Applications concrètes de DQL et PPO

Introduction

Voici des exemples concrets et réalistes d'applications pour DQL (Deep Q-Learning) et PPO (Proximal Policy Optimization) afin de mieux comprendre leurs forces respectives et les contextes dans lesquels ils brillent.

1 Applications de DQL (Deep Q-Learning)

1. Jeux vidéo (environnements discrets)

DQL est largement utilisé dans des jeux où l'agent a un nombre limité d'actions possibles. Exemple : Space Invaders ou Pac-Man

- Actions possibles: Aller à gauche, à droite, tirer ou rester immobile.
- Pourquoi DQL?
 - Les environnements discrets permettent de construire une table Q approximée par un réseau de neurones.
 - Les transitions entre les états sont simples, et il n'est pas nécessaire de gérer des actions continues.

2. Robotique simple

DQL peut être utilisé pour des tâches robotiques basiques où les actions sont limitées.

Exemple : Un robot ramasseur de balles dans une pièce

- Actions possibles: Avancer, tourner à gauche, tourner à droite, s'arrêter.
- Pourquoi DQL ?
 - L'espace d'action est petit (seulement 4 actions).
 - Il est facile d'évaluer les récompenses pour chaque action.

3. Systèmes de recommandation

DQL est parfois utilisé pour adapter les systèmes de recommandation.

Exemple: Recommander des vidéos sur une plateforme de streaming

• Actions possibles : Montrer une vidéo spécifique, recommander une catégorie, ou suggérer un contenu populaire.

• Pourquoi DQL?

- Les choix de recommandations sont discrets et bien définis.
- Chaque recommandation a une "valeur Q" mesurée par l'interaction de l'utilisateur (clics, temps passé, etc.).

4. Jeux de stratégie à état discret

DQL est adapté pour des jeux comme le **Tic-Tac-Toe** ou le **Snake**.

- Actions possibles: Jouer dans une case spécifique (pour Tic-Tac-Toe) ou se déplacer dans une direction (pour Snake).
- Pourquoi DQL?
 - Les états et les actions sont finis et discrets, ce qui correspond bien au paradigme Q-Learning.

2 Applications de PPO (Proximal Policy Optimization)

1. Contrôle de robots dans des environnements complexes

PPO est souvent utilisé pour des robots travaillant dans des environnements dynamiques. Exemple : Contrôler un bras robotisé

- Actions possibles : Déplacer chaque joint du bras selon des angles continus.
- Pourquoi PPO ?
 - $-\,$ L'espace d'action est continu (par exemple, un angle entre 0 et 180° pour un joint).
 - PPO est stable et s'adapte bien aux tâches complexes nécessitant de petites corrections.

2. Véhicules autonomes

PPO est utilisé pour entraı̂ner des voitures autonomes à naviguer dans des environnements complexes.

Exemple: Conduire sur une autoroute

• Actions possibles : Tourner légèrement le volant, accélérer, freiner (toutes en valeurs continues).

• Pourquoi PPO?

- L'espace d'action est continu (par exemple, la force de freinage peut varier entre 0 % et 100 %).
- PPO limite les changements brutaux, rendant l'apprentissage plus stable.

3. Gestion de ressources dans des data centers

PPO est utilisé pour optimiser la consommation d'énergie dans des infrastructures complexes.

Exemple: Réguler les serveurs dans un data center

• Actions possibles : Ajuster la fréquence des processeurs, modifier la température de refroidissement (actions continues).

Pourquoi PPO ?

- PPO est stable et peut gérer des environnements où les récompenses sont retardées.

4. Jeux de simulation complexes

PPO est adapté aux jeux nécessitant des actions continues.

Exemple: Simuler un avion qui atterrit

• Actions possibles : Modifier les angles des volets, ajuster la poussée des moteurs, incliner les ailes.

• Pourquoi PPO?

 Les actions sont continues et nécessitent des ajustements progressifs pour éviter un crash.

5. Optimisation des systèmes financiers

PPO est utilisé dans le trading algorithmique pour maximiser les profits tout en minimisant les risques.

Exemple: Ajuster les portefeuilles d'investissement

• Actions possibles : Acheter, vendre ou conserver des actions (en quantités continues).

• Pourquoi PPO ?

 PPO gère bien les environnements dynamiques et incertains comme les marchés financiers.

3 Résumé des cas d'application

Type d'application	DQL (Deep Q-	PPO (Proximal Pol-
	Learning)	icy Optimization)
Jeux vidéo simples	Pac-Man, Snake, Tic-	Simulations complexes
	Tac-Toe	comme FIFA, simula-
		teurs VR
Robotique	Robots simples (ra-	Contrôle précis (bras
	masser des balles)	robotisés, drones)
Véhicules autonomes	Navigation basique sur	Conduite complexe dans
	des grilles	des environnements réels
Systèmes financiers	Optimisation discrète	Trading avec quantités
	(acheter/vendre)	continues
Optimisation industrielle	Réglages simples dans	Gestion d'énergie dans
	des chaînes de produc-	des data centers
	tion	
Systèmes de recommandation	Contenus discrets (choix	Recommandations
	limité de vidéos)	basées sur des
		paramètres complexes