1: The Bisection Method (25%)

For function $f(x) = x^3 + 6x^2 + \pi x - 12$, the derivative is $f'(x) = 3x^2 + 12x + \pi$. The we can calculate that zeros of the derivative are $\frac{-12 - \sqrt{12(12 - \pi)}}{6}$ and $\frac{-12 + \sqrt{12(12 - \pi)}}{6}$.

 $f(\frac{-12-\sqrt{12(12-\pi)}}{6}) = 7.864841$ and $f(\frac{-12+\sqrt{12(12-\pi)}}{6}) = -12.43121$ Hence, the function f has totally 3 zeros.

Algorithm: Bisection Method in the R file.

Result: zeros -4.837944, -2.259727, and 1.097664.

2: Poisson Regression - Newton's Method (25%)

(1) Since $y_i \sim Poisson(\lambda_i)$ and $log(\lambda_i) = \alpha + \beta x_i + \gamma x_i^2$, we can get the Likelihhod function:

$$L(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{n} \frac{\lambda_i^{y_i} e^{-\lambda_i}}{y_i!} = \prod_{i=1}^{n} \frac{e^{(\alpha + \beta x_i + \gamma x_i^2) y_i} e^{-e^{\alpha + \beta x_i + \gamma x_i^2}}}{y_i!}$$

(2) The log-Likelihood function is

$$l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} (\alpha + \beta x_i + \gamma x_i^2) y_i - e^{\alpha + \beta x_i + \gamma x_i^2} - \log y_i!$$

Then we have:

$$\frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha} \Big|_{\hat{\alpha}} = \sum_{i=1}^{n} [y_i - e^{\alpha + \beta x_i + \gamma x_i^2}] \Big|_{\hat{\alpha}} = 0$$

$$\frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta} \Big|_{\hat{\beta}} = \sum_{i=1}^{n} [x_i y_i - x_i e^{\alpha + \beta x_i + \gamma x_i^2}] \Big|_{\hat{\beta}} = 0$$

$$\frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma} \Big|_{\hat{\gamma}} = \sum_{i=1}^{n} [x_i^2 y_i - x_i^2 e^{\alpha + \beta x_i + \gamma x_i^2}] \Big|_{\hat{\gamma}} = 0$$

Let
$$\mathbf{F}(\mathbf{x}) = \begin{pmatrix} \frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha} \\ \frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta} \\ \frac{\partial l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma} \end{pmatrix}$$
, then $\mathbf{F}'(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha^2} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \alpha} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma \partial \alpha} \\ \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \beta} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta^2} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma \partial \beta} \\ \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \gamma} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \gamma} & \frac{\partial^2 l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma^2} \end{pmatrix}$, in

which

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha^{2}} = \sum_{i=1}^{n} -e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \beta} = \frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \alpha} = \sum_{i=1}^{n} -x_{i}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \alpha \partial \gamma} = \frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma \partial \alpha} = \sum_{i=1}^{n} -x_{i}^{2}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta^{2}} = \sum_{i=1}^{n} -x_{i}^{2}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \beta \partial \gamma} = \frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma \partial \beta} = \sum_{i=1}^{n} -x_{i}^{3}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

$$\frac{\partial^{2}l(\alpha, \beta, \gamma | \mathbf{x}, \mathbf{y})}{\partial \gamma^{2}} = \sum_{i=1}^{n} -x_{i}^{4}e^{\alpha + \beta x_{i} + \gamma x_{i}^{2}}$$

Therefore, by Newton's Methhod, given initial guess $\alpha^{(0)}$, $\beta^{(0)}$, and $\gamma^{(0)}$, for each iteration:

$$\begin{pmatrix} \alpha^{(n)} \\ \beta^{(n)} \\ \gamma^{(n)} \end{pmatrix} = \begin{pmatrix} \alpha^{(n-1)} \\ \beta^{(n-1)} \\ \gamma^{(n-1)} \end{pmatrix} - \mathbf{F}'[(\mathbf{x})]^{-1} \mathbf{F}(\mathbf{x}).$$

Hence, for the algorithm: $\mathbf{x}^{(\mathbf{n})} = \begin{pmatrix} \alpha^{(n)} \\ \beta^{(n)} \\ \gamma^{(n)} \end{pmatrix}$,

STEP 1: Solve $\mathbf{F}'(\mathbf{x}^{(\mathbf{n})}) \triangle \mathbf{x}^{(\mathbf{n})} = -\mathbf{F}(\mathbf{x}^{(\mathbf{n})});$

STEP 2: Update by $\mathbf{x}^{(\mathbf{n}+\mathbf{1})} = \mathbf{x}^{(\mathbf{n})} + \triangle \mathbf{x}^{(\mathbf{n})}$.

(3) Algorithm: Newton's Method code in the R file.

Result: $\alpha = 1.503533$, $\beta = 1.052351$, and $\gamma = 1.957396$.

3: Logistic Regression - Newton's Method (20%)

- (1)
- (2)
- (3)

4: EM Algorithm (30%)

(1)

(2)

(3)

(4)