

1. The program will determine the clear length of each beam.

Example:

BEAM ROV					1		ŧ
Beam Nam	ie	Quantity	Length	Clear Length	Support		▲
B-2	₹	1	3000	2775	1-End Support	¥	
B-3	₹	1	7000	6475	2-End Support	¥	1
B-3	₹	2	7000	6400	2-End Support	¥	Н
	₹					¥]
	₹					¥	1
	₹					¥	V

Ref (1)

$$L_{C(1)} = 2775$$

Ref (2)

$$L_{C(2)} = 6475$$

Ref (3)

$$L_{C(3)} = 6400$$

2. The program will determine the quantity of stirrups each beam.

$$Qty_{Cn} = \frac{L_C - 2[Qty_A \cdot Spacing_{@A} + Qty_B \cdot Spacing_{@B}]}{Spacing_{@Rest}} + 1$$

Case 2: 1-End Support ▼

$$Qty_{Cn} = \frac{L_C - [Qty_A \cdot Spacing_{@A} + Qty_B \cdot Spacing_{@B}]}{Spacing_{@Rest}} + 1$$

Example:

Ref (1)

Since it has end support on both sides. Thus,

$$\begin{split} Qty_{C(1)} &= \frac{L_{C(1)} - 2[Qty_{A1} \cdot Spacing_{@A1} + Qty_{B1} \cdot Spacing_{@B1}]}{Spacing_{@Rest1}} + 1 \\ Qty_{C(1)} &= \frac{2775 - [1(50) + 0(0)]}{75} + 1 \\ Qty_{C(1)} &= 37.33 \rightarrow 38 \end{split}$$

Ref (2)

Since it has end support on both sides. Thus,

$$Qty_{C(2)} = \frac{L_{C(2)} - 2[Qty_{A2} \cdot Spacing_{@A2} + Qty_{B2} \cdot Spacing_{@B2}]}{Spacing_{@Rest2}} + 1$$

$$Qty_{C(2)} = \frac{6475 - 2[1(50) + 14(100)]}{200} + 1$$

$$Qty_{C(2)} = 18.875 \rightarrow 19$$

Ref (3)

Since it has end support on both sides. Thus,

$$Qty_{C(3)} = \frac{L_{C(3)} - 2[Qty_{A3} \cdot Spacing_{@A3} + Qty_{B3} \cdot Spacing_{@B3}]}{Spacing_{@Rest3}} + 1$$

$$Qty_{C(3)} = \frac{6400 - 2[1(50) + 14(100)]}{200} + 1$$
$$Qty_{C(3)} = 18.5 \rightarrow 19$$

3. The program will determine the spacing of the main reinforcements of each beam.

$$S = \frac{B_{B(n)} - d_{bUM} - 2[d_{bS} + CC_B]}{Qty_{RED@Int.Support(n)} - 1}$$

Example:

BEAM ROW	/				:		•
Beam Nam	ie	Quantity	Length	Clear Length	Support		lack
B-2	¥	1	3000	2775	1-End Support	¥	
B-3	₹	1	7000	6475	2-End Support	₹	
B-3	₹	2	7000	6400	2-End Support	₹	Н
	₹					₹	ll
	₹					₹	ll
	¥					¥	¥

Ref (1)

$$d_{bUM(1)} = 25$$

$$d_{hS(1)} = 12$$

$$S_1 = \frac{B_{B(1)} - d_{bUM(1)} - 2[d_{bS(1)} + CC_B]}{Qty_{RED@Int.Support(1)} - 1} = \frac{450 - 25 - 2(12 + 40)}{5 - 1} = 80.25$$

Ref (2)

$$d_{bUM(2)} = 25$$

$$d_{bS(2)} = 12$$

$$S_2 = \frac{B_{B(2)} - d_{bUM(2)} - 2[d_{bS(2)} + CC_B]}{Qty_{RED@Int.Support(2)} - 1} = \frac{450 - 25 - 2(12 + 40)}{6 - 1} = 64.2$$

Ref (3)

$$d_{bUM(3)}=25\,$$

$$d_{bS(3)} = 12$$

$$S_3 = \frac{B_{B(3)} - d_{bUM(3)} - 2[d_{bS(3)} + CC_B]}{Qty_{RED@Int.Support(3)} - 1} = \frac{450 - 25 - 2(12 + 40)}{6 - 1} = 64.2$$

4. The program will determine the length of each beam through their corresponding property of their respected Beam Mark (Must be converted to meter)

Properties No. 1:

$$L_{Bn} = 2[D_{Bn} + d_{bUM} + S_n(Qty_{RED@Int.Support(n)} - 1) + H_{L(135)}] - 4(CC_B) - 11d_{bS(n)}$$

Properties No. 2

$$L_{Bn} = 2[D_{Bn} + d_{bUM} + S_n(Qty_{RED@Int.Support(n)} - 2) + H_{L(135)}] - 4(CC_B) - 11d_{bS(n)}$$

Where:

 $H_L = Hook\ Length\ of\ the\ Stirrups (135^\circ)\ based\ on\ the\ Table\ in\ Parameters (Renforcement)$

Example:

BEAM ROW	/						+
Beam Nam	e	Quantity	Length	Clear Length	Support		lack
B-2	Y	1	3000	2775	1-End Support	¥	
B-3	Y	1	7000	6475	2-End Support	¥	
B-3	Y	2	7000	6400	2-End Support	¥	П
,	Y					¥	1
,	Ţ					¥	1
•	Y					¥	V

Ref (1)

Dia as Qty. 5 Qt	ty. 5 Oty. 5 Dia. 12 Dia.
no 450 700	lty. Qty. 5 1 @ 50 16
B-2 450 700	tty. 5 Qty. @ Qty.
518. 23 Qty. 5 Q	lty. 5 Qty. 5 Rest @ 75 2

$$d_{bS(1)} = 12$$

$$H_{L(135)} = 125$$

$$\begin{split} L_{B(1)} &= 2 \big[D_{B(1)} + d_{bUM(1)} + S_1 \big(Qty_{\mbox{\scriptsize RED@Int.Support}(1)} - 2 \big) + H_{L(135)} \big] - 4(CC_B) - 11 d_{bS(1)} \\ &= 2 \big[700 + 25 + 80.25(5 - 2) + 125 \big] - 4(40) - 11(12) \end{split}$$

$$L_{B(1)} = 1889.5 \ mm \rightarrow 1.8895 \ m$$

Ref (2)

$$L_{B(2)} = 2[D_{B(2)} + d_{bUM(2)} + S_2(Qty_{RED@Int.Support(2)} - 2) + H_{L(135)}] - 4(CC_B) - 11d_{bS(2)}$$

$$= 2[700 + 25 + 64.2(6 - 2) + 125] - 4(40) - 11(12)$$

$$L_{B(2)} = 1921.6 \ mm \rightarrow 1.9216 \ m$$

Ref (3)

$$\begin{split} L_{B(3)} &= 2 \big[D_{B(3)} + d_{bUM(3)} + S_3 \big(Qty_{RED@Int.Support(3)} - 2 \big) + H_{L(135)} \big] - 4 (CC_B) - 11 d_{bS(3)} \\ &= 2 [700 + 25 + 64.2(6 - 2) + 125] - 4(40) - 11(12) \end{split}$$

$$L_{B(3)} = 1921.6 \ mm \rightarrow 1.9216 \ m$$

5. After determining the quantities of main reinforcement and their respective required bar length, the program will determine their respective manufactured bars and no. of manufactured pcs.

If $\sum Qty_{(n)}$ or its L_B is equal to **ZERO** then,

$$Qty_{Pn} = 0 \ pcs$$

$$L_{CBn}=0\;m$$

Else, compute

$$Qty_{Pn} = \frac{L_M}{L_{Bn}}$$

For Qty_{Mn}

If the Beam Properties No. 1: m=1 If the Beam Properties No. 2: m=2

Case 1: 2-End Support ▼

$$Qty_{Mn} = \frac{m \cdot Qty_{Beam(n)} \cdot \left[2 \left(Qty_{A(n)} + Qty_{B(n)}\right) + Qty_{C(n)}\right]}{Qty_{Pn} \ (round \ down \ into \ whole \ number)} \cdot Qty_{Beam \ Row}$$

Case 2: 1-End Support ▼

$$Qty_{Mn} = \frac{m \cdot Qty_{Beam(n)} \cdot \left[Qty_{A(n)} + Qty_{B(n)} + Qty_{C(n)}\right]}{Qty_{Pn} \; (round \; down \; into \; whole \; number)} \cdot Qty_{Beam \; Row}$$

Then,

$$L_W = [Qty_{Pn} - Qty_{Pn} \text{ (round down into whole number)}] \times L_{Bn}$$

$$L_E(m) = [Qty_{Mn}(round\ up\ to\ whole\ number) - Qty_{Mn}] \times L_M$$

And

$$Total\ Wastage = L_E + L_W Qty_{Mn}(round\ down\ to\ whole\ number)$$

Then the program will choose the manufactured bar length with the lowest *Total Wastage*.

Example:

Ref (1)

			S-1-4		Dia	25	Qty.	5	Qty.	5	Qty.	5	Dia.		12	Dia.
D 2	450	700		_	Dia.	25	Qty.	5	Qty.		Qty.	5	1	0	50	16
B-2	450	700		₹	Dia	25	Qty.		Qty.	5	Qty.			@		Qty.
					Dia.	25	Qty.	5	Qty.	5	Qty.	5	Rest	<u>@</u>	75	2

$$Qty_{Total(1)} = Qty_{Beam(1)} \cdot \left[\left(Qty_{A(1)} + Qty_{B(1)} \right) + Qty_{C(1)} \right] = 1 \cdot [1 + 0 + 38] = 39$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	m	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6					3.18	3	104	104	0.332	0	34.476
7.5	39	1 0005	4	2	3.97	3	104	104	1.832	0	190.476
9	39	1.8895	4	2	4.76	4	78	78	1.442	0	112.476
12					6.35	6	52	52	0.663	0	34.476

$$L_{CM(1)} = 6 m \text{ and } Qty_{M(1)} = 104 pcs$$

Ref (2)

$$Qty_{Total(2)} = Qty_{Beam(2)} \cdot \left[2(Qty_{A(2)} + Qty_{B(2)}) + Qty_{C(2)} \right] = 1 \cdot [2(1+14) + 19] = 49$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	m	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6					3.14	3	130.7	131	0.262	2	36.086
7.5	49	1 0216	4	2	3.92	3	130.7	131	1.762	2.5	231.586
9	49	1.9216	4	2	4.71	4	98	98	1.350	0	132.261
12					6.27	6	65.33	66	0.524	8	42.086

$$L_{CM(2)} = 6 m \text{ and } Qty_{M(2)} = 131 pcs$$

Ref (3)

$$Qty_{Total(3)} = Qty_{Beam(3)} \cdot \left[2 \left(Qty_{A(3)} + Qty_{B(3)} \right) + Qty_{C(3)} \right] = 2 \cdot \left[2 (1+14) + 19 \right] = 98$$

L [M]	Qty [Total]	L [B]	Qty (B eam R ow)	m	Qty	[P]	Qty	[M]	L [W]	L [E]	Total Waste
6					3.14	3	261.3	262	0.262	4	72.434
7.5	98	1 0216	4	2	3.92	3	261.3	262	1.762	5	464.934
9	90	1.9216	4	2	4.71	4	196	196	1.350	0	264.522
12					6.27	6	130.7	131	0.524	4	72.172

$$L_{CM(3)} = 6 m \text{ and } Qty_{M(3)} = 262 pcs$$

6. The program will compute the Price of the Stirrup of the Beam Row

$$Price_{BR} = \sum_{M} Qty_{M} Price_{M}$$

Where:

 $Price_{M} = Price \ of \ the \ steel \ reinforcement \ based \ on \ Pricing$

 $= Sorted\ through\ Reinforcement\ Grade, diameter, and\ Manufactured\ Length$

Example

Ref (1)

												_		_	_
			N		Dia	35	Qty.	5	Qty.	5	Qty.	5	Dia.	12	Dia.
n 2	450	700		_	Dia.	25	Qty.	5	Qty.		Qty.	5	1	@ 50	16
8-2	450	700		•	Dia	25	Qty.		Qty.	5	Qty.			@	Qty.
1					Dia.	2	Qty.	5	Qty.	5	Qty.	5	Rest	@ 75	2

 $L_{CM(1)} = 6 m \& Qty_{M(1)} = 104 pcs$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43 Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04 Rebar GRADE 40 (Ø12mm) [9m]- P 351.65 Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26 Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

 $Price_M = \mathbb{P} 234.43$

$$Qty_M Price_M = 104(234.43) =$$
 $?$ 24380.72

Ref (2)

 $L_{CM(2)} = 6 m \& Qty_{M(2)} = 131 pcs$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43 Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04 Rebar GRADE 40 (Ø12mm) [9m]- P 351.65 Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26 Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

 $Price_M = \mathbb{P} 234.43$

$$Qty_M Price_M = 131(234.43) =$$
 $?$ 30710.33

Ref (3)

			N N	Dia	25	Qty.	6	Qty.	6	Qty.	6	Dia.	12	Dia.
				- Dia.	25	Qty.	3	Qty.		Qty.	3	1	@ 50	16
B-3	450	700	ШШШ	Dia	25	Qty.		Qty.		Qty.		14	@ 100	Qty.
				Dia.	23	Otv.	6	Otv.	6	Otv.	6	Rest	@ 200	2

 $L_{CM(3)} = 6 m \& Qty_{M(3)} = 262 pcs$

Rebar GRADE 40 (Ø12mm) [6m]- P 234.43
Rebar GRADE 40 (Ø12mm) [7.5m]- P 293.04
Rebar GRADE 40 (Ø12mm) [9m]- P 351.65
Rebar GRADE 40 (Ø12mm) [10.5m]- P 410.26
Rebar GRADE 40 (Ø12mm) [12m]- P 468.86

 $Price_M = \mathbb{P} 234.43$

$$Qty_M Price_M = 262(234.43) =$$
 61320.66

Total

$$Price_{BR} = \sum Qty_{M}Price_{M} = 24380.72 + 30710.33 + 61320.66 =$$
† 116511.71

7. The program will then compute the total weight of the reinforcement.

$$W_T = \sum W_{Dn} L_{CMn} Q t y_{Mn}$$

Where:

 $W_{Dn} = Weight \ based \ of \ the \ closest \ coresponding \ diameter \ of \ the \ stirrup \ of \ each \ beam.$

Example

BAR SIZE (Diameter) kg/m	
6 mm 0.222	
8 mm 0.395	,
10 mm 0.616	
12 mm 0.888	
16 mm 1.597	
20 mm 2.466	,
25 mm 3.854	
28 mm 4.833	
32 mm 6.313	
36 mm 7.991	
40 mm 9.864	
44 mm 11.926	5
50 mm 15.413	3
56 mm 19.318	3

BEAM ROV	V							•
Beam Nam	ne	Length	Quantity	End Support (Left/Top)		End Support (Right/Bottom		lack
B-2	¥	3000	1	C-1 (B)	Y	C-1 (B)	Y	
B-3	¥	7000	1	C-1 (B)	Y	C-1 (B)	Y	
B-3	¥	7000	1	C-1 (B)	Y	B-1	V	Н
	¥				¥		V	П
	₹				V		₹	П
	¥				Y		Y	₹

Ref (1)

B-2	450	700		▼	Dia.	25	Qty.	5	Qty.	5	Qty.	5 (Dia.	12	Dia.
							Qty.	5	Qty.		Qty.	5	1	@ 50	16
					Dia.	25	Qty.		Qty.	5	Qty.			@	Qty.
							Qty.	5	Qty.	5	Qty.	5	Rest	@ 75	2

 $L_{CM(1)} = 6 m \& Qty_{M(1)} = 104 pcs$

 $W_{Dn}=0.888\,kg/m$

 $W_{D(1)}L_{CM(1)}Qty_{M(1)} = 0.888(6)(104) = 554.112 \ kg$

Ref (2)

 $L_{CM(2)} = 6 m \& Qty_{M(2)} = 131 pcs$

 $W_{D(2)} = 0.888 \, kg/m$

$$W_{D(2)}L_{CM(2)}Qty_{M(2)} = 0.888(6)(131) = 697.968 kg$$

Ref (3)

 $L_{CM(3)} = 6 m \& Qty_{M(3)} = 262 pcs$

 $W_{D(3)} = 0.888 \, kg/m$

$$W_{D(3)}L_{CM(3)}Qty_{M(3)} = 0.888(6)(262) = 1395.936 kg$$

Total

$$W_T = \sum W_{Dn} L_{CMn} Q t y_{Mn}$$

 $W_T = 554.112 + 697.968 + 1395.936$
 $W_T = \mathbf{2648.016} \ kg$

8. The program will then compute the labor price of the Beam Row

$$Price_{Labor} = W_T \cdot L_R$$

Where:

 $L_R = Labor Rate in Footing based in the Pricing$

Example:

CATEGORY: LABOR RATE (REBAR PER KG) - 9 items

FOOTING [KG]- P 17

WALL FOOTING [KG]- P 17

COLUMN [KG]- P 15

STAIRS [KG]- P 15

BEAM [KG]- P 16

FOOTING TIE BEAM [KG]- P 16

SLAB ON GRADE [KG]- P 17

SUSPENDED SLAB [KG]- P 18

WALLS [KG]- P 16