Andrews, Reiss. Harper, Roy

Localization renormalization and quantum Hall systems

Bartholomew Andrews*† Dominic Reiss*

Fenner Harper

Rahul Roy

University of California, Los Angeles

APS March Meeting, Las Vegas

March 6, 2023

^{*}Contributed equally to this work.

[†]Supported by the APS FECS March Meeting mini-grant.

Andrews, Reiss, Harper, Roy

Introduction

Renormalizat

Quantum Ha

Jystems

Landau Leve

Manhad

Results

Chern insulat

Method

Results

Discussion

Conclusio

Introduction

- Concepts of renormalization can be designed around various physical quantities for applications in condensed matter, high energy, and cosmology.
 - \rightarrow position **r** [Kadanoff 1966], momentum **p** [Wilson 1971], entanglement S [Vidal 2007]
- These applications often lead to novel ideas, approaches, and algorithms.
 - MCRG [Swendsen 1979], DMRG [White 1992], FRG [Wetterich 1993], PEPS [Verstraete & Cirac 2004], TRG [Levin & Nave 2007], MERA [Vidal 2008], deep learning? [Koch & Cheng 2020]
- A hallmark of several interesting condensed matter phases is the ability to construct localized degrees of freedom, which is quantified via a **localization length** \mathcal{E} .
 - --> Anderson insulators, MBL, plateau transitions, ...

Andrews, Reiss, Harper, Roy

Introduc

Localization Renormalization

Quantum Hall

Landau Levels Model Method

Results Chern insulator

Method Results

Discussi

Conclusi

Localization Renormalization

We introduce a renormalization procedure based on the characteristic localization length.

- **1** Consider a d-dimensional quantum single-particle system with Hilbert space \mathcal{H} .
- **2** Construct a maximal set of **quasilocal operators**, corresponding to a complete basis of wavefunctions in a given band $\{|\psi\rangle\}$, and maximally localized in some metric D.
- f 3 Define a **family of projectors** that eliminate a fraction 1ho of the degrees of freedom

$$P_{\rho} = P_{\mathsf{band}} - \sum_{i \in \mathcal{L}_{\rho}} \left| \tilde{\psi}_i \right\rangle \left\langle \tilde{\psi}_i \right|,$$

where $P_{\rm band}$ is the projector to the relevant single-particle band, and $|\tilde{\psi}_i\rangle$ is the symmetrically-orthogonalized wavefunction at site i in the removal subregion \mathcal{L}_{ρ} .

- 4 Iteratively apply P_{ρ} to the system and quantify the scaling of the characteristic localization length ξ in the residual Hilbert space \mathcal{H}' using D.
- **6** As $\rho \to 0$ in the thermodynamic limit, ξ diverges for delocalized systems with a **universal scaling exponent**, whereas it is constant in a localized phase.
- ⇒ Basis-independent method for classifying a wide variety of localization transitions!

Andrews, Reiss, Harper, Roy

Introduct

Localization Renormalizati

Quantum Ha Systems

Landau Lev

Model

Method

Results

Chern insulat

Method

Discussion

Conclus

Example 1: Landau Levels

Model

- Free spinless electron in 2D with a perpendicular magnetic field: $H_{LL} = (\mathbf{p} e\mathbf{A})^2/2m = \hbar\omega(a^{\dagger}a + 1/2).$
- Symmetric gauge $\Rightarrow L_z = \hbar(a^{\dagger}a b^{\dagger}b)$, yields the eigenspectrum: $|n,m\rangle$ with $E_n = \hbar\omega(n+1/2)$.
- We focus on **coherent states** $|\beta\rangle$: $b|\beta\rangle = \beta|\beta\rangle$:
 - non-dispersive minimum uncertainty states $\Delta X \Delta Y = \hbar/2$
 - magnetic translations of $|n, n\rangle$

- Coherent states form an overcomplete basis for the LL.
- Set of coherent states is critical when restricted to an XY-plane unit cell area $S=2\pi$.
- Symmetric orthogonalization of a complete basis in a LL yields divergence at long distances.

Andrews, Reiss, Harper, Roy

Introdu

Localization Renormalizati

Quantum Ha

Landau Loud

Model

Method

ivietno

Chern insu

Model Method Results

Discussio

Conclusi

Example 1: Landau Levels

Method

- **1** LLs $\{|n,m\rangle\}$ defined on a **disc** of radius R, with truncated angular momentum basis $m \in \{0,1,\ldots,\frac{3}{4}R^2\}$.
- ② Introduce a removal lattice \mathcal{L}_{ρ} , with UC area $A_{\rho}=2\pi/(1-\rho)$ centered at the origin, where ρ is the **fraction of states remaining** relative to \mathcal{L}_0 : $\rho=1-A_0/A_{\rho}$. For each lattice site $\mathbf{r}_{ij}\in\mathcal{L}_{\rho}$, find the maximally-localized states $|\psi_{ij}\rangle$ centered at \mathbf{r}_{ij} .
- 3 Symmetrically orthogonalize these states, such that $\{|\psi_{ij}\rangle\} \to \{|\tilde{\psi}_{ij}\rangle\}$, and **project them out** of the Hilbert space:

$$P_{\rho}^{\mathsf{LL}} = P_{\mathsf{nLL}} - \sum_{i,j \in \mathcal{L}_{\rho}} |\tilde{\psi}_{ij}\rangle \left\langle \tilde{\psi}_{ij} \right|.$$

- **4** Record the **localization length**, ξ , quantified by e.g. $P_{\rho}^{\text{LL}} \mathbf{r}^2 P_{\rho}^{\text{LL}} |\mathbf{0}_{\rho}\rangle = \xi^2 |\mathbf{0}_{\rho}\rangle$, where $|\mathbf{0}_{\rho}\rangle$ is the maximally-localized state at the origin, by construction.
- **6** Repeat for smaller ρ .

Andrews Reiss Harper, Roy

Model

Regulte

Example 1: Landau Levels

Results

Andrews, Reiss, Harper, Roy

Introduct

Localization

O....turn Hal

Systems

Landau Lev

Model

Method

Results

Cham Insula

Model Method

Method

Discussio

Conclusi

Example 2: Chern Insulators

Model

Three configurations of the (square-lattice) **Haldane model**:

$$egin{aligned} \mathcal{H}_{\mathsf{CI}} &= -\ t_1 \sum_{\langle oldsymbol{\langle ij
angle}
angle} c_i^\dagger c_j - t_2 \sum_{\langle \langle oldsymbol{\langle ij
angle}
angle} e^{\pm \mathrm{i} \phi} c_i^\dagger c_j \ &+ M \sum_i (n_{A,i} - n_{B,i}) + ext{H.c.} \end{aligned}$$

Andrews, Reiss, Harper, Roy

Introduc

Localization Renormaliza

Quantum Ha Systems

Landau Level Model Method

Results Chern insulato

Method

Results

Discussio

Conclusi

Example 2: Chern Insulators

Method

- **1** $L \times L$ square lattice for the Haldane model \mathcal{L} , with lattice constant a = 1, defined on a **torus**.
- ② Introduce a removal lattice \mathcal{L}_{ρ} , with UC area $A_{\rho}=1/(1-\rho)$ centered at an "origin" Haldane lattice site. For each lattice site $\mathbf{r}_{ij}\in\mathcal{L}_{\rho}$, find the maximally-localized state $|\psi_{ij}\rangle$ centered at \mathbf{r}_{ij} .
- § Symmetrically orthogonalize these states, such that $\{|\psi_{ij}\rangle\} \to \{|\tilde{\psi}_{ij}\rangle\}$, and **project them out** of the Hilbert space via

$$P_{\rho}^{\mathsf{CI}} = P_{\mathsf{LB}} - \sum_{i,j \in \mathcal{L}_{\rho}} |\tilde{\psi}_{ij}\rangle \langle \tilde{\psi}_{ij}|.$$

- **4** Record the **localization length**, ξ , quantified by, e.g. $P_{\rho}^{\text{Cl}} \mathbf{r}^2 P_{\rho}^{\text{Cl}} |\mathbf{0}_{\rho}\rangle = \xi^2 |\mathbf{0}_{\rho}\rangle$, where $|\mathbf{0}_{\rho}\rangle$ is the maximally-localized state at the origin, by construction.
- **6** Repeat for smaller ρ .

Andrews Reiss Harper, Roy

Results

Example 2: Chern Insulators

Results

Andrews, Reiss, Harper, Roy

Introduc

ocalization

Quantum H

Landau Le

Model Method

Results

Chern insulate

Method

Discussion

Conclusio

Discussion

• Real-space RG: Statistical self-similarity of projectors P_{ρ} accords with an RG picture.

Coarse-grain: Rescale:
$$\bar{H}(\mathbf{r}) = P_{\rho}H(\mathbf{r})P_{\rho}$$

$$\mathbf{r}' = \rho^{-1/2}\mathbf{r}$$

$$H'(\mathbf{r}') = \rho^{-1}\bar{H}(\mathbf{r}')$$

• Entanglement RG: "All stable, gapped, d-dimensional phases of matter are generalized s-source RG fixed points, where s is the number of copies of an entangled ground state of linear extent L needed to describe the corresponding state of size 2L, by acting with a quasilocal unitary transformation." [Swingle & McGreevy 2016]

Similarity	Difference
Quasilocal unitary used to scale the	Degrees of freedom removed from a
effective system size while limiting in-	fraction of sites in ${\cal H}$ and not in in-
cremental entangling.	crements of the system size.

- **Probing band topology:** Several advantages over existing methods...
 - + versatile ⇒ can be used in situations where traditional methods fail e.g. fractal lattices [Jha & Nielsen 2023], quasicrystals [Koshino & Oka 2021]
 - + spectrum independent ⇒ can be used to diagnose topology in disordered systems
 - + generalizable \Rightarrow can be extended to other symmetry classes and dimensions

Andrews, Reiss, Harper, Roy

Introduc

Localization

Quantum Ha

Systems

Landau Li

Model

Metho

resuits

Chern insulat

Metho

Results

Discussio

Conclusion

Conclusion

- Localization renormalization is an efficient diagnostic for analyzing a diverse range
 of localization transitions, which we demonstrate using single-particle examples.
- For 2D class A topological insulators, we find the universal scaling relation

$$\lim_{\begin{subarray}{c} \rho \to 0 \\ L \to \infty \end{subarray}} \xi(\rho) \sim \begin{cases} \rho^{-1/2}, & \text{in a topological phase,} \\ \text{const,} & \text{in a trivial phase,} \end{cases}$$

independent of the model, truncation algorithm, and ξ metric.

• The universal scaling exponent ν is a self-similar property of the family of projectors P_{ρ} , which accords with an **RG picture**.

Thank you for listening!