NUMERICAL METHODS

NUMERICAL METHODS FOR MINIMIZING A FUNCTION.

- NEWTON'S METHOD
- GRADIENT DESCENT

MAXIMIZING PROBLEMS CAN BE CONVERTED TO MINIMIZATION EASILY. FOR EXAMPLE: MAX 6(x) AMIN - f(x)

NEWTON'S METHOD FOR MINIMIZING A FUNCTION OF A SINGLE VARIABLE

NEWTON'S METHOD FOR MINIMIZING A FUNCTION OF A SINGLE VARIABLE USES A QUADRATIC APPROXIMATION OF FUNCTION b(x), WHERE ∞ ETTR

i) IT ASSUMES THAT (C) IS TWICE DIFFERENTIABLE.

i) ALSO ASSUME THAT &C) 18 CONVEX (STRICTLY)

DENOTE THE FIRST AND SECOND DERIVATIVE OF f(x)
BY f'(x) AND f'(x) RESPECTIVELY. (WITH RESPECT TO 2)

USE TAYLOR'S EXPANSION OF f(2) AROUND 200.

$$f(x) = f(x_0) + (x-x_0)f(x_0) + (x-x_0)^{\frac{1}{2}}f'(x_0)$$

MINIMIZE (C) BY TAKING DERIVATIVE ON BOTH SIDES WITH RESPECT TO X. THIS LEADS TO:

LET
$$f'(x) = 0 \Rightarrow x = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

NOTE THAT ("(x0) 70 (BECAUSE OF STRICT CONVEXITY
ASSUMPTION)

THE ABOVE EQUATION CAN BE USED TO UPPATE OCUNTIL IT CONVERGES TO THE LOCATION OF THE OPTIMUM VALUE.

ALGORITHM

6 70

oco - INITIAL VALUE

WHLE | b'(x0) > @ DO

 $x_0 \leftarrow x_0 - \frac{b'(x_0)}{b''(x_0)}$

END WHILE

RETURN XO

MINIMIZATION OF A FUNCTION OF SEVERAL VARIABLES

f: TRⁿ → TR

x ∈ TRⁿ; f(x) ∈ TR

- i ASSUME THAT & () IS TWICE DIFFERENTIABLE
- ii) ASSUME THAT &C) IS STRICTLY CONVEX AND HENCE ITS HESSIAN IS POSITIVE DEFINITE AND INVERTIBLE.

USE GENERALIZED TAYLOR'S EXPANSION OF f(x) AT $2g \in TR^{M}$. $b(x) = f(x_0) + (x_0)^T \nabla f(x_0) + \frac{1}{2}(x_0)^T H(x_0)(x_0)$ WHERE $\nabla f(x)$ is the GRADIENT OF f(x), & H(x) is the HESSIAN MATRIX

MINIMIZE f(x) BY TAKING GRADIENT ON BOTH SIDES WITH RESPECT TO x, AND SETTING IT TO ZERO. THAT y

 $\nabla f(x) = 0 \Rightarrow x = x_0 - H'(x_0) \nabla f(x_0)$

NOTE THAT HI(NO) EXISTS BECAUSE OF THE ASSUMPTION OF STRICT CONVEXITY

THE ABOVE EQUATION CAN BE USED TO UPDATE OF UNTIL IT CONVERGES TO THE LOCATION OF THE OPTIMUM VALUE.

METHOD OF STEEPEST DESCENT

- SOME TIMES IT IS NOT POSSIBLE TO FIND THE MINIMUM OF A FUNCTION ANALYTICALLY
- OCCASSIONALLY NEWTON'S NUMERICAL TECHNIQUE MIGHT BE UNRELIABLE.
- USE METHOD OF STEEPEST DESCENT TO FIND MINIMUM OF A FUNCTION NUMERICALLY.
- GIVEN 6: TR" -> TR; WHERE TR = (-00, +00)

 6 IS DIFFERENTIABLE AT POINT 20

THE DIRECTION OF STEEPEST DESCENT IS THE DIRECTION OF THE VECTOR - $\nabla f(x)$ | CAT POINT SC ETTEM)

ASIDE: DOT PRODUCT OF TWO VECTORS

LET a, b & TR3; II. II = EUCLIDEAN NORM

CUSUAL DISTANCE MEASURE)

LET $a = (a_1, a_2, a_3), & b = (b_1, b_2, b_3)$ $\|a\|^2 = a_1^2 + a_2^2 + a_3^2 \quad ||b||^2 = b_1^2 + b_2^2 + b_2^2$

 $a.b = a_1b_1 + a_2b_2 + a_3b_3$ 2 DOT PRODUCT OPERATOR

= 11a1 11611 COS 8

0 = ANGLE BETWEEN VECTORS at L

NOTE: 10.61 < 110/11/11

П

DISCUSSION IT IS ESTABLISHED THAT THE DIRECTION OF STEEPEST DESCENT; IS THE DIRECTION OF THE VECTOR

- $\nabla \{(x)\}$, AT POINT $x_0 \in \mathbb{R}^m$

LET LETE BE A UNIT VECTOR, THEN I'LL =1.

THE RATE OF CHINGE OF & AT 2 IN THE DIRECTION OF LL IS

7/(x).u

NOTE THAT: 17/12). u1 = 117/12) 11. 1141

THE UPPER-BOUND IS ACHIEVABLE, IF U IS PARALLEL TO $\nabla f(x)$. THAT IS, WHEN $u = \nabla f(x)/||\nabla f(x)||$

HOWEVER, WE WANT TO MOVE IN A DIRECTION IN WHICH b(x) IS MINIMIZED. THEREFORE, WE SET

D

TTERATIVE STEPS OF THE METHOD OF STEEPEST DESCENT

GIVEN A POINT & ETP, THE NEXT POINT & ETP IS

COMPUTED AS FOLLOWS:

1. COMPUTE TO(x(b))

2. SET \$ (x(k) = t (x(k)).

THAT IS, OR EVALUATES & ALONG THE LINE THROUGH & IN
THE DIRECTION OF STEEPEST DESCENT.

I

3. LET to BE THE GLOBAL MINIMIZER OF P(t).

THIS to TELLS US HOW FAR ALONG THE LINE WE WANT TO GO.

EXAMPLE APPLY METHOD OF STEEPEST DESCENT TO THE

FUNCTION

$$f(x,y) = 4x^2 - 4xy + 2y^2$$

WITH INITIAL POINT 20 = (2,3)

SOLUTION

STEP 1: MINIMIZE THE FUNCTION

ALSO

THAT IS CPOCK) HAS A GLOBAL MINIMA AT t=1/2. THUS

$$x_1 = x_0 - t_0 \nabla f(x_0) = (2,3) - \frac{1}{2}(4,4) = (0,1)$$

STEP 2: MINIMIZE THE FUNCTION

$$\phi_{1}(t) = t(z_{1} - t \nabla t(z_{1}))$$

$$= t(co,1) - t(-4,+4)) = t(4t, 1-4t)$$

BY COMPUTING

$$Q_{1}^{\prime}(t) = \nabla_{t}(4t, 1-4t) \cdot (4, -4)$$

$$= (8.4t - 4(1-4t), -4(4t) + 4(1-4t)) \cdot (4, -4)$$

$$= (48t - 4, -32t + 4) \cdot (4, -4)$$

$$= 16(12t - 1 + 8t - 1)$$

$$= 328t - 32$$

 $q_1(t) = 0 \Rightarrow t = 1/10$; q''(t) = 320 > 0THAT IS $q_1(t)$ HAS A GLOBAL MINIMA AT t = 1/10. THUS $2c_2 = 2c_1 - t_1 \ \nabla f(2c_1) = (0, 1) - \frac{1}{10}(-4, 4)$ $= (0, 1) + (\frac{2}{5}, -\frac{2}{5}) = (\frac{2}{5}, \frac{3}{5})$

STEP 3: 203= (0,3). WHY?

COMPLETE THIS STEP AS AN ASSIGNMENT PROBLEM. OBSERVE THAT THE METHOD OF STEEPEST DESCENT PRODUCES A SEQUENCE OF ITERATES \mathcal{Z}_{k} THAT IS CONVERGING TO THE STRICT GLOBAL MINIMIZER OF f(x,y) AT $\mathcal{Z}=(0,0)$.

口

SOLUTION VIA ANALYTICAL MEANS.

$$\frac{\partial f}{\partial x} = 8x - 4y ; \qquad \frac{\partial^2 f}{\partial x^2} = 8$$

EXTREMA CAN OCCUR AT $\nabla f(2,3) = 0$

THEREFORE EXTREMA CAN OCCUR AT (7,4) = (0,0)

HESSIAN MATRIX = H(7,7)

i) FIRST PRINCIPAL MINOR OF H(0,0) = [8]

fory is ALSO CONVEX.