Predicción de Categorías de Voltaje en Sistemas Fotovoltaicos con Naive Bayes en Puno Perú

Marco Fidel Mayta Quispe
Universidad Nacional del altiplano
Ingeniería Estadística e Informática
Docente: Dr. Aleman Gonzales Leonid
Curso: Estadística Bayesiana
VII Semestre

Abstract—Este estudio aborda la convergencia de la energía solar y la inteligencia artificial, presentando un enfoque integral para la gestión de sistemas fotovoltaicos (PV). A través del análisis de datos ambientales, como temperatura, humedad, radiación ultravioleta (UV), corriente y luminosidad, se desarrolló y evaluó un modelo de aprendizaje automático basado en el clasificador Naive Bayes Gaussiano. Los resultados destacan una precisión del 99.65%, consolidando la utilidad de la inteligencia artificial en la optimización de la eficiencia y la toma de decisiones en sistemas de energía solar.

I. Introducción

La generación de energía fotovoltaica desempeña un papel crucial en la transición hacia fuentes de energía sostenibles. La eficiencia de los sistemas fotovoltaicos (PV) está intrínsecamente ligada a las condiciones ambientales. Este estudio explora la aplicación de técnicas avanzadas de aprendizaje automático para mejorar la gestión y el rendimiento de sistemas PV.

II. METODOLOGÍA

La recopilación detallada de datos ambientales, incluyendo temperatura, humedad, UV, corriente, luminosidad y voltaje, sirvió como base para el desarrollo del modelo. La variable 'Voltaje_Categoria' fue creada para la clasificación de los voltajes. Se seleccionaron y normalizaron las características antes de entrenar el modelo utilizando el clasificador Naive Bayes Gaussiano.

III. RESULTADOS

El modelo alcanzó una precisión del 99.65% en la predicción de categorías de voltaje en el conjunto de prueba. El análisis de la matriz de confusión confirmó una capacidad mínima de clasificación incorrecta, demostrando la solidez del modelo propuesto.

IV. DISCUSIÓN

La correlación significativa entre las características seleccionadas y las categorías de voltaje respalda la aplicabilidad del aprendizaje automático en este contexto. La capacidad del modelo para generalizar y brindar rendimientos superiores en datos no vistos respalda su aplicabilidad práctica.

V. CONCLUSIONES

La integración de clasificadores de aprendizaje automático, en particular el Naive Bayes Gaussiano, demostró ser instrumental para la gestión eficiente de sistemas fotovoltaicos. La sinergia entre energía solar e inteligencia artificial promete mejoras sustanciales en eficiencia y toma de decisiones en la generación de energía renovable.

VI. IMPLICACIONES PRÁCTICAS Y SOSTENIBILIDAD

La implementación de este modelo en entornos operativos reales puede conducir a mejoras tangibles en la eficiencia operativa y la sostenibilidad de los sistemas fotovoltaicos, contribuyendo así al avance de la energía renovable.

VII. TRABAJO FUTURO

El camino hacia la mejora continua incluye la exploración de más variables ambientales, la evaluación de otros algoritmos de aprendizaje automático y la expansión del conjunto de datos para garantizar la robustez del modelo en diversas condiciones y escenarios.

REFERENCIAS

 Kaggle. (s.f.). PV Power UV Illuminance Temperature Humidity: Photovoltaic Power from Puno Perú. Recuperado de https://www.kaggle.com/datasets/romeroc42/ pv-power-uv-illuminance-temperature-humidity

1

ANEXOS

Código de Python para el Modelo Predictivo

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix, accuracy_score
# Especifica la ruta de tu archivo de texto
ruta_archivo_txt = 'ALL_MULT.txt'
# Usa pd.read_csv con el delimitador adecuado (coma en este caso)
df = pd.read_csv(ruta_archivo_txt, delimiter=',')
# Asigna los nombres de las columnas
df.columns = ["ID", "Temperature", "Humidity", "UV", "Voltage", "Current", "Illuminance
# Supongamos que tienes una nueva columna llamada 'Voltaje_Categoria' que representa la
# Si no tienes esta columna, puedes crearla basada en algún criterio
df['Voltaje_Categoria'] = pd.cut(df['Voltage'], bins=[0, 15, 25, 100], labels=['Bajo', '
# Elegir las características que se utilizarán para la predicción
features = ["Temperature", "Humidity", "UV", "Current", "Illuminance"]
# Eliminar filas con valores NaN
df = df.dropna()
# Seleccionar características y variable de destino
X = df[features].values
y = df['Voltaje_Categoria'].values
# Dividir los datos en conjuntos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Normalizar los datos
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Crear y entrenar el clasificador Naive Bayes
classifier = GaussianNB()
classifier.fit(X_train, y_train)
# Predecir en el conjunto de prueba
y_pred = classifier.predict(X_test)
# Evaluar el modelo
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test, y_pred)
print("Matriz de Confusión:")
print (cm)
print("\nPrecisión del Modelo:", ac)
```

Fig. 1. Código de Python para el Modelo Predictivo