A Memory-Efficient Algorithm for Large-Scale Symmetric Tridiagonal Eigenvalue Problem on Multi-GPU Systems

Hyunsu Cho and Peter A. Yoon Trinity College, Hartford, CT, USA

Symmetric Eigenvalue Problem

$$A\mathbf{X} = \lambda \mathbf{X}$$
 where A is symmetric

Many interesting applications require eigenvectors

Yields **full spectrum** of eigenvalues and eigenvectors Is numerically stable

Gives rise to **independent subproblems**

Often faster than $O(n^3)$ due to deflation

Apply **orthogonal similarity transformation** to reduce *A* to tridiagonal form

$$Q^T A Q = A'$$

where

A' is symmetric tridiagonal and Q is orthogonal

Existing work on single-node, multi-GPU: MAGMA (UTK)

- Solve subproblems
- Merge solutions
- Repair

Merging solutions

Suppose

$$A = \left[\begin{array}{c|c} A_1 & & \\ \hline & A_2 \end{array}\right] + \left[\begin{array}{c|c} b_m & b_m \\ \hline & b_m & b_m \end{array}\right]$$

where

$$A_1 = Q_1 D_1 Q_1^T$$

$$A_2 = Q_2 D_2 Q_2^T$$

(subproblem #1)

(subproblem #2)

Merging solutions

Then

$$A = QDQ^T + \begin{bmatrix} b_m & b_m \\ \hline b_m & b_m \end{bmatrix}$$

where

Merging solutions $H = b_m \left[\begin{array}{c} \mathbf{e}_m \\ \hline \mathbf{e}_1 \end{array} \right] \left[\begin{array}{c} \mathbf{e}_m \\ \hline \mathbf{e}_1 \end{array} \right]^T$

$$H = b_m \left[\frac{\mathbf{e}_m}{\mathbf{e}_1} \right] \left[\frac{\mathbf{e}_m}{\mathbf{e}_1} \right]^T$$

Then

$$A = QDQ^T -$$

where

$$Q = \begin{bmatrix} Q_1 & & \\ & Q_2 \end{bmatrix}$$

$$Q = \left| \begin{array}{c|c} Q_1 & \\ \hline & Q_2 \end{array} \right| \quad \text{and} \quad D = \left| \begin{array}{c|c} D_1 & \\ \hline & D_2 \end{array} \right|$$

Rank-one update

$$H = b_m \left[\frac{\mathbf{e}_m}{\mathbf{e}_1} \right] \left[\frac{\mathbf{e}_m}{\mathbf{e}_1} \right]^T$$

$$A = QDQ^{T} + H$$
$$= Q(D + b_{m}\mathbf{z}\mathbf{z}^{T})Q^{T}$$

where

$$\mathbf{z} = Q^T \begin{bmatrix} \mathbf{e}_m \\ \mathbf{e}_1 \end{bmatrix} = \begin{bmatrix} \text{last column of } Q_1^T \\ \text{first column of } Q_2^T \end{bmatrix}$$

Rank-one update

$$H = b_m \left[\frac{\mathbf{e}_m}{\mathbf{e}_1} \right] \left[\frac{\mathbf{e}_m}{\mathbf{e}_1} \right]^T$$

$$A = QDQ^{T} + H$$

$$= Q(D + b_{m} \mathbf{z} \mathbf{z}^{T})Q^{T}$$
where
$$\mathbf{z} = Q^{T} \left[\frac{\mathbf{e}_{m}}{\mathbf{e}_{1}} \right] = \begin{bmatrix} \text{last column of } Q_{1}^{T} \\ \text{first column of } Q_{2}^{T} \end{bmatrix}$$

Need eigen-decomposition of inner system

Decompose $D + b_m \mathbf{z} \mathbf{z}^T$

- 1. Sort entries in *D*; permute z likewise
- 2. Filter some entries in *D* and z via deflation (next slide)

Decompose $D + b_m \mathbf{z} \mathbf{z}^T$

- 1. Sort entries in *D*; permute z likewise
- 2. Filter some entries in *D* and z via deflation (next slide)
- 3. Compute all roots of the **secular equation** [1]

$$1 + b_m \sum_{i=1}^{n} \frac{d_i^2}{z_i - \lambda} = 0,$$

giving the *m* eigenvalues.

4. Compute corresponding eigenvectors stably [2]

Decompose $D + b_m \mathbf{z} \mathbf{z}^T$

- 1. Sort entries in *D*; permute z likewise
- 2. Filter some entries in *D* and z via deflation (next slide)
- 3. Compute all roots of the **secular equation** [1]

$$1 + b_m \sum_{i=1}^{n} \frac{d_i^2}{z_i - \lambda} = 0,$$

giving the *m* eigenvalues.

- 4. Compute corresponding eigenvectors stably [2]
- 5. Multiply each eigenvector by Q Recall: $A = Q(D + b_m \mathbf{z} \mathbf{z}^T)Q^T$

[1] Li 1994 [2] Gu & Eisenstat 1994

Deflation

Recall:

$$D = \begin{bmatrix} D_1 \\ \hline D_2 \end{bmatrix}$$

Entries of *D* are eigenvalues of two subproblems
If two entries are nearly identical, we throw one away **Fewer columns** when multiplying eigenvectors by *Q*Same thing for small entries in z

Reduce work complexity to $O(n^{2.3})$

GPU computing

General-purpose computation on GPUs **Bulk parallelism** w/ many small threads Cost effective; widely available

Mapping work to GPU

- 1. Sort entries in *D*; permute z likewise
- 2. Filter some entries in D and z via deflation
- 3. Compute all roots of the secular equation, giving the *m* eigenvalues.
- 4. Compute corresponding eigenvectors stably
- 5. Multiply each eigenvector by Q → Done in bulk via DGEMM

Parallel but not as work-intense

GPU memory

High-bandwidth dedicated memory Separate from main memory Limited in size

Memory requirement

Eigenvectors are dense

 $\rightarrow O(n^2)$ storage

Intermediate workspace: eigenvectors of inner system

Matrix	Memory
dimension	required
8192	1.5 GB
16384	5.8 GB
32768	23.4 GB
36000	28.2 GB
50000	54.4 GB

Our contribution

Overcome limitation in GPU memory while retaining adequate performance

Strategies

1. Use multiple GPUs

Strategies

2. Keep most of workspace in main memory (**out-of-core** approach)

Strategies

3. **Shape work** to fit GPU workspaces

Block matrix multiplication

Use a fine partition to fit submatrices into GPU memory

Hybrid computation

Allocate subproblems to both GPUs and CPUs Model performance as a power function **Profiler** fits parameters using least-squares

Hybrid computation

Solve many subproblems in parallel

Hybrid computation

Solve each subproblem by parts

Results

Scales to 50k * 50k matrix

Main memory: 64 GB GPU memory: 5 GB per GPU

Results

Performance: vs. multicore CPU

Conclusion

Out-of-core approach overcomes memory limitation on the GPU

Hybrid computation with profiling delivers reasonable performance

Acknowledgment

Trinity College, Student Research Program

Nvidia Corporation, CUDA Teaching Center Program

Any questions?