القدرات المنتظرة

- *- التعرف على تقايس وتشابه الأشكال استعمال الإزاحة و التحاكي والتماثل.
 - *- استعمال الإزاحة و التحاكي و التماثل في حل مسائل هندسية.

I – التماثل المحوري – التماثل المركزي – الإزاحة

1-أنشطة:

 $egin{bmatrix} [AD] & [AB] \end{bmatrix}$ ليكن ABCD معين مركزه O ، و I و

- 1- أنشئ الشكل
- O حدد مماثلة كل من A و B و O بالنسبة للنقطة O على التوالي استنتج مماثل -2
- النسبة المستقيم (AC) على التوالي استنتج مماثل و B و B بالنسبة المستقيم (AC) على التوالي استنتج مماثل الخرص (AC)
 - \overrightarrow{BC} حدد صورة A بالإزاحة ذات المتجهة \overrightarrow{IJ} حدد صورة B بالإزاحة ذات المتجهة \overrightarrow{IJ} حدد صورة BO بالإزاحة ذات المتجهة

- 1- الشكل
- نحدد مماثلة كل من A و B و O بالنسبة لللنقطة O على التوالي و نستنتج مماثل O بالنسبة لـ O
 - * مماثل O بالنسبة لـ O هي نفسها
- C فان C و BD و AC فان C و AC فان A و A مماثلا A و A على التوالي بالنسبة لـ A و A مماثلا A و A بالنسبة لـ A هو المستقيم A
- $^{ ext{`}}$ نحدد مماثلة كل من B و O و I بالنسبة للمستقيم ig(ACig) على التوالي و نستنتج مماثل ig(ACig)
- D هو AC) هو B بما أن ABCD معين فان AC واسط B واسط B و منه مماثل B بالنسبة للمستقيم
 - هي نفسها (AC) د ماثل O بالنسبة للمستقيم $O \in (AC)$ هي نفسها *
 - ig(ACig) التماثل المحوري الذي محوره $S_{(AC)}$ التماثل المحوري الذي
 - $\left(AC
 ight)$ تقرأ M' مماثل M بالنسبة للمستقيم $S_{\left(AC
 ight)}\left(M
 ight)=M'$ تذكير:
 - بما أن $S_{(AC)}(A)=D$ و $S_{(AC)}(B)=D$ فان مماثل $S_{(AC)}(A)=A$ بالنسبة للمستقيم
 - و نعلم أن مماثل منتصف قطعة هو منصف مماثل القطعة
 - $S_{\left(AC
 ight)}ig(Iig)$ و حيث أن I و I منتصفا I و I و I على التوالي فان
 - (AC) بالنسبة لـ (IO) نستنتج مماثل *
 - (JO) لدينا $S_{(AC)}(I)=J$ ومنه مماثل $S_{(AC)}(I)=0$ هو المستقيم $S_{(AC)}(I)=I$
 - $B\dot{C}$ نحدد صورة A بالإزاحة ذات المتجهة $\overline{AD}=\overline{BC}$ بما أن ABCD معين فان
 - $t_{\overline{\mathrm{BC}}}$ و منه صورة A هي النقطة D بالإزاحة ذات المتجهة \overline{BC} نكتب B
 - \overrightarrow{IJ} نحدد صورة B بالإزاحة ذات المتجهة *-

 $\overrightarrow{IJ}=rac{1}{2}\overrightarrow{BD}$ في المثلث ABD لدينا I و J منتصفا ABD في المثلث

 $t_{\overrightarrow{IJ}} \ (B) = O$ وحيث أن $\overrightarrow{BO} = \overrightarrow{IJ}$ فان $\overrightarrow{BO} = \overline{BO} = \overline{BO} = \overline{BO} = \overline{BO}$ وحيث أن O منتصف

 \overrightarrow{IJ} نحدد صورة BO بالإزاحة ذات المتجهة *-

 $t_{\overrightarrow{\Pi}} \ \left(O\right) = D$ إذن $\overrightarrow{OD} = \overrightarrow{IJ}$ أن مما سبق نستنتج

 \overrightarrow{IJ} و حيث أن D = O فان صورة BO هي BO فان صورة BO فان صورة وحيث أن

2- تعاریف و مصطلحات

أ- المماثل المركزي

لتكن I نقطة معلومة و M و ' M نقطتين من المستوى

نقوّل إن النقطة ' $ar{M}$ هُي مِماَثلة النقطة $ar{M}$ بالنسبة للنقطة I اذا و فقط اذا تحقق ما يلي: *

M'=I فان M=I -

 $\begin{bmatrix} MM' \end{bmatrix}$ פוט I טוט $M \neq I$ -

التماثل التي تربط كل نقطة M من المستوى (P) بمماثلتها M بالنسبة للنقطة I تسمى التماثل المركزي الذي مركزه I نرمز له بالرمز S_I

 $S_I:M o M$ ' أو $S_I:M o M$ نقول إن النقطة M أو M بالتماثل المركزي $S_I:M o M$ لذا نقول إن التماثل المركزي $S_I:M o M$ يحول M إلى M لذا نقول إن التماثل المركزي $S_I:M o M$ يحول في المستوى.

ملاحظات:

- $\overrightarrow{IM}' = -\overrightarrow{IM}$ تکافئ $S_I(M) = M'$ *
- S_I نقول إن النقطة I صامدة بالتماثل المركزي $S_I(I) = I$
 - $S_I(M') = M$ تکافئ $S_I(M) = M' *$

ب- المماثل المحوري

Mليكن D مستقيما و M و M نقطتين من المستوى

:نقول إن النقطة M هي مماثلة النقطة M بالنسبة للمستقيم (D) إذا و فقط إذا تحقق ما يلي:

- M'=M فان $M\in (D)$ -
- $\lceil MM' \rceil$ واسط $M \notin (D)$ واسط -
- العلاقة التي تربط كل نقطة M من المستوى (P) بمماثلتها 'M بالنسبة للمستقيم M تسمى التماثل المحوري الذي محوره D نرمز له بالرمز $S_{(D)}$

 $S_{(D)}: M o M$ ' أو $S_{(D)}(M) = M$ ' نقول إن النقطة M صورة M بالتماثل المحوري $S_{(D)}(M) = M$ نقول كذلك إن $S_{(D)}(M) = M$ لذا نقول إن التماثل المحوري $S_{(D)}(M) = M$ تحويل في المستوى.

ملاحظة:

$$\begin{bmatrix} MM' \end{bmatrix}$$
 واسط $S_{(D)}(M) = M'*$

$$S_{(D)}\!\left(N\right)\!=\!N$$
 : $\left(D\right)$ من N نقطة *

 $S_{(D)}$ نقول إن جميع نقط المستقيم D صامدة بالتماثل المحوري

$$S_{(D)}(M') = M$$
 تكافئ $S_{(D)}(M) = M' *$

ب- الإزاحة

 $ec{u}$ ليكن $ec{u}$ متجهة و M و 'M نقطتين من المستوى

 $\overrightarrow{MM'} = \overrightarrow{u}$ اذا و فقط إذا \overrightarrow{u} بالإزاحة ذات المتجهة \overrightarrow{u} إذا و فقط إذا M' صورة *

العلاقة التي تربط كل نقطة M من المستوى (P) بصورتها M بالإزاحة ذا المتجهة تسمى الإزاحة *

 $t_{ec{u}}$ ذات المتجهة $ec{u}$ نرمز لها

 $t_{\vec{u}}:M \to M$ ' أو $t_{\vec{u}}(M)=M$ ' نكتب

نقول كذلك إن $t_{ec{u}}$ يحول M إلى ' M لذا نقول إن الإزاحة $t_{ec{u}}$ تحويل في المستوى.

ملاحظة:

$$\overrightarrow{MM}' = \overrightarrow{u}$$
 یکافئ $t_{\overrightarrow{u}}(M) = M'^*$

 $t_{\overline{O}}(M) = M$ لكل M من المستوى $t_{\overline{AB}}(A) = B$ *

$$\overrightarrow{MM} = \vec{0}$$
 تکافئ $t_{\vec{u}}(M) = M$ *

 $t_{-\vec{u}}\left(M'\right)=M$ یکافئ $t_{\vec{u}}\left(M\right)=M'*$

2- الخاصية المميزة للإزاحة

$$t_{ec{u}}\left(M\right)=M$$
 ' ; $t_{ec{u}}\left(N\right)=N$ ' حيث ' $t_{ec{u}}\left(N\right)=M$ و ' N و ' N و ' N انكن ' N المستوى ' N المست

$$\overrightarrow{MN} = \overrightarrow{M'}$$
 ومنه $\overrightarrow{MM'} = \overrightarrow{NN'}$ ومنه $\overrightarrow{MM'} = \overrightarrow{NN'}$ إذن $\overrightarrow{NN'} = \overrightarrow{u}$; $\overrightarrow{NN'} = \overrightarrow{u}$

$$\overrightarrow{MN} = \overrightarrow{M'N'}$$
 فان $t_{\vec{u}}(N) = N'$ و $t_{\vec{u}}(M) = M'$ فان $t_{\vec{u}}(M) = M'$

 $\overrightarrow{MN} = \overrightarrow{M'N'}$ - ليكن T التحويل حيث لكل نقطتين M و N من المستوى حيث T و *

$$T(M) = M'$$
; $T(N) = N'$

T نحدد طبیعة

لتكن A نقطة معلومة و M نقطة ما من المستوى

$$T(A) = A'$$
 لنعتبر

$$\overrightarrow{MA} = \overrightarrow{M'A'}$$
 تكافئ $T(M) = M'$

$$\overrightarrow{MM}' = \overrightarrow{AA}'$$
 تكافئ

$$t_{\overrightarrow{AA'}}(M) = M'$$
 تكافئ

 $T = t_{\overrightarrow{AA}}$, إذن

الخاصية المميزة

ليكن T تحويل في المستوى

یکون T کیوں وی انتشکوت یکون M و M و M من المستوی إلی نقطتین M و M و N حیث \overline{MN} و \overline{MN} و \overline{MN} المستوی المستوی المی نقطتین \overline{MN} و \overline{MN} المستوی المستوی المستوی المستوی المستوی \overline{MN} المستوی ال

3- الاستقامية و التحويلات

ىشاط

D' ; C' ; B' ; A' نعتبر'. $\overrightarrow{CD}=\alpha \overrightarrow{AB}$ نقط من المستوى حيث D ; C ; B ; A نعتبر T نقط من المستوى حيث صورها على التوالي بتحويل

$$T=S_{\mathbf{O}}$$
 و $T=t_{\vec{n}}$ في الحالتين أن $T=S_{\mathbf{O}}$ في الحالتين أن $T=S_{\mathbf{O}}$

$$T = t_{\vec{n}}$$
 الحالة -*

$$\overrightarrow{AB} = \overrightarrow{A'B'}$$
 ومنه $T(A) = A'$; $T(B) = B'$

$$\overrightarrow{CD} = \overrightarrow{C'D'}$$
ومنه $T(C) = C'$; $T(D) = D'$

$$\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$$
 فان $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ وحيث أن

$$T = S_{\Omega}$$
 الحالة -*

$$\overrightarrow{AB} = -\overrightarrow{A'B'}$$
 و $\overrightarrow{\Omega A} = -\overrightarrow{\Omega A'}$ و $\overrightarrow{\Omega B} = -\overrightarrow{\Omega B'}$ و بالتالي $T\left(A\right) = A'$; $T\left(B\right) = B'$

$$\overrightarrow{CD} = -\overrightarrow{C'D'}$$
 ومنه $\overrightarrow{\Omega}\overrightarrow{D} = -\overrightarrow{\Omega}\overrightarrow{D'}$ و $\overrightarrow{\Omega}\overrightarrow{C} = -\overrightarrow{\Omega}\overrightarrow{C'}$ ومنه $T(C) = C'$; $T(D) = D'$

 $\overrightarrow{C'D'}=lpha \overrightarrow{A'B'}$ فان $\overrightarrow{CD}=lpha \overrightarrow{AB}$ وحيث أن $T=S_{(D)}$ في نقبل الحالة

خاصية

لبكن T أحد التحويلات التالية : الإزاحة –التماثل المركزي – التماثل المحوري

نقط من المستوى D ; C ; B ; A

 $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ حيث D' ; C' ; B' ; A' التوالي إلى النقط D ; C ; B ; A حيث $\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$ فان

نعبر عن هذا بقولنا الإزاحة و التماثل المركزي و التماثل المحوري تحويلات تحافظ على معامل استقامية متجهتين

نتيجة

ليكن T أحد التحويلات التالية : الإزاحة -التماثل المركزي - التماثل المحوري

 $\overrightarrow{AC} = lpha \, \overrightarrow{AB}$ حیث α حیث $A \neq B$ ومنه یوجد C ; B ; A

مستقيمية. C' ; B' ; A' اذن $\overline{A'C'} = \alpha \overline{A'B'}$ ومنه T ومنه C' ; B' ; A'

الإزاحة و التماثل المركزي و التماثل المحوري تحافظ على استقامية النقط

4- التحويل و المسافات

خاصيا

B و A صورتي B و B و مورتي A الإزاحة و التماثل المحوري تحويلات تحافظ على المسافة أي إذا كان A و A صورتي A و A بأحد هذه التحويلات فان A

5- صورة أشكال بتحويل: الإزاحة –التماثل المركزي – التماثل المحوري

ننشئ صورة الشكل (F) بالتحويلات الإزاحة و التماثل المركزي و التماثل المحر

تعریف

لیکن (F) شکلا

T مجموعة صور نقط الشكل (F) بتحويل T تكون شكلا (F') يسمى صورة شكل T بالتحويل T نكتب T نكتب T

خاصية

صورة تقاطع شكلين (F_1) و (F_1) هو تقاطع T هو تقاطع (F_2) صورتي هذين الشكلين بهذا التحويل $T\left((F_1)\cap (F_2)\right)=T\left((F_1)\right)\cap T\left((F_2)\right)$

ب- صور أشكال اعتيادية بتحويل م م ة مستقده – م م ة نم فد مد

صورة مستقيم – صورة نصف مستقيم – صورة قطعة

ليكن T أحد التحويلات التالية : الإزاحة -التماثل المركزي - التماثل المحوري $T\left([AB]\right) = [A'B']$ و $T\left([AB]\right) = [A'B']$ و $T\left([AB]\right) = [A'B']$ و $T\left([AB]\right) = [A'B']$

أ- صورة مستقيم

(D')مورة مستقيم $S_{(\Delta)}$ بتماثل محوري (D) هو مستقيم *- صورة مستقيم

 $ig(D^{\,\prime}ig)$ في نقطة I فان (Δ) في نقطة + إذا كان

I يقطع (Δ) في نقطة

$$(D) = (D')$$
 فان $(D) \perp (\Delta)$ +

وازیه (D') بازاحة أو تماثل مرکزي هو مستقیم (D') بازاحة أو تماثل مرکزي هو مستقیم *

ملاحظة

- عورة مستقيم المستقيم نفسه (D) مورة مستقيم نفسه *- صورة مستقيم المستقيم المستقيم
 - مستقيم(D) بإزاحة متجهتها موجهة لـ(D) هو المستقيم نفسه*

ب- صورة منتصف قطعة

ليكن T أحد التحويلات التالية : الإزاحة -التماثل المركزي - التماثل المحوري إذا كان I منتصف T و T T و T T فان T منتصف T

ج- صورة دائرة

صورة دائرة مركزها $\,O$ و شعاعها $\,r$ بإزاحة أو تماثل محوري أو تماثل مركزي هو دائرة مركزها' $\,O$ صورة $\,O$ و شعاعها $\,r$

د- صورة زاوية

ليكن $\, T \,$ أحد التحويلات التالية : الإزاحة –التماثل المركزي – التماثل المحوري

 $\widehat{BAC} = \widehat{B'A'C'}$ و $T(\widehat{BAC}) = \widehat{B'A'C'}$ فان T(C) = C' و T(B) = B' و T(A) = A'

الإزاحة و التماثل المركزي و التماثل المحوري تحافظ على قياس الزوايا الهندسية

6- صورة مثلث

ليكن $\, T \,$ أحد التحويلات التالية : الإزاحة –التماثل المركزي – التماثل المحوري

إذا كان A'B'C' و T(A)=A' و T(C)=C' و T(B)=B' و كان مورة المثلث والمثلث T(A)=A' الذي يقايسه

7- التحويلات و التوازي و التعامد خاصية

الإزاحة التماثل المركزي و التماثل المحوري تحويلات تحافظ على التعامد و التوازي

8- محاور تماثل شکل – مراکز تماثل شکل أ- تعریف

 $S_{(D)}\left((F)\right)=\left(F
ight)$ نقول إن المستقيم (D) محور تماثل شكل (F) إذا و فقط إذا كان

أمثلة: + محاور تماثل مستقيم هو المستقيم نفسه و جميع المستقيمات العمودية عليه.

+ محاور تماثل دائرة هي حاملات أقطارها + محاور تماثل زاوية هو حامل منصفها

ب تعریف

 $S_{I}\left(\left(F
ight)
ight)=\left(F
ight)$ نقول إن النقطة I مركز تماثل شـكل $\left(F
ight)$ اذا و فقط اذا كان

+ مركز تماثل متوازي الأضلاع هو مركزه

II – التحاكي

1-نشاط

لتكن O و A و B نقط من المستوى

 $\overrightarrow{OB'} = -2\overrightarrow{OB}$ و $\overrightarrow{OA'} = -2\overrightarrow{OA}$ حيث $\overrightarrow{OA'} = -2\overrightarrow{OA}$ و O'

نقول ان A و B صورتي A و B على التوالي بالتحاكي الذي مركزه B ونسبته B-

أنشئ M' صورة M بالتحاكي الذي مركزه M ونسبته 2-M

(AB)//(A'B') بين أن A'B' = -2AB و استنتج أن

ig(A'M'ig) ما هو الوضع النسبي للمستقيمين

2- تعریف

لتكن I نقطة معلومة من المستوى P و R عددا حقيقا غير منعدم

k العلاقة التي تربط النقطة M بالنقطة M حيث M حيث $\overline{IM'}=k\overline{IM}$ تسمى التحاكي الذي مركزه M و نسبته ونرمز له بالرمز h أو h

h:M o M ' أو h(M)=M ' نقول ان النقطة M طورة النقطة M بالتحاكي

M ' نقول كذلك h يحول

التحاكي h تحويل في المستوى

مثال

h التحاكي M صورة M بالتحاكي I أنشى h أ- أ

____M'

h بالتحاكي M صورة M بالتحاكي h بالتحاكي h

M' I

ملاحظات

 $k \neq 0$ تحاك حيث h(I;k) ليكن

يحول كل نقطة إلى نفسها k=1 خان k=1 غان k=1

"تكبير" hig(I;kig) نقول إن $|k|\succ 1$ تكبير" -

- "تصغير " h(I;k) نقول إن $|k| \prec 1$ تصغير -
- الى 'M فان I و M و 'M نقط مستقيمية h(I;k) إذا كانh(I;k) يحول
- I و بالتحاكي الذي مركزه M و بالتحاكي الذي مركزه M فان M'=IM'=IM أي أي أي أي أي أي أي أي M'=IM'=IM' و بالتحاكي الذي مركزه M'=M'

 $\frac{1}{k}$ و نسبته

- h(I;k) نقول إن I بالتحاكي h(I) = I *
- مركز التحاكي هو النقطة الوحيدة الصامدة بهذا التحاكي

2- خاصیات

أ- أنشطة

h(N)=N' و M و M' و M' و M' و M و $M \neq 0$ تحاك حيث h(I;k) ليكن

$$M'N' = |k|MN$$
 و أن $\overline{M'N'} = k\overline{MN}$ -1

$$(MN)//(M\,{}^{\shortmid}N\,{}^{\backprime})$$
 و $M\,{}^{\backprime}\neq N\,{}^{\backprime}$ فان $M\neq N$ و أن اذا كان $M\neq N$

نشاط2

$$\overrightarrow{M'N'}=k\overrightarrow{MN}$$
 نقط حیث N و M و N و M و M و M ایکن $k\in\mathbb{R}^*-\{1\}$

$$I$$
 متقاطعين في نقطة (NN') و (MM') المستقيمين أن المستقيمين أن المستقيمين المستقيمين (MM')

N' و M' و استنتج أه يوجد تحاك يحول M و M و $\overline{IM'}=k\overline{IM}$ و $\overline{IM'}=k\overline{IM}$ و -2 بين أن أن أما

$$\overrightarrow{CD} = lpha \overrightarrow{AB}$$
 لتكن A ; B ; B نقط من المستوى حيث D ; C ; B ; A

$$k \neq 0$$
 عيث $h(I;k)$ عيث التوالي بالتحاكي D' ; C' ; B' ; A' نعتبر أن $\overline{C'D'} = \alpha \overline{A'B'}$ بين أن

ب- الخاصية المميزة

ليكن T تحويل في المستوى و k عدد حقيقي غير منعدم يخالف N و N و المستوى إلى نقطتين M و اN و N

 $k \overrightarrow{MN} = \overrightarrow{M'N'}$ حيث

نتيجه

اذا كان M و N من المستوى و كان ' M و ' N صورتيهما على التوالي بتحاك نسبته k غير منعدمة فان M 'N' = |k|MN

ج- خاصية: المحافظة على معامل الاستقامية

لتكن D ' ; C ' ; B ' ; A ' نقط من المستوى و D ' ; C ' , B ; D نقط من التوالي

 $k \neq 0$ بالتحاكي h(I;k) حيث

 $\overrightarrow{C'D'} = \alpha \overrightarrow{A'B'}$ فان $\overrightarrow{CD} = \alpha \overrightarrow{AB}$ اذا کان

نعبر عن هذا بقولنا التحاكي يحافظ علة معامل استقامية متجهتين

نتبحة

التحاكي يحافظ على استقامية النقط

نتيجة

h تحاك

$$h\big(\big[AB\big]\big) = \big[A'B'\big] \text{ o } h\big(\big[AB\big)\big) = \big[A'B'\big) \text{ o } h\big(\big(AB\big)\big) = \big(A'B'\big) \text{ oid } h\big(B\big) = B' \text{ of } h\big(A\big) = A' \text{ oid }$$

نتيجة

h ليكن h تحاك

$$ig[A'B'ig]$$
 و ' I' فان I' فان $hig(Iig)=B'$ و ' $hig(Aig)=B'$ و ' $h(A)=A'$ و ' I'

خاصية1

مورة مستقيم
$$(D)$$
 بتحاك هو مستقيم عوازيه راية

ملاحظة : صورة مستقيم(D) بتحاك مركزه ينتمي إلى (D) هو المستقيم نفسه

خاصیه2

ليدن n

$$\widehat{BAC} = \widehat{B'A'C'}$$
 و $T(\widehat{BAC}) = \widehat{B'A'C'}$ فان $h(C) = C'$ و $h(B) = B'$ و $h(A) = A'$ إذا كان $h(A) = A'$ التحاكى يحافظ على قياس الزوايا الهندسية

خاصية3

التحاكي يحافظ على التعامد و التوازي أي صورتا مستقيمان متعامدان هما مستقيمان متعامدان صورتا مستقيمان متوازيان هما مستقيمان متوازيان

صورة دائرة مركزها O و شعاعها r بتحاك نسبته k هو دائرة مركزها 'O صورة O بهذا التحاكي

|k|r و شعاعها

خاصية5: صورة مثلث

 $k \neq 0$ لیکن h نسبته

A'B'C' و h(B)=B' و h(A)=A' فان صورة المثلث h(C)=C' و h(B)=B' هو المثلث

ملاحظة و اصطلاح:

A'B'C' إذا كان المثلث ABC صورة المثلث ABC بتحاك نسبته k غير منعدمة فان المثلث ABC صورة المثلث

 $\frac{1}{k}$ بالتحاکي نسبته

B'A'C'نقول إن المثلثين ABC و

خاصية6

$$\frac{AB}{A'B'} = \frac{AC}{A'C'} = \frac{BC}{B'C'}$$
 إذا كان المثلثان $B'A'C'$ و $B'A'C'$ متحاكيان فان

$$\widehat{ACB} = \widehat{A'C'B'}$$
 g $\widehat{ABC} = \widehat{A'B'C'}$ g $\widehat{BAC} = \widehat{B'A'C'}$ g $(CB)//(C'B')$ g $(AC)//(A'C')$ g $(AB)//(A'B')$