SIMBA in far-infrared emission with SIGAME v3

Karen Pardos Olsen https://kpolsen.github.io/

On the simulation team:
Desika Narayanan, UFL
Romeel Dave, ED
Daisy Leung, CCA
Thomas Greve, UCL
Josh Borrow, DUR
Gergo Popping, ESO

Why far-infrared ?

Why far-infrared ?

Why far-infrared ?

Physical property	Lines	Ref
SFR	[CII], [OIII], [OI]	DeLooze+14_A&A568, Capak+15_Nat522, Schaerer+20_ arXiv:2002.00979,
Ionized to neutral gas mass ratio	[CII]/[NII]205, [OIII]88/[CII], [OIII]88/[NII]122	Croxall+17ApJ845, Arata+20_arXiv:2001.01853,
Molecular gas mass	CO(1-0), [CI]	Heintz+20_arXiv:2001.05770,
ISM pressure	[NII]122/[NII]205 (in HII regions)	Herrera-Camus+16_ApJ835

The list of ingredients to simulate line emission

Density, n_H

BELLIIII

www.fearlessdining.com

Velocity dispersion, σ_{v}

Abundances ([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

Splitting H2 gas into GMCs

Density, n_H

Velocity dispersion, σ_v

Abundances ([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

Assuming a clumping factor

Density, n_H

Velocity dispersion, σ_v

Abundances ([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

dining.com

Assuming a clumping factor

Velocity dispersion, σ_{v}

Abundances ([He/H], [C/H], [N/H]...)

Dust

sdining.com

ISRF (FUV)

A way to account for clumping inside unresolved MCs

A couple of ways to do it:

- ho_p : $\langle \rho^2 \rangle / \langle \rho \rangle^2 \sim 3-10$ multiplied unto the effective H₂ formation rate [Gnedin+09_ApJ697, Bovino+16_A&A590]
- > f_{cl} : $\langle \rho \rangle_{mw} / \langle \rho \rangle_{v}$ multiplied on the collision rates [Krumholz+14_MNRAS437,Popping+16_MNRAS461; Popping+19_MNRAS482]

Effect:

- Increases H₂ formation on dust
- Boosts line emission at high critical densities

Turbulent fragmentation

Simulations of driven, supersonic, self-gravitating, magneto-hydrodynamic (MHD) turbulence agree with a lognormal probability density function (PDF):

Figure 2. Pdf of gas density for the MHD and HD snapshots used as initial conditions for the star formation simulations (solid lines). The lognormal models used in this work are also shown (dotted lines).

Density, n_H

Velocity dispersion, σ_v

Abundances ([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

Turbulent fragmentation

Density, n_H

Velocity dispersion, σ_v

Abundances ([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

Higher Mach number will broaden the density distribution:

Velocity dispersion on cloud scales

- > Can be used to derive Mach number and density PDF
- Affects line widths and line pumping/shielding [Ferland+17_hazy1.pdf]

Solution #1: Calculate velocity dispersion from hot ISM pressure:

$$\sigma^2 = P/\rho_{\text{cell}}$$

[Narayanan&Krumholz2014_MNRAS442]

Abundances

([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

Velocity dispersion on cloud scales

Density, n_H

Velocity dispersion, σ_V

- > Can be used to derive Mach number and density PDF
- Affects line widths and line pumping/shielding [Ferland+17_hazy1.pdf]

Solution #2:

Assume a Mach number of 10 typical of molecular clouds [Leung+20 inprep,Pallottini+19 MNRAS487,Vallini+19 MNRAS4514]

Abundances

([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

dining.com

Velocity dispersion on cloud scales

Density, n_H

Velocity dispersion, σ_v

Abundances ([He/H], [C/H], [N/H]...)

Dust

dining.com

ISRF (FUV)

- Can be used to derive Mach number and density PDF
- Affects line widths and line pumping/shielding [Ferland+17_hazy1.pdf]

Solution #3: Very crude: Scaling σ_v from smoothing length scale to cloud size by assuming σ_v scales with (1/length)^{1/3}:

Scaling ISM abundances with total metallicity

What we all do, although adopting more specific abundances can change your results:

Density, n Velocity dispersion, σ_{ij} **Abundances** ([He/H], [C/H], [N/H]...) Dust ISRF (FUV)

sdining.com

Scaling ISM abundances with total metallicity

Density, n_H

Velocity dispersion, σ_{v}

Abundances ([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

What we all do, although adopting more specific abundances can change your results:

Alternatively: use elemental abundances tracked by the simulation!

Scaling ISM abundances with total metallicity

Density, n_H

Velocity dispersion, σ_v

Abundances ([He/H], [C/H], [N/H]...) log(mass fraction)

Dust

ISRF (FUV)

What we all do, although adopting more specific abundances can change your results:

dining.com

[Olsen+17]

Scaling metallicity by a DTM factor

Density, n_H

Velocity dispersion, σ_{v}

Abundances ([He/H], [C/H], [N/H]...)

Dust

dining.com

ISRF (FUV)

Scaling metallicity by a DTM factor

Density, n Velocity dispersion, σ Abundances ([He/H], [C/H], [N/H]...) Dust

ISRF (FUV)

What we all do, although at least some FIR lines can be affected by a lower DTM:

Summing up light from nearby stars

Density, n_H

Abundances ([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

sdining.com

Summing up light from nearby stars

Density, n_H

Abundances ([He/H], [C/H], [N/H]...)

Dust

ISRF (FUV)

Basic recipe:

stellar population SED generator

radiative transfer

Summing up light from nearby stars

Density, n_H

Abundances ([He/H], [C/H], [N/H]...)

Dust

sdining.com

ISRF (FUV)

Basic recipe:

stellar population SED generator + radiative transfer

If you just need galaxy-integrated luminosity: https://powderday.readthedocs.io/en/latest/

If you need intensity in each cell:

http://www.skirt.ugent.be/version9/_version9.html

Baby steps with z=0 SIMBA galaxies

- > Extracting a handful of galaxies from 100Mpc box
- > Mapping with swiftsimio.visualisation.projection()
- ➤ Running SKIRT v9

Baby steps with z=0 SIMBA galaxies

x [kpc]

x [kpc]

Baby steps with z=0 SIMBA galaxies

 $log(\Sigma_{gas} [M_{\odot}/kpc^2])$

log(FUV flux [W/m²/micron/sr])

With stars

Conclusions

Where is SIGAME v3 in reaching SIMBA:

- finding the best way to estimate cloud-scale vel disp (for nH)
- checking SKIRT v9 results
- making Cloudy grid
- considering MAPPINGS for shock-heated regions
- considering splitting stellar particles?

- how much can we trust dust?

Conclusions

- finding the best way to estimate cloud-scale vel disp (for nH)
- checking SKIRT v9 results
- making Cloudy grid
- considering MAPPINGS for shock-heated regions
- considering splitting stellar particles?

Unknowns:

- how much can we trust dust?
- do we have any jellyfish galaxies?

The Norma cluster galaxy ESO 137-001 [Jáchym+19 ApJ883]