Probability Theory

Applications for Data Science

Module 5: Expectation, Variance, Covariance, and

Correlation

Anne Dougherty

March 15, 2021

TABLE OF CONTENTS

Expectation, Variance, Covariance, and Correlation

At the end of this module, students should be able to

- Compute the mean, variance, and standard deviation of a function of a random variable (i.e. g(X)).
- ► Explain the concept of jointly distributed random variables, for two random variables *X* and *Y*.
- ▶ Define, compute, and interpret the covariance between two random variables *X* and *Y*.
- ▶ Define, compute, and interpret the correlation between two random variables *X* and *Y*.

Example: An insurance agency services customers who have both a homeowner's policy and an automobile policy. For each type of policy, a deductible amount must be specified. For an automobile policy, the choices are \$100 or \$250 and for the homeowner's policy, the choices are \$0, \$100, or \$200.

Suppose an individual, let's say Bob, is selected at random from the agency's files. Let X be the deductible amount on the auto policy and let Y be the deductible amount on the homeowner's policy.

We want to understand the relationship between X and Y.

Suppose the **joint probability table** is given by the insurance company as follows:

					regular			
		y (home)			regular Imass Junfor X			
		0	100	200				
x (auto)	100	.20	.10	.20	P(X=100)=.5			
	250	.05	.15	.30	P(X=150)=,5			
P(Y=4	.)	P(70)=	.25 P(Y=100)	P(Y=	(DO)			
o, Y=0)=".	. 20	· ~	2.65					
P(V=250, V=100)=.15								
interrection of 2 events - This table gives interaction								
X=250 and Y=100 for X+4.								
In the next video well								
discuss how X + y are contacted to								
		,	Baform	ران کار	The probabilities			
	P(Y=9 0, Y=0) = 6 150, Y=100	P(Y=y) = .20 $(50, Y=100) = .15$	x (auto) 100 .20 $250 .05$ $P(Y=g) P(Y=0)=0$ $(50, Y=100)=0.15$ $(50, Y=100)=0.15$ $(50, Y=100)=0.15$	0 100 x (auto) 100 .20 .10 250 .05 .15 P(Y=g) $P(Y=0)=.25$ $P(Y=100)=.25regular mreservin of 2 events$ $regular mreservin of 2 events$ $regular mreservin of 3 events$ $regular m$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Definition: Given two discrete random variables, X and Y, p(x,y) = P(X = x, Y = y) is the **joint probability mass** function for X and Y.

			,	y (home)				
			0	100	200			
	x (auto)	100	.20	.10	.20	P(X=100)=.5		
		250	.05	.15	.30			
re $X + Y$ indep in this example? $P(Y=100)$ P(X=100, Y=100) = .1 X and Y are $P(X=100) P(Y=00) = (.5)(.25) = .125 X = 0.125 not indep$								
PlX	= 100) PCY =12	00)=(5)(.25)	= .125	not	- indep		

Important property: X and Y are **independent random** variables if P(X = x, Y = y) = P(X = x)P(Y = y) for all possible values of x and y.

Ave X

Similar definition holds for X and Y continuous

Definition: If X and Y are continuous random variables, then f(x,y) is the **joint probability density function** for X and

Y if
$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f(x, y) dx dy$$

Important property: X and Y are **independent random** variables if f(x, y) = f(x)f(y) for all possible values of x and y.

Example: Suppose a room is lit with two light bulbs. Let X_1 be the lifetime of the first bulb and X_2 be the lifetime of the second bulb. Suppose $X_1 \sim Exp(\lambda_1 = 1/2000)$ and $X_2 \sim Exp(\lambda_2 = 1/3000)$. If we assume the lifetimes of the light bulbs are independent of each other, find the probability that the room is dark after 4000 hours.

$$E(X_{1}) = \frac{1}{\lambda_{1}} = 2000 \text{ hrs.} \quad \text{and } E(X_{2}) = \frac{1}{\lambda_{2}} = 3000 \text{ hrs.}$$

$$Light boll bs fen independently &D$$

$$P(X_{1} \leq 4000, X_{2} \leq 4000) = P(X_{1} \leq 4000) P(X_{2} \leq 4000)$$

$$= \int_{0}^{4000} e^{-\lambda_{1} X_{1}} dX_{1} \int_{0}^{4000} \lambda_{2} e^{-\lambda_{1} X_{2}} dX_{2}$$

$$= \left(-e^{-\lambda_{1} X_{1}}\right) \left(\frac{4000}{2000}\right) \left(-e^{-\lambda_{1} X_{2}}\right) \left(\frac{4000}{2000}\right)$$

$$= \left(1-e^{-\lambda_{1} X_{1}}\right) \left(1-e^{-\lambda_{1} X_{2}}\right) = 6368$$

By cap-discussed from last hostern of a rvv, a also what it means for them to be independed like we had independed earlier. Statistical Inference: Soon, we will be focusing on making "statistical inferences" about the true mean and true variance of a population by using sample datasets. We'll return to this in subsequent modules, but for now, X_1, X_2, \ldots, X_n are said to form a **random sample** of size n if

- $ightharpoonup X_1, X_2, \dots, X_n$ are independent
- Peach random variable has the same distribution. We say that these X_i 's are iid, independent and identically distributed. You'll be heaving more about this in coming lessons.