/TRANSFORMADA RÁPIDA DE FOURIER

Becerra Sipiran, Cledy Elizabeth Oviedo Sivincha, Massiel Villanueva Borda, Harold Alejandro

/ÍNDICE

/01 /TRANSFORMADA DE FOURIER

/02 /TRANSFORMADA DISCRETA DE FOURIER

/03 /TRANSFORMADA RÁPIDA DE FOURIER

/04 /CONCLUSIONES

0

/01

/TRANSFORMADA DE FOURIER

Condiciones de Dirichlet

$$\int_{a}^{b} |f(t)| dt < \infty$$

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty$$

- Un número finito de discontinuidades
 finitas.
 - Un número finito de máximos y un número finito de mínimos.

Fórmulas

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$$

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} dt$$

Inversa de la > transformada de 〈 Fourier

/02 /TRANSFORMADA DISCRETA DE FOURIER

 \odot

Condiciones del DFT

$$x[n] = 0, n < 0$$

$$x[n] = 0, n > N - 1$$

- La señal vale 0 para cualquier valor n negativo.
- Para cualquier valor de n superior al número de puntos a calcular menos 1

/Fórmulas

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-\frac{i2\pi}{N}kn}, k = 0, ..., N-1$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{\frac{i2\pi}{N}kn}, n = 0, ..., N-1$$

Para encontrar la
Inversa de la DFT

/EJERCICIO

• • •

Calcular la DFT de $x[n] = \{1, 2, 0, -1\}$. El tamaño del vector es: N = 4Recordando que la fórmula para hallar una DFT es Entonces

$$X[k] = \sum_{n=0}^{3} x[n]e^{-\frac{i2\pi}{4}kn}$$
$$X[k] = \sum_{n=0}^{3} x[n]e^{-\frac{i\pi}{2}kn}$$

Para k = 0:

$$X[0] = \sum_{n=0}^{3} x[n]e^{0}$$

$$X[0] = x[0] + x[1] + x[2] + x[3]$$

$$X[0] = 1 + 2 + 0 + (-1)$$

$$X[0] = 2$$

Para k = 1:

 $X[k] = \sum_{n=0}^{N-1} x[n]e^{-\frac{i2\pi}{N}kn}$

$$X[1] = \sum_{n=0}^{3} x[n]e^{-\frac{i\pi}{2}n}$$

Tener en cuenta que:

$$e^{-\frac{i\pi}{2}} = \cos{\frac{\pi}{2}} - i\sin{\frac{\pi}{2}} = -i$$

$$e^{-i\pi} = \cos \pi - i \sin \pi = -1$$

$$e^{-\frac{i3\pi}{2}} = \cos\frac{3\pi}{2} - i \sec\frac{3\pi}{2} = i$$

Para
$$k = 2$$
:
 $X[2] = \sum_{n=0}^{3} x[n]e^{-i\pi n}$
 $X[2] = x[0]e^{0} + x[1]e^{-i\pi} + x[2]e^{-i2\pi} + x[3]e^{-i3\pi}$
 $X[2] = 1 + (2)(-1) + 0 + (-1)(-1)$
 $X[2] = 0$

Para
$$k = 3$$
:
 $X[3] = x[0]e^0 + x[1] - \frac{3\pi}{2} + x[3] = i3\pi + \frac{1}{2}x[3] - \frac{9\pi}{2}^{-i}$
 $X[3] = 1 + 2i + 0 + (-1)(-i)$
 $X[3] = 1 + 3i$

La DFT es periódica, al mostrearse esta señal analógica y periódica resulta un conjunto de muestras que también se repiten, pero ¿cuándo lo hacen?

Supongamos: $X[4] = \sum_{n=0}^{3} x[n]e^{-i2\pi n}$ $X[4] = X[0]e^{\theta^{-1}} + x[1]e^{-i2\pi - \frac{1}{4}} x[4] = i4\pi^{-\frac{1}{4}} x[3] = i6\pi^{-1}$

$$X[4] = X[0]e^{x} + x[1]e^{x} + x[4] = 4\pi + x[5] = 46\pi$$

$$X[4] = 1 + 2 + 0 + (-1)$$

$$X[4] = 2$$

Entonces X[4] = X[2] y se repite cada 4 muestras. ¿Tendrá alguna relación con la señal X[n] que es 4? La respuesta es sí, ya que, x[k] es periódica con periodo N, donde N define el número de muestras de x[n].

\equiv

TRANSFORMADA RÁPIDA DE FOURIER

Fórmulas

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-\frac{i2\pi}{N}kn}, k = 0, ..., N-1$$

DFT para Algoritmo > FFT diezmado en 〈 tiempo

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{\frac{i2\pi}{N}kn}, n = 0, ..., N-1$$

Inversa de la DFT >para el FFT diezmado< en la frecuencia

Algoritmo FFT diezmado en tiempo (base 2, esto es cuando N =2n)

Sea la DFT de x[n]:

$$X[k] = \sum_{r=0}^{N-1} x[n] w_N^{kr}, k = 0, 1, 2, ..., N-1$$

donde
$$w_N = e^{-rac{2\pi}{N}}$$

Pares

$$X[k] = \sum_{r=0}^{\frac{N}{2}-1} x[2r]w_N^{2rk} + \sum_{r=0}^{\frac{N}{2}-1} x[2r+1]w_N^{(2r+1)k}$$

Impares

$$X[k] = \sum_{r=0}^{\frac{N}{2}-1} x[2r](w_N^2)^{rk} + w_N^k \sum_{r=0}^{\frac{N}{2}-1} x[2r+1](w_N^2)^{rk}$$

$$w_N^n = (e^{-\frac{i2\pi}{N}})^n = e^{-\frac{i2\pi n}{N}}$$

Se puede escribir como el recíproco de n:

$$w_N^n = e^{-\frac{i2\pi}{N}}$$

Entonces si n=2:

$$w_N^2 = e^{-\frac{2\pi}{N}} = w_{\frac{N}{2}}$$

Sustituimos

$$w_N^2 = w_{\frac{N}{2}}$$

$$X[k] = \sum_{r=0}^{\frac{N}{2}-1} x[2r] w_{\frac{N}{2}}^{rk} + w_N^k \sum_{r=0}^{\frac{N}{2}-1} x[2r+1] w_{\frac{N}{2}}^{rk}$$

G[k]: corresponde a la sumatoria de pares.

H[k]: corresponde a la sumatoria de impares.

X[k]: corresponde a la suma de G[k] + H[k].

Finalmente obtenemos:

$$X[K] = G[k] + w_N^k H[k], k = 0, 1, 2, 3, ..., \frac{N-1}{2}$$

$$X[k] = G[k] + W_N^k H[k], 0 \le k \le \frac{N}{2} - 1$$

$$X[k] = G[k] - w_N^k H[k], \frac{N}{2} - 1 \le k \le N - 1$$

La señal X[k] se define como la asociación de 2 DFT más simples.

Esta pareja de ecuaciones puede representar gráficamente con un diagrama de flujos:

/Diagrama mariposa de la FFT

Por etapa, se requieren N/2 mariposas.

Hay log N etapas.

Se cumple $w^{\frac{N}{2}}=-1$ y por lo tanto,

$$w^{r + \frac{N}{2}} = w^r w^{\frac{N}{2}} = -w^r$$

Se reduce así en un factor 2 los productos complejos:

	_	_
н		
-	_	_

Sample numbers in normal order		Sample numbers after bit reversal		
Decimal	Binary		Decimal	Binary
0	0000		0	0000
1	0001		8	1000
2	0010		4	0100
3	0011		12	1100
4	0100		2	0010
5	0101		10	1010
6	0110		6	0110
7	0111		14	1110
8	1000		1	0001
9	1001		9	1001
10	1010		5	0101
11	1011		13	1101
12	1100		3	0011
13	1101		11	1011
14	1110		7	0111
15	1111		15	1111

/Bit inverso

Algoritmo FFT diezmado en Frecuencia

$$X[k] = \sum_{n=0}^{\frac{N}{2}-1} x[n]w_N^{kn} + \sum_{n=\frac{N}{2}}^{N-1} x[n]w_N^{kn}$$

$$= \sum_{n=0}^{\frac{N}{2}-1} x[n] w_N^{kn} + w_N^{\frac{Nk}{2}} \sum_{n=0}^{\frac{N}{2}-1} x \left[n + \frac{N}{2} \right] w_N^{kn}$$

/04 /ALGORITMO


```
/TRANSFORMADA RÁPIDA DE FOURIER
      FFT t ( arr & v ) {
     int n = v . size ();
     if(n > 1) {
          arr odd ( n / 2);
          arr even (n/2);
          for (int i = 0; 2 * i < n; ++ i) {
                even [ i ] = v [2 * i ];
                odd [ i ] = v [2 * i + 1];
10
11
          FFT t ( even ) ;
12
          FFT t ( odd ) ;
13
          double ang = -2 * PI / n;
14
          x n w (1.0);
15
          x n wn (cos (ang), sin (ang));
16
          for (int k = 0; k < n / 2; ++ k) {
17
               v [ k ] = even [ k ] + w * odd [ k ];
18
               v [k+n/2] = even [k] - w * odd [k];
19
                w = wn;
20
21
22 }
```

```
23//TRANSFORMADA INVERSA RÁPIDA DE FOURIER
24
   void IFFT f ( arr & v ) {
25
     v = v . apply (conj);
26
     FFT t (v);
27
     v = v . apply (conj);
    v /= v . size () ;
28
29 }
```


/05

CONCLUSIONES

\equiv

/RESULTADOS

