期中考试: group presentation

- □ 小组分工协作, 一起文献汇报。题目中含 Blast 的生物信息工具、算法。
- □ max 15分钟汇报,讲明why, how, what。
- □ 首页写明组员,后面每页右上角 标明主要贡献人/speaker。

Sequence Comparison (Part 2)

Multiple Sequence Alignment and patterns/motifs

曹志伟

From Pair-Wise to Multiple Alignment

• Pari-wise alignment: two sequences

 Multiple sequence alignment – MSA: Simultaneously align more than two sequences.

Evolution in a Nutshell

- Amino acids mutate randomly
- Mutations are then selected (accepted) or counterselected (rejected)
- If a mutation is harmful, it is counter-selected
 - It disappears from the genome
 - You never see it
- Mutations of important positions (such as active sites) are almost always harmful
- You can recognize important positions because they never mutate!
- MSAs reveal these conserved positions

Multiple sequence alignment

What are the conserved regions among a set of sequences over the same alphabet?

12345678	Position Index
EMQPILLL	Sequence 1
DMLR-LL-	Sequence 2
NMK-ILLL	Sequence 3
DMPPVLIL	Sequence 4

What is MSA: A Definition

Why multiple sequence alignment

- 1. Determine whether a group of proteins are related
- Show regions of conservation within a protein family ⇒ sequence pattern
- 3. Structure and function prediction
- 4. Determine evolutionary history of gene families
 - → phylogeny tree

多序列比对的广泛应用

- □获得共享序列
 - 多序列比对所得到的与所有序列距离最近的序列,常用于数据库搜索和芯 片探针设计
- □序列测序
 - ■消除多个机构测序结果的误差
- □突变分析
 - 同一种系不同个体因突变而产生的差异, SNP
- □种系分析
 - 根据基因组的差异判断种系关系,构造种系树

多序列比对的广泛应用

- □保守区段分析
 - 基因组中功能重要的区段不容易接受突变,重要功能的基因高度保守, 基因中的外显子尤其保守,基因调节单元如启动子、增强子等高度保 守
- ■基因和蛋白质的功能分析
 - ■测序后同源分析来推断新基因和蛋白质的功能
- □RNA和蛋白质的结构分析
 - ■从已知序列的结构推断新序列的结构
- □基因组结构分析
 - ■揭示基因组的结构特征和进化特征

MSA: How to Align?

MSA: Some Possible Alignments

MSA History

Until 1987 multiple alignments constructed manually from pairwise alignments

□ Lipman et al. (1989) pairwise dynamic programming approach applied to multiple sequence alignment - MSA

Commonly Used MSA Methods

- Dynamic programming extension of pairwise sequence alignment
- 2. Progressive sequence alignment incorporates phylogeny information to guide the alignment process
- 3. Iterative sequence alignment correct for problems with progressive alignment by repeatedly realigning subgroups of sequence

Progressive Method of MSA

- □ Progressive alignment invented in '87 & '88 Feng & Doolittle 1987, Higgins and Sharp 1988
- **□** Based on phylogeny

How MSA: Progressive method

1 - Do pairwise alignment of all sequences and calculate distance matrix

		[1]	[2]	[3]	[4]
Scerevisiae	[1]				
Celegans	[2]	0.640	2		
Drosophia	[3]	0.634	0.327		
Human	[4]	0.630	0.408	0.420	1
Mouse	[5]	0.619	0.405	0.469	0.289
	Ma	de by Cao Zhiwei			

How MSA: Progressive method

2 - Create a guide tree based on this pairwise distance matrix

How MSA: Progressive method

3 - Align progressively following guide tree

Start by aligning most closely related pairs of sequences

Gaps

At each step align two sequences or one to an existing subalignment

Available programs for progressive MSA

- □ CLUSTAL (Free package):
- □ Higgins, D.G. and Sharp, P.M. (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73,237-244.
- http://www.ebi.ac.uk/clustalw/
- http://clustalw.genome.ad.jp/ (origin 2)
- □ PILEUP (part of GCG commercial package)
- http://www.gcg.com
- □ Others

Example software---ClustalW

Example Software---ClustalW (Bioedit)

Steps To Do ClustalW:

Step 1: Prepare the sequences:

- Retrieve sequences
 General considerations:
 - The more the better if family concerned
 - Exclude similar (e.g.>80%) sequences
 - Necessary modification

Steps To Do ClustalW:

Step 2: Input the sequences:

- Put all sequences into one file → Copy and paste
- Or upload sequences one by one
- Pay attention to sequence format → FASTA format

Steps To Do ClustalW:

Step 3: Set the parameters:

- Default parameters for protein alignment General Setting Parameters:
 - Output Format: CLUSTALW
 - Pairwise Alignment: FAST/APPROXIMATE

Example: SH2 domain family

- SH2 domains function as regulatory modules of intracellular signalling cascades
- V-Src Tyrosine Kinase Transforming Protein (Phosphotyrosine Recognition Domain Sh2) Complex With Phosphopeptide A (PDB code 1SHA):

Input Sequences For ClustalW

- □ >1SHA-A V-SRC Tyrosine kinase transforming protein (SH2 domain), from Rous sarcoma virus
- □ >1A81-A Chain A, Tandem Sh2 Domain Of The Syk Kinase, from Homo sapiens
- □ >1JWO-A Chain A, Sh2 Domain Of The Csk Homologous Kinase Chk, from **Homo sapiens**
- >1BLJ Nmr Ensemble Of Blk Sh2 Domain, from Mus musculus (house mouse)

Result 1 of ClustalW

CLUSTALW Result

GenomeNet CLUSTALW Server (Kyoto Center) on Thu Oct 31 19:55:40 JST 2002

CLUSTAL W (1.81) Multiple Sequence Alignments

104 aa

184 aa

```
Sequence 3: 1JWO-A
                               97 aa
  Sequence 4: 1BLJ
                              114 aa
  Start of Pairwise alignments
  Aligning...
  Sequences (1:2) Aligned. Score: 29.8077
  Sequences (1:3) Aligned. Score: 26.8041
  Sequences (1:4) Aligned. Score: 50
  Sequences (2:2) Aligned. Score: 100
  Sequences (2:3) Aligned. Score: 29.8969
  Sequences (2:4) Aligned. Score: 29.8246
  Sequences (3:2) Aligned. Score: 29.8969
  Sequences (3:3) Aligned. Score: 100
M; Sequences (3:4) Aligned. Score: 27.8351
  Sequences (4:2) Aligned. Score: 29.8246
  Sequences (4:3) Aligned. Score: 27.8351
  Company (4.4) Aliemed Compa, 100
```

Sequence type explicitly set to Protein

Sequence format is Pearson

Sequence 1: 1SHA-A

Sequence 2: 1A81-A

Result 2 of ClustalW

```
Start of Multiple Alignment
  There are 3 groups
  Aligning ...
  Group 1: Sequences: 2
                             Score: 852
  Group 2:
                             Delayed
  Group 3:
                             Delayed
  Sequence: 2
                Score: 689
                Score: 625
   Sequence: 3
  Alignment Score 1129
  CLUSTAL-Alignment file created [clustalw.aln]
  CLUSTAL W (1.81) multiple sequence alignment
   1SHA-A
   1BLJ
  1A81-A
                 GRTHASPADLCHYHSOESDGLVCLLKKPFNRPOGVOPKTGPFEDLKENLIREYVKOTWNL
   1JWO-A
   1SHA-A
                 -----OAEEWYFGKITRRESERLLLNPENPRGTFLVRESE
   1BLJ
                 -----GSVAPVETLEVEKUFFRTISRKDAERQLLAPMNKAGSFLIRESE
   1A81-A
                 OGOALEOAIISOKPOLEKLIATTAHEKMPWFHGKISREESEOIVLIGSKTNGKFLIRARD
   1JWO-A
                      . *:. .*: .:: : . * **:*
  1SHA-A
                 TTKGAYCLSVSDFDNAKGLNVKHYKIRKLDSGGFYITSRTQFSSLQQLVAYYSKHADGLC
   1BLJ
                 SNKGAFSLSVKDIT-TQGEVVKHYKIRSLDNGGYYISPRITFPTLQALVQHYSKKGDGLC
   1A81-A
                 NN-GSYALCLLHEG----KVLHYRIDKDKTGKLSIPEGKKFDTLWQLVEHYSYKADGLL
  1JWO-A
                 RHPGDYVLCVSFGR----DVIHYRVLHRD-GHLTIDEAVFFCNLMDMVEHYSKDKGAIC
                                   * **:: . * * * .* :*:** . . .:
                    * : *.:
   1SHA-A
                 HRLTNVCPT--
   1BLJ
                 OKLTLPCVNLA
   1A81-A
                 RVLTVPCQKI-
   1JWO-A
                 TKLVRPKRK--
  1SHA-A:0.25262,
Ma 1A81-A:0.33803,
   1JW0-A:0.36300)
```

Result 3 of ClustalW: N-J tree

Interpret ClustalW results

- □ Three characters are used in the results 2:
- 1. '*' indicates positions which have a single, fully conserved residue
- 2. ':' indicates that 'strongly' conserved groups
- 3. '.' indicates that 'weakerly' conserved groups

```
sp|P13860|GUX1_PHACHSHSSSTPPTQPTGVsp|P38676|GUX1_NEUCRAKPSSTSTASNPSGVsp|P00725|GUX1_TRIRETTRRPATTTGSSPGVsp|P45699|GUNK_FUSOXRGSCPAKTDATAKAS
```

```
SHSSSSTPPTQPTGVTVPQWGQCGGIG---YTGSTTCASPYTCHVLNPYYSQCY--
AKPSSTSTASNPSGTGAAHWAQCGGIG---FSGPTTCPEPYTCAKDHDIYSQCV--
TTRRPATTTGSSPGPTQSHYGQCGGIG---YSGPTVCASGTTCQVLNPYYSQCL--
RGSCPAKTDATAKASVVPAYYQCGGSKSAYPNGNLACATGSKCVKQNEYYSQCVPN
```

Interpret ClustalW results

Insertion and deletion, gap

Consensus sequence → Sequence Pattern

Made by Cao Zhiwei

Notes on how to use ClustalW

- Remove signal peptide before alignment, try to compare homologous portion
- Sequence containing a repetitive element (such as a domain)

□ Heuristic algorithm: not guaranteed for perfect alignment

Notes on how to use ClustalW

- Mobilize your biological knowledge, check the alignment and recheck the alignment
- Manually re-align your sequences if it's bad

MSA software

CLUSTALW或 CLUSTALX(图形化界面)	ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/ ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/	
,		
T-COFFEE	http://www.ch.embnet.org/software/TCoffee.html	
MSA	ftp://fastlink.nih.gov/pub/msa/	
DIALIGN	http://www.gsf.de/biodv/dialign.html	
DCA	http://bibiserv.techfak.uni-bielefeld.de/dca/	
MultAlin	http://protein.toulouse.inra/multalin.html	
PILEUP	https://www.sacs.ucsf.edu/secure/cgi-bin/pileup.pl	
HMMER	http://hmmer.wustl.edu/	
MACAW	ftp://ncbi.nlm.nih.gov/pub/macaw	
SAM	http://www.cse.ucsc.edu/research/compbio/sam.html	
Vector NTi	http://biocore.unl.edu/coreweb/VectorNTIFrame.htm	
Bioedit	http://www.mbio.ncsu.edu/BioEdit/bioedit.html	
ProAlign	http://evol-linux.lzulbiac.be/ueg/ProAlign/	
QAlign	http://www.ridom-rdna.de/qalign/	

53

Application of MSA

Example: Drug discovery for SARS

http://www.sciencexpress.org/13 May 2003 / Page 1/ 10.1126/science.108565

Coronaviruses are positive-stranded RNA viruses

Largest viral RNA genomes known to date

M protein: critical proteinase to produce replicase

Example: Drug discovery for SARS

- □ Sequence → structure → function
 - ✓ Human coronavirus 229E: HCoV;
 - ✓ Porcine transmissible gastroenteritis virus: TGEV;
 - Mouse hepatitis virus: MHV;
 - Bovine coronavirus: BCoV;
 - SARS-associated coronavirus: SARS-CoV;
 - Avian infectious bronchitisvirus: IBV.

Multiple sequence alignment: SARS

- Which family does SARS virus belong to?
- Sars virus genome (blast result)

Top hits:

- 1. Mouse hepatitis V virus
- 2. Avian infectious bronchitis virus
- 3. Turkey coronavirus
- 4. Porcine epidemic diarrhea virus
- 5.

Application of MSA

Example:Drugdiscovery forSARS

Final model of M protein from SARS virus

http://biocomp.chem.unb.ca:8080/GD/SARS/

Drug – SARS protein interaction

SARS-CoV-2: vaccine

- highly similar epitope was identified between the 2019-nCoV and SARS virus, in the region of the binding site of the S proteins to the human ACE2 receptor.
- Journal of Genetics and Genomics, 2020,47(2):115-11

otin 1

- CR3022 targets a highly conserved epitope, distal from the receptor-binding site, that enables cross-reactive binding between SARS-CoV-2 and SARS-CoV.
- revealed a conserved, but cryptic epitope shared between SARS-CoV-2 and SARS-CoV
- □ *Science*, 03 Apr 2020: eabb7269

- □ try MSA
 - https://www.ebi.ac.uk/Tools/msa/
 - http://www.clustal.org/

■ Next: patterns and motif