期末复习

多元随机变量

知识点

略,详见相关Slides

题目

设 X_1,\ldots,X_n 为分别来自来自指数分布 $\operatorname{Exp}(\theta_1),\operatorname{Exp}(\theta_2),\ldots,\operatorname{Exp}(\theta_n)$ 的独立随机变量,求

$$Y=\max\{rac{a_1}{X_1},rac{a_2}{X_2},\ldots,rac{a_n}{X_n}\},\quad
ot \exists \pitchfork\ a_1,\ldots,a_n>0$$

的密度函数

大数定理 & Chernoff

知识点

- 尾不等式
 - - $P(X \ge E(X) + k) \le e^{-\frac{2k^2}{n(b-a)^2}}$
 - ► $P(X \le E(X) k) \le e^{-\frac{2k^2}{n(b-a)^2}}$
- 大数定律
 - 。 马尔可夫大数定律
 - ▶ **马尔可夫大数定律**: 若 $\frac{1}{n^2}$ Var $(\sum_{i=1}^n X_i) \to 0$, 则 $\{X_n\}$ 服从大数定律
 - 。 辛钦大数定律

辛钦大数定律: $\{X_n\}$ 独立同分布,且数学期望 $\mu = E(X_i)$ 存在,则 $\{X_n\}$ 服从大数定律

题目

重要性抽样在计算分布某些特征时非常有用。设随机变量 X 的分布为 f,但从该分布 f 直接模拟比较困难。于是,我们从另一分布 g(易于模拟)生成独立同分布样本 Y_1,Y_2,\ldots,Y_m ,对任意给定函数 h,计算下式的平均:

$$\frac{1}{m}\sum_{i=1}^{m}\frac{f(Y_i)}{g(Y_i)}h(Y_i).$$

我们假设 f 和 g 拥有相同的支撑集,且 $\mathrm{Var}[h(X)]<\infty$

1. 证明

$$\mathbb{E}\Big[rac{1}{m}\sum_{i=1}^{m}rac{f(Y_i)}{g(Y_i)}h(Y_i)\Big]=\mathbb{E}_fig[h(X)ig].$$

2. 假设 $rac{f(Y_i)}{g(Y_i)}h(Y_i)\in [a,b]$,用Chernoff不等式证明

$$rac{1}{m}\sum_{i=1}^mrac{f(Y_i)}{g(Y_i)}h(Y_i)\stackrel{p}{
ightarrow}\mathbb{E}_fig[h(X)ig].$$

3. 证明

 $rac{1}{m}\sum_{i=1}^mrac{f(Y_i)}{g(Y_i)}h(Y_i)\stackrel{p}{
ightarrow}\mathbb{E}_fig[h(X)ig].$

估计

知识点

最大似然

矩估计

无偏估计量、渐进无偏估计量、一致估计量

题目

- 1. 设 X_1,\ldots,X_n 为来自对数正态分布 $\operatorname{Lognormal}(\theta,\sigma^2)$ 的独立同分布随机变量,求 θ 的最大似 然估计量
- 2. 设 X_1,\ldots,X_n 为来自反伽马分布的独立同分布随机变量,其密度可写为

$$f(x \mid \theta) = \theta x^{-2} \exp(-\theta/x), x > 0$$

求 θ 的最大似然估计量

3. 设 X_1,\ldots,X_n 为来自一个单参数指数族的独立同分布随机变量,其密度可写为

$$f(x|\theta) = \exp\{\theta h(x) - H(\theta)\}g(x),$$

其中 h = H' 且 h 为单调递增函数。求 θ 的最大似然估计量

假设检验

知识点

第一步: 建立假设

- ▶ **原假设** H_0 : 不应轻易拒绝的假设
 - 例:新的策略没有效果;网络设备没有异常
- ▶ **备择假设**H₁:与原假设 H₀对立的假设
- $H_0: \theta \le 110, H_1: \theta > 110$

第二步:选择统计量,给出拒绝域的形式将样本取值 $x_1, x_2, ..., x_n$ 分为两个区域W和 \overline{W}

- ▶ 若 $(x_1, x_2, ..., x_n) \in W$, 拒绝原假设 H_0
- ▶ 若 $(x_1, x_2, ..., x_n) \in \overline{W}$,接受原假设,也即拒绝备择假设 H_1

W: 拒绝域, \overline{W} : 接受域

通常根据统计量的取值的设计拒绝域

第三步:选择显著性水平α,给出拒绝域

 $H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1$

若检验对于任意 $\theta \in \Theta_0$,都有 $\alpha(\theta) \leq \alpha$,称该检验**显著性水平**为 α

- ▶ 也即,控制第一类错误的概率不超过*α*,再尽量减少第二类错误的概率
- ▶ Neyman-Pearson原则
- ► 一般取 *α* = 0.05

题目

I. 均匀分布假设检验

线性回归

知识点

线性相关关系

正规方程-最小二乘估计

均方误/方差/协方差

题目

给定 $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$,其中 $y_i=\alpha+\beta\eta_i+\epsilon_i$, ϵ_i 相互独立且 $\epsilon_i\sim N(0,\sigma_\epsilon^2)$,而 $x_i=\eta_i+\delta_i$, δ_i 相互独立且 $\delta_i\sim N(0,\sigma_\delta^2)$,其中 η_i 为未知常量,

a. 求 α , β 的最大似然估计 (提示, 需要先估计 η_i)