Raspberry Pl (Conhecendo programando)

Direitos

Compartilhar – copiar e redistribuir o material em qualquer suporte ou formato

Adaptar – remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.

Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas.

Se você remixar, transformar, ou criar a partir do material, tem de distribuir as suas contribuições sob a mesma licença que o original.

Licença: http://creativecommons.org/licenses/by-sa/3.0/br/

Quem sou...

Apaixonado por tecnologia e sobrevivente Linux, alguns anos de vivência com embarcados e Linux, aproximadamente 10 anos dedicado a programação que varia entre (C, Python, Qt e muito shell script).

Interesses atuais: RTOS, Kernel Development, IoT, PDI e Android.

Nas horas vagas o hobbie é pedalar!

Mais em:

http://www.embarcados.com.br/author/cleitonrbuenogmail-com/

https://twitter.com/cleitonrbueno

http://br.linkedin.com/in/cleitonbueno

http://www.cleitonbueno.com

Um computador de bolso que pode ser conectado a uma TV ou monitor via HDMI ou S-Video, com conexão para teclado/mouse, além de porta USB e ethernet.

Processador ARM de 700MHz (default sem overclocking), 512MB RAM, 1 porta ethernet, 2 portas USB, slot SD/MMC, audio output Jack 3.5mm, video output Composto (PAL e NTSC) ou HDMI, DSI Display LCD e CSI Connector Camera.

Tudo isso em uma única placa do tamanho de um cartão de credito!

Ficou famosa em meados de 2012 onde ganhou mercado, a mantenedora é a Raspberry Pi Foundation..

Raspberry PI A

Raspberry PI A+

Raspberry PI B

Raspberry PI B+

Raspberry PI Computer Module

Raspberry PI 2 B

Raspberry Pl A

Compute Module

Raspberry Pl 2 B (2015)

Raspberry Pl B (2012)

Raspberry Pl A+ (2014)

Raspberry PI B+ (2014)

Raspberry PI 2 B é um quad-core 900MHz com 1GB RAM, e o SoC é um Broadcom BCM2836 (ARM Cortex-A7 Quad-Core), nas versões Raspberry PI A/A+ e B/B+ é um SoC Broadcom BCM2835 com um ARM11 (ARM1176JZ(F)-S) e nas versões A/A+ com 256MB de RAM e B/B+ com 512MB de RAM.

A que iremos utilizar é a Raspberry PI B, um SoC Broadcom BCM2835 (CPU + GPU) de apenas 1 nucleo (single-core).

A GPU é Broadcom Videocore IV, OpenGL ES2.0, HDMI 1080p, gráfico similar ao Xbox (2001)

Aplicações

- Automação Residencial
- Robotica
- Media Center
- Emulação de Games
- Kiosk
- Roteador
- Home Server
- PABX (VoIP)
- Torrent Box
- Mail Notifier

ARM1176JZF-S

ARM família ARM11 e arquitetura armv6

1238 DMIPS / 0.105 mW/MHz

DSP Extension: Instrução de

Audio/Video decode

Jazelle DBX: [Direct Bytecode

eXecution] acelera execução de

bytes-codes de aplicações Java em

nivel hardware

TrustZone: Nivel de segurança user-space e kernel-space em areas de acesso para a aplicação, torna-se 2 cores virtuais.

Revision 2

Conectando e interagindo com...

Acessórios

O que é necessário para funcionar nossa Raspberry PI B e o que são acessórios interessantes possuir:

- SD Card > 4G e de preferência Classe 10
- Fonte de Alimentação 5V (minimo de 1A)
- Adaptador HDMI-DVI
- Case para a placa (proteção)
- Cabo USB Serial TTY 3.3V

Onde comprar

Placa/Acessórios

www.lojamundi.com.br

www.filipeflop.com.br

www.sparkfun.com

www.mouser.com

www.farnell.com

www.arrow.com

Programação

Linguagens de Programação e API

```
• C
   WiringPl
                (http://wiringpi.com)
   SysFS
                (Sys FileSystem, implementado a partir do kernel 2.6...)

    Java

   Pi4J
                (http://pi4j.com)
   SysFS
                (...possui informações de dispositivos e barramentos...)

    Perl

   HiPi Perl
                (http://raspberry.znix.com)
    SysFS
                (...o sistema obtem e seta informação...)
• Python
                (https://garoa.net.br/wiki/Pingo)
   Pingo
                (https://pypi.python.org/pypi/RPi.GPIO)
   Rpi.GPIO
```

(https://pypi.python.org/pypi/RPIO) SysFS (...você pode interagir com o GPIO!)

RPIO

Linguagens de Programação e API

C

WiringPl (http://wiringpi.com)

SysFS (Sys FileSystem, implementado a partir do kernel 2.6...)

• Java

Pi4J (http://pi4j.com)

SysFS (...possui informações de dispositivos e barramentos...)

(Fala do mmap()!)

Perl

HiPi Perl (http://raspberry.znix.com)

SysFS (...o sistema obtem e seta informação...

• Python

Pingo (https://garoa.net.br/wiki/Pingo)

Rpi.GPIO (https://pypi.python.org/pypi/RPi.GPIO

RPIO (https://pypi.python.org/pypi/RPIO)

SysFS (...você pode interagir com o GPIO!)

GPIO + Programação

Linux

Distribuições Oficiais

RASPIAN (02.2015)

Baseado no Debian [Kernel 3.18]

NOOBS (02.2015)

Baseado no Raspbian

PIDORA

Baseado no Fedora

OPENELEC

Open Embedded Linux Entertainment Centre

OSMC

Open Source Media Centre

Customizando Distribuição

Yocto Project 1.7 (Dizzy)

Constroi uma distribuição Linux completa com bootloader + kernel + rootfs para uma Raspberry PI, já possui a camada meta-raspberrypi

BuildRoot (> 2014.05)

Constroi uma distribuição Linux completa com bootloader + kernel + rootfs para uma Raspberry PI, já possui o .config para a placa (raspberrypi_defconfig)

Qual caminho seguir...

Usar Distribuição Linux Oficial ou Customizar "construir" uma Distribuição ?

Qual caminho seguir...

Usar Distribuição Linux Oficial ou Customizar "construir" uma Distribuição ?

Qual caminho seguir...

Usar Distribuição Linux Oficial ou Customizar "construir" uma Distribuição ?

Usaremos o Raspbian!

Qual caminho seguir...

RASPBIAN

Debian Wheezy

Release date: 2015-02-16

Default login: pi / raspberry

Kernel version: 3.18

Release: http://downloads.raspberrypi.org/raspbian/release_notes.txt

Raspbian

Baixando

bueno@vm3 ~/mirror \$ wget
http://downloads.raspberrypi.org/raspbian_latest

Descompactando

bueno@vm3 ~/mirror \$ unzip 2015-02-16-raspbian-wheezy.img.zip

Archive: 2015-02-16-raspbian-wheezy.img.zip

inflating: 2015-02-16-raspbian-wheezy.img

Gravando

bueno@vm3 ~/mirror \$ sudo dd if=2015-02-16-raspbian-wheezy.img

of=/dev/sdb bs=1M

3125+0 records in

3125+0 records out

3276800000 bytes (3,3 GB) copied, 144,099 s, 22,7 MB/s

* Confirme qual o caminho do device SD /dev/sd*, no meu caso é /dev/sdb

Instalando o Raspbian

Coffee Break!?!

Raspbian

Primeiro boot

Configuração com a tela do raspi-config

Acessos a Placa

SSH

bueno@vm3 ~ \$ ssh pi@192.168.0.45

SERIAL

bueno@vm3 ~ \$ sudo picocom -b 115200 /dev/ttyUSB0

bueno@vm3 ~ \$ sudo minicom -b 115200 -D /dev/ttyUSB0

Práticas

Hello World do Hardware

Repositório Git

https://github.com/cleitonbueno/FLISOL2015

Interagindo com

LED

BOTAO

POTENCIOMETRO

OUTPUT

→ INPUT

→ GPIO17 PINO[11]

→ GPIO18 PINO[12]

→ INPUT → GPIO10 PINO[19]

Hello World do Hardware

Repositório Git

https://github.com/cleitonbueno/FLISOL2015

Aplicações exemplo GPIO:

C

Java

Perl

Python

Shell Script

Hello World do Hardware

Repositório Git

https://github.com/cleitonbueno/FLISOL2015

Aplicações exemplo GPIO:

C

pi@raspberrypi ~/flisol \$ cd Praticas/C pi@raspberrypi ~/flisol/Praticas/C \$

Hello World do Hardware

Repositório Git

https://github.com/cleitonbueno/FLISOL2015

Aplicações exemplo GPIO:

Java (Abra o arquivo instalacao_pi4j.txt)
pi@raspberrypi ~/flisol \$ cd Praticas/Java
pi@raspberrypi ~/flisol/Praticas/Java \$

Hello World do Hardware

Repositório Git

https://github.com/cleitonbueno/FLISOL2015

Aplicações exemplo GPIO:

Perl

pi@raspberrypi ~/flisol \$ cd Praticas/Perl

pi@raspberrypi ~/flisol/Praticas/Perl \$

Hello World do Hardware

Repositório Git

https://github.com/cleitonbueno/FLISOL2015

Aplicações exemplo GPIO:

Python

pi@raspberrypi ~/flisol \$ cd Praticas/Python

pi@raspberrypi ~/flisol/Praticas/Python \$

Hello World do Hardware

Repositório Git

https://github.com/cleitonbueno/FLISOL2015

Aplicações exemplo GPIO:

Shell Script

pi@raspberrypi ~/flisol \$ cd Praticas/Shell

pi@raspberrypi ~/flisol/Praticas/Shell \$

Hello World do Hardware

OBS: Cuidado nivel de tensão da Rapsberry PI é 3.3V, o Arduino é 5V!

WebIOPI

Encontra-se no repositório do git já informado.

Baixar, descompactar e instalar

Abra o arquivo instalacao_webiopi.txt

pi@raspberrypi ~/flisol \$ sudo /etc/init.d/webiopi start

Acesso via Web

http://192.168.0.45:8000

Usuario: webiopi

Senha: raspberry

Troque o IP 192.168.0.45 para o IP da sua Raspberry PI

Acesso Web

CGI, FastCGI ou WSGI?

Java, Python, Perl, PHP ou C?

Apache, Lighttpd, Boa, Nginx, Tomcat, JWS (Tiny Java Web Server)?

Flash, Django, Bottle?

CMS? Wordpress, Joomla, Drupal?

Ubos?

Banco de dados

Precisa mesmo de um banco de dados? Lembre-se estamos utilizando Memoria Flash!

- SQLite
- MariaDB
- HSQLDB
- MySQL
- PostgreSQL

Aplicações Graficas (GUI)

Qt5 (FrameBuffer)

Wayland

Vai além da RaspPl

Beaglebone Black

UDOO Solo

UDOO Dual

UDOO Quad

i.MX53 Quick Start Board

CubieTruck

CubieBoard

BananaPl

Intel Galileo Gen2

Intel Edison

Humming Board

WE-IO

Atmel SAMA5D4 Xplained Ultra

Odroid-XU3

Vai além da RaspPl

Beaglebone Black

UDOO Solo

UDOO Dual

UDOO Quad

i.MX53 Quick Start Board

CubieTruck

CubieBoard

BananaPl

Intel Galileo Gen2

Intel Edison

Humming Board

WE-IO

Atmel SAMA5D4 Xplained Ultra

Odroid-XU3

Brainstorming

Discussão e ideias

Dúvidas

Referências

http://ubos.net/docs/users/index.html

```
http://pt.wikipedia.org/wiki/Raspberry_Pi
http://www.embarcados.com.br/raspberry-pi-e-o-linux/
http://www.embarcados.com.br/raspberry-pi-modelo-b-plus/
http://www.cleitonbueno/tag/raspberry-pi
http://www.arm.com/products/processors/classic/arm11/arm1176
.php
http://genode.org/documentation/articles/trustzone
http://www.raspberrypi.org/downloads/
http://raspberry.znix.com/
https://github.com/cleitonbueno/FLISOL2015
https://code.google.com/p/webiopi/
```


Links

https://www.raspberrypi.org/documentation/installation/installing

-images/README.md

http://developer.lge.com/webOSTV/

http://en.wikipedia.org/wiki/ARM_architecture#Thumb-2

http://en.wikipedia.org/wiki/ARM_architecture#Thumb

http://www.arm.com/products/processors/instruction-set-architectu

res/index.php

http://pi4j.com/

http://wiringpi.com/

https://garoa.net.br/wiki/Pingo

https://pypi.python.org/pypi/RPi.GPIO

https://pypi.python.org/pypi/RPIO

Obrigado a todos pela presença!

Contatos

E-mail: cleitonrbueno@gmail.com

Site: www.cleitonbueno.com

www.embarcados.com.br