Academic Year: 2022-2023

Unit III

3.	Partial Differential Equations and Applications:
3.1	Formation of Partial Differential Equation
3.2	Lagrange's Linear Differential Equations
3.3	Special types of Nonlinear First Order Partial Differential Equation

Practice work examples

Derive a partial differential equation (by eliminating arbitrary constants) from the following equations:

- 1. z = ax + by + ab
- 2. z = ax + (1 a)y + b
- 3. $z = axe^y + \left(\frac{1}{2}\right)a^2e^{2y} + b$
- 4. $(x-a)^2 + (y-b)^2 + z^2 = 1$
- 5. $z = ax + by + a^2 + b^2$

Derive a partial differential equation (by eliminating arbitrary functions) from the following relations:

1.
$$z = f(x^2 - y) + g(x^2 + y)$$

$$2. \quad z = f(x^2 - y^2)$$

3.
$$z = xy + f(x^2 + y^2)$$

4.
$$f(x + y + z, x^2 + y^2 - z^2) = 0$$

Lagrange's Equation:

Solve the following Lagrange's equation:

$$1. \quad xyp + y^2q = zxy - 2x^2$$

2.
$$z(x + y)p + z(x - y)q = x^2 + y^2$$

3.
$$(\tan x)p + (\tan y)q = \tan z$$

4.
$$(x^2 - y^2 - z^2)p + 2xy q = 2xz$$

Case-1: Equations involving only p and q, that is, f(p,q) = 0

Solve the following Partial differential equations:

- 1. $p = e^q$
- 2. $p^2 + 6p + 2q + 4 = 0$
- 3. $p = q^2$

Case 2: Equations not involving the Independent variables, that is, f(z, p, q) = 0Solve the following Partial differential equations:

- 1. $p^3 + q^3 3pqz = 0$
- 2. $9(p^2z + q^2) = 4$
- 3. $p^2 = qz$

Case 3: Separable Equations, that is, f(x, p) = g(y, q)

Solve the following Partial differential equations:

- 1. $p 3x^2 = q^2 y$
- $2. \quad q(p \cos x) = \cos y$
- $3. \quad yp + xq = pq$

Case-4: Clairaut's Equation, that is, z = px + qy + f(p,q)

Solve the following Partial differential equations:

- 1. (pq p q)(z px qy) = pq
- 2. $(px + qy z)^3 = 27pq$
- $3. \quad z = px + qy + \frac{q}{p} p$