1

Question 51 Exercise(8.1)

Srihari S

Abstract—A question based on similarity of triangles.

Download all python codes from

svn co https://github.com/Srihari123456/Summer -2020/tree/master/geometry/triangle/codes

Download all LATEX-Tikz codes from

svn co https://github.com/Srihari123456/Summer -2020/tree/master/geometry/triangle/figs

1 Question

1) **O** is a point in the interior of △**ABC**. **D** is a point on **OA**. If **DE** || **OB** and **DF** || **OC**. Show that **EF** || **BC**.

2 Construction

1) The figure for a triangle obtained in the question looks like Fig. 1, with sides a,b,c, an arbitrary interior point **O** and a point **D** on line **AO**.

Fig. 1: Triangle by Latex-Tikz

The values used for constructing the triangles in both Python and LATEX-Tikz is in Table I:

Initial Input Values	
Parameter	Value
a	5
b	6
c	4

TABLE I: To construct $\triangle ABC$

2) Finding the coordinates of various points of Fig. 1:

From the information provided in the Table I: let

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad \mathbf{A} = \begin{pmatrix} p \\ q \end{pmatrix}$$

The derived value of \mathbf{p} and \mathbf{q} is available in Table II.

3) Given a point O, we need to determine whether it lies inside $\triangle ABC$. Consider 3 vectors $\mathbf{v_1}$, $\mathbf{v_2}$ and $\mathbf{v_3}$ which are orthogonal to vectors \mathbf{AB} , \mathbf{BC} and \mathbf{CA} which are ordered counterclock-wise.

Let
$$\mathbf{A} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
 $\mathbf{B} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ $\mathbf{C} = \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$ $\mathbf{O} = \begin{pmatrix} x \\ y \end{pmatrix}$

$$\mathbf{AB} = \mathbf{B} - \mathbf{A} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix}$$

$$\mathbf{BC} = \mathbf{C} - \mathbf{B} = \begin{pmatrix} x_3 - x_2 \\ y_3 - y_2 \end{pmatrix}$$

$$\mathbf{CA} = \mathbf{A} - \mathbf{C} = \begin{pmatrix} x_1 - x_3 \\ y_1 - y_3 \end{pmatrix}$$

Equation of **AB** is

$$(y_2 - y_1)x + (-x_2 + x_1)y = x_1(y_2 - y_1) - y_1(x_2 - x_1)$$
(2.0.1)

As v_1 is orthogonal to AB, equation of v_1 is

$$(-x_2 + x_1)x - (y_2 - y_1)y = d (2.0.2)$$

where d is some constant. Hence $\mathbf{v_1}$ is represented as $\begin{pmatrix} y_2 - y_1 \\ -x_2 + x_1 \end{pmatrix}$

Similarly
$$\mathbf{v_2}$$
 is represented as $\begin{pmatrix} y_3 - y_2 \\ -x_3 + x_2 \end{pmatrix}$
 $\mathbf{v_3}$ is represented as $\begin{pmatrix} y_1 - y_3 \\ -x_1 + x_3 \end{pmatrix}$
Position vector of \mathbf{O} w.r.t \mathbf{A} is $\mathbf{v_1'} = \begin{pmatrix} x - x_1 \\ y - y_1 \end{pmatrix}$
Position vector of \mathbf{O} w.r.t \mathbf{B} is $\mathbf{v_2'} = \begin{pmatrix} x - x_2 \\ y - y_2 \end{pmatrix}$
Position vector of \mathbf{O} w.r.t \mathbf{C} is $\mathbf{v_3'} = \begin{pmatrix} x - x_3 \\ y - y_3 \end{pmatrix}$
Now we compute the dot products: \mathbf{O} lies inside $\triangle ABC$ only if dot_1 , dot_2 and dot_3 are all ≥ 0 , where $dot_1 = v_1 \cdot v_1'$ $dot_2 = v_2 \cdot v_2'$ $dot_3 = v_3 \cdot v_3'$.

- 4) Let the arbitrary interior point **O** be represented as $\begin{pmatrix} 2 \\ 1.5 \end{pmatrix}$. **D** is a point on line **AO** such that **DE** \parallel **OB** and **DF** \parallel **OC**.
- 5) Determination of points D,E and F: As DE || OB, by basic proportionality theorem the points E and D, divide the lines AB and AO respectively in the same ratio. Hence we choose points E and D such that

$$\frac{AE}{EB} = \frac{AD}{DO} \tag{2.0.3}$$

Similarly point **F** is chosen such that the points **F** and **D**, divide the lines **AC** and **AO** respectively in the same ratio such that

$$\frac{AF}{FC} = \frac{AD}{DO} \tag{2.0.4}$$

Derived Values	
Parameter	Value
p	0.5
q	3.96

TABLE II: To construct $\triangle ABC$

6) If the point **D** divides the line **AO** in the ratio x:y, the coordinates of **D** is given by section formula as:

$$\mathbf{D} = \frac{y\mathbf{A} + x\mathbf{O}}{x + y} \tag{2.0.5}$$

Similarly the coordinates of points E and F is

given by

$$\mathbf{E} = \frac{y\mathbf{A} + x\mathbf{B}}{x + y} \tag{2.0.6}$$

$$\mathbf{F} = \frac{y\mathbf{A} + x\mathbf{C}}{x + y} \tag{2.0.7}$$

Let us assume the points divide the respective lines in the ratio 1:1. Then the coordinates of points **D**, **E** and **F** is

$$\mathbf{D} = \begin{pmatrix} 1.25 \\ 2.73 \end{pmatrix} \quad \mathbf{E} = \begin{pmatrix} 0.25 \\ 1.98 \end{pmatrix} \quad \mathbf{F} = \begin{pmatrix} 2.75 \\ 1.98 \end{pmatrix}$$

7) To check whether **D** lies on line **AO**, substituting the values of the x and y co-ordinate of **D** must satisfy the equation of line **AO**. Equation of line joining two points (x_1, y_1) and (x_2, y_2) is given by

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} \tag{2.0.8}$$

The following Python code generates Fig. 2

./codes/similartriangle.py

Fig. 2: Triangle generated using python

The equivalent LaTeX- tikz code generating Fig. 1 is

./figs/constructionpic.tex

The above LATEX code can be compiled as a standalone document as

./figs/constructionpic standalone.tex

To Show:: We need to prove that $\mathbf{EF} \parallel \mathbf{BC}$.

3 Solution

1) $\triangle EAD \sim \triangle BAO$ by AAA Similarity: Since **DE** || **OB**,

- a) $\angle DEA = \angle OBA$ {Alternate Interior Angles}
- b) $\angle ADE = \angle AOB$ {Alternate Interior Angles}
- c) $\angle EAD = \angle BAO \quad \{Common \ angle\}$

Therefore

$$\frac{\mathbf{AE}}{\mathbf{AB}} = \frac{\mathbf{AD}}{\mathbf{AO}} \tag{3.0.1}$$

- 2) Similarly $\triangle FDA \sim \triangle COA$ by AAA Similarity: Since **DF** \parallel **OC**,
 - a) $\angle DFA = \angle OCA$ {Alternate Interior Angles}
 - b) $\angle ADF = \angle AOC$ {Alternate Interior Angles}
 - c) $\angle FAD = \angle CAO$ {Common angle}

Therefore

$$\frac{\mathbf{AF}}{\mathbf{AC}} = \frac{\mathbf{AD}}{\mathbf{AO}} \tag{3.0.2}$$

3) Hence from the above we conclude,

$$\frac{\mathbf{AF}}{\mathbf{AC}} = \frac{\mathbf{AE}}{\mathbf{AB}} = \frac{\mathbf{AD}}{\mathbf{AO}}$$
 (3.0.3)

As the ratio of the sides is the same, \triangle ABC \sim \triangle AEF, which means $\angle AFE = \angle ACB$ and $\angle AEF = \angle ABC$ as similar triangles have same angles. i.e.

$$\mathbf{EF} \parallel \mathbf{QR} \tag{3.0.4}$$

Hence Proved.