为		106K
			协议		106K		
		01	ISO14443	01	发送波特	01	接收波特率为
			TYPE A		率为		212K
			协议		212K		
		10	ISO15693	10	发送波特	10	接收波特率为
			协议		率为		424K
					424K		
		11	RFU	11	发送波特	11	接收波特率为
					率为		848K
					848K	>	
				Ø	V		

表 2 PSEL 寄存器

PSEL 寄存器用于协议和速率选择,其复位值为 0x00。即默认为 Type B 协议,发送和接收速率均为 106K。 所谓发送波特率是指读卡器的发送速率,接收波特率是指读卡器的接收波特率。在有些应用中发送速率和接收速率可以不同。 设置 PSEL 的协议选择为 01, 选择 Type A 协议。

2.2.2 TYPE A 脉冲宽度设置 PWTH

DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
			设置 T	YPE A	协议发送	数据的脉	冲 PAUSE 宽度	脉冲宽度为			
			(PWTH+1)/fc 。波特率不同时,PWTH 的有效位不同,默								
			认值也随着发送波特率的改变而自动改变。								
			波特率	为 106	K 时,取	PWTH[5	5: 0], 默认值为	0x27			
			波特率	为 212	K 时,取	PWTH[4	: 0], 默认值为 ()x14			
			波特率	为 424	K 时,取	PWTH [3: 0], 默认值为	0x0b			
			波特率	为 848	K 时,取	PWTH[2	2: 0],默认值为	0x07			

表 3 TYPE A 脉冲宽度寄存器

Type A 协议的调制波形如下(106K)

保密等级: MID 页码: 第 10 共 16

REF: AN_TypeA

Type A 调制波形中的无载波的部分称为 PAUSE, PWTH 寄存器即设置 PAUSE 的宽度。PWTH 的默认值一般不需要改变。

2.2.3 冲突比特位寄存器 BITPOS

BITPOS	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1 Bit0	
	RFU	RFU	RF	RF	RFU	000: 表示冲突位为接收数据的最后一个字节的	的
			U	U		Bit 0	
						001:表示冲突位为接收数据的最后一个字节的	的
						Bit 1	
						010: 表示冲突位为接收数据的最后一个字节的	的
						Bit 2	
						011:表示冲突位为接收数据的最后一个字节的	的
						Bit 3	
						100:表示冲突位为接收数据的最后一个字节的	的
						Bit 4	
						101:表示冲突位为接收数据的最后一个字节的	的
						Bit 5	
						110:表示冲突位为接收数据的最后一个字节的	扚

REF: AN_TypeA

保密等级: MID 页码: 第 11 共 16

			Bit 6
			111:表示冲突位为接收数据的最后一个字节的
			Bit 7

表 4 BITPOS 寄存器

BITPOS 用于 TYPE A 和 ISO15693 协议。TYPEA 和 ISO15693 基于位碰撞的方法 实现防冲突流程。BITPOS 指示碰撞发生字节的相应碰撞位。用户可根据 BITPOS 及接收数据确定下一步防冲突流程。

如图所示,Type A 卡片的响应编码为曼彻斯特编码。曼彻斯特编码的 1 个 bit 分为两部分,1 部分具有副载波(847K),另一半没有。当两个卡片同时响应读卡器的命令时,由于二者的数据不同,会有某个 bit (数据不同的位置)发生碰撞,对于读卡器接收来说,即整个 bit 中都具有副载波,读卡器无法判断该 bit 是 0 还是 1。但读卡器可以判断此 bit 在字节中发生的位置。这个位置的结果就存储在 BITPOS 寄存器中。 这也是读卡器检测位碰撞方法的原理。

2.2.4 CRCSEL 设置

DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	SCRC	RCRC	RFU	RF	RFU	RFU	RFU	TMREN
				U				

保密等级: MID 页码: 第 12 共 16

REF: AN_TypeA

1: 送路动生 CRC 0: 送路自产发电自产 CRC 发电不动性	1: 收路断 CRC 0: 收路判 CRC			1: 启动接 收超时判 断 0: 关闭接 收超时判 断
自动 产生 CRC	CRC			

表 5 CRCSEL 寄存器

不同协议的 CRC 计算方法不同,THM3060 内置了 TypeA/TypeB/ISO15693 的 CRC 硬件计算单元。设置 CRCSEL 寄存器可以设置发送自动添加 CRC,接收自动判断 CRC。硬件自动发送 CRC 时,实际发送长度比写入的数据长度多 2 个 CRC 字节¹。如 Type B 的寻卡指令 REQB,050000,发送长度设为 3、自动添加 CRC,实际发送数据为 05000071FF。

2.2.5 读卡器等待时间

TypeA 协议定义了帧延迟时间 FDT,即读卡器发送命令后,到卡片开始返回的时间。FDT 保证了卡片的应答时间一致,允其在防冲突流程里,卡片同时响应是非常必要的。 THM3060 也需要设置一个等待时间,这个等待时间要大于 FDT 的值。 TMRH 和 TMRL 寄存器用于设定这个等待时间。

THM3060 的 TMRH 和 TMRL 共同组成一个 16 位的等待时间值, 其单位为 302μS, 默认值 TMRH 为 0x01, TMRL 为 0x00, 即 0x0100, 等待时间约为 77mS。

THM3060 的定时器启动需要设置 CRCSEL.TMREN =1, 否则等待时间为无限长。 具体卡片的 FDT 值,请参考所使用的卡片手册。

¹ TYPEA 协议的短帧、防冲突比特帧除外。

页码: 第13 共 16 保密等级: MID

REF: AN_TypeA

Type A 常用命令 3

3.1.1 寻卡命令 REQA/WUPA

REQA 和 WUPA 为寻卡命令,用于发现射频场中的 Type A 卡片。也是 Type A 卡片需要 接收的第一条命令。WUPA 与 REQA 的区别是 WUPA 可以将处于停止状态的卡片唤醒。 注意: 对于 REQA/WUPA 命令卡片总是隔条响应,这是由 Type A 标准决定的。其状态机 决定了 Type A 卡片只能隔条响应 REQA/WUPA 命令。

REQA 命令为 0x26 WUPA 命令为 0x52

两条命令均为单字节命令。

防冲突命令由三部分组成

- 1, 命令代码 SEL
- 2, 命令的有效位数 NVB
- 3, 0~40 个数据位的数据

页码: 第 14 共 16

REF: AN_TypeA

4 防冲突流程

保密等级: MID

TYPE A 采用检测比特帧碰撞位的方法判断冲突位和是否发生碰撞。THM3060 对比特帧检测提供了完整的方案,非常易于防冲突流程的实现。

以两个卡片为例,假设两个卡片的 UID 分别是 0A223344、0A2A5566。

UID0						UID1						UID2							UID3												
0A						22						33							44												
0	1	0	1	0	0	0	0	0	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	0	0	0	1	0
0.4	OA 2A									55							66														
0	1	0	1	0	0	0	0	0	1	0	1	0	1	0	0	1	0	1	0.	1	0	1	0	0	1	1	0	0	1	1	0

表 6 两张卡片冲突

- 1) THM3060² 发送 Anticollison 指令 9320
- 2) 两个卡片分别返回各自的 UID 0A223344 和 0A2A5566

THM3060 正确接收到第一个字节 0A、然后收到第二个字节 bit 3 时发现碰撞错误,马上退出接收,此时第二个字节为已经收到的位构成的字节 0x2。 接收状态寄存器

RSTAT.CERR = 1, 同时将碰撞位 03 记入 BITPOS 寄存器,此时收发计数器为 2,数据缓冲区内数据位 0A 02。

- 3) THM3060 发送 93 34 04 02(将选中 bit 3 为 0 的卡片)
- 4) 卡片 1 响应第二字节从 Bit 3 开始的位序列,卡片 2 不响应。
- 5) THM3060 自动将发送序列号第二字节的 Bit0~Bit2 与卡片返回的第二字节的 Bit3~Bit7 组成一个完整字节,存储于缓冲区第一个字节内,其它字节为剩余序列号 33 44。
- 6) THM3060 收发计数器为 3, 读出数据分别为 22 33 44, 与上一帧接收到的 0A, 构成一个完整序列号。
- 7) THM3060 发送 93 70 0A 22 33 44 (SELECT 命令), 选中卡片 1
- 8) 如果操作卡片 2,则在步骤 4 中,发送 93 34 0A 0A,卡片 2 返回剩余序列号,然后依上述方法可选中卡片 2。

² 外部控制器控制 THM3060 完成

-

REF: AN_TypeA

页码: 第 15 共 16

5 举例

PSEL 设置为 0x10, CRCSEL 设置为 0xC1。 以某 TypeA 卡片为例,数据如下

读卡器	卡片
26	
发送 REQA	
	0800
	卡片响应 ATQA
	UID 为单字节
9320	
发送 Anticollison 命令读取 UID,	
	565D10263D
	卡片返回 UID
9370565D10263D	~~
发送 Select 命令选卡	(4)
	20
7//	卡片返回 SAK。b6 为 1 表示卡片 UID 已完整,卡
	片兼容 ISO14443-4

表 7 寻卡冼卡示例

保密等级: MID 页码: 第 16 共 16

REF: AN_TypeA

Annex 1 联系我们

公司名称: 北京同方微电子有限公司

办公地点: 北京市海淀区知春路 27 号大运村量子芯座 11 层

邮 编: 100083

电话: +86-10-82351818 传真: +86-10-82357168

电子邮件: support@tsinghuaic.com 网 址: www.tsinghuaic.com

