Assignment # 1.

Sec 1.1.

1@line

6 plane @ all of 183.

2.

(5)
$$u+v+\omega = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 $2u+2v+\omega = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$

Since $u+v+w=0 \Rightarrow u=-v-w$. i.e. u lies on the plane determined by v and w, so u,v,w lie on a plane

(1)

c70,d70

(19)

sec 1.2.

- ① $u \cdot v = 0$, $u \cdot \omega = 1$, $u \cdot (v + \omega) = 1$ $u \cdot v = 0$
- (2) ||u||=1, ||v||=5 $||\omega||=\sqrt{5}$ $||u\cdot v||=0$ ||u|| ||v||=5 045 $||v\cdot w||=10$ $||v|| ||\omega||=5\sqrt{5}$ 1045 $||v\cdot w||=10$
- $OGW = (\omega_1, \omega_2)$ such that $\omega_2 = 2\omega_1$.
 - 6 plane
- @ line
- **多** 9 里 6 里 6 里 6 3 4
- (3) $V = (-1, 0, 1); \omega = (0, 1, 0)$
- $\dot{u} = (-1, -1, 1, 1), V = (0, 0, -1, 1)$ $\omega = (1, -1, 0, 0)$
- 2 ≤ ||V-W|| ≤ 8 -15 ≤ V.W ≤ 15
- (31) $\frac{2\pi}{3}$, because $\frac{V \cdot \omega}{\|V\|\| \|\omega\|} = 600$ = $\frac{2\pi}{3} = -\frac{1}{2}$