KERNEL METHOD

Main idea: smap Weighted Features for Similarity function

. So far me know to separate data points in a linear way

- . In pratice, data is not always linearly separable, that is where Kernel method comes in:
- Kernel method trans-lorms the data points into higher dimension, where it re easier to separate than the original space. Then use linear function to separate the transformed data points.

Kernel Method.

(automatically)

(basis function)

i) Find non-linear function ii) Use linear function to separate the data

How Kernel method fits in the Supervised Learning Framework?

Recall Supervised Learning Framework:

- i) Given dataset $D = dx_i, y_i \int_{i=1}^{\infty}$
- ii) Find $f(x_i)$ such that $f(x_i) \approx y_i$
- iii) To find that function $f(x_i)$, minimize empirical risk: $\hat{t} = \operatorname{argmin} L(t, D)$

where $f \in F$, class of functions f(f, D) = empirical risk (loss function)

s f can be _ linear: $f_{\theta}(x) = \sum_{l=1}^{d} \theta_{l} x_{l}$ $x = \begin{bmatrix} x_{l} \\ x_{d} \end{bmatrix}$ $x = \begin{bmatrix} x_{l} \\ x_{d} \end{bmatrix}$

where ϕ_{i} is a basis function. Since different problems require different basis function, we need method to automate the process

of finding the right basis function

Kernel method: Definition -

A method is kernel if it is symmetric. Criven 2 input α and α' : K(x, x') = K(x', x)

Example: Ctaussian Radical Basis Function (RBF) $K(x, x') = \exp\left(-\frac{1}{2h^2} \|x - x'\|^2\right)$

is kernel because: $K(sc', x) = \exp\left(-\frac{1}{sk^2} \|sc' - sc\|^2\right)$

Kernel method = Similarity function

· Similarity function measure how similar 2 data points are. Visually, consider data points in 2 dimensional space:

Similarity tunction takes 2 data points and output value EIR: $K(x, x') : X \times X \rightarrow \mathbb{R}$

200 borten lamed took 21 noww

Kernel Method in Linear Regression

Recall in linear regression, we try to find the best function of that represent the relationship between data points:

best neight vector []dvector $d \times 1$ f(x) = x + 0 fVICTOR

In practice, the data is not always linear, for example:

 $f(x) = \theta_1 k(x, x,) + \theta_2 k(x, x_2)$ $+ \dots \theta_N k(x, x_N)$

is the pertect use case for kernel method.

· Linear regression with kern	nel method: Find best no	on-linear function of
to represent the relationship between data points i) $(\hat{\Theta}) = \operatorname{argmin} \ y - K \ \hat{\Theta} \ _{2}^{2}$ rector of dual coefficient best weether $(M \times 1)$		
With the Wellington	$k(x_1, x_1) \qquad k(x_1, x_2) \qquad $	
$\frac{\text{Explicitly:}}{\theta} = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{N} \left(Y_i - \sum_{j=1}^{N} \theta_j k(x_i, x_j) \right) $ $= K\theta$ $\sum_{i=1}^{N} \left(Y_i - \sum_{j=1}^{N} \theta_j k(x_i, x_j) \right) $ $= K\theta$		
Closed Method Solution (only if K is invertible): $\hat{\Theta} = K^{-1}y$		
non-linear $k(x, x_n) = \begin{bmatrix} k(x, x_n) \\ \vdots \\ k(x, x_n) \end{bmatrix}^T \hat{\theta}$		
~	(x_n) $(\hat{\theta}_n)$ $(\hat{\theta}_n)$	
o Avoid overfitting, use <u>regularization</u> , so the formula becomes: $\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \varphi = \underset{\theta}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \varphi = \underset{\theta}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \varphi = \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2} + \underset{\varphi}{\operatorname{argmin}} \ y - K \theta \ _{2}^{2$		
Regularization ((idea: pay a price for non-zero) $L_2 \text{ norm}: \ \theta \ _2^2 = \theta^T$ $K \text{ norm}: \ \theta \ _K^2 = \theta^T$	ero elements in θ) => penalize for having large coefficients $K \Theta$
K norm is better	r than L ₂ norm	> Shrinkage parameter
$\frac{E \times plicitly}{\Theta} = argmin$	y - KO 2 + a OTKO	can have
Closed form solution (if K	is invertible):	=> the smaller a,
Ô = (K +	QI)-18	the larger the range => overthe

o Kernel Method in Classification (Logistic Regression)

- Recall in Classification problem, we try to find function of such that it minimize the number of misclassifications the loss function:
 - i) Calculate predicted \hat{y} : $\hat{y}_i = \frac{1}{4 + \exp(-\theta^T x_i)}$
 - ii) Minimize loss function $L(\theta)$:

weight

weight $= \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \ell(y_i, \hat{y}_i)$ weighted features $= \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \log(1 + \exp(-y_i, \hat{y}_i)) \quad \text{if } y \in \{\pm 1\}$ $= \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} - \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right] \quad \text{if } y \in \{0, 1\}$

o dogistic Regression with kernel method: consider the case $y = \frac{1}{2} \pm 1 \int_{-1}^{1} \left[\frac{1}{3} \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right) \right] = \frac{1}{3} \pm 1 \int_{-1}^{1} \left[\frac{1}{3} \left(\frac{1}{3} - \frac{1}{3} \right) \left(\frac{1}{3} - \frac{1}{3} \right) \right] = \frac{1}{3} \pm 1 \int_{-1}^{1} \left[\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right] = \frac{1}{3} \pm 1 \int_{-1}^{1} \left[\frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right] = \frac{1}{3} \pm 1 \int_{-1}^{1} \left[\frac{1}{3} - \frac{$

the loss function becomes:

dual coefficient $= \underset{\theta}{\text{arg min}} \sum_{i=1}^{N} \ell(y_i, K\theta)$ $= \underset{\theta}{\text{arg min}} \sum_{i=1}^{N} \ell(y_i, \sum_{j=1}^{N} \theta_j k(x_i, x_j)) + \underset{\theta}{\text{similarity}}$ $= \underset{\theta}{\text{arg min}} \sum_{i=1}^{N} \log(1 + \exp(-y_i, \sum_{j=1}^{N} \theta_j k(x_i, x_j)))$

Add regularization term to avoid overfitting:

 $\hat{\theta} = \operatorname{argnain} \sum_{i=1}^{H} \log \left(1 + \exp\left(-g_i \sum_{j=1}^{H} \theta_j k(x_i, x_j)\right) \right)$ $+ \lambda \theta^T k \theta$