

Kontest 3 - 28.09.2023

Rozwiązania Starsi

Zadanie 1. Znaleźć wszystkie takie liczby naturalne $n \ge 2$, że wszystkie liczby naturalne mniejsze od n i względnie pierwsze z n tworzą ciąg arytmetyczny.

Dowód. Wszystkie liczby n spełniające zadane warunki to liczby pierwsze, potęgi dwójki oraz liczba 6. Istotnie, załóżmy, że wszystkie liczby naturalne mniejsze od n i względnie pierwsze z n tworzą ciąg arytmetyczny o różnicy r.

Jeśli r=1 to n nie ma żadnych dzielników większych od 1, a zatem n jest liczbą pierwszą.

Jeśli r=2, to n nie ma dzielników pierwszych nieparzystych, a ma parzyste, czyli jest potęgą dwójki.

Przyjmijmy więc, że $r \geqslant 3$. Jeśli n nie jest parzyste, to wśród liczb względnie pierwszych z n są 1 i 2, więc r=1, wbrew założeniu, zatem n jest liczbą parzystą. Jeśli n jest potęgą dwójki, to wśród liczb względnie pierwszych z n są 1 i 3, a wobec tego r=2. Niech $n=2^ab$, gdzie b>1 jest nieparzyste i $a\geqslant 1$. Nietrudno zauważyć, że liczby b-2, b+2 są mniejsze od n oraz względnie pierwsze z n, czyli należą do ciągu arytmetycznego. Ponieważ r>2, więc r=4. Pierwszym wyrazem ciągu arytmetycznego jest liczba 1, więc następny to 5. Wobec tego 3|n. Jeśli n>6, to $n\geqslant 12$. Wypisując jednak trzy pierwsze wyrazy naszego ciągu: 1, 5, 9 otrzymujemy sprzeczność. Bez trudu sprawdzamy, że n=6 również spełnia warunki zadania.

Zadanie 2. Dany jest zbiór X składający się z 2003 liczb rzeczywistych. Dla każdych różnych $x,y\in X$ zachodzi $x^2+y\sqrt{2}\in\mathbb{Q}$. Udowodnij, że $x\sqrt{2}$ jest wymierne dla każdego $x\in X$.

 $Dow \acute{o}d.$ Ustalmy dowolny $x \in X$ i niech $y, \ z \in X,$ takie że $x, \ y, \ z$ są parami różne. Wtedy

$$x^{2} + y\sqrt{2} - (y^{2} + x\sqrt{2}) = (x - y)(x + y - \sqrt{2}) = \frac{1}{2}(x\sqrt{2} - y\sqrt{2})(x\sqrt{2} + y\sqrt{2} - 2) \in \mathbb{Q}$$

oraz

$$z^{2} + x\sqrt{2} - (z^{2} + y\sqrt{2}) = x\sqrt{2} - y\sqrt{2} \in \mathbb{Q},$$

ale $x \neq y$, więc $x\sqrt{2} + y\sqrt{2} \in \mathbb{Q}$, czyli

$$x\sqrt{2} = \frac{1}{2}((x\sqrt{2} + y\sqrt{2}) + (x\sqrt{2} - y\sqrt{2})) \in \mathbb{Q}.$$

Zadanie 3. Punkt O jest środkiem okręgu opisanego na trójkącie ostrokątnym ABC, zaś odcinki AH_A , BH_B i CH_C są jego wysokościami. Punkty O_A , O_B i O_C są środkami okręgów opisanych odpowiednio na trójkątach BOC, COA i AOB. Wykazać, że proste O_AH_A , O_BH_B i O_CH_C mają punkt wspólny.

Dowód. Z równości $AO_C=OO_C$ i $AO_B=OO_B$ wnosimy, że punkty OB i OC leżą na symetralnej odcinka AO, więc $O_BO_C\perp AO$. Skoro

$$\triangleleft OAB = \triangleleft H_AAC = 90^{\circ} - \triangleleft BCA = 90^{\circ} - \triangleleft H_BH_CA,$$

to $AO \perp H_BH_C$, skąd wniosek, że proste O_BO_C i H_BH_C są równoległe. Analogicznie dowodzimy, że proste O_AO_C i H_AH_C są równoległe oraz proste O_AO_B i H_AH_B są równoległe. Trójkąty $O_AO_BO_C$ i $H_AH_BH_C$ nie są przystające, gdyż okrąg ω o środku O i promieniu R/2 (gdzie R to promień okręgu opisanego na trójkącie ABC) jest okręgiem wpisanym w trójkąt $O_AO_BO_C$, zaś okrąg opisany na trójkącie $H_AH_BH_C$ to okrąg dziewięciu punktów i ma promień także równy R/2, a więc taki sam jak okrąg ω . Stąd i z wcześniejszych równoległości wynika, że trójkąty $O_AO_BO_C$ i $H_AH_BH_C$ są jednokładne — środek tej jednokładności (o skali dodatniej) to szukany punkt wspólny prostych O_AH_A , O_BH_B i O_CH_C .

Zadanie 4. Dana jest liczba całkowita dodatnia n. Udowodnij, że istnieje nieskończenie wiele kwadratów postaci $k \cdot 2^n - 7$, gdzie k jest liczbą całkowitą dodatnią.

Dowód. Warunek z treści można przepisać jako kongruencję $x^2 \equiv -7 \mod 2^n$, bo jeśli x spełnia tą kongruencję, to $x^2 + 7 = k \cdot 2^n$. Oczywiście jeśli x spełnia tą kongruencję, to $x + 2^n$ również ją spełnia, więc wystarczy pokazać, że dla każdego n istnieje rozwiązanie tej kongruencji.

Oznaczmy tą kongruencję przez T_n . Pokażemy krok indukcyjny, że jeśli T_n ma rozwiązanie, to T_{n+1} również. Indukcję przeprowadzimy dla $n \ge 3$.

Niech x jest rozwiązaniem kongruencji $x^2 \equiv -7 \mod 2^n$. Wówczas $x^2 \equiv -7 \mod 2^{n+1}$ lub $x^2 \equiv -7 + 2^n \mod 2^{n+1}$. Pierwszy przypadek rozwiązuje T_{n+1} ,

Pieczarki 28.09.2023 Kontest 3

więc wystarczy rozpatrzyć drugi przypadek.

 $x^2 \equiv -7 \mod 2^n$ oznacza, że xmusi być nieparzysty. Wtedy

$$(x+2^{n-1})^2 \equiv x^2 + x \cdot 2^n + 2^{2n-2} \equiv (-7+2^n) + x \cdot 2^n \equiv -7 \mod 2^{n+1}$$

Druga kongruencja jest spełniona, bo $n \ge 3$, czyli $2^{n+1} \mid 2^{2n-2}$. Ostatnia kongruencja jest spełniona, bo skoro x jest nieparzysty, to $x \cdot 2^n \equiv 2^n \mod 2^{n+1}$. Dla n=3 mamy rozwiązanie x=1, więc baza indukcyjna jest spełniona. Przez indukcję T_n ma rozwiązanie dla wszystkich $n \ge 3$. Przypadki n=1,2 są spełnione, bo rozwiązanie T_n spełnia również kongruencję T_{n-1} .