## § 3 Понятие топологического пространства. Примеры

В теории метрических пространств отрытые множества, окрестности предельные точки и другие понятия определяются с использованием понятия метрики. Возможен другой подход: определить сначала семейство множеств, называемых открытыми, а затем строить содержательную теории. Таким образом мы приходим к следующему <u>определению</u>:

Пусть X - множество элементов произвольной природы. Семейство  $\tau$  его подмножеств, называемых **открытыми множествами** называется **топологической структурой** (**топологией**) если выполнены следующие три условия (аксиомы топологического пространства)

- 1. Пустое множество и все множество Х принадлежат т;
- 2. Объединение любого количества множеств из т принадлежит т;
- 3. Пересечение конечного числа множеств из т содержится в т.

# Множество X с заданной на нем топологической структурой называется <u>то-</u> пологическим пространством.

Mножество X носит название носителя топологии.

Как следует из определения из одного множества, задавая различные топологические структуры, можно получить несколько топологических пространств.

## Примеры:

- 1. Пусть множество  $X = \{a, b\}$ , а семейство  $\tau$  состоит из наименьшего количества множеств  $\tau = \{X, \emptyset\}$ . Проверкой можно убедиться, что выполнены аксиомы топологического пространства. Следовательно  $\tau$  топология, называемая **тривиальной топологией**. А пара  $(X, \tau)$  называется тривиальным топологическим пространством (в случае двухэлементного носителя топологии оно называется слипиемся двоеточием).
- 2. Множество X, то же, что и в примере 1. Семейство  $\tau_1 = \{X, \emptyset, a\}$  или  $(\tau_1 = \{X, \emptyset, b\})$ . Оно также является топологией. Пара  $(X, \tau)$  в этом случае называется **связанным двоеточием.**
- 3. Пусть множество X по-прежнему состоит из двух точек. Определим семейство  $\tau$ :  $\tau_2 = \{X, \emptyset, a, b\}$ . Заметим, что в данном случае семейство  $\tau$  состоит из всех подмножеств множества X  $\tau = G(X)$ . Это семейство является топологической структурой и называется дискретной топологией. В нашем случае пара  $(X, \tau)$  называется простым двоеточием.
- 4. Если (X, ρ) произвольное метрическое пространство. Тогда в силу теоремы о свойстве системы открытых множеств метрического пространства это семейство удовлетворяет аксиомам топологического пространства. Таким образом всякое метрическое пространство является топологическим.
- 5. Обозначим единичный отрезок I = [0;1]. Семейство  $\tau$  построим как всевозможные пересечения  $I \cap u$ , где u произвольные открытые множества из пространства  $R^1$ . Можно показать, что для семейства  $\tau$  выполняются аксиомы топологического пространства. Введенная таким образом топология называется естественной топологией на I.

#### П. 2 Сравнение топологий.

#### Определение

Пусть  $\tau_1$  и  $\tau_2$  - две топологии определенные на одном множестве. Если любое множество из топологии  $\tau_2$  входит в топологию  $\tau_1$ , то говорят что топология  $\tau_1$  сильнее топологии  $\tau_2$ , а топология  $\tau_2$  слабее, чем топология  $\tau_1$ .

Самая слабая из всех топологий - тривиальная топология; самая сильная - дискретная.

П. 3 Окрестности. Характеристическое свойство открытых множеств.

# *Определение*:

**Окрестностью** множества A называется любое множество M, содержащее отрытое множество  $G\supset A$ .

Как следует из определения окрестностью множества A будет являться и само отрытое множество G.



# <u>Примеры</u>:

- 1. Если  $(X, \tau)$  тривиальное топологическое пространство, то любая произвольная точка имеет только одну окрестность само множество X.
- 2. В дискретном топологическом пространстве все множества (в том числе и одноточечные) отрыты, следовательно окрестностью точки будет любое множество, содержащее эту точку.
- 3. В пространстве  $R^1$  окрестностью точки **a** будет являться не только интервал  $(a-\delta,a+\delta)$ , но и любой интервал (или их объединение), содержащий эту точку.

# *Теорема* (Характеристический признак открытого множества)

Множество топологического пространства открыто тогда и только тогда, когда является окрестностью каждой своей точки.

#### ⊳ Необходимость.

Если G - открыто, то можно записать включение  $\forall x \in G \subset G$ , причем  $G \in \tau$ . По определению G является окрестностью.

Достаточность.

Пусть некоторое множество G является окрестностью каждой своей точки. Тогда можно записать

для точки. 
$$x_1$$
  $\exists$   $U(x_1)$ ,  $x_1 \in U(x_1) \subset G$ ,  $U(x_1) \in \tau$  для точки.  $x_2$   $\exists$   $U(x_2)$ ,  $x_2 \in U(x_2) \subset G$ ,  $U(x_2) \in \tau$ 



Переберем все точки множества G и найдем объединение множеств участвующих во включениях, получим:

$$\bigcup_{\alpha} x_{\alpha} \subset \bigcup_{\alpha} U(x_{\alpha}) \subset G . (*)$$

Множество, стоящее в левой части включения есть множество G. Тогда включение (\*) примет вид

$$G \subset \bigcup_{\alpha} U(x_{\alpha}) \subset G.$$

$$G = \bigcup_{\alpha} U(x_{\alpha}).$$

Откуда следует, что

$$G = \bigcup_{\alpha} U(x_{\alpha}).$$

Объединение любого количества открытых множеств, есть множество открытое, следовательно G- открытое множество. ⊲

#### § 4 Замкнутые множества. Свойства системы замкнутых множеств.

Определение Множество А топологического пространства называется замкнутым, если его дополнение открыто.

Если множество G открыто то его дополнение X\G замкнуто, так как множество  $X\setminus (X\setminus G)=G$  открыто. Если множество  $X\setminus G$  замкнуто, то его дополнение  $X\setminus (X\setminus G)$  открыто. Таким образом имеет место следующее утверждение: *множест*во топологического пространства является открытым тогда и только тогда, когда его дополнение замкнуто.

#### Примеры

- 1. Если  $(X,\tau)$  произвольное топологическое пространство, то X и  $\emptyset$  являются замкнутыми множествами (одновременно и открытыми по аксиоме топологического пространства), так как  $X \boxtimes = X$  - открытое множество и  $X \boxtimes = \emptyset$  - также открытое множество.
- 2. Если  $(X,\tau)$  дискретное пространство, то все множества в нем являются замкнутыми и открытыми.
- 3. В пространстве  $R^1$ , замкнутым множеством, например, будет являться отрезок [a;b], т.к. его дополнение  $R = (-\infty,a) \cup (b,+\infty)$  - открыто.
- 4. В пространстве "связное двоеточие"  $X = \{a,b\}, \ \tau = \{X,\emptyset,\{a\}\}\$  замкнутыми множествами являются  $X, \emptyset, \{b\}$ . Других замкнутых множеств в этом пространстве нет.

<u>Теорема</u> Система всех замкнутых множеств топологического пространства  $(X, \tau)$  обладает следующими свойствами:

- 1.  $Xu \mathcal{Q}$  являются замкнутыми множествами;
- 2. Пересечение любого количества замкнутых множеств замкнуто;
- 3. Объединение конечного числа замкнутых множеств замкнуто.

⊳ Первое утверждение доказано в примере №1.

- 2. Пусть  $\{F_{\alpha}\}$  система замкнутых множеств. Тогда, с учетом того факта, что замкнутое множество есть дополнение отрытого, получаем  $\bigcap_{\alpha}F_{\alpha}=\bigcap_{\alpha}\bigl(X\setminus G_{\alpha}\bigr)=X\setminus\bigcup_{\alpha}G_{\alpha}$  , т.к. объединение открытых множеств есть множество открытое, а его дополнение - замкнуто, то множество  $X \setminus \bigcup G_{\alpha}$  - замкнуто.
- 3. Аналогично найдем объединение конечного числа замкнутых множеств:  $\bigcup_{n=1}^{k} F_{n} = \bigcup_{n=1}^{k} (X \setminus G_{n}) = X \setminus \bigcap_{n=1}^{k} G_{n} \text{ , так как пересечение конечного числа отрытых множеств } G_{k} \text{ есть множество открытое , то множество } X \setminus \bigcap_{n=1}^{k} G_{n} \text{ - замкнуто.} \lhd$

Свойства системы замкнутых множеств, целиком ее характеризуют, поэтому возможен подход, когда эти свойства принимают за систему аксиом при определении топологического пространства. Таким образом имеет место, следующая

<u>Теорема</u> Пусть X - произвольное множество и  $\lambda$  семейство его подмножеств, обладающее следующими свойствами:

- 1.  $X, \emptyset \in \lambda$ ;
- 2. Пересечение любого количества множеств из λ принадлежит λ;
- 3. . Объединение конечного числа множеств из  $\lambda$  принадлежит  $\lambda$ . Обозначим через au, семейство дополнений всевозможных множеств из  $\lambda$ . Тогда auявляется топологией на X, а  $\lambda$  - система замкнутых множеств топологического пространства  $(X, \tau)$ .

## § 5 Замыкание множества. Оператор замыкания

<u>Определение</u> Точка  $x_0$  топологического пространства X называется точкой прикосновения множества М, если любая окрестность этой точки имеет с множеством М непустое пересечение.



Определение Совокупность всех точек прикосновения множества М называется **замыканием** множества M и обозначается  $\overline{M}$ . Операция присоединения  $\kappa$ множеству всех его точек прикосновения называется операцией замыкания.

Пример

В метрическом пространстве замыканием открытого шара является замкнутый шар.

<u>Теорема</u>: Операция замыкания обладает следующими свойствами:

- $1.M \subset \overline{M}$ ;
- 2. Если  $M \subset N$  то  $\overline{M} \subset \overline{N}$  (монотонность операции замыкания);
- 3.  $\overline{\overline{M}} = \overline{M}$ ;
- 4.  $\overline{M \cup N} = \overline{M} \cup \overline{N}$ ;

> Первое свойство вытекает непосредственно из определения, действительно пусть  $\forall x_0 \in M$  и произвольная окрестность этой точки  $U(x_0) \cap M \supset \{x_0\} \neq \emptyset$ , что означает что точка  $x_0$  является точкой прикосновения множества M.



2. Пусть  $\forall a \in \overline{M} \Rightarrow \forall U(a) \cap M \neq \emptyset$ , т.к.  $M \subset N$  то  $U(a) \cap N \neq \emptyset$  следовательно  $a \in \overline{N} \Rightarrow \overline{M} \subset \overline{N}$ .



3. В силу свойств 1 и 2  $M\subset \overline{M}\Rightarrow \overline{M}\subset \overline{M}$  . Докажем противоположное включение, т.е.  $\overline{\overline{M}}\subset \overline{M}$  .



Пусть  $\forall b \in \overline{M}$  это означает, что произвольная окрестность точки b имеет с множеством  $\overline{M}$  непустое пересечение, т.е.

$$\forall U(b) \cap \overline{M} \neq \emptyset \Rightarrow \begin{cases} \exists c \in U(b) \\ c \in \overline{M} \end{cases} \Rightarrow U(b) \cap M \neq \emptyset \Rightarrow b \in \overline{M},$$

последнее означает, что  $\overline{\overline{M}} \subset \overline{M}$  .

(Свойство 4 будет доказано ниже).

<u>Теорема</u> Множество M топологического пространства X, замкнуто тогда и только тогда, когда оно совпадает со своим замыканием  $\overline{M}$ .

▶ <u>Необходимость</u>. Пусть М замкнуто, тогда G=X\M открыто. Докажем, что  $\overline{M} \subset M$ , т.е. каждая точка прикосновения принадлежит М. Пусть. Так как множество G открытое, то оно является окрестностью каждой своей точки, следовательно существует окрестность  $U(x_0) \subset G$ . Тогда  $U(x_0) \cap M = \emptyset$ . Следовательно точка  $x_0$  не является точкой прикосновения множества М. Следовательно  $\overline{M} \subset M$ . Ранее было доказано  $M \subset \overline{M}$ , следовательно  $M = \overline{M}$ .

<u>Достаточность</u>. Пусть  $M=\overline{M}$  докажем, что  $G=X\backslash M$  является открытым множеством, а потому M - замкнуто. Пусть произвольная точка  $x_0\in G\Rightarrow x_0\not\in M$ . Так как  $M=\overline{M}$  то  $x_0\not\in \overline{M}$  т.е. не является точкой прикосновения множества M. Следовательно существует такая окрестность этой точки, которая не пересекается с множеством M.



Мы получили, что множество  $G=X\backslash M$  является окрестностью каждой своей точки. Следовательно G - отрыто, а M - замкнуто.  $\lhd$ 

<u>Следствие</u> Замыкание  $\overline{M}$  множества M из пространства X является замкнутым множеством в топологическом пространстве X.

<u>Теорема</u> Замыкание любого множества M пространства X совпадает c пересечением всех замкнутых множеств, содержащих M.

> Пусть М произвольное множество топологического пространства X и  $N = \bigcap_{\alpha} F_{\alpha}$  , где пересечение происходит по всем замкнутым множествам, содержа-

щим множество М. По построению множества N оно является замкнутым и является подмножеством любого замкнутого множества, содержащего М, в частности, является подмножеством  $\overline{M}$ , т.к. это множество замкнуто и содержит М. Таким образом  $N \subset \overline{M}$ .

Докажем обратное включение. Для этого возьмем произвольное замкнутое множество  $F\supset M$ . Так как для замкнутого множества  $F=\overline{F}$  из монотонности операции замыкания получим  $M\subset F\Rightarrow \overline{M}\subset \overline{F}=F$ . Таким образом, замыкание  $\overline{M}$  содержится в каждом замкнутом множестве F, содержащим M, следовательно  $\overline{M}$  будет содержаться и в пересечении таких множеств, т.е.  $\overline{M}\subset N$ . Два противоположные включения означают, что множества равны т.е.  $\overline{M}=N$ 

Докажем свойство 4 операции замыкания.

Рассмотрим произвольные множества М и N. Имеют место очевидные включения  $M \subset M \cup N \subset M \cup N$ . Используем монотонность операции замыкания

$$\begin{cases} M \subset M \cup N \\ N \subset M \cup N \end{cases} \Rightarrow \begin{cases} \overline{M} \subset \overline{M \cup N} \\ \overline{N} \subset \overline{M \cup N} \end{cases} \Rightarrow \overline{M} \cup \overline{N} \subset \overline{M \cup N};$$

С другой стороны

$$\begin{cases} M \subset \overline{M} \\ N \subset \overline{N} \end{cases} \Rightarrow M \cup N \subset \overline{M} \cup \overline{N} \Rightarrow \overline{M \cup N} \subset \overline{\overline{M} \cup \overline{N}} . \quad (*)$$