

So) Criven
$$f: \frac{1}{1+e^{-x}}$$
, compute dy

 $1+e^{-x}$

Applying $\frac{0}{2}$ rule

 $\frac{1}{2}$
 $\frac{1}{$

Conspute
$$df$$

Compute df
 dKi

The existing and th

tt can also written as.

$$\frac{d\xi}{dx^2} = \frac{\xi}{\xi} e^{\chi} k \cdot e^{\chi} \left(\frac{e^{\chi}}{\xi} - \frac{\xi}{\xi} e^{\chi} k\right)^2 - \frac{\xi}{\xi} e^{\chi} k \cdot e^{\chi$$

5) Criven L= (w.x-y)2, compute de > L= (w.x-y)2 du du dw = 2. (wx-y) x d (wx-y) $= 2(\omega x - y) \left\{ \begin{array}{c} x \cdot d \cdot (\omega) - d \cdot (y) \\ \overline{d\omega} \end{array} \right\}$ $= 2(\omega \cdot x - y) \left\{ \begin{array}{c} x \cdot - 0 \end{array} \right\}$ dl = 2.x.(w.x-y)6) Criven L= -y. log (w.x), compute dt

D - y. log (w.x)

Applying Chain Rule

dL = -y. d (log(w.x)) + log(w.x). d (-y).

dw

dw

dw = -y. 1 x d (w.x) + log(w.x).0. = -y. 1 x wx + 0. = - y

7)	criven y= wT. x	where	y EIR, w	e IR &	X e IR, compute To y
-	y = WT.x	YE	FR W	ERD &	Xelp
	: Vwy =	24	O Home	*	
		Jw,	Charles.	(1	16
	11-1121	29	The state of the state of	χ ,	
	(1) =	Jw2	*	22	
		1		73	
	ing of the second	24	101016		
	$\nabla_{\mathbf{w}} \mathbf{y} = \mathbf{y}$	dwg		20	
	0 + 2	- 1	A. 1213		
8)	criven y= W.W , w	here i	JE IR U	ve IR	compute Twy
-	y= W.W,	y €#	, wet	RD :	
					L. Markett (A)
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20,7	-		
		2 W2	18.00) E		
		2 W3	Take 3	2 100	Jacob
1	The Gent col of 1	100	1	- 0 0	
	- ork	Lawo	Jak -		tul-
	alrand a low	2 6/2			
	= 2	wi	4.001 T		
		wz			
		Wg			
		1:	18 . 1. 1	1	
		Lwo			- Sh
			TAY .		coli
	Vw1 = 2	W			175-201-201-201-201-201-201-201-201-201-201

9) criven L= (WT.X-Y)2 where weR and X e R?

Compute VwL.

-> L= (WT. X-Y)2 where WERD and XERD.

:. VWL = & d (W.X - Y)2

 $= 2.(W^{T}.x-Y), d(W^{T}.x-Y)$

= 2(W.x-Y) (x:-0)

.. Vw L = 2 (w.x - y) * (x:)

 $\nabla_{W}L = 2(W^{\dagger}.X-Y) \times \begin{bmatrix} X, \\ X_{2} \\ \vdots \\ X_{D} \end{bmatrix}$

Name: Abhisher. Milind. Patwardhan 1D: 811271359 Dara Science - II : Home Work - I Uneax Algebra Cacate a matria We 1R3x2. Write down Let us consider 16 18 24 27 16 24 18 2) [2,1,1 2 0

$$N^{-T} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} 3 \times 1$$

$$W^{T}. X = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

4) Given
$$X = [2,1,1,3], 0,1]$$
, $W = [1,0,1]$, compute $X.W^{2}$

$$\longrightarrow x = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}_{2\times3}$$

$$= \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}_{1\times3}$$

$$W^{T} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}_{3 \times 1}$$

$$X \cdot W^{T} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}_{2 \times 3} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 2 \times 1 \end{bmatrix}$$

5) Criven X= [2,1,1;1,0,1], W= [1,0;1,1] Compute W.X

 $W \cdot X = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \end{bmatrix}_{2 \times 3}$