CLAIMS

What is claimed is:

1	1.	A method for allowing a device to be removably attached to a computer system while
2		maintaining the system integrity, comprising the steps of:
3		configuring a bridge between the device and the computer system; wherein
4		while in an attached state
5		if recognizing that the device has been removed from the
6		bridge, then the bridge transitioning into a cleanup
7		state, then a removed state;
8		while in the cleanup state, performing the ordered steps of
9		the bridge sending a first signal to the computer system;
10		in response to the first signal, the computer system sending a
l 1		second signal to the bridge; and
12		in response to the second signal, the bridge sending a third
13		signal to the computer system to indicate that the bridge
14		has been removed from the computer system;
15		removing the device from the bridge is performed without giving prior
6		notice to the bridge, nor the computer system;
17		the attached state indicating that the device has been attached to the
8		computer system; and
9		the removed state indicating that the device has been removed from the
20		computer system.

- 1 2. The method of Claim 1 wherein the bridge using a first protocol to communicate with 2 the computer system, and using a second protocol to communicate with the device.
- 1 3. The method of Claim 2 wherein the first protocol or the second protocol is:
- 2 a protocol complying with the SCSI standard;
- a protocol complying with the IDE standard;
- 4 a protocol complying with the fibre channel standard;
- 5 a protocol complying with the IEEE 1394 standard; or
- 6 a protocol complying with the USB standard.
- 1 4. The method of Claim 2 wherein the bridge includes a processing unit and memory to convert commands of the first protocol and the second protocol.
- 1 5. The method of Claim 2 wherein the first protocol is the same as the second protocol.
- The method of Claim 1 wherein, while in the cleanup state, if the bridge receives a processing command, then the bridge sends a fourth signal to the computer system indicating that the bridge cannot process the command.
- The method of Claim 6 wherein, while in the cleanup state, the bridge further sends a fifth signal to the computer system indicating that the command has been terminated.

- 1 8. The method of Claim 7 wherein, while in the cleanup state, the computer system,
 2 upon receiving the fourth or the fifth signal from the bridge, provides a sixth signal to
- 3 indicate that the command cannot be processed.
- 1 9. The method of Claim 1 further comprising the step of providing a buffer between the
- device and the bridge for protecting the bridge from disruption signals from the
- device.
- 1 10. The method of Claim 1 further comprising the step of providing a buffer between the
- device and the bridge wherein the buffer prevents the signals passing from the device
- 3 to the bridge.
- 1 11. The method of Claim 10 wherein the bridge transitioning to the cleanup state upon
- 2 recognizing that the bridge cannot communicate with the device via the buffer.
- 1 12. The method of Claim 1 wherein:
- 2 the bridge recognizes that the device has been removed from the bridge based
- on a signal asserted at a control pin of the bridge; and
- 4 the signal changes when the control pin of the bridge is engaged to or
- 5 disengaged from a control pin of the device.

1

- 1 13. A system for allowing a device to be removably attached to a computer system while
- 2 maintaining the system integrity, comprising:
- a bridge interfacing between the device and the computer system;

4		wherein
5		while in an attached state
6		if recognizing that the device has been removed from the
7		bridge, then the bridge transitioning into a cleanup state
8		then a removed state;
9		while in the cleanup state
10		the bridge sending a first signal to the computer system;
11		in response to the first signal, the computer system sending a
12		second signal to the bridge; and
13		in response to the second signal, the bridge sending a third
14		signal to the computer system to indicate that the bridge
15		has been removed from the computer system;
16		removing the device from the bridge is performed without giving prior
17		notice to the bridge, nor the computer system;
18		the attached state indicating that the device has been attached to the
19		computer system; and
20		the removed state indicating that the device has been removed from the
21		computer system.
1	14.	The system of Claim 13 wherein the bridge using a first protocol to communicate with
2		the computer system, and using a second protocol to communicate with the device.
	1.5	
1	15.	The system of Claim 14 wherein the first protocol or the second protocol is:
2		a protocol complying with the SCSI standard;

- a protocol complying with the IDE standard;
- 4 a protocol complying with the fibre channel standard;
- 5 a protocol complying with the IEEE 1394 standard; or
- a protocol complying with the USB standard.
- 1 16. The system of Claim 13 wherein the bridge includes a processing unit and memory to
- 2 convert commands of the first protocol and the second protocol.
- 1 17. The system of Claim 13 wherein the first protocol is the same as the second protocol.
- 1 18. The system of Claim 13 wherein, while in the cleanup state, if the bridge receives a
- 2 processing command, then the bridge sends a fourth signal to the computer system
- 3 indicating that the bridge cannot process the command.
- 1 19. The system of Claim 18 wherein, while in the cleanup state, the bridge further sends a
- 2 fifth signal to the computer system indicating that the command has been terminated.
- 1 20. The system of Claim 19 wherein, while in the cleanup state, the computer system,
- 2 upon receiving the fourth or the fifth signal from the bridge, provides a sixth signal to
- 3 indicate that the command cannot be processed.
- 1 21. The system of Claim 13 further comprising a buffer between the device and the bridge
- 2 for protecting the bridge from disruption signals from the device.

1	22.	The system of Claim 13 further comprising a buffer between the device and the bridge
2		wherein the buffer prevents the signals passing from the device to the bridge.
1	23.	The system of Claim 22 wherein the bridge transitions to the cleanup state upon
2		recognizing that the bridge cannot communicate with the device via the buffer.
1	24.	The system of Claim 13 wherein:
2		the bridge recognizes that the device has been removed from the bridge based
3		on a signal asserted at a control pin of the bridge; and
4		the signal changes when the control pin of the bridge is engaged to or
5		disengaged from a control pin of the device.
		_
1	25.	A method for hot removing a device from a system, comprising the steps of:
2		configuring a bridge between the device and the system; and
3		configuring a buffer between the device and the bridge for protecting the
4		bridge from signals from the device; wherein
5		while in an attached state
6		if recognizing that the device has been removed from the
7		bridge, then the bridge transitioning into a cleanup
8		state, then a removed state;
9		while in the cleanup state,
10		the bridge sending a first signal to the system;
11		in response to the first signal, the system sending a second
12		signal to the bridge; and

13	in response to the second signal, the bridge sending a third
14	signal to the system to indicate that the bridge has been
15	removed from the system.