ЗАДАЧИ К ЭКЗАМЕНУ ПО КВАНТОВОЙ МЕХАНИКЕ 2

3-й курс, 6-й семестр.

Задача 1.

Найти поправку первого порядка к энергии основного состояния частицы в поле $U(r) = -(e^2/r)e^{-r^2/b^2}$ при условии $b \gg a_B$, рассматривая отклонения от кулоновского поля как возмущение.

Задача 2.

Гамильтониан линейного осциллятора, помещённого в однородное электрическое поле, имеет вид $\hat{H} = \hat{p}^2/2m + m\omega^2x^2/2 - ex\mathcal{E}$. Рассматривая взаимодействие с полем как возмущение, определить поляризуемость основного состояния осциллятора.

Задача 3.

Найти расщепление первого возбуждённого уровня энергии двумерного осциллятора, $\hat{H}_0 = (\hat{p_1}^2 + \hat{p_2}^2)/2m + m\omega^2(x_1^2 + x_2^2)/2$, под действием возмущения $\hat{V} = ax_1x_2$. Указать правильные волновые функции нулевого приближения.

Задача 4.

Найти расщепление второго возбуждённого уровня энергии двумерного осциллятора, $\hat{H}_0 = (\hat{p_1}^2 + \hat{p_2}^2)/2m + m\omega^2(x_1^2 + x_2^2)/2$, под действием возмущения $\hat{V} = ax_1x_2$.

Задача 5.

Указать при каких l, m, m_s и l', m', m'_s могут быть отличны от нуля матричные элементы х-компоненты дипольного момента электрона $\langle l', m', m'_s | x | l, m, m_s \rangle$.

Задача 6.

Указать при каких l, m, m_s и l', m', m'_s могут быть отличны от нуля матричные элементы z-компоненты дипольного момента электрона $\langle l', m', m'_s | z | l, m, m_s \rangle$.

Задача 7.

Показать, что в разложениях волновых функций частицы $\vec{r}Y_{lm}(\theta,\varphi)$ по собственным функциям орбитального момента присутствуют вклады только с моментами l+1 и l-1.

Задача 8.

Выбирая ось z в качестве оси квантования, определить средние значения проекции спина электрона \bar{s}_z в состояниях $p_{1/2}$.

Задача 9.

Выбирая ось z в качестве оси квантования, определить средние значения проекции спина электрона \bar{s}_z , в состояниях $p_{3/2}$.

Задача 10.

Электрон находится в постоянном однородном магнитном поле, направленном по оси у. При t=0 он с достоверностью имеет проекцию спина 1/2 на ось z. Найти спиновую волновую функцию электрона $\chi(\sigma;t)$ при t>0.

Залача 11.

Построить гейзенберговские операторы проекций спина $\hat{s}_x(t)$, $\hat{s}_y(t)$, $\hat{s}_z(t)$ электрона, находящегося в постоянном однородном магнитном поле, направленном по оси z.

Задача 12.

Зная поляризуемость атома водорода в основном состоянии $\alpha = 9a_{\rm B}^3/2$, оценить поляризуемость основного состояния атома гелия, пренебрегая взаимодействием между электронами.

Задача 13.

Экспериментальное значение потенциала однократной ионизации атома гелия $\approx 24.6\,\mathrm{sB}$. Определить энергию основного состояния нейтрального атома гелия.

Залача 14.

Чему равен матричный элемент оператора дипольного момента $\hat{\vec{d}} = e \sum_i \vec{r_i}$ между волновыми функциями различных термов атома, отвечающих одной электронной конфигурации.

Задача 15.

Показать, что полный орбитальный момент и полный спин замкнутых электронных оболочек равны нулю. Чему равен полный орбитальный момент основного терма атома, имеющего одну наполовину заполненную оболочку?

Задача 16.

Определить квантовые числа ${}^{2S+1}L_J$ основных термов для электронных конфигураций $(np)^4$ и $(nd)^4$.

Задача 17.

Найти квантовые числа $^{2S+1}L_J$ всех возможных термов системы двух эквивалентных p-электронов.

Задача 18.

Чему равен полный момент J основного терма атома, имеющего незаполненную оболочку с электронной конфигурацией $(nl)^{2l+1}$.

Задача 19.

Определить квантовые числа ${}^{2S+1}L_J$ основного терма атома, имеющего незаполненную оболочку с электронной конфигурацией $(nl)^{2l}$.

Задача 20.

Определить квантовые числа $^{2S+1}L_J$ основного терма атома, имеющего незаполненную оболочку с электронной конфигурацией $(nl)^{2l+2}$.

Задача 21.

Определить средний магнитный момент атома бора $_5\mathrm{B},$ находящегося в основном состоянии в слабом магнитном поле.

Задача 22.

Определить средний магнитный момент атома фтора ₉F, находящегося в основном состоянии в слабом магнитном поле.

Задача 23.

Электронный атомный терм с J=5/2 имеет сверхтонкую структуру, состоящую из четырёх компонент. Каково значение спина ядра?

Задача 24.

Найти соотношения между интервалами сверхтонкой структуры атомного терма с J=5/2, если спин ядра i=3/2. Сверхтонкое взаимодействие описывается гамильтонианом $a(\hat{\vec{J}}\hat{\vec{i}})$. Каков порядок величины a?

Задача 25.

Спин-орбитальное взаимодействие нуклона (протона или нейтрона) в ядре имеет вид $a(\hat{l}\,\hat{\vec{s}})$. Оно приводит к расщеплению уровня нуклона с орбитальным моментом l на два уровня с моментами $j=l\pm 1/2$. Определить величину параметра a, если известно, что при l=2 уровень с j=5/2 лежит на 5 МэВ ниже уровня с j=3/2.

Задача 26.

В модели Томаса-Ферми найти зависимость от заряда ядра Z полной энергии связи нейтрального атома $E_{\rm ar}=T_e+U_{e\rm s}+U_{e\rm e}$, где указанные слагаемые отвечают соответственно кинетической энергии всех электронов, их энергии взаимодействия с ядром и между собой.

Задача 27.

Используя соотношение между интервалами колебательных и электронных уровней энергии двухатомной молекулы $E_{\rm кол}/E_{\rm эл} \approx \sqrt{m_e/M_{\rm H}}$, оценить отношение амплитуды нулевых колебаний ядер к (равновесному) расстоянию между ядрами.

Задача 28.

Используя соотношение между интервалами колебательных и электронных уровней энергии двухатомной молекулы $E_{\text{кол}}/E_{\text{эл}} \approx \sqrt{m_e/M_{\text{Я}}}$, оценить отношение характерных скоростей движений ядер и электронов $v_{\text{кол}}/v_{\text{эл}}$.

Задача 29.

На заряженный линейный осциллятор, находящийся при $t \to -\infty$ в n-м стационарном состоянии, накладывается электрическое поле $\mathcal{E}(t) = \mathcal{E}_0/(1+t^2/\tau^2)$, направленное вдоль оси колебаний. Найти в первом порядке теории возмущений вероятности переходов осциллятора в другие его состояния при $t \to +\infty$.