OBJECTIVES:

- (1) Set up a cup calorimeter
- (2) Determine the heat capacity of a cup calorimeter, C_{cal}.
- (3) Determine the molar enthalpy change, $\Delta H/n$ for the neutralization reaction of hydrochloric acid, HCl and sodium hydroxide, NaOH.

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$$

(4) Determine the molar enthalpy change, $\Delta H/n$, associated with the neutralization of acetic acid, $HC_2H_3O_2$, with sodium hydroxide, NaOH.

$$HC_2H_3O_2$$
 (aq) + NaOH(aq) \rightarrow NaC₂H₃O₂(aq) + H₂O(I)

(5) Determine the specific heat of a metal, C_{metal.}

PROCEDURE:

- (1) Construct 2 set-ups as shown in Figure 1
 - a. Label the set-ups as "A" and "B" on the outside of the beaker. (Do not write on the foam cups). Set-up "A" will serve as your calorimeter. Set-up "B" is simply a well-controlled staging point.

Figure 1 – Cup calorimeter set-up. For each set-up, use 2 nested coffee cups with a lid and thermometer. Stabilize each set-up in a beaker as shown.

- (2) Determine the heat capacity of the cup calorimeter (set-up "A"), C_{cal} , as follows:
 - a. Use a 100mL graduated cylinder to transfer 50.0mL of **COLD** tap water into "A".
 - b. Use a 100mL graduated cylinder to transfer 50.0mL of **HOT** water into "B".
 - c. Wait a couple minutes for the temperatures of A and B to stabilize. Then, record the temperatures, T_{cold} and T_{hot} .
 - d. Pour and swirl the contents of "B" into "A" and record the temperature every 15 seconds for a couple minutes. record the highest observed temperature, T_{mixture}.
 - e. Calculate the heat released by the hot water, q_{hot}

$$q_{hot} = mc_w \Delta T$$

m = mass of the hot water = 50.0g

 c_w = specific heat of water = 4.18 J/(g°C)

$$\Delta T = T_{hot} - T_{mixture}$$

f. Calculate the heat absorbed by the cold water, q_{cold}

$$q_{cold} = mc_w \Delta T$$

m = mass of the cold water = 50.0g

 c_w = specific heat of water = 4.18 J/(g°C)

$$\Delta T = T_{mixture} - T_{cold}$$

g. Calculate the heat absorbed by the calorimeter, q_{cal}

$$q_{cal} = q_{hot} - q_{cold}$$

h. Calculate the heat capacity of the calorimeter, C_{cal}

$$C_{cal} = q_{cal}/\Delta T$$

$$\Delta T = T_{\text{mixture}} - T_{\text{cold}}$$

Table 1 – Heat capacity of calorimeter "A"

Quantity	Trial		
	1	2	3
T _{cold} (°C)			
T _{hot} (°C)			
T _{mixture} (°C)			
q _{hot} (J)			
q _{cold} (J)			
q _{cold} (J) q _{cal} (J)			
C _{cal} (J/°C)			

Average C _{cal} =	J/°(
Standard Deviation of C _{cal} =	J/°(
95% CL of C =	1/° <i>(</i>

(3) Determine the molar enthalpy change, $\Delta H/n$, associated with the neutralization of hydrochloric acid, HCl, with sodium hydroxide, NaOH.

$$HCI(aq) + NaOH(aq) \rightarrow NaCI(aq) + H_2O(I)$$

- a. Clean and dry the cups of both set-ups, A and B.
- b. Use a 100 mL graduated cylinder to transfer 50.0mL of 1.0M NaOH into set-up "A".
- c. Use a 100mL graduated cylinder to transfer 50.0mL of 1.0M HCl into set-up "B".
- d. Wait a couple minutes for the temperatures of A and B to stabilize. They should stabilize at the same or close to the same temperature (room temp). Record the average temperature of the two set-ups, T_{initial}.
- e. Pour and swirl the contents of "B" into "A" and record the temperature every 15 seconds for a couple minutes. record the highest observed temperature, T_{final}.
- f. Calculate the heat absorbed by the solution, q_{soln.}

$$q_{soln} = m c_{soln} \Delta T$$

 $m = mass of the solution$

m = mass of the solution = 100.0g

 $c_{sol'n} \sim specific heat of water = 4.18 J/(g°C)$

$$\Delta T = T_{final} - T_{initial}$$

g. Calculate the heat absorbed by the calorimeter, $q_{\text{cal.}}$

$$q_{cal} = C_{cal} \Delta T$$

 C_{cal} = (use average value of C_{cal} from Table 1)

$$\Delta T = T_{final} - T_{initial}$$

h. Calculate the heat released by the reaction, q_{rxn} .

$$q_{rxn} = q_{soln} + q_{cal}$$

i. Calculate the enthalpy change of the reaction, ΔH .

$$\Delta H = -q_{rxn}$$
.

- j. Calculate the moles of water produced, n_{water}.
 - 0.050 moles of each reactant is consumed, which produces 0.050 mole of water, n_{water}.
- k. Calculate the molar enthalpy change of the reaction, $\Delta H/n$.

 Δ H/n = "molar enthalpy change" or "molar heat of reaction" = Δ H/n_{water}.

Table 2 – Molar Enthalpy Change, $\Delta H/n$, of the neutralization of hydrochloric acid with sodium hydroxide.

Quantity	Trial		
	1	2	3
T _{intial} (°C)			
T _{final} (°C)			
q _{soln} (J)			
q _{cal} (J)			
q _{rxn} (J)			
ΔH (J)			
n _{water} (mol)			
ΔH/n (J/mol)			

J/mo	Average Δ H/n =
J/mo	Standard Deviation of $\Delta H/n = $
J/mo	95% CI of ΔH/n =

(4) Determine the molar enthalpy change, $\Delta H/n$, associated with the neutralization of acetic acid, $HC_2H_3O_2$, with sodium hydroxide, NaOH.

$$HC_2H_3O_2$$
 (aq) + NaOH(aq) \rightarrow NaC₂H₃O₂(aq) + H₂O(I)

- a. Clean and dry the cups of both set-ups, A and B.
- b. Use a 100 mL graduated cylinder to transfer 50.0mL of 1.0M NaOH into set-up "A".
- c. Use a 100mL graduated cylinder to transfer 50.0mL of 1.0M HC₂H₃O₂ into set-up "B".
- d. Wait a couple minutes for the temperatures of A and B to stabilize. They should stabilize at the same or close to the same temperature (room temp). Record the average temperature of the two set-ups, T_{initial}.
- e. Pour and swirl the contents of "B" into "A" and record the temperature every 15 seconds for a couple minutes. record the highest observed temperature, T_{final}.
- f. Calculate the heat absorbed by the solution, q_{soln.}

$$q_{soln} = m c_{soln} \Delta T$$

m = mass of the solution = 100.0g

 $c_{sol'n} \sim \text{specific heat of water} = 4.18 \text{ J/(g°C)}$

$$\Delta T = T_{final} - T_{initial}$$

g. Calculate the heat absorbed by the calorimeter, $q_{\text{cal.}}$

$$q_{cal} = C_{cal} \Delta T$$

 C_{cal} = (use average value of C_{cal} from Table 1)

$$\Delta T = T_{final} - T_{initial}$$

h. Calculate the heat released by the reaction, q_{rxn} .

$$q_{rxn} = q_{soln} + q_{cal}$$

i. Calculate the enthalpy change of the reaction, ΔH .

$$\Delta H = -q_{rxn}$$
.

- j. Calculate the moles of water produced, n_{water}.
 - 0.050 moles of each reactant is consumed, which produces 0.050 mole of water, n_{water}.
- k. Calculate the molar enthalpy change of the reaction, $\Delta H/n$.
 - Δ H/n = "molar enthalpy change" or "molar heat of reaction" = Δ H/n_{water}.

Table 3 – Molar Enthalpy Change, ΔH , the neutralization of acetic acid with sodium hydroxide.

Quantity	Trial		
	1	2	3
T _{intial} (°C)			
T _{final} (°C)			
q _{soln} (J)			
q _{cal} (J)			
q _{rxn} (J)			
ΔH (J)			
n _{water} (mol)			
Δ H/n (J/mol)			

J/mol	Average $\Delta H/n = $
J/mol	Standard Deviation of $\Delta H/n = $ _
J/mol	95% CI of ΔH/n =

- (5) Determine the specific heat of a metal, c_{metal}.
 - a. Fill the calorimeter (set-up "A") with 100.0mL of cold tap water. Allow the temperature to stabilize.
 - b. Weigh and record the mass of a sample of metal, m_{metal} .
 - c. Heat the metal in a beaker of boiling water for a few minutes. This will raise the temperature of the metal to the boiling point of water (100 $^{\circ}$ C). Record this temperature as T_{metal} .
 - d. Record the stabilized temperature of the water in the calorimeter, T_{water} .
 - e. Use a pair of crucible tongs to quickly transfer the metal from the boiling water into the calorimeter.
 - f. Gently swirl the calorimeter.
 - g. Monitor and record the temperature of the water every 15 seconds for a few minutes. Record the highest temperature as T_{final}.
 - h. Calculate the specific heat of the metal, C_{metal}.

$$\begin{array}{lll} q_{metal} & = q_{water} & + q_{cal} \\ m_{metal} \, C_{metal} \, \Delta T_{metal} & = m_{water} \, C_{water} \, \Delta T_{water} & + C_{cal} \, \Delta T_{water} \\ m_{metal} \, C_{metal} \, (T_{metal} \, T_{final}) & = m_{water} \, C_{water} \, (T_{final} \, - T_{water}) + C_{cal} \, (T_{final} \, - T_{water}) \end{array}$$

Substitute numbers into the equation and solve for C_{metal}

Table 4 – Specific heat of a metal, C_{metal}.

Quantity	Trial		
	1	2	3
T _{metal} (°C)			
T _{water} (°C)			
T _{final} (°C)			
m _{metal} (g)			
m _{water} (g) C _{water} , J/(g°C)			
C _{water} , J/(g°C)			
C _{cal} , J/°C C _{metal} , J/(g°C)			
C _{metal} , J/(g°C)			

Average C _{metal}	J/(g°C
Standard Deviation of C _{metal} =	J/(g°C
95% CI of C _{metal} =	J/(g°C