MIDTERM EXAMINATION

Fall 2009

CS302- Digital Logic Design

Question No: 1 (Marks: 1) - Please choose

one

According to Demorgan's theorem:

- ► A.B.C
 - A + B.C
 - Ā.B.C
 - ► <u>A.B</u> + C

Question No: 2

(Marks: 1)

- Please choose

one

The Extended ASCII Code (American Standard Code for Information Interchange) is a ______code

- ► 2-bit
- ► 7-bit
- ▶8-bit
- ► 16-bit

CYBARIEN | NETWORK

unending learning...

Question No: 3

(Marks: 1)

- Please choose one

The AND Gate performs a logical function ► Addition ► Subtraction **►** Multiplication ▶ Division Question No: 4 (Marks: 1) - Please choose one NOR gate is formed by connecting ____ **▶** ORGateandthenNOTGate ▶ NOT Gate and then OR Gate ► AND Gate and then OR Gate ► OR Gate and then AND Gate **Question No: 5** (Marks: 1) Please choose one Generally, the Power dissipation of devices remains constant throughout their operation. **►TTL** CYBARIEN | NETWORK ► CMOS 3.5 series

► CMOS 5 Series

unending learning...

▶ Power dissipation of all circuits increases with time

Question No: 6 (Marks: 1) - Please choose one

Two 2-bit comparator circuits can be connected to form single 4-bit comparator **►**True ► False (Marks: 1) - Please choose **Question No: 7** one When the control line in tri-state buffer is high the buffer operates like a _____ gate ► AND ► OR NOT **►** XOR (Marks: 1) Please choose **Question No: 8** one The GAL22V10 has inputs ▶ 22 CYBARIEN | NETWORK unending learning... ▶ 20

Question No: 9 (Marks: 1) - Please choose one

The ABEL symbol for "OR" operation is

Question No: 10	(Marke: 1)	- Please choose
•	(Warks. I)	- Flease Cilouse
one		
The OLMC of the GAL16V8	is	to the OLMC
of the GAL22V10		
► Similar► Different► Similarwithsomeer	shanaamanta	
,		
Depends on the type	e of PALs inpu	ut size
Question No: 11	(Marks: 1)	- Please choose
All the ABEL equations must	end with	
" . " (a dot)" \$ " (a dollar symbol)";" (asemicolon)" endl " (keyword "endl")		NETWORK
		unending learning
Question No: 12 one	(Marks: 1)	- Please choose
The Quad Multiplexer has		<u>outputs</u>

- ▶4
- ▶ 8
- ▶ 12
- ▶ 16

Question No: 13 (Marks: 1) - Please choose

one

"Sum-of-Weights" method is used

- ▶ to convert from one number system to other
- ► to encode data
- to decode data
- to convert from serial to parralel data

Question No: 14 (Marks: 1) - Please choose

Circuits having a bubble at their outputs are considered to have an active-low output.

True

False

Question No: 15 (Marks: 1) - Please choose one

(A B)(A B C)(A C) is an example of NETWORK

unending learning...

- **▶** Productofsumform
- ► Sum of product form
- ▶ Demorgans law
- ► Associative law

Question No: 16 (Marks: 1) - Please choose one

Which one is true:

- ► Power consumption of TTL is higher than of CMOS
- ▶ Power consumption of CMOS is higher than of TTL
- ▶ Both TTL and CMOS have same power Consumption
- ▶ Power consumption of both CMOS and TTL depends on no. of gates in the circuit.

QuestionNo:17 (Marks:1)

Which device performs an operation which is the opposite of the Decoder

function?

Ans:

Encoderfunction.

QuestionNo:18

Name any two modes in which PALs are programmed. Ans:

CYBARIEN | NETWORK

PAL devices are programmed by blowing the fuses permanently using over voltage.

QuestionNo:19 (Marks:2)

Explain Combinational Function Devices?

Ans;

Xor, Xnor, NAND, NOR are combinational function devices.

QuestionNo:20 (Marks:3)

Differentiate between hexadecimal and octal number system

octal - base 8 hexadecimal - base 16

Octal and hex are used to represent numbers instead of decimal because there is a very easy and direct way to convert from the "real" way that computers store numbers (binary) to something easier for humans to handle (fewer symbols). To translate a binary number to octal, simply group the binary digits three at a time and convert each group. For hex, group the binary digits four at a time.

The hexadecimal (Hex) numbering system provides even shorter notation than octal. Hexadecimal uses a base of 16. It employs 16 digits: number 0 through 9, and letters A through F, with A through F substituted for numbers 10 to 15, respectively,

Hexadecimal numbers can be expressed as their decimal equivalents by using the sum of weights method, as shown in the following example:

Like octal numbers, hexadecimal numbers can easily be converted to binary or vise versa. Conversion is accomplished by writing the 4-bit binary equivalent of the hex digit for each position, as illustrated in the following example:

unending learning...

Hexadecim al	Binary	Decimal		
0	0000	0		
1	0001	1		
2	0010	2		
3	0011	3		
4	0100	4		
5	0101	5		
6	0110	6		
7	0111	7		
8	1000	8		
9	1001	9 ~		
Α	1010	10		
В	1011	11		
С	1100	12		
D	1101	13		
E	1110	14		
F	THARIEN INE	15 nding learning		

QuestionNo:22 (Marks:10)

Draw the function table of two-bit comparator circuit, map it to K-Map and derive the expression for (A > B) Ans:

X_1	X_0	\mathbf{Y}_1	Y_0	X <y< th=""><th>X=Y</th><th>X>Y</th></y<>	X=Y	X>Y
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	_1_
1	0	1	0 /	0		0
1	0	1	1/	1	0	0
1	1	0	0/	0	0	1
1	1	0	1/	0	0	
1	1	1	0	0_	0	
1	1	1	4,	ABIE	1	0
					uner	iding learning.

time is out.....

