Balanceamento de ABBs

Algoritmos e Estruturas de Dados

A ordem de inserção afeta diretamente a altura de nossas árvores!

A ordem de inserção afeta diretamente a altura de nossas árvores!

Balanceamento

- A altura h, portanto, pode no pior caso ser $\mathcal{O}(N)$.
- ullet O desempenho médio não é ruim: $E(h) = \mathcal{O} \log N$
- Seria uma boa conseguir "consertar" uma árvore ruim!

Definição: uma (sub)árvore com N elementos está balanceada se $h = \log N$.

Alguma primeira ideia de como balancear uma árvore?

- Dica 1: pode usar array auxiliar
- Dica 2: pode criar uma nova árvore

Balanceamento (I)

Algoritmo:

- 1. passa por todos elementos em-ordem, guardando o valor em um array
- 2. insere como raiz o elemento do meio do array
- 3. faz o passo 2 recursivamente para cada lado do array

Complexidade:

- Computacional?
- Espaço?

Balanceamento (II)

Isso é bom?

Extra: procure pelo algoritmo Day-Stout-Warren

Árvores balanceadas

Algoritmos de inserção/remoção que mantém $h = \log N$

- AVL
- Red-Black Tree

Não veremos nesta disciplina