Étude du mouvement de colloïdes et de bactéries.

Laura Guislain Nicolas Lecoeur André Kalouguine

E.N.S. de Lyon

8 mars 2018

Mouvement de bactéries

Le film ne s'affichera pas dans ce lecteur pdf - Film - Mise en avant du mouvement de bactéries.

Cellules d'observation

FIGURE 2 – Premier modèle de cellule

FIGURE 3 – Second modèle de cellule

Microscope et caméra

 ${\bf FIGURE}~4-Microscope~utilis\'e$

Mouvement brownien Observation du mouvement

FIGURE 5 – Trajectoire d'un colloïde sur 4000 points (f = 400 Hz)

Mouvement brownien

$$\Delta x(t,\tau) = x(t+\tau) - x(t)$$

FIGURE 6 – Courbes représentant le déplacement Δx pour différents $\tau.$

Mouvement brownien Limite de τ

FIGURE 7 – Histogrammes représentant la répartition des Δx pour différents τ .

Mouvement brownien Corrélation

FIGURE 8 – Fonction d'autocorrélation

Mouvement brownien Ecart-type

Mettre sgma2 en fonction de tau2 en entier!

Mouvement brownien

Coefficient de diffusion - Méthodes

FIGURE 9 – $\sigma_y^2 = f(\tau)$.

FIGURE 10 – $\ln(\sigma_y^2) = f(\ln \tau)$.

Loi théorique : $\sigma_y^2 = 2D\tau$

Mouvement brownien

Coefficient de diffusion - Résultats

• Relation de Stokes-Einstein :

$$D = \frac{kT}{6\pi\eta a} = 0.429 \; \mu \text{m}^2 \text{s}^{-1}$$

avec $a = 0.5 \,\mu\mathrm{m}$ le rayon des colloïdes.

• Par régressions linéaires en échelle réelle :

$$D = 0.42 \pm 0.04 \; \mu \text{m}^2 \text{s}^{-1} \; \text{à} \; 95\%$$

• Par régressions linéaires en échelle logarithmique :

$$D = 0.42 \pm 0.05 \; \mu \text{m}^2 \text{s}^{-1} \; \text{à} \; 95\%$$

Mouvement brownien Symétrie de la distribution

FIGURE 11 – Skewness et asymétrie.

Figure 12 – Moment d'ordre 3

Mouvement brownien

Ecart de la distribution à la gaussienne

FIGURE 13 – Kurtosis et aplatissement.

FIGURE 14 – Moment d'ordre 4

Mouvement brownien Conclusion

- permet de valider le tracking et la façon dont on étudie la trajectoire -applications : déduit η pour un solvant -> viscosimètre carcatérise a le rayon : meilleure résolution qu'avec un microscope

Mouvement bactérien

Mouvement brownien Lissage

FIGURE 15 – Lissage de la trajectoire.

Mouvement bactérien Trajectoire droite

FIGURE 16 – Trajectoire lissée.

FIGURE 17 – Vitesse en fonction du temps.

$$v = 13,9 \; \mu \text{ms}^{-1} \; \text{d'écart-type} \; \sigma = 3,1 \; \mu \text{ms}^{-1}$$

Mouvement bactérien Trajectoire droite

FIGURE $18 - \sigma^2$ en fonction de τ^2 .

il faut aussi mettre le graph avec la pente forcée à 1, et de la on en déduit le vrai v! Loi théorique : $\sigma^2=v^2\tau^2$ conduit à $v=13,032\pm0,005~\mu\mathrm{ms}^{-1}$

Mouvement bactérien Trajectoire circulaire

FIGURE 19 - Trajectoire lissée.

FIGURE 20 – $ln(\sigma^2)$ en fonction de $ln(\tau^2)$.

Mouvement bactérien

Trajectoire circulaire - Rayon de courbure

FIGURE 21 – Rayon de courbure - Définition.

FIGURE 22 – Rayon de courbure de la trajectoire lissée.

Mouvement bactérien

Longueur de persistance - Définition

FIGURE 23 – Fonction d'autocorrélation : $g(s) = \langle \overrightarrow{t}(s) \cdot \overrightarrow{t}(0) \rangle$.

Longueur de persistance : L_p telle que si $s \gtrsim L_p$ alors $|g(s)| \ll 1$.

Mouvement bactérien Longueur de persistance - Détermination

FIGURE 24 – Fonction de correlation sur la trajectoire.

ANNEXE

Hermiticité de nos cellules

Faire un graphique avec + de cellules.

FIGURE 25 – Mouvement général des colloïdes dans une cellule. Si le module est proche de 1, alors μ comparabale devant σ