113

(1)

物体Pの落下した距離は、

$$y_t = \frac{1}{2}gt^2 + v_0t$$
 より (等加速度運動の基本関係式) $g = 9.8 \, m/_{S^2}$, $t = 1s$, $v_0 = 0 \, m/_S$ を代入して $y_1 = 4.9m$ 4.9 m が縦軸の1目盛り分なので、 縦軸の1目盛りは4.9 m である。

(2)

$$x_1 = 5m \times 3 = 15m$$

水平方向に投げ出しているので、
 $v_x = |\vec{v_0}|, \ v_{0y} = 0^m/_S$ となる。
 $v_x = \frac{x_1}{1s} = 15^m/_S$
よって初速度は15 $^m/_S$ である。

(3)

$$x_t = v_x t$$
より、(等速直線運動の基本関係式) $v_x = 15^m/_S$, $t = 2$,3,4 s を代入して、 $x_2 = 30m$, $x_3 = 45m$, $x_4 = 60m$ $y_t = \frac{1}{2}gt^2 + v_0t$ より (等加速度運動の基本関係式) $g = 9.8^m/_{S^2}$, $t = 2$,3,4 s , $v_0 = 0^m/_S$ を代入して、 $y_2 = 19.6m$, $y_3 = 44.1m$, $y_4 = 78.4m$ よって2,3,4秒後の位置を座標で表すと、 $P_2(6,4)$, $P_3(9,9)$, $P_4(12,16)$ となる。(図は下記に記しています)

(4)

$$P_3(45m, 44.1m)$$
 \$9,
 $OP_3 = \sqrt{45^2 + 44.2^2} = 63m$

(5)

$$P_1$$
, P_3 における速度ベクトル $\overrightarrow{v_1}$, $\overrightarrow{v_3}$ は、 $v_{1x}=v_{3x}=15\,^m/_S$ $v_{1y}=9.8\,^m/_{S^2}\cdot 1s=9.8\,^m/_S$ $v_{3y}=9.8\,^m/_{S^2}\cdot 3s=29.4\,^m/_S$ より

$$\overrightarrow{v_1} = (15 \, {}^m/_S, 9.8 \, {}^m/_S)$$
 $\overrightarrow{v_3} = (15 \, {}^m/_S, 29.4 \, {}^m/_S)$ となる。

座標で表すと、

$$\vec{v_1} = (3,2)$$

$$\overrightarrow{v_1} = (3,2)$$

 $\overrightarrow{v_3} = (3,6)$

となる。

(図は右記に記しています)

(6)

 P_2 に働いている力は重力だけである。 重力の大きさはmg、方向は下向きである。 (図は右記に記しています)

(7)

