CENG 434 Kriptoloji – 4. Ders

Alper UĞUR

CENG 507 : KRIPTOGRAFIK ALGORITMALAR VE SISTEMLER CENG 434: KRİPTOLOJİ

Güvenlik Hizmetleri (Security Services)

- Gizlilik (Confidentiality)
- Bütünlük (Integrity)
- Kimlik doğrulama (Authentication)
- Ulaşılabilirlik (Availability)
- Rededememe (Non-repudiation)

Güvenlik

- Koşulsuz güvenlik
 - One-time pad
- Hesaplamaya bağlı güvenlik
 - Harcadığın emeğe/paraya değmeli
 - Elde ettiğin bilgiye değmeli

Kaba kuvvet (brute force)

• pin: ****

• Saldırı: 0000 ... 9999

PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR

Sıklık analizi

Table 1. Turkish Unigram Frequencies and Replacing Values in Homophonic Cipher

A %11,92	12	I	%5,114	5	R	%6,722	7
B %2,844	3	İ	%8,6	9	S	%3,014	3
C %0,963	1	J	%0,034	1	Ş	%1,78	2
Ç %1,156	1	K	%4,683	5	Т	%3,314	3
D %4,706	5	L	%5,922	6	U	%3,235	3
E %8,912	9	M	%3,752	4	Ü	%1,854	2
F %0,461	1	N	%7,487	7	V	%0,959	1
G %1,253	1	O	%2,476	2	Y	%3,336	3
Ğ %1,125	1	Ö	%0,777	1	Z	%1,5	2
H %1,212	1	P	%0,886	1			

Doğrusal (linear) kriptanaliz

$$X_{i_1} \oplus X_{i_2} \oplus \dots \oplus X_{i_s} \oplus Y_{j_1} \oplus Y_{j_2} \oplus \dots \oplus Y_{j_s} = 0 \tag{1}$$

where X_i represents the *i*-th bit of the input $X = [X_1, X_2, ...]$ and Y_j represents the *j*-th bit of the output $Y = [Y_1, Y_2, ...]$. This equation is representing the exclusive-OR "sum" of u input bits and v output bits.

$$X_2 \oplus X_3 \oplus Y_1 \oplus Y_3 \oplus Y_4 = 0$$

Kaynak: A Tutorial on Linear and Differential Cryptanalysis by Howard M. Heys

Kriptanalizde birkaç adım

• Doğrusal (linear) kriptanaliz

her

Fark (differential)

input
$$X = [X_1 \ X_2 \ ... \ X_n]$$
 and output $Y = [Y_1 \ \hat{Y}_2 \ ... \ Y_n]$.

$$\Delta X = [\Delta X_1 \ \Delta X_2 \ ... \ \Delta X_n]$$

$$\Delta Y = [\Delta Y_1 \ \Delta Y_2 \ ... \ \Delta Y_n]$$

$$\Delta X_i = X_i' \oplus X_i''$$

S ₁	0	1	1	0	0	1	1	0	1	0	0	1	0	0	1	0
s_2	1	1	1	0	0	1	1	0	0	0	0	1	0	0	1	0
Δ	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Simetrik Şifreleme

- Şifreleme Kodlama = Anahtar
- Simetrik şifreleme gizli anahtar tek

$$C = E_{\kappa}(P)$$

$$P = D_{\kappa}(C)$$

DES (Data Encryption Standard)

- LUCIFER Project
- Blok şifreleme
- 64bitlik bloklar
- 56bitlik anahtar
- 16 çevrim (round)
- Feistel Network
 - Enc: $L_i = R_{i-1}, R_i = L_{i-1} sOR f(R_{i-1}, K_i)$
 - Dec: $R_i = L_{i+1}, L_i = R_{i-1} sOR f(L_{i+1}, K_i)$

DES güvenlik

- $C = E_{\kappa}(P)$
- $P = D_{\kappa}(C)$

zayıf anahtarlar $E_{\kappa}(E_{\kappa}(P))=P$

K= 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
K= F E F E F E F E F E F E F E F E
K= 1 F 1 F 1 F 1 F 0 E 0 E 0 E 0 E
K= E 0 E 0 E 0 E 0 F 1 F 1 F 1 F 1

yarı-zayıf anahtarlar $E_{\kappa_2}(E_{\kappa_1}(P))=P$

K1= 01 FE 01 FE 01 FE 01 FE K2= FE 01 FE 01 FE 01 FE 01 K1= 01 1F 01 1F 01 0E 01 0E K2= 1F 01 1F 01 0E 01 0E 01

DES güvenlik

3DES

$$C = E_{K3}(D_{K2}(E_{K1}(P)))$$

$$C = DES_{K_1} \left\{ DES_{K_2}^{-1} \left[DES_{K_1}(M) \right] \right\}$$
 (triple DES encryption)
$$M = DES_{K_1}^{-1} \left\{ DES_{K_2} \left[DES_{K_1}^{-1}(C) \right] \right\}$$
 (triple DES decryption)

$$DES_{K_1}(\) \longrightarrow DES_{K_2}(\) \longrightarrow DES_{K_1}(\) \longrightarrow C$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Triple DES encryption (2 keys)

Triple DES decryption (2 keys)

Simetrik Şifreleme Algoritmaları

- DES
- 3DES
- AES
- Rijndael
- RC4
- Blowfish
- •

Güvenlik Hizmetleri (Security Services)

- Gizlilik (Confidentiality)
- Bütünlük (Integrity)
- Kimlik doğrulama (Authentication)
- Ulaşılabilirlik (Availability)
- Rededememe (Non-repudiation)

Kimlik doğrulama (Authentication)

- Varlığın iddia ettiği kimliğini doğrulamak (Who are you, really?)
- Varlığın orijinalliğini doğrulamak (authentic document)

GANDALF?

Kimlik doğrulama (Authentication)

SOMETHING YOU KNOW SOMETHING YOU HAVE

Elde edilen

(You have)

Sahip olunan

(You own)

Her ikisi

(Both)

Challenge-Response

Two-Factor Authentication

Keep unauthorized users out of your account by using both your password and your phone

"This site wants a two-factor authentication.

A retina scan and a urine sample."

Simetrik şifreleme

- Kimlik doğrulama
 - Sadece anahtar sahipleri
 - $C = E_{\kappa}(P)$
- Mesajın orijinalliği?
- Her anahtarı olan içeriği değiştirip gönderebilir
- Kendisinin oluşturduğunu reddedebilir

Simetrik şifreleme

- Güvenilir Üçüncü Taraf (Trusted Third Party)
- Mesajın orijinalliği?
- K1: (A,B) K2: (A,C) K3: (B,C)
- E_{K1}(M) ; M, E_{K1}(M)
- M, $E_{K1}(M)$; M, $E_{K2}(E_{K1}(M))$
- M, E_{K2}(M)

KERBEROS

PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR

Kerberos 4 Overview

- a basic third-party authentication scheme
- have an Authentication Server (AS)
 - users initially negotiate with AS to identify themselves
 - AS provides a non-corruptible authentication credential (ticket granting ticket TGT)
- have a Ticket Granting server (TGS)
 - users subsequently request access to other services from TGS on basis of users TGT

A Simple Authentication Dialogue

- (1) C -> AS : ID_C | | P_C | | ID_V
 - C = client
 - AS = authentication server
 - ID_C = identifier of user on C
 - P_C = password of user on C
 - ID_V = identifier of server V
 - C asks user for the password
 - AS checks that user supplied the right passworu

Message 2

- (2) AS -> C : Ticket
- Ticket = $E_{K(V)}$ [ID_C | | AD_C | | ID_V]
 - K(V) = secret encryption key shared by AS and V
 - AD_C = network address of C
 - Ticket cannot be altered by C or an adversary

Message 3

- (3) C -> V: ID_C | | Ticket
 - Server V decrypts the ticket and checks various fields
 - AD_C in the ticket binds the ticket to the network address of C
 - However this authentication scheme has problems

Kerberos v4 / Kerberos v5

- Şifreleme
- V4: DES V5: Sınırlama yok
- Ağ protokolü
- V4: IP V5: Çoklu IP adresi
- Bilet süresi
- V4: 21 saat V5: (başlangıç-bitiş zamanı)

- Encryption system: V4 requires DES, V5 can use any
- Internet protocol: V4 requires IP, V5 multiple IPs
- Ticket lifetime: 21 hours in V4, V5 tickets include explicit start and end time

Authentication

- s.509
- RADIUS

PAÜ Bilgisayar Mühendisliği Bölümü Kriptoloji Ders Notları Bahar 2016 Alper UĞUR

Ara - 15dk

Rasgele Sayı Üreteçleri

Math.rnd(seed);

- Rasgelelilik (Randomness)
 - Tek bir sayıdan bahsetmek yerine, bir dizi sayı söz konusu
 - Düzgün dağılım
 sayıların dağılımı, ortay çıkma sıklıkları
 - Bağımsızlık (Independence)

Dizideki hiçbir sayı diğerlerinden çıkarım yapılarak tahmin edilemez

Sözde Rasgele Sayı Üretimi Pseudo-random number generators (PRNGs)

- Tablo tabanlı
- Donanım üreteçleri
- Yazılım (algoritma tabanlı) üreteçler

- table look-up generators
- hardware generators
- algorithmic (software) generators

Sözde Rasgele Sayı Üretimi Pseudo-random number generators (PRNGs)

«Eskimiş yöntemler»

Kareortası yöntemi

- 1. Başlangıç tohumu (4 basamaklı tamsayı)
- Karesini al
- 3. Ortasındaki 4 basamaklı sayıyı al
- 4. Bu sayıyı yeni Başlangıç tohumu olarak ata
- 5. Sayıyı 10.000'e böl.
- 6. Sonuç rasgele sayın olacak
- 7. Yeni üretmek için 2'ye geri dön.

$$s_0 = 5497$$

 $s_1: 5497^2 = 30217009 \rightarrow s_1 = 2170, R_1 = 0.2170$
 $s_2: 2170^2 = 04708900 \rightarrow s_2 = 7089, R_2 = 0.7089$
 $s_3: 7089^2 = 50253921 \rightarrow s_3 = 2539, R_3 = 0.2539$

Midsquare method:

- 1. Start with an initial seed (e.g. a 4-digit integer).
- 2. Square the number.
- 3. Take the middle 4 digits.
- 4. This value becomes the new seed. Divide the number by 10,000. This becomes the random number. Go to 2.

Sözde Rasgele Sayı Üretimi Pseudo-random number generators (PRNGs)

«Eskimiş yöntemler»

Kareortası yöntemi

- 1. Başlangıç tohumu (4 basamaklı tamsayı)
- 2. Karesini al
- 3. Ortasındaki 4 basamaklı sayıyı al
- 4. Bu sayıyı yeni Başlangıç tohumu olarak ata
- 5. Sayıyı 10.000'e böl.
- 6. Sonuç rasgele sayın olacak
- 7. Yeni üretmek için 2'ye geri dön.

$$s_0 = 5197$$

 $s_1: 5197^2 = 27\underline{0088}09 \rightarrow s_1 = 0088, R_1 = 0.0088$
 $s_2: 0088^2 = 00\underline{0077}44 \rightarrow s_2 = 0077, R_2 = 0.0077$
 $s_3: 0077^2 = 00\underline{0059}29 \rightarrow s_3 = 0059, R_3 = 0.0059$

$$s_i = 6500$$

 s_{i+1} : $6500^2 = 42250000 \rightarrow s_{i+1} = 2500$, $R_{i+1} = 0.0088$
 s_{i+2} : $2500^2 = 06250000 \rightarrow s_{i+2} = 2500$, $R_{i+1} = 0.0088$

Midsquare method:

- 1. Start with an initial seed (e.g. a 4-digit integer).
- 2. Square the number.
- 3. Take the middle 4 digits.
- 4. This value becomes the new seed. Divide the number by 10,000. This becomes the random number. Go to 2.

Doğrusal uyumlu üreteçler (Linear congruential generator)

4 tamsayı

- $m \mod m > 0$
- *a* çarpan (katsayı) 0 , 0 < *a* < *m*
- *c* artım (eklenen) 0, 0 < *c*< *m*
- X_0 başlangıç değeri 0, 0 $< X_0 < m$

Algoritma: n>0 olmak üzere

$$X_n + 1 = (aX_n + c) \mod m$$

4 integer

- m the modulus m > 0
- a the multiplier 0, 0 < a < m
- *c* the increment 0, 0 < *c*< *m*
- X_0 the starting value 0, 0 < X_0 < M

The algorithm is $X_n + 1 = (aX_n + c) \mod m$ Where n>0

Doğrusal uyumlu üreteçler (Linear congruential generator)

4 tamsayı

- $m \mod m > 0$
- a çarpan (katsayı) 0 , 0 < a < m
- *c* artım (eklenen) 0, 0 < *c*< *m*
- X_0 başlangıç değeri 0, 0 $< X_0 < m$

Algoritma: n>0 olmak üzere $X_{n+1} = (aX_n + c) \mod m$

4 integer

- m the modulus m > 0
- a the multiplier 0, 0 < a < m
- *c* the increment 0, 0 < *c*< *m*
- X_0 the starting value 0, 0 < X_0 < M

The algorithm is $X_n + 1 = (aX_n + c) \mod m$ Where n>0

- a=1, c=1?
- a=7 c=0 m= 32 $X_0 = 1$ {7,17,23,1,7,...}
- a= 5 {5,25,29,17,21,9,13,1,5,..}

Lehmer PRNG

Lehmer Algoritması (Doğrusal uyumlu üreteç tabanlı)

$$X_{i+1} = (aX_i + c) \mod m$$
, with $0 \le X_i \le m$

M 2^{p-1} p CPU bitleri (32 bit, 64 bit, etc.)

$$m = 31$$
, $a = 7$, $c = 0$ $X_0 = 19$ {9, 1, 7, 18, 2, 14, 5, 4, 28, 10, 8, 25, 20, 16}

Doğrusal uyumlu üreteçler (Linear congruential generator)

Lagged Fibonacci generator (LFG)
Blum Shub Shub
Kriptografik Üreteçler

Ara - 10dk

Rasgele Sayı Üreteçleri

- Kimlik doğrulama
- Meydan okuma-Cevap
- Protokol güvenliği
- «Tuz'la da kokmasın»

Authentication Challenge-Response Protocol security Salting passwords

Rasgele Sayı Üreteçleri

Bütünlük(Integrity)

- MAC (Message Authentication Code)
- MAC = C(K,M)
- Mesaj özeti HASH

a small fixed-sized block of data
generated from message + secret key
MAC = C(K,M)
appended to message when sent

Bütünlük(Integrity)

- Aynı özete sahip başka bir mesaj bulunamamalı
- Düzgün dağılım
- Çığ etkisi
- Tersinir olmayan bir fonksiyon olmalı
- MAC = C(K,M) $C^{-1}(MAC) = \frac{K,M}{M}$
- N byte -> 256bit

- knowing a message and MAC, is infeasible to find another message with same MAC
- MACs should be uniformly distributed
- MAC should depend equally on all bits of the message

Anahtar Yönetimi (Key Management)

- Anahtarın saklanması (Key Storage)
- Anahtarların değişimi (Key Eschange)
- Anahtarların yenilenmesi (Key Renewal)
- Anahtarların iptali (Key Revocation)

CENG 507 : KRIPTOGRAFIK ALGORITMALAR VE SISTEMLER CENG 434: KRİPTOLOJİ

Araştırma ve Proje detayları için EDS'yi takip edin.

Proje

- Kullanıcı girişi
- Bir metin
- Kullanıcı_A
- Kullanıcı_B

- Tasarımı
- Uygulama
- Test senaryosu

CommitStrip.com

Proje

- Kullanıcı Girişi
- 3 Hatalı Giriş (bekle)
- 5 Hatalı Giriş (kilitle)
- Parola değiştirme
- Anahtar saklama
- Anahtar değişimi
- Tasarımı
- Uygulama
- Test senaryosu

Araştırma + Sunum

- Bireysel
- Simetrik Şifreleme Algoritmaları
 - Standartlar
 - Analiz
 - Karşılaştırma

