Interim Report

Predicting Algae Bloom spread in the Marlborough Sounds using Bayesian Inference Luke Pearson

Introduction

This is an interim technical report describing the current state of my Metropolis-Hastings algorithm for Predicting Algae Bloom spread, using a simplified model involving a singular event.

Our Model

Mass

Mass is observed as:

- *n* Sites and *T* discrete Times
- Growth parameter α
- Decay parameter β
- Dispersion Matrix P where p_{ij} is the proportion of Mass at site i that travels to site j (Such that $\sum_{i=1}^{n} p_{ij} = 1$ for all $i \in \{1,...,n\}$)
- N events (Simplified to 1)
- Each of $k \in \{1,..., N\}$ events has:
 - Starting site I_k with uniform probability $\frac{1}{n}$
 - Starting time $T_{k} \in \{1,...,T\}$
 - \circ Length of time W_{k}
 - Starting size S

Where the equation for $M_{i,t}$ is:

$$M_{i,t} = \left(\alpha A_{i,t} + \beta \sum_{j=1}^{n} p_{i,j}\right) M_{i,t-1} + B_{i,t}$$

Where

$$A_{i,t} = I \left(\sum_{k=1}^{n} I(I_{k} = i) I(T_{k} \le t \le T_{k} + W_{k}) > 0 \right)$$

$$B_{i,t} = \sum_{k=1}^{n} I(I_{k} = i)I(T_{k} = t)S_{k}$$

Concentration

Concentration is calculated from Mass where:

- Each site $i \in \{1,...,n\}$ has volume V_{i}
- δ is a concentration offset of approximately 0 $^+$
- Precision parameter τ

Where the equation for $C_{i,t}$ is

$$log(Y_{i,t}) \sim N(log(\delta + \frac{M_{i,t}}{V_i}), \frac{1}{\tau}^2)$$

Parameters

Known Parameters:

- Number of sites, *n*
- Time period, T
- Dispersion Matrix, P
- Number of events, N
- Volumes, V i
- Concentration offset, δ

Parameters to be estimated

- Growth Parameter, α
- Decay Parameter, β
- Event site, I k
- Event Starting time, T
- Event time length, W
- Event size, S_k
- Precision τ

Priors

$$\alpha \sim Gamma(a_{\alpha}, b_{\alpha})$$

$$\beta \sim Beta(a_{\beta}, b_{\beta})$$

$$N = 1$$

$$I_k \sim DiscreteUniform(1, n)$$

$$T_{k} \sim DiscreteUniform(1, T)$$

$$W_{k} \sim NegBinomial(r_{W}, p_{W})$$

$$S_{k} \sim Gamma(a_{S}, b_{S})$$

$$\tau \sim Gamma(a_{\tau}, b_{\tau})$$

Where:

$$a, b = 1$$

$$r_W = 6$$

$$p_{W} = 0.75$$

Metropolis-Hastings Algorithm

Generate Sample Y with unknown parameters Generate initial set of parameters θ from priors

For s in 1: 10000:

For each parameter in $\{\alpha, \beta, I, T, W, S, \tau\}$:

Generate candidate value from proposal distributions

For
$$p$$
 in $\{p *, p_{current}\}$:

Generate sample M *

Calculate P(p) from prior distribution

Calculate $P(Y | p, \theta/p)$ from Likelihood distribution using M

Calculate probability = $P(p) \times P(Y \mid p, \theta/p)$

Calculate ratio =
$$min\left(\frac{probability}{probability}, 1\right)$$

Randomly generate $u \sim U(0, 1)$

If ratio > u:

Set
$$p_{current} = p *$$

Proposal Distributions

$$\alpha^* \sim N(\alpha_{current'}, 1)$$
 $\beta^* \sim N(\beta_{current'}, 0.5)$
 $I_k^* \sim DiscreteUniform(1, n)$
 $T_k^* \sim DiscreteUniform(1, T)$
 $W_k^* \sim DiscreteGamma(1, 1)$
 $S_k^* \sim Gamma(S_{current'}, 1)$
 $\tau^* \sim N(\tau_{current'}, 1)$

Results

Parameter	Acceptance Probability	Walk	Histogram	Prior PDF
α	0.5237	3 7 6 4 2 2 2 3 3 5 2000 4000 6000 8000 20000	800 700 500 500 300 200 200 1 2 3 4 5 7 8 9	1200 - Mean 1000 - Roo -
β	0.4506	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	200 200 02 04 06 08 10	160 Mass Toler value Toler value 100
I 0	0.9999	8 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 600 600 600 600 600 600 600 600 600	139
T_{0}	0.9999	200 00 00 00 00 00 00 1000	320 300 00 00 00 00 00 00 00 00 00 00 00 0	330 Main Personal Section 10 Main Personal Sec
W ₀	0.9999	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6000 5000 6000 3000 2000 0 1 2 3 4 5 6 7 8 9	25000 - 1601 1601 1700 1
S 0	0.2234	2000 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 600 600 600 000 000 000 000 000 000	1200 • Hear 1000 . The roller
τ	0.5767	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600 500 400 300 200 200 300 300 300 300 300 300 3	12000 Man Norwalter 800 - 000