Wir haben Daten erhoben:

X	-0.5	-1.5	0.5	1.5	2.5
У	-2.0	-10.0	3.5	4.0	12.0

Wir haben Daten erhoben:

×	-0.5	-1.5	0.5	1.5	2.5
У	-2.0	-10.0	3.5	4.0	12.0

Fragen:

■ Wie hängen x und y zusammen?

Wir haben Daten erhoben:

X	-0.5	-1.5	0.5	1.5	2.5
у	-2.0	-10.0	3.5	4.0	12.0

Fragen:

■ Wie hängen x und y zusammen?

```
Korrelation: cor(x,y) = 0.97
Positiver Zusammenhang!
```

Wir haben Daten erhoben:

Х	-0.5	-1.5	0.5	1.5	2.5
у	-2.0	-10.0	3.5	4.0	12.0

Fragen:

■ Wie hängen x und y zusammen?

```
Korrelation: cor(x,y) = 0.97
Positiver Zusammenhang!
```

■ Wie können wir einen bestimmten Wert von y vorhersagen?

Wir haben Daten erhoben:

Х	-0.5	-1.5	0.5	1.5	2.5
у	-2.0	-10.0	3.5	4.0	12.0

Fragen:

■ Wie hängen x und y zusammen?

```
Korrelation: cor(x,y) = 0.97
Positiver Zusammenhang!
```

■ Wie können wir einen bestimmten Wert von y vorhersagen?

Wir brauchen ein Modell!

Wir haben Daten erhoben:

X	-0.5	-1.5	0.5	1.5	2.5
у	-2.0	-10.0	3.5	4.0	12.0

Fragen:

- Wie hängen x und y zusammen? Korrelation: cor(x,y) = 0.97Positiver Zusammenhang!
- Wie können wir einen bestimmten Wert von y vorhersagen?

Wir brauchen ein Modell!

Ein lineares Modell scheint passend...

Lineares Modell (Simple Linear Regression Model)

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = 1, \dots, n$$

Lineares Modell (Simple Linear Regression Model)

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = 1, \dots, n$$

- *i* ist der Index für eine Beobachtung
- \blacksquare *n* ist die Anzahl Beobachtungen
- lacksquare y_i ist die abhängige (zu erklärende) Variable für die Beobachtung i
- lacksquare x_i ist der Regressor (die erklärende Variable) für die Beobachtung i
- lacksquare u_i ist der Fehlerterm (der Messfehler) für die Beobachtung i
- lacksquare β_0 und β_1 sind unbekannte Parameter, die geschätzt werden
 - lacksquare eta_0 ist der Achsenabschnitt (auch Intercept genannt)
 - lacksquare eta_1 ist der Steigungsparameter

5 Modellannahmen

	Stichwort	Annahme	wäre z.B. verletzt, wenn
SLR.1	Modell	$y=\beta_0+\beta_1x+u \text{ mit den}$ Parametern $\beta_0, \ \beta_1\in\mathbb{R}$	der Zusammenhang ist exponentiell $(y=eta_0e^{eta_1x}+u)$
SLR.2	Stichprobe	$\{(y_i,x_i), i=1,\dots,n\} \text{ zuffällig gemäß SLR.1 generiert}$	aus der Grundgesamtheit der Wahl- berechtigten wurden nur Studieren- de befragt
SLR.3	Information im Regressor	$\operatorname{Var}(x) > 0$	Experiment immer mit den exakt gleichen Parametern durchgeführt
SLR.4	Bedingte Er- wartung	$\mathbb{E}(u\mid x)=0$	es gibt einen systematischen Messfehler
SLR.5	Homoskeda- stizität	$Var(u\mid x) = \sigma^2$	die Körpergröße von Kleinkindern hat eine geringere Varianz als die von Erwachsenen

Schätzwerte bestimmen

"Kleinste Quadrate" Methode:

$$\arg\min_{\beta_0,\beta_1} \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i)^2$$

Schätzwerte bestimmen

"Kleinste Quadrate" Methode:

$$\arg\min\nolimits_{\beta_0,\beta_1} \sum_{i=1}^n (\beta_0 + \beta_1 x_i - y_i)^2$$

Schätzer:

$$\begin{split} \hat{\beta}_0 &= \bar{Y} - \hat{\beta}_1 \bar{X} \\ \hat{\beta}_1 &= \frac{\mathsf{Cov}(Y,X)}{\mathsf{Var}(X)} \end{split}$$

Mehrere Regressoren (Multiple Linear Regression Model)

Wir sind nicht auf nur einen Regressor beschränkt:

$$y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_K x_{i,K} + u_i, \quad i = 1, \dots, n$$

Mehrere Regressoren (Multiple Linear Regression Model)

Wir sind nicht auf nur einen Regressor beschränkt:

$$y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_K x_{i,K} + u_i, \quad i = 1, \ldots, n$$

Wir werden uns anschauen:

- Wie verändern sich die Annahmen?
- Wie werden hier die Parameter geschätzt? Und was bedeutet teris paribus?
- Was ist die Normalgleichung? Und was bedeutet Multikollinearität?
- Wie führt man eine multiple Regression in R durch? Wie interpretiert man den R Output?
- Und ganz wichtig: Was besagt das Gauss-Markov-Theorem?

