Quadrilateral: 4 sided polygon

Sum of internal angles = 360

Sum of external angles = 360

Number of diagonals = 2

Parallelogram: Quadrilateral formed by joining mid points of the sides of any quadrilateral.

- 1. Opposite sides are ||.
- **2.** Opposite sides are equal.
- **3.** Opposite angles are equal.
- **4.** The diagonals bisect each other i.e.

Area = base ×height = ab Sin θ , a & b are sides and θ is any angle

Rectangle: Special parallelogram with

- 1. Equal angles.
- 2. Equal diagonals.
- 3. Maximum area.

Area = Base \times Height

$$Diagonal = \sqrt{a^2 + b^2}$$

Problem: There is a rectangular garden with dimensions 14m×16m. There is a path of width 5m all along outside the garden. Find the area of the path?

Problem: There is a rectangular garden with dimensions 14m×16m. There is a path of width 5m all along outside the garden. Find the area of the path?

Area of path = Area of outer rectangle – Area of inner rectangle

$$= 24 \times 26 - 14 \times 16$$

= 400

Rhombus: Special parallelogram with

- 1. Equal sides.
- 2. Diagonals bisect at 90°.
- 3. Diagonals are angle bisectors.
- 4. 4 smaller triangles are congruent.

Area =
$$\frac{1}{2} \times d_1 \times d_2$$

Note: In any quadrilateral if diagonals are perpendicular then its area = $\frac{1}{2} \times d_1 \times d_2$

Problem: If diagonals of a Rhombus are 24cm and 32cm then find the perimeter of the Rhombus?

Problem: If diagonals of a Rhombus are 24cm and 32cm then find the perimeter of the Rhombus?

Side =
$$\sqrt{12^2 + 16^2}$$
 = 20

Perimeter = $4 \times 20 = 80$

Square: Special Rectangle & Rhombus

- 1. Equal sides.
- 2. Diagonals bisect at 90°.
- 3. Diagonals are angle bisectors.
- 4. Equal angles.
- 5. Equal diagonals.

Area = $(Side)^2$

Diagonal = $\sqrt{2} \times \text{Side}$

Problem:

Find the ratio of area of square to rhombus if both are having same sides and one angle of rhombus is 30° .

Find the ratio of area of square to rhombus if both are having same sides and one angle of rhombus is 30° .

Let a is the side of square as well as rhombus.

$$\frac{\text{Area of square}}{\text{Area of rhombus}} = \frac{a^2}{a^2 \text{Sin} 30^\circ} = \frac{1}{\frac{1}{2}} = 2$$

Trapezium(Trapezoid): 2 sides are ||.

Area = $\frac{1}{2}$ × height× sum of || sides

E & F are mid points of AD and BC then

$$EF = \frac{AB + CD}{2}$$

Isosceles Trapezium:

- 1. Oblique sides (Non-parallel sides) are equal.
- 2. Diagonals are equal.
- 3. It is cyclic i.e. sum of opposite angles is 180.

Note: If a trapezium is cyclic then must be an isosceles.

Cyclic quadrilateral:

Sum of opposite angles is 180°.

Or

Quadrilateral inscribed in a circle.

Area =
$$\sqrt{(S-a)(S-b)(S-c)(S-d)}$$
, S:Semiperimeter

Problem: Find the area of cyclic parallelogram with sides 5cm & 10cm

Problem: Find the area of cyclic parallelogram with sides 5cm & 10cm

Area = 5×10

Note: Cyclic parallelogram is a Rectangle.

Solids: Regular & Non-Regular

Regular: Cube, cuboid

Non-Regular: Cone, Pyramid

In Cube/Cuboid

No. of faces = 6

No. of edges = 12

No. of corners/Vertices = 8

For any Solid

Edges + 2 = Faces + Corners

LSA/CSA: Area without top & bottom.

TSA/SA: Sum of area of the all the visible surfaces

Or

LSA + Area of top & bottom.

Volume: Capacity

Diagonal:

Cube =
$$\sqrt{3}$$
 a

Cuboid =
$$\sqrt{l^2+b^2+h^2}$$

S. No	Name	Figure	Lateral/Curved Surface Area	Total Surface Area	Volume
1.	Cuboid		$2 \times h \times (l \times b)$ h - height l - length b - breadth	2(<i>l</i> b + bh + <i>l</i> h)	$l \times b \times h$
2.	Cube		4a ² a – edge	6a ²	a ³
3.	Right Circular Cylinder		2πrh r – radius h – height	2 π r (r + h)	$\pi\mathrm{r}^2$ h
4.	Right Circular Cone		$\pi r l$ h - height r - radius l - slant height $l^2 = r^2 + h^2$	πr (r + <i>l</i>)	$\frac{1}{3} \times \pi r^2 h$
5.	Sphere		4πr² r – radius	4πr² r – radius	$\frac{4}{3} \times \pi r^3$
6.	Hemi-sphere		$2\pir^2$	$3\pir^2$	$\frac{2}{3} \times \pi r^3$

Volume of any Pyramid = $\frac{1}{3}$ ×Base area×height

Problem: 2 cubes each of side 5 cm are joined together to form a cuboid. Find its surface area?

2 cubes each of side 5 cm are joined together to form a cuboid. Find its surface area?

Each cube is having 6 faces and therefore, total 12 faces out of which only 10 are visible.

Therefore

 $SA = 10 \times Area of each face = 10 \times 25$

Problem: Find the length of the longest rod that can be kept inside the cylinder formed by folding a square with sides $10\pi\text{cm}$?

Find the length of the longest rod that can be kept inside the cylinder formed by folding a square with side 10π cm?

Height of cylinder = 10π

Circumference of base = $2\pi R = 10\pi$

$$R = 5cm$$

$$Longest \ rod = \sqrt{(2R)^2 + h^2}$$

$$\sqrt{10^2 + (10\pi)^2} = \sqrt{100 + 100\pi}$$

Problem:

Find the volume of the right circular cone with slant height 10cm and diameter 16cm.

Find the volume of the right circular cone with slant height 10cm and diameter 16cm.

$$R = 8, 1 = 10$$

As we know, $h^2+r^2=l^2$

Triplet is (6,8,10)

Therefore, h = 6

$$v = \frac{1}{3} \times 8 \times 8 \times 6\pi = 128\pi$$

Problem:

A right circular cylinder with radius 6cm and height 14 cm is cut into 2 equal parts by cut perpendicular to its base then find the increase in the surface area?

A right circular cylinder with radius 6cm and height 14 cm is cut into 2 equal parts by cut perpendicular to its base then find the increase in the surface area?

Increase in SA = Area of 2 rectangles
=
$$2 (2r \times h)$$

= $2 \times 2 \times 6 \times 14 = 336$