(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年6 月23 日 (23,06,2005)

PCT

(10) 国際公開番号

(51) 国際特許分類7:

WO 2005/057698 A1

H01M 8/02, 8/10, 4/88

(21) 国際出願番号:

PCT/JP2004/017825

(22) 国際出願日:

2004年11月24日(24.11.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-413680

2003年12月11日(11.12.2003)

KAISHA) [JP/JP]; 〒4718571 愛知県豊田市トヨタ町 1番地 Aichi (JP).

- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 大橋 聡三郎 (OHASHI, Sozaburo) [JP/JP]; 〒4718571 愛知県豊田 市トヨタ町1番地 トヨタ自動車株式会社内 Aichi (JP).
- (74) 代理人: 平木 祐輔 , 外(HIRAKI, Yusuke et al.); 〒 1050001 東京都港区虎ノ門 4 丁目3番20号 神谷町MT ビル19階 Tokyo (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が

direct combustion reaction of hydrogen at the air electrode-side catalyst layer is suppressed, thereby improving durability of the fuel

ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,

IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約: 燃料電池の膜電極接合体 1 において、水素極側触媒層 1 1 a の気孔率が空気極側触媒層 1 1 b の気孔率よりも小さくなるようにする。具体的には、水素極側触媒層を構成するイオン交換樹脂のカーボン担体に対する重量比率を空気極側触媒層のその重量比率よりも大とする、あるいは、水素極側触媒層に所定粒径以下の添加材を含ませる、あるいは、水素極側触媒層は触媒インクのスプレー塗布により形成し、空気極側触媒層は転写法で形成する。本発明によれば、水素極側触媒層から電解質膜を介して空気極側触媒層へ透過する水素量を低減し、空気極側触媒層での水素の直接燃焼反応を抑制して電池の耐久性を向上させることができる。