

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ

DEPARTMENT OF BIOMEDICAL ENGINEERING

ALGORITMUS PRO DETEKCI A KLASIFIKACI SPÁNKOVÉ APNOE TECHNICKÁ DOKUMENTACE

AUTORKA PRÁCE Xeniya Pushilova ODBORNÝ KONZULTANT Ing. Enikö Vargová, BRNO 2024

Abstrakt

Cílem projektu je vyvinout algoritmus pro detekci a klasifikaci spánkové apnoe z respiračních signálů. Algoritmus klasifikuje spánkové události do čtyř kategorií: centrální apnoe, obstrukční apnoe, hypopnoe a normální dýchání.

Úvod do problematiky

Spánková apnoe je vážná porucha charakterizovaná přestávkami v dýchání během spánku, což vede ke snížené kvalitě spánku a zvýšenému riziku kardiovaskulárních a metabolických onemocnění. Tradiční diagnostika pomocí polysomnografie je efektivní, ale zároveň nákladná a pro pacienty často nepohodlná. V reakci na to se rozvíjejí nové metody založené na analýze biologických signálů získaných méně invazivními technikami.

Cílem tohoto projektu je vytvořit algoritmus, který by umožnil detekci a klasifikaci spánkové apnoe z dat, jako jsou průtok vzduchu, tlak, pohyby hrudníku a břicha, a saturace kyslíku. Výsledný algoritmus by mohl být integrován do nositelných zařízení, což by zpřístupnilo diagnostiku širšímu spektru pacientů a zjednodušilo monitorování stavu v domácím prostředí.

Popis algoritmu detekce spánkové apnoe

Vstupní data a jejich zpracovaní

Algoritmus `apneaDetection` je navržen k analýze a klasifikaci spánkových apnoických událostí získaných z biologických signálů. Data zahrnují signály průtoku vzduchu (flow), pohybů hrudníku (thor) a břicha (abdo), a saturace kyslíkem (SpO2). Algoritmus nejprve aplikuje filtraci signálů pro odstranění stejnosměrné složky a izolaci relevantních frekvenčních pásů.

2. Detekce událostí apnoe a hypopnoe:

Funkce analyzuje filtrovaný signál průtoku a hledá indexy, kde došlo k poklesu průtoku vzduchu. K detekci apnoe se používá práh 91% poklesu, zatímco pro hypopnoe se používá práh 60%.

3. Klasifikace apnoe:

V případě detekce apnoe algoritmus používá funkci, která rozhoduje mezi centrální a obstrukční apnoe. Analýza zahrnuje porovnání signálů z hrudníku a břicha, konkrétně jejich změn v oblastech, kde byly identifikovány indexy poklesu průtoku vzduchu. Specifické prahové hodnoty pro detekci vrcholů v signálech jsou nastaveny na základě průměrné saturace kyslíkem, která naznačuje závažnost respiračního útlumu.

4. Hypopnoe a kontrola saturace:

Pokud jsou zjištěny hypopnoe, program ověřuje, zda došlo k poklesu saturace kyslíkem pod nastavený práh. Tato kombinace hypopnoe a poklesu saturace kyslíkem určuje klasifikaci jako hypopnoe s desaturací (typ 3). V opačném případě se jedná o stav bez patologických událostí (typ 4).

Vývojový diagram algoritmu

Statistika výsledků

V této kapitole jsou prezentovány výsledky vyvinutého algoritmu pro detekci a klasifikaci spánkové apnoe, které byly získány na základě testování s vybranými daty z databáze MESA.

84.0%	16.0%	
80.8%	19.2%	
73.6%	26.4%	
86.4%	13.6%	

78.9%	78.9%	84.4%	83.1%
21.1%	21.1%	15.6%	16.9%
1	2	3	4
		Predicted Class	

Výsledný SCORE 81.14 %

Závěr

V rámci tohoto projektu byl vyvinut algoritmus pro detekci a klasifikaci spánkové apnoe, který zpracovává signály průtoku vzduchu, pohybů hrudníku a břicha, a saturace kyslíkem. Úspěšnost 81 % naznačuje, že algoritmus je schopen s vysokou spolehlivostí identifikovat většinu apnoických událostí, nicméně stále existuje prostor pro zlepšení, zejména v oblasti snížení falešně pozitivních a falešně negativních klasifikací.

Použité zdroje

[1] MAYANK G. VATS. Sleep Apnea - Recent Updates. IntechOpen, 2017.

[2] JEYAJOTHI, E. Smily, J. ANITHA, Shalli RANI a Basant TIWARI. A Comprehensive Review: Computational Models for Obstructive Sleep Apnea Detection in Biomedical Applications. BioMed research international [online]. United States: Hindawi, 2022, 2022, 7242667-21. ISSN 2314-6133. Doi:10.1155/2022/7242667

[3] Multi-Ethnic Study of Atherosclerosis. Online. National Sleep Research Resource. 2023. Dostupné z: https://doi.org/10.25822/n7hq-c406