

A Study on the Prediction of Depression using Semi-supervised Learning

Korea University,
Department of Medical Informatics,
Intelligent Medical Data Lab,
Eun Song Bang(Bang08877@gmail.com)

Index

- Introduction
- Material
- Method
- Results
- Conclusion

Introduction

- Major Depressive Disorder(MDD)
 - known as clinical depression, unipolar depression or, simply, depression.

COVID-19: Depression, anxiety soared 25 per cent in a year

Number of depressed patients in the last 5 years (2017-2021)

-The Health Insurance Review and Assessment Service-

Introduction

- Major Depressive Disorder(MDD)
 - known as **clinical depression**, **unipolar depression** or, simply, **depression**.
 - Major symptom
 - Depressed mood
 - Loss of interest/pleasure
 - ☐ Slow or agitated psychomotor skills
 - Experience of insomnia or hypersomnia
 - Fatigue or loss of energy
 - Recurring thoughts of death, suicidal ideation, or having a suicide plan or suicide attempt

Material

- Korea National Health and Nutrition Examination Survey 2020.
 - provided by the Korea Disease Control and Prevention Agency (KDCA).

Data	Description	
Survey period	January 2020 – December 2020	
Total participants	7,359	
Used participants (age >= 19)	5,386	
Number of Features	17	
Total Male	46.4%	

Material

Semi-Supervised Learning

Semi-Supervised Learning

Train a supervised model using labeled data

Labeled Data

Make predictions on unlabeled data using the model from the previous step

Unlabeled Data

Take predictions satisfying probability threshold or k_best criteria and add them to the pseudo-labeled set

Pseudo-Labeled Data

Semi-Supervised Learning

Combine labeled and pseudo-labeled data and train the next version of the model

Labeled Data

Pseudo-Labeled Data

Unlabeled Data

Take predictions satisfying probability threshold or k_best criteria and add them to an existing pseudo-labeled set

Pseudo-Labeled Data

Semi-Supervised Learning

Once again, combine labeled and pseudo-labeled data and repeat the above process until all data has been labeled, no additional observations satisfy the criteria, or max number of iterations has been reached

Results

• The result of the supervised learning models - Make a Classifier

Model	Type of source	Precision	Recall	F1 score
Decision Tree	Original source	0.63	0.64	0.64
Classifier	Oversampling	0.63	0.61	0.62
Random Forest	Original source	0.61	0.72	0.66
Classifier	Oversampling	0.59	0.6	0.6
CVA	Original source	0.65	0.76	0.7
SVM	Oversampling	0.67	0.56	0.61
Logistic Pogression	Original source	0.64	0.71	0.68
Logistic Regression	Oversampling	0.69	0.59	0.63
Ada Boost Classifier	Original source	0.61	0.71	0.65
Ada boost Classifier	Oversampling	0.63	0.71	0.67
XGB Classifier	Original source	0.61	0.72	0.66
AGD Classifier	Oversampling	0.61	0.67	0.64
LCDM Classifier	Original source	0.62	0.71	0.66
LGBM Classifier	Oversampling	0.63	0.59	0.61

Results

• The result of the semi-supervised learning model

The number of epochs

	Model	Type of Learning	Precision	Recall	F1 score
SVM		Supervised learning	0.65	0.76	0.7
	SVM	Semi-supervised learning	0.66	0.77	0.71

Conclusion

- We can identify that there is a improvement of model performance on semi-supervised learning.
- We anticipate that this study could help predict depression in people who have not yet a diagnosis.

THANK YOU FOR LISTENING ©

Reference

- Santomauro, D.F., et al.: Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. The Lancet. 398, 1700-1712 (2021)
- · World Health Organization.: World mental health report: transforming mental health for all. World Health Organization (2022)
- World Health Organization. Regional Office for the Eastern Mediterranean.: Depression. World Health Organization. Regional Office for the Eastern Mediterranean (2019)
- Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Machine Learning 109, 373-440 (2019)
- Aleem, S., Huda, N.u., Amin, R., Khalid, S., Alshamrani, S.S., Alshehri, A.: Machine Learning Algorithms for Depression:
 Diagnosis, Insights, and Research Directions. Electronics. 11, 1111 (2022)
- Yazdavar, A.H., Al-Olimat, H.S., Ebrahimi, M., Bajaj, G., Banerjee, T., Thirunarayan, K., Pathak, J., Sheth, A.:
 Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media. Proceedings of the 2017
 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 1191-1198 (2017)
- Wang, D., Lei, C., Zhang, X., Wu, H., Zheng, S., Chao, J., Peng, H.: Identification of Depression with a Semi-supervised GCN based on EEG Data. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2338-2345 (2021)
- Guimin Dong, M.T., Lihua Cai, Laura E. Barnes, Mehdi Boukhechba: Semi-supervised Graph Instance Transformer for Mental Health Inference. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), pp.1221-1228 (2021)

Disease Control and Prevention Agency.: The seventh Korea National Health and Nutrition Examination Survey

Acknowledgments. This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ICAN(ICT Challenge and Advanced Network of HRD) program(IITP-RS-2022-00156439) supervised by the IITP(Institute of Information & Communications Technology Planning & Evaluation) and the Basic Science Research Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (NRF-2021R1A2C1009290).

Original Entire dataset (N = 322)

Data Imputation*
Outlier detection*
Min-Max scaler
Label Encoding

Entire dataset (N = 260)

Train set (N = 208)

Test set (N = 52)

Machine Learning Model

Semi-Supervised Learning

Entire dataset

Introduction

COVID-19: Depression, anxiety soared 25 per cent in a year

Major Depressive Disorder(MDD)

known as clinical depression,
 unipolar depression or, simply,
 depression.

- Major symptom

- Depressed mood
- Loss of interest/pleasure
- ☐ Slow or agitated psychomotor skills
- Experience of insomnia or hypersomnia
- Fatigue or loss of energy
- Recurring thoughts of death, suicidal ideation, or having a suicide plan or suicide attempt

