Expansión en un campo multipolar

1.1 Desarrollo dipolar del campo magnético

El potencial vector de un dipolo es

$$\mathbf{A}(\mathbf{x}) = \frac{\mathbf{v} \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} = \mathbf{m} \times \nabla \frac{1}{|\mathbf{x} - \mathbf{x}'|}$$

$$\mathbf{A}(\mathbf{x}) = \int_{V'} \mathcal{M}(\mathbf{x'}) \times \mathbf{\nabla} \left(\frac{1}{|\mathbf{x} - \mathbf{x'}|} \right) dV'$$

Es el potencial vector de una distribución de momento dipolar magnético con densidad $\mathbf{M}(\mathbf{x}')$

$$\mathbf{A}(\mathbf{x}) = \int_{V'} \frac{\mathbf{\nabla} \times \mathbf{M}}{|\mathbf{x} - \mathbf{x}'|} dV' + \int_{S'} \frac{\mathbf{M} \times \hat{n}}{|\mathbf{x} - \mathbf{x}'|} dS'$$

y se pueden pensar como corrientes \mathbf{J}_M y \mathbf{g}_M ,

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{V'} \frac{\mathbf{J}_M}{|\mathbf{x} - \mathbf{x}'|} dV' + \frac{1}{c} \int_{S'} \frac{\mathbf{g}_M}{|\mathbf{x} - \mathbf{x}'|} dS'$$

1.2 Medios materiales

• Dieléctricos

 $\bullet \ \, \text{Conductor} \left\{ \begin{aligned} & \text{perfecto} \\ & \text{buen conductor} \\ & \text{mal conductor} \end{aligned} \right.$

Podemos hacer una suerte de tabla comparativa entre eléctrico y magnético (pero lo armaremos después con minipage)

Polarización

$$\mathbf{P} = \frac{\delta \mathbf{p}}{\delta V}$$

que es el Momento dipolar eléctrico por unidad de volumen. Luego el potencial es

$$\begin{split} \phi(\mathbf{x}) &= \int_{S} \frac{\mathbf{P}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d\mathbf{S}' - \int_{V} \frac{\boldsymbol{\nabla} \cdot \mathbf{P}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV' \\ \mathbf{P} \cdot \hat{n} &= \sigma_{P} \quad \Rightarrow \quad \boldsymbol{\nabla} \cdot \mathbf{P} = -\rho_{0} \\ \begin{cases} \boldsymbol{\nabla} \times E = 0 \\ \boldsymbol{\nabla} \cdot \mathbf{E} = 4\pi \rho = 4\phi(\rho_{L} + \rho_{P}) \end{cases} \\ \boldsymbol{\nabla} \cdot \mathbf{E} - 4\phi \rho_{P} = 4\phi \rho_{L} \\ \boldsymbol{\nabla} \cdot \mathbf{E} + 4\pi \boldsymbol{\nabla} \cdot \mathbf{P} = \boldsymbol{\nabla} \cdot (\mathbf{E} + 4\pi \mathbf{P}) \end{split}$$

de modo que

$$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P} \qquad \qquad \mathbf{\nabla} \cdot \mathbf{D} = 4\pi \rho_L$$

y por la linealidad

$$\mathbf{P} = \xi_e \mathbf{E}$$
 MLIH
$$\mathbf{D} = (1 + 4\pi \xi_e) \mathbf{E}$$

$$\mathbf{D} = \epsilon \mathbf{E}$$

donde ξ_e es la susceptibilidad eléctrica y ϵ es la permitividad eléctrica. Los contornos entre medios se resuelven según

$$\hat{n}\times(\mathbf{E}_2-\mathbf{E}_1)=0 \qquad (\mathbf{D}_2-\mathbf{D}_1)\cdot\hat{n}=4\pi\sigma_L \qquad (\mathbf{P}_2-\mathbf{P}_1)\cdot\hat{n}=-\sigma_L$$

Para la Magnetización,

$$\mathbf{M} = \frac{\delta \mathbf{m}}{\delta V}$$

que es el Momento dipolar magnético por unidad de volumen. Luego el potencial es

$$\mathbf{A}(\mathbf{x}) = \frac{1}{c} \int_{\mathcal{C}} \frac{\mathbf{M} \times \hat{n}}{|\mathbf{x} - \mathbf{x}'|} d\mathbf{S}' - \frac{1}{c} \int_{\mathcal{V}} \frac{c(\mathbf{\nabla} \times M)}{|\mathbf{x} - \mathbf{x}'|} dV'$$

$$\nabla \times M = \frac{1}{c} \mathbf{J}_{M} \qquad \mathbf{M} \times \hat{n} = \frac{1}{c} \mathbf{g}_{m}$$

$$\nabla \times B = \frac{4\pi}{c} \mathbf{J} = \frac{4\pi}{c} (\mathbf{J}_{L} + \mathbf{J}_{M})$$

$$\nabla \times B - 4\pi \nabla \times M = \frac{4\pi}{c} \mathbf{J}_{L}$$

$$\nabla \times (\mathbf{B} - 4\pi \mathbf{M}) = \frac{4\pi}{c} \mathbf{J}_{L}$$

de modo que

$$\mathbf{H} = \mathbf{B} - 4\pi\mathbf{M}$$
 $\nabla \cdot \mathbf{M} = \frac{1}{c} \mathbf{J}_M$

y por la linealidad

$$\mathbf{M} = \xi_M \mathbf{H} \qquad \text{MLIH}$$

$$\mathbf{B} = (1 + 4\pi \xi_M) \mathbf{H}$$

$$\mathbf{B} = \epsilon \mathbf{H}$$

donde ξ_M es la susceptibilidad magnética y μ es la permeabilidad magnética. Los contornos entre medios se resuelven según

$$\hat{n} \times (\mathbf{H}_2 - \mathbf{H}_1) = \frac{4\pi}{c} \mathbf{g}_L \qquad (\mathbf{B}_2 - \mathbf{B}_1) \cdot \hat{n} = 0$$

Imán permanente

Hay magnetización ${\bf M}$ aún en ausencia de campo. No es un medio lineal de modo que

$$\mathbf{M} \neq \xi_M \mathbf{H} \Rightarrow \mathbf{B} \neq \mu \mathbf{H}$$

La relación entre B,H depende de la historia del medio.

$$\frac{1}{c}\mathbf{J}_{M} = \mathbf{\nabla} \times M$$

si $\mathbf{J}_L = 0$ entonces

$$\nabla \times H = 0 \qquad \Rightarrow \mathbf{H} = -\nabla \phi_m$$

que es un potencial escalar magnético.

$$\nabla \cdot (\mathbf{H} + 4\pi \mathbf{M}) = \nabla \cdot \mathbf{B} = 0$$
$$\nabla \cdot \mathbf{H} = -4\pi \nabla \cdot \mathbf{M}$$
$$-\nabla^2 \phi_m = -4\pi \nabla \cdot \mathbf{M}$$

$$\begin{split} \nabla^2 \phi_m &= -4\pi \rho_m \\ \boldsymbol{\nabla} \cdot \mathbf{M} &\equiv -\rho_m & \mathbf{M} \cdot \hat{\boldsymbol{n}} \equiv \sigma_m \\ \phi_m &= \frac{1}{c} \int_{S'} \frac{\mathbf{M}}{|\mathbf{x} - \mathbf{x}'|} \cdot d\mathbf{S}' - \frac{1}{c} \int_{V'} \frac{\boldsymbol{\nabla} \cdot \mathbf{M}}{|\mathbf{x} - \mathbf{x}'|} dV' \\ \mathbf{A}(\mathbf{x}) &= \frac{1}{c} \int_{S} \frac{\mathbf{M} \times \hat{\boldsymbol{n}}}{|\mathbf{x} - \mathbf{x}'|} d\mathbf{S}' - \frac{1}{c} \int_{V} \frac{c(\boldsymbol{\nabla} \times \boldsymbol{M})}{|\mathbf{x} - \mathbf{x}'|} dV' \end{split}$$

Estas dos soluciones son equivalentes.

$$\phi_m = \frac{1}{c} \int_{V'} \frac{\rho_L}{|\mathbf{x} - \mathbf{x}'|} dV' + \frac{1}{c} \int_{V'} \frac{\mathbf{P} \cdot (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^3} dV'$$

pero el integrando del segundo término se puede reescribir como

$$-\mathbf{P}\cdot\boldsymbol{\nabla}\left(\frac{1}{|\mathbf{x}-\mathbf{x}'|}\right)$$

de manera que

$$\begin{split} \phi_m &= \frac{1}{c} \int_{V'} \frac{\rho_L}{|\mathbf{x} - \mathbf{x}'|} dV' - \frac{1}{c} \int_{V'} \frac{\boldsymbol{\nabla} \cdot \mathbf{P}}{|\mathbf{x} - \mathbf{x}'|} dV' \\ \phi_m &= \frac{1}{c} \int_{V'} \frac{1}{|\mathbf{x} - \mathbf{x}'|} (\rho - \boldsymbol{\nabla} \cdot \mathbf{P}) dV' \end{split}$$

se puede asociar

$$\nabla \cdot \mathbf{P} = \rho_P.$$

$$\begin{split} \mathbf{A}(\mathbf{x}) &= \frac{1}{c} \int_{V} \left[\frac{\mathbf{J}_{L}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} + \frac{c\mathbf{M} \times (\mathbf{x} - \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|^{3}} \right] dV' \\ \mathbf{A}(\mathbf{x}) &= \frac{1}{c} \int_{V} \left[\frac{\mathbf{J}_{L}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} + \frac{c\mathbf{\nabla} \cdot \mathbf{M}}{|\mathbf{x} - \mathbf{x}'|} \right] dV' \\ \mathbf{A}(\mathbf{x}) &= \frac{1}{c} \int_{V} \frac{\mathbf{J}_{L}(\mathbf{x}') + \mathbf{J}_{M}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} \end{split}$$

Figura 2.1

1.3 Polarización y magnetización

Suelen P,M depender de los campos externos, es decir ${\bf P}={\bf P}({\bf E})$ y ${\bf M}={\bf M}({\bf H}).$

$$\mathbf{M} \approx M_{0i} + \left. \frac{\partial M_i}{\partial H_j} \right|_{H=0} H_j$$
$$\mathbf{P} \approx P_{0i} + \left. \frac{\partial P_i}{\partial E_j} \right|_{E=0} E_j$$

y como en general vale que $\mathbf{M}_0=0, \mathbf{P}_0=0$ se da que

$$\mathbf{M} = \sum_{i} \sum_{j} \left(\frac{\partial M_{i}}{\partial H_{j}} \bigg|_{H=0} H_{j} \right)$$

$$\mathbf{M} = \begin{pmatrix} \frac{\partial M_{x}}{\partial H_{x}} & \frac{\partial M_{x}}{\partial H_{y}} & \frac{\partial M_{x}}{\partial H_{z}} \\ \frac{\partial M_{y}}{\partial H_{x}} & \frac{\partial M_{y}}{\partial H_{y}} & \frac{\partial M_{y}}{\partial H_{z}} \\ \frac{\partial M_{z}}{\partial H_{x}} & \frac{\partial M_{z}}{\partial H_{z}} & \frac{\partial M_{z}}{\partial H_{z}} \end{pmatrix} \begin{pmatrix} H_{x} \\ H_{y} \\ H_{z} \end{pmatrix}$$

y ahí vemos que es un tensor,

$$\mathbf{M} = \overrightarrow{\xi}_M \mathbf{H} \qquad \qquad \mathbf{P} = \overrightarrow{\xi}_e \mathbf{E}.$$

Algún detalle de contornos magnéticos

Sea

$$\mathbf{g}_L = 0$$

entonces

$$\hat{n} \times \mathbf{H}_1 = \hat{n} \times \mathbf{H}_2$$

Figura 3.2

$$\begin{split} \mathbf{B}_1 \cdot \hat{n} &= \mathbf{B}_2 \cdot \hat{n} & \quad \mu_1 \mathbf{H}_1 \cdot \hat{n} = \mu_2 \mathbf{H}_2 \cdot \hat{n} \\ H_2 &= \frac{\mu_1}{\mu_2} H_1 \quad \text{si } \mu_1 \gg \mu_2 \Rightarrow H_2 \gg H_1 \end{split}$$

En el límite $\mathbf{H}_2 \perp$ superficie del medio y es similar al \mathbf{E} a la salida de un conductor; las superficies de materiales de permeabilidad muy alta son aproximadamente *equipotenciales*.

Para medio anisótropo

$$D_i = \epsilon_{ij} E_j$$
 es decir $\mathbf{D} = \vec{\epsilon} \mathbf{E}$

Consideraciones en medios magnéticos

Fuera de un imán permanente

$$\nabla \times B = 0 = \frac{4\pi}{c} \mathbf{J}_T$$

y entonces parecería que podemos definir un

$$\mathbf{B} = -\nabla \phi_m^B$$

pero fallará en la superficie de separación donde hay \mathbf{J}_m y por ende $\mathbf{J}_T.$ Lo que sí funciona es

$$\mathbf{\nabla} \times H = 0 = \frac{4\pi}{c} \mathbf{J}_L$$

que vale dentro y fuera del imán.

Entonces

$$\mathbf{H} = -\nabla \phi_m^H$$

y

$$\nabla \cdot \mathbf{H} = -\nabla (\nabla \phi_m^H) = -4\pi \nabla \cdot \mathbf{M} = 4\pi \rho_M$$
$$-\nabla^2 \phi_m^H = 4\pi \rho_M$$

una ecuación de Poisson para el potencial ϕ_m^H .

Figura 3.3

$$\begin{split} \left(\mathbf{B}_2 - \mathbf{B}_1\right) \cdot \hat{n} &= 0 \\ \left(-\boldsymbol{\nabla} \boldsymbol{\phi}_H^2 + \boldsymbol{\nabla} \boldsymbol{\phi}_H^1 - 4\pi \mathbf{M} \right) \cdot \hat{n} &= 0 \\ \left(-\boldsymbol{\nabla} \boldsymbol{\phi}_H^2 + \boldsymbol{\nabla} \boldsymbol{\phi}_H^1 \right) \cdot \hat{n} &= 4\pi \mathbf{M} \cdot \hat{n} = 4\pi \boldsymbol{\sigma}_M \end{split}$$

1.4 Consideraciones energéticas

$$\begin{split} \mathbf{F} &= q\mathbf{E} = q(-\boldsymbol{\nabla}\phi) = -\boldsymbol{\nabla}U \\ \Delta U &= W = \int_{\Gamma} \mathbf{F} \cdot d\ell \rightarrow \Delta U = -\int_{\Gamma} \boldsymbol{\nabla}(q\phi) \cdot d\ell = -q\Delta\phi \\ \delta U &= \mathbf{F} \cdot \delta \mathbf{x} & \frac{\delta U}{\delta x} = F_t \end{split}$$

donde el subíndice es por tangencial.

$$\begin{split} W_2 &= q_2 \frac{q_1}{r_{12}} = \frac{1}{2} \left(q_1 \frac{q_2}{r_{12}} + q_2 \frac{q_1}{r_{21}} \right) \\ W_3 &= q_2 \frac{q_1}{r_{12}} + q_3 \frac{q_1}{r_{13}} + q_2 \frac{q_3}{r_{23}} \\ W_3 &= \frac{1}{2} \left(q_1 \frac{q_2}{r_{12}} + q_1 \frac{q_3}{r_{13}} + q_2 \frac{q_1}{r_{21}} + q_2 \frac{q_3}{r_{23}} + q_3 \frac{q_1}{r_{31}} + q_3 \frac{q_2}{r_{32}} \right) \\ W_N &= \sum_{i \neq j}^N \frac{1}{2} \frac{q_i q_j}{r_{ij}} = \sum_{i,j}^N \frac{1}{2} q_i \phi_{ij} [1 - \delta_{ij}] \end{split}$$

siendo ϕ_{ij} el potencial sobre q_i debido a $q_j.$

$$W_N = \sum_{i}^{N} \frac{1}{2} q_i \phi_i$$

es el potencial de todas las cargas producido en la posición de q_i .

$$W = \frac{1}{2} \int_{V} \rho(\mathbf{x}) \phi(\mathbf{x}) dV$$

Supongamos ahora la presencia de un medio material

$$\begin{split} \delta W &= \frac{1}{2} \rho \delta V \phi \\ \delta W &= \frac{1}{2} \frac{\boldsymbol{\nabla} \cdot (\delta \mathbf{D})}{4\pi} \delta V \phi \\ \boldsymbol{\nabla} \cdot (\delta \mathbf{D} \phi) &= \delta \mathbf{D} \cdot \boldsymbol{\nabla} \phi + \phi \boldsymbol{\nabla} \cdot \delta \mathbf{D} \\ \delta W &= \frac{1}{8\pi} \delta V [\boldsymbol{\nabla} \cdot (\delta \mathbf{D} \phi) - \delta \mathbf{D} \cdot \boldsymbol{\nabla} \phi] \\ W &= \frac{1}{8\pi} \left(\int_{V} \boldsymbol{\nabla} \cdot (\mathbf{D} \phi) dV + \int_{V} \mathbf{D} \cdot \mathbf{E} dV \right) \end{split}$$

pero la primera integral se pasa a una de superficie según

$$\int_{S} \mathbf{D}\phi dS$$

y si la misma es muy grande tiende a cero. Entonces quedamos en que

$$W = \frac{1}{8\pi} \int_{V} \mathbf{D} \cdot \mathbf{E} dV$$

que es el trabajo necesario para formar una configuración en presencia de medios materiales. Vale para medios lineales, sin imponer isotroía u homogeneidad.

Este cálculo es a temperatura constante, el medio material no altera su ϵ . Es un proceso isotérmico. Uno asume que $\epsilon = \epsilon(\mathbf{x})$ y no varía con el tiempo. En la práctica ϵ varía con la temperatura.

1.5 Interpretación termodinámica de U

El incremento de energía a T constante

$$\delta W = U = \frac{1}{8\pi} \mathbf{E} \cdot \mathbf{D} = \frac{1}{8\pi} \epsilon_{ij} E_i E_j \qquad \text{con } \epsilon_{ij} = \epsilon_{ji} \text{ tensor simétrico (5.1)}$$

Pero ϵ es función de T la temperatura y entonces no podemos decir que

$$dU = dW$$

valga en general, pues también hay variación del calor (a no ser que sea un proceso isotérmico) de modo que la energía que representa (5.1) es la energía libre de Helmholtz a T constante.

$$dU = dQ - dW F = U - TS$$
$$dF = dU - TdS - SdT$$

pero al ser la última cero, resulta

$$dF|_{T} = dU - T.dS = \frac{1}{8\pi} \int_{V} \mathbf{E} \cdot \delta \mathbf{D} dV$$
$$dF = \frac{1}{8\pi} \int_{V} \mathbf{E} \cdot \delta \mathbf{D} dV - S dT$$

de modo que como el primer término es $\partial F/\partial D|_T$ resulta que

$$S = -\left. \frac{\partial F}{\partial T} \right|_{D}$$

Si es un medio isótropom entonces $\mathbf{D} = \epsilon \mathbf{E}$ y entonces

$$F = \frac{1}{8\pi} \int_{V} \frac{1}{\epsilon} \mathbf{D} \cdot \mathbf{D} dV$$

entonces

$$\begin{split} \frac{\partial F}{\partial T} \Big|_D &= \frac{1}{8\pi} \int_V \mathbf{D} \cdot \mathbf{D} \frac{\partial}{\partial T} \left(\frac{1}{\epsilon}\right) dV \\ &= -\frac{1}{8\pi} \int_V \mathbf{D} \cdot \mathbf{D} \frac{1}{\epsilon^2} \frac{\partial \epsilon}{\partial T} dV = -\frac{1}{8\pi} \int_V \mathbf{E} \cdot \mathbf{D} \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial T} dV = S \end{split}$$

luego

$$U = F + TS = \frac{1}{8\pi} \int_{V} \mathbf{D} \cdot \mathbf{D} \frac{1}{\epsilon} dV + \frac{1}{8\pi} \int_{V} \mathbf{E} \cdot \mathbf{D} \frac{1}{\epsilon} \frac{\partial \epsilon}{\partial T} dV$$

$$U = \frac{1}{8\pi} \int_{V} \frac{1}{\epsilon} \left[\mathbf{D} \cdot \left(\mathbf{D} + \mathbf{E} \frac{\partial \epsilon}{\partial T} T \right) \right] dV = \frac{1}{8\pi} \int_{V} \frac{1}{\epsilon} \mathbf{D} \cdot \mathbf{E} \left[\epsilon + T \frac{\partial \epsilon}{\partial T} \right] dV$$

y finalmente para medios lineales e isótropos

$$U = \frac{1}{8\pi} \int_{V} \frac{1}{\epsilon} \mathbf{D} \cdot \mathbf{E} \frac{\partial T \epsilon}{\partial T} dV$$

y la segunda ley de la termodinámica es

$$\delta Q = T.dS = \frac{1}{4\pi} \int_{V} \mathbf{E} \cdot \delta \mathbf{D} \frac{T}{\epsilon} \frac{\partial \epsilon}{\partial T} dV$$

con $\epsilon>0, T>0, \partial\epsilon/\partial T<0$ si el ϵ decrece con T el cuerpo se enfría $\delta Q<0.$