Using Propensity Scores Lucy D'Agostino McGowan Wake Forest University

Propensity scores

Matching

Weighting

Stratification

Direct Adjustment

• • •

estimand

Ingredients

150g unsalted butter, plus extra for greasing

- 150g plain chocolate, broken into pieces
- 150g plain flour
- 1/2 tsp baking powder
- 1/2 tsp bicarbonate of soda 200g light muscovado
- sugar 2 large eggs

Method

- 1. Heat the oven to 160C/140C fan/gas 3. Grease and base line a 1 litre heatproof glass pudding basin and a 450g loaf tin with baking parchment.
- 2. Put the butter and chocolate into a saucepan and melt over a low heat, stirring. When the chocolate has all melted remove from the heat.

estimator

estimate

Image source: Simon Grund

Propensity scores

Matching

Weighting

Stratification

Direct Adjustment

• • •

Average Treatment Effect (ATE)

Estimand	Target population	Example Research Question
ATE	Full population	Should we decide whether to have extra magic hours all mornings to change the wait time for Seven Dwarfs Mine Train between 5-6pm?
		Should a specific policy be applied to all eligible observations?

Target estimands Average Treatment Effect among the Treated (ATT)

Estimand	Target population	Example Research Question
ATT	Exposed (treated) observations	Should we stop extra magic hours to change the wait time for Seven Dwarfs Mine Train between 5-6pm?
		Should we stop our marketing campaign to those currently receiving it?
		Should medical providers stop recommending treatment for those currently receiving it?

Matching in R (ATT)

```
library(MatchIt)
m <- matchit(
    qsmk ~ sex +
    race + age + I(age^2) + education +
    smokeintensity + I(smokeintensity^2) +
    smokeyrs + I(smokeyrs^2) + exercise +
    active + wt71 + I(wt71^2),
    data = nhefs_complete
)
</pre>
```

A matchit object - method: 1:1 nearest neighbor matching without replacement - distance: Propensity score - estimated with logistic regression - number of obs.: 1566 (original), 806 (matched) - target estimand: ATT - covariates: sex, race, age, I(age^2), education, smokeintensity, I(smokeintensity^2), smokeyrs, I(smokeyrs^2), exercise, active, wt71, I(wt71^2)

Matching in R (ATT)

```
matched data <- get matches(m, id = "i")</pre>
as tibble(matched data)
```

Average Treatment Effect among the Controls (ATC)

Estimand	Target population	Example Research Question
ATU	Unexposed (control) observations	Should we add extra magic hours for all days to change the wait time for Seven Dwarfs Mine Train between 5-6pm?
		Should we extend our marketing campaign to those not receiving it?
		Should medical providers extend treatment to those not currently receiving it?

Matching in R (ATC)

Average Treatment Effect among the Matched (ATM)

Estimand	Target population	Example Research Question
ATM	Evenly matchable	Are there some days we should change whether we are offering extra magic hours in order to change the wait time for Seven Dwarfs Mine Train between 5-6pm?
		Is there an effect of the exposure for some observations?
		Should those at clinical equipoise receive treatment?

Matching in R (ATM)

```
1 m <- matchit(
2    qsmk ~ sex +
3         race + age + I(age^2) + education +
4         smokeintensity + I(smokeintensity^2) +
5         smokeyrs + I(smokeyrs^2) + exercise +
6         active + wt71 + I(wt71^2),
7         data = nhefs_complete,
8         link = "linear.logit",
9         caliper = 0.1
10 )
11 m</pre>
```

Observations with propensity scores (on the linear logit scale) within 0.1 standard errors (the caliper) will be discarded

Matching in R (ATM)

```
A matchit object
- method: 1:1 nearest neighbor matching without replacement
- distance: Propensity score [caliper]
- estimated with logistic regression and linearized
- caliper: <distance> (0.063)
- number of obs.: 1566 (original), 780 (matched)
- target estimand: ATT
- covariates: sex, race, age, I(age^2), education,
smokeintensity, I(smokeintensity^2), smokeyrs, I(smokeyrs^2),
exercise, active, wt71, I(wt71^2)
```

Matching in R (ATM)

```
matched data <- get matches(m, id = "i")</pre>
          as tibble(matched data)
# A tibble: 780 × 71
       subclass weights seqn qsmk death yrdth modth
  428
1 11
       1
                    1
                              1
                                    0
                                        NA
                                             NA
2 1220
                    1 23045
                                    0
                                        NA
                                             NA
3 15
                       446
                                        88
4 1082
                    1 22294
                                        NA
                                             NA
5 18
                       596
                                        NA
                                             NA
6 534
                    1 14088
                                        NA
                                             NA
                       618
7 23
                                        NA
                                             NA
8 697
                    1 18085
                                        NA
                                             NA
9 27
                       806
                                        NA
                                             NA
                    1 21128
10 879
                                    0
                                        NA
                                             NA
```

Your Turn 1

Using the propensity scores you created in the previous exercise, create a "matched" data set using the ATM method with a caliper of 0.2.

06:00

Propensity scores

Matching

Weighting

Stratification

Direct Adjustment

• • •

Histogram of propensity scores

Target estimands: ATE

Average Treatment Effect (ATE)

```
1 (Z / p) + ((1 - Z) / (1 - p))
```

ATE

Target estimands: ATT & ATC

Average Treatment Effect Among the Treated (ATT)

```
1 ((p * Z) / p) + ((p * (1 - Z)) / (1 - p))
```

Target estimands: ATT & ATC

Average Treatment Effect Among the Controls (ATC)

```
1 (((1 - p) * Z) / p) + (((1 - p) * (1 - Z)) / (1 - p))
```

ATT

ATC

Target estimands: ATM & ATO

Average Treatment Effect Among the Evenly Matchable (ATM)

```
1 pmin(p, 1 - p) / (Z * p + (1 - Z) * (1 - p))
```

Target estimands: ATM & ATO

Average Treatment Effect Among the Overlap Population

$$1 (1 - p) * Z + p * (1 - Z)$$

Estimand	Target population	Example Research Question
dATO	Overlap population	Same as ATM

ATM

ATO

ATE in R

Average Treatment Effect (ATE)

```
1 library(propensity)
2 df <- propensity_model |>
3    augment(type.predict = "response", data = nhefs_comple
4    mutate(w_ate = wt_ate(.fitted, qsmk))
```

Your Turn 2

Using the propensity scores you created in the previous exercise, add the ATE weights to your data frame

Stretch: Using the same propensity scores, create ATM weights