

Algoritmos y Estructuras de Datos

Cursada 2019

Prof. Alejandra Schiavoni (ales@info.unlp.edu.ar)

Prof. Catalina Mostaccio (catty@lifia.info.unlp.edu.ar)

Prof. Laura Fava (Ifava@info.unlp.edu.ar)

Prof. Pablo Iuliano (piuliano@info.unlp.edu.ar)

Arbol General Definición

Un árbol general es una colección de nodos, tal que:

- puede estar vacía. (Árbol vacío)
- puede estar formada por un nodo distinguido R, llamado raiz y un conjunto de árboles T_1 , T_2 , T_k , $k \ge 0$ (subárboles), donde la raiz de cada subárbol T_i está conectado a R por medio de una arista

Arbol General Descripción y terminología

- *Grado* del árbol es el grado del nodo con mayor grado.
- Árbol lleno: Dado un árbol T de grado k y altura h, diremos que T es lleno si cada nodo interno tiene grado k y todas las hojas están en el mismo nivel (h).

Es decir, recursivamente, T es lleno si:

- 1. T es un nodo simple (árbol lleno de altura 0), o
- 2. T es de altura h y todos sus sub-árboles son llenos de altura h-1.

Arbol General Descripción y terminología

- Árbol completo: Dado un árbol T de grado k y altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol <u>lleno</u>:

Sea T un árbol lleno de grado k y altura h, la cantidad de nodos N es $(k^{h+1}-1)/(k-1)$ ya que:

Nivel $0 \rightarrow k^0$ nodos

Nivel 1 \rightarrow k¹ nodos

Nivel 2 \rightarrow k² nodos

Nivel 3 \rightarrow k³ nodos

$$N = k^0 + k^1 + k^2 + k^3 + ... + k^h$$

La suma de los términos de una serie geométrica de razón k es:

$$(k^{h+1}-1)/(k-1)$$

Arbol General Descripción y terminología

• Cantidad de nodos en un árbol completo:

Sea T un árbol completo de grado k y altura h, la cantidad de nodos N varía entre $(k^h+k-2)/(k-1)$ y $(k^{h+1}-1)/(k-1)$ ya que ...

• Si no, el árbol es lleno en la altura h-1 y tiene por lo menos un nodo en el nivel h: $\mathbf{N} = (\mathbf{k}^{h-1+1}-1)/(\mathbf{k}-1)+1=(\mathbf{k}^h+\mathbf{k}-2)/(\mathbf{k}-1)$

Arbol General Usos - Aplicaciones

- ✓ Organigrama de una empresa
- ✓ Árboles genealógicos
- ✓ Taxonomía que clasifica organismos
- Sistemas de archivos
- Organización de un libro en capítulos y secciones

Arbol General Representación con lista de Hijos

La lista de hijos, puede estar implementada a través de:

- Arreglos
 - Desventaja: espacio ocupado
- Listas dinámicas
 - Mayor flexibilidad en el uso

Arbol General

Representación: Lista de Hijos con arreglos

Arbol General

Representación: Lista de Hijos con Lista Enlazada

Arbol General Recorridos

- Preorden: se procesa primero la raíz y luego los hijos
- Inorden: se procesa el primer hijo, luego la raíz y por último los restantes hijos
- Postorden: se procesan primero los hijos y luego la raíz
- **Por niveles:** se procesan los nodos teniendo en cuenta sus niveles, primero la raíz, luego los hijos, los hijos de éstos, etc.

Arbol General Recorrido en preorden


```
public void preOrden() {
   imprimir (dato);
   obtener lista de hijos;
   mientras (lista tenga datos) {
      hijo 	obtenerHijo;
      hijo.preOrden();
   }
}
```

Arbol General Recorrido en postorden


```
public void postOrden() {
   obtener lista de hijos;
   mientras (lista tenga datos) {
       hijo  obtenerHijo;
       hijo.postOrden();
   }
  imprimir (dato);
}
```

Árbol General Recorrido por niveles

