Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática

 $\frac{\text{Complemento de Cálculo}}{(521234)}$ Primer Certamen

21 - Octubre - 1996

Problema 1: Dada la función f(x) = x, $\forall x \in]-\pi, \pi[$ con $f(-\pi) = f(\pi) = 0$.

- 1.- Construir la serie de Fourier de dicha función.
- 2.- A partir de la serie de Fourier obtenida, probar que $\sum_{1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (tener presente la igualdad de Parseval).
- 3.- Construir a partir de la serie obtenida en 1.-, la serie de Fourier de la función $g(x) = \frac{x^2}{2}$, $\forall x \in]-\pi,\pi[$. Señale los fundamentos de la convergencia de la nueva serie obtenida y grafique la función hacia la cual converge la serie en el intervalo $]-2\pi,2\pi[$.

30 puntos

Problema 2: Considere la siguiente ecuación de ondas con condiciones de borde y condiciones iniciales :

$$\begin{cases} t^2 \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left(x(1-x) \frac{\partial u}{\partial x} \right) = 0, & 0 \le x \le 1, \quad t > 1, \\ u(x,t) \text{ acotada para todo } (x,t) \in [0,1] \times [1,t_0], t_0 > 1 \text{ fijo } \\ u(x,1) = 0, & \partial_t u(x,1) = x^2, & 0 \le x \le 1. \end{cases}$$

- 1.- Utilizando el método de separación de variables, escriba u(x,t) = F(x)G(t) e identifique una E.D.O para F = F(x) y otra para G = G(t).
- 2.- Haciendo el cambio de variable $e^w = t$, verifique que la ecuación en t se reduce a la ecuación lineal de segundo orden con coeficientes constantes $G''(w) G'(w) + \lambda G(w) = 0$ y G(0) = 0. Resuelva esta ecuación, para todos los posibles valores reales de λ .
- 3.- Identifique la ecuación de Sturm-Liouville en x, y haciendo el cambio de variable z=2x-1, determine F(x) en términos de los polinomios de Legendre $P_n(z)$. Deduza una expresión de u(x,t) en términos de una serie ortogonal.
 - 4.- Utilice las condiciones iniciales para calcular todos los coeficientes de la serie, y determine u(x,t).

Indicación: Los polinomios de Legendre $P_0(x)=1$, $P_1(x)=x$, $P_2(x)=\frac{1}{2}(3x^2-1)$, ..., son las soluciones del problema de Sturm-Liouville $(1-x^2)y''-2xy'+n(n+1)=0$, |y(x)| acotado en [-1,1], para $n=0,1,2\ldots$

50 puntos

Problema 3: Los polinomios de Tchebyshev $T_n(x)$ de segunda especie son las soluciones del problema de Sturm-Liouville $(1-x^2)y''-xy'+n^2=0$, y(-1)=y(1)=0, para n=1,2,3... Haciendo el cambio de variable $\cos(w)=x$, pruebe que $T_n(x)=\sin(nw)=\sin(n\arccos x)$, y deduzca la relación de ortogonalidad :

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} T_m(x) T_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{\pi}{2}, & m = n. \end{cases}$$

20 puntos

Duración del certamen : 2 horas HAW/GBG/CR/MSC