Ejercicios de Relaciones y Particiones

- 1. En cada inciso, determina si la relación R definida sobre A es reflexiva sobre A, antireflexiva sobre A, simétrica, antisimétrica y/o transitiva. Justifica tu respuesta.
 - (a) $A = \mathbb{N}$ y aRb si y sólo si a + b es par.
 - (b) $A = \mathbb{Z}$ y aRb si y sólo si $a \le b + 3$.
 - (c) $A = \mathbb{Z}$ y aRb si y sólo si |a b| < 2.
 - (d) $A = \mathbb{Z}$ y aRb si y sólo si |a b| = 2.
 - (e) $A = \mathbb{Z}$ y aRb si y sólo si $a^2 + a = b^2 + b$.
 - (f) $A = \mathbb{R}$ y $R = \{(x, y) \in \mathbb{R}^2 : x y \in \mathbb{R}^+\}$, donde \mathbb{R}^+ es el conjunto de los números reales positivos.
 - (g) A es el conjunto de rectas en el plano y $(a,b) \in R$ si y sólo si $a \cap b \neq \emptyset$.
 - (h) A es el conjunto de rectas en el plano y $(a,b) \in R$ si y sólo si a es perpendicular a b.
- 2. Representa gráficamente las relaciones de los incisos (f) y (g).
- 3. Considera las siguientes relaciones R, S definidas sobre \mathbb{Z}^2 , es decir, $R, S \subseteq \mathbb{Z}^2 \times \mathbb{Z}^2$. Determina si son reflexivas sobre \mathbb{Z}^2 , antireflexivas sobre \mathbb{Z}^2 , simétricas, antisimétricas y/o transitivas. Argumenta tu respuesta.
 - (a) (a,b)S(c,d) si y sólo si ad = bc.
 - (b) (a,b)R(c,d) si y sólo si a=c.
- 4. Sean R y S relaciones definidas sobre un conjunto cualquiera A. Demuestra lo siguiente:
 - (a) Si R y S son reflexivas sobre A, la relación $R \cup S$ es reflexiva sobre A.
 - (b) R y S son reflexivas sobre A si y sólo si $R \cap S$ es reflexiva sobre A.
 - (c) $R \cup R^{-1}$ es simétrica.
 - (d) R es simétrica si y sólo si R^{-1} es simétrica.
 - (e) R es simétrica si y sólo si $R^{-1}=R$.
 - (f) Res transitiva si y sólo si $R\circ R\subseteq R$
 - (g) R es transitiva si y sólo si R^{-1} es transitiva.
 - (h) Si R y S son transitivas, la relación $R \cap S$ es transitiva.
 - (i) Si R y S son antisimétricas, $R \cap S$ es antisimétrica.
 - (j) Si $dom(R) \cap im(R) = \emptyset$, entonces R es antisimétrica.
- 5. Encuentra dos relaciones R y S, y algún conjunto A que sirvan de contraejemplo para la afirmacón que se hace en cada inciso. Justifica.
 - (a) Si $R \cup S$ es reflexiva sobre A, R y S son reflexivas sobre A.
 - (b) R es transitiva si y sólo si $R \subseteq R \circ R$.
 - (c) Si R y S son transitivas, entonces $R \cup S$ es transitiva.

- (d) Si R y S son antisimétricas, entonces $R \cup S$ es antisimétrica.
- (e) Si $R \cap S$ es transitiva, entonces $R \vee S$ son transitivas.
- (f) Si $R \cap S$ es antisimétrica, R y S son antisimétricas.
- 6. Sea R una relación simétrica y transitiva. Sea $(x,y) \in R$, por ser R simétrica, $(y,x) \in R$. Tenemos entonces que $(x,y) \in R$ y $(y,x) \in R$, y por transitividad, concluimos que $(x,x) \in R$. ¿Podemos decir entonces que la simetría y la transitividad implican la reflexividad?
- 7. Demuestra que las siguientes son relaciones de equivalencia, determina las clases de equivalencia y la partición que induce. Encuentra un conjunto mínimo de representantes.
 - (a) La relación definida sobre \mathbb{Z} como $x \sim y$ si y sólo si x + y es par.
 - (b) La relación definida sobre \mathbb{Z} como $x \sim y$ si y sólo si existe $k \in \mathbb{Z}$ tal que x = y + 5k.
 - (c) La relación definida sobre \mathbb{Z} como $x \sim y$ si y sólo si 7 divide a x y.
 - (d) La relación S definida sobre $A = [-1, 1] \subseteq \mathbb{R}$ como $(x, y) \in S$ si y sólo si $x^2 = y^2$.
 - (e) La relación R definida sobre $B = \{1, 2, 3, 4\}$ como $T = \{(x, y) \in A^2 : x = y \lor x + y = 3\}$.
 - (f) Sea T el conjunto de todos los tríangulos en el plano y $R \subseteq T^2$, donde $(a, b) \in R$ si y sólo si a y b son semejantes (tienen la misma terna de ángulos).
 - (g) Sea P el conjunto de todas las personas y sea N la relación definida sobre P donde dos personas están relacionadas si y sólo si tienen el mismo nombre.
 - (h) Sea $S = \{1, 2, 3, 4\}$, la relación R definida sobre S^2 donde (a, b)R(c, d) si y sólo si a + d = b + c.
- 8. Sean R y S dos relaciones sobre un conjunto no vacío A. Prueba las siguientes afirmaciones o da un contraejemplo para probar que son falsas.
 - (a) Si R y S son relaciones de equivalencia, $R \cup S$ es una relación de equivalencia.
 - (b) Si R y S son relaciones de equivalencia, $R \cap S$ es una relación de equivalencia.
 - (c) Si la relación $R \cup S$ es de equivalencia, entonces $R \vee S$ también lo son.
 - (d) Si $R \cap S$ es una relación de equivalencia, entonces R y S también lo son.
- 9. Sea A un conjunto no vacío y R una relación de equivalencia sobre A. Demuestra que R es la diagonal de A si y sólo si $\forall a \in A \ ([a] = \{a\})$
- 10. Determina si las siguientes son particiones de los conjuntos dados, y de ser así, determina la relación de equivalencia inducida por la partición. Justifica tus respuestas.
 - (a) Dado el conjunto \mathbb{Z} , sea $P = \{\{n \in \mathbb{Z} : \exists m \in \mathbb{Z} \ (n = 3m)\}, \{n \in \mathbb{Z} : \exists m \in \mathbb{Z} \ (n = 3m + 1)\}, \{n \in \mathbb{Z} : \exists m \in \mathbb{Z} \ (n = 3m + 2)\}\}$
 - (b) Dado el conjunto \mathbb{Z} . Sea $P = \{ \{ n \in \mathbb{Z} : n \geq 0 \}, \{ n \in \mathbb{Z} : n < 0 \} \}$
 - (c) Dado el conjunto $A = \{1, 2, 3, 4, 5, 6\}$. Sea $P = \{\{1, 2\}, \{3, 4, 5\}, \{6\}\}$
 - (d) Dado el conjunto \mathbb{R} . Sea $P = \{\{x \in \mathbb{R} : x \leq 0 \land x \text{ es irracional}\}, \{x \in \mathbb{R} : x \leq 0 \land x \text{ es racional}\}, \{x \in \mathbb{R} : x > 0\}, \{x \in \mathbb{R} : x \text{ es racional} \land x \text{ es irracional}\}\}$

- (e) Dado el conjunto \mathbb{R} . Sea $P = \{\{x \in \mathbb{R} : x \leq 0 \land x \text{ es irracional}\}, \{x \in \mathbb{R} : x \leq 0 \land x \text{ es racional}\}, \{x \in \mathbb{R} : x > 0\}\}$
- 11. Sea R una relación en \mathbb{N} , definida como sigue: $(n,m) \in R$, si m es múltiplo de n. Es R relación de equivalencia? Cuáles serían las clases de equivalencia?
- 12. Sea $A = \{1, 2, 3, 4\}$, definamos sobre $A \times A$ la relación siguiente: (a, b)R(c, d) si a + d = b + c. Demuestra que R es de equivalencia y describe las clases de equivalencia.
- 13. Sean $S = \{1, 2, 3, ..., 10\}$ y $A = S \times S$, si R es la relación definida en A por: $(a, b) R(c, d) \Leftrightarrow ad = bc$. Demuestra que R es una relación de equivalencia y describe la partición de A inducida por R.
- 14. Si una relación de equivalencia R definida en un conjunto A tiene tantas clases de equivalencia como elementos hay en A cómo debe ser R? si R tiene una sola clase de equivalencia? cómo es R?.
- 15. Sea $A = \{a, b, c\}$ cuántas relaciones de equivalencia es posible definir sobre A?.
- 16. Sea B el conjunto formado por las vocales. Da dos particiones de B. Para cada una de las particiones que diste, define una relación de equivalencia en los elementos de B de modo que sus clases de equivalencia coincidan con las particiones dadas.
- 17. Sea A un conjunto no vacío y R una relación simétrica y transitiva sobre A. Demuestra que si dom R = A entonces R es reflexiva, es decir, R es una relación de equivalencia.
- 18. Sea A un conjunto no vacío y \sim una relación de equivalencia sobre A. Demuestra que:
 - (a) $\forall x \in A \ ([x] \neq \emptyset)$
 - (b) Si $[a] \cap [b] \neq \emptyset$, entonces [a] = [b].
 - (c) $\forall x \in A \ (\exists a \in A \text{ tal que } x \in [a]).$

Usando lo anterior, concluye que el conjunto $A/\sim =\{[a]: a\in A\}$ es una partición de A. Argumenta bien todas tus respuestas.

- 19. Sea A un conjunto no vacío, y $P = \{A_i : i \in I\}$ una partición de A. Sea R la relación definida sobre A tal que $\forall a, b \in A$, aRb si y sólo si $\exists i \in I \ (a \in A_i \land b \in A_i)$. Es decir, dos elementos de A están relacionados si y sólo si ambos pertencen a un mismo elemento de la partición. Demuestra que R es una relación de equivalencia.
- 20. Sea A un conjunto no vacío y $\sim \subseteq A \times A$ una relación de equivalencia. Demuestra que $\forall a, b \in A$, si $a \sim b$, entonces [a] = [b].
- 21. Sea A un conjunto no vacío y $\sim \subseteq A \times A$ una relación de equivalencia y $a.b \in A$. Demuestra que si $[a] \cap [b] \neq \emptyset$, entonces [a] = [b].