Launch Windows

How is Matthias Maurer going to join Thomas Pesquet's Halloween party?

Adrien CHARDON

2021-11-03

PTS.space - Lunch & Learn

Table of Contents

- 1 Introduction
- 2 Going to the ISS: Launch Window Constraints
- 3 Conclusion

1. Introduction

- 1 Introduction
- 2 Going to the ISS: Launch Window Constraints
- 3 Conclusion

NASA's Crew-3 Mission

Source: [7]

Launch Date and Time

I'm not (too much) interested in science, but rather the engineering supporting the science

Launch Date and Time

I'm not (too much) interested in science, but rather the engineering supporting the science

Crew-3 Successive Launch Date And Time

- Sun Oct 31 06:21 UTC (02:21 local)
- Wed Nov 03 05:10 UTC (01:10 local)
- · Sun Nov 07 03:36 UTC (23:36 local)

Launch Date and Time

I'm not (too much) interested in science, but rather the engineering supporting the science

Crew-3 Successive Launch Date And Time

- · Sun Oct 31 06:21 UTC (02:21 local)
- Wed Nov 03 05:10 UTC (01:10 local)
- · Sun Nov 07 03:36 UTC (23:36 local)

Oddly specific date and time:

- · During the night
- During the weekend
- · Precision down to the minute

The Question

=> What factors drive a launch date and time?

2. Going to the ISS: Launch Window Constraints

- 1 Introduction
- 2 Going to the ISS: Launch Window Constraints
 - Orbital Constraints
 - Range and Safety Constraints
 - More Constraints
- 3 Conclusion

Constraint 1: Inclination - Theory

Source: [2]

Constraint 1: Inclination - Summary

 A given launch site crosses the orbital plane twice a day (instantaneous window)

Constraint 1: Inclination - Summary

- A given launch site crosses the orbital plane twice a day (instantaneous window)
- · Can afford some misalignment: dogleg maneuver

Constraint 2: Launch Azimuth - Launch Site

- · Launch sites:
 - USA: Kennedy Space Center: 28.5°N
 - USSR/Russia: Baikonur Cosmodrome: 46.0°N
- · Adjusting the inclination
 - · In flight: super expensive
 - · From launch:
 - · Going lower: very expensive
 - · Going higher: (relatively) easy

Constraint 2: Launch Azimuth - Launch Site

- · Launch sites:
 - USA: Kennedy Space Center: 28.5°N
 - USSR/Russia: Baikonur Cosmodrome: 46.0°N
- · Adjusting the inclination
 - · In flight: super expensive
 - From launch:
 - · Going lower: very expensive
 - · Going higher: (relatively) easy
- -> ISS is the lowest inclination without overflying China or dropping spent rocket stages in inhabited areas => 51.6°N

Constraint 2: Launch Azimuth - ISS

Source: [5]

Constraint 2: Launch Azimuth - ISS

Source: [5]

- Don't want to fly over Cuba
- · ISS is at 51.6° N
- · Fun fact: Israel launches toward west

Constraint 3: Orbit Phasing - Altitude

Source: [9]

• ISS: 370-460 km -> 93 minutes per orbit

Constraint 3: Orbit Phasing - ISS

Constraint 3: Orbit Phasing - ISS

- Launch when ISS is (approximately) overhead, to reduce phasing time as much as possible
- · Inclination is still more important
- · Soyuz's fast rendezvous: from 24-48h to 6h to 3h

Constraint 4: Range Safety (Exclusion Zones)

NOTAM/NOTMAR:

Source: [6]

 There could be constraints (military exercise, visit of the president, a 10 billions \$ telescope traveling, ...)

Constraint 5: Abort Scenarios

Constraint 5: Abort Scenarios

- · Constraints in the abort zones
 - · Weather
 - · Support available ex: Space Shuttle's TAL abort mode

• ...

Constraint 6: Flight Path and Target Conditions

- · Sun: visibility, temperature, power
 - Apollo: visibility required the Sun to be very low on the horizon
 - Space Shuttle: thermal control required specific Sun conditions (beta angle)

Constraint 6: Flight Path and Target Conditions

- · Sun: visibility, temperature, power
 - Apollo: visibility required the Sun to be very low on the horizon
 - Space Shuttle: thermal control required specific Sun conditions (beta angle)
- · Communication: visibility, antenna handover

- · Launch vehicle
 - · Fuel loading/unloading

- · Launch vehicle
 - · Fuel loading/unloading
- Payload
 - $\cdot\,$ Humans, plants, animals, science material, ...

- · Launch vehicle
 - · Fuel loading/unloading
- Payload
 - · Humans, plants, animals, science material, ...
- Weather
 - · At launch site, flight path, abort zones
 - · Wind, temperature (cf. Challenger), lightning (cf. Apollo 12)
 - Falcon 9 Crew Dragon Launch Weather Criteria: link

- · Launch vehicle
 - · Fuel loading/unloading
- Payload
 - · Humans, plants, animals, science material, ...
- Weather
 - · At launch site, flight path, abort zones
 - · Wind, temperature (cf. Challenger), lightning (cf. Apollo 12)
 - · Falcon 9 Crew Dragon Launch Weather Criteria: link

• ...

3. Conclusion

- 1 Introduction
- 2 Going to the ISS: Launch Window Constraints
- 3 Conclusion

Conclusion

- · Launch notifications: https://nextspaceflight.com/
 - · Don't forget to watch Crew-3's launch next Saturday evening
- Try to dock to the ISS: https://iss-sim.spacex.com/
- · Learn orbital mechanics: Kerbal Space Program (KSP)

Source: [8]

References i

[1] BAEN, Dog-leg. https://www.baen.com/rendezvous, accessed 2021-10-27. [2] -----, Orbital plane. https://www.baen.com/rendezvous.accessed 2021-10-27. [3] ——, Phasing orbit. https://www.baen.com/rendezvous, accessed 2021-10-27. [4] CBSNEWS, Abort Exclusion Zones. https://www.cbsnews.com/news/spacex-launch-preview-nasa-astronauts-historic-missionpiloted-spacecraft/, accessed 2021-10-27. [5] NASASPACEFLIGHT, Cape Canaveral launch azimuth. https://forum.nasaspaceflight.com/index.php?topic=37558.0, accessed 2021-10-27.

References ii

[6] S. . SKYVECTOR, Exclusion Zones.

https://space.stackexchange.com/questions/53927/just-how-unreasonably-gigantic-was-the-exclusion-zone-for-the-scrubbed-spacex, accessed 2021-10-27.

- [7] N. . SPACEX, Crew-3.https://blogs.nasa.gov/crew-3/2021/11/01/nasas-spacex-crew-3-launch-delayed-from-nov-3/, accessed 2021-11-03.
- [8] SQUAD, KSP screenshot.https://www.kerbalspaceprogram.com/media/, accessed 2019-09-01.
- [9] WIKIPEDIA, Orbital altitudes.https://commons.wikimedia.org/wiki/File:Orbitalaltitudes.jpg, accessed 2021-10-27.
- [10] ———, Orbital altitudes. https://commons.wikimedia.org/wiki/File:Orbitalaltitudes.jpg, accessed 2021-10-27.

