Indexing

Chapter: 14

Contents

- Indexing Concept
- Primary indexing
- Secondary Indexing
- Clustering
- Dense vs Sparse
- B-Tree and B⁺ -Tree

Basic Concepts

- Indexing mechanisms used to speed up access to desired data.
 - E.g., author catalog in library
- Search Key attribute to set of attributes used to look up records in a file.
- An index file consists of records (called index entries) of the form

- Index files are typically much smaller than the original file
- Two basic kinds of indices:
 - Ordered indices: search keys are stored in sorted order
 - Hash indices: search keys are distributed uniformly across "buckets" using a "hash function".

Index Evaluation Metrics (Ordered)

- Access types supported efficiently. E.g.,
 - Records with a specified value in the attribute
 - Records with an attribute value falling in a specified range of values.
- Access time
- Insertion time
- Deletion time
- Space overhead
 - The additional space occupied by an index structure.
 - Additional Space can be considered if the goal is to improve the performance.

Ordered Indices

- In an ordered index, index entries are stored sorted on the search key value.
- Clustering index: in a sequentially ordered file, the index whose search key specifies the sequential order of the file.
 - Also called primary index
 - The search key of a primary index is usually but not necessarily the primary key.
- Secondary index: an index whose search key specifies an order different from the sequential order of the file. Also called non-clustering index.
- Index-sequential file: sequential file ordered on a search key, with a clustering index on the search key.

Dense Index Files

- **Dense index** Index record appears for every search-key value in the file.
- E.g. index on *ID* attribute of *instructor* relation

10101	_		10101	Srinivasan	Comp. Sci.	65000	
12121	_	-	12121	Wu	Finance	90000	
15151	_	-	15151	Mozart	Music	40000	
22222	_		22222	Einstein	Physics	95000	
32343	_		32343	El Said	History	60000	
33456	_		33456	Gold	Physics	87000	
45565	_		45565	Katz	Comp. Sci.	75000	
58583	_		58583	Califieri	History	62000	
76543	_		76543	Singh	Finance	80000	
76766	_		76766	Crick	Biology	72000	
83821	_		83821	Brandt	Comp. Sci.	92000	
98345	_		98345	Kim	Elec. Eng.	80000	

Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on dept_name

Biology	76766	Crick	Biology	72000	
Comp. Sci.	10101	Srinivasan	Comp. Sci.	65000	
Elec. Eng.	45565	Katz	Comp. Sci.	75000	
Finance	83821	Brandt	Comp. Sci.	92000	
History	98345	Kim	Elec. Eng.	80000	
Music	12121	Wu	Finance	90000	
Physics	76543	Singh	Finance	80000	
	32343	El Said	History	60000	
	58583	Califieri	History	62000	
	15151	Mozart	Music	40000	
	22222	Einstein	Physics	95000	
	33465	Gold	Physics	87000	

Sparse Index Files

- Sparse Index: contains index records for only some searchkey values.
 - Applicable when records are sequentially ordered on searchkey
- To locate a record with search-key value *K* we:
 - Find index record with largest search-key value < K
 - Search file sequentially starting at the record to which the index record points

10101	10101	Srinivasan	Comp. Sci.	65000	
32343	12121	Wu	Finance	90000	
76766	15151	Mozart	Music	40000	
	22222	Einstein	Physics	95000	
	32343	El Said	History	60000	
	33456	Gold	Physics	87000	
	45565	Katz	Comp. Sci.	75000	
	58583	Califieri	History	62000	
	76543	Singh	Finance	80000	
×	76766	Crick	Biology	72000	
	83821	Brandt	Comp. Sci.	92000	
	98345	Kim	Elec. Eng.	80000	

Sparse Index Files (Cont.)

- Compared to dense indices:
 - Less space and less maintenance overhead for insertions and deletions.
 - Generally slower than dense index for locating records.

Good tradeoff:

 for clustered index: sparse index with an index entry for every block in file, corresponding to least search-key value in the block.

For unclustered index: sparse index on top of dense index (multilevel index)

Secondary Indices Example

Secondary index on salary field of instructor

- Index record points to a bucket that contains pointers to all the actual records with that particular search-key value.
- Secondary indices have to be dense

B-tree & B+ Tree

- Disk Structure
- How data is stored in disk
- What is indexing
- What is multilevel indexing
- M-way search trees
- B-trees
- Insertion & deletion of B-tree
- B+trees