Лабораторная работа №3

Прогноз эффективной мощности и глубины залегния продуктивной толщи на основе простой линейной зависимости

Целью данной работы является определение фильграционных коэффициентов A и B по данным исследования газовых скважин методом кореляционно-регресивного анализа

Общие сведения

В зависисомсти от структуры изучаемой совокупности различают кореляции двухмерную (или парную), трехмерную и т.д. В случае парной корреляции изменения изучаемого признака связаны только с одним фактором. При многомерной корреляции может быть проведен многофакторный корреляционный анализ.

В общем виде корреляционная связь изучаемого признака с одним или несколькими факторами многомерной совокупности выражается в виде

$$Y = M(Y) + e$$

где Y - изучаемый признак

М(Y) - его магематический признак

е - случайная величина, отображающая влияние неучетных факторов.

Особое место в линейной модели занимает определение значений а и b, наилучшим образом описывающие связь признаков в двухмерной совокупности. Очевидно, что наилучшее приближение связи к фактическим значениям выборочной совокупности может быть достигнута только при минимальных значениях отклонений еі

Описание выполнения работы

Одним из основных параметров, необходимых для подсчета прогнозных запасов нефти и газа, является суммарная эффективная мощность, равная сумме мощностей проницаемых пластов и пропластков перспективного комплекса.

Математическая модель связи: he-aH0

где he - суммарная эффективная мощность перспективного комплекса;

Н0 - общая мощность перспективного компелкса;

а - коэффициент песчанестости

Следовательно математическая модель не должна содержать свободного члена, так как H0=0 суммарная эффективая мощность также равна нулю.

Порядок выполнения работы

Исходные данные: Вариант 5

$$\begin{pmatrix} 0.06 \\ 0.08 \\ 0.10 \\ 0.12 \\ 0.18 \\ 0.19 \\ 0.20 \\ He := \begin{pmatrix} 0.12 \\ 0.32 \\ 0.48 \\ 0.53 \\ 0.51 \\ 0.58 \\ 0.70 \\ 0.83 \\ 0.27 \\ 0.31 \\ 0.32 \\ 0.35 \\ 0.36 \\ 0.36 \\ 0.37 \end{pmatrix} \qquad Ho := \begin{pmatrix} 0.12 \\ 0.32 \\ 0.48 \\ 0.53 \\ 0.51 \\ 0.58 \\ 0.70 \\ 0.83 \\ 0.96 \\ 0.99 \\ 0.99 \\ 1.02 \\ 1.10 \\ 1.32 \end{pmatrix}$$

Вычислим **коэффициент песчанистости** при условии минимума среднего квадратического отклонения:

$$a := \frac{\left[\sum_{i=1}^{15} (Ho \cdot He)\right]}{\sum_{i=1}^{15} (Ho \cdot Ho)} = 0.306$$

$$b := \frac{1}{15} \cdot \left(\sum He\right) - \left(\frac{a}{15} \cdot \sum Ho\right) = -1.309 \times 10^{-3}$$

Математическое ожидание суммарной эффективности мощности и общей мощности:

$$He' := \frac{\sum He}{15} = 0.235$$

$$Ho' := \frac{\sum Ho}{15} = 0.77$$

Находим дисперсию и стандартное отклонение разброса фактических значений:

$$S_{M} := \frac{1}{n-2} \cdot \left[\left(\sum He \right) - \left(\sum Ho \right) a - b \right]^{2} = 2.583 \times 10^{-5}$$

$$S := \sqrt{S_{I}} = 5.082 \times 10^{-3}$$

Рассчитываем коэффициент корреляции:

$$r := \frac{\sum_{i=1}^{15} \left[\left(He_i - He' \right) \cdot \left(Ho_i - Ho' \right) \right]}{\sqrt{\sum_{i=1}^{15} \left(He_i - He' \right)^2 \cdot \sum_{i=1}^{15} \left(Ho_i - Ho' \right)^2}} = 0.969$$

Найдём **доверительные интервалы** значений, вычисляемых по формуле установленной зависимости:

При $H_0 := 0.5 \ {
m KM}$ Задаваясь $\alpha := 0.1$ получим:

$$h_e - 1.771 \cdot S \sqrt{\left(\frac{1}{N}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} \le He \cdot (0.5) \le h_e + 1.771 \cdot S \sqrt{\left(\frac{1}{N}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}$$

При $H_{0}:=1$ κ_{M} Задаваясь $\alpha:=0.1$ получим:

$$h_e - 1.771 \cdot S \sqrt{\left(\frac{1}{N}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} \le He \cdot (1.0) \le h_e + 1.771 \cdot S \sqrt{\left(\frac{1}{N}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}$$

1 0.057

1

Отсюда суммарная эффективная мощность перспективного комплекса равна:

$$he := He \cdot (1.0) + 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}} = He \cdot (1.0) - 1.771 \cdot S \sqrt{\left(\frac{1}{n}\right) + \frac{\left(H_0 - Ho'\right)^2}{\left(Ho - H_0\right)^2}}}$$

Определим значимость установленной связи с помощью статистического критерия:

$$t := \frac{r}{\sqrt{1 - r^2}} \cdot \sqrt{n - 2} = 14.242$$

Определим доверительные интервалы:

		1
	1	0.014
	2	0.016
	3	0.018
	4	0.017
	5	7.904·10 ⁻³
2 2	6	7.535·10 ⁻³
$S_a := \sqrt{\frac{(He - He')^2}{(Ho - H_0)^2} \cdot \frac{1 - r^2}{n - 3}} =$	7	8.187·10 ⁻³
$\int_{0}^{\infty} (H_0 - H_0)^2 n - 3$	8	6.39·10 ⁻³
V (0)	9	0.063
	10	0.534
	11	0.605
	12	0.409
	13	0.089
	14	0.089
	15	0.03

Связь между общей и эффективной мощностями не прослеживается в диапазоне от **9го** до **12го** признака, так как в этой области значений **a** меньше **3*Sa.**

$$a = 0.306$$

$$3 \cdot S_a = \begin{bmatrix} 1 \\ 1 & 0.042 \\ 2 & 0.048 \\ 3 & 0.055 \\ 4 & 0.052 \\ 5 & 0.024 \\ 6 & 0.023 \\ 7 & 0.025 \\ 8 & 0.019 \\ 9 & 0.188 \\ 10 & 1.601 \\ 11 & 1.814 \end{bmatrix}$$

ı		-
	12	1.226
	13	0.266
	14	0.266
	15	0.09

Для оценки ${m r}$ ее дисперсия отклонений от значения коэффициента корреляции находится по формуле

$$S_r := \frac{\left(1 - r^2\right)}{\sqrt{n}} = 0.016$$

Оценка r является надёжной, так как r больше чем 3*Sr:

$$r = 0.969$$
 . > . $S_r = 0.016$

Таблица 1. Расчёт коэффициента корреляции мощностей.

$He_i \cdot Ho_i =$	$\left(Ho_{i}\right)^{2}=$	$he_i^{}=$	$= He_i - he_i =$			
7.2·10-3	0.014	0.057	3.307·10-3	1.093·10-5		
0.026	0.102	0.076	3.83·10 ⁻³	1.467·10 ⁻⁵		
0.048	0.23	0.095	4.609·10-3	2.125·10 ⁻⁵		
0.064	0.281	0.115	4.98·10 ⁻³	2.48·10-5		
0.092	0.26	0.175	4.821·10 ⁻³	2.325·10 ⁻⁵		
0.11	0.336	0.185	5.449·10 ⁻³	2.969·10 ⁻⁵		
0.14	0.49	0.193	7.281·10 ⁻³	5.301·10-5		
0.207	0.689	0.238	0.012	1.537·10-4		
0.259	0.922	0.218	0.052	2.683·10 ⁻³		
0.307	0.98	0.103	0.207	0.043		
0.317	0.98	0.113	0.207	0.043		
0.357	1.04	0.246	0.104	0.011		
0.396	1.21	0.339	0.021	4.339·10-4		
0.396	1.21	0.339	0.021	4.339·10-4		
0.488	1.742	0.363	6.873·10 ⁻³	4.724·10-5		
$He_i - He' = Ho_i - Ho' = \left(He_i - He'\right)^2 = \left(Ho_i - Ho'\right)^2 = \left(He_i - He'\right) \cdot \left(Ho_i - Ho'\right)$						
-0.175	-0.65	0.031	0.423		0.114	
-0.155	-0.45	0.024	0.203		0.07	
-0.135	-0.29	0.018	0.084		0.039	
-0.115	-0.24	0.013	0.058		0.028	
-0.055	-0.26	2.988·10 ⁻³	0.068		0.014	
-0.045	-0.19	1.995·10 ⁻³	0.036	8.48	7·10 ⁻³	
-0.035	-0.07	1.202·10-3	4.9·10-3	2.42	7·10 ⁻³	
0.015	0.06	2 251 10-4	3 6.10-3	0	2.10-4	

0.013	L	.00	ĺ	7.JJI 10		J.U 10 -	2'7 10 .
0.035	0	.19		1.248·10 ⁻	3	0.036	6.713·10 ⁻³
0.075	0	.22		5.675·10 ⁻	3	0.048	0.017
0.085	0	.22		7.282·10 ⁻	3	0.048	0.019
0.115	0	.25		0.01	3	0.063	0.029
0.125	0	.33		0.01	5	0.109	0.041
0.125	0	.33		0.01	5	0.109	0.041
0.135	0	.55		0.01	3	0.303	0.074

Вывод: В данной работе были определены фильтрационные коэффициенты по данным исследования газовых скважин методом корреляционно-регрессионного анализа. Коэффициент корреляции можно считать надёжным.