课程名称: **工程数学基础** 课程编号: <u>S131A035</u>

学院名称:_____ 年级:___ 学号:____ 姓名:____

- 一. 判断 (每小题1分,共10分)
- 1. 设 $A, B \subset E,$ 则 $(A \cap B)^C = A^C \cup B^C$. ()
- 2. 线性空间 $P_{\mathbf{n}}[a,b]$ 是n维的。 ()
- 3. 差商与所含节点的排列顺序无关。 ()
- 4. 若 $A \in C^{n \times n}$ 是正定矩阵,则线性方程组 Ax = b 的 Jacobi 迭代格式收敛.
- 5. 设X 是赋范空间,则 X 中的收敛序列一定是 Cauchy 序列. ().
- 6. 设 $\|\bullet\|$ 是 $C^{n\times n}$ 上任意一种算子范数,单位矩阵 $E\in C^{n\times n}$,则 $\|E\|=1$.()
- 7. X 中任意两个子空间的并还是 X 的线性子空间。 ()
- 8. Hermite 矩阵的特征值都是非负实数。 ()
- 9. 对任意 $A \in \mathbb{C}^{n \times n}$, e^A 可逆。()
- 10. 设 $\mathbf{x}, \mathbf{y} \in (\mathbf{X}, \langle \cdot \rangle)$, $\langle x, y \rangle = 0 \Leftrightarrow x = 0$, 或 y = 0. (
- 二. 填空(每小题 2 分, 共 20 分)
- 1. 设 T 是线性空间 X 上的线性算子,则 T(0) = _____ 。

- 2. 已知 $f(x) = x^2 3x + 4$,则 f[1,2,3,4] = ______.
- 3. 设 $A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$, 则 $Cond_{\infty}(A) =$ _____.
- 4. 设A的 Jordan 标准形 $J=\begin{bmatrix}2\\1&2\\&1\end{bmatrix}$,则A的最小多项式为
- 5. 设 $C_k^{(n)}$ 是 Cotes 系数,则 $\sum_{k=0}^n C_k^{(n)} =$ ______.
- **6.** 设 **A** 是酉矩阵,则 $A^H A =$ ________。
- 7. 设 $l_0(x), l_1(x), \dots, l_n(x)$ 是[a,b]上以 $a \le x_0 < x_1 < \dots < x_n \le b$ 为节点的

Lagrange 插值基函数,则 $\sum_{k=0}^{n} l_k(x) =$ _______.

- 8. 设 $f(x) = f(x_1, x_2, x_3) = (x_1 e^{x_2}, x_2, x_1 x_2)^T$,则 $f'(x) = \underline{\hspace{1cm}} \circ$
- 9. 设求积公式 $\int_{-1}^{1} f(x) dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$,其代数精度为 _______。

课程名称: **工程数学基础** 课程编号: <u>S131A035</u> 学院名称: _______ 年级: ____ 学号:______ 姓名:______

第2页共4页

10. 设 $A \in \mathbb{C}^{n \times n}$,则 $\operatorname{rank}(\lambda E - A) =$ _______。

准形C.

四.(12分)设
$$A = \begin{bmatrix} 1 & -2 & -2 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
,求 $\sin At$.

三 . (12 分) 设 $A = \begin{bmatrix} 2 & -1 & 1 \\ 2 & 2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$, 求 A 的 Jordan 标准形 J 和有理标

课程名称: 工程数学基础 学院名称: _____ 年级: ___ 学号:____ 姓名:____ 课程编号: S131A035

五. (10 分) 已知线性方程组为 $\begin{bmatrix} 3 & 1 & 0 \\ 2 & 4 & 1 \\ 0 & 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \\ 9 \end{bmatrix}$

- (1) 写出 Jacobi 和 Seidel 迭代格式,
- (2) 判断迭代格式收敛性.

七.(14分) 对积分 $\int_0^1 \frac{1}{1+x^2} dx$,用 Romberg 方法计算积分的近似值,

并将结果填入下表(结果保留至小数点后第五位).

	k	T_{2^k}	$S_{2^{k-1}}$	$C_{2^{k-2}}$	$R_{2^{k-3}}$
	0				
	1				
	2				
	3				
0	4				

六 .(10分) 已知下列插值条件

76 77 78 79 80 81 \boldsymbol{x} $f(x) \mid 2.83267 \mid 2.90256 \mid 2.97857 \mid 3.06173 \mid 3.10236 \mid 3.15530$

用三次 Newton 插值多项式计算 f(79.40) 的近似值 (结果保留到小数 点后第5位)。

课程名称: **工程数学基础** 课程编号: <u>S131A035</u> 学院名称: ______ 年级: ___ 学号:_____ 姓名:_____

八. (6 分)设矩阵 $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & -3 & -3 \end{bmatrix}$,求矩阵的谱半径 $\rho(A)$ 和算子 九. (6 分)若 Hermite 矩阵 $A \in C^{n \times n}$ 是可逆阵,则 A^2 是正定矩阵.

范数 || A||_1, || A||_∞.

•