Containers

Ján Magyar, MSc.

4th December 2018

Application of Cloud Technologies

Monolithic applications

- single program on a single platform
- self-contained

- lack of modularity
- no code reuse
- hard to scale

Microservices

- App 1 App 2
- application = collection of loosely coupled services
- each service is self-contained
 - might rely on other services
- a service is responsible for only one step
- modular solution
- reusable code
- easy scalability

How to handle all the services?

Virtual machines

- emulation of an entire computer system
- we can set up a kernel with dependencies and applications
- hypervisor

Containers

- operating-system-level virtualization
- the kernel allows the existence of multiple user-space instances
- similar to virtual environments

VMs vs containers

Containers 101

What is a dockerfile

- textfile
- "recipe" of how to create an image
- list of instructions
 - usually shell commands
- define
 - what operating system we want to use
 - what dependencies the application has
- we BUILD a dockerfile to get an image

What is an image?

- a snapshot of the system in which we want to run a process
- binary representation of an environment
- possible to build image stacks/hierarchies
 - easier maintenance
- contains
 - OS
 - software
 - application code
- we RUN an image to get a container

What is a container?

- instance of an image
- fully isolated sandbox with inherent dependencies
- has
 - own process namespace
 - cgroups
 - limit what a process can do
 - resource limits
 - limit capabilities

Container life cycle

- usually one process/container
- might run multiple processes in one computer but there is one main process
- container life cycle ≈ container process life cycle
- update
 - delete container
 - rebuild image
 - rerun container

But what about data?

- the container gets deleted once the main process ends
- to save data for further use, we can use **volumes**

Important operations

- BUILD create an image from dockerfile
- RUN create a container from image
- PULL load an image from registry
- PUSH add an image to registry

Tying it all together

any questions?

Sources

- https://www.youtube.com/watch?v=YFl2mCHdv24
- https://www.youtube.com/watch?v=VqLcWftIaQI
- https://www.youtube.com/watch?v=EnJ7qX9fkcU
- https://www.youtube.com/watch?v=L1ie8negCjc