Problem Set 5

Released: March 6, 2023 Due: March 17, 2023, 11:59pm

Submit your solutions to this homework on Canvas in a group of 2 or 3. Your solutions must be submitted in pdf produced using LaTeX.

Definition 1. Let C be a category with binary products.

An initial object $0 \in \mathcal{C}$ is distributive if for every $a \in \mathcal{C}$ the unique morphism

$$0 \rightarrow a \times 0$$

is an isomorphism.

A binary coproduct $a_1 + a_2$ with injections $i_1 : a_1 \to a_1 + a_2$ and $i_2 : a_2 \to a_1 + a_2$ is distributive if for every $b \in \mathcal{C}$, the morphism

$$[id_b \times i_1, id_b \times i_2] : (b \times a_1) + (b \times a_2) \to b \times (a_1 + a_2)$$

is an isomorphism.

Problem 1 Sums and Distributive coproducts

Let $\mathcal C$ be a category with all binary products. In class we discussed that (almost tautologically) $\mathcal C$ has

- ullet a terminal object if and only if $\operatorname{self} \mathcal C$ has a unit type.
- \bullet all products if and only if $\mathrm{self}\mathcal{C}$ has all product types.
- ullet all exponentials if and only if $\operatorname{self} \mathcal C$ has all function types.

Your task is to prove the following non-trivial correspondences:

- 1. $\mathcal C$ has a distributive initial object if and only if $\operatorname{self} \mathcal C$ has an empty type.
- 2. For any $a, b \in \mathcal{C}$, \mathcal{C} has a distributive coproduct of a and b if and only if self \mathcal{C} has a sum type of a and b.

.

Problem 1 2

Definition 2. A CT structure S consists of

- 1. A category S_c
- 2. A set S_T .
- 3. For each type $A \in S_T$ a predicator Tm(A) on S_c .
- 4. A terminal object $1 \in \mathcal{S}_c$
- 5. For each $\Gamma_1, \Gamma_2 \in \mathcal{S}_c$ a product structure $(\Gamma_1 \times \Gamma_2, \pi_1, \pi_2)$ for Γ_1, Γ_2 , that is
 - An object $\Gamma_1 \times \Gamma_2 \in \mathcal{S}_c$
 - Morphisms $\pi_1^{\Gamma_1,\Gamma_2}:\Gamma_1\times\Gamma_2\to\Gamma_1$ and $\pi_2^{\Gamma_1,\Gamma_2}:\Gamma_1\times\Gamma_2\to\Gamma_2$.
 - Such that for any $\Delta \in \mathcal{S}_c$ and $f_1 : \Delta \to \Gamma_1$ and $f_2 : \Delta \to \Gamma_2$ there exists a unique $(f_1, f_2) : \Delta \to \Gamma_1 \times \Gamma_2$ such that $\pi_1^{\Gamma_1, \Gamma_2} \circ (f_1, f_2) = f_1$ and $\pi_2^{\Gamma_1, \Gamma_2} \circ (f_1, f_2) = f_2$.
- 6. For each $A \in \mathcal{S}_T$ a singleton context structure (sole A, var) for A, that is,
 - An object sole $A \in \mathcal{S}_c$
 - An element $var^A \in Tm(A)(soleA)$
 - Such that for any $\Gamma \in \mathcal{S}_c$ and $M \in \operatorname{Tm}(A)(\Gamma)$, there exists a unique $M/\operatorname{var}^A \in \Gamma \to \operatorname{sole} A$ such that $\operatorname{var}^A * M/\operatorname{var}^A = M$.

Definition 3. A CT structure homomorphism $F: \mathcal{S} \to \mathcal{T}$ consists of

- A functor $F_c: \mathcal{S}_c \to \mathcal{T}_c$ of context categories such that
 - If $1 \in \mathcal{S}_c$ is the chosen terminal object of \mathcal{S}_c then F_c1 is terminal in \mathcal{T}_c .
 - For every $\Gamma_1, \Gamma_2, F_c(\Gamma_1 \times \Gamma_2), F_c(\pi_1^{\Gamma_1, \Gamma_2}), F_c(\pi_2^{\Gamma_1, \Gamma_2})$ is a product structure for $F_c\Gamma_1, F_c\Gamma_2$ in \mathcal{T}_c .
- A function $F_T : \mathcal{S}_T \to \mathcal{T}_T$ of types and for each $A \in \mathcal{S}_T$, a natural transformation $F_{\operatorname{Tm}} : \operatorname{Tm}(A) \to \operatorname{Tm}(F_T A) \circ F_c^{op}$ such that
 - For each $A \in \mathcal{S}_T$, $(F_T(\text{sole}A), F_{Tm}(\text{var}^A))$ is a singleton context structure for F_TA .

Definition 4. Let S be a CT structure.

- A unit type in S is a type $1 \in S_T$ such that for every $\Gamma \in S_c$ there exists a unique term $() \in \text{Tm}(1)(\Gamma)$.
- A product of types $A_1, A_2 \in \mathcal{S}_T$ is a type $A_1 \times A_2 \in \mathcal{S}_T$ with terms $\pi_1 \in \text{Tm}(A_1)(\text{sole}(A_1 \times A_2))$ and $\pi_2 \in \text{Tm}(A_2)(\text{sole}(A_1 \times A_2))$ such that for any pair of terms $M_1 \in \text{Tm}(A_1)(\Gamma)$ and $M_2 \in \text{Tm}(A_2)(\Gamma)$ there exists a unique term $(M_1, M_2) \in \text{Tm}(A_1 \times A_2)(\Gamma)$ satisfying $\pi_1 * (M_1, M_2) = M_1$ and $\pi_2 * (M_1, M_2) = M_2$.

Problem 2

• An exponential of types $A, B \in \mathcal{S}_T$ is a type $A \Rightarrow B \in \mathcal{S}_T$ with a term app $\in \operatorname{Tm} B(\operatorname{sole}(A \Rightarrow B) \times \operatorname{sole} A)$ such that for any $M \in \operatorname{Tm} B(\Gamma \times \operatorname{sole} A)$ there exists a unique $\lambda M \in \operatorname{Tm}(A \Rightarrow B)\Gamma$ satisfying app $*(\lambda M * \pi_1^{\Gamma, \operatorname{sole} A}, \pi_2^{\Gamma, \operatorname{sole} A}) = M$

Definition 5. A homomorphism of CT structures $F: \mathcal{S} \to \mathcal{T}$ is faithful if for each $\Gamma \in \mathcal{S}_c$ and $A \in \mathcal{S}_T$, the function $F_{tm}^{A,\Gamma}: \operatorname{Tm}_{\mathcal{S}}(A)(\Gamma) \to \operatorname{Tm}_{\mathcal{T}}(FA)(F\Gamma)$ is injective.

Problem 2 Conservativity of Adding Function Types to STT

Fix a set of base types Σ_0 . Let $\mathcal{L}(\times, 1)$ be the syntactic CT structure for STT generated from the base types and the 1, \times connectives, whereas $\mathcal{L}(\times, 1, \Rightarrow)$ is the analogous syntactic CT structure generated by 1, \times , \Rightarrow .

Then we define a CT structure homomorphism $i: \mathcal{L}(\times, 1) \to \mathcal{L}(\times, 1, \Rightarrow)$, the inclusion of the smaller type theory into the larger one:

$$i_c(\Gamma) = \Gamma$$
$$i_c(\gamma) = \gamma$$
$$i_{ty}(A) = A$$
$$i_{tm}([M]) = [M]$$

Observe that this preserves product types and the unit type.

Our goal is to prove that adding function types to STT with product types results in a conservative extension of the equational theory. That is, we want to show for any $\Gamma \in \mathcal{L}(\times,1)_c$ and $A \in \mathcal{L}(\times,1)_{ty}$, and $\Gamma \vdash M : A$ and $\Gamma \vdash M' : A$, if $\Gamma \vdash M = M' : A$ is provable in $STT(\times,1,\Rightarrow)$, then in fact $\Gamma \vdash M = M' : A$ is already provable in $STT(\times,1)$. Unraveling definitions, this says precisely that the homomorphism i is faithful.

We will prove this using a generalization of the method we used in problem set 1^1 .

- 1. Show that if $F: \mathcal{S} \to \mathcal{T}$ and $G: \mathcal{T} \to \mathcal{U}$ are homomorphisms of CT structures and $G \circ F$ is faithful then F is faithful.
- 2. Show that if $F: \mathcal{S} \to \mathcal{T}$ and $F': \mathcal{S} \to \mathcal{T}$ are homomorphisms of CT structures and $\alpha_c \in \mathcal{T}_c^{\mathcal{S}_c}(F, F')$ is a natural isomorphism and F is faithful then F' is faithful.
- 3. Show that for any category \mathcal{C} , the category of predicators \mathscr{PC} is cartesian closed (HINT: the cartesian closed structure is a direct generalization of the Heyting algebra structure you constructed in PS1). Therefore self(\mathscr{PC}) has unit, binary products and function types.
- 4. Define for every C-T structure S, a homomorphism $Y: S \to \text{self}(\mathscr{P}S_c)$ (Hint: use the Yoneda embedding) that

¹again, there is a more complex proof that proves conservativity when we additionally have sum types

Problem 2

- is faithful (Hint: use the Yoneda lemma)
- preserves product types
- 5. Define a homomorphism of CT structures $[\![\cdot]\!]: \mathcal{L}(\times, 1, \Rightarrow) \to \text{self}(\mathscr{PL}(\times, 1)_c)$ and a natural isomorphism between $[\![\cdot]\!] \circ i$ and Y. (Hint: use the soundness theorem for $\mathcal{L}(\times, 1, \Rightarrow)$ and completeness theorem for $\mathcal{L}(\times, 1)$).
- 6. Conclude that i is faithful.

In fact, this functor i satisfies an additional property: it is also full, meaning that $i_{tm}^{A,\Gamma}$ is not just injective but also surjective. That is, for any $\Gamma \in \mathcal{L}(\times,1)_c$ and $A \in \mathcal{L}(\times,1,\Rightarrow)_T$, if $\Gamma \vdash M : A$ is a term in $STT(\times,1,\Rightarrow)$ then there exists a term $\Gamma \vdash M' : A$ in $STT(\times,1)$ such that $\Gamma \vdash M = M' : A$ is provable. This can be proven using a more complex, but similar construction. See Crole chapter 4.10 for a variant of this argument.

.