One and Multi-Period Asset Pricing Models

Chapters 2, 3, 7 - Lecture Notes by Markus Brunnermeier https://scholar.princeton.edu/markus/classes/fin501

Presented by Yenson Lau — Layer 6 Al

April 16th, 2021

Today's talk

- State-space representation of security structures
- One period setting
- No arbitrage
- State prices and the Fundamental Theorem of Asset Pricing
- Pricing formulas for one period
 - Stochastic discount factors (SDFs)
 - Beta models
- Extension to multiple periods

One-Period Asset Model

Setup

- Two dates: present (t = 0) and future (t = 1)
- World is fixed at t = 0 but has S states at t = 1
 - e.g. flipping a coin, prices go up or down, S=2
- p_j : price of a security j at t = 0
- x_s^j : payoff at t=1 for state s
- Payoff vector for asset j

$$\mathbf{x}^{j} = \begin{bmatrix} x_{1}^{j} \\ x_{2}^{j} \\ \vdots \\ x_{S}^{j} \end{bmatrix} \in \mathbb{R}^{S}$$

Security Structure

- Market consists of securities j = 1, ..., J
- ullet A security structure $old X \in \mathbb{R}^{S imes J}$ is the matrix formed by concatenating payoff vectors

$$X = [x^1, \dots, x^J]$$

- ullet A portfolio $oldsymbol{\mathsf{h}} = [h_1, \dots, h^j] \in \mathbb{R}^J$ denotes amount held for each of the J securities
- The price of the portfolio is $\mathbf{p}^T \mathbf{h}$ and its payoff is $\mathbf{X} \mathbf{h}$
- The asset span of X is the set of achievable payoffs

$$\langle \mathbf{X} \rangle = \{ \mathbf{X} \mathbf{h} : \mathbf{h} \in \mathbb{R}^J \} \tag{1}$$

• We say the market is complete if $\langle \mathbf{X} \rangle = \mathbb{R}^S$, or rank $(\mathbf{X}) = S$

Particular examples

- Arrow-Debreu securities: $\mathbf{e}_s = [0, \dots, 1, \dots, 0]^T$, only pays off at state s.
- Risk-free bonds: $\mathbf{x}^b = [1, ..., 1]$, pays off at every state.
- Calls and puts: Let $\mathbf{x}^1 = [1, 2, \dots, S]^T$. Then

$$x_s^k = \max(s+1-k,0)$$
 and $x_s^k = \max(k-s,0), k=2,...,S$ (2)

specify payoffs for call and put options on \mathbf{x}^1 , respectively. Then with $\mathbf{X} = [\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^S]$

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 2 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ S & S - 1 & \dots & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{X} = \begin{bmatrix} 1 & 1 & 2 & \dots & S - 1 \\ 2 & 0 & 1 & \dots & S - 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ S - 1 & 0 & 0 & \dots & 1 \\ S & 0 & 0 & \dots & 0 \end{bmatrix}, \quad (3)$$

so both call and put options can be used to construct complete markets.

No Arbitrage

Notation:

•
$$y \ge x \implies y_i \ge x_i \quad \forall i$$

- $y > x \implies y_i \ge x_i \quad \forall i \quad \text{and} \quad y \ne x \text{ (at least 1 strict inequality)}$
- $y \gg x \implies y_i > x_i \quad \forall i$
- Arbitrage: $\exists h$ s.t. $p^T h \le 0$ and $Xh \ge 0$, with at least 1 strict inequality
- Strong arbitrage: $\exists h$ s.t. $p^T h < 0$ and $Xh \ge 0$
- The converse can be stated as follows:
 - No arbitrage (NA): $Xh > 0 \implies p^T h > 0 \quad \forall h$
 - No strong arbitrage (NSA): $Xh \ge 0 \implies p^T h \ge 0 \quad \forall h$
- \bullet NA \Longrightarrow NSA

No Arbitrage

• Law of One Price (LOOP): Any two portfolios $\mathbf{h}, \mathbf{k} \in \mathbb{R}^J$ with equal payoffs must have equal price

$$Xh = Xk \implies p^Th = p^Tk$$

- ullet NA \Longrightarrow NSA \Longrightarrow LOOP \Longrightarrow every portfolio with zero payoff has zero price
- NSA ⇒ LOOP:
 - Contrapositive: suppose $\exists h, k$ s.t. Xh = Xk, but $p^T h \neq p^T k$
 - Then $\mathbf{X}(\mathbf{h} \mathbf{k}) = 0$ but min $(\mathbf{p}^T(\mathbf{h} \mathbf{k}), \mathbf{p}^T(\mathbf{k} \mathbf{h})) < 0$
 - !LOOP ⇒ !NSA
- LOOP ⇒ every portfolio with zero payoff has zero price:
 - Similar to above: let $\mathbf{X}\mathbf{h} = \mathbf{0}$ but $\mathbf{p}^T\mathbf{h} \neq 0$
 - Setting $\mathbf{k} = \mathbf{0}$ for LOOP leads to contrapositive

State Prices

• A vector of *state prices*: $\mathbf{q} \in \mathbb{R}^S$ s.t.

$$\mathbf{p} = \mathbf{X}^T \mathbf{q} = \sum_{s=1}^S q_s \cdot \mathbf{x}_s, \quad \text{or} \quad p_j = \sum_{s=1}^S q_s \cdot x_s^j \quad \forall j$$

- Implies all assets are discounted exactly the same way from payoffs \mathbf{x}^{j} . Each state has an associated price.
- When does such a q exist?

Fundamental Theorem of Asset Pricing (Stiemke's Theorem)

A security structure $\mathbf{X} \in \mathbb{R}^{S \times J}$ provides no arbitrage opportunities iff it yields a positive state price vector.

• Equivalent statement: either $\exists \mathbf{h} \in \mathbb{R}^J$ s.t.

$$\mathbf{p}^T \mathbf{h} \leq \mathbf{0}$$
 and $\mathbf{X} \mathbf{h} \geq \mathbf{0}$

with at least 1 nonzero, or $\exists \mathbf{q} \in \mathbb{R}^{S}$ s.t.

$$\mathbf{p} = \mathbf{X}^T \mathbf{q}$$
 and $\mathbf{q} \gg \mathbf{0}$

• An example of a *theorem of the alternative*. Important class of theorems in convex optimization.

Fundamental Theorem of Asset Pricing (Stiemke's Theorem)

• *Proof:* First we restate the alternatives as

I.
$$\exists h \in \mathbb{R}^n$$
: $Ah > 0$ (4)

II.
$$\exists z \in \mathbb{R}^m : \mathbf{A}^T z = \mathbf{0} \text{ and } z \gg \mathbf{0}$$
 (5)

where

$$\mathbf{A} = \begin{bmatrix} -\mathbf{p}^T \\ \mathbf{X} \end{bmatrix} \in \mathbb{R}^{m \times n} \quad \text{and} \quad \mathbf{z} \propto \begin{bmatrix} 1 \\ \mathbf{q} \end{bmatrix}. \tag{6}$$

• The alternatives are mutually exclusive: (II) implies $\mathbf{h}^T(\mathbf{A}^T\mathbf{z}) = 0$, but (I) implies

$$\mathbf{h}^T \mathbf{A}^T \mathbf{z} = (\mathbf{A}\mathbf{h})^T \mathbf{z} > 0.$$

Fundamental Theorem of Asset Pricing (Stiemke's Theorem)

Next assume (I) does not hold, which implies that

$$S_1 = \{ \mathbf{u} = \mathbf{A}\mathbf{h} : \mathbf{h} \in \mathbb{R}^n \} \quad \text{and} \quad S_2 = \{ \mathbf{v} \in \mathbb{R}^m : \mathbf{v} > \mathbf{0} \}$$
 (7)

are disjoint. By hyperplane separation there is a unit vector $\mathbf{z} \in \mathbb{R}^m$ s.t.

$$\mathbf{z}^T \mathbf{v} > 0, \ \forall \, \mathbf{v} \in \mathcal{S}_2 \quad \text{and} \quad \mathbf{z}^T \mathbf{A} \mathbf{h} = 0, \ \forall \, \mathbf{h} \in \mathbb{R}^n.$$
 (8)

• Then $\mathbf{A}^{\mathsf{T}}\mathbf{z} = \mathbf{0}$, otherwise

$$\|\mathbf{A}^T\mathbf{z}\|^2 = \mathbf{z}^T\mathbf{A}\mathbf{A}^T\mathbf{z} > 0 \tag{9}$$

but this contradictions the hyperplane condition for S_1 (set $\mathbf{h} = \mathbf{A}^T \mathbf{z}$).

• Finally show $\mathbf{z} \gg 0$: All the basis vectors of \mathbb{R}^m are in \mathcal{S}_2 . The hyperplane condition then implies all coordinates of \mathbf{z} must be positive.

State Prices in Incomplete Markets

- In general there can be multiple \mathbf{q} s, e.g. if J < S.
- However there is a unique \mathbf{q}^* in $\langle \mathbf{X} \rangle$, known as the *pricing kernel*. For instance,

$$\mathbf{X}^{T}(\mathbf{X}\mathbf{u}) = \mathbf{p} \tag{10}$$

provides a unique solution for $\mathbf{q}^* = \mathbf{X}\mathbf{u}$ as long as the \mathbf{x}^j s are linearly independent. Furthermore, for any valid \mathbf{q} ,

$$\mathbf{q}^* = \operatorname{proj}\left(\mathbf{q} \mid \langle \mathbf{X} \rangle\right). \tag{11}$$

- ullet Finally, there exists a unique ${f q}\gg 0$ iff markets are complete and there is no arbitrage.
 - \Leftarrow Just solve $\mathbf{X}^T \mathbf{q} = \mathbf{p}$.
 - \Longrightarrow If markets are not complete but there is no arbitrage, then $\exists \mathbf{v} \neq \mathbf{0}$ s.t. $\mathbf{X}^T \mathbf{v} = \mathbf{0}$. Moreover we can find $\mathbf{q} \gg \mathbf{0}$ and some $\alpha \in \mathbb{R}$ s.t.

$$\mathbf{q} + \alpha \mathbf{v} \gg \mathbf{0}$$
.

So there are infinitely many solutions to $\mathbf{X}^T \mathbf{q} = \mathbf{p}$. Contrapositive.

One-Period Asset Pricing: Stochastic Discount Factor (SDF)

- Discounted price if no arbitrage: $p_j = \mathbf{q}^T \mathbf{x}^j$
- Introduce state probabilities π_s and **stochastic discount factor (SDF)** $m_s = \frac{q_s}{\pi_s}$ (state price per unit probability)

$$p_j = \sum_{s=1}^{S} \pi_s \frac{q_s}{\pi_s} x_s^j = \sum_s \pi_s m_s x_s^j = \mathbb{E}[\mathbf{m} \odot \mathbf{x}^j]$$
 (12)

• Consider a risk-free bond with $\mathbf{x}^b = \mathbf{1}$. Since $\mathbb{E}[\mathbf{m} \odot \mathbf{x}^j] = \mathbb{E}[\mathbf{m}] \, \mathbb{E}[\mathbf{x}^j] + Cov(\mathbf{m}, \mathbf{x}^j)$,

$$p_b = \mathbb{E}[\mathbf{m}] = 1/R^f \implies p_j = \frac{\mathbb{E}[\mathbf{x}^j]}{R^f} + Cov[\mathbf{m}, \mathbf{x}^j]$$
 (13)

and for any asset j.

• Since prices tend to grow over time, typically $Cov[\mathbf{m}, \mathbf{x}^j] < 0$.

One-Period Asset Pricing: Stochastic Discount Factor (SDF)

- Define the return of asset j as $\mathbf{R}^j \doteq \mathbf{x}^j/p_i$, then $\mathbb{E}[\mathbf{m} \odot \mathbf{R}^j] = 1$.
- Moreover, since $R^f = 1/\mathbb{E}[\mathbf{m}]$,

$$\mathbb{E}\left[\mathbf{m}\odot\left(\mathbf{R}^{j}-R^{f}\right)\right] = \mathbb{E}[\mathbf{m}]\left(\mathbb{E}\left[\mathbf{R}^{j}\right]-R^{f}\right) + Cov(\mathbf{m},\mathbf{R}^{j}) = 0$$
 (14)

Or

$$\mathbb{E}\left[\mathbf{R}^{j}\right] - R^{f} = -\frac{Cov(\mathbf{m}, \mathbf{R}^{j})}{\mathbb{E}[\mathbf{m}]}$$
(15)

• The excess return for a generic asset *j* is determined solely by its covariance with the SDF. Investors are only compensated for holding *systematic risk*.

Relationship to security market line / CAPM

- Consider the unique SDF $\mathbf{m}^* = [q_1^*/\pi_1, \ldots, q_S^*/\pi_S]^T$
- Treat \mathbf{m}^* as a payoff vector with price $p_{m^*} > 0$. We can define $\mathbf{R}^* = \mathbf{m}^*/p_{m^*}$ and write

$$\mathbb{E}[\mathbf{R}^{j}] - R^{f} = -\frac{Cov(\mathbf{R}^{*}, \mathbf{R}^{j})}{\mathbb{E}[\mathbf{R}^{*}]} = -\underbrace{\frac{Cov(\mathbf{R}^{*}, \mathbf{R}^{j})}{Var(\mathbf{R}^{*})}}_{\beta_{j}} \cdot \frac{Var(\mathbf{R}^{*})}{\mathbb{E}[\mathbf{R}^{*}]}$$
(16)

• By plugging in $\mathbb{R}^* \to \mathbb{R}^j$ to (16), we get $\mathbb{E}[\mathbf{R}^*] - R^f = -Var(\mathbf{R}^*)/\mathbb{E}[\mathbf{R}^*]$, and

$$\mathbb{E}[\mathbf{R}^j] - R^f = \beta_j \left(\mathbb{E}[\mathbf{R}^*] - R^f \right). \tag{17}$$

• It remains to show that m* corresponds to the payoff of the market portfolio.

Multi-Period Asset Model

Dynamic Trading and Model Completeness

- T periods. Look at each branch as a one-period setting
- Even if with limited assets, we can trade at each time-period to achieve completeness
- Short-lived assets only pays out at the period after purchase. Need T assets for completeness. First replicate an asset bought at t=0 and pays \$1 at $s_{2,2}$
 - Arrow security: costs \$1, pays \$1 for a specific next state
 - $q_{2,2}$: state price for $s_{2,2}$
 - $\implies q_{2,2}$ Arrow securities are needed when $A_{1,1}$ occurs
 - To get \$1 at $A_{1,1}$, need $q_{1,1}$ Arrow securities at t=0
 - \implies Buy $q_{1,1}q_{2,2}$ Arrow securities at t=0, use payoff to purchase $q_{2,2}$ Arrow securities at t=1

Repeat for other states to establish completeness

Dynamic Trading and Model Completeness

- Long-lived assets pay off over many time periods.
 Can be traded any time.
- Example: Two assets paying off at t = 2.
 - Trading strategy $[j, A_{t,i}]$: the cash flow of asset j purchased in event $A_{t,i}$ and sold one period later.
 - $p_{t,i}^j$: price of asset j at time and state t, i
 - Enumerating strategies creates payoff matrix

Strategy	$[1, A_0]$	$[2, A_0]$	$[1, A_{1,1}]$	$[2, A_{1,1}]$	$[1, A_{1,2}]$	$[2, A_{1,2}]$
Event A_0	$-p_{0}^{1}$	$-p_{0}^{2}$	0	0	0	0
Event $A_{1,1}$	$p_{1,1}^1$	$p_{1,1}^2$	$-p_{1,1}^1$	$-p_{1,1}^2$	0	0
Event $A_{1,2}$	$p_{1,2}^{1}$	$p_{1,2}^2$	0	0	$-p_{1,2}^1$	$-p_{1,2}^2$
State $s_{2,1}$	0	0	1	0	0	0
State $s_{2,2}$	0	0	0	1	0	0
State $s_{2,3}$	0	0	0	0	1	0
State $s_{2,4}$	0	0	0	0	0	1

Dynamic Trading and Model Completeness

Example contd.

Strategy	$[1, A_0]$	$[2, A_0]$	$[1, A_{1,1}]$	$[2, A_{1,1}]$	$[1, A_{1,2}]$	$[2, A_{1,2}]$
Event A_0	$-p_{0}^{1}$	$-p_{0}^{2}$	0	0	0	0
Event $A_{1,1}$	$p_{1,1}^1$	$p_{1,1}^2$	$-p_{1,1}^1$	$-p_{1,1}^2$	0	0
Event $A_{1,2}$	$p_{1,2}^1$	$p_{1,2}^2$	0	0	$-p_{1,2}^1$	$-p_{1,2}^2$
State $s_{2,1}$	0	0	1	0	0	0
State $s_{2,2}$	0	0	0	1	0	0
State $s_{2,3}$	0	0	0	0	1	0
State $s_{2,4}$	0	0	0	0	0	1

- The payoff matrix has full rank iff the highlighted submatrix has full rank
- Generically, the markets are dynamically complete
- Generically the branching number of the tree determines assets needed for completeness
 - e.g. binomial tree \implies Black-Scholes, 2 assets

Stochastic Discount Factors

Some changes to notation:

- ullet For an asset, replace ${f x}
 ightarrow p_{t+1} + x_{t+1}$ and ${f m}
 ightarrow m_{t+1}$
 - need to keep track of the prices p_t at each time
 - x_t represents deviation from price
- Both $\{x_t\}_{t=0}^T$ and $\{m_t\}_{t=0}^T$ are random processes
 - x_t and m_t are random variables over some state space Ω (e.g. corresponding directly to stock price fluctuations)
- Each x_t and m_t measurable w.r.t. algebra \mathcal{F}_t of the state space Ω
- Furthermore $\{\mathcal{F}_t\}_{t=0}^T$ is a filtration: $\mathcal{F}_u \subseteq \mathcal{F}_v$ if $u \leq v$.
 - Uncertainty increases over time; cannot know the future

Multi-period Stochastic Discount Factors

One-period pricing becomes

$$p_t = \mathbb{E}_t \left[m_{t+1} \cdot (p_{t+1} + x_{t+1}) \right] \tag{18}$$

- Multi-period SDF: $M_{t+1} \doteq m_1 \cdot m_2 \cdot \ldots \cdot m_{t+1}$
- Multiplying both sides by M_t :

$$M_t p_t = \mathbb{E}_t \left[M_{t+1} (p_{t+1} + x_{t+1}) \right] \tag{19}$$

• Then for t = 0 and t = 1,

$$p_0 = \mathbb{E}_0 [M_1(p_1 + x_1)]$$
 and $M_1 p_1 = \mathbb{E}_1 [M_2(p_2 + x_2)]$

Therefore

$$p_0 = \mathbb{E}_0 \left[\mathbb{E}_1 \left[M_2(p_2 + x_2) \right] + M_1 x_1 \right] = \mathbb{E}_0 \left[\mathbb{E}_1 \left[M_2 p_2 + M_2 x_2 + M_1 x_1 \right] \right]$$
 (20)

Multi-period Stochastic Discount Factors

- Law of Iterated Expectations: $\mathbb{E}_u\left[\mathbb{E}_v[X]\right] = \mathbb{E}_u[X]$ for all $\mathcal{F}_u \subseteq \mathcal{F}_v$
- Therefore

$$p_0 = \mathbb{E}_0 \left[\mathbb{E}_1 \left[M_2 p_2 + M_2 x_2 + M_1 x_1 \right] \right] = \mathbb{E}_0 \left[M_2 p_2 + M_2 x_2 + M_1 x_1 \right]$$
 (21)

• Iterating *k* steps yields

$$p_0 = \mathbb{E}_0[M_k p_k] + \sum_{t=1}^k \mathbb{E}_0[M_t x_t]$$
 (22)

• Assuming that $\lim_{k\to\infty} \mathbb{E}_0[M_k p_k] = 0$, we have

$$p_0 = \sum_{t=1}^{\infty} \mathbb{E}_0[M_t x_t]$$

Some Ideas for Next Steps

- Extension to continuous time / state space
- Options pricing
- Modern derivation of portfolio theory / Black-Scholes
- Clarification on the multi-period setting
 - Some of the notation / objects in the multi-period setting are not clearly explained
 - Seems to be a widespread problem in financial economics literature
- Multi-period SDF: crucial for pricing and represents systemic risk
 - Relationship to market variables?
 - Empirical models: Fama-French, factor models, PCA / ML models

Thanks!