Subset Bootstrap

ZHANG Yan

March 30, 2021

Original bootstrap:

- 1. draw $\mathbf{X} = (X_1, X_2, \dots, X_n)$ from F, and obtain $\hat{\theta} = \hat{\theta}(\mathbf{X})$; 2. resample $\mathbf{X}^{*b} = (X_1^{*b}, X_2^{*b}, \dots, X_n^{*b})$ from $\mathbf{X}, b = 1, \dots, B$; 3. obtain $\hat{\boldsymbol{\theta}}^* = (\hat{\theta}^{*1}, \hat{\theta}^{*2}, \dots, \hat{\theta}^{*B})$, where $\hat{\theta}^{*b} = \hat{\theta}(\mathbf{X}^{*b})$; 4. estimate the 1α confidence interval: $[2\hat{\theta} \hat{\boldsymbol{\theta}}_{(1-\alpha/2)}^*, 2\hat{\theta} \hat{\boldsymbol{\theta}}_{(\alpha/2)}^*]$.

Subset bootstrap: (assume the bias is asymptotically negligible, and $STD(\hat{\theta}) \propto n^{-\beta}$, normally $\beta = 1/2$

- 1. draw $\mathbf{X} = (X_1, X_2, \dots, X_n)$ from F, and obtain $\hat{\theta} = \hat{\theta}(\mathbf{X})$;
- 2. set $0 < \gamma < 1$ so that γn is an integer, resample (with or without replacement) $\boldsymbol{X}_{\gamma}^{*b} = (X_{1}^{*b}, X_{2}^{*b}, \dots, X_{\gamma n}^{*b}) \text{ from } \boldsymbol{X}, b = 1, \dots, B;$ 3. obtain $\hat{\boldsymbol{\theta}}_{\gamma}^{*} = (\hat{\theta}_{\gamma}^{*1}, \hat{\theta}_{\gamma}^{*2}, \dots, \hat{\theta}_{\gamma}^{*B}), \text{ where } \hat{\theta}_{\gamma}^{*b} = \hat{\theta}(\boldsymbol{X}_{\gamma}^{*b});$

 - 4. scale $\hat{\boldsymbol{\theta}}_{\gamma}^*$ to be $\hat{\boldsymbol{\theta}}^* = \gamma^{\beta}(\hat{\boldsymbol{\theta}}_{\gamma}^* \hat{\boldsymbol{\theta}}) + \hat{\boldsymbol{\theta}};$
 - 5. estimate the 1α confidence interval: $[2\hat{\theta} \hat{\theta}^*_{(1-\alpha/2)}, 2\hat{\theta} \hat{\theta}^*_{(\alpha/2)}]$.

Experiment:

Here I set n = 2000, B = 1000, $\gamma = 0.1$ and $\alpha = 0.1$ with 100 replicates to estimate the probabilities that the confidence intervals contain the target parameters.

	normal (one mode)	gamma	normal (two mode)
mean	0.87/0.86/0.84	0.87/0.88/0.86	0.91/0.92/0.9
median	0.89/0.88/0.88	0.88/0.89/0.88	0.81/0.7/0.68
std	0.93/0.93/0.92	0.93/0.92/0.93	0.86/0.87/0.85
variance	0.91/0.91/0.89	0.91/0.92/0.91	0.9/0.88/0.87

Table 1: Original bootstrap/Subset with replacement/Subset without replacement