

Relational Database Design

Instructor: Nítesh Kumar Jha

niteshjha@soa.ac.in

ITER,S'O'A(DEEMED TO BE UNIVERSITY)

July 2018

Review

Relational Model

Review

Domain: Set of permitted values

The Set of all possible relations: D1 \boxtimes D2 \boxtimes D3

Relation: Subset of Cartesian product of all domains.

Α	В	С
A1	В3	C4
A2	B2	C3
A3	B1	C1
A4	B4	C2

The Goal

- The goal of relational database design is to generate a set of relation schemas that allows us
 - to store information without unnecessary redundancy,
 - also allows us to retrieve information easily and efficiently.

Redundancy: The Problem

Consider a relation schema

inst dept (ID, name, salary, dept name, building, budget)

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Redundancy: The Problem

Consider a relation schema

inst dept (ID, name, salary, dept name, building, budget)

- Problems
 - For each instructor of same department the building and budget information gets repeated.
 - If a new department is opened, then database is unable to keep this department information until a new instructor is appointed.
 - What is the assurance that, one department is housed in one building, and one budget?

Solution

- The database design tries to avoid these problems using the concept of normalization
 - It is the technique of designing the relation schema in compliance to one of the several normal forms.
 - Normal forms are the well defined rules to avoid unnecessary redundancy and other anomalous conditions.

Arranged according to strictness, i.e. 6th is highest and 1st is lowest

Anomalies in Relational Database-I

- If a database not designed properly may exhibit following anomalies.
- Redundancies (repetition of information)
 - Unnecessary wastage of disk space.

studNum	Address	deptNum	deptName	Building
S21	Patna	5	CSIT	C-Block
S22	Edinburgh	5	CSIT	C-Block
S23	BBSR	4	MECH	B-Block
S24	KolKata	4	MECH	B-Block
S25	Manchester	1	PHY	D-Block

Any change to department building information need to be updated in multiple records, that may lead to inconsitency. This is termed as updation Anomaly

Anomalies in Relational Database

- Insertion Anomaly
 - If a new department is opened, then there is no scope to insert this information into the database unless a student gets admitted in to the department
- Deletion Anomaly
 - If the last student of a department leaves the college and hence deleted from the database, then the department information also deleted from the database forever.
- All these problems do occur due to the faulty design of the database.
- Therefore, database should be designed using normalization techniques that assures avoidance of redundancy and hence anomalies.

Introduction to databases

First Normal Form

- A relation schema R is said to be in 1NF, if the domain of all attributes in R is atomic in nature.
- A domain is atomic if elements of the domain are of indivisible units
- i.e. according to 1NF, there can't be sub-structure within a column and the value present in each attribute is never a set of values or a list of values.
- Examples
 - Sub-structure: address (street, city, state, pin),
 Name(fname,mname,lname)
 - Set/List of values: multiple phone numbers, mail ids, names etc.

(1NF)First Normal Form

- Atomicity is actually a property of how the elements of the domain are used.
 - Example: Strings would normally be considered indivisible
 - Suppose that students are given roll numbers which are strings of the form CS0012 or EE1127
 - If the first two characters are extracted to find the department, the domain of roll numbers is not atomic.
 - Doing so is a bad idea: leads to encoding of information in application program rather than in the database.

Functional Dependency (FD)

- Consider a relation schema r(R), and x and y are the subsets of R, (r: relation, R: set of attributes)
 - i.e. $x, y \subseteq R$, then
- The instance of r(R) is said to be satisfying functional dependency $x \rightarrow y$, if for all pair of tuples t_1 and t_2
 - If $t_1[x] = t_2[x]$, then $t_1[y] = t_2[y]$
- Functional dependency $x \rightarrow y$ holds on schema r(R) if, in every instance of r(R), it satisfies the functional dependency.
- Functional dependency is a generalization of key concept of database. i.e.
- K is a superkey of r (R) if the functional dependency $K \rightarrow R$ holds on r (R). (K \subseteq R), and K uniquely determines tuples in r(R)

Example FD

- Consider the relation schema account(accNo, balance, brID).
- There exists functional dependency like
 - accNo → balance and
 - accNo → brID, i.e
 - i.e if t1[accNo]= t2[accNo], then t1[balance] = t2[balance] etc.
- accNo uniquely determines the tuples in account relation.

Example FD

■ Consider r1 (A,B) with following instance of r1.

A	В
1	4
1	7
2	6
3	5

On the instance $A \rightarrow B$ does not hold but $B \rightarrow A$ holds

Similary for r2(A,B)

What happens here??

$$B \rightarrow V \dot{s}\dot{s}\dot{s}$$

Α	В
2	5
1	3
2	5
4	7

Functional Dependency (FD)

- **I** K is a super key for relation schema R if and only if $K \to R$
- K is a candidate key for R if and only if
 - $K \rightarrow R$, and
 - for no $\alpha \subset K$, $\alpha \to R$
- Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:

dept_name→ building

and ID → building

but would not expect the following to hold:

 $dept_name \rightarrow salary$

Thank You