Sensores

\mathbf{Z} C1.4 Reto en clase

Circuito electrónico para el acondicionamiento de señal con un amplificador operacional

Instrucciones

- De acuerdo con la información presentada por el asesor referente al tema acondicionadores de señal, contestar lo que se indica dentro del apartado desarrollo.
- Toda actividad o reto se deberá realizar utilizando el estilo MarkDown con extension .md y el entorno de desarrollo VSCode, debiendo ser elaborado como un documento single page, es decir si el documento cuanta con imágenes, enlaces o cualquier documento externo debe ser accedido desde etiquetas y enlaces.
- Es requisito que el archivo .md contenga una etiqueta del enlace al repositorio de su documento en Github, por ejemplo Enlace a mi GitHub
- Al concluir el reto el reto se deberá subir a github el archivo .md creado.
- Desde el archivo .md se debe exportar un archivo .pdf con la nomenclatura C1.4_NombreAlumno_Equipo.pdf, el cual deberá subirse a classroom dentro de su apartado correspondiente, para que sirva como evidencia de su entrega; siendo esta plataforma oficial aquí se recibirá la calificación de su actividad por individual.
- Considerando que el archivo .pdf, fue obtenido desde archivo .md, ambos deben ser idénticos y mostrar el mismo contenido.
- Su repositorio ademas de que debe contar con un archivo **readme**.md dentro de su directorio raíz, con la información como datos del estudiante, equipo de trabajo, materia, carrera, datos del asesor, e incluso logotipo o imágenes, debe tener un apartado de contenidos o indice, los cuales realmente son ligas o **enlaces a sus documentos .md**, evite utilizar texto para indicar enlaces internos o externo.
- Se propone una estructura tal como esta indicada abajo, sin embargo puede utilizarse cualquier otra que le apoye para organizar su repositorio.

```
readme.md
blog
| | C0.1 x.md
| C0.2 x.md
 C0.3_x.md
| img
  | A0.1 x.md
| A0.2_x.md
```


Problema a resolver:

1.Calcular el valor de R1 y R2 que se requiere, para obtener una voltaje de salida de 3.3v, dado que el Voltaje de entrada es de 2.5v? Explique el procedimiento utilizado para realizar el calculo y considere valores comerciales para las resistencias que se considere utilizar.

Utilizando la formula vista el dia de ayer en la clase: Formula:

V salida = V entrada(1+(R2/R1))

Basandome en la tabla de resistencias comerciales la cual adjunto en la siguiente imagen.

VALORES COMERCIALES DE RESISTENCIAS							
1Ω	10 Ω	100 Ω	1 ΚΩ	10 ΚΩ	100 ΚΩ	1 ΜΩ	
1,2 Ω	12 Ω	120 Ω	1,2 ΚΩ	12 ΚΩ	120 ΚΩ	1,2 ΜΩ	
1,5 Ω	15 Ω	150 Ω	1,5 ΚΩ	15 ΚΩ	150 ΚΩ	1,5 ΜΩ	
1,8 Ω	18 Ω	180 Ω	1,8 ΚΩ	18 ΚΩ	180 ΚΩ	1,8 ΜΩ	
2,2 Ω	22 Ω	220 Ω	2,2 ΚΩ	22 ΚΩ	220 ΚΩ	2,2 ΜΩ	
2,7 Ω	27 Ω	270 Ω	2,7 ΚΩ	27 ΚΩ	270 ΚΩ	2,7 ΜΩ	
3,3 Ω	33 Ω	330 Ω	3,3 ΚΩ	33 ΚΩ	330 ΚΩ	3,3 ΜΩ	
3,9 Ω	39 Ω	390 Ω	3,9 ΚΩ	39 ΚΩ	390 ΚΩ	3,9 MΩ	
4,7 Ω	47 Ω	470 Ω	4,7 ΚΩ	47 ΚΩ	470 ΚΩ	4,7 ΜΩ	
5,1 Ω	51 Ω	510 Ω	5,1 ΚΩ	51 ΚΩ	510 ΚΩ	5,1 ΜΩ	
5,6 Ω	56 Ω	560 Ω	5,6 ΚΩ	56 ΚΩ	560 ΚΩ	5,6 ΜΩ	
6,8 Ω	68 Ω	680 Ω	6,8 ΚΩ	68 ΚΩ	680 ΚΩ	6,8 ΜΩ	
8,2 Ω	82 Ω	820 Ω	8,2 ΚΩ	82 ΚΩ	820 ΚΩ	8,2 ΜΩ	
SERVICIO TECNICO DEL MILAGRO							

Realizando la operacion que marca la formula, con varios vlores de resistencias se llego a que los valores que dan mas cercano el valor que se esta buscando son las resistencias de **1.5K** y **510** ohms.

Calculos

R1 = 1,5 K ohms = 1500 ohms

R2 = 510 ohms

V entrada = 2.5 V

V salida = 3.3 V

Resultado:

- V salida = 2.5 (1+(510/1500))= 3.3 V
- V salida=3.3V

otras valores

- 2.5(1+(560/1500))=5.150
- 2.5(1+(470/1500))=3.28
- 2.5(1+(560/1800))=3.20
- 2.5(1+(560/1800))=3.27

Criterios Descripción Puntaje

Criterios	Descripción	Puntaje
Instrucciones	Se cumple con cada uno de los puntos indicados dentro del apartado Instrucciones?	20
Desarrollo	Se respondió a cada uno de los puntos solicitados dentro del desarrollo de la actividad?	80

🛕 Ir a inicio