

VisRec Tutorial Session 2: Pipeline + VisRank + VBPR

Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, *Patricio Cerda-Mardini, Felipe del Río Pontificia Universidad Católica de Chile *MindsDB

26th ACM Conference on Intelligent User Interfaces 1112021

VisRec Tutorial Session 2: Pipeline + VisRank + VBPR

Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, *Patricio Cerda-Mardini, Felipe del Río Pontificia Universidad Católica de Chile *MindsDB

26th ACM Conference on Intelligent User Interfaces 1112021

Table of Contents

- Organization of our pipeline
- GitHub repository
- Stage 1: Data preparation
- Stage 2: Model training
- Stage 3: Evaluation procedure
- Tips and recommendations

Organization of our pipeline

Our repository

Our repository

Data preparation: Data analysis

Data preparation: Data analysis

	user	İI	mag	e_id	timestamp	evaluation	
0	1	20	200502005		1108503300	False	
1	1	20	0504	1028	1113243060	False	
2	1	20	OEO	1020	4442242060	Foloo	
3	1	20		user	image_id	timestamp	evaluation
	1		0	1	200602085	1140370560	True
4	- 1	20	1	6	200510005	1128099960	True
			2	11	200604035	1143603900	True
			3	12	200805003	1208850300	True
			4	13	201011221	1290851640	True

Data preparation: Data formatting

Key properties of format:

- Specific column names
- Interactions sorted by timestamp
- Column to identify evaluation rows

This structure is assumed further into the pipeline, so we must be consistent

35	user_id	item_id	timestamp	evaluation
0	30	200501002	1105490700	False
1	12	200501002	1105521180	False
2	31	200501002	1105568700	False
3	6	200501002	1105646820	False
4	14	200501002	1105738260	False
	•••))
96986	2738	201904242	1556319720	False
96987	2738	201904241	1556319780	True
96988	7298	201904241	1556338260	False
96989	7298	201904242	1556338380	True
96990	5578	201904242	1556347920	True

Model training: Building an embedding

- Each image in the dataset is mapped to a latent feature vector
- We store the embeddings in a *.npy file to load it in our models

```
("item_id1", <vector>),
  ("item_id2", <vector>),
...
```


Model training: User rating vs BPR

Pointwise approach:

- Looks a single item at a time while training, trying to predict how relevant is it fr the current query
- Requires to know how relevant the item really is: user rating

 r_{ui}

Pairwise approach:

- Looks a pair of items at a time, trying to learn what's the optimal ordering of said pair
- Just needs implicit feedback to infere the ordering

$$x_{uij} = x_{ui} - x_{uj}$$

Model training: Triples for training

The output of this stage contains:

- pi and ni: positive and negative items (index)
- **ui**: user identifier (index)
- profile: index of already consumed items

We generate 5 millions triples for training and 500k for validation

	profile	pi	ni	ui
0	220 234 231 232	232	6890	0
1	23 28 29	29	4242	0
2	238 239 242 276	276	7961	0
3	234 231 232 233	233	4969	0
4	236 237 238 239	239	5866	0
	•••			300
5000081	9455 9451	9451	7814	1078
5000082	9512 9524 9525	9525	7372	1078
5000083	9455	9455	3328	1078
5000084	9511 9485 9490	9490	7872	1078
5000085	9490 9509 9526	9526	8933	1078

Model training: Data for evaluation

The evaluation data contains:

- profile and predict: already known interactions and ground truth (index)
- user_id: user identifier (index)
- **timestamp**: Time of ground truth interactions

We evaluate using the last item for each user in the dataset

	profile	predict	user_id	timestamp
0	0 29 28 27	26	14	1113423840
1	28 40 35 41	42	15	1114095000
2	25 0 30 38	43	34	1114273560
3	0 33 45 39	43	13	1114783500
4	50 48 70 69	71	30	1116466140
		•••	***	
1073	9534 9528	9530	910	1556298360
1074	9486 9494	9534	984	1556305080
1075	9528 9534	9533	677	1556319780
1076	9528 9533	9534	1065	1556338380
1077	9528 9522	9534	853	1556347920

Model training: Training procedure

Differences in training and inference

Training

Inference

$$(user, item_i, item_j)$$

(user, item)

$$x_{uij} = x_{ui} - x_{uj}$$

 x_{ui}

Model evaluation

In this stage we only load a trained model checkpoint

Then, for every user:

- 1. Predict each item score
- 2. Sort items by score
- 3. Calculate metrics

```
evaluation df["profile"] = evaluation df["profile"].map(tuple)
grouped evals = evaluation df.groupby(["profile", "user id"]).agg({"predict":
for i, row in tqdm(enumerate(evaluation df.itertuples()), total=len(evaluation
    # Load data into tensors
    profile = torch.tensor(row.profile).to(device, non blocking=True).unsqueeze
    user id = torch.tensor([int(row.user id)]).to(device, non blocking=True)
    predict = torch.tensor(row.predict).to(device, non blocking=True)
    # Prediction
    if MODEL == "ACF":
        acf profile = profile + 1 # In ACF items
                                                           ed starting at 1
        scores = model.recommend all(user id, ac
                                                            squeeze()
    elif MODEL == 'DVBPR':
        scores = model.recommend all(user id, img
                                                           he=cache)
    elif MODE PROFILE == "profile":
        scores = model.recommend all(profile, cache=cache)
    elif MODE PROFILE == "user":
        scores = model.recommend all(user id, cache=cache).squeeze()
    # Ranking
    pos of evals = (torch.argsort(scores, descend
                                                             .., None] == predi
    if not PREDICT ALL:
        pos of profi = (torch.argsort(scores, des
        # Relevant dimensions
        _a, _b = pos_of_evals.size(0), pos of profi.size(0)
        # Calculate shift for each eval item
        shift = (pos of profi.expand(a, b) < pos of evals.reshape(a, 1).expa
        # Apply shift
        pos of evals -= shift.squeeze(0)
    AUC[i] = auc exact(pos of evals, N ITEMS)
    RR[i] = reciprocal rank(pos of evals)
    R20[i] = recall(pos of evals, 20)
    P20[il = precision(pos of evals.
```

Tips and recommendations

In case that you want to use our pipeline:

- You'll need a GPU (Google Colaboratory helps a lot!)
- Make sure to define an explicit criteria to choose evaluation rows
- Be consistent with the data format (ideally, it should not be different)
- Start with simple models to build your baseline
- If you add your own model implementation, follow the current structure
- Please read the README files in our repository

All of this recommendations will be available in the repository

VisRec Tutorial Session 2: Pipeline + VisRank + VBPR

Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, *Patricio Cerda-Mardini, Felipe del Río Pontificia Universidad Católica de Chile *MindsDB

26th ACM Conference on Intelligent User Interfaces 1112021

Visually-Aware Fashion Recommendation and Design with Generative Image Models

Wang-Cheng Kang UC San Diego wckang@eng.ucsd.edu Chen Fang Adobe Research cfang@adobe.com Zhaowen Wang Adobe Research zhawang@adobe.com Julian McAuley
UC San Diego
jmcauley@eng.ucsd.edu

VisRank (but main focus on DVBPR)

Context

- To define a simple and performant baseline model based on similarity

"Nearest neighbor" style recommendation

- Images are ranked according to their average distance to user items

Content-based recommendation: VisRank (baseline)

Mathematical formulation

Calculates similarity between the items as the cosine similarity between the vector representations

$$score(u,i)_{X} = \begin{cases} \underset{j \in P_{u}}{\max} \{sim(V_{i}^{X}, V_{j}^{X})\} & (maximum) \\ \\ \frac{\sum\limits_{j \in P_{u}} sim(V_{i}^{X}, V_{j}^{X})}{|P_{u}|} & (average) \\ \\ \frac{\sum\limits_{r=1}^{\min\{K, |P_{u}|\}} \max\limits_{j \in P_{u}} {}^{(r)} \{sim(V_{i}^{X}, V_{j}^{X})\}}{\min\{K, |P_{u}|\}} & (average\ top\ K) \end{cases}$$

$$sim(V_i, V_j) = cos(V_i, V_j) = \frac{V_i \cdot V_j}{\|V_i\| \|V_j\|}$$

22

Metrics for evaluation

<u>AUC</u>

$$AUC = \frac{1}{|\mathcal{U}|} \sum_{u} \frac{1}{|E(u)|} \sum_{(i,j) \in E(u)} \delta(\widehat{x}_{u,i} > \widehat{x}_{u,j})$$

Mean Reciprocal Rank

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{ ext{rank}_i}$$

Metrics for evaluation

$$\underline{\text{Precision@K}} \qquad P@k = \frac{1}{|U_r|} \sum_{u \in U_r} \left(\frac{1}{|T_u|} \sum_{t \in T_r} p@k(t) \right) \qquad p@k(t) = \frac{|r_t^k \cap R_t|}{k}$$

$$\underline{\mathsf{Recall@K}} \qquad \qquad R@k = \frac{1}{|U_r|} \sum_{u \in U_r} \left(\frac{1}{|T_u|} \sum_{t \in T_u} r@k(t) \right) \qquad \qquad r@k(t) = \frac{|r_t^k \cap R_t|}{|R_t|}$$

$$nD@K = \frac{1}{|U_r|} \sum_{u \in U_r} \left(\frac{1}{|T_u|} \sum_{t \in T_u} \frac{DCG@k(t)}{iDCG@k(t)} \right) \quad DCG@k(t) = \sum_{z=1}^k \frac{2^{B_t(i_{t,z})} - 1}{log_2(1+z)}$$

Main Results

AUC	RR	R@20	P@20	nDCG@20	R@100	P@100	nDCG@100
0.60491	0.02788	0.04267	0.00213	0.03020	0.06215	0.00062	0.03376

- Reasonable result in AUC, better than random (0.5)

Good MRR and nDCG values (we'll see other models later)

VisRec Tutorial Session 2: Pipeline + VisRank + VBPR

Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, *Patricio Cerda-Mardini, Felipe del Río Pontificia Universidad Católica de Chile *MindsDB

26th ACM Conference on Intelligent User Interfaces 1112021

VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback

Ruining He UC San Diego r4he@ucsd.edu Julian McAuley UC San Diego jmcauley@ucsd.edu

a.k.a. Visual BPR

Context

- Previous work did not consider the *visual appearance* of the items

- Modeling derived from BPR, that's suitable to uncover visual factors

Addressing cold-start problem

VBPR Key insights

- Each item is represented by its visual features, from a pretrained AlexNet

Preference predictor is a complex term that can be simplified thanks to BPR

Model: Preference predictor

$$\widehat{x}_{u,i} = \alpha + \beta_u + \beta_i + \gamma_u^T \gamma_i + \theta_u^T (\mathbf{E} f_i) + \beta'^T f_i$$

$$lpha$$
 Global offset
$$eta_u + eta_i$$
 Bias terms
$$\gamma_u^T \gamma_i$$
 Latent factors (compatibility between user and item)

Model: Preference predictor

$$\widehat{x}_{u,i} = \alpha + \beta_u + \beta_i + \gamma_u^T \gamma_i + \theta_u^T (\mathbf{E} f_i) + \beta'^T f_i$$

$$heta_u^T(\mathbf{E}f_i)$$
 (user preference over visual dimensions)

$$\beta'^T f_i$$

Users' visual bias

(user's overall opinion towards visual appearance of a given item)

Model: Preference predictor while training

$$\widehat{x}_{uij} = \widehat{x}_{u,i} - \widehat{x}_{u,j}$$

$$\widehat{x}_{u,i} = \cancel{\alpha} + \cancel{\beta_u} + \beta_i + \gamma_u^T \gamma_i + \theta_u^T (\mathbf{E} f_i) + \cancel{\beta'^T} f_i$$

$$\widehat{x}_{u,j} = \cancel{\alpha} + \cancel{\beta_u} + \beta_j + \gamma_u^T \gamma_j + \theta_u^T (\mathbf{E} f_j) + \cancel{\beta'^T} f_j$$

Implementation details

```
VisualRecSys-Tutorial-IUI2021 / models / vbpr.py / > Jump to -
    aaossa 🖖 Add VBPR model implementation ....
८३ 1 contributor
123 lines (98 sloc) | 4.51 KB
      """VBPR implementation in PyTorch
      import torch
      import torch.nn as nn
      import torch.nn.functional as F
      class VBPR(nn.Module):
          """VBPR model architecture from 'VBPR: Visual Bayesian
          Personalized Ranking from Implicit Feedback'.
```

Implementation details (Bias terms)

```
def forward(self, ui, pi, ni):
class VBPR(nn.Module):
   """VBPR model architecture from 'VBPR: Visual Bayesian
   Personalized Ranking from Implicit Feedback'.
                                                                                                         ui latent factors = self.gamma users(ui) # Latent factors of user u
                                                                                                         ui_visual_factors = self.theta_users(ui) # Visual factors of user u
   def init (self, n users, n items, features, dim gamma, dim thet
                                                                                                         pi_bias = self.beta_items(pi) # Pos. item bias
       super(). init ()
                                                                                                         ni bias = self.beta items(ni) # Neg. item bias
                                                                                                         pi_latent_tactors = self.gamma_items(pi) # Pos. item visual factors
                                                                                                         ni latent factors = self.gamma items(ni) # Neg. item visual factors
       self.features = nn.Embedding.from pretrained(features, freeze=Tru
                                                                                                         pi_features = self.features(pi) # Pos. item visual features
                                                                                                         ni features = self.features(ni) # Neg. item visual features
       self.gamma users = nn.Embedding(n users, dim gamma)
       self.gamma items = nn.Embedding(n items, dim gamma)
                                                                                                         diff_features = pi_features - ni_features
                                                                                                         diff latent factors = pi latent factors - ni latent factors
       self.theta users = nn.Embedding(n users, dim theta)
       self.embedding = nn.Embedding(features.size(1), dim_theta)
                                                                                                             pi bias - ni bias
       # Biases (beta)
                                                                                                             + (ui latent factors * diff latent factors).sum(dim=1).unsqueeze(-1)
                                                                                                             + (ui visual factors * diff features.mm(self.embedding.weight)).sum(dim
       self.beta items = nn.Embedding(n items, 1)
                                                                                                             + diff features.mm(self.visual bias.weight)
       self.visual bias = nn.Embedding(features.size(1), 1)
       # Random weight initialization
       self.reset_parameters()
```

Implementation details (Latent factors)

```
def forward(self, ui, pi, ni):
class VBPR(nn.Module):
   """VBPR model architecture from 'VBPR: Visual Bayesian
   Personalized Ranking from Implicit Feedback'.
                                                                                                         ui latent factors = self.gamma users(ui) # Latent factors of user u
                                                                                                         ui_visual_factors = self.theta_users(ui) # Visual_factors of user u
   def init (self, n users, n items, features, dim gamma, dim theta)
                                                                                                         pi_bias = self.beta_items(pi) # Pos. item bias
       super(). init ()
                                                                                                         ni bias = self.beta items(ni) # Neg. item bias
                                                                                                         pi_latent_factors = self.gamma_items(pi) # Pos. item visual factors
                                                                                                         ni latent factors = self.gamma items(ni) # Neg. item visual factors
       self.features = nn.Embedding.from pretrained(features, freeze=Tru
                                                                                                         pi_features = self.features(pi) # Pos. item visual features
                                                                                                         ni features = self.features(ni) # Neg. item visual features
       self.gamma users = nn.Embedding(n users, dim gamma)
        self.gamma items = nn.Embedding(n items, dim gamma)
                                                                                                         diff features = pi features - ni features
                                                                                                         diff latent factors = pi latent factors - ni latent factors
       self.theta users = nn.Embedding(n users, dim theta)
       self.embedding = nn.Embedding(features.size(1), dim_theta)
                                                                                                            pi bias - ni bias
       # Biases (beta)
                                                                                                             + (ui latent factors * diff latent factors).sum(dim=1).unsqueeze(-1)
                                                                                                             + (ui visual factors * diff features.mm(self.embedding.weight)).sum(dim
       self.beta items = nn.Embedding(n items, 1)
                                                                                                             + diff features.mm(self.visual bias.weight)
       self.visual bias = nn.Embedding(features.size(1), 1)
       self.reset_parameters()
                                                                                                         return x uij.unsqueeze(-1)
```

Implementation details (Visual factors)

```
def forward(self, ui, pi, ni):
class VBPR(nn.Module):
   """VBPR model architecture from 'VBPR: Visual Bayesian
                                                                                                         ui latent factors = self.gamma users(ui) # Latent factors of user u
   Personalized Ranking from Implicit Feedback'.
                                                                                                         ui_visual_factors = self.theta_users(ui) # Visual factors of user u
   def init (self, n users, n items, features, dim gamma, dim the
                                                                                                         pi_bias = self.beta_items(pi) # Pos. item bias
       super(). init ()
                                                                                                         ni bias = self.beta items(ni) # Neg. item bias
                                                                                                         pi_latent_factors = self.gamma_items(pi) # Pos. item visual factors
                                                                                                         ni latent factors = self.gamma items(ni) # Neg. item visual factors
       self.features = nn.Embedding.from pretrained(features, freeze=1ru
                                                                                                         pi_features = self.features(pi) # Pos. item visual features
                                                                                                         ni features = self.features(ni) # Neg. item visual features
       self.gamma users = nn.Embedding(n users, dim gamma)
       self.gamma items = nn.Embedding(n items, dim gamma)
                                                                                                         diff_features = pi_features - ni_features
                                                                                                         diff latent factors = pi latent factors - ni latent factors
       self.theta users = nn.Embedding(n users, dim theta)
       self.embedding = nn.Embedding(features.size(1), dim_theta)
                                                                                                         x uij = (
                                                                                                             pi bias - ni bias
       # Biases (beta)
                                                                                                             + (ui latent factors * diff latent factors).sum(dim=1).unsqueeze(-1)
                                                                                                             + (ui visual factors * diff features.mm(self.embedding.weight)).:um(di
       self.beta items = nn.Embedding(n items, 1)
                                                                                                             + diff features.mm(self.visual bias.weight)
       self.visual bias = nn.Embedding(features.size(1), 1)
       # Random weight initialization
       self.reset_parameters()
                                                                                                         return x uij.unsqueeze(-1)
```

Implementation details (Users' visual bias)

```
def forward(self, ui, pi, ni):
class VBPR(nn.Module):
   """VBPR model architecture from 'VBPR: Visual Bayesian
   Personalized Ranking from Implicit Feedback'.
                                                                                                         ui latent factors = self.gamma users(ui) # Latent factors of user u
                                                                                                         ui_visual_factors = self.theta_users(ui) # Visual factors of user u
   def init (self, n users, n items, features, dim gamma, dim theta)
                                                                                                         pi_bias = self.beta_items(pi) # Pos. item bias
       super(). init ()
                                                                                                         ni bias = self.beta items(ni) # Neg. item bias
                                                                                                         pi_latent_factors = self.gamma_items(pi) # Pos. item visual factors
                                                                                                         ni latent factors = self.gamma items(ni) # Neg. item visual factors
       self.features = nn.Embedding.from pretrained(features, freeze=Tru
                                                                                                         pi features = self.features(pi) # Pos. item visual features
                                                                                                         ni features = self.features(ni) # Neg. item visual features
       self.gamma users = nn.Embedding(n users, dim gamma)
       self.gamma items = nn.Embedding(n items, dim gamma)
                                                                                                         diff features = pi features - ni features
                                                                                                         diff latent factors = pi latent factors - ni latent factors
       self.theta users = nn.Embedding(n users, dim theta)
       self.embedding = nn.Embedding(features.size(1), dim theta)
                                                                                                             pi bias - ni bias
                                                                                                             + (ui latent factors * diff latent factors).sum(dim=1).unsqueeze(-1)
                                                                                                             + (ui visual factors * diff features.mm(self.embedding.weight)).sum(dim
       self.beta items = nn.Fmbedding(n items. 1)
                                                                                                             + diff features.mm(self.visual bias.weight)
       self.visual bias = nn.Embedding(features.size(1), 1)
       # Random weight initialization
                                                                                                         return x uij.unsqueeze(-1)
       self.reset_parameters()
```

Implementation details (Inference)

At this time, we don't need the first 2 terms, because they're constants shared across the recommendation list

$$\widehat{x}_{u,i} = \alpha + \beta_u + \beta_i + \gamma_u^T \gamma_i + \theta_u^T (\mathbf{E}f_i) + \beta'^T f_i.$$

```
def recommend all(self, user, cache=None, grad enabled=False):
    with torch.set grad enabled(grad enabled):
       u latent factors = self.gamma users(user) # Latent factors of user u
       u visual factors = self.theta users(user) # Visual factors of user u
       i bias = self.beta items.weight # Items bias
        i latent factors = self.gamma items.weight # Items visual factors
       i_features = self.features.weight # Items visual features
       if cache is not None:
           visual rating space, opinion visual appearance = cache
           visual rating space = i features.mm(self.embedding.weight)
           opinion visual appearance = i features.mm(self.visual bias.weight)
            + (u_latent_factors * i_latent_factors).sum(dim=1).unsqueeze(-1)
            + (u visual factors * visual rating space).sum(dim=1).unsqueeze(-1)
           + opinion visual appearance
       return x ui
```

Main Results

AUC	RR	R@20	P@20	nDCG@20	R@100	P@100	nDCG@100
0.77846	0.02169	0.05565	0.00278	0.02684	0.13821	0.00138	0.04105

- Big improvement in AUC (VisRank: 0.60491)

- Ranking metrics @100 also improved significantly

References

[1] He, R., & McAuley, J. (2016, February). VBPR: visual bayesian personalized ranking from implicit feedback. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 30, No. 1).

[2] Messina, P., Dominguez, V., Parra, D., Trattner, C., & Soto, A. (2019). Content-based artwork recommendation: integrating painting metadata with neural and manually-engineered visual features. User Modeling and User-Adapted Interaction, 29(2), 251-290.

[3] Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618.

VisRec Tutorial Session 2: Pipeline + VisRank + VBPR

Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, *Patricio Cerda-Mardini, Felipe del Río Pontificia Universidad Católica de Chile *MindsDB

26th ACM Conference on Intelligent User Interfaces 1112021

Hands-On

VisRec: A Hands-on Tutorial on Deep Learning for Visual Recommender Systems

Denis Parra, Antonio Ossa-Guerra, Manuel Cartagena, *Patricio Cerda-Mardini, Felipe del Río Pontificia Universidad Católica de Chile *MindsDB

26th ACM Conference on Intelligent User Interfaces 1112021

VBPR model diagram

Figure 1: Diagram of our preference predictor. Rating dimensions consist of visual factors and latent (non-visual) factors. Inner products between users and item factors model the compatibility between users and items.

VBPR loss function

VBPR: Visual Bayesian Personalized Ranking (R. He & McAuley, 2016)

$$\hat{x}_{u,i} = \beta_i + \gamma_u^T \gamma_i + \theta_u^T (Ef_i) + \beta^T f_i$$

Weights are learned using BPR-OPT (Rendle et al., 2009)

$$D_S = \{(u, i, j) | u \in U \land i \in I_u^+ \land j \in I \setminus I_u^+ \}$$

$$\sum_{(u,i,j)\in D_S} \ln(\sigma(\hat{x}_{uij}(\Theta))) - \lambda_{\Theta}||\Theta||^2 \qquad \hat{x}_{uij}(\Theta) = \hat{x}_{u,i} - \hat{x}_{u,j}$$