# **Reinforcement Learning P1: Basics**

那这一堂课啊,我们要讲的是,Deep Reinforcement Learning,也就是 RL,那我想这个 RL 啊,Reinforcement Learning 啊,大家一定一点都不陌生,因为你知道很多很潮的应用,AlphaGo 等等,它背后呢,用的就是 RL 的技术,那 RL 可以讲的技术啊,非常非常地多,它不是在一堂课裡面可以讲得完的,我甚至觉得说,如果有人要把它开成一整个学期的课,可能也是有这麽多东西可以讲

所以今天啊,这堂课的目的,并不是要告诉你有关 RL 的一切,而是让大家有一个基本的认识,大概知道 RL 是什么样的东西,那 RL 相关的课程,你其实在网路上可以找到,非常非常多的参考的资料,那 RL 如果要讲得非常地艰涩的

可是今天这一堂课啊,我们儘量避开太过理论的部分,我期待这堂课可以让你做到的,并不是让你听了觉得, 哇 RL 很困难啊,搞不清楚在做什么,而是期待让你觉得说,啊 RL 原来就只是这样而已,我自己应该也做得起来,希望这一堂课可以达到这一个目的

## **Supervised Learning**→**RL**

那什么是 Reinforcement Learning 呢,到目前为止啊,我们讲的几乎都是 Supervised Learning,假设你要做一个 Image 的 Classifier,你不只要告诉机器,它的 Input 是什么,你还要告诉机器,它应该输出什么样的 Output,然后接下来呢,你就可以 Train 一个 Image 的 Classifier



那在多数这门课讲到目前为止的技术,基本上都是基于 Supervised Learning 的方法,就算是我们在讲 Self Supervised Learning 的时候,我们其实也是,很类似 Supervised Learning 的方法,只是我们的 Label,不需要特别僱用人力去标记,它可以自动产生

或者是我们在讲 Auto-encoder 的时候,我们虽然说它是一个 Unsupervised 的方法,我们没有用到人类的标记,但事实上,我们还是有一个 Label,只是这个 Label,不需要耗费人类的力量来产生而已

但是 RL 就是另外一个面向的问题了,在 RL 裡面,我们遇到的问题是这样子的,我们,**机器当我们给它一个输入的时候**,我们不知道最佳的输出应该是什么

举例来说,假设你要叫机器学习下围棋



It is challenging to label data in some tasks.

..... machine can know the results are good or not.

用 Supervised Learning 的方法,好像也可以做,你就是告诉机器说,看到现在的盘势长这个样子的时候,下一步应该落子的位置在哪裡,但是问题是,下一步应该落子的位置到底应该在哪裡呢,哪一个是最好的下一步呢,哪一步是神之一手呢,可能人类根本就不知道

当然你可以说,让机器阅读很多职业棋士的棋谱,让机器阅读很多高段棋士的棋谱,也许这些棋谱裡面的答案,也许这些棋谱裡面给某一个盘势,人类下的下一步,就是一个很好的答案,但它是不是最好的答案呢,我们不知道,在这个**你不知道正确答案是什么的情况下,往往就是 RL 可以派上用场的时候**,所以当你今天,你发现你要收集有标注的资料很困难的时候,正确答案人类也不知道是什么的时候,也许就是你可以考虑使用 RL 的时候

但是 RL 在学习的时候,机器其实也不是一无所知的,我们虽然不知道正确的答案是什么,但是机器会知道什么是好,什么是不好,机器会跟环境去做互动,得到一个叫做 Reward 的东西,这我们等一下都还会再细讲

所以机器会知道,它现在的输出是好的还是不好的,来藉由跟环境的互动,藉由知道什么样的输出是好的,什么样的输出是不好的,机器还是可以学出一个模型

### **Outline**

好那接下来呢,这是今天这份投影片的 Outline



首先呢,我们会从最基本的 RL 的概念开始,那在介绍这个 RL 概念的时候,有很多不同的切入点啦,也许你比较常听过的切入点是这样,比如说从 Markov Decision Process 开始讲起

那我们这边选择了一个比较不一样的切入点,我要告诉你说,虽然如果你自己读 RL 的文献的话,你会觉得, 哇 RL 很複杂哦,跟一般的 Machine Learning 好像不太一样哦,但是我这边要告诉你说,**RL 它跟我们这一门课学的 Machine Learning,是一样的框架** 

我们在今天这个这学期,一开始的第一堂课就告诉你说,Machine Learning 就是三个步骤,那 RL 呢,RL 也是一模一样的三个步骤,等一下会再跟大家说明

# Machine Learning ≈ Looking for a Function

在今天,在这个本学期这一门课的第一开始,就告诉你说,什么是机器学习,**机器学习就是找一个 Function**,Reinforcement Learning,RL 也是机器学习的一种,那它也在找一个 Function,它在找什么样的 Function 呢

那 Reinforcement Learning 裡面呢,我们会有一个 <mark>Actor</mark>,还有一个 <mark>Environment</mark>,那这个 **Actor 跟 Environment**,会进行互动



- 你的这个 Environment,你的这个环境啊,会给 Actor 一个 Observation,会给,那这个 Observation 呢,就是 Actor 的输入
- 那 Actor 呢,看到这个 Observation 以后呢,它会有一个输出,这个输出呢,叫做 Action,那这个 Action 呢,会去影响 Environment
- 这个 Actor 採取 Action 以后呢,Environment 就会给予新的 Observation,然后 Actor 呢,会给予新的 Action,那这个 Observation 是 Actor 的输入,那这个 Action 呢,是 Actor 的输出

所以 **Actor 本身啊,它就是一个 Function**,其实 Actor,它就是我们要找的 Function,这个 Function 它的轮入,就是环境给它的 Observation,输出就是这个 Actor 要採取的 Action,而今天在这个互动的过程中呢,**这个 Environment,会不断地给这个 Actor 一些 Reward**,告诉它说,你现在採取的这个 Action,它是好的还是不好的

而我们今天要找的这个 Actor,我们今天要找的这个 Function,可以拿 Observation 当作 Input,Actor 当作 Output 的 Function,这个 Function 的目标,是要去 Maximizing,我们可以从 Environment,获得到的 Reward 的总和,我们希望呢,找一个 Function,那用这个 Function 去跟环境做互动,用 Observation 当作 Input,输出 Action,最终得到的 Reward 的总和,可以是最大的,这个就是 RL 要找的 Function

## **Example: Playing Video Game**

那我知道这样讲,你可能还是觉得有些抽象,所以我们举更具体的例子,那等一下举的例子呢,都是用 Space Invader 当作例子啦,那 Space Invader 就是一个非常简单的小游戏,那 RL 呢,最早的几篇论文,也都是玩,让那个机器呢,去玩这个 Space Invader 这个游戏

在 Space Invader 裡面呢



• 你要**操控的是下面这个绿色的东西**,这个下面这个绿色的东西呢,是你的太空梭,你可以採取的行为,也就是 Action 呢 有三个,**左移 右移跟开火**,就这三个行为,然后你现在要做的事情啊,就是杀掉画面上的

这些外星人

- 画面上这些黄色的东西,也就是**外星人**啦,然后你开火,击中那些外星人的话,那外星人就死掉了
- 那前面这些东西是什么呢,那个是你的**防护罩**,如果你不小心打到自己的防护罩的话,你的防护罩呢,也是会被打掉的,那你可以躲在防护罩后面,你就可以挡住外星人的攻击
- 然后接下来呢会有分数,那在萤幕画面上会有分数,当你杀死外星人的时候,你会得到分数,或者是在有些版本的 Space Invader 裡面,会有一个补给包,从上面横过去飞过去,那你打到补给包的话,会被加一个很高的分数,那这个 Score 呢,就是 Reward,就是环境给我们的 Reward

那这个游戏呢,它是会终止的,那什么时候终止呢,当所有的外星人都被杀光的时候就终止,或者是呢,外星人其实也会对你的母舰开火啦,外星人击中你的母舰你也是会,这个你就被摧毁了,那这个游戏呢,也就终止了,好那这个是介绍一下,Space Invader 这一个游戏,

那如果你今天呢,要用 Actor 去玩 Space Invader,大概会像是什么样子呢

现在你的 Actor 啊,**Actor 虽然是一个机器,但是它是坐在人的这一个位置,它是站在人这一个角度,去操控 摇杆**,去控制那个母舰,去跟外星人对抗,而你的环境是什么,**你的环境呢,是游戏的主机**,游戏的主机这边去操 控那些外星人,外星人去攻击你的母舰,所以 Observation 是游戏的画面



所以对 Actor 来说,它看到的,其实就跟人类在玩游戏的时候,看到的东西是一样的,就看到一个游戏的画面

那输出呢,就是 Actor 可以採取的行为,那可以採取哪些行为,通常是事先定义好的,在这个游戏裡面,就只有向左向右跟开火,三种可能的行为而已,好那当你的 Actor 採取向右这个行为的时候,那它会得到 Reward

那因为在这个游戏裡面,只有**杀掉外星人会得到分数,而我们就是把分数定义成我们的 Reward**,那向左 向右其实并不会,不可能杀掉任何的外星人,所以你得到的 Reward 呢,就是 0 分,好 那你採取一个 Action 以后呢,游戏的画面就变了

- 游戏的画面变的时候,就代表了有了新的 Observation 进来
- 有了新的 Observation 进来,你的 Actor 就会决定採取新的 Action

Find an actor maximizing expected reward.



你的 Actor 是一个 Function,这个 Function 会根据输入的 Observation,输出对应的 Action,那新的画面 进来,假设你的 Actor,现在它採取的行为是开火,而开火这个行为正好杀掉一隻外星人的时候,你就会得到分数,那这边假设得到的分数是 5分,杀那个外星人,得到的分数是 5分,那你就得到 Reward 等于 5

那这个呢,就是拿 Actor 去玩,玩这个 Space Invader 这个游戏的状况,好 那这个 Actor 呢,它想要学习的是什么呢,我们在玩游戏的过程中,会不断地得到 Reward,那在刚才例子裡面,做第一个行为的时候,向右的时候得到的是 0 分,做第二个行为,开火的时候得到的是 5 分,那接下来你採取了一连串行为,都有可能给你分数

而 Actor 要做的事情,我**们要学习的目标,我们要找的这个 Actor** 就是,我们想要 Learn 出一个 Actor,这个 Actor,这个 Function,我们使用它在这个游戏裡面的时候,**可以让我们得到的 Reward 的总和会是最大的**,那这个就是拿 Actor 去,这个就是 RL 用在玩这个小游戏裡面的时候,做的事情

## **Example: Learning to play Go**

那其实如果把 RL 拿来玩围棋,拿来下围棋,其实做的事情跟小游戏,其实也没有那麽大的差别,只是规模跟问题的複杂度不太一样而已

那如果今天你要让机器来下围棋,那你的 Actor 就是就是 AlphaGo,那你的环境是什么,你的环境就是 AlphaGo 的人类对手



你的 Actor 的输入就是棋盘,棋盘上黑子跟白子的位置,那如果是在游戏的一开始,棋盘上就空空的,空空如 也,上面什么都没有,没有任何黑子跟白子

那这个 Actor 呢,看到这个棋盘呢,它就要产生输出,它就要决定它下一步,应该落子在哪裡,那如果是围棋的话,你的输出的可能性就是有 19×19 个可能性,那这 19×19 个可能性,每一个可能性,就对应到棋盘上的一个位置

那假设现在你的 Actor,决定要落子在这个地方



那这一个结果,就会输入给你的环境,那其实就是一个棋士,然后呢这个环境呢,就会再产生新的Observation,因为这个李世石这个棋士呢,也会再落一子,那现在看到的环境又不一样了,那你的Actor看到这个新的Observation,它就会产生新的Action,然后就这样反覆继续下去



你就可以让机器做下围棋这件事情,好那在这个,在这个下围棋这件事情裡面的Reward,是怎麽计算的呢**在下围棋裡面,你所採取的行为,几乎都没有办法得到任何Reward**,在下围棋这个游戏裡,在下围棋这件事情裡面呢,你会定义说,如果赢了,就得到1分,如果输了就得到-1分

Find an actor maximizing expected reward.



也就是说在下围棋这整个,这个你的 Actor 跟环境互动的过程中,其实**只有游戏结束,只有整场围棋结束的最后一子,你才能够拿到 Reward**,就你最后,最后 Actor 下一子下去,赢了,就得到 1分,那最后它落了那一子以后,游戏结束了,它输了,那就得到 -1分,那在中间整个互动的过程中的 Reward,就都算是 0分,没有任何的 Reward,那这个 Actor 学习的目标啊,就是要去最大化,它可能可以得到的 Reward

# Machine Learning is so simple .....

刚才讲的也许你都已经听过了,那这个是 RL 最常见的一种解说方式,那接下来要告诉你说,RL 跟机器学习的 Framework,它们之间的关係是什么



开学第一堂课就告诉你说,Machine Learning 就是三个步骤

- 1. 第一个步骤,你有一个 Function,那个 Function 裡面有一些未知数,Unknown 的 Variable,这些未知数是要被找出来的
- 2. 第二步,订一个 Loss Function,第三步,想办法找出未知数去最小化你的 Loss
- 3. 第三步就是 Optimization

而 RL 其实也是一模一样的三个步骤

## **Step 1: Function with Unknown**

第一个步骤,我们现在有未知数的这个 Function,到底是什么呢,这个有未知数的 Function,就是我们的 Actor,那在 RL 裡面,**你的 Actor 呢,就是一个 Network**,那我们现在通常叫它 Policy 的 Network



那在过去啊,在还没有把 Deep Learning 用到 RL 的时候,通常你的 Actor 是比较简单的,它不是 Network,它可能只是一个 Look-Up-Table,告诉你说看到什么样的输入,就产生什么样的输出,那今天我们都知道要用 Network,来当做这个 Actor,那这个 Network,其实就是一个很複杂的 Function



- Input of neural network: the observation of machine represented as a vector or a matrix
- Output neural network: each action corresponds to a neuron in output layer

这个複杂的 Function 它的输入是什么呢,它的**输入就是游戏的画面**,就是游戏的画面,这个游戏画面上的 Pixel,像素,就是这一个 Actor 的输入

那它的输出是什么呢,它的**输出就是,每一个可以採取的行为**,它的分数,每一个可以採取的 Action 它的分数,举例来说输入这样的画面,给你的 Actor,你的 Actor 其实就是一个 Network,它的输出可能就是给,向左0.7分,向右0.2分,开火0.1分

那事实上啊,这件事情**跟分类是没有什么两样**的,你知道分类就是输入一张图片,输出就是决定这张图片是哪一个类别,那你的 Network 会给每一个类别,一个分数,你可能会通过一个 Softmax Layer,然后每一个类别都有个分数,而且这些分数的总和是 1

那其实在 RL 裡面,你的 Actor 你的 Policy Network,跟分类的那个 Network,其实是一模一样的,你就是输入一张图片,输出其实最后你也会有个 Softmax Layer,然后呢,你就会 Left、Right 跟 Fire,三个 Action 各给一个分数,那这些分数的总和,你也会让它是 1



那至于这个 **Network 的架构呢,那你就可以自己设计了**,要设计怎麽样都行,比如说如果输入是一张图片, 欸 也许你就会想要用 CNN 来处理

不过在助教的程式裡面,其实不是用 CNN 来处理啦,因为在我们的作业裡面,其实在玩游戏的时候,不是直接让我们的 Machine 去看游戏的画面,让它直接去看游戏的,让它直接去看游戏的画面比较难做啦,所以我们是让,看这个跟现在游戏的状况有关的一些参数而已,所以在这个助教的,在这个作业的这个 Sample Code 裡面呢,还没有用到 CNN 那麽複杂,就是一个简单的 Fully Connected Network,但是假设你要让你的 Actor,它的输入真的是游戏画面,欸 那你可能就会採取这个 CNN,你可能就用 CNN 当作你的 Network 的架构

**甚至你可能说**,我不要只看现在这一个时间点的游戏画面,我要看整场游戏到目前为止发生的所有事情,可不可以呢

可以,那过去你可能会用 RNN 考虑,现在的画面跟过去所有的画面,那现在你可能会想要用 Transformer, 考虑所有发生过的事情,所以 Network 的架构是你可以自己设计的,只要能够输入游戏的画面,输出类似像 类别这样的 Action 就可以了,那最后机器会决定採取哪一个 Action,取决于每一个 Action 取得的分数

常见的做法啊,是直接把这个分数,就当做一个机率,然后按照这个机率,去 Sample,去随机决定要採取哪一个 Action



举例来说 在这个例子裡面,向左得到 0.7 分,那就是有 70% 的机率会採取向左,20% 的机率会採取向右,10% 的机率会採取开火

那你可能会问说,为什么不是用argmax呢,为什么不是看 Left 的分数最高,就直接向左呢,你也可以这麽做,但是在助教的程式裡面,还有多数 RL 应用的时候 你会发现,我们都是採取 Sample,

採取 Sample 有一个好处是说,今天就算是看到同样的游戏画面,你的机器每一次採取的行为,也会略有不同,那在很多的游戏裡面这种随机性,也许是重要的,比如说你在做剪刀石头布的时候,如果你总是会出石头,就跟小叮噹一样,那你就很容易被打爆,如果你有一些随机性,就比较不容易被打爆

那其实之所以今天的输出,是用随机 Sample 的,还有另外一个很重要的理由,那这个我们等一下会再讲到,好 所以这是第一步,我们有一个 Function,这个 Function 有 Unknown 的 Variable,我们有一个 Network,那裡面有参数,这个参数就是 Unknown 的 Variable,就是要被学出来的东西,这是第一步

## Step 2: Define "Loss"

然后接下来第二步,我们要定义 Loss,在 RL 裡面,我们的 Loss 长得是什么样子呢,我们再重新来看一下,我们的机器跟环境互动的过程,那只是现在用不一样的方法,来表示刚才说过的事情



首先有一个初始的游戏画面,这个初始的游戏画面,被作为你的 Actor 的输入

你的 Actor 那就输出了一个 Action,比如说向右,输入的游戏画面呢,我们叫它  $s_1$ ,然后输出的 Action 呢,就 叫它  $a_1$ 

那现在会得到一个 Reward,这边因为向右没有做任何事情,没有杀死任何的外星人,所以得到的 Reward 可能就是 0 分



採取向右以后,会看到新的游戏画面,这个叫做  $s_2$ ,根据新的游戏画面  $s_2$ ,你的 Actor 会採取新的行为,比如说开火,这边用  $a_2$ ,来表示看到游戏画面  $s_2$  的时候,所採取的行为

那假设开火恰好杀死一隻外星人,和你的 Actor 就得到 Reward,这个 Reward 的分数呢,是 5 分,然后採取 开火这个行为以后



# After many turns

接下来你会看到新的游戏画面,那机器又会採取新的行为,那这个互动的过程呢,就会反覆持续下去,直到机器在採取某一个行为以后,游戏结束了,那什么时候游戏结束呢,就看你游戏结束的条件是什么嘛

举例来说,採取最后一个行为以后,比如说向右移,正好被外星人的子弹打中,那你的飞船就毁了,那游戏就结束了,或者是最后一个行为是开火,把最后一隻外星人杀掉,那游戏也就结束了,就你执行某一个行为,满足游戏结束的条件以后,游戏就结束了



那从游戏开始到结束的这整个过程啊,被称之为一个 Episode,那在整个游戏的过程中,机器会採取非常多的行为,每一个行为都可能得到 Reward,把所有的 Reward 通通集合起来,我们就得到一个东西,叫做整场游戏的 Total Reward,



那这个 Total Reward 呢,就是从游戏一开始得到的  $r_1$ ,一直得,一直加,累加到游戏最后结束的时候,得到的  $r_1$ ,假设这个游戏裡面会互动,T 次,那麽就得到一个 Total Reward,我们这边用 R,来表示 Total Reward,其 实这个 Total Reward 又有另外一个名字啊,叫做 Return 啦,你在这个 RL 的文献上,常常会同时看到 Reward 跟 Return,这两个词会出现,那 Reward 跟 Return 其实有点不一样,Reward 指的是你採取某一个行为的时候,立即得到的好处,这个是 Reward,把整场游戏裡面所有的 Reward 通通加起来,这个叫做 Return

但是我知道说,很快你就会忘记 Reward 跟 Return 的差别了,所以我们等一下就不要再用 Return 这个词彙,我们直接告诉你说,整场游戏的 Reward 的总和,就是 Total 的 Reward,而这个 Total 的 Reward 啊,就是我们想要去最大化的东西,就是我们训练的目标

那你可能会说,欸 这个跟 Loss 不一样啊,Loss 是要越小越好啊,这个 Total Reward 是要越大越好啊,所以有点不一样吧,但是我们可以说在 RL 的这个情境下,我们把那个 Total Reward 的负号,**负的 Total** Reward,就当做我们的 Loss,Total Reward 是要越大越好,那负的 Total Reward,当然就是要它越小越好吧,就我们完全可以说负的 Total Reward,就是我们的 Loss,就是 RL 裡面的 Loss

## **Step 3: Optimization**

那我们再把这个环境跟,Agent 互动的这一件事情啊,再用不一样的图示,再显示一次



这个是你的环境,你的环境呢,输出一个 Observation,叫做  $s_1$ 

- 这个  $s_1$  呢,会变成你的 Actor 的输入
- 你的 Actor 呢,接下来就是输出  $a_1$
- 然后这个 a1 呢,又变成环境的输入
- 你的环境呢,看到  $a_1$  以后,又输出  $s_2$

然后这个互动的过程啊,就会继续下去, $s_2$  又输入给 Actor,它就输出  $a_2$ , $a_2$  又输入给 Environment,它就输出给,它就产生  $s_3$ 

它这个互动呢,一直下去,直到满足游戏中止的条件,好 那这个 s 跟 a 所形成的这个 Sequence,就是  $s_1$   $a_1$   $s_2$   $a_2$   $s_3$   $a_3$  这个 Sequence,又叫做 Trajectory,那我们用  $\tau$ 来表示 Trajectory



那根据这个互动的过程,Machine 会得到 Reward,你其实可以把 Reward 也想成是一个 Function,我们这边用一个绿色的方块来代表,这个 Reward 所构成的 Function

那这个 Reward 这个 Function,有不同的表示方法啦,在有的游戏裡面,也许你的 Reward,只需要看你採取哪一个 Action 就可以决定,不过通常我们在决定 Reward 的时候,光看 Action 是不够的,你还要看现在的 Observation 才可以,因为并不是每一次开火你都一定会得到分数,开火要正好有击到外星人,外星人正好在你前面,你开火才有分数

所以通常 **Reward Function 在定义的时候,不是只看 Action,它还需要看 Observation**,同时看 Action 跟 Observation,才能够知道现在有没有得到分数,所以 Reward 是一个 Function,

这个 Reward 的 Function,它拿  $a_1$  跟  $s_1$  当作输入,然后它产生  $r_1$  作为输出,它拿  $a_2$  跟  $s_2$  当作输入,产生  $r_2$  作为输出,把所有的 r 通通结合起来,把  $r_1$  加  $r_2$  加  $r_3$  一直加到 T,全部结合起来就得到 R,这个就是 Total Reward,也就是 Return,这个是我们要最大化要去 Maximize 的对象

这个 Optimization 的问题是这个样子,你要去找一个 Network,其实是 Network 裡面的参数,你要去 Learn 出一组参数,这一组参数放在 Actor 的裡面,它可以让这个 R 的数值越大越好,就这样,结束了,整个 Optimization 的过程就是这样,你要去找一个 Network 的参数,让这边产生出来的 R 越大越好



那乍看之下,如果这边的,这个 Environment Actor 跟 Reward,它们**都是 Network 的话,这个问题其实也没有什么难的**,这个搞不好你现在都可以解,它看起来就有点像是一个 Recurrent Network,这是一个 Recurrent Network,然后你的 Loss 就是这个样子,那只是这边是 Reward 不是 Loss,所以你是要让它越大越好,你就去 Learn 这个参数,用 Gradient Descent 你就可以让它越大越好

但是 RL 困难的地方是,**这不是一个一般的 Optimization 的问题**,因为你的 Environment,这边有很多问题导致说,它跟一般的 Network Training 不太一样

### 第一个问题是,你的 Actor 的输出是有随机性的



这个  $a_1$  **它是用 Sample 产生的**,你定同样的  $s_1$  每次产生的  $a_1$  不一定会一样,所以假设你把 Environment Actor 跟 Reward,合起来当做是一个巨大的 Network 来看待,这个 Network 可不是一般的 Network,**这个 Network 裡面是有随机性的**,这个 Network 裡面的某一个 Layer 是,每次产生出来结果是 不一样的,**这个 Network 裡面某一个 Layer** 是,**它的输出每次都是不一样的** 

另外还有一个更大的问题就是,**你的 Environment 跟 Reward,它根本就不是 Network 啊,它只是一个黑盒子而已**,你根本不知道裡面发生了什么事情,Environment 就是游戏机,那这个游戏机它裡面发生什么事情你不知道,你只知道说你输入一个东西会输出一个东西,你採取一个行为它会有对应的回应,但是到底是怎麽产生这个对应的回应,我们不知道,它只是一个黑盒子,

**Reward 可能比较明确,但它也不是一个 Network,它就是一条规则**嘛,它就是一个规则说,看到这样子的 Optimization 跟这样的 Action,会得到多少的分数,它就只是一个规则而已,所以它也不是 Network

而且更麻烦的地方是,**往往 Reward 跟 Environment,它也是有随机性的**,如果是在电玩裡面,通常 Reward 可能比较不会有随机性,因为规则是定好的,对有一些 RL 的问题裡面,Reward 是有可能有随机性 的

但是在 Environment 裡面,就算是在电玩的这个应用中,它也是有随机性的,你给定同样的行为,到底游戏机会怎麽样回应,它裡面可能也是有乱数的,它可能每次的回应也都是不一样,如果是下围棋,你落同一个子,你落在,你落子在同一个位置,你的对手会怎麽样回应,每次可能也是不一样



所以环境很有可能也是有随机性的,所以这不是一个一般的 Optimization 的问题,你可能不能够用我们这门课已经学过的,训练 Network 的方法来找出这个 Actor,来最大化 Reward

所以 RL 真正的难点就是,我们怎麽解这一个 Optimization 的问题,怎麽找到一组 Network 参数,可以让 R 越大越好

其实你再仔细想一想啊,这整个问题跟 GAN 其实有异曲同工之妙,它们有一样的地方,也有不一样的地方

- 先说它们一样的地方在哪裡,你记不记得在训练 GAN 的时候,在训练 Generator 的时候,你会把 Generator 跟 Discriminator 接在一起,然后你希望去调整 Generator 的参数,让 Discriminator 的输出越大越好,今天在 RL 裡面,我们也可以说这个 Actor 就像是 Generator,Environment 跟 Reward 就像是 Discriminator,我们要去调整 Generator 的参数,让 Discriminator 的输出越大越好,所以它跟 GAN 有异曲同工之妙
- 但什么地方不一样呢,在 GAN 裡面你的 Discriminator,也是一个 Neural Network,你了解
  Discriminator 裡面的每一件事情,它也是一个 Network,你可以用 Gradient Descent,来 train 你的
  Generator,让 Discriminator 得到最大的输出,但是在 RL 的问题裡面,你的 Reward 跟
  Environment,你可以把它们当 Discriminator 来看,但它们不是 Network,它们是一个黑盒子,所以你没有办法用,一般 Gradient Descent 的方法来调整你的参数,来得到最大的输出,所以这是 RL,跟一般 Machine Learning不一样的地方

但是我们还是可以把 RL 就看成三个阶段,只是在 Optimization 的时候,在你怎麽 Minimize Loss,也就怎麽 Maximize Reward 的时候,跟之前我们学到的方法是不太一样的

# **Policy Gradient**

接下来啊,我们就要讲一个拿来解 RL,拿来做 Optimization 那一段常用的一个演算法,叫做 Policy Gradient

Outline

To learn more about policy gradient: https://youtu.be/W8XF3ME8G2I

What is RL? (Three steps in ML)

**Policy Gradient** 

**Actor-Critic** 

**Reward Shaping** 

No Reward: Learning from Demonstration

那如果你真的想知道,Policy Gradient 是哪裡来的,你可以参见过去上课的录影,对 Policy Gradient 有比较详细的推导,那今天我们是从另外一个角度,来讲 Policy Gradient 这件事情

## How to control your actor

那在讲 Policy Gradient 之前,我们先来想想看,我们要怎麽操控一个 Actor 的输出,我们要怎麽让一个 Actor,在看到某一个特定的 Observation 的时候,採取某一个特定的行为呢,我们怎麽让一个 Actor,它的输入是 s 的时候,它就要输出 Action  $\hat{a}$  呢

• Make it take (or don't take) a specific action  $\hat{a}$  given specific observation s.



那你其实完全可以把它**想成一个分类的问题**,也就是说假设你要让 Actor 输入 s,输出就是  $\hat{a}$ ,假设  $\hat{a}$  就是向左好了,假设你要让,假设你已经知道,假设你就是要教你的 Actor 说,看到这个游戏画面向左就是对的,你就是给我向左,那你要怎麽让你的 Actor 学到这件事呢

• Make it take (or don't take) a specific action  $\hat{a}$  given specific observation s.



那也就说 s 是 Actor 的输入, $\hat{a}$  就是我们的 Label,就是我们的 Ground Truth,就是我们的正确答案,而接下来呢,你就可以计算你的 Actor,它的输出跟 Ground Truth 之间的 Cross-entropy,那接下来你就可以定义一个 Loss

假设你希望你的 Actor,它**採取**  $\hat{a}$  **这个行为的话**,你就定一个 Loss,这个 Loss 等于 Cross-entropy

 Make it take (or don't take) a specific action \(\hat{a}\) given specific observation s.



然后呢,你再去 Learn 一个  $\theta$ ,你再去 Learn 一个  $\theta$ ,然后这个  $\theta$  可以让 Loss 最小,那你就可以让这个 Actor 的输出,跟你的 Ground Truth 越接近越好

你就可以让你的 Actor 学到说,看到这个游戏画面的时候,它就是要向左,这个是要让你的 Actor,採取某一个行为的时候的做法

但是假设你想要让你的 Actor,不要採取某一个行为的话,那要怎麽做呢,假设你希望做到的事情是,你的 Actor 看到某一个 Observation s 的时候,我就干万不要向左的话怎麽做呢,其实很容易,你只需要把 Loss 的定义反过来就好

Take action  $\hat{a}$ 

$$L=e$$
  
Don't take action  $\hat{a}$   $heta^*=arg\min_{ heta}L$   $L=-e$ 

你希望你的 Actor 採取  $\hat{a}$  这个行为,你就定义你的大 L 等于 Cross-entropy,然后你要 Minimize Cross-entropy,假设你要让你的 Actor,不要採取  $\hat{a}$  这个行为的话,那你就把你就定一个 Loss,叫做负的 Cross-entropy,Cross-entropy 乘一个负号,那你去 Minimize 这个 L,你去 Minimize 这个 L,就是让 Cross-entropy 越大越好,那也就是让 a 跟  $\hat{a}$  的距离越远越好,那你就可以避免你的 Actor 在看到 s 的时候,去採取  $\hat{a}$  这个行为,所以我们有办法控制我们的 Actor,做我们想要做的事,只要我们给它适当的 Label 跟适当的 Loss,

### 所以假设我们要让我们的 Actor,**看到 s 的时候採取 \hat{a},看到 s' 的时候不要採取 \hat{a}'** 的话,要怎麽做呢

这个时候你就会说,Given s 这个 Observation,我们的 Ground Truth 叫做  $\hat{a}$ ,Given s' 这个 Observation 的时候,我们有个 Ground Truth 叫做  $\hat{a}$ ',那对这两个 Ground Truth, 我们都可以去计算 Cross-entropy,  $e_1$  跟  $e_2$ 



然后接下来呢,我们就定义说我们的 Loss,就是  $e_1$  减  $e_2$ ,也就是说我们要让这个 Case,它的 Cross-entropy 越小越好,这个 Case 它的 Cross-entropy 越大越好

然后呢,我们去找一个 θ 去 Minimize Loss,得到  $\theta^*$ ,那就是一个可以在 s,可以在看到 s 的时候採取  $\hat{a}$ ,看到 s' 的时候採取  $\hat{a}$ ' 的 Actor,所以藉由很像是在,Train 一个 Classifier 的这种行为,藉由很像是现在 Train 一个 Classifier,的这种 Data,我们可以去控制一个 Actor 的行为,

### 有一个同学问了一个非常好的问题

• **Q:**就是如果以 Alien 的游戏来说的话,因为只有射中 Alien 才会有 Reward,这样 Model 不是就会一直倾向于射击吗

A:对 这个问题我们等一下会来解决它,之后的投影片就会来解决它

然后又有另外一个同学,问了一个非常好的问题就是

- **Q:**哇 这样不就回到 Supervised Learning 了嘛,这个投影片上看起来,就是在训练一个 Classifier 而 已啊,我们就是在训练 Classifier,你只是告诉它说,看到 s 的时候就要输出  $\hat{a}$ ,看到 s' 的时候就不要输出  $\hat{a}$ , $\hat{a}$ ',这不就是 Supervised Learning 吗
- **A:**这就是 Supervised Learning,这个就是跟 Supervised Learning Train 的,Image Classifier 是一模一样的,但等下我们会看到它跟,一般的 Supervised Learning 不一样在哪裡,

那所以呢,如果我们要训练一个 Actor,我们其实就需要收集一些训练资料,就收集训练资料说,我希望在  $s_1$  的时候採取  $\hat{a}_1$ ,我希望在  $s_2$  的时候不要採取  $\hat{a}_2$ 

### **Training Data**

$$\begin{cases} \{s_1, \hat{a}_1\} & +1 \quad \text{Yes} \\ \{s_2, \hat{a}_2\} & -1 \quad \text{No} \end{cases}$$

$$\begin{cases} \{s_3, \hat{a}_3\} & +1 \quad \text{Yes} \\ \vdots & \vdots \\ \{s_N, \hat{a}_N\} & -1 \quad \text{No} \end{cases}$$

$$L = +e_1 - e_2 + e_3 \cdots - e_N$$

$$\theta^* = arg \min_{\theta} L$$

但可能会问说,欸 这个训练资料哪来的,这个我们等一下再讲训练资料哪来的

所以你就**收集一大堆的资料,这个跟 Train 一个 Image 的 Classifier 很像的**,这个 s 你就想成是 Image,这个  $\hat{a}$  你就想成是 Label,只是现在有的行为是想要被採取的,有的行为是不想要被採取的,你就收集一堆这种资料,你就可以去定义一个 Loss Function,有了这个 Loss Function 以后,你就可以去训练你的 Actor,去 **Minimize 这个 Loss Function,就结束了**,你就可以训练一个 Actor,期待它执行我们的行为,期待它执行的行为是我们想要的

而你甚至还可以更进一步,你可以说每一个行为并不是只有好或不好,并不是有想要执行跟不想要执行而已,它是有程度的差别的,有执行的非常好的,有 Nice to have 的,有有点不好的,有非常差的

所以刚才啊,我们是说每一个行为就是要执行不要执行,这是一个 Binary 的问题,这是我们就用 ±1 来表示

### Training Data

$$\begin{cases} \{s_1, \hat{a}_1\} & A_1 & +1.5 \\ \{s_2, \hat{a}_2\} & A_2 & -0.5 \end{cases}$$

$$\begin{cases} \{s_3, \hat{a}_3\} & A_3 & +0.5 \\ \vdots & \vdots & \vdots \end{cases}$$

$$\{s_N, \hat{a}_N\} & A_N & -10$$

$$S \longrightarrow Actor \\ \theta \longrightarrow \alpha$$

$$L = \sum A_n e_n$$

$$\theta^* = arg \min_{\Omega} L$$

但是现在啊,我们改成**每一个 s 跟 a 的 Pair,它有对应的一个分数**,这个分数代表说,我们多希望机器在看到  $s_1$  的时候,执行  $\hat{a}_1$  这个行为

那比如说这边第一笔资料跟第三笔资料,我们分别是定 +1.5 跟 +0.5,就代表说我们期待机器看到  $s_1$  的时候,它可以做  $\hat{a}_1$ ,看到  $s_3$  的时候它可以做  $\hat{a}_3$ ,但是我们期待它看到  $s_1$  的时候,做  $\hat{a}_1$  的这个期待更强烈一点,比看到  $s_3$  做  $\hat{a}_3$  的期待更强烈一点

那我们希望它在看到  $s_2$  的时候,不要做  $\hat{a}_2$ ,我们期待它看到 sN 的时候,不要做  $\hat{a}_N$ ,而且我们非常不希望,它在看到 sN 的时候做  $\hat{a}_N$ 

有了这些资讯,你一样可以定义一个 Loss Function,你只是在你的原来的 Cross-entropy 前面,本来是 Cross-entropy 前面,要嘛是 +1 要嘛是 -1

现在改成乘上 An 这一项,改成乘上 An 这一项,告诉它说有一些行为,我们非常期待 Actor 去执行,有一些行为我们非常不期待 Actor 去执行,有一些行为如果执行是比较好的,有一些行为希望儘量不要执行比较好,但就算执行了也许伤害也没有那麽大

所以我们**透过这个 An 来控制说,每一个行为我们多希望 Actor 去执行**,然后接下来有这个 Loss 以后,一样 Train 一个  $\theta$ , Train 下去你就找一个  $\theta$ \*,你就有个 Actor 它的行为是符合我们期待的



那接下来的难点就是,要怎麽定出这一个 a 呢,这个就是我们接下来的难点,就是我们接下来要面对的问题,我们还有另外一个要面对的问题是,怎麽产生这个 s 跟 a 的 Pair 呢,怎麽知道在  $s_1$  的时候要执行  $a_1$ ,或在  $s_2$  的时候不要执行  $a_2$  呢,那这个也是等一下我们要处理的问题,