1. Matrix Derivation:

$$f: R^{n} \to R$$

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \partial f/x_{1} \\ \partial f/x_{2} \\ \dots \\ \partial f/x_{n} \end{pmatrix} \in R^{n}$$

$$f: R^{m \times n} \to R$$

$$\frac{\partial f(x)}{\partial x} = \begin{pmatrix} \partial f/x_{11} & \partial f/x_{12} & \dots & \partial f/x_{1n} \\ \dots & \dots & \dots \\ \partial f/x_{m1} & \partial f/x_{m2} & \dots & \partial f/x_{mn} \end{pmatrix} \in R^{m \times n}$$

2. Convex:

$$J(\alpha \theta_1 + (1 - \alpha)\theta_2) \le \alpha J(\theta_1) + (1 - \alpha)J(\theta_2)$$

or in R , $J''(\theta) \ge 0$, $\forall \theta$

3. Linear Regression:

$$\hat{\theta} = \underset{\theta}{\text{arg min}} \sum_{i} l(\theta^{T} \phi(x_{i}), y_{i}), l \text{ is } l_{2}\text{-norm}^{2}$$

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \sum_{i} \|\theta^{T} \phi(x_{i}) - y_{i}\|_{2}^{2}$$

Convex, let Derivitive =
$$0 \Rightarrow \frac{\partial J(\theta)}{\partial \theta} = 0$$

 $\sum_{i} 2(\theta^{T} \phi(x_{i}) - y_{i})\phi(x_{i}) = 0 \Rightarrow \Phi^{T} \Phi \theta = X^{T} Y$

$$\sum_{i} 2(\theta^{T} \Phi(x_{i}) - y_{i})\Phi(x_{i}) = 0 \Rightarrow \Phi^{T} \Phi \theta = X^{T} Y$$

Cost time: $O(d^{3} + d^{2}N)$ When not invertible: $n < d$
since $rk(\Phi^{T}\Phi) < rk(\Phi) < \min\{n, d\}$, when $n < d$ we have $rk(\Phi^{T}\Phi) = n < d$ then it is not-full rank.

Deal with Outliers:

- · remove detected Outliers
- Robust Regression function: Huber loss Func. We write $\phi(x_i) y_i$ as e, where δ is a hyperparameter MSE squares errors, outliers will distort the loss value significantly. Huber loss calculate l_1 norm on large values which gives more tolerance.

$$l_{\delta}(e) = \left\{ \begin{array}{cc} \frac{1}{2}e^2 & \quad |e| \leq \delta \\ \delta |e| - \frac{\delta^2}{2} & \quad |e| \geq \delta \end{array} \right.$$

$$\frac{\partial l_{\delta}(e)}{\partial e} = \left\{ \begin{array}{cc} e & -\delta \leq ele\delta \\ \delta & e > \delta \\ -\delta & e < \delta \end{array} \right.$$

Deal with Overfitting: overfitting might have large θ

 $\underset{\theta}{\arg\min} \sum_{i=1}^{N} (\theta^{T} \phi(x_i) - y_i)^2 + \lambda ||\theta||_2^2$ Closed Form: $(\Phi^{T} \Phi + \lambda I_d)\theta = \Phi^{T} Y$

Closed Form: $(\Phi^T \Phi + \lambda I_d)\theta = \Phi^T Y$ $\lambda \to 0$ same as original; $\lambda \to \infty, \hat{\theta} \to \vec{0}$

When selecting λ , the naive training on all data is not work since $\lambda = 0$ minimizes the overall error.

- We need to Train λ_i on **training set** to minimize the cost function
- Measure error on the **hold-out set** D^{ho} and find the λ that minimize $\epsilon^{ho} = \sum\limits_{x_i,y_i \in D^{ho}} (y_i (\theta^*_{\lambda})^T x_i)^2$
- 4. Gradient Descent:

Start with $\theta^{(0)} \in \mathbb{R}^d$

In each iteration, update θ until $\|\theta^{(k)} - \theta^{(k+1)}\| < \epsilon$

$$\theta^{(k+1)} = \theta^{(k)} - \rho \frac{\partial J(\theta)}{\partial \theta} |_{\theta^{(k)}}$$

O(Nd) in each iteration.

Stochastic gradient descent: randomly select 1 data entry when computing derivative in each iteration.

5. K-fold cross validation

divide Data set to k equally large sets $\{D_1, D_2, ..., D_k\} \in D$

- For $\lambda \in \{\lambda_1, \lambda_2, \dots, \lambda_p\}$
 - For i = 1, 2, ..., k* train on $\bigcup_{j \neq i} D^j$ and get $\theta_i^*(\lambda)$
 - * compute validate error on $D^i
 ightarrow \epsilon_i^{ho}(\lambda)$
 - compute average of $\{\epsilon_i^{ho}(\lambda)\}$: $\epsilon^{ho} = \frac{1}{k} \sum_{i=1}^k \epsilon^{ho}(\lambda)$
- select $\lambda^* = \min_{\{\lambda_1, \lambda_2, \dots, \lambda_p\}} \epsilon^{ho}(\lambda)$

6. Probability review:

Condition: $P(X|Y) = \frac{P(X,Y)}{P(Y)} \Leftrightarrow P(X,Y) = P(X|Y)P(Y)$

Bayes law: P(X|Y)P(Y) = P(Y|X)P(X)

Chain rule of Probability: $P(x_1, x_2,...,x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)...P(x_n|x_1,...,x_{n-1})$ Independent: P(X,Y) = P(X)P(Y)

Expectation: $E(f(X)) = \sum f(x)p(x)$ or $\int f(x)p(x)dx$ Given $X \perp \!\!\!\perp Y$, E[XY] = E[X]E[Y]

iid r.v: independent and identically destributed

7. Maximum Likelihood Estimation (MLE): $\theta^* = \arg\max_{\theta} P_{\theta}(D)$ Under such θ^* , probability of observing the given dataset is maximum. $L(\theta) = P(D|\theta) = \prod P(x_i)$, maximize $L(\theta)$. Solve: $\frac{\partial log(L(\theta))}{\partial \theta}$

8. Logestic Regression:

 $w\phi(x) > 0 \Rightarrow g(x) = 1, w\phi(x) \le 0 \Rightarrow g(x) = 0$ Then, we have the model:

$$P(y = 1|x) = \delta(w^T \phi(x)) = \frac{1}{1 + e^{-w^T \phi(x)}}$$

Training:

Train through MLE $\max_{w} P_w(D) = \max_{w} P_w(y_1|x_1) \cdots P_w(y_N|x_N)$

We can write: $P_w(y_i|x_i) = P_w(y_i = 1|x_1)^{y_i} P_w(y_i = 0|x_1)^{1-y_i}$ $L(w) = log P_w(D) = \sum_{i=1}^N log(\frac{1}{1+e^{-w^T}\phi(x_i)})^{y_i} + log(\frac{1}{1+e^{w^T}\phi(x_i)})^{1-y_i}$ $= \sum_{i=1}^N (y_i w^T \phi(x_i)) - log(1 + e^{w^T}\phi(x_i))$

equivilent to minimize -L(w)

 $\Rightarrow \arg\min_{w} J(w) \sum_{i=1}^{N} \left[-y_i w^T \phi(x_i) + \log(1 + e^{w^T \phi(x_i)}) \right] \text{ take derivitive: } \frac{\partial J(w)}{\partial w} = \sum_{i=1}^{N} -y_i \phi(x_i) + \phi(x_i) \frac{1}{1 + e^{-w^T \phi(x)}}$ No closed form, use GD.

Deal with overfitting:

Do regularization on w.

 $\min_{w} \bar{J}(w) = J(w) + \frac{\lambda}{2} ||w||_{2}^{2}$

In GD, it is just $\frac{\partial \bar{f}(w)}{\partial w} = \sum_{i=1}^{N} \phi(x_i) \left(-y_i + \frac{1}{1 + e^{-w^T}\phi(x)}\right) + \lambda w$