Logica e Reti Logiche

(Episodio 11: Dalla logica ai circuiti)

Francesco Pasquale

11 maggio 2023

In questo episodio introduciamo le *porte logiche* e vediamo come possono essere combinate per ottenere dei circuiti che calcolano funzioni Booleane.

1 Porte logiche

Prima di tutto specifichiamo che quando si parla di circuiti tipicamente si usa una notazione diversa per esprimere gli stessi concetti che abbiamo usato nella logica proposizionale: per esempio, indichiamo con 0 e 1, False e True, rispettivamente. Nella tabella qui sotto riassumiamo brevemente le notazioni principali.

Logica	Circuiti
True	1
False	0
$\neg p$	$ar{p}$
$p \wedge q$	pq
$p \lor q$	p+q

Altri simboli usati in logica non hanno un corrispondente nel "linguaggio" dei circuiti, e viceversa. Per esempio, quando parliamo di circuiti non usiamo mai il simbolo \rightarrow , ma chiaramente possiamo esprimere $p \rightarrow q$ con $\bar{p} + q$. D'altra parte, in logica generalmente non si usa un simbolo specifico per lo XOR, mentre quando si parla di circuiti si usa a tale scopo $p \oplus q$.

Esercizio 1. Si osservi che scrivendo True come 1 e False come 0, l'AND corrisponde a una moltiplicazione o a un minimo $(pq \ e 1 \ se \ e solo se \ p \ e \ q \ sono \ entrambe 1)$ e l'OR corrisponde a un massimo $(p+q \ e 0 \ se \ e soltanto se \ p \ e \ q \ sono \ entrambe 0).$

In tutta la seconda parte del corso assumeremo di avere a disposizione delle *porte logiche*, che implementano le operazioni logiche elementari, AND, OR e NOT, senza preoccuparci di come sono costruite a partire da componenti elettriche (transistor e diodi) e le disegneremo così

	AND			OR		NOT		
$\begin{array}{c c} x_0 & - \\ x_1 & - \end{array}$			$\begin{array}{c} x_0 - x_1 - x_1 - x_2 - x_1 - x_2 -$		>- <i>y</i>	$x \longrightarrow$	>> y	
$ \begin{array}{c c} x_0 \\ \hline 0 \\ 0 \\ 1 \\ 1 \end{array} $	$\begin{array}{c c} x_1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{bmatrix} y \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	$ \begin{array}{c c} x_0 \\ \hline 0 \\ 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{ c c } x_1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} $	$ \begin{vmatrix} y \\ 0 \\ 1 \\ 1 \\ 1 \end{vmatrix} $	$\begin{array}{c c} x \\ \hline 0 \\ 1 \end{array}$	$\begin{vmatrix} y \\ 1 \\ 0 \end{vmatrix}$	

Data una qualunque formula \mathcal{F} della logica proposizionale, possiamo sempre costruire un circuito che implementi \mathcal{F} usando le porte logiche elementari. Per esempio, la formula $x_0 \to (x_1 \wedge x_2)$ è equivalente alla formula $\bar{x_0} \vee (x_1 \wedge x_2)$, quindi un circuito che la implementa è

Esercizio 2. Costruire un circuito che implementi la formula seguente

$$(p \to q \land r) \lor (\neg q \to \neg p)$$

Esercizio 3. Costruire un circuito che implementi la seguente tabella di verità

p	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
q	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
r	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
s	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
?	0	0	0	1	1	0	1	1	0	0	0	0	1	0	1	0

Esercizio 4. Usando soltanto porte AND, OR e NOT, progettare un circuito che implementi la seguente funzione Booleana $f:\{0,1\}^3 \to \{0,1\}$

$$f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$$

In aggiunta alle porte logiche elementari, spesso possiamo assumere di avere anche altre porte logiche che implementano le operazioni binarie più comuni, per esempio

XOR	NOR	NAND				
$x_0 \rightarrow y$	$x_0 \longrightarrow y$	$\begin{array}{c c} x_0 \\ x_1 \end{array}$ \longrightarrow y				
$\begin{array}{c c c} x_0 & x_1 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				

Esercizio 5. Costruire le porte logiche elementari AND, OR e NOT usando solo

- 1. Porte NOR;
- 2. Porte NAND.

Le porte logiche elementari sono tipicamente binarie: prendono in input due bit e restituiscono in output un bit. In genere si assume anche di avere a disposizione tali porte con un numero arbitrario di ingressi. Per esempio, in una porta AND a quattro ingressi

$$x_0$$
 x_1
 x_2
 x_3
 y

l'output y è 1 se e solo se tutti gli input x_0, x_1, x_2, x_3 sono 1. In una porta OR a quattro ingressi

$$x_0$$
 x_1
 x_2
 x_3

l'output è 1 se e solo se almeno uno degli input è 1.

Naturalmente è sempre possibile costruire porte a più ingressi usando solo porte a due ingressi.

Esercizio 6. Mostrare come si possono costruire le porte a più ingressi usando solo le porte a due ingressi.

Le porte XOR a più ingressi in genere non si usano, ma se vogliamo usarle abbiamo che l'output è 1 se e solo se... Come continuiamo qui? Beh, se non lo sapete è bene che risolviate l'esercizio seguente.

Esercizio 7. La funzione XOR è definita su due bit in questo modo

$$x_1 \oplus x_2 = \begin{cases} 1 & \text{se } x_1 \neq x_2 \\ 0 & \text{altrimenti} \end{cases}$$

- 1. Dimostrare che la funzione XOR è associativa (ossia che per ogni terna di bit x_1, x_2, x_3 vale che $(x_1 \oplus x_2) \oplus x_3 = x_1 \oplus (x_2 \oplus x_3)$)
- 2. Osservare che, grazie al punto 1, si può definire in modo non ambiguo lo XOR di n bit, $x_1 \oplus x_2 \oplus \cdots \oplus x_n$ (indichiamolo con $\bigoplus_{i=1}^n x_i$)
- 3. Dimostrare per induzione che, per ogni $n \ge 2$, lo XOR di n bit $\bigoplus_{i=1}^n x_i$ è uguale a 1 se e solo se il numero di bit x_i che hanno valore 1 è dispari.

3

2 Forme normali e circuiti

Una formula si dice in forma normale disgiuntiva $(DNF)^1$ se è una disgiunzione di clausole congiuntive $C_1 \vee C_2 \vee \cdots \vee C_n$ dove ogni clausola è una congiunzione di letterali $C_i = \ell_{i,1} \wedge \ell_{i,2} \wedge \cdots \wedge \ell_{i,k_i}$ e ogni letterale è una variabile oppure una variabile negata. Per esempio,

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \vee (p \wedge q \wedge r) \tag{1}$$

è in forma normale disgiuntiva. Data una formula X esiste sempre una formula Y equivalente² a X in forma normale disgiuntiva.

Nel linguaggio che usiamo per i circuiti chiamiamo forma normale somma di prodotti la forma normale disgiuntiva. Infatti osservate che se scriviamo la formula in (1) usando la simbologia che abbiamo introdotto per i circuiti otteniamo

$$pq\bar{r} + \bar{p}q\bar{r} + pqr \tag{2}$$

Una formula si dice in forma normale congiuntiva $(CNF)^3$ se è una congiunzione di clausole disgiuntive (dette anche semplicemente clausole) $D_1 \wedge D_2 \wedge \cdots \wedge D_n$ dove ogni clausola è una disgiunzione di letterali $D_i = \ell_{i,1} \vee \ell_{i,2} \vee \cdots \vee \ell_{i,k_i}$ e ogni letterale è una variabile oppure una variabile negata. Per esempio,

$$(p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r)$$

è in forma normale congiuntiva. Data una formula X esiste sempre una formula Y equivalente a X in forma normale congiuntiva.

Nel linguaggio che usiamo per i circuiti chiamiamo forma normale *prodotto di somme* la forma normale congiuntiva.

Esercizio 8. Scrivere una formula in forma normale somma di prodotti e una formula in forma normale prodotto di somme che abbiano entrambe la tabella di verità dell'Esercizio 3.

Se abbiamo una formula in *forma normale* è immediato ricavare un circuito e disegnarlo in un modo "standard". Per esempio, data la seguente tabella di verità

x_0	x_1	$ x_2 $	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

possiamo scrivere una formula in forma normale somma di prodotti

$$y = x_0 \bar{x}_1 \bar{x}_2 + x_0 x_1 \bar{x}_2 + x_0 x_1 x_2 \tag{3}$$

e disegnare un circuito che la implementa così

¹Disjunctive Normal Form

 $^{^2}$ Ricorda che in logica proposizionale due formule X e Y sono equivalenti se hanno la stessa tabella di verità

³ Conjunctive Normal Form

Esercizio 9. Disegnare un circuito nel modo standard per la tabella di verità dell'Esercizio 3.

3 Circuiti e operazioni aritmetiche: la somma

Utilizzando opportunamente le porte logiche è facile costruire circuiti in grado di eseguire operazioni aritmetiche. Vediamo come.

Esempio. Costruiamo un circuito con tre input a,b e due output s e c_{out} con le seguenti tabelle di verità

a	b	$\mid s \mid$	$c_{ m out}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

La tabella di s è uno XOR mentre quella di c è un AND, quindi possiamo disegnare il circuito così

Si osservi ora che in questo circuito l'output s è proprio la somma dei due bit in input, mentre l'output c è il riporto. Un tale circuito si chiama HALF ADDER.

Ricordiamoci come facciamo la somma di due numeri espressi in binario.

Esercizio 10. Eseguire la somma $(1011)_2 + (1110)_2$.

Osservate che quando facciamo la somma bit a bit in generale su ogni colonna dobbiamo avere la possibilità di sommare tre bit: i due sulla colonna più un eventuale riporto proveniente dalla colonna a destra. Il nostro HALF ADDER non è sufficiente per questo, ma se abbiamo capito il sistema non abbiamo difficoltà a generalizzarlo per ottenere un cosiddetto Full Adder.

Esercizio 11 (Full Adder). Costruire un circuito con tre input a, b, c_{in} e due output s e c_{out} con le seguenti tabelle di verità

	1		1	i .	
a	b	$c_{\rm in}$	s	$c_{ m out}$	
0	0	0	0	0	
0	0	1	1	0	$a \qquad b$
0	1	0	1	0	
0	1	1	0	1	$c_{ m out}$ -
1	0	0	1	0	
1	0	1	0	1	s
1	1	0	0	1	
1	1	1	1	1	

Esercizio 12. Costruire il circuito Full Adder dell'esercizio precedente usando due Half-Adder e una porta or.

A questo punto, mettendo in sequenza i FULL ADDER, possiamo facilmente costruire un circuito sommatore. Per esempio, il circuito qui sotto prende in input otto bit a_3, a_2, a_1, a_0 e b_3, b_2, b_1, b_0 e restituisce in output cinque bit c, s_3, s_2, s_1, s_0 tali che il numero rappresentato in binario dalla sequenza di bit in output è la somma dei due numeri rappresentati in binario delle due sequenze di 4-bit in input

Esercizio 13. Progettare un circuito che faccia la differenza fra due numeri espressi in complemento a due.

La soluzione al prossimo esercizio dovrebbe rendere evidente il vantaggio di usare la codifica in complemento a due.

Esercizio 14. Progettare un circuito che prenda in input nove bit a_3 , a_2 , a_1 , a_0 , b_3 , b_2 , b_1 , b_0 e c_{in} e restituisca in output quattro bit s_3 , s_2 , s_1 , s_0 . A seconda del valore del bit c_{in} , la sequenza (s_3, s_2, s_1, s_0) deve rappresentare, in complemento a due, la somma o la differenza di (a_3, a_2, a_1, a_0) con (b_3, b_2, b_1, b_0) . Più precisamente, il circuito deve fare in modo che

if
$$c_{\text{in}}=0$$
 then $(s_3,s_2,s_1,s_0)_{\bar{2}}=(a_3,a_2,a_1,a_0)_{\bar{2}}+(b_3,b_2,b_1,b_0)_{\bar{2}}$ else $(s_3,s_2,s_1,s_0)_{\bar{2}}=(a_3,a_2,a_1,a_0)_{\bar{2}}-(b_3,b_2,b_1,b_0)_{\bar{2}}$

4 Conclusioni

In questo episodio abbiamo introdotto le porte logiche e abbiamo visto come implementare le formule della logica proposizionale tramite circuiti. Abbiamo osservato che è sempre possibile costruire un circuito con una forma "standard" partendo da una formula in forma normale. Infine, abbiamo visto come è possibile costruire dei circuiti in grado di fare le operazioni aritmetiche, costruendo un circuito che calcola la "somma" di due numeri.