分享主题: ERNIE 和 RoBERTa

ERNIE相关的论文

ERNIE: Enhanced Language Representation with Informative Entities 清华大学&华为 诺亚 ACL 2019

结合大规模语料库和**知识图谱**来增强预训练模型的语义表达能力,在原基础上增加**实体对齐**任务

ERNIE: Enhanced Representation through Knowledge Integration 百度

引入了三种mask的方式,分别对Token,**Entity**,**Phrase**进行mask;还引入了对话语料,构建了一个**DLM**的任务。

ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding 百度 AAAI 2020

多任务连续训练和Task Embedding;先训练任务1,保存模型,然后加载保存模型,再同时训练任务1和任务2,依次类推,到最后同时训练7个任务。

ERNIE (清华)

主要创新点

- 引入知识图谱
- 引入实体对齐任务

抽取并编码的知识信息:识别文本中的命名实体,然后将提到的实体与知识图谱中的实体进行匹配

目标: 随机 Mask 掉一些对齐了的输入文本的命名实体,并要求模型从知识图谱中选择合适的实体以完成对齐

模型架构

T-Encoder:

- 底层文本编码器,获取输入标记中的基本词汇和语法信息
- 输入信息: token embedding 、 segment embedding 、 positional embedding

K-Encoder:

- 知识编码器,将知识信息集成到底层的文本信息中,就可以将token和实体的异构信息表示到一个 统一的特征空间中
- 输入: lexical and syntactic features、 entity embedding
- 输出: token output 和 entity output (取top aggregator 的输出最为最终的输出)

Information Fusion:

• 具有对齐实体的token的融合计算: (将实体与其命名实体短语中的第一个token对齐)

$$egin{aligned} oldsymbol{h}_j &= \sigma(ilde{oldsymbol{W}}_t^{(i)} ilde{oldsymbol{w}}_j^{(i)} + ilde{oldsymbol{W}}_e^{(i)} ilde{oldsymbol{e}}_k^{(i)} + ilde{oldsymbol{b}}_i^{(i)}), \ oldsymbol{w}_j^{(i)} &= \sigma(oldsymbol{W}_t^{(i)} oldsymbol{h}_j + oldsymbol{b}_t^{(i)}), \ oldsymbol{e}_k^{(i)} &= \sigma(oldsymbol{W}_e^{(i)} oldsymbol{h}_j + oldsymbol{b}_e^{(i)}). \end{aligned}$$

• 没有对齐实体的token计算:

$$egin{aligned} oldsymbol{h}_j &= \sigma(ilde{oldsymbol{W}}_t^{(i)} ilde{oldsymbol{w}}_j^{(i)} + ilde{oldsymbol{b}}^{(i)}), \ oldsymbol{w}_j^{(i)} &= \sigma(oldsymbol{W}_t^{(i)} oldsymbol{h}_j + oldsymbol{b}_t^{(i)}). \end{aligned}$$

• 参数构成:

N=6, M=6, Hw=768, He=100, Aw=12, Ae=4, Total parameters = 114M

注: Hw是token embeddings的隐藏层维度, He是entity embeddings的维度

K-Encoder预训练任务:

- mask策略:对于给定的token-entity, 5%的时间将原实体随机替换成其它实体,以便于训练模型时更正对齐错误;15%时间 mask token-entity 对齐。基于对齐的token预测所有对应的实体。
- 给定token序列以及{w1,..., wn}以及对应的实体序列{e1,..., em},对齐实体对于token wi 的概率分布计算:

$$p(e_j|w_i) = \frac{\exp(\text{linear}(\boldsymbol{w}_i^o) \cdot \boldsymbol{e}_j)}{\sum_{k=1}^m \exp(\text{linear}(\boldsymbol{w}_i^o) \cdot \boldsymbol{e}_k)},$$

- 考虑到实体数量过大对softmax的影响,只需要系统基于给定实体序列来预测实体,而不是KGs中的所有实体。
- 训练的loss: K-Encoder + MLM + NSP

Fine-tuning:

- ENT: entity mention,引导ERNIE更细致的组合上下文信息和entity mention的信息。
- HD & TL: 在传统的关系分类模型中扮演着类似位置嵌入的角色, 标识头实体和尾实体。

ERNIE 百度

主要创新点:

- 增加基于Entity,和Phrase的mask策略
- 扩展语料库,新增对话语料并构建了DLM任务

多策略的mask方式

模型结构及其参数设置

- 该模型结构与BERT一样是由多个Transformer 编码 层堆叠而成
- 选用了和 BERT-base相同的模型大小: 12 encoder layers, 768 hidden units和12 attention heads

DLM任务:

随机生成一些假的多轮QR对,然后让模型去预测当前的多轮对话是真实的还是假的。

ERNIE 2.0百度

主要创新点:

多任务(7个子任务)连续学习

模型结构

- 利用大量的数据和先验知识构造无监督预训练任务
- 通过连续的多任务学习逐步更新ERNIE模型

多任务训练的有效性如何保证:

- 如何在不忘记以前所学知识的情况下连续不断地训练任务
- 如何以有效的方式预先训练这些任务

是先训练任务1,保存模型,然后加载刚保存的模型,再同时训练任务1和任务2,依次类推,到最后同时训练7个任务

RoBERTa: 站在BERT的肩膀上

基于BERT的一种改进版本。

主要改进策略

用更大批次、更多的数据对模型进行更长时间的训练

去掉NSP 任务

在更长的序列上进行训练

动态改变应用于训练数据的mask模式

数据

- BOOKCORPUS 和英文维基百科:原始 BERT 的训练集,大小 16GB。
- CC-NEWS:包含2016年9月到2019年2月爬取的6300万篇英文新闻,大小 76 GB(经过过滤之后)。
- OPENWEBTEXT:从 Reddit 上共享的 URL (至少3个点赞)中提取的网页内容,大小 38 GB。
- STORIES: CommonCrawl 数据集的一个子集,包含 Winograd 模式的故事风格,大小 31GB。

文本编码

- 原始的BERT: character-level BPE vocabulary of size 30K
- RoBERTa: byte-level BPE vocabulary containing 50K subword unit
- 改进后的编码方式仍然可以编码任何的输入文本,不会引入"un-known"标记

静态mask 与 动态mask

- 原始的BERT:只在数据预处理的时候随机选择15%的token按照80%、10%、10%的策略进行mask,没有与下游任务进行匹配。
- RoBERTa: 将每一个样本复制10次,每一份在都在被输入模型时按照原始策略进行随机mask。相同mask的序列被训练N/10次。
- 这种mask策略对更多步骤或更大数据集进行预处理时至关重要。

Masking	SQuAD 2.0	MNLI-m	SST-2		
reference	76.3	84.3	92.8		
Our reimplementation:					
static	78.3	84.3	92.5		
dynamic	78.7	84.0	92.9		

Table 1: Comparison between static and dynamic masking for BERT_{BASE}. We report F1 for SQuAD and accuracy for MNLI-m and SST-2. Reported results are medians over 5 random initializations (seeds). Reference results are from Yang et al. (2019).

模型输入与NSP任务的讨论

bert模型原始的任务:

预测两个concatenated document segments是否来自同一个document

多种输入结构:

- SEGMENT-PAIR+NSP:与原始的bert模型一致。最长512个token
- SENTENCE-PAIR+NSP:包含一对自然句子,要么从一个文档的连续部分采样,要么从单独的文档采样。
- FULL-SENTENCES:从一个或者多个document中连续采样的完整句子,直到最大长度512。如果采样到达document末尾,从下一个文档中采样,并添加分隔符:去掉NSP loss
- DOC-SENTENCES: 与FULL-SENTENCES类似,但是不跨document,遇到document末尾就结束采样,输入长度可能 < 512

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE				
Our reimplementation (with NSP loss):								
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2				
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0				
Our reimplementation	Our reimplementation (without NSP loss):							
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8				
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6				
BERT _{BASE}	88.5/76.3	84.3	92.8	64.3				
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1				
$XLNet_{BASE} (K = 6)$	-/81.0	85.6	93.4	66.7				

更大批次训练

- 过去在神经机器翻译方面的工作表明,当学习速率适当增加时,用非常大的mini-batches训练可以 提高优化速度和最终任务性能。
- 原始的BERT: 11 M steps, 256 batch size

bsz	steps	lr	ppl	MNLI-m	SST-2
256	1M	1e-4	3.99	84.7	92.7
2K	125K	7e-4	3.68	85.2	92.9
8K	31K	1e-3	3.77	84.6	92.8

• 大批量训练改善了掩蔽语言建模目标的困惑,也提高了最终任务的准确性。通过分布式数据并行训练,大批量也更容易并行化,论文中采用的batch size大小为 8K。

实验结果

GLUE SQUAD RACE

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	Ensembles on test (from leaderboard as of July 25, 2019)									
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

Table 5: Results on GLUE. All results are based on a 24-layer architecture. BERT_{LARGE} and XLNet_{LARGE} results are from Devlin et al. (2019) and Yang et al. (2019), respectively. RoBERTa results on the development set are a median over five runs. RoBERTa results on the test set are ensembles of *single-task* models. For RTE, STS and MRPC we finetune starting from the MNLI model instead of the baseline pretrained model. Averages are obtained from the GLUE leaderboard.

Model	SQu A	AD 1.1	SQuAD 2.0				
Model	EM F1		EM	F1			
Single models on dev, w/o data augmentation							
$\mathrm{BERT}_{\mathrm{LARGE}}$	84.1	90.9	79.0	81.8			
$XLNet_{LARGE}$	89.0	94.5	86.1	88.8			
RoBERTa	88.9	94.6	86.5	89.4			
Single models on test (as of July 25, 2019)							
$XLNet_{LARGE}$			86.3^{\dagger}	89.1^{\dagger}			
RoBERTa			86.8	89.8			
XLNet + SG-	Net Ve	rifier	87.0^{\dagger}	89.9 [†]			

Table 6: Results on SQuAD. † indicates results that depend on additional external training data. RoBERTa uses only the provided SQuAD data in both dev and test settings. BERT_{LARGE} and XLNet_{LARGE} results are from Devlin et al. (2019) and Yang et al. (2019), respectively.

Model	Accuracy	Middle	High
Single models	on test (as o	f July 25, 2	2019)
$BERT_{LARGE}$	72.0	76.6	70.1
$XLNet_{LARGE}$	81.7	85.4	80.2
RoBERTa	83.2	86.5	81.3

Table 7: Results on the RACE test set. $BERT_{LARGE}$ and $XLNet_{LARGE}$ results are from Yang et al. (2019).