# SCIENCE, ENGLISH, MATHEMATICS ENRICHMENT PROGRAM 2021



# PHYSICS



#### **Measurements Outline:**

- I. Basic Quantities
- II. Derived Quantities
- III. Units of Measurement
- IV. Conversion of Units
  - a. Dimensional Analysis
- V. Significant Digits
- VI. Test Yourself

# **Basic Quantities**

#### What is Measurement?

- the action of measuring something.
- the size, length, or amount of something, as established by measuring.
- a unit or system of measuring.

#### **Basic Quantities**

 They are physical quantities that cannot be defined in terms of other quantities

| Basic Quantity | Example of Units            |
|----------------|-----------------------------|
| Length (l)     | m, cm, in, ft, mi           |
| Mass (s)       | g, kg, <u>lb</u> , ton, amu |
| Time (t)       | s, min, h, day, year        |

(Table 1.1 Basic Quantities)

#### **Physical Quantities**

any number that is used to describe a physical phenomenon.

# Derived Quantities

# What are derived quantities?

- They are obtained by combining basic quantities.
- Basic examples are volume and density.

#### **Volume**

- Amount of space an object takes up
- Expressed in cubic units  $(m^3, cm^3, in^3, etc.)$
- Depends on the shape of the object.
- Example below is the volume of a cube where a is equal to the sides.

$$V = a^3$$

#### **Density**

- A substance's mass (m) per unit volume (V)
- SI Unit: kilogram per cubic meter  $(kq/m^3)$





(Figure 1.1 Volume of other solids)

# Try this!

If the radius of a cylinder is doubled. What will happen to its volume?

- a. Doubled
- b. Quadrupled
- c. Halved
- d. Stay the same

# Units of Measurement

#### SI Unit

- The International System of Units (SI), commonly known as the metric system, is the international standard for measurement.
- The SI is made up of 7 base units that define the 22 derived units with special names and symbols.
- The SI plays an essential role in international commerce and is commonly used in scientific and technological research and development.

| Physical quantity measured | Base unit | SI abbreviation |
|----------------------------|-----------|-----------------|
| Amount of substance        | mole      | mol             |
| Length                     | meter     | m               |
| Mass                       | kilogram  | kg              |
| Time                       | second    | s               |
| Thermodynamic temperature  | kelvin    | К               |
| Electric current           | ampere    | А               |
| Luminous intensity         | candela   | cd              |

(Table 1.2 SI Units)

#### SI Prefixes

- The SI prefixes are a series of prefixes to units in the International System of Units, or SI.
- These can denote very small or very large amounts.

| Factor           | Name  | Symbol | Factor            | Name  | Symbol |
|------------------|-------|--------|-------------------|-------|--------|
| 1024             | yotta | Υ      | 10-1              | deci  | d      |
| 10 <sup>21</sup> | zetta | Z      | 10 <sup>-2</sup>  | centi | С      |
| 10 <sup>18</sup> | еха   | Е      | 10-3              | milli | m      |
| 10 <sup>15</sup> | peta  | Р      | 10 <sup>-6</sup>  | micro | μ      |
| 1012             | tera  | Т      | 10 <sup>-9</sup>  | nano  | n      |
| 10 <sup>9</sup>  | giga  | G      | 10 <sup>-12</sup> | pico  | р      |
| 10 <sup>6</sup>  | mega  | M      | 10-15             | femto | f      |
| 10 <sup>3</sup>  | kilo  | k      | 10-18             | atto  | a      |
| 10 <sup>2</sup>  | hecto | h      | 10-21             | zepto | Z      |
| 10 <sup>1</sup>  | deka  | da     | 10 <sup>-24</sup> | yocto | у      |

(Table 1.3 SI Prefixes)

#### Conversion of Units

# **Conversion Factors**

 an arithmetical multiplier for converting a quantity expressed in one set of units into an equivalent expressed in another.

| Length | Mass                                           | Time                                                                               | Volume                                                                      |
|--------|------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|        | 1 kg = 1000g<br>1 g = 1000 mg<br>1 kg = 2.2lbs | 1 year = 365 days<br>1 day = 24 h<br>1 h = 60 mins<br>1 min = 60 s<br>1 h = 3600 s | 1 L = 1000 mL<br>1000 mL = 1000 cm <sup>3</sup><br>1 mL = 1 cm <sup>3</sup> |

(Table 1.4 Commonly Used Conversion Factors)

# **Dimensional Analysis**

- In conversion of units, we use equations.
- Equations express relationship among physical quantities.
- Equations must be dimensionally consistent.
- Dimensional Analysis can be used to:
  - o Derive an equation
  - Check if the equation is dimensionally correct
  - Know the units or the dimension of the physical quantity

# Try this!

1) Check whether **s = vt** is dimensionally correct using:

s = Length t = time

v = Speed

| many s           | econds are there in a day?                                                                                                                                                |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  | cant Digits                                                                                                                                                               |
| Signific         | cant Figures                                                                                                                                                              |
| •                | This is defined like this: each of the digits of a<br>number that are used to express it to the<br>required degree of accuracy, starting from the<br>first nonzero digit. |
| Rules            | n Significant Figures                                                                                                                                                     |
|                  | nzero digits are always significant.                                                                                                                                      |
|                  | aigns are aimays significant.                                                                                                                                             |
| Exar             | nple:                                                                                                                                                                     |
| İ                |                                                                                                                                                                           |
| į                |                                                                                                                                                                           |
| į                |                                                                                                                                                                           |
| 1                |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
| Exan             | nple:                                                                                                                                                                     |
| 3.) Zer signific | os between two other significant digits are always ant.                                                                                                                   |
| Exan             |                                                                                                                                                                           |
| EXUII            | ipie.                                                                                                                                                                     |
| 1                |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
| 4170             | os used solely for spacing the desimal point are                                                                                                                          |
|                  | os used solely for spacing the decimal point are                                                                                                                          |
| not sigi         | nificant.<br>                                                                                                                                                             |
| Exan             | nple:                                                                                                                                                                     |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |
| -                |                                                                                                                                                                           |
| L                |                                                                                                                                                                           |
|                  | addition and subtraction, round up your answer to                                                                                                                         |
| the less         | s precise measurement.                                                                                                                                                    |
| Exan             | nple:                                                                                                                                                                     |
| LAUII            | ·P·O·                                                                                                                                                                     |
| İ                | İ                                                                                                                                                                         |
| į                | İ                                                                                                                                                                         |
| L                | <br>                                                                                                                                                                      |
|                  |                                                                                                                                                                           |
|                  |                                                                                                                                                                           |

2) According to the song Live Like We're Dying, how

| Example:                                                                                                                                                                                       | A. 3.69 N B. 11.0 N C. 36.2 N D. 4.90 N                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                | Solution:                                                                                           |
| Try this! How many significant digits do 1020.001 have?                                                                                                                                        |                                                                                                     |
| Test Yourself                                                                                                                                                                                  |                                                                                                     |
| iPadCutie. Kylie is on hunt to buy a new gadget. I<br>looking for a low-density gadget for convenie<br>Assuming that all masses are equal, which of<br>following will have the lowest density? | ence.                                                                                               |
| a. An iPad Air (V=18 in^3)                                                                                                                                                                     | $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$                                                             |
| b. An iPad Mini ( $V=12 \text{ in}^3$ )<br>c. An iPhone ( $V=3 \text{ in}^3$ )                                                                                                                 | where $\pi$ is a dimensionless constant. If the unit for $m$ is in kg and the unit for $f$ is in s  |
| d. An iPod Touch ( $V = 2 \text{ in}^3$ )                                                                                                                                                      | what should be the unit of $k$ for the equation to be dimensionally consistent?<br>A. ${\rm N/m^2}$ |
| Solution:                                                                                                                                                                                      | B. N/m                                                                                              |
|                                                                                                                                                                                                | C. $N \cdot m$<br>D. $N/(m \cdot s)$                                                                |
|                                                                                                                                                                                                | D. N/(m·s)                                                                                          |
|                                                                                                                                                                                                | Solution:                                                                                           |
| and Consistent! If a has a unit of [landward], when a unit of [m/s]. D has a u                                                                                                                 | l                                                                                                   |
| <b>apat Consistent!</b> If $\rho$ has a unit of $[kg/m^3]$ , $v$ has a unit of $[m/s]$ , $D$ has a unit of $R = v\rho D/\mu$ ?                                                                 | unit of [III]                                                                                       |
| A. unitless $ B. \; \frac{kg}{m \cdot s} \qquad \qquad C. \; \frac{kg \cdot m}{s} \qquad \qquad D. \; \frac{k}{s} $                                                                            | $\frac{\mathrm{kg}\cdot\mathrm{s}}{\mathrm{m}^2}$                                                   |
| Solution:                                                                                                                                                                                      |                                                                                                     |
|                                                                                                                                                                                                |                                                                                                     |
|                                                                                                                                                                                                |                                                                                                     |
|                                                                                                                                                                                                |                                                                                                     |
|                                                                                                                                                                                                |                                                                                                     |
|                                                                                                                                                                                                |                                                                                                     |
| Wow. In a foreign land, $1 \operatorname{edi} = 13.67 \operatorname{m}$ and $1 \operatorname{wow} = 28.41 \operatorname{s}$ . What is                                                          | is $5.00\mathrm{m/s^2}$ in                                                                          |
| s of edi/wow <sup>2</sup> ?                                                                                                                                                                    |                                                                                                     |
| A. $10.4 \mathrm{edi/wow^2}$                                                                                                                                                                   |                                                                                                     |
| B. 295 edi/wow <sup>2</sup>                                                                                                                                                                    |                                                                                                     |
| C. $8.47 \times 10^{-2}  \text{edi/wow}^2$                                                                                                                                                     |                                                                                                     |
| D. $2.41 \mathrm{edi/wow^2}$                                                                                                                                                                   |                                                                                                     |

6.) In multiplication and division, round it up to least

\_\_\_\_\_

number of significant digits.

Solution:

Tinimbang ka ngunit kulang. The weight of a computer on earth is 20.0 N. What is

the weight of the same computer if it is placed at the surface of Jupiter's moon Io? The

C. 36.2 N

D. 4.90 N

B. 11.0 N

acceleration due to gravity in Io is 1.81 m/s<sup>2</sup>.

A. 3.69 N