Linear Independence and Rank in Learning

- Review the role of systems of linear equations in machine learning
- Define linear independence
- Define the rank of a matrix

Learning classifiers and data models requires 2 solving systems of linear equations

$$\begin{bmatrix}
\hat{p}_1 \\
\hat{p}_2 \\
\vdots \\
\hat{p}_{20}
\end{bmatrix} = \begin{bmatrix}
1 & t_1 & t_1 \\
1 & t_2 & t_2 \\
\vdots & \vdots & \vdots \\
1 & t_{20} & t_{20}
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
w_3
\end{bmatrix}$$

Model fitting

Classifier design

Important: Can we solve Aw=d?

Let
$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_M \end{bmatrix}$$
 so $Aw = d \Rightarrow d = \sum_{i=1}^{M} a_i w_i$

Example: $A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

The end of a_1 and a_2 and a_3 and a_4 and a_4 and a_5 and a_6 and a_7 and a_8 and $a_$

Linear independence: Aset of M vectors Y1, Y2, ..., YMERN is linearly independent iff $\sum_{i=1}^{M} V_i \alpha_i = 0 \iff \alpha_i = 0, i=1,2,...,M$ otherwise "linearly dependent" Rank of a matrix: number of linearly independent columns (or rows)

Note: row rank = column rank

Examples:
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$
 $a_3 = a_2 - a_1$
 $a_1 = a_2 + a_3 = 0$
 $a_1 = a_2 + a_3 = 0$
 $a_1 = a_2 + a_3 = 0$
 $a_1 = a_2 + a_3 = 0$

a, az, as are linearly dependent!

$$\alpha_1 \alpha_1 + \alpha_2 \alpha_2 = 0$$
, $\alpha_1 \alpha_1 + \alpha_3 \alpha_3 = 0$ same for α_2, α_3

 $\alpha_1 = \alpha_2 = 0$ $\alpha_1 = \alpha_3 = 0$ $\alpha_1, \alpha_2 \text{ lin. in dep. } \alpha_1, \alpha_3 \text{ lin in dep. } rank(A) = 2$

Zof 3 dimensions

Example:
$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & \alpha_1 & \alpha_2 & -\alpha_3 + \alpha_4 & = 0 \\ 0 & 0 & 1 & 1 \\ 0 & \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}$$

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & 1 \\ \alpha_1 & \alpha_1 & \alpha_2 & \alpha_2 & \alpha_3 & = 0 \end{cases}$$

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & 1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4$$

Back to Aw = d solution: Aw - d = 0 or $\sum_{i=1}^{n} a_i w_i + (-1) d = 0$ $\Rightarrow a_1, \dots, a_n, d$ are lin. dep.

Summary

$$Aw=d$$

$$A=[a_1a_2...a_m]$$

- 1) If disalinear combination of a, az; an there is a solution rank ([A : d])
- 2) If anaz,...and are linearly independent, there is no solution rank (A) < rank ([A:d])
- 3) Unique solution?

Copyright 2019 Barry Van Veen