北京大学信息科学技术学院考试试卷

考试科目:	算法设计与分析	姓名:	学号:

考试时间: 2011 年 6 月 13 日 **任课教师:** 汪小林/蒋婷婷/肖臻

题号	1 1	111	四	五	六	七	总分
分数							
阅卷人							

北京大学考场纪律

- 1、考生进入考场后,按照监考老师安排隔位就座,将学生证放在桌面上。 无学生证者不能参加考试;迟到超过15分钟不得入场。在考试开始30分钟后 方可交卷出场。
- 2、除必要的文具和主考教师允许的工具书、参考书、计算器以外,其它 所有物品(包括空白纸张、手机、或有存储、编程、查询功能的电子用品等) 不得带入座位,已经带入考场的必须放在监考人员指定的位置。
- 3、考试使用的试题、答卷、草稿纸由监考人员统一发放,考试结束时收回,一律不准带出考场。若有试题印制问题请向监考教师提出,不得向其他考生询问。提前答完试卷,应举手示意请监考人员收卷后方可离开;交卷后不得在考场内逗留或在附近高声交谈。未交卷擅自离开考场,不得重新进入考场答卷。考试结束时间到,考生立即停止答卷,在座位上等待监考人员收卷清点后,方可离场。
- 4、考生要严格遵守考场规则,在规定时间内独立完成答卷。不准交头接耳,不准偷看、夹带、抄袭或者有意让他人抄袭答题内容,不准接传答案或者试卷等。凡有违纪作弊者,一经发现,当场取消其考试资格,并根据《北京大学本科考试工作与学术规范条例》及相关规定严肃处理。
- 5、考生须确认自己填写的个人信息真实、准确,并承担信息填写错误带来的一切责任与后果。

学校倡议所有考生以北京大学学生的荣誉与诚信答卷,共同维护北京大 学的学术声誉。

以下为试题和答题纸, 共 15 页。

得分	一、	填空题	(每空1	分,	共 20 :	分)

1. 请将下列 5 个关于 n 的函数 $(\sqrt{2})^{\lg n}$, n^2 , $\lg^2 n$, $(\lg n)!$, $2^{\sqrt{2\lg n}}$ 按渐进增
长的关系排序,使得 $g_1 = \Omega(g_2), g_2 = \Omega(g_3),, g_4 = \Omega(g_5)$ 。
、、、和。
2. 对于 n 个元素的数组,插入排序、归并排序和快速排序的最坏情形运行时
_{间分别是} n^2 、 nlogn _和 n^2 。
3. 对于某种快速排序算法,如果每两次连续选取的划分元素,一次会把数组
划分为基本等长的两个部分,另一次则会划分为长度为1和 n-2 的两个部分(n 表
示当前数组长度)。则该快速排序算法的时间复杂度是。
4. 对在 $1 \sim k$ 之间的 n 个数用计数排序法排序,时间复杂度为 $O(n+k)$
如果 $k >> n$ 时,可以采用基于计数排序法的 $_{\underline{a}}$ 排序法提高排序效率。
5. 线性时间选择算法 SELECT 首先从每 5 个数中选取中位数,用算法
select
6. 如果图 $G=(V,E)$ 中的每条边的长度均为 1,则求给定起点的单源最短路径
问题的时间复杂性为。
7. 货郎问题 (TSP) 在
多项式时间的 2-近似算法。
8. MAX-3-CNF 可满足问题的随机近似算法是
9. 用势能法分析动态表(T),其插入操作的平摊代价是 2 ,其势
函数 $\Phi(T)$ =。(注: $\Phi(T)$ 是 $\operatorname{num}[T]$
和 $size[T]$ 的函数,其中 $num[T]$ 是动态表中当前数据量, $size[T]$ 是动态表当前长度。)
10. 平面上有三个点 P_1 =(x_1, y_1)、 P_2 =(x_2, y_2)、 P_3 =(x_2, y_3),判断线段 P_1P_3 在 P_1P_2
逆时针方向的条件是

得分 二、单选题. (每小题 1 分,共 10 分)

1.	下列	说法正确的是:	[]
	(a)	求 n 个数中的最大数至少需要比较 n-1 次		
	(b)	求 n 个数中的次大数最少只需要比较[logn]次		
	(c)	在 n 个数中找某个数 x ,可以采用二分法,只需比较 C	O(logn)次	
	(d)	不可能用少于7次的比较对5个数排序		
2.	下列	哪个问题的回溯算法 不能 基于对称性优化:	[]
	(a)	图的 m 着色问题		
	(b)	最大团问题		
	(c)	旅行商问题(TSP)		
	(d)	圆排列问题		
3.	关于	在线算法,下列说法中 错误 的是:	[]
	(a)	一个在线问题的最优在线算法具有最小的竞争比		
	(b)	没有比 k 竞争比更优的页面调度算法了		
	(c)	LRU 和 FIFO 都是 k 竞争比页面调度在线算法		
	(d)	在实际应用中,LRU 和 FIFO 都是最优的页面调度算法	Ė	
4.	用 Ed	lmonds-Karp 算法计算最大流,时间复杂度是:	[]
	(a)	$O(VE^2)$		
	(b)	$O(V^2E)$		
	(c)	流网络各边的容量相关,可能很大		
	(d)	$O(V^3)$		
5.	n 个 j	点的点集 Q 的凸包 P 中有 h 个点,下述说法 错误 的是:	[]
	(a)	Graham 扫描法的时间复杂度为 O(nlogn)		
	(b)	Jarvis 步进法的时间复杂度为 O(nh)		
	(c)	Jarvis 步进法比 Graham 扫描法的时间复杂度低		
	(b)	Graham 扫描法和 Jarvis 步进法中都可用叉积法判断占	与线段间的争	4系

6.	(a) (b)	问题中属于 NPC 的是: 最长公共子序列 最长路径	[]
	(c) (d)			
	(u)	NAT ULV I.		
7.	以下統	叙述 错误 的是:	[]
	(a)	多项式对加法、乘法、复合运算都是闭合的		
	(b)	判定问题可以通过二分法搜索来求解最优问题		
	(c)	NPC 问题和 NP-hard 问题也是 NP 问题		
	(d)	任何一个 NP 问题都可以归于到任何一个 NPC 问题		
8.	以下	关于 <i>P、NP、co-NP</i> 的关系中 不可能 出现的情况是:	[]
	(a)	P = NP = co-NP		
	(b)	$P \neq NP \cap co-NP$		
	(c)	$P = NP \cap co-NP$		
	(d)	$P = NP \neq co-NP$		
9.	以下i	沦述 错误 的是:	ſ]
	(a)	如果存在任何一个 NPC 问题是多项式时间内可解,那	-	-
	(b)	如果存在任何一个 NP 问题不能在多项式时间内可解,	那么没有 NI	PC 问
		题可在多项式时间内可解		
	(c)	如果 $L_1 \leq_P L_2$,那么 L_1 不会比 L_2 更难解		
	(d)	语言 L 被算法 A 接受当且仅当 $x \notin L$ 被 A 拒绝		
10	以下-	关于最优顶点覆盖问题的近似解法的叙述 错误 的是:	ſ	1
10.	(a)	是多项式时间的 2-近似算法	L	J
	(b)	所得顶点覆盖集中的边是该图的一个最大匹配		
	(c)	剩余顶点构成其补图的一个团		
	(d)	运行时间为 O(V+E)		

三、求解下列递归式,假设 T(1)=1 (每小题 5 分,共 15 分)

(1) $T(n) = 2T(n/2) + n \log n$

(2)
$$T(n) = 2T(n/2) + n/\log n$$

(3)
$$T(n) = \sqrt{n}T(\sqrt{n}) + n\log n$$

四、简答题(共20分)

(1)100个人排队乘坐有100个座位的飞机,正常情况时每个都会对号入坐,但是,第一个上飞机的是个傻子,他随机坐了一个位子,接下来的人上飞机时,如果自己座位被人坐了就会随机找个座位坐下,否则就坐自己坐位。问题:最后一个上飞机的人坐到自己座位的概率是多少?(3分)

(2) 个人作业分配问题的费用矩阵如下面的表格所示,请给出用于分支限界法的化简后的费用矩阵。(3分)

费用矩阵						化简的费用矩阵					
_	作业人	1	2	3	4	作业 1 2 3 4					
	1	29	19	17	12	1					
	2	32	30	26	28	2					
	3	3	21	7	9	3					
	4	18	13	10	15	4					

(3)下图所示是一个流网络,请说明其上的最大流值是多少?(3分)

(4) 对于类似如下的背包问题,请问如果采用回溯法求解该问题,应该怎样 重构该问题(3分)。

$$\max x_1 + 3x_2 + 5x_3 + 9x_4$$
$$2x_1 + 3x_2 + 4x_3 + 7x_4 \le 10$$
$$x_i \in N, i = 1, 2, 3, 4$$

(5) 对于上述重构后的背包问题,给出其节点代价函数。(3分)

(6) 芝加哥有许多高楼,但是只有一些高楼可以看见密西根湖。假设数组 A[1...n]存储了 n 栋高楼的高度(从西向东且高度各不相同)。第 i 栋高楼可以看见密西根湖当且仅当第 i 栋高楼东边的每栋楼都比它矮。例如,如果高楼的高度从西向东递减,则每栋高楼都能看到密西根湖。以下是计算哪些高楼可以看见密西根湖的算法。请分析算法的时间复杂度。(5分)

```
\begin{aligned} & \text{GOODVIEW}(A[1 \dots n]) \text{:} \\ & \text{initialize a stack } S \\ & \text{for } i \leftarrow 1 \text{ to } n \\ & \text{while } (S \text{ not empty and } A[i] > A[Top(S)]) \\ & \text{Pop(S)} \\ & \text{Push(S,i)} \\ & \text{return } S \end{aligned}
```

五、多边形三角剖分问题(共15分)

P是一个有n个顶点的凸多边形。连接P的两个顶点并且位于P的内部的线段称为"对角线"。P的一个三角剖分是指一组互不相交的"对角线"组成的最大集合(即对角线条数最多集合,如图所示)。请设计一个时间复杂度 $O(n^3)$ 的动态规划算法来计算P的三角剖分使得所包含的对角线的长度之和最小。要求:

(1)给出算法的简要描述,可以是伪码,也可以是文字性描述(5分)。

(3) 简要证明该问题具有最优子结构的性质(4分)。
(4) 简要分析所设计的算法的时间复杂度是 $O(n^3)$ (3分)。

(2) 写出该算法关于对角线长度之和的状态转移方程(3分)。

六、串匹配问题(共10分)

假设有一个字符串 $y=b_1b_2\dots b_n$,y的一个"分散子串"是指 $x=a_1a_2\dots a_m$, $m\leq n$ 并且 $a_i=b_j$, $1\leq i\leq m, 1\leq j_1\leq j_2\leq \dots \leq j_m\leq n$ 。例如,字符串 12345 就是字符串 1ds2j34muy5dy一个分散子串。

(1) 请设计一个时间复杂度为 O(n)的算法来判断 x 是否是 y 的分散子串。(5分)

(2) 请修改上述算法得到一个时间复杂度为 $O(n^2)$ 的算法,使得所找到的分散子串的"分散长度" j_m-j_1 最小。(5分)

七、矩阵上的快速查找问题(共10分)

假设有一个 n 维的方形矩阵 a(1..n, 1..n),满足 a(i,j) < a(i,j+1), a(i,j) < a(i+1,j)。现已经将矩阵读入内存,需要在矩阵中查找某一个特定的数 x 的位置。设计尽可能快的查找算法完成这个任务。

(1) 写出查找算法, 伪码或文字描述均可(5分)。

(2) 分析算法的正确性(3分)

(3) 说明算法的时间复杂度(2分)。