Al Site Visit Transcriber for actionaly insights

TECH STACK	SUPPORTING REASON
FLUTTER	I used Flutter to ensure a unified codebase for both Android and iOS platforms, reducing development and maintenance effort. Its high performance and native-like UI made it ideal for building a responsive mobile interface for site engineers, also since the app is not going to be too complex.
REACT	I used React to build a dynamic and responsive dashboard for architects and managers on the web. Its component-based architecture and rich ecosystem enabled rapid development, scalability, and seamless integration with backend APIs.
WHISPER	I used Whisper for its state-of-the-art transcription accuracy , especially in noisy, real-world environments like construction sites. Its open-source nature and multi-language support made it cost-effective, customizable, and ideal for integrating into my Al pipeline.
GPT-4o-Mini	I used GPT-4o mini for its balanced trade-off between speed, cost, and reasoning ability , making it ideal for real-time, on-device or API-based AI tasks. Its strong performance in text understanding and summarization ensured high-quality extraction of insights from transcribed audio. We can also implement safeguards when Whisper fails.
AWS SQQ	I used AWS SQS to enable reliable , decoupled communication between services like audio upload, transcription, and processing.
Prometheus + Grafana	I used Prometheus and Grafana for real-time monitoring and visualization of system performance, ensuring uptime and observability.
PostgreSQL	PostgreSQL was chosen for its robust relational capabilities, making it ideal for storing structured reports, user data, and metadata with ACID compliance.
REST	I used REST APIs to ensure clear , stateless communication between frontend and backend services. Their widespread adoption and simplicity made integration with mobile, web, and third-party systems seamless and scalable.