Corrigé du contrôle final

Exercice 1. 1. On a $\sigma = (1, 2)(3, 4, 5)(6, 7, 8)$.

- 2. On a $\sigma(1,2)(4,5)(3,4)(6,7)(7,8)$.
- 3. Comme σ est le produit de 5 transpositions, la signature de σ est $(-1)^5 = -1.$
- 4. L'ordre de σ est le ppcm de (2,3,3) c'est-à-dire 6.
- 5. Si $\tau^2 = \sigma$, la signature de σ est la signature de τ au carré, c'est-à-dire 1. C'est absurde. Donc τ n'existe pas.

Exercice 2.

- 1. On a $A^2 = 2A + 3I$.
- 2. On a donc $u^2 2u 3Id = 0$. Si x est un vecteur propre associé à la valeur propre λ , on a $0 = (u^2 - 2u - 3\mathrm{Id})(x) = (\lambda^2 - 2\lambda - 3)x$ et donc $\lambda^2 - 2\lambda - 3 = 0.$
- 3. Comme 0 n'est pas valeur propre de u, u est injectif, et donc bijectif.
- 4. On a $Ae_1 = 3e_1$.
- 5. Soit $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in F$. On a $A \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} y+z+t \\ x+z+t \\ x+y+t \\ x+y+z \end{pmatrix}$. Ce dernier vecteur est

dans F, car la somme de ses coordonnées est 3(x+y+z+t)=0.

- 6. C'est une famille libre car les coordonnées sont échelonnées.
- 7. On a $Ae_2 = -e_2$, $Ae_3 = -e_3$ et $Ae_4 = -e_4$. La matrice cherchée est donc $-I \in M_3(\mathbf{R})$.
- 8. Les vecteurs e_1 , e_2 , e_3 et e_4 sont propres pour u et forment une base de \mathbb{R}^4 . En effet, F et $\mathbb{R}e_1$ sont des sous-espaces vectoriels supplémentaires dans \mathbb{R}^4 . Ils ont pour bases respectives e_1 et (e_2, e_3, e_4) , si bien que (e_1, e_2, e_3, e_4) est une base de \mathbb{R}^4 .
- 9. La matrice de passage P de la base canonique de ${\bf R}^4$ à la base de

diagonalisation est
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$$

10. Comme l'endomorphisme est diagonalisable, au vu des valeurs propres, le polynôme caractéristique est $(X+1)^3(X-3)$.

- 11. On a vu que u^2-2u-3 id = 0, si bien que u est annulé par le polynôme (X+1)(X-3). Comme ni X+1, ni X-3 n'annule u, le polynôme minimal est (X+1)(X-3).
- 12. On a B = bA + aI. Comme A et I commutent à A, toute combinaison linéaire de A et I commute à A.
- 13. Tout vecteur propre de A est propre pour I et donc pour bA + aI. Comme A admet une base de vecteurs propres, c'est aussi une base de vecteurs propres pour B.
- 14. Les valeurs propres correspondant aux vecteurs propres e_1 , e_2 , e_3 et e_4 sont respectivement 3b + a, -b + a, -b + a et -b + a. Ainsi le polynôme caractéristique de B est $(X 3b a)(X + b a)^3$.
- 15. On a $A^2 = 2A + 3I$. Il vient immédiatement par récurrence que $A^n = \alpha_n A + \beta_n I$, où α_n et β_n sont des scalaires. De plus on a $A^{n+1} = \alpha_{n+1} A + \beta_{n+1} I = (2\alpha_n + \beta_n) A + 3\alpha_n I$, si bien que $\beta_{n+1} = 3\alpha_n$ et $\alpha_{n+1} = 2\alpha_n + \beta_n = 2\alpha_n + 3\alpha_{n-1}$. L'ensemble E des suites réelles $(\alpha_n)_{n\geq 0}$ qui vérifient la relation de récurrence $\alpha_{n+1} = 2\alpha_n + 3\alpha_{n-1}$. est un espace vectoriel. Comme l'élément $(\alpha_n)_{n\geq 0}$ est déterminé par (α_0, α_1) , cet espace vectoriel est de dimension ≤ 2 . Or il contient deux éléments qui ne sont pas liés : les suites $(3^n)_{n\geq 0}$ et $((-1)^n)_{n\geq 0}$. Ainsi ces suites forment une base de E. On a donc $\alpha_n = u3^n + v(-1)^n$, avec $u, v \in \mathbf{R}$ indépendants de n. Comme $\alpha_0 = 0$ et $\alpha_1 = 1$, on a donc u = 1/4 et v = -1/4. On a donc $\alpha_n = (3^n (-1)^n)/4$ et $\beta_n = (3^n + 3(-1)^n)/4$, si bien que

$$A^{n} = \frac{1}{4}(3^{n} - (-1)^{n})A + \frac{1}{4}(3^{n} + 3(-1)^{n})I.$$

Autre méthode. Notons D la matrice de u dans la base (e_1, e_2, e_3, e_4) . On a $D = P^{-1}AP$ et donc $A = PDP^{-1}$. Il vient $A^n = PD^nP^{-1}$. On a

$$P^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3 \end{pmatrix}, D^{n} = \begin{pmatrix} 3^{n} & 0 & 0 & 0 \\ 0 & (-1)^{n} & 0 & 0 \\ 0 & 0 & (-1)^{n} & 0 \\ 0 & 0 & 0 & (-1)^{n} \end{pmatrix}.$$

Il suffit ensuite de faire le produit.