Structural Bioinformatics (Pt 1)

Alvin Cheng (A16840171)

The PDB archive is the major repository of information about the 3D structures of large biological molecules, including proteins and nucleic acids. Understanding the shape of these molecules helps to understand how they work. This knowledge can be used to help deduce a structure's role in human health and disease, and in drug development. The structures in the PDB range from tiny proteins and bits of DNA or RNA to complex molecular machines like the ribosome composed of many chains of protein and RNA.

The PDB database

First let's see what is in the PDF database - the main repository of protein structures Downloaded composition stats from https://tinyurl.com/statspdb

```
stats <- read.csv("PDBstats.csv", row.names = 1)
stats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	158,844	11,759	12,296	197	73	32
Protein/Oligosaccharide	9,260	2,054	34	8	1	0
Protein/NA	8,307	3,667	284	7	0	0
Nucleic acid (only)	2,730	113	1,467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183,201					
Protein/Oligosaccharide	11,357					
Protein/NA	12,265					
Nucleic acid (only)	4,327					
Other	205					
Oligosaccharide (only)	22					

There is a problem above due to the commas in the numer. This causes R to treat them as characters.

```
stats$X.ray
[1] "158,844" "9,260" "8,307" "2,730" "164" "11"
```

Removing the comma from the dataset by using gsub() to replace commas. We use lapply() to apply gsub() to each column:

```
#stats <- as.data.frame(lapply(stats, function(x) gsub(",", "", x)))
#stats</pre>
```

Here is another way to remove the commas using a function

```
rm.comma <- function(x) {
  as.numeric(gsub(",", "",x))
}</pre>
```

I can use apply() to fix the whole table...

```
pdbstats <- apply(stats, 2, rm.comma)
rownames(pdbstats) <- rownames(stats)
head(pdbstats)</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	158844	11759	12296	197	73	32
Protein/Oligosaccharide	9260	2054	34	8	1	0
Protein/NA	8307	3667	284	7	0	0
Nucleic acid (only)	2730	113	1467	13	3	1
Other	164	9	32	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	183201					
Protein/Oligosaccharide	11357					
Protein/NA	12265					
Nucleic acid (only)	4327					
Other	205					
Oligosaccharide (only)	22					

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
total <- apply(pdbstats,2,sum)
total</pre>
```

X.ray	EM	NMR	Multiple.methods
179316	17602	14119	226
Neutron	Other	Total	
77	37	211377	

```
round(total/total["Total"] * 100, 2)
```

X.ray	EM	NMR	Multiple.methods
84.83	8.33	6.68	0.11
Neutron	Other	Total	
0.04	0.02	100.00	

Q2: What proportion of structures in the PDB are protein?

```
round(pdbstats[1,"Total"] / sum(pdbstats[,"Total"]) * 100, 2)
```

[1] 86.67

```
round(pdbstats[,"Total"] / sum(pdbstats[,"Total"]) * 100, 2)
```

Protein/NA	Protein/Oligosaccharide	Protein (only)
5.80	5.37	86.67
Oligosaccharide (only)	Other	Nucleic acid (only)
0.01	0.10	2.05

Q3: Type HIV in the PDB website search box on the home page and determine how many HIV-1 protease structures are in the current PDB?

skipped because of time constraints

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

This is a 2 Angstrom structure and hydrogen is not visible at this resolution. You need 1 Angstrom or better to be able to see such small atoms like hydrogen

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

Water HOH 308

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document.

Figure 1: Here is a figure of HIP-Pr with the catalytic ASP residues, the MK1 compound and the all important water 308

Another perspective of it

One more picture!

Figure 2: Another picture of the water

Figure 3: Uno Mas!

The bio3d package for structural bioinformatics

```
library(bio3d)
  pdb <- read.pdb("1hsg")</pre>
 Note: Accessing on-line PDB file
  pdb
Call: read.pdb(file = "1hsg")
  Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                                  z o
                                                     Х
1 ATOM
          1
                N < NA >
                         PRO
                                 Α
                                       1 <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
                                       1 <NA> 30.307 38.663 5.319 1 40.62
          2
               CA <NA>
                         PRO
                                 Α
                                      1 <NA> 29.760 38.071 4.022 1 42.64
3 ATOM
               C <NA>
                         PRO
          3
                                       1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
                O <NA>
                         PRO
```

```
1 <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
          5
               CB <NA>
                          PRO
                                  Α
6 ATOM
               CG <NA>
                          PRO
                                            <NA> 29.296 37.591 7.162 1 38.40
           6
                                  Α
                                        1
 segid elesy charge
  <NA>
               <NA>
           N
  <NA>
2
           C
               <NA>
3 <NA>
           С
               <NA>
4 <NA>
               <NA>
5 <NA>
           С
               <NA>
6 <NA>
           С
               <NA>
```

Predicting functional motions of a single structure

Let's finish ttoday with a bioinformatics calculation to predict the functional motions of a PDB structure.

```
adk <- read.pdb("6s36")
 Note: Accessing on-line PDB file
 PDB has ALT records, taking A only, rm.alt=TRUE
 adk
      read.pdb(file = "6s36")
Call:
  Total Models#: 1
    Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
   Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 244 (residues: 244)
    Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
  Protein sequence:
     MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
     DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
     VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
     YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
```

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

m <- nma(adk)

Building Hessian... Done in 0.021 seconds. Diagonalizing Hessian... Done in 0.456 seconds.

plot(m)

mktrj(m, file="adk_m7.pdb")