DTIC

ERF9: 9/1/ ASL-DR-80-0004

AD

Reports Control Symbol **OSD-1366**

LIDAR OBSERVATIONS AT 0.7 mm AND 10.6 mm WAVELENGTHS DURING DUSTY INFRARED TEST I (DIRT-I)

ADDITIONAL RESULTS.

3337

AD A 10

12) Teline det 1/1,

12/16/21/10-11.

Approved for public release; distribution unlimited

US Army Electronics Research and Development Command ATMOSPHERIC SCIENCES LABORATORY

White Sands Missile Range, NM 88002

410663

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER 2. GOVT ACCESSION NO.				
ASL-DR-80-0004 #DF A 103 377				
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED			
LIDAR OBSERVATIONS AT 0.7μm AND 10.6μm WAVELENGTHS DURING DUSTY INFRARED TEST I	R&D Technical Data Report			
(DIRT-I) Additional Results	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)			
J. S. Randhawa				
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Atmospheric Sciences Laboratory				
White Sands Missile Range, NM 88002	DA Task 1L162111AH71			
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE			
US Army Electronics Research and	July 1980			
Development Command Adelphi, MD 20783	13. NUMBER OF PAGES 83			
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)			
	UNCLASSIFIED			
	154. DECLASSIFICATION/DOWNGRADING			
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>			
Approved for public release; distribution unlimited.				
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)			
\cdot				
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				
Lidar Transmission				
Obscuration Dust clouds				
Smoke clouds	•			
20. ABSTRACT (Continue on reverse eids if necessary and identify by block number)				
Two wavelength lidar measurements were made during the Dusty Infrared Test-I (DIRT-I) program conducted at White Sands Missile Range (WSMR) in October 1978. This report contains the additional results obtained during the test but not published in an earlier report.				

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)	
	•
•	
•	

CONTENTS

1.	INTRODUCTION	5
2.	EXPERIMENT	5
3.	DATA	5
4.	CONCLUSIONS	6

no lonation

1. INTRODUCTION

The Dusty Infrared Test I (DIRT-I) was held at White Sands Missile Range (WSMR) in October 1978 to evaluate various techniques to measure physical and optical properties of battlefield dust. Since lidar technique represents one of the most promising techniques, two lidar systems: 10.0 m wavelength (ASL-lidar) and 0.7 m Ruby lidar system (Mark IX), were operated over a common 2-km optical path during this test. Primary lidar backscatter data for both wavelengths were recorded on magnetic tape by using Mark IX lidar data system while independent 10.6 m lidar transmission data were recorded on strip chart in the ASL lidar van. Photographs were also taken every 30 to 60 seconds during each event of range-resolved 10.6 m backscatter amplitude data (A-Scope presentation). In an earlier report a few results were described along with the experimental setup, calibration and operating procedures, and analysis technique. This report contains the rest of the results obtained during the test.

2. EXPERIMENT

The two lidar systems were positioned as shown in figure 1. Static TNT charges, artillery rounds, live artillery barrages, and an oil and rubber fire generated dust and smoke cloud in a test zone midway (1 km) between the lidar systems and a beam-stop lidar target. Specifications for the 10.6 μ m lidar are given in table 1. Table 2 is an inventory and summary of the data collected during the DIRT-I program. In addition to the above data, television video records (video tape) of the lidar optical path were made during each event.

3. DATA

Data gathered by the two lidar systems are presented in figures 2 through 74. Data from October 2 through October 12 show only $10.6\mu m$ lidar backscatter and transmission, with the exception of event C-2 which shows the difference between the Ruby and CO_2 optical depths. Data taken on October 13 and 14 are presented under three categories for each event: (a) $10.6\mu m$ backscatter, (b) percent transmission as observed by the two-wavelengths system, and (c) optical depth difference (Ruby and CO_2).

¹E. E. Uthe and R. J. Allen, 1975, "A Digital Read Time lidar Data Recording, Processing, and Display System," Optical and Quantum Electronics, 7:121

 $^{^2}$ Jan E. Van der 1aan, 1979, Lidar Observations at 0.7 μm and 10.6 μm Wavelengths during Dusty Infrared Test-I (DIRI-I), ASL-CR-79-0001-2, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM

³James D. Lindberg, 1979, Measured Effects of Battlefield Dust and Smoke on Visible, Infrared and Millimeter Wavelength Propagation: A Preliminary Report on Dusty Infrared Test-I (DIRT-I), ASL Technical Report 0021, White Sands Missile Range, NM

4. CONCLUSIONS

Results of the DIRT-I program as presented in the earlier report-indicate that the broad particle size distribution present in the dust generated at White Sands produces little if any wavelength-dependent transmission effects. The few observed exceptions, where greater 10.6 mm transmission is indicated, generally can be explained by the presence of wavelength-dependent smoke (which was also generated by the detonations) along the optical path.

TABLE 1. ASL LIDAR SPECIFICATIONS

System Component	Specification	Comments	
Transmitter			
Manufacturer Type Wavelength Beam diameter Beam divergence Operation Energy Pulsewidth PRF (maximum)	Lumonics Research Ltd., Model TEA-101-2 CO ₂ 10.6µm 3.1 cm 1.2 mrad pulsed 250 mJ 75 ns (FWHM) 1 pps	No nitrogen gas mix	
<u>Receiver</u>			
Telescope	12-inch (30 cm), Newtonian		
Field of view Detector Postamplifier	1.23 mrad Honeywell Associates; HgCdTe photodiode; D*= 1.3 x 10 ¹⁰ cmHz ¹ 2W ⁻¹ ; 100 MHz BW Linear: 26 dB gain, 100 MHz BW	LN ₂ -cooled	
	Log: tangential sensitivity -111 dBr; ±0.5 dB linearity over 80-dB range; 15-ns rise time		

TABLE 2. LIDAR DATA INVENTORY

<u></u>		Data*					
Date	Event	1	2	3	4	5	Comments
Oct. 2	A-1 A-2 A-3 A-4	X X X	***	>>>>	* * * *	V V V	X = not available; Mark IX not on site / = data available
Oct. 3	B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8	+ + + + + +	>>>>>>>>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	******	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	t ≈ 0.7 µm data only; two-wavelength inter~ face not complete
Oct. 5	C-1	√	1	✓	✓	1	
Oct. 6	D-1 D-2 D-3 D-4	>>>	>>>>	> > > > > > > > > >	* * * * *	X X X X	X = not available; ASL lidar digitizer malfunction
Oct. 10	C-2	✓	✓	1	1	J	
Oct. 11	E-1 E-2 E-3 E-4	***	>>>	>	√ ✓ ✓	* * * * *	
Oct. 12	F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8	√ √ √ X	✓ ✓ ✓ × ✓ ✓ ✓ ✓	√ √ √ × √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	x x x -x -/	X = not available ASL lidar digitizer malfunction -X (F-4) = live 155 mm rounds missed test zone
Oct. 14	E-5 E-6 E-7 E-8 E-9 E-10	>>>>>	>>>>>	*****	√ √ √ √ √	>>>>>	
Oct. 14	G-1	✓	✓	x	1	V	

- * 1. Digitized 0.7 and 10.6 um range-resolved backscatter data; 9-track magnetic tape.

 - 9-track magnetic tape.

 2. 10.6 µm target return amplitude data; strip chart recordings.

 3. 10.6 µm digitized target return data; IBM card/tape format.

 4. 10.6 µm energy output; strip chart recordings.

 5. 10.6 µm range-resolved backscatter; (A-scope) photographs; polaroid sequence.

Figure 1. Experimental configuration for two-wavelength lidar observations - DIRT-1.

Figure 2. Event A-1 $10.n_{\rm dm}$ backscatter data.

Figure 3. Event A-1 10.6µm transmission.

Figure 4. Event A-2 10.5.m backscatter data.

Figure 5. Event A-2 $10.6\mu m$ transmission.

Figure 5. Event A-3 10.6 m backscatter data.

Figure 7. Event A-3 10.6um transmission.

Experience Sign From the Asia to Game Park Contract Contract

Figure 9. Event B-1 10.6, m. backscatter data.

Figure 10. Event B-1 10.6 μ m transmission.

Figure 11. Event Become of a locatter data.

Figure 12. Event B-2 10.6µm transmission.

Figure 13. Event B-3 10.6 pm backscatter data.

Figure 14. Event B-3 10.6 µm transmission.

Figure 15. Event B-4 $10.6\,\mu m$ backscatter data.

Figure 16. Event B-4 10.6 µm transmission.

Figure 1. Front and a second attendata.

Figure 18. Event B-5 10.6µm transmission.

Figure 19. Event B-6 10.6µm transmission.

Care Control of the second of the control of

Figure 21. Event B-7 10.6µm transmission.

PALL CONTRACTOR STATE OF THE ST

Figure 24. Event C-1 10.6µm transmission.

Figure 26. Event D-1 10.6µm transmission.

Figure 27. Event D-2 10.6µm transmission.

Figure 28. Event D-3 10.6µm transmission.

Figure 29. Event D-4 10.6µm transmission.

thought of controls. It is, by the key of paragraph.

Figure 31. Difference between Ruby and ${\rm CO}_2$ optical depths (C-2).

Figure 3. Ster data.

Figure 33. Event E-1 10.6µm transmission.

•

Figure 34. Event E-2 40.6 m backscatter data.

Figure 35. Event E-2 10.6µm transmission.

Figure 36. Event E-3 10.6 % necketairer data.

Figure 37. Event E-3 10.6µm transmission.

Figure 3. Them: F-4 Tology Calley after data.

Figure 39. Event E-4 10.6µm transmission.

Figure 40. Event F-1 10.6µm transmission.

Figure 42. Event F-3 10.6µm transmission.

Figure 44. Transmission observed by the two-wavelength lidar system (F-5).

Figure 45. Difference between Ruby and CO $_2$ optical depths (*-5).

Figure 76. Syent for the second setter data.

Figure 47. Transmission observed by the two-wavelength lidar system (F-6).

Figure 48. Difference between Ruby and ${\rm CO}_2$ optical depths (F-6).

the residence of the engineering of the following residence

Figure 50. Transmission observed by the two-wavelength lidar system (F-7).

Figure 51. Difference between Ruby and ${\rm CO}_2$ optical depths (F-^).

Figure 53. Transmission observed by the two-wavelength lidar system (F-8).

Figure 54. Difference between Ruby and ${\rm CO}_2$ optical depths (F-8).

discussion of the theory of the contraction of the

Figure 56. Transmission observed by the two-wavelength lidar system (E-5).

Figure 57. Difference between Ruby and ${\rm CO}_2$ optical depths (E-5)

For the contribution 10.0 m three are

Figure 59. Transmission observed by the two-wavelength lidar system (L-6).

Figure 60. Difference between Ruby and ${\rm CO}_2$ optical depths (E-6).

original continuous the second of the second

Figure 62. Transmission observed by the two-wavelength lidar system (E-7).

Figure 63. Difference between Ruby and ${\rm CO}_2$ optical depths (E-7).

the second bearings 10.6pm backs, at a date.

Figure 65. Transmission observed by the two-wavelength lidar system (E- \upbeta).

Figure 66. Difference between Ruby and ${\rm CO}_2$ optical depths (E-8).

1

Figure 67. Event a 9 (1), for a low after data.

Figure 68. Transmission observed by the two-wavelength lidar system (E-9).

Figure 69. Difference between Ruby and ${\rm CO}_2$ optical depths (E-9).

 ϵ . The second of ϵ , ϵ

Figure 71. Transmission observed by the two-wavelength lidar system (E-10).

Figure 72. Difference between Ruby and ${\rm CO}_2$ optical depths (E-10).

Figure 73. Event G-1 10.6µm backscatter data and two-wavelength transmission.

Figure 74. Difference between Ruby and ${\rm CO}_2$ optical depths $({\rm G-L})$.

REFERENCES

- 1. Uthe, E. E., and R. J. Allen, 1975, "A Digital Read Time lidar Data Recording, Processing, and Display System," Optical and Quantum Electronics, 7:121.
- 2. Van der laan, Jan E., 1979, Lidar Observations at $0.7\mu m$ and $10.6\mu m$ Wavelengths during Dusty Infrared Test-I (DIRI-I), ASL-CR-79-0001-2, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM.
- 3. Lindberg, James D., 1979, Measured Effects of Battlefield Dust and Smoke on Visible, Infrared and Millimeter Wavelength Propagation: A Preliminary Report on Dusty Infrared Test-I (DIRT-I), ASL Technical Report 0021, US Army Atmospheric Sciences Laboratory, White Sands Missile Range, NM.

