Conceptual approach to Fontaine's period rings

Daniel Miller

August 7, 2016

1 Brief overview

The ideas here are inspired by [Fon94] and [Sch12]. Fix a ring Λ , an ideal $\mathfrak{p} \subset \Lambda$, and a Λ -algebra V. The category $\mathcal{T}^{\leq m}(\mathfrak{p}) = \mathcal{T}^{\leq m}_{\Lambda}(V,\mathfrak{p})$ of \mathfrak{p} -adic pro-infinitesimal Λ -thickenings of V of order $\leq m$ consists of pairs (D,θ) , where D is a \mathfrak{p} -adically complete Λ -algebra, $\theta:D\to V$ is a surjection, and moreover $(\ker\theta)^{m+1}=0$. The category $\mathcal{T}^{\infty}(\mathfrak{p})$ of \mathfrak{p} -adic pro-infinitesimal Λ -thickenings of V consists of similar pairs, except that now we require D to be separated and complete with respect to $I_D = \ker(\theta)$.

Theorem 1. Let $\mathfrak{p}=(p)$, and suppose V is p-adically complete and $\mathrm{fr}:V/p\to V/p$ is surjective. Then $\mathcal{T}^{\infty}(p)$ has an initial object $\mathbf{A}_{\mathrm{inf}}(V/\Lambda)$.

Proof. One constructs \mathbf{A}_{inf} directly. Start by putting $V^{\flat} = \varprojlim_{\text{fr}} V/p$. Our assumptions on V make the map $(-)^{\sharp}: V^{\flat} \to V$ given by

$$x^{\sharp} = \lim_{n \to \infty} \widetilde{x_n}^{p^n}$$

a well-defined multiplicative map. It induces a ring map $\theta:W(V^{\flat})\to V$ by $[x]\mapsto x^{\sharp}$. The ring $\mathbf{A}_{\inf}(V/\Lambda)$ is the completion of $W(V^{\flat})_{\Lambda}$ with respect to $\ker(\theta:W(V^{\flat})_{\Lambda}\to V)$. The basic idea is: suppose we have $\theta:D\twoheadrightarrow V$. Define $(-)^{\sharp}:V^{\flat}\to D$ just as above; this is multiplicative, and induces a unique $\theta:W(V^{\flat})_{\Lambda}\to D$, which in turn factors uniquely through its completion $\mathbf{A}_{\inf}(V/\Lambda)$.

The ring $\mathbf{B}_{\mathrm{dR}}^+(V/\Lambda)$ is the completion of $\mathbf{A}_{\mathrm{inf}}(V/\Lambda)[\frac{1}{p}]$ with respect to $\ker(\theta)$.

$$\log[\cdot]: U^\times \to \mathbf{B}_{\mathrm{dR}}$$

The category pf consists of \mathbf{F}_p -algebras A such that fr: $R \to R$ is surjective. The category Pf consists of p-adically separated and complete rings A such that $A/p \in \mathsf{pf}$. There are functors $-\otimes \mathbf{F}_p$: $\mathsf{Pf} \to \mathsf{pf}$ and $W(-): \mathsf{pf} \to \mathsf{Pf}$. Note that $(W, \otimes \mathbf{F}_p)$ is an adjoint pair.

$$Pf \xrightarrow{W} pf$$

If $\mathbf{B}_{\mathrm{cris}}(V/\Lambda)$ is a divided power envelope, then its universal property should give a map $\mathbf{B}_{\mathrm{cris}} \to \mathbf{B}_{\mathrm{dR}}$. The trickier ring is \mathbf{B}_{st} . Also note that

$$\operatorname{gr}^{\bullet} \mathbf{B}_{\mathrm{dR}} = \mathbf{B}_{\mathrm{HT}}.$$

2 Some categories and functors

Let A be a reduced \mathbf{F}_p -algebra. Then $\operatorname{fr}: A \to A$ is injective, so $\varprojlim_{\operatorname{fr}} A = \bigcap \operatorname{fr}^n(A)$. This motivates our general definition of $\operatorname{fr}^{\infty}(A) = \varprojlim_{\operatorname{fr}} A$. The ring $\operatorname{fr}^{\infty}(A)$ is an " \mathbf{F}_p -algebra with splitting." That is, it comes with a canonical section $(-)^{1/p}: (a_0, a_1, \ldots) \mapsto (a_1, \ldots)$ of Frobenius. Let pf denote the category of such

algebras. That is, an object of pf is a pair $(A,(-)^{1/p})$, where A is an \mathbf{F}_p -algebra and $(-)^{1/p}:A\to A$ is a section of $\mathrm{fr}:A\to A$. So fr^∞ is a functor $\mathrm{Alg}(\mathbf{F}_p)\to\mathrm{pf}$. In fact, one can easily check that

$$\hom_{\mathsf{Alg}(\mathbf{F}_p)}(A, B) = \hom_{\mathsf{pf}}((A, (-)^{1/p}), \operatorname{fr}^{\infty} B),$$

i.e. fr^{∞} is right-adjoint to the forgetful functor $pf \to Alg(\mathbf{F}_p)$.

Let $\mathsf{Alg}(p)$ be the category of p-adically complete algebras, and let Pf be the full subcategory mapping onto $\mathsf{pf} \subset \mathsf{Alg}(\mathbf{F}_p)$. There is the obvious functor $\otimes \mathbf{F}_p : \mathsf{Pf} \to \mathsf{pf}$. Moreover, there is a functor "take Witt vectors" $W : \mathsf{pf} \to \mathsf{Pf}$ that satisfies

$$\hom_{\mathsf{Pf}}(W(A),B) = \hom_{\mathsf{pf}}(A,B/p).$$

3 A bestiary of period rings

Call a quasi-perfectoid ring a commutative p-adic Banach algebra A such that fr: $A^{\circ}/p \to A^{\circ}/p$ is surjective. For the remainder, let A be a quasi-perfectoid ring. We agree that \mathbf{A}_* will take values in \mathbf{Z}_p -algebras, while \mathbf{B}_* will take values in \mathbf{Q}_p -algebras. In fact, when both are defined, $\mathbf{B}_* = \mathbf{A}_*[\frac{1}{p}]$. For simplicity, we assume p is odd.

$3.1 \quad A_{inf}$

The ring $\mathbf{A}_{\inf}(A)$ is the "universal p-adic pro-infinitesimal formal thickening of A° ." That is, it has a surjective ring map $\theta: \mathbf{A}_{\inf}(A) \to A^{\circ}$ for which $\mathbf{A}_{\inf}(A)$ is complete with respect to $\ker(\theta)$. Explicitly,

$$\mathbf{A}_{\inf}(A) = W(\operatorname{fr}^{\infty} A^{\circ}/p),$$

and $\theta([a]) = a^{\sharp}$. Note that $\mathbf{A}_{\inf}(A)$ has a natural filtration in which $\operatorname{fil}^r \mathbf{A}_{\inf} = (\ker \theta)^r$.

3.2 B_{inf}

This is just $\mathbf{B}_{\inf}(A) = \mathbf{A}_{\inf}(A)[\frac{1}{p}]$. Note that $\theta : \mathbf{A}_{\inf}(A) \to A^{\circ}$ extends uniquely to $\theta : \mathbf{B}_{\inf}(A) \to A$, so $\mathbf{B}_{\inf}(A) \to A$ inherits the filtration from \mathbf{A}_{\inf} .

3.3 U[×]

We define two subgroups of $\operatorname{fr}^{\infty}(A^{\circ}/p)$:

$$U^{1}(A) = \{ x \in \text{fr}^{\infty}(A^{\circ}/p) : x^{\sharp} \equiv 1 \pmod{p} \}$$

$$U^{\times}(A) = \{ x \in \text{fr}^{\infty}(A^{\circ}/p) : |x^{\sharp} - 1| < 1 \}.$$

Clearly $U^1 \subset U^{\times}$. Note that a better-motivated definition would be $U^1(A) = \{a \in A : |a-1| < \frac{1}{p}\}$. The logarithm function

$$\log(a) = \sum_{n \ge 1} (-1)^{n+1} \frac{(a-1)^n}{n}$$

is easily checked to converge, so it gives a continuous homomorphism (with this definition of U^1) $U^1(A) \to A$.

$3.4 \quad B_{\mathrm{dR}}$

First we define $\mathbf{B}_{\mathrm{dR}}^+(A)$ to be the completion of $\mathbf{B}_{\mathrm{inf}}(A)$ with respect to $\ker(\theta)$. There is a continuous homomorphism $\log[\cdot]: \mathrm{U}^\times \to \mathbf{B}_{\mathrm{dR}}^+$. The ring \mathbf{B}_{dR} should be an appropriate localization of $\mathbf{B}_{\mathrm{dR}}^+$.

3.5 $B_{\rm HT}$

We set $\mathbf{B}_{\mathrm{HT}}^+ = \mathrm{gr}^{\geqslant 0} \mathbf{B}_{\mathrm{dR}}$, and $\mathbf{B}_{\mathrm{HT}} = \mathrm{gr}^{\bullet} \mathbf{B}_{\mathrm{dR}}$. Hopefully, $\mathbf{B}_{\mathrm{HT}}(A) = \bigoplus_{n \in \mathbf{Z}} \mathrm{U}^{\times}(A)^{\otimes n}$. But this only works if $\dim_{\mathbf{Q}_n} \mathrm{U}^{\times}(A) = 1$. Indeed, we needed that to define $\langle \xi \rangle = \mathrm{gr}^1 \mathbf{B}_{\mathrm{dR}}$ anyways.

3.6 B_{cris}

Let $\mathbf{A}_{\mathrm{cris}}(A)$ be the universal p-adically complete formal divided-power thickening of A° , and $\mathbf{B}_{\mathrm{cris}}(A) = \mathbf{A}_{\mathrm{cris}}(A)[\frac{1}{p}]$. By definition, there is a map $\theta : \mathbf{A}_{\mathrm{cris}}(A) \to A^{\circ}$ inducing $\theta : \mathbf{B}_{\mathrm{cris}}(A) \to A$. Moreover, we get a natural map (injective if A is a field) $\mathbf{B}_{\mathrm{cris}}(A) \to \mathbf{B}_{\mathrm{dR}}(A)$. Moreover, the map $\log[\cdot] : \mathbf{U}^{\times} \to \mathbf{B}_{\mathrm{dR}}$ factors through $\log[\cdot] : \mathbf{U}^{\times} \to \mathbf{B}_{\mathrm{cris}}$.

$3.7 \quad \mathbf{B}_{\mathrm{st}}$

Let $\mathbf{B}_{\mathrm{st}}^+(A)$ be the initial object among $\mathbf{B}_{\mathrm{cris}}^+(A)$ -algebras S together with $\lambda: \mathrm{frac}(\mathrm{fr}^\infty A^\circ/p)^\times \to S$ extending $\log[\cdot]: \mathrm{U}^\times(A) \to S$. One has

$$\mathbf{B}_{\mathrm{st}}^{+} = \mathrm{Sym}^{\bullet}(\mathrm{frac}(\mathrm{fr}^{\infty}A^{\circ}/p)^{\times}) \otimes_{\mathrm{Sym}^{\bullet}((\mathrm{fr}^{\infty}A^{\circ}/p)^{\times})} \mathbf{B}_{\mathrm{cris}}^{+}(A).$$

Again, if A is a field, then $\operatorname{frac}(\operatorname{fr}^{\infty}A^{\circ}/p)^{\times}/\operatorname{fr}^{\infty}(A^{\circ}/p)^{\times} = A^{\flat \times}/A^{\flat \circ \times}$ is a one-dimensional \mathbf{Q}_p -vector space, so we have a (non-canonical) isomorphism $\mathbf{B}_{\operatorname{st}}^+ = \mathbf{B}_{\operatorname{cris}}[X]$. Finally, $\mathbf{B}_{\operatorname{st}} = \mathbf{B}_{\operatorname{st}}^+ \otimes_{\mathbf{B}_{\operatorname{cris}}^+} \mathbf{B}_{\operatorname{cris}}$.

References

[Fon94] Jean-Marc Fontaine. Le corps des périodes p-adiques. Astérisque, (223):59–111, 1994.

[Sch12] Peter Scholze. Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci., 116:245–313, 2012.