Wearables (1)

CSE 162 – Mobile Computing
Hua Huang
Department of Computer Science and Engineering
University of California, Merced

In this lecture

What is wearable computing

Wearable sensing technologies

Challenges in wearable computing

- The term "wearable computing" is really built around any device that is attached or worn in some way
- So, the possibilities here are vast
 - Continuous health monitoring
 - Brain-computer interface
 - o Etc.

Realistic Wearable Technology

- The military is very interested in mobile computing
- Soldiers on the field could benefit from:
 - Improved hands-free communication
 - Mission / environmental information
 - Vital statistics being sent back to command

Realistic Wearable Technology

- Medical use (aka telemedicine)
 - Monitoring patient vitals
 - Administering medicine
 - Patient records
 - Virtual visits
- Smart Glasses
- Smart clothing

SMART CLOTHING

Everyday Realistic Wearable Technology

- What most people think about is watches and/or bracelets
- Smart Watches
 - Apple Watch https://www.apple.com/watch/
 - Android Wear https://www.android.com/wear/
 - Some proprietary watches
- Personal Fitness Devices
 - Fitbit https://www.fitbit.com/home
 - Other devices

What is a wearable computer?

- A computer that is
 - Portable while operational
 - Enables hands-free/hands-limited use
 - Able to get the user's attention
 - Is always on, acting on behalf of the user
 - Able to sense the user's current context

Ideal Attributes

- Persist and provide constant access to information services.
 - Everyday and continuous use.
 - Wearable can interact with the user at any given time.
 - The user can access the wearable quickly and with little effort.
- Sense and model context.
 - The wearable must observe and model the user's environment, physical and mental state.
 - The user could provide explicit contextual cue to the wearable.
 - The user can identify misunderstanding and explicitly tutor the wearable.
- Adapt interaction modalities based on the user's context.
 - The wearable should adapt its input and output modalities automatically to those that are most appropriate and socially graceful at the time.

Why discuss this in mobile?

- They are, by definition, mobile devices
- They often run versions of the operating systems we are already working with (Android Wear

 ⇔ Android)
- The wearable devices often work best when paired with a phone or other mobile device
- Many wearable apps come as part of a pair with a phone version

Wearable devices by use

History of wearables

- 1960-90: Early Exploration
 - Custom build devices
- 1990 2000: Academic, Military Research
 - MIT, CMU, Georgia Tech, EPFL, etc
 - 1997: ISWC conference starts
- 1995 2005+: First Commercial Uses
 - Niche industry applications, Military
- 2010 : Second Wave of Wearables
 - Consumer applications

Smart glasses

- Head Mounted Display (HMD)
- Head Up Display (HUD)

View Through Google Glass

- Always available peripheral information display
 - · Combining computing, communications and content capture

Smart watches

Foundation **Imagination** Electronification Experimentation Commercia-Mechanical Couldn't a 1st smartwatches, Quartz watches lization revolutionize the **Smartwatches** wrist watches watch do but no commerindustry established much more? cial success start to sell 1880 1940 1970 1990 2010

©Smartwatch Group | 2013

Number of Devices Shipped

The Predicted Wearables Boom Is All About The Wrist

Worldwide wearable device shipment forecast (in million units)

Source: IDC

@StatistaCharts

Smart earplugs

- An emerging computing platform
- New features
 - Augmented acoustic reality
 - Real-time translation
 - Monitor biometrics
 - Fitness coaching
 - Biometric identification

Intra-oral sensing

 "Sensor-Embedded Teeth for Oral Activity"

Figure 1. The breakout board with (b) tri-axial accelerometer and (a)(c) sensor embedded denture.

Android Wear

- Released in 2014
- Android Wear devices were initially designed to be second screens, but can be used independently in more situations
- Like Android itself, Wear can be adapted to many different devices
- Uses the same UI theme that the rest of Android uses

Use Cases

- Telling time
- OK Google
- Notifications and quick replies
- Phone app control (like music, for example)
- Fitness
- Basic functions (alarms, stopwatch, etc.)
- Apple Pay

When do you want a watch app?

- Good Watch Apps
 - Buy Me a Pie (grocery list)
 - Seven Minute Workout (works with sensors)
 - Due (reminders)
 - Google Maps (directions on your wrist!)
 - Pandora (control your music)
 - Shazaam (what is that song?)
 - Weather Underground (quick weather forecast)

When do you want a watch app?

- Odd Watch Apps
 - Chipotle?
 - FlightRadar?
 - Fandango?
 - AAA?
 - Amazon?

Wearable Technologies

Components of wearables

Sensors	Inertial	PPG	Bio	Other
	sensors	sensors	sensors	sensors
Connectivity	Bluletooth	Wifi	Gps	Cellular
Battery	Conventional	Energy harvesting		
Interface	Speech recognition	haptics /touch recognition	Gesture recognition	
Materials	Electronic textiles	Flexible display		

Inertial sensors

- Continuous data recording
- Body posture and movements

Wearable inertial sensors for activity tracking

Nike FuelBand Fitbit Basis Jawbone

Photoplethysmography (PPG)

- How it works
 - Contains a light source and a photodetector
 - The light source emits light to a tissue and the photodetector measures the reflected light from the tissue.
 - The reflected light is proportional to blood volume variations.

Photoplethysmography (PPG)

- Optimal wavelength:
 - Infrared, deepest penetration through skin
 - Green, robust to motion artifacts

Photoplethysmography (PPG)

Effective in monitoring heart rate

Sweat Sensor

- Used in wearable textiles
- Activity monitoring

Bio-sensor

- Chemical sensors that can detect cortisol concentrations
- Monitor mental states. E.g., cholesterol biosensor
 - Based on enzymatic catalysis of a reaction

Data Display

- Internal Display
 - Data displayed in the device or projected somewhere
 - Flexible display and electronics desired
 - Difficult trade off between size and HCI

- External Display
 - Data displayed in another device
 - Existing displays are sufficient
 - Less flexible, smaller wearables

Flexible Displays

- Low stiffness, low thickness, better resolution are desired
- Production costs are falling
- Better materials need to be discovered

Internal vs External Displays

- Devices with minimum information to be displayed
- Devices that can project data
- Connectivity is poor
- Larger size is desirable
- Improvements in flexible, thin display and electronics

- Devices that need detailed analysis of data
- Connectivity is good
- Existing display systems are sufficient
- Smaller size is desirable

E.g., implanted devices, smart ring

34

Speech recognition interface

- Speech recognition interfaces
 - Siri, Bixby, Google assistant
 - Wake up methods:
 - Voice
 - button
 - movements
- Use case: difficult to type text on smartwatch screens
- Applications
 - Send message
 - Make orders
 - Set timers

Haptics

- Enables virtual reality
- Weight illusions based on fingertip deformation
- Sensorimotor enhancer improves tactile sensitivity in fingertips

Unobtrusive input devices

- GestureWrist
 - Capacitive sensing
 - Change signal depending on hand shape

Unobtrusive input devices

- GesturePad
 - Capacitive multilayered touchpads
 - Supports interactive clothing

Challenges in wearable computing

Ideal wearables (Recap)

 Persist and provide constant access to information services.

Sense and model context.

Adapt interaction modalities based on the user's context.

Ideal wearables: challenges

- Persist and provide constant access to information services.
 - Challenge: supply the energy to support all-time access
- Sense and model context.
 - Challenge: sense without too many sensors
- Adapt interaction modalities based on the user's context.
 - Challenge: supply computing capacity for context learning

Summary: the trade-off between convenience and functions (battery life, sensing, cpu)

Battery improvements are expected to lag connectivity, display, and computing

	2010	Improvements	2020
Cellular	2-5 Mbps	20X	50-100 Mbps
WiFi	150-300 Mbps	30X	7Gbps
CPU	1 GHz	8.8X	4 core 2.2GHz
Battery	5.76Wh	2.2X	13Wh

Next generation of Wearable devices

- Batteries are the major bottleneck
- Change in the architecture and power usage of ICs to make them more efficient

Battery limitation of wearable devices

- Battery power density grows slowly
- Trade-off between form-factor and battery life
- Solution:
 - Energy-efficient electronics. computing, communication, sensing
 - Energy harvesting
 - Wireless charging
 - Human-powered energy harvesting

Questions to Consider

 UI concerns regarding touch size and screen size become even more problematic...

Questions to Consider

- Would a watch app add anything to my full app?
 - What additional sensing can the watch provide?
 - Can the information be shown in a very small format?
 - Are there simple controls to the app that could be added to a watch?
- Do I have the resources/time to do this?
 - Currently limited market impact, but growing
- What type of interaction do you want the user to have?