Matt Wang

5106 Frist Center, Princeton University Princeton, NJ 08544 www.linkedin.com/in/mattwang1997

(408)-207-7869 mattkw@princeton.edu www.mattkwang.me

OBJECTIVE: Seeking a technical internship to gain experience and expand my skillset.

EDUCATION

Princeton University Princeton, NI

Bachelor of Science in Engineering, Concentrating in Electrical Engineering (ELE)

Expected May 2019

Cumulative GPA: 3.94 Major GPA: 4.00

Relevant Coursework

Current Courses Completed Courses

ELE 206/COS 306 – Contemporary Logic Design ELE 208B – Electronic and Photonic Devices

ELE 201 – Information Signals ELE 301 – Designing Real Systems COS 126 - General Computer Science

COS 226 – Algorithms and Data Structures

MAE 305/MAT 391 - Mathematics in Engineering I

SKILLS

Software Applications/Languages: Proficient in Java, Verilog HDL, MATLAB.

Familiar with 3D Mechanical CAD (Autodesk Inventor), Python, HTML, CSS, jQuery.

Hardware: Familiar with oscilloscopes, function generators, soldering, digital logic circuits.

Biological Research Techniques: Familiar with cell plating, PCR, gel electrophoresis, soil treatment, statistical analyses.

Languages: Proficient in English, Mandarin Chinese, and Spanish.

WORK EXPERIENCE AND PROJECTS

M2Robots (Startup), Intern

(Summer 2016)

- Used MATLAB to analyze model data from .obj files created by Recap 360 for mathematical calculations.
- Created GUI for user to input coordinates of model boundaries, able to create a new .obj file with the user-defined bounds.

Arduino-Based Bots - Built on Arduino

(Summer 2016)

- Built two remote-controlled robots with driving, distance-sensing, GPS-location-detecting functionalities.
- Programmed autonomous and manual control on one robot, and active transition between the modes on the other.

Shazam - ELE 201, Built in MATLAB

(Spring 2016)

- Extracted peak pair data from an inputted sound clip using spectrogram analysis, somewhat uniquely identifying the clip.
- Implemented functionality of Shazam by comparing peak pairs to those of a known library of songs to match to a song.

Atomic Nature of Matter in Brownian Motion - COS 126, Built with Java

(Spring 2016)

- Analyzed video frames of beads undergoing Brownian motion, to derive the Boltzmann constant and Avogadro's number.
- Processed images with thresholding, identified beads with depth-first search, and analyze data with relevant physics.

Princeton University Computer (PUnC) - ELE 206/COS 306, Built with Verilog HDL

(Fall 2015)

- Designed and built 16-bit processor programmed in behavioral Verilog, synthesize on an FPGA.
- Programmed functionalities of LC-3 instruction set into controller/datapath implementation of fetch-decode-execute cycle.

Undergraduate Computer Science Grader

(Fall 2016)

Grade and provide helpful comments on code written by COS 126 students in the Fall 2016 semester.

MISCELLANEOUS WORK

The Ivy Advisor, Office Assistant and Tutor

(Summer 2015)

- Tutored two international Chinese students in Algebra 2 and English Grammar.
- Reorganized/rewrote website text for new website (current), conducted basic clerical work and tech support.

ShareWorld Learning Center, SAT Tutor

(Summer 2015)

• Tutored single student intensively across subjects in SAT exam, leading to a 250-point increase in tested score.

Young Scholars Program, Research Intern

(Summer 2014)

• Studied Anaerobic Soil Disinfestation (ASD) as lab intern in USDA-ARS lab, UC Davis.

ACTIVITIES

Princeton iGEM Team, Website Head

(2016-present)

Studying advances in biotechnology in preparation for 2016-2017 competition season, designing team/competition website.

Princeton LGBT Peer Educator, Butler Residential College

(2016-present)

Conduct panels and educational modules about LGBTQIA and intersecting identities during the school year.