

完整课程请长按下方二维码

目录

- 1/整数规划模型
- 2/ 应用举例
- 3/总结与体会

整数规划模型

整数规划模型

回顾:线性规划模型的一般形式

$$\min(\max)z = \sum_{j=1}^{n} c_j x_j$$

$$s.t.\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq (=, \geq) b_{i} & (i = 1, \dots, m) \\ x_{j} \geq 0 & (j = 1, \dots, n) \end{cases}$$

 x_1, x_2, \dots, x_n :可以取非整数的连续值

整数规划模型

问题:

决策变量表示人数、个数、是或否呢?

解决:

用整数规划!

□774 □ 988882

整数规划模型

整数规划主要分为三类:

- 1)纯整数规划 所有决策变量均取整数
- 2) 混合整数规划 部分决策变量取整数
- 3)0-1整数规划 决策变量只能取0或1

合理下料问题

现有一批长19米的钢管(数量充分多),为制造零件,需将它们截成长为4m,6m,8m的管料,并要求三种管料的数量分别为50,20,15根,问如何下料最节省?

合理切割模式: 余料小于要求钢管的最小尺寸

模式	4米钢管根数	6米钢管根数	8米钢管根数	余料(米)
1	4	0	0	3
2	3	1	0	1
3	2	0	1	3
4	1	2	0	3
5	1	1	1	1
6	0	3	0	1
7	0	0	2	3

程请长按下方二组

应用举例

决策变量

 x_i 按第i 种模式切割的原料钢管的根数

目标函数: 所用原料钢管总根数最少

$$\min f = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

约束条件:

$$4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$$

$$x_2 + 2x_4 + x_5 + 3x_6 \ge 20$$

$$x_3 + x_5 + 2x_7 \ge 15$$

整数约束: x_i 为正整数

模式	4米 根数	6米 根数	8米 根数	余 料
1	4	0	0	3
2	3	1	0	1
3	2	0	1	3
4	1	2	0	3
5	1	1	1	1
6	0	3	0	1
7	0	0	2	3
需求	50	20	15	

数学规划模型如下

$$Minf = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$
 $s.t. 4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$
 $x_2 + 2x_4 + x_5 + 3x_6 \ge 20$
 $x_3 + x_5 + 2x_7 \ge 15$
 x_i 为整数

```
model:
Title 钢管下料;
min=x1+x2+x3+x4+x5+x6+x7;
    4*x1 + 3*x2 + 2*x3 + x4 + x5 > 50;
      x^2 + 2x^4 + x^5 + 3x^6 > 20;
         x3 + x5 + 2*x7>15;
@gin(x1); @gin(x2); @gin(x3); @gin(x4); @gin(x5);
@gin(x6);@gin(x7);
end
```

 x_i : 按第i种模式切割原料钢管的根数,

 $c_{i,i}$: 一根钢管按第i种模式切割出第j种类型的根数

 b_j : 第j 种类型的需要根数,

$$i=1,...,7$$
, $j=1,2,3$

$$\min f = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

改成

$$\min f = \sum_{i=1}^{f} x_i$$

 x_i 为整数

$$s.t. 4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$$

$$x_2 + 2x_4 + x_5 + 3x_6 \ge 20$$

$$x_3 + x_5 + 2x_7 \ge 15$$

改成

$$s.t.$$

$$\begin{cases} \sum_{i=1}^{7} c_{ij} x_i \ge b_j, j = 1,2,3 \\ x_i 取整, i = 1,...,7 \end{cases}$$

$$b = (50,20,15), c = \begin{vmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{vmatrix}$$

model:

sets:

ms/1..7/:x;

s1/1..3/:b;

link(ms,sl):c;

endsets

data:

b=50 20 15;

c = 400310

20112011

1030002;

enddata

min=@sum(ms:x);

@for(sl(j):@sum(ms(i):c(i,j)*x(i))>

b(j));

@ for(ms:@gin(x));

end

最优解: x₂=15, x₅=5, x₇=5

最优值: 25

总结与体会

总结与体会

- ●这道题目可以推广到更一般的情况
- ●整数规划在建模上与一般线性规划一样
- ●数学规划尽量用能够用段编程的的模型,即模型 尽量不要出现数字、下标尽量的多等