Université F.Rabelais 2017-2018 L2S3 UE 3-1 Mathématiques

Contrôle continu commun 1 (Samedi 21/10 - Durée 1h45) 4 exercices indépendents

Ni document ni matériel électronique

Exercice 1 COURS (4 points)

Soient f une application linéaire de E vers F, où E et F sont des K-ev de dimensions finies respectives n et p, et $\mathcal{B} = (e_1, e_2, ..., e_n)$ une base de E

- 1. Prouver l'équivalence suivante : f est injective $\Leftrightarrow \text{Ker}(f) = \{0_E\}$.
- 2. Prouver que : $Im(f) = Vect(f(e_1), ..., f(e_n)).$
- 3. Prouver l'équivalence suivante : $(f(e_1), ..., f(e_n))$ est libre $\Leftrightarrow f$ est injective.

Exercice 2 (4 points)

Les quatre assertions suivantes sont-elles vraies (V) ou fausses (F)?

Une preuve concise justifiera le vrai; un contre-exemple précis établira le faux.

- P: L'ensemble \mathcal{S} des matrices symétriques de $M_2(\mathbb{R})$ en est un s-ev de dimension 3.
- Q: L'ensemble \mathcal{A} des matrices antisymétriques de $M_2(\mathbb{R})$ en est un s-ev de dimension 3.
- R : Toute application linéaire f de \mathbb{R}^3 vers \mathbb{R}^2 est surjective.
- S : Aucune application linéaire f de \mathbb{R}^3 vers \mathbb{R}^2 ne peut être injective.

Exercice 3 (7 points)

Dans l'espace vectoriel réel $E = M_2(\mathbb{R})$ des matrices carrées réelles d'ordre 2, dont on note \mathcal{B} la base canonique, on considère les trois vecteurs suivants :

$$A_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}.$$

1. Définir $F = Vect(A_1, A_2, A_3)$, puis en donner une base et un système d'équations vérifié par a, b, c, d lorsque $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ appartient à F.

Quel est le rang de la famille $\mathcal{F} = (A_1, A_2, A_3)$?

2. Justifier que $G = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E/a - b + d = 0 \}$ est un s-ev de E dont on donnera une base. Parmi les matrices de la famille $\mathcal{F} = (A_1, A_2, A_3)$, lesquelles appartiennent à G?

- 3. Définir F + G, puis en donner une base.
- 4. Prouver que $F \cap G$ est une droite vectorielle de E dont on donnera un vecteur directeur.

Exercice 4 (7 points)

Soit f l'endomorphisme de $E = \mathbb{R}^3$ défini pour tout $(x, y, z) \in \mathbb{R}^3$ par :

$$f(x, y, z) = (x, -x - y - z, x + 2y + 2z).$$

- 1. Calculer: $f(e_1), f(e_2), f(e_3)$, où $\mathcal{B} = (e_1, e_2, e_3)$ est la base canonique de E, en déduire la matrice A représentative de f dans \mathcal{B} .
- 2. Déterminer le noyau de f dont on demande un système d'équations et une base \mathcal{B}_1 .
- 3. Déterminer une base \mathcal{B}_2 de l'image de f et un de ses systèmes d'équations.
- 4. Calculer A^2 , puis reconnaître et caractériser f.

Qu'en déduisez-vous pour : Ker(f) et Im(f); pour $\mathcal{B}_1 \cup \mathcal{B}_2$?