Optimization Methods for Machine Learning Lecture 14 Sparse Convex Optimization

Katya Scheinberg

Compressed sensing

A short introduction to Compressed Sensing

An imaging perspective

Why do we compress images?

Images are compressible

Because

- Only certain part of information is important (e.g. objects and their edges)
- Some information is unwanted (e.g. noise)

- Image compression
 - Take an input image u
 - Pick a good dictionary Φ
 - Find a sparse representation x of u such that $||\Phi x u||_2$ is small
 - Save x

This is traditional compression.

An imaging perspective

This is traditional compression.

100 Kilobytes

An imaging perspective

This is traditional compression.

• If only 100 kilobytes are saved, why do we need a 10-megapixel camera in the first place?

- Answer: a traditional compression algorithm needs the complete image to compute Φ and x
- Can we do better than this?

• Let $k=||x||_0$, $n=\dim(x)=\dim(u)$.

• In compressed sensing based on l_1 minimization, the number of measurements is $m=O(k \log(n/k))$ (Donoho, Candés-Tao)

- Input: $b=Bu=B\Phi x$, $A=B\Phi$
- Output: x
- In compressed sensing, $m = \dim(b) < \dim(u) = \dim(x) = n$
- Therefore, Ax = b is an *underdetermined* system
- Approaches for recovering x (hence the image u):
 - Solve min $||x||_0$, subject to Ax = b
 - Solve min $||x||_1$, subject to Ax = b
 - Other approaches

Difficulties

- Large scales
- Completely dense data: A

However

- Solutions x are expected to be sparse
- The matrices A are often fast transforms

Recovery by using the I₁-norm

Sparse signal reconstruction

$$\min ||x||_0$$

$$s.t.$$
 $Ax = b.$

Sparse signal $x \in \mathbf{R}^n$, matrix $A \in \mathbf{R}^{m \times n}, n >> m$

The system is underdetermined, but if card(x) < m, can recover signal.

The problem is NP-hard in general. Typical relaxation,

$$\min ||x||_1$$

$$s.t.$$
 $Ax = b.$

Signal recovery

 Shown by Candes & Tao and Donoho that under certain conditions on matrix A the sparse signal

$$\begin{array}{ll}
\min & ||x||_0 \\
s.t. & Ax = b.
\end{array}$$

is recovered exactly by solving the convex relaxation

$$\begin{array}{ll}
\min & ||x||_1 \\
s.t. & Ax = b.
\end{array}$$

The matrix property is called "restricted isometry property"

Restricted Isometry Property

- A vector is said to be s-sparse if it has at most s nonzero entries.
- For a given s the isometric constant $\delta_{\rm s}$ of a matrix A is the smallest constant such that

$$(1 - \delta_s) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_s) \|x\|_2^2$$

• for any s-sparse ${\mathcal X}$.

Assume that solution x^* to min{ $||x||_0 : Ax = b$ } is s-sparse.

If $\delta_{2s}(A) < 1$ then x^* is the unique solution to $\min\{||x||_0 : Ax = b\}$.

If $\delta_{2s}(A) < \sqrt{2} - 1$ then x^* is the solution to $\min\{||x||_1 : Ax = b\}$

Why $||\cdot||_1$ norm?

Why $||\cdot||_1$ norm?

Why $||\cdot||_1$ norm?

Sparse regularized regression

Least Squares Linear Regression

Least squares problem

Standard form of LS problem

$$\min_{x \in \mathbf{R}^n} ||Ax - b||_2^2 \implies x = (A^{\top} A)^{-1} A^{\top} b$$

Includes solution of a system of linear equations Ax=b.

May be used with additional linear constraints, e.g.

$$\min_{1 \le x \le u} ||Ax - b||_2^2$$

Ridge regression

$$\min_{x \in \mathbf{R}^n} ||Ax - b||_2^2 + \lambda ||x||_2^2 \implies x = (A^{\top}A + I)^{-1}A^{\top}b$$

 λ is the regularization parameter – the trade-off weight.

Robust least squares regression

Assume matrix A is not known exactly, but each column

$$A_i \in B(A_i^0, r) = \{A_i : ||A_i - A_i^0|| \le r\}$$

$$\Rightarrow A \in \mathcal{A} = B(A_1^0, r) \otimes \ldots \otimes B(A_n^0, r).$$

$$\min_{x \in \mathbf{R}^n} ||Ax - b||_2^2 \Rightarrow \min_{x \in \mathbf{R}^n} \max_{A \in \mathcal{A}} ||Ax - b||_2^2$$

Less straightforward than for SVM but it is possible to show that the above problem leads to

$$\min_{x \in \mathbf{R}^n} ||A^0x - b||_2^2 + r||x||_1$$

Another interpretation – feature selection

Lasso and other formulations

Sparse regularized regression or Lasso:

$$\min \quad \frac{1}{2}||Ax - b||^2 + \lambda ||x||_1$$

Sparse regressor selection

$$\min \quad ||Ax - b||$$

$$s.t. \quad ||x||_1 \le t.$$

Noisy signal recovery

$$\min ||x||_1$$

$$s.t. ||Ax - b|| \le \epsilon.$$

Connection between different formulations

$$\min \quad \frac{1}{2}||Ax - b|| + \lambda||x||_1 \longrightarrow \min \quad \frac{1}{2}||Ax - b||^2 + \lambda||x||_1$$

$$\min \frac{1}{2}||Ax - b|| + \lambda ||x||_1 \longleftrightarrow \frac{\min ||Ax - b||}{s.t. ||x||_1 \le t.}$$

$$\min ||x||_1$$

$$s.t.$$
 $Ax = b$

Example

- signal $x \in \mathbb{R}^n$ with n = 1000, $\operatorname{card}(x) = 30$
- m=200 (random) noisy measurements: $y=Ax+v, v \sim \mathcal{N}(0,\sigma^2\mathbf{1}),$ $A_{ij} \sim \mathcal{N}(0,1)$
- left: original; right: ℓ_1 reconstruction with $\gamma = 10^{-3}$

- ℓ_2 reconstruction; minimizes $\|Ax y\|_2 + \gamma \|x\|_2$, where $\gamma = 10^{-3}$
- left: original; right: ℓ_2 reconstruction

Types of convex problems

$$\begin{array}{ll}
\min & ||x||_1 \\
s.t. & Ax = b
\end{array}$$

Variable substitution: $x = x' - x'', x' \ge 0, x'' \ge 0$

min
$$e^{\top}(x' + x'')$$

s.t. $A(x' - x'') = b$
 $x' > 0, x'' > 0$

Linear programming problem

Types of convex problems

min
$$\frac{1}{2}||Ax - b|| + \lambda||x||_1$$

Variable substitution: $x = x' - x'', \ x' \ge 0, \ x'' \ge 0$

min
$$\frac{1}{2}||A(x'-x'')-b|| + \lambda e^{\top}(x'+x'')$$

s.t. $x' \ge 0, x'' \ge 0$

Convex non-smooth objective with linear inequality constraints

Types of convex problems

Convex QP with linear inequality constraints

$$\min ||Ax - b||^{2}
s.t. ||x||_{1} \le t. \qquad \min ||(Ax' - Ax'' - b)|^{2}
s.t. ||x'|_{1} \le t. \qquad s.t. ||x'|_{2} \le t.
x', x'' \ge 0$$

SOCP

$$\min ||x||_1$$

$$s.t. ||Ax - b|| \le \epsilon.$$

Optimization approaches

Lasso

Regularized regression or Lasso:

$$\min \quad \frac{1}{2}||Ax - b||^2 + \lambda ||x||_1$$

$$\min \frac{1}{2} ||Ax' - Ax'' - b||^2 + \lambda e^{\top} (x' + x'')$$
s.t. $x', x'' \ge 0$

Convex QP with nonnegativity constraints

Standard QP formulation

Reformulate as

min
$$\frac{1}{2}||Mz - b||^2 + \lambda \sum_{i=1}^{n} z_i$$

s.t. $z \ge 0$ $M = [A, -A]$

min
$$\frac{1}{2}z^{\top}M^{\top}Mz - b^{\top}Mz + \lambda \sum_{i=1}^{n} z_{i}$$
s.t. $z \ge 0$.

How is it different from SVMs dual QP?

Standard QP formulation

Reformulate as

min
$$\frac{1}{2}||Mz - b||^2 + \lambda \sum_{i=1}^{n} z_i$$

s.t. $z \ge 0$ $M = [A, -A]$

min
$$\frac{1}{2}z^{\top}M^{\top}Mz - b^{\top}Mz + \lambda \sum_{i=1}^{n} z_i$$

s.t. $z \ge 0$.

Standard QP formulation

Reformulate as

min
$$\frac{1}{2}||Mz - b||^2 + \lambda \sum_{i=1}^{n} z_i$$

s.t. $z \ge 0$ $M = [A, -A]$

min
$$\frac{1}{2}z^{\top}M^{\top}Mz - b^{\top}Mz + \lambda \sum_{i=1}^{n} z_{i}$$
s.t. $z \ge 0$.

Features of this QP

- 1. Q=M^TM, where M is m×n, with n>>m.
- 2. Forming Q is O(m²n), factorizing Q+D is O(m³)
- 3. There are no upper bound constraints.

IPM complexity is O(m³) per iteration

Dual Problem

$$\min \frac{1}{2} ||Ax' - Ax'' - b||^2 + \lambda(x' + x'')$$
s.t. $x', x'' \ge 0$

$$L(x', x'', s', s'') = \frac{1}{2} ||Ax' - Ax'' - b||^2 + \lambda e^{\top} (x' + x'') - s'^{\top} x' - s''^{\top} x''$$

$$\nabla_{x'}L(x', x'', s', s'') = A^{\top}(Ax' - Ax'' - b) + \lambda e - s' = 0$$

$$\nabla_{x''}L(x', x'', s', s'') = -A^{\top}(Ax' - Ax'' - b) + \lambda e - s'' = 0$$

$$s', s'' \ge 0$$

Dual Problem

Using:

$$(x')^{\top} A^{\top} (Ax' - Ax'' - b) + \lambda^{\top} x' - s'^{\top} x' = 0$$
$$-(x'')^{\top} A^{\top} (Ax' - Ax'' - b) + \lambda^{\top} x'' - s''^{\top} x'' = 0$$

$$\max_{s} \min_{x} L(x', x'', s', s'') = \frac{1}{2} (Ax' - Ax'' - b)^{\top} (Ax' - Ax'' - b) + \lambda e^{\top} (x' + x'') - s'^{\top} x' - s''^{\top} x'' = \frac{1}{2} (Ax' - Ax'')^{\top} (Ax' - Ax'') = -\frac{1}{2} x^{\top} A^{\top} Ax$$

Lasso

Primal-Dual pair of problems

$$\min \quad \frac{1}{2}||Ax - b||^2 + \lambda||x||_1$$

min
$$\frac{1}{2}x^{\top}A^{\top}Ax$$

s.t. $||A^{\top}(Ax - b)||_{\infty} \le \lambda$

Optimality Conditions

(i)
$$x_i < 0$$
, and $(A^{\top}(Ax - b))_i = \lambda$,

(ii)
$$x_i > 0$$
, and $(A^{\top}(Ax - b))_i = -\lambda$,

(iii)
$$x_i = 0$$
, and $-\lambda \leq A^{\top} (Ax - b)_i \leq \lambda$

Coordinate descent

Coordinate descent

Choose one variable x_i and column A_i . Let \bar{x} and \bar{A} correspond to the fixed part

$$\min_{x_i} \frac{1}{2} ||A_i x_i + \bar{A}\bar{x} - b||^2 + \lambda |x_i|$$

Soft-thresholding operator

$$\min_{x_i} \frac{1}{2} (x_i - r)^2 + \lambda |x| \to x_i = \begin{cases} r - \lambda & \text{if } r > \lambda \\ 0 & \text{if } -\lambda \le r \le \lambda \\ r + \lambda & \text{if } r < -\lambda \end{cases}$$

$$r = -A_i^{\top}(\bar{A}\bar{x} - b)/||A_i||^2, \ \lambda \to \lambda/||A_i||^2$$

$$f(x) = \frac{1}{2}(x - r)^2 + \lambda |x|$$

$$\nabla_x f(x) = x - r - \lambda$$
 if $x < 0$

$$\nabla_x f(x) = x - r + \lambda \quad \text{if } x > 0$$

LARS and GLMNET

