Marine Ecological Genetics

12. DNA barcoding | Computer practical

- Extract DNA barcodes from Sanger reads
- Identify samples with reference databases (BOLD, GenBank)
- Evaluate genetic distances and accuracy of identification

Martin Helmkampf

Access files for practical

Download files from GitHub:

https://github.com/mhelmkampf/meg24.git (Code | Download ZIP)

Alternatively, run git from terminal:

git clone https://github.com/mhelmkampf/meg24.git

Open script called MarEcolGen_barcoding.sh in a text editor

#fischdetektive

Citizen science project at GEOMAR (2017) with over 700 participants (10–14 years)

Where does our seafood come from, and is it labeled correctly?

Thorsten Reusch, GEOMAR

ID

Sample collection

COI barcode

Approx. 650 bp in 5' region of cytochrome c oxidase subunit I (COI)

>MN604318.1 Oncorhynchus keta cytochrome c oxidase subunit I gene, complete cds; mitochondrial GTGGCAATCACACGATGATTCTTCTCAACCAACCACAAAGACATTGGCACCCTCTATTTAGTATTTGGTGCCTGAGCCGGGATAGTAGGCACCGCCCTG AGCCTACTAATTCGGGCAGAACTAAGCCAGCCAGGCGCTCTTCTAGGGGATGACCAGATCTACAATGTAATCGTTACAGCCCATGCCTTCGTTATAATT ATAAGCTTCTGACTCCTACCTCCGTCCTTCCTCCTCCTTCTTCATCTGGAGTTGAAGCCGGCGCTGGTACCGGGTGGACAGTTTATCCCCCTCTA ACGACCATTATCAACATAAAACCCCCAGCTATTTCTCAGTACCAAACCCCGCTTTTTGTCTGAGCTGTACTAATCACTGCTGTACTTCTACTATTATCA CAACACCTCTTTTGATTCTTCGGTCACCCAGAGGTCTATATTCTGATCCTCCCAGGCTTTGGTATAATTTCACATATCGTTGCATATTACTCTGGTAAG AAAGAACCTTTCGGGTACATAGGAATAGTGTGAGCTATAATAGCCATCGGCTTGTTAGGATTTATCGTTTGAGCCCACCACACATATTTACTGTCGGGATG GACGTGGACACTCGTGCCTACTTTACATCTGCCACCATAATTATCGCTATCCCCACAGGAGTAAAAGTATTTAGCTGACTAGCTACACTGCACGGAGGC TCGATCAAATGAGAGACACCACTTCTCTGAGCCCTAGGATTTATCTTCCTATTTACAGTGGGCGGATTAACGGGCATCGTCCTTGCTAACTCCTCATTA GACATTGTTTTACATGACACTTATTACGTAGTCGCCCATTTCCACTACGTACTCTCAATAGGAGCTGTATTTGCCATTATGGGCGCTTTCGTACACTGA TTCCCCCTATTCACAGGGTACACCCTTCACAGCACATGAACCAAAATCCATTTTGGAATTATATTTATCGGTGTAAATTTAACCTTTTTCCCACAGCAT TTCCTAGGCCTCGCAGGGATACCACGACGGTACTCTGACTACCCGGACGCCTACACGCTATGAAACACTGTATCCTCAATCGGATCCCTTGTCTCCTTA GTAGCTGTAATTATGTTCCTATTTATTCTTTGAGAGGCTTTTGCTGCCAAACGAGAAGTAGCATCAATCGAAATAACTTCAACAAACGTAGAATGACTA CACGGATGCCCCCCCCCCCACCACACACTTCGAGGAACCAGCATTTGTCCAAGTACGAACGTACTAA

Sanger sequencing

Estevezj, CC BY-SA 3.0

G A T G T T C G A A
G A T C - - - G A A
G A C C - T C G - T

Arranges nucleotide or amino acid sequences

so that the number of mismatches and gaps are minimized

- Multiple sequence alignments can be constructed progressively from pairwise alignments
- Computationally complex, often requires heuristic solutions
- Key to identify evolutionary relationships between sequences (e.g. homology)

BOLD

Matching sequences to a database with BLAST

Algorithm overview

- Split query into very short segments (k-mers or words)
- Find exact matches between words and sequences in database (seeds)
- Extend matches to local alignments (HSP; stops once too many mismatches occur)
- Evaluate statistical significance of each HSP (e-value)

	Description	Scientific Name	Max Score		Query Cover		Per.	Acc. Len	Accession
5	Oncorhynchus keta mitochondrial COX1 gene for cytochrome c oxidase subunit 1, partial cds, isolate: OK_M08F	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	772	LC094471.1
5	Oncorhynchus keta mitochondrial COX1 gene for cytochrome c oxidase subunit 1, partial cds, isolate: OK_M01F	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	772	LC094464.1
5	Oncorhynchus keta isolate 10_Narva cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	655	KR778851.1

. . .

Genetic distances

Exercise 2

AAGCCAGCCAGGCGCTCTTCTAGGGGATGACCAGATCTACAATGTAATCG AAGTCAACCTGGTGCACTTCTTGGTGATGATCAAATTTATAATGTGATCG # 50 positions total

13 differences

Uncorrected distance

$$p = 13 / 50 = 0.26$$

K2P distance (Kimura 1980)

$$K = 0.33$$

$$K=-rac{1}{2}\ln((1-2p-q)\sqrt{1-2q})$$

p: proportion of transitions (A \leftrightarrow G, C \leftrightarrow T)

$$8/50 = 0.16$$

q: proportion of transversions

$$5/50 = 0.1$$

Barcode gap

Comparing genetic distances within BIN and to nearest neighbor (NN) BIN

Large barcode gap

Oncorhynchus keta

Small barcode gap

Gadus chalcogrammus

#fischdetektive results

Mislabeling seems to be only a moderate problem in Germany in frozen and fresh fish (but may be higher in Sushi-grade fish and processed fish products)

Portable 3rd gen sequencing

Oxford Nanotechnologies MinION

96-well plate

Indexing during PCR Library preparation

whatech.com

blogs.nature

Take-home messages

- DNA barcoding can be a powerful tool to identify species from tissue or environmental samples
- It is not foolproof, relies on the quality of the reference database, and does not replace taxonomic expertise
- For animals, the most common marker is cytochrome c oxidase I (COI)
- Important databases are BOLD (curated) and GenBank (most comprehensive)