Chapter 1

Chapter 4 - Problems

1.1 Problems

Problem 1

Assume that the magnetization of magnetite is about 480 mAm⁻¹ and using values for other parameters from the text, write a Python program to calculate the following:

a) Self energy (or magnetostatic energy) for a sphere 1, 10 and 100 μ m in diameter. [Hint: see Equation 1.1 below for the 'self' energy density. Also, remember the difference between energy and energy density!]

$$\epsilon_{ms} = -\frac{1}{2}\mu_o N_c M^2. \tag{1.1}$$

- b) Magnetostatic (shape) anisotropy energy for an ellipsoid whose principal semi-axis is 1 μ m and whose major and minor semi-axes are each 0.25 μ m. You may use the "nearly spherical" approximation in the text.
- c) The critical radius of a sphere at which wall energy equals self energy.

Problem 2

Calculate grain diameter for magnetite spheres with τ s of 10^{-1} , 10, 10^{2} ,

 10^3 , 10^5 , 10^9 , 10^{15} seconds. Use values for Boltzmann's constant, C (the frequency factor) and $|K_1|$ at room temperature (300K).

Problem 3

Consider a highly elongate rod (needle-shaped grain) of ferromagnetic material.

- a) Explain why the demagnetizing factor along the long axis of the rod is about zero and about one half across the axis.
- b) For a needle shaped grain of magnetite ($M_s = 4.8 \times 10^5 \text{ Am}^{-1}$), what external magnetic field is required to magnetize the rod to saturation along the diameter (perpendicular to the long axis)?
- c) What is the maximum microscopic coercivity of magnetite (assume an infinitely long grain)?