Fahrzeugmechatronik II Beschreibung und Verhalten von Mehrgrößensystemen

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Überblick Prozess zu Realisierung eines Reglers

Seite 3

Modellbildung für Regelsysteme Beschreibung als Blockschaltbild

Blockschaltbild (Strukturelle Beschreibung)

Blockschaltbild (Mathematische Beschreibung)

Signalflussgraf

Seite 4

Beschreibung im Zeitbereich Beschreibung als Differentialgleichung

$$\sum_{i=0}^{n} a_{ij} \frac{d^{j} y_{i}}{dt^{j}} = \sum_{k=1}^{m} \sum_{i=0}^{q} b_{kj} \frac{d^{j} u_{k}}{dt^{j}} \quad (i = 1, 2, ..., r)$$

mit den Anfangsbedingungen

$$\frac{d^{j} y_{i}}{dt^{j}}(0) = y_{0,ij} \quad (i = 1, 2, ..., r; j = 0, 1, ..., n-1)$$

Beschreibung im Zeitbereich Beschreibung im Zustandsraum

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{E}\mathbf{d}(t) \qquad \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) + \mathbf{F}\mathbf{d}(t)$$

Seite 6

Beschreibung im Zeitbereich Ableitung aus einem DGL-System 2. Ordnung

Beschreibung im Zeitbereich Zustandsgrößen eines dynamischen Systems

Definition: Zustand eines dynamischen Systems

Ein Vektor \mathbf{x} wird Zustand eines Systems genannt, wenn für eine beliebige Zeit $t_e \geq 0$ die Elemente $x_i(0)$ von \mathbf{x} zum Zeitpunkt 0 zusammen mit dem Verlauf der Eingangsgröße $u(\tau)$ für $0 \leq \tau \leq t_e$ den Wert $\mathbf{x}(t_e)$ und den Wert der Ausgangsgröße $\mathbf{y}(t_e)$ eindeutig bestimmen. \mathbf{x} heißt auch Zustandsvektor und die Komponenten $x_i(t)$ von \mathbf{x} Zustandsvariable oder Zustandsgrößen.

- ➤ Typische Zustandsgrößen sind: Strom, Spannung, Wege, Geschwindigkeiten.
- ➤ Die Wahl der Zustände ist im allg. nicht eindeutig. Es können auch physikalisch nicht interpretierbare Zustände gewählt werden.
- ➤ Die **Anzahl der Zustände n** stimmt mit der Anzahl der Speicherelemente (Kapazität, Induktivität, Masse, Feder) des Systems überein.

Seite 8

Beschreibung im Zeitbereich Zustandsraum

Homogenes System

Inhomogenes System

Seite 9

Beschreibung im Zeitbereich Phasenportrait

Für **2-dim Systeme** (z.B. 1-Massenschwinger) mit

$$x_2(t) = \dot{x}_1(t)$$

heißt der Zustandsraum Phasenraum und die Trajektorie

Phasenporträt.

Seite 10

Beschreibung im Zeitbereich Ähnlichkeitstransformation

Ausgangspunkt ist

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \qquad \mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

Seite 11

Beschreibung im Zeitbereich Ähnlichkeitstransformation

Somit ergibt sich für

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \qquad \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

folgende äquivalente Beziehung

Seite 12

Beschreibung im Zeitbereich Kanonische Normalform – EW-Aufgabe

Seite 13

Beschreibung im Zeitbereich Kanonische Normalform - Transformation

Ausgangspunkt ist

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \qquad \mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

Seite 14

Beschreibung im Zeitbereich Regelungsnormalform - Transformation

Ausgangspunkt ist

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t) \qquad \mathbf{x}(0) = \mathbf{x}_0$$

$$y(t) = \mathbf{c}^T \mathbf{x}(t) + du(t)$$

Seite 15

Beschreibung im Zeitbereich Regelungsnormalform - Transformation

Seite 16

Vielen Dank für Ihre Aufmerksamkeit!