Kernel Methods for Regression

University of California, San Diego Instructor: Armin Schwartzman

1 / 12

Regression model

☐ Consider a regression model with additive noise

$$y = f(\mathbf{x}) + \varepsilon ,$$

where $\mathbb{E}(\varepsilon|\mathbf{x}) = 0$.

 \square We have independent observations $(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_n,y_n)$ from that model.

2 / 12

Local average

□ Note that

$$f(\mathbf{x}) = \mathbb{E}(y|\mathbf{x})$$

□ A local average (aka moving average) attempts to approximate this conditional expectation directly.

It takes the form:

$$\widehat{f}(\mathbf{x}) = \text{Ave}(y_i | \mathbf{x}_i \in N(\mathbf{x}))$$

where $N(\mathbf{x})$ is a neighborhood of \mathbf{x} .

□ Note that there are two approximations here:

- 1. The expectation is approximated by an average.
- 2. The conditioning on an exact value for x is approximated by conditioning on a region for x.

Choice of neighborhood type

The two main choices are:

 \Box *h*-ball neighborhood where

$$N(\mathbf{x}) = N_h(\mathbf{x}) = \{\mathbf{x}' : ||\mathbf{x}' - \mathbf{x}|| \le h\}$$

This choice implies a constant window width, and this keeps the bias stable. Indeed, the bias comes from averaging over $N(\mathbf{x})$, a region around \mathbf{x} instead of averaging responses precisely at \mathbf{x} .

 \square k-nearest neighbors where

$$N(\mathbf{x}) = N_k(\mathbf{x}) = \{k \text{ closest points } \mathbf{x}_i \text{ 's to } \mathbf{x}\}$$

This choice implies a constant variance, assuming the errors have the same variance independent of the predictors $(Var(\varepsilon|\mathbf{x}) = \sigma^2)$.

4 / 12

Kernel regression (aka weighted local average)

☐ Choose a kernel function, often of the form

$$K_h(\mathbf{x}, \mathbf{x}_0) = D(\|\mathbf{x} - \mathbf{x}_0\|/h)$$

where $D: \mathbb{R}_+ \to \mathbb{R}$ is non-increasing.

☐ The Nadaraya-Watson estimator based on that kernel is:

$$\widehat{f}(\mathbf{x}) = \frac{\sum_{i} K_h(\mathbf{x}, \mathbf{x}_i) y_i}{\sum_{i} K_h(\mathbf{x}, \mathbf{x}_i)}$$

The nearest neighbor version of this kernel estimator would be of the form:

$$\widehat{f}(\mathbf{x}) = \frac{\sum_{i} \mathbb{I}\{\mathbf{x}_{i} \in N_{k}(\mathbf{x})\} K_{h}(\mathbf{x}, \mathbf{x}_{i}) y_{i}}{\sum_{i} \mathbb{I}\{\mathbf{x}_{i} \in N_{k}(\mathbf{x})\} K_{h}(\mathbf{x}, \mathbf{x}_{i})}$$

Examples of Kernels

Our most basic requirement of D is that it be non-increasing on \mathbb{R}_+ .

- $\label{eq:definition} \square \mbox{ Uniform: } D(t) = \mathbb{I}\{t < 1\} \qquad \mbox{[this leads to the local average]}$
- \Box Triangle: $D(t) = (1-t)_+$
- \Box Epanechnikov: $D(t) = (1 t^2)_+$
- \Box Quartic: $D(t) = (1 t^2)_+^2$
- \Box TriCube: $D(t) = (1-t^3)_+^3$ [used by the R function loess]
- $\hfill\Box$ Gaussian: $D(t)=e^{-t^2/2}$ [also called heat kernel]
- \Box Cosine: $D(t) = \cos(\frac{\pi}{2}t)\mathbb{I}\{t < 1\}$

They are all supported on [0,1] except for the Gaussian kernel which is supported on the entire \mathbb{R}^+ . However, the Gaussian kernel is fast-decaying.

6 / 12

Kernel methods are linear

 \Box Let $\hat{y}_i = \hat{f}_h(\mathbf{x}_i)$ be the usual fitted value for observation i.

We have

$$\hat{y}_i = \frac{\sum_r K_h(\mathbf{x}_i, \mathbf{x}_r) y_r}{\sum_r K_h(\mathbf{x}_i, \mathbf{x}_r)} = \sum_r s_h(i, r) y_r$$

where

$$s_h(i, r) = \frac{K_h(\mathbf{x}_i, \mathbf{x}_r)}{\sum_t K_h(\mathbf{x}_i, \mathbf{x}_t)}$$

Hence,

$$\widehat{\mathbf{y}} = \mathbf{S}_h \mathbf{y}$$

where $\mathbf{S}_h = (s_h(i,r): i,r \in \{1,\ldots,n\})$ is the smoother matrix.

In that sense, kernel regression is linear.

 $\hfill\Box$ The degrees of freedom are defined as

$$df(h) = trace(\mathbf{S}_h)$$

This is in analogy with least squares, where S is the *hat matrix*.

Local Linear Regression (LOESS)

- \square Assume the predictor x is one-dimensional.
- ☐ The local linear estimator is

$$\hat{f}_h(x) = \widehat{\beta}_{h,0}(x) + \widehat{\beta}_{h,1}(x)x$$

where

$$(\widehat{\beta}_{h,0}(x), \widehat{\beta}_{h,1}(x)) = \underset{\beta_0,\beta_1}{\operatorname{arg\,min}} \sum_{i=1}^n K_h(x, x_i) [y_i - \beta_0 - \beta_1 x_i]^2$$

□ Note that the estimate is linear in the response. Indeed,

$$\hat{f}(x) = \sum_{i=1}^{n} \ell_{h,i}(x) y_i$$

The weights $\ell_{h,i}(x)$ are referred to as equivalent kernel. We have

$$\widehat{\mathbf{y}} = \mathbf{S}_h \mathbf{y}, \quad \mathbf{S}_h = (\ell_{h,r}(x_i) : i, r \in \{1, \dots, n\})$$

 \Box The degrees of freedom are defined as before.

8 / 12

Local Polynomial Regression

 $\ \square$ The local degree p polynomial estimator is

$$\hat{f}_h(x) = \widehat{\beta}_{h,0}(x) + \widehat{\beta}_{h,1}(x)x + \dots + \widehat{\beta}_{h,p}(x)x^p$$

where

$$(\widehat{\beta}_{h,0}(x),\ldots,\widehat{\beta}_{h,p}(x)) = \underset{\beta_0,\ldots,\beta_p}{\operatorname{arg \, min}} \sum_{i=1}^n K_h(x,x_i) [y_i - \beta_0 - \beta_1 x_i - \cdots - \beta_p x_i^p]^2$$

- ☐ The resulting method is also linear in the response.
- \Box This approach generalizes to the case where x is multi-dimensional.

Local Regression

 \square Suppose we assume a linear model in some basis $\{g_0, \ldots, g_p\}$:

$$f_{\theta}(\mathbf{x}) = \sum_{j=0}^{p} \theta_{j} g_{j}(\mathbf{x})$$

(Now x can be multivariate.)

 \Box The local linear estimator is $f_{\widehat{\theta}_h(\mathbf{x})}(\mathbf{x})$, where

$$\widehat{\theta}_h(\mathbf{x}) = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^n K_h(\mathbf{x}, \mathbf{x}_i) [y_i - f_{\theta}(\mathbf{x})]^2$$

☐ The resulting method is still linear in the response.

10 / 12

Choosing of the tuning parameter

 \square Assuming a model (when there is one) has been chosen. Then the window width h (also called bandwidth) is the only tuning parameter.

(This is replaced by the neighborhood size k in the k-NN variant.)

- \Box This tuning parameter controls the degrees of freedom. The smaller h is, the larger the degrees of freedom. The range is from 1 ($h \to \infty$) to n ($h \to 0$).
- ☐ This parameter can be chosen to minimize an estimate of prediction error, for example, obtained by cross-validation. (Many other methods have been proposed.)

11 / 12

The curse of dimensionality

- \square Consider a regression setting as before, $y = f(\mathbf{x}) + \varepsilon$, where $\mathbf{x} \in [0,1]^p$. We have data $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ from this model.
- \Box In a typical nonparametric setting, where f is only assumed to have some degree of smoothness (e.g., f is C^1), we are bound to learn about f locally. In fact, it is known that kernel methods (with a proper choice of bandwidth) are optimal in some sense.
- \square The issue in high-dimensions is that a sample $\mathbf{x}_1, \dots, \mathbf{x}_n$ is not dense in $[0,1]^p$ unless n is exponential in p. Indeed, to cover $[0,1]^p$ with precision δ requires on the order of $n \approx \delta^{-p}$ sample points.

 $(p \ge 3 \text{ is already challenging and } p \ge 10 \text{ is hopeless})$

This is a symptom of the so-called curse of dimensionality.