

Curso: Fundamentos de Machine Learning Aula 2

Tema da aula:

Aula 2 - Aprendizado supervisionado

Conteúdo Programático

- Aprendizado supervisionado;
- Problemas de Classificação e Regressão;
- Construindo uma Perceptron;
- Classificação binária;
- Classificação multiclasse;
- Classificação desequilibrada;
- Regressão linear e múltipla.

Aprendizado supervisionado

 A aprendizagem supervisionada resolve problemas conhecidos e usa um conjunto de dados rotulados para treinar um algoritmo para realizar tarefas específicas. Ela usa modelos para prever resultados conhecidos, como "Qual é a cor da imagem?" "Quantas pessoas estão na imagem?" "Quais são os fatores que levam à fraude ou aos defeitos do produto?" etc.

Aprendizado com professor

• Em termos conceituais, é possível considerar que o professor tem conhecimento sobre o ambiente. Com o conhecimento sendo representado como um conjunto de exemplos de entrada e saída (Haykin, S; 2008).

Problema de classificação

 Nos problemas de classificação, objetiva-se, fazer o aprendizado a partir de rótulos, por exemplo: com entrada de uma imagem (matriz de pixels (512X512x3)) com target gato, a rede deve aprender a diferenciar quais características da matriz são importantes para definir a classe gato e diferenciar o mesmo com as demais classes.

A perceptron é normalmente usada para classificar dados em duas partes, ou seja, um classificador linear.

A perceptron é uma rede com capacidade limitada, que funciona da seguinte forma. Todas as entradas X são multiplicadas por seus pesos W, aqui vamos chamar de k.

$$k=\sum_{i=0}^n X_i*W_i$$
 (1)

k é entrada em uma função de ativação, para exemplificar, abaixo temos a função de ativação *Unit Step*:

Nesta função de ativação, temos apenas um *threshold* que no exemplo das equações 2 e 3 é zero. Uma questão em aberto é o **porque precisamos** de funções de ativação em redes neurais. para responder essa pergunta, exploraremos algumas funções de ativação.

$$saida = egin{cases} 1 & ext{if } \sum\limits_{i=0}^n w_i x_i > 0, \ -1 & ext{Caso contrário} \end{cases}$$

ou

$$saida = egin{cases} 1 & ext{if } k > 0, \ -1 & ext{Caso contrário} \end{cases}$$

Perceptron Função Linear

É possível visualizar que uma função linear é uma linha, neste sentido, as saídas destas funções não tem um intervalo definido, elas podem variar de $-\infty$ até $+\infty$. Abaixo uma função linear f(x) = x

Uma das utilidades é a necessidade de mapear valores de 0 a 1 ou -1 a 1, dependendo da função. É usada também para determinar a saída de uma rede como sim ou não, em casos binários.

Perceptron Funções não lineares

Funções não lineares: As funções não lineares são normalmente utilizadas, a não linearidade das funções, ajuda na generalização das redes, em que é preciso se adaptar em uma variedade grande de dados. Na equação 4 é possível visualizar a forma da *Sigmoid*.

"A principal razão pela qual usamos a função sigmóide é porque ela existe entre (0 a 1). Portanto, é especialmente usado para modelos onde temos que prever a probabilidade como uma saída. Como a probabilidade de qualquer coisa existe apenas entre o intervalo de 0 e 1, sigmóide é a escolha certa."

Sigmoid

Funções não lineares: As funções não lineares são normalmente utilizadas, a não linearidade das funções, ajuda na generalização das redes, em que é preciso se adaptar em uma variedade grande de dados. Na equação 5 é possível visualizar a forma da *Sigmoid*.

$$\sigma(z) = \frac{1}{1 + e^{-z}} \tag{4}$$

A perceptron é normalmente usada para classificar dados em duas partes, ou seja, um classificador linear.

Como a Perceptron aprende

A perceptron é normalmente usada para classificar dados em duas partes, ou seja um classificador linear.

Vamos a prática

- Baixe (ou faça a leitura online com pandas) o dataset iris UCI (Disponível em https://archive.ics.uci.edu/ml/datasets/iris);
- 2. Divida o *dataset* em duas variáveis (x e y), **x** deve conter os dados de características (sepal length in cm, sepal width in cm, petal length in cm, petal width in cm) e na variável **y** deve conter a classe (ou target) que vai indicar qual das três classes (Iris Setosa, Iris Versicolour, Iris Virginica) cada dado representa;
- 3. Para simplificar o problema, redefina a variável **x**, pegando apenas as 100 primeiras linhas e mantendo apenas as duas primeiras colunas (sepal length in cm, sepal width in cm);
- 4. Simplificando ainda mais o problema, redefina a variável **y**, pegando apenas as 100 primeiras linhas e transformando os dados nominais em números, seguindo a regra: se o valor é igual a Iris-setosa, então substitua o valor por -1, caso contrário substitua por 1;
- Crie uma classe chamada Perceptron contendo duas funções vazias, as funções fit(x,y) e predict(x).

Vamos a prática

- 1. Projete a função **fit()** que deve realizar o ajuste dos pesos (treinamento) segundo a regra anteriormente estudada.
- 2. Projete a função **predict()** que usa os pesos ajustados na etapa de treinamento e indica uma classe dado uma amostra ou um array de amostras.
- 3. Use os dados da **iris** ajustados nas primeiras atividades, para fazer o treinamento e calcule o acerto seguindo a regra, número_de_acertos/numero_de_amostras

Figura 2: Atualização de pesos

$$W_i = W_i + \Delta W_i$$
 Em que $\Delta W_i = \eta(t-k)X_i$ Taxa de Valor esperado Valor predito Valor de aprendizado (target)

Outros algoritmos

- Árvores de decisão;
- Classificação Naïve Bayes;
- 3. Regressão logística;
- Suporte de máquinas de vetores (SVM);
- 5. Multi-layer Perceptron (MLP);
- 6. Convolution Neural Network (CNN)

Pergunta

O que é regressão?

-RESPOSTA:

■ Técnica quantitativa destinada a inferir valores de variáveis dependentes, a partir de valores de variáveis independentes.

- Nos problemas de regressão, o algoritmo tem como finalidade a descoberta de valores como peso, preço, alturas, entre outros;
- Por exemplo, suponha que você modelou um algoritmo que prevê eficiência (uma nota de 0 a 10) em uma prova, dado variáveis como: horas de estudo, nota no simulado e horas de descanso.

horas_de_estudo	nota_no_simulado	horas_de_descanso	Nota Obtida
10h	8	7h	8.5
15h	9	9h	9.2
12h	8	8h	8.2
5h	6	6h	7.3

■ Modelo de regressão compõe-se de:

- ► Vars. Independentes: $X_1, X_2, ..., X_n$, numéricas.
- ► Var. Dependente: Y, numérica, ALEATÓRIA, contínua.

► Modelo de regressão é uma expressão do tipo:

► A parte explicada tem uma forma geral como a seguinte:

$$\widehat{Y} = \varphi(X_1, X_2, \dots, X_n)$$

► A variável dependente é determinada por uma expressão como a seguinte

$$Y = \varphi(X_1, X_2, ..., X_n) + \varepsilon$$

Erros residuais, na regressão simples, cuja soma dos quadrados deve ser minimizada.

Regressão linear

"Quando vemos uma relação em um diagrama de dispersão, podemos usar uma reta para resumir essa relação nos dados. Também podemos usar essa reta para fazer previsões a partir dos dados. Este processo é chamado de regressão linear" (Khan Academy, 2022)

$$\hat{y} = \alpha x + \beta + erro \tag{5}$$

Regressão linear

Para encontrar os valores de alfa e beta para a equação da reta (g(x)) usaremos as seguintes equações: **Estimando o alfa**

$$\alpha = \frac{n \sum_{i=0}^{n} x_i y_i - \sum_{i=0}^{n} x_i \sum_{i=0}^{n} y_i}{n \sum_{i=0}^{n} x_i^2 - (\sum_{i=0}^{n} x_i)^2}$$
(6)

Regressão linear

Para encontrar os valores de alfa e beta para a equação da reta (g(x)) usaremos as seguintes equações: **Estimando o beta**

$$\beta = \frac{\sum_{i=0}^{n} x_i - \sum_{i=0}^{n} x_i y_i}{(\sum_{i=0}^{n} x)^2 - n \sum_{i=0}^{n} x_i^2}$$
(7)

Vamos a prática

- Encontre a reta que melhor se ajusta à tabela 1;
- 2. Indique o valor de *alfa*;
- 3. Indique o valor de **beta**;
- 4. Indique a estimativa do modelo, indicando o valor x=20

Tabela 1

	^	ľ
	1	3
$\hat{y} = {\color{red} lpha} x + {\color{red} eta}$	2	5
	3	6
	4	8

 Dados referentes a uma situação fictícia do lucro de um produto considerando investimentos em três elementos de causa.

	V/4	\/O	\/2	\ /
	X1	X2	X3	У
CASO	PROPAG.	TREIN.	DESENV.	LUCRO
1	29	77,7	71,1	428,12
2	47,1	39,3	81,4	400,23
3	19,5	46	102,8	306,17
4	49,6	43,4	66,6	365,91
5	0	50	26,6	201,89
6	44	56,1	54,6	303,54
7	39,5	54,1	68,2	402,78
8	35,5	73,4	34,8	371,32
9	43,1	57,6	112,3	400,28
10	38,6	60,3	92,2	436,89
11	7,3	36,1	102,8	364,84
12	7,9	41,1	98,4	345,24

- Variáveis independentes: X_1, X_2, X_3 .
- ► Variável dependente: Y.
- Modelo de regressão linear múltipla:

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

 O problema consiste em descobrir os valores dos coeficientes do modelo,

$$\beta_0, \beta_1, \beta_2, \beta_3$$

usando para isso a tabela com o conjunto de dados.

Principais ferramentas

- sktime;
- Prophet.

Referências

- Menotti, David, et al. "CI171 Aprendizado de Máquinas", Federal University of Paraná, Tradução, 2018.
- Imagens usadas através de recursos do Freepik.com de disponibilização de imagens gratuitas.

