9 класс

Первый день

- **9.1.** Может ли сумма $(x+1)^2 + (x+2)^2 + \ldots + (x+9)^2$ быть кубом натурального числа при некотором натуральном x?
- **9.2.** На плоскости нарисованы два многоугольника $A_1A_2 \dots A_{2025}$ и $B_1B_2 \dots B_{2025}$ без общих вершин. Помимо отрезков, которые являются сторонами многоугольников, провели ещё 2025 отрезков: $A_1B_1, A_2B_2, \dots, A_{2025}B_{2025}$. Раскраска всех вершин двух многоугольников в чёрный или белый цвета называется хорошей, если для каждой вершины в чёрный цвет покрашено нечётное количество вершин, с которыми она соединена отрезком. Найдите количество всех хороших раскрасок.
- **9.3.** Даны действительные числа x и y такие, что

$$x^2 + xy + y^2 \geqslant x^3 + y^3$$

Какое наибольшее значение может принимать сумма x + y?

9.4. На плоскости нарисована окружность Ω единичного радиуса. Два мальчика: Ма и Гео играют в игру. Вначале Ма отмечает произвольную точку X внутри Ω . После этого Гео называет число $\alpha \in (0,90]$. Затем Ма проводит через X две прямые, угол между которыми равен α° , и отмечает точки пересечения A, B, C и D проведённых прямых с Ω . Найдите наименьшее возможное значение P, для которого Гео может добиться того, чтобы неравенство $XA^2 + XB^2 + XC^2 + XD^2 \leqslant P$ выполнялось вне зависимости от действий Ма.

9 класс

Второй день

9.5. Дана последовательность x_1, x_2, \dots, x_{100} ненулевых действительных чисел такая, что

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} = 1 - \frac{n}{x_n}$$

при всех n от 1 до 100 включительно. Найдите значение x_{100} .

- **9.6.** На гипотенузе AB прямоугольного треугольника ABC отметили точки A_1 и B_1 такие, что $AB_1 = AC$ и $BA_1 = BC$. Описанная окружность треугольника A_1CB_1 пересекает катет AC в точках C и X, а катет BC в точках C и Y. Докажите, что центр вписанной окружности треугольника ABC лежит на отрезке XY.
- **9.7.** Лист бумаги размера 9×9 разрезали на несколько прямоугольников, стороны которых целые. Общая длина разрезов равна 104. Докажите, что хотя бы один из полученных прямоугольников имеет размер 1×1 .
- **9.8.** Дано простое число p>2. Множество M, состоящее из $\frac{p-1}{2}$ натуральных чисел, назовём *хорошим*, если, выписав для каждого элемента $a\in M$ на доску числа a и 2a+3, получим набор из p-1 чисел, дающих попарно различные остатки при делении на p.
 - а) Определите, существует ли хороший набор, если p=73.
 - **б)** Для каждого простого числа p вида $2^k+1,\,k\in\mathbb{N},$ определите, существует ли хороший набор.