Approximate description of nuclear quantum effects in nonadiabatic dynamics

Sophya Garashchuk

Dept of Chemistry &

Biochemistry University of

South Carolina

Outline

- Quantum Trajectory (QT) dynamics
- Nonadiabatic formulation; O+H₂
- Mixed quantum/quasi-classical dynamics
- Trajectory-guided exact dynamics

Nuclear quantum effects (NQE)

- Wavefunction localization: ZPE, dipole moments, moderate tunneling (10⁻⁴)
- Deep tunneling, interference
- Electronically nonadiabatic effects or light/heavy particle dynamics

Example: NQE in Poly-(3-hexylthiophene)

Reduced crystallinity is observed if D is on the ring but not on the side-chains

quantum dynamics:= quantum nuclei

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$$

space-fixed bases are inefficient for large-amplitude motion

- The complexity and size of wavefunctions scale exponentially with dimensionality
- time-dependent adaptable to WF bases, representations, trajectories
- take advantage of mass, energy and time-scale separation
- Wavefunction factorization

Beyond the BO approximation

- exact nuclear-electronic separation
- TD-PES (Cederbaum, Gross)
- conditional WF (...Tavernelli, Kelly)

Why (quantum) trajectories?

- Nuclei are nearly classical; CM scales linearly
- Trajectory framework is convenient for mixed representations
- The QT formulation has classical and quantum mechanics as its limits
- Include dominant QM effects approximately (estimates)
- O QTs define ideal 'grid' in coordinate space
- Conditional WF 'exact factorization' are based on QTs

Quantum trajectories: $p = \nabla S$

Exact TDSE, operate with more classical quantities

Polar form of the wavefunction

$$\psi(\mathbf{x},t) = A(\mathbf{x},t)e^{\frac{\imath}{\hbar}S(\mathbf{x},t)}$$

Phase is defined by the action

$$\frac{dS(\mathbf{x},t)}{dt} = \frac{p^2}{2m} - V - U$$

Quantum potential

<*U>* is the quantum part of ZPE

$$U = -\frac{\hbar^2}{2m} \frac{\nabla^2 A(\mathbf{x}, t)}{A(\mathbf{x}, t)}$$

Trajectories define "ideal" time-dependent grid

Trajectory ensemble is important to represent QM non-locality

Practical: Approximate Quantum Potential & Force

- Use a small **basis** (x,y,...1) to approximate the 'nonclassical' momentum

$$r = \frac{grad A}{A}$$

- Use continuity of probability density $A^2\delta x$ is constant
- Variationally determined quantum potential: energy is conserved; **single matrix equation per time-step**
- Mean-field like, resembles Hartree-Fock
- Infinite basis gives exact QM (like full CI)
- <u>Discretize WF in terms of a trajectory ensemble</u>
- Evolve it in time under the time-dependent force
- Expectation values are simple ensemble averages

Probability density continuity

What can approximate QTs do?

- ZPE, WF bifurcation, moderate tunneling 10⁻⁴
- Imaginary time/temperature, introduce friction ...
- Nonadiabatic dynamics
- Interference, deep tunneling
- Use quantum correction for selected DOFs
- QT-inspired exact QM/(semi)classical methods

Unstable if done 'exactly' change representation

Equal trajectory footing 'Optimal' representation

Excited states, interference

'mixed' representation to have smooth trajectories $\psi(x,t) = \text{polynomial}(x,t) * \text{polar}(x,t)$ same for nonadiabatic dynamics

Nonadiabatic formulation with amplitudes

Mixed form of the wavefunction in the diabatic representation

$$\psi_i(x,t) = \chi_i(x,t)\phi(x,t), \quad i = 1...4$$

Wavepacket $\phi(x,t)$ is represented in terms of quantum trajectories evolving under effective classical potential

$$V_d = \sum_{ij} \langle \chi_i | \chi_j \rangle V_{ij}$$

and approximate quantum potential.

Population functions $\chi_i(x,t)$ evolve along the trajectories

Matrix evolution equation for the PES populations $i \frac{d\vec{\chi}}{dt} \approx (\mathbf{V} - V_d \mathbf{I}) \vec{\chi}$. size DOFs× number of electronic states

$$i \frac{d\vec{\chi}}{dt} \approx (\mathbf{V} - V_d \mathbf{I}) \vec{\chi}.$$

- Transformation between representations is possible because we have the wavefunction
- Generalization to multiple sets of trajectories is possible

Energy-resolved probabilities for the Tully model

700 QTs: correlation functions use WF phase, need WF 'synthesis'

100% population transfer (10-fold coupling)

Mixed WF representation for nonadiabatic dynamics

Semiclassical implementation:

- approximate QP and
- neglect of kinetic energy (h/m) in 'population' dynamics

Features to keep:

- smooth trajectory dynamics
- have trajectories in the right place, so population amplitudes are nonsingular compute

Generalization: population matrix for channel dynamics or diabatic/adiabatic switching

Effect of intersystem crossing on reactivity 0+H₂

Dynamics of non-rotating triatomic system on four electronic states

Quasiclassical trajectory/surface hopping estimate is 30% increase in
reactivity

O+H₂ (J=0) wavepacket dynamics in Jacobi coordinates

Ground state-to-all probability vs collision energy

Dynamics of the wavepacket initialized on 3P_1 (QM – solid lines, classical – dash, AQP– symbols): a) Diabatic probabilities; b) Adiabatic probabilities; c-d) Populations.

Generalization to arbitrary coordinates
Nonlinear AQP basis to describe H2 anharmonicity

SG, Rassolov & Schatz JCP 123 (2005), 124 (2006) O+H₂ conclusion: spin-orbit interaction has negligible effect on reactivity

Probabilities for the wavepacket initialized on (a) 3P_2 , (b) 3P_1 and (c) $^{3}P_{0}$ as functions of energy. Probabilities to $^2\Pi_{3/2}$ are shown with dash (QM) and filled circles (AQP). Probabilities to $^2\Pi_{1/2}$ are shown with dot-dash (QM) triangles (AQP). Their sum is shown with the solid line (QM) and open circles. Stars indicate the single surface AQP results.

The energy conserving hybrid Q/C dynamics

sub-ensembles or quasiclassical = include ZPE for classical DOF

$$\psi(x, y, t) = \psi_1(x, t; y)\psi_2(y, t)$$

= $A_1(x, t; y)e^{iS_1(x, t; y)}A_2(y, t)e^{iS_2(y, t)}$.

$$\frac{dy_t}{dt} = \frac{p_{yt}}{M}, \quad \frac{dp_{yt}}{dt} = -\int |\psi_1(x, t; y_t)|^2 \frac{\partial V}{\partial y} \Big|_{x, y=y_t} dx$$

$$\frac{dx_t}{dt} = \frac{p_{xt}}{m}, \quad \frac{dp_{xt}}{dt} = -\frac{\partial}{\partial x} \left(V(x; y_t) + U_1(x, t; y_t) \right) \Big|_{x=x_t}$$

$$U_1(x, t; y) = -\frac{(2m)^{-1}}{A_1(x, t; y)} \frac{\partial^2 A_1(x, t; y)}{\partial x^2}$$

$$S (x_t, y_t) = S(x_0, y_0)$$

$$+ \int_0^t \left(\frac{p_{x\tau}^2}{2m} - V(x_\tau, y_\tau) - U_1(x_\tau; y_\tau) + \frac{p_{y\tau}^2}{2M} \right) d\tau.$$
(27)

Vibrationally nonadiabatic system

$$V=k(x-Y)^2/2+Ky^2/2$$

M/m=10

exact QM dynamics (black), mixed w/out Ey (green), mixed w/out (blue) and with (red) quasiclassical momentum adjustment

WF correlation

QTES (QTs with on-the-fly electronic structure)

- The QT <u>code is merged with ES</u>
 Density Functional Tight Binding DFTB (Jakowski, ORNL)
- <u>Electronic energy evaluation is</u> <u>parallelized (open MP)</u>
- Quantum correction is included for selected DoFs
- Multiple independent "sub"ensembles represent nearly classical DOFs

 $C_{37}H_{15}$ + hydrogen (a) or deuterium (b) the main QM effect is due to delocalization of the proton wavefunction, which changes geometry of $C_{37}H_{15}$

Minimize ES evaluations

(5K QTs* 1000 time steps * 15 sub-ensembles)

"multiscale" ES evaluations; MD-like adjustable time-step

In the works to nonadiabatic with multiple PES

Exact QM with QT-guided Gaussian Bases

real frozen Gaussians, positions from QTs

$$\Psi = \Sigma g_k(x)c_k$$
 $g_k(x) = \exp(-a(x-q_t)^2)$
 $dq_t/dt = p/m$ p is defined by Ψ
sparse set of QTs (variational?)

- Local quadratic expansion of V in matrix elements
- Re-expansion for stability and basis size adjustment
- Solve $\widetilde{H}c=iS\dot{c}$ \widetilde{H} non-hermitian; $S_{jk}=<g_{j}|g_{k}>$ degenerate

ıd double well

2d double well

V_b=0.6366 [frequency]

Basis N	10	12	16	QM
a [a.u.]	16	16	32	512
n=0	.4827	.4822	.4830	.4829
n=1	.7110	.7180	.7209	.7163

Summary

- NQEs are important (recent experiments with isotope substitutions)
- Approximate QTs are useful for assessment of NQEs within the mixed description of light/heavy particles
- QTs are useful to define compact WF representations for the 'BO-andbeyond' exact (approximate, mixed) quantum dynamics
- Related to new exact factorization (TD-PES) and conditional WF

Reusable modules/methods

- Initialization of trajectories (random, pseudo-random)
- Interpolation, convolution etc to synthesize WF if needed
- Stable dynamics; minimization of ES evaluations
 - Adaptable propagators for trajectories with time-dependent potentials
- Time-dependent matrix eqs with complex matrices and degenerate bases
 - Re-expansions of WF in a non-degenerate basis
 - Evaluation of potential energy matrix elements
- Choice of electronic structure codes; dynamics/ES integration

Thank you!

Vitaly Rassolov USC George Schatz NWU Mikhail Volkov, Bing Gu Matt Dutra, Bijoy Dey

