2023 Summer Research Notes

${\bf Contents}$

1	Prior Concepts to Know		
	1.1	L^p Spaces	2
	1.2	Hilbert Spaces	2
	1.3	Linear Spaces	2
	1.4	Normed Linear Spaces	2
	1.5	Metric Spaces	2
	1.6	Banach Spaces	2
	1.7	Weak Derivatives	
	1.8	Mollifiers	2
	1.9	Partition of Unity	
2	Hölder Spaces		
	2.1	Hölder Continuous Functions	3
	2.2	Hölder Spaces are Banach Spaces	3
3	Sobolev Spaces		4
4	Notation		5

1 Prior Concepts to Know

- 1.1 L^p Spaces
- 1.2 Hilbert Spaces
- 1.3 Linear Spaces
- 1.4 Normed Linear Spaces
- 1.5 Metric Spaces
- 1.6 Banach Spaces
- 1.7 Weak Derivatives
- 1.8 Mollifiers
- 1.9 Partition of Unity

- 2 Hölder Spaces
- 2.1 Hölder Continuous Functions
- 2.2 Hölder Spaces are Banach Spaces

3 Sobolev Spaces

4 Notation

(i) A multiindex is a vector $\alpha = (\alpha_1, \dots, \alpha_n)$ where each component $\alpha_i \in \mathbb{N}_0$. A multiindex has an order defined by

$$|\alpha| = \alpha_1 + \dots + \alpha_n.$$

(ii) Using our definition of a multiindex and letting u(x) be some function, we define

$$D^{\alpha}u(x) = \frac{\partial^{|\alpha|}u(x)}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} = \partial_{x_1}^{\alpha_1} \dots \partial_{x_n}^{\alpha_n}u(x).$$

(iii) Let $U, V \subset \mathbb{R}^n$. Then define

$$V \subset\subset U$$

to be when $V \subset \overline{V} \subset U$ and \overline{V} is compact. In plain english this means V is compactly conatined in U.

(iv) Let f and g be functions. Then define * to be the Convolution operator where

$$(f * g)(x) = \int_{-\infty}^{\infty} f(\tau)g(x - \tau)d\tau = \int_{-\infty}^{\infty} f(x - \tau)g(\tau)d\tau$$

is the Convolution of the functions f and g which results in a third function that expresses how one of the functions modifies the other. Note that I am assuming f and g are both supported on an infinite interval, which may not always be the case.