원래 있는 문제는 빨간색 박스, 추가 문제는 검정색 박스, 난이도와 중요도는 별표 참조

참조페이지	11 (★★☆☆☆)	정답
		$Z = \sqrt{R^2 + (\frac{1}{\omega c})^2}$
		$=\sqrt{80^2+60^2}=100$
		$I = \frac{V}{Z} = \frac{100}{100} = 1[A]$
갖는 콘덴서를	60[Hz]의 교류에 대하여 60[Q]의 용량 리액터스를 직렬로 접속한 RC 직렬 회로에서 60[Hz], 100[V]의	$\theta = \tan^{-1} \frac{\frac{1}{\omega c}}{R}$
전류가 전압보	때, 회로의 임피던스 Z[Ω]와 전류의 크기 I[A] 및 다 앞선각 θ를 구하고 또, 이 회로의 전압과 전류의 를 식으로 표현하여라.	$v(t) = Vm \sin 2\pi f t$
		$= \sqrt{2} \times 100 \times \sin(2 \times 3.14 \times 60)t$
이 문제 글써]	$= 100\sqrt{2}\sin 377t$
		$\theta = \tan^{-1} \frac{-60}{80} = -36.87$
		$i(t) = \{Im \sin 2\pi f t - (-36.87)\}$
		$= \sqrt{2} \times I \times \sin(2 \times 3.14 \times 60t + 36.87)$
		$=\sqrt{2}\sin\left(\omega t+36.87^{\circ}\right)$

참조페이지 13 (★★☆☆) 정답 직렬 공진 회로의 공진 주파수는 $\frac{1}{2\pi\sqrt{LC}}$ 이다. 다음 회로의 공진 주파수를 구하시오. 10k 10uF 10mH fo = $\frac{1}{2\pi\sqrt{LC}}$ = $\frac{1}{2\times 3.14\sqrt{10\times 10^{-6}\times 10\times 10^{-3}}}$ ∴ ≒ 16[Khz]

참조페이지	13~14 (★★☆☆)	정답
다음 회로를 보고	고 물음에 답하시오(단위는 요임) 6 10 18 I 20V	1) 합성 임피던스 합성저항 $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $Z = \sqrt{6^2 + (18 - 10)^2} = 10[\Omega]$ 2) 전류 I 전류 $I = \frac{V}{Z} = \frac{20}{10} = 2[A]$ 3) 역률 역률 = $\frac{R}{Z} = \frac{6}{10} = 0.6$

내부저항 $10[k\ \Omega]$ 인 전압계의 최대지시 눈금이 100[V]였다면 이 전압계의 측정범위를 최대 500[V]로 하기위한 배율기의 저항은 얼마로 하면 되는가?

참조페이지	16 (★☆☆☆☆)
-------	------------

그림과 같은 회로에서 전류계 및 전압계의 지시값이 각각 2[A] 및 10[V]였다면 R값은 얼마인가?(단, 전류계의 내부저항은 0.5 Ω 이다.)

$$R = \frac{V}{I} - r_a = \frac{10}{2} - 0.5 = 4.5 [\Omega]$$

정답

참조페이지	17 (★☆☆☆)	정답
	를 그림과 같이 접속하고 부하전력을 측정 들 계기의 지시가 각각 100[V], 3[A]일 때	
부하전력은?(단,	전압계 내부저항은 500[Ω]이다.)	
직류	A 전원 v 부하	$P = VI - \frac{V^2}{r_V} = (100 \times 3) - \frac{100^2}{500} = 280[W]$
0		

다음 회로에서 R_2 에 흐르는 전류가 0이되기 위한 $\frac{R1}{R3}$ 의 값은? (단, R2에 흐 I1 = I2

18~19 (★★★★☆)

참조페이지

E1=20[V], E2=10[V])

$$E1 = R1*I1 + R2(I1-I2) - ①$$

 $E2 = R3*I2 + R2(I2-I1) - ②$

정답

R2에 흐르는 전류는 0이므로 I1 = I2 가 되므로 ①과 ②식은 다음 과 같이 된다.

E1 = R1*I1 - ③
E2 = R3*I2 - ④
③에서
$$I1 = \frac{E1}{R1}$$
④에서 $I2 = \frac{E2}{R3}$
I1 = I2 이므로
$$\frac{E1}{R1} = \frac{E2}{R3}$$

$$\therefore \frac{R1}{R3} = \frac{E1}{E2} = \frac{20}{10} = 2$$

참조페이지	19 (★★★☆☆)	정답
다음의 설명은 여	어떤 정리를 설명하고 있는 것인가?	
선형소자로 구성되어있는 폐회로에서 회로망 내에 두 개 이상의 전원 전압, 전류원이 동시에 동작이 되는 경우 회로 내의 임의의 점에서 흐르는 전류 또는 전압은 각각의 전류 혹은 전압원을 개별적으로 작 용시켰을 때의 대수합과 같다.		
① 중첩의 정리		
② 테브난의 정리	리	
③ 노튼의 정리		
④ 밀만의 정리		

20 (★★★★☆)

정답

중첩의 정리

$$R_1=2\varOmega\,, R_2=6\varOmega\,, R_3=\frac{1}{2}\varOmega\,, \ V_1=2\,V\,, \ V_2=2\,V$$
일 때 I_2 를 구하시오.

21~22 (★★★★☆)

정답

테브낭의 정리

위 회로의 등가회로를 그릭호 Zab와 Vab를 구하 시오.

$$Zab = R2 + \frac{R1R3}{R1 + R3} = 1 + \frac{18}{9}$$

$$= 1 + 2$$

$$= 3$$

$$Vab = \frac{R3}{R1 + R3} E$$

$$= \frac{6}{9} \times 12$$

$$= 8(V)$$

25 (★★★☆☆)

정답

휘트스톤 브릿지

위의 회로가 평형이 되었을 때 R1 값을 구하시 Q.

 $jwL1 \times R1 = jwL2 \times R2$

R1L1 = L2R2

 $\therefore R1 = \frac{L2R2}{L1}$

참조페이지

26 (★★★☆☆)

휘트스톤 브릿지

그림에서 R1=500[Ω], R2=1000[Ω], Rs=10[Ω], Cs=2.2[μ F]일 때 평형을 이루었다. 이때의 Cx=P [μ F]이고, Rx=Q[Ω]이다. P · Q의 값은 얼마인가?

R1, R2, Rs의 값을 조절하여 평형을 취하면

$$R1(Q + \frac{1}{jwP}) = R2(Rs + \frac{1}{jwc_s})$$

양변의 상수부와 허수부를 같게 놓으면

$$R1Q + \frac{R1}{jwP} = R2Rs + \frac{R2}{jwc_S}$$

$$Q = \frac{R_2}{R_1} \cdot R_s, P = \frac{R1}{R2} \cdot C_s$$

$$\therefore \text{ P.Q = } \frac{R_2}{R_1} \cdot R_s \cdot \frac{R_1}{R_2} \cdot C_s$$

$$= R_s \cdot C_s$$

 $= 10 \times 2.2 \times 10^{-6}$

답: P·Q=22× 10⁻⁶

참조페이지

27 (★★☆☆☆)

정답

전기저항

굵기가 일정한 어떤 도체가 있다. 체적은 변하지 않고 지름을 $\frac{1}{2}$ 로 되게 잡아 늘렸다면 저항은 몇배가 되는가?

체적의 변화가 없으면 길이는 4배, 단면적은 $\frac{1}{4}$ 배가 된다.

$$\therefore R' = \rho \frac{4l}{\frac{1}{4}A} = \rho \frac{16l}{A} = 16R[\Omega]$$

참조페이지

28 (★★☆☆☆)

정답

전기저항

길이 10 cm인 도선의 저항이 $10[\Omega]$ 이다. 이 도선을 20 cm로 늘렸을 때 저항값은 얼마가 되는가?

 $R = \rho \frac{l}{A} [\Omega]$ 에서 l이 2배로 되었으므로

 $R'=\rho\frac{2l}{A}[\varOmega\,]=2R=20[\varOmega\,]$

참조페이지	28 (★☆☆☆)	정답
소비전력		
1kw의 전력을	소비하는 전열기를 10시간 동안	$W = Pt = 1000[W] \times 10[h] = 10[kwh]$
연속하여 사용했	을 때 전력량 W는 몇[Kwh]인가?	

참조페이지	29 (★☆☆☆)	정답
전압의 각도 표서 도수법으로 60 면?	시(호도법) 도인 각도는 호도법으로 환산하	$360^{\circ}: 60 = 2\pi : x$ $x = \frac{60 \times 2\pi}{360} = \frac{\pi}{3} [rad]$

참조페이지	29 (★☆☆☆)	정답
전압의 각속도 3 회전파가 1초에 가?	표시 60회전을 하면 각속도는 얼마인	60회전의 각도 $\theta = 2\pi \times 60 = 120\pi [rad]$ 각속도 $= \frac{\theta}{t} = \frac{120\pi}{1} = 120\pi [rad/s]$

참조페이지	29,30 (★★★☆☆)	정답
다음 중에서 전염	발의 표시 방법이 아닌 것은?	
① 순시값		
② 최솟값		
③ 평균값		
④ 실효값		

참조페이지	29,30 (★★★☆☆)	정답
다음 중에서 전 ⁹ 로 연결하시오.	압의 표시 방법과 표시 형식을 서	
① 순시값	$\bigcirc Va = \frac{2}{\pi} Vm$	
② 최댓값	$\bigcirc Ve = \frac{Vm}{\sqrt{2}}$	
③ 평균값 ④ 실효값		

31 (★★☆☆☆)

 $R=4[\Omega]$, $\omega L=3[\Omega]$ 을 직렬로 접속한 회로에 $V=100\sqrt{2}\sin wt+30\sqrt{2}\sin 3wt$ [V]의 전압을 가했을 때 흐르는 전류의 실효값을 구하여라.

정답

기본파에 대한 임피던스를 Z1, 제 3고조파에 대한 임피 던스를 Z3라고 하면

$$Z_1 = \sqrt{R^2 + (\omega L^2)} = \sqrt{4^2 + 3^2} = 5[\Omega]$$

$$Z_3 = \sqrt{R^2 + (3\omega L^2)} = \sqrt{4^2 + (3\times 3)^2} = \sqrt{97} [\Omega]$$

이고, 기본파에 대한 전류의 실효값을 I1, 제 3고조파에 대한 전류의 실효값을 I3, 합성전류의 실효값을 I라고 하면

$$I_1 = \frac{V}{Z_1} - \frac{100}{5} = 20[A]$$

$$I_3 = \frac{V_3}{Z_3} = \frac{30}{\sqrt{97}} [A]$$

$$I = \sqrt{I_1^2 + I_3^2} = \sqrt{20^2 + \frac{30^2}{97}} = \sqrt{409.3} = 20.23[A]$$

참조페이지

32 (★★★☆☆)

다음은 정전압 안정화 회로를 구성하는데 필요한 다양한 전자부품을 이용한 방법들을 기술한 내용 이다. 정전압을 안정적으로 출력하는 방법이 올바 르게 기술된 것을 모두 고르시오.

- ① 입력 전압의 변동이 있어도 출력 전압을 일정하게 출력시켜 줄 수 있는 스위치 타입의 레귤레이터를 사용한다.
- ② 78, 79 시리즈의 리니어 타입의 레귤레이터를 사용하고, 78 시리즈는 +전압에 사용하며, 79 시리즈는 -전압에 사용하다.
- ③ 기준 전압과 변동하는 출력 전압의 차이를 검출하여 그 차이 값을 피드백하여 출력 전류를 조정함에 따라 출력 전압을 일정하게 안정시킬 수있는 오차 증폭기 회로를 사용한다.
- ④ 다이오드의 특성 중 하나인 역방향에서의 항복 전압을 이용하여 전압의 변동을 일정하게 제어할 수 있도록 제너 다이오드를 사용한다.

정답

34 (★★☆☆☆)

정답

다음 회로에서 출력 전압과 트랜지스터의 Vce 값 을 구하시오

$$V_O = V_Z - V_{be}$$

조건)
$$V_i = 20 V$$
, $R = 1 K\Omega$, $R_L = 10 K\Omega$

$$V_{be} = 0.7 \, V, \ V_Z = 10 \, V$$

$$\textcircled{1} \ V_O = \ V_Z - \ V_{be} = 10 - 0.7 = 9.3 [\ V\]$$

②
$$TR$$
의 $V_{CE} = V_i - V_O = 20 - 9.3 = 10.7[V]$

(Vce : 트랜지스터의 Collector와 Emitter 양단의 전 압)

참조페이지 35 (★★☆☆☆)

 R_4 와 R_L 에 걸리는 전류와 전압을 구하시오.

조건)

 $V_Z = 6 V$, $V_{be} = 0.6 V$,

 $R_3 = 5K\Omega$,

 $R_4=5K\Omega$

(트랜지스터의 Base에 흐르는 전류는 무시한다.)

정답

1. R_4 에 흐르는 전류

 R_4 양단에 걸리는 전압 = $V_Z + 0.6 = 6.6 V$

$$\therefore I = \frac{R_4 % 단전압}{R_4} = \frac{6.6}{5K\Omega} = 1.32[mA]$$

 $2. R_L$ 에 걸리는 전압

$$I(R_3 + R_4) = 1.32[mA] \times (5K\Omega + 5K\Omega)$$

= 13.2 [V]

- 13 -

참조페이지 다음 회로를 보

36 (★★☆☆☆)

정답

다음 회로를 보고 Vo를 구하시오.

콜렉터 전압 $V_C = (1 + \frac{2K}{1K}) \times 2V = 6V$

$$V_O = 3 V - 0.6 = 2.4 V$$

$$I = \frac{2.4 \, V}{20K} = 0.12 mA$$

참조페이지

37 (★★☆☆☆)

정답

다음 회로를 보고 Vo를 구하시오.

(조건)A점의 전압은 OP-AMP의 회로 해석상 입력 단자를 동전위보고 해석하므로 Vz가 된다.

 $I = \frac{V}{R_2} = \frac{V_Z}{R_2}$

 $\therefore V_O = I(R_1 + R_2) = \frac{V_Z}{R_2} (R_1 + R_2)$

 $= \frac{(R_1 + R_2)}{R_2} \, V_Z$

참조페이지 38 (★★★★☆)	정답
다음 중에서 이상적인 OP-AMP의 특징이 아닌	
것은?	
① 입력 임피던스 무한대	
② 전압 증폭도 무한대	
③ 출력 임피던스 무한대	
④ 대역폭 무한대	

38 (★★★★☆)

정답

다음 반전 증폭기의 출력 전압 Vo를 구하시오.

참조페이지

39 (★★★★☆)

정답

다음 비반전 증폭기의 출력 전압 Vo를 구하시오.

$$V_O = \left(1 + \frac{R_2}{R_1}\right) V_I$$

$$\begin{array}{c|c} \mbox{Vo} & Vo = (1+\frac{R_2}{R_1})\,V_I \\ \\ \mbox{$:$ $\frac{Vo}{V_I} = 1+\frac{R_2}{R_1}$} \end{array}$$

참조페이지

41 (★★★★☆)

정답

다음 회로의 출력 전압을 계산하시오.

1. 증폭도 : OP-AMP의 입력 전압은 ping에 걸리는 전압 이므로 인가되는 Vi가 저항 R_3 , R_4 에 분배되어 나타나는 V_1 전압이 된다.

$$V_O = (1 + \frac{R_2}{R_1}) \, V_1$$

여기서
$$V_1=rac{R_4}{R_3+R_4}\;V_i$$

$$\therefore V_O = (1 + \frac{R_2}{R_1})(\frac{R_4}{R_3 + R_4}) V_i$$

 A_{vf} (Amplitude Voltage feedback) 전압 궤환 증폭도

중포도
$$A_{vf} = \frac{V_O}{V_i} = (1 + \frac{R_2}{R_1})(\frac{R_4}{R_3 + R_4})$$

42 (★★★★☆)

정답

 $R_1 = R_2$ 의 값을 선정하면 입력의 극성을 바꾸는 회로가 된다.

다음 회로의 출력 전압을 구하고 회로의 용도를 쓰시오.

$$\begin{split} V_i \big(-\frac{R_2}{R_1} \, \big) &= \, V_O \, \text{에 서} \\ \frac{R_2}{R_1} &= 1 \, \text{이 므로} \end{split}$$

$$\therefore V_O = -V_i$$

참조페이지

43 (★★★★☆)

정답

다음 회로에서 부하 R_L 에 흐르는 전류의 값은?

 $V_O = Vi \left(1 + \frac{R_2}{R_1}\right) = -2 \left(1 + \frac{20}{5}\right)$ = -10[V] $\therefore 전류 = \frac{V_O}{R_L} = \frac{-10 V}{10 K} = -1[mA]$

참조페이지

43 (★★★★☆)

정답

아래의 OP-AMP 회로에서 부하저항 R_L 에 흐르는 전류 I_L 값을 계산 하시오.

$$I_L = V_Z/R_2$$

$$= 6 V/300\Omega$$

$$= 20mA$$

참조페이지 44 (★★★★☆)	정답
아래의 OP-AMP 회로에서 부하저항 R_L 에 흐르는 전류 I_L 값을 계산 하시오.	
+12V R1 R2 	$I_L = V_Z/R_2$ $= 6 V/300\Omega$ $= 20mA$

46 (★★★☆☆)

다음 회로의 출력 전압을 구하고 회로명을 쓰시 오.

조건)

$$R_1=10K\Omega, R_f=10K\Omega$$

$$R_2=\,10K\Omega,\ V_1=\,2\,V,\ V_2=\,3\,V$$

정답

두 입력이 들어오므로 두 회로를 각각 계산하여 더 하면 된다.

$$V_O = -\frac{R_f}{R_1} V_1 - \frac{R_f}{R_2} V_2$$

$$V_O = -2 - 3 = -5[V]$$

회로명 : 가산기

참조페이지 46 (·

46 (★★★☆☆)

중첩의 원리에 의해

1)
$$V_2 = 0$$

OP-Amp는 반전 증폭기로 동작하므로

$$V_{01} = -(\frac{R_f}{R_1})V_1 = -10[V]$$

정답

2) $V_1 = 0$

OP-AMP는 비반전 증폭기로 동작하므로

$$\begin{split} V_{02} &= (1 + \frac{R_f}{R_1})(\frac{R_3}{R_2 + R_3}) \, V_2 \\ &= (1+1) \times (\frac{15}{5+15}) \times 20 \\ &= 30 \end{split}$$

$$\therefore \, V_0 \, = \, V_{01} \, + \, V_{02} \, = \, 30 \, - \, 10 \, = \, 20 [\, V \,]$$

다음 회로에서 출력전압(Vo)을 구하시오.

조건)

(V1 = 10V, V2 = 20V, R1 = Rf = 10K Ω , R2 = 5K Ω , R3 = 15K Ω)

47 (★★★☆☆)

정답

다음 회로에서 출력전압(Vo)을 구하시오.

$$V_O = -\frac{6K}{3K} \times (-1V) - \frac{6K}{2K} \times (-2V) - \frac{6K}{1K} \times (-3V)$$

$$= 2 V + 6 V + 18 V$$

$$\therefore = 26 [V]$$

참조페이지 4

49 (★★★☆☆)

정답

다음 그림에서 2진입력 D3 ,D2 ,D1 ,D0의 입력을 다음과 같이 설정했을 때 출력전압 VOUT을 구하시오.

 $\text{Vout} = -\frac{Rf}{R0} \text{Vi} - \frac{Rf}{R1} \text{Vi} - \frac{Rf}{R2} \text{Vi} - \frac{Rf}{R3} \text{Vi}$ 에서 주어진 조건을 대입하면

Vout

$$= -\frac{10}{80} \times 0 - \frac{10}{40} \times 8 - \frac{10}{20} \times 0 - \frac{10}{10} \times 8$$
$$= -10[V]$$

(D3, D1 : ON D2, D0 : OFF)

참조페이지 50 (★★★☆☆)

정답

다음 회로를 보고 출력전압을 구하시오.

출력전압 Vo

$$= -\frac{10K}{10K} \left(-\frac{30K}{10K} \times 4V\right) - \frac{10K}{20K} \left(-\frac{20K}{10K} \times 10V\right)$$
$$= 12V + 10V$$
$$\therefore = 22[V]$$

참조페이지 51 (★★★☆☆)

정답

다음 회로의 증폭도를 구하시오.

(OP-AMP의 전원= ±20V)

$$V_O = Vi\left(-\frac{10}{10}\right)\left(-\frac{10}{10}\right) = Vi$$

$$Avf = \frac{V_O}{Vi} = \frac{10}{10} = 1$$

참조페이지

정답

다음 회로의 Vo를 구하시오.

(OP-AMP의 전원= ±8V)

$$V_O = Vi\left(-\frac{10}{10}\right)\left(-\frac{10}{10}\right) = Vi = 10[V]$$

그러나, 전원이 8V이므로 출력 전압은 8V로 Clipper됨.

참조페이지

정답

다음 회로의 증폭도를 구하시오.

$$V_O = (1 + \frac{R_2}{R_1}) V_i = (1 + \frac{5}{2}) \times 2$$

= 3.5 × 2 = 7[V]

52 (★★☆☆☆)

다음 회로를 보고 A점의 전압, B점의 전압, C 점의 전압을 구하고, 점선안의 회로 명칭은 무엇인지 답하시오.

정답

가. (A)점의 전압:

④점의 전압 =
$$-\frac{2K}{1K} \times (-4V) - \frac{2K}{1K} \times 2V$$

= $8 + (-4) = 4[V]$

나. B점의 전압:

용점의 전압
$$=(-\frac{10K}{10K})\times 4V$$

 $=-4[V]$

다. ②점의 전압:

©점의 전압 =
$$(1 + \frac{10K}{10K}) \times (-\frac{10K}{2K}) \times (-4V)$$

= $2 \times (-5) \times (-4V)$
 $\therefore = 40[V]$

라. 점선안의 회로 명칭

완충 증폭기(BUFFER), 전압 Follower

참조페이지

52 (★★☆☆☆)

아래 회로에서 Vo는?

$$V1 = -\frac{15}{5k} \times 10 V = -30 V$$

$$V2 = -\frac{10k}{5k} \times (-5V) = +10V$$

Point A에서의 전류 방정식 (KCL)

$$\frac{V1 - Vo}{10} + \frac{V2 - Vo}{25} = \frac{Vo}{15}$$

$$\left(\frac{1}{10} + \frac{1}{15} + \frac{1}{25}\right)V0 = \frac{V1}{10} + \frac{V2}{25}$$

$$V0 = -2.6 V / (\frac{1}{10} + \frac{1}{15} + \frac{1}{25})$$

$$\therefore V0 = -1.3[V]$$

참조페이지 55~56 (★★★★☆)	정답
다음 그림의 회로는?	
R2	
Vi R1 Vo	
3 +	
/77	
① 반전증폭기	
② 비반전증폭기	
③ 차동증폭기	
④ 전압팔로워	
반전 증폭기의 전압이득은 어떤가?	
① 1보다 작다	
② 1과 같다	①
③ 1보다 크다	
④ 위의 모든 항이 해당 된다.	
반전 증폭기의 출력 신호는 그 입력신호와 어느	
정도의 위상차를 갖는가? ① 0도	
② 90도	3
③ 180도	
④ 270도	
비반전 증폭기의 전압이득은 어떤가?	
① 1보다 작다.	
② 1과 같다.	3
③ 1보다 크다.	
④ 위의 모든 항이 해당된다.	
비반전 증폭기의 출력 신호는 그 입력신호와 어느	
정도의 위상차를 갖는가?	
① 0도 ② 90도	①
③ 180도	
④ 270도	

참조페이지 61 (★★★★☆) 정답 $Rf = 200k\Omega$ C = 0.02 uF출력 파형의 전압을 구하시오 (단, 삼각파의 t1=t2이며 주파수는 100Hz이다.) Rf 200k f=100Hz t=0.01sec ∴t1=t2=0.005sec Vi O-0.02uF Vo(t1) = -RfC(2Vm/t1) $=\frac{-\left(200k\Omega\right)(0.02uF)(2)(1\,V)}{\left(0.005\sec\right)}=1.6[\,V]$ Vo(t2)=RfC(2Vm/t2)=1.6V

FET의 동작 상태에 따라 출력에서 나오는 전압을

62~64 (★★☆☆☆)

(R1=R2임), <단, 저항은 모두 같다.>

1. 2SK68 동작

참조페이지

계산하시오

Vs가 OV 일 때, Vs가 -V 일 때 2 경우를 계산 하면 됨

정답

반전 회로가 되므로

$$Vo = -Vi \frac{R2}{R1} = -Vi$$

Vs=-V이면

65~67 (★★☆☆☆)

정답

Vs=0이면

반전 회로가 되므로

$$Vo = -Vi \frac{R2}{R1} = -Vi$$

FET의 동작 상태에 따라 출력에서 나오는 전압을 계산하시오

(R1=R2임), <단, 저항은 모두 같다.>

1. 2SK68 동작

Vs가 0V 일 때, Vs가 -V 일 때 2 경우를 계산 하면 됨

Vs=-V이면

중첩의 원리에 의해

$$Vo = -Vi\frac{R2}{R1} + \frac{Vi}{2}(1 + \frac{R2}{R1})$$
$$= -Vi + Vi = 0$$

68 (★★★★☆)

다음 능동필터 회로를 설명한 것 중 잘못된 것 **이득** 은?

- ① 저역통과필터는 저주파는 통과하고 차단 주파수 이상의 주파수는 차단한다.
- ② 고역통과필터는 고주파는 통과하고 차단주파수 미만의 주파수는 차단하다.
- ③ 대역통과필터는 설정된 대역 주파수는 통과하고, 차단주파수 미만과 이상의 주파수는 차단한다.
- ④ 대역차단필터는 설정된 대역 주파수를 차단하고, 차단주파수 미만과 이상의 주파수는 차단한다.

참조페이지 69 (★★★★☆)

C=0.015uF, R=10KΩ 일 때 차단 주파수를 구하 시오.

정답

저주파 신호는 통과하고 차단 주파수 이상의 주파수는 차 단한다.

$$f_H = \frac{1}{2\pi RC}$$
 (고역 차단 주파수)

참조페이지 71 (★★★★☆)

C=0.015uF, R=10KΩ 일 때 차단 주파수를 구하 시오.

 $f_L = \frac{1}{2\pi RC}$ (저역 차단 주파수)

저역 차단 주파수 이하는 차단시키고 이상은 통 과시킨다.

정답

참조페이지	72 (★★★☆)	정답
$R_1 = 10K$		
$R_2 = 10K$		
$C_1 = 0.015uF$		
$C_2 = 0.015uF$		
일 때 고역차단	주파수 값을 구하라.	$R_1 = R_2 = R$
	R3 R _F	$C_1=C_2=C$ 를 만족할 때
///		$f_H = \frac{1}{2\pi RC}$
Vi 0	R2 3 5 6 Vo	$f_H = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} \ \left(C_1 = C_2, R_1 = R_2$ 의 값이 다를 때)
+	: C1 + C2	

참조페이지	75 (★★★☆)	정답
#5	·	① $V_i > 2.4V$ LM358 pin1 출력이 +9V가 되어 LED1 동작 ② $V_i < 0.8V$ LM358 pin7 출력이 +9V가 되어 LED2 동작 ③ $2.4V > V_i > 0.8V$ LM358 pin1, 7번의 출력이 0가되어 LED1, 2가 동작되지 않는다.
A점의 전위 =	$\frac{3}{8.2 + 2 + 1} \times 9 = 2.4 [V]$	
B점의 전위 =	$\frac{1}{8.2 + 2 + 1} \times 9 = 0.8 [V]$	

참조페이지	76 (★★★☆)	정답
다음 회로의 동작	작 상태를 해석한 것으로 올바르지	
않은 것은?		
+15V 50K +10V ← 9K	+15V +15V 100K 100K	
① A점의 전압은	$\frac{1}{9+1} = 1[V]$	
② 가변저항 501	K을 조절하여 OP-AMP의 pin3번	
의 전압이 +1V <u>·</u>	보다도 크면 pin6번은 +15V가 된	
다.		
	압은 제너다이오드에서 일정전압	
	ransistor의 Base에 인가되어 TR	
을 ON시키면 LF		
④ 가변저항 50	OK을 조절하여 OP-AMP pin3번	

전압이 +1V 보다 크더라도 pin6번이 0V가 출력

되어 LED는 동작하지 않는다.

참조페이지	78 (★★★☆)	정답
다음 회로를 설명	병한 것 중 올바른 것은?	
Vi O	² / ₃ • Vo	
5V	11 × 13	
	}10K	
	12	
	A	
	\$10K	
	/ 77	
	OP-AMP의 입력 단자는 동전위로	
해석하여 $\therefore I_1$ =	$=\frac{5}{10K}=0.5[mA]$ 이다	
② Vo의 값		
·	$-10K) = 0.5mA \times 20K\Omega = 10[V]$	
③ I2의 값 OP-	AMP의 입력 임피던스는 0이므로	
$I_2 = 무한대$		
④ 증폭도 <i>Avf</i>	$=\frac{V_O}{V}=\frac{10}{5}=2$	

81 (★★☆☆☆)

출력파형을 그리시오(단, Diode가 도통되었을 때 전압강하는 없는 것으로 한다)

 $V_i > 0$ D:ON

 $V_O = Vi$

 $V_i < 0$ D: OFF $V_O = 0$

참조페이지

82 (★★☆☆☆)

정답

다음 회로에서 출력 파형을 그리시오. (단, Diode가 도통되었을 때 전압강하는 없는 것으로 한다)

85 (★★☆☆☆)

정답

다음 회로에서 출력 파형을 그리시오. (단, Diode가 도통되었을 때 전압강하는 없는 것으로 한다)

참조페이지

86 (★★☆☆☆)

정답

다음 회로에서 출력 파형을 그리시오. (단, Diode가 도통되었을 때 전압강하는 없는 것으로 한다)

 $V_i > E$ D:ON $V_O = V_i - E$ $V_i < E$ D:OFF $V_O = 0$

출력파형 Vo 7V 0V

Vo

입력파형

Vi

3V

참조페이지 87 (★★☆☆☆) 정답 입력파형 다음 회로에서 출력 파형을 그리시오. (단, 10 v Diode가 도통되었을 때 전압강하는 없는 것으로 한다) v_i +5V D -10v ۷i R Vo 출력파형 Vo

89 (★★☆☆☆)

슬라이스 회로

그림과 같은 회로의 입력측에 정현파를 가할 때 출력 파형을 그리시오.

Vi>VR2>VR1)

입력신호	출력신호	다이오드 상태
Vi <vr1< td=""><td>Vo=VR1</td><td>D1: ON , D2: OFF</td></vr1<>	Vo=VR1	D1: ON , D2: OFF
VR1 <vi<vr2< td=""><td>Vo=Vi</td><td>D1: OFF , D2: OFF</td></vi<vr2<>	Vo=Vi	D1: OFF , D2: OFF
Vi>VR2	Vo=VR2	D1: OFF , D2: ON

91 (★★☆☆☆)

정답

1) 회로명칭 : 클램프 회로 (파형의 모양은 그대로 유지 하면서 기준점만 이동시키는 것 : +3V가 기준점이 됨)

2) 출력파형

다음 회로의 명칭을 쓰고 출력파형을 그리시오.

참조페이지 92 (★★★★☆)

다음 회로는 NAND게이트를 이용한 비안전 멀티바이브레이터 회로이다. 발진 주기와 발진 주파수를 계산하시오.

정답

1) 발진주기 : T = 1.4 CR[sec]

(단, C1=C3=C, R3=R4=R)

2) 발진 주파수

$$f = \frac{1}{T} = \frac{1}{1.4 \, CR} = \frac{0.72}{CR} \frac{1}{1 \times 10^3 \times 100 \times 10^{-6}} = 10 [Hz]$$

93~94 (**********)

(충전) $t_1 = 0.693(R_1 + R_2)C_1$ (방전) $t_2 = 0.693 R_2 C_1$

다음 회로는 NE555를 이용한 비안전 멀 티바이브레이터 회로이다.

오른쪽의 공식들은 매우 중요합니다. 모두 숙지 해주세요.

 $= 0.693 (R_1 + 2R_2) C$

Duty Cycle

$$\left| \begin{array}{c} \frac{44}{T} = \frac{t}{T} = \frac{t_1}{0.693(R_1 + 2R_2)C} = \frac{0.693(R_1 + R_2)C_1}{0.693(R_1 + 2R_2)C_1} = \frac{R_1 + R_2}{R_1 + 2R_2} \end{array} \right|$$

정답

● Duty Cycle (듀티 사이클) : 충격계수

Pulse 파형의 한 주기 동안에 실제로 Energy를 송출할 수 있는 시간의 비이다.

 $D = \frac{t}{T} \times 100 [\%]$

참조페이지 94 (★★★★★)

Frequency가 1Khz인 파형의 충격계수가 50%라고 할 때 펄스폭 T1, T2의 크기를 구하라.

정답

정답

참조페이지 95 (****) 다음 파형에서 Duty Cycle(충격계수)는 $D = \frac{t}{T} = \frac{\underline{\exists} \triangle \underline{\exists}}{\overline{\lnot}} \underline{\bigcirc} \underline{\exists} \overline{}$ 으로 정의한다.

다음 파형의 Duty Cycle의 값은? (단, 주파수는 100hz임)

$$T = \frac{1}{f} = \frac{1}{100} = 0.01[s]$$

$$\therefore D = \frac{t}{T} = \frac{0.001}{0.01} = 0.1$$

참조페이지 96 (★★★★★) 다음 회로에서 출력 주파수(fo)를 구하시오. (소수점 2자리까지)

f 0 -	1	$\frac{1}{1}$ = 1.06[kHz	.1
<i>J 0</i> –	$2\pi R_1 C_2$	$\frac{1.06 \text{kHz}}{2 \times 3.14 \times 10^4 \times 0.015 \times 10^{-6}} - 1.06 \text{kHz}$]

정답

[답]

$$fo = 1.06[kHz]$$

왼쪽의 회로명칭(병렬 T 발진회로)은 무엇인지, 다른 멀티 바이브레이터 회로와 변경/대체하여 어떻게 사용할 수 있을지 고민해볼 필요 있음.

참조페이지 98 (★★★★★)

아래 회로에서 듀티비 50%일 경우 발진주파수(f)를 구하시오. (단, 소수점 2째 자리까지 구하시오.)

정답

[풀이] R5를 중앙에 놓으면 듀티비 50%의 정사각형파가 얻어지므로

$$fo = \frac{1}{2C1(R4 + \frac{R5}{2})}$$

$$= \frac{1}{2 \times 22 \times 10^{-6} \times (5.6k \times 50k)}$$

$$= \frac{1}{2446.4 \times 10^{-6} \times 10^{3}} = 0.41[Hz]$$

왼쪽의 회로명칭(회로명칭이 없을 수도 있음)은 무엇인지, 다른 멀티바이브레이터 회로와 변경/대체하여 어떻게 사 용할 수 있을지 고민해볼 필요 있음. 또한 약간의 변형을 통해 듀티비의 변화도 고려해 볼 수 있음

참조페이지 105~108 (★★★★☆)	정답
다음은 변조회로의 설명이다 잘못 설명된 것은	2-?
①AM(Amplitude Modulation)	
: 정보 신호에 따라 진폭을 변화한다	
②PAM(Pulse Amplitude Modulation)	
: 정보 신호에 따라 주파수을 변화한다.	
③PWM(Pulse Width Modulation)	
: 정보 신호에 따라 펄스폭을 변화시킨다.	
@PNM(Pulse Number Modulation)	
: 정보 신호에 따라 펄스의 수를 변화시킨	다.

참조페이지	108~110 (★★☆☆)	정답
다음의 반도체 소	·자 설명 중 잘못된 것은?	
① 써미스터(The	rmistor) : 빛에 의해 전기 저항이 급히 변하는 소자	
② 바이스터(Var	istor) : 전압에 따라서 저항이 변하는 전압-전류 특성	
이 비직선적인 소	_자	
③ 광도전셀 : 4	F로 CDS로 만들어지며 이러한 물질에 빛을 쪼여주면	
전기를 통할 수	있는 전자/정공이 생기고 이에 따라서 저항이 줄어드	1
는 소자		
④ 포토다이오드	: 역바이어스된 PN접합 다이오드가 큰 저항을 나타내	
는 성질을 이용하	·여 빛을 가하면 도통되는 다이오드	
⑤ 포토 트랜지스	스터 : 트랜지스터 Base에 빛을 인가하면 Collector와	
Emitter 사이에	전류가 흐르는 소자	

참조페이지 112 (★★★☆☆) 정답 [풀이] 아래 회로에서 콜렉터에 흐르는 전류 (Ic)는 얼마인가? ① R2 양단에 걸리는 전압 V_{R2} 는 (단, $h_{fe} = 180$, $V_{BE} = 0.6[V]$ 로 한다.) $V_{R2} = \frac{R_2}{R_1 + R_2} \times E = \frac{20K}{125K + 20K} \times 12 = 1.65 [V]$ R3 R1 $② V_{R2} = V_{BE} + V_{RE}$ 125k 15k $V_{R4} = R_4 I_C$ E 12[V] $I_C = \frac{V_{R2} - V_{BE}}{R_4} = \frac{1.65 - 0.6}{2 \times 10^3} = 0.525 [mA]$ R2 R4 20k 2k [답] Ic = 0.525[mA]

참조페이지 11	4 (★★★☆☆)	정답
I_B 와 전류증폭률을 구하시오.		
R _B	R _c	$V_{CC} = i_B R_B + 0.6$
Vi () /// /// /// /// /// /// /// /// ///	7	$\therefore i_B = \frac{V_{CC} - 0.6}{R_B} = \frac{6 - 0.6}{100K} = \frac{5.4}{100K} = 54[mA]$
$V_{CC} = 6 V$ $V_{BE} = 0.6 V$		
$R_C = 2K$		
$R_B = 100K$		

참조페이지	116 (★★★☆☆)	정답
다음 회로에서	콜렉터 전류 IC를 구하라.(단, R=24K,	
Vbe=0.7V이다.)		
	-12V A iC	베이스 전류 iB = $\frac{-12-(-0.7)}{24k\Omega}$ = $-\frac{11.3V}{24k\Omega}$ = $-0.471[mA]$
	R R	$\therefore i_C = \beta i_B = 50 \times (-0.471 [mA]) = -23.55 [mA]$
	B = 50	즉, Vcc전원이 -이므로 반대로 흐른다.
	177	

119 (★★★☆☆)

참조페이지

참조페이지

다음 회로에서 I_B , I_C , I_E , hfe를 각각 구하시오. (단, $V_{CE}=2\,V\,\mathrm{Cl}$)

1) I_B	
	$V_{RE}=0.9mA\times 10K=9V$
	$V_E = - 1 V$
	$V_B = (-1 V) + 0.7 V = -0.3 V$
	$V_{RB} = 10 V - (-0.3 V) = 10.3 V$
	$\therefore I_B = \frac{10.3 V}{100 K} = 0.103 mA$

2) I_{C}

정답

$$\begin{split} I_C &\coloneqq I_E \\ 10\,V &= I_C R_C + \,V_{CE} + I_C R_E - 10\,V \\ 10\,V &= I_C (R_C + R_E) + \,V_{CE} - 10\,V \\ 10\,V &= I_C (10K + 10K) + 2\,V - 10\,V \\ 18\,V &= I_C \times 20K \\ I_C &= \frac{18K}{20\,V} \\ & \therefore I_C = 0.9mA \end{split}$$
 3) I_E
$$I_C &\coloneqq I_E \\ I_E &\coloneqq 0.9mA \end{split}$$

4)
$$hfe$$

$$hfe=\frac{I_C}{I_B}$$

$$hfe=\frac{0.9mA}{0.103mA}=8.7 \div 9$$
 의미

정답

그림의 증폭기 회로에서 회로소자 R_d =10[K Ω], R_g =1[M Ω], R_s =420[Ω], V_{DD} =30[V]이고 C_s 와 C_c 는 매우 크다. 또한 I_{DSS} =5[mA], V_p =1.9[V]일 때 동작 전압 V_{DS} 는? (단, I_D =1.8[mA]이다.)

120 (★★★☆☆)

$$V_{DD} = I_D R_D + I_D R_S + V_{DS}$$
$$= V_{DS} + I_D (R_D + R_S)$$

$$\therefore V_{DS} = V_{DD} - I_D (R_d + R_3)$$

$$= 30 - 1.8 \times 10^{-3} (10 \times 10^3 + 420)$$

$$= 11.24 [V]$$

121 (★★★☆☆)

그림에서 $V_{BE}(sat)$ = 0.8[V], Q의 한계전압 V_R = 0.5[V], $V_{CE}(sat)$ = 0.2[V] 도통 다이오드 전압 V_{th} =0.7[V]이다. 전 류증폭률 hfe(min)의 값을 구하시오. 또 이 회로의 명칭은 무엇인가? $(R_1$ =5 $K\Omega$, R_2 =5 $K\Omega$, Rc=2 $K\Omega$)

정답

- 1) 회로명칭 : NAND gate
- 2) 전류증폭률 : hfe(min)의 값

$$V_P = 0.7 + 0.7 + 0.8 = 2.2[V]$$

$$I_1 = \frac{V_{CC} - V_p}{R_1} = \frac{(5 - 2.2)}{5 \times 10^3} = 0.56 [mA]$$

$$I_2 = \frac{V_{BE}}{R_2} = \frac{0.8}{5 \times 10^3} = 0.16 [mA]$$

$$I_B = I_1 - I_2 = 0.56 - 0.16 = 0.4[mA]$$

$$I_C = \frac{V_{CC} - V_{CE}}{R_C} = \frac{5 - 0.2}{2 \times 10^3} = 2.4[mA]$$

$$\therefore$$
 전류증폭률 hfe $(min) = \frac{I_C}{I_B} = \frac{2.4}{0.4} = 6$

참조페이지

122 (★★★☆☆)

정답

급고웨이지

다음 회로를 보고 다음을 구하시오.

- 가. R₂에 흐르는 전류[/]의 값
- 나. 출력전압 Vo
- 다. TR1의 Vce

(Vbe=0.6V, R1=30KΩ, R2=20KΩ, R3=100KΩ, R4=100K Ω, Vi=20V 단, TR2의 Base 전류는 무시한다.)

- 가. TR2의 Base 전압 = 6 + 0.6[V]
 - $\therefore I = \frac{6.6}{R2} = \frac{6.6}{20 \times 10^3} = 0.33[mA]$
- 나.

$$Vo = I(R1 + R2)$$
= $0.33 \times 10^{-3} \times (30 + 20) \times 10^{3}$
= $16.5 \lceil V \rceil$

다. Vce = Vi-Vo = 20 - 16.5 = 3.5[V]

참조페이지	124 (★★★☆☆)	정답
다음의 회로에서	$V_S = 200\sqrt{2}\sin(wt)[V]$ 일 때 정상 상태	
에서 C_2 양단의	전압은 몇 [V]인가?(단, D_1, D_2 는 정상적인	
다이오드이다.)		
Vs (C1 D2 C2	배전압 전류회로 이므로 $200\sqrt{2} \times 2 = 400\sqrt{2} [V]$

참조페이지	125 (★★★☆☆)	정답
다음의 디지털 적	시접회로 TTL, CMOS의 설명 중에서 잘못	
된 것은?		
① TTL은 트랜지	스터의 구성으로 되어 있으며 일반적으로	
74시리즈의 IC를	말한다.	
② CMOS는 FI	ET의 구성으로 되어 있으며 일반적으로	
4000 시리즈의 I	C를 말한다.	
③ TTL의 동작전	d압은 5V 이고 팬아웃이 적고, 문턱전압이	
높다.		
④ CMOS의 동작	∤전압은 3∼18V이고 팬아웃이 많으며 문턱	
전압이 높다.		

참조페이지	129 (★☆☆☆)	정답
$A + \overline{B} \cdot C$ 의	보수를 구하시오.	$\overline{A + \overline{B} \cdot C} = \overline{A} \cdot \overline{(\overline{B} \cdot C)} = \overline{A} \cdot (\overline{\overline{B}} + \overline{C})$ $= \overline{A} \cdot (B + \overline{C})$

파란색 박스는 이론에는 있고 문제는 없지만 매우 중요한 내용

142 (★★★☆☆)

① 진리표를 구성한다.

D	С	В	Α	X
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

정답

4입력 NAND게이트와 2입력 NAND게이트를 이용하여 4 입력

EXCLUSIVE NOR 논리 회로를 설계하시오.

② 카르노도 MAP을 이용하여 논리식을 만든다.

BA	DC	0 0	0 1	1 1	1 0	
0	0	1	0	0	0	
0	1	0	0	0	0	
1	1	0	0	1	0	
1	0	0	0	0	0	

③ 논리식에 의한 논리회로 작성

참조페이지

144 (★★★★☆)

정답

반가산기를 수행하는 논리회로를 NAND Gate5개를 이용하여 그리시오.

A Sum

Carry

참조페이지 14	45 (★★★★★)				정답	}	
				입력			 ·력
			Α	В	Cin	SUM	CARRY
			0	0	0	0	0
			0	0	1	1	0
			0	1	0	1	0
			0	1	1	0	1
			1	0	0	1	0
			1	0	1	0	1
			1	1	0	0	1
			1	1	1	1	1
로 더하는 전가산 오.	·기 회로를 그리	$= Cin(\overline{A})$ $= Cin \oplus C$ $= Cout = \overline{A} B C$ $= Cin(\overline{A})$ $= Cin(\overline{A})$	$(A \oplus B)$ $\overline{A}B + A$	$\overline{B}Cin + \overline{AB}) + \overline{B}$	$AB\overline{Cin}$	$\frac{n}{n} + ABCin$ $\frac{n}{n} + Cin$	
			C s		C s		

참조페이지	149~151 (★★★☆☆)	정답
다음의 플립플롭	설명중에서 알맞은 것들끼리 연결하시오.	
① RS 플립플톱	 ⑦ 클록형 RS 플립플롭 또는 JK 플립플롭을 변형시킨 것으로, 데이터 입력 신호 D가 그대로 출력 Q에 전달되는 특성으로 데이터의 일시적인 보존이나 디 지털 신호의 지연 등에 사용 	
② JK 플립플롭	oxdots RS 플립플롭에서 R=S=1의 경우 동작이 불확실한 A 상태로 되는데, RS 플립플롭에서 A 0를 R로 A 0를 S로 되먹임시켜 불확실한 상태가 없도록 한 회로	
③ D 플립플롭	\mathbb{G} S(set)와 R(reset)의 2개의 입력과 2개의 출력 Q_{*},\overline{Q} 를 가지며, 2진 데이터를 저장하는 레지스터 (register)나 기억(memory)소자로서 이용	
④ T 플립플롭	② JK 플립플롭의 입력 J 및 K를 서로 묶어서 하나의 데이터 입력으로 한다.	

참조페이지 151 (★★☆☆☆)	정답
T-F/F의 출력 파형을 그리시오.	
입력 c	а ск
입력 Q_{n+1} 0 Q_n \overline{Q} \overline{Q}	<u> </u>

참조페이지	153 (★★★☆)			정답			
		AB CD	00	01	11	10	
		00	1			1	
V 47777	$Y = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} C \overline{D} + A \overline{B} \overline{C} \overline{D} + A \overline{B} C \overline{D}$ $= 7 \text{LPERIORALIO}$						
Y = A B C D + 를 간략히 하시							
글 신덕이 이시오.		10	1			1	
		$\therefore Y = \overline{B} \overline{L}$)				

155 (★★★★☆)

카르노도표를 이용하여 다음 논리식을 간략화 하 시오.

 $Y = \overline{A} B \overline{C} \overline{D} + A B \overline{C} \overline{D} + A \overline{B} \overline{C} \overline{D}$

 $+ \overline{A} B \overline{C} D + A B \overline{C} D + A \overline{B} \overline{C} D + A \overline{B} C D +$ $\overline{A}BCD + ABCD + \overline{A}BC\overline{D} + ABC\overline{D}$

CD AB	0 0	0 1	1 1	1 0
0 0		1	1	1
0 1		1	1	1
1 1	1	1	1	
1 0		1	1	

정답

정답

$$Y = \overline{A} CD + B + A \overline{C}$$

$$\therefore Y = \overline{A} CD + B + A \overline{C}$$

참조페이지

157 (★★★★☆)

1. 진리치표

	입력			출력	상태	
X2	X1	X0	Y2	Y1	Y0	78' YI
0	0	0	0	0	0	0
0	0	1	0	0	1	1(홀수)
0	1	0	0	0	0	2(짝수)
0	1	1	0	1	1	3(홀수)
1	0	0	0	0	0	4(짝수)
1	0	1	1	0	1	5(홀수)
1	1	0	0	0	0	6(짝수)
1	1	1	1	1	1	7(홀수)

0에서 7까지 2진수로 변화된 데이터를 읽어 system에 입력하여 출력시킬 때, 홀수는 출력되 고 짝수는 0으로 출력시키는 system을 설계하시 2. 논리식 오.

Y0 = X0, Y1 = X1X0, Y2 = X2X0

3. 논리회로

참조페이지	158 (★★★☆)				정답			
		(1) 진리	치표					
			입	력		출력		
			А	В	A>B	A=B	A <b< td=""><td></td></b<>	
			0	0	0	1	0	
			0	1	0	0	1	
			1	0	1	0	0	
			1	1	0	1	0	
		(2) 논리	1식					
두 수의 비교기	는 한 수가 다른 수보다 큰지, 작	$(A > B) = A \overline{B}$						
	지를 결정하는 반비교기 조합 논리		$(a) = \overline{A} \ \overline{B}$	+AB=	$\overline{A \oplus B}$			
회로를 그리시오		$(A < B) = \overline{A} B$						
		,						
		(3) 논리회로						
		A —			_	\		- A>B
				\)		- A>B
						_		
	В					>	- A=B	
				>				
)———		- A <b< td=""></b<>

E A B I0 I1 I2 I3 O X X O O O O O I
0 X X 0 0 0 0 0 0 0
0 0 0
0 1
1
1 0
1 1

정답

참조페이지	162~165 (★★★★☆)	정답
다음의 괄호 안에	알맞은 회로의 이름을 적으시오.	
()는 코드 현	형식의 2진 정보를 다른 형식의 단일 신호로 바꾸어 주는 회	
로이다. 컴퓨터	내부에서 2진수로 코드화된 데이터를 해독하여 대응하는 한	
개의 신호로 바	꾸어 주므로 문자와 같은 형태로 바꾸어 출력시키는 데에 사	
용한다.		
()는 ()와 정반대의 기능을 수행하는 조합 논리회로로서 여러 개의	
입력 단자 중 C	어느 하나에 나타난 정보를 여러 자리의 2진수로 코드화하여	
전달한다.		

참조페이지 166~167 (★★★★☆)	정답
다음의 괄호 안에 알맞은 회로의 이름을 적으시오.	
() 회로는 여러 회선의 입력이 한 곳으로 집중될 때 특정 회선을 선택하	
도록 하므로 데이터 선택기라 하기도 한다. 어느 회선에서 전송해야 하는지 결	
정하기 위하여 선택 신호가 필요하다. () 회로를 이용하면 여러 입출력	
장치에서 일정한 회선을 통하여 중앙 처리 장치로 전해 줄 수 있고, 하나의 입	
력 회선에 여러 터미널을 접속하여 사용할 수 있다.	
$($) 회로는 하나의 입력선으로부터 데이터를 입력하여 2^n 개의 출력선 중	
에서 n비트의 선택 신호에 의하여 선택된 하나의 출력으로 데이터를 내보내는	
논리회로를 말하며 데이터 분배기(data distributor)라고도 한다.	

172 (★☆☆☆☆)

JK플립플롭을 이용한 6진 카운터 설

계

정답

① 계수기 상태표를 작성한다.

i	현상타	}	디	음상		JKF	F_A	JKF	F_B	JKF	F_C
А	В	С	А	В	С	J_A	K_A	J_B	K_B	J_C	K_C
0	0	0	0	0	1	0	Χ	0	Χ	1	Χ
0	0	1	0	1	0	0	X	1	Χ	Χ	1
0	1	0	0	1	1	0	X	Χ	0	1	Χ
0	1	1	1	0	0	1	Χ	Χ	0	Χ	1
1	0	0	1	0	1	Χ	0	0	Χ	1	Χ
1	0	1	0	0	0	X	1	0	X	X	1
1	1	0				Χ	Χ	Χ	Χ	Χ	Χ
1	1	1				Χ	X	Χ	Χ	Χ	Χ

② FF의 입력식 결정 : K-map를 사용하여 간략화 한다.

J_C			BA					
		00	01	11	10			
С	0	0	0	1	0			
	1	Χ	Χ	Χ	Χ			

k	-		BA					
K_C		00	01	11	10			
C	0	Х	Χ	Χ	Χ			
С	1	Χ	1	Χ	Χ			

κ			В	A	
K_B		00	01	11	10
С	0	Χ	Χ	1	0
	1	Х	Χ	Χ	Χ

7			В	A	
J_A		00	01	11	10
С	0	1	1	Χ	1
	1	Χ	Χ	Х	Х

K_A		BA			
N_A		00	01	11	10
(0	Χ	Χ	Χ	Χ
С	1	1	1	Χ	1

$$J_A = K_A = 1$$

$$J_B = A \overline{C}, K_B = A$$

$$J_C = AB, \, K_C = A$$

③ 회로도 작성

참조페이지 180~181 (★★★★★)	정답
저역통과필터(Low Pass Filter : LPF)	
통과 주파수 f _{L =} 1/2 × 3.14 × R × C 여기서 R1 = R2 = R	
Vin	통과주파수 계산하기 GAIN(이쪽) ut

참조페이지	189 (***	정답
반전증폭회로		
(2) 이 회로의	의 값은 얼마인가?(입력과 출력 파형을 그려라) 니 증폭도를 구하라.	
(3) 회로명칭	章 四시오 20K	
Vin 10H	2 -12V Vout	

참조페이지	190 (★★★★)	정답
가산회로		
	의 값은 얼마인가?(입력과 출력 파형을 그려라) 증폭도를 구하라.	
Vin	20K 10K 10K 10K 2 3 4 356 Vout	

참조페이지 192 (★★★☆☆)	정답
슈미트트리거 회로	
입력파형: 사인파 10[V]	
(1) 출력파형의 모양을 입력을 기준하여 그리시오?	
(2) 회로명칭을 쓰시오	
Vin 2 -12V Vout 20K 10K	

참조페이지	194 (★★★★☆)	정답
적분회로		
입력파형: 구형피	₹ 5[V]	
(1) 출력파형	의 모양을 입력을 기준하여 그리시오?	
(2) 회로명칭을 :	쓰시오	
	0.02UF	
Vin 🔷	56K 2 -12V Vout -12V	

참조페이지	196 (★★★☆☆)	정답
비교회로		
입력파형: 사인파	- 10[V]	
(1) 출력파형의	l 모양을 입력을 기준하여 그리시오?	
(2) 회로명칭을 쓰	식으	
4V Vin Vin 2V	3 + 6 -12 Vout 3 + 6 -12	
	-12	
	÷	

참조페이지	197 (★★☆☆☆)	정답
입력파형: 사인피	당 10[V], DC바이어스 5[V]임	
1. 출력파형의	모양을 입력을 기준하여 그리시오?	
2. 회로명칭을	쓰시오.	
	+12 3 + 6 Vout	

참조페이지	198 (★★★★☆)	정답
쿼드리쳐 발진 회	- 티로	
(1) 회로의 전원	을 인가한 후 오실로스코프로 파형을 측정하여 파형의	
주파수, 전압	을 구하시오.	
(2) 주파수에	영향을 주는 부품은 어느 것인지 부품의 값을 교체해	
가면서 출력 파형	병의 변화를 측정한다.	
(3) 출력파형-	을 보고 회로의 명칭을 쓰시오.	
4.7V R1 20K R2 10K R4 10K	4.7V R3 VCC 10K N 356 Vout 10K C2 0.001 10K	프로테우스 시뮬레이션으로 검증하 세요

병렬 저항 발진 회로 (1) 회로의 전원을 인가한 후 오실로스코프로 파형을 측정하여 파형의 주파수, 전압을 구하시오. (2) 주파수에 영향을 주는 부품은 어느 것인지 부품의 값을 교체해	
가면서 출력 파형의 변화를 측정한다. (3) 출력파형을 보고 회로의 명칭을 쓰시오. Rf VCC P	프로테우스 시뮬레이션으로 검증하 세요

참조페이지 200 (★★★★☆)	정답
구형파, 삼각파 발진회로	
(1) 회로의 전원을 인가한 후 오실로스코프로 파형을 측정하여 피	·형의
주파수, 전압을 구하시오.	
(2) 주파수에 영향을 주는 부품은 어느 것인지 부품의 값을 고	L체해
가면서 출력 파형의 변화를 측정한다.	
(3) 출력파형을 보고 회로의 명칭을 쓰시오.	
VCC VCC VCC VCC VCC TO	프로테우스 시뮬레이션으로 검증하 세요

참조페이지 201 (★★★★☆)	정답
RC 발진 회로 (1) 회로의 전원을 인가한 후 오실로스코프로 파형을 측정하여 파형의 주파수, 전압을 구하시오. (2) 주파수에 영향을 주는 부품은 어느 것인지 부품의 값을 교체해 가면서 출력 파형의 변화를 측정한다. (3) 출력파형을 보고 회로의 명칭을 쓰시오.	
10K VCC 3 + 6 Vout -12V 10K	프로테우스 시뮬레이션으로 검증하 세요

참조페이지	202 (★★★☆)	정답
	다 10[V] 모양을 입력을 기준하여 그리시오? 을 보고 회로의 명칭을 쓰시오.	
Vin	10K VCC D1 D2 Vout	프로테우스 시뮬레이션으로 검증하 세요

참조페이지 204 (★★★☆☆)	정답
평형형 출력의 sin/cos 발진 회로 (1) 회로의 전원을 인가한 후 오실로스코프로 파형을 측정하 주파수, 전압을 구하시오. (2) 주파수에 영향을 주는 부품은 어느 것인지 부품의 값을 되서 출력 파형의 변화를 측정한다. (3) 출력파형을 보고, 회로의 명칭을 쓰시오.	여 파형의

참조페이지 206 (★☆☆☆)	정답
실용 전압 제어 발진 회로 입력파형: 사인파 10[V] (1) 출력파형의 모양을 입력을 기준하여 그리시오? (2) 회로명칭을 쓰시오	정답 프로테우스 시뮬레이션으로 검증하 세요

참조폐이지 210~211 (★★★★★)	정답
+15V	
$\begin{array}{c c} & & & & \\ & & & \\ & & \\ & & \\ & & \\ \end{array}$	
V _c	
V _B	
▼ V _E	
R_2 R_E	
4.7ΚΩ 1ΚΩ	
$1.$ 회로의 경우, $I_{\!\scriptscriptstyle E}$ 는 대략 얼마인가?	
① 2mA ② 4mA ③ 6mA ④ 7.5mA	
2 . 회로에서 트랜지스터의 B가 증가한다면 V_B 는?	
① 감소한다. ② 증가한다. ③ 반드시 같은 상태를 유지한다.	
$3. R_2$ 가 커진다면?	
① V_B 가 감소한다. ② I_C 가 감소한다.	
③ V_{CE} 가 증가한다. ④ V_{C} 가 감소한다.	
4. 회로에 대한 콜렉터 포화전류는 대략 얼마인가?	
① 4mA ② 7.5mA ③ 10mA ④ 15mA	
5. 차단에서, 회로에 대한 콜렉터-이미터 전압은?	
① 4V ② 8V ③ 10V ④ 15V	

참조페이지 216 (★★★★★)	정답
1. 직류 출력 전압이 무부하일 때 250[V], 전	전압 변동률 = 무부하시출력전압 - 부하시출력전압 부하시출력전압
부하 때는 225[V]이면 이 정류기의 전압 변동	1112121
률은 몇 [%]인가?	$=\frac{250-225}{225} \times 100[\%] = 11.1[\%]$

참조페이지 216 (★★★☆☆)

정답

그림과 같은 브리지형 정류 회로에서 직류 출 력 전압이 10[V], 부하가 5[Ω]이라고 하면 각 정류 소자에 흐르는 첨두 전류값은 얼마인가?

직류 출력 전압 $V_{dc} = 2V_m/\pi$ 의 식에서 $V_m = \pi/2 \ V_{dc} = \pi/2 \times 10 = 5\pi$ 이고, 첨두 전류값 1㎞은 다음과 같이 구한다. $I_{m}=V_{m}/R_{L}=5\pi/5=\pi=3.14[A]$

참조페이지

217 (★★★★☆)

정답

그림의 회로에서 Vs= 100√2sinwt[V]일 때, 정상 상 태에서 C_2 양단의 전압은 몇[V]인가? (단, D_1 , D_2 는 이상 다이오드이다.)

반파 배전압 정류 회로이다.

$$V_{c2} = 2V_{c1} = 2V_{m}$$

= $2 \times 100\sqrt{2} = 200\sqrt{2}$

참조페이지 217 (★★★★☆)

저항 R=100[Ω]에 흐르는 전류 I_R 은

그림에서 D가 8[V]제너 다이오드일 때 D를 흐르는 전류는?

 $I_R = \frac{V_i - V_z}{R} = \frac{10 - 8}{100} = 0.02 = 20 [mA]$

또 부하 R_L = 500[Ω]에 흐르는 전류 I_L은

$$I_L = \frac{V_Z}{R_L} = \frac{8}{500} = 0.016 = 16 [mA]$$

따라서 제너다이오드 D에 흐르는 전류 Iz는 다음 과 같다.

정답

 $I_Z = I_R - I_L = 20 [mA] - 16 [mA] = 4 [mA]$

참조페이지

218 (*****)

정답

에미터 접지형 증폭기에서 베이스 접지시의 전류 증폭 률 α=0.9, I_{co}=0.1[mA], I_B=0.5[mA]일 때 콜렉터 전 류는?

 $\beta = \frac{\alpha}{1-\alpha} = \frac{0.9}{1-0.9} = 9$

 $I_C = \beta I_B + (1+\beta)I_{co}$

 $= 9 \times 0.5 [mA] + (1+9) \times 0.1 [mA] = 5.5 [mA]$

참조페이지	218 (★★★★☆)	정답
그림의 회로망에	서 전류 를 구하면 약 얼마인가?	
o^	Si R D1 .2K D2 E2 = 4[V]	$\begin{split} & = \frac{E_1 - E_2 - V_D}{R} \\ & = \frac{20 V - 4 V - 0.7 V}{2.2 k \Omega} \\ & \simeq 6.95 [\text{mA}] \end{split}$

참조페이지	218 (★★★☆☆)	정답
트랜지스터 정특	특성에서 V _{CE} = 6[V]일 때 I _B 를 600	$h_{ie} = \frac{\triangle V_{BE}}{\triangle I_B} V_{CE}$
[μA]~800[μA]	까지 변환 시킬 때 V_{BE} 가	= 일정
0.2[V]~0.3[V]	의 변화를 하였다면 이때의 h _{ie} 는?	$= \frac{0.3 - 0.2}{(850 - 600) \times 10^{-6}} \simeq 400[\Omega]$

참조페이지	219 (★★★☆☆)	정답
켰더니 Ic는 4.5	l _B 를 100[uA]에서 200[uA]로 변화시 5[mA]에서 8[mA]로 변했다. 이때 트 : 증폭률은 얼마인가?	$h_{fe} = \frac{\triangle I_C}{\triangle I_B} \mid V_{CE} = 일정$ $= \frac{(8-4.5)\times10^{-3}}{(200-100)\times10^{-6}} = \frac{3.5\times10^3}{100} = 35$

참조페이지 219 (★★★☆☆)	정답
중심 주파수가 455[kHz], 대역폭이 12[kHz]가 되도	
록 단일 동조 증폭 회로를 만들려고 한다면, 이 회로	f_o 455 20
의 부하 Q는 얼마로 하면 좋은가? (단, Q: Quality	$Q = \frac{f_o}{B} = \frac{455}{12} = 38$
factor)	

참조페이지 220 (★★★☆☆)	정답
그림의 회로에서 $V_{\scriptscriptstyle p}$ =-3.0[V], $I_{\scriptscriptstyle D}$ =3.5[mA]일 때	
I_{DSS} 는 얼마인가? (단, V_{GS} =-0.6[V]이고, I_{DSS} =포	
화 드레인 전류, $I_{\scriptscriptstyle D}$ = 드레인 전류, $V_{\scriptscriptstyle p}$ =pinch off 전	
압, V_{GS} =게이트 전압이다.)	V _P = −3.0과 V _{GS} = −3.0을 대입한다.
VDD Y	$V_P=-3.0$ 과 $V_{GS}=-3.0$ 을 대입한다. $I_D=I_{DSS}(1-\frac{V_{GS}}{V_P})^2$
Rd •Vo	$\begin{split} I_{DSS} &= \frac{I_D}{(1 - \frac{V_{GS}}{V_D})^2} = \frac{3.5 [mA]}{(1 - \frac{0.6}{3})^2} \\ &= \frac{3.5}{0.63} [mA] = 5.46 [mA] \end{split}$

= $20\log_{10} \frac{100}{1000}$ = $20\log_{10} \frac{1}{10}$ = -20[dB]

참조페이지 221 (★★★☆☆)	정답	
그림은 3단 증폭 회로이다. 입력 전압이 15 $[\mu V]$, 출	전체 증폭도 $A_V = \frac{V_o}{V_i} = \frac{15}{15 \times 10^{-6}} = 10^6$	
력 전압이 15[V]일 때 증폭기 ③의 이득은 몇 [dB]인 가?	전체 이득 G_V = 20 $\log_{10} A_V$ = 20 $\log_{10} 10^6$ = 120[dB]	
15uV ① ② ③ 15V	$= G_1 + G_2 + G_3$	
	따라서, 120 = 54+36+ G_3 에서 G_3 를 구하면	
	30[dB]가 된다.	

222 (★★★★☆)

정답

다음 그림의 회로에서 출력 v_o 는?

첫 단은 가산기이고 다음 단은 반전 증폭기이다.

$$v_o = -(\frac{2}{2})[-(\frac{2}{2})_X - (\frac{2}{2})_Y - (\frac{2}{1})_Z]$$

= x + y + 2z

참조페이지 222 (★★★★☆)

정답

다음 회로에서 입력에 x,y를 가했을 때 출력 z를 구하면?

$$Z = -\left(\frac{1}{1}\right)\left[-\left(\frac{2}{1}\right)x\right] + \left(1 + \frac{1}{1}\right)y$$
$$= 2x + 2y = 2(x + y)$$

참조페이지 223 (★★★★☆)

정답

그림과 같은 병렬 저항 이상형 CR 발진 회로에 서 R=10[k Ω], C=0.025[μ F]라면 발진 주파수 는 약 몇 [Hz]가 되는가?

병렬 저항 이상형 CR 발진기에서 발진 주파수 f는 $f = \frac{1}{2\pi\sqrt{6}\ CR} = \frac{1}{2\pi\sqrt{6}\times0.025\times10^{-6}\times10\times10^{3}} = 260[Hz]$

참조페이지 224 (★★★★☆)	정답
리미터의 특별한 경우로서 클리핑 레벨의 위와 아래 레벨 사이의 간격을 좁게	
하여 잘라낸 회로를 무엇이라 하는가?	
D1 D2 R R V0 V1 V2 V2	슬라이서 회로

참조페이지 224 (★★★★☆)	정답
출력 전압 Vo를 구하시오(단, DIODE의 순방향 전압은 0V로 가정한다)	
+5V A = 2V D1	

참조페이지	225 (***	정답
출력 전압 Vo를	구하시오(단, DIODE의 순방향 전압은 OV로 가정한다)	
10V 1K 5V 1K	PVo 9K	

참조페이지	225 (★★★★)	정답
출력 전압 Vo를	구하시오(단, DIODE의 순방향 전압은 OV로 가정한다)	
5V 1K 0V 1K	Vo 10K	
	↓ +5∨	