

Système de contrôle d'arrosage intelligent développé en PYTHON

Réaliser par : Rihab BEN AMOR SOUISSI

Classe: 2éme année IOT_A

Groupe: 1

Travaux pratiques: PYTHON

-Année universitaire: 2021/2022-

Cahier des charges

Contexte et présentation du projet :

Développement d'un système de contrôle d'arrosage intelligent intitulé « **Smart Irrigation System** » à l'aide du logiciel python. Ce système peut être contrôlé à distance avec un ordinateur, un téléphone intelligent ou une tablette

Objectif du projet :

L'objectif de ce système est de :

- Intégrer l'Internet des objets (IOT) dans le domaine d'agriculture, qui est un domaine très utilisé de nos jours, pour améliorer son efficacité.
- Faciliter l'arrosage des plantes (Gérer à distance)
- Apporter la bonne quantité d'eau au bon endroit et au bon moment.
- Economiser l'eau.

Besoins et contrainte liés au projet

Besoin Matériels:

- Carte Arduino Uno
- Module WIFI ESP
- Capteur d'humidité de sol
- Moteur

Besoin Logiciel:

- Le développement de ce projet en langage python.

Figure : Schéma complet du système.

Partie 1:

Pour commander l'irrigation, mon système de contrôle d'arrosage intelligent « **Smart Irrigation System** » permet de traiter les étapes suivantes :

- **1ér Étape :** Développer un programme à l'aide du langage PYTHON qui permet de réaliser toutes les étapes nécessaires pour le bon fonctionnement du système.
- **2éme Étape :** Téléverser ce programme dans une carte Arduino UNO qui va gérer le fonctionnement du système (Recevoir des données et envoyer des commandes).
- **3éme Etape :** Suivre les fluctuations précises de l'humidité de la terre à l'aide d'un capteur d'humidité du sol (en le plantant verticalement dans la terre). Ce dernier va envoyer un signal analogique (la valeur d'humidité du sol) vers la carte Arduino.

- **4éme Etape :** Lecture de cette valeur d'humidité par l'Arduino et selon cette valeur il y'a deux possibilités :
 - ✓ **Possibilité 1 :** Si cette valeur en pourcentage est inférieure à 50% (sol sec) : Démarrer un moteur pour l'irrigation.
 - ✓ **Possibilité 2 :** Si cette valeur en pourcentage est supérieure à 50% (sol humide) : Arrêter le moteur (Arrêter de l'irrigation).
- **5éme Étape :** Envoyer une commande d'arrêt ou de démarrage du moteur par la carte Arduino (selon l'une des deux dernières possibilités).

Partie 2:

Dans cette partie, je vais assurer la connexion à distance entre mon système et l'utilisateur à l'aide d'un module ESP qui va récupérer les données nécessaires sur l'état du système et qui va les envoyer vers un site WEB (que je vais le développer).

Résultats attendus

Faire fonctionner la première partie du système de contrôle d'arrosage intelligent à l'aide d'un programme développé par le langage python.