ESCP 2001

Exercice 1

- 1. On considère la matrice A définie par : $A=\begin{pmatrix} -1 & -1 & 2\\ 1 & 2 & -1\\ -2 & -1 & 3 \end{pmatrix}$ et on note ϕ l'endomorphisme de \mathbb{R}^3 représenté par A dans la base canonique.
 - a) i) Montrer que A admet les valeurs propres 1 et 2 et n'en admet pas d'autre. Déterminer les sous-espaces propres E_1 et E_2 associés à ces valeurs propres
 - ii) La matrice A est-elle diagonalisable?
 - b) Soit V un vecteur propre de A associé à la valeur propre 1. Trouver un vecteur W de \mathbb{R}^3 tel que $\phi(W) = v + W$.
 - c) Soit U un vecteur propre de A associé à la valeur propre 2. Montrer que la famille (U, V, W) est une base de \mathbb{R}^3 .
 - d) Déterminer la matrice B représentant l'endomorphisme ϕ dans la base (U, V, W) ainsi qu'une matrice inversible P telle qu'on ait l'égalité $B = P^{-1}AP$.
- 2. Etant données les matrices

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

on associe à tout élément (a, b, c) de \mathbb{R}^3 la matrice $C_{(a,b,c)}$ définie par :

$$C_{(a,b,c)} = aI + bH + cN$$

On note M l'ensemble des matrices $C_{(a,b,c)}$ où (a,b,c) décrit \mathbb{R}^3 .

- a) Montrer que M est un sous-espace vectoriel de l'espace vectoriel $\mathcal{M}_3(\mathbb{R})$ des matrices carrées d'ordre 3 et déterminer sa dimension.
- b) Vérifier que la matrice B définie en 4.b) appartient à M.
- c) Préciser les conditions que doivent vérifier (a,b,c) pour que $C_{(a,b,c)}$ soit inversible. Déterminer, quand elle existe, sa matrice inverse.
- d) Déterminer les valeurs propres de $C_{(a,b,c)}$. Montrer que cette matrice est diagonalisable si et seulement si c est nul.

Exercice 2

1. On considère la fonction G de deux variables réelles définie, pour tout x et y strictement positifs, par :

$$G(x,y) = \frac{x^2}{2y^2} - \ln x + y - \frac{3}{2}$$

- a) Calculer les dérivées partielles d'ordre 1 et 2 de la fonction G.
- b) Rechercher les extrema éventuels de la fonction G dans le domaine $]0, +\infty[\times]0, +\infty[$
- 2. On considère maintenant la fonction f définie, pour tout x strictement positif, par :

$$f(x) = G(x, 1) = \frac{x^2}{2} - \ln x - \frac{1}{2}$$

- a) Étudier les variations de f. Montrer que c'est une fonction convexe. Donner sa représentation graphique.
- b) i) Calculer une primitive de la fonction f sur l'intervalle $]0, +\infty[$.
 - ii) En déduire que l'intégrale $\int_0^1 f(x) dx$ existe et calculer sa valeur.
- c) Soit n un entier supérieur ou égal à 2. On pose $S_n = \frac{1}{n} \sum_{j=1}^n f\left(\frac{j}{n}\right)$.
 - i) Établir, pour tout entier j vérifiant $1 \le j \le n$, les inégalités :

$$\frac{1}{n}f\left(\frac{j+1}{n}\right) \leqslant \int_{\frac{j}{n}}^{\frac{j+1}{n}} f(x) \, \mathrm{d}x \leqslant \frac{1}{n}f\left(\frac{j}{n}\right)$$

ii) En déduire l'encadrement :

$$\int_{\frac{1}{n}}^{1} f(x) dx \leqslant S_n \leqslant \frac{1}{n} f\left(\frac{1}{n}\right) + \int_{\frac{1}{n}}^{1} f(x) dx$$

iii) Montrer les inégalités :

$$0 \leqslant \frac{1}{n} f\left(\frac{1}{n}\right) \leqslant \int_0^{\frac{1}{n}} f(x) \ dx$$

- d) On considère la suite $(S_n)_{n\geqslant 2}$ définie précédemment. Montrer que cette suite converge et déterminer sa limite.
- e) On rappelle que, pour tout entier naturel non nul, on a l'égalité $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
 - (i) Exprimer, pour tout entier naturel non nul, la somme $\sum_{j=1}^{n} f\left(\frac{j}{n}\right)$ en fonction de n.
 - (ii) En déduire la limite : $\lim_{n\to+\infty} \frac{1}{n} \ln \left(\frac{n^n}{n!} \right)$.

Exercice 3

1. Préliminaire

Montrer, pour tout entier naturel non nul n, l'égalité : $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.

2. Soit N un entier supérieur ou égal à 2.

Une urne contient N boules dont N-2 sont blanches et 2 sont noires. On tire au hasard, successivement et sans remise, les N boules de cette urne.

Les tirages étant numérotés de 1 à N, on note X_1 la variable aléatoire égale au numéro du tirage qui a fourni, pour la première fois, une boule noire et X_2 la variable aléatoire égale au numéro du tirage qui a fourni, pour la deuxième fois, une boule noire.

- a) Préciser l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ que l'on peut utiliser pour modéliser cette expérience aléaoire.
- $\pmb{b})$ Soit i et j deux entiers de l'intervale $[\![1,N]\!].$ Montrer que l'on a :

$$\mathbb{P}\left(\left[X_{1}=i,\ X_{2}=j\right]\right) = \left\{ \begin{array}{ccc} 0 & \text{si} & 1 \leqslant j \leqslant i \leqslant N \\ \frac{2}{N(N-1)} & \text{si} & 1 \leqslant i < j \leqslant N \end{array} \right.$$

- c) Déterminer les lois de probabilité des variables X_1 et X_2 . Ces variables sont-elles indépendantes?
- d) i) Démontrer que la variable $N+1-X_2$ a même loi que X_1 .
 - *ii*) Déterminer la loi de la variable $X_2 X_1$ et la comparer à celle de X_1 .
- e) À l'aide des résultats de la question 4 :
 - i) Calculer les espérances $\mathbb{E}(X_1)$ et $\mathbb{E}(X_2)$.
 - *ii)* Montrer l'égalité des variances $\mathbb{V}(X_1)$ et $\mathbb{V}(X_2)$.
- iii) établir la relation : $2 \operatorname{Cov}(X_1, X_2) = \mathbb{V}(X_1)$ où $\operatorname{Cov}(X_1, X_2)$ désigne la covariance des variables X_1 et X_2 .
- f) Calculer $\mathbb{V}(X_1)$; en déduire $\mathbb{V}(X_2)$ et $\mathrm{Cov}(X_1,X_2)$.
- 3. Dans cette partie, N désigne encore un entier supérieur ou égal à deux.
 - a) On considère le programme Scilab suivant, où grand(1,1,'uin',1,10) désigne un nombre entier tiré au hasard par l'ordinateur dans l'intervalle [1,10]:

- i) Que fait l'ordinateur dans le cas où les variables a et b contiennent toutes les deux le même nombre?
- ii) Qu'affiche l'ordinateur dans le cas où les variables a et b contiennent respectivement les nombres 3 et 5?
- iii) Qu'affiche l'ordinateur dans le cas où les variables a et b contiennent respectivement les nombres 10 et 1?
- b) On suppose que A et B sont deux variables aléatoires définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$, indépendantes, suivant la même loi uniforme sur l'ensemble $\{1, 2, \ldots, N\}$ et on désigne par D l'évènement : "A ne prend pas la même valeur que B".
 - i) Montrer que la probabilité de l'évènement D est $\frac{N-1}{N}.$
 - ii) Soit Y_1 et Y_2 les variables aléatoires définies par : $\begin{cases} Y_1 = \min(A, B) \\ Y_2 = \max(A, B) \end{cases}$

Calculer, pour tout couple (i, j) d'éléments de $\{1, 2, ..., N\}$, la probabilité conditionnelle $\mathbb{P}_D([Y_1 = i, Y_2 = j])$.

c) Expliquer pour quoi le programme de la question 3.a) per met de simuler les variables aléatoires X_1 et X_2 , dans le cas où N est égal à 10.