Randomizeel Algo: Closest Pair

olet: Given $P_i = (x_i, y_i) \dots P_n(x_n, y_n) \in \mathbb{Z}^n$. The closest pair is to find

$$\frac{\text{dist}\left(\left(\chi_{i}, y_{i}\right), \left(\chi_{j}, y_{j}\right)\right)}{\sqrt{\left(\chi_{i} - \chi_{j}\right)^{2} + \left(y_{i} - y_{j}\right)^{2}}}$$

Conventions: All numbers O(lgn) bits.

 $|\chi_i|, |y_i| \leq N = poly(n)$

Thun (prev) Closest pair in O(n/gn) expected time.

Thun in O(n) expected time.

idee: data structure = efficient way to store data.

Warmup Con we verify minimum dist $Z\Delta$, $\Delta \in \mathbb{Z}$?

idea: process points in order.

def: $\Delta_k = \min_{\substack{i,j \in k}} dist(Pi,Pj)$

Q: Compare Dn VIS, D? AK-1 V.S. Dk?

idea: coarse discretization of space

det: 500, 8ER, a 8-subsquare is a subset of Z'given

$$\int_{\mathbb{R}} \int_{\mathbb{R}} (x,y) e^{2} \cdot \frac{\lambda \leq x \leq \lambda + \delta}{\beta \leq y \leq \beta + \delta}$$

(a, B) 8

claim: $\Delta k 7 \Delta \implies each \Delta/2$ subsquare have ≤ 1 points from Pi to Pk.

Idea: round coordinates:

def: $(a,b) \in \mathbb{N}^2$, the $(a,b) \stackrel{\triangle}{=}$ subsquare of \mathbb{N}^2

is $S_{a\cdot\Delta/2}$, b- $\Delta/2$

Partition

The $\frac{d}{2}$ -grid is $\{Sa,b,0 \leq a,b \leq \frac{2N}{8}\}$ = Ta,b

prop $d(p,q) \le \Delta$, pe $S_{a,b}$, $q \in S_{c,d}$ $\implies |a-c| |b-d| \le 2$

Pf: By contrapositive:

If $|a-c| > 2 \implies dist (p,q) = \sqrt{(x-2)^2 + (y-w)^2} > |x-2| > \Delta$

det A dictionary over U is a data structure for a set SEU
of keys x along with value y.

Supports & insert (X,y)
[lookup(2)

Algo:

- Init dictionary A on $U = \{(\alpha, b), 0 \le \alpha, b \le \frac{2N}{\Delta}\}$

- for $1 \le i \le n$ - $(a,b) = \left(\frac{x_i}{\Delta/2} \right) \left(\frac{y_i}{\Delta/2} \right)$

- Compute Di'= min d(pi, p), p GA[C,d], land, lb-d| \le 2.

- if $\Delta i' < \Delta$, return $Pi, P, \Delta i'$

- Insert Pi into A[a,b]

- return Anza

Prop Suppose Di ZA, then (a) algo reach insertion (b) A[a,b] empty when recul insertion Cor Suppose Di 20 then = 25 lookups and return = 25 points. | S| = n , |U| < N = Poly (n) Thm SSU One can in deterministic O(n) time, construct heigh family fl:U=T $-|T| \leq O(n)$ - Choose heft takes (O(1) space. - insertions, loslup in O(1) experted. Cor: If $\Delta n = 2\Delta$ then S - and S = correct S - run in O(n) expected.

Corgk, $\Delta k-1$ 7Δ , $\Delta k < \Delta$ Then also is correct, returns $\Delta' = \Delta k$ Runs in O(k) expected time.

Use this with random order Pi... Pn

$$(p,q) = (P_1, P_2)$$

$$\Delta = d(p,q)$$
white
$$verify \quad \Delta n \ge \Delta$$

$$if \quad \Delta n \ge \Delta$$

$$vetun \quad (p,q)$$

$$else$$

$$(p,q), \Delta \leftarrow (p,q'), \Delta'$$

some 1-> A' once Prop Algo update verification algo updates A > Ak $\det I_{u} = \begin{cases} 1 \\ 0 \end{cases}$ O.W. Pf: U(n) ops in final pass OLK) ops to update $\Delta \rightarrow \Delta' = \Delta k$ happen iff $I_{K} = 1$ Key: What is Pr[Ik=1]? prop Pr[Ik=1] < R

prop $|\{r \mid Jk=1\} - |k|$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff A_{1},...,Ak-1 > A$ $pf: [k=1] \iff update A \Rightarrow Ak \iff update$

=> ina random ordering, in the first k points, == 2 points that are close (will update A->DK). The probability that one of these two stays in the end is The 2 ST Cor algo in O(n) experted $E_{0} E_{A} [D + \sum_{k} D_{k} \cdot I_{k}]$ O(n) O(k)= Eo{[EA[D] + Zk EA[Dko] } not related to A

EA[Dk] O(K) ops, K. random variable inclependent from A. $= I_k O(k)$

$$= \underbrace{\mathbb{E}_{0}} \left\{ O(n) + \underbrace{\mathbb{E}_{1}} V(k) \right\} = O(n) + \underbrace{\mathbb{E}_{0}(k)} P_{r}[T_{k}=1]$$

$$\leq O(n) + \underbrace{\mathbb{E}_{0}(k)} P_{r}[T_{k}=1]$$

$$\leq O(n)$$