ขนแร่ด้วยรถไฟ

1 second, 256 MB

ที่อาณาจักรแห่งหนึ่ง มีเหมืองแร่จำนวน N เหมือง เหมืองที่ i สำหรับ 1<=i<=N มีตำแหน่งอยู่ที่พิกัด (X_i , Y_i) ระยะทางระหว่างเหมืองแร่จะคิดตามระยะทางแบบยุคลิด (Euclidean distance) นั่นคือ เหมืองที่ i และ j อยู่ห่าง กัน $\operatorname{sqrt}((X_i-X_j)^2+(Y_i-Y_j)^2)$ เราต้องการเชื่อมเหมืองเข้าด้วยกันโดยสร้างทางรถไฟที่เป็นเส้นตรงหลาย ๆ สาย ทางรถไฟแต่ละสายจะเริ่มที่เหมืองหนึ่งและสิ้นสุดที่อีกเหมือง ในการขนของด้วยรถไฟระหว่างเหมืองนั้นอาจจะทำ โดยการเดินทางผ่านทางรถไฟหลายสายต่อเนื่องกันได้

เป้าหมายของการเชื่อมเหมืองเข้าด้วยกันเพื่อที่จะสร้างศูนย์กำจัดสารพิษและใช้รถไฟขนสารพิษไปบำบัดที่ ศูนย์เหล่านี้ อาณาจักรดังกล่าวมีงบประมาณสร้างศูนย์กำจัดสารพิษสองที่ซึ่งจะสร้างที่เหมืองสองเหมือง คุณ สังเกตว่าถ้าสามารถสร้างศูนย์กำจัดสารพิษได้สองศูนย์ก็ไม่จำเป็นต้องเชื่อมทุกเหมืองเข้าด้วยกันก็ได้ แค่เชื่อมให้ ทุก ๆ เหมืองสามารถเดินทางผ่านทางรถไฟไปยังสองเหมืองที่จะเลือกสร้างศูนย์ได้ก็เพียงพอ

เนื่องจากค่าใช้จ่ายในการสร้างทางรถไฟแปรผันตรงกับระยะทาง เราจะคิดค่าใช้จ่ายเท่ากับระยะทาง ระหว่างเหมือง ให้คุณเขียนโปรแกรมเพื่อหาค่าใช้จ่ายน้อยที่สุดที่เชื่อมเหมืองเข้าด้วยกันโดยรับประกันว่ามีวิธีที่จะ เลือกเหมืองสองเหมืองเพื่อสร้างศูนย์กำจัดสารพิษและทุกเหมืองมีเส้นทางทางรถไฟที่จะขนสารพิษไปยังศูนย์กำจัด สารพิษได้อย่างน้อยหนึ่งศูนย์

พิจารณาตัวอย่างเหมืองจำนวน 7 เหมืองที่มีพิกัดต่อไปนี้

i	Xi	Yi
	2	2
1	2	2
2	8	2
3	9	3
4	4	3
5	10	1
6	3	5
7	4	4

รูปด้านซ้ายแสดงวิธีการเชื่อมต่อเหมืองเข้าด้วยกันด้วยรางรถไฟจำนวน 5 เส้น โดยสังเกตว่าถ้าเลือกให้เหมืองที่ 1 และเหมืองที่ 5 เป็นศูนย์กำจัดสารพิษ ทุก ๆ เหมืองจะสามารถขนสารพิษไปยังเหมืองทั้งสองผ่านทางรางรถไฟที่ สร้างได้ ระยะทางรวมคือ 8.30056

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็ม N (1<=N<=500) จากนั้นอีก N บรรทัดระบุพิกัดของเหมืองแร่แต่ละเหมืองเป็นคู่ของ จำนวนเต็ม มีค่าระหว่าง 0 ถึง 1.000

ข้อมูลส่งออก

มีหนึ่งบรรทัด เป็นจำนวนจริงแทนค่าใช้จ่าย คำตอบที่ถูกต้องจะต้องมีความผิดพลาดไม่เกิน 0.001 (ไม่ต้องกังวล ตอนปัดค่า โดยมากจะไม่มีปัญหา อย่าลืมอ่านรายละเอียดเกี่ยวกับการเขียนโปรแกรมท้ายโจทย์)

ตัวอย่าง 1

Input	<u>Output</u>
7	8.3006
2 2	
8 2	
9 3	
4 3	
10 1	
3 5	
4 4	

หมายเหตุคำตอบที่มีความละเอียดสูงขึ้นคือ 8.30056308 แต่คำตอบใด ๆ ที่แตกต่างไม่เกิน 0.001 จะถือว่าเป็น คำตอบที่ถูกต้องทั้งหมด

ตัวอย่าง 2

Input	Output
5	30.0000
10 0	
20 0	
35 0	
45 0	
10 0 20 0 35 0 45 0 55 0	

หมายเหตุการโปรแกรม

ในการเก็บระยะทาง ให้ใช้ตัวแปรประเภท double สามารถใช้ฟังก์ชัน sqrt ในการหารากที่ 2 ได้ ในการใช้ ถ้า เขียนแบบ C++ ให้
#include <cmath>
ถ้าอยากจะเขียนแบบ C ใช้
#include <math.h>

ในการพิมพ์ ถ้าใช้ printf ในการพิมพ์ double ให้ระบุจำนวนทศนิยมให้มากกว่า 3 ตำแหน่ง เช่นสั่ง printf("%.5f", sol);

ถ้าใช้ cout ในการพิมพ์ ให้สั่ง cout.precision(5); ก่อนพิมพ์ เพื่อให้ผลลัพธ์ออกมา 5 ตำแหน่งเป็นต้น