Algebraic Dynamic Programming for Multiple Context-Free Languages Masterarbeit

Maik Riechert

Hochschule für Technik, Wirtschaft und Kultur Leipzig Fakultät Informatik, Mathematik und Naturwissenschaften

Gutachter und Betreuer:

Prof. Dr. Johannes Waldmann, HTWK Leipzig Prof. Dr. Peter F. Stadler, Universität Leipzig

12. Juli 2013

Eingabe: Primärstruktur

ACGAUUCAACGU

Eingabe: Primärstruktur

ACGAUUCAACGU

Suchraum: Sekundärstrukturen (ohne Pseudoknoten)

A-U G-C

G-U

Eingabe: Primärstruktur

ACGAUUCAACGU

Suchraum: Sekundärstrukturen (ohne Pseudoknoten)

G-C G-U

A-U

Bewertung: z.B. Anzahl Basenpaare

Eingabe: Primärstruktur

ACGAUUCAACGU

Suchraum: Sekundärstrukturen (ohne Pseudoknoten)

A-U G-C G-U

Bewertung: z.B. Anzahl Basenpaare

Lösung: Sekundärstruktur mit "bester" Bewertung

Suchraum = Ableitungsbäume (Searls, 1997)

Kontextfreie Grammatik (Chomsky, 1959)

$$S \rightarrow BS \mid PS \mid \epsilon$$

 $P \rightarrow aSu \mid uSa \mid gSc \mid cSg \mid gSu \mid uSg$
 $B \rightarrow a \mid u \mid g \mid c$

Suchraum = Ableitungsbäume (Searls, 1997)

Kontextfreie Grammatik (Chomsky, 1959)

$$S \rightarrow BS \mid PS \mid \epsilon$$

 $P \rightarrow aSu \mid uSa \mid gSc \mid cSg \mid gSu \mid uSg$
 $B \rightarrow a \mid u \mid g \mid c$

Ableitungsbaum = kodierte Sekundärstruktur

Suchraum = Ableitungsbäume (Searls, 1997)

Kontextfreie Grammatik (Chomsky, 1959)

$$S \rightarrow BS \mid PS \mid \epsilon$$

 $P \rightarrow aSu \mid uSa \mid gSc \mid cSg \mid gSu \mid uSg$
 $B \rightarrow a \mid u \mid g \mid c$

Ableitungsbaum = kodierte Sekundärstruktur

Algebraische Dynamische Programmierung (ADP)

pprox Baumgrammatik + Algebra + Optimierungsziel (Giegerich, 2000)

$$S \rightarrow f_1(B, S) \mid f_2(P, S) \mid f_3()$$

$$P \rightarrow f_4(\mathbf{a}, S, \mathbf{u}) \mid f_4(\mathbf{u}, S, \mathbf{a}) \mid f_4(\mathbf{g}, S, \mathbf{c}) \mid$$

$$f_4(\mathbf{c}, S, \mathbf{g}) \mid f_4(\mathbf{g}, S, \mathbf{u}) \mid f_4(\mathbf{u}, S, \mathbf{g})$$

$$B \rightarrow f_5(\mathbf{a}) \mid f_5(\mathbf{u}) \mid f_5(\mathbf{g}) \mid f_5(\mathbf{c})$$

$$f_1(b,s) = b+s$$

 $f_2(p,s) = p+s$
 $f_3() = 0$
 $f_4(b_1,s,b_2) = 1+s$
 $f_5(b) = 0$

Algebraische Dynamische Programmierung (ADP)

pprox Baumgrammatik + Algebra + Optimierungsziel (Giegerich, 2000)

$$\begin{array}{lll} S \to f_{1}(B,S) \mid f_{2}(P,S) \mid f_{3}() & f_{1}(b,s) & = b+s \\ P \to f_{4}(\mathbf{a},S,\mathbf{u}) \mid f_{4}(\mathbf{u},S,\mathbf{a}) \mid f_{4}(\mathbf{g},S,\mathbf{c}) \mid & f_{2}(p,s) & = p+s \\ f_{4}(\mathbf{c},S,\mathbf{g}) \mid f_{4}(\mathbf{g},S,\mathbf{u}) \mid f_{4}(\mathbf{u},S,\mathbf{g}) & f_{3}() & = 0 \\ B \to f_{5}(\mathbf{a}) \mid f_{5}(\mathbf{u}) \mid f_{5}(\mathbf{g}) \mid f_{5}(\mathbf{c}) & f_{4}(b_{1},s,b_{2}) & = 1+s \\ f_{5}(b) & = 0 & f_{5}(b) & = 0 &$$

Evaluierung eines Terms = Bewertung

$$f_1(f_5(\mathbf{a}), f_2(f_4(\mathbf{g}, f_2(f_4(\mathbf{c}, f_3(), \mathbf{g}), f_3()), \mathbf{u}), f_3())) = 2$$

Erweiterung des Suchraums

Jetzt: RNA Sekundärstrukturen mit Pseudoknoten

Erweiterung des Suchraums

Jetzt: RNA Sekundärstrukturen mit Pseudoknoten

vereinfacht und verallgemeinert: $L = (^{i}[^{j})^{i}]^{j}$ mit i, j > 0

Erweiterung des Suchraums

Jetzt: RNA Sekundärstrukturen mit Pseudoknoten

vereinfacht und verallgemeinert: $L = (^{i}[^{j})^{i}]^{j}$ mit i, j > 0

Pumping Lemma für kontextfreie Sprachen verletzt

- → Kontextfreie Grammatiken nicht anwendbar
- \rightarrow ADP nicht anwendbar

= Baumgrammatik + Umschreibealgebra über Worttupel

$$S o r_1[M, N]$$
 $M o r_2[M, (,)] \mid ((,))$
 $N o r_2[N, [,]] \mid ([,])$
 $r_1[(m_1, m_2), (n_1, n_2)] = m_1 n_1 m_2 n_2$
 $r_2[(x_1, x_2), l, r] = (x_1 l, rx_2)$

= Baumgrammatik + Umschreibealgebra über Worttupel

$$S \rightarrow r_1[M, N]$$

 $M \rightarrow r_2[M, (,)] \mid ((,))$
 $N \rightarrow r_2[N, [,]] \mid ([,])$
 $r_1[(m_1, m_2), (n_1, n_2)] = m_1 n_1 m_2 n_2$
 $r_2[(x_1, x_2), l, r] = (x_1 l, rx_2)$

Beispielterm generiert durch M

$$\mathsf{r}_2[\mathsf{r}_2[(\boldsymbol{\zeta},\boldsymbol{)}),\boldsymbol{\zeta},\boldsymbol{)}],\boldsymbol{\zeta},\boldsymbol{)}]=(\boldsymbol{\zeta}(\boldsymbol{\zeta},\boldsymbol{\zeta},\boldsymbol{)}))$$

= Baumgrammatik + Umschreibealgebra über Worttupel

$$S \rightarrow r_1[M, N]$$

 $M \rightarrow r_2[M, (,)] \mid ((,))$
 $N \rightarrow r_2[N, [,]] \mid ([,])$
 $r_1[(m_1, m_2), (n_1, n_2)] = m_1 n_1 m_2 n_2$
 $r_2[(x_1, x_2), l, r] = (x_1 l, r_{22})$

Beispielterm generiert durch M

$$r_2[r_2[((,)),(,)],(,)] = ((((,)))$$

Beispielterm generiert durch S

$$r_1[r_2[r_2[((,)),(,)],(,)],r_2[([,]),[,]]] = ((([[)))]]$$

= Baumgrammatik + Umschreibealgebra über Worttupel

$$S \rightarrow r_1[M, N]$$

 $M \rightarrow r_2[M, (,)] \mid ((,))$
 $N \rightarrow r_2[N, [,]] \mid ([,])$
 $r_1[(m_1, m_2), (n_1, n_2)] = m_1 n_1 m_2 n_2$
 $r_2[(x_1, x_2), l, r] = (x_1 l, rx_2)$

Beispielterm generiert durch M

$$r_2[r_2[((,)),(,)],(,)] = ((((,)))$$

Beispielterm generiert durch S

$$r_1[r_2[r_2[((,)),(,)],(,)],r_2[([,]),[,]]] = ((([[)))]]$$

Bewertung?

Status Quo

Kein Framework vorhanden zum Lösen von kombinatorischen Optimierungsproblemen mit Suchräumen, die durch multiple kontextfreie Grammatiken beschrieben werden

Status Quo

Kein Framework vorhanden zum Lösen von kombinatorischen Optimierungsproblemen mit Suchräumen, die durch multiple kontextfreie Grammatiken beschrieben werden

Folgen

- Problemspezifische Implementierungen
- Ad-hoc Anpassungen von ADP-Implementierungen

Status Quo

Kein Framework vorhanden zum Lösen von kombinatorischen Optimierungsproblemen mit Suchräumen, die durch multiple kontextfreie Grammatiken beschrieben werden

Folgen

- Problemspezifische Implementierungen
- Ad-hoc Anpassungen von ADP-Implementierungen

Probleme

- schwer wiederverwendbar
- aufwändig und fehleranfällig

Ziele der Arbeit

1. Neudefinierung von ADP für multiple kontextfreie Sprachen

2. Entwicklung eines Prototyps

Ziele der Arbeit

- 1. Neudefinierung von ADP für multiple kontextfreie Sprachen
 - Leichte Übersetzung von multiplen kontextfreien Grammatiken
 - Anwendbarkeit von dynamischer Programmierung
 - Bestimmung asymptotischer Laufzeit von Probleminstanzen
- 2. Entwicklung eines Prototyps

Ziele der Arbeit

- 1. Neudefinierung von ADP für multiple kontextfreie Sprachen
 - Leichte Übersetzung von multiplen kontextfreien Grammatiken
 - Anwendbarkeit von dynamischer Programmierung
 - Bestimmung asymptotischer Laufzeit von Probleminstanzen
- 2. Entwicklung eines Prototyps
 - Leichte Benutzbarkeit (Maß: Ähnlichkeit zu formaler Notation)
 - Referenz für zukünftige Implementierungen
 - Beschränkung auf Wortpaare

Neudefinierung von ADP

Zwei Ansätze

- 1. Multiple kontextfreie Grammatik mit Bewertungsalgebren
- 2. Baumgrammatik über Kreuzprodukt von Umschreibe- und Bewertungsalgebren

$$S \rightarrow \mathsf{r}_1(B,S) \mid \mathsf{r}_1(P,S)$$

Umschreibealgebra:

$$\mathsf{r}_1(x,y)=xy$$

$$\mathsf{r}_1(x,y)=x+y$$

$$S \rightarrow \mathsf{r}_1(B,S) \mid \mathsf{r}_1(P,S)$$

Umschreibealgebra:

$$\mathsf{r}_1(x,y)=xy$$

$$\mathsf{r}_1(x,y)=x+y$$

$$S \rightarrow \mathsf{r_1}(B,S) \mid \mathsf{r_2}(P,S)$$

$$S \rightarrow \mathsf{r}_1(B,S) \mid \mathsf{r}_1(P,S)$$

Umschreibealgebra:

$$r_1(x, y) = xy$$

Bewertungsalgebra:

$$\mathsf{r}_1(x,y)=x+y$$

$$S \rightarrow \mathsf{r_1}(B,S) \mid \mathsf{r_2}(P,S)$$

Umschreibealgebra:

$$\mathsf{r}_1(x,y)=xy$$

$$r_2(x,y) = xy$$

$$\mathsf{r}_1(x,y) = x + y$$

$$\mathsf{r}_2(x,y)=2x+y$$

$$S \rightarrow \mathsf{r}_1(B,S) \mid \mathsf{r}_1(P,S)$$

Umschreibealgebra:

$$\mathsf{r}_1(x,y)=xy$$

Bewertungsalgebra:

$$\mathsf{r}_1(x,y) = x + y$$

$$S \rightarrow \mathsf{r}_1(B,S) \mid \mathsf{r}_2(P,S)$$

Umschreibealgebra:

$$\mathsf{r}_1(x,y)=xy$$

$$\mathsf{r}_2(x,y)=xy$$

$$\mathsf{r}_1(x,y) = x + y$$

$$\mathsf{r}_2(x,y)=2x+y$$

- ⇒ Redundanz in Umschreibealgebra
- ⇒ Änderung in Bewertung führt zu Änderung in Umschreibung

$$S \to (f_1, r_1)(B, S) \mid (f_1, r_1)(P, S)$$

Umschreibealgebra:

$$\mathsf{r}_1(\mathsf{x},\mathsf{y})=\mathsf{x}\mathsf{y}$$

$$\mathsf{f}_1(x,y)=x+y$$

$$S \to (f_1, r_1)(B, S) \mid (f_1, r_1)(P, S)$$

Umschreibealgebra:

$$\mathsf{r}_1(\mathsf{x},\mathsf{y})=\mathsf{x}\mathsf{y}$$

$$\mathsf{f}_1(x,y) = x + y$$

$$S \rightarrow (f_1, r_1)(B, S) \mid (f_2, r_1)(P, S)$$

$$S \to (f_1, r_1)(B, S) \mid (f_1, r_1)(P, S)$$

Umschreibealgebra:

$$\mathsf{r}_1(x,y)=xy$$

Bewertungsalgebra:

$$f_1(x, y) = x + y$$

$$S \to (f_1, r_1)(B, S) \mid (f_2, r_1)(P, S)$$

Umschreibealgebra:

$$r_1(x,y) = xy$$

$$\mathsf{f}_1(x,y)=x+y$$

$$\mathsf{f}_2(x,y)=2x+y$$

$$S \to (f_1, r_1)(B, S) \mid (f_1, r_1)(P, S)$$

Umschreibealgebra:

$$\mathsf{r}_1(x,y)=xy$$

Bewertungsalgebra:

$$\mathsf{f}_1(x,y) = x + y$$

$$S \rightarrow (f_1, r_1)(B, S) \mid (f_2, r_1)(P, S)$$

Umschreibealgebra:

$$r_1(x, y) = xy$$

$$\mathsf{f}_1(x,y)=x+y$$

$$\mathsf{f}_2(x,y)=2x+y$$

- ⇒ keine Redundanz in Umschreibealgebra
- ⇒ Änderung in Bewertung führt nicht zu Änderung in Umschreibung
- ⇒ etwas längere Produktionen

Beispiel – C2u Sekundärstrukturen

2 Strukturelemente

Typ H Pseudoknoten

Struktur ohne Pseudoknoten

Beispiel – C2u Sekundärstrukturen

2 Strukturelemente

Typ H Pseudoknoten

Struktur ohne Pseudoknoten

C2u Sekundärstrukturen

= Verkettung und gegenseitige Einbettung von beiden Strukturelementen

Beispiel - C2u Sekundärstrukturen

$$\begin{split} S &\to (f_1, r_1)(B, S) \mid (f_2, r_2)(P, S, S) \mid (f_3, r_3)() \\ P &\to (f_4, \mathsf{id}_2)((\textbf{a}, \textbf{u})) \mid (f_4, \mathsf{id}_2)((\textbf{u}, \textbf{a})) \mid ... \\ B &\to (f_5, \mathsf{id}_1)(\textbf{a}) \mid (f_5, \mathsf{id}_1)(\textbf{g}) \mid (f_5, \mathsf{id}_1)(\textbf{c}) \mid (f_5, \mathsf{id}_1)(\textbf{u}) \end{split}$$

Umschreibealgebra:

$$\begin{aligned}
id_1(x) &= x \\
id_2((x_1, x_2)) &= (x_1, x_2) \\
r_1(b, s) &= bs \\
r_2((p_1, p_2), s_1, s_2) &= p_1 s_1 p_2 s_2 \\
r_3() &= \epsilon
\end{aligned}$$

$$f_1(b,s) = s$$

 $f_2(p,s_1,s_2) = p + s_1 + s_2$
 $f_3() = 0$
 $f_4((b_1,b_2)) = 1$
 $f_5(b) = 0$

Beispiel – C2u Sekundärstrukturen

$$S \to (f_1, r_1)(B, S) \mid (f_2, r_2)(P, S, S) \mid (f_3, r_3)() \mid (f_6, r_4)(M, M, S, S, S, S)$$

$$P \to (f_4, id_2)((\mathbf{a}, \mathbf{u})) \mid (f_4, id_2)((\mathbf{u}, \mathbf{a})) \mid ...$$

$$B \to (f_5, id_1)(\mathbf{a}) \mid (f_5, id_1)(\mathbf{g}) \mid (f_5, id_1)(\mathbf{c}) \mid (f_5, id_1)(\mathbf{u})$$

$$M \to (f_7, r_5)(M, P) \mid (f_8, id_2)(P)$$

Umschreibealgebra:

$$id_{1}(x) = x$$

$$id_{2}((x_{1}, x_{2})) = (x_{1}, x_{2})$$

$$r_{1}(b, s) = bs$$

$$r_{2}((p_{1}, p_{2}), s_{1}, s_{2}) = p_{1}s_{1}p_{2}s_{2}$$

$$r_{3}() = \epsilon$$

$$r_{4}((m_{1}, m_{2}), (n_{1}, n_{2}), ...) = m_{1}s_{1}n_{1}s_{2}m_{2}s_{3}n_{1}s_{4}$$

$$r_{5}((m_{1}, m_{2}), (p_{1}, p_{2})) = (m_{1}p_{1}, p_{2}m_{2})$$

Bewertungsalgebra:

$$f_1(b,s) = s$$

$$f_2(p,s_1,s_2) = p + s_1 + s_2$$

$$f_3() = 0$$

$$f_4((b_1,b_2)) = 1$$

$$f_5(b) = 0$$

$$f_6(m_1,...,s_4) = m_1 + ... + s_4$$

$$f_7(m,p) = m + p$$

$$f_8(p) = p$$

= p

Beispiel – C2u Sekundärstrukturen

$$S \to (f_1, r_1)(B, S) \mid (f_2, r_2)(P, S, S) \mid (f_3, r_3)() \mid (f_6, r_4)(M, M, S, S, S, S)$$

$$P \to (f_4, id_2)((\mathbf{a}, \mathbf{u})) \mid (f_4, id_2)((\mathbf{u}, \mathbf{a})) \mid ...$$

$$B \to (f_5, id_1)(\mathbf{a}) \mid (f_5, id_1)(\mathbf{g}) \mid (f_5, id_1)(\mathbf{c}) \mid (f_5, id_1)(\mathbf{u})$$

$$M \to (f_7, r_5)(M, P) \mid (f_8, id_2)(P)$$

Umschreibealgebra:

$$id_{1}(x) = x$$

$$id_{2}((x_{1}, x_{2})) = (x_{1}, x_{2})$$

$$r_{1}(b, s) = bs$$

$$r_{2}((p_{1}, p_{2}), s_{1}, s_{2}) = p_{1}s_{1}p_{2}s_{2}$$

$$r_{3}() = \epsilon$$

$$r_{4}((m_{1}, m_{2}), (n_{1}, n_{2}), ...) = m_{1}s_{1}n_{1}s_{2}m_{2}s_{3}n_{2}s_{4}$$

$$r_{5}((m_{1}, m_{2}), (p_{1}, p_{2})) = (m_{1}p_{1}, p_{2}m_{2})$$

Bewertungsalgebra:

$$f_1(b,s) = s$$

$$f_2(p,s_1,s_2) = p + s_1 + s_2$$

$$f_3() = 0$$

$$f_4((b_1,b_2)) = 1$$

$$f_5(b) = 0$$

$$f_6(m_1,...,s_4) = m_1 + ... + s_4$$

$$f_7(m,p) = m + p$$

$$f_8(p) = p$$

= p

Prototyp adp-multi – Beispiel (C2u Sekundärstrukturen)

Umschreibealgebra:

```
id1 [x] = [x]

id2 [x1,x2] = ([x1],[x2])

r1 [b,s] = [b,s]

r2 [p1,p2,s1,s2] = [p1,s1,p2,s2]

r3 [e] = [e]

r4 [m1,m2,n1,n2,s1,s2,s3,s4] = [m1,s1,n1,s2,m2,s3,n2,s4]

r5 [m1,m2,p1,p2] = ([m1,p1],[p2,m2])
```

Bewertungsalgebra:

```
f1 b s = s

f2 p s1 s2 = p + s1 + s2

f3 _ = 0

f4 _ = 1

f5 _ = 0

f6 m1 m2 s1 s2 s3 s4 = m1 + m2 + s1 + s2 + s3 + s4

f7 m p = m + p

f8 p = p
```

```
s = yieldSize1 (0, Nothing) $
    f1 <<< h ~~~ s
                                          >>> r1 |||
    f2 <<< p ~~~ s ~~~ s
                                        >>> r2 |||
    f3 <<< ""
                                         >>> r3 |||
    f6 <<< m ~~~ m ~~~ s ~~~ s ~~~ s ~~~ s >>> r4
p = f4 <<< ("a","u") >>> id2 |||
    f4 <<< ("u"."a") >>> id2 |||
b = f5 <<< "a" >>> id1 ||| f5 <<< "g" >>> id1 |||
    f5 <<< "c" >>> id1 ||| f5 <<< "u" >>> id1
m = yieldSize2 (1, Nothing) (1, Nothing) $
    f7 <<< m ~~~ p >>> r5 |||
    f8 <<< p >>> id2
```

```
s = yieldSize1 (0, Nothing) $
    f1 <<< b ~~~ s
                                           >>> r1 |||
    f2 <<< p ~~~ s ~~~ s
                                           >>> r2 |||
    f3 <<< ""
                                           >>> r3 |||
    f6 <<< m ~~~ m ~~~ s ~~~ s ~~~ s ~~~ s >>> r4
    ... h
                                                   Optimierungsziel:
p = f4 <<< ("a","u") >>> id2 |||
                                                   h [] = []
    f4 <<< ("u","a") >>> id2 |||
                                                   h 1 = [maximum 1]
b = f5 <<< "a" >>> id1 ||| f5 <<< "g" >>> id1 |||
    f5 <<< "c" >>> id1 ||| f5 <<< "u" >>> id1
m = yieldSize2 (1, Nothing) (1, Nothing) $
    f7 <<< m ~~~ p >>> r5 |||
    f8 <<< p >>> id2
    ... h
```

```
yieldSize1 (0, Nothing) $
    f1 <<< h ~~~ s
                                           >>> r1 |||
    f2 <<< p ~~~ s ~~~ s
                                           >>> r2 |||
    f3 <<< ""
                                           >>> r3 |||
    f6 <<< m ~~~ m ~~~ s ~~~ s ~~~ s ~~~ s >>> r4
    ... h
                                                   Optimierungsziel:
p = f4 <<< ("a","u") >>> id2 |||
                                                   h[] = []
    f4 <<< ("u","a") >>> id2 |||
                                                   h 1 = [maximum 1]
b = f5 <<< "a" >>> id1 ||| f5 <<< "g" >>> id1 |||
    f5 <<< "c" >>> id1 ||| f5 <<< "u" >>> id1
m = tabulated2 $
    vieldSize2 (1, Nothing) (1, Nothing) $
    f7 <<< m ~~~ p >>> r5 |||
    f8 <<< p >>> id2
    ... h
> axiom (mk "agcguu") s
[3]
```

s = tabulated1\$

Zusammenfassung

Ausblick

- Fortgeschrittenere Implementierungen
- Untersuchung größerer Sprachklassen

Dynamische Programmierung

Für kontextfreie Grammatiken: Cocke-Younger-Kasami (1970er)

Beispiel

Eingabewort $w = \mathbf{agcgu}$ Matrix für Nichtterminal P:

P[i,j] = True, wenn Ableitung für w[i..j] existiert, sonst False

Prototyp **adp-multi** – Minimale/maximale Wortlängen

```
f <<< a ~~~ b ~~~ c >>> r
type Dim2 = [(Int , Int)] -> ([(Int , Int)], [(Int , Int)])
r :: Dim2
r [a,b1,b2,c] = ([b1,c],[b2,a])
infos = [ ParserInfo1 0 Nothing
        , ParserInfo2 (0,1) (Just 2, Just 2)
        , ParserInfol 1 (Just 4) ]
v = determineYieldSize2 r infos
r[(1,1),(2,1),(2,2),(3,1)] = ([(2,1),(3,1)],[(2,2),(1,1)])
y = ParserInfo2 (0+0, 1+1)
                ( liftM2 (+) (Just 2) Nothing
                . liftM2 (+) (Just 2) (Just 4) )
y = ParserInfo2 (0,2) (Nothing, Just 6)
```

```
f <<< a ~~~ b ~~~ c >>> r
r [a.b1.b2.c] = ([b1.c].[b2.a])
infos = [ ParserInfo1 1 Nothing
       , ParserInfo2 (0,1) (Just 2, Just 2)
       , ParserInfol 1 (Just 4) |
subword = [0,2,10,15]
y = constructSubwords2 r infos subword
                 b1 c
                                        h2 a
ranges = [(0,2,[(2,1),(3,1)]),(10,15,[(2,2),(1,1)])]
-- Start mit c
subwordsC = [ (0,2)
                                    (1,2)
-- für jedes Teilwort von c: neue Ranges ohne (3,1)
     [(0,0,[(2,1)]), \sim] [(0,1,[(2,1)]), \sim]
-- weiter mit b, a
```


Pfad im Baum

Aufteilung des Teilwortpaares auf Parser der Produktion

```
v = \lceil
      SubwordTree [0,2] [
        SubwordTree [0,0,10,11] [
          SubwordTree [11,15] []
        ],
        SubwordTree [0,0,10,12] [
          SubwordTree [12,15] []
      SubwordTree [1,2] [
        SubwordTree [0,1,10,11] [
          SubwordTree [11,15] []
        ],
        SubwordTree [0,1,10,12] [
          SubwordTree [12,15] []
```

Haskell-ADP

$$i k_1 k_2 j$$

$$f \iff p1 \implies p2 \implies p3$$
for k2 = i to j
for k1 = i to k2

~~~ erzeugt Teilwortgrenze (Laufindex) anliegender Parser

### adp-multi

```
i k_1 k_2 j r [q1,q21,q22] = [q21 , q1 , q22] for k1 = i to j for k2 = k1 to j
```

>>> erzeugt Teilwortgrenzen aller Parser 
~~~ nimmt Teilwortindizes an