Matching Intro

INFO/STSCI/ILRST 3900: Causal Inference

10 Oct 2024

Learning goals for today

At the end of class, you will be able to:

- 1. Explain how matching can be used to estimate causal effects
- 2. Explain bias variance trade-off in various matching procedures

Causal effect

What is the causal effect on income of a job training program?

► Average Treatment Effect (on everyone)

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0})$$

► Average Treatment Effect on the Treated (ATT)

$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$

Matching: The big idea

Goal:
$$E(Y^{a=1} \mid A = 1) - E(Y^{a=0} \mid A = 1)$$
 ATT
$$E(Y^{a=1} \mid A = 1) \approx \frac{1}{n_t} \sum_{i:A_i = 1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i = 1} Y_i$$

$$E(Y^{a=0} \mid A = 1) \approx \frac{1}{n_t} \sum_{i:A_i = 1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A_i = 0} Y_i$$

Problem: Control may be different than the treatment

Potential Solution: Create a sample of untreated individuals, \mathcal{M} , which are similar to the treated group

$$\frac{1}{n_m} \sum_{i \in \mathcal{M}} Y_i = \frac{1}{n_m} \sum_{i \in \mathcal{M}} Y_i^{a=0} \approx \frac{1}{n_t} \sum_{i: A_t = 1} Y_i^{a=0}$$

Example

► Conditional exchangeability holds when conditioning on Age!

$$E(Y^{a=0} \mid A = 1, Age = \ell) = E(Y^{a=0} \mid A = 0, Age = \ell)$$

Estimate

$$\mathsf{E}(\mathsf{Y}^{\mathsf{a}=0}\mid \mathsf{A}=1) = \underbrace{\sum_{\ell} \mathsf{Pr}(\mathsf{Age}=\ell\mid \mathsf{A}=1) \mathsf{E}(\mathsf{Y}^{\mathsf{a}=0}\mid \mathsf{A}=1,\mathsf{Age}=\ell)}_{\mathsf{Weighted average of averages}}$$

$$\begin{split} \mathsf{E}(Y^{a=0} \mid \mathcal{M}) &= \sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell, \mathcal{M}) \\ &= \sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell) \end{split}$$

▶ If we can make $Pr(Age = \ell \mid \mathcal{M}) \approx Pr(Age = \ell \mid A = 1)$, the two quantities should be the same

Matching: The big idea

Goal: Sample Average Treatment Effect on the Treated

$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$

Potential Solution: Create a group of untreated individuals, \mathcal{M} , which have a **similar distribution of** L to the treated group

$$\frac{1}{n_m} \sum_{i \in \mathcal{M}} Y_i \approx \frac{1}{n_t} \sum_{i: A_i = 1} Y_i^{a=0} \approx \mathsf{E}(Y^{a=0} \mid A = 1)$$

Detail: How?

Example

Job training

Ind	Age	YTrain	Y No Train	
1	20	19	?	
2	25	63	?	
3	38	65	?	
4	38	43	?	

No job training				
Ind	Age	Y NoTrain		
1	19	82		
2	18	39		
3	20	49		
4	20	56		
5	24	33		
6	26	82		
7	26	35		
8	38	35		
9	28	83		
10	30	79		
11	24	63		
12	32	52		
13	34	58		
14	34	70		
15	35	47		
16	37	42		
17	37	83		
18	38	33		
19	39	37		
20	39	60		

Matching: The big idea

Vom Englithus choses truth each be sugliting L

Why matching is great

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - ► We found a set of control units which are comparable
 - ▶ We compared the means
- 3. Can assess quality of matches before we look at the outcome
- 4. Model-free*
 - * but you have to define what makes a match "good"

Bias vs variance

The idea of matching is straightforward, but the details matter!

Matching in univariate settings: Algorithms

- ► Caliper or no caliper
- ▶ 1:1 vs k:1
- ► With replacement vs without replacement
- ▶ Greedy vs optimal

Caliper or no caliper matching

- Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius
- ► Feasible Sample Average Treatment Effect on the Treated (FSATT): Average among treated units for whom an acceptable match exists

1:1 vs k:1 matching

- ► Benefit of 2:1 matching
 - ► Lower variance. Averaging over more cases.
- ► Benefit of 1:1 matching
 - ► Lower bias. Only the best matches.
- ▶ Greater $k \rightarrow$ lower variance, higher bias

With replacement vs without replacement matching

- ► Benefit of matching without replacement
 - ► Lower variance. Averaging over more cases.
- ► Benefit of matching with replacement
 - ► Lower bias. Better matches.

Greedy vs optimal matching¹

► Optimal is better. Just computationally harder.

¹Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Matching in univariate settings: Algorithms

- Caliper or no caliper
- ▶ 1:1 vs k:1
- ► With replacement vs without replacement
- ► Greedy vs optimal

Many reasonable choices, good choices depend on the data you have

Learning goals for today

At the end of class, you will be able to:

- 1. Explain how matching can be used to estimate causal effects
- 2. Explain bias variance trade-off in various matching procedures