

School of Electrical Engineering & Telecommunications

ELEC1111 Tutorial 7

1. Analysis of a doorbell circuit

In this tutorial we will analyse a circuit which allows us to light a doorbell button with an LED and speak to the visitor at the door, all using the original two wires to the doorbell button. To test the speaker functionality, we use a sinusoidal waveform. The circuit is shown below.

Q1. Calculate the voltage v_a when Sw1 and Sw2 are open.

Answer: $v_a = 4 \text{ V}$

Q2. Using the value of v_a from Q1, calculate the current (i_{LED}) and power (P_{LED}) in the LED light, where the LED light is modelled as a voltage source of value $V_f = 2.3V$. Calculate the current (i_{out}) and power (P_{out}) in the speaker. Note that switches Sw1 and Sw2 are still open.

Answer:
$$i_{LED} = 6.3 \text{ mA}$$
; $P_{LED} = 14.49 \text{ mW}$; $i_{out} = 0 \text{ A}$; $P_{out} = 0 \text{ W}$

Q3. You push and hold the doorbell button Sw2 (switch Sw1 remains open). If the button is pushed at time t = 0 seconds, calculate and plot the voltage across the speaker, v_{out} , for the first 10 milliseconds. Ensure your drawing has at least three key values labelled.

Answer:
$$v_{out} = -4e^{-\frac{t}{0.001504}}V$$

Q4. You push the doorbell button Sw1 to speak. Express the voltages at the amplifier input, v_{in} , and output, v_a , as a function of time and then as a phasor.

Answer:
$$v_{in}(t) = 0.0707 \cos(440\pi t) \ V \rightarrow \mathbb{V}_{in} = 0.0707 \angle 0^{\circ} \ V$$

Analyse Op Amp circuit to calculate v_a : $v_a = 10 - 1.5 \ v_{in}$
 $v_a(t) = 10 - 0.106 \cos(440\pi t) \ V \rightarrow \mathbb{V}_a = 0.106 \angle -180^{\circ} \ V$

Q5. Find the voltage v_{out} across the speaker as a phasor. Note that the DC voltages in the circuit and the LED will have no effect on v_{out} and you may ignore them during this analysis. Note that switch Sw1 is still closed and Sw2 is open.

Answer:
$$V_{out} = 0.095 \angle - 154.31^{\circ} V$$

2. Analysis of a fire alarm system¹

The circuit shown below is a simple fire alarm system. When the alarm is triggered, 1 kHz sinusoidal "beeps" are sent to the speakers.

Q6. Express the voltage at the amplifier input v_{in} as a function of time and as a phasor.

Answer:
$$v_{in}(t) = 14\sqrt{2}\cos(2000\pi t) V \rightarrow V_{in} = 14\sqrt{2}\angle 0^{\circ} V$$

Q7. Find the voltage v_{out} across each speaker as a phasor.

Answer:
$$V_{out} = 9.115 \angle -46.32^{\circ} V$$

-

¹ This problem is from the final exam in Semester 2, 2018 (full solution will be provided under Final exam -> Supplementary material in Moodle)