

Block Cipher's Mode of Operation

Electronic Code Book (ECB):

Encryption : C_i=E_k(P_i)
 Decryption : P_i=D_k(C_i)

P₁ P₂ P_N

n bits

n bits

n bits

n bits

c₁ C₂ C_N

Encryption

Decryption

Cipher Block Chaining (CBC):

 $\bullet \quad \text{Encryption}: C_i = E_k(P_i \oplus C_{i\text{--}1}) \text{, with } C_0 = IV$

• Decryption : $P_i=D_k(C_i) \oplus C_{i-1}$, with $C_0=IV$

Encryption

Decryption

Cipher FeedBack (CFB):

- Encryption : Ci=Pi \oplus E_k (Ci-1) , with C0=IV
- Decryption : $P_i=C_i \oplus E_k(C_{i-1})$, with $C_0=IV$ (the same encryption function E_K is used for decryption)

Encryption Decryption

Output FeedBack (OFB):

- Encryption : $Z_i = E_k (Z_{i-1})$; $C_i = P_i \oplus Z_i$, with $Z_0 = C_0 = IV$
- Decryption : $Z_i = E_k (Z_{i-1})$; $P_i = C_i \oplus_{Z_i}$, with $Z_0 = C_0 = IV$

Counter (CTR) mode:

- Encryption : $C_i=P_i \oplus E_k$ [nonce + i] (i: a counter ; nonce used only once equivalent to an IV)
- Decryption : $P_i=C_i \oplus E_k$ [nonce + i]

Encryption

Decryption