Steven Rosendahl Homework 1

1. What are the possible remainders when a perfect square is divided by 3 or by 6?

Let $k \in \mathbb{Z}$ such that $a = k^2$. By the division algorithm, we have that

$$k = 3q_1 + r_1$$
 and $k = 6q_2 + r_2$.

case $k = 3q_1 + r_1$: Squaring k yields

$$k^2 = 9q_1^2 + 6q_1r_1 + r_1^2.$$

Since $k^2 = a$, we have that

$$a = 3(3q_1^2 + 2q_1r_1) + r_1^2$$

= $3q_0 + r_0$, where $q_0 = (3q_1^2 + 2q_1r_1)$ and $r_0 = r_1^2$.

We know by the division algorithm that $r_0 \in \{0, 1, 2\}$. If we let $r_0 = 0$ or $r_0 = 1$, then $r_1^2 < 4$ and still in $\{0, 1, 2\}$. Therefore, 0 and 1 are possible remainders. If we let $r_0 = 2$, then $r_1^2 = 4$, which is not less than 4. However, we have that

$$a = 3q_0 + 2^2$$

$$= 3q_0 + 4$$

$$= 3q_0 + 3 + 1$$

$$= 3(q_0 + 1) + 1,$$

Which implies that 1 is a valid remainder. Therefore, 0 and 1 are the only valid remainders.

case $k = 6q_2 + r_2$: If we square k, then we have

$$k^2 = 36q_2^2 + 12q_2r_2 + r_2^2.$$

Since $a = k^2$, we have that

$$a = 36q_2^2 + 12q_2r_2 + r_2^2$$

= $6(6q_2^2 + 2q_2r_2) + r_2^2$
= $6q_0 + r_0$, where $q_0 = 6q_2^2 + 2q_2r_2$ and $r_0 = r_2^2$.

We know that for $r_0 = 0, 1$, and $2, r_2^2 \le 6$, so they are valid remainders. For $r_0 = 3, 4$, and 5, we have

 \therefore 3 is a valid remainder. \therefore 4 is a valid remainder. \therefore 1 is a valid remainder.

Therefore, the valid remainders are $\{0, 1, 2, 3, 4\}$.

 \triangle

2. Suppose $a, b, c, d \in \mathbb{Z}$ are such that a|b and c|d. Prove that ac|bd.

Since a|b, we have that b=an for some $n \in \mathbb{Z}$. We also have that c|d, so d=cm for some $m \in \mathbb{Z}$. The product bd=(an)(cm), which, after rearranging, yields bd=(nm)(ac). We know that $nm \in \mathbb{Z}$, so we let j=nm. Then bd=jac, so ac|bd.

3. Suppose $a, b, m \in \mathbb{Z}$ and $m \neq 0$. Prove that a|b if and only if ma|mb.

Suppose a|b. Then b=na for some $n \in \mathbb{Z}$. Multiplying both sides of the equation yields mb=mna; therefore ma|mb.

Suppose ma|mb, and $m \neq 0$. Then mb = mna for some $n \in \mathbb{Z}$. We know that $\frac{m}{m} = 1$, so dividing both sides by m gives us b = na. Therefore a|b.

 \triangle

4. Suppose $a, b \in \mathbb{Z}$ with $b \neq 0$ and a|b. Prove that $|a| \leq |b|$.

Since a|b, we have that b=an for some $n \in \mathbb{Z}$. We first need to show that $n \neq 0$. Since $b \neq 0$, $an \neq 0$. Therefore both a and n must not be equal to 0. If we apply the absolute value to b, we have that |b|=|an|. We know that |an|=|a||n|. Since $n \neq 0$, $|n| \geq 1$. We also know that $|a| \geq 1$, since $a \neq 0$. Therefore $|a||n| \geq |a|$, or $|an| \geq |a|$. Since |b|=|an|, we have that $|a| \leq |b|$.

 \triangle

5. Suppose that $a, b, c, d \in \mathbb{Z}$ are such that a|b and c|d. Does a+c necessarily divide b+d?

Assume a + c divides b + d. Let a = 1 and c = -1. Both 1 and -1 divide all elements of \mathbb{Z} , but 1 + -1 = 0, and 0 does not divide anything. Therefore by counterexample it does not.

 \triangle

- 6. Suppose that $b \in \mathbb{Z}$.
 - (a) If $4|b^2$, prove that 2|b.

Assume that $4|b^2$ but 2/b. Then b = 2n + r for some n and r in \mathbb{Z} . We know that $r \neq 0$, and that 0 < r < 2. Therefore r = 1. If we square both sides, we get

$$b^{2} = (2n + 1)^{2}$$
$$= 4n^{2} + 4n + 1$$
$$= 4(n^{2} + n) + 1.$$

Therefore 4/b, since it has a remainder of 1.