| Name:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CHAP'       | ER 3: The nuclear atom review quiz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Multipl<br> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •           | The two main forms of radiation are:  A cosmic radiation and ionising radiation.  B non-ionising radiation and background radiation.  C electromagnetic radiation and cosmic radiation.  D ionising radiation and non-ionising radiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •           | The general equation for alpha-decay is: $A \xrightarrow{A} X \rightarrow {}^{A-4}Z A - 4X + {}^{4}Z He$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | $ \begin{array}{ccc} B & {}_{A}^{Z}X \rightarrow {}_{A}^{Z}X + {}_{4}^{2}He \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | $C \xrightarrow{A}_{Z} X \rightarrow \xrightarrow{A-4}_{Z-2} X + {}_{2}^{4} He$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | $D \xrightarrow{A}_{Z} X \rightarrow \xrightarrow{A-2}_{Z-4} X + {}_{4}^{2} He$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| \$          | <ul> <li>Which of the following best describes the structure of an atom?</li> <li>A tightly bonded collection of negatively charged protons and neutrons (no charge) in the nucleus, which are surrounded by a cloud of small positively charged electrons</li> <li>B A tightly bonded collection of positively charged positrons and neutrons (no charge) in the nucleus, which are surrounded by a cloud of small negatively charged electrons</li> <li>C A tightly bonded collection of positively charged protons and neutrons (no charge) in the nucleus, which are surrounded by a cloud of small negatively charged electrons</li> <li>D A tightly bonded collection of negatively charged electrons and neutrons (no charge) in the nucleus, which are surrounded by a cloud of small positively charged positrons</li> </ul> |
| •           | Which of the following emissions would a sheet of paper be able to stop?  A An alpha particle  B A beta particle  C Gamma rays  D All of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| \$          | Which of the following emissions have the least ionising effect?  A Alpha particles  B Beta particles  C Gamma rays  D None of the above – they all have strong ionising properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •           | What evidence from the Geiger–Marsden experiment did Rutherford use in the development of his first atomic model?  A Beta particles were always deflected from the gold foil towards the positive terminal of the detector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | B Alpha particles were always deflected from the gold foil towards the negative terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | of the detector.  C Alpha particles were sometimes deflected from the gold foil into the detector at very large angles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | D All radioactivity went directly through the gold foil to the detector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| How many neutrons are there in the nuclide $^{63}_{29}$ Cu?                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A 102<br>B 63<br>C 34<br>D 29                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$<br>8 The nuclide 234 Th undergoes beta particle decay. Which of the following is the daughter                                                                                                                                                                                                                                                                                                                                                       |
| nuclide?  A 226 Rn  B 230 Th  C 234 Pa  D 238 U                                                                                                                                                                                                                                                                                                                                                                                                        |
| \$<br>9 In order to form, <sup>222</sup> <sub>86</sub> Rn undergoes nuclear decay. What is the other product of this reaction?  A An alpha particle B A beta particle C A gamma ray D None of the above; the other product is an isotope of Rn.                                                                                                                                                                                                        |
| \$<br>10 In which of the following ways do chemical reactions and nuclear reactions differ?  A Chemical reactions release more energy than nuclear reactions.  B Nuclear reactions release more energy than chemical reactions.  C Chemical reactions involve nucleons; nuclear reactions involve atomic electrons.  D Chemical reactions involve rearranging atomic valence electrons; nuclear reactions involve all the atomic electrons.            |
| \$<br><ul> <li>11 A radioactive isotope has a half-life of 20 days. How long will it take for only one-eighth of the isotope to remain?</li> <li>A 80 days</li> <li>B 40 days</li> <li>C 10 days</li> <li>D 2.5 days</li> </ul>                                                                                                                                                                                                                        |
| \$<br>12 Naturally occurring rubidium comprises two isotopes: <sup>85</sup> <sub>37</sub> Rb (occurring 72% of the time) and                                                                                                                                                                                                                                                                                                                           |
| Rb (occurring 28% of the time). Its relative atomic mass is closest to:  A 86 u B 87 u C 123 u D 172 u                                                                                                                                                                                                                                                                                                                                                 |
| \$<br>Terbium (Tb)–148 has 83 neutrons. It decays by positron emission to an isotope of gadolinium, Gd. The gadolinium nuclide then alpha decays to samarium (Sm)-144. What are the symbols for the nuclide of terbium-148 and samarium-144 in this decay series?  A \$\frac{83}{65}\$Tb; \$\frac{79}{62}\$Sm  B \$\frac{148}{83}\$Tb; \$\frac{144}{79}\$Sm  C \$\frac{65}{148}\$Tb; \$\frac{62}{144}\$Sm  D \$\frac{148}{65}\$Tb; \$\frac{62}{62}\$Sm |

4

|      | How long will it take 4.0 mg of technetium-99m, with a half-life of 6.0 h, to decay to $20\mu g$ ?                                                                                                                                                                                                                                                           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | A 6.0 h B 12.0 h C 24 h D 48 h                                                                                                                                                                                                                                                                                                                               |
|      | In the neutron bombardment of aluminium, a new isotope of aluminium is formed. What is the other product of the reaction? $_{0}^{1}\mathbf{n} + _{13}^{27}\mathbf{Al} \rightarrow _{13}^{28}\mathbf{Al} + ?$ A An alpha particle  B A beta particle  C A gamma ray  D None of the above                                                                      |
|      | The initial mass of a sample isotope was found to be 32 g. After 12 days, the sample was again measured, and only 2 g of the original isotope remained. What is the half-life of the isotope?  A 6 days  B 4 days  C 3 days  D 1.5 days                                                                                                                      |
|      | The carbon-14 content of an ancient piece of wood was found to have 3.1% of that in living trees. Assuming that, over the ages, the ratio of carbon-14 to carbon-13 has remained the same in the atmosphere; about how old is the ancient piece of wood? The half-life of carbon-14 is 5730 years.  A 28 650 y B 21 920 y C 17 760 y D 17 190 y              |
|      | In an experiment using a radioactive source, physicists decide to accept data with an uncertainty of ±5%. What is the minimum number of counts they would need to record?  A 100 000  B 10 000  C 1 000  D 400                                                                                                                                               |
| _    | Beta emitters are often used in treatment because they:  A have high energies and longer effective half-lives.  B have short ranges in body tissue and relatively short biological half-lives.  C are less ionising than gamma rays but have longer effective half-lives.  D are easily detected in scanners outside the body over a shorter period of time. |
| ≎ 20 | The decay of a sample of the alpha particle emitter, thorium-226, is shown in the graph.                                                                                                                                                                                                                                                                     |



The half-life of the thorium-226 (in seconds) and the number of nuclides in the sample that have decayed after 100 minutes are:

A 
$$1.8 \times 10^3$$
 s;  $2.6 \times 10^{37}$ 

B 
$$1.8 \times 10^3 \text{ s}$$
;  $2.6 \times 10^{35}$ 

C 
$$3.6 \times 10^3 \text{ s}$$
;  $2.6 \times 10^{37}$ 

D 
$$3.6 \times 10^3 \text{ s}$$
;  $2.6 \times 10^{35}$ 



