Grafos e Ciclos Eulerianos

 Histórico: Leonhard Euler (1730), problema das pontes de Könisberg

Grafos e Ciclos Eulerianos

Teorema 5.2:

Um grafo conexo é euleriano se e somente se todos os seus vértices possuirem grau par.

Um grafo conexo dirigido é euleriano se e somente se o grau de entrada de cada vértice for igual ao seu grau de saída.

Exercício: pelo teorema acima, determine quais dos grafos a seguir são eulerianos:

o grafo completo K8;

2.0 grafo bipartido completo k8,8

3.0 grafo ciclo C8

4.0 grafo cubo Q8

Grafos e Ciclos Eulerianos

Teorema 5.1:

Seja G um grafo no qual todos os vértices possuem grau par. Então, G pode ser decomposto em ciclos de forma que não haja dois ciclos compartilhando arestas (ciclos disjuntos).

Dado o grafo abaixo, mostre que ele pode ser decomposto em ciclos disjuntos. Como esses ciclos podem ser combinados para formar um ciclo euleriano?

Grafos Semi-eulerianos

Definição:

Um grafo conexo é semi-euleriano se existe um caminho simples aberto que inclua todas as suas arestas. Tal caminho é chamado de caminho semi-euleriano.

Teorema 3.3:

Um grafo conexo é semi-euleriano se e somente se ele tiver exatamente dois vértices de grau ímpar.

Exercícios

Exercício: pelo teorema 3.3, determine quais dos grafos a seguir são semi-eulerianos e escreva o caminho semi-euleriano se possível:

Pontes

• Uma **Ponte** é uma aresta cuja remoção "quebra" a conexidade do grafo.

• Exemplo: a

Algoritmo de Fleury

 Dado um grafo euleriano, o algoritmo de Fleury encontra um ciclo euleriano

Inicie um caminho a partir de um vértice qualquer, e atravesse as arestas seguindo as regras abaixo:

- R1. Remova a aresta que acabou de ser percorrida. Se algum vértice ficar isolado, remova-o também;
- R2. Atravesse uma "ponte", somente se não houver outra alternativa.

Algoritmo dos ciclos disjuntos

- O algoritmo a seguir encontra ciclos eulerianos em tempo O(E) por um procedimento de formação de ciclos disjuntos, chamados de sub-ciclos eulerianos
- os sub-ciclos são armazenados em listas circulares duplamente encadeadas de arestas e posteriormente são unidos para formar o ciclo euleriano final

Algoritmo: CicloEuleriano(G) $ScanQ[1] \leftarrow 1;$ $QSize \leftarrow 1$; $k \leftarrow 1$ enquanto $k \le QSize$ faca $u \leftarrow ScanQ[k]$; enquanto $Grafo[u] \neq null$ faça $e_0 \leftarrow Grafo[u]$ $v \leftarrow 0$ outro vértice da aresta e_o ; remova a aresta e_o do grafo; $e_1 \leftarrow e_0$; enquanto $v \neq u$ faça se $v \notin ScanQ$ então $OSize \leftarrow OSize + 1$: $ScanQ[QSize] \leftarrow v;$ $e_2 \leftarrow Grafo[v];$ $nextEdge\langle e_1 \rangle \leftarrow e_2;$ $prevEdge\langle e_2 \rangle \leftarrow e_1;$ se EulerEdge[v] = null então $|EulerEdge[v] \leftarrow e_2;$ $e_1 \leftarrow e_2$; $v \leftarrow 0$ outro vértice da aresta e_1 ; remova a aresta e_1 do grafo; $prevEdge\langle e_0 \rangle \leftarrow e_1$; $nextEdge\langle e_1 \rangle \leftarrow e_0;$ se EulerEdge[u] = null então $EulerEdge[u] \leftarrow e_0;$ $e_1 \leftarrow EulerEdge[u]$; $e_2 \leftarrow prevEdge\langle e_1 \rangle;$ $e_3 \leftarrow prevEdge\langle e_0 \rangle$; $nextEdge\langle e_2 \rangle \leftarrow e_0$; $nextEdge\langle e_3 \rangle \leftarrow e_1;$

Elementos do algoritmo:

- ScanQ: array de vértices
- QSize: quantidade de vértices em ScanQ
- Grafo[u]: lista de arestas adjacentes ao vértice u
- EulerEdge(v): aresta de Euler do vértice v, usada para fazer a união de dois sub-ciclos eulerianos
- prevEdge(e), nextEdge(e): referências para próxima aresta e aresta anterior na lista duplamente encadeada de arestas que armazena o ciclo euleriano
- e0, e1, e2, e3: referências para arestas

Ciclos eulerianos: caso de estudo

- Um jogo de dominó é composto por "pedras" com valores de 0 a 6.
- É possível conectar todas as pedras e fechar o jogo? Prove utilizando a Teoria dos Gra

Grafos e Ciclos Hamiltonianos

Histórico: Sir William Rowan Hamilton (1805-1865). O cálculo icosiano consiste em encontrar ciclos hamiltonianos no grafo do dodecaedro regular

Grafos e Ciclos Hamiltonianos

No "Jogo Icosiano" de Hamilton, os vértices do dodecaedro representam cidades no globo terrestre. O desafio é encontrar uma rota que dê a volta ao mundo passando somente uma vez em cada cidade.

Grafos Hamiltonianos

Um grafo conexo é **Hamiltoniano** se contiver um ciclo que inclua cada um dos vértices do grafo. Tal ciclo é chamado de

Como podemos saber se um grafo é hamiltoniano?

- .Podemos tentar correlacionar o grafo com alguma classe de grafos conhecida;
- 2. Teorema de Ore;
- 3. Podemos tentar encontrar um ciclo hailtoniano utilizando algum algoritmo.

Grafos Hamiltonianos

Se tivermos um grafo hamiltoniano e adicionarmos a ele uma nova aresta, obtemos um novo grafo hamiltoniano, visto que continuamos tendo o mesmo ciclo hamiltoniano do grafo inicial.

Assim, grafos mais densos têm maior probabilidade de serem hamiltonianos. Partindo desse princípio, Oysten Ore provou o seguinte teorema, em 1960:

Teorema de Ore

Seja G um grafo simples conexo com n vértices, onde $n \ge 3$ e grau(u) + grau(v) $\ge n$, para cada par de vértices não adjacentes u e v. Então G é hamiltoniano.

Grafos Hamiltonianos

Exercícios:

- •Para quais valores de n os grafos completos K_n são hamiltonianos?
- **2.** Para quais valores de r e s ($r \le s$) os grafos bipartidos completos $K_{r,s}$ são hamiltonianos?
- 3. Para quais valores de n os grafos ciclo C_n são hamiltonianos?
- **4.** Para quais valores de n os grafos nulos N_n são hamiltonianos?
- **5.** Para quais valores de k os grafos cubo Q_k são hamiltonianos?
- 6. Quais árvores são hamiltonianas?

Exercícios

• Verifique se os grafos abaixo são hamiltonianos utilizando o Teorema de Ore:

2. Dê um exemplo de grafo hamiltoniano que não satisfaz o Teorema de Ore.

Grafos Semi-hamiltonianos

Definição:

Um grafo conexo é semi-hamiltoniano se existe um caminho simples aberto, mas não um ciclo, que inclua cada um dos seus vértices somente uma vez. Tal caminho é chamado de caminho semi-hamiltoniano.

Exercício: determine quais dos grafos a seguir são semi-hamiltonianos e escreva o caminho semi-hamiltoniano se possível:

Ciclos Hamiltonianos: Aplicações

Ciclo do cavalo no tabuleiro de xadrez:

Modelagem: vértices são casas do tabuleiro, e arestas representam pares de casas conectadas pelo movimento do cavalo.

Ciclos Hamiltonianos: Aplicações

Ciclo do cavalo no tabuleiro de xadrez:

Dado um tabuleiro de xadrez de 8×8 casas, é possivel encontrar uma seqüência de movimentos do cavalo que passe em todas as casas somente uma vez e retorne a casa de partida?

Ciclos Hamiltonianos: Aplicações

Ciclo do cavalo no tabuleiro de xadrez: uma solução!

50	11	24	63	14	37	26	35
23	62	51	12	25	34	15	38
10	49	64	21	40	13	36	27
61	22	9	52	33	28	39	16
48	7	60	1	20	41	54	29
59	4	45	8	53	32	17	42
6	47	2	57	44	19	30	55
3	58	5	46	31	56	43	18

Ciclos Hamiltonianos: Aplicações

Gray Codes:

Engenheiros usam dispositivos para representar posições angulares em eixos que giram continuamente. Se dividirmos o círculo em 8 setores, precisamos de uma palavra binária de 3 dígitos para representar os 8 setores.

Para minimizar erros, é conveniente que a seqüência de palavras binárias mude apenas I digito de um dado setor para o setor vizinho. Portanto, a conversão convencional de base numérica decimal para binária não funciona.

Como podemos encontrar tal sequencia de palavras binárias?

Ciclos Hamiltonianos: Aplicações

Para formar Gray Codes de n dígitos, basta encontrar um ciclo hamiltoniano no grafo Q_n . Exemplo, Gray Codes de 4 digitos:

Ciclos Hamiltonianos: Aplicações

Gray Codes podem ser encontrados através de ciclos hamiltonianos em grafos-cubo. Se precisamos de Gray Codes de 3 dígitos, usamos o grafo O₃.

Setor	Decimal	Binario	GrayCode
Α	0	000	000
В	I	001	001
С	2	010	011
D	3	011	010
Е	4	100	110
F	5	101	Ш
G	6	110	101
Н	7	Ш	100

Problema do carteiro chinês

Um carteiro precisa percorrer todas as ruas de sua região de trabalho para entregar correspondência.

O problema consiste em encontrar um caminho fechado que passe por todas as arestas com custo total mínimo.

Problema do carteiro chinês

Possíveis cenários:

- I. O grafo valorado é euleriano;
- 2. O grafo valorado não é euleriano.

Exemplo

Algoritmo: carteiro chinês

- 1. Determine os vértices de grau ímpar
- 2. Construa a matriz de distâncias mínimas D somente com os vértices de grau ímpar (use Dijkstra ou Floyd-Warshall)
- Determine na matriz D o par de vértices vi, vj com menor caminho mínimo
- 4. Construa um caminho artificial de vi para vj com o custo encontrado no passo anterior
- 5. Elimine da matriz D as linhas e colunas correspondentes a vi e vj
- 6. Se ainda houver linha e coluna na matriz D, volte para o passo 3
- Encontre um ciclo euleriano no grafo, considerando todos os caminhos artificiais

Problema do caixeiro viajante

 A formulação clássica do problema do caixeiro viajante consiste em encontrar um ciclo hamiltoniano de custo mínimo em um grafo completo valorado