${\bf Ableitung stabelle}$

	Funktion f	Ableitung	Definitionsbereich
1	$x^n, n \in \mathbb{N}_0$	nx^{n-1}	\mathbb{R}
2	$x^{\alpha}, \alpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$	x > 0
3	e^x	e^x	\mathbb{R}
4	$a^x, a > 0$	$a^x \ln a$	\mathbb{R}
5	$\ln x $	$\frac{1}{x}$	$x \neq 0$
6	$\sin x$	$\cos x$	\mathbb{R}
7	$\cos x$	$-\sin x$	\mathbb{R}
8	$\tan x$	$\frac{1}{\cos^2 x}$	$x \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$
9	$\cot x$	$-\frac{1}{\sin^2 x}$	$x \neq \pi n, n \in \mathbb{Z}$
10	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	x < 1
11	$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$	x < 1
12	$\arctan x$	$\frac{1}{1+x^2}$	\mathbb{R}
13	$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$	\mathbb{R}
14	$\sinh x$	$\cosh x$	\mathbb{R}
15	$\cosh x$	$\sinh x$	\mathbb{R}