Chapter 37 Sommes et projecteurs

37.1 Somme de deux sous-espaces vectoriels

37.1.1 Somme de deux sous-espaces vectoriels

Exercice 37.1

Soient E un espace vectoriel et A, B, C trois sous-espace vectoriel tels que

$$A \cap B = A \cap C \tag{1}$$

$$A + B = A + C \tag{2}$$

$$B \subset C$$
. (3)

Montrer que B = C.

Exercice 37.2

Soient E un \mathbb{K} -espace vectoriel et $\mathbb{V}(E)$ l'ensemble des sous-espaces vectoriels de E. On ordonne $\mathbb{V}(E)$ par l'inclusion.

- 1. Vérifier que V(E) a un plus petit élément et un plus grand élément que l'on précisera.
- **2.** Soit $(A, B) \in V(E)^2$. Montrer que $\{A, B\}$ admet, dans (V(E), C), une borne inférieure et une borne supérieure, qu'on déterminera.

37.1.2 Sommes directes

37.1.3 Sous-espaces supplémentaires

Exercice 37.3

Soient E un \mathbb{K} -espace vectoriel, A, B deux sous-espaces vectoriels de E, C un supplémentaire de $A \cap B$ dans B.

Montrer $A + B = A \oplus C$.

Exercice 37.4

Soit $u, w \in \mathbb{R}^2$ les vecteurs

$$u = \begin{pmatrix} -1\\2 \end{pmatrix}, \quad w = \begin{pmatrix} -3\\5 \end{pmatrix}.$$

En utilisant la définition de somme directe, montrer que \mathbb{R}^2 = Vect { u } \oplus Vect { w }.

Exercice 37.6

Vérifier si les espaces suivants sont supplémentaires dans $E = \mathbb{R}^3$

$$F = \{ (x, y, z) \in \mathbb{R}^3 \mid 3x - y + z = 0 \}$$
 et $G = \{ (t, -t, t) \mid t \in \mathbb{R} \}.$

Dans l'espace vectoriel $E = \mathbb{R}_3[X]$, on considère les sous-espaces vectoriels

$$F_1 = \{ P \in E \mid P(0) = P(1) = 0 \}$$
 $F_2 = \mathbb{R}_1[X]$

Montrer que $E = F_1 \oplus F_2$.

Exercice 37.12

Soient $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

- **1.** Montrer que $V = \{ f \in E \mid f(2) = f(3) \}$ est un sous-espace vectoriel de E.
- **2.** Montrer que $W = \text{Vect} \{ \text{Id}_{\mathbb{R}} \}$ est un supplémentaire de V dans E.

Exercice 37.15

Dans l'espace $\mathcal{F}(\mathbb{R}, \mathbb{R})$, on note \mathcal{P} l'ensemble des fonctions paires et \mathcal{I} l'ensemble des fonctions impaires.

- **1.** Montrer que \mathcal{P} et \mathcal{I} sont deux sous-espaces vectoriels de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- **2.** Montrer que l'intersection $\mathcal{P} \cap \mathcal{I}$ est réduite à la fonction nulle.
- 3. Montrer que toute fonction peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.
- **4.** En déduire $\mathcal{P} \oplus \mathcal{I} = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 37.16

On note $E = C^1([0, 1], \mathbb{R})$ le \mathbb{R} -espace vectoriel des applications de classe C^1 sur [0, 1] et à valeurs réelles,

$$F = \left\{ f \in E \mid \int_0^1 f = 0, f(0) = 0, f'(1) = 0 \right\}$$

et $G = \left\{ x \mapsto a + bx + cx^2 \mid (a, b, c) \in \mathbb{R}^3 \right\}.$

- 1. Montrer que F et G sont deux sous-espaces vectoriels de E.
- **2.** Montrer que $E = F \oplus G$.

Exercice 37.17

Soit E un \mathbb{K} -espace vectoriel, v_0 un vecteur de E, V un sous-espace vectoriel de E. On appelle sous-espace affine passant par v_0 de **direction** V (ou dirigé par V) l'ensemble de vecteurs de E tels que $v-v_0$ appartienne à V.

Autrement dit, V est un sous-espace affine de E si, et seulement s'il existe un vecteur v_0 appartenant à E tel que

$$\mathcal{V} = \left\{ \; w \in E \; \middle| \; \exists v \in V, w = v_0 + v \; \right\}.$$

On le note $\mathcal{V} = v_0 + V$.

1. Dans $E = \mathbb{R}^3$, on considère $\mathcal{P} = \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1 \}$. Montrer que \mathcal{P} est un sous-espace affine de E.

2. On considère l'équation différentielle d'inconnue $y: I \to \mathbb{R}$ où $I =]0, +\infty[$.

$$(e^{x} - 1)y' + (e^{x} + 1)y = 3 + 2e^{x}.$$
 (E)

- (a) Résoudre (E).
- (b) Montrer que l'ensemble S des solutions est un sous-espace affine de $C(I, \mathbb{R})$.

Soit V et W deux sous-espaces vectoriels de E, v_0 et w_0 deux vecteurs de E. On considère les deux sous-espaces affines $\mathcal{V} = v_0 + V$ et $\mathcal{W} = w_0 + W$.

- **3.** Prouver que si \mathcal{V} est inclus dans \mathcal{W} , alors V est inclus dans W.
- **4.** En déduire qu'un sous-espace affine de *E* n'admet qu'une seule direction.
- **5.** Prouver que si v_1 est un vecteur de \mathcal{V} , alors $\mathcal{V} = v_1 + V$.
- **6.** Démontrer que $\mathcal{V}_1 \cap \mathcal{V}_2$ n'est pas vide si, et seulement si $w_0 v_0$ appartient à V + W. Prouver que dans ce cas $\mathcal{V} \cap \mathcal{W}$ est un sous-espace affine dirigé par $V \cap W$.

37.2 Projecteurs

37.2.1 Projecteurs associés à deux sous-espaces supplémentaires

Exemples

Exercice 37.18

Soit p un projecteur de E.

Montrer que si le scalaire λ est distinct de 0 et 1, alors $p - \lambda \operatorname{Id}_E$ est un automorphisme, et expliciter son inverse.

Exercice 37.20

Soit \mathcal{P} le sous-espace vectoriel de \mathbb{R}^3 défini par $\mathcal{P} = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$ et $\mathcal{D} = \text{Vect } (1, 2, 0)$.

- **1.** Montrer que $\mathbb{R}^3 = \mathcal{D} \oplus \mathcal{P}$.
- **2.** Donner l'expression de la projection p sur \mathcal{P} parallèlement \mathcal{D} .

Exercice 37.22

Dans \mathbb{R}^4 , on considère les sous-espaces vectoriels

$$F = \left\{ (x, y, z, t) \in \mathbb{R}^4 \mid x + y - z + 2t = 0 \right\}$$
 $G = \text{Vect}(e) \text{ où } e = (1, 1, 1, 1).$

- Montrer que F et G sont supplémentaires.
- Soit p la projection sur F parallèlement à G, déterminer p(u) pour tout u de \mathbb{R}^4 .

Exercice 37.23

Soit

$$F = \{ P \in \mathbb{R}[X] \mid P(1) = 0 \}$$
 et $G = \text{Vect } \{ X \}.$

- **1.** Montrer que F et G sont supplémentaires dans $\mathbb{R}_2[X]$.
- **2.** Donner l'image de $X^2 3X + 1$ par le projecteur p sur F parallèlement à G.
- 3. Pour $i \in \mathbb{N}^*$, donner l'image de $X^i 1$ par le projecteur p sur F parallèlement à G.

37.2.2 Les projecteurs sont les endomorphismes idempotents

Exercice 37.25

Soient p et q deux projecteurs de E.

- 1. Montrer que p + q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Dans ce cas, montrer

$$\ker(p+q) = \ker p \cap \ker q$$
 et $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$.

Exercice 37.29

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$ vérifiant $(f - a \operatorname{Id})(f - b \operatorname{Id}) = 0$ où a et b sont deux éléments distincts de \mathbb{K} .

- 1. Établir l'existence de λ et μ non nuls tels que $\lambda(f-a\operatorname{Id})$ et $\mu(f-b\operatorname{Id})$ soient des projecteurs.
- **2.** Montrer que Im(f b Id) = ker(f a Id).
- **3.** Calculer f^n pour tout $n \in \mathbb{N}$.
- **4.** Si $ab \neq 0$, montrer que $f \in GL(E)$, et calculer f^n pour $n \in \mathbb{Z}$.

Exercice 37.30

Soit dans $E = \mathbb{R}^3$ un vecteur $v = (v_1, v_2, v_3)$ tel que $v_1 + v_2 + v_3 = 1$.

Montrer que l'application φ qui à un vecteur $x=(x_1,x_2,x_3)$ associe le vecteur

$$x - (x_1 + x_2 + x_3)v$$

est un projecteur.

Préciser son image et son noyau.

Exercice 37.31

Soit

$$p: \quad \mathbb{R}^2 \quad \rightarrow \quad \mathbb{R}^2 \\ (x,y) \quad \mapsto \quad \left(\frac{4x+2y}{5}, \frac{2x+y}{5}\right) \ .$$

- **1.** Montrer que p est un projecteur de \mathbb{R}^2 .
- 2. Déterminer les éléments caractéristiques de p.
- **3.** Déterminer l'expression de la symétrie par rapport à Im p suivant la direction ker p.

37.3 Symétries

37.3.1 Symétries associés à deux sous-espaces supplémentaires

Exercice 37.34

Dans l'espace vectoriel \mathbb{R}^3 , on considère les sous-espaces vectoriels

$$E_1 = \text{Vect} \{ (1,0,0), (1,1,1) \}$$
 et $E_2 = \text{Vect} \{ (1,2,0) \}.$

Déterminer l'expression analytique de la symétrie par rapport à E_1 parallèlement à E_2 .

Soit

$$F = \text{Vect} \{ X^2 + 2, 1 \}$$
 et $G = \text{Vect} \{ (X + 1)^2 \}$.

- **1.** Montrer que F et G sont supplémentaires dans $\mathbb{R}_2[X]$.
- **2.** Donner l'image de $A(X) = 2X^2 + 3X + 1$ par le projecteur p sur F parallèlement à G.
- 3. Donner l'image de $A(X) = 2X^2 + 3X + 1$ par la symétrie s par rapport à F dans la direction G.

37.3.2 Les symétries sont les endomorphismes involutifs

Exercice 37.38

Soit
$$n \ge 2$$
 et soit $s: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$
 $P \mapsto P - P''(0)X^2 - 2P(0)$.

- **1.** Montrer que s est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Montrer que s est une symétrie dont on donnera les éléments caractéristiques.

37.4 Sommes et applications linéaires

Indication: On pourra établir que

$$\operatorname{Im} \varphi = \left\{ f \in E \middle| \int_0^{2\pi} f(t) \, \mathrm{d}t = 0 \right\}.$$

Exercice 37.41

Soit E, F, G trois espaces vectoriels sur un corps \mathbb{K} , $u \in \mathbf{L}(E, F)$ et $v \in \mathbf{L}(F, G)$.

- **1.** Montrer que $\text{Im}(v \circ u) \subset \text{Im}(v)$ et que $\text{ker}(u) \subset \text{ker}(v \circ u)$.
- **2.** Montrer que $v \circ u = 0 \iff \operatorname{Im} u \subset \ker v$.
- **3.** Montrer que $\ker(v \circ u) = \ker u \iff \ker v \cap \operatorname{Im} u = \{0\}.$
- **4.** Montrer que $\text{Im}(v \circ u) = \text{Im } v \iff \ker v + \text{Im } u = F$.

Exercice 37.43

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E. On pose $f^2 = f \circ f$.

- **1.** Montrer que Im $f \cap \ker f = f(\ker f^2)$.
- **2.** Montrer que ker $f = \ker f^2$ si et seulement si Im $f \cap \ker f = \{0\}$.
- **3.** Montrer que Im $f = \text{Im } f^2$ si et seulement si Im f + ker f = E.
- **4.** En déduire une condition nécessaire et suffisante pour que le noyau et l'image de f soient des sousespaces vectoriels supplémentaires de E.

Soient E un espace vectoriel de dimension n sur \mathbb{K} , f un endomorphisme de E, P et Q deux éléments de $\mathbb{K}[X]$.

Si $P = a_0 + a_1 X + \cdots + a_n X^n$, on note P(f) l'endomorphisme

$$a_0 \operatorname{Id}_E + a_1 f + \dots + a_n f^n$$
.

- **1.** Montrer que $(P \cdot Q)(f) = P(f) \circ Q(f)$.
- **2.** Montrer que si P divise Q, alors

$$\ker P(f) \subset \ker Q(f)$$
 et $\operatorname{Im} Q(f) \subset \operatorname{Im} P(f)$.

3. Montrer que si D est le PGCD de P et Q, alors

$$\ker D(f) = \ker P(f) \cap \ker P(f)$$
 et $\operatorname{Im} D(f) = \operatorname{Im} P(f) + \operatorname{Im} Q(f)$.

Exercice 37.48

Soient E un espace vectoriel sur un corps \mathbb{K} et $u \in \mathbf{L}(E)$.

1. Montrer que $(\ker u^k)_{k\in\mathbb{N}}$ est une suite croissante et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ est une suite décroissante, c'est-à-dire

$$\forall k \in \mathbb{N}, \ker u^k \subset \ker u^{k+1} \text{ et } \operatorname{Im} u^{k+1} \subset \operatorname{Im} u^k.$$

2. On suppose qu'il existe un entier naturel d tel que ker $u^d = \ker u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k > d \implies \ker u^{k+1} = \ker u^k$$
.

3. Démontrer que, p étant un entier strictement positif, on a

$$\ker u^p = \ker u^{p+1} \iff \ker u^p \cap \operatorname{Im} u^p = \left\{ \ 0_E \ \right\}.$$

4. On suppose qu'il existe un entier naturel d tel que $\operatorname{Im} u^d = \operatorname{Im} u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \operatorname{Im} u^{k+1} = \operatorname{Im} u^k.$$

5. Démontrer que, p étant un entier strictement positif, on a

$$\operatorname{Im} u^p = \operatorname{Im} u^{p+1} \iff E = \ker u^p + \operatorname{Im} u^p = \{ 0_E \}.$$

6. On suppose les deux suites $(\ker u^k)_{k\in\mathbb{N}}$ et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ stationnaires. Soit p le plus petit entier strictement positif tel que $\ker u^p = \ker u^{p+1}$. Soit q le plus petit entier strictement positif tel que $\operatorname{Im} u^q = \operatorname{Im} u^{q+1}$.

Montrer que dans ces condition l'on a p = q et

$$E = \ker u^p \oplus \operatorname{Im} u^p$$
.

37.4.1 Caractérisation universelle

37.4.2 Forme géométrique du théorème du rang

Exercice 37.50

Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on considère le sous-espace vectoriel

$$F = \{ f \in E \mid f(1) = f(2) = 0 \}.$$

1. Soit

$$\varphi: E \to \mathbb{R}^2$$

$$f \mapsto (f(1), f(2))$$

Montrer que $\varphi \in \mathbf{L}(E, \mathbb{R}^2)$. Comment interpréter F? φ est-elle surjective?

2. Trouver un sous-espace vectoriel G de E sur lequel φ induit un isomorphisme entre G et \mathbb{R}^2 .

Exercice 37.51 X MP

Soit E un espace vectoriel.

- **1.** Soit u un endomorphisme de E tel que ker $u = \operatorname{Im} u$ et S un supplémentaire de $\operatorname{Im} u : E = S \oplus \operatorname{Im} u$.
 - (a) Montrer que, pour tout $x \in E$, il existe un unique couple $(y, z) \in S^2$ tel que x = y + u(z). On pose z = v(x) et y = w(x).
 - (b) Montrer que v est linéaire et calculer $u \circ v + v \circ u$.
 - (c) Montrer que w est linéaire et calculer $u \circ w + w \circ u$.
- 2. Soit $u \in \mathbf{L}(E)$ tel que $u^2 = 0$. On suppose qu'il existe v dans $\mathbf{L}(E)$ tel que $u \circ v + v \circ u = \mathrm{Id}_E$. A-t-on nécessairement ker $u = \mathrm{Im}\,u$?
- **3.** Soit $u \in \mathbf{L}(E)$ tel que $u^2 = 0$ et $u \neq 0$. On suppose qu'il existe $w \in \mathbf{L}(E)$ tel que $u \circ w + w \circ u = u$. A-t-on nécessairement ker $u = \operatorname{Im} u$?

Exercice 37.52

Soient E un espace vectoriel sur un corps \mathbb{K} et F, G deux sous-espace vectoriel de E. On note

$$\mathcal{H} = \{ f \in \mathbf{L}(E) \mid \ker f = F \text{ et Im } f = G \};$$

et on suppose $E = F \oplus G$.

- **1.** Montrer que $f \in \mathcal{H}$ induit sur G un automorphisme.
- **2.** Montrer que (\mathcal{H}, \circ) est un groupe.

Exercice 37.53

Soient E un K-espace vectoriel et $f \in \mathbf{L}(E)$. On suppose que

$$f^2 - 5f + 6 \operatorname{Id}_E = 0$$
 (ici $f^2 = f \circ f$).

Montrer

$$\ker (f - 2\operatorname{Id}_E) \oplus \ker (f - 3\operatorname{Id}_E) = E.$$

Soit E un espace vectoriel sur \mathbb{R} et $f \in \mathbf{L}(E)$ tel que $f^3 = \mathrm{Id}_E$.

- 1. Montrer que $\operatorname{Im} (f \operatorname{Id}_E) \subset \ker (f^2 + f + \operatorname{Id}_E)$.
- **2.** Montrer que $E = \ker (f \operatorname{Id}_E) \oplus \operatorname{Im} (f \operatorname{Id}_E)$.
- 3. En déduire que $E=\ker\left(f-\mathrm{Id}_E\right)\oplus\ker\left(f^2+f+\mathrm{Id}_E\right)$.

Affinités vectorielles