

Kristálytan

Dr. Szabó Péter János szpj@eik.bme.hu

Elektronikai anyagtudomány BMEVIETAA01 2022/2023/2

Az atomok elrendeződése

Rövid távú rend (amorf anyagok)

Az atomok elrendeződése

- Hosszú távú rend (kristályok)
- Az atomok elhelyezkedését jól definiált transzlációval írhatjuk le

Kristályok

Egykristály

Polikristály

 $\bar{\mathbf{r}} = \mathbf{m}\bar{\mathbf{a}}_1 + \mathbf{n}\bar{\mathbf{a}}_2$

m; n: egész

r: transzlációs vektor

ā1; ā2: bázis vektorok

Kristályrács

- Transzláció: $\bar{r} = m\bar{a}_1 + n\bar{a}_2 + p\bar{a}_3$
- Primitív cella: a bázisvektorok által kifeszített térfogatelem.
 Csak a sarkain tartalmaz atomot, összesen egy atom található benne.
- Összetett rács: egyszerűbb geometriai leírás, több atomot tartalmaz.

Az összes rács besorolható a hét primitív rácstípus egyikébe.

Köbös rács

•
$$a_1 = a_2 = a_3$$

• $\alpha = \beta = \gamma = 90^{\circ}$

Po

Tetragonális rács

- $a_1=a_2\neq a_3$ $\alpha=\beta=\gamma=90^\circ$
- In, Sn (ha T>13 °)

Ortorombos rács

- Ga, U

Romboéderes rács

- a₁=a₂=a₃
- $\alpha \neq 90^{\circ}$, $\beta \neq 90^{\circ}$, $\gamma \neq 90^{\circ}$
- Hg, Bi, As

Hexagonális rács

•
$$a_1 = a_2 \neq a_3$$

- $\alpha = \beta$ =90°, γ =120°
- Cd, Mg, Zn, grafit

Monoklin rács

•
$$a_1 \neq a_2 \neq a_3$$

•
$$\alpha \neq 90^{\circ}$$
, $\beta \neq 90^{\circ}$, $\gamma = 90^{\circ}$

• kén

Triklin rács

•
$$a_1 \neq a_2 \neq a_3$$

•
$$\alpha \neq 90^{\circ}$$
, $\beta \neq 90^{\circ}$, $\gamma \neq 90^{\circ}$

• Se, Te

Bravais-rácsok

Köbös

F

Tetragonális

P

P

T

F

Hexagonális

Ortorombos

Romboéderes

Monoklin

P

P

P – egyszerű

T – térben középpontos

F – felületen középpontos

O – oldallapon középpontos

p.k., t.k.k., f.k.k.

Miller-indexek

- Pontok
- Irányok
- Síkok

Miller-indexek

A koordinátatengelyeket normalizáljuk, azaz minden rajtuk mért távolságot elosztjuk az adott koordinátatengelyt definiáló bázisvektor hosszával. Így dimenzió nélküli számokkal tudjuk megadni az egyes pontok koordinátáit a térben.

Irányok Miller-indexei

Síkok Miller-indexei

A sík tengelymetszetes egyenlete:

$$\frac{x}{A} + \frac{y}{B} + \frac{z}{C} = 1$$

$$h' = \frac{1}{A}, k' = \frac{1}{B}, l' = \frac{1}{C}$$

A sík (hkl) indexeit úgy kapjuk meg, hogy a h', k' és l' számokat beszorozzuk egy alkalmas számmal úgy, hogy egész értéket vegyenek fel.

Reális kristályok

- Gyakorlati fémek szilárdsága kevesebb, mint 1 %-a az ideális modell alapján számítható szilárdságnak
- Tiszta Si villamos vezetőképességét 10⁻⁸ tömegszázalék bór adalékolása a kétszeresére növeli
- KRISTÁLYHIBÁK

Kristályhiba-típusok

- Ponthibák (0 dim.)
- Vonalszerű hibák (1 dim.)
- Felületszerű hibák (2 dim.)
- Térfogati hibák (3 dim.)

Ponthibák típusai

- Vakancia
- Szubsztitúciós atom
- Intersztíciós atom
 - saját
 - idegen

Vakancia

Az alaprács (mátrix) jelentős torzulását okozza.

Szubsztitúciós atom

Az alaprács (mátrix) jelentős torzulását okozza.

Intersztíciós atom

Az alaprács (mátrix) jelentős torzulását okozza.

Ponthibák ötvözetekben

Szilárd oldat: alapfém (A) + oldott atom (B)

vagy

Szubsztitúciós szilárd oldat (pl. Ni-alapfém + Cu-ötvöző)

Intersztíciós szilárd oldat (pl. Fe-alapfém + C-ötvöző)

Szilárd oldatban (A + B) új második fázis is keletkezhet

Második fázisú részecske

- különböző összetétel
- különböző szerkezet

Vonalszerű (1 dimenziós) rácshibák

- Fémek elméleti és mért folyáshatára között óriási eltérés, nem magyarázható mérési hibával
- Diszlokációelmélet: az alakváltozás nem egy lépésben történik -> diszlokációk mozgása

Diszlokációk mozgása

A diszlokációk és a hernyó mozgásának analógiája

A diszlokáció Burgers-vektora (**b**) az egy diszlokáció által okozott elemi alakváltozás irányát és nagyságát mutatja meg.

Diszlokáció

Éldiszlokáció

Diszlokáció vonala: I

Csúszósík adott

⇒ nem mozgékony

Extra sík

Burgers vektor: **b**

 $\mathsf{b} \perp \mathsf{I}$

Csavardiszlokáció

Diszlokáció vonala: I

Nincs egyértelmű csúszósík

⇒ mozgékony

Extra sík nincs!

Burgers vektor: **b**

b || **I**

Alakváltozás

Összetett diszlokáció

Diszlokációk alapvető tulajdonságai

- Diszlokáció: elcsúszott és nem elcsúszott részek határa
- Lineáris (lehet görbe)
- Felületen kezdődik és végződik, vagy kristályban záródó görbe
- Az elmozdulás mértéke a diszlokáció egésze mentén állandó
- Burgers vektor a legsűrűbb irányban fekszik és |b| = d

Felületszerű rácshibák

- Makroszkopikus felület
- Szemcsehatárok
 - Kisszögű szemcsehatár
 - Nagyszögű szemcsehatár
- Fázishatárok
 - Koherens fázishatár
 - Szemikoherens fázishatár
 - Inkoherens fázishatár
- Ikerhatár
- Rétegződési hiba

Makroszkopikus felület

- A kristály felületén az atomok magasabb energiaszinten vannak, mint a kristály belsejében, mivel nem jön létre minden irányban atomi kötés.
- A felület energiaszintje csökken, ha a felülethez újabb atomok kapcsolódnak.
- Oxidrétegek kialakulása.
- Kémiai reakciók.

Kisszögű szemcsehatár

Azonos előjelű diszlokációk egymás alá rendeződése

⊕<5º

Nagyszögű szemcsehatár

A dermedés során a véletlen orientációjú kristálycsírák összenőnek.

Az egyes szemcsék csak orientációjukban különböznek.

Fázishatárok

Ikerhatár

- Koherens határ, mindkét oldalon azonos fázis van
- A határ két oldala egymás tükörképe
- Keletkezhet kristályosodáskor és képlékeny alakváltozáskor, elsősorban az FKK és HCP kristályokban

Ikerhatár

Mikroszkópi csiszolatokon párhuzamos egyenesekként jelenik meg

Rétegződési hiba

Atomok hiánya miatt jött létre (belső rétegződési hiba)

Rétegződési hiba

Térfogati (3D) hibák

- Üregek
- Zárványok
- Kiválások
- Gázbuborékok

Üregek

Szemcsehatármenti üregek erőművi főgőzvezetékben (replika-minta)

Zárvány

Al₂O₃ – CaS komplex zárvány

Hf-ban és Ta-ban gazdag kiválások nikkelbázisú öntvényben

Ellenőrző kérdések

- Alapfogalmak definiálása:
 - egykristály, polikristály
 - primitív rácsok típusai (7 db)
 - irányok és síkok Miller-indexei
 - vakancia, szubsztitúciós atom, interstíciós atom
 - diszlokáció definíciója
 - Burgers-vektor definíciója
 - él- és csavardiszlokáció definíciója
 - felületszerű rácshibák (makrofelület, kis- és nagyszögű szemcsehatár, fázishatár, ikerhatár) definíciója

Igaz-hamis kérdések

- A síkok Miller-indexeit a tengelymetszetek reciprokából számíthatjuk ki. (I)
- Az FKK elemi cella középpontjában van egy atom. (H)
- A diszlokáció vonala mindig párhuzamos a Burgers-vektorával.
 (H)
- Az ón atom (Sn) mindig intersztíciós helyre épül be. (H)
- A kisszögű szemcsehatár egymás alá rendeződött éldiszlokációkból épül fel. (I)
- Az ikerhatár két eltérő fázist választ el. (H)