In a typical Cartesian coordinate system, vector  $\mathbf{A}$  lies along the  $+\hat{x}$  direction and vector  $\mathbf{B}$  lies along the  $-\hat{y}$  direction. What is the direction of  $\mathbf{A} \times \mathbf{B}$ ?

$$A. -\hat{x}$$

$$B. + \hat{y}$$

$$C. +\hat{z}$$

D. 
$$-\hat{z}$$

E. Can't tell

In a typical Cartesian coordinate system, vector  $\mathbf{A}$  lies along the  $+\hat{x}$  direction and vector  $\mathbf{B}$  lies along the  $-\hat{y}$  direction. What is the direction of  $\mathbf{B} \times \mathbf{A}$ ?

$$A. -\hat{x}$$

$$B. + \hat{y}$$

$$C. +\hat{z}$$

D. 
$$-\hat{z}$$

E. Can't tell

## **YOU DERIVE IT**

Consider the radial unit vector  $(\hat{r})$  in the spherical coordinate system as shown in the figure to the right.

Determine the z component of this unit vector in the Cartesian (x, y, z) system as a function of  $r, \theta, \phi$ .



In cylindrical (2D) coordinates, what would be the correct description of the position vector  $\mathbf{r}$  of the point P shown at (x, y) = (1, 1)?

$$A. \mathbf{r} = \sqrt{2}\hat{s}$$

$$B. \mathbf{r} = \sqrt{2}\hat{s} + \pi/4\hat{\phi}$$

$$C. \mathbf{r} = \sqrt{2}\hat{s} - \pi/4\hat{\phi}$$

D. 
$$\mathbf{r} = \pi/4\hat{\phi}$$

E. Something else entirely



How is the vector  $\mathfrak{R}_{12}$  related to  $\mathbf{r}_1$  and  $\mathbf{r}_2$ ?

A. 
$$\Re_{12} = \mathbf{r}_1 + \mathbf{r}_2$$

B. 
$$\Re_{12} = \mathbf{r}_1 - \mathbf{r}_2$$

c. 
$$\Re_{12} = \mathbf{r}_2 - \mathbf{r}_1$$

D. None of these



Coulomb's Law:  $\mathbf{F} = \frac{kq_1q_2}{|\mathfrak{R}|^2}\hat{\mathfrak{R}}$  where  $\mathfrak{R}$  is the relative position vector. In the figure,  $q_1$  and  $q_2$  are 2 m apart. Which arrow **can** represent  $\hat{\mathfrak{R}}$ ?



- A. A
- B. B
- C. C
- D. More than one (or NONE) of the above
- E. You can't decide until you know if  $q_1$  and  $q_2$  are the same or opposite charges