

Project FOUR

Julian, Terence, Elang, Henri, Ahmad

01 **Problem Statement** 02 **EDA** 03 **Feature Engineering**

Pre-**Processing** 05

Modelling 06

Cost Benefit Analysis

O1Problem Statement

Given weather, location, testing, and spraying data, predict when and where different species of mosquitoes will test positive for West Nile virus.

O2 EDA

Exploratory Data Analysis

The number of sampling efforts are inconsistent each year. 2007 has the hughes followed by 2013, 2009, 2011

We will go through this later

WNV occurrence has a significant increase in certain species and certain month of the year

During 7 - 9th month particularly the Wind Speed is slowest and the Temperature is hottest

SprayMosquito trapsWNV found

Overall

Aug 2007 Aug 2009 Aug 2011 **Aug 2013** 70.15° F 73.46° F 73.58° F 74.28° F 68.87° F 64.68° F 65.9° F 67.9° F 2007-8 2011-8 2013-8

Average Temp

Min Temp

03

Pre-Processing

- Drop columns
- Splitting data set
- SMOTE

Pre-Processing

- ➤ Trap #35 appeared 2 times
- Trap #9 appeared 2 times
- > 4100 N OAK PARK AVE, Chicago, IL appeared 150 times

Conversion of date to year, month, and week

Drop Columns

'AddressAccuracy'

'Depart'

'ResultSpeed'

ed' > 'CodeSum'

'Heat'

'Address','Street'

> 'Depth'

> 'ResultDir' ➤

'Seal evel' > 'Cool'

'Water1'

➤ 'AvgSpeed' ➤

'SnowFall'

'StnPressure'

Smote

> Before SMOTE: [7963 441]

After SMOTE : [6476 6533]

'AddressNumberAndStreet'

➤ Method:imblearn.combine.SMOTEENN

Data Imbalance

Training Data Distribution

04 Feature Engineering

- Dates
- Sprayed
- Weather

Separate Month, Year, WeekofYear From the EDA it was determined that the mosquito population is dependent on the seasonal environments, therefore it is more relevant to process using year, month and week of year.

- # Create feature Year
- # Create feature Month
- # Create feature WeekofYear (isocalendar().week)

Effectiveness of spray is assumed to be 1000 m radius from the point of spray.

The location of spray determines the affected area, therefore distance features are used to determine which traps were sprayed.

- # Determine trap coordinate
- # Determine spray coordinate
- # Determine all trap locations within 1000 meters from the spray coordinate using shapely.nearest_points function, mark this trap as sprayed.
- # Otherwise mark the trap as not sprayed.

Merged weather feature from station 1 and station 2.

The weather records show strong correlation between data from station 1 and station 2. Since station 2 data contains less missing values, it is selected as the weather feature.

Replace trace and missing precip with 0s # Impute Tavg manually (increases accuracy) # Drop data from Station 1 in the analysis

05 Modelling

Model Summary

		model	train_auc	test_auc	precision	specificity	recall	f1_score
	0	GB (No Smote)	0.89	0.83	0.00	0.99	0.00	0.00
Ī	1	GB(Smote)	0.99	0.81	0.17	0.86	0.53	0.26
I	2	RFC (No Smote)	0.98	0.75	0.33	0.97	0.21	0.26
\	3	RFC (Smote)	1.00	0.75	0.22	0.92	0.39	0.28
	4	XGB (No Smote)	0.88	0.83	0.00	1.00	0.00	0.00
	5	XGB (Smote)	0.99	0.82	0.18	0.85	0.57	0.27

ROC (Smote Model)

XGB Classifier Model

XGB Classifier Model

Your most recent submission

Name

df_submission (9).csv

Submitted

a minute ago

Wait time 1 seconds

Execution time 1 seconds

Score 0.62682

Complete

Jump to your position on the leaderboard -

06

Cost Benefit Analysis

Spray Occurrence

Only 2 years of spraying with majority in 2013

Spraying is only useful for killing adult mosquitoes. The effects will be short lived because there will still be an uptick of germinated mosquito larvae

- Solutions must be persistent with using adult pesticide

Spray Effectiveness

Comparing two specified traps

T159, **sprayed** on 2013-07-17 has **decreasing** trend

T135, not sprayed is decreasing trend

2013-08: strong resurgence, so even if the pesticide is effective, it is not persistent

Cost Benefit Analysis

Breakeven at 7-8 sprays

- Costs (using pesticide Zenivex E4^[1]):
 - based on estimates of \$500 for a session for 0.5 acre of land [2]
 - Cost is \$149,000 for 0.6 km^2 [3]

• Benefits:

Fewer people dying/falling ill -> increased workplace
 productivity and healthcare savings (average \$11,000)^[4]
 108 WNV cases in 2016:^[5]

medical bill ~ \$1,190,000

• Since the benefits outweigh the costs the county should socialise the cost and share the prevention costs with the community as a whole.

Resources

Pesticide info
 https://www.cmmcp.org/pesticide-information/pages/zenivex-e4-etofenprox

- Cost of spray
 https://www.callnorthwest.com/2020/05/how-much-does-a-mosquito-treatment-cost/
- Chicago spray strategy
 https://www.chicago.gov/city/en/depts/cdph/provdrs/healthy_communities/news/2020/august/city-to-spray-insecticide-thursday-to-kill-mosquitoes.html
- WNV cost
 https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-019-4596-9
- No. of WNV 2016 Chicago <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7241786/</u>