Inside the Chamber:

Applying Natural Language Processing & Machine Learning to Measure Political Polarization Trends

Homa Fotros

American University Spring 2022

Motivation & Goal

- Political Polarization, Radicalization, Diversity of Thought, Bias
- Social Media: Virtual Public Square, Echo-chambers
- Using NLP's methods to clarify/demystify the concepts
- Obtaining objective, concrete, trackable, and improvable measures

Data Source

- Tweets sent by U.S. Senators (117th Congress)
- 100 Senators: 50 Democrats, 50 Republican
- Training: ~24,000 Tweets
 - Election Season, Sep. 1st to the election results (Nov. 10th, 2020)
- Test/Validation: ~152,000 Tweets
 - From 2020 Election to April 1st, 2022
- Labels: D (Democrat) | R (Republican)

```
dts['Orientation'].value_counts()

D    13806
R    10217
Name: Orientation, dtype: int64
```

Data Preparation

Twitter API: Academic Account

- Sign-up --> Explanation of Application/Project --> Verification & Approval
- Authentication codes

Fetching Tweets using Tweepy Interface

- A Twitter List of Senators (e.g., C-Span list): Twitter ID
- Excluding retweets, including time stamp
- Simple Code, pagination, max-limit query
- Trick about the time-limit (no 15-mins bummer!)
- Other meta-data for each tweet

BERT

- Pre-processing: Text Cleaning (hashtags, url, emoji, ...)
- BERT model by Transformers from 'Hugging Face'
 - Binary classification using BertForSequenceClassification
 - Case-based model (416 mb)
 - 12 NN layers, 768 Features
 - BERT pooler layer: Linear Classification on top of NN, activation by Tanh()
- PyTorch on Colab's GPU (Tesla T4)

BERT

- Tokenizer
- Tagging & Padding
- Fine-tuning the pre-trained BERT
- 90/10 split, 4 epochs (~1 hr 15 mins)

Saving & Loading the Fine-tuned model

```
====== Epoch 4 / 4 ======
Training...
                             Elapsed: 0:01:04.
  Batch
           40 of
                     676.
                             Elapsed: 0:02:09.
  Batch
           80 of
                     676.
                             Elapsed: 0:03:13.
  Batch
          120 of
                     676.
  Batch
          160 of
                     676.
                             Elapsed: 0:04:18.
                             Elapsed: 0:05:22.
  Batch
          200 of
                     676.
                             Elapsed: 0:06:26.
  Batch
          240 of
                     676.
  Batch
          280 of
                     676.
                             Elapsed: 0:07:31.
          320 of
                             Elapsed: 0:08:35.
  Batch
                     676.
          360 of
                             Elapsed: 0:09:39.
  Batch
                     676.
          400 of
                             Elapsed: 0:10:44.
  Batch
                     676.
                             Elapsed: 0:11:48.
  Batch
          440 of
                     676.
                             Elapsed: 0:12:53.
  Batch
          480 of
                     676.
  Batch
          520 of
                             Elapsed: 0:13:57.
                     676.
  Batch
          560 of
                             Elapsed: 0:15:01.
                     676.
                             Elapsed: 0:16:06.
  Batch
          600 of
                     676.
                             Elapsed: 0:17:10.
  Batch
          640 of
                     676.
  Average training loss: 0.09
  Training epcoh took: 0:18:07
Running Validation...
  Accuracy: 0.87
  Validation Loss: 0.47
  Validation took: 0:00:44
Training complete!
```

Total training took 1:15:24 (h:mm:ss)

TF-IDF & SVD (LSA)

- TF-IDF
 - Computationally Cheap
 - Low attention to the context
- Uni-gram & Bi-gram, 800 Features
- Accuracy
 - Train: 0.65
 - Test: 0.59

Prediction & Classification Report							
		precision	recall	f1-score	support		
	D	0.60	0.65	0.63	81147		
	R	0.56	0.51	0.54	71 374		
accuracy				0.59	152521		
macro	avg	0.58	0.58	0.58	152521		
weighted	avg	0.59	0.59	0.58	152521		

Word2Vec

- Google-News Pre-trained model
- Sentences: Mean(Words)
- Feature Extraction, Train, Test: ~18 hrs
- Train Accuracy: 0.76
- Test Accuracy: 0.69

Prediction & Classification Report							
	precision	recall	f1-score	support			
D	0.70	0.74	0.72	81147			
R	0.68	0.63	0.66	71374			
accuracy			0.69	152521			
macro avg	0.69	0.69	0.69	152521			
weighted avg	0.69	0.69	0.69	152521			

BERT

print(classification_report(flat_true_labels,flat_predictions))

recall f1-score

support

		5			2.3
	0	0.75	0.81	0.78	81715
 Validation set 	1	0.77	0.70	0.73	72254
• Scores:	accuracy			0.76	153969
ocores.	macro avg	0.76	0.76	0.76	153969
 Accuracy: 0.76 	weighted avg	0.76	0.76	0.76	153969

precision

• F1-Score: 0.73

Matthews Correlation Coefficient: 0.515 (Nice!)

- There are a lot of mis-classified tweets, BUT >>>
 - Probability Scores for each Tweet

BERT: Findings

- Average Score (Democrat Direction)
 - Democrats: 0.79
 - Republicans: 0.33
- Top/Least D Tweets by a D
- Top/Least R Tweet by a R
- Polarization Gap over time

Trends, Similarity, Divergence

Average Day-Difference

Loud voices are more extreme?

Limitations

- Impact of High-frequency tweet-senders on training/test set
- Tweets are not well-structured texts
- Computational limitations
 - Hidden & Output layers
 - Training on a larger set
- BERT's Linear Classifier Layer

Future Works

- Expand training set (computation)
- Fine-tuning & Extracting Model's Hidden Layers (computation)
- Comparing with CRF & other methods

- Similar Data sets & Contexts (e.g., entire congress)
- Feature Importance: What makes tweets/sentences less partisan?
- How can we better apply NLP models on tweet texts?

• Thanks!