U.S. Appln. No. 09/448,378

### REMARKS

On page 3 of the Office Action, the Examiner rejects Claims 6-7, 20, 22-26, 28, 30-35, 37 and 39-53 under 35 U.S.C. § 103 as being unpatentable over Lyman et al in view of Elliot et al, Srivastava et al and Brem et al.

the Examiner contends that al Lyman Specifically, by administering flt3-ligand teaches treating cancer combination with another cytokine, e.g., GM-CSF. The Examiner notes that Lyman et al does not teach administration of a tumor antigen to the cancer patient to induce an immune response to the desired tumor antigen or that administration of flt3-ligand and/or GM-CSF will lead to an increase in the number of However, it is the Examiner's dendritic cells, as claimed. position that Elliot et al teaches vaccination of cancer antigens mixed with GM-CSF; and tumor with patients Srivastava et al teaches augmenting cancer vaccines comprising cancer cells and cancer antigens with cytokines, e.g., GM-CSF; and Brem et al teaches GM-CSF activates cytotoxic T lymphocytes which lead to the elimination of tumor cells by playing a role development of antigen processing cells, such dendritic cells. Hence, the Examiner concludes that it would have been prima facie obvious to administer a tumor antigen with flt3-ligand and GM-CSF to treat cancer to achieve the present invention.

For the following reasons, Applicants respectfully traverse the Examiner's rejection.

None of the references cited by the Examiner teach or suggest, alone or in combination, use of flt3-ligand in an

#### **AMENDMENT**

# U.S. Appln. No. 09/448,378

amount sufficient to an increase in the number of dendritic cells, as claimed.

Lyman et al teaches a method for expanding hematopoietic stem and progenitor cells (see column 26, lines 23-37 thereof). The stem cells were cultured for 4 days (96 hours plus 24 hours with radioactive tag) and cultured an additional 2 days in the presence of flt3-ligand. This is an approximate culture time of 6 days for expanding hematopoietic stem and/or progenitor cells. In contrast, Examples 1-2 of the present application describe culture conditions for generating large numbers of dendritic Example 1 describes culturing CD34+ cells cells. presence of flt3-ligand for approximately 2 weeks and Example 3 shows administering flt3-ligand daily over a period of 19 days. Thus, the hematopoietic stem and/or progenitor cells must be exposed to flt3-ligand for an extended period in order generate an increase in the number of dendritic cells in the This feature is also not taught or suggested in any other reference cited by the Examiner.

demonstrate order to event, in administration of flt3-ligand in conjunction with GM-CSF and a tumor antigen provides unexpectedly superior results, in terms inter alia, tumors, over of preventing formation tumor antigen alone of GM-CSF and a administration Flt3-ligand and a tumor antigen, Applicants submit herewith a study carried out in mice. As shown in Table 1 thereof, tumors formed in 9 out of 10 mice when Flt3 ligand was administered mice when GM-CSF was with saline, and in 10 of out 10 combination with saline alone or in administered with However, when Flt3-ligand and GM-CSF were Flt3-ligand.

#### AMENDMENT

# U.S. Appln. No. 09/448,378

administered together with an antigen (BLP25), 4 out of 10 mice did not form tumors. This is in contrast to the situation when Flt3-ligand was administered together with an antigen (BLP25), where only 2 out of 10 mice did not form tumors or when GM-CSF was administered together with an antigen (BLP25), where only 1 out of 10 mice did not form tumors. Thus, the combination of Flt3-ligand, GM-CSF and tumor antigen provides unexpectedly superior results in terms of preventing formation of tumors.

Accordingly, Applicants respectfully submit that the present invention is not taught or suggested in Lyman et al and that the combination thereof with Elliot et al, Srivastava et al and Brem et al does not give rise to the present invention. In any event, Applicants data is sufficient to rebut any prima facie case of obviousness the Examiner might have raised. Thus, Applicants request withdrawal of the Examiner's rejection.

In view of the amendments to Claims and the arguments set forth above, reexamination, reconsideration and allowance are respectfully requested.

The Examiner is invited to contact the undersigned at the below-listed number on any matters which might arise.

Respectfully submitted,

Gordon Kit

Registration No. 30,764

# SUGHRUE MION, PLLC

Telephone: (202) 293-7060 Facsimile: (202) 293-7860

WASHINGTON OFFICE

23373
CUSTOMER NUMBER

Date: May 17, 2006



CONFIDENTIAL INFORMATION

DO NOT DISTRIBUTE OR DISCUSS WITH MON-HUNDINEX PERSONNEL.

: ТИТЕ В AUTHORS AVONG ESCRETED.

# Aim of the study

This study was designed to test the anti-tumour effect of combination treatment with Flt3 ligand, pegylated GM-CSF and liposomal BLP25 vaccine in the MCA-38MUC1 mouse tumor model.

#### Test substances

|                      |                                                         | Lot#         |
|----------------------|---------------------------------------------------------|--------------|
| BG-RG (L-BLP25)      | BP1-148 400 ug/mL, lipid A adjuvant (200A-14) 200 ug/mL | BG99G27RG    |
| BG-RJ (Ag Tiposomes) | BP1-148 0 ug/mL, lipid A (200A-14) 200 ug/mL            | BG99G07RJ    |
| Flt-3 ligand         | Human, recombinant Flt-3 ligand produced in CHO cells   | 7772-018     |
| Pegylated GM-CSF     | Pegylated, murine GM-CSF                                | 7283-44      |
| Saline               | Abbott Laboratories Ltd.                                | 06-6945-2/R5 |

L-BLP25 is a liposomal formulation containing MUC1 based lipopeptide (BP1-148) and lipid A adjuvant. Ag "liposomes is a formulation containing a lipid A adjuvant only

Mice: C57BI/6 human MUC1 female mice 13 wk old

Tumor: MCA-38MUC1 mouse colon carcinoma transfected with the human MUC1 gene.

Study design

| Group | Mice | MCA-<br>38MUC1             | Fit-3 ligand                                          | GM-CSF                                             | L-BLP25                                                          |
|-------|------|----------------------------|-------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
|       |      | Day 0<br>(Sept.20)<br>s.c. | Day 0-11<br>(Scp.20-Oct.1)<br>s.c.<br>10ug/100ul/dosc | Day 7-11<br>(Sep.27-Oct.1) i.p.<br>2 ug/100ul/dose | Day 10, 17, 24<br>(Sept 30, Oct.7&14)<br>s.c. 100 ug/250 ul/dose |
| IAB   | 10   | +                          | +                                                     | •                                                  | Saline                                                           |
| 2AB   | 10   | +                          |                                                       | +                                                  | Saline                                                           |
| ЗАВ   | 10   | +                          | +                                                     | +                                                  | Saline                                                           |
| 4AB   | 10   | +                          | +                                                     | -                                                  | BG-RG                                                            |
| 5AB   | 10   | +                          |                                                       | +                                                  | BG-RG                                                            |
| GAB   | 10   | +                          | +                                                     | +                                                  | BG-RG                                                            |
| 7AB   | 10   | +                          | +                                                     | +                                                  | BG-RJ                                                            |
| 8AB   | 10   | +                          | -                                                     | _                                                  | BG-RJ                                                            |
| 9AB   | 10   | +                          | -                                                     | -                                                  | BG-RG                                                            |
| IOAB  | 10   | +                          | -                                                     | •                                                  | Saline                                                           |

#### Confidential information do not distribute or discuss with non-dimunex personnel authors alone excepted.

#### Experimental procedure

Mice were challenged subcutaneously with 5x10c5 MCA-38MUC1 tumor cells and then randomized. Flt3 was injected s.c. through 12 consecutive days starting on day 0, and pegylated GM-CSF was injected i.p. daily between day 7 and 11. Immunisations with BLP25 liposomal vaccine or Ag liposomes (no antigen, lipid A adjuvant only) (BG-RJ) were performed on day 10, 17 and 24. The tumour measurements were taken on a weekly basis, and tumour size was expressed as a product of bi-dimensional measures (mm2).

#### Results

As presented in Table 1 only the mice treated with both cytokines and BLP25 (group 6) or with both cytokines and Ag'liposomes (group 7) showed high number of mice whose tumours showed no significant growth (tumour no take). If BLP25, Ag'liposomes or both cytokines were administered separately no influence on tumour take was observed.

Table 1. Number of mice with or without turnour in each treated group.

| Group | Treatment                     | Mice w/o tumour<br>/total number per<br>group |
|-------|-------------------------------|-----------------------------------------------|
|       | Fit-3 + saline                | 1/10                                          |
| 2     | GM-CSF + saline               | 0/10                                          |
| 3     | FIL-3 + GM-CSF + saline       | 0/10                                          |
| 4     | Fit-3 + BLP25                 | 2/10                                          |
| 5     | GM-CSF+BLP25                  | 1/10                                          |
| 6     | Flt-3 + GM-CSF + BLP25        | 4/10                                          |
| 7     | Flt-3 + GM-CSF + Ag liposomes | 5/10                                          |
| 8     | Ag liposomes                  | 0/10                                          |
| 9     | BLP25                         | 0/10                                          |
| 10    | Saline                        | 0/10                                          |

The tumour growth kinetics are summarized in Figure 1 where all mice are included (with and without tumours) and Figure 2 where only the mice with tumours are included in the evaluation. The best synergism was observed when Ag liposomes were administered with Flt-3 and GM-CSF (group 7). The anti-tumour effect was statistically significant (statistics attached) when compared to Ag liposomes treatment (group 8) or both cytokine treatment (group 3) and to saline (group 10). Some synergism was observed (Fig.1) when mice were treated with BLP25 vaccine and both cytokines (group 6) as compared to BLP25 alone (group 9), but this observed improvement was not statistically significant.

On the other hand BLP25 alone produced a significant anti-tumour effect as compared to Agliposomes group or saline group.

### Confidential importation Do not distribute or discuss with non-inhunex personnel authors alone excepted.



Fig 1. Tumour growth curves in mice challenged with MCA-38 MUC1 tumour and then treated with various combinations of Fit-3 ligand, pegylated GM-CSF, BLP25 liposomal vaccine or Ag'liposomes. All mice were included into statistical evaluation (both with and without tumours).

# Confidential information do not distribute or discuss with non-minumex personnel authors alone excepted.

Table 2. Statistically significant differences between mouse groups treated with various combinations of cytokines and BLP25 liposomal vaccine (only statistically significant groups are included).

| Treatment                                      | P-value |
|------------------------------------------------|---------|
| Flt-3 > saline                                 | 0.0377  |
| Fit-3 > GM-CSF                                 | 0.0149  |
| Flt-3 + GM-CSF + Agliposomes > Flt-3           | 0.0175  |
| F(t-3 > Ag'liposomes                           | 0.0147  |
| Flt-3 + BLP25 > Saline                         | 0.0095  |
| GM-CSF + BLP25 > Saline                        | 0.0042  |
| FIt-3 + GM-CSF + BLP25 > Saline                | 0.0006  |
| Fit-3 + GM-CSF + Ag liposomes > Saline         | <.0001  |
| BLP25 > Saline                                 | 0.0046  |
| Fit-3 + BLP25 > GM-CSF                         | 0.0035  |
| GM-CSF + BLP25 > GM-CSF                        | 0.0015  |
| Fit-3+ GM-CSF + BLP25 > GM-CSF                 | 0.0002  |
| Flt-3 + GM-CSF + Ag liposomes > GM-CSF         | <.0001  |
| BLP25 > GM-CSF                                 | 0.0017  |
| Fit-3 + GM-CSF + BLP25 > Fit-3 + GM-CSF        | 0.0324  |
| Flt-3 + GM-CSF + Ag liposomes > Flt-3 + GM-CSF | 0.0017  |
| Flt-3 + GM-CSF + Ag liposomes > Flt-3 + BLP25  | 0.0470  |
| Fht-3 + BLP25 > Ag'liposomes                   | 0.0044  |
| GM-CSF + BLP25 > Ag liposomes                  | 0.0021  |
| Flt-3 + GM-CSF + BLl'25 > Ag liposomes         | 0.0004  |
| Fit-3 + GM-CSF + Ag'liposomes > Ag'liposomes   | <.0001  |
| BLP25 > Ag' liposomes                          | 0.0023  |

# Confidential information Do not distribute or discuss with non-himunex personnel authors alone excepted.

ANDVA Table for RankArea(Nov02) Inclusion criteria: Protocol (312(Ali) from TumorData (312(Ali).svd

|            | DF | Sum of Squares | Mean Square | F-Value | P-Value | Lambda | Pow er |
|------------|----|----------------|-------------|---------|---------|--------|--------|
| GroupIndox | 9  | 23164.111      | 2573.790    | 5.587   | جـ0001  | 50.283 | 1,000  |
| Pasidual   | 80 | 36853.678      | 460.671     |         |         |        |        |

# All groups statistical analysis (mice with and without tumours)

Fisher's PLSD for RankArea(Nov02)

Biect: GroupIndex

6ignificance Level; 5 %

inclusion criteria: Protocol (312(All) from TumorData (312(All).svd

|       | Mean Dill. | Crit. Dirl. | P-Value |    |
|-------|------------|-------------|---------|----|
| 1, 10 | -20.844    | 19.625      | .0377   | ŝ  |
| 1, 2  | -25,944    | 20.755      | .0149   | S  |
| 1, 3  | -8.222     | 20.135      | .4188   |    |
| 1, 4  | 4.656      | 19.625      | .6382   | l  |
| 1, 5  | 7.456      | 19.625      | .4519   |    |
| 1, 6  | 19.256     | 19.525      | .1827   | ĺ  |
| 1, 7  | 24.556     | 20.135      | .0175   | Ş  |
| 1, 8  | -29.644    | 23.824      | ,0147   | Ş  |
| 1, 9  | 7.158      | 19.625      | .4702   |    |
| 10, 2 | -5.100     | 20.261      | .6178   |    |
| 10,3  | 12.622     | 19.625      | ,2043   |    |
| 10,4  | 25.500     | 19.102      | .0095   | S  |
| 10, 5 | 28.300     | 19,102      | .0042   | 3  |
| 10, 6 | 34,100     | 19.102      | .0006   | S  |
| 10, 7 | 45.400     | 19.625      | د.0001  | s  |
| 10, 8 | -9.000     | 23.395      | .4462   |    |
| 10, 9 | 26.000     | 18.102      | .0046   | Ş  |
| 2. 3  | 17.722     | 20.755      | .0932   |    |
| 2,4   | 30.600     | 20.261      | .0035   | s  |
| 2,5   | 33.400     | 20.261      | .0015   | s  |
| 2,6   | 39.200     | 20.281      | .0002   | ŝ  |
| 2.7   | 50,500     | 20.755      | 00001ء  | 5  |
| 2, 8  | -3.900     | 24.350      | .7508   |    |
| 2, 9  | 33.100     | 20.261      | .0017   | 5  |
| 3, 4  | 12.878     | 19.625      | .1953   | ,  |
| 3, 5  | 15.678     | 19.625      | .1158   |    |
| 3, G  | 21,478     | 19.625      | .0324   | Ş  |
| 3, 7  | 32,778     | 20.135      | .0017   | S  |
| 3, 8  | -21.622    | 23.824      | .0747   |    |
| 9, 9  | 15.378     | 19.625      | .1229   |    |
| 4, 5  | 2.800      | 19.102      | .7713   |    |
| 4,6   | 8.600      | 19.102      | .3730   |    |
| 4,7   | 19.900     | 19.525      | .0470   | s  |
| 4, 8  | -34.500    | 23.395      | .0044   | s  |
| 4, 9  | 2,500      | 19.102      | .7952   |    |
| 5, 6  | 5.800      | 19.102      | .5474   |    |
| 5, 7  | 17.100     | 19.625      | .0858   |    |
| 5, 8  | -37.300    | 23.395      | .0021   | 3  |
| 5, 9  | 300        | 19.102      | .9751   | 1  |
| 6,7   | 11.300     | 19.625      | .2553   |    |
| 6,6   | -43.100    | 23.395      | .0004   | 8  |
| 6, 9  | -6.100     | 19.102      | .5269   |    |
| 7, B  | -54.400    | 23.824      | <.0001  | S  |
| 7, 9  | -17.400    | 19.625      | .0815   | -  |
| 8, B  | \$7.000    | 23.395      | .0023   | \$ |
| -, -  |            |             |         | _  |

### Confidential information Do not distribute or discuss with non-dimunex personnel. Authors alone excepted.



Fig 2. Tumour growth curves in mice challenged with MCA-38 MUC1 tumour and then treated with various combinations of Fit-3 ligand, pegylated GM-CSF, BLP25 liposomal vaccine or Ag liposomes. Only mice with tumours were included into this graph and in statistical evaluation.

# Confidential information Do not distribute or discuss with non-immex personnel authors alone excepted.

Table 3. Statistically significant differences between mouse groups treated with various combinations of cytokines and BLP25 liposomal vaccine (only statistically significant groups are included and only mice with tumours were analyzed).

| Treatment                                     | P-vaiue |
|-----------------------------------------------|---------|
| Fit-3 + GM-CSF + Agliposomes > Fit-3          | 0.0370  |
| GM-CSF + BLP25 > Saline                       | 0.0022  |
| Flt-3 + GM-CSF + Agliposomes > Saline         | 0.0018  |
| BLP25 > Saline                                | 0.0020  |
| Fit-3 + BLP25 > GM-CSF                        | 0.0228  |
| GM-CSF + BLP25 > GMCSF                        | 0.0007  |
| FIt-3+ GM-CSF + BLP25 > GM-CSF                | 0.0273  |
| FIt-3 + GM-CSF + Ag liposomes > GM-CSF        | 0.0006  |
| BLP25 > GM-CSF                                | 0.0006  |
| Fit-3 + GM-CSF + Agliposomes > Fit-3 + GM-CSF | 0.0465  |
| Flt-3 + BLP25 > Ag'liposomes                  | 0.0194  |
| GM-CSF + BLP25 > Agliposomes                  | 0.0010  |
| Flt-3 + GM-CSF + BLP25 > Agliposomes          | 0.0221  |
| Flt-3 + GM-CSF + Agliposomes > Agliposomes    | 0.0007  |
| BLP25 > Ag liposomes                          | 0.0009  |

# CONFIDENTIAL INFORMATION DO NOT DISTRIBUTE OR DISCUSS WITH NON-MINUMEX PERSONNEL. ANOVA Table for PALITHORS, ALONE EXCEPTED. Inclusion criteria: Protocol 1312(Tumors Only) from Tumor Dala 1312(Tumors Only), sed

|            | DF | Sum of Squares | Mean Square | F-Value | P-Value | Lambda | Power |
|------------|----|----------------|-------------|---------|---------|--------|-------|
| GroupIndex | 9  | 13813.285      | 1534.809    | 4,066   | .0003   | 38.591 | .894  |
| Residual   | 68 | 25670.164      | 377.502     |         |         |        |       |
|            | _  | <del></del>    | 741 4       |         |         |        |       |

All groups statistical analysis (only mice with tumours)

Fisher's PLSD for RankAres(Nov02)

Effect: GroupIndex Significance Level: 5 %

Inclusion criteria: Protocol (312(Tumors Only) from TumorData (312(Tumors Only).svd

| IUCINSIO |            | 01000113121 |         | ııy) |
|----------|------------|-------------|---------|------|
|          | Mean Dift. | CAL DIT.    | P-Value |      |
| 1, 10    | -10.400    | 19.106      | .2812   |      |
| 1,2      | -15,500    | 20.068      | .1279   |      |
| 1, 3     | 2.222      | 19.539      | .B211   |      |
| 1,4      | 7.125      | 20.065      | .4810   | i    |
| 1, 6     | 17,300     | 19.106      | .0752   |      |
| 1, 6     | 8.167      | 21,570      | .4526   |      |
| 1,7      | 24.200     | 22.702      | ,0370   | \$   |
| 1, 6     | -19.400    | 22.702      | .0927   |      |
| 1, 9     | 17.600     | 19.106      | .0704   |      |
| 10, 2    | -5.100     | 18.391      | .5818   |      |
| 10, 3    | 12,622     | 17.814      | .1620   | ŀ    |
| 10, 4    | 17.525     | 18.391      | .0G15   |      |
| 10, 5    | 27.700     | 17.339      | .0022   | \$   |
| 10, 6    | 18.567     | 20.021      | .0686   |      |
| 10, 7    | 34.800     | 21.238      | .0018   | 5    |
| 10, 8    | -9.000     | 21.236      | .4007   | İ    |
| 10, 9    | 28.000     | 17.339      | .0020   | 8    |
| 2, 3     | 17.722     | 18.839      | .0648   |      |
| 2.4      | 22,625     | 19.385      | .0228   | 5    |
| 2,5      | 32.800     | 18.991      | ,0007   | \$   |
| 2, 8     | 23.687     | 20.939      | .0273   | 8    |
| 2,7      | 39.700     | 22.103      | .0008   | 5    |
| 2,8      | -3.900     | 22.103      | .7259   | i    |
| 2,9      | 23.100     | 18.391      | .0006   | 5    |
| 3, 4     | 4.909      | 18.839      | .6052   | ŀ    |
| 3, 5     | 15.078     | 17.614      | .0958   |      |
| 3, 6     | 5.944      | 20.434      | .5835   |      |
| 3, 7     | 21,978     | 21,625      | .0465   | s    |
| 3.8      | -21.622    | 21.525      | .0500   |      |
| 3, 9     | 15.378     | 17.814      | .0895   |      |
| 4, 6     | 10.175     | 16.391      | 2735    | 1    |
| 4, 6     | 1,042      | 20.939      | .9212   |      |
| 4, 7     | 17.075     | 22.103      | .1278   |      |
| 4, 8     | -26.525    | 22.103      | .0194   | s    |
| 4, 9     | 10.475     | 18.391      | .2597   |      |
| 5, 6     | -9.133     | 20.021      | .3659   | ŀ    |
| 5, 7     | 6.900      | 21.236      | .5189   |      |
| 5, 8     | -36.700    | 21.236      | .0010   | 8    |
| 5, 9     | .300       | 17,339      | .9726   |      |
| 5,7      | 16.033     | 23.477      | .1774   |      |
| 6, 8     | -27.587    | 23.477      | .0221   | 8    |
| 6, 9     | 9.433      | 20.021      | .3504   |      |
| 7, 8     | -43.600    | 24.521      | .0007   | S    |
| 7. 9     | -6.600     | 21,236      | .5372   |      |
| 8, 9     | 37.000     | 21.236      | .0009   | S    |
|          |            |             |         |      |

#### confidential information do not distribute or discuss with non-inhumex personnel. Authors alone excepted.

#### Conclusions

1/ A significant tumour growth inhibition and a high percentage (50%) of mice without tumours suggest a therapeutic benefit when tumour bearing mice were treated with combination of both cytokines and Ag liposomes.

2/ A significant tumour inhibition was observed when mice were treated with BLP25 liposomal vaccine alone (group 9), but not when mice were treated with a combination of Flt-3 and GM-CSF (group 3). Some inhibition (significant compared to saline group and Agliposomes) was observed when mice were treated with Flt-3 alone (group 1).

3/ When BLP25 vaccine was combined with Fit-3 and GM-CSF 4 out of 10 mice were found turnour free, however no statistically significant turnour growth inhibition was observed in the remaining mice with turnours when compared to BLP25 treatment alone.

4/ The results look encouraging and it would be worthwhile to repeat and extend this experiment.

#### Discussion

Flt-3 ligand and GM-CSF are known to be potent stimulators of DCs maturation and increase the number of functionally active DCs at injection sites. These cytokines seem to be good candidates to combine as adjuvants with various antigens. Our MUC1 based liposomal vaccine contains an additional adjuvant - lipid A which is known to accelerate the maturation process of DCs. We have found that incubation of human DCs with LPS or BLP25 liposomes greatly increases the percentage of class II, CD83 and CD86 molecules and stimulates anti-MUC1 T cell responses. The working hypothesis is that injections of Flt-3 and GM-CSF will increase the number of DCs which will lead to enhanced MUC1 antigen presentation, as we have found that lipid A rapidly enhances DC maturation, a synergistic effect with Fit-3 and GM-CSF might be expected. Our preliminary data seem to support this hypothesis. We have observed a high percentage of mice without tumours in two groups where mice were treated with both cytokines and BLP25 liposomal vaccine or Ag liposomes. The high percentage of mice without tumours in a group where Ag liposomes were injected can be explained by an increased number of functionally active DCs that can uptake and process tumour antigens shed from dead tumour cells. However, in all groups where vaccine or cytokines were administered separately no significant numbers of tumour "no takes" were observed. Thus, the number of tumour "no takes" in these two groups suggest a synergistic effect when combined treatment is performed. When tumour size only was analysed, again the mice in group 7 where Ag liposomes were administered together with both cytokines showed a statistically significant inhibition of tumour growth. When the cytokine or Ag liposomes were administered separately only Flt-3 induced an anti-tumour effect, but this was not as potent as the combined treatment. BLP25 vaccine alone generated an inhibition of

# Confidential information Do not distribute or discuss with non-indunex personnel authors alone excepted.

turnour growth but the combination with Flt-3 and GM-CSF did not improve significantly the anti-turnour effect. However, GM-CSF was administered i.p. but not s.c., and maybe some higher dose of GM-CSF should be used. All these primary observations are very promising and it would be worthwhile to repeat this experiment in order to confirm and extend these observations.