Algorithmique Avancée

Antoine Genitrini

Antoine.Genitrini@Sorbonne-Universite.fr

Master Informatique 1

Moodle: **UE** MU4IN500

Année 2022-2023

CHAPITRE 2

FILES DE PRIORITÉ

Files binomiales

- 1. Opérations sur les files de priorité
- 2. Arbres binomiaux : définition et propriétés
- 3. Files binomiales : définition et propriétés
- 4. Union de 2 files binomiales en temps logarithmique
- 5. Autres opérations sur les files binomiales
- 6. Analyse en coût amorti

Opérations sur les files de priorité

Les files de priorité min :

Ensemble d'éléments

- Chaque élément identifié par une clé
- Ordre total sur les clés

Opérations

- Ajouter un élément
- Supprimer l'élément de clé minimale
- Construction
- Union de 2 files de priorité min
- Modification d'une clé

De façon analogue, on peut définir les files de priorité *max*.

Représentations et Efficacité

Nombre de comparaisons dans le pire des cas :

	Liste triée	Tas	File Binomiale
Supp Min (1 élt parmi n)	<i>O</i> (1)	$O(\log n)$	$O(\log n)$
Ajout (1 élt parmi n)	<i>O</i> (<i>n</i>)	$O(\log n)$	$O(\log n)$
Construction (n élts)	$O(n^2)$	<i>O</i> (<i>n</i>)	O(n)
Union (n élts et m élts)	O(n+m)	O(n+m)	$O(\log(n+m))$

Applications des Files de priorité

- Tri par tas (heapsort)
- Sur les graphes
 - plus court chemin à partir d'une source (Dijkstra)
 - plus court chemin entre tous les couples de sommets (Johnson)
 - arbre couvrant minimal (Prim)
- Interclassement de listes triées
- Code de Huffmann (compression)

Arbre binomial – Définition

Pour chaque puissance de 2, il existe une structure d'arbre binomial dont la taille est cette puissance de 2.

Un arbre binomial est une structure ne contenant pas d'information.

Définition par récurrence

- B₀ est l'arbre réduit à un seul nœud,
- Étant donnés 2 arbres binomiaux B_k , on obtient B_{k+1} en faisant de l'un des B_k le premier fils à la racine de l'autre B_k .

Exemples: dessiner B₀, B₁, B₂, B₃, B₄

Arbre binomial – Propriétés

Propriétés de B_k , $(k \ge 0)$

- 1. B_k a 2^k nœuds
- 2. B_k a $(2^k 1)$ arêtes
- 3. B_k a hauteur k
- 4. Le degré à la racine est k
- 5. Le nombre de nœuds à profondeur i est $\binom{k}{i}$
- 6. La forêt reliée à la racine de B_k est

$$< B_{k-1}, B_{k-2}, \ldots, B_1, B_0 >$$

1.
$$n_0 = 1$$
 et $n_k = 2n_{k-1}$

- 2. arbre : n nœuds $\Rightarrow n-1$ arêtes
- 3. $h_0 = 0$ et $h_k = 1 + h_{k-1}$
- 4. $d_0 = 0$ et $d_k = 1 + d_{k-1}$
- 5. $n_{k,0} = 1$, $n_{k,l} = 0$ pour l > k, et $n_{k,i} = n_{k-1,i} + n_{k-1,i-1}$, pour $i = 1, \dots, k$
- 6. propriété de décomposition, par récurrence sur k

File Binomiale

Tournoi Binomial (ou tas binomial)

Un tournoi binomial est un arbre binomial étiqueté croissant (croissance sur tout chemin de la racine aux feuilles)

File Binomiale

Une *file binomiale* est une suite de tournois binomiaux de tailles strictement décroissantes

Exemples:

- $FB_{12} = \langle TB_3, TB_2 \rangle$,
- $FB_7 = < TB_2, TB_1, TB_0 >$

Représentation d'une file binomiale

Une file de binomiale \mathcal{P} de *n* éléments

- si $n = 2^k$, FB_n est un tournoi binomial
- sinon la file binomiale FB_n est une suite de tournois correspondants aux bits égaux à 1 dans la représentation binaire de n.

Représentation binaire de n

$$n = \sum_{i=0}^{\lfloor \log_2 n \rfloor} b_i \cdot 2^i, \quad \text{ avec } \quad b_i \in \{0,1\}, \text{ et } b_{\lfloor \log_2 n \rfloor} = 1$$

Le poids de Hamming de *n* vaut :

 $\nu(n) = \sum_i b_i$: # bits à 1 dans représentation binaire de n.

File binomiale - Propriétes

Propriétés de FB_n

- 1. FB_n a n nœuds
- 2. FB_n a $(n \nu(n))$ arêtes
- 3. Le plus grand arbre de la file est $B_{\lfloor \log_2 n \rfloor}$ (hauteur $\lfloor \log_2 n \rfloor$ et nombre de nœuds $2^{\lfloor \log_2 n \rfloor}$)
- 4. Le nombre d'arbres de la file est $\nu(n)$ (avec $\nu(n) \le 1 + |\log_2 n|$)
- 5. Le minimum de la file est à la racine de l'un des arbres
- 1. $n = \sum_i b_i \cdot 2^i$,
- 2. $n \nu(n) = \sum_{i} b_{i} \cdot (2^{i} 1),$
- 3. $\nu(n) = \sum_{i} b_{i}$

Union de files binomiales (clés ttes distinctes)

1. Union de 2 tournois de tailles différentes :

$$\begin{array}{l} \textit{TB}_k \cup \textit{TB}_{k'}, k > k' \longrightarrow \textit{F}_{2^k + 2^{k'}} = <\textit{TB}_k, \textit{TB}_{k'} > \\ \textit{Exemple}: \textit{TB}_1 \cup \textit{TB}_2 \end{array}$$

- 2. Union de 2 tournois de même taille : $TB_k \cup TB'_k \longrightarrow TB_{k+1}$, avec $rac(TB_{k+1}) = min(rac(TB_k), (rac(TB_{k'})))$ Exemple : $TB_2 \cup TB'_2$
- 3. Union de 2 files binomiales \equiv addition binaire Exemple : $FB_5 \cup FB_7$

Union de deux files

- 1. Interclasser les 2 files en partant des tournois de degré minimum
- 2. Lorsque 2 tournois de la même taille k, on engendre un tournoi de taille k+1
- 3. À chaque étape au plus 3 tournois de même taille sont à fusionner (1 dans chacune des files + 1 retenue de la fusion à l'étape précédente)
- 4. Lorsque 3 tournois de la même taille k, on en retient 2 pour engendrer un tournoi de taille k + 1, et l'on garde le troisième comme tournoi de taille k.

```
def EstVide(T):
         """TournoiB -> booleen
            Renvoie vrai ssi le tournoi est vide."""
def Degre(T):
            TournoiB -> entier
            Renvoie le degre de la racine du tournoi."""
def Union2Tid(T1. T2):
        """TournoiB * TournoiB -> TournoiB
            Renvoie l'union de 2 tournois de meme taille """
def Decapite(T):
           "TournoiB -> FileB
            Renvoie la file binomiale obtenue en supprimant la racine
            du tournoi T_k \rightarrow \{T_{k-1}, T_{k-2}, \dots, T_{1}, T_{0}, \dots \}
def File(T):
         """TournoiB -> FileB
            Renvoie la file binomiale reduite au tournoi
            T_k \rightarrow \langle T_k \rangle.
```

Primitives sur les files binomiales

```
def EstVide(F):
        """FileB -> booleen
           Renvoie vrai ssi la file est vide """
def MinDeg(F):
        """FileB -> TournoiB
           Renvoie le tournoi de degre minimal dans la file."""
def Reste(F):
        """FileB -> FileB
           Renvoie la file privee de son tournoi de degre minimal."""
def AjoutMin(T, F):
    """Tournoi * FileB -> FileB
           Hypothese : le tournoi est de degre inferieur au MinDeg de la file
           Renvoie la file obtenue en ajoutant le tournoi comme
           tournoi de degre minimal de la file initiale."""
```

Algorithme d'Union

```
def UnionFile(F1, F2):
        """FileB * FileB -> FileB
           Renvoie la file binomiale union des deux files F1 et F2."""
        return UFret(F1, F2, vide)
def UFret(F1, F2, T):
        """FileB * FileB * TournoiB-> FileB
           Renvoie la file binomiale union de deux files et d'un tournoi """
        if EstVide(T): #pas de tournoi en retenue
                if EstVide(F1):
                         return F2
                if EstVide(F2):
                         return F1
                T1 = MinDeg(F1)
                T2 = MinDeg(F2)
                if Degre(T1) < Degre(T2):</pre>
                         return AjoutMin(T1, UnionFile(Reste(F1), F2))
                if Degre(T2) < Degre(T1):</pre>
                         return AjoutMin(T2. UnionFile(Reste(F2), F1))
                if Degre(T1) == Degre(T2):
                         return UFret(Reste(F1), Reste(F2), Union2Tid(T1,T2))
                 . . .
```

Algorithme d'Union

```
else:
        #T tournoi en retenue
        if EstVide(F1):
                return UnionFile(File(T), F2)
        if EstVide(F2):
                return UnionFile(File(T), F1)
        T1 = MinDeg(F1)
        T2 = MinDeg(F2)
        if Degre(T) < Degre(T1) and Degre(T) < Degre(T2):</pre>
                return AjoutMin(T. UnionFile(F1, F2))
        if Degre(T) == Degre(T1) and Degre(T) == Degre(T2):
                return AjoutMin(T, UFret(Reste(F1), Reste(F2), Union2Tid(T1, T2)))
        if Degre(T) == Degre(T1) and Degre(T) < Degre(T2):</pre>
                return UFret(Reste(F1), F2, Union2Tid(T1, T))
        if Degre(T) == Degre(T2) and Degre(T) < Degre(T1):</pre>
                return UFret (Reste(F2), F1, Union2Tid(T2, T))
```

Analyse de complexité

Union de 2 files binomiales FB_n et FB_m en $O(\log_2(n+m))$

- Critère de complexité : nombre de comparaisons entre clés
- Complexité dans le pire des cas
- Hypothèse : toutes les primitives ont une complexité en O(1)
- Idée :
 L'union de 2 tournois de même taille nécessite 1 comparaison entre clés et ajoute 1 arête dans la file résultat.
- Conséquence : Le nombre de comparaisons pour faire l'union de 2 files c'est le nombre d'arêtes de la file union diminué du nombre d'arêtes des files de départ.

Calcul

Nombre de comparaisons pour faire l'union d'une file binomiale de n éléments et d'une file binomiale de m éléments.

$$\#cp(FB_n \cup FB_m) = n + m - \nu(n+m) - (n-\nu(n)) - (m-\nu(m))$$

$$= \nu(n) + \nu(m) - \nu(n+m)$$

$$< \lfloor \log_2 n \rfloor + 1 + \lfloor \log_2 m \rfloor + 1$$

$$\le 2 \lfloor \log_2(n+m) \rfloor + 2$$

$$= \underset{n \to \infty}{} O(\log_2(n+m)).$$

Exemples:

- $FB_{21} \cup FB_{10}$
- *FB*₂₁ ∪ *FB*₁₁

Ajout d'un élément x à une file FB_n

Algorithme

Créer une file binomiale FB_1 contenant uniquement x. Puis faire l'union de FB_1 et FB_n .

Complexité : $\nu(n) + 1 - \nu(n+1) \longrightarrow$ entre 0 et $\nu(n)$

Exemples:

- $FB_1 \cup FB_8$
- FB₁ ∪ FB₂

Construction

Complexité de la construction d'une file binomiale par adjonctions successives de ses *n* éléments.

$$\#cp(FB_n) = \nu(n-1) + 1 - \nu(n) + \nu(n-2) + 1 - \nu(n-1) + \dots + \nu(1) + 1 - \nu(2) = n - \nu(n).$$

Donc le nombre moyen de comparaisons pour 1 ajout est $1 - \frac{\nu(n)}{n} < 1$.

Coût amorti d'une opération dans une série d'opérations :

coût total #opérations

Recherche du minimum

Le minimum de la file est à la racine d'un des tournois la composant.

Complexité : $\nu(n) - 1$ comparaisons = $O(\log n)$

Suppression du minimum

- Déterminer l'arbre B_k de racine minimale
- Supprimer la racine de $B_k \longrightarrow \text{File} < B_{k-1}, \dots, B_0 >$
- Faire l'union des files $FB_n \setminus B_k$ et $\langle B_{k-1}, \dots, B_0 \rangle$

Complexité : $O(\log n)$.

Diminuer une clé

Hypothèse:

Accès direct au nœud dont il faut diminuer la clé

- modifier la clé
- échanger le nœud avec son père jusqu'à vérifier l'hypothèse de croissance (≡ tas)

Le nombre maximum de comparaisons est la hauteur de l'arbre.

Complexité : $O(\log n)$.

Définition

- Coût amorti d'une opération dans une suite d'opérations = coût moyen d'une opération dans le pire cas, quelle que soit la suite d'opérations.
- ne dit rien sur le coût d'une opération particulière, qui, prise indépendamment, pourrait avoir un coût pire supérieur.

Méthodes

- méthode par agrégat : coût amorti = coût total /# d'opérations
- méthode du potentiel
- autres...

Coût amorti : méthode par agrégat

- **Principe** : majorer le coût total d'une suite de *n* opérations et diviser par *n*.
- Exemple : opérations sur les piles
 - empiler(S,x) \rightarrow coût 1
 - dépiler(S) \rightarrow coût 1
 - multidépiler(S,k) \rightarrow coût $\leq k$

Suite de *n* opérations :

- coût maximal d'une opération O(n)
- mais coût amorti de chaque opération en O(1):

(on ne dépile que les éléments empilés \rightarrow coût de n opérations en O(n)).

Coût amorti : méthode du potentiel

- **Principe :** à chaque structure de données est associé un *potentiel*, qui peut être libéré pour payer des opérations futures
 - structure de données D_i ,
 - fonction *potential* $\Phi: \mathcal{D} \to \mathcal{R}^+$, vérifiant $\Phi(D_i) \ge \Phi(D_0)$
 - coût amorti de la i-ème opération : $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$ (c_i coût réel de la i-ème opération)
 - coût amorti total : $\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} c_i + \Phi(D_n) \Phi(D_0)$ Borne sup du coût réel total car $\Phi(D_n) \ge \Phi(D_0)$

Méthode du potentiel : exemple

Exemple: opérations sur les piles

- $\Phi(D_i)$ = nombre d'objets de D_i
- coût amorti de chaque opération en O(1):
 - empiler : $\Phi(D_i) \Phi(D_{i-1}) = (s+1) s \text{ donc } \hat{c}_i = 1+1=2$
 - depiler : $\Phi(D_i) \Phi(D_{i-1}) = -1$ donc $\hat{c}_i = 1 1 = 0$
 - Multidepiler : $\Phi(D_i) \Phi(D_{i-1}) = -min(s, k)$ donc $\hat{c}_i = 0$

coût amorti total $\sum_{i=1}^{n} \hat{c}_i < 2n$, coût amorti d'une opération de la suite en O(1).

Retour sur les files binomiales : Coût amorti

Files Binomiales:

- ajout d'un élément et recherche du minimum en $O(\log n)$
- suppression du minimum et union de 2 files en $O(\log n)$

Remarque : on ne peut pas espérer avoir O(1) pour ajout et suppression du minimum, car alors on serait en contradiction avec les résultats de borne inférieure en $O(n \log n)$ pour le tri par comparaisons.