Computer Graphics

Affine Transformations

Hyewon SEO

Contents

- Affine Transformations in 2D and 3D
 - Matrix form
 - Homogeneous representation
- Standard transformations
 - Rotation (2D/3D)
 - Translation (2D/3D)
 - Scaling (2D/3D)
 - Shear (2D/3D)
- Combination of transformations
- Change of coordinate systems

Affine space

•
$$V = Q - P$$

Addition between a vector and a point!!

- Affine space
 - Extension of the vector space by treating the vector and the point 'homogeneously'
- Affine operations
 - Addition of two vectors
 - Multiplication of a scalar and a vector (or a point but with a constraint)
 - Addition of a vector and a point

Affine combination

Let P₁ and P₂ be points in an affine space. Consider the expression:

$$\mathbf{P} = \mathbf{P}_1 + t(\mathbf{P}_2 - \mathbf{P}_1)$$
 $t(\mathbf{P}_2 - \mathbf{P}_1)$ $\mathbf{P}_1 + t(\mathbf{P}_2 - \mathbf{P}_1)$ $\mathbf{P}_1 + t(\mathbf{P}_2 - \mathbf{P}_1)$

Affine combination of two points P₁ and P₂

$$\mathbf{P} = \alpha_1 \mathbf{P_1} + \alpha_2 \mathbf{P_2}$$
, $\alpha_1 + \alpha_2 = 1$

• Generalization:

$$\sum_{i} \alpha_{i} P_{i} = P_{0} + \sum_{i} \alpha_{i} (P_{i} - P_{0})$$

$$\alpha_{1} + \alpha_{2} + \dots + \alpha_{n} = 1$$

An example – affine combination

5

Affine Transformations

- Map from one affine space to another, $\Re^n \to \Re^n$ (*n* :dimension of the space) that preserves affine combinations $X(\sum \alpha_i P_i) = \sum \alpha_i X(P_i)$
 - Preserves lines and poly-lines
 - maps parallel lines to parallel lines
- Importance of transformation in 3D modeling:
 - Moving objects in the space: adjust their position and orientation and scale in the space.
 - Specifying parent/child relationships (skeleton)

Affine Transformations

- General form of affine transformation:
 - a linear transformation followed by a translation.

$$p' = M \cdot p + t$$

- p: a point in the space
- t: translation vector
- M: matrix of the linear transformation

Rotation, translation, scaling, shear

Rotation (2D)

• Consider rotation about the origin by θ degrees

2D Rotation

General form of rotation:

Rotation in 2D:

$$p' = M . p$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Example:

Translation in 2D

Point translation

$$p' = p + t$$

- Matrix form?
- Is it Affine?
- Preserves lines?
- Does it work for points and vectors?

Translation in 2D -- answers

- No 2x2 matrix notation
- It is Affine
- Different interpretations for vectors and points
- We need a new representation

Translation in 2D

How can we write p' = p + t in the matrix form?

The solution: homogeneous coordinate system.

Additional coordinate to handle the translation

Translation in 2D

Matrix form of affine transformation:

$$p' = M \cdot p + t$$

with the homogeneous coordinate system:

$$\begin{pmatrix} p' \\ 1 \end{pmatrix} = \begin{pmatrix} M & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p \\ 1 \end{pmatrix}$$

Homogeneous coordinate system

Homogeneous Representation

shape	point •	vector
Previous notation 2D and 3D	$\left[\begin{array}{c} x \\ y \end{array}\right] \left[\begin{array}{c} x \\ y \\ z \end{array}\right]$	$\left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}\right]$
homogeneous 2D, 3D	$\left[\begin{array}{c} x \\ y \\ 1 \end{array}\right] \left[\begin{array}{c} x \\ y \\ z \\ 1 \end{array}\right]$	$\left[\begin{array}{c} v_1 \\ v_2 \\ 0 \end{array}\right] \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ 0 \end{array}\right]$

Homogeneous coordinate system in 2D and 3D

Useful representation

- Matrix notation for translation
 - seamless integration of translation, rotation, scaling, and shear.
- Separation between points and vectors:

- Points:
$$p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
, they are moved by translation

- Vectors:
$$v = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$
, invariant under translation

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented by matrix multiplications with 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - For perspective we need a perspective division

Scaling

Change the size of the object

 Achieved by applying a scaling factor
 S_x and S_y to the vertices coordinates of the objects.

Examples:

Non-uniform scaling S_x≠S_v

18

Scale Transformations in 2D

• Scaling relative to (0,0): $x' = s_x x \\ y' = s_y y$

Matrix form:

$$\begin{pmatrix} s_x & 0 \\ 0 & s_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s_x \cdot x \\ s_y \cdot y \end{pmatrix}$$

• Scaling relative to (x_f, y_f) : $x' = x S_x + (1 - S_x) x_f$ $y' = y S_y + (1 - S_y) y_f$

2D Shear Transformation

• Along X-axis:
$$Sh_x = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + ay \\ y \end{pmatrix}$$

Inverses

 Although we could compute inverse matrices by general formula, we can use simple geometric observations

- Translation:
$$T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$$

- Rotation: $R^{-1}(\theta) = R(-\theta)$
 - Holds for any rotation matrix
 - Note that since cos(-q) = cos(q) and sin(-q)=-sin(q) R $^{-1}(\theta)$ = R $^{T}(\theta)$
- Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

2D Rotating About an Arbitrary Point

- Pivot point: V_x, V_y
- Steps
 - 1. Translate through ____
 - 2. Rotate about the origin through angle _____
 - 3. Translated back through _____
- The matrix form:

$$\begin{bmatrix} 1 & 0 & V_x \\ 0 & 1 & V_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -V_x \\ 0 & 1 & -V_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & dx \\ \sin \theta & \cos \theta & dy \\ 0 & 0 & 1 \end{bmatrix}$$

where
$$dx = -\cos\theta V_x + \sin\theta VY + V_x dy = -\sin\theta V_x - \cos\theta V_y + V_y$$

21

Translation and Scaling in 3D

Translation:

$$\begin{pmatrix}
1 & 0 & 0 & t_x \\
0 & 1 & 0 & t_y \\
0 & 0 & 1 & t_z \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix}$$

Scaling

$$egin{pmatrix} (s_x & 0 & 0 & 0 & 0 \ 0 & s_y & 0 & 0 & y \ 0 & 0 & s_z & 0 & z \ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Shear Transformation in 3D

- Along x-direction
- 2D matrix form

$$\left[egin{array}{cccc} 1 & h & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

$$\begin{array}{c|cccc}
\bullet & \mathbf{3D:} \begin{bmatrix} 1 & 0 & a & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
\end{array}$$

it is an Affine map

Rotation in 3D

- Rotation about a coordinate axis
- z-axis here: A simple extension of planar rotation
- Matrix form

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} c & -s & 0 & 0 \\ s & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$c=cos(\theta)$$
, $s=sin(\theta)$

$$P' = R_z(\theta).P$$

Rotation about x-axis and y-axis

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c & -s & 0 \\ 0 & s & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P' = R_x(\theta).P$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} c & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ -s & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P' = R_y(\theta).P$$

Composing Affine Transformations

- Composing or concatenating the transformation
- Concatenation of two Affine transformations is also Affine
- Functional form and matrix form

$$P'' = T_2(P') = T_2(T_1(P)) = (T_2T_1)(P) = T(P)$$

 $P'' = M_2P' = M_2M_1P = MP$
 $M = M_2M_1$

Reverse order!!

Composing Affine Transformations

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - Efficiency with premultiplication
 - Matrix multiplication is associative

$$p' = (T * (R * (S*p)))$$

 $p' = (T*R*S) * p$

- Be aware: order of transformations matters
 - Matrix multiplication is not commutative

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes.

$$\mathbf{R}_{v}(\theta) = \mathbf{R}_{z}(\theta_{z}) \; \mathbf{R}_{y}(\theta_{y}) \; \mathbf{R}_{x}(\theta_{x})$$

 $\theta_x\,\theta_y\,\theta_z$ are called the Euler angles

Note that rotations do not commute. We can use rotations in another order but with different angles

Rotation About a Fixed Point other than the Origin

- 1. Move fixed point to origin
- 2. Rotate
- 3. Move fixed point back

$$M = T(\mathbf{p}_f) R(\theta) T(-\mathbf{p}_f)$$

