Cubic Spline Interpolation MATH 375, Numerical Analysis

J. Robert Buchanan

Department of Mathematics

Fall 2013

Given nodes and data $\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))\}$ we have interpolated using:

 Lagrange interpolating polynomial of degree n, with n + 1 coefficients,

unfortunately,

Given nodes and data $\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))\}$ we have interpolated using:

- Lagrange interpolating polynomial of degree n, with n + 1 coefficients,
 - unfortunately,
- such polynomials can possess large oscillations, and
- the error term can be difficult to construct and estimate.

Given nodes and data $\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))\}$ we have interpolated using:

- Lagrange interpolating polynomial of degree n, with n + 1 coefficients,
 - unfortunately,
- such polynomials can possess large oscillations, and
- the error term can be difficult to construct and estimate.

An alternative is **piecewise** polynomial approximation, but of what degree polynomial?

Given nodes and data $\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))\}$ we have interpolated using:

- Lagrange interpolating polynomial of degree n, with n + 1 coefficients,
 - unfortunately,
- such polynomials can possess large oscillations, and
- the error term can be difficult to construct and estimate.

An alternative is **piecewise** polynomial approximation, but of what degree polynomial?

- Piecewise linear results are not differentiable at x_i , i = 0, 1, ..., n.
- Piecewise quadratic results are not twice differentiable at x_i , i = 0, 1, ..., n.
- Piecewise cubic!

Cubic Splines

- A cubic polynomial $p(x) = a + bx + cx^2 + dx^3$ is specified by 4 coefficients.
- The cubic spline is twice continuously differentiable.
- The cubic spline has the flexibility to satisfy general types of boundary conditions.
- While the spline may agree with f(x) at the nodes, we cannot guarantee the derivatives of the spline agree with the derivatives of f.

Cubic Spline Interpolant (1 of 2)

Given a function f(x) defined on [a, b] and a set of nodes

$$a = x_0 < x_1 < x_2 < \cdots < x_n = b,$$

a **cubic spline interpolant**, S, for f is a piecewise cubic polynomial, S_j on $[x_j, x_{j+1}]$ for j = 0, 1, ..., n-1.

$$S(x) = \begin{cases} a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3 & \text{if } x_0 \le x \le x_1 \\ a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3 & \text{if } x_1 \le x \le x_2 \end{cases}$$

$$\vdots & \vdots & \vdots \\ a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 & \text{if } x_i \le x \le x_{i+1} \end{cases}$$

$$\vdots & \vdots & \vdots \\ a_{n-1} + b_{n-1}(x - x_{n-1}) + c_{n-1}(x - x_{n-1})^2 + d_{n-1}(x - x_{n-1})^3 & \text{if } x_{n-1} \le x \le x_n \end{cases}$$

Cubic Spline Interpolant (2 of 2)

The cubic spline interpolant will have the following properties.

•
$$S(x_i) = f(x_i)$$
 for $i = 0, 1, ..., n$.

•
$$S_j(x_{j+1}) = S_{j+1}(x_{j+1})$$
 for $j = 0, 1, ..., n-2$.

•
$$S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1})$$
 for $j = 0, 1, ..., n-2$.

•
$$S_j''(x_{j+1}) = S_{j+1}''(x_{j+1})$$
 for $j = 0, 1, ..., n-2$.

One of the following boundary conditions (BCs) is satisfied:

- $S''(x_0) = S''(x_n) = 0$ (free or natural BCs).
- $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$ (clamped BCs).

Example (1 of 7)

Construct a piecewise cubic spline interpolant for the curve passing through

$$\{(5,5),\,(7,2),\,(9,4)\},$$

with natural boundary conditions.

Example (2 of 7)

This will require two cubics:

$$S_0(x) = a_0 + b_0(x-5) + c_0(x-5)^2 + d_0(x-5)^3$$

$$S_1(x) = a_1 + b_1(x-7) + c_1(x-7)^2 + d_1(x-7)^3$$

Since there are 8 coefficients, we must derive 8 equations to solve.

Example (2 of 7)

This will require two cubics:

$$S_0(x) = a_0 + b_0(x-5) + c_0(x-5)^2 + d_0(x-5)^3$$

$$S_1(x) = a_1 + b_1(x-7) + c_1(x-7)^2 + d_1(x-7)^3$$

Since there are 8 coefficients, we must derive 8 equations to solve.

The splines must agree with the function (the y-coordinates) at the nodes (the x-coordinates).

$$5 = S_0(5) = a_0$$

$$2 = S_0(7) = a_0 + 2b_0 + 4c_0 + 8d_0$$

$$2 = S_1(7) = a_1$$

$$4 = S_1(9) = a_1 + 2b_1 + 4c_1 + 8d_1$$

Example (3 of 7)

The first and second derivatives of the cubics must agree at their shared node x = 7.

$$S'_0(7) = b_0 + 4c_0 + 12d_0 = b_1 = S'_1(7)$$

 $S''_0(7) = 2c_0 + 12d_0 = 2c_1 = S''_1(7)$

Example (3 of 7)

The first and second derivatives of the cubics must agree at their shared node x = 7.

$$S'_0(7) = b_0 + 4c_0 + 12d_0 = b_1 = S'_1(7)$$

 $S''_0(7) = 2c_0 + 12d_0 = 2c_1 = S''_1(7)$

The final two equations come from the natural boundary conditions.

$$S_0''(5) = 0 = 2c_0$$

 $S_1''(9) = 0 = 2c_1 + 12d_1$

Example (4 of 7)

All eight linear equations together form the system:

$$5 = a_0$$

$$2 = a_0 + 2b_0 + 4c_0 + 8d_0$$

$$2 = a_1$$

$$4 = a_1 + 2b_1 + 4c_1 + 8d_1$$

$$0 = b_0 + 4c_0 + 12d_0 - b_1$$

$$0 = 2c_0 + 12d_0 - 2c_1$$

$$0 = 2c_0$$

$$0 = 2c_1 + 12d_1$$

Example (5 of 7)

The solution is:

i	a_i	b_i	Ci	d _i
0	5	$-\frac{17}{8}$	0	5 32
1	2	$-\frac{1}{4}$	15 16	$-\frac{5}{32}$

Example (6 of 7)

The natural cubic spline can be expressed as:

$$S(x) = \begin{cases} 5 - \frac{17}{8}(x - 5) + \frac{5}{32}(x - 5)^3 & \text{if } 5 \le x \le 7 \\ 2 - \frac{1}{4}(x - 7) + \frac{15}{16}(x - 7)^2 - \frac{5}{32}(x - 7)^3 & \text{if } 7 \le x \le 9 \end{cases}$$

Example (7 of 7)

We can verify the continuity of the first and second derivatives from the following graphs.

General Construction Process

Given n + 1 nodal/data values:

 $\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))\}$ we will create n cubic polynomials.

General Construction Process

Given n + 1 nodal/data values:

 $\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))\}$ we will create n cubic polynomials.

For $j = 0, 1, \dots, n-1$ assume

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

We must find a_j , b_j , c_j and d_j (a total of 4n unknowns) subject to the conditions specified in the definition.

First Set of Equations

Let $h_j = x_{j+1} - x_j$ then

$$S_j(x_j) = a_j = f(x_j)$$

 $S_{j+1}(x_{j+1}) = a_{j+1} = S_j(x_{j+1}) = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3.$

So far we know a_j for j = 0, 1, ..., n-1 and have n equations and 3n unknowns.

$$a_{1} = a_{0} + b_{0}h_{0} + c_{0}h_{0}^{2} + d_{0}h_{0}^{3}$$

$$\vdots$$

$$a_{j+1} = a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3}$$

$$\vdots$$

$$a_{n} = a_{n-1} + b_{n-1}h_{n-1} + c_{n-1}h_{n-1}^{2} + d_{n-1}h_{n-1}^{3}$$

First Derivative

The continuity of the first derivative at the nodal points produces *n* more equations.

For j = 0, 1, ..., n - 1 we have

$$S'_j(x) = b_j + 2c_j(x - x_j) + 3d_j(x - x_j)^2.$$

Thus

$$S'_{j}(x_{j}) = b_{j}$$

 $S'_{j+1}(x_{j+1}) = b_{j+1} = S'_{j}(x_{j+1}) = b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2}$

Now we have 2n equations and 3n unknowns.

Equations Derived So Far

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 \quad (\text{for } j = 0, 1, \dots, n-1)$$

$$b_1 = b_0 + 2c_0 h_0 + 3d_0 h_0^2$$

$$\vdots$$

$$b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2$$

$$\vdots$$

$$b_n = b_{n-1} + 2c_{n-1} h_{n-1} + 3d_{n-1} h_{n-1}^2$$

The unknowns are b_j , c_j , and d_j for j = 0, 1, ..., n - 1.

Second Derivative

The continuity of the second derivative at the nodal points produces *n* more equations.

For j = 0, 1, ..., n - 1 we have

$$S_j''(x)=2c_j+6d_j(x-x_j).$$

Thus

$$S''_{j}(x_{j}) = 2c_{j}$$

 $S''_{j+1}(x_{j+1}) = 2c_{j+1} = S''_{j}(x_{j+1}) = 2c_{j} + 6d_{j}h_{j}$

Now we have 3n equations and 3n unknowns.

Equations Derived So Far

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3$$
 (for $j = 0, 1, ..., n-1$)
 $b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2$ (for $j = 0, 1, ..., n-1$)
 $2c_1 = 2c_0 + 6d_0 h_0$
 \vdots
 $2c_{j+1} = 2c_j + 6d_j h_j$
 \vdots
 $2c_n = 2c_{n-1} + 6d_{n-1} h_{n-1}$

The unknowns are b_i , c_j , and d_i for j = 0, 1, ..., n - 1.

Summary of Equations

For
$$j = 0, 1, ..., n - 1$$
 we have
$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3$$
$$b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2$$
$$c_{j+1} = c_j + 3d_j h_j.$$

Note: The quantities a_j and h_j are known.

Summary of Equations

For
$$j = 0, 1, ..., n - 1$$
 we have
$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3$$
$$b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2$$
$$c_{j+1} = c_j + 3d_j h_j.$$

Note: The quantities a_i and h_i are known.

Solve the third equation for d_j and substitute into the other two equations.

$$d_j = \frac{c_{j+1} - c_j}{3h_j}$$

This eliminates *n* equations of the third type.

Solving the Equations (1 of 3)

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + \left(\frac{c_{j+1} - c_j}{3h_j}\right) h_j^3$$

$$= a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1})$$

$$b_{j+1} = b_j + 2c_j h_j + 3\left(\frac{c_{j+1} - c_j}{3h_j}\right) h_j^2$$

$$= b_j + h_j (c_j + c_{j+1})$$

Solving the Equations (1 of 3)

$$a_{j+1} = a_j + b_j h_j + c_j h_j^2 + \left(\frac{c_{j+1} - c_j}{3h_j}\right) h_j^3$$

$$= a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1})$$

$$b_{j+1} = b_j + 2c_j h_j + 3\left(\frac{c_{j+1} - c_j}{3h_j}\right) h_j^2$$

$$= b_j + h_j (c_j + c_{j+1})$$

Solve the first equation for b_j .

$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1})$$

Solving the Equations (2 of 3)

Replace index j by j-1 to obtain

$$b_{j-1}=\frac{1}{h_{j-1}}(a_j-a_{j-1})-\frac{h_{j-1}}{3}(2c_{j-1}+c_j).$$

Solving the Equations (2 of 3)

Replace index j by j-1 to obtain

$$b_{j-1}=\frac{1}{h_{i-1}}(a_j-a_{j-1})-\frac{h_{j-1}}{3}(2c_{j-1}+c_j).$$

We can also re-index the earlier equation

$$b_{j+1} = b_j + h_j(c_j + c_{j+1})$$

to obtain

$$b_j = b_{j-1} + h_{j-1}(c_{j-1} + c_j).$$

Substitute the equations for b_{j-1} and b_j into the remaining equation. This step eliminate n equations of the first type.

Solving the Equations (3 of 3)

$$\frac{1}{h_{j}}(a_{j+1}-a_{j}) - \frac{h_{j}}{3}(2c_{j}+c_{j+1})$$

$$= \frac{1}{h_{j-1}}(a_{j}-a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1}+c_{j}) + h_{j-1}(c_{j-1}+c_{j})$$

Collect all terms involving *c* to one side.

$$h_{j-1}c_{j-1}+2c_j(h_{j-1}+h_j)+h_jc_{j+1}=\frac{3}{h_j}(a_{j+1}-a_j)-\frac{3}{h_{j-1}}(a_j-a_{j-1})$$

for $j=1,2,\ldots,n-1$.

Solving the Equations (3 of 3)

$$\frac{1}{h_{j}}(a_{j+1}-a_{j}) - \frac{h_{j}}{3}(2c_{j}+c_{j+1})$$

$$= \frac{1}{h_{j-1}}(a_{j}-a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1}+c_{j}) + h_{j-1}(c_{j-1}+c_{j})$$

Collect all terms involving *c* to one side.

$$h_{j-1}c_{j-1}+2c_j(h_{j-1}+h_j)+h_jc_{j+1}=\frac{3}{h_j}(a_{j+1}-a_j)-\frac{3}{h_{j-1}}(a_j-a_{j-1})$$

for j = 1, 2, ..., n - 1.

Remark: we have n-1 equations and n+1 unknowns.

Natural Boundary Conditions

If
$$S''(x_0) = S''_0(x_0) = 2c_0 = 0$$
 then $c_0 = 0$ and if $S''(x_n) = S''_{n-1}(x_n) = 2c_n = 0$ then $c_n = 0$.

Natural Boundary Conditions

If
$$S''(x_0) = S''_0(x_0) = 2c_0 = 0$$
 then $c_0 = 0$ and if $S''(x_n) = S''_{n-1}(x_n) = 2c_n = 0$ then $c_n = 0$.

Theorem

If f is defined at $a = x_0 < x_1 < \cdots < x_n = b$ then f has a unique natural cubic spline interpolant.

Natural BC Linear System (1 of 3)

In matrix form the system of n + 1 equations has the form $A\mathbf{c} = \mathbf{y}$ where

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & \cdots & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Note: *A* is a tridiagonal matrix.

Natural BC Linear System (2 of 3)

The vector **y** on the right-hand side is formed as

$$\mathbf{y} = \left[egin{array}{c} 0 \ rac{3}{h_1}(a_2-a_1) - rac{3}{h_0}(a_1-a_0) \ rac{3}{h_2}(a_3-a_2) - rac{3}{h_1}(a_2-a_1) \ dots \ rac{3}{h_{n-1}}(a_n-a_{n-1}) - rac{3}{h_{n-2}}(a_{n-1}-a_{n-2}) \ 0 \end{array}
ight]$$

Note: A is a tridiagonal matrix.

Natural BC Linear System (3 of 3)

$$A\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\ \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) \\ \vdots \\ \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix}$$

We solve this linear system of equations using a common algorithm for handling tridiagonal systems.

Natural Cubic Spline Algorithm

INPUT
$$\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))\}$$

STEP 1 For $i = 0, 1, \dots, n-1$ set $a_i = f(x_i)$; set $h_i = x_{i+1} - x_i$.
STEP 2 For $i = 1, 2, \dots, n-1$ set $\alpha_i = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1})$.
STEP 3 Set $l_0 = 1$; set $\mu_0 = 0$; set $\mu_0 = 0$.
STEP 4 For $i = 1, 2, \dots, n-1$ set $h_i = 2(x_{i+1} - x_{i-1}) - h_{i-1}\mu_{i-1}$; set $\mu_i = \frac{h_i}{l_i}$; set $h_i = \frac{a_i - h_{i-1} x_{i-1}}{l_i}$.
STEP 5 Set $h_i = 1$; set $h_i = 0$; set $h_i = 0$.
STEP 6 For $h_i = 1$; set $h_i = 0$; set $h_i = 0$.
STEP 7 For $h_i = 0, 1, \dots, n-1$ OUTPUT $h_i = 0$; set $h_i = 0$; set $h_i = 0$.

Example (1 of 4)

Construct the natural cubic spline interpolant for $f(x) = \ln(e^x + 2)$ with nodal values:

X	f(x)
-1.0	0.86199480
-0.5	0.95802009
0.0	1.0986123
0.5	1.2943767

Calculate the absolute error in using the interpolant to approximate f(0.25) and f'(0.25).

Example (2 of 4)

In this case n = 3 and

$$h_0 = h_1 = h_2 = 0.5$$

with

$$a_0 = 0.86199480, a_1 = 0.95802009,$$

 $a_2 = 1.0986123, a_3 = 1.2943767.$

The linear system resembles,

$$\mathbf{Ac} = \left[\begin{array}{cccc} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 2.0 & 0.5 & 0.0 \\ 0.0 & 0.5 & 2.0 & 0.5 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{array} \right] \left[\begin{array}{c} c_0 \\ c_1 \\ c_2 \\ c_3 \end{array} \right] = \left[\begin{array}{c} 0.0 \\ 0.267402 \\ 0.331034 \\ 0.0 \end{array} \right] = \mathbf{y}$$

Example (3 of 4)

The coefficients of the piecewise cubics:

i	a_i	b_i	c_i	d_i
	0.861995		0.0	0.0656509
1	0.95802	0.224876	0.0984763	0.028281
2	1.09861	0.344563	0.140898	-0.093918

Example (3 of 4)

The coefficients of the piecewise cubics:

i	a_i	b_i	c_i	d_i
0	0.861995	0.175638	0.0	0.0656509
1	0.95802	0.224876	0.0984763	0.028281
2	1.09861	0.344563	0.140898	-0.093918

The cubic spline:

$$S(x) = \begin{cases} 0.861995 + 0.175638(x+1) & \text{if } -1 \le x \le -0.5 \\ + 0.0656509(x+1)^3 & \text{o.}95802 + 0.224876(x+0.5) \\ + 0.0984763(x+0.5)^2 & \text{if } -0.5 \le x \le 0 \\ + 0.028281(x+0.5)^3 & \text{if } 0 \le x \le 0.5 \\ + 0.140898x^2 - 0.093918x^3 & \text{if } 0 \le x \le 0.5 \end{cases}$$

Example (4 of 4)

Clamped Boundary Conditions (1 of 2)

If
$$S'(a)=S_0'(a)=f'(a)=b_0$$
 then
$$f'(a)=\frac{1}{h_0}(a_1-a_0)-\frac{h_0}{3}(2c_0+c_1)$$

which is equivalent to

$$h_0(2c_0+c_1)=\frac{3}{h_0}(a_1-a_0)-3f'(a).$$

This replaces the first equation in our system of *n* equations.

Clamped Boundary Conditions (2 of 2)

Likewise if $S'(b) = S'_n(b) = f'(b) = b_n$ then

$$\begin{array}{lcl} b_n & = & b_{n-1} + h_{n-1}(c_{n-1} + c_n) \\ & = & \frac{1}{h_{n-1}}(a_n - a_{n-1}) - \frac{h_{n-1}}{3}(2c_{n-1} + c_n) + h_{n-1}(c_{n-1} + c_n) \\ & = & \frac{1}{h_{n-1}}(a_n - a_{n-1}) + \frac{h_{n-1}}{3}(c_{n-1} + 2c_n) \end{array}$$

which is equivalent to

$$h_{n-1}(c_{n-1}+2c_n)=3f'(b)-\frac{3}{h_{n-1}}(a_n-a_{n-1}).$$

This replaces the last equation in our system of n equations.

Clamped BC Linear System (1 of 2)

Theorem

If f is defined at $a = x_0 < x_1 < \cdots < x_n = b$ and differentiable at x = a and at x = b, then f has a unique clamped cubic spline interpolant.

In matrix form the system of n equations has the form $A\mathbf{c} = \mathbf{y}$ where

$$A = \begin{bmatrix} 2h_0 & h_0 & 0 & 0 & \cdots & 0 \\ h_0 & 2(h_0 + h_1) & h_1 & 0 & \cdots & 0 \\ 0 & h_1 & 2(h_1 + h_2) & h_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & 0 & 0 & \cdots & h_{n-1} & 2h_{n-1} \end{bmatrix}$$

Note: A is a tridiagonal matrix.

Clamped BC Linear System (2 of 2)

$$A\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{n-1} \\ c_n \end{bmatrix} = \begin{bmatrix} \frac{\frac{3}{h_0}(a_1 - a_0) - 3f'(a)}{\frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0)} \\ \frac{\frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_2 - a_1)}{\frac{3}{h_1}(a_2 - a_1)} \\ \vdots \\ \frac{\frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2})}{3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1})} \end{bmatrix}$$

Coefficients of the Cubic Splines

Since a_j for j = 0, 1, ..., n is known, once we solve the linear system for c_j (again for j = 0, 1, ..., n) then

$$b_{j} = \frac{1}{h_{j}}(a_{j+1} - a_{j}) - \frac{h_{j}}{3}(c_{j+1} + 2c_{j})$$

$$d_{j} = \frac{1}{3h_{j}}(c_{j+1} - c_{j})$$

for
$$j = 0, 1, ..., n - 1$$
.

Clamped Cubic Spline Algorithm (1 of 2)

INPUT
$$\{(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))\}, f'(x_0), \text{ and } f'(x_n).$$

STEP 1 For $i = 0, 1, \dots, n-1$ set $a_i = f(x_i)$; set $h_i = x_{i+1} - x_i.$

STEP 2 Set $\alpha_0 = \frac{3(a_1 - a_0)}{h_0} - 3f'(x_0);$

$$\alpha_n = 3f'(x_n) - \frac{3(a_n - a_{n-1})}{h_{n-1}}.$$

STEP 3 For $i = 1, 2, \dots, n-1$ set $\alpha_i = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1}).$

STEP 4 Set $l_0 = 2h_0$; $\mu_0 = 0.5$; $z_0 = \frac{\alpha_0}{l_0}.$

Clamped Cubic Spline Algorithm (2 of 2)

STEP 5 For
$$i = 1, 2, ..., n-1$$
 set
$$l_i = 2(x_{i+1} - x_{i-1}) - h_{i-1}\mu_{i-1}; \mu_i = \frac{h_i}{l_i};$$

$$z_i = \frac{\alpha_i - h_{i-1}z_{i-1}}{l_i}.$$

STEP 6 Set
$$I_n = h_{n-1}(2 - \mu_{n-1}); z_n = \frac{\alpha_n - h_{n-1}z_{n-1}}{I_n}; c_n = z_n.$$

STEP 7 For
$$j = n - 1, n - 2, ..., 0$$
 set $c_j = z_j - \mu_j c_{j+1}$; $b_j = \frac{a_{j+1} - a_j}{h_j} - \frac{h_j(c_{j+1} + 2c_j)}{3}$; $d_j = \frac{c_{j+1} - c_j}{3h_j}$.

STEP 8 For j = 0, 1, ..., n-1 OUTPUT a_j, b_j, c_j, d_j .

Example (1 of 4)

Construct the clamped cubic spline interpolant for $f(x) = \ln(e^x + 2)$ with nodal values:

X	f(x)
-1.0	0.86199480
-0.5	0.95802009
0.0	1.0986123
0.5	1.2943767

Calculate the absolute error in using the interpolant to approximate f(0.25) and f'(0.25).

Example (2 of 4)

In this case n = 3 and

$$h_0 = h_1 = h_2 = 0.5$$

with

$$a_0 = 0.86199480, a_1 = 0.95802009,$$

 $a_2 = 1.0986123, a_3 = 1.2943767.$

Note that $f'(-1) \approx 0.155362$ and $f'(0.5) \approx 0.451863$.

The linear system resembles,

$$\mathbf{Ac} = \begin{bmatrix} 1.0 & 0.5 & 0.0 & 0.0 \\ 0.5 & 2.0 & 0.5 & 0.0 \\ 0.0 & 0.5 & 2.0 & 0.5 \\ 0.0 & 0.0 & 0.5 & 1.0 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0.110064 \\ 0.267402 \\ 0.331034 \\ 0.181001 \end{bmatrix} = \mathbf{y}.$$

Example (3 of 4)

The coefficients of the piecewise cubics:

i	a_i	b_i	c_i	d_i
0	0.861995	0.155362	0.0653748	0.0160031
1	0.95802	0.23274	0.0893795	0.0150207
2	1.09861	0.333384	0.11191	0.00875717

Example (3 of 4)

The coefficients of the piecewise cubics:

i	a_i	b_i	C_i	d_i
0	0.861995	0.155362	0.0653748	0.0160031
1	0.95802	0.23274	0.0893795	0.0150207
2	1.09861	0.333384	0.11191	0.00875717

The cubic spline:

$$S(x) = \begin{cases} 0.861995 + 0.155362(x+1) \\ + 0.0653748(x+1)^2 & \text{if } -1 \le x \le -0.5 \\ + 0.0160031(x+1)^3 & \text{o.95802} + 0.23274(x+0.5) \\ + 0.0893795(x+0.5)^2 & \text{if } -0.5 \le x \le 0 \\ + 0.0150207(x+0.5)^3 & \text{if } 0.9861 + 0.333384x + 0.11191x^2 & \text{if } 0 \le x \le 0.5 \\ + 0.00875717x^3 & \text{o.961} + 0.00875717x^3 & \text{o.961} + 0.00875717x^3 \end{cases}$$

Example (4 of 4)

Error Analysis

Theorem

Let $f \in \mathcal{C}^4[a,b]$ with $\max_{a \le x \le b} \left| f^{(4)}(x) \right| = M$. If S is the unique clamped cubic spline interpolant to f with respect to nodes $a = x_0 < x_1 < \dots < x_n = b$, then for all $x \in [a,b]$,

$$|f(x) - S(x)| \le \frac{5M}{384} \max_{0 \le j \le n-1} (x_{j+1} - x_j)^4.$$

Example

Earlier we found the clamped cubic spline interpolant for $f(x) = \ln(e^x + 2)$. In this example $x_{j+1} - x_j = 0.5$ for all j.

Note that

$$f^{(4)}(x) = \frac{2e^{x}(4 - 8e^{x} + e^{2x})}{(2 + e^{x})^{4}}$$

$$\max_{-1 \le x \le 0.5} \left| f^{(4)}(x) \right| \approx 0.120398$$

$$|f(0.25) - S(0.25)| = 1.97037 \times 10^{-5}$$

$$\le \frac{5(0.120398)}{384}(0.5)^{4}$$

$$\approx 9.798 \times 10^{-5}.$$

Natural Cubic Spline Example (1 of 3)

Consider the following data:

$$\begin{array}{rrr}
x & f(x) \\
-0.5 & -0.02475 \\
-0.25 & 0.334938 \\
0.0 & 1.101
\end{array}$$

The linear system takes the form

$$\begin{array}{rcl}
Ac & = & \mathbf{y} \\
\begin{bmatrix}
1.00 & 0.00 & 0.00 \\
0.25 & 1.00 & 0.25 \\
0.00 & 0.00 & 1.00
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
0.00 \\
4.8765 \\
0.00
\end{bmatrix}$$

Natural Cubic Spline Example (2 of 3)

The coefficients of the natural cubic spline interpolant are

a_i	b_i	C_i	d_i
-0.02475	1.03238	0.0	6.502
0.334938	2.2515	4.8765	-6.502

and the piecewise cubic is

$$S(x) = \left\{ \begin{array}{ll} -0.02475 + 1.03238(x+0.5) + 6.502(x+0.05)^3 & \text{if } -0.5 \leq x \leq -0.25 \\ 0.334938 + 2.2515(x+0.25) + 4.8765(x+0.25)^2 - 6.502(x+0.25)^3 & \text{if } -0.25 \leq x \leq 0. \end{array} \right.$$

Natural Cubic Spline Example (3 of 3)

Clamped Cubic Spline Example (1 of 4)

Here we will find the clamped cubic spline interpolant to the function $f(x) = J_0(\sqrt{x})$ at the nodes $x_i = 5i$ for i = 0, 1, ..., 10.

$$\begin{array}{c|cc} x & f(x) \\ \hline 0.0 & 1.0 \\ 5.0 & 0.0904053 \\ 10.0 & -0.310045 \\ \vdots & \vdots \\ 50.0 & 0.299655 \\ \end{array}$$

Note: f'(0) = -0.25 and f'(50) = -0.00117217.

Clamped Cubic Spline Example (2 of 4)

The tridiagonal linear system takes the following form

$$\begin{bmatrix} 10 & 5 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 5 & 20 & 5 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 5 & 20 & 5 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & & & \ddots & & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 5 & 20 & 5 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 5 & 20 & 5 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 5 & 10 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_8 \\ c_9 \\ c_{10} \end{bmatrix} = \begin{bmatrix} 0.204243 \\ 0.305487 \\ 0.184846 \\ 0.100749 \\ 0.044242 \\ 0.008211 \\ -0.012944 \\ -0.023582 \\ -0.027056 \\ -0.025905 \\ -0.011808 \end{bmatrix}.$$

Clamped Cubic Spline Example (3 of 4)

The coefficients of the clamped cubic spline interpolant are

a_i	b_i	Ci	d_i
1	-0.25	0.0154655	-0.00036986
0.09040533	-0.1230843	0.009917643	-0.0002637577
-0.3100448	-0.0436897	0.005961278	-0.0001836499
-0.4024176	0.00214934	0.003206529	-0.0001229411
-0.3268753	0.02499404	0.001362412	-0.0000780158
-0.1775968	0.03276697	0.000192174	-0.0000454083
-0.0146336	0.03128308	-0.00048895	-0.0000224102
0.12675676	0.02471281	-0.00082510	-6.79522×10^{-6}
0.22884382	0.01595213	-0.00092703	3.265389×10^{-6}
0.28583684	0.00692671	-0.00087805	9.088463×10^{-6}

Clamped Cubic Spline Example (4 of 4)

Homework

- Read Section 3.5
- Exercises: 1, 3d, 5d, 7d, 31