

Introduction to Bioinformatics

S. Ravichandran, PhD, PMP Hood College

Online servers that require user accounts

- NCBI
 - myNBCl (user account)
 - https://www.ncbi.nlm.nih.gov/
- Ensemble
- UCSC etc.
- Galaxy
 - https://usegalaxy.org/ (user account)
- Create the accounts ahead of time

Human Cell As a Factory

K. Khoshmanesh et al. / Computational Biology and Chemistry 32 (2008) 315-331

Roughly 37.2 trillion cells in our body

Typical cell (across length) 10 x 10⁻⁶m

Morbid Map of the Human mtDNA Genome

12s rRNA Cyt b Control Inherited from Region Mom to children 16s rRNA ND6 **DEAF 1555 LHON MELAS 3243** 14484 ND5 ND1 **LHON 3460 LHON** 11778 ND2 ND4 **NARP** 8993 **MERRF** 8344 ND4L R ND3 coi COIII Fingerprints of Evolution ATPase6 Circular Genome κ COII ATPase8 5 kb deletion

To understand the language of DNA, we need to understand some Chemistry/Biochemistry

Brief Introduction

Periodic Table

Н-О-Н

Phosphate

DNA has direction

http://en.wikipedia.org/wiki/File:GC_base_pair_jypx3.png

Biology is the chemistry that crawls

What holds the molecules together?

Atomic level: Chemistry Rules

- Bonded interactions
 - Covalent bonds
- Non-bonded interactions
 - H-bonds
 - Holds DNA
 - Makes drug binding work
 - Ionic, VDW etc.

H-bonds

Which pair is easy to break?

A-T

Or

G-C

of H-bonds

Can we think of A-T being the site for DNA actions such as double-stranded → single-stranded

Replication and Transcription etc.

DNA/RNA 3D Structures

probabilities

CGCGAATTCGGG GCGCTTAAGCCC

GGGCUAUUAGCUCAGUUGGUUAGAGCGCACCC CUGAUAAGGGUGAGGUCGCUGAUUCGAAUUC AGCAUAGCCCA

DNA/RNA

- Different types of DNA
 - B, -Z etc
- Different RNAs
 - mRNA
 - Nucleus → Ribosomes
 - NR (non-coding; 95% of all RNAs)
 - tRNA
 - rRNA

- pre-mRNA
- 7-methylguanosime placed at 5' end (prevent RNA degradation)
- Poly A tail is added at the 3'end (200 bps)
- splicing
- Final product, mRNA

Theory published by **Crick** 1958 (Yes, the same Crick that worked with Watson)

Splicing

- Archaea and Bacteria
 - Usually have one chromosomes
 - Chromosomes are circular
 - some can be linear
- Eukaryotes
 - Multiple chromosomes
 - Linear
 - Packed into cell nucleus

Chromosome (highlight: Gene)

No.	Exon / Intron	Start	End	Start Phase	End Phase	Length	Sequence
	5' upstream sequence						gcaggagccagggctgggcataaaagtcagggcagagccatctattgctt
1	ENSE00001829867	5,227,071	5,226,930	-	2	142	ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATC TGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAG TTGGTGGTGAGGCCCTGGGCAG
	Intron 1-2	5,226,929	5,226,800			130	$\verb gttggtatcaaggttacaagacaggtattggtctattttcccacccttag \\$
2	ENSE00001057381	5,226,799	5,226,577	2	0	223	GCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCAC TCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGC CTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGA GCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGG
	Intron 2-3	5,226,576	5,225,727			850	$\tt gtgagtctatgggacgcttgatgttcatacctcttatcttcctcccacag$
3	ENSE00001600613	5,225,726	5,225,464	0	-	263	CTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCA CCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCCTAATGCCCTGGCCCACAAG TATCACTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAG TCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATA AAAAACATTTATTTTCATTGCAA
	3' downstream sequence						tgatgtatttaaattatttctgaatattttactaaaaagggaatgtggga

Gene sequence

mRNA (cDNA) and protein sequences

1	ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATC							
		10						
		3						
61	TGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAG	120						
11	TGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCCAAGGTGAACGTGGATGAAG	70						
4	LTPEEKSAVTALWGKVNVDE	23						

Water molecules

Proteins in 3D

Drug binding inhibition

Vitamin-H bound protein (183 aa protein)

Proteins vs DNA

Proteins

- Unstable
 - Seconds to months
 - Depends on protein & organism
 - <> life span of human proteins: 1 day
 - Destroyed after some time and recycled

DNA

- Stable
- DNA can be stable even for 100,000 years!!!

Related Dogmas

- Central Dogma of Genomics
 - Genome → <u>Transcriptome</u> → Proteome → Cellular Phenotype

- Study of organisms that inhabit the human body
 - microbiome

e-Genome Genome Computers

Ecoli

a 0 1 1 0 0 1 1

- 4 million bases
 - 4,000,000 * 1 Byte = 4,000,000
 - ~4 MB Hard drive
- Human
 - > ~ 3,000,000,000 (3 Billion) bases (one copy)
 - ➤ Each cell
 - > 3 x 10⁹ * 1 Byte = 3 x 10⁹ = 3 GB

Learning Bioinformatics

- Software/Browser/OS
 - Version issues
 - Scripts sometimes fail
 - Web connectivity issues
 - NCBI/Ensembl might change their genomic browsers without notice; Genomic browsers behave sometimes differently with different browsers/OS
- Please be patient!

"it is better 100 guilty Persons should escape than that one innocent Person should suffer" Benjamin Franklin

Applications

Criminal Justice system

https://www.innocenceproject.org/dnaexonerations-in-the-united-states/

- Genetic evidence and exoneration
- First event happened in 1989
- Since then many cases had been resolved using DNA exoneration
- DNA evidence is admitted in criminal trials in almost all states in USA
- Disease, Therapy(?)
 - Breast cancer: Mutations in BRCA1/2 genes
 - Achondroplasia (Dwarfism): Mutations in FGFR3 gene
- Evolving area
 - Systems' view is lacking

Applications

Year 1977 Host Human Protein HA Subtype H1N1

What differentiates different cells?

Gene Regulation

RNA

Polymerase

- Promoters, Transcriptor factor binding regions are identified by experiments.
 - Collecting samples and sequence alignments etc.

Same content (~25K Genes), different function Active

- Brain Cells
 - Amyloid, myosin, α-amylase
- Muscle Cells
 - Amyloid, myosin, α -amylase
- Salivary Gland Cells
 - Amyloid, myosin, α-amylase

Approximations in Bioinformatics

- 3 → 1 Letter (don't forget the chemistry)
 - Protein (20 alphabet)
 - Glu-Leu-Val-Ile-Ser-Thr-His-Glu-Lys-Ile-Gln-Gly
 - ELVISTHEKING
 - DNA/RNA (4 letter alphabet)
- Redundant information of DNA

ATGGAGCTGTCTTG TACCTCGACAGAAG

storage

What is the key issue in Bioinformatics?

Release	Date	Bases (GB)	Seq (GB)	Bases(WGS)	Seq (WGS)
235	12/2019	388,417,258,009	215,333,020	6,277,551,200,690	1,127,023,870

Data Growth in numbers

Need for algorithms to model and carry out analysis

Whole Genome Shotgun (WGS)
High-throughput sequencing (Illumina etc.)

Image from NCBI GenBank

Storage/Retrieval

What can we do with the information? Can we compare/align them? What do we learn from the alignments?

Comparing 3D is one way

Not all 3D information is available

So, sequence comparison is the common approach

How to find out whether two proteins are related?

Sequence Alignment

DNA can be compared instead of protein. But, for most cases proteins have more information than DNA

- Relatedness (homology) among proteins/DNAs
 - Common function?

- Homology (common ancestor)
 - When two sequences (proteins/genes) are highly similar, they might be <u>homologous</u>
 - Converse is not true (lack of similarity != No Homology)

– What is homology?

How can I compare two sequences?

 Not possible without the help of Math and Statistics

 Luckily for us the problem is addressed and some framework is available for us to use

Temple F. Smith

Michael S. Waterman

Creative Commons License

82.88% identity

Human RT-Lemur Human RT-Lemur

Human RT-Lemur **51.37% identity**

Human Goldfish

Human Goldfish Human Goldfish -KEFTPPVQAAYQKVVAGVANALAHKYH PSGFNADVQEAWQKFLSVVVSALCRQYH . *. ** *:**.:: *..**.::** 21.74% identity

Human MVHLTPEEKSAVTALWGKVNVDEV----GGEALGRLLVVYPWTQRFFESFGDLSTPDAVM Bloodworm -MGLSAAOROVVASTWKDIAGSDNGAGVGKECFTKFLSAHHD---IAAVFGFSG----A

GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLS----ELHCDKLHVDPENFRLLGNVL SDPGVADLGAKVLAOIGVAVSHLGDEGKMVAEMKAVGVRHKGYGYKHIKAEYFEPLGASL

* ***. :. .::**.: .* :.

Human Bloodworm

Bloodworm

Human

VCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-LSAMEHRIGGKMTAAAKDAWAAAYADISGALISGLQS

19.85% Identity

Human MVHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTORFFESFGDLSTPDAVMGN Soybean MVAFTEKODALVSSSFEAFKANIPOYSVVFYTSILEKAPAAKDLFSFLA----NGVDPTN

** :* ::.: *:: : : : : :* * :: :*. :.

Human Soybean

PKVKAHGKKVLGAFSDGLAHLDNLKG--TFATLSELHCDKLHVDPENFRLLGNVLVCVLA PKLTGHAEKLFALVRDSAGOLKASGTVVADAALGSVHAOKAVTDPO-FVVVKEALLKTIK

Human Soybean

HHFGKEFT----PPVQAAYQKVVAGVANALAHKYH AAVGDKWSDELSRAWEVAYDELAAAIKKA-----

.*.::: :.**:::.*.: :*****

Questions

- What sequences to use and why?
- What types of alignments
 - Global and Local
- Statistics of alignments
 - Scores and matrices

Two Cultures in Bioinformatics

- Two cultures
 - Web-based
 - Point-and-Click (no programming effort)
 - Command line
 - Sometimes steep learning curve (some programming)
- Which one is better?

Fig 1.5 from Bioinformatics and functional genomics / Jonathan Pevsner.— Third edition. Copyright Figure. Please do not distribute.

Validity of Predictions

- Can we use a software as a black-box?
- How do we know whether a software method is working properly?
- Each software team will in most cases do self evaluation
- Sensitivity(TPR) and Specificity(TNR)

Specificity: Excluding those without disease

$$TPR = \frac{TP}{TP + FN}$$

$$TNR = \frac{TN}{TN + FP}$$

Evaluations

Name	Competition
Alignathon	Compare whole-genome sequence alignment methods
EGASP	ENCODE Genome Annotation Assessment Project
Assemblathon	Compare the performance of genome assemblers
GAGE	Genome Assembly Gold-standard Evaluations
ANRF	Assn. of Biomolecular Resource Facilities (ABRF) assessment of phosphorylation
CASP	Critical Assessment of Structure Prediction
CAFA	Critical Assessment of protein Function Annotation algorithms
CAGI	Critical Assessment of Genome Interpretation. Assess computational methods for predicting phenotypic impacts of genomic variation

New Paradigms for Learning Bioinformatics

- Online resources
 - Google
- Online Classes
 - MOOC
 - EdX, Stanford, Coursersa, Udacity etc.
- Programming
 - R, Python, Perl
 - Linux Shell scripting

Two perspectives in Bioinformatics

- Cell Perspective
 - Contents of the cell
 - DNA/RNA/Protein
 - Analysis of the sequences

- Organism Perspective
 - How genes are expressed?
 - Age
 - Different tissues/cells
 - Race
 - Disease vs non-disease states

Command-line interface

Command line or point-click or application focused

- What OS?
 - Windows or Linux

- Why?
 - Cost, ability to carry out tasks

Reproducibility

"More than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments"

Is there a reproducibility crisis? M.Baker, Nature, 533, 452, 2016

Reproduce another scientist's experiments (failed to reproduce their own experiment)

Chemistry: 90% (60%)

Biology: 80% (60%)

Physics & Engineering: 70% (50%)

Medicine: 70% (60%)

Earth and Env. Science: 60% (40%)

Reproducibility in Published Papers

- Script availability
 - Supplemental pages is a good place
 - Useful for checking the results
 - Useful for learning/teaching
 - Useful for reviewers
 - Etc.

Reproducibility using R

- R session
 - sessionInfo()
- What packages was used
 - library(??)
- Show the code
 - Use R command "dput" to make the user copy and use your code
- Show comments

```
# Reproducible Code; S. Ravichandran, Ph.D. 01/23/2017
# load libraries at the top of the script
library(rafalib)
# if not installed
# install.packages("rafalib")
# set seed for reproducibility
set.seed(100)
# create 100 uniform normally distributed random numbers
x <- rnorm(100)
y <- rnorm(100)
# use mypar from rafalib to plot 2 figs in 1 row
mypar(1,2)
hist(x,col="red"); hist(y,col="blue") # use two lines; for lack of space used 1 line
ttest <- t.test(x,y, alternative = "two.sided", conf.level = 0.95) # p-value = 0.94
# add an outlier in y and call it my
m y <- c(y, 150)
# use dput(data) if you want to send data via email; ex. dput(m_y)
#use two lines; for lack of space used 1 line
hist(x,col="red"); hist(m_y,col="blue")
ottest <- t.test(x, m y, alternative = "two.sided", conf.level = 0.95) # p-value = 0.94
ottest
sessionInfo() # provide sessionInfo()
```

Application-1 Sequence-based approach

Lactose Intolerance

"It has nothing to do with you, Bessie. It's just that I'm lactose intolerant." "It has nothing to do with you, Bessie. It's just that I am Lactose intolerant"

Worldwide prevalence of lactose intolerance in recent populations (schematic)

Finland: 1/60K inborns have LCT intolerance

Very common in people of

- -West African,
- -Arabs,
- -Jewish,
- -Greek and
- -Italian descent.

(ghr.nlm.nih.gov)

Lactose intolerance

 Lactase is the gene that produces Lactase (protein enzyme)

Lactase digests Lactose → simple sugars

LCT Gene

- Intolerant
 - Gene turned off
- Tolerant (adult)
 - Persistence
- Remedy
 - Lactase pill
 - Which does not interfere with transcription but just provide a supply of Lactase enzyme
 - Need to be taken before the Lactose food

LCT Gene

- Lactase is active during childhood but slows or stops when child grows up for some people
- LCT (short name for the Lactase gene)

- Chr 2; 17 exons

The −14010*C variant associated with lactase persistence is located between an Oct-1 and HNF1α binding site and increases lactase promoter activity

Tine G. K. Jensen · Anke Liebert · Rikke Lewinsky · Dallas M. Swallow · Jørgen Olsen · Jesper T. Troelsen

Figure 3

Locations of transcription factor-binding sites and predicted adaptive alleles upstream of LCT, the lactase gene. Three alleles were identified as potentially causal alleles in the African pastoral populations, whereas C/T-13910 was predicted to be the causal allele in Northern Europeans. Additionally, the T/G-13915 allele is correlated with lactase persistence in the Saudi Arabian population. The transcription factors and the sequence they bind in a supershift assay (48) are: HNF-4 α (-13854 to -13830), HNF-3 α and FOX (-13872 to -13848), Oct-1 and GAGA (-13933 to -13909), and Cdx-2 (-14040 to -14016).

150 Kelley • Swanson

Kelley and Swanson, Human Genet, 2008:9:143-160

Possible Mechanism

<u>Protein (Activator) that</u> bind in Enhancer regions far away from Promoter (non-binding) and bends and interacts with Promoter (TATA region) to positively affect transcription

http://www.fda.gov/forconsumers/consumerupdates/ucm094550.htm

Where is the variation (or lack of) that causes Lactose Persistence (Lactose intolerance)?

Application-2 Sickle Cell Disease (SCD): Structure-based approach

Figure taken from NCBI/NIH

Data Source CDC

Malaria (2015)

214M (World-wide) ~1500 cases in US every year

Sickle-Cell Disease (SCD)

affects ~ 100,000 in US occurs 1/365 black or African-American births Occurs 1/16,300 Hispanic-American births

Biology of RBC

S.E.M of RBC Wikipedia

- RBC (a.k.a. erythrocytes, haematids etc.)
- Nucleus lacking in human
- 2.4 M raw RBC are produced/second
- Produced in bone marrow and travel all over body carrying O₂ (& CO₂)
- Carrier protein complex: Hemoglobin
 - Not a single gene product; 2 α and 2 β chains
 - HBA: α; HBB:β

- Genetic disorder
- HBB:Glu7→Val
- Cell sickle & dies sooner

Picture taken from

2 drops of oxygenated/deoxygenated blood

https://en.wikipedia.org/wiki/Red_blood_cell

http://learn.genetics.utah.edu/content/disorders/singlegene/sicklecell/

Related Disease

- SCD → Anemia
- Spleen the blood filter will be clogged by the sickle cells and damages → infections
- Malaria is caused by mosquito bites. Parasite invades the RBC and destroys it.
- In US disease most commonly affects African American

HBB: Where is it?

NCBI Database

Hemoglobin alpha/beta sequences

```
10
                               30
                    20
                                           40
                                                       50
MVLSPADKTN VKAAWGKVGA HAGEYGAEAL ERMFLSFPTT KTYFPHFDLS
        60
                               80
                                                     100
                                                                     Alpha
HGSAQVKGHG KKVADALTNA VAHVDDMPNA LSALSDLHAH KLRVDPVNFK
       110
                   120
                              130
                                          140
LLSHCLLVTL AAHLPAEFTP AVHASLDKFL ASVSTVLTSK YR
```

E→V → Sickle Cell Anemia

```
20
                               30
                                           40
                                                      50
                                                                  60
MVHLTPEEKS AVTALWGKVN VDEVGGEALG RLLVVYPWTO RFFESFGDLS TPDAVMGNPK
                                                                            Beta
        70
                    80
                                          100
                                                     110
                                                                 120
VKAHGKKVLG AFSDGLAHLD NLKGTFATLS ELHCDKLHVD PENFRLLGNV LVCVLAHHFG
       130
                  140
KEFTPPVQAA YQKVVAGVAN ALAHKYH
```

CLUSTAL multiple sequence alignment by MUSCLE (3.8)

sp|P68871|HBB_HUMAN sp|P69905|HBA_HUMAN 43.9% identity

Summary

- What is Bioinformatics?
- Basics of Bioinformatics
- Cell biology
 - DNA/Proteins/RNA
- Central Dogma
- Expression → Function
- Homology, sequence alignment (1D \rightarrow 3D)
- Applications

Thanks

S. Ravichandran, Ph.D ravichandran@hood.edu