Nom Prénom	D.T. /	
	TN T /	
	Note	
Groupe		
${\bf Algorithmique}$		1
Info-spé - $S3$		2
Partiel nº 3 (P3)		3
17 décembre 2019 - 9 : 30		4
Feuilles de réponses		5
Réponses 1 (Représentation et questions – 2 points) 1. La fermeture transitive de G est un graphe :		
a)		
b)		
2. La liste des sommets de G en ordre suffixe de rencontre :		
$Rcute{e}ponses~2~~ ext{(Warshall - Trouver-R\'eunir} - 4~~points)$		
1. Les composantes connexes (ensembles de sommets) :		

 $2.\,$ Quels vecteurs pourraient correspondre au résultat ?

	oui	non
P_1		
P_2		
P_3		
P_4		

Réponses 3 (I want to be tree – 5 points)

Spécifications :

La fonction $\mathtt{isTree}(G)$ détermine si le graphe G est un arbre.

Réponses 4 (Distances et centre – 6 points)

La fonction qui répond à la question est à écrire page suivante. . .

Spécifications:

La fonction eccentricity (G, s) calcule l'excentricité de s dans G.

${\bf Sp\'{e}cifications}:$

La fonction center(G) retourne le centre du graphe G.

Réponses 5 (What is this? - 3 points)

1. Le graphe résultat (NG):

2. Ordre de rencontre des sommets :

3. Combien de composantes connexes lorsque le graphe initial en a k :