

Research Topic

Research Data

Johns Hopkins Center for Systems Science and Engineering (CSSE)

U.S. Census Bureau Community Resilience Estimates (CRE)

Research Questions

Data Exploration

COMBINED DATASET

	Α	В	C D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	S	Т	U	V	W	X	Υ	Z	AA	AB	AC
1 f	ps [cases	deaths lat	long	state	county	popuni t	otal_pop z	ero_rf o	ne_two_t	hree_rf	housing_u h	nispanic_rv	/hite_po b	lack_pop n	ative_po	asian_pop p	acific_isl ot	her_rac b	i_tri_raci n	nale_pop fe	emale_prve	eteran	gini_ind_i r	ural_pop m	nedian_a e	lder_por d	lisability_be
2	1001	19732	230 32.53	953 -86.644	41 Alaban	na Autauga C	55688	55380	20573	22750	12365	23493	1559	41543	10580	167	556	0	111	1169	27064	28623	7016	252	23388	21272	8353	10580
3	1003	69641	724 30.72	775 -87.722	21 Alaban	na Baldwin C	221898	212830	78622	90552	52724	114164	10207	184397	20414	1553	1997	0	443	3328	107842	114055	26183	1017	93818	95416	44379	31509
4	1005	7451	103 31.86	826 -85.387	71 Alabam	na Barbour C	22023	25361	5024	9171	7828	12013	969	10086	10438	66	110	0	88	264	11650	10372	1453	107	14929	8897	4096	4712
5	1007	8067	109 32.99	42 -87.125	51 Alabam	na Bibb Coun	20393	22493	6280	8986	5127	9185	530	15192	4506	20	20	0	0	101	11012	9380	1631	91	13938	8340	3242	3507
6	1009	18616	261 33.98	-86.567	79 Alabam	na Blount Co	57697	57681	18189	23950	15558	24323	5365	50138	865	57	230	0	230	865	28502	29194	4442	263	51898	23482	10327	8135
7	1011	3020	54 32.10	31 -85.712	27 Alaban	na Bullock Cc	8600	10248	2074	3534	2992	4557	223	1840	6432	0	43	0	0	68	4678	3921	283	40	4417	3457	1376	1032
8	1013	6518	132 31.	753 -86.680	06 Alaban	na Butler Coι	19410	19828	5431	7643	6336	10089	271	10015	8734	19	58	0	0	310	8889	10520	1281	89	13825	7919	3823	3202
9	1015	41228	675 33.77	-85.826	63 Alaban	na Calhoun C	111694	114618	35169	44189	32336	53631	4244	80531	23120	223	1005	0	223	2457	53724	57969	12062	517	37640	44230	19211	23679
10	1017	10812	170 32.9	-85.390	07 Alaban	na Chambers	33117	33660	9457	12798	10862	16988	794	18379	13114	99	364	0	33	331	15829	17287	2616	140	16277	13909	6358	5994
11	1019	6732	89 34.17	-85.606	64 Alabam	na Cherokee	26116	25903	7374	11044	7698	16579	417	23948	1201	287	52	0	0	208	12875	13240	2376	117	22391	12143	5849	4648
12	1021	12956	217 32.85	-86.717	73 Alabam	na Chilton Co	44257	44055	12461	20344	11452	19781	3452	35449	4071	44	177	0	44	973	21553	22703	3363	208	38388	17127	7081	8585
13	1023	2255	39 32.02	27 -88.265	56 Alaban	ıa Choctaw (12553	12925	2830	5421	4302	7359	50	7079	5347	12	12	0	12	50	5962	6590	1079	58	12553	5812	2836	3351
14	1025	8529	107 31.	81 -87.835	55 Alaban	na Clarke Cou	23522	24128	5797	10278	7447	12784	70	12396	10773	23	94	0	0	141	11125	12396	1458	121	17872	9996	4563	4281
15	1027	5134	92 33.26			na Clay Coun	13159	13337	3217	5728	4214	6799	407	10579	2039	0	26	0	13	92	6355	6803	789	60	13159	5697	2658	2289
16	1029	4393	71 33.67	-85.520	01 Alaban	na Cleburne	14819	14916	5228	6006	3585	6844	370	13737	400	14	0	0	14	281	7261	7557	903	67	14819	6386	2874	3245
17	1031	17094	245 31.39	-85.98	89 Alaban	na Coffee Co	52203	51662	17942	21267	12994	23188	3810	36594	8770	626	730	0	52	1618	25736	26466	8561	225	24639	20515	8613	9292
18	1033	21197	276 34.69			na Colbert Co	55083	54771	18099	22141	14843	26588	1542	43074	8868	330	275	55	55	936	26439	28643	4902	246	24175	23355	10686	10190
19	1035	3589	76 31.43	-86.993	32 Alaban	ia Conecuh (12022	12394	3630	4119	4273	7182	84	6011	5746	24	60	0	0	96	5890	6131	709	51	9731	5385	2668	2692
20	1037	3755	64 32.9			na Coosa Cou	10511	10757	2829	4131	3551	6585	105	6811	3531	10	0	0	52	0	5339	5171	1093	47	10511	5087	2375	2407
21	1039	11765	258 31.24			na Covington	36877	37200	10089	15065	11723	18976	626	30718	4941	36	147	36	0	405	17811	19065	3687	169	25684	15967	7670	7781
22	1041	4730				na Crenshaw	13772	13844	3542	5703	4527	6815	110	9778	3181	96	179	13	0	426	6706	7065	908	67	13772	5742	2589	2823
23	1043	31438	395 34.1			na Cullman C	83277	82853	25997	36832	20448	37842	3664	76531	999	249	333	0	83	1498	40972	42304	6662	367	60992	33977	15156	14740
24	1045	16436	245 31.43			na Dale Coun	49090	49277	14114	21082	13894	23103	3190	33675	9719	294	589	0	147	1472	24201	24888	8050	219	24981	18310	8050	10407
25	1047	10935	258 32.32			na Dallas Cou	36952	39149	9377	14920	12655	20419	406	10087	26014	36	221	0	0	184	17034	19917	2254	173	16864	14632	6429	6503
26	1049	22466				na DeKalb Cc	71306	71310	22907	28714	19685	31309	10410	57330	998	784	71	142	0	1497	35296	36009	4492	336	64268	28165	11908	9626
27	1051	29745	361 32.59			na Elmore Cc	77512	81144	29122	30362	18028	34165	2325	56738	16432	232	387	0	155	1240	37438	40073	8216	342	42003	29997	11549	13254
28	1053	12347				na Escambia	34309	37057	9184	14358	10767	16586	789	20654	10978	1372	102	34	34	308	17463	16845	2538	165	21789	13723	6072	6175
29	1055	34137	690 34.04			na Etowah Co		102748	31759	41321	27971	47704	3940	78718	15561	404	707	0	101	1616	48706	52344	8488	464	37873	41835	18896	18593
30	1057	5871	99 33.72			na Fayette Co	16197	16494	4306	6815	5076	8505	291	13686	1814	0	80	0	0	323	7985	8211	1360	74	12994	7078	3368	4227
31	1059	11996				na Franklin C	31274	31466	8663	13728	8883	14052	5379	24018	1344	93	125	0	0	312	15574	15699	1751	133	22007	12071	5285	4691
32	1061	7907	171 31.09			na Geneva Co	26218	26417	8808	9731	7679	12869	1048	21996	2464	235	104	0	0	367	12741	13476	3041	115	23501	11326	5243	6187
33	1063	2292	54 32.85			na Greene Co	8111	8324	1533	3266	3312	5112	137	1395	6448	32	0	0	0	89	3747	4363	575	41	8111	3317	1727	2003
34	1065	5705	110 32.76			na Hale Coun	14597	14809	3431	6341	4825	7792	0	5765	8670	29	29	0	29	58	6933	7663	1036	72	13016	5911	2744	3094
35 36	1067	5837 32514	79 31.51			na Henry Cou	17135	17133	4737 34095	6961	5437	9155 47457	445 3473	11857	4557	34	68	17	0	171	8327 50422	8807 54844	1576	75	15035 35580	7607	3786	3272
	1069		529 31.15			na Houston C	105267	104702		42801	28371			70002	28211	315	947	0	315	2105			10316	508		42212	18105	18105
37	1071	18311				na Jackson Co	51420	51852	15272	23252	12896	25041	1491	45866	1748	565	205	51	51	1336	25144	26275	3496	232	39603	22162	10026	9924
38	1073	237792	2526 33.55	-86.895	Alaban	na Jefferson	648693	659680	223785	259699	165209	307874	25299	323697	277640	1297	10379	0	1297	9730	306831	341861	46705	3249	63766	244557	99898	99898

CRE VARIABLES HEATMAP

- 0.950


```
Call:
lm(formula = deaths ~ veteran + rural_pop + elder_pop + disability_pop +
    below_poverty_level + single_mothers_pop + single_fathers_pop +
    plus_family_homes + no_health_insur + no_vehicle, data = JHU_Cases_Deaths_with_CRE_Dat
Vtwo)
```

Vulnerable Populations

F-statistic: 6372 on 10 and 3131 DF, p-value: < 2.2e-16

```
Call:
lm(formula = deaths ~ hispanic_pop + white_pop + black_pop +
    native_pop + asian_pop + pacific_islander_pop + other_race_pop
    bi_tri_racial_pop, data = JHU_Cases_Deaths_with_CRE_DataVtwo)
```

Multiple R-squared: 0.938, Adjusted R-squared: 0.9379

F-statistic: 5927 on 8 and 3133 DF, p-value: < 2.2e-16

Racialized Populations

```
Residuals:
    Min
             10 Median
                             3Q
                                    Max
                                                                                            0 1000000
                                                                                                            0 1200000
                                                                                                                           0 30000
-5050.2
          -27.6
                   -6.4
                           34.3
                                 5788.3
                                                                       deaths
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                                              4.562 5.26e-06 ***
(Intercept)
                      2.566e+01 5.625e+00
                                                    < 2e-16 ***
                                             60.295
hispanic_pop
                      4.264e-03
                                 7.071e-05
                                             33.561 < 2e-16
white_pop
                      3.229e-03
                                 9.622e-05
black_pop
                      4.038e-03
                                 1.508e-04
                                             26.783
                                                     < 2e-16
                                 1.890e-03
                                             12.005
                                                    < 2e-16 ***
native_pop
                      2.269e-02
                                                                                                    native_pop
asian_pop
                                 3.162e-04
                                              1.691
                                                       0.091 .
                      5.346e-04
pacific_islander_pop
                      4.867e-02
                                 6.024e-03
                                              8.079 9.23e-16 ***
other_race_pop
                      1.684e-01
                                 6.519e-03
                                            25.836 < 2e-16
                                 2.808e-03 -10.833
bi_tri_racial_pop
                     -3.042e-02
                                                    < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 280.3 on 3133 degrees of freedom
```

0 25000

2500000

50000

60000

200000

```
Call:
lm(formula = deaths ~ zero_rf + one_two_rf + three_rf, data = JHU_Cases_Deaths_with_CRE_DataVtw
o)
```

```
Min 1Q Median 3Q Max -6043.0 -30.4 -13.7 20.7 5750.3
```

Residuals:

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.9505705 5.1456937 5.237 1.74e-07 ***

zero_rf -0.0006952 0.0001552 -4.480 7.72e-06 ***

one_two_rf 0.0010104 0.0001796 5.626 2.01e-08 ***

three_rf 0.0135762 0.0003077 44.122 < 2e-16 ***
```

Residual standard error: 268 on 3138 degrees of freedom Multiple R-squared: 0.9432, Adjusted R-squared: 0.9432 F-statistic: 1.738e+04 on 3 and 3138 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Combined Risk Factors

Data Analysis

ihu cre cases deaths

fips Ov int cases deaths long state county varchar popuni total_population zero_rf one two rf three rf housing_units hispanic_pop white_pop black_pop native_pop asian_pop pacific islander pop other_race_pop bi_tri_racial_pop male pop female_pop veteran gini_ind_income rural_pop median_age_pop elder pop disability pop below_poverty_level single mothers pop single_fathers_pop plus_family_homes highschool_grad multilingual 5yrs plus full_time_workers no_health_insur internet_homes no_vehicle homewoner vacancy rental_vacancy

int

location flps Ow int state county varchar


```
In [1]: import pandas as pd
        import sqlalchemy
        from sqlalchemy.ext.automap import automap base
        from sqlalchemy.orm import Session
        from sqlalchemy import create_engine, func
        from flask import Flask, isonify
        from sqlalchemy.engine import url
        import ison
        from sqlalchemy import extract
        from sqlalchemy.engine import make_url
        from sqlalchemy.orm import sessionmaker
       from sqlalchemy.sql import text
        import psycopg2
In [2]: # opening configuration file, saving into a variable, then establishing that variable as env which specifies the data as develope
        # environment credentials
        with open('sql/config.json') as datafile:
           data = json.load(datafile)
        env - data['dev']
        4
In [3]: # Instantiating the environment column values as the column names to hide sensitive data
        user = env['user']
        password - env['pass']
        port = env['port']
        host = env['host'
In [4]: # Connection string
        engine = sqlalchemy.create_engine(f'postgresql://{user}:{password}@{host}:{port}/{db}')
In [5]: # Reflecting an existing DB into a new model
        Base = automap_base()
In [6]: Base.prepare(autoload with = engine)
In [7]: # Seeing what tables there are
        Base.classes.keys()
Out[7]: ['races', 'cases', 'jhu_cre_cases_deaths', 'location']
In 191: # Coulon the tobler or referencer have if a wort
 In [9]: # Another table reference
         jhu_data = Base.classes.jhu_cre_cases_deaths
In [10]: # Session object is the handler to the database, estb convo w db.
         # Sessionmaker class creates a 'top level' session configuration that then can be used throughout the application without
         # the need to repeat config arguments.'- Credit to rfkortekaas on Stack for explaining.
         Session = sessionmaker(bind = engine)
         session = Session()
In [11]: # Test query to make sure database connection works
         sql - session.query(jhu_data)
In [12]: ## An example of using sql commands:
             SELECT * FROM jhu_cre_cases_deaths;
         with engine.connect() as conn:
             query = conn.execute(text(sql))
         df2 = pd.DataFrame(query.fetchall())
In [13]: df2
Out[13]:
                fips cases deaths
                                               long
                                                      state
                                                              county popuni total population zero rf ... single fathers pop plus family homes highsch
           0 1001 19732 230 32.539527 -86.644082 Alabama
                                                                                                                              111
                                                                                   55380 20573
                                                                                                              723
             1 1003 69641 724 30.727750 -87.722071 Alabama
                                                                                  212830 78622
                                                                                                             2218
                                                                                                                             887
            2 1005 7451 103 31.868263 -85.387129 Alabama
                                                                     22023
                                                                                   25361 5024
                                                                                                             220
                                                                                                                             132
            3 1007 8067 109 32.996421 -87.125115 Alabama
                                                                                   22493 6280
                                                                                                              346
                                                                                                                              163
            4 1009 18616 261 33.982109 -86.567906 Alabama
                                                                     57697
                                                                                   57681 18189
                                                                                                             1038
                                                                                                                              115
          3137 56037 12484 139 41.659439 -108.882788 Wyoming
                                                                     41888
                                                                                                              502
                                                                                   43521 16977
                                                                                                                              209
          3138 56039 12123
                            16 43.935225 -110.589080 Wyoming
                                                                                    23280 7250
                                                                                                              140
                                                                                                                              771
          3139 56041 6378 43 41.287818 -110.547578 Wyoming
                                                                     20183
                                                                                    20479 7744
                                                                                                              322
                                                                                                                              141
          3140 56043 2749
                            50 43.904516 -107.680187 Wyoming
                                                                      7738
                                                                                    8027 2601
                                                                                                              108
          3141 56045 1903 23 43.839612 -104.567488 Wyoming
         3142 rows × 41 columns
         4
```

Beginning ML portion of project

```
In [14]: import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')

from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import accuracy_score, classification_report, confusion_matrix
```

```
In [22]: dfd.deaths.describe()
Out[22]: count
                   3142.00000
                    349.12317
         std
                   1124.50972
                    0.00000
                     47.00000
                    110.00000
                    261,00000
                  35250.00000
         max
         Name: deaths, dtype: float64
In [23]: ## using lower quartiles, mean, upper quartile 47, 110, 261 ##
         death catlow = 47
         death catmed = 110
         death catintermed = 261
         death cathigh = 369
         count = 0
         for (column, columnData) in dfd.iterrows():
             deaths = dfd['deaths'].values[count]
             dc = dfd['death cat']
             if deaths <= death catlow:
                 dc.values[count] = 'low'
             elif deaths > death_catlow and deaths <= death_catmed:</pre>
                 dc.values[count] = 'med'
             elif deaths > death catmed and deaths <= death catintermed:
                 dc.values[count] = 'intermed'
                 dc.values[count] = 'high'
             count = count + 1
```

```
In [24]: # Assigning numerical values and storing in another column

dfd['State_Cat'] = LabelEncoder().fit_transform(dfd['state'])
    dfd['County_Cat'] = LabelEncoder().fit_transform(dfd['county'])
    dfd['Death_Cat'] = LabelEncoder().fit_transform(dfd['death_cat'])
```

[28]:			cases	deaths	total_popula	tion	zero_rf	one_two_rf	three_	rf ho	using_units	hispanic_po	p white_pop	black_p	юр	m
	count	3.142	000e+03	3142.00000	3.1420006	+03 3.14	2000e+03	3.142000e+03	3.142000e+0	3 3.	142000e+03	3.142000e+0	3 3.142000e+03	3.142000e+	-03	
	mean	3.213	884e+04	349.12317	1.0334116	+05 3.55	5582e+04	4.511753e+04	2.219337e+0	4.	373933e+04	1.859688e+0	4 6.241113e+04	1.260647e+	·04	
	std	1.109	969e+05	1124.50972	3.3117016	+05 1.02	9070e+05	1.583837e+05	7.377844e+0	4 1.	279317e+05	1.257639e+0	5 1.427950e+05	5.375823e+	04	
	min	0.000	000e+00	0.00000	6.6000006	+01 2.00	0000e+01	3.900000e+01	2.700000e+0	1 6.	600000e+01	0.000000e+0	0 1.900000e+01	0.000000e+	-00	
	25%	3.097	750e+03	47.00000	1.0952006	+04 3.04	5500e+03	4.517250e+03	2.867000e+0	3 5.	505000e+03	3.412500e+0	2 7.806000e+03	1.060000e+		
	50%	7.899	000e+03	110.00000	2.5739506	+04 7.85	8500e+03	1.074350e+04	6.488500e+0	3 1.	249650e+04	1.049500e+0	3 1.978100e+04	7.770000e+	-02	
	75%	2.120	975e+04	261.00000	6.7866006	+04 2.26	1150e+04	2.859225e+04	1.540625e+0	4 3.	148100e+04	5.027250e+0	3 5.261900e+04	5.303500e+	·03	
	max	3.691	301e+06	35250.00000	1.0081576	+07 2.50	3900e+06	5.264628e+06	2.180574e+0	6 3.	542800e+06	4.825314e+0	6 2.606664e+06	1.180274e+	·06	
	8 rows	× 38 c	columns													
	4															F
F007.	dfdd															
	атаа															
t[29]:		cases	deaths	total_populati	on zero_rf	one_two	_rf three_i	f housing_ur	its hispanic	_pop	white_pop	black_pop .	multilingual_5	iyrs_plus fu	ull_time	_wc
		19732	230	553	80 20573	227			193	1559	41543	10580		779		
		69641	724	2128		905				0207	184397	20414		3994		1
		7451	103	253		91				969	10086	10438		572		
	3	8067	109	224	93 6280	89			185	530	15192	4506		265		
	4	18616	261	576	81 18189	239	50 1555	8 24	323	5365	50138	865		1961		
		12484	139	435		177				6660	33342	460		1298		
		12123	16	232		115				3508	19016	280		1777		
	3139	6378	43	204		93				1836	17660	20 .		322		
	3140	2749	50	80		32				1098	6337	0 .		108		
	3141	1903	23	70	49 1857	33	67 144	0 3	562	73	6424	13		13		
	3142 r	3142 rows × 38 columns														
	4															+
				vner vacancy				outlier								
	атаа	- ardd	.arop('homeowner_	_vacancy']	, axis	1)									

Outcomes

In [28]: dfdd.describe()

- Hispanic population has 88% correlation with deaths, 80% with zero risk factors, 92% with one to two risk factors and roughly 91% with three risk factors.
 White population has 85% correlation with deaths, a 97% correlation with zero risk factors, 88% with one to two risk factors, and 86% with three risk
- White population has 85% correlation with deaths, a 97% correlation with zero risk factors, 88% with one to two risk factors, and 86% with three risk factors.
- Black population has a 77% correlation with deaths, a 76% correlation with zero risk factors, 75% with one to two risk factors, and an 83% with three risk factors.
- Asian population has a 76% correlation with deaths, a 78% percent correlation with zero risk factors, a 85% correlation with one to two risk factors, and a 80% correlation with three risk factors.
- The Bi and Tri racial populations have a 80% correlation with deaths, an 88% correlation with zero risk factors, an 89% correlation with one to two risk factors, and 83% correlation with three risk factors.
- Other Race population has a 80% correlation with the target, 73% correlation with zero risk factors, 77% with one to two risk factors and and 78% with three risk factors.
- The native population has a 36% correlation with the target, 34% correlation with zero risk factors, 34% with one to two risk factors, and 33% with three
- Pacific Islander population has a 26% correlation with the target, 34% correlation with zero risk factors, 36% with one to two risk factors, and 30% with three risk factors
- "Zero Risk factors as a whole, has a 90% correlation with the target, One to Two risk factors has a 95% correlation with the target, and three risk factors
 has a 97% correlation with the target.

```
In [21]: from sklearn.decomposition import PCA
         # normalizina data
In [22]: # Creating features
         X = dfdd.drop(['total population',
                         gini ind income'.
                        'State Cat', 'County Cat',
                        'plus family homes',
                         'rural pop', 'rental vacancy',
                        'Death Cat'l.
                       axis = 1
           = dfdd['Death Cat']
        from sklearn.model_selection import train_test_split
         x train, x test, y train, y test = train test split(X,y,
                                                 test size= .30.
                                                 train size = .70.
                                                 random state=49)
In [24]: from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         # Fit on the training set
         scaler.fit(x train)
Out[24]: StandardScaler()
In [25]: # Apply to both the train set and the test set.
         X train = scaler.transform(x train)
In [26]: X test = scaler.transform(x test)
In [27]: # Apply PCA
In [28]: pca = PCA(n components = 2)
In [29]: # Fit on the train set only
         pca.fit(X train)
Out[29]: PCA(n components=2)
In [30]: #Apply transformation on both train and test set
         X train = pca.transform(X train)
         X_test = pca.transform(X_test)
In [31]: var = pca.explained variance ratio
         var.sum()
Out[31]: 0.8928846717018712
In [32]: # Storing methods as variables for formatting
         cr = classification report
         ar = accuracy score
         cm = confusion matrix
```


Classifier Models

```
In [34]: from sklearn.ensemble import RandomForestClassifier
          RFC = RandomForestClassifier()
          RFC.fit(X_train, y_train)
          predRFC = RFC.predict(X test)
          print(f"the accuracy score is:{ar(y test, predRFC)}")
          print(f"confusion matrix:\n{cm(y test, predRFC)}")
          the accuracy score is:0.7751855779427359
          confusion matrix:
          [[202 24 0 1]
             19 180
                    1 35]
              2 6 197 501
              3 44 27 152]
                                                             200
         202
                                                            175
                                                            150
  1 -
                     180
                                                            - 125
True label
                                                            100
                                  197
                                                            - 75
                                                            - 50
                                                             25
          Λ
                                               3
                      Predicted label
```

Decision Tree for Random Forest Classifier Model

QUESTIONS

8

ANSWERS

THANK YOU!