1 Filtro pasabajos pasivo

Funcion transferencia filtro pasabajos RC:

$$H(s) = \frac{\frac{1}{sC}}{\frac{1}{sC} + R} = \frac{1}{sCR + 1} = \frac{1}{\frac{\frac{s}{1}}{\frac{1}{RC}} + 1}$$

$$\underline{/H(s)} = \underline{/\frac{1}{sCR+1}} = -arctg(2\pi fRC) \tag{1}$$

$$|H(s)| = \left| \frac{1}{sCR + 1} \right| = \frac{1}{\sqrt{(2\pi fRC)^2 + 1}}$$
 (2)

con la frecuencia de corte $f_0=\frac{1}{2\pi RC}$. Seleccionamos $R=500\Omega$ y C=4,7nF con lo que obtenemos $f_0=\frac{1}{2\pi\cdot 4.7nF\cdot 500\Omega}=67.7KHz$ y un tiempo característico $\tau=2.35\mu s$.

La tensión ${\cal V}_{\cal C}$ en un circuito RC en respuesta a un escalón es

$$V_C = V_g(1 - e^{-\frac{t}{RC}})$$

siendo V_g la altura del escalón.

Función transferencia integrador

La función transferencia de un integrador es

$$H(s) = \frac{1}{s}$$

1.1 ANALISIS ESPECTRAL

Figure 1: Espectro de señal de entrada (cuadrada 32KHz, $10V_{pp}$ sin valor medio)

La señal cuadrada de $5V_{pp}$ de frecuencia $f_0=32KHz$ puede definirse por su desarrolo en serie de Fourier como

$$5V \cdot \sum \frac{4}{n\pi} sen(2\pi n f_0 t), \ n > 0, \ impar$$
 (3)

A cada n le corresponde un armónico de la señal de entrada X_n tal que

$$|X_n| = \frac{20}{n\pi} V, \underline{/X_n} = 0^{\circ} \tag{4}$$

Combinando con la ganancia y el desfasaje de la H(s) (ecuaciones 2 y 1), se obtienen el módulo y la fase de los armónicos Y_n de la tensión de salida V_C :

Se puede comprobar gráficamente que la fase y el módulo de X_n y de Y_n son los correctos graficando $\sum |X_n| \cdot sen(2\pi n f_0 t + \underline{/X_n})$ y $\sum |Y_n| \cdot sen(2\pi n f_0 t + \underline{/Y_n})$. Se muestra la suma de los armónicos antes y después de ser modificados por el filtro hasta el término 1000:

Figure 2: Sumatoria de armónicos de entrada (hasta 1000 terminos)

Figure 3: Sumatoria de armonicos de salida (hasta 1000 terminos)

1.2 SIMULACIONES Y MEDICIONES

Figure 4: Respuesta en frecuencia del filtro

Entrada a 32KHz:

Figure 5: Simulación respuesta del filtro RC a $32\mathrm{KHz}$

Figure 6: Medición respuesta del filtro RC a 32KHz

La señal de entrada no es perfectamente cuadrada. Esto se debe a que la resistencia elegida (500Ω) es comparable con la resistencia interna del generador (50Ω) . Por ley de mallas de Kirchhoff, en un circuito RC serie ideal la tensión en la resistencia es $V_R = V_g - V_C$. En el caso real, la resistencia puede modelarse como la combinación en serie de la resistencia interna del generador r_i y la resistencia del filtro R, resultando en que la tensión en la resistencia interna durante la carga sea

$$V_{ri} = V_R \frac{r_i}{R + ri} = (5V - V_C) \cdot 0.09$$

y que la tensión real de entrada al filtro V_{in} durante la carga sea

$$V_{in} = 5V - V_{ri} = 0.91 \cdot 5V + 0.09 \cdot V_C$$

Cuando $V_c \approx V_g (=5V)$, $V_{in} \approx 5V$ Dado que el tiempo de carga (mitad del período) es mayor que 5τ , (15.625 μs y 11.75 μs respectivamente), después de 5τ se observa que $V_C \approx 5V$.

El análisis para la descarga es análogo.

Entrada a 32KHz:

Figure 7: Simulación respuesta del filtro RC a 640KHz

Figure 8: Medición respuesta del filtro RC a $32 \mathrm{KHz}$

Como el tiempo de carga o de descarga es considerablemente menor que el tiempo característico τ , ni la tensión del capacitor ni la tensión de salida del generador llega a su valor en permanente (+5V o -5V). También por el mismo motivo la tensión del capacitor varia linealmente con una pendiente $\frac{V_{max}}{\tau}$ (figura 9).

Figure 9: Aproximación lineal de la carga del capacitor para $t << \tau$

1.3 USO COMO INTEGRADOR

La funcion de transferencia de este circuito no corresponde con la de un integrador, ya que tiene un polo en el semiplano negativo y no en el origen. Sin embargo, para frecuencias mucho mayores a f_0 su comportamiento tiende al de un integrador que además divide por τ :

$$f \gg \frac{1}{RC} \Rightarrow 2\pi fRC \gg 1 \Rightarrow H(s) = \frac{1}{sRC+1} \approx \frac{1}{RC} \cdot \frac{1}{s}$$

Esto coincide con el caso particular del filtro a 640KHz, en donde la salida tiene pendiente $\pm \frac{5V}{\tau}$ (dependiendo de si $V_g = \pm 5V$), con $\tau = 0.78\mu s$. Por el contrario, en el caso en que $f = 32KHz < \frac{1}{RC}$, la respuesta ya no puede aproximarse a una triangular y deja de ser una representación cercana de la integral de la entrada.

Por último, por más que se cumpla la desigualdad ya mencionada, el filtro solo puede usarse como integrador de funciones con valor medio cero. En caso contrario, no se trataria de un sistema estable.