# "Speaking III of the Dead"

A Statistical Analysis of Media Sentiment Before and After Celebrity Deaths

#### Titouan Dupleich

Department of Decision Sciences Bocconi University

Master's Thesis Defense Supervisor: Prof. Alessia Melegaro October 25th, 2024

### Introduction

"De mortuis nil nisi bonum dicendum est."

"Of the dead, nothing but good should be said."

#### Death positivity bias

"Forming more favorable perceptions and appraisals of the dead than the living." (Allison and Eylon 2005, p. 6)

- Celebrity death effects
- Analysis of death positivity bias in online media
- 7600 articles about 38 celebrities (music, film, academia, sports, public affairs)

### Motivation

Evidence of bias for fictional leaders, members of general public, close relatives, disliked relatives

- Obituaries about general public and celebrities (Alfano, Higgins, and Levernier 2018; Heynderickx and Dieltjens 2016)
- ANOVA/Chi-squared on survey-based A/B tests (Allison, Eylon, et al. 2009; Hayes 2016)
- Chi-squared tests on post-death media articles (Rusu 2020)

#### Limitations of current literature

- Mostly qualitative assessment of death positivity bias
- Quantitative approaches (ANOVA, Chi-squared) rely on manually-labelled documents
- Post-death assessment of texts without pre-death comparison
- Few studies on news articles have small sample size (max 697 articles about 8 celebrities)

## Research Questions

- **RQ1:** Does the media speak more positively about celebrities once they have passed away?
- RQ2: Which attributes of celebrities can account for variations in media response?
- RQ3: What themes are highlighted by the media before and after celebrities' passing? Can they help explain the death positivity bias?

# Targeted celebrities & Period selection

- Death date: between June 2014 and October 2023
- Google web searches: Google Trends interest greater than 0%



Figure: Time series of monthly Google Trends interest relative to death date for all the celebrities



Figure: Example of pre-death and post-death period selection for F.W. de Klerk



### Article collection

#### Event Registry API

- News intelligence platform that gathers online media articles
- API with Named Entity Recognition (NER)
- Dictionary sentiment score

#### Conditions for article selection

- Article published in pre-death or post-death period
- NER celebrity entity in article body
- Celebrity first or last name in article title

### Celebrities dataset





Figure: Summary of features in the original and final datasets



## Research Questions

- **RQ1:** Does the media speak more positively about celebrities once they have passed away?
- RQ2: Which attributes of celebrities can account for variations in media response?
- RQ3: What themes are highlighted by the media before and after celebrities' passing? Can they help explain the death positivity bias?

## Methodology



Figure: Probability distributions of pre-death and post-death sentiment for all articles (n = 7600)

- One-sided Mann-Whitney U test (Mann and Whitney 1947)
- Effect size: rank biserial correlation (Cureton 1956)
  - Bootstrap

$$H_0: P(Y > X) \le P(X > Y)$$
  
 $H_1: P(Y > X) > P(X > Y)$ 

- X: pre-death dist.
- Y: post-death dist.

Bocconi

Introduction Data RQ1 RQ2 RQ3 Discussion References

### Results



Figure: One-sided Mann-Whitney U-tests and effect sizes

- Evidence of death positivity bias
- Strong signal for some celebrities
- No effect or reverse relationship for others

#### Bocconi

## Research Questions

- **RQ1**: Does the media speak more positively about celebrities once they have passed away?
- RQ2: Which attributes of celebrities can account for variations in media response?
- RQ3: What themes are highlighted by the media before and after celebrities' passing? Can they help explain the death positivity bias?

## Methodology

- Each pre-death article randomly paired with a post-death article about the same celebrity to compute sentiment difference distribution  $D = \{d_1, d_2, ..., d_{3800}\}$ :
  - $\bigcirc$   $x_c$ : sentiment of random pre-death article about celebrity c

  - $d_c = y_c x_c$
- ANOVA test on D based on celebrity features
- Tukey's Honestly Significant Difference (HSD) tests

- Industry
  - Strong bias in entertainment industry (music, cinema)
  - No signal in other industries (sport, public affairs, academia)
- Cause of death
  - Bias for deaths by suicide, illness, assassination, natural, and cardiorespiratory failure
  - No signal for other causes (accident, overdose, undisclosed)
- Age at death
  - The older the celebrity, the stronger the bias
  - Except for deaths at 90+ years old
- Little to no effect detected for other features

## Research Questions

- **RQ1**: Does the media speak more positively about celebrities once they have passed away?
- RQ2: Which attributes of celebrities can account for variations in media response?
- RQ3: What themes are highlighted by the media before and after celebrities' passing? Can they help explain the death positivity bias?

## Methodology

Topic modelling with Non-negative Matrix Factorisation (NMF)





Figure: Pre- and post-death distributions of articles for each NMF topic

## NMF topics:

- Cinema
- Public affairs, leadership
- Music
- Family, tribute
- Justice, treason
- Crime, drugs
- Sport

### Bocconi



Figure: Heatmap of topic distribution matrix **M** 

Topic dist. matrix  $M(C \times k)$ 

- C: number of celebrities
- k: number of topics

$$M_{ci} = \frac{1}{200} \sum_{d=1}^{200} W_{di}$$

c: celebrity

*i*: topic

d: article about celebrity c



Figure: Heatmap of difference in topic distribution matrix  $\mathbf{M}^{(diff)}$ 

Pre- and post-death topic dist. matrices,  $\mathbf{M}^{(pre)}$  and  $\mathbf{M}^{(post)}$ 

$$M_{ci}^{(pre)} = \frac{1}{100} \sum_{d=1}^{100} W_{d}$$

d: pre-death article about c

$$M_{ci}^{(post)} = \frac{1}{100} \sum_{d=1}^{100} W_{di}$$

d: post-death article about c

Diff. in topic dist. matrix  $\mathbf{M}^{(diff)}$ 

$$M_{ci}^{(diff)} = M_{ci}^{(post)} - M_{ci}^{(pre)}$$
Bocco

- NMF correctly identified topics associated with celebrities
- But, not useful in understanding death positivity bias

### Discussion

#### Key takeaways

- RQ1: Evidence of small death positivity bias, in line with previous research (Allison, Eylon, et al. 2009; Hayes 2016)
- RQ2: Stronger bias for entertainment industry and death at older age (except 90+)
- RQ3: 7 relevant topics identified but not explaining bias

| Limitations               | Ideas for future research                                                  |
|---------------------------|----------------------------------------------------------------------------|
| Mostly focused on US      | Extend to other countries                                                  |
| Short scraping periods    | Longer periods                                                             |
| Dictionary sentiment      | More sophisticated model                                                   |
| Sentiment vs. Topic model | Topic-level sentiment (Pathak, Pandey, and Rautaray 2021)                  |
| Limited to news articles  | Extend to social media (Brown, Basil, and Bocarnea 2003; Ueda et al. 2017) |



Alfano, Mark, Andrew Higgins, and Jacob Levernier (2018). "Identifying virtues and values through obituary data-mining". In: *The Journal of Value Inquiry* 52, pp. 59–79.



Allison, Scott T and Dafna Eylon (2005). "The demise of leadership: Death positivity biases in posthumous impressions of leaders". In: The psychology of leadership: New perspectives and research 295.



Allison, Scott T, Dafna Eylon, et al. (2009). "The demise of leadership: Positivity and negativity biases in



Brown, William J, Michael D Basil, and Mihai C Bocarnea (2003). "Social influence of an international celebrity: Responses to the death of Princess Diana". In: *Journal of communication* 53.4, pp. 587–605.



Cureton, Edward E (1956), "Rank-biserial correlation", In: Psychometrika 21.3, pp. 287–290.

evaluations of dead leaders". In: The Leadership Quarterly 20.2, pp. 115-129.



Hayes, Joseph (2016). "Praising the dead: On the motivational tendency and psychological function of eulogizing the deceased". In: Motivation and Emotion 40, pp. 375–388.



Heynderickx, Priscilla C and Sylvain M Dieltjens (2016). "An analysis of obituaries in staff magazines". In: Death studies 40.1, pp. 11–21.



Mann, Henry B and Donald R Whitney (1947). "On a test of whether one of two random variables is stochastically larger than the other". In: The annals of mathematical statistics, pp. 50–60.



Pathak, Ajeet Ram, Manjusha Pandey, and Siddharth Rautaray (2021). "Topic-level sentiment analysis of social media data using deep learning". In: Applied Soft Computing 108, p. 107440.



Rusu, Mihai S (2020). "Celebrities' memorial afterlives: Obituaries, tributes, and posthumous gossip in the Romanian media deathscape". In: OMEGA-Journal of Death and Dving 80.4, pp. 568–591.



Ueda, Michiko et al. (2017). "Tweeting celebrity suicides: Users' reaction to prominent suicide deaths on Twitter and subsequent increases in actual suicides". In: Social Science & Medicine 189, pp. 158–166.

Bocconi