Presentation ON New MCM Programs & QT/QML Based Online_V2 GUI

By: Naresh M Sisodiya

GMRT - TIFR

NEW MCM

(New Monitoring & Controlling Module)

- New Monitoring and Controlling Module New MCM is the general purpose card, designed using RCM4300 core module as processing unit.
- Has a motherboard, on which hardware for Multiplexing, Signal conditioning Digital data latching and serial communication is placed. On top of the motherboard, RCM4300 as daughter-board is placed.
- Will be directly interfaced with other systems of GMRT like Front End, Fiber Optics, Analog Back End, Sentinel etc.
- Will monitor and control various parameters of GMRT systems.
- Will also generate the alarm in the erroneous condition and will take immediate precautionary action.

New MCM Hardware Architecture

New MCM Software

- Developed from the scratch using dynamic C, which supports cooperative multitasking.
- Uses the infinite while loop approach instead of using the OS.
- Designed carefully, so it can include all necessary features and exhibit good performance.
- Supports the Communication over the Ethernet as well as Serial link, 64 channel monitoring, 32 bit controlling, up to 1Gb data storage using FAT-16 file system.
- Web server running inside. Web technologies like HTML, CSS, Javascript, XML, AJAX are used extensively.

New MCM Software Architecture

New MCM Programs

- For In House CMS MCM
- For GAB MCM
- For 15m NCRA MCM
- MCM Debug Software : MCM Debug

IN HOUSE CMS MCM PROGRAM

- Designed full fledge MCM program to perform various operation like: Monitoring, Controlling, Preparing Summery, etc. as well as Listening over socket to receive various commands from higher level application.
- Implemented support for various systems: Sentinel, Front End, Fiber Optics, Analog Back End, MCM Self Test.
- Implemented Various commands for such systems: Monitoring, Setting, Initialize, Reset.
- Supports both web and socket version.
- Design efficient command structure to communicate with remote server: [Sequence] [Time-stamp] [System] [Operation] [No of Para.] [Parameter] [arg1] [arg2]

ONLINE_V2 MCM COMMUNICATION PROTOCOL

- Sequence : Command Sequence ID from Online_V2 Server
- Time-stamp: Time stamp of core online machine
- System: Front End / Optical Fiber / Sentinel / Servo / FPS / GAB
- Operation : Monitoring, Setting, Initialization, Reset
- No of Para. : Number of parameters to be set in one go
- Parameter : System specific parameter/s
- Argument 1: Channel 1 Argument of corresponding parameter
- Argument 2 : Channel 2 Argument of corresponding parameter

GAB MCM Program

- Communicates with GAB server on loconf machine, which ultimately connects MCM with existing online.
- Implemented various commands for GAB system like : set dmask, set lo, set reflo and mon
- Implemented Ping function to detect broken socket
- Implemented continuous background monitoring.
- Supports both web and socket version.
- Following command structure similar to 15m dish MCM even though it's not efficient.

15M DISH MCM PROGRAM

- Similar to GAB MCM but running on Old version of New MCM.
- Communicates with wrapper program on Atithi machine, which ultimately connects MCM with CMS developed by PSPL.
- Supports only socket communication.
- Connected with Sentinel and GAB systems.
- Implemented various commands for Sentinel system like : domon, setcmd, init and reset
- Implemented various commands for GAB system like: domon, set attn, set lo, set reflo, init and reset

MCM Debugging Program

- Only web based program so troubleshooting can be done by using web browser, no other utility is required to debug MCM.
- Monitoring page displays 64 monitoring channels raw data as well voltage values, MCM parameters like Spectrum spreader, Clock Frequency, Real time clock, Digital Mask etc.
- Monitoring web page can update data as fast as every 500 mS, using AJAX
- Setting web page enables user to set 32 bit digital mask, LO Freq,
 Reference LO, RFI testing parameters, and Network Parameters.

MONITORING PAGE OF MCM DEBUG

New MCM Monitoring Window

IP: 192.168.8.231

Antenna: CO

System: FRONT END

						64 MO	NITORII	NG CHA	NNELS						
01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16
827 0.78	826 0.79	827 0.78	829 0.77	828 0.78	820 0.82	825 0.79	825 0.79	824 0.80	825 0.79	828 0.78	827 0.78	826 0.79	823 0.80	820 0.82	828 0.78
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
828 0.78	826 0.79	826 0.79	830 0.77	830 0.77	820 0.82	829 0.77	826 0.79	828 0.78	822 0.81	822 0.81	826 0.79	823 0.80	820 0.82	827 0.78	828 0.78
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
829 0.77	819 0.82	827 0.78	830 0.77	823 0.80	826 0.79	826 0.79	824 0.80	824 0.80	828 0.78	823 0.80	828 0.78	829 0.77	824 0.80	825 0.79	824 0.80
49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
821 0.81	827 0.78	822 0.81	822 0.81	826 0.79	821 0.81	827 0.78	825 0.79	827 0.78	828 0.78	827 0.78	825 0.79	828 0.78	827 0.78	824 0.80	827 0.78

	MCM STATUS	
Spectrum Spreader	Normal (0 to 50MHz)	Normal (Above 50MHz)
Frequency Doubler	On	
Frequency Divider	1	
MCM Frequency	60 MHz	
Real Time Clock	12 - 11 - 2014	12 : 25 : 46
Digital Mask	0000	0000

	FRONT END SYSTEM STATUS	
Band Selection	327	327
Solar Attenuation	14	44
Channel	SWAP	
Sub-Band Selected	1060	
RF Power	ON	
Calibration Noise	LOW	

CONTROLLING PAGE OF MCM DEBUG

SET 32 Digital Output 0000 Submit SET Reference LO
SET Reference LO
000 MHz 000 MHz Submit
SET LO Frequency
Choose LO2 ▼ Submit
RFI Test
Spectrum Spreader Choose SS ▼
Frequency Doubler Choose FDB Choose FDB
Frequency Divider Choose FDV ▼ Submit
Network Setting
IP Address 192.168.30.21
Subnet Mask 255.255.255.0 Gateway Address 192.168.30.1 Submit

Designed @ Telemetry Lab - GMRT

TESTING OF MCM PROGRAM

- More than 30 MCMs are running continuously in GAB system since 2012.
- 8 MCMs in local lab test set up are running continuously since 2012.
 MCMs are running without any issue because of robust software architecture.
- Tested Sentinel and Fiber Optics systems of C01, C04, C06 antennas
- Before that we also tested single antenna single MCM at C01, C04, C06, C09, C12, S02, S04
- Tested Sentinel, Fiber Optics, Front End and GAB systems in Lab
- MCM Debug is extensively being used by lab members for tuning 64 monitoring channels and testing MCM features before its release.
- MCMs are interfaced with Sentinel and GAB system of 15m dish Antenna at NCRA are running very smooth since 2011.

QT/QML Based Online_V2 GUI

- Online_V2 GUI is designed using Qt/QML because it supports easy integration of logic and graphics.
- Logic is written in C++ as well as JavaScript
- Graphics is written in QML which is more like CSS
- Data communication between GUI and core application can be done via various methods like: using XML file, over Socket and direct database access.
- As of Now Four interfaces are designed: Monitoring, Controlling, Engineering and User Management.
- Testing: Online_V2GUI has been tested during April 2014 MTAC, October 2014 MTAC, Front End, Fiber Optics, GAB, and Sentinel Lab Testing.

Monitoring GUI

- Monitoring GUI includes various User Interfaces: Graph Window, System Window, Antenna devices Window, Alarm Window.
- Graph Window: To display various zoom-able graph.
- System Window: To display all parameters of all system of the antenna.
- Antenna device Window: To display all network device at antenna and at receiver room.
- Alarm Window: To display all system alarm with priority and level.

GRAPH WINDOW

System Window

Quick View Window

Antenna Devices Window

ALARM WINDOW

CONTROLLING GUI

- Provides Interface to set various system parameters
- Setting can be provided to single antenna or Multiple Antennas
- Systems included are:
 - Front End
 - Fiber Optics
 - Sentinel
 - Servo
 - FPS
 - GAB
 - GSB

Engineering GUI

- Engineering GUI provides setting of system in more detail.
- Functions which are very system specific will be included here.
- Accessible to only system experts for testing their own system.
- Single Antenna Single System can be selected.

Engineering Interface

User Log In

Lets have Questions & Answers....

