Department of Mathematics MTL 180: Discrete Mathematical Structure 2017-2018: Semester I Minor Exam 1

20 September 2017

You may attempt any five questions. Each question is worth five marks. Explain your answer in sufficient detail.

- 1. (a) Let $f: A \to B$. If $\{B_1, \ldots, B_n\}$ is a partition of B, prove that $\{f^{-1}(B_1), \ldots, f^{-1}(B_n)\}$ is a partition of A.
 - (b) Let $S = \{1, ..., n\}$, and let A be a subset of S. Define a relation $\mathcal R$ on the set of all subsets $\mathcal P(S)$ of S by $X \mathcal R Y \Longleftrightarrow A \cap X = A \cap Y$.

Determine the number of equivalence classes in the partition induced by \mathcal{R} . [3]

- 2. (a) Suppose (\mathscr{P}, \preceq) is a poset, and let $\mathscr{L} = \{a, b\} \subset \mathscr{P}$, with $a \preceq b$. Let $\mathscr{Q} = \mathscr{P} \times \mathscr{L}$, and let \mathscr{A} be any antichain in \mathscr{Q} . Let \mathscr{B} be the largest possible subset of \mathscr{P} such that \mathscr{B} does not contain a chain of length of size exceeding 2. Show that $|\mathscr{A}| \leq |\mathscr{B}|$. $[2\frac{1}{2}]$
 - (b) Prove that any b in a Boolean lattice, $b \neq 0$, can be expressed as a join of atoms. You need not show that this expression is unique. [2 $\frac{1}{2}$]
- 3. Show that the set $\mathbb{R}^{\mathbb{R}}$ of all real-valued functions defined on \mathbb{R} is not numerically equivalent to \mathbb{R} by showing the nonexistence of a surjection from $\mathbb{R}^{\mathbb{R}}$ to \mathbb{R} . Provide sufficient details. [5]
- 4. (a) Let $X = \{0, 1\}$. Prove or disprove the equivalence of

$$\exists ! x \in X, P(x) \text{ and } \left(P(0) \wedge \left(\neg P(1)\right)\right) \vee \left(P(1) \wedge \left(\neg P(0)\right)\right).$$

(b) Comment on the following proof of the statement "Any set of horses are all of the same colour" by induction.

BASIS OF INDUCTION: The statement is trivially true for one horse. INDUCTION STEP: Suppose the statement holds for n horses, and we have n+1 horses, H_1, \ldots, H_{n+1} . By induction hypothesis, the n horses H_1, \ldots, H_n are all the same colour, as are the n horses H_2, \ldots, H_{n+1} . Hence the horses H_1, \ldots, H_{n+1} are also of the same colour.

- 5. (a) If n > 1 is an integer not of the form 6k + 3, prove that $n^2 + 2^n$ is composite. [2]
 - (b) If m, n are positive integers, prove that $gcd(2^m 1, 2^n 1) = 2^{gcd(m,n)} 1$.
- 6. (a) Prove that if p and p+2 are both primes, then $p(p+2) \mid [4((p-1)!+1)+p]$.
 - (b) Show that 13 is the *only* prime that divides two successive integers of the form $n^2 + 3$. [3]

[3]

[2]