Problem Set 1

Problems marked (T) are for discussions in Tutorial sessions.

- 1. **(T)** If A is an $m \times n$ matrix, B is an $n \times p$ matrix and D is a $p \times s$ matrix, then show that A(BD) = (AB)D.
- 2. If A is an $m \times n$ matrix, B and C are $n \times p$ matrices and D is a $p \times s$ matrix, then show that
 - (a) A(B+C) = AB + AC.
 - (b) (B+C)D = BD + CD.
- 3. **(T)** Let A, B be 2×2 real matrices such that $A \begin{bmatrix} x \\ y \end{bmatrix} = B \begin{bmatrix} x \\ y \end{bmatrix}$ for all $(x, y) \in \mathbb{R}^2$. Prove that A = B.
- 4. **(T)** The parabola $y = a + bx + cx^2$ goes through the points (x, y) = (1, 4) and (2, 8) and (3, 14). Find and solve a matrix equation for the unknowns (a, b, c).
- 5. Apply Gauss elimination to solve the following system

$$2x + y + 2z = 3$$
$$3x - y + 4z = 7$$
$$4x + 3y + 6z = 5$$

- 6. Let A and B be two $n \times n$ invertible matrices. Show that $(AB)^{-1} = B^{-1}A^{-1}$.
- 7. (T) Using Gauss Jordan method, find the inverse of

$$\left[\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{array}\right].$$

- 8. For two matrices A and B show that
 - (a) $(A+B)^T = A^T + B^T$ if A+B is defined.
 - (b) $(AB)^T = B^T A^T$ if AB is defined.
- 9. (T) Let A and B be two $n \times n$ matrices.
 - (a) If AB = BA then show that $(A + B)^m = \sum_{i=0}^m {m \choose i} A^{m-i} B^i$.

- (b) Show by an example that if $AB \neq BA$ then (a) need not hold.
- (c) If

Tr
$$(A) = \sum_{i=1}^{n} [A]_{ii},$$

then show that Tr (AB) = Tr (BA). Hence show that if A is invertible then Tr (ABA^{-1}) = Tr (B).

- 10. Give examples of 3×3 nonzero matrices A and B such that
 - (a) $A^n = 0$, for some n > 1.
 - (b) $B^3 = B$.
- 11. **(T)** For a matrix $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, find A^2 , A^3 , A^4 . Find a general formula for A^n for any positive integer n.
- 12. Let A be a nilpotent matrix. Show that I + A is invertible.
- 13. If an $n \times n$ real matrix A satisfies the relation $AA^T = 0$ then show that A = 0. Is the same true if A is a complex matrix? Show that if A is a $n \times n$ complex matrix and $A\bar{A}^T = 0$ then A = 0.
- 14. **(T)** Find the numbers a and b such that

$$\begin{bmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} a & b & b & b \\ b & a & b & b \\ b & b & a & b \\ b & b & b & a \end{bmatrix}$$