MTH301: Analysis I

Abhimanyu Sethia 190023 sethia@iitk.ac.in

Assignment 4b

Question 12

Q12(a) Prove that if A is open or A is closed in M, then $(\partial A)^{\circ} = \phi$. Solution:

Case 1: Let A be closed.

We will prove by contradiction. So, assume that $(\partial A)^{\circ} \neq \phi$.

Let $y \in (\partial A)^{\circ} \implies \exists r_y > 0 \text{ s.t. } B(y, r_y) \subset (\partial A)^{\circ} \subset \partial A \subset A$

 $\implies \exists r_y > 0 \text{ s.t. } B(y, r_y) \cap A^c = \phi$

But $y \in (\partial A)^{\circ}$, so $\forall \epsilon > 0$, $B(y, \epsilon) \cap A^{c} \neq \phi$

Hence, by contradiction, $(\partial A)^{\circ} = \phi$

Case 2: Let A be open.

Then, A^c will be closed. We will again prove by contradiction. Assume that $(\partial A)^{\circ} \neq \phi$

Now, $\partial A = \partial A^c \implies (\partial A)^\circ = (\partial A^c)^\circ$

Let $y \in (\partial A)^{\circ} \implies y \in (\partial A^{c})^{\circ}$

 $\implies \exists r_y > 0 \text{ s.t. } B(y, r_y) \subset (\partial A^c)^{\circ} \subset \partial A^c \subset A^c$

 $\implies \exists r_y > 0 \text{ s.t. } B(y, r_y) \cap A = \phi$

But $y \in \partial A$, so $\forall \epsilon > 0$, $B(y, \epsilon) \cap A \neq \phi$.

Hence, by contradiction, $(\partial A)^{\circ} = \phi$

Q12(b) Give an example in which $(\partial A)^{\circ} = M$.

Solution:

 $Answer: A = \mathbb{Q}$

Explanation For any $x \in \mathbb{R}$, $\exists (x_n) \subset \mathbb{Q} \text{ s.t. } x_n \xrightarrow{|\cdot|} x$

So, $x \in \bar{A} \implies \bar{A} = \mathbb{R}$

Claim: $A^{\circ} = \phi$

Proof: Let $x \in A^{\circ} \implies \exists \epsilon > 0 \text{ s.t. } B(x, \epsilon) \subset A$.

Let $p \in B(x, \epsilon) \setminus \{x\}$

 $\implies |x - p| < \epsilon \text{ i.e. } p - \epsilon < x < p + \epsilon$

But due to density of irrationals, $\exists r \in \mathbb{R} \setminus \mathbb{Q}$ such that x < r < p

 $\implies r \in B(x,\epsilon) \subset A$, but $r \notin \mathbb{Q}$

This is a contradiction. Hence, $A^{\circ} = \phi$

 $\partial A = \bar{A}/A^{\circ} = \mathbb{R}/\phi = \mathbb{R} = M$