ASSESSING MODEL ACCURACY DAVID ORME

OVERVIEW

- The confusion matrix
- Measures of model accuracy
- Thresholds for continuous predictions
- Application to Species Distribution Models

MODIS LAND COVER CLASSIFICATION

Site	Class		Classification Outcome														
Class	Name	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	Total
1	Evergreen Needleleaf	1460	42	18	11	266	7	9	17	23	10	15	21	2	0	0	1901
2	Evergreen Broadleaf	31	4889	0	14	14	11	18	79	23	17	4	38	10	0	1	5149
3	Deciduous Needleleaf	87	0	104	25	118	0	0	4	0	0	0	10	0	0	0	348
4	Deciduous Broadleaf	22	56	16	384	278	0	3	11	1	3	0	47	8 2	0	0	903
5	Mixed Forest	405	63	9 4	148	1355	3	1	27	7	8	40	41	17	0	0	2209
6	Closed Shrubland	34	35	2	12	5	140	124	29	15	30	2	158	19	0	8	613
7	Open Shrubland	10	12	3	9	1	41	1002	33	4 5	203	0	210	6	0	213	1788
8	Woody Savanna	62	133	0	16	110	11	104	577	141	71	0	221	22	0	3	1471
9	Savanna	10	53	1	0	21	18	48	93	440	43	1	252	79	0	16	1075
10	Grasslands	2	16	0	2	20	4	179	6	101	632	0	249	13	0	363	1587
11	Pmnt Wtlnd	63	24	0	5	28	23	1	2	36	2	89	1	7	0	0	281
12	Cropland	6	75	2	7	16	8	61	42	132	133	2	5168	183	0	18	5853
14	Cropland/Natural Vegn	2	133	0	48	28	2	8	16	66	8	1	320	832	0	7	1471
15	Snow+ice	1	0	0	0	0	1	2	0	0	0	5	1	0	1297	5	1312
16	Barren	0	2	1	0	0	1	162	4	5	126	3	56	5	14	3537	3916
	Total	2195	5533	241	681	2260	270	1722	940	1035	1286	162	6793	1277	1311	4171	29877

Accuracy = 21906 / 29877 = 73.3%

A SIMPLER CONFUSION MATRIX

Zoom in on just two of those categories:

Site	Class		
Class	Name	1	2
1	Evergreen Needleleaf	1460	42
2	Evergreen Broadleaf	3 1	4889

Model predicts: Is this evergreen forest needleleaf or broadleaf

Easy to calculate accuracy:

	Pred. Needle	Pred. Broad	Sum		
Obs. Needle	1460	42	1502		
Obs. Broad	31	4889	4920		
Sum	1491	4931	6422		
\$\$A = 14	460 + 4889}{146	50 + 4889 + 42	2+31}=		
98.9%\$\$					

But random models have ~50% accuracy!

	Pred. Needle	Pred. Broad	Sum	
Obs. Needle	721	781	1502	
Obs. Broad	2431	2489	4920	
Sum	3152	3270	6422	
$$A = \frac{721 + 2489}{6422} = 50.0\%$				

Bad models: everything is a broadleaf

	Pred. Needle	Pred. Broad	Sum	
Obs. Needle	0	1502	1502	
Obs. Broad	0	4920	4920	
Sum	0	6422	6422	
$$A = \frac{0 + 4920}{6422} = 76.6\%$				

PREVALENCE

Proportion of the observed positive outcomes

	Pred. Pos	Pred. Neg	Sum
Obs. Pos	1460	42	1502
Obs. Neg	31	4889	4920
Sum	1491	4931	6422

 $\protect\$ = \frac{1502}{6422} = 0.234\$\$

And accuracy is affected by prevalence

	Pred. Pos	Pred. Neg	Sum	
Obs. Pos	0	35	35	
Obs. Neg	0	6407	6407	
Sum	0	6442	6442	
$$A = \frac{0 + 6407}{6422} = 99.5\%$				

PREDICTION OUTCOMES

Giving some simple names to the four outcomes:

	Pred. Pos	Pred. Neg
Obs. Pos	True	False
	Positive	Negative
Obs. Neg	False	True
Obs. Neg	Positive	Negative

PREDICTION OUTCOMES

Other more confusing names do get used:

	Pred. Pos	Pred. Neg
Obs. Pos	True Positive	Type II Error
Obs. Neg	Type I Error	True Negative

RATES OF OUTCOMES

Divide the four outcomes by the **observed** positive and negative counts to give **rates**:

	Pred. Pos	Pred. Neg
	True	False
Obs. Pos	Positive	Negative
	Rate	Rate
	False	True
Obs. Neg	Positive	Negative
	Rate	Rate

RATES OF OUTCOMES

Calculate those values:

	Pred. Pos	Pred. Neg	Sum
Obs.	\$\$\frac{1460}	\$\$\frac{42}	1502
Pos	{1502}=97.2%\$\$	{1502}=2.8%\$\$	
Obs.	\$\$\frac{31}	\$\$\frac{4889}	4920
Neg	{4920}=0.6%\$\$	{4920}=99.4%\$\$	

SENSITIVITY AND SPECIFICITY

Sensitivity

- Another name for the True Positive Rate
- The proportion of correctly predicted positive observations

Specificity

- Another name for the True Negative Rate
- The proportion of correctly predicted negative observations

SENSITIVITY AND SPECIFICITY

	Pred. Pos	Pred. Neg	Sum
Obs. Pos	1460	42	1502
Obs. Neg	2010	2910	4920
Sum	3470	2952	6422

	Pred. Pos	Pred. Neg
Obs. Pos	97.2%	2.8%
Obs. Neg	40.9%	59.1%

COHEN'S KAPPA

Cohen's kappa (\$\kappa\$) is a measure of agreement that rescales accuracy (\$A\$) to account for chance agreement (\$P_e\$):

\$\$\kappa = \frac{A - P_e}{1 - P_e}\$\$

It can take values from \$-\infty\$ to 1, where 1 is perfect prediction and anything below zero is worse than chance.

COHEN'S KAPPA

Multiply proportions of observed and predicted to get probability of each outcome

	Pred. Pos	Pred. Neg	Sum
Obs. Pos	1460	42	1502
Obs. Neg	31	4889	4920
Sum	1491	4931	6422

 $P_{YY} = \frac{1491}{6422} \times \frac{1502}{6422} = 0.054$

COHEN'S KAPPA

		Pred. Pos	Pred. Neg	р	
С	bs. Pos	0.054	0.180	0.234	
С	bs. Neg	0.178	0.588	0.766	
р		0.232	0.768	1.000	
P_e =	P_{YY} +	$P_{NN} = 0.0$	054 + 0.588	= 0.642 \$\$	\$\$
\kapp	a =	0.989 - 0.64	2}{1-0.642}	= 0.969 \$\$	

TRUE SKILL STATISTIC

Journal of Applied Ecology

Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)

OMRI ALLOUCHE, ASAF TSOAR, RONEN KADMON

First published: 12 September 2006 | https://doi.org/10.1111/j.1365-2664.2006.01214.x

Citations: 1,633

TRUE SKILL STATISTIC

An alternative measure is TSS:

```
 \$ \mbox{TSS} = \mbox{Sensitivity} + \\ \mbox{Specificity} - 1 \$\$ \$ \mbox{TSS} = [0, 1] + [0, 1] - \\ 1 \$\$
```

- TSS = 1 (perfect)
- TSS = 0 (random)
- TSS = -1 (always wrong)
- Unaffected by prevalence.

WAIT, NO. NOT TSS!

Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models

Rainer Ferdinand Wunderlich, Yu-Pin Lin, Johnathen Anthony, Joy R. Petway

PROBABILISTIC CLASSIFICATION

A model predicting the probability of success / presence

		0	1
_	1	0	48
	0	0	52
		•	value
	Sen	S	1
•	Spe	С	0
-	TSS		0

	0	1
1	4	44
0	26	26
	V	alue
Ser	is 0	.917
Spe	ec 0	.500
TSS	6 0	.417

	0	1
1	11	37
0	37	15
	V	alue
Ser	ns O	.771
Spe	ec O	.712
TSS	5 0	.482

	0	1
1	31	17
0	49	3
	V	alue
Ser	ns O	.354
Spe	ec O	.942
TSS	6 0	.296

	0	1
1	48	0
0	52	0
	Vä	alue
Sen	S	0
Spe	С	1
TSS		0

ROC CURVE

- Receiver

 operating
 characteristic
 (ROC)
- A random model gives the red line

AREA UNDER ROC CURVE (AUC)

- AUC varies between 0 and 1.
- AUC = 0.5 is random.
- Overall model performance

Kinkajou (Potos flavus)

- Observed (red)
- Background (black)

Threshold = 0.1				
	Prese	ent	Ab	sent
Obs	2	00		0
Back	1	162		38
	value			
	Sens	0.	19	
	Spec	1.	00	
	TSS	0.	19	

Threshold = 0.4					
	Pres	ent	Ab	sent	
Obs	-	187		13	
Back	-	111			
		value			
	Sens	0.4	45		
	Spec	0.9	35		
	TSS	0.3	80		

Threshold = 0.55				
	Pres	ent	Ab	sent
Obs		67		133
Back		37		163
_		val	ue	
	Sens	0.8	15	
	Spec	0.3	35	
	TSS	0.1	50	

AUC FOR THE KINKAJOU

Maximum sensitivity + specificity shown in red.

Threshold = 0.411					
	Pres	ent	Ab	sent	
Obs	-	183		17	
Back	-	106			
		value			
	Sens	0.4	70		
	Spec	0.9	15		
	TSS	0.3	85		

THRESHOLD CHOICES

Method	Definition
Fixed value	An arbitrary fixed value (e.g. probability = 0.5)
Lowest predicted value	The lowest predicted value corresponding with an observed occurrence record
Sensitivity-specificity equality	The threshold at which sensitivity and specificity are equal
Sensitivity-specificity sum maximization	The sum of sensitivity and specificity is maximized
Maximize Kappa	The threshold at which Cohen's Kappa statistic is maximized
Equal prevalence	Propn of presences relative to the number of sites is equal in prediction and calibration data