Département de Génie Electrique 4ème année Electrotechnique

15 mai 2001

d'Electronique de puissance

Exercice 1:

Soit le hacheur de cuk utilisé comme alimentation à découpage, débitant dans une résistance pure R'de la

Le transistor T_p est commandé dans l'intervalle [0,αΤ] où T est la période de découpage et α est le

1) Tracer sur la période T les ondes de ie, it, le, ve et inne

2) Exprimer les valeurs moyennes de us, il et ie en fonction de ce, r₁/R et r₂/R.

3) Pour r2 négligeable et r1/R=1/16. Déterminer la valeur maximale (U.)moy.

4) En négligeant les résistances r₁ et r₂, comment dimensionner C_d et l₂ pour que les ondulations maximales

Exercice 2:

La figure 2 schématise le montage d'un redresseur à facteur de puissance unitaire réalisé par un hacheur H alimenté par un pont à diodes.

Le hacheur est fermé dans l'intervalle [t1, t2] selon la commande de la figure 3. T est la période de la tension de la source $v_*=V_m\sin(2\pi i/T)$ et 0< r<1. Le courant de charge Ia est supposé parfaitement lissé.

1) Tracer les ondes de un et i, sur une période T. Déterminer en fonction de r la valeur moyenne de u_d ainsi que la valeur efficace du courant de source i,

2) Déterminer en fonction de r la valeur efficace du fondamental du courant de source et exprimer le facteur, de puissance l'p du montage. Calculer l'p

Exercice nº (2)

1 les ondes ud, is sur le période T.

churchens
$$t_2$$
, t_1 :

 $\chi(0) = b = 0 = 0$
 $\chi(1) = at + b$
 $\chi(1) = a = at$
 $\chi(1) = a = at$

$$2(T) = aT + b = 1$$
 $2(T) = aT + b = 1$
 $2(T) = aT + b = 0$
 $3(T) = aT + b = 0$
 $3(T)$

UNIVOCSPORT
$$z = -\frac{1}{7} \frac{t}{2} + 2 = r \rightarrow -\frac{1}{7} \frac{t}{2} = r - 2 \Rightarrow \frac{t}{2} = \frac{T}{4}(2-r)$$

don $c: U_{d} = -\frac{1}{7} V_{m} [\cos \omega t_{2} - \cos \omega t_{4}]$
 $U_{d} = -\frac{1}{7} V_{m} [\cos \frac{\pi r}{2} + \cos \frac{\pi r}{2}] = \frac{2}{7} V_{m} \cos \frac{\pi r}{2}$

So where efficient the convent de source:

$$\frac{d}{d} = \frac{V_{m}}{d} \left[\cos \frac{\pi r}{2} + \cos \frac{\pi r}{2} \right] = \frac{2}{7} V_{m} \cos \frac{\pi r}{2}$$

As where efficient the convent de source:

$$\frac{d}{d} = \frac{2}{7} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{2^{\frac{\pi}{4}}(2-r)}{2^{\frac{\pi}{4}}(2-r)} - \frac{2^{\frac{\pi}{4}}r}{2^{\frac{\pi}{4}}r} \right] = \frac{2}{7} \sqrt{1-r}$$

Results a substitute of the convent of the convent