X=AX

○基础、知识处

$$X = \left[\overrightarrow{x}_{i} \ \overrightarrow{x}_{i} \right] \quad \overrightarrow{x}_{i} . \overrightarrow{x} \ \text{GUZZ}.$$

-> Basic properties. of X.

① 写出 system 的 选择编

$$\vec{\chi}' = (\vec{\chi}, \vec{\chi}) + (\vec{\chi}, \vec{\chi})$$

$$\frac{1}{gon} \frac{1}{Goln} = \left[\frac{1}{3}, \frac{1}{3} \right] \left[\frac{c_1}{c_2} \right]$$

-> what do full fundamental mx. look like.

$$\begin{bmatrix} \begin{bmatrix} X & C \end{bmatrix} \end{bmatrix} = \begin{bmatrix} X & C \end{bmatrix} \begin{bmatrix} C \\ C \end{bmatrix} \begin{bmatrix} C \\ C \end{bmatrix} \begin{bmatrix} C \\ C \end{bmatrix}$$

$$= \begin{bmatrix} X & C \end{bmatrix}$$
most general FM. 14120.

②一》进入正是处:

torma (

method

物。此 左手叫的体制.

0-> 1×1 case;

Soln: x = c eat

$$e^{at} = 1t \text{ at } + \frac{a^2t^2}{2!} + \frac{a^3t^3}{3!} + \cdots + \cdots$$

$$\frac{de^{at}}{dt} = 0 + a + \alpha^{2}t + \frac{a^{3}t^{2}}{2!} + \cdots$$

$$= a \cdot e^{at}$$

o a fund Mx for Z'=42

$$e^{At} := \int_{\mathcal{C}} + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!}$$

Q IE My eAt & fundamental Mx. of System.

deAt

3/A/ to

$$\begin{cases} x' = y \\ y' = x \end{cases} \rightarrow \vec{x}' = \vec{L}(0) \vec{x}, \quad A = \vec{L}(0)$$

$$\mathcal{O}^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 2! \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 10 \end{bmatrix} + \begin{bmatrix} \frac{t^{2}}{3!} \\ \frac{t^{2}}{3!} \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} \frac{t^{2}}{3!} \\ \frac{t^{2}}{3!} \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ \frac{t$$

-). Init, value
$$\vec{x} = A\vec{x}$$
, $\vec{x}(0) = \vec{x}_0$, find $\vec{x}_{(1)}$

$$\Rightarrow \overrightarrow{\chi}'(0) = e^{40} \cdot \overrightarrow{C}'$$

$$\Rightarrow \overrightarrow{\chi}'' = \overrightarrow{C}''$$

$$\Rightarrow \overrightarrow{\chi}'' = e^{4t} \cdot \overrightarrow{\chi}''$$

$$e^{A+B}$$
 e^{A+B}
 e^{A

use
$$(2)$$
 (ab) = (ao) + (bo)

other 3). X. X(0) 2). Value of o. X(0) X(0) = [

eAl = X X (0) 1 $P = \overline{P(x)} = \overline{Q(x)} \cdot \overline{Q(x)} \cdot$ $\begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix} + \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$ eat = [e^{2t} o e^{2t}] + [o e^t]

,

Example A:
$$A = \begin{pmatrix} a & b \\ 0 & b \end{pmatrix}$$
, $e^{A} = \begin{pmatrix} e^{A} & b \\ 0 & e^{b} \end{pmatrix}$, $e^{At} = \begin{pmatrix} e^{At} & 0 \\ 0 & e^{b} \end{pmatrix}$ Example 3B. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, show: $e^{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $e^{At} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$.

What's the point of the exponential matrix? The answer is given by the theorem below, which says that the exponential matrix provides a royal road to the solution of a square system with constant coefficients: no eigenvectors, no eigenvalues, you just write down the answer!

Theorem 3 Let A be a square constant matrix. Then

- (1) (a) $e^{At} = \widetilde{\Phi}_0(t)$, the normalized fundamental matrix at 0;
- (2) (b) the unique solution to the IVP $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \mathbf{x}_0$ is $\mathbf{x} = e^{At}\mathbf{x}_0$.

Example 3C. Let $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Solve $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, using e^{At} .

Solution. We set $B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$; then (7) is satisfied, and

$$e^{At} = \begin{pmatrix} e^{2t} & 0 \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} = e^{2t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix},$$

by (8) and Examples 3A and 3B. Therefore, by Theorem 3 (2), we get

$$\mathbf{x} = e^{At} \mathbf{x}_0 = e^{2t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = e^{2t} \begin{pmatrix} 1+2t \\ 2 \end{pmatrix}.$$

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix}$$

$$e^{At} = \begin{pmatrix} e^{2t} & 2 \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} = e^{2t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

	-	✓	