$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

$$V = (V \mid x, v \mid y, v \mid z)$$

b) An orthogonal matrix is a mutrix with or thogonal voctors as rows is collings

0-

	$= \begin{bmatrix} u_{x} & V_{y} & n_{x} & VRP_{x} \\ u_{y} & V_{y} & n_{y} & VRP_{y} \\ v_{t} & v_{z} & n_{z} & VRP_{z} \\ \phi & \phi & \phi & 1 \end{bmatrix}$	9
ſ		
/		

$$\begin{array}{lll}
A = (LRP - LPN) \\
N = LPN - LRP \\
\hline
ILPN - LRP \\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
V = LPN - LRP \\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
\hline
I(LUP - LRP) \times (LPN - LRP)
\\
I(LUP - LRP) \times (LPN - LRP)
\\$$

e)
$$M_{cl} = M_{ol} M_{cw}$$
 $M_{lc} = M_{cl}'$
 $= (M_{wl} M_{cw})^{-1}$
 $= M_{cw} M_{cw}$
 $= M_{wc} M_{ww}$
 $M_{cl} = M_{wc} M_{ww}$
 $M_{cl} = M_{wc} M_{cw}$
 $M_{cl} = M_{cw} M_{cw}$
 $M_{cl} =$