

Let, (T1, T5, T3, T4, T5) be the stationary including 5 varibles and 6 equations (including normatization)

$$\begin{bmatrix} -0.5 & 0 & 0 & 0.3 & 0.5 & 0 \\ 0.3 & -0.5 & 0.4 & 0 & 0.2 & 0 \\ 0 & 0 & -0.6 & 0.2 & 0 & 0 \\ 0 & 0 & 0.2 & -1 & 0 & 0 \\ 0.2 & 0.5 & 0 & 0.5 & -0.7 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Solving for eref,

we get,

$$\Pi_2$$
 Π_3
 Π_4
 Π_5
 Π_6
 Π_7
 Π_8
 Π_8

Yes, the solution is unique

3 Let,
$$x_n = \begin{cases} 0 & failure \\ 1 & Success \end{cases}$$

To make a Markov chain, let us Combine, x_n and x_{n-1} :

Let us define $\{Y_n\}$ by $Y_n = (x_n, y_{n-1})$

Then Y_n is a Markov Chain

 0.8

S > Success 1

 0.8
 0.5

For stationary distribution, 0.8
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5
 0.5

$$\lim_{n\to\infty} P(X_n=S) = \lim_{n\to\infty} \left(P(Y_n=SS) + P(Y_n=SF) \right)$$

$$= TT_{SS} + TT_{SF}$$

$$P = \begin{pmatrix} 1/2 & 1/3 & 1/6 \\ 3/4 & 0 & 1/4 \\ 0 & 1 & 0 \end{pmatrix}$$

a) A simple matlab program with a loop yields.

$$\rho^{3} = \frac{1}{48} \begin{pmatrix} 24 & 16 & 8 \\ 27 & 12 & 9 \\ 18 & 24 & 6 \end{pmatrix}$$

.. P is regular as P, contains all

non-zero entries, with n=3.

b)
$$P(X_2=3 | X_0=1) = (P^2)_{13} = \frac{1}{6}$$

()
$$W_1 = \frac{1}{2} \omega_1 + \frac{3}{4} \omega_2$$

$$\omega_2 = \frac{1}{3} \omega_1 + \omega_3$$

$$\omega_3 = \frac{1}{6} \omega_1 + \frac{1}{4} \omega_2$$

$$W = \begin{bmatrix} -1/2 & 3/4 & 0 & 0 & 0 \\ 1/3 & -1 & 1 & 0 & 0 \\ 1/6 & 1/4 & -1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$