多媒體實習-Opencv教學2

OUTLINE

- 平滑法 (Smoothing Method)
- 高斯濾波器 (Gaussian Filter)
- 中值濾波器 (Median Filter)
- 二值化 (Binarization)

Filter 會掃過範圍內每個 位置

如果是 5*5 的 Filter size,各個位置的權重就會變成 1/25

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

*

filter

其實各個?就是對分別掃 到的 Mask範圍內取平均

10	10	10	10
10 ?		٠٠	10
10	٠.	?.	10
10	10	10	10

10	10	10	10
10	150	200	10
10	10	0	10
10	10	10	10

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

filter

*

(10+10+10+10+150+200+10+10+0)/9

10	10	10	10
10	150	200	10
10	10	0	10
10	10	10	10

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

filter

*

(10+10+10+10+150+200+10+10+0)/9

10	10	10	10	
10	150	200	10	
10	10	0	10	
10	10	10	10	

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

 1/9
 1/9

filter

*

(10+10+10+10+150+200+10+10+0)/9

10	10	10	10		1/9	1/9	1/9		10	10	10	10
10	150	200	10	*	1/9	1/9	1/9		10	45	45	10
10	10	0	10		1/9	1/9	1/9		10	45	45	10
10	10	10	10	filter				10	10	10	10	

- ■周圍外框處理
 - 不管、補0、複製

高斯濾波器

■ 功能: 濾除雜訊、低通、模糊化

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

 σ (sigma)是標準差 μ (mean) 是平均值

高斯濾波器

- 將此矩陣的 x,y 值以及 $\mu = 0$, $\sigma = 1$ 套入 Gaussian function 並正規化後即可得到 3*3 的 Gaussian filter
- 推導詳見 Excel

$$\begin{bmatrix} (-1,-1) & (0,-1) & (1,-1) \\ (-1,0) & (0,0) & (1,0) \\ (-1,1) & (0,1) & (1,1) \end{bmatrix} \qquad \qquad G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

0.045	0.122	0.045
0.122	0.332	0.122
0.045	0.122	0.045

矩陣的 x,y 值

function

filter

中值濾波器

找遮罩的中位數, 然後取代中間的值, 當有數值差異大的 值出現時效果通常 會比平滑法好

10	10	10	10	
10	150	200	10	
10	10	0	10	
10	10	10	10	

直值化

threshold(src, dst, 127, 255, THRESH_BINARY);

OTSU自動門檻值

• threshold(src, dst, 0, 255, THRESH_BINARY | THRESH_OTSU);

二值化

OTSU 二值化結果

直值化

adaptiveThreshold

每一個點的閥值, 會根據周圍的點 決定

直值化

adaptiveThreshold()

```
void cv::adaptiveThreshold ( InputArray src,

OutputArray dst,

double maxValue,

int adaptiveMethod,

int thresholdType,

int blockSize,

double C
```

• src:輸入圖。

• dst:輸出圖。

maxValue:最大值。

adaptiveMethod:方法:

有 ADAPTIVE_THRESH_MEAN_C 和 ADAPTIVE_THRESH_GAUSSIAN_C

■ thresholdType:二值化型態: 有THRESH BINARY和 THRESH BINARY INV

■ blockSize: 遮罩大小。

■ C:常數,計算閾值時,要從平均或加權平均減去的數。

練習

■實作平滑法(5x5), 周圍不用處理

加分題

- ■實作中值濾波(3x3), 周圍不用處理
- 可使用 algorithm library 中的 sort() http://www.cplusplus.com/reference/algorithm/sort/

