

Scalable Data Science

Lecture 12: Locality Sensitive Hashing

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Finding Near Neighbors

Given a set of data points and a query

Can we find what is the nearest datapoint to the query?

- K-nearest neighbors
- d(p, query) < r

Defining representation

- We need to define the object representation and distance functions first
 - e.g. is a document just a (multi-)set of characters, or a word X position matrix?
- Mainly a few standard ways of representing
 - documents as sets
 - images / other objects as vectors

Documents as sets

- Shingle: a set of k consecutive characters that appear in the document
- Document = set of shingles
 - Often are hashed to 64bit numbers for each of storage

A sly fox jumped over the lazy hen

a sly sly f ly fo

••••

Distance function for sets

• Jaccard similarity
$$JS(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

• Distance JD(A, B) = 1 - JS(A, B)

Vectors

- Images
 - Vectors over 64x64 or 128x128
- Documents
 - Sets → vectors, possibly with TF-IDF or other weighting
- Distance functions

$$-\ell_2(x,y) = (\sum_i (x_i - y_i)^2)^{1/2}$$

- **–** ...
- angle between vectors

Hash Tables

- For exact search we used hashing
- Can we adapt hashing to search for "near"?

Hash Tables

- For exact search we used hashing
- Can we adapt hashing to search for "near"?
- Repurpose "collision"
 - Instead of trying to avoid collisions, now we try to make collisions happen if the data points are nearby

Hash Tables

- Want the following
 - Nearby points should fall in "same" bucket, points further away should fall in different buckets

$$x$$
 y

Locality Sensitive Hashing

[Indyk Motwani]

Hash family H is locality sensitive if

$$Pr[h(x) = h(y)]$$
 is high if x is close to y

$$Pr[h(x) = h(y)]$$
 is low if x is far from y

Not clear such functions exist for all distance functions

Locality sensitive hashing

Originally defined in terms of a similarity function [C'02]

• Given universe U and a similarity $s: U \times U \to [0,1]$, does there exist a prob distribution over some hash family H such that

$$\Pr_{h \in H}[h(x) = h(y)] = s(x, y) \qquad s(x, y) = 1 \to x = y \\ s(x, y) = s(y, x)$$

Hamming distance

- Points are bit strings of length d
- $H(x,y) = |\{i, x_i \neq y_i\}|$

Hamming distance

Points are bit strings of length d

•
$$H(x,y) = |\{i, x_i \neq y_i\}|$$
 $S_H(x,y) = 1 - \frac{H(x,y)}{d}$
- $x = 1011010001, y = 0111010101$

$$-H(x,y) = 3$$
 $S_H(x,y) = 1$ $-\frac{3}{10} = 0.7$

Hamming distance

Points are bit strings of length d

•
$$H(x,y) = |\{i, x_i \neq y_i\}|$$
 $S_H(x,y) = 1 - \frac{H(x,y)}{d}$

- Define a hash function h by sampling a set of positions
 - -x = 1011010001, y = 0111010101
 - $-S = \{1,5,7\}$
 - -h(x) = 100, h(y) = 100

Existence of LSH

• The above hash family is locality sensitive, k = |S|

$$\Pr[h(x) = h(y)] = \left(1 - \frac{H(x, y)}{d}\right)^k$$

LSH for angle distance

- x, y are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$

LSH for angle distance

- *x*, *y* are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$

- Choose direction v uniformly at random
 - $-h_v(x) = sign(v \cdot x)$
 - $-\Pr[h_v(x) = h_v(y)] = 1 \theta/\pi$

Aside: picking a direction u.a.r.

• How to sample a vector $x \in R^d$, $|x|_2 = 1$ and the direction is uniform among all possible directions

- Generate $x = (x_1, ..., x_d), x_i \sim N(0, 1)$ iid
- Normalize $\frac{x}{|x|_2}$
 - By writing the pdf of the d-dimensional Gaussian in polar form, easy to see that this is uniform direction on unit sphere

Jaccard distance: minhashing

- Pick a uniform permutation of the element universe U
- For any set S,

$$-h(S) = \min_{x \in S} h(x)$$

• Often easier to visualize if we think of the collection of sets as a $\{0,1\}$ matrix

Example

	S ₁	S ₂	S ₃	S ₄		ı			S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0	Α		1	Α	1	0	1	0
В	1	0	0	1	С		2	С	0	1	0	1
С	0	1	0	1	G		3	G	1	0	1	0
D	0	1	0	1	F		4	F	1	0	1	0
Е	0	1	0	1	В		5	В	1	0	0	1
F	1	0	1	0	Е		6	Ε	0	1	0	1
G	1	0	1	0	D		7	D	0	1	0	1

[Slide from Evimaria Terzi]

Example

	S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0
В	1	0	0	1
С	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

D	
В	
Α	
С	
F	
G	
E	

		S ₁	S ₂	S ₃	S ₄
1	D	0	1	0	1
2	В	1	0	0	1
3	Α	1	0	1	0
4	С	0	1	0	1
5	F	1	0	1	0
6	G	1	0	1	0
7	E	0	1	0	1

Why is this LSH?

- For sets S and T,
 - The first row where one of the two has a 1 belong to $S \cup T$
 - We have equality h(S) = h(T), only if both the rows contain 1
 - This means that this row belongs to $S \cap T$
- Hence, the event h(S) = h(T) is same as the event that a row in $S \cap T$ appears first among all rows in $S \cup T$

$$\Pr[h(S) = h(T)] = \frac{|S \cap T|}{|S \cup T|}$$

Aside: How to choose random permutations

- Picking a uniform at random permutation is expensive
- In theory, need to choose from a family of min-wise independent permutations

 In practice, can use standard hash functions, hash all the values and then sort

Which similarities admit LSH?

- There are various similarities and distance that are used in scientific literature
 - Encyclopedia of distances DL'11
- Will there be an LSH for each one of them?
 - Similarity is LSHable if there exists an LSH for it

[slide courtesy R. Kumar]

LSHable similarities

<u>Thm</u>: S is LSHable \rightarrow 1 – S is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A, B) = [h(A) \neq h(B)]$$

$$1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$$

LSHable similarities

<u>Thm</u>: S is LSHable \rightarrow 1 – S is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A,B) = [h(A) \neq h(B)]$$

LSHable similarities

<u>Thm</u>: S is LSHable \rightarrow 1 – S is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A, B) = [h(A) \neq h(B)]$$

$$1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$$

Also

$$\Delta_h(A,B) + \Delta_h(B,C) \ge \Delta_h(A,C)$$

Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Sorenson-Dice : $s(A, B) = \frac{2|A \cap B|}{|A| + |B|}$
 - $Ex: A = \{a\}, B = \{b\}, C = \{a, b\}$
 - s(A,B) = 0, s(B,C) = s(A,C) = 2/3

Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Sorenson-Dice : $s(A, B) = \frac{2|A \cap B|}{|A| + |B|}$
 - Ex: $A = \{a\}, B = \{b\}, C = \{a, b\}$
 - $s(A,B) = 0, s(B,C) = s(A,C) = \frac{2}{3}$
- Overlap: $s(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$
 - s(A,B) = 0, s(A,C) = 1 = s(B,C)

Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Sorenson-Dice : $s(A, B) = \frac{2|A \cap B|}{|A| + |B|}$
- Ex: $A = \{a\}, B = \{b\}, C = \{a, b\}_{\text{these similarities are not LSHable}$ s(A, B) = 0 so S(B, C)
 - $s(A,B) = 0, s(B,C) = s(A,C) = \frac{2}{3}$
- Overlap: $s(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$
 - s(A, B) = 0, s(A, C) = 1 = s(B, C)

Gap Definition of LSH

IMRS'97, IM'98, GIM'99

• A family is (r, R, p, P) LSH if

$$\Pr_{h \in H}[h(x) = h(y)] \ge p \ if \ d(x, y) \le r$$

$$\Pr_{h \in H}[h(x) = h(y)] \le P \text{ if } d(x, y) \ge R$$

Gap LSH

All the previous constructions satisfy the gap definition

- Ex: for
$$JS(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

$$JD(S,T) \le r \to JS(S,T) \ge 1 - r \to \Pr[h(S) = h(T)] = JS(S,T) \ge 1 - r$$

$$JD(S,T) \ge R \to JS(S,T) \le 1 - R \to \Pr[h(S) = h(T)] = JS(S,T) \le 1 - R$$

Hence is a (r, R, 1 - r, 1 - R) LSH

L2 norm

- $d(x,y) = \sqrt{(\sum_i (x_i y_i)^2)}$
- $u = \text{random unit norm vector}, w \in R \text{ parameter}, b \sim Unif[0, w]$

•
$$h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$$

L2 norm

- $d(x,y) = \sqrt{(\sum_i (x_i y_i)^2)}$
- $u = \text{random unit norm vector}, w \in R \text{ parameter}, b \sim Unif[0, w]$
- $h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$
- If $|x y|_2 < \frac{w}{2}$, $\Pr[h(x) = h(y)] \ge \frac{1}{3}$
- If $|x y|_2 > 4w$, $\Pr[h(x) = h(y)] \le \frac{1}{4}$

Solving the near neighbour

- (r,c) —near neighbour problem
 - Given query point q, return all points p such that d(p,q) < r and none such that d(p,q) > cr
 - Solving this gives a subroutine to solve the "nearest neighbour", by building a data-structure for each r , in powers of $(1+\epsilon)$

How to actually use it?

Need to amplify the probability of collisions for "near" points

Band construction

- AND-ing of LSH
 - Define a composite function $H(x) = (h_1(x), ... h_k(x))$
 - $Pr[H(x) = H(y)] = \prod_{i} Pr[h_i(x) = h_i(y)] = Pr[h_1(x) = h_1(y)]^k$

Band construction

- AND-ing of LSH
 - Define a composite function $H(x) = (h_1(x), ... h_k(x))$
 - $\Pr[H(x) = H(y)] = \prod_{i} \Pr[h_i(x) = h_i(y)] = \Pr[h_1(x) = h_1(y)]^k$
- OR-ing
 - Create L independent hash-tables for $H_1, H_2, ... H_L$
 - Given query q, search in $\bigcup_j H_j(q)$

Example

	S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0
В	1	0	0	1
С	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

	S1	S2	S3	S3
h1	1	2	1	2
h2	2	1	3	1

	S1	S2	S3	S3
h3	3	1	2	1
h4	1	3	2	2

Why is this better?

• Consider q, y with Pr[h(q) = h(y)] = 1 - d(x, y)

Probability of not finding y as one of the candidates in

$$\bigcup_j H_j(q)$$

$$1 - (1 - (1 - d)^k)^L$$

Creating an LSH

- If we have a (r, cr, p, q) LSH
- For any y, with |q y| < r,
 - Prob of y as candidate in $\bigcup_j H_j(q) \ge 1 (1 p^k)^L$
- For any z, |q z| > cr,
 - Prob of z as candidate in any fixed $H_i(q) \leq q^k$
 - Expected number of such $z \leq Lq^k$

Creating an LSH

• If we have a (r, cr, p, q) LSH

 $\rho = \frac{\log(p)}{\log(q)} \quad L = n^{\rho} \quad k = \log(n) / \log\left(\frac{1}{q}\right)$

- For any y, with |q y| < r,
 - Prob of y as candidate in $\bigcup_j H_j(q) \ge 1 \left(1 p^k\right)^L \ge 1 \frac{1}{e}$
- For any z, |q z| > cr,
 - Prob of z as candidate in any fixed $H_i(q) \le q^k$
 - Expected number of such $z \leq Lq^k \leq L = n^{\rho}$

Runtime

- Space used = $n^{1+\rho}$
- Query time = n^{ρ}

- We can show that for Hamming, angle etc, $\rho \approx \frac{1}{c}$
 - Can get 2-approx near neighbors in $O(\sqrt{n})$ query time

LSH: theory vs practice

- In order to design LSH in practice, the theoretical parameter values are only a guidance
 - Typically need to search over the parameter space to find a good operating point
 - Data statistics can provide some guidance (will see in next class)

Summary

- Locality sensitive hashing is a powerful tool for near neighbour problems
- Trades off space with query time
- Practical for medium to large datasets with fairly large number of dimensions
 - However, doesn't really work very well for sparse, very very high dimensional datasets
- LSH and extensions are an area of active research and practice

References:

- Primary references for this lecture
 - Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
 - Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH

Thank You!!

