

Основни свойства на магнитните материали

Материалознание

Въпрос 13

Съдържание

Основни понятия

Хистерезисен цикъл

Магнитна проницаемост

Загуби на енергия

Класификация

1. Намагнитване

Индукцията B_0 , създадена от магнитно поле с интензитет H във вакуум, е:

$$B_0 = \mu_0 H$$
[T] [A/m]

където μ_0 е магнитна константа

Индукцията B в материална среда е: $B = \mu_0 \mu_r H$

където μ_r е относителна магнитна проницаемост

Намагнитването на материала $M = \frac{B - B_0}{\mu_0} = (\mu_r - 1)H = \kappa_r H$

където κ_r е относителна магнитна възприемчивост

1. Намагнитване

Поведението на материалите в магнитно поле се описва от намагнитването M, относителната магнитна проницаемост μ_r и зависимостта B = f(H).

Физически намагнитването се описва като магнитен момент на единица обем от материала.

Магнитният момент на атома се формира от:

- магнитният момент на ядрото,
- спиновия момент на електроните,
- момента, създаден от орбиталното им движение.

Ядрата имат много малък магнитен момент, който може да се пренебрегне.

2. Класификация на материалите според магнитните им свойства

2.1. Диамагнетици

Атомите им са с балансирани спинови магнитни моменти на електроните (напълно запълнени орбити) и нямат собствен магнитен момент.

При прилагане на външно поле, в тях се индуцира много малък момент поради промяната на ъгловата скорост на орбиталното движение на електроните.

2. Класификация на материалите според магнитните им свойства

2.2. Парамагнетици

Атомите им имат собствени магнитни моменти, които се компенсират чрез топлинно движение.

2. Класификация на материалите според магнитните им свойства

2.3. Феромагнетици

Притежават спонтанно намагнитени области, наречени **домени**, в които всички спинови магнитни моменти са еднопосочно ориентирани, поради което магнитният момент на областта е голям.

Домените имат макроскопични размери т. е. от 10^{-8} до 10^{-12} m³.

При отсъствие на външно магнитно поле (H = 0) доменните области имат еднакви размери и магнитните им моменти се компенсират взаимно т. е. общият магнитен момент на материала е нула (B = 0).

При прилагане на външно магнитно поле се осъществяват два процеса:

- 1. Изместване на границите на домените.
- 2. Ориентиране на векторите на магнитните моменти на домените по посока на полето, при което се увеличават размерите на домените, които имат магнитен момент сключващ остър ъгъл с посоката на полето.

Крива на първоначално намагнитване

I ^{ва} област – област на начално намагнитване

II ра област – област на Релей

I ^{ва} и II ^{ра} – много малки интензитети на полето, при които има **еластично** (обратимо) изместване на границите на долмените т. е. след премахване на полето границите се връщат в първоначалното си състояние и няма остатъчна намагнитеност.

Крива на първоначално намагнитване

III ^{та} област – област на максимална диференциална магнитна проницаемост.

При по-силни полета процесът на намагнитване е необратим, поради преодоляването на всевъзможни дефекти в кристалите при преместване на границите на домените.

Крива на първоначално намагнитване

IV ^{та} област – в нея се извършва основно ориентиране на домените по посока на полето.

V ^{та} област на насищане.

Достига се при много силни интензитетие на полето, при които процесът на намагнитване е приключил и векторите на магнитните моменти на всички домени са ориентирани по посока на полето.

Индукцията клони към граничната си стойност B_s наречена *индукция на насищане*.

4. Хистерезисен цикъл

Хистерезис – получава се при интензитети на външното поле поголеми от тези във II ра област, в резултат на необратимото намагнитване.

При премахване на полето (H = 0) доменната структура не се възстановява до изходно състояние, поради което част от намагнитването се запазва ($B \neq 0$).

Граничен хистерезисен цикъл – хистерезис с най-голяма площ, при който е достигнато насищане.

От него се определят параметрите остатъчна индукция B_r и коерцитивен интензитет H_c .

4. Хистерезисен цикъл

Семейство локални хистерезиси – получават се при премахване на поле с помалки интензитети и имат площ по-малка от тази на граничния.

Крива на размагнитване – получава се при прилагане на поле с обратна посока ($H = -H_c$) за размагнитване на материала (B = 0).

5. Магнитна проницаемост

Магнитната проницаемост се дефинира като мярка за изменение на състоянието на намагнитване.

Диференциална магнитна проницаемост:

$$\mu_{rd} = \frac{dB}{\mu_0 dH}$$

 μ_{ri} – **начална** магнитна проницаемост

 $\mu_{r\, \text{max}}$ – **максимална** магнитна проницаемост

5. Магнитна проницаемост

Нелинейността на характеристиките B = f(H) и $\mu_r = f(H)$ е основен проблем при използването на магнитните материали, защото елементите, в които участват също стават нелинейни.

При работа в синусоидално магнитно поле се използва *динамична* или *амплитудна* магнитна проницаемост:

$$\mu_{ra} = \frac{B_m}{\mu_0 H_m}$$

където B_m и H_m са амплитудни стойности.

При работа в импулсно магнитно поле се използва *импулсна* магнитна проницаемост:

$$\mu_{r \, \mathsf{им} \mathsf{\Pi}} = \frac{\Delta B}{\mu_0 \Delta H}$$

където ΔB и ΔH са амплитудни стойности.