Fernando Lozano

Universidad de los Andes

29 de agosto de 2022

• Reconocimiento de patrones o clasificación:

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - ▶ Reconocimiento de caracteres.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - ▶ Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - ▶ Identificación de sistemas.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - ▶ Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - ▶ Identificación de sistemas.
 - Aproximación de funciones.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - Identificación de sistemas.
 - Aproximación de funciones.
- Ranking

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - Identificación de sistemas.
 - Aproximación de funciones.
- Ranking
 - Sistema de recomendación.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - Identificación de sistemas.
 - Aproximación de funciones.
- Ranking
 - Sistema de recomendación.
 - ▶ Information retrieval.

- Reconocimiento de patrones o clasificación:
 - Diagnóstico médico.
 - Reconocimiento de caracteres.
 - Categorización de texto.
- Regresión:
 - Predicción de series de tiempo.
 - Identificación de sistemas.
 - Aproximación de funciones.
- Ranking
 - Sistema de recomendación.
 - Information retrieval.
- Otros.

• Entrada \mathbf{x} , salida y.

- \bullet Entrada \mathbf{x} , salida y.
- ullet Queremos un sistema que prediga el valor de y a partir de ${\bf x}$.

- Entrada \mathbf{x} , salida y.
- Queremos un sistema que prediga el valor de y a partir de \mathbf{x} .
- Existe un supervisor o maestro que conoce la respuesta correcta para patrones de entrada.

- Entrada \mathbf{x} , salida y.
- Queremos un sistema que prediga el valor de y a partir de \mathbf{x} .
- Existe un supervisor o maestro que conoce la respuesta correcta para patrones de entrada.
- Conjunto de entrenamiento: $\{\mathbf{x}_i, y_i\}_{i=1}^n$

- Entrada \mathbf{x} , salida y.
- Queremos un sistema que prediga el valor de y a partir de \mathbf{x} .
- Existe un supervisor o maestro que conoce la respuesta correcta para patrones de entrada.
- Conjunto de entrenamiento: $\{\mathbf{x}_i, y_i\}_{i=1}^n$

 \bullet Queremos modelar S.

- \bullet Queremos modelar S.
- No es fácil obtener un modelo analítico.

- Queremos modelar S.
- No es fácil obtener un modelo analítico.
- Usar modelo para predecir valores de la salida para nuevas entradas.

- Queremos modelar S.
- No es fácil obtener un modelo analítico.
- Usar modelo para predecir valores de la salida para nuevas entradas.

Elementos

• Conjunto de datos de entrenamiento $\{\mathbf{x}_i, y_i\}_{i=1}^n$.

Elementos

- Conjunto de datos de entrenamiento $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- ullet Modelos a utilizar (NN,SVM,...)

Elementos

- Conjunto de datos de entrenamiento $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Modelos a utilizar (NN,SVM,...)
- Conjunto de datos de prueba $\{\mathbf{x}_i, y_i\}_{i=1}^q$.

Aprendizaje=Construir modelo

 \bullet El objetivo es aproximar S.

Aprendizaje=Construir modelo

- El objetivo es aproximar S.
- Cuál es un criterio de error apropiado?

$$(\mathbf{x}, y) \sim \mathcal{D}$$

$$(\mathbf{x}, y) \sim \mathcal{D}$$

• Por ejemplo en clasificación:

$$(\mathbf{x}, y) \sim \mathcal{D}$$

- Por ejemplo en clasificación:
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x})$ para algún clasificador determinístico c desconocido.

$$(\mathbf{x}, y) \sim \mathcal{D}$$

- Por ejemplo en clasificación:
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x})$ para algún clasificador determinístico c desconocido.
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x}) \oplus \eta$ donde $\eta \in \{1, 0\}$ es ruido de clasificación con $\mathbf{P}[\eta = 1] = p$.

$$(\mathbf{x}, y) \sim \mathcal{D}$$

- Por ejemplo en clasificación:
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x})$ para algún clasificador determinístico c desconocido.
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x}) \oplus \eta$ donde $\eta \in \{1, 0\}$ es ruido de clasificación con $\mathbf{P}[\eta = 1] = p$.
 - $\mathbf{x} \sim \mathcal{D} \ \mathbf{y} \ \mathbf{P}[y=1 \mid \mathbf{x}] = \alpha(\mathbf{x}).$

$$(\mathbf{x}, y) \sim \mathcal{D}$$

- Por ejemplo en clasificación:
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x})$ para algún clasificador determinístico c desconocido.
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x}) \oplus \eta$ donde $\eta \in \{1, 0\}$ es ruido de clasificación con $\mathbf{P}[\eta = 1] = p$.
 - $\mathbf{x} \sim \mathcal{D} \ \mathbf{y} \ \mathbf{P}[y=1 \mid \mathbf{x}] = \alpha(\mathbf{x}).$
- Por ejemplo en regresión:

$$(\mathbf{x}, y) \sim \mathcal{D}$$

- Por ejemplo en clasificación:
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x})$ para algún clasificador determinístico c desconocido.
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x}) \oplus \eta$ donde $\eta \in \{1, 0\}$ es ruido de clasificación con $\mathbf{P}[\eta = 1] = p$.
 - $\mathbf{x} \sim \mathcal{D} \ \mathbf{y} \ \mathbf{P}[y=1 \mid \mathbf{x}] = \alpha(\mathbf{x}).$
- Por ejemplo en regresión:
 - $\blacktriangleright \ \mathbf{x} \sim \mathcal{D}$ y $y = f(\mathbf{x})$ para alguna función determinística f desconocida.

$$(\mathbf{x}, y) \sim \mathcal{D}$$

- Por ejemplo en clasificación:
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x})$ para algún clasificador determinístico c desconocido.
 - ▶ $\mathbf{x} \sim \mathcal{D}$ y $y = c(\mathbf{x}) \oplus \eta$ donde $\eta \in \{1, 0\}$ es ruido de clasificación con $\mathbf{P}[\eta = 1] = p$.
 - $\mathbf{x} \sim \mathcal{D} \ \mathbf{y} \ \mathbf{P}[y=1 \mid \mathbf{x}] = \alpha(\mathbf{x}).$
- Por ejemplo en regresión:
 - $\blacktriangleright \ \mathbf{x} \sim \mathcal{D}$ y $y = f(\mathbf{x})$ para alguna función determinística f desconocida.
 - $\mathbf{x} \sim \mathcal{D} \ \mathbf{y} \ y = f(\mathbf{x}) + \eta \ \text{donde} \ \eta \sim \mathcal{D}_{\eta}$

8 / 43

• $(\mathbf{x}, y) \sim \mathcal{D}$

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n \sim \mathcal{D}$ independientes.

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n \sim \mathcal{D}$ independientes.
- $\{\mathbf{x}_i, y_i\}_{i=1}^q \sim \mathcal{D}$ independientes.

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n \sim \mathcal{D}$ independientes.
- $\{\mathbf{x}_i, y_i\}_{i=1}^q \sim \mathcal{D}$ independientes de $\{\mathbf{x}_i, y_i\}_{i=1}^n$.

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n \sim \mathcal{D}$ independientes.
- $\{\mathbf{x}_i, y_i\}_{i=1}^q \sim \mathcal{D}$ independientes.e independientes de $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Criterio de error:

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n \sim \mathcal{D}$ independientes.
- $\{\mathbf{x}_i, y_i\}_{i=1}^q \sim \mathcal{D}$ independientes.e independientes de $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Criterio de error:
 - Para clasificación binaria:

$$\mathbf{P}_{\mathcal{D}}\left[\hat{S}(\mathbf{x}) \neq y\right]$$

- $(\mathbf{x}, y) \sim \mathcal{D}$
- $\{\mathbf{x}_i, y_i\}_{i=1}^n \sim \mathcal{D}$ independientes.
- $\{\mathbf{x}_i, y_i\}_{i=1}^q \sim \mathcal{D}$ independientes.e independientes de $\{\mathbf{x}_i, y_i\}_{i=1}^n$.
- Criterio de error:
 - Para clasificación binaria:

$$\mathbf{P}_{\mathcal{D}}\left[\hat{S}(\mathbf{x}) \neq y\right]$$

Para regresión:

$$\mathbf{E}_{\mathcal{D}}\left[\hat{S}(\mathbf{x}) - y\right]^2$$

• Datos:

- Datos: Entrenamiento/Prueba.
- 2 Modelo

- Datos: Entrenamiento/Prueba.
- 2 Modelo
- 3 Adecuación/ Preprocesamiento de los datos

- Datos: Entrenamiento/Prueba.
- 2 Modelo
- 3 Adecuación/ Preprocesamiento de los datos
- O Entrenamiento:

- Datos: Entrenamiento/Prueba.
- 2 Modelo
- 3 Adecuación/ Preprocesamiento de los datos
- O Entrenamiento:
 - Función de error

- Datos: Entrenamiento/Prueba.
- 2 Modelo
- 3 Adecuación/ Preprocesamiento de los datos
- O Entrenamiento:
 - Función de error
 - 2 Optimización de función de error en datos de entrenamiento.

- Datos: Entrenamiento/Prueba.
- 2 Modelo
- Adecuación/ Preprocesamiento de los datos
- O Entrenamiento:
 - Función de error
 - Optimización de función de error en datos de entrenamiento.
- Evaluar modelo en datos prueba.

17 / 43

1 Datos:

1 Datos: Entrenamiento/Validación/Prueba.

- 1 Datos: Entrenamiento/Validación/Prueba.
- 2 Modelo

- 1 Datos: Entrenamiento/Validación/Prueba.
- Modelo
- § Adecuación/ Preprocesamiento de los datos

- 1 Datos: Entrenamiento/Validación/Prueba.
- 2 Modelo
- Adecuación/ Preprocesamiento de los datos
- O Entrenamiento:

- 1 Datos: Entrenamiento/Validación/Prueba.
- Modelo
- Adecuación/ Preprocesamiento de los datos
- O Entrenamiento:
 - Función de error

- 1 Datos: Entrenamiento/Validación/Prueba.
- Modelo
- Adecuación/ Preprocesamiento de los datos
- O Entrenamiento:
 - Función de error
 - 2 Para modelos de diferentes "tamaños" o "complejidad":

- 1 Datos: Entrenamiento/Validación/Prueba.
- Modelo
- Adecuación/ Preprocesamiento de los datos
- O Entrenamiento:
 - Función de error
 - Para modelos de diferentes "tamaños" o "complejidad":
 - Optimización de función de error en datos de entrenamiento.

- 1 Datos: Entrenamiento/Validación/Prueba.
- Modelo
- Adecuación / Preprocesamiento de los datos
- Output
 Entrenamiento:
 - Función de error
 - Para modelos de diferentes "tamaños" o "complejidad":
 - Optimización de función de error en datos de entrenamiento.
 - 2 Evaluar modelo en datos de validación.

- 1 Datos: Entrenamiento/Validación/Prueba.
- 2 Modelo
- Adecuación / Preprocesamiento de los datos
- Ontrenamiento:
 - Función de error
 - Para modelos de diferentes "tamaños" o "complejidad":
 - Optimización de función de error en datos de entrenamiento.
 - 2 Evaluar modelo en datos de validación.
 - 3 Seleccionar modelo con menor error en datos de validación

- 1 Datos: Entrenamiento/Validación/Prueba.
- 2 Modelo
- Adecuación/ Preprocesamiento de los datos
- Ontrenamiento:
 - Función de error
 - 2 Para modelos de diferentes "tamaños" o "complejidad":
 - Optimización de función de error en datos de entrenamiento.
 - 2 Evaluar modelo en datos de validación.
 - 3 Seleccionar modelo con menor error en datos de validación
- 6 Evaluar modelo en datos prueba.

- 1 Datos: Entrenamiento/Validación/Prueba.
- 2 Modelo
- Adecuación/ Preprocesamiento de los datos
- Ontrenamiento:
 - Función de error
 - 2 Para modelos de diferentes "tamaños" o "complejidad":
 - Optimización de función de error en datos de entrenamiento.
 - 2 Evaluar modelo en datos de validación.
 - 3 Seleccionar modelo con menor error en datos de validación
- 6 Evaluar modelo en datos prueba.

Ejemplo: Aprendizaje de rectángulos en \mathbb{R}^2

- $\mathbf{x}_i \sim \mathcal{D}$, independientes.
- $y_i = c(\mathbf{x}_i) \equiv I_c(\mathbf{x}_i)$

Ejemplo: Aprendizaje de rectángulos en \mathbb{R}^2

- $\mathbf{x}_i \sim \mathcal{D}$, independientes.
- $y_i = c(\mathbf{x}_i) \equiv I_c(\mathbf{x}_i)$

$$e(h) = \mathbf{P}_{\mathcal{D}}[c(\mathbf{x}) \neq h(\mathbf{x})]$$

$$e(h) = \mathbf{P}_{\mathcal{D}}[c(\mathbf{x}) \neq h(\mathbf{x})]$$

$$e(h) = \mathbf{P}_{\mathcal{D}}[c(\mathbf{x}) \neq h(\mathbf{x})]$$

Análisis

Análisis

• Queremos $e(h) = \mathbf{P}_{\mathcal{D}}[B] \ll$

• e(h) es una variable aleatoria porque h depende de los datos $\mathbf{x}_i \sim \mathcal{D}$.

- e(h) es una variable aleatoria porque h depende de los datos $\mathbf{x}_i \sim \mathcal{D}$.
- Queremos que con alta probabilidad $\mathbf{P}_{\mathcal{D}}[B]$ \ll

- e(h) es una variable aleatoria porque h depende de los datos $\mathbf{x}_i \sim \mathcal{D}$.
- Queremos que con alta probabilidad $\mathbf{P}_{\mathcal{D}}[B]$ \ll
- Dados $\varepsilon, \delta > 0$,

$$\mathbf{P}_{\mathcal{D}}\left[e(h) \geq \varepsilon\right] \leq \delta$$
?

 \bullet FranjaT'

- \bullet Franja T'
- Franja T con $\mathbf{P}_{\mathcal{D}}[T] = \frac{\varepsilon}{4}$

- \bullet Franja T'
- Franja T con $\mathbf{P}_{\mathcal{D}}\left[T\right] = \frac{\varepsilon}{4}$
- $\mathbf{P}_{\mathcal{D}}[T'] > \frac{\varepsilon}{4} \Leftrightarrow \text{no hay puntos en } T.$

•
$$\mathbf{P}_{\mathcal{D}}\left[\mathbf{x} \notin T\right] = 1 - \frac{\varepsilon}{4}$$

•
$$\mathbf{P}_{\mathcal{D}}[\mathbf{x} \notin T] = 1 - \frac{\varepsilon}{4}$$

•
$$\mathbf{P}_{\mathcal{D}}\left[\mathbf{x}_{1},\ldots,\mathbf{x}_{m}\notin T\right]=$$

•
$$\mathbf{P}_{\mathcal{D}}\left[\mathbf{x} \notin T\right] = 1 - \frac{\varepsilon}{4}$$

•
$$\mathbf{P}_{\mathcal{D}}[\mathbf{x}_1, \dots, \mathbf{x}_m \notin T] = \left(1 - \frac{\varepsilon}{4}\right)^m$$

•
$$\mathbf{P}_{\mathcal{D}}[\mathbf{x} \notin T] = 1 - \frac{\varepsilon}{4}$$

•
$$\mathbf{P}_{\mathcal{D}}[\mathbf{x}_1, \dots, \mathbf{x}_m \notin T] = \left(1 - \frac{\varepsilon}{4}\right)^m$$

•
$$\mathbf{P}_{\mathcal{D}}\left[\mathbf{x}_{1},\ldots,\mathbf{x}_{m}\notin B\right]$$

•
$$\mathbf{P}_{\mathcal{D}}[\mathbf{x} \notin T] = 1 - \frac{\varepsilon}{4}$$

•
$$\mathbf{P}_{\mathcal{D}}[\mathbf{x}_1, \dots, \mathbf{x}_m \notin T] = \left(1 - \frac{\varepsilon}{4}\right)^m$$

• $\mathbf{P}_{\mathcal{D}}[\mathbf{x}_1, \dots, \mathbf{x}_m \notin B] \le 4\left(1 - \frac{\varepsilon}{4}\right)^m$

•
$$\mathbf{P}_{\mathcal{D}}[\mathbf{x} \notin T] = 1 - \frac{\varepsilon}{4}$$

•
$$\mathbf{P}_{\mathcal{D}}[\mathbf{x}_1, \dots, \mathbf{x}_m \notin T] = \left(1 - \frac{\varepsilon}{4}\right)^m$$

• $\mathbf{P}_{\mathcal{D}}[\mathbf{x}_1, \dots, \mathbf{x}_m \notin B] \le 4\left(1 - \frac{\varepsilon}{4}\right)^m$

ullet Queremos escoger m que satisfaga

$$4\left(1-\frac{\varepsilon}{4}\right)^m \leq \delta$$

ullet Queremos escoger m que satisfaga

$$4\left(1-\frac{\varepsilon}{4}\right)^m \leq \delta$$

usando $1 - x \le e^{-x}$ tenemos

ullet Queremos escoger m que satisfaga

$$4\left(1 - \frac{\varepsilon}{4}\right)^m \le \delta$$

usando $1 - x \le e^{-x}$ tenemos

$$4e^{-\frac{\varepsilon m}{4}} \leq \delta$$

ullet Queremos escoger m que satisfaga

$$4\left(1-\frac{\varepsilon}{4}\right)^m \leq \delta$$

usando $1 - x \le e^{-x}$ tenemos

$$4e^{-\frac{\varepsilon m}{4}} \le \delta$$

O

$$m \ge \frac{4}{\varepsilon} \ln \frac{4}{\delta}$$

ullet Queremos escoger m que satisfaga

$$4\left(1 - \frac{\varepsilon}{4}\right)^m \le \delta$$

usando $1 - x \le e^{-x}$ tenemos

$$4e^{-\frac{\varepsilon m}{4}} \le \delta$$

O

$$m \ge \frac{4}{\varepsilon} \ln \frac{4}{\delta}$$

• El algoritmo consistente con por lo menos $\frac{4}{\varepsilon} \ln \frac{4}{\delta}$ datos produce con probabilidad por lo menos $1 - \delta$ una hipótesis que clasifica mal un nuevo dato con probabilidad máxima de ε .

 \bullet $|\mathcal{H}|<\infty$

- $|\mathcal{H}| < \infty$
- Algoritmo A: observa m datos y retorna h_A consistente.

- $|\mathcal{H}| < \infty$
- Algoritmo A: observa m datos y retorna h_A consistente.
- Sea $B = \{ h \in \mathcal{H} : e(h) > \varepsilon \},\$

- $|\mathcal{H}| < \infty$
- Algoritmo A: observa m datos y retorna h_A consistente.
- Sea $B = \{ h \in \mathcal{H} : e(h) > \varepsilon \},$

- $|\mathcal{H}| < \infty$
- Algoritmo A: observa m datos y retorna h_A consistente.
- Sea $B = \{ h \in \mathcal{H} : e(h) > \varepsilon \},\$

- $|\mathcal{H}| < \infty$
- Algoritmo A: observa m datos y retorna h_A consistente.
- Sea $B = \{ h \in \mathcal{H} : e(h) > \varepsilon \},\$

- $|\mathcal{H}| < \infty$
- Algoritmo A: observa m datos y retorna h_A consistente.
- Sea $B = \{ h \in \mathcal{H} : e(h) > \varepsilon \},$

 $\mathbf{P}_{\mathcal{D}}[h_A \in B] \leq \mathbf{P}_{\mathcal{D}}[\exists h \in B : h \text{ es consistente con los datos}]$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)]$$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

• Sumando sobre todas las posiblidades:

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

• Sumando sobre todas las posiblidades:

 $\mathbf{P}_{\mathcal{D}}\left[\exists h \in B : h \text{ es consistente con los datos}\right] \leq |B| (1-\varepsilon)^m$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

• Sumando sobre todas las posiblidades:

$$\mathbf{P}_{\mathcal{D}}\left[\exists h \in B : h \text{ es consistente con los datos}\right] \leq |B| (1-\varepsilon)^m$$

 $\leq |\mathcal{H}| (1-\varepsilon)^m$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

• Sumando sobre todas las posiblidades:

$$\mathbf{P}_{\mathcal{D}}\left[\exists h \in B : h \text{ es consistente con los datos}\right] \leq |B| (1-\varepsilon)^m$$

 $\leq |\mathcal{H}| (1-\varepsilon)^m$
 $\leq |\mathcal{H}| e^{-\varepsilon m}$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

• Sumando sobre todas las posiblidades:

$$\begin{aligned} \mathbf{P}_{\mathcal{D}} \left[\exists h \in B \ : \ h \text{ es consistente con los datos} \right] &\leq |B| \, (1-\varepsilon)^m \\ &\leq |\mathcal{H}| \, (1-\varepsilon)^m \\ &\leq |\mathcal{H}| \, e^{-\varepsilon m} \end{aligned}$$

• Para ε, δ dados, podemos calcular:

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

• Sumando sobre todas las posiblidades:

$$\mathbf{P}_{\mathcal{D}} \left[\exists h \in B : h \text{ es consistente con los datos} \right] \leq |B| (1 - \varepsilon)^m$$
$$\leq |\mathcal{H}| (1 - \varepsilon)^m$$
$$\leq |\mathcal{H}| e^{-\varepsilon m}$$

• Para ε, δ dados, podemos calcular:

$$|\mathcal{H}| e^{-\varepsilon m} \le \delta$$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

• Sumando sobre todas las posiblidades:

$$\begin{aligned} \mathbf{P}_{\mathcal{D}} \left[\exists h \in B \ : \ h \text{ es consistente con los datos} \right] &\leq |B| \, (1 - \varepsilon)^m \\ &\leq |\mathcal{H}| \, (1 - \varepsilon)^m \\ &\leq |\mathcal{H}| \, e^{-\varepsilon m} \end{aligned}$$

• Para ε, δ dados, podemos calcular:

$$|\mathcal{H}| e^{-\varepsilon m} \le \delta \Rightarrow m \ge \frac{1}{\varepsilon} \left(\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right)$$

$$\mathbf{P}_{\mathcal{D}}[h \text{ es consistente}] = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_1) = c(\mathbf{x}_1) \wedge \cdots \wedge h(\mathbf{x}_m) = c(\mathbf{x}_m)]$$
$$= \prod_{i=1}^{m} \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}_i) = c(\mathbf{x}_i)] \leq (1 - \varepsilon)^m$$

• Sumando sobre todas las posiblidades:

$$\mathbf{P}_{\mathcal{D}} \left[\exists h \in B : h \text{ es consistente con los datos} \right] \leq |B| (1 - \varepsilon)^m$$
$$\leq |\mathcal{H}| (1 - \varepsilon)^m$$
$$\leq |\mathcal{H}| e^{-\varepsilon m}$$

• Para ε , δ dados, podemos calcular:

$$|\mathcal{H}| e^{-\varepsilon m} \le \delta \Rightarrow m \ge \frac{1}{\varepsilon} \left(\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right)$$

• O para m, δ dados, podemos decir que con probabilidad por lo menos $1 - \delta$

$$e(h) \le \frac{1}{m} \left(\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right)$$

• En general $|\mathcal{H}| = \infty$

- En general $|\mathcal{H}| = \infty$
- Medidas de complejidad:

- En general $|\mathcal{H}| = \infty$
- Medidas de complejidad:
 - ▶ Dimensión VC (Vapnik-Chervonenkis).

- En general $|\mathcal{H}| = \infty$
- Medidas de complejidad:
 - ▶ Dimensión VC (Vapnik-Chervonenkis).
 - Números entrópicos.

- En general $|\mathcal{H}| = \infty$
- Medidas de complejidad:
 - ▶ Dimensión VC (Vapnik-Chervonenkis).
 - Números entrópicos.
 - ► Complejidad de Rademacher (global/local).

- En general $|\mathcal{H}| = \infty$
- Medidas de complejidad:
 - ▶ Dimensión VC (Vapnik-Chervonenkis).
 - Números entrópicos.
 - ► Complejidad de Rademacher (global/local).
- Complejidad crece con el número de parámetros a ajustar.

- En general $|\mathcal{H}| = \infty$
- Medidas de complejidad:
 - ▶ Dimensión VC (Vapnik-Chervonenkis).
 - Números entrópicos.
 - ► Complejidad de Rademacher (global/local).
- Complejidad crece con el número de parámetros a ajustar.
- Machine Learning estadístico/computacional.

• $(\mathbf{x}, y) \sim \mathcal{D}$

- $(\mathbf{x}, y) \sim \mathcal{D}$
- Datos de entrenamiento: $\{\mathbf{x}_i, y_i\}_{i=1}^m$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .

- $(\mathbf{x}, y) \sim \mathcal{D}$
- Datos de entrenamiento: $\{\mathbf{x}_i, y_i\}_{i=1}^m$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .
- \bullet Hallamos h a partir de datos de entrenamiento.

- $(\mathbf{x}, y) \sim \mathcal{D}$
- Datos de entrenamiento: $\{\mathbf{x}_i, y_i\}_{i=1}^m$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .
- \bullet Hallamos h a partir de datos de entrenamiento.
- Datos de prueba: $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de los datos de entrenamiento

- $(\mathbf{x}, y) \sim \mathcal{D}$
- Datos de entrenamiento: $\{\mathbf{x}_i, y_i\}_{i=1}^m$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .
- \bullet Hallamos h a partir de datos de entrenamiento.
- Datos de prueba: $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de los datos de entrenamiento
- Criterio de error:

- $(\mathbf{x}, y) \sim \mathcal{D}$
- Datos de entrenamiento: $\{\mathbf{x}_i, y_i\}_{i=1}^m$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .
- \bullet Hallamos h a partir de datos de entrenamiento.
- Datos de prueba: $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de los datos de entrenamiento
- Criterio de error:

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}) \neq y]$$

- $(\mathbf{x}, y) \sim \mathcal{D}$
- Datos de entrenamiento: $\{\mathbf{x}_i, y_i\}_{i=1}^m$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) .
- \bullet Hallamos h a partir de datos de entrenamiento.
- Datos de prueba: $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de los datos de entrenamiento
- Criterio de error:

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}) \neq y]$$

• Típicamente calculamos el error empírico de h en los datos de prueba:

Evaluación del clasificador

- $(\mathbf{x}, y) \sim \mathcal{D}$
- Datos de entrenamiento: $\{\mathbf{x}_i,y_i\}_{i=1}^m$ copias independientes e idénticamente distribuidas de (\mathbf{x},y) .
- \bullet Hallamos h a partir de datos de entrenamiento.
- Datos de prueba: $\{\mathbf{x}_i, y_i\}_{i=1}^n$ copias independientes e idénticamente distribuidas de (\mathbf{x}, y) e independientes de los datos de entrenamiento
- Criterio de error:

$$e(h) = \mathbf{P}_{\mathcal{D}}[h(\mathbf{x}) \neq y]$$

• Típicamente calculamos el error empírico de *h* en los datos de prueba:

$$\hat{e}(h) = \frac{1}{n} \sum_{i=1}^{n} I_{\{h(\mathbf{x}_i) \neq y_i\}}$$

•
$$X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$$

•
$$X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$$

$$\bullet \ \frac{(X_j-p)}{n} \in$$

•
$$X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$$

$$\bullet \ \frac{(X_j - p)}{n} \in \left\{ -\frac{p}{n}, \frac{1 - p}{n} \right\}$$

•
$$X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$$

•
$$\frac{(X_j-p)}{n} \in \left\{-\frac{p}{n}, \frac{1-p}{n}\right\} \Rightarrow b_j - a_j =$$

•
$$X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$$

•
$$\frac{(X_j - p)}{n} \in \left\{ -\frac{p}{n}, \frac{1 - p}{n} \right\} \Rightarrow b_j - a_j = \frac{1}{n}$$

•
$$X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$$

•
$$\frac{(X_j - p)}{n} \in \left\{ -\frac{p}{n}, \frac{1 - p}{n} \right\} \Rightarrow b_j - a_j = \frac{1}{n}$$

•

$$\mathbf{P}\left[\frac{1}{n}\sum_{j=1}^{n}X_{j}-p\geq\varepsilon\right]\leq e^{-2\epsilon^{2}n}$$

У

$$\mathbf{P}\left[\frac{1}{n}\sum_{j=1}^{n}X_{j}-p\leq-\varepsilon\right]\leq e^{-2\epsilon^{2}n}$$

•
$$X_j \in \{0,1\}, \mathbf{P}[X_j = 1] = p$$

•
$$\frac{(X_j - p)}{n} \in \left\{ -\frac{p}{n}, \frac{1 - p}{n} \right\} \Rightarrow b_j - a_j = \frac{1}{n}$$

•

$$\mathbf{P}\left[\frac{1}{n}\sum_{j=1}^{n}X_{j}-p\geq\varepsilon\right]\leq e^{-2\epsilon^{2}n}$$

У

$$\mathbf{P}\left[\frac{1}{n}\sum_{j=1}^{n}X_{j}-p\leq-\varepsilon\right]\leq e^{-2\epsilon^{2}n}$$

 \bullet Moneda, estimar probabilidad p de que salga cara.

- \bullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.

- ullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} = \text{número de caras en } n \text{ lanzadas.}$
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?

- ullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?
- Usando cotas de Chernoff:

$$\mathbf{P}\left[|p - \hat{p}| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

- \bullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?
- Usando cotas de Chernoff:

$$\mathbf{P}\left[|p - \hat{p}| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

Queremos $2e^{-2\epsilon^2 n} = \delta$

- ullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} = \text{número de caras en } n \text{ lanzadas.}$
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?
- Usando cotas de Chernoff:

$$\mathbf{P}\left[|p - \hat{p}| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

Queremos $2e^{-2\epsilon^2 n} = \delta$ o despejando $n = \frac{1}{2\epsilon^2} \ln \frac{2}{\delta}$.

- ullet Moneda, estimar probabilidad p de que salga cara.
- Estimativo $\hat{p} =$ número de caras en n lanzadas.
- Cuántas veces tenemos que lanzar la moneda para garantizar con confianza 1δ que el estimativo \hat{p} no difiera en más de ϵ de p?
- Usando cotas de Chernoff:

$$\mathbf{P}\left[|p - \hat{p}| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

Queremos $2e^{-2\epsilon^2n} = \delta$ o despejando $n = \frac{1}{2\epsilon^2} \ln \frac{2}{\delta}$.

 \bullet Por ejemplo para confianza del 95 % y precisión 0,05 debemos lanzar la moneda ~ 738 veces.

• Para un dato de prueba (\mathbf{x}_i, y_i) , h comete un error con probabilidad e(h).

- Para un dato de prueba (\mathbf{x}_i, y_i) , h comete un error con probabilidad e(h).
- $\hat{e}(h)$ es estimativo de e(h).

- Para un dato de prueba (\mathbf{x}_i, y_i) , h comete un error con probabilidad e(h).
- $\hat{e}(h)$ es estimativo de e(h).
- Es decir. $\forall \epsilon > 0$,

$$\mathbf{P}\left[|e(h) - \hat{e}(h)| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

- Para un dato de prueba (\mathbf{x}_i, y_i) , h comete un error con probabilidad e(h).
- $\hat{e}(h)$ es estimativo de e(h).
- Es decir. $\forall \epsilon > 0$,

$$\mathbf{P}\left[|e(h) - \hat{e}(h)| \ge \epsilon\right] \le 2e^{-2\epsilon^2 n}$$

• Luego, con $n \ge \frac{1}{2\epsilon^2} \ln \frac{2}{\delta}$ datos de prueba, garantizamos con probabilidad por lo menos $1 - \delta$ que $|e(h) - \hat{e}(h)| \le \epsilon$

• Más datos \Rightarrow mejor aprendizaje.

- Más datos \Rightarrow mejor aprendizaje.
- Modelos más complejos requieren más datos.

- \bullet Más datos \Rightarrow mejor aprendizaje.
- Modelos más complejos requieren más datos.
- Datos suficientes para validación/evalución.

• Es necesario obtener una representación apropiada de los datos para buen aprendizaje..

- Es necesario obtener una representación apropiada de los datos para buen aprendizaje..
- Selección de características útiles.

- Es necesario obtener una representación apropiada de los datos para buen aprendizaje..
- Selección de características útiles.
- Normalización, reducción de dimensionalidad.

- Es necesario obtener una representación apropiada de los datos para buen aprendizaje..
- Selección de características útiles.
- Normalización, reducción de dimensionalidad.
- Datos faltantes

- Es necesario obtener una representación apropiada de los datos para buen aprendizaje..
- Selección de características útiles.
- Normalización, reducción de dimensionalidad.
- Datos faltantes
- Datos ruidosos

- Es necesario obtener una representación apropiada de los datos para buen aprendizaje..
- Selección de características útiles.
- Normalización, reducción de dimensionalidad.
- Datos faltantes
- Datos ruidosos

Cuál es el mejor clasificador?

• Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \begin{cases} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{cases}$$

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \begin{cases} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{cases}$$

• Error de generalización a minimizar:

$$L(C) = \mathbf{P}\{y \neq I_C(\mathbf{x})\}\$$

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \begin{cases} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{cases}$$

• Error de generalización a minimizar:

$$L(C) = \mathbf{P}\{y \neq I_C(\mathbf{x})\}\$$

• Probabilidades a priori de cada clase:

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \begin{cases} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{cases}$$

• Error de generalización a minimizar:

$$L(C) = \mathbf{P}\{y \neq I_C(\mathbf{x})\}\$$

• Probabilidades a priori de cada clase:

$$P[y = 1] = \alpha, P[y = 0] = 1 - \alpha$$

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \left\{ \begin{array}{ll} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{array} \right.$$

• Error de generalización a minimizar:

$$L(C) = \mathbf{P}\{y \neq I_C(\mathbf{x})\}\$$

• Probabilidades a priori de cada clase:

$$P[y = 1] = \alpha, P[y = 0] = 1 - \alpha$$

• Probabilidades marginales

- Par aleatorio $(\mathbf{x}, y) \in \mathcal{S} \times \{0, 1\}.$
- Clasificador $C \subseteq \mathcal{S}$.
- Función indicadora:

$$I_C(\mathbf{x}) = \left\{ \begin{array}{ll} 1 & \text{si } \mathbf{x} \in C \\ 0 & \text{si } \mathbf{x} \notin C \end{array} \right.$$

• Error de generalización a minimizar:

$$L(C) = \mathbf{P}\{y \neq I_C(\mathbf{x})\}\$$

• Probabilidades a priori de cada clase:

$$P[y = 1] = \alpha, P[y = 0] = 1 - \alpha$$

Probabilidades marginales

$$P[x|y = 1] = p_1(x), P[x|y = 0] = p_0(x)$$

$$L(C) = \mathbf{P}[y = 1, \mathbf{x} \notin C] + \mathbf{P}[y = 0, \mathbf{x} \in C]$$

$$\begin{split} L(C) &= & \mathbf{P}\left[y=1, \mathbf{x} \notin C\right] + \mathbf{P}\left[y=0, \mathbf{x} \in C\right] \\ &= & \mathbf{P}\left[\mathbf{x} \notin C|y=1\right] \mathbf{P}\left[y=1\right] + \mathbf{P}\left[\mathbf{x} \in C|y=0\right] \mathbf{P}\left[y=0\right] \end{split}$$

$$L(C) = \mathbf{P}[y = 1, \mathbf{x} \notin C] + \mathbf{P}[y = 0, \mathbf{x} \in C]$$

$$= \mathbf{P}[\mathbf{x} \notin C|y = 1] \mathbf{P}[y = 1] + \mathbf{P}[\mathbf{x} \in C|y = 0] \mathbf{P}[y = 0]$$

$$= \alpha \int_{S-C} p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$L(C) = \mathbf{P}[y = 1, \mathbf{x} \notin C] + \mathbf{P}[y = 0, \mathbf{x} \in C]$$

$$= \mathbf{P}[\mathbf{x} \notin C|y = 1]\mathbf{P}[y = 1] + \mathbf{P}[\mathbf{x} \in C|y = 0]\mathbf{P}[y = 0]$$

$$= \alpha \int_{S-C} p_1(\mathbf{x})d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x})d\mathbf{x}$$

$$= \alpha \int_S p_1(\mathbf{x})d\mathbf{x} - \alpha \int_C p_1(\mathbf{x})d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x})d\mathbf{x}$$

$$L(C) = \mathbf{P}[y = 1, \mathbf{x} \notin C] + \mathbf{P}[y = 0, \mathbf{x} \in C]$$

$$= \mathbf{P}[\mathbf{x} \notin C|y = 1] \mathbf{P}[y = 1] + \mathbf{P}[\mathbf{x} \in C|y = 0] \mathbf{P}[y = 0]$$

$$= \alpha \int_{\mathcal{S}-C} p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha \int_{\mathcal{S}} p_1(\mathbf{x}) d\mathbf{x} - \alpha \int_C p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha + \int_C [(1 - \alpha)p_0(\mathbf{x}) - \alpha p_1(\mathbf{x})] d\mathbf{x}$$

$$L(C) = \mathbf{P}[y = 1, \mathbf{x} \notin C] + \mathbf{P}[y = 0, \mathbf{x} \in C]$$

$$= \mathbf{P}[\mathbf{x} \notin C|y = 1] \mathbf{P}[y = 1] + \mathbf{P}[\mathbf{x} \in C|y = 0] \mathbf{P}[y = 0]$$

$$= \alpha \int_{\mathcal{S}-C} p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha \int_{\mathcal{S}} p_1(\mathbf{x}) d\mathbf{x} - \alpha \int_C p_1(\mathbf{x}) d\mathbf{x} + (1 - \alpha) \int_C p_0(\mathbf{x}) d\mathbf{x}$$

$$= \alpha + \int_C [(1 - \alpha)p_0(\mathbf{x}) - \alpha p_1(\mathbf{x})] d\mathbf{x}$$

Cómo escogemos el C que minimiza L(C)?

• El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

• El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$

• El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$
$$= \left\{ \mathbf{x} : \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \le \frac{\alpha}{1 - \alpha} \right\}$$

 El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$
$$= \left\{ \mathbf{x} : \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \le \frac{\alpha}{1 - \alpha} \right\}$$
$$= \left\{ \mathbf{x} : l(\mathbf{x}) \le \frac{\alpha}{1 - \alpha} \right\}$$

 El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$
$$= \left\{ \mathbf{x} : \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \le \frac{\alpha}{1 - \alpha} \right\}$$
$$= \left\{ \mathbf{x} : l(\mathbf{x}) \le \frac{\alpha}{1 - \alpha} \right\}$$

• El clasificador óptimo recibe el nombre de clasificador de Bayes.

 El clasificador óptimo esta dado por la función indicadora del siguiente conjunto:

$$C = \left\{ \mathbf{x} : (1 - \alpha)p_0(\mathbf{x}) \le \alpha p_1(\mathbf{x}) \right\}$$
$$= \left\{ \mathbf{x} : \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} \le \frac{\alpha}{1 - \alpha} \right\}$$
$$= \left\{ \mathbf{x} : l(\mathbf{x}) \le \frac{\alpha}{1 - \alpha} \right\}$$

- El clasificador óptimo recibe el nombre de clasificador de Bayes.
- $l(\mathbf{x})$ es la razón de verosimilitud.

• Cuando $p_0(\mathbf{x})$ y $p_1(\mathbf{x})$ son Normales:

• Cuando $p_0(\mathbf{x})$ y $p_1(\mathbf{x})$ son Normales:

$$\frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} = \frac{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_0|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_0)^T \Sigma_0^{-1}(\mathbf{x} - \mathbf{m}_0)\right\}}{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_1|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \Sigma_1^{-1}(\mathbf{x} - \mathbf{m}_1)\right\}} \le \frac{\alpha}{1 - \alpha}$$

• Cuando $p_0(\mathbf{x})$ y $p_1(\mathbf{x})$ son Normales:

$$\frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} = \frac{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_0|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_0)^T \Sigma_0^{-1}(\mathbf{x} - \mathbf{m}_0)\right\}}{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_1|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \Sigma_1^{-1}(\mathbf{x} - \mathbf{m}_1)\right\}} \le \frac{\alpha}{1 - \alpha}$$

• Tomando logaritmos:

• Cuando $p_0(\mathbf{x})$ y $p_1(\mathbf{x})$ son Normales:

$$\frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} = \frac{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_0|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_0)^T \Sigma_0^{-1}(\mathbf{x} - \mathbf{m}_0)\right\}}{\frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_1|}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \Sigma_1^{-1}(\mathbf{x} - \mathbf{m}_1)\right\}} \le \frac{\alpha}{1 - \alpha}$$

• Tomando logaritmos:

$$\begin{split} \frac{1}{2}(\mathbf{x} - \mathbf{m}_0)^T \Sigma_0^{-1}(\mathbf{x} - \mathbf{m}_0) - \frac{1}{2}(\mathbf{x} - \mathbf{m}_1)^T \Sigma_1^{-1}(\mathbf{x} - \mathbf{m}_1) \\ + \frac{1}{2} \ln \left(\frac{|\Sigma_0|}{|\Sigma_1|} \right) > \ln \left(\frac{1 - \alpha}{\alpha} \right) \end{split}$$

• Si además $\Sigma_0 = \Sigma_1 = \Sigma$:

$$\mathbf{x}^{T} \Sigma^{-1} \mathbf{x} - 2\mathbf{m}_{0}^{T} \Sigma^{-1} \mathbf{x} + \mathbf{m}_{0}^{T} \Sigma^{-1} \mathbf{m}_{0} - \mathbf{x}^{T} \Sigma^{-1} \mathbf{x}$$
$$+ 2\mathbf{m}_{1}^{T} \Sigma^{-1} \mathbf{x} - \mathbf{m}_{1}^{T} \Sigma^{-1} \mathbf{m}_{1} > 2 \ln \left(\frac{1 - \alpha}{\alpha} \right)$$

• Si además $\Sigma_0 = \Sigma_1 = \Sigma$:

$$\mathbf{x}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} - 2\mathbf{m}_{0}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} + \mathbf{m}_{0}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{m}_{0} - \mathbf{x}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}$$
$$+ 2\mathbf{m}_{1}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x} - \mathbf{m}_{1}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{m}_{1} > 2 \ln \left(\frac{1 - \alpha}{\alpha} \right)$$

• entonces:

$$\underbrace{(\mathbf{m}_{1} - \mathbf{m}_{0})^{T} \Sigma^{-1}}_{\mathbf{w}^{T}} \mathbf{x} > \underbrace{2 \ln \left(\frac{1 - \alpha}{\alpha}\right) + \frac{1}{2} \left(\mathbf{m}_{1}^{T} \Sigma^{-1} \mathbf{m}_{1} - \mathbf{m}_{0}^{T} \Sigma^{-1} \mathbf{m}_{0}\right)}_{-w_{0}}$$

