

FACULTAD DE INGENIERÍA Y CIENCIAS AGROPECUARIAS CARRERA DE INGENIERÍA AMBIENTAL LAB500/ LABORATORIO DE ANÁLISIS, MONITOREO Y MEDICIÓN AMBIENTAL

Período 2017-1

1. Identificación

Número de sesiones: 64

Número total de horas de aprendizaje: 160 h = 64 h presenciales + 96 h de trabajo autónomo.

Créditos - malla actual: 4

Profesor: Ing. Francisco Domínguez Rodríguez, PhD.

Ing. Javier Moisés Álava Castelo

Correo electrónico del docente (Udlanet): francisco.dominguez@udlanet.ec

jm.alava@udlanet.ec

Coordinador: Ing. Paola Posligua MSc.

Campus: Queri

Pre-requisito: IAI330/ Microbiología General.

Co-requisito: Paralelo: 1, 2, 3 Tipo de asignatura:

Optativa	
Obligatoria	х
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	х
Unidad 3: Titulación	

Campo de formación:

Campo de formación					
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes	
	х				

2. Descripción del curso

El presente curso se fundamenta en la aplicación de la química analítica clásica e instrumental para la determinación de contaminantes presentes en matrices ambientales. Se pretende que el estudiante interprete, discuta y analice los resultados obtenidos en función de la normativa ambiental vigente. El curso comprende el análisis de contaminantes en matrices ambientales,

la evaluación de las características fisicoquímicas de matrices ambientales contaminadas y la realización de planes de monitoreo ambiental.

3. Objetivo del curso

Identificar experimentalmente los contaminantes más comunes que se encuentran en matrices ambientales, mediante la realización de muestreos y posterior análisis mediante técnicas de química clásica e instrumental.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
	1 El Ingeniero Ambiental participa de manera consciente y dirige proyectos multidisciplinarios de la gestión integral de recursos (agua, suelo, aire y biota), de procesos de tratamiento de contaminantes generados por las	Medio (x)
2 Analiza procesos naturales y antropogénicos: transporte, monitoreo, control y tratamiento de las matrices ambientales.	actividades industriales y de centros urbanos, así como de conservación de entornos naturales. 2 Diseña (proactivamente), optimiza e innova tecnologías y procesos de	
2 Aplica técnicas de ingeniería para el análisis, interpretación y solución de problemas ambientales.	prevención y remediación, enfocado en el control ambiental mediante la investigación e implementación de principios de producción más limpia,	
6 Aplica la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental - estadístico, resultados, rechazo de hipótesis.	eficiencia de los recursos energéticos, estudios de ordenamiento territorial, evaluaciones de impacto ambiental y auditorías ambientales basados en el cumplimiento de la normativa ambiental	
Todataaaa, taataaa aa mpaasaa	vigente generando soluciones técnicamente factibles y económicamente viables en el diseño de tratamiento de residuos y efluentes.	Medio (x)
	6 Aplica metodologías de investigación en la búsqueda, fundamentación y elaboración de soluciones que garanticen la conservación, sustentabilidad, sostenibilidad y gestión integral de los recursos.	

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Rep	35 %	
-	Ensayos y Ejercicios	6 %
-	Informes de Laboratorio	8 %

-	Pruebas controles	6 %
-	Examen Progreso	15 %
Rej	porte de progreso 2	35 %
-	Ensayos y Ejercicios	6 %
-	Informes de Laboratorio	8 %
-	Pruebas controles	6 %
-	Examen Progreso	15 %
Ev	aluación final	30 %
-	Exposición Final	12 %
-	Examen Progreso	18 %

Al finalizar del curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el período académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

Las metodologías y mecanismos de evaluación se explican a continuación:

6.1. Escenario de aprendizaje presencial.

Durante las horas de clase presenciales se efectuarán presentaciones magistrales en base a la planificación y al programa a seguir, empezando por un proceso de retroalimentación y el planteamiento de los objetivos respectivos. El desarrollo de contenidos se realizará mediante foros abiertos, exposiciones y ponencias, además de ejercicios aplicativos relacionados con el tema tratado. En cada capítulo se desarrollarán actividades grupales donde se planteen problemas y casos prácticos, además de prácticas de laboratorio y salidas de campo. La evaluación de cada actividad se efectuará mediante ensayos, entrega de informes y pruebas objetivas.

6.2. Escenario de aprendizaje virtual.

Se reforzarán ciertos aspectos teóricos adquiridos durante las actividades presenciales mediante la realización de foros y discusiones, trabajos grupales, exposiciones y presentaciones. Todas estas actividades se podrán realizar mediante la utilización de herramientas como internet, aula virtual y video-foro.

6.3. Escenario de aprendizaje autónomo.

Se fortalecerán las capacidades de análisis, investigación y crítica por medio del planteamiento de posibles soluciones a problemas relacionados con la materia. La capacidad de discusión y discernimiento serán potencializadas mediante lecturas de artículos científicos y material bibliográfico; generación y discusión de resultados derivados de las actividades de campo y de prácticas de laboratorio, y de la elaboración de trabajos, proyectos y presentaciones realizadas bien sea de forma individual o grupal.

7. Temas y subtemas del curso

RdA	Temas	Subtemas
2 Aplicar técnicas de ingeniería para el análisis, interpretación y solución de problemas ambientales.	1. Análisis de contaminantes en matrices ambientales	 Buenas Prácticas de Laboratorio y Bioseguridad. Conceptos generales de Química General (Estequiometría, Soluciones, Equilibrio químico). Normativas Nacionales sobre contaminantes en el ambiente Análisis físicos y físicos instrumentales. Análisis Gravimétricos en matrices ambientales. Análisis Volumétricos en matrices ambientales. Análisis Espectrofotométricos (construcción de curvas de calibración). Análisis espectrofotométricos de compuestos inorgánicos y metales. Demanda Química de Oxígeno. Demanda Bioquímica de Oxígeno. Técnicas Instrumentales avanzadas.
Aplicar la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental - estadístico, resultados, rechazo de hipótesis.	2. Monitoreo ambiental	 2.1 Tipos de muestreo: toma y conservación de muestras. 2.2 Ubicación del muestreo. 2.3 Cadena de custodia. 2.4 Diseño de planes de monitoreo ambiental.
6 Analizar procesos naturales y antropogénicos: transporte, monitoreo, control y tratamiento de las matrices ambientales.	Evaluación de las características físico-químicas de matrices ambientales contaminadas	3.1 Principales efectos de los contaminantes en las matrices ambientales 3.2 Contaminación atmosférica. Leyes de gases. 3.3 Contaminación Acústica. Valoración de Ruido.

8. Planificación secuencial del curso

Semana 1-6							
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega		
2	Análisis de contaminantes en matrices ambientales	1.1 Buenas Prácticas de Laboratorio y Bioseguridad. 1.2 Conceptos generales de Química General (Nomenclatura,	Generalidades, buenas prácticas de laboratorio. Conceptos generales de química Identificación	Consulta: Normativa Ambiental Ecuatoriana. TULSMA y RAOH. Taller de ejercicios (aula virtual)	Ensayo y Control. Normativas (Rúbrica para ensayos) Entrega Taller de		

	1				Т	T
			Estequiometría,	materiales de	Nomenclatura y	ejercicios
			soluciones).	laboratorio	formulación	(Rúbrica de ejercicios)
		1.3	Normativas Nacional	(1) Clase Magistral y		
			sobre contaminantes	laboratorio	Taller de ejercicios	Control Materiales de
			en el ambiente		(aula virtual)	laboratorio
		1.4	Análisis físicos y físicos	Normativas	Estequiometría	
			instrumentales.	Nacionales		Informe de
		1.5	Análisis Gravimétricos	Concentraciones.	Taller de ejercicios	Laboratorio
			en matrices	Preparación de	(aula virtual)	Soluciones
			ambientales.	soluciones	Soluciones	(Rúbrica para
				(1) Clase Magistral y		Informes.)
				laboratorio	Consulta: Análisis gravimétricos	7 días después de la práctica.
				Análisis Físicos,		
				Físicos		
				instrumentales.		Ensayo y Control.
				Reacciones,		Análisis gravimétricos
				equilibrio químico		(Rúbrica para
				(1) Clase Magistral		ensayos)
				Análisis Gravimétricos		Informe de
				Reacciones,		Laboratorio
				equilibrio químico		Gravimetría
				(1) Clase Magistral		(Rúbrica para Informes.)
				Determinaciones		7 días después de la
				Gravimétricas		práctica.
				(1) Clase Magistral y		
				laboratorio		
				Prueba Progreso 1		
Seman	 as 7-14					
		1.6	Análisis Volumétricos	Análisis Volumétricos		Informe de
			en matrices	(1) Clase Magistral y		Laboratorio
			ambientales.	laboratorio		Volumetría
						(Rúbrica para
					Consulta: Análisis	Informes.)
		1.7	Análisis	Espectrofotometría	espectrofotométricos	7 días después de la
			Espectrofotométricos	Ley de Lambert Beer		práctica.
			(construcción de	Determinaciones	Consulta: DBO y DQO	
			curvas de calibración).	Volumétricas		
		1.8	Análisis	(1) Clase Magistral y	Taller de ejercicios	
			espectrofotométricos	laboratorio	Taller de ejercicios	Ensayo y Control.
			de compuestos		(aula virtual) cinética	Análisis
2			inorgánicos y metales.	Espectrofotometría		espectrofotométricos
		1.9	Demanda Química de	Elaboración de	Lecturas: Tipos de	(Rúbrica para
			Oxígeno.	curvas de	muestreo y	ensayos)
		1.10	Demanda Bioquímica	calibración.	conservación de	
	2. Monitoreo		de oxígeno.	Determinaciones	muestras.	Informe de
	ambiental		Técnicas	Espectrofotométricas		Laboratorio
			Instrumentales	(1) Clase Magistral y	Lectura:	Espectrofotometría
			avanzadas.	laboratorio	Estructura de los	(Rúbrica para
		2.1	Tipos de muestreo:		planes de monitoreo	Informes.)
			Toma y conservación	200 200	ambiental.	7 días después de la
			de muestras.	DBO y DQO	Tallan I I I I	práctica.
		2.2	Ubicación del	Determinación de la	Taller de ejercicios	
	i .	1	muestreo.	DBO y DQO	(aula virtual)	1

	1	T = =	0 1 1 1	[(a) a) [
		2.3	Cadena de custodio.	(1) Clase Magistral y	equilibrio	Ensayo y Control.
		2.4	Diseño de planes de	laboratorio		DBO y DQO
			monitoreo ambiental.			
				Prueba Control		Informe de
				_, .		Laboratorio DBO y
				Técnicas		DQO
				Instrumentales		(Rúbrica para
				Avanzadas.		Informes.)
				(1) Clase Magistral		7 días después de la
						práctica.
				Toma y conservación		
				de muestras		Ensayo y control
				Diseño de planes de		Tipos de Muestreo
				monitoreo. Trabajo en		
				grupo.		Informe de Campo
				(1) Clase Magistral		(Rúbrica para
						Informes.)
				Interpretación de		7 días después de la
				datos de laboratorio		práctica.
				en función de		
				Normativas		Ensayo y control
				(1) Laboratorio		Elaboración de Planes
						de monitoreo.
				Salida de Campo.		
				Toma de muestras,		Control
				cadena de custodia y		Interpretación Casos
				check list.		de estudios
				Caracterización		
				general en campo y		
				(1) Laboratorio.		
				(=/ =0.001.0101101		
				(1) Interpretación		
				Casos de estudios		
				Casos ac estadios		
				Prueba Progreso 2		
Saman	a 15-16			114654110616502		
Seman	a 12-10	1				
				Efectos		
				contaminantes en las		
				matrices ambientales		
				(1) Clase Magistral.		
				Análisis de gases de		
		3.4	Principales efectos de	combustión y material		
			los contaminantes en	particulado		
	3. Evaluación de		las matrices	(1) Laboratorio		
	las		ambientales		Lecturas:	Exposición y
	características	3.5	Contaminación	Contaminación	Mecanismos de	Presentación Trabajos
	físico-químicas	3.5	atmosférica. Leyes de	Atmosférica. Leyes de	transporte y	Finales.
6	de matrices			gases	acumulación de	(Rúbrica de
	ambientales	3.6	gases. Contaminación	(1) Clase Magistral	contaminantes.	exposiciones)
	contaminadas	3.0	Acústica. Valoración de			
	Contaminadas		Ruido.	Análisis y medición de		
			Nuluu.	ruido		
				(1) Laboratorio		
				Presentación		
				exposiciones.		
				(1) y (2)		
				Trabajo en grupo		
				Prueba Progreso 3		
L	L	1				l .

9. Normas y procedimientos para el aula

- La clase iniciará a la hora indicada, se permitirá el ingreso de los estudiantes hasta con 5 minutos de retraso, tiempo durante el cual se tomará asistencia. Cerrada la puerta no se permitirá el ingreso.
- Se permitirá únicamente el uso de dispositivos electrónicos solo por motivos didácticos, durante la hora de clase. Durante pruebas y exámenes queda prohibido el uso de dispositivos electrónicos.
- Los trabajos, deberes y pruebas deben ser entregados en las fechas indicadas, en caso de retraso se calificará por la mitad del puntaje del mismo, siempre que sea entregado a más tardar el día siguiente y con la justificación respectiva.
- Si el estudiante no asiste a la práctica de laboratorio o a la salida de campo no podrá presentar el informe.
- En las prácticas de laboratorio y en las salidas de campo el estudiante debe utilizar el uniforme adecuado y cumplir con las normas de seguridad establecidas por el docente.

10. Referencias bibliográficas

10.1. Principales.

Chang, R. (2010). Química. México: McGraw-Hill.

Romero J. (2005). Potabilización. Colombia: Escuela Colombiana de Ingeniería.

Romero J. (2009). Calidad del Agua. Colombia: Escuela Colombiana de Ingeniería.

10.2. Referencias complementarias.

Brown y otros (2014) Química la ciencia central. México: Pearson.

Petrucci y otros (2011) Química General. España: Pearson

Sterner, O. (2010). *Chemistry, health, and environment*. Weinheim Wiley Sons.

11. Perfil de los docentes

Ing. Francisco Javier Domínguez Rodríguez. Ingeniero Químico. Máster en Ingeniería Química. Doctor en Ingeniería Química con Mención en Superficies y Catálisis. Experiencia en el campo docente en el área de Fisicoquímica y Termodinámica del Equilibrio de Fases, así como también en Balance de Materiales y Energía y Laboratorio de análisis, monitoreo y medición ambiental. Amplia experiencia de laboratorio en la preparación, caracterización y evaluación de sistemas catalíticos utilizados en la industria química y petroquímica. Líneas de investigación enfocadas a la Ingeniería Ambiental.

Tutorías

Lunes: 15:40 - 16:40

Contacto: francisco.dominguez@udlanet.ec

Ing. Javier Álava Castelo. Ingeniero Químico por la Universidad de Guayaquil, Docente de Química General I y II, Operaciones Unitarias, Laboratorio de Física, Universidad de Las Américas, Lab 500, Mecánica de Fluidos, Tutor de Ciencias Básicas y Técnico de Laboratorio.

Tutorías A convenir

Contacto: jm.alava@udlanet.ec