PAMUKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2021 BAHAR

Biçimsel Diller ve Otomata Teorisi

Formal languages and automata theory

Küme, İlişki, Fonksiyon

Bir küme nesnelerden oluşur

```
L = \{a, b, c, d\} a, b, c, d kümenin elemanları veya üyeleridir b \in L, z \notin L |L|=4 kardinalite (cardinality)
```

Elemanların sırası ve tekrarı önemli değildir

```
A = \{red, blue, red\} ile B = \{red, blue\} aynıdır |A| = |B| = 2 \{3, 1, 9\}, \{9, 1, 3\} ve \{3, 9, 1\} aynıdır
```

Empty ve singleton

Bir elemana sahip küme singleton, hiç elemanı olmayan küme empty olarak adlandırılır.

```
{1}, {blue} singleton
{ }, Ø empty set
```

Sonsuz küme

N = {0, 1, 2, 3, ...} doğal sayılar kümesi

Kümeler özellikleriyle de tanımlanabilir

$$I = \{1, 3, 9\}$$
 $G = \{3, 9\}$

 $O = \{x: x \in N \text{ and } x \text{ is not divisible by } 2\} \text{ odd numbers}$

Altküme

 $A \subseteq B$, A kümesi B kümesinin altkümesi (A = B olabilir) $A \subset B$,

A kümesi B kümesinin öz (proper) altkümesi ($A \neq B$)

Union (Birleşim)

$$A \cup B = \{x: x \in A \text{ or } x \in B\}$$

Intersection (Kesişim)

$$A \cap B = \{x: x \in A \text{ and } x \in B\}$$

Difference (Fark)

$$A - B = \{x: x \in A \text{ and } x \notin B\}$$

 $\{1, 3, 9\} - \{3, 5, 7\} = \{1, 9\}$

Disjoint (bağımsız / ayrık)

$$A \cap B = \{\}, \emptyset$$

Küme işlemleri

Idempotency $A \cup A = A \land A \cap A = A$

Commutativity $A \cup B = B \cup A$

(eş kuvvetli)

(Değişme) $A \cap B = B \cap A$

Associativity $(A \cup B) \cup C = A \cup (B \cup C)$

(ilişkisellik) $(A \cap B) \cap C = A \cap (B \cap C)$

Distributivity $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

(Dağılma) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Absorption $(A \cup B) \cap A = A$, $(A \cap B) \cup A = A$

DeMorgan's law on set difference $A - (B \cup C) = (A - B) \cap (A - C)$

 $A - (B \cap C) = (A - B) \cup (A - C)$

$$S = \{\{a, b\}, \{b, c\}, \{b, c, d\}\}, A = \{a, b, c, d\}$$

Birden fazla kümede birleşim

$$US = \{x: x \in P \text{ for some set } P \in S\}$$
 $US = \{a, b, c, d\}$

Birden fazla kümede kesişim

$$\mathbf{n}_{S} = \{x: x \in P \text{ for each set } P \in S\}$$

$$NS = \{b\}$$

Power set 2^A

Bir kümenin boş kümede dahil tüm altkümeleri

 2^{A} , A kümesinin power kümesi $A = \{c, d\}$ ise $2^{\{c, d\}} = \{\{c, d\}, \{c\}, \{d\}, \emptyset\}$

• Partition Π

Π, power kümesinin altkümesidir, boş kümeyi içermez ve A kümesinin her elemanını sadece bir kez bulundurur

 $oldsymbol{1}oldsymbol{1}$ içindeki her eleman, boş kümeden farklıdır

II içindeki farklı elemanlar, disjoint kümedir

$$\mathbf{U}\Pi = \mathbf{A}$$

$$\{ \{a, b\}, \{c\}, \{d\} \}$$
 partition

$$\{ \{a, b\}, \{c\}, \{d\} \}$$
 partition, $\{ \{b, c\}, \{c, d\} \}$ partition değil

Ordered pair

Nesneler arasındaki ilişkiler kümelerle gösterilmes sıralı çiftler (ordered pair) ile gösterilir (a, b) sıralı çifti için a ve b components olarak adlandırılır (a, b) ile {a, b} farklıdır (a, b) ile (b, a) farklıdır. {a, b} ile {b, a} aynıdır

iki sıralı çift (a, b) ve (c, d) eşittir eger a = c ve b = d ise

Cartesian product (Kartezyen carpımı)

A ve B kümelerinin kartezyen çarpımı AxB ile gösterilir ve (a, b) sıralı çiftidir $(a \in A \ ve \ b \in B)$

 $\{1, 3\} \times \{b, c\} = \{(1, b), (1, c), (3, b), (3, c)\}$

Binary relation

A ve B kümeleri arasında binary relation AxB 'nin altkümesidir

Örnek:

```
\{1,3\} ve \{b,c\} kümeleri arasında \{(1,b),(3,b)\} bir binary relation olarak tanımlanır. \{(i,j):i,j\in N\ ve\ i< j\} küçüktür ilişkisi olup NxN'nin altkümesidir \{(1,2),(1,3),(2,6),...\} şeklinde sonsuz elemana sahiptir
```

Tuples and relations

```
(a_1, a_2, a_3, ...., a_n) ordered tuple olarak adlandırılır (n-tuple) n=2 için ordered pairs, n=3 için ordered triples n=4 için quadruples, n=5 için quintuples
```

n=1 için unary relation n=2 için binary relation n=3 için ternary relation n-ary relation

Function

A ve B kümeleri arasında bir fonksiyon, binary relation R = (a, b)'dir ve her $a \in A$ için kesinlikle ve sadece bir ordered pair vardır.

 $f: A \rightarrow B$, A kümesinden B kümesine tanımlanmış f fonksiyonu

Domain ve Image

A domain olarak adlandırılır

f(a) image olarak adlandırılır ve her a için unique değerdir

Arguments ve Value

 $f: A_1 \times A_2 \times ... \times A_n \to B$ fonksiyon ise $f(a_1, a_2, ..., a_n) = b$ şeklinde gösterilir ve $a_i \in A_i$, i = 1, ..., n ve $b \in B'$ dir.

Burada a_i arguments ve b ise value olarak adlandırılır.

One-to-one (birebir)

F

Bir $f: A \to B$ fonksiyonu one-to-one'dır eğer her farklı $a, a' \in A$ için $f(a) \neq f(a')$ ise

Onto (örten)

Bir $f: A \to B$ fonksiyonu onto'dur eğer B'nin her elemanı f fonksiyonu altında A'nın bazı elemanları için image ise

Bijection (birebir örten)

Bir $f: A \to B$ fonksiyonu bijection'dir eğer f fonksiyonu hem one- to-one hem de onto ise

Inverse (ters)

 $R \subseteq AxB$ binary ilişkisinin tersi $R^{-1} \subseteq BxA$ şeklinde tanımlanır

Graph

- A bir küme ve R⊆ AxA ise A üzerinde bir binary ilişki olsun. Bu ilişki bir directed graph ile gösterilebilir.
- Graph üzerinde her bir node A'nın bir elemanını gösterir.
- Her $(a, b) \in R$ için a elemanı temsil eden node'dan b elemanını temsil eden node bir ok (kenar edge) çizilir.

Şekil: $R = \{(a, b), (b, a), (a, d), (d, c), (c, c), (c, a)\}$ ilişkisine ait graph

Graph

 $R = \{(i, j): i, j \in N \text{ } ve \text{ } i \leq j\}$ ilişkisine ait graph

Reflexive (yansımalı)

Bir ilişki $R \subseteq AxA$ reflexive'dir eğer her bir $a \in A$ için $(a, a) \in R$ ise Figure 1 reflexive degildir ancak Figure 2 reflexive'dir.

Symmetric

Bir ilişki $R \subseteq AxA$ symmetric'tir eğer $(a, b) \in R$ iken $(b, a) \in R$ ise

Antisymmetric

Bir ilişki $R \subseteq AxA$ antisymmetric'tir eger herhangi bir ordered pair $(a, b) \in R$ iken

(b, a)∉R ise

Transitive (geçişli)

Bir ilişki $R \subseteq AxA$ transitive'dir eger $(a, b) \in R$ ve $(b, c) \in R$ iken $(a, c) \in R$ ise

Equivalence relation

Bir ilişki reflexive, symmetric ve transitive ise equivalence relation olarak adlandırılır.

Partial order

Bir ilişki reflexive, antisymmetric ve transitive ise partial order olarak adlandırılır.

Total order

Bir partial order $R \subseteq AxA$ total order'dır eğer $a, b \in A$ iken $(a, b) \in R$ veya $(b, a) \in R$ ise

Path

Bir binary ilişkideki path(yol) $(a_{\nu}, a_{2\nu}, ..., a_{n\nu})$ sıralı serisidir ve bu seride her $(a_{\nu}, a_{i+1}) \in R'$ dir.

Length

Bir yol $(a_1, a_2, ..., a_n)$ için length n'dir.

Cycle

Bir yol $(a_1, a_2, ..., a_n)$ cycle'dır eger $(a_n, a_1) \in R$ ise ve tüm a_i 'ler farklı ise

Reflexive transitive closure

Eger bir R ilişkisi reflexive ve transitive değilken, R ilişkisini içeren R^* ilişkisi reflexive ve transitive ise, R^* ilişkisi R ilişkisinin reflexive transitive closure'u olarak adlandırılır. (R^* ilişkisi mümkün olan en az kenara sahiptir.)

Tanım

 $R \subseteq A^{2'}$ de tanımlı

 $R^* = \{(a, b) : a, b \in A \text{ ve } R'\text{de } a' \text{ dan } b' \text{ye bir } path(yol) \text{ varsa}\}$

What are these sets? Write them using braces, commas, numerals, ... (for infinite sets), and \emptyset only.

- (a) $(\{1, 3, 5\} \cup \{3, 1\}) \cap \{3, 5, 7\}$
- **(b)** \cup {{3}, {3, 5}, \cap {{5, 7}, {7, 9}}}
- (c) $(\{1, 2, 5\} \{5, 7, 9\}) \cup (\{5, 7, 9\} \{1, 2, 5\})$
- (d) $2^{\{7,8,9\}} 2^{\{7,9\}}$
- (e) 2^{\varnothing}
- (f) $\{x : \exists y \in N \text{ where } x = y^2\}$
- (g) $\{x : x \text{ is an integer and } x^2 = 2\}$

- (a) {3, 5}
- **(b)** {3, 5, 7}
- (c) {1, 2, 7, 9}
- (d) {8}, {7, 8}, {8, 9}, {7, 8, 9}
- (e) $\{\emptyset\}$
- (f) {0, 1, 4, 9, 25, 36,...} (the perfect squares)
- (g) \varnothing (since the square root of 2 is not an integer)

Prove each of the following:

(a)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(c)
$$A \cap (A \cup B) = A$$

(a)
$$A \cup (B \cap C) = (B \cap C) \cup A$$

= $(B \cup A) \cap (C \cup A)$
= $(A \cup B) \cap (A \cup C)$

(b)
$$A \cap (B \cup C) = (B \cup C) \cap A$$

= $(B \cap A) \cup (C \cap A)$
= $(A \cap B) \cup (A \cap C)$

(c)
$$A \cap (A \cup B) = (A \cup B) \cap A$$

= A

Write each of the following explicitly:

(a)
$$\{1\} \times \{1, 2\} \times \{1, 2, 3\}$$

(b)
$$\emptyset \times \{1, 2\}$$

(c)
$$2^{\{1,2\}} \times \{1,2\}$$

```
(a) \{(1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2),, (1,2,3)\}
```

(b) \varnothing

(c) $\{(\varnothing,1),(\varnothing,2),(\{1\},1),(\{1\},2),(\{2\},1),(\{2\},2),(\{1,2\},1),(\{1,2\},2)\}$

Let $R = \{(a, b), (a, c), (c, d), (a, a), (b, a)\}.$ What is $R \circ R$, the composition of R with itself? What is R^{-1} , the inverse of R? Is R, $R \circ R$, or R^{-1} a function? (a) R $^{\circ}$ R = {(a, a), (a, d), (a, b), (b, b), (b, c), (b, a), (a, c)}

(b) $R^{-1} = \{(b, a), (c, a), (d, c), (a, a), (a, b)\}$

(c) None of R, R $^{\circ}$ R or R inverse is a function.

For each of the following sets, state whether or not it is a partition of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

- (a) {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}
- **(b)** $\{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}, \{10\}\}$
- (c) {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}
- (d) {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}}

- a) yes
- b) no, since no element of a partition can be empty.
- c) no, 0 is missing
- d) no, since, each element of the original set S must appear in only one element of a partition of S.

For each of the following relations, state whether it is a partial order (that is not also total), a total order, or neither. Justify your answer.

- (a) DivisibleBy, defined on the natural numbers. $(x, y) \in DivisibleBy$ iff x is evenly divisible by y. So, for example, $(9, 3) \in DivisibleBy$ but $(9, 4) \notin DivisibleBy$.
- (b) LessThanOrEqual defined on ordered pairs of natural numbers. $(a, b) \le (x, y)$ iff $a \le x$ or (a = x) and
- $b \le y$). For example, $(1,2) \le (2,1)$ and $(1,2) \le (1,3)$.

- (a) DivisibleBy is a partial order. $\forall x \ (x, x) \in DivisibleBy$, so DivisibleBy is reflexive. For x to be DivisibleBy y, x must be greater than or equal to y. So the only way for both (x, y) and (y, x) to be in DivisibleBy is for x and y to be equal. Thus DivisibleBy is antisymmetric. And if x is DivisibleBy y and y is DivisibleBy z, then x is DivisibleBy z. So DivisibleBy is transitive. But DivisibleBy is not a total order. For example neither (2, 3) nor (3, 2) is in it.
- (b) LessThanOrEqual defined on ordered pairs is a total order. This is easy to show by relying on the fact that \leq for the natural numbers is a total order.
- (c) This one is not a partial order at all because, although it is reflexive and antisymmetric, it is not transitive. For example, it includes (4, 1) and (1, 3), but not (4, 3).

Ödev-1

Problemleri çözünüz 1.1.1-1.1.4 (sayfa 8-9)

Problemleri çözünüz 1.3.1, 1.3.2, 1.3.4, 1.3.7, 1.3.9 (sayfa 20-21)