Intro to Functional Analysis A Few Practice Problems on Hilbert Spaces

1. Let X be a Hilbert space and $A \in \mathcal{L}(X)$ be given. Show that

$$||Ax|| = ||x||$$
 for all $x \in X$

if and only if

$$(Ax, Ay) = (x, y)$$
 for all $x, y \in X$.

- 2. Let X be a Hilbert space and $A \in \mathcal{L}(X;X)$ be given. Assume that $A_H^* = A$ and there exists c > 0 such that $||Ax|| \ge c||x||$ for all $x \in X$. What can you conclude regarding A?
- 3. Let X be a complex Hilbert space and let $A \in \mathcal{L}(X;X)$ be given. Show that $A_H^* = A$ if and only if $(Ax, x) \in \mathbb{R}$ for all $x \in X$.
- 4. Let X be a Hilbert space and $A \in \mathcal{L}(X;X)$ be given. Show that $A_H^*A = AA_H^*$ if and only if $||Ax|| = ||A_H^*x||$ for all $x \in X$.
- 5. Let X be a complex Hilbert space and $A \in \mathcal{L}(X;X)$. Show that A is compact if and only if $(Ax_n, x_n) \to 0$ as $n \to \infty$ for every sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \to 0$ (weakly) as $n \to \infty$. What happens with regard to this result in real Hilbert spaces?