IN THE CLAIMS

1. (Currently Amended) A method for fabricating a silica microstructure comprising a planar light wave circuit (PLC) having first and second silica layers, method comprising the steps of:

depositing an etch stop layer formed of one of gold, platinum, and alumina on an etching area of a portion of the a first silica layer formed on a semiconductor substrate;

forming the <u>a</u> second silica layer on the surfaces of the etch stop layer and the first silica layer;

forming a mask patterned according to the shape of the etching area on the surface of the second silica layer;

removing the second silica layer from the etching area using the mask by dry etchinga Reactive Ion dry Etching(RIE) according to a predetermined vertical profile; and removing the etch stop layer by wet etching.

wherein the silica micro structure comprising a planar light wave circuit (PLC).

- 2. (Cancelled).
- 3. (Previously presented) The silica microstructure fabrication method of claim 1, wherein the etch stop layer deposition step comprises the steps of:

forming the etch stop layer on the first silica layer;

forming a photoresist layer on the etch stop layer;

patterning the photoresist layer according to the shape of the etching area; and dry-etching the etch stop layer using the photoresist pattern.

4	4.	(Previously presented) The silica microstructure fabrication method of claim
1, where	ein t	the etch stop layer is formed of one of metal and ceramic.
:	5.	(Previously presented) The silica microstructure fabrication method of claim
1, where	ein t	the mask formation step comprises the steps of:
	forn	ning a metal layer on the second silica layer by sputtering;
:	forn	ning a photoresist layer on the metal layer;
1	patte	erning the photoresist layer according to the shape of the etching area; and
•	etch	ing the metal layer using the photoresist pattern.
(6.	(Previously presented) The silica microstructure fabrication method of claim
1, where	ein t	the first and second silica layers are formed by deposition.
,	7.	(Cancelled).
1	8.	(Cancelled).
9	9.	(Cancelled).

10. (CurrentlyAmended) A silica microstructure comprising a planar light wave circuit (PLC) having first and second silica layers which is produced by the steps of:

depositing an etch stop layer formed of one of gold, platinum, and alumina on an etching area of a portion of <u>athe</u> first silica layer formed on a semiconductor substrate;

forming the <u>a</u> second silica layer on the surfaces of the etch stop layer and the first silica layer;

forming a mask patterned according to the shape of the etching area on the surface of the second silica layer;

removing the second silica layer from the etching area using the mask by a reactive ion dry etching (RIE) according to a predetermined vertical proifle; and removing the etch stop layer by wet etching.

wherein said mircrostructure comprises one of a planara lightwave circuit and a micr-electromechnaical (MEMS) device.

11. (Cancelled).

12. (Previously presented) A silica microstructure according Claim 10, wherein the etch stop layer deposition step comprises the steps of:

forming the etch stop layer on the first silica layer;

forming a photoresist layer on the etch stop layer;

patterning the photoresist layer according to the shape of the etching area; and dry-etching the etch stop layer using the photoresist pattern.

- 13. (Previously presented) A silica microstructure according Claim 10, wherein the etch stop layer is formed of one of metal and ceramic.
- 14. (Previously presented) A silica microstructure according Claim 10, wherein the mask formation step comprises the steps of:

forming a metal layer on the second silica layer by sputtering;

forming a photoresist layer on the metal layer;

patterning the photoresist layer according to the shape of the etching area; and etching the metal layer using the photoresist pattern.

- 15. (Previously presented) A silica microstructure according to Claim 10, wherein the first and second silica layers are formed by deposition.
 - 16. (Cancelled).
 - 17. (Cancelled).
 - 18. (Cancelled).
 - 19. (Cancelled).

- 20. (Previously presented) A silica microstructure according to Claim 17, wherein said mircrostructure comprises one of a planara lightwave circuit and a micrelectromechnaical (MEMS) device.
- 21. (Currently Amended) A silica microstructure comprising one of a planara lightwave circuit and a micr-electromechnaical system (MEMS) having first and second silica layers which is produced by the steps of:

depositing an etch stop layer formed of one of gold, platinum, and alumina on an etching area of a portion of the a first silica layer formed on a semiconductor substrate;

forming the <u>a</u> second silica layer on the surfaces of the etch stop layer and the first silica layer;

forming a mask patterned according to the shape of the etching area on the surface of the second silica layer;

removing the second silica layer from the etching area using the mask by dry etching according to a predetermined vertical profile; and

removing the etch stop layer by wet etching,

wherein said mircrostructure comprises one of a planara lightwave circuit and a micr-electromechnaical (MEMS) device.

22. (Previously added) A silica microstructure according Claim 21, wherein the etch stop layer deposition step comprises the steps of:

forming the etch stop layer on the first silica layer; forming a photoresist layer on the etch stop layer; patterning the photoresist layer according to the shape of the etching area; and dry-etching the etch stop layer using the photoresist pattern.

- 23. (Previously added) A silica microstructure according Claim 21, wherein the etch stop layer is formed of one of metal and ceramic.
- 24. (Previously added) A silica microstructure according Claim 21, wherein the mask formation step comprises the steps of:

forming a metal layer on the second silica layer by sputtering;

forming a photoresist layer on the metal layer;

patterning the photoresist layer according to the shape of the etching area; and etching the metal layer using the photoresist pattern.

- 25. (Previously added) A silica microstructure according to Claim 21, wherein the first and second silica layers are formed by deposition.
- 26. (Previously added) A silica microstructure according to Claim 21, wherein the second silica layer is dry-etched by RIE (Reactive Ion Etching).