

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, P _s =	16.49 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.73	
C _e =	0.90	
$C_t =$	1.20	

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.600	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- portou	=	-1 100	applied and from the canade.

2.4 Seismic Loads

S _s =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.07	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>211.30</u>	<u>6733.68</u>	k
Compressive Load =	3274.01	<u>5055.80</u>	k
Lateral Load =	350.93	4156.64	k
Moment (Weak Axis) =	0.68	0.24	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 182656.8 in-lbs Resisting Force Required = 2554.64 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4257.74 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 959.23 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2398.09 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 959.23 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

 Ballast Width

 35 in
 36 in
 37 in
 38 in

 P_{fta} = (145 pcf)(11.92 ft)(1.5 ft)(2.92 ft) = 7560 lbs
 7776 lbs
 7992 lbs
 8208 lbs

ASD LC		1.0D ·	+ 1.0S			1.0D+	- 0.6W		1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1087 lbs	1087 lbs	1087 lbs	1087 lbs	1279 lbs	1279 lbs	1279 lbs	1279 lbs	1659 lbs	1659 lbs	1659 lbs	1659 lbs	-89 lbs	-89 lbs	-89 lbs	-89 lbs
F _B	1066 lbs	1066 lbs	1066 lbs	1066 lbs	2143 lbs	2143 lbs	2143 lbs	2143 lbs	2294 lbs	2294 lbs	2294 lbs	2294 lbs	-3101 lbs	-3101 lbs	-3101 lbs	-3101 lbs
F_V	142 lbs	142 lbs	142 lbs	142 lbs	1728 lbs	1728 lbs	1728 lbs	1728 lbs	1389 lbs	1389 lbs	1389 lbs	1389 lbs	-1918 lbs	-1918 lbs	-1918 lbs	-1918 lbs
P _{total}	9713 lbs	9929 lbs	10145 lbs	10361 lbs	10982 lbs	11198 lbs	11414 lbs	11630 lbs	11513 lbs	11729 lbs	11945 lbs	12161 lbs	1347 lbs	1476 lbs	1606 lbs	1735 lbs
M	2872 lbs-ft	2872 lbs-ft	2872 lbs-ft	2872 lbs-ft	3130 lbs-ft	3130 lbs-ft	3130 lbs-ft	3130 lbs-ft	4196 lbs-ft	4196 lbs-ft	4196 lbs-ft	4196 lbs-ft	5685 lbs-ft	5685 lbs-ft	5685 lbs-ft	5685 lbs-ft
е	0.30 ft	0.29 ft	0.28 ft	0.28 ft	0.29 ft	0.28 ft	0.27 ft	0.27 ft	0.36 ft	0.36 ft	0.35 ft	0.35 ft	4.22 ft	3.85 ft	3.54 ft	3.28 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft								
f _{min}	237.8 psf	237.3 psf	236.7 psf	236.2 psf	270.6 psf	269.1 psf	267.7 psf	266.4 psf	270.5 psf	269.0 psf	267.6 psf	266.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	321.1 psf	318.2 psf	315.5 psf	312.9 psf	361.3 psf	357.3 psf	353.5 psf	349.9 psf	392.0 psf	387.2 psf	382.6 psf	378.2 psf	177.2 psf	155.7 psf	143.6 psf	136.2 psf

Maximum Bearing Pressure = 392 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2076.0 \text{ ft-lbs}$

Resisting Force Required = 1423.52 lbs S.F. = 1.67 Weight Required = 2372.53 lbs

Minimum Width = 35 in in Weight Provided = 7559.64 lbs

A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		35 in			35 in		35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	304 lbs	566 lbs	173 lbs	731 lbs	1811 lbs	630 lbs	135 lbs	165 lbs	4 lbs	
F _V	197 lbs	192 lbs	201 lbs	144 lbs	142 lbs	156 lbs	198 lbs	193 lbs	199 lbs	
P _{total}	9663 lbs	9925 lbs	9532 lbs	9640 lbs	10720 lbs	9539 lbs	2872 lbs	2902 lbs	2741 lbs	
М	763 lbs-ft	750 lbs-ft	774 lbs-ft	566 lbs-ft	565 lbs-ft	605 lbs-ft	764 lbs-ft	747 lbs-ft	768 lbs-ft	
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.05 ft	0.06 ft	0.27 ft	0.26 ft	0.28 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	232.8 psf	241.2 psf	228.4 psf	243.8 psf	275.0 psf	238.6 psf	37.4 psf	39.3 psf	33.4 psf	
f _{max}	323.2 psf	329.9 psf	320.1 psf	310.9 psf	341.9 psf	310.3 psf	127.8 psf	127.7 psf	124.3 psf	

Maximum Bearing Pressure = 342 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 33in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.518 k	Maximum Axial Load =	4.531 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>34%</u>	Utilization =	<u>61%</u>
Diagonal Strut			
Maximum Axial Load =	2.809 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	or double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>38%</u>		
		Struts under compression are transfer from the girder. Single end of the strut and are subjections.	le M12 bolts are l

ion are shown to demonstrate the load . Single M12 bolts are located at each e subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 60.93 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.219 in Max Drift, Δ_{MAX} = 0.7 in 0.7 ≤ 1.219, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 93 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 257.282 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 93 \\ \mathsf{J} &= 0.432 \\ &= 163.616 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi \mathsf{b}[\mathsf{Bc-1.6Dc^*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= 29.2 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.1 \text{ ksi}$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.2$$

S2 =
$$77.2$$

 $\varphi F_L = \varphi b[Bbr-mDbr*h/t]$

$$φF_L = φb[Bb] - MDb]$$
 $φF_L = 43.2 \text{ ksi}$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ \text{lx} &= & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ \text{y} &= & 41.015 \text{ mm} \\ \text{Sx} &= & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St &= & 2.788 \text{ k-ft} \end{aligned}$$

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

Sy=

 $M_{max}Wk =$

45.5 mm

0.599 in³

1.152 k-ft

Compression

3.4.9

$$b/t = 32.195 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 25.1 \text{ ksi} \\ b/t = 37.0588 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = (\phi c k2^* \sqrt{(BpE))}/(1.6b/t)$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$φF_L$$
= $φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$
 $φF_I$ = 29.0 ksi

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$1.6Dp$$

S2 = 46.7

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

$$L_b = 104.56$$

 $J = 1.08$
 190.335

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

28.9

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{((\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))]}$$

 $\phi F_1 =$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{1}{46.7}$$

 $\varphi F_L = \varphi y F c y$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt-Dt^* \sqrt{(Rb/t)}]$$

3.4.16.1 N/A for Weak Direction

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1 $S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$ S1 = 6.87 S2 = 131.3 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$ $\phi F_L = 31.09 \text{ ksi}$ $\phi F_L = 31.09 \text{ ksi}$ A = 1215.13 mm² 1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta y}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$y = 27.5 \text{ mm}$$

0.621 in³

3.4.18 h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²

28.2 ksi

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{rll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$
 $b/t = 24.5$
 $S1 = 12.21$

$$S2 = 32.70$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$\phi F_L = 28.2 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

1.03 in²

$P_{max} = 6.29 \text{ kips}$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14
$$L_b = 78.35 \text{ in}$$

$$J = 0.942$$

$$122.273$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \sqrt{(\text{LbSc})/(\text{Cb*} \sqrt{(\text{lyJ})/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$L_b = 78.35$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8$$

3.4.16

$$Bp - \frac{\theta_y}{\Omega} Fcy$$

$$S1 = \frac{Bp - \frac{1}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1 N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83375 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L$ \\ \text{ϕF}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Schletter, Inc.HCV

Model Name : Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-116.109	-116.109	0	0
2	M14	V	-116.109	-116.109	0	0
3	M15	V	-186.784	-186.784	0	0
4	M16	V	-186.784	-186.784	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	262.507	262.507	0	0
2	M14	V	201.928	201.928	0	0
3	M15	V	111.061	111.061	0	0
4	M16	У	111.061	111.061	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	885.665	2	1271.08	2	.544	1	.002	1	0	1	0	1
2		min	-1061.598	3	-1660.332	3	-31.352	5	185	4	0	1	0	1
3	N7	max	.026	9	973.289	1	826	12	002	12	0	1	0	1
4		min	26	2	-78.934	5	-269.946	4	526	4	0	1	0	1
5	N15	max	.014	9	2518.471	1_	0	12	0	12	0	1	0	1
6		min	-2.515	2	-162.54	3	-254.82	4	504	4	0	1	0	1
7	N16	max	2926.545	2	3889.078	2	0	2	0	2	0	1	0	1
8		min	-3197.418	3	-5179.75	3	-31.514	5	187	4	0	1	0	1
9	N23	max	.04	14	973.289	1_	10.774	1	.021	1	0	1	0	1
10		min	26	2	-19.873	3	-261.468	5	513	4	0	1	0	1
11	N24	max	885.665	2	1271.08	2	055	12	0	12	0	1	0	1
12		min	-1061.598	3	-1660.332	3	-32.084	5	186	4	0	1	0	1
13	Totals:	max	4694.841	2	10595.392	2	0	1						
14		min	-5320.817	3	-8702.699	3	-876.031	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	67.527	4	419.286	2	-9.544	12	0	15	.182	4	0	4
2			min	5.349	12	-750.938	3	-161.522	1	014	2	.015	12	0	3
3		2	max	61.244	1	291.674	2	-7.746	12	0	15	.117	4	.551	3
4			min	5.349	12	-529.56	3	-123.374	1	014	2	.003	10	306	2
5		3	max	61.244	1	164.061	2	-5.949	12	0	15	.07	5	.912	3
6			min	5.349	12	-308.183	3	-85.226	1	014	2	041	1	502	2
7		4	max	61.244	1	36.449	2	-4.151	12	0	15	.039	5	1.082	3
8			min	5.349	12	-86.805	3	-47.078	1	014	2	098	1	589	2
9		5	max	61.244	1	134.573	3	.11	10	0	15	.011	5	1.062	3
10			min	5.349	12	-91.163	2	-34.569	4	014	2	122	1	565	2
11		6	max	61.244	1	355.95	3	29.218	1	0	15	007	12	.85	3
12			min	1.197	15	-218.775	2	-28.996	5	014	2	114	1	432	2
13		7	max	61.244	1	577.328	3	67.367	1	0	15	006	12	.448	3
14			min	-8.212	5	-346.388	2	-26.26	5	014	2	072	1	188	2
15		8	max	61.244	1	798.705	3	105.515	1	0	15	.005	2	.165	2
16			min	-18.373	5	-474	2	-23.524	5	014	2	062	4	144	3
17		9	max	61.244	1	1020.083	3	143.663	1	0	15	.11	1	.628	2
18			min	-28.535	5	-601.612	2	-20.788	5	014	2	08	5	927	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
19		10	max	61.75	4	729.224	2	-6.634	12	.014	2	.25	1	1.201	2
20			min	5.349	12	-1241.461	3	-181.811	1	004	3	.004	12	-1.901	3
21		11	max	61.244	1	601.612	2	-4.836	12	.014	2	.121	4	.628	2
22		40	min	5.349	12	-1020.083	3	-143.663	1	0	15	003	3	927	3
23		12	max	61.244	1	474	2	-3.039	12	.014	2	.061	4	.165	2
24		4.0	min	5.349	12	-798.705	3	-105.515	1	0	15	008	3	144	3
25		13	max	61.244	1	346.388	2	-1.241	12	.014	2	.029	5	.448	3
26			min	5.349	12	-577.328	3	-67.367	1	0	15	072	1_	188	2
27		14	max	61.244	1	218.775	2	1.142	3	.014	2	0	15	.85	3
28			min	4.532	15	-355.95	3	-40.004	4	0	15	114	1	432	2
29		15	max	61.244	1	91.163	2	8.93	1	.014	2	005	12	1.062	3
30			min	-3.31	5	-134.573	3	-30.283	5	0	15	122	1_	565	2
31		16	max	61.244	1	86.805	3	47.078	1	.014	2	003	12	1.082	3
32			min	-13.471	5	-36.449	2	-27.547	5	0	15	098	1	589	2
33		17	max	61.244	1	308.183	3	85.226	1	.014	2	.003	3	.912	3
34			min	-23.633	5	-164.061	2	-24.811	5	0	15	086	4	502	2
35		18	max	61.244	1	529.56	3	123.374	1_	.014	2	.049	1	.551	3
36			min	-33.794	5	-291.674	2	-22.075	5	0	15	096	5	306	2
37		19	max	61.244	1	750.938	3	161.522	1	.014	2	.171	1_	0	2
38			min	-43.956	5	-419.286	2	-19.339	5	0	15	114	5	0	3
39	M14	1	max	42.152	4	491.832	2	-9.914	12	.014	3	.266	4	0	4
40			min	2.879	12	-619.437	3	-168.55	1	015	2	.017	12	0	3
41		2	max	39.016	1	364.22	2	-8.116	12	.014	3	.182	4	.461	3
42			min	2.879	12	-450.225	3	-130.402	1	015	2	.006	10	369	2
43		3	max	39.016	1	236.608	2	-6.319	12	.014	3	.11	5	.775	3
44			min	2.879	12	-281.013	3	-92.253	1	015	2	017	1	627	2
45		4	max	39.016	1	108.995	2	-4.521	12	.014	3	.062	5	.945	3
46			min	1.772	15	-111.8	3	-68.297	4	015	2	08	1	776	2
47		5	max	39.016	1	57.412	3	722	10	.014	3	.016	5	.968	3
48			min	-7.541	5	-20.745	1	-56.737	4	015	2	11	1	815	2
49		6	max	39.016	1	226.624	3	22.191	1	.014	3	006	12	.846	3
50			min	-17.703	5	-146.229	2	-49.171	5	015	2	108	1	744	2
51		7	max	39.016	1	395.837	3	60.339	1	.014	3	006	12	.578	3
52			min	-27.864	5	-273.841	2	-46.435	5	015	2	087	4	563	2
53		8	max	39.016	1	565.049	3	98.487	1	.014	3	.003	2	.164	3
54			min	-38.026	5	-401.454	2	-43.699	5	015	2	111	4	272	2
55		9	max	39.016	1	734.261	3	136.635	1	.014	3	.097	1	.143	1
56			min	-48.187	5	-529.066	2	-40.963	5	015	2	144	5	396	3
57		10	max	72.796	4	656.678	2	-6.264	12	.015	2	.266	4	.639	2
58			min	2.879	12	-903.474	3	-174.784	1	014	3	.003	12	-1.101	3
59		11	max		4	529.066	2	-4.466	12	.015	2	.181	4	.143	1
60			min	2.879	12	-734.261	3	-136.635	1	014	3	003	3	396	3
61		12	max	52.473	4	401.454	2	-2.669	12	.015	2	.107	4	.164	3
62			min	2.879	12	-565.049	3	-98.487	1	014	3	007	3	272	2
63		13	max	42.311	4	273.841	2	871	12	.015	2	.058	5	.578	3
64		T.	min	2.879	12	-395.837	3	-69.439	4	014	3	072	1	563	2
65		14	max	39.016	1	146.229	2	1.703	3	.015	2	.012	5	.846	3
66			min	2.879	12	-226.624	3	-57.879	4	014	3	108	1	744	2
67		15	max	39.016	1	20.745	1	15.957	1	.015	2	004	12	.968	3
68		13	min	2.879	12	-57.412	3	-49.443	5	014	3	11	1	815	2
69		16	max	39.016	1	111.8	3	54.105	1	.015	2	001	12	.945	3
70		10	min	1.638	15	-108.995	2	-46.707	5	014	3	093	4	776	2
71		17	max	39.016	1	281.013	3	92.253	1	.015	2	.006	3	.775	3
72		1/	min	-7.699	5	-236.608	2	-43.971	5	014	3	118	4	627	2
73		18		39.016	1	450.225	3	130.402	<u> </u>	.015	2	.079	1	627 .461	3
		10	max		5		2	-41.235	5		3	149	5		2
74		10	min	<u>-17.861</u>		-364.22				014				369	_
75		19	max	39.016	1	619.437	3	168.55	1	.015	2	.207	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]								z-z Mome	
76			min	-28.022	5	-491.832	2	-38.499	5	014	3	183	5	0	3
77	M15	1	max	82.561	5	697.332	2	-9.744	12	.016	2	.334	4	0	2
78			min	-41.118	1	-356.195	3	-168.535	1	012	3	.017	12	0	3
79		2	max	72.399	5	508.861	2	-7.947	12	.016	2	.235	4	.268	3
80			min	-41.118	1	-265.229	3	-130.387	1	012	3	.006	10	519	2
81		3	max	62.238	5	320.39	2	-6.149	12	.016	2	.148	5	.457	3
82			min	-41.118	1	-174.263	3	-96.866	4	012	3	017	1	876	2
83		4	max	52.076	5	131.918	2	-4.352	12	.016	2	.085	5	.568	3
84		_	min	-41.118	1	-83.298	3	-85.306	4	012	3	08	1	-1.071	2
85		5	max	41.914	5	7.668	3	801	10	.016	2	.025	5	.6	3
86		5		-41.118	1	-56.553	2	-73.747	4	012	3	111	1	-1.104	2
			min										-		_
87		6	max	31.753	5	98.634	3_	22.206	1	.016	2	006	12	.554	3
88		_	min	-41.118	1	-245.024	2	-66.123	5	012	3	108	1	974	2
89		7	max	21.591	5	189.6	3	60.354	1	.016	2	006	12	.43	3
90			min	-41.118	1	-433.496	2	-63.387	5	012	3	107	4	682	2
91		8	max	11.43	5	280.565	3	98.502	1	.016	2	.002	2	.228	3
92			min	-41.118	1	-621.967	2	-60.651	5	012	3	146	4	227	2
93		9	max	1.268	5	371.531	3	136.651	1	.016	2	.097	1	.39	2
94			min	-41.118	1	-810.438	2	-57.915	5	012	3	193	5	053	3
95		10	max	-3.669	12	998.909	2	-6.434	12	.012	3	.331	4	1.169	2
96			min	-41.118	1	-462.497	3	-174.799	1	016	2	.004	12	412	3
97		11	max	-3.669	12	810.438	2	-4.636	12	.012	3	.231	4	.39	2
98			min	-41.118	1	-371.531	3	-136.651	1	016	2	002	3	053	3
99		12	max	-3.669	12	621.967	2	-2.839	12	.012	3	.142	4	.228	3
100		12	min	-41.118	1	-280.565	3	-98.502	1	016	2	007	3	227	2
101		13			12	433.496	2	-1.041	12	.012	3	.078	5	.43	3
		13	max	-3.669									_		
102		4.4	min	<u>-41.118</u>	1	-189.6	3	-86.496	4	016	2	072	1	682	2
103		14	max	<u>-3.669</u>	12	245.024	2	1.421	3	.012	3	.018	5	<u>.554</u>	3
104			min	-48.915	4	-98.634	3	-74.936	4	016	2	108	1	974	2
105		15	max	-3.669	12	56.553	2	15.942	1	.012	3	005	12	.6	3
106			min	-59.077	4	-7.668	3	-66.4	5	016	2	111	1	-1.104	2
107		16	max	-3.669	12	83.298	3	54.09	1	.012	3	002	12	.568	3
108			min	-69.238	4	-131.918	2	-63.664	5	016	2	116	4	-1.071	2
109		17	max	-3.669	12	174.263	3	92.238	1	.012	3	.005	3	.457	3
110			min	-79.4	4	-320.39	2	-60.928	5	016	2	156	4	876	2
111		18	max	-3.669	12	265.229	3	130.387	1	.012	3	.078	1	.268	3
112			min	-89.561	4	-508.861	2	-58.192	5	016	2	202	5	519	2
113		19	max	-3.669	12	356.195	3	168.535	1	.012	3	.207	1	0	2
114			min	-99.723	4	-697.332	2	-55.456	5	016	2	251	5	0	5
115	M16	1	max	76.996	5	628.583	2	-9.014	12	.008	1	.239	4	0	2
116	IVITO	<u> </u>		-69.372	1	-295.414			1	014	3	.013	12	0	3
117		2		66.834			2				1			.215	3
					5	440.111		-7.217	12	.008		.162	4		
118		2	min	-69.372	1	-204.448	3	-123.977	1	014	3	.004	10	<u>46</u>	2
119		3	max	56.673	5	251.64	2	-5.419	12	.008	1	.103	5	.352	3
120		_	min	-69.372	1	-113.482	3	-85.829	1	014	3	04	1	<u>758</u>	2
121		4	max	46.511	5	63.169	2	-3.622	12	.008	1	.06	5	.411	3
122			min	-69.372	1	-22.516	3	-60.313	4	014	3	097	1	894	2
123		5	max	36.349	5	68.449	3	23	10	.008	1	.019	5	.391	3
124			min	-69.372	1	-125.302	2	-48.753	4	014	3	122	1	867	2
125		6	max	26.188	5	159.415	3	28.615	1	.008	1	006	12	.293	3
126			min	-69.372	1	-313.774	2	-42.967	5	014	3	114	1	678	2
127		7	max	16.026	5	250.381	3	66.764	1	.008	1	005	12	.116	3
128			min	-69.372	1	-502.245	2	-40.231	5	014	3	073	4	326	2
129		8	max	5.865	5	341.347	3	104.912	1	.008	1	.004	2	.187	2
130			min	-69.372	1	-690.716	2	-37.495	5	014	3	09	4	138	3
131		9	max	-2.812	15	432.312	3	143.06	1	.008	1	.108	1	.863	2
132		-	min		1	-879.187	2	-34.759	5	014	3	119	5	472	3
132			1111111	-03.312		3013.101		-0 4 .708	J	014	J	119	J	412	⊥ J

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]			l .		
133		10	max	-5.331	12	1067.659	2	-7.163	12	.014	3	.248	1	1.701	2
134		4.4	min	-69.372	1_	-523.278	3	-181.208	1	008	1	.006	12	883	3
135		11	max	-3.741	<u>15</u>	879.187	2	-5.366	12	.014	3_	.161	4	.863	2
136		40	min	-69.372	1_	-432.312	3	-143.06	1	008	1	0	3	472	3
137		12	max	-5.331	12	690.716	2	-3.568	12	.014	3	.089	4	.187	2
138		10	min	-69.372	1_	-341.347	3	-104.912	1	008	1	005	3	138	3
139		13	max	-5.331	12	502.245	2	-1.771	12	.014	3	.044	5	.116	3
140			min	-69.372	1_	-250.381	3	-66.764	1	008	1	073	1_	326	2
141		14	max	-5.331	12	313.774	2	.258	3	.014	3	.003	5	.293	3
142			min	-69.372	1_	-159.415	3	<u>-53.991</u>	4	008	1_	114	1	678	2
143		15	max	-5.331	12	125.302	2	9.533	1	.014	3	005	12	.391	3
144			min	-69.372	_1_	-68.449	3	-44.222	5	008	1_	122	1_	867	2
145		16	max	-5.331	12	22.516	3	47.681	1	.014	3	003	12	.411	3
146			min	-73.668	4	-63.169	2	-41.486	5	008	1_	097	1	894	2
147		17	max	-5.331	12	113.482	3	85.829	1	.014	3_	.002	3	.352	3
148			min	-83.83	4	-251.64	2	-38.75	5	008	1_	118	4	758	2
149		18	max	-5.331	12	204.448	3	123.977	1	.014	3	.051	1	.215	3
150			min	-93.992	4	-440.111	2	-36.014	5	008	1_	14	5	46	2
151		19	max		12	295.414	3	162.125	1_	.014	3	.174	1_	0	2
152			min	-104.153	4	-628.583	2	-33.278	5	008	1	17	5	0	5
153	M2	1	max		2	2.06	4	.34	1	0	3	0	3	0	1
154			min	-1451.205	3	.5	15	-25.399	4	0	4_	0	2	0	1
155		2	max	1066.142	2	1.989	4	.34	1	0	3	0	1	0	15
156			min	-1450.808	3	.483	15	-25.86	4	0	4	009	4	0	4
157		3	max	1066.671	2	1.918	4	.34	1	0	3	0	1	0	15
158			min	-1450.411	3	.466	15	-26.321	4	0	4	019	4	001	4
159		4	max	1067.2	2	1.847	4	.34	1	0	3	0	1	0	15
160			min	-1450.014	3	.449	15	-26.782	4	0	4	028	4	002	4
161		5	max	1067.73	2	1.775	4	.34	1	0	3	0	1	0	15
162			min	-1449.617	3	.433	15	-27.243	4	0	4	038	4	003	4
163		6	max	1068.259	2	1.704	4	.34	1	0	3	0	1	0	15
164			min	-1449.22	3	.416	15	-27.705	4	0	4	048	4	003	4
165		7	max	1068.788	2	1.633	4	.34	1	0	3	0	1	0	15
166			min	-1448.823	3	.399	15	-28.166	4	0	4	058	4	004	4
167		8	max	1069.318	2	1.562	4	.34	1	0	3	0	1	001	15
168			min	-1448.426	3	.383	15	-28.627	4	0	4	068	4	005	4
169		9	max	1069.847	2	1.491	4	.34	1	0	3	0	1	001	15
170			min	-1448.029	3	.366	15	-29.088	4	0	4	078	4	005	4
171		10	max	1070.376	2	1.42	4	.34	1	0	3	.001	1	001	15
172				-1447.632	3	.349	15	-29.55	4	0	4	089	4	006	4
173		11		1070.905	2	1.349	4	.34	1	0	3	.001	1	001	15
174				-1447.235	3	.333	15	-30.011	4	0	4	099	4	006	4
175		12		1071.435	2	1.278	4	.34	1	0	3	.001	1	002	15
176				-1446.838	3	.306	12	-30.472	4	0	4	11	4	007	4
177		13		1071.964	2	1.207	4	.34	1	0	3	.001	1	002	15
178				-1446.441	3	.278	12	-30.933	4	0	4	121	4	007	4
179		14		1072.493	2	1.136	4	.34	1	0	3	.002	1	002	15
180				-1446.044	3	.251	12	-31.394	4	0	4	132	4	007	4
181		15		1073.023	2	1.065	4	.34	1	0	3	.002	1	002	15
182		10		-1445.648	3	.223	12	-31.856	4	0	4	144	4	002	4
183		16		1073.552	2	.994	4	.34	1	0	3	.002	1	002	15
184		10	min	-1445.251	3	.195	12	-32.317	4	0	4	155	4	002	4
185		17	_	1074.081	2	.923	4	.34	1	0	3	.002	1	002	15
186		17		-1444.854	3	.167	12	-32.778	4	0	4	167	4	002	4
187		18		1074.61	2	.853	2	.34	1	-	3	.002	1	009	15
188		10	min		3		12	-33.239	4	0	<u>3</u>		_	002	4
		10				.14						179	4		
189		19	шах	1075.14	2	.798	2	.34	1	0	3	.002	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC		LC		LC_
190			min	-1444.06	3	.112	12	-33.701	4	0	4	191	4	009	4
191	M3	1	max	799.085	2	8.903	4	1.468	4	0	12	0	1	.009	4
192			min	-938.363	3	2.104	15	.022	12	0	4	02	4	.002	15
193		2	max	798.914	2	8.034	4	2.073	4	0	12	0	1	.005	2
194			min	-938.491	3	1.9	15	.022	12	0	4	02	4	0	12
195		3	max		2	7.165	4	2.678	4	0	12	0	1	.002	2
196			min	-938.619	3	1.696	15	.022	12	0	4	019	4	0	3
197		4	max	798.573	2	6.296	4	3.284	4	0	12	0	1	0	2
198			min	-938.747	3	1.492	15	.022	12	0	4	017	4	003	3
199		5	max	798.403	2	5.427	4	3.889	4	0	12	0	1	0	15
200			min	-938.874	3	1.287	15	.022	12	0	4	015	5	004	6
201		6	max	798.233	2	4.558	4	4.494	4	0	12	0	1	001	15
202			min	-939.002	3	1.083	15	.022	12	0	4	014	5	007	6
203		7	max	798.062	2	3.689	4	5.099	4	0	12	.001	1	002	15
204			min	-939.13	3	.879	15	.022	12	0	4	011	5	009	6
205		8	max	797.892	2	2.82	4	5.704	4	0	12	.001	1	002	15
206				-939.258	3	.675	15	.022	12	0	4	009	5	01	6
207		9	max		2	1.952	4	6.309	4	0	12	.001	1	003	15
208			min	-939.386	3	.47	15	.022	12	0	4	006	5	011	6
209		10	max	797.551	2	1.083	4	6.914	4	0	12	.001	1	003	15
210			min	-939.513	3	.266	15	.022	12	0	4	003	5	012	6
211		11	max		2	.311	2	7.519	4	0	12	.002	1	003	15
212			_	-939.641	3	118	3	.022	12	0	4	0	12	012	6
213		12	max	797.211	2	142	15	8.124	4	0	12	.004	4	003	15
214		12		-939.769	3	656	6	.022	12	0	4	0	12	012	6
215		13	max		2	347	15	8.729	4	0	12	.008	4	003	15
216		13	min		3	-1.525	6	.022	12	0	4	0	12	012	6
217		14	max	796.87	2	551	15	9.334	4	0	12	.013	4	002	15
218		14	min	-940.024	3	-2.394	6	.022	12	0	4	013 0	12	002 011	6
		15			2	-2.394 755	_	9.939			12			011 002	
219 220		15	max	796.7 -940.152	3	-3.263	<u>15</u>	.022	<u>4</u> 12	0	4	<u>.017</u>	12	002 009	15
221		16	min		2	- <u>3.263</u> 959	15	10.544	4	0	12	.022		009 002	15
		16	max						12			_	12		
222		47	min	-940.28	3	-4.132	6	.022		0	4	0		008	6
223		17	max	796.359	2	-1.164	15	11.149	4	0	12	.027	4	001	15
224		40		-940.408	3	-5.001	6	.022	12	0	4	0	12	006	6
225		18	max		2	-1.368	15	11.755	4	0	12	.032	4	0	15
226		40		-940.535	3	-5.87	6	.022	12	0	4	0	12	003	6
227		19		796.018	2	-1.572	15	12.36	4	0	12	.038	4	0	1
228			min	-940.663	3	-6.738	6	.022	12	0	4	0	12	0	1
229	M4	1		970.223	_1_	0	1	826	12	0	1	.031	4	0	1
230				-80.365	5	0	1	-268.022		0	1	0	12	0	1
231		2		970.394	_1_	0	1	826	12	0	1	0	1	0	1
232			_	-80.286	5_	0	1	-268.17	4	0	1	0	5	0	1
233		3		970.564	1_	0	1	826	12	0	1	0	12	0	1
234				-80.206	5	0	1	-268.318	4	0	1	031	4	0	1
235		4		970.734	_1_	0	1_	826	12	0	1	0	12	0	1
236			min	-80.127	5	0	1	-268.465	4	0	1	062	4	0	1
237		5	max		_1_	0	1	826	12	0	1	0	12	0	1
238			min	-80.047	5	0	1	-268.613	4	0	1	093	4	0	1
239		6	max	971.075	_1_	0	1	826	12	0	1	0	12	0	1
240			min	-79.968	5	0	1	-268.76	4	0	1	123	4	0	1
241		7	max	971.245	1	0	1	826	12	0	1	0	12	0	1
242			min	-79.888	5	0	1	-268.908	4	0	1	154	4	0	1
243		8		971.416	1	0	1	826	12	0	1	0	12	0	1
244				-79.809	5	0	1	-269.056	4	0	1	185	4	0	1
245		9	max		1	0	1	826	12	0	1	0	12	0	1
246				-79.729	5	0	1	-269.203	4	0	1	216	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

0.47	Member	Sec		Axial[lb]						Torque[k-ft]		1 -			
247		10	max		<u>1</u> 5	0	1	826	12	0	<u>1</u> 1	247	12	0	1
248		11	min	-79.65 971.927	<u>ວ</u> 1	0	1	-269.351 826	<u>4</u> 12	0	1	247 0	12	0	1
250		11	max min	-79.57	5	0	1	-269.499	4	0	1	278	4	0	1
251		12	max			0	1	826	12	0	1	0	12	0	1
252		12	min	-79.491	5	0	1	-269.646	4	0	1	309	4	0	1
253		13	max		1	0	1	826	12	0	1	0	12	0	1
254		10	min	-79.411	5	0	1	-269.794	4	0	1	34	4	0	1
255		14	max		1	0	1	826	12	0	1	001	12	0	1
256			min	-79.332	5	0	1	-269.941	4	0	1	371	4	0	1
257		15	max		1	0	1	826	12	Ö	1	001	12	0	1
258			min	-79.252	5	0	1	-270.089	4	0	1	402	4	0	1
259		16	max		1	0	1	826	12	0	1	001	12	0	1
260			min	-79.173	5	0	1	-270.237	4	0	1	433	4	0	1
261		17	max	972.949	1	0	1	826	12	0	1	001	12	0	1
262			min	-79.093	5	0	1	-270.384	4	0	1	464	4	0	1
263		18	max	973.119	1	0	1	826	12	0	1	001	12	0	1
264			min	-79.014	5	0	1	-270.532	4	0	1	495	4	0	1
265		19	max	973.289	1	0	1	826	12	0	1	002	12	0	1
266			min	-78.934	5	0	1	-270.68	4	0	1	526	4	0	1
267	M6	1	max	3238.028	2	2.283	2	0	1	0	1	0	4	0	1
268			min	-4531.446	3	.246	12	-25.687	4	0	4	0	1	0	1
269		2		3238.558	2	2.227	2	0	1	0	1	0	1	0	12
270			min	-4531.049	3	.218	12	-26.148	4	0	4	009	4	0	2
271		3	max	3239.087	2	2.172	2	0	1	0	1	0	1	0	12
272			min	-4530.652	3	.191	12	-26.609	4	0	4	019	4	002	2
273		4		3239.616	2	2.117	2	0	1	0	1	0	1	0	12
274			min	-4530.255	3	.154	3	-27.071	4	0	4	028	4	002	2
275		5	max	3240.146	2	2.061	2	0	1	0	1	0	1	0	12
276			min	-4529.858	3	.112	3	-27.532	4	0	4	038	4	003	2
277		6	max	3240.675	2	2.006	2	0	1	0	1_	0	1	0	3
278			min	-4529.461	3	.071	3	-27.993	4	0	4	048	4	004	2
279		7	max	3241.204	2	1.951	2	0	1	0	1_	0	1	0	3
280			min		3	.029	3	-28.454	4	0	4	058	4	005	2
281		8	max	3241.734	2	1.895	2	0	1	0	_1_	0	1_	0	3
282			min	-4528.667	3	012	3	-28.915	4	0	4	069	4	005	2
283		9	max	3242.263	2	1.84	2	0	1	0	_1_	0	1	0	3
284			min	-4528.27	3	054	3	-29.377	4	0	4	079	4	006	2
285		10	max	3242.792	2	1.785	2	0	1	0	1_	0	1	0	3
286			min		3	095	3	-29.838	4	0	4	09	4	007	2
287		11		3243.321	2	1.729	2	0	1	0	_1_	0	1_	0	3
288			min	-4527.476	3_	137	3	-30.299	4	0	4	1	4	007	2
289		12		3243.851	2	1.674	2	0	1	0	1	0	1	0	3
290				-4527.079	3	178	3	-30.76	4	0	4	111	4	008	2
291		13		3244.38	2	1.618	2	0	1	0	1	0	1	0	3
292			min		3	22	3	-31.222	4	0	4_	122	4	008	2
293		14		3244.909	2	1.563	2	0	1	0	_1_	0	1	0	3
294				-4526.286	3_	261	3	-31.683	4	0	4_	134	4	009	2
295		15		3245.439	2	1.508	2	0	1	0	1_	0	1	0	3
296				-4525.889	3	303	3	-32.144	4	0	4	145	4	01	2
297		16		3245.968	2	1.452	2	0	1	0	1_	0	1	0	3
298			min	-4525.492	3_	344	3	-32.605	4	0	4	157	4	01	2
299		17		3246.497	2	1.397	2	0	1	0	1	0	1	0	3
300				-4525.095	3	386	3	-33.066	4	0	4	169	4	011	2
301		18		3247.026	2	1.342	2	0	1	0	_1_	0	1	0	3
302				-4524.698	3_	427	3	-33.528	4	0	4_	181	4	011	2
303		19	max	3247.556	2	1.286	2	0	1	0	_1_	0	1	0	3

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC.
304			min	-4524.301	3	469	3	-33.989	4	0	4	193	4_	012	2
305	M7	1		2671.639	2	8.9	6	1.056	4	0	1	0	1	.012	2
306			min	-2807.014	3	2.09	15	0	1	0	4	021	4_	0	3
307		2		2671.468	2	8.031	6	1.661	4	0	1	0	1	.008	2
308			min	-2807.142	3	1.886	15	0	1	0	4	02	4_	003	3
309		3	_	2671.298	2	7.162	6	2.266	4	0	1	0	1	.005	2
310			min	-2807.27	3	1.682	15	0	1	0	4	019	4_	004	3
311		4		2671.128	2	6.293	6	2.871	4	0	1	0	_1_	.002	2
312			min	-2807.397	3	1.477	15	0	1	0	4	018	4	006	3
313		5		2670.957	2	5.424	6	3.476	4	0	1	0	1	0	2
314			min	-2807.525	3	1.273	15	0	1	0	4	016	4_	007	3
315		6		2670.787	2	4.555	6	4.081	4	0	1	0	1	002	15
316			min	-2807.653	3_	1.069	15	0	1	0	4	015	4_	008	3
317		7		2670.617	2	3.686	6	4.686	4	0	1	0	1	002	15
318			min	-2807.781	3	.865	15	0	1	0	4	013	4_	009	3
319		8		2670.446	2	2.818	6	5.291	4	0	1	0	1	002	15
320			min	-2807.908	3_	.66	15	0	1_	0	4	01	4_	01	4
321		9		2670.276	2	2.037	2	5.896	4	0	1	0	1_	003	15
322			min	-2808.036	3	.336	12	0	1	0	4	008	4	011	4
323		10		2670.106	2	1.36	2	6.501	4	0	1	0	1_	003	15
324			min	-2808.164	3	073	3	0	1	0	4	005	5	012	4
325		11		2669.935	2	.683	2	7.107	4	0	1	0	1_	003	15
326			min	-2808.292	3_	58	3	0	1	0	4	002	5	012	4
327		12		2669.765	2	.006	2	7.712	4	0	_1_	.002	4_	003	15
328			min	-2808.42	3	-1.088	3	0	1	0	4	0	1_	012	4
329		13	max	2669.595	2	361	15	8.317	4	0	1	.006	4	003	15
330			min	-2808.547	3	-1.596	3	0	1	0	4	0	1	012	4
331		14	max	2669.424	2	565	15	8.922	4	0	1	.01	4	003	15
332			min	-2808.675	3	-2.396	4	0	1	0	4	0	1	011	4
333		15	max	2669.254	2	769	15	9.527	4	0	1	.014	4	002	15
334			min	-2808.803	3	-3.265	4	0	1	0	4	0	1	009	4
335		16	max	2669.083	2	974	15	10.132	4	0	1_	.019	4	002	15
336			min	-2808.931	3	-4.134	4	0	1	0	4	0	1_	008	4
337		17	max	2668.913	2	-1.178	15	10.737	4	0	1	.024	4	001	15
338			min	-2809.058	3	-5.002	4	0	1	0	4	0	1	006	4
339		18	max	2668.743	2	-1.382	15	11.342	4	0	1_	.029	4	0	15
340			min	-2809.186	3	-5.871	4	0	1	0	4	0	1	003	4
341		19	max	2668.572	2	-1.586	15	11.947	4	0	1_	.034	4	0	1
342			min	-2809.314	3	-6.74	4	0	1	0	4	0	1	0	1
343	M8	1	max	2515.404	_1_	0	1	0	1	0	1	.028	4	0	1
344			min	-164.84	3	0	1	-256.072	4	0	1	0	1	0	1
345		2	max	2515.575	_1_	0	1	0	1	0	1	0	_1_	0	1
346			min		3	0	1	-256.22	4	0	1	002	4	0	1
347		3		2515.745		0	1	0	1	0	1	0	1	0	1
348			min	-164.584	3	0	1	-256.368	4	0	1	031	4	0	1
349		4	max	2515.915	1	0	1	0	1	0	1	0	1_	0	1
350				-164.456		0	1	-256.515	4	0	1	061	4	0	1
351		5		2516.086		0	1	0	1	0	1	0	1	0	1
352				-164.329		0	1	-256.663	4	0	1	09	4	0	1
353		6		2516.256	1	0	1	0	1	0	1	0	1	0	1
354				-164.201	3	0	1	-256.811	4	0	1	12	4	0	1
355		7		2516.426	1	0	1	0	1	0	1	0	1	0	1
356				-164.073	3	0	1	-256.958	4	0	1	149	4	0	1
357		8		2516.597	1	0	1	0	1	0	1	0	1	0	1
358				-163.945		0	1	-257.106	4	0	1	179	4	0	1
359		9		2516.767	1	0	1	0	1	0	1	0	1	0	1
360				-163.818	3	0	1	-257.254	4	0	1	208	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

004	Member	Sec		Axial[lb]						Torque[k-ft]		J* *	LC	_	
361		10		2516.937	1_	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	-163.69	3	0	1	-257.401	4_	0	<u>1</u> 1	238	4	0	1
363 364		11		2517.108 -163.562	<u>1</u> 3	0	1	0 -257.549	4	0	1	267	4	0	1
365		12		2517.278	<u>ა</u> 1	0	1	0	1	0	1	0	1	0	1
366		12		-163.434	3	0	1	-257.696	4	0	1	297	4	0	1
367		13		2517.449	1	0	1	0	1	0	1	0	1	0	1
368		10		-163.307	3	0	1	-257.844	4	0	1	326	4	0	1
369		14		2517.619	1	0	1	0	1	0	1	0	1	0	1
370				-163.179	3	0	1	-257.992	4	0	1	356	4	0	1
371		15		2517.789	1	0	1	0	1	Ö	1	0	1	0	1
372			min	-163.051	3	0	1	-258.139	4	0	1	386	4	0	1
373		16	max		1	0	1	0	1	0	1	0	1	0	1
374				-162.923	3	0	1	-258.287	4	0	1	415	4	0	1
375		17	max		1	0	1	0	1	0	1	0	1	0	1
376				-162.796	3	0	1	-258.435	4	0	1	445	4	0	1
377		18	max	2518.3	1	0	1	0	1	0	1	0	1	0	1
378			min	-162.668	3	0	1	-258.582	4	0	1	475	4	0	1
379		19	max	2518.471	1	0	1	0	1	0	1	0	1	0	1
380			min	-162.54	3	0	1	-258.73	4	0	1	504	4	0	1
381	M10	1	max	1065.613	2	1.99	6	028	12	0	1	0	4	0	1
382			min	-1451.205	3	.452	15	-25.61	4	0	5	0	3	0	1
383		2		1066.142	2	1.919	6	028	12	0	_1_	0	10	0	15
384				-1450.808	3	.436	15	-26.071	4	0	5	009	4	0	6
385		3	max	1066.671	2	1.848	6	028	12	0	1_	0	10	0	15
386			min	-1450.411	3	.419	15	-26.532	4	0	5	019	4	001	6
387		4	max	1067.2	2	1.777	6	028	12	0	1_	0	10	0	15
388			min	-1450.014	3	.402	15	-26.993	4_	0	5	028	4	002	6
389		5		1067.73	2	1.705	6	028	12	0	1_	0	10	0	15
390			min	-1449.617	3	.385	15	-27.454	4	0	5	038	4	003	6
391		6		1068.259	2	1.634	6	028	12	0	1	0	10	0	15
392		7	min	-1449.22	3	.369	15	-27.916 028	<u>4</u> 12	0	<u>5</u> 1	048 0	12	003	6
393 394			min	1068.788	3	1.563 .352	6 15	-28.377	4	0	5	058	4	004	15
395		8	_	1069.318	2	1.492	6	028	12	0	<u> </u>	036	12	004	15
396		0	min	-1448.426	3	.335	15	-28.838	4	0	5	068	4	004	6
397		9	_	1069.847	2	1.421	6	028	12	0	1	0	12	004	15
398		3	min		3	.319	15	-29.299	4	0	5	079	4	005	6
399		10		1070.376	2	1.35	6	028	12	0	1	0	12	001	15
400		10		-1447.632	3	.302	15	-29.761	4	0	5	089	4	005	6
401		11		1070.905	2	1.279	6	028	12	0	1	0	12	001	15
402				-1447.235	3	.285	15	-30.222	4	0	5	1	4	006	6
403		12		1071.435	2	1.208	6	028	12	0	1	0	12	001	15
404				-1446.838	3	.269	15	-30.683	4	0	5	111	4	006	6
405		13	max	1071.964	2	1.137	6	028	12	0	1	0	12	002	15
406				-1446.441	3	.252	15	-31.144	4	0	5	122	4	007	6
407		14		1072.493	2	1.074	2	028	12	0	1	0	12	002	15
408				-1446.044	3	.235	15	-31.605	4	0	5	133	4	007	6
409		15		1073.023	2	1.019	2	028	12	0	1	0	12	002	15
410				-1445.648	3	.219	15	-32.067	4	0	5	145	4	007	6
411		16	max	1073.552	2	.964	2	028	12	0	1	0	12	002	15
412			min	-1445.251	3	.195	12	-32.528	4	0	5	156	4	008	6
413		17		1074.081	2	.908	2	028	12	0	1	0	12	002	15
414				-1444.854	3	.167	12	-32.989	4	0	5	168	4	008	6
415		18		1074.61	2	.853	2	028	12	0	1	0	12	002	15
416			min		3	.14	12	-33.45	4	0	5	18	4	008	6
417		19	max	1075.14	2	.798	2	028	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	LC_
418				-1444.06	3	.112	12	-33.912	4	0	5	192	4	009	6
419	M11	1		799.085	2	8.849	6	1.294	4	0	1_	0	12	.009	6
420			min	-938.363	3	2.068	15	282	1	0	4	021	4	.002	15
421		2	max	798.914	2	7.98	6	1.899	4	0	1	0	12	.005	2
422			min	-938.491	3	1.864	15	282	1	0	4	02	4	0	12
423		3	max	798.744	2	7.112	6	2.504	4	0	1	0	12	.002	2
424			min	-938.619	3	1.66	15	282	1	0	4	019	4	0	3
425		4	max	798.573	2	6.243	6	3.109	4	0	1	0	12	0	2
426			min	-938.747	3	1.456	15	282	1	0	4	017	4	003	3
427		5	max	798.403	2	5.374	6	3.714	4	0	1	0	12	001	15
428				-938.874	3	1.251	15	282	1	0	4	016	4	005	4
429		6		798.233	2	4.505	6	4.319	4	0	1	0	12	002	15
430				-939.002	3	1.047	15	282	1	0	4	014	4	007	4
431		7		798.062	2	3.636	6	4.925	4	0	1	0	12	002	15
432			min	-939.13	3	.843	15	282	1	0	4	012	4	009	4
433		8	max		2	2.767	6	5.53	4	0	<u> </u>	0	12	003	15
434		T .	min	-939.258	3	.639	15	282	1	0	4	009	4	01	4
435		9	max		2	1.898	6	6.135	4	0	1	0	12	003	15
436		-		-939.386	3	.434	15	282	1	0	4	007	4	012	4
437		10	max	797.551	2	1.029	6	6.74	4	0	1	0	12	003	15
438		10		-939.513	3	.23	15	282	1	0	4	004	4	003 012	4
		11			2		2	7.345			1	004 0			_
439		11		797.381		.311			4	0			5	003	15
440		40	_	-939.641	3	118	3	282	1_	0	4_	002	1	012	4
441		12		797.211	2	178	15	7.95	4	0	1_	.004	5	003	15
442		40	min	-939.769	3	71	4	282	1_	0	4_	002	1	012	4
443		13	max	797.04	2	383	15	8.555	4	0	_1_	.007	5	003	15
444			min	-939.897	3	-1.578	4	282	1	0	4_	002	1	012	4
445		14	max	796.87	2	587	15	9.16	4	0	_1_	.012	5	003	15
446				-940.024	3	-2.447	4	282	1	0	4	002	1	011	4
447		15	max	796.7	2	791	15	9.765	4	0	_1_	.016	5	002	15
448				-940.152	3	-3.316	4	282	1	0	4	002	1	01	4
449		16	max		2	995	15	10.37	4	0	_1_	.021	5	002	15
450			min	-940.28	3	-4.185	4	282	1	0	4	002	1	008	4
451		17	max	796.359	2	-1.2	15	10.975	4	0	_1_	.026	5	001	15
452			min	-940.408	3	-5.054	4	282	1	0	4	002	1	006	4
453		18	max	796.189	2	-1.404	15	11.58	4	0	1	.031	5	0	15
454			min	-940.535	3	-5.923	4	282	1	0	4	002	1	003	4
455		19	max	796.018	2	-1.608	15	12.185	4	0	1	.037	5	0	1
456			min	-940.663	3	-6.792	4	282	1	0	4	003	1	0	1
457	M12	1	max	970.223	1	0	1	11.066	1	0	1	.03	5	0	1
458			min	-22.172	3	0	1	-261.149	4	0	1	002	1	0	1
459		2		970.394	1	0	1	11.066	1	0	1	0	12	0	1
460				-22.044	3	0	1	-261.297	4	0	1	0	1	0	1
461		3	max	970.564	1	0	1	11.066	1	0	1	0	1	0	1
462			min	-21.917	3	0	1	-261.445	4	0	1	031	4	0	1
463		4		970.734	1	0	1	11.066	1	0	1	.002	1	0	1
464				-21.789	3	0	1	-261.592	4	0	1	061	4	0	1
465		5		970.905	1	0	1	11.066	1	0	<u> </u>	.003	1	0	1
466		Ť		-21.661	3	0	1	-261.74	4	0	1	091	4	0	1
467		6		971.075	1	0	1	11.066	1	0	1	.004	1	0	1
468				-21.533	3	0	1	-261.887	4	0	1	121	4	0	1
469		7		971.245	<u> </u>	0	1	11.066	1	0	1	.006	1	0	1
470				-21.406	3	0	1	-262.035		0	1	151	4	0	1
471		8	_	971.416	<u> </u>	0	1	11.066	1	0	1	.007	1	0	1
		0					1				1		4	0	1
472		0	min	-21.278 071.596	3	0	1	<u>-262.183</u>	<u>4</u> 1	0	1	181	1	0	_
473		9	max		1			11.066	_			.008			1
474			min	-21.15	3	0	1	-262.33	4	0	1	211	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	971.756	1	0	1	11.066	1	0	1	.009	1	0	1
476			min	-21.022	3	0	1	-262.478	4	0	1	241	4	0	1
477		11	max	971.927	1	0	1	11.066	1	0	1	.011	1	0	1
478			min	-20.895	3	0	1	-262.626	4	0	1	271	4	0	1
479		12	max	972.097	1	0	1	11.066	1	0	1	.012	1	0	1
480			min	-20.767	3	0	1	-262.773	4	0	1	302	4	0	1
481		13	max	972.267	1	0	1	11.066	1	0	1	.013	1	0	1
482			min	-20.639	3	0	1	-262.921	4	0	1	332	4	0	1
483		14	max		1	0	1	11.066	1	0	1	.014	1	0	1
484			min	-20.511	3	0	1	-263.069	4	0	1	362	4	0	1
485		15	max	972.608	1	0	1	11.066	1	0	1	.016	1	0	1
486			min	-20.384	3	0	1	-263.216	4	0	1	392	4	0	1
487		16	max	972.778	1	0	1	11.066	1	0	1	.017	1	0	1
488			min	-20.256	3	0	1	-263.364	4	0	1	422	4	0	1
489		17	max	972.949	1	0	1	11.066	1	0	1	.018	1	0	1
490		1 '	min	-20.128	3	0	1	-263.511	4	0	1	453	4	0	1
491		18	max		1	0	1	11.066	1	0	1	.02	1	0	1
492		10	min	-20	3	0	1	-263.659	4	0	1	483	4	0	1
493		19	max		1	0	1	11.066	1	0	1	.021	1	0	1
494		19	min	-19.873	3	0	1	-263.807	4	0	1	513	4	0	1
494	M1	1		161.528	1	750.853	3	43.901	5	0	2	.171	1	0	15
496	IVI I		max		5	-418.32	2	-61.151	1	0	3	114	5	014	2
		2	min	-19.339 162.371				45.362	5						
497			max		1	749.759	3		<u>5</u> 1	0	2	.133	1	.246	2
498			min	-18.946	5	-419.779	2	-61.151		0	3	086	5	47	3
499		3	max	607.349	3	546.127	2	22.086	5	0	3	.095	1	.496	2
500		1	min	-365.063	2	-582.841	3	-60.957	1	0	2	058	5	92	3
501		4	max		3	544.668	2	23.546	5	0	3	.057	1	.158	1
502		_	min	-364.22	2	-583.936	3	-60.957	1_	0	2	044	5	<u>558</u>	3
503		5	max		3	543.209	2	25.006	5	0	3	.02	1	00 <u>5</u>	15
504			min	-363.378	2	-585.03	3	-60.957	1_	0	2	029	5	195	3
505		6	max		3	541.75	2	26.466	5	0	3	001	12	.168	3
506			min	-362.536	2	-586.124	3	-60.957	1_	0	2	018	1	517	2
507		7	max	609.876	3	540.291	2	27.926	5	0	3	.004	5	.532	3
508			min	-361.693	2	-587.218	3	-60.957	1	0	2	056	1	853	2
509		8	max	610.508	3	538.832	2	29.386	5	0	3	.022	5	.897	3
510			min	-360.851	2	-588.313	3	-60.957	1	0	2	094	1	-1.187	2
511		9	max		3	51.24	2	58.685	5	0	9	.061	1	1.044	3
512			min	-291.481	2	.437	15		1	0	3	132	5	-1.356	2
513		10	max		3	49.781	2	60.145	5	0	9	0	10	1.022	3
514			min	-290.638	2	007	5	-100.019	1	0	3	096	4	-1.387	2
515		11		627.586		48.322	2		5	0	9	005	12	1.001	3
516				-289.796	2	-1.833	4	-100.019		0	3	073	4	-1.418	2
517		12	max	643.121	3	396.431	3	151.993	5	0	2	.092	1	.877	3
518			min	-220.317	2	-647.242	2	-58.924	1	0	3	247	5	-1.258	2
519		13	max	643.753	3	395.337	3	153.453	5	0	2	.056	1	.632	3
520			min	-219.475	2	-648.701	2	-58.924	1	0	3	153	5	856	2
521		14	max	644.385	3	394.243	3	154.913	5	0	2	.019	1	.387	3
522				-218.632	2	-650.16	2	-58.924	1	0	3	057	5	453	2
523		15		645.017	3	393.148	3	156.373	5	0	2	.04	5	.142	3
524			min	-217.79	2	-651.619	2	-58.924	1	0	3	018	1	07	1
525		16		645.648	3	392.054	3	157.834	5	0	2	.137	5	.356	2
526				-216.948	2	-653.078	2	-58.924	1	0	3	054	1	101	3
527		17		646.28	3	390.96	3	159.294	5	0	2	.236	5	.761	2
528				-216.105		-654.537	2	-58.924	1	0	3	091	1	344	3
529		18	max	32.884	5	630.888	2	-5.331	12	0	5	.224	5	.383	2
530		0		-162.963	1	-294.464	3	-105.635		0	2	131	1	169	3
531		19	max		5	629.429	2	-5.331	12	0	5	.17	5	.014	3
001		10	παλ	00.211		J20.723		0.001	14					.017	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

533 M5		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
534	532			min	-162.12	1		3	-104.175	4	0	2	174	1	008	1
536	533	<u>M5</u>	1	max	363.61	1	2482.832	3	86.261	5	0	1	0	1	.029	2
536	534			min	13.269	12	-1454.231	2		1	0	4	231	4	0	15
S38	535		2	max	364.452	1	2481.738	3	87.721	5	0	1	0	1	.932	2
538	536			min	13.69	12	-1455.69	2	0	1	0	4	178	4	-1.532	3
Sag	537		3	max	1863.261	3	1457.839	2	67.061	4	0	4	0	1	1.804	2
539	538			min	-1160.501	2	-1704.401	3	0	1	0	1	123	4	-3.027	3
540			4	max	1863.892	3	1456.38	2	68.521	4	0	4	0	1		2
542						2					0	1	081	4		
542			5		1864.524	3	1454.921		69.981	4		4		1		
544						_								4		
Fa44			6	max	1865,156	3	1453,462		71.441	4		4		4		
Fade																
546			7							•	_		_	•		
S48			<u> </u>													
548			Q.							· · ·			-			
550																
550			0													
S551			9										_			
552			40									-				
1			10						_							
555			4.4						•							
555			11									_				
556								_			_		_			
13			12						213.288			<u> </u>	_			
558	556			min	-852.979	2		2		1	0	4	354	4	-2.966	
Tell	557		13	max	1906.472	3	1110.971	3	214.748	4	0	1	0	1	1.451	3
Secondary Color	558			min	-852.137	2	-1800.673	2	0	1	0	4	221	4	-1.849	2
561 15 max 1907.735 3 1108.783 3 217.668 4 0 1 .047 4 .388 2 562 min -850.452 2 -1803.591 2 0 1 0 4 0 1 0 15 563 16 max 1908.367 3 1107.688 3 219.128 4 0 1 .183 4 1.508 2 564 min -849.61 2 -1805.05 2 0 1 0 4 0 1 -615 3 565 17 max 1908.999 3 1106.594 3 220.589 4 0 1 .319 4 2.628 2 566 min -863.269 1 -1045.953 3 -20.364 5 0 1 0 1 -677 3 568 min -362.426 1 -1047.	559		14	max	1907.104	3	1109.877	3	216.208	4	0	1	0	1	.761	3
Sec min -850.452 2 -1803.591 2 0 1 0 4 0 1 0 15	560			min	-851.294	2	-1802.132	2	0	1	0	4	087	4	731	2
Sec min -850.452 2 -1803.591 2 0 1 0 4 0 1 0 15	561		15	max	1907.735	3	1108.783	3	217.668	4	0	1	.047	4	.388	2
563 16 max 1908.367 3 1107.688 3 219.128 4 0 1 .183 4 1.508 2 564 min -849.61 2 -1805.05 2 0 1 0 4 0 1 -615 3 565 17 max 1908.999 3 1106.594 3 220.589 4 0 1 .319 4 2.628 2 566 min -848.767 2 -1806.509 2 0 1 0 4 0 1 -1302 3 567 18 max -14.746 12 2139.995 2 0 1 0 4 .348 4 1.343 2 568 min -363.269 1 -1045.953 3 -20.364 5 0 1 0 1 .677 3 569 19 max 161.525 1						2	-1803.591	2		1	0	4		1		15
564 min -849.61 2 -1805.05 2 0 1 0 4 0 1 -6.615 3 565 17 max 1908.999 3 1106.594 3 220.589 4 0 1 .319 4 2.628 2 566 min -848.767 2 -1806.509 2 0 1 0 4 0 1 -1.302 3 567 18 max -14.746 12 2139.995 2 0 1 0 4 .348 4 1.343 2 568 min -363.269 1 -1047.948 3 -20.364 5 0 1 0 1 -677 3 569 19 max -14.325 12 2138.536 2 0 1 0 4 .336 4 .016 1 570 min -364.226 1 -1047.048 <td></td> <td></td> <td>16</td> <td>max</td> <td>1908.367</td> <td>3</td> <td>1107.688</td> <td></td> <td>219.128</td> <td>4</td> <td>0</td> <td>1</td> <td>.183</td> <td>4</td> <td>1.508</td> <td></td>			16	max	1908.367	3	1107.688		219.128	4	0	1	.183	4	1.508	
565 17 max 1908.999 3 1106.594 3 220.589 4 0 1 .319 4 2.628 2 566 min -848.767 2 -1806.509 2 0 1 0 4 0 1 -1.302 3 567 18 max -14.746 12 2139.995 2 0 1 0 4 .348 4 1.343 2 568 min -363.269 1 -1045.953 3 -20.364 5 0 1 0 1 -677 3 569 19 max -14.325 12 2138.536 2 0 1 0 4 .336 4 .016 1 570 min -362.426 1 750.853 3 67.749 4 0 3 -0.015 15 572 min 9.543 12 -418.32 2 53												4				
566 min -848.767 2 -1806.509 2 0 1 0 4 0 1 -1.302 3 567 18 max -14.746 12 2139.995 2 0 1 0 4 .348 4 1.343 2 568 min -363.269 1 -1045.953 3 -20.364 5 0 1 0 1 -677 3 569 19 max -14.325 12 2138.536 2 0 1 0 4 .336 4 .016 1 570 min -362.426 1 -1047.048 3 -18.903 5 0 1 0 1 .027 3 571 M9 1 max 161.528 1 750.853 3 67.749 4 0 3 015 12 0 15 572 min -362.371 1			17						220 589	4			319	4		
567 18 max -14.746 12 2139.995 2 0 1 0 4 .348 4 1.343 2 568 min -363.269 1 -1045.953 3 -20.364 5 0 1 0 1677 3 569 19 max -14.325 12 2138.536 2 0 1 0 4 .336 4 .016 1 570 min -362.426 1 -1047.048 3 -18.903 5 0 1 0 1 -0.27 3 571 M9 1 max 161.528 1 750.853 3 67.749 4 0 3015 12 0 15 572 min 9.543 12 -418.32 2 5.349 12 0 4182 4014 2 573 2 max 162.371 1 749.759 3 69.209 4 0 3012 12 .246 2 574 min 9.964 12 -419.779 2 5.349 12 0 4139 447 3 575 3 max 607.349 3 546.127 2 60.957 1 0 2008 12 .496 2 576 min -365.063 2 -582.841												<u> </u>				
568 min -363.269 1 -1045.953 3 -20.364 5 0 1 0 1 -677 3 569 19 max -14.325 12 2138.536 2 0 1 0 4 .336 4 .016 1 570 min -362.426 1 -1047.048 3 -18.903 5 0 1 0 1 -027 3 571 M9 1 max 161.528 1 750.853 3 67.49 4 0 3 015 12 0 15 572 min 9.543 12 -418.32 2 5.349 12 0 4 182 4 014 2 573 2 max 162.371 1 749.759 3 69.209 4 0 3 012 12 .246 2 574 min 9.964 12			18									_				
569 19 max -14.325 12 2138.536 2 0 1 0 4 .336 4 .016 1 570 min -362.426 1 -1047.048 3 -18.903 5 0 1 0 1027 3 571 M9 1 max 161.528 1 750.853 3 67.749 4 0 3015 12 0 15 572 min 9.543 12 -418.32 2 5.349 12 0 4182 4014 2 573 2 max 162.371 1 749.759 3 69.209 4 0 3012 12 .246 2 574 min 9.964 12 -419.779 2 5.349 12 0 4139 447 3 575 3 max 607.349 3 546.127 2 60.957 1 0 2008 12 .496 2 576 min -365.063 2 -582.841 3 5.32 12 0 3096 492 3 577 4 max 607.981 3 544.668 2 60.957 1 0 2005 12 .158 1 578 min -363.378 2 -585.03 <t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			10													
570 min -362.426 1 -1047.048 3 -18.903 5 0 1 0 1 027 3 571 M9 1 max 161.528 1 750.853 3 67.749 4 0 3 015 12 0 15 572 min 9.543 12 -418.32 2 5.349 12 0 4 182 4 014 2 573 2 max 162.371 1 749.759 3 69.209 4 0 3 012 12 .246 2 574 min 9.964 12 -419.779 2 5.349 12 0 4 139 4 47 3 575 3 max 607.349 3 546.127 2 60.957 1 0 2 008 12 .496 2 576 min -364.222 2 <t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_ •</td><td></td><td>$\overline{}$</td></t<>			10										_	_ •		$\overline{}$
571 M9 1 max 161.528 1 750.853 3 67.749 4 0 3 015 12 0 15 572 min 9.543 12 -418.32 2 5.349 12 0 4 182 4 014 2 573 2 max 162.371 1 749.759 3 69.209 4 0 3 012 12 .246 2 574 min 9.964 12 -419.779 2 5.349 12 0 4 139 4 47 3 575 3 max 607.349 3 546.127 2 60.957 1 0 2 008 12 .496 2 576 min -365.063 2 -582.841 3 5.32 12 0 3 005 12 .158 1 577 4 max 607.			19													_
572 min 9.543 12 -418.32 2 5.349 12 0 4 182 4 014 2 573 2 max 162.371 1 749.759 3 69.209 4 0 3 012 12 .246 2 574 min 9.964 12 -419.779 2 5.349 12 0 4 139 4 47 3 575 3 max 607.349 3 546.127 2 60.957 1 0 2 008 12 .496 2 576 min -365.063 2 -582.841 3 5.32 12 0 3 096 4 92 3 577 4 max 607.981 3 544.668 2 60.957 1 0 2 005 12 .158 1 578 min -364.22 2 <t< td=""><td></td><td>MO</td><td>1</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td></t<>		MO	1			•							_			
573 2 max 162.371 1 749.759 3 69.209 4 0 3 012 12 .246 2 574 min 9.964 12 -419.779 2 5.349 12 0 4 139 4 47 3 575 3 max 607.349 3 546.127 2 60.957 1 0 2 008 12 .496 2 576 min -365.063 2 -582.841 3 5.32 12 0 3 096 4 92 3 577 4 max 607.981 3 544.668 2 60.957 1 0 2 005 12 .158 1 578 min -364.22 2 -583.936 3 5.32 12 0 3 067 4 558 3 579 5 max 608.612 <		IVIS	-													
574 min 9.964 12 -419.779 2 5.349 12 0 4 139 4 47 3 575 3 max 607.349 3 546.127 2 60.957 1 0 2 008 12 .496 2 576 min -365.063 2 -582.841 3 5.32 12 0 3 096 4 92 3 577 4 max 607.981 3 544.668 2 60.957 1 0 2 005 12 .158 1 578 min -364.22 2 -583.936 3 5.32 12 0 3 067 4 558 3 579 5 max 608.612 3 543.209 2 60.957 1 0 2 002 12 005 15 580 min -363.378 2			2													
575 3 max 607.349 3 546.127 2 60.957 1 0 2 008 12 .496 2 576 min -365.063 2 -582.841 3 5.32 12 0 3 096 4 92 3 577 4 max 607.981 3 544.668 2 60.957 1 0 2 005 12 .158 1 578 min -364.22 2 -583.936 3 5.32 12 0 3 067 4 558 3 579 5 max 608.612 3 543.209 2 60.957 1 0 2 002 12 005 15 580 min -363.378 2 -585.03 3 5.32 12 0 3 036 4 195 3 581 6 max 609.244																
576 min -365.063 2 -582.841 3 5.32 12 0 3 096 4 92 3 577 4 max 607.981 3 544.668 2 60.957 1 0 2 005 12 .158 1 578 min -364.22 2 -583.936 3 5.32 12 0 3 067 4 558 3 579 5 max 608.612 3 543.209 2 60.957 1 0 2 002 12 005 15 580 min -363.378 2 -585.03 3 5.32 12 0 3 036 4 195 3 581 6 max 609.244 3 541.75 2 60.957 1 0 2 .018 1 .168 3 582 min -362.536 2			0													
577 4 max 607.981 3 544.668 2 60.957 1 0 2 005 12 .158 1 578 min -364.22 2 -583.936 3 5.32 12 0 3 067 4 558 3 579 5 max 608.612 3 543.209 2 60.957 1 0 2 002 12 005 15 580 min -363.378 2 -585.03 3 5.32 12 0 3 036 4 195 3 581 6 max 609.244 3 541.75 2 60.957 1 0 2 .018 1 .168 3 582 min -362.536 2 -586.124 3 5.32 12 0 3 01 5 517 2 583 7 max 609.876 <			3													
578 min -364.22 2 -583.936 3 5.32 12 0 3 067 4 558 3 579 5 max 608.612 3 543.209 2 60.957 1 0 2 002 12 005 15 580 min -363.378 2 -585.03 3 5.32 12 0 3 036 4 195 3 581 6 max 609.244 3 541.75 2 60.957 1 0 2 .018 1 .168 3 582 min -362.536 2 -586.124 3 5.32 12 0 3 01 5 517 2 583 7 max 609.876 3 540.291 2 60.957 1 0 2 .056 1 .532 3 584 min -361.693 2 <t< td=""><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			4													
579 5 max 608.612 3 543.209 2 60.957 1 0 2 002 12 005 15 580 min -363.378 2 -585.03 3 5.32 12 0 3 036 4 195 3 581 6 max 609.244 3 541.75 2 60.957 1 0 2 .018 1 .168 3 582 min -362.536 2 -586.124 3 5.32 12 0 3 01 5 517 2 583 7 max 609.876 3 540.291 2 60.957 1 0 2 .056 1 .532 3 584 min -361.693 2 -587.218 3 5.32 12 0 3 .005 12 853 2 585 8 max 610.508 <t< td=""><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			4													
580 min -363.378 2 -585.03 3 5.32 12 0 3 036 4 195 3 581 6 max 609.244 3 541.75 2 60.957 1 0 2 .018 1 .168 3 582 min -362.536 2 -586.124 3 5.32 12 0 3 01 5 517 2 583 7 max 609.876 3 540.291 2 60.957 1 0 2 .056 1 .532 3 584 min -361.693 2 -587.218 3 5.32 12 0 3 .005 12 853 2 585 8 max 610.508 3 538.832 2 60.957 1 0 2 .094 1 .897 3 586 min -360.851 2 -																
581 6 max 609.244 3 541.75 2 60.957 1 0 2 .018 1 .168 3 582 min -362.536 2 -586.124 3 5.32 12 0 3 01 5 517 2 583 7 max 609.876 3 540.291 2 60.957 1 0 2 .056 1 .532 3 584 min -361.693 2 -587.218 3 5.32 12 0 3 .005 12 853 2 585 8 max 610.508 3 538.832 2 60.957 1 0 2 .094 1 .897 3 586 min -360.851 2 -588.313 3 5.32 12 0 3 .008 12 -1.187 2 587 9 max 626.322 3 51.24 2 100.019 1 0 3 005 12 1.044<			5													
582 min -362.536 2 -586.124 3 5.32 12 0 3 01 5 517 2 583 7 max 609.876 3 540.291 2 60.957 1 0 2 .056 1 .532 3 584 min -361.693 2 -587.218 3 5.32 12 0 3 .005 12 853 2 585 8 max 610.508 3 538.832 2 60.957 1 0 2 .094 1 .897 3 586 min -360.851 2 -588.313 3 5.32 12 0 3 .008 12 -1.187 2 587 9 max 626.322 3 51.24 2 100.019 1 0 3 005 12 1.044 3																
583 7 max 609.876 3 540.291 2 60.957 1 0 2 .056 1 .532 3 584 min -361.693 2 -587.218 3 5.32 12 0 3 .005 12 853 2 585 8 max 610.508 3 538.832 2 60.957 1 0 2 .094 1 .897 3 586 min -360.851 2 -588.313 3 5.32 12 0 3 .008 12 -1.187 2 587 9 max 626.322 3 51.24 2 100.019 1 0 3 005 12 1.044 3			6			3										
584 min -361.693 2 -587.218 3 5.32 12 0 3 .005 12 853 2 585 8 max 610.508 3 538.832 2 60.957 1 0 2 .094 1 .897 3 586 min -360.851 2 -588.313 3 5.32 12 0 3 .008 12 -1.187 2 587 9 max 626.322 3 51.24 2 100.019 1 0 3 005 12 1.044 3						2		3		12	0			5		
584 min -361.693 2 -587.218 3 5.32 12 0 3 .005 12 853 2 585 8 max 610.508 3 538.832 2 60.957 1 0 2 .094 1 .897 3 586 min -360.851 2 -588.313 3 5.32 12 0 3 .008 12 -1.187 2 587 9 max 626.322 3 51.24 2 100.019 1 0 3 005 12 1.044 3	583		7	max	609.876	3	540.291	2	60.957	1	0	2	.056	1	.532	3
585 8 max 610.508 3 538.832 2 60.957 1 0 2 .094 1 .897 3 586 min -360.851 2 -588.313 3 5.32 12 0 3 .008 12 -1.187 2 587 9 max 626.322 3 51.24 2 100.019 1 0 3 005 12 1.044 3						2				12		3		12		
586 min -360.851 2 -588.313 3 5.32 12 0 3 .008 12 -1.187 2 587 9 max 626.322 3 51.24 2 100.019 1 0 3 005 12 1.044 3			8			3		2		1	0	2	.094	_1		
587 9 max 626.322 3 51.24 2 100.019 1 0 3005 12 1.044 3														12		
			9													

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	626.954	3	49.781	2	100.019	1	0	3	.001	1	1.022	3
590			min	-290.638	2	.014	15	8.192	12	0	9	096	4	-1.387	2
591		11	max	627.586	3	48.322	2	100.801	4	0	3	.063	1	1.001	3
592			min	-289.796	2	-1.712	6	8.192	12	0	9	048	5	-1.418	2
593		12	max	643.121	3	396.431	3	176.602	4	0	3	007	12	.877	3
594			min	-220.317	2	-647.242	2	4.529	12	0	2	286	4	-1.258	2
595		13	max	643.753	3	395.337	3	178.062	4	0	3	004	12	.632	3
596			min	-219.475	2	-648.701	2	4.529	12	0	2	176	4	856	2
597		14	max	644.385	3	394.243	3	179.523	4	0	3	002	12	.387	3
598			min	-218.632	2	-650.16	2	4.529	12	0	2	065	4	453	2
599		15	max	645.017	3	393.148	3	180.983	4	0	3	.047	4	.142	3
600			min	-217.79	2	-651.619	2	4.529	12	0	2	.001	12	07	1
601		16	max	645.648	3	392.054	3	182.443	4	0	3	.16	4	.356	2
602			min	-216.948	2	-653.078	2	4.529	12	0	2	.004	12	101	3
603		17	max	646.28	3	390.96	3	183.903	4	0	3	.274	4	.761	2
604			min	-216.105	2	-654.537	2	4.529	12	0	2	.007	12	344	3
605		18	max	-9.436	12	630.888	2	69.46	1	0	2	.278	4	.383	2
606			min	-162.963	1	-294.464	3	-78.699	5	0	3	.01	12	169	3
607		19	max	-9.015	12	629.429	2	69.46	1	0	2	.239	4	.014	3
608			min	-162.12	1	-295.559	3	-77.239	5	0	3	.013	12	008	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	Ō	1	.211	2	.012	3	1.455e-2	2	NC	1	NC	1
2			min	727	4	061	3	007	2	-4.246e-3	3	NC	1	NC	1
3		2	max	0	1	.139	2	.019	1	1.565e-2	2	NC	4	NC	2
4			min	727	4	.004	15	014	5	-3.939e-3	3	1083.143	3	9547.554	1
5		3	max	0	1	.251	3	.044	1	1.674e-2	2	NC	5	NC	2
6			min	728	4	.003	15	018	5	-3.632e-3	3	596.271	3	4131.19	1
7		4	max	0	1	.338	3	.065	1	1.784e-2	2	NC	5	NC	3
8			min	728	4	.002	15	014	5	-3.326e-3	3	465.67	3	2817.895	1
9		5	max	0	1	.363	3	.075	1	1.894e-2	2	NC	5	NC	3
10			min	728	4	.002	15	005	5	-3.019e-3	3	438.5	3	2457.183	1
11		6	max	0	1	.326	3	.07	1	2.003e-2	2	NC	5	NC	5
12			min	728	4	.003	15	001	10	-2.713e-3	3	480.13	3	2610.842	1
13		7	max	0	1	.24	3	.053	1	2.113e-2	2	NC	4	NC	2
14			min	728	4	.004	15	005	10	-2.406e-3	3	616.882	3	3465.339	1
15		8	max	0	1	.257	2	.035	3	2.223e-2	2	NC	4	NC	2
16			min	728	4	.006	15	009	10	-2.1e-3	3	978.007	3	6663.744	1
17		9	max	0	1	.324	2	.035	3	2.333e-2	2	NC	4	NC	1
18			min	728	4	.007	15	019	2	-1.793e-3	3	1635.908	2	8049.359	3
19		10	max	0	1	.354	2	.035	3	2.442e-2	2	NC	4	NC	1
20			min	728	4	019	3	025	2	-1.486e-3	3	1296.325	2	8086.173	3
21		11	max	0	12	.324	2	.035	3	2.333e-2	2	NC	4	NC	1
22			min	728	4	.007	15	019	2	-1.793e-3	3	1635.908	2	8049.359	3
23		12	max	0	12	.257	2	.035	3	2.223e-2	2	NC	4	NC	2
24			min	728	4	.005	15	011	5	-2.1e-3	3	978.007	3	6663.744	1
25		13	max	0	12	.24	3	.053	1	2.113e-2	2	NC	4	NC	2
26			min	728	4	.004	15	005	10	-2.406e-3	3	616.882	3	3465.339	1
27		14	max	0	12	.326	3	.07	1	2.003e-2	2	NC	5	NC	5
28			min	728	4	.002	15	001	10	-2.713e-3	3	480.13	3	2610.842	1
29		15	max	0	12	.363	3	.075	1	1.894e-2	2	NC	5	NC	3
30			min	728	4	.001	15	0	10	-3.019e-3	3	438.5	3	2457.183	1
31		16	max	0	12	.338	3	.065	1	1.784e-2	2	NC	5	NC	3
32			min	728	4	0	15	0	10	-3.326e-3	3	465.67	3	2817.895	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
33		17	max	0	12	.251	3	.044	1 1.674e-2	2	NC	_5_	NC	2
34			min	728	4	.002	15	0	10 -3.632e-3	3	596.271	3	4131.19	1
35		18	max	0	12	.139	2	.023	4 1.565e-2	2	NC	4_	NC	2
36			min	728	4	.003	15	003	10 -3.939e-3	3	1083.143	3	7647.549	4
37		19	max	0	12	.211	2	.012	3 1.455e-2	2	NC	1	NC	1
38			min	728	4	061	3	007	2 -4.246e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.44	3	.01	3 8.059e-3	2	NC	1	NC	1
40			min	54	4	631	2	006	2 -6.527e-3	3	NC	1	NC	1
41		2	max	0	1	.664	3	.012	3 9.232e-3	2	NC	5	NC	1
42			min	54	4	85	2	022	5 -7.602e-3	3	829.456	3	7675.083	5
43		3	max	0	1	.862	3	.033	1 1.04e-2	2	NC	5	NC	2
44		+ -	min	54	4	-1.049	2	027	5 -8.676e-3	3	440.652	3	5512.408	1
45		4		54 0	1	1.015	3	.053	1 1.158e-2		NC	15	NC	3
		4	max		_		2	02		2				
46		+-	min	54	4	-1.211			5 -9.751e-3	3	320.604	2	3463.668	
47		5	max	0	1	1.113	3	.064	1 1.275e-2	2	NC	<u>15</u>	NC	3
48			min	<u>54</u>	4	-1.328	2	005	5 -1.083e-2	3	266.813	2	2884.261	1
49		6	max	0	1	1.155	3	.062	1 1.392e-2	2	NC	<u>15</u>	NC	3
50			min	54	4	-1.397	2	001	10 -1.19e-2	3	242.611	2	2974.175	
51		7	max	0	1	1.148	3	.048	1 1.51e-2	2	NC	15	NC	2
52			min	54	4	-1.423	2	004	10 -1.297e-2	3	234.563	2	3861.41	1
53		8	max	0	1	1.107	3	.04	4 1.627e-2	2	NC	15	NC	2
54			min	54	4	-1.417	2	008	10 -1.405e-2	3	236.439	2	4502.738	4
55		9	max	0	1	1.058	3	.031	3 1.744e-2	2	NC	15	NC	1
56			min	54	4	-1.395	2	017	2 -1.512e-2	3	243.173	2	6399.868	4
57		10	max	0	1	1.032	3	.031	3 1.861e-2	2	NC	15	NC	1
58		10	min	54	4	-1.382	2	022	2 -1.62e-2	3	247.607	2	9147.363	_
59		11	max	<u>.5</u> -	12	1.058	3	.031	3 1.744e-2	2	NC	15	NC	1
60		+ ' '	min	54	4	-1.395	2	022	5 -1.512e-2	3	243.173	2	8349.404	
		12			12	1.107	3	.03			NC	15		
61		12	max	0						2			NC 7470.070	2
62		40	min	<u>54</u>	4	<u>-1.417</u>	2	026	5 -1.405e-2	3	236.439	2	7172.378	5
63		13	max	0	12	1.148	3	.048	1 1.51e-2	2	NC	<u>15</u>	NC	2
64			min	54	4	-1.423	2	017	5 -1.297e-2	3	234.563	2	3861.41	1
65		14	max	0	12	1.155	3	.062	1 1.392e-2	2	NC	15	NC	3
66			min	54	4	-1.397	2	002	5 -1.19e-2	3	242.611	2	2974.175	
67		15	max	0	12	1.113	3	.064	1 1.275e-2	2	NC	15	NC	3
68			min	54	4	-1.328	2	0	10 -1.083e-2	3	266.813	2	2884.261	1
69		16	max	0	12	1.015	3	.053	1 1.158e-2	2	NC	15	NC	3
70			min	54	4	-1.211	2	0	10 -9.751e-3	3	320.604	2	3463.668	1
71		17	max	0	12	.862	3	.042	4 1.04e-2	2	NC	5	NC	2
72			min	54	4	-1.049	2	001	10 -8.676e-3	3	440.652	3	4277.389	4
73		18		0	12	.664	3	.028	4 9.232e-3	2	NC	5	NC	1
74		1	min	54	4	85	2	003	10 -7.602e-3	3	829.456	3	6298.136	4
75		19	max	<u>.0-</u>	12	<u></u> .44	3	.01	3 8.059e-3	2	NC	1	NC	1
76		13	min	54	4	631	2	006	2 -6.527e-3	3	NC	1	NC	1
77	M15	1	max	54 0	12	.449	3	.01	3 5.602e-3	3	NC	1	NC	1
78	IVI I O		min	436	4	629	2	006	2 -8.399e-3	2	NC NC	1	NC NC	1
		2											NC NC	1
79		2	max	<u> </u>	12	.617	3	.012		3	NC 702.474	5		
80		_	min	436	4	894 77	2	031	5 -9.63e-3	2	702.174	2	5631.788	
81		3	max	0	12	.77	3	.034	1 7.429e-3	3_	NC	5	NC 4500 000	2
82			min	436	4	-1.129	2	039	5 -1.086e-2	2	371.985	2_	4560.066	
83		4	max	0	12	.896	3	.054	1 8.342e-3	3_	NC	<u>15</u>	NC	3
84			min	436	4	-1.313	2	029	5 -1.209e-2	2	271.78	2	3443.855	
85		5	max	0	12	.989	3	.064	1 9.255e-3	3	NC	15	NC	3
86			min	437	4	-1.435	2	01	5 -1.332e-2	2	230.625	2	2867.556	1
87		6	max	0	12	1.047	3	.063	1 1.017e-2	3	NC	15	NC	3
88			min	437	4	-1.493	2	0	10 -1.456e-2	2	215.156		2954.014	
89		7	max	0	12	1.073	3	.048	1 1.108e-2	3	NC	15	NC	2
														$\overline{}$

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90		_	min	437	4	<u>-1.495</u>	2	004	10 -1.579e-2	2	214.787	2	3824.576	
91		8	max	0	12	1.074	3	.049	4 1.2e-2	3	NC 004.507	<u>15</u>	NC	2
92		9	min	437	12	<u>-1.457</u>	3	008	10 -1.702e-2	2	224.597	15	3721.148	1
93		9	max min	0 437	4	1.062 -1.407	2	.035 016	4 1.291e-2 2 -1.825e-2	2	NC 239.149	<u>15</u> 2	NC 5124.388	
95		10	max	43 7	1	1.054	3	.028	3 1.382e-2	3	NC	15	NC	1
96		10	min	437	4	-1.38	2	021	2 -1.948e-2	2	247.642	2	9916.263	
97		11	max	0	1	1.062	3	.028	3 1.291e-2	3	NC	15	NC	1
98			min	437	4	-1.407	2	03	5 -1.825e-2	2	239.149	2	6286.802	5
99		12	max	0	1	1.074	3	.028	3 1.2e-2	3	NC	15	NC	2
100			min	437	4	-1.457	2	035	5 -1.702e-2	2	224.597	2	5360.402	
101		13	max	0	1	1.073	3	.048	1 1.108e-2	3	NC	15	NC	2
102			min	437	4	-1.495	2	023	5 -1.579e-2	2	214.787	2	3824.576	1
103		14	max	0	1	1.047	3	.063	1 1.017e-2	3	NC	15	NC	3
104			min	436	4	-1.493	2	003	5 -1.456e-2	2	215.156	2	2954.014	1
105		15	max	0	1	.989	3	.064	1 9.255e-3	3	NC	15	NC	3
106			min	436	4	-1.435	2	0	10 -1.332e-2	2	230.625	2	2867.556	
107		16	max	0	1	.896	3	.054	1 8.342e-3	3	NC	15	NC	3
108			min	436	4	-1.313	2	0	10 -1.209e-2	2	271.78	2	3443.855	
109		17	max	0	1	77	3	.054	4 7.429e-3	3	NC	_5_	NC	2
110			min	436	4	-1.129	2	0	10 -1.086e-2	2	371.985	2	3383.6	4
111		18	max	0	1	<u>.617</u>	3	.037	4 6.516e-3	3	NC	5	NC	1
112		1.0	min	436	4	894	2	003	10 -9.63e-3	2	702.174	2	4842.101	4
113		19	max	0	1	.449	3	.01	3 5.602e-3	3_	NC	_1_	NC NC	1
114	MAC	4	min	436	4	629	2	006	2 -8.399e-3	2	NC NC	1_	NC NC	1
115	M16	1	max	0	12	.187	2	.008	3 1.064e-2	3	NC NC	1_	NC NC	1
116		_	min	127	4	158	3	005	2 -1.219e-2	2	NC NC	1_	NC NC	1
117		2	max	0 127	12	.074	3	.019	1 1.167e-2 5 -1.277e-2	3	NC 1497.111	2	NC 7762 962	2
118		3	min		12	114 .017	9	022 .044	5 -1.277e-2 1 1.271e-2	3	NC	5	7762.862 NC	2
120		3	max min	0 127	4	083	3	029	5 -1.335e-2	2	837.086	2	4142.929	
121		4	max	0	12	.008	4	.066	1 1.374e-2	3	NC	5	NC	3
122		_	min	127	4	09	2	023	5 -1.394e-2	2	673.048	2	2812.532	1
123		5	max	0	12	.009	14	.076	1 1.477e-2	3	NC	5	NC	3
124			min	127	4	092	2	011	5 -1.452e-2	2	667.314	2	2440.772	1
125		6	max	0	12	.022	9	.072	1 1.581e-2	3	NC	4	NC	3
126			min	127	4	12	3	.001	10 -1.51e-2	2	805.55	2	2576.117	1
127		7	max	0	12	.074	1	.055	1 1.684e-2	3	NC	3	NC	2
128			min	127	4	172	3	002	10 -1.568e-2	2	1291.806	2	3376.115	
129		8	max	0	12	.157	1	.032	4 1.787e-2	3	NC	1	NC	2
130			min	127	4	23	3	006	10 -1.626e-2	2	2551.949	3	5630.816	4
131		9	max	0	12	.242	2	.025	3 1.891e-2	3	NC	4	NC	1
132			min	127	4	281	3	014	2 -1.684e-2	2	1512	3	8056.906	4
133		10	max	0	1	.284	2	.024	3 1.994e-2	3	NC	5_	NC	1
134			min	127	4	303	3	019	2 -1.743e-2	2	1282.622	3	NC	1
135		11	max	0	1	.242	2	.025	3 1.891e-2	3	NC	4	NC	1
136			min	127	4	281	3	016	5 -1.684e-2	2	1512	3	NC	1
137		12	max	0	1	<u>.157</u>	1	.029	1 1.787e-2	3_	NC	1_	NC	2
138		40	min	127	4	23	3	017	5 -1.626e-2	2	2551.949	3	6255.382	
139		13	max	0	1	.074	1	.055	1 1.684e-2	3_	NC	3	NC 0070.445	2
140		4.4	min	127	4	172	3	008	5 -1.568e-2	2	1291.806	2	3376.115	
141		14	max	0	1	.022	9	.072	1 1.581e-2	3	NC POE EE	4	NC 2576 117	3
142		15	min	126	1	<u>12</u>	3	.001	10 -1.51e-2	2	805.55	2	2576.117	1
143		15	max	126	4	.009	9	.076	1 1.477e-2 10 -1.452e-2	3	NC	<u>5</u> 2	NC	3
144		16	min max	126 0	1	092 .007	6	.003 .066	10 -1.452e-2 1 1.374e-2	3	667.314 NC	5	2440.772 NC	3
145		10	min	126	4	09	2	.003	10 -1.394e-2	2	673.048	2	2812.532	
140			111111	120	4	09	 	.003	10 11.3346-2		073.040		2012.332	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	0	1	.017	9	.048	4	1.271e-2	3_	NC	5	NC	2
148			min	126	4	083	3	0	10	-1.335e-2	2	837.086	2	3832.886	
149		18	max	0	1	.074	1	.031	4	1.167e-2	3_	NC	_4_	NC	2
150			min	126	4	114	3	002	10	-1.277e-2	2	1497.111	2	5832.056	
151		19	max	0	1	.187	2	.008	3	1.064e-2	3	NC	1_	NC	1
152	140	-	min	126	4	<u>158</u>	3	005	2	-1.219e-2	2	NC	1_	NC	1
153	<u>M2</u>	1_	max	.008	2	.011	2	.008	1	2.185e-3	5_	NC	1_	NC 110.515	2
154		-	min	<u>011</u>	3	<u>018</u>	3	<u>682</u>	4	-1.796e-4	_1_	6838.641	2	113.545	4
155		2	max	.008	2	.01	2	.007	1	2.213e-3	_5_	NC	1_	NC NC	1
156			min	01	3	017	3	627	4	-1.707e-4	<u>1</u>	7970.819	2	123.567	4
157		3	max	.007	2	.008	2	.007	1	2.241e-3	5_	NC 0507.050	1_	NC 105.150	1
158			min	01	3	016	3	572	4	-1.618e-4	1_	9527.859	2	135.458	4
159		4	max	.007	2	.007	2	.006	1	2.269e-3	5	NC	1_	NC	1
160		-	min	009	3	016	3	<u>518</u>	4	-1.529e-4	_1_	NC	1_	149.705	4
161		5_	max	.006	2	.005	2	.005	1	2.297e-3	5_	NC	1_	NC	1
162			min	008	3	01 <u>5</u>	3	<u>464</u>	4	-1.44e-4	1_	NC	1_	166.968	4
163		6	max	.006	2	.004	2	.005	1	2.326e-3	5	NC	1_	NC 100 100	1
164		-	min	008	3	01 <u>5</u>	3	412	4	-1.351e-4	1_	NC	1_	188.163	4
165		7	max	.005	2	.002	2	.004	1	2.354e-3	_5_	NC	_1_	NC O44.507	1
166			min	007	3	<u>014</u>	3	<u>361</u>	4	-1.263e-4	1_	NC	1_	214.587	4
167		8	max	.005	2	.001	2	.004	1	2.382e-3	5_	NC	1	NC 040.40	1
168		_	min	007	3	013	3	312	4	-1.174e-4	<u>1</u>	NC NC	1_	248.13	4
169		9	max	.004	2	0	2	.003	1	2.41e-3	5_	NC		NC 224 224	1
170		10	min	006	3	012	3	266	4	-1.085e-4	1_	NC	1_	291.634	4
171		10	max	.004	2	0	2	.003	1	2.44e-3	4_	NC	1_	NC 040.500	1
172		4.4	min	005	3	012	3	222	4	-9.958e-5	1_	NC NC	1_	349.538	4
173		11	max	.004	2	001	15	.002	1	2.471e-3	4	NC	1	NC 400,004	1
174		10	min	005	3	011	3	181	4	-9.069e-5	1_	NC NC	1_	429.091	4
175		12	max	.003	2	001	15	.002	1	2.502e-3	4	NC	1_	NC 540,040	1
176		40	min	004	3	01	3	143	4	-8.18e-5	1_1	NC NC	1_1	542.816	4
177		13	max	.003	2	001	15	.001	1	2.533e-3	4	NC NC	1_	NC 712.01	1
178		4.4	min	004	3	009	3	109	4	-7.291e-5	1_	NC NC	1_	713.91	4
179		14	max	.002	2	001	15	0	1 4	2.563e-3	4_	NC NC	1_1	NC 000 450	1
180		4.5	min	003	3	007	3	078		-6.402e-5	1_4	NC NC	1_4	989.459	4
181		15	max	.002	2	001	15	0 052	1	2.594e-3	4_1	NC NC	1	NC	1
182		10	min	002	3	006	3		4	-5.513e-5	1_1	NC NC	_	1477.683	
183		16	max	.001	2	0	15	0	1	2.625e-3	4	NC NC	1_1	NC 2476.51	1
184		17	min	002	3	005	3	031	1	-4.624e-5	1_	NC NC	1		1
185		17	max	0	3	0	15	0		2.656e-3	4_1	NC NC	1	NC F002 F04	
186 187		10	min max	001 0	2	003 0	15	<u>015</u> 0	1	-3.735e-5 2.687e-3	1	NC NC	1	5083.584 NC	1
188		10		0	3	002	6	005	4	-2.846e-5	1	NC NC	1	NC NC	1
189		19	min	0	1		1		1	2.718e-3		NC NC	1	NC NC	1
190		19	max min	0	1	<u> </u>	1	<u> </u>	1	-1.956e-5	4	NC NC	1	NC NC	1
191	M3	1		0	1	0	1	0	1	3.904e-6	1	NC NC	1	NC NC	1
191	IVIO		max min	0	1	0	1	0	1	-5.886e-4	4	NC NC	1	NC NC	1
193		2	max	0	3	0	15	.015	4	4.036e-5	4	NC	1	NC	1
194		 	min	0	2	003	6	0	1	1.888e-6	12	NC NC	1	NC	1
195		3	max	.001	3	003 001	15	.028	4	6.693e-4	4	NC	1	NC	1
196		3	min	0	2	006	6	0	1	3.379e-6	12	NC	1	7159.399	
197		4	max	.002	3	002	15	.04	4	1.298e-3	4	NC	1	NC	14
198		4	min	001	2	002	6	<u>.04</u> 0	1	4.87e-6	12	NC NC	1	4959.508	14
199		5	max	.002	3	003	15	.052	4	1.927e-3	4	NC NC	1	NC	1
200		J	min	002	2	012	6	0	1	6.361e-6		8536.588	6	3862.696	
201		6	max	.002	3	003	15	.062	4	2.556e-3	4	NC	2	NC	1
202			min	002	2	003 015	6	<u>.062</u>	1	7.852e-6		6916.436	6	3205.629	
203		7	max	.002	3	004	15	.072	4	3.185e-3	4	NC	5	NC	1
200			πιαλ	.000	J	004	IJ	.012	4	J. 100E-3	_	INC	J	INC	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
204			min	003	2	017	6	0	1	9.343e-6	12	5940.713	6	2766.857	
205		8	max	.004	3	004	15	.081	4	3.814e-3	4_	NC	5	NC	1
206			min	003	2	<u>019</u>	6	0	3	1.083e-5	12		<u>6</u>	2451.166	
207		9	max	.004	3	004	15	.09	4	4.443e-3	4	NC	5	NC	1
208		10	min	003	2	02	6	0	3	1.233e-5	12	4983.736	6_	2210.679	
209		10	max	.005	3	005	15	.098	4	5.072e-3	4	NC 1212 12	5_	NC	1
210		1.4	min	004	2	021	6	0	12	1.382e-5	12	4813.43	6_	2018.586	
211		11	max	.005	3	005	15	.107	4	5.701e-3	4	NC 4000.050	5_	NC 4050.050	1
212		10	min	004	2	021	6	0	12	1.531e-5	12	4802.959	6	1858.659	
213		12	max	.006	3	004	15	.115	4	6.33e-3	4	NC 4054 000	5	NC	1
214		10	min	005	2	02	6	0	12	1.68e-5	12	4954.369	6	1720.514	
215		13	max	.006	3	004	15	.123	4	6.959e-3	4	NC FOOD OO	5	NC	1
216		144	min	005	2	019	6	0	12	1.829e-5	12	5298.82	6_	1597.273	
217		14	max	.007	3	004	15	.132	4	7.588e-3	4	NC 5040.074	5_	NC 4.40.4.040	1
218		4.5	min	006	2	017	6	0	12	1.978e-5	12	5912.674	6	1484.312	14
219		15	max	.007	3	003	15	.142	4	8.216e-3	4	NC	3_	NC 4070 F0F	1
220		40	min	006	2	01 <u>5</u>	6	0	12	2.127e-5	12	6964.953	6	1378.565	
221		16	max	.008	3	002	15	.153	4	8.845e-3	4	NC	1_	NC 4070.00	1
222		47	min	007	2	011	6	0	12	2.276e-5	12	8864.841	6	1278.09	14
223		17	max	.008	3	001	15	.164	4	9.474e-3	4	NC NC	1_	NC	1
224		4.0	min	007	2	008	6	0	12	2.425e-5	12	NC NC	1_	1181.777	14
225		18	max	.009	3	0	15	.178	4	1.01e-2	4	NC NC	1_1	NC	1
226		10	min	007		005	3	0	12	2.575e-5	12	NC NC	1_	1089.133	
227		19	max	.009	3	0	5	.193	4	1.073e-2	4	NC	1_	NC	1
228	N 1 4	1	min	008	2	002	2	<u> </u>	12	2.724e-5	12	NC NC	1_1	1000.093 NC	
229	M4		max	.002	1	.008			12	1.771e-4	4		1		3
230		2	min	0	5	009	3	193	4	1.109e-5	12	NC NC	<u>1</u> 1	128.484 NC	3
231		-	max	.002	5	.007	2	<u>0</u> 178	12	1.771e-4	<u>4</u> 12	NC NC	1		
232		3	min	0	1	009	3			1.109e-5		NC NC	1	139.654 NC	4
233		3	max	.002 0	5	.007 008	3	0 162	12	1.771e-4 1.109e-5	<u>4</u> 12	NC NC	1	152.95	4
235		4	min	.002	1	.006	2	162 0	12	1.771e-4	4	NC	1	NC	2
236		4	max	.002	5	008	3	147	4	1.77 Te-4 1.109e-5	12	NC NC	1	168.925	4
237		5	max	.002	1	.006	2	147 0	12	1.771e-4	4	NC NC	1	NC	2
238		1	min	.002	5	007	3	132	4	1.109e-5	12	NC	1	188.328	4
239		6	max	.002	1	.005	2	<u>132</u> 0	12	1.771e-4	4	NC	1	NC	2
240		10	min	0	5	007	3	117	4	1.109e-5	12	NC	1	212.199	4
241		7	max	.002	1	.005	2	0	12	1.771e-4	4	NC	1	NC	2
242		+ '	min	0	5	006	3	102	4	1.109e-5	12	NC	1	242.015	4
243		8	max	.001	1	.005	2	0	12	1.771e-4	4	NC	1	NC	2
244		_	min		5	006	3	089	12	1.109e-5		NC	1	279.928	
245		9	max	.001	1	.004	2	0	12	1.771e-4	4	NC	1	NC	2
246		<u> </u>	min	0	5	005	3	075	4	1.109e-5	12	NC	1	329.178	4
247		10	max	.001	1	.004	2	0	12	1.771e-4	4	NC	1	NC	1
248		1.0	min	0	5	005	3	063	4	1.109e-5	12	NC	1	394.832	4
249		11	max	.001	1	.003	2	<u>.000</u>	12	1.771e-4	4	NC	1	NC	1
250			min	0	5	004	3	051	4	1.109e-5	12	NC	1	485.174	4
251		12	max	0	1	.003	2	0	12	1.771e-4	4	NC	1	NC	1
252		1	min	0	5	004	3	04	4	1.109e-5	12	NC	1	614.537	4
253		13	max	0	1	.003	2	0	12	1.771e-4	4	NC	1	NC	1
254		1,0	min	0	5	003	3	031	4	1.109e-5	12	NC	1	809.516	4
255		14	max	0	1	.002	2	0	12	1.771e-4	4	NC	1	NC	1
256			min	0	5	003	3	022	4	1.109e-5	12	NC	1	1124.211	4
257		15	max	0	1	.002	2	0	12	1.771e-4	4	NC	1	NC	1
258		1,0	min	0	5	002	3	015	4	1.109e-5	12	NC	1	1683.307	
259		16	max	0	1	.002	2	0	12	1.771e-4	4	NC	1	NC	1
260		1	min	0	5	002	3	009	4	1.109e-5	12	NC	1	2831.394	
					_	.002	_	.000					_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
261		17	max	0	1	00	2	00	12	1.771e-4	_4_	NC	_1_	NC	1
262			min	0	5	001	3	004	4	1.109e-5	12	NC	1_	5845.674	4
263		18	max	0	1	00	2	0	12	1.771e-4	_4_	NC	_1_	NC	1
264			min	0	5	0	3	001	4	1.109e-5	12	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	1.771e-4	4	NC	_1_	NC	1
266			min	0	1	0	1	0	1	1.109e-5	12	NC	1_	NC	1
267	<u>M6</u>	1	max	.024	2	.038	2	0	1	2.287e-3	4_	NC	3	NC	1
268			min	034	3	053	3	689	4	0	_1_	2051.798	2	112.383	4
269		2	max	.023	2	.034	2	0	1	2.314e-3	_4_	NC	3	NC	1
270			min	032	3	05	3	634	4	0	_1_	2254.023	2	122.303	4
271		3	max	.021	2	.031	2	0	1	2.34e-3	_4_	NC	3	NC	1
272			min	03	3	047	3	578	4	0	<u>1</u>	2498.33	2	134.073	4
273		4	max	.02	2	.028	2	0	1	2.367e-3	4	NC	3	NC	1
274			min	028	3	044	3	523	4	0	1_	2796.729	2	148.174	4
275		5	max	.019	2	.024	2	0	1	2.394e-3	_4_	NC	3_	NC	1
276			min	026	3	041	3	469	4	0	_1_	3165.99	2	165.261	4
277		6	max	.017	2	.021	2	0	1	2.42e-3	4	NC	3	NC	1
278			min	024	3	038	3	416	4	0	_1_	3630.099	2	186.24	4
279		7	max	.016	2	.018	2	0	1	2.447e-3	4	NC	3	NC	1
280		_	min	023	3	036	3	365	4	0	_1_	4224.354	2	212.393	4
281		8	max	.015	2	.015	2	0	1	2.473e-3	4	NC	1_	NC	1
282		_	min	021	3	033	3	316	4	0	1_	5002.45	2	245.593	4
283		9	max	.013	2	.013	2	0	1	2.5e-3	4	NC	1_	NC	1
284			min	019	3	03	3	268	4	0	1_	6049.405	2	288.651	4
285		10	max	.012	2	.01	2	0	1	2.527e-3	_4_	NC	1_	NC	1
286			min	017	3	027	3	224	4	0	1_	7506.544	2	345.96	4
287		11	max	.011	2	.008	2	00	1	2.553e-3	_4_	NC	_1_	NC	1
288			min	015	3	024	3	182	4	0	<u>1</u>	9623.48	2	424.692	4
289		12	max	.009	2	.006	2	0	1_	2.58e-3	_4_	NC	_1_	NC	1
290			min	013	3	021	3	144	4	0	_1_	NC	1_	537.238	4
291		13	max	.008	2	.004	2	0	1	2.606e-3	4	NC	1_	NC	1
292			min	011	3	018	3	11	4	0	_1_	NC	1_	706.546	4
293		14	max	.007	2	.003	2	0	1	2.633e-3	4	NC	1_	NC	1
294			min	009	3	015	3	079	4	0	1_	NC	1_	979.194	4
295		15	max	.005	2	.002	2	0	1	2.66e-3	_4_	NC	_1_	NC	1
296			min	008	3	012	3	053	4	0	_1_	NC	1_	1462.21	4
297		16	max	.004	2	0	2	0	1	2.686e-3	4	NC	1_	NC	1
298			min	006	3	009	3	032	4	0	_1_	NC	_1_	2450.169	
299		17	max	.003	2	0	2	0	1	2.713e-3	4	NC	1_	NC	1
300		1.0	min	004	3	006	3	<u>015</u>	4	0	_1_	NC	1_	5027.91	4
301		18	max	.001	2	0	2	0	1	2.739e-3		NC	1_	NC	1
302		1.0	min	002	3	003	3	<u>005</u>	4	0	1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	2.766e-3	4_	NC	1_	NC NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	1_	max	0	1	0	1	0	1	0	1	NC	_1_	NC	1
306		_	min	0	1	0	1	0	1	-5.996e-4	4_	NC	1_	NC	1
307		2	max	.002	3	0	15	.015	4	9.955e-6	4	NC	1_	NC	1
308		-	min	001	2	004	3	0	1	0	_1_	NC	1_	NC	1
309		3	max	.003	3	001	15	.028	4	6.195e-4	4	NC		NC	1
310			min	003	2	007	3	0	1	0	1_	NC NC	1_	NC NC	1
311		4	max	.005	3	002	15	.041	4	1.229e-3	4	NC	1	NC 0004 000	1
312			min	004	2	011	3	0	1	0	_1_	NC	1_	9984.883	
313		5_	max	.006	3	003	15	.053	4	1.839e-3	4_	NC	1_	NC	1
314			min	006	2	014	3	0	1	0	1_	8092.865	3	8864.422	
315		6	max	.008	3	004	15	.063	4	2.448e-3	4_	NC	1_	NC	1
316			min	007	2	017	3	0	1	0	_1_	6827.82	3	8594.001	4
317		7	max	.009	3	004	15	.073	4	3.058e-3	4	NC	2	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
318			min	009	2	019	3	0	1	0	1_	5934.696	4	8945.345	
319		8	max	.011	3	005	15	.082	4	3.668e-3	4	NC	2	NC	1
320			min	01	2	021	3	0	1	0	1_	5333.895	4_	9968.897	5
321		9	max	.012	3	005	15	.091	4	4.277e-3	4	NC	5	NC NC	1
322		40	min	012	2	022	3	0	1	0	1_1	4979.344	4_	NC NC	1
323		10	max	.014	3	005 022	15	.099	1	4.887e-3	4	NC	5	NC NC	1
324 325		11	min	013	3		3	107	4	0 5 4060 2	1_1	4809.43 NC	4_		1
326			max	.015 015	2	005 022	15	.107 0	1	5.496e-3	<u>4</u> 1	4799.171	<u>5</u> 4	NC NC	1
327		12		.015	3	022 005	15	.115	4	6.106e-3	4	NC	-4 -5	NC NC	1
328		12	max min	016	2	022	3	0	1	0.1006-3	1	4950.639	4	NC NC	1
329		13	max	.018	3	005	15	.122	4	6.715e-3	4	NC	5	NC	1
330		13	min	017	2	021	3	0	1	0.7 136-3	1	5294.989	4	NC	1
331		14	max	.02	3	004	15	.131	4	7.325e-3	4	NC	2	NC	1
332		17	min	019	2	019	3	0	1	0	1	5908.547	4	NC	1
333		15	max	.021	3	004	15	.139	4	7.935e-3	4	NC	1	NC	1
334			min	02	2	017	3	0	1	0	1	6960.234	4	NC	1
335		16	max	.023	3	003	15	.149	4	8.544e-3	4	NC	1	NC	1
336			min	022	2	015	3	0	1	0	1	8858.977	4	NC	1
337		17	max	.024	3	002	15	.16	4	9.154e-3	4	NC	1	NC	1
338			min	023	2	012	3	0	1	0	1	NC	1	NC	1
339		18	max	.026	3	001	15	.172	4	9.763e-3	4	NC	1	NC	1
340			min	025	2	01	3	0	1	0	1	NC	1	NC	1
341		19	max	.027	3	0	10	.185	4	1.037e-2	4	NC	1	NC	1
342			min	026	2	007	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.006	1	.025	2	0	1	0	1_	NC	1_	NC	1
344			min	0	3	028	3	185	4	-3.079e-5	5	NC	1_	133.807	4
345		2	max	.006	1	.024	2	0	1	0	_1_	NC	_1_	NC	1
346			min	0	3	027	3	171	4	-3.079e-5	5	NC	1	145.46	4
347		3	max	.005	1	.023	2	0	1	0	_1_	NC	_1_	NC	1
348			min	0	3	025	3	156	4	-3.079e-5	5	NC	1_	159.33	4
349		4	max	.005	1	.021	2	0	1	0	_1_	NC	1	NC	1
350		-	min	0	3	024	3	<u>141</u>	4	-3.079e-5	5_	NC	1_	175.993	4
351		5	max	.005	1	.02	2	0	1	0	1_	NC	1	NC 400,004	1
352			min	0	3	022	3	126	4	-3.079e-5	5	NC NC	1_	196.231	4
353		6	max	.004	1	.018	2	0	1	0	1	NC NC	1	NC 224 420	1
354		7	min	0	3	02	3	112	4	-3.079e-5	5	NC NC	1	221.129	4
355			max	.004	3	.017	3	0	1 4	0 -3.079e-5	1	NC NC	1	NC 252.226	4
356 357		8	min	.004	1	019 .016	2	098 0	1	0	<u>5</u> 1	NC NC	1	NC	1
358		0	max min		3	017	3	085		-3.079e-5		NC NC	1	291.768	
359		9	max	.003	1	.014	2	065	1	0	1	NC	1	NC	1
360		-	min	0	3	01 4	3	072	4	-3.079e-5	5	NC	1	343.135	4
361		10	max	.003	1	.013	2	0	1	0	1	NC	1	NC	1
362		10	min	0	3	014	3	06	4	-3.079e-5	5	NC	1	411.61	4
363		11	max	.003	1	.011	2	0	1	0	1	NC	1	NC	1
364			min	0	3	013	3	049	4	-3.079e-5	5	NC	1	505.837	4
365		12	max	.002	1	.01	2	0	1	0	1	NC	1	NC	1
366			min	0	3	011	3	039	4	-3.079e-5	5	NC	1	640.764	4
367		13	max	.002	1	.008	2	0	1	0	1	NC	1	NC	1
368			min	0	3	009	3	029	4	-3.079e-5	5	NC	1	844.134	4
369		14	max	.002	1	.007	2	0	1	0	1	NC	1	NC	1
370			min	0	3	008	3	021	4	-3.079e-5	5	NC	1	1172.383	4
371		15	max	.001	1	.006	2	0	1	0	1	NC	1	NC	1
372			min	0	3	006	3	014	4	-3.079e-5	5	NC	1	1755.582	4
373		16	max	.001	1	.004	2	0	1	0	1	NC	1	NC	1
374			min	0	3	005	3	008	4	-3.079e-5	5	NC	1	2953.223	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
375		17	max	0	1	.003	2	0	1	0	1_	NC	1_	NC	1
376			min	0	3	003	3	004	4	-3.079e-5	5	NC	1	6097.818	4
377		18	max	0	1	.001	2	0	1	0	1	NC	1	NC	1
378			min	0	3	002	3	001	4	-3.079e-5	5	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380			min	0	1	0	1	0	1	-3.079e-5	5	NC	1	NC	1
381	M10	1	max	.008	2	.011	2	0	12	2.274e-3	4	NC	1	NC	2
382	IVITO		min	011	3	018	3	687	4	1.709e-5		6838.641	2	112.725	4
383		2		.008	2	.01	2	<u>.007</u> O	12	2.3e-3	4	NC	1	NC	1
384			max		3	017	3	632		1.625e-5	12	7970.819	2	122.676	
		2	min	01					4	1.025e-5					4
385		3	max	.007	2	.008	2	0	12	2.325e-3	4	NC 0507.050	1_	NC 404 400	1
386		-	min	01	3	016	3	<u>576</u>	4	1.541e-5		9527.859	2	134.483	4
387		4	max	.007	2	.007	2	0	12	2.35e-3	_4_	NC	_1_	NC	1
388			min	009	3	016	3	521	4	1.457e-5	12	NC	1_	148.629	4
389		5	max	.006	2	.005	2	0	12	2.375e-3	4_	NC	_1_	NC	1
390			min	008	3	015	3	467	4	1.372e-5	12	NC	1	165.77	4
391		6	max	.006	2	.004	2	0	12	2.401e-3	4	NC	1_	NC	1
392			min	008	3	015	3	415	4	1.288e-5	12	NC	1	186.816	4
393		7	max	.005	2	.002	2	0	12	2.426e-3	4	NC	1	NC	1
394			min	007	3	014	3	364	4	1.204e-5	12	NC	1	213.054	4
395		8	max	.005	2	.001	2	0	12	2.451e-3	4	NC	1	NC	1
396			min	007	3	013	3	315	4	1.12e-5	12	NC	1	246.362	4
397		9	max	.004	2	0	2	0	12	2.477e-3	4	NC	1	NC	1
398		 	min	006	3	012	3	268	4	1.036e-5	12	NC	1	289.563	4
399		10		.004	2	0	2	<u>200</u> 0	12	2.502e-3	4	NC	1	NC	1
400		10	max	00 4	3	012	3	223	4	9.515e-6	12	NC NC	1	347.064	4
		44								9.5156-6			_		
401		11	max	.004	2	002	2	0	12	2.527e-3	4	NC	1	NC 400,000	1
402		10	min	005	3	<u>011</u>	3	182	4	8.673e-6	12	NC	1_	426.066	4
403		12	max	.003	2	002	2	0	12	2.552e-3	4	NC	1_	NC	1
404			min	004	3	01	3	144	4	7.831e-6	12	NC	1_	539.005	4
405		13	max	.003	2	002	15	0	12	2.578e-3	4_	NC	_1_	NC	1
406			min	004	3	009	3	109	4	6.989e-6	12	NC	1	708.924	4
407		14	max	.002	2	002	15	0	12	2.603e-3	4	NC	1	NC	1
408			min	003	3	007	3	079	4	6.148e-6	12	NC	1	982.593	4
409		15	max	.002	2	002	15	0	12	2.628e-3	4	NC	1	NC	1
410			min	002	3	006	4	053	4	5.306e-6	12	NC	1	1467.514	4
411		16	max	.001	2	001	15	0	12	2.654e-3	4	NC	1	NC	1
412		1	min	002	3	005	4	032	4	4.464e-6	12	NC	1	2459.671	4
413		17	max	0	2	0	15	0	12	2.679e-3	4	NC	1	NC	1
414		 ''	min	001	3	004	4	015	4	3.622e-6	12	NC	1	5049.702	4
415		18	max	<u>001</u> 0	2	004 0	15	<u>013</u> 0		2.704e-3	4	NC	1	NC	1
416		10			3		4			2.779e-6		NC	-	NC	1
		40	min	0		002		<u>005</u>	4		<u>10</u>		1_		
417		19	max	0	1	0	1	0	1	2.729e-3	4	NC	1	NC NC	1
418			min	0	1	0	1	0	1	1.909e-6	10	NC	1_	NC	1
419	<u>M11</u>	1	max	0	1	0	1	0	1	-3.775e-7	<u>10</u>	NC	_1_	NC	1
420			min	0	1	0	1	0	1	-5.909e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.015	4	2.929e-5	5_	NC	<u>1</u>	NC	1
422			min	0	2	003	4	0	10	-2.441e-5	1_	NC	1_	NC	1
423		3	max	.001	3	002	15	.028	4	6.421e-4	5	NC	1	NC	1
424			min	0	2	006	4	0	10	-4.492e-5	1	NC	1	NC	1
425		4	max	.002	3	002	15	.041	4	1.258e-3	4	NC	1	NC	1
426			min	001	2	009	4	0	10	-6.542e-5	1	NC	1	NC	1
427		5	max	.002	3	003	15	.052	4	1.874e-3	4	NC	1	NC	1
428			min	002	2	013	4	0	10	-8.593e-5	1	8242.903	4	NC	1
429		6		.002	3	013 004	15	.062	4	2.49e-3	4	NC	2	NC	1
		0	max		2								4		1
430		7	min	002		016	4	0 070	10	-1.064e-4	1_	6698.993		NC NC	
431		7	max	.003	3	004	15	.072	4	3.106e-3	4	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC	(n) L/y Ratio	LC		
432			min	003	2	018	4	0	10	-1.269e-4	1_	5768.32	4	NC	1
433		8	max	.004	3	005	15	.081	4	3.722e-3	4	NC	5_	NC	1
434			min	003	2	02	4	0	10	-1.474e-4	1	5194.682	4	NC	1
435		9	max	.004	3	005	15	.09	4	4.338e-3	4	NC	5	NC	1
436			min	003	2	022	4	0	1	-1.68e-4	1	4857.441	4	NC	1
437		10	max	.005	3	006	15	.098	4	4.955e-3	4_	NC	5_	NC	1
438			min	004	2	022	4	0	1	-1.885e-4	1	4698.24	4	NC	1
439		11	max	.005	3	006	15	.106	4	5.571e-3	4	NC	5_	NC	1
440			min	004	2	022	4	0	1	-2.09e-4	1	4693.747	4	NC	1
441		12	max	.006	3	005	15	.114	4	6.187e-3	4	NC	5	NC	1_
442			min	005	2	022	4	001	1	-2.295e-4	1	4846.712	4	NC	1
443		13	max	.006	3	005	15	.122	4	6.803e-3	4	NC	5_	NC	1
444			min	005	2	021	4	002	1	-2.5e-4	1	5188.179	4	NC	1
445		14	max	.007	3	005	15	.131	4	7.419e-3	4	NC	5	NC	1
446			min	006	2	019	4	002	1	-2.705e-4	1	5793.403	4	NC	1
447		15	max	.007	3	004	15	.14	4	8.036e-3	4	NC	3	NC	1
448			min	006	2	016	4	003	1	-2.91e-4	1	6828.485	4	NC	1
449		16	max	.008	3	003	15	.15	4	8.652e-3	4	NC	_1_	NC	1
450			min	007	2	013	4	004	1	-3.115e-4	1	8695.189	4	NC	1
451		17	max	.008	3	002	15	.161	4	9.268e-3	4	NC	1	NC	1
452			min	007	2	009	4	005	1	-3.32e-4	1	NC	1	NC	1
453		18	max	.009	3	002	15	.174	4	9.884e-3	4	NC	1	NC	1
454			min	007	2	006	4	006	1	-3.525e-4	1	NC	1	NC	1
455		19	max	.009	3	0	10	.188	4	1.05e-2	4	NC	1_	NC	1
456			min	008	2	002	3	007	1	-3.73e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.008	2	.007	1	1.197e-4	5	NC	1	NC	3
458			min	0	3	009	3	188	4	-1.402e-4	1	NC	1	131.65	4
459		2	max	.002	1	.007	2	.007	1	1.197e-4	5	NC	1	NC	3
460			min	0	3	009	3	173	4	-1.402e-4	1	NC	1	143.102	4
461		3	max	.002	1	.007	2	.006	1	1.197e-4	5	NC	1	NC	2
462			min	0	3	008	3	158	4	-1.402e-4	1	NC	1	156.733	4
463		4	max	.002	1	.006	2	.006	1	1.197e-4	5	NC	1_	NC	2
464			min	0	3	008	3	143	4	-1.402e-4	1	NC	1_	173.11	4
465		5	max	.002	1	.006	2	.005	1	1.197e-4	5	NC	1	NC	2
466			min	0	3	007	3	129	4	-1.402e-4	1	NC	1	193	4
467		6	max	.002	1	.005	2	.005	1	1.197e-4	5	NC	1	NC	2
468			min	0	3	007	3	114	4	-1.402e-4	1	NC	1	217.471	4
469		7	max	.002	1	.005	2	.004	1	1.197e-4	5	NC	1	NC	2
470			min	0	3	006	3	1	4	-1.402e-4	1	NC	1	248.036	4
471		8	max	.001	1	.005	2	.003	1	1.197e-4	5	NC	1	NC	2
472			min	0	3	006	3	086	4	-1.402e-4	1	NC	1	286.901	4
473		9	max	.001	1	.004	2	.003	1	1.197e-4	5	NC	1_	NC	2
474			min	0	3	005	3	074	4	-1.402e-4	1	NC	1	337.389	4
475		10	max	.001	1	.004	2	.002	1	1.197e-4	5	NC	1	NC	1
476			min	0	3	005	3	061	4	-1.402e-4	1	NC	1	404.691	4
477		11	max	.001	1	.003	2	.002	1	1.197e-4	5	NC	1	NC	1
478			min	0	3	004	3	05	4	-1.402e-4	1	NC	1	497.303	4
479		12	max	0	1	.003	2	.002	1	1.197e-4	5	NC	1	NC	1
480			min	0	3	004	3	039	4	-1.402e-4	1	NC	1	629.917	4
481		13	max	0	1	.003	2	.001	1	1.197e-4	5	NC	1	NC	1
482			min	0	3	003	3	03	4	-1.402e-4	1	NC	1	829.796	4
483		14	max	0	1	.002	2	0	1	1.197e-4	5	NC	1	NC	1
484			min	0	3	003	3	022	4	-1.402e-4	1	NC	1	1152.404	_
485		15	max	0	1	.002	2	0	1	1.197e-4	5	NC	1	NC	1
486		l .	min	0	3	002	3	014	4	-1.402e-4	1	NC	1	1725.565	
487		16	max	0	1	.002	2	0	1	1.197e-4	5	NC	1	NC	1
488		1.0	min	0	3	002	3	009	4	-1.402e-4	1	NC	1	2902.551	4
			11/11/1		_	1002		.000		111020 1					

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio L	<u>_C</u>		LC
489		17	max	0	1	0	2	0	1	1.197e-4	5	NC	1	NC	1
490			min	0	3	001	3	004	4	-1.402e-4	1	NC	1	5992.77	4
491		18	max	0	1	0	2	0	1	1.197e-4	5	NC	1	NC	1
492			min	0	3	0	3	001	4	-1.402e-4	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.197e-4	5		1	NC	1
494		1	min	0	1	0	1	0	1	-1.402e-4	1		1	NC	1
495	M1	1	max	.012	3	.211	2	.728	4	7.238e-3	2		1	NC	1
496	IVII		min	007	2	061	3	0	12	-1.724e-2	3		1	NC	1
497		2	max	.012	3	.102	2	.706	4	6.975e-3	4		5	NC	1
					2		3		1	-8.558e-3				NC	1
498		3	min	007		028		006	_		3		2		_
499		3	max	.012	3	.018	3	.682	4	1.26e-2	4		5	NC 5000,004	1
500			min	007	2	014	2	008	1	-1.504e-4	1_		2	5868.621	5
501		4	max	.011	3	.087	3	.657	4	1.084e-2	<u>4</u>		15	NC	1
502			min	007	2	142	2	007	1	-4.195e-3	3	00	2	4293.568	5
503		5	max	.011	3	.172	3	.631	4	9.074e-3	4_		15	NC	1_
504			min	007	2	274	2	005	1	-8.287e-3	3	279.704	2	3499.332	5
505		6	max	.011	3	.262	3	.605	4	1.202e-2	2	8809.571	15	NC	1
506			min	007	2	401	2	002	1	-1.238e-2	3	221.534	2	3009.053	5
507		7	max	.011	3	.347	3	.578	4	1.603e-2	2		15	NC	1
508			min	007	2	514	2	0	3	-1.647e-2	3		2	2644.889	4
509		8	max	.01	3	.418	3	.551	4	2.004e-2	2		15	NC	1
510			min	006	2	603	2	0	12	-2.056e-2	3		2	2356.673	4
511		9	max	.01	3	.464	3	.523	4	2.25e-2	2		15	NC	1
512		9			2		2		1	-2.114e-2			2	2148.823	4
		40	min	006		66		0			3		_		
513		10	max	.01	3	.481	3	.492	4	2.392e-2	2		15	NC 2070 704	1
514		1.4	min	006	2	<u>679</u>	2	0	10	-1.937e-2	3		2	2072.724	4
515		11	max	.01	3	.469	3	.458	4	2.535e-2	2		15	NC	1
516			min	006	2	659	2	<u> </u>	12	-1.76e-2	3		2	2091.032	4
517		12	max	.009	3	.43	3	.421	4	2.427e-2	2		15	NC	1_
518			min	006	2	601	2	0	1	-1.531e-2	3		2	2202.157	4
519		13	max	.009	3	.367	3	.379	4	1.947e-2	2	7446.684	15	NC	1
520			min	006	2	507	2	0	1	-1.225e-2	3	191.049	2	2580.311	4
521		14	max	.009	3	.286	3	.332	4	1.466e-2	2	8806.237	15	NC	1
522			min	006	2	39	2	0	12	-9.19e-3	3		2	3451.392	4
523		15	max	.009	3	.194	3	.284	4	9.861e-3	2		 15	NC	1
524			min	006	2	26	2	0	12	-6.128e-3	3		2	5549.012	4
525		16	max	.008	3	.099	3	.237	4	8.465e-3	4		15	NC	1
526		10	min	006	2	129	2	0	12	-3.066e-3	3		2	NC	1
527		17		.008	3	.006	3	.194	4	9.69e-3	4		5	NC	1
		17	max		2								_		1
528		40	min	006		008	2	0	12	-3.653e-6	3		2	NC NC	
529		18	max	.008	3	.095		.157	4	6.302e-3	2		5	NC NC	1
530		10	min	00 <u>5</u>	2	078	3	0	12				2	NC	1
531		19	max	.008	3	.187	2	.126	4	1.254e-2	2		1_	NC	1
532			min	005	2	158	3	0	1	-4.472e-3	3		1	NC	1
533	M5	1	max	.035	3	.354	2	.728	4	0	<u>1</u>		1_	NC	1_
534			min	025	2	019	3	0	1	-1.308e-5	4	NC	1	NC	1
535		2	max	.035	3	.169	2	.711	4	6.451e-3	4	NC	5	NC	1
536			min	025	2	004	3	0	1	0	1	740.62	2	8005.991	4
537		3	max	.035	3	.054	3	.689	4	1.276e-2	4		5	NC	1
538		Ť	min	025	2	042	2	0	1	0	1		2	4750.785	4
539		4	max	.034	3	.189	3	.663	4	1.04e-2	4		15	NC	1
540			min	024	2	297	2	0	1	0	1		2	3724.491	4
		5			3		3		4					NC	1
541		- S	max	.033		.377		.635		8.032e-3	4		15		
542			min	024	2	<u>578</u>	2	0	1	0	1_		2	3240.894	4
543		6	max	.032	3	<u>.591</u>	3	.606	4	5.668e-3	4		15	NC	1
544			min	023	2	858	2	<u> </u>	1	0	1_		2_	2939.297	4
545		7	max	.032	3	.801	3	.577	4	3.305e-3	4	4103.926	15	NC	1_

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
546			min	023	2	-1.114	2	0	1	0	1_	92.83	2	2679.59	4
547		8	max	.031	3	.978	3	.55	4	9.415e-4	_4_		<u> 15</u>	NC	1
548			min	022	2	-1.319	2	0	1	0	1_	81.464	2	2395.766	4
549		9	max	.03	3	1.091	3	.523	4	0	1		<u> 15</u>	NC	1
550			min	022	2	-1.45	2	0	1	-8.177e-6	5	75.634	2	2140.137	4
551		10	max	.029	3	1.132	3	.491	4	0	1	3259.452	<u> 15</u>	NC	1
552			min	022	2	-1.494	2	0	1	-7.892e-6	5	73.937	2	2091.026	4
553		11	max	.029	3	1.104	3	.457	4	0	1	3337.807	15	NC	1
554			min	021	2	-1.45	2	0	1	-7.607e-6	5	75.949	2	2123.73	4
555		12	max	.028	3	1.007	3	.422	4	6.791e-4	4	3597.529	15	NC	1
556			min	021	2	-1.314	2	0	1	0	1	82.505	2	2158.203	4
557		13	max	.027	3	.851	3	.38	4	2.386e-3	4	4105.086	15	NC	1
558			min	02	2	-1.096	2	0	1	0	1	95.564	2	2510.984	4
559		14	max	.027	3	.655	3	.332	4	4.092e-3	4		15	NC	1
560			min	02	2	827	2	0	1	0	1	118.669	2	3519.162	4
561		15	max	.026	3	.438	3	.28	4	5.799e-3	4		15	NC	1
562			min	02	2	537	2	0	1	0	1	160.29	2	6635.901	4
563		16	max	.025	3	.22	3	.231	4	7.505e-3	4		15	NC	1
564		1	min	019	2	258	2	0	1	0	1	242.099	2	NC	1
565		17	max	.024	3	.018	3	.186	4	9.212e-3	4	NC	5	NC	1
566			min	019	2	021	2	0	1	0	1	428.576	2	NC	1
567		18	max	.024	3	.15	2	.151	4	4.658e-3	4	NC	5	NC	1
568			min	019	2	152	3	0	1	0	1	972.875	2	NC	1
569		19	max	.024	3	.284	2	.127	4	0	1	NC	1	NC	1
570		'	min	019	2	303	3	0	1	-7.683e-6	4	NC	1	NC	1
571	M9	1	max	.012	3	.211	2	.727	4	1.724e-2	3	NC	1	NC	1
572	1410		min	007	2	061	3	0	1	-7.238e-3	2	NC	1	NC	1
573		2	max	.012	3	.102	2	.709	4	8.558e-3	3	NC	5	NC	1
574			min	007	2	028	3	0	12	-3.547e-3	2	1245.976	2	8815.944	4
575		3	max	.012	3	.018	3	.687	4	1.271e-2	4	NC	5	NC	1
576			min	007	2	014	2	0	12	-1.762e-5	10	603.877	2	5100.813	
577		4	max	.011	3	.087	3	.662	4	1.004e-2	5		<u>1</u> 5	NC	1
578		_	min	007	2	142	2	0	12	-4.e-3	2	384.713	2	3890.464	
579		5	max	.011	3	.172	3	.635	4	8.287e-3	3		15	NC	1
580		J	min	007	2	274	2	0	12	-8.01e-3	2	279.704	2	3297.486	4
581		6	max	.011	3	.262	3	.606	4	1.238e-2	3		15	NC	1
582			min	007	2	401	2	0	10	-1.202e-2	2	221.534	2	2928.948	
583		7	max	.011	3	.347	3	.578	4	1.647e-2	3		15	NC	1
584		+ ′	min	007	2	514	2	0	1	-1.603e-2	2	187.048	2	2642.698	_
585		8		.01	3	.418	3	.55	4	2.056e-2	3		<u>-</u> 15	NC	1
		0	max			603		0	1	-2.004e-2				2373.588	
586 587		9	min	006 .01	3	<u>603 </u>	3	.523	1	2.114e-2	2	166.589 6189.695		NC	1
588		9	max min	006	2	66	2	_	12	-2.25e-2	<u>3</u>	155.907	<u>15</u> 2	2142.207	_
589		10		.01	3	<u>66</u> .481	3	<u> </u>		1.937e-2	3		<u>-</u> 15	NC	1
		10	max				2		1	-2.392e-2	2	6060.926 152.783		2073.682	
590		11	min	006	3	679	3	<u>0</u> 457					<u>2</u>		4
591		11	max	.01		.469		.457	4	1.76e-2	3		<u>15</u>	NC	1
592		10	min	006	2	<u>659</u>	2	.422	1	-2.535e-2	2	156.485	<u>2</u> 15	2098.738	
593		12	max	.009	3	.43	2		12	1.531e-2 -2.427e-2	<u>3</u>		2	NC	1
594		12	min	006		601		270				168.285		2187.263	
595		13	max	.009	3	.367	3	.379	4	1.225e-2	3		1 <u>5</u>	NC 2577.832	1
596		1.4	min	006	2	<u>507</u>	2	0	10	-1.947e-2	2	191.049	2		4
597		14	max	.009	3	.286	3	.331	4	9.19e-3	3		<u>15</u>	NC	<u> </u>
598		4.5	min	006	2	39	2	002	1	-1.466e-2	2	229.898	2	3543.399	
599		15	max	.009	3	.194	3	.281	4	6.128e-3	3		<u>15</u>	NC COOF OZO	1
600		40	min	006	2	26	2	005	1	-9.861e-3	2	296.576	2	6035.973	
601		16	max	.008	3	.099	3	.233	4	7.509e-3	5		<u>15</u>	NC NC	1
602			min	006	2	129	2	007	1	-5.057e-3	2	419.512	2	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.008	3	.006	3	.189	4	9.401e-3	4	NC	5	NC	1
604			min	006	2	008	2	007	1	-5.013e-4	1	680.748	2	NC	1
605		18	max	.008	3	.095	2	.154	4	4.606e-3	5	NC	5	NC	1
606			min	005	2	078	3	005	1	-6.302e-3	2	1439.156	2	NC	1
607		19	max	.008	3	.187	2	.127	4	4.472e-3	3	NC	1	NC	1
608			min	005	2	158	3	0	12	-1.254e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)								
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)				
4.00	0.50	1.00	2500	7.87				

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	2/(NVC) / NVCO) I ed, v I C, v I II, v v by (OCO. D.4.1, D.O.Z. NO) & Eq. D Z 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail:

Comment:

Project description:

Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 32-	40 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 32	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2732.0	1650.0	0.0	1650.0
2	2732.0	1650.0	0.0	1650.0
Sum	5464.0	3300.0	0.0	3300.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5464 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5} \text{ (Eq. D-7)}$

Kc	λ	ť (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_I)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	I,N $\Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ec,N}$	$\mathscr{V}_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408.24	324.00	1.000	1.000	1.00	1.000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	$f_{ extit{short-term}}$	K _{sat}	τ _{k,cr} (psi)	
1035	1.00	1.00	1035	_
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	_
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ	$Y_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N$	ao (Sec. D.4.1 & Eq.	D-16b)

A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 32-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc/Avco) Yec, v Ye	$_{ed,V} arPsi_{c,V} arPsi_{h,V} arV_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\varPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
576.00	648.00	1.000	0.928	1.000	1.000	15593	0.70	9001

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.66	18939		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
737.64	839.68	1.000	1.000	1.000	18939	0.70	23292

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\textit{Cpg}} = \phi \min |\textit{KcpNag}\;;\; \textit{KcpNcbg}| = \phi \min |\textit{Kcp}(\textit{A}_\textit{Na} / \textit{A}_\textit{Na0}) \, \Psi_{\textit{ed},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, \Psi_{\textit{e},\textit{Na}} \, N_{\textit{a0}}\;;\; \textit{Kcp}(\textit{A}_\textit{Nc} / \textit{A}_\textit{Nco}) \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, \Psi_{\textit{e},\textit{N}} \, N_{\textit{b}}|\; (\text{Eq. D-30b})$

, ,,,	1 1 3 7 1		(3,	r, , , , , , , ,	, ,		
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2732	6071	0.45	Pass
Concrete breakout	5464	10231	0.53	Pass
Adhesive	5464	8093	0.68	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1650	3156	0.52	Pass (Governs)
T Concrete breakout x+	3300	9001	0.37	Pass

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 32-40 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete breako	ut y- 1650	23292	2 0.0	07	Pass	
Pryout	3300	20601	0.1	16	Pass	
					-	
Interaction check	$N_{ua}/\phi N_n$	$V_{ua}/\phi V_n$	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.68	0.52	119.8 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.