ΘΕΜΑ 4

4.1. Το μέτρο της έντασης του ηλεκτρικού πεδίου δίνεται από τη σχέση:

$$E = \frac{V}{d} \dot{\eta} \quad E = \frac{10^2}{10^{-1}} \frac{V}{m} \dot{\eta} \quad E = 10^3 \frac{N}{C}$$

Μονάδες 5

4.2. Η συνολική δύναμη που ασκείται στο ηλεκτρόνιο είναι ίση με την δύναμη $\vec{F}_{\eta\lambda}$ του ομογενούς ηλεκτρικού πεδίου:

$$\Sigma \vec{F} = \vec{F}_{n\lambda} = \vec{E} \cdot (-e)$$

Ο ρυθμός μεταβολής της ορμής μπορεί να υπολογιστεί από την γενικότερη σχέση έκφρασης του δεύτερου Νόμου του Νεύτωνα. Δηλαδή:

$$\Sigma \vec{F} = \frac{\Delta \vec{P}}{\Delta t} = \vec{E} \cdot (-e) \quad \dot{\eta} \quad \left| \frac{\Delta \vec{P}}{\Delta t} \right| = E \cdot e \quad \dot{\eta}$$
$$\left| \frac{\Delta \vec{P}}{\Delta t} \right| = 10^3 \cdot 1.6 \cdot 10^{-19} \, N \, \dot{\eta} \quad \frac{\Delta P}{\Delta t} = 1.6 \cdot 10^{-16} \, N$$

Μονάδες 6

4.3. Αν το ηλεκτρόνιο εκτοξεύεται με αρχική ταχύτητα v_0 παράλληλα με τις δυναμικές γραμμές του πεδίου θα κινηθεί κατά μήκος της δυναμικής γραμμής στην οποία βρίσκεται και θα δεχθεί δύναμη μέτρου F με αντίθετη κατεύθυνση από εκείνη της φοράς των δυναμικών γραμμών.

Γράφουμε το θεώρημα μεταβολής της κινητικής ενέργειας από την αρχική του θέση έως ότου σταματήσει στιγμιαία.

$$K_{\tau\varepsilon\lambda} - K_{\alpha\rho\chi} = W_F$$
 ή $0 - K_{\alpha\rho\chi} = -F d$ ή $K_{\alpha\rho\chi} = F d$ ή $K_{\alpha\rho\chi} = E e d$ ή $K_{\alpha\rho\chi} = 10^3 \left(\frac{N}{C}\right) \cdot e \cdot 10^{-1} (m)$ ή $K_{\alpha\rho\chi} = 100 \ eV$

Μονάδες 7

4.4. Αν τώρα το ηλεκτρόνιο ξεκινήσει με αρχική ταχύτητα v_0 από την αρνητικά φορτισμένη πλάκα τότε θα φθάσει στη θετική φορτισμένη μεταλλική πλάκα με ταχύτητα v_1 . Η δύναμη που δέχεται έχει τώρα την κατεύθυνση της κίνησης του ηλεκτρονίου. Γράφουμε το θεώρημα μεταβολής της κινητικής ενέργειας για την μετακίνηση του ηλεκτρονίου μεταξύ των παραπάνω θέσεων οπότε θα έχουμε:

$$K_{\tau\varepsilon\lambda}-K_{\alpha\rho\chi}=W_F$$
 ή $K_{\tau\varepsilon\lambda}-K_{\alpha\rho\chi}=F$ d ή $K_{\tau\varepsilon\lambda}-K_{\alpha\rho\chi}=E$ e d ή $K_{\tau\varepsilon\lambda}-K_{\alpha\rho\chi}=100$ eV ή $K_{\tau\varepsilon\lambda}=200$ eV

Εάν πάρουμετο πηλίκο:

$$\frac{K_{\tau\varepsilon\lambda}}{K_{\alpha\rho\chi}} = \frac{200\,\text{eV}}{100\,\text{eV}} = 2 \quad \acute{\eta} \quad \frac{\frac{1}{2}mv_1^2}{\frac{1}{2}mv_0^2} = 2 \quad \acute{\eta} \quad \frac{v_1^2}{v_0^2} = 2 \quad \acute{\eta} \quad \frac{v_1}{v_0} = \sqrt{2}$$