

信息的表示和处理(4) ——浮点数

王晶

jwang@ruc.edu.cn, 信息楼124

2024年10月

如果用变量记录距离

- int distance
 - 4 bytes, 32 bits
 - 最大值: 2³¹-1

- long long ago
 - 8 bytes, 64 bits
 - 最大值: 263-1

旅行者1号(Voyager1)

2014年9月13日凌晨2点,美国国家航空航天局(NASA)宣布"版行者1号"已经离开太阳系,进入了恒星际空间

大到恒星级别的距离

• 1个天文单位

$$\approx 1.4958 \times 10^{11}$$
 米

 $\approx 1 \times 2^{37}$ 米(38 bits)

地球到太阳

(1.496亿公里)

• 1 光年

 $\approx 0.94605284 \times 10^{16} \, \%$

 $\approx 1 \times 2^{53}$ 米(54 bits)

奥尔特星云

(9万亿公里) (太阳系边界)

• 100亿光年

 $\approx 1 \times 10^{26}$ 米

 $\approx 1 \times 2^{87}$ 米(88 bits)

遥远的星系

小到分子级别的距离

- 1 毫米
- $=1 \times 10^{-3}$ 米

二进制如何表示? int, long long?

float, double

- 2.5 微米 = 2.5×10^{-6} 米
 - PM2.5: 指环境空气中空气动力学当量直径小于等于 2.5微米的颗粒物, 也称细颗粒物

- 14 纳米 = 14×10^{-9} 米
 - Intel"Broadwell" 芯片,采用14纳米工艺制造

Outline

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, Floating point in C
- Addition, multiplication
- Summary

Fractional Binary Numbers

Fractional Binary Numbers

Value

Representation

$$101.11_2 = 4 + 1 + 1/2 + 1/4$$

$$10.111_2 = 2 + 1/2 + 1/4 + 1/8$$

$$1.0111_2 = 1 + 1/4 + 1/8 + 1/16$$

■观察

- 通过右移小数点可以乘以2(无符号数)
- 通过左移小数点可以除以2
- 数字0.1111111....2刚刚比1.0小一点

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

Use notation 1.0 – ε

Representable Numbers

- Limitation #1
 - 只能精确表示x/2k形式的数字(x为整数)
 - 其他数字会是无限小数(循环小数)形式
 - Value Representation
 - 1/3 0.01010101[01]...₂
 - 1/5 0.001100110011[0011]...₂
 - 1/10 0.000110011[0011]...₂

• Limitation #2

- 位数有限(w bits),表达的数字大小范围有限
 - Limited range of numbers (very small values? very large?)

Ariane 5: 浮点溢出的高昂代价

- 原因:导航系统向控制引擎喷嘴的计算机发送了一个无效数据,没有发送飞行控制信息,而是发送了一个诊断位模式,原因是将64位浮点数转为16位有符号位时溢出;
- Ariene 4火箭的速度不会超过16位浮点数;
- Ariene 5速度比Ariene 4高出5倍,但直接重用了 Ariene 4的代码;
- 将大的浮点数转换为整数是一种常见的程序错误来源
- 1996, \$500 MILLION dollars lost

误差引发的灾难

爱国者导弹系统中有一个内置的时钟,其实现类似一个计数器,每0.1 秒就加1。为了以秒为单位来确定时间,程序将用一个24位的近似于1/10的二进制小数值来乘以这个计数器的值。特别地,1/10的二进制表达式是一个无穷序列0.000110011[0011]···2,其中,方括号里的部分是无限循环的。程序用值x近似地表示0.1,x只考虑这个序列的二进制小数点右边的前23位:x=0.00011001100110011001100。(参考练习题2.51,里面有关于如何更精确地近似表示0.1 的讨论。)

- A. 0.1-x 的二进制表示是什么? 0.00...00[1100] (前面23个0)
- B. 0.1 x 的近似的十进制值是多少? $2^{-24} = 10^{-7}$
- C. 当系统初始启动时,时钟从 0 开始,并且一直保持计数。在这个例子中,系统已经运行了大约 100个小时。程序计算出的时间和实际的时间之差为多少? 10个-7 *100*60*60*10=0.36s
- D. 系统根据一枚来袭导弹的速率和它最后被雷达侦测到的时间,来预测它将在哪里出现。假定飞毛腿导弹的速率大约是 2000 米每秒,对它的预测偏差了多少? O. 36s*2000m/s=700m

通过一次读取时钟得到的绝对时间中的一个轻微错误,通常不会影响跟踪的计算。相反,它应该依赖于两次连续的读取之间的相对时间。问题是爱国者导弹的软件已经升级,可以使用更精确的函数来读取时间,但不是所有的函数调用都用新的代码替换。结果就是,跟踪软件一次读取用的是精确的时间,而另一次读取用的是不精确的时间[100]。

28 people die on 2/25/1991

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, Floating point in C
- Addition, multiplication
- Summary

IEEE Floating Point

- IEEE Standard 754
 - 在1985年建立,作为浮点数运算的统一标准
 - 在此之前,有很多不同(古怪)的设计
 - 所有主流CPU都支持
- William (Velvel) Morton Kahan 威廉·卡亨
 - 1933 –
 - UC Berkeley
 - 1989年图灵奖,因为数值计算方面的贡献
 - Kahan是浮点运算IEE标准IEEE 754, IEEE 854的主要设计师

科学计数法

• 科学记数法中数字的组成部分是什么?

• 在科学记数法中,有效数字总是以什么值开头?

浮点数的表示

Example:

 $15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$

• Numerical Form:

$$(-1)^{s} M 2^{E}$$

- **Sign bit s** determines whether number is negative or positive
- **Significand M** normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

- Encoding
 - MSB s is sign bit s
 - exp field encodes **E** (but is not equal to E)

s exp	rac
-------	-----

Precision options

• Single precision: 32 bits (float)

• Double precision: 64 bits (double)

S	exp	frac
1	11-bits	52-bits

• Extended precision: 80 bits (Intel only, long double)

S	exp	frac
1	15-bits	63 or 64-bits

Three "kinds" of floating point numbers

"Normalized" Values(规格化)

• When: $\exp \neq 000...0$ and $\exp \neq 111...1$

$$v = (-1)^s M 2^E$$

- E coded as a **biased** value: **E** = **Exp Bias** (移码)
 - *Exp*: unsigned value of exp field
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

问题: 补码能真实地反映真值的大小吗?

答案: 补码表示很难直接判断其真值大小!

$$x + 2^{5}$$

$$x_{1} = +21 +10101 + 100000 = 110101$$

$$x_2 = -21 \qquad -10101 + 100000 = 001011$$

$$x_3 = +31 + 11111 + 100000 = 111111$$

$$x_4 = -31$$
 $-11111 + 100000 = 000001$

移码的特点

为什么要引入移码?

移码是用来表示浮点数的阶码!

为什么要用移码来表示浮点数的阶码呢?

● 便于浮点数加减运算时的对阶操作。

例: 1.01×2⁻¹ +1.11×2³=?

补码 -1(1111) ? +3(0011)

移码 -1(0111) < +3(1011)

可以用移码表示的阶码直接比较阶码的大小!!

浮点数阶码的移码表示

一位符号位和7位数值位组成的移码,其定义为;

$$[E]_{8} = 2^7 + E -2^n < = E < 2^n$$

表示范围: 00000000 ~ 11111111

移码序列实际上是其真值在数轴上平移的结果,实际上是将有符号数转换成无符号数表示。

8 位移码表示的机器数为数的真值 在数轴上向右平移了 128 个位置

"Normalized" Values(规格化)

• When: $\exp \neq 000...0$ and $\exp \neq 111...1$

$$v = (-1)^s M 2^E$$

- E coded as a **biased** value: **E** = **Exp Bias** (移码)
 - *Exp*: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- M coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Floating Point Representation

• 浮点表示法

- 举例: (-1101.0101)₂,m=9, n=3
- -0.11010101*2⁴

S	Es	E	M
1位	1位	3位	9位
1	0	100	110101010

• -0.011010101*2⁵

S	Es	E	M
1位	1位	3位	9位
1	0	101	011010101

Normalized Encoding Example

```
• Value: float F = 15213.0;

• 15213_{10} = 11101101101101_2

= 1.1101101101101_2 x 2^{13}
```

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

• Significand

```
M = 1.1101101101_2
frac= 1101101101101_000000000_2
```

• Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

• Result:

0 10001100 1101101101101000000000

s exp frac

Denormalized Values (非规格化)

• Condition: **exp** = **000**...**0**

$$v = (-1)^s M 2^E$$

 $E = 1 - Bias$

- Exponent value: $\mathbf{E} = 1 \text{Bias}$ (instead of $\mathbf{E} = 0 \mathbf{Bias}$)
 - 为了平滑过度到规格化浮点数(1.xxx * 2-126)
 - 非规格化: 0.xxx * 2-126
- M没有隐藏的1,方便表示0及接近0的数字: **M** = 0.xxx...x₂
- Cases
 - exp = 000...0, frac = 000...0
 - 表示0
 - 但是根据S为0或1,可以表示 +0 and -0
 - $exp = 000...0, frac \neq 000...0$
 - 用于表示接近于 0.0的数字

Special Values

- Condition: **exp** = **111**...**1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞
 - 用来表示overflow
 - 包括+∞和-∞
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - 表示无法得到一个数值(出错/未定义)
 - E.g., 0/0, sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

有限范围内的一些采样点,与实数完全不同

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, Floating point in C
- Addition, multiplication
- Summary

Dynamic Range (Positive Only)

		Λ. Δ.	B	ias=7	$ \mathbf{v} = (-1)^s M 2^t$
	k√ s exp	•	E	Value	n: E = Exp - Bias
	0 000	000 000	-6	0	d: E = 1 - Bias
	0 000	00 001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 000	00 010	-6	2/8*1/64 = 2/512	$2^{-m} \star 2^{2-2^{(k-1)}}$
numbers					
	0 000	00 110	-6	6/8*1/64 = 6/512	$(1-2^{-m}) *2^{2-2^{(k-1)}}$
	0 000	00 111	-6	7/8*1/64 = 7/512	largest denorm
	0 000	000	-6	8/8*1/64 = 8/512	smallest norm
	0 000	01 001	-6	9/8*1/64 = 9/512	1*2 ^{2-2^(k-1)}
	0 011	LO 110	-1	14/8*1/2 = 14/16	
.,	0 011	LO 111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 011	L1 000	0	8/8*1 = 1	
numbers	0 011	L1 001	0	9/8*1 = 9/8	closest to 1 above
	0 011	L1 010	0	10/8*1 = 10/8	
	0 111	110	7	14/8*128 = 224	$(2-2^{-m})*2^{2^{(k-1)-1}}$
	0 111	10 111	7	15/8*128 = 240	largest norm
	0 111	L1 000	n/a	inf	
750713					

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

float: 0xC0A0000

 $v = (-1)^s M 2^E$ $E = \exp - Bias$

binary:

 $Bias = 2^{k-1} - 1 = 127$

8-bits

23-bits

E =

$$M =$$

 $v = (-1)^s M 2^E =$

Hex Decimany

0	0	0000
1	1	0001
2 3	2	0010
	3	0011
<u>4</u> 5	4 5	0100
5	5	0101
6 7 8	6 7 8	0110
7	7	0111
		1000
9	9	1001
A	10	1010
B C	11	1011
	12	1100
D	13	1101
E	14	1110
F	15	1111

float: 0xC0A0000

 $v = (-1)^{s} M 2^{E}$ $E = \exp - Bias$

L 8-bits 23-bits

E =

S =

M = 1.

 $v = (-1)^s M 2^E =$

Hex Decimanary

•	•	*
0	0	0000
1	1	0001
1 2 3 4	3 4	0010
3	3	0011
4	4	0100
5	5	0101
5 6 7 8	6	0110
7	7	0111
	8	1000
9	9	1001
Α	10	1010
ВС	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

 $v = (-1)^s M 2^E$ $E = \exp - Bias$

float: 0xC0A00000

 $Bias = 2^{k-1} - 1 = 127$

1 8-bits 23-bits

E =

S = 1 -> negative number

M = 1.

He	, Der
0	0
1	1
2	2
3	3
4	4
5	5
0 1 2 3 4 5 6 7 8 9 A	0 1 2 3 4 5 6 7 8
7	7
8	8
9	9
A	10
В	11

 $\frac{1101}{1110}$

 $v = (-1)^s M 2^E$ $E = \exp - Bias$

float: 0xC0A00000

 $Bias = 2^{k-1} - 1 = 127$

1 1000 0001 010 0000 0000 0000 0000 0000

1 8-bits

23-bits

E = exp - Bias = 129 - 127 = 2 (decimal)

S = 1 -> negative number

M=1.

He	, Oe	Bill
0	0	0000
1 2 3 4 5 6 7 8	1	0001
2	1 2 3 4 5 6 7	0010
3	ო	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
B C	11	1011
С	12	1100

1101

 $v = (-1)^s M 2^E$ $E = \exp - Bias$

float: 0xC0A00000

 $Bias = 2^{k-1} - 1 = 127$

1 1000 0001 010 0000 0000 0000 0000 0000

L 8-bits

23-bits

$$E = exp - Bias = 129 - 127 = 2 (decimal)$$

S = 1 -> negative number

$$M = 1.010 0000 0000 0000 0000 0000$$

= 1 + 1/4 = 1.25

$$v = (-1)^s M 2^E = (-1)^1 * 1.25 * 2^2 = -5$$

Hex Decimanary

No	O.	A .	
0 1 2 3 4 5 6 7 8	0	0000	
1	1	0001	
2	1 3 4 5 6 7	0010	
S	3	0011	
4	4	0100	
5	5	0101	
6	6	0110	
7	7	0111	
8	8	1000	
9	9	1001	
Α	10	1010	
В	11	1011	
O	12	1100	
A B C D E F	13	1101	
E	14 15	1110	
F	15	1111	

C float Decoding Example #2

float: 0x001C0000

 $v = (-1)^{s} M 2^{E}$ E = 1 - Bias

1 8-bits 23-bits

E =

S =

M = 0.

 $v = (-1)^s M 2^E =$

He	Oc	BI.
0	0	0000
1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
A B C D	12	1100
D	13	1101
E	14 15	1110
F	15	1111

C float Decoding Example #2

 $v = (-1)^{s} M 2^{E}$ E = 1 - Bias

float: 0x001C0000

 $Bias = 2^{k-1} - 1 = 127$

0	0000 0000	001 1100 0000 0000 0000 0000
1	8-hits	23-hits

L 8-bits

23-bits

$$E = 1 - Bias = 1 - 127 = -126$$
 (decimal)

S = 0 -> positive number

$$M = 0.001 1100 0000 0000 0000 0000$$

= $1/8 + 1/16 + 1/32 = 7/32 = 7*2^{-5}$

$$v = (-1)^s M 2^E = (-1)^0 * 7*2^{-5} * 2^{-126} = 7*2^{-131}$$

6 6 0110 7 7 0111 8 8 1000 9 9 1001 A 10 1010 B 11 1011

B 11 1011 C 12 1100 D 13 1101

E 14 1110 F 15 1111

假设浮点数共16位,其中阶码6位,采用类 IEEE 754标准

- 1) 求浮点数20.625的二进制形式
- 2) 求浮点数能够表示的规格化的最大负数和最小负数,以及非规格化的最大负数和最小负数(二进制+真值)

课堂练习(答案)

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

$$Bias = 2^{k-1} - 1 = 31$$

$$E = 4 + Bias = 4 + (2^{6-1} - 1) = 4 + 31 = 32 + 3 = (100011)_{2}$$

S = 0 -> positive number

 $M = 0100 \ 1010 \ 0000 \ 0000 \ 000$

0	100011	010010100
1	6-bits	9-bits

binary: 0100 0110 1001 0100

float: 0x4694

定点小数表示范围

设数值位的位数为n,分析定点小数的范围:

最小正数
$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 当 $X_s = 0$, $X_1 \sim X_{n-1} = 0$ 且 $X_n = 1$ 时, X 为最小正数,

即: X_{最小正数} = 2⁻ⁿ。

当 $X_s=0$, $X_1\sim X_n=1$ 时, X为最大正数, 即:

$$X_{\text{最大正数}} = (1-2^{-n}).$$

定点小数表示范围

原码表示的绝 对值最大负数

X绝对值最大负数(原码表示时) = -(1-2-n)

补码表示的绝 对值最大负数

X 绝对值最大负数(补码表示时) = -1

定点整数表示范围

设数值位的位数为n,分析定点整数的范围:

定点整数表示范围

原码表示的绝对值最大负数

X绝对值最大负数(原码表示时)=-($2^{n}-1$)

补码表示的绝对值最大负数

X 绝对值最大负数(补码表示时) = -2ⁿ

浮点数的表示范围(补码):

设阶码数值位是k位,尾数的数值位是n位

(1)最大正数:

$$X$$
最小正数= $2^{-n} \times 2^{-2^k}$

绝对值最大负数(补码表示):

X绝对值最大负数= $-1 \times 2^{2^{k}-1}$

下面格式中表示的数是什么呢?

$$X_{$$
规格化的最小正数 $= 2^{-1} \times 2^{-2^k}$

浮点数的表示范围:

(1) 采用原码表示阶码和尾数时

浮点正数的表示范围为:

$$+2^{-n}\times 2^{-(2^{k}-1)} <= +X <= +(1-2^{-n})\times 2^{+(2^{k}-1)}$$

浮点负数的表示范围为:

$$-(1-2^{-n}) \times 2^{+(2^{k}-1)} <= -X <= -2^{-n} \times 2^{-(2^{k}-1)}$$

(2) 用补码表示阶码和尾数时

浮点正数的表示范围为:

$$+2^{-n}\times 2^{-2^k} <= +X <= +(1-2^{-n})\times 2^{+(2^k-1)}$$

浮点负数的表示范围为:

$$-1\times2^{+(2^{k}-1)}$$
 <= $-\times$ <= $-2^{-n}\times2^{-2^{k}}$

设 n = 10, k = 4, 阶符、数符各取 1位,分析用补码所表示的浮点数范围.

课堂练习(答案)

(2)

	S	E(6位)	M (9位)	Value
非规格化	1	000 000	000 000 001	-2^(-9)*2^(-30)
	1	000 000	111 111 111	-(1-2^(-9))*2^(-30)
规格化	1	000 001	000 000 000	-1*2^(-30)
	1	111 110	111 111 111	-(2-2^(-9))*2^31
特殊情况	1	111 111	0 != 0	Infinite NaN

Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value
• Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 x 10⁻⁴⁵ Double ≈ 4.9 x 10⁻³²⁴ 	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
 Largest Denormalized Single ≈ 1.18 x 10⁻³⁸ Double ≈ 2.2 x 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. NormalizedJust larger than largest denormal	0001 alized	0000	$1.0 \times 2^{-\{126,1022\}}$
• One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 x 10³⁸ Double ≈ 1.8 x 10³⁰⁸ 	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

宇宙所有原子的数量1080

课堂练习

- 分配给你一个任务,编写一个C 函数用来计算2x的浮点表示。 你意识到完成这个任务的最好 方法是直接创建结果的IEEE单 精度表示。
- 当x太小时返回0.0; 当x太大时返回 $+\infty$ 。
- 填写下面的代码空白,以计算出正确的结果。
- 假设函数u2f返回的浮点值与它 的无符号参数有相同的位表示。

```
float fpwr2(int x) {
    • unsigned exp, frac, u;
    • if (x < _____) {
        • exp = _____;
        • frac = ____;
    • } else if (x < _____) {
        • exp = ____;
        • frac = _____;
    • } else if (x < _____) {
        • exp = ____;
        • frac = ;
    • }else {
        • exp = ____;
        • frac = :
    • u = \exp << 23 \mid frac;
    • return u2f(u);
```


练习答案

- 分配给你一个任务,编写一个C 函数用来计算2^x的浮点表示。你 意识到完成这个任务的最好方法 是直接创建结果的IEEE单精度 表示。
- 当x太小时返回0.0; 当x太大时返回 $+\infty$ 。
- 填写下面的代码空白,以计算出正确的结果。
- 假设函数u2f返回的浮点值与它 的无符号参数有相同的位表示。

```
float fpwr2(int x) {
  • unsigned exp, frac, u;
  • if (x < __-149____) { //太小,返回0
        • \exp = _0_{;}
        • frac = 0 ;
    } else if (x < _-126_) { //非规格化
        • \exp = _0_{;}
        • frac = 1 << (x+149);
  • } else if (x < _128_) { //规格化
        • \exp = \underline{\phantom{a}}x+127\underline{\phantom{a}};
        • frac = 0 ;
  • }else {
        • exp = 255 ; // 太大, 返回+∞
        • frac = 0;
  • u = \exp << 23 \mid frac;
  • return u2f(u);
```


Special Properties of the IEEE Encoding

- 浮点数0和整型0在二进制形式上一样
 - 所有bits都是0 (+0)
- 几乎总可以使用unsigned integer的比较大小方式
 - 必须首先比较符号位
 - 必须考虑-0=0
 - NaNs的问题
 - 比任何其他值都大
 - NaNs有多个值
 - 其他情况OK
 - 非规格化<规格化
 - 规格化 < 无穷大

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, Floating point in C
- Addition, multiplication
- Summary

Creating Floating Point Number

• Steps

- 规格化,首位为1
- 尾数部分进行round
- 后规格化(Postnormalize)处理round带来的问题

s exp frac

3-bits

4-bits

Case Study

• Convert 8-bit unsigned numbers to tiny floating point format **Example Numbers**

_	
128	10000000
13	00001101
33	00010001
35	00010011
138	10001010
63	00111111

SUSTINENT OF CHINA

规格化

- 要求
 - · 小数点选择合适的位置,数表示为1.xxxxx
 - 左移数值或右移小数点,指数减1

Value	Binary	Fraction	Exponent
128	1000000	1.000000	7
13	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

S	ехр	frac
1	4-bits	3-bits

舍入

s exp frac

• 向偶数舍入

1 4-bits

3-bits

Value	Fraction	Rounded
128	1.000000	1.000
13	1.1010000	1.101
17	1.0001000	1.000
19	1.0011000	1.010
138	1.0001010	1.001
63	1.1111100	10.000

判溢出

• 问题

• 舍入操作可能导致 溢出

1 4-bits

exp

3-bits

frac

• 可能需要右移M,增加E

Value	Rounded	Ехр	Adjusted	Result	
128	1.000	7		128	
13	1.101	3		13	
17	1.000	4		16	
19	1.010	4		20	
138	1.001	7		144	
63	10.000	5	1.000/6	64	

舍入

• Rounding Modes (illustrate with \$ rounding)

•	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
• 向0舍入	\$1	\$1	\$1	\$2	- \$1
• 向下舍入(-∞)	\$1	\$1	\$1	\$2	- \$2
• 向上舍入(+∞)	\$2	\$2	\$2	\$3	- \$1
• 就近舍入(default)	\$1	\$2	\$2	\$2	- \$2

• 向偶数舍入(距离两边一样的中间结果,向偶数舍入)

Closer Look at Round-To-Even

- 默认的舍入模式
 - 如果不用汇编语言,很难改为其他round模式
 - 其他模式都是静态偏移
 - round的方向是确定的
 - 所以round-to-even的好处是数字有两个round方向,可以避免/减小统 计偏差
- 应用在10进制数字上的例子
 - E.g., round to nearest hundredth

```
7.89499997.89 (Less than half way)
```

7.89500017.90 (Greater than half way)

7.89500007.90 (Half way—round up)

7.88500007.88 (Half way—round down)

Rounding Binary Numbers

- 二进制小数
 - "Even" 当最小的数字是0时
 - "Half way" 当bits正好在中间位置时 = **100**...2

Examples

• Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded
Value				
2 3/32	10.00011_2	10.00_{2}	(<1/2—down)	2
2 3/16	10.00110_2	10.01_{2}	(>1/2—up)	2 1/4
2 7/8	10.11100_2	11.00_{2}	(1/2—up)	3
2 5/8	10.10100_2	10.10_{2}	(1/2—down)	2 1/2

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - •int, float和double之间的转换会改变bit值
 - double/float → int
 - 去掉小数部分
 - 向0舍入
 - 当超过范围或NaN时没有定义,一般设为Tmin(可能过大整数得到负数 Tmin)
 - int → double
 - 精确的转换, int数值 < 53 bit
 - int → float
 - 按照舍入模式来进行舍入

课堂练习

- 对于下面的每一个C语言表达式:
 - 或者证明各种情况都为真
 - 或者解释为什么不为真

```
int x = ...;
float f = ...;
double d = ...;
```

假设d和f都不是NaN

```
• x == (int)(float) x
• x == (int) (double) x
f == (float) (double) f
• d == (double)(float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```


Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
• x == (int)(float) x
• x == (int) (double) x
• f == (float)(double) f
• d == (double)(float) d
• f == -(-f);
• 2/3 == 2/3.0
• d < 0.0 \Rightarrow ((d*2) < 0.0)
• d > f \Rightarrow -f > -d
• d * d >= 0.0
• (d+f)-d == f
```


Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, Floating point in C
- Addition, multiplication
- Summary

浮点数的基本运算

•
$$x +_f y = Round(x + y)$$

•
$$x \times_f y = Round(x \times y)$$

- Basic idea
 - 首先计算精确结果
 - 然后去适配精度,进行溢出/舍入
 - 当阶过大时,可能溢出,变为+/-∞
 - 尾数可能需要舍入

Floating Point Multiplication

- $(-1)^{s1}$ **M1** 2^{E1} x $(-1)^{s2}$ **M2** 2^{E2}
- Exact Result: $(-1)^s M 2^E$
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent *E*: *E*1 + *E*2
- 结果修正
 - 如果*M*≥2, M右移,对应增大E
 - 如果E越界,就overflow
 - 最后M的值再进行舍入
- 实现
 - 复杂度最高的部分是尾数的乘法

浮点数加减运算

$$X = m_X \times 2^{E_X}$$
 $Y = m_Y \times 2^{E_Y}$

(1)对阶操作,求两数阶码的差: $\Delta E = E_X - E_Y$,使阶码小的数的 尾数右移 ΔE 位,调整其阶码值与大的阶码值相同。

对阶原则: 小阶向大阶看齐

方法: 求阶差

万法: 深所差
$$\Delta E = E_x - E_y = \begin{cases} = \mathbf{0} & E_x = E_y & \text{已对齐} \\ > \mathbf{0} & E_x > E_y & y \ \text{向} x \ \text{看齐} \\ < \mathbf{0} & E_x < E_y & x \ \text{向} y \ \text{看齐} \end{cases}$$

对阶 尾数加减 规格化 舍入 判溢出

例
$$x = 0.1101 \times 2^{10}$$
, $y = 0.1011 \times 2^{01}$ 求 $x + y$

(阶码取 4 位, 尾数取 7位, 各含一位符号位)

$$\mathbf{M}$$
: $[x]_{\dot{\gamma}_1} = 00,010;00.110100$

$$[y]_{\begin{subarray}{l}\begin$$

① 对阶

$$[\Delta E]_{\stackrel{?}{\uparrow}} = [E_x]_{\stackrel{?}{\uparrow}} - [E_y]_{\stackrel{?}{\uparrow}} = 00,010 \\ + 11,111 \\ \hline 100,001$$

阶差为 +1 $\therefore M_v$ 右移, E_v +1

$$\therefore [y]_{k'} = 00,010;00.0101100$$

② 尾数求和

$$[M_x]_{\stackrel{}{\uparrow}} = 00.1101000$$

+ $[M_y]_{\stackrel{}{\uparrow}} = 00.0101100$ 对阶后的 $[M_y]_{\stackrel{}{\uparrow}}$ 01.0010100 尾数溢出需右规

AND CHARLES TO THE STATE OF THE

$$[x+y]_{\nmid h} = 00, 010; 01.0010100$$

③ 右规

$$[x+y]_{\nmid k} = 00, 011; 00. 10010100$$

$$\therefore x + y = 0.100101 \times 2^{11}$$

对阶 尾数加减 规格化 舍入 判溢出

例
$$x = 0.1101 \times 2^{01}$$
, $y = (-0.1010) \times 2^{11}$ 求 $x + y = ?$

解:
$$[x]_{*} = 0,01;0.1101$$
 $[y]_{*} = 0,11;1.0110$

1. 对阶

① 求阶差
$$[\Delta E]_{\stackrel{}{\uparrow}} = [E_x]_{\stackrel{}{\uparrow}} - [E_y]_{\stackrel{}{\uparrow}} = 0,01$$

$$+ 1,01$$

$$1,10$$

阶差为负 (-2) $\therefore M_x$ 右移 2位 $E_{x}+2$

② 对阶
$$[x]_{\stackrel{?}{\uparrow}} = 0, 11; 0.0011$$
 01 保留位

2. 尾数求和

3. 规格化

尾数左移一位,阶码减 1。

上例 $[x+y]_{\stackrel{?}{\Rightarrow}} = 0, 11; 1.100101$

左规后 $[x+y]_{\stackrel{.}{\mathbb{A}}} = 0, 10; 1.00101$

4.舍入处理

$$x + y = (-0.1110) \times 2^{10}$$

Floating Point Addition

- $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
 - •假设E1 > E2, 首先对阶, E2->E1, M2变小
- 准确结果: (-1)^s M 2^E
 - •Sign s, significand M:
 - Result of signed align & add
 - •Exponent *E*: *E*1

Get binary points lined up

- 修正:
 - •如果M≥2, 右移M, 增加E
 - •如果M < 1,将M 左移 k 位到合法区间, E 减小 k (可能规格化,可能非规格化)
 - •如果E超过边界,则overflow
 - •如果M位数过长,则进行舍入

Mathematical Properties of FP Add

• 是否符合阿贝尔群的特征

Yes

Yes

No

- 加法的封闭性?
 - 但是有可能产生无穷或NaN
- 交換律?
- 结合律?
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
- 0 是加法单位元?
- 每个元素都有加法逆元?
 - Yes, 除了infinities & NaNs

Yes

Almost

- 单调性
 - $a > b \Rightarrow a+c > b+c$?
 - 除了infinities & NaNs

Almost

Mathematical Properties of FP Add

- FP加法不具有结合率
 - 对编译器有很大影响
 - 例如x = a + b + c; y = b + c + d;
 - 编译器试图优化,减少一次运算
 - t = b + c;
 - x = a + t;
 - y = t + d
 - 这样可能产生不同的值,编译器一般会做保守的选择,避免对程序功能产生影响

Mathematical Properties of FP Mult

属性

• 乘法是否封闭?

Yes

• 但可能产生 infinity or NaN

交換律?

Yes

结合率?

No

- 可能导致溢出,或者由于舍入带来的不精确
- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20=inf, 1e20*(1e20*1e-20)=1e20

• 1是乘法的单位元?

Yes

• 乘法对加法的分配率?

No

- 可能导致溢出,或者由于舍入带来的不精确
- 1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN
- 单调性

• $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?

Almost

• 除了infinities & NaNs

Floating Point Comparison

- 不能用==,!=判定浮点数相等或不等
 - 0.1这样10进制整齐的数在二进制下可能无法精确表示
 - 要进行近似;而且数字在处理几次之后,会得到一些误差(舍入导致)
 - 所以,可能两个0.1的二进制的表达不完全一样
- 采用fabs(f1-f2) <= precision
 - precision为自己预设的精度,如1e-6
- •但以上precision是绝对精度,如果浮点数非常大,可能用1e-6就不合适了
 - 应该用相对精度

Floating Point Comparison

- 相对误差和绝对误差结合的方式
 - bool IsEqual(float a, float b, float absError, float relError) {
 - if (a==b) return true;
 - if (fabs(a-b)<absError) return true;
 - if (fabs(a)<fabs(b)) return (fabs((a-b)/a)<relError)? true: false;
 - return (fabs((a-b)/b<relError)? true: false;
 - •

Summary

- IEEE浮点数标准有清晰的数学属性
- 浮点数表示数字的形式是 M x 2^E
- 和实数代数不一样
 - 违反结合率和分配率
 - 使compiler和一些严格的计算型应用程序很难做