Data Conversion Binary Code Formats

Application Note May 1997 AN9657.1

Introduction

Many of the Intersil DSP products have selectable data formats for their input/output interfaces. Table 1 defines the codes as used in these interfaces. Because many applications involve conversion of the analog signals, the analog scale is given as a reference. This table should clarify the interface of the DSP parts to the data conversion device.

Table 1 also helps users understand the basis for each of these formats. The following definitions are offered as the basis for each code format:

Offset Binary: A binary code in which the code represents analog values between Full Scale and -Full Scale. All zero corresponds to -Full Scale. This code can be balanced by appending a 1 below the LSB.

2's Complement: A binary code in which positive and negative codes of the same magnitude sum to all zero's plus a carry. The 2's complement can be generated from the Offset Binary code by inverting the MSB. A negative number is generated by inverting each bit of the positive number, then adding one.

Example: $011 (+3) \rightarrow 100 + 1 = 101 (-3)$

1's Complement: Bipolar binary code in which positive and negative codes of the same magnitude sum to all one's. A negative number is generated by investing each bit of the positive number.

Example: $011 (+3) \rightarrow 100 (-3)$

Sign Magnitude: A binary code in which the MSB represents positive (1) and negative (0) polarities. The code in the table uses a offset binary code to represent the magnitude portion of the number.

TABLE 1. BINARY DATA FORMATS FOR DATA CONVERSION

SCALE	OFFSET BINARY	2'S COMPLEMENT	1'S COMPLEMENT	SIGN MAGNITUDE
+Full Scale	11111111	01111111	01111111	11111111
+0.75 Full Scale	11100000	01100000	01100000	11100000
+0.5 Full Scale	11000000	01000000	01000000	11000000
+0.25 Full Scale	10100000	00100000	00100000	10100000
+0	10000000	00000000	00000000	10000000
-0			11111111	00000000
-0.25 Full Scale	01100000	11100000	11011111	00100000
-0.5 Full Scale	01000000	11000000	10111111	01000000
-0.75 Full Scale	00100000	10100000	10011111	01100000
-Full Scale + 1 LSB	00000001	10000001	10000000	01111111
-Full Scale	00000000	10000000		

Application Note 9657

As an example, let's plot a cosine wave in each of the data formats. Assume that full scale is ± 1 V. Table 2 details the values of the sampled sinusoid in each of the data formats.

Figures 1 through 4 illustrate these signals when converted back to analog using an offset binary converter.

TABLE 2. SAMPLED COSINE SIGNAL REPRESENTATION

n	COS(nπT/16)	OFFSET BINARY	2'S COMPLEMENT	1'S COMPLEMENT	SIGN MAGNITUDE
0	1	11111	01111	01111	11111
1	0.980785	11111	01111	01111	11111
2	0.92388	11110	01110	01110	11110
3	0.83147	11100	01100	01100	11100
4	0.707107	11010	01010	01010	11010
5	0.55557	11000	01000	01000	11000
6	0.382683	10101	00101	00101	10101
7	0.19509	10010	00010	00010	10010
8	0	10000	00000	00000	10000
9	-0.19509	01100	11100	11101	00010
10	-0.38268	01001	11001	11010	00101
11	-0.55557	00110	10110	10111	01000
12	-0.70711	00100	10100	10101	01010
13	-0.83147	00010	10010	10011	01100
14	-0.92388	00001	10001	10001	01110
15	-0.98079	00000	10000	10000	01111
16	-1	00000	10000	10000	01111
17	-0.98079	00000	10000	10000	01111
18	-0.92388	00001	10001	10001	01110
19	-0.83147	00010	10010	10011	01100
20	-0.70711	00100	10100	10101	01010
21	-0.55557	00110	10110	10111	01000
22	-0.38268	01001	11001	11010	00101
23	-0.19509	01100	11100	11101	00010
24	0	10000	00000	00000	10000
25	0.19509	10010	00010	00010	10010
26	0.382683	10101	00101	00101	10101
27	0.55557	11000	01000	01000	11000
28	0.707107	11010	01010	01010	11010
29	0.83147	11100	01100	01100	11100
30	0.92388	11110	01110	01110	11110
31	0.980785	11111	01111	01111	11111
32	1	11111	01111	01111	11111

Data Conversion Binary Code Formats

FIGURE 1. OFFSET BINARY CODE PLOTTING COS(nT) †

FIGURE 2. 2'S COMPLEMENT BINARY CODE PLOTTING COS(nT) †

FIGURE 3. 1'S COMPLEMENT BINARY CODE PLOTTING COS(NT) \dagger

FIGURE 4. SIGN MAGNITUDE/OFFSET BINARY CODE PLOTTING COS(nT) †

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

[†] Note that the solid line denotes the regular cosine wave and the dashed line denotes the plot of the digital format code, connected to decimal.