High-d (Heidi) Swiss Army Knife

Luis Oala

August 9, 2020

Outline

James Gilmer: High-d Error Rates

Eric Nalisnick: Degenerate OOD detection in High-d

vd Oord and Theis: How Likelihoods Can Break in High-d

Charu Aggarwal: High-d Metric Surprises

James Gilmer: High-d Error Rates

James Gilmer: High-d Error Rates

Setup¹

- error set E: set of points in the input space on which the classifier makes an incorrect prediction
- **corruption robustness** $\mathbb{P}_{x \sim q}[x \notin E]$: probability that a random sample from the q is not an error, under a given corrupted image distribution q.
- ▶ adversarial robustness $\mathbb{P}_{x \sim p}[d(x, E) > \epsilon]$: probability that a random sample from p is not within distance ϵ of some point in the error set, where metric on the input space d(x, E) denotes the distance from clean input x to the nearest point in E (also based on work by [2])
- **error rate** μ : $\mathbb{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{x}_0; \sigma^2 I)}[\mathbf{x} \in E]$, with some clean image \mathbf{x}_0 and the Gaussian distribution $\mathcal{N}(\mathbf{x}_0; \sigma^2 I)$
- $ightharpoonup \sigma(x_0, \mu)$: For a fixed μ , the σ for which the error rate is μ

https://slideslive.com/38930579/
why-adversarial-examples-feel-like-bugs

Figure 1: Sphere cutting illustration by [3]

Analysis

Letting d denote l_2 distance, we have

$$d(x_0, E) = -\sigma(x_0, \mu)\Phi^{-1}(\mu), \tag{1}$$

where

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} \exp(-x^2/2) dx$$

is the cdf of the univariate standard normal distribution. (Note that $\Phi^{-1}(\mu)$ is negative when $\mu < \frac{1}{2}$.)

Observations

Equation 1 does not depend on n

n	$\sigma\sqrt{n}$	$d(x_0, E)$
3	0.17	0.23
150,528 (ImageNet)	38.8	0.23

Table 1: Linear model - distance of typical corrupted input $(\sigma \sqrt{n})$ and distance of nearest error $(d(x_0, E))$ under varying input dimension n

$$\frac{d(x_0,E)}{\sigma\sqrt{n}}$$

Geometric Interpretation of Equation 1: Gaussian Annulus Theorem

Figure 2: Equator concentration of spherical volume and surface area ²

Eric Nalisnick: Degenerate OOD detection in High-d

Eric Nalisnick: Degenerate OOD detection in High-d

Decision rule:

$$p(\mathbf{X}^* \mid \text{IN}) > \frac{p(\mathbf{X}^* \mid \text{OUT}) \ p(\text{OUT})}{p(\text{IN})}$$
 (a)

Decision rule:

$$|q(\mathbf{X}^*)| > \frac{|\mathsf{UNIFORM}(\mathbf{X}^*)| p(\mathsf{OUT})}{p(\mathsf{IN})}$$

Implies classifier is just a threshold on the density function:

$$q(\mathbf{X}^*) > \hat{\tau}$$
 (b)

Eric Nalisnick: Degenerate OOD detection in High-d (cont'd)

PROBLEM: In high-dimensions, the uniform OOD model becomes degenerate.

$$\mathsf{UNIFORM}(\mathbf{x}) = \frac{1}{(b-a)^D} \to 0 \quad \text{as} \quad D \to \infty$$

Which leads to the degenerate threshold:

$$q(\mathbf{X}^*)$$
 > uniform(\mathbf{X}^*) $\frac{p(\mathsf{OUT})}{p(\mathsf{IN})} = 0$

(d)

 $\hat{\tau}$ TEST DISTRIBUTION C = IN X(e)

Note: All visualizations by Eric Nalisnick, check his talk at https://icml.cc/virtual/2020/workshop/5742

Eric Nalisnick: Degenerate OOD detection in High-d (cont'd)

Bonus Heidi

$$m = V \times \rho$$

In high dimensions, probability mass concentrates *away* from the mode.

In high dimensions, probability mass concentrates *away* from the mode.

vd Oord and Theis: How Likelihoods Can Break in High-d

vd Oord and Theis: How Likelihoods Can Break in High-d

[4, 5]

Great log-likelihood and poor samples

- ▶ p: density of a model for d dimensional data x which performs arbitrarily well with respect to average log-likelihood
- q: corresponds to some bad model (e.g., white noise)
- Then samples generated by the mixture model 0.01p(x) + 0.99q(x) will come from the poor model 99% of the time
- Yet the log-likelihood per pixel will hardly change if d is large: $\log [0.01p(x) + 0.99q(x)] \ge \log [0.01p(x)] = \log p(x) \log 100$ For high-dimensional data, $\log p(x)$ will be proportional to d while $\log 100$ stays constant.

Charu Aggarwal: High-d Metric Surprises

Charu Aggarwal: High-d Metric Surprises

[1] https://bib.dbvis.de/uploadedFiles/155.pdf

References I

- Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. "On the surprising behavior of distance metrics in high dimensional space". In: *International conference on database theory*. Springer. 2001, pp. 420–434.
- Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. "Robustness of classifiers: from adversarial to random noise". In: *Advances in Neural Information Processing Systems*. 2016, pp. 1632–1640.
- Justin Gilmer et al. "Adversarial examples are a natural consequence of test error in noise". In: *International Conference on Machine Learning*. 2019, pp. 2280–2289.
- Aäron van den Oord and Joni Dambre. "Locally-connected transformations for deep gmms". In: *International Conference on Machine Learning (ICML): Deep learning Workshop.* 2015, pp. 1–8.

References II

Lucas Theis, Aäron van den Oord, and Matthias Bethge. "A note on the evaluation of generative models". In: arXiv preprint arXiv:1511.01844 (2015).

