锂铀化学论(第三版)

Theory of Lithium—Uranium Chemistry The Third Edition

一、锂铀

1.1 物理性质

在自然界中,**锂铀**(Lithium—Uranium,化学式为LiU)通常是黑色、有金属光泽的块状固体. 常温常压下,LiU 的密度约为 $1.14~\mathrm{g\cdot cm^{-3}}$,熔点约为 $514~\mathrm{K}$,沸点约为 $1919~\mathrm{K}$;具有较好的导电、导热性,其电阻率约为 $8.10~\mathrm{K}$ $10^{-7}~\mathrm{\Omega\cdot m^{-1}}$,热导率约为 $24~\mathrm{W\cdot m^{-1}\cdot K^{-1}}$.

1.2 制备方法

(1)合成法

LiU 是由锂元素和铀元素组成的,这两种金属性质都很活泼. 因此我们可以通过两种单质直接反应制取 LiU (Li 能与空气中的 N_2 、 O_2 反应,不要使其长时间暴露在空气中;铀单质最好使用的是 235 U),并使用**宋亚坤**(一种出生,结构比较复杂,这里记为 **Ku**)作催化剂. 反应的化学方程式如下:

$$Li(s)+U(s) = LiU(s)$$

反应放出大量的热,同时观察到的现象是:锂铀,启动!

(2)分解法

很多矿石中都含有锂、铀元素,将它们在一定条件下高温煅烧,往往可以获得LiU,例如 $(LiU)_2CO_3$ (碳酸锂铀)、 $CH_3COOLiU$ (醋酸锂铀)等.反应的化学方程式如下:

$$2(LiU)_{2}CO_{3}(s) \xrightarrow{1000K} 4LiU(s) + 2CO_{2}(g) + O_{2}(g)$$

$$2CH_{3}COOLiU(s) + H_{2}(g) \xrightarrow{1000K} 2LiU(s) + 2CH_{3}COOH(l)$$

1.3 化学性质

(1)与氧气反应(燃烧)

常温下, LiU 不容易被氧化,但是在3000 K的高温下,它就会开始剧烈燃烧.反应的化学方程式如下:

$$4LiU(s) + O_2(g) = 3000K - 2(LiU)_2O(s)$$

1

反应过程中,LiU发出了暗黑色火焰,放出大量的热,生成一种灰黑色固体——**氧化锂铀**[2(LiU),O]. 这一过程可以被描述为:**锂铀火了**.

(2)与酸、碱、盐反应

LiU 虽然不是金属,但有着与金属类似的化学性质.例如,它可以与盐酸、硫酸反应生成盐,还可以与某些金属的盐溶液反应.化学方程式如下:

$$2 \text{LiU(s)} + 2 \text{HCl(aq)} = 2 \text{LiUCl(aq)} + \text{H}_2(g)$$

$$2 \text{LiU(s)} + \text{H}_2 \text{SO}_4(\text{aq}) = (\text{LiU})_2 \text{SO}_4(\text{aq}) + \text{H}_2(g)$$

$$2 \text{LiU(s)} + \text{FeCl}_2(\text{aq}) = 2 \text{LiCl(aq)} + \text{Fe(s)} + 2 \text{U(s)}$$

$$2 \text{LiU(s)} + \text{Mg(NO}_3)_2(\text{aq}) = 2 \text{UNO}_3(\text{aq}) + \text{Mg(s)} + 2 \text{Li(s)}$$

$$3 \text{LiU(s)} + \text{Al(SbO}_3)_3(\text{aq}) = 3 \text{LiUSbO}_3(\text{aq}) + \text{Al(s)}$$

从上面的化学方程式中,我们可以发现:当LiU与某些金属的盐溶液反应时,有的是Li⁺参与反应,有的是U⁺参与反应,还有的是LiU⁺参与反应,因此生成的盐有的是锂盐,有的是铀盐,还有的是锂铀盐.

目前科学家们认为,产生这种现象是因为LiU的结构与砷烷 (AsH₃)的水合物——烷原砷(Original Alkane Arsenic,或Genshin Impact,简称原砷,化学式为AsH₄OH)的结构比较类似,这种由非金属元素组成的物质比较罕见,使得LiU在与那些金属的盐溶液反应时,其活动性无法被确定.简单来说,就是锂铀烷原砷烷的.

(3)与NH₃、H₂反应

这两个反应比较特殊,化学方程式如下:

$$LiU(s)+NH_3(g)$$
 = $LiNH(g)+UH_2(s)$
 $LiU(s)+H_2(g)$ = $LiH \cdot UH(s)$

我们都知道,NH₃是一种有刺激性气味的气体,但是它与LiU反应生成的**锂胺(Lithium Amine,化学式为LiNH)**更是歌姬,因为它十分地臭甚至九分地臭. 1919年8月10日,24岁的日本著名化学家**田所浩二**(たどころ,Tadokoro,1145—)经历两次失败后,终于从沼气中分离出来了LiNH这种物质(三回啊三回). 在下北泽(下北沢,Shimo-Kitazawa),人们将LiNH通入CO(NH₂)₂水溶液中,制成了美味的迎宾酒(迫真). LiNH有毒,如果它在空气中的含量达到0.0114514%,就会致人死亡. 这种物质只能用LiU制得,因此也被称作恶臭的锂铀.

LiU可以与氢气反应.反过来,它们的生成物 LiH·UH 也可以在加热的条件下生成 LiU.反应的化学方程式如下:

$$LiH \cdot UH(s) \xrightarrow{\triangle} LiU(s) + H_2(g)$$

这时生成的LiU没有正常制得的LiU活泼,因为它是失去双氢的锂铀.

图1 LiH·UH分解图示

1.4 与稀有气体反应

众所周知,稀有气体很难与其它物质发生化学反应. 但是稀有气体可以发生核反应. 在这一节中,我们主要研究 LiU 与氩气(Ar)的反应.

我们知道,Ar 的核外电子排布式是 $1s^22s^22p^63s^23p^6$. 如果我们把 LiU, 宋亚坤与 Ar 混合并通电,其中的氩原子就会发生跃迁,3p 能级的电子会一个一个一个地移动到 3d,4s 能级上,发生如下反应:

$$1s^{2}2s^{2}2p^{6}3s^{2}3\mathbf{p^{6}} \xrightarrow{\text{LiU,Ku}} \begin{cases} 1s^{2}2s^{2}2p^{6}3s^{2}3\mathbf{p^{5}}4s^{1} \\ 1s^{2}2s^{2}2p^{6}3s^{2}3\mathbf{p^{4}}4s^{2} \\ 1s^{2}2s^{2}2p^{6}3s^{2}3\mathbf{p^{3}}3d^{1}4s^{2} \\ 1s^{2}2s^{2}2p^{6}3s^{2}3\mathbf{p^{2}}3d^{2}4s^{2} \\ 1s^{2}2s^{2}2p^{6}3s^{2}3\mathbf{p^{1}}3d^{3}4s^{2} \end{cases}$$

跃迁后的氩原子具有很大的能量. 但特别的是,它们很稳定,持续存在的时间甚至能达到 $114514 \, \mathrm{s}$. 此时,氩原子的化学性质开始变得比较活泼,凭借原子引力互相连接,形成桥状结构的分子,叫做**氩桥**(Argon Bridge). 由于氩原子跃迁后存在多种状态,因此氩桥分子所含氩原子的个数无法确定. 我们规定:氩桥的化学式为 $\mathrm{Ar}_n(n \geq 2)$.

与此同时, LiU 和宋亚坤也在参与反应. 但与 Ar 相反的是,它们的电子会逐渐脱离原子核的束缚,使原子所具有的能量越来越低. 也就是说,在 氩桥中,**锂铀和宋亚坤是低能儿**.

1.5 实验:锂铀裂变的链式反应

用一个宋亚坤的中子轰击锂铀分子,观察到:宋亚坤进去了. 同时,锂

铀启动.接着,观察到发生了猛烈的爆炸,有大量气体生成,使用仪器分析后,发现主要是氩桥 (Ar_n) 和乙烷 (C_2H_6) .这种现象被称作**氩桥乙烷**.

图 2 LiU 裂变的链式反应示意图

事实上,锂铀裂变的链式反应并不是只有 Ar_n 和 C_2H_6 生成,在极高的温度下,还可能生成**超氧**(O_2^-)、**恒钐**(Sm)、**钴氚**(CoT)和**氩高**(Ar^+). 有关这几种物质的反应,我们将会在下一节研究.

1.6 在氯桥场中的反应

(1) 氩桥场

在 1.4 节中,我们已经知道如何使用锂铀和宋亚坤制备氩桥 (Ar_n) . 氩桥比较活泼,能够向外辐射大量能量,辐射半径约为 11.4514 m. 这一范围叫做**氩桥场**(Argon Bridge Field). 一些物质,在正常的情况下不反应,但进入氩桥场后,都会因受到了氩桥的作用而发生反应.

出现这种现象的原因是, 氩桥场中的环境比较特殊. 一般来说, 氩桥场内是一种高压环境, 平均压强约为 1919.810 atm. 氩桥场内还天然存在着一种物质, 威力不亚于与**硝酸甘油**(Nitroglycerin, 化学式为 $C_3H_5N_3O_9$) 爆炸, 对电子的转移具有阻碍作用, 叫做**硝障**(Nitrate Barrier). 前面我们提到的锂铀、宋亚坤都是硝障.

(2) 氩桥场内锂铀的反应

前面我们提到了硝障的概念。事实上,硝障有很多种,不仅有锂铀和宋亚坤,还有**焓锂**(Enthalpy Lithium)、**障锂酶**(Lithium Barrier Enzyme,

障锂酶比较有名,所以本节我们主要讨论氩桥场中锂铀与障锂酶的反应.

锂铀可以使障锂酶先发生**缩聚反应**(Polycondensation Reaction),使障锂酶变为纯纯的**脎吡**(Ketopyrazine),再发生**取代反应**(Substitution Reaction),使脎吡的苯环中的两个N分别被Li和U取代,最后生成**脎吡锂 铀**(Lithium—Uranium Azopyrate). 反应的结构图示如下:

图 3 障锂酶与锂铀的反应

1.7 检验方法

当我们按照 1.2 节的方法制得了一些 LiU,或是通过某些渠道购买了一些 LiU 后,如何检验其是否纯净呢?我们可以采用以下方法:

取一定量的 **LiU 粉末**样品,放入玻璃管中,向内不断通入 N_2 ,然后高温灼烧.如果听到了**哼哼啊啊啊啊啊啊啊**的叫声,说明该样品比较纯净;如果没有声音或者声音很小,则该样品不纯.

1.8 用途

根据锂铀的各种性质,我们可以推测出它的用途.

- (1) 根据锂铀的颜色是黑的,我们可以让锂铀作<mark>小黑子</mark>,用来中和**碘钾 铀氮**(Iodine-Potassium-Uranium-Nitrogen,化学式为 IKUN). 此过程是物理变化.
- (2) 锂铀可以燃烧,并且燃烧产物是固体,几乎没有污染,生成的氧化锂铀 [2(LiU)₂O] 还可以**重复使用十次甚至九次**. 因此它是一种比较理想的燃料. 什么,在哪里购买?点击下方小黄车,买五包,送五包,还包邮.
 - (3) 锂铀是烷原砷烷的,可以配合**杨永信**的**电击疗法**用来治疗 OP.
- (4) 用锂铀制得的 LiNH 有臭味,可以做成毒气弹,或者配成迎宾酒. 这一点前面已经提到过.
- (5) 用锂铀制得的LiH·UH是固体,可以储存大量氢能,是理想的储氢物质. 同时加热LiH·UH可以频繁让锂铀失去双氢.
- (6) LiU 与氩气反应可以生成氩桥,并放出大量的能量. 据此,锂铀可作为一种供能物质,但是氩气成本较高,因此这条用途收益并不大.

二、锂铂

2.1 锂铂的性质

一般来说,锂铂的物理性质、化学性质、制备方法等与锂铀极为类似. 下面是有关锂铂的几个化学方程式:

$$Li(s)+Pt(s) = LiPt(s)$$

$$4LiPt(s)+O_2(g) = 2(LiPt)_2O(s)$$

$$3LiPt(s)+Al(SbO_3)_3(aq) = 3LiPtSbO_3(aq)+Al(s)$$

$$LiH \cdot PtH(s) = \Delta LiPt(s)+H_2(g)$$

2.2 锂铂在物理学中的作用

锂铂是世界上最伟大的物理学家(**暴论**). 为了纪念他的伟大成就,我们定义某点场强大小的平方、压强的倒数和温度的三次方之积为该点的**锂铂** 强度(Lithium—Platinum Intensity),符号为 *A*. 则有

$$A = \frac{|E|^2 T^3}{p}.$$

氩桥场内,锂铂强度的单位叫做<mark>博(Bo)</mark>,符号为lb. 根据量纲分析的知

识,我们可以得到此单位与国际单位之间的关系:

$$\begin{split} \dim &A = (\dim E)^2 (\dim T)^3 (\dim p)^{-1} \ &= (\mathrm{LT}^{-3}\mathrm{MI}^{-1})^2 (\theta^3)^3 (\mathrm{L}^{-1}\mathrm{T}^{-2}\mathrm{M})^{-1} \ &= \mathrm{L}^3\mathrm{T}^{-4}\mathrm{MI}^{-2}\theta^9. \end{split}$$

取 k = 1145.14,则有

$$1 \text{ lb} = 1145.14 \text{ m}^3 \cdot \text{s}^{-4} \cdot \text{kg} \cdot \text{A}^{-2} \cdot \text{K}^9.$$

三、锂铀与锂铂的相互转化

从上一章中,我们知道**锂铀与锂铂的性质像啊,很像啊**. 所以,只需要在一定的条件下,让二者发生可逆反应,就能实现它们的相互转化. 这里我们介绍两种方法:**置换法**(Substitution Method)和**原砷催化法**(Genshin Impact Catalytic Method).

3.1 置换法

由于锂铂是**钨锂铑铈 (WLiRhCe)**,所以,**一般来说**,需要在 W、Rh、Ce 的共同催化下才能与锂铀实现相互转化.此反应在高温下进行.反应的方程式如下:

$$LiU(s)+LiPtCl(aq) \xrightarrow{W,Rh,Ce} LiPt(s)+LiUCl(aq)$$

由于固体和溶液在高温条件下容易爆炸,所以这种方法比较危险.安全一点的做法是下一节介绍的原砷催化法.

3.2 原砷催化法

在1.3节中,我们介绍了一种神奇的物质——原砷(AsH₄OH). 我们已经知道,锂铀和锂铂都是烷原砷烷的,所以,只需要在原砷的催化下,它们就会发生可逆反应. 此反应同样在高温下进行. 反应的方程式如下:

$$LiU(s)+Pt(s) \xrightarrow{AsH_4OH} LiPt(s)+U(s)$$

由此可见,锂铀与锂铂不生不灭,不垢不净,不增不减,如如不动.

四、结语

这篇文章研究了锂铀和锂铂在化学中的性质以及应用,创造性地指出了宋亚坤作催化剂的可行性、烷原砷的下场,以及用锂铀生成氩桥的反应原理等. 锂铀化学论是现代化学的基础. 研究锂铀,对现代化学的发展有着重要的意义. 后面忘了.

五、附录:名词索引

锂铀化学论	Theory of Lithium—Uranium Chemistry
锂铀	Lithium—Uranium
(烷)原砷	Original Alkane Arsenic / Genshin Impact
锂胺	Lithium Amine
田所浩二	Tadokoro
下北泽	Shimo—Kitazawa
氩桥	Argon Bridge
氩桥场	Argon Bridge Field
硝酸甘油	Nitroglycerin
硝障	Nitrate Barrier
焓锂	Enthalpy Lithium
障锂酶	Lithium Barrier Enzyme
缩聚反应	Polycondensation Reaction
脎吡	Ketopyrazine
取代反应	Substitution Reaction
脎吡锂铀	Lithium—Uranium Azopyrate
碘钾铀氮	Iodine—Potassium—Uranium—Nitrogen
锂铂	Lithium—Platinum
锂铂强度	Lithium—Platinum Intensity
博	Во
置换法	Substitution Method
原砷催化法	Genshin Impact Catalytic Method