第三章 数据通信基本原理

主要内容

数据通信基础理论

- 傅立叶分析
- 有限带宽信号
- 信道的最大数据传输速率

■ 数据通信技术

- 数据通信系统的基本结构
- 传输和传输方式
- 数据编码技术
- 多路复用技术
- 交换技术

数据通信基础理论

■ 主要内容

■ 研究信号在通信信道上传输时的数学表示及其所受到的限制

• 傅立叶分析

- 在网络通信中,信息是以电磁信号(或简称信号)的形式传输的
- 电磁信号是时间的函数 (时域观)
- 也可以表示成频率的函数(频域观)
- 对于理解数据传输来讲,信号的频域观比时域观更重要

数据通信基础理论(续)

■ 时域观

- 从时间函数的角度来看,电磁信号分为模拟信号和数字信号
- 模拟信号: 信号强度随着时间平滑变化,或者说信号中没有突变或不连续的地方
- 数字信号: 信号强度在一段时间内保持一个恒定值, 然后又变成另外一个恒定值

■ 频域观

- 基本定义
 - 当一个信号的所有频率成分是某一个频率的整数倍时,该频率被称为基本频率
 - 信号的周期等于基本频率的周期
- 傅立叶分析

傅立叶分析

■ 傅立叶分析

■ 任何一个周期为T的有理周期性函数 g(t) 可分解为若干项 (可能是无限多项) 正弦和余弦函数之和

$$g(t) = \frac{c}{2} + \sum_{n=1}^{\infty} (a_n \sin 2\pi n f t + b_n \cos 2\pi n f t)$$
 $f = \frac{1}{T}$: 基本频率
 $a_n, b_n : n$ 次谐波项的正弦和余弦振幅值

5

- 已知 g(t), 求 c, a_n , b_n
 - 将等式两边从 0 到 T 积分,可得到 c

$$c = \frac{2}{T} \int_0^T g(t) dt$$

- 用 $sin(2\pi kft)$ 乘等式两边,并从 0 到 T 积分,可得到 a_n

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

- 用 $cos(2\pi kft)$ 乘等式两边,并从 0 到 T 积分,可得到 b_n

$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$

■ 对于二进制编码 0 1 1 0 0 0 1 0 , 其输出电压波形为:

$$\begin{cases} 0 & 0 < t \le \frac{T}{8} \\ 1 & \frac{T}{8} < t \le \frac{3T}{8} \\ 0 & \frac{3T}{8} < t \le \frac{6T}{8} \\ 1 & \frac{6T}{8} < t \le \frac{7T}{8} \\ 0 & \frac{7T}{8} < t < T \end{cases}$$

■ 其傅立叶分析的系数为

$$a_n = \frac{1}{\pi n} \left[\cos \left(\frac{\pi n}{4} \right) - \cos \left(\frac{3\pi n}{4} \right) + \cos \left(\frac{6\pi n}{4} \right) - \cos \left(\frac{7\pi n}{4} \right) \right]$$

$$b_n = \frac{1}{\pi n} \left[sin\left(\frac{3\pi n}{4}\right) - sin\left(\frac{\pi n}{4}\right) + sin\left(\frac{7\pi n}{4}\right) - sin\left(\frac{6\pi n}{4}\right) \right]$$

•
$$c = \frac{3}{8}$$

- 根据**傅立叶分析**,任何**电磁信号**可以由若干具有不同振幅、频率和相位的周期 模拟信号(正弦波)组成
- 反过来,只要有足够的具有**适当振幅、频率和相位的正弦波**,就可以构造任何 一个信号

有限带宽信号

- 频谱 (spectrum) 是一个信号所包含的频率的范围
 - 图2-1 (e) 中信号的频谱从 f 到 8f
- 信号的绝对带宽等于频谱的宽度
 - 图2-1 (e) 中信号的带宽为 8f-f=7f
- 许多信号的带宽是无限的,然而信号的主要能量集中在相对窄的频带内,这个频带被称为有效带宽,或带宽(bandwidth)
- 信号的信息承载能力与带宽有直接关系,带宽越宽,信息承载能力 越强

■ 信号在信道上传输时的特性

- 对不同傅立叶分量的衰减不同,引起输出失真
- 信道有<mark>截止频率</mark> f_c , $0 \sim f_c$ 的振幅衰减较弱, f_c 以上的振幅衰减厉害, 这主要由信道的物理特性决定, $0 \sim f_c$ 是信道的有限带宽
- 实际使用时,可以接入滤波器,限制用户的带宽
- 通过信道的谐波次数越多,信号越逼真

■ 波特率 (baud) 和比特率 (bit) 的关系

■ 波特率:每秒钟信号变化的次数,也称调制速率

■ 比特率: 每秒钟传送的二进制位数

■ 波特率与比特率的关系取决于信号值与比特位的关系

 例:每个信号值可表示3位,则比特率是波特率的3倍;每个信号值可表示 1位,则比特率和波特率相同

- 对于比特率为 B bps 的信道,发送8位所需的时间为 8/B 秒,若 8 位为一个周期 T,则一次谐波的频率是: $f_1 = B/8$ Hz
- 能通过信道的最高次谐波数目为: $N = f_c/f_1$
 - 音频线路的截止频率为 3000Hz

$$N = fc/f_1 = 3000/(B/8) = 24000/B$$

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Fig. 2-2. Relation between data rate and harmonics.

■ **结论**: 即使对于完善的信道,有限的带宽限制了数据的传输速率

信道的最大数据传输速率

- 1924年, 奈魁斯特(H. Nyquist)推导出无噪声有限带宽信道的最大数据传输率公式
- 奈魁斯特定理
 - 最大数据传输率 = 2Hlog₂V (bps)
 - 任意信号通过一个带宽为 H 的信道,则每秒采样 2H 次就能完整地重现该信号,信号电平分为 V 级

信道的最大数据传输速率 (续)

- 1948年,香农(C. Shannon)把奈魁斯特的工作扩大到**信道受到随机(热)噪声** 干扰的情况
- 随机噪声出现的大小用**信噪比(信号功率**S与噪声功率N之比)来衡量:
 10log₁₀S/N,单位:分贝
 - 电话系统的典型信噪比为30db

■ 香农定理

- 带宽为 H 赫兹, 信噪比为S/N的任意信道的最大数据传输率为
 - $Hlog_2(1 + S/N)$ (bps)
- 此式是利用信息论得出的,具有普遍意义
- 与信号电平级数、采样速度无关
- 此式仅是上限,难以达到

主要内容

■ 数据通信基础理论

- 傅立叶分析
- 有限带宽信号
- 信道的最大数据传输速率

■ 数据通信技术

- 数据通信系统的基本结构
- 传输和传输方式
- 数据编码技术
- 多路复用技术
- 交换技术

数据通信技术

■ 主要内容

- 研究数据在通信信道上的各种传输方式及其所采用的技术
- 数据通信系统的基本结构

数据通信技术

传输和传输方式

- 数字传输/模拟传输
- 并行传输/串行传输
- 点到点传输/点到多点传输
- 单工、半双工和全双工传输
- 同步传输/异步传输

点到点传输/点到多点传输

■ 连接方式

- 为适应不同的需要,通信线路采用不同的连接方式
 - 点到点传输

- 点到多点传输

单工、半双工和全双工传输

■ 从信息传送方向和时间的关系角度研究

■ 单工传输

• 信息只能单向传输, 监视信号可回送

■ 半双工传输

信息可以双向传输,但在某一时刻只能 单向传输

■ 全双工传输

• 信息可以同时双向传输

同步传输/异步传输

■ 同步方式

- **目的**:接收方必须知道每一位信号的开始及其持续时间,以便正确的采样接收
- 以字符传输(字符为基本传输单位)为例,在基于字符的信息传送中,可以采用异步传输,也可以采用同步传输

23 23

- 异步传输(以字符传输为例)

- 信息传送以字符为单位
- 每个字符由发送方异步产生,有随机性
- 字符一般采用5,6,7或8位二进制编码
- 需要辅助位,每个字符可能需要用10位或11位才能传送,例如:

起始位: 1位

■ 奇偶校验位: 1位

字符编码: 7位

● 终止位: 1 ~ 2位

- 特点
 - 传输效率低
 - 主要用于字符终端与计算机之间的通信

24

同步传输(以字符传输为例)

- 信息传送以报文为单位
- 传输开始时,以同步字符使收发双方同步
- 从传输信息中抽取同步信息,修正同步,保证正确采样
- 特点
 - 可以不间断地传输信息,传输效率较高
 - 字符间减少了辅助信息
 - 传输的信息中不能有同步字符出现,需要透明传输处理

SYN SYN	信	息	SYN SYN
---------	---	---	---------

基于位的传输,一般采用同步传输

- 信息以二进制位流为单位传送
- 传输过程中收发双方以位为单位同步
- 传输的开始和结束由特定的八位二进制位同步
- 特点: 传输效率高

标记 二进制位流 标记

■ 基于帧的传输呢?

数据编码技术

■ 数据表示

- 模拟数据 (Analog Data), 连续值
- 数字数据 (Digital Data), 离散值

■ 数据传输方式

- 以信号作为载体
- 模拟信号 (Analog Signals)
- 数字信号 (Digital Signals)

信号发送方式

- 模拟信号发送 (模拟信道)
 - 模拟数据(声音)
 - 数字数据(二进制脉冲)
- 数字信号发送(数字信道)
 - 模拟数据
 - 数字数据(二进制脉冲)

- 数字信号发送的优点: 价格便宜, 对噪声不敏感;
- 数字信号发送的缺点: 易受衰减,频率越高,衰减越厉害

数据编码技术

- 研究数据在信号传输过程中如何进行编码(变换)
- 数字数据的数字传输(基带传输)
 - 基带: 基本频带, 指传输变换前所占用的频带, 是原始信号所固有的频带
 - 基带传输: 在传输时直接使用基带信号
 - 基带传输是一种最简单最基本的传输方式,一般用低电平表示"0",高电平表示"1"
 - 适用范围: 低速和高速的各种情况
 - 限制: 因基带信号所带的频率成分很宽, 所以对传输线有一定的要求

数据编码技术 (续)

- 不归零制码 (NRZ: Non-Return to Zero)
 - 原理:用两种不同的电平分别表示二进制信息 "0"和 "1",低电平表示 "0",高电平表示 "1"
 - 缺点:
 - 难以分辨一位的结束和另一位的开始
 - 发送方和接收方必须有时钟同步
 - 若信号中"0"或"1"连续出现,信号直流分量将累加
 - 结论:容易产生传播错误

数据编码技术 (续)

■ 曼彻斯特码 (Manchester) : 也称相位编码

- 原理:每一位中间都有一个跳变,从低跳到高表示 "0",从高跳到低表示"1"
- 优点:克服了NRZ码的不足。每位中间的跳变即可作为数据,又可作为时钟,能够自同步

■ 差分曼彻斯特码 (Differential Manchester)

- 原理:每一位中间都有一个跳变,每位开始时有跳变表示"0",无跳变表示"1"。位中间跳变表示时钟,位前跳变表示数据
- 优点: 时钟、数据分离, 便于提取

数据编码技术 (续)

- 逢 "1" 变化的NRZ码
 - 原理: 在每位开始时,逢 "1" 电平跳变,逢 "0" 电平不跳变
- 逢 "0" 变化的NRZ码
 - 原理: 在每位开始时,逢 "0" 电平跳变,逢 "1" 电平不跳变

数字数据的模拟传输

数字数据的模拟传输,也称频带传输

- 指在一定频率范围内的线路上,进行载波传输。用基带信号对载波进行调制,使其变为适合于线路传送的信号
- 调制(Modulation): 用基带脉冲对载波信号的某些参量进行控制,使 这些参量随基带脉冲变化
- 解调 (Demodulation) : 调制的反变换
- 调制解调器MODEM (modulation-demodulation)

数字数据的模拟传输(续)

Modem: RS-232接口用来连接电脑,

RJ-11用来连接电话线

连接电脑和电话线的modem

网络中心的提供拨号接入服务的modem pool

Ascend Pipeline ISDN modem

PCMCIA fax/modem/Ethernet 接口卡

- 根据载波 Asin(ωt + φ) 的三个特性:振幅、频率、相位,产生常用的三种调制技术:
 - 幅移键控法 (调幅) Amplitude-shift keying (ASK)
 - 幅移就是把频率、相位作为常量,而把振幅作为变量,即:

$$\begin{cases} \omega(t) = \omega 0 \\ \varphi(t) = \varphi 0 \\ A(t) = A_1, A_2, \dots A_N \end{cases}$$

A(t) 取不同的值表示不同的信息码。例如: A(t) 取A₁, A₂, A₁表示 "0",
 A₂表示 "1"

- 频移键控法 (调频) Frequency-shift keying (FSK)
 - 频移就是把振幅、相位作为常量,而把频率作为变量,即:

$$\begin{cases} A(t) = A0 \\ \varphi(t) = \varphi 0 \end{cases}$$

$$\omega(t) = \omega_1, \omega_2, \dots \omega_N$$

ω(t) 取不同的值表示不同的信息码。例如: ω(t) 取ω₁, ω₂, ω₁表示
 "0", ω₂表示 "1"

- 相移键控法 (调相) Phase-shift keying (PSK)
 - 相移就是把振幅、频率作为常量,而把相位作为变量,即:

$$\begin{cases} A(t) = A0 \\ \omega(t) = \omega 0 \end{cases}$$
$$\varphi(t) = \varphi_1, \varphi_2, \dots \varphi_N$$

• $\phi(t)$ 取不同的值表示不同的信息码。例如: $\phi(t)$ 取 ϕ_1 , ϕ_2 , ϕ_1 表示 "0", ϕ_2 表示 "1"

Fig. 2-18. (a) A binary signal. (b) Amplitude modulation. (c) Frequency modulation. (d) Phase modulation.

模拟数据的数字传输

- 解决模拟数据数字化问题,也称为脉冲代码调制 PCM (Pulse Code Modulation)
- 根据 Nyquist 原理进行采样
- 常用的 PCM 技术
 - 将模拟信号振幅分成多级 (2n) , 每一级用 n 位表示
 - 例如: 贝尔系统的 T1 载波将模拟信号分成128级,每次采样用7位二进制数表示

模拟数据的数字传输(续)

■ 差分脉冲代码调制

原理:不是将振幅值数字化,而是根据前后两个采样值的差进行编码,输出 二进制数字

■ δ 调制

■ 原理:根据每个采样值与前一个值之间的差来决定输出二进制 "1" 或 "0"

■ 缺点:编码速度跟不上变化太快的信号

模拟数据的数字传输(续)

Fig. 2-27. Delta modulation.

模拟数据的数字传输(续)

Fig. 2-17. The use of both analog and digital transmission for a computer to computer call. Conversion is done by the modems and codecs.

多路复用技术

- 由于一条传输线路的能力远远超过传输一个用户信号所需的能力, 为了提高线路利用率,经常让多个信号同时共用一条物理线路
- 常用的有四种方法
 - 时分复用 TDM (Time Division Multiplexing)
 - T1载波,分成 24 个信道
 - 频分复用 FDM (Frequency Division Multiplexing)
 - 波分复用 WDM (Wavelength Division Multiplexing)
 - 码分复用 CDM (Code Division Multiplexing)

时分复用 TDM

Fig. 2-26. The T1 carrier (1.544 Mbps).

频分复用 FDM

Fig. 2-24. Frequency division multiplexing. (a) The original bandwidths. (b) The bandwidths raised in frequency. (c) The multiplexed channel.

波分复用 WDM

Fig. 2-25. Wavelength division multiplexing.

交换技术

通信网络可以根据其结点交换信息的方式进行分类

交换技术 (续)

- 在多结点通信网络中,为有效利用通信设备和线路,一般希望动态 地设定通信双方间的线路。
- 动态地接通、断开、切换通信线路, 称为"交换"
- 交换方式分类:
 - 电路交换
 - 报文交换,存储转发方式
 - 分组交换(包交换),存储转发方式

电路交换(circuit switching)

原理

■ 直接利用可切换的物理通信线路,连接通信双方

- 三个阶段

■ 建立电路, 传输数据, 拆除电路

■ 特点

- 在发送数据前,必须建立起点到点的物理通路
- 建立物理通路时间较长,数据传送延迟较短

- 例

- 电话网(1875)
- ISDN (Integrated Services Digital Networks)

电路交换 (续)

■ 电路交换网络中的结点 (交换机) 工作方式

电路交换 (续)

■ 复用/解复用

- 一般采用时分复用
- 时间被分为帧(frame),帧被分为时槽(slot)
- 时槽在帧内的相对位置决定这个槽所传输数据所属的会话
- 发送方和接收方间需要同步
- 非永久会话需要动态绑定时槽到一个会话

报文交换(message switching)

■ 原理

■ 信息以报文(逻辑上完整的信息段)为单位进行存储转发

特点

- 线路利用率高
- 要求中间结点(网络通信设备)缓冲大
- 延迟时间长

分组交换(packet switching)

■ 原理

- 分组:比报文还小的信息段,可定长,也可变长
- 信息以分组为单位进行存储转发。源结点把报文分为分组,在中间结点存储 转发,目的结点把分组合成报文

特点

- 每个分组头包括源地址和目的地址,独立进行路由选择
- 网络结点设备中不预先分配资源
- 线路利用率高

■ 特点(续)

- 易于重传,可靠性高
- 易于开始新的传输,让紧急信息优先通过
- 开销增加

• 分组交换分为

- 数据报 (datagram) 分组交换
- 虚电路 (virtual circuit) 分组交换

■ 分组交换网中的结点(交换机/路由器)工作方式

■ 复用/解复用

- 采用统计复用,按需分配信道资源
- 来自任意会话的数据可以立即发送,不需要等待时槽
- 用附加的分组头来区分数据

Fig. 2-34. (a) Circuit switching. (b) Packet switching.

Fig. 2-35. Timing of events in (a) circuit switching, (b) message switching, (c) packet switching.

数据报分组交换

- 每个分组均带有网络地址(源、目的),可走不同的路径
- 例: IP networks

■ 虚电路分组交换

- 电路交换和分组交换的结合
 - 数据以分组形式传输
 - 来自同一流的分组通过一个预先建立的路径(虚电路)传输
 - 确保分组的顺序
 - 但是来自不同虚电路的分组可能会交错在一起
- 分三个阶段
 - 建立:发带有全称网络地址的<mark>呼叫分组</mark>,建立虚电路
 - 传输:沿建立好的虚电路传输数据;
 - 拆除:拆除虚电路。

■ 虚电路分组交换

- 注意:分组头不需要包含完整的地址信息
- 例: ATM networks

Fig. 2-43. The dotted line shows a virtual circuit. It is simply defined by table entries inside the switches.

■ 电路交换与分组交换的比较

- 分组交换相比电路交换的最大优势是可以实现统计复用,有效的利用带宽
 - 峰值带宽和平均带宽的比例:话音3:1,数据15:1
- 但是分组交换需要处理拥塞,因此:
 - 需要复杂的路由器
 - 难以保证端到端服务质量(延迟和带宽的保证)
- 实际应用中,这两种方式可以结合在一起
 - IP over SONET, IP over Frame Relay

Item	Circuit-switched	Packet-switched
Dedicated "copper" path	Yes	No
Bandwidth available	Fixed	Dynamic
Potentially wasted bandwidth	Yes	No
Store-and-forward transmission	No	Yes
Each packet follows the same route	Yes	No
Call setup	Required	Not needed
When can congestion occur	At setup time	On every packet
Charging	Per minute	Per packet
	·	·

Fig. 2-36. A comparison of circuit-switched and packet-switched networks.

不同交换技术的比较

- 电路交换适用于实时信息和模拟信号传送,在线路带宽比较低的情况下使用比较经济
- 报文交换适用于线路带宽比较高的情况,可靠灵活,但延迟大
- 分组交換缩短了延迟,也能满足一般的实时信息传送。在高带宽的通信中更为经济、合理、可靠。是目前公认较(最)好的一种交换技术

交换结构

- 交换结构 (switch fabric)
 - crossbar 交換
 - 空分交换
 - 时分交换

crossbar 交换

Fig. 2-38. (a) A crossbar switch with no connections. (b) A crossbar switch with three connections set up: 0 with 4, 1 with 7, and 2 with 6.

空分交换

Fig. 2-39. Two space division switches with different parameters.

时分交换

Fig. 2-40. A time division switch.

总结

■ 数据通信基础理论

- 信号,信号的时域观和频域观,傅立叶分析
- 有限带宽信号

■ 数据通信技术

- 数据通信系统的基本结构
- 传输和传输方式
- 数据编码技术
- 多路复用技术

总结(续)

- 交换技术
 - 电路交换
 - 报文交换
 - 分组交换
 - 数据报分组交换
 - 虚电路分组交换
 - 交换结构
- 思考: 查阅资料, 总结电路交换与分组交换的区别