BLUEIO-TAG-EVIM

Bluetooth 5 Sensor Board

BLUEIO-TAG-EVIM TOP

BLUEIO-TAG-EVIM BOTTOM

Flashing firmware

There are many precompiled firmware examples ready to flash in the Nordic SDK. To flash the .hex file to the board, connect the IDAP-LinkTM to board and use the IDAPnRFProg command line utility. Download it from https://sourceforge.net/projects/idaplinkfirmware/files/

To flash firmware, execute the command: IDAPhRFProg firmware.hex

To flash softdevice + firmware + dfu: IDAPhRFProg softdevice.hex firmware.hex dfu.hex

More details about IDAP-Link: https://embeddedsoftdev.blogspot.com/p/idap-link.html

MicroPython

MycroPython ports for the BLYST Nano based boards https://github.com/I-SYST/micropython/tree/blystnano. Precompiled hex can be downloaded from https://sourceforge.net/projects/blyst-nano/files/fimrware/MicroPython/

Eclipse IDE

Follow this blog post for firmware development using Eclipse IDE & GCC. http://embeddedsoftdev.blogspot.com/p/ehal-nrf51.html

Arduino

Follow instruction from this github repo to setup Adruino environment https://github.com/sandeepmistry/arduino-nRF5

Pin Maps

GPIO

P0.30	LED1: 0 – On, 1 - Off
P0.18	LED2 Red: 0 – Off, 1 - On
P0.19	LED2 Blue: 0 – Off, 1 - On
P0.20	LED2 Green: 0 – Off, 1 - On
P0.04	AIN2 : Analog input 2 for reading battery level. Divider resistors R1 = R2
P0.14	Buzzer, Connector P3

I2C (Conn P7, BME680, EEPROM)

P0.28	SDA
P0.29	SCL

SPI (ICM-20948, FLASH)

P0.15

P0.16	MOSI
P0.17	CLK
P0.05	CS of the ICM-20948
P0.26	CS of the FLASH

ICM-20948

P0.05	CS
P0.06	Interrupt

NFC (Conn P8, P9)

P0.09	NFC1 antenna
P0.10	NFC2 antenna

ICS-41352

P0.22	Power : 1 – On, 0 - Off
P0.24	PDM_CLK
P0.25	PDM_DIN

Connectors

Conn P5 (UART)

1	P0.08 : RXD
2	P0.07 : TXD
3	P0.12: CTS
4	P0.11: RTS
5	GND

Conn P6

1	Vcc : 1.8V
2	P0.03/AIN1
3	P0.31/AIN7
4	P0.22
5	GND

Conn P7

1	I2C SCL
2	I2C SDA
3	GND

