An Introduction to "Dimensionality" Some Warping Required

Jan Armendariz-Bones

Last Updated: November 18, 2024

Contents

0	Introduction	1
1	A Brief Summary of Linear Algebra 1.1 Dimension of Vector Spaces	1
2	Manifolds2.1 What is a manifold?	3
3	Box Covering Dimension 3.1 Looking at the Coast of Britain and Fractals	4
4	Hausdorff Covering Dimension 4.1 Infinite "Area"; Zero Area	4

0 Introduction

This paper is about the ideas of dimensionality, both in the relatively physical sense of Linear Algebra as well as into the non-standard way of thinking for fractals.

1 A Brief Summary of Linear Algebra

First we begin by reviewing some general axioms and definitions from linear algebra.

Definition 1. (Vector Space Axioms) We say that a space X with scalars in a field \mathbb{F} is said to be a vector space if the following conditions are satisfied:

• (Associativity) For any u, v, and w in the space X, we have that

$$u + (v + w) = (u + v) + w.$$

• (Commutativity) For any $u, v \in X$ we have that

$$u + v = v + u$$
.

- (Identity Element) There exists a vector $e \in X$ such that for any $v \in X$, ev = ve = v.
- (Zero Vector) There exists a vector $0 \in X$ such that for any $v \in X$, 0 + v = v + 0 = v.
- (Inverse Element) For any $v \in X$, there exists another vector denoted as the element -v such that

$$v + (-v) = 0.$$

• (Associativity of Scalars)For any two scalars $a, b \in \mathbb{F}$ and $v \in X$,

$$a(bv) = b(av).$$

• (Identity scalar) There exists a $1 \in \mathbb{F}$ such that for any $v \in X$,

$$1v = v$$
.

Remark: If we have a subset, *Y*, of a vector space, *X*, that satisfies the vector space axioms, we call *Y* a *subspace* of *X*.

When we consider any vector space, we need some way to refer to an arbitrary point in space. In \mathbb{R}^2 , we would say that a point in the space is described as (x, y) where x and y are real numbers, denoting how far they are from the origin with respect to the x and y axes. Now within that description, there was a fundamental choice between the "building blocks" of the vector space. Those blocks being (1,0) and (0,1) respectively. How can we determine what we can choose as those blocks?

Definition 2. (*Linear Combination*) For any two vectors, u and v, we call the linear combination of the two the collection of vectors such that we have vectors of the form

$$au + bv$$
,

where a and b are scalars.

Definition 3. (Span) We say that a collection of vectors $\{v_1, v_2, \dots, v_n\}$ span a vector space V when:

• Every vector in space can be represented as a linear combination of our basis vectors.

Remark: We call the collection of vectors that span the vector space a *basis* for the space *V*.

1.1 Dimension of Vector Spaces

We say that a vector space has a finite dimension if there are a finite number of vectors in the basis. Otherwise we say that the vector space is *infinite dimensional*.

So, if a vector space V has 3 vectors in its basis, then we say that V has a dimension of 3.

2 Manifolds

2.1 What is a manifold?

Example to strive towards: An example of a manifold would be the Earth, as when we "zoom" in, the surface of the object appears to look like \mathbb{R}^2 .

2.2 Atlases and Charts

A **homeomorphism** is a concept in topology that describes a strong form of equivalence between topological spaces, meaning that they are structurally the same space.

Definition 4. Given two topological spaces X and Y, we say a function $f: X \to Y$ is called a **homeomorphism** if the following are true:

- Bijective: f is a one-to-one (injective) and onto (surjective) function.
- Continuous: The function f is continuous, meaning that the preimage of any open set in Y is open in X.
- Continuous inverse: The inverse function $f^{-1}: Y \to X$ is also continuous.

If such a function f exists, then the spaces X and Y are said to be homeomorphic.

Said in another way, if these two spaces are homeomorphic, we can treat the spaces like Play-Doh, where we can stretch and warp *X* into a space that looks like *Y*.

In topology, an atlas on a manifold M is a collection of charts that together describe the structure of the manifold.

Definition 5. An atlas for a topological space M is a collection of pairs

$$\{(U_i, \phi_i)\}_{i \in I}$$

where:

- $\{U_i\}$ is an open cover of M, meaning that $M = \bigcup_{i \in I} U_i$ and each U_i is an open subset of M.
- Each $\phi_i: U_i \to V_i \subset \mathbb{R}^n$ is a **homeomorphism** from U_i onto an open subset V_i of \mathbb{R}^n .

The maps ϕ_i are known as **coordinate charts**. An atlas thus provides a way of covering the manifold with coordinate systems that describe its local geometry. When the transition maps between overlapping charts ϕ_i and ϕ_j are differentiable (or satisfy other specified conditions), the atlas is said to be differentiable, giving rise to a **differentiable manifold** or **smooth manifold**.

2.2.1 Open Mapping Condition

- 3 Box Covering Dimension
- 3.1 Looking at the Coast of Britain and Fractals
- 4 Hausdorff Covering Dimension
- 4.1 Infinite "Area"; Zero Area