

Fully Connected Object Proposals for Video Segmentation

Federico Perazzi^{1,2}, Oliver Wang¹, Markus Gross^{1,2}, Alexander Sorkine-Hornung¹

¹Disney Research Zurich

²ETH Zurich

INTRODUCTION

Video Object Segmentation separates foreground object from background

Video **Object** Segmentation

Video Over-segmentation

EXISTING METHODS

Video Segmentation approaches based on object proposals have demonstrated promising results.

Algorithm

- Seek the best proposal per-frame
- Refine the segmentation on a locally connected graph.

Limitations

- Strongly rely on the quality of the generated proposals
- Suffer challenging scenarios such as fast motion and occlusions

OUR APPROACH

Key Idea

- Inference on a fully connected graph built over object proposals.
- Segmentation as grouping of multiple potentially imperfect object proposals

Contributions

- SVM classification and resampling to retain proposals with higher discriminative power
- Novel energy function combines appearance with long-range point tracks to ensure robustness with respect to fast motion and occlusions.

Project website

https://graphics.ethz.ch/~perazzif/fcop

ALGORITHM OVERVIEW

Object Proposals Generation and Features Extraction

SVM Classification and Resampling

Fully Connected Proposal Labeling

Grouping of multiple proposals into segmentation

Per-frame, SVM

PROPOSAL GENERATION, FEATURES EXTRACTION AND RESAMPLING

Proposals Generation and **Features Extraction**

Feature	Description	Diı
(ACC)	Area, centroid, average color	6
(HOOF)	Histogram of Oriented Optical Flow	32
(NG)	Objectness via normalized gradients	64
(HOG)	Histogram of oriented gradients	129

FULLY CONNECTED PROPOSAL LABELING

- We determine the fore- and background classification by solving for the maximum a posteriori of a fully connected conditional random field (CRF)
- Conditional Random Fields provide a natural framework to incorporate all mutual spatiotemporal relationships between proposals as well as our initial proposal confidences.

$$E(Y|\mathcal{X},\mathcal{F}) = \sum_{i \in \mathcal{V}} \psi_u(y_i;\mathcal{X}) + \sum_{i,j \in \mathcal{E}} \psi_p(y_i, y_j; \mathcal{F})$$

$$e^{-\psi_{u}(y_{i},\mathcal{X})} = \begin{cases} l_{i} + \hat{\epsilon}, l_{i} \in \mathcal{L} & s_{i} \in \tilde{\mathcal{S}} \\ P(y_{i}|\mathbf{x}_{i}) & s_{i} \notin \tilde{\mathcal{S}} \end{cases} \underbrace{\psi_{p}(y_{i}, y_{j}; \mathcal{F}) = [y_{i} \neq y_{j}] \cdot \left(\underbrace{\omega_{c}k_{c}(\mathcal{D}_{c}(c_{i}, c_{j}))}_{\text{appearance kernel}} + \underbrace{\mathcal{D}_{p}k_{p}(\mathcal{D}_{p}(p_{i}, p_{j}))}_{\text{spatial kernel}} + \underbrace{\omega_{p}k_{p}(\mathcal{D}_{p}(p_{i}, p_{j}))}_{\text{trajectory kernel}} + \underbrace{\omega_{t}k_{t}(|t_{i} - t_{j}|)}_{\text{temporal kernel}}\right)$$

Appearance Kernel: $\chi^2(c_i,c_j)$ Temporal Kernel: $|t_i - t_j|$ Spatial Kernel: $\mathcal{D}_s(s_i,s_j) = 1 - \frac{|s_i \cap s_j|}{|s_i \cup s_j|}$ Trajectory Kernel: $\mathcal{D}_p(p_i,p_j)=1$ —

EUCLIDEAN EMBEDDING

Pairwise potentials: linear combination of Gaussian Kernels

$$\psi_p(y_i, y_j, \mathcal{F}) = \mu(y_i, y_j) \sum_{m=1}^K w_m k_m(\mathbf{f}_i, \mathbf{f}_j)$$

$$k_m(\mathbf{f}_i,\mathbf{f}_j) = \exp\left(-rac{1}{2}(\mathbf{f}_i-\mathbf{f}_j)^T\Lambda_m(\mathbf{f}_i-\mathbf{f}_j)
ight)$$

Requires Embedding of features in Euclidean Space

Landmark Multidimensional Scaling

$$\mathcal{D}(\mathbf{f}_i,\mathbf{f}_j)pprox \left|\left|\hat{\mathbf{f}}_i-\hat{\mathbf{f}}_j
ight|
ight|_2$$

GROUPING INTO SEGMENTATION

QUANTITATIVE EVALUATION

FBMS – Intersection-over-Union

RESULTS

