

# **B291**

Serviceanleitung Service Instructions Instructions de service



Vorsicht:

Das Gerät ist in ausgeschaltetem Zustand (STANDBY) nicht von der Stromzuführung getrennt.

Attention:

Cet appareil n'est pas séparé du réseau lorsqu'il est déclenché (STANDBY).

Warning:

This unit is not separated from the mains supply when switched off (STANDBY).

Attenzione:

Questo apparecchio non è separato dalla rete quando l'interruttore è spento (STANDBY).

Precaución:

Este aparato no està separado de la red cuando està apagado (STANDBY).

Waarschuwing: In uitgeschakelde toestand (STANDBY) is het apparaat niet gescheiden van de netspanning.

Advarsel:

Apparaten er ogsaa hvis lukket (STANDBY) under strøm.

Huomio:

Huolimatta siitä, että virta on katkaistu laitteesta (STANDBY), sitä ei ole eristetty sähköstä.

Forsiktig:

Selvom strømmen ikke er pa i apparatet (STANDBY), sa er det ikke skilt fra strøm.

Varning:

Oaktat om strömmen är avbruten i apparaten (STANDBY), sa är den ända kopplad med ström.

| DEUTSCH                                                         | 1     | ALLGEMEINES                                | D | 1/ |
|-----------------------------------------------------------------|-------|--------------------------------------------|---|----|
| SERVICEANLEITUNG                                                | 2     | AUSBAU                                     | D | 2/ |
| REVOX B291 • PLATTENSPIELER                                     | 3     | MECHANISCHE KONTROLLEN UND EINSTELLUNGEN   | D | 3/ |
| :                                                               | 4     | FUNKTIONSBESCHREIBUNG                      | D | 4/ |
| i i i i i i i i i i i i i i i i i i i                           | 5     | ELEKTRISCHE MESSUNGEN UND EINSTELLUNGEN    | D | 5/ |
| ENGLISH                                                         | 1     | GENERAL                                    | E | 1/ |
| SERVICE INSTRUCTIONS                                            | <br>2 | DISASSEMBLY                                | E | 2/ |
| REVOX B291 • TURNTABLE                                          | 3     | MECHANICAL ADJUSTMENTS AND CHECKS          | E | 3/ |
|                                                                 | 4     | FUNCTIONAL DESCRIPTION                     | Ε | 4/ |
|                                                                 | 5     | ELECTRICAL MEASUREMENTS AND ALIGNMENTS     | E | 5/ |
| FRANÇAIS  INSTRUCTIONS DE SERVICE REVOX B291 • TABLE DE LECTURE | 1 2   | GENERALITES PROCEDE DE DEMONTAGE / MONTAGE |   | 1/ |
| REVOX B291 • TABLE DE LECTURE                                   |       | CONTROLES ET AJUSTAGES MECANIQUES          | F | 3/ |
|                                                                 | 4     | DESCRIPTIONS DU FONCTIONNEMENT             | F | 4/ |
|                                                                 | 5     | MESURES ET REGLAGES ELECTRIQUES            | F | 5/ |
|                                                                 |       |                                            |   |    |
|                                                                 |       | SCHEMATA                                   |   | 6/ |
|                                                                 | 6     | DIAGRAMS                                   |   | 6/ |
|                                                                 |       | SCHEMAS                                    |   | 6/ |
|                                                                 |       |                                            |   |    |
|                                                                 |       | ERSATZTEILE                                |   | 7/ |
|                                                                 | 7     | SPARE PARTS                                |   | 7/ |
|                                                                 |       | PIECES DE RECHANGE                         |   | 7/ |



Behandlung von MOS-Bauteilen

Handling MOS components

Manipulation des composantes MOS

MOS-Bausteine sind besonders empfindlich auf elektrostatische Ladungen. Folgendes ist daher zu beachten:

- Elektrostatisch empfindliche Bauteile werden in Schutzverpackungen gelagert und transportiert. Auf der Packung wird obiges Etikett angebracht.
- Jeder Kontakt der Elementanschlüsse mit elektrostatisch aufladbaren Materialien ist unbedingt zu vermeiden.
- Anschlüsse dürfen nur berührt werden, wenn das Handgelenk geerdet ist.
- Als Arbeitsunterlage ist eine geerdete, leitende Matte zu verwenden (Art. Nr.46200).
- Printkarten nicht unter Spannung herausziehen oder einstecken.

MOS components are extremely sensitive to static charges. Please observe therefore the following regulations:

- Components sensitive to static charges are stored and shipped in protective packagings. On the package you find the above-mentioned symbol.
- Avoid any contact of connector pins with foam packages and -foil made of similar chargeable package material.
- Don't touch the connector pins, when your wrist is not grounded with a conducting wristlet.
- Use a grounded conducting mat when working with sensitive components (Order no. 46200).
- Never plug or unplug PCBs containing sensitive components when the set is switched on.

Les composantes MOS sont extrêmement sensibles à l'électricité statique. Veuillez donc suivre les conseils:

- Les composants MOS sont stockés et transportés dans des emballages protecteurs avec le symbole susmentionné.
- Evitez tout contact entre les broches des cicuits et matériau susceptible de porter une charge électrostatique.
- Ne touchez pas les broches des circuits si votre poignet n'est pas relié à la terre par un braclet conducteur.
- Utilisez un tapis conducteur relié à la terre quand vous travaillez avec des composants sensibles (Nr. de commande 46200).
- Ne jamais enficher ou retirer des circuits imprimés si l'appareil est sous tension.

Subject to change Prepared and edited by STUDER REVOX TECHNICAL DOCUMENTATION Althardstrasse 10 CH-8105 Regensdorf-Zürich

Copyright by WILLI STUDER AG Printed in Switzerland

Order No.: 10.30.0620 (Ed.1187)

REVOX is a registered trade mark of WILLI STUDER AG Regensdorf.

### Deutsch

| 1.1   BEDIENUMGSELEMENTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Seite          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| 1.2 ABMESSUNGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |  |
| 1.3.1   Laufwerk und Tonarmführung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D 4/1          |  |
| 1.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D 4/1          |  |
| 1.3.3   Verschiedenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D 4/1          |  |
| 1.4   TOMANNEHMER   D 1/3   A.3.4   Der Antriebsmotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D 4/1          |  |
| 1.4.   Shure V15V - P-Mount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 4/1          |  |
| 1.4.2   Shure V15V - P-Mount   D 1/3   C.3.5   7-segment-Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D 4/2          |  |
| 1.4.2   Elac EMM 150 - P-Mount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 4/2<br>D 4/2 |  |
| LIST ZUBEHOR DITA  2. AUSBAU  2. AUSBAU  2. ALLGEMEINES 2. VERWENDETE WERKZEUGE 3. ADSCHAUBE EINTEFENEN 4. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D 4/2          |  |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 4/3          |  |
| 4.4.2 Digitale Eingangspegel 4.4.4 Automatische Positionierung 4.4.5 Absenken 2.1 ALLGEMEINES 2.2 VERWENDETE WERKZEUGE 2.3 ABDECKHAUBE ENTERNEN 2.4 PLATTENTELLER ABHEBEN 2.5 ABDECKHAUBE ENTERNEN 2.6 PLATTENTELLER ABHEBEN 2.7 CHASSIS AUSBAUEN 2.8 TONARRFÜHRUNG OFFNEN 2.9 ANTRIEBSMOTOR AUSBAUEN 2.9 ANTRIEBSMOTOR AUSBAUEN 2.10 ELEKTRONIK-PRINT AUSBAUEN 2.11 BEDIENUNGSELEMENTE AUSBAUEN 2.12 NETEKRONIK-PRINTA OUSBAUEN 3.1 HILFSMITTEL 3.1 HILFSMITTEL 3.2 BEDINGUNGEN 3.3 KONTROLLED DER TANGENTIALEN ABTASTSPUR 3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR 3.3 FORTON AUSBAUEN 3.3 CONTROLLE DER TANGENTIALEN ABTASTSPUR 3.3 PÜTER mit der Einstellehre Nr. 46173 3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR 3.3 PÜTER mit der Einstellehre Nr. 46173 3.3 FÖRTEN mit Hilfe einer markierten Schaltplatte 3.4 EINBAU EINES TONABMEHMERA 3.5 KONTROLLE DER TANGENTIALEN ABTASTSPUR 3.6 EINBAU EINES TONABMEHMERA 3.7 EINBAU EINES TONABMEHMERA 3.6 EINBAU EINES TONABMEHMERA 3.6 TONABMEHMER MIT EIGNUNGSTEST 3.6 TONABMEHMER MIT EIGNUNGSTEST 3.6 TONABMEHMER MIT EIGNUNGSTEST 3.7 TONABMEHMER MIT EIGNUNGSTEST 3.6 TONABMEHMER MIT EIGNUNGSTEST 3.7 EINSTELLEN DER TONABMEHMERABSENKTIEFE 3.7 EINSTELLEN DER TONABMEHMERABSENKTIEFE 3.7 TONABMEHMER MIT EIGNUNGSTEST 3.8 TONABMEHMER MIT EIGNUNGSTEST 3.6 TONABMEHMER MIT EIGNUNGSTEST 3.7 EINSTELLEN DER TONABMEHMERABSENKTIEFE 3.7 TONABMEHMER MIT EIGNUNGSTEST 3.8 TONABMEHMER MIT EIGNUNGSTEST 3.9 TONABMEHMER MIT EIGNUNGSTEST 3.0 TONABMEHMER MIT EIGNUNGSTEST 3.0 TONABMEHMER MIT EIGNUNGSTEST 3.1 TONABMEHMER MIT EIGNUNGSTEST 3.2 TONABMEHMER MIT EIGNUNGSTEST 3.3 TONABMEHMER MIT EIGNUNGSTEST 3.4 CONTROLLED DER TONABMEHMERABSENKTIEFE 3.5 TONABMEHMER MIT EIGNUNGSTEST 3.6 TONABMEHMER MIT EIGNUNGSTEST 3.7 EINSTELLEN DER TONABMEHMERABSENKTIEFE 3.7 TONABMEHMER MIT EIGNUNGSTEST 3.8 TONABMEHMER MIT EIGNUNGSTEST 3.9 TONABMEHMER MIT EIGNUNGSTEST 3.0 TONABMEHMER MIT EIGNUNGSTEST 3.1 TONABMEHMER MIT EIGNUNGSTEST 3.2 TONABMEHMER MIT EIGNUNGSTEST 3.3 TONABMEHMER MIT EIGNUNGSTEST 3.4 TONABMEHMER MIT EIGNUNGSTEST 3.5 TONABMEHMER MIT EIGNUNGST | D 4/3          |  |
| ALLGEMEINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 4/3          |  |
| 2.1 ALGEMEINES D 2/1 4.4.6 Manuelle Positionierung 2.2 VERMENDETE WERKZEUGE D 2/1 4.4.6 Manuelle Positionierung 2.3 ABGECKHAUBE ENTFERNEN D 2/1 2.4 PLATTENTELLER ABHEBEN D 2/1 2.5 TONARMFURING OFFNEN D 2/1 2.6 NADELTRÄGER ENTFERNEN D 2/1 4.4.7 AUSLAUFFILLEN-Erkennung 2.7 TONARMFURING OFFNEN D 2/1 4.4.8 Beleuchtung 2.8 TONARMFURING AUSBAUEN D 2/2 2.8 TONARMFURING AUSBAUEN D 2/3 4.5.1 Impedanzwandler 2.10 ELEKTRONIK-PRINT AUSBAUEN D 2/3 4.5.1 Impedanzwandler 2.11 BEDIENUNGSELEMENTE AUSBAUEN D 2/3 4.5.2 RIAA-Entzerrung 2.12 NETZRANSFORMATOR AUSBAUEN D 2/3 4.5.2 RIAA-Entzerrung 3. MECHANISCHE EINSTELLUNGEN D 2/4 5. ELEKTRISCHE MESSUNGEN UND EINSTELLUNGEN 3. MECHANISCHE EINSTELLUNGEN D 3/1 5.3.2 AUFWERK 3. LILFSMITTEL D 3/1 5.3.2 LUFWERK 3. LUFWERK D 3/1 5.3.3 VOReinstellen der Motorregelkreises Möglich von Antriebsmotor und Antriebs | D 4/3          |  |
| 2.1 ALLGEMEINES D 2/1 4.4.5 Manuelle Positionierung 2.2 VERMENDETE WERKZEUGE D 2/1 4.4.6 Photodiodreverstärker 2.3 ABDECKHAUBE ENTFERNEN D 2/1 4.4.7 Manuelle Positionierung 2.4 PLATTENTELLER ABHEBEN D 2/1 4.4.8 Beleuchtung 2.5 TONARMFÜHRUNG OFFNEN D 2/1 4.4.9 Seleuchtung 2.6 NADELTRÄGER ENTFERNEN D 2/2 2.7 CHASSIS AUSBAUEN D 2/2 2.8 TONARMFÜHRUNG AUSBAUEN D 2/3 4.5.1 Impedanzwandler 2.10 ELEKTRONIK-PRINT AUSBAUEN D 2/3 4.5.2 Impedanzwandler 2.11 BEIDENMOSSELEHENETE AUSBAUEN D 2/3 4.5.1 Impedanzwandler 2.12 NETZTRANSFORMATOR AUSBAUEN D 2/3 4.5.2 RIAA-Entzerrung 2.13 NETZSICHERUNG AUSBAUEN D 2/4 5.2 ELEKTRONIK-PRINT AUSBAUEN D 2/4 5.2 Impedanzwandler 2.14 ZUSAMMENBAU D 2/4 5. ELEKTRONIK-PRINT AUSBAUEN D 2/4 5.3 IMPEDANZEN D 2/4 5.3 IMPEDANZEN D 2/4 5.3 IMPEDANZEN D 2/4 5.4 IMPEDANZEN D 2/4 5.5 IMPE | D 4/4          |  |
| 2.2 VERMENDETE WERKZEUGE  3. ABDECKHAUBE EINTERNEN  2.4 PLATTENTELLER ABHEBEN  2.5 NORAMFÜRUNG OFFNEN  2.6 NADEL TRÄCER ENTFERNEN  2.7 CHASSIS AUSBAUEN  2.8 TONARMFÜRUNG OFFNEN  2.9 ANTRIEBSMOTOR AUSBAUEN  2.10 ELEKTRONIK-PRINT AUSBAUEN  2.11 BEDIENUNGSELEMENTE AUSBAUEN  2.12 NETZTRANSFORMATOR AUSBAUEN  2.13 NETZISCHERUNG AUSBAUEN  2.14 ZUSAMMENBAU  2.15 ELEKTROIK-PRINT AUSBAUEN  2.16 NETZTRANSFORMATOR AUSBAUEN  2.17 NETZTRANSFORMATOR AUSBAUEN  2.18 TONARMFÜRUNG OFFNEN  2.19 ANTRIEBSMOTOR AUSBAUEN  2.10 ELEKTRONIK-PRINT AUSBAUEN  2.11 BEDIENUNGSELEMENTE AUSBAUEN  2.12 NETZTRANSFORMATOR AUSBAUEN  2.13 NETZISCHERUNG AUSWECHSELN  2.14 ZUSAMMENBAU  2.15 ELEKTRISCHE MESSUNGEN  2.16 UND AUSBAUEN  2.17 VORUNSELEMENTE AUSBAUEN  3. MECHANISCHE EINSTELLUNGEN  2. MECHANISCHE EINSTELLUNGEN  3. MECHANISCHE EINSTELLUNG | D 4/4<br>D 4/4 |  |
| 2.3 ABDECKHAUBE ENTFERNEN D 2/1 4.4.7 Austaufritlen-Erkennung 2.4 PLATTENTELLER ABHEBEN D 2/1 4.4.8 Betuchtung 2.5 TONARMFÜHRUNG VFFNEN D 2/1 4.4.8 Betuchtung 2.6 NADELTRKGER ENTFERNEN D 2/1 4.4.9 Stummschaltung 2.7 CHASSIS AUSBAUEN D 2/2 2.8 TONARMFÜHRUNG AUSBAUEN D 2/2 2.9 ANTRIEBSMOTOR AUSBAUEN D 2/3 4.5.1 Impedanzwandler 2.10 ELEKTRONIK-PRINT AUSBAUEN D 2/3 4.5.2 RIAA-Entzerrung 2.11 BEDIENUNGSELEMENTE AUSBAUEN D 2/3 2.13 NETZSICHERUNG AUSBAUEN D 2/4 2.14 ZUSAMMENBAU D 2/4 5. ELEKTRISCHE MESSUNGEN UND EINSTELLUNGEN 2.14 ZUSAMMENBAU D 2/4 5. ELEKTRISCHE MESSUNGEN UND EINSTELLUNGEN 3. MECHANISCHE EINSTELLUNGEN UND KONTROLLEN D 3/1 5.3 LAUFWERK Voreinstellen der Motorregelkreises Voreinstellen der Motorr | 0 4/4          |  |
| 2.4 PLATTENTELLER ABHEBEN D 2/1 4.4.7 Auslaufrillen-Erkennung 2.5 TOMABMEUHRUNG OFFNEN D 2/1 4.4.8 Beleuchtung 2.6 NADELTRÄGER ENTFERNEN D 2/1 4.4.9 Stummschaltung 2.7 CHASSIS AUSBAUEN D 2/2 4.5 PHONO VORVERSTÄRKER 2.9 ANTRIESBNOTOR AUSBAUEN D 2/3 4.5.1 Impedanzwandler 2.10 ELEKTRONIK-PRINT AUSBAUEN D 2/3 4.5.2 RIAA-Entzerrung 2.11 BEDIENUNGSELEMENTE AUSBAUEN D 2/3 4.5.2 RIAA-Entzerrung 2.12 NETZTRANSFORMATOR AUSBAUEN D 2/3 4.5.2 RIAA-Entzerrung 2.13 NETZSICHERUNG AUSWECHSELN D 2/4 5. ELEKTRISCHE MESSUNGEN UND EINSTELLUNGEN UND EINSTELLUNGEN UND EINSTELLUNGEN UND EINSTELLUNGEN UND EINSTELLUNGEN UND Arthribsbnotor und KONTROLLEN D 3/1 5.3 LAUFWERK Voreinstellen der Motorregelkreises Abgleich von Antriebsmotor und Antriebsmo | D 4/4          |  |
| 2.6 NADELTRKGER ENTFERNEN D 2/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 4/4          |  |
| 2.7 CHASSIS AUSBAUEN 2.8 TONARMFUHRUNG AUSBAUEN 2.9 ANTRIEBSMOTOR AUSBAUEN 2.10 ELEKTRONIK-PRINT AUSBAUEN 2.11 BEDIENUNGSELEMENTE AUSBAUEN 2.12 NETZIRANSFORMATOR AUSBAUEN 2.13 NETZSICHERUNG AUSWECHSELN 2.14 ZUSAMMENBAU 2.15 LAIFSSICHERUNG AUSWECHSELN 2.16 LEKTRONIK-PRINT AUSBAUEN 2.17 NETZSICHERUNG AUSWECHSELN 2.18 LAIFSSICHERUNG AUSWECHSELN 2.19 LAIFSSICHERUNG AUSWECHSELN 2.10 LAIFSSICHERUNG AUSWECHSELN 2.10 LAIFSSICHERUNG AUSWECHSELN 2.11 LIFSMITTEL 3.1 HILFSMITTEL 3.2 BEDINGUNGEN 3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR 3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR 3.3.1 VORAUSSETZUNGEN 3.3.2 Prüfen mit der Einstellehre Nr. 46173 3.3.3 Prüfen mit der Einstellehre Nr. 46173 3.3.4 KORTROLLE DER TANGENTIALEN ABTASTSPUR 3.4 KORTROLLE DER TANGENTIALEN ABTASTSPUR 3.5 LAIFBRURG AUSWECHSELN 3.6 LAIFBRURG AUSWECHSELN 3.7 ELIBBAU EINES TONABNEHMER 3.8 LEINBAU EINES TONABNEHMERS 3.6 LINGELLEN DER TONABNEHMER BENKTIEFE 3.7 TONABNEHMER MIT EIGNUNGSTEST 3.8 LAUFMER 3.9 LEKTROCH MESSGERÄTE 3.7 ELIBBAU EINES TONABNEHMERABSENKTIEFE 3.7 TONABNEHMER MIT EIGNUNGSTEST 3.7 EINSTELLLEN DER TONABNEHMERABSENKTIEFE 3.8 LEKTROCH MESSURGEN 4.5 LEKTRISCHE MESSUNGEN 4.5 PHONO VORVERSTÄRKER 4.5 PHONO VORVERSTÄRKER 5.1 IMPEDIALEN DER TONABNEHMERABSENKTIEFE 3.7 TONABNEHMER MIT EIGNUNGSTEST 3.7 EINSTELLLEN DER TONABNEHMERABSENKTIEFE 3.7 EINSTELLLEN DER TONABNEHMERABSENKTIEFE 3.7 EINSTELLLEN DER TO | D 4/5          |  |
| 2.8 TONARNFÜHRUNG AUSBAUEN D 2/2 4.5 PHONO VORVERSTÄRKER 2.9 ANTRIEBSMOTOR AUSBAUEN D 2/3 4.5.1 Impedanzwandler 2.10 ELEKTRONIK-PRINT AUSBAUEN D 2/3 4.5.2 RIAA-Entzerrung 2.11 BEDIENUNGSELEMENTE AUSBAUEN D 2/3 2.12 NETZTRANSFORMATOR AUSBAUEN D 2/3 2.13 NETZSICHERUNG AUSWECHSELN D 2/4 2.14 ZUSAMMENBAU D 2/4 5.4 ELEKTRISCHE MESSUNGEN UND EINSTELLUNGEN UND EINSTELLUNG EN EINSTELLEN DER TONABNEHMERS IN DEN LINATRACK - TONARM D 3/3 5.4.1 SHAPPING EINSTELLUNG EN FORSTEN UND EINSTELLUNG EN FORSTEN UND EINSTELLUNGEN UND EINSTELLUNGEN UND EINSTELLUNGEN UND EINSTELLUNGEN UND EINSTELLUNG EN FORSTEN UND EINSTELLUNG EN FORSTEN UND EINSTELLUNG EN FORSTEN UND EINSTELLUNG EN FORSTELLEN DER TONABNEHMERS DAS 15.4.5 EINSTELLEN DER TONABNEHMERABEINKTIEFE D 3/5 5.5 VORVERSTÄRKER  3.6 TONABNEHMER MIT EIGNUNGSTEST D 3/6 Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 4/5          |  |
| 2.9 ANTRIESMOTOR AUSBAUEN D 2/3 4.5.1 Impedanzwandler 2.10 ELEKTRONIK-PRINT AUSBAUEN D 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 4/5          |  |
| 2.10 ELEKTRONIK-PRINT AUSBAUEN D 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D 4/5          |  |
| 2.11 BEDIENUNGSELEMENTE AUSBAUEN D 2/3 2.12 NETZTRANSFORMATOR AUSBAUEN D 2/4 2.13 NETZSICHERUNG AUSWECHSELN D 2/4 2.14 ZUSAMMENBAU D 2/4 2.15 ELEKTRISCHE MESSUNGEN und EINSTELLUNGEN UND EINSTELLUNGEN 3. MECHANISCHE EINSTELLUNGEN UND KONTROLLEN D 3/1 3.1 HILFSMITTEL D 3/1 S.3. LAUFWERK 3.2 BEDINGUNGEN D 3/1 S.3. LAUFWERK 3.2 BEDINGUNGEN D 3/1 S.3. Abgleich von Antriebsmotor und Antriebssteuerung auf minimale Tonhöhenschwankungen 3/1 S.3.1 Voraussetzungen D 3/1 S.3.3 Typische Signalformen D 3/1 S.3.3 Prüfen mit der Einstellehre Nr. 46173 D 3/2 D 3/2 D 3/2 D 3/3 D 3/4 S.4.1 Bemerkungen D 3/3 S.4.1 Funktionskontrolle der Tonarm-Steuerung S.4.1 Bemerkungen D 3/3 S.4.1 Funktionskontrolle der Tonarm-Steuerung D 3/3 S.4.1 Funktionskontrolle der Tonarm-Steuerung S.4.1 Bemerkungen D 3/3 S.4.5 Vorbereitungen D 3/3 S.4.5 Vorbereitungen D 3/3 S.4.5 Vorbereitungen D 3/4 S.4.5 Vorgehen beim Ersetzen der Infrarot-LED Sinbalmehrer demontieren D 3/4 S.4.5 Vorgehen beim Ersetzen der Infrarot-LED Sinbalmehrer montieren D 3/4 S.4.5 Einbau eines P-Mount Tonabnehmersystems D 3/5 S.5.5 VORVERSTÄRKER EINSTELLEN DER TONABNEHMERABSENKTIEFE D 3/5 S.5.1 Einstellung der Kanalbalance und Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D 4/6          |  |
| 2.13 NETZSICHERUNG AUSWECHSELN 2.14 ZUSAMMENBAU  D 2/4 |                |  |
| 2.14 ZUSAMMENBAU  D 2/4  S. ELEKTRISCHE MESSUNGEN und EINSTELLUNGEN  MECHANISCHE EINSTELLUNGEN  J 5.1 ALLGEMEINES  S.2 HILFSMITTEL und MESSGERÄTE  S.2 HILFSMITTEL und MESSGERÄTE  3.1 HILFSMITTEL  D 3/1 S.3 LAUFWERK  S.3.1 Voreinstellen der Motorregelkreises  Abgleich von Antriebsmotor und Antriebsteuerung auf minimale Tonhöhenschwankungen  J 3/1 S.3.2 Abgleich von Antriebsmotor und Antriebsteuerung auf minimale Tonhöhenschwankungen  J 3/1 S.3.3 Typische Signalformen bei korrekter Motorsynchronisation  D 3/1 S.3.3 Typische Signalformen bei korrekter Motorsynchronisation  D 3/2 S.4 Korrektur eines Spurfehlers  J 3/3 S.4.4 Korrektur eines Spurfehlers  J 3/3 S.4.5 EINBAU EINES TONABNEHMERS  IN DEN LINATRACK – TONARM  D 3/3 S.4.3 Einstellung der Tonabnehmer-Nachführung  J 4.1 Bemerkungen  J 3/3 S.4.4 Einstellung der Tonabnehmer-Nachführung  J 4.1 Bemerkungen  J 3/3 S.4.5 Vorgehen beim Ersetzen der Infrarot-LED  J 3/4 S.4.6 Einstellen des Fodsignals  J 4.5 Einbau eines P-Mount Tonabnehmersystems  D 3/4 S.4.7 Einstellen des Positionierungssignals  J 5.5 TONABNEHMER MIT EIGNUNGSTEST  J 5/6 EINSTELLEN DER TONABNEHMERABSENKTIEFE  D 3/5 S.5.1 WORVERSTÄRKER  Einstellung der Kanalbalance und Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |  |
| 3. MECHANISCHE EINSTELLUNGEN UND KONTROLLEN  3. MECHANISCHE EINSTELLUNGEN UND KONTROLLEN  3.1 HILFSMITTEL  3.2 BEDINGUNGEN  3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR 3.3.1 Voraussetzungen 3.3.2 Prüfen mit der Einstellehre Nr. 46173 3.3.3 Prüfen mit der Einstellehre Nr. 46173 3.3.3 Prüfen mit Hilfe einer markierten Schallplatte 3.3.4 Korrektur eines Spurfehlers  3.5 EINBAU EINES TONABNEHMERS IN DEN LINATRACK – TONARM 3.4.1 Bemerkungen 3.4.2 Voreinstellen der Motorregelkreises  3.4.3 Typische Signalformen bei korrekter Motorsynchronisation  3.4.1 Bemerkungen 3.5.4 EINBAU EINES TONABNEHMERS IN DEN LINATRACK – TONARM 3.4.2 Vorbereitungen 3.4.3 Tonabnehmer demontieren 3.4.4 Tonabnehmer demontieren 3.4.5 Einbau eines P-Mount Tonabnehmersystems 3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 TONARMEHMER MIT EIGNUNGSTEST 3.7 VORVERSTÄRKER 3.8 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 TONABNEHMER MIT EIGNUNGSTEST 3.7 TONABNEHMER MIT EIGNUNGSTEST 3.8 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.9 3/6  3.9 VORVERSTÄRKER 4 SLAUFWERSTÄRKER 5.2 HILFSMITTEL und MESSGERÄTE 5.2 LAUFWERK 5.3.1 LAUFWERK 5.3.1 LAUFWERK 5.3.1 LAUFWERK 5.3.1 LAUFWERK 5.3.1 TONAFITEL und MESSGERÄTE 5.3.1 LAUFWERK 5.3.1 LAUFWERK 5.3.1 LAUFWERK 5.3.1 TONAFITELLEN DER TONABNEHMERABSENKTIEFE 5.4 TONAFITELLEN DER TONABNEHMERABSENKTIEFE 5.4 TONAFITELLEN DER TONABNEHMERABSENKTIEFE 5.5 TONABNEHMER MIT EIGNUNGSTEST 5.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE 5.7 TONABNEHMER MIT EIGNUNGSTEST 5.7 TONABNEHMER AUFLAGEKRAFT 5.8 TONABNEHMER AUFLAGEKRAFT 5.7 TONABNEHMER AUFLAGEKRAFT 5.7 T |                |  |
| MECHANISCHE EINSTELLUNGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |
| und KONTROLLEN  3.1 HILFSMITTEL  3.2 BEDINGUNGEN  3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR  3.3.1 Voraussetzungen  3.4 Voraussetzungen  3.5 Prüfen mit der Einstellehre Nr.46173  3.6 KOPTENLEN Spurfehlers  3.7 EINBAU EINES TONABNEHMERS  1 N DEN LINATRACK - TONARM  3.4 EINBAU EINES TONABNEHMERS  1 N DEN LINATRACK - TONARM  3.4 Tonabnehmer demontieren  3.4.1 Tonabnehmer demontieren  3.4.2 Vorbereitungen  3.5 TONABNEHMER MIT EIGNUNGSTEST  3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE  3.7 TONASNEHMER MIT EIGNUNGSTEST  3.6 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.7 LAUFWERK  5.3.1 Voreinstellen der Motorregelkreises  4.3 LAUFWERK  5.3.1 Voreinstellen der Motorregelkreises  5.3.2 Abgleich von Antriebsstellen der Motorregelkreises  5.3.3 Abgleich von Antriebsmotor  und Antriebssteuerung auf  minimale Tonhöhenschwankungen  5.3.1 TONARMEÜHRUNG  5.3.3 TONARMEÜHRUNG  5.3.3 TONABNEHMER MIT EIGNUNGSTEST  D 3/2 SAUFWERK  5.3.1 Voreinstellen der Motorregelkreises  5.3.2 Abgleich von Antriebsmotor  und Antriebssteuerung auf  minimale Tonhöhenschwankungen  5.3.2 Abgleich von Antriebsmotor  und Antriebssteuerung auf  minimale Tonhöhenschwankungen  5.3.3 TONARMEÜHRUNG  5.3.4 TONARMEÜHRUNG  5.3.5 TONARMEHMER MIT EIGNUNGSTEST  D 3/5 S.5  VORVERSTÄRKER  Einstellung der Kanalbalance und  Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D 5/1          |  |
| 3.2 BEDINGUNGEN  D 3/1 5.3.2 Abgleich von Antriebsmotor und Antriebssteuerung auf minimale Tonhöhenschwankungen  3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR D 3/1 5.3.3 Typische Signalformen  3.3.1 Voraussetzungen D 3/1 5.3.3 Typische Signalformen  3.3.2 Prüfen mit der Einstellehre Nr.46173 D 3/2 bei korrekter Motorsynchronisation  3.3.3 Prüfen mit Hilfe einer markierten Schallplatte D 3/2 5.4 TonARMFÜHRUNG  3.3.4 Korrektur eines Spurfehlers D 3/3 5.4.1 Funktionskontrolle der Tonarm-Steuerung 5.4.2 Wichtige Hinweise und Voraussetzungen zu den Arm-Einstellungen zu den Arm-Einstellungen zu den Arm-Einstellungen Einstellung der Tonabnehmer-Nachführung 3.4.1 Bemerkungen D 3/3 5.4.3 Einstellung der Tonabnehmer-Nachführung 3.4.2 Vorbereitungen D 3/3 5.4.5 Vorgehen beim Ersetzen der Infrarot-LED 3.4.3 Tonabnehmer demontieren D 3/4 5.4.6 Einstellen des Endsignals 3.4.4 Tonabnehmer montieren D 3/4 5.4.7 Einstellen des Positionierungssignals 3.4.5 Einbau eines P-Mount Tonabnehmersystems D 3/4 5.4.8 Messung der Abtastfähigkeit 3.5 TONABNEHMER MIT EIGNUNGSTEST D 3/5 5.5 VORVERSTÄRKER Einstellung der Kanalbalance und Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 5/1          |  |
| 3.2 BEDINGUNGEN  D 3/1 5.3.2 Abgleich von Antriebsmotor und Antriebssteuerung auf minimale Tonhöhenschwankungen  3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR  3.3.1 Voraussetzungen  3.3.2 Prüfen mit der Einstellehre Nr.46173 D 3/2 bei korrekter Motorsynchronisation  3.3.3 Prüfen mit Hilfe einer markierten Schallplatte  3.3.4 Korrektur eines Spurfehlers  3.3.5 Korrektur eines Spurfehlers  3.4 EINBAU EINES TONABNEHMERS  IN DEN LINATRACK – TONARM  3.4.1 Bemerkungen  3.4.2 Vorbereitungen  3.4.3 Tonabnehmer demontieren  3.4.3 Tonabnehmer demontieren  3.4.4 Tonabnehmer demontieren  3.4.5 Einbau eines P-Mount Tonabnehmersystems  D 3/4 5.4.6 Einstellen des Endsignals  3.4.5 Einstellen DER TONABNEHMERS D 3/5 5.5.1 Einstellung der Kanalbalance und Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 5/1          |  |
| und Antriebssteuerung auf minimale Tonhöhenschwankungen 3.3 KONTROLLE DER TANGENTIALEN ABTASTSPUR 3.3.1 Voraussetzungen 3.7 Prüfen mit der Einstellehre Nr.46173 3.7 Prüfen mit der Einstellehre Nr.46173 3.8 Prüfen mit Hilfe einer markierten Schallplatte 3.9 Prüfen mit Hilfe einer markierten Schallplatte 3.0 A Korrektur eines Spurfehlers 3.0 A EINBAU EINES TONABNEHMERS 3.4 IN DEN LINATRACK – TONARM 3.4.1 Bemerkungen 3.4.1 Bemerkungen 3.4.2 Vorbereitungen 3.4.3 Tonabnehmer demontieren 3.4.3 Tonabnehmer demontieren 3.4.4 Tonabnehmer montieren 3.4.5 Einbau eines P-Mount Tonabnehmersystems 3.5 TONABNEHMER MIT EIGNUNGSTEST 3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.6 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT 3.7 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 Unabnehmer demontieren 3.7 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 Unabnehmer montieren 3.8 JONABNEHMER MIT EIGNUNGSTEST 3.9 JONABNEHMER MIT EIGNUNGSTEST 3.0 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.1 Mit der Einstellung der Kanalbalance und Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 5/1          |  |
| 3.3.1 Voraussetzungen 3.3.2 Prüfen mit der Einstellehre Nr.46173 3.3.3 Prüfen mit Hilfe einer markierten Schallplatte 3.3.4 Korrektur eines Spurfehlers 3.4 EINBAU EINES TONABNEHMERS IN DEN LINATRACK – TONARM 3.4.1 Bemerkungen 3.4.2 Vorbereitungen 3.4.3 Tonabnehmer demontieren 3.4.4 Tonabnehmer demontieren 3.4.5 Einbau eines P-Mount Tonabnehmersystems 3.6 EINSTELLEN DER TONABNEHMERS D 3/5 3.7 EINSTELLEN DER TONABNEHMERS D 3/5 3.7 EINSTELLEN DER TONABNEHMERS D 3/6 3.7 EINSTELLEN DER TONABNEHMERALES D 3/6 3.7 EINSTELLEN DER TONABNEHMERALE D 3/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |  |
| 3.3.2 Prüfen mit der Einstellehre Nr.46173 D 3/2 bei korrekter Motorsynchronisation  3.3.3 Prüfen mit Hilfe einer markierten Schallplatte D 3/2 S.4 TONARMFÜHRUNG  3.3.4 Korrektur eines Spurfehlers D 3/3 S.4.1 Funktionskontrolle der Tonarm-Steuerung S.4.2 Wichtige Hinweise und Voraussetzungen zu den Arm-Einstellungen LINATRACK – TONARM D 3/3 S.4.3 Einstellung der Tonabnehmer-Nachführung S.4.1 Bemerkungen D 3/3 S.4.4 Einstellung der Lage des Abtastprints S.4.2 Vorbereitungen D 3/3 S.4.5 Vorgehen beim Ersetzen der Infrarot-LED S.4.3 Tonabnehmer demontieren D 3/4 S.4.6 Einstellen des Endsignals S.4.5 Einbau eines P-Mount Tonabnehmersystems D 3/4 S.4.8 Messung der Abtastfähigkeit  3.5 TONABNEHMER MIT EIGNUNGSTEST D 3/5 S.5 VORVERSTÄRKER EINSTELLEN DER TONABNEHMERABSENKTIEFE D 3/5 S.5.1 Einstellung der Kanalbalance und Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 5/1          |  |
| 3.3.3 Prüfen mit Hilfe einer markierten Schallplatte 3.3.4 Korrektur eines Spurfehlers  3.4 EINBAU EINES TONABNEHMERS IN DEN LINATRACK – TONARM  3.4.1 Bemerkungen  3.4.2 Vorbereitungen  3.4.3 Tonabnehmer demontieren  3.4.4 Tonabnehmer montieren  3.4.5 Einbau eines P-Mount Tonabnehmersystems  3.6 EINSTELLEN DER TONABNEHMERS D 3/5  3.7 EINSTELLEN DER TONABNEHMERS D 3/6  3.8.3 TONABNEHMER MIT EIGNUNGSTEST  3.9 A.7 EINSTELLEN DER TONABNEHMERABSENKTIEFE  3.10 A.7 EINSTELLEN DER TONABNEHMERABSENKTIEFE  3.10 A.7 EINSTELLEN DER TONABNEHMERABSENKTIEFE  3.10 A.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT                                                                                                   | D 5/2          |  |
| markierten Schallplatte  3.3.4 Korrektur eines Spurfehlers  D 3/2 5.4.1 Funktionskontrolle der Tonarm-Steuerung  5.4.2 Wichtige Hinweise und Voraussetzungen  2.2 den Arm-Einstellungen  2.3 den Arm-Einstellungen  3.4.1 Bemerkungen  3.4.2 Vorbereitungen  3.4.2 Vorbereitungen  3.4.3 Tonabnehmer demontieren  3.4.4 Tonabnehmer montieren  3.4.5 Einbau eines P-Mount Tonabnehmersystems  D 3/3 5.4.6 Einstellen des Endsignals  3.4.7 Tonabnehmer MIT EIGNUNGSTEST  3.5 TONABNEHMER MIT EIGNUNGSTEST  D 3/5 5.5 VORVERSTÄRKER  Einstellen der Kanalbalance und  Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 372          |  |
| 3.3.4 Korrektur eines Spurfehlers  D 3/3  S.4.1 Funktionskontrolle der Tonarm-Steuerung  5.4.2 Wichtige Hinweise und Voraussetzungen  zu den Arm-Einstellungen  zu den Arm-Einstellungen  Einstellung der Tonabnehmer-Nachführung  3.4.1 Bemerkungen  3.4.2 Vorbereitungen  3.4.3 Tonabnehmer demontieren  3.4.4 Tonabnehmer montieren  3.4.4 Tonabnehmer montieren  3.4.5 Einbau eines P-Mount Tonabnehmersystems  D 3/5  TONABNEHMER MIT EIGNUNGSTEST  3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE  D 3/6  D 3/6  D 3/7  D 3/8  S.4.1 Funktionskontrolle der Tonarm-Steuerung  5.4.2 Wichtige Hinweise und Voraussetzungen  zu den Arm-Einstellungen  Einstellung der Lage des Abtastprints  Vorgehen beim Ersetzen der Infrarot-LED  S.4.5 Einstellen des Endsignals  S.4.7 Einstellen des Positionierungssignals  S.4.8 Messung der Abtastfähigkeit  3.5 TONABNEHMER MIT EIGNUNGSTEST  D 3/5  S.5.5 VORVERSTÄRKER  Einstellung der Kanalbalance und  Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D 5/2          |  |
| 2u den Arm-Einstellungen 3.4.1 Bemerkungen 3.4.2 Vorbereitungen 3.4.3 Tonabnehmer demontieren 3.4.4 Tonabnehmer montieren 3.4.5 Einbau eines P-Mount Tonabnehmersystems  3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  2u den Arm-Einstellungen 5.4.3 Einstellung der Tonabnehmer-Nachführung 5.4.4 Einstellung der Lage des Abtastprints 6.5.4.5 Vorgehen beim Ersetzen der Infrarot-LED 6.5.4.6 Einstellen des Endsignals 6.5.4.7 Einstellen des Positionierungssignals 7.5.4.8 Messung der Abtastfähigkeit  3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT 3.8 TONABNEHMER TONABNEHMER-AUFLAGEKRAFT 3.9 Uden Arm-Einstellungen 5.4.3 Einstellung der Lage des Abtastprints 6.5.4.4 Vorgehen beim Ersetzen der Infrarot-LED 6.5.4.6 Einstellen des Endsignals 6.5.4.7 Einstellen des Positionierungssignals 7.5.4.8 Messung der Abtastfähigkeit  3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT 3.8 Uden Arm-Einstellung der Tonabnehmer-Nachführung 7.5.4.3 Einstellung der Kanalbalance und 7.6 Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D 5/2          |  |
| IN DEN LINATRACK - TONARM  D 3/3 5.4.3 Einstellung der Tonabnehmer-Nachführung 3.4.1 Bemerkungen D 3/3 5.4.4 Einstellung der Lage des Abtastprints 3.4.2 Vorbereitungen D 3/3 5.4.5 Vorgehen beim Ersetzen der Infrarot-LED 3.4.3 Tonabnehmer demontieren D 3/4 5.4.6 Einstellen des Endsignals 3.4.4 Tonabnehmer montieren D 3/4 5.4.7 Einstellen des Positionierungssignals 3.4.5 Einbau eines P-Mount Tonabnehmersystems D 3/4 5.4.8 Messung der Abtastfähigkeit  3.5 TONABNEHMER MIT EIGNUNGSTEST D 3/5 5.5 VORVERSTÄRKER 3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE D 3/5 5.5.1 Einstellung der Kanalbalance und 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT D 3/6 Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D 5/2          |  |
| 3.4.1 Bemerkungen 3.4.2 Vorbereitungen 3.4.3 Tonabnehmer demontieren 3.4.4 Tonabnehmer montieren 3.4.5 Einbau eines P-Mount Tonabnehmersystems 3.4.5 TONABNEHMER MIT EIGNUNGSTEST 3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT 3.6 EINSTELLEN DER TONABNEHMER-BUFLAGEKRAFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D 5/3          |  |
| 3.4.3 Tonabnehmer demontieren  3.4.4 Tonabnehmer montieren  3.4.5 Einbau eines P-Mount Tonabnehmersystems  3.5 TONABNEHMER MIT EIGNUNGSTEST  3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE  3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.6 DENSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.6 DENSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.8 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.9 DENSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.9 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.1 DENSTELLEN DER TONABNEHMER-AUFLAGEKRAFT  3.9 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.1 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.2 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.3 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.4 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.5 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.6 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.7 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.8 DENSTELLEN DER TONABNEHMER-BUFLAGEKRAFT  3.9 DENSTELLEN DE | D 5/4          |  |
| 3.4.4 Tonabnehmer montieren 3.4.5 Einbau eines P-Mount Tonabnehmersystems  D 3/4 5.4.7 Einstellen des Positionierungssignals  D 3/4 5.4.8 Messung der Abtastfähigkeit  D 3/5 5.4.8 Messung der Abtastfähigkeit  D 3/5 5.5 VORVERSTÄRKER  S 5.5.1 Einstellung der Kanalbalance und Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D 5/4          |  |
| 3.4.5 Einbau eines P-Mount Tonabnehmersystems D 3/4 5.4.8 Messung der Abtastfähigkeit  3.5 TONABNEHMER MIT EIGNUNGSTEST D 3/5 5.5 VORVERSTÄRKER  3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE D 3/5 5.5.1 Einstellung der Kanalbalance und Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D 5/4<br>D 5/4 |  |
| 3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE D 3/5 5.5.1 Einstellung der Kanalbalance und 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT D 3/6 Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D 5/5          |  |
| 3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE D 3/5 5.5.1 Einstellung der Kanalbalance und 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT D 3/6 Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D E/E          |  |
| 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT D 3/6 Messung der Übersprechdämpfung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D 5/5          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 5/5          |  |
| 3.8 KONTROLLE DER ABSENKGESCHWINDIGKEIT D 3/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |  |
| 3.9 SCHALTPUNKTE DER ENDSCHALTER EINSTELLEN D 3/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |  |
| 3.10 POSITIONSSCHALTER DER TONARMFÜHRUNG PRÜFEN D 3/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |  |
| 3.11 EINSTELLUNG DER POSITIONIERUNGSBLENDE D 3/8 6. Schemata 3.12 KONTROLLE DER TONABNEHMER-ANTRIEBSSAITE D 3/8 3.13 NIVELLIERUNG DER CHASSIS-EBENE D 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |  |
| 7. Ersatzteile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |  |

### Allgemeines

### 1.1 BEDIENUNGSELEMENTE

| 1  | Drucktaste/LED                | POWER            |
|----|-------------------------------|------------------|
| 2  | Drucktaste/LED                | SPECIAL          |
| 3  | Drucktaste/LED                | 33/45            |
| 4  | Drucktaste Varispeed          | DOWN             |
| 5  | Anzeige Nominaldrehzahl       | SPEED            |
| 6  | Anzeige Drehzahlabweichung    | DEV.%            |
| 7  | Drucktaste Varispeed          | UP               |
| 8  | Drucktaste schneller Vorlauf  | ⊲                |
| 9  | Drucktaste absenken/anheben   | $\nabla \Delta$  |
| 10 | Drucktaste schneller Rücklauf | $\triangleright$ |
| 11 | IR-Empfängerfenster           |                  |
|    |                               |                  |

- 12 Schwenkarm
- 13 Audio-Anschlusskabel
- 14 Netzsicherung
- 15 Netzkabel
- 16 SERIAL-LINK-Buchse
- 17 Zentriereinsatz



#### 1.2 ABMESSUNGEN

#### Masse in mm



#### 1.3 TECHNISCHE DATEN

#### 1.3.1 Laufwerk und Tonarmführung

Laufwerk :

quarzgesteuerter Direktantrieb

Plattenteller-Drehzahlen: 33,33 und 45,00 U/min

variabel +/- 9,9 %, quarzgenau

Drehzahlgenauigkeit :
+/- 0,01 %

Drehzahlkontrolle : Synchron-Led (33,33 und 45,00 U/min)

Plattenteller : Durchmesser 313 mm

Gewicht (Masse): 21 N (2,1 kg)

Hochlaufzeit :

besser als 2 s bei 33,33 U/min

Bremszeit :

besser als 2 s von 45,00 auf 33,33 U/min

Tonhöhenschwankungen :\* bewertet : besser als 0,05 % linear : besser als 0,1 %

Rumpel-Fremdspannungsabstand :\*\* besser als 50 dB (DIN 45539A)

Rumpel-Störspannungsabstand :\*\* besser als 52 dB (DIN 45539A) mit Hochpassfilter 20 Hz

Rumpel-Geräuschspannungsabstand :\*\*
besser als 72 dB (DIN 45539B)

Tonarm :

 $\label{temperature} \textbf{Tangentialtonarm mit servoelektronischer} \\ \textbf{Nachsteuerung}$ 

Tangentialer Spurfehlwinkel: kleiner als 0,5 Grad

Skatingkompensation :

keine, nicht erforderlich bei Tangentialsystemen

Auflagekraft :

einstellbar, mit Gegengewicht von 8 ... 20 mN (0,8 ... 2 p)

Tonarmabsenkung :

elektronisch gesteuert, pneumatisch gedämpft

Stummschaltung :

elektronisch bis zum Aufsetzen des Tonabnehmers (ca. 1 s)

Tonarmnachsteuerung :

optoelektronische Äbtastung mit IR-Diode als Lichtquelle; Servoelektronik und DC-Motor

Endabschaltung:

automatisch, von Servoelektronik angesteuert

Automatikfunktionen

Einschwenken der Tonarmführung:
 Plattenteller startet mit vorgewählter Drehzahl,
 Tonarmschlitten läuft zur entsprechenden Absenkposition.

- Ausschwenken der Tonarmführung :

a) sofortiges Abheben des Tonabnehmers

b) Tonarmschlitten-Rücklauf in Startposition

c) Plattenteller hält an, Beleuchtung erlischt

#### 1.3.2 Bedienung

Laufwerk :

1 Netzschalter,

1 Druckpunkttaste 33,33/45 U/min

1 Druckpunkttaste Special Funktion

3 Druckpunkttasten für schnellen Vor- und Rücklauf sowie Absenken und Anheben des Tonabnehmers; Beleuchtung des Tonabnehmers eingebaut

2 Druckpunkttasten; Erhöhen und Verringern der Platten-

tellerdrehzahl

Anzeige:

5-stelliges Display für Solldrehzahl und Abweichungs-

anzeige in Prozent

#### 1.3.3 Verschiedenes

Stromversorgung:

(umlötbar siehe Kap. 6)

100/110/120 V +/- 10 %

200/220/240 V +/- 10 % 50 ... 60 Hz

Netzsicherung:

100 ... 120 V : T 0,4 A

200 ... 240 V : T 0,2 A

Leistungsaufnahme :

Standby Serial-Link : 4,8 VA (Betrieb mit B203, B206) Working Serial-Link : 17,7 VA

Standby: 2,2 VA

Working: 15.5 VA

Gewicht (Masse) : 91 N (9,1 kg)

#### 1.4 TONABNEHMER

Hinweis:

Weitere geeignete Pick-up's erwähnt das Kapitel 3.5.

#### 1.4.1 Shure V15V - P-Mount

Übertragungsbereich:

20 Hz ... 8 kHz : +/-0,75 dB 8 kHz ... 20 kHz : +/-2 dB

Balance (bei 1kHz) :

kleiner als 1,5 dB

Übersprechdämpfung:

1 kHz : besser als 25 dB 10 kHz : besser als 18 dB

Abtastfähigkeit (bei 300 Hz) : 100 μm bei 10 mN (1,0 p)

Empfohlene Auflagekraft:

12,5 mN (1,25 p)

Schliff des Diamanten :

5 x 38 μm hyperelliptisch, nackter Diamant

Übertragungsfaktor :

0,65 mVs/cm bei 1 kHz

Frequenzintermodulation :

kleiner 0,8 % (DIN 45411)

Empfohlene Lastimpedanz : 47 kOhm/50 ... 400 pF

#### 1.4.2 Elac EMM 150 - P-Mount

Übertragungsbereich :

10 Hz ... 22 kHz +/-2 dB

Balance (bei 1 kHz) : kleiner als 1.5 dB

Übersprechdämpfung: besser als 22 dB bei 1 kHz

Nadelnachgiebigkeit:

vert.30 um/mN

(statisch bei Nennauflagekraft)

Abtastfähigkeit (315 Hz)

80 µm bei Nennauflagekraft

Empfohlene Auflagekraft :

12.5 mN (1.25 p)

Schliff des Diamanten :

6/18 µm elliptisch

Übertragungsfaktor:

1 mVs/cm bei 1 kHz

Empfohlene Lastimpedanz :

47 kOhm/200 ... 500 pF

- \* gemessen bei Nominaldrehzahl nach DIN 45507 mit Hilfe einer optimal zentrierten, direkt geschnittenen Folie,
- \*\*alle Rumpelabstände sind in Stellung MONO mit einer statisch entladenen Messplatte nach DIN 45544 und einer Wiedergabe-Entzerrung mit vier Zeitkonstanten nach IEC 98-4 (1976) gemessen.

#### 1.5 ZUBEHOR

#### IR-Fernbedienungen

Die Handsender B201, B201 CD, B205, B208 erlauben über den an der Geräte-Front eingebauten IR-Empfänger folgende Funktionen (bei eingeschwenkter Tonarmführung) fernzubedienen:

PHONO (Power on)

◁

Pick-up down/up  $\nabla \Delta$ 

 $\triangleright$ 

POWER-OFF

#### ■ Tonabnehmer-Montage-Kit Nr.07011

#### enthält :

Pick-Up Einstellehre Gegengewichte Schrauben U-Scheiben Zwischenlagen Schraubendreher Waage

#### ■ Einstellehre Nr.46173

Zur Kontrolle von :

Tonarmnachführung Geometrie

#### ■ REVOX-Messplatte Nr.46010

Zur Bestimmung von :

Audiodaten Tonarmnachführung Postitionierung Schaltpunkte

Motor-Verlängerungskabel Nr.46135 und Tonarm-Verlängerungskabel Nr.46137

Ermöglichen Anschliessen von Motor und Arm bei ausgebautem Chassis. (Nr.46135 ebenfalls für B791/795)

#### 2. AUSBAU

#### 2.1 ALLGEMEINES

#### Vorsicht:

Netzkabel und Audioanschlüsse dürfen beim Ausbau ab Kapitel 2.7 "Chassis ausbauen" nicht mehr angeschlossen sein

#### Hinweis :

Bei Aus- und Einbauarbeiten elektronischer Komponenten sind die eingangs dieser Anleitung aufgeführten Richtlinien zur Behandlung von MOS-Bauteilen zu beachten.

#### 2.2 VERWENDETE WERKZEUGE

| Kreuzschlitz-Schraubendreher   |   |  |   |   |     |      | Grösse   | 0  |
|--------------------------------|---|--|---|---|-----|------|----------|----|
| Kreuzschlitz-Schraubendreher   |   |  |   |   |     |      | Grösse   | 1  |
| Kreuzschlitz-Schraubendreher   |   |  |   |   |     |      | Grösse   | 2  |
| Innensechskant-Schraubendrehei | • |  |   |   |     |      | Grösse   | 3  |
| Schraubendreher                |   |  |   |   |     |      | Grösse   | 1  |
| Schraubendreher                |   |  |   |   |     |      | Grösse   | 2  |
| Schraubendreher                |   |  |   |   |     |      | Grösse   | 3  |
| "ESE"-Arbeitsplatzausrüstung   |   |  | • | В | est | ا. : | Nr.: 462 | 00 |

#### 2.3 ABDECKHAUBE ENTFERNEN

#### Fig.2.1

■ Abdeckhaube (1) hochklappen und herausziehen.

### 2.4 PLATTENTELLER ABHEBEN

#### Fig.2.1

Tonarm in Ruhelage.

- Gummiauflage (2) abnehmen.
- Plattenteller (3) abheben.



Fig. 2.1

#### 2.5 TONARMFÜHRUNG ÖFFNEN

#### Fig.2.2

- Mit dem Tonarm-Schlitten etwa in die Mitte fahren und den Plattenspieler ausschalten.
- Tonarmführung in die Ruhelage schwenken. Gemäss Fig.2.2 in die Seitenbleche eingreifen, leicht nach aussen drücken und die Haube vorsichtig nach oben abheben.



Fig. 2.2

#### 2.6 NADELTRÄGER ENTFERNEN

### Fig.2.3

- Tonarmführung bis zum Anschlag nach aussen schwenken (Servicestellung).
- Mit Zeigefinger und Daumen der einen Hand den schwarzen Tonarmteil festhalten, mit der anderen Hand den Nadelträger vorsichtig, ohne zu verkanten herausziehen.



Fig. 2.3

#### 2.7 CHASSIS AUSBAUEN

Fig.2.4

- Abdeckhaube entfernen und Plattenteller abheben (Kap 2.3 und 2.4).
- Zentriereinsatz (4) herausnehmen.
- Die drei für den Transport ev. angezogenen Sicherungsschrauben (3) lösen, bis sie sich vertikal frei bewegen lassen.
- Wellensicherungen (1) und Kappen (2) entfernen.
- Chassis (5) links um 5...10cm anheben und Tonarmsowie Motorkabelverbindung (6) zum Steuerprint abziehen
- Chassis abheben.

Vorsicht: Um Kratzspuren zu vermeiden, Stecker des Motorkabels nicht über die Bedienungsschiene ziehen.



Fig. 2.4

#### 2.8 TONARMFÜHRUNG AUSBAUEN

Fig. 2.4

- Chassis ausbauen (Kap.2.7).
- Drei Kreuzschlitzschrauben (10) auf Chassis Unterseite lösen. Vorsicht : Unterlag- und Zwischenscheiben!
- Tonarmkabelverbindung (6) durch die rechteckige öffnung des Chassis ausfahren.

Wichtig : Die Unterlagsscheiben (zu 10) dürfen beim Einbau keinesfalls weggelassen werden.



Fig. 2.5

#### 2.9 ANTRIEBSMOTOR AUSBAUEN

#### Fig.2.4

Chassis ausbauen (Kap.2.7)

■ Tonarmführung (11) bis zum Anschlag nach aussen schwenken (Servicestellung).

■ An der Chassis-Unterseite vier Innensechskantschrauben (9) lösen.

Antriebsmotor (7) nach oben ausführen.

#### Beachte Distanzscheiben (8):

Beim Einbau eines neuen Antriebsmotors sind die Distanzscheiben (8) wieder einzusetzen. Danach ist ebenfalls dessen Höheneinstellung zu überprüfen. (Siehe Kapitel 3.3.1 und Fig.3.3.)

Mit einem neuen Antriebmotor ist zudem der Motorregelkreis nach Kapitel 5.3 neu zu justieren (Hall-Elemente).

#### ELEKTRONIK-PRINT AUSBAUEN 2.10

#### Fig. 2.5

Chassis ausbauen (Kap. 2.7).

■ Befestigungswinkel der Serial-Link Buchse entfernen (2 Schrauben (26) lösen).

■ 9 Steckverbindungen lösen (14,15,16,24,27,28,29,30,31).

■ 6 Schrauben (25) lösen.

#### BEDIENUNGSELEMENTE AUSBAUEN

#### Fig.2.6

Chassis ausbauen (Kap. 2.7).

■ Kabelverbindungen lösen :

Die Stecker (14,15,16) vom Basisprint Lösen.

■ IR-Print (34) ausbauen, indem die 2 Schrauben (17) gelöst und entfernt werden.

Den Print durch die öffnung im Gehäuse herausnehmen.

Im Gehäuseinnern 3 Schrauben (18) lösen und Zierleiste (19) entfernen:

Mit der einen Hand das Gehäuse halten.

Mit der anderen Hand wohldosiert von unten her auf die Abschrägung der Zierleiste drücken ; sie hebt sich an und kann nach vorne abgenommen werden.

Je 2 Schrauben (20) der Drucktasten-Einheiten (21,22) sowie des Displays (23) lösen. Dazu das Gehäuse mit dem Boden nach oben aufstellen.

#### NETZTRANSFORMATOR AUSBAUEN 2.12

#### Fig.2.5

■ Chassis ausbauen (Kap. 2.7).

■ Steckverbindungen (27,32) lösen.

■ Am Boden des Gerätes 4 Schrauben entfernen.



Fig. 2.6

#### 2.13 NETZSICHERUNG AUSWECHSELN

- Abdeckhaube entfernen, Gummiauflage und Plattenteller abheben (Kap. 2.7 und 2.8).
- Transportsicherung festziehen. (Schrauben 3, Fig.2.4).
- Plattenspieler auf die linke Seitenwand kippen.
   Sicherungskappe aus der Gehäuse-Unterseite herausschrauben (siehe Kapitel 1.1).
- Defekte Sicherung auswechseln: 100...120 V: T 0,4 A 200...240 V: T 0,2 A
- Transport-Sicherungsschrauben wieder lösen.

#### 2.14 ZUSAMMENBAU

Der Zusammenbau erfolgt in umgekehrter Reihenfolge zum Ausbau. Es ist darauf zu achten, dass keine Kabelver-bindungen eingeklemmt werden. Die Kabel sollen wieder den gleichen Verlauf beschreiben wie vor dem Ausbau.

Die Distanz- und Federscheiben dürfen weder vertauscht noch weggelassen werden.

### MECHANISCHE EINSTELLUNGEN UND KONTROLLEN

#### 3.1 HILFSMITTEL

|   | Kontroll- und Einstelllehre Best     | Nr. | 46173 |
|---|--------------------------------------|-----|-------|
| 8 | REVOX-Messplatte Best                | Nr. | 46010 |
| 8 | Tonabnehmer-Einstelllehre, enthalten |     |       |
|   | im Tonabnehmer-Montage Kit Best      | Nr. | 07011 |
|   | Verlängerungskabel Tonarm Best       |     |       |
| 0 | Verlängerungskabel Motor Best        | Nr. | 46135 |
|   | "ESE"-Arheitsplatzausrüstung Best    |     |       |

#### BEDINGUNGEN 3.2

Die mechanischen Kontrollen des Tonabnehmers und der Tonarmführung setzen voraus, dass die werkseitig geprüfte Toleranz der Plattenteller-Exzentrizität und die Plattenteller-Höhenschlagdifferenz von weniger als 0,1mm erhalten geblieben ist.

#### KONTROLLE DER TANGENTIALEN ABTASTSPUR 3.3

#### 3.3.1 Voraussetzungen

Fig.3.1 . 3.2

■ Parallelität der Nadelführung gegenüber der Plattentelleroberfläche überprüfen.

Zulässige Abweichung zwischen Punkt "A" und Punkt "B" < 0,3mm.

Eine Korrektur erfolgt durch entsprechendes Verdrehen des Tonarm-Schildes (1), nach dem Lösen der beiden Innensechskant-Klemmschrauben (2) zum Tonabnehmerschlitten-Gestänge.





Fig. 3.2

[1] [2]

■ Mit der im Montage-Kit (Nr.07011) enthaltenen Tonabnehmer-Einstellehre wird die Tonabnehmer-Position überprüft und wenn erforderlich innerhalb des Spiels seiner Befestigungslöcher korrigiert.



#### 3.3.2 Prüfen mit Einstellehre Nr. 46173

#### Anforderung:

#### Fig.3.1

Die Nadel muss während ihrem Vorschub und in abgesenktem Zustand genau auf dem Radius (R) durch das Drehzentrum (S) des Plattentellers laufen .

Zulässiges Toleranzfeld für max. +/- 0,5 Grad Spurwinkelfehler:  $\pi^{\prime}$ 

A (r1 = 150 mm): < 3 mm

B (r2 = 50 mm): < 1 mm

#### Vorbereitungen :

Netzstecker ziehen; der Antriebsmotor darf während der folgenden Einstellkontrolle nicht laufen.

Tonabnehmer in Ruhelage auf Anschlag schieben. (Nur in dieser Stellung darf der Tonabnehmer über die eingesetzte Einstellehre geschwenkt werden.)

m Tonarmführung nach rechts ausschwenken.

■ Gummimatte vom Plattenteller entfernen.

Tonabnehmer-Reinigungspinsel aus Chassis entfernen. (Sofern erforderlich mittels Schraubenzieher anheben).

#### · Einstellehre einsetzen :

#### Fig.3.3

Die Lehre wird durch den Bolzen des Plattentellerzentrums und der freigegebenen Bohrung zur Pinselaufnahme geführt. Die Lehre muss sich ohne Kraftaufwand über, resp. in die beiden Fixpunkte schieben lassen: Fertigungstoleranzen in der Fixpunkte-Distanz werden durch Lösen der Bolzenbefestigung an der Lehre (Schlitzschraube lösen) kompensiert, Schlitzschraube wieder festziehen.

### Kontrollen :

Die beiden folgenden Einstellungen sind in geringem Masse voneinander abhängig und müssen nach Justierungen wiederholt kontrolliert werden.

Tonabnehmer auf den beweglichen Schieber der Einstelllehre aufsetzen :

Die Nadel muss in der Mitte zwischen die beiden Markierungslinien auf dem Schieber auftreffen (Lehren neueren Datums sind mit einer Mittelriss-Markierung versehen).

Tonabnehmer auf die dem Plattentellerzentrum n\u00e4heren Markierung positionieren und manuell absenken: Die Nadelspitze muss in der Mitte zwischen den beiden Markierungslinien auf die Lehre aufsetzen.



Fig. 3.3

#### 3.3.3 Prüfen mit Hilfe einer markierten Schallplatte

Die Ueberprüfung der tangentialen Nadelführung auf einen Spurwinkelfehler kann auch mit Hilfe einer für Abspielzwecke nicht mehr verwendeten Schallplatte erfolgen:

Mit möglichst spitzer Reissnadel auf der Schallplatte einen Durchmesser markieren, welcher das Plattendrehzentrum genau (!) trifft.

Netzstecker ausziehen und markierte Schallplatte auflegen, Tonarmführung in Betriebsstellung einschwenken.

#### Fig. 3.1

■ Tonabnehmer manuell absenken und Schallplatte so positionieren, dass die Nadelspitze im Punkt "A" auf die Risslinie auftrifft, Plattenteller gegen Verdrehen sichern (z.B. Klebeband zwischen Plattenteller und Chassis anbringen).

■ Tonabnehmer mit Nadel über Punkt "B" positionieren und

manuell absenken:

Die Nadel muss innerhalb des in Fig.3.1 dargestellten Toleranzfeldes auf die Platte auftreffen.



Fig. 3.1

#### 3.3.4 Korrektur eines Spurwinkelfehlers

Fig. 3.4

Verstellen des Tonarm-Einrastpunktes in Betriebsstellung durch Verdrehen des Rastbolzens (3).

Dieser federnde Rastbolzen im Tonarm ist exzentrisch ausgeführt und lässt sich mit Hilfe eines Rundstahlstabes mit d = 1,5mm, welcher durch die radiale Bohrung im Bolzen geführt wird, entsprechend verdrehen.

Vorsicht: Es ist darauf zu achten, dass der Bolzen während des Verdrehens nicht axial aus der
Bohrung gehoben wird. Dies wird verhindert,
wenn während des Verdrehens der Tonarm ausserhalb der Raststellungen positioniert wird und
mit leichtem Druck axial auf den TonarmDrehpunk entgegen gewirkt wird.



Fig. 3.4

Sollten sich bei den obenaufgeführten Justiervorgängen die Einstellbereiche als nicht ausreichend erweisen, deutet dies auf eine Veränderung der werkseitig ausgeführten Grundeinstellung hin. Um diese Grundeinstellung wiederherzustellen, ist wie folgt vorzugehen:

- Rastbolzen (3) in Mitte Einstellbereich stellen.
- Tonabnehmer mit Einstellehre justieren (Kap.3.4).
- Tonarmlagerung in ihrer Befestigung zum Chassis (drei Kreuzschlitzschrauben) lösen.
- Tonarm nach Einstellehre (46173) justieren und wieder festziehen.
- Montrolle und Feinkorrektur, wie beschrieben, durch Ausrichten des Tonabnehmers in seiner Befestigung und Ausrichten des Tonarmes durch Drehen des Rastbolzens. (Rastbolzen bei starker Abnützung ersetzen.)

### 3.4 EINBAU EINES TONABNEHMERS IN DEN LINATRACK-TONARM

#### 3.4.1 Bemerkungen

Der Tonabnehmer kann nur von unten her in die Tonarmführung eingebaut werden. Dazu ist der Plattenspieler, wie im folgenden Kapitel beschrieben, vorsichtig auf die Oberseite zu legen (Fig.3.5).

Jeden einzelnen Schritt beachten.

Dem Montage-Kit ist ein Schraubendreher beigelegt. Zusätzlich noch wird eine Pinzette und vielleicht ein kleines Messer benötigt.

Wichtig: Nach einem Tonabnehmer-Austausch sind die Einstellarbeiten der Kapitel 3.6 bis 3.8 unbedingt erforderlich.

#### 3.4.2 Vorbereitungen

Fig.3.5

- Abdeckhaube entfernen.
- Plattenspieler einschalten.
- Tonarmführung über den Plattenteller einschwenken, Tonarm etwa 8cm ausfahren.
- Netzstecker ziehen, ohne vorher den Plattenspieler auszuschalten.
- Gummiauflage, Plattenteller und Tonarmführungsabdeckung entfernen.
- Die 3 Sicherungsschrauben festdrehen.
- Unterlage bereitstellen.
- Plattenspieler mit der Oberseite auf die Unterlage und die ausgeschwenkte Tonarmführung Legen.



Fig. 3.5

#### 3.4.3 Tonabnehmer demontieren

#### Fig.3.6

Nadelschutz anbringen.

- Mit einer Pinzette die Tonfrequenzanschlüsse abziehen. Falls diese verklemmt sind, können sie mit einem kleinen Messer gelockert werden.
- Die beiden Schrauben der Tonabnehmerbefestigung lösen.
- Tonabnehmer entfernen.



Fig. 3.6

#### 3.4.4 Tonabnehmer montieren

Fig.3.6, 3.7

■ Tonabnehmer provisorisch auf den Tonarm aufschrauben. Mit Tabelle (3.5) die passende Unterlage bestimmen. Tonabnehmer mit kleinerer Masse als óg erfordern zusätzlich die Messingunterlage (vernickelt).

Einstellehre auf den Tonarm aufstecken.

Die Unterlage ist korrekt bestimmt, wenn der eingegezeichnete Abstand Nadelspitze – Tonarm eingehalten werden kann. Die Nadelspitze darf dann die aufgesetzte Lehre gerade nicht berühren.

■ Tonabnehmer innerhalb des Spiels der Befestigungslöcher verschieben, bis die Nadelspitze genau im Zentrum des kleinen Loches (4) auf der Einstellehre erscheint und der Tonabnehmerkörper parallel zu den roten Linien verläuft.

Ist dieser Zustand nicht erreichbar, so bedarf es einer Korrektur der Tonarm-Geometrie mit Hilfe der Kontrollund Einstellehre Nr. 46173 (siehe Kap. 3.3).

- Die beiden Befestigungsschrauben (5) festdrehen.
- Tonfrequeunzanschlüsse wieder mit der Pinzette aufstecken.

#### Anschlussbelegung :

| weiss weiss L                                               | Anschlussli               | tze | е |   |  | Markierung Kanal |  |
|-------------------------------------------------------------|---------------------------|-----|---|---|--|------------------|--|
| weiss/rot rot R<br>weiss/blau blau LG<br>weiss/grün grün RG | weiss/rot .<br>weiss/blau | :   | : | : |  | rot R<br>blau LG |  |

Mit Tabelle (3.5) das passende Gegengewicht und die nötigen Anpassungs-Kondensatoren bestimmen, montieren.



### Fig.3.8

Ein P-Mount-Adapter ist wie ein Tonabnehmer einzubauen und anzuschliessen (Kap. 3.4.4.).

- Den Tonabnehmer mit aufgesetztem Nadelschutz vorsichtig soweit in den Adapter stecken, bis die Befestigungsschraube (6) mühelos eingeführt werden kann. Schraube anziehen.
- Wichtig: P-Mount-Systeme können sich in Konstruktion und Schwerpunkt voneinander unterscheiden. Daher sind diese nach dem Einbau ebenfalls den Einstellprüfungen zu unterziehen und wenn nötig zu korrigieren (Kap. 3.4.4.). Wir raten vom einfachen Einsetzen des Systems ohne Nachprüfung ab.



Fig. 3.7



Fig. 3.8

#### 3.5 TONABNEHMER MIT EIGNUNGSTEST

#### Hinweis :

Messungen und Tests im Labor ergaben eine Reihe von geeigneten Tonabnehmersystemen für den Einbau in den Tangentialarm des B291.

- Die Auslese stützt sich auf Ergebnisse von Kundenumfragen und hat keinen Anspruch auf Vollständigkeit.
- Die Auflistung stellt keine Rangliste in bezug auf die Qualität der Erzeugnisse dar.

Fig.3.9

Die in Spalte "Kapazität" erwähnten Kondensatoren sind in die Ösen (ABCD) auf dem Abtastprint (1.179.300) einzusetzen :

A,B -> linker Kanal C,D -> rechter Kanal

#### 3.6 EINSTELLEN DER TONABNEHMERABSENKTIEFE

#### Kontrolle:

- Gerät einschalten.
- Tonabnehmer über das innerste Rillenprofil Kreisband (r=ca.75mm) der Gummimatte positionieren und absenken: Die Nadelspitze muss minimalen Abstand zur höchsten Ebene des Rillenprofils halten.

(Ein Berühren des Rillenprofils durch die zu weit abgesenkte Nadel kann über den Audioweg akustisch erfasst werden.)

#### Korrektur :

Fig.3.9
An der Tonabnehmer-Absenkeinstellschraube (8).



Fig. 3.9

- α Schraubenkopf Durchmesser darf max. 3,5 mm betragen (dem Montage-Kit nicht beigelegt).
- ß Messing-Unterlage (1\*10\*20, vernickelt) dem Montage-Kit beigelegt.
- 6 Messung mit hochgeschwenkter Bürste aber für Betrieb mit Bürste.
- Der einzusetzende Kapazitätswert entspricht dem vom Zellenhersteller empfohlenen, abzüglich der internen Kapazität des B291 (250 pF) Die resultierenden Werte gehen aus nebenstehender Tabelle hervor.

#### 3.7 EINSTELLEN DER TONABNEHMER-AUFLAGEKRAFT

Fig.3.9

Das Einstellen der Auflagekraft erfolgt durch Verstellen der Schlitzschraube (7). Bei schweren Tonabnehmern > 6 p (60 mN) muss das Gegengewicht aus Blei montiert werden. Mit einer "CORREX"-Waage oder der Waage des Tonabnehmer-Montage Kit ist die Auflagekraft nach der Vorschrift des Pick-up-Herstellers oder nach den Technische Daten in Kapitel 1.3 einzustellen.

Beim Gebrauch der Waage wird das zusätzlich vorhandene Gegengewicht nicht benötigt. Ohne dieses Gegengewicht stimmt die auf der Waage angegebene Auflagekraft. Für richtige Höhenpositionierung der Waage muss die Gummimatte entfernt werden.

#### 3.8 KONTROLLE DER ABSENKGESCHWINDIGKEIT

#### Kontrolle:

- Anhebe- und Absenkgeschwindigkeit verändern sich gemeinsam.
- Die Nadel soll sanft aufsetzen, muss aber die Rille erreichen, bevor der Audioweg elektronisch freigegeben wird.
- Der Absenkvorgang soll daher gegen eine Sekunde dauern.

#### Korrektur :

Fig.3.10

■ Durch langsames Verdrehen des Zylinders (10).

Der Drehbereich einer sich einstellenden Veränderung ist klein ( <90°). Daher zuerst die Einstellung mit der höchsten Absenkgeschwindigkeit suchen (genau in der Mitte des Bereiches).

Die Dämpfungsvorrichtung ist völlig wartungsfrei und darf nicht geschmiert werden.

#### Vorgehen:

- Vorerst keine Schallplatte auflegen.
- Die Einstellung höchster Absenkgeschwindigkeit suchen.
- Zylinder schrittweise in eine Richtung drehen, bis Absenkgeschwindigkeit spürbar abnimmt.
- Schallplatte auflegen und Feineinstellung vornehmen.



Fig. 3.9



Fig. 3.10

### 3.9 SCHALTPUNKTE DER ENDSCHALTER EINSTELLEN

#### Kontrolle:

### Fig.3.11

Schaltpunkt right limit switch R-LS (Tonabnehmer-Startposition):

Distanz Drehzentrum (S) – Schaltpunkt = r1 = 147 mm +1/-0 mm

Dieser Abstand kann mit der REVOX-Messplatte ermittelt werden.

Die Platte enthält hierzu zwei konzentrische Rillen mit Radien von 147 und 148,5 mm.

Es ist zweckmässig, den Tonabnehmer von Hand am Gestänge abzusenken (Haube entfernen).

Die Nadelspitze muss dann im Bereich zwischen den beiden Rillen liegen.

Schaltpunkt left limit switch L-LS (Tonabnehmer-Endposition 12):

Distanz Drehzentrum (S) – Schaltpunkt = r2 = 50 mm +/-2 mm

Dieser Abstand muss gemessen werden, er kann nicht mit der Einstellhilfsplatte kontrolliert werden.



#### Fig.3.12

Durch entsprechendes Schieben des zuständigen Mikroschalters(R-LS oder L-LS) innerhalb des Spiels seiner Befestigungsschrauben kann dessen Schaltpunkt verändert werden.



#### Kontrolle :

### Fig.3.11

Masskontrolle an Peripherie der Tonarm-Ausladung. Wird während dem Abspielbetrieb der Tonarm durch manuellen Eingriff um mehr als 5mm, +/-1mm in Schwenkrichtung bewegt, muss der Plattentellerantrieb ausschalten und der Tonabnehmer in Ruhestellung zurückfahren.

#### Korrektur :

#### Fig.3.12

Durch vertikales Verschieben des zuständigen Mikroschalters (ARM) verändert sich der Schaltpunkt. Dazu sind die Befestigungsschrauben zu lockern.



Fig. 3.12



Fig. 3.11

#### 3.11 EINSTELLUNG DER POSITIONIERUNGSBLENDE

Fig.3.9

Die Blende (9) zur Erkennung der Absenkposition für Singles ist werkseitig im Abstand 85mm vom Drehzentrum lokalisiert.

Die praktische Einstellung ist mittels der REVOX-Messplatte (Best.-Nr. 46010) vorzunehmen.



Fig. 3.9

#### 3.12 KONTROLLE DER TONABNEHMER-ANTRIEBSSAITE

#### Kontrolle:

- Tonarm-Abdeckhaube entfernen (Kap. 2.5).
- Tonarm zur Betriebsposition einschwenken.
- Tonabnehmer bis zur Endstellung ausfahren.
- Gerät mit Taste POWER ausschalten: Der Tonarmschlitten fährt zur Ausgangsposition zurück. Beim Erreichen des Endschalters muss der Tonarmschlitten den Schalter ohne Verzögerung betätigen können. Die Antriebssaite darf dabei nicht auf dem Antriebsrad zu schleifen beginnen.
- Den Vorgang wiederholen : Im Unterschied zum ersten Durchgang den Tonarm aber nur um etwa 1..2cm ausfahren. Ausschalten.
- Auch unter diesen Bedingungen hat der Tonarm den Schalter ohne Verzögerung zu bedienen.

#### Massnahmen :

- Antriebssaite mit Aceton reinigen, oder
- Antriebssaite mit Zugfeder auswechseln :
   Die neue Antriebssaite ist vor dem Einbau unbedingt mit einem in Aceton getränkten Lappen abzustreifen.

### 3.13 NIVELLIERUNG DER CHASSIS-EBENE

Fig.3.13

Die Abspielebene kann in ihrer horizontalen Lage verändert werden, indem die Höhe der Schwingfedern verändert wird.

Dazu sind die Gewindebolzen (14) von der Unterseite des Gerätes her zu verstellen, bis Chassis und Gehäuserand auf einer Ebene zu liegen kommen.



Fig. 3.13

#### **FUNKTONSBESCHREIBUNG**

#### 4.1 ALLGEMEINES

Hinweis :

Beachte die Schaltungssammlung mit Block-Diagramm in Kapitel 6.

#### 4.2 NETZTEIL

Das Netzteil wird vom Microprozessor (µP) ein- und aus-In ausgeschaltetem Zustand (POWER-Led leuchtet) sind die Referenzspannungen der +5/-5 V und +12/-12 V Stabilisatoren (IC2 - IC5) auf O V geschaltet. Die Transistoren Q1(Q2) und Q3(Q4), angesteuert vom Signal PS-OFF, legen dabei die Referenzspannungen an Masse. Der  $\mu P$  erzeugt dieses Signal erst, wenn der Tonarmschlitten wieder in der Ausgangslage ist und der Plattenteller nicht mehr dreht. Die Betriebsspannungen +5 V-STBY (u.a.für IR-Empfänger) und die Netzausfallerkennung (NMI) bleiben weiterhin erhalten. Bei Stromausfall oder Ziehen des Netzsteckers, bewirkt diese Erkennung NMI ebenfalls die Erzeugung des PS-Off Signals im

#### 4.3 LAUFWERK

#### 4.3.1 Steuerung des Antriebsmotors

Das vom Antriebsmotor gelieferte Tachosignal wird (nach dem sample und hold Prinzip) in eine DC-Spannung umgewandelt, mit der Referenzspannung verglichen, korrigiert und dann verwendet, um den Motor zu regeln. Vorher gelangt das Tachosignal sowohl in den µP als auch zum Phasencomparator, dessen Korrektursignal der Referenzspannung dazuaddiert wird.

Ist die Nenndrehzahl erreicht, steuert der uP die

Synchronisations-LED (33/45) an.

Die Drehzahl wird über Impulstasten vorgewählt. Diese Information wird im  $\mu P$  gespeichert, welcher daraus die Zeitkonstanten des Frequenzspannungswandlers bestimmt und die SLOW/FAST Umschaltung auslöst.

Das Signal DRIVE INHIBIT bringt zusammen mit dem FBR-Signal den Motor zum Stillstand. Das FBR-Signal (Bremssignal), welches die Steuerspannung für die Hallgeneratoren über Q18 auf -5 V herunterzieht, bewirkt das Abbremsen des Motors durch ein konstantes Magnetfeld, bis das Tachosignal abfällt. Gleichzeitig unterdrückt das DRIVE INHIBIT Signal an IC9 Pin6 diese Motorregelspannung.

#### 4.3.2 Referenzsignal

Mittels der beiden Varispeed-Tasten kann die Geschwindigkeit in Schritten von 0,1 % bis zur maximalen Abweichung von +/-9.9 % variiert werden. Die eingelesenen Werte werden vom µP verarbeitet, der sowohl die Zeitkonstante des Frequenzspannungswandlers (TOUT) als auch die Adressen des D/A-Wandlers (R92...95) über ein Shift-Register/Latch (IC8) ändert. Ein Sägezahn- (Ramp-) generator, gesteuert vom  $\mu P$ , bildet den Phasencomparator. Je Phasenlage des Tachosignals zum Referenzsignal, wird vom Rampgenerator (IC12 Pin10) dabei die momentane Spannung in den Haltekondensator C34 geladen. Damit sich dieser nicht zu schnell entladen kann, ist das Signal über einen FET-OP-Amp geführt (IC13 Pin7).

Der µP arbeitet mit einer Systemfrequenz von 1.2288 MHz, die durch Teilung der Quarzfrequenz Y1 (4,9152 MHz) gewonnen wird. Weitere Teilungen ergeben die Zeitkonstanten von 55,55 Hz und 75 Hz für den Frequenzspannungswandler. Im Vari-Speed-Modus werden die zu den Zeitkonstanten führenden Divisoren von 22118 und 16384 entsprechnend der

Abweichung verändert.

#### 4.3.3 Frequenzspannungswandler

Das Tachosignal (%1 mV bei 33,33 U/min) wird durch IC9 verstärkt (Pin1 = Ausgang). Zwei antiparallel geschaltete Dioden verhindern dabei das Übersteuern des Verstärkers. Das Signal wird dann in einem Schmitt-Trigger (IC10 Pin2) in ein Rechtecksignal umgewandelt, um den Monoflop (IC11 Pin5) bedienen zu können. Dieser Monoflop (Pin11) steuert während 3 ms Q14 an, der dadurch C31 auf +5 V auflädt. Während der verbleibenden Zeit bis zum Ablauf einer Periode entlädt sich C31 über R72 und Q16 (bei 33,33 U/min über R72 und R73). Der Entladestrompfad wird mit Q16 vom  $\mu P$  (S/F) aus umgeschaltet. 40  $\mu s$  bevor C31 wieder auf +5 V aufgeladen ist, wird die momentane Spannung über IC12 (Pin8, Pin9) in den Haltekondensator C31 geführt (IC12 angesteuert vom Monoflop IC11 Pin6). IC13 dient dabei wieder als hochohmiger Puffer. Diode D36 muss sehr kleine Sperrströme aufweisen und darf daher nicht durch einen anderen Typ ersetzt werden. Sobald die korrigierte Tachospannung innerhalb des fest-gesetzten Spannungsfensters liegt, und der Phasenkreis stabil ist, gibt der μP die Synchronisation-LED-Anzeige frei.

#### 4.3.4 Der Antriebsmotor

Die Spulen wie die Hall-Generatoren sind elektrisch um 90 Grad zueinander versetzt angeordnet. Das rotierende Magnetfeld des Ringmagneten erzeugt in den Hall-Generatoren eine sinusähnliche Spannung. Die Spannungsamplitude ändert sich proportional zum Steuerstrom des Hallgenerators. Dieser hat die Eigenschaften eines Multiplikators. Die Hall-Generatorspannungen werden in IC14 verstärkt und steuern über die Treiber Transistoren Q19...Q22 die Spulen an.

#### Hinweis :

Der Antriebsmotor sollte im Service nur als komplette Einheit ausgewechselt werden. Eine Zerlegeung ist unumgänglich, falls die Hall-Generatoren ausgewechselt werden müssen. Es ist darauf zu achten, dass nur Ausführungen gleicher Farbpunkt-Codierung eingesetzt werden. Nach einem Austausch des Motors oder der Hallgeneratoren müssen die Einstellarbeiten nach Kap. 5.3.1 und 5.3.2 vorgenommen werden.

### 4.3.5 7-Segment-Display

Die gewählte Nominalgeschwindigkeit wird mit den ersten beiden Ziffern angezeigt. Zwischenwerte werden nur im Betriebsmodus VARI-SPEED angezeigt und stellen die Abweichung in Prozenten des Nominalwertes dar (max. 9.9 %). Die beiden Impulstasten geben über ein Shift-Register/Latch (IC8) die VARI-SPEED Werte an den  $\mu P$ weiter, welcher seinerseits per CLOCK-, DATA-, und ENABLE-leitung den 7-Segment Decoder/Driver IC1 anruft. IC1 decodiert die Daten und steuert die Anzeige an.

#### 4.3.6 SERIAL-LINK-Buchse

Der B291 besitzt wie alle Geräte seiner Generation einen Ein- bzw. Ausgang, erreichbar über eine SERIAL-LINK-Buchse.

Diese DIN 6-Pol-Buchse ermöglicht beim Plattenspieler einerseits den Disco-Start (folgendes Kapitel) und ist andererseits für die Verbindung zum Timer Controller B203 vorgesehen (Fernbedienung der EASY-Funktionen). Ebenso möglich ist der Anschluss eines externen IR-Empfängers B206.

Die Ein- und Ausgangssignale sind durch Optokoppler galvanisch voneinander getrennt.

Der Optokoppler DLQ1 legt die interne IR-Empfängerleitung an Masse, damit DLQ2 die Signale des B203 dem  $\mu P$  zuführen kann. DLQ3 schliesslich ist für die Rückmeldungen des  $\mu P$ 's an den Controller B203 zuständig.

#### Steckerbelegung :

| 1 | Anschluss | Funktion                  |            |
|---|-----------|---------------------------|------------|
|   | 1         | GND Ausgang               |            |
| İ | 2         | GND (Floating, DISCO-Star | t) Eingang |
| İ | 3         | SERIAL Input/Output       |            |
|   | 4         | + 5 V (Floating) Eingang  |            |
| İ | 5         | + 5 V max. 150 mA, Ausga  | ng         |
| 1 | 6         | DISCO-Start               |            |

Beachte: Wird ein SERIAL LINK-Betrieb über den Controller B203 gewünscht, so muss Pin1 mit Pin2 sowie Pin4 mit Pin5 verbunden werden.

Weitere Informationen zur SERIAL-LINK-Buchse im Zusammenspiel mit dem B203 enthalten :

- Bedienungsanleitung Timer Controller B203 (Best. Nr. 10.30.0540)
- Serviceanleitung IR-Remote Control Systems (Best. Nr. 10.30.0430)

#### 4.3.7 Disco Start

Der Plattentellermotor des B291 kann über die SERIAL-LINK-Buchse ein- und ausgeschaltet werden, indem zwischen Pin2 und Pin6 eine Spannung von 5 V...24 V (AC oder DC) angelegt wird (beachte auch vorangehendes Kapitel). Damit sind Plattentellermotor und Tonarm unabhängig voneinander manipulierbar. Für den Einsatz mit einem Mischpult, beispielsweise in Diskotheken, ist es notwendig, dass der Plattenteller mit abgesenkter Tonzelle von Hand bewegt werden kann, um exaktes Auffinden und Starten jeder beliebigen Stelle zu ermöglichen.

Beim Betrieb mit dem REVOX-Mischpult B279+Expansion Unit kann der Plattenspieler mit dem ihm zugeordneten Regler gestartet, beim Schliessen desselben wieder angehalten werden. Dazu beschleunigt der B291 innerhalb einer Umdrehung auf Nominalgeschwindigkeit (33 1/3 U/min).

Dabei ist eine Modifikation auf der Hauptplatine des B291 unbedingt notwendig :

Fig.4.1

- $\blacksquare$  Ein Widerstand R=2,7 kQ wird an der angedeuteten Stelle eingefügt.
- Schaltungsmässig liegt nun der Anschluss 6 der SERIAL LINK-Buchse über den Widerstand 2.7 kΩ an +12 V.
- Für die Verbindung der beiden Geräte ist ein Kabel mit einem 3,5 mm Klinkenstecker und losem Ende (Nr.33229) erhältlich, sowie der passende 6-Pol Stecker lötbarer Ausführung (Nr.70534).

Stecker und Kabel sind wie folgt zu verdrahten :

- Im 6-Pol Stecker Pin1 mit Pin2 verbinden.

- Je eine der beiden Litzen des Kabels auf Pin2 und Pin6, (Polarität beliebig).

Beachte: Wird ein SERIAL LINK-Betrieb über den Controller B203 gewünscht, ohne gleichzeitig den Fader-Start zu benützen, so ist zusätzlich zur Normalverdrahtung Pin6 mit Pin1+2 zu verbinden, sonst kann der B291 nicht als Gerät Nr.1 angeschlossen werden.

Normalverdrahtung : Pin1 verbunden mit Pin2, Pin4 mit Pin5.



### 4.4 TONARM-STEUERUNG

### 4.4.1 Hinweise und Einteilung

Die Armsteuerelektronik gliedert sich grob in zwei Bereiche :

- Digitalteil, enthält den Mikroprozessor (μP) als Zentrale der logischen Steuerung des Analogteils.
- Analogteil, liefert die Signale für den Nachstellmotor. Er besteht hauptsächlich aus dem Photodiodenverstärker (IC15) sowie dem Summierverstärker IC16 mit den Endstufentransistoren Q28 und Q29.

Die Beschreibung teilt sich aber nach Funktionen ein, da für nahezu jede Funktion beide Teile aktiv sind.

Siehe auch Kapitel 6 : Blockschaltbild B291 Seite 6/5 Schemasammlung Seite 6/10+11.

### 4.4.2 Digitale Eingangspegel

Fig.4.2

- Micro-Schalter ARM (arm in switch): O V, wenn der Arm nicht in Betriebsstellung ist.
- Micro-Schalter R-LS (right limit switch): 0 V, wenn der Schlitten den rechten Anschlag erreicht hat.
- Micro-Schalter L-LS (left limit switch): 0 V, wenn der Schlitten den linken Anschlag erreicht hat.
- Die drei Tonarmimpulstasten werden vom µP in ein Shift-Register/Latch IC8 eingelesen (nur bei eingeschwenktem Arm aktivierbar).



Fig. 4.2

#### 4.4.3 Absenken

Der Absenk-Magnet (Lowering solenoid) wird mit einem Impuls doppelter Betriebsspannung von den Transistoren

Q24 und Q25 angeregt (SOL1/2).

In den Ruhepausen (Tonarm angehoben) leitet Q25 und lädt den Kondensator C38 auf Betriebsspannung auf. Bei der Aktivierung des Magneten (MAG) wird Q24 Leitend und schaltet den aufgeladenen Kondensator zur +12 V Speisung (Spannungsverdopplung), während Q25 nun sperrt.

#### 4.4.4 Automatische Positionierung

Damit der B291 auch die Absenkposition bei Singles findet, ist die Tonarmführung mit einer dritten Photodiode (DP3) bestückt. Mit Hilfe einer Blende auf der Absenkstange wird dort der Lichtfluss auf die Diode unterbrochen.

Der Spannungscomparator IC17 (Schwellwert einstellbar mit R154) erzeugt den Impuls POS, der vom µP gelesen wird. Dieser legt das Signal MAG auf O V. Das Absenken wird nun wie im vorangehenden Kapitel beschrieben ausgeführt.

#### 4.4.5 Manuelle Postitionierung

Beim manuellen Vorschub werden die Tastenimpulse vom μP in das Shift-Register/Latch (IC8) eingelesen und als definierte Impulsfolge an den Summierverstärker (IC16) weitergegeben. Diese bestimmt Dauer und Geschwindigkeit des Vorschubs und wählt je nach Richtung des Vorschubes den zutreffenden Eingang am Summierverstärker (IN- oder OUT-Signal).

#### 4.4.6 Photodiodenverstärker und Summierverstärker

Die Verstärkung des Photodiodensignals in IC15 ist mit R119 veränderbar. Bei richtiger Einstellung werden die Herstellungstoleranzen von Leuchtdioden und Photodioden kompensiert und damit bedeutungslos. Ist die Verstärkung hingegen zu gross, dreht der Vorschubmotor beim Abspielen einer Platte ruckartig; dadurch werden Rumpelstörungen verursacht. Bei zu geringer Verstärkung aber springt die Nadel aus der Auslaufrille, da der Schlitten nicht mehr in der Lage ist dem grossen Rillenvorschub zu folgen. Der Arbeitspunkt der abgesenkten Tonzelle liegt im Bereich von ±0.5 V (an IC15 Pin7). Eine horizontale Auslenkung der Nadelspitze um O.24 mm soll, bei korrekter Verstärkung, eine Spannungsänderung von 2 V an Pin7 er-

Beim Abspielen einer Schallplatte normaler Exzentrizität von 0.1 mm beträgt der periodische Spannungshub etwa +1 V

Dem Photodiodensignal bieten sich zwei Wege an, den Summierverstärker (IC16) zu erreichen. Diese unterscheiden sich in ihren Zeitkonstanten und Übertragungsfaktoren. Kleine negative Signale, wie sie während normalem Plattenvorschub auftreten, werden über die Diode D43 und den Ladewiderstand R122 zum Kondesator C41 geführt. Signale dieses Zweiges führen den Vorschubmotor mit konstanter Geschwindigkeit.

Bei positiven Signalen (Impulse > 3.5 V) wird der negativ geladene Integrationskondensator C41 über die Zenerdiode D43 entladen. Diese positiven Impulse (>3.5 V) treten bevorzugt am Ende langer Kennrillen auf, wenn der Schlitten bereits etwas zu weit gefahren ist. Dabei ist ein geringer Rücklauf des Schlittens nicht ausgeschlossen. Wird plötzlich ein grösserer Vorschub verlangt, etwa beim Eintritt in die Auslaufrille, überbrückt ein direkter Zweig mit D41, D42 und R123 die grosse Zeitkonstante aus R122

An Pin7 des Summierverstärkers (IC16) sind alle Vorschubsignale sowie die Strommitkopplung zusammengefasst. Diese Strommitkopplung (R142, R143), die die Wirkung des Ankerwiderstandes verringert und damit die Anlaufspannung des Motors reduziert, ist am addierendem Eingang eingekoppelt worden.

#### 4.4.7 Auslaufrillen-Erkennung

Für die Auslaufrillenerkennung wird die Spannung, welche den Vorschubmotor ansteuert, verwendet. Verlangt die Tonzelle beim Eintritt in den Auslaufbereich einer Platte nach grösserem Vorschub, steigt die Motorspannung an und als Folge lädt sich der Haltekondensator C43 über R110 auf. Damit die Abschaltung unabhängig von der Reibung von Schlitten und Getriebe reagiert, wird in IC15 von der Spannung am Haltekondensator C43 die spannung" wiederum abgezogen.

IC16 vergleicht nun die Spannung C43 mit einem festen, aber durch R136 einstellbaren Wert. Übersteigt nun die Spannung von C43 den Schwellwert an IC16 Pin3, so fällt der Ausgang (END-SIG) auf O V, worauf der  $\mu P$  das Abheben der Zelle sowie das Zurückfahren des Schlittens auslöst. Diese Schaltung arbeitet nur im PLAY-Modus, da C43 bei abgehobener Tonzelle von Q34 kurzgeschlossen ist.

#### 4.4.8 Beleuchtung

Die Tonarm-Beleuchtung steuert der  $\mu P$  über den Transistor Q13, wobei die Lichtquelle nur bei drehendem Plattenteller und aktiver Stummschaltung eingeschaltet wird.

### 4.4.9 Stummschaltung

Die Stummschaltung unterbricht die Audiowege beim Ausschalten des Gerätes (Stand-by), bei angehobenem Tonarm und während dem Absenkvorgang, um dabei das Aufsetzgeräusch der Nadel zu unterdrücken. Nach dem Auslösen des Absenkens dauert es gegen eine Sekunde, bis das NfSignal am Ausgang liegt.

In jedem Audioweg liegt ein Feld-Effekt-Transistor, der beim Anlegen einer hohen negativen Gate-Vorspannung zu sperren beginnt (Q210 und Q310). Die Spannungsverdoppelungsschaltung (D15...17, C16, C17) im Netzteil erzeugt die dafür nötigen -40 V (-U MUTE).

Bei inaktiver Stummschaltung liegt das MUTE-Signal des  $\mu$ P's an den beiden Transistoren Q31 und Q32. Diese sind leitend, am Widerstand R149 fällt eine Spannung ab und die deshalb abgesunkene Gate-Vorspannug vermag die Transistoren Q210 und Q310 nicht mehr zu sperren.

#### 4.5 VORVERSTÄRKER

- Das Grundmodell des Plattenspielers B291 ist mit einem MM-Verstärker linearer Bestückung ausgestattet, der als Impedanzwandler wirkt. Daraus ist ersichtlich, dass dieses Gerät speziell für MM-Tonabnehmer entwickelt wurde.
- Die Bestückung kann um eine RIAA-Entzerrung auf der bestehende Printplatine erweitert werden. Sie ist als Serviceeingriff geplant.

Siehe auch Kapitel 6 : Blockschaltbild B291 Seite 6/5 Schemasammlung Seite 6/10+14.

#### 4.5.1 Impedanzwandler

Das Signal der Tonzelle bleibt in seinem Pegel unverändert, die Ausgangsimpedanz hingegen wird auf 200...250  $\Omega$  reduziert. Kabelkapazitäten sowie unterschiedliche Eingangsimpedanzen der Phonovorverstärker verlieren damit ihren Einfluss auf den Frequenzgang. Die Anpassung der Tonzelle erfolgt daher nicht an den Verstärker-Eingang, sondern an den Impedanzwandler, wie es beim Einbau oder Austausch des Tonmabnehmers geschehen ist oder zu geschehen hat (Kap.3.4).

Eine Stummschaltung unterdrückt beim Einschalten und Absenken unerwünschte Signale (Kapitel 4.4.9).

Weiter ermöglicht der Impedanzwandler die Korrektur der Kanalbalance, da der linke Kanal um ±2 dB veränderbar ist.

### 4.5.2 RIAA-Entzerrung

Mit dieser Modifikation lässt sich der B291 direkt an einen Verstärker-Eingang (Tape, Aux.) anschliessen.
Dazu muss der Impedanzwandler als Verstärker betrieben werden, wie es durch Einsetzen der RIAA-Netzwerke in die Gegenkopplungspfade zwischen Q201 (Q301) und R215 (R315) geschieht.

Fig.4.3...4.5 Die nebenstehenden Illustrationen zeigen die Bestückung in die bestehende Printplatine 1.179.350 .

| Left Channel | Right Channel | Value   | Studer - Nr.: |
|--------------|---------------|---------|---------------|
| C 202        | C 302         | 5n6 1%  | 59, 12, 7562  |
| C 203        | C 303         | 680p 1% | 59, 05, 1681  |
| C 204        | C 304         | 1n2 1%  | 59,12, 7122   |
| R 207        | R 307         | 510k 1% | 57.11.3514    |
| R 208        | R 308         | 22k 1%  | 57.11.3223    |
| R 209        | R 309         | 43k 1%  | 57.11.3433    |
| R 210        | R 340         | 100R 1% | 57.11.3101    |

Fig. 4.3



Fig. 4.4



#### ELEKTRISCHE MESSUNGEN und EINSTELLUNGEN

#### 5.1 ALLGEMEINES

Benütze begleitend : Schemasammlung und Blockschaltbild

Kapitel 6

Funktionsbeschreibung Kapitel 4

Das Gerät enthält elektrostatisch empfindliche Bauteile. Reparaturarbeiten sollten nur an entsprechend geschützten Arbeitsplätzen durchgeführt werden. ("ESE-Arbeistsplatz-ausrüstung Best.-Nr. 46200)

Die Plattenspielermotoren werden werkseitig in einer speziellen Vorrichtung unter Fremdantrieb abgeglichen. Danach wird die Elektronik auf den Motor eingestellt. Die folgenden Einstellungen werden daher notwendig, wenn von den beiden Teilen eines ausgetauscht wird.

#### 5.2 HILFSMITTEL und MESSGERÄTE

■ Auflage für ausgebautes Plattenteller-Chassis :

Das Chassis soll darauf waagrecht und wackelfrei aufliegen, um eine schonende Behandlung des Gerätes während Manipulationen zu gewährleisten, denn für Justierarbeiten und Messungen am Steuerungsteil ist es unumgänglich, dass das Gerät in ausgebautem Zustand betrieben werden kann. Dazu sind die genannten Verlängerungskabel für Motor und Arm vorgesehen.

Eine solche Unterlage, die das Chassis an den Ecken stützt, kann beispielsweise aus 4 Holzquadern (Höhe etwa 10 cm) bestehen, die auf einer Grundplatte montiert worden sind.

- Verlängerungskabel Motor . . . . . . Best.-Nr. 46135 ■ Verlängerungskabel Tonarm . . . . . . Best.-Nr. 46137
- Selektiv-Filter 3.33 Hz und 6.67 Hz . . Best.-Nr. 46150 ■ Messplatte REVOX . . . . . . . . . . Best.-Nr. 46010
- Wobbel-Messgerät (z.B. Woelke ME102)
- Universal-Messgerät (Ri≥10 kΩ), mit Vorteil Digital-Voltmeter
- Millivoltmeter oder Wave Analyzer



Fig. 5.1

#### 5.3 LAUFWERK

#### 5.3.1 Voreinstellen der Motorregelkreises

#### Hinweis :

Die bei diesem hochwertigen Plattenspieler garantierten, verschwindend geringen Wobbelwerte werden nur erreicht, wenn beide Spulenströme identisch sind und einen Phasenwinkel von 90 Grad aufweisen.

Sollte, nach dem Ausbau eines Motors, keine Möglichkeit zur werkseitigen Ausführung der Abgleicharbeiten bestehen, so ist nach folgendem (behelfsmässigem) Einstellablauf vorzugehen :

- Potentiometer R108 und R109 in Mittelstellung drehen.
- Fig.5.1

  Beide Einstellschrauben (1) des Antriebsmotors so einstellen, dass zwischen Schraube und Hallelement (2) ein Luftspalt (x) von 0,5 mm entsteht.
- Motor wieder einbauen.
- Mit Hilfe der Verlängerungskabel so aufstellen, dass die Einstellpotentiometer frei zugänglich sind.
- Auf 33,33 U/min starten.
- Trimmpotentiometer R69 so einstellen, dass die Spannung an IC13 Pin7 +2,4...2,5 V beträgt.
- Die Hochlaufzeit sollte max. 2 s betragen.

Die Einstellungen müssen bei ordnungsgemässem Synchronlauf erfolgen. Die Synchronisations-LED muss bei allen Geschwindigkeiten (auch VARI-SPEED Werten) konstant leuchten.

## 5.3.2 Abgleich von Antriebsmotor und -steuerung auf minimale Tonhöhenschwankungen

Fig.5.1

- REVOX-Messplatte auflegen und Abschnitt 9 (3150 Hz, lateral) abspielen.
- Die Exzentrizitäts-Wobbelkomponente messen (0,55 Hz bei 33,33 U/min). Sie darf +/-0,1 % nicht überschreiten. Bei Ueberschreitung dieser Toleranz muss die Platte auf dem Plattenteller exakt zentriert werden; nötigenfalls das Zentrierloch vergrössern.
- Dem Wobbelmessgerät ein Filter einschlaufen und die 6,67 Hz Komponente herausfiltern (Artikel Nr.46150).
- Durch gegenläufiges Verdrehen der Einstellschrauben (1) der Hallelemente (2) diesen Anteil auf weniger als +/-0,02 % einstellen.
- 3,33 Hz Komponente herausfiltern und mit den beiden Trimmpotentiometern R108 und R109 auf weniger als +/-0,02 % Anteil einstellen.
- Bewertet Gesamtwobbel messen : Grenzwert +/- 0,05 %
- $\blacksquare$  Linearen Gesamtwobbel messen (Filterstellung DİREKT) : Grenzwert +/- 0,1 %
- Der bewertete Gesamtwobbel muss auch bei den VARI-SPEED-Werten grösster Abweichung unter 0,06 % bleiben.

# 5.3.3 Typische Signalformen bei korrekter Motorsynchronisation



#### 5.4 TONARMFÜHRUNG

#### 5.4.1 Funktionskontrolle der Tonarm-Steuerung

- Aktionen der Reihe nach ausführen.
- a Ausgangssituation :
   Gerät ausgeschaltet, POWER-LED leuchtet

| A K T I O N                                                 | REAKTION                                                                                                             |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Armführung<br>einschwenken;                                 | Plattenteller startet mit<br>33 1/3 U/min,<br>Beleuchtung schaltet ein.                                              |
| Vorlauf ⊲ ;                                                 | Schlitten fährt nach links.                                                                                          |
| Absenken $ abla\Delta$ ;                                    | Zelle senkt sich,<br>Beleuchtung schaltet aus.                                                                       |
| Rücklauf ▷ ;                                                | Zelle wird angehoben,<br>Beleuchtung schaltet ein,<br>Schlitten fährt nach rechts,                                   |
| Taste loslassen                                             | Zelle senkt sich wieder und<br>Beleuchtung schaltet aus.                                                             |
| Anheben $\nabla \Delta$ ;                                   | Zelle wird abgehoben,<br>Beleuchtung ein.                                                                            |
| Armführung<br>ausschwenken;                                 | Beleuchtung schaltet aus,<br>Rücklauf des Schlittens,<br>Plattenteller stoppt.                                       |
| 45, Special,<br>Arm einschwenken;                           | Beleuchtung ein,<br>Plattenteller startet.                                                                           |
| Vorlauf ⊲ bis<br>Anschlag                                   | Rücklauf des Schlittens<br>bis Anschlag rechts,<br>Plattenteller bleibt stehen,<br>Beleuchtung schaltet aus.         |
| Arm ausschwenken,<br>Special aus, wie-<br>der einschwenken; | Beleuchtung ein,<br>Plattenteller startet mit<br>45 U/min,<br>Schlitten fährt bis zur<br>Positionsmarke für Singles. |

5.4.2 Wichtige Hinweise und Voraussetzungen zu den Arm-Einstellungen

- Für die Einstellvorgänge bedarf es der in Kapitel 5.2 aufgeführten Verlängerungskabel, einer Messplatte, sowie einer standfesten Unterlage, wie sie das Kapitel 5.2 vorschlägt. Damit lässt sich das Chassis in ausgebautem Zustand betreiben.
- Alle mechanischen Einstellungen, besonders die Absenktiefe und die Auflagekraft des Tonabnehmers, sollen nach Kapitel 3 korrekt ausgeführt sein.
- Während Messvorgängen sind die Fotodioden der Tonabnehmer-Lichtschranke vor Fremdlichteinfall abzuschirmen, da die Abdeckhaube für die meisten Einstellungen entfernt sein muss.

#### 5.4.3 Einstellung der Tonabnehmer-Nachführung

#### 1. Vorgehen mit REVOX-Messplatte 46010:

- Plattenspieler durch Ausziehen des Netzkabels ausschalten.
- Die Antriebssaite des Tonabnehmerschlittens aushängen (Spiralfeder lösen).
- DC-Voltmeter an IC15 Pin7. und Masse (OV) anschliessen.
- REVOX-Messplatte auflegen.
- Tonarm in Abschnitt 4 absenken (unmoduliert, konstant 80 μm Rillenvorschub, wie Rumpelmessung).
- Die angezeigte Spannung als Referenzwert sich merken.
- Die Platte von Hand 3 volle Umdrehungen im Gegenuhrzeigersinn drehen.
- Potentiometer R119 so einstellen, dass das Voltmeter eine Spannungshub von 1.5 ... 2.2 V anzeigt.

Anstelle der REVOX-Messplatte ist jede Platte mit konstantem und bekanntem Rillenabstand verwendbar.

Mit der Messplatte wird die radiale Verschiebung von 0.24 mm durch genau 3 Umdrehungen erreicht (80 µm Vorschub). Wird eine Platte mit einem anderen Rillenvorschub verwendet, ist der Spannungswert entsprechend umzurechnen:

ca. 1.8 V / 0,24 mm Vorschub

Das Verwenden einer Platte liefert aber nur dann genaue Resultate, wenn die Verschiebung durch ganzzahlige Plattenumdrehungen erzeugt wird, da die Plattenexzentrizität wesentlich grösser als der Rillenvorschub sein kann.

#### 2. Vorgehen mit Einstellehre 46173:

Achtung : Tonarmführung nur dann über die Einstellehre schwenken, wenn sich der Tonabnehmer in der Startstellung befindet.

Fig.5.2

Die Einstellehre erlaubt ein radiales Verschieben des Tonabnehmers um 0,24 mm.

- Plattenspieler durch Ausziehen des Netzkabels ausschalten, die Antriebssaite der Tonarmführung muss bei der Einstellung mittels Lehre nicht entfernt werden.
- Gummi-Matte entfernen.
- DC-Voltmeter an IC15 Pin7 (+) und Masse (0 V) anschliessen.
- Nadelträger in der Mitte des beweglichen Schiebers (3) aufsetzen.
- Die angezeigte Spannung als Referenzwert sich merken.
- Beim Betätigen des Schiebers und entsprechender Einstellung des Potentiometers R119 muss das Voltmeter einen Spannungshub von 1.5 ... 2.2 V anzeigen.

#### Hinweis:

Um während der Einstellung ein seitliches Verschieben der Nadel auf der Lehre auszuschliessen, ist die Gegend der Lehre auf welchem die Nadel aufsetzt (über die Markierungslinien) mit einem Stück Klebeband rauher Oberfläche (z.B. Krepp-oder Textilband) zu versehen.



Fig. 5.2

#### 5.4.4 Einstellung der Lage des Abtastprints

Diese Einstellung bestimmt die Position des Tonabnehmers relativ zum Tonabnehmer-Schlitten und beeinflusst den vertikalen Spurwinkel.

Der elektrische Arbeitspunkt muss mit dem mechanischen Rastpunkt bei abgehobenem Tonabnehmer übereinstimmen (definiert durch die Tonabnehmer-Höheneinstellschraube und der V-förmigen Zentrierung im Tonabnehmerträger).

#### Voraussetzungen :

- Die Beruhigungs-Blattfeder am Schlitten muss parallel zur vorderen Schlittenführung ausgerichtet sein und darf die freihängende Lage des Tonabnehmers während der Abhebebewegung nicht beeinflussen. (Bei Bedarf mit Pinzette richten).
- Als Messgerät bei dieser Einstellung ist ein Analog-Voltmeter mit Mittenausschlag gegenüber dem in Kap. 5.2 "Hilfsmittel" genannten zu bevorzugen.

#### Kontrolle :

- n Die Antriebssaite des Tonabnehmerschlittens aushängen (Spiralfeder lösen).
- Tonarmführung einschwenken, den Schlitten etwa bis zur Mitte schieben .
- DC-Voltmeter an IC15 Pin7 (+) und Masse (O V) anschliessen.
- Während der Tonabnehmer abgesenkt wird (mittels Taste), ist am Voltmeter die sich ändernde Spannung zu beobachten:
  - Sie muss innerhalb des Bereiches -0,5V...+0,5V bleiben.

#### Korrektur:

#### Fia.5.3

Horizontales Verschieben des Abtastprints (1.179.300.00), bewirkt eine Positionsänderung der Schlitzblende im Lichtschrankenbereich.

- Die beiden Befestigungsschrauben (4) etwas lockern.
- Print verschieben
  - nach links: >> + Spannung wird positiver nach rechts: << + Spannung wird negativer
- Print wieder angemessen festziehen.



Fig. 5.3

#### 5.4.5 Vorgehen beim Ersetzen der Infrarot-LED

#### Fig.5.4

Beim Einbau einer neuen LED sind folgende Punkte zu beachten :

- Einbauhöhe: Distanz LED-Körper-Fusskante bis Printebene = 4,5..5 mm
- LED vor dem Verlöten beidseitig genau senkrecht ausrichten.
- Kontrolle nach der Einstellung der Tonabnehmer-Absenktiefe : Die LED darf die Beruhigungs-Blattfeder am Tonabnehmer-

Träger nicht streifen.

Danach ist die Einstellung des Abtastprints nach Kapitel 5.4.4 auszuführen.



Fig. 5.4

#### 5.4.6 Einstellen des Endsignals ( bei 33 U/min)

Die Auslaufrillen am Ende handelsüblicher Schallplatten (33 U/min) sind stets mit einer Steigung von 3,2 mm pro Umfang geschnitten.

Die Auslaufrillen-Erkennung (Kap. 4.4.7) muss in Abschnitt 10, am Ende der REVOX-Messplatte, nach 1 bis 2 Umdrehungen dieser Steilheit das Anheben der Zelle auslösen. Bei der Abstellrille (Abschnitt 7) in der Plattenmitte soll hingegen keine Abschaltung erfolgen. Die Einstellung erfolgt mit Trimmpotentiometer R136.

#### 5.4.7 Einstellen des Positionierungssignals

- DC-Voltmeter an IC17 Pin6 (+) und Masse (O V) anschliessen.
- Tonarm mittels Tasten langsam über den Bereich der Positionierungsblende fahren.
- Am Voltmeter die sich ändernde Spannung beobachten und den kleinsten angezeigten Wert sich merken.
- Tonarm an den rechten Anschlag zurückfahren.
- Voltmeter nun an IC17 Pin5 (+) anschliessen.
- R154 verdrehen bis die Spannung um O,1 V höher liegt, als der zuvor an Pinó beobachtete, kleinste Wert.

Achtung : Die Abdeckhaube der Tonarmführung muss aufgesetzt sein.

#### 5.4.8 Messung der Abtastfähigkeit

#### Messung:

Dazu ist Abschnitt 5 der REVOX-Messplatte abzuspielen. (315 Hz lateral, Spitzenamplituden : 50µ, 60µ...120µ) Die Abtastfähigkeit sollte bei beiden Kanälen 80...90 µm erreichen. Dabei soll der Klirreinsatz in beiden Kanälen möglichst bei derselben Spitzenamplitude erfolgen.

#### Kommentar :

Kann die geforderte Abtastfähigkeit nicht erreicht werden, so ist eine geringfügige Verbesserung durch Erhöhen der Auflagekraft möglich. Diese darf aber keinesfalls um mehr als 15 % über dem angegebenen Nominalwert des Herstellers liegen.

Liegt nun der gemessene Wert weit jenseits des Tolerierbaren, oder ist eine nicht unbedeutende, die Vermutung eines Defekts aufdrängende, Differenz zwischen den Kanälen auszumachen, so ist als erstes der Diamant mikroskopisch auf Beschädigung oder extremen Verschleiss hin zu prüfen, bevor Arm-Einstellungen verändert werden.

#### 5.5 Vorverstärker

#### 5.5.1 Einstellung der Kanalbalance und Messung der Übersprechdämpfung

#### Kanalbalance :

- Pegelmessgerät an die Ausgänge anschliessen.
- Abschnitt 2 der REVOX-Messplatte abspielen (1kHz mono).
- Abwechlungsweise den linken und den rechten Kanal messen :
  - Die Pegeldifferenz muss kleiner als 0,3 dB bleiben.
- Mit R226 kann der linke Kanal um ±2 dB verändert, und damit dem rechten Kanal angeglichen werden.

#### Übersprechdämpfung R →> L :

- Pegelmessgerät an den linken Ausgang anschliessen.
- Abschnitt 2 der Messplatte abspielen (1 kHz links) abspielen.
- Den linken Kanal messen, Pegelmessgerät dabei auf O dB eichen.
- Abschnitt 2 (1 kHz, rechts) abspielen. Das Messgerät soll mindestens 25 dB weniger anzeigen.

Analog dazu verläuft die Messung der Übersprechdämpfung L->R, welche als Ergebnis ebenfalls eine Differenz von mindestens 25 dB ergeben soll.

Achtung: Wird der Plattenspieler in P-Mount Version ausgeliefert, so ist die Kanalbalance werkseitig bei einem Pegel von 5 mV und 1 kHz abgeglichen worden.

Beim Einsetzen der Tonzelle ist eine Nachjustage gemäss Kap. 3.4.4 und 5.5.1 unbedingt notwendig.

Wir raten vom einfachen Einsetzen einer Zelle ohne Justage ab.

### English

| Contents     |                                                      | Page Contents  |       | nts                                                                                | Page           |  |
|--------------|------------------------------------------------------|----------------|-------|------------------------------------------------------------------------------------|----------------|--|
| 1.           | GENERAL                                              |                | 4.    | FUNCTIONAL DESCRIPTION                                                             |                |  |
| 1.1          | OPERATOR CONTROLS                                    | E 1/1          | 4.1   | GENERAL                                                                            | E 4/1          |  |
| 1.2          | DIMENSIONS                                           | E 1/2          | 4.2   | POWER SUPPLY                                                                       | E 4/1          |  |
| 1.3          | TECHNICAL DATA                                       | E 1/2          | 7.2   | TOWER SOFTET                                                                       | ,              |  |
| 1.3.1        | Turntable drive and tone arm support                 | E 1/2          | 4.3   | TURNTABLE DRIVE                                                                    | E 4/1          |  |
|              | Operation                                            | E 1/3          |       | Drive motor control                                                                | E 4/1          |  |
| 1.3.3        | Miscellaneous                                        | E 1/3          |       | Reference signal                                                                   | E 4/1          |  |
|              |                                                      | - 4/7          |       | Frequency-to-voltage converter                                                     | E 4/2<br>E 4/2 |  |
| 1.4          | PHONO CARTRIDGE                                      | E 1/3<br>E 1/3 |       | Drive motor<br>7-Segment display                                                   | E 4/2          |  |
| 1.4.1        | Shure V15V P-mount Elac EMM 150 P-mount              | E 1/3          |       | SERIAL LINK socket                                                                 | E 4/2          |  |
| 1.4.2        | Etac Emm 150 P modift                                |                |       | Disco start                                                                        | E 4/3          |  |
| 1.5          | ACCESSORIES                                          | E 1/4          | 4.4   | TONE ARM FOLLOW-UP                                                                 | E 4/3          |  |
|              |                                                      |                |       | Notes and subdivision                                                              | E 4/3          |  |
|              |                                                      |                |       | Digital input levels                                                               | E 4/3          |  |
| 2.           | DISASSEMBLY                                          |                |       | Lowering                                                                           | E 4/4          |  |
|              |                                                      |                |       | Automatic positioning                                                              | E 4/4          |  |
| 2.1          | GENERAL                                              | E 2/1          |       | Manual positioning                                                                 | E 4/4          |  |
| 2.2          | REQUIRED TOOLS                                       | E 2/1          | 4.4.6 | Photo diode amplifier                                                              | E 4/4          |  |
| 2.3          | REMOVING THE HOOD                                    | E 2/1          | , , , | and summing amplifier<br>Run-out groove detection                                  | E 4/4          |  |
| 2.4<br>2.5   | LIFTING OFF THE PLATTER OPENING THE TONE ARM SUPPORT | E 2/1<br>E 2/1 |       | Illumination                                                                       | E 4/5          |  |
| 2.6          | REMOVING THE STYLUS HOLDER                           | E 2/1          | 4.4.9 |                                                                                    | E 4/           |  |
| 2.7          | REMOVING THE CHASSIS                                 | E 2/2          |       |                                                                                    |                |  |
| 2.8          | REMOVING THE TONE ARM SUPPORT                        | E 2/2          | 4.5   | PHONO PREAMPLIFIER                                                                 | E 4/           |  |
| 2.9          | REMOVING THE DRIVE MOTOR                             | E 2/3          | 4.5.1 |                                                                                    | E 4/           |  |
| 2.10         | REMOVING THE ELECTRONIC CIRCUIT BOARD                | E 2/3          | 4.5.2 | RIAA equalization                                                                  | E 4/           |  |
| 2.11         | REMOVING THE OPERATOR CONTROLS                       | E 2/3          |       |                                                                                    |                |  |
| 2.12         | REMOVING THE POWER TRANSFORMER                       | E 2/3          |       |                                                                                    |                |  |
| 2.13         | REPLACING THE POWER FUSES                            | E 2/4<br>E 2/4 | _     |                                                                                    |                |  |
| 2.14         | REASSEMBLY                                           | E 2/4          | 5.    | ELECTRICAL MEASUREMENTS AND ALIGNMENTS                                             |                |  |
|              |                                                      |                | 5.1   | GENERAL                                                                            | E 5/1          |  |
| 3.           | MECHANICAL ADJUSTMENTS AND CHECKS                    |                | 5.2   | CALIBRATION TOOLS AND                                                              | E 5/1          |  |
| 3.1          | CALIBRATION TOOLS                                    | E 3/1          |       | MEASURING INSTRUMENTS                                                              | E 37           |  |
|              |                                                      |                | 5.3   | TURNTABLE DRIVE                                                                    | E 5/1          |  |
| 3.2          | PRECONDITIONS                                        | E 3/1          |       | Preadjustment of the motor control circuit                                         | E 5/1          |  |
|              |                                                      |                | 5.3.2 | Preadjustment of drive motor and                                                   | /              |  |
| 3.3          | CHECKING THE TANGENTIAL GROOVE                       | E 3/1<br>E 3/1 | C 7 7 | control for minimal wow and flutter Typical signal shapes with                     | E 5/1          |  |
| 3.3.1        | Preconditions Checking by means of the               | E 3/1          | ر     | correct motor synchronization                                                      | E 5/2          |  |
| 3.3.2        | alignment gauge No. 46173                            | E 3/2          |       | correct motor synom or reaction                                                    |                |  |
| 3.3.3        | Checking by means of a marked disc                   | E 3/2          | 5.4   | TONE ARM SUPPORT                                                                   | E 5/2          |  |
|              | Correcting the tracking angle error                  | E 3/3          | 5.4.1 | Functional check of the tone arm control                                           | E 5/2          |  |
|              |                                                      |                | 5.4.2 | - ·                                                                                |                |  |
| 3.4          | INSTALLING A CARTRIDGE INTO THE                      |                |       | concerning the arm adjustments                                                     | E 5/2          |  |
| 7 , 4        | LINATRACK TONE ARM                                   | E 3/3          | 5.4.4 | Adjusting the phono cartridge follow-up Adjusting the position of the tracking PCB | E 5/3<br>E 5/4 |  |
| 3.4.1        | Notes                                                | E 3/3<br>E 3/3 | 5.4.5 | • • • • • • • • • • • • • • • • • • • •                                            | E 5/4          |  |
|              | Preparatory steps<br>Removing the phono cartridge    | E 3/3          | 5.4.6 |                                                                                    | E 5/4          |  |
|              | Installing the phono cartridge                       | E 3/4          | 5.4.7 |                                                                                    | E 5/4          |  |
|              | Installing a P-mount                                 |                | 5.4.8 | Measuring the trackability                                                         | E 5/9          |  |
|              | phono cartridge system                               | E 3/4          | 5.5   | PREAMPLIFIER                                                                       | E 5/5          |  |
| 3.5          | PHONO CARTRIDGES WITH SUITABILITY TEST               | E 3/5          | 5.5.1 |                                                                                    |                |  |
| 3.6          | ADJUSTING THE ARM LOWERING LIMIT                     | E 3/5          |       | measuring the channel separation                                                   | E 5/5          |  |
| 3.7          | ADJUSTING THE STYLUS FORCE                           | E 3/6          |       |                                                                                    |                |  |
| 3.8          | CHECKING THE LOWERING SPEED                          | E 3/6          |       |                                                                                    |                |  |
| 3.9          | ADJUSTING THE TRIP POINTS                            |                | ,     | DIACDAMO                                                                           |                |  |
| Z 10         | OF THE LIMIT SWITCHES                                | E 3/7          | 6.    | DIAGRAMS                                                                           |                |  |
| 3.10         | CHECKING THE POSITION SWITCH OF THE TONE ARM SUPPORT | E 3/7          |       |                                                                                    |                |  |
| 7 11         | ADJUSTING THE POSITIONING SHIELD                     | E 3/8          |       |                                                                                    |                |  |
|              | OUA I SUITAITE UITA EE                               |                |       |                                                                                    |                |  |
| 3.11<br>3.12 | CHECKING THE DRIVE STRING OF THE CARTRIDGE           | E 3/8          | 7.    | SPARE PARTS                                                                        |                |  |

### 1. GENERAL

### 1.1 OPERATOR CONTROLS

16 SERIAL LINK socket

| 1  | Push button/LED               | POWER            |  |
|----|-------------------------------|------------------|--|
| 2  | Push button/LED               | SPECIAL          |  |
| 3  | Push button/LED               | 33/45            |  |
| 4  | Push button Varispeed         | DOWN             |  |
| 5  | Nominal speed indication      | SPEED            |  |
| 6  | Speed deviation indication    | DEV.%            |  |
| 7  | Varispeed push button         | UP               |  |
| 8  | Push button fast forward      | ⊲                |  |
| 9  | Push button cartridge down/up | $\nabla \Delta$  |  |
| 10 | Push button fast return       | $\triangleright$ |  |
| 11 | IR receiver window            |                  |  |
| 12 | Swivel arm                    |                  |  |
| 13 | Audio connection cable        |                  |  |
| 14 | Power fuse                    |                  |  |
| 15 | Power cable                   |                  |  |
|    |                               |                  |  |



#### 1.2 DIMENSIONS

#### Measurements in mm



#### 1.3 TECHNICAL DATA

#### 1.3.1 Turntable drive and tone arm support

Turntable drive :

Quartz-controlled direct drive

Turntable speeds : 33.33 and 45.00 RPMs

Variable ±9.9%, quartz-controlled

Speed stability:

± 0.01%

Speed check :

Synchronism LED (33.33 and 45.00 RPMs)

Turntable platter :

Diameter 313 mm

Weight (mass) : 21 N (2.1 kg)

Acceleration time : less than 2 s for 33.33 RPMs

Deceleration time :

< 2 s from 45.00 to 33.33 RPMs

Wow and flutter : \*

Weighted : < 0.05%

Linear : < 0.1 %

Rumble-to-signal ratio, linear: \*\*

> 50 dB (DIN 45539A)

Rumble-to-signal ratio, linear : \*\*

> 52 dB (DIN 45539A)

with 20 Hz high-pass filter

Rumble-to-signal ratio, weighted : \*\*

> 72 dB (DIN 45539B)

Tone arm :

Tangential arm with electronic servo control

Tracking error :

< 0.5°

Skating compensation:

None, not required for tangential system

Stylus force : Adjustable with balance weights from 8...20 mN (0.8...2 p)

Electronically controlled, pneumatically damped

Muting:

Electronic, until the tone arm has set down

(approx. 1 s)

Tone arm follow-up :

Optoelectronic scanning with IR diode as light source;

servo electronics and DC motor

Run-out stop :

Automatic, controlled by servo electronics

Automatic functions :

- Swinging in the tone arm support :

Platter starts with preselected speed, tone arm

carriage moves to the corresponding lowering positon.

- Swinging the tone arm to the rest position :

a) Phono cartridge lifts off immediately

b) Tone arm carriage moves to the start position

c) Turntable stops, illumination switches off.

#### 1.3.2 Operation

Turntable drive :

1 Power switch

1 Tactile feedback key 33.33/45 RPMs

1 Tactile feedback key Special Function

3 Tactile feedback keys for fast forward and return as well as lowering and lifting of the phono cartridge; built-in phono cartridge illumination

2 Tactile feedback keys for increasing/decreasing the turntable speed

Indication:

5-position display for nominal speed and deviation in

percent

#### 1.3.3 Miscellaneous

Power requirements :

(solder strappable, see Section 6)

100/110/120 V ±10%

200/220/240 V ±10%

50 ... 60 Hz

Power fuse :

100 ... 120 V : 0.4 A slow 200 ... 240 V : 0.2 A slow

Current consumption : Standby, serial link: 4.8 VA (operation with B203, B206)

Working, serial link: 17.7 VA

Standby : 2.2 VA Working: 15.5 VA

Weight (mass): 91 N (9.1 kg)

#### PHONO CARTRIDGE

#### Note:

Other suitable cartridges are listed in Section 3.5.

#### 1.4.1 Shure V15V P-mount

Frequency response :

20 Hz ... 8 kHz : ±0.75 dB

8 kHz ... 20 kHz : ±2 dB

Channel imbalance (at 1 kHz) :

Less than 1.5 dB

Channel separation :

1 kHz : > 25 dB 10 kHz : > 18 dB

Trackability (at 300 Hz) : 100  $\mu m$  at 10 mN (1.0 p)

Recommended stylus force :

12.5 mN (1.25 p)

Shape of diamond tip:

5 x 38  $\mu m$  hyperelliptical, naked diamond

Transmission coefficient :

0.65 mVs/cm at 1 kHz

Frequency intermodulation:

< 0.8% (DIN 45411)

Recommended Load impedance :

47 kohm / 50 ... 400 pF

#### 1.4.2 Elac EMM 150 P-mount

Frequency response :

10 Hz ... 22 kHz ±2 dB

Channel imbalance (at 1 kHz) :

Less than 1.5 dB

Channel separation :

Better than 22 dB at 1 kHz

Compliance :

vert. 30 μm/mN

(static at nominal stylus force)

Trackability (at 315 Hz):

80 µm at nominal stylus force

Recommended stylus force :

12.5 mN (1.25 p)

Shape of diamond tip:

6 x 18 µm elliptical

Transmission coefficient :

1 mVs/cm at 1 kHz

Recommended Load impedance :

47 kohm / 200 ... 500 pF

<sup>\*</sup> Measured at nominal speed according to DIN 45507 with the aid of an optimally centered, direct-cut foil L+R.

<sup>\*\*</sup>All rumble voltages are measured in MONO position with a statically discharged reference disc according to DIN 45544 and reproduce equalization with four constants according to IEC 98-4 (1976).

#### 1.5 ACCESSORIES

# m IR remote controls

The following functions can be remote controlled from the hand-held transmitters B201, B201 CD, B205, via the IR receiver built into the front panel :

PHONO (power on)

◁

pickup down/up ∇Δ

POWER OFF

(only activ if the tone arm support is in the PLAY-Position.)

Phono cartridge installation kit No. 07011

### Contains :

Pickup gauge Balance weights Screws Washers Shims Screwdriver Balance

Alignment gauge No. 46173

For checking:

Tone arm follow-up Geometry

REVOX reference disc No. 46010

For determining:

Audio data Tone arm follow-up Positioning Switching points

m Motor extension cable No. 46135 and Tone arm extension cable No. 46137

Permit connection of motor and arm when the chassis has been disassembled. (No. 46135 also suited for B791/B795)

### DISASSEMBLY

### 2.1 GENERAL

### Caution :

Make sure that the power cable and the audio connections are detached when removing the chassis according to Section 2.7.

### Note:

When removing and installing electronic components, the guidelines concerning the handling of MOS components given at the beginning of these instructions should be followed.

# 2.2 REQUIRED TOOLS

| Phillips  | screw  | driv    | ver |    |  |  |  |  |    |      |     |   | size  | 0  |
|-----------|--------|---------|-----|----|--|--|--|--|----|------|-----|---|-------|----|
| Phillips  | screw  | dr i v  | ver |    |  |  |  |  |    |      |     |   | size  | 1  |
| Phillips  | screw  | ıdr i v | ver |    |  |  |  |  |    |      |     |   | size  | 2  |
| Hexagon-  |        |         |     |    |  |  |  |  |    |      |     |   |       |    |
| Screwdriv |        |         |     |    |  |  |  |  |    |      |     |   |       |    |
| Screwdriv |        |         |     |    |  |  |  |  |    |      |     |   |       |    |
| Screwdriv |        |         |     |    |  |  |  |  |    |      |     |   |       |    |
| "ESE" wor | rk sta | itio    | n k | it |  |  |  |  | Pá | ar t | No. | : | : 462 | JO |

# 2.3 REMOVING THE HOOD

### Fig.2.1

Swing up the hood (1) and pull it out.

### 2.4 LIFTING OFF THE PLATTER

# Fig. 2.1

Tone arm in normal position

- Remove rubber mat (2).
- Lift off the turntable platter (3).



Fig. 2.1

### 2.5 OPENING THE TONE ARM SUPPORT

# Fig.2.2

- Move the tone arm carriage approximately to the middle and switch the turntable off.
- Swing the tone arm support to the normal position. Grip the side panels according to Fig. 2.2, press them gently outward, and carefully lift off the cover.



Fig. 2.2

# 2.6 REMOVING THE STYLUS HOLDER

### Fig.2.3

- Swing the tone arm guide outward (to the service position).
- Grip the black tone arm section with your index finger and thumb. With the other hand carefully pull out the stylus holder without twisting.



Fig. 2.3

#### 2.7 REMOVING THE CHASSIS

Fig.2.4

- Remove the hood and the platter (Sections 2.3 and 2.4).
- Remove the centering insert (4).
- Unfasten the 3 lock screws (3) which may have been tightened for transporting the unit, until these 3 screws move freely in the vertical position.
- Remove circlips (1) and caps (2).
- m Lift the chassis (5) on the left by 5 to 10 cm and pull off the tone arm and motor cable connections (6) to the control PCB.
- Lift off the chassis.

Caution: To prevent marring, do not drag the connector of the motor cable across the operating rail.



Fig. 2.4

#### 2.8 REMOVING THE TONE ARM SUPPORT

Fig.2.4

- m Remove the chassis (Section 2.7).
- Unfasten the three Phillips screws (10) on the underside of the chassis. Caution : washers and shims!

  Slide out the tone arm cable connector (6) through the
- rectangular opening of the chassis.

Important : The washers for (10) must not be omitted upon reinstallation.



Fig. 2.5

### 2.9 REMOVING THE DRIVE MOTOR

### Fig.2.4

Remove the chassis.

Swing out the tone arm guide (11) to the stop (service) position.

Unfasten four hexagon-socket-head screws (9) on the underside of the chassis.

■ Lift out the drive motor (7).

### Note shims (8):

When a new drive motor is installed, the shims (8) should be reinserted and the height checked (refer to Section 3.3.1 and Fig.3.3).

Whenever a new drive motor has been installed, the motor control circuit must be checked according to Section 5.3 (Hall elements).

# 2.10 REMOVING THE ELECTRONIC CIRCUIT BOARD

### Fig. 2.5

 $ar{\textbf{R}}$  Remove the chassis (Section 2.7).

Remove the mounting brackets of the serial link socket (unfasten 2 screws 26).

Detach the 9 pluggable connections (14, 15, 16, 24, 27, 28, 29, 30, 31).

■ Unfasten 6 screws (25).

# 2.11 REMOVING THE OPERATOR CONTROLS

### Fig.2.6

m Remove the chassis (Section 2.7).

Separate the following cable connection: Detach connectors (14, 15, 16) from the distributor board.

Remove the IR circuit board (34) by unfastening and removing the two screws (17).
Remove the circuit board through the opening in the

housing.

■ Unfasten three screws (18) inside the housing and remove the trim strip (19).

Hold the housing with one hand. With the other hand press gently from the bottom against the chamfering of the trim strip; it lifts off and can be removed toward the front.

Unfasten two screws (20) each of the push button unit (21, 22) and the display (23). Turn the housing upside down for this purpose.

### 2.12 REMOVING THE POWER TRANSFORMER

### Fig.2.5

Remove the chassis (Section 2.7).

■ Separate the pluggable connections (27, 32).

■ Unfasten four screws on the bottom of the housing.



Fig. 2.6

### 2.13 REPLACING THE POWER FUSES

- Remove the hood, the rubber mat, and the turntable platter (Sections 2.7 and 2.8).
- Tighten the lock screw (3), Fig.2.4.
- Set the turntable upright on its left-hand side.
- Unscrew the fuse cap from the underside of the housing (see Section 1.1).
- Replace blown fuse :
  100...120 V : 0.4 A slow
  200...240 V : 0.2 A slow
- Unfasten the lock screw.

# 2.14 REASSEMBLY

The unit is reassembled by performing the disassembly steps in reverse order. Ensure that no cable connections are pinched. The cables should be routed in the same way as before the disassembly.

Note : The shims and curved spring washers must be neither confused nor left out.

# MECHANICAL ADJUSTMENTS AND CHECKS

### 3.1 CALIBRATION TOOLS

|   | Checking and alignment gauge        | Part | No. | 46173 |
|---|-------------------------------------|------|-----|-------|
| 8 | REVOX reference disc                | Part | No. | 46010 |
|   | Cartridge alignment gauge, included |      |     |       |
|   | in phono cartridge installation kit | Part | No. | 07011 |
|   | Tone arm extension cable            | Part | No. | 46137 |
|   | Motor extension cable               | Part | No. | 46135 |
|   | "ECE" workstation kit               | Part | No  | 44200 |

# 3.2 PRECONDITIONS

The mechanical checks of the phono cartridge and the tone arm support can only be performed if the factory set turntable eccentricity/wobble of less than 0.1 mm is still retained.

# 3.3 CHECKING THE TANGENTIAL GROOVE

### 3.3.1 Preconditions

Fig.3.1/ 3.2

Check the parallelism of the stylus guidance relative to the turntable surface.
Admissible deviation between point "A" and point "B"

Admissible deviation between point "A" and point "B"  $< 0.3 \ \mbox{mm}.$ 

Correction is possible by twisting the tone arm shield (1), after the two hexagon-socket-head screws (2) to the cartridge carriage linkage have been unfastened.



Fig. 3.1

Fig.3.2

Nominal distance from top edge of the cartridge carriage linkage to the platter surface h = 41 mm (without rubber mat).

Correction is possible by inserting shims of the correct thickness under the platter motor or the tone arm support (refer to sections 2.8 + 2.9, Fig.2.4, shim 8).



Fig. 3.2

Check the cartridge position by means of the cartridge alignment gauge included in the installation kit (No. 07011) and correct the height within the play of the mounting holes, if necessary.

### 3.3.2 Checking by means of the alignment gauge No. 46173

### Prerequisites :

### Fig.3.1

When the stylus is lowered, it must run exactly on the radius (R) through the hub (S) of the platter. Admissible tolerance field for max.  $\pm 0.5^{\circ}$  tracking angle error :

A (r1 = 150 mm) : < 3 mmB (r2 = 50 mm) : < 1 mm

### Preparatory steps :

Detach the power plug; the drive motor must not run during the following alignment checks.

Slide the cartridge to the rest position (only in this position may the cartridge be swung over the inserted gauge).

Swing the tone arm support to the right-hand limit position.

Remove the rubber mat from the platter.

Remove the cartridge cleaning brush from the chassis (lift it with a screwdriver, if necessary).

# Inserting the alignment gauge :

### Fig.3.3

The gauge is guided by the pin of the platter center and the open bore for the brush mounting. You should be able to slide the gauge without force over or to the two fixed points: manufacturing tolerances in the fixed point distance can be compensated by unfastening the pin mounting on the gauge (unfasten slotted-head screw). Retighten the slotted-head screw.

### Checks :

There is a small amount of mutual influence between the following two adjustments which means that they must be repetitively checked after adjustment.

Set the cartridge on the movable slide of the alignment gauge :

The stylus should be positioned in the middle between the two marking lines on the slide (on newer gauges a center line has been engraved).

Position the cartridge on the marking that is closer to the platter center and lower it manually:

The stylus tip should set down between the two marking lines on the gauge.



Fig. 3.3

### 3.3.3 Checking by means of a marked disc

The tracking angle error of the tangential stylus guidance can be checked also with the aid of a record that is no longer used for playing :

Mark a diameter on the disc with a very sharp scribing point. This diameter should run exactly through the center!

Disconnect the power plug and mount the marked disc. Swing the tone arm support to the operating position.

### Fig.3.1

- Lower the cartridge manually and position the disc in such a way that the stylus tip touches the inscribed line on point "A". Keep the platter from rotating (e.g. by securing the platter with adhesive tape against the chassis).
- Position the cartridge with the stylus at point "B" and lower it manually: The stylus should touch the disc within the tolerance field shown in Fig.3.1.



Fig. 3.1

# 3.3.4 Correcting the tracking angle error

Fig.3.4

Reposition the tone arm engagement point in the operating position by twisting the index pin (3).

This springy index pin in the tone arm is eccentric and can be twisted with the aid of a round steel rod diam.

1.5 mm that is inserted through the radial bore in the pin.

Caution: Make sure that the pin is not pushed axially out of the bore while you twist it. This can be prevented by positioning the tone arm outside the rest position while twisting the tone arm and by applying a gentle axial pressure against the tone arm pivoting point.



Fig. 3.4

In the event that the adjustment range of the above alignment procedure is inadequate, the basic factory settings are no longer maintained. In order to reestablish these basic settings, proceed as follows:

- Set the index pin (3) to the middle of the adjustment range.
- Adjust the phono cartridge with the alignment gauge (Section 3.4)
- Unfasten the tone arm bearing on the chassis (three Phillips screws)
- Adjust the tone arm according to the gauge (46173) and retighten the screws.
- Checking and fine-adjustment as described by aligning the phono cartridge within its mounting and aligning the tone arm by turning the index pin. (Replace the index pin if it is badly worn.)

# 3.4 INSTALLING A CARTRIDGE INTO THE LINATRACK TONE ARM

# 3.4.1 Notes

The phono cartridge can be installed into the tone arm support only from the bottom. For this purpose position the turntable carefully upside down as described in the next section (Fig.3.5).

Carefully follow each step.

A screwdriver is included in the mounting kit.

A pair of tweezers  $% \left( 1\right) =\left( 1\right) +\left( 1\right)$ 

# 3.4.2 Preparatory steps

Fig.3.5

- m Remove the hood.
- Switch on the turntable.
- Swing the tone arm support over the platter and move it in by approx. 8 cm.
- Detach the power plug without first switching off the turntable.
- Remove the rubber mat, the platter, and the tone arm support cover.
- Tighten the three lock screws.
- Place a pad on the workbench.
- Set the turnable upside down on the pad and on the deflected tone arm support.



Fig. 3.5

### 3.4.3 Removing the phono cartridge

### Fig. 3.6

- Install the stylus protection.
- Separate the AF leads with the aid of the tweezers. If these do not separate they can be loosened with a small knife.
- Unfasten the two cartridge fixing screws.
- Remove the phono cartridge.



Fig. 3.6

# 3.4.4 Installing the phono cartridge

### Fig.3.6/3.7

- Screw the phono cartridge provisionally to the tone arm.
  - Determine the corresponding shims from table (3.5). Cartridges with a mass of less than 6 g require an additional brass shim (nickel-plated).
- Mount the alignment gauge on the tone arm.
- The shim is correct when the marked distance between stylus tip and tone arm can be maintained. The stylus tip should barely miss touching the mounted gauge.
- Shift the phono cartridge within the play allowed by the mounting holes until the stylus tip is exactly in the center of the small hole (4) on the gauge and the cartridge body is parallel to the red lines.
- If this alignment is not achievable, the tone arm geometry needs to be corrected with the aid of the verification and alignment gauge No. 46173 (see Section 3.3).
- Tighten the two fixing screws (5).
- Reestablish the audio connections with the tweezers.

# Pin assignment :

| Stranded win | ·e |  |  | Marking |  |  | Channel |
|--------------|----|--|--|---------|--|--|---------|
| white        |    |  |  | _       |  |  |         |
| white/red .  |    |  |  |         |  |  |         |
| white/blue   |    |  |  |         |  |  |         |
| white/green  |    |  |  |         |  |  |         |

Determine and install the matching balance weights based on table (3.5).



Fig. 3.7

# 3.4.5 Installing a P-mount phono cartridge system

# Fig.3.8

- A P-mount adapter is to be installed and connected like
  a phono cartridge (Section 3.4.4).
- Carefully plug the cartridge with protected stylus on the adapter until the fixing screws (6) can be readily inserted.

Tighten the screw.

Important: P-mount systems can differ with respect to their design and center of gravity which means that their alignment also needs to be checked and if necessary corrected (Section 3.4.4).

We advise against installation of the system without subsequent alignment check.



Fig. 3.8

# 3.5 PHONO CARTRIDGES WITH SUITABILITY TEST

### Note:

Measurements and tests in the laboratory have shown that various phono cartridge systems are suited for installation on the tangential arm of the B291.

- The selection is based on the results from customer pools and does not pretend to be complete.
- The listing does not represent a rank with respect to the quality of the products.

### Fig.3.9

• The capacitors referred to in the last column have to be set into the eyes (ABCD) on the Pickup board (1.179.300):

A,B -> left channel C,D -> right channel

### 3.6 ADJUSTING THE ARM LOWERING LIMIT

### Checking:

- m Switch off the turntable.
- Lower the phono cartridge over the inner circular groove profile (r = approx. 75 mm) of the rubber mat and lower it:

The stylus tip should have a minimal clearance to the highest elevation of the groove profile.

(Contact of the groove profile because the stylus tip is lowered too far can be detected audible through the audio path).

### Correction :

Fig.3.9 On the cartridge lowering adjustment screw (8).



Fig. 3.9

| Manufacturer                                                                                                    | Туре                                                                                                                                                   | Fixing scrwes                                                                                                                                                                                                       | Shims                                                                                                                                               | Balance<br>weight                                                                                       | Stylus<br>force                                                                                                                                                                                   | Capacitance<br>Ō                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| AKG AKG AKG AKG Audio Technica Elac Elac Blac Micro Acoustics Ortofon Ortofon Ortofon Ortofon Shure Shure Shure | P20MDR P8E P8ES P8ESR AT 13Ea ESG 793E ESG 793E30 ESG 795E30 ESG 796E30 MA 382 LM 20H LM 30H M20E super VMS 20 MKII Tracer TXE-SR V15 III V15 IV V15 V | M 2,5 * 8 M 2,5 * 8 M 2,5 * 8 M 2,5 * 14 M 2,5 * 12 α M 2,5 * 12 α M 2,5 * 12 α M 2,5 * 12 M 2,5 * 12 M 2,5 * 12 M 2,5 * 12 M 2,5 * 12 M 2,5 * 12 M 2,5 * 10 M 2,5 * 20 M 2,5 * 20 M 2,5 * 10 M 2,5 * 10 M 2,5 * 10 | 1 mm 2 mm 2 mm 1 mm 3 mm 3 mm 2 mm 2 mm 2 mm 2 mm 4 mm + 1 mm 6 4 mm + 1 mm 6 4 mm + 1 mm 6 4 mm + 1 mm 6 4 mm + 1 mm 6 4 mm + 1 mm 6 4 mm + 1 mm 6 | Messing Messing Messing Blei Blei Blei Blei Messing Messing Messing Messing Messing Blei Blei Blei Blei | 12 mN 12 mN 12 mN 12 mN 12 mN 15 mN 12.5 mN 12.5 mN 12.5 mN 10 mN 15 mN 15 -21 mN 15 -21 mN 10 mN 15 mN 15 mN 16 mN 17 mN 18 mN 18 mN 18 mN 18 mN 18 mN 18 mN 18 mN 18 mN 18 mN 18 mN 18 mN 18 mN | 220 pF<br>120 pF<br>120 pF<br>120 pF<br>120 pF<br>47 pF<br>68 pF<br>68 pF<br>150 pF<br>120 pF<br>120 pF<br>120 pF<br>120 pF |
| Shure<br>Elac                                                                                                   | V15 V (PM)<br>EMM 150 (PM)                                                                                                                             | M 2,5 * 6 α<br>M 2,5 * 6 α                                                                                                                                                                                          | 1 mm<br>1 mm                                                                                                                                        | Blei<br>Blei                                                                                            | 12.5 mN<br>12.5 mN                                                                                                                                                                                | -<br>47 pF                                                                                                                  |

- $\alpha$  The head diameter of the screw should not exceed 3.5 mm (not included in the installation kit).
- ß Brass shim (1\*10\*20 nickelplated), included in installation kit.
- 6 Measurement with raised brush, but for operation with brush
- The capacitance to the installed corresponds to the one recommended by the manufacturer, less the internal capacitance of the B291 (250 pF). The resulting values are shown in the opposite table.

## 3.7 ADJUSTING THE STYLUS FORCE

### Fig.3.9

The stylus force is corrected by adjusting the slotted-head screw (7). For heavy cartridges (> 6 p (60 mN), the balance weight made of lead must be mounted. The stylus force is to be adjusted according to the specifications of the cartridge manufacturer or according to the technical data in Section 1.3 by means of a "CORREX" scale or the scale of the cartridge installation kit.

when the scale is used, the additional balance weight will not be needed. Without this balance weight the stylus force indicated on the scale is correct. The rubber mat must be removed for correct positioning of the scale height.

# 3.8 CHECKING THE LOWERING SPEED

### Checking:

- The lifting and lowering speed are changed jointly.
- The stylus should set down gently, however, it should touch the groove before the audio path is electronically enabled.
- The lowering operation should, therefore, take approximately 1 second.

### Correction :

### Fig.3.10

By slowly twisting the cylinder (10).

The turning capacity of the adjustment is small ( <90°C). This means that the setting with the greatest lowering speed should first be searched (exactly in the middle of the range).

The damping device requires no maintenance and must not be lubricated.

### Procedure :

- m Do not mount a disc yet.
- Search the setting with the greatest lowering speed.
- Turn the cylinder step by step in one direction until the lowering speed decreases noticeably.
- Mount the disc and make the fine-adjustment.



Fig. 3.9



Fig. 3.10

# 3.9 ADJUSTING THE TRIP POINTS OF THE LIMIT SWITCHES

### Checking:

Fig.3.11

Trip point for the right-hand limit switch (R-LS, cartridge start position):

Distance from platter hub (S) to trip point = r1 = 147 mm +1/-0 mm.

This distance can be determined with the REVOX reference disc.  $\hfill \hfill  

For this purpose this disc features two concentric tracks with radii of 147 and 148.5  $\,\mathrm{mm}$  .

It is advisable to lower the cartridge manually with the linkage (remove the cover).

The stylus tip should rest between the two concentric tracks.

Trip point for the left-hand limit switch (L-LS, cartridge end position ):
Distance from hub(S) to trip point = r2 = 50 mm ± 2 mm.
This distance must be measured, it cannot be determined with a reference disc.



Fig.3.12

The trip point can be changed by shifting the corresponding microswitch (R-LS or L-LS) within the play allowed by its fixing screws.



# Checking :

Fig. 3.11

Dimensional check on the periphery of the tone arm projection. If during the playback the tone arm is moved through manual intervention by more than 5 mm  $\pm 1$  mm, the platter drive should switch off and the cartridge should return to the rest position.

### Correction :

Fig.3.12

The trip point can be changed by shifting the corresponding microswitch (ARM) vertically. The fixing screws are to be unfastened for this purpose.



Fig. 3.11



Fig. 3.12

#### 3.11 ADJUSTING THE POSITIONING SHIELD

### Fig. 3.9

The shield (9) for detecting the lowering position for singles has been factory set to a distance of 85 mm from the platter hub.

The alignment should in practice be made with the aid of the REVOX reference disc (Part No. 46010).



Fig. 3.9

### CHECKING THE DRIVE STRING OF THE CARTRIDGE

### Checking:

- Remove the tone arm cover (Section 2.5).
- Swing in the tone arm to the operating position.
- Swing out the cartridge to the limit position.
- Switch off the unit by pressing the POWER key:
  The tone arm carriage returns to the starting position.
  When the limit switch is reached, the tone arm carriage should actuate the switch without delay.
  - The drive string should not slip on the drive wheel.
  - m Repeat the procedure :
  - In contrast to the first pass extend the tone arm only by approx. 1...2 cm. Switch off the turntable.
- Even under these conditions the tone arm should actuate the switch without delay.

# Corrective steps :

- Clean the drive string with acetone
- m Replace the drive string together with the tension spring:
  - It is essential to wipe off the new drive string with a cloth soaked in acetone before the string is installed.

#### 3.13 LEVELLING THE CHASSIS

# Fig. 3.13

The play level can be aligned horizontally by changing the height of the springs.

For this purpose the stud bolts (14) are to be adjusted from the bottom of the turntable until the chassis and the housing edge are at the same level.



Fig. 3.13

### 4. FUNCTIONAL DESCRIPTION

#### 4.1 GENERAL

Note

Please refer to the circuit diagram with block diagram in Section 6.

### 4.2 POWER SUPPLY

The power supply is switched on or off by the microprocessor. In the off state (POWER LED activated) the reference voltages of the  $\pm 5$  V and  $\pm 12$  V stabilizers (IC2...IC5) are connected to 0 V. The transistors (Q1(Q2) and Q3(Q4), controlled by the PS-OFF signal, connect the reference voltage to ground. The microprocessor produces this signal only when the tone arm carriage has returned to the starting position and the platter stands still. The operating voltage  $\pm 5$  V-STBY (also for IR receiver) and the line voltage failure detection (NMI) remain active. In the event of a power failure or if the power plug is disconnected, the NMI detection also leads to the generation of the PS OFF signal in the microprocessor.

### 4.3 TURNTABLE DRIVE

### 4.3.1 Drive motor control

The tacho signal supplied by the drive motor is converted to a DC voltage (by means of the sample-and-hold principle), compared with the reference voltage, corrected, and subsequently used for controlling the motor. Before that the tacho signal is taken to the microprocesor as well as to the phase comparator whose correction signal is added to the reference voltage.

When the nominal speed is attained, the microprocessor activates the synchronism LED (33/45).

The speed is preselected by means of momentary-action push buttons. This information is latched by the computer which in turn generates the time constants of the frequency-to-voltage converter and initiates the SLOW/FAST changeover.

The DRIVE INHIBIT signal together with the FBR signal causes the motor to stop. The FBR signal (brake signal) which pulls the control voltage for the Hall generators to -5 V via Q18, causes the motor to brake by means of a constant magnetic field until the tacho signal drops out. At the same time the DRIVE INHIBIT signal suppresses the motor control voltage on IC9 pin 6.

# 4.3.2 Reference signal

The speed can be varied within the range of ±9.9% in steps of 0.1% by means of the two varispeed keys. The set values are processed by the microprocessor which modifies the time constant of the frequency-to-voltage converter (TOUT) as well as the addresses of the D/A converter (R92...95) via a shift register / latch (IC8). The phase comparator is implemented by a microprocessor-controlled ramp generator. Depending on the phase relationship of the tacho signal to the reference signal, the momentary voltage is loaded by the ramp generator (IC12 pin 10) into the latching capacitor C34. To prevent the latter from discharging too quickly, the signal is transmitted via a FET opamp (IC13 pin 7).

The microprocessor operates with system frequency of 1.2288 MHz, which is derived by dividing the crystal frequency Y1 (4.9152 MHz). Further divisions produce the time constants of 55.55 Hz and 75 Hz for the frequency-to-voltage converter. In varispeed mode the divisors of 22118 and 16384 are varied, depending on the deviation.

### 4.3.3 Frequency-to-voltage converter

The tacho signal (≈1 mV at 33.33 RPMs) is amplified by IC9 (pin1 = output). The antiparallel connected diodes prevent overdriving of the amplifier. The signal is subsequently converted to a square-wave signal by Schmitt trigger (IC10 pin2) so that it can be used by the monoflop (IC11 pin5). This monoflop (pin11) drives Q14 during 3 ms which in turn charges C31 to +5 V. During the time remaining to the expiration of one period, C31 discharges via R72 and Q16 (at 33.33 RPMs via R72 and R73). The discharge circuit is changed over with Q16 by the microprocessor (S/F). Forty µs before C31 is recharged to +5 V, the momentary voltage is connected via IC12 (pin8, pin9) to the latching capacitor C31 (IC12 controlled by monoflop IC11 pin6). In this case IC13 again serves as a high-impedance buffer.

Diode D36 must have very small reverse currents and consequently must not be replaced by a different type. As soon as the corrected tacho voltage is within the preset voltage window and the phase circuit is stable, the microprocessor enables the synchronization LED.

### 4.3.4 Drive motor

The coils as well as the Hall generators are offset by 90° relative to each other. The rotating magnetic field of the annular magnet produces a nearly sine-shaped voltage. The voltage amplified changes proportionally to the control current of the Hall generator. The latter functions as a multiplier. The Hall generator voltages are amplified in IC14 and control the coils via the driver transistors 919...922.

### Note:

The drive motor should be replaced only as a complete unit. Dismantling is unavoidable if the Hall generators need to be replaced. Ensure that versions with identical color dot coding are used. After the motor or the Hall generators have been replaced, proceed with the alignment work according to Sections 5.3.1 and 5.3.2.

# 4.3.5 7-Segment display

The selected nominal speed is indicated by the first two digits. Intermediate values are displayed only in varispeed mode and show the deviation in percent (max. 9.9%) relative to the nominal value. The two momentary-action push buttons supply the VARISPEED values via a shift register/latch (IC8) to the microprocessor which in turn calls the 7-segment decoder/driver IC1 via CLOCK, DATA and ENABLE line.

### 4.3.6 SERIAL LINK socket

As all units of its generation, the B291 features an input or an output that is accessible via a SERIAL LINK socket. This 6-pin DIN socket on the turntable supports disco start (see next section) and is also intended for establishing a connection to the B203 timer controller (remote control of the EASY functions). A B206 IR receiver can also be connected.

The input and output signals are electrically isolated by optocouplers.

The optocoupler DLQ1 connects the internal IR receiver line to ground so that the DLQ2 signals of the B203 can be transmitted to the microprocessor. The DLQ3 is responsable for the feedbacks of the microprocessor to the B203 controller.

### Pin assignement :

Din Eunstion

| г | 111 | г | um | L | 101 | 1 |                                   |
|---|-----|---|----|---|-----|---|-----------------------------------|
| 1 |     |   |    |   |     |   | GND output                        |
| 2 |     |   |    |   |     |   | GND (floating, DISCO start) input |
| 3 |     |   |    |   |     |   | SERIAL input/output               |
| 4 |     |   |    |   |     |   | +5 V (floating) input             |
| 5 |     |   |    |   |     |   | +5 V max. 150 mA, output          |
| 6 |     |   |    |   |     |   | DISCO start                       |

Note: If SERIAL LINK operation via the B203 controller is desired, pin1 must be interconnected with pin2 and pin4 with pin 5.

Additional information concerning the SERIAL LINK socket in conjunction with the B203 can be found in :

- Operating Instructins B203 Timer Controller (Publication No. 10.30.0540).
- Service Instructions IR Remote Control Systems (Publication No. 10.30.0430).

### 4.3.7 Disco start

The platter motor of the B291 can be switched on and off via the SERIAL LINK socket when 5 V...24 V (AC or DC) are applied between pin2 and pin6 (refer to preceding Section). In this way the platter motor and the tone arm can be manipulated independently of each other. For example when the turntable is connected to a mixing console in discotheques, it is important that the platter with lowered phono cartrigde can be turned manually so that accurate positioning at and starting from any location is possible.

For operation with the REVOX mixing console B279+ expansion unit, the turntable can be started with the corresponding fader and stopped by closing the latter. The B291 turntable accelerates to the nominal speed (33 1/3 RPMs) within one revolution.

A modification on the main circuit board of the B291 is absolutely essential : Fig.4.1  $\,$ 

- $\blacksquare$  Å resistor R=2.7  $k\Omega$  must be inserted in the designated location.
- $\blacksquare$  Pin6 of the SERIAL LINK socket is now connected to +12 V via the 2.7 k $\Omega$  resistor.
- A cable with a 3.5mm jack and a loose end (No.33229) as well as a matching solderable 6-pin connector (No. 70534) are available for interconnecting the two units. The connector is to be wired as follows:
- Interconnect pin1 with pin2 in the 6-pin connector.
- Connect one of the two stranded conductors each to pin2 and pin6 (any polarity).

Note: If the SERIAL LINK operation is desired via the B203 controller without simultaneous use of the fader start, pin6 must in addition be interconnected with pin1+2, otherwise the B291 cannot be connected as device No.1.

Normal wiring : pin1 interconnected with pin2, pin 4 with pin5.



### 4.4 TONE ARM CONTROL

# 4.4.1 Notes and subdivision

The arm control electronics can be roughly divided into two sections:

- Digital section, comprising the microprocessor as the center for logical control of the analog section.
- Analog section, supplies the signals for the follow-up motor. This section consists principally of the photo diode amplifier (IC15) as well as the mixing stage IC16 with the output transistors Q28 and Q29.

The descriptions in this manual are broken down into functions, because both sections are active for virtually all functions.

Also refer to Section 6 : Block diagram B291, page 6/5 Diagrams, pages 6/10+11

### 4.4.2 Digital input levels

Fig. 4.2:

- Microswitch ARM (1, arm in switch): OV, when the arm is not in the working position.
- Microswitch R-LS (2, right limit switch): OV, when the carriage has reached the right-hand stop.
- Microswitch L-LS (3, left limit switch): OV, when the carriage has reached the left-hand stop.
- The three momentary-action tone arm push buttons are read by the microprocessor into a shift register/latch IC8 (only enabled when tone arm is swung in).



Fig. 4.2

### 4.4.3 Lowering the phono cartridge

The lowering solenoid is excited by a pulse of twice the operating voltage of transistors Q24 and Q25. (SOL1/2).

In idle position (cartridge lifted), Q25 is conductive and charges the capacitor C38 to operating voltage. When the magnet (MAG) is activated, Q24 becomes conductive and connects the charged capacitor to the +12 V supply (voltage doubling), while Q25 now blocks.

### 4.4.4 Automatic positioning

To enable the B291 to find the setdown position also for singles, the tone arm guide is equipped with a third photo diode (DP3). The light beam to the diode is interrupted with the aid of a shield on the lowering bar. The voltage comparator IC17 (threshold value adjustable with R154) produces the POS pulse that is read by the microprocessor. The latter connects the MAG signal to O V. The cartridge is subsequently lowered as described in the preceding section.

### 4.4.5 Manual positioning

For manual advance the pulses transmitted by the front-panel keys are read by the microprocessor into the shift register/latch (IC8) and supplied to the summing amplifier (IC16) in the form of a defined pulse train. The latter determines the duration and the speed of the feed and, depending on the feed direction, selects the corresponding input on the mixing stage (IN or OUT signal).

### 4.4.6 Photo diode amplifier and mixing stage

The gain of the photo diode signal in IC15 can be adjusted with R119. When the setting is correct, the manufacturing tolerances of LEDs and photo diodes are compensated and consequently meaningless. However, if the gain is too large, the feed motor turns with a jerky motion when a disc is played; this causes rumble. If the gain is too small, the stylus jumps out of the run-out groove because the carriage is no longer able to follow the large groove pitch.

The operating point of the phono cartridge is within the range ±0.5 V (on IC15, pin7). When the gain is correct, a horizontal deflection of the stylus by 0.24 mm should produce a voltage change of 2 V on pin7.

When a disc with normal eccentricity of  $0.1\,\mathrm{mm}$  is played, the periodic voltage deviation is approx.  $\pm 1\,\mathrm{V}$ . The photo diode signal can reach the mixing stage (IC16) through one of two paths. These differ with respect to their time constants and transmission factors. Small negative signals that occur with normal groove pitch are taken via diode D43 and series resistor R122 to capacitor C41. The signals of this path control the feed motor with

In the case of positive signals (pulse > 3.5 V), the negatively charged integration capacitor C41 is discharged via the Zener diode D43. These positive pulses (>3.5 V) occur usually at the end of long fast grooves, when the carriage has already advanced somewhat too far. Minor reversal of the carriage may also be possible. If a fast advance is suddenly demanded, e.g. when the run-out groove is reached, a direct path with D41, D42, and R123 bypasses the large time constant given by R122 and C41.

All carriage feed signals as well as the positive current feedback are combined on pin7 of the summing amplifier (IC16). This positive current feedback (R142, R143) which attenuates the effect of the armature resistance and consequently the starting voltage of the motor, has been coupled in on the adding input.

### 4.4.7 Run-out groove detection

a constant speed.

For detecting the run-out groove, the same voltage is used that controls the feed motor. If upon reaching the run-out area the phono cartridge demands a greater feed rate, the motor voltage rises and charges capacitor C43 via R110. To ensure that the turntable motor is switched off independent of the friction in the carriage and the gearing, the "excess" voltage is deducted in IC15 from the voltage on the holding capacitor C43.

IC16 compares the voltage C43 with a fixed value that can be adjusted with trimmer potentiometer R136. When the voltage of C43 exceeds the threshold value on IC16 pin3, the output (END-SIG) drops to O V, causing the microprocessor to initiate the lifting of the phono cartridge and the carriage to return. This circuit is enabled only in PLAY mode, since C43 is short-circuited by Q34 when the cartridge is in the raised position.

### 4.4.8 Illumination

The tone arm illumination controls the microprocessor via the transistor Q13. The luminous element is radiant only when the platter turns and the muting is active.

# 4.4.9 Muting

Muting interrupts the audio paths when the unit switched off (stand-by), when the phono cartridge is lifted, and while the latter is being lowered, in order to suppress the touchdown click of the stylus. After the stylus has contacted the groove, it takes nearly one second before the AF signal is available on the output. In each audio path a field-effect transistor is installed and starts to block when a high negative gate bias voltage is applied (Q210 and Q310). The voltage doubling circuit (D15..17, C16, C17) in the power supply module produces the required -40 V (-U MUTE). When the mute circuit is disabled, the MUTE signal of the microprocessor is connected to the two transistors Q31

and Q32. These are conductive. The voltage on resistor R149 drops and the lowered gate bias voltage is no longer

able to block the transistors Q210 and Q310.

#### 4.5 PREAMPLIFIER

- The basic B291 turntable model features a linear MM amplifier which functions as an impedance transformer. This means that the unit has been especially designed for operation with MM phono cartridges.
- An RIAA equalization can be field-installed on the existing circuit board.

Also refer to Section 6: Block diagram B291, page 6/5 Diagrams, pages 6/10+11

### 4.5.1 Impedance transformer

The signal level of the phono cartridge remains unchanged, however, the output impedance is reduced to 200 to 250 ohms. Cable capacitances as well as different input impedances of phono preamplifiers thus lose their influence on the frequency response. The phono cartridge is consequently matched not to the amplifier input but to the impedance transformer stage, in the manner described for the installation or replacement of the cartridge (Section 3.4).

A muting circuit suppresses unwanted signals during onand off-switching (Section 4.4.9).

The impedance transformer stage also permits correction of the channel balance, the left-hand channel can be adjusted by ±2 dB.

# 4.5.2 RIAA equalization

With this modification the B291 can be connected directly to an amplifier input (tape, aux). For this purpose the impedance transformer stage must be operated as an amplifier. This is the case when RIAA networks are inserted into the negative feedback paths between Q201 (Q301) and R215 (R315).

Fig. 4.3 ... 4.5
These illustrations show how the components must be mounted on the existing circuit board 1.179.350.

| Left Channel | Right Channel | Value   | Studer - Nr.: |
|--------------|---------------|---------|---------------|
| C 202        | C 302         | 5n6 1%  | 59, 12, 7562  |
| C 203        | C 303         | 680p 1% | 59, 05, 1681  |
| C 204        | C 304         | 1n2 1%  | 59,12, 7122   |
| R 207        | R 307         | 510k 1% | 57.11.3514    |
| R 208        | R 308         | 22k 1%  | 57.11.3223    |
| R 209        | R 309         | 43k 1%  | 57.11.3433    |
| R 210        | R 310         | 100R 1% | 57.11.3101    |

Fig. 4.3



Fig. 4.4



### ELECTRICAL MEASUREMENTS AND ALIGNMENTS

#### 5.1 GENERAL

### Consult also :

Circuit diagrams and block diagram, Section 6 Functional description, Section 4.

The unit is equipped with electrostatically sensitive components. Service work should be performed only in protected work locations. ("ESE" workstation kit, Part No. 46200)

The turntable drive motors are factory-aligned in a special device by means of an external drive. The electronics is subsequently matched to the motor.

The following adjustments are necessary if either of these two assemblies is replaced.

#### 5.2 CALIBRATION TOOLS AND MEASURING INSTRUMENTS

### Support for dismantled turntable chassis :

The chassis should rest on this support horizontally without wobbling in order to prevent damaged to the unit during manipulations because it is essential for the alignment work and the measurements on the control section that the unit can be operated in the dismantled condition. The previously mentioned extension cables for the motor and the arm are needed for this purpose. Such a support that braces the chassis in the four corners can, e.g. be made from 4 wooden blocks (height approx. 10 cm) that are mounted on a base plate.

- Extension cable, motor Part No. 46135
- Extension cable, tone arm Part No. 46137 Selective filter 3.33 Hz and 6.67 Hz Part No. 46150
- Reference disk REVOX Part No. 46010
- Wow-and-flutter meter (e.g. Woelke ME102)
- Multimeter (Ri>10 kohm) preferable digital voltmeter
- Millivoltmeter or wave analyzer



Fig. 5.1

#### 5.3 TURNTARI E DRIVE

### 5.3.1 Preadjustment of the motor control circuit

### Note:

The negligibly small wobble ratings guaranteed for this high-quality turntable can be achieved only if both coil currents are identical and have a phase angle of 90°.

If the dismantled motor cannot be aligned with factory equipment, the following procedure can be followed as an expedient:

- Set potentiometers R108 and R109 to their center positions.
- Fig.5.1 Adjust the two adjusting screws of the drive motor (1) in such a way that an air gap of at least 0.5 mm (x) is obtained between the screw and the Hall elements (2)
- Reinstall the motor.
- With the aid of the extension cables position the unit in such a way that the trimmer potentiometers are easily accessible.
- Start the turntable at 33.33 RPMs.
- Adjust the trimmer potentiometer R69 in such a way that the voltage on IC13 pin7 is +2.4...2.5 V.
- The acceleration time should be 2 s.

The alignments must be made when the motor is in synchronism with the nominal speed. The synchronization LED should be constantly light at all speeds (also VARISPEED values).

### 5.3.2 Preadjustment of drive motor and control for minimal wow and flutter

Fig. 5.1

■ Mount the REVOX reference disc and play section 9

(lateral, 3150Hz). ■ Measure the eccentricity wobble component (0.55 Hz at 33.33 RPMs). It should not exceed  $\pm 0.1\%$ . If this tolerance is exceeded, the disc must be centered exactly on the platter; enlarge the centering hole, if necessary.

■ Connect a selective filter (Part No. 46150) into the circuit of the wave analyzer and filter out the 6.67 Hz component.

By turning the adjusting screws (1) of the Hall elements (2) in the opposite direction, align this component to less than  $\pm 0.02\%$ .

- m Filter out the 3.33 Hz component and adjust to a component of less than 0.02% with the aid of the trimmer potentiometers R108 and R109.
- lacktriangle Measure the total wobble, weighted : limit  $\pm 0.05\%$
- Measure the total wobble, linear : (filter position DIRECT) : Limit +0.1%
- The computed total wobble should remain below 0.06% even for the greatest VARISPEED deviation.

# 5.3.3 Typical signal shapes with correct motor synchronization



### 5.4 TONE ARM SUPPORT

### 5.4.1 Functional check of the tone arm control

- Perform the following steps in the prescribed order.
- Starting situation : Turntable switched off, POWER LED light

| A C T I O N                                       | REACTION                                                                                                                                          |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Swing in<br>the arm guide;                        | Turntable platter starts with 33 1/3 RPMs, illumination switches on.                                                                              |
| Forward ⊲ ;                                       | Carriage moves to the left.                                                                                                                       |
| Set down $ abla \Delta$ ;                         | Phono cartridge sets down, illumination switches off.                                                                                             |
| Return ▷; Release key                             | Phono cartridge lifts off, illumination switches on, carriage moves to the right, Phono cartridge sets down again, the illumination switches off. |
| Lift $\nabla \Delta$ ;                            | Phono cartridge lifts up, illumination switches on.                                                                                               |
| Swing out<br>the arm support;                     | Illumination switches off,<br>Carriage returns,<br>Platter stops.                                                                                 |
| 45, Special, swing in the arm support;            | Illumination switches on,<br>Platter starts.                                                                                                      |
| Forward ⊲ ;<br>to stop                            | Carriage returns to<br>right-hand stop,<br>Platter stops,<br>illumination switches off.                                                           |
| Swing out the arm, special off, swing in the arm; | Illumination switches on,<br>Platter starts at 45 RPMs,<br>Carriage moves to the                                                                  |

5.4.2 Important notes and preconditions concerning the arm adjustments

■ The extension cables mentioned in Section 5.2, a reference disc as well as a rigid support as recommended in section 5.2 are required for these adjustments so that the chassis can be operated in the dismantled condition.

position mark for singles.

- All mechanical adjustments, particularly the arm lowering depth and the stylus force should have been correctly performed according to Section 3.
- During the measuring operations the photo diodes of the cartridge light barrier should be protected from extraneous light because the cover must be removed for most adjustments.

### 5.4.3 Adjusting the phono cartridge follow-up

- 1. Procedure with REVOX reference disc 46010:
- Switch off the turntable by disconnecting the power cable.
- Unhook the drive string of the phono cartridge carriage (unfasten the spiral spring).
- Connect DC voltmeter to IC15 pin7 (O V).
- Mount the REVOX reference disc.
- Lower the tone arm in disc section 4 (unmodulated, constant 80 μm groove advance, same as rumble measurement).
- Note the indicated voltage as a reference value.
- Manually turn the disc counterclockwise by three full turns.
- Adjust the potentiometer R119 in such a way that the voltmeter indicates a voltage deviation of 1.5 to 2.2V.

In place of the REVOX reference disc a disc with constant and known groove pitch can be used.

With the reference disc, a radial shift of 0.24 mm is achieved by exactly 3 revolutions (80  $\mu$ m groove pitch). If a disc with a different groove advance is used, the voltage value needs to be converted :

approx. 1.8 V / 0.24 mm advance

Using a disc supplies accurate results only if the shifting is produced by an integer number of disc revolutions because the disc eccentricity can be far greater than the groove pitch.

2. Procedure with alignment gauge No. 46173:

Important : Swing the tone arm support over the alignment gauge only when the phono cartridge is located in the start position!

Fig.5.2

The alignment gauge permits radial shifting of the phono cartridge by  $0.24\ \text{mm}$ .

- Switch off the turntable by unplugging the power cable. The drive string of the tone arm support should not be removed for this adjustment by means of the gauge.
- m Remove the rubber mat.
- lacktriangle Connect the DC voltmeter to IC15 pin7 (+) and ground (0 V).
- Lower the stylus assembly in the middle of the movable slide(3).
- Note the indicated voltage as the reference value.
- When the slide is actuated and with corresponding adjustment of potentiometer R119, the voltmeter should indicate a deviation of 1.5 to 2.2 V.

### Note:

In order to prevent lateral shifting of the stylus on the gauge during the alignment, a piece of adhesive tape with a rough surface (e.g. crepe or fabric tape) should be affixed to the area of the gauge on which the stylus sets down (across the marking lines).



Fig. 5.2

# 5.4.4 Adjusting the position of the tracking PCB 1.179.300.00

This adjustment determines the position of the phono cartridge relative to the cartridge carriage and influences the vertical tracking angle.

The electrical operating point must coincide with the mechanical locking point when the cartridge is raised (defined by the cartridge height adjustment screw and the V-shaped centering in the cartridge support).

### Preconditions :

- The stabilizing leaf spring on the carriage must be exactly parallel to the front carriage guide and must not influence the suspended position of the phono cartridge during the lifting movement. (Adjust with tweezers, if necessary.)
- An analog voltmeter with center deflection is preferred over the "calibration tool" referred to in Section 5.2.

### Checking:

- Unhook the drive string of the cartridge carriage (unfasten the spiral spring).
- Swing in the tone arm support and slide the carriage approximately to the middle.
- Connect the DC voltmeter to IC15 pin7 (+) and ground (0 V).
- While you lower the cartridge (by pressing the key), check the change in the reading on the voltmeter : It should remain within -0.5 V to + 0.5 V.

# Correction :

Retighten the PCB.

Fig.5.3 Horizontal shifting of the tracking PCB (1.179.300.00) causes a position change in the slot diaphragm in the area of the light barrier.

- Slightly loosen the fixing screws (4).
- Shift the PCB
  to the left: >> + Voltage becomes more positive
  to the right: << + Voltage becomes more negative</pre>



Fig. 5.3

### 5.4.5 Procedure for replacing the infrared LED

Fig.5.4

The following points are to be observed when a new LED is to be installed:

- Installed height: distance base edge of LED body to PCB level = 4.5 to 5 mm.
- Align the LED perpendicularly on both sides before soldering it in.
- Check after adjustment of the cartridge lowering limit: The LED should not scrape against the stabilizing leaf spring on the cartridge support.

The tracking PCB should subsequently be aligned according to Section 5.4.4.



Fig. 5.4

# 5.4.6 Aligning the end signal

The run-out groove at the end of conventional discs (33 RPMs) are always cut with a pitch of 3.2 mm per turn. The detection of the run-out groove (Section 4.4.7) must be performed in disc section 10, at the end of the REVOX reference disc. After 1 or 2 turns of this groove pitch the cartridge should start to lift off. However, the turntable should not switch off at the run-out groove in section 7. Correction is possible with trimmer potentiometer R136.

### 5.4.7 Aligning the positioning signal

- $\blacksquare$  Connect the DC voltmeter to IC17 pin6 (+) and to ground (0 V).
- Slowly move the tone arm across the positioning shield by pressing the corresponding keys.
- Observe the voltage change on the voltmeter and note the smallest indicated value.
- m Move the tone arm back to the right-hand stop.
- Now connect the voltmeter to IC17 pin5 (+).
- Twist R154 until the voltage is higher by 0.1 V than the lowest value previously observed on pin6.

Important : The cover must be mounted on the tone arm support.

# 5.4.8 Measuring the trackability

#### Measurement :

Play the sections 5 (315 Hz lateral, peak ampitudes:  $50\mu$ ,  $60\mu$  ...  $120\mu$ ) of the REVOX reference disc. The trackability should be  $80...90~\mu m$  for both channels. Distortion should set in at the same peak amplitude for both channels.

#### Comment

If the required trackability cannot be achieved, a slight improvement is possible by increasing the stylus force. However, it should never be increased by more than 15% over the nominal value specified by the manufacturer. If the measured value is beyond the tolerance or if a significant difference between the two channels is observed which suggests that a defect is present, the diamond should first be microscopically checked for damage or extreme wear before the arm adjustment is slightly corrected.

### 5.5 PREAMPLIFIER

# 5.5.1 Aligning the channel balance and measuring the channel separation

### Channel balance :

- Connect the level meter to the outputs.
- Play section 2 of the REVOX reference disc (1 kHz mono).
- Alternately measure the left-hand and the right-hand channel: The level difference should remain clearly below 0.3 dB.
- The left-hand channel can be adjusted by ±2 dB with R226 and thereby matched to the right-hand channel.

# Channel separation $R \rightarrow L$ :

- Connect level meter to the left-hand output.
- Play section 2 of the reference disc (1 kHz, left).
- Measure the left-hand channel and then calibrate the level meter to 0 dB.
- Play section 2 (1 kHz, right): The instrument should indicate at least 25 dB less.

The measurement of the channel separation  $L \rightarrow R$  is measured analogously. The result should also give a difference of at least 25 dB.

Important: If the turntable is supplied in a P-mount version, the channel balance has been factory-aligned to a level of 5 mV and 1 kHz. When the phono cartridge is installed, readjustment according to Section 3.4.4 and 5.5.1 is absolutely essential. We advise against the insertion of a cartridge without alignment.

### Français

| Conten                                                                      | u                                                                                                                                                                                                                                                                                                                            | Page                                                                                   | Contenu                                            |                                                                                                                                                                                                                                      |                                                                      |  |  |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|--|--|
| 1.                                                                          | GENERALITES                                                                                                                                                                                                                                                                                                                  |                                                                                        |                                                    |                                                                                                                                                                                                                                      |                                                                      |  |  |  |
| 1.1<br>1.2                                                                  | ELEMENTS DE COMMANDE<br>DIMENSIONS                                                                                                                                                                                                                                                                                           | F 1/1<br>F 1/2                                                                         | 3.10                                               | CONTROLE DU COMMUTATEUR DE POSITION<br>DU GUIDAGE DE BRAS                                                                                                                                                                            | F 3/7                                                                |  |  |  |
| 1.3                                                                         | CARACTERISTIQUES TECHNIQUES                                                                                                                                                                                                                                                                                                  | F 1/2                                                                                  | 3.11                                               | REGLAGE DE L'ECRAN DE POSITIONNEMENT                                                                                                                                                                                                 | F 3/8                                                                |  |  |  |
| 1.3.2                                                                       | Mouvement et guidage du bras<br>Manoeuvre<br>Divers                                                                                                                                                                                                                                                                          | F 1/2<br>F 1/3<br>F 1/3                                                                | 3.12                                               | CONTROLE DE LA CORDE D'ENTRAINEMENT<br>DE TETE DE LECTURE                                                                                                                                                                            | F 3/8                                                                |  |  |  |
|                                                                             | TETE DE LECTURE<br>Shure V15V - P-Mount<br>Elac EMM 150 - P-Mount                                                                                                                                                                                                                                                            | F 1/3<br>F 1/3<br>F 1/3                                                                | 3.13                                               | NIVELLEMENT DU NIVEAU DE CHASSIS                                                                                                                                                                                                     | F 3/8                                                                |  |  |  |
| 1.5                                                                         | ACCESSOIRES                                                                                                                                                                                                                                                                                                                  | F 1/4                                                                                  | 4.                                                 | DESCRIPTIONS DU FONCTIONNEMENT                                                                                                                                                                                                       |                                                                      |  |  |  |
|                                                                             |                                                                                                                                                                                                                                                                                                                              |                                                                                        | 4.1                                                | GENERALITES                                                                                                                                                                                                                          | F 4/                                                                 |  |  |  |
| 2.                                                                          | PROCEDE DE DEMONTAGE / MONTAGE                                                                                                                                                                                                                                                                                               |                                                                                        | 4.2                                                | ALIMENTATION RESEAU                                                                                                                                                                                                                  | F 4/                                                                 |  |  |  |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7<br>2.8<br>2.9<br>2.10<br>2.11 | GENERALITES OUTILLAGE UTILISE DEMONTAGE DU COUVERCLE DEMONTAGE DU PLATEAU OUVERTURE DU GUIDAGE DE BRAS DEMONTAGE DU PORTE-AIGUILLE DEMONTAGE DU CHASSIS DEMONTAGE DU GUIDAGE DE BRAS DEMONTAGE DU GUIDAGE DE BRAS DEMONTAGE DU MOTEUR D'ENTRAINEMENT DEMONTAGE DE LA PLATINE ELECTRONIQUE DEMONTAGE DES ELEMENTS DE COMMANDE | F 2/1<br>F 2/1<br>F 2/1<br>F 2/1<br>F 2/1<br>F 2/2<br>F 2/2<br>F 2/3<br>F 2/3<br>F 2/3 | 4.3.2<br>4.3.3<br>4.3.4<br>4.3.5<br>4.3.6<br>4.3.7 | MECANISME Commande du moteur d'entraînement Signal de référence Convertisseur fréquence-tension Le moteur d'entraînement Affichage à 7 segments Prise SERIAL-LINK Disco-Start COMMANDE DE BRAS DE LECTURE Indications et subdivision | F 4/1<br>F 4/1<br>F 4/1<br>F 4/1<br>F 4/1<br>F 4/1<br>F 4/1<br>F 4/1 |  |  |  |
| 2.12<br>2.13<br>2.14                                                        | REMPLACEMENT DU FUSIBLE RESEAU<br>ASSEMBLAGE                                                                                                                                                                                                                                                                                 | F 2/4<br>F 2/4                                                                         | 4.4.3<br>4.4.4<br>4.4.5<br>4.4.6                   | Niveau d'entrée numérique<br>Abaissement<br>Positionnement automatique<br>Positionnement manuel<br>Amplificateur à diodes photo-électriques<br>et amplificateur de sommation<br>Détection de sillon de sortie                        | F 4/4<br>F 4/4<br>F 4/4                                              |  |  |  |
| 3.                                                                          | CONTROLES ET ADJUSTAGES MECANIQUES                                                                                                                                                                                                                                                                                           | F 3/1                                                                                  | 4.4.8                                              | Eclairage Filtre d'arrêt de bruits                                                                                                                                                                                                   | F 4/5                                                                |  |  |  |
| 3.1                                                                         | AUXILIAIRES                                                                                                                                                                                                                                                                                                                  |                                                                                        | 4.4.7                                              | PREAMPLIFICATEUR                                                                                                                                                                                                                     | F 4/                                                                 |  |  |  |
| 3.3.2<br>3.3.3                                                              | CONDITIONS  CONTROLE DE LA PISTE TANGENTIELLE Conditions Contrôle au moyen du gabarit no. 46173 Contrôle au moyen d'un disque marqué Correction d'une erreur d'angle de piste                                                                                                                                                | F 3/1 F 3/1 F 3/1 F 3/2 F 3/2 F 3/3                                                    | 4.5.1                                              | Convertisseur d'impédance<br>Correction RIAA                                                                                                                                                                                         | F 4/                                                                 |  |  |  |
| 3.4.1<br>3.4.2<br>3.4.3<br>3.4.4                                            | MONTAGE D'UNE TETE DE LECTURE<br>DANS LE BRAS LINATRACK<br>Remarques<br>Préparatifs<br>Démontage de la tête de lecture<br>Montage de la tête de lecture<br>Montage d'un système de lecture P-Mount                                                                                                                           | F 3/3<br>F 3/3<br>F 3/3<br>F 3/4<br>F 3/4                                              |                                                    | -                                                                                                                                                                                                                                    |                                                                      |  |  |  |
| 3.5                                                                         | TETE DE LECTURE AVEC TEST D'APTITUDE                                                                                                                                                                                                                                                                                         | F 3/5                                                                                  |                                                    |                                                                                                                                                                                                                                      |                                                                      |  |  |  |
| 3.6                                                                         | REGLAGE DE LA PROFONDEUR D'ABAISSEMENT<br>DE TETE DE LECTURE                                                                                                                                                                                                                                                                 | F 3/5                                                                                  |                                                    |                                                                                                                                                                                                                                      |                                                                      |  |  |  |
| 3.7                                                                         | REGLAGE DE LA FORCE D'APPUI<br>DE LA TETE DE LECTURE                                                                                                                                                                                                                                                                         | F 3/6                                                                                  |                                                    |                                                                                                                                                                                                                                      |                                                                      |  |  |  |
| 3.8                                                                         | CONTROLE DE LA VITESSE D'ABAISSEMENT                                                                                                                                                                                                                                                                                         | F 3/6                                                                                  |                                                    |                                                                                                                                                                                                                                      |                                                                      |  |  |  |
| 3.9                                                                         | REGLAGE DES POINTS DE COMMUTATION                                                                                                                                                                                                                                                                                            | F 3/7                                                                                  |                                                    |                                                                                                                                                                                                                                      |                                                                      |  |  |  |

| Conte                 | Contenu                                                                 |   |            |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------|---|------------|--|--|--|--|--|
| 5.                    | MESURES ET REGLAGES ELECTRIQUES                                         |   |            |  |  |  |  |  |
| 5.1                   | GENERALITES                                                             | F | 5/1        |  |  |  |  |  |
| 5.2                   | AUXILIAIRES ET APPAREILS DE MESURE                                      | F | 5/1        |  |  |  |  |  |
| 5.3<br>5.3.1<br>5.3.2 |                                                                         |   | 5/1<br>5/1 |  |  |  |  |  |
| 5.3.3                 | de la commande d'entraînement<br>pour un minimum de pleurage            | F | 5/1        |  |  |  |  |  |
| 7.5.5                 | pour synchronisation correcte du moteur                                 | F | 5/2        |  |  |  |  |  |
| 5.4<br>5.4.1          | GUIDAGE DU BRAS DE LECTURE<br>Contrôle de fonctionnement du guidage     | F | 5/2        |  |  |  |  |  |
|                       | de bras de lecture                                                      | F | 5/2        |  |  |  |  |  |
| 5.4.2                 | Indication et conditions importantes<br>pour les réglages du bras       | F | 5/2        |  |  |  |  |  |
| 5.4.3<br>5.4.4        | Réglage du guidage de bras de lecture<br>Réglage de position            |   | 5/3        |  |  |  |  |  |
|                       | de la platine de palpage                                                |   | 5/4        |  |  |  |  |  |
| 5.4.5                 | Remplacement de la LED infrarouge                                       |   | 5/4        |  |  |  |  |  |
| 5.4.6<br>5.4.7        | Réglage du signal final (pour 33 t/min)                                 |   | 5/4<br>5/4 |  |  |  |  |  |
| 5.4.8                 | Réglage du signal de positionnement<br>Mesure de la capacité de palpage |   | 5/5        |  |  |  |  |  |
| 5.5<br>5.5.1          | PREAMPLIFICATEUR<br>Réglage de balance et                               | F | 5/5        |  |  |  |  |  |
| J.J.1                 | mesure de l'affaiblissement de diaphonie                                | F | 5/5        |  |  |  |  |  |
| 6.                    | SCHEMAS                                                                 |   |            |  |  |  |  |  |
| 7.                    | PIECES DE RECHANGE                                                      |   |            |  |  |  |  |  |

# 1. GENERALITES

# 1.1 ELEMENTS DE COMMANDE

| 1  | Poussoir/LED                           | POWER            |
|----|----------------------------------------|------------------|
| 2  | Poussoir/LED                           | SPECIAL          |
| 3  | Poussoir/LED                           | 33/45            |
| 4  | Poussoir Varispeed                     | DOWN             |
| 5  | Affichage vitesse nominale de rotation | SPEED            |
| 6  | Affichage écart de vitesse             | DEV.%            |
| 7  | Poussoir Varispeed                     | UP               |
| 8  | Poussoir avance rapide                 | ⊲                |
| 9  | Poussoir baisser / lever               | $\nabla \Delta$  |
| 10 | Poussoir avance rapide                 | $\triangleright$ |
| 11 | Fenêtre de récepteur IR                |                  |
|    |                                        |                  |

12 Bras oscillant

13 Câble de raccordement audio

14 Fusible de réseau

15 Câble de réseau

16 Prise SERIAL-LINK

17 Dispositif de centrage



### 1.2 DIMENSIONS

Dimensions en mm



### 1.3 CARACTERISTIQUES TECHNIQUES

# 1.3.1 Mouvement et guidage du bras

Mouvement : entraînement direct piloté par cristal

Vitesse de rotation du plateau : 33,33 et 45,00 t/min

variable à précision cristal +/- 9,9 %

Précision de vitesse de rotation : +/- 0,01 %

Contrôle de vitesse : LED synchrone 33,33 et 45,00 t/min

Plateau : diamètre 313 mm

Poids (masse) : 21 N (2,1 kg)

Temps d'accélération : meilleur que 2 s à 33,33 t/min

Temps de freinage : meilleur que 2 s de 45,00 à 33,33 t/min

Pleurage : \*
évalué : meilleur que 0,05 %

linéaire : meilleur que 0,1 %

Ecart de tension de ronronnement : \*\*
meilleur que 50 dB (DIN 45539A)

Ecart de tension perturbatrice de ronronnement : \*\* meilleur que 52 dB (DIN 45539A) avec filtre passe-haut 20 Hz

Ecart de tension de souffle de ronronnement : \*\* meilleur que 72 dB (DIN 45530B)

Bras de lecture : bras tangentiel à électronique d'asservissement

Erreur angulaire tangentielle de piste : inférieure à 0,5 degré

Compensation de Skating : aucune, inutile pour systèmes tangentiels

Force d'appui : réglable, avec contrepoids de 8 ... 20 mN (0,8 ... 2 p)

Abaissement du bras : à commande électronique, amortissement pneumatique

Muting : électronique jusqu'à la pose du bras (env. 1 s)

Commande du bras : palpage opto-électronique par diode IR comme source de lumière; électronique d'asservissement et moteur CC

Coupure finale : automatique, commandée par l'électronique d'asservissement

Fonctions automatiques :

 Rentrée du bras :
 Le plateau démarre à la vitesse présélectionnée, le chariot se déplace vers la position correspondante d'abaissement.

- Sortie du bras :

a) la tête de lecture est levée immédiatement

b) le chariot se remet en position de départ

c) le plateau s'arrête, l'éclairage s'éteint

### 1.3.2 Manoeuvre

Mouvement :

1 interrupteur réseau

1 poussoir tactile 33,33/45 t/min

1 poussoir tactile de fonction spéciale

Bras de lecture :

3 poussoirs tactiles pour marche AV et AR rapide ainsi que pour abaisser et relever la tête de lecture;

éclairage incorporé de la tête de lecture

Vitesse de rotation :

2 poussoirs tactiles; augmentation ou réduction de la

vitesse de rotation du plateau

Affichage

Affichage à 5 chiffres pour vitesse de consigne et

affichage d'écart en pour cent

# 1.3.3 Divers

Alimentation :

(ressoudable voir chapitre 6) 100/110/120 V +/- 10 %

200/220/240 V +/- 10 %

50 ... 60 Hz

Fusible de réseau :

100 ... 120 V : T 0,4 A 200 ... 240 V : T 0,2 A

Consommation:

Standby Serial-Link : 4,8 VA (service avec B203, B206) Working Serial-Link : 17,7 VA

Standby : 2,2 VA Working : 15,5 VA

Poids (masse) : 91 N (9,1 kg)

#### TETE DE LECTURE 1.4

Indication :

Le chapitre 3.5 indique d'autres pick-ups indiqués.

### 1.4.1 Shure V15V - P-Mount

Plage de transmission :

20 Hz ... 8 kHz : +/-0,75 dB 8 kHz ... 20 kHz : +/-2 dB

Balance (à 1 kHz) :

inférieure à 1,5 dB

Affaiblissement de diaphonie :

1 kHz : meilleur que 25 dB 10 kHz : meilleur que 18 dB

Palpage (à 300 Hz) 100 µm à 10 mN (1,0 p)

Force d'appui recommandée :

12,5 mN (1,25 p)

Taille des diamants :

 $5 \times 38 \ \mu m$  hyperelliptique, diamant nu

Facteur de transmission :

0,65 mVs/cm à 1 kHz

Intermodulation de fréquence :

inférieure à 0,8 % (DIN 45411)

Impédance de charge recommandée : 47 kohm/50 ... 400 pF

### 1.4.2 Elac EMM 150 - p-Mount

Plage de transmission :

10 Hz ... 22 kHz +/-2 dB

Balance (à 1 kHz) : inférieure à 1.5 dB

Affaiblissement de diaphonie :

meilleur que 22 dB à 1 kHz

Flexibilité d'aiguille :

vert. 30 μm/mN

(statique pour la force nominale d'appui)

Palpage (315 Hz):

80 µm à la force nominale d'appui

Force d'appui recommandée :

12,5 mN (1,25 p)

Coupe du diamant :

6/18 μm elliptique

Facteur de transmission :

1 mVs/cm à 1 kHz

Impédance de charge recommandée :

47 kohm/200 ... 500 pF

\* mesuré à la vitesse nominale de rotation selon DIN 45507 à l'aide d'une feuille à coupe directe à centrage optimal, L + R.

\*\*tous les écarts de ronronnements sont mesurés en position MONO avec une plaque de mesure déchargée statiquement selon DIN 45544 et un correcteur de reproduction à quatre constantes de temps selon CEI 98-4 (1976).

# 1.5 ACCESSOIRES

### ■ Télécommandes IR

Les émetteurs B201, B201 CD , B205, B208 permettent la télécommande des fonctions suivantes par le récepteur IR monté sur la plaque frontale de l'appareil (Le guidage de bras doit être rentré) :

PHONO (Power on)

◁

Pick-up down/up ∇Δ

 $\triangleright$ 

POWER-OFF

# ■ Jeu de montage de tête de lecture no. 07011

### contenant :

gabarit de réglage pick-up contrepoids vis rondelles en U pièces d'écartement tournevis balance

# ■ Gabarit de réglage no. 46173

pour le contrôle de :

guidage de bras de lecture géométrie

### ■ Plaque de mesure REVOX no. 46010

pour la détermination des paramètres suivants :

caractéristiques audio guidage de bras de lecture positionnement points de commutation

Câble de rallonge moteur no. 46135 et câble de rallonge de bras de lecture no. 46137

permettent le raccordement du moteur et du bras lorsque le châssis est démonté. (No. 46135 également pour B791/795).

### 2. PROCEDE DE DEMONTAGE / MONTAGE

### 2.1 GENERALITES

### Attention:

Lors du démontage à partir du chapitre 2.7 "démontage du châssis" le câble réseau et les raccords audio ne doivent plus être raccordés.

# Indication:

Lors des travaux de démontage et de montage de composants électroniques, on tiendra compte des directives données au début de la présente instruction quant au maniement des composants MOS.

# 2.2 OUTILLAGE UTILISE

| Tournevis | cruciforme |      |      |       |      |      | . grandeur O |
|-----------|------------|------|------|-------|------|------|--------------|
| Tournevis | cruciforme |      |      |       |      |      | . grandeur 1 |
| Tournevis | cruciforme |      |      |       |      |      | . grandeur 2 |
| Tournevis | pour vis à | six  | pans | s cre | eux  |      | . grandeur 3 |
| Tournevis |            |      |      |       |      |      | . grandeur 1 |
| Tournevis |            |      |      |       |      |      | . grandeur 2 |
| Tournevis |            |      |      |       |      |      | . grandeur 3 |
| Equipemen | t de poste | de t | rava | il "E | SE". | . no | o.comm.46200 |

# 2.3 DEMONTAGE DU COUVERCLE

Fig. 2.1

Relever le couvercle (1) et le retirer.

# 2.4 DEMONTAGE DU PLATEAU

Fig. 2.1

Bras de lecture en position de repos.

- Retirer la plaque de caoutchouc (2).
- Retirer le plateau (3).



Fig. 2.1

### 2.5 OUVERTURE DU GUIDAGE DE BRAS

Fig. 2.2

- Mettre le chariot de bras à peu près au milieu et mettre le tourne-disque hors tension.
- Mettre le guidage de bras en position de repos. Passer les doigts sous les plaques latérales selon fig. 2.2, presser légèrement vers l'extérieur et soulever soigneusement le capot.



Fig. 2.2

# 2.6 DEMONTAGE DU PORTE-AIGUILLE

Fia 23

- Déplacer le guidage de bras vers l'extérieur jusqu'à la butée (position de service).
- Tenir la partie noire du bras de lecture entre l'index et le pouce d'une main, retirer le porte-aiguille de l'autre main, soigneusement et sans coincer.



Fig. 2.3

### 2.7 DEMONTAGE DU CHASSIS

Fig. 2.4

- Retirer le capot et soulever le plateau (chap. 2.3 et 2.4).
- Retirer le dispositif de centrage (4).
- Desserrer les trois vis de sécurité (3) éventuellement serrées pour le transport jusqu'à ce qu'elles se déplacent librement à la verticale.
- Retirer la clavette d'arbre (1) et les capuchons (2).
- Soulever le châssis (5) à gauche de 5...10 cm et retirer le câble de bras et le câble de moteur (6) allant vers la platine de commande.
- Retirer le châssis.

Attention : Pour éviter des égratignures, ne pas tirer les fiches du câble moteur par dessus la barre de commande.



Fig. 2.4

#### 2.8 DEMONTAGE DU GUIDAGE DE BRAS

Fig. 2.4

- Démonter le châssis (chap. 2.7). Desserrer trois vis à six pans creux (10) à la face inférieure du châssis. Attention aux rondelles!
- Sortir la connexion à câble de bras (6) par l'ouverture rectangulaire du châssis.

Important : Les rondelles (pour 10) ne doivent en aucun cas être oubliées lors du montage.



Fig. 2.5

#### DEMONTAGE DU MOTEUR D'ENTRAINEMENT 2.9

### Fig.2.4

■ Démonter le châssis (chap. 2.7)

■ Tirer le guidage de bras (11) vers l'extérieur jusqu'à la butée (position de service).

Desserrer quatre vis à six pans creux (9) à la face inférieure du châssis.

■ Sortir le moteur d'entrainement (7) vers le haut.

### Attention aux rondelles d'écartement (8) :

Lors du montage d'un nouveau moteur d'entraînement, il faut remonter les rondelles d'écartement (8) et contrôler ensuite le réglage de hauteur (voir chapitre 3.3.1 et fig. 3.3). Avec un nouveau moteur, il faut en outre refaire le réglage du circuit de réglage moteur selon chapitre 5.3 (éléments Hall).

# 2.10 DEMONTAGE DE LA PLATINE ELECTRONIQUE

### Fig. 2.5

■ Démonter le châssis (chap. 2.7).

- Retirer l'équerre de fixation de la prise Serial-Link (desserrer 2 vis (26)).
- Desserrer 9 connexions à fiches (14, 15, 16, 24, 27, 28, 29, 30, 31).
- Desserrer 6 vis (25).

#### 2.11 DEMONTAGE DES ELEMENTS DE COMMANDE

### Fig. 2.6

■ Démonter le châssis (chap. 2.7)

- Défaire les connexions à câbles : Détacher les fiches
- (14, 15, 16) de la platine de base.

  Retirer la platine IR (34) en desserrant et en rant les deux vis (17). Sortir la platine par l'ouverture du boîtier.
- Desserrer 3 vis (18) à l'intérieur du boîtier et retirer l'enjolivure (19) :

Tenir le boîtier d'une main.

Presser légèrement de l'autre main, depuis le bas, sur la partie biseautée de l'enjolivure qui est alors levée

et peut être retirée vers l'avant.

■ Desserrer chaque fois 2 vis (20) des unités à poussoirs (21, 22) ainsi que de l'affichage (23). Pour cela, poser le boîtier le fond en haut.

### 2.12 DEMONTAGE DU TRANSFORMATEUR RESEAU

### Fig. 2.5

■ Démonter le châssis (chap. 2.7).

- Défaire les connexions à fiches (27, 32).
- m Retirer 4 vis au fond de l'appareil.



Fig. 2.6

#### 2.13 REMPLACEMENT DU FUSIBLE RESEAU

- Retirer le couvercle, la plaque de caoutchouc et le plateau (chap. 2.7 et 2.8).
- Serrer la protection de transport (vis 3, fig. 2.4).
- Poser le tourne-disque sur la paroi latérale gauche.
   Dévisser le capuchon de protection de la face inférieure du boîtier (voir chapitre 1.1).
- Remplacer le fusible défectueux : 100...120 V : T 0,4 A

200...240 V : T 0,2 A

Resserrer les vis de protection de transport.

#### 2.14 ASSEMBLAGE

L'assemblage se fait en ordre inverse du démontage. Il faut veiller à ne pas coincer de câbles. Les câbles doivent être disposés de la même manière qu'avant le démontage.

Attention : Les rondelles d'écartement et rondellesressorts ne doivent être ni interverties, ni oubliées.

# 3. CONTROLES ET ADJUSTAGES MECANIQUES

### 3.1 AUXILIAIRES

| 8 | Gabarit de contrôle et de réglage      | No. | comm. | 46173 |
|---|----------------------------------------|-----|-------|-------|
| 6 | Disque de mesure REVOX                 | No. | comm. | 46010 |
|   | Gabarit de réglage de bras de lecture, |     |       |       |
|   | dans le jeu de montage                 |     |       |       |
|   | de bras de lecture                     | No. | comm. | 07011 |
|   | Rallonge bras de lecture               | No. | comm. | 46137 |
| 8 | Rallonge moteur                        | No. | comm. | 46135 |
|   | Equipement de poste de travail "ESE" . | No. | comm. | 46200 |

### 3.2 CONDITIONS

Les contrôles mécaniques de la tête de lecture et du guidage de bras exigent que la tolérance réglée à l'usine pour l'excentricité du plateau et la différence de battement vertical de moins de 0,1 mm soit maintenue.

# 3.3 CONTROLE DE LA PISTE TANGENTIELLE

### 3.3.1 Conditions

Fig.3.1, 3.2

Contrôler le parallélisme du guidage d'aiguille par rapport à la surface du plateau. Ecart admissible entre point "A" et point "B" < 0,3 mm. Pour corriger, tourner la plaquette de bras de lecture (1) vers la tringlerie de chariot de tête de lecture après avoir desserré les deux vis de serrage à six pans creux (2).



Fig. 3.1

Fig.3.2

Distance nominale entre le bord supérieur de tringlerie de chariot de lecture et le plan du plateau = 41 mm (sans plaque de caoutchouc). Corriger en montant le moteur de plateau ou le guidage de bras sur des rondelles d'écartement de l'épaisseur voulue (voir chap. 2.8, 2.9, fig.2.4, rondelles d'écartement 8).



Fig. 3.2

Au moyen du gabarit de tête de lecture contenu au jeu de montage (no. 07011), contrôler la position de la tête de lecture et la corriger si nécessaire dans les limites du jeu des trous de fixation.

# 3.3.2 Contrôle au moyen du gabarit no. 46173

### Exigence :

### Fig.3.1

Pendant son avance et à l'état abaissé, l'aiguille doit se déplacer exactement sur le rayon (R) en passant par le centre de rotation (S) du plateau. Tolérance pour max. +/- 0,5 degré de défaut d'angle de piste :

A (r1 = 150 mm) : < 3 mm B (r2 = 50 mm) : < 1 mm

### Préparatifs :

- Retirer la fiche réseau; pendant le contrôle suivant, le moteur d'entraînement ne doit pas tourner.
- Pousser la tête de lecture en position de repos jusqu'à la butée (la tête de lecture ne doit être déplacée au-dessus du gabarit monté que dans cette position).
- Pousser le guidage de bras à droite.
- m Retirer la plaque de caoutchouc du plateau.
- Retirer du châssis le pinceau de nettoyage de tête de lecture (si nécessaire, soulever avec un tournevis).

### . Pose du gabarit :

### Fig.3.3

Faire passer le gabarit à travers le boulon du centre de plateau et l'ouverture prévue pour le pinceau. Le gabarit doit pouvoir être glissé sans effort sur et dans les deux points fixes : les tolérances de fabrication dans la distance des points fixes sont compensées en desserrant la fixation à boulon sur le gabarit (desserrer la vis à tête fendue), resserrer ensuite la vis.

### Contrôles :

Les deux réglages suivants sont légèrement interdépendants et doivent être contrôlés plusieurs fois après l'ajustage.

- Poser la tête de lecture sur le coulisseau mobile du gabarit :
  - $\tilde{L}'$ aiguille doit tomber sur le coulisseau au milieu entre les deux lignes de marquage (les gabarits plus récents sont pourvus d'une marque médiane).
- Positionner la tête de lecture sur la marque la plus proche du centre du plateau et l'abaisser à la main : La pointe de l'aiguille doit tomber sur le gabarit au milieu entre les deux lignes.



Fig. 3.3

### 3.3.3 Contrôle au moyen d'un disque marqué

Le contrôle du guidage tangentiel d'aiguille pour détection d'une erreur éventuelle d'angle de piste peut également se faire au moyen d'un disque qui n'est plus utilisé à la lecture :

- Au moyen d'une pointe à tracer aussi pointue que possible, marquer un diamètre sur le disque, passant exactement (!) par le centre de rotation du disque.
- Retirer la fiche réseau et poser le disque marqué, mettre le guidage de bras en position de service.

### Fig.3.1

- Abaisser la tête de lecture à la main et positionner le disque de manière que la pointe de l'aiguille tombe sur le point "A" de la ligne de marquage. Empêcher le plateau de se décaler (par exemple au moyen d'un ruban adhésif entre le plateau et le châssis).
- Positionner la tête de lecture avec l'aiguille audessus de point "B" et abaisser à la main : L'aiguille doit tomber sur le disque dans la tolérance représentée à la fig. 3.1.



Fig. 3.1

#### 3.3.4 Correction d'une erreur d'angle de piste

Fia.3.4

Déplacement du point d'arrêt du bras de lecture en position de service par rotation du boulon d'arrêt (3).

Ce boulon d'arrêt à ressort dans le bras de lecture est excentrique et peut être tourné comme il convient au moyen d'une tige d'acier de diamètre 1,5 mm passée par le trou radial du boulon

Attention : Veiller à ce que le boulon ne soit pas soulevé de son trou dans le sens axial pendant la rotation. Pour empêcher cela, positionner le bras en dehors des positions d'arrêt pendant la rotation et presser légèrement dans le sens axial sur le point de rotation du bras.



Fig. 3.4

Si après les deux réglages ci-dessus les plages de réglage se révélaient insuffisantes, cela signifierait que le réglage de base d'usine a été modifié. Pour le rétablir, procéder de la manière suivante :

- Mettre le boulon d'arrêt (3) au milieu de la plage de réglage.
- Régler la tête de lecture au moyen du gabarit (chap. 3.4)
- Desserrer le palier de bras de lecture dans la fixation au châssis (trois vis à six pans creux).
- Régler le bras de lecture avec le gabarit (46173) et resserrer.
- Contrôle et correction fine selon description par réglage de la tête de lecture dans sa fixation et réglage du bras par rotation du boulon d'arrêt (remplacer le boulon d'arrêt s'il est fortement usé).

## 3.4 MONTAGE D'UNE TETE DE LECTURE DANS LE BRAS LINATRACK

#### 3.4.1 Remarques

Le bras de lecture ne peut être monté dans le guidage de bras que par dessous. Pour cela, poser soigneusement le tourne-disque sur la face supérieure comme décrit au chapitre suivant (fig.3.5). Observer chaque pas individuellement. Un tournevis est joint au jeu de montage. En outre, il faut encore une pincette et peut-être un petit couteau.

Important : Après remplacement de la tête de lecture, il est indispensable de faire les travaux de réglage des chapitres 3.6 à 3.8.

#### 3.4.2 Préparatifs

Fig.3.5

■ Retirer le couvercle.

■ Mettre le tourne-disque sous tension.

■ Pousser le guidage de bras de lecture au-delà du plateau, sortir le bras d'environ 8 cm.

Retirer la fiche réseau sans mettre d'abord le tournedisque hors tension.

- Retirer la plaque de caoutchouc, le plateau et le couvercle de guidage de bras de lecture.
- Serrer à fond les 3 vis de sûreté.

■ Préparer une surface d'appui.

Poser le tourne-disque la face supérieure sur la surface d'appui et poser le guidage sorti de bras de lecture.



Fig. 3.5

#### 3.4.3 Démontage de la tête de lecture

#### Fig.3.6

- Poser la protection d'aguille.
- Retirer les raccords de fréquence sonore au moyen d'une pincette. Si ceux-ci sont coincés, on peut les desserrer au moyen d'un petit couteau.
- Desserrer les deux vis de la fixation de tête de lecture.
- Retirer la tête de lecture.



Fig. 3.6

#### 3.4.4 Montage de la tête de lecture

#### Fig.3.6, 3.7

- Visser provisoirement la tête de lecture sur le bras de lecture. Déterminer l'écartement nécessaire d'après le tableau (3.5). Les têtes de lecture de masse inférieure à 6 g nécessitent en outre une pièce de montage en laiton (nickelé).
- Enficher le gabarit sur le bras de lecture.
- La hauteur est correcte si l'écart dessiné entre la pointe de l'aiguille et le bras de lecture peut être respecté. La pointe de l'aiguille ne doit pas toucher le gabarit.
- Déplacer la tête de lecture dans les limites du jeu des trous de fixation jusqu'à ce que la pointe de l'aiguille apparaisse exactement au centre du petit trou (4) du gabarit et que le corps de la tête de lecture soit parallèle aux lignes rouges.
  - Si cela n'est pas possible, la géométrie du bras de lecture doit être corrigée au moyen du gabarit de contrôle et de réglage no. 46173 (voir chap. 3.3).
- Serrer les deux vis de fixation (5).
- Enficher à nouveau les raccords de fréquence audio avec la pincette.

### Occupation des raccords :

| Fil         |  |  | Repère  |  |  |  | Canal |
|-------------|--|--|---------|--|--|--|-------|
| blanc       |  |  | blanc . |  |  |  | L     |
| blanc/rouge |  |  | rouge . |  |  |  | R     |
| blanc/bleu  |  |  | bleu .  |  |  |  | LG    |
| blanc/vert  |  |  | vert .  |  |  |  | RG    |

Déterminer le contrepoids d'après le tableau (3.5) et le monter.



Fig. 3.7

### 3.4.5 Montage d'un système de lecture P-Mount

#### Fig.3.8

- Un adaptateur P-Mount doit être monté et raccordé comme une tête de lecture (chap. 3.4.4).
- Enficher soigneusement la tête de lecture avec protection d'aiguille dans l'adaptateur jusqu'à ce que la vis de fixation (6) puisse être introduite sans peine. Serrer la vis.

Important : Les systèmes P-Mount peuvent être différents les uns des autres par la construction et le centre de gravité. Il faut donc également procéder aux contrôles de réglage après le montage et corriger si nécessaire (chap. 3.4.4). Nous déconseillons de monter simplement un système sans contrôle ultérieur.



Fig. 3.8

#### 3.5 TETE DE LECTURE AVEC TEST D'APTITUDE

#### Indication:

Les mesures et tests effectués en laboratoire ont abouti à une série de systèmes appropriés de tête de lecture pour le montage dans le bras tangentiel du B291.

- Le choix s'appuie sur les résultats d'enquêtes auprès des clients et ne prétend pas être complet.
- La liste ne représente aucun ordre de préférence quant à la qualité des produits.
- Les Capaciteurs mentionnés en la colone "Capacitance" doivent être insérés dans les oeillets (ABCD) sur la platine de palpage (1.179.300) :

A,B -> canal gauche D,C -> canal droit

#### 3.6 REGLAGE DE LA PROFONDEUR D'ABAISSEMENT DE TETE DE LECTURE

#### Contrôle :

- Mettre l'appareil sous tension.
- Positionner la tête de lecture au-dessus du profil intérieur de la bande circulaire (r = env. 75 mm) et l'abaisser :

La pointe de l'aiguille doit observer l'écart minimal par rapport au plan supérieur du profil rainuré. (Si l'aiguille abaissée trop loin touche le profil, cela s'entend par le canal audio).

#### Correction :

Fig.3.9 Sur la vis de réglage d'abaissement de la tête de lecture (8).



| Fabricant                                                                                                                  | Type                                                                                                                                                                     | Vis de<br>fixation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rondellen                                                                                                                    | Contre<br>poids                                                                                         | Force<br>d'appui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Capacitance<br>Ō                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| AKG AKG AKG AKG AUDIO Technica Elac Elac Elac Micro Acoustics Ortofon Ortofon Ortofon Ortofon Shure Shure Shure Shure Elac | P20MDR P8E P8ES P8ESR AT 13Ea ESG 793E ESG 793E30 ESG 795E30 ESG 796E30 MA 382 LM 20H LM 30H M20E super VMS 20 MKII Tracer TXE-SR V15 III V15 IV V15 V (PM) EMM 150 (PM) | M 2,5 * 8<br>M 2,5 * 8<br>M 2,5 * 8<br>M 2,5 * 14<br>M 2,5 * 12 α<br>M 2,5 * 12 α<br>M 2,5 * 12 α<br>M 2,5 * 12 α<br>M 2,5 * 12<br>M 2,5 * 12<br>M 2,5 * 12<br>M 2,5 * 12<br>M 2,5 * 10<br>M 2,5 * 20<br>M 2,5 * 30<br>M 2,5 * 30<br>M 2,5 * 40<br>M 2,5 * 60<br>M | 1 mm 2 mm 1 mm 3 mm 3 mm 2 mm 2 mm 2 mm 2 mm 2 mm 4 mm + 1 mm B 4 mm + 1 mm B 4 mm + 1 mm B 4 mm + 1 mm B 4 mm + 1 mm B 1 mm | Messing Messing Messing Blei Blei Blei Blei Messing Messing Messing Messing Messing Blei Blei Blei Blei | 12 mN<br>12 mN<br>12 mN<br>12 mN<br>15 5 mN<br>12.5 mN<br>12.5 mN<br>12.5 mN<br>10 mN<br>15 -21 mN<br>15 -21 mN<br>15 -21 mN<br>15 -21 mN<br>15 -21 mN<br>12.5 mN<br>15 mN<br>16 mN<br>17 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>19 mN<br>19 mN<br>10 mN<br>11 mN<br>11 mN<br>12 mN<br>12 mN<br>15 mN<br>16 mN<br>17 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN<br>18 mN | 220 pF<br>120 pF<br>120 pF<br>120 pF<br>120 pF<br>47 pF<br>68 pF<br>68 pF<br>150 pF<br>120 pF<br>120 pF<br>120 pF<br>120 pF |

- α Le diamètre de la tête de vis doit être de max. 3,5 mm (n'est pas jointe au jeu de montage).
- ß La cale de laiton (1\*10\*20, nickelure) est jointe au jeu de montage.
- 6 Mesure avec brosse relevée mais pour fonctionnement avec brosse.
- ¿ La capacité à monter correspond à la valeur indiquée par le fabricant de la cellule, moins la capacité interne du B291 (250 pF). Les valeurs résultantes sont indiquées au tableau ci-contre.

#### 3.7 REGLAGE DE LA FORCE D'APPUI DE LA TETE DE LECTURE

Fig.3.9

Le réglage de la force d'appui se fait en décalant la vis à tête fendue (3). Pour les têtes de lecture lourdes > 6 p (60 mN) le contrepoids doit être en plomb. Au moyen d'une balance "CORREX" ou de la balance du jeu de montage de tête de lecture, régler la force d'appui selon les prescriptions du fournisseur de pick-up ou selon les caractéristiques techniques au chapitre 1.3. En utilisant la balance, le contrepoids supplémentaire n'est pas nécessaire. Sans ce contrepoids, la force d'appui indiquée sur la balance est correcte. Pour le positionnement vertical correct de la balance, la plaque de caoutchouc doit être retirée.

#### 3.8 CONTROLE DE LA VITESSE D'ABAISSEMENT

#### Contrôle :

- La vitesse d'élévation et d'abaissement varie simultanément.
- L'aiguille doit se poser doucement mais doit toucher le sillon avant que le canal audio soit libéré électroniquement.
- L'abaissement doit donc pouvoir durer une seconde.

#### Correction :

Fig.3.10

■ Par rotation lente du cylindre (10). La plage de rotation d'une modification est faible ( <90°). C'est pourquoi on cherchera d'abord le réglage avec la vitesse la plus élevée d'abaissement (exactement au centre de la plage). Le dispositif d'amortissement ne réclame aucun entretien et ne doit pas être lubrifié.

#### Manière de procéder :

- Ne poser d'abord aucun disque.
- Chercher le réglage donnant la plus haute vitesse d'abaissement.
- Faire tourner le cylindre peu à peu dans un sens jusqu'à ce que la vitesse d'abaissement diminue sensiblement.
- Poser un disque et faire le réglage fin.



Fig. 3.9



Fig. 3.10

## 3.9 REGLAGE DES POINTS DE COMMUTATION DES FINS DE COURSE

#### Contrôle :

Fig. 3.11

- Point de commutation pour fin de course butée droite (R-LS, position de départ de la tête de lecture) : Distance entre le centre de rotation (S) et le point de commutation = r1 = 147 mm +1/-0 mm.
  - Cet écart peut se déterminer au moyen du disque de mesure REVOX.
  - Le disque contient pour cela deux sillons concentriques avec des rayons de 147 et 148,5 mm.
  - Il est avantageux d'abaisser la tête de lecture à la main par la tringlerie (retirer le capot).
  - La pointe de l'aiguille doit alors se trouver entre les deux sillons.
- Point de commutation pour fin de course butée gauche (L-LS, position finale de la tête de lecture) :
  Distance entre le centre de rotation (S) et le point de commutation = r2 = 50 mm +/-2 mm.
  Cet écart doit être mesuré et ne peut être contrôlé au



Fia.3.12

En déplaçant le microrupteur correspondant (R-LS, L-LS) dans les limites du jeu de ses vis de fixation, on peut modifier ce point de commutation.



moyen du disque de réglage.

### Contrôle :

Fig.3.11

Contrôle de cotes à la périphérie de la sortie de bras. Si pendant la reproduction le bras de lecture est déplacé manuellement de plus de 5 mm, +/-1 mm dans le sens horizontal, il faut mettre l'entraînement de plateau hors tension et remettre le bras de lecture en position de repos.

#### Correction :

Fig.3.12

En déplaçant verticalement le microrupteur correspondant (ARM) on modifie le point de commutation. Pour cela, il faut desserrer les vis de fixation.



Fig. 3.12



Fig. 3.11

#### 3.11 REGLAGE DE L'ECRAN DE POSITIONNEMENT

Fig.3.9

L'écran (9) d'identification de la position d'abaissement pour les Singles est placé en usine à 85 mm du centre de rotation.

Le réglage pratique doit être fait au moyen du disque  $\,$  de mesure REVOX (no. comm. 46010).



Fig. 3.9

#### 3.12 CONTROLE DE LA CORDE D'ENTRAINEMENT DE TETE DE LECTURE

#### Contrôle :

- m Retirer le capot de bras de lecture (chap. 2.5.).
  - m Mettre le bras de lecture en position de service.
  - Sortir la tête de lecture à fond.
  - Mettre l'appareil hors tension avec la touche POWER : Le chariot de bras de lecture repart en position de départ.

En atteignant le commutateur de fin de course, le chariot doit pouvoir actionner le commutateur sans retard.

La corde d'entraînement ne doit pas commencer à glisser sur la poulie d'entraînement.

Répéter l'opération :

- Contrairement à la première opération, ne sortir le bras de lecture que de 1 à 2 cm environ. Mettre hors tension.
- Même sous ces conditions, le bras de lecture doit commander le commutateur sans retard.

#### Mesures :

- Nettoyer la corde d'entraînement à l'acétone, ou
- remplacer la corde d'entraînement avec le ressort de traction :

La nouvelle corde d'entraînement doit absolument être frottée avant le montage au moyen d'un chiffon trempé dans l'acétone.

#### 3.13 NIVELLEMENT DU NIVEAU DE CHASSIS

Fig.3.13

Le plan de reproduction peut être modifié dans sa position horizontale en faisant varier la hauteur des ressorts

Pour cela, déplacer les boulons filetés (14) depuis la face inférieure de l'appareil jusqu'à ce que le châssis et le bord du boîtier soient dans le même plan.



Fig. 3.13

#### 4. DESCRIPTION DU FONCTIONNEMENT

#### 4.1 GENERALITES

Indication:

Voir les schémas avec schéma-bloc au chapitre 6.

#### 4.2 ALIMENTATION RESEAU

L'alimentation est enclenchée et déclenchée par le microprocesseur ( $\mu P$ ). A l'état hors tension (la LED POWER s'allume) les tensions de référence des stabilisateurs +5/-5 V et +12/-12 V (IC2 - IC5) sont sur 0 V. Les transistors Q1(Q2) et Q3(Q4), commandés par le signal PS-OFF, mettent les tensions de référence à la masse. Le  $\mu P$  ne fournit ce signal que lorsque le chariot de bras de lecture est à nouveau en position de départ et que le plateau ne tourne plus. Les tensions de service +5 V-STBY (par ex. pour récepteur IR) et le détecteur de panne de réseau (NMI) sont maintenus. En cas de coupure de courant ou de retrait de la fiche réseau, ce détecteur NMI entraîne également la génération du signal PS-OFF dans le  $\mu P$ .

#### 4.3 MECANISME

#### 4.3.1 Commande du moteur d'entraînement

Le signal tachymétrique fourni par le moteur d'entraînement est converti (d'après le principe sample and hold) en une tension continue comparée à la tension de référence, corrigée puis utilisée à la commande du moteur. D'abord, le signal tachymétrique passe aussi bien vers le  $\mu P$  que vers le comparateur de phase dont le signal de correction est ajouté à la tension de référence.

Une fois la vitesse de rotation nominale atteinte, le  $\mu P$  commande la LED de synchronisation (33/45).

La vitesse de rotation est présélectionnée par des touches à contact fugitif. Cette information est enregistrée au  $\mu P$  qui en détermine les constantes de temps du convertisseur fréquence—tension et déclenche la commutation SLOW/FAST.

Le signal DRIVE INHIBIT et le signal FBR provoquent l'arrêt du moteur. Le signal FBR (freinage), qui abaisse à -5 V par Q18 la tension de commande pour les générateurs Hall provoque le freinage du moteur par un champ magnétique constant jusqu'à ce que le signal tachymétrique tombe. En même temps, le signal DRIVE INHIBIT supprime cette tension de réglage du moteur à la broche 6 du circuit intégré 9.

#### 4.3.2 Signal de référence

Au moyen des deux touches Varispeed, la vitesse peut être réglée par pas de 0,1% jusqu'à l'écart maximal de +/-9,0%. Les valeurs lues sont traitées par le  $\mu$ P qui modifie aussi bien la constante de temps du convertisseur fréquence-tension (TOUT) que les adresses du convertisseur N/A (R92...95) par un registre à décalage/Latch (IC8). Un générateur de rampe (en dents de scie), commandé par le  $\mu$ P, forme le comparateur de phase. Suivant la phase du signal tachymétrique par rapport au signal de référence, le générateur de rampe (IC12, broche 10) charge la tension momentanée au condensateur de maintien C34. De manière que celui-ci ne se décharge pas trop vite, le signal passe par un amplificateur opérationnel FET (IC13, broche 7).

Le  $\mu P$  travaille à la fréquence de système de 1,2288 MHz, obtenue par division de la fréquence cristal Y1 (4,9152 MHz). D'autres divisions donnent les constantes de temps de 55,55 Hz et 75 Hz pour le convertisseur fréquencetension. En mode Varispeed, les diviseurs aboutissant aux constantes de temps de 22118 et 16384 sont modifiés en fonction de l'écart.

#### 4.3.3 Convertisseur fréquence-tension

Le signal tachymétrique ( $\approx$  1 mV à 33,33 t/min) est amplifié par IC9 (broche 1 = sortie). Deux diodes antiparallèles empêchent la surmodulation de l'amplificateur. Le signal est alors converti en signal rectangulaire dans une gâchette de Schmitt (IC10, broche 2) pour pouvoir commander le monoflop (IC11, broche 5). Ce monoflop (broche 11) commande Q14 pendant 3 ms, qui charge alors C31 à +5 V. Pendant le reste du temps jusqu'à la fin d'une période, C31 se décharge par R72 et Q16 (pour 33,33 t/min par R72 et R73). Le circuit de décharge est commuté par Q16 depuis le  $\mu$ P (S/F). 40  $\mu$ s avant que C31 soit rechargé à +5 V, la tension momentanée est appliquée par IC12 (broches 8 et 9) au condensateur de maintien C31 (IC12 est commandé par le monoflop IC11, broche 6). IC13 sert alors à nouveau d'étage-tampon à haute impédance. La diode D36 doit présenter des courants très faibles de blocage et ne doit donc pas être remplacée par un autre type. Dès que la tension tachymétrique corrigée se trouve dans la fenêtre de tension fixée et que le circuit de phase est stable, le  $\mu$ P libère l'affichage LED de synchronisation.

#### 4.3.4 Le moteur d'entraînement

Les bobines et les générateurs Hall sont décalés de 90 degrés les uns par rapport aux autres. Le champ magnétique tournant de l'aimant ciculaire fait apparaître dans les générateurs Hall une tension quasi-synusoïdale. L'amplitude de tension varie proportionnellement au courant de commande du générateur Hall. Celui-ci a les propriétés d'un multiplicateur. Les tensions de générateur Hall sont amplifiées par IC14 et commandent les bobines par les transistors d'attaque Q19...Q22.

#### Indication :

Le moteur d'entraînement ne doit être remplacé que comme unité complète. Un démontage est inévitable si les générateurs Hall doivent être remplacés. Veiller à n'utiliser que des exécutions avec le même point de couleur de codage. Après remplacement du moteur ou des générateurs Hall, les réglages doivent être effectués selon les chapitres 5.3.1 et 5.3.2.

#### 4.3.5 Affichage à 7 segments

La vitesse nominale sélectionnée est affichée avec les deux premiers chiffres. Les valeurs intermédiaires ne sont affichées qu'en mode Varispeed et représentent l'écart en pour cent de la valeur nominale (max. 9,9%). Les deux touches à impulsions donnent les valeurs Varispeed par un registre à décalage/Latch (IC8) au µP qui à son tour appelle par les lignes CLOCK, DATA et ENABLE le décodeur à 7 segments IC1. Celui-ci décode les données et commande l'affichage.

#### 4.3.6 Prise SERIAL-LINK

Le B291 est doté, comme tous les appareils de sa génération, d'une entrée ou sortie accessible par une prise SERIAL-LINK. Cette prise DIN à 6 pôles permet d'une part le Disco-Start du tourne-disque (chapitre suivant) et est d'autre part prévue pour la liaison avec le Timer Controller B203 (télécommande des fonctions EASY). Il est également possible de raccorder un récepteur IR externe B206.

Les signaux d'entrée et de sortie sont séparés par opto-coupleurs. L'optocoupleur DLQ1 met la ligne interne de récepteur IR à la masse afin que DLQ2 puisse appliquer les signaux du B203 au  $\mu P.$  Enfin, DLQ3 est responsable des messages en retour du  $\mu P$  au Controller B203.

#### Occupation des fiches :

| 1 Sortie GND                    |        |
|---------------------------------|--------|
| 2 Entrée GND (Floating, Disco-S | Start) |
| 3 Entrée/sortie SERIAL          |        |
| 4 Entrée +5 V (Floating)        |        |
| 5 Sortie +5 V max. 150 mA       |        |
| 6 Disco-Start                   |        |

Attention : Si l'on désire un mode SERIAL-LINK par le Controller B203, la broche 1 doit être reliée à la broche 2, de même que la broche 4 à la broche 5.

Pour de plus amples renseignements sur la prise SERIAL-LINK conjointement avec le B203, voir :

- Mode d'emploi Timer Controller B203
  - (no. comm. 10.30.0540)
- Instructions de service du système de télécommande IR (no. comm. 10.30.0430)

#### 4.3.7 Disco-Start

Le moteur de plateau du B291 peut être enclenché et déclenché par l'intermédiaire de la prise SERIAL-LINK en appliquant entre les broches 2 et 6 une tension de 5 V...24 V (tension continue ou alternative, voir également chapitre précédent). Le moteur de plateau et le bras de lecture peuvent ainsi être manipulés indépendamment l'un de l'autre. Pour b'utilisation avec un pupitre de régie, par exemple dans les discothèques, il faut que le plateau puisse être déplacé à la main avec la cellule lecture abaissée afin de pouvoir trouver n'importe quel point du disque pour le démarrage.

Pour l'utilisation avec l'Expansion Unit et régie REVOX B279, le tourne-disque peut démarrer avec le régulateur correspondant et être arrêté en fermant celui-ci. Pour cela, le B291 accélère à la vitesse nominale (33 1/3 t/min) en un tour.

Pour cela, il est indispensable de modifier la platine principale du B291 :

Fig.4.1

■ Introduire une résistance R=2,7 kQ à l'endroit aué.

■ Le raccord 6 de la prise SERIAL-LINK est maintenant appliqé à +12 V à travers la résistance 2,7 kQ.

Pour la connexion entre les deux appareils, il y a un câble avec fiche 3,5 mm et extrémité libre (no. ainsi que la fiche à 6 pôles correspondante, exécution à souder (no. 70534).

Câble et fiche doivent être câblés de la manière suivante

- Relier la broche 1 à la broche 2 dans la fiche à 6 pôles.

- Relier les deux conducteurs du câble à la broche 2 et 6 respectivement (polarité sans importance).

Attention : Si on désire le mode SERIAL-LINK par le Controller B203 sans utiliser en même temps le Fader-Start, il faut en plus du câblage normal relier la broche 6 aux broches 1 + 2. autrement le B291 ne peut être raccordé comme appareil no. 1.

Câblage normal : Broche 1 reliée à broche 2, broche 4 à broche 5.



#### COMMANDE DE BRAS DE LECTURE 4.4

### 4.4.1 Indications et subdivision

L'électronique de commande de bras est partagée en deux parties principales :

- Partie numérique contenant le microprocesseur (μP) comme centrale de la commande logique de la partie analogique.
- Partie analogique fournissant les signaux pour le moteur de commande. Cette partie se compose essentiellement de l'amplificateur à diodes photo-électriques (IC15) ainsi que de l'amplificateur de sommation IC16 avec les transistors d'étages finals Q28 et Q29.

La description est subdivisée cependant d'aprés les fonctions étant donné que les deux parties sont actives pour pratiquement chaque fonction.

Voir également chapitre 6 : Schéma-bloc B291 page 6/5, schémas page 6/10+11.

#### 4.4.2 Niveau d'entrée numérique

- m Microrupteur ARM (arm in switch) : O V lorsque le bras n'est pas en position de service.
- m Microrupteur R-LS (right limit switch) :
- O V quand le chariot a atteint la butée droite.
- Microrupteur L-LS (left limit switch) : O V quand le chariot a atteint la butée gauche.
- trois touches de bras sont lues par le µP dans un registre à décalage/Latch IC8 (activable uniquement lorsque le bras est rentré).



Fig. 4.2

#### 4.4.3 Abaissement

L'aimant d'abaissement (Lowering solenoid) est excité par une impulsion de double tension par les transistors Q24 et Q24 (SQL1/2). Durant les pauses (bras levé) Q25 conduit et charge le condensateur C38 à la tension de service. Lorsque l'aimant (MAG) est activé, Q24 conduit et commute le condensateur chargé à la tension de +12 V (doublage de tension) tandis que Q25 est bloqué.

#### 4.4.4 Positionnement automatique

Pour que le B291 trouve la position d'abaissement sur les Singles, le guidage de bras est équipé d'une troisième diode photo-électrique (DP3). Un écran sur la tringle d'abaissement interrompt le flux de lumière sur la diode. Le comparateur de tension IC17 (seuil réglage par R154) fournit l'impulsion POS qui est lue par le  $\mu P$ . Celui-ci met le signal MAG à O V. L'abaissement est alors exécuté comme indiqué au chapitre précédent.

#### 4.4.5 Positionnement manuel

A l'avance manuelle, les impulsions des touches sont appliquées par le  $\mu P$  au registre à décalage/Latch (IC8) et transmises à l'amplificateur de sommation (IC16) comme séquence définie d'impulsions. Celle-ci détermine la durée et la vitesse de l'avance et sélectionne, suivant la direction de l'avance, l'entrée correspondante de l'amplificateur de sommation (signal IN ou OUT).

## 4.4.6 Amplificateur à diodes photo-électriques et amplificateur de sommation

L'amplification du signal de diodes photo-électriques dans IC15 peut être modifiée par R119. Si le réglage est correct, les tolérances de fabrication des diodes électroluminescentes et photo-électriques sont compensées et ne jouent donc aucun rôle. Si l'amplification est trop grande, le moteur d'avance tourne par saccades lorsqu'un disque est reproduit; cela provoque des ronronnements. Si l'amplification est insuffisante, l'aiguille quitte le sillon de sortie étant donné que le chariot n'est plus à même de suivre la grande avance de sillon.

Le point de travail de la cellule abaissée est dans la gamme de  $\pm$  0,5 V (à la broche 7 de IC15). Une déviation horizontale de 0,24 mm de la pointe de l'aiguille doit donner une variation de tension 2 V à la broche 7 si l'amplification est correcte.

Lors de la reproduction d'un disque d'excentricité normale de 0,1 mm, l'excursion périodique de tension est d'environ  $\pm$  1 V.

Le signal de diode photo-électrique a deux chemins pour atteindre l'amplificateur de sommation (IC16). Ceux-ci se distinguent l'un de l'autre par les constantes de temps et les facteurs de transmission. Les petits signaux négatifs pouvant se produire pendant l'avance normale du disque sont appliqués au condensateur C41 par la diode D43 la résistance de charge R122. Les signaux de cette voie quident le moteur d'avance à vitesse constante. Pour les signaux positifs (impulsions > 3,5 V) le condensateur intégrateur chargé négativement C41 est déchargé par la diode Zener D43. Ces impulsions positives (> 3,5 V) se produisent le plus souvent à la fin des longs sillons d'identification lorsque le chariot a déjà été un peu trop loin. Un léger retour du chariot n'est pas exclu. Si une avance plus importante est soudain demandée, par exemple lors de l'entrée dans le sillon de sortie, un circuit direct assure le pontage de la grande constante de temps de R122 et C41 par D41, D42 et R123.

Tous les signaux d'avance et le couplage de courant sont réunis à la broche 7 de l'amplificateur de sommation (IC16). Ce couplage de courant (R142, R143) réduisant l'effet de la résistance d'induit et ainsi la tension de démarrage du moteur, est couplé à l'entrée d'addition.

#### 4.4.7 Détection de sillon de sortie

Pour la détection de sillon de sortie, la tension commandant le moteur d'avance est utilisée. Si la cellule demande une avance plus importante en arrivant à la plage de sortie d'un disque, la tension de moteur augmente, ce qui fait que le condensateur de maintien C43 se charge par R110. Pour que la coupure réagisse indépendamment du frottement du chariot et de l'entraînement, la "surtension" est à nouveau déduite de la tension au condensateur de maintien C43 dans IC15. IC16 Compare la tension C43 avec une valeur fixe mais réglable par R136. Si la tension de C43 dépasse le seuil de la broche 3 de IC16, la sortie (END-SIG) tombe à O V, le  $\mu$ D déclenche le levage de la cellule ainsi que le retour du chariot. Ce circuit ne fonctionne qu'en mode PLAY étant donné que C43 est court-circuité par Q34 lorsque la cellule est levée.

#### 4.4.8 Eclairage

L'éclairage de bras de lecture est commandé par le  $\mu P$  par l'intermédiaire du transistor Q13, la source de lumière n'étant enclenchée que lorsque le plateau tourne et que le circuit de filtre d'arrêt de bruits est actif.

4

#### 4.4.9 Filtre d'arrêt de bruits

Le filtre d'arrêt de bruits coupe les circuits audio lorsque l'appareil est mis hors tension (Standby), lorsque le bras de lecture est levé et durant l'abaissement afin de supprimer les bruits de pose de l'aiguille. Après déclenchement de l'abaissement, il faut à peu près une seconde jusqu'à ce que le signal BF apparaisse à la sortie. Un transistor à effet de champ est placé dans chaque voie audio, et commence à bloquer lorsqu'il est appliqué une tension négative élevée de polarisation de porte (Q210 et Q310). Le circuit doubleur de tension (D15...17, C16, C17) de l'alimentation fournit les -40 V (-U MUTE) nécessaires. Lorsque le filtre d'arrêt de bruits est inactif, le signal MUTE du µP est appliqué aux deux transistors Q31 et Q32. Ceux-ci conduisent, il y a une chute de tension à la résistance R149 et la tension de polarisation de porte ainsi abaissée ne peut plus bloquer les transistors Q210 et Q310.

#### 4.5 PREAMPLIFICATEUR

- Le modèle de base du tourne-disque B291 est équipé d'un amplificateur MM à équipement linéaire servant de convertisseur d'impédance. On voit que cet appareil a été développé spécialement pour têtes de lecture MM.
- L'équipement peut être complété d'une correction RIAA sur la platine existante. Ceci est prévu comme intervention de service.

Voir également chapitre 6 : Schéma-bloc B291 page 6/5, schémas page 6/10+14.

#### 4.5.1 Convertisseur d'impédance

Le signal de la cellule de lecture reste inchangé pour le niveau, tandis que l'impédance de sortie est réduite à 200...250 Q. Les capacités du câble et les différences d'impédances d'entrée des préamplificateurs phono perdent ainsi leur influence sur la courbe de réponse. L'adaptation de la cellule de lecture se fait donc non à l'entrée de l'amplificateur mais au convertisseur d'impédance comme cela a été fait ou doit se faire lors du montage ou du remplacement de la tête de lecture (chap. 3.4).

Un filtre d'arrêt de bruits supprime les signaux indésirables à l'enclenchement et à l'abaissement (chapitre 4.4.9). En outre, le convertisseur d'impédance permet de corriger la balance des canaux étant donné que le canal gauche peut varier de  $\pm\ 2$  dB.

#### 4.5.2 Correction RIAA

Cette modification permet de raccorder le B291 directement à une entrée d'amplificateur (Tape, Aux.). Pour cela, le convertisseur d'impédance doit être utilisé comme amplificateur, ce qui se fait en installant les réseaux RIAA dans les circuits de contreréaction entre Q201 (Q301) et R215 (R315).

Fig.4.3...4.5  $e^{it}$  L'equipement se fait sur la platine existante 1.179.350 :

| Left Channel | Right Channel | Value   | Studer - Nr.: |
|--------------|---------------|---------|---------------|
| C 202        | C 302         | 5n6 1%  | 59,12.7562    |
| C 203        | C 303         | 680p 1% | 59,05.1681    |
| C 204        | C 304         | 1n2 1%  | 59,12.7122    |
| R 207        | R 307         | 510k 1% | 57.11.3514    |
| R 208        | R 308         | 22k 1%  | 57.11.3223    |
| R 209        | R 309         | 43 k 1% | 57.11.3433    |
| R 210        | R 310         | 100R 1% | 57.11.3101    |

Fig. 4.3



Fig. 4.4



### MESURES ET REGLAGES ELECTRIQUES

#### 5.1 GENERALITES

Consulter également : Schémas et schéma-bloc chapitre 6, description du fonctionnement chapitre 4

L'appareil contient des composants sensibles aux décharges électrostatiques. Les travaux de réparation ne doivent être effectués qu'à des postes de travail équipés en conséquence (équipement de poste de travail "ESE" no. comm. 46200.

Les moteurs de tourne-disque sont réglés à l'usine dans un dispositif spécial avec entraînement externe. Ensuite, l'électronique est réglée par rapport au moteur. Les réglages suivants sont donc nécessaires lorsque l'un des deux éléments est remplacé.

### 5.2 AUXILIAIRES ET APPAREILS DE MESURE

Surface d'appui pour châssis démonté de tourne-disque:

Le châssis doit être déposé horizontalement et de manière stable pour garantir le ménagement de l'appareil pendant les manipulations, car pour les réglages et les mesures à la partie de commande, il est indispensable que l'appareil puisse fonctionner à l'état démonté. Les rallonges mentionnées pour le moteur et le bras sont prévues à cet effet. Une telle surface d'appui supportant le châssis aux angles peut par exemple se composer d'une plaque avec 4 cales de bois (environ 10 cm de haut).

- Rallonge moteur . . . . . . . . . no. comm. 46135
  Rallonge bras de lecture . . . . no. comm. 46137
- Filtre sélectif 3,33 Hz et 6,67 Hz . no. comm. 46150 ■ Disque de mesure REVOX . . . . . no. comm. 46010
- Wobulateur (par ex. Woelke ME102)
- Contrôleur universel (Ri ≥ 10 kQ), de préférence voltmètre numérique
- m Millivoltmètre ou Wave Analyzer



Fig. 5.1

#### 5.3 MECANISME

#### 5.3.1 Préréglage du circuit de réglage moteur

#### Indication :

Le pleurage minimum garanti pour ce tourne-disque de haute qualité n'est possible que si les deux courants de bobines sont identiques et déphasés de 90 degrés. Si après le démontage d'un moteur il n'y avait aucune possibilité de faire effectuer les travaux de réglage en usine, on procéderait selon la méthode (de fortune) suivante:

- Mettre les potentiomètres R108 et R109 en position médiane.
- Fig. 5.1 Régler les deux vis de réglage du moteur d'entraînement de manière à obtenir un écart de 0,5 mm entre la vis et l'élément Hall.
- Remonter le moteur.
- Le poser à l'aide des câbles de rallonge de manière que les potentiomètres de réglage soient accessibles.
- Démarrer à 33,33 t/min.
- Régler le potentiomètre R69 de manière que la tension à la broche 7 d'IC13 soit +2,4...2,5 V.
- Le temps de démarage doit être de 2 s au maximum.

Les réglages doivent se faire en fonctionnement synchrone correct. La LED de synchronisation doit s'allumer de manière constante à toutes les vitesses (également Varispeed).

5.3.2 Réglage du moteur et de la commande d'entraînement pour un minimum de pleurage

#### Fig.5.1

- Poser le disque de mesure REVOX et reproduire la partie 9 (3150 Hz, latéral).
- La composante de pleurage d'excentricité (0,55 Hz à 33,33 t/min) ne doit pas dépasser +/-0,1%. Autrement, centrer le disque avec précision sur le plateau, si nécessaire agrandir le trou de centrage.
- Insérer un filtre sur l'appareil de mesure et filtrer la composante 6,67 Hz (art. no. 46150).
- En faisant tourner en sens contraire les vis de réglage (1) des éléments Hall (2) régler cette part à moins de +/-0,02%.
- Filtrer la composante 3,33 Hz et régler les deux potentiomètres R108 et R109 pour moins de +/-0,02%.
- Mesurer le pleurage global pondéré : Valeur limite +/- 0,05%.
- Mesurer le pleurage global linéaire (filtre en position DIRECT) : valeur limite +/-0,1%
- Le pleurage global pondéré doit rester inférieur à 0,06% même à l'écart le plus important pour les valeurs Varispeed.

## 5.3.3 Allures typiques de signaux pour synchronisation correcte du moteur



#### 5.4 GUIDAGE DU BRAS DE LECTURE

## 5.4.1 Contrôle de fonctionnement du guidage de bras de lecture

- Effectuer les opérations dans l'ordre.
- Situation de départ : Appareil hors tension, POWER-LED allumée.

| A C T I O N                                            | REACTION                                                                                                                                              |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rentrer le guidage<br>de bras;                         | le plateau démarre à<br>33 1/3 t/min,<br>l'éclairage s'allume.                                                                                        |
| Avance ◁;                                              | le chariot se déplace<br>à gauche.                                                                                                                    |
| Abaissement $\nabla \Delta$ ;                          | la cellule s'abaisse,<br>l'éclairage s'éteint.                                                                                                        |
| Retour ▷ ;<br>lâcher la touche                         | la cellule est levée,<br>l'éclairage s'allume,<br>le chariot se déplace<br>à droite,<br>la cellule s'abaisse<br>à nouveau et l'éclairage<br>s'éteint. |
| Soulever $\nabla \Delta$ ;                             | la cellule est levée,<br>l'éclairage s'allume.                                                                                                        |
| Sortir le guidage<br>de bras;                          | l'éclairage s'éteint,<br>Retour du chariot,<br>le plateau s'arrete.                                                                                   |
| 45,Special, rentrer<br>le guidage de bras;             | éclairage allumé,<br>le plateau démarre.                                                                                                              |
| Avance ⊲<br>jusqu'à la butée;                          | retour du chariot jusqu'<br>à la butée à droite,<br>le plateau s'arrête,<br>l'éclairage s'éteint.                                                     |
| Sortir le bras,<br>Special hors,<br>rentrer à nouveau; | l'éclairage s'allume,<br>le plateau démarre à<br>45 t/min le chariot va<br>jusqu'au repère de<br>position pour Singles.                               |
|                                                        |                                                                                                                                                       |

5.4.2 Indication et conditions importantes pour les réglages du bras

- Les réglages nécessitent les rallonges indiquées au chapitre 5.2, un disque de mesure ainsi qu'une surface d'appui stable telle que celle proposée au chapitre 5.2. Celle-ci permet de faire fonctionner le châssis à l'état démonté.
- Tous les réglages mécaniques, en particulier la profondeur d'abaissement et la force d'appui de la tête de lecture, doivent être effectués correctement selon le chapitre 3.
- Pendant les mesures, les diodes photo-électriques de la barrière lumineuse de tête de lecture doivent être protégées de la lumière extérieure étant donné que le couvercle doit être démonté pour la plupart des réglages.

#### 5.4.3 Réglage du guidage de bras de lecture

- Procédure avec disque de mesure REVOX 46010 :
- Mettre le tourne-disque hors tension en retirant le câble de réseau.
- Décrocher la corde d'entraînement du chariot de tête de lecture (détacher le ressort spirale).
- Raccorder le voltmètre CG à la broche 7 d'IC15 et à la masse (O V).
- Poser le disque de mesure REVOX.
- Abaisser le bras de lecture à la partie 4 (sans modulation, avance de sillon constante 80 μm, comme pour la mesure du ronronnement).
- Noter la tension indiquée comme valeur de référence.
- Faire tourner le disque à la main de 3 tours complets dans le sens antihoraire.
- Régler le potentiomètre R119 de manière que le voltmètre indique une excursion de tension de 1,5...2,2 V.

A la place du disque de mesure REVOX, on peut se servir de n'importe quel disque à espacement constant et connu des sillon. Avec le disque de mesure, le décalage radial de 0,24 mm est obtenu par 3 tours exactement (avance 80 µm). Si l'on utilise un disque avec une autre avance de sillon, il faut convertir la tension en conséquence : environ 1,8 V / 0,24 mm d'avance

L'utilisation d'un disque ne donne de résultats précis que si l'avance est obtenue par un nombre entier de tours du disque étant donné que l'excentricité du disque peut être très supérieure à l'avance de sillon.

#### 2. Procédure avec gabarit 46173 :

Attention : Ne faire osciller le guidage de bras audessus du gabarit que si la tête de lecture se trouve en position de départ.

Fig.5.2 Le gabarit permet de décaler la tête de lecture radialement de 0,24 mm.

- Mettre le tourne-disque hors tension en retirant le câble réseau, la corde d'entraînement du guidage de bras n'a pas besoin d'être retirée pour le réglage au gabarit.
- m Retirer la plaque de caoutchouc.
- Raccorder le voltmètre CC à la broche 7 (+) d'IC15 et à la masse (0 V).
- Poser le porte-aiguille au milieu du coulisseau mobile (3).
- Noter la tension indiquée comme valeur de référence.
- En actionnant le coulisseau et en réglant en conséquence le potentiomètre R119, le voltmètre doit indiquer une excursion de tension de 1,5...2,2 V.

#### Indication :

Pour éviter un déplacement latéral de l'aiguille sur le gabarit pendant le réglage, la zone du gabarit sur laquelle se pose l'aiguille (au-dessus des lignes de marquage) doit être recouverte d'un morceau de ruban adhésif à surface rugueuse (par ex. bande textile ou crêpe).



Fig. 5.2

## 5.4.4 Réglage de position de la platine de palpage

Ce réglage détermine la position de la tête de lecture par rapport au chariot et a une influence sur l'angle de piste vertical. Le point de travail électrique doit coïncider avec le point de repos mécanique lorsque la tête de lecture est levée (défini par la vis de réglage de hauteur de la tête de lecture et le centrage en V dans le support de tête de lecture).

#### Conditions :

- Le ressort amortisseur du chariot doit être parfaitement parallèle au guidage avant de chariot et ne doit pas influencer la position de la tête de lecture pendant le mouvement de levage (régler au moyen d'une pincette si nécessaire.
- Comme appareil de mesure pour ce réglage, on donnera la préférence à un voltmètre analogique à zéro central par rapport aux "auxiliaires" indiqués au chapitre 5.2.

#### Contrôle :

- Décrocher la corde d'entraînement du chariot de tête de lecture (détacher le ressort spirale).
- Rentrer le guidage de bras de lecture, pousser le chariot à peu près jusqu'au milieu.
- Raccorder un voltmètre CC à la broche 7 (+) d'IC15 et à la masse (0 V).
- Pendant l'abaissement de la tête de lecture (au moyen de la touche), observer au voltmètre la tension variable :

Elle doit rester dans la plage -0,5 V ... +0,5 V.

### Correction :

#### Fig. 5.3

Un décalage horizontal de la platine de palpage (1.179.300.00) provoque une variation de position de l'écran dans la plage de la barrière lumineuse.

- Desserrer légèrement les deux vis de fixation (4).
- n Déplacer la platine
- à gauche : >> + la tension devient plus positive - à droite : - << + la tension devient plus négative
- Resserrer à nouveau la platine comme il convient.



Fig. 5.3

#### 5.4.5 Remplacement de la LED infrarouge

#### Fig.5.4

Lors du remplacement de la LED par une neuve, on observera les points suivants :

- Hauteur de montage :
- distance entre le bord inférieur du corps de LED et le plan de la platine = 4,5...5 mm.
- Dresser la LED exactement à la verticale de part et d'autre avant le soudage.
- Contrôle après réglage de la profondeur d'abaissement de la tête de lecture :
  - La LED ne doit pas toucher le ressort amortisseur sur le support de tête de lecture.

Ensuite, effectuer le réglage de la platine de palpage selon chapitre 5.4.4.



Fig. 5.4

#### 5.4.6 Réglage du signal final (pour 33 t/min)

Les sillons de sortie à la fin des disques courants (33 t/min) sont toujours taillés avec un pas de 3,2 mm par tour. La détection de sillon de sortie (chap.4.4.7) doit déclencher le relèvement de la cellule à la partie 10, à la fin du disque de mesure REVOX, après 1 à 2 tours de cette pente. Au sillon de garage (partie 7) au milieu du disque, il ne doit pas y avoir de coupure. Le réglage se fait à l'aide du potentiomètre R136.

#### 5.4.7 Réglage du signal de positionnement

- Raccorder le voltmètre CC à la broche 6 (+) d'IC17 et à la masse (0 V).
- Déplacer le bras de lecture lentement au-dessus de la plage d'écran de positionnement au moyen des touches.
- Observer la tension variable au voltmètre et noter la valeur minimale affichée.
- Ramener le bras de lecture à la butée droite.
- Raccorder maintenant le voltmètre à la broche 5 (+) d'IC17.
- Tourner R154 jusqu'à ce que la tension soit de 0,1 V supérieure à la valeur minimale observée précédemment à la broche 6.

Attention : Le capot de guidage du bras doit être posé.

#### 5.4.8 Mesure de la capacité de palpage

#### Mesure :

On reproduira pour cela la partie 5 (315 Hz, latéral, amplitudes de crête : 50µ, 60µ ... 120µ ) du disque de mesure REVOX. La capacité de palpage doit atteindre 80...90 µm pour les deux canaux. Les distorsions doivent commencer autant que possible à la même amplitude de crête pour les deux canaux.

#### Commentaire :

Si la capacité de palpage voulue ne peut être atteinte, une légère modification est possible en augmentant la force d'appui. Celle-ci ne doit cependant en aucun cas être supérieure de plus de 15% à la valeur nominale indiquée par le fabricant.

Si la valeur mesurée est très en dehors des tolérances ou s'il y a une différence non négligeable entre les canaux, donnant lieu de penser à un défaut, il faut tout d'abord contrôler le diamant au microscope pour détecter des dommages ou une usure extrême avant de modifier les réglages du bras de lecture.

#### 5.5 PREAMPLIFICATEUR

## 5.5.1 Réglage de balance et mesure de l'affaiblissement de diaphonie

#### Balance:

- Raccorder l'hypsomètre aux sorties.
- Reproduire la partie 2 du disque de mesure REVOX (mono 1 kHz).
- Mesurer alternativement les canaux gauche et droit : La différence de niveau doit être inférieure à 0,3 dB.
- $\blacksquare$  R226 permet de faire varier le canal gauche de  $\pm$  2 dB pour l'adapter au canal droit.

#### Affaiblissement de diaphonie R -> L :

- Raccorder l'hypsomètre à la sortie gauche.
- Reproduire la partie 2 du disque de mesure (1 kHz, gauche).
- Mesurer le canal gauche, calibrer l'hypsomètre à 0 dB.
- Reproduire la partie 2 (1 kHz, droite): L'appareil de mesure doit indiquer au moins 25 dB de moins.

La mesure d'affaiblissement de diaphonie L -> R se fait de la même manière, on doit obtenir également comme résultat une différence d'au moins 25 dB.

Attention : Si le tourne-disque est livré en version P-Mount, la balance a été réglée en usine pour un niveau de 5 mV et 1 kHz. En montant la cellule, il faut absolument procéder à un réglage ultérieur selon chap. 3.4.4 et 5.5.1. Nous déconseillons de monter simplement une cellule sans réglage.

| 6 | SCHEMATA |  |
|---|----------|--|

SPARE PARTS

PIECE DE CHANGE

| INHALT     | CONTENTS         | SOMMA      | I RE         | Page |
|------------|------------------|------------|--------------|------|
| ABBREVIATI | ONS              |            |              | 6/2  |
| BOARDS LOC | ATION            |            |              | 6/3  |
| BOARDS LOC | ATION TONE ARM   | . 7:       |              | 6/4  |
| BLOCKDIAGR | AM               | <i>च</i> ' |              | 6/5  |
| MAINS TRAN | SFORMER          | per        | 1.179.357.00 | 6/6  |
| MAINS CONN | ECTION           |            | 1.179.360.00 | 6/6  |
| TURNTABLE  | ELECTRONICS :    |            | 1.179.350.21 |      |
| - POWER SU | IPPLY Pag        | ge 1 📤     |              | 6/7  |
| - BOARD (P | CB)              |            |              | 6/8  |
| - MICROPRO | CESSOR Pag       | ge 2 📤     |              | 6/10 |
| - TONE ARM | CONTROL Pag      | ge 3 📤     |              | 6/11 |
| - MOTOR CO |                  | ge 4 📤     |              | 6/12 |
| - PREAMPLI |                  | ge 5 📤     |              | 6/14 |
| IR-RECEIVE | R (PCB 1.179.197 | 7.11)      | 1.179.365.00 | 6/15 |
| PUSHBUTTON | UNITS :          |            |              |      |
| - LED-DISP | PLAY             |            | 1.179.344.81 | 6/16 |
| - MOTOR-KE | YBOARD           |            | 1.179.345.00 | 6/17 |
| - ARM-KEYE | OARD             |            | 1.179.347.00 | 6/17 |
| TONE ARM L | INIT:            |            | 1.179.300.00 |      |
| - PICK UP  | PCB              |            | 1.179.117.11 | 6/18 |
| - DETECTOR | PCB              |            | 1.179.119.11 | 6/18 |
| - SUPPORT  |                  |            | 1.179.300.11 | 6/18 |
| - CONNECTI | ON PCB           |            | 1.179.302.11 | 6/18 |
| MOTOR UNIT |                  |            | 1.021.502    | 6/20 |
|            |                  |            |              |      |



#### **ABBREVIATIONS**

| ONENTS                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                           | coil, inductance                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bulb battery, accumulator optocoupler B->LDR capacitor diode, DIAC LED light-emit.diode optocoupler LED->QP optocoupler LED->DLR LED array,7s.display photodiode rectifier electronic part headphones fuse filter head (sound-/erase-) | LCS<br>M MEC<br>MP<br>PU<br>QPZ<br>RPRTZ<br>ST                                                                                                                                                                                                                                                                              | coil, inductance LC Display loudspeaker motor meter microphone mechanical part plug (male) pick up transistor phototransistor phototransistor array resistor light depend. resist. temp. sensit. resist. resistor array switch transformator delay line                                                                                                                       |
| hall element                                                                                                                                                                                                                           | TP                                                                                                                                                                                                                                                                                                                          | test point                                                                                                                                                                                                                                                                                                                                                                    |
| jack (female)<br>jumper                                                                                                                                                                                                                | X<br>X<br>XB                                                                                                                                                                                                                                                                                                                | wire, stranded wire<br>socket, holder<br>lamp socket                                                                                                                                                                                                                                                                                                                          |
| relay, contactor<br>coil, inductance<br>LC Display                                                                                                                                                                                     | XF<br>XIC<br>Y                                                                                                                                                                                                                                                                                                              | fuse holder IC socket quartz, piezoelement                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                        | bulb battery, accumulator optocoupler B->LDR capacitor diode, DIAC LED light-emit.diode optocoupler LED->QP optocoupler LED->DLR LED array,7s.display photodiode rectifier electronic part headphones fuse filter head (sound-/erase-) hybrid circuit hall element integrated circuit jack (female) jumper relay, contactor | bulb LS battery, accumulator optocoupler B->LDR ME capacitor MIC diode, DIAC MP LED light-emit.diode P optocoupler LED->QP optocoupler LED->DLR LED array,7s.display QP photodiode QPZ rectifier R electronic part RP headphones RT fuse RZ filter S head (sound-/erase-) T hybrid circuit TL hall element TP integrated circuit W jack (female) X jumper XB relay, contactor |

| SPECI | FICATIONS OF ELEMENTS | MP  | Metal paper             |
|-------|-----------------------|-----|-------------------------|
| cc    | Carbonfilm            |     | Carbonfilm<br>Polyester |
| Cer   | Ceramic               | Pme | Metallised Polyester    |
| Cerm  | Cermet                | PP  | Polypropylen            |
| ΕL    | Electrolytic          | Si  | Silizium                |
| Mf    | Metalfilm             | Tri | Trimmer                 |

| Mf   | Metalfilm               | Tri | Trimmer           |
|------|-------------------------|-----|-------------------|
| MANL | JFACTURER OF COMPONENTS | Ra  | Raytheon          |
|      |                         | RCA | Radio Corporation |
| ADI  | Analog Devices Inc.     |     | RIVA              |
| AMP  | Ampex                   | SDS |                   |
| Com  | Componex                | Sie | Siemens           |
| Dam  | Dam Electronic          | SIG | Signetics         |
| Del  | Delevan                 |     | Stetner           |
| Ex   | Exar                    |     | Stock <b>o</b>    |
| GΙ   | General Instrument      | St  | Studer            |
| Ha   | Harris                  | Sx  | Siliconix         |
| Ηi   | Hirschmann              | Ti  | Texas Instruments |
| ITT  | Intermetal, Valvo       | TDK | TDK               |
| Mot  | Motorola                |     | Toko              |
| NEC  | Nippon Electr. Corp.    | To  | Toshiba           |
| NS   | Nat. Semiconductors     | Vi  | Videlec           |
| Ph   | Philips                 |     |                   |

#### POWERS OF TEN

| ı | Milli-    | Mikro-              | Nano-      | Pico-      | Femto-     | Tera-     | Giga-    | Mega-    | Kilo-    | l |
|---|-----------|---------------------|------------|------------|------------|-----------|----------|----------|----------|---|
|   | m<br>10-3 | Mikro-<br>μ<br>10-6 | n<br>10 -9 | p<br>10-12 | f<br>10-15 | T<br>1012 | G<br>109 | M<br>106 | к<br>103 |   |

#### CODE LETTERS AND COLORS



#### CAPACITORS

| The tolerance category is some- | D = | 0,5% | J =   | 5%  |
|---------------------------------|-----|------|-------|-----|
| times specified by a letter af- | F = | 1%   | K = ' | 10% |
| ter the rated capacitance.      | G = | 2%   | M = 7 | 20% |

#### MOLDED RF COILS

A wide silver-colored ring and 4 thin, differently colored rings identify molded RF coils. The wide silver ring indicates the start of the counting direction. The second, third, and fourth ring indicate the inductance in micro Henry ( $\mu$ H), where two of the three rings represent the numeric value, the third one either a multiplier or the decimal point. In the latter case it has a golden color. The fifth ring identifies the tolerance in percent ( $\pm$ ).



### NOTE:

Some of the order numbers contained in the following lists are used for production purposes only. The reference numbers may deviate for service purposes.

Electrical components such as resistors, capacitors, transistors, IC's etc. having no special unit-specific number and not being identified respectively should be purchased locally.

### BOARDS LOCATION



### BOARDS LOCATION TONE ARM





MAINS TRANSFORMER 1.179.357.00 and MAINS CONNECTION 1.179.360.00



| IND.   | POS.NO.                              | PART NO.                                                             | VALUE    | SPECIFICATIONS / EQUIVALENT                                          | MANUF   |
|--------|--------------------------------------|----------------------------------------------------------------------|----------|----------------------------------------------------------------------|---------|
|        | C1                                   | 59.99.0453                                                           | 100 nF   | 10%, 250V                                                            |         |
|        | MP 1<br>MP 2<br>MP 3<br>MP 4<br>MP 5 | 1.179.360.11<br>54.02.0320<br>54.02.0320<br>54.02.0320<br>54.02.0320 |          | Mains Connection PCB<br>Flat Pin<br>Flat Pin<br>Flat Pin<br>Flat Pin | St      |
|        | W1                                   | 1.179.160.93                                                         |          | Wire List                                                            | St      |
|        |                                      |                                                                      |          |                                                                      |         |
|        |                                      |                                                                      |          | ÷1.2                                                                 |         |
|        |                                      |                                                                      |          | · .                                                                  |         |
|        |                                      |                                                                      |          |                                                                      |         |
|        |                                      |                                                                      |          |                                                                      |         |
|        |                                      |                                                                      |          |                                                                      |         |
|        |                                      |                                                                      |          |                                                                      |         |
|        |                                      |                                                                      |          |                                                                      |         |
|        |                                      |                                                                      |          |                                                                      |         |
| MANUF. | ACTURER: S                           | t= Studer                                                            |          |                                                                      |         |
| DRIG   | 86/03/19                             |                                                                      |          |                                                                      |         |
| STU    | DER (                                | 00) 86/03/18 STU                                                     | MAINS CO | NECTIN COMP. 1.179.360.                                              | 00 PAGE |

SPANNUNGSEINSTELLUNG

SELECTION

MAINS VOLTAGE
SELECTION

SELECTION

WICHTIG

IMPORTANT

Wird die Spannungseinsteilung geändert, muss die korrekte Spannung auf dem Typenschild aufgeklebt werden (Spannungsschilder liegen dem Gerat bei).

Netzsicherung durch richtigen Wert ersetzen!

If the mains voltage setting is changed, a labei with the correct voltage indication must be added to the identification plate (voltage-labeis enclosed).

Replace mains-fuse by correct value!

This sticker on the bottom of the player is just included from several no.2653 onward.

# Primary and secondary connections







TURNTABLE ELECTRONIC 1.179.350.21, POWER SUPPLY



| 0 18.02. | 86 Stussi | 170186 Mini 0   | 0   |    | 0            |
|----------|-----------|-----------------|-----|----|--------------|
|          | Roll      | B291 TURNTABLE  |     |    | PAGE / OF /  |
| ST       | JDER      | MAINS-TRANSFORM | 'ER | SC | 1.179.357.00 |



| (1) 29.10.26 Stussi | 1 31 10 86 1 herri 2 19 12 86 Sherri | 3 12.03.87 Musi | 0            |
|---------------------|--------------------------------------|-----------------|--------------|
| 4.14                | B291 TURNTABLE                       |                 | PAGE / OF 5  |
| STUDER              | TURNTABLE ELECTRONICS                | SC              | 1.179.350.21 |





TURNTABLE ELECTRONICS 1.179.350.21, BOARD (PCB)

| IND. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MAMUF.                                                                                                                                                                                                                                                                                                                                                           | IND. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MAMUF.                                                                                                              | IND. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.                                                                | IND. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.  R303 57-11-4221 220                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0204 50-04-0125 1N4448 0205 50-04-0125 1N4448 0300 50-04-0125 1N4448 0301 50-04-0125 1N4448 0301 50-04-0125 1N4448                                                                                                                                                                                                                                                                                                       | Q30 50.03.0515 86.3078 86.5578.86.5608 ITT Q31 50.03.0436 86.2378 86.5478.86.5508 ITT Q32 50.03.0515 86.3078 86.5578.86.5608 ITT Q33 50.03.0436 86.2378 86.5478.86.5508 ITT | R91 57-11-6221 220<br>R22 57-11-6103 10 k<br>R83 57-11-6103 10 k<br>R84 57-11-6103 10 k                                       | R304 57-11-4221 220<br>R305 57-11-3271 270 13-MF<br>R306 57-11-4221 220<br>R311 57-11-4102 1 k                                                        |
| 0302 50.04.0125 1N4448<br>0303 50.04.0125 1N4448<br>0304 50.04.0125 1N4448<br>0305 50.04.0125 1N4448                                                                                                                                                                                                                                                                                                                     | Q34 50.03.0436 BC2378 BC5478+8C550B TI Q35 50.03.0216 J111 Six Q200 50.03.0215 258170 To Q201 50.03.0215 258170 To                                                          | R85 57.11.3912 9.1 k 1%*MF<br>R86 57-11.3912 9.1 k 1%*MF<br>R87 57-11.4683 68 k<br>R88 57-11.4923 82 k                        | R312 57.11.4271 270<br>R313 57.11.4470 47<br>R314 57.11.4333 33 k<br>R315 57.11.3271 270 1%.MF<br>R316 57.11.4470 47                                  |
| 0306 50.04.0125 1N4448  DLQ1 50.99.0111 MCT-6 Opto Coupler OLQ2 50.99.0126 4N28 Opto Coupler OLQ3 50.99.0126 4N28 Opto Coupler                                                                                                                                                                                                                                                                                           | 0202 50.03.0496 BC560 Sie 0203 50.03.0496 BC560 Sie 0204 50.03.0497 BC550 Sie 0205 50.03.0496 BC560 Sie 0206 50.03.0496 BC560 Sie                                           | R99 57-11-4-102 1 k R90 57-11-4-223 22 k R91 57-11-4562 5-6 k R92 57-11-3513 51 k R93 57-11-4104 100 k                        | R317 57-11-4221 220<br>R318 57-11-4271 270<br>R319 57-11-4222 2-2 k<br>R320 57-11-4220 22                                                             |
| 0L03 50.99.0126 4N28 Opto Coupler  F1 51.01.0114 500ma-T F2 51.01.0114 500ma-T F3 51.01.0114 500ma-T                                                                                                                                                                                                                                                                                                                     | Q207 50.03.0497 8C550 Sie<br>Q208 50.03.0497 8C550 Sie<br>Q209 50.03.0496 8C550 Sie<br>Q210 50.03.0216 J111 Six                                                             | R94 57.11.4224 220 k<br>R95 57.11.4394 390.k<br>R96 57.11.4973 47 k<br>R97 57.11.4682 6.8 k                                   | R321 57-11-4121 120<br>R322 57-11-4470 47<br>R323 57-11-4470 47<br>R324 57-11-5106 10 M                                                               |
| F4 51-01-0114 500mA-T  IC1 50-10-0104 LM317 Voltage Regulator IC2 50-10-0104 LM317 Voltage Regulator II                                                                                                                                                                                                                                                                                                                  | Q300 50.03.0215 25K170 To Q301 50.03.0215 25K170 To Q302 50.03.0496 8C560 Sie Q303 50.03.0496 8C560 Sie Q304 50.03.0497 8C550 Sie                                           | R98 57-11-4682 6-8 k R99 57-11-4673 47 k R100 57-11-4104 100 k R101 57-11-4332 3-3 k R102 57-11-4332 3-3 k                    | R325                                                                                                                                                  |
| IC3 50-10-0109 LM337L Voltage Regulator TI IC4 50-10-0104 LM317 Voltage Regulator TI IC5 50-10-0105 LM337 Voltage Regulator TI (00) IC6 1-179-353-20 MICROPROCESSOR HOG37A01VOP St (01) IC6 1-179-353-21 MICROPROCESSOR HOG37A01VOP St                                                                                                                                                                                   | Q305 50.03.0496 8C560 Sie<br>Q306 50.03.0496 8C560 Sie<br>Q307 50.03.0497 8C550 Sie<br>Q308 50.03.0497 8C550 Sie                                                            | R103 57.11.4104 100 k<br>R104 57.11.4014 100 k<br>R105 57.11.4332 3.3 k<br>R106 57.11.4332 3.3 k                              | XIC1 53.03.0172 011 40-po1 (02) XIC2 53.03.0164 011 6-po1 (02) XIC3 53.03.0164 011 6-po1                                                              |
| IC7 50.11.0122 TL7705 Reset Generator TI IC8 50.07.0018 HEF4094 Shift/Store Bus Register IC9 50.09.0107 RC4559 Oual OP-Amp Ra IC10 50.09.0107 RC4559 Oual OP-Amp Ra                                                                                                                                                                                                                                                      | 0309 50.03.0496 8C560 Sie 0310 50.03.0216 J111 Six  R1 57.11.4821 820 com all resistors 5% com R2 57.11.4271 270 com general purpose com                                    | R107 57-11.4104 100 k R108 58.02-5103 10 k .lw. lin R109 58.02-5103 10 k .lw. lin R110 57-11.4224 220 k R111 57-11.4227 227 k | XP1 54-01-0280 Cis connector case Y1 89-01-0553 4+9152HHz T018, NMPO49, Nymph                                                                         |
| IC12 50.07.0538 MC14538 Oual Retr. Monost Multivid. Mot.RCA IC12 50.07.0666 MC140066 Ouad Analog Switch Mot.RCA IC13 50.09.0101 TL072 Oual BiFET TI IC14 50.09.0107 RC4559 Oual OP-Amp Ra IC15 50.09.0107 RC4559 Oual OP-Amp Ra                                                                                                                                                                                          | R2 57.11.4271 270 *** general purpose *** R3 57.11.4271 270 *** unless otherwise *** R4 57.11.4321 820 *** noted *** R5 57.11.4103 10 k R6 57.11.4103 10 k                  | R111 57.11.4272 2.7 k R112 57.11.4013 10 k R113 57.11.4472 4.7 k R114 57.11.4333 33 k R115 57.11.4332 3.3 k                   |                                                                                                                                                       |
| IC16 50.09.0107 RC4559                                                                                                                                                                                                                                                                                                                                                                                                   | R7 57.11.4562 5.6 k<br>S T U O E R (03) 87/03/12 STU TURNTABLE ELECTRONIC BOARO 1.179.350.21 PAGE 7                                                                         | R116 57-11-4472 4-7 k S T U D E R (03) 87/03/12 STU TURNTABLE ELECTRONIC 80ARO 1-179-350-21 PAGE 10                           | S T U O E R (03) 87/03/12 STU TURNTABLE ELECTRONIC 80ARO 1-179-350-21 PAGE 13                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                       |
| ING. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.                                                                                                                                                                                                                                                                                                                                                           | IND. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.                                                                                                              | ING. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.                                                                | INO. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.                                                                                        |
| IC17 50.05-0283 LM393 Oual Low Power Comparator TI  J1 54.01-0214 6 Pin Cis-Socket  J2 54.01-0307 10 Pin Cis-Socket  J3 54.01-0212 9 Pin Cis-Socket                                                                                                                                                                                                                                                                      | R8 57-11-4921 820<br>R9 57-11-4271 270<br>R10 57-11-4473 47 k<br>R11 57-11-4562 5-6 k<br>R12 57-11-4103 10 k                                                                | R117 57.11.4222 2.2 k R118 57.11.4153 15 k R119 58.02.5104 100 k .lw, lin. R120 57.11.4332 3.3 k R121 57.11.4372 4.7 k        | (01) 31_10_86 Software modification<br>(02) 19-12-86 Service<br>(03) 12-03-87 Netter yield for DLQ 2                                                  |
| J                                                                                                                                                                                                                                                                                                                                                                                                                        | R13 57-11-4151 150<br>R14 57-11-3132 1-3 k<br>R15 57-11-4473 47 k<br>R16 57-11-4103 10 k                                                                                    | R122 57:11.4104 100 k R123 57:11.4823 82 k R124 57:11.4105 1 M R125 57:11.4105 1 Z k                                          | El=Electrolytic, MF=Metal Film, Cer=Geramic  MANUFACTUREO: Tl=Texas Instrument, Ra=Raytheon, Ph=Philips  Mot=Motorola, ITT=Intermetall, Six=Siliconix |
| J8 56-20-2001 6 Pin Oln Jack-Socket L1 62-02-3479 4-7 uH Inductor L2 62-02-3479 4-7 uH Inductor                                                                                                                                                                                                                                                                                                                          | R17 57-11-3132 1-3 k<br>R18 57-11-4151 150<br>R19 57-11-4103 10 k<br>R20 57-11-4103 10 k<br>R21 57-11-4103 10 k                                                             | R126 57.11.4104 100 k R127 57.11.4224 220 k R128 57.11.4923 82 k R129 57.11.4923 82 k R129 57.11.4923 82 k                    | Sie=Siemens∙ To=Toshiba∙ St=Studer∙ Sig=Signetics                                                                                                     |
| MP1 1.179.350-12 TURNTABLE ELECTRONIC PC8 5c<br>MP2 1.179.350-01 HEAT-SINE 5c<br>MP3 1.769.310.03 THERMOPLASTIC<br>MP4 50.20.2002 CLIP TO 126                                                                                                                                                                                                                                                                            | * R22 57-11-4104 100 k<br>R23 57-11-4682 6-8 k<br>R24 57-11-4153 15 k<br>R25 57-11-4682 6-8 k                                                                               | R131 57.11.4671 470<br>R132 57.11.4671 470<br>R133 57.11.4682 6.8 k<br>R134 57.11.4682 4.7 k                                  |                                                                                                                                                       |
| MP5 50.20.2002 CLIP TO 126 MP6 50.20.2002 CLIP TO 126 MP7 50.20.2002 CLIP TO 126 MP8 50.20.2003 CLIP TO 220 MP9 50.20.2003 CLIP TO 220                                                                                                                                                                                                                                                                                   | R26 57-11-4561 560<br>(00) R27 57-11-4223 22 k<br>(03) R27 57-11-4392 3-9 k<br>R28 57-11-4223 22 k<br>(00) R29 57-11-4473 47 k                                              | R135 57.11.4393 39 k R136 580.25.472 4.7 k .1 m. lin. R137 57.11.4472 4.7 k R138 57.11.4105 1 H R139 57.11.4224 220 k         |                                                                                                                                                       |
| MP10 50.20.2003 CLIP TO 220 MP11 50.20.2003 CLIP TO 220 MP12 21.26.0354 SCREW CYLIN.→HEAD: M3.096 MP13 21.26.0354 SCREW CYLIN.→HEAD: M3.096                                                                                                                                                                                                                                                                              | (03) R29 57-11-4103 10 k<br>R30 57-11-4102 1 k<br>R31 57-11-4102 1 k<br>R32 57-11-4471 470                                                                                  | R140 57.11.4103 10 k R141 57.11.4102 1 k R142 57.11.4123 12 k R143 57.11.4339 3.3                                             |                                                                                                                                                       |
| MP14 21.26.0354 SCREW CVLIN-HEAD, M3.096 MP15 24.16.1030 FIN MASHER, 0 5.5/3.2 MP16 24.16.1030 FIN MASHER, U 5.5/3.2 MP17 24.16.1030 FIN MASHER, U 5.5/3.2 MP18 23.01.1032 MASHER                                                                                                                                                                                                                                        | R33 57-11-4103 10 k R34 57-11-4472 4-7 k R35 57-11-4103 10 k R36 57-11-4272 2-7 k R37 57-11-4272 2-7 k                                                                      | R144 57.11.4104 100 k R145 57.11.4103 10 k R146 57.11.4103 10 k R147 37.11.4103 47 k R149 57.11.4403 10 k                     |                                                                                                                                                       |
| MP19 23.01.1032 MASHER MP20 23.01.1032 MASHER MP21 53.03.0142 Fuse socket MP22 53.03.0142 Fuse socket                                                                                                                                                                                                                                                                                                                    | R38 57-11-4272 2-7 k<br>R39 57-11-4471 470<br>R40 57-11-4103 10 k<br>R41 57-11-4103 10 k                                                                                    | R149 57.11.4104 100 k<br>R150 57.11.4472 4-7 k<br>R151 57.11.4472 4-7 k<br>R152 57.11.4104 100 k                              | ORIG 86/10/29 {01} 86/10/31 {02} 86/12/19 {03} 87/03/12                                                                                               |
| MP23 53.03.0142 Fuse socket  S T U O E R (03) 87/03/12 STU TURNTABLE ELECTRONIC BOARO 1.179.350.21 PAGE 5                                                                                                                                                                                                                                                                                                                | R42 57-11-4103 10 k<br>S T U O E R (03) 87/03/12 STU TURNTABLE ELECTRONIC BOARO 1-179-350-21 PAGE 8                                                                         | R153 57.11.6333 33 k S T U O E R (03) 87/03/12 STU TURNTABLE ELECTRONIC 80ARD 1.179.350.21 PAGE 11                            | S T U O E R (03) 87/03/12 STU TURNTABLE ELECTRONIC BOARO 1:179:350:21 PAGE 14                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                       |
| IND. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.  MP24 53.03.0142 Fuse socket                                                                                                                                                                                                                                                                                                                              | INO. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.  R43 57.11.4562 5.6 k R44 57.11.4123 12 k                                                                    | IND. POS.NO. PART NO. VALUE SPECIFICATIONS / EQUIVALENT MANUF.  R154 58.02.5473 47 k .1M. lin.  R155 57.11.4182 1.8 k         |                                                                                                                                                       |
| MP25 53.03.0142 Fuse socket MP26 53.03.0142 Fuse socket MP27 53.03.0142 Fuse socket MP28 53.03.0142 Fuse socket MP28 53.03.0142 Fuse socket MP29 1.179.350.02 Fuse label St                                                                                                                                                                                                                                              | R45 57.11.4391 390<br>R46 57.11.4391 390<br>R47 57.11.4391 390<br>R48 57.11.4472 4.7 k                                                                                      | R156 57-11.4223 22 k<br>R157 57-11.4414 470 k<br>R158 57-11.4100 10<br>R159 57-11.4410 47                                     |                                                                                                                                                       |
| P1 54-02-0471 Flat Pin U1 50-03-0436 8C2378 BC5478-BC550B TI                                                                                                                                                                                                                                                                                                                                                             | R59 57-11-4472 4-7 k R50 57-11-4472 4-7 k R51 57-11-4102 1 k R52 57-11-4472 4-7 k R53 57-11-4472 4-7 k                                                                      | R160 57.11.4272 2.7 k<br>R161 57.11.4471 470<br>(02) R162 57.11.4560 56<br>R163 57.11.4103 10 k<br>R200 57.11.4102 1 k        |                                                                                                                                                       |
| 02         50.03.04515         8C.3078         8C.5578.RC.5608         ITT           04         50.03.0454         BC.2378         8C.5578.RC.5608         IT           04         50.03.0515         BC.3078         BC.5578.BC.5608         ITT           05         50.03.0515         BC.3078         BC.5578.RC.5608         ITT           06         50.03.0436         BC.3278         BC.5578.RC.5608         IT | R54 57.11.4472 4.7 k<br>R55 57.11.4471 470<br>R56 57.11.4471 470<br>R57 57.11.4471 470                                                                                      | R201 57-11.4102 1 k<br>R202 57-11.4331 330<br>R203 57-11.4221 220<br>R204 57-11.4221 220                                      |                                                                                                                                                       |
| 0 7 50-33-0515 8C3078 8C5573-8C5608 1TT 0 8 50-33-0435 8C2378 8C5578-8C5508 T1 0 9 50-03-0436 8C2378 8C5478-8C5508 T1 0 10 50-03-0436 8C2378 8C5478-8C5508 T1                                                                                                                                                                                                                                                            | R58 57-11-4102 1 k<br>R59 57-11-4105 1 M<br>R60 57-11-4103 10 k<br>R61 57-11-4972 4-7 k                                                                                     | R205 57.11.3271 270 12,MF<br>R206 57.11.4221 220<br>R211 57.11.4102 1 k<br>R212 57.11.4771 270<br>R213 57.11.4770 47          |                                                                                                                                                       |
| Q****-11         50.03.0436         BC2378         BC5478,9C550B         T1           Q****-12         50.03.0436         BC2378         BC5478,8C550B         T1           Q****-13         50.03.0340         BC337-25         Mot           Q****-14         50.03.0315         BC307B         BC5578,8C560B         1TT           Q****-15         50.03.0436         BC2373         BC5478,8C550B         T1        | R62 57-11-4105 1 N<br>R63 57-11-4103 10 k<br>R64 57-11-4103 10 k<br>R65 57-11-3512 5-1 k 12,MF<br>R65 57-11-3104 100 k 12,MF                                                | R214 57.11.4333 33 k<br>R215 57.11.4371 270 12.MF<br>R216 57.11.4470 47<br>R2217 57.11.43131 130                              |                                                                                                                                                       |
| C16 50.03.0436 BC2378 BC5578.0C5508 TI 017 50.03.0436 BC2378 BC5578.0C5508 ITT 018 50.03.0436 BC2378 BC5578.9C5508 TI 019 50.03.0478 B0135-10 Ph                                                                                                                                                                                                                                                                         | R67 57-11-4472 4-7 k<br>R68 57-11-3562 5-6 k 1z, MF<br>R69 58-02-5102 1 k -1 k-1 k-1<br>R70 57-11-3432 4-3 K 1z, MF                                                         | R218 57-11-4271 270<br>R219 57-11-4222 2-2 k<br>R220 57-11-4220 22<br>R221 57-11-4121 120<br>R222 57-11-4121 470 47           |                                                                                                                                                       |
| 020         50.03.0479         80136-10         Ph           021         50.03.0478         80135-10         Ph           022         50.03.0479         80136-10         Ph           023         50.03.0515         8C3078         BC5778-RC560b         ITT           024         50.03.0351         BC327-25         Mot                                                                                             | R72 57.11.3473 47 k 12.MF<br>R73 57.11.3243 24 k 12.MF<br>R74 57.11.4103 10 k<br>R75 57.11.4221 220                                                                         | R223 57.11.4470 47<br>R224 57.11.5106 10 M<br>R225 57.11.4561 560<br>R225 58.02.5221 220 «1M» lin»                            |                                                                                                                                                       |
| 025 50.03.0340 8C337-25 Mot 026 50.03.0340 8C337-25 Mot 027 50.03.0216 J111 Six 028 50.03.0340 8C337-25 Mot                                                                                                                                                                                                                                                                                                              | R76 57-11-4682 6-8 k R77 57-11-4332 3-3 k R78 57-11-4103 10 k R79 57-11-4105 1 M                                                                                            | R227 57.11.4473 47 k R300 57.11.4102 1 k R301 57.11.4102 1 k R302 57.11.4331 330                                              |                                                                                                                                                       |
| S T U O E R (O3) 87/03/12 STU TURNTABLE ELECTRONIC BOARO 1.179.350.21 PAGE 6                                                                                                                                                                                                                                                                                                                                             | S T U O E R (03) 87/03/12 STU TURNTABLE ELECTRONIC BOARO 1-179-350-21 PAGE 9                                                                                                | S T U O E R (03) 87/03/12 STU TURNTABLE ELECTRONIC BOARO 1.179.350.21 PAGE 12                                                 |                                                                                                                                                       |

B291





TURNTABLE ELECTRONICS 1.179.350.21, TONE ARM CONTROL



| ) 29,1086 Aussi | @ 311086 Min   | (2) 19 128 6 Shini | 3 12,03,87 Aura |              |
|-----------------|----------------|--------------------|-----------------|--------------|
| MM              | B191 TURNTABLE | 97E                |                 | PAGE 3 OF S  |
| STUDER          | TURNTABLE      | ELECTRONICS        | JS              | 1.179.350.21 |

TURNTABLE ELECTRONICS 1.179.350.21, MOTOR CONTROL



Motor control diagrams (valid for 33 rpm):

1



2



3



4



5

Tacho



6



2+5







TURNTABLE ELECTRONICS 1.179.350.21, MOTOR CONTROL





IR-RECEIVER 1.179.365.00 (PCB 1.179.197.11)



B291

| 0 0310.84 | loth      | 0         | IO         | 0    |    | 0            |
|-----------|-----------|-----------|------------|------|----|--------------|
|           | Roll      | TURNTABLE | 8230/8231/ | B235 |    | PAGE 1 OF 1  |
| STUDI     | <u>ER</u> | IR-RECEIV | ER-PCB     |      | SC | 1.179.197.00 |





| IND. | P05.N0.      | PART NO.       | VALUE    | SPECIFICATIONS / EQUIVALENT | MANUF |
|------|--------------|----------------|----------|-----------------------------|-------|
|      | C1           | 59-06-0103     | 10 nF    | 10%, 104                    |       |
|      | C 2          | 59.06.0102     | 1 nF     | 10%, 10V                    |       |
|      | C3           | 59-22-3470     | 47 uF    | 10V. E1                     |       |
|      | C 4          | 59.22.6100     | 10 uF    | 10V. E1                     |       |
|      | OP • • • • 1 | 50.04.21 36    | BPW 50   |                             |       |
|      | 101          | 50-11-0121     | TBA 2800 |                             | ITT   |
|      | J1           | 54 • 01 • 0304 | 4-Pole   | Cis                         |       |
|      | MP1          | 1.179.197.11   |          | IR-Receiver-PCB             | St    |
|      | MP2          | 1.179.197.01   |          | Shield                      | St    |
|      | MP3          | 1.010.027.22   |          | Rivetted Hex Nut            |       |
|      | MP4          | 1.010.027.22   |          | Rivetted Hex Nut            |       |
|      | R1           | 57-11-4101     | 100 Ohm  | 5%, 0.25W. MF               |       |
|      | R 2          | 57.11.4392     | 3.9 kOhm | 5%, 0.25W, MF               |       |
|      | R 3          | 57.11.4103     | 10 kOhm  | 5%, 0.25W, "F               |       |

MF=Metal Film, Cer=Ceramic, El=Electrolytic, PETP=Polyester,

ORIG 84/11/

S T U D E R (00) 84/11/12 DR IR-RECEIVE

1.179.197.00 PAGE 1

## MOTOR-KEYBOARD 1.179.345.00 and ARM-KEYBOARD 1.179.347.00





Arm Keyboard 1.179.347.00







| ſ | O 20.0. | 386 Shiss | i    | 0 .  | 0         | 0 |    | 0            |
|---|---------|-----------|------|------|-----------|---|----|--------------|
| Ì |         |           | Kell | B291 | TURNTABLE |   |    | PAGE / OF /  |
|   | ST      | UDE       | R3   | ARM  | KEYBOARD  |   | SC | 1.179.347.00 |



| 10.03.86 Shissi |                       | 0         | Ю     | 0  |              | 0           |
|-----------------|-----------------------|-----------|-------|----|--------------|-------------|
|                 | Koll                  | B291 TURN | TABLE |    |              | PAGE / OF / |
| STU             | STUDER MOTOR KEYBOARD |           |       | SC | 1.179.345.00 |             |

### TONE ARM UNIT 1.179.300.00

Pick up PCB 1.179.117 Detektor PCB 1.179.119 Support PCB 1.179.300 Connection PCB 1.179.302



TONE ARM UNIT 1.179.300.00



### MOTOR UNIT 1.021.502





ERSATZTEILE SPARE PARTS PIÈCES DE RECHANGE

| 7. | ERSATZTEILE  | SPARE PARTS    | PIECE DE | RECHANGE |
|----|--------------|----------------|----------|----------|
|    | LIVONIEILEEL | OF MILE I MILE |          |          |

| INHALT | CONTENTS          | SOMMAIRE          | Page |
|--------|-------------------|-------------------|------|
| 7.     | ERSATZTEILE       |                   | 7/1  |
| 7.1    | GEHÄUSE           |                   | 7/2  |
| 7.2    | TONARM            | `<br>( <i>3</i> ) | 7/4  |
| 7.     | SPARE PARTS       | e.                | 7/1  |
| 7.1    | MECHANICAL PART   |                   | 7/2  |
| 7.2    | TONE ARM          |                   | 7/4  |
|        |                   |                   |      |
| 7.     | PIECE DE RECHANGE |                   | 7/1  |
| 7.1    | BOITIER           |                   | 7/2  |
| 7.2    | BRAS DE LECTURE   |                   | 7/4  |

#### HINWEIS:

Die nachfolgenden Positionslisten enthalten teilweise Bestellnummern, die nur fertigungstechnisch Anwendung finden. Für Servicezwecke können die Referenznummern abweichen.

Bei elektrischen Komponenten wie Widerständen, Kondensatoren, Transistoren, IC's usw., die keine spezielle, gerätegebundene Nummer haben, empfehlen wir eine lokale Beschaffung.

#### NOTE:

Some of the order numbers contained in the following lists are used for production purposes only. The reference numbers may deviate for service purposes. Electrical components such as resistors, capacitors, transistors, IC's etc. having no special unit-specific number and not being identified respectively should be purchased locally.

#### REMARQUE:

Les listes ci-après contiennent en partie des numéros de référence utilisés uniquement lors de la fabrication. Pour le service ces numéros peuvent différer. Pour tous les composants électriques, tels que résistances, transistors, IC's etc. qui n'ont pas un numéro de référence se rapportant à un type défini d'appareil, nous vous recommandons de vous les procurer localement.

### 7.1 GEHÄUSE

MECHANICAL PART

BOITIER

|    | QTY              | ORDER NUMBER                               | PART NAME SPE                                                                                           | CIFICATION   |
|----|------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|
| 1  | 1                | 1.179.001.01                               | Dust cover                                                                                              |              |
| 2  | 1                | 1.179.020.32                               | Turntable mat                                                                                           |              |
| 3  | 1                | 1.179.181.00                               | Platter                                                                                                 |              |
| 4  | 1<br>4<br>4<br>4 | 23.01.2043<br>24.16.1040                   | Motor compl.<br>Washer<br>Lock washer<br>Hexagon socket head<br>cap screw                               | M4x10        |
| 5  | 1                | 179.020.28                                 | Chassis                                                                                                 |              |
| 6  | 33333            | 1.179.020.26<br>24.16.3060<br>1.010.063.37 | Transport securing<br>Pressure ring<br>Adjusting screw<br>Shaft lock<br>Pressure spring<br>Crown washer |              |
| 7  | 1                | 1.179.001.03                               | Adaptor 45 rpm                                                                                          |              |
| 8  | 1                | 1.179.001.08                               | Brush                                                                                                   |              |
| 9  | 1<br>3<br>3<br>3 | 23.01.2032<br>24.16.1030                   | Lock washer                                                                                             | M3x14        |
| 10 | 1                | 1.179.180.00                               | Bottom compl.                                                                                           |              |
| 11 | 2<br>4<br>4<br>4 | 22.01.8030<br>24.16.1030<br>23.01.2032     | Hinge support<br>Hexagon nut<br>Locking washer<br>Washer<br>Cross recessed cheese<br>head screw         | МЗ<br>МЗх14  |
| 12 | 6                | 37.01.0103                                 | Spring washer                                                                                           |              |
| 13 | 4                | 23.01.2043                                 | Washer                                                                                                  |              |
| 14 | 2                | 1.179.242.00                               | Hinge axele                                                                                             |              |
| 15 | 2                | 1.010.039.37                               | Tension spring                                                                                          |              |
| 16 | 2                | 22.99.0116                                 | Hexagon nut                                                                                             | M4           |
| 17 | 1                | 1.067.307.00<br>1.067.308.00               |                                                                                                         |              |
| 18 | 1                | 1.179.140.05                               | Audio cable                                                                                             |              |
| 19 | 1<br>2           | 1.179.031.05<br>20.25.0103                 | , ,                                                                                                     | 2.2x6.5      |
| 20 | 1<br>6           | 1.179.350.21<br>20.25.7155                 |                                                                                                         | d<br>2.9x9.5 |
| 21 | 1<br>2           | 1.179.365.00<br>20.25.7155                 | IR-Receiver PCB<br>Screw diameter                                                                       | 2.9x9.5      |
| 22 | 4                | 1.179.140.04                               | Sring cap                                                                                               |              |
| 23 | 4                | 1.179.140.06                               | Special spring                                                                                          |              |
| 24 | 4                | 1.179.140.10                               | Spring support                                                                                          |              |
| 25 | 4                | 1.179.140.09                               | Threaded bolt                                                                                           |              |

|        | QTY    | ORDER NUMBER                 | PART NAME SPECIFICATION        |
|--------|--------|------------------------------|--------------------------------|
| 26     | 1      |                              | Mains transformer compl.       |
|        | 4      |                              | Lock washer<br>Hexagon nut M4  |
|        | 4      | 1.010.001.21                 |                                |
|        |        |                              |                                |
| 27     | 1<br>2 | 1.179.360.00<br>20.22.7155   |                                |
|        |        | 20.22.1133                   | of cw didinate.                |
| 28     | 4      | 1.177.450.04                 | Rubberfoot                     |
| 29     | 1      |                              | Fuse holder compl.             |
|        | 1      |                              | Fuse 200mA slow blowing (220V) |
|        | 1      | 51.01.0113                   | Fuse 400mA slow blowing (110V) |
| 30     | 1      | 1.179.345.00                 | •                              |
|        | 2      |                              | Screw diameter 2.9x9.5         |
| a      | 3      | 1.011.201.05                 | ,                              |
| b      | 1<br>2 | 1.179.143.11                 | Push button box<br>Angle       |
| d      | 3      | 1.010.095.37                 |                                |
| e      | 1      | 1.011.203.06                 |                                |
| f      | 1      | 1.011.203.07                 | Insulation strip               |
| g      | 3      | 1.011.220.03                 | Bolt                           |
| 31     | 1      | 1.179.347.00                 | Tone arm push button unit      |
|        | 2      | 20.22.7155                   |                                |
| а      | 3      | 1.011.201.05                 |                                |
| b      | 1      | 1.011.203.05                 |                                |
| C      | 2      | 1.179.143.11<br>1.010.095.37 |                                |
| d<br>e | 3      | 1.010.093.37                 |                                |
| f      | 1      | 1.011.203.07                 |                                |
| g      | 3      | 1.011.220.03                 | · ·                            |
| 32     | 1      | 1.179.031.02                 | Style strip                    |
|        | 3      | 24.16.1030                   |                                |
|        | 1      | 1.179.031.03                 |                                |
|        | 1      | 21.38.0355                   |                                |
|        |        |                              | head screw M3x8                |
| 33     | 2      | 21.26.0356                   | Cross recessed cheese          |
|        |        |                              | head screw M3x10               |
| 34     | 2      | 1.179.020.34                 | Damping spring                 |
| 35     | 2      | 23.01.2032                   | Washer                         |
| 36     | 1      | 1 179 344 81                 | Display board complete         |
| ا      | 2      | 20.22.7155                   |                                |
| а      | 2      | 1.011.201.05                 |                                |
| b      | 2      | 1.011.201.01                 |                                |
| С      | 2      | 1.179.143.11                 | Angle                          |
| d      | 2      | 1.010.095.37<br>1.011.201.02 |                                |
| e<br>f | 2      | 1.011.201.02                 | Wire snap<br> Insulating strip |
| g      | 3      | 1.011.220.03                 | Bolt                           |
| 9      | 5      | 73.01.0121                   |                                |
| 37     | 1      | 1.179.302.00                 | Plug PCB                       |
| 38     | 1      | 54.20.2001                   | 6-Pol DIN connector            |
|        |        | L                            | L                              |



7.2 TON ARM

TONE ARM

BRAS DE LECTURE

|    | QTY                   | ORDER NUMBER                                                         | DADT NAME COECIEICATION                                                                 |
|----|-----------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| -  |                       |                                                                      |                                                                                         |
| 1  | 1                     | 1.179.300.03                                                         | Protective cover tone arm                                                               |
| 2  | 1                     | 1.010.027.23                                                         | Washer teflon                                                                           |
| 3  | 1                     | 1.179.120.03                                                         | Pullery                                                                                 |
| 4  | 1                     | 41.99.0117                                                           | Bearing pin                                                                             |
| 5  | 1                     | 1.179.200.21                                                         | Grounding spring                                                                        |
| 6  | 1                     | 1.179.205.00                                                         | Shield left                                                                             |
| 7  | 2                     | 21:53.0354                                                           | Hexagon socket head<br>cap screw M3x6                                                   |
| 8  | 2                     | 1.179.115.04                                                         | Lift-rod clamp                                                                          |
| 9  | 1<br>1<br>1           | 1.179.115.05<br>1.179.115.06<br>1.179.115.07                         | Counterweight for cardridge < 5p                                                        |
| 10 | 1                     | 1.179.121.02                                                         | Adjusting screw for counterweight                                                       |
| 11 | 1                     | 1.179.115.09                                                         | Adjusting screw for arm lowering                                                        |
| 12 | 1<br>4<br>2           | 55.01.0135<br>23.01.1022<br>21.01.0206                               |                                                                                         |
| 13 | 1                     | 21.26.0353                                                           | Cross recessed cheese<br>head screw M3x5                                                |
| 14 | 1                     | 1.179.100.01                                                         | Cover for cable-through                                                                 |
| 15 | 1                     | 1.179.300.01                                                         | Position indicator mask                                                                 |
| 16 | 1                     | 1.179.115.08                                                         | Slider                                                                                  |
| 17 | 1                     | 1.179.120.01                                                         | Lever                                                                                   |
| 18 | 3                     | 50.99.0132                                                           | IR Photo diode BPW 34                                                                   |
| 19 | 1<br>2<br>2           | 55.01.0135<br>23.01.1022<br>21.01.0206                               |                                                                                         |
| 20 | 1<br>2<br>2<br>2<br>2 | 55.01.0134<br>23.01.1022<br>21.01.0206<br>24.16.1020<br>1.081.010.20 | Microswitch<br>Washer<br>Slotted cheese head screw M2x10<br>Lock washer<br>Tapped plate |
| 21 | 1                     | 1.179.125.07                                                         | Switch bracket                                                                          |
| 22 | 1                     | 51.02.0153                                                           | Lamp 5V, 0.115A                                                                         |
| 23 | 1                     | 53.04.0117                                                           | Lamp socket T1 3/4                                                                      |
| 24 | 1<br>1                | 1.179.202.00<br>1.179.125.14                                         | Piston damper compl.<br>Fixing plate spring                                             |
| 25 | 1                     | 1.179.125.26                                                         | Excentric bolt                                                                          |
| 26 | 2                     | 21.59.5351                                                           | Threaded pin                                                                            |
| 27 | 1                     | 1.014.820.00                                                         | Arm lift solenoid                                                                       |
| 28 | 1<br>2                | 1.179.200.04<br>21.99.0159                                           | Shield right<br>Screw black M3x8                                                        |

|    | QTY         | ORDER NUMBER                                 | PART NAME SPECIFICATION                                                                              |
|----|-------------|----------------------------------------------|------------------------------------------------------------------------------------------------------|
| 29 | 1           | 1.010.049.37                                 | Pressure spring                                                                                      |
| 30 | 1           | 1.014.820.07                                 | Plunger                                                                                              |
| 31 | 1           | 31.99.0122                                   | Sealing ring                                                                                         |
| 32 | 1           | 1.014.820.08                                 | Guide cap                                                                                            |
| 33 | 1           | 24.16.3050                                   | Retaining clip                                                                                       |
| 34 | 1           | 1.179.100.02                                 | Motor pullery                                                                                        |
| 35 | 1           | 21.01.0127                                   | Slotted cheese head screw M1.6x4                                                                     |
| 36 | 1           | 1.179.100.20                                 | Press washer                                                                                         |
| 37 | 1           | 31.99.0124                                   | Sealing ring                                                                                         |
| 38 | 1           | 1.179.100.04                                 | Motor (tone arm)                                                                                     |
| 39 | 1           | 1.010.110.37                                 | Tension spring                                                                                       |
| 40 | 1           | 1.179.126.00                                 | Pullery cord                                                                                         |
| 41 | 1           | 24.99.0130                                   | Circlip outside                                                                                      |
| 42 | 1           | 1.179.100.21                                 | Saddle washer                                                                                        |
| 43 | 1           | 1.010.019.23                                 | Washer                                                                                               |
| 44 | 1           | 50.04.2125                                   | LED CQX 47 (IR)                                                                                      |
| 45 | 2           | 21.26.0353                                   | Cross recessed cheese head screw M3x5                                                                |
|    | 2           | 24.16.1030                                   | Lock washer                                                                                          |
| 46 | 1           | 1.179.125.06                                 | Cable-through                                                                                        |
| 47 | 1           | 1.179.115.00                                 | · · · · · · · · · · · · · · · · · · ·                                                                |
|    | 1<br>1<br>1 | 1.179.119.11<br>1.179.300.11<br>1.179.300.06 | less pick up<br>Detector PCB (without components)<br>Support PCB (without components)<br>Cover plate |



## STUDER REVOX

### Manufacturer

Willi Studer AG CH-8105 Regensdorf/Switzerland Althardstrasse 30

Studer Revox GmbH D-7827 Löffingen/Germany Talstrasse 7

### Worldwide Distribution

Revox Ela AG CH-8105 Regensdorf/Switzerland Althardstrasse 146