Birla Institute of Technology & Science, Pilani K. K. Birla Goa Campus First Semester 2019-2020 Course Handout

Course Details

Course Title : Discrete Structures for Computer Science

Course Number : CS F222

Instructor : Anup Basil Mathew

Objectives

• To learn to read and write proofs formally.

- To learn basic objects and proof strategies in finite/discrete math.
- To learn ways of counting objects and using counting to prove results.
- To gain familiarity with some objects used in computer science.

Reading Material

Textbook

 (T_1) "Discrete Mathematics and Its Applications" by *Kenneth H.Rosen*, Seventh Edition.

References

- (R_1) "Mathematical Logic" by *Ian Chiswell and Wilfrid Hodges* (Only chapter 1).
- (R₂) "Naive Set Theory" by Paul Halmos
- (R₃) "Discrete Mathematics" by Norman L.Biggs
- (R₄) "Mathematics for Computer Science" by Eric Lehman and Frank Thomson Leighton https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

Course Plan

Modules

Module No	Торіс	Sub-Topics		
I	Basic Math	Stating and proving mathematical statements; Constructing sets, relations and functions; De- termining cardinality of a set; Using the induc- tion principle and defining recursive structures; Partial-Orders, Equivalence relations.		
II	Combinatorics	Basic counting and combinatorial identities; Pi- geonhole priniple and Inclusion-Exclusion prin- ciple; Writing and solving recurrence relations; Asymptotics of functions.		
III	Arithmetic and Graph	Modular Arithmetic; Primes and GCD/LCM; Euclids algorithm; Graphs and Trees; Connectivity and Isomorphism; Properties of Euler Graphs, Hamiltonian Graph, Planar Graph etc		
IV	Abstract Algebra	Groups and Permutations; Subgroups, Homomorphisms and Lagranges theorem; Group actions; Rings and Fields		

Lecture Schedule

Module No	Week	Topics		
I	1	Logic and Proofs		
	2	Sets, Relation and Functions		
	3	Natural Numbers, Induction and Recursion		
	4	Partial-Orders and Equivalence Relations.		
II	5	Basic Counting and Combinatorial Identities		
	6	Pigeonhole and Inclusion-Exclusion principle		
	7	Writing and Solving recurrence relations		
	8	Asymptotic analysis		
III	9	Modular Arithmetic, GCD/LCM and Euclids algorithm		
	11	Graph and Trees: Basics		
	12	Euler, Hamiltonian, Planar Graphs		
IV	13	Groups, Permutations and Group Actions		
	14	Homomorphisms, Subgroups and Lagranges Theorem		
	15	Ring and Fields: Basic Properties		

Evaluation Scheme

No	Component	Weightage	Date(s)	Remarks
1	Quiz	30%	Announced in class/moodle	Open Book
2	Mid-Semester Exam	30%	As per time-table	Closed Book
3	Comprehensive Exam	40%	As per time-table	Closed Book

Chamber Consultation

By appointment only. Please contact Ankush Soni (email-id on Moodle) to make an appointment.

Notices

Most announcements will be made on Moodle, but some may be made only in class. In case a student misses a lecture, it is his/her responsibility to find the lost announcements.

Make-up Policy

Make-up exams will be allowed only for genuine cases, at the discretion of the instructor.

Instructor CS F222