1	CLAIMS
2	
3	What is claimed is:
1	1. An isolated nucleic acid comprising a nucleotide sequence encoding a protein
2	selected from the group consisting of a normal CalDAG-GEFI protein, a mutant CalDAG-GEFI
3	protein, a normal CalDAG-GEFII protein, and a mutant CalDAG-GEFII protein.
4	
1	2. An isolated nucleic acid comprising a nucleotide sequence encoding a protein
2	selected from the group consisting of a normal cAMP-GEFI protein, a mutant cAMP-GEFI
3	protein, a normal cAMP-GEFII protein, and a mutant cAMP-GEFII protein.
4	
1	3. An isolated nucleic acid as in claim 1 wherein said nucleic acid encodes a normal
2	CalDAG-GEF protein and wherein said nucleotide sequence is selected from the group
3	consisting of
4	(a) a sequence encoding a protein comprising the human CalDAG-GEFI amino acid
5	sequence of SEQ ID NO: 4;
6	(b) a sequence encoding a protein comprising the murine CalDAG-GEFI amino acid
7	sequence of SEQ ID NO: 2;
8	(c) a sequence encoding a protein comprising the human CalDAG-GEFII amino acid
9	sequence of SEQ ID NO: 8; and
10	(d) a sequence encoding a protein comprising the murine CalDAG-GEFII amino acid
11	sequence of SEQ ID NO: 6; and
12	(e) a sequence encoding a normal CalDAG-GEF protein and capable of hybridizing to
13	a sequence complementary to any sequence of (a) - (d) under stringent hybridization conditions.
14	
1	4. An isolated nucleic acid as in claim 2 wherein said nucleic acid encodes a normal
2	cAMP-GEF protein and wherein said nucleotide sequence is selected from the group consisting
3	of

	4	(a) a sequence encoding a protein comprising the human cAMP-GEFI amino acid
	5	sequence of SEQ ID NO: 12;
	6	(b) a sequence encoding a protein comprising the alternatively spliced human cAMP-
	7	GEFI amino acid sequence of SEQ ID NO: 14;
	8	(c) a sequence encoding a protein comprising the rat cAMP-GEFI amino acid
	9	sequence of SEQ ID NO: 10;
	10	(d) a sequence encoding a protein comprising the human cAMP-GEFII amino acid
	11	sequence of SEQ ID NO: 18;
	12	(e) a sequence encoding a protein comprising the rat cAMP-GEFII amino acid
	13	sequence of SEQ ID NO: 16; and
# = 4	14	(f) a sequence encoding a normal cAMP-GEF protein and capable of hybridizing to a
Hint with the court with him being him have	15	sequence complementary to any sequence of (a) - (e) under stringent hybridization conditions.
7	16	
	1	5. An isolated nucleic acid comprising a nucleotide sequence of at least 8 consecutive
	2	nucleotides selected from the group consisting SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5,
	3	SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO.
of white with mile that the same	4	17, and a sequence complementary to any of these sequences.
	5	
	1	6. An isolated nucleic acid comprising a nucleotide sequence of at least 10 consecutive
1,2	2	nucleotides selected from the group consisting SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5,
	3	SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO.
	4	17, and a sequence complementary to any of these sequences.
	5	
	1	7. An isolated nucleic acid comprising a nucleotide sequence of at least 15 consecutive
	2	nucleotides selected from the group consisting SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5,
	3	SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO.
	4	17, and a sequence complementary to any of these sequences.
	5	

A STATE OF THE STA

The second state of the se

8

said variant or homologue.

9 A method as in claim 12 wherein said human cAMP-GEF gene sequence is selected 1 21. from the group consisting of SEQ ID NO: 11, SEQ ID NO: 13, and SEQ ID NO: 17. 2 3 A method as in claim 20 wherein said sample comprises a sample of nucleic acids 22. 1 selected from the group consisting of human genomic DNA, human mRNA, and human cDNA. 2 3 A method as in claim 20 wherein said sample comprises a sample of nucleic acids 23. 1 selected from the group consisting of mammalian genomic DNA, mammalian mRNA, and 2 3 mammalian cDNA. 4 A method as in claim 20 wherein said sample comprises a sample of nucleic acids 24. 1 selected from the group consisting of invertebrate genomic DNA, invertebrate mRNA, and 2 3 invertebrate cDNA. 4 A method as in claim 20 further comprising the step of isolating said nucleic acid 1 25. corresponding to said variant or homologue. 2 3 A method as in claim 20 wherein said nucleic acid is identified by hybridization. 26. 1 2 A method as in claim 20 wherein said nucleic acid is identified by PCR amplification. 1 27. A method for identifying an allelic variant or heterospecific homologue of a human 1 28. CalDAG-GEF gene comprising: 2 3 choosing an antibody capable of selectively binding to a human CalDAG-GEF 4 protein; 5 mixing said antibody with a sample of proteins which may contain a protein 6 corresponding to said variant or homologue; and

THE REPORT OF THE PARTY OF THE

7	detecting binding of said antibody to said protein corresponding to said variant or		
8	homologue.		
9			
1	29. A method as in claim 28 wherein said sample comprises a sample of proteins selected		
2	from the group consisting of human proteins, human fusion proteins, and proteolytic fragments		
3	thereof.		
4			
1	30. A method as in claim 28 wherein said sample comprises a sample of nucleic acids		
2	selected from the group consisting of mammalian proteins, mammalian fusion proteins, and		
3	proteolytic fragments thereof.		
4			
1	A method as in claim 28 wherein said sample comprises a sample of nucleic acids		
2	selected from the group consisting of invertebrate proteins, invertebrate fusion proteins, and		
3	proteolytic fragments thereof.		
4			
1	32. A method as in claim 28 further comprising the step of substantially purifying said		
2	protein corresponding to said variant or homologue.		
3			
1	33. A method for identifying an allelic variant or heterospecific homologue of a human		
2	cAMP-GEF gene comprising:		
3	choosing an antibody capable of selectively binding to a human cAMP-GEF protein;		
4	mixing said antibody with a sample of proteins which may contain a protein		
5	corresponding to said variant or homologue; and		
6	detecting binding of said antibody to said protein corresponding to said variant or		
7	homologue.		
8			
1	34. A method as in claim 33 wherein said sample comprises a sample of proteins selected		
2	from the group consisting of human proteins, human fusion proteins, and proteolytic fragments		
3	thereof.		

der the globely that comes comes with spirits spirits, with a suite strong comes with spirits, which will spirits, where we will strong the spirits, where we will spirit the spirits of t

1 2 THE PERSON THE PROPERTY OF THE PARTY OF THE 3 2 3 4 1 2

- A method as in claim 33 wherein said sample comprises a sample of proteins selected 35. 1
- 2 from the group consisting of mammalian proteins, mammalian fusion proteins, and proteolytic
- 3 fragments thereof.

4

4

- 1 36. A method as in claim 33 wherein said sample comprises a sample of proteins selected
- from the group consisting of invertebrate proteins, invertebrate fusion proteins, and proteolytic 2
- 3 fragments thereof.

4

- 37. A method as in claim 33 further comprising the step of substantially purifying said
- protein corresponding to said variant or homologue.
- An isolated nucleic acid comprising an allelic variant or a heterospecific homologue 1 38.
- of a gene selected from the group consisting of a human CalDAG-GEF gene, and a human
- cAMP-GEF gene.

- 39. An isolated nucleic acid encoding an allelic variant or heterospecific homologue of a
- protein selected from the group consisting of a human CalDAG-GEF protein, and a human
- 3 cAMP-GEF protein.

4

- An isolated nucleic acid comprising a recombinant vector including a nucleotide 1 40.
- sequence selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, 2
- SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 3
- 4 17, and a sequence complementary to any of these sequences.

5

- An isolated nucleic acid as in claim 40 wherein said vector is an expression vector 1 41.
- and said nucleotide sequence is operably joined to a regulatory region. 2

- An isolated nucleic acid as in claim 41 wherein said expression vector may express 1 42. said nucleotide sequence in mammalian cells. 2
- 3
- 1 43. An isolated nucleic acid as in claim 42 wherein said cells are selected from the group
- consisting of fibroblast, liver, kidney, spleen, bone marrow, and neurological cells.
- An isolated nucleic acid as in claim 42 wherein said vector is selected from the group
- consisting of vaccinia virus, adenovirus, retrovirus, neurotropic viruses, and Herpes simplex.
- An isolated nucleic acid as in claim 41 wherein said expression vector encodes at
- least a functional domain of a protein selected from the group consisting of normal CalDAG-
- GEFI, a normal CalDAG-GEFII, a mutant CalDAG-GEFII, a normal
- cAMP-GEFI, a normal cAMP-GEFII, a mutant cAMP-GEFI, and a mutant cAMP-GEFII.
- An isolated nucleic acid as in claim 41 wherein said vector further comprises
- sequences encoding an exogenous protein operably joined to said nucleotide sequence and
- whereby said vector encodes a fusion protein.
- An isolated nucleic acid as in claim 46 wherein said exogenous protein is selected
- from the group consisting of lacZ, trpE, maltose-binding protein, poly-His tags, and glutathione-

4

4

- 1 48. An isolated nucleic acid comprising a recombinant expression vector including
- nucleotide sequences corresponding to an endogenous regulatory region of a gene selected from 2
- the group consisting of a CalDAG-GEF gene, and a cAMP-GEF gene. 3
- 49. An isolated nucleic acid as in claim 48 wherein said endogenous regulatory region is 1
- 2 operably joined to a marker gene.

	1	50. A	A host cell transformed with an expression vector of any one of claims 41-49, or a	
	2	descendant t		
	3			
	1	51. A	host cell as in claim 50 wherein said host cell is selected from the group consisting	
	2		cells and yeast cells.	
	3			
	1	52. A	host cell as in claim 50 wherein said host cell is selected from the group consisting	
	2		embryonic stem cells, zygotes, gametes, and germ line cells.	
	3		ye ye ye gem me cons.	
	1	53. A	host cell as in claim 50 wherein said cell is selected from the group consisting of	
ł.	2		ver, kidney, spleen, bone marrow and neurological cells.	
	3			
	1	54. A	host cell as in claim 50 wherein said cell is an invertebrate cell.	
	2			
	1	55. A	non-human animal model for cancer, wherein a genome of said animal, or an	
	2		eof, has been modified by at least one recombinant construct, and wherein said	
	3		construct has introduced a modification selected from the group consisting of	
4			(a) insertion of nucleotide sequences encoding at least a functional domain of	
		a h	neterospecific normal CalDAG-GEF gene;	
	6		(b) insertion of nucleotide sequences encoding at least a functional domain of	
	7	a h	eterospecific mutant CalDAG-GEF gene;	
	8		(c) insertion of nucleotide sequences encoding at least a functional domain of	
	9	ас	onspecific homologue of a heterospecific mutant CalDAG-GEF gene;	
1	0		(d) inactivation of an endogenous CalDAG-GEF gene;	
1	1		(e) insertion of nucleotide sequences encoding at least a functional domain of	
1	2			
1	3	· · · · · · · · · · · · · · · · · · ·		
1	heterospecific mutant cAMP-GEF gene;			

The first term was the first the first term to the first term term to the first term

15		(g) insertion of nucleotide sequences encoding at least a functional domain of
16		a conspecific homologue of a heterospecific mutant cAMP-GEF gene; and
17		(h) inactivation of an endogenous cAMP-GEF gene.
18		
1	56.	A non-human animal model as in claim 55 wherein said cancer is related to the Ras-
2	pathway.	sale cancer is related to the Ras-
3		
1	57.	A non human animal model as in claim 56 wherein said cancer is selected from the
2	group con	sisting of lung cancer, pancreatic cancer, breast cancer, colorectal cancer, and myeloid
3	leukemia.	of the state of th
4		
1	58.	An animal model as in claim 55 wherein said modification is an insertion of a
2	nucleotide	sequence encoding at least a functional domain of a protein selected from the group
3		of a normal human CalDAG-GEF, and a normal cAMP-GEF gene.
4		de la communicación de la gene.
1	59.	An animal model as in claim 55 wherein said modification is an insertion of a
2	nucleotide	sequence encoding at least a functional domain of a protein selected from the group
3		of a mutant human CalDAG-GEF, and a mutant human cAMP-GEF gene.
4		
1	60.	An animal as in claim 55 wherein said animal is selected from the group consisting of
2		hamsters, guinea pigs, rabbits, dogs, cats, goats, sheep, pigs, and non-human primates.
3		Tyr 6 years assume primates.
1	61.	An animal as in claim 55 wherein said animal is an invertebrate.
2-	_	
1	62.	A method for producing at least a functional domain of a protein selected from the
2		sting of a CalDAG-GEF protein, and a cAMP-GEF protein, said method comprising
3		host cell of any of claims 50-54 under suitable conditions to produce said protein by
4		said nucleic acid.
5		

The first the two that the the two the two that the two the two the the two the

```
1
      63.
                A substantially pure preparation of a protein selected from the group consisting of a
     normal CalDAG-GEF protein, a mutant CalDAG-GEF protein, a normal cAMP-GEF protein,
 2
 3
      and a mutant cAMP-GEF protein.
 4
     64.
                A substantially pure preparation as in claim 63 wherein said protein comprises a
 1
     normal protein selected from the group consisting of
 2
 3
                (a) a protein comprising the amino acid sequence of SEQ ID NO: 2;
                (b) a protein comprising the amino acid sequence of SEQ ID NO: 4;
 4
 5
                (c) a protein comprising the amino acid sequence of SEQ ID NO: 6;
 6
                (d) a protein comprising the amino acid sequence of SEQ ID NO: 8;
                (e) a protein comprising the amino acid sequence of SEQ ID NO: 10;
 7
                (f) a protein comprising the amino acid sequence of SEO ID NO: 12:
                (g) a protein comprising the amino acid sequence of SEO ID NO: 14:
10
                (h) a protein comprising the amino acid sequence of SEO ID NO: 16: and
11
                (i) a protein comprising the amino acid sequence of SEQ ID NO: 18.
12
     65.
1
                A substantially pure preparation of a polypeptide comprising an amino acid sequence
     of at least 4 consecutive amino acid residues selected from the group consisting of SEO ID NO:
 3
     2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID
 4
     NO: 14, SEQ ID NO: 16, and SEQ ID NO: 18.
5
     66.
 1
                A substantially pure preparation of a polypeptide comprising an amino acid sequence
2
     of at least 10 consecutive amino acid residues selected from the group consisting of SEQ ID NO:
     2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID
3
4
     NO: 14, SEQ ID NO: 16, and SEQ ID NO: 18.
5
     67.
1
                A substantially pure preparation of a polypeptide comprising an amino acid sequence
2
     of at least 15 consecutive amino acid residues selected from the group consisting of SEQ ID NO:
```

The state of the control of the state of the

```
2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID
3
4
     NO: 14, SEQ ID NO: 16, and SEQ ID NO: 18.
5
     68.
1
               A substantially pure preparation of a polypeptide comprising at least one functional
    domain of a protein selected from the group consisting of a normal CalDAG-GEF protein, a
2
3
    mutant CalDAG-GEF protein, a normal cAMP-GEF protein, and a mutant cAMP-GEF protein.
4
     69.
               A substantially pure preparation of a polypeptide comprising an antigenic determinant
1
    of a protein selected from the group consisting of a normal CalDAG-GEF protein, a mutant
2
     CalDAG-GEF protein, a normal cAMP-GEF protein, and a mutant cAMP-GEF protein.
3
4
     70.
1
               A method of producing antibodies which selectively bind to a CalDAG-GEF protein
2
    comprising the steps of
3
               administering an immunogenically effective amount of a CalDAG-GEF immunogen
4
    to an animal;
5
               allowing said animal to produce antibodies to said immunogen; and
6
               obtaining said antibodies from said animal or from a cell culture derived therefrom.
7
    71.
1
               A method of producing antibodies which selectively bind to a cAMP-GEF protein
    comprising the steps of
2
               administering an immunogenically effective amount of a cAMP-GEF immunogen to
3
    an animal;
4
5
               allowing said animal to produce antibodies to said immunogen; and
6
               obtaining said antibodies from said animal or from a cell culture derived therefrom.
7
1
    72.
               A substantially pure preparation of an antibody which selectively binds to an
2
    antigenic determinant of a protein selected from the group consisting of a normal CalDAG-GEF
3
    protein, a mutant CalDAG-GEF protein, a normal cAMP-GEF protein, and a mutant cAMP-GEF
4
    protein.
```

The state of the s

5 A substantially pure preparation of an antibody as in claim 72 wherein said antibody 1 73. selectively binds to an antigenic determinant of a mutant CalDAG-GEF and fails to bind to a 2 normal CalDAG-GEF protein. 3 4 74. 1 A substantially pure preparation of an antibody as in claim 72 wherein said antibody selectively binds to an antigenic determinant of a mutant cAMP-GEF and fails to bind to a 2 3 normal cAMP-GEF protein. 4 75. 1 A cell line producing an antibody of any one of claims 72-74. 2 2 1 2 3 4 5 6 1 2 c 76. A method for identifying compounds which can modulate the expression of a CalDAG-GEF gene comprising: contacting a cell with a test candidate wherein said cell includes a regulatory region of a CalDAG-GEF gene operably joined to a coding region; and detecting a change in expression of said coding region. 77. A method for identifying compounds which can modulate the expression of a cAMP-GEF gene comprising: 3 contacting a cell with a test candidate wherein said cell includes a regulatory region of 4 a cAMP-GEF gene operably joined to a coding region; and 5 detecting a change in expression of said coding region. 6 78. 1 A method as in claim 76 or 77 wherein said change comprises a change in a level of 2 an mRNA transcript encoded by said coding region. 3 79. 1 A method as in claim 78 wherein said change comprises a change in a level of a 2 protein encoded by said coding region.

	1	80.	A method as in claim 78 wherein said change is a result of an activity of a protein
	2	encoded b	by said coding region.
	3		
	1	81.	A method as in claim 78 wherein said coding region encodes a marker protein
	2	selected fi	rom the group consisting of β-galactosidase, alkaline phosphatase, green fluorescent
	3	protein, a	nd luciferase.
	4		
	1	82.	A method for identifying compounds which can selectively bind to a CalDAG-GEF
	2	protein comprising the steps of	
	3		providing a preparation including at least one CalDAG-GEF component;
Const. The state with the state state state state	4		contacting said preparation with a sample including at least one candidate compound;
	5	and	
	6		detecting binding of said CalDAG-GEF component to said candidate compound.
	7		
	1	83.	A method for identifying compounds which can selectively bind to a cAMP-GEF
	2	protein co	mprising the steps of
51. वर्षे इं. वर्षे इं. वर्षे स : व	3		providing a preparation including at least one cAMP-GEF component;
	4		contacting said preparation with a sample including at least one candidate compound;
all girth many miny gridy gridy.	5	and	
	6		detecting binding of said cAMP-GEF component to said candidate compound.
	7		
	1	84.	The method in claim 82 wherein said binding to said CalDAG-GEF component is
	2	detected b	y an assay selected from the group consisting of: affinity chromatography, co-
	3	immunopr	recipitation, a Biomolecular Interaction Assay, and a yeast two-hybrid system.
	4		
	1	85.	The method in claim 83 wherein said binding to said cAMP-GEF component is
	2	detected b	y an assay selected from the group consisting of: affinity chromatography, co-
	3	immunopr	recipitation, a Biomolecular Interaction Assay, and a yeast two-hybrid system.
	4		

1	86.	A method of identifying compounds which can modulate activity of a CalDAG-GEF	
2	comprising the steps of		
3		providing a cell expressing a normal or mutant CalDAG-GEF gene;	
4		contacting said cell with at least one candidate compound; and	
5		detecting a change in a marker of said activity.	
6			
1	87.	A method of identifying compounds which can modulate activity of a cAMP-GEF	
2	comprising the steps of		
3		providing a cell expressing a normal or mutant cAMP-GEF gene;	
4		contacting said cell with at least one candidate compound; and	
5		detecting a change in a marker of said activity.	
6			
1	88.	A method as in claim 86 wherein measurement of said marker indicates a difference	
2	between cells bearing an expressed mutant CalDAG-GEF gene and otherwise identical cells free		
3		ressed mutant CalDAG-GEF gene.	
4			
1	89.	A method as in claim 86 wherein said change comprises a change in a non-specific	
2	marker of	cell physiology selected from the group consisting of pH, intracellular calcium, cyclic	
3		els, GTP/GDP ratios, phosphatidylinositol activity, and protein phosphorylation.	
4			
1	90.	A method as in claim 86 wherein said change comprises a change in expression of	
2	said CalD		
3			
1	91.	A method as in claim 86 wherein said change comprises a change in occurrence or	
2	rate of apo	ptosis or cell death.	
3			
1	92.	A method as in claim 86 wherein said cell is a cell cultured in vitro.	
2			

ering derig to the comme contract and agree and agree and agree comme the contract and agree and agree agree a

3

3

2

3

4

4

- 1 93. A method as in claim 92 wherein said cell is a transformed host cell of any one of claims 50-54.
- 1 94. A method as in claim 92 wherein said cell is explanted from a host bearing at least
- 2 one mutant CalDAG-GEF gene.
- 1 95. A method as in claim 92 wherein said cell is explanted from a transgenic animal of 2 any one of claims 55-61.
- 1 96. A method as in claim 86 wherein said cell is a cell in a live animal.
- 1 97. A method as in claim 96 wherein said cell is a cell of a transgenic animal of any one of claims 55-61.
- 1 98. A method as in claim 86 wherein said cell is in a human subject in a clinical trial.
- 1 99. A method as in claim 87 wherein measurement of said marker indicates a difference 2 between cells bearing an expressed mutant cAMP-GEF gene and otherwise identical cells free of 3 an expressed mutant cAMP-GEF gene.
- 1 100. A method as in claim 87 wherein said change comprises a change in a non-specific
- 2 marker of cell physiology selected from the group consisting of pH, intracellular calcium, cyclic
- 3 AMP levels, GTP/GDP ratios, phosphatidylinositol activity, and protein phosphorylation.
- 1 101. A method as in claim 87 wherein said change comprises a change in expression of 2 said cAMP-GEF.
- 1 102. A method as in claim 87 wherein said change comprises a change in occurrence or rate of apoptosis or cell death.

3 A method as in claim 87 wherein said cell is a cell cultured in vitro. 1 103. 2 1 A method as in claim 103 wherein said cell is a transformed host cell of any one of 104. 2 claims 50-54. 3 1 105. A method as in claim 103 wherein said cell is explanted from a host bearing at least 2 one mutant cAMP-GEF gene. 3 A method as in claim 103 wherein said cell is explanted from a transgenic animal of 1 106. 2 any one of claims 55-61. 3 A method as in claim 87 wherein said cell is a cell in a live animal. 1 107. 2 1 108. A method as in claim 107 wherein said cell is a cell of a transgenic animal of any one of claims 55-61. 3 A method as in claim 87 wherein said cell is in a human subject in a clinical trial. 1 109. 2 1 110. A diagnostic method for determining if a subject bears a mutant CalDAG-GEF gene 2 comprising the steps of providing a biological sample of said subject; and 3 detecting in said sample a mutant CalDAG-GEF nucleic acid, a mutant CalDAG-GEF 4 protein, or a mutant CalDAG-GEF activity. 5 6 A method as in claim 111, wherein a mutant CalDAG-GEF nucleic acid is detected 1 111. by an assay selected from the group consisting of direct nucleotide sequencing, probe specific 2 hybridization, restriction enzyme digest and mapping, PCR mapping, ligase-mediated PCR 3

Share and to their their arts and the state of the state

- 1 118. A pharmaceutical preparation comprising an expression vector operably encoding a
- 2 protein selected from the group consisting of a CalDAG-GEF protein, and a cAMP-GEF protein,
- 3 wherein said expression vector may express said CalDAG-GEF protein or said cAMP-GEF
- 4 protein in a human subject, and a pharmaceutically acceptable carrier.

- 1 119. A pharmaceutical preparation comprising an expression vector operably encoding a
- 2 CalDAG-GEF antisense sequence, wherein said expression vector may express said CalDAG-
- 3 GEF antisense sequence in a human subject, and a pharmaceutically acceptable carrier.

4

- 1 120. A pharmaceutical preparation comprising an expression vector operably encoding a
- 2 cAMP-GEF antisense sequence, wherein said expression vector may express said cAMP-GEF
- 3 antisense sequence in a human subject, and a pharmaceutically acceptable carrier.

4

- 1 121. A pharmaceutical preparation comprising a substantially pure antibody, and a
- 2 pharmaceutically acceptable carrier,

wherein said antibody selectively binds to a mutant protein selected from the group

4 consisting of a mutant CalDAG-GEF protein, and a mutant cAMP-GEF protein.

5

1

- 122. A pharmaceutical preparation as in claim 121 wherein said preparation is essentially
- 2 free of an antibody which selectively binds a normal CalDAG-GEF protein.

3

- 1 123. A pharmaceutical preparation as in claim 121 wherein said preparation is essentially
- 2 free of an antibody which selectively binds a normal cAMP-GEF protein.

3

- 1 124. A pharmaceutical preparation comprising a substantially pure preparation of an
- 2 antigenic determinant of a mutant CalDAG-GEF protein or a mutant cAMP-GEF protein.

- 1 125. A pharmaceutical preparation as in claim 124 wherein said preparation is essentially
- 2 free of an antigenic determinant of a normal CalDAG-GEF protein.

3 A pharmaceutical preparation as in claim 124 wherein said preparation is essentially 1 126. free of an antigenic determinant of a normal cAMP-GEF protein. 2 3 1 127. A method for identifying compounds according to claim 83, wherein the cAMP-GEF component is a cAMP-GEF domain selected from the group consisting of SCR1, SCR2, SCR3, 2 and cAMP-binding domain. 3 4 128. A method for identifying compounds according to claim 82, wherein the CalDAG-1 2 GEF component is a CalDAG-GEF domain selected from the group consisting of SCR1, SCR2, 3 SCR3, DAG-binding and an EF hand domain. 4 129. A substantially pure preparation of a polypeptide comprising a domain selected from 1 the group consisting of a CalDAG-GEF SCR1 domain, a CalDAG-GEF SCR2 domain, 2 CalDAG-GEF SCR3 domain, CalDAG-GEF DAG-binding domain, CalDAG-GEF EF hand 3 4 domain. 5 A substantially pure preparation of a polypeptide comprising a domain selected from 1 130. the group consisting of a cAMP-GEF SCR1 domain, a cAMP-GEF SCR2 domain, cAMP-GEF 2 SCR3 domain, cAMP-GEF cAMP-binding domain. 3 4

Affelle Affelle fiel fermen ereige gefente gefente beginnt bei gefolge erreige erreige gefente besteht besteht