Conservatoire national des arts et métiers

RCP105 - Modélisation, optimisation, complexité et algorithmes

Présentation

Prérequis

Avoir le niveau Bac+2 (DPCT du Cnam, DUT, BTS) en informatique.

Objectifs pédagogiques

Présenter des concepts, des méthodes de base indispensables pour de futurs ingénieurs chargés de la conception et développement en informatique.

Compétences

Modélisation et optimisation par les graphes

Assimilation de la notion de complexité.

Modélisation et analyse de systèmes dynamiques concurrents.

Programme

Contenu

Algorithmes de Graphes

Concepts de base de la théorie des graphes.

Connexité, forte connexité, mise en ordre.

Fermeture transitive. Algorithme de Roy -Warshall

Parcours des graphes (en largeur, en profondeur) : applications notamment à la connexité et à la forte connexité (algorithme de TARJAN).

Chemins (algorithmes de Ford, Dijkstra, Floyd).

Ordonnancements (méthodes PERT et MPM et problèmes d'atelier)

Flot maximal (Ford Fulkerson) Flot à coût minimal (Busacker-Cowen)

Arbres optimaux (Kruskal, Prim)

Introduction à la complexité des algorithmes et des problèmes

Classes P, NP - Équivalence et réductions entre problèmes - Problèmes NP-complets, NP-difficiles - Théorème de COOK.

Réseaux de Petri (RdP)

Systèmes concurrents, formalisme des réseaux de Petri , exemples de modélisation de systèmes dynamiques à événements discrets.

Analyse comportementale : Graphe des marquages accessibles, arborescence de Karp et Miller.

Équation d'état - Semi-flots (invariant de places) analyse structurelle -

Propriétés génériques (finitude, sûreté, vivacité), propriétés spécifiques (introduction a la logique temporelle linéaire) -

Etude de cas

Au second semestre, les UEs NFP 103 (applications concurrentes), RCP 103 (evaluation de performances) font suite à cet enseignement.

Description des modalités de validation

Le responsable national relit et valide les sujets proposés par les CRA

Bibliographie

Titre Auteur(s)

* Valide le 14-04-2020

Code: RCP105

6 crédits

Responsabilité nationale :

EPN05 - Informatique / Kamel BARKAOUI

Contact national:

EPN05 - Informatique 2 rue Conté 75003 Paris 01 40 27 22 58 Swathi Rajaselvam

swathi.ranganadin@cnam.fr

Méthodes formelles pour les systèmes répartis et coopératifs Traité IC2, série Informatique et Systèmes d'Information

Coordinators: HADDAD
Serge, KORDON Fabrice,
PETRUCCI Laure

Introduction to Graph Theory

Douglas West