

시계열 분석 기법과 응용

Week 7. 상태공간모형 7-3. 모형의 추정 및 예측

> 전치혁 교수 (포항공과대학교 산업경영공학과)

모형의 추정

상태공간모형에 포함된 계수행렬 또는 오차항의 공분산 행렬을 모르는 경우 관측치를 바탕으로 추정 필요

- 최우추정법 (maximum likelihood estimation) 사용
- 우도함수 (likelihood function)
 - 관측치: $Y_t = (y_1, ..., y_T)$
 - 로그우도함수

$$logL(\mathbf{y}_1, ..., \mathbf{y}_T) = logL(\mathbf{y}_1) + \sum_{t=2}^{T} logL(\mathbf{y}_t | Y_{t-1})$$

- 다변량 정규분포 가정

$$y_1 \sim MVN(\mu_1, C_1); \quad y_t | Y_{t-1} \sim MVN(\mu_t, C_t)$$

- 다변량 정규분포하에서 로그우도함수

$$logL(\mathbf{y}_{1},...,\mathbf{y}_{T}) = -\frac{Td}{2}log2\pi - \frac{1}{2}\sum_{t=1}^{T}log|\mathcal{C}_{t}| - \frac{1}{2}\sum_{t=1}^{T}(\mathbf{y}_{t} - \boldsymbol{\mu}_{t})^{T}\mathcal{C}_{t}^{-1}(\mathbf{y}_{t} - \boldsymbol{\mu}_{t})$$

모형의 추정

(예 7-5) 다음의 MA(1) 모형을 상태공간모형으로 표현하고 최우추정법으로 계수 및 오차분산을 추정하라.

$$Y_t = a_t - \theta a_{t-1}, a_t \sim Nor(0, \sigma^2)$$

(풀이)

- 상태변수 정의
$$x_t = \begin{pmatrix} a_t \\ a_{t-1} \end{pmatrix}$$

- (관측방정식)
$$Y_t = \begin{pmatrix} 1 & -\theta \end{pmatrix} \begin{pmatrix} a_t \\ a_{t-1} \end{pmatrix} \Rightarrow G = \begin{pmatrix} 1 & -\theta \end{pmatrix}, R = 0$$

- (상태방정식)
$$\begin{pmatrix} a_t \\ a_{t-1} \end{pmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} a_{t-1} \\ a_{t-2} \end{pmatrix} + \begin{pmatrix} a_t \\ 0 \end{pmatrix} \Rightarrow F = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, Q = \begin{bmatrix} \sigma^2 & 0 \\ 0 & 0 \end{bmatrix}$$

- 칼만필터식

$$m_{t} = E[a_{t}|Y_{t}] = \frac{\sigma^{2}}{\sigma^{2} + \theta^{2}p_{t-1}} (Y_{t} + \theta m_{t-1})$$
$$p_{t} = Var[a_{t}|Y_{t}] = \frac{\sigma^{2}\theta^{2}p_{t-1}}{\sigma^{2} + \theta^{2}p_{t-1}}$$

모형의 추정

(예 7-5 계속)

• 관측치 조건부 기대치 및 분산

$$\begin{array}{l} -\ \mu_t = E[Y_t|Y_{t-1}] = -\theta m_{t-1} \\ -\ C_t = Var[Y_t|Y_{t-1}] = \sigma^2 + \theta^2 p_{t-1} \end{array}$$

• 로그 우도함수

$$logL(\mathbf{y}_{1},...,\mathbf{y}_{T}) = -\frac{Td}{2}log2\pi - \frac{1}{2}\sum_{t=1}^{T}log|\mathcal{C}_{t}| - \frac{1}{2}\sum_{t=1}^{T}(\mathbf{y}_{t} - \boldsymbol{\mu}_{t})^{T}\mathcal{C}_{t}^{-1}(\mathbf{y}_{t} - \boldsymbol{\mu}_{t})$$

$$= -\frac{1}{2}\left[Tlog2\pi + \sum_{t=1}^{T}log(\sigma^{2} + \theta^{2}p_{t-1}) + \sum_{t=1}^{T}\frac{(Y_{t} + \theta m_{t-1})^{2}}{\sigma^{2} + \theta^{2}p_{t-1}}\right]$$

• 관측 데이터

	1	2	3	4	5	6	7	8	9	10	11	12
Y_t	8	10	-9	13	-5	-15	24	6	-21	20	-7	-24

• 최우추정치

• $\bar{\Delta}$ 7| $\bar{\lambda}$ |: $m_0 = 0$, $p_0 = \sigma^2$ $\hat{\theta} = 0.85$, $\widehat{\sigma^2} = 140$

관측치 예측

• 일반적 상태공간모형

- (관측방정식) $y_t = Gx_t + w_t, w_t \sim WN(\mathbf{0}, R)$
- (상태방정식) $x_t = Fx_{t-1} + v_t, v_t \sim WN(\mathbf{0}, Q)$

• 한단계 이후 예측

$$f_{t,1} = E[y_{t+1}|y_t,...] = E[Gx_{t+1} + w_{t+1}|y_t,...]$$

= $E[G(Fx_t + v_{t+1}) + w_{t+1}|y_t,...] = GFm_t$

- 예측오차

$$e_{t,1} = y_{t+1} - f_{t,1}$$

- 예측오차 분산

$$V_{t,1} = Var[y_{t+1}|y_t,...] = Var[G(Fx_t + v_{t+1}) + w_{t+1}|y_t,...]$$

= $GFP_tF^TG^T + GQG^T + R$

관측치 예측

(예 7-6) 다음 모형에서 관측치를 예측하라.

- (관측방정식)
$$Y_t = \mu_t + \varepsilon_t$$
, $\varepsilon_t \sim Nor(0, \sigma_\varepsilon^2)$
- (상태방정식) $\mu_t = \mu_{t-1} + \beta_{t-1} + a_t$, $a_t \sim Nor(0, \sigma_a^2)$
 $\beta_t = \beta_{t-1} + b_t$, $b_t \sim Nor(0, \sigma_b^2)$
- (풀이)
$$l_t = E[\mu_t | Y_t, \dots], m_t = E[\beta_t | Y_t, \dots]$$

$$p_t = Var[\mu_t | Y_t, \dots], q_t = Var[\beta_t | Y_t, \dots], r_t = Cov[\mu_t, \beta_t | Y_t, \dots]$$

$$f_{t,1} = E[Y_{t+1} | Y_t, \dots] = l_t + m_t$$

$$V_{t,1} = Var[Y_{t+1} | Y_t, \dots] = p_t + 2r_t + q_t + \sigma_a^2 + \sigma_s^2$$

관측치 예측

(예 7-7)다음은 연도별 금 가격 (온스당 미화달러)을 나타낸 것이다 (예7-4 참조)

년도	2011	2012	2013	2014	2015	2016
가격	1,571.5	1,669.0	1,411.2	1,266.4	1,160.1	1,250.8

(예7-6) 모형으로 한단계 이후 예측치를 구하고 예측 오차를 구하면 다음 표와 같다.

년도	Y_t	l_t	m_t	p_t	q_t	r_t	예측치
2011	1,571.5	1,494.6	214.8	16.49	11.30	5.83	-
2012	1,669.0	1,682.7	205.3	16.49	11.31	5.83	1,709.4
2013	1,411.2	1,573.5	94.1	16.49	11.31	5.83	1,888.1
2014	1,266.4	1,402.9	0.48	16.49	11.31	5.83	1,667.6
2015	1,160.1	1,242.9	-56.3	16.49	11.31	5.83	1,403.4
2016	1,250.8	1,228.9	-41.3	16.49	11.31	5.83	1,186.6