QMCPACK Workshop 2023

Driving the "Batched" QMCPACK Code with Nexus

12 December 2023

Jaron T. Krogel, krogeljt@ornl.gov

https://github.com/QMCPACK/qmc_workshop_2023

Funding: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.

Overview

Example files on GitHub

Legacy vs Batched inputs in QMCPACK (XML) and Nexus (Python)

- Variational Monte Carlo
- Optimization: Variance Minimization
- Optimization: Energy Minimization
- Diffusion Monte Carlo
- Physical Observables

A Nexus example of VMC on GPU's: working within memory limits

Example Files on GitHub

Example Files on GitHub

Other files

- Legacy versions of Nexus examples above (legacy_nexus_files)
- QMCPACK inputs and outputs for all examples (example_inputs_outputs)

Running the Examples

- · Have working installs of QMCPACK and Nexus
- Update your path to QMCPACK (CPU real build) in diamond_setup.py
- (if necessary) update workstation/job core counts in diamond_setup.py
- Execute any desired example scripts (e.g. ./diamond_vmc_batched.py)
- Note: the GPU offload example (diamond_vmc_offload_batched.py) is intended to be run with the GPU/offload real build of QMCPACK. Build this version of the code (and have an available GPU) for representative results.

Example Files on GitHub

Main Workshop Site

https://github.com/QMCPACK/qmcpack_workshop_2023/day1_nexus_batched

Git Clone or Download

```
git clone <a href="https://github.com/QMCPACK/qmcpack">https://github.com/QMCPACK/qmcpack</a> workshop 2023.git
```

wget https://github.com/QMCPACK/qmcpack_workshop_2023/archive/refs/heads/main.zip

Brief Instructions Available in README

```
TL;DR \begin{tabular}{ll} & git clone https://github.com/QMCPACK/qmcpack_workshop_2023.git cd qmcpack_workshop_2023 \\ & emacs/vim diamond_setup.py # set path to your qmcpack exe ./diamond_vmc_batched.py \\ & # ./diamond_opt_vmin_batched.py , etc \\ \end{tabular}
```

Prior Material on Nexus

Nexus Manual

https://nexus-workflows.readthedocs.io/en/latest/

2019 and 2021 Workshops

```
https://github.com/QMCPACK/qmcpack workshop 2019
```

(see day2_nexus.pdf and day2_nexus directory with README and examples)

https://github.com/QMCPACK/qmc_workshop_2021

(see week3_stats_and_nexus directory with README and pdf)

Variational Monte Carlo

VMC on CPU: Legacy vs Batched Inputs (QMCPACK)

Legacy

```
<simulation>
  oject id="vmc legacy" series="0">
     <parameter name="driver version">
        legacy
     </parameter>
  </project>
  <qmcsvstem>
     <simulationcell> ... </simulationcell>
     <particleset name="e"> ... </particleset>
     <particleset name="ion0"> ... </particleset>
     <wavefunction name="psi0"> ... </wavefunction>
     <hamiltonian name="h0"> ... </hamiltonian>
  </gmcsystem>
  <qmc method="vmc" move="pbyp" checkpoint="-1">
     <parameter name="warmupSteps"> 50
                                          </parameter>
     <parameter name="blocks"</pre>
                                   > 800
                                          </parameter>
                                   > 10
     <parameter name="steps"</pre>
                                          </parameter>
     <parameter name="subSteps"</pre>
                                   > 3
                                          </parameter>
     <parameter name="timestep"</pre>
                                   > 0.3
                                         </parameter>
     <parameter name="useDrift"</pre>
                                   > ves
                                         </parameter>
                                   > 1
     <parameter name="walkers"</pre>
                                          </parameter>
   </gmc>
</simulation>
```

```
<simulation>
  oject id="vmc legacy" series="0">
     <parameter name="driver version">
        batched
     </parameter>
  </project>
  <qmcsvstem>
     <simulationcell> ... </simulationcell>
     <particleset name="e"> ... </particleset>
     <particleset name="ion0"> ... </particleset>
     <wavefunction name="psi0"> ... </wavefunction>
     <hamiltonian name="h0"> ... </hamiltonian>
  </gmcsystem>
  <qmc method="vmc" move="pbvp">
     <parameter name="warmupSteps"> 50
                                          </parameter>
                                  > 800 </parameter>
     <parameter name="blocks"</pre>
     <parameter name="steps"</pre>
                                  > 10
                                          </parameter>
     <parameter name="subSteps"</pre>
                                  > 3
                                          </parameter>
     <parameter name="timestep"</pre>
                                  > 0.3 
     <parameter name="useDrift"</pre>
                                  > ves
                                          </parameter>
   </amc>
</simulation>
```

VMC on CPU: Legacy vs Batched Inputs (Nexus)

Legacy

```
qmc = generate qmcpack(
    identifier
                = 'vmc legacy',
    path
                = './'.
    iob
              = qmc job,
   input type
                = 'basic',
   system
                = system,
   pseudos
                = ['C.BFD.xml'],
   orbitals h5 = './diamond.orbitals.h5',
                = './diamond.jastrow.xml',
   iastrows
   corrections = [].
                = 'vmc',
   qmc
   warmupsteps
                   50,
   blocks
                = 800.
   steps
                = 10,
                = 3.
   substeps
                = 0.3.
   timestep
   usedrift
                = True.
```

```
qmc = generate qmcpack(
   identifier ____
                = 'vmc batched',
   path
                = './'.
   iob
                = qmc job,
   input type
                = 'basic',
                = system,
   system
   pseudos
                = ['C.BFD.xml'],
   orbitals h5 = './diamond.orbitals.h5',
                = './diamond.jastrow.xml',
   iastrows
   corrections = [].
                = 'vmc'.
   qmc
   driver
                = 'batched'.
   warmupsteps
                = 50.
   blocks
                = 800.
   steps
                = 10.
   substeps
                = 3.
   timestep
                = 0.3.
   usedrift
                = True.
```

Variance Optimization

OPT-VMIN on CPU: Legacy vs Batched (QMCPACK)

Legacy

```
<simulation>
  opect id="vmc legacy" series="0">
    <parameter name="driver version">
       legacy
    </parameter>
  </project>
  <qmcsystem> ... 
  <loop max="6">
    <qmc method="linear" move="pbvp" checkpoint="-1">
      <cost name="energy"
                                          > 0.0 </cost>
      <cost name="unreweightedvariance"> 1.0 </cost>
      <cost name="reweightedvariance" > 0.0 </cost>
      <parameter name="warmupSteps"</pre>
                                               > 300
                                                          </parameter>
      <parameter name="blocks"</pre>
                                               > 100
                                                         </parameter>
      <parameter name="steps"</pre>
                                               > 1
                                                         </parameter>
      <parameter name="subSteps"</pre>
                                               > 10
                                                          </parameter>
      <parameter name="timestep"</pre>
                                               > 0.3
                                                          </parameter>
      <parameter name="useDrift"</pre>
                                               > no
                                                          </parameter>
      <parameter name="samples"</pre>
                                               > 51200
                                                         </parameter>
      <parameter name="MinMethod"</pre>
                                               > quartic </parameter>
      <parameter name="minwalkers"</pre>
                                               > 0.3
                                                          </parameter>
      <parameter name="nonlocalpp"</pre>
                                               > yes
                                                          </parameter>
      <parameter name="use nonlocalpp deriv"> yes
                                                          </parameter>
      <parameter name="useBuffer"</pre>
                                               > ves
                                                          </parameter>
      .parameter name="alloweddifference"
                                               > 0.0001
                                                          </parameter>
      <parameter name="exp0"</pre>
                                               > -6
                                                          </parameter>
      <parameter name="bigchange"</pre>
                                               > 10.0
                                                          </parameter>
      <parameter name="stepsize"</pre>
                                               > 0.15
                                                          </parameter>
      <parameter name="nstabilizers"</pre>
                                                          </parameter>
                                               > 1
    </amc>
  </loop>
</simulation>
```

Batched

```
<simulation>
  oject id="vmc batched" series="0">
     <parameter name="driver version">
        batched
     </parameter>
  </project>
  <qmcsystem> ... 
 <loop max="6">
    <qmc method="linear" move="pbvp" checkpoint="-1">
      <cost name="energy"
                                          > 0.0 </cost>
      <cost name="unreweightedvariance"> 1.0 </cost>
      <cost name="reweightedvariance" > 0.0 </cost>
      <parameter name="warmupSteps"</pre>
                                               > 300
                                                          </parameter>
      <parameter name="blocks"</pre>
                                                > 200
                                                          </parameter>
                                                         </parameter>
      <parameter name="steps"</pre>
                                               > 22
      <parameter name="subSteps"</pre>
                                               > 10
                                                          </parameter>
      <parameter name="timestep"</pre>
                                               > 0.3
                                                          </parameter>
      <parameter name="useDrift"</pre>
                                                          </parameter>
                                               > no
      <parameter name="MinMethod"</pre>
                                                > quartic </parameter>
      <parameter name="minwalkers"</pre>
                                               > 0.3
                                                          </parameter>
      <parameter name="nonlocalpp"</pre>
                                               > yes
                                                          </parameter>
      <parameter name="use nonlocalpp deriv"> yes
                                                          </parameter>
      <parameter name="useBuffer"</pre>
                                               > ves
                                                          </parameter>
      <parameter name="alloweddifference"</pre>
                                               > 0.0001
                                                          </parameter>
      <parameter name="exp0"</pre>
                                               > -6
                                                          </parameter>
      <parameter name="bigchange"</pre>
                                               > 10.0
                                                          </parameter>
      <parameter name="stepsize"</pre>
                                               > 0.15
                                                          </parameter>
      <parameter name="nstabilizers"</pre>
                                               > 1
                                                          </parameter>
    </amc>
  </loop>
</simulation>
```

samples = #mpi*#threads*blocks*steps

OPT-VMIN on CPU: Legacy vs Batched Inputs (Nexus)

Legacy

```
opt = generate qmcpack(
    identifier
                = 'opt vmin legacy',
    path
                = './'.
    iob
                = qmc job,
    input type
                = 'basic',
    system
                = system,
   pseudos
                = ['C.BFD.xml'],
   orbitals h5
                = './diamond.orbitals.h5',
   corrections
                = [],
    J2
                = True,
                = 'opt',
    qmc
   cvcles
                = 6,
                = 51200.
    samples
```

```
= 51200
samples
proc elems = gmc job.processes*gmc job.threads
blocks
          = 200
steps
          = int(round(samples/(blocks*proc elems)+.5))
opt = generate qmcpack(
                = 'opt vmin batched',
   identifier
                = './'.
   path
                = qmc job,
   iob
                = 'basic',
   input type
   system pseudos
                = system,
                = ['C.BFD.xml'],
                = './diamond.orbitals.h5',
   orbitals h5
   J2
                = True,
   corrections
   qmc
                = 'opt',
   driver
                = 'batched'.
   cycles
                = 6.
   blocks
                = blocks.
                = steps.
   steps
```

Energy Optimization

OPT-EMIN on CPU: Legacy vs Batched (QMCPACK)

Legacy

```
<simulation>
  oject id="vmc legacy" series="0">
    <parameter name="driver version">
       legacy
    </parameter>
  </project>
  <qmcsystem> ... 
  <loop max="3">
    <qmc method="linear" move="pbyp" checkpoint="-1">
      <parameter name="warmupSteps"</pre>
                                                > 300
                                                                 </parameter>
      <parameter name="blocks"</pre>
                                                                </parameter>
                                                > 100
                                                                </parameter>
      <parameter name="steps"</pre>
                                                > 1
      <parameter name="subSteps"</pre>
                                                > 10
                                                                </parameter>
      <parameter name="timestep"</pre>
                                                > 0.3
                                                                </parameter>
      <parameter name="useDrift"</pre>
                                                                 </parameter>
                                                > no
                                                > 51200
      <parameter name="samples"</pre>
                                                                </parameter>
      <parameter name="MinMethod"</pre>
                                                > OneShiftOnly </parameter>
      <parameter name="minwalkers"</pre>
                                                > 0.0001
                                                                 </parameter>
      <parameter name="nonlocalpp"</pre>
                                                                </parameter>
                                                > ves
      <parameter name="use nonlocalpp deriv"> ves
                                                                 </parameter>
    </amc>
  </loop>
  <loop max="6">
    <qmc method="linear" move="pbyp" checkpoint="-1">
      <parameter name="warmupSteps"</pre>
                                                > 300
                                                                 </parameter>
                                                > 100
      <parameter name="blocks"</pre>
                                                                </parameter>
      <parameter name="steps"</pre>
                                                > 1
                                                                </parameter>
      <parameter name="subSteps"</pre>
                                                > 10
                                                                 </parameter>
      <parameter name="timestep"</pre>
                                                                </parameter>
                                                > 0.3
      <parameter name="useDrift"</pre>
                                                > no
                                                                 </parameter>
      <parameter name="samples"</pre>
                                               > 51200
                                                                </parameter>
      <parameter name="MinMethod"</pre>
                                                > OneShiftOnly </parameter>
      <parameter name="minwalkers"</pre>
                                                > 0.5
                                                                 </parameter>
      <parameter name="nonlocalpp"</pre>
                                                > yes
                                                                </parameter>
      <parameter name="use nonlocalpp deriv"> yes
                                                                 </parameter>
    </amc>
  </loop>
</simulation>
```

```
<simulation>
 oject id="vmc batched" series="0">
     <parameter name="driver version">
        batched
     </parameter>
  </project>
  <qmcsystem> ... 
  <loop max="3">
    <qmc method="linear" move="pbvp" checkpoint="-1">
      <parameter name="warmupSteps"</pre>
                                                > 300
                                                                </parameter>
      <parameter name="blocks"</pre>
                                                > 200
                                                               </parameter>
      <parameter name="steps"</pre>
                                               > 22
                                                               </parameter>
      <parameter name="subSteps"</pre>
                                               > 10
                                                                </parameter>
      <parameter name="timestep"</pre>
                                               > 0.3
                                                                </parameter>
      <parameter name="useDrift"</pre>
                                               > no
                                                                </parameter>
                                               > OneShiftOnly </parameter>
      <parameter name="MinMethod"</pre>
      <parameter name="minwalkers"</pre>
                                               > 0.0001
                                                                </parameter>
      <parameter name="nonlocalpp"</pre>
                                                                </parameter>
                                                > ves
      <parameter name="use nonlocalpp deriv"> yes
                                                                </parameter>
    </amc>
  </loop>
  <loop max="6">
    <qmc method="linear" move="pbvp" checkpoint="-1">
      <parameter name="warmupSteps"</pre>
                                                > 300
                                                                </parameter>
      <parameter name="blocks"</pre>
                                                > 200
                                                               </parameter>
      <parameter name="steps"</pre>
                                                > 22
                                                               </parameter>
      <parameter name="subSteps"</pre>
                                               > 10
                                                                </parameter>
      <parameter name="timestep"</pre>
                                               > 0.3
                                                                </parameter>
      <parameter name="useDrift"</pre>
                                                                </parameter>
                                               > no
      'parameter name="MinMethod"
                                               > OneShiftOnly </parameter>
                                               > 0.5
      <parameter name="minwalkers"</pre>
                                                                </parameter>
      <parameter name="nonlocalpp"</pre>
                                                                </parameter>
                                               > ves
      <parameter name="use nonlocalpp deriv"> yes
                                                                </parameter>
    </amc>
  </loop>
</simulation>
```

OPT-EMIN on CPU: Legacy vs Batched Inputs (Nexus)

Legacy

```
opt = generate qmcpack(
   identifier
                = 'opt emin legacy',
    path
                = './'.
    job
                = qmc job,
   input type
                = 'basic',
   system
                = system,
   pseudos
                = ['C.BFD.xml'],
   orbitals h5 = './diamond.orbitals.h5',
   J 2
                = True,
   corrections = [].
                = 'opt',
   qmc
   minmethod
                = 'oneshift'.
   var cycles
                = 3.
   cvcles
                = 6.
   samples
                 = 51200,
```

```
samples
           = 51200
proc elems = qmc job.processes*qmc job.threads
blocks
          = 200
steps
          = int(round(samples/(blocks*proc elems)+.5))
opt = generate qmcpack(
    identifier = 'opt emin batched',
    path
                = './'.
    iob
                = qmc job,
                = 'basic',
    input type
                = system,
    system
   pseudos
                = ['C.BFD.xml'],
   orbitals h5 = './diamond.orbitals.h5',
                = True,
    J 2
                = [],
    corrections
                = 'opt'.
    qmc
    driver
                = 'batched'.
   minmethod
                = 'oneshift'.
                = 3.
   var cycles
   cvcles
                = 6.
    blocks
                = blocks.
                = steps.
    steps
```

Diffusion Monte Carlo

DMC on CPU: Legacy vs Batched Inputs (QMCPACK)

Legacy

```
<simulation>
  oject id="dmc legacy" series="0">
     <parameter name="driver version">
        legacy
     </parameter>
  </project>
  <qmcsystem> ... 
  <qmc method="vmc" move="pbyp" checkpoint="-1">
     <parameter name="walkers"</pre>
                                       > 1
                                              </parameter>
     <parameter name="warmupSteps"</pre>
                                     > 50
                                             </parameter>
     <parameter name="blocks"</pre>
                                     > 100 </parameter>
     <parameter name="steps"</pre>
                                     > 5
                                             </parameter>
     <parameter name="subSteps"</pre>
                                             </parameter>
     <parameter name="timestep"</pre>
                                     > 0.3
                                             </parameter>
     <parameter name="useDrift"</pre>
                                     > yes </parameter>
     <parameter name="samples"</pre>
                                       > 1024 </parameter>
  </gmc>
  <qmc method="dmc" move="pbyp" checkpoint="-1">
     <parameter name="warmupSteps"</pre>
                                     > 20
                                           </parameter>
     <parameter name="blocks"</pre>
                                             </parameter>
     <parameter name="steps"</pre>
                                     > 5
                                             </parameter>
     <parameter name="timestep"</pre>
                                     > 0.02 </parameter>
     <parameter name="nonlocalmoves"> yes </parameter>
 </gmc>
  <qmc method="dmc" move="pbyp" checkpoint="-1">
     <parameter name="warmupSteps" > 20
                                             </parameter>
     <parameter name="blocks"</pre>
                                     > 200 </parameter>
     <parameter name="steps"</pre>
                                     > 10
                                             </parameter>
     <parameter name="timestep"</pre>
                                     > 0.01 </parameter>
     <parameter name="nonlocalmoves"> ves </parameter>
  </amc>
</simulation>
```

```
<simulation>
  cproject id="dmc batched" series="0">
     <parameter name="driver version">
        batched
     </parameter>
  </project>
  <qmcsystem> ... </qmcsystem>
  <qmc method="vmc" move="pbvp">
     <parameter name="total walkers"> 1024 </parameter>
     <parameter name="warmupSteps"</pre>
                                      > 50
                                              </parameter>
     <parameter name="blocks"</pre>
                                      > 100
                                             </parameter>
     <parameter name="steps"</pre>
                                      > 5
                                             </parameter>
     <parameter name="subSteps"</pre>
                                      > 3
                                              </parameter>
     <parameter name="timestep"</pre>
                                      > 0.3
                                             </parameter>
     <parameter name="useDrift"</pre>
                                      > ves
                                             </parameter>
  </gmc>
  <qmc method="dmc" move="pbvp">
     <parameter name="total walkers"> 1024 </parameter>
     <parameter name="warmupSteps"</pre>
                                      > 20
                                             </parameter>
     <parameter name="blocks"</pre>
                                      > 20
                                             </parameter>
     <parameter name="steps"</pre>
                                      > 5
                                              </parameter>
     <parameter name="timestep"</pre>
                                      > 0.02 </parameter>
     <parameter name="nonlocalmoves"> yes </parameter>
  </gmc>
  <qmc method="dmc" move="pbvp">
     <parameter name="total walkers"> 1024 </parameter>
     <parameter name="warmup\u00e45teps"</pre>
                                      > 20
                                              </parameter>
     <parameter name="blocks"</pre>
                                      > 200 </parameter>
     <parameter name="steps"</pre>
                                      > 10
                                             </parameter>
     <parameter name="timestep"</pre>
                                      > 0.01 </parameter>
     <parameter name="nonlocalmoves"> yes </parameter>
  </gmc>
</simulation>
```

DMC on CPU: Legacy vs Batched Inputs (Nexus)

Legacy

```
qmc = generate qmcpack(
   identifier_
                 = 'dmc legacy',
                 = './'.
   path
   job
                 = qmc job,
                 = 'basic'.
   input type
   system
                 = svstem.
   = './diamond.jastrow.xml',
   iastrows
   corrections
                 = [],
                 = 'dmc'.
   amc
   # vmc
   vmc warmupsteps
                 = 50.
                 = 100.
   vmc blocks
   vmc steps
                 = 5.
   vmc_substeps
                 = 0.3.
   vmc timestep
   vmc usedrift
                 = True.
                  = 1024.
   vmc samples
   # dmc equilibration
                 = True.
   ea dmc
   eg warmupsteps
                 = 20.
   eq_blocks
                 = 20.
   eq steps
                 = 5.
   eq timestep
                 = 0.02.
   # main dmc
                 = 20.
   warmupsteps
   blocks
                 = 200.
                 = 10.
   steps
   timestep
                 = 0.01.
   nonlocalmoves
                 = True.
```

```
qmc = generate qmcpack(
   identifier_
                   = 'dmc batched'.
                   = './'.
   path
   iob
                   = qmc job,
   input type
                   = 'basic'.
   system
                   = svstem.
   pseudos
orbitals_h5
jastrows
                   = ['C.BFD.xml'],
                   = './diamond.orbitals.h5',
                   = './diamond.jastrow.xml',
   corrections
                   = [],
                   = 'dmc'.
   amc
   driver
                   = 'batched'. <
   # vmc
   vmc warmupsteps
                   = 50.
   vmc blocks
                   = 100.
                   = 5.
   vmc steps
   vmc substeps
   vmc timestep
                   = 0.3.
   vmc_usedrift
                   = True.
   # dmc equilibration
   ea dmc
                   = True.
   eg warmupsteps
                   = 20.
   eq_blocks
eq_steps
   eq blocks
                   = 20.
                   = 5.
   eq timestep
                   = 0.02.
   # main dmc
                   = 1024.
   total walkers
   warmupsteps
                   = 20,
   blocks
                   = 200.
                   = 10.
   steps
   timestep
                   = 0.01.
   nonlocalmoves
                   = True.
```

Physical Observables

DMC+Obs. on CPU: Legacy vs Batched (QMCPACK)

Batched

Legacy

```
<simulation>
 oject id="dmc est legacy" series="0">
     <parameter name="driver version">
       legacy
     </parameter>
 </project>
  <qmcsystem>
   '<simulationcell> ... </simulationcell>
   <particleset name="e"> ... </particleset>
   <particleset name="ion0"> ... </particleset>
   <wavefunction name="psi0"> ... </wavefunction>
    <hamiltonian name="h0" type="generic" target="e">
     <pairpot type="coulomb" name="ElecElec" .../>
     <pairpot type="coulomb" name="IonIon" .../>
     <pairpot type="pseudo" name="PseudoPot" ...>
       <pseudo elementType="C" href="C.BFD.xml"/>
     </pairpot>
      <pairpot type="MPC" name="MPC" ecut="60.0" physical="no" .../>
     <estimator name="KEcorr" type="chiesa" .../>
     <estimator type="spindensity" name="SpinDensity">
        <parameter name="dr"> 0.3 0.3 0.3 </parameter>
      </estimator>
      <estimator type="momentum" samples="20" kmax="4"/>
     <estimator type="dm1b" name="DensityMatrices">
       <parameter name="energy matrix"> no
                                                        </parameter>
        <parameter name="integrator"</pre>
                                       > uniform grid </parameter>
       <parameter name="points"</pre>
                                                        </parameter>
                                        > 4
       <parameter name="basis"</pre>
                                       > spo ud spo dm </parameter>
        <parameter name="evaluator"</pre>
                                       > matrix
                                                        </parameter>
        <parameter name="center"</pre>
                                       > 0 0 0
                                                        </parameter>
     </estimator>
    </hamiltonian>
  </amcsvstem>
  <qmc method="vmc" move="pbyp"> ... </qmc>
 <amc method="dmc" move="pbvp"> ... </amc>
 <qmc method="dmc" move="pbyp"> ... </qmc>
</simulation>
```

```
<simulation>
 oject id="dmc est batched" series="0">
    <parameter name="driver version">
       batched
    </parameter>
 </project>
 <amcsvstem>
   <simulationcell> ... </simulationcell>
   <particleset name="e"> ... </particleset>
   <particleset name="ion0"> ... </particleset>
    <wavefunction name="psi0"> ... </wavefunction>
    <hamiltonian name="h0" type="generic" target="e">
     <pairpot type="coulomb" name="ElecElec" .../>
     <pairpot type="coulomb" name="IonIon" .../>
     <pairpot type="pseudo" name="PseudoPot" ...>
       <pseudo elementTvpe="C" href="C.BFD.xml"/>
     </pairpot>
     <pairpot type="MPC" name="MPC" ecut="60.0" physical="no" .../>
    </hamiltonian>
    <estimators>
     <estimator type="spindensity" name="SpinDensity">
       <parameter name="dr"> 0.3 0.3 0.3 </parameter>
     </estimator>
     <estimator type="MomentumDistribution" samples="20" kmax="4"/>
     <estimator type="OneBodyDensityMatrices" name="DensityMatrices">
        <parameter name="energy matrix"> no
                                                       </parameter>
       <parameter name="integrator"</pre>
                                      > uniform grid </parameter>
       <parameter name="points"</pre>
                                       > 4
                                                       </parameter>
                                       > spo ud spo dm </parameter>
        <parameter name="basis"</pre>
       <parameter name="evaluator"</pre>
                                       > matrix
                                                       </parameter>
                                       > 0 0 0
       <parameter name="center"</pre>
                                                       </parameter>
     </estimator>
   </estimators>
 </amcsvstem>
 <amc method="vmc" move="pbvp"> ... </amc>
 <qmc method="dmc" move="pbyp"> ... </qmc>
 <qmc method="dmc" move="pbyp"> ... </qmc>
</simulation>
```

DMC+Obs. on CPU: Legacy vs Batched Inputs (Nexus)

Legacy

```
estimators = [
    spindensity(
                   = (0.3.0.3.0.3)
        dr
    momentum(
                   = 4.
        kmax
                   = 20.
        samples
    dm1b(
                   = sposet(type='bspline',size=8),
        basis
                   = True.
        reuse
        integrator = 'uniform grid',
        points
                   = 4.
                   = (0,0,0).
        center
qmc = generate qmcpack(
    identifier
                     = 'dmc_est_legacy',
    corrections
                      = ['mpc','chiesa'],
                     = estimators.
    estimators
                     = 'dmc'.
    qmc
    # vmc
    # dmc equilibration
    # main dmc
```

```
estimators = [
    spindensity(
                   = (0.3.0.3.0.3)
        dr
    momentumdistribution(
                   = 4.
        kmax
        samples
                   = 20.
    onebodydensitymatrices(
                   = sposet(type='bspline',size=8).
        basis
                   = True.
        reuse
        integrator = 'uniform grid',
        points
                   = 4.
                   = (0,0,0).
        center
qmc = generate qmcpack(
    identifier
                     = 'dmc est batched',
    corrections
                     = ['mpc'],
    estimators
                     = estimators.
                     = 'dmc'.
    qmc
                     = 'batched'.
    driver
    # vmc
    # dmc equilibration
    # main dmc
```

GPU Offload: Memory Limits

VMC on GPU's (Offload): Working within Memory Limits

```
walkers scan = [1, 2, 4, 8, 16, 32,
               64, 96, 128, 180, 256, 300,
              360, 436, 512, 600, 720, 864,
             1024.1216.14401
qmc = generate qmcpack(
   identifier
                 = 'vmc offload scan',
   path = './',
job = qmc_job,
input_type = 'basic',
   = 'batched'.
   driver
   delay rank
                 = 4,
   det batch
                  = True.
   calculations
      vmc(walkers per rank = walkers per rank,
          warmupsteps
                        = 3.
         blocks
                        = 3.
          steps
          substeps
                        = 3,
          timestep
                        = 0.3.
          usedrift = True,
          #crowds = , # integer, optional
          ) for walkers per rank in walkers scan
# next do vmc/dmc in production w/ selected walkers
```

```
<simulation>
 oject id="vmc legacy" series="0">
    <parameter name="driver version">
       batched
    </parameter>
 </project>
 <qmcsystem> ... </qmcsystem>
 <amc method="vmc" move="pbvp">
    <parameter name="walkers per rank"> 1 </parameter>
 </amc>
 <qmc method="vmc" move="pbyp">
    <parameter name="walkers per rank"> 2 </parameter>
 </gmc>
 <qmc method="vmc" move="pbvp">
    <parameter name="walkers per rank"> 4 </parameter>
 </amc>
 <qmc method="vmc" move="pbvp">
    <parameter name="walkers per rank"> 8 </parameter>
 </amc>
 <qmc method="vmc" move="pbvp">
    <parameter name="walkers per rank"> 16 </parameter>
 </qmc>
</simulation>
```

Questions?