氣象署-興大應數聯隊

2024 NCHC Open Hackathon

Members

Shang-En Li¹ (李尚恩) Ting-An Chen² (陳廷安) Jen-Her Chen¹ (陳建河) Pang-Yen Liu¹ (劉邦彥) Lu-Hung Chen² (陳律閎) Chun-Hao Teng² (鄧君豪)

Mentor

Leo Chen³

¹Central Weather Administration

²Department of Applied Mathematics, National Chung Hsing University

³NVIDIA Corporation

Introduction

Model name: CWAGFS-TCo (global)

Resolution: ~28 km, 72 layers (TCo383L72)

(figure from https://confluence.ecmwf.int/display/FCST/I ntroducing+the+octahedral+reduced+Gaus sian+grid)

Dy-core: Semi-Lagrangian+Semi-implicit (2 time level)

Grid system: Octahedral reduced Gaussian grid

Programming language: Fortran

Current Porting Progress

	Time spent
Advection	42.4 (%)
Spectrum	30.8 (%)
Physics	24.5 (%)

Running on
CPUs + GPUs
01 03 + 01 03

	Time spent
Physics	88.7 (%)
memcpy	7.8 (%)
others	3.5 (%)

Evolution and Strategy

Many do-loops in the physics code:

• GWD: 38

Ozone:14

• PBL: 79

Accelerating path: OpenACC

The size of do-loop iterations:

1440~111744

Speedup ratio: 0.4~3x

```
subroutine diabat()
  do j = 1, latitude
  call ozone()
  call pbl()
  call gwd()
  enddo
end subroutine
subroutine pbl()
  do k = 1, levels
  do i = 1, latitude grids
  enddo
  enddo
end subroutine
```

Evolution and Strategy

Many do-loops in the physics code:

• GWD: 38

Ozone:14

• PBL: 79

Accelerating path: OpenACC

The size of do-loop iterations:

 $1440 \sim 111744 \rightarrow 7200000$

```
subroutine diabat()
  call ozone()
  call pbl()
  call gwd()
end subroutine
subroutine pbl()
  do j = 1, latitude
  do k = 1, levels
  do i = 1, latitude grids
  enddo
  enddo
  enddo
end subroutine
```

Benchmark (32 CPU cores vs. 8 A100 GPUs)

Speedup ratio:

	Day0	Day1	Day2	final
GWD	40.8	40.8	51.5	56.6
Ozone	67.3	67.3	67.3	417
PBL	7.78	16.1	36.5	39.1

Execution time (execute 15 times, ms):

final	CPU	GPU
GWD	2370	41.82
Ozone	5655	13.56
PBL	5115	130.68

Notice:

No data transformation included in timing. The first execution is not included.

Speedup ratio

	Day0	Day1	Day2	final
GWD	40.8	40.8	51.5	56.6
Ozone	67.3	67.3	67.3	417
PBL	7.78	16.1	36.5	39.1

Before (O(n), 3.87 ms)

```
do k = 1, levozp-1
    do i = 1, nxj(j1)
        con1 = (pp(i,kk,jj)-pl_pres(k)) / (pl_pres(k+1)-pl_pres(k))
        if ((con1.gt.0.0) .and. (con1.le.1.0)) then !pp(kk) in pl(k,k+1)
        con2=1.0-con1
        ozplout(i,kk,j,jj) = con2*ozwk2(k,j,jj) + con1*ozwk2(k+1,j,jj)
        enddo
enddo
```

After (O(log(n)), 0.33 ms)

```
left = 1
right = levozp
do while (right - left > 1)
 mid = (left + right)/2
 con1 = ppr-pl pres(mid)
  if (con1 .lt. 0.) then
     right = mid
  else
     left = mid
  end if
end do
con1 = (ppr-pl pres(left)) / (pl pres(right)-pl pres(left))
con2=1.0-con1
!$acc loop seq
do j = 1, pl coeff
 ozplout(i,kk,j,jj) = con2*ozwk2(left,j,jj) + con1*ozwk2(r:
```

Speedup ratio

	Day0	Day1	Day2	final
GWD	40.8	40.8	51.5	56.6
Ozone	67.3	67.3	67.3	417
PBL	7.78	16.1	36.5	39.1

Before (acc routine, 30.5 ms)

After (cuSPARSE, 2.96 ms)

```
!$acc parallel loop gang collapse(2) private(jj,i,k,accui)
do jj = 1,jlistnum
  do k = 1, km
    !$acc loop vector
    do i = 1, myim(jj)
        accui = nxjp_acc(jj)-1
        if (k .eq. km) then
        aug(accui+i,k) = 0.
        else
        aug(accui+i,k) = aug_backup(accui+i,k)
        endif
    enddo
enddo
call cusparseDgtsvInterleavedBatch_async
    (handle,0,km,alg,adg,aug,a2g,nxptot,async_id)
```

Speedup ratio

	Day0	Day1	Day2	final
GWD	40.8	40.8	51.5	56.6
Ozone	67.3	67.3	67.3	417
PBL	7.78	16.1	36.5	39.1

```
moninedmf_gpu_1341_
Begins: 50.3742s
Ends: 50.3766s (+2.314
grid: <<<96, 1, 1>>>
block: <<<128, 1, 1>>>
Launch Type: Regular
Static Shared Memory:
```

Before (gang vector)

```
!$acc parallel loop gang
do jj = 1, jlistnum
  !$acc loop vector
  do i = 1,myim(jj)
```

After (collapse, 4x faster)

```
!$acc parallel loop collapse(2)
do jj = 1, jlistnum
do i=1, ix
if (i .le. myim(jj)) then
```

Speedup ratio

	Day0	Day1	Day2	final
GWD	40.8	40.8	51.5	56.6
Ozone	67.3	67.3	67.3	417
PBL	7.78	16.1	36.5	39.1

Do-loops fusion:

GWD: 38 → 13

Ozone: $14 \rightarrow 7$

PBL: $79 \rightarrow 30$

Asynchronous operation

Energy Efficiency

Units Average Speedup 70.6x

Node Replacement 70.6x

Node Power Efficiency 12.3x

Metric Tons of CO₂
462

IN	PUTS		
# CPU Cores	32		
# GPUs (A100)	8		
Application Speedup	70.6x		
Node Replacement	70.6x		
	GPU NODE POWER SAV	MCC	
	AMD Dual Rome 7742		Dawer Cavings
Community Dayson (MA)		8x A100 80GB SXM4	Power Savings
Compute Power (W)	77,660	6,500	71,160
Networking Power (W)	3,278	93	3,186
Total Power (W)	80,938	6,593	74,346
Node Power efficiency	12.3x		
Node Power efficiency	12.5%		
ANI	NUAL ENERGY SAVINGS PER	GPU NODE	
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Savings
Compute Power (kWh/year)	680,302	56,940	623,362
Networking Power (kWh/year)	28,719	814	27,906
Total Power (kWh/year)	700 024		651,267
Strait (mining family	709,021	57,754	051,201
		57,/54	031,207
\$/kWh	0.18	57,754	031,207
		57,754	031,207
\$/kWh	0.18	57,754	631,207
\$/kWh Annual Cost Savings 3-year Cost Savings	0.18 117,228.08 351,684.23	57,754	632,207
\$/kWh Annual Cost Savings	0.18 117,228.08	57,754	631,207
\$/kWh Annual Cost Savings 3-year Cost Savings	0.18 117,228.08 351,684.23	57,754	031,E01
\$/kWh Annual Cost Savings 3-year Cost Savings Metric Tons of CO ₂	0.18 117,228.08 351,684.23 462	57,754	031,207

What did we learn?

The usage of OpenACC.

The usage of cuSPARSE.

The usage of Nsight system.

The usage of NVTX.

Techniques to speedup kernels.

Avg	Name
19.846 ms	moninedmf_gpu_1486_gpu
10.608 ms	moninedmf_gpu_1695_gpu
2.449 ms	moninedmf_gpu_1341_gpu
2.179 ms	moninedmf_gpu_1651_gpu
1.467 ms	moninedmf_gpu_1750_gpu
1.044 ms	moninedmf_gpu_450_gpu
673.704 μs	moninedmf_gpu_1531_gpu
610.642 µs	mfpbl_gpu_193_gpu

Final Thoughts

Was this Open Hackathon worth it?
 Yes.

- Will you continue development?
 Yes.
- Next steps, future plans.
 Porting other physics module.
 Integration Test.

 What sustained resources or support will be critical for your work after the event?
 Mentors.

Acknowledgement

Mentor

NCHC Open Hackathon

Summary

- Application: CWAGFS-TCo (A weather forecasting model)
- Accelerating path: OpenACC and cuSPARSE
- Physics computation spends 88.7% of total time when TCo runs on CPUs + GPUs.
- We accelerated GWD (56.6x), ozone (417x), and PBL (39.1x) modules.
- Optimizing algorithm, fusing and collapsing do-loops, cuSPARSE, and asynchronous operation are used to speed up codes.
- In the future work, we will accelerate other modules and do integration test.

Thank you~