A device for in-situ measurement and recording of at least one parameter in a

Claims:

1.

1

- 2 process, said device comprising: 3 a sensor for detecting said parameter and converting to a sensor output; and 4 a data logger coupled to said sensor for receiving and logging said sensor output. 2. 1 The device of claim 1 wherein said data logger comprises a timestamping module 2 for recording a timestamp with said sensor output. 1 3. The device of claim 2 further comprising a communication module for 2 communicating said sensor output. 4. 1 The device of claim 3 wherein said communication module comprises a 2 transmitter and a receiver. 1 5. The device of claim 3 wherein said communication module comprises an RF 2 (radio frequency) communication module. 1 6. The device of claim 1 further comprising a display device.
- 1 8. The device of claim 7 wherein said sensor is configured to measure a magnitude

The device of claim 1 wherein said sensor is configured to detect a presence of

2 of said electrostatic field.

7.

electrostatic field.

1

2

- 1 9. The device of claim 8 wherein said sensor is configured to detect a change in said electrostatic field.
- 1 10. The device of claim 1 wherein said sensor is configured to detect an electrostatic 2 discharge.

1 11. The device of claim 10 wherein said sensor is configured to measure a magnitude 2 of said electrostatic discharge. 1 12. The device of claim 1 wherein said data logger comprises an analog to digital 2 converter (ADC) to convert said sensor output into digital data. 1 13. The device of claim 12 further comprising signal processing circuitry coupled to 2 said sensor for processing said sensor output. 1 14. A device for in-situ measurement and recording of at least one parameter in a 2 process, said device comprising: 3 means for detecting said parameter and converting to a sensor output; and 4 means for receiving and logging said sensor output. 1 15. The device of claim 14 wherein said means for receiving and logging comprises a 2 timestamping module for recording a timestamp with said sensor output. 1 16. The device of claim 13 further comprising means for communicating said sensor 2 output. 1 The device of claim 16 wherein said means for communicating comprises a 17. 2 transmitter and a receiver. 1 18. The device of claim 16 wherein said means for communicating comprises an RF 2 (radio frequency) communication module. 1 19. A method for in-situ measurement and recording of at least one parameter in a 2 semiconductor fabrication process comprising a plurality of stages, said method comprising: 3 (a) monitoring said parameter in a stage of said plurality of stages; 4 (b) converting said parameter into data; 5 (c) logging said data and an identification of said stage; and 6 (d) repeating (a) – (d) for said plurality of stages.

20.

1

The method of claim 19 further comprising timestamping said data.

1	21.	The method of claim 20 further comprising signal processing said data.
1	22.	The method of claim 21 further comprising converting said data into digital data.
1	23.	The method of claim 22 further comprising communicating said digital data and
2	said identifica	ation of said stage to a base equipment.
1	24.	The method of claim 23 wherein said parameter comprises electrostatic field.
1	25.	The method of claim 24 wherein said parameter comprises a change in said
2	electrostatic field.	
1	26.	The method of claim 25 wherein said parameter comprises an electrostatic
2	discharge.	
1	27.	The method of claim 26 further comprising eliminating extraneous electrostatic
2	discharges based on said electrostatic discharge and said electrostatic field.	
1	· 28.	A device for in-situ monitoring of at least one environmental parameter in a
2	photolithogra	phic process comprising a plurality of stages, said device comprising:
3	•	t one sensor for converting said environmental parameter of an associated stage
4	into a sensor output;	
5	an ana	log to digital converter for converting said sensor output to digital data; and
6	a communication module to communicate said digital data and an identification of said	
7	associated stage of said plurality of stages.	
1	29.	The device of claim 28 further comprising a data logger for logging said digital
2		identification of said associated stage.
1	30.	The device of claim 29 wherein said communication module comprises a
2	transmitter an	d a receiver

I	31. The device of claim 29 wherein said communication module comprises an RF		
2	(radio frequency) communication module.		
1	32. The device of claim 28 further comprising a display device.		
1	33. The device of claim 28 further comprising a sensor for detecting a presence of		
2	electrostatic field.		
1	34. The device of claim 33 wherein said sensor is configured to measure a magnitud	le	
2	of said electrostatic field.		
1	35. The device of claim 34 wherein said sensor is configured to detect a change in		
2	said electrostatic field.		
1	36. The device of claim 28 further comprising a sensor for detecting an electrostatic		
2	discharge.		
1	37. The device of claim 36 wherein said sensor is configured to measure a magnitud	e	
2	of said electrostatic discharge.		
1	38. The device of claim 28 further comprising signal processing circuitry coupled to	,	
2	said plurality of sensors for processing said sensor output.		
1	39. A device for use in conjunction with a reticle for in-situ monitoring of at least or	ıe	
2	electrical parameter in a semiconductor fabrication process comprising a plurality of stages, said		
3	device comprising:		
4	a sensor for converting said electrical parameter of a stage into a sensor output;		
5	an analog to digital converter for converting said sensor output to digital data;		
5	a data logger comprising a timestamping module for logging said digital data and an		
7	identification of said stage; and		
3	an RF (radio frequency) communication module coupled to said data logger		

I	40.	The device of claim 39 wherein said electrical parameter comprises electrostatic	
2	field.		
1	41.	The device of claim 39 wherein electrical parameter comprises an electrostatic	
2	discharge.		
1	42.	A method for in-situ measurement and recording of at least one parameter in a	
2	semiconductor fabrication process comprising at least one stage, said method comprising:		
3	(a)	monitoring said parameter in said stage;	
4	(b)	converting said parameter into data; and	
5	(c)	logging said data and an identification of said stage.	
1	43.	The method of claim 42 further comprising	
2	time	stamping said data.	
1	44.	The method of claim 43 further comprising:	
2	signa	al processing said data.	
1	45.	The method of claim 44 further comprising:	
2	conv	rerting said data into digital data.	
1	46.	The method of claim 44 further comprising:	
2	communicating said digital data and said identification of said stage to a base equipmen		
1	47.	The method of claim 46 wherein said parameter comprises electrostatic field.	
1	48.	The method of claim 46 wherein said parameter comprises an electrostatic	
2	discharge.		
1	49.	A device for monitoring environmental parameters comprising:	
2	an el	ectrostatic sensor for detecting electrostatic field and converting said electrostatic	
3	field into a first output;		

ļ	an electrostatic discharge (ESD) sensor for detecting an electrostatic discharge and		
5	converting said electrostatic discharge into a second sensor output;		
5	an analog to digital converter coupled to said electrostatic sensor and said ESD sensor for		
7	converting said first and second sensor outputs to first and second digital data, respectively; and		
3	a data logger comprising a timestamping module for logging said first and second digital		
)	data.		
l	50. The device of claim 49 further comprising an RF (radio frequency)		
2	communication module coupled to said data logger.		
l	A method for localizing electrostatic discharges (ESD) by detecting electrostatic		
2	discharges and electrostatic field, the method comprising:		
3	detecting an electrostatic discharge and converting it into a first output;		
1	detecting said electrostatic field and converting it into a second output; and		
5	determining a valid local electrostatic discharge based on said first and second outputs.		
ì	52. The method of claim 51 wherein said determining comprises determining said		
2 .	valid local electrostatic discharge when said electrostatic discharge is combined with said		
3	electrostatic field having a magnitude that exceeds a predetermined value.		
l	53. The method of claim 52 further comprising converting said first and second		
2	outputs to first and second digital data, respectively.		
1	54. A device for localizing electrostatic discharges affecting a unit by detecting an		
2	electrostatic discharge and electrostatic field, the device comprising:		
3	an electrostatic sensor for detecting said electrostatic field affecting said unit and		
4	generating a first output; and		
5	an ESD sensor for detecting said electrostatic discharge affecting said unit and generating		
5	a second output.		
i	55. The device of claim 54 further comprising:		

1

2	an analog comparator coupled to said first output for generating a comparator output		
3	when said electrostatic field has a magnitude exceeding a predetermined value.		
1	56. The device of claim 55 further comprising:		
2	a circuit coupled to said analog comparator and to said ESD sensor for receiving said		
3	comparator output and said second output, said circuit configured to generate a valid ESD signal		
4	when said comparator output and said second output are detected.		
1	57. The device of claim 54 further comprising:		
2	an analog to digital converter (ADC) coupled to said electrostatic sensor and said ESD		
3	sensor for converting said first and second outputs to first and second digital data, respectively.		
1	58. The device of claim 57 further comprising:		
2	a digital comparator coupled to said first data and generating a comparator output when		
3	said electrostatic field has a magnitude exceeding a predetermined value.		
1	59. The device of claim 58 further comprising:		
2	a circuit coupled to said digital comparator and to said ADC for receiving said		
3	comparator output and said second data, said circuit configured to generate a valid ESD signal		
4	when said comparator output and said second data are detected.		
1	60. The device of claim 59 wherein said circuit is an AND gate.		
1	61. The device of claim 60 further comprising:		
2	a data logger comprising a timestamping module for logging said first and second digital		
3	data.		
1	62. The device of claim 61 further comprising an RF (radio frequency)		
2	communication module coupled to said data logger.		
1	63. A method for localizing electrostatic discharges (ESD) by detecting electrostatic		
2	discharges and electrostatic field, the method comprising:		
3	detecting an electrostatic discharge and converting it into a first output;		

4	detecting a change in said electrostatic field and converting it into a second output; and		
5	determining a valid local electrostatic discharge based on said first and second outputs.		
1	64. The method of claim 63 wherein said determining comprises determining said		
2	valid local electrostatic discharge when said electrostatic discharge is combined with said		
3	electrostatic field changing at a rate that exceeds a predetermined value.		
1	65. The method of claim 64 further comprising converting said first and second		
2	outputs to first and second digital data, respectively.		
1	66. A device for localizing electrostatic discharges affecting a unit by detecting an		
2	electrostatic discharge and electrostatic field;		
3	an electrostatic sensor for detecting a change in said electrostatic field and generating a		
4	first output; and		
5	an ESD sensor for detecting said electrostatic discharge and generating a second output.		
1	67. The device of claim 66 further comprising:		
2	a high pass filter coupled to said first output for generating a high pass filter output when		
3	said electrostatic field changes at a rate exceeding a predetermined value.		
1	68. The device of claim 67 further comprising:		
2	a circuit coupled to said high pass filter and to said ESD sensor for receiving said high		
3	pass filter output and said second output, said circuit configured to generate a valid ESD signal		
4 `	when said high pass filter output and said second output are detected.		
1	69. The device of claim 68 further comprising:		
2	an analog to digital converter (ADC) coupled to said electrostatic sensor and said ESD		
3	sensor for converting said first and second outputs to first and second digital data, respectively.		
1	70. The device of claim 69 further comprising:		
2	a high pass filter coupled to said first data for generating a high pass filter output when		
3	said electrostatic field changes at a rate exceeding a predetermined value.		

communication module coupled to said data logger.

The device of claim 70 wherein said high pass filter comprises software codes 1 71. 2 executable by a microprocessor. 72. The device of claim 70 further comprising: 1 2 a circuit coupled to said high pass filter and to said ADC for receiving said high pass 3 filter output and said second data, said circuit configured to generate a valid ESD signal when 4 said high pass filter output and said second data are detected. 1 73. The device of claim 72 wherein said circuit is an AND gate. 1 74. The device of claim 73 further comprising: 2 a data logger comprising a timestamping module for logging said first and second digital 3 data. 1 75. The device of claim 74 further comprising an RF (radio frequency)

2