

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education

MATHEMATICS C (Graduated Assessment)

HIGHER TERMINAL PAPER - SECTION A

Monday

5 JUNE 2006

Afternoon

1 hour

Candidates answer on the question paper.
Additional materials:
Geometrical instruments
Tracing paper (optional)

Candidate Name				July 40 1 12	ignoin la ser.A
	and ample	ity			
Centre Number	4	12/2/11	b = 5(2x = 3)	Candidate Number	side To Tandov

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- In many guestions marks will be given for a correct method even if the answer is incorrect.
- · Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this Section is 50.

WARNING
You are not allowed to use a
calculator in Section A of this paper.

FOR EXAMINER'S USE			

This question paper consists of 11 printed pages and 1 blank page.

SPA (KN) T12507/6 © OCR 2006 [100/1142/0] Registered Charity Number: 1066969

1	(a)	These are the	first	three	shanes	in a	sequence
-	(00)	These are the	mst	unce	snapes	111 0	sequence.

1st

2nd

Find an expression for the number of dots in the n th shape in this sequence.

gmia ali ni nollog (a)[2]

(b) Expand and simplify.

$$2(3x+1)+5(2x-3)$$

(c) Factorise.

$$x^2 - 7x + 10$$

(c)[2]

2 (a) Work out.

$$2\frac{1}{2} + 1\frac{1}{3}$$

-1	FOI
211	1 4 1
.,	 0

(b) Which one of these fractions will convert to a recurring decimal?

$$\frac{1}{5}$$
 $\frac{1}{7}$ $\frac{1}{8}$ $\frac{1}{20}$

(b)]	11	ı
(0)	***************************************	1	

(c) Express $0.\dot{2}\dot{4}$ as a fraction in its simplest form.

(c)[2

6

3 Estimate the answer to $\frac{8.28 \times 10^3}{3.79 \times 10^{-2}}$.

Show clearly the values you use.

.....[3]

4	(a)	Write down	all the	integer	values	of n	which	satisfy	this	inequality.
---	-----	------------	---------	---------	--------	--------	-------	---------	------	-------------

$$-5 < 3n \le 12$$

(b) Solve, algebraically, these simultaneous equations.

$$3x - 2y = 19$$
$$2x + y = 8$$

(b)
$$x = \dots$$

$$y =[3]$$

6

5 All the lengths in this question are in metres.

The diagram shows a cuboid.

(a) Show that the volume, V, of the cuboid is $V = x^3 + 3x^2$.

i
•
•

.....[2

(b) Complete the table for $V = x^3 + 3x^2$.

x	0	1	2	3	4
V	0	4	20	54	(6)

[1]

(c) Draw the graph of $V = x^3 + 3x^2$ on the grid below.

[2]

(d) The volume of the cuboid is $30 \,\mathrm{m}^3$.

Use your graph to find the length of the side x.

(d)m [1]

5

6	(a)	Rearrange	y = 5x - 3	to make x the sub	iect.
---	-----	-----------	------------	-------------------	-------

(0)	LJ.
(a)	 14

(b) Rearrange
$$c(d-3) = 2d + 5c$$
 to make d the subject.

A, C and D are points on a circle.
 BA and BC are tangents to the circle.
 Angle ABC = 54°.

Not to scale

ng a reason for each step of your calculation.	
hetweeth Crand 300° 1	
(ii) On the dingram above, sloredy the graph of y = cos3x	
[4]	

8 Work out.

 $27^{-\frac{2}{3}}$

.....[2]

2

9 This is the graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$.

(a) Given that $\cos 50^\circ = 0.64$, write down the values of x between 0° and 360° for which $\cos x = -0.64$.

(a)[2]

(b) On the diagram above, sketch the graph of $y = \cos 3x$.

[2]

10 Solve.

$$\frac{2}{x+4} + \frac{5}{4x-5} = 1$$

 [7]	