Blatt 1

Ruedi Lüthi

30. April 2019

1.

Abbildung 1: Die Teilmengen A_1 und A_2

i.)
$$\mathring{A}_{1} = A$$

$$\overline{A}_{1} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \mid \frac{x^{2}}{2} + \frac{y^{2}}{9} \leqslant 1 \right\}$$

$$\partial A_{1} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \mid \frac{x^{2}}{2} + \frac{y^{2}}{9} = 1 \right\}$$

$$A'_{1} = ????$$

$$\mathring{A}_{2} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \mid x < y^{2} \land |y| < 1 \right\}$$

$$\overline{A}_{2} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \mid x \leqslant y^{2} \land |y| \leqslant 1 \right\}$$

$$\partial A_{2} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^{2} \mid x = y^{2} \land |y| = 1 \right\}$$

$$A'_{2} = ????$$

- ii.) A_1 ist offen, A_2 nicht
- iii.) A_1, A_2 sind nicht abgeschlossen
- iv.) A_1, A_2 sind beschränkt

2.

Sei $\mathcal{O}_j \subset \mathbb{R}^n$ eine beliebige abgeschlossene Menge. Nun wissen wir nach Satz 1.1.7, wenn \mathcal{O}_j abgeschlossen ist, dass das Komplement $(\mathcal{O}_j)^c$ offen ist. Also gilt für die Vereinigung der Komplemente zweier offene Mengen $\mathcal{O}_1, \mathcal{O}_2$ nach den De Morganschen Gesetzen:

$$A = (\mathcal{O}_1)^c \cup (\mathcal{O}_2)^c \quad \Leftrightarrow \quad (\mathcal{O}_1 \cap \mathcal{O}_2)^c = A$$

Weiter wissen wir wegen Satz 1.1.8, dass die Vereinigung zweier beliebigen offener Mengen wiederum offen ist, also muss A offen sein. Wiederum nach Satz 1.1.7 ist das Komplement A^c aber abgeschlossen:

$$A^c = ((\mathcal{O}_1 \cap \mathcal{O}_2)^c)^c = \mathcal{O}_1 \cap \mathcal{O}_2$$

und somit also auch der Durchschnitt der abgeschlossenen Mengen $\mathcal{O}_1, \mathcal{O}_2$.

Die Behauptung für beliebig viele Mengen folgt wiederum über Induktion:

$$A = \mathcal{O}_1 \cap \underbrace{(\mathcal{O}_2 \cap \mathcal{O}_3 \cap \dots \cap \mathcal{O}_n)}_{\mathcal{O}'_2}$$

3.

 \mathbf{a}

Betrachten wir die Funktion f für $x \neq 0$ und $y \neq 0$ und transformieren in Polarkoordinaten $x = r \cos \phi, y = r \sin \phi$:

$$f(x,y) = \frac{xy}{x^2 + y^2} = \frac{r\cos\phi \cdot r\sin\phi}{r^2\cos^2\phi + r^2\sin^2\phi} = \frac{\cos\phi\sin\phi}{\cos^2\phi + \sin^2\phi} = \cos\phi\sin\phi = f(r,\phi)$$

Weiter betrachten wir:

$$\lim_{r \to 0} f(r, \phi) = \cos \phi \sin \phi$$

Da $\lim_{r\to 0} f\left(r, \frac{\pi}{4}\right) = \frac{1}{2} \neq 0 = \lim_{r\to 0} f(r, \pi)$ kann die Funktion <u>nicht stetig</u> sein.

b)

Dasselbe

$$f(x,y) = \frac{x^5 - y^5}{x^4 + y^4} = \frac{r^5(\cos^5\phi - \sin^5\phi)}{r^4(\cos^4\phi + \sin^4\phi)} = r\frac{\cos^5\phi - \sin^5\phi}{\cos^4\phi + \sin^4\phi} = f(r,\phi)$$

wiederum

$$\lim_{r \to 0} f(r, \phi) \quad \text{oder} \quad \lim_{n \to \infty} f(x_n, \phi) \quad \text{mit} \quad (x_n) = \frac{\cos^4 \phi + \sin^4 \phi}{n}$$

$$\lim_{n \to \infty} \frac{\cos^4 \phi + \sin^4 \phi}{n} < \lim_{n \to \infty} \frac{2}{n} = 0 \quad \text{(Nullfolge)}$$

$$\lim_{n \to \infty} f(x_n, \phi) = \lim_{n \to \infty} \frac{\cos^4 \phi + \sin^4 \phi}{n} \frac{\cos^5 \phi - \sin^5 \phi}{\cos^4 \phi + \sin^4 \phi} = \lim_{n \to \infty} \frac{1}{n} (\cos^5 \phi - \sin^5 \phi) < \lim_{n \to \infty} \frac{2}{n} = 0$$

Da $\lim_{n\to\infty} f(x_n,\phi) = 0$ und $f(x_0) = 0$ ist die Funktion stetig.

4.

a)

Für das Zeichnen der Höhenlinie mit Wert c stellen wir um:

$$f(x,y) = 4x^2 - 9y^2 = c \Leftrightarrow y^2 = \frac{4x^2 - c}{9}$$

 $\Rightarrow y_{1,2} = \pm \frac{1}{3}\sqrt{4x^2 - c} = h(x,c)$

und zeichnen mittels der Funktion h(x,c) diese im entsprechenden Definitionsbereich $\{x\in [-1,1]: 4x^2-c>0\}$:

Abbildung 2: Die Höhenlinien der Funktion f(x,y)

b)

Partiell ableiten:

$$\nabla f(x,y) = \left(\frac{\partial}{\partial x} 4x^2 - 9y^2 = 8x, \frac{\partial}{\partial y} 4x^2 - 9y^2 = -18y\right)^{\top}$$

Abbildung 3: Vektorfeld $\nabla f(x,y)$