Técnicas de Projeto (Parte 2) Projeto e Análise de Algoritmo

Felipe Cunha

Pontifícia Universidade Católica de Minas Gerais

Técnicas de Projeto

1) Divisão e Conquista

Divisão e Conquista

- Consiste em dividir o problema em partes menores, encontrar soluções para essas partes (supostamente mais fá cil), e combina-las em uma solução global.
 - Geralmente leva a soluções eficientes e elegantes, principalmente se forem recursivas.
- Basicamente essa técnica consiste das seguintes fases (executadas nesta ordem):
 - Divisão (particionamento) do problema original em sub-problemas similares ao original mas que são menores em tamanho;
 - Resolução de cada sub-problema sucessivamente e independentemente (em geral de forma recursiva);
 - Combinação das soluções individuais em uma solução global para todo o problema.

Divisão e Conquista

 Um algoritmo de "divisão e conquista" é normalmente relacionado a uma equação de recorrência que contém termos referentes ao próprio problema.

$$T(n) = aT(\frac{n}{b}) + f(n)$$

onde a indica o número de sub-problemas gerados, b o tamanho de cada um deles e f(n) o custo para fazer a divisão.

Divisão e Conquista

- Paradigma bastante usado em Ciência da Computação em problemas como:
 - Ordenação: Mergesort, Quicksort (Tecnicamente falando, o
 Quicksort poderia ser chamado de um algoritmo conquista e divisão);
 - Pesquisa: Pesquisa Binária;
 - Algoritmos aritméticos: multiplicação de inteiros, multiplicação de matrizes,
 - FFT (Fast Fourier Transform);
 - Algoritmos geométricos: Convex Hull, Par mais próximo;
 - 0 ...

Convex Hull

- É o menor polígono formado pelas linhas limítrofes de uma rede de Delaunay, capaz de conter todos os v értices dessa rede.
- Para objetos planos, isto é, restritos ao plano, a envoltória convexa pode ser facilmente visualizada de uma tira elástica que ao ser esticada envolva todo o objeto dado, quando ela é solta, ela assumirá a forma requerida da envoltória convexa.

Convex Hull

• Gift wrapping aka Jarvis march — O(nh)

One of the simplest (although not the most time efficient in the worst case) planar algorithms. Discovered independently by Chand & Kapur in 1970 and R. A. Jarvis in 1973. It has O(nh) time complexity, where n is the number of points in the set, and h is the number of points in the hull. In the worst case the complexity is $\Theta(n^2)$.

Graham scan — O(n log n)

A slightly more sophisticated, but much more efficient algorithm, published by Ronald Graham in 1972. If the points are already sorted by one of the coordinates or by the angle to a fixed vector, then the algorithm takes O(n) time.

QuickHull

Discovered independently in 1977 by W. Eddy and in 1978 by A. Bykat. Just like the quicksort algorithm, it has the expected time complexity of $O(n \log n)$, but may degenerate to $O(n \log n)$ in the worst case.

- Divide and conquer O(n log n)
 - Another O(n log n) algorithm, published in 1977 by Preparata and Hong. This algorithm is also applicable to the three dimensional case.
- Monotone chain aka Andrew's algorithm— O(n log n)

Published in 1979 by A. M. Andrew. The algorithm can be seen as a variant of Graham scan which sorts the points lexicographically by their coordinates. When the input is already sorted, the algorithm takes O(n) time.

Incremental convex hull algorithm — O(n log n)
 Published in 1984 by Michael Kallay.

Convex Hull

 Seja A um vetor de inteiros, A[1..n], n ≥ 1 que não está ordenado.

- Pede-se:
 - Determine o maior e o menor elementos desse vetor usando divisão e conquista;
 - Determine o custo (número de comparações) para achar esses dois elementos supondo que A possui n elementos.

Cada chamada de MaxMin4 atribui às variáveis Max e Min o maior e o menor elementos em A[Linf]..A[Lsup].

```
MAXMIN4(Linf, Lsup, Max, Min)

    ∨ Variáveis auxiliares: Max1, Max2, Min1, Min2, Meio

    if (Lsup - Linf) < 1
                                                                  Condição da parada recursiva
      then if A[Linf] < A[Lsup]
 3
              then Max \leftarrow A[Lsup]
                    Min \leftarrow A[Linf]
              else Max \leftarrow A[Linf]
                    Min \leftarrow A[Lsup]
 6
      else Meio \leftarrow \lfloor \frac{Linf + Lsup}{2} \rfloor
                                            > Acha o menor e maior elementos de cada partição
 8
            MAXMIN4(Linf, Meio, Max1, Min1)
            MAXMIN4(Meio+1, Lsup, Max2, Min2)
            if Max1 > Max2
10
11
              then Max ← Max1
12
              else Max ← Max2
13
            if Min1 < Min2
              then Min ← Min1
14
              else Min ← Min2
15
```

Análise:

Seja f(n) o número de comparações entre os elementos de A, que possui n elementos.

$$f(n)=1,$$
 para $n\leq 2,$ $f(n)=f(\lfloor n/2 \rfloor)+f(\lceil n/2 \rceil)+2,$ para $n>2.$

Quando $n=2^i$ para algum inteiro positivo i, temos que:

$$f(n) = 2f(\frac{n}{2}) + 2$$

Análise:

Resolvendo esta equação de recorrência (em função de n e i), temos:

Fazendo a expansão desta equação temos:

$$2^{i-2}f(2^2) = 2^{i-1} + 2^{i-1}$$

$$2^{i-3}f(2^3) = 2^{i-1} + 2^{i-1} + 2^{i-2}$$

$$\vdots$$

$$2^2f(2^{i-2}) + 2^2 = 2^{i-1} + 2^{i-1} + 2^{i-2} + \dots + 2^3$$

$$2f(2^{i-1}) + 2 = 2^{i-1} + 2^{i-1} + 2^{i-2} + \dots + 2^3 + 2^2$$

$$f(2^i) = 2^{i-1} + 2^{i-1} + 2^{i-2} + \dots + 2^3 + 2^2 + 2$$

$$= 2^{i-1} + \sum_{k=1}^{i-1} 2^k = 2^{i-1} + 2^i - 2$$

$$f(n) = \frac{n}{2} + n - 2 = \frac{3n}{2} - 2.$$

Logo, f(n) = 3n/2 - 2 para o melhor caso, pior caso e caso médio.

- Conforme mostrado anteriormente, o algoritmo apresentado neste exemplo é ótimo.
- Entretanto, ele pode ser pior do que os já apresentados, pois, a cada chamada recursiva, salva Linf, Lsup, Max e Min, al ém do endereço de retorno da chamada para o procedimento.
- Além disso, uma comparação adicional é necessária a cada chamada recursiva para verificar se Lsup – Linf ≤ 1 (condição de parada).
- O valor de n + 1 deve ser menor do que a metade do maior inteiro que pode ser representado pelo compilador, para não provocar overflow na operação Linf + Lsup.

Exemplo: Exponenciação

Problema: Calcular a^n , para todo real a e inteiro $n \ge 0$.

Primeira solução (incremental):

- Caso base: n = 0; $a^0 = 1$.
- Hipótese de indução: Suponha que, para qualquer inteiro k < n e real a, sei calcular a^k.
- Passo da indução: Queremos provar que conseguimos calcular a^k, para k=n. Por hipótese de indução, sei calcular aⁿ⁻¹. Então, calculo aⁿ multiplicando aⁿ⁻¹ por a.

Exemplo: Exponenciação

```
Exponenciação(a, n)
se n = 0 então retorne(1)
senão an:=Exponenciação(a, n - 1)
an := an * a
retorne(an)
```

Análise:

Vamos agora projetar um algoritmo para o problema usando o método de divisão e conquista.

Exemplo: Exponenciação

```
ExponenciaçãoDC(a, n)
se n = 0 então retorne(1)
senão
an := ExponenciaçãoDC(a, n/2)
an := an * an
se (n mod 2) = 1 an := an * a
retorne(an)
```

Análise:

Colocar 2 condições de contorno: n=0, n=1

Exemplo: Busca Binária

```
BuscaBinaria (A, e, d, x)
Entrada: Vetor A, delimitadores e e d do subvetor e
X.
Saída: Indice 1 \le i \le n tal que A[i] = x ou i = 0.
      se e = d então
      se A[e] = x então retorne(e) senão retorne(-1)
      senão
        i := (e + d)/2
        se A[i] = x então retorne(i)
        senão se A[i] > x
        i := BuscaBinaria(A, e, i - 1, x)
      senão
        i := BuscaBinaria(A, i + 1, d, x)
      retorne(i)
```

Exemplo: Busca Binária

- Análise:
- Caso médio:
 - Cada elemento tem probabilidade 1/n de ser o valor procurado.
 - Usar uma árvore para análise.

Exercícios:

 Proponha versões não recursivas para os exemplos acima. A eliminação da recursividade altera a complexidade das soluções?

Exemplo: QuickSort

- Algoritmo de ordenação baseado na estratégia de Dividir e Conquistar
- Em contraste ao Mergesort, no Quicksort é a operação de divisão a mais custosa: depois de escolhemos o pivot, temos que separar os elementos do vetor maiores que o pivot dos menores que o pivot.

Exemplo: QuickSort

- Conseguimos fazer essa divisão com Θ(n) operações: basta varrer o vetor com dois apontadores, um varrendo da direita para a esquerda e outro da esquerda para a direita, em busca de elementos situados na parte errada do vetor, e trocar um par de elementos de lugar quando encontrado.
- Após essa etapa, basta ordenarmos os dois trechos do vetor recursivamente para obtermos o vetor ordenado, ou seja, a conquista é imediata.

Exemplo: QuickSort

```
Quicksort(A, esq, dir)
// Entrada: Vetor A de inteiros e os índices esq e dir que delimitam início e
fim do subvetor a ser ordenado.
//Saída: Subvetor de A de esq a dir ordenado.
início
   i=esq
   j=dir
   pivô=A[dir]
   repita
      enquanto (A[i] < pivo) faça i= i + 1</pre>
      enquanto (A[j] > pivo) faça j= j-1
      se (i <= j) então
         troca (A[i], A[j])
         i = i + 1
         j = j - 1
   até que (i > j)
   se (j > esq) então QuickSort(A, esq, j)
   se (i < dir) então QuickSort(A, i, dir)</pre>
fim
```

Exemplo: Quicksort

- Análise do pior caso:
- Quantas comparações e quantas trocas o algoritmo Quicksort executa no pior caso?
- Certamente a operação de divisão tem complexidade $\Theta(n)$, mas o tamanho dos dois subproblemas depende do pivot escolhido.
- No pior caso, cada divisão sucessiva do Quicksort separa um único elemento dos demais, recaindo na recorrência:

»
$$T(n) = 0, n = 1$$

» $T(n) = T(n - 1) + n, n > 1,$

- Portanto, Θ(n²) comparações e trocas são executadas no pior caso.
- Então, o algoritmo Quicksort é assintoticamente menos eficiente que o Mergesort no pior caso.
- Veremos que, no caso médio, o Quicksort efetua Θ(n log n) comparações e trocas.
- Assim, na prática, o Quicksort é bastante eficiente, com uma vantagem adicional em relação ao Mergesort: é in place, isto é, não utiliza um vetor auxiliar.

Exemplo: Quicksort

- Análise do caso médio:
- Considere que i é o índice da posição do pivot escolhido no vetor ordenado.
- Supondo que qualquer elemento do vetor tem igual probabilidade de ser escolhido como o pivot
- Então, na média, o tamanho dos subproblemas resolvidos em cada divisão sucessiva será (n>=2):

$$\frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i))$$

Exemplo: Quicksort

Supondo T(o)=o, Não é difícil ver que:

$$\sum_{i=1}^{n} T(i-1) = \sum_{i=1}^{n} T(n-i) = \sum_{i=1}^{n-1} T(i)$$

 Assim, no caso médio, o número de operações efetuadas pelo Quicksort é dado pela recorrência:

$$T(n) = \begin{cases} 0, n < 2 \\ \frac{2}{n} \sum_{i=1}^{n-1} T(i) + n - 1, n \ge 2 \end{cases}$$

• Esta recorrência é $\Theta(n \log n)$. Portanto, na média, o Quicksort executa $\Theta(n \log n)$ trocas e comparações.

Considerações Finais

- Este paradigma não é aplicado apenas a problemas recursivos.
- Existem pelo menos três cenários onde divisão e conquista é aplicado:
 - 1. Processar independentemente partes do conjunto de dados.
 - Exemplo: Mergesort.
 - 2. Eliminar partes do conjunto de dados a serem examinados.
 - Exemplo: Pesquisa binária.
 - 3. Processar separadamente partes do conjunto de dados mas onde a solução de uma parte influencia no resultado da outra.
 - Exemplo: Somador apresentado.

Considerações Finais

- O projeto de algoritmos, é importante procurar sempre manter o balanceamento na sub-divisão de um problema em partes menores.
- Divisão e conquista não é a única técnica em que balanceamento é útil.
- Exemplo:
 - Pior caso do quicksort.