

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR PHYSIK

R: RECHENMETHODEN FÜR PHYSIKER, WISE 2024/25

DOZENT: JAN VON DELFT

ÜBUNGEN: MARKUS FRANKENBACH

https://moodle.lmu.de → Kurse suchen: 'Rechenmethoden'

Blatt 03: Vektorprodukt, Raumkurven, Linienintegrale

Ausgabe: Mo 28.10.24 Zentralübung: 31.10.24 Abgabe: Do 07.11.24, 14:00 (b)[2](E/M/A) bedeutet: Aufgabe (b) zählt 2 Punkte und ist einfach/mittelschwer/anspruchsvoll Vorschläge für Zentralübung: Beispielaufgaben 3, 6, 7, 4. Videos existieren für Beispielaufgaben 4 (L4.3.1), 8 (V1.4.1).

Beispielaufgabe 1: $1/(1-x^2)$ -Integrale mittels hyperbolischer Substitution [3] Punkte: (a)[1](E); (b)[2](M).

Für Integrale, die $1/(1-x^2)$ enthalten, empfiehlt sich die hyperbolische Substitution $x=\tanh y$, denn dadurch erhält man $1-x^2=\mathrm{sech}^2y$. Berechnen Sie mittels dieser Substitution folgende Integrale I(z); überprüfen Sie Ihre Ergebnisse durch Berechnung von $\frac{\mathrm{d}I(z)}{\mathrm{d}z}$. [Kontrollergebnis: (a) $I\left(\frac{3}{5}\right)=\ln 2$; (b) für a=3, $I\left(\frac{1}{5}\right)=\frac{1}{6}\ln 2+\frac{5}{32}$.]

(a)
$$I(z) = \int_0^z \mathrm{d}x \, \frac{1}{1-x^2} \quad (|z| < 1),$$
 (b) $I(z) = \int_0^z \mathrm{d}x \, \frac{1}{(1-a^2x^2)^2} \quad (|az| < 1).$

Hinweis: Das in (b) nach der Substitution auftretende $\cosh^2 y$ -Integral lässt sich partiell integrieren.

Beispielaufgabe 2: Elementare Vektorrechnung [3]

Punkte: (a)[1](E); (b)[1](E); (c)[1](E)

Gegeben sind die Vektoren $\mathbf{a} = (4,3,1)^T$ und $\mathbf{b} = (1,-1,1)^T$.

- (a) Berechnen Sie $\|\mathbf{b}\|$, $\mathbf{a} \mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}$ und $\mathbf{a} \times \mathbf{b}$.
- (b) Zerlegen Sie $a\equiv a_{\parallel}+a_{\perp}$ in zwei Vektoren parallel und senkrecht zu b.
- (c) Berechnen Sie $\mathbf{a}_{\parallel}\cdot\mathbf{b}$, $\mathbf{a}_{\perp}\cdot\mathbf{b}$, $\mathbf{a}_{\parallel}\times\mathbf{b}$ und $\mathbf{a}_{\perp}\times\mathbf{b}$. Entsprechen die Ergebnisse der Erwartung?

[Ergebniskontrolle: (a) $\mathbf{a} \cdot \mathbf{b} + \sum_i (\mathbf{a} \times \mathbf{b})^i = -4$, (b) $\sum_i (\mathbf{a}_{\parallel})^i = \frac{2}{3}$, $\sum_i (\mathbf{a}_{\perp})^i = 7\frac{1}{3}$.]

Beispielaufgabe 3: Levi-Civita-Symbol [3]

Punkte: (a)[1](E); (b)[1](E); (c)[1](E).

(a) Ist die Aussage $a^ib^j\epsilon_{ij2}\stackrel{?}{=} -a^k\epsilon_{k2l}b^l$ wahr oder falsch? Begründen Sie Ihre Antwort.

Drücken Sie die folgenden k-Summen über Produkte von zwei Levi-Civita-Symbolen durch Kronecker-delta-Symbole aus. Überprüfen Sie ihre Ergebnisse, indem Sie die k-Summen explizit ausführen und jeden Term separat auswerten.

(b)
$$\epsilon_{1ik}\epsilon_{kj1}$$
, (c) $\epsilon_{1ik}\epsilon_{kj2}$.

Beispielaufgabe 4: Grassmann-Identität (BAC-CAB) und Jacobi-Identität [5]

Punkte: (a)[2](M); (b)[1](E); (c)[2](M)

(a) Beweisen Sie die Grassmann (oder 'BAC-CAB') Identität für beliebige Vektoren $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$$
.

Hinweis: Entwickeln Sie die drei Vektoren in einer Orthonormalbasis, z.B. $\mathbf{a} = \mathbf{e}_i a^i$, und nutzen Sie die Eigenschaft $\epsilon_{ijk}\epsilon_{mnk} = \delta_{im}\delta_{jn} - \delta_{in}\delta_{jm}$ des Levi-Civita-Symbols. Sie können auch alle Indizes unten schreiben, z.B. $\mathbf{a} = \mathbf{e}_i a_i$, da in einer Orthonormalbasis $a_i = a^i$ gilt.

(b) Beweisen Sie mittels der Grassmann-Identität die Jacobi-Identität:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}.$$

(c) Überprüfen Sie beide Identitäten explizit für $\mathbf{a}=(1,1,2)^T$, $\mathbf{b}=(3,2,0)^T$, $\mathbf{c}=(2,1,1)^T$, indem Sie alle in ihnen vorkommenden Terme separat berechnen.

test

Beispielaufgabe 5: Spatprodukt [2]

Punkte: (a)[0.5](E); (b)[1](E); (c)[0.5](E)

Diese Aufgabe illustriert einen wichtigen Bezug zwischen dem Spatprodukt und der Frage, ob drei Vektoren in \mathbb{R}^3 linear unabhängig sind oder nicht.

- (a) Berechnen Sie das Spatprodukt, $S(y) = \mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3)$, von $\mathbf{v}_1 = (1,0,2)^T$, $\mathbf{v}_2 = (3,2,1)^T$ und $\mathbf{v}_3 = (-1,-2,y)^T$ als Funktion der Variablen y. [Kontrollergebnis: S(1) = -4].
- (b) Finden Sie durch Lösen der Vektorgleichung $\mathbf{v}_i a^i = \mathbf{0}$ denjenigen Wert von y für den \mathbf{v}_1 , \mathbf{v}_2 und \mathbf{v}_3 nicht linear unabhängig sind.
- (c) Welchen Wert hat S(y) für den in (b) gefundenen Wert von y? Interpretieren Sie das Ergebnis!

Beispielaufgabe 6: Geschwindigkeit und Beschleunigung [3]

Punkte: (a)[1](E); (b)[1](M); (c)[1](E)

Gegeben sei die Raumkurve $\gamma = \{\mathbf{r}(t) \mid t \in (0, 2\pi/\omega)\}$, $\mathbf{r}(t) = (aC(t), S(t))^T \in \mathbb{R}^2$, mit $C(t) = \cos [\pi (1 - \cos \omega t)]$, $S(t) = \sin [\pi (1 - \cos \omega t)]$, und $0 < a, \omega \in \mathbb{R}$.

- (a) Berechnen Sie dazu den Geschwindigkeitsvektor, $\dot{\mathbf{r}}(t)$, und den Beschleunigungsvektor, $\ddot{\mathbf{r}}(t)$. Lässt sich $\mathbf{r}(t)$ durch $\dot{\mathbf{r}}(t)$ und $\ddot{\mathbf{r}}(t)$ ausdrücken?
- (b) Können Sie die Kurve ohne den Parameter t durch eine Gleichung darstellen? Um welche Kurve handelt es sich? Skizzieren Sie die Raumkurve für den Fall a=2.
- (c) Berechnen Sie $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t)$. Für welchen Wert von a gilt $\mathbf{r}(t) \cdot \dot{\mathbf{r}}(t) = 0$ für alle t?

Beispielaufgabe 7: Linienintegral: Bergwanderung [3]

Punkte: [3](M)

Zwei Wanderer wollen vom Punkt $\mathbf{r}_0=(0,\,0)^T$ im Tal zu einer Berghütte am Punkt $\mathbf{r}_1=(3,\,3a)^T$ wandern. Wanderer 1 wählt den geraden Weg zwischen Tal und Hütte, γ_1 . Wanderer 2 wählt einen parabolischen Weg, γ_2 , über den Gipfel bei $\mathbf{r}_2=(2,\,4a)^T$, dem Scheitel der Parabel (vgl. Skizze). Auf sie wirkt die Schwerkraft $\mathbf{F}_g=-10\,\mathbf{e}_y$, sowie eine höhenabhängige Windkraft, $\mathbf{F}_w=-y^2\,\mathbf{e}_x$.

Finden Sie die von den Wanderern entlang γ_1 und γ_2 verrichtete Arbeit, $W[\gamma_i] = -\int_{\gamma_i} d\mathbf{r} \cdot \mathbf{F}$, als Funktion des Parameters a. [Kontrollergebnisse: für a=1 gilt $W[\gamma_1]=39$, $W[\gamma_2]=303/5$.]

[Gesamtpunktzahl Beispielaufgaben: 22]

Hausaufgabe 1: $1/(1+x^2)$ -Integrale mittels trigonometrischer Substitution [3] Punkte: (a)[1](E); (b)[2](M).

Für Integrale, die $1/(1+x^2)$ enthalten, empfiehlt sich die trigonometrische Substitution $x=\tan y$, denn dadurch erhält man $1+x^2=\sec^2 y$. Berechnen Sie mittels dieser Substitution folgende Integrale I(z); überprüfen Sie Ihre Ergebnisse durch Berechnung von $\frac{\mathrm{d}I(z)}{\mathrm{d}z}$. [Kontrollergebnis: (a) $I(1)=\frac{\pi}{4}$; (b) für $a=\frac{1}{2}$, $I(2)=\frac{\pi}{4}+\frac{1}{2}$.]

(a)
$$I(z) = \int_0^z dx \frac{1}{1+x^2}$$

(b)
$$I(z) = \int_0^z dx \frac{1}{(1+a^2x^2)^2}$$
.

Hausaufgabe 2: Elementare Vektorrechnung [3]

Punkte: (a)[1](E); (b)[1](E); (c)[1](E)

Seien die Vektoren $\mathbf{a}=(2,1,5)^T$ und $\mathbf{b}=(-4,3,0)^T$ gegeben.

- (a) Berechnen Sie $\|\mathbf{b}\|$, $\mathbf{a} \mathbf{b}$, $\mathbf{a} \cdot \mathbf{b}$ und $\mathbf{a} \times \mathbf{b}$.
- (b) Zerlegen Sie ${\bf a}$ in einen Vektor ${\bf a}_{\parallel}$ parallel zu ${\bf b}$ and einen Vektor ${\bf a}_{\perp}$ senkrecht zu ${\bf b}$.
- (c) Berechnen Sie $\mathbf{a}_{\parallel} \cdot \mathbf{b}$, $\mathbf{a}_{\perp} \cdot \mathbf{b}$, $\mathbf{a}_{\parallel} \times \mathbf{b}$ und $\mathbf{a}_{\perp} \times \mathbf{b}$. Entsprechen die Ergebnisse ihren Erwartungen? [Ergebniskontrolle: (a) $\mathbf{a} \cdot \mathbf{b} + \sum_{i} (\mathbf{a} \times \mathbf{b})^{i} = -30$, (b) $\sum_{i} (\mathbf{a}_{\parallel})^{i} = \frac{1}{5}$, $\sum_{i} (\mathbf{a}_{\perp})^{i} = 7\frac{4}{5}$.]

Hausaufgabe 3: Levi-Civita-Symbol [2]

Punkte: (a)[0,5](E); (b)[0,5](E); (c)[0,5](E); (d)[0,5](E).

(a) Ist die Aussage $a^i a^j \epsilon_{ij3} \stackrel{?}{=} b^m b^n \epsilon_{mn2}$ wahr oder falsch? Begründen Sie Ihre Antwort.

Drücken Sie die folgenden k-Summen über Produkte von zwei Levi-Civita-Symbole durch Kronecker-delta-Funktionen aus:

(b) $\epsilon_{1ik}\epsilon_{23k}$, (c) $\epsilon_{2jk}\epsilon_{ki2}$, (d) $\epsilon_{1ik}\epsilon_{k3j}$.

Hausaufgabe 4: Lagrange-Identität [3]

Punkte: (a)[1](E); (b)[1](E); (c)[1](E)

(a) Beweisen Sie die Lagrange-Identität für beliebige Vektoren $a, b, c, d \in \mathbb{R}^3$:

$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}).$$

Hinweis: Nutzen Sie das Levi-Civita-Symbol!

- (b) Berechnen Sie [mittels (a)] den Betrag $\|\mathbf{a} \times \mathbf{b}\|$ und drücken Sie das Ergebnis aus durch $\|\mathbf{a}\|$, $\|\mathbf{b}\|$ und den Winkel ϕ , den die Vektoren \mathbf{a} und \mathbf{b} einschliessen.
- (c) Überprüfen Sie die Lagrange-Identität explizit für $\mathbf{a}=(2,1,0)^T$, $\mathbf{b}=(3,-1,2)^T$, $\mathbf{c}=(3,0,2)^T$, $\mathbf{d}=(1,3,-2)^T$, indem Sie alle Terme darin separat berechnen.

Hausaufgabe 5: Spatprodukt [3]

Punkte: [3](M)

Berechnen Sie das Volumen $V(\phi)$ eines Parallelepipeds, das durch drei Einheitsvektoren \mathbf{v}_1 , \mathbf{v}_2 und \mathbf{v}_3 aufgespannt wird, die paarweise jeweils den Winkel ϕ einschließen (mit $0 \le \phi \le \frac{2}{3}\pi$; warum ist diese Einschränkung nötig?).

Kontrollergebnisse: (i) Was erwarten Sie für $V(\frac{\pi}{2})$ bzw. $V(\frac{2}{3}\pi)$? (ii): $V(\frac{\pi}{3}) = \frac{1}{\sqrt{2}}$.

Hinweis: Wählen Sie die Orientierung des Parallelepipeds so, dass \mathbf{v}_1 und \mathbf{v}_2 beide in der durch \mathbf{e}_1 und \mathbf{e}_2 aufgespannten Ebene liegen und \mathbf{e}_1 den Winkel zwischen \mathbf{v}_1 und \mathbf{v}_2 halbiert (siehe Skizze).

Hausaufgabe 6: Kurvengeschwindigkeit und Beschleunigung [2]

Punkte: (a)[1](E); (b)[0.5](E); (c)[0.5](E)

Gegeben sei die Raumkurve $\gamma = \{\mathbf{r}(t) \mid t \in (0, \infty)\}$, $\mathbf{r}(t) = (e^{-t^2}, ae^{t^2})^T \in \mathbb{R}^2$, mit $0 < a \in \mathbb{R}$ (0 < a < 1 für (c)).

- (a) Berechnen Sie dazu den Geschwindigkeitsvektor, $\dot{\mathbf{r}}(t)$, und den Beschleunigungsvektor, $\ddot{\mathbf{r}}(t)$. Lässt sich $\mathbf{r}(t)$ als Linearkombination von $\dot{\mathbf{r}}(t)$ und $\ddot{\mathbf{r}}(t)$ ausdrücken?
- (b) Können Sie die Kurve ohne den Parameter t durch eine Gleichung darstellen? Um welche Kurve handelt es sich? Skizzieren Sie die Raumkurve für den Fall a=2.
- (c) Berechnen Sie $\mathbf{r}(t)\cdot\dot{\mathbf{r}}(t)$. Finden Sie die Zeit, t(a), bei der $\mathbf{r}(t)\cdot\dot{\mathbf{r}}(t)=0$ gilt? [Kontrollergebnis: $t(\mathrm{e}^{-2})=\pm 1$.

Hausaufgabe 7: Linienintegrale in kartesischen Koordinaten [4]

Punkte: (a)[2](M); (b)[1](E); (c)[1](M)

Sei $\mathbf{F}(\mathbf{r})=(x^2,z,y)^T$ ein dreidimensionales Vektorfeld in kartesischen Koordinaten, mit $\mathbf{r}=(x,y,z)^T$. Berechnen Sie das Linienintegral $\int_{\gamma} \mathrm{d}\mathbf{r}\cdot\mathbf{F}$ entlang folgender Wege von $\mathbf{r}_0\equiv(0,0,0)^T$ nach $\mathbf{r}_1\equiv(0,-2,1)^T$:

(a) $\gamma_a = \gamma_1 \cup \gamma_2$ ist der zusammengesetzte Weg aus γ_1 , der geraden Linie von \mathbf{r}_0 nach $\mathbf{r}_2 \equiv (1,1,1)^T$, und γ_2 , der geraden Linie von \mathbf{r}_2 nach \mathbf{r}_1 .

4

(b) γ_b ist parametrisiert durch $\mathbf{r}(t) = (\sin(\pi t), -2t^{1/2}, t^2)^T$, mit 0 < t < 1.

(c) γ_c ist eine in der yz-Ebene liegende Parabel der Form $z(y)=y^2+\frac{3}{2}y$.

[Ergebniskontrolle: die Summe der Antworten aus (a), (b) und (c) ist -6.]

[Gesamtpunktzahl Hausaufgaben: 20]