ST2334 Cheatsheet

github.com/reidenong/cheatsheets, AY23/24 S2

1. Probability and Counting

Inverse Probability Formula:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Independent Events

Events A and B are independent (\perp) if and only if $P(A \mid B) = P(A) \text{ or } P(B \mid A) = P(B),$ ie. $P(A \cap B) = P(A) \cdot P(B)$

Mutually Exclusive

Events A and B are mutually exclusive iff $P(A \cap B) = \emptyset$

2. Random Variables

Probability Mass Function:

For a *discrete* random variable X, the probability mass function (pmf) of X is

$$f(x): P(X=x), \forall x \in R_X, 0 \text{ otherwise}$$

- (1) $f(x_i) \geq 0, \forall x_i \in R_X$
- (2) $f(x) = 0, \forall x \notin R_X$
- (3) $\sum_{x \in R_{-}} f(x) = 1$

Probability Density Function:

For a continuous random variable X, the probability density function (pdf) of X is a function that satisfies:

- (1) $f(x) \ge 0, \forall x \in R_X \land f(x) = 0 \forall x \notin R_X$
- $(2) \int_{B_{xx}} f(x) dx = 1$
- (3) For some $a \le b$, $P(a \le X \le b) = \int_a^b f(x)dx$ (4) $f(x) \ge 0$

but not necessarily < 1.

Cumulative Distribution Function:

For any random variable X, the cdf of X is defined by

$$F(x) = P(X \le x)$$

If X is a discrete random variable, then for any two numbers a < b, we have

$$P(a \le X \le b) = F(X \le b) - F(X < a)$$
$$= F(b) - F(a - b)$$

where $F(a -) = \lim_{x \uparrow a} F(x)$

= largest value in R_X that is less than a

Further, $0 \le F(x) \le 1$

If X is a continuous random variable, then

$$F(x) = \int_{-\infty}^{x} f(t)dt,$$

 $P(a \le X \le b) = F(b) - F(a)$

CDFs are right continuous, have a maximum value of 1, and non decreasing.

Expectation

For discrete X, the expectation of X is $E(X) = \sum_{x \in R_X} x$ f(x). For continuous X, the expectation of X is E(X) = $\int_{-\infty}^{\infty} x \cdot f(x) dx$.

- (1) E(aX + b) = aE(X) + b
- (2) E(X + Y) = E(X) + E(Y)
- (3) Let q be an arbitrary function.

if X discrete, $E[g(X)] = \sum_{x \in R_X} g(x) \cdot f(x)$. if X continuous, $E[g(X)] = \int_{B_X} g(x) \cdot f(x) dx$

Variance

$$\sigma_X^2 = V(X) = E \big[(X - \mu_X)^2 \big]$$

If X discrete, $V(X) = \sum_{x \in R_X} \left(x - \mu_X\right)^2 \cdot f(x)$

If X continuous, $V(X) = \int_{R_{\infty}}^{R_{\infty}} (x - \mu_X)^2 \cdot f(x) dx$ (1) $\forall X, V(X) > 0$. Equality holds when X is constant.

- $(2) V(aX + b) = a^2 V(X)$
- (3) $V(X) = E(X^2) [E(X)]^2$
- (4) The standard deviation of X is $\sigma_{Y} = \sqrt{V(X)}$

3. Joint Distributions

Discrete Joint Probability Function

 $f(x,y) = P(X = x, Y = y), \forall (x,y) \in R_{X,Y}$ Properties:

- (1) $f(x, y) \ge 0, \forall (x, y) \in R_{XY}$
- (2) f(x,y) = 0 if $(x,y) \notin R_{X,Y}$
- (3) $\sum_{x \in R_{u}} \sum_{y \in R_{u}} f(x, y) = 1$

Continuous Joint Probability Function

 $f(x,y) = P(X \le x, Y \le y), \forall (x,y) \in R_{X,Y}$ Properties:

- (1) $f(x,y) \ge 0, \forall (x,y) \in R_{XY}$
- (2) f(x,y) = 0 if $(x,y) \notin R_{X,Y}$
- (3) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$

Conditional Distribution

The conditional probability function of Y given X = x(the distribution of Y given that X = x) is

$$f_{Y\mid X}(y\mid x) = P(Y=y\mid X=x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

Independent Random Variables

- 1. Two random variables X and Y are independent iff for all x and y, $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$
- 2. R_{XY} needs to be a product space, ie. $R_{XY} = R_X \times R_Y$ for *X* and *Y* to be independent.

Checking Independence

- (a) $R_{X,Y}$, the range where the probability function is positive, is a product space.
- (b) $\forall (x, y) \in R_{XY}, f_{XY}(x, y) = C \times g_1(x) \cdot g_2(y)$

Expectation and Variance of Random Variables

- 1. If (X, Y) is a 2-D discrete random variable, then $E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) \cdot f_{X,Y}(x,y)$
- 2. If (X, Y) is a 2-D continuous random variable, $E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f_{X,Y}(x,y) dxdy$

Covariance

The covariance of two random variables X and Y is

$$\mathrm{cov}(X,Y) = E[(X - \mu_X) \cdot (Y - \mu_Y)]$$

$$\text{cov}(X,Y) = \sum_x \sum_y (x-\mu_X)(y-\mu_Y) \cdot f_{X,Y}(x,y)$$

$$\operatorname{cov}(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) \cdot f_{X,Y}(x,y) dx dy$$

- $(1)\operatorname{cov}(X,Y) = E(XY) \mu_X \mu_Y$
- (2) if X, Y are independent, then cov(X, Y) = 0
- (3) $cov(aX + b, cY + d) = ac \cdot cov(X, Y)$
- (4) $V(aX + bY) = a^2V(X) + b^2V(Y) + 2ab \cdot cov(X, Y)$

Variance and Covariance

 $V(X + Y) = V(X) + V(Y) + 2 \operatorname{cov}(X, Y) \Rightarrow$

- 1. For independent X and Y, $V(X \pm Y) = V(X) + V(Y)$
- 2. For any random variables $X_1, X_2, ..., X_n, V(\sum_{i=1}^n X_i) =$ $\sum_{i=1}^{n} V(X_i) + 2 \sum_{i < j} \operatorname{cov}(X_i, X_j)$

4. Special Distributions

Uniform Distributions

$$f_X(x) = \frac{1}{k}, x \in \{x_1, x_2, ..., x_k\}$$

1.
$$\mu_X = \frac{x_1 + x_2 + \dots + x_k}{k}$$

2. $\sigma_X^2 = E(X^2) - [E(X)]^2 = (\frac{1}{k}) \sum_{i=1}^k (x_i - \mu_X)^2$

Bernoulli Trial

A Bernoulli trial is a random experiment with two possible outcomes: success (S) and failure (F).

$$f_X(x) = p^x (1-p)^{1-x}$$
, for $x \in \{0, 1\} = p$
 $\Rightarrow \mu_X = p, \sigma_X^2 = p(1-p)$

Binomial Distribution

In n independent Bernoulli trials.

P(x successes in n trials) = P(X = x) =

$$\binom{n}{x} p^x (1-p)^{n-x}$$
, for $x = 0, 1, ..., n$
 $E(X) = np, V(X) = np(1-p)$

Negative Binomial Distribution

Let X be the number of independent and identically distributed Bernoulli trials needed until the kth success occurs. Then X follows a negative binomial distribution $X \sim NB(k, p)$, defined by

$$P(X=x)=\binom{x-1}{k-1}p^k(1-p)^{x-k}, \text{for } x=k,k+1,\dots$$

$$E(X)=\frac{k}{p}, V(X)=\frac{k(1-p)}{p^2}$$

Geometric Distribution

Let X be the number of independent and identically distributed Bernoulli trials needed until the first success occurs. Then X follows a geometric distribution $X \sim \text{Geom}(p)$, defined by

$$P(X = x) = p(1 - p)^{x-1}$$

$$E(X) = \frac{1}{n}, V(X) = \frac{1 - p}{n^2}$$

Poisson Distribution

The Poisson distribution X denotes the number of events occurring in a fixed region of time or space. $X \sim \text{Poisson}(\lambda)$, where $\lambda > 0$ is the expected number of occurrences in the region.

$$P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}, \text{for } k=0,1,\dots$$

$$E(X) = V(X) = \lambda$$

A Poisson process counts the number of evemts within some interval of time. The defining properties of a Poisson process with rate parameter α are

Expected number of occurrences in an interval of length t is

- · There are no simultaneous occurrences
- The number of occurrences in non-overlapping intervals are independent

Then the number of occurrences in any interval T of a Poisson process follows a Poisson distribution $X \sim \text{Poisson}(\alpha T)$

Poisson Approximation to Binomial

Let $X \sim \text{Bin}(n, p)$. Then as $n \to \infty$ and $p \to 0$ such that $\lambda =$ np remains constant, the binomial distribution converges to a Poisson distribution $X \sim \text{Poisson}(np)$.

$$\lim_{n \to \infty; p \to 0} P(X = x) = \frac{e^{-np}(np)^x}{x!}$$

The approximation is good for

- n > 20 and p < 0.05
- $n \ge 100$ and $np \le 10$

Special Continuous Distributions

Uniform Distribution

 $X \sim U(a, b)$ follows a uniform distribution over the interval (a, b), if its probability density function is $f_X(x) = \frac{1}{b-a}$ for $a \le x \le b, 0$ otherwise.

$$E(X) = \frac{a+b}{2}, V(X) = \frac{(b-a)^2}{12}$$

The cumulative distribution function is then $F_X(x) =$ $\frac{x-a}{b-a}$, for $a \le x \le b$.

Exponential Distribution

Often used to model the waiting time for first success in continuous time, $X \sim \text{Exp}(\lambda), \lambda = \frac{1}{\mu} > 0$ if its probability density function is

$$f_X(x) = \lambda e^{-\lambda x}, \text{for } x \geq 0, 0 \text{ otherwise}$$

$$E(X) = \frac{1}{\lambda}, V(X) = \frac{1}{\lambda^2}$$

The cumulative distribution function of the exponential distribution with parameter λ is then

$$P(X \le x) = 1 - e^{-\lambda x}, \text{ for } x \ge 0$$

$$P(X > x) = e^{-\lambda x}, \text{ for } x > 0$$

In addition, the exponential distribution can be shown to have "no memory", as for any two positive numbers s and t,

$$P(X > s + t \mid X > s) = P(X > t)$$

Normal Distribution

 $X \sim N(\mu, \sigma^2)$ if its pdf is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \text{for } x \in \mathbb{R}$$

$$E(X) = \mu, V(X) = \sigma^2$$

The pdf is symmetric about μ , as σ increases, the curve flattens

Given $X \sim N(\mu, \sigma^2)$, let $Z = \frac{X - \mu}{2}$. Then $Z \sim N(0, 1)$. In general, if $Z \sim N(0, 1)$, then $\sigma Z + \mu \sim N(\mu, \sigma^2)$.

Z Upper quantile

Let $Z \sim N(0, 1)$. Then for any $0 < \alpha < 1$, the α upper quantile of Z is the number z_{α} such that

$$P(Z > z_{\alpha}) = \alpha$$

Normal Approximation to Binomial

Let $X \sim Bin(n, p)$, then as $n \to \infty$,

$$Z = \frac{X - E(X)}{\sqrt{V(X)}} = \frac{X - np}{\sqrt{np(1-p)}} \sim N(0,1)$$

a rule of thumb is to approximate when np > 5 and n(1 p) > 5, where in general np remains a constant when $n \to \infty$ $\infty \wedge p \to 0$.

We also apply continuity correction.

P(X = k)	$P\big(k - \tfrac{1}{2} < X < k + \tfrac{1}{2}\big)$
$P(a \leq X \leq b)$	$P\big(a - \tfrac{1}{2} < X < b + \tfrac{1}{2}\big)$
P(a < X < b)	$P\big(a+\tfrac{1}{2} < X < b-\tfrac{1}{2}\big)$
$P(X \le c)$	$P(0 \leq X \leq c)$
P(X > c)	$P(c < X \le n)$

5. Sampling Distributions Simple Random Sample

A sample that is chosen such that every subset of nobservations of the population has the same probability of being selected.

Statistics

A statistic is a function of the sample data.

Sampling Mean, $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Sampling Variance,
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2$$

Standard Error (Standard Deviation)

The standard error of $\bar{X},\,\sigma_{\bar{X}}$, describes how much \bar{x} tends to vary from sample to sample of size n.

Law of Large Numbers

As sample size *n* increases, $\frac{\sigma_X^2}{n}$ decreases, and \bar{X} approaches μ_X .

$$P(|\bar{X} - \mu_X| > \varepsilon) \to 0$$
, as $n \to \infty$

Central Limit Theorem

If we take the mean of a large number of independent smaples, then the distribution of the mean will be approximately normal.

χ^2 Distribution

Let $Z_1, ..., Z_n$ be n independent and identically distributed standard normal random variables. A random variable with the same distribution as $Z_1^2 + ... + Z_n^2$ is called a χ^2 random variable with n degrees of freedom, denoted as $\chi^2(n)$.

- $\chi^2(n;\alpha)$ is defined such that for $Y \sim \chi^2(n)$, $P(Y > \alpha)$ $\chi^2(n;\alpha) = \alpha.$
- 1. if $Y \sim \chi^2(n)$, E(Y) = n, V(Y) = 2n
- 2. if $Y_1 \sim \chi^2(n_1)$ and $Y_2 \sim \chi^2(n_2)$, then $Y_1 + Y_2 \sim \chi^2(n_1 + n_2)$
- 3. For large $n, \chi^2(n)$ is approximately N(n, 2n).

Theorem 12

If S^2 is the variance of a random sample of size n taken from a normal population having the variance σ^2 , then the random variable

$$\frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n \left(X_i - \bar{X}\right)^2}{\sigma^2} \sim \chi^2(n-1)$$

t-Distribution

Suppose $Z{\sim}N(0,1)$ and $U{\sim}\chi^2(n).$ If Z and U are independent, then $T = \frac{Z}{\sqrt{\underline{U}}} \sim t_n$.

for
$$T{\sim}t_n, P(T>t(n;\alpha))=\alpha$$

- 1. When $n \ge 30$, we can replace it by N(0,1)
- 2. If $T \sim t(n)$, E(T) = 0 and $V(T) = \frac{n}{n-2}$

F-Distribution

Suppose $U_1 \sim \chi^2(n_1)$ and $U_2 \sim \chi^2(n_2)$. If U_1 and U_2 are independent, then $F = \frac{\binom{U_1}{n_2}}{\binom{U_2}{n_2}} \sim F(n_1, n_2)$. $F(n, m; \alpha) = k \Rightarrow P(F > k) = \alpha \text{, where } F \sim F(n, m)$ 1. $E(X) = \frac{m}{m-2}, V(X) = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}$

$$F(n, m; \alpha) = k \Rightarrow P(F > k) = \alpha$$
, where $F \sim F(n, m)$

- 2. $F \sim F(n,m) \Rightarrow \frac{1}{F} \sim F(m,n)$ 3. $F(n,m;\alpha) = \frac{1}{F(m,n;1-\alpha)}$

6. Estimation

An estimator is a rule, usually expressed as a formula, that tells us how to calculate an estimate based on the data in a sample.

Maximum error of estimate

$$E = z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

7. Hypothesis Testing

Errors

	Do not reject ${\cal H}_0$	Reject H_0	
H_0 true	Correct	Type I Error	
${\cal H}_0$ false	Type II Error	Correct	

Level of Significance

LoS (α) is the probability of making a Type I error.

$$\alpha = P(\text{Type I Error}) = P(\text{Reject } H_0 \mid H_0 \text{ is true})$$

Power of a Test

Power of a test is the probability of correctly rejecting a false null hypothesis.

$$\beta = P(\text{Type II Error}) = P(\text{Do not reject } H_0 \mid H_0 \text{ is false})$$

$$\text{power} = 1 - \beta = P(\text{Reject } H_0 \mid H_0 \text{ is false})$$

p-value

The p-value is the probability of obtaining a test statistic at least as extreme than the observed sample value given H_0 is true, if $p < \alpha$, reject H_0 .

Test statistics for Paired samples

- Each X_i is dependent on each Y_i , but each pair is independent of all other pairs.
- Define $D_i = X_i Y_i$. Then D is a random sample from a population with mean μ_D and variance σ_D^2 .

Test statistics for Population Mean

Case	Population	σ	n	Confidence Interval	Test Statistic
I	Normal	known	any	$\bar{x} \pm Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$	$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$
II	any	known	≥ 30	$\bar{x} \pm Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$	$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$
III	Normal	unknown	< 30	$\bar{x} \pm t_{n-1;\frac{\alpha}{2}} \cdot \tfrac{s}{\sqrt{n}}$	$Z = \frac{\bar{X} - \mu_0}{\frac{\bar{S}}{\sqrt{n}}} \sim t_{n-1}$
IV	any	unknown	≥ 30	$\bar{x} \pm Z_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$	$Z = \frac{\bar{X} - \mu_0}{\frac{S}{\sqrt{n}}} \sim N(0, 1)$

Test statistics for Independent samples

Population	Variance	σ_1,σ_2	n	Confidence Interval	Test Statistic
any	known	unequal	≥ 30	$(\bar{x} - \bar{y}) \pm Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$\frac{\left(\bar{X} - \bar{Y}\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$
Normal	known	unequal	any	$(\bar{x}-\bar{y})\pm Z_{rac{lpha}{2}}\cdot\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$	$\frac{\left(\bar{X} - \bar{Y}\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$
any	unknown	unequal	≥ 30	$(\bar{x} - \bar{y}) \pm Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$\frac{\left(\bar{X} - \bar{Y}\right)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim N(0, 1)$
Normal	unknown	equal	< 30	$(\bar{x} - \bar{y}) \pm t_{n_1 + n_2 - 2, \frac{\alpha}{2}} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$\frac{\left(\bar{X} - \bar{Y}\right)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$
any	unknown	equal	≥ 30	$(\bar{x}-\bar{y})\pm Z_{\frac{\alpha}{2}}\cdot s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$	$\frac{\left(\bar{X} - \bar{Y}\right)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim N(0, 1)$

^{*} Variance is assumed to be equal if $\frac{1}{2} < \frac{s_1}{s_2} < 2$.

Pooled Estimator

$$S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}$$