Статистические модели на основе гамма-распределения в анализе медико-психологических данных

Чебакова Майя Владимировна, гр.21.Б04-мм Научный руководитель: кандидат физико-математических наук, доцент Алексеева Нина Петровна Рецензент: научный сотрудник ПСПбГМУ им. акад. И.П. Павлова, Белякова Людмила Анатольевна

Кафедра статистического моделирования Математико-механический факультет Санкт-Петербургский государственный университет

Введение: цель и задачи

Рассматривается большой набор медико-психологических данных, включающий значения индекса массы тела (ИМТ), результаты психологических опросников и дополнительную информацию о респондентах.

Цель работы: применить статистические модели на основе гамма-распределения для анализа влияния факторов на параметры распределения ИМТ.

Задачи:

- Проверить согласие с гамма-распределением
- Проверить однородность параметров гамма-распределения между группами в зависимости от значений факторов.
- Расширить подход с помощью применения специальной регрессионной модели с несимметричными остатками.

Общая информация о данных

Данные: 27,770 наблюдений по 38 переменным (данные получены сотрудниками ПСП6ГМУ им. акад. И.П. Павлова). **Переменные:**

- 3 опросника на РПП, алекситимию, перфекционизм, депрессию, тревожность, манию.
- ИМТ (индекс массы тела, вес/рост $^2(\kappa \Gamma/M^2)$), возраст, рост, вес, пол, дата тестирования.
- Город, регион, округ.

Фрагмент данных (4 из 38 переменных):

имт	Возраст	DEBQ (опросник)	EDE (опросник)
25.86	55	11.00	3.07
42.21	28	7.86	2.57
34.06	50	8.75	1.68
30.12	45	6.10	1.96
41.00	50	12.10	4.07

Проверка согласия с гамма-распределением

- Рассматриваются значения ИМТ у женщин.
- Для проверки согласия распределения ИМТ с гамма, взято **20 случайных выборок объемом** n=200.

Для каждой выборки из 20:

- Параметры гамма-распределения λ, β оценены методом максимального правдоподобия.
- Проверена гипотеза H_0 : ИМТ согласуется с гамма-распределением.
- Критерий проверки: хи-квадрат Пирсона, уровень значимости $\alpha = 0.05$.

 H_0 отвергается в 12 из 20 выборок.

Согласие с гамма-распределением в подгруппах

Стратификация ИМТ:

- Пищевое поведение: 5 категорий в зависимости от значения по Голландскому опроснику пищевого поведения (DEBQ).
- Возраст: 4 категории (18-25, 26-40, 41-59, 60-65 лет).

Для каждой категории взято **20 выборок объемом** n=200 и проверяется аналогичная гипотеза H_0 , $\alpha=0.05$.

Число выборок, где H_0 отвергнута:

DEBQ	< 7	7–8	8–9	9–10	> 10
$\overline{H_0}$ отвергнута	14	16	13	18	14
Возраст	18–25	26-	-40	41–59	60–65
$\overline{H_0}$ отвергнута	15	1	6	13	16

Линейная регрессия и анализ остатков

• Модель:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2),$$

где y_i — ИМТ, x_i — возраст, ε_i — остаток.

- По тесту Шапиро-Уилка p-value < 0.05 во всех выборках ($\alpha = 0.05$).
- Сдвинутые остатки каждой модели:

$$\varepsilon_i^{\mathsf{shift}} = \varepsilon_i + |\min_j \varepsilon_j| + 10^{-4}, \quad i, j \in \{1, \dots, 200\}.$$

В 17 из 20 выборок $\varepsilon^{\rm shift}$ согласуются с гамма-распределением (критерий Пирсона, $\alpha=0.05$).

Деление на группы по риску РПП

 $arepsilon^{
m shift}$ делятся на 2 группы:

- LOW DEBQ \leq 7, n=446, p-value = 0.07 (критерий Пирсона, $\alpha=0.05$).
- **HIGH** DEBQ > 7, n = 3554, p-value = 0.2.

• p-value = 0.08 (критерий Стьюдента), p-value = 0.06 (Колмогорова-Смирнова), α = 0.05.

Проверка однородности параметров

- ullet Параметр масштаба eta.
 - Для $X \sim \Gamma(\lambda, \beta)$ верно $\mathrm{cov}(X, \ln X) = \beta$. Гипотеза H_0 проверяется по выборочным ковариациям с использованием критерия Стьюдента.
- ullet Параметр формы λ .

Выборки нормируются: $X^* = \frac{X}{\widehat{\beta}} \sim \Gamma(\lambda,1).$

Сравниваются выборочные средние используя тот же критерий.

Результаты проверки гипотез для групп HIGH и LOW ($\alpha=0.05$):

- $\beta_{LOW} = 7.65$, $\beta_{HIGH} = 4.62$, p-value = 0.12.
- $\lambda_{LOW} = 1.72$, $\lambda_{HIGH} = 2.71$, p-value $< 2.2 \cdot 10^{-16}$.

Степенное гамма-распределение

Степенное гамма-распределение

Распределение случайной величины $\xi^{1/\kappa}$, где $\xi \sim \Gamma(\lambda,\beta)$, с плотностью

$$\gamma(x|\kappa,\lambda,\beta) = \frac{\kappa}{\beta^{\lambda}\Gamma(\lambda)} x^{\kappa\lambda-1} e^{-x^{\kappa}/\beta} \quad (x,\lambda,\beta,\kappa > 0).$$

Синонимичные распределения

Синонимичные распределения

Распределение P_i синонимично распределению P_i с заданным уровнем синонимии δ^* , если $I(i:j) < \delta^*$, где:

$$I(i:j)=H_{ij}-H_{ii}, \quad$$
 —средняя информация, $H_{ij}=-\int_Y f_i(x)\log f_j(x)\,dx, \quad$ —дифференциальная энтропия.

Предложение 1 (Н. П. Алексеева, 2012 [1])

Если известны параметры степенного гамма-распределения $(\kappa_1, \beta_1, \lambda_1)$, то, фиксируя значения κ_2 , параметры β_2, λ_2 синонимичного степенного гамма-распределения находятся из системы:

$$\lambda_2=(heta\,(\psi(\lambda_1+ heta)-\psi(\lambda_1)))^{-1},\quad lpha_2=\lambda_2lpha_1^ hetarac{\Gamma(\lambda_1)}{\Gamma(\lambda_1+ heta)},$$
 где $heta=rac{\kappa_2}{\kappa_2},\quad \psi$ —дигамма-функция, $lpha=1/eta.$

Информация I будет минимальна при данном κ , $\delta^* = I$.

Номинативное распределение

Номинативное распределение

При фиксированном уровне синонимии, **номинативным** называется синонимичное распределение с минимальной собственной энтропией H_{ij} .

Рис. 1: График зависимости собственной энтропии от κ для синонимичных распределений группы LOW

11 / 21

Номинативные распределения групп LOW и HIGH

Проверка гипотез об однородности параметров номинативных распределений ($\alpha=0.05$):

- β : p-value = 0.05 (p-value = 0.12 для групп HIGH и LOW).
- λ : p-value $< 2.2 \cdot 10^{-16}$, сохраняются значимые различия.

Информационное расстояние

Симметризованное информационное расстояние между распределениями

$$J(i,j) = I(i:j) + I(j:i) = H_{ij} + H_{ji} - H_{ii} - H_{jj}.$$

Для сравнения:

- J(LOW, LOW номинативное) = 0.0043.
- J(HIGH, HIGH номинативное) = 0.0032.
- J(LOW, HIGH) = 0.1265.

13/21

Расстояние между распределением и его номинативным

Рис. 2: Информационное расстояние J между распределением и его номинативным в зависимости от объема выборки. Параметры распределения - параметры группы LOW ($\lambda=1.72,\,\beta=7.65$).

Чувствительность тестов к различиям в параметре eta

- Для 100 генераций с параметрами как в группах LOW и HIGH для каждого n.
- Мощность ≥ 0.84 достигается при:
 - $n \ge 1250$ для критерия Стьюдента;
 - $n \ge 750$ для Колмогорова–Смирнова;
 - n > 3500 для Манна-Уитни.

Чувствительность тестов к различиям в параметре λ

- Мощность \geq достигается уже при малых n:
 - $n \ge 35$ для Стьюдента и Манна-Уитни;
 - $n \ge 45$ для Колмогорова—Смирнова.

Регрессия с гамма-распределённой ошибкой

Модель:

$$y_i = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon_i, \quad \varepsilon_i \sim \Gamma(\lambda, \beta)$$

- *y_i*− ИМТ.
- x_i TAS (алекситимия), EDE и DEBQ (опросники по РПП).
- 20 выборок объемом n = 200.
- Для каждой переменной x_i в проверялась однородность параметров гамма-распределения остатков между полной моделью с 4 предикторами и укороченной моделью (без этой переменной, с 3 предикторами).

Влияние переменных на параметры распределения остатков

Таблица 1: Количество выборок (из 20 по 200 человек), в которых исключение переменной привело к значимому различию в параметрах гамма-распределения остатков ($\alpha=0.05$, критерий Стьюдента).

Переменная	λ (форма)	eta (масштаб)	
TAS (алекситимия)	1	0	
EDE (РПП)	9	0	
DEBQ (ΡΠΠ)	1	0	
Возраст	18	0	

Заключение: интерпретация результатов

- Различие между группами LOW (норма) и HIGH (риск РПП):
 - параметр формы λ : большая неоднородность в группе HIGH => большее количество факторов, влияющих на ИМТ (психологических, поведенческих, генетических).
- Модель с гамма-распределенными остатками:
 - Возраст влияет на форму распределения остатков (параметр формы λ), что отражает возрастную динамику в физиологии и пищевом поведении.

Заключение: результаты работы

- Предложен подход к сравнению групп с помощью проверки однородности параметров гамма-распределения.
- Использованы синонимичные распределения для расширения подхода.
- Проведён анализ мощности статистических критериев.
- Установлена устойчивость приближения: расстояние J между распределением и номинативной моделью стабильно мало при любом объёме выборки.
- Построена регрессионная модель с гамма-распределённой ошибкой; проанализирован вклад переменных в структуру остатков.

Список литературы

Алексеева Н.П. Анализ медико-биологических систем.

Реципрокность, эргодичность, синонимия. —

Российская Федерация : Издательство

Санкт-Петербургского университета, 2012. —

ISBN: 978-5-288-05347-4.