6.1 Convergence and limit laws

Yuchen Liu

November 20, 2023

In last chapter, we defined real number by formal limits: LIM. Then, we'll define \lim and define what actually real number is via \lim .

We start from restating ϵ -near **real** sequences' main structure.

Definition 1. (distance between two real numbers) Given by 2 real number x and y, we defined the distance between them d(x,y) as d(x,y) := |x-y|.

Definition 2. (ϵ -near real numbers) Suppose $\epsilon > 0$ is a real number, we state 2 real number x and y is ϵ -near, if and only if $d(x,y) \leq \epsilon$.

Now suppose $(a_n)_{n=m}^{\infty}$ is a sequence of real number. Then redefine Cauchy sequences the same way as before.

Definition 3. (Cauchy sequences of real numbers) Suppose $\epsilon > 0$ is a real number, a sequence $(a_n)_{n=N}^{\infty}$ started from an integer N can be stated ϵ -stable if and only if to arbitrary $j, k \geq N$, a_j and a_k is ϵ -near.

...