Cours 3 : Listes, itérateurs de listes et tris

2019 - 2020

Un type récursif déjà vu : les entiers

Un type récursif déjà vu : les entiers

Types récursifs pour les entiers

- Les entiers naturels (donc positifs) correspondent à plusieurs schémas récursifs et peuvent être vus comme un type récursif (de différentes façons).
- Un entier est de la forme :
 - soit 0 (* cas de base/terminal *)
 - soit n+1 où n est un entier. (* cas général/récursif *)
- Ou bien, un entier est de la forme :
 - soit 0 (* cas de base/terminal *)
 - soit 2* (n+1) où n est un entier. (* cas général/récursif *)
 - soit 2*n+1 où n est un entier. (* cas général/récursif *)
- Ce sont des définitions d'un type récursif.
- D'une définition d'un type récursif découle naturellement des fonctions récursives (même récursion que le type), par exemple la factorielle pour le premier schéma, la puissance indienne pour le second.

Définition du type des listes

Définition : une α -liste est :

- soit la liste vide (* cas de base/terminal *)
- soit a::1
 où a est un α et 1 une α-liste. (* cas général/récursif *)

Remarques

- la structure de données "liste" est homogène, i.e. tous les éléments d'une liste ont le même type α.
- une liste non vide se présente toujours sous la forme tete::queue, les différents éléments ne sont accessibles que de cette façon.
 - ⇒ Pas d'accès direct indexé comme pour les tableaux.
- structure de données dynamique: on peut "ajouter" ou "retirer" des éléments (ce n'est qu'un abus de langage, puisqu'il n'y a pas d'effets de bord).

On remarque l'équivalence des écritures a::b::c ::[] et [a; b; c].

Accès à la tête et à la queue d'une liste

 On accède à la tête (resp. queue) d'une liste à l'aide de la fonctions List.hd (head) (resp. List.tl (tail))
 ou en utilisant le filtrage :

Cette fonction suit la récursivité naturelle (structurelle) des listes.

Exercices

- 1. Écrire les fonctions hd et tl.
- 2. Écrire la fonction taille qui renvoie la longueur d'une liste.
- 3. Écrire la fonction append qui renvoie la concaténation de deux listes. Quelle est sa complexité?

List.map

```
List.map f[t1;t2...;tn] = [f t1;f t2...;f tn]
```

Exercice

- 1. Donner le type de l'itérateur List .map
- 2. Écrire cet itérateur.

3. Écrire string_of_int_list , qui transforme une liste d'entiers en une liste de chaînes de caractères, en utilisant List.map.

List.map

```
List.map f[t1;t2...;tn] = [f t1;f t2...;f tn]
```

Exercice

1. Donner le type de l'itérateur List .map

$$('a -> 'b) -> 'a list -> 'b list$$

2. Écrire cet itérateur.

3. Écrire string_of_int_list , qui transforme une liste d'entiers en une liste de chaînes de caractères, en utilisant List map.

List.map

```
List.map f[t1;t2...;tn] = [f t1;f t2...;f tn]
```

Exercice

1. Donner le type de l'itérateur List .map

$$(a -> b) -> a$$
 list $-> b$ list

2. Écrire cet itérateur.

```
let rec map f | =
  match | with
  |[] -> []
  |t :: q -> (f t )::( map f q) ;;
```

3. Écrire string_of_int_list , qui transforme une liste d'entiers en une liste de chaînes de caractères, en utilisant List map.

List.map

```
List.map f[t1;t2...;tn] = [f t1;f t2...;f tn]
```

Exercice

1. Donner le type de l'itérateur List .map

$$(a -> b) -> a$$
 list $-> b$ list

2. Écrire cet itérateur.

```
let rec map f l =
  match | with
  |[] -> []
  |t :: q -> (f t )::( map f q) ;;
```

3. Écrire string_of_int_list , qui transforme une liste d'entiers en une liste de chaînes de caractères, en utilisant List .map.

```
let string_of_int_list I = List.map (fun e -> string_of_int e) I;;
```

List.map

```
List.map f[t1;t2...;tn] = [f t1;f t2...;f tn]
```

Exercice

1. Donner le type de l'itérateur List .map

$$(a -> b) -> a$$
 list $-> b$ list

Écrire cet itérateur.

3. Écrire string_of_int_list , qui transforme une liste d'entiers en une liste de chaînes de caractères, en utilisant List .map.

```
    let
    string_of_int_list
    I = List.map (fun e -> string_of_int e) I;;

    let
    string_of_int_list
    I = List.map string_of_int I;;
```

List.map

```
List.map f[t1;t2...;tn] = [f t1;f t2...;f tn]
```

Exercice

1. Donner le type de l'itérateur List.map

$$(a -> b) -> a$$
 list $-> b$ list

Écrire cet itérateur.

```
let rec map f l =
  match | with
  |[] -> []
  |t :: q -> (f t )::( map f q) ;;
```

3. Écrire string_of_int_list , qui transforme une liste d'entiers en une liste de chaînes de caractères, en utilisant List map.

```
let string_of_int_list I = List.map (fun e -> string_of_int e) I;;
let string_of_int_list I = List.map string_of_int I;;
let string_of_int_list = List.map string_of_int ;;
```

List . fold_right f [$t_1;t_2; ...;t_n$] e = (f t_1 (f t_2 (... (f t_n e) ...)))

List. fold_left f e [$t_1;t_2;...;t_n$] = (f (...(f (f e t_1) t_2) ...) t_n)

Exercice

1. Donner le type des itérateurs List. fold_right et List. fold_left .

2. Écrire ces itérateurs.

3. Écrire la fonction rev (qui renverse une liste) à l'aide des deux itérateurs. Quelle version a la complexité la plus faible?

Exercice

1. Donner le type des itérateurs List . fold_right et List . fold_left .

List . fold_right : (' a
$$->$$
 'b $->$ 'b) $->$ 'a list $->$ 'b $->$ 'b List . fold_left : (' a $->$ 'b $->$ 'a) $->$ 'a $->$ 'b list $->$ 'a

2. Écrire ces itérateurs.

3. Écrire la fonction rev (qui renverse une liste) à l'aide des deux itérateurs. Quelle version a la complexité la plus faible?

Exercice

1. Donner le type des itérateurs List. fold_right et List. fold_left .

```
List . fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
List . fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
```

Écrire ces itérateurs.

3. Écrire la fonction rev (qui renverse une liste) à l'aide des deux itérateurs. Quelle version a la complexité la plus faible?

Exercice

1. Donner le type des itérateurs List. fold_right et List. fold_left .

```
List fold_right : ('a -> 'b -> 'b) -> 'a \text{ list } -> 'b -> 'b
List fold_left : ('a -> 'b -> 'a) -> 'a -> 'b \text{ list } -> 'a
```

2. Écrire ces itérateurs.

```
(* fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b*)

let rec fold_right f | e =
    match | with

| [] -> e
| t :: q -> f t (fold_right f q e);;

(* fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a*)

let rec fold_left f e | =
    match | with

| [] -> e
| t :: q -> fold_left f (f e t) q;;
```

3. Écrire la fonction rev (qui renverse une liste) à l'aide des deux itérateurs. Quelle version a la complexité la plus faible?

let rev | = List. fold_left (fun accu t -> t::accu) [] | ;;
let rev | = List. fold_right (fun t rev_q -> rev_q@[t]) | [];

Autres itérateurs

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

Les avantages des itérateurs structurels

- garantit la terminaison
- simplifie les calculs de complexité
- permet la simplification, l'optimisation de code

```
let f | =
match | with
| 1::_ -> "int"
| "a" ::_ -> "string"
| true ::_ -> "bool"
| _ -> "autre type" ;;
```

Quel est le type de f?

- 1. 'a -> string
- 2. 'a list -> string
- 3. mal typé
- 4. aucune des réponses précédentes

Sachant que int_of_char est de type char -> int, quel est le type de f?

- 1. $a \rightarrow bool$
- 2. 'a list -> bool
- 3. (int * char) list -> bool
- 4. (int , char) list -> bool
- 5. mal typé
- 6. aucune des réponses précédentes

Sachant que int_of_char est de type char -> int, quel est le type de f?

- 1. $a \rightarrow bool$
- 2. 'a list -> bool
- 3. (int * char) list -> bool
- 4. (int , char) list -> bool
- 5. mal typé
- 6. aucune des réponses précédentes

Quel est le type de f?

- 1. a -> a
- 2. 'a list -> 'a
- 3. $a \rightarrow a$ list
- 4. 'a list -> 'a list
- 5. 'a list -> 'a list
- 6. 'a list -> 'a list list
- 7. 'a list list -> 'a list list
- 8. mal typé
- 9. aucune des réponses précédentes

```
\textbf{let} \hspace{0.2cm} \textbf{f} \hspace{0.2cm} \textbf{I} \hspace{0.2cm} = \hspace{0.2cm} \textbf{List} \hspace{0.2cm} . \hspace{0.2cm} \textbf{fold\_right} \hspace{0.2cm} (\textbf{fun} \hspace{0.2cm} \textbf{e} \hspace{0.2cm} \textbf{f\_q} \hspace{0.2cm} -> \hspace{0.2cm} \textbf{e} \hspace{0.2cm} \textcircled{\textbf{gf\_q}} ) \hspace{0.2cm} \textbf{I} \hspace{0.2cm} [] \hspace{0.2cm} ;; \hspace{0.2cm}
```

Quel est le type de f?

- 1. a -> a
- 2. 'a list -> 'a
- 3. $a \rightarrow a$ list
- 4. 'a list -> 'a list
- 5. 'a list -> 'a list
- 6. 'a list -> 'a list list
- 7. 'a list list -> 'a list list
- 8. mal typé
- 9. aucune des réponses précédentes

Tris

Quelle est la meilleure complexité (en terme de comparaison d'éléments deux à deux) possible pour un algorithme de tri par comparaison ?

- 1. *log n*
- 2. n
- 3. n * log n
- 4. n^2
- 5. n^3
- 6. je ne sais pas
- 7. aucune des réponses précédentes

Une implémentation immédiate

- Calculer toutes les permutations et ne garder que celle qui est bien ordonnée.
- Complexité : Θ((n − 1) * n!)!
 - n! permutations
 - n − 1 comparaisons d'éléments par permutation

Tri par insertion - Analyse récursive

- Si je sais trier une liste de taille n 1, comment puis-je trier une liste de taille n?
- J'insère l'élément souhaité à "sa place".
- ⇒ Besoin d'une fonction auxiliaire qui insère un élément dans une liste triée.

Tri par insertion - Code

```
(* insertion : 'a -> 'a list -> 'a list *)
(* insere un elt dans une liste triee par ordre croissant *)
let rec insertion x liste =
 match liste with
  [] ->[x]
  tete :: queue -> if x \le tete then x:: liste
                               else tete ::( insertion x queue);;
(* tri_insertion : 'a list -> 'a list *)
(* trie une liste par ordre croissant *)
let rec tri_insertion liste =
 match liste with
  [] ->[]
 tete :: queue -> insertion tete ( tri_insertion queue);;
OU BIFN
let tri_insertion I = List . fold_right insertion I [];;
```

Tri par insertion - Complexité

 On étudie la complexité du pire cas, correspondant à l'insertion en fin de liste.

$$C_{max}(0) = 0$$

 $C_{max}(n+1) = n + C_{max}(n)$

• $C_{max}(n)$ est la somme des n-1 premiers entiers

$$C_{max}(n) = \frac{n(n-1)}{2}$$

- D'où: $C_{max}(n) = \Theta(n^2)$
- C_{min}(n) = Θ(n): tri d'une liste déjà triée, l'insertion se fait en une unique comparaison

Tri fusion - Analyse récursive

- Si je sais trier une liste de taille n/2 comment puis-je trier une liste de taille n?
- Réponse : Je fusionne deux listes triées.
- ⇒ Besoin de deux fonctions auxiliaires :
 - une qui découpe une liste en deux sous-listes de même taille ± 1 .
 - une qui fusionne deux listes triées

Tri fusion - Code

```
(* decompose : 'a list -> 'a list * 'a list *)
(* decompose une liste en deux listes de tailles egales (+/- un elt) *)
let rec decompose liste =
match liste with
 |  |  |  |  | 
               -> liste, ∏
 e1::e2::queue -> let (l1,l2)= (decompose queue) in (e1::l1, e2::l2);;
(* recompose : 'a list -> 'a list -> 'a list *)
(* fusionne deux listes triees par ordre croissant *)
(* pour en faire une seule triee par ordre croissant *)
let rec recompose liste1 liste2 =
match liste1, liste2 with
  П
                               -> liste2
                               -> liste1
                , П
  tete1 :: queue1, tete2::queue2 -> if tete1 < tete2
                                  then tete1 :: recompose queue1 liste2
                                  else tete2 :: recompose liste1 queue2;;
```

Tri fusion - Code

L'algorithme de tri consiste alors à :

- · couper la liste en deux
- trier les deux sous-listes (appels récursifs)
- fusionner les deux sous-listes triées

Tri fusion - Complexité

• Le tri fusion est un algorithme de complexité uniforme, quelles que soient les données. Ainsi, $C_{min}(n) = C_{moy}(n) = C_{max}(n) = C(n)$

•

$$C(0)$$
 = 0
 $C(1)$ = 0
 $C(2n+2)$ = 2 $C(n+1)+2n+1$
 $C(2n+3)$ = $C(n+2)+C(n+1)+2n+2$

•

$$C(2^{\lceil \log_2 n \rceil - 1}) < C(n) \le C(2^{\lceil \log_2 n \rceil})$$

•

$$C(2^0) = C(1) = 0$$

 $C(2^{n+1}) = 2^{n+1} - 1 + 2C(2^n)$

• On pose $D(n) = \frac{C(2^n)}{2^n}$

•

$$D(0) = \frac{C(1)}{1} = 0$$

$$D(n+1) = 1 - \frac{1}{2^{n+1}} + \frac{2C(2^n)}{2^{n+1}} = 1 - \frac{1}{2^{n+1}} + D(n)$$

Tri fusion - Complexité

• Par intégration de D(n):

$$D(n) = \underbrace{\left(1 - \frac{1}{2^n}\right) + \left(1 - \frac{1}{2^{n-1}}\right) + \dots + \left(1 - \frac{1}{2^1}\right)}_{n \text{ termes}}$$

$$= n - \sum_{k=1}^{n} \frac{1}{2^k}$$

$$= n - 1 + \frac{1}{2^n}$$

- $C(2^n) = (n-1)2^n + 1$
- •

$$1 + (\lceil \log_2 n \rceil - 2) * 2^{\lceil \log_2 n \rceil - 1} < C(n) \le 1 + (\lceil \log_2 n \rceil - 1) * 2^{\lceil \log_2 n \rceil}$$

• Puisque $\lceil \log_2 n \rceil = \Theta(\log_2 n)$ et $2^{\lceil \log_2 n \rceil} = \Theta(2^{\log_2 n}) = \Theta(n)$, on obtient finalement $C(n) = \Theta(n * \log n)$