

APPLICATION
FOR
UNITED STATES LETTERS PATENT

TITLE: IMMEDIATE EARLY GENES AND METHODS OF USE
THEREFOR

APPLICANT: PAUL F. WORLEY AND ANTHONY LANAHAN

"EXPRESS MAIL" Mailing Label Number EL253771810US

Date of Deposit February 5, 1999

I hereby certify under 37 CFR 1.10 that this correspondence is being deposited with the United States Postal Service as "Express Mail Post Office To Addressee" with sufficient postage on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

M.E. Augustine

M.E. Augustine

IMMEDIATE EARLY GENES AND METHODS OF USE THEREFOR

5

Related Applications

This application claims priority to U.S. provisional application nos. 60/074,518, filed February 12, 1998 and 60/074,135, filed February 6, 1998, both of which are incorporated herein by reference.

10

Statement as to Federally Sponsored Research

Funding for the work described herein was provided by the federal government, which may have certain rights in the invention.

BACKGROUND

1. Technical Field

The present invention generally relates to gene expression and more specifically to immediate early genes in the brain and polypeptides encoded by such immediate early genes.

2. Background Information

An immediate early gene (IEG) is a gene whose expression is rapidly increased immediately following a stimulus. For example, genes expressed by neurons that exhibit a rapid increase in expression immediately following neuronal stimulation are neuronal IEGs. Such neuronal IEGs have been found to encode a wide variety of polypeptides including transcription factors, cytoskeletal polypeptides, growth factors, and metabolic enzymes as well as polypeptides involved in signal transduction. The identification of neuronal IEGs and the polypeptides they encode provides important information about the function of neurons in, for example, learning, memory, synaptic transmission, tolerance, and neuronal plasticity.

25

SUMMARY

The present invention involves methods and materials related to IEGs. Specifically, the invention provides isolated IEG nucleic acid sequences, cells that contain isolated IEG nucleic acid, substantially pure polypeptides encoded by IEG nucleic acid, and antibodies having specific binding affinity for a polypeptide encoded by IEG nucleic acid. In addition, the invention provides cDNA libraries enriched for IEG cDNAs, isolated nucleic acid derived from such cDNA libraries, and methods for treating conditions related to a deficiency in a neuron's IEG responsiveness to a stimulus.

In one aspect, the invention features an isolated nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. The isolated nucleic acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under hybridization conditions. The second nucleic acid has a sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60. The hybridization conditions can be moderately or highly stringent hybridization conditions.

In another embodiment, the invention features an isolated nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least five amino acids in length. The amino acid sequence contains at least three different amino acid residues, and is identical to a contiguous portion of sequence set forth in SEQ ID NO:11, 21, 27, 30, 32, 36, 38, 48, 61, or 62.

Another embodiment of the invention features an isolated nucleic acid having a nucleic acid sequence at least 60 percent identical to the sequence set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.

Another embodiment of the invention features an isolated nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least 60 percent identical to the sequence set forth in SEQ ID NO:11, 21, 27, 30, 32, 36, 38, 48, 61, or 62.

Another embodiment of the invention features an isolated nucleic acid having a nucleic acid sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.

5 In another aspect, the invention features a substantially pure polypeptide having an amino acid sequence encoded by a nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. The nucleic acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under hybridization conditions. The second nucleic acid has a sequence as set forth in SEQ ID
10 NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.

In another embodiment, the invention features a substantially pure polypeptide having an amino acid sequence as set forth in SEQ ID NO:11, 21, 27, 30, 32, 36, 38, 48, 61, or 62.

Another embodiment of the invention features a substantially pure polypeptide having an amino acid sequence at least 60 percent identical to the sequence set forth in SEQ ID NO:11, 21, 27, 30, 32, 36, 38, 48, 61, or 62.

Another embodiment of the invention features a substantially pure polypeptide having an amino acid sequence at least five amino acids in length. The amino acid sequence contains at least three different amino acid residues, and is identical to a contiguous stretch of sequence set forth in SEQ ID NO:11, 21, 27, 30, 32, 36, 38, 48, 61, or 62.

Another aspect of the invention features a host cell (e.g., a eukaryotic or prokaryotic cell) containing an isolated nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. The isolated nucleic acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under hybridization conditions. The second nucleic acid has a sequence as set forth in SEQ ID
25 NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.

Another aspect of the invention features an antibody (e.g., a monoclonal or polyclonal antibody) having specific binding affinity for an amino acid sequence encoded by a nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. The nucleic acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under hybridization conditions. The second nucleic acid has a sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.

Another aspect of the invention features a cDNA library having a plurality of clones with each clone having a cDNA insert. In addition, at least about 15 percent (e.g., at least about 20 or 25 percent) of the clones have cDNA derived from immediate early genes (e.g., immediate early genes responsive to a maximal electroconvulsive seizure). The cDNA library can be a subtracted cDNA library. For example, the subtracted cDNA library can be the IEG-Reg or IEG-Lg cDNA library.

Another aspect of the invention features an isolated nucleic acid derived from a cDNA library. The cDNA library has a plurality of clones with each clone having a cDNA insert. In addition, at least about 15 percent of the clones have cDNA derived from immediate early genes. The isolated nucleic acid can have a nucleic acid sequence of an immediate early gene.

Another aspect of the invention features a method of obtaining immediate early gene nucleic acid. The method includes providing a cDNA library having a plurality of clones with each clone having a cDNA insert. In addition, at least about 15 percent of the clones have cDNA derived from immediate early genes. The method also includes contacting at least a portion of the cDNA library with a probe containing at least one nucleic acid having a nucleic acid sequence derived from an immediate early gene, and selecting a member of the plurality of clones based on the hybridization of the at least one nucleic acid to the member under hybridization conditions.

Another aspect of the invention features a method of treating an animal (e.g., human) having a deficiency in a neuron's immediate early gene responsiveness to a stimulus. The

method includes administering a nucleic acid to the animal such that the effect of the deficiency is minimized. The nucleic acid has at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. In addition, the nucleic acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under hybridization conditions. The second nucleic acid has a sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60. The deficiency can include a reduced level of expression of an immediate early gene. In addition, the stimulus can influence learning or memory. For example, the stimulus can include a maximal electroconvulsive seizure.

In another embodiment, the invention features a method of treating an animal (e.g., human) having a deficiency in a neuron's immediate early gene responsiveness to a stimulus. The method includes administering a therapeutically effective amount of a substantially pure polypeptide to the animal such that the effect of the deficiency is minimized. The polypeptide contains an amino acid sequence encoded by a nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. The nucleic acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under hybridization conditions. The second nucleic acid has a sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.

Another embodiment of the invention features a method of treating an animal (e.g., human) having a deficiency in a neuron's immediate early gene responsiveness to a stimulus. The method includes administering an effective amount of cells to the animal such that the effect of the deficiency is minimized. The cells contain a nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. In addition, the nucleic acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under hybridization conditions. The second nucleic acid has a

sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.

Another embodiment of the invention features a method of treating an animal (e.g.,
5 human) having a deficiency in a neuron's immediate early gene responsiveness to a stimulus. The method includes administering a therapeutically effective of antibodies to the animal such that the effect of the deficiency is minimized. The antibodies have specific binding affinity for an amino acid sequence encoded by a nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. The nucleic
10 acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under hybridization conditions. The second nucleic acid has a sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60. The deficiency can include an elevated level of expression of an immediate early gene.

Another aspect of the invention features a method of identifying a compound that modulates immediate early gene expression. The method includes contacting a test compound with an immediate early gene nucleic acid, and determining whether the test compound effects the expression of the immediate early gene nucleic acid. The presence of an effect indicates that the test compound is a compound that modulates immediate early gene expression. The immediate early gene nucleic acid can contain a nucleic acid sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60. The effect can be a reduction or increase in the expression of the immediate early gene nucleic acid.

In another embodiment, the invention features a method of identifying a compound that modulates immediate early gene polypeptide activity. The method includes contacting a test compound with an immediate early gene polypeptide, and determining whether the test compound effects the activity of the immediate early gene polypeptide. The presence of an effect indicates that the test compound is a compound that modulates immediate early gene

polypeptide activity. The immediate early gene polypeptide can contain an amino acid sequence encoded by a nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base. The nucleic acid is at least 12 bases in length, and hybridizes to the sense or antisense strand of a second nucleic acid under

5 hybridization conditions. The second nucleic acid has a sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.

Alternatively, the immediate early gene polypeptide can contain an amino acid sequence as set forth in SEQ ID NO:11, 21, 27, 30, 32, 36, 38, 48, 61, or 62. The effect can be a reduction or
10 increase in the activity of the immediate early gene polypeptide.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following
20 detailed description, and from the claims.

DETAILED DESCRIPTION

The present invention provides methods and materials related to IEGs. Specifically, the invention provides isolated IEG nucleic acid, cells that contain isolated IEG nucleic acid, substantially pure polypeptides encoded by IEG nucleic acid, and antibodies having specific binding affinity for a polypeptide encoded by IEG nucleic acid. In addition, the invention provides cDNA libraries enriched for IEG cDNAs, isolated nucleic acid derived from such

cDNA libraries, and methods for treating conditions related to a deficiency in a neuron's IEG responsiveness to a stimulus.

The present invention is based on the discovery of nucleic acid clones for many different neuronal IEGs. Specifically, nucleic acid clones for different neuronal IEGs were isolated and identified based on the ability of each IEG to rapidly increase expression upon seizure induction by a maximal electroconvulsive seizure (MECS) method (Cole *et al.*, *J. Neurochem.* 55:1920-1927 (1990)). It is important to note that MECS induction can be considered a model to study long-term plasticity relevant to learning and memory since it is known that a single MECS can produce extremely robust and long lived potentiation of synaptic contacts in the hippocampus and block spatial learning (Barnes *et al.*, *J. Neurosci.* 14:5793-5806 (1994)). Thus, MECS-responsive IEGs can influence neuronal activities involved in brain functions such as learning and memory. Moreover, the isolation and identification of IEG nucleic acid not only provides research scientists with information about neuronal activity and gene regulation but also provides methods and materials that can be used to manipulate brain function.

Each isolated IEG nucleic acid described herein can be used to produce a polypeptide. In addition, each IEG nucleic acid can be used to identify cells that are responsive to MECS induction. For example, an IEG nucleic acid can be labeled and used as a probe for *in situ* hybridization analysis. Clearly, having the ability to identify MECS-responsive cells provides one with the ability to isolate or monitor specific brain regions that are involved in learning. Further, any of the isolated partial IEG nucleic acid sequences can be used to obtain a full-length clone that encodes an IEG polypeptide. For example, a fragment from an isolated IEG nucleic acid can be radioactively labeled and used to screen a library such that a full-length clone is obtained.

Cells containing isolated IEG nucleic acid can be used to maintain or propagate the isolated IEG nucleic acid. In addition, such cells can be used to produce large quantities of polypeptides that are encoded by isolated IEG nucleic acid. Further, cells containing isolated IEG nucleic acid can be used to generate virus particles containing the isolated IEG nucleic acid. Such virus particles can be used *in vitro* or *in vivo* to provide other cells with the isolated IEG

nucleic acid. The polypeptides encoded by IEG nucleic acid can be used as immunogens to produce antibodies. Such antibodies can be used to identify MECS-responsive cells, monitor the level of polypeptide expression following MECS induction, and isolate polypeptides directly from animal tissue.

5 cDNA libraries enriched for IEG cDNAs can be used to isolate novel IEG cDNA. Clearly, the isolation of novel IEG cDNAs is important to further the understanding of brain function. In addition, isolated nucleic acid derived from such cDNA libraries can be used to produce polypeptides as well as identify cells that are responsive to a stimulus such as MECS induction.

10 It is important to note that isolated IEG nucleic acid, cells containing isolated IEG nucleic acid, substantially pure IEG polypeptides, and anti-IEG polypeptide antibodies can be used to treat conditions associated with a deficiency in a neuron's ability to express IEGs in response to a stimulus such as MECS. A condition associated with a deficiency in a neuron's IEG responsiveness to a stimulus is any physiological condition characterized as having a lack of a normal level of responsiveness. For example, when a deficiency in a neuron's responsiveness to MECS is characterized as a non- or under-expression of a particular IEG polypeptide by that neuron, the organism having the condition can be treated with isolated IEG nucleic acid, cells containing isolated IEG nucleic acid, or substantially pure IEG polypeptides such that the effect of the deficiency is minimized. Alternatively, when a deficiency in a neuron's responsiveness to MECS is characterized as an over-expression of a particular IEG polypeptide by that neuron, the organism having the condition can be treated with anti-IEG polypeptide antibodies or the anti-sense strand of an isolated IEG nucleic acid such that the effect of the deficiency is minimized.

15
20
25 In addition, isolated IEG nucleic acid, cells containing isolated IEG nucleic acid, substantially pure IEG polypeptides, and anti-IEG polypeptide antibodies can be used to identify pharmaceutical compounds that can be used to treat diseases such as epilepsy, age-dependent memory decline, stroke, and drug addiction. For example, a compound that modulates IEG nucleic acid expression or IEG polypeptide activity can be identified by contacting a test

compound with either the IEG nucleic acid or polypeptide, and determining whether the test compound effects expression or activity.

The term "nucleic acid" as used herein encompasses both RNA and DNA, including cDNA, genomic DNA, and synthetic (e.g., chemically synthesized) DNA. The nucleic acid can be double-stranded or single-stranded. Where single-stranded, the nucleic acid can be the sense strand or the antisense strand. In addition, nucleic acid can be circular or linear.

The term "isolated" as used herein with reference to nucleic acid refers to a naturally-occurring nucleic acid that is not immediately contiguous with both of the sequences with which it is immediately contiguous (one on the 5' end and one on the 3' end) in the naturally-occurring genome of the organism from which it is derived. For example, an isolated nucleic acid can be, without limitation, a recombinant DNA molecule of any length, provided one of the nucleic acid sequences normally found immediately flanking that recombinant DNA molecule in a naturally-occurring genome is removed or absent. Thus, an isolated nucleic acid includes, without limitation, a recombinant DNA that exists as a separate molecule (e.g., a cDNA or a genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as recombinant DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid sequence.

The term "isolated" also includes any non-naturally-occurring nucleic acid since non-naturally-occurring nucleic acid sequences are not found in nature and do not have immediately contiguous sequences in a naturally-occurring genome. For example, non-naturally-occurring nucleic acid such as an engineered nucleic acid is considered to be isolated nucleic acid. Engineered nucleic acid can be made using common molecular cloning or chemical nucleic acid synthesis techniques. Isolated non-naturally-occurring nucleic acid can be independent of other sequences, or incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, adenovirus, or herpes virus), or the genomic DNA of a prokaryote or eukaryote. In

addition, a non-naturally-occurring nucleic acid can include a nucleic acid molecule that is part of a hybrid or fusion nucleic acid sequence.

It will be apparent to those of skill in the art that a nucleic acid existing among hundreds to millions of other nucleic acid molecules within, for example, cDNA or genomic libraries, or 5 gel slices containing a genomic DNA restriction digest is not to be considered an isolated nucleic acid.

Any isolated nucleic acid having a nucleic acid sequence as set forth in SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 is within the 10 scope of the invention. For convenience, these nucleic acid sequences will be referred to collectively as the IEG nucleic acid group. In addition, any isolated nucleic acid having a nucleic acid sequence at least about 60 percent identical (e.g., at least about 65, 70, 75, 80, 85, 90, 95, or 99 percent identical) to a sequence set forth in the IEG nucleic acid group is within the 15 scope of the invention. For the purpose of this invention, the percent identity between a sequence set forth in the IEG nucleic acid group (designated a template sequence) and any other nucleic acid sequence is calculated as follows. First, the two nucleic acid sequences are aligned 20 using the MEGALIGN® (DNASTAR, Madison, WI, 1997) sequence alignment software following the Jotun Heim algorithm with the default settings. Second, the number of matched positions between the two aligned nucleic acid sequences is determined. A matched position refers to a position in which identical bases occur at the same position as aligned by the MEGALIGN® sequence alignment software. Third, the number of matched positions is divided 25 by the total number of bases in the template sequence, and the resulting value multiplied by 100 to obtain the percent identity. If the obtained percent identity is greater than or equal to about 60 percent for a particular nucleic acid sequence, then that particular nucleic acid sequence is a nucleic acid sequence at least about 60 percent identical to a sequence set forth in the IEG nucleic acid group.

Any isolated nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least about 60 percent identical (e.g., at least about 65, 70, 75, 80, 85, 90, 95, or 99

percent identical) to the sequence set forth in SEQ ID NO:11, 21, 27, 30, 32, 36, 38, 48, 61, or 62 is within the scope of the invention. For convenience, the amino acid sequences set forth in SEQ ID NO:11, 21, 27, 30, 32, 36, 38, 48, 61, and 62 will be referred to collectively as the IEG amino acid group. For the purpose of this invention, the percent identity between a sequence set forth 5 in the IEG amino acid group (designated a template sequence) and any other amino acid sequence is calculated as follows. First, the two amino acid sequences are aligned using the MEGALIGN® (DNASTAR, Madison, WI, 1997) sequence alignment software following the Jotun Heim algorithm with the default settings. Second, the number of matched positions between the two aligned amino acid sequences is determined. A matched position refers to a 10 position in which identical residues occur at the same position as aligned by the MEGALIGN® sequence alignment software. Third, the number of matched positions is divided by the total number of amino acid residues in the template sequence, and the resulting value multiplied by 100 to obtain the percent identity. If the obtained percent identity is greater than or equal to about 60 percent for a particular amino acid sequence, then that particular amino acid sequence 15 is an amino acid sequence at least about 60 percent identical to a sequence set forth in the IEG amino acid group.

Any isolated nucleic acid having a nucleic acid sequence that encodes an amino acid sequence at least five amino acids in length also is within the scope of the invention provided the encoded amino acid sequence has at least three different amino acid residues, and is identical to a contiguous portion of sequence set forth in a sequence within the IEG amino acid group.

Further, any isolated nucleic acid having at least one adenine base, at least one guanine base, at least one cytosine base, and at least one thymine or uracil base is within the scope of the invention provided the isolated nucleic acid is at least about 12 bases in length (e.g., at least about 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, or 60 bases in length), and hybridizes, under 25 hybridization conditions, to the sense or antisense strand of a nucleic acid having a sequence as set forth in the IEG nucleic acid group. The hybridization conditions can be moderately or highly stringent hybridization conditions.

For the purpose of this invention, moderately stringent hybridization conditions mean the hybridization is performed at about 42°C in a hybridization solution containing 25 mM KPO₄ (pH7.4), 5X SSC, 5X Denharts solution, 50 µg/ml denatured, sonicated salmon sperm DNA, 50% formamide, 10% Dextran sulfate, and 1-15 ng/ml probe (>5x10⁷ cpm/µg), while the washes are performed at about 50°C with a wash solution containing 2X SSC and 0.1% SDS.

Highly stringent hybridization conditions mean the hybridization is performed at about 42°C in a hybridization solution containing 25 mM KPO₄ (pH7.4), 5X SSC, 5X Denharts solution, 50 µg/ml denatured, sonicated salmon sperm DNA, 50% formamide, 10% Dextran sulfate, and 1-15 ng/ml probe (>5x10⁷ cpm/µg), while the washes are performed at about 65°C with a wash solution containing 0.2X SSC and 0.1% SDS.

Nucleic acid within the scope of the invention can be identified and obtained using any method including, without limitation, common molecular cloning and chemical nucleic acid synthesis techniques. For example, PCR can be used to obtain a nucleic acid having a nucleic acid sequence at least about 60 percent identical (e.g., at least about 65, 70, 75, 80, 85, 90, 95, or 99 percent identical) to a sequence set forth in the IEG nucleic acid group. PCR refers to a procedure or technique in which target nucleic acid is amplified in a manner similar to that described in U.S. Patent No. 4,683,195, and subsequent modifications of the procedure described therein. Generally, sequence information from the ends of the region of interest or beyond are used to design oligonucleotide primers that are identical or similar in sequence to opposite strands of a potential template to be amplified. Using PCR, a nucleic acid sequence can be amplified from RNA or DNA. For example, a nucleic acid sequence can be isolated by PCR amplification from total cellular RNA, total genomic DNA, and cDNA as well as from bacteriophage sequences, plasmid sequences, viral sequences, and the like. When using RNA as a source of template, reverse transcriptase can be used to synthesize complimentary DNA strands.

Nucleic acid within the scope of the invention also can be obtained by mutagenesis. For example, a nucleic acid sequence set forth in the IEG nucleic acid group can be mutated using common molecular cloning techniques (e.g., site-directed mutageneses). Possible mutations

include, without limitation, deletions, insertions, and base substitutions, as well as combinations of deletions, insertions, and base substitutions.

In addition, nucleic acid and amino acid databases (e.g., GenBank®) can be used to identify and obtain a nucleic acid within the scope of the invention. For example, any nucleic acid sequence having some homology to a sequence set forth in the IEG nucleic acid group, or any amino acid sequence having some homology to a sequence set forth in the IEG amino acid group can be used as a query to search GenBank®.

Further, nucleic acid hybridization techniques can be used to identify and obtain a nucleic acid within the scope of the invention. Briefly, any nucleic acid having some homology to a sequence set forth in the IEG nucleic acid group, or fragment thereof, can be used as a probe to identify a similar nucleic acid by hybridization under conditions of moderate to high stringency. Such similar nucleic acid then can be isolated, sequenced, and analyzed to determine whether they are within the scope of the invention as described herein.

Hybridization can be done by Southern or Northern analysis to identify a DNA or RNA sequence, respectively, that hybridizes to a probe. The probe can be labeled with a radioisotope such as ³²P, an enzyme, digoxigenin, or by biotinylation. The DNA or RNA to be analyzed can be electrophoretically separated on an agarose or polyacrylamide gel, transferred to nitrocellulose, nylon, or other suitable membrane, and hybridized with the probe using standard techniques well known in the art such as those described in sections 7.39-7.52 of Sambrook *et al.*, (1989) Molecular Cloning, second edition, Cold Spring harbor Laboratory, Plainview, NY. Typically, a probe is at least about 20 nucleotides in length. For example, a probe corresponding to a 20 nucleotide sequence set forth in the IEG amino acid group. can be used to identify a nucleic acid identical to or similar to a nucleic acid sequence set forth in the IEG nucleic acid group. In addition, probes longer or shorter than 20 nucleotides can be used.

Any cell containing an isolated nucleic acid within the scope of the invention is itself within the scope of the invention. This includes, without limitation, prokaryotic and eukaryotic cells. It is noted that cells containing an isolated nucleic acid of the invention are not required to express the isolated nucleic acid. In addition, the isolated nucleic acid can be integrated into the

genome of the cell or maintained in an episomal state. In other words, cells can be stably or transiently transfected with an isolated nucleic acid of the invention.

Any method can be used to introduce an isolated nucleic acid into a cell. In fact, many methods for introducing nucleic acid into a cell, whether *in vivo* or *in vitro*, are well known to those skilled in the art. For example, calcium phosphate precipitation, electroporation, heat shock, lipofection, microinjection, and viral-mediated nucleic acid transfer are common methods that can be used to introduce nucleic acid into a cell. In addition, naked DNA can be delivered directly to cells *in vivo* as described elsewhere (U.S. Patent Number 5,580,859 and U.S. Patent Number 5,589,466 including continuations thereof). Further, nucleic acid can be introduced into cells by generating transgenic animals.

Transgenic animals can be aquatic animals (such as fish, sharks, dolphin, and the like), farm animals (such as pigs, goats, sheep, cows, horses, rabbits, and the like), rodents (such as rats, guinea pigs, and mice), non-human primates (such as baboon, monkeys, and chimpanzees), and domestic animals (such as dogs and cats). Several techniques known in the art can be used to introduce nucleic acid into animals to produce the founder lines of transgenic animals. Such techniques include, without limitation, pronuclear microinjection (U.S. Patent No. 4,873,191); retrovirus mediated gene transfer into germ lines (Van der Putten *et al.*, *Proc. Natl. Acad. Sci., USA*, 82:6148-6152 (1985)); gene transfection into embryonic stem cells (Gossler A *et al.*, *Proc. Natl. Acad. Sci. USA* 83:9065-9069 (1986)); gene targeting into embryonic stem cells (Thompson *et al.*, *Cell*, 56:313-321 (1989)); nuclear transfer of somatic nuclei (Schnieke AE *et al.*, *Science* 278:2130-2133 (1997)); and electroporation of embryos.

For a review of techniques that can be used to generate and assess transgenic animals, skilled artisans can consult Gordon (*Intl. Rev. Cytol.*, 115:171-229 (1989)), and may obtain additional guidance from, for example: Hogan *et al.*, "Manipulating the Mouse Embryo" Cold Spring Harbor Press, Cold Spring Harbor, NY (1986); Krimpenfort *et al.*, *Bio/Technology*, 9:844-847 (1991); Palmiter *et al.*, *Cell*, 41:343-345 (1985); Kraemer *et al.*, "Genetic Manipulation of the Early Mammalian Embryo" Cold Spring Harbor Press, Cold Spring Harbor, NY (1985); Hammer *et al.*, *Nature*, 315:680-683 (1985); Pursel *et al.*, *Science*, 244:1281-1288

(1986); Wagner *et al.*, U.S. Patent No. 5,175,385; and Krimpenfort *et al.*, U.S. Patent No. 5,175,384.

Any method can be used to identify cells that contain an isolated nucleic acid within the scope of the invention. For example, PCR and nucleic acid hybridization techniques such as Northern and Southern analysis can be used. In some cases, immunohistochemistry and biochemical techniques can be used to determine if a cell contains a particular nucleic acid by detecting the expression of a polypeptide encoded by that particular nucleic acid. For example, detection of polypeptide X-immunoreactivity after introduction of an isolated nucleic acid containing a cDNA that encodes polypeptide X into a cell that does not normally express polypeptide X can indicate that that cell not only contains the introduced nucleic acid but also expresses the encoded polypeptide X from that introduced nucleic acid. In this case, the detection of any enzymatic activities of polypeptide X also can indicate that that cell contains the introduced nucleic acid and expresses the encoded polypeptide X from that introduced nucleic acid.

In addition, any method can be used to force a cell to express an encoded amino acid sequence from a nucleic acid. Such methods are well known to those skilled in the art, and include, without limitation, constructing a nucleic acid such that a regulatory element drives the expression of a nucleic acid sequence that encodes a polypeptide. Typically, regulatory elements are DNA sequences that regulate the expression of other DNA sequences at the level of transcription. Such regulatory elements include, without limitation, promoters, enhancers, and the like. Further, any methods can be used to identifying cells that express an amino acid sequence from a nucleic acid. Such methods are well known to those skilled in the art, and include, without limitation, immunocytochemistry, Northern analysis, and RT-PCR.

The term "substantially pure" as used herein with reference to a polypeptide means the polypeptide is substantially free of other polypeptides, lipids, carbohydrates, and nucleic acid with which it is naturally associated. Thus, a substantially pure polypeptide is any polypeptide that is removed from its natural environment and is at least 60 percent free, preferably 75 percent free, and most preferably 90 percent free from other components with which it is naturally

associated. Typically, a substantially pure polypeptide will yield a single major band on a non-reducing polyacrylamide gel.

Any substantially pure polypeptide having an amino acid sequence encoded by a nucleic acid within the scope of the invention is itself within the scope of the invention. In addition, any substantially pure polypeptide having an amino acid sequence at least about 60 percent (e.g., at least about 65, 70, 75, 80, 85, 90, 95, or 99 percent) identical to a sequence set forth in the IEG amino acid group is within the scope of the invention. The percent identity between particular amino acid sequences is determined as described herein.

Any method can be used to obtain a substantially pure polypeptide. For example, one skilled in the art can use common polypeptide purification techniques such as affinity chromatography and HPLC as well as polypeptide synthesis techniques. In addition, any material can be used as a source to obtain a substantially pure polypeptide. For example, tissue from wild-type or transgenic animals can be used as a source material. In addition, tissue culture cells engineered to overexpress a particular polypeptide of interest can be used to obtain substantially pure polypeptide. Further, a polypeptide within the scope of the invention can be "engineered" to contain an amino acid sequence that allows the polypeptide to be captured onto an affinity matrix. For example, a tag such as c-myc, hemagglutinin, polyhistidine, or Flag[®] tag (Kodak) can be used to aid polypeptide purification. Such tags can be inserted anywhere within the polypeptide including at either the carboxyl or amino termini. Other fusions that could be useful include enzymes that aid in the detection of the polypeptide, such as alkaline phosphatase.

The term "antibody" as used herein refers to intact antibodies as well as antibody fragments that retain some ability to selectively bind an epitope. Such fragments include, without limitation, Fab, F(ab')₂, and Fv antibody fragments. The term "epitope" refers to an antigenic determinant on an antigen to which the paratope of an antibody binds. Epitopic determinants usually consist of chemically active surface groupings of molecules (e.g., amino acid or sugar residues) and usually have specific three dimensional structural characteristics as well as specific charge characteristics.

Any antibody having specific binding affinity for an amino acid sequence encoded by a nucleic acid within the scope of the invention is itself within the scope of the invention. Thus, any monoclonal or polyclonal antibody having specific binding affinity for an amino acid sequence set forth in the IEG amino acid group is within the scope of the invention. Such antibodies can be used in immunoassays in liquid phase or bound to a solid phase. For example, the antibodies of the invention can be used in competitive and non-competitive immunoassays in either a direct or indirect format. Examples of such immunoassays include the radioimmunoassay (RIA) and the sandwich (immunometric) assay.

Antibodies within the scope of the invention can be prepared using any method. For example, any substantially pure polypeptide provided herein, or fragment thereof, can be used as an immunogen to elicit an immune response in an animal such that specific antibodies are produced. Thus, an intact full-length polypeptide or fragments containing small peptides can be used as an immunizing antigen. In addition, the immunogen used to immunize an animal can be chemically synthesized or derived from translated cDNA. Further, the immunogen can be conjugated to a carrier polypeptide, if desired. Commonly used carriers that are chemically coupled to an immunizing polypeptide include, without limitation, keyhole limpet hemocyanin (KLH), thyroglobulin, bovine serum albumin (BSA), and tetanus toxoid.

The preparation of polyclonal antibodies is well-known to those skilled in the art. See, e.g., Green *et al.*, *Production of Polyclonal Antisera*, in IMMUNOCHEMICAL PROTOCOLS (Manson, ed.), pages 1-5 (Humana Press 1992) and Coligan *et al.*, *Production of Polyclonal Antisera in Rabbits, Rats, Mice and Hamsters*, in CURRENT PROTOCOLS IN IMMUNOLOGY, section 2.4.1 (1992). In addition, those of skill in the art will know of various techniques common in the immunology arts for purification and concentration of polyclonal antibodies, as well as monoclonal antibodies (Coligan, *et al.*, Unit 9, Current Protocols in Immunology, Wiley Interscience, 1994).

The preparation of monoclonal antibodies also is well-known to those skilled in the art. See, e.g., Kohler & Milstein, *Nature* 256:495 (1975); Coligan *et al.*, sections 2.5.1-2.6.7; and Harlow *et al.*, ANTIBODIES: A LABORATORY MANUAL, page 726 (Cold Spring

Harbor Pub. 1988). Briefly, monoclonal antibodies can be obtained by injecting mice with a composition comprising an antigen, verifying the presence of antibody production by analyzing a serum sample, removing the spleen to obtain B lymphocytes, fusing the B lymphocytes with myeloma cells to produce hybridomas, cloning the hybridomas, selecting positive clones that produce antibodies to the antigen, and isolating the antibodies from the hybridoma cultures. Monoclonal antibodies can be isolated and purified from hybridoma cultures by a variety of well-established techniques. Such isolation techniques include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography, and ion-exchange chromatography. See, e.g., Coligan *et al.*, sections 2.7.1-2.7.12 and sections 2.9.1-2.9.3; Barnes *et al.*, *Purification of Immunoglobulin G (IgG)*, in METHODS IN MOLECULAR BIOLOGY, VOL. 10, pages 79-104 (Humana Press 1992).

In addition, methods of *in vitro* and *in vivo* multiplication of monoclonal antibodies is well-known to those skilled in the art. Multiplication *in vitro* can be carried out in suitable culture media such as Dulbecco's Modified Eagle Medium or RPMI 1640 medium, optionally replenished by mammalian serum such as fetal calf serum, or trace elements and growth-sustaining supplements such as normal mouse peritoneal exudate cells, spleen cells, and bone marrow macrophages. Production *in vitro* provides relatively pure antibody preparations and allows scale-up to yield large amounts of the desired antibodies. Large scale hybridoma cultivation can be carried out by homogenous suspension culture in an airlift reactor, in a continuous stirrer reactor, or in immobilized or entrapped cell culture. Multiplication *in vivo* may be carried out by injecting cell clones into mammals histocompatible with the parent cells (e.g., osyngeneic mice) to cause growth of antibody-producing tumors. Optionally, the animals are primed with a hydrocarbon, especially oils such as pristane (tetramethylpentadecane) prior to injection. After one to three weeks, the desired monoclonal antibody is recovered from the body fluid of the animal.

The antibodies within the scope of the invention also can be made using non-human primates. General techniques for raising therapeutically useful antibodies in baboons can be

found, for example, in Goldenberg *et al.*, International Patent Publication WO 91/11465 (1991) and Losman *et al.*, *Int. J. Cancer* 46:310 (1990).

Alternatively, the antibodies can be "humanized" monoclonal antibodies. Humanized monoclonal antibodies are produced by transferring mouse complementarity determining regions (CDRs) from heavy and light variable chains of the mouse immunoglobulin into a human variable domain, and then substituting human residues in the framework regions of the murine counterparts. The use of antibody components derived from humanized monoclonal antibodies obviates potential problems associated with the immunogenicity of murine constant regions when treating humans. General techniques for cloning murine immunoglobulin variable domains are described, for example, by Orlandi *et al.*, *Proc. Nat'l. Acad. Sci. USA* 86:3833 (1989). Techniques for producing humanized monoclonal antibodies are described, for example, by Jones *et al.*, *Nature* 321:522 (1986); Riechmann *et al.*, *Nature* 332:323 (1988); Verhoeyen *et al.*, *Science* 239:1534 (1988); Carter *et al.*, *Proc. Nat'l. Acad. Sci. USA* 89:4285 (1992); Sandhu, *Crit. Rev. Biotech.* 12:437 (1992); and Singer *et al.*, *J. Immunol.* 150:2844 (1993).

Antibodies of the present invention also may be derived from human antibody fragments isolated from a combinatorial immunoglobulin library. See, for example, Barbas *et al.*, METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, VOL. 2, page 119 (1991) and Winter *et al.*, *Ann. Rev. Immunol.* 12: 433 (1994). Cloning and expression vectors that are useful for producing a human immunoglobulin phage library can be obtained, for example, from STRATAGENE Cloning Systems (La Jolla, CA).

In addition, antibodies of the present invention may be derived from a human monoclonal antibody. Such antibodies are obtained from transgenic mice that have been "engineered" to produce specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain loci are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy and light chain loci. The transgenic mice can synthesize human antibodies specific for human antigens and can be used to produce human antibody-secreting

hybridomas. Methods for obtaining human antibodies from transgenic mice are described by Green *et al.*, *Nature Genet.* 7:13 (1994); Lonberg *et al.*, *Nature* 368:856 (1994); and Taylor *et al.*, *Int. Immunol.* 6:579 (1994).

Antibody fragments of the present invention can be prepared by proteolytic hydrolysis of an intact antibody or by the expression of a nucleic acid encoding the fragment. Antibody fragments can be obtained by pepsin or papain digestion of intact antibodies by conventional methods. For example, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to provide a 5S fragment denoted F(ab')₂. This fragment can be further cleaved using a thiol reducing agent, and optionally a blocking group for the sulfhydryl groups resulting from cleavage of disulfide linkages, to produce 3.5S Fab' monovalent fragments. Alternatively, an enzymatic cleavage using pepsin produces two monovalent Fab' fragments and an Fc fragment directly. These methods are described, for example, by Goldenberg (U.S. Patent Nos. 4,036,945 and 4,331,647). See also Nisonhoff *et al.*, *Arch. Biochem. Biophys.* 89:230 (1960); Porter, *Biochem. J.* 73:119 (1959); Edelman *et al.*, METHODS IN ENZYMOLOGY, VOL. 1, page 422 (Academic Press 1967); and Coligan *et al.* at sections 2.8.1-2.8.10 and 2.10.1-2.10.4.

Other methods of cleaving antibodies, such as separation of heavy chains to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical, or genetic techniques may also be used provided the fragments retain some ability to selectively bind its epitope.

For example, Fv fragments comprise an association of V_H and V_L chains. This association may be noncovalent, as described in Inbar *et al.*, *Proc. Nat'l. Acad. Sci. USA* 69:2659 (1972). Alternatively, the variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde. See, e.g., Sandhu, *supra*. Preferably, the Fv fragments comprise V_H and V_L chains connected by a peptide linker. These single-chain antigen binding polypeptides (sFv) are prepared by constructing a nucleic acid construct encoding the V_H and V_L domains connected by an oligonucleotide. This nucleic acid construct is inserted into an expression vector, which is subsequently introduced

into a host cell such as *E. coli*. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing sFvs are described, for example, by Whitlow *et al.*, METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, VOL. 2, page 97 (1991); Bird *et al.*, *Science* 242:423-426 (1988); Ladner *et al.*, U.S. patent No. 4,946,778; Pack *et al.*, *Bio/Technology* 11:1271-77 (1993); and Sandhu, *supra*.

Another form of an antibody fragment is a peptide coding for a single CDR. CDR peptides ("minimal recognition units") can be obtained by constructing nucleic acid constructs that encode the CDR of an antibody of interest. Such constructs are prepared, for example, 10 by using PCR to synthesize the variable region from RNA of antibody-producing cells. See, e.g., Larrick *et al.*, METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, VOL. 2, page 106 (1991).

It is also possible to use anti-idiotype technology to produce monoclonal antibodies that mimic an epitope. For example, an anti-idiotypic monoclonal antibody made to a first monoclonal antibody will have a binding domain in the hypervariable region that is the "image" of the epitope bound by the first monoclonal antibody. Such anti-idiotypic monoclonal antibodies can be used to inhibit the activity of the polypeptide containing the original epitope.

The invention also provides cDNA libraries enriched for IEGs. As described herein, such cDNA libraries contain an increased frequency of cDNAs derived from IEGs. 20 Specifically, about 15 percent (e.g., about 20 or 25 percent) of the cDNA clones within the cDNA libraries provided herein are derived from IEGs.

A cDNA library within the scope of the invention can be prepared from any tissue containing cells that express an IEG (e.g., hippocampus tissue). Again, an IEG is a gene whose expression is rapidly increased immediately following a stimulus. The stimulus can be electrical or chemical in nature. For example, cells can be treated with electric shock or chemicals such as kainate. Briefly, cDNA libraries are prepared from the hippocampus of control animals (e.g., rats) as well as from animals that receive a stimulus (e.g., multiple MECS) using, for example, a 25

phage vector lambda ZAP II (Stratagene). A subtracted library is then prepared using *in vitro* mRNA prepared from a control library and subsequent solution phase hybridization with cDNA prepared from a stimulated library. The control *in vitro* mRNA can be tagged with biotin to permit its removal from solution using avidin beads (Lanahan *et al.*, *Mol. Cell. Biol.* 12:3919-3929 (1992)). cDNA that remains after removal of mRNA/cDNA hybrids can be recloned into, for example, a lambda ZAPII phage vector. Several rounds of subtraction (e.g., two, three, four, or five rounds) can be used to increase the frequency of IEGs. The subtracted library then can be plated and duplicate phage lifts screened with a radiolabeled cDNA probe. Any probe can be used provided it contains at least one nucleic acid sequence derived from an IEG. For example, a probe can be prepared from mRNA obtained from the hippocampus of a stimulated animal. In addition, the mRNA used to make a probe can be subjected to subtractive hybridization such that IEG sequences are enriched. In general, conventional cDNA libraries contain IEGs at a frequency of <1:30,000 cDNAs. For the cDNA libraries enriched for IEGs, however, about 1 in 5 genes can be induced by a stimulus such as MECS. This represents an about 1000 to 10,000 fold enrichment in brain IEGs.

An animal (e.g., human) having a deficiency in a neuron's IEG responsiveness to a stimulus (e.g., a stimulus that influences learning or memory) can be treated using the methods and materials described herein. A stimulus that influences learning or memory can be a multiple MECS treatment. A deficiency in a neuron's IEG responsiveness to a stimulus means the level of IEG responsiveness is not normal. Such deficiencies can be identified by stimulating a sample of cells and measuring the levels of IEG expression. If the levels are not similar to the levels normally observed in a similar tissue sample, then there is a deficiency. It is noted that increased IEG expression as well as decreased IEG expression can be classified as a deficiency provided the levels are not normal.

A deficiency in a neuron's IEG responsiveness to a stimulus can be treated by administering a nucleic acid of the invention to the animal such that the effect of the deficiency is minimized. The administration can be an *in vivo*, *in vitro*, or *ex vivo* administration as described herein. For example, an *in vivo* administration can involve administering a viral vector

to the hippocampal region of an animal, while an *ex vivo* administration can involve extracting cells from an animal, transfecting the cells with the nucleic acid in tissue culture, and then introducing the transfected cells back into the same animal.

In addition, a deficiency in a neuron's IEG responsiveness to a stimulus can be treated by administering a therapeutically effective amount cells containing isolated IEG nucleic acid, substantially pure IEG polypeptides, anti-IEG polypeptide antibodies, or combinations thereof. A therapeutically effective amount is any amount that minimizes the effect of the deficiency while not causing significant toxicity to the animal. Such an amount can be determined by assessing the clinical symptoms associated with the deficiency before and after administering a fixed amount of cells, polypeptides, or antibodies. In addition, the effective amount administered to an animal can be adjusted according to the animal's response and desired outcomes. Significant toxicity can vary for each particular patient and depends on multiple factors including, without limitation, the patient's physical and mental state, age, and tolerance to pain. The cells, polypeptides, or antibodies can be administered to any part of the animal's body including, without limitation, brain, spinal cord, blood stream, muscle tissue, skin, peritoneal cavity, and the like. Thus, these therapeutic agents can be administered by injection (e.g., intravenous, intraperitoneal, intramuscular, subcutaneous, intracavity, or transdermal injection) or by gradual perfusion over time.

Preparations for administration can include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Other vehicles for administration include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's intravenous vehicles containing fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.

Further, a deficiency in a neuron's IEG responsiveness to a stimulus can be treated by administering a therapeutically effective amount of a compound that directly interferes with the translation of IEG nucleic acid. For example, antisense nucleic acid or ribozymes could be used to bind to IEG mRNA or to cleave it. Antisense RNA or DNA molecules bind specifically with a targeted RNA message, interrupting the expression of the mRNA product. The antisense binds to the messenger RNA forming a double stranded molecule that cannot be translated by the cell. Typically, an antisense oligonucleotides is about 15-25 nucleotides in length. In addition, chemically reactive groups, such as iron-linked ethylenediaminetetraacetic acid (EDTA-Fe), can be attached to an antisense oligonucleotide, causing cleavage of the mRNA at the site of hybridization. These and other uses of antisense methods to inhibit the translation of nucleic acid are well known in the art (Marcus-Sakura, *Anal. Biochem.*, 172:289 (1988)).

An oligonucleotide also can be used to stall transcription winding around double-helical DNA and forming a three-strand helix (Maher, *et al.*, *Antisense Res. and Dev.*, 1:227 (1991) and Helene, *Anticancer Drug Design*, 6:569 (1991)).

Ribozymes are RNA molecules possessing the ability to specifically cleave other single-stranded RNA in a manner analogous to DNA restriction endonucleases. By modifying nucleic acid sequences that encode ribozymes, it is possible to engineer molecules that recognize specific nucleotide sequences in an RNA molecule and cleave it (Cech, *J. Amer. Med. Assn.*, 260:3030 (1988)). There are two basic types of ribozymes namely, tetrahymena-type (Hasselhoff, *Nature*, 334:585 (1988)) and "hammerhead"-type. Tetrahymena-type ribozymes recognize sequences that are four bases in length, while "hammerhead"-type ribozymes recognize sequences 11-18 bases in length. The longer the recognition sequence, the greater the likelihood that the sequence will occur exclusively in the target mRNA species. Consequently, "hammerhead"-type ribozymes are preferable to tetrahymena-type ribozymes for inactivating a specific mRNA species. In addition, 18-based recognition sequences are preferable to shorter recognition sequences. These and other uses of antisense methods to inhibit the *in vivo* translation of nucleic acid are well known in the art (DeMesmaeker *et al.*, *Curr. Opin. Struct.*

Biol. 5:343-355 (1995); Gewirtz *et al.*, *Proc. Nat'l. Acad. Sci. U.S.A.*, 93:3161-3163 (1996); and Stein, *Chem. Biol.* 3:319-323 (1996)).

Delivery of nucleic acid, antisense, triplex agents, and ribozymes can be achieved using a recombinant expression vector such as a chimeric virus or a colloidal dispersion system.

5 Various viral vectors that can be utilized for gene therapy include adenoviruses, herpesviruses, vaccinia viruses, and retroviruses. A retroviral vector can be a derivative of a murine or avian retrovirus. Examples of retroviral vectors in which a single foreign gene can be inserted include, but are not limited to: Moloney murine leukemia virus (MoMuLV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), and Rous Sarcoma Virus (RSV). A number of additional retroviral vectors can incorporate multiple genes. All of these vectors can transfer or incorporate a gene for a selectable marker so that transduced cells can be identified and generated. In addition, a nucleic acid sequence of interest along with another nucleic acid sequence that encodes a ligand for a receptor on a specific target cell can be inserted into a viral vector to produce a vector that is target specific. For example, retroviral vectors can be made target specific by inserting a nucleic acid sequence that encodes an antibody that binds a specific target antigen. Those of skill in the art can readily ascertain without undue experimentation specific nucleic acid sequences that can be inserted into a retroviral genome to allow target specific delivery of the retroviral vector containing the nucleic acid of the invention.

A colloidal dispersion system can be used to target the delivery of the nucleic acid of the invention. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. Liposomes are artificial membrane vesicles that are useful as delivery vehicles *in vitro* and *in vivo*. It has been shown that large unilamellar vesicles (LUV) that range in size from 0.2-4.0 μm can encapsulate a substantial percentage of an aqueous buffer containing large macromolecules. Thus, nucleic acid, intact virions, polypeptides, and antibodies can be encapsulated within the aqueous interior and be delivered to cells in a biologically active form (Fraley *et al.*, *Trends Biochem. Sci.*, 6:77 (1981)). In addition to mammalian cells, liposomes have been used to deliver nucleic acid to plants, yeast, and bacteria. In order for a liposome to

be an efficient nucleic acid transfer vehicle, the following characteristics should be present: (1) encapsulation of the nucleic acid of interest at high efficiency while not compromising its biological activity; (2) preferential and substantial binding to a target cell in comparison to non-target cells; (3) delivery of the aqueous contents of the vesicle to the target cell cytoplasm at high efficiency; and (4) accurate and effective expression of the nucleic acid (Mannino *et al.*, *Biotechniques*, 6:682 (1988)).

The composition of a liposome is usually a combination of phospholipids, particularly high-phase-transition-temperature phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids also can be used. The physical

10 characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.

Examples of lipids useful in liposome production include phosphatidyl compounds, such as phosphatidylglycerol, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, sphingolipids, cerebrosides, and gangliosides. Particularly useful are diacylphosphatidylglycerols, where the lipid moiety contains from 14-18 carbon atoms, particularly from 16-18 carbon atoms, and is saturated. Illustrative phospholipids include egg phosphatidylcholine, dipalmitoylphosphatidylcholine, and distearoylphosphatidylcholine.

The surface of the targeted delivery system may be modified in a variety of ways. In the case of a liposomal targeted delivery system, lipid groups can be incorporated into the lipid bilayer of the liposome in order to maintain the targeting ligand in stable association with the liposomal bilayer. Various linking groups can be used for joining the lipid chains to the targeting ligand. In general, the compounds bound to the surface of the targeted delivery system will be ligands and receptors that allow the targeted delivery system to find and "home in" on the desired cells. A ligand may be any compound of interest that will bind to another compound, such as a receptor or antibody.

25 Compounds that modulate IEG expression can be identified by contacting a test compound with an IEG nucleic acid, and determining whether the test compound effects expression. Likewise, compounds that modulate IEG polypeptide activity can be identified by contacting a test compound with an IEG polypeptide, and determining whether the test

compound effects polypeptide activity. Contacting includes in solution and in solid phase, or in a cell. Any type of compound can be used as a test compound including, without limitation, peptides, peptidomimetics, polypeptides, chemical compounds, and biologic agents. In addition, the test compound can be a combinatorial library for screening a plurality of compounds.

5 Compounds identified using the method of the invention can be further evaluated, detected, cloned, sequenced, and the like, either in solution or after binding to a solid support, by any method usually applied to the detection of a specific DNA sequence such as PCR, oligomer restriction (Saiki, *et al.*, *Bio/Technology*, 3:1008-1012, 1985), allele-specific oligonucleotide (ASO) probe analysis (Conner, *et al.*, *Proc. Nat'l. Acad. Sci. USA*, 80:278 (1983),

10 oligonucleotide ligation assays (OLAs; Landegren, *et al.*, *Science*, 241:1077 (1988), and the like.

The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.

EXAMPLES

Example 1 - Construction of subtracted cDNA libraries

The mRNA used to prepare the cDNA libraries was obtained from the hippocampus of adult rats (male or female). Briefly, the hippocampus was dissected from naive or stimulated rats, and rapidly frozen in liquid nitrogen. The stimulation protocol used to stimulate the rats was as follows. Rats were injected intraperitoneally with 50 mg of the protein synthesis inhibitor cycloheximide (50 mg/ml stock in 50% ethanol) per kilogram of body weight 15 minutes prior to initiating repetitions of maximal electroconvulsive seizure (MECS). MECS was induced by passage of a constant current signal by means of an ECT unit (Ugo, Basil). The current signal lasted one second with a frequency of 100 Hz. Each pulse lasted 0.5 milliseconds, and the current was 90 milliamperes. This stimulus caused brief loss of consciousness and a tonic-clonic seizure lasting 30 seconds to one minute. MECS was administered about every 15 minutes for a total of 13 administrations over the course of 2.5 to 3 hours. Thirty (30) minutes after the last MECS, the rats were sacrificed by decapitation.

To collect total RNA, the tissue was homogenized in 4M guanidinium thiocyanate using a polytron and then centrifuged through a CsCl cushion. To isolate polyA⁺ RNA, the resulting total RNA was chromatographed on oligo(dT) columns using a commercial oligo(dT) resin and purification protocol (Fastback, Invitrogen). About 50 naive (control) and 50 stimulated rats
5 were used to generate the polyA⁺ mRNA needed to make the cDNA libraries and perform the Northern blot analysis.

A nonsubtracted cDNA library was made using polyA⁺ RNA isolated from rats subjected to MECS. Briefly, cDNA was synthesized and cloned directionally into the Lambda ZAP vector yielding a library containing 3.6×10^6 recombinants. This library was designated the 3 hr
10 MECS/CHX library. Differential screening of the 3 hr MECS/CHX library with control and stimulated rat hippocampal cDNA probes yielded several novel IEGs. Analysis of these IEGs revealed that they were relatively abundant.
□ 15

The 3 hr MECS/CHX library was used as starting material for preparing a subtracted cDNA library highly enriched for IEGs. A subtracted cDNA library highly enriched for IEGs can allow for the detection of lower abundance novel IEGs. To make a subtracted cDNA library,
15 DNA template was prepared from the 3 hr MECS/CHX library as follows.

The 3 hr MECS/CHX library was amplified and plated on 15 cm NZCYM agarose plates at a density of about 50,000 phage/plate. A total of 1.85×10^6 phage were plated on a total of 37 plates. The plates were overlaid with Suspension Media (SM) and the phage particles eluted by swirling at 4°C overnight. The lysate was collected, and chloroform added to a final
20 concentration of 5%. The lysate was clarified by centrifugation, and the phage containing supernatant collected and stored at 4°C. A 300 ml aliquot of the lysate was treated with RNaseA (final concentration of 1 µg/µl) and DNase I (final concentration of 1 µg/µl) for three hours at 37°C. Polyethylene glycol (PEG 6000) was added to a concentration of 10%, and NaCl added to a concentration of 1 M. After mixing well, the lysate was stored at 4°C overnight to allow phage
25 particles to precipitate. Phage particles were pelleted by centrifugation, resuspended in 20 ml of SM, and stored at 4°C. Phage particles were lysed by adding EDTA to a concentration of 10 mM and SDS to a concentration of 0.2% followed by a 20 minute incubation at 68°C. Polypeptides

were removed by two extractions with phenol/chloroform/isoamyl alcohol (50:48:2) followed by
two extractions with chloroform/isoamyl alcohol (24:1). The phage DNA contained within 40
ml of lysate was precipitated by adding 1/10th volume of 3M NaOAc (pH 5.2) followed by the
addition of 2 volumes of 100% ethanol. After mixing, the solution was incubated at -20°C
overnight. DNA was pelleted by centrifugation, resuspended in 10 mM Tris, 1 mM EDTA pH
7.5 (TE), and reprecipitated overnight. After this second precipitation, the DNA was pelleted by
centrifugation and resuspended in 12 ml of 10 mM Tris (pH 7.5), 5 mM EDTA, 300 mM NaCl.
To remove residual RNA, RNase A (final concentration of 50 µg/ml) was added followed by
incubation at 37°C for 1 hour. To remove RNase A, SDS (final concentration of 0.5%) and then
Proteinase K (final concentration of 50 µg/ml) was added followed incubation at 37°C for 1
hour. The DNA lysate was extracted twice with phenol/chloroform/isoamyl alcohol (50:48:2)
followed by one extraction with chloroform/isoamyl alcohol (24:1). After this extraction, the
DNA lysate was dialyzed against 12 liters of TE for 2 days at 4°C. The 300 ml aliquot of phage
lysate yielded 7254 µg of phage DNA. This phage DNA was then used to prepare *in vitro*
polyA⁺ RNA (cRNA).

To prepare *in vitro* cRNA, the phage DNA template was linearized at the 3' end of the
cDNA insert using the restriction enzyme XhoI. Briefly, 1 mg of phage DNA was digested with
1000 U of XhoI for three hours at 37°C. After the three hour incubation, an additional 1000 U
of XhoI was added and the 37°C incubation continued an additional three hours. XhoI was
removed by adding SDS to 0.5% and Proteinase K to 50 µg/ml followed by incubation at 37°C
for one hour. Polypeptides were removed by three extractions with phenol/chloroform/isoamyl
alcohol (50:48:2) followed by one extraction with chloroform/isoamyl alcohol (24:1). The DNA
was precipitated with 1/10th volume 3M NaOAc (pH 5.2) and 2 volumes 100% ethanol. The
DNA was pelleted by centrifugation and resuspended in 500 µl TE (1.58 mg/ml final DNA
concentration).

This linearized DNA was used as template to prepare *in vitro* cRNA from the sense
strand of the cDNA inserts. This cRNA is representative of the initial *in vivo* population of RNA
in the MECS/cycloheximide treated rat hippocampus. Forty (40) µg of DNA template was

incubated with 40 mM Tris (pH 7.5), 6 mM MgCl₂, 2 mM spermidine, 10 mM NaCl, 10 mM DTT, 1 U/ μ l RNasin, 500 μ M ATP, 500 μ M CTP, 500 μ M GTP, 500 μ M UTP, and 2 U/ μ l T3 RNA polymerase in a final volume of 300 μ l for two hours at 40°C. After two hours, an additional 2 U/ μ l of T3 RNA polymerase was added, and the reaction incubated for an additional
5 two hours at 37°C for a total time of four hours. The DNA template was removed by adding DNaseI (2 U/ μ g of template) and incubating the mixture at 37°C for an hour. Polypeptides were removed by two extractions with phenol/chloroform/isoamyl alcohol (50:48:2) followed by one extraction with chloroform/isoamyl alcohol (24:1). The cRNA was precipitated at 20°C with one half volume 7.5 M NH₄OAc and 2 volumes 100% ethanol. The cRNA was pelleted and
10 resuspended in TE. The cRNA was chromatographed on sephadex G-50 columns (NICK columns; Pharmacia) to remove free nucleotides and the concentration of cRNA determined by UV absorbance at 260 A. Thirty (30) μ g of DNA template yielded 68.6 μ g of cRNA. The cRNA was either stored frozen at -20°C or precipitated with 1/10th volume 2 M KOAc (pH 5) and 2 volumes 100% ethanol. The 68.6 μ g of cRNA was further purified using oligo(dT)
15 column chromatography to select polyA⁺ cRNA. The cRNA was bound to oligo(dT) under high salt conditions, rinsed with low salt conditions, and eluted with TE (pH 7.5). This eluted cRNA was again passed over an oligo(dT) column under high salt conditions, rinsed with low salt conditions, and the polyA⁺ cRNA eluted with TE (pH 7.5). The two passes on oligo(dT) cellulose yielded 34.2 μ g of polyA⁺ cRNA. This polyA⁺ cRNA was then used as template for
20 synthesis of first strand cDNA that was then subtracted against control brain and liver polyA⁺ RNA.

Two cDNA synthesis reactions were performed to prepare first strand cDNA from the polyA⁺ cRNA. One involved using 2 μ g of cRNA with a small amount of ³²P-dCTP to allow for the analysis of subtraction efficiency, and the other involved using 5 μ g of cRNA with no
25 radioactive dNTPs. The radioactive cDNA synthesis reaction was as follows. First, 2 μ l cRNA (1 μ g/ μ l in TE), 1 μ l Xho(dT) primer (1.4 μ g/ μ l), and 8 μ l water was combined, and the mixture was incubated at 70°C for ten minutes, quickly spun, and placed on ice. Second, 1 μ l RNasin (40 U/ μ l), 5 μ l 5X Reaction Buffer (BRL), 2.5 μ l 0.1M DTT, 1.5 μ l dNTP mix, and 2 μ l ³²P

dCTP (3000 Ci/mmole) was added, and the mixture was incubated at room temperature for ten minutes. The dNTP mix contained 10 mM of each dATP, dGTP, and dTTP as well as 5 mM of methyl dCTP. After incubation, 2 μ l of Superscript/MMLV RT mix (1:1) was added, and the mixture (25 μ l total volume) was incubated at room temperature for five minutes followed by a

5 90 minute incubation at 40°C. The nonradioactive cDNA synthesis reaction was as follows.

First, 5 μ l cRNA (1 μ g/ μ l in TE), 2 μ l Xho(dT) primer (1.4 μ g/ μ l), and 3 μ l water was combined, and the mixture was incubated at 70°C for ten minutes, quickly spun, and placed on ice. Second, 1 μ l RNasin (40 U/ μ l), 5 μ l 5X Reaction Buffer (BRL), 2.5 μ l 0.1M DTT, and 1.5 μ l dNTP mix was added, and the mixture was incubated at room temperature for ten minutes.

10 After incubation, 5 μ l of Superscript/MMLV RT mix (1:1) was added, and the mixture (25 μ l total volume) was incubated at room temperature for five minutes followed by a 90 minute incubation at 40°C.

□
15
After completion, 3.2 μ l of 0.5 M EDTA (pH 8.0) was added to the radioactive reaction, and then the radioactive and nonradioactive reactions were combined. For subtractive hybridizations, it was necessary to remove the cRNA template by alkaline hydrolysis. This was done by adding 25 μ l of TE (pH 7.5) and 5.8 μ l of 2 M NaOH. This resulted in a 20 mM final concentration of EDTA and a 138 mM final concentration of NaOH. The mixture was heated for 30 minutes at 68 to 70°C, and then 12.2 μ l of 1 M Tris (pH 7.5) and 5.8 μ l of 2 N HCl was added to neutralize the reaction. The final volume was 100 μ l of which 2 μ l was removed and counted to determine the percent incorporation of 32 P-dCTP into cDNA. This analysis revealed that 7000 ng of cRNA was converted to 2598 ng of first strand cDNA. This first strand cDNA was subtracted against adult rat brain and liver polyA⁺ RNA.

20 For the subtractive hybridizations, the first strand cDNA was chromatographed on a sephadex G-50 column (NICK, Pharmacia) to remove unincorporated dNTPs, especially the unincorporated 32 P-dCTP in order to allow the efficiency of subtraction to be followed. After the cDNA was eluted from the NICK column, it was mixed with 60 μ g of adult rat brain polyA⁺ RNA that was coupled to biotin (2X Bio RNA). The cDNA and polyA⁺ RNA mixture was precipitated by adding 1/10th volume 3M NaOAc (pH 5.2) and 2 volumes 100% ethanol. This

5 mixture then was pelleted and resuspended in 20 µl TE (pH 7.5) and 20 µl 2X Subtraction Hybridization Buffer (100 mM Hepes (pH 7.6), 0.4% SDS, 4 mM EDTA, 1 M NaCl). The resuspended cDNA and polyA⁺ RNA mixture was then incubated at 95 °C for two minutes, quickly spun, and submerged in a 60 °C water bath for 48 hours to allow hybrids to form between the cDNA and biotinylated polyA⁺ RNA (BioRNA).

10 The cDNA/BioRNA complexes were removed as follows. First, 40 µl 1X Subtraction Hybridization Buffer lacking SDS and 20 µl Streptavidin (1 mg/ml) was added, and the resulting mixture incubated at room temperature for ten minutes. After incubation, the cDNA/BioRNA complexes were removed by extraction with phenol/chloroform/isoamyl alcohol. The phenol phase was back-extracted with 1X Subtraction Hybridization Buffer lacking SDS, and the aqueous phases pooled. Once pooled, 20 µl Streptavidin (1 mg/ml) was added, and the resulting mixture incubated at room temperature for ten minutes. After incubation, remaining cDNA/BioRNA complexes were removed by extraction with phenol/chloroform/isoamyl alcohol. The phenol phase was back-extracted with 1X Subtraction Hybridization Buffer lacking SDS, and the aqueous phases pooled. The pooled aqueous phases (about 400 µl) were extracted with chloroform/isoamyl alcohol. At this point, an aliquot of the aqueous phase was counted to determine the amount of cDNA remaining. Results revealed that 78% of the starting cDNA was removed with 22% remaining (572 ng).

15 To perform a second round of subtraction, the aqueous phase (about 400 µl) containing the non-hybridizing first strand cDNA was mixed with 30 µg of adult rat brain polyA⁺ RNA coupled to biotin and 30 µg of adult rat liver polyA⁺ RNA coupled to biotin. The cDNA and biotinylated polyA⁺ RNA was co-precipitated and hybridized as described for the first round. In addition, the cDNA/BioRNA complexes were removed as described above, and the percentage of non-hybridizing cDNA remaining was determined. Results revealed that two rounds of subtraction removed 87.5% of the starting cDNA with 12.5% of the starting cDNA remaining.

20 A third round of subtraction similar to the second round was performed using the remaining cDNA. Analysis of the remaining cDNA revealed that the three rounds of subtraction had removed 90% of the starting cDNA leaving 10% of the starting cDNA (255 ng).

□ □ □ □ □ □ □ □

The remaining single stranded cDNA was used to synthesize double stranded cDNA for the subtracted cDNA library. First, the single stranded cDNA (300 µl) was alkali treated to remove any remaining RNA as follows. The final concentration of EDTA was adjusted to 20 mM by addition of 13 µl of 0.5M EDTA, and then 20 µl of 2M NaOH (120 mM final concentration) was added. This mixture was incubated at 68°C for 30 minutes and then neutralized by adding 40 µl 1 M Tris (pH 7.5) and 20 µl 2 N HCl. The cDNA was precipitated by adding 10 µl glycogen (10 mg/ml), 1/10th volume 3M NaOAc (pH 5.2), and 2 volumes ethanol. The cDNA then was pelleted, resuspended in 100 µl of TE (pH 7.5), and purified on a sephadex G-50 column (NICK, Pharmacia). The purified cDNA was re-precipitated using glycogen, pelleted, and resuspended in TE (pH 7.5) as described. Second, 50 µl resuspended cDNA (single stranded, subtracted cDNA), 20 µl 5X Sequenase Buffer, and 13 µl water was combined, and the mixture incubated at 65°C for five minutes, 37°C for ten minutes, and room temperature for 30 minutes. After incubation, 5 µl dNTP mix, 5 µl 0.1 M DTT, 2 µl Sequenase (13 U/µl), and 2 µl Klenow (5 U/µl) was added, and the mixture (100 µl final volume) incubated at 37°C for one hour. The dNTP mix contained 10 mM dATP, 10 mM dCTP, 10 mM dGTP, and 10 mM dTTP. The reaction was terminated by adding 3 µl of 0.5 M EDTA (pH 8.0) followed by two extractions with phenol/chloroform/isoamyl alcohol and a final extraction with chloroform/isoamyl alcohol. The double stranded cDNA was ethanol precipitated, pelleted by centrifugation, and resuspended in 86 µl TE (pH 7.5).

The double stranded cDNA was then restriction digested as follows. Eighty-six (86) µl cDNA, 10 µl 10X EcoRI Reaction Buffer (NEB), 2 µl EcoRI (20 U/µl), and 2 µl XhoI (20 U/µl) was combined, and the mixture (100 µl final volume) incubated at 37°C for one hour. After this incubation, an additional 2 µl EcoRI (20 U/µl) and 2 µl XhoI (20 U/µl) was added, and the mixture again incubated at 37°C for one hour. After digestion, the reaction was extracted twice with phenol/chloroform/isoamyl alcohol followed by one chloroform/isoamyl alcohol extraction. The digested cDNA was precipitated with ethanol, pelleted by centrifugation, and resuspended in 40 µl of 10 mM Tris (pH 7.5), 1 mM EDTA, 100 mM NaCl, and 20 µl loading buffer. The cDNA was divided into two aliquots, and each aliquot was size-fractionated on a 1 ml BioGel A-

50m column. The columns were rinsed with 10 mM Tris (pH 7.5), 1 mM EDTA, and 100 mM NaCl, with 50 µl fractions being collected. One column was run to select for only relatively long cDNAs while the other was run to select for all cDNAs. These separate pools were then extracted twice with phenol/chloroform/isoamyl alcohol followed by one chloroform/isoamyl alcohol extraction. The cDNA was precipitated by adding 5 µl yeast tRNA (1 µg/µl) and 2 volumes of 100% ethanol. The cDNA was pelleted by centrifugation and directionally cloned into lambda phage UniZAP as follows. For the regular cDNAs (all sizes), 4 µl water, 2 µl 5X Ligase Buffer (BRL), 2 µl UniZAP (500 ng/µl), and 2 µl T4 DNA Ligase (10 U/µl) was added to the pelleted cDNA, and the mixture (10 µl final volume) incubated at 14°C overnight. For the large cDNAs, 2 µl water, 1 µl 5X Ligase Buffer (BRL), 1 µl UniZAP (500 ng/µl), and 1 µl T4 DNA Ligase (10 U/µl) was added to the pelleted cDNA, and the mixture (5 µl final volume) incubated at 14°C overnight. The ligated cDNA was then packaged using packing extracts (Stratagene) and titered on XL1-Blue MRF cells. The subtracted 3 hr MECS/CHX cDNA library containing large cDNAs (designated IEG-Lg cDNA library) had 239,000 recombinants, and the subtracted 3 hr MECS/CHX cDNA library containing regular cDNAs (designated IEG-Reg cDNA library) had 4,992,000 recombinants. A portion of each library was rescued as pBluescript plasmid, and the cDNA inserts analyzed. Of 46 plasmids analyzed from the IEG-Lg cDNA library, all contained cDNA inserts with the average insert size being 1.36 kilobases. Of 44 plasmids analyzed from the IEG-Reg cDNA library, 43 contained cDNA inserts with the average insert size being 0.9 kilobases.

20 Duplicate southern blots containing cDNA from the 44 plasmids analyzed from the IEG-Reg cDNA library were probed with control and stimulated subtracted ³²P-oligolabeled cDNA from rat hippocampus. Eleven of the 44 cDNA inserts gave a clear differential signal that was stronger with the 3 hour MECS/CHX cDNA probe than with the control cDNA probe. This result indicates that 1 in 4 of the clones in the IEG-Reg cDNA library is derived from an IEG.

Example 2 - Preparation of subtracted cDNA probes

Subtracted cDNA was prepared using exactly the same protocol described in example 1 with the exception that rather than *in vitro* cRNA being used as the template for cDNA synthesis, polyA⁺ RNA derived from control rat hippocampi or rat hippocampi from rats treated with the 3 hour MECS protocol was used. After first strand cDNA synthesis, the RNA template was denatured by alkaline hydrolysis, and the free nucleotides removed by chromatography on sephadex G-50 (NICK, Pharmacia). The cDNA was precipitated using 1/10th volume 3M NaOAc (pH 5.2), 2 µl glycogen (20 mg/ml), and 2 volumes ethanol, pelleted by centrifugation, and resuspended in TE (pH 7.5). The final concentration was 25 ng/µl. The single strand of cDNA was labeled to high specific activity ($2\text{-}4 \times 10^9$ cpm/µg) by oligolabelling (Pharmacia) with ³²P dCTP (3000 Ci/mole). Free nucleotides were removed by chromatography on sephadex G-50 (NICK column, Pharmacia), and the purified ³²P-labeled subtracted cDNA used to probe the subtracted cDNA libraries.

Example 3 - Screen subtracted libraries

The IEG-Reg and IEG-Lg cDNA libraries were plated on NZCYM agarose plates at a density of 500-800 plaques/plate. Duplicate nitrocellulose filter lifts were prepared from each plate using standard techniques. The filters were prehybridized overnight at 68°C in 5X SSPE (pH 7.4), 10% dextran sulfate, 0.2% SDS, 5X Denhardt's Solution, and 50 µg/ml boiled, sonicated salmon sperm DNA. The first lift from each plate was then hybridized with 4×10^6 cpm/ml of the control subtracted cDNA probe and the second lift with 4×10^6 cpm/ml of the 3 hour MECS stimulated subtracted cDNA probe. Hybridization was done in freshly prepared 5X SSPE (pH 7.4), 10% dextran sulfate, 0.2% SDS, 5X Denhardt's Solution, and 100 µg/ml boiled, sonicated salmon sperm DNA at 68°C for three days. Filters were washed twice at room temperature for 30 minutes in 2X SSC/0.2% SDS, twice at 60°C for two hours in 0.5X SSC/0.2% SDS, and then dried and exposed to X-Ray film for one to seven days. Clones

exhibiting greater hybridization signals with the stimulated cDNA probe than those observed with the control cDNA probe were picked for further analysis.

The putative neuronal IEGs were analyzed by reverse northern analysis and northern analysis to confirm that they were true differentially hybridizing cDNAs. The nucleotide sequence from the ends of these cDNAs was determined, and those sequences not matching the sequences of known genes were used to obtain full-length cDNAs from cDNA libraries.

Example 4 - Construction of a cDNA library enriched for near full-length IEG cDNAs

Since the initial isolates for all of the IEGs represented small cDNAs derived from the 3' regions of the corresponding RNA, it was necessary to rescreen other libraries to obtain full-length or near full-length cDNAs. For this purpose, a cDNA library enriched for neuronal IEGs with very long inserts was prepared from 3 hour MECS/CHX polyA⁺ RNA isolated from rat hippocampi. This RNA was already relatively enriched for neuronal IEGs since the MECS/CHX stimulus produces a large induction of IEG expression. Further, the cDNA was synthesized in the presence of methylmercuric hydroxide to eliminate RNA secondary structure allowing for the synthesis of long cDNAs using Superscript II Reverse Transcriptase (BRL).

The basic protocol used to synthesize cDNA was as follows. First, RNA secondary structure was denatured with methylmercuric hydroxide which forms adducts with imino groups of uridine and guanosine in the RNA and disrupts Watson-Crick base pairing. Briefly, 22 µl polyA⁺ RNA (0.5 µg/µl in either 10 mM Tris/1 mM EDTA (pH 7.0) or water) was incubate at 20 65°C for five minutes and then cooled to room temperature over five minutes. Once cooled, 2.2 µl 100 mM CH₃HgOH (90 µl depc'd water plus 10 µl 1 M CH₃HgOH) was added, and the mixture incubated at room temperature for one minute. After incubation, 4.4 µl 700 mM 2-mercptoethanol (190 µl depc'd water plus 10 µl 14 M 2-mercptoethanol) was added, and the mixture (final volume 28.6 µl) incubated at room temperature for five minutes.

Second, the first strand of cDNA was synthesized as follows. The volume of the denatured RNA mixture was adjusted by adding 26.4 µl water such that the concentration of RNA was 0.2 µg/µl. In the radioactive reaction, 5 µl (1 µg) polyA⁺ RNA, 2 µl 10X Strand 1

Buffer (Stratagene), 1.2 μ l Strand 1 dNTP mix (Stratagene), 0.8 μ l Xho/dT linker primer (1.4 μ g/ μ l), 5 μ l water, 3 μ l dCTP³² 3000 Ci/mmol (NEN), and 1 μ l RNase Block (Stratagene) was combined, and the mixture (final volume 18 μ l) incubated at room temperature for ten minutes to allow the primer to anneal to the RNA. In the nonradioactive reaction, 25 μ l (5 μ g) polyA⁺ RNA, 5 μ l 10X Strand 1 Buffer (Stratagene), 3 μ l Strand 1 dNTP mix (Stratagene), 2 μ l Xho/dT linker primer (1.4 μ g/ μ l), 9 μ l water, and 1 μ l RNase Block (Stratagene) was combined, and the mixture (final volume 45 μ l) incubated at room temperature for ten minutes to allow the primer to anneal to the RNA. After the room temperature incubation, 2 μ l and 5 μ l of reverse transcriptase mix (4 μ l Superscript II (BRL 200 U/ μ l) plus 1 μ l MMLV RT (Stratagene)) was added to the radioactive and nonradioactive reactions, respectively. The reactions then were incubated at 40 °C for one hour and placed on ice. Two μ l of cDNA was removed from the radioactive reaction and added to 18 μ l T₁₀E₁ and 2 μ l 0.5M EDTA. Two (2) μ l of this mixture then was applied to a PEI strip to determine the percent incorporation and quantity of cDNA synthesized, while 18 μ l was mixed with sample buffer and ran on a gel to assay cDNA quality.

Third, the second strand of cDNA was synthesized as follows. Both the radioactive and nonradioactive reactions were kept on ice to prevent "snapback" cDNA synthesis. For the radioactive reaction (18 μ l), 10 μ l 10X Second Strand cDNA Buffer, 3 μ l Second Strand dNTP mix, 62.5 μ l water, 1 μ l RNaseH (1.5 U/ μ l), and 5.5 μ l DNA Polymerase I (9 U/ μ l) was added, and the mixture (100 μ l final volume) incubated at 16 °C for 2.5 hours. For the nonradioactive reaction (50 μ l), 20 μ l 10X Second Strand cDNA Buffer, 6 μ l Second Strand dNTP mix, 111 μ l water, 2 μ l RNaseH (1.5 U/ μ l), and 11 μ l DNA Polymerase I (9 U/ μ l) was added, and the mixture (200 μ l final volume) incubated at 16 °C for 2.5 hours. Four (4) μ l of cDNA was removed from the radioactive reaction and added to 18 μ l T₁₀E₁ and 2 μ l 0.5M EDTA. Two μ l of this mixture then was applied to a PEI strip to determine the percent incorporation and quantity of cDNA synthesized, while 18 μ l was mixed with sample buffer and ran on a gel to assay cDNA quality.

The cDNA from both the radioactive and nonradioactive reactions were extracted twice with phenol/chloroform/isoamyl alcohol followed by one extraction with chloroform/isoamyl

alcohol. After extraction, the cDNA was precipitated with 100% ethanol, pelleted by centrifugation, and resuspended in 39.5 μ l water. To blunt the cDNA ends, 5 μ l 10X T4 DNA Polymerase Buffer (NEB), 2.5 μ l dNTP mix (2.5 mM each dNTP), and 3 μ l T4 DNA Polymerase (3 U/ μ l) was added to the 39.5 μ l of cDNA, and the mixture (50 μ l final volume) 5 incubated at 16°C for 30 minutes. After incubation, 350 μ l TE (pH 7.5) was added, and the mixture (400 μ l final volume) extracted twice with phenol/chloroform/isoamyl alcohol followed by one extraction with chloroform/isoamyl alcohol. After extraction, the cDNA was precipitated with 100% ethanol, pelleted by centrifugation, and resuspended in 17 μ l water.

EcoRI/NotI adaptors were ligated to the cDNA, allowing for the quick identification of 10 artifactual cDNAs generated by the ligation of two independent cDNAs prior to ligation into the lambda phage vector. To ligate the EcoRI/NotI adaptors to the cDNA, 3 μ l 10X Ligase Buffer, 4 μ l EcoRI/NotI Adaptors (1 μ g/ μ l), 3 μ l 10 mM ATP, and 3 μ l T4 DNA Ligase (400 U/ μ l) was 15 added to the 17 μ l cDNA, and the mixture (30 μ l final volume) incubated at 10°C overnight. After the overnight incubation, 1 μ l T4 DNA Ligase and 1 μ l 10 mM ATP was added, and the mixture (32 μ l final volume) again incubated at 10°C overnight. After this second overnight 20 incubation, 270 μ l TE (pH 7.5) was added and the mixture extracted twice with phenol/chloroform/isoamyl alcohol followed by one extraction with chloroform/isoamyl alcohol. After extraction, the cDNA was precipitated with 100% ethanol, pelleted by centrifugation, and resuspended in 30 μ l water.

To kinase the cDNA ends, 4 μ l 10X T4 Polynucleotide Kinase Buffer, 4 μ l 10 mM ATP, and 2 μ l T4 Polynucleotide Kinase (10 U/ μ l) was added to the 30 μ l of cDNA, and the mixture 25 (40 μ l final volume) incubated at 37°C for 30 minutes. After incubation, 2 μ l T4 Polynucleotide Kinase was added, and the mixture (42 μ l final volume) incubated at 37°C for 30 minutes. After this second 30 minute incubation, 170 μ l TE (pH 7.5) was added, and the mixture extracted twice with phenol/chloroform/isoamyl alcohol followed by one extraction with chloroform/isoamyl alcohol. After extraction, the cDNA was precipitated with 100% ethanol, pelleted by centrifugation, and resuspended in 85 μ l water.

To digest the 3' cDNA ends with XhoI, 10 μ l 10X NEB Buffer #2 and 5 μ l XhoI (20 U/ μ l) was added to the 85 μ l of cDNA, and the mixture (100 μ l final volume) incubated at 37°C for 45 minutes. After incubation, 3 μ l XhoI (40 U/ μ l) was added, and the mixture (103 μ l final volume) again incubated at 37°C for 45 minutes. After this second incubation, 120 μ l TE (pH 5.5) was added, and the mixture extracted twice with phenol/chloroform/isoamyl alcohol followed by one extraction with chloroform/isoamyl alcohol. After extraction, the cDNA was precipitated with 100% ethanol, pelleted by centrifugation, and resuspended in 20 μ l 10 mM Tris (pH 7.5), 1 mM EDTA, 100 mM NaCl, and 5 μ l loading buffer. This resuspended cDNA then was size-fractionated on a 1 ml BioGel A-50m column to select large cDNAs. The column was rinsed with 10 mM Tris (pH 7.5), 1 mM EDTA, and 100 mM NaCl. Thirty-six (36) fractions (50 μ l/fraction) were collected. Aliquots from individual fractions were electrophoresed on 1% agarose to identify fractions containing cDNAs longer than 2 kilobases. Such fractions were pooled, and the resulting mixture of pooled fractions was extracted twice with phenol/chloroform/isoamyl alcohol followed by one extraction with chloroform/isoamyl alcohol. After extraction, the cDNA was precipitated by adding 2 μ l glycogen (20 mg/ml) and 2 volumes 100% ethanol, pelleted by centrifugation, and resuspended in 5 μ l water.

To directionally clone the cDNA into UniZAP, 2 μ l UniZAP (500 ng/ μ l), 1 μ l 10X T4 DNA Ligase Buffer, 1 μ l 10 mM ATP, and 1 μ l T4 DNA Ligase (4000 U/ μ l) was added to the 5 μ l of cDNA, and the mixture (10 μ l final volume) incubated at 12°C overnight. After incubation, the cDNA was packaged into phage particles. To package the cDNA, the ligation reaction (10 μ l final volume) was divided into two packaging reactions with each containing 5 μ l of ligation reaction together with a packaging extract (Stratagene). This mixture was incubated at 22°C for 2 hours. After incubation, the two reaction mixtures were pooled and the library titered on IL1-Blue MRF cells.

This 3 hr MECS/CHX library (designated IEG-FL 3 hr MECS/CHX cDNA library) had a titer of 4.4×10^6 primary phage. The library was amplified and used to isolate full length cDNAs derived from novel neuronal IEGs. The relative abundance of near full length neuronal IEG cDNAs in this library was substantially higher than the levels experienced using other cDNA

libraries. In a single cDNA library screen, full length cDNAs for four different novel IEGs were obtained. Three of the four IEG cDNAs were derived from mRNAs of 4 kilobases, while one was derived from an mRNA of 3 kilobases.

5 The nucleic acid sequencing of the IEG cDNAs was performed at Johns Hopkins School of Medicine and at Applied Biosciences, Inc., CA using the Sanger method with fluorescent dye termination.

Northern blot analysis was performed both to confirm that the cloned cDNAs represent tissue mRNA that is rapidly induced by brain activation and to assess the size of the mRNA transcript. The latter is essential information for the identification of authentic full length clones.

10 Either 20-25 µg of total RNA or 2 µg of polyA⁺ RNA was sized by denaturing agarose gel chromatography and transferred to nitrocellulose. Blots were then hybridized with [³²P]labeled cDNAs. Labelling was done using the random primer method (Pharmacia).

In addition, *in situ* hybridization was performed both to confirm that the cloned cDNAs represent tissue mRNA that is rapidly induced by brain activation and to confirm that the mRNA was induced in activated neurons. *In situ* hybridization was performed as described previously (Andreasson and Worley, *Neuroscience* 69: 781-796 (1995)).

Example 5 - IEG nucleic acid

The following clones were identified as being IEG nucleic acid as described in Example
20 3. In addition, certain clones were identified by chip-hybridization between PCR fragments generated from rat hippocampus ESTs and ³²P-dCTP-labeled cDNA derived from polyA⁺ RNA of rat hippocampus from MECS treated animals and controls.

One IEG nucleic acid clone was designated A003. The first library screen produced a fragment (A003-1-1) of 1.6 kilobases (kb) with a polyA sequence at the 3'-end. A second round of screening was performed using a probe prepared from the 5'-end of A003-1-1. This screen produced two clones: A003-1 (2.8 kb) and A003-2 (1.3 kb). The fragments from the secondary screen were sequenced from both ends. These fragments formed a contig at their 3'-end with the A003-1-1 fragment. The following two nucleic acid sequences are within the A003 clone: 5'-

TTGCAGATCAGCACCTTGATGATGCCGCCAACAGTGGTAATGCTNACAGCAA
AGCACCACTTACGCTTTAGTTGTGCTGGGTCATGGCTGGACATAACCCAACCA
GCCTGACCCCACAGGAATGCCAAGTGGCTGGAATGTAACCCAACCTAGTTCTGC
GCTCGCTCCTCTCCCAGTGCAAGGTGCTAAACACCCACTCACAAAGCCTGCTGTCAA
5 GCTGCGACCTGGGGCTGGTTAGAAAGGGCTGCCTCCTCCAGCAATAGAAGTTCA
TGAATTGAGGCTGGAGATAGGTCAAGACCCTGTGATAACTATAAAGACTGTAGC
AGCCACAAAGGAGACCCCCAAATAACTGGAGGCATGGCACTGACGTACCAAGATGA
GGTTATGTTGGAGCTGAAGGCTGCTGTGCTTGGTAGCATCTTGTCCCT
TGGGACATGGGTGACCCACTGTCCACTGAGCTGGGAGATGACAGTTGAATAAA
10 AAAAAAAAAAAAAA-3' (SEQ ID NO:1) and 5'-CGGCTTAATTAACCCCTCACTAAA
GGGAACAAAAGCTGGAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCC
CCCAGGCTGCAGGATTCTGCGGCCGATTAAGAACGCTGCTGATGTCCTAGGCGAGG
ACATTAACCTCAGTCTCTGACAGACTTGGACATCCAGAATAAGTTCTTTGTATAT
15 CAGAGCACAGAGCCCAGCTTAGCCTCTGATGGACCTCAGGAACCAAGAAGGAGGG
ACTTCCTAACATTCTAGAGATGGGACTCTAACACTCTAGCTCTGTGTTAAGCCCTGAA
GTCCAGAAAGAAGTAGTTCTTGACATTCTAGTGCCAAGATCCAGCCTCTAACAGAGAA
CTCTGATGTCTAAAGAAAGTCTTCATAGTCTAGNCCAGTCACCAGTGAAGCTAAC
20 ACCTGAAAACATTAGATTCTCTGGAGCCAGGAATCCATCTCAAGTCTCTCATAAAG
CCCAAATGTCCCAGGAGAAGTTGACAATATAAAGCCGTATCTCGATGGACTTTGAA
GAAGCTCAGAAAAGGAGACCACCTGGTAGTCTGATCTAGGACTCTGGCTTGTG
TCTCCAGGGACGTTACATGTATAAAAGAGGGACCTTCTGATGATTCAAAGACTGG
GACTCCACCTCCATCCTTGATGAAAGCTCAAATGTCCAGAAAGAGGGCCTCTG
ATATTCTAGAGTAGGACCCCTCCAGCCTTGATGGTGTCCAGATGTCCAGAAAG
25 AGATGTCCAGAAAGAGGGACTTCTCTGATGTTCCAGACCTAACAGACTCTAGCTCCAGC
CTTGATGAAGCTCAGATGTTAGAAAGGGGGCCTCCATGATGTTCTAGAACCAAGG
ACTCCACCTCTAGCCTTGATGGTGTCCAGATGTCCAGAAAGAGGGTCTCCATGAT
TTCTAGGACCAAGACTTACCTCCAGCCTCTATGCCTCCATGTCTCCAGTAAAGCTT

AGGTGTCCAGAAAAGAGCATTCTCAATGAATTATAGAACCAACAGGACTCTTCTCCAG
CCTTGATGACGTTCAGATGTTCATAAAGAAGAACCTCCACAATGTACTAAAGCTAT
GAECTCCATCTCCATCCTTGTGAAAAGGGACTCCTCCACTCTGTTCCAGAACGCCT
AGCTCCACCTCTAATCTTGTGATGTCCAATTATCCAGAAAGAGGGGGCCTTAGA
5 ACAAAAGACTGTACTTTATTGATAAAGCACAGATTCCAGAACAGAACATCT
AGAAAGAGGGTCCTCCCTAACACGCTCGAGCTAGAACCCCCGGTGCAAGGGTCTGAA
ACTTAGACACCAGAAGACCGCTTGTCTACAACAAGTCTGCATTTCTAAATCTCC
AGGTGGCTGAT:CAGAAGGGTCCAGGAAGGTATGGGG-3' (SEQ ID NO:2).

Northern blot analysis using the 3'-end of A003 revealed the presence of two mRNA transcripts. The more abundant transcript was 2.2 kilobases in length, while the less abundant transcript was 4.8 kilobases in length. This analysis also revealed that the expression of A003 mRNA was marginally upregulated in response to the multiple MECS treatment. The multiple MECS treatment involved the induction of multiple maximal electroconvulsive seizures followed by the preparation of total RNA from rat hippocampus four hours post-seizure. This multiple MECS treatment was designed to mimic ischemia.

Another IEG nucleic acid clone was designated A013. The first library screen produced the clone designated A013-8. The 5'-end of A013-8 was used as a probe for the second round of screening. This second screening produced two additional clones: A013-4 and A013-26. The A013-8, A013-4, and A013-26 clones were sequenced using either the gene specific primer used to generate the probe for the second round of library screening, or the T3 and T7 primers. Both A013-4 and A013-26 made a contig on their 3'-ends with the A-013-8 clone. In addition, the sequence from the 5'-ends of A013-4 and A013-26 revealed that they from contigs between each other. Further, the sequence data from the 5'-ends of A013-4 and A013-26 revealed the presence of an open reading frame of at least 720 basepairs (bp) Based on the combined length of the obtained clones, the A013 clone is at least 3.0 kb in length. The following two nucleic acid sequences are within the A013 clone: 5'-GGCACGAGATCACTCAGTGTCTCACTGAAC
CAAATCGTCATTTACAGAGAGATGCAAAGCTCAGCGAAGACATTAGCTTTTT
AAAATGTATAATTCTGTGGCTACATATGCAAGTAGGGCCCATTATGTTTTTCA

TTAGTGGAAACTAACCTTTGTGCTGTGTTAACAGTATTAGCTTATAGAATTAT
AAATGTATATTCTACTTCTGATCAAAGAACGTAGTCGGGTATTGGTTAGAACAGITC
AAAGTGACACTGTATAGGGCTTCACGGTTAACGGATTGTTAGCAAATCTTAAGGA
CATACAGCCAATGATTATCTGAGGTTACTGGCTAACTGTTTCACTGAGTTACTCTG
5 CCTTTTGACATTTATTCTTGTTGTCAGAACATCCAGAGCTCAGGAGGCCAAATT
TTTTATWCCGTATATATATATATAAATATCCATAAGCCTGGTGGATTGTATG
CAATGCACTGCATCTATGTATTCTGATAGCATCTCATTGATTGTTGAAATAGAA
AGAAAAGATAGTATCCAAATGAGTTATCTAACAGAAAGCTGAGTTAACCTTAT
TACCTATATAATAATTGATATTGCCAATTACCATTCTGAATTTCATATAGTATAAGTT
10 AGACATTGCTTAATCCCCTTAAATGTATTTACATAGACATGAACACTCAAATTGCT
GGATTTTAAATATATCTGACATAATTTCATCTGTTACATTCAAGTTAGCTTGT
TTAGCCCAGATTTCAGAACATAGTAAAGGAGGAAAGGAACCGCATTCCAGGGAAACCT
CTGAGGCCAAGTCAGAGTCAGAACACTGTAACACACAGGCCGTCAAGCCAACATTA
GTCGTAAATCCCTAACACGTCACTGGATTCTCTGTCAAGCGCAAGTGTCAAGCTGC
CAAAGAACAGACTTACATGAAGAAGTGCCACATGCTGGCAGGGCTGCCGGCTC
CGGCCAGCAGACACTGCTAGATTGAATATTAAAGGTGAGTTGACCTGTGGTAC
ACAGCTGTGCTGCTCAGTCAGCACCTCAGAACACTCTGAAAAAAACATAAAAAG
AAAAAAAAAAAAAAAAMATGCASCTGKYTCACTTGTGAATAGTGAATGTAAAG
GAAAGAAAGAAAACCAAAAGCTTGTCCATCACAGGTATGAGCTGCTATGATTCA
TGAAGAACATTCCATGGAGTATGTTAAAACCTTGTATATCTGAGAGGGCTTAAA
20 AGCCAACTTAACCTGTTCAAGGGCAACCGCGGTACAGACGTGGTCTCTGTGAGACTTC
CACCTGACCCAAAGTTAACGTGGTACGAATGTTGTGCATTAAATGTTAAGGACAGTC
TGCAATAATAAGTAAGTAGCCAGCGTGGGTGCCAGCAGTGTGAGACCTGGCTGC
TCTATTGTACGCTTGGAAACACAATTATGCAACAGATGTCCAGATATGATTCTATT
TATGGAAAAAGTTATATGTTAACAAATGGTTACCATCTTATATTAAATGACCTT
25 TTGACAGGTGTGCACTGTTGTCTCCAGTGAGCACATACCATGCGGATTATATGT
ACATCAGTAGTGTGAATCCACTGGCACAGTGTGTAAATGCCAGATGTGGTGAGAT
TTTATCTGTATATGTGATCAGATAAAACTCCTGACAGAAACTGTAAGGRAACC

CAGCTGAATGGTTGACCTGGATGRCYKRKRTKGTWTGGTTATGTTAAATGTATAT
TCTTTAATCAATGAATAAAGCATTAAAAATGGGAAAAAAAAACTCGTGC-3'
(SEQ ID NO:3) and 5'-TCTGCGGCCGCAGCATCCGGAACAAACAGGAACCTCCAGAA
GTTTAGTCTTTGGAGATATAAGTGTGTTCAGCAGCAAGGAAGTCTGTCCAGCAC
5 ATACCTCAGCAGAGTAGACCCTGACGGCAAGAACAGATTAAGCAAATTAGCAGCTGT
TTGAAGAGATACTGAGCAATAGTAGGCAACTAAAATGGCTGTCTGTGGTTATGC
TGGAAATAGTAACCCCATCATCACTGTCGTCTGTCTAACTCCATTGCCAACACCAT
GGAACACCTGAGTTACTGGACAACAAACATTCTGGTAACAGCACGCTCATCACCAC
AGTCGAACTAGAGCGCTTGTAAATCTGCGCTCACTGCCCTGGATTCTGTGACTTT
10 ACAGCTGAGATGGCGAGAGTCCTGACCGACAGCAACCATGTGCCCTTGAGCGACT
GTCTCTCTGGTCCACAATGCTCAGTGATGCTCAAGTCATTAGACAACATGCCAAA
CGATGAGCACTGGAAGGCCCTGTCACGAAAGAGCTCCAGCCTCCGGTCTATCTAAT
GGCTTTGATGTTAAAAGTGAAGACATGCTAAAGATTCTGAAACCCAGTATACCACT
TGAGAAGGGTTCACTTGGACAGCTACGTCACTGTGTCTCAAGGGGCTATTGGTTG
ATCTTATATTCCAGGCAGTATTGACCAAGGTTCTYAACCCMWTWTATTGATGA
ATGATATGATTGATACGTCTGGTTCCGGATCTTAGTGACAACCGAAATGAAGATC
CATTGGTTTATTGGCATGGCGGTGCACAAAGCTCACTCTTGGCAATTGATGGTTA
CACCGTGTGGGCACACAACCTCATTGCCATTGCTCGTCTCGTGGCTYTTGACCTAA
AAAGTGCTTGGAAAGTCACCSRAAGAAAGCATTGATTTGACCAAGGTGAACTAGCCC
20 GACCAGGAATGTGGRWYCCCGTACATAACCTTCTGGAGCAGGTATTCCCTGGGGC
CTTGGTCAAGTCTGGCACG-3' (SEQ ID NO:4).

Northern blot analysis using a sequence from the A013 clone revealed the presence of a 3.2 kb mRNA transcript. In addition, this analysis revealed that the expression of the A013 mRNA was strongly upregulated in response to the multiple MECS treatment. Specifically, 25 A013 mRNA expression was induced 8.9 fold by the multiple MECS treatment as determined from Northern blot data using total RNA from rat hippocampus (Table I).

Table I. Fold induction of mRNA expression after multiple MECS treatment

Probe (rat cDNA)	Fold induction (normalized for the S26)
A013	8.9
L094	7.3
L100	17.2
L119	17.8
R113	7.0
R286	2.4

Another IEG nucleic acid clone was designated A020. The following nucleic acid sequence is within the A020 clone: 5'-TCAAACCNATCTCGGTATTCTTTGATTNATAAGGGATTTKSCCGATKTCCGGCNTATTGGTAAAAAWTGAGCTGATTAAACA
 AAAATTAAACGCGAATTAAACAAAATATTAAACGCTTACAATTGCCATTGCCATT
 CAGGCTGCGCAA YTGTTGGGAAGGGCNATCGGTGCAGGCCTTCGCTATTACGCCA
 GCTGGCGAAAGGGGGATGTGCTGCAAGGCATAAGTTGGTAACGCCAGGGTTT
 CCCAGTCACGACGTTGTAAAACGACGCCAGTGAATTGTAATACGACTCACTATAGG
 GCGAATTGGGTACCGGGCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATCG
 AATTGGCACGAGCGAACGCCAGGGCCTGCACCTCCTAGGCAAGCGCTCTACCACTG
 AGCTAAATCCCCAACCCCTGTTTATTAAAGCAAACGAGATAACATAATTCA
 CATGATAATTAAAGATTATCTGAACTCTTAAGGAAATGTATATACTAAGCTATTAT
 AGTTTTATTTCCTAATTCACTGCTGATAATACCTTACCTTGAGTCGTTACTACTTT
 CTTGGTTCTAAAAACTCTACTGCTAAATTACAATGTAACATAGGGCTCGTAT
 ATACTGTAGAGTGCTGTAGATGTCCTCGTCATCAACTATGCAATAACAGTCTGATCG
 ACACATTTCAGGAKCGATCACTCTTGGTGTGCTTAAATACCTTCAAGCTTA
 GGATGTGCAAAGCAGGAAGACTGTGGGTGTAAATGTTACTTATTCTTGAGAGTG
 TTAGTAAGTCTTCDAAAATTGCTTTCTCTCAAAATTATCGTTAACTAAATGATA
 ATTATCTTGAGGTTAACAGAACGACTATTGACAAACTAAAGTGACTTTAGGGCA
 TTCTTGAGATCATAGTCTTATCTTGGGGACTAAATGTCATTAGACCCTAATAGA

CTAACTTGTATGTTGTGGGGAAACGTTCCCTCTCATTCAAGGTAACGTGG
CTGCCTGTTACTTGTGTAGCATTCTAGAAAATGGCTAGGTTTTATAAGATT
AGACAATAGAAGTAGTTTATATTATTAGTTCTGTTGGAATGTGATCCTGAAATT
ATTACTGAAAATTAGAATTTCGCTAATGACAACCTGACTCTCAGAGATGC
5 AGTGTAAATTGATACCTCATCTTCCGAGAGTCAGAGCACAGGGCGGCAGTATGTG
AAGCTGCTTTGCACTGACGCATTGATAAGTTGGCTACTGTAATGGTAAAAGGC
TCCTCAGGCACTGACTGCATTGGGTTCTCGATGGGGATGATCCGTTCTCGTGGT
GCTGCTGGACTTATGCATTGGAGGTACTGCATGTATCTCCACACTGCTGACATT
TTCTCTGATCTGTGTGGCACCAACTCATTAAAAGAAATATGCAGAAATATCTTCT
10 AATTGTTGATCTCGCTGTATGACAGTTATAATATTAAACACTGGGTTGATCCACT
CTGTTACATTATCTTCTAACGCGTCAGAAAGGGACTAACTGAAATTATATCTAGA
□ GGCTTGATCATTCAAAAATTAAATTCCCTGGATACTTAGGCAATATCTAAAC
■ AACTTTAATAAAATTAAATTTATTTACGTAAGCTAAATATACATGAATGTG
▲ CTTTTAATAAAATTAAATACAGTTATACTTATTGCCAATTCAAATAAAAAAAA
15 △ AAAA-3' (SEQ ID NO:5). This clone is similar to GLGF-domain protein
Homer (accession # U92079).

Another IEG nucleic acid clone was designated A021. The following nucleic acid sequence is within the A021 clone: 5'-TTTTTTTTTTTTTTAARGGGRCCACCCC
ACCGSGCTAAAGGCCAGGGCCCCCTGGAGMCCCAGGGGTTGGCCCMCC
20 CCCTCACCAAATGGTCTGCCAATGACCCAGGTACTCACACATGTTCCAGGAGGAG
MCTGGGCCAGGATTGACCAGAGGGTATGGAAAGGGAAAGGGGAGAAGAAATC
GACATTATTATTATTATTAAATGTTACA
WTTCCTTGTTGTTCCAAGCC
CTGAATAGAAACAGATAGCATTAAAGGACTCTGTTCCACCCCTCTGTCTCTC
TCCCCCACTGTGCTAACTTAGGATAACACTCTCTATTGTTCTAAAGTGA
25 TTTGTGGACTTGTGCCGTGAACTGCATTAAAAGGTTCTGTTCAAAGATCGATT
GTCGTTCTGTGGGACAGTGGCTCTAACGAAATCTGCATTGTAGGAGAAGACAATG
AAAGACCCCTGGCCCTGTCTCTAAACTAACTCTGTATGATTAAAAAAATT
CCATTACTTACTTGTGGTTACTGATTGAGGAAGAAAATTCAACTTGTAT

AAAGACTAGGTATCAGGGTTCTTGCAGTGGGAGTTGTATATATATCGTATTTGG
TATATCGTAGAAACTCAAGCTTATGCATCCGTATTGGGATATGTCATGACGTGC
AGTGAATTCGCTATTAGACCCTGGAGGCAAACGAGTTGTACAAGGTTATGGCTC
CATGGGAATTCTAATTCTTCTGGGACCTTGTCCCCTTACAGTAATGGT
5 GAAATGGCCTAGGAGGGTCTCTAGTCGAATTCTCCAGGCAGGACCACGTGCTCA
AAAAATCTTGTATAGTTAAATTTGAGGAGTATCTGCTCAGAACATCTGTG
GTGGTGTGTGTTGCGTTCTGTGTACTGTGTGACACAAGCCTACAGTATTGCA
CTAAGGAAAGCTGTTAGAGCTGCTGCTATGGAGGGAGAACATATTAAAACCTAT
TTCCCTCGGGWTRWCWMGTTATGTWCTGTTGCTTGGCTTCCCTACT
10 TTCCACTGAGTAGCATTGTAGAATAAAATGAATTAAGATCAGMWRWRWRMAAA
AAA-
3' (SEQ ID NO:6). This clone is similar to fra2.

Another IEG nucleic acid clone was designated A024. The following two nucleic acid sequences are within the A024 clone: 5'-TCAGGCCTNAGCAATCCTCTTAANTTGA
15 NCCAAGNTTAACTCTGGGCGAATTCTGTGNTTGCTTCTTCCCCATANTCCAG
GCCACAAANGTTCTGTGANTCCGAGAATCGGCCACCATGCAGACCCACNGAG
AGGATTAGAATGTGTGAGAGTGAGTGAGTGCGCGTGTGCTTGTAT
GTGTGTTATAGATGTAGGACATTAAGTCTCTGACACAGGGAGATGTGAGAAG
GATGGCCTGACATCAGATGACAAGAGGTCTTATGCACATCTCTGGCTTCCCTA
20 CCCAGAGAAGAGCCCCCTTGATACAATCAGTGGATTTCATATGCTCAAAGGC
TTGATCTGTGAGTCACTCCAGTTGGACATAGGTCTGTGTGGCTTGAGAAAAG
GTACTTCAAAAGAGGGCTTCCAGAGCACAGCTCACAGCCAGCTGTTAGGACCCA
CCCTCTCTTATTGTGGAGGTGACTCACAGCAGACTGACAGTGGTCAGACTGAGC
TTCTGCTAAGGTGGTAGCCAACACTGGCATGTCTCGGTAGTGGTTGGCA
25 AATTTCAGGTCTCTCCCCAACCTGCCTCTGATGAATAAGACAATGAGTAC
AGTCCTTAATTCAAGGCTTGTGACTAGCTTACGGAACCGAAAATGGTCCCTT
TGTACAAGCCGAGCTGTTATGGAATCACGGTAACCAGACCCAGGTCTGTGGCACCT
GTTGTTTTTTTTTTTTTTAGCTCTACGGCATGCTTCCAAG

GAACCAAAGGAGGGTCTCAGAGATGCCCAAACATCCAAAGTACACAAAGCTAAG
TAATCGATTGCTTACTTATTGCACAGCTAGACACGGATTAAAGTCTATCTAAAGCT
TTGAAGCAAGCTTAGCTCTCAAAGGCCTAGCAGAGCCTGGCACCCCAGGATCCTT
TCTGTAGGCTAATTCTCTTATCCAGCGCATATGGAGTATCCTTATTGCTAAAGAG
5 GATTCTGGCTCCTTAAGGAAGTTGATTCTGATTAGTCAGAGTCCTTGTTCCCTGACT
TGCTCTGCCAGCCCTGCACCAGCTTTGAAGTGCACATGCTGTGTTAACTTCT
CCCAGTTTATTGGGCATAAAAGTTGTCCTTATTGTAAAGCTGTTATAAATAT
ATATTATATAAATATGACAAAGGAAAATGTTAGTCAGATGTCTATTGTATAATTAC
TTGATCTACACAGTGAGGAAAAAAATGAATGTATTCTGTTTGAAAGAGAATAATT
10 TTTTCTCTAGGGAGAGGGAGAGGTTACAGTGTATATTGAAACCTCCTGAAGGT
GTGAAATTGTAATATTCTAAGTAAATGTTAGTAAAGTAGTTGTTAAAAGACTT
AATAAAATAAGCTTTCTGTGAAAAAAAAAAAAAAAAAAAAAAAAA-3'
SEQ ID NO:7) and 5'-GTGGCCCTGCTGCCGCATCATGGAGCGATCCCCAGCG
CGCAACCACCTCCTACCTGCCTGCCAAAACGCCAGGGCTGGAGCACGGAGACCTG
15 TCAGGGATGGATTTCACATGTACCAAGTGTACAAGTCCAGGCAGGGAAATAAA
ACGGAGCGAGGACAGCAAGGAAACTTACAAATTGCCGCACCGGTTGATTGAGAAAA
AGAGACGTGACCGGATTAACGAGTGCATTGCCAGCTGAAGGATCTCCTACCGAA
CATCTCAAACTTACTACTTGGTCACTGGAGAAAGCAGTGGTCTCGAGCTGACG
CTGAAGCACGTGAAAGCATTGACAAACCTAATTGATCAGCAGCAGCAGAAAATCAT
20 GCCCTGCAGAGCGGTTACAAGCTGGATCTGTCGGGAAGAAATTGAGGCAG
GACAAGAAATGTTCTGCTCCGGTTCCAGACCTGTGCCCGGGAGGTACTCAGTACC
TGGCCAAGCATGAAAACACTAGGGACCTGAAGTCTTCCAGCTGTGCTCCGGGG
ACCGTGTGGCTCTGAACCTGCAGGGTAGTGCTCCAGGAAACCATTGGACTCAG
CTCCCAAACCGTGGACTTCAAAGAGAAGCCCAGCTCCTAGCCAAGGGATCAGAA
25 GGCCCTGGAAAAACTGTGTGCCAGTCATCCAGAGGACTTGTGCTCCCTGGGG
GAGCAGAGTGGTAGTGACACGGACACAGACAGTGGCTACGGAGGCGAATTGGAGA
AGGGTGACTTGCGCAGTGAGCAACCCTACTTCAAGAGCGATACGGACGCAGGTT
ACCGTGGGAGAACGCGTCAGCACAATTAGCAAGAATCTGAAGAGCCCCCACCBA

AAAGAGCCGAATGCAGCTCTCAGATGAGGAAGGCCACTCGTGGGCAGTGACCTGA
TGGGTTCCCCATTCTTGGGCCTCACCCACATCAGCCTCCCTTGCCTGCCCTTCTAT
CTCATCCCACCATCGGCCACTGCCTATGCCTATGCTGGAGAAATGCTGGTATCCG
ACCTCTGTGCCACTGTTACCCAAGCCTAACACACCTCAGCAGCAGCCCTCTCCAGC
5 TTCATGAACCAGACAAGATCCAACCTCCCTGCTCTGCCAGAAATCCCTCTCCCTG
GCACATTCGTCCCTGACTCTCAAGCCTGCTCAAGCCCTGAAGCAGATCCCTCCTTA
AACTTAGAAACAAAGATAAACCTTGAGGGCAATCNCTGCGCCTGCTTCCTTCCA
CAATTCAAGACACAAAAGGTCTGTACTCAAAACAGAGAGATCAGCCCACCTGCAG
ACCCACAGAGAAGATT CAGAGTGTGTGAGAGTGAGTGAGTGTGCGTGCCTGCGT
10 GCTTGTATGTATGTTGTATATGTAGGACAATAAGTCCCTCTGACACAAGGGAGAC
ACGAGAAGGATAGCCTGACATCAGATGACAGACTGGAGGACTGTAGCACATCTG
GGCGTTCCCTACCCAGAGAAGAGCC-3' (SEQ ID NO:8). This clone is similar to a basic
helix-loop-helix polypeptide.

Another IEG nucleic acid clone was designated L003. The following nucleic acid
sequence is within the L003 clone: 5'-GCACGAGGGAGTTATTCCACGTCT
15 CTTAGGAAAGCCTCGTTGGTACACATGGCAATGATTGCAAGCAGATAACGTCTT
AACACCAGAGTACAGTACACACACATTGAGCTGCCCTCGTCAACAAGCAGTTGCA
GTTTGTAAATGTGAATATCTATGAAACGAGCAAAGCAACTTCCAGAGTATAGCT
TATCACAGAACATAGAACACATGGGCCGCTACTGTATCATACAGAGTACAACACTATA
20 GCTTTCATCCCCGTGTGAGCATTTCAAATCACTCAATGAGCACCAAGCACGGACA
AGTGA CTTAAAGGCTAGTCCAAATCTCCCCGCAACCCTCGCGGTAAAGGGTAAAG
AATTTGTTCAAGTAAGTTCTCCTCGTCTCTCTTCTGAAGACCTGAGCAAAC
CAACATTCTAAACCACCCAAAGATATGATACTAGAATTAAAGGCCGATGGCTTCA
ACCCAGAACCTAACCTACTAGATAAAATCTCCGAATCTGACTCACTGATGCTGT
25 TAAGTCCGACAGTACAATCACATAGTACCTTTGATACTGTCAAAGTTGGTTAA
AAATGCCCTAAGAAAACCAAATCATTTGGGAGATGTTCTAAGCAAGCTTCCAAC
ATATAAAGAACAAAACCATGTTACTAAAAACATGGTGCAGGTCCACAAAACATT
TACTGCTACTACCAGGAAACCAAGCTACTCTGGTTGTGCTCCTGGTATAACTGG

TGAGCTTGGACAGCTGCTGGCACATGTCCACTGTGTTCCGTTTATAATCAAGTGTC
AGTTTCCACTCGACAGAGATTAAAGACAATAGCTAAAAGTGAAATGAAATTCA
AGTAGAAGCTACAATTGAATGCTACTTGTGAGACTTTAACATCCAAATA
TCAAAAACCTAACTTGACGACACATGCACACAAACACACCATTGGGAAAGGGTCT
5 TGTTATGCAGTTCAAGCTGGCCTGAACTCATGATCTCCTGCCTCAGTTCTGGCA
GTAGCACTGGACCTTAAGTGGCAGAAAGTATTGCTCCAATTAGAAAGCATTACTA
TACACTTCACTCGTATGTGCCTAGTGTGGCTCTGAAGGCATAGGAACAATGAAAT
TAAATTCTCAGCAGCTGAGGATTCTCTACTTCAACATTCTGAACATTCAATCATGG
CTTCACATTGAGGCTGAGCTAGATAACAAAATATCAAAACATCCCATAGAATTGTT
10 TATTCCCTATGTTACTGTTACCAAGGAATGTGAAGACTAAAAAGGACTCATTG
GTTGTTAATTATGATTAAATTATGTAATACAAACATTAAACAAAGCCATCATA
TTCCAATCTTACGAATTCTAAGTGCAGTTGAGCAGCTTTAGATATCACTAA
TAAAATATACAATTAAAATAGTCGCATTCAATCCTACTAACCTTATAAATAACTTCT
TAGGTTAGACTTCTCCTGCCTAAGTTATAAGACAGTCTAAACCCAAAACCTCAACA
CATATTAAGCTTTAAAAACTCCATATAGTTCTAAAGTAACCTCAATGTATTCCAA
GAACCGCCACCATCAATCAGCTCACTCCCTCACACCACTGACTTAAAGACGCTCCTG
GGTGGAGAACTGCCAGGCAGAAGCTCTACCTTCTAGTGTGTGGTGGTCTGCTGC
TCCTAGTCCAGATCTGGACCACATCAGCACAGCAGTGTGACTCAGCACTGAGGC
CTTGAGCGCTCTCCCCCGATGGCCTGTGTAGAGGTGTCTAATTCCGTGTATA
GATGGCCTGTATAGAGGTGTCTAATTCCGGCTCTGTATGTATAGGTAAATGTGAT
ACTTACCATTAAGCACTATTCTCCATTCAAGAATTAGTGTATAGGAAATG
AGTGGACTTGCAGACTCAGAAAAACAAAACATAACCTGTCTGAATTCAAACAA
ACCATGGGTGTAGGGGGAACTGATGAAAGTTATGGGTTAACTCTAGGTAAATTAA
CTAAGACAGTCACGAAACACATTATCAAAATCCTTCAGGCCAGAGCTGTACTGT
20 ACCCCACTGTGAGACCACATCACAAACCCGGATTGAGCTTATCCACAACACCTACA
CCATAGTAACGCAAAGTGCACAATGTACTAAAATAATTCTATTAGTTATGCAA
ACTATGGTATAAAATTATCACCTGCCATACATATTGCCATGGCACCAACTTCATAT
AATAAGCCAACGTATAATCAAAGTCCTTACCAAGCACCAATCAATGTCCGGCACCA

CTGGACACTCACCGTCAAGCTGTCATCTAAGAGCCAGTCTGTTCTGACCTGAACAG
TTGTGCATTCCACCTTACCACACCCAAGTCTGTGAGCCGGACAAGTGTAAATGCA
GTTTACATCTAACGGTGCAGGTTAAGCCGAGCACTTGAAACTGATCACTCATTAAT
ACCTGTCTCCCTCCATACATGTACACCACATGTACACAGAACTATGTGCTCTGACTTC
5 AGAATAGCTTCCCTGTTGGCAAAACACCACAGACATGAAGGGGCCTAGTGTGAAG
CGAGCTCACAGAAATGTTGGATGGAACCTCGACTATAATGAAACACCTGCAAAAGC
TTGCTAACCCAGCAAACACTCAACACTTACCAAAGACAACAGGGAAAGTTAAAGTT
AGCTGCCAAGAGAGATGGCTGGGGAGGTGGGGGTGTAACTCAAAGAAAGCTTAGC
TAACAAAAACGAATGATGGACAACCTCAGAAATTCCCTAAAAACAGAACCTGAAAG
10 TGCAGGTGAGGTTTGTCCCTCAGTAACAAATGCAGACAGATTCCCAACAGGAATAA
AACAGTCTGGGCTTGAAACCTGCTAGATGAAACACGAACCTCAAATGTGGAAC
CAAGGAAAACAAACTTAAATGTGTAAGATAATTATAATAGTAAAAGTTGCA
AATTGCTGTGACTTGATTGCCGAAAACATCTGTAAATCCACACTGGCAGTTAGAAG
ACCAGTTCCCACATTAACCTCCTCTCAGCAGGTAACCGTTGTGCGCAGAAGTATC
15 TGAAACATCGCACTGCTTATTATGGTGTATTGTCAGAATCTGTACATGCTAT
TACAGACAATACATATTGTAACCTGGTCATGCAAAATCAGTGTGTACAAGGGAT
ATTGTTAAGCCTATAAAGTGGACTTTATTATCTTGACGATGCCAATCTCTCCG
AAATATAGCATATCTAAATGGATATTCTTATCTGCCAGTTAAATCATTATGTC
ACTGAAAGAAGAGGTTATACAAGGAAAGAACATGGCCTGTGTCAGAATTGA
20 TTTAAATGAGAGAATTACAAAACCAAGAAATCCATGGTCATAAAGTTAACATT
TTAACCTACACATTACAGGGCAAACAGATACTGGACCTATTCCACATTCCATAA
ATCCAAACTTAGTCCCATTCAAACGTTGCCCTAACCAACTAAAACCATCAGTGGT
CTTACAACCTCTGGATTATGGAAATACAGATTCTGAAGTAAAGCTACAAAACAA
CAATGGAAGAAAGCTGAACAAACTCCATGAATGAAAATAAAAGTGGAACATCCT
25 GAAGCTAGACACTTCTCTCCCGTGTCTGGTCAACTGTCGGTTAGTCAGTCAGTGT
GCGGTCAAATGTAATGGCCTCATGTGGAACACACGTCTAACTAGTGTCCATTGATT
CCAAGTTAGTGGACGAAGAATCTTCTGGACTTTCAAAGATGGCTGCCAGCTCCG
GGTTGGAGCTGACTGGAACACTCATGAGAGGGCTTCTGCCTCTG

GAATGGTGAGCAGTGCAGCTACTGCCCTCATGGCCGAGCGTTAACTCGTCTGCT
TTCAAAACTCCTGCTTACAGAGTCGCCCTCACCTAGTTGTACACGTAGCTCGTAG
TGGCTCAACAAGCCGGTCCAACCTCTGTAGTACTGCACGGACAAAGGGTAGATAG
TCTCACCAACATTAAAAATGTTAGCATCTTAATATCATAATGGTCCTCAAACCATCT
5 TCCACATGATTAGAAATTCAAAGATATCCAGTCTGTCAAGACAGCTGTCTAGAAGT
GTGTACATACACTCAAAAGCTGCCCTCTAATGTCCAGGCCGTCAACCGTGTGC
TTAAACGGGCCATCTCTACCTCTTATAAGTCCTCCTAACTTTGTCTCATTGTA
AAGATGTGGAAGAACAGAACATCCAGAAGGTCCCGTATCAGTGACGGCTGTTATGGG
CTGCAGAATTGAATGTGACCAAGGCCACTCTTACATTCAAATCTGGGTCTCCA
10 ACGTTTTAGAAAATCACCTATGCAGTTCTGAGCAGTGGATCTTGTACATCTGAA
ATAAAATGACCTACTACAGCCGGTCCCTTTAGGGCATGCTCGAGTAAGGGCAGCT
ACACATTGGCAATGGAATAGTAAGACTGCTTATGAGTAAGAGCTGTGCTCTGAGAG
15 TAAACTGGACCCGTTAGCATGCGCAGCAAATCCATGTATCCTAGATTGTTGTTCCA
GTGACAACCAAAGCTTGGAAAGAACAGTCTAGCATGGCACTAAGAGCTCCTCCCTGCAG
CAGAGGTGACCTACAAGTCCAATCAGTCATTGAGAATAGATCCGCTTATCTTGA
AAGGGAGGAGGGATATACTTTGCCAGGGTAGTAAGGAAGCTGATAGCCATCTGGG
ACACGTGCATATCACTTCGCTGATAAGAGGAGGGAGCTCATCCAGAACTGCATCAA
20 TCATGGCGGCCGTCAAACACTGTCACTATAGTTTAATGAGAATATCTAGGGCAGAGA
GGGTCCCCAGTTCAAAGCTCTGATTTCCTGAGAAATGAAGCAAGGATAGGGA
CTCCCTCTCCCAGCACAGGCCTCAGATCTATCTCAAAGGTGACCCAGCAATCAGGG
TCAGTGCTTCACTGTCGTTAGCCGGTGATTCTTGAGTCTCTCCAAGAAAAT
CTGAAGTGTATTGATAAGTCAGGGCCAAATTGTCTCCAAGATTGCAAATAATCTG
TCCCATAACAGGAAATAGCCCTCTCCTGACTCCTGATCAATGTCAGCTGCTTTAAG
CGCTTAATTGTACAAGTGAAGAGATCTTGATGTAAGGCCTGCATCGAAGGAGGA
25 GGGTTGGTCCAGAGGACGGATTACTTGACAAGCTGCTGAGTGACAAGAAGGGCTT
CTGATGTGATCTGTAAAATGGTCACCAACACAAGCCACCACTGGAGGGACCAAA
GCCTGAACATGCGGGTGGAAAATGCG-3' (SEQ ID NO:9). This clone is similar to a
TATA-binding polypeptide (TIP120).

DRAFT

Another IEG nucleic acid clone was designated L048. The nucleic acid sequence of the L048 clone is as follows: 5'-TCGCCGCCGAAGTCGCGCAGCTCCCTGGCGAACG
CGGAAGCCCGAAGAGCGCCGTCTCGGCCCTGCGCGCTCAGGCCCTCGCGCG
CCTCCTCGCTCGGCCGGGACGTTGCTGTGGAGGCCTGAGGCGCCGGCGTCA
5 CCTGGAGCGACGGTAGCCCGCGCCTGCGGTTCTCTCCTCCCCGCCGCCCTCCA
CCCGAGCTGCGCGGGCTGGCCGCCTCGGTGCTTCGACAAACAAAGGAGGCC
CCCAGCGCCGGCGCAGCTCATCTGCGGTCCGATCCACCCGGGCCGCGGCC
GCTAGCCAGCCCTCCCGAGGCCTCAGCCGGCCCACCGCCCGTCA
GCTCGCTAGTGCATCCGGGCCCCGCAAGGCACAAAAATATGGCTCAGGAGACTAAC
10 AGACCCCAGGGCCCATGCTGTAGTACTGGATGTGGCTTTATGGGAATCCTAGGA
CAAATGGAATGTGTTCTGTTGCTACAAAGAACATCTCAGAGACAGCAGAACATAGTG
GCAGAATGAGCCAATGGGGACAGCTAGTGGTCCAACAGTCCTACCTCAGACTCTG
CGTCTGTACAAAGAGCAGATGCTACTTAAACAACGTGAAGGTGCTGGCAGCA
CATCTGAAAAATCAAGAAATGTGCCTGTGGCTGCCTGTAACCAACAAATGA
15 CAGAAATGAGCATTCAAGAGAGGACAAAATAACCTCCCCGAAAACAGAGGTGTCA
GAGCCAGTTGTCACTCAGCCCAGTCCATCAGTTCTCAGCCAGTTCTCTCAAAGTG
AAGAAAAAGCTCCTGAGTTGCCAAACCAAAGAACAGATGTTTATGTGTAGA
AAGAAAGTTGGCCTTACAGGGTTGACTGCCATGTGGAAATTGTTGTGGACTT
20 CACCGTTACTCTGACAAGCACAACACTGTCTTATGATTACAAAGCAGAACAGTCAGCA
AAAATCAGAAAAGAAAATCCAGTTGTTGTGGCTGAAAAAAATCCAGAGAACATAAAAA
TTACTACATGTGAAGAGACTGAAACTTGTGTTATTAAATATATCGTAGGAAAAC
ATTAAAGAGCAGATGCATGCCATTTCCTTGATGTTCTCCAGAGTTGCTTATA
25 CTTGTCTGTCAATAATTGATATTAGGATGTTGGGTGTTGTTACAGGCAGAAATT
GGATAGATAACAGCCAACAAATGTATATGCCCTCCCTCAGTAAAATTGGACAAAA
ATATGCACAGCAAATTGAAATACACATATACTAGGAACAAAATTAGTCCATGTGC
CAAACGTAAATGAAATCTCTGCATGTTGCAGCATATCTGCCTTGGAAATGTAATC
AAGGTATAATCTTGGCTAGTGTATGTGCCTGTACTTAAAAAAATGGTACACCAG
AAAAGGACTGGCAGTCTACTACCATAGTCACCTAACCTTAATTGACATGCTT

TGGAAGCAGGAAGAAAGCTACAAAACCAGTATTGGTGCATGTGTGAGCCTGGTT
AAATTGGTCTTCTAAAAGCTGTCAATTAGGACATTCTCGCAAAGGTAACATCACAAAC
TGGTTCTGAGTAAAACCATCAAGTCACAGCAGGGTGCCTGAGATAATCTTGAAAGC
TTATTGTGCTGCCCTGCACCAGAAGATACTGCATTCTCATTACTAAAATTGTAGCAC
5 AGAACTGCACTAGGATTGTTACAAGAAGAAATTAAAACCTACGTTGGTTTC
CATATAGCAGCTCTGTTAAATAACATGCATCTGAATTAAAGTTGCAAAGGTATCTG
AGCAGTTAGTTTCATGTGCATCTTGTGAATGTTGGTCAAGAAAGAATGTT
TAAAGCTTTAAAGACTTCAGTTAAATGTAAGTGTACCCCTCTGCATGGAAAATC
ATAACCAACATGGCTGCAGTAGACTTCTTAGTGGTATCCAGCACCCTGCAGAGG
10 GCTGCTTATCATATTGTATTGGGTGTAGGACTCTAGTGTCTGGGTGTATTGCAT
GGGCTGCATTATCTACAGCATTGTACAATAACAACAGTATACTTCAC
TGATGCTGTCTGTAATATCACTCTGTGTATAATGGAAGGTTTTGTGATGTAT
GAAACTTGTGTTTTATATATAATGAGTATAGTTAGATTAGTGTGTTGTAATGCC
TGTGTTCATCTGTAATAGTTAAGTATGTACACAAGGCACTACTTCTGATTATTGCA
GTGTTCAGTCCTAGTTTCTTATTAAAACATTCAAGTTGCTTCAATTATGTACT
TTAGTTCTAAGTTAGATTGCAGATGTACAGATAGTCATATTATGTATTGCACA
TAATCATGCTATTCAAGCATTGATGCTATTGTATTATGAAATAATAAGCAGTG
TACAGAGGGAAAAAAACTCGTGC-3' (SEQ ID NO:10). In addition, the L048 clone
contains an open reading frame (ORF) from basepair 414 through basepair 1055. This ORF
encodes a polypeptide of 214 amino acid residues. The amino acid sequence of the L048
20 polypeptide is as follows: MAQETNQTPGPMLCSTGCGFYGNPRTNGMCSVCYKEHLQRQ
QNSGRMSPMGTASGSNSPTSDSASVQRADATLNCEGAAGSTSEKSRNVPVAALPVTQ
QMTEMSISREDKITSPKTEVSEPVVTQPSPSVSQPSSSQSEEKAPELPKPKKNRCFMCRKK
VGLTGFDCRCGNLFCGLHRY SDKHNCPYDYKAEEAAKIRKENPVVVAEKIQRI (SEQ ID
25 NO:11). In addition, the L048 polypeptide was found to be cysteine rich, having a motif with
distant homology to that of polypeptides with Zn⁺⁺-fingers.

Northern blot analysis using a sequence from the L048 clone revealed the presence of a 2.5 kb mRNA transcript. In addition, this analysis revealed that the expression of the L048 mRNA was strongly upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated L064. The following nucleic acid sequence is within the L064 clone: 5'-ATTCCAAAAATGCATAGATTACAAAGAACACC
AGACAAGCTCAAACCAAGGATATTCTACAAATAAACCAGTACCTCAAAATGCCAT
GCTACCAGGTACAGACAGGCAGANACTGTTCCACACTGAGGAAACTAACAAAGTA
TCCATGAAGTCCATAATTGTGGTCAAATCCAGGACCTGCAAAGGGGATTGGGAT
AATTTCAAAATTGACTAAGGTCTGCAGAGTAGAGAGACGAGGTCAATGCCAATGT
10 CCTGATTGACAGTAAGTATTAAATATGCAGGAGAACAAACCTAACCAAGAGGCTG
CCAACACACTCCTGGCTGTGGCACAACTAGATTAAAACCAGCAATTGTTGGTTC
TTGTTCTCAAATATCAGTTACCTGCAAGCACTCCATCGTCAAAGGATTGAGAGCATG
AGGTGATGTGTTGATGGTAAAATGAGAACTGACTGAGCACAGGAAAGAGTGGCAT
GATGGGCAGGGAAAGGGGAGACAAAGGTACAAGAGCATGCAACACTCAGTGAAC
TACAGGACACTCCAAAAGGCACCTGCTGTCTAGCTGGATCTGGAGGAGGATCAG
NTATTAAATAAGGGCCCTGGAAGGGNCAAAGCTAGCCTCCCAGCTGCTGGCTTCCAT
CTGCT-3' (SEQ ID NO:12).

Another IEG nucleic acid clone was designated L067. The following nucleic acid sequence is within the L067 clone: 5'-GCCACCACCATTGTTAATGGAGGGAGGCTCTCC
20 CTTGTTATTCTCAGAAGACTGAATGTCGTACCAAAAGGCTATGGCTTCTCTGGG
CCTTCATTAAGGTTAGTTTATGTAGTACTAAAATCTAGGCTTACT
AAAGTGGCTTGAGTTATTGGTATCGGTGGATTTATGTTACTGGAGTCCAGAA
CAGGGAGAGCTACCCACAAACCTCTCCTTCCCTGGACCAAACACCCTCTGTCC
GTGAACTCACCTTCTCTGTGGTCACCTCCATTACACACTGGTGAGCGAGCC
AAATGGATGAGAGACACAAAGACCGTAGTTCTGAGAGACATTATTTTCAACTT
TGTTTTAAGAGATTATGTGTTGATTGTTGGTTAAAGGGATTCAA
GCTAACTGGATTGTTACCTCAGCTCTGGAGAGGATTGCTGAATGACTATT
AATTACCTGAGCATTGCTCTGAGGTCAATGGCATGCTAGCCTATGTCTGTTACAGT

CTCAGGCTGCCCTGTTCCCTCGTGTGCTATTGTGCTACACGCTCAAGGGCCT
TGACTCTGCTTACACACATTAGGGGCAGTGTGAGTAAATGTGCAGTGTCCACACTTG
AGGACATGAATGTCTGCACTGTCACTTGTCTGGGTGTGAAGTCCCTGGTCCCCTG
CTCCTGTAGCTTCTTTGATCGACTACTGGAACCTCAACCCGTGTACAAGAGCAGC
5 ACTGCCTCTGGTGGGTGGTGTTCAGCCAGGATTAGATGCCAGTCCTCGGGTCCC
TGGCCTGTTGAAAGGTGTGCTCCTGAGGTCTGAGAATGGAAGGCTCTGCCTCA
CTCTAGCTAGGAGGCGCAATGGGAAAGTATGAGTTCAGGGCGTCAGGGCAGTGGCT
CCTGAAGAGCCAGCTGTGGACAGAGGGAGTGAGGCTTATTAAAGTGACAGGAAG
AACATGGCGTTTGGTATATTGGGAGCAATGCCAAGATTCCCTGCCCTACATA
10 GGTCACAGACACCTCCAACCATCCCCCTCCACTTCCATAAAATGAAGACAGCCC
TGATGACCCCTCACCCCTTGCATAGTCAGTGGATCCCACTGTCCTCCTCGTGCT
TACACACTTACAGACCCCTTAGGCAGGCCCTGCATAGAGCGTTATCTCAGTGCTC
CATTCCAGTCCTGACTCCCTGTGCCATTGAGACTTGGATTAAAGAACTCACATTGC
TAGGGAGAGGGCTTGCTGGAAAGGTGACTCCTCTGTAACCTAGCCTTGTGCT
CCTCCATGACAGAAATGCTGGTGGAGTTTACATTGCCAATGCCAGCTTGTGAA
TATCTTCATATACACTTCTATTCATGTTACTGTAGTTCTGTTGAAATAAAACTTC
TGAATGT-3' (SEQ ID NO:13). This clone is similar to a glucose transporter type III
polypeptide.

Another IEG nucleic acid clone was designated L076. The following two nucleic acid sequences are within the L076 clone: 5'-CATATAATGTACTTTATTGTTAACAGAACG
AAAGAAGAGGCAGAAACATTGCATGTAAGTCCTAGCTTATAAAATGTAGTTTAG
TGGTGGCATCTAACACGTCGTTAGGGACTGTTCCCTTGCCTCTGTACTGTG
AGCACTGACACTTGAGAAAAGCACATCTGGCGGACATATGTCTCCAGAACTGGAAG
AACTGGAGAGCAAACATTCTTAATTCTCTAAGTAATCTTAGTAAAACAAAA
25 GATGATCTTGGCATAGATTCATACTTAAAGGCATTGATATGCATTATATCAGGTA
AGCAACTATACAGATCTGCTGAGAGCTTCAAAAGAATCTGTTATCAGCTGAAAGGA
AATAGGGGAAGCCTGAGTATTCAAGGTCAACTTAAGATTGCAAGTTCAGTGTGGG
GTCAACACTAGATGTGGAAAGAACATCCAGGCAAGGTCTAGTCCTGTATTCAACC

DRAFT 2/20

TGGTTCTGATTCTGGAAGAAGCATCCATGCGCTAGGAAATGCTTATACAGCCGAG
GTAAATGCAAAAATGAGTAAAGTCACTTTCACTAACTTGCCCAATAGGRAACAT
GCCTTCTGATAAGTAGATACCATACTCTTATTCTGAATACTTATATTGAGAGAA
GGTTGTAGTGGTAAAAGCAACTGGGAACTATAACTCCTACTGATTTCCCTAGC
5 AGCACCAGAATTATATTCTGCAAATGCTATTCTCCCTACATAGGAAATATCCTCA
GACAAAATTGCCCTTCCATTCACTCTTAAGAGYTTAATTGAATGGACTTTCAA
AGTTACAAGCAAAGTCAAGTGTGGTAGGAGCTAACAGAGGCTGACACAAGTAGAT
GACTTGAATCCAGAAGTTCAAGACTAGCCTGGACAACATAGAGAGACCCAGTCTCA
AAATT-3' (SEQ ID NO:14) and 5'-GGCGGGGATCTCTCGGCTGGTAAGAAGGGG
10 CAGTGGTACCANGCGGGCACTTATTCACTGTGCCAAGGATATGCCAAGGCCTCTGA
TGAGGTGACGAGGTTGCCAAGGAGGTTCCAAGCAGTCACAGATAANGCGGNTT
AGAACCAATCTCTTACAGGTCTGTGAGCGAATCCAACTATAAGCACCCAGCTCAA
ATCCTGTCCACAGTGAAGGCCACCATGCTGGGCCGACCAACATCAGTGACGAGGA
15 GTCTGAGCAGGCCACAGAGATGCTGGTCATAATGCCAGAACCTCATGCAGTCTGT
GNAAGAGACTGTGCGAGAGGCCGAAGCTGCTCAATCAAGATTGANCAGACGCCG
GATTTACTCTCGCCTGGTCAGAAAGACTCCCTGGTACCACTAGGCACCTGGTCAGA
CCTGGCTGGTACACAGACCTCTGCTAATGANGANTGACCATCTGAGCTTCAGAAG
20 CCATTCAAGAGTTCCAAGGGGTGGNAAATCAATCCCTGGTTCACACACCAAGAAA
GGGAATGGGGCCTCCTCACATTAGAATAACATTATACTCTGTATGGACACT
TTGAAAGTGTCTCCTACAAAACCCCTGGTACCTTCAGGNTACTCCNGGTNGCA
ANNTCCTCCCCAAGGGAAATTTTACCAATAAAAGGCTCAAGGAATTAANGGCG
NTGAAAACCAACNTNATCCAANGGGAAANGCCCCNTGGCCTCTGGCCCCCTGG
GGGNACAATTTCNCCNCTGGGTGTTAAATGGGGTTCAACCTGGGGCTGG
NCCTTTCCNCCCCCTTTAAGGGCTCCTCCGAAGGAACCTNAGAAAACCTN
25 AAGGGCCAAGNTCCANTTACNAATACTGGG-3' (SEQ ID NO:15). This clone is
similar to vinculin.

Another IEG nucleic acid clone was designated L082. The following two nucleic acid sequences are within the L082 clone: 5'-TTTTTTTTTTTTTCTCCCTAAAAGAT

5' → 3'

AAACTAATAAACTCTCAATGGCTTTCAGTATAGTTCTATGTAGTTAACATAGC
TTATAAAATTGAGTTAACAAATAAACTCAAGAAGATAATTTATAAAACCCCTGTTCC
AATCTGTCAATTACTAAATTATTTGGTTGTTCCCTTTCCCTCTCACCC
CCTCCCTCTCCATGAAGATTCAAGGTGCTAACATATCATTTTCCCTGCTGGAATT
5 TTAGCATTGATATGAACCATGGACAAGTATATTCTGCTGCCACAAAGACTGTAAAGT
GCTTCATTCAACAGCTGAGGCAAGCCAAGTGATCATTAAATAAAGCTTTCTGCTTC
CTTCAGTGGTGGTAGTAAAATGGTAGGTAAAAGTTAGGCTGCAAGTTCAATAAA
TGAGATTACCTATCATTCCACCCCTGTATTCACTACCTATCCTGGTTCAAGCAG
TTGAGTCAACTAGGCATTAAAGGCATTGTGTTATTACTTATGGTTCCAACTTA
10 CATACTTGTCAAGGGATGAAGTCTGATAGGTTAAGGACAGTAGAAATTCTGTGCAAC
AAGCAGCAAC-3' (SEQ ID NO:16) and 5'-TTTTTTTTTTGGTTACAAAAGT
ATTTATTTATAAAACTTGTATTAAAATAGAGCTTATCTGTCTACTCACAAATCCTA
ATTAAAACATAACACATTATCCTTAGCTAATCTGATGTTAACCTTACAATCAACAC
TCATTGGTAATTATTAAAGAACCTGTACTAAATGAAGTTTAATCAGAAAACAT
15 TCCCTTTATCTAAAAGTGCTCTTAAATGAAGGCACCAACAAGAACTACTTCAG
ATGGTACAGAATTCTTATTCTGAAGACTCTGTGGTTGACCACTCTCATTAGTT
ACCTGCAGCAAGACACCCCTGCCAAAGGAAAAAAAGTATCTGAAGAAGTTT
ATCATGTTGTCCAAAGAACCTAAGTAACCTCAGTGGTGGTTAGGATTAAAGCAG
ACTCACTGATGTGTACGCCCTGAATATCACATTCTGGAAAGGCAGTAAAGCCTA
20 GAAATCAGAAGGCAGGGCGTTAAAGAAATTCAATAGCCAACCTACAACANTTT
AGGGCAAAGATAATGGGCAAAANTNC-3' (SEQ ID NO:17). This clone is potentially
similar to a nRNP polypeptide A2/B1.

Another IEG nucleic acid clone was designated L094. The following two nucleic acid sequences are within the L094 clone: 5'-ACGATATMTAYWGARRTWYAWCTSTTHAC
25 TGAATMWHATGCACAAATATTAACTAGTRRTTATTAAACAGATATSATTAGAACAA
AGACTTAAWKAAATACAAATCCTTAGGTACGRTTAATATCATGTTCADGATGTTG
AAGAGTTAAAAAGAACACTGATTAAGKKAAGCATCCBCACTTTCTTGAGAABC
CAAACCTTTAGGNAAADACCCATTCCAAATTGTCCCCHATTCAAGRCCKKCAG

AAAGTCTAACATSAAGAGTCCTCAACGGGGNTAACTCAVAWCTCCTATCAAGT
GCAGTAACCTAGCTCTCCGGGCCATGGCGT-3' (SEQ ID NO:18) and 5'-AAACT
AACAGTGTGTTAATTCTCTGCATTGGACTATTGCAGGCATTAGAGCATCCAG
AGCTACGAAGGGCTGGCTGCAGCAGCACGCCCTTGTAAGCCAGCAGACCAGCCT
5 TAACTGTGGGCTTGACTCCTGTGAGCTGGCCTCAGTGTGACTCAGAAATGTTGATT
AGCAGATGAGAGAGCGAGGACACACCACGAGGGCTGCCTCTCCCTCCAGCGCT
GTGCAGGACAGTTCTCACCCTAGCCTTAAATGCACCAGAAGTACAGACAG
TTGCACTACACAAACCCCTTGAACACTTGTAGAAATCAGTCCACCGTAGATTAGACA
GAATCACCTCCAATCCTTGACTCTTCAATTGAACAATTGTATAATAATT
10 GATTATTGTCAAATTTGTCTGTGGTAGTATCGCTTAATTATCTTAGTACATCAA
CGTTTGATTTAAAAAGAATTAAAACAACAAAAAGTCACTTAGAACGCATGAA
CTTTTTTTNGATNGGGAAATTTCTTGTGTTNGAAAATTATCATTGGGTTCC
GGAAANCTGTAAGATTGGNTATAAGGTACCTGGGANGTTCANAACNGGTGGNTA
TACCCCTTTTAAGGGAAATTAAATGATTNGAGTTTGGGCCACTNCGGGANTGG
CAGGGAAACCANNNGGGNGGGTTAAATTNTGTGAGGGTTTGGCCTNAA
15 TTTTGACATAATTTCACCTNGAACCTTNAANNCTNGGAAAAAAAAACNT
-3' (SEQ ID NO:19).

Northern blot analysis using a sequence from the L094 clone revealed that the expression of the L094 mRNA was upregulated in response to the multiple MECS treatment. Specifically, L094 mRNA expression was induced 7.3 fold by the multiple MECS treatment as determined from Northern blot data using total RNA from rat hippocampus (Table I). In addition, developmental studies revealed that the transcriptional expression level of L094 was upregulated between day E15 and E18, and downregulated at day 0. The expression then increases again during post natal development.

25 Another IEG nucleic acid clone was designated L097. The 5'-end of the clone obtained from the first library screen was used to design an antisense primer. Using PCR, L097 DNA was amplified and inserted into the pCR2.1 vector. The L097 clone is about 4.4 kb in length. Sequence analysis of the first 4060 bases from the 3'-end revealed the presence of a coding

region of at least 2351 bp. In addition, RT-PCR analysis revealed that the L097 clone was missing an adenosine at position 1166 from the 5'-end. The lack of this base results in a frame shift in the coding sequence. Further, the sequence at position 1358 was ambiguous. However, any base substitution at this particular position will not alter the encoded amino acid residue.

5 Specifically, a serine residue will be encoded by the codon containing nucleic acid position 1358 regardless of the base at position 1358. The following nucleic acid sequence is within the L097 clone: 5'-TGCAGCCGCCCTGGAACTGCATGTCAGGAAGCATCCCTTGTA
TGTCTGTGCTATATGTCTCAAGAAATTGTCAGCTCAATCAGGCTGCGCTCCCATATC
CGAGAGGTGCATGGGGCGGCCAGGAGACCTGGTTTACTAGCTCCATCAACCAG
10 AGTTTCTGCCTCCTGGAGCCTGGTGGGATATCCAGCAGGAAGCCTGGGAAACCAG
CTATCACTGACAGCTGAGGAATTGTCAGCTCAATCAGGCTGCGCTCCCATATC
GTTTGTCCCTGGGGAAAGCTCAGCCTGAGGTGGGCTGAGGGAGTTGGAGGCCCCCTGG
AGAAGCATGTGCCCTAGCCGTGCCCTGGCCAACCCCCAGAGTGTCACTGTTCCCT
15 GTCCCCCTGCAAACCTGGAAACCACTGTGGTCAATTCCGACCTCAACTCTTGGAGT
GGTTTCAGATGATTTTACTGAAAACGTGATAACCTCTGCTGAGCCTCATGCTGCT
GCTGAGCTAACCTCAGACACACAGCATCGAGGCTCAGGCCAGACTCAGGGTGAAGA
AGTCACACTGCTGCTGGCCAAGGCCAAAAGTACTGGACCAGACTCAGAGAGTCCTC
20 CAAGTGGAGGGCAGAATGTGGGTGCTCTGCCAGCCAGTGAATCTGACTCTAACAGG
TGTCTCAGGGCAAACCCAGCAGAGACCTCAGACACCTCCTACAGTGGCTGATGGA
GGAGACCTCGGTGTGCCAGCCTGACTCTGCACGTCGCTCTGAGCACCC
GGCAGCACAGCATTGATGAAGGTCTAGACAGTCTCCAGAAGAAGCAGATGAACAC
CAGTCTTGCAGCGGATCCGGAAAGGTTATGGAGACCTGGAGTGTGAATACTGTGG
25 CAAACTTTTGGTACCAAGTGCATTTGACATGCATGTCGACCCACACCCGGGA
ACATCTGTATTATTGCTCCAGTGTCACTACTCTTCCATCACCAAAACTGCCTAAA
CGCCATGTAATTGAGAACACAGTAACATCTGCTGAAGTGTCCCAGTACGGCTGT
GACTACTCGACTCCAGATAAAATATAAGCTACAGGCCACCTAAAGTTCACACAGAG
CTGGACAAAAGGAGTTATTCTGCTGTATGTGAAAAATCTTTCAAGAGACCGA
TTGATAAAAGTCACATATCAAGACTAATCATCCAGAGGTCTCCATGAATACCATTCT

PCT/US2015/042265

GAGGTTCTGGGAGAAGAGTCCAGCTCAAAGGGCTAATTGGAAAGCGAGCCATGAA
GTGTCCGTATTGCGATTCTATTTCATGAAGAATGGCTCAGACCTTCAGCGGCACAT
CTCNGCTCACGAGGGTGTGAAGCCCTCAAATGTTCTTGTGAGTATGCAACTCG
TAGCAAGAGCAACCTCAAAGCTCATATGAATCGTCACAGCACTGAGAAGACTCACC
5 TCTGTGACATGTGTGGCAAGAAATTCAAATCCAAAGGGACATTAAAGAGTCATAAG
CTCCTTCACACATCTGATGGGAAGCAATTCAAGTGCACGGTGTGACTACACAGCT
GCCAGAAAACCACAGCTGCTGCGACACATGGAGCAGGATGCCTCCTCAAGCCTTC
CGCTGCGCTCACTGTCATTATTCATGTAACATCTCTGGATCTTGAAACGGCACTACA
ACAGGAAGCACCCAACGAGGAGTATGCCAACGTGGCAGCGGGAGCTGCAGCT
10 GAAGCCCTCATCCAACAAGGTGGTCTGAAGTGCCTGTTGCAGCTTGTATGGA
ACCAAATGGGAGTTAACAGACACTTGAAGAACAAAGCATGGCTGAAGCCAGCGAC
AGAGACTCCCGAGGAGCCCTCCACCCAGTATCTACATCACCGAGGCTGAAGATGT
TCAGGGGACACAAGCAGCTGTAGCTGCACTTCAGGACCTGCGATATACTCCGAGA
15 GTGGTGATCGACTTGACCCCACAGCTGTGAATATCCTGCAGCAGATCATTGAACTGG
GTTCAGAGACTCACGATGCTGCCGTGGCCTCCGTGGTGCATGGCGCTGGGA
CACTGACTGTTGAAAGCAGGTACCGATGAGGAACCCAATTCCAACCATAAGTC
ATGATCCAGGAGACTCTGCAGCAGGCCTCTGTGGAGTTGCCAGCAGCACCATCTG
20 GTGGTGCCTCTGATGACGTGGAGGGATTGAGACAGTGACAGTGTACACACAGGG
TGGGGAGGCCTCAGAGTTACGTGTACGTCAAGAGGCTGTCCAGCCATGGAGG
AGCAGGTCGGGGAGCAGCCACAGAACTCTAGAGAACCTGCCTCCTTGGC
AGCCAGCCTTGTGGCCTGAAGACCTCCTAACCCACAGGTCCATCCCTGGCTCTT
CTTGCCCCACTGGCCCCAGATAAATTCTCCATAACTGTCCTCTGTGTGGTCAAAGCCA
GGAGAGTATCATGAAGAGAGAGAGAGAGAGACTAGTCTCCAGTTTTTTT-3'
(SEQ ID NO:20). In addition, the following amino acid sequence is within the L097
25 polypeptide: QPPLELHVRKHPFVYVCAICLKKFVSSIRLSHIREVHGAAQETLV
FTSSINQSFCLLEPGGDIQQEALGNQLSLTAEEFVCPEIDVRKGEVCPGEAQPEVGLRELE
APGEACAPAVPLANPQSVSLSCKLETVVNSDLNSLGVVSDDFLLKTDSSAEPHAA
AE LTS DTQHRGSAQTQGEEVTLLAKAKSTGPDESPPSGGQNVGALPASESDSNRCLR

ANPAETSDLLPTVADGGDLGVCQPDSCSTSSEHHPGSTAFMKVLDSLQKKQMNTSLCER
IRKVG DLECEYCGKLFWYQVHFDMHVRHTREHLYYCSQCHYSSITKNCLKRHVIQK
HSNILLKCPTDGCDYSTPDKYKLQAHLKVHTELDKRSYSCPCEKSFSEDRLIKSHIKTN
HPEVSMNTISEVLGRRVQLKGLIGKRAMKCPYCFYFMKNGSDLQRHISAHEGVKPFKC
5 SLCEYATRSKSNLKAHMNRHSTEKTHLCMCGKKFKSKGTLKSHKLLHTSDGKQFKCT
VCDYTAAQKPQLLRHMEQDASFKPFRCAHCHYSCNISGSLKRHYNRKHPNEEYANVGS
GELAAEALIQQGGLKCPVCSFVYGTKWEFNRHLKNKHGLKPATETPEEPSTQYLYITEA
EDVQGTQAAVAALQDLRYTSESGDRLDPTAVNILQQIELGSETHDAAAVASVVAMAPG
10 TVTVVKQVTDEEPSNHTVMIQETLQQASVELAEQHHLVVSSDDVEGIETVTVYTQGGE
ASEFIVYVQEAVQPMEEQVGEQPAT EL (SEQ ID NO:21). Using tblast2x algorithms, nine
Zn⁺⁺-fingers were identified by homology to motifs of Zn⁺⁺-finger containing polypeptides
(accession # PIR2:A32368, S03677, A29634, S06571, and A60392). The presence of the
multiple Zn⁺⁺-finger domains suggests that the L097 clone is a transcription factor, however, the
size of the encoded polypeptide is in excess of 700 amino acids.

15 Northern blot analysis using a sequence from the L097 clone indicated that the L097
mRNA transcript is rather rare. In addition, this analysis revealed that the expression of the
L097 mRNA was very weakly upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated L099. The following four nucleic acid
sequences are within the L099 clone: 5'-TGGATCTACTTGTAAATGGTTCATGGAAAGC
20 AATCAGCAATATGTGATATGAAC TGCTGCATTACTTATTATACTCGTGGAACTGAGA
TATT TARMSRSMGCTTWWYTTTTTTTYTTAGTGTAAA ACTTAAGCGTTCCAC
TATTGGAAGAAAAGCATATATGGGTATTGTATTGTAACTTGTTAAAAGGACAGT
CTTTTTAA YCTTCCCAC TAAATGCTTTAAAATATGTAATACAATTGAAGCTTGT
TTAAAAATAGAATTAAATGTCTTAWATAGKGCTACKGTTGGATTAGAAAGTGAT
25 CAAATACAAAACATT TAAAATTAAGCCCAGAAAACAAAATAGTGTAAAGTTAG
TTAGTATAAAAGAAATTATAAGATT TTTCTTCATATAAGATAACCTCACTTGAAA
ATAAAGAAAGCACAGCACATTAAAGTAATTCTCATGAGAACACCCCCATTAGAATAA
TTGCTAAATCTAGGACACCTTGAGTTGTGATACATGTAGTCACCATT

GCTTTCTGCTGGAAGGACTTCCGTAGTAATTTAAGGCAGTGAAATAGTTCAATT
CCCCACAGTTCTAACCTGGGAAGGCAGTATGTGAATGGTCCCTCTGCAACTACGG
AAACACATTAGCTACATTGAGCATAACTCGATTGATAATTTGCCAGTGCATATA
TTTATGATTAAAATTGCTGTGGTGGTGCATTACACGACACACAAAAACTGTCCCTA
5 CCTCACATGAAATAAATATTTATATGGTTTACTAAAAAAATGACTCATCTATCTGG
TTACTTAGTTACAAATTGGATTATATTATTGAAACATGACATACTGTGCTCTA
GCTTATACCTCAATCGTATTTGTGCTGTTGCCATTTCATGCCTGTATATAACTTG
TATAGATTGGATGATATCCAATAAACACTTTAATKCCA
WRAAAAAAAAAAAA
AAAAA-3' (SEQ ID NO:22); 5'-TAATGTTATGATA
CAAAGCTACTCACTCTG
10 GAGCCTCTCATTACAGAATCTCTGACTTTATACACCCAGCCTGTTACTTGT
TCAGGTTGCAGAATGAGTTCCCTCTGGTTCCCTCAGAGGAGTTCCCTGATGAAAT
GCTAGTAGCACCTCCCCGACATACAGCGGGTGGGTGGGCACACTTGCTGTGCTCT
GATGGTACACACAAGAACAGTTGTAATTGTCTTCTGTTAAGAGTGACCATAGC
TAGATATGTGTGTGACTTCAGAAAATTAAAATGCTTCCGAACCTTCCGTGTTAAT
15 AGAGGTGTGAAGTACTCATTGATGCTGAGGAAAGTGGATTCCACGGACGCACA
CCGCTTCCTATGTA
ACTCACAATGCTCTGTACAGTTTATATGTTAGTCTTACAAAGG
TCTTATGAAATTATATAATGGATTTCTTAAATTATAAAACTAAATATCTT
AAAGATTGTTGGACTTTGTATGTTAAATGTTATCTAAAAC
TTGCAAAATGGA
CCATGATGACTCTTGATCTTAAATCAGGAATTACAGTCAGCTAAGAAAAATGTG
20 GATAGGTTAATAATCCACAGTGGAGTATCTGCTAGGAGCAGGAATTGAGATGAC
ATGAATTCCGTGATTGAGGAAGGGCAGCCTCTGCAC
TTTCTTGTGTTGTTTT
GCACATGAAGTCTGACATTACCATCGAATT
TCACATTACTAGATGGTTGGCTTGG
GATTACCTAGGGAAATTCTTAGCAACTTGTACTTGTGTTTGTCTGTTGGT
CTCCAGCTTGCAGAGACCCCTTGCCTCTGTCTCC
AAGTGGTGGGTGGCAGGATG
25 AGCCCCACCACCGCTGGCCCTGTGCAGTTCTTGGATGTC
CCCTGAAAGCAGCTGT
GGCATTATCTTCTGTTCATGTGTCCCAGCTGTCT
CATGGTACTACATGCAGTGAC
TGAGATCTGCGTTAAGGAATAACTAGGAGAAA
ACGGCTGTC
ACTGTCCCTCCCCGCT
GTGAGACACCAGAGTTATCACACCTGTTATGGTC
ACTTTGTGTTATGATA
CTGAT

GTCTAAGGCAATTTCTACTTCCAAAAGGGAGTTGTTCTAAATATATTGTGAC
CTAAATGTGGTTTATTCTGCTATGTTCTATAATTATGTATTGACTTTGTAACCTCC
TTGGGAGAACATGTTAAGTGGCACAGGGACCATAATGTCATTATTTAGCTCTG
GAGAAGGAAACCACAGGCAGTTGTAAGTAGCATTAGCTTAGATGTCAGTCATTGT
5 GCTTGGCTGTGGGAGGCAGACTCAAGGACTTGCACCATTATTTCTGACAGAA
GTGTTCTGCTTATGTGCTGCTTAGTAAGTGTGATTTCTAGTCTGATGAAACTTGC
CTCGTGACATTGTTGAGCGTAGTCTCACCCAGAAGATGAAATGATGTGCCATC
ATTTCTGTCTAAACTCCTTAAAGTAATTAACTCAGCTGAAATATCATATCTC
CTACTGTTGAAAGTAACTTAATTACATTGCACCATATAGCTGAAAACCAACTTG
10 AAATTCTGTACTCCTCCACAAGTGACCTCCGCTAAAATACCCATAGGAAGCTTACTT
TGTGCATGCNTGCTTGTGCCGGTGCCTAANGTTGCTTGGG-3' (SEQ ID
NO:23); 5'-TTTTTTTTTTTTTTAGTGTAAAATACTTAAGCGTTCCACTA
TTGGAAGAAAAGCATATATGGGTATTTGTATTGTAACCTGTTAAAAGGACAGTCT
TTTTAACTTCCCACCTAAATGCTTTAAAATGTAATACAATTGAAGCTTGT
15 AAAAATAGAATTAAATGTCTTATAGTGTACTGCTACTGTTGGAATTAGAAAGTGATCA
AATACAAAACATTAAAATTAAGCCCAGAAAACAAATAGTGTAAAGTTAGTT
AGTATAAAAGAAATTATGAGATTTCTTCAATATAAGATAACCTCACCGAAAT
AAAGAAAGCACAGCACATTAAAGTAATTCTCATGAGAACACCCCCATTAGAATAATT
GCTAAATCTAGGACACCTTGTAGTTGAGTTGTGATACATGTAGTCACCA
20 GCTTTCTGCTGGAAGGACTTCCGTAGTAATTAAAGNAGTGTAAATAAGTTCAAT
TANCCCACAAGTTCTAANCTGGAAAGNAANTATGGTGAATGGNCCCTCTGCAAC
TACGGGAACACA-3' (SEQ ID NO:24); and 5'-TTTTTTTTTTTTTTGGCATTAA
AAGTGTATTGGAAATATCATCCAATCTATAAGTTATACAGGCATGAAAAT
GGCAAACAGCACAAAATACGATTGAGGTATAAGCTAAGAGCACAGTATGT
25 TCAATAAAATATAATCCAAAATTGTAAACTAAGTAACCAGATAGATGAGTCATT
TTAGTAAAACCATAAAATATTATTCATGTGAGGTAGAGGACAGTTGTGT
CGTGTAAATGCAACCAACCACAGCAATTAAATCATAAAATATGCACTGGAAAA
TTATCAATCGAGTTATGCTCAATGTAGCTAATGTGTTCCGTAGTTGCAGAAGGGAC

CATTCACATACTGCCTTCCCAGGTTAGAAACTGTGGGGTAATTGAACATTACACTG
CCTTAAAATTACTACGGGAAGTCCTCCAGCAGAAAAGCTAATGGTACTACATGTA
TCACAAACTCACAACTCAAAAGGTGTCCTAGATTAGCAATTATTCTAATGGGTGT
TCTCATGAGAATTACTTAATGTGCTGTGCTTCTTATTCAAGTGAGGTATCTTAT
5 ATTGAAGAAAAAATCCATAA-3' (SEQ ID NO:25). This clone is similar to sno I.

Another IEG nucleic acid clone was designated L100. The L100 clone is 2924 bp in length and has a nucleic acid sequence as follows: 5'-TGCAGGCCAGTCTCTCCCGCCGCCGGACGCGCAGACCTGGCAGGCTGCACCG
ACGGCCGCCTGGCCGAGCGCACTGCAGGTCGCTGCGCGCTGCGACCCGGGCC
10 CGGACGCGAGTGGCTGCGGTGTCCTGGCGAGCACTGCTAGTTAGGCCGTCTGTCC
TCAGCTGCTTGGAACCCCTACATCCCACCATGGCTGGATACAGAAGAGGAAGTTG
ACCAGCTGGAAGAGGACGACTGCAGCTCCTCCTGTCCTCTGGCGATCTCTC
CCTCTCCTCCCAGCTTCTGCCTCCCCCTGCCTGGACCTCTGAGGAGGAGGGACTGG
GTGATCAGCCACCCCAGCCTGATCAGGACTCCAGTGGCATCCAGAGTTAACGCC
15 CATCCATCCTGAAGCGGGCTCCTCGGGAGCGTCCGGTCACGTGGCCTTCGATGGCA
TCACTGTCTACTATTCCCGGGTGCAGGGATTCAACCAGTGTGCCAGCCATGGT
GCTGTACCCCTGGGCATGGCTCTCGTCATAGCACCTGCCCTCTCCTTAGCCGA
GTTAACACAGGAGCAGTCCGGCTGGCGTGAGAAGCTCCGTCGGCTTAAAGG
AGGAGAAGCTAGAGATGCTGAAATGGAAGCTTCAGTGTCCGGAGTTCCGGAGGCA
20 GGGGCAGACGTGCCGCTCACAGTGGACGCCATCGATGACGCTTCTGTAGAGGAGGA
CTTGGCAGTGGCCGTGGCAGGTGGCCGCTGGAGGAAGCGAATTCCCTACAGCCCTA
TCCACCTCGGCAGCGACGGGCCCTACTTCGCGCTTCCGGTTCGAAGGATTGACCG
AGAGGAGAAGCACGAGCTGCAGGCGTACGCCAATCCGGAGGATTGTGGTTGTC
ACTGTGATGGCGTCTGTGACCCCTGAGACCTGCAGTTGCATCCTGGCGGGCATTAAAT
25 GCCAGATGGATCACACGTCCCTCCCTGTGGCTGCTGCAGCGAGGGCTGTGAGAAC
CCCATGGTCGAGTGGATTCAATCAGGCGAGAGTTCAGACACACACTCATCCACACGC
TCACCCGCCTGCAGATGGAGCAGGGTGGAGAGAGTTGGGGACCCGGAGTCCCCC
ATGGAGGACGTTCCCTGTCGAACAAACCGTGGTTCCCCCTTCCCTCCAAACCCA

CTATGAGCAATGACCTGGGGACAGCAGCTGTGGCAGCGACATGACAGACTCTTCC
ACGACCTACTCCTCTGGCGGCAGTGGCAGCCGAGCGAGGCTCGAACCATCTGCC
CACCCCAGCCTGCCAGGTTCCAGCTCCGGTCTGGCATAGATGAAGACAGCCTGGAA
CAGATCCTGAATTTCAGTGAECTGACCTCGGTATTGAGGAAGAAGAGGAGGAGGG
5 AGGGAGTGTGGCAACTTGGATAACCTCAGCTGTTTCATTGGCTGACATCTTGG
TACCGGTGACCCGGCAGCCTGGCTAGCTGGACACACAGCCAGTTGGCTTAGCCT
TCCATCGGGCATCCTAGATGAGAATGCCAACCTGGACGCCAGCTGCTCCTAAGCAG
CGGACTCGAAGGGTTGAGAGAAGGTAGCCTCCCCAGCAGTTCTGGTCCCCTGAGG
GGGAAGCCGCCAGAGCAGCTCCTGGACCTCAGTTATCCTCCTGTGACTCCTTG
10 AGCTTCTCCAATCTCTGCCAGATTATAGTCTGGGGCCTCACTATACTTCCGAAGGGT
ATCTGGCAGCCTGGACAGCCTTGAGACCTTCCACCCCTGCCAGCTCTCCACCG
AGGGATGCCAGCTCCTGGATTCTCTCATAGGCCTGTCTGAGCCGGTACAGATGTC
CTGGCGCCCTCTGGAGAGGCCAGTTGAGGACACTGCTGTGGTGCCTTGGACCCCT
15 GTGCCTGTGTAAGGATTGAGATGACTTTCTGCCCTGAGACCCCTGTTGCTGCTT
TATGTGATCTTGGTGTCCCCAAGGTCTGTATGTAACGGTCTCCGTGGCTGGTT
CTGCCCGTGCATGTGGCAATCCTCTATTTACAGTAACACTCTAGATTATT
ATTTTTTATGTTTCTGTACTGAAGGGAGGGTGGGAAGGGTATCCCTTTCAATG
CCTGGCCTCTATGCCAACACAGAGGTCTCCACCTCCTACTGTATGCCGTGGAGGAGG
20 AAGGGCGGGGTTCACATCCCTTTCTGTACTGTAAAATGCTCCTGGTCAAAG
ACAGCTGAAAAGCAGGCCTAGGGTTCTGTGGACCGTGGAGCTAGGTCTCTGG
ACTCTGAAGATGTAATTATTCTGTAAATTATTGGGACTGAGACAGCAGTGGTT
GGGCCTCTCTGGCAGGTGGCGGTGTTGAGGCAAAGTCTCGGTGTCCCCGCCGGT
CTGGGCTCGGTGTGGCGTGTAGGTTCGAGCTGAGCAGACGGAGGCTGTGCTGACC
ATCGGTGATCAAAACTCCCTCTGCCCTGCCAGACGCTCTAACATGCCCTGTCC
25 ATTTCCCTCTCCCCAAGGCCATGGGTATAAAGGCCATGTAGGATGGGAGCCAG
AGGCCCTAACGACATGAAGCACACCCAGATCACTGTCTAGCCTTCTGGCACTG
AATCCATCCTGACCCACCACACACCCCCGGCCAGTTGGCAAGAAAGAGGTGGCTCT
TGGGGCTTTATGCCCTCATTAGCTGATGTTGGATTATGCATTTATATTGT

DRAFT

CTCTAAGTGTCAAGAACTATAATTATTCTCTGTGTGTGTGCCAAGAAC
GCAGGCTCTGGCCTGCCCTGCCAGGAGGCCTGCCAGCCTGTGTGCTTGTA
GAACACATTGTACCTGAGCTGACAGGTACCAATAAGACACTCTATTTAAAAAAA
AAAAAAAAAAA-3' (SEQ ID NO:26). In addition, the L100 clone contains an ORF from
5 basepair 145 through basepair 1890. This ORF encodes a polypeptide of 582 amino acid
residues. The translational start site was assigned to the first methionine residue in the ORF. The
amino acid sequence of the L100 polypeptide is as follows: MAGIQKRKFDQLEEDDC
SSSLSSSGDLSPSPPSSASPWTSEEGLDQPPQPDQDSSGIQSLTPPSILKRAPRERPGH
VAFDGITVYYFPRCQGFTVPSHGGCTLGMASRHSTCRLFLAEFKQEKFARREKLRRR
10 LKEEKLEMLKWKLSVSGVPEAGADVPLTVDADDASVEEDLAVAVAGGRLEEANFLQP
YPPRQRALLRASGVRRIDREEKHELQALRQSREDCGCHCDGVCDPETCSCILAGIKCQ
MDHTSFPCGCCSEGCENPHGRVEFNQARVQTHFIHTLTRLQMEQGAESLGDPEPMEDV
PVEQTVVSPFPPSKPTMSNDLGDSSCGSDMTDSSTYSSGGSGSRSEAPNHLAHPSLPGSS
FRSGIDEDSLEQILNFSDSDLGIEEEEEEGGSVGNLDNLSCFHLLADIFGTGDPGLASWTH
15 SQFGSSLPSGILDENANLDASCFLSSGLEGLREGSLPSSSGSPEGEAAQSSSLDSLSSCDS
FELLQSLPDYSLGPHYTSRRVSGSLDSLETFHPSPSFSPRDASFLLSLIGLSEPVTDVLA
LESQFEDTAVVPLDPVPV (SEQ ID NO:27). This amino acid sequence was found to contain
numerous cysteine residues, forming a motif that has features of a methallothionein-like motif.
Alignment analysis revealed that the L100 methallothionein-like motif exhibits higher similarity
20 with the methallothionein motif from *C. elegans* than with the methallothionein motif from
mouse.

25 Northern blot and *in situ* analysis using a sequence from the L100 clone revealed that
L100 mRNA is weakly expressed in wild-type rat brain. For *in situ* hybridization, Dig-labeled
cRNA probes were used as described elsewhere (Kuner et al., *Science* 283:5398 (1999)).
Specifically, this weak L100 mRNA expression was observed in the pyramidal cell layers as well
as the dentate gyrus of the hippocampus, thalamus, cortex, cerebellar granule cell layers, and
several fiber tracts including the fimbria hippocampus and the cingulum. In addition, Northern
blot analysis revealed that the expression of the L100 mRNA was strongly upregulated in

response to the multiple MECS treatment. Specifically, L100 mRNA expression was induced 17.2 fold by the multiple MECS treatment as determined from Northern blot data using total RNA from rat hippocampus (Table I).

The mRNA expression pattern of L100 demonstrated a compelling overlap with neuronal populations known to release Zinc into the synapse via synaptic vesicles and to take-up Zinc post-synaptically. Briefly, synaptic release and uptake of Zinc may participate in the induction and maintenance of epileptic seizures and the neuronal cell death following epileptic seizures and ischemia. The L100 metallothionein-like motif most likely enables the L100 polypeptide to bind Zinc or other divalent cations *in vivo*. The expression of L100 mRNA in Zinc-containing neuronal populations in the brain indicates that L100 polypeptide may sequester Zinc in brain.

In addition, when acute seizures were induced by kainate treatment, the expression of L100 mRNA was strongly upregulated (Tables II and III). Kainate-induced seizures is a model used to study epilepsy. Briefly, 300-350 g male Sprague-Dawley rats were intraperitoneally injected with either 10 mg/kg body weight of kainate or PBS. RNA samples from the hippocampus, cortex, and cerebellum were prepared from treated rats at 1.5, 6, and 24 hours post-injection. This RNA then was used to measure mRNA expression by Northern blot and RT-PCR analysis. Control mRNA measurements included c-fos, GAPDH, NO-38, and ATF-4 for the Northern blot analysis, and Hsp70, c-jun, Zif268, c-fos, Clathrin, and β -actin for the RT-PCR analysis. A Phosphoimager FLA2000 (Fuji) was used to analyze the data, which was expressed as the Integral PSL - background PSL (1D evaluation with Aida version 2.0).

At six hours following kainate injection, strong upregulation of the L100 mRNA was observed, by *in situ* hybridization, in the dentate gyrus and areas CA3 and CA4 of the hippocampus as well as the associated entorhinal cortex, the cingulum, and fimbria, which are brain areas known to be highly excited in and which mediate Kainate-induced seizures. Moderate upregulation of the L100 mRNA also was found in the thalamic nuclei, temporal, parietal, frontal, medial orbital, and cingulate cortex as well as in the cerebellar granule cells. Thus, the data presented herein indicates that L100 participates in cellular mechanisms mediating kainate-induced epileptic seizures and the consequent neurodegeneration.

Table II. mRNA expression normalized to GADPH expression

Clone	1.5 hour	1.5 hour	6 hour	6 hour	24 hour	24 hour
	PBS	kainate	PBS	kainate	PBS	kainate
Hippocampus:						
5 L100	4622	85251	7847	15444	3940	16551
L119	2816	69982	4597	11519	2787	12944
Cortex:						
L100	-	-	81	290	86	131
L119	-	-	255	1262	538	505

10

Table III. Fold increase in mRNA expression upon kainate treatment

Clone	Hippocampus			Cortex		
	1.5 hour	6 hour	24 hour	1.5 hour	6 hour	24 hour
A013	9.8	-	-			
L094	3.6	-	-			
L100	18.44	1.97	4.20		3.58	1.52
L119	24.85	2.51	4.64	-		
R113	2.0	-	-			
R286	-	-	-			

20

In addition, when acute seizures were induced by pentylenetetrazole (PTZ) treatment, the expression of L100 mRNA was strongly upregulated (Tables IV and V). PTZ-induced seizures is a model used to study epilepsy and ischemia. Briefly, 300-350 g male Sprague-Dawley rats were intraperitoneally injected with either 50 mg/kg body weight of PTZ or PBS. Total RNA samples from the hippocampus, cortex, and cerebellum were prepared from treated rats at 20 minutes, 6 hours, and 24 hours post-injection. This RNA then was used to measure mRNA expression by Northern blot analysis. Control mRNA measurements included c-fos and

25

GAPDH. A Phosphoimager FLA2000 (Fuji) was used to analyze the data, which was expressed as the Integral PSL - background PSL (1D evaluation with Aida version 2.0).

Table IV. mRNA expression normalized to GADPH expression

Clone	20 min PBS	20 min PTZ	6 hour PBS	6 hour PTZ	24 hour PBS	24 hour PTZ
Hippocampus:						
L100	534	1637	854	1992	966	1903
L119	342	965	-	-	-	-
Cortex:						
L100	958	2719	1162	3740	1175	1825
L119	577	1605	-	-	-	-

Table V. Fold increase in mRNA expression upon PTZ treatment

Clone	Hippocampus			Cortex		
	20 min	6 hour	24 hour	20 min	6 hour	24 hour
L100	3.1	2.33	1.97	2.84	3.22	1.55
L119	2.82	-	-	2.78	-	-
R113	-	2.0	-			
R286	-	2.6	-			

In another study, the expression pattern of L100 and L119 was determined using two models for ischemia. Briefly, neurons degenerate in brain and spinal cord after acute insults (e.g., stroke, cardiac arrest, and trauma) and during progressive, adult-onset diseases (e.g., amyotrophic lateral sclerosis, and Alzheimer's disease). Impaired energy metabolism plays an important role in neuronal cell death after brain ischemia, and apoptosis has been implicated in cell death induced by metabolic impairment. The irreversible inhibitor of succinate

dehydrogenase in the mitochondria, 3-nitroproplonic acid (3-NP), inhibits oxidative phosphorylation and causes intracellular hypoxia. Thus, one model used to study ischemia involves intrastriatal injections of 3-NP, which is known to produce selective cell death similar to that observed in transient ischemia and Huntington's disease (McLaughlin *et al.*, *J. Neurochem* 70:2406-2415 (1998)). The other model is a global ischemic paradigm that involves a 15 minute insult by complete occlusion of the carotis.

In the 3-NP study, 220-300 g Wistar rats were intraperitoneally injected with 20 mg/kg body weight. Three hours post-injections, the brain was removed and total RNA prepared. In the global ischemia study, 220-300 g Wistar rats were received a 15 minute insult (bilateral occlusion of the Carotis/arterial pressure = 35 mm Hg). One hour later, the rats received a reperfusion followed by immediate brain dissection and total RNA preparation. Untreated rats were used as controls for each study. Ten (10) µg of total rat brain RNA (without cerebellum) was loaded per lane and blotted. Probes were prepared from the 3' untranslated regions of L100 and L119. The Northern blot data was collected using a Phosphoimager (FLA2000 Fuji, Tina software) and expressed as PSL - background.

L119 mRNA expression was upregulated 6-fold by global ischemia while L100 mRNA expression was not inducible by global ischemia (Table VI). This result indicates that only seizure related stimuli alter the expression level of L100 and that L100 is not a general marker for stress response of the cell like c-fos.

Table VI. mRNA expression after 3-NP or global ischemia treatment.

Probe	Untreated	3-NP	Global Ischemia
c-fos	18.1	26.64	216.22
GAPDH	487.02	587.51	593.31
L100	30.95	43.82	40.15
L119	55.48	41.94	332.73

Northern blot analysis using multiple tissues from rat revealed that the expression of L100 and L119 mRNA was not brain specific (Table VII). Briefly, fragments from the 3' untranslated region of L100 and other IEG clones were labeled with ^{32}P -dCTP. The denatured probe was hybridized with 10 μg total RNA from rat brain, liver, lung, muscle, intestine, eye, heart, testis, and kidney in the Quik Hyb-solution (Stratagene) at 68 $^{\circ}\text{C}$ and washed with 0.1X SSC at 60 $^{\circ}\text{C}$. For L100, after one day of exposure, signals were detected at the 3 kb position in brain. In addition, a weaker signal was detected in heart and a faint signal detected in kidney. A strong signal was detected in testis but this signal was at a position corresponding to a size smaller than 3 kb. For L119, a strong signal was detected in heart and weaker signal in brain. In addition, only very faint signals were detected in liver, kidney, and testis.

Table VII. mRNA expression in various rat tissues.

Probe	Brain	Liver	Lung	Heart	Kidney	Muscle	Intestine	Testis	Eye
A013	(+)		(+)		(+)		(+)		
L094	+		+	(+)	+	(+)	+		
L100	+++			++	+			+++(*)	
L119	++			+++					
R113	(+)	(+)	(+)	(+)	(+)	(+)	(+)		
R286	+++	(+)	+++	(+)	+	(+)	(+)		++

(*) smaller transcript

9
10
11
12
13
14
15
16
17
18
19
20

Another IEG nucleic acid clone was designated L111. The first round of screening produced a clone (designated L111-5) that contained a 3.0 kb fragment of L111. A second round of screening using the coding region of L111-5 as a probe produced several additional clones. The following nucleic acid sequence is within the L111 clone: 5'-ATTCGGCACGAGGCCAGAG
5 TGAAGGGGCATGGAGAAGTGGACGGCCTGGGAGCCGCAGGGCGCCGATGCGCTGCG
GCGCTTCAAGGGTTGCTGCTGGACCGCCGCCGGCTGACTGCCAAGTGTGCG
CCTGCGCGAAGTGGCCCGAGGCTCGAGCGTCTACGGAGGCGCTCCTGGCAGCCA
ACGTAGCTGGCAGCTCTGAGCGCTGCTGGGCCCTAGCAGCCATCGTGGGGTTAT
CACTCAGCCCCGGTCACCCTGGGAGCCTCGCTGGCGTCCGCCGTGGCTTAGGGG
10 TGGCCACCGCCGGAGGGGAGTCACCATCACGTCCGACCTCTCTGATCTTGCA
ATTCCCAGGGAGGTACGGAGGGTGCAAGAGATCGCCGCCACCTGCCAGGACCAGATG
CGCGAACTCCTGAGCTGCCCTGAGTTCTCTGTCACTGGCAGGGCGCGGGGACCGC
CAGCTGCTGCAGAGCGGGAGGGACGCCTCCATGGCTTTACAACACTGTCTACTTC
ATCGTCTTCTCGGCTCGCTGGCTTCATCCCCAGGCAGCGGAGGGGCCACC
AAAGTCAGCCAGGCCGTGCTGAAGGCCAAGATTAGAAACTGTCTGAGAGCCTGGA
GTCCTGCACTGGTGCCTGGATGAACCTAGTGAGCAGCTGGAATCCGGGTCCAGCT
CTGTACCAAGGCCGGCGTGGTCACAACCTCAGGAACCTCCGATCTGGATGCAGC
GTTGTTCTAAGAGCATCCTCTAGCTGTGGAATGTTCTAGATTGCAGCATCCA
CAAGGAAGTGCTACATGGCGGAGTGCAAAGGATTTCAGAAGCTCTTGCAGGG
CATCAGTCCGTAGCTCCTGTGTGCGAAAGACTTTCACTTGTAATCCAACTG
AGTATGTGACCCCTAACAGTCACCTTGGGACTCCCAAATCCTTTAGCTGCACA
CAGCTTGTCAAGACTGTCCCTCAATTAGAGTTATTGGGGTGGGGGGCTGATGGCTT
GAGTAATAGAGGTCTGGCGAGGTGTCCCTCTGGACCTCTATGTGTTACTAG
AATCCTGAGATTCTCAAATGTTGGTAGAGGGAGACTTTACTTCAACTTGCTTCG
25 GCAGTTCCGATAACACAGGACTCCAGAATCCAGAACAGAAAGAACCTTGTGT
TTGTAGGGTGTGCAGACCCAGACGGGGCGAGGAGCTGACTGCTCAGCTCACAC
GCAGCCAGTTATCCACTCACAGACCAAACCTGGCTACTGCATAGACTGTTCCAGTG
TGGCTTCAAATCCACACCTCTAGGTACCCCTGAGAAGGAAAGCCACCTGAAGAGTCA

CTCTAATCCCAACACGCTCACCCCCCTCACGTCCATAAAGGAGCTGGCAAGGGGTG
AGATGAAGACCCGTACAATTAAATGACTGTAGCATAGAGAGGCCATGGCCTTGAG
TTAAGAGTCTGATCCCAGGTTCTGTCCCCACTGTCCGTGACTTAGCCACCTGT
CTTGCTACAGATGGTGGTAGGAGGCCACCCGTGCGAAGTCCTGAGATAATGACAA
5 ACACAGAGGCTAGCTCACAAAAATGTACTTCCTGGCCTGGCTCTGAAGGGTTAACT
GTTGGGCTCCATCCCAGATTCTGAGATCAGGAACCTCAAATATGAGGCCGCCTCT
GGCTGATTCTGATGCCCATAAATGTTGAAAATGACACAGCAAAGGTTCATCTCCA
GCCAGGTGTGGTGGGACACACCTGTAAGGCCAGCGCTGGAGATGGAGACAGGGGG
ACCAGTAGTTCAGGGTCATTCTGGCTACATAGCAAACCTCAAGGCCACCCGTGCTC
10 AAAAACCAAAACAAAAAGCCATCTTCTGACTCCCTCAATTGTTCAAAGCCTTCCA
GGGCCTTCAGAACATCACGCTCAGAGTGTCTGGGAAGATTAGCCCAGAACCCAGAGA
AAGAGTACGCTGTGTGCTTGTAAAGCCAGTTACTCTGTCCTGTGAACTAGGAGAC
AGAGCACTCCGACCCCTATAGAGGGCAGTAGTGGCCATTCTGTAGGGACTGGTA
TAGAAGTAATGTGAACATTAAAAATAGTTATTAAATTGCTGCCTCACATTGATT
15 TTATTAAACCTTCACATTATTAGAAAATAAAAGAGTAGTAAGTGTCTGAATAGGA
AGGGAGTCTCTTAAGGCTTTCCAAGAGCTCAGGTTGGATTCTAGAGTCCCCC
GACCCCAGAGAGGACTCTTAGTGTGTTGACACGGCTTGTAAAGTAAGATGGGAGT
CCTGGAGAGAGAGACCAAGCTGATTTAAACTAGGAAATGGAGTCTGAACTGTG
GAAGATTGAAAAGTTAACGCCTATGTGTCTGAAGGTACTGGCCAGAAAAGCACTT
GGCTGAAAAAGAAAACCTGTTAATTCAAGGGTGGAGGAATAGAGACAGATGAAG
20 AAAGCATTAGACCTCGAACCTGATGTCCTATGAAATTCTGTTTATAAAATTGT
GTTATGGTGGAGATCTGTTGCATTGACTTGTGGCTGTAAGAAACCTGTTATCTAT
GTTAAGAAAGTACTTCTAATTATTCAATGTCTCCTAAATTATCCTTAAAAAAA
AAGTTGGAAAAGTCTATGAGACCGTACCTAACGAAACCTGACTGTGTTAAGTTAT
25 TTAATGCCATGCATTGTGAAGCCCCCTCCAGTGTGATGGCTGTGGTGTGAGGA
AATGTAAGTTGGCATGAGGGGGAGGGGCTGCTGTTCTATATTGTTTGTGTTCT
ATAAACAGTAATCAGGATGTATCCTGGTTCATTGACATTGAAAAAAAAAAAAAA

ACTCGTGCCGAATTC-3' (SEQ ID NO:28). The L111-5 clone contained 0.5 kb of the 3'-end of an ORF.

Northern blot analysis using a sequence from L111 revealed the presence of a 4.0 kb mRNA transcript. This analysis also revealed that the expression of L111 mRNA was
5 marginally upregulated in response to the multiple MECS treatment.

Another nucleic acid clone was designated L117. The L117 clone is 2460 bp in length and has a nucleic acid sequence as follows: 5'-TACGGCTGCGAGAAGACGACAG
AAGGGGAGCGGAGCCAAGATGGCGCGGAGCTGGAATACGAGTCTGTGCTGTGTGT
GAAGCCGACGTCAGCGTCTACCGGATTCCGCCGCGGCCTCCAACCAGCGGTTACAG
10 GGCATCTGACTGGAAGCTAGACCAGCCTGATTGGACTGGTCGCCTCCGAATCACTTC
AAAAGGAAGATTGCCTACATCAAACCTGGAAGATAAAAGTTCAGGGAGCTCTCG
CTCAGGCGCCAGTAGAGCAGTACCCCTGGGATTGCTGTGGAGACTGTGGCCGACTCCA
GCCGCTACTTGTGATCAGGATCCAGGATGGCACCGGGCGCAGTGCCTTATTGGCA
TCGGCTTCACGGACCAGGGAGATGCCTCGACTTAATGTCTCCCTGCAAGATCACT
15 TCAAGTGGTAAAGCAGGAAACCGAGATCTCAAAGAATCGCAGGAAATGGATAGT
CGTCCCAGTTGGATTAGGCTCAAGGAAGGGCAAACCATCAAGCTGAGTATTGG
GAACATTACAGCCAAGAAAGGGGTACTTCTAACGCCCGGCCTCAGGAACGGGG
GCCTGAGCTTACTCCCACCTCCTGGAGGCAAAGTCACTATCCCCCACCCTC
20 CTCCGTTGCCATCAGCAACCACGTACCCACCCACCCATTCAAATCTAACCATGG
AAGTAATGATTAGATATCCTGTTAGATTGGATTCTCCAGCTCCTGTCCCACCTCA
GCACCAGCTCCAGCTCCAGCTTACAAGCAATGACTGTGGGAGACTTAGCACT
GCATCCAGCTCTGTTCAAACCAACAGGCACCACAGCCATCTAACTGGGTCCAGTTGA
GTCGCATTGGCAAGAAGTTGAGGACACTTGAGAAGAATAAAATGACCTCAAGGGCAC
25 CATTCTATGAGGGAGTTGAGGGACGGCTTAATTCCAGGACCCAAATCAGTGGTCA
GTCTTCCTGTAGCTCTGTGCATTCAAGCTGGATTTTTTTTTTTGGTT
ACCTCTGTGTTACTGCTGTATATCCAGGAGACAATCTGCTGTTCCCTGCTCAGAAC
AAGCAAGGGAGTAGTGGGTATTATCACACTGACTTGCAGAGTTCAGAAC
CAACTTGATGAGTGGAGTGACCTCGAACGTATGAAATCCTGAACCTTACAGA

DRAFT DRAFT DRAFT DRAFT

ATCATCTCATGATTCCCTAGTTAGCAATTCAAGGAGAGACAAATGCCTTGAAACTGT
CTTCTCCACTAACATCCGAGACTAAATATGGTCAGGCTGGCCCCAGGACTCATGAAGTT
AGGGTTTCATGGGGTAGATTGGAGAAAGCTGTCTCCGGCTCTCTGTAAAGG
CCTCCTTCAGGCTTACCCATGCAGTGAACCTCCCGTCTGGTGGAGCCCCATCAC
5 CTTCTTGTTGTTACATGTTGTTCTTGACAAGAGGGTATGTTGGTGGCACCTC
ACTGTTTCTTGTGAATAGTGCAGCATCTTGACCAGTGAATATTCTGAGATGAAG
GGGTCAAGGGCTGTGCTTCCATGGTAGTCTACAGAAGTGTAAATTCTGCG
GCCACACGGGATTGCTGCAGTGCATAGAATTGATCTACTCACCTGTGTTG
ACCTGAAGAGTTAACCTGATGTAGAGCAGAGAGCTGGAAGCACTAACAGTCCA
10 TTCAGTACCCACAATGCCTGCTGCCTGGTTGACTCCTTTCATAAACATTCAATT
CAGTCCATCTAGCACTCTGTGGAAAGCTGCTGTTGATTGTGTCAGTGTGAAGGAGG
TGAAGTCACAGCTTCTTACCTATGACAGTTAGGCTTGCAGTACAGCTTGTACCA
GCTAGGATATCTAAAGGAAGTTACCGCCCCATCACTCTCCAGTCTCTGGCCGCCAT
15 TCCCTTACAGTGTGAAGAGCGTCCTCTGAGGTGGTACTGTCTCCTGTTG
GTCGGGCAGTTGAGGGAGGAGTGGGAGGACTCACACTCCTGCAGGTACCTGTTG
GGTAGCACACTGGCTGCAGAGAGTCCTTCAGATATATTGTTCTCAATGTTCTCGT
AGCTTTCTAACCTCGGGTCCATTTCATCGCCTCTCCATTCCCAGGCAGCTC
TCTTGTGCAGAGCCATGGCAGGACGTTAAGTCCAATAAAACACTAAGAAGAA
AGTATAGAATCACTAGTGAUTGGAAACCTATTCTCAATCTCCTCCATTG
20 TGTTCTTGTATTCTTAAGATGATAATATATTATGTATTGAATTGCTGAAAATTGAA
AATGAAGTTGAAGATATGTATATAAGCGTATGCTGTATTGGTGCATAATGGTAA
TTAAAGATATTAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAA
AAA-3'
(SEQ ID NO:29). In addition, the L117 clone contains an open reading frame (ORF) from
25 basepair 42 through basepair 875. This ORF encodes a polypeptide of 278 amino acid residues.
The amino acid sequence of the L117 polypeptide is as follows: MAAELEYESVLCVKPDV
SVYRIPPRASNRGYRASDWKLDQPDWTGRLRITSKGKIAYIKLEDKVSGELFAQAPVEQ
YPGIAVETVADSSRYFVIRIQLDGTGRSAFIGIGFTDRGDAFDNVSLQDHFKWVKQETEIS

KESQEMDSRPKLDLGFKEGQTIKLSIGNITAKGGTSKPRASGTGGSLPPPGGVVTIP
PPSSSVAISNHVTPPPPIPKNHGSNDSDILLLDSPAPVPTSAPAPAPASTSNDLWGDFSTA
SSSVPNQAPQPSNWVQF (SEQ ID NO:30).

Using tblast2x algorithms, the L117 polypeptide was found to have homology with expressed sequence tags (ESTs) from mouse, mouse embryo, human hNT neurons, human tumors, drosophila, drosophila embryo, *C. elegans*, and *Arabidopsis thaliana*, a plant organism. Although the sequence of ESTs can be questionable, the identified ESTs were aligned for comparison. The comparison of consensus sequences from each species provided evidence that the L117 clone or a L117 motif has a very strong pressure for conservation during evolution since it is conserved in a variety of very distant species. In addition, this alignment indicated that the first methionine residue in the ORF of the L117 clone is the true initiation site for translation since most of the homology between the ESTs begins around this position, and the *C. elegans*, drosophila, and human hNT ESTs each contain a methionine residue that is in a very close proximity to that of the L117 clone. Further, the relation between these ESTs and the L117 clone was supported by an exactly matching stop codon in the human EST, mouse EST, and L117.

Northern blot analysis revealed that the expression of the L117 mRNA was not upregulated in response to the multiple MECS treatment in either the hippocampus or cortex. Analysis using a total RNA extract, however, revealed a small upregulation upon MECS stimulus.

Another IEG nucleic acid clone was designated L119. The L119 clone is 2900 bp in length and has a nucleic acid sequence as follows: 5'-ATTCGGCACGAGGCCAGAG
TGAAGGGCATGGAGAAGTGGACGGCCTGGAGCCGCAGGGCGCCGATGCGCTGCG
GCGCTTCAAGGGTTGCTGCTGGACCGCCGCGGCCGCTGCACTGCCAAGTGTGCG
CCTGCGCGAAGTGGCCGGAGGCTCGAGCGTCTACGGAGGCGCTCCTGGCAGCCA
25 ACGTAGCTGGCAGCTCTGAGCGCTGCTGGCGCCCTAGCAGCCATCGTGGGGTTAT
CACTCAGCCCCGGTCACCCCTGGGAGCCTCGCTCGTGGCGTCCGCCGTGGCTTAGGGG
TGGCCACCGCCGGAGGGCAGTCACCATCACGTCCGACCTCTCTGATCTTCTGCA

ATTCCCAGGGAGGTACGGAGGGTGCAAGAGATGCCGCCACCTGCCAGGACCAGATG
CGCGAACTCCTGAGCTGCCCTGAGTTCTCTGTCAGTGGCAGGGGCGGGGGACCGC
CAGCTGCTGCAGAGCGGGAGGGACGCCTCCATGGCTTTACAACACTGTCTACTTC
ATCGTCTTCTCGGCTCGCTGGCTCCTCATCCCCAGGCGTGGGAGGGGGCCACC
5 AAAGTCAGCCAGGCCGTGCTGAAGGCCAAGATTAGAAACTGTCTGAGAGCCTGGA
GTCCTGCACTGGTGCCTGGATGAACCTAGTGAGCAGCTGGAATCCGGGTCCAGCT
CTGTACCAAGGCCGGCGTGGTCACAACCTCAGGAACCTCCCTGATCTGGATGCAGC
GTTGTTTTCTAAGAGCATCCTCTAGCTGTGGAATGTTCTAGATTGCAGCATCCA
CAAGGAAGTGCTACATGGCGGAGTGCAAAGGATTTCAGAAGCTCTTGCAGGG
10 CATCAGTCCGTAGCTCCTGTGCGAAAGACTTTCACTTGTGTAATCCCAACTG
AGTATGTGACCCTAACAGTCACCTTGGGACTCCCCAAATCCTTTAGCTGCACA
CAGCTTGTCAACTGTCCCTCAATTAGAGTTATTGGGGTGGGGGGCTTGATGGCTT
GAGTAATAGAGGTCTGGCGAGGTGTCCCTCTGGACCTCTTATGTGTTACTAG
AATCCTGAGATTCTCAAATGTTGGTAGAGAGGAGACTTTACTTTCAACTTGCTTCG
15 GCAGTTCCGATAACACAGGACTCCAGAACAGAACAGAAAGAACCTTGTGT
TTGTAGGGTGTGCAGACCCAGACGGGGCGAGGAGCTGACTTGCTCAGCTCACAC
GCAGCCAGTTATCCACTCACAGACCAAACCTGGCTACTGCATAGACTGTTCCAGTG
TGGCTCAAATCCACACCTCTAGGTACCCCTGAGAAGGAAAGCCACCTGAAGAGTC
CTCTAATCCAACACGCTCACCCCTCACGTCCATAAAGGAGCTGGCAAGGGTG
20 AGATGAAGACCCGTACAATTAAATGACTGTAGCATAGAGAGCCATGGCCTTGAG
TTAAGAGTCTGATCCCAGGTTCTGTCCCCACTGTCCTGTGACTTAGCCACCTGT
CTTGCTACAGATGGTGGTAGGAGGCCACCCCTGTCGAAGTCCTGAGATAATGACAA
ACACAGAGGCTAGCTCACAAAAATGTACTCCTGGCTGGCTCTGAAGGGTTAACT
GTTGGGCTCCATCCCAGATTCTGAGATCAGGAACCTCAAATATGAGGCCGCCTCT
25 GGCTGATTCTGATGCCCATAAATGTTGAAAATGACACAGCAAAGGTTCATCTCCA
GCCAGGTGTGGTGGGACACACCTGTAAGGCCAGCGCTGGAGATGGAGACAGGGGG
ACCAAGTAGTTCAAGGGTCAATTCTGGCTACATAGCAAACCTCAAGGCCACCCCTGGTCTC
AAAAACCAAAACAAAAAGCCATCTGACTCCCTCAATTGTTCAAAGCCTTCCA

GGGCCTTCAGAACATCACGCTCAGAGTGTCTGGGAAGATTAGCCCAGAACCCAGAGA
AAGAGTACGCTGTGCTTGTAAAGCCAGTTACTCTGTCCCCGTGAACTAGGAGAC
AGAGCACTTCCGACCCTATAGAGGGCAGTAGTGGCCATTCCTGTAGGGGACTGGTA
TAGAAGTAATGTGAACATTAAAAAATAGTTATTAAATTGCTGCCTCACATTGATT
5 TTATTAAACCTTCACATTATTAGAAAATAAAAGAGTAGTAAGTGTCTGAATAGGA
AGGGAGTCTCTTAAGGCTTTCCAAGAGCTCAGGTTGGATTCTAGAGTCCCCCC
GACCCCAGAGAGGACTCTTAGTGTGACACGGCTTGTAAGTAAGATGGGGAGT
CCTGGAGAGAGAGACCAAGCTGATTAAACTAGGAAATGGAGTCTGAACGTG
GAAGATTGAAAAGTTAACGCTATGTGTCTGAAGGTACTGGCCAGAAAAGCACTT
10 GGCTGAAAAAGAAAACCTGTTAACATTAGGGGTGGAGGAATAGAGACAGATGAAG
AAAGCATTAGACCTCGGAAACCTGATGTCCTATGAAATTCTGTTTATAAAATTGT
GTTATGGTGGAGATCTGTCATTGACTTGTGGCTGTAAGAAACCTGTTATCTAT
GTTAAGAAAGTACTTCTAATTATTCAATGTCTCCTAAATTATCCTTAAAAAAA
AAGTTGGAAAGTCTATGAGACCGTACCTAACGAAACCTGACTGTGATTAAAGTTAT
TTAATGCCATGCATTGTGAAGCCCTCCAGTGATGGCTGTGGTGTCTGAGGA
AATGTAAGTTGGCATGAGGGGGAGGGGCTGCTGTTCTATATTGTTTGTCT
15 ATAAACAGTAATCAGGATGTATCCTGGTTCTTGCATTGACATTGAAAAAAA
A-3' (SEQ ID NO:31). In addition, the L119 clone contains an ORF from basepair 28 through
basepair 768. This ORF encodes a polypeptide of 247 amino acid residues. The translational
start site was assigned to the first methionine residue in the ORF. The amino acid sequence of
the L119 polypeptide is as follows: MEKWTAWEPQGADALRRFQGLLLDRRGRLH
CQVRLRLREVARRLERLRRSLAANVAGSSLSAAGALAAIVGLSLSPTVLGASLVASAVG
LGVATAGGAVTITSDSLIFCNSREVRRVQEIAATCQDQMRELLSCLEFFCQWQGRGDR
QLLQSGRDASMALYNSVYFIVFFGSRGFLIPRRAEGATKVSQAVLKAKIQKLSESLESCT
20 GALDELSEQLESRVQLCTKAGRGHNLRNSPDL DAALFF (SEQ ID NO:32). Hydropathy
plot analysis revealed a stretch of about 50 hydrophobic amino acid residues, possibly indicating
that the L119 polypeptide is a type II transmembrane protein.

Northern blot analysis using a sequence from the L119 clone revealed that the expression of the L119 mRNA was strongly upregulated in response to the multiple MECS treatment. Specifically, L119 mRNA expression was induced 17.8 fold by the multiple MECS treatment as determined from Northern blot data using total RNA from rat hippocampus (Table I).

Another IEG nucleic acid clone was designated R010. The R010 clone is 1280 bp in length and has the following nucleic acid sequence: 5'-GCTTGAAACCGGACTGCAGGCTAAACTGGCTTCTTGAATCCTTGGAAAGCATAAAGGACAAGTAGCAGGGCTCGCAGTCTTCATTGTCACTGGAGAAGAACTTATAATTCAAAGATCTGGGTCTGGACCCAGGCTGACCACTTGGAGCTTGAGACTCTGGGATTGTGATCCAGTTCTGAGCTGGTGA
TAAACACTCCTTGTGACTTTGGTCAATTCACTACAGCTACCAAGATTCCAGCCAACATGACC
CTCGCAGCCTATAAGGAGAAGATGAAGGAACCTCCCCTAGTGTCTCTGTTCTGCTCC
TGTTTCTGTCTGATCCCTGAATAAAATCATCCTACAAATATGAAGGCTGGTGTGGG
AGACAGTGTAGGAGGAAAGGTCAAAGCCAGCGGAAAGGCAGTGACTGGAGAG
AAAGAAGAGAACAGGCAGATACGGTAGACCTGAACCTGGTGTGTCATCTGATATG
GAAGTCATCGAGCTGAATAAGTGTACCTCGGGCCAGTCCTTGAAGTCATCCTGAAG
CCACCTCCTTGACGGGTGCCTGAGTTAATGCCTCCCTCCAAGACGTCGAGAC
CCATCGCTAGAAGAGATACAGAAGAAGCTAGAAGCAGCAGAGGAGCGAAGGAAGT
ACCAGGAAGCTGAGCTCCTAAAACACCTTGCAGAGAAACGAGAGCATGAGCGTGAG
GTAATCCAGAAAGCTATCGAGGAAAACAACAACCTCATCAAGATGGCGAAAGAGAA
GCTGGCCCAGAAGATGGAGTCCAATAAGGAAACCGGGAGGCCATCTGGCTGCCA
TGTGGAGCGGCTGCAAGAGAAGGACAAGCACCGCAGAGGAGGTGCGAAAAACAA
GGAGCTGAAGGAAGAGGGCCTCCAGGTAAAGCCANAGGCCAAGGAAGTTCCAGGA
CAGCCGGACAGCTCCCGCAGCAACCTGGTCCAGCAGCATGGCCGCTGGCTGCTCT
CCCAGCACTGGGTTGGGGAGGGGGTGGCAAAGGGCGTTCTGCTTGGCTT
GGTGTGTTGTACATGTAAAAGATTGACCAGTGAAGCCATCCTATTGTTCTGGGGAA
CAATGATGGGTTGGAGAGGGGACAGAGAGTGTGTTGGAAAAGGAGGTGAAGATGA
GCCCGAGGACTTGTGACACTGTCCACTGACTGCAGACTGGGCCAAGGCCCGCT
TTTCACGGCTCTGCCTGGACATTGGCCTCCAGGTTCTAGTGGAGAGAAGATGTGA

CAGAAGTCAGAGTGAAGGGCCGAGTCCTGGTGGGTGGTGCAGGCCAGCAGG
ACGAGCCCCTGGATGGAGTGAAACCTACCGTGGGTGGGATAAGGTCTGTG
TGCCTGTTCATGTCATCTTGATCATCATGACCAACGAAACATTAAAAAAA
AAAAAAAAAAAAA-3' (SEQ ID NO:33). Two genomic R010 clones were also obtained.

5 The nucleic acid sequence for these genomic R010 clones is as follows: 5'-GATAA
ACACTCCTTGTGACTTTGGTCAATT CAGCTACCAGATTCCAGCCAACATGACCCTCG
CAGGTAGGTACATGCACCAAGTCAGTGATGAACACCATAACACAAGCCATTTCTAT
CTCTGTGTGTCCATGTGTATTAGGTGCATCCGTGTGTGATACACACGTAGGT
GCATGGCATGCATGTGTGCAAATGCATATACAAGTCCAAGGACAGGGGTTGGGG
10 ATTAGCTCANTGGTAGAGCACTTGCTANGAACCGCAAGGCCCTGGGTTGGTCCCC
CAGCTCCGAAAAAAAGAACCAAAAAAAAAAAAAAAATTTCCAN
GGACAACCCCAAATT CTTNCNAAANCCANCCANCTCCATTNAAAAAAAANG
GGTCNCNCNTGGGTTAACCAATTNNAAANGCNAACCTNACNGGCCAKTGAKTGC
CAGGAATCTTCTTATYCCTGCCWACCTCCAATGTCTTCACATGTGAATGCTGAGG
GTCAGAACTTGTGCTTACAAGGCAGACATTGCCAGCTCTCCGGCCATCTTCTCTA
TGTATGTACACTCACAGATGCACAGGAAGAGAGGGTAGAGAACGCAAGAGGCAA
GTCATTCTGGGTGGTGGGATCACAGCTGAATTCTCTCCTCATTGCTCTGT
GTGTATTATTAATTAAAATAACCTTATAATAGTATCGAAACTATGCTTCAA
GTTTGTAAAGAGAAAGTGATCACTGGCTGTGTAGTGAGGGGTCTTATATTATGCA
TATAACATGGTGAATGGGAAGGACTGGCAGAGGCCTCCATGATGACCTATGACTTC
TAGGGAGACTCAGTCGTCAAGGGTACATTCTACTCTGCAGACAGCTCTCCCTG
GTTGATTCTGTGCTGGGAAGATTGAGGAGTCTCCAGCCTGACCTCTACAGT
GGGCCTGGACTTAAGGAGAGTAGCAAGGAAGTCTTTATTAAATCTCTTACCCCTT
AGGCAGCAGTGTCAAGTACTTTAGCAGAATTAAATAGATTCTACAAACTACA
25 AACTCAAAGCCCTGGTTATCCTGGTGGAGTAGGAGATGGAGGGCCAGGGTC
AGGGCACTGCACCTGGGATCTTACTTGAGGGTACTCAACGCTTGGTAGTAACAAAA
AGTGGGGTGAGTGACAATGTTAATTCAACTGGGAGGTAGCCCAGGCTGGTACT
TTGGAGCCAGAAAGCCTGGCTGACTCACAGAAGTGGTCTCTCTYGYAGCCTAT

AAGGAGWWGATGAAGGAACCTCCACTAGTGTCTGTTCTGCTCCTGTTCTGTCT
5 GATCCCCYGRATAAATCATCCTACAAATATGAAGGTGAGTAGGGGCTAGGCTGGGA
TAGAAAAGGGTGGAGGCTCTGTGCCTGTGTTGTSGGGCCACATTGACTCCTA
TCTTGTAAAACGTGCCTGGTCGCAGTGTCTTATTCCCAGAGGCTGAGGAGTCTG
10 AGCCCAGGGGATGTAGCCTGGTGCCAAGCAGCCTCCAGGGATCTGGATTGGGCC
CTCCTGGAGCAGTGCCTAGAGTCCCTTRACACATTGACACACCACAGAGGAC
ACCAGGATAAGCCAGACACAAGTTGAGATTCCATTGAGGCCCCAGAACAGA
AAAAGAAAACCTAGTGTGTTACCAAGGGCTCTAGGGACAGGTAGAGATGCTCCTA
GACAGGTCCAGGGTGGGAATAGCACTTCTAACCTGGATGGTGACAGTCAGCCCCT
15 AGACCCATCAGAGAGTACTGGATTGTCATGCTGTCAAGGAGGAGTGGTCAGGGAC
AGATAGGTCACTCTCATTCTGTTGCCAGGAAGGGATGGGTTGGTCTGTCAATA
AGAGAGATGGGTGTTGGATGACCTGAGTCTGTTTCCATTAGGCTGGTGTGGG
AGACAGTGTAGGAGGAAAGGTCAAAGCCAGCGGAAAGGCAGTGACTGGAGAG
AAAGAAGAGAACAGGGTAGGCCGGAGCCAGGGGAGAGGTCCACAAGCCATCAGAG
GGACAGGGCAAGGAGGGCTGGCGGTGGGATGGTGAAATGAACCTGGTCTGTC
20 ACCAGCGAGGAACAACAGCAGCTGGTGTATCACAAATCACAGCTCCCTGCTTACCC
TGTAAAAGCCATTGACCTAGGGCCAACGTTCAAGGATCGACCAGACCCCTAGTCAT
TGGTGTGCCTTGGGACCCTCAGCTTCTGTGTGTCATGTACACATGCTCATT
GGGGCCCCAGCTGCTCCTCAGAAGGTGAGCAGCCCCAACTCTGCCCTCCATAGCAGA
TACGGTAGACCTGAACCTGGTGTGTCATCTCTGATATGGAAGTCATCGAGCTGAGTAA
GTGTACCTCGGGCCAGTCCTTGAAGTCATCCTGAAGCCACCTCCTTGACGGGT
GCCTGAGTTAAAGCCTCCCTCCAAGACGTCGAGACCCATCGCTAGAACAGATACA
GAAGAACGCTAGAACGAGCAGAGGAGCGAAGGAAGGTTAGTGTAGCCCCATGTCACT
25 TCCTCCCATCCCAGCGGGAGCAGGAAGTCAGCTCCATATCTCTCCTCCATCCA
GTGGGAGTGGGAAGGATATTAGACAGCACCTCCTGAGTGCTGGCATAGACCGGT
AGTTCTCAACCTCTTAGTGCTGTAACCTTAATATATATATATATATATATAT
ATATATATATATAGTCCTCATGTTGATTACCCCCCATACCATAAAACTATCCGT
TGCTCTTATGTCTTCATAATTATAATTGCTACTGTTATGAATTGTGATACAACAT

CAGACCTGCACCCCTAATGGCAGCAGCCCACGTGTTGAGAACCACTGGCATAGAT
5 GTAGACTAAGATAACCACCTGAAGGGACAAGACTATGACTATGCACTGGTGAGCT
TACAGTGTGGCTAATGGCTAAATGTCACAGTCCTCACAAAGCTGCCTTGTATGCA
GCTTCCTGTTCCCCATTGATTCTMGTCCSTCAGCTCAGATGCCATTAAATGTGAG
10 TGTTTCTTNACCTTCAGAAANACAAAACAAAACAACCCAGCTTCTCCACTNAATT
GTGTGGTCCCTCCCTTAAATATCCAAAGCATTATCACACCCAGGTCTGGNGTCCA
NTATNTATTGATATGCGTGTATTNNACTAGGGCAATTNTCTCCNTCCCTGGTGT
CTGGAGTTGTGAGGGCCTGAGGTTATAGAAGATCACTTAGTACTTGTGAATGAAC
GCGAGGAAAAGGAGAAAAGAGACTCAGAAGCTACTTNGGAAAGGGCTACNAAAGC
15 CAAATATGACGGAAAGGTTGCAGTCCATGNCGTTCTGCTCTGGGACAGAG
GACCAGGTTCATCTCATCTGGGCATGGCACTGTTAGCTGTGGTAGAAATCCAC
TCTAAAGGGCNTTCTCTTGTNTGCCCTAGTACCAAGGAAGCTGAGCTCCTAAAC
ACACCTTGCAGAGAAACGAGAGCATGAGCGTGAGGTAATCCAGAAAGCTATCGAGG
AAAACAACAACCATCAAGATGGCGAAAGAGAAGCTGGCCCAGAAGATGGAGTCC
20 AATAAGGAAAACCGGGAGGCCATCTGGCTGCCATGTTGGAGCGGCTGCAAGAGAA
GGTAAGAGGTCTGGATTGGCAGGAGGCTCCATGGCAAGAACGTGCAACCTA
CACATCACTCTGGAGGAAGCGGCATGCAGGAATTGAAATGTTCTACCAGGCAG
GGTCCTCATTGTTCTAAGGGAAAGATTGGGAAGTCATAGGCAAGAAGCTCACACC
AAACCTGGGTGGCCTCCGGGATCTTCTANGTTGAACCGGAAATTCTGCACTG
25 TCTCANGAGCTGCTCACACCCTTCTTCTAAAGAAAGCCGCCAGTGAAGTAT
CTAAGGAGAGGCACATGTCTACACATTCTGGCTTCATCATTGAATGGCAGATTG
GGTTAGTGAAGATAACAGTCAGCTGGCTTGAGCCANGGATACAGCAAGCTCGGTT
GCCAATACAGCAGGATACAGGATTCTCCCCAGAGCTCCTCGTAAGGGCCAGAGAGT
ANTAGGTTTCTCAATAGTCTGCCTTGTCAATAACTCAAATGTCACCTGCATCTGA
GCGGTGTGCGAGACTGGGGTTGGCCTCCATGTTATTCTTGAAGACGTGCTGACC
30 TCATTCTGAGTCCCAGGCTGCCTACGTTCTCCTGCAGCTCCTGGGAAGCTTAGC
TCTGTGTTTATTCCAAGGAGCCGCTGCTGCGCGGTGACTCCGGGACSGATCGGT
GGCCTCGTCCATGGTGAGCAGCGTGGCCTATTCTCCTGCCTACCCACCTAAAAA

CCTCAGGCCCTGACAATTACCACAGAAAGATCTGGCTCATCCAGGGATGTGAGCA
GCACAGGCTGCCAGTAGGTGGCAGCCCTGTGCTCATGTTCAATTACAGGAGGGAC
AGCAAGGCTTCTTCTCCACTGAGTGCCTGGGGAGGGACACAATCTGAGTGTGAC
TTTGGGCTCCTCCAGTTAATGAGAGATACTGTAAGAAAACCTTAAGATTGCCTTACT
5 TTTTATACCAGGTCTCATGCATTCCAGGCTGGCCTCAAATTGGCTAAATTGCTGAGG
CTAGCCTGGAATTCTTATCATTGTCTCACCTCCAAGTGCAGGGATTACAGGCAT
GTGCTGCCAACGCCTATTCAATGCAGGTTGGGCTGAACCCAGGGCTGTGCATG
CAAGCTAGGCACCTGCCAACAGTGCATAGCCCCAACTCAAGGCAAATTCTTGAGG
AAACCACAGATAGAATGGGAGAGTTATGGGATTGCAGACTCAGCTAAAATACATC
10 ACAAAAGTTAGGTTGTGAAGCACTTGAATGTTGTTATATAACGATTCTATTTC
TCATAACTCGGTATCACAAAGTTACAAGGCAAACATTCTTAGTCCAGATAAGGAAA
CCATTCTAGAGGTCAAATGATTCCAGAGATTNACAGGGTATACGACAATANATTGGC
CCTGGCCNCTAATCAATGGCTGCTTCTGCCGGTAAAGAAAACATCCAATATAANC
CACNNCTTCANAGCAANAATTCAAAGACAACAAGCAGGGCAAAACCAGGGTCCA
15 AAGCAACCACT-3' (SEQ ID NO:34) and 5'-TGGGCGGGAAAGCAG
TTTGTCTTGTGNTGAATTATGTTANNAAGCAAATGAAGTTATCTTCCAACACATGTG
AGGGAGTCCATTGTCTGGAGTCAAGCANTATTCCAACAGTTCTGTCACTACAT
AACGCAAGGTCCCTTCAGTCAGAGATTAAAGACAACACTAAAGAGATGGAGAGA
AATAACACATCTGTGGTGTCAAGGACGCTGGCAATGGCTGATTTCCCATT
20 NTTNTAAACTGGCTGTCCAAAGGGCCNTGTATTAGTCAAGTGACCATTCCAAG
CGCCAGAATGACCAGTGGAGGTGCAGAGAGCNTAGGGTGTCTGGGTCGCTGTGA
GGTGGGTCCCTGCAGGATGTCTATGCACTGCAGGCTTACACCTGTGTCGGCG
TNTTACTTGCCTCCTCCACCCCTCTTAGGATACCTCGCCGACAGCTCTGCTGCC
CGTGGTGACCATCTTGCGCTCCATTCTGCCCTTGTCTTCCCCTGGCAGCCTG
25 TGTGACCCGCCTTGTCCCTCCCTCCAGGACAAGCACGCAGAGGGAGGTGCG
AAAAAACAAAGGAGCTGAAGGAAGAGGGCTCCAGGTAAAGCCCAGAGGCCAAGGAA
GTTTCCAGGACAGCCGGACAGCTCCCGCAGCAACCTGGTCCAGCAGCATGGCTGC
TGGCTGCTCTCCAGCACTGGGTTGGGGGGAGGGGGTGGCAAAGGGCGTTT

CCTCTGCTTTGGTGTGTACATGTAAAAGATTGACCTGTGA-3' (SEQ ID NO:35). In addition, the R010 clone contains an ORF from basepair 80 through basepair 727. This ORF encodes a polypeptide of 216 amino acid residues. The translational start site was assigned to the first methionine residue in the ORF. The amino acid sequence of the R010 polypeptide is as follows: MTLAAAYKEKMKELPLVSLFCSCFLSDPLNKSSYKYEGWCGRQCRR
KGQSQRKGSADWRERREQADTVDLNWCVISDMEVIELNKCTSGQSFEVILKPPSFDGVP
EFNASLPRRRDPSLEIQQKLEAAEERRKYQEAELLKHLAEKREHEREVIQKAIEENNFI
KMAKEKLAQKMESNK ENREAHLAAMLERLQEKKHAEEVRKKNKELKEEASR (SEQ ID NO:36). The R010 clone was found to have homology to the stathmin family of polypeptide, including stathmin, SCG10, and XB-3. In addition, the R010 polypeptide was found to contain a unique 27 amino acid sequence (encoded by exon 3) that is alternatively spliced to lead to the formation of two distinct mRNA transcripts.

Northern blot analysis using a sequence from the R010 clone revealed that the expression of L119 mRNA was restricted to brain. In addition, R010 expression was found to be developmentally regulated. Further, R010 expression was found to be rapidly induced *in vivo* in the dentate gyrus in response to the multiple MECS treatment and LTP stimulation, and rapidly induced *in vitro* by NGF treatment of PC12 cells.

Another IEG nucleic acid clone was designated R042. The R042 clone is 3978 bp in length and has a nucleic acid sequence as follows: 5'-CGCGATGGCGGCCGGCTGCT
GTGGTGGCAGCGACGGTCCCCGCGCAGTCGATGGCGCGACGGCGCGTCCTCCGT
GCACTGGTCCGCAAAGGACTACGGCTCCACGACAACCCCGCGCTGTTAGCTGCCGT
GCGCGGGCGCGCTGTGCGCTCGTACATCCTGACCCGTGGTTCGCGGCCCTC
CTCGTCAGTGGCATCAACCGATGGAGGTTCTACTGCAGTCTCTAGAAGATCTGGA
CACAAAGCTTAAGAAAGCTGAATTCCGCTGTGTTGAGTCCGGGTCAGCCAGCTGA
TGTGTTCCAAGGCTTTCAAGGAATGGGGGTGACCCGTTGACCTTGAAATATGA
CTCCGAACCCTTGGAAAGAACGGATGCAGCCATTATGAAGATGGCCAAGGAGG
CGGGTGTGGAGGTGGTACTGAGAACTCTCACACCCTTATGACTTAGACAGAATCA
TCGAACTGAATGGCAGAAACCACCCCTTACCTACAAGCGTTCAAGGCTCTCATCA

5 GCCGTATGGAGCTGCCAAGAACGCCAGTGGGGCTGTGAGCAGCCAGCATATGGAG
AACTGCAGAGCTGAGATCCAGGAGAACCATGATGACACCTATGGCGTGCCTCCTTA
GAGGAACTGGGATTCCCCACAGAAGGACTTGGCCAGCTGTTGGCAAGGAGGAGA
GACAGAAGCTCTGGCCCGCTGGATAAGCACTTGGAACCGAAGGCCTGGGTTGCCA
10 ACTATGAGAGACCTCGGATGAATGCCAATTCTTGCTGGCCAGCCCCACAGGCCTCA
GCCCTACCTGCGCTTGGCTGCCTCTCCTGCCCTCTTCTACTACCGCCTGTGGGA
CTTGTACAGAAAGGTGAAGAGGAACAGCACACCCCCCTCCTTATTGGACAACCT
CCTATGGCGAGAATTCTCTATACAGCGGCCACCAACAACCCCAGGTTGACCGAAT
GGAGGGGAACCCCCTCTGCATCCAGATCCCCTGGACCGAACCCCCGAAGCCCTGG
15 CCAAGTGGGCCAGGGCAAGACAGGCTCCCTGGATTGACGCCATCATGACCAA
CTGAGGCAGGAGGGCTGGATCCACCACCTGGCCGGCACGCTGTGGCTGCTCCTC
ACCCGAGGGGACCTCTGGTCAGCTGGAGAGCGGGGTCGGTATTGATGAGTT
GCTCCTGGATGCAGATTTCAGCGTAATGCAGGCAGCTGGATGTGGCTGCCTGCAG
TGCTTCTCCAACAGTTCTCCACTGCTACTGCCCTGTGGCTTGGCCACGCACG
20 GACCCCAGTGGGACTACATCCGGCGATACCTGCCAAACTGAAAGGCTCCCTCT
CGATATATCTATGAGCCCTGGAATGCTCCGAGTCGGTCAGAACGCCGCTAAGTGC
ATCATTGGCGTGGACTACCCACGGCCCATCGTAACCACGCAGAGACTAGTCGGCTC
AACATTGAGCGGATGAAGCAGATCTACCAACAGCTGTCACGATACCGGGGGCTCTG
TCTGTTGGCATCTGTCCTCCTGTGTAGAAGACCTCAGTCACCTGTGGCAGACCT
25 GGTTCTAGCCAGGCTGGAGCATCAGCAACACAGGCCAGACCAACTGTCCAGTGG
CCCAGCCTCCCCAAACGCAAGCTGGAAGCAGCTGAGGAACCTCCAGGTGAAGAAC
TGAGCAAGCGGGCTAGAGTGACAGTGACTCAGATGCCTGCCAGGAGCCACCAAGC
AAGGACTCCTGAGACTGGAGAGCCATTGCTCCGTGAGCAAAGCCCAGGTGCCTGAG
CTGCCATGGCCACAGAGAAGACATGGAACCTACAGAGAAGACAGTCACCAACAGAC
AGAGCGAGCGACTGTGTGTGCAGAGGGAGGTGTGGTGTGCCGTTGCGTGTGCAT
GCATCTGTTACACTCTCATGATCCTGAATGTTGCCTGTGCTGGAGGAGCCCCTAGAT
CATGCCTTCTTACCAAGGGCTTTCTGACTTCCAGACATAAGACTAGAACCCCGCAG
CAGTAACCGTCAGCCAAATCTGCCCTGGAGCCCCAATAGGGTGGTAAGACCCCT

5
10
15
20

AGCTTGAAATTCTGGTCTCTGCCTCCCCAGACTCTTCTTCCTCCCTTTAACAAAGG
AGCTGGAGGCCACATTTGACTCTCATCTAAAGCATGGAGTTCAGAGGCAGTCA
GAGTCCTGCTGACTTAGTCCCACCTTCTGACACTAGAACCTGAGCAGGCTGGAAT
AGATGTGTCCTGTTGATCTAACAGCCTGGCCAGTCTTATAAAATCCTGTGCCA
TTAACAGGCTCCCTGATGTCTAACAGCCTGGCCAGTCTTATAAAATCCTGTGCCA
GCTTATGTCAGCCTCAGACATAATATCAGTCTTGTAGAACCTCTAAAAAAACCA
CATGGGAATAGACTCCCAGTCTCTGTCCCTCCCTAGCAGCTAACGGTCCAGTCTC
GACCTCTAGAACAGCTGTGGACAGGCTAGGGCTGAACCTGGTAAAGAAACCCAGGT
CCCACAGCTGCAGGGCCCTGGTCTCTGGCTGTACTCCTGACACCACATGCTCCA
GCCAGTACTGCTGATATCCAGCCAGGCAAGCTGGACAGCCTGGCTGGCAGCACCTG
CCCTGCAGTGTAGCTGCCCTGGCAGTTGGCGAGAGGTCAGAGACCATGCCTGGCACATCA
ACATCTCGCAGAGCAGCAGTGAAGGATTGACATAGAGAACGTAAGCCTGCTTCC
AGGGGAGCCAACCTCCCTCCACTGTTGGTCATATGGAGAAAGAACGTTATGAAA
GGATCTGGGGTACCTGAGCAAGTCTCCTCCACCCGTGGCCTGCATTGAGCCA
CACTGT
GTGTGTGTAG
AGAGAGAGAGAGTTGTTCTGTTGGATTGTTCTCACATGTAACATTAAGCTGG
CCTCTGGGCCTTCTCACCTCCCTGTGACCTTCTAGCCTCAGAGTTGTTAA
TGCCCTTGGCCCTGGCTTTGTGTCAAGACAGGCTTGTGAGATGGCCTCAGGTTCTC
CCTCCAGCTGTCTAGCACATCTGACAGGCTTGTGAGATGGCCTCAGGTTCTC
AGCAGAGAGCTGCCTTAGTCCAAGTGTATGTCATCATCCTGACTAGAACATC
CTACGATTGTGTGAAGAACCGCATCTGTGATGCCATGTTCAAGACTCATGGGGTGT
GCCTCCCTGTCCCTAGCCCCAGGCCAAGAGGAAAGGGCAAAGGCTCTGCTGGAG
GGACAGTAGAATGCGTCTGGAGAACTGGTCCCAGAGGAGCAAAGGCTATTCTGGG
GCCAGTATTATTTGCAACATCTCAGCTATGGGACAATGGCCTCTGCTTTT
TGATGATGGCTCTCCCTCAAGGTACAAGTTGGCAAGGTATCTGCTTCCACCTCC
TTGACATGTTGGCCATTCCAGGACAGCCTCCAGTGAATGGAGCAGACTATTCCA

CAGCTGTGGGATAGAGTGTCTGGAGCCCTGGAATGACTTCATGCCTCCTTGCCT
AGCCTGAGTGGCCCTGAGGACTGTCACAGAACAGTCCCCATGTCCTGCTCCTGGC
CCGAGCATGGGAAGAGATGGTTGCAGGCAAGAGCACTTACAGCATTCCCCATTG
CTGGGAAGGTTGTTCTCCTACAGTGTGAATACTTACCTGTTATAAATGTCTGA
5 TCCTGTCTGAGTAAAAAAAAAAAAAA-3' (SEQ ID NO:37). In addition,
the R042 clone contains an ORF from basepair 51 through basepair 1790. This ORF encodes a
polypeptide of 580 amino acid residues. The amino acid sequence of the R042 polypeptide is as
follows: MGADGASSVHWFRKGLRLHDNPALLAAVRGARCVRCVY
ILDPWFAASSSGVINRWRFLLQSLELDTSRKLNLSRLFVVRGQPADVPRLFKEWGVT
10 LTFEYDSEPGKERDAAIMKMAKEAGVEVVTENSHTLYDLDRIELNGQKPPLTYKRFQ
ALISRMELPKKPVGAVSSQHMENCRAEIQENHDDTYGVPSLEELGFPTEGLGPAVWQGG
ETEALARLDKHLERKAWVANYERPRMNANSLLASPTGLSPYLRFGCLSCRFLYYRLWD
LYRKVKRNSTPPLSLFGQLLWREFFYTAATNNPRFDRMEGNPICIQIPWDRNPEALAKW
AEGKTGFPWDAIMTQLRQEGLWIHLARHAVACFLTRGDLWWSWESGVRFDELLDA
15 DFSVNAGSWMWLSCSAFFQQFFHCYCPVGFGRRTDPSGYIRRYPKLGFPSPRYIYEP
WNAPESVQKAACKIIGVDYPRPIVNHAETSRLNIERMKQIYQQLSRYRGLCLASVPSCV
EDLSHPVAEPGSSQAGSISNTGPRPLSSGPASPKRKLEAAEPPGEELSKRARVTVTQMPA
QEPPSKDS (SEQ ID NO:38). The R042 clone was found to be a photolyase receptor based on
sequence alignment data. In fact, the R042 clone was found to be the rat paralog of human and
mouse clones based on the following observation. The identity between the human and the
20 mouse clones is considerably higher (97%) than between either the human clone and R042
(72%) or the mouse clone and R042 (71%). This lack of a higher identity between the mouse
clone and the rat R042 clone is more than that expected from species-to-species differences.
Thus, the R042 clone most likely is a different member of the family of photolyase/blue-light
25 receptor homologues. The translational start site was assigned to the second methionine residue
from the 5' end based on the alignment data using the human and mouse members of the
photolyase/blue-light receptor family.

The R042 clone potentially has two differentially spliced forms at the 3'-end. The difference between these two forms is 142 bp. The shorter form was found in four clones while the longer form was found in one clone.

5 Northern blot analysis using a sequence from the R042 clone revealed that the expression of the R042 mRNA was strongly upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R053. The primary library screen produced 40 positive signals that were isolated. The following nucleic acid sequence is within the R053 clone: 5'-TTGGCACACAAGTCTGCTTCAGGACAGCTGATCCATTACTTA CRAATTCAAGAAAGTAAACATTGGCAGTATGGATCTGGTTACTTCATGGTAAGTGCTC 10 TAGAATTTACGCCAAGGCCATCTCTTGCCTCACTGTTAGTGACCGGAGTAAAGC ATGGGGCCACTGAAACTCCACTTACAATTGGGCTCTAAATTAAAGGAAAAATT TTGATTTAACCAACTGGATTCAAAGTTCATCTTATTCTYAAATTAGGCCACTGA GCCTGTGATGTTGGAATATGATTAGTCCACTGGTCACTGGATGTTACCTATC ATGTTATGTAGAGAACAGCCATAACTATTGGTCACGATGTCGCTCCGAATTGGG AATGGCTCTGTTGGAAACAAAGTATTGAAACACGTTGATCAAAGCGGTGTGC TTTGGCCTTCCGGAAATCACTGATTATGTTGAAAACCTCCTTAATTGTATTGCA 15 ATAAGCTATTNTCCCTNTNATGNCTGCCATGCTCCTGCTTGCAGTGTGGTCG CATGCCATCNGCTGGTAACCCANGATGGCTGCTGCNCTGATATNCACCATGCNAAT ACCACTTCT-3' (SEQ ID NO:39).

20 Northern blot analysis using a sequence from the R053 clone revealed the presence of a 4.9 kb mRNA transcript. In addition, this analysis revealed that the expression of the R053 mRNA was marginally upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R055. The first library screen produced a clone designated R055-7 having a 1.7 kb fragment. A second library screening using the 5'- 25 end of the R055-7 as a probe produced several additional clones having fragments of about 3.0 kb. The following nucleic acid sequence is within the R055 clone: 5'-TGAATTGCAGTAAC AGCCTTGCCTTCTATTCTGTAGAAATGACAGGGTCTTCACAATCCTCACCAAGTGGCTACTAAGCTATAATTAGCTGAATAGAAAGAATGTGGAAGTGGTCTGAGGCATATAG

AGCATATGCCAAGAACACTACCATAATGGCATCAGCTTGTTACCAAGAGAAATT
TCTTAGTCATTAGACCATAAACAGTAATATATCATATGTAAATCTTAGATTCAAT
TTGAGAACCTCCAAAAAAAAGGAGCAAAGAACATGCATAAGCTATGTGTTGGCAAAA
GTAATTATATTAAAATTTGACCTGCCTTGTAAAGATTAAGTGGTAAATGTCATAGT
5 GGTGGGTTTACGTCTAACCAATCTCTGAGGTTATTCTCCTGCAGGGGATGGTT
CATGGCCTCTCTCCCCGTGTAGGAAGATAGCAGAACGGATGAGGATTAATTGTAGCA
TTCACTGATCCTCGTCCCAGGGACTAGGGACAATAGAAATCTGCAAACATGGAGA
GTCTGTCATAAAATATTGCTTTGAAGGTGTTGGTCTTGTGATTCTGTCAGAAA
ATGGCATTATACAAATTATGGGGAGCAACCAACTTCTGTTCTGTTGAAGTGCT
10 ACTATGAACCATTAGAGTCGTATTTTTTTAAAATTGGCCAGATATCCCCA
GCTAATGAAAAATAG:TCACCATTCTGAAAAAGTTGGAAGCTAGAACCCCCAATT
CCAATTATTGTTGAAGATGTTCTCAGGCTACTGTATAGAAATAATGTTTAAG
AAAAATCAAAGAGAGGGAGAAAAACCTATGCAGAGACCCCTACTACTTGTGG
TTTCTATTGTCCTATACATCATTCAAGCAAATCTACTGGCAGTTCTGTCAGCAAGT
CCTCAGTGCATATGCTGCACAAAACAAAATCTGCATGGCACCAAAACC
AAACAAGCAAACCAAAACCCAGACACCCCTATGTATCTGTTGGAGGCATGTAGGTG
GTACAAATGACTAGCCATGAGCACACATGGCTTCTGTCATGTCACTTTCATAATT
TTTACTGCAAAATGATTGAGAGGCTTGGTGCAGGCAGCCATTAGCCTGCTCCTT
GTTACCTCTGGATCACTTGCAGTAAATTGCAGGTCTTAAAAGATTCAAGCTCGG
TTTCTCAAAACAAACATTATCCTGCTTACCTGAAAATGCAGGGTTGGCAA
AAGAGGCTGGTTATAATAATGCCCTATATTGAGTGGTCTGAAATGGCTGCACACT
TCAGGCACTAGAGTTGCCGAGGATGCGTTGTTAATGTGACCTGACTGGCTTACAG
GGGTGTAGAACAGTCTACACGGCGACTATTGCATCCATCTGCTCTCGAGGTGGA
TGGAAATAAGAAAAGGCTGGAGTGTGTAAGTCATGCACATAAGTATTCACTGAAA
25 TTTTATTTCAACCAATTATGGTACTTGTCCAATGCACAACTGATCTCTCA
GTAGATATTCAATTGAAAATAGTGTGGCCTGACCAGCGAGAACGGGAAGAAGTGA
CTTAGCTTGTGTTAAGATGACCTGTTGCTGAGAGTGGTCAATTGTCAGCACCCCTAAT
GTCATGGTTTGATTAGGGAGAGTTAATGTTTGACCCCTGAATTGAGTTCTCTCA

TTTTAGGAAGTATCAGAATTGCTCTGATGAGTAACAAAGTTGACTGTTTGATGTCC
AATCTCAGGTTTAAAATAGAGTGGTATAAAAGTCCACTGTTACTAATTCTTAAGAC
AATTTGATTAGTGTGCCCTAAAAGTCACGTGCATAATAAGGCCTGCTCAGAGGGC
AGGGCCTCCATCTGTTGCTCCTTCCATGTTGTACGCACTTCACTGAAAAGGTGTC
5 AAGTGACTTGCATTGTAGATTCCATTAAACCCAACATAGTTCTCAAAGATAAA
GCACTTTGAACATGAAATACATGGGTAAATGTGTGATGTGGATCATGGTTCTCAG
GCCCTAGATAATCCACTTCTGAGTATTGTTCTATGTAAGGAGAACAGAGGTCTCG
CTAATGTTCGAGTTGTATT CCTGAATGGAATGCAC TGCTAGTTCCAATGGATGGG
AGAGTAAACACTGCTGCATT CACAATTGATA CGTTGCTTCCCTGAGCCTTAAGGT
10 AACTTTCTTCTGTCAACAAACAGCACTGAAGTTCTAGTAAGTGAATGAGATTATCT
GTTTCAGGGTTGGTTAGAGTACTGTAATTAAATTAGCTGTCTCCTAAAGAGGA
ACTCCCTTAACCCCTCGATAGACTGAAAGTGGGTGTGGGGAGGGGGAGGGAAAG
AGAGGGAGGTAGTTGTAGAAAAAAAAAAAAAAA-3' (SEQ ID
NO:40).

Northern blot analysis using a sequence from the R055 clone revealed the presence of a 7.3 kb mRNA transcript. In addition, this analysis revealed that the expression of the R055 mRNA was marginally upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R061. The following nucleic acid sequence is within the R061 clone: 5'-GGCCCCCCTANAAGGTCGAGGNTATCGATAAGC TTNAATATCGAATTGGCACGAGGCCACCAGGTCTTGCATTGTCTTTAAAAGTG GTGTATAAGGGGGAAATTGGCAAGACAGACATTCTAACACAGAGGGGAACACAGAC AGACAGACAGACAGACACACACACACACACACACACACACACACACACACA CA TGTGGCATAACATACAGCTGCATGGGAAGCAGCCCCCTGCRCATTGCTTATACATC CTCGAGTCCTTCATCTTTCTAAACGTGTGCACCCGCTATAAAGTGGGTGATG GGCTCGTCAGAGCTGGGCTGATTCTGTGGCCGGTGACCACCATGCCTCAGGTCCCTC AACCTCCATACCCATGGCCAATCCATAACTGCCACCCCTGAAAACCAAAGCAGT CTGAGGGTGCTCTGCCTGTCACTCAGAGGCCTGGGACGTTGAACCCAAAAAGCT

AAACTTATGAAAGCCGGGCTGAAATGGGGCCCGGGCCTGGGATAGCTCAGGCAGG
GGTTTCCACTCTGATGTTCCACTGGGCCAGTTTGTCTCTATTCTCT
GTTCATCCCGCTGAGTGTGTATCCATGATGATTCCAGCATGAAGTACGTAGCACA
CTCCAGTTAGGAGAAATTTAAAGATACAAGACTAGCGTGGTGGTGAGATGAGAT
5 AGTCTTCTCGTGCAGCAACCTGAAGGGCAATAAGGACAAAGAAGGCCATGT
GGCAGGGTAGCCCCCTCCAGACCAGGGTACAACGGACAGTTGTGGTGAGCCTCG
GAAAGGCAGGGTAACCTCCCTCCGTTCTCACCCATGCCAGAGCAAGGCAGG
TAGTGAAAGGGATATGCTTGATGCAGAAAAGCCAGCTCAGGCATGGCAGGTGGGAT
TTATAGCTGGTTTGTAAAGCGAACAGCTGATATTGATAATGCAGTAACCAGC
10 GGTTGAGAGTGACAAGCCCTAAATCGAACATTAATCAAAGGAGAACTTAAACGG
CCCCCTTACAGAAGGACTT-3' (SEQ ID NO:41).

Northern blot analysis using a sequence from the R061 clone revealed the presence of a 4.9-5.0 kb mRNA transcript. In addition, this analysis revealed that the expression of the R061 mRNA was marginally upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R066. The following nucleic acid sequence is within the R066 clone: 5'-CGAGTTTTTTTTATGTACTTGAAATATAT
TTAAAAACATTAAAAATTCTATATTAAACATATATTATGTTAATTGGTACACTT
AAATAGAACCTGTATTACAATAGGCTCTGATGTGGTTAAGTTAATGCCAATT
TTTTCAATAACATAATTATATAACTAAAATACAATAATTTTCTTGT
TACATGGTGAATAATATCTTACCATAGAGAGAACAGGCCACAGACATTACT
AGTTCAATGGGAATCACTATAAAAGCATCAGGCCTGCTGCCATGCATGAAACACT
TCTGCCAAAAAGAGACCACAGCAAGACTTCAGAACAGAACAGAACAGGAC
GGAAACAGAACGAACAGAACAGAGGAGAGTTAACAAATCAATCTCAGGTCAA
CATAAACCACCGACATGGAGCTATGATGTATCTAGTGGTATGAGAGGCCACT
25 GACCACACAGTTGGAGGGCTCCTATGAAGCCACCTAATCGACCTGGCCCTCGA
ATACCGTGAGATTGTGATGGGGCTCTTATTGTTGACTAACGTCTCTCAGAATG
AAGCTGCAAAAAGTTAGCATATAGCAGATATTCAAAGCATTCTTAATAGGTTAAA
ATGATGACAGAGATTAATGTTCAAACGGCACAAAACAATCTAGGCTACGTGAAG

15
16
17
18
19
20

TCTTCCAAAAACAGGGGATTCACTGGGACTCCAGAAGACAGACTAGTTCTAAAGGA
ACAGTTGAACAAAAAGAAAATTTGCTGATGGTATCTCACTCCCTGAGTCACAGT
GGACAGCCACTTGTTCACCCTTCCACTCCTAACAGATGAAGCAATTGTTGCCTCTT
TTCTGATGCCAGGAGCCCAGTCAGGTAACCACTAACACATTCGCGCTGGCGGAAA
5 ACCTCACTAGGGAAATGGGCTTAACACTAGTTCTCATGGGCCATTCACTCAGGCT
TCCAGCTGACTCTCCTAACCCCCAACAGAGGTAAAGTGTAGAAGGGACCCTGTGCTG
AATGGACAGAACTATCAGGAGCTTCTGTGCTCTCACTAACAGTATTCCCTCCTG
TGTTCTGTCTTTCACAGTGAAAGCACCTCCTATGCCCTGTATTCTAGCCCTTAC
AGACAGACATTGCTCATTGCCTAACAGTTGGTGCTTTCTGGTTTGTGTTGT
10 TTTCTTCTTCTTTTCACCAAAATGTCTCAAAAAAAATAAAATAAAAC
TAGGCTTCCTGAAGTCTAACGCACAGAAAGTTAAGTCTTCACAGCAAACATTTC
CCATCATGCTGCACTGATAGCATCACTGCTATGCCATATTGGATCCAAGCTGCTC
CAGGTTAACCAACTTATCCATAATTAAAATGGGATGGAGGCCATAATGGAA
TTTGAG-3' (SEQ ID NO:42). This clone is similar to BDNF.

25

Another IEG nucleic acid clone was designated R089. The first library screen produced a clone having an insert of 0.5 kb. A primary screen with a portion of this clone produced seven positive signals that were isolated. The following nucleic acid sequence is within the R089 clone: 5'-AGTCTGGACTAAAACGTCACAGCAGAAAAAAAATAAAAAAAAT
AATTGCTTTCTTCATTAGCAGCATAAAATAAGTTGGCCACTGGAGTAC
AGTACAGGGTGGACAACGATCCGTATTGAAGACCTACTTCTAGCACCAGCATC
AAGAACTAAATCCACCTCAGGACTCACAGAACCCAGGACAATTGCCATTTGAGC
AACATATGCATTGAAGAGTGTATAGAACAGTAAATAGATTACAGAGGCT
AATACTGTGATTGATTGACATTGCAATGGTGGCAAAAAAAAAAAAAAAA-
3' (SEQ ID NO:43). A portion of R089 was found to be highly homologous to a region within an EST from GenBank representing a cDNA clone from ae87b04.s1 Stratagene human schizo brain S11 (accession # AA774778).

Northern blot analysis using a sequence from the R089 clone revealed the presence of a 3.8 kb mRNA transcript. In addition, this analysis revealed that the expression of the R089 mRNA was marginally upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R095. The first library screen produced 5 a clone having an insert of 2.0 kb. A primary screen with a portion of this clone produced 53 positive signals that were isolated. The following nucleic acid sequence is within the R095 clone: 5'-ACTTGATAAAATTGTATTTTTCTACAGTCATTGTACAATTG TTACAAAACCATAGAAGACTACAACCTGTTAAATCATTGGTCTGCAAATATGT AAAATCTGTTGCAATTATCATGTATTACAGGGCCTGTTAGTCATTCAATGAT 10 TATTCAACAATGTCACACTCTAACATAAGACATGGCTTAAGACAAATATATTAGT ACATANATATTCTGAGAACATATTCCATNAATGGAAAGTNGCTGCTAACANATA CAGAATATACATAAGNTGTTCTAGCTTTAAAACAGTTTAAAATGGNAANGT GAAAAAAAGAGCCCCTAGGANCATTATCCCAAAAAATCCTACNAAATATTNA 20 GGGGCCAGGGGGGAATTAAAAATCTAAAANGGTGGTC-3' (SEQ ID NO:44).

15 Northern blot analysis using a sequence from the R095 clone revealed the presence of two mRNA transcripts: one 2.5 kb and the other 3.2 kb. In addition, this analysis revealed that the expression of the R095 mRNA was extremely strongly upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R113. The following two nucleic acid sequences are within the R113 clone: 5'-AARGGGRCCACCCCACCGSGCTA
25 AAGGCCAGGGCCCCCTGGAGMCCCAGGGTTGGCCMCCCCCTCACCC AAATGGTCTGCCAATGACCCAGGTACTCACAACATGTTCCAGGAGGAGMCTGGGC CAGGATTITGACCAGAGGGTATGGAAAGGGAAAGGGAGAAGAAATCGACATTAT TTTATTATTATTTAAATGTTACA WTTCTTGTGTTCCAAGCCCTGAATAG AACAGATAGCATTAAAGGACTCTGTTCCCACCCCTCTGTCTCTCTCCCCAC 30 TTGTGCTAACTTAGGATAACACTCTATTCTGTTCTAAAGTGATTGTGGA CTTGTGCCGTGTGAAGTGCATTAAAAGGTTCTGTTCAAAGATCGATTGTCGTCC TGTGGGGACAGTGGCTCTAAGAAATCTGCATTGTAGGAGAAGACAATGAAAGACC

CTGGCCCTGTCTCTCAAAACTAACCTCTGTATGATTAAAAAAAATTCCATTAC
TTTACTTGTGGTACTTGATTTGAGGAAGAAAATATTCAACTTGTATAAAGACTA
GGTATCAGGGTTCTTGCAGTGGGAGTTGTATATATATCGTATTTGGTATATCGT
AGAAAATCAAGCTTATGCATCCGTATTGGGATATGTCATGACGTGCAGTGAAAT
5 TTGCTATTAGACCCTGGAGGCAAACGAGTTGTACAAGGTTATGGCTCCATGGGGA
ATTCTAATTCTTCTGGGGACCTTGTCCCCTTTACAGTAATGGTGAAATGGT
CCTAGGAGGGTCTCTAGTCGAATTCTCCAGGCAGGACACGTGCTAAAAAATCT
TTGTATAGTTAAATTTGAGGAGTATCTCTGCTCAGAACGATCTGTGGTGGTGTG
TGTGCGTTCTGTACTGTGTGACACAAGCCTACAGTATTGCACTAAGGA
10 AAGCTGTTAGAGCTGCTGATGGAGGGAGAACATATTAAAACCTATTCCCT
CGGGGWTRTRWCWMGTTATGTWCTTGTCTGGCTTCCACTTTCCACT
GAGTAGCATTGTAGAATAAAATGAATTAAGATCAGMWRWRWRMAAAAAAAAA
AAA-3' (SEQ ID
NO:45) and 5'-AATTCCCCATGGAGGCCATAAAACCTTGTACAACACTCGTTGCCTC
15 CAGGGTCTAATAGCAAATTCACTGCACGTATTGACATATCCAAATACGGATGCA
TAAAGCTTGAGTTCTACGATATACCAAAATACGATATATACAAACTCCACTGCA
AAAGAAACCTGATACCTAGTCTTATACAAAGTTGAATATTTCTCCTCAAAATC
AAGTAACCACAAAGTAAAGTAAATGGAATTTTAAATCATACAGAGAGTTAAGT
20 TTTGAGAGACAGGGCCAGGGTCTTCATTGTCTCCTACAATGCAGATTCTTAGG
AGCCACTGTCCCCACAGGAACGACAATCGATCTTGAACACAGAACCTTTAATGC
AGTTCACACGGCACAAGTCCACAAATCACTTNGAAACAAAACGAAATAGAGAGTG
TTATCCTAAGTNAGCACAAGTGGGGNGAGNGAGACAGAGAAGGGTGGAACAG
AGTCCTTAATGCNATCTGTTCTATTCAAGGCTTGAACACACAAAGAAATGTAAA
25 CATTAGNATAATAAGAATAATGTCGGTTCTCCCTGTCCCTCCATAC
CCNCTGGCAAAATCTGNCCCAGGTCCCTCCGGAACATGGTNGAGTACCTGGTCCA
TTGNAGNCCATTGGNGAGGGCGTGGCCAA-3' (SEQ ID NO:46).

Northern blot analysis using a sequence from the R113 clone revealed that the expression of the R113 mRNA was upregulated in response to the multiple MECS treatment. Specifically,

R113 mRNA expression was induced seven fold by the multiple MECCS treatment as determined from Northern blot data using total RNA from rat hippocampus (Table I). In developmental studies, the expression level of R113 was found to be low and unchanged in embryonic as well as post natal development.

TGCATGCACTGTTAGAGGCTGGATGTGACAATAATTGGGAGAGGCAGGAA
AGGAGTCCAGGACAAGCCTATGATATTCCCTCATTACCTAACCAAGACCTCATTG
AACATTCTATATGCAAAGGGCATTAGCCCTCAGGTTCCCAGAGGAACCTCCAAT
AAAGACCTGTCTCAGGGACCCCCAACCATTTTAATGGTCTGCTTCCTGACAAGG
5 CACTGATGCAGGCAAGGGTTGTTTAAGGGTGGTATCCAGAATGGAG
CACCGGAAATAGGAAAATCCCTATTATAGCCCTCCTAGGACCAAGATTCACCCA
TGGCTGGGTGCTGGGACGCAGAACAGCAGAGGGTGTGCGTGCCTGCGTG
CGTGCCTGCATGGTGGTGAAGCAGCTGAGATGCTCCAGATCTCTAAAGTGCAG
AGGAGAAGCAATGTGCCTCACCCGGTATTCCATAAGCAGCCATCTTGAGAGC
10 AACTCGGCTGCCAGGAGGAAAAACAGGTCAAGGCCAATCTCATGGTTATCAATGGA
CCCTAGAGTCATACGCTGCCTGGTCCAGCAGTGAGAGGCCATCCTGACTCCCTGTTG
CCTATCTTAATGCTCCTGCAGGGCAGCAGATGGTTGGGTGAACCCAGAGATAATAC
CCATACATTGAGAACATTCTTAGTCTACATCTCATAGTCATTAGCGAACTGGACA
CATCTACCCGCATCACCCCTGGAGGTCAACAGGGACCCCTGAGGGTGGGCTGATGC
15 CAGGCACTTATATAGTGAAGCAGGCGTGAAGTCTGGACCCAGGGAATCCATCTCA
GCCCCCACCCCTAGCCAGGAGAGAACAAAGTAGGCCCTGTTCAAGCCCAGCTCG
GAGGCTGCCTTAGCTCCTCGCCCCCTGCAGACCCAGCTCAGCTTGATGAG
GTGTGACAACGTCAATTAGAGGAAGCCGCTGCTGCCAGAGCATTAAAGAGCA
AATTAGAGAAGAAAAATCACAAGAGAACAGCTCTGCCTGCAGTCTAGACTCCAG
20 GGGACTGGGTGGAGGAAGGAAGAGCTTAGGGCATAGGGATGAGGAGGTAAAAGTA
ACAGCAGGAAGGGTCACCTGCAAGTCCCACGCAGTTAAATGATAGGTGGCCTTTT
TTTTTTTTTAATCTGTAGCTTTGTCAGGCAATGTGCCTATCTCTTCAGAACAAAT
TAATCAGTGGGTCAAAGGGCCCTGCCATGCTGGCTGCCCATCAGGCTACTCAA
AAGGAAAGCAGTCCAAGCTCCAGCCTGTGGCATCAGGCCTATCTGCTGGCCTG
25 GTGTTATCAGCTAGGCTCGCTTTCTGGTCAAATGGGCCTCATCCATTCTGTCCC
CACTGAACCTCTGTCTGGTGAAGGAAGGTAACGTAGCTGCCTGATGGCTGCT
GCAATGTGTGGAGAACATGTGAAAACCCACACCCTGAAGGGTGGCACAT
ATGACACATTACTCAAGAGGACACAGGACTGGACGGTAGGAAGCCAACTCAT

TTGTTTGTGGACTAGTCACTGTTCACATTATTAAATCGACTGACGTGACAGACTCC
TTCTTGACTGGCACTGTGACAGAAGGAGAGAACTCAGCAATGGAAAGCTGGCC
TCCACAGCTACCAAGGCACACAAAGAAATCCAGTTAACCAACCACCTGGCCAGAAAA
GGGTCAAGGGACAAAACAAAATGATTAGCAAGTAATTGGCTCTAAGAGAAC
5 CACAGGTGTCTGTCACCTGATCTTATTCTGCTACACCCAGGAAATGGTTGCTC
ATTACCCAGTAGACTCGGAGAAGTTAATGCTTCAAGGTACACAGTACAAAGCT
GGGATTGAAACAGTTGTAACTGACTTCAATCTGTGTCATGCTACCTGGCAAAC
TGTCCATATTGCTCCACAGCCAGATCCAGAATAACATTGTCTCCTCTCGTCAAAA
AAAAAAAAAAAAAAA-3' (SEQ ID NO:47). In addition, the R114 clone contains an ORF
10 from basepair 94 through basepair 993. This ORF encodes a polypeptide of 300 amino acid
residues. The translational start site was assigned to the first methionine residue in the ORF.
The amino acid sequence of the R114 polypeptide is as follows: MKKESRDMDCYLRRLK
15 QELMSMKEVGDGLQDMNCMMGALQELKLLQVQTALEQLEISGGAPTFSCPSSQEQT
ECPRWQGSGGPAGLAACPSSQPSFDGSPKFPCRSICGKELAVLPKTQMPEDQSCTQQG
IEWVEPDDWTSTLMSRGRNRQPLVLGDNVFADLVGNWLDLPELEKGERGETGGSGEPE
20 KGEKGQSRELGRKFALTANIFRKFLRSVRPDRDRLLKEKPGWMTPMVSESAGRKKV
KKRSLSKGSGRFPFSSTGEPRHIETPATSSPKALEPSCRGFDINTAVWW (SEQ ID NO:48).
A portion of R114 from base position 111 to position 210 was found to have 98 percent identity
with the mouse G protein-coupled receptor EBI 1 (accession #L31580). This homology,
however, ends with position 210. In addition, the 100 bp region of 98 percent identity in the EBI
25 1 clone appears to be an artifact produced while PCR cloning EBI 1. This “identity” region in
R114, however, is not an artifact, since RT-PCR with primers located in the 3' untranslated
region of R114 and the middle of the “identity” region (139-164 bp) was used to obtain portions
of the R114 clone. In addition, a portion of R114 from base position 143 to 601 was found to
have very strong homology with a human EST obtained from prostate tumor (accession #
AA595469). This indicates that the entire “identity” region is from one gene and not a product
of concatamerization of the R114 clone and EPI 1.

The alignment of the human EST obtained from prostate tumor with R114 revealed a

very high level of identity at the 5' and 3' ends of the overlapping region and a somewhat lower homology in the middle. In addition, 13 base insertions and deletions were identified between the EST sequence and R114. After excluding 7 of the 13 differences because they would have caused a frame shift, the two sequences were translated and compared. This comparison
5 revealed an 81% homology at the nucleic acid level and an 85% homology at the amino acid level. Interestingly, no homology was found between the two sequences before position 143 of R114. Position 143 is six bp before the third methionine residue. Thus, the translational start site of R114 may be the third methionine residue in the ORF.

Further, 95% homology was found to exist at the nucleic acid level (98% at the amino
10 acid level; there is a one base deletion in the EST that is probably an error of sequencing) between the 3' end of the R114 ORF from position 580 to about 987 and the full length of an EST from mouse mammary gland (accession # AA472513).

Northern blot analysis using a sequence from the R114 clone revealed that the expression of the R114 mRNA was moderately upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R198. The following two nucleic acid sequences are within the R198 clone: 5'-TTTKTTKTAATTTTTTTTNTTGGGTTGA
15 TTCCTTGTTTANTGCCAAATNTTACCGATCANTGANCAAAGCAAGCACAGCCA
AAATCGGACCTCACCTAATTCCGTCTCACACAAAAATAAAAAACGGCAAACCTCA
CCCCCATTTTAATTGTTTTAATTTACTTACTTATTATTATTTATTTGGC
AAAAAAATCTCAGGAATGCCCTGGCCACCTACTATATTATTCATTTGATAACAT
20 GAAAAATGATGGGCTCCTCTAATGAAAAASCAAGGAAAGGAAAGGCCAGGGGA
ATGAGCTAAAATTGATGCCACKTGGGAGCATCTGGTGAATAATCGCTCACKTCT
TTCTTCCACAGTACCTGTTGATCATTCCACAGCACATTCTCCTCCARAAACSC
GAAAAACACAASCAGTKTGGGTTCTGCATTAAAGGATAARARARARAAGAGGTTG
25 GGTATAGTAGGACAGGTTGTAGAAGAGATGCTGCTATGGTCACGAGGGGCCGGTT
TCACCTGCTATTGTTGTCGCCTCCTCAGTTCCACTGCCTTATGTCCTCCTCTCTC
TTGTTTAGCTGTTACACATACAGTAATACCTGAATATCCAACGGTATAGTCACAA
GGGGGTAATCAATGTTAAATCTAAAATAGAATTAAAAAAAAGATTGACATA

AAAGAGCCTTGATTTAAAAAAAAAGAGAGAGATGTAATTAAAAAGTTATTAT
AAATTAAATTCAGCACAAATTGCTACAAAGTATAGAGAAGTATAAAATAAAAGTT
ATYHGTTCAAAMTAVCDTRTCGAMCTCVABCCCGRGGAAKCCMCTASKCBA
RHSCGGCCCCACCSCSSYSKAKMTYCATHKCTTTGAWWCCCTTAGTGAGGGTTAA
5 NAA-3' (SEQ ID NO:49) and 5'-CAGCCTCTCACTCTCTNGCTCTCTGTCTCTCCT
CGCTCCCTCTCTTCTCCTCCCTGCCTCCAGTCAGTCATAAAAGTCTGTGCGCTCC
CGGAACCTGTTGGCAATGCCTATTTTCAGCTTCCCCCGTTCTCTAAACTAACTA
TTAAGGTCTGCGGTGCAAATGGTTGACTAAACGTAGGATGGGACTTAAGTTGA
ACGGCAGATATATTCACTGATCCTCGCGGTGCAAATAGCTTACCTGGTGCAGGCCG
10 TGAGAGCAGCAGGCAAGTGCATGCAGTCTTAAGGGCTTCAGACTGTTGCTCA
AGCTGGGTGACAGCATGCCAACTACCCGCAGGGCCTGGACGACAAGACGAACATC
AAGACCGTGTGCACATACTGGGAGGATTCCACAGCTGCACGGTCACAGCTTACG
GATTGCCAGGAAGGGCGAAAGATATGTGGATAAACTGAGAAAAGAACATCGAAAA
ACCTCAATATCCAAGGCAGCTTATCGAACTCTGCGGCAGCGAACGGGCGCG
15 GGGTCCCTGCTCCCGCGCTTCCGTGCTCCTGGTGTCTCTCGGCAGCTTAGCGA
CCTGGCTTCCTCTGAGCACGGGCCGGTCCCCCTCCGCTCACCCACCCACACTC
ACTCCATGCTCCCGAAAATCGAGAGGAAAGAGCCATTGTTCTAAGGACGTTGT
TGATTCTCTGTTGATATTGAAAACACTCATATGGGGATTGTTGGGNAAATCCTGTTTC
TCTC-3' (SEQ ID NO:50). This clone is similar to neuretin (accession # U88958).

20 Another IEG nucleic acid clone was designated R233. The following nucleic acid
sequence is within the R233 clone: 5'-AAACCNAGAACCCCCCTTGAGAACCNNTG
TTCCCTTCAAGCCAAGGAAGGCGGGGCCAACCTTGGTGTNTTGAAACAGGCC
TTGAACAGGAGGNTWAGGAGAAATTCCGGTTGTGAAACCCAACAGGAACCCCTT
GGCACCCCTGGCCCCAAGGTTGTGMAACTTGGTTGCTTAATTGGACCGTTTGC
25 CTTGAGGATTCATGACTTTTGTGKGCCCTGTGAGCCAAGATGTTGGGTTTCCA
TCAACAWTAATAACCCCTGCTTTGGGGTGTGAAACCCAACAGGAACCCCTT
ATTCCCCCACAGCTCCTGGGTTTCATCTGTTACTGTTGTCTGGATTAGGAGG
GCGGAGAGGGTGGACTCCCTGAGACAAGATAAGCAGGTGGAGACATAGAAGAGGG

AGGGACATTAACATAGTAACATTTCAGAGGTGACAGAGATGATA
CACACGGGCAGCTGGAMTTTGTGAAGGACAGAGGAGCTGGCAGACCCACAGGGCCATACCTTGAGG
GACAGGTGAATGGCTGGTTACCAGAGACAGGACTGGTAGACAGTCAGTACCTCAC
TACGATGTGCCAAGAGATYTGGGATCCTGGAAATGTGTGGAGAAGAGGGATTGAC
5 ACTCCCCACCCCCAAGGCCCTTCCCCTTGCTGACAGCATTGCTGTGGCGTGGCTG
TTGCCTTGTCCCTGTCCCTGGGTGGGCACACCCCTCTGTGCTGTGCTGCCTGTG
CATCAATAAACAC-3' (SEQ ID NO:51). This clone is similar to KIAA0273 (accession #
D87463).

Another IEG nucleic acid clone was designated R241. The first library screen produced
10 a clone designated R241-4. This R241-4 clone contained a 2.0 kb fragment and a polyA tail. A
second library screen using 5'-end of R241-4 as a probe produced an additional clone designated
R241-12. The following nucleic acid sequence is within the R241 clone: 5'-GCANTTTGGAGT
TATTGCTAAAACCAGGNTAAGGCACTTGTCCCACAGGACCCAGGAATCNTAAAN
GGGTTGAAATTGGGNCGGGGAACCCCAGGATATAATGCNACTTTGTTAGGGGGAG
15 AGTCAGCTCTAACTGGTAGTAGTGTGAAAGTAAGCACCTGACTCAATTGGAA
AGCACTTGGTAAATGGAGAGAACTTGGAGTTCCCTATCATCTATATCAGTCTTG
AACACACCCCTCAAGTCCCAGCCTCAAGGCTCAATAAAGGACCACATAGCAGGTCTG
AGGCTCACTGCTCTCAGCCCTAACACAGGGCAGTGGAGAGCAGGGTATCTCCCT
20 CTCTGGAGCTTCTCCTGGCCTTCTCTCCACTTGGCTCTGCTCAGCAGCAGATAT
ATTCTGGGTTCCATAAGGAATCCAGCTGCCCAGTGGCTTGACCCGTCAAGGCAAG
ATATCAACTCTGAGGATGACCCAGTCATGGAGGAAGAGAGTGTGACAAGATCCGCA
GTTTGAAGCAAAACTGTGTTGGTCTTTCAAGAAACAAATGGGCACATTGAGTTCT
GTTCACTGTCAGAGGATATCTTCCCTTGCTCCCAGATTCCAGAAATGGATAATGT
25 TTTCATTCTGTGGGAAGGGTCAAGAACATAAAATTGCTCAACAATGCTTGCTTCC
CTTGAGGGTTGTGAGCAAAGGCCGATATGCCTCCCTGCATTCTCTTACCTCAAG
ATTGGAAATTCAATTCTGGAACAGAAATTATTACACAAGAACACTTGTGTCAG
CCTTGGTTACTGTGGGAGTTACATAAGGGTACAGTCTGTATCTTCAARTAAACA
GGAACTGGGCTTGGCGGCCTATTGACCCAGTTATCTAAATATAACTGTGGCTC

CAAATGATTGGCCAATAAACATTCCCTTACCTTCAAAGTTCTCCATCAGTCATTTC
TGTGGCAGCACAGTCCAATGTCATATGCCCG: TGCAAAATTGTGAAAGTAATTAGTGA
CAAAATAACCCTCCCCCTTCAGTGGCCAAACTGTCAGCTGTAGCAGCGCTGCAGA
AGCGAGTACTACACTATGTACGGAAAG:CCTGTTCCATTACCGGACTAGACTCAAG
5 AAATGCCATCTCCGAACGGTGGCATTCAAGGTGGTAGTCGTTGAATGGAACAGTC
TCTATGTGGACATTGTTAAAGTGTAAAGAGTATTTGAAAATTAAAGTTACATT
TACAAC TGCTTATTGAAACAATTGTATATAAAATTACCCCTTTCACTGTT
AATTAAAGTAAACCTAGACCTGTAGACAAGTGGTCAACTGATATGTATAGAAGCT
GTGATGTAGACAATACCTTCTCTGTAAATGGTCATAAAATATAGCTGTTCTGTG
10 TTTTATAAGTTGAGGGTATTTGTTGTTATAACAACAAAATTATTGCATTGAA
ATGGTTTTATGTAATAGAATCATGCAAACAGTGAAGGATTATAACATGGTATATGT
AAATGTATAAACCTTAGAAAGAAATAACAAACAAATTCAAAAAAAAAAAAAAAA
AAA-3' (SEQ ID NO:52).

15 Northern blot analysis using the 3'-end the R241 clone as a probe revealed the presence
of two mRNA transcripts: one about 7.0-8.0 kb and the other 4.8 kb. In addition, this analysis
revealed that the expression of the R241 mRNA was marginally upregulated in response to the
multiple MECS treatment.

20 Another IEG nucleic acid clone was designated R256. The first library screen produced
a clone designated R256-8. This R256-8 clone contained a 1.8 kb fragment. A second library
screen using 5'-end of R256-8 as a probe produced two additional clone designated R256-2 and
R256-3. These additional clones contained each contained a 3.0 kb fragment. The following
nucleic acid sequence is within the R256 clone: 5'-GGCACGAGGACAGATTCTGAGA
TGGAAACTAAATTACATCCCAGAGGCAGGGAAACTATGAAGTCACCGTTCTAGA
CCACCCCTACTGAGGTTCCACGGTCACACTGACGGCAGGACCCACAAGGGCAGGG
25 TATTGGTCTGCCCTCCTTCTCTGTCTGACTTACCTAACCTTGGTCTCGGCTGC
TGACACTTGGAAAGGACCAAAATTACTGATAGTATTCCCCCTGTTGTAAATAGC
CTGAAACCTTGGAGAGGTTCCAGAATACTTCTGTATATAAGGGCACAGGTGAAGACAT
TGTCCAAAGCTTATTATTTACCCGGCTGAGTAACCACACCAGTA

GGGGGAAA ACT AAA AT GTG TT GAG TG AA AC AA AG TC ACC AG C CT GG C TAG AA ATT
CTCCCTGGAAAACATCCATTGATA CA AT GTAAACGTTAGTGTCACCCTAGATA
CATGTTGAAAGAGAGCTTGGTACGCCAGTGGAGGTCTCCGGCTGTCGGGATCATTGTGAATA
5 AAAGTGAAGAGGTGGCCAGTGGAGGTCTCCGGCTGTCGGGATCATTGTGAATA
CATTCTTGCCCCTTAAGTACTTGTTACTAAACATGTGCAGTGGTAGGTATTAGT
GTTAGATCACAGTGGCACTTCCCTGGGGATCTGGGAAGACCAGAGCTGCAACTC
TGCCTGTTGATCCCTATTCTCACAGTGCTGTATTAAAAAAATAGGATTTAAGAC
AGATAACCACCTTACATTGTGAGTGTGTTGCCTGTCTAACGACAGATAATTCTT
AACATTCTCTTCACCTAGTACTTAGGCTAATTACACGTCTGTCTATGCCATGA
10 GTAAGTGGACTGTAGTCGGACCAAAAGAAAACAATGAGCCGGACCATTGTG
CAGTCAGTTCTGGCCTTAGATGTATCCTAACGAGTAAGTGTCTGATTGTACCTGG
TGGTATGATCAGTTGTCTCGTAGCTGTCTCAGCTCCACAGTTACAATGCAAATCTGT
CTCAAGATCTCACGTCACTGCTGCTGAGAGCAGGGAGAATTCTCTGCAGCTTT
AAAGTTGTGGCCGGCCTGAAATCCTCTGTTAATTACTGTGTGAGCCAGAGGGAGCT
GCCAGCAAGGGTGGGCCAGGCCAGGGAACTTCTAGACTCCCCGCTCATT
CAATTGATCTAGGCATTGGCCTGCTACTGACCATTCTGCCCTGTGAAATGTCCC
ACACTTGAAAGCAAATACAATTCACAGCACAGTACACACACAAAAACCTGGCATAAG
ACAGGGGAGGTTCTTCTTATTGTGAGCCGGTGCCTGGAAACGGATAACAAAGG
GCAGCCTTCCACTCTGGCATAATGGTGGAGCCTCTTCAGGCTTGACACCTGTC
TGAATAAGAGTGATTAGAGCCGCATAATATCCCTCTGGCTATTGAATATGTGGT
TCACATACAAACCCGTAGAAGTTAGAAGACGGCGTGTCTGTTGCTATTGTTGCTT
CCACTACATTGAGGTTTGTAAAAGTGTATTTCACGATGTGAAACTGAA
GGTCAATAAATTATTAGAGATTTCAAAAAAAAAAAAAAAA-3' (SEQ ID
NO:53).

25 Northern blot analysis using a sequence from the R256 clone as a probe revealed the presence of a 4.0-4.8 kb mRNA transcript. In addition, this analysis revealed that the expression of the R256 mRNA was moderately upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R261. The first library screen produced a clone containing a 1.0 kb fragment with a polyA signal and tail. A second library screen using a portion of this clone as a probe produced 41 positive signals that were isolated. In addition, PCR using T3 or T7 primers along with a R261 sequence specific primer resulted in the 850 bp
5 of additional sequence from a solution containing the phage plug from a first screen. The following nucleic acid sequence is within the R261 clone: 5'-

CTTAAAACCCCTAGATTCCTGTTA

CATACTAACACAGGTCTCCCTTCACTCCAACCCCAGGTTCAGGCCTCAGAGCCA
TGCTGGGTTGGAGAAA ACTGCATTCTATGAGGGTAAAAGTAGCTGCCCTCTTG
10 ACCCTTCTGCTAGGCTCATGCGGGATGGGAGAGGGTATCCCCAGGATGGGACA
GAGGAAGCCTGGCTAGGGCCTCTAGCCAATAAGCAAACAGGAACATAAGCAG
ATCAAAATCCTACACTAGCTTATTAGGGCCCTGTTAGTTGAAAACCTGTTGCTGTCC
CAAGTTCTTCAGTTACAACCGAGTACACTACTCTCCA ACTGTCCTAAGGGTCACTA
CCCAGCCAGCTTGGATCTCAGCACTTTAAAAGCTGAAACTCCCTCTGCCCTCT
15 TGTCTATTCTCACTGCCAGTTGGGCCTAGGCTCAGTCCTGGCAAATGCCATGA
TCCTGCTGCTGTGGAAAGTTGATAGGGCATTGGCTCAAATTCAAAAGGCCTCGC
TCCTGACCTGATTCTCGAAGCTCCAGTAGTTCTAGACCCCTCCAATCTCATCTGA
CTGGTTGCAAGGCTTATTTCTTGTACTTCCTATAGAGCATTCTGTAGCATTG
AGTGTGGCGATATTTGTTGTGTAGATTCTAAGAACCAACACTACTCAGTCTCC
TGCTAGTCTGACTCCTGAAGCATCAGACCTCGTCATACGGTATTGACTGTATGTG
20 CCTTCACCTTGAGCATGCTTCAGGATTTCTTAAACCACAGAACTTGAATACA
CAAGGGAACCAGAATTCAACAAAGTCCTATGCAACCCCTAGACAGGAGGAGGTTAGAG
AGTCTGTCTGATTGGTATTCAAGAGACCCNAGAGAAATTGTACCAAGTTGTATT
AATGTCAGTACTACCAGCACTTGCCAAA ACTAAGGATGTCAGAGGGACCTGTTCT
25 AGAGTGAGTCCAATTACATCAAAGGGCAACTTACAGCTTCTCCAGTAAGTCTGAG
TGGTTCTTGTGAGCTGGTGTCACTTCTAACCTTGCAGTCTAGCCCAGCAGGGCCC
TGTGTGTGTGAGTGCAGTTGGTGTGCTGTTGGAGTATGCCTGCTCCCCAGCCTGGAA
CCCTCTCAGCAACTTGCTGGACCTATAATGTCTAGGTGCAACAAGGACCTACCA

GAGCTCCTGGTGGCTTCAAGATCCACGTAGCTTGTGAGGGGACTGAATGCAG
ACAAACCACAGCCTGCTCAAATACCTCTTCCTACCACCTAGTCCAAATGGAA
CCAACAAGTTGAGTCATCTCTGTTGGGTGTTGTGAGACTGGCTGAAGTGAA
AACTCTTGACTGACCATGTTGATGTGTCGACAGACTCAAGGACACAACCACCTC
5 GAGCTGGTCATGTGGCATGCCTGTATGTGTAAACAGGATTCTGAATGTTAGGTT
GTAATGCTATTCTGTATGGGAGAAAAAAAATAATAAACAAATAAATCTATTAA
AAGCACAAAAAAA-3' (SEQ ID NO:54). Sequence analysis revealed the presence of
some homology with EST sequences including that of a cDNA clone from ae69b04.s1
Stratagene schizo brain S11 (accession # AA774320).

10 Northern blot analysis using a sequence from the R261 clone as a probe revealed the presence of a 4.0 kb mRNA transcript. In addition, this analysis revealed that the expression of the R261 mRNA was marginally upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R272. The first library screen produced a clone that was used in a second library screen. This second library screen produced two additional clones designated R272-1 and R272-2. Clone R272-1 contained a 2.0 kb fragment while clone R272-2 contained a 1.7 kb fragment. The following two nucleic acid sequences are within the R272 clone: 5'-CCATGGGGACTGGTTGTCACCNATTGCCATGGNTGGTT
GGTAGGTGTTTGGGACATTTGTTNCGTTGAACCTCCAGATTATTGGGT
TTTGTTTAATTATTTGTCAGAGGAAAAATAATTAACATCCATCTCACAGGCT
TGCTTGACTGTTCAAGGCCTGCTCACTTTCTGCTCTGCTCTGG
CTTCTTCATGATAGTGCTGGACGTGGAGCTGAGAGTCTCGTTACTCTAGGCAAAC
CCTCTACCTGAAGCCAGAGCCCAGCACTCCGTACCACACAGACTCTGAAGCTGGC
AAAGTTTAGAAGCTGGAGTTCTGATTCTCATTATTAAGTTCTCCTCAGTCT
TTAGATAGAGGTAAATGTGGCTTGTAAAGAAAAGAAACGAAAGCACGTAATGTACA
25 CCTATTCTGAATTATGCAAATTAGCTTACTCAGGGTCAACTAAATTACTCAACTC
GCCCTTAGTTACTCTTAATTGCAAAAAGAGAAAAAGAAGGAAAACCTAAATAG
GACTATGATTGGGAGCCAAATTGATAATCTGATGTAAAAGTTGCTGTGTTAACAC
TAAATTATTAAGTAGACTTTCTAGGATATTGTATTGATTCATTGTGATATGCC

5
10
15
20

TAGAATGATGTATTAGATAAAAATCAATTGTAAAGTATGTAAATATGTCATAAATA
AATACTTGACTTATTCTCAAAAAAAAAAAAAA-3' (SEQ ID NO:55) and
5'-GATTTATATTCAATGTTTATTAAATCCATTGCAGTGGTGAATGCCCTTT
CCTCCTAGACACCCGTATTATACCATTGGGATTAAGTCAAAGTTAAGTATATT
TTTCTTACTTGAGCTCTATATATGCAATTAGATATCTCCTGATGACAGTTTATAT
GTAAATGTAATTAACTTCTTCCGTGTTGACGAAGTCTGTAGGTGTTAGGGTAG
AAGTCTCAGCACTCACTCTCACTGGATGTGCAGTGTGCCTGCCATGGCGCACGG
CTTCTCAGTAATGATGCCATCTCTGCTACTTTACAGAAGGAGAAGTTACTTTGAG
GTGGGTATGTGTTGATATCTAAACACTGTGTTGCTTAGATAGGCAAGACAC
ACTGCTGTGCGTGGCTCTGTGGTCACCTAGCCCAGGGAACGTAGCCTCAGTACT
TCCGCTGGCTTCTCATGCCTAAGAACAGCAGGGCCTTCTGTTGCTGGCTCTGGC
TTAAAAGTTGCCCTTGGGCTGGAGATGTAGCTCTGTGACAGAACACCAGCTAAT
GTCAGGTCTGCCGTAGTCTCTGGTACACACAAGCGCACACTCACATGATGGGGGG
ATGAAAGGCTGCCCTGTGTAACAGTATTCGATGGGCGTTGCCTGGATGACGATGT
TTATGTAECTCTGAAGGCAGATCCTGAAGGCACCCCTGTTCTCCCTTGTGTAACT
GAGTCTGCACTAGCTTAGCCACTGTTAGAGGCCATCCTAGTGGCGAACAGGAGG
CATCGCACTGGGTGATGGTTGCCCTCAGTCCTCAAGTAACAGCGGCCACTTATGC
CGATGGCTTGGTAAATCAAATATTACCAAGTGGCCTAGTCTGCCTCTGTGAAG
AAGGGGAGAAAGGAAGGGTGGAAAGGTGGATGGAAAGCCTTGGGAACTAGTCT
GATCTCTCAAGGG-3' (SEQ ID NO:56).

Northern blot analysis using a sequence from the R272 clone as a probe revealed the presence of a 1.0 kb mRNA transcript. There appears to be a discrepancy in the length of the R272 mRNA since the Northern blot data indicates a message of 1.0 kb while the cloning data reveals a message length around 2.0 kb. Regardless, the Northern blot data indicated that the R272 mRNA expression level was moderately upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R280. The following nucleic acid sequence is within the R280 clone: 5'-CTTCAGTCCTTGAGGGNCTTCCTTC

GAAGGGGATACGCCTACCTTCACGAGTTGCGCAGTTGTCTGCAAGACTCTATGAG
AAGCAGATAAGCGATAAGTGTCAACATCTCTCGGGCATAAGTCGGACACCAG
GCATCACAGTATCGTATGACAGAGGCAGGGAGTGGGACAAAATTGAAATCAAATA
ATGATTTATTTGACTGATAGTGACCTGTTGCAACAAATTGATAAGCAATGCT
5 TTTTATAATGCCAACTTAGTATAAAAAAGCTGAACGAGAAACGTAAAATGATATAA
ATATCAATATATTAAATTAGATTGATTTGATTTGACACTACATAATACTGTA
ACAACATATGCAGTCACTATGAATCAACTACTAGATGGTATTAGTGACCTGTAAC
AGAGCATTAGCGCAAGGTGATTTGCTTCTGCGCTAATTTTGTACAAACCT
GTCGCACTCCAGAGAACAAAGCCTCGCAATCCAGTGCAAAGCTGCATGCC
10 CAGGTCGACTCATATGCCGTGAAATACCGCACAGATGCGTAAGGAGAAAATACC
GCATCAGGCGGCCATGCCCTGATAGACGGTTTCGCCCTTGACGGTGGAGTCCA
CGTTCTTAATAGTGGACTCTGTTCCAAACTGGAACAAACACTCAACCCATCTCG
CTATTCTTGATTATAAGGGATTTGCCGATTGCGCTATTGGTAAAAATGAG
CTGATTTAACAAAATTACCGAATTAAACAAAATTACGCTTACAATTG
15 CATTGCCATTAGGCTGCGCAACTGTTGGAAAGGGCGATGGTGC
GCCAGGGTTTCCCAGTCACGACGTTGAAACGACGCCAGTGAATTGAAATACGA
CTCACTATAGGGCGAATTGGGTACCGGGCCCCCTCGAGGTGACGGTATCGATAA
GCTTGATATCGAATTGGCACGAGCCGAGCCGATATG
20 CACCTCCAGGCAAGTCAGAATGCGCACACGGYCTCGACCTGACTGTAC
ACCAGGAGGTGCGGGTAAGATGATGTCAGGCCATGTGGAGTAC
GTGACCCGGTTGGCTGTGTTCAAGTCAGCCAGCACC
TTCTGGTCTCCAAAAAATACAGCGAGATCGAGGAGTTACCAGAAACTGTACAGT
CGTTACCCAGAACGCCAGCCTGCCACTGCCTAGGAAGGTCTGTTGCGGGAG
25 TCTGACATCCGGAAAGGAGAGCCATGTTGATGAGATTCTACGCTGTCTCCAAG
GATGCCAGTTGGCGGGCAGCCAGAGCTGCTAGAATTCTAGGCACCAGGT
GGGGCTACAGGCTTGCCACCCGAGATCCCTCTGTTGGGATGAC
GGCCAGGGACAGTGATGAGGCTTGACTTCTTGAGCAACAGGGATGAAGTGCA

AGCCACCCACATTGGGCCTGAGCAACAANGAAATGTTGAGAAGGTCCNTGGAAGGA
ANGAGGAGGGAAAGGGAGGAAGGANGATAACTGGGATCCCCCTGGGGCAATCAAT
CGGGCCTCCCAAAGGAAAGNCCTAAAG-3' (SEQ ID NO:57).

5 Northern blot analysis using a sequence from the R280 clone revealed that the expression
of the R280 mRNA was upregulated in response to the multiple MECS treatment.

Another IEG nucleic acid clone was designated R286. The first library screen produced
a clone that was used as a probe for a second library screening. Briefly, the ³²P-labeled probe
was used to screen a UniZAP rat hippocampal oligo(dT) primed library (Stratagene). This
second screening produced a clone having a 4.7 kb full-length R286 cDNA sequence. The
10 nucleic acid sequence of this rat version of R286 is as follows: 5'-

CTGCCAGCCGAGGCTCCTGCCGC
TGTGACCCGCGCTCCGCCGCCGGGACCCCTGATAGCTAACATGTCAGAAG
AAAGTGACTCTGTGAGAACCAAGCCCCTGTGGCCTCACTCTCCGAAAATGAGCTGC
CACCGCCTCCCCCGAACCTCCRGCTACGTGTGCTGCTGACAGAAGACTTGGTCA
CCAAGGCCAGGAAGAGACTTCAGGAGAACGCCCAGTGGAGACTCCGGATGTGCAG
GCCCTTCGAGACATGGTACGGAAGGAGTACCCATACCTGAGTACATCGCTGGATGAT
GCCTTCCTGTTGCGCTTCTGAGGGCCGAAAGTTGATTATGACCGGGCCCTGCAG
CTGCTGGTCAACTACCATGGCTGCAGGCCAGCTGGCCAGAGGTCTCAGAACCTG
AGGCCATCAGCCCTGAAAGACGTTCTTAACCTGGATTCCCTCACAGTGCTGCCAAC
ACAGACCCCAGGGCTGCCATGTCCTCTGCATCCGACCAGACAGATGGATACCGAG
CAACTACCCGATCACCGAGAACATCCGCCATCTACTGACGTTAGAAAAACTCAT
TCAGTCCGAGGAGACCCAGGTGAACGGGTTGTAATCCTCGCCACTACAAGGGAG
TGAGCTTATCAAAGGCGTCTCACTTGGCCCTTATGCCAGAAAGGTGATTGGCA
TCCTTCAGGATGGCTCCCCATTGGATAAAAGCAGTTCACATAGTAAACGAACCTC
25 GGATATTAAAGGGCATTTCGCCATCATAAAACCATTCTGAAGGGAGAAAATTGCAA
ACAGGTTCTCCTCCATGGGTCTGACCTGAGCTCTGCACACGAGCCTCCAAGGA
ATATCCTCCCCAAAGAGTATGGGGCACCCTGGAGCTGGACACTGCCAGCTGG
AACGCGGTGCTGGCCTCGGAGGATGATTGTGAAAGAGTTCTGCCAGCCTGAG

TCTGGCTGCGATGGTCTCTGGGCCAGCCCTGCTGCCTGAGGGGCTGATCTCAGAC
GCGCAGTGTGACGACTCCATGCGAGCCATGAAGTCCCAGCTACTCCTGCTATTAG
CCCTCTCCGGGAGAATCACCATGTGTAATTCCCTCTCGAATGCACAGGCTGA
AGATGCCAGGACCTCGGTCTGCTCCATCACAGTCAGCACGGAGCTGCCTGCAGAG
5 ATTTAAGGAGAGCCCACAGGCAGACCTCTGACCAGCTAGGTTATTCCAAGAAG
ACATGGAAATTGCCCTGGTATTCCCAGATGTCTGTACTCTAAGTCTGCAACTGTTA
CTCTGGAAGCTGCATCTGTTCTATGCATCTGGAAAGAACTAGGGTCAAAGTCAC
TCTGAAGTGACCAGGAGTAGACAACCTGATTGATCATGAGTCTGAAACAATTGCCAA
TCCTGAAAGGTGCCATGCGTGAGACTTGAGTCTCTTCCCATAAAACTGTAGGTGT
10 TGACTACTGCTGTTATGCAAAGGTCAAGGTTCAAGGCCAGGGCCAGTTGGCATTGCTGG
GTCTGGGAAGCACTGCTAACTGAGTGGTAGAAACGCCAGGCCAGGCAGCACTTAA
AGGTAAAAGGTCAAATTGAAAGCTAAGGCTATAAATCATCCTGGGTTCCAGGCTTA
AATCTTGCATGGACACTCTCCCAAACCATAAGCCTAGCTCTGGTTCTCCATGG
AATCATGCAGGTCAACATAAAACTGGATTCTGGACTGCGTGGCTAAAGCACTT
AGACTARGAGTCCAGTGTGACTGGATGGATAGGGCCTCAGCTGTCAACTCTAA
GTTAGMGMTCATGGAATGAAGGCCTGRGGGCTGCTCAAGTTCTGTTAGGTTCTG
CTTGGAAAGATGACCACCTGGAGGTGGCCGGCTTTGGTTGGCTGGTTCTG
GTTATAGACACAAGCCTATGAAAGGAACCGTCTGGCTTAAAGAAATTACTATG
TTCCTGGAGTTGGTGGTAACCAGCTGCTTGCAGATGATGGGTGAAGTGGAAAGG
GATGGCTTGTGAGGCTGACCAAGTCTGTACCGGGATGTTGTACAGATTCCC
ACACCGGAGACATTGTAATATTAGAAACAGCCACGGACTTGTGCTTTAGT
TGTGTCCTGGAAACATACGGGGGGCAGGCTTGTGCTGGTACCTGGGGCCCTGC
CCTCCCAGACACGGAGTGCTGTAGCGTGGAGGGCCAGTGGCCAGATTGTTA
GCTCTGCGTTGGGTGTCGTAGACAACGTGACAGGATTAGCCTAACCCAAGCACT
25 GAGTGAGGTGATTTCCCTGGTTGGCGTGTCTTGGTATTCAACCAGTATTGT
GGTGTCAAGGTAGTGTCAAGGTACTGTTGGCTGTGTCTCCTAGACTAAGCGGGCGTT
GSATACAGCTTACATACAGTGCTGGAGACCAAGGTCAAGTGGTTGTAATAAGCTG
GTCCACCCTAACAGACTCCAAACATYACAGAAGCTYTTATGGMCCTACCTAAT

AATGCCAATTCTGGAGGACACTCTTTACCATAGAWKCSAATCCTGATCTCCTGGC
TCCTGGTTGAGCTTCCGCACTGATAACACCCCTTGRCTGCCATCAGGGCCATTGCT
GCTGAGTTCTGCATTGCTTAACAKCTSCKGSYGYTTCTGCCTAAAGGGATGGCACCC
AGACACCTAAAAAGACCCGGGATGGCTCTAGCCTGGTGGAGAGTCTTATTAGAA
5 GTTTCTTGGGGATTGGGGATTGGCTCAGTGGTAGAGCGCTGCCTGGCAAGCA
CAAGGCCCTGGGTTGGTCCCCAGCTCTAAAAAAAAAGTTTCTTGGTAGT
TGGGGAAAAGGCAGAAGGAAAAAAACAAAGGGAAAGATGAATCTCTCAGTCCTAC
CTGGTTCCCTAAATTAAATCGTGTATGTGACTAGTTAAGTCTCTTGACTAACAA
AGGGACACCAGGTTCTGGGGAGAAATCTCAGAGCAAAATGTTGCCTGTTGSTAAC
10 TTCTGGTAACCARAGGARCCCTGATAARCTTARGAGYKGACTGTATGTCCATGCTCT
TGTGACTCTAGAGACTCTGGCACCTCAGGTTNAAGCAGGCTGTGAGCCAGATGTCCT
GGTGCCAAGCAACCCCAGCTGGAGCAGCAGGGCACCATAAGGCCTCAGCTAGGGG
AGCGCACTGGTAGAGCCAGCAAGTGAGCAGGAATCTGACTTAGGGTAAAATCTA
GACAGTTCTGACAGCTGGAAGTCAACTTTCCATTCAAAGTCATGTGGCATTGG
15 GAAGGGCTAGGGAAATAGAAGTGGGTTCCAGCTTATCTTCCTACACAGTCTCGAG
TATAGCATTAAACACCGAGTGCTGGACAGAGGTTGTCTGCTGAACACTCAATCCTGCT
CCTGACTGACTCTGGAAATAAGGACATTCCACTCTGCTTGGCGCGGAGATGCCCTAG
TGTGCGGCCGCGGGGCTTCTCTTCTCAAGTCCTCTACAGNACTCCAGGCAGTTC
ATCTTCCTAGGAAAAGGTATGGAGGTTGCCTCATGGTAGAAACACAGGATAAA
20 ATCTACAGTAAACAACCGTAAGTGCTGGCTTACGCCCTGGCTTCTCCAGGCA
CAGGTGGGTTGACTACTCCCATTCATCTTGTAAGCACCTCAGGTTAGGGCAG
TTCTTCAGAGTTGGGGGACTGGAGCCATTCCCCCTGTAATGCCTGAGGTGGCCTT
ACCACCTAGCAGCCAGTTGCCAGCAACAGCCACACTGCTGTTAGGTATCATAAT
ACCTCATCCTCGGGTTCTTCAGAAAGGRAAAWGCTAACTCAGTTGATGTAAGTGT
25 TGCTGTGCTGGATCCTGTCATGTGGAGGGAACACCAAATACACAGGCTCTCAGG
AGACATCTGCTAAGGCTCTTACTGCAGTCTGCTCACGTTGAAATCTGCCCTC
TGTTCTCCTGACTCARAAAGACTCAGCCMCAAATCAAGAAGGCCATCAAACGTTCC
TTCTCAKKGGAACGTGCTCACAGGAAGGTCCAGWGGGATTGCARCTAGAGTCA

CGTTTACTGGKTTGAMCAAATTACTGGTTTCARTTACCTGGGKCCTATGKG
KKTTTMAACCTTCCCAGTTCGGCATAGGAACCCAACAGGTAGAATACTGAAACTCTCAG
CGTGCCTCAGCTCTCGGCATAGGAACCCAACAGGTAGAATACTGAAACTCTCAG
TGGCCAAGACCTCGATAACCCTCTGATGGTGGGAACTGGCTATTCCTGACCA
5 ATCTAGGCCACCATTAGTCCTGGTCACATTCTACTCCAAACTGAAATTAGTT
TGGCTTGAGTATGTGCACACGTGGTGGTACCTACTTCAGTGTGACCAAAAGT
TTATTTCTAGTGCATTCTAAATGGTAAAATATGTAATTAGTATGCATGAC
TGGTCTCCAAAATAAAACTGAGTGTATTGTGAAAAA
10 AAAA-3' (SEQ ID NO:58). The following nucleic acid sequence is the ORF for rat R286: 5'-
ATGTCAGAAGAAAGTGACTCTGTGAGAACCAAGCCCCCTCTGTGGCCTCACTCTC
CGAAAATGAGCTGCCACCGCCTCCCCGGAACCTCCCGCTACGTGTGCTCGCTGAC
AGAAGACTTGGTCACCAAGGCCAGGGAAAGAGCTTCAGGAGAACGCCAGTGGAGAC
TCCGGGATGTGCAGGCCCTCGAGACATGGTACCGAAGGAGTACCCATACCTGAGT
15 ACATCGCTGGATGATGCCTTCCTGTTGCGCTTCTGAGGGCCGAAAGTTGATTATG
ACCGGGCCCTGCAGCTGCTGGTCAACTACCATGGCTGCAGGCCAGTGGCCAGAG
GTCTTCAGCAACCTGAGGCCATGCCCTGAAAGACGTTCTTAACCTGGATTCTC
ACAGTGCTGCCACACAGACCCAGGGCTGCCATGTCCTCTGCATCCGACCAGAC
20 AGATGGATACCGAGCAACTACCCGATCACCGAGAACATCCGCCATCTACTGAC
GTTAGAAAAACTCATTCACTGGAGGAGACCCAGGTGAACGGGTTGTAATCCTCG
CCGACTACAAGGGAGTGAGCTTATCAAAGGCGTCTCACTTGGCCCTTATGCCA
GAAAGGTGATTGGCATCCTCAGGATGGCTCCCCATTGGATAAAAGCAGTTAC
TAGTAAACGAACCTCGGATATTAAAGGCATTTCGCCATCATAAAACCATTCTGA
AGGAGAAAATTGCAAACAGGTTCTCCATGGTCTGACCTGAGCTCTGCACA
25 CGAGCCTCCAAGGAATATCCTCCCCAAAGAGTATGGGGCACCGCTGGGAGCTG
GACACTGCCAGCTGGAACCGCGGTGCTGGCTGGCCTCGGAGGATGATTGAAAGA
GTTCTGCCAGCCTGAGTCTGGCTGCGATGGTCTCTGGGCCAGCCCCGCTGCCTGA
GGGGCTGATCTCAGACCGCAGTGTGACGACTCCATGCGAGCCATGAAGTCCCAGC
TCTACTCCTGCTATTAG-3' (SEQ ID NO:59). Using the rat R286 cDNA sequence and a

portion of the human R286 nucleic acid sequence, specific primers were designed to amplify the human R286 homologue. After RT-PCR using human hippocampal RNA and the specific primers, the PCR product was subcloned in the TA-cloning vector (InVitrogen) and sequenced with SP6 and T7 primers. The following nucleic acid sequence is the ORF for human R286: 5'-

5 ATGTCCGAAGAAAGGGACTCTCTGAGAACCAAGCCCTCTGTGGCCTCACTCTTGAA
AATGAGCTGCCACCACCTGAGCCTCCGGGCTATGTGTGCTCACTGACAGAAC
CTGGTCACCAAAGCCCAGGAAGAGCTGCAGGAAAAGCCGAATGGAGACTTCGAGA
TGTGCAGGCCCTCGTACATGGTGCAGAAGGAGTACCCAACCTGAGCACATCCCT
CGACGATGCCTCCTGCTGCGCTCCTCCAGGCCGCAAGTTGATTACGACCAGGC
10 CCTGCAGCTCCTCGTCAACTACCACAGCTGTAGAAGAACGCTGGCCGAAGTCTCAA
TAACCTGAAGCCATCAGCCTTAAAGATGTCCTGCTCCGGGTTCCCTACCGTGCTG
CCCCACACTGACCCCAGGGCTGCCATGTCGTCATCCGCCAGACAGATGGATA
CCAAGCAACTATCCAATTACTGAAAACATCCGAGCCATATACTGACCTAGAAAAA
CTCATTCACTGAAGAAACCCAGGTGAATGGAATTGTAATTCTGCAGACTACAAA
GGAGTGAGTTATCAAAAGCATCTCACTTGGCCCTTATAGCCAAAAGGTGATT
GGCATCCTCCAGGATGGTTCCCCATTGGATAAAAGCAGTCCATGTGGTAATGAA
CCTCGAATATTAAAGGCATTTGCCATCATAAAACCATTCTAAAGGAGAAAATA
GCAAACAGATTCTCCTCCATGGGTCTGACTGAACCTCTCCACACAAACCTCCA
AGAACGATCCTCCCCAAGGAGTATGGGGCACGGCTGGGAGCTGGACACTGCCAC
20 CTGGAACGCAGTACTGCTGGCTTCAGAACGACGATTTGTGAAAGAGTTCTGCCAAC
TGTTCCCTGCCTGTGACAGCATCCTGGCCAGACGCTGCTGCCAGGGCCTGACCTC
AGATGCACAGTGTGACGACTCCTGCGAGCTGTGAAGTCACAGCTGTACTCCTGCTA
CTAG-3' (SEQ ID NO:60). The R286 clones were found to be homologous to a family of
transfer proteins for hydrophobic ligands (such as lipid soluble vitamins and phospholipids).
25 Thus, R286 is a lipid transfer polypeptide. The amino acid sequence of the rat R286 polypeptide
is as follows: MSEESDSVRTSPSVASLSENELPPPPPEPPXYVCSLTEDLVTKAREEL
QEKP
EWR
LRD
VQALR
DMVR
KEYPYL
STSLDDA
FLRFL
RARKFDYD
RALQLLV
NYHGC
RRSWPEVFSNLR
PSALKD
VLNSGFL
TVLPHTD
PRGCHVLC
IRPDRWIPS
NYPITEN
IRAIY

LTLEKLIQSEETQVNGVVILADYKGVSLSKASHFGPFIARKVIGILQDGFPRIKA VHIVNE
PRIFKGIFAIKPFLKEKIANRFFLHGSDLSSLHTSLPRNILPKEYGGTAGELDTASWNAVL
LASEDDFVKEFCQPESGCDGLGQPLLPEGLISDAQCDDSMRAMKSQLYSCY (SEQ ID
NO:61). The amino acid sequence of the human R286 polypeptide is as follows: MSEERDSL
5 RTSPSVASLSENELPPPPEPPGYVCSLTEDLVTKAREELQEKPWEWRLRDVQALRDMVRKE
YNLSTSLDDAFLLRFLRARKFDYDRALQLLVNYHSCRWSPEVFNNLKPSALKDVLAS
GFLTVLPHTDPRGCHVVCIRPDRWIPSNYPITENIRAIYLTL
10 LEKLIQSEETQVNGIVILADYKGVSLSKASHFGPFIAKKVIGILQDGFPRIKA VHVVNEPRIFKGIFAIKPFLKEKIANRFFL
HGSDLNSLHTNLPRSILPKEYGGTAGELDTATWNAVLLASEDDFVKEFCQPVPACDSILG
QTLLPEGLTSDAQCDDSLRAVKSQLYSCY (SEQ ID NO:62).

Northern blot and *in situ* analysis using a sequence from the R286 clone as a probe revealed the presence R286 mRNA throughout rat brain. For *in situ* hybridization, Dig-labeled cRNA probes were used as described elsewhere (Kuner et al., *Science* 283:5398 (1999)). Specifically, R286 mRNA expression was the highest in the cortex and hippocampus while being moderately high in the cerebellar granule cells, brainstem nuclei, several lateral and medial thalamic nuclei, olfactory bulb, and striatum. In addition, this analysis revealed that the expression of the R286 mRNA was upregulated in response to the multiple MECS treatment. Briefly, a probe from the 3' untranslated region of R286 was used to hybridize a Northern blot containing 2 µg polyA⁺ RNA from hippocampus from brains of untreated rats as well as rats receiving the multiple MECS treatment. After one day of exposure using the phosphoimager FLA2000 (Fuji), an upregulation of R286 mRNA was detected in the hippocampus (3.72 fold induction) collected four hours after the last MECS treatment. An additional Northern blot analysis using 10 µg total RNA from hippocampus from untreated rats and rats receiving the multiple MECS treatment was performed. In this experiment, the probe was the ORF of R286
20 and the level of expression was found to be induced 2.4 fold in the MECS treated animals (Table I).

In addition, rats that developed seizures following intraperitoneal injection of kainate or PTZ were analyzed for the expression of R286 mRNA in addition to the mRNA of other IEG

5

clones (Tables III and V). R286 mRNA expression was observed, by *in situ* hybridization, to be mildly upregulated in the hippocampal pyramidal cell layer, cortex, thalamus, and cerebellar Purkinje cell layer at 6 hours post-kainate injection. At 6 hours post-PZT injection, R286 mRNA expression was observed to be mildly upregulated in these brain structures, while no upregulation was observed at 20 minutes post-PTZ injection or at 1.5 hours post-kainate injection.

Other IEG nucleic acid clones included L073 (concatamer with Krox-20), L125 (oxoglutarate carrier protein), L201 (concatamer), R094 (fra2), and R217 (diacylglycerol kinase; accession #D78588).

10

OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

RECEIVED
U.S. PATENT AND TRADEMARK OFFICE