23. Consider the problem where the input is a collection of n train trips within Germany. For the ith trip T_i you are given the date d_i of that trip, and the non-discounted fare f_i for that trip. The Germani railway system sells a Bahncard for B Marks that entitles you to a 50% fare reduction on all train travel within Germany within L days of purchase. The problem is to determine when to buy a Bahncard to minimize the total cost of your travel.

Tree definition:

The tree is defined as being rooted at a "null" state where no decisions have been made. At each level, ℓ , we may or may not purchase a Bahncard on d_{ℓ} . If a card is purchased then we add $B + \frac{f_{\ell}}{2}$ to the node's value which is storing the total cost of all the trips. If the previously purchased Bahncard is still in effect add $\frac{f_{\ell}}{2}$. Otherwise we add f_{ℓ} .

Pruning rules:

1. At each level ℓ , there are multiple opportunities, 0 to ℓ , for the "last card purchased". Trips and cards purchased after level ℓ are independent of the prior history, so we can prune all but the history with minimum cost. More succinctly: at every level ℓ , prune all but the cheapest travel history with the same last-card-purchased.

```
Algorithm: A[*,*] = \infty
A[0,0] = 0. \ Inititalize. \ A[level,last-purchase] = total-cost.
For \ell=0 to n-1:
For p=0 to \ell:
A[\ell+1,\ell+1] = \min(A[\ell+1,\ell+1],A[\ell,p]+B+\frac{f_{\ell+1}}{2}) \ Purchasing \ a \ new \ card \ and \ getting \ half \ off.
If \ell-p<\ell: Previous card is still active get half off.
A[\ell+1,p] = \min(A[\ell+1,p],A[\ell,p]+\frac{f_{\ell+1}}{2})
Else: Pay \ full \ price.
A[\ell+1,p] = \min(A[\ell+1,p],A[\ell,p]+f_{\ell+1})
```

The solution will be found at min(A[n,*])

1. A square matrix M is lower triangular if each entry above the main diagonal is zero, that is, each entry $M_{i,j}$, with i < j, is equal to zero. Show that if there is an $O(n^2)$ time algorithm for multiplying two n by n lower triangular matrices then there is an $O(n^2)$ time algorithm for multiplying two arbitrary n by n matrices.

Given two nxn matrices, M_1 and M_2 .

First, decompose M_1 into a sum of lower- and upper- diagonal matrices L_1 and U_1 such that $M_1 = L_1 + U_1$. Decompose M_2 in the same manner, so that $M_2 = L_2 + U_2$.

$$M_1M_2 = (L_1 + U_1)(L_2 + U_2) = L_1L_2 + L_1U_2 + U_1L_2 + U_1U_2$$

Each component can be calculated in $O(n^2)$ time, assuming there is an $O(n^2)$ time algorithm for multiplying two n by n lower triangular matrices.

- 1. Calculating L_1L_2 : These are already both lower-triangular.
- 2. Calculating L_1U_2 :

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & L_1 \end{array}\right] \left[\begin{array}{cc} 0 & 0 \\ U_2 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ L_1 U_2 & 0 \end{array}\right]$$

3. Calculating U_1L_2 :

$$\left[\begin{array}{cc} 0 & 0 \\ U_1 & 0 \end{array}\right] \left[\begin{array}{cc} L_2 & 0 \\ 0 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ U_1 L_2 & 0 \end{array}\right]$$

4. Calculating U_1U_2 : $U_1U_2 = (U_2^T U_1^T)^T$