

Kanditutkielma Tietojenkäsittelytieteen kandiohjelma

Oppijan kehittymisen tukeminen oppimisanalytiikalla Moodlessa

Tuomas Alanen

12.5.2022

${\bf Yhtey stied ot}$

PL 68 (Pietari Kalmin katu 5) 00014 Helsingin yliopisto

Sähkopostiosoite: info@cs.helsinki.fi

 ${\it URL: http://www.cs.helsinki.fi/}$

HELSINGIN YLIOPISTO - HELSINGFORS UNIVERSITET - UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme Tietojenkäsittelytieteen kandiohjelma Matemaattis-luonnontieteellinen tiedekunta Tekijä — Författare — Author Tuomas Alanen Työn nimi — Arbetets titel — Title Oppijan kehittymisen tukeminen oppimisanalytiikalla Moodlessa Ohjaajat — Handledare — Supervisors Prof. D.U. Mind, Dr. O. Why Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages Kanditutkielma 12.5.202217 sivua

Tiivistelmä — Referat — Abstract

Kirjoita tiivistelmä tähän.

Varmista, että kaikki pakolliset kohdat lomakkeella on täytetty.

Listaa ACM CCS 2012 -luokituksesta 1-3 polkua kuvaamaan työtäsi. Kts englanninkielinen ohje.

ACM Computing Classification System (CCS)

General and reference \rightarrow Document types \rightarrow Surveys and overviews Applied computing \rightarrow Document management and text processing \rightarrow Document management

 \rightarrow Text editing

Avainsanat — Nyckelord — Keywords

learning analytics, Moodle

Säilytyspaikka — Förvaringsställe — Where deposited

Helsingin yliopiston kirjasto

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO - HELSINGFORS UNIVERSITET - UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty		Koulutusohjelma — Utbildningsprogram — Study programme			
Faculty of Science		Bachelor's Programme in Computer Science			
Tekijä — Författare — Author					
Tuomas Alanen	Tuomas Alanen				
Työn nimi — Arbetets titel — Title					
Oppijan kehittymisen tukeminen oppimisanalytiikalla Moodlessa					
Ohjaajat — Handledare — Supervisors					
Prof. D.U. Mind, Dr. O. Why	of. D.U. Mind, Dr. O. Why				
Työn laji — Arbetets art — Level	Aika — Datum — Mo	onth and year	Sivumäärä — Sidoantal — Number of pages		
Bachelor's thesis	May 12, 2022		17 pages		

 ${\it Tiivistelm\"{a}--Referat--Abstract}$

Write your abstract here.

In addition, make sure that all the entries in this form are completed.

Finally, specify 1–3 ACM Computing Classification System (CCS) topics, as per https://dl.acm.org/ccs. Each topic is specified with one path, as shown in the example below, and elements of the path separated with an arrow. Emphasis of each element individually can be indicated by the use of bold face for high importance or italics for intermediate level.

ACM Computing Classification System (CCS)

General and reference \to Document types \to Surveys and overviews Applied computing \to Document management and text processing \to Document management \to Text editing

Avainsanat — Nyckelord — Keywords

learning analytics, Moodle

Säilytyspaikka — Förvaringsställe — Where deposited

Helsinki University Library

 ${\it Muita\ tietoja--\"ovriga\ uppgifter---Additional\ information}$

Sisällys

1	Joh	danto	1		
2	Oppimisen analysoinnin tarpeet				
	2.1	Oppimisanalytiikka pedagogisena työkaluna	2		
	2.2	Moodle datalähteenä	4		
	2.3	Päättelymahdollisuudet	5		
3	Datamalli oppijan kehittymisesta				
	3.1	Yleistetty malli	7		
	3.2	Yksitäiseen oppijaan kohdennetut ehdotukset	12		
	3.3	Ehdotuksien tulkinnan rajoitteet	12		
4	Yht	seenveto	13		
T.	ihtee	rt.	14		

1 Johdanto

Tutkimuskysymykset:

- 1. Millaista dataa Moodlesta saadaan oppimisanalytiikan prosessin käyttöön
- 2. Miten saatua dataa voidaan hyödyntää oppijan tukemiseksi oppimisanalytiikan avulla

HOX! Punaisella merkityt tekstiosuudet ovat tutkimuspäiväkirjan sisältöä, johon olen kirjannut ylös erilaisia havaintoja ja hyviä lähdeaineistoja talteen hyödynnettäväksi myöhemmissä vaiheissa. Normaalit tekstiosuudet ovat varsinaista kandidaatin tutkielman sisältöä. Selitettävää: Learning analytics LA <-> Educational Data Mining EDM Virtual Learning Environment VLE <-> Learning Management System LMS

LMS on on verkkopohjainen järjestelmä, joka mahdollistaa oppimateriaalin, opiskelijoiden toiminnan, tehtävätyökalujen ja oppijan edistymisen seurannan. (Mohd et al., 2016). (Romero et al., 2014)

2 Oppimisen analysoinnin tarpeet

Oppimisanalytiikka haluaa tutkia oppimista ja opettamista oppimisympäristöissä ja yrittää hyödyntää analytiikkaa tunnistaessaan poikkeamia tai tehdessään muita oppijaa tukevia havaintoja (Long ja Siemens, 2011). Vakiintunut oppimisanalytiikan määritelmä on 1st International Conference on Learning Analyticsin määritelmä (Siemens, 2013). Sen mukaan oppimisanalytiikka on oppijoista kerättävän datan mittaamista, keräämistä, analysointia ja raportointia, jota hyödynnetään oppimisen ja sen ympäristön ymmärtämiseen ja optimoimiseen (Clow, 2012).

2.1 Oppimisanalytiikka pedagogisena työkaluna

Oppimisanalytiikaa voidaan hyödyntää kolmessa eri käyttötarkoituksessa, joita ovat kuvaileva analytiikka, ohjaava analytiikka ja ennustava analytiikka (Auvinen, 2017; Daniel, 2015). Analyyttiset mallit ovat tämän kolmijaon keskiössä. Kuvailevassa analytiikassa kuvaillaan ja analysoidaan oppijoista sekä muista oppimisen osa-alueista saatavaa historiatietoa. Kuvaileva analytiikka etsii esimerkiksi nykyisiä oppimistrendejä. Ennustava analytiikka puolestaan tarjoaa oppilaitoksille mahdollisuuden tehdä datan perusteella parempia päätöksiä ja näkymiä nykytilasta. Tavoitteena on estimoida tulevien tapahtumien todennäköisyyksiä. Ohjaava analytiikka puolestaan tarjoaa oppilaitoksille mahdollisuuden arvioida nykyistä toimintaansa vaihtoehtoisten mallien pohjalta ja ohjaa parempiin päätöksiin.

Oppimisanalytiikkaa voidaan kuvata kiertävänä syklinä (Clow, 2012). Syklissä on neljä kohtaa: oppija, data, analyysi ja toiminta. Kuitenkaan aina kaikki neljä osa-aluetta eivät ole mukana, vaikka prosessi olisi oppimisanalytiikkaa. Esimerkki tälläisestä prosessista on raporttien muodostaminen, mutta tämän pohjalta ei tehdä mitään toimenpiteitä.

Syklissä oppija on oppimisanalytiikan lähtökohta (Clow, 2012). Oppijoista kerätään dataa (Wolff et al., 2013), joka on analyiikan lähtökohta. Data koostuu oppijoiden toiminnasta esimerkiksi verkko-oppimisympäristössä tai opintotietojärjestelmätiedosta. Oppimisympäristöstä saatavaa dataa voi olla esimerkiksi lokeihin jäänyt tieto oppijan oppimisympäristössä liikkumisesta tai opintotietojärjestelmässä aiemmat kurssisuoritukset. Toisaalta myös oppijan oppimiskäyttäytymisen ja -tyylin ymmärtäminen ovat oppimisanalytiikassa

Kuva 2.1: Oppimisanalytiikan eri vaiheet tiivistetysti (Clow, 2012).

keskistä (Hasan et al., 2020).

Oppijasta muodostunutta dataa voidaan tarkastella ja analysoida havainnollistaaksemme oppimisprosessia (Clow, 2012). Tämä on oppimisanalytiikan tärkein vaihe, jossa muodostetaan prosessista saatava lisäarvo. Oppijoista saatavan datan perusteella voidaan tunnistaa esimerkiksi putoamisvaarassa olevia opiskelijoita tai ennustaa heidän menestymistä kurssilla.

Oppimisanalytiikassa syklin viimeinen kohta, toiminta, on merkittävässä roolissa (Clow, 2012). Toiminnan tarkoitus on vaikuttaa oppijaan. Toimintaa voi olla esimerkiksi oppijan käytössä oleva seurantanäkymä, jossa voi vertailla toisiin opiskelijoihin tai tarvittavan tuen kartoittaminen putoamisvaarassa olevalle opiskelijalle. Oppija voi hyödyntää analytiikasta saatavaa tietoa oman oppimisensa kehittämiseen hyvin nopeallakin vasteajalla ja vaikutukset kohdistuvat oppijaan itseensä.

Aina toiminta ei tavoita oppijaa, sillä tuloksia voidaan hyödyntää usealla tasolla (Clow, 2012). Opettaja voi hyödyntää aiemman kurssi-iteraation kurssiarvosanoja kurssin kehittämisen tukena. Kurssin aikana opettajat toimet voivat vaikuttaa yhden oppijan sijasta myös useampaan oppijaan, ja opettajan toiminnan vaikutukset eivät välttämättä ole heti havaittavissa.

Hallintohenkilöstön toiminnan vaikutukset ovat laajempia ja hitaammin havaittavia heidän yhdistäessä myös opettajalta saatavan palautteen analyysiinsa (Clow, 2012). Hallintohenkilöstö pystyy toiminnallaan vaikuttamaan isompaan joukkoon oppijoita kuin yksittäinen oppija, kuten jakamalla kurssin kahteen osaan. Toisaalta oppimisanalytiikkaa voidaan hyödyntää laajemmalla tasolla esimerkiksi osana opetussuunnitelmatyötä, jolloin vaikutukset ovat vielä hitaammin havaittavissa, mutta niiden kattavuus on laajin. (Clow, 2013)

Oppimisanalytiikkaa voidaan hyödyntää usealla eri tasolla (Long ja Siemens, 2011; Sie-

mens, 2013). Kurssitasolla voidaan seurata opiskelijan toimintaa kurssilla ja tehdä havaintoja kurssin edistymisestä sekä sillä menestymisestä. Tätä voidaan tehdä esimerkiksi luokittelulla tai ennustavilla malleilla riippuen mitä halutaan analysoida. Yksi taso on hyödyntää oppimisanalytiikkaa sisällön suosittelemiseen. Tässä oppijan oppimispolku muotoillaan osaamista vastaavaksi esimerkiksi ohjaamalla perusasiat jo hyvin osaava oppija haasteellisemmalle kurssille tai tarjotaan heikommin pärjäävälle opiskelijalle taitotasoa vastaavia tehtäviä. (HOX! Tsiikaa noi muut kolme muuta Longin nostoa sekä table 1)

2.2 Moodle datalähteenä

Moodle (Modular Object-Oriented Dynamic Learning System) on vuodesta 1999 lähtien kehittetty avoimen lähdekoodin verkko-oppimisympäristö, joka on julkaistu GPL-3.0 - lisenssillä (Dougiamas, 2021; Dougiamas, 2022). Moodlella on yli 315 miljoonaa käyttäjää eri puolilla maailmaa 178 tuhannella eri Moodle-sivustolla (Moodle.org, ei julkaisupäivää). Moodle on rakennettu käyttäen ohjelmointikielenä PHP:tä ja tiedon tallentamiseen relaatiotietokantaa. Suorat SQL-kyselyt tietokantaan ja Moodlen tarjoamat metodit mahdollistavat Moodlen keräämän tiedon hyödyntämisen osana data-analyysia. Moodlen tietokantarakenteesta löytyy selkeä indeksointi avaimien perusteella (Green, 2022), jonka perusteella tietokantataulusta toiseen asioiden jäljittäminen on mahdollista.

Moodle tallentaa tietokantatauluun logstore_standard_log kaikki Moodlen Event API:n kautta tulevat tapahtumat (Dougiamas, 2022; Dougiamas et al., 2021). Tapahtumien avulla voidaan kerätä tietoa toiminnasta verkko-oppimisympäristössä (Agudo-Peregrina et al., 2014). Lokitietoa erilaisista tapahtumista voi esimerkiksi tulla Moodlen ytimen komponenteista, eri aktiviteeteistä, työkaluista ja raporteista riippuen komponentin luonteesta. Useimmat aktiviteetit tallentavat lokiin merkittäviä tapahtumia, kuten suorituksien luomisen aktiviteettiin, kurssimoduulissa vierailun, tenttiin vastaamisen ja vertaisarvioinnin antamisen. Moodlen ytimessä oppijan kannalta tärkeimmät ovat kirjautumiseen ja kurssin katseluun liittyvät tapahtumat. Lokitietoihin tallentuu aina tieto kuka on vieraillut, milloin on vieraillut, missä on vieraillut ja mistä on vieraillut (Abdullah, 2015). Tapahtumalokin avulla voidaan tarkastella oppijoiden toiminnan painottumista eri kellonaikoihin.

Moodlessa on vakiona 23 erilaista aktiviteettiä, joista jokainen tallentaa erilaista tietoa tietokantaan (Dougiamas, 2022). Jokaisella aktiviteetillä on myös omia tietokantatauluja, joihin tallennetaan aktiviteettiin liittyvä tieto. Lisäksi Moodlen kehittäjäyhteisö on julkaissut paljon Moodlea laajentavia aktiveettejä (Moodle.org, 2022). Oppilaan osaamista mittaavia

aktiviteettejä ovat esimerkiksi tentti, palaute, työpaja, oppitunti, keskustelualue ja H5P. Esimerkiksi työpaja tallentaa kaikki suoritukset tauluun workshop_submissions ja suorituksien arvioinnit tauluun workshop_grades (Green, 2022). Työpaja mahdollistaa myös vertaisarvioinnin (taulussa workshop_assessments), jossa oppija joutuu arvioimaan omaa ja toisten osaamista hyödyntämisen analytiikassa. Keskustelualueelta voidaan mitata oppijoiden aktiivisuutta viestien lukumäärällä (Mwalumbwe ja Mtebe, 2017). Aktiviteetistä myös saadaan tieto, onko sitä avattu kertaakaan taulusta course_module_completion.

Moodlen yhteisö on myös etsinyt erilaisia tapoja kerätä palautetta oppijoilta. Yksi tälläinen on pikapalautetoiminnallisuus (block_point_view), joka antaa kolmiportaisen itsearviointimahdollisuuden aktiviteettikohtaisesti (Fombaron, 2021). Tämä mahdollistaa helpon ja nopean tavan saada oppijalta itsearviointidataa siitä, miten oppija itse näkee oman suoriutumisensa kyseisessä tehtävässä. Tietokantataulusta block_point_view pystytään hakemaan käyttäjän äänestystulos kurssin, kurssimoduulin tai käyttäjän perusteella.

Joidenkin tietojen, kuten oppijan tarkemman toiminnan seuraamiseen sivulla tarvitaan kolmannen osapuolen tuottamaa tekniikkaa (Filvà et al., 2014). Tälläinen seuraamiseen soveltuva työkalu on esimerkiksi Google Analytics, joka seuraa tarkemmin käyttäjän toimintaa sivustolla. Moodlen lokitiedoista selviää milloin sivu on ladattu, mutta tietoa kuinka kauan oppija sivulla on todellisuudessa viettänyt aikaa ei tällä menetelmällä saada (Dougiamas, 2022). On teoreettisesti mahdollista, että oppija on avattuaan sivun katsellut sitä minuutin ajan ja tämän jälkeen lähtenyt kahville. Jos seuraava sivulataus on tunnin päästä, niin tästä ei pystytä luotettavasti laskemaan sivulla vietettyä todellista aikaa.

Learning Analytics API tarjoaa Moodlen oman rajapinnan oppimisanalytiikan toteuttamiseen (Olivé et al., 2018). Moodlessa se jakautuu kahteen osaan, Moodlen Analytics API:n ja Machine Learning backendiin. Analytics API tuottaa mallien tarvitsemaa tietoa koneluettavassa CSV-muodossa. Backend puolestaan vastaa itse tiedon käsittelystä ja analysoinnista. Moodleen on sisäänrakennettu tämän viitekehyksen sisällä opiskelijoiden tippumisen tunnistamisen tarjoava malli sekä kurssin opetuksen puuttumisen tunnistava malli (Monllaó et al., 2021).

2.3 Päättelymahdollisuudet

Oppijan menestymistä kurssilla voidaan ennustaa eri tarkoituksissa (Barber ja Sharkey, 2012a). Tähän voidaan hyödyntää aiempien kurssien menestystietoa muista lähteistä, sekä

kurssin edistyessä lisätä kurssisuorituksista saatavaa tietoa mukaan analyysiin. Yhdistämällä tämän visualisointiin, voidaan tarjota oppijalle reaaliaikainen näkymä kurssiarvosanasta ja hyödyntää tätä motivaattorina. Yksi ennustamisen mahdollisuus on tarkastella valmistuuko koulutukseen hakija ennusteen mukaan tavoiteaikataulussa.

Toisaalta voidaan tarkastella onko oppija vaarassa pudota kurssilta (Olivé et al., 2018; Suhonen ja Kinnari-Korpela, 2019). Tarkastellaan oppijan toimintaa verkko-oppimisympäristössä ja yritetään löytää eri merkkejä oppijan putoamisest akurssilta. Tarkastelua voidaan laajentaa myös kurssien väliseksi (Kinnari-Korpela ja Suhonen, 2020) ja analytiikan löytäessä putoamisvaarassa olevan oppijan, voidaan hänelle tarjota kohdistetusti tukea oppimiseen jo aikaisessa vaiheessa.

Oppimisanalytiikan avulla voidaan tehdä opetuksen kehttämistä (Romero ja Ventura, 2010). Oppimisanalytiikasta saatavalla datalla voidaan suunnitella kurssien resursointia, kehittää opetussuunnitelmia sekä tukea hallinnon päätöksiä. Oppimisanalytiikalla voidaan löytää nykyisistä kursseista heikkoja kohtia, joihin ratkaisu voi olla esimerkiksi uuden kurssin luominen tai nykyisen kehittäminen tukemaan osaamisvajeen paikkaamista. Tämä voi näkyä esimerkiksi oppimateriaalin kehittämisenä, mikäli analytiikka osoittaa tietyn osaalueen tehtävien menevän muita heikommin, kun saman aikaisesti tiettyä opetusmateriaalin osaa tarkastellaan muita enemmän.

Oppimispolku on ohjeistus, joka kertoo oppimistehtävien ohjeistukset ja tavoitteet, sekä havainnollistaa oppimisen edistymistä kurssin aikana (Toivola, 2017). Oppimispolun halutaan mahdollistaa oppijan oman luontaisen oppimistahdin hyödyntäminen. Oppimisanalytiikan avulla voidaan visualisoida oppijan edistyminen oppimispolulla ja tarjota myös suosituksia seuraavista tehtävistä (Long ja Siemens, 2011). Jos oppija ei ole vielä ymmärtänyt jotain oppimispolun osa-aluetta, voi analytiikka ehdottaa lisätehtävää osaamisen vahvistamiseksi ennen seuraavaan osa-alueeseen siirtymistä. Pikapalautetta voidaan hyödyntää itsearvioiden toteuttamiseen ja edelleen analytiikan tukena.

Tätä voitaisiin myös hyödyntää kurssipolkujen suunnittelussa ehdottamalla esimerkiksi oppijalle seuraavia kursseja aiempien kurssien menestyksen pohjalta (Long ja Siemens, 2011). Jos oppija ei ole esimerkiksi pärjännyt matriisilaskennan ensimmäisellä kurssilla, niin oppimisanalytiikka voisi ehdottaa matriisilaskennan ensimmäisen kurssin asioita kertaavaa kurssia ennen siirtymistä toiselle kurssille.

3 Datamalli oppijan kehittymisesta

Oppimisanalytiikassa yhdistelemällä tilastollisia menetelmiä ja predikatiivista mallintamista voidaan kohdentaa ohjausta oppijoiden haasteisiin oppimisessa ja tarjoamalla kohdistettua tukea saatavan datan avulla (Ranjeeth et al., 2020). Käytettävät prediktiiviset mallit voivat olla mitä vain datanlouhinta-, koneoppimis- ja keinotekoisia menetelmiä.

Predikatiivisten mallien avulla muodostetaan keskimääräistä oppijaa kuvaavia malleja, joiden avulla yksittäisiä oppijoita voidaan vertailla (Wolff et al., 2013). Prediktiivisen mallinnuksen avulla voidaan ennustaa esimerkiksi kuinka oppija tulee menestymään kurssilla ja onko oppija pääsemässä kurssia läpi. Tämä tapahtuu vertailemalla oppijaa muodostetuun malliin ja ennusteen perusteella katsotaan onko oppija vaarassa olla läpäisemättä kurssia.

3.1 Yleistetty malli

Ennen datan syöttämistä analysointia tai luokittelua tekevälle mallille, tulee aineistolle suorittaa esikäsittely (Romero et al., 2014). Esikäsittely aloitetaan keräämällä tarvittava data kasaan, joka ryhmitellään sopiviin ja järkeviin kokonaisuuksiin. Datan ryhmittelyn jälkeen poistetaan siitä kaikki epäolennainen ja virheellinen sisältö. Aineistosta tunnistetaan käyttäjät ja heidän asiointisessiot kohdistaaksemme analyysin oikeisiin oppijoihin. Korreloivat ja toisteiset muuttujat jätetään pois, kun valitaan aineistosta sopivat selittävät muuttujat. Isoista data-aineistoista poistetaan aiempien vaiheiden jälkeen turhiksi jääneet kentät, jotka olisivat epäolennaisia prosessille. Lopuksi tarkastellaan mahdollisuutta muodostaa uusia muuttujia olemassa olevien muuttujien perusteella, kuten normalisoida jonkin muuttujan arvot tietylle välille tai muuttaa esitystapaa sopivammaksi.

Datamallin rakentaminen on iteratiivinen prosessi, jossa on useita vaiheita (Hämäläinen ja Vinni, 2010). Iteratiivisen prosessin aikana kokeillaan useita erilaisia malleja, datan esitysmuotoja ja algoritmien asetuksia löytääksemme parhaan mahdollisen datamallin. Valitun mallin toimivuus voidaan todentaa luokittelun onnistumisella, sillä mallin soveltuvuus voidaan kyseenalaistaa liian monen luokitteluvirheen jälkeen.

Oppimisanalytiikassa usein käytetään luokittelua, jota hyödynnetään opetuksessa yleises-

ti opettajien arvioidessa oppijoiden tietotasoa, motivaatiota ja käytöstä (Hämäläinen ja Vinni, 2010). Oppimisanalytiikassa luokittelua tehdään selitettävän muuttujan arvoa ennustavalla mallilla, jota ennustetaan selittävien muuttujien arvojen avulla. Luokittimia voidaan tehdä joko ammattilaisten käsityönä tai nykyisin yleisemmällä tavalla opettaa luokitin luokittelemaan olemassa olevalla datalla.

Useissa oppimisanalytiikkaa käsittelevissä tutkimuksissa on kokeiltu erilaisia luokittelualgoritmejä parhaiten toimivan mallin löytämiseksi (Akçapınar et al., 2019). Usein käytettyjä algoritmejä ovat naiivi Bayes, Classification Tree, Random Forest, tukivektorikone (SVM), neuroverkko, CN2 rules ja k-lähinaapurimenetelmä. Yksi tapa etsiä parhaiten toimivaa mallia on tehdä suorituskykymittauksia, joissa tarkastellaan tarkkuutta, herkkyyttä, yksityiskohtaisuutta ja F-Measurea.

Yksi mallin toteuttamistapa on käyttää ristivalidointia, kuten k-kertaista ristiinvalidointia (Deisenroth et al., 2020). Aineisto jaetaan k osaan, joista yhtä osaa kerrallaan käytetään testiaineistona \mathcal{V} ja k-1 osaa koulutusaineistona \mathcal{R} . Tällöin aineistosta käytetään suurin osa mallin kouluttamiseen, mutta samasta aineistosta saadaan myös testiaineisto muodostettua. Ristiinvalidoinnissa käydään läpi kaikki mahdolliset k vaihtoehtoa valita testiaineisto jakamalla data-aineisto kahteen osaan $D = \mathcal{R} \cup \mathcal{V}$, missä $\mathcal{R} \cap \mathcal{V} = \emptyset$. Näiden k-suorituskerran muodostamien mallien suorituskyky tarkastellaan keskiarvona.

Kuva 3.1: Ristiinvalidoinnissa data-aineisto jaetaan kerrallaan k osaan, missä k-1 osaa ovat koulutusaineistoa (harmaalla merkityt osuudet) ja yksi osa testausaineistoa (oranssilla merkityt osuus) (Deisenroth et al., 2020).

Koulutusaineistolla \mathcal{R} koulutetun mallin f suorituskykyä tarkastellaan testausaineiston \mathcal{V} avulla, jolle lasketaan keskineliövirheen neliöjuuren avulla empiirinen riski testausaineistolla \mathcal{V} (Deisenroth et al., 2020). K-kertaisessa ristiinvalidoinnissa lasketaan jokaiselle koulutusaineiston k-osan $\mathcal{R}^{(k)}$ predikaattorille $f^{(k)}$ empiirinen riski $R(f^{(k)}, \mathcal{V}^{(k)})$ käyttäen

testiaineistoa $\mathcal{V}^{(k)}$. Kaikille mahdollisille k-osaan jaoille ristiinvalidointi arvioi odotetun vleistysvirheen kaavasta

$$\mathbb{E}_{\mathcal{V}}[R(f,\mathcal{V})] \approx \frac{1}{K} \sum_{k=1}^{K} R(f^{(k)},\mathcal{V}^{(k)}).$$

Käytettävässä arvioinnissa on kaksi lähdettä, joista toisessa rajatulla koulutusaineistolla ei välttämättä saada parasta mahdollista $f^{(k)}$ ja toisessa testausaineistolla ei saada tarkkaa arviota riskistä $R(f^{(k)}, \mathcal{V}^{(k)})$.

Mallia toteutettaessa on huomioitava myös yli- ja alisovittamisen vaara, jotta mallin tarkkuus ei kärsisi (Hämäläinen ja Vinni, 2010). Ylisovittamisessa malli on sovitettu koulutusaineistoon niin tarkasti, että se huomioi jopa kaikki erikoistapaukset sekä koulutusdatan virheet. Tämä ilmenee liian monimutkaisena mallina suhteessa käytettävän data-aineiston kokoon. Alisovittamisessa liian yksinkertainen malli ei pysty välttämättä tulkitsemaan data-aineistoa ja täten malli ei kuvaa todellisuutta tai kuvaa sitä todella vähän.

Yksi tapa tehdä luokittelua on käyttää naiivia Bayesin luokitinta (Natingga, 2018). Naiivi Bayesin luokitin pohjautuu Bayesin teoreemaan

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)},$$

missä A ja B ovat tapahtumia, P(A) on todennäköisyys tapahtumalle A olla tosi ja P(A|B) on ehdollinen todennäköisyys tapahtumalle A olla tosi, mikäli tapahtuma B on tosi. Naiivissa Bayesin luokittimessa datapisteiden joukolle annetaan Bayesin teoreeman perusteella todennäköisin luokka. Tämä tapahtuu laskemalla todennäköisyys sille, kuinka todennäköisesti asia A tapahtuu, jos ehto B saa tietyn arvon.

Bayesin teoreemaa voidaan hyödyntää myös useamman todennäköisyystapahtuman kanssa, jolloin käytetään laajennettua Bayesin teoreemaa (Natingga, 2018). Jos määritellään tapahtumat B_1, \ldots, B_n olemaan ehdollisesti riippumattomia tapahtumasta A, niin Bayesin teoreema voidaan esittää muodossa

$$P(A|B_1,\ldots,B_n) = \frac{P(B_1,\ldots,B_n|A) \cdot P(A)}{P(B_1,\ldots,B_n)}.$$

Nämä satunnaismuuttujina toimivat todennäköisyystapahtumat voivat olla diskreettejä tai jatkuvia seuraten todennäköisyysjakaumaa, kuten normaalijakaumaa.

Käytettäessä Bayesilaista todennäköisyyttä täytyy vertailtavien tapahtumien olla riippumattomia toisistaan (Natingga, 2018). Jos vertaillaan lämpötilaa ja vuodenaikaa keskenään, niin näiden välillä havaitaan olevan riippuvuus: talvella on kylmää ja kesällä lämmintä. Tämä estää Bayesin teoreeman käyttämisen luokittelemiseen. Tämä voidaan kiertää tekemällä analyysia niille data-aineiston tapahtumille, jotka eivät ole riippuvia toisistaan.

Oppimisanalytiikassa naiivilla Bayesin luokittimella voidaan esimerkiksi yrittää tunnistaa opiskelijoita, jotka ovat vaarassa saada hylätyn osallistumaltaan kurssilta (Barber ja Sharkey, 2012b). Selittävinä muuttujina oli henkilöön liittyviä taustatietoja, suoritettujen opintopisteiden suhde yritettyihin opintopisteisiin sekä toimintaa verkko-oppimisympäristön keskustelualueella ja selitettävänä muuttujana pääseekö oppija kurssin läpi. Selittäville muuttujille oli annettu eri painoarvoja riippuen kurssin viikosta. Verrattuna logistiseen regressioon, lisättyjen selittävien muuttujien kanssa nähtiin kurssin viikolla 0 35 %-yksikön parannus ennustustarkkuudessa datamäärän ollessa pienempi ja eron kaventuessa huomattavasti lähemmäs toisiaan viikolla 3 datamäärän kasvettua, missä logistisella regressiolla keskimäärin 94% ennustuksista onnistui ja naiivilla Bayesillä 95% onnistui.

Toinen mahdollisuus tehdä tilastollista analyysia kerätylle oppimisdatalle on regressioanalyysi (Song, 2018; Romero ja Ventura, 2010; Papamitsiou ja Economides, 2014). Regressioanalyysiä voidaan tehdä usealla eri tavalla, kuten yksinkertaisella lineaarisella regressiolla, usean selittäjän lineaarisella regressiolla ja logistisella regressiolla. Regression avulla voidaan ennustaa lineaarisesti esimerkiksi kuinka opiskelija tulee menestymään eri selittävien muuttujien vaikutus huomioiden.

Lineaarinen regressio kuvaa yhden selittävän ja yhden selitettävän muuttujan yhteyttä toisiinsa (Ross, 2017). Yksinkertainen lineaarinen regressio voidaan esittää kaavana

$$Y = \alpha + \beta x + e$$

jossa x kuvaa selittävää muuttujaa ja y kuvaa selitettävää muuttujaa. Parametrit α ja β ovat tuntemattomia suureita, estimaattoreita, jotka estimoidaan datan perusteella. Muuttuja e kuvaa satunnaista virhettä, jonka oletetaan noudattavan normaalijakaumaa odotusarvolla 0 ja varianssilla σ^2 . Varianssin oletetaan olevan sama riippumatta selittävistä muuttujista x.

Parametrien α ja β estimointiin voidaan käyttää pienimmän neliösumman estimointia (Ross, 2017). Tällöin halutaan löytää sellaiset arvot estimaateille α ja β , joilla virheen neliösumma $\sum_{i=1}^{n} \epsilon_i^2$ on mahdollisimman pieni. Pienimmän neliösumman estimaatit $\hat{\alpha}$ ja $\hat{\beta}$ parametreille α ja β saadaan laskettua kaavoista

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

ja

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{x},$$

missä
$$\overline{x} = \frac{\sum_{i=1}^n x_i}{n}$$
 ja $\overline{Y} = \frac{\sum_{i=1}^n Y_i}{n}$.

Estimoidussa regressioviivassa $y = \hat{\alpha} + \hat{\beta}x$ estimaatti $\hat{\alpha}$ kuvaa suoran kulmakerrointa ja estimaatti $\hat{\beta}$ suoran vakiota, eli kohtaa y-akselilta missä suora leikkaa y-akselin (Ross, 2017). Tämän estimoidun regressioviivan avulla voidaan ennustaa selitettävän muuttujan y arvoja käyttäen selittävän muuttujan x arvoja.

Yksinkertainen lineaarinen regressio voidaan laajentaa usean selittäjän lineaariseksi regressioksi, joka kuvaa useamman selittävän muuttujan x_1, \ldots, x_i vaikutusta selitettävään muuttujan Y (Ross, 2017). Matemaattisena kaavana esitettynä usean selittäjän lineaarinen regressio on

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + e,$$

jossa Y on selitettävä muuttuja, ja x_i kuvaa selittäviä muuttujia, missä $i=1,\cdots,k$. Regressioparametrejä yhtälössä kuvaa $\beta_0,\beta_1,\cdots,\beta_k$ ja satunnaisvirhettä e.

Myös regressiossa täytyy selittävien muuttujien olla riippumattomia toisistaan, eli nämä muuttujat eivät saa olla keskenään korreloivia (Daoud, 2017). Tätä ilmiötä kutsutaan multikollineaarisuudeksi. Ilmiö voidaan havaita tapauksissa, joissa tapahtuu suurta vaihtelua estimoiduissa kertoimissa lisättäessä tai poistettaessa selittäviä muuttujia tai poistettaessa yksittäisiä datapisteitä.

Yhdistelläksemme tietyllä välillä liikkuvia muuttujia kategoristen muuttujien kanssa, voidaan käyttää dummy-muuttujia kuvaamaan näitä arvoja (Ross, 2017). Tällöin voidaan hyödyntämään sellaisia selittäviä kategorisia muuttujia, jotka eivät lähtökohtaisesti ole numeerisessa muodossa. Jos esimerkiksi usean selittäjän lineaarisessa regressiossa muuttuja x_3 kuvaa onko opiskelija tutkinto-opiskelija, voidaan tämä esittää numeraalisessa muodossa seuraavasti:

$$x_3 = \begin{cases} 1 = \text{opiskelija on tutkinto-opiskelija} \\ 0 = \text{opiskelija ei ole tutkinto-opiskelija} \end{cases}$$

Usean selittäjän lineaarista regressiota voidaan hyödyntää esimerkiksi etsittäessä eri relaatioita opiskelijan verkko-oppimisympäristön toiminnan ja akateemisen menestyksen väliltä (Agudo-Peregrina et al., 2014). Riippumattomia selittäviä muuttujia olivat eri tyyppiset interaktiot verkko-oppimisympäristössä ja riippuvana selittävänä muuttujana jokaisen oppijan saamana kurssin päättöarvosanana esittety akateeminen menestys, joiden väliltä löydettiin merkittäviä relaatioita.

3.2 Yksitäiseen oppijaan kohdennetut ehdotukset

- 1. arviointi- ja muiden seuraamisperiaatteiden muotoileminen malliksi
- 2. kurssiarvosanan ennustaminen kurssin edistyessä
- 3. suositeltavat jatkokurssit
- 4. Educational Data Mining EMD, ainakin (Romero ja Ventura, 2010)

3.3 Ehdotuksien tulkinnan rajoitteet

- 1. etiikka?! (Kaila et al., 2019)
- 2. laki, henkilötieto? (Hannula, 2017)
- 3. virhearviot
- 4. yhden asian tajuamatta jääminen !== huono kurssimenestys
- 5. model bias
- 6. mallien todennäköisyydet kuinka todennäköisesti tämä pitää paikkansa. voidaanko 72 prosentin todennäköisyyttä pitää sellaisena, että se toimii luotettavana ohjauksen työkaluna?

tilastollinen malli kuvaa optimia, ja verrataan kuinka data sopii tähän malliin Useiden eri mallien välisessä vertailussa naiivi Bayes oli ennustustamisen osalta paras algoritmi (Kotsiantis et al., 2004).

4 Yhteenveto

Havaintona, että viime vuosina Moodlella tehdyt oppimisanalytiikan tutkimukset ovat vähentyneet ja useat tutkimukset ovat käyttäneet nykymittapuulla vanhentuneita Moodleversioita.

Oppimisanalytiikalla ei voida korvata oppijoiden ohjausta, vaan oppimisanalytiikka on yksi työkalu kaikkien muiden työkalujen joukossa (Auvinen, 2017). Oppimisanalytiikalla voidaan tehostaa tätä toimintaa.

Useat ennusteet hyödyntävät paljon muutakin dataa kuin oppimisympäristöstä saatavaa dataa

Lähteet

- Abdullah, M. A. (maaliskuu 2015). "Learning Style Classification Based on Student's Behavior in Moodle Learning Management System". Transactions on Machine Learning and Artificial Intelligence 3.1, s. 28–28. ISSN: 2054-7390. DOI: 10.14738/tmlai.31.868.
- Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á. ja Hernández-García, Á. (helmikuu 2014). "Can We Predict Success from Log Data in VLEs? Classification of Interactions for Learning Analytics and Their Relation with Performance in VLE-supported F2F and Online Learning". Computers in Human Behavior 31, s. 542–550. ISSN: 0747-5632. DOI: 10.1016/j.chb.2013.05.031.
- Akçapınar, G., Altun, A. ja Aşkar, P. (lokakuu 2019). "Using Learning Analytics to Develop Early-Warning System for at-Risk Students". *International Journal of Educational Technology in Higher Education* 16.1, s. 40. ISSN: 2365-9440. DOI: 10.1186/s41239-019-0172-z.
- Auvinen, A.-M. (elokuu 2017). Oppimisanalytiikka tulee oletko valmis?
- Barber, R. ja Sharkey, M. (huhtikuu 2012a). "Course Correction: Using Analytics to Predict Course Success". ACM International Conference Proceeding Series. DOI: 10.1145/2330601.2330664.
- (huhtikuu 2012b). "Course Correction: Using Analytics to Predict Course Success". ACM International Conference Proceeding Series. DOI: 10.1145/2330601.2330664.
- Clow, D. (huhtikuu 2012). "The Learning Analytics Cycle: Closing the Loop Effectively". Teoksessa: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge. Vancouver British Columbia Canada: ACM, s. 134–138. ISBN: 978-1-4503-1111-3. DOI: 10.1145/2330601.2330636.
- (2013). "An Overview of Learning Analytics", s. 23.
- Daniel, B. (2015). "Big Data and Analytics in Higher Education: Opportunities and Challenges". *British Journal of Educational Technology* 46.5, s. 904–920. ISSN: 1467-8535. DOI: 10.1111/bjet.12230.
- Daoud, J. I. (joulukuu 2017). "Multicollinearity and Regression Analysis". *J. Phys.: Conf. Ser.* 949, s. 012009. ISSN: 1742-6588, 1742-6596. DOI: 10.1088/1742-6596/949/1/012009.
- Deisenroth, M. P., Faisal, A. A. ja Ong, C. S. (2020). Mathematics for Machine Learning.

- Dougiamas, M. (2021). "The Power of Open Educational Technology". Teoksessa: *Reimagining Digital Learning for Sustainable Development*. Routledge. ISBN: 978-1-00-308969-8.
- (toukokuu 2022). Moodle. Moodle HQ.
- Dougiamas, M., Mudrak, D., Lafuente, E., Monllaó, D., Bannister, T., de Raadt, M., Morris, R., Agarwal, A., Kavalerchik, N., Glancy, M., Škoda, P., Taneja, R., Massart, F., Greeve, A., Nelson 2, M., Guillaume, A. ja Massart, F. (heinäkuu 2021). "Logging 2 MoodleDocs". *Logging 2*.
- Filvà, D. A., Guerrero, M. J. C. ja Forment, M. A. (kesäkuu 2014). "Google Analytics for Time Behavior Measurement in Moodle". Teoksessa: 2014 9th Iberian Conference on Information Systems and Technologies (CISTI), s. 1–6. DOI: 10.1109/CISTI.2014. 6877095.
- Fombaron, Q. (marraskuu 2021). Moodle Plugin « Point of View ».
- Green, M. (maaliskuu 2022). Moodle_3.11 Database. https://www.examulator.com/er/output/index.htm Hannula, H. (maaliskuu 2017). Oppijan digitaalinen jalanjälki – oppimisen arjessa kertyvät henkilötiedot sekä oikeus ja mahdollisuudet niiden käyttämiseen.
- Hasan, R., Palaniappan, S., Mahmood, S., Abbas, A., Sarker, K. U. ja Sattar, M. U. (tammikuu 2020). "Predicting Student Performance in Higher Educational Institutions Using Video Learning Analytics and Data Mining Techniques". Applied Sciences 10.11, s. 3894. ISSN: 2076-3417. DOI: 10.3390/app10113894.
- Hämäläinen, W. ja Vinni, M. (lokakuu 2010). "Classifiers for Educational Data Mining". Teoksessa: *Handbook of Educational Data Mining*. Toim. C. Romero, S. Ventura, M. Pechenizkiy ja R. Baker. Vol. 20103384. CRC Press, s. 57–74. ISBN: 978-1-4398-0457-5 978-1-4398-0458-2. DOI: 10.1201/b10274-7.
- Kaila, E. T., Kurvinen, E. ja Apiola, M.-V. (2019). "Ethical Considerations in Learning Analytics: Tethics". CEUR Workshop Proceedings 2505, s. 61–63. ISSN: 1613-0073.
- Kinnari-Korpela, H. ja Suhonen, S. (heinäkuu 2020). Oppimisanalytiikalla tehokkaampaan ohjaukseen. https://tamkjournal.tamk.fi/oppimisanalytiikalla-tehokkaampaan-ohjaukseen/. publication.
- Kotsiantis, S., Pierrakeas, C. ja Pintelas, P. (toukokuu 2004). "PREDICTING STU-DENTS' PERFORMANCE IN DISTANCE LEARNING USING MACHINE LEAR-NING TECHNIQUES". Applied Artificial Intelligence 18.5, s. 411–426. ISSN: 0883-9514, 1087-6545. DOI: 10.1080/08839510490442058.
- Long, P. ja Siemens, G. (2011). "Penetrating the Fog: Analytics in Learning and Education", s. 6.

- Mohd, K., Nurul, N. ja Khalid, F. (2016). Choosing the Right Learning Management System (LMS) for the Higher Education Institution Context: A Systematic Review Helka. https://helka.helsinki.fi.
- Monllaó, D., Dalton, E., Bösch, L., Aherne, M. ja Mudrak, D. (heinäkuu 2021). *Analytics API MoodleDocs*. https://docs.moodle.org/dev/Analytics_API.
- Moodle.org (marraskuu 2022). Moodle Plugins Directory Activity Modules. https://moodle.org/plugins/?q (ei julkaisupäivää). Moodle Statistics. https://stats.moodle.org/.
- Mwalumbwe, I. ja Mtebe, J. S. (2017). "Using Learning Analytics to Predict Students' Performance in Moodle Learning Management System: A Case of Mbeya University of Science and Technology". THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES 79.1, s. 1–13. ISSN: 1681-4835. DOI: 10.1002/j.1681-4835.2017.tb00577.x.
- Natingga, D. (2018). Data Science Algorithms in a Week Second Edition. 2nd edition. Packt Publishing. ISBN: 1-78980-607-0.
- Olivé, D. M., Huynh, D. Q., Reynolds, M., Dougiamas, M. ja Wiese, D. (lokakuu 2018). "A Supervised Learning Framework for Learning Management Systems". Teoksessa: Proceedings of the First International Conference on Data Science, E-learning and Information Systems. DATA '18. New York, NY, USA: Association for Computing Machinery, s. 1–8. ISBN: 978-1-4503-6536-9. DOI: 10.1145/3279996.3280014.
- Papamitsiou, Z. ja Economides, A. A. (2014). "Learning Analytics and Educational Data Mining in Practice: A Systematic Literature Review of Empirical Evidence". *Journal of Educational Technology & Society* 17.4, s. 49–64. ISSN: 1176-3647.
- Ranjeeth, S., Latchoumi, T. P. ja Paul, P. V. (tammikuu 2020). "A Survey on Predictive Models of Learning Analytics". *Procedia Computer Science*. International Conference on Computational Intelligence and Data Science 167, s. 37–46. ISSN: 1877-0509. DOI: 10.1016/j.procs.2020.03.180.
- Romero, C., Romero, J. R. ja Ventura, S. (2014). "A Survey on Pre-Processing Educational Data". Teoksessa: *Educational Data Mining*. Toim. A. Peña-Ayala. Vol. 524. Cham: Springer International Publishing, s. 29–64. ISBN: 978-3-319-02737-1 978-3-319-02738-8. DOI: 10.1007/978-3-319-02738-8 2.
- Romero, C. ja Ventura, S. (marraskuu 2010). "Educational Data Mining: A Review of the State of the Art". *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)* 40.6, s. 601–618. ISSN: 1558-2442. DOI: 10.1109/TSMCC. 2010.2053532.

- Ross, S. M. (tammikuu 2017). "Introductory Statistics". Teoksessa: *Introductory Statistics* (Fourth Edition). Toim. S. M. Ross. Oxford: Academic Press, s. 797–800. ISBN: 978-0-12-804317-2. DOI: 10.1016/B978-0-12-804317-2.00031-X.
- Siemens, G. (lokakuu 2013). "Learning Analytics: The Emergence of a Discipline". *American Behavioral Scientist* 57.10, s. 1380–1400. ISSN: 0002-7642. DOI: 10.1177/0002764213498851.
- Song, D. (heinäkuu 2018). "Learning Analytics as an Educational Research Approach". *INTERNATIONAL JOURNAL OF MULTIPLE RESEARCH APPROACHES* 10, s. 102–111. DOI: 10.29034/ijmra.v10n1a6.
- Suhonen, S. ja Kinnari-Korpela, H. (2019). *Using Moodle Data for Early Warning of Dropping Out.* http://www.theseus.fi/handle/10024/333373. Publication.
- Toivola, M. (2017). Flipped learning: käänteinen oppiminen. 1. painos. Helsinki: Edita. ISBN: 978-951-37-7238-3.
- Wolff, A., Zdrahal, Z., Nikolov, A. ja Pantucek, M. (2013). "Improving Retention: Predicting at-Risk Students by Analysing Clicking Behaviour in a Virtual Learning Environment". Teoksessa: *Proceedings of the Third International Conference on Learning Analytics and Knowledge LAK '13*. Leuven, Belgium: ACM Press, s. 145. ISBN: 978-1-4503-1785-6. DOI: 10.1145/2460296.2460324.