▼ EDS_Minor Group Project..

Projected by:-

- 1) 717_Ruturaj Deshmukh.
- 2) 707_Om Bhutkar.
- 3) 716_Prathamesh Deshmukh.
- 4) 704_Shreyas Atkari.

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
data = pd.read_csv("/content/minor.csv")
print(data)
```

	sr.no	е	mp_id	age		Dept	location	educatio	n rec	ruitment_type	\
0	0	HR8270		28	HR		Suburb	P	G	Referral	
1	1	TECH1860		50	Technology		Suburb	P	G	Walk-in	
2	2	TECH6390		43	Technology		Suburb	U	G	Referral	
3	3	SAL6191		44	Sales		City	Р	G	On-Campus	
4	4	HR6734		33	HR		City	U	G Recru	Recruitment Agency	
94	94	Н	R4104	36		HR	Suburb	U	G	Referral	
95	95	Н	R8215	44		HR	Suburb	U	G Recru	iitment Agency	
96	96	Н	R3454	33		HR	City	U	G Recru	itment Agency	
97	97	PUR9996		54	Purchasing		City	U	G	Walk-in	
98	98	SAL3731		49		Sales	City	Р	G	Referral	
	job_le	vel	rating	or	site	awards	certif	ications	salary	satisfied	
0		5	2		0	1	L	0	86750	1	
1		3	5		1	2	2	1	42419	0	
2		4	1		0	2	2	0	65715	0	
3		2	3		1	6	9	0	29805	1	
4		2	1		0	5	5	0	29805	1	
							,				
94		1	1		0	6	9	1	24076	0	
95		4	4		1	5	5	1	65715	0	
96		4	5		1	3	3	1	65715	1	
97		1	3		1	7	7	1	24076	0	
98		3	5		0	8	3	0	42419	0	

[99 rows x 14 columns]

Display the first few rows of the dataset
print(data.head())

```
Dept location education
                                                 recruitment_type \
  sr.no
          emp_id age
0
        HR8270 28
                            HR Suburb PG
                                                         Referral
                                             PG
1
      1 TECH1860 50 Technology
                                 Suburb
                                                          Walk-in
      2 TECH6390 43 Technology
                                             UG
                                 Suburb
                                                          Referral
                                  City
      3 SAL6191 44
                          Sales
                                             PG
                                                         On-Campus
```

```
job_level
                                           certifications salary
                   rating
                           onsite
                                   awards
                                                                    satisfied
     0
                5
                                                             86750
                        2
                                0
                                        1
                                                                            1
                3
                        5
                                        2
                                                                            0
     1
                                1
                                                         1
                                                             42419
     2
                4
                        1
                                0
                                        2
                                                             65715
                                                                            0
                                                         0
     3
                2
                        3
                                        0
                                                         0
                                                             29805
                                1
                                                                            1
     4
                2
                        1
                                0
                                        5
                                                             29805
                                                                            1
# Compute basic statistics
average_age = data['age'].mean()
max_salary = data['salary'].max()
print(average_age)
print(max_salary)
     38.3131313131315
     86750
# Perform data manipulation
data['total_awards'] = data['awards'] + data['certifications']
# Visualization
plt.figure(figsize=(10, 6))
plt.scatter(data['age'], data['salary'])
plt.xlabel('Age')
plt.ylabel('Salary')
plt.title('Age vs. Salary')
plt.show()
```

HR

City

UG Recruitment Agency

HR6734


```
# Select the relevant columns for linear regression
X = data[['age', 'job_level', 'onsite', 'awards', 'certifications']]
y = data['salary']
```

```
print(X)
print(y)
         age job_level onsite awards certifications
     0
         28
                             0
                                     1
                     3
     1
         50
                                                     1
                             1
                                     2
     2
         43
                             0
                                                     0
                                     2
     3
         44
                             1
         33
                    2
                             0
                                     5
                                                     0
     . . . . . .
                    . . .
                           . . .
                                   . . .
     94
        36
                            0
                    1
                                                     1
     95 44
                            1
     96
        33
                     4
                            1
                                    3
                                                    1
                                    7
     97 54
                    1
                           1
                                                     1
                                    8
     98
        49
                     3
     [99 rows x 5 columns]
     0
          86750
          42419
     1
          65715
     2
     3
          29805
     4
          29805
     94
          24076
     95
          65715
     96
          65715
     97
          24076
     98
          42419
     Name: salary, Length: 99, dtype: int64
# Select the relevant columns for linear regression
X = data[['age', 'job_level', 'onsite', 'awards', 'certifications']]
y = data['salary']
# Create an instance of the Linear Regression model
model = LinearRegression()
# Fit the model to the data
model.fit(X, y)
     ▼ LinearRegression
     LinearRegression()
# Generate predictions
predictions = model.predict(X)
# Calculate the coefficient of determination (R-squared)
r_squared = model.score(X, y)
# Extract the coefficients and intercept
coefficients = model.coef_
intercept = model.intercept_
# Print the results
print("Coefficients:", coefficients)
```

Coefficients: [-56.81411226 16304.25823398 747.36147054

-44.87473012

print("Intercept:", intercept)
print("R-squared:", r_squared)

290.24579805]

R-squared: 0.9563559829427001 # Select the relevant features and target variable X = data[['age', 'job_level', 'onsite', 'awards', 'certifications']] y = data['satisfied'] # Split the data into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create an instance of the KNN classifier knn = KNeighborsClassifier(n_neighbors=5) # Fit the classifier to the training data knn.fit(X_train, y_train) ▼ KNeighborsClassifier KNeighborsClassifier() # Generate predictions on the test set predictions = knn.predict(X_test) # Calculate the accuracy of the classifier accuracy = accuracy_score(y_test, predictions) # Print the results print("Accuracy:", accuracy) Accuracy: 0.6 # Extract the 'age' column from the dataset age_data = data['age'] # Create a histogram plt.hist(age_data, bins=10, edgecolor='black')

Intercept: 2707.3308628208542


```
# Calculate the count of satisfied and dissatisfied employees
satisfied_count = data['satisfied'].sum()
dissatisfied_count = len(data) - satisfied_count

# Create a pie chart
labels = ['Satisfied', 'Dissatisfied']
sizes = [satisfied_count, dissatisfied_count]
colors = ['#66b3ff', '#ff9999']
explode = (0.1, 0)

plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
plt.title('Employee Satisfaction')
plt.show()
```

