Programs were mostly entered using punched cards or paper tape. Use of a static code analysis tool can help detect some possible problems. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Ideally, the programming language best suited for the task at hand will be selected. Computer programmers are those who write computer software. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. It is very difficult to determine what are the most popular modern programming languages. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. One approach popular for requirements analysis is Use Case analysis. Following a consistent programming style often helps readability. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Normally the first step in debugging is to attempt to reproduce the problem. Also, specific user environment and usage history can make it difficult to reproduce the problem. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. However, readability is more than just programming style. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging).