Códigos y Criptografía Grado en Ingeniería Informática

Examen escrito 1 (10% nota final) 2022

Fecha: 18 de octubre de 2022

Hora: 11:05–11:55 **Lugar:** Aula 101

Ayuda permitida: cualquier tipo de material impreso: notas, apuntes, libros, ejercicios resueltos, ...

No se permite ninguna ayuda de forma electrónica, salvo una sencilla calculadora y un ordenador portátil o tablet con un lector de ficheros pdf abierto donde se puede consultar un libro electrónico o las pizarras de clase. En particular no debe tenerse abierto un explorador, SageMath o cualquier programa de email/mensajería. El wifi y datos deben estar desactivados.

Preferentemente, se usará una calculadora de bolsillo. En el caso de no tener una calculadora de bolsillo, se podrá usar la calculadora de Windows/Linux.

Cualquier otro tipo de ayuda electrónica no se puede utilizar. Esto incluye calculadoras científicas avanzadas, teléfono móvil, tablets/pdas, smartwatchs, reproductores de música, . . .

Nota: la resolución de los ejercicios debe **justificarse** de forma **razonada**.

Nota: escribe tu nombre y apellidos y DNI/NIE en todas las hojas que entregues.

Nota: El porcentaje al principio de cada ejercicio indica su valor en el examen. El segundo ejercicio es un ejercicio "bonus" que permite obtener un 20% adicional.

Ejercicios: pueden encontrarse en las próximas 2 páginas.

Ejercicio 1. (45%) Sea $C \subset \mathbb{F}_5^4$ el código lineal generado por los vectores (1,1,1,1) y (1,2,3,4).

- (a) ¿Cuál es la longitud y la dimensión de C?
- (b) Escribe una matriz generadora del código C.
- (c) Codifica el mensaje $(2,3) \in \mathbb{F}_5^2$ usando el código C.
- (d) Comprueba que

$$H = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 3 & 1 \end{pmatrix}$$

es una matriz de control de C

- (e) Razona si las siguientes palabras de \mathbb{F}_5^4 pertenecen al código o no
 - (2,3,4,1).
 - (2,3,4,0).
- (f) ¿Cuál es la distancia mínima de *C*? ¿Es *C* un código MDS (i.e. sus parámetros verfican con igualdad la cota de Singleton)?
- (g) ¿Cuántos errores puede corregir C? ¿Cuántos errores puede detectar C? ¿Cuántos borrones puede corregir C?

Ejercicio 2. (extra 20%) Considera el código C del ejercicio 1.

- (a) Calcula razonadamente una matriz generadora sistemática de C
- (b) Calcula razonadamente una matriz de control de *C*.

Ejercicio 3. (35%) Sea *C* el código lineal binario dado por la matriz de control

$$H = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

y que tiene la siguiente tabla de síndromes y líderes:

Síndrome	Líder
(0,0,0)	(0,0,0,0,0,0)
(0,1,1)	(1,0,0,0,0,0)
(1,0,1)	(0,1,0,0,0,0)
(1,1,0)	(0,0,1,0,0,0)
(1,0,0)	(0,0,0,1,0,0)
(0,1,0)	(0,0,0,0,1,0)
(0,0,1)	(0,0,0,0,0,1)
(1,1,1)	-

- (a) A partir de la tabla de síndromes y líderes, deduce la capacidad correctora del código *C*.
- (b) Comprueba que el vector (1, 1, 1, 0, 0, 0) pertenece a *C*.
- (c) Considera que el vector (1,1,1,0,0,0) es enviado a través de un canal con ruido y se producen unos ciertos errores y se recibe el vector \mathbf{r} . Haz de receptor y decodifica la palabra recibida \mathbf{r} , menciona cuantos errores se produjeron y si la decodificación es correcta para los siguientes valores de \mathbf{r} :
 - (1,1,1,0,1,0)
 - (1,1,1,0,1,1)
 - \bullet (1, 1, 0, 0, 0, 1)

Ejercicio 4. (20%)

- (a) Proporciona una matriz generadora de un código sobre \mathbb{F}_8 de longitud 7 y dimensión 3 que sea MDS (se tiene igualdad en la cota de Singleton).
- (b) Comprueba que el código de Hamming binario con parámetros $[7,4,3]_2$ es un código perfecto (se verifica la igualdad para la cota de Hamming).