

АЛГОРИТМЫ НА ГРАФАХ

Кратчайший маршрут

https://github.com/larandaA/alg-ds-snippets

Определение 1

Маршрутом в графе между заданной парой вершин v_1 и v_{k+1} называется чередующаяся последовательность вершин и рёбер вида:

$$\mathbf{v_1} \ \mathbf{e_1} \ \mathbf{v_2} \ \mathbf{e_2} \ \ \mathbf{v_k} \ \mathbf{e_k} \ \mathbf{v_{k+1}}$$
 где $\mathbf{e_i} = \{\mathbf{v_i} \ \mathbf{v_{i+1}}\}$, для всех і от 1 до k.

Если нет кратных рёбер, то маршрут часто задают простым перечислением его вершин:

$$V_1 V_2 \dots V_k V_{k+1}$$

Маршрут может проходить по некоторым рёбрам несколько раз. Длина маршрута — число рёбер в нём.

Определение 2

Для взвешенного графа **вес маршрута** между заданной парой вершин v_1 и v_{k+1} определяется как сумма весов рёбер, входящих в этот маршрут.

маршрут: 5, 3, 2, 4, 3, 2, 1

длина: 6

маршрут: 1, 2, 4

вес: 13+3=16

Определение 3

Цепь -

маршрут, в котором <u>каждое ребро встречается не</u> <u>более одного раза</u> (цепь может проходить через некоторые вершины несколько раз).

Замкнутая цепь называется циклом.

цепь: **5**, 3, 2, 4, 3, **1**

простая цепь: 5, 3, 1, 2, 4

<u>Определение 4</u>

Простая цепь –

цепь, в которой каждая вершина встречается не более одного раза.

Замкнутая простая цепь называется простым циклом.

Для ориентированного графа

- ✓ ориентированный маршрут
- ✓ ориентированная цепь
- ✓ ориентированный цикл

вводятся идентично тому, как это было сделано для графа.

Определение 5

Путь в орграфе - ориентированный маршрут, <u>в котором</u> каждая вершина встречается не более одного раза.

Замкнутый путь называется контуром.

граф	орграф		
маршрут	ориентированный маршрут		
цепь	ориентированная цепь		
цикл	ориентированный цикл		
простая цепь	путь		
простой цикл	контур		

Кратчайший маршрут. Отрицательные веса

Если <u>в графе есть рёбра отрицательного веса</u>, то, заменяя ребро на две противоположно направленные дуги такого же веса, получаем контур отрицательно веса, <u>задача построения кратчайшего маршрута не имеет решения</u>.

Если в орграфе есть контур отрицательного веса, достижимый из стартовой вершины (и из которого достижима точка финиша), то задача построения кратчайшего маршрута также не имеет решения.

В общем случае, когда допускаются циклы (контуры) отрицательного веса, задача нахождения кратчайшей простой цепи (кратчайшего пути) между заданной парой вершин остаётся корректной, но становится **NP-трудной** (она не менее трудна, чем NP-полная задача о гамильтоновой цепи).

Кратчайший маршрут

1956 ГОД (сделал набросок алгоритма, решая другую задачу, а эта задача возникла, как подзадача)

Лестер Рэндольф Форд младший

англ. *Lester Randolph Ford, Jr.* **1927 – 2017**

США

Научная сфера - математик

1958 год

(опубликовал алгоритм решения данной задачи)

Ричард Эрнест Беллман

(англ. Richard Ernest

Bellman

1920 - 1984

США

Научная сфера – математика, теория

vправления

1959 год

Э́дсгер Ви́бе Де́йкстраEdsger Wybe Dijkstra **1930 – 2002**Нидерланды
Научная сфера - информатик

Алгоритм Беллмана-Форда

Алгоритм Беллмана-Форда

- ✓ Находит кратчайшие маршруты между заданной вершиной и всеми вершинами, достижимыми из неё.
- ✓ Алгоритм допускает наличие в орграфе дуг отрицательного веса.

Время работы - $O(n \cdot m)$.

Если в орграфе были контуры отрицательного веса, достижимые из стартовой вершины, то после выполнения \boldsymbol{n} (n=|V|) итераций алгоритм Беллмана-Форда найдёт один из таких контуров отрицательного веса, а задача построения кратчайшего маршрута не имеет решения.

Если в орграфе нет контуров отрицательного веса, достижимых из точки старта, то, если вершина \boldsymbol{v} достижима из вершины \boldsymbol{u} , то в качестве кратчайшего (u,v)-маршрута алгоритм найдёт кратчайший путь.

Алгоритм Беллмана – Форда

- 1. Присваиваем стартовой вершине метку $dist[start] = \mathbf{0}$, а для остальных вершин dist[v] = INF. Величина dist[v] оценка сверху на длину кратчайшего пути от стартовой вершины до вершины v.
- 2. Выполняем (n-1)итерацию алгоритма.

На каждой итерации просматриваем все дуги орграфа в произвольном порядке.

Пусть (v, u) текущая дуга, пробуем уменьшить метку вершины u по следующей формуле:

Если на некоторой итерации ни одна вершина не изменила свою метку, то алгоритм можно досрочно завершить, задача нахождения кратчайших маршрутов от стартовой вершины во все достижимые вершины – **решена**.

Предположим, что на (n-1)-й итерации алгоритма были релаксации:

- ✓ необходимо выполнить ещё одну n-ю итерацию алгоритма и, <u>если не было релаксаций, то задача решена</u>;
- ✓ <u>если на *n*-ой итерации были релаксации</u>, то в орграфе <u>существует контур отрицательного веса</u>, который достижим из точки старта и задача нахождения кратчайших маршрутов из стартовой вершины во все достижимые из неё вершины не имеет решения (<u>алгоритм Беллмана-Фордапозволяет восстановить одиниз контуров отрицательно веса, который достижим из точки старта).</u>

Алгоритм Беллмана – Форда. Псевдокод

```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```

Орграф задан списками дуг:

для каждой дуги (v,u) задаётся начальная вершина дуги v, конечная вершина дуги u и стоимость \mathbf{c}_{vu} .

Алгоритм Беллмана – Форда.


```
dist 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7
0 \ +\infty \ +\infty \ +\infty \ +\infty \ +\infty
```

```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
def distances(start):
    dist[start] = 0

    for i in range(n - 1):
        for v, c, u in edges:
            dist[u] = min(dist[u], dist[v] + c)
```



```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
dist 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7

0 \ +\infty \ +\infty \ +\infty \ +\infty \ +\infty

1: 0 1 1 2 0 1 +\infty
```

```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```



```
    dist
    1
    2
    3
    4
    5
    6
    7

    0
    +\infty
    +\infty
    +\infty
    +\infty
    +\infty

    1:
    0
    1
    1
    2
    0
    1
    +\infty

    2:
    0
    1
    1
    2
    0
    1
    +\infty
```

```
def distances(start):
    dist[start] = 0

for i in range(n - 1):
    for v, c, u in edges:
        dist[u] = min(dist[u], dist[v] + c)
```


Восстановление кратчайшего пути из 1 в 6 (используем сформированный массив предшественников):

Алгоритм Беллмана – Форда. Контур отрицательного веса

Для восстановления контура отрицательного веса:

берём любую вершину, которая изменила свою метку (эта вершина либо лежит на контуре, либо достижима из него, так как путь в неё содержит как минимум п дуг, что говорит о наличии в нём контура) и двигаемся по массиву предшественников **pred**, пока некоторая вершина не встретится при движении дважды.

```
Например: 5 \leftarrow 4 \leftarrow 2 \leftarrow 3 \leftarrow 4
```


Алгоритм Беллмана — Форда. Псевдокод (граф задан списками смежности, в графе могут быть контуры отрицательного веса).

```
def distances(start):
   dist[start] = 0
   for i in range(n - 1):
       for v, gv in enumerate(g): # <-- вот
           for u, c in gv: # <-- здесь!
               if dist[u] > dist[v] + c:
                   dist[u] = dist[v] + c
                   pred[u] = v
   for v, gv in enumerate(g): # <-- и вот
       for u, c in gv: # <-- здесь!
           if dist[u] > dist[v] + c:
               panic!
```


Обоснование корректности алгоритм Беллмана – Форда

Предположим, что в орграфе отсутствуют контуры отрицательного веса, достижимые из точки старта.

Обоснование корректности алгоритма следует непосредственно следующих двух утверждений.

Утверждение 1

Так как кратчайший маршрут не содержит повторяющихся вершин, то длина любого кратчайшего маршрута не превосходит (n-1).

Утверждение 2

После выполнения i-ой итерации для всех вершин v, для которых кратчайшие (start, v)-маршруты содержат не более i дуг, текущая верхняя оценка dist[v] равна длине кратчайшего (start, v)-пути.

Утверждение доказывается методом математической индукции.

Поэтому после выполнения n-1 итерации алгоритма кратчайшие маршруты для всех вершин, достижимых из точки старта, будут построены.

Время работы алгоритма Беллмана – Форда: $\mathbf{O}(n \cdot m)$.

Алгоритм Э. Дейкстры (1959)

Находит кратчайшие маршруты между вершиной $oldsymbol{u}$ и всеми вершинами, достижимыми из неё.

Алгоритм корректно работает только для графов (орграфов) без рёбер (дуг) отрицательного веса.

Время работы алгоритма Дейкстры зависит от выбранной структуры данных:

```
O(n^2+m) — массив; O(m \cdot \log m) — бинарная куча (в кучу добавляются рёба/дуги); O(n \cdot \log n) + O(m \cdot \log n) — бинарная куча (в кучу добавляются вершины + операция модиф .ключа); O(m) + O(n \cdot \log n) — куча Фибоначчи (в кучу добавляются вершины + операция модиф. ключа); оценка усреднённая;
```

Если вершина \boldsymbol{v} достижима из вершины \boldsymbol{u} , то в качестве кратчайшего (u,v)-маршрута алгоритм найдёт кратчайшую простую цепь (для графа)/ кратчайший путь (для орграфа).

Алгоритм Дейкстры

- 1. Присваиваем стартовой вершине start метку dist[start] = 0, а для остальных вершин dist[v] = INF. Для произвольной вершины v значение dist[v] оценка сверху на длину кратчайшего маршрута от стартовой вершины до неё.
- 2. Считаем все вершины не обработанными processed[v] = FALSE
- 3. Пока все вершины, достижимые из точки старта не будут обработаны, выполняем следующие действия.
 - 3.1 Находим среди необработанных вершин вершину с самой маленькой меткой dist. Предположим, что это вершина v.
 - 3.2 Полагаем для вершины $oldsymbol{v}$ значение $oldsymbol{dist}[oldsymbol{v}]$ длиной кратчайшего (start, v)-маршрута.
 - 3.3 Полагаем вершину $oldsymbol{v}$ обработанной: $oldsymbol{processed}[oldsymbol{v}] = oldsymbol{TRUE}.$
 - 3.4 Просматриваем все смежные с $oldsymbol{v}$ необработанные вершины $oldsymbol{u}$ и выполняем релаксацию по дуге $(oldsymbol{v},oldsymbol{u}).$

$$dist[u] = min\{dist[u], dist[v] + c_{vu}\}$$

Подробное доказательство корректности алгоритма Дейкстры:

Теория алгоритмов : учеб. пособие / П.А. Иржавский [и др.].- Минск : БГУ, 2013.-С.108-113.

Пример.

Алгоритм Дейкстры

- 1. Присваиваем стартовой вершине start метку $dist[start] = \mathbf{0}$, а для остальных вершин dist[v] = INF. Для произвольной вершины v значение dist[v] оценка сверху на длину кратчайшего маршрута от стартовой вершины до неё.
- 2. Считаем все вершины не обработанными processed[v] = FALSE
- 3. Пока все вершины, достижимые из точки старта не будут обработаны, выполняем следующие действия.
 - 3.1 Находим среди необработанных вершин вершину с самой маленькой меткой dist.

Предположим, что это вершина $oldsymbol{v}$.

- 3.2 Полагаем для вершины v значение dist[v] длиной кратчайшего (start,v)-маршрута.
- 3.3 Полагаем вершину v обработанной:processed[v] = TRUE.
- 3.4 Просматриваем все смежные с v необработанные вершины u и выполняем релаксацию по дуге (v,u)

$$dist[u] = min\{dist[u], dist[v] + c_{vu}\}$$

	<u>1</u>	2	3	4	5
Dist	0	Inf	Inf	Inf	Inf
1:		4 ₁	11	8 ₁	Inf
2:		4 ₁		2 ₃	Inf
3:		4 ₁			Inf
4:					Inf

Программная реализация алгоритма Дейкстры на массиве

```
def distances(start):
    dist[start] = 0
   while True: # <-- здесь!
        min v = None
        for v, dv in enumerate(dist):
            if not processed[v] and (min_v is None or dv < dist[min_v]):</pre>
                min v = v
        if min_v is None or dist[min_v] == INF:
            break
        processed[min_v] = True
        for u, cu in g[min_v]:
            dist[u] = min(dist[u], dist[min_v] + cu)
```

 $+ O(m) + O(n+m) = O(n^2+m)$ поиск всех минимумов в все релаксации смежности

массиве

Реализация алгоритма Дейкстры на бинарной куче

1. Считаем все вершины не обработанными processed[v] = FALSE.

Все элементы массива dist полагаем равными INF, так как кратчайшие пути для вершин ещё не определены.

- 2. Присваиваем стартовой вершине start приоритет $oldsymbol{0}$, а остальным вершинам $oldsymbol{d}\left[oldsymbol{v}
 ight]=INF$.
- 3. Добавляем в приоритетную очередь (min_heap) пару $(start, \mathbf{0})$.
- 4. Пока приоритетная очередь не станет пустой, выполняем следующие действия.
 - \checkmark удаляем элемент из приоритетной очереди (предположим, что это (v,d[v]);
 - \checkmark если вершина v уже была обработана, то возвращаемся к шагу 4 алгоритма;
 - \checkmark полагаем вершину v обработанной: processed[v] = TRUE;
 - \checkmark просматриваем все смежные с v необработанные вершины u и добавляем в приоритетную очередь: $(u,d[v]+c_{m})$.

$$(v = 1, d[1] = 0) \rightarrow$$

 $(v = 2, d[2] = 4)$
 $(v = 4, d[4] = 8)$
 $(v = 3, d[3] = 1) \rightarrow$

$$(v = 2, d[2] = 4)$$

 $(v = 4, d[4] = 8)$
 $(v = 4, d[4] = 2) \rightarrow$

Программная реализация алгоритма Дейкстры на бинарной куче

```
def distances(start):
    q = PriorityQueue()
    q.enqueue((0, start))
    while not q.empty():
        (dv, v) = q.dequeue()
        if processed[v]:
            continue
        processed[v] = True
        dist[v] = dv
        for (u, cu) in g[v]:
            if not processed[u]:
                q.enqueue((dv + cu, u))
```

```
def distances(start):
    q = PriorityQueue()
    q.enqueue((0, start))
    while not q.empty():
        (dv, v) = q.dequeue()
        if processed[v]:
            continue
        processed[v] = True
        dist[v] = dv
        for (u, cu) in g[v]:
            if not processed[u] and dv + cu < dist[u]:</pre>
                q.enqueue((dv + cu, u))
```

 $\mathbf{O}\left(m\log m\right) + \mathbf{O}(n+m)$ просмотр списков смежности

Алгоритм	Время работы	Структура данных	Условия применимости	
Форда- Беллмана	$O(n \cdot m)$	массив	нет контуров (циклов) отрицательного веса	
Дейкстры	$O(n^2+m)$	массив	неотрицательные веса	
	$O(m \cdot \log m)$	бинарная куча, в куче — рёбра (дуги)	неотрицательные веса	
	$O(n \cdot \log n) + O(m \cdot \log n)$	бинарная куча (вершины графа, модификации ключа при релаксации);	неотрицательные веса	
	$O(n \cdot \log n) + O(m)$ — усреднённо	куча Фибоначчи (вершины графа, модификации ключа при релаксации);	неотрицательные веса	

Специальный класс графов

Предположим, что веса дуг орграфа (графа) могут принимать только два значения: \boldsymbol{a} или \boldsymbol{b} .

Тогда интерфейс «приоритетной очереди» в алгоритме Дейкстры можно реализовать на двух очередях (queue):

(1) если
$$oldsymbol{c}_{vu} = oldsymbol{a}$$
, то ($oldsymbol{d} \left[oldsymbol{v}
ight] + oldsymbol{a}$, $oldsymbol{u}$) \Longrightarrow $queue_{oldsymbol{a}}$

(2) если
$$c_{vu} = b$$
, то $(d[v] + b, u) \Rightarrow queue_b$

Несложно показать, что наименьшее значение $m{d}$ в каждой из очередей имеет тот элемент, который в него был добавлен раньше.

Оценка времени работы алгоритма Дейкстры для специального класса графов

Поиск элемента с минимальным значением d и его удаление -0(1).

Добавление элемента в очередь (queue) - O(1).

Общее число добавления элементов в queue ограничено чилом дуг m.

Время реализации алгоритма Дейкстры (для специального класса графов) — $\mathbf{O}(n+m)$, если орграф задан списками смежности.

Если веса дуг принимают только два значения $m{0}$ или $m{1}$, то можно реализовать интерфейс приоритетной очереди на двухсторонней очереди (deque).

При переходе по дуге веса ${\bf 0}$ добавляем пару $(d\,[v]+0,u)$ в начало очереди, а при переходе по дуге веса ${\bf 1}$ добавляем пару $(d\,[v]+1,u)$ – в конец. Наименьшее значение d в deque — у первого элемента.

Время реализации алгоритма Дейкстры – $\mathbf{O}(n+m)$, если орграф задан списками смежности.

Кратчайшие маршруты между всеми парами вершин

Найти кратчайшие пути между всеми парами вершин:

в орграфе могут быть отрицательные веса дуг, но нет контуров отрицательного веса.

Подходы

(1) Запуск из каждой вершины алгоритма Форда-Беллмана $\mathbf{O}(n^2 \cdot m)$.

(2) Свести задачу к неотрицательным весам, а затем из каждой вершины запустить алгоритм Дейкстры, реализованный, например, на бинарной куче $O(?) + O(n \cdot m \cdot \log m).$

(3) Алгоритм Флойда- Уоршелла (Варшалла) — $\mathbf{O}(n^3)$ (память $-\mathbf{O}(n^2)$).

Вопрос

Как свести задачу к неотрицательным весам, чтобы затем из каждой вершины запускать алгоритм Дейкстры?

???

Пусть c_{min} — минимальный отрицательный вес дуги. Преобразуем веса дуг орграф, увеличив вес каждой дуги на величину $|c_{min}|$.

ОШИБКА!

Необходимо так изменить веса дуг орграфа, чтобы они стали неотрицательными, но при этом сохранялись кратчайшие пути.

Такое преобразование носит название метод потенциалов.

Метод потенциалов 1977 год

Джонсон, Дональд Брюс Donald B. Johnson **1933 -1994**

США ученый-компьютерщик, исследователь в области проектирования и анализа алгоритмов; описал структуру данных d-куча; последняя работа - в области параллельных вычислений доктор наук, профессор

Алгоритм Джонсона (метод потенциалов)

- Вводим новую вершину s, которую соединяем дугами со всеми вершинами орграфа.
- Вес фиктивных дуг полагаем равным 0.
- Один раз запускаем алгоритм Форда-Беллмана из вершины s, находим кратчайшие маршруты из s во все вершины c'(v,u)=dist(v)+c(v,u)-dist(u)(dist(v) - длина кратчайшего (s, v)-маршрута).

4. Изменяем веса дуг исходного орграфа по следующему правилу:

$$c'(v,u) = dist(v) + c(v,u) - dist(u)$$

Обоснование корректности алгоритма Джонсона

- $1) \ c'(v,u) = dist(v) + c(v,u) dist(u) \ge 0$ Верно, так как (dist(v) + c(v,u)) длина некоторого (s,u)-пути, а dist(u) длина кратчайшего (s,u)-пути.
- 2) Стоимость любого (v,u)-пути P в модифицированном орграфе равна:

$$c'(\mathbf{P}) = dist(\mathbf{v}) + c(\mathbf{P}) - dist(\mathbf{u}).$$

Поэтому, если взять любой другой (v,u)-путь \boldsymbol{L} , то его стоимость равна:

$$c'(L) = dist(v) + c(L) - dist(u).$$

Следовательно, преобразование Джонсона сохраняет кратчайшие пути, т.е.

$$c(\mathbf{P}) \le c(\mathbf{L}) \iff c'(\mathbf{P}) \le c'(\mathbf{L})$$

Время работы алгоритма Джонсона

 $\mathbf{O}(m{m}\cdotm{n})$ преобразование к неотрицательным весам с сохранением кратчайших путей); + $\mathbf{O}(m{n}\cdotm{m}\cdot\logm{m})$ запуск для каждой вершины в орграфе G' алгоритма Дейкстры = $O(m{n}\cdotm{m}\cdot\logm{m}).$

Алгоритм Флойда-Уоршелла (Варшалла)

1959 год

Бернар Рой (Bernard Roy)

1934-2017 (83 года)

Почетный профессор Парижского университета-Дофин.

В 1992 году награжден Золотой медалью ЕВРО, высшей наградой в области исследований операций в Европе.

(опубликовал в 1959 году практически такой же алгоритм, но результат остался незамеченным)

1962 год

Роберт В Флойд

Robert W Floyd

Флойд в 1976 году

Дата рождения 8 июня 1936

Место Нью-Йорк

рождения

Дата смерти 25 сентября 2001 (65 лет)

Место смерти Станфорд Страна ■ США

Научная сфера Информатика

Место работы Университет Карнеги —

Меллон

Стэнфордский университет

Альма-матер Чикагский университет

Stephen Warshall

Стивен Уоршелл

Дата рождения 15 ноября 1935

Место Нью-Йорк, Нью-Йорк, США

рождения

Дата смерти 11 декабря 2006 (71 год)

Место смерти Глостер, Эссекс,

Массачусетс, США

Страна 🚞 США

Альма-матер Гарвардский университет

(опубликован одновременно)

Алгоритм Флойда-Уоршелла (Варшалла)

Предположим, что вершины графа занумерованы целыми числами от ${f 1}$ до $|{m V}|$.

Веса дуг орграфа могут быть отрицательными, но предполагается, что нет контуров отрицательного веса.

матрица весов дуг орграфа
$$c_{ij} = \begin{cases} 0, \; \text{если} \; i = j, \\ +\infty, \; \; \text{если} \; i \neq j \; \text{и} \; (i,j) \notin E, \\ \text{вес дуги} \; (i,j), \; \text{если} \; i \neq j \; \text{и} \; (i,j) \in E. \end{cases}$$

В основе алгоритма Флойда-Уоршелла лежит принцип динамического программирования.

Пусть d_{ij}^k — длина кратчайшего пути, соединяющего вершины i и j и проходящего возможно только через промежуточные вершины с номерами $\{1,2,\ldots,k\}$, при этом $i,j \notin \{1,\ldots,k\}$.

Тогда справедливо следующее рекуррентное соотношение:

$$d_{ij}^k = egin{cases} c(i,j), \ ext{если } k = 0, \ ext{min} \Big(d_{i\,j}^{\,k-1}, d_{i\,k}^{\,k-1} + d_{k\,j}^{\,k-1} \Big), \ ext{если } k \geq 1. \end{cases}$$
 путь НЕ проходит через вершину k путь проходит через вершину k

Алгоритм Флойда-Уоршелла (Варшалла)

```
for i in range(n):
       for j in range(n):
        d[i,j]=c<sub>ii</sub>
for k in range(n):
   for i in range(n):
       for j in range(n):
               if d[i,k]+d[k,j]<d[i,j]</pre>
                       d[i,j]=d[i,k]+d[k,j]
```

матрица весов дуг орграфа $c_{ij} = \begin{cases} 0, \; \text{если} \; i = j, \\ +\infty, \; \; \text{если} \; i \neq j \; \text{и} \; (i,j) \notin E, \\ \text{вес дуги} \; (i,j), \; \text{если} \; i \neq j \; \text{и} \; (i,j) \in E. \end{cases}$

Время работы: $O(n^3)$

Кратчайший маршрут между всеми парами вершин

допускаются дуги отрицательного веса, но нет контуров отрицательного веса

Запуск из каждой вершины алгоритма Форда-Беллмана	$O(n^2 \cdot m)$
Метод потенциалов сведения задачи к задаче с неотрицательными весами и последующее применение из каждой вершины алгоритма Дейкстры (интерфейс приоритетной очереди релизуется, например, на бинарной куче)	$\mathbf{O}(\mathbf{n} \cdot \mathbf{m} \cdot \log \mathbf{m})$
Алгоритм Флойда- Уоршелла	$\mathbf{O}(n^3)$ дополнительная память $-\mathbf{O}(n^2)$

Общие задачи в iRunner для закрепления навыков

0.10 Кратчайший путь. Алгоритм Дейкстры

Спасибо за внимание!