Notes – Linear Algebra

Zhijie Chen December 22, 2024

Contents

```
Prerequisites 2

Vector Spaces 2

Linear Maps 2

Kernal and Image of Linear Maps 2

Products and Quotients of Vector Spaces 3

Duality 4

Polynomials 5
```

Prerequisites

We declare several notations below for convenience and clarity.

Notations 1 (Basic notations).

- \mathbb{F} denotes a number field (often \mathbb{R} or \mathbb{C}).
- U, V, W denotes vector spaces (usually over scalar field \mathbb{F}).
- V^S denotes the set of functions from a nonempty set S to V.

Vector Spaces

Definition 2. The complexification of V, denoted by $V_{\mathbb{C}}$, equals $V \times V$ with normal addition and real scalar multiplication for product space. But we write an element (u, v) of $V_{\mathbb{C}}$ as u + iv. Complex scalar multiplication is defined by

$$(a+bi)(\mathbf{u}+i\mathbf{v}) = (a\mathbf{u}-b\mathbf{v}) + i(a\mathbf{v}+b\mathbf{u})$$

for all $a, b \in \mathbb{R}$ and all $u, v \in V$.

Lemma 3 (Linear dependence lemma). *Suppose* v_1, \ldots, v_m *is a linearly dependent set in* V. *Then there exists* $k \in \{1, 2, \ldots, m\}$ s.t.

$$v_k \in \operatorname{span}\{v_1,\ldots,v_m\}$$
.

Further more, removing the k^{th} term from the list does not change the span.²

Theorem 4. Any two bases of a finite-dimensional vector space have the same length.³

Proof. Suppose V is finite-dimensional. Let B_1 and B_2 be two bases of V. Considering B_1 as an independent set and B_2 as a spanning set leads to $\#B_1 \leq \#B_2$. Interchanging the roles of B_1 and B_2 and we have $\#B_2 \leq \#B_1$. Thus $\#B_1 = \#B_2$. \square

¹ Think of V as a subset of $V_{\mathbb{C}}$ by identifying $u \in V$ with u+i0. The construction of $V_{\mathbb{C}}$ from V can then be thought of as generalizing the construction of \mathbb{C}^n from

² The lemma lays the foundation for a series of basic results for vector spaces. ³ This proposition ensures that *dimension* is well-defined.

Linear Maps

Kernal and Image of Linear Maps

Exercise 5. Suppose U and V are finite-dimensional and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove that

$$\dim \ker ST \leq \dim \ker S + \dim \ker T$$
.

Proof. Restrict to $Z = \ker ST$. By the fundamental theorem of linear maps,

$$\begin{split} \dim Z &= \dim T(Z) + \dim \ker T|_Z \\ &\leq \dim T(Z) + \dim \ker T \\ &= \dim ST(Z) + \dim \ker S|_{T(Z)} + \dim \ker T \\ &\leq \dim \ker S + \dim \ker T. \end{split}$$

Corollary 6 (Sylvester's rank inequality). Suppose $A \in \mathbb{F}^{m,n}$ and $B \in \mathbb{F}^{n,p}$ are two matrices. Then⁴

$$\operatorname{rank} A + \operatorname{rank} B - n \leq \operatorname{rank}(AB)$$
.

Products and Quotients of Vector Spaces

Lemma 7. Suppose V_1, \ldots, V_m are subspaces of $V^{.5}$ Define a linear map $\Gamma: V_1 \times \cdots \times V_m \to V_1 + \cdots + V_m$ by

$$\Gamma(v_1,\ldots,v_m)=v_1+\cdots+v_m.$$

Then $V_1 + \cdots + V_m$ *is a direct sum if and only if* Γ *is injective.*

Theorem 8. Suppose V is finite-dimensional and V_1, \ldots, V_m are subspaces of V. Then $V_1 + \cdots + V_m$ is a direct sum if and only $\dim(V_1 + \cdots + V_m) = \dim V_1 + \cdots + \dim V_m$.

Proof. Recall Lemma 7. Because Γ is surjective, by the fundamental theorem of linear maps, $V_1 + \cdots + V_m$ is a direct sum if and only if $\dim(V_1 + \cdots + V_m) = \dim(V_1 \times \cdots \times V_m) = \dim V_1 + \cdots + \dim V_m$.

Notation 9. Suppose $T \in \mathcal{L}(V, W)$. Define $\tilde{T}: V + \ker V \to V$ by

$$\tilde{T}(v + \ker T) = Tv.$$

Exercise 10. Suppose V_1, \ldots, V_m are vector spaces. Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are isomorphic vector spaces.

Proof. We construct an isomorphism *T* between the two vector spaces.

For every $\Gamma \in \mathcal{L}(V_1 \times \cdots \times V_m, W)$, define $\varphi_i : V_i \to W$ for each $i \in \{1, \dots, m\}$ by

$$\varphi_i(v_i) = \Gamma(\mathbf{0}, \ldots, v_i, \ldots, \mathbf{0})$$

with v_i in the i^{th} slot and **0** in all other slots. It can be verified that $\varphi_i \in \mathcal{L}(V_i, W)$.

Let $T(\Gamma) = (\varphi_1, \dots, \varphi_m)$. It can be verified that T is a linear map. We prove T is an isomorphism by constructing its inverse linear map S.

For every
$$(\varphi_1, \ldots, \varphi_m) \in \mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$$
, let

$$S(\varphi_1,\ldots,\varphi_m)(v_1,\ldots,v_m)=\varphi_1(v_1)+\cdots+\varphi_m(v_m).$$

It can be shown that S is a linear map, and that $S \circ T = I$ and $T \circ S = I$, where I is the identity operator on the proper vector space. That proves T is indeed an isomorphism between the two vector spaces, as desired.

Theorem 11. A nonempty subset A of V is a translate of some subspace of V if and only if $\lambda v + (1 - \lambda) w \in A$ for all $v, w \in A$ and all $\lambda \in \mathbb{F}$.

Exercise 12. Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subspaces U_1, U_2 of V. Prove that $A_1 \cap A_2$ is either the empty set or a translate of some subspace of V.

⁴ There is a slicker proof for this inequality using block matrices. But the proof here using linear maps is more informative.

⁵ Note that V does not have to be finite-dimensional. Recall that $V_1 + \cdots + V_m$ is a direct sum if and only if the only way to write $\mathbf{0}$ as a sum of $v_1 + \cdots + v_m$, where each $v_k \in V_k$, is by taking each v_k equal to $\mathbf{0}$.

⁶ Recall Theorem 11.

Proposition 13. Suppose U is a subspace of V and $v_1 + U, ..., v_m + U$ is a basis of V/U and $u_1, ..., u_n$ is a basis of U. Then $v_1, ..., v_m, u_1, ..., u_n$ is a basis of V. In other words, $V = \text{span}\{v_1, ..., v_m\} \oplus U$.

Exercise 14. Suppose U is a subspace of V s.t. V/U is finite-dimensional.

- (a) Show that if W is a finite-dimensional subspace of V and V = U + W, then $\dim W \ge \dim V/U$.
- (b) Prove that there exists a finite-dimensional subspace W of V s.t. dim $W = \dim V/U$ and $V = U \oplus W$.

Proof. Let $\overline{w}_1 + U, \ldots, \overline{w}_m + U$ be a basis of V/U. Then by Proposition 13, we have $V = \text{span}\{\overline{w}_1, \ldots, \overline{w}_m\} \oplus U$. Let $W_0 = \text{span}\{\overline{w}_1, \ldots, \overline{w}_m\}$, then $V = U \oplus W_0$, as desired.

Now we prove that for each subspace W of V s.t. V = U + W, we have dim $W \ge m = \dim V/U$.

For each $\overline{w}_i \in V$ above, by definition we have $\overline{w}_i = u_i + w_i$ for some $u_i \in U$ and $w_i \in W$. It can be shown from the linear independence of $\overline{w}_1 + U, \ldots, \overline{w}_m + U$ that $\overline{w}_1 - u_1, \ldots, \overline{w}_m - u_m$ are independent vectors in W. Hence dim $W \geq m$.

Duality

Theorem 15. Suppose V and W are finite-dimensional and $T \in \mathcal{L}(V, W)$. Then

T is surjective \iff T' is injective and T is injective \iff T' is surjective.⁸

Proposition 16. Suppose V is finite-dimensional and U is a subspace of V. Then

$$oldsymbol{U} = \left\{ oldsymbol{v} \in oldsymbol{V} : arphi(oldsymbol{v}) = oldsymbol{0} \ ext{for every} \ arphi \in oldsymbol{U}^0
ight\}.$$

Exercise 17. Suppose V is finite-dimensional and U and W are subspaces of V.

- (a) Prove that $W^0 \subseteq U^0$ if and only if $U \subseteq W$.
- (b) Prove that $W^0 = U^0$ if and only if $U = W^{10}$

Exercise 18. Suppose V is finite-dimensional and U and W are subspaces of V.

- (a) Prove that $(U + W)^0 = U^0 \cap W^0$.
- (b) Prove that $({\bf U} \cap {\bf W})^0 = {\bf U}^0 + {\bf W}^0$.

Lemma 19. Suppose V is finite-dimensional. v_1, \ldots, v_n is a basis of V. Then $\varphi_1, \ldots, \varphi_n \in V'$ is the dual basis of v_1, \ldots, v_n if and only if

$$egin{bmatrix} \mathcal{M}(arphi_1) \ dots \ \mathcal{M}(arphi_n) \end{bmatrix} = I$$

where $\mathcal{M}(\varphi_i)$ is the $1 \times n$ matrix of φ_i with respect to basis $v_1, \dots v_n$ of V for each $i \in \{1, \dots, n\}$.

 7 $V = \text{span}\{v_1, \dots, v_m\} \oplus U$ still holds without the hypothesis that U is finite-dimensional.

 $^{^8}$ This result can be useful because sometimes it is easier to verify that T' is injective (surjective) than to show directly that T is surjective (injective).

⁹ The proposition can be easily verified from definition. But it can be useful.

¹⁰ Recall Proposition 16.

Exercise 20. Suppose V is finite-dimensional and $\varphi_1, \ldots, \varphi_n$ is a basis of V'. Prove that there exists a basis of V whose dual basis is $\varphi_1, \ldots, \varphi_n$.

Proof. We start from an arbitrary basis u_1, \ldots, u_n of V. Let ψ_1, \ldots, ψ_n be its dual basis. In this proof, we take standard basis e_1, \ldots, e_n as the basis of \mathbb{F}^n .

Define $S, T \in \mathcal{L}(V, \mathbb{F}^n)$ by

$$T(v) = (\varphi_1(v), \ldots, \varphi_n(v)), S(v) = (\psi_1(v), \ldots, \psi_n(v)).$$

Then by Lemma 19, $\mathcal{M}(S,(u_1,\ldots,u_n))=I$.

Let *A* be the change of basis matrix from ψ 's to φ 's, i.e.,

$$A = \mathcal{M}(I, (\psi_1, \ldots, \psi_n), (\varphi_1, \ldots, \varphi_n)).$$

Then by the definition of change of basis matrix, we have

$$\mathcal{M}(T,(u_1,\ldots,u_n)) = \begin{bmatrix} \mathcal{M}(\varphi_1,(u_1,\ldots,u_n)) \\ \vdots \\ \mathcal{M}(\varphi_n,(u_1,\ldots,u_n)) \end{bmatrix}$$

$$=A^{\mathsf{T}}\begin{bmatrix} \mathcal{M}(\psi_1,(u_1,\ldots,u_n)) \\ \vdots \\ \mathcal{M}(\psi_n,(u_1,\ldots,u_n)) \end{bmatrix} = A^{\mathsf{T}}\mathcal{M}(S,(u_1,\ldots,u_n)) = A^{\mathsf{T}}.$$

Consider basis $\overline{v}_1, \ldots, \overline{v}_n$ of V s.t. the change of basis matrix from v's to \overline{v} 's is A^{T} . Thus

$$\mathcal{M}(T,(\overline{v}_1,\ldots,\overline{v}_n)) = \mathcal{M}(T,(v_1,\ldots,v_n)) \mathcal{M}(I,(\overline{v}_1,\ldots,\overline{v}_n),(v_1,\ldots,v_n)) = I.$$

Then by Lemma 19, the dual basis of $\overline{v}_1, \ldots, \overline{v}_n$ is precisely $\varphi_1, \ldots, \varphi_n$, as desired.

Polynomials

Theorem 21 (Division algorithm for polynomials). *Suppose that* $p,s \in \mathcal{P}(\mathbb{F})$, with $s \neq 0$. Then there exist unique polynomials $q, r \in \mathcal{P}(\mathbb{F})$ s.t. p = sq + r.¹¹

Proof. Let $n = \deg p$ and $m = \deg s$. The case where n < m is trivial. Thus we now assume that $n \ge m$.

The list

$$1, z, \ldots, z^{m-1}, s, zs, \ldots, z^{n-m}s$$

is linearly independent in $\mathcal{P}_n(\mathbb{F})$. And it also has length n+1. Hence the list is a basis of $\mathcal{P}_n(\mathbb{F})$.

Because $p \in \mathcal{P}_n(\mathbb{F})$, there exist unique constants $a_0, \ldots, a_{m-1}, b_0, \ldots, b_{n-m} \in \mathbb{F}$ s.t.

$$p = a_0 + a_1 z + \dots + a_{m-1} z^{m-1} + b_0 s + b_1 z s + \dots + b_{n-m} z^{n-m} s$$

¹¹ The division algorithm for polynomials can be proved without using any linear algebra. This proof makes a nice use of a basis of $\mathcal{P}_n(\mathbb{F})$.

$$= \underbrace{\left(a_0 + a_1 z + \dots + a_{m-1} z^{m-1}\right)}_{q} + s \underbrace{\left(b_0 + b_1 z + \dots + b_{n-m} z^{n-m}\right)}_{r}$$