Códigos y Criptografía (GIINF)

Practica Cifrado HILL

а	b	С	d	e	f	g	h	i	j	k	1	m	n
0	1	2	3	4	5	6	7	8	9	10	11	12	13
ñ	0	р	q	r	S	t	и	V	W	X	У	Z	
14	15	16	17	18	19	20	21	22	23	24	25	26	

1. Construir la matriz cuadrada de orden 2 asociada a la palabra 'H I L L', y con ella cifrar usando el método de cifrado Hill el mensaje 'probando'.

Matriz asociada a hill = $\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix}$ el determinante es -11 que en modulo 27 seria 16 que es primo relativo con 27, con lo cual es una matriz valida.

Pasando '**probando**' a número = [(16 18) (15 01) (00 13) (03 15)], cogemos bloques del mismo tamaño de la matriz usada, en este caso de dos en dos elementos.

 $Y_{bi} = M X_{bi}$, donde bi es el bloque a cifrar.

b1 -
$$\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} \begin{pmatrix} 16 \\ 18 \end{pmatrix} = \begin{pmatrix} 13 \\ 23 \end{pmatrix} \mod 27$$

b2 -
$$\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} \begin{pmatrix} 15 \\ 01 \end{pmatrix} = \begin{pmatrix} 5 \\ 14 \end{pmatrix} \mod 27$$

b3 -
$$\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} \begin{pmatrix} 00 \\ 13 \end{pmatrix} = \begin{pmatrix} 23 \\ 08 \end{pmatrix} \mod 27$$

b4 -
$$\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} \begin{pmatrix} 03 \\ 15 \end{pmatrix} = \begin{pmatrix} 06 \\ 09 \end{pmatrix} \mod 27$$

Cifrado = [(13 23) (5 14) (23 08) (06 19)] Cifrado a letra= "nwfñwigs"

2.¿Cuál de los siguientes vectores representa una permutación de S4?

- {1, 3, 2, 5, 4}, queda descartado por ser S5.
- {4, 4, 3, 1}, queda descartado, porque en una permutación de este tipo no puede haber repetición.
- {2, 5, 3, 1}, queda descartado, porque no existe el número 4 y se excede en S4.
- -{4, 1, 2, 3}, valido en S4.

3. Escribir la matriz cuadrada asociada a la permutación del ejercicio anterior.

Al ser una matriz boleana el determinante sera 1 o -1 y sera mcd con cualquier modulo.

$$\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)$$

4. Volver a cifrar

Pasando 'probando' a número = [(16 18 15 01) (00 13 03 15)], cogemos bloques del mismo del S4 usado en el ejercicio anterior.

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 16 \\ 18 \\ 15 \\ 01 \end{pmatrix} = \begin{pmatrix} 1 \\ 16 \\ 18 \\ 15 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 00 \\ 13 \\ 03 \\ 15 \end{pmatrix} = \begin{pmatrix} 15 \\ 0 \\ 13 \\ 3 \end{pmatrix}$$

Cifrado = [(01 16 18 15) (15 00 13 03)] Cifrado a letra= "bprooand"

5. Descifrar el texto cifrado obtenido en el apartado anterior con el cifrado de permutación.

NOTA: Sabemos lo que tiene que salir.

Para ello calculamos la inversa de la matriz de S4:
$$inverse$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Multiplicamos la matriz inversa por los respectivos vectores.

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 16 \\ 18 \\ 15 \\ 1 \end{pmatrix} = \begin{pmatrix} 16 \\ 18 \\ 15 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 15 \\ 0 \\ 13 \\ 3 \\ 15 \end{pmatrix} = \begin{pmatrix} 0 \\ 13 \\ 3 \\ 15 \end{pmatrix}$$

El mensaje resultante en letra es [16 18 15 01 00 13 03 15], que significa "probando".

6. Criptoanálisis del cifrado Hill del ejercicio 1. Es decir, conociendo el texto llano, el texto cifrado que hemos obtenido y el tamaño de los bloques d = 2, hallar la matriz M que se ha utilizado para el cifrado.

NOTA: De nuevo sabemos lo que tiene que salir.

b1 -
$$M$$
 $\begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \begin{pmatrix} 16 \\ 18 \end{pmatrix} = \begin{pmatrix} 13 \\ 23 \end{pmatrix} \mod 27$
b2 - M $\begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \begin{pmatrix} 15 \\ 01 \end{pmatrix} = \begin{pmatrix} 5 \\ 14 \end{pmatrix} \mod 27$
b3 - M $\begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \begin{pmatrix} 00 \\ 13 \end{pmatrix} = \begin{pmatrix} 23 \\ 08 \end{pmatrix} \mod 27$
b4 - M $\begin{pmatrix} X & Y \\ Z & W \end{pmatrix} \begin{pmatrix} 03 \\ 15 \end{pmatrix} = \begin{pmatrix} 06 \\ 09 \end{pmatrix} \mod 27$

Texto llano: 'probando' Texto cifrado: 'nwfñwigs'

Tamaño: 2

Debemos de formar la ecuación: Y * = X * Mt, siendo:

- Y *: la matriz de d columnas formada por el mensaje cifrado escrito por filas.
- X * : la matriz de d columnas formada por el mensaje llano escrito por filas.
- Mt : la matriz traspuesta de la clave M. Es decir, una matriz cuadrada de orden d.

Pasando '**probando**' a número = [(16 18) (15 01) (00 13) (03 15)] = '**probando**' Cifrado = [(13 23) (5 14) (23 08) (06 19)] = '**nwfñwigs**'

$$\begin{pmatrix} 13 & 23 \\ 5 & 14 \\ 23 & 8 \\ 6 & 19 \end{pmatrix} = \begin{pmatrix} 16 & 18 \\ 15 & 1 \\ 0 & 13 \\ 3 & 15 \end{pmatrix} \cdot M^{T}$$

$$X = \begin{pmatrix} 16 & 18 \\ 15 & 1 \\ 0 & 13 \\ 3 & 15 \end{pmatrix}$$
1) F1 = F1-F2
2) F2 = F2-15F1
3) F2 = F2+3F3
4) F1 = F1-17F2

Transformaciones

$$X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 13 \\ 3 & 15 \end{pmatrix}$$

$$Y = \begin{pmatrix} 13 & 23 \\ 5 & 14 \\ 23 & 8 \\ 6 & 19 \end{pmatrix}$$
 1) F1 = F1-F2
2) F2 = F2-15F1
3) F2 = F2+3F3
4) F1 = F1-17F2

Transformaciones

$$Y = \begin{pmatrix} 7 & 11 \\ 8 & 11 \\ 23 & 8 \\ 6 & 19 \end{pmatrix}$$

$$\begin{pmatrix} 7 & 11 \\ 8 & 11 \end{pmatrix}^T = \left(\begin{array}{cc} 7 & 8 \\ 11 & 11 \end{array} \right)$$

7. Ejercicio a mano

Texto claro Holase 7,15, 11,0, 19,	d=2 (orden de la matriz de cifrado) TODO SE REALIZARA EN LAS DOS MATRICES	criptograma Vflvww 22 ,5, 11, 22,23, 23		
Matriz A (7 15) (1 0) 19 4	Fiz-4Fi (1 2)	Matriz B (22 5 (11 22) (23 23)		
(1 6 11 0 19 4)	Fz: Fz - 12 Fz	(720 1122 2323)		
(1 6 0 15 0 25)	h == F	(7 20) 25 21 15 18		
$\begin{pmatrix} 1 & 6 \\ 0 & 25 \\ 0 & 15 \end{pmatrix}$	F2-0 12 F2	(25 29 15 18		
$\begin{pmatrix} 1 & 6 \\ 0 & 1 \\ 0 & 15 \end{pmatrix}$	F1-6F1-6F1 F8-15F1	(4 70) 15 18)		
(1 0 0 1)	La matriz de cifrado es	(12) (13)		