AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1-33 (Canceled)
- 34. (Currently Amended) A method of coupling a spliceable optical fiber for transmission of light in its longitudinal direction to an optical component, the method comprising:
- (A) providing the spliceable optical fiber, said spliceable optical fiber comprising:
- (a) a core region; and
- (b) a microstructured cladding region, said cladding region surrounding said core region and comprising:
- (b1) an inner cladding region with inner cladding features arranged in an inner cladding background material with a refractive index [[n1]] $\underline{n_1}$, said inner cladding features comprising thermally collapsible holes or voids, and
- (b2) an outer cladding region with an outer cladding background material with a refractive index [[n2]] $\underline{n_2}$, wherein the refractive index $\underline{n_1}$ of the inner cladding background material is larger than the refractive index $\underline{n_2}$ of the outer cladding background material;

said spliceable optical fiber having at least one end;

- (B) collapsing said thermally collapsible holes or voids by heating said least one end of said spliceable optical fiber; and
- (C) coupling said collapsed spliceable optical fibre end to the optical component.
- 35. (Previously Presented) The method according to claim 34, wherein said collapsing of said thermally collapsible holes or voids being gradual and/or abrupt.
- 36. (Previously Presented) A method according to claim 34, wherein said thermally collapsible holes or voids are wholly or partially collapsed.
- 37. (Previously Presented) A method according to claim 34, wherein said heating is being adapted so that a guided mode at said at least one end of the spliceable optical fiber is confined by an index profile determined by background materials of the core and the inner cladding.
- 38. (Previously Presented) A method according to claim 34, wherein said heating is provided by a fusion splicer.
- 39. (Previously Presented) A method according to claim 34, wherein said coupling comprises fusing of said at least one collapsed spliceable optical fiber end and said optical component.

- 40. (Previously Presented) A method according to claim 34, wherein said optical component is an optical fiber, an optical connector, or a combination thereof.
- 41. (Previously Presented) The method according to claim 40, wherein said optical fiber is a photonic crystal fiber, or a non-microstructured optical fiber.
- 42. (Previously Presented) The method according to claim 34, wherein said collapsing of said thermally collapsible holes or voids is controlled by applying less-than-atmospheric pressure to the holes or voids of the optical fiber to facilitate their collapse.
- 43. (Previously Presented) A spliceable optical fiber for transmission of light in its longitudinal direction, the optical fiber having a cross section perpendicular to the longitudinal direction, said optical fibre comprising
- (a) a core region; and
- (b) a microstructured cladding region, said cladding region surrounding said core region and comprising:
- (b1) an inner cladding region with inner cladding features arranged in an inner cladding background material with a refractive index n₁, said inner cladding features comprising thermally collapsible holes or voids, and

(b2) an outer cladding region with an outer cladding background material with a refractive index n_2 ;

wherein said n₁ being larger than n₂.

- 44. (Previously Presented) The optical fiber according to claim 43, comprising a collapsed section or an end wherein said inner thermally collapsible holes or voids are collapsed.
- 45. (Previously Presented) A optical fiber according to claim 43, wherein said inner cladding features have a size of d₁ and said outer cladding region comprises outer cladding features of size d₂.
- 46. (Previously Presented) An optical fiber according to claim 45, wherein d₂ is larger than d₁.
- 47. (Previously Presented) An optical fiber according to claim 43, wherein n_1 and n_2 are different by less than 2%, such as less than 1%, such as less than 0.5%.
- 48. (Previously Presented) An optical fiber according to claim 43, wherein the optical fiber comprises silica-based materials.
- 49. (Previously Presented) An optical fiber according to claim 43, wherein said core region comprises a material with a refractive index n_{core} , and n_{core} is equal to n_1 .

- 50. (Previously Presented) An optical fiber according to claim 43, wherein said core region comprises a material with a refractive index n_{core} , and n_{core} is larger than n_1 .
- 51. (Previously Presented) An optical fiber according to claim 43, wherein said core region comprises material with a refractive index n_{core} , and n_{core} is smaller than n_1 .
- 52. (Previously Presented) An optical fiber according to claim 43, wherein said core region comprises a material with a refractive index n_{core} , and n_{core} is smaller, equal to, or larger than n_2 .
- 53. (Previously Presented) An optical fiber according to claim 43, wherein said core region has a diameter smaller than or equal to 3.0 μm.
- 54. (Previously Presented) An optical fiber according to claim 43, wherein said optical fiber has at least one position, position 1, along its length where a guided mode at a given wavelength, λ , is confined to the core region by the presence of inner cladding features, and λ is in the range from 0.4 µm to 2.0 µm.
- 55. (Previously Presented) An optical fiber according to claim 43, wherein the core region has a largest dimension, r_{PCF} , being in the range of 0.8 μ m to 3.0 μ m.

- 56. (Previously Presented) An optical fiber according to claim 43, wherein the inner cladding region has a largest dimension, r_{solid} , being in the range of 3.0 μ m to 15.0 μ m.
- 57. (Previously Presented) A preform for producing a spliceable optical fiber as defined in claim 43, the preform comprising longitudinal preform elements comprising:
- (a) at least one core element (120) comprising a material with refractive index n_{core};
- (b) inner cladding elements (121) comprising a tubular element of a material with refractive index n₁, said tubular element being adapted to form a collapsible hole or void in the spliceable optical fiber; and
- (c) outer cladding elements (122) comprising a material with refractive index n_2 , and wherein n_1 is larger than n_2 .
- 58. (Previously Presented) The preform according to claim 57, wherein said tubular element of the inner cladding has an inner dimension $d_{1,preform}$ and said outer cladding elements comprising a tubular element with an inner dimension $d_{2,perform}$, and $d_{2,perform}$, is larger than $d_{1,perform}$.
- 59. (Previously Presented) A method of producing a spliceable optical fiber as defined in claim 43, the method comprising drawing an optical fiber from a preform for producing a spliceable optical fiber as defined in claim 43, the preform comprising longitudinal preform elements comprising:
- (a) at least one core element (120) comprising a material with refractive index n_{core};

- (b) inner cladding elements (121) comprising a tubular element of a material with refractive index n₁, said tubular element being adapted to form a collapsible hole or void in the spliceable optical fiber; and
- (c) outer cladding elements (122) comprising a material with refractive index n_2 , and wherein n_1 is larger than n_2 .
- 60. (Previously Presented) A spliceable optical fiber as defined in claim 59 obtainable by the method defined in claim 59.
- 61. (Previously Presented) A heat-treated spliceable optical fiber comprising a spliceable optical fibre as defined in claim 59, or a spliceable optical fiber obtainable by the method defined in claim 59, prepared by a heat-treatment of at least one end or a section of the spliceable optical fiber.
- 62. (Previously Presented) An article comprising a spliceable optical fiber for transmission of light in its longitudinal direction, the optical fiber having a cross section perpendicular to the longitudinal direction, said optical fibre comprising:
- (a) a core region; and
- (b) a microstructured cladding region, said cladding region surrounding said core region and comprising:

(b1) an inner cladding region with inner cladding features arranged in an inner cladding background material with a refractive index n_1 , said inner cladding features comprising thermally collapsible holes or voids, and

(b2) an outer cladding region with an outer cladding background material with a refractive index n₂;

wherein said n_1 being larger than n_2 , wherein said article is a non-linear fiber component, or a dispersion compensating fiber component.