UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT-INF 1100 — Modellering og beregninger.

Eksamensdag: Mandag 5. desember 2011.

Tid for eksamen: 9:00-13:00.

Oppgavesettet er på 7 sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Husk å fylle inn kandidatnummer under.

Kandidatnr:	
-------------	--

Første del av eksamen består av 10 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Dersom du svarer feil eller lar være å krysse av på en oppgave, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen består av tradisjonelle oppgaver. I denne delen teller hvert av de 7 delspørsmålene 10 poeng. Den totale poengsummen er altså maksimalt 100 poeng. I andre del av eksamen må du begrunne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet får 0 poeng selv om de er riktige!

Husk å levere arkene med flervalgssvarene!

Del 1: Flervalgsoppgaver

Oppgave 1. Løsningen til differensialligningen y'' + 4y' - 5y = 0 med initialverdier y(0) = 1 og y'(0) = 1 er

$$y(x) = 3e^{3x} - 3e^x$$

$$x$$
 $y(x) = e^x$

$$y(x) = e^{-2x}$$

Oppgave 2. Løsningen til differensialligningen y'' - 4y' + 5y = 0 med initialverdier y(0) = 1 og y'(0) = 2 er

$$x$$
 $y(x) = e^{2x} \cos x$

$$y(x) = e^{2x}(\cos x + \sin x)$$

$$y(x) = e^x \cos 2x$$

$$y(x) = e^x(\cos 2x + \sin 2x)$$

(Fortsettes på side 2.)

Oppgave 3. Løsningen til differensialligningen $y'+y^2x^3=0$ med initialverdi $y(0)=1$ er
Oppgave 4. Vi skal løse differensialligninger numerisk. For fire av disse ligningene kan vi få store problemer om vi velger uheldige startverdier for x og t . For hvilken ligning vil vi aldri kunne få store problemer? $x' = \arcsin(t+x)$ $x' = \sin(x^2 + t)$ $x' = x/(1+t)$ $x' = \sqrt{1+x}$ $x' = 1/(1+x^3)$
Oppgave 5. Vi ser på tre numeriske metoder for å finne nullpunkter for funksjoner: halveringsmetoden, sekantmetoden og Newtons metode. Hvilke (n) av disse metodene vil alltid gi liten feil, uavhengig av antall iterasjoner og for alle førstegradspolynom?
 □ Bare halveringsmetoden □ Bare sekantmetoden □ Bare Newtons metode □ Bare Newtons metode og halveringsmetoden □ Bare sekantmetoden og Newtons metode
Oppgave 6. En tekst er lagret i en fil med en standard koding, og et av tegnene er kodet med tre bytes. Hvilken koding er filen da kodet med? \[\text{WTF-8} \] \[\text{UTF-16} \] \[\text{ISO Latin-1} \] \[\text{ASCII} \] \[\text{UTF-32} \]
Oppgave 7. Du skal bruke halveringsmetoden til å finne nullpunktet ti funksjonen $f(x) = x^2 - 2$ og begynner med intervallet $[0, 2]$. Hva er intervallet etter to steg?

Oppgave 8. Vi skal beregne en tilnærming til den andrederiverte f''(0)til en funskjon f(x) ved hjelp av tilnærmingen

$$f''(0) \approx \frac{f(h) - 2f(0) + f(-h)}{h^2}.$$

Hvis vi ser bort fra avrundingsfeil så fins det et naturlig tall d slik at denne
tilnærmingen er eksakt for polynomer av grad d , men ikke grad $d+1$. Verdien
av d er

- \sqcap 1
- \square 2
- x 3
- \Box 4
- \Box 5

Oppgave 9. Differensialligningen $x''' - t^2x' + 5t = 0$ skal skrives som et system av førsteordens differensialligninger. Hvilket system er riktig?

- $x_1' = x_2, \quad x_2' = x_3, \quad x_3' = t^2 x_2 5t$
- $x_1' = x_2, \quad x_2' = x_1, \quad x_3' = t^2 x_2 5t$
- $x_1' = x_2, \quad x_2' = x_3, \quad x_3' = t^2 x_1 5t$

Oppgave 10. Hvilket av følgende utsagn om differensiallikninger er korrekt?

- Alle andreordens likninger har nøyaktig 2 løsninger
- En førsteordens differensiallikning har alltid en entydig løsning når verdien til den ukjente funksjonen er gitt i et punkt
- En lineær, andreordens likning med konstante koeffissienter har alltid en entydig løsning når verdien til den ukjente funksjonen og dens førstederiverte er gitt i ett punkt
- Eulers metode er eksakt når differensiallikningen er av første orden
- Vi kan alltid legge sammen to løsninger av en differensiallikning og få en ny løsning

Del 2

Husk at i denne delen må alle svar begrunnes!

Oppgave 1.

a) Vis at differensligningen

$$3x_{n+2} - 7x_{n+1} + 2x_n = n$$
, $x_0 = 1$, $x_1 = 0$

har løsningen

$$x_n = \frac{1}{4}(1 + 3^{-n+1} - 2n).$$

Løsning. Vi løser først den homogene ligningen som har karakteristisk polynom $3z^2 - 7z + 2 = 0$. Røttene er da $r_1 = 1/3$ og $r_2 = 2$, så den generelle løsningen av den homogene ligningen er

$$x_n^h = C_1 3^{-n} + C_2 2^n$$
.

For å finne en partikulær løsning prøver vi med en løsning på samme form som høyresiden, nemlig $x_n^p = An + B$. Setter vi denne inn i ligningen får vi relasjonen

$$n = 3(A(n+2) + B) - 7(A(n+1) + B) + 2(An + B) = -2An - A - 2B.$$

For at denne relasjonen skal holde for alle verdier av n må de to polynomene i n på hver side være like, altså ha samme koeffisienter. Dette gir ligningssystemet

$$1 = -2A,$$

$$0 = -A - 2B$$

som har løsningen A=-1/2 og B=1/4. En spesiell løsning av differensligningen er derfor gitt ved

$$x_n^p = \frac{1}{4}(1 - 2n).$$

Den generelle løsningen av differensligningen er dermed

$$x_n = x_n^h + x_n^p = C_1 3^{-n} + C_2 2^n + \frac{1}{4} (1 - 2n).$$

De to startverdiene lar oss bestemme C_1 og C_2 . Vi får ligningene

$$1 = x_0 = C_1 + C_2 + 1/4,$$

$$0 = x_1 = C_1/3 + 2C_2 - 1/4.$$

Løser vi dette ligningsystemet får vi $C_1 = 3/4$ og $C_2 = 0$. Dermed er den endelige løsningen av differensligningen som oppgitt.

b) Anta at vi simulerer differensligningen i (a) på datamaskin med 64 bits flyttall. Hvordan vil den beregnende løsningen oppføre seg for store verdier av n?

Løsning. Her er initialverdiene pene heltal som ikke gir avrundingsfeil, men når vi programmerer ligningen må vi dividere med 3. Vi ser for eksempel at eksakt verdi av x_2 er 2/3, et tall som ikke kan representeres eksakt med flyttall. Dermed vil simuleringen svare til at C_1 og C_2 ikke får de eksakte verdiene de skulle ha hatt, men blir i steden $\tilde{C}_1 = 3/4 + \epsilon_1$ og $\tilde{C}_2 = \epsilon_2$, der ϵ_1 og ϵ_2 er små tall av størrelsesorden 10^{-17} . Tallene som beregnes ved simulering vil derfor tilnærmet være

$$\tilde{x}_n = (3/4 + \epsilon_1)3^{-n} + \epsilon_2 2^n + \frac{1}{4}(1 - 2n).$$

Vi ser da at for store n vil det andre leddet, som skulle vært 0, dominere fullstendig, og til slutt vil vi få overflow.

Oppgave 2. La $\{x_n\}_{n=1}^{\infty}$ betegne Fibonacci-følgen gitt ved differensligningen

$$x_{n+2} = x_n + x_{n+1}, \quad n \ge 1, \quad x_1 = 1, \quad x_2 = 1.$$

La $y_n = x_{4n}$ betegne følgen som består av hvert fjerde ledd i Fibonaccifølgen. Vis ved induksjon at y_n inneholder 3 som faktor for alle $n \geq 1$.

Løsning. Vi sjekker først tilfellet n = 1. Vi ser fra Fibonacci-ligningen at $x_3 = 2$ og $x_4 = 3$. Dermed inneholder $y_1 = x_4$ faktoren 3, så hypotesen stemmer for n = 1.

Anta nå at y_k inneholder faktoren 3, vi må vise at da inneholder også y_{k+1} faktoren 3. Fra definisjonen av y_n og Fibonacci-ligningen har vi

$$y_{k+1} = x_{4(k+1)} = x_{4k+4} = x_{4k+3} + x_{4k+2}$$

$$= x_{4k+2} + x_{4k+1} + x_{4k+2} = 2x_{4k+2} + x_{4k+1}$$

$$= 2(x_{4k+1} + x_{4k}) + x_{4k+1}$$

$$= 3x_{4k+1} + 2x_{4k}.$$

Her ser vi at det første leddet inneholder 3 som faktor mens vi vet fra induskjonshypotesen at det det andre leddet også inneholder 3 som faktor. Altså vil y_{k+1} inneholde 3 som faktor, så hypotesen stemmer.

Oppgave 3. Du skal kode teksten x = ABAAA med aritmetisk koding. Vis at vi kan organisere kodingen slik at den aritmetiske koden ligger i intervallet I = [a, b) = [0.64, 0.72192).

Finn tallet på formen $j/2^k$, med minst mulig heltall k, som ligger i I, og bestem fra dette en koding av teksten \boldsymbol{x} . Hvor mange bits består koden av?

Løsning. Vi ser at sannsynligheten til A er gitt ved p(A) = 0.8 og sannsynligheten til B er p(B) = 0.2, så vi assosierer A med intervallet [0, 0.8) og B med intervallet [0.8, 1].

Siden det første tegnet er A vet vi at koden skal ligge i intervallet

$$I_1 = [0, 0.8).$$

Det neste tegnet er B så koden må ligge i de øverste 20 % av I_1 , nemlig intervallet

$$I_2 = [0.64, 0.8).$$

Det tredje tegnet er A, så det neste intervallet utgjøres av de første 80% av I_2 . Venstre endepunkt er da 0.64, mens høyre endepunkt blir 0.64 + 0.8(0.8 - 0.64) = 0.768. Dermed er I_3 gitt ved

$$I_3 = [0.64, 0.768).$$

Det fjerde tegnet er en ny A, så I_4 er gitt ved de første 80% av I_3 . Høyre endepunkt blir da 0.64 + 0.8(0.768 - 0.64) = 0.7424, så I_4 er

Det siste tegnet er også en A, så I_5 er de første 80 % av I_4 . Høyre endepunkt blir da 0.64 + 0.8(0.7424 - 0.64) = 0.72192 og

$$I_5 = [0.64, 0.72192).$$

Vi ser at ingen 8-deler ligger i I_5 . Derimot er 11/16 = 0.6875 og dette tallet ligger i I_5 . Siden $0.6875 = 0.1011_2$ kan vi bruke 1011 som den aritmetiske koden. Bruker vi algoritmen i kompendiet vil den bruke 32-deler som krever et ekstra bit.

Oppgave 4. I denne oppgaven er det mulig å løse (c) selv om du ikke har svart på (b).

Vi har gitt differensialligningen

$$x' = t\sin x, \quad x(0) = 1.$$

a) Regn ut x'(0), Taylorpolynomet av første grad $p_1(t)$ til løsningen i a = 0 og regn ut $p_1(0.1)$ som en tilnærming til x(0.1).

Løsning. Fra differensiallignen har vi $x'(t) = t \sin x(t)$. Setter vi inn t = 0 får vi

$$x(0) = 0 \sin x(0) = 0 \sin 1 = 0.$$

Dermed er det lineære Taylorpolynomet til løsningen om a = 0 gitt ved

$$p_1(t) = x(0) + tx'(0) = 1.$$

Ut fra dette får vi tilnærmingen $p_1(0.1) = 1$ til løsningen x(0.1) i 0.1.

b) Deriver begge sider av differensialligningen med hensyn på t, regn ut x''(0) og finn det kvadratiske Taylor-polynomet p_2 til løsningen om a = 0. Bruk $p_2(0.1)$ som en annen tilnærming til x(0.1).

Løsning. Vi deriverer begge sider av differensialligningen (husk at vi må bruke kjerneregelen) og får

$$x''(t) = \sin x(t) + tx'(t)\cos x(t). \tag{1}$$

Vi setter inn t = 0 og får

$$x''(0) = \sin x(0) + 0 \cdot x'(0) \cos x(0) = \sin 1 + 0 \approx 0.8415.$$

Det kvadratiske Taylor-polynomet til løsningen om a=0 er gitt ved

$$p_2(t) = x(0) + tx'(0) + \frac{t^2}{2}x''(0).$$

Setter vi inn verdiene over får vi

$$p_2(t) = 1 + t \cdot 0 + \frac{t^2}{2} \sin 1 \approx 1 + 0.4207t^2.$$

Fra $p_2(t)$ får vi tilnærmingen $p_2(0.1) \approx 1.0042$ i 0.1.

(Fortsettes på side 7.)

c) Finn en øvre grense for den absolutte feilen i tilnærmingen i (a) (vi ser bort fra avrundingsfeil).

Løsning. Tilnærmingen i (a) er gitt ved det lineære Taylorpolynomet som med restledd er gitt ved

$$x(t) = p_1(t) + \frac{t^2}{2}x''(\xi)$$

der ξ er et tall i intervallet [0,t] som avhenger av t. Feilen er dermed gitt ved

$$|x(t) - p_1(t)| = \frac{t^2}{2} |x''(\xi)|.$$
 (2)

For å finne en øvre grense for feilen trenger vi en øvre grense for $|x''(\xi)|$. Vi regnet ut den andrederiverte til løsningen i (1) over. Fra dette får vi den øvre grensen

$$\begin{aligned} |x''(t)| &= \left| \sin x(t) + tx'(t) \cos x(t) \right| \\ &\leq \left| \sin x(t) \right| + t |x'(t)| |\cos x(t)| \\ &= 1 + t |t \sin x(t)| \\ &\leq 1 + t^2, \end{aligned}$$

der vi først brukte trekantulikheten og deretter at $\sin x$ og $\cos x$ er begrenset av 1 i tallverdi. Setter vi dette estimatet inn i (2) får vi

$$|x(t) - p_1(t)| = \frac{t^2}{2}(1 + \xi^2) \le \frac{t^2}{2}(1 + t^2)$$

siden $\xi \in (0,t)$. For t=0.1 får vi da at feilen er begrenset av

$$|x(0.1) - p_1(0.1)| \frac{0.1^2}{2} (1 + 0.1^2) = 0.00505.$$

Lykke til!