, ,

2023-08-24

Contents

						•														•		 														5 5
1																																				7
	1.1																					 														7
	1.2																					 											_			8
	1.3											i																								9
	1.4			·	•		•		·	•	Ī	·	•			-	-																	•	•	9
	1.5																																			10
2																																				13
_	2.1																																			13
	$\frac{2.1}{2.2}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •										•	•	•			•	•	13
	$\frac{2.2}{2.3}$	D	C.	E.	L																															16
3																																				17
U	3.1																																			17
	3.2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•			•	•	•	•	•	•	•	•	•		•	•	•	18
	3.3				•	•	•	•	•	•	•	•	•	•														•					•	•	•	21
	5.5									•	•	•	•	•	•	•	•	•		•		 •	•	•	•	•	•	•	•	•	•		•	•	•	21
4																																				25
	4.1																					 														25
	4.2																					 														26
	4.3																					 														27
5																																				31
	5.1																																			31
	5.2	•	•	·	•		•	•	•	•	·	·	•	•	•	·		•					•		•	•	•		•	•			•	•	•	32
	5.3															-	-							-		-			-							33
6																																				35
U	6.1																																			35
	6.2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•			•	•	٠	•	•	•					-		35
	6.3			•																																36
	0.0																					 										,				- 50

4		CONTENTS

7														
7.1	 						 							
7.2														
7.3														
7.4														

try: Algorithms and Applications

Computational Geome-

Mark de Berg, Otfried Cheong, Marc van

5

6 CONTENTS

Chapter 1

1.1	
1.1.1	?
	, , , , ,
•	
	, , ,
	•
:	, , , , ,
•	(Preprocessing Time) -
•	/ (Storage Space)
•	(Query Time) -
	1) 1–2).
•	, 1.3 .

8 CHAPTER 1.

, , , ,
,
,
, , , , , , , , , , , , , , , , , , , ,
_
•
, .(, \mathbb{R}^2 , , \mathbb{R}^2 ,
(curse of high dimensionality), ,
• ,
.()
, , ,
, , , , , , , , , , , , , , , , , , ,
,
•
, ${f RAM}$
(real RAM). Random Access Machine,
,
,), , ,(,
RAM ,
. , \mathbf{CGAL} .

1.2

,

.1.3

```
" Otfried Cheong,
  • Ipe-
  • Geogebra-
  • CGAL -
  • CMSC 754 Computational Geometry, by David M. Mount.
  • Geometry: Combinatorics and Algorithms, by Luis Barba Bernd
    Gärtner, Michael Hoffmann and Emo Welzl.
  • Computational Geometry, video lectures by Philipp Kindermann.
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1
       S
                            p, q \in S
                                                    S.
                                          pq
```

CH(S).

S,

(Convex Hull) S

:

10 CHAPTER 1.

```
S
                                            S. , )
  .1
                  S.(
    S
                  S
  2.
                                              - S
                                                        S.
  3.
                  S
                                                 S.
1.4.2
           1.1
                                                     {\bf Slow Convex Hull},
                            O(n^3),
                       (degeneracies),
                        (robustness),
  (floating point),
                 1.1
                               ) 2-5)
1.4.3
                 {\bf ConvexHull}
                                             1.1
                      (Graham Scan).
      :
                              ) 6-8).
                1.1
1.4.4
                                   ?
             (Gift Wrapping) Jarvis's March.
                       output sensitive,
1.5
                                                    (general position).
                         " (degenerate),,
                                                        x,
                                         x.
```

.1.5 11

(robustness),

 p_1p_2

1.2) 8–10). 12 CHAPTER 1.

Chapter 2

```
2.1.1

2.1.1

Graphic Information Systems), (GIS - (GIS - (map overlay)). (map overlay). (sweep-line). (DCEL. (sweep-line) (line segment intersection). (line segment intersection). (line segment intersection). (sweep-line) (line segment intersection). (line segment intersection). (sweep-line) (line segment intersection) (sweep-line) (line segment intersection) (sweep-line) (line segment intersection) (sweep-line) (line segment intersection) (sweep-line) (sweep-li
```

14 CHAPTER 2.

2.2.2

,

? 2.1 Find Intersections, $O((n+k)\log n), \quad k$. . . Handle Even Point .

2.1) 20–29)

2.1 ,

 $n_v \; , \qquad n_e \; , \qquad$ - $n_f \; , \qquad \qquad , \qquad \qquad .$: $n_v - n_e + n_f \geq 2. \label{eq:nv}$

v e j _

?

()

 $O(n\log n).$

2.2.3

. , $S = \overline{pq}$. , $S = \overline{pq}$.

:

.2.2

: y = mx + cm. $\overline{pq} \qquad p = (p_x, p_y), \, q = (q_x, q_y), \qquad m = \frac{q_y - p_y}{q_x - p_x}. \label{eq:pq}$ \overline{pq} , m . , $\ell: y = mx + c - \ell': y = m'x + c',$ $t = \frac{c - c'}{m' - m}, \ t_y = \frac{cm' - c'm}{m' - m}.$ $t = (t_x, t_y)$ $p_x \leq q_x, \, p_y \leq q_y. \hspace{1cm} t \hspace{1cm} \overline{pq} \quad t_x \in [p_x,q_y], \, t_y \in [p_y,q_y].$ () p - q. ? -a-b -c , , $: \quad \det \begin{bmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{bmatrix} = a_x b_y + a_y c_x + b_x c_y - a_y b_x - a_x c_y - b_y c_x$

 $\triangle abc$.

- b,

- b, 0- .

16 CHAPTER 2.

2.4

) 39–40)

Chapter 3

18 CHAPTER 3.

```
p.(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ) . (
                                                             ),
       g(n), \quad : \quad .1 \quad g(n) \qquad \qquad n \ , \qquad \qquad .2 \qquad \qquad n \label{eq:gn}
       g(n) .
                           " " : 3 3, . . . ?
      " " k ?
                            : \qquad n \ge 3,
    \lfloor n/3 \rfloor
          n \qquad \lfloor n/3 \rfloor.
 , n n n  \lfloor n/3 \rfloor. \qquad , \quad g(n) \geq \lfloor n/3 \rfloor. ?  -\lfloor n/3 \rfloor \qquad \qquad n? \qquad .
3.2
3.2.1
                          Р.
           Ρ
                                                                 5.
                          n ?
( )
                          n-3 ) , ( .2- ,
3.2.2
                          , , ,
```

```
.3.2
                           19
                     .( )
             ?
       4.
                (P \quad ) \quad , \quad P,
: P
u, w
P. ,
                 u, v, w, v'
     u, v, w
     P,,
P.
n n-2 2n-3.
   P.(
         2(n+2) - 7 = 2n - 3.
                        n
 O(n^2).
```

, $O(n \log n)$, - O(n).

20 CHAPTER 3.

```
3.2.3
        (!
                              P.
            - T,
                        G_T .
                T
       G_T ?
                 - T, G_T
                                                           .(
                G_T .
         T,
                         !
        ?
3.2.4
           ?
                -\lfloor \frac{n}{3} \rfloor ! ,
                                        g(n) \le \lfloor \frac{n}{3} \rfloor,
            g(n) = \lfloor \frac{n}{3} \rfloor.
                                          (Václav Chvátal),
        (Steve Fisk).
                                                                "Proofs
                                        , (Paul Erdős): "a place where \operatorname{God}
from the BOOK" -
keeps aesthetically perfect proofs".
```

 .3.3

```
k - ) - k (
               n > 3,
overlineuv
  , ,
: g(n) \leq \lfloor \frac{n}{3} \rfloor.
                                                   Ρ.
                      \lfloor \frac{n}{4} \rfloor : "
3.2.5 :
    3.1 ) 46–49).
3.3
3.3.1
      n O(n^2).
```

 $O(n \log n)$, y? () () - () 3.3.2 ${\bf Make Monotone,}$,2 : PDCEL, .2 ${\bf Make Monotone}$ 3.2 $O(n \log n)$, - O(n) .) 49–55). 3.2

 $CHAPTER\ 3.$

3.2

n

O(n).

 $O(n \log n)$,

 ${\it Triangulate Monotone Polygons} \qquad .$

y

22

3.3.3

3.3

 $O(n^2)$.

?

.3.3

 $O(n), \qquad \qquad (n^2)$ (n^2) (n^2) (n^2) (n^2)

3.3) 55-58).

24 CHAPTER 3.

Chapter 4

```
26 CHAPTER 4.
```

.4.3

```
MapOverlay
                                                      O(n \log n),
         , k \le 2n. , (Master Theorem),
IntersectHalfPlanes O(n \log^2 n).
                                                            ?
                    O(n \log n)...
     MapOverlay
                                         O(n), (n+1)?
       \log n –
                                 .(
                              O(n),
- O(n \log n).
               4.2
                           ) 71–68).
4.3
4.3.1
              ?
                4.3
                             ) 71-72).
4.3.2
          4.3
                                    2DBoundedLP,
                                     \vec{c},
         m_1, m_2,
                                       C_i = m_1 \cap m_2 \cap h_1 \cap h_2 \cap \cdots \cap h_i.
O(n^2),
                                                      \ell_i
, m_1, m_2, h_1, \dots, h_{i-1}. \ ,
                                     -i O(i).
```

```
28
                                          CHAPTER 4.
v_i = O(i)?
 )
                         4.3
                   4.3
                                 ) 73–76).
4.3.3
                                                     O(n),
                                                                       2DRandom-
izedBoundedLP
RandomPermutation.
                 O(n).
4.3.3.1
         4.3
                ) 66–68).
4.3.4
                    m_1, m_2.
                                                     C.
                                  C. rho ec{d} ec{\mu}(h) h ec{\mu}(h) ec{d}
ec{d}. ec{c}
                         h,
                                       \vec{\mu}(h) - \vec{d} )h_1, h_5 ,(
                     \rho
                                                   O(n).
                                                              4.5
          4.4
                        ) 79–82).
          :
                                h_i \qquad \qquad \vec{c} - \overrightarrow{\mu}(h_i) \qquad \qquad .
              \rho,
```

 \vec{c}

.4.3

,
$$h_j \qquad \rho - \vec{c} \qquad , - \qquad h_i - h_j \qquad - C \qquad - \vec{c}.$$

$$\vec{c} - \overrightarrow{\mu}(h_j) \qquad \qquad \vec{c} - \overrightarrow{\mu}(h_i), \qquad h_j - \vec{c} \qquad - 90^\circ.$$

Chapter 5

```
5.1
5.1.1
                                        - d ,
              R,
                           ) .(96 95
             5
5.1.2
                                      {\bf R}equals left square bracket x comma x'
right square bracket.
                        Ρ
                                              left square bracket x comma x'
right square bracket,
                                                             O(log n plus k)
                                   O( n log n)
                                                             O( n).
     5.1
```

32 CHAPTER 5.

```
T left square bracket x comma x,
right square bracket, 1DRangeQuery
                                                             x- x- '
                                     bold- italic x,
       bold- italic x bold'.
                                           x ' .x-
                  ) 96–99).
       5.1
5.2
5.2.1 kd-
 KD
                                        .kd-
      :
               n O(n \log n).
                                                      O(n),
      kd-
 O(\sqrt{n}+k), k
                                                       5.2
BuildKdTree \\
                              SearchKdTree.
               .kd-
                 ) 99–105).
       5.2
                                                                .kd-
( )
(TODO)
                 kd-
                        ( 2
                                        SearchKdTree?\\
 .1
  2.
                          {\bf ReportSubtree?}
( )
(TODO)
                                                              \mathbf{R}
  .1
          \mathbf{R}
  .2
          \mathbf{R}
                                   ?
                                               ?
                                                       R
 \mathbf{R}
              с,
```

.5.3

```
(Range Trees)
5.2.2
                                        , range tree.
                                                                 ,x-
                              .y-
(TODO)
                                                            O(\log^2 n + k),
O(\sqrt{n} + k).kd-
                                                   -O(nlogn) O(n). 5.3
                    {\bf Build 2D Range Tree} \qquad ,
                                                              2DRangeQuery.
         5.3
                   ) 105–109).
                                 log n,
                                                    Fractional Cascading .
                                5.6 .
5.3
5.3.1
                                                             \begin{array}{l} d > 2. & d \ , \\ O(n^{1-\frac{1}{d}} + k), \end{array}
                     5.2
                                                  kd-
                                   O(n).
      O(n \log n)
-O(n) - d.
O(n \log^{d-1} n),
                     5.4
                                               d > 2.
                     O(\log^d n + k).
         5.4
                     ) 109–110).
5.3.2
     5.3 \ 5.1
                                                                     5.5 .
         5.5 ) 110–111).
```

34 CHAPTER 5.

Chapter 6

36 Chapter 6.

```
6.1 ) 122–124).
6.2.2
.( /
$,
                       (refinement)
                             ) ,(
                \mathcal{S},
:
(TBD)
- leftp
                            ?
( )
(TODO)
                                             6.3 .
                       ) (
                                    ?
\Theta(n)
                       6.1 ) 124–128).
:
6.3
6.3.1
 {\mathcal S}
                  \mathcal{T}(\mathcal{S})
                                                    , ) .(?
                                                    \mathcal{D}.,
              \mathcal{T}(\mathcal{S})
                             \mathcal{D} .
                             (DAG),
```

.6.3 37 $\mathcal{D}.$, \mathbf{C} kd-:5 p, : s."? **p**. p_1 . q_1 . s_1 . q_2 . s_2 . ? () TBD 6.3.2 $\mathcal{T}(\mathcal{S})$. $\mathcal S$ 4 . (TBD) 6.2) 128–133). s_i?

()

38 CHAPTER 6.

6.3.3

TrapezoidalMap $O(\log n)$.) ($O(n^2)$.

).(

 \mathcal{D} .) n! ,(

- X_i) $1 \le i \le n$ ($\sum_{i=1}^{n} E[X_i].$

 $X_i \le 3.$, - P_i $\begin{array}{ccc} & 3 & , \\ -i, & E[X_i] \leq 3P_i. \end{array}$ s_i .,

 $s_i, \qquad \Delta \qquad q \qquad s_i. \qquad \Delta \\ btop(\Delta) \ , bottom(\Delta) \ , leftp(\Delta) \ , rightp(\Delta)) \ . \qquad -s_i \\ top(\Delta) \ , \qquad 1 \ over \ i, \qquad bottom(\Delta), \ leftp(\Delta) \ , rightp(\Delta). \ , \qquad P_i \leq \frac{4}{i}, \qquad O(\log n).$ -i-1 -i(backward analysis).,

6.2) 133–137).

Chapter 7

40 CHAPTER 7.

```
Disector- p_1 - p_2 . - h(p_1,p_2), - p_1 - p_2.
                                                                   p_1.
7.2.2
 ?
 \underbrace{ \qquad \qquad \mathcal{V}(p_i) \qquad \qquad n-1 \qquad , }_{\qquad n-1 \qquad -n-1 \ . }
               ?
                     \Theta(n), .
                                                                             ,3
          \operatorname{Vor}(P) = O(n) , .(
          Vor(P) = O(n).
                                       -q ( ) P.
       C_P(q)
\begin{array}{cccc} .1 & q & \operatorname{Vor}(\mathbf{P}) & C_P(q) \\ .2 \text{ bisector-} & p_i - p_j & \operatorname{Vor}(\mathbf{P}) \\ & p_i - p_j & , & P & . \end{array}
                                                              q bisector- - C_P(q)
          p_i - p_j ,
( )
```

.7.3 41) .(151 148 7.17.3 7.3.1 $h(\boldsymbol{p}_i,\boldsymbol{p}_j)$ $O(n^2 \log n)$. $O(n \log n)$, $O(n\log n)$, 7.3.1.17.3.2Fortune 7.2 Fortune $O(n\log(n).$) Kevin Schaal) :) .(159 151 7.2: 7.4 $L_2, ,$. : 7.4.0.1

 L_1

- k) (

7.4.0.2

7.4.0.3