7. Trigonometrische Funktionen

7.1 Winkelfunktion im Dreieck

Rechtwinklige Dreiecke

Bezeichnungen in rechtwinklingen Dreiecken

Allgemein:

Figure 1: Dreieck

Im Bezug auf die Winkel:

Figure 2: Dreieck

Beobachtung

Figure 3: Dreieck

A_1B_1	B_1C_1	$\frac{B_1C_1}{A_1B_1}$	AB	BC	$\frac{BC}{AB}$
8,1	6,2	0,76	12,6	9,7	0,76

In jedem rechtwinklingen Dreieck mit festem Winkel α ist das Verhältnis von Gegenkathete zu α zur Hypothenuse konstant. Dieses Verhältnis ist der Sinus zu dem Winkel α

Analog In jedem rechtwinklingen Dreieck mit festem Winkel α ist das Verhältnis von Ankathete zu α zur Hypothenuse konstant. Dieses Verhältnis ist der Kosinus zu dem Winkel α

i Definition: Sinus

Gegeben:

- rechtwinkliges Dreieck ABC
- Winkel $\alpha, \beta, \gamma = 90^{\circ}$

Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Hyopthenuse

$$\sin(\alpha) = \frac{\text{Gegenkathete zu } \alpha}{\text{Hypothenuse}}$$

Definition: Kosinus

Gegeben:

- rechtwinkliges Dreieck ABC
- Winkel $\alpha, \beta, \gamma = 90^{\circ}$

Der Kosinus eines Winkels ist das Verhältnis der Länge der Ankathete zur Länge der Hypothenuse

$$\cos(\alpha) = \frac{\text{Ankathete zu } \alpha}{\text{Hypothenuse}}$$

2

i Definition: Tangens

Gegeben:

• rechtwinkliges Dreieck ABC

• Winkel $\alpha, \beta, \gamma = 90^\circ$

Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Ankathete

 $\tan(\alpha) = \frac{\text{Gegenkathete zu } \alpha}{\text{Ankathete zu } \alpha}$

Sinus, Kosinus und Tangens am Einheitskreis

• Einheitskreis := Kreis um den Ursprung mit Radius 1

ullet Zu jedem Punkt P auf dem Kreis gibt es ein rechtwinkliges Dreieck

• Länge der Hypothenus ist 1.

Figure 4: Einheitskreis

Sinus, Kosiunsfunktion und Tangensfunktion im Dreieck

Figure 5: Sinusfunktion

i Definition: Sinusfunktion im Dreieck

Gegeben:

• rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Sinus zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Sinusfunktion**

Funktionsgraph der Sinus-Funktion:

i Definition: Kosinus-Funktion im Dreieck

Gegeben:

• rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Kosinus zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Kosinusfunktion**

Funktionsgraph der Kosinus-Funktion:

Definition: Tangens-Funktion im Dreieck

Gegeben:

• rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Tangens zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Tangensfunktion**

Funktionsgraph der Tangens-Funktion:

7.2 reelwertige Winkelfunktionen

Bogenmaß

Figure 6: Einheitskreis

Beobachtung:

- Jedem Winkel kann eindeutig eine Kreisbogenlänge zugeordnet werden.
- Diese Zuordnung ist bijektiv.
- Die Kreisbogenlänge ist eine reelle Zahl.

Satz:

Gegeben: - Kreis k(M;r) mit Mittelpunkt M und Radius r - Kreissektor mit Öffnungswinkelswinkel α

Die Kreisbogenlänge b des Kreissegments (Bogenmaß) wird berechnet mit:

$$b = r \cdot \frac{\pi \cdot \alpha}{180^\circ}$$

Folgerung

Damit lässt sich wie folgt auch zu jeder reelen Zahl x ein Wert $\sin(x), \cos(x)$ bzw. $\tan(x)$ zuordnen:

$$\begin{array}{ccc} \alpha & \rightarrow \sin(\alpha) \\ \downarrow & = \\ x & \rightarrow \sin(x) \end{array}$$

Funktionsterme

Zuordnung Winkel → Bogenlänge

$$g(\alpha) = \left(r \cdot \frac{\pi \cdot \alpha}{180^{\circ}}\right)$$

Zuordnung Bogenlänge (reele Zahl) \rightarrow Sinus

$$f(x) = f(g(\alpha)) = \sin\left(r \cdot \frac{\pi \cdot \alpha}{180^{\circ}}\right) = \sin(x)$$

Winkelfunktionen

Sinus-Funktion

ullet Defintionsmenge: ${\mathbb R}$

• Wertemenge: $W = \{f(x) | -1 \le f(x) \le 1\}$

periodisch

• Periode $p=2\pi$

• punktsymmetrisch zum Ursprung

$$\sin(-x) = -\sin(x)$$

• Nullstellen:

$$..., -\pi, 0, \pi, 2\pi, 3\pi, ...$$
 allgemein: $k \cdot \pi$, $k \in \mathbb{Z}$

• Maximalstellen:

$$...,-\frac{3}{2}\pi,\frac{\pi}{2},\frac{5}{2}\pi,\frac{9}{2}\pi,...$$
 allgemein: $\frac{\pi}{2}+k\cdot 2\pi$, $k\in\mathbb{Z}$

• Minimalstellen:

$$...,-\frac{5}{2}\pi,-\frac{\pi}{2},\frac{3}{2}\pi,\frac{7}{2}\pi,...$$
 allgemein: $\frac{3}{2}\pi+k\cdot 2\pi$, $k\in\mathbb{Z}$

8

Kosinus-Funktion

Eigenschaften:

• Defintionsmenge: \mathbb{R}

 $\bullet \ \mbox{Wertemenge:} \ W = \{f(x)|-1 \leq f(x) \leq 1\}$

• periodisch

• Periode $p=2\pi$

• achsensymmetrisch zur y-Achse

$$\cos(-x) = \cos(x)$$

• Nullstellen:

$$...,-\frac{\pi}{2},\frac{\pi}{2},\frac{3}{2}\pi,\frac{5}{2}\pi,...$$
 allgemein: $\frac{2k+1}{2}\cdot\pi$, $k\in\mathbb{Z}$

• Maximalstellen:

$$..., -2\pi, 0, 2\pi, 4\pi, ...$$

allgemein: $2k\cdot\pi$, $k\in\mathbb{Z}$

• Minimalstellen:

$$\dots, -\pi, \pi, 3\pi, 5\pi, \dots$$

allgemein: $(2k+1)\pi$, $k\in\mathbb{Z}$

Verschieben der Sinusfunktion entlang der y-Achse

Funktionsgleichung:

$$f(x) = \sin(x) + d$$

Die Mittellinie ist die Gerade $\boldsymbol{y}=\boldsymbol{d}$

Beispiel

$$f(x) = \sin(x) - 2$$

 $\hbox{Mittellinie: } y=-2$

Verschieben entlang der x-Achse

Funktionsgleichung:

$$f(x) = \sin(x - c)$$

Man nennt c auch Phase.

Beipsiel

$$f(x) = \sin(x-1)$$

Beobachtung

$$f(x) = \sin(x - \left(-\frac{1}{2} \cdot \pi\right)) = \cos(x)$$

Strecken / Stauchen

Funktionsgleichung:

$$f(x) = a \cdot \sin(x)$$

 $\left|a\right|$ nennt man Amplitude (= Ausschlag). Die Amplitude ist immer positiv.

Beipsiel

$$f(x) = 3 \cdot \sin(x)$$

Periode verändern

Funktionsgleichung:

$$f(x) = \sin(b \cdot x)$$

Das Verhältnis

$$p = \frac{2\pi}{b}$$

nennt man Periode.

Beispiel

$$f(x) = \sin(2 \cdot x)$$

Die Periode ist:

$$p = \frac{2\pi}{2} = \pi$$

Beispiel

$$f(x) = \sin\left(\frac{1}{3} \cdot x\right)$$

Spiegeln an der x-Achse

Funktionsgleichung:

$$f(x) = -\sin(x) = \sin(-x)$$

Allgemeine Sinus-Funktion

i Definition

 $a,b,c,d \in \mathbb{R}$ Der Graph der Funktion

$$g(x) = a \cdot \sin(b(x-c)) + d$$

geht aus der Funktion

$$f(x) = \sin(x)$$

hervor, indem - f um $\left|a\right|$ in y-Richtung gestreckt wird. Die Amplitude A entspricht A = |a|

- f um Faktor $\frac{1}{b}$ in x-Richtung gestreckt wird. f um c in x-Richtung und um d in y-Richtung verschoben wird.

Bemerkung

Analoge Aussagen gelten auch für die Kosinus-Funktion.

Der Graph der Kosinus-Funktion geht aus dem Graph der Sinus-Funktion durch Verschiebung in x-Richtung um $-\frac{\pi}{2}$ hervor.

Beispiel:

$$a = 5$$

$$b=2$$

$$c = -2$$

