第6章 (pp. 70)

中心極限定理

中心極限定理

!重要!

中心極限定理

標本nの大きさが大きいとき 標本平均の分布が正規分布に近似する

- 詳細な説明については後述

- 正規分布という特定の分布にしたがうならば 確率の計算が簡単になる

標本平均の分布

(1) 確率変数 X_i

確率変数 X_i

• 標本の観測値 x_i は 確率変数 X_i として表すことができる

- 母集団での比率 π がわかれば 確率 $\Pr(X = x) =_n C_x \pi^x (1 - \pi)^{n-x}$ を 計算することができる

- 母集団からランダムに抽出した標本は **母集団と同じ確率分布をもつ**と考えると 標本の観測値 x_i を確率変数 X_i とみなすことができる

確率変数 X_i

• 標本の観測値 x_i は 確率変数 X_i として表すことができる

- 確率変数 X_i は確率変数Xと同じ確率分布にしたがう
- それぞれの X_i は独立である

母集団から標本を抽出したとしても 母集団の分布である確率分布は変化しないため

(2)標本平均の分布

標本平均の分布

標本における観測値 $x_1, x_2, ..., x_n$ を確率変数として $X_1, X_2, ..., X_n$ とする

• 関数 $g(X_1, X_2, ..., X_n)$

• 標本平均

$$\bar{X} = \frac{1}{n} \sum X_i$$

- 確率変数の関数
 - 標本平均自体が確率変数であるといえる

標本平均の分布

標本抽出のたびに標本平均は異なる値

それぞれの平均

 $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_S$

の分布を考える

(3)標本平均取の平均値と分散

標本平均家の平均値と分散

- 母集団X
 - 母平均 μ_X
 - 母分散 σ_X^2
 - 期待値として表すと
 - 平均 $E(X) = \mu_X$
 - 分散 $Var(X) = \sigma_X^2$

- この母集団から大きさnの標本を無作為抽出
 - 確率変数 X_i は確率変数Xと同じ確率分布にしたがうので
 - $E(X_i) = \mu_X$
 - $Var(X_i) = \sigma_X^2$

標本平均家の平均値と分散

標本平均家の平均値と分散

- 平均値 $E(\bar{X}) = \mu_X$
 - 母平均と同じになる
- 分散 $Var(\bar{X}) = \frac{\sigma_X^2}{n}$
 - 母分散の $\frac{1}{n}$ 倍
 - 標本平均を確率変数として考えて その確率分布の平均値と分散を求める (証明については省略(pp. 74))

標本平均区の平均値と分散

標本平均取の平均値と分散

- 平均値 $E(\bar{X}) = \mu_X$
 - 母平均と同じになる
- 分散 $Var(\bar{X}) = \frac{\sigma_X^2}{n}$
 - -母分散の $\frac{1}{n}$ 倍

標本の大きさ*n*を 大きくしたときに 標本平均の分散は小さくなる ↓

大数の法則

標本平均を確率変数として考えて その確率分布の平均値と分散を求める (証明については省略(pp. 74))

(pp. 76) 問題6-1

【難】標本調査の精度

- 無限母集団から 標本を無作為抽出して調査を行う。
 - -標本の大きさn=200のとき 標本平均の標準偏差は理論的には $\frac{\sigma_x}{\sqrt{200}}$
- 標本平均の 標準偏差を 計算する

- 調査の規模を10倍 (n = 2000) にしたとき 調査の精度は10倍になるか?
 - 標本平均の標準偏差の大きさを調査精度と考える
 - 標本平均の標準偏差はn=200のときの何割程度になるか
 - もしも調査の精度が10倍になるなら 標本平均の標準偏差(ばらつき)は0.1程度になるはず

(pp. 76) 問題6-1

標本調査の精度

・ 標本の大きさを10倍にしても調査の精度は10倍にはならない(標準偏差は $\frac{1}{10}$ にはならない)

$$\frac{\sigma_X}{\sqrt{200}}: \frac{\sigma_X}{\sqrt{2000}} = 1: \frac{1}{\sqrt{10}} = 1: 0.316$$

より、標準偏差は30%程度

- 標本の大きさを100倍したときに $\frac{1}{\sqrt{100}} = \frac{1}{10}$ より、標準偏差は10%程度となり、調査精度は10倍になる
- 標本が大きければ大きいほど 標本は母集団に近づくが比例するわけではないことに注意!

中心極限定理

中心極限定理

!超重要!

• 中心極限定理

- 母集団がどのような分布であっても 無作為抽出した標本における和の分布は 標本の大きさnが大きいときに正規分布になる
 - 標本平均について言い換えると
- 母集団がどのような分布であっても 無作為抽出した標本における標本<math>Xの分布は 標本の大きさnが大きいときに

平均 μ_X 分散 $\frac{\sigma_X^2}{n}$ の正規分布になる

• 標本平均がある範囲内に含まれる確率を、 正規分布を用いて計算することが可能になる

- 連続確率変数Xの確率密度関数f(x)が $f(x) = \frac{1}{\sqrt{2\pi\sigma_X^2}} \exp\left\{-\frac{(x-\mu_X)^2}{2\sigma_X^2}\right\}$ となるときのXの確率分布
- $X \sim N(\mu_X, \sigma_X^2)$
- 平均を中心として左右対称の連続確率分布

- $X \sim N(\mu_X, \sigma_X^2)$
- 平均を中心として左右対称の連続確率分布

- $X \sim N(\mu_X, \sigma_X^2)$
- 平均を中心として左右対称の連続確率分布

- $X \sim N(\mu_X, \sigma_X^2)$
- 平均を中心として左右対称の連続確率分布

第6章のまとめ

- 標本の観測値 x_i を確率変数 X_i として表す
 - 標本平均 \bar{X}
 - 標本平均に関する平均値 $E(\bar{X}) = \mu_X$
 - 標本平均に関する分散 $Var(\bar{X}) = \frac{\sigma_X^2}{n}$
- 標本の大きさnを大きくしたとき 標本平均は母平均に近づく
- 中心極限定理
 - 母集団の分布がどのような分布であっても 無作為抽出した標本における標本平均は 標本の大きさnが大きいときに正規分布にしたがう
- 正規分布
 - 中心は平均
 - 左右対称
 - 連続確率分布