Aaron Dardik

CS567 Problem Set #2

1.1) Given q_i : $1 \le i \le K$, $C = \frac{1}{\sum q_i}$ we will denote Cq_i by p_i . We will let $[y = k] \stackrel{\text{def}}{=} 1\{y = k\}$. Now we must show that $p = \prod_{i=1}^K (p_i)^{[y=i]}$ is in the exponential family. Now, $p = e^{\log p} = e^{\log \prod_{i=1}^K p_i^{[y=i]}}$. By using the fact that the logarithm of a product is the sum of the logarithms the above expression

simplifies to $e^{\sum_i \log\left(p_i^{[y=i]}\right)} = e^{\sum_i [y=i] \log p_i}$. Let $\eta = \begin{bmatrix} \log p_1 \\ \vdots \\ \log p_K \end{bmatrix}$, $t(y) = \begin{bmatrix} [y=1] \\ \vdots \\ [y=K] \end{bmatrix}$, b(y) = 1, $a(\eta) = 0$

and this shows that the categorical distribution is in the exponential family.

- 1.2) $p(y|x) \sim \text{Bernoulli} \Rightarrow p(y|x) = p^y (1-p)^{1-y} = e^{\log p^y (1-p)^{1-y}} = e^{y \log p + (1-y) \log(1-p)}$. This simplifies to $e^{y \log \frac{p}{1-p} + \log(1-p)}$. Now, $\eta = Wx = \log \frac{p}{1-p}$, t(y) = y, b(y) = 1, $a(\eta) = -\log(1-p)$. Now, $h(x;W) = E_y t(y) = 1 * e^{1\log \frac{p}{1-p} + \log(1-p)} + 0 = p = p(x;W)$.
- 1.3) From part 1.1 we see that for the categorical distribution we have $\eta = \begin{bmatrix} \log p_1 \\ \vdots \\ \log p_K \end{bmatrix}$, $t(y) = \frac{1}{2}$

 $\begin{bmatrix} [y=1] \\ \vdots \\ [y=K] \end{bmatrix}, b(y)=1, a(\eta)=0. \text{ From this we see that } p_i=e^{\eta_i}, \sum p_i=\sum e^{\eta_i}=1. \text{ By substituting } p_i=0$

back in and dividing we see that $p_i = \frac{e^{\eta_i}}{\sum_j e^{\eta_j}}$. Now, as $\eta = Wx \Rightarrow p(y = i|x) = \frac{e^{(Wx)_i}}{\sum_j e^{(Wx)_j}} = \frac{e^{\eta_i}}{\sum_j e^{(Wx)_j}}$

 $e^{w_i^Tx}/\sum_j e^{w_j^Tx}$. Now, we note that p_K can be expressed as a linear combination of $p_1 \dots p_{K-1}$ so we

have that
$$E[t(y)|x] = E\begin{bmatrix} [y=1] \\ \vdots \\ [y=K-1] \end{bmatrix} = \begin{bmatrix} e^{w_1^Tx} / \sum_j e^{w_j^Tx} \\ \vdots \\ e^{w_{K-1}^Tx} / \sum_j e^{w_j^Tx} \end{bmatrix} = \begin{bmatrix} p_1 \\ \vdots \\ p_{K-1} \end{bmatrix}$$
 with p_K being a parameter

expressed in terms of the first p_1,\dots,p_{K-1} and not an independent variable itself.

- 1.4) $p(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!} = e^{\log \frac{\lambda^y e^{-\lambda}}{y!}} = e^{\log \lambda^y + \log e^{-\lambda} \log y!} = \frac{1}{y!} * e^{y \log \lambda \lambda}$. From this we conclude that the Poisson distribution is in the exponential family with $b(y) = \frac{1}{y!}$, $\eta = \log \lambda$, t(y) = y, $a(\eta) = \lambda$. Now, $\eta = w^T x = \log \lambda \Rightarrow e^{w^T x} = \lambda$. As the expected value of a Poisson distribution is λ we have $\widehat{y}_i = E[y|x;w] = \lambda = e^{w^T x}$.
- 2.1.1) For ease of notation we will denote our cost function by C instead of l. To find $\frac{\partial C}{\partial a}$ it suffices to find $\frac{\partial C}{\partial a_i}$, $\forall i$. We will consider two cases: $i \neq y, i = y$. In the first case, we have $\frac{\partial C}{\partial a_i} = \frac{-1}{z_y} * \frac{\partial}{\partial a_i} (z_y)$. The latter derivative we will solve via the quotient rule to get $\frac{1}{2} (1 e^{a_y})^2 = -2 (1 e^{a_y})^2 = -$

- $(\sum e^{a_j})*e^{a_y}-e^{a_y}e^{a_y}\Big/_{(\sum e^{a_j})^2}=z_y-\big(z_y\big)^2$. Thus, letting ${m y}\in\mathbb{R}^K$ be the vector whose kth coordinate is 1 if k=y and 0 otherwise, we have that $\frac{\partial \mathcal{C}}{\partial a}={m z}-z_y^2{m y}$.
- 2.1.2) Now, $\frac{\partial C}{\partial \boldsymbol{w}^{(2)}} = \frac{\partial C}{\partial \boldsymbol{a}} \frac{\partial \boldsymbol{a}}{\partial \boldsymbol{w}^{(2)}} = \frac{\partial C}{\partial \boldsymbol{a}} \boldsymbol{h}$. Additionally, $\frac{\partial C}{\partial \boldsymbol{b}^{(2)}} = \frac{\partial C}{\partial \boldsymbol{a}} \frac{\partial \boldsymbol{a}}{\partial \boldsymbol{b}^{(2)}} = \frac{\partial C}{\partial \boldsymbol{b}} \frac{\partial \boldsymbol{a}}{\partial \boldsymbol{b}^{(2)}} = \frac{\partial C}{\partial \boldsymbol{a}} \frac{\partial \boldsymbol{a}}{\partial \boldsymbol{b}^{(2)}} = \frac{\partial C}{\partial \boldsymbol{b}} \frac{\partial \boldsymbol{a$
- 2.1.3) $\frac{\partial c}{\partial u} = \frac{\partial c}{\partial a} \frac{\partial a}{\partial h} \frac{\partial h}{\partial u} = \frac{\partial c}{\partial a} \boldsymbol{W}^{(2)} \boldsymbol{H}(\boldsymbol{u}) \text{ where } \boldsymbol{H}(\boldsymbol{u}) = \begin{bmatrix} H(u_1) & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & H(u_M) \end{bmatrix}, H(u_i) = \begin{cases} 1 \Leftrightarrow u > 0 \\ 0 \Leftrightarrow u \leq 0 \end{cases}$
- 2.1.4) $\frac{\partial c}{\partial w^{(1)}} = \frac{\partial c}{\partial u} \frac{\partial u}{\partial w^{(1)}} = \frac{\partial c}{\partial u} x$. Additionally, we have $\frac{\partial c}{\partial b^{(1)}} = \frac{\partial c}{\partial u} \frac{\partial u}{\partial b^{(1)}} = \frac{\partial c}{\partial u} \frac{\partial u}{\partial v}$.
- 2.2) $\boldsymbol{W}^{(1)}, \boldsymbol{W}^{(2)}, \boldsymbol{b}^{(1)}$ being initialized to zero implies that $\boldsymbol{u}=0, \boldsymbol{h}=0, \boldsymbol{a}=\boldsymbol{b}^{(2)}$ and \boldsymbol{z} is constant. Now, plugging these values in we have $\boldsymbol{h}=0 \Rightarrow \frac{\partial c}{\partial \boldsymbol{W}^{(2)}}=0, \boldsymbol{W}^{(2)}=0 \Rightarrow \frac{\partial c}{\partial \boldsymbol{u}}=0 \Rightarrow \frac{\partial c}{\partial \boldsymbol{w}^{(1)}}=0, \frac{\partial c}{\partial \boldsymbol{b}^{(1)}}=0$. Now, learning in the hidden layer would adjust $\boldsymbol{W}^{(1)}, \boldsymbol{b}^{(1)}$ along the gradient of cost with respect to those variables, but as the partial derivatives along those variables are zero, the gradient is zero and no learning occurs.
- 2.3) Removing the nonlinear operation \boldsymbol{h} we have $\boldsymbol{x} \in \mathbb{R}^D$, $\boldsymbol{u} = \boldsymbol{W}^{(1)}\boldsymbol{x} + \boldsymbol{b}^{(1)} \in \mathbb{R}^M$. Letting $\boldsymbol{a} = \boldsymbol{W}^{(2)}\boldsymbol{u} + \boldsymbol{b}^{(2)}$, $\boldsymbol{W}^{(2)} \in \mathbb{R}^{KxM}$, $\boldsymbol{b}^{(2)} \in \mathbb{R}^K \Rightarrow \boldsymbol{a} = \boldsymbol{W}^{(2)}\big(\boldsymbol{W}^{(1)}\boldsymbol{x} + \boldsymbol{b}^{(1)}\big) + \boldsymbol{b}^{(2)}$. Let $\boldsymbol{\mathcal{U}} = \boldsymbol{W}^{(2)}\boldsymbol{W}^{(1)} \in \mathbb{R}^{KxD}$ and $\boldsymbol{v} = \boldsymbol{W}^{(2)}\boldsymbol{b}^{(1)} + \boldsymbol{b}^{(2)} \in \mathbb{R}^K \Rightarrow \boldsymbol{a} = \boldsymbol{\mathcal{U}}\boldsymbol{x} + \boldsymbol{v}$ and is therefore linear in \boldsymbol{x} .