ΗΥ 380 – Αλγόριθμοι και πολυπλοκότητα 1^η Σειρά ασκήσεων

Ημερομηνία Παράδοσης: 22/02/2016

την ώρα του μαθήματος ή σε

email: stratigi@csd.uoc.gr

Ασκηση 1: Σύγκριση χρόνων εκτέλεσης

Για κάθε συνάρτηση f(n) και για κάθε χρονικό διάστημα t που παρατίθεται στον παρακάτω πίνακα, προσδιορίστε το μέγιστο μέγεθος n του προβλήματος που μπορεί να επιλυθεί σε χρόνο t, υποθέτοντας ότι ο αλγόριθμος που επιλύει το πρόβλημα απαιτεί χρόνο f(n) μικροδευτερόλεπτα. (1 microsecond = 10^{-6} second).

	1	1	1	1	1	1	1
	δευτερόλεπτο	λεπτό	ώρα	ημέρα	μήνας	έτος	αιώνας
lg(n)							
\sqrt{n}							
n							
$n \lg(n)$							
n^2							
n^3							
2^n							
n!							

Ασκηση 2

Χρησιμοποιώντας μαθηματική επαγωγή, δείξτε ότι όταν το *n* είναι κάποια δύναμη του 2, η λύση της αναδρομικής σχέσης

$$T(n) = \begin{cases} 2 & \epsilon \acute{a}v \quad n=2 \\ 2T(n/2) + n & \epsilon \acute{a}v \quad n=2^k \end{cases}, \gamma\iota\alpha k > 1$$

είναι $T(n) = n \lg(n)$.

Άσκηση 3: Ορθότητα του κανόνα του Horner

Το ακόλουθο τμήμα κώδικα υλοποιεί τον κανόνα του Horner για την αποτίμηση ενός πολυωνύμου.

$$P(x) = \sum_{k=0}^{n} a_k x^k = a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + xa_n) \dots)),$$

όπου δίδονται οι συντελεστές $a_0, a_1, ..., a_n$ και μια τιμή του x:

- 1 $y \leftarrow 0$ 2 $i \leftarrow n$ 3 **while** $i \ge 0$ 4 $y \leftarrow a_i + x \cdot y$
- 5 $i \leftarrow i-1$

- a'. Ποιος είναι ο ασυμπτωτικός χρόνος εκτέλεσης αυτού του τμήματος κώδικα για τον κανόνα του Horner;
- **b'.** Γράψτε ψευδοκώδικα για την υλοποίηση του απλού αλγορίθμου αποτίμησης πολυωνύμου ο οποίος υπολογίζει κάθε όρο του πολυωνύμου ανεξάρτητα από τους υπόλοιπους. Ποιος είναι ο χρόνος εκτέλεσής του; Συγκρίνετέ τον με τον αντίστοιχο χρόνο για τον κανόνα του Horner.
- c'. Αποδείξτε ότι η ακόλουθη σχέση εκφράζει μια αναλλοίωτη συνθήκη για τον βρόχο while στις γραμμές 3-5.

Στην αρχή της κάθε επανάληψης του βρόχου while στις γραμμές 3-5

$$y = \sum_{k=0}^{n-(i+1)} a_{k+i+1} x^k$$

Στην παραπάνω σχέση, υπονοείται ότι μια άθροιση χωρίς κανέναν όρο δίνει αποτέλεσμα 0. Η απόδειξή σας θα πρέπει να βασίζεται στη δομή της απόδειξης αναλλοίωτων συνθηκών, και θα πρέπει τελικά να καταλήγει στο συμπέρασμα ότι

κατά τον τερματισμό του βρόχου
$$y = \sum_{k=0}^{n} a_k x^k$$

d'. Τέλος, δείξτε ότι το δεδομένο τμήμα του κώδικα αποτιμά ορθά ένα πολυώνυμο με συντελεστές $a_0, a_1, ..., a_n$.

Ασκηση 4: Σχετική ασυμπτωτική αύξηση

Για κάθε ζεύγος εκφράσεων (A, B) τον παρακάτω πίνακα, προσδιορίστε αν το A έχει αυξητικό χαρακτήρα O,o, Ω , ω , ή Θ του B . Υποθέστε ότι οι ποσότητες $k \geq 1$, $\varepsilon > 0$, και c > 1 είναι σταθερές. Απαντήστε καταχωρίζοντας «ναι» ή «όχι» σε κάθε τετραγωνίδιο του πίνακα.

A	В	0	0	Ω	ω	Θ
$\frac{\lg^k(n)}{n^k}$	n^{ε}					
n^k	c^n					
\sqrt{n}	$n^{\sin(n)}$					
2^n	$2^{n/2}$					
$n^{\lg(c)}$	$c^{\lg(n)}$					
lg(n!)	$\lg(n^n)$					

Ασκηση 5: Διάταξη κατά ασυμπτωτικό ρυθμό αύξησης

a'. Διατάξτε τις ακόλουθες συναρτήσεις με βάση τον αυξητικό τους χαρακτήρα. Δηλαδή βρείτε μια διάταξη $g_1,g_2,...,g_{30}$ των συναρτήσεων η οποία να ικανοποιεί τις σχέσεις $g_1=\Omega(g_2),\ g_2=\Omega(g_3)\,,\ldots,\ g_{29}=\Omega(g_{30})$. Διαμερίστε την λίστα που θα προκύψει σε κλάσεις ισοδυναμίας τέτοιες ώστε οι f(n) και g(n) να ανήκουν στην ίδια κλάση όταν και μόνο όταν $f(n)=\Theta(g(n))$.

b'. Αναφέρετε ένα παράδειγμα μη αρνητικής συνάρτησης f(n) τέτοιας ώστε για όλες τις συναρτήσεις $g_i(n)$ στο υποερώτημα α '), η f(n) να μην έχει χαρακτήρα ούτε $O(g_i(n))$ ούτε $\Omega(g_i(n))$.

Ασκηση 6: Συγχωνευτική Ταξινόμηση

Χρησιμοποιώντας σαν υπόδειγμα την εικόνα 1, περιγράψτε σχηματικά τη λειτουργία της συγχωνευτικής ταξινόμησης στην συστοιχία A= {3,41,52,26,38,57,9,49}

Εικόνα 1: Η λειτουργία της συγχωνευτικής ταξινόμησης στην συστοιχία Α={5,2,4,7,1,3,2,6} Τα μήκη των συγχωνευόμενων ταξινομημένων ακολουθιών αυξάνονται διαδοχικά καθώς ο αλγόριθμος προχωρά σταδιακά από τη βάση προς την κορυφή.

Ασκηση 7: Ιδιότητες ασυμπτωτικού συμβολισμού

Έστω f(n) και g(n) ασυμπτωτικά θετικές συναρτήσεις. Αποδείξτε ή καταρρίψτε καθεμία από τις ακόλουθες προτάσεις.

$$a'$$
. $f(n) = O(g(n))$ συνεπάγεται ότι $g(n) = O(f(n))$.

b'.
$$f(n) + g(n) = \Theta(\min(f(n), g(n)))$$
.

$$c'$$
. $f(n) = O(g(n))$ συνεπάγεται ότι $\lg(f(n)) = O(\lg(g(n)))$, όπου $\lg(g(n)) \ge 1$ και $f(n) \ge 1$ από κάποια τιμή του n και πάνω.

$$d'$$
. $f(n) = O(g(n))$ συνεπάγεται ότι $2^{f(n)} = O(2^{g(n)})$.

$$e'$$
. $f(n) = O((f(n))^2)$.

$$f'$$
. $f(n) = O(g(n))$ συνεπάγεται ότι $g(n) = \Omega(f(n))$.

$$g'$$
. $f(n) = \Theta(f(n/2))$.

h'.
$$f(n) + o(f(n)) = \Theta(f(n))$$
.