Copy 69

RM A54H23

RESEARCH MEMORANDUM

COMPARISON OF EXPERIMENTAL AND THEORETICAL NORMAL-FORCE

DISTRIBUTIONS (INCLUDING REYNOLDS NUMBER EFFECTS)

ON AN OGIVE-CYLINDER BODY AT MACH NUMBER 1.98

By Edward W. Perkins and Leland H. Jorgensen

Ames Aeronautical Laboratory
Moffett Field, Calif.

Classification Changed to
UNCL. AJ. SIGUED

Authority
DOD DIR. 5200.10

AUG 1 9 1967

N. Devereux/

JET PROPULSION LABORATORY

DEC 3 0 1954

CALIFORNIA IINSTITUTE OF TERCHNOLOGY

WASHINGTON

November 19, 1954

NACA RM A54H23

UNCLASSIFTE

Classification Changed to

UNCLASIONAL ADVISORY COMMITTEE FOR AERONAUTICS

DOD DIR. 5200.10

Date AUG 191967

Ву N. Devereux/

RESEARCH MEMORANDUM

COMPARISON OF EXPERIMENTAL AND THEORETICAL NORMAL-FORCE

DISTRIBUTIONS (INCLUDING REYNOLDS NUMBER EFFECTS)

GROUP 4

ON AN OGIVE-CYLINDER BODY AT MACH NUMBER 1.98

Downgraded at 3 year intervals: declassified ofter 12 years

By Edward W. Perkins and Leland H. Jorgensen

SUMMARY

Normal-force and pressure distributions have been determined for a body of revolution consisting of a fineness-ratio-3, circular-arc, ogival nose tangent to a cylindrical afterbody 7 diameters long. The freestream Mach number was 1.98; the angle-of-attack range was from 0° to 200; and the Reynolds numbers, based on body diameter, were 0.15x106 and 0.45×10^{6} .

Comparisons of experimental and theoretical distributions of pressure and normal-force coefficients indicate that available theoretical methods can be expected to predict experimental results with good accuracy for angles of attack only to about 5°. The zero-lift pressure distribution is adequately predicted by Van Dyke's second-order theory.

The normal-force distributions differ significantly from those calculated in accordance with theories which include methods of estimating the effects of viscosity on the forces and moments for inclined bodies. Analysis of the data shows that these differences are, in general, attributable to inadequate estimates of the magnitude and distribution of the cross forces resulting from flow separation. Results of the tests at different Reynolds numbers show that, insofar as the viscous cross-force distribution on an inclined body is concerned, the boundary-layer flow in the axial and crossflow directions cannot always be considered independent.

INTRODUCTION

The design of missiles and airplanes for operation at very high speeds, coupled with the requirement of good maneuverability, has led to the use of configurations in which the aerodynamic characteristics of the

bodies are important. Although several theoretical methods based upon potential-flow concepts are available for predicting the characteristics of bodies, the angle-of-attack range for which these theories yield satisfactory results is known to be very limited because of the effects of viscosity. An approximate theory based upon the idea that the effects of viscosity on the forces and moments for high fineness ratio bodies of revolution can be estimated by treating each cross section of the body as an element of an infinitely long circular cylinder was proposed by Allen in reference 1. Although the actual flow about an inclined body was known to be more complex than that assumed as the basis for this method, it has been shown that for many cases, the method can be used to predict satisfactorily the forces for high fineness ratio bodies (ref. 2). ever, because of the assumptions involved in the development of the method, satisfactory estimates of the aerodynamic characteristics of low fineness ratio bodies cannot be expected. Furthermore, Reynolds number effects on the forces and moments are only qualitatively predicted with this method.

Studies of the flow about inclined bodies by means of the vaporscreen technique (ref. 2) have shown that there is a similarity between
the axial development of the crossflow about an inclined body and the
development with time of the flow about a circular cylinder impulsively
set in motion from rest. Based upon this observation, it was suggested
in reference 2 that the axial distribution of the crossflow drag for an
inclined body may be similar to the time-dependent drag of the circular
cylinder impulsively set in motion from rest. Employing this concept,
Kelly (ref. 3) showed that some improvement in the estimation of the
force characteristics for low fineness ratio bodies can be obtained. However, this approach yields unsatisfactory predictions for high fineness
ratio bodies at large angles of attack.

Because of the lack of experimental data on the load distributions for inclined bodies, it is generally impossible to determine a priori the reasons for failure of either Allen's or Kelly's method in any particular case. It was the purpose of the present investigation to determine experimentally the normal-force distributions on an inclined body and to compare these distributions with those computed with the methods proposed in references 1 and 3. The results of these comparisons are presented in this report and are used to indicate the conditions for which the proposed methods may be expected to yield satisfactory estimates of the over-all forces and moments and those for which serious errors in the force predictions may result.

The scope of the present investigation is limited in that detailed force-distribution data for only one body were obtained for analysis. Nevertheless, it is felt that the results are generally indicative of the conditions which might exist for a wide variety of cases. Since it was necessary to obtain pressure-distribution data in order to determine the

force distributions, pressure distributions are also presented and compared with the predictions of potential theories.

SYMBOLS

A reference area, πd²

cdc local crossflow drag coefficient based on diameter

cdc crossflow drag coefficient of a circular cylinder per unit length in terms of its diameter for steady-state flow

 C_{m} pitching-moment coefficient about nose of the model,

$$\frac{M}{q_0 A d} = -\frac{1}{d} \int_0^1 c_n x dx$$

c_n local normal-force coefficient per unit length, $\frac{2r}{A} \int_{0}^{\pi} C_{p} \cos \theta \ d\theta$

 c_N total normal-force coefficient, $\int_0^1 c_n dx$

 c_p pressure coefficient, $\frac{p - p_0}{q_0}$

d maximum body diameter

l bouy length

 $l_{
m n}$ length of ogival nose

M pitching moment

Mo free-stream Mach number

 $M_{\rm c}$ crossflow Mach number, $M_{\rm O}$ sin α

p local static pressure on model surface

p free-stream static pressure

14	UNLLADSITA	Į.

- free-stream dynamic pressure \mathbf{q}_{O}
- free-stream Reynolds number per inch Re
- crossflow Reynolds number based on body diameter (Re d $\sin \alpha$) Re_c
- model cylindrical coordinates, origin at the vertex (θ = 0° in the vertical plane of symmetry on the windward side)
- moment center location measured from vertex x_{m}
- center-of-pressure location measured from vertex gX
- angle of attack α

potential-flow component

viscous-flow component

APPARATUS AND TESTS

Tunnel

The experimental investigation was conducted in the Ames 1- by 3foot supersonic wind tunnel No. 1. This tunnel is a closed-circuit variable-pressure tunnel in which the Reynolds number is changed by varying the total pressure within the approximate limits of one-fifth of an atmosphere to two atmospheres. Mach numbers between 1.2 and 2.5 are obtained by adjustment of the upper and lower flexible steel plates of the nozzle.

Model

The model tested had a fineness-ratio-3 tangent ogive nose with a cylindrical afterbody. A single row of 23 orifices extended longitudinally over both nose and afterbody. The model, which was constructed of steel, was sting supported from the rear and could be rotated 3600 about its longitudinal axis by a mechanism operated from outside the tunnel. Pertinent model dimensions and orifice locations are presented in figure 1.

UNCLASSIF

Tests

The pressure-distribution data were obtained for a Mach number of 1.98. The model was tested at angles of attack of 0° , 5° , 10° , 15° , and 20° for a free-stream Reynolds number of 0.39×10^{6} per inch and at angles of attack of 10° and 15° for a free-stream Reynolds number of 0.13×10^{6} per inch (Reynolds numbers of 0.45×10^{6} and 0.15×10^{6} based on body diameter). At each angle of attack, circumferential pressure distributions were obtained by rotating the model through the desired range of circumferential angles (θ) in increments of 15° or less. All pressures were photographically recorded from a multiple-tube manometer system.

Since the pressure-distribution data were obtained from a single longitudinal row of orifices by rotating the model so that the orifices were in the desired plane, a check was made to determine if hysteresis effects resulted from this testing method. Comparisons of the pressure distributions (fig. 2) show that, even though there were small asymmetries in the flow, there were no effects of hysteresis due to model rotation.

In addition to the hysteresis check, a repeat run for $\alpha=15^{\rm O}$ and Re = 0.39x10⁶ per inch was made at a later date. A comparison of the pressure-distribution data from this run with the data from the "hysteresis run" (fig. 2) indicates that the pressure distributions can be repeated with good accuracy except, as expected, near the positions of flow separation.

To help assess the effects of Reynolds number and transition from laminar to turbulent flow on the pressure and normal-force distributions, the model was also tested at 0° , 15° , and 20° angles of attack with a turbulence-producing grid mounted upstream of the wind-tunnel throat at about the 0.5 Mach number position. From schlieren pictures of the model at 0° angle of attack, it was found that for a free-stream Reynolds number of 0.39×10^{6} per inch, use of the turbulence grid resulted in forward movement of the transition position from 7.5 body diameters to 6 body diameters from the vertex.

REDUCTION OF DATA

All the data have been reduced to pressure-coefficient form and have been corrected for the effects of the small nonuniformities in the wind-tunnel flow. The corrected pressure coefficients are listed in table I. For the model at zero angle of attack, an average value of \mathtt{C}_p is listed for each \mathtt{x}/\mathtt{d} station, since the variation of \mathtt{C}_p around the body was less than ± 0.002 .

For the model at angle of attack, local normal-force coefficients (c_n) were obtained by integrating the pressure coefficients around half of the body. Although some of the pressure distributions were slightly asymmetric, it was found that negligible error in c_n resulted from the assumption of symmetrical flow. The local normal-force data were then graphically integrated to obtain total normal-force and pitching-moment coefficients.

The uncertainty of the experimental data was estimated by considering the possible errors in the individual measurements (including corrections) used in the calculation of the final results. The uncertainty of a quantity was taken as the square root of the sum of the squares of the possible errors in the individual measurements. The resulting uncertainties in the final quantities are as follows:

Quantity	Uncertainty
Cn	±0.005
С _р С _п	±.004
$C_{\overline{N}}$	±.008
C _m	±.055
α	±.1 ⁰

Except near the regions of flow separation, the computed uncertainty in C_p appears to be consistent with the repeatability of the data. (See, e.g., fig. 2.)

RESULTS AND DISCUSSION

Pressure Distributions

Comparison of theoretical and experimental pressure distributions.—Most of the comparisons of the theoretical pressure distributions with the experimental data which are made in the figures of this report are for a Reynolds number of 0.39×10^6 per inch. Comparisons at a single Reynolds number are considered sufficient since, for zero angle of attack, the Reynolds number effects are negligible, and for angle of attack, varying the Reynolds number alters the details of the pressure distributions but does not significantly change the agreement with theory.

Theoretical pressure distributions at zero angle of attack, calculated with four different methods (refs. 4, 5, and 6) are compared with the experimental results in figure 3. Except near the vertex, the pressure distributions predicted with the various theories do not differ appreciably and are in good agreement with experiment. Of the three theoretical methods which yield satisfactory agreement over the full

length of the nose, that is, the method of characteristics, Van Dyke's second-order theory, and the method of Bolton-Shaw and Zienkiewicz, the last (ref. 5) is by far the simplest to use.

Of the several theoretical methods available for calculating the pressure distributions on inclined bodies of revolution, two have been chosen for comparison with the experimental results. These are the familiar first-order theory and the so-called "hybrid" theory of reference 7.1 This latter method combines a first-order crossflow solution with a second-order axial-flow solution. The theoretical pressure distributions along meridian lines (θ = constant), computed with hybrid theory, are compared with the experimental distributions for angles of attack of 50, 10° , 15° , and 20° in figure 4. The distributions obtained with first-order theory are shown only for $\alpha = 10^{\circ}$ since, except near the vertex, there is little difference between the results of first-order theory and hybrid theory. For all angles of attack and for most values of θ , the hybrid theory predicts too large a value of the pressure coefficient at the vertex of the model. Good agreement of theory with experiment over most of the body is obtained only at 50 angle of attack, the differences between theory and experiment becoming progressively greater as the angle of attack is increased. Because of the excellent agreement between second-order theory and experiment at zero angle of attack, the failure of the hybrid theory, even for moderate angles of attack, is probably attributable to inaccuracies inherent in the first-order crossflow contribution. Flow separation, which occurs at all but the lowest angle of attack, is the principal cause of the poor agreement over the leeward side of the cylindrical afterbody.

Effects of angle of attack on the pressure distributions.— In order to show more clearly the effects of angle of attack on the variation of pressure coefficient around the body, circumferential pressure distributions for six axial stations are presented in figure 5. At all angles of attack above 5° , effects of crossflow separation are indicated. As the angle of attack increases from 5° to 10° , a separated flow region is formed aft on the lee side of the body. With further increase in angle of attack, the separated flow region moves forward and also progresses toward the windward side of the body until it encompasses almost the entire lee side at 20° angle of attack. On the lee side of the body, in this separated flow region, secondary flow effects associated with the body vortices are also observed. (See, e.g., fig. 5(c) at $\alpha=20^{\circ}$ and θ 2050.) There is also evidence of slight flow asymmetry on the lee side of the body.

Reynolds number effects on the pressure distributions. The effects of Reynolds number on the pressure distributions result principally from the changes in the boundary-layer-separation characteristics and thus

¹In the application of both theories, the exact pressure relationship for isentropic flow has been used.

depend primarily on whether the boundary layer is laminar or turbulent. Since an increase in the turbulence level of an air stream is known to induce effects which are qualitatively similar to those resulting from an increase in Reynolds number, an effectively high Reynolds number was achieved by purposely increasing the free-stream turbulence and testing at the highest practicable tunnel total pressure. The pressure distributions obtained under these conditions, combined with the data obtained at low tunnel pressures in the absence of the turbulence grid, provide a fairly wide range of effective Reynolds numbers.

The data of figure 6 illustrate the Reynolds number or boundary-layer transition effects on the pressure distributions for the body of the present investigation. The data have been plotted for six stations along the length of the body and for angles of attack of 10°, 15°, and 20°. Large Reynolds number effects are evidenced only by the data for 10° angle of attack. For the higher angles of attack, 15° and 20°, Reynolds number effects are present but they are much less pronounced.

The changes in the pressure distributions on the cylindrical afterbody which accompany the increase in Reynolds number at 10° angle of attack (fig. 6(a)) are qualitatively the same as those which result from boundary-layer transition on a circular cylinder. For a circular cylinder, when boundary-layer transition occurs ahead of the point at which laminar separation would usually occur, the separation point moves toward the lee side of the cylinder and the pressure recovery on the lee side increases. On the cylindrical afterbody of the model of the present investigation, the increase in Reynolds number from 0.13x10⁶ per inch to 0.39x10⁶ per inch is accompanied by a movement of the flow separation point toward the lee side of the body and an increase in the lee side pressure recovery. From these data it is inferred that for Re = 0.39x10⁶ at $\alpha = 10^{\circ}$, boundary-layer transition occurred on the inclined body near the juncture of the nose with the cylindrical afterbody.

Normal-Force Distributions

Comparison with potential theory. Normal-force distributions for angles of attack of 5°, 10°, 15°, and 20° for a Reynolds number of 0.39×10° per inch are presented in figure 7. The experimental data have been reduced to the form of local normal-force coefficient per unit angle of attack for convenient comparison with the theoretical distributions calculated with slender-body theory, Tsien's linearized theory and Van Dyke's hybrid theory2 (refs. 8, 9, and 7, respectively). The inadequacy of the

Although the theoretical normal force calculated with Van Dyke's hybrid theory is not strictly a linear function of the angle of attack, for this particular combination of body shape and Mach number, the departure from linearity is negligibly small for the angle-of-attack range of this investigation.

potential-flow theories at all but very low angles of attack is clearly demonstrated by these comparisons. Even at 5° angle of attack it is evident that, although both Tsien's and Van Dyke's methods predict the general shape of the load distribution curve, the lift carried on the cylindrical afterbody is considerably greater than calculated. At higher angles of attack the largest part of the difference between theory and experiment is attributable to separation effects.

Comparison with methods of Allen and Kelly .- In the absence of a rigorous theory for calculating the effects of flow separation on the forces and moments of inclined bodies, methods of estimating these effects have been suggested by Allen (ref. 1) and Kelly (ref. 3). Although both methods rely upon the same concept, that is, that the viscous crossflow around an inclined body of revolution is analogous to the flow around a circular cylinder normal to the air stream, the methods differ in their subsequent development. In Allen's method it is assumed that the local viscous cross force depends only upon the component of flow normal to the inclined axis of the body. Therefore, no interaction between the axial and crossflow boundary layers is anticipated. The local viscous crossflow drag coefficient is assumed constant along the body and is taken as equal to the drag coefficient of a circular cylinder of the same fineness ratio as the inclined body and at the same crossflow Mach number and Reynolds number.

Two modifications to Allen's method are suggested by Kelly (ref. 3). First, it is assumed that the viscous crossflow and axial flow are not independent. Thus, if the boundary-layer flow on the body is turbulent for any reason whatsoever, the appropriate crossflow drag coefficient is the low value associated with turbulent boundary-layer flow, even though the crossflow Reynolds number might be in the range for which a laminar crossflow boundary layer would be expected. (Kelly does not consider cases for which the boundary-layer flow is partly laminar and partly turbulent.) The second modification is that, at any angle of attack, the crossflow drag coefficient should not be constant along the length of the body but should reflect the transient effects noted by Schwabe (ref. 10) for a circular cylinder impulsively set in motion from rest. Schwabe's data show that the drag coefficient starts at zero at zero time and increases with distance traveled, until a maximum value of approximately 2.07 is reached after the cylinder has traveled about 4.5 diameters. Thus, based on the assumption that the crossflow drag coefficients of a circular cylinder and an inclined body would be equal for equal distances traveled in the respective crossflow planes, the axial variation for an inclined body was related to the variation with distance traveled of the drag coefficient of a circular cylinder.

Although both Allen's and Kelly's methods have been shown to yield satisfactory predictions of the over-all forces and moments with angle of attack for a number of specific cases, neither method yields satisfactory

results in every instance. The reasons for the failure of the approximate methods can be traced to the fact that the actual distribution of the forces differs significantly from those assumed. For the model tested in the present investigation, this is illustrated in figure 8 by the comparisons of the normal-force distributions calculated by Allen's and Kelly's methods with the distributions determined by integration of the pressure-distribution data. The experimental data include the results obtained for two values of the Reynolds number, as well as the data obtained with the turbulence grid installed in the tunnel. From the comparisons it is evident that the distributions estimated on the basis of either Allen's or Kelly's method are not in good agreement with the experimentally determined distributions for the complete angle-of-attack range. Hence, although either method may yield fairly accurate estimates of the total normal force, because of the failure to predict accurately the distribution, neither method can be expected to yield the correct pitching moment and center-of-pressure position.

Crossflow-drag-coefficient distributions. - It is believed that the major source of error in the loadings calculated with the approximate methods is the inadequate estimates of the forces resulting from flow separation. With the assumption that the potential-flow forces are correctly predicted with theory and that the differences between experiment and potential theory are attributable to flow separation effects, longitudinal distributions of the effective 3 local crossflow drag coefficients may be obtained from the data. These distributions are compared with the distributions assumed in Allen's and Kelly's methods in figure 9. It is apparent that neither of the proposed methods contains the essential features of the experimental distributions. Although there are differences between the experimental distributions for different Reynolds numbers and angles of attack (these will be discussed later), in each case the effective crossflow drag coefficient starts near zero at the apex, rises to a maximum value downstream from the juncture of the nose with the cylindrical afterbody, and then decreases. In contrast with this characteristic distribution, in Allen's method it is assumed that the crossflow drag coefficient is constant along the length of the body. It is apparent that Allen's method provides a first approximation to the total additional cross force attributable to viscous effects, but that, as was pointed out in reference 2, the centroid of this added loading is too far forward, with the consequence that the actual center of pressure is more rearward than the viscous theory indicates.

The distribution of crossflow drag coefficient computed with Kelly's method is in qualitative agreement with experimental results in that it

³These coefficients have been termed "effective" crossflow drag coefficients because all of the difference between potential theory and experiment may not be attributed reasonably to viscous effects alone. Particularly at the larger angles of attack, some of the difference must be chargeable to failure of the potential theory itself.

starts at a low value near the apex and increases with distance downstream. However, the experimental data reach a maximum value at 2 to 3
diameters downstream of the ogive-cylinder juncture and thereafter
decrease; whereas, Kelly's assumed distribution continues to increase for
the full length of the body. It is evident that the use of Kelly's
method, as compared with Allen's, results in a rearward shift of the
center-of-pressure position and, for the angles of attack shown, an
increase in the total normal force. As will be shown subsequently, both
of these effects result in improved agreement with the experimental normal
forces and pitching moments for the angle-of-attack range investigated.

Comparison of the experimental and assumed distribution of the crossflow drag coefficient at 20° angle of attack (fig. 9) shows that Kelly's method assumes much too large a value beyond about 6 diameters downstream from the nose vertex. This results in too large a value of normal force and a center-of-pressure position too far aft. For bodies with longer cylindrical afterbodies or bodies of higher fineness ratio this overestimation of the cross force on the afterbody leads to large errors in the estimated characteristics. It is, therefore, clear why Kelly's method yields good estimates of the over-all viscous effects for low fineness ratio bodies for perhaps a relatively large angle-of-attack range but, in general, does not yield good estimates for high fineness ratio bodies at large angles of attack. A word of warning should be extended at this point. Although it is stated in reference 3 that the method suggested therein is applicable as long as the value of l/d tan α does not exceed 4.5, it appears from the load distribution data (fig. 8) that, at least for the model tested in this investigation, large errors in the predicted characteristics result if the method is used for values of l/d tan α greater than about 2.7 (l/d = 10, $\alpha = 15^{\circ}$).

Reynolds number effects. - For the body tested in the present investigation, the Reynolds number effects on the normal-force distribution and on the distribution of the effective crossflow drag coefficient are shown in figures 8 and 9, respectively. At 10° angle of attack, a large decrease in the local cross force on the cylindrical afterbody accompanied an increase in the Reynolds number from 0.13×10° to 0.39×10° per inch. As previously indicated in the discussion of the pressure distribution data, this reduction in cross force evidently results from the effects of boundary-layer transition.

The reduction of the Reynolds number effect with increasing crossflow Mach number (increasing angle of attack), shown by the experimental data, is in accord with the expected trend based upon the analogy with the crossflow around a circular cylinder. For the circular cylinder it is known that the Reynolds number effects decrease as the Mach number increases. For the inclined body the Mach number normal to the axis of the body was 0.34 at $\alpha=10^{\rm O}$ and increased to 0.51 at $\alpha=15^{\rm O}$. The data show that, whereas a large decrease in the local crossflow drag coefficient accompanied boundary-layer transition at $\alpha=10^{\rm O}$, for the same free-stream Reynolds number change at $\alpha=15^{\rm O}$, the decrease in the local

crossflow drag coefficient was much less. In fact, further increases in the effective Reynolds number through the use of the turbulence grid resulted in little change in the crossflow drag coefficient.

These data show that the "independence principle," whereby the viscous crossflow and axial flow are considered independent of each other, is not always applicable. Hill, in reference 11, suggested the inadequacy of this principle for cases in which boundary-layer transition occurs on an inclined body. If the independence principle were always applicable, then for each angle of attack, the local viscous crossflow drag coefficient would be a function only of the crossflow Reynolds number. Thus, for each angle of attack, there should be a consistent difference between the distributions for two different Reynolds numbers (fig. 9). However, the data for 10° and 15° angle of attack show that the distributions for both Reynolds numbers are about the same over the first few body diameters, but for stations farther downstream, the values of crossflow drag coefficient are lower for the higher Reynolds number.

It is clear, therefore, that the local crossflow drag coefficient depends on whether the boundary layer is laminar or turbulent and is not determined only by the crossflow Reynolds number and Mach number. Hence, for an accurate estimate of the viscous cross-force distribution, it is necessary to know the position of boundary-layer transition. It is apparent that neither Allen's nor Kelly's method can account for the observed Reynolds number effects, since each uses what might be termed a universal loading curve to represent the longitudinal distribution of crossflow drag coefficient, with Reynolds number effects taken into account by simple multiples of these curves.

Correlation of crossflow drag distributions.- From figure 9 it is observed that, except for the high Reynolds number data at $\alpha = 10^{\circ}$, the axial distributions of the effective crossflow drag coefficient ($c_{ ext{dc}}$) at each angle of attack are similar. This similarity suggests that the data might be correlated by dividing the ordinate $c_{ ext{dc}}$ by the cylinder steadystate value c_{dc} (ref. 12) which would be expected far downstream on an extended afterbody. However, as anticipated, it was found that only the data evidencing little or no effects of Reynolds number could be approximately correlated to a single curve (cf. figs. 10(a) and 10(b)). boundary-layer transition apparently occurred near the nose-cylinder juncture for the model at 10° angle of attack and Re = 0.39×10^{6} per inch, these data depart significantly from the single correlation curve. For angles of attack of 150 and 200, the deviations of the data from the correlation curve are not large, even though Reynolds number variations are present. It is therefore apparent that the single correlation curve represents the data satisfactorily only for conditions in which either the boundary layer is laminar or the Mach number normal to the body axis is greater than about 0.5.

The development of a general correlation curve from which the viscous cross-force distribution for bodies of revolution could be computed

readily would provide the designer with a very powerful tool. Unfortunately the correlation curve developed from the foregoing data may be used only for bodies with geometrically similar nose shapes and with cylindrical afterbodies. Although there are not sufficient data available from which the effects of all the significant parameters of the problem can be determined, an indication of the manner in which the effects of nose fineness ratio may be taken into account in the correlation is provided from figures 7 and 10 of the present report. The maximum positive value of c_{d_c}/c_{d_c} ! and the maximum negative value of the theoretical potential-flow cross force occur at approximately the same longitudinal position.4 This fact suggests that the effect of nose fineness ratio on the longitudinal distribution of the effective viscous cross force might be satisfactorily accounted for by using l_{m} (the distance from the apex of the body to the position of the minimum value of the theoretical potential-flow cross force) as the unit of length rather than simply the distance in body diameters as used in figure 10. Accordingly, the correlation curve has been replotted in figure 11 for comparison with similar data for a fineness ratio 5.75 ogive plus cylindrical afterbody (ref. 13). It is evident that a satisfactory correlation results.

Although the correlations obtained with these data have only limited applicability, it is hoped that they will provide a suitable framework for further correlations when additional data become available. It should be noted that $\it l_m$ is a function of both nose fineness ratio and freestream Mach number and might, therefore, provide a correlation with respect to the Mach number effects for a given body.

Normal-Force and Pitching-Moment Characteristics

Normal-force, pitching-moment, and center-of-pressure characteristics obtained by graphical integration of the experimental normal-force distributions of figure 8 are presented in figures 12 and 13. A considerable reduction in normal force and a forward shift of the center-of-pressure position accompanied the increase in Reynolds number at $\alpha=10^{\rm O}$. Similar changes, although of reduced magnitude, occurred at $\alpha=15^{\rm O}$ and $\alpha=20^{\rm O}$. These experimental characteristics are compared with those predicted by the semiempirical methods of Allen (ref. 1) and Kelly (ref. 3). Also included for reference are the characteristics

⁴This is, of course, not unexpected, since the correlation curves were derived through the use of the theoretical potential cross-force distributions.

⁵The data of reference 13 were also obtained from the Ames 1- by 3-foot supersonic wind tunnel No. 1 at the same Mach number of 1.98.

predicted with potential theories alone (refs. 7 and 9) and with the correlation curve (fig. 11) according to the procedure outlined in the Appendix of this report. In the application of Allen's method, the steady-state values of crossflow drag coefficient (cd.') are taken as functions of the crossflow Reynolds numbers and crossflow Mach numbers and, hence, vary with angle of attack. In the application of Kelly's method, cdc is taken as 1.2 or 0.35, depending on whether the boundary layer is laminar or turbulent. These comparisons show that none of the methods used can be considered satisfactory for all of the test conditions. For the cases in which the boundary layer is known to be laminar, that is the tests for Re = 0.13×10^6 per inch at α 's of 10^0 and 15^0 , the values predicted with Kelly's method and with the correlation curve are both in reasonably good agreement with the experimental data. For the remaining experimental data the boundary layer was turbulent over at least a part of the body. If the method suggested by Kelly is used, with his value of c_{d_c} = 0.35 for a turbulent boundary layer, both the normal force and pitching moment are grossly underestimated at the higher angles of attack.

CONCLUDING REMARKS

A study of the effects of viscosity on the normal-force distributions for an ogive-cylinder body of revolution of fineness ratio 10 has been conducted. The free-stream Mach number was 1.98. The angle-of-attack range was 0° to 20° , and the Reynolds numbers, based on body diameter, were 0.15×10^{6} and 0.45×10^{6} . A Reynolds number effectively higher than 0.45×10^{6} was obtained by using a turbulence inducing grid in the entrance to the wind-tunnel nozzle.

The experimental data show that, insofar as the viscous cross-force distribution on an inclined body is concerned, if transition of the boundary layer occurs, the crossflow cannot be considered to be independent of the axial flow for crossflow Mach numbers less than about 0.6. This is true, in spite of the fact that the crossflow Reynolds number may be much lower than that at which transition of the crossflow boundary layer would be expected. Upstream of the transition point the crossflow characteristics are those associated with a laminar boundary layer, while downstream the crossflow characteristics approach those associated with a turbulent boundary layer.

The distributions of viscous crossflow drag coefficients, determined from the differences between the experimentally determined normal-force distributions and the distributions predicted with potential-flow theory, differ considerably from the distributions assumed in either of the methods which have been proposed for estimating the effects of viscosity on the forces and moments of inclined bodies of revolution (Allen,

NACA RM A9I26 and Kelly, NOTS TM-998). A correlation curve for the longitudinal distribution of the crossflow drag coefficient for laminar boundary-layer flow was developed, based upon the assumption that the distribution depended only upon the body shape. It is believed that use of this correlation curve for the viscous cross-force contribution in conjunction with first-order linear theory for the potential cross force provides a satisfactory method for estimating the normal-force and pitching-moment characteristics for similarly shaped bodies of revolution with laminar boundary-layer flow. Additional study is required to determine the Mach number range for which the correlation curve is applicable.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 20, 1954

APPENDIX

PROCEDURE FOR USE OF THE CORRELATION CURVE IN COMPUTING

NORMAL-FORCE AND PITCHING-MOMENT COEFFICIENTS

A simple procedure by which the aerodynamic characteristics of bodies similar to that studied in the present investigation may be computed is summarized in the following steps:

- (1) Compute potential-flow distribution (c_{np} vs. x) using Van Dyke's "hybrid" or Tsien's potential theory.
- (2) Determine l_m , the axial distance from the vertex to the "x" station at which c_{np} is a minimum according to potential theory.
- (3) For various "x" stations, determine the corresponding values of $c_{\rm d_c}/c_{\rm d_c}$ using figure 11.
- (4) For values of M_O sin α , determine the corresponding values of $c_{d_C}^{}$ using reference 12.
- (5) Compute the viscous components of the total normal-force and pitching-moment coefficients by graphically solving the equations,

$$c_{N_{V}} = \frac{2 c_{d_{C}} \sin^{2} \alpha}{A} \int_{0}^{1} r \left(\frac{c_{d_{C}}}{c_{d_{C}}}\right) dx$$

$$C_{m_{V}} = \frac{2 c_{d_{C}} \sin^{2} \alpha}{Ad} \int_{0}^{1} r \left(\frac{c_{d_{C}}}{c_{d_{C}}}\right) (x_{m} - x) dx$$

(6) Compute the potential components of the total normal-force and pitching-moment coefficients by graphically integrating the $c_{n_{D}}$ distributions of step (1).

$$C_{N_p} = \int_0^l c_{n_p} dx$$

$$C_{m_p} = \frac{1}{d} \int_0^l c_{n_p} (x_m - x) dx$$

(7) The total normal-force and pitching-moment coefficients are then obtained by direct addition of the viscous and potential components, that is,

$$c_N = c_{N_{p}} + c_{N_{v}}$$

$$C_m = C_{m_p} + C_{m_v}$$

REFERENCES

- 1. Allen, H. Julian: Estimation of the Forces and Moments Acting on Inclined Bodies of Revolution of High Fineness Ratio.
 NACA RM A9I26, 1949.
- 2. Allen, H. Julian, and Perkins, Edward W.: Characteristics of Flow Over Inclined Bodies of Revolution. NACA RM A50L07, 1951.
- 3. Kelly, Howard R.: The Estimation of Normal Force and Pitching Moment Coefficients for Blunt-Based Bodies of Revolution at Large Angles of Attack. Naval Ordnance Test Station, Inyokern, Calif. Tech. Memo. 998, 27 May 1953.
- 4. Rossow, Vernon J.: Applicability of the Hypersonic Similarity Rule to Pressure Distributions Which Include the Effects of Rotation for Bodies of Revolution at Zero Angle of Attack. NACA TN 2399, 1951. (Extension of NACA TN 2250)
- 5. Bolton-Shaw, B. W., and Zienkiewicz, H. K.: The Rapid, Accurate Prediction of Pressure on Non-Lifting Ogival Heads of Arbitrary Shape at Supersonic Speeds. English Electric Company, Navigational Project Division. No. L.A.t. 034 (British), 23 June 1952.
- 6. Van Dyke, Milton D.: Practical Calculation of Second-Order Supersonic Flow Past Nonlifting Bodies of Revolution. NACA TN 2744, 1952.
- 7. Van Dyke, Milton D.: First- and Second-Order Theory of Supersonic Flow Past Bodies of Revolution. Jour. Aero. Sci., vol. 18, no. 3, Mar. 1951, pp. 161-178, 216.
- 8. Munk, Max. M.: The Aerodynamic Forces on Airship Hulls. NACA Rep. 184, 1924.
- 9. Tsien, Hsue-Shen: Supersonic Flow Over an Inclined Body of Revolution. Jour. Aero. Sci., vol. 5, no. 12, Oct. 1938, pp. 480-483.
- 10. Schwabe, M.: Pressure Distribution in Nonuniform Two-Dimensional Flow. NACA TM 1039, 1943.
- 11. Hill, J. A. F.: Forces on Slender Bodies at Angles of Attack.

 Mass. Inst. of Tech., Naval Supersonic Laboratory, R-a 100-59,
 May 9, 1950.
- 12. Gowen, Forrest E., and Perkins, Edward W.: Drag of Circular Cylinders for a Wide Range of Reynolds Numbers and Mach Numbers. NACA TN 2960, 1953. (Formerly NACA RM A52C2O)

13. Perkins, Edward W., and Kuehn, Donald M.: Comparison of the Experimental and Theoretical Distributions of Lift on a Slender Inclined Body of Revolution at M = 2. NACA RM A53EO1, 1953.

TABLE I.- EXPERIMENTAL PRESSURE COEFFICIENTS FOR MODEL AT VARIOUS ANGLES OF ATTACK AND REYNOLDS NUMBERS; $M_0 = 1.98$

NUMBERS; $M_0 = 1.98$ (a) $\alpha = 0^{\circ}$, Re=0.39×10⁶ per inch

ă	0.22	0.56	0.89	1.22	1.61	2.06	2.5	2.95	3.62	4.06	4.50	5.39	6.28	7.17	8.06
СЪ	0.260	0.212	0.165	0.115	0.074	0.026	-0.014	-0.038	-0.030	-0.017	-0.012	-0.009	-0.001	0.000	0.006

(b) $\alpha = 5^{\circ}$, Re=0.39×10⁶ per inch

_	_				_						-	Padial	engle	, θ, d	•	•				_							
l x								_				Veniter	_	_		_			_								
ā.	0	15	30	45	60	75	90	105	120	135	140	145	150	155	160	165	170 .	175	180	185	190	200	210	220	240	255	270
0.2	2 0.351	0.347	0.335	0.317	0.295	0.269	0.245	0.224	0.205	0.191	0.188	0.181	0.181	0.179	0.178	0.177	0.177	0.177	0.176	0.175	0.178	0.178	0.182	0.188	0.206	0.225	0.247
.5				.266	.245						.145	-139	.139	.138	.136	.135	.135	.134	•134	.134	.136	-137	.142	-146	.162	.179	1 -199
. 8	9 .239				.189		145		.113	.102	.100	-094			.092	.092							.097		.111	.126	
1.2			.176		.143	.123	.103	.088	.075	.066	.065	.061	.061	.060	.059	.059	.058	.059		.057	.058		.060			-084	.100
1.6			.122	.109	.094	.076	.060	.047	.036	.029	.027	.024	.024	.023		.022	.021			.020	.021	.021	.022	.024	031	.041	-054
2.0			.062	.052	.039	.024	.011	.001	007	013	014	016	017	018	018	018	019	019	020	020	020	020	020		012		.004
1 5 5	مزم ام	າ ຄ	012	-00.3	009	022	033	041	047	050	049	050	050	050	050	049	049	049	049	050	049	050	051	052	052	046	038
200	5l- 012	- 014	020	- 020	- 010	050	060	l065	068	068	068	066	1068	I066	066	065	1064	064	064	065	064	065	066	068	072	070	066
2 6	ol - 016	- 017		- 020	030	040	055	056	055	053	051	050	050	049	049	047	-,047	047	047	048	047	048	050	053			
liο	61-016	1-015	_ ^^	- noa	037	- 046	051	070	046	044	043	1041	1041	1040	1040	0381	1037	036	1036	036	036	040	043	046	021	056	057
b 5	പ്പറവഴ	l - ma	ութ	±.023	033	041	046	L ՈհԴ	039	037	036	1034	1034	032	030	027	025	024	024	024	024	029	036	1040	046	048	050
h c	5l_ 000	- 010	- 016	- USF	033	01/0	1 Ohk	042	043	040	038	032	032	1028	024	021	019	017	017	017	016	018	019	026	036	041	042
6 3	പ്പത	1 - 011	- 015	- 010	_ ∩oβ	- 036	1- nho	I_ 038	035	020	027	I018	017	015	1013	012	12.011	1010	1009	009	008	010	015	024	(~.033	042	047
5.8	al⊸.coı	1003	012	019	025	032	1036	034	I - . 0261	017	015	010	010	007	005	004	004	004	005	005	006	008	013	017	1021	1029	037
6.2	8005	003	006	016	027	033	034	029	021	015	012	009	009	006	004	002	001	.‱	.001		.001	003	007	012	022	1029	033
6.7	2003	005	- 011	017	025	030	029	025	019	014	013	010	010	008	004	=.002	.000	[.002				003					
7.1	7001	003	009	015	020	022	023	021	016	011	009	006	006	005	002	.000	.001				.001				012		
	1002		004	011	017	023	025	022	016	011	009	007	007	₹.006	004	002									011		
8.0			.002	-,006	014	018	020	017	012	007	005	004	003	002	000	.003	.005			.007					009		
8.5	.017	013	.008	001	011	019	021	017	011	006	004	004	003	⊢. ∞3	002	001	.001					-,002					
8.9									004		.001	.001	.001	.000	.001	.002				.003							013
9.3				.005	002	009	011	008	003	.001						•00¥											012
9.8			.013	.005	003	009	010	007	002	.002	.003	.003	.003	.004	.004	•006	.007	.008	•009	.008	.008	•006	.005	.004	001	1006	010

(c) $\alpha = 10^{\circ}$, Re=0.39x10⁶ per inch

												Radial	angle	, θ, ά	leg											
₹ ×	0	15	30	45	60	75	90	105	120	135	140	145	150	155	160	165	170	175	180	190	200	210	220	240	255	270
0.22	0.471	0.459	0.428	0.382	0.327	0.270	0.216	0.172	0.143	0.125																0.226
.56	.406	-395	367	.325	.273	.220	.170	.128	.101	.086	.082	.079	.079	.078	.077	.078			.078		.078	.079			.129	.171
.89	-339	.328	.301	.261	.213	.163		.080													.040	.039	.040		.076	.113
1.22		.272	.247	.210	.163	.117		.040				.009										.009	.009		.034	.068
1.61		•210		.154	.113	.071																		022		.021
2.06		.140			.052					057																
2.50		.077	.059	.030	004	038	067	088	095	089	086	083	080	077	075	072	069	070	068	070	076	084	089	099	095	075
2.95		-034	.017	009	041	072	099	116	117	107	102	096	090	086	085	 082	077	076	074	077	006	094	102	122	122	107
4.06		.022								069																
4.50		.022	.002	029	-:064	096	121	127	097	052	046	042	037	032	029	026	019	015	013	018	034	030	046	092	130	135
4.95		.020	001	034	068	104	128	127	076	043	039	037	035	031	029	025	016	011	009	009	020	024	030	070	122	150
5+39		.016	005	033	068	104	127	117	064	~.036	032	030	028	026	023	017	007	002	001	010	031	034	030	062	122	170
5.84	.028	.020	005	037	072	106	123	106	050	029	026	025	024	026	026	021	013	000	007	013	030	030	030	046	103	:::
6.28		.016	002	036	077	111	118	093	044	031	029	030	029	031	031	024	012	004	002	000	020	029	029	01.2	002	
6.72		.014	007	042	000	111	100	076	040	029 026	020	-,030	031	036	030	T-020	010	- 012	- 010	- 015	- 032	- 030	- 036	- 021	- 053	- 005
7.17	.022	.013	010	044	079	101	03(000	037	027	027	- 020	- 030	- 030	- 030	L.023	- 018	- 010	010	- 017	- 036	- 030	- 020	027	- 645	- 080
7.61 8.06		.011	010	035	0[[091	009	061	034	023	- 000	030	- 007	- 035	- 037	E-030	- 017	- 007	003	4 019	- 036	- 031	- 024	- 026	041	078
8.50		.025	003	- 000	- 058	- 070	003	- Oh7	- 026	~.021	- 021	- 02h	- 028	- 036	- 061	L.026	- 026	- 016	- 019	- 091	010	-037	027	- 027	041	076
8.95										016																
9.39		.027								016																
9.83										015																
																							_			

TABLE I.- EXPERIMENTAL PRESSURE COEFFICIENTS FOR MODEL AT VARIOUS ANGLES OF ATTACK AND REYNOLDS NUMBERS; $M_O=1.98$ - Continued (d) α =10°, Re=0.13×10⁶ per inch

1																Radi	al ang	le, θ,	deg																
<u>x</u>	0	15	30	45	60	75	90	105	120	135	140	145	150	155	160	165	170	175	180	185	190	195	200	210	215	220	225	240	255	270	285	300	315	330	345
0.22 .50 .89 1.22 1.61 2.50 2.95 3.62 4.50 4.50 5.39 5.39 5.39 6.72 7.16 8.06 8.50 9.39	.393 .322 .272 .208 .074 .025 .030 .018 .023 .020 .030 .036 .032 .030 .036 .032	.318 .270 .206 .135 .082 .027 .029 .016 .018 .013 .025 .029 .026 .030	.353 .289 .241 .180 .052 .005 .005 006 006 006 .002 .003 .005 .002	.313 .253 .206 .148 .079 .027 020 031 033 029 033 029 022 022 026 026 024 024 024	.268 .207 .163 .108 .051 004 046 059 060 059 059 059 048 053 049	.214 .163 .120 .071 071 081 081 081 084 064 064 063 053 059	.163 .113 .072 .026 024 064 101 089 100 093 085 064 058 064 053 058	.126 .077 .041 003 047 082 115 090 086 083 079 079 058 055 055 050	.101 .054 .019 019 061 088 116 079 086 082 084 077 072 060 058 058 058 058	.085	.081 .038 .005 063 066 107 079 091 083 084 089 069 069 069 063 063 053	.077 .036 .004 062 085 105 094 091 084 083 074 074 074 074	.080 .037 .006 022 059 080 100 077 095 085 087 075 075 075 075	.076 .035 .0054 058 078 078 066 061 062 050 050 051 056	.076 .035 .008 056 076 076 047 030 031 035 032 022 029 034	.076 .034 .008 025 075 075 075 024 016 019 019 019 019 019 019 019	.074 .036 .001 .021 .053 .074 .094 .048 .013 .014 .014 .013 .001 .001 .001	.073 .035 .006 .0053 053 074 090 046 036 012 012 013 007 009 013 007	.074 .037 .005 -024 -051 -072 -089 -041 -035 -022 -009 -010 -011 -005 -009 -011	.072 .035 .008 020 050 069 088 042 037 016 013 016 013 004 007 001 004	.072 .036 .007 .021 .049 .045 .045 .020 .017 .020 .013 .013 .018 .013 .026	.074 .037 .081 .021 .051 072 056 055 038 024 024 024 024 014 018 026 036 036	0377 0376 0321 - 0554 - 0557 - 0559 - 05457 - 0547 - 0547 - 0547 - 0547 - 0547	.076 .035 .029 .055 -077 -076 -094 -091 -072 -072 -079 -080 -061 -061	.074 .035 .003 029 061 081 094 094 071 068 078 078 058 058 058 058 058	.080 .036 .004 059 078 078 078 062 063 063 055 057 057 057 057	.084 .040 .007 027 084 107 073 081 075 075 077 057 057 053 053	.099 .054 .022 -060 -090 -113 -078 -075 -075 -068 -053 -054 -054 -054 -054 -054 -054 -054 -054	.127 .074 .039 055 086 118 085 077 077 066 047 047 045 045 045	.166 .112 .072 .025 -020 -063 -102 -083 -101 -092 -082 -082 -074 -052 -049 -052 -049 -052	.215 .156 .113 .060 .006 038 089 073 078 073 054 059 059 059	.266 .204 .1501 .043 .005 .005 .005 .005 .005 .005 .005 .00	.312 .243 .197 .075 .022 -023 -033 -033 -026 -030 -017 -017 -017	.353 .286 .239 .179 .116 .059 .012 .006 .003 .008 .018	.374 .310 .261 .200 .135 .027 .039 .025 .033 .027 .033

(e) $\alpha=15^{\circ}$, Re=0.39×10⁶ per inch

	<u> </u>	Radial angle, $ heta$, deg																													
d X	0	15	30	45	60	75	90	105	120	135	140	145	150	155	160	165	170	175	180	190	200	210	220	240	255	270	285	300	315	330	345
0.22 .56 .89 1.21 2.06 2.50 3.62 3.62 4.50 4.50 5.39 6.72 7.17 8.06 8.50 8.95 9.83	.441 .490 .326 .245 .170 .116 .100 .098 .093 .089 .080 .083 .081 .077 .088 .092	.492 .433 .380 .310 .230 .158 .106 .086 .078 .074 .073	.453 .390 .337 .270 .196 .124 .075 .046 .043 .038 .038 .038 .038 .025 .025 .025 .023 .029	.383 .321 .270 .208 .140 .073 .027 .002 -006 -011 -018 -021 -036 -030 -030 -028 -028	.297 .241 .191 .136 .073 .012 058 068 072 081 086 090 090 104 100 098 098	.206 .154 .060 .060 .091 .121 .137 .149 .151 .149 .150 .150 .148 .148	.125 .076 .034 .008 .062 .111 .174 .186 .186 .185 .172 .150 .133 .115 .108 .082 .082	.062 .017 057 108 151 177 183 177 166 151 120 121 120 078 078 078 060 055	.024018051084125164187189180156111101096096096096	0.043 .015 .019 .018 .076 .115 .171 .179 .175 .180 .176 .188 .150 .150 .126 .097 .067	.016 -018 -073 -073 -109 -141 -166 -177 -184 -185 -174 -162 -137 -067 -073 -065 -073	.019 013 068 101 123 124 124 124 172 175 1203 175 148 085 074 065 056	.021 010 035 095 113 102 129 129 185 187 129 076 076 076 065 058	.025 006 033 063 085 076 076 126 145 152 152 152 152 152 084 084 085 084 086	.028 004 032 060 089 076 060 054 064 064 094 119 119 119 107 103	.028 003 036 076 0792 071 058 048 055 071 076 097 098 097 098 097 082	029 - 003 - 024 - 059 - 089 - 040 - 040 - 042 - 032 - 037 - 076 - 076 - 076 - 067 - 067 - 067	. 024 - 039 - 039 - 058 - 079 - 050 - 033 - 025 - 025 - 021 - 040 - 059 - 066 - 069 - 065 - 066	.025 -001 -018 -057 -076 -079 -046 -030 -007 -006 -016 -040 -058 -065 -068 -068 -068	.029 003 029 058 077 086 045 045 027 027 026 079 079 078 078 078 078	.026 005 062 095 095 095 076 076 098 099 099 107 115 114 092 088 088 088	.019 010 036 067 101 124 120 140 140 182 182 183 183 185 146 112 088 089 055	.011 016 041 069 104 133 138 122 168 178 188 191 179 141 120 099 085 079	.020 022 052 084 124 175 171 173 157 124 107 105 104 092 082 079 078	.060 .003 073 120 162 191 158 176 140 125 102 096 085 081 071	.121 .060 .023 .025 076 124 160 178 155 148 133 113 103 096 086 096 101	.183 .137 .094 .014 015 123 135 135 155 155 151 135 155 120 102 102 102	.273 .223 .192 .056 003 045 062 075 067 086 096 098 098 098 098 098 088	.305 .259 .195 .019 .019 .010 022 015 033 033 033 033 033 039 029	.433 .376 .258 .113 .048 .048 .039 .048 .085 .086 .086 .086 .088 .088	0.578 .485 .425 .374 .223 .151 .099 .083 .079 .069 .061 .069 .064 .069 .064 .059 .064

TABLE I.- EXPERIMENTAL PRESSURE COEFFICIENTS FOR MODEL AT VARIOUS ANGLES OF ATTACK AND REYNOLDS NUMBERS; $M_{\rm O}$ = 1.98 - Continued (f) α =15°, Re=0.39×10° per inch with tunnel turbulence grid

i														Radia	l angle	, θ, α	leg													
d .	0	15	30	45	60	75	90	105	120	135	140	145	150	155	160	165	170	175	180	185	190	195	200	210	215	220	225	240	255	270
0.22	0.600	0.579			0.362	0.264			0.077			0.065													0.061	0.062	0.064	0.084	0.134	0.207
.56 .89	.522	.506		- 382	.297	.206			.029					.030			-034		.034			.031						0.029		
.89	-437	.426	.381	.313	.233		.075	.017	012	015	014	009	006	003	001	.000	.001	.003	.002	.002	.000	002	003	009	012	017	019	017	.015	
1.22		-374	.330	.263	.186	.107	.036	019	045	044	042	037	034	031	028	1025	- 020	015	015	017	022	027	029	037	040	044	048	048	020	.033
1.61	.324	.306	.265	.203	.130 .066		011	001	001	0/9	075	066	061	1057	1023	048	039	037	035	036	038 061	047	052	003	069	077	082	087	064	017
2.50		.155	.121	.069			- 100	- 158	- 162	112	100	- 113	003	016	1000	001	- 080	057	- 076	- 077	081	- 086	- 080	- 100	- 11/	- 100	- 111	120	- 15)	118
2.95	.115	.103	.071		- 037	- 003	- 116	- 185	- 188	- 161	- 146	- 122	- 108	- 100	- 006	- 003	- 087	- 083	- 081	- 083	087	- 000	- 006	- 100	- 122	- 111	- 160	- 100	- 188	153
3.62	100	.085	.051	001	060	117	170	107	185	158	133	102	086	079	073	066	057	01/8	046	052	062	072	078	095	108	137	150	191	197	172
4.06	.097	.082	.046	007	069	129	182	190	178	158	141	111	090	078	070	061	- 046	034	033	042	056	069	077	097	114	- 141	161	185	- 192	185
4.50		.079																			050									
4.95	.094	.079																			042									
5-39	.091	.076																			040									
5.84	.092	.075	.038	019	086	145	142	109	108	141	159	171	167	137	093	054	026	010	005	015	038	072	112	176	176	163	144	112	125	158
6.28	.091	.077	.037	023	092	139	130	100	099	134	150	166	172	140	093	054	029	016	011	021	040	071	117	175	163	148	133	099	110	143
6.72		.075																			047									
7.17	.095	-076																			059									
7.61 8.06	.094	.076		031																	071									
8.50		.082																			069 069									
8.95		.082																			064									
9.39																					053									
9.83		.079																										045		

HASSATONN

(g) $\alpha=15^{\circ}$, Re=0.13x10⁶ per inch

											F	Radia1	angle,	θ, de	g											
₫ x	0	15	30	45	60	75	90	105	120	135	140	145	150	155	160	165	170	175	180	190	200	210	550	240	255	270
		0.584															0.059									
.56	.526	.511	.463		.302	.209		.064								.022										.111
.89		.436	.391	.323	.243 .191	.156 .111											009 034									.05
1.22	.382	.371 .302	.331	.204	.133												061									
2.06		.220	.188	.129													086									
2.50		.144	.115	.065	.005	056	105	147	153	140	139	138	136	137	136	124	098	090	087	088	127	134	138	143	157	137
2.95		.095	.068	.020	036	096	135	170	162	154	153	155	155	162	163	122	096	090	088	088	134	159	159	163	174	16
4.06		.070															051									
4.50		.079	.050														025 053									
4.95 5.39		.069															076									
5.84		.073															085									
6.28		.066	.028	029	093	123	114	115	117	135	137	139	138	145	-,133	106	085	075	066	075	120	137	135	118	113	112
6.72		.062															095									
7.17		.063															098									
7.61		.062															096 085									
8.50		.071	.034	026	- 078	- 000	- 085	- 086	- 085	094	- 095	095	093	096	097	093	087	083	076	080	095	093	092	086	082	082
8.95		.075	.032	022	078	090	083	082	082	086	087	088	086	087	086	084	079	075	070	073	086	085	085	080	079	079
9.39	.088	.075	.0331	022	077	089	082	074	079	081	082	082	081	082	081	078	074	069	066	069	080	079	079	077	070	07
9.83	.083	.071	.028	028	081	083	072	058	070	074	078	077	075	078	078	074	071	066	062	066	076	075	076	072	052	062

TABLE I.- EXPERIMENTAL PRESSURE COEFFICIENTS FOR MODEL AT VARIOUS ANGLES OF ATTACK AND REYNOLDS NUMBERS; $M_O=1.98$ - Concluded (h) $\alpha=20^{\circ}$, Re=0.39×10⁶ per inch

												Radial	angle,	θ, de	g											
<u>x</u>	0	15	30	45	60	75	90	105	120	135	140	145	150	155	160	165	170	175	180	190	200	510	220	240	255	270
.56 .892 1.61 2.50 2.50 4.50 4.50 4.50 5.39 4.50 6.77 7.61 8.650 8.95	.597 .527 .442 .350 .267 .179 .175 .171 .189 .159 .159 .154 .166 .169	.657 .571 .420 .330 .249 .154 .150 .149 .153 .140 .141 .141 .141	.581 .502 .433 .359 .2757 .143 .102 .097 .096 .1089 .085 .085 .087	.473 .401 .337 .272 .122 .072 .031 .028 .020 .020 .013 .005 .005 .005	343 3486 3466 357 367 367 368 368 368 368 368 368 368 368	.210 .154 .107 .056 056 095 136 141 152 158 160 158 158 158	.085 .037 091 094 138 171 202 155 146 144 145 139 133 133	013 055 088 126 170 204 165 153 153 145 146 138 136 126 126	062102132165187202179167143141142135133127	047 081 108 138 178 204 214 206 188 161 145 136 131 130 123	042	039 075 102 137 176 193 228 240 222 204 176	037 074 103 138 176 181 229 245 29 212 183 153 124 125 125 127 128	036 075 102 186 224 254 238 295 195 134 126 129 130 130	037 081 110 126 155 209 200 198 206 199 179 151 133 131 127	038 080 082 094 124 160 145 169 171 154 136 130 126 126 126	009 024 038 057 107 116 110 123 135 142 150 148 129 129 115	.004 022 038 056 099 092 104 112 121 131 131 131 131 109 115 109	.003 022 039 078 094 093 089 100 1126 132 131 108 117 110	0.006017022039056085100114125140142114123105	0.004 037 081 113 128 147 170 202 197 201 141 125 137 126	-0.001 -039 -075 -109 -132 -169 -224 -243 -226 -196 -183 -151 -126 -125 -125	-0.011 044 078 105 133 174	-0.017 -0.065 -1.05 -1.136 -1.164 -2.02 -2.12 -1.186 -1.157 -1.157 -1.157 -1.157 -1.135 -1.130 -1.131 -1.131 -1.112		0.153 .086 .024 -017 066 116 160 156 156 157 145 145 139 131
9.39 9.83		.146 .151	.089 .092		084 086				100 099	106 102	106 101	109 098	111	119	122	121	114	106	103	112	115	103		101	099 104	140

(i) $\alpha=20^{\circ}$, Re=0.39x10⁶ with tunnel turbulence grid

												R	dial a	angle,	θ, deg	3		_											
- x	0	15	30	60	75	90	105	120	135	140	145	150	155	160	165	170	175	180	185	190	195	200	210	215	220	225	240	255	270
0.22 .56 .82 1.61 2.50 2.95 3.06 4.50 4.50 4.50 5.39 5.84 6.72 7.17 7.06 8.93 9.83	.184 .183 .179	.639 .550 .490 .412 .323 .244 .185 .160 .152 .149 .148 .153 .147 .146 .153 .157 .157 .159 .157	.107 .100 .096 .094 .091 .096 .091 .090 .093 .085 .096 .096	.321 .258 .210 .082 .022 .022 .025 .055 .066 .072 .078 .079 .084 .092 .094 .091	.191 .136 .044 016 067 136 136 159 160 159 163 158 158 158	.073 .026 010 053 103 1204 184 156 151 156 151 151 147 141 132 123	019 062 095 175 210 229 205 176 159 144 136 140 140 140	100126160189208210191177162147139134132131128117	046 081 109 141 175 204 221 213 213 228 215 189	042 076 106 136	039 076 105 167 201 226 234 217 188 119 114 116 114 115 115	075 104 133 156 218 218 250 221 193 162 137 115 115 115 115	077 103 133 153 153 207 231 242 237 227 227 116 114 114 114 114	- 078 - 101 - 125 - 146 - 186 - 185 - 191 - 194 - 192 - 182 - 159 - 132 - 120 - 118 - 113 - 114 - 114	037 069 085 108 131 131 134 159 163 153 153 112 113 113 113 113	017 038 044 062 083 105 117 090 110 124 131 139 136 125 104 105 104 104	003 027 040 058 079 097 105 074 077 095 116 124 126 126 120 120 098 098	- 001 - 024 - 058 - 079 - 097 - 104 - 076 - 076 - 076 - 114 - 121 - 121 - 121 - 121 - 121 - 108 - 101 - 096 - 094 - 100 - 100	012 029 042 059 082 109 084 088 106 117 125 131 133 124 104 098 098 098	032 042 047 064 089 112 114 121 133 139 147 150 148 132 112 112 103 105 111	039 075 088 113 136 173 175 178 175 179 131 116 175 159 131 111 111	038080104116138160226226210237188150120115109116	040 076 103 133 160 219 239 219 198 165 115 115 115 117 119	044 078 105 137 169 201 237 217 195 161 132 115 111 110 118 117 108	048 080 107 141 203 227 219 224 235 218 198 163 138 122 113 113 105 114	-0.018	-0.010 -0.064 -103 -133 -133 -127 -221 -203 -197 -121 -175 -158 -142 -143 -127 -121 -110 -107	0.056 011 062 095 136 179 214 231 208 197 176 156 150 147 145 131 128 119 119 119	0.170 .091 .028 .009 -057 -150 -183 -195 -203 -189 -169 -169 -162 -157 -152 -144 -137 -135 -135

Orifice No.	x/d	Orifice No.	x/d
_	0.22	13	5.39
2	0.56	14	5.84
3	0.89	15	6.28
4	1.22	16	6.72
5	1.61	17	7.17
6	2.06	18	7.61
7	2.50	19	8.06
8	2.95	20	8.50
9	3.62	21	8.95
10	4.06	22	9.39
11	4.50	23	9.83
12	4.95		
		V	VACA

1_n=3d

Figure 1.- Model dimensions and orifice locations.

Pressure coefficient, $G_{
m p}$

-.14 └

UNCLASSIFIED

Radial angle, θ , deg. Figure 2.- Circumferential pressure distributions over top half of model; $\alpha = 15^{\circ}$, R. 10.39×10⁶ per inch, and M_o = 1.98.

Figure 3.- Comparison of theoretical and experimental longitudinal pressure distributions at zero angle of attack; $M_O = 1.98$.

Figure 4.- Comparison of theoretical and experimental longitudinal pressure distributions at various angles of attack; $M_0 = 1.98$.

Figure 4.- Continued.

UNCLASSIFIED

Figure 4.- Continued.

$$(d) \theta = 90^{\circ}$$

Figure 4.- Continued.

Figure 4.- Continued.

Figure 4.- Continued.

UNCORSSIFFED

Distance from vertex of model in diameters, $\frac{x}{d}$

(g)
$$\theta = 180^{\circ}$$

Figure 4.- Concluded.

Figure 5.- Experimental circumferential pressure distributions at various angles of attack; $R_e = 0.39 \times 10^6$ per inch, $M_O = 1.98$.

(c) $\frac{x}{d} = 4.06$

(d) $\frac{x}{d} = 5.84$

UNGLASSIFIED

Figure 5. - Concluded.

Figure 6.- Effect of Reynolds number on the circumferential pressure distributions; $M_0 = 1.98$.

Figure.6.- Continued.

Figure 6.- Concluded.

Figure 7.- Comparison at various angles of attack of the normal-force distributions determined by experiment and by potential theory; $M_0 = 1.98$.

Figure 8.- Comparison at various angles of attack of the normal-force distributions determined by experiment and by the theoretical methods of Allen and Kelly; $M_O = 1.98$.

(b) $\alpha = 10^{\circ}$

Figure 8.- Continued.

(c)
$$\alpha = 15^{\circ}$$

Figure 8.- Continued.

Distance from vertex of model in diameters, $\frac{x}{d}$

(d)
$$\alpha = 20^{\circ}$$

Figure 8.- Concluded.

UNCLASSIFIED

Figure 9.- Distributions of viscous crossflow drag coefficients; $M_0 = 1.98$.

(a) Data for little or no Reynolds number effect.

Figure 10.- Correlation of distributions of crossflow drag coefficients; $M_{\rm O}$ = 1.98.

Figure 11.- Correlation of distributions of crossflow drag for two bodies; $M_0 = 1.98$.

Figure 12.- Comparison of theoretical and experimental normal-force and pitching-moment coefficients; $M_O = 1.98$.

Figure 13.- Comparison of theoretical and experimental center-of-pressure locations.

NACLASSIFIED

UNCLASSIFIED