Statistical Modeling and Inference – Problem Set #6

GROUP 3: NITI MISHRA · MIQUEL TORRENS · BÁLINT VÁN

November 30th, 2015

Solution to proposed exercises.

Exercise 1

Part (a)

Given $t_n \sim \text{Laplace}(\mu, \Lambda)$, the likelihood function is:

$$\mathcal{L}(\text{Laplace}(t_n|\mu, \Lambda)) = \prod_{n=1}^{N} f(t_n|\mu, \Lambda) = \left(\frac{\Lambda}{2}\right)^{N} \exp\left\{-\Lambda \sum_{n=1}^{N} |t_n - \mu|\right\}$$

Part (b)

If we take the MLE:

$$\max_{\mu,\Lambda} \log \mathcal{L} = \max_{\mu,\Lambda} N \log \Lambda - \Lambda \sum_{n=1}^{N} |t_n - \mu| + C$$

With C containing the terms not dependent on μ or Λ . Then:

$$\frac{\partial \log \mathcal{L}}{\partial \mu} = 0 \quad \Leftrightarrow \quad -\Lambda \sum_{n=1}^{N} \frac{t_n - \mu}{|t_n - \mu|} = 0$$

$$\Leftrightarrow \quad \sum_{n=1}^{N} \operatorname{sgn}(t_n - \mu_{MLE}) = 0 \tag{1}$$

Note that with odd N, for (1) to hold, (N-1)/2 observations need to have $t_n \ge \mu$ and the other (N-1)/2 have $t_n \le \mu$. Thus:

$$\mathbb{E}[t] = \mu_{MLE} = \text{median}(t_1, t_2, ..., t_n)$$

is the expected value and also the median.

Part (c)

We derive Λ_{MLE} :

$$\frac{\partial \log \mathcal{L}}{\partial \Lambda} = 0 \quad \Leftrightarrow \quad N \frac{1}{\Lambda} - \sum_{n=1}^{N} |t_n - \mu| = 0$$

$$\Leftrightarrow \quad \Lambda_{MLE} = \left(\frac{1}{N} \sum_{n=1}^{N} |t_n - \mu|\right)^{-1}$$

Part (d)

By the equivariance property 1 of the MLE:

$$var[t] = \Sigma_{MLE} = \frac{2}{\Lambda_{MLE}^2} = 2\left(\frac{1}{N}\sum_{n=1}^{N}|t_n - \mu|\right)^2.$$

 $^{^1\}mathrm{Wasserman's}$ Theorem 10.14.

Exercise 2

Part (a)

Given:

$$t_n \sim \mathcal{N}(t_n | \mathbf{x}_n, \mathbf{w}, \eta_n, q) = \frac{(\eta_n q)^{1/2}}{\sqrt{2\pi}} \exp\left\{-\frac{\eta_n q}{2} (t_n - \phi(\mathbf{x}_n) \mathbf{w})^T (t_n - \phi(\mathbf{x}_n) \mathbf{w})\right\}$$

and:

$$\eta_n \sim \text{Gam}\left(\eta_n | \frac{\nu}{2}, \frac{\nu}{2} - 1\right) = \frac{\left(\frac{\nu}{2} - 1\right)^{\nu/2}}{\left(\frac{\nu}{2} - 1\right)!} \eta_n^{\left(\frac{\nu}{2} - 1\right)} \exp\left\{-\left(\frac{\nu}{2} - 1\right)\eta_n\right\}$$

We know:

$$p(\eta_n|t_n, \mathbf{x}_n, \mathbf{w}, q) \propto p(t_n|\eta_n, \mathbf{x}_n, \mathbf{w}, q)p(\eta_n)$$

$$= C\eta_n^{(\frac{\nu}{2} - 1 + \frac{1}{2})} \exp\left\{-\left(\frac{\nu}{2} - 1\right)\eta_n - \frac{\eta_n q}{2}\mathbf{e}_n^T\mathbf{e}_n\right\}$$

$$= C\eta_n^{(\frac{\nu+1}{2} - 1)} \exp\left\{\left(-\left(\frac{\nu}{2} - 1\right) - \frac{q}{2}\mathbf{e}_n^T\mathbf{e}_n\right)\eta_n\right\}$$

$$= C\eta_n^{(\frac{\nu+1}{2} - 1)} \exp\left\{-\left(\frac{\nu + q\mathbf{e}_n^T\mathbf{e}_n}{2} - 1\right)\eta_n\right\}$$

Where C contains the multiplication of the terms of the density functions not dependent on η_n . Observe this is a Gamma distribution with parameters:

$$\alpha_n = \frac{\nu + 1}{2}$$

$$\beta_n = \frac{\nu + q\mathbf{e}_n^T\mathbf{e}_n}{2} - 1$$

This finishes the proof.

Part (b)

 $Given^2$:

$$Q(\theta, \theta') = \int \log (p(t, \eta | \theta)) p(\eta | t, \theta') d\eta = \mathbb{E} \left[\log (p(t, \eta | \theta)) \right]$$

²Equations (4.3) and (4.4) in Omiros' notes on the appendix of the lecture.

We can use $\theta = (q, \mathbf{w})$ and through maximum likelihood compute:

$$\mathbb{E} \left[\log p(t, \eta | \theta) \right] = \mathbb{E} \left[\log \left(p(t | \theta) p(\eta | t, \theta') \right) \right]$$

$$= \mathbb{E} \left[\log p(t | \theta) + \log p(\eta | t, \theta') \right]$$

$$= \mathbb{E} \left[\log \left(\prod_{n=1}^{N} \left(\frac{q \eta_n}{2\pi} \right)^{\frac{1}{2}} \exp \left\{ -\frac{1}{2} q e_n^2 \eta_n \right\} \right) + \log p(\eta | t, \theta') \right]$$

$$= \mathbb{E} \left[\log \left(\prod_{n=1}^{N} \left(\frac{q \eta_n}{2\pi} \right)^{\frac{1}{2}} \exp \left\{ -\frac{1}{2} q e_n^2 \eta_n \right\} \right) \right] + \mathbb{E} \left[\log p(\eta | t, \theta') \right]$$

$$= \mathbb{E} \left[\log \left(\left(\frac{q \eta_n}{2\pi} \right)^{\frac{N}{2}} \exp \left\{ -\frac{1}{2} q \sum_{n=1}^{N} e_n^2 \eta_n \right\} \right) \right] + c$$

$$= \mathbb{E} \left[\frac{N}{2} \log q - \frac{q}{2} \sum_{n=1}^{N} (t_n - \phi(\mathbf{x}_n) \mathbf{w})^2 \eta_n \right] + c$$

$$= \frac{N}{2} \log q - \frac{q}{2} (\mathbf{t} - \mathbf{\Phi} \mathbf{w})^T \mathbb{E} \left[\mathbf{H} \right] (\mathbf{t} - \mathbf{\Phi} \mathbf{w}) + c$$

Where **H** is a diagonal matrix with $\mathbf{H}_{nn} = \eta_n$, and c contains all terms not dependent on θ . The distribution of η_n will not depend on θ but on the previous $\theta' = (q', \mathbf{w}')$, and given that for $t \sim \operatorname{Gam}(\alpha, \beta)$ we have $\mathbb{E}[t] = \alpha/\beta$, then:

$$\mathbb{E}[\eta_n] = \frac{\frac{\nu+1}{2}}{\frac{\nu+q'(e'_n)^2}{2} - 1} = \frac{\nu+1}{\nu + q'(e'_n)^2 - 2} = \frac{\nu+1}{\nu + q'(t_n - \phi(\mathbf{x}_n)\mathbf{w}')^2 - 2}$$

Hence proved.

Exercise 3

Part (a)

Part (b)

Deviance residuals - Robust regression

Deviance residuals - Gaussian MLE

Part (c)

We can decide to stop the EM algorithm when the values for the estimated parameters θ estabilize, which is very similar to saying when the log-likelihood stops increasing (the sequential iterations increase its value by a very small number, say 10^{-6}).

Example (parameter stabilization: q and \mathbf{w} , here only w_1 for illustration):

Example (log-likelihood stabilization):

Log-likelihood with the EM Algorithm (stabilized at iteration = 13)

Part (d)

We can choose ν by running the EM algorithm for different values of ν and then choosing the smallest ν that maximizes the log-likelihood, i.e. the one for which increasing ν raises log-likelihood by a very small amount, again say by 10^{-6} .

Graphical representation:

