

Welcome to the course!

Erin LeDell & Gabriela de Queiroz Machine Learning Scientist & Data Scientist

Tree-based models

- Interpretability + Ease-of-Use + Accuracy
- Make Decisions + Numeric Predictions

What you'll learn:

- Interpret and explain decisions
- Explore different use cases
- Build and evaluate classification and regression models
- Tune model parameters for optimal performance

We will cover:

- Classification & Regression Trees
- Bagged Trees
- Random Forests
- Boosted Trees (GBM)

Decision tree terminology: nodes

Training Decision Trees in R

```
> library("rpart")
```

> help(package = "rpart")

Recursive Partitioning and Regression Trees

Automobile Data from 'Consumer Reports' 1990

Documentation for package 'rpart' version 4.1-10

- DESCRIPTION file.
- User guides, package vignettes and other documentation.
- ackage NEWS.

Help Pages

car.test.frame

car90 Automobile Data from 'Consumer Reports' 1990 Automobile Data from 'Consumer Reports' 1990 cu.summary kyphosis Data on Children who have had Corrective Spinal Surgery labels.rpart Create Split Labels For an Rpart Object Mean-Variance Plot for an Rpart Object meanvar Mean-Variance Plot for an Roart Object meanvar.rpart Handles Missing Values in an Rpart Object na.rpart path.rpart Follow Paths to Selected Nodes of an Rpart Object Plot an Rpart Object plot.rpart plotcp Plot a Complexity Parameter Table for an Rpart Fit PostScript Presentation Plot of an Rpart Object post.rpart PostScript Presentation Plot of an Rpart Object Predictions from a Fitted Rpart Object predict.rpart Print an Rpart Object print.rpart Displays CP table for Fitted Roart Object Cost-complexity Pruning of an Rpart Object prune prune.rpart Cost-complexity Pruning of an Rpart Object Residuals From a Fitted Roart Object residuals.rpart Recursive Partitioning and Regression Trees rpart.control Control for Roart Fits Initialization function for exponential fitting rpart.exp rpart.object Recursive Partitioning and Regression Trees Object Plots the Approximate R-Square for the Different Splits rsq.rpart snip.rpart Snip Subtrees of an Rpart Object Soldering of Components on Printed-Circuit Boards solder stagec Stage C Prostate Cancer Summarize a Fitted Roart Object summary.rpart Place Text on a Dendrogram Plot text.rpart Return Cross-Validated Predictions xpred.rpart

Training Decision Trees in R

```
> rpart(response ~ ., data = dataset)
```


Let's practice!

Introduction to classification trees

Gabriela de Queiroz Instructor

Advantages

- ✓ Simple to understand, interpret, visualize
- ✓ Can handle both numerical and categorical features (inputs) natively
- Can handle missing data elegantly
- Robust to outliers
- Requires little data preparation
- Can model non-linearity in the data
- Can be trained quickly on large datasets

Disadvantages

- **★** Large trees can be hard to interpret
- ★ Trees have high variance, which causes model performance to be poor
- **★** Trees overfit easily

Will you wait for a table or go elsewhere?

customer	fri/sat	raining	reservation	wait estimate	will_wait?
1	No	No	Yes	0-10	Yes
2	No	No	No	30-60	No
3	No	No	No	0-10	Yes
4	Yes	No	No	10-30	Yes
5	Yes	No	Yes	> 60	No
6	No	Yes	Yes	0-10	Yes

Restaurant Example

customer	fri/sat	raining	reservation	wait estimate	will_wait?
1	No	No	Yes	0-10	Yes
2	No	No	No	30-60	No
3	No	No	No	0-10	Yes
4	Yes	No	No	10-30	Yes
5	Yes	No	Yes	> 60	No
6	No	Yes	Yes	0-10	Yes

Decision Tree in R

Prediction example

• The wait estimate is 20 minutes, no reservation was made, and it is Wednesday

Example

Let's practice!

Overview of the modeling process

Gabriela de Queiroz Instructor

Train/Test Split

Train/test split in R

```
# total number of rows in the restaurant data frame
n <- nrow(restaurant)

# number of rows for the training set (80% of the dataset)
n_train <- round(0.80 * n)

# create a vector of indices which is an 80% random sample
set.seed(123) # set a random seed for reproducibility
train_indices <- sample(1:n, n_train)

# subset the data frame to training indices only
restaurant_train <- restaurant[train_indices, ]

# exclude the training indices to create the test set
restaurant_test <- restaurant[-train_indices, ]</pre>
```

Train a Classification Tree

formula: response variable ~ predictor variables

Let's practice!

Evaluate Model Performance

Gabriela de Queiroz Instructor

Predicting class labels for test data

Evaluation Metrics for Binary Classification

- Accuracy
- Confusion Matrix
- Log-loss
- AUC

Accuracy

$$accuracy = \frac{\text{n of correct predictions}}{\text{n of total data points}}$$

Confusion Matrix

Confusion Matrix

Confusion Matrix

Let's practice!

Use of splitting criterion in trees

Gabriela de Queiroz Instructor

Split the data into "pure" regions

How to determine the best split?

Impurity Measure - Gini Index

Let's practice!