Mathématiques disctères 2 - graphes Cours 2 - représentation des graphes

N. de Rugy-Altherre

Introduction

Introduction

000000

- - Matrice d'adjacence
 - Rappels sur les matrices
 - Théorie spectale des matrices
 - Spectre et matrice d'adjacence
 - Spectre et matrice laplacienne

Les collections (rappels de L1-L2)

Type abstrait : collection.

Plusieurs implémentations de ce type existent et chacunes optimisent un aspect algorithmique :

Implémentation	Accès	Modification	recherche
Tableaux	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Listes chaînées	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$
Hash map	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(1)$
Pile/Listes*	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$

^{*} opérations Accès et Modification restrintes

où n est le nombre d'éléments de la collection.


```
Procedure BFS(G: graphe, v: sommet)
       Variables :
         u.w : sommets
         p: pile de sommets
         n: collection de sommets (hash map?)
       Debut
         p.empiler(v)
         Tant que non vide(p) Faire
9
             w <- p.depiler()
             Pour u dans w.succ() Faire
10
11
               Si non(p.estDans(u)) et non(n.estDans(u)):
12
                 p.empiler(u)
               Fin Si
13
14
            Fin pour
15
            n.ajouter(w)
16
         Fin Tant que
       Fin
17
```

Quel est la complexité de cette fonction?

Probleme

```
Procedure BFS(G: graphe, v: sommet)
       Variables
         u.w : sommets
         p : pile de sommets
              collection de sommets (hash map ?)
       Debut
         p.empiler(v)
         Tant que non vide(p) Faire
9
              w \leftarrow p.depiler()
              Pour u dans w.succ() Faire
10
11
                Si non(p.estDans(u)) et non(n.estDans(u)):
12
                  p.empiler(u)
13
                Fin Si
14
             Fin pour
15
             n.ajouter(w)
16
         Fin Tant que
       Fin
17
```

Quel est la complexité de cette fonction?

- Nombre d'itération de Tant que : |V| = n.
- Nombre d'itération de Pour : au plus 2|E| + n = 2p + n
- Complexité : C(empiler) + nC(depiler) + (2p + n)(C(succ) + 2C(estDans) + C(empiler)) + nC(ajouter)

Problématique

Quel est la complexité de cette fonction?

- Nombre d'itération de Tant que : |V| = n.
- Nombre d'itération de Pour : au plus 2|E| + n = 2p + n
- Complexité : C(p.empiler) + nC(p.depiler) + (2p + n)(C(succ) +C(p.estDans) + C(n.estDans) + C(p.empiler) + C(n.ajouter)

Or

- C(empiler) = C(depiler) = O(1)
- C(p.estDans) = O(n)
- $C(n.estDans) = \mathcal{O}(1)$
- $C(n.ajouter) = \mathcal{O}(n)$
- C(succ) = ???

Soit une complexité de $\mathcal{O}(n(p+n))$. Cette implémentation n'est pas optimale...

Problématique

Une version optimale : utiliser des tableaux pour indiquer la couleur de l'arête (noire ou grise) (cf TP). Dans ce cas,

- C(empiler) = C(depiler) = O(1)
- C(p.estDans) = O(1)
- $C(n.estDans) = \mathcal{O}(1)$
- $C(n.ajouter) = \mathcal{O}(1)$
- *C*(*succ*) =??

Et si $C(succ) = \mathcal{O}(1)$, alors BFS aura une complexité optimale de $\mathcal{O}(p+n)$.

Critères d'optimisation

Les principales facettes des algorithmiques à optimiser sont :

- L'accès à une arête : étant donné deux sommets v_i et v_j , $(v_i, v_j) \in E$?
- L'accès à un voisin : étant donné un sommet v trouver un sommet $w \in v$ tel que $(v, w) \in E$.
- La modification d'un graphe : ajout ou suppression d'une arête.
- La consommation en mémoire du graphe.

- Introduction
- 2 Listes d'adjacence
- Matrices
 - Matrice d'adjacence
 - Rappels sur les matrices
 - Théorie spectale des matrices
 - Spectre et matrice d'adjacence
 - Spectre et matrice laplacienne

Listes d'adjacence

Définition

Un graphe G = (S, A) est représenté par

- la collection de ses sommets
- la collection succ où succ[s] est une liste chaînée contenant les successeurs de s.

Complexité

	Arête	Voisin	modif	mémoire
Liste chaînées	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	n+2p

- Arête: étant donné deux sommets v_i et v_i , $(v_i, v_i) \in E$?
- Voisin : étant donné un sommet v, trouver $w \in V$ tel que $(v, w) \in E$
- Modification : Ajouter/supprimer une arête
- Mémoire : consommation en mémoire

- Introduction
- 2 Listes d'adjacence
- Matrices
 - Matrice d'adjacence
 - Rappels sur les matrices
 - Théorie spectale des matrices
 - Spectre et matrice d'adjacence
 - Spectre et matrice laplacienne

Définition

La matrice d'adjacence d'un graphe G = (S, A) est une matrice Mtelle que $M[s_i][s_i] = 1$ ssi $(s_i, s_i) \in A$.

Exemples:

M	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	1	1	1
2	0	1	0	1	0	0
3	0	1	1	0	0	1
4	1	1	0	0	0	1
5	0	1	0	1	1	0

Ν	1	0	1	2	3	4	5
C		0	1	0	1	0	0
1		0	0	0	0	1	0
2		0	0	0	0	1	1
3		1	1	0	0	0	0
4		0	0	0	1	0	0
5		0	0	0	0	0	0 0 1 0 0

Complexité

	Arête	Voisin	modif	mémoire
Listes chaînées	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	n + p
Matrices d'adjacence	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(1)$	n^2

- Arête: étant donné deux sommets v_i et v_j , $(v_i, v_j) \in E$?
- Voisin : étant donné un sommet v, trouver $w \in V$ tel que $(v,w) \in E$
- Modification : Ajouter/supprimer une arête
- Mémoire : consommation en mémoire

- Introduction
- 2 Listes d'adjacence
- Matrices
 - Matrice d'adjacence
 - Rappels sur les matrices
 - Théorie spectale des matrices
 - Spectre et matrice d'adjacence
 - Spectre et matrice laplacienne

Polynôme

- Un polynôme à une variable est une fonction mathématique utilisant :
 - Une variable formelle (X)
 - Des constantes réelles
 - Les opérations $+, -, \times$
- Le degré d'un polynôme est le plus grande puissance du X
- Un polynôme P à une variable X s'évalue en $v \in \mathbb{R}$ en remplaçant sa variable par la valeur d'évaluation et en effectuant les calculs. Le résultat est un réel noté P(v)
- Une racine r est un réel tel que P(r) = 0

Exemple: P(X) = (X+1)(X-2) est de degré 2 et a deux racines 2 et -1.

Théorème fondamental de l'algèbre

Un polynôme de degré n admet au plus n racines.

Produit

Produit

Soit A une matrice $m \times n$ et B une matrice $n \times p$, alors la matrice produit $C = A \times B$ est de taille (m, p) telle que

$$\forall i \in [1, m] \, \forall j \in [1, \rho], \, (C)_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

$$rac{m{c_{12}}}{m{c_{12}}} = \sum_{r=1}^{z} a_{1r} b_{r2} = a_{11} b_{12} + a_{12} b_{22}$$

$$c_{33} = \sum_{r=1}^2 a_{3r} b_{r3} = a_{31} b_{13} + a_{32} b_{23}$$

Produit

Propriété du produit

Le produit matriciel est

- Associatif : $A \times (B \times C) = (A \times B) \times C$
- Distributif par rapport à l'addition : $A \times (B + C) = A \times B + A \times C$
- Il n'est pas commutatif : $\exists A \exists B, A \times B \neq B \times A$

Déterminant

Définitions

- Une permutation σ à n élément est une bijection de [1, n] dans [1, n] (une réorganisation des éléments).
- Notons Θ_n l'ensemble des permutations à n éléments.
- La signature $\epsilon(\sigma)$ d'une permutation est la parité du nombre de paires (i, j) inversées, c'est à dire telle que i < j et $\sigma(i) > \sigma(i)$.

Déterminant

Soit A une matrice carrée de taille $n \times n$.

$$\det(A) = \sum_{\sigma \in \theta_n} \epsilon(\sigma) \prod_{j=1} A_{\sigma(j),j}$$

Déterminant 2 et 3

$$\det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 y_2 - x_2 y_1$$

$$\det \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = x_1 y_2 z_3 + x_2 y_3 z + y_1 z_2 x_3 - x_3 y_2 z_1 - x_2 y_1 z_3 - y_3 z_2 x_1$$

(règle de Sarrus)

Calculs

Distribution par rapport à une ligne

Soit A une matrice $n \times n$ et $(i,j) \in [1,n]^n$. La matrice $A_{i,j}$ de taille $n-1 \times n-1$ est la matrice A où on a enlevé la ligne i et la colonne i.

Alors le développement d'une matrice par rapport à une ligne i est :

$$\det(A) = \sum_{i=1}^n (-1)^{i+j} a_{i,j} \det(A_{i,j})$$

Exempledun développement par rapport à la première ligne :

$$\det \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} =$$

$$x_1 \det \begin{pmatrix} y_2 & y_3 \\ z_2 & z_3 \end{pmatrix} - x_2 \det \begin{pmatrix} y_1 & y_3 \\ z_1 & z_3 \end{pmatrix} + x_3 \det \begin{pmatrix} y_1 & y_2 \\ z_1 & z_2 \end{pmatrix}$$

Inverse

Définitions

 La matrice identité est une matrice carrée avec des 0 partout sauf sur diagonale.

$$Id_n = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Soit A une matrice $n \times n$. Son inverse est une matrice B de taille $n \times n$ telle que

$$A \times B = B \times A = Id_n$$

Théorème

Une matrice carrée A est inversible si et seulement si $det(A) \neq 0$.

Spectre

Définitions

Soit A une matrice carrée $n \times n$

• Le polynôme minimal $p_A(X)$ est le déterminant de la matrice $XI_n - A$. Par exemple si n = 3, c'est le polynôme de

$$\begin{pmatrix} X - x_1 & -x_2 & -x_3 \\ -y_1 & X - y_2 & -y_3 \\ -z_1 & -z_2 & X - z_3 \end{pmatrix}$$

- Les valeurs propres de A sont les racines de ce polynômes.
- Le spectre d'une matrice est l'ensemble de ses valeurs propre.

- 1 Introduction
- 2 Listes d'adjacence
- Matrices
 - Matrice d'adjacence
 - Rappels sur les matrices
 - Théorie spectale des matrices
 - Spectre et matrice d'adjacence
 - Spectre et matrice laplacienne

Spectre d'une matrice

Définition

- Une permutation à *n* éléments est une fonction bijective de [1, n] dans [1, n]. Notons S_n l'ensemble des permutations à nélements.
- La signature $\epsilon(\sigma)$ d'une permutation σ à n éléments vaut 1 si le nombre de changement est pair, -1 sinon.
- Soit A une matrice. Le déterminant de A est :

$$\det(A) = |A| = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{j=1}^n A_{\sigma(i),i}$$

- Une permutation à *n* éléments est une fonction bijective de [1, n] dans [1, n]. Notons S_n l'ensemble des permutations à nélements.
- La signature $\epsilon(\sigma)$ d'une permutation σ à n éléments vaut 1 si le nombre de changement est pair, -1 sinon.
- Soit A une matrice. Le déterminant de A est :

$$\det(A) = |A| = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{j=1}^n A_{\sigma(i),i}$$

$$\det \begin{pmatrix} x & x' \\ y & y' \end{pmatrix} = xy' - yx'$$

- Une permutation à n éléments est une fonction bijective de [1, n] dans [1, n]. Notons S_n l'ensemble des permutations à n élements.
- La signature $\epsilon(\sigma)$ d'une permutation σ à n éléments vaut 1 si le nombre de changement est pair, -1 sinon.
- Soit A une matrice. Le déterminant de A est :

$$\det(A) = |A| = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n A_{\sigma(i),i}$$

$$\det\begin{pmatrix} x & x' & x'' \\ y & y' & y'' \\ z & z' & z'' \end{pmatrix} = x \det\begin{pmatrix} y' & y'' \\ z' & z'' \end{pmatrix} - x' \det\begin{pmatrix} y & y'' \\ z & z'' \end{pmatrix} + x'' \det\begin{pmatrix} y & y' \\ z & z' \end{pmatrix}$$

- Une permutation à n éléments est une fonction bijective de [1, n] dans [1, n]. Notons S_n l'ensemble des permutations à n élements.
- La signature $\epsilon(\sigma)$ d'une permutation σ à n éléments vaut 1 si le nombre de changement est pair, -1 sinon.
- Soit A une matrice. Le déterminant de A est :

$$\det(A) = |A| = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{j=1}^n A_{\sigma(i),i}$$

La complexité du calcul du déterminant d'une matrice de taille $n \times n$ est de $\mathcal{O}(n^3)$ ou moins (la meilleure est actuellement de $\mathcal{O}(n^{2.373})$)

Valeurs propres

Valeur propre d'une matrice

Soit A est une matrice carrée de taille $n \times n$.

- Soit Id_n la matrice identité $n \times n$.
- Le Polynôme minimal P_A de A est le déterminant de $XId_n A$.
- Les valeurs propres de A sont les racines de P_A.

En d'autres termes :

 $(\lambda_1, \ldots, \lambda_n)$ valeur propre de A ssi $\forall i \in [1, n]$,

$$\det \begin{pmatrix} \lambda_{i} - a_{1,1} & -a_{1,2} & \dots & -a_{n,n} \\ -a_{1,1} & \lambda_{i} - 1, 2 & \dots & -a_{n,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1,1} & -a_{1,2} & \dots & \lambda_{i} - a_{n,n} \end{pmatrix} = 0$$

Sa matrice d'adjacence :

$$\begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Son polynôme minimal

$$\det\begin{pmatrix} X & 0 & -1 & -1 & 0 & 0 & 0 \\ 0 & X & -1 & -1 & -1 & -1 & 0 \\ -1 & -1 & X & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & X & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & X & 0 & -1 \\ 0 & -1 & 0 & 0 & 0 & X & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & X \end{pmatrix}$$

Son polynôme minimal

$$\det\begin{pmatrix} X & 0 & -1 & -1 & 0 & 0 & 0 \\ 0 & X & -1 & -1 & -1 & -1 & 0 \\ -1 & -1 & X & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & X & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & X & 0 & -1 \\ 0 & -1 & 0 & 0 & 0 & X & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & X \end{pmatrix}$$

$$=X^7-4X^5-3X^3+2X^2+4X$$

Son polynôme minimal

$$\det\begin{pmatrix} X & 0 & -1 & -1 & 0 & 0 & 0 \\ 0 & X & -1 & -1 & -1 & -1 & 0 \\ -1 & -1 & X & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & X & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & X & 0 & -1 \\ 0 & -1 & 0 & 0 & 0 & X & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & X \end{pmatrix}$$

$$=X^7-4X^5-3X^3+2X^2+4X$$

Ses racines sont:

-2.158, -0.726, 0.999, 1, 2.063 et 0

- 1 Introduction
- 2 Listes d'adjacence
- Matrices
 - Matrice d'adjacence
 - Rappels sur les matrices
 - Théorie spectale des matrices
 - Spectre et matrice d'adjacence
 - Spectre et matrice laplacienne

Propriété du spectre de l'adjacente

Théorème

Soient G un graphe à n sommets et A sa matrice d'adjacence. Soit $\lambda_0, \dots, \lambda_p$ ses valeurs propres. Soit $\rho = \max_{i \in [0,p]} \lambda_i$ la plus grande de ces valeurs propres. Alors

G est connexe ssi

$$2\cos(\frac{\pi}{n+1}) \le \rho \le n-1$$

- G contient un cycle de longueur impaire ssi ρ et $-\rho$ sont des valeurs propres
- Lien entre ρ et le nombre chromatique.

Valeurs propres

-2.158

-0.726

0.999

2.063

Exemple

Valeurs propres

-2.158

-0.7260.999

2.063

0

Remarque : $\rho = max(\lambda) = 2.063$. II vérifie bien que :

$$2\cos(\frac{\pi}{n+1})=2\cos(\pi/8)$$

$$= 1.84 \le \rho \le n - 1 = 6$$

Exemple

Valeurs propres

-2.158-0.7260.999

2.063

Remarque : $\rho = 2.063$ est la plus grande des valeurs propres mais pas $-\rho$, le graphe n'a pas de cycle de longueur impaire.

Problème du cycle impaire

Problème

Étant donné un graphe G = (V, E) avec |V| = n, dire s'il existe un cycle de longueur impaire.

Algorithmes possibles:

- Si non orienté, faire un DFS : chaque arête arrière/avant est dans un cycle. $O(n^2)$ (O(n) pour trouver les cycles puis pour chaque cycle O(n) pour d terminers at aille).
- Si orienté, faire n DFS pour trouver les cycles. $O(n^2)$
- Via le théorème spectale : $O(n^{2.136})$ mais avec des améliorations et des heuristiques possibles.

Définition

Soit G = (V, E) un graphe. Un ensemble indépendant dans G (ou stable) est $S \subseteq V$ un ensemble de sommets tel que :

$$\forall v, w \in S(v, w) \notin E$$

Définition

Soit G = (V, E) un graphe. Un ensemble indépendant dans G (ou stable) est $S \subseteq V$ un ensemble de sommets tel que :

$$\forall v, w \in S(v, w) \notin E$$

Définition

Soit G = (V, E) un graphe. Un ensemble indépendant dans G (ou stable) est $S \subseteq V$ un ensemble de sommets tel que :

$$\forall v, w \in S(v, w) \notin E$$

Complexité

Le problème de recherche du stable maximum dans un graphe est NP-complet et n'a pas d'approximations connues.

Définition

Soit G = (V, E) un graphe. Un ensemble indépendant dans G (ou stable) est $S \subseteq V$ un ensemble de sommets tel que :

$$\forall v, w \in S(v, w) \notin E$$

Théorème

Soit p_+, p_0, p_- repectivement les nombres de valeurs propres positives, nulles et négatives la matrice d'adjacence de G. Alors la taille t du plus grand stable de G vérifie

$$t \leq p_0 + \max(p_-, p_+)$$

Valeurs propres

$$-2.158$$
 -0.726
 0.999
 1

2.063

$$\begin{array}{rcl} p_0 & = & 1 \\ \text{Donc} & p_- & = & 2 \end{array}$$

D'après le théorème, la taille t de la plus grande stable est

$$t \le p_0 + max(p_-, p_+) = 1 + 3 = 4$$

- Introduction
- 2 Listes d'adjacence
- Matrices
 - Matrice d'adjacence
 - Rappels sur les matrices
 - Théorie spectale des matrices
 - Spectre et matrice d'adjacence
 - Spectre et matrice laplacienne

Matrice Laplacienne

Définition

Soit G un graphe avec n sommets v_1, \ldots, v_n . La matrice laplacienne L de ce graphe est une matrice $n \times n$ telle que :

$$L_{i,j} = \begin{cases} \deg(v_i) & \text{si } i = j \\ -1 & \text{si } (v_i, v_j) \in E \\ 0 & \text{sinon} \end{cases}$$

Autrement, si on note A la matrice d'adjacence et D la matrice des degrés (avec des 0 partout sauf sur la diagonale où $d_{i,j} = \deg(v_i)$), alors

$$L = D - A$$

Nombre de composantes connexes

Théorème

Soit G un graphe, L sa matrice laplacienne et $\lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_m$ ses valeurs propres triés.

Alors $\lambda_r = 0$ ssi G a r composantes connexes.

Exemple

Soit G le graphe Sa matrice laplacienne est :

$$\begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Son polynôme minimal est $P(X) = X^3(X - 1^2)(X^2 - 6X - 9)$. Ses valeurs propres sont :

$$-1.24 | 0 | 0 | 0 | 1 | 1 | 7.21$$

Elle a 3 composantes connexes.

Matrice Laplacienne normalisée

Définition

Soit G un graphe avec n sommets v_1, \ldots, v_n . La matrice laplacienne normalisée L de ce graphe est une matrice $n \times n$ telle que :

$$L_{i,j} = egin{cases} 1 & ext{si } i = j \ rac{-1}{\sqrt{\deg(v_i)\deg(v_j)}} & ext{si } (v_i, v_j) \in E \ 0 & ext{sinon} \end{cases}$$

Autrement, si on note A la matrice d'adjacence et D la matrice des degrés (avec des 0 partout sauf sur la diagonale où $d_{i,j} = \deg(v_i)$), alors

$$L = I_n - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

Multiplicité d'une racine

Définition

Soit P un polynôme et r une de ses racines (i.e., P(r) = 0). La multiplicité de cette racine est le plus grand m pour lequel il existe un polynôme Q tel que

$$P(X) = (X - r)^m Q(X)$$

Par exemple le polynôme $P(X) = X^4 + X^3 - 3X^2 + 2X + 2$ a comme racine -1, -2 avec une multiplicité de 1 et 1 avec une multiplicité de 2. En effet,

$$P(X) = (X-1)^2(X+1)(X+2)$$

Théorème

Soit G un graphe, L sa matrice laplacienne normalisée et P_L le polynôme minimal de L. Alors

- 0 est une racine de P_L
- La multiplicité de 0 est le nombre de composantes connexes de G.

Autres

L'étude de la matrice laplacienne permet de calculer

- Le nombre d'arbres couvrant de G (Théorème de Kirchhoff).
- Le nombre de partition de *G* (partiionnement spectral).