Model Selection and Train/Validation/Test Sets

Evaluating a Learning Algorithm

Advice for Applying Machine Learning

Introduction

- Suppose you are left to decide what degree of polynomial to fit to a data set.
- So that what features to include that gives you a learning algorithm.
- Or suppose you'd like to choose the regularization parameter lambda for learning algorithm
- These are called model selection problems.

Introduction

- We've already seen a lot of times the problem of overfitting, in which just because a learning algorithm fits a training set well, that doesn't mean it's a good hypothesis.
- More generally, this is why the training set's error is not a good predictor for how well the hypothesis will do on new example.

Overfitting example

Once parameters $\theta_0, \theta_1, \ldots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

> Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

d-degree of polynomial

Model selection

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$
$$\vdots$$

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \cdots + \theta_{10} x^{10}$$

d-degree of polynomial

Model selection

3:\ 1.
$$\Rightarrow h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
2. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{3}x^{3}$
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{10}x^{10}$
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \cdots + \theta_{10}x^{10}$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

d-degree of polynomial

Model selection

2- degree of polynomial

Model selection

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

Choose
$$\theta_0 + \dots \theta_5 x^5 \leftarrow$$

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

> Windows'u Etkinlestir Windows'u etkinleştirmek için Ayarlar'a gidin.

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

Problem: $J_{test}(\theta^{(5)})$ is likely to be an optimistic estimate of generalization error. I.e. our extra parameter (d = degree of polynomial) is fit to test set.

Size	Price
2104	400
1600	330
2400	369
1416	232
3000	540
1985	300
1534	315
1427	199
1380	212
1494	243

Size	Price
2104	400
1600	330
2400	369 Training set
1416	232
3000	540
1985	300
1534	315 7 Cross validation
1427	199 Set (CU)
1380	212 } test set
1494	243

_	Size	Price
	2104	400
	1600	330
600	2400	369 Training set
	1416	232
	3000	540
	1985	300
20%	1534	315 7 Cross validation
	1427	199 Set (CU)
20.1.	1380	212 } test set
	1494	243

_	Size	Price	
	2104	400	
	1600	330	
600	2400	369 Training	
	1416	232	
	3000	540	1
	1985	300	
20%	1534	315 7 Cross 199 Set	validation
	1427	199 J set	(cu)
20.1.	1380	212 } test se	·
	1494	243	

Train/validation/test error

Training error:

$$\rightarrow J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

1.
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

2.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

3.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$
:

10.
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

Andrew Ng

1.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ \longrightarrow $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$

Find theta's using the test set, i.e., find theta that minimizes the error of the test set.

1.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 $\longrightarrow \text{Min}^{3}(0) \longrightarrow \text{Co}(0^{(1)})$
2. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2}$ $\longrightarrow \text{Co}(0^{(1)})$
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}$ $\longrightarrow \text{Co}(0^{(1)})$
 \vdots
10. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ $\longrightarrow \text{Co}(0^{(1)})$

3.
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 $\longrightarrow \text{Min} \mathcal{I}(\delta) \longrightarrow \mathcal{O}^{(n)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(n)})$
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}$ $\longrightarrow \mathcal{O}^{(n)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(n)})$
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{3}x^{3}$ $\longrightarrow \mathcal{O}^{(n)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(n)})$
 \vdots
3. $h_{\theta}(x) = \theta_{0} + \theta_{1}x + \dots + \theta_{10}x^{10}$ $\longrightarrow \mathcal{O}^{(n)} \longrightarrow \mathcal{I}_{cu}(\mathcal{O}^{(n)})$

Pick
$$\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4 \leftarrow$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$

Pick
$$\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4 \leftarrow$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$ \longleftarrow

- Consider the model selection procedure where we choose the degree of polynomial using a cross validation set. For the final model (with parameters θ), we might generally expect $J_{CV}(\theta)$ to be lower than $J_{test}(\theta)$
 - An extra parameter (d, the degree of the polynomial) has been fit to the cross validation set.
 - An extra parameter (d, the degree of the polynomial) has been fit to the test set.
 - The cross validation set is usually smaller than the test set.
 - The cross validation set is usually larger than the test set.