Assignment Project Exam Help

Anandha Gopalan

(with the place of the Column). Rietzuch of Tannenbaum and axgopala@imperial.ac.uk

WeChat: cstutorcs

Capacity increases exponentially, but access speeds not so much Imperial College

The Hard Drive

Sample Disk Specification

http://disctech.com/Seagate-ST3400832AS-SATA-Hard-Drive

WeChat: cstutorcs

Surface divided into 20 or more zones

- Outer zones have more sectors per track → ensures that sectors have same physical length
- Zones hidden using virtual geometry

Disk Addressing

Physical hardware address: (cylinder, surface, sector)

AssignmentyProjecthExam Help

Modern disks use logical sector addressing (or logical block addresses LBA)

- Sectors numbered consecutively from 0 ... n
- Makes disk management much easier
- Original IBM PC BIOS S GB max
 - 6 bits for sector, 4 bits for head, 14 bits for cylinder

Disk Capacity

Assignments Project Exam Help 1 KB = 2¹⁰ bytes = 1024 bytes vs 1 KB = 10³ bytes = 1000 bytes

 $\begin{array}{c} 1 \text{ MB} = 2^{20} \text{ bytes} \neq 1024^2 \text{ bytes vs } 1 \text{ MB} = 10^6 \text{ bytes} = 1000^2 \\ \text{bytes} & \text{UUTOTCS.COM} \end{array}$

 $1 \text{ GB} = 2^{30} \text{ bytes} = 1024^3 \text{ bytes}$ vs $1 \text{ GB} = 10^9 \text{bytes} = 1000^3$

bytes

WeChat: cstutorcs

If necessary, just make it consistent on the exam ©

Disk Formatting

Before a disk can be used, it must be formatted

Low level format Assignment Project Exam Help **ECC**

Data

https://tutorcs.com Interleaving

- High_level_format Be Chat: cstutorcs
 - Free block list

Preamble

- Root directory
- Empty file system

Drive Geometry

Amount of cylinder skew depends on the drive geometry

Example Project Exam He Consider a 10,000 rpm drive with each track having 300 sectors

and track to track seek time of 800 μ sec

Time reference for the first sector $= \frac{60s}{300} = 2 \times \frac{6ms}{300} = 2 \times \frac{6ms}{3$

 $10^{-5} = 20 \ \mu s$

Track see seek is 800 S 100 S sectors that pass in one seek $=\frac{800}{20}=40$

Hence, cylinder skew = 40

Disk Delays II

Typical disk

As signmenty larojects Exam Help

Seek time (average) 8 ms

Rotation time (average latency) 4 ms COM Transfer rate Lup to 100 MB/s

Disk Scheduling hater lacer sturies OTCS

• Order pending disk requests with respect to head position

Seek time $\approx 2-3$ times larger than latency time \rightarrow more important to optimise

Disk Performance

Given

Assignementer Parkoject Exam Help

r - rotation speed in revolutions per second

See https://tutorcs.com

Latency time (rotational delay) $t_{latency} = \frac{1}{2 \times r}$ **Example 2.1** Cstutores

Transfer time

$$t_{transfer} = \frac{b}{N \times r}$$

Total access time (t_{access})

 $t_{seek} + t_{latency} + t_{transfer}$

Disk Performance

State in the control of the control

512 byte sectors

320 sectors per track

File shitting sectors tuttores.com

Calculate the time taken to:

- read file stored as compactly as possible on disk (i.e. file occupies all sectors) tracks × 320 sectors/track = 2560 sectors)
- 2 read file with all sectors randomly distributed across disk

Example Problem

Answer: Disk Performance

Assignment Project Eixam Help

Read 320 sectors $= 6 \text{ ms} = \frac{b}{N \times (\frac{10000}{60})}$

https://tutorcs.com

Time to read next track = 3 ms + 6 ms = 9 msTotal time = $19 \text{ ms} + 7 \times 9 \text{ ms} = 82 \text{ ms} = 0.082 \text{ seconds}$

Read 1 sector $= 0.01875 \text{ ms} = \frac{512}{512 \times 320 \times (\frac{10000}{60})}$

Total = 13.01875 ms

Total time = $2560 \times 13.01875 \text{ ms} = 33.328 \text{ seconds}$

First Come First Served (FCFS)

No ordering of requests \rightarrow random seek patterns

OK for lightly-loaded disks

Assignment Project Exam Help

Queue: 98, 183, 37, 122, 14, 130, 60, 67 (head starts at 53)

Shortest Seek Time First (SSTF)

Order requests according to shortest seek distance from current head position

Discriminates against innermost/outermost tracks

Assignment unfairement Exam Help

Queue: 98, 183, 37, 122, 14, 130, 60, 67 (head starts at 53)

If, when handling request at 14, new requests arrive for 50, 70, 100 \rightarrow long delay before 183 serviced

SCAN Scheduling

Choose requests which result in shortest seek time in preferred direction

 Only change direction when reaching outermost/innermost cylinder (or no further requests in preferred direction)

Assignment Project Exame Help

Long delays for requests at extreme locations

Queue: 98, 183, 37, 122, 14, 130, 60, 67 (head starts at 53 and direction is toward to ps. //tutorcs.com

C-SCAN

Services requests in one direction only

When head reaches innermost request, jump to outermost request

Assignment reduction eterte Exam Help May delay requests indefinitely (though less likely)

Queue: 98, 183, 37, 122, 14, 130, 60, 67 (head starts at 53)

N-Step SCAN

As for SCAN, but services only requests waiting when sweep began

- Requests arriving during sweep serviced during return sweep
- Doesn't delay requests indefinitely

A SCHOP IN PARTY 2, P. 100 100 (had Xaran 3; Help direction \rightarrow 0); requests 80, 140 arrive when head moving outwards

I/O requests placed in request list

Assignment Projects Exam Help • bio structure: associates memory pages with requests

Block device drivers, define request operation called by kernel

- https://tutorcs.com
- Driver must perform all operations in list
- Revige drivers do not define read/write operations Wechat. CSTUTORCS

Some devices drivers (e.g. RAID) order their own requests

Bypass kernel for request list ordering

Default: variation of SCAN algorithm

Kernel attempts to merge requests to adjacent blocks

Assignment read requests to adjacent blocks

Assignment to merge requests to adjacent blocks

Deadline scheduler: ensures reads performed by deadline

• Hintitaps gread/trust traveigs.com

Anticipatory scheduler: delay after read request completes

- Idea: process will issue another synchronous read operation before the quantitative piles Stutores
- Reduces excessive seeking behaviour
- Can lead to reduced throughput if process does not issue another read request to nearby location
 - Anticipate process behaviour from past behaviour

Problem

• CPU performance doubling every 18 months

Assignment Project Exam Help

• Use parallel disk I/O \rightarrow appears to OS as a single disk https://tutorcs.com

RAID (Redundant Array of Inexpensive Disks)

- Array of physical drives appearing as single virtual drive
- Swest and spatited westral to first disks to allow parallel operation (called striping)

Use redundant disk capacity to respond to disk failure

ullet More disks o lower mean-time-to-failure (MTTF)

RAID Level 0 (Striping)

Use multiple disks and spread out data

Assignment Project Exam Help

No redundancy \rightarrow no fault tolerance

RAID Level 1 (Mirroring)

Mirror data across disks

A Serigante Project Exam Help Writes update both disks in parallel (slower)

High helas Psychological Comes High helas Psychological Comes Come

Parallel access by striping at bit-level

- Use Hamming error-correcting code (ECC)
- Si Corrects single hit erps (and detect-double bit errors) Help
 - But all disks participate in I/O requests (no concurrency)
 - Read-modify-write cycle

Only Lieutipish error that Opeces.com

- ECC disks become bottleneck
- High storage overhead

RAID Level 3 (Byte-level XOR)

Only single parity strip used

 $\bullet \ \mathsf{Parity} = \mathsf{data1} \oplus \mathsf{data2} \oplus \mathsf{data3} \dots$

Assignment Project Examt Help

Lower storage overhead than RAID Level 2

 \bullet But still only one J/O request can take place at a time $\frac{1}{2}$

Parity strip handled on block basis

Assignment Project Fxam Help

Parity disk tends to become bottleneck

• Path and parity strips must be updated on each write https://tutores.com

Like RAID Level 4, but distribute parity

Most commonly used

Assignment Project Exam Help

Good storage efficiency/redundancy trade-off

• Reconstruction of failed disk non-trivial (and slow)

P(0-3)

block 7

block 11

block 15

block 19

RAID Summary

Δα	Category	Level	Description	I/O Data Transfer (R/W)	I/O Request rate (R/W)	n
	Steping	1611	Non-redundant			Ρ
	Mirroring	1	Mirrored	+/0	+/0	
	Parlettp	S2//	Redundant via . (c om +	0/0	
_	access	3	Bit interleaved parity	++/++	0/0	
	Independent access	C₄h:	a Block into the Well (orçş	+/-	
		5	Block interleaved distributed parity	+/-	+/- or 0	

better than single disk (+) / same (0) / worse (-)

Assignment Project Exam Help

Marked coursework will be returned in January

Provintetops: of Ptutiercs.com

Feedback also possible through Mentimeter (94 41 03)

If time permit possible guest is the trotons