Lab 2- Thévenin and Norton Equivalent Circuits

Lecturer: Prof. Sun Zhenglong

TA: Li Ying, Cheng Jiayu, Li Yifu, Xu Yingtian

Report submission deadline: 17:00, 28th Oct, 2021 (Thursday)

1 Goals

- Verifying Thévenin and Norton equivalent circuits
- Verifying the maximum power transfer principle.
- Implementing the circuits in an experimental setting, taking measurements, and comparing with theoretical results.

2 Review of Theory

1. Thévenin equivalent circuit: A powered linear two-port network can be equivalently modeled as a serial connection of a voltage source V_{oc} and a resistor R_{eq} .

(c) Norton equivalent circuit

Figure 1

The equivalence is in the sense that, given any load connected to the two-port network, the voltage across and the current flowing through the load are unchanged when the two-port network is replaced by the equivalent circuit.

The voltage V_{oc} can be obtained by measuring the open circuit voltage across the two output ports. The value of R_{eq} can be obtained by first measuring the short-circuit current at the output ports followed by dividing V_{oc} by the measured short-circuit current value.

- 2. Norton equivalent circuit: A linear two-port network with energy source can be equivalently modeled as a parallel connection of a current source I_{sc} and the resistor R_{eq} .
 - The current I_{sc} can be obtained by measuring the short-circuit current at the output ports or simply obtained by V_{oc}/R_{eq} from the Thévenin equivalent circuit.
- 3. Maximum power transfer principle: For a powered linear two-port network, the load connected to the output ports receives power. When the load resistance is equal to the equivalent resistance R_{eq} , the load receives the maximum power that the two-port network can provide.

3 Apparatus

- 1. DC power supply
- 2. Multimeter
- 3. Resistors $(300\Omega \times 2, 1k\Omega, 200\Omega, 510\Omega)$
- 4. Resistor box \times 2
- 5. Breadboard
- 6. Wires

4 Tips

- Always turn the power supply off whenever you change the circuit diagram or when you use multimeter to measure line currents.
- Note that the power supply works as a voltage source when the connected load has a resistance value larger than the critical impedance of the power supply (which is the ratio of the voltage value ('CV') and the current value ('CC') set in the power supply), otherwise the power supply works as a current source.

Figure 2: Original circuit setup.

5 Experiment 1: Thévenin equivalent circuit

- S1. Build the circuit in Figure 2 on the breadboard. Set the voltage value of S_1 to 16V.
- S2. Analyze the theoretical values of V_{oc} , I_{sc} (the short-circuit current between points B and C) and R_{eq} . Put the results in Table 1.

Table 1

Theoretical V_{oc}	Theoretical I_{sc}	Theoretical R_{eq}

S3. Use the multimeter to measure V_{oc} and I_{sc} , and then compute R_{eq} . (Note: To measure I_{sc} , first turn off S_1 , short circuit the output port, and then turn on S_1 to 16V.) Put the results in Table 2.

Table 2

Experimental V_{oc}	Experimental I_{sc}	Experimental R_{eq}

S4. Connect the resistor box (with resistance R_L) to the output port, and measure the voltage across and current flowing through the resistor box when R_L are respectively set to the values in Table 3. Write the measured results in Table 3.

Table 3

$R_L (\Omega)$	0	400	800	1200	1600	2000	2400	2800	∞
V_L									
I_L									

S5. Use the voltage source and resistor box to build the Thévenin equivalent circuit in Figure 3. Set the values of V_{oc} and R_{eq} according to Table 2.

Figure 3: Equivalent circuit setup.

Repeat S4 and put the results in Table 4.

Table 4

$R_L(\Omega)$	0	400	800	1200	1600	2000	2400	2800	∞
V_L									
I_L									

S6. Discussion

6 Experiment 2: Norton equivalent circuit

S1. Based on Table 2, calculate the values of I_{sc} of the Norton equivalent circuit of Figure 2. Use the current source and resistor box to build the Norton equivalent circuit in Figure 4, and set I_{sc} and R_{eq} in accordance with Table 2.

Figure 4: Equivalent circuit setup.

Repeat S4 in Experiment 1 and put the results in Table 5.

Table 5

$R_L(\Omega)$	0	400	800	1200	1600	2000	2400	2800	∞
V_L									
I_L									

S2. Discussion

7 Experiment 3: Maximum power transfer principle

- S1. Use the voltage source and resistor box to build the Thévenin equivalent circuit in Figure 3, and set V_{oc} and R_{eq} according to Table 2 (i.e., S5 in Experiment 1).
- S2. Connect the resistor box (with resistance R_L) to the output port. Let $R_L = R_{eq} + \Delta R$. Following the values of ΔR in Table 6, measure the voltage across and current flowing through the resistor box. Calculate the corresponding power values. Summarize the results in Table 6.

Table 6

$\triangle R \ (\Omega)$	$-R_{eq}$	-350	-150	-50	0	50	150	350	∞
V_L									
I_L									
P_L									

S3. Discussion