Reading: Approximate Groups

Lemma 2.5.1 Let G be a arbitrary group and let $A\subset G$ b a finite subset with $|A^2|\leq K|A|$. Then $|A^{-1}A|\leq K^2|A|$ and $|AA^{-1}|\leq K^2|A|$.

This is generalization to non-abelian groups, only for m=1 and n=1

Theorem 2.3.1 Let G be an abelian group and let A, B be finite subsets of G.

- suppose that $|A+B| \leq K|A|$ then $|mA-nA| \leq K^{m+n}|A|$.
- if $|A+A| \leq K|A|$ then $|mA-nA| \leq K^{m+n}|A|$.

for all non-negative integers m, n.

These looking into the axioms of group theory. There are several instances of group theory that we encounter in other branches of mathemamtics:

- permutation groups $\mathsf{ABCDE} \to \mathsf{BCDEA} \to \mathsf{CDEAB} \to \mathsf{DEABC} \to \mathsf{EABCD} \to [\dots]$
- groups of substutions, e.g. $x \mapsto 3x + 2y$ and $y \mapsto 4x + 3y$
- groups of transformations of physical objects (e.g. symmetries of square)

These symmetries in general were approximate since there was an enormous amount of work move and old the objects in a perfect evenly spaced circle.

References

[1] ...