

PROJET DRONE

Louahadj Narimane Festal Clément Dottel Gael

PLAN DE LA PRÉSENTATION

- l. Origine du Projet
- II. Gestion du Projet
 - i. Définition des fonctions souhaitée, Choix des technologie, Planning des tâches
- III. Réalisation Technique
 - i. Carte électronique
 - ii. Application Android
 - iii. Traitement des données
 - iv. Maquette
- IV. FPGA Arcade
- V. Conclusion

ORIGINE DU PROJET

- Motivation de base :
 - > Système autonome
 - > Challenge
 - > Drone quadricoptère!
- Restrictions sécuritaires :
 - > Pas de possibilité de vol

ORIGINE DU PROJET

- Évolution du projet :
 - ➢ Drone qui monte sur le murs !
 - > Propulsion par hélice.
- Un modèle pour la version finale :
 - > Vertigo, le Drone sponsorisé par Disney en développement à Polytechnique Zurich.

lère étape : Diagramme fonctionnel

- FPI Contrôler : Créer les commandes de l'utilisateur
- FP2 Communiquer : Envoyer et recevoir les commandes de l'utilisateur
- FP3 Traiter : Effectuer les commandes de l'utilisateur
- FCI Autonomie énergétique
- FC2 Distance opérationnelle (portée de contrôle)
- FC3 Résistance à la pression
- FC4 Compenser la gravité (sur une surface verticale)
- FC5 Se plaquer au mur (sur une surface verticale)
- FC6 Respect des normes écologiques
- FC7 Propulsion par hélice
- FC8 Smartphone Android (disposant de tous les technologies standards de communication, WiFi, Bluetooth)

Ilème étape : Choix des technologies.

- Hélices
- Batterie Li-po
- Roues
- Raspberry pi
- Application Android

IIIème étape : Choix des composants

• Dimensionnement moteur et hélice

Calcul de motorisation simplifié (brushless)

F. Aguerre 2009 Masse modèle (kg) 1,50

	Type d'accu	LiPO	•
e n	Eléments	3	•
ulate	Capacité (mA.h)	2600	
E	Taux de décharge max continu (C)	35	
5	Tension moyenne en décharge (V)	10,2	
ļ Š	Intensité max continue (A)	91,0	
	Intensité max raisonnable (A)	60,7	

Туре	Cage tournante '	▼
KV	810	
Rendement estimé (%)	85	
Régime à vide (tr/min)	8262	
Régime standard en charge (tr/min)	6857	
Masse moteur conseillée à +/-20% (g)	149	
	KV Rendement estimé (%) Régime à vide (tr/min) Régime standard en charge (tr/min)	KV 810 Rendement estimé (%) 85 Régime à vide (tr/min) 8262 Régime standard en charge (tr/min) 6857

e,	Diamètre hélice (")	15
	Pas hélice (")	5,5
Hélice	Puissance à l'arbre (W)	433
Ť	Traction statique (g)	1782
	Vitesse air brassé (km/h)	57

	Intensité (A)	51,0
Global	Puissance consommée (W)	520
	Rapport Puissance/Masse (W/kg)	347
	Vitesse de vol estimée (km/h)	46
	Autonomie plein gaz (min)	2,9

Boucher	4,82E-15
K =	1,2

Mesures réelles

Diamètre hélice (")	15
Pas hélice (")	5,5
Régime (tr/min)	6857
Tension	10,2
Intensité	51,0
Puissance absorbée (W)	520
Traction statique (g)	1782
Vitesse air brassé (km/h)	57
Rendement moteur (%)	83%

Légende Donnée d'entrée Pour contrôle Correct Passable A revoir

IVème étape : Découpage du projet en tâche

- > 4 tâches principales
 - > Carte électronique
 - > Application Android
 - > Traitement de données
 - > Prototype mécanique

RÉALISATION TECHNIQUE : CARTE ÉLECTRONIQUE

Motivations

- Centraliser et faciliter le montage.
- Résoudre les problèmes plus facilement.
- Objet mobile donc nécessité de tout fixer.
- Eviter les câbles et donc risque de débranchement.

RÉALISATION TECHNIQUE : CARTE ÉLECTRONIQUE

- Problèmes rencontrés
 - La distance entre les pistes.
 - Les Vias.
 - Taille des trous.
 - Composants aux formes exotiques.
 - Altium Designer.

Mais au final, ON A REUSSI!!

RÉALISATION TECHNIQUE : APPLICATION ANDROID

• Une nécessité : Commander le drone à distance

- Une solution possible: L'application Android
- But : Contrôler le robot à distance

RÉALISATION TECHNIQUE : APPLICATION ANDROID

- Interface de l'application : ressources + onCreate
 - Facilité de changement du drone avec l'adresse IP

- Problème : envoyer un paquet (UDP) périodiquement
 - Solution : utiliser de nombreux threads
- Gestion des interruptions pour assurer le fonctionnement

RÉALISATION TECHNIQUE : TRAITEMENT DE DONNÉES

Le Python, on aime ou on aime pas.

- Inconvénient principal :
 - Un nouveau langage à apprendre...
 - Exécution plutôt lente... (langage interprété)
- Avantages principaux :
 - Des bibliothèques très fournis!
 - Un nouveau langage à apprendre !

RÉALISATION TECHNIQUE : TRAITEMENT DE DONNÉES

Un algorithme qui reste simple.

- Utilisation de structures de bases
 - Listes, Tableaux ...
 - Peu de fonctions.
- Initialisation et corps de boucle :
 - Initialisation de variables pour permettre un usage plus haut niveau.
 - Mise à jour de variable à chaque tour de boucle en fonction des donnée reçues.

RÉALISATION TECHNIQUE : TRAITEMENT DE DONNÉES

Génération de PWM

- Utilisation de la Bibliothèque GPIO (à trouver : le vrai nom)
 - > Initialisation des ports simple
 - Mise-à-jour aisée du Duty_cycle
- La convention PWM pour les moteurs d'aéromodélisme et servomoteurs
 - > Fréquence de 50 Hz
 - > Duty_cycle de 5 à 10 %

RÉALISATION TECHNIQUE : PROTOTYPE MÉCANIQUE

- Conception théorique : utilisation de l'imprimante 3D
 - > Première maquette dessinée... Quelques bonnes idées.
 - Modèle très simple sous SolidWorks.
- Changement de plan!
 - > Plastique plutôt cher.
 - ➤ Lent et peu flexible.

RÉALISATION TECHNIQUE : PROTOTYPE MÉCANIQUE

- Passage à un matériau plus noble : le Carton ...
 - > Haute flexibilité et facilité d'utilisation
 - Matériau léger et plutôt résistant aux choc

- ... Qui nous reste seulement utile en prototypage.
 - > Peu résistant à la flexion
 - > Absorption d'énergie et aléa dans le mouvement

FPGA ARCADE

- Diviseur d'horloge : I00MHz -> 25MHz.
 - L'horloge de la carte Zedbord est cadencée à 100MHz.
 - Fréquence de fonctionnement de la console : 25 MHz.
- Implémentation sur la carte.
 - Modification du fichier de contraintes.
 - Lecture de la documentation.

FPGA ARCADE

- Machine à état de l'encodeur rotatif
 - Déplacement de la raquette.
 - Deux signaux définis activés suivant le signe du déphasage entre QA et QB.
- Machine à état du Game Manager
 - Gestion de la sélection du jeu (Pong ou Casse-Briques).
- Machine à état de gestion des différentes phases du jeu.
 - Pause, victoire et défaite.
- Gestion d'un obstacle mobile

CONCLUSION

État des lieux

- FPGA Arcade
 - ✓ La sélection du jeu fonctionne.
 - ✓ Le mode pause et reset.
 - ✓ Ecran victoire et défaite.

CONCLUSION

État des lieux

- Projet Drone
 - ✓ Partie électronique complète
 - √ Communication fonctionnelle
 - ✓ Prototype mécanique opérationnel
 - √ Déplacement au sol fonctionnel

CONCLUSION

Avenir du Projet

- > Établissement des fonctions pour monter au mur
- > Prototypage plus solide et aux normes de sécurité

MERCI DE VOTRE ATTENTION

• DES QUESTIONS?