Voronoï Percolation in the Hyperbolic Plane

Benjamin Hansen University of Groningen

Joint work with Tobias Müller

July 15, 2019

Hyperbolic Plane \mathbb{H}^2

Hyperbolic Plane

- A surface in a high dimensional space
- Every point is a saddle point (Gaussian curvature is negative)
- · Fails Euclid's fifth axiom

Poincaré Disk Equip unit disk with the right metric

$$d_{\mathbb{H}}(x,y) = 2 \operatorname{arcsinh} \left(\frac{||x-y||}{\sqrt{(1-||x||^2)(1-||y||^2)}} \right)$$

Area(B) =
$$\int_{B} \frac{4}{(1-x^2-y^2)^2} dy dx$$

Poisson Point Process on \mathbb{H}^2

A Poisson point process on \mathbb{H}^2 is a random countable collection of points \mathcal{Z} in \mathbb{H}^2 .

For a (homogenous) Poisson point process with intensity $\lambda > 0$, the number of points falling in a region B is Poisson random variable with expectation $\lambda \cdot \text{Area}(B)$.

Additionally, for disjoint regions the number of points falling in each region are independent.

For inhomogeneous case replace $\lambda \cdot \text{Area}(B)$ with $\int_B f dA$ for some $f \geq 0$.

Poisson Point Process on \mathbb{H}^2

A Poisson point process on \mathbb{H}^2 is a random countable collection of points \mathcal{Z} in \mathbb{H}^2 .

For a (homogenous) Poisson point process with intensity $\lambda > 0$, the number of points falling in a region B is Poisson random variable with expectation $\lambda \cdot \text{Area}(B)$.

Additionally, for disjoint regions the number of points falling in each region are independent.

For inhomogeneous case replace $\lambda \cdot \text{Area}(B)$ with $\int_B f dA$ for some $f \geq 0$.

A homogeneous PPP with intensity λ on the Poincaré disk can be seen as an inhomogeneous PPP on the unit disk D where the expected number of points falling in B is

$$\int_{B} \frac{4\lambda}{(1-x^2-y^2)^2} dx dy.$$

Voronoï cells on \mathbb{H}^2

For the two metrics, $d_{\mathbb{H}}$ and d_{E} , the hyperbolic and Euclidean metrics, assign every $x \in D$ to the "closest" element of \mathcal{Z} .

Two Voronoï tessellations for $D: C_{\mathbb{H}}(\mathcal{Z})$ and $C_{\mathcal{E}}(\mathcal{Z})$

For $C_{\mathbb{H}}(\mathcal{Z})$, colour cells black independently with probability p.

• In the picture, p = 1/2 and $\lambda = 1$.

Percolation on \mathbb{H}^2

- In the picture, p = 1/2 and $\lambda = 1$.
- Is there an unbounded black component? (critical value p_c)

- In the picture, p = 1/2 and $\lambda = 1$.
- Is there an unbounded black component? (critical value p_c)
- A unique unbounded black component? (critical value p_u)

- In the picture, p = 1/2 and $\lambda = 1$.
- Is there an unbounded black component? (critical value p_c)
- A unique unbounded black component? (critical value p_u)
- Two sources of randomness

- In the picture, p = 1/2 and $\lambda = 1$.
- Is there an unbounded black component? (critical value p_c)
- A unique unbounded black component? (critical value p_u)
- Two sources of randomness
- Both p_c and p_u depend on λ

Phase Diagram (Benjamini + Schramm 2001)

$$0<
ho_c(\lambda) \leq rac{1}{2} - rac{1}{4\pi\lambda + 2}$$
 and $ho_u(\lambda) = 1 -
ho_c(\lambda),$

One unbounded black component

Infinite number of unbounded black components

No unbounded black components

Also p_c is continuous, a.s. no unbounded black component for $(\lambda, p_c(\lambda))$, and conjectured $\lim_{\lambda\to\infty}p_c(\lambda)=1/2$, the value of p_c in the plane for a homogenous PPP under the Euclidean metric (as shown by Bollobás + Riordan in 2006).

Statements

Theorem (H + Müller 2019+)
$$\lim_{\lambda\to\infty} p_c(\lambda) = 1/2$$
.

Lemma (H + Müller 2019+)

In the Poincaré disk, consider any region R that when viewed as a subset of \mathbb{R}^2 is a rectangle. Denote two opposing sides as Left and Right. If p>1/2, then, under the intensity function $\frac{4\lambda}{(1-x^2-y^2)^2}$ and hyperbolic metric $d_{\mathbb{H}}$,

 $\lim_{\lambda \to \infty} \mathbb{P}_{\lambda}(\exists \ \textit{path in R from Left to Right using only black cells}) = 1.$

Crossing "Rectangles": Changing Metric

For \mathcal{Z} a PPP on the Poincaré disk, almost surely two cells are adjacent in $C_{\mathbb{H}}(\mathcal{Z})$ if and only if they are adjacent in $C_{\mathcal{E}}(\mathcal{Z})$. (The circles which determine adjacency under both metrics share the same boundary.)

Crossing "Rectangles": Changing Metric

For \mathcal{Z} a PPP on the Poincaré disk, almost surely two cells are adjacent in $C_{\mathbb{H}}(\mathcal{Z})$ if and only if they are adjacent in $C_{\mathcal{E}}(\mathcal{Z})$. (The circles which determine adjacency under both metrics share the same boundary.)

+ When the intensity is large, the boundaries of cells do not change significantly when changing the metric

Crossing "Rectangles": Changing Metric

For \mathcal{Z} a PPP on the Poincaré disk, almost surely two cells are adjacent in $C_{\mathbb{H}}(\mathcal{Z})$ if and only if they are adjacent in $C_{\mathcal{E}}(\mathcal{Z})$. (The circles which determine adjacency under both metrics share the same boundary.)

- + When the intensity is large, the boundaries of cells do not change significantly when changing the metric
- ⇒ Hence if a "rectangle" is crossed under one metric, the same cells can be used to cross it in the other metric.

Use the Euclidean metric instead of the hyperbolic metric.

Crossing Rectangles: Inhomogeneous Poisson Process

The area element $\frac{4}{(1-x^2-y^2)^2}$ is a continuous function. So if we stay away from the boundary of the unit disk, the area element is uniformly continuous.

Implies for small rectangles R away from the boundary, the inhomogeneous (hyperbolic) PPP $\mathcal Z$ coloured black with probability p>1/2 can be coupled with a homogeneous PPP on $\mathbb R^2$ denoted $\mathcal Z_R$ coloured black with probability $p_{new}>1/2$.

On R, every black point of \mathcal{Z}_R is a black point in \mathcal{Z} and every white point of \mathcal{Z} is a white point in \mathcal{Z}_R .

By monotonicity, crossings of R are harder for \mathcal{Z}_R then \mathcal{Z} .

Crossing Rectangles in \mathbb{R}^2

Critical Ingredient (Bollobás + Riordan 2006)

Let a, b, t > 0, and rectangle R_t have side lengths at and bt. Let \mathcal{Z} be a PPP with constant density on \mathbb{R}^2 and colour cells black independently with probability p > 1/2. Then

 $\lim_{t\to\infty}\mathbb{P}(\mathsf{Horizontal}\;\mathsf{black}\;\mathsf{crossing}\;\mathsf{of}\;R_t)=1.$

Crossing \mathcal{Z}_R is Easy

How hard is it for R to be crossed using black cells of \mathcal{Z}_R ?

The intensity of \mathcal{Z}_R is at least 4λ .

So rescale the previous R and \mathcal{Z}_R by the square root of intensity to get a constant density and increasing R.

By Bollobás + Riordan 2006, crossing R is easy with \mathcal{Z}_R and so it is easy with the inhomogeneous \mathcal{Z} (as $\lambda \to \infty$).

Crossing hyperbolic "rectangles" is easy when p > 1/2.

Fill Event

Cover the unit disk with squares of width q > 0 and fix a disk D_r centered at the origin with radius r > 0.

• If a point from the PPP falls in every square that intersects D_r , the event Fill occurs.

Fill Event

Cover the unit disk with squares of width q > 0 and fix a disk D_r centered at the origin with radius r > 0.

- If a point from the PPP falls in every square that intersects D_r , the event Fill occurs.
- For event A depending on the colouring of a sufficiently smaller disk inside D_r, A ∩ Fill is independent of Z ∩ D_r^c.

Fill Event

Cover the unit disk with squares of width q > 0 and fix a disk D_r centered at the origin with radius r > 0.

- If a point from the PPP falls in every square that intersects D_r , the event Fill occurs.
- For event A depending on the colouring of a sufficiently smaller disk inside D_r , $A \cap Fill$ is independent of $\mathcal{Z} \cap D_r^c$.
- Finite # squares \implies as $\lambda \to \infty$, Fill holds a.a.s.

Start with a face centered at the origin. Use the following mechanism to colour faces of the triangles. Let p < 1/2,

• Fix a set of "rectangles" around this triangle.

- Fix a set of "rectangles" around this triangle.
- Generate $C_{\mathbb{H}}(\mathcal{Z})$.

- Fix a set of "rectangles" around this triangle.
- Generate $C_{\mathbb{H}}(\mathcal{Z})$.
- All "rectangles" having long white crossings
 ⇒ ∃ white circuit in a small ball with the triangle on the interior.

- Fix a set of "rectangles" around this triangle.
- Generate $C_{\mathbb{H}}(\mathcal{Z})$.
- All "rectangles" having long white crossings
 ⇒ ∃ white circuit in a small ball with the
 triangle on the interior.
- The event Fill on a slightly larger ball B makes Fill \cap "white circuit" independent of $\mathcal Z$ outside B.

- Fix a set of "rectangles" around this triangle.
- Generate $C_{\mathbb{H}}(\mathcal{Z})$.
- All "rectangles" having long white crossings
 ⇒ ∃ white circuit in a small ball with the
 triangle on the interior.
- The event Fill on a slightly larger ball B makes Fill \cap "white circuit" independent of $\mathcal Z$ outside B.
- For each face, isometrically map the tiling and $C_{\mathbb{H}}(\mathcal{Z})$ so that the face takes on the role of the first face. If Fill \cap "white circuit" occurs, colour that face white. Otherwise, black.

• Dependent!

- Dependent!
- But not that dependent. (*k* independent)

- Dependent!
- But not that dependent. (k independent)
- $\lim_{\lambda \to \infty} \mathbb{P}_{\lambda}(\mathsf{Face} \; \mathsf{is} \; \mathsf{white}) = 1 \; (\mathsf{Duality} \; \mathsf{with} \; \mathsf{black} \; \mathsf{for} \; p > 1/2)$

- Dependent!
- But not that dependent. (k independent)
- $\lim_{\lambda \to \infty} \mathbb{P}_{\lambda}(\mathsf{Face} \; \mathsf{is} \; \mathsf{white}) = 1 \; (\mathsf{Duality} \; \mathsf{with} \; \mathsf{black} \; \mathsf{for} \; p > 1/2)$
- For p < 1/2 and λ large \Rightarrow The black clusters of faces must be finite a.s. [Liggett + Schonmann + Stacey 1997]

ullet If there is also an unbounded cluster of black cells in $\mathcal{C}_{\mathbb{H}}(\mathcal{Z})$

- If there is also an unbounded cluster of black cells in $C_{\mathbb{H}}(\mathcal{Z})$
- Then there will be a black path tending toward the boundary of the disk.

- If there is also an unbounded cluster of black cells in $C_{\mathbb{H}}(\mathcal{Z})$
- Then there will be a black path tending toward the boundary of the disk.
- The "white circuit" cannot hold for any triangles this path intersects and the path will intersect adjacent triangles ⇒

- If there is also an unbounded cluster of black cells in $C_{\mathbb{H}}(\mathcal{Z})$
- Then there will be a black path tending toward the boundary of the disk.
- The "white circuit" cannot hold for any triangles this path intersects and the path will intersect adjacent triangles ⇒
- \exists Black cluster of faces that is infinite.

- If there is also an unbounded cluster of black cells in $C_{\mathbb{H}}(\mathcal{Z})$
- Then there will be a black path tending toward the boundary of the disk.
- The "white circuit" cannot hold for any triangles this path intersects and the path will intersect adjacent triangles ⇒
- \exists Black cluster of faces that is infinite.
- For p < 1/2 and large enough λ , almost surely there are no unbounded black clusters in $C_{\mathbb{H}}(\mathcal{Z})$.

- ullet If there is also an unbounded cluster of black cells in $\mathcal{C}_{\mathbb{H}}(\mathcal{Z})$
- Then there will be a black path tending toward the boundary of the disk.
- The "white circuit" cannot hold for any triangles this path intersects and the path will intersect adjacent triangles ⇒
- \exists Black cluster of faces that is infinite.
- For p < 1/2 and large enough λ , almost surely there are no unbounded black clusters in $C_{\mathbb{H}}(\mathcal{Z})$.
- $\lim_{\lambda\to\infty} p_c(\lambda) = 1/2$.

- ullet If there is also an unbounded cluster of black cells in $\mathcal{C}_{\mathbb{H}}(\mathcal{Z})$
- Then there will be a black path tending toward the boundary of the disk.
- The "white circuit" cannot hold for any triangles this path intersects and the path will intersect adjacent triangles ⇒
- \exists Black cluster of faces that is infinite.
- For p < 1/2 and large enough λ , almost surely there are no unbounded black clusters in $C_{\mathbb{H}}(\mathcal{Z})$.
- $\lim_{\lambda\to\infty} p_c(\lambda) = 1/2$.

Thank you! Questions?

