(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-71185

(43)公開日 平成10年(1998) 3月17日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

A 6 1 J 1/05

A 6 1 J 1/00

351A

審査請求 有 発明の数1 OL (全 6 頁)

(21)出願番号

特願平9-213162

(62)分割の表示

特願昭61-162222の分割

(22)出願日

昭和61年(1986)7月10日

(71)出願人 390003263

株式会社新素材総合研究所

東京都世田谷区大原2丁目21番13号

(72)発明者 鈴木 龍夫

東京都町田市小山田桜台1丁目5番地27-

(72)発明者 磯野 啓之介

埼玉県川口市大字安行藤八46番地112

(74)代理人 弁理士 若林 忠

(54) 【発明の名称】 医療用容器

(57)【要約】

【課題】 互いに反応しやすい成分を含む薬液を安定し た状態で減菌及び長期保存できる医療用容器を提供する ことにある。

【解決手段】 複数の室を有し、少なくとも一種は液体 である複数の薬剤をそれぞれの室に隔離して封入した容 器であって、少なくとも内層と外層を有する合成樹脂製 多層シートで構成され、前記内層の対向する面の一部が 完全に熱溶着しない温度で互いに接着した剥離可能な接 着部により前記複数の室が仕切られ、使用時には該接着 部を剥離して前記薬剤の容器内混合が可能な高圧蒸気減 菌された医療用容器の提供によって達成される。

【特許請求の範囲】

【請求項1】 複数の室を有し、少なくとも一種は液体である複数の薬剤をそれぞれの室に隔離して封入した容器であって、少なくとも内層と外層を有する合成樹脂製多層シートで構成され、前記内層の対向する面の一部が完全に熱溶着しない温度で互いに接着した剥離可能な接着部により前記複数の室が仕切られ、使用時には該接着部を剥離して前記薬剤の容器内混合が可能な高圧蒸気減菌された医療用容器。

【請求項2】 前記内層の引張強度が前記外層よりも小さいことを特徴とする請求項1に記載の医療用容器。

【請求項3】 前記外層の肉厚が前記内層の肉厚の2倍以上である請求項1または2に記載の医療用容器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、医療用容器及びその製造方法に関する。特に、クローズド医療システムに用いられる高カロリー輸液剤やエレメンタルダイエット(以下EDと略す)の成分で互いに反応しやすい成分を複数種入れることのできる潰れ得る薬液入り医療用容器に関する。

[0002]

【従来の技術】近年生体に必要な栄養素すべてを経静脈より摂取する高カロリー輸液法がさかんに行われるようになってきた。高カロリー輸液法が適用されるのは、消化管縫合不全、消化管通過障害等の経口摂取が不十分または不可能な場合、炎症性腸疾患、重症下痢等の経口摂取が好ましくない場合、広範熱傷、多発重症外傷等の経腸補給を上回る高カロリー補給が望まれる場合、肝不全・腎臓不全、糖原病等の疾患による代謝の特異性を応用する場合などである。

【0003】高カロリー輸液法に用いられる高カロリー輸液剤は生体に必要な栄養素をすべて適量含むことが基本である。すなわち、糖質、アミノ酸、主要電解質、微量金属及びビタミンを含む多成分輸液剤になる。しかし、これらのすべてを含む複合液を製品化することは配合性、安定性の面で現在は不可能である。そこで、現在三つの方法が用いられている。

①市販の高カロリー輸液用基本液を用いる。高濃度ブドウ糖液に主要電解質が配合された液で、使用時アミノ酸を混合し、ビタミン及び不足な電解質を添加する。

②市販の高張ブドウ糖液とアミノ酸液を混合又は両方を 連結して投与する。

③高カロリー輸液基本液又はブドウ糖液を独自に薬局製 剤質で作成する。

いずれにしても、高カロリー輸液用基本液又は高張ブドウ糖液にアミノ酸液を使用時に混合して患者に投与する わけである。

[0004]

【発明が解決しようとする課題】従来ブドウ糖アミノ酸

を配合して一液製剤とし容器に封入すると、高圧蒸気減 菌時及び保存時にブドウ糖とアミノ酸との間で反応が起 こり輸液剤が着色していた。このため、上述したように 現在のところブドウ糖とアミノ酸のように互いに反応し やすい成分を含む薬液を混合して一液製剤とすることが できず、これらの薬液を使用時に混合して患者に投与し ていた。このように、使用時に混合するという操作は、 調剤ミスを起こす可能性があり、また混合時の汚染等の 問題がある。

【0005】本発明は、互いに反応しやすい成分を含む 薬液を安定した状態で滅菌及び長期保存できる医療用容 器を提供することにある。

[0006]

【課題を解決するための手段】上記従来技術の問題点を 解決する本発明は、複数の室を有し、少なくとも一種は 液体である複数の薬剤をそれぞれの室に隔離して封入し た容器であって、少なくとも内層と外層を有する合成樹 脂製多層シートで構成され、前記内層の対向する面の一 部が完全に熱溶着しない温度で互いに装着した剥離可能 な接着部により前記複数の室が仕切られ、使用時には該 接着部を剥離して前記薬剤の容器内混合が可能な高圧蒸 気滅菌された医療用容器である。多層シートで複数の室 を有する容器を構成し、該多層シートの内層面を完全に 熱溶着させずに接着状態とすることにより、薬剤を保持 するには充分な強度を有するが外層を破壊することなく 剥離できる程度に内層面を接着し複数の室に仕切ること ができるので、互いに反応し易い薬剤を一つの容器内に 分離して長期に保存でき、また使用時には該接着部を人 手で剥離することにより容易に容器内で薬剤を混合する ことが可能となる。

[0007]

【発明の実施の形態】本発明の医療用容器は例えば、少なくとも内層と外層を有する合成樹脂製多層シートで容器を形成し、内層が完全に熱溶着することなく互いに接着する温度の雰囲気中で、該容器の内層の対向する面の一部を挟持体で密着させた状態を保持して剥離可能な接着部を形成し、前記容器に複数の室を作ることによって製造される。この方法による場合は、内層が完全に熱溶着せず互いに接着する温度の雰囲気中に、内層面を挟持体で密着させて置くことにより、薬剤を保持するには充分であるが外層を破壊することなく剥離できる程度に内層同士を接着することができるので、例えば、特別な熱処理を施さなくとも薬剤充填後の滅菌処理の雰囲気等を利用して容易に内層を剥離可能な状態で接着することが可能となる。

【0008】前述したように、互いに反応する成分を含む薬剤を一液製剤にしておくと、滅菌時及び長期保存時に薬剤が変色或は変質してしまうので、使用時に混合する必要がある。この混合時に調剤ミスや汚染等の問題を発生していた。かかる問題を解決するためには、複数の

室を有する容器を形成し、それぞれの室に互いに反応し やすい成分を含む薬剤を隔離して所定量を封入してお き、使用時にこれらの複数の室を互いに連通させて容器 内で前記薬剤を混合することにより上記問題点を解決す ることができる。

【0009】容器を多層シートで作製し、容器の一部を接着して複数の室を形成する。容器を多層シートで構成することにより、この接着部に剥離させる方向に力を加えると、外層を破壊することなく接着している内層を破壊(以下、外層を破壊しないで剥離が可能な接着を「接着」、外層を破壊しないと剥離できない接着を「溶着」という)して各室を連通させることができることを見出した。さらに、内層の引張強度を外層より小さくすることにより、また外層の肉厚を内層の肉厚の2倍以上にすることにより、一層確実に外層を破壊することなく接着している内層を破壊できることを見出した。即ち、接着部の剥離が、互いに接着する内層の界面近くで生ずる場合は問題ないが、剥離が内層の外層に近い面で生ずる場合は外層の強度等が問題となる。

【0010】また、容器部を複数の室に分けるための接着部を形成するとき、内層相互が接着する温度の雰囲気中でその容器の一部を挟持体により密着させた状態を保持して接着させることにより、外層を破壊することなく接着している内層を破壊することができることを見出した。

[0011]

【実施例】次に、本発明を図面に基づいて具体的に説明 する。

【0012】本発明の医療用容器の一例を図1及び図2 に示す。医療用容器1の容器部2は、その外層7が合成 樹脂で形成され、その内層8には外層7よりも引張強度 の小さい合成樹脂で形成されている多層構造のインフレ ーション成形によって得たチューブ状のシートの両端開 放を熱溶着し、更に容器部の一部12を接着することに よって得たものである。また、排出口部3は、その内層 9が合成樹脂で形成され、その外層10には容器部の外 層7および排出口部の内層9よりも低い融点を有する合 成樹脂が被覆されている。一方の融着端部4には、医療 用容器1を懸垂するための懸垂口5及び薬液注入口11 が設けられ、他方の融着端部6には、排出口部3が挿入 溶着されている。融着端部6に排出口部3を熱溶着する とき、排出口部3の外層10が内層9及び容器部の内層 8と外層7よりも融点が低いので、外部よりの加熱によ り内層9が先に溶融し、容器部2と排出口部3は、容易 にかつ確実に溶着することができる。

【0013】さらに図3に示すように、排出口部33 は、その外層40にはリング状等の突起部41を有する ことが好ましい。すなわち、融着端部6に排出口部33 を挿入溶着するとき、より確実に液密に溶着することが できるからである。 【0014】容器部2の外層7としては、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、北リスロピレン、オレフィン系エラストマー、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂等を用いることができる。好ましくは、柔軟性に優れ破袋強度の大きな直鎖状低密度ポリエチレンを用いるのが望ましい。また容器部2の内層8としては、外層7より引張強度の小さい低密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン一酢酸ビニル共重合体、軟質ポリ塩化ビニル樹脂等を用いることができる。ただし、外層7との組み合わせを考慮する必要がある。

【0015】これらの多層シートの厚みは、0.1~0.5mm、好ましくは0.2~0.4mmとすることができる。0.1mm以下であると破袋強度が悪くなり破損の危険性が増大する。また、0.5mm以上であると柔軟性と透明性が悪くなる。また、容器部の外層7と内層8の接着性が悪いときには、外層7と内層8の間に中間層として接着層を有する多層シートを用いることもできる。

【0016】排出口部3は二色成形法にて作製することができる。排出口部3の内層9には、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリエステル系樹脂、ポリアミド系樹脂等を用いることができる。排出口部3の外層10は、低密度ポリエチレン、中密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン一酢酸ビニル共重合体等を用いることができる。さらに、排出口部3の外層10は、容器部2の内層8と同じ合成樹脂を用いることにより、容器部2と排出口部3を容易にまた確実に熱溶着することができる。

【0017】また、排出口部の内層9と外層10の接着性が悪いとき等には、内層9と外層10の間に中間層として接着層を有する三色成形により、排出口部3を作製することが好ましい。

【0018】また本発明の医療用容器は、上述の合成樹脂の押出成形によって得られた多層ラミネートシート二枚を重ね合わせ、その周縁部を熱溶着することによって得ることができる。

【0019】このようにして得られた容器は、図4に示すように、容器部の一部12を両側から金属やセラミックスや合成樹脂等で作成された挟持体13で挟持して内層を互いに密着させ、室21と室22に隔離される。次に、排出口部3と薬液注入口11より、互いに反応する成分を含む薬液をそれぞれの室21、22に分離して注入し、排出口部3と薬液注入口11を封入する。挟持体13により室21および室22内の両薬液が混合しないようにしたままで高圧蒸気減菌する。この減菌時の加熱により、挟持体13で挟持されていた部分は接着されるので、減菌後に挟持体13を取り除いても接着部12の内面相互は接着されており、室21と室22の薬液はそ

れぞれ隔離された状態を保つことができる。また、容器の一部12を挟持体13で挟持し全体を加温して接着させてから、薬液を注入することもできる。

【0020】この薬液入り容器は、使用時に室21と室22に封入されている薬液を混合して使用される。容器部の両面を保持し、接着部12を剥離する方向(図2のA方向)に引っ張り室21と室22を連通させ、それぞれの薬液を容器部2内で混合する。次に、排出口部3に輸液セットのピン針を挿入し、通常の輸液手技に基づいて患者に薬液を投与する。

【〇〇21】接着部12の剥離を更に容易にするためには、接着部12を変曲点を有する曲線あるいは屈曲部を有する線分(この屈曲部も変曲点の範疇に入れる)で構成される形状にするのが好ましい。例えば、接着部を図4に示すような一個の変曲点14(屈曲部)を有するV字状にすることにより、容器部の中央部を保持し接着部を剥離する方向に引っ張れば変曲点14から容易に接着部を剥離することができる。更に、接着部を図5、図6に示すような形状125、126にすることができる(変曲点を有する曲線で構成される接着部を図示せ

【0022】また、図6に示すように、室621、室622、室623と三室を有する容器を作製することもできる。

【0023】また、隔離されている各室に、凍結乾燥されたED粉末と滅菌水、あるいは抗生物質の粉末と生理 食塩水を封入することもできる。

【0024】実施例1

直鎖状低密度ポリエチレン(商品名: ニポロン-L、東 洋曹達工業 (株) 製、密度:0.925g/cm³、引 張強度:310kgf/cm² (JISK6760)) と低密度ポリエチレン(商品名:ペトロセン、東洋曹達 工業 (株) 製、密度: 0.917g/cm³、引張強 度: 110kgf/cm² (JISK6760))を用 いて、低密度ポリエチレンが内層になるように共押出成 形によるインフレーションチューブを作製した。外側の 直鎖状低密度ポリエチレンの層の厚みは250μm、内 側の低密度ポリエチレンの層の厚みは50μmであっ た。また、排出口部と薬液注入口を高密度ポリエチレン (商品名:ニポロンハード、東洋曹達工業(株)製、密 度: 0.960g/cm³)と低密度ポリエチレン(商 品名:ペトロセン、東洋曹達工業(株)製、密度:0. 917g/cm³)を用いて二色成形により作製した。 排出口部及び薬液注入口の外側の低密度ポリエチレンの 層の厚みは50μmであった。次に、インフレーション チューブの一方の端部を二色成形により作製した薬液注 入口を挿入溶着し、さらに懸垂口を設けた。他方の端部 は、二色成形により作製した排出口部を挿入溶着し、容 器を作製した。

【0025】この容器を中央近傍部位をV字状の挟持体

で挟持し容器部を二室に分け、薬液注入口よりブドウ糖 を注入し薬液注入口を封入した。次に、排出口部よりア ミノ酸液を注入し排出口部を封入した。

【0026】この薬液入り容器を挟持体で保持したまま、110℃で60分間高圧蒸気滅菌した。滅菌後、薬液入り容器から挟持体を取り除き、この薬液入り容器を激しく振動させたが、容器内のブドウ糖液とアミノ酸液は混合されなかった。

【0027】次に、この薬液入り容器の接着部近傍の容器壁を保持し、接着部を剥離させる方向に引っ張ると接着部は剥離し、容器内のブドウ糖液とアミノ酸液が混合された。

【0028】比較例1

直鎖状低密度ポリエチレン(商品名:ニポロンーし、東 洋曹達工業 (株) 製、密度: 0.925g/cm³)を 用いて、インフレーションチューブを作製した。このイ ンフレーションチューブの厚みは300μmであった。 また、排出口部と薬液注入口を高密度ポリエチレン(商 品名: ニポロンハード、東洋曹達工業(株)製、密度: 0.960g/cm³)と低密度ポリエチレン(商品) 名:ペトロセン、東洋曹達工業(株)製、密度:0.9 17g/cm³)を用いて二色成形により作製した。排 出口部及び薬液注入口の外側の低密度ポリエチレンの層 の厚みは50μmであった。次に、インフレーションチ ューブの一方の端部を二色成形により作製した薬液注入 口を挿入溶着し、さらに懸垂口を設けた。他方の端部 は、二色成形により作製した排出口部を挿入溶着し、更 に容器部の中央をヒートシールにより溶着して二室を有 する容器を作製した。

【0029】この容器の薬液注入口よりブドウ糖を注入し薬液注入口を封入した。次に、排出口部よりアミノ酸液を注入し排出口部を封入した。

【0030】この薬液入り容器を110℃で60分間高 圧蒸気滅菌した。

【0031】次に、この薬液入り容器の中央の溶着部近 傍の容器壁を保持し、溶着部を剥離させる方向に引っ張 ると溶着部は破壊され、容器内のブドウ糖液とアミノ酸 液は容器より流出した。

[0032]

【発明の効果】以上述べたように、本発明の医療用容器 は以下に示す利点を有する。

Φ互いに反応しやすい成分を含む薬剤を一つの容器に分離して保存でき、使用時に容易にその容器内で混合できるので調剤ミスや汚染の危険性がない。

②容器部の内層は、その外層より引張強度が小さいので、容器部を破壊することなく接着部を剥離できる。

【図面の簡単な説明】

【図1】本発明の医療用容器の第一実施例を示す正面図

【図2】同実施例のII-IIの縦断面図

【図3】排出口部の他の実施例を示す部分断面図

【図4】第一実施例の接着部を作製する方法を示す斜視

図

【図5】本発明の第二実施例を示す正面図

【図6】本発明の第三実施例を示す正面図

【符号の説明】

1 医療用容器

2 容器部

3 排出口部

4 融着端部

5 懸垂口

6 融着端部

7 容器部の外層

8 容器部の内層

9 排出口部の内層

10 排出口部の外層

11,11′ 薬液注入口

13 挟持体

12, 125, 126 接着部

14 変曲点

21, 22, 621, 622, 623 室

33 排出口部

39 排出口部の内層

40 排出口部の外層

4 1 突起部

A 接着部を剥離する方向

