Chapter 4 Fonctions logarithmes, exponentielles, puissances

Rappel sur les fonctions polynomiales 4.1

Logarithmes, exponentielles 4.2

Exercice 4.1

Résoudre

$$\ln|x+1| - \ln|2x+1| \le \ln 2.$$

Exercice 4.2

Démontrer que, pour tout $x \ge 0$, on a

$$x - \frac{x^2}{2} \le \ln(1+x) \le x.$$

Exercice 4.3

Déterminer le nombre de solutions dans $]0, +\infty[$ de l'équation

$$x \ln(x) = 1.$$

Exercice 4.4

Simplifier, en précisant éventuellement le domaine de validité

1.
$$e^{3 \ln 5}$$
.

3.
$$2 \ln (e^{x/2}) - 2e^{\ln(x/2)}$$
.
4. $e^{2 \ln|x-1|-3 \ln(x^2+1)}$.

2.
$$e^{-2 \ln 3}$$
.

4.
$$e^{2\ln|x-1|-3\ln(x^2+1)}$$

Exercice 4.5

Résoudre l'équation suivante, d'inconnue $x \in \mathbb{R}$:

$$e^{4x+1} + 3e^{2x+1} = 4e$$
.

Exercice 4.6

Discuter, suivant les valeurs du paramètre m, le nombre des racines de l'équation

$$e^{2x} - 4me^x + 2m + 2 = 0. (4.1)$$

Résoudre cette équation dans le cas où m = 1.

Exercice 4.7

Discuter selon les valeurs de $a \in \mathbb{R}_+^*$ les solutions de l'équation

$$a^{x^2 - x} \le e^{x - 1} \tag{E}$$

d'inconnue réelle x.

Exercice 4.8

- **1.** Soit $a \in \mathbb{R}_+^{\star}$. Déterminer la dérivée et les variations de la fonction $\phi_a : x \mapsto a^x \text{ sur } \mathbb{R}$.
- **2.** Résoudre l'équation $2^x + 3^x = 5$ d'inconnue $x \in \mathbb{R}$.

Exercice 4.9

- **1.** Étudier et tracer la fonction f définie par $f(x) = \frac{\ln(x)}{x}$.
- **2.** En déduire les couples (a, b) d'entiers tels que $2 \le a < b$ et $a^b = b^a$.
- **3.** Quel est le plus grand : e^{π} ou π^{e} ?

Exercice 4.10

Résoudre les inéquations suivantes, d'inconnue réelle x.

- 1. $3^x \le 2^x$.
- **2.** $\log_2(2^x + 1) < x + 1$.
- 3. $x^{(x^2)} \le (x^2)^x$.

Exercice 4.11

Pour tout entier naturel n, on note I_n le nombre d'entiers naturels p vérifiant

$$50^n < 7^p < 50^{n+1}$$
.

- **1.** Calculer I_0, I_1, I_2 .
- **2.** Montrer que, pour tout entier n, I_n vaut 2 ou 3.

4.3 Fonctions puissances

Exercice 4.12

Résoudre l'équation

$$x^{1/4} + 2x^{5/3} - 3 = 0.$$

Exercice 4.13

Résoudre dans]0, +∞[l'équation

$$x^{(x^x)} = (x^x)^x.$$

Exercice 4.14

- **1.** Dresser le tableau des variations de la fonction $f: x \mapsto (1+x)^x$.
- 2. En déduire que

$$\forall x > -1, (1+x)^x > 1.$$

4.4 Fonctions hyperboliques

Exercice 4.15

Établir pour $a, b \in \mathbb{R}$,

$$ch(a + b) = ch a ch b + sh a sh b$$
 et $sh(a + b) = sh a ch b + ch a sh b$.

Exercice 4.16

Soit $m \in \mathbb{R}$.

- 1. Résoudre l'équation sh x = m. Qu'en déduit-on en termes de bijectivité?
- **2.** Résoudre l'équation ch x = m. Qu'en déduit-on en termes de bijectivité?

Exercice 4.17

Résoudre les systèmes d'équations suivants d'inconnue $(x, y) \in \mathbb{R}^2$.

1.
$$\begin{cases} \cosh x + \cosh y = \frac{35}{12} \\ \sinh x + \sinh y = \frac{25}{12} \end{cases}$$

2.
$$\begin{cases} \operatorname{ch} x + \operatorname{ch} y = a \operatorname{ch} b \\ \operatorname{sh} x + \operatorname{sh} y = a \operatorname{sh} b \end{cases}, \text{ où } (a, b) \in \mathbb{R}^2.$$