Lab 2: Deep Image Prior

Lab Objective:

In this lab, you will be asked to reproduce the experiments of the paper "deep image prior".

Important Date:

- 1. Experiment Report Submission Deadline: 4/10 (Tue) 12:00
- 2. Demo date: 4/10 (Tue)

Requirements:

- Experiment of figure 2
- Denoising
- Super-resolution

Environment:

Download image:

Sample Code:

Official code:

https://github.com/DmitryUlyanov/deep-image-prior

Lab Description:

- Deep image prior
 - the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning
 - a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting
 - Parameterization image x
 - Inverse problems
 - ◆ Denoising, super-resolution, inpainting

$$x^* = \min_{x} E(x; x_0) + R(x),$$

 \blacksquare Let R(x) is the prior captured by neural network

$$\theta^* = \operatorname*{argmin}_{\theta} E(f_{\theta}(z); x_0) \qquad x^* = f_{\theta^*}(z).$$

- Requirement 1
 - A parametrization with high noise impedance

■ Network architecture

$$z \in \mathbb{R}^{3 \times W \times H} \sim U(0, \frac{1}{10})$$

$$n_u = n_d = [8, \ 16, \ 32, \ 64, \ 128]$$

$$k_u = k_d = [3, \ 3, \ 3, \ 3]$$

$$n_s = [0, \ 0, \ 0, \ 4, \ 4]$$

$$k_s = [\text{NA, NA, NA, 1, 1}]$$

$$\sigma_p = \frac{1}{30}$$

$$\text{num_iter} = 2400$$

$$\text{LR} = 0.01$$

$$\text{upsampling} = \text{bilinear}$$

Optimizer: Adam

• Requirement 2

Blind image denoising

Ground Truth

$$\min_{\theta} \|f_{\theta}(z) - x_0\|^2$$

■ Network architecture

$$z \in \mathbb{R}^{32 \times W \times H} \sim U(0, \frac{1}{10})$$
 $n_u = n_d = [128, 128, 128, 128, 128]$
 $k_u = k_d = [3, 3, 3, 3, 3]$
 $n_s = [4, 4, 4, 4, 4]$
 $k_s = [1, 1, 1, 1, 1]$
 $\sigma_p = \frac{1}{30}$
num_iter = 1800
LR = 0.01
upsampling = bilinear

Optimizer: Adam

• Requirement 3

■ Bilnd super-resolution

$\min_{\theta} \|ds(f_{\theta}(z)) - x_0)\|^2$

■ Network architecture

$$z \in \mathbb{R}^{32 \times W \times H} \sim U(0, \frac{1}{10})$$

$$n_u = n_d = [128, 128, 128, 128, 128]$$

$$k_u = k_d = [3, 3, 3, 3, 3]$$

$$n_s = [4, 4, 4, 4, 4]$$

$$k_s = [1, 1, 1, 1, 1]$$

$$\sigma_p = \frac{1}{30}$$

$$\text{num_iter} = 2000$$

$$\text{LR} = 0.01$$

$$\text{upsampling} = \text{bilinear}$$

Optimizer: Adam

Extra Bonus (+2):

Inpainting

(c) Ours, LR = 0.1

$$E(x; x_0) = \|(x - x_0) \odot m\|^2,$$

m: mask

References:

[1] Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2017). Deep Image Prior. *arXiv preprint arXiv:1711.10925*.

- Report Spec: [black: Demo, Gray: No Demo]
- 1. Introduction (5%)
- 2. Experiment setup (5%)
 - The detail of your model
 - Report all your training hyper-parameters
- 3. Result
 - Requirement 1 (10%, 20%)
 - Training loss curve (you need to record training loss every iteration)
 - Requirement 2 (10%, 20%)
 - Visualize the progress of inverted image
 - Final image and its PSNR
 - Requirement 3 (10%, 20%)
 - Visualize the progress of inverted image
 - Final image and its PSNR
- 4. Discussion (10%, 20%)
- Demo (50%)
- Demo 會給其他圖案,用你的程式重現實驗

---- Criterion of result (denoising)(20%) ----

PSNR > 30 dB = 100%

 $PSNR 28.5 \sim 30 dB = 90\%$

 $PSNR 27 \sim 28.5 dB = 80\%$

PSNR < 27 dB = 70%

---- Criterion of result (super-resolution)(20%) ----

PSNR > 23 dB = 100%

 $PSNR 21.5\sim23 dB = 90\%$

 $PSNR 20\sim21.5 dB = 80\%$

PSNR < 20 dB = 70%

PSNR 計算請使用

from skimage.measure import compare_psnr

評分標準: 40%*實驗結果 + 60%*(報告+DEMO)