课程编号: A073003

北京理工大学 2013-2014 学年第一学期

线性代数B试题B卷

题 号	_	11	==	四	五.	六	七	八	九	+	总分
得分											
签 名											

一、(10 分) 已知 4 阶方阵
$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 4 & 2 & 0 & 0 \\ 4 & 3 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$
, 计算行列式 $|2I + A^*|$, 其中 A^* 是

A 的伴随矩。

二、(10分) 已知 A^* 是矩阵A的伴随矩阵,且 $A^{-1}XA^* = A^{-1} - A^*XB$,其中

$$A^{\dagger} = \begin{vmatrix} & & 1 \\ & 1 & 2 \\ 2 & 2 & 4 \\ 4 & 2 & 4 & 8 \end{vmatrix}, \quad B = \begin{vmatrix} & & & 1 \\ & 1 & -1 \\ 0 & -1 & -2 \\ -1 & -1 & -2 & -4 \end{vmatrix}$$

求X。

三、(10分)设有线性方程组

$$\begin{cases} x_1 + 2x_2 + & x_3 = 1 \\ 2x_1 + 3x_2 + (\lambda + 2)x_3 = 3 \\ x_1 + \lambda x_2 - & 2x_3 = 0 \end{cases}$$

问: **λ**取何值时,此方程组(1)有唯一解;(2)无解;(3)有无穷解?并在有无穷多解时求通解。

四、 $(10\ eta)$ 利用初等行变换求矩阵 $egin{pmatrix} -2 & 1 & 3 & 2 \\ 1 & -3 & 0 & -2 \\ 0 & 2 & 2 & 4 \\ 3 & 4 & -1 & 6 \end{pmatrix}$ 列向量组的秩和一个 极大无关和

极大无关组,并将其余列向量用极大无关组表示出来。

五、(10 分) 已知 \mathbb{R}^3 的两个基: $\alpha_1 = (1,1,1)$, $\alpha_2 = (1,1,0)$, $\alpha_3 = (1,1,0)$, $\alpha_4 = (1,1,0)$, $\alpha_5 = (1,1,0)$, $\alpha_7 = (1,1$ $\beta_1 = (0,0,1)^T$, $\beta_2 = (0,1,1)^T$, $\beta_3 = (1,1,1)^T$.

- (1) 求基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵;
- (2) 求所有关于这两组基有相同坐标的向量。

六、(10 分) 已知 $e_1 = (1,-1,1)^T$, $e_2 = (1,1,0)^T$, $e_3 = (1,1,1)^T$, 把 e_1 , e_2 , e_3 化为欧氏空间 \mathbb{R}^3 的标准正交基。

七、(10 分) 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 是欧氏空间 V 的一个正交向量组,则 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关。

八、(10 分) 已知矩阵 $A = \begin{pmatrix} 2 & 0 & 3 \\ 0 & -1 & 0 \\ 3 & 0 & 2 \end{pmatrix}$,求可逆矩阵 P,使得 $P^{-1}AP$ 是对角矩阵。

九、(10 分) 已知三阶矩阵
$$A = \begin{pmatrix} \alpha \\ 2\gamma_2 \\ 3\gamma_3 \end{pmatrix}$$
, $B = \begin{pmatrix} \beta \\ \gamma_2 \\ \gamma_3 \end{pmatrix}$, $\alpha, \beta, \gamma_2, \gamma_3$ 是三维行向量,且已 知 $|A| = 18$, $|B| = 2$, 求 $|A - B|$ 。

十、(10分)设 $_A$ 为3阶实对称矩阵,其特征值为1,0,-2,矩阵 $_A$ 的属于特征值 1和-2的特征向量分别是 $_{(1,2,1)}^T$ 和 $_{(1,-1,a)}^T$ 。

- (1) 求 a 的值;
- (2) 求方程组AX = 0的通解。