50 Hz

CEA-CA Series CEA(N)-CA(N) made of AISI 316

SINGLE AND TWIN-IMPELLER CENTRIFUGAL ELECTRIC PUMPS EQUIPPED WITH IE2/IE3 MOTORS COMPLYING WITH REGULATION (EC) n. 640/2009

CEA-CA - CEA(N)-CA(N) SERIES HYDRAULIC PERFORMANCE RANGE AT 50 Hz

CONTENTS

CEA-CEA(N) Series Specifications
List of Models and Table of Materials CEA-CEA(N) Series
Mechanical Seal CEA-CEA(N) Series
Hydraulic Performance Table and Electrical Data CEA-CEA(N) Series
Hydraulic Performance Range CEA-CEA(N) Series at 50 Hz
Dimensions and Weights CEA-CEA(N) Series
CA-CA(N) Series Specifications
List of Models and Table of Materials CA-CA(N) Series
Mechanical Seal CA-CA(N) Series
Hydraulic Performance Table and Electrical Data CA-CA(N) Series
Hydraulic Performance Range CA-CA(N) Series at 50 Hz
Dimensions and Weights CA-CA(N) Series
Tochnical Annondix

Single-Impeller Centrifugal Electric Pumps

CEA-CEA(N) Series

MARKET SECTORS

CIVIL, AGRICULTURAL, INDUSTRIAL.

APPLICATIONS

Version made of AISI 304

- Handling of chemically and mechanically non-aggressive water and liquids (*).
- Water supply.
- Irrigation.
- Water circulation (cold, hot, refrigerated).
- * For moderately aggressive liquids, a version with FPM elastomers is available (CEA../..-V). For aggressive liquids, please contact our sales network.

"N" version made of AISI 316 (for aggressive liquids)

- Reverse osmosis (where demineralized water is used).
- Industrial washing.
- Thermal waters.
- Chlorine dispensing in swimming pools.
- Jewellary industry.

SPECIFICATIONS PUMP

- **Delivery** up to 520 l/min (31 m³/h)
- **Head** up to 32 m.
- **Temperature** of pumped liquid:
- -10°C to +85°C standard version.
- -10° C to $+110^{\circ}$ C (N and V versions).
- Maximum operating **pressure** : 8 bar (PN 8).
- Counter-clockwise rotation facing the pump from the suction port.

MOTOR

- Asynchronous, squirrel cage rotor, close construction, external ventilation.
- Protection class: IP55.
- Class 155 (F) Insulation.
- Performances to EN 60034-1 specifications.
- Standard voltage:
 - Single-phase versions:
 220-240 V 50 Hz, 2 poles, with automatic reset overload protection up to 1,5 kW. For higher powers,

the overload protection must be provided and installed by the user in the control panel.

- **Three-phase** versions: 220-240/380-415 V 50 Hz, 2 poles, the overload protection must be provided and installed by the user in the control panel.
- Condensate drain plugs in the standard version.

CONSTRUCTION CHARACTERISTICS

- Close-coupled, single-impeller centrifugal pump featuring axial suction and radial discharge.
- Compact construction, with pump coupled directly to motor; special motor shaft extension in common with the pump and supported by ball bearings.
- Rotating assembly with back pull-out design, eliminating the need to disconnect the pump body from the pipe line.
- Threaded suction and discharge ports (Rp ISO 7).
- High performance enclosed Impeller made of AISI 304 stainless steel (AISI 316 for N version).
- **Mechanical seal** with Ceramic/ Carbon rings, NBR elastomers, (EPDM for N version) other parts are made of AISI 304 stainless steel (AISI 316 for N version). Mounting dimensions according to EN 12756 (ex DIN 24960) and ISO 3069.
- **O-rings** made of NBR (EPDM for N version).
- Mounting pedestal on pump body.

OPTIONAL FEATURES

- Different voltages and frequencies.
- Different material for the mechanical seal and O-rings.

☐ Standard supplied IE2/IE3 motors

are compliant with

Regulation (EC)

no. 640/2009.

CEA-CEA(N) SERIES IDENTIFICATION CODE

EXAMPLE: CEAM 120/5-V CEA series electric pump, single-phase, flow rate 120 l/min

50 Hz, Impeller size 5, FPM version.

RATING PLATE

LEGEND

- 1 Electric pump type
- 2 Code
- 3 Delivery range
- 4 Head range
- 5 Electrical data
- 6 Serial number (date + sequential number)
- 8 Minimum head
- 11 Rated power
- 12 Electric pump protection class
- 13 Maximum temperature of pumped liquid

CEA - CEA(N) SERIES LIST OF MODELS AND TABLE OF MATERIALS

CEA SERIES TABLE OF MATERIALS

REF.	PART	MATERIAL	REFERENCE STANDARI	os
N.			EUROPE	USA
1	Pump body	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
2	Impeller	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
3	Diffuser	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
4	Seal housing	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
5	Adapter	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
12	Mechanical seal	Ceramic / Carbon / NBR (stand	dard version)	
13	Elastomers	NBR (standard version)		
16	Fill/drain plugs	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
26	Impeller lock nut	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
27	Mounting pedestal	Painted steel		
28	Pump body fastening nuts and bolts	Zinc-plated steel		
29	Shaft extension	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316

CEA(N) SERIES TABLE OF MATERIALS

cea-cea-en_b_tm

REF.	PART	MATERIAL	REFERENCE STANDAR	DS
N.			EUROPE	USA
1	Pump body	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Impeller	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
3	Diffuser	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Seal housing	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Adapter	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
12	Mechanical seal	Ceramic / Carbon /EPDM		
13	Elastomers	EPDM		
16	Fill/drain plugs	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
26	Impeller lock nut	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
27	Mounting pedestal	Painted steel		
28	Pump body fastening nuts and bolts	Zinc-plated		
29	Shaft extension	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316

cea-ceaN-en_a_tm

CEA-CEA(N) MECHANICAL SEAL, ACCORDING TO EN 12756

Mechanical seal with mounting dimensions according to EN12756 (ex DIN 24960) and ISO 3069.

CEA-CEA(N) LIST OF MATERIALS

POSITION 1 - 2	POSITION 3	POSITION 4-5
B : Resin impregnated carbon	P : NBR	F : AISI 304
C : Special resin impregnated carbon	E : EPDM	G : AISI 316
Q ₁ : Silicon carbide	V : FPM	
U ₃ : Tungsten carbide		
V : Ceramic		

cea-ca_ten-mec-en_b_tm

CEA MECHANICAL SEALS

			POSITION			TEMPERATURE								
TYPE	1	2	3	4	5	(℃)								
	ROTATING ASSEMBLY	FIXED ASSEMBLY	ELASTOMERS	SPRINGS	OTHER COMPONENTS	(C)								
		Standaf	RD MECHANICAL											
V B P GF														
		OTHER TYPE	S OF MECHANIC	AL SEAL										
VBEGG	V	В	E	G	G	-10 +110								
VCEGG	V	С	E	G	G	-10 +110								
Q ₁ Q ₁ EGG	Q ₁	Q ₁	E	G	G	-10 +110								
U₃CEGG	U ₃	С	E	G	G	-10 +110								
U₃U₃EGG	U ₃	U ₃	E	G	G	-10 +110								
VBVGG	V	В	٧	G	G	-10 +110								
VCVGG	V	С	٧	G	G	-10 +110								
Q ₁ Q ₁ VGG	Q ₁	Q ₁	٧	G	G	-10 +110								
U₃CVGG	U ₃	С	٧	G	G	-10 +110								
U₃U₃VGG	U ₃	U ₃	٧	G	G	-10 +110								

cea_tipi-ten-mec_b_tc

CEA(N) MECHANICAL SEALS

			TEMPERATURE										
TYPE	1	2	3	4	5	(℃)							
	ROTATING ASSEMBLY	FIXED ASSEMBLY	ELASTOMERS	SPRINGS	OTHER COMPONENTS	(C)							
		Standaf	RD MECHANICAL	SEAL									
VBEGG V B E G G													
		OTHER TYPE	S OF MECHANIC	AL SEAL									
VCEGG	V	C	E	G	G	-10 +110							
$Q_1 Q_1 E G G$	Q ₁	Q_1	E	G	G	-10 +110							
VCVGG	٧	C	V	G	G	-10 +110							
$Q_1 Q_1 V G G$	Q ₁	Q_1	V	G	G	-10 +110							

cean-can_tipi-ten-mec-en_b_tc

CEA-CEA(N) SERIES HYDRAULIC PERFORMANCE TABLE AT 50 Hz, 2 POLES

PUMP TYPE	RA	ΓED								Q	= DEL	IVERY								
	POV	VER	l/min 0	30	40	60	80	100	120	140	160	180	200	250	300	350	400	430	480	520
			m³/h 0	1,8	2,4	3,6	4,8	6	7,2	8,4	9,6	10,8	12	15	18	21	24	26	29	31
	kW	HP						H = T0	OTAL F	IEAD I	METRE	S COL	UMN C	F WA	TER					
CEA(M) 70/3	0,37	0,5	22	20,1	19,1	16,6	12,8													
CEA(M) 70/5	0,55	0,75	31,1	28,8	27,7	24,7	20,2													
CEA(M) 80/5	0,75	1	32	30	29,3	27,4	24,7	21												
CEA(M) 120/3	0,55	0,75	22,4			18,9	17,5	15,9	14	11,8	9,2									
CEA(M) 120/5	0,9	1,2	31,8			28,2	26,5	24,6	22,4	20	17,3									
CEA(M) 210/2	0,75	1	17,7						16,5	16,1	15,6	15	14,4	12,6	10,4					
CEA(M) 210/3	1,1	1,5	20,8						19,7	19,3	19	18,5	18	16,5	14,4					
CEA(M) 210/4	1,5	2	25,5						24,8	24,5	24	23,6	23	21,3	19					
CEA(M) 210/5	1,85	2,5	29						28,2	27,9	27,5	27,1	26,6	25,1	23,1					
CEA(M) 370/1	1,1	1,5	16,3									15,5	15,2	14,3	13	11,4	9,4	8,1		
CEA(M) 370/2	1,5	2	20,4										19,1	18,3	17,2	15,8	14,1	13	10,8	
CEA(M) 370/3	1,85	2,5	24,4										22,9	22,1	21,1	19,8	18,2	17,1	15	13
CEA370/5	З	4	30,3										28,3	27,5	26,5	25,3	23,8	22,8	21	19,0

cea-2p50-en_d_th

CEA-CEA(N) SERIES ELECTRICAL DATA AT 50 Hz, 2 POLES

PUMP	MOTOR	INPUT	INPUT	CAPACIT.	PUMP	MOTOR	INPUT	INPUT	INPUT
TYPE	TYPE	POWER*	CURRENT*		TYPE	TYPE	POWER*	CURRENT*	CURRENT*
1~			220-240 V		3 ~			220-240 V	380-415 V
• • •		kW	Α	μF / 450 V			kW	Α	Α
CEAM70/3	SM63BG/1045	0,60	2,72	14	CEA70/3	SM63BG/304	0,61	2,51	1,45
CEAM70/5	SM71BG/1055	0,97	4,55	16	CEA70/5	SM71BG/305	0,88	2,86	1,65
CEAM80/5	SM71BG/1075	1,07	4,87	20	CEA80/5	SM80BG/307PE	0,98	3,08	1,78
CEAM120/3	SM71BG/1055	0,91	4,33	16	CEA120/3	SM71BG/305	0,82	2,74	1,58
CEAM120/5	SM71BG/1095	1,39	6,24	25	CEA120/5	SM80BG/311PE	1,28	4,10	2,37
CEAM210/2	SM71BG/1075	1,13	5,10	20	CEA210/2	SM80BG/307PE	1,04	3,22	1,86
CEAM210/3	SM80BG/1115	1,48	6,68	30	CEA210/3	SM80BG/311PE	1,35	4,24	2,45
CEAM210/4	SM80BG/1155	1,91	8,60	40	CEA210/4	SM80BG/315PE	1,73	5,46	3,15
CEAM210/5	PLM90BG/1225	2,24	10,2	70	CEA210/5	PLM90BG/322	2,20	7,35	4,24
CEAM370/1	SM80BG/1115	1,49	6,75	30	CEA370/1	SM80BG/311PE	1,40	4,35	2,51
CEAM370/2	SM80BG/1155	2,05	9,26	40	CEA370/2	SM80BG/315PE	1,95	5,94	3,43
CEAM370/3	PLM90BG/1225	2,45	11,1	70	CEA370/3	PLM90BG/322	2,45	7,84	4,53
					CEA370/5	PLM90BG/330	3,26	10,1	5,86

^{*}Maximum value in specified range. cea-2p50-en_f_te

MOTORS FOR CEA-CEA(N) SERIES

Standard supplied IE2/IE3 three-phase surface motors \geq 0,75 kW are compliant with Regulation (EC) no. 640/2009 and IEC 60034-30.

Electrical performances according to EN 60034-1.

Insulation class 155 (F). IP55 protection. Condensate drain plugs on standard version.

Cooling by fan according to EN 60034-6.

Cable gland metric size according to EN 50262. Standard voltage:

- Single-phase version: 220-240 V 50 Hz (incorporated automatic-reset overload protection).
- Three-phase version: 220-240/380-415 V 50 Hz (overload protection to be provided by the user).

SINGLE-PHASE MOTORS AT 50 Hz, 2 POLES

		SIZE	uction ign	INPUT CURRENT	CAPA	CITOR	DATA FOR 230 V 50 Hz VOLTAGE							
P _N kW	MOTOR TYPE	IEC SI	Constru Desiç	In (A) 220-240 V	μF	v	min ⁻¹	ls / In	η%	cosφ	Tn Nm	Ts/Tn	Tm/Tn	
0,4	SM63BG/1045	63		2,79-2,85	14	450	2745	2,64	65,1	0,96	1,39	0,68	1,63	
0,55	SM71BG/1055	71		3,76-3,99	16	450	2820	3,72	68,9	0,91	1,86	0,61	2,00	
0,75	SM71BG/1075	71	¥	4,90-4,85	20	450	2765	3,42	70,1	0,96	2,59	0,58	1,75	
0,95	SM71BG/1095	71	ECI	6,25-5,89	25	450	2740	3,39	71,1	0,98	3,31	0,58	1,66	
1,1	SM80BG/1115	80	SP	6,88-6,65	30	450	2800	3,89	74,7	0,96	3,75	0,46	1,72	
1,5	SM80BG/1155	80		9,21-8,58	40	450	2810	4,00	76,1	0,98	5,09	0,39	1,74	
1,85	PLM80BG/1225	90		12,5-11,6	70	450	2825	4,47	82,4	0,97	7,43	0,53	1,87	

THREE-PHASE MOTORS AT 50 Hz, 2 POLES

cea-motm-2p50-en_a_te

									Ef	ficiency	η _N									
										%										of
		Δ 220 V	,		Δ 230 V	,		Δ 240 V	'		Δ 380 V	,		Δ 400 V	,		Δ 415 V	•		Year
P_{N}		Y 380 V	,		Y 400 V	,		Y 415 V			Y 660 V			Y 690 V						Year of manufacture
kW	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		_
0,4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
0,55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,	-	
0,75	82,5	83,1	81,3	82,8	82,7	80,1	82,6	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9		1
0,9	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	2	201
1,1	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4)	June
1,5	85,6	86,5	85,8	85,9	86,4	84,9	86,0	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0		٦٢
1,85	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7		By
2,2	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	2	
З	85,5	86,8	85,6	86,1	86,8	85,6	86,3	86,8	85,6	85,5	86,8	85,6	85,5	86,8	85,6	85,5	86,8	85,6		

	Manufacturer													
	Lowara srl Unipersonale Reg. No. 03471820260	SIZE	onstruction Design			Data for 400 V / 50 Hz Voltage								
P_N	Montecchio Maggiore Vicenza - Italia	EC	ons! De	N. of	f _N	T _N								
kW	Model		ŭ	Poles	Hz	cosφ	Is / I _N	Nm	Ts/T _N	Tm/Tn				
0,4	SM63BG/304	63				0,66	4,32	1,38	4,14	3,13				
0,55	SM71BG/305	71				0,74	5,97	1,85	3,74	3,56				
0,75	SM80BG/307PE	80				0,78	7,38	2,48	3,57	3,75				
0,9	SM80BG/311PE	80	AL			0,79	8,31	3,63	3,95	3,95				
1,1	SM80BG/311PE	80	SPECIAL	2	50	0,79	8,31	3,63	3,95	3,95				
1,5	SM80BG/315PE	80	SP			0,80	8,80	4,96	4,31	4,10				
1,85	PLM90BG/322	90				0,80	8,63	7,25	3,74	3,71				
2,2	PLM90BG/322	90				0,80	8,63	7,25	3,74	3,71				
3	PLM90BG/330	90				0,82 8,39 9,96 3,50 3,32								

					٧	oltage l	J _N					Operatir	ng conditions '	**		
		Δ			Υ	<u> </u>		Δ		,	Y			Altitude	T. amb	ATEX
P_N	220 V	230 V	240 V	380 V	400 V	415 V	380 V	400 V	415 V	660 V	690 V	n _N		Above Sea	min/max	
kW						I _N (A)						min ⁻¹		Level (m)	°C	
0,4	2,20	2,34	2,51	1,27	1,35	1,45	-	-	-	-	-	2740 ÷ 2790	نه			
0,55	2,56	2,56	2,62	1,48	1,48	1,51	-	-	-	-	-	2825 ÷ 2850	note.			
0,75	2,96	2,94	2,96	1,71	1,70	1,71	1,70	1,69	1,70	0,98	0,98	2875 ÷ 2895	See r			
0,9	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	Se			
1,1	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900		≤ 1000	-15 / 4 0	No
1,5	5,56	5,49	5,51	3,21	3,17	3,18	3,21	3,18	3,19	1,85	1,84	2870 ÷ 2895				
1,85	8,05	8,04	8,09	4,65	4,64	4,67	4,62	4,61	4,63	2,67	2,66	2885 ÷ 2900				
2,2	8,05	8,04	8,09	4,65	4,64	4,67	4,62	4,61	4,63	2,67	2,66	2885 ÷ 2900				
3	10,8	10,6	10,6	6,23	6,14	6,12	6,18	6,10	6,06	3,57	3,52	2850 ÷ 2885				

Note: Observe the regulations and codes locally in force regarding sorted waste disposal.

** Operating conditions to be referred to motor only. About electric pump, refer to limits in user's manual.

AVAILABLE VOLTAGES MOTORS FOR CEA-CEA(N) SERIES

			SINGLE-PHASE											
			50 Hz	z			60 H	z						
P _N kW	IEC SIZE	1 x 220-240	1 x 100	1 x 110-120	1 x 220-230	1 x 100	1x 110-115	1 x 120-127	1 x 200-210					
0,4	63	S	0	0	S	-	0	-	-					
0,55	71	S	0	0	S	0	0	0	0					
0,75	71	S	0	0	S	0	0	0	0					
0,95	71	S	0	0	S	0	0	0	0					
1,1	80	S	-	0	S	-	0	-	0					
1,5	80	S	-	-	S	-	0	-	0					
2,2	90	S	-	-	S	-	-	-	-					

	THREE-PHASE - 2 POLES																
				50 H	z						60	Hz				50/6	0 Hz
P _N kW	3 x 220-230-240/380-400-415	3 x 380-400-415/660-690	3 x 200-208/346-360	3 x 255-265/440-460	3 x 290-300/500-525	3 x 440-460/-	3 x 500-525/-	3 x 220-230/380-400	3 x 255-265-277/440-460-480	3 x 380-400/660-690	3 x 440-460-480/-	3 x 110-115/190-200	3 x 200-208/346-360	3 x 330-346/575-600	-/5/2× S	3 x 230/400 50 Hz 3 x 265/460 60 Hz	3 × 400/690 50 Hz 3 × 460/- 60 Hz
0,4	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
0,55	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
0,75	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
0,95	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
1,1	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
1,5	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
2,2	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
3	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0

cea-volt-lowa-en_a_te

s = Standard voltage

o = Optional voltage

^{- =} Not available

CEA-CEA(N) SERIES HYDRAULIC PERFORMANCE RANGE AT 50 Hz, 2 POLES

CEA70-CEA80 SERIES OPERATING CHARACTERISTICS AT 50 Hz, 2 POLES

CEA120 SERIES OPERATING CHARACTERISTICS AT 50 Hz, 2 POLES

CEA210 SERIES OPERATING CHARACTERISTICS AT 50 Hz, 2 POLES

CEA370 SERIES OPERATING CHARACTERISTICS AT 50 Hz, 2 POLES

CEA-CEA(N) SERIES DIMENSIONS AND WEIGHTS AT 50 Hz, 2 POLES

PUMP TYPE				DIMENSI	ONS (mm				DNA	DNM	WEIGHT
	Α	D	н	Н1	H2	L	L1	w			kg
CEAM 70/3/A	51	120	222	111	222	311	62	65	Rp 11/4	Rp 1	9,7
CEAM 70/5/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	11,6
CEAM 80/5/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	12,5
CEAM 120/3/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	11,5
CEAM 120/5/A	51	140	222	111	241	325	31	65	Rp 11/4	Rp 1	13
CEAM 210/2/A	54	140	224	113	232	339	76	76	Rp 11/2	Rp 1⅓	13
CEAM 210/3/A	54	156	224	113	248	385	69	76	Rp 11/2	Rp 1⅓	14,5
CEAM 210/4/A	54	156	224	113	248	385	69	76	Rp 11/2	Rp 1⅓	16,1
CEAM 210/5/P	54	174	224	113	262	429	84	76	Rp 11/2	Rp 1⅓	17
CEAM 370/1/A	54	156	224	113	248	385	69	76	Rp 2	Rp 1⅓	14
CEAM 370/2/A	54	156	224	113	248	385	69	76	Rp 2	Rp 1⅓	16,1
CEAM 370/3/P	54	174	224	113	262	429	84	76	Rp 2	Rp 1⅓	20
CEA 70/3/A	51	120	222	111	222	311	62	65	Rp 11/4	Rp 1	9,7
CEA 70/5/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	11,6
CEA 80/5/D	51	155	222	111	240	371	114	65	Rp 11/4	Rp 1	14,4
CEA 120/3/A	51	140	222	111	232	325	76	65	Rp 11/4	Rp 1	11,5
CEA 120/5/D	51	155	222	111	240	371	114	65	Rp 11/4	Rp 1	14,6
CEA 210/2/D	54	155	224	113	240	385	114	76	Rp 11/2	Rp 1⅓	14,6
CEA 210/3/D	54	155	224	113	240	385	114	76	Rp 11/2	Rp 1⅓	16,4
CEA 210/4/D	54	155	224	113	240	385	114	76	Rp 11/2	Rp 1⅓	17,9
CEA 210/5/C	54	174	224	113	245	429	172	76	Rp 1½	Rp 1⅓	21
CEA 370/1/D	54	155	224	113	240	385	114	76	Rp 2	Rp 11/4	15,8
CEA 370/2/D	54	155	224	113	240	385	114	76	Rp 2	Rp 11/4	17,9
CEA 370/3/C	54	174	224	113	245	429	172	76	Rp 2	Rp 11/4	21
CEA 370/5/P	54	174	224	113	245	429	172	76	Rp 2	Rp 1⅓	21

cea-2p50-en_h_td

Twin-**Impeller** Centrifugal **Electric** Pumps

CA-CA(N) **Series**

CIVIL, AGRICULTURAL, INDUSTRIAL.

APPLICATIONS

Version made of AISI 304

- Handling of chemically and mechanically non-aggressive water and liquids (*).
- Water supply.
- Irrigation.
- Water circulation (cold, hot, refrigerated).
- * For moderately aggressive liquids, a version with FPM elastomers is available (CA../..-V). For aggressive liquids, please contact our sales network.

"N" version made of AISI 316 (for aggressive liquids)

- Reverse osmosis (where demineralized water is used).
- Industrial washing.
- Thermal waters.
- Chlorine dispensing in swimming pools.
- Jewellary industry.
- Wine production.

SPECIFICATIONS

- **Delivery** up to 210 l/min (12,5 m³/h).
- Head fino a 62 m.
- Temperature of pumped liquid:
- -10° C to $+85^{\circ}$ C standard version.
- -10° C to $+110^{\circ}$ C (N and V versions).
- Maximum operating **pressure** : 8 bar (PN 8).
- Counter-clockwise rotation facing the pump from the suction port.

MOTOR

- Asynchronous, squirrel cage rotor, close construction, external ventilation.
- Protection class: IP55.
- Class 155 (F) Insulation.
- Performances to EN 60034-1 specifications.
- Standard voltage:
 - Single-phase versions: 220-240 V 50 Hz, 2 poles, with automatic reset overload protection up to 1,5 kW. For higher powers,

the overload protection must be provided and installed by the user in the control panel.

- Three-phase versions: 220-240/380-415 V 50 Hz, 2 poles, the overload protection must be provided and installed by the user in the control panel.
- Condensate drain plugs in the standard version.

CONSTRUCTION CHARACTERISTICS

- Close-coupled, single-impeller centrifugal pump featuring axial suction and radial discharge.
- Compact construction, with pump coupled directly to motor; special motor shaft extension in common with the pump and supported by ball bearings.
- Threaded suction and discharge ports (Rp ISO 7).
- High performance enclosed **Impeller** made of AISI 304 stainless steel (AISI **316** for N version).
- **Mechanical seal** with Ceramic/ Carbon rings, NBR elastomers, (EPDM for N version) other parts are made of AISI 304 stainless steel (AISI 316 for N version). Mounting dimensions according to EN 12756 (ex DIN 24960) and ISO 3069.
- O-rings made of NBR (EPDM for N version).
- Mounting pedestal on motor.

OPTIONAL FEATURES

- Different voltages and frequencies.
- Different material for the mechanical seal and O-rings.

☐ Standard supplied **IE2/IE3 motors** are compliant with Regulation (EC) no. 640/2009.

CA-CA(N) SERIES IDENTIFICATION CODE

EXAMPLE: CAM 120/33-V

CA series electric pump, single-phase, flow rate 120 l/min

50 Hz, Impeller size 33, FPM version.

RATING PLATE

LEGEND

- 1 Electric pump type
- 2 Code
- 3 Delivery range
- 4 Head range
- 5 Electrical data
- 6 Serial number (date + sequential number)
- 8 Minimum head
- 11 Rated power
- 12 Electric pump protection class
- 13 Maximum temperature of pumped liquid

CA - CA(N) SERIES LIST OF MODELS AND TABLE OF MATERIALS

CA SERIES TABLE OF MATERIALS

REF.	PART	MATERIAL	REFERENCE STANDARI	os
N.			EUROPE	USA
1	Suction flange	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
2	Pump body	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
3	Impeller	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
4	Diffuser cover	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
5	Diffuser cover	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
8	Impeller spacer	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
9	Elastomers	NBR (standard version)		
11	Mechanical seal	Ceramic / Carbon / NBR (stand	dard version)	
13	Fill/drain plugs	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
24	Mounting pedestal	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
33	Adapter	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
34	Pump body fastening nuts and bolts	Zinc-plated steel		
35	Impeller shoulder washer	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
36	Key	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
37	Impeller lock nut and washer	Stainless steel	EN 10088-1-X5CrNi18-10 (1.4301)	AISI 304
38	Shaft extension	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316

CA(N) SERIES TABLE OF MATERIALS

ca-ca-en_b_tm

REF.	PART	MATERIAL	REFERENCE STANDARI	DS
N.			EUROPE	USA
1	Suction flange	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Pump body	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
3	Impeller	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Diffuser cover	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Diffuser	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
8	Impeller spacer	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
9	Elastomers	EPDM (standard version)		
11	Mechanical seal	Ceramic / Carbon / EPDM (sta	ndard version)	
13	Fill/drain plugs	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
24	Mounting pedestal	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
33	Adapter	Aluminium	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
34	Pump body fastening nuts and bolts	Zinc-plated steel		
35	Impeller shoulder washer	Stainless steel	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
36	Key	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
37	Impeller lock nut and washer	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
38	Shaft extension	Stainless steel	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316

ca-caN-en_a_tm

CA-CA(N) MECHANICAL SEAL, ACCORDING TO EN 12756

Mechanical seal with mounting dimensions according to EN12756 (ex DIN 24960) and ISO 3069.

CA-CA(N) LIST OF MATERIALS

POSITION 1 - 2	POSITION 3	POSITION 4 - 5
B : Resin impregnated carbon	P : NBR	F : AISI 304
C : Special resin impregnated carbon	E : EPDM	G : AISI 316
Q ₁ : Silicon carbide	V : FPM	
U ₃ : Tungsten carbide		
V : Ceramic		

cea-ca_ten-mec-en_b_tm

CA MECHANICAL SEALS

			POSITION			TEMPERATURE
TYPE	1	2	3	4	5	(℃)
	ROTATING ASSEMBLY	FIXED ASSEMBLY	ELASTOMERS	SPRINGS	OTHER COMPONENTS	()
		Standaf	RD MECHANICAL	SEAL		
V B P GF	V	В	P	G	F	-10 +85
		OTHER TYPE	S OF MECHANIC	AL SEAL		
VBEGF	V	В	E	G	F	-10 +110
VCEGG	V	U	E	G	G	-10 +110
Q ₁ Q ₁ EGF	Q ₁	Q_1	Е	G	F	-10 +110
U₃BEGF	U ₃	В	E	G	F	-10 +110
U₃CEGF	U ₃	C	E	G	F	-10 +110
U₃U₃EGF	U₃	U₃	E	G	F	-10 +110
VBVGF	V	В	V	G	F	-10 +110
VCVGF	V	C	V	G	F	-10 +110
Q ₁ Q ₁ VGF	Q ₁	Q_1	V	G	F	-10 +110
U₃CVGF	U ₃ C		V	G	F	-10 +110
U ₃ U ₃ VGF	U₃	U₃	V	G	F	-10 +110

ca_tipi-ten-mec-en_b_tc

CA(N) MECHANICAL SEALS

			POSITION			TEMPERATURE
TYPE	1	2	3	4	5	(℃)
	ROTATING ASSEMBLY	FIXED ASSEMBLY	ELASTOMERS	SPRINGS	OTHER COMPONENTS	()
		Standai	RD MECHANICAL	SEAL		
V B E G G	V	В	Е	G	G	-10 +110
		OTHER TYPE	S OF MECHANIC	AL SEAL		
VCEGG	V	С	E	G	G	-10 +110
$Q_1 Q_1 E G G$	Q ₁	Q_1	E	G	G	-10 +110
VCVGG	V	С	V	G	G	-10 +110
Q ₁ Q ₁ V G G	Q ₁	Q ₁	V	G	G	-10 +110

cean-can_tipi-ten-mec-en_b_tc

CA-CA(N) SERIES HYDRAULIC PERFORMANCE TABLE AT 50 Hz, 2 POLES

PUMP TYPE	RA	RATED		Q = DELIVERY												
	PO	WER	l/min 0	30	40	50	60	70	80	100	120	150	180	210		
			m³/h 0	m³/h 0 1,8 2,4 3 3,6 4,2 4,8 6							7,2	9	10,8	12,6		
	kW	HP			Н	= TOTA	L HEAD	METRES	COLUM	IN OF W	ATER					
CA(M) 70/33	0,75	1	42,9	38,8	36,9	34,6	31,7	28,2	23,9							
CA(M) 70/34	0,9	1,2	48,8	45,1	43,2	40,7	37,7	34,0	29,5							
CA(M) 70/45	1,1	1,5	56,2	52,0	49,8	47,1	43,9	39,9	35,3							
CA(M) 120/33	1,1	1,5	44,3			39,1	37,8	36,4	34,8	31,4	27,6	21,0				
CA(M) 120/35	1,5	2	54,0			49,4	48,1	46,6	44,9	41,2	36,8	29,3				
CA(M) 120/55	2,2	3	63,8			59,6	58,2	56,6	54,8	50,6	45,7	37,1				
CA(M) 200/33	1,85	2,5	43,2			41,8	41,2	40,6	39,9	38,3	36,4	33,2	29,5	25,5		
CA(M) 200/35	2,2	3	53,5			52,4	51,9	51,4	50,7	49,2	47,5	44,3	40,6	36,5		
CA 200/55	3	4	62,6			61,0	60,6	60,1	59,5	58,2	56,6	53,8	50,4	46,2		

ca-2p50-en_d_th

CA-CA(N) SERIES ELECTRICAL DATA AT 50 Hz, 2 POLES

PUMP	MOTOR	INPUT	INPUT	CAPACIT.	PUMP	MOTOR	INPUT	INPUT	INPUT
TYPE	TYPE	POWER*	CURRENT*		TYPE	TYPE	POWER*	CURRENT*	CURRENT*
1~			220-240 V		3~			220-240 V	380-415 V
1.~		kW	Α	μF / 450 V	3.0		kW	Α	Α
CAM70/33	SM71CA/1075	1,15	5,16	20	CA70/33	SM80CA/307PE	1,06	3,24	1,87
CAM70/34	SM71CA/1095	1,39	6,22	25	CA70/34	SM80CA/311PE	1,28	4,10	2,37
CAM70/45	SM80CA/1115	1,76	7,92	30	CA70/45	SM80CA/311PE	1,63	4,90	2,83
CAM120/33	SM80CA/1115	1,67	7,53	30	CA120/33	SM80CA/311PE	1,54	4,69	2,71
CAM120/35	SM80CA/1155	2,18	9,87	40	CA120/35	SM80CA/315PE	2,01	6,11	3,53
CAM120/55	PLM90CA/1225	2,54	11,5	70	CA120/55	PLM90CA/322	2,55	8,05	4,65
CAM200/33	PLM90CA/1225	2,29	10,4	70	CA200/33	PLM90CA/322	2,26	7,47	4,31
CAM200/35	PLM90CA/1225	2,94	12,6	70	CA200/35	PLM90CA/322	3,02	9,08	5,24
-	-	-	-	-	CA200/55	PLM90CA/330	3,51	10,7	6,18

^{*}Maximum value in specified range. ca-2p50-en_f_te

MOTORS FOR CA-CA(N) SERIES

Standard supplied IE2/IE3 three-phase surface motors \geq 0,75 kW are compliant with Regulation (EC) no. 640/2009 and IEC 60034-30.

Electrical performances according to EN 60034-1.

Insulation class 155 (F). IP55 protection. Condensate drain plugs on standard version.

Cooling by fan according to EN 60034-6.

Cable gland metric size according to EN 50262. Standard voltage:

- **Single-phase version**: 220-240 V 50 Hz (incorporated automatic-reset overload protection).
- Three-phase version: 220-240/380-415 V 50 Hz (overload protection to be provided by the user).

SINGLE-PHASE MOTORS AT 50 Hz, 2 POLES

			ction	E INPUT		S INPUT CAPACITOR D						ATA FOR 230 V 50 Hz VOLTAGE					
		SIZE	_ ⊃ .≅′	CURRENT													
P _N	MOTOR TYPE	S E	nst De	In (A)							Tn						
kW	MOTOR TIPE	_	ပိ	220-240 V	μF	V	min ⁻¹	ls / In	η%	cosφ	Nm	Ts/Tn	Tm/Tn				
0,75	SM71CA/1075	71		4,90-4,85	20	450	2765	3,42	70,1	0,96	2,59	0,58	1,75				
0,95	SM71CA/1095	71		6,25-5,89	25	450	2740	3,39	71,1	0,98	3,31	0,58	1,66				
1,1	SM80CA/1115	80	CIAL	6,88-6,65	30	450	2800	3,89	74,7	0,96	3,75	0,46	1,72				
1,5	SM80CA/1155	80	SPE	9,21-8,58	40	450	2810	4,00	76,1	0,98	5,09	0,39	1,74				
1,85	PLM80CA/1225	90	01	12,5-11,6	70	450	2825	4,47	82,4	0,97	7,43	0,53	1,87				
2,2	PLM80CA/1225	90		12,5-11,6	70	450	2825	4,47	82,4	0,97	7,43	0,53	1,87				

THREE-PHASE MOTORS AT 50 Hz, 2 POLES

ca-motm-2p50-en_a_te

		Efficiency η _N																		
										%										of
		Δ 220 V	1		Δ 230 V	'		Δ 240 V	'		Δ 380 V	,		Δ 400 V	1		Δ 415 V	'		Year
P_N															ΙE	Jan X				
kW	4/4	3/4 2/4 4/4 3/4 2/4 4/4 3/4 2/4 4/4 3/4 2/4 4/4 3/4 2/4 4/4 3/4 2/4 4/4 3/4 2/4												2/4		_				
0,75	82,5	83,1	81,3	82,8	82,7	80,1	82,6	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9		
0,9	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	3	=======================================
1,1	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	5	20
1,5	85,6	86,5	85,8	85,9	86,4	84,9	86,0	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0		June
1,85	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7	83,7		Ju
2,2	83,7	83,7 83,7 83,7 83,7 83,7 83,7 83,7 83,7												B						
3	85,5	86,8	85,6	86,1	86,8	85,6	86,3	86,8	85,6	85,5	86,8	85,6	85,5	86,8	85,6	85,5	86,8	85,6		

	Manufacturer		_							
	Lowara srl Unipersonale	SIZE	r tic				Data fo	r 400 V / 50 Hz	Voltage	
	Reg. No. 03471820260		structi esign							
P_N	Montecchio Maggiore Vicenza - Italia	EC	onstruction Design	N. of	f_N			T_N		
kW	Model		ŭ	Poles	Hz	cosφ	ls / I _N	Nm	Ts/T _N	Tm/Tn
0,75	SM80CA/307PE	80				0,78	7,38	2,48	3,57	3,75
0,9	SM80CA/311PE	80				0,79	8,31	3,63	3,95	3,95
1,1	SM80CA/311PE	80	A			0,79	8,31	3,63	3,95	3,95
1,5	SM80CA/315PE	80	\Box	2	50	0,80	8,80	4,96	4,31	4,10
1,85	PLM90BG/322	90	SPECIAL			0,80	8,63	7,25	3,74	3,71
2,2	PLM90BG/322	90				0,80	8,63	7,25	3,74	3,71
3	PLM90BG/330	90				0,82	8,39	9,96	3,50	3,32

					V	oltage l V	J _N							Operatir	ng conditions	**
		Δ			Υ			Δ		,	Y			Altitude	T. amb	ATEX
P_N	220 V	230 V	240 V	380 V	400 V	415 V	380 V	400 V	415 V	660 V	690 V	n _N		Above Sea	min/max	
kW					•	I _N (A)		•				min ⁻¹	نه	Level (m)	°C	
0,75	2,96	2,94	2,96	1,71	1,70	1,71	1,70	1,69	1,70	0,98	0,98	2875 ÷ 2895	note.			
0,9	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	ee r			
1,1	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	Se			
1,5	5,56	5,49	5,51	3,21	3,17	3,18	3,21	3,18	3,19	1,85	1,84	2870 ÷ 2895		≤ 1000	-15 / 4 0	No
1,85	8,05	8,04	8,09	4,65	4,64	4,67	4,62	4,61	4,63	2,67	2,66	2885 ÷ 2900				
2,2	8,05	8,04	8,09	4,65	4,64	4,67	4,62	4,61	4,63	2,67	2,66	2885 ÷ 2900				
3	10,8	10,6	10,6	6,23	6,14	6,12	6,18	6,10	6,06	3,57	3,52	2850 ÷ 2885				

 ${\tt Note: Observe \ the \ regulations \ and \ codes \ locally \ in \ force \ regarding \ sorted \ waste \ disposal.}$

ca-ie2-mott-2p50-en_c_te

^{**} Operating conditions to be referred to motor only. About electric pump, refer to limits in user's manual.

AVAILABLE VOLTAGES MOTORS FOR CA-CA(N) SERIES

				SIN	GLE	-PH/	ASE		
			50 H	Z			60 H	z	
P _N kW	IEC SIZE	1 x 220-240	1 x 100	1 x 110-120	1 x 220-230	1 x 100	1x 110-115	1 x 120-127	1 x 200-210
0,75	71	S	0	0	S	0	0	0	0
0,95	71	S	0	0	S	0	0	0	0
1,1	80	S	-	0	S	1	0	-	0
1,5	80	S	-	-	S	-	0	-	0
2,2	90	S	-	-	S	-	-	-	-

							Т	HRE	E-Pl	IASE	- 2 F	POLE	S				
				50 H	z						60	Hz				50/6	0 Hz
P _N kW	3 x 220-230-240/380-400-415	3 x 380-400-415/660-690	3 x 200-208/346-360	3 x 255-265/440-460	3 x 290-300/500-525	3 x 440-460/-	3 x 500-525/-	3 x 220-230/380-400	3 x 255-265-277/440-460-480	3 x 380-400/660-690	3 x 440-460-480/-	3 x 110-115/190-200	3 x 200-208/346-360	3 x 330-346/575-600	3 x 575/-	3 × 230/400 50 Hz 3 × 265/460 60 Hz	3 × 400/690 50 Hz 3 × 460/- 60 Hz
0,75	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
0,95	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
1,1	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
1,5	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
2,2	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0
3	S	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	0

ca-volt-lowa-en_a_te

s = Standard voltage

o = Optional voltage

^{- =} Not available

CA-CA(N) SERIES HYDRAULIC PERFORMANCE RANGE AT 50 Hz, 2 POLES

CA70 SERIES OPERATING CHARACTERISTICS AT 50 Hz, 2 POLES

CA120 SERIES OPERATING CHARACTERISTICS AT 50 Hz, 2 POLES

CA200 SERIES OPERATING CHARACTERISTICS AT 50 Hz, 2 POLES

CA-CA(N) SERIES DIMENSIONS AND WEIGHTS AT 50 Hz, 2 POLES

POMPA TIPO					DIME	ENSIONI (mm)					DNA	DNM	PESO
	D	н	L	L1	М	M1	N	N1	s	S1	w			kg
CAM 70/33/B	140	226	383	76	90	113	112	135	12	7	66	Rp 11/4	Rp 1	15
CAM 70/34/B	140	235	383	31	90	113	112	135	12	7	66	Rp 11/4	Rp 1	15,8
CAM 70/45/B	156	242	420	69	100	125	125	153	12	9	76	Rp 11/4	Rp 1	18,5
CAM 120/33/B	156	242	420	69	100	125	125	153	12	9	76	Rp 11/4	Rp 1	18,4
CAM 120/35/B	156	242	420	69	100	125	125	153	12	9	76	Rp 11/4	Rp 1	20,2
CAM 120/55/P	174	256	454	84	125	155	140	170	13	10	98	Rp 11/4	Rp 1	27
CAM 200/33/P	174	256	454	84	125	155	140	170	13	10	98	Rp 11/2	Rp 1	27
CAM 200/35/P	174	256	454	84	125	155	140	170	13	10	98	Rp 11/2	Rp 1	27
CA 70/33/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	16,7
CA 70/34/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	17,4
CA 70/45/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	18,7
CA 120/33/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	18,7
CA120/35/D	155	234	420	114	100	125	125	153	12	9	76	Rp 11/4	Rp 1	20,4
CA 120/55/P	174	239	454	172	125	155	140	170	13	10	98	Rp 11/4	Rp 1	25
CA 200/33/P	174	239	454	172	125	155	140	170	13	10	98	Rp 11/2	Rp 1	25
CA 200/35/P	174	239	454	172	125	155	140	170	13	10	98	Rp 11/2	Rp 1	25
CA 200/55/P	174	239	454	172	125	155	140	170	13	10	98	Rp 11/2	Rp 1	27

ca-2p50_L_td

TECHNICAL APPENDIX

TYPICAL APPLICATIONS CEA AND CA SERIES ELECTRIC PUMPS

Waste Purification: Waste Management:
Filtration Waste treatment
De-ionized water Pollution control

Water treatment

Commercial and residential pools

Plastic Industry:Machine Tool:Temperature RegulatorsDegreasingExtrusion machinesParts washingManufacture of polymersChemical treatment

Heat treatment

Agricultural Residential Applications: Graphics:
Irrigation Film washing
Greenhouses Cooling processes

Humidifiers
Water supply

Heating, Ventilating & Air Marine Sector:

Conditioning: Water on board ships

Air scrubbers

Water re-circulation
Cooling towers

Computers:

Cooling systems Circuit board washing

Temperature control Unit cooling

Chillers

Induction heating Laundry:

Heat exchangers Commercial washers

Water heating Booster packages

General Industry: Food and Drink:
Spray booths Food processing
Light chemical transfer Bottle washing

Booster systems Citrus processing

Dishwashing Medical: Brewing

Laser cooling Sanitary ware Massage

Medical chillers
Sanitary equipment

CEA - CA SERIES standard configuration: carbon/ceramic mechanical seal, NBR O-rings Compatibility chart for most commonly used liquids, for other compatible liquids refer to our web page www.lowara.com

Diguipo	FORMULA	CONCENTRACIONE	TEMPERATURE	PESO SPEC. DENSITY	mechanical seal materials	rials		MECHA	MECHANICAL SEAL	5
CIONID	0.00000000	*	- VIIN CCI	hydr	mechanical seal	Buje		17621		number N
			- MACK (*C)				STD	number A	number P	Mumbes N
Acida Acetica (1)	CH, CO OH	90	ç	1,05	Contract Contract		63	3	111	3
Acetic acid		2000	470	2000	Carb. di hung Carb. di sil.	EPDM		100		Season -
configuration code					xPB					
Acido Citrico	C,H,O,	15	ų	1,54		0000	.04	80: #	64	F4
Citric acid	100000000000000000000000000000000000000	0,	+70	2476740	carbon - ceramic	FPM		3.1	9	9.0
configuration code					XAX					
Acido Foefonico (1)	H, PO,	20	-9	1.33	CALCOLUNIA CONTRACTOR		69	2	(A)	14
Phosphoric acid			+30	27877	Carb. di fung Carb. di sil.	MOdel	·			
configuration code					XPB					
Acquis	O'H	100	5		South the Contract	1000		+		
Water		2000	+85		carbon - ceramic	NBR		100		
configuration code					standard product					
Aoque Deionizzata		100	9-					100		00.
Water deicnized			+85		carbon - ceramic	FPM				prof.
configuration code					XAA					
Acqua Demineralizzata		100	9							for
Water demineralized		1000	+85		carbon - ceramic	NBR		29		rg l
configuration code			0000		standard product					
Acque di mere (4)		1	40							
Sea water (4)			424							311
configuration code					not recommended				ata a	100
Alcool Bullico	но/но/!но) но	100	-5	0.84				+	22	+
Butyi aleohol			*80		carbon - ceramic	NBR				
configuration code			1		standard product			1	100	175
Alcool Etitico		100	97	0.81						
Ethyl alcohol (Ethanol)			+40		carbon - ceramic	NBR	-			U.S.
configuration code			2000		standar product	2000				
Alcool Matirco	CHJOH	100	47	0.79			*	3	-3	3
Methyl alcohol			+40		carbon - ceramic	NBR				(0)
configuration code					standard product					0.00
Clareformio	CHCf		40	1.48			179	2	3	17
Chloroform			+30		Carb. di fung Carb. di sil.	FPM			6	
configuration code			0.00		XNA					1109
Fredor 112	31003100	100	97	1.57			2	2	8	N

configuration code		+30		Caro Caro - Caro Caro	E-F-TH				
				XNA			L	_	
Freen 113 COLFCOF,	100	9.	1.42			1000	2	10	_
Tricloratrifurostano		+30		carbon - ceramic	NBR			-	
configuration code				standard prodict					
Glicale Etlenico CH,OHCH,OH	99	ń	1,13		70000	17	2		_
Ethylene glycol		+80		carbon - ceramic	NBR				
configuration code				standard product					
speciation of sodio (1) Na O CI	0.5	9						-	
Sodium hypochlorite	24.000.40	+25		1					
configuration code				non raccomandato					
Olio di Ricino	100	9			7				
Castor Oil		+85		carbon - ceramic	NBR				T.
configuration code				standard product					
Otio Minerale	100	10	0.94		10000				Г
Minoral oil		+85		carbon - ceramic	MBR				
configuration code				standard product	20.00				
Soda Caustica Na CH	255	0	2.13	DATE OF TOTAL OF THE PROPERTY	Contraction of		. 10	200	
Caustic Soda	400	470	2000	Carb. di hung - Carb. di sil.	EPDM				
configuration code				xPB					
Tristonoetilene /Trichloroetilylene CHCI:CCI;		0	1.46			3		3	1
(Trialina) (1)		+40	10000 C	carbon - ceramic					
configuration code				XAA				H	

WATER REQUIREMENTS IN CIVIL USERS

Determination of the water requirement depends on the type of users and contemporaneity factor. The calculation may be subject to regulations, standards or customs that may vary from country to country. The calculation method shown below is an example based on practical experience, designed to provide a reference value and not a substitute for detailed analytical calculation.

Water requirements in condominiums

The **consumption table** shows the maximum values for each delivery point, depending on the plumbing amenities.

MAXIMUM CONSUMPTION FOR EACH DELIVERY POINT

ТҮРЕ	CONSUMPTION (I/min)
Sink	9
Dishwasher	10
Washing machine	12
Shower	12
Bathtub	15
Washbasin	6
Bidet	6
Flush tank WC	6
Controlled flushing system WC	90

 $\mathsf{G}\text{-}\mathsf{at}\text{-}\mathsf{cm}_\mathsf{a}_\mathsf{th}$

The **sum of the water consumption values** of each delivery point determines the maximum theoretical requirement, which must be reduced according to the **contemporaneity coefficient**, because in actual fact the delivery points are never used all together.

$$f = \frac{1}{\sqrt{(0,857 \times Nr \times Na)}} \quad \text{Coefficient for apartments with one bathroom and flush tank WC}$$

$$f = \frac{1}{\sqrt{(0,857 \times Nr \times Na)}} \quad \text{Coefficient for apartments with one bathroom and controlled flushing system WC}$$

$$f = \frac{1,03}{\sqrt{(0,545 \times Nr \times Na)}} \quad \text{Coefficient for apartments with two bathrooms and flush tank WC}$$

$$f = \frac{0,8}{\sqrt{(0,727 \times Nr \times Na)}} \quad \text{Coefficient for apartments with two bathrooms and controlled flushing system WC}$$

$$f = \text{coefficient; Nr} \quad \text{Coefficient for apartments with two bathrooms and controlled flushing system WC}$$

The **table of water requirements in civil users** shows the maximum contemporaneity flow-rate values based on the **number of apartments** and the type of WC for apartments with one bathroom and two bathrooms. As regards apartments with one bathroom, 7 drawing points have been taken into consideration, while 11 points have been considered for apartments with two bathrooms. If the number of drawing points or apartments is different, use the formulas to **calculate** the requirement.

TABLE OF WATER REQUIREMENTS IN CIVIL USERS

	WITHITLOS	SH TANK WC	WITH CONTROLLED F	LUSHING SYSTEM WC
APARTMENTS	1	2	1	2
		FLOW RA	ATE (l/min)	
1	32	40	60	79
2	45	56	85	111
3	55	68	105	136
4	63	79	121	157
5	71	88	135	176
6	78	97	148	193
7	84	105	160	208
8	90	112	171	223
9	95	119	181	236
10	100	125	191	249
11	105	131	200	261
12	110	137	209	273
13	114	143	218	284
14	119	148	226	295
15	123	153	234	305
16	127	158	242	315
17	131	163	249	325
18	134	168	256	334
19	138	172	263	343
20	142	177	270	352
21	145	181	277	361
22	149	185	283	369
23	152	190	290	378
24	155	194	296	386
25	158	198	302	394
26	162	202	308	401
27	165	205	314	409
28	168	209	320	417
29	171	213	325	424
30	174	217	331	431
35	187	234	357	466
40	200	250	382	498
45	213	265	405	528
50	224	280	427	557
55	235	293	448	584
60	245	306	468	610
65	255	319	487	635
70	265	331	506	659
75	274	342	523	682
80	283	354	540	704
85	292	364	557	726
90	301	375	573	747
95	309	385	589	767
100	317	395	604	787
120	347	433	662	863
140	375	468	715	932
160	401	500	764	996
180 200	425 448	530 559	811 854	1056 1114

For seaside resorts, a flow rate increased by at least 20% must be considered.

WATER REQUIREMENTS FOR COMMUNITY BUILDINGS

The requirements of buildings intended for specific uses, such as **offices**, **residential units**, **hotels**, **department stores**, **nursing homes** and so on, are different from those of condominiums, and both their global daily water consumption and the maximum contemporaneity flow rate are usually greater. The **diagram of water requirements for community buildings** shows the maximum contemporaneity flow rate of some types of communities, for guidance.

These requirements must be determined case by case with the utmost accuracy, using analytical calculation methods, according to particular needs and local provisions.

For seaside resorts, the flow rate must be increased by at least 20%.

- 1 = Offices (N. of people)
- 2 = Department stores (N. of people)
- 3= Nursing homes (N. of beds)
- 4= Hotels, residences (N. of beds)

NPSH

The minimum operating values that can be reached at the pump suction end are limited by the onset of cavitation.

Cavitation is the formation of vapour-filled cavities within liquids where the pressure is locally reduced to a critical value, or where the local pressure is equal to, or just below the vapour pressure of the liquid.

The vapour-filled cavities flow with the current and when they reach a higher pressure area the vapour contained in the cavities condenses. The cavities collide, generating pressure waves that are transmitted to the walls. These, being subjected to stress cycles, gradually become deformed and yield due to fatigue. This phenomenon, characterized by a metallic noise produced by the hammering on the pipe walls, is called incipient cavitation.

The damage caused by cavitation may be magnified by electrochemical corrosion and a local rise in temperature due to the plastic deformation of the walls. The materials that offer the highest resistance to heat and corrosion are alloy steels, especially austenitic steel. The conditions that trigger cavitation may be assessed by calculating the total net suction head, referred to in technical literature with the acronym NPSH (Net Positive Suction Head).

The NPSH represents the total energy (expressed in m.) of the liquid measured at suction under conditions of incipient cavitation, excluding the vapour pressure (expressed in m.) that the liquid has at the pump inlet.

To find the static height hz at which to install the machine under safe conditions, the following formula must be verified:

where:

hp is the absolute pressure applied to the free liquid surface in the suction tank, expressed in m. of liquid; hp is the quotient between the barometric pressure and the specific weight of the liquid.

hz is the suction lift between the pump axis and the free liquid surface in the suction tank, expressed in m.; hz is negative when the liquid level is lower than the pump axis.

hf is the flow resistance in the suction line and its accessories, such as: fittings, foot valve, gate valve, elbows, etc.

hpv is the vapour pressure of the liquid at the operating temperature, expressed in m. of liquid. hpv is the quotient between the Pv vapour pressure and the liquid's specific weight.

0,5 is the safety factor.

The maximum possible suction head for installation depends on the value of the atmospheric pressure (i.e. the elevation above sea level at which the pump is installed) and the temperature of the liquid.

To help the user, with reference to water temperature (4° C) and to the elevation above sea level, the following tables show the drop in hydraulic pressure head in relation to the elevation above sea level, and the suction loss in relation to temperature.

Water temperature (°C)	20	40	60	80	90	110	120
Suction loss (m)	0,2	0,7	2,0	5,0	7,4	15,4	21,5

Elevation above sea level (m)		1000	1500	2000	2500	3000
Suction loss (m)	0,55	1,1	1,65	2,2	2,75	3,3

Friction loss is shown in the tables at pages 40-41 of this catalogue. To reduce it to a minimum, especially in cases of high suction head (over 4-5 m.) or within the operating limits with high flow rates, we recommend using a suction line having a larger diameter than that of the pump's suction port. It is always a good idea to position the pump as close as possible to the liquid to be pumped.

Make the following calculation:

Liquid: water at $\sim 15^{\circ}$ C $\gamma = 1 \text{ kg/dm}^3$ Flow rate required: 30 m³/h Head for required delivery: 43 m.

Suction lift: 3,5 m.

The selection is an FHE 40-200/75 pump whose NPSH required value is, at 30 m³/h, di 2,5 m.

For water at 15 °C

$$hp = Pa/\gamma = 10,33m$$
, $hpv = Pv/\gamma = 0,174m$ (0,01701 bar)

The Hf flow resistance in the suction line with foot valves is ~ 1.2 m.

By substituting the parameters in formula ① with the numeric values above, we have:

 $10,33 + (-3,5) \ge (2,5 + 0,5) + 1,2 + 0,17$

from which we have: 6.8 > 4.4

The relation is therefore verified.

TECHNICAL APPENDIX VAPOUR PRESSURE PS VAPOUR PRESSURE AND ρ DENSITY OF WATER TABLE

t	T	ps	ρ	t	T	ps	ρ	t	Т	ps	ρ
o o c	K	bar		°C	K	bar	•	°C	K	bar	
			kg/dm ³		328,15		kg/dm ³				kg/dm ³
0	273,15	0,00611	0,9998	55		0,15741	0,9857	120 122	393,15	1,9854	0,9429
2	274,15 275,15	0,00657 0,00706	0,9999	56 57	329,15	0,16511	0,9852 0,9846	124	395,15 397,15	2,1145	0,9412
		0,00708			330,15		-		-	2,2504	
3	276,15	· · · · · · · · · · · · · · · · · · ·	0,9999	58 59	331,15	0,18147	0,9842	126	399,15	2,3933	0,9379
5	277,15	0,00813 0,00872	1,0000	60	332,15	0,19016	0,9837	128	401,15	2,5435	0,9362
6	278,15 279,15		1,0000	61	333,15	0,1992	0,9832 0,9826	130	403,15 405,15	2,7013	0,9346 0,9328
7		0,00935	0,9999	62	334,15		0,9820	134		2,867	0,9328
8	280,15 281,15	0,01001	0,9999	63	335,15	0,2184	0,9821	134	407,15 409,15	3,041 3,223	0,9311
9	282,15	0,01072	0,9999	64	336,15 337,15	0,2286	0,9810	138	411,15		0,9294
10				65				140		3,414	
11	283,15	0,01227	0,9997	66	338,15	0,2501	0,9805	145	413,15	3,614	0,9258
12	284,15 285,15	0,01312	0,9997	67	339,15	0,2615	0,9799	155	418,15	4,155 5,433	0,9214
13		0,01401		68	340,15	0,2733	0,9793	160	428,15		0,9121
	286,15	0,01497	0,9994		341,15	0,2856	0,9788		433,15	6,181	0,9073
14 15	287,15 288,15	0,01597	0,9993	69 70	342,15 343,15	0,2984	0,9782 0,9777	165 170	438,15	7,008 7,920	0,9024 0,8973
16	289,15	0,01704 0,01817	0,9992	71		0,3116	0,9777	175	433,15 448,15	8,924	
17	289,15	0,01817	0,9990	71	344,15 345,15	0,3253 0,3396	0,9770	180	453,15	10,027	0,8921
17	290,15	0,01936	0,9988	73	345,15	0,3543	0,9765	185	458,15	11,233	0,8869
19	291,15	0,02062	0,9987	74	346,15	0,3543	0,9760	190	463,15	12,551	0,8815
20	292,15	0,02196	0,9983	75	347,15	0,3855	0,9753	190	468,15	13,987	0,8704
21	294,15	0,02337	0,9981	76	349,15	0,4019	0,9741	200	473,15	15,550	0,8704
22	295,15	0,02642	0,9978	77	350,15	0,4189	0,9735	205	478,15	17,243	0,8588
23	296,15	0,02808	0,9976	78	351,15	0,4169	0,9729	210	483,15	19,077	0,8528
24	297,15	0,02808	0,9974	79	352,15	0,4547	0,9723	215	488,15	21,060	0,8328
25	298,15	0,02382	0,9974	80	353,15	0,4347	0,9723	220	493,15	23,198	0,8407
26	299,15	0,03160	0,9968	81	354,15	0,4730	0,9710	225	498,15	25,501	0,8339
27	300,15	0,03564	0,9966	82	355,15	0,5133	0,9704	230	503,15	27,976	0,8273
28	301,15	0,033778	0,9963	83	356,15	0,5342	0,9697	235	508,15	30,632	0,8205
29	302,15	0,04004	0,9960	84	357,15	0,5557	0,9691	240	513,15	33,478	0,8136
30	303,15	0,04241	0,9957	85	358,15	0,5780	0,9684	245	518,15	36,523	0,8065
31	304,15	0,04491	0,9954	86	359,15	0,6011	0,9678	250	523,15	39,776	0,7992
32	305,15	0,04753	0,9951	87	360,15	0,6249	0,9671	255	528,15	43,246	0,7916
33	306,15	0,05029	0,9947	88	361,15	0,6495	0,9665	260	533,15	46,943	0,7839
34	307,15	0,05318	0,9944	89	362,15	0,6749	0,9658	265	538,15	50,877	0,7759
35	308,15	0,05622	0,9940	90	363,15	0,7011	0,9652	270	543,15	55,058	0,7678
36	309,15	0,05940	0,9937	91	364,15	0,7281	0,9644	275	548,15	59,496	0,7593
37	310,15	0,06274	0,9933	92	365,15	0,7561	0,9638	280	553,15	64,202	0,7505
38	311,15	0,06624	0,9930	93	366,15	0,7849	0,9630	285	558,15	69,186	0,7415
39	312,15	0,06991	0,9927	94	367,15	0,8146	0,9624	290	563,15	74,461	0,7321
40	313,15	0,07375	0,9923	95	368,15	0,8453	0,9616	295	568,15	80,037	0,7223
41	314,15	0,07777	0,9919	96	369,15	0,8769	0,9610	300	573,15	85,927	0,7122
42	315,15	0,08198	0,9915	97	370,15	0,9094	0,9602	305	578,15	92,144	0,7017
43	316,15	0,09639	0,9911	98	371,15	0,9430	0,9596	310	583,15	98,70	0,6906
44	317,15	0,09100	0,9907	99	372,15	0,9776	0,9586	315	588,15	105,61	0,6791
45	318,15	0,09582	0,9902	100	373,15	1,0133	0,9581	320	593,15	112,89	0,6669
46	319,15	0,10086	0,9898	102	375,15	1,0878	0,9567	325	598,15	120,56	0,6541
47	320,15	0,10612	0,9894	104	377,15	1,1668	0,9552	330	603,15	128,63	0,6404
48	321,15	0,11162	0,9889	106	379,15	1,2504	0,9537	340	613,15	146,05	0,6102
49	322,15	0,11736	0,9884	108	381,15	1,3390	0,9522	350	623,15	165,35	0,5743
50	323,15	0,12335	0,9880	110	383,15	1,4327	0,9507	360	633,15	186,75	0,5275
51	324,15	0,12961	0,9876	112	385,15	1,5316	0,9491	370	643,15	210,54	0,4518
52	325,15	0,13613	0,9871	114	387,15	1,6362	0,9476	374,15	647,30	221,20	0,3154
53	326,15	0,14293	0,9862	116	389,15	1,7465	0,9460				
54	327,15	0,15002	0,9862	118	391,15	1,8628	0,9445				
										G 2	t npsh a sc

G-at_npsh_a_sc

TABLE OF FLOW RESISTANCE IN 100 m OF STRAIGHT CAST IRON PIPELINE (HAZEN-WILLIAMS FORMULA C=100)

FLOV	V RATE								N	OMINAL	DIAME	TER in r	nm and	INCHES	5					
m³/h	l/min			15	20	25	32	40	50	65	80	100	125	150	175	200	250	300	350	400
0.0	10		V	1/2" 0,94	3/4" 0,53	1" 0,34	1 1/4" 0,21	1 1/2" 0,13	2	2 1/2"	3"	4"	5"	6"	7"	8"	10"	12"	14"	16"
0,6	10		hr v	16 1,42	3,94 0,80	1,33 0,51	0,40	0,13					be multip		ipes					
0,9	15		hr v	33,9 1,89	8,35 1,06	2,82 0,68	0,85 0,41	0,29	0,17			stainless s PVC or PE	teel or co	pper pipe	S					
1,2	20		hr v	57,7 2,36	14,21	4,79 0,85	1,44 0,52	0,49	0,16			I			I					
1,5	25		hr v	87,2 2,83	21,5	7,24	2,18	0,73	0,25											
1,8	30		hr	122	30,1	10,1	3,05	1,03	0,35											
2,1	35		v hr	3,30 162	1,86 40,0	1,19 13,5	0,73 4,06	0,46 1,37	0,30 0,46											
2,4	40		v hr		2,12 51,2	1,36 17,3	0,83 5,19	0,53 1,75	0,34 0,59	0,20 0,16										
3	50		v hr		2,65 77,4	1,70 26,1	1,04 7,85	0,66 2,65	0,42 0,89	0,25 0,25										
3,6	60		v hr		3,18 108	2,04 36,6	1,24 11,0	0,80 3,71	0,51 1,25	0,30 0,35										
4,2	70		v hr		3,72 144	2,38 48,7	1,45 14,6	0,93 4,93	0,59 1,66	0,35 0,46										
4,8	80		v hr		4,25 185	2,72	1,66	1,06 6,32	0,68	0,40										
5,4	90	-	v hr		103	3,06 77,5	1,87	1,19	0,76 2,65	0,39 0,45 0,74	0,30 0,27	-								
6	100		V			3,40	23,3	7,85 1,33	0,85	0,50	0,33									
7,5	125		hr V			94,1 4,25	28,3	9,54 1,66	1,06	0,90	0,33									
9	150		hr V			142	42,8 3,11	14,4	4,86 1,27	1,36 0,75	0,49	0,32								
10,5	175		hr v				59,9 3,63	20,2	6,82 1,49	1,90 0,88	0,69 0,58	0,23 0,37								
			hr v				79,7 4,15	26,9 2,65	9,07 1,70	2,53 1,01	0,92 0,66	0,31								
12	200		hr v				102 5,18	34,4 3,32	11,6 2,12	3,23 1,26	1,18 0,83	0,40 0,53	0,34							
15	250		hr v				154	52,0 3,98	17,5 2,55	4,89 1,51	1,78	0,60	0,20							
18	300		hr v					72,8 5,31	24,6 3,40	6,85	2,49	0,84	0,28	0,38						
24	400		hr V					124	41,8	11,66	4,24 1,66	1,43	0,48	0,20						
30	500		hr					187	63,2	17,6	6,41	2,16	0,73	0,30	0.42					
36	600		v hr						5,10 88,6	3,02 24,7	1,99 8,98	1,27 3,03	0,82 1,02	0,57 0,42	0,42					
42	700		v hr						5,94 118	3,52 32,8	2,32 11,9	1,49 4,03	0,95 1,36	0,66 0,56	0,49 0,26					
48	800		v hr						6,79 151	4,02 42,0	2,65 15,3	1,70 5,16	1,09 1,74	0,75 0,72	0,55 0,34					
54	900		v hr						7,64 188	4,52 52,3	2,99 19,0	1,91 6,41	1,22 2,16	0,85 0,89	0,62 0,42					
60	1000		v hr							5,03 63,5	3,32 23,1	2,12 7,79	1,36 2,63	0,94 1,08	0,69 0,51	0,53 0,27				
75	1250		v hr							6,28 96,0	4,15 34,9	2,65 11,8	1,70 3,97	1,18	0,87	0,66	1			
90	1500		v hr							7,54 134	4,98 48,9	3,18 16,5	2,04 5,57	1,42 2,29	1,04 1,08	0,80 0,56				
105	1750		v hr							8,79 179	5,81 65,1	3,72 21,9	2,38 7,40	1,65 3,05	1,21	0,93 0,75				
120	2000		V							173	6,63	4,25	2,72	1,89	1,39	1,06	0,68			
150	2500		hr V								83,3 8,29	28,1 5,31	9,48 3,40	3,90 2,36	1,84	0,96 1,33	0,32			
180	3000		hr V								126	42,5 6,37	14,3 4,08	5,89 2,83	2,78	1,45	1,02	0,71		
210	3500		hr V			_						59,5 7,43	20,1 4,76	8,26 3,30	3,90 2,43	2,03 1,86	0,69 1,19	0,28		
240	4000		hr v									79,1 8,49	26,7 5,44	11,0 3,77	5,18 2,77	2,71	0,91 1,36	0,38 0,94		
			hr v									101	34,2 6,79	14,1	6,64 3,47	3,46 2,65	1,17	0,48		
300	5000	-	hr v										51,6 8,15	21,2 5,66	10,0 4,16	5,23 3,18	1,77 2,04	0,73 1,42		
360	6000		hr V										72,3	29,8 6,61	14,1	7,33	2,47	1,02	1,21	
420	7000		hr V											39,6 7,55	18,7 5,55	9,75 4,25	3,29 2,72	1,35	0,64 1,39	
480	8000		hr											50,7	23,9	12,49	4,21	1,73	0,82	4.40
540	9000		v hr											8,49 63,0	6,24 29,8	4,78 15,5	3,06 5,24	2,12 2,16	1,56 1,02	1,19 0,53
600	10000		v hr												6,93 36,2	5,31 18,9	3,40 6,36	2,36 2,62	1,73 1,24	1,33 0,65

G-at-pct_a_th

 $hr = flow \ resistance \ for \ 100m \ of \ straight \ pipeline \ (m)$

V = water speed (m/s)

FLOW RESISTANCE

TABLE OF FLOW RESISTANCE IN BENDS, VALVES AND GATES

The flow resistance is calculated using the equivalent pipeline length method according to the table below:

ACCESSORY	CESSORY DN											
ТҮРЕ	25	32	40	50	65	80	100	125	150	200	250	300
		Equivalent pipeline length (m)										
45° bend	0,2	0,2	0,4	0,4	0,6	0,6	0,9	1,1	1,5	1,9	2,4	2,8
90° bend	0,4	0,6	0,9	1,1	1,3	1,5	2,1	2,6	3,0	3,9	4,7	5,8
90° smooth bend	0,4	0,4	0,4	0,6	0,9	1,1	1,3	1,7	1,9	2,8	3,4	3,9
Union tee or cross	1,1	1,3	1,7	2,1	2,6	3,2	4,3	5,3	6,4	7,5	10,7	12,8
Gate	-	-	-	0,2	0,2	0,2	0,4	0,4	0,6	0,9	1,1	1,3
Non return valve	1,1	1,5	1,9	2,4	3,0	3,4	4,7	5,9	7,4	9,6	11,8	13,9

G-a-pcv a th

The table is valid for the Hazen Williams coefficient C = 100 (cast iron pipework). For steel pipework, multiply the values by 1.41. For stainless steel, copper and coated cast iron pipework, multiply the values by 1.85. When the **equivalent pipeline length** has been determined, the flow resistance is obtained from the table of flow resistance.

The values given are guideline values which are bound to vary slightly according to the model, especially for gate valves and non-return valves, for which it is a good idea to check the values supplied by the manufacturers.

VOLUMETRIC CAPACITY

Litres	Cubic metres	Cubic feet	Cubic feet	lmp. gal.	US gal.
per minute	per hour	per hour	per minute	per minute	per minute
l/min	m³/h	ft³/h	ft³/min	Imp. gal/min	Us gal./min
1,0000	0,0600	2,1189	0,0353	0,2200	0,2642
16,6667	1,0000	35,3147	0,5886	3,6662	4,4029
0,4719	0,0283	1,0000	0,0167	0,1038	0,1247
28,3168	1,6990	60,0000	1,0000	6,2288	7,4805
4,5461	0,2728	9,6326	0,1605	1,0000	1,2009
3,7854	0,2271	8,0208	0,1337	0,8327	1,0000

PRESSURE AND HEAD

Newton per square metre	kilo Pascal	bar	Pound force per square inch	metre of water	millimetre of mercury
N/m ²	kPa	bar	psi	m H ₂ O	mm Hg
1,0000	0,0010	1 x 10 ⁻⁵	1.45 x 10 ⁻⁴	1.02 x 10 ⁻⁴	0,0075
1000,0000	1,0000	0,0100	0,1450	0,1020	7,5006
1 x 10 ⁵	100,0000	1,0000	14,5038	10,1972	750,0638
6894,7570	6,8948	0,0689	1,0000	0,7031	51,7151
9806,6500	9,8067	0,0981	1,4223	1,0000	73,5561
133,3220	0,1333	0,0013	0,0193	0,0136	1,0000

LENGTH

millimetre	centimetre	metre	inch	foot	yard
mm	cm	m	in	ft	yd
1,0000	0,1000	0,0010	0,0394	0,0033	0,0011
10,0000	1,0000	0,0100	0,3937	0,0328	0,0109
1000,0000	100,0000	1,0000	39,3701	3,2808	1,0936
25,4000	2,5400	0,0254	1,0000	0,0833	0,0278
304,8000	30,4800	0,3048	12,0000	1,0000	0,3333
914,4000	91,4400	0,9144	36,0000	3,0000	1,0000

VOLUME

cubic metre	litre	millilitre	imp. Gallon	US gallon	cubic foot
m³	litro	ml	imp. gal.	US gal.	ft ³
1,0000	1000,0000	1 x 10 ⁶	219,9694	264,1720	35,3147
0,0010	1,0000	1000,0000	0,2200	0,2642	0,0353
1 x 10 ⁻⁶	0,0010	1,0000	2.2 x 10 ⁻⁴	2.642 x 10 ⁻⁴	3.53 x 10 ⁻⁵
0,0045	4,5461	4546,0870	1,0000	1,2009	0,1605
0,0038	3,7854	3785,4120	0,8327	1,0000	0,1337
0,0283	28,3168	28316,8466	6,2288	7,4805	1,0000

G-at_pp-en_a_sc

FURTHER PRODUCT SELECTION AND DOCUMENTATION

Xylect

Xylect is pump solution selection software with an extensive online database of product information across the entire Lowara, and Vogel range of pumps and related products, with multiple search options and helpful project management facilities. The system holds up-to-date product information on thousands of products and accessories.

The possibility to search by applications and the detailed information output given makes it easy to make the optimal selection without having detailed knowledge about the Lowara and Vogel products.

The search can be made by:

- Application
- Product type
- Duty point

Xylect gives a detailed output:

- List with search results
- Performance curves (flow, head, power, efficiency, NPSH)
- Motor data
- Dimensional drawings
- Options
- Data sheet printouts
- Document downloads incl dxf files

The search by application guides users not familiar with the product range to the right choice.

FURTHER PRODUCT SELECTION AND DOCUMENTATION

Xylect

The detailed output makes it easy to select the optimal pump from the given alternatives.

The best way to work with Xylect is to create a personal account. This makes it possible to:

- Set own standard units
- Create and save projects
- Share projects with other Xylect users

Every user have a My Xylect space, where all projects are saved.

For more information about Xylect please contact our sales network or visit www.xylect.com.

Dimensional drawings appear on the screen and can be downloaded in dxf format.

-		

Xylem |'zīləm|

- 1) The tissue in plants that brings water upward from the roots;
- 2) a leading global water technology company.

We're 12,000 people unified in a common purpose: creating innovative solutions to meet our world's water needs. Developing new technologies that will improve the way water is used, conserved, and re-used in the future is central to our work. We move, treat, analyze, and return water to the environment, and we help people use water efficiently, in their homes, buildings, factories and farms. In more than 150 countries, we have strong, long-standing relationships with customers who know us for our powerful combination of leading product brands and applications expertise, backed by a legacy of innovation.

For more information on how Xylem can help you, go to xyleminc.com.

ı	

Headquarters

LOWARA S.r.l. Unipersonale Via Vittorio Lombardi 14 36075 Montecchio Maggiore - Vicenza - Italy Tel.(+39) 0444 707111 - Fax(+39) 0444 492166

e-mail: lowara.mkt@xyleminc.com

web: www.lowara.com - www.completewatersystems.com

LOWARA reserves the right to make modification without prior notice. LOWARA is a trademark of Xylem Inc. or one of its subsidiaries.