LSHTM. Basic Statistics for PHP students: Exam Formulae, 2018-19

Context	Standard Error	95% CI	z, t, or chi-squared
Single mean (large sample)	$SE(x) = \frac{s}{\sqrt{n}}$	$\bar{x} \pm 1.96SE(\bar{x})$	$z = \frac{\bar{x} - \mu_0}{SE(\bar{x})}$
Single mean (small sample)	as above	$\bar{x} \pm t \ SE(\bar{x}) $ (1)	$t = \frac{\overline{x} - \mu_0}{SE(\overline{x})} $ (1)
Single proportion (as percentage)	$SE(p) = \sqrt{\frac{p(100 - p)}{n}}$	$p\pm1.96SE(p)$	$z = \frac{p - \pi_0}{SE(p)}$
Comparing two means (large sample)	$SE(diff) = \sqrt{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})}$	$(x_1 - x_2) \pm 1.96SE(diff)$	$z = \frac{\overline{x_1 - x_2}}{SE(diff)}$
Comparing two means (small sample)	$SE(diff) = s_p \sqrt{(\frac{1}{n_1} + \frac{1}{n_2})}$ (2)	$(\overline{x_1} - \overline{x_2}) \pm tSE(diff)$ (3)	$t = \frac{\overline{x_1} - \overline{x_2}}{SE(diff)} $ (3)
Comparing two proportions (as percentage)	$SE(diff) = \sqrt{\frac{\overline{p}(100 - \overline{p})}{n_1} + \frac{\overline{p}(100 - \overline{p})}{n_2}}$ $Where \overline{p} = overall \ proportion$		$z = \frac{p_1 - p_2}{SE(diff)}$
	SE(diff') = $\sqrt{\frac{p_1(100 - p_1)}{n_1} + \frac{p_2(100 - p_2)}{n_2}}$	$(p_1 - p_2) \pm 1.96SE(diff)$	
Testing association in an r X c contingency table			$X^{2} = \sum \frac{(O - E)^{2}}{E} {}^{(4)}$

Sample size	Estimating an effect with a certain degree	Testing a hypothesis – comparing 2 groups		
calculations	of precision (5% significance level)	(5% significance level, 80% power)		
Proportions (as percentage)	$n = \frac{3.84 \times p(100 - p)}{precision^2}$	$n = \frac{\left(1.96\sqrt{2\bar{p}(100 - \bar{p})} + 0.84\sqrt{p_1(100 - p_1) + p_2(100 - p_2)}\right)^2}{D_{min}^2}$		
Means	$n = \frac{3.84 \times SD^2}{\text{precision}^2}$	$n = \frac{(0.84 + 1.96)^2 \times (\sigma_1^2 + \sigma_2^2)}{D_{min}^2}$		

NOTATION	Single sample		For 2 groups			
	Population	Sample	Population 1	Population 2	Sample 1	Sample 2
Mean	μ	$\frac{-}{x}$	μ_1	μ_2	_ X ₁	_ X2
SD	σ	S	σι	σ2	S1	S2
Proportion	π	p	$\pi_{\scriptscriptstyle 1}$	π 2	p ₁	p ₂
Sample size		n			\mathbf{n}_1	n ₂

 $[\]mu_0$ = A known reference mean; \mathcal{H}_0 = A known reference proportion; X_i = an observed mean in group i

(2)
$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)}}$$
 (pooled estimate of common standard deviation)

 p_i = an observed proportion in group i, expressed as a percentage (if proportions are not expressed as percentages then replace 100 by 1 in above formulae). (1) Student t distribution with degrees of freedom = n - 1; for 95% CI use 5% (two-tailed) point.

⁽³⁾ Degrees of freedom = n_1 + n_2 - 2; for 95% CI use 5% (two-tailed) point.

⁽⁴⁾ O= observed cell count; E=expected count if null hypothesis were true; degrees of freedom = (r-1)X(c-1), where r=number of rows, c=number of columns.