Supplementary information supporting the paper: Warnatzsch and Reay (2019) Assessing Climate Change Projections and Impacts on Central Malawi's Maize Yield: The Risk of Maladaptation.

Table 1: Regional Climate Models (RCM) sources. All of the models other than $CanRCM4_r2$ were accessed through The Earth System Grid Federation (ESGF) data index (ESGF, 2017). The $CanRCM4_r2$ model was

accessed through the Canadian Centre for Climate Modelling and Analysis website (CCCma, 2017).

RCM	Institution	Lateral Boundary Conditions	Original Calendar	Reference		
	Climata Limitad and	CNRM-CM5 r1i1p1	365-days			
CCLM4-8-17_v1	Climate Limited-area Modelling Community	HadGEM2-ES r1i1p1	360-days	(COSMO,		
CCLIVI4-8-17_V1	(CLMcom)	EC-EARTH r12i1p1	366-days	2017)		
	(CLIVICOIII)	MPI-ESM-LR r1i1p1	366-days			
HIRHAM5_v2	Danmarks Meteorologiske Insitut (DMI)	EC-EARTH r3i1p1	366-days	(Christensen et al., 2007)		
RACMO22T_v1	Koninklijk Nederlands Meteorologisch Instituut	HadGEM2-ES r1i1p1	360-days	(van Meijgaard		
-	(KNMI)	EC-EARTH r1i1p1	366-days	et al., 2008)		
		CanESM2 r1i1p1	366-days			
		CNRM-CM5 r1i1p1	366-days			
RCA4_v1		CSIRO-MK3-6-0 r1i1p1	365-days			
		GFDL-ESM2M r1i1p1	365-days			
	Sveriges Meteorologiska och Hydrologiska Institut (SMHI)	IPSL-CM5A-MR r1i1p1	365-days	(Samuelsson et al., 2015)		
		HadGEM2-ES r1i1p1	360-days	, , , , , , , , , , , , , , , , , , , ,		
		EC-EARTH r12i1p1	366-days			
		MIROC5 r1i1p1	365-days			
		MPI-ESM-LR r1i1p1	366-days			
		NORESM1-M r1i1p1	365-days			
REMO2009_v1	Climate Service Centre Germany (CSC) and Max	EC-EARTH r12i1p1	366-days	(Jacob et al.,		
VEIAIO5002_A1	Planck Institut (MPI)	MPI-ESM-LR r1i1p1	366-days	2012)		
CanRCM4_r2	Canadian Centre for Climate Modelling and Analysis (CCCma)	CanESM2 r1i1p1	365-days	(Scinocca et al., 2016)		

Table 2: Observed data sources

Dataset	Variable Used	Resolution	Time-Period Available	Source	Reference
Climate Research Unit (CRU) version 4.0	Tas, TasMin, TasMax and Pr	0.5° Monthly Land Only	1901-2015	Gridded Station Data	(Harris et al., 2014)
University of Delaware (UDel) version 4.01	Tas and Pr	0.5° Monthly Land Only	1901-2010	Gridded Station Data	(Willmott and Matsuura, 2001)
Global Precipitation Climatology Centre (GPCC) version 7	Pr	1.0° Monthly	1901-2010	Satellite and Station Data	(Schneider et al., 2015)

Table 3: List of data sources for the 13 climate files used in the crop models. Note that all RCMs referred to in this table are listed in Table 1 and the observed data referred to in this table are from the sources listed in

Table 2.

File	Time Scale	RCP	Temperature	Evaporation Rate	Precipitation Rate	CO ₂ concentration													
1	1971- 2000	N/A	Mean of observed monthly data for minimum and maximum temperature	Hindcasted ensemble mean monthly evaporation rates	Observed monthly data for precipitation rates	AquaCrop Mauna Loa CO ₂													
2			·		Projected ensemble minimum precipitation rate														
3		4.5			Projected ensemble mean precipitation rate	AquaCrop IPCC RCP 4.5													
4	2020-	4.5				Projected ensemble maximum precipitation rate													
5	2049																	Projected ensemble minimum precipitation rate	
6			Projected ensemble mean daily	Projected ensemble mean	Projected ensemble mean precipitation rate	AquaCrop IPCC RCP 8.5													
7					Projected ensemble maximum precipitation rate														
8			r	4.5	4.5	4.5	4.5	4.5				minimum and maximum temperature	daily evaporation rate	Projected ensemble minimum precipitation rate					
9											Projected ensemble mean precipitation rate	AquaCrop IPCC RCP 4.5							
10	2040-					Projected ensemble maximum precipitation rate													
11	2069									Projected ensemble minimum precipitation rate									
12			3.5		Projected ensemble mean precipitation rate	AquaCrop IPCC RCP 8.5													
13					Projected ensemble maximum precipitation rate														

Figure 1: Change in total precipitation (mm) and water content in the effective root zone (mm) by developmental stage of the fast-development cultivar maize grown in Central Malawi for the three planting dates as compared to the baseline 1971-2000 period (red line). This data is shown for the three precipitation scenarios: minimum (palest), average (medium shade) and maximum (darkest) precipitation, for the two RPC scenarios and time periods.

Table 4: Number of days exceeding the maximum temperature threshold (32 degrees Celsius) by development stage for each cultivar

	Planting	Stage H	Historic	RCP4.5		RCP8.5	
	Date			2030	2050	2030	2050
		Emergence	0	6	8	8	7
		Vegetative	0	0	2	1	10
	Nov. 15	Flowering	0	0	0	0	0
		Yield Formation	0	0	0	0	0
		Total	0	6	10	9	17
		Emergence	0	0	0	0	0
Slow-		Vegetative	0	0	0	0	0
Development	Dec. 10	Flowering	0	0	0	0	0
Cultivar		Yield Formation	0	0	0	0	0
		Total	0	0	0	0	0
	Dec. 30	Emergence	0	0	0	0	0
		Vegetative	0	0	0	0	0
		Flowering	0	0	0	0	0
		Yield Formation	0	0	0	0	0
		Total	0	0	0	0	0
	Nov. 15	Emergence	0	5	5	5	5
		Vegetative	0	1	5	4	12
		Flowering	0	0	0	0	0
		Yield Formation	0	0	0	0	0
		Total	0	6	10	9	17
	Dec. 10	Emergence	0	0	0	0	0
Fast-		Vegetative	0	0	0	0	0
Development		Flowering	0	0	0	0	0
Cultivar		Yield Formation	0	0	0	0	0
		Total	0	0	0	0	0
	Dec. 30	Emergence	0	0	0	0	0
		Vegetative	0	0	0	0	0
		Flowering	0	0	0	0	0
		Yield Formation	0	0	0	0	0
		Total	0	0	0	0	0

Table 5: Number of days falling short of the minimum temperature threshold (13 degrees Celsius) by development stage for each cultivar

	Planting Date	Stage Histo	Historia	RCF	P4.5	RCP	8.5
			HISTORIC	2030	2050	2030	2050
		Emergence	0	0	0	0	0
		Vegetative	0	0	0	0	0
	Nov. 15	Flowering	0	0	0	0	0
		Yield Formation	21	0	0	0	0
		Total	21	0	0	0	0
		Emergence	0	0	0	0	0
Slow-		Vegetative	0	0	0	0	0
Development	Dec. 10	Flowering	0	0	0	0	0
Cultivar		Yield Formation	67	0	0	0	0
		Total	67	0	0	0	0
	Dec. 30	Emergence	0	0	0	0	0
		Vegetative	0	0	0	0	0
		Flowering	0	0	0	0	0
		Yield Formation	57	0	0	0	0
		Total	57	0	0	0	0
	Nov. 15	Emergence	0	0	0	0	0
		Vegetative	0	0	0	0	0
		Flowering	0	0	0	0	0
		Yield Formation	21	0	0	0	0
		Total	21	0	0	0	0
	Dec. 10	Emergence	0	0	0	0	0
Fast-		Vegetative	0	0	0	0	0
Development		Flowering	0	0	0	0	0
Cultivar		Yield Formation	0	0	0	0	0
		Total	0	0	0	0	0
	Dec. 30	Emergence	0	0	0	0	0
		Vegetative	0	0	0	0	0
		Flowering	0	0	0	0	0
		Yield Formation	0	0	0	0	0
		Total	0	0	0	0	0

References

- CCCMA. 2017. Canadian Regional Climate Model Output [Online]. Government of Canada. Available: http://climate-modelling.canada.ca/climatemodeldata/canrcm/CanRCM4/index.shtml [Accessed 26 June 2017].
- CHRISTENSEN, O. B., DREWS, M., CHRISTENSEN, J. H., DETHLOFF, K., KATELSEN, K., HEBESTADT, I. & RINKE, A. 2007. Technical report 06-17. The HIRHAM Regional Climate Model
- Version 5 (β). Copenhagen.
- COSMO. 2017. *Core Documentation of the COSMO-model* [Online]. Available: http://www.cosmo-model.org/content/model/documentation/core/default.htm#p1 [Accessed 20 October 2017].
- ESGF. 2017. ESGF@LiU/CORDEX [Online]. Available: https://esg-dn1.nsc.liu.se/projects/cordex/ [Accessed 26 June 2017].
- JACOB, D., ELIZALDE, A., HAENSLER, A., HAGEMANN, S., KUMAR, P., PODZUN, R., RECHID, D., REMEDIO, A. R., SAEED, F., SIECK, K., TEICHMANN, C. & WILHELM, C. 2012. Assessing the
- Transferability of the Regional Climate Model REMO to Different Coordinated
- Regional Climate Downscaling Experiment (CORDEX) Regions. Atmosphere, 3, 181-199.
- SAMUELSSON, P., GOLLVIK, S., JANSSON, C., KUPIAINEN, M., KOURZENEVA, E. & JAN VAN DE BERG, W. 2015. The surface processes of the Rossby Centre
- regional atmospheric climate model (RCA4). Norrköping, Sweden.
- SCINOCCA, J. F., KHARIN, V. V., JIAO, Y., QIAN, M. W., LAZARE, M., SOLHEIM, L., FLATO, G. M., BINER, S., DESGAGNE, M. & DUGAS, B. 2016. Coordinated Global and Regional Climate Modeling. *Journal of Climate*, 29, 17-35.
- VAN MEIJGAARD, E., VAN ULFT, L. H., VAN DE BERG, W. J., BOSVELD, F. C., VAN DEN HURK, B. J. J. M., LENDERINK, G. & SIEBESMA, A. P. 2008. Technical report; TR 302. The KNMI regional atmospheric climate model RACMO version 2.1. De Bilt.