■ NetApp

Architecture

NetApp Solutions

Alan V Cowles, Dorian Henderson June 14, 2021

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-n_use_case_multitenancy_architecture.html on August 03, 2021. Always check docs.netapp.com for the latest

Table of Contents

chitecture	1
Technology requirements	1
Red Hat OpenShift – Cluster resources	2
NetApp ONTAP	2
NetApp Trident	2
Red Hat OpenShift – storage resources	2

Architecture

Although Red Hat OpenShift and NetApp Trident backed by NetApp ONTAP do not provide isolation between workloads by default, they offer a wide range of features that can be used to configure multi-tenancy. To better understand designing a multi-tenant solution on a Red Hat OpenShift cluster with NetApp Trident backed by NetApp ONTAP, let us consider an example with a set of requirements and outline the configuration around it.

Let us assume that an organization runs two of its workloads on a Red Hat OpenShift cluster as part of two projects that two different teams are working on. The data for these workloads reside on PVCs that are dynamically provisioned by NetApp Trident on a NetApp ONTAP NAS backend. The organization has a requirement to design a multi-tenant solution for these two workloads and isolate the resources used for these projects to make sure that security and performance is maintained, primarily focused on the data that serves those applications.

The following figure depicts the multi-tenant solution on a Red Hat OpenShift cluster with NetApp Trident backed by NetApp ONTAP.

Technology requirements

- 1. NetApp ONTAP storage cluster
- 2. Red Hat OpenShift cluster
- 3. NetApp Trident

Red Hat OpenShift – Cluster resources

From the Red Hat OpenShift cluster point of view, the top-level resource to start with is the project. An OpenShift project can be viewed as a cluster resource that divides the whole OpenShift cluster into multiple virtual clusters. Therefore, isolation at project level provides a base for configuring multi-tenancy.

Next up is to configure RBAC in the cluster. The best practice is to have all the developers working on a single project/workload configured into a single user group in the Identity Provider (IdP). Red Hat OpenShift allows IdP integration and user group synchronization thus allowing the users and groups from the IdP to be imported into the cluster. This helps the cluster administrators to segregate access of the cluster resources dedicated to a project to user group/s working on that project, hence restricting unauthorized access to any cluster resources. To learn more about IdP integration with Red Hat OpenShift, refer the documentation here.

NetApp ONTAP

It is important to isolate the shared storage serving as persistent storage provider for Red Hat OpenShift cluster to ensure the volumes created on the storage for each project appear to the hosts as if they are created on separate storage. To do this, create as many SVMs (storage virtual machines) on NetApp ONTAP as there are projects/workloads and dedicate each SVM to a workload.

NetApp Trident

After we have different SVMs for different projects created on NetApp ONTAP, we need to map each SVM to a different Trident backend.

The backend configuration on Trident drives the allocation of persistent storage to OpenShift cluster resources and it requires the details of the SVM to be mapped to, protocol driver for the backend at the minimum. Optionally, it allows us to define how the volumes are provisioned on the storage and to set limits for the size of volumes or usage of aggregates etc. Details of defining the Trident backend for NetApp ONTAP can be found here.

Red Hat OpenShift – storage resources

After configuring the Trident backends, next step is to configure StorageClasses. Configure as many storage classes as there are backends, providing each storage class access to spin up volumes only on one backend. We can map the StorageClass to a particular Trident backend by using storagePools parameter while defining the storage class. The details to define a storage class can be found here. Thus, there will be one-to-one mapping from StorageClass to Trident backend which points back to one SVM. This ensures that all storage claims via the StorageClass assigned to that project will be served by the SVM dedicated to that project only.

But since storage classes are not namespaced resources, how do we ensure that storage claims to storage class of one project by pods in another namespace/project gets rejected? The answer is to use ResourceQuotas. ResourceQuotas are objects that control the total usage of resources per project. It can limit the number as well as the total amount of resources that can be consumed by objects in the project. Almost all the resources of a project can be limited using ResourceQuotas and using this efficiently can help organizations cut cost and outages due to overprovisioning or overconsumption of resources. Refer to the documentation here for more information.

For this use-case, we need to limit the pods in a particular project from claiming storage from storage classes that are not dedicated to their project. To do that, we need to limit the persistent volume claims for other storage classes by setting <storage-class-name>.storageclass.storage.k8s.io/persistentvolumeclaims to 0. In addition, a cluster administrator must ensure that the developers in a project should not have access to modify the

ResourceQuotas.

Next: Configuration.

Copyright Information

Copyright © 2021 NetApp, Inc. All rights reserved. Printed in the U.S. No part of this document covered by copyright may be reproduced in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an electronic retrieval system-without prior written permission of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp assumes no responsibility or liability arising from the use of products described herein, except as expressly agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.277-7103 (October 1988) and FAR 52-227-19 (June 1987).

Trademark Information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc. Other company and product names may be trademarks of their respective owners.