Review for Midterm

Natural Language Processing

- What is NLP?
 - General definition
 - Natural vs. artificial languages
 - Why artificial languages are convenient
 - Why natural languages are challenging
- Two sides of NLP
 - NLU vs. NLG

- Applications of NLP
 - Text annotation
 - Tagging
 - Metadata extraction/generation
 - Classification
 - Document summarization
 - Corpus analytics
 - Theme extraction
 - Clustering
 - Taxonomy mapping
 - Sentiment analysis

- Applications of NLP
 - Search applications
 - Query repair
 - Query refinement
 - Results postprocessing (ranking, clustering, synopsizing)
 - Speech applications
 - Speech recognition (dictation, command-andcontrol)
 - Speech synthesis (standard, emotive)

Advanced applications

- Machine translation
- Knowledge discovery
- Question handling
 - Question typing/matching
 - Question answering
- Inference engines
 - Textual entailment
 - Knowledge discovery

Levels of analysis in NLP

- Lexical
- Syntactic
- Semantic
- Discourse

Lexical analysis

- Morphology and stemming
- Attachment of corpus-based metadata (frequency, collocations, co-occurrences, etc.)
- Enumeration of word senses
- Domain relations
- Terminology extraction—basic
 - Internal weighting (tf) vs. external weighting (encyclopedic)
 - Weighted collocations
 - Weighted NER
- Spell correction

Syntactic analysis

- POS tagging
- Sentence boundary detection
- Parsing
 - Deep
 - Light (chunking)
- Revisiting tagging
 - Weighted noun phrases
- Discrete text field analysis (extracting, unitizing, normalizing)
- Lemmatization

Semantic analysis

- NER
- Relationship extraction (between NEs)
- WSD
- Classification
- Tagging
- Topic segmentation
- Sentiment analysis
- Question typing/matching

Discourse analysis

- Anaphora resolution
- Discourse modeling
- Textual entailment
- Pragmatic analysis
- Question answering
- Speech interpretation

3. Trade-Offs in NLP

Understand differences between:

- Shallow vs. deep NLP
- Statistical vs. symbolic
- Feature engineering vs. feature learning
- Top-down vs. bottom-up
- Transparent vs. opaque (AI vs. XAI)

NLP and data science

- Using ML in NLP
- NLU for feature learning in ML
- NLG for presentation layers of results in data science
- NLU to validate discrete data

Job roles that utilize NLP

- Software engineer
- Knowledge engineer
- Data scientist
- Applied linguistics researcher
- Cognitive scientist
- Marketing technologist
- DBA

Sectors that utilize NLP

- Information retrieval and presentation
- eCommerce
- Customer service desks
- Law enforcement or military
- Legal
- Business intelligence
- Consumer devices
- Embedded technologies
- Publishing

Organizations that relate to NLP

- ACM (SIGKDD and SIGAI)
- IEEE
- AAAI
- IJCAI
- AAAL
- ICLA

Pick one of these organizations, and be prepared to describe its orientation or focus, and how it relates to NLP.

Text preprocessing

- Sentence segmentation
 - Sentence boundary detection—obvious approach
 - Counterexamples to the obvious approach, how to address
 - Use: Combine with higher-level analysis for extraction of key sentences (use in highlighting/summarizing)
- Lexical analysis—word tokenization

Text normalization

- Contractions
- Content words vs. function words vs. stop words
- Fuzzy spelling
- Morphology, stemming

Low-level document feature extraction

- Terminology extraction
 - Frequency based
 - Differential frequency analysis (TF-IDF)
 - Collocations (*n*-grams)

Low-level document feature extraction

- Secondary features and applications
 - Comparative lexical diversity
 - Reading level assessment
 - Example: Dale-Chall formula

6. Lexical Knowledge Bases

Lexical knowledge bases

- Difference between lexicon and dictionary
- Distinction of lexical knowledge base
- Introduction to WordNet
- Improvements to low-level analysis utilizing a lexical KB

6. Lexical Knowledge Bases

Resources for creating or extending lexical knowledge bases

- Vocabulary resources
- Examples: Princeton WordNet, Getty TGN, Wiktionary, Urban Dictionary Encyclopedic Resources
 - Examples: Wikipedia, IMDB, DotDash (formerly About.com)
- Taxonomical/topical resources on websites
 - Sitemaps for CNN Money, LA Times, Vogue, etc.
 - RSS page for SFGate, etc.

6. Lexical Knowledge Bases

Applications of lexical knowledge bases

- NER—recognition, weighting, filtering, and domain assignment using the appropriate KB
- Improved reading level assessment (using a baseline vocabulary)

7. POS Tagging

The basics of POS tagging

- POS ambiguity
- POS tagsets
 - Penn Treebank tagset
 - Why most people use it

Be prepared to take a random sentence and manually tag it with Penn Treebank POS tags (you'll be able to look at a reference table of the tagset while doing so).

7. POS Tagging

How POS taggers work

- Sliding window
- Transformation rules
- Statistical approaches and HMMs

7. POS Tagging

Types of POS taggers

- Rule-based tagger
- Statistical tagger
- ML-classifier tagger

7. Using POS Tags

Potential benefit of using POS tags

- WordNet synset lookups
- NER
- Word clouds
- Sentiment analysis

8. Shallow Parsing

Reasons to choose shallow parsing

POS tagging vs. shallow parsing vs. deep parsing

How to create chunks

- RegEx approach
- ML-based shallow parsers

Implementing chunks

- IOB annotation
- Chunks and chinks

8. Full Grammar Parsing

Understanding full parsers

- Two types of parsers: dependency and constituency
- Understanding parse trees
- Using a toolkit to create parse trees
- Pros and cons of full-parse trees
- Ambiguity of full parsing

8. Using Parse Trees

Uses for full-parse trees

- Validation of candidate answer for question answering
- Attachment of sentiment to particular entities (verb-to-noun)

8. Using Parse Trees: Combining Lexical and Syntactic Analyses

Topic definition and processing

- Creating a word class for a theme using a lexical KB (WordNet)
- Applying syntax parsers to a word class
 - Objects for verbs, modifiers for nouns (from dependency parse)
 - NPs and VPs containing sentiment trigger (from constituency parse)

8. Using Parser Trees: Combining Lexical and Syntactic Analyses

Sentiment detection

- Why simple valence scoring is not good enough
 - Mixed signals cancel out within a sentence
 - Can't tell what each signal attaches to
- Improvement by adding a parser
 - Extract NPs, VPs that contain unidirectional sentiment
 - Makes for a more informative synopsis

DataScience@SMU