Lista 3 - Produto escalar

Seleção de exercícios do livro do Paulo Winterle

1) Dados os vetores $\vec{u} = (2, -3, -1)$ e $\vec{v} = (1, -1, 4)$, calcular:

a) $2\vec{u} \cdot (-\vec{v})$

c) $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$

b) $(\vec{u} + 3\vec{v}) \cdot (\vec{v} - 2\vec{u})$

d) $(\vec{u} + \vec{v}) \cdot (\vec{v} - \vec{u})$

Respostas: a)2 b) 21 c) -4 d) 4

2) Determine o vetor \vec{v} , paralelo ao vetor $\vec{v} = (2, -1, 3)$ tal que $\vec{u} \cdot \vec{v} = -42$.

Resposta (-6,3,-9)

3) Determine o vetor \vec{v} , sabendo que $|\vec{v}| = 5$, \vec{v} é ortogonal ao eixo Ox, $\vec{v} \cdot \vec{w} = 6$ e $\vec{w} = \vec{i} + 2\vec{j}$. Resposta (0,3,4) ou (0,3,-4)

4) Determine o vetor \overrightarrow{v} , ortogonal ao eixo Oy, $\overrightarrow{v} \cdot \overrightarrow{v_1} = 8$ e $\overrightarrow{v} \cdot \overrightarrow{v_2} = -3$, em que $\overrightarrow{v_1} = (3,1,-2)$ e $\overrightarrow{v_2} = (-1,1,1)$. Resposta (2,0,-1)

5) Dado que $|\vec{u}| = 2$, $|\vec{v}| = 3$ $|\vec{v}| = 3$ $|\vec{v}| = -1$, calcule:

a) $(\vec{u} - 3\vec{v}) \cdot \vec{u}$

c) $(\vec{u} + \vec{v}) \cdot (\vec{v} - 4\vec{u})$

b) $(2\vec{v} - \vec{u}) \cdot (2\vec{v})$

d) $(3\vec{u} + 4\vec{v}) \cdot (-2\vec{u} - 5\vec{v})$

Respostas a) 7 b) 38 c) -4 d) -181

6) Qual o valor de α para que os vetores $\vec{v_1} = \alpha \vec{i} + 2\vec{j} - 4\vec{k} \ e \ \vec{v_2} = 2\vec{i} + (1 - 2\alpha)\vec{j} + 3\vec{k}$ sejam ortogonais? Resposta $\alpha = -5$

7) Dados os pontos A(m, 1, 0), B(m-1, 2m, 2) e C(1,3,-1), determinar m de modo que o triângulo seja retângulo em A. Calcule a área do triângulo.

Respostas m=1 e $\sqrt{30}$ / 2

8) Os pontos A, B e C são vértices de um triângulo equilátero cujo lado mede 20 cm. Calcule $\overrightarrow{AB} \cdot \overrightarrow{AC} \ e \ \overrightarrow{AB} \cdot \overrightarrow{CA}$.

Respostas 200 e -200

9) O quadrilátero ABCD é um losango de lado 2. Calcule

- a) $\overrightarrow{AC} \cdot \overrightarrow{BD}$
- d) $\overrightarrow{AB} \cdot \overrightarrow{BC}$
- b) $\overrightarrow{AB} \cdot \overrightarrow{AD}$
- e) $\overrightarrow{AB} \cdot \overrightarrow{DC}$
- c) $\overrightarrow{BA} \cdot \overrightarrow{BC}$
- f) $\overrightarrow{BC} \cdot \overrightarrow{DA}$

Respostas: a) 0 b) 2 c)-2 d) 2 e) 4 f) -4

- 10) Calcule $|\vec{u} + \vec{v}|, |\vec{u} \vec{v}| = (\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v})$, sabendo que $|\vec{u}| = 4$, $|\vec{v}| = 3$ e o ângulo entre \vec{u} e \vec{v} é de 60° . Respostas: $\sqrt{37}, \sqrt{13}$ e 7
- 11) Determinar o vetor \vec{u} tal que $|\vec{u}| = 2$, o ângulo entre \vec{u} e $\vec{v} = (1, -1, 0)$ é 45° e \vec{u} é ortogonal a $\vec{w} = (1, 1, 0)$ Resposta: $(1, -1, \sqrt{2})$ ou $(1, -1, -\sqrt{2})$
- 12) Considere os vetores \vec{u} e \vec{v} , tal que $\vec{u} \perp \vec{v}$, $|\vec{u}| = 6$ e $|\vec{v}| = 8$.Calcule $|\vec{u} + \vec{v}|$ e $|\vec{u} \vec{v}|$ Respostas: 10 e 10
- 13) Determine o ângulo entre os vetores

a)
$$\vec{u} = (2, -1, -1)$$
 $\vec{e} = (-1, -1, 2)$

b)
$$\vec{u} = (1, -2, 1)$$
 $\vec{e} = (-1, 1, 0)$

Respostas: 120° e 150°

14) Considere o triângulo de vértices A (3,4,4), B (2,-3,4) e C (6,0,4). Determine o ângulo interno ao vértice B. Qual o ângulo externo ao vértice B? Respostas: 45° e 135°

15) Calcule os ângulos internos do triângulo de vértices A(2,1,3), B (1,0,-1) e

C (-1,2,1). Respostas:
$$\widehat{A} \cong \sim 50^{\circ}57'$$
, $\widehat{B} \cong \sim 57^{\circ}1'$, $\widehat{C} \cong \sim 72^{\circ}2'$

16) Considere o cubo de aresta a representado na Figura. Determine:

a)
$$\overrightarrow{OA} \cdot \overrightarrow{OC}$$

e)
$$\overrightarrow{OA} \cdot \overrightarrow{OC}$$

$$\overrightarrow{OA} \cdot \overrightarrow{OD}$$

f)
$$(\overrightarrow{ED} \cdot \overrightarrow{AB}) \cdot \overrightarrow{OG}$$

$$_{\rm c)}\overrightarrow{OE}\cdot\overrightarrow{OB}$$

g) o ângulo agudo entre a diagonal do cubo e uma aresta;

d) $\left| \overrightarrow{OB} \right| e \left| \overrightarrow{OG} \right|$

h) o ângulo agudo formado por duas diagonais do cubo

17) Para cada um dos pares de vetores \vec{u} e \vec{v} , encontrar a projeção ortogonal de \vec{v} sobre \vec{u} , e decompor \vec{v} como soma de \vec{v}_1 com \vec{v}_2 , em que \vec{v}_1/\vec{u} e $\vec{v}_2 \perp \vec{u}$

a)
$$\vec{u} = (1, 2, -2)$$
 e $\vec{v} = (3, -2, 1)$

b)
$$\vec{u} = (3,1,-3) \vec{v} = (2,-3,1)$$

- 18) Considere A (2,1,3), B (m,3,5) e C(0,4,1) vértices de um triângulo:
- a) Para que valor de m o triângulo ABC é retângulo em A?
- b) Calcular a medida da projeção do cateto AC sobre a hipotenusa BC.
- c) Determinar o ponto H, pé da altura relativa ao vértice A.
- d) Calcular a área do triângulo.

