Discrete Mathematics: Lecture 25

Matching, path, connected, disconnected, connected component, cut vertex, vertex cut, nonseparable, vertex connectivity, k-connected, cut edge, edge cut, edge connectivity

Xuming He
Associate Professor

School of Information Science and Technology
ShanghaiTech University

Spring Semester, 2022

Matching

DEFINITION: Let G = (V, E) be a simple graph. $M \subseteq E$ is a matching if $e \cap e' = \emptyset$ for every $e, e' \in M$. A vertex $v \in V$ is matched in M if $\exists e \in M$ such that $v \in e$, otherwise, v is not matched.

- maximum matching最大匹配: a matching with largest number of edges.
- In a bipartite graph $G = (A \cup B, E)$, $M \subseteq E$ is a **complete matching** $\mathcal{E} \subseteq \mathbb{R}$ from A to B if every $u \in A$ is matched.

- $V = \{a, b, c, d, u, v, w, x, y\}$
- $V_1 = \{a, b, c, d\};$
- $V_2 = \{u, v, w, x, y\}$
- $E = \{au, aw, bv, bx, cu, cv, dw, dy\}$

- $M = \{au, bv\}$ is a matching
 - a, b, u, v are matched in M
 - c, d, x, y are not matched in M
 - M is not a maximum matching
- $M' = \{aw, bv, cu, dy\}$ is a maximum matching
- M^\prime is a complete matching from V_1 to V_2

Hall's Theorem

EXAMPLE: Marriage on an Island

- There are m boys $X=\{x_1,\dots,x_m\}$ and n girls $Y=\{y_1,\dots,y_n\}$
- $G = (X \cup Y, E = \{\{x_i, y_j\}: x_i \text{ and } y_j \text{ are willing to get married}\})$
- What is the largest number of couples that can be formed?
- **THEOREM (Hall 1935):** A bipartitie graph $G = (X \cup Y, E)$ has a complete matching from X to Y iff $|N(A)| \ge |A|$ for any $A \subseteq X$.
 - \Rightarrow : Let $\{\{x_1, y_1\}, \dots, \{x_m, y_m\}\}$ be a complete matching from X to Y
 - For any $A = \{x_{i_1}, \dots, x_{i_S}\} \subseteq X$, $N(A) \supseteq \{y_{i_1}, \dots, y_{i_S}\}$
 - $|N(A)| \ge s = |A|$
 - \Leftarrow : suppose that $|N(A)| \ge |A|$ for any $A \subseteq X$. Find a complete matching M.
 - By induction on |X|
 - |X| = 1: Let $X = \{x\}$.
 - $|N(X)| \ge 1$
 - $\exists y \in Y \text{ such that } e = \{x, y\} \in E$.
 - $M = \{e\}$ is a complete matching from X to Y

Hall's Theorem

- Induction hypothesis: " $\forall A \subseteq X, |N(A)| \ge |A| \Rightarrow \exists$ complete matching" is true when $|X| \le k$
- Prove that " $\forall A \subseteq X$, $|N(A)| \ge |A| \Rightarrow \exists$ complete matching" when |X| = k + 1
 - Let $X = \{x_1, \dots, x_k, x_{k+1}\}.$
 - Case 1: $\forall A \subseteq X$ with $1 \le |A| \le k$, $|N_G(A)| \ge |A| + 1$
 - $N_G(A)$: A's neighborhood in G
 - Say $y_{k+1} \in N_G(\{x_{k+1}\})$.
 - Let $V' = (X \setminus \{x_{k+1}\}) \cup (Y \setminus \{y_{k+1}\}); E' = \{e \in E : e \subseteq V' \times V'\}$
 - Let $G' = (V', E') = G \{x_{k+1}\} \{y_{k+1}\}.$
 - $\forall A \subseteq \{x_1, \dots, x_k\}, |N_{G'}(A)| \ge |N_G(A)| |\{y_{k+1}\}| \ge |A| + 1 1 = |A|$
 - \exists a complete matching M' from $X \{x_{k+1}\}$ to $Y \{y_{k+1}\}$ in G' (IH)
 - $M = M' \cup \{\{x_{k+1}, y_{k+1}\}\}\$ is a complete matching from X to Y in G

Hall's Theorem

- Case 2: $\exists A \subseteq X$, $1 \le |A| \le k$ such that $|N_G(A)| = |A|$
 - Say $A = \{x_1, ..., x_i\}$ and $N_G(A) = \{y_1, ..., y_i\}$, where $1 \le i \le k$
 - Let $V' = A \cup N_G(A)$, $E' = \{e \in E : e \subseteq V' \times V'\}$ and G' = (V', E')
 - $\forall A' \subseteq A, |N_{G'}(A')| = |N_G(A')| \ge |A'|$
 - There is a complete matching M' from A to $N_G(A)$ in G' (IH)
 - Let $V'' = (X \setminus A) \cup (Y \setminus N_G(A)), E'' = \{e \in E : e \subseteq V'' \times V''\},$
 - Let $G'' = (V'', E'') = G A N_G(A)$
 - Then $\forall A'' \subseteq X \setminus A, |N_{G''}(A'')| \ge |A''|$.
 - Otherwise, $|N_G(A'' \cup A)| = |N_{G''}(A'')| + |N_G(A)| < |A''| + |A|$
 - \exists a complete matching M'' from $X \setminus A$ to $Y \setminus N_G(A)$ (IH)
 - $M = M' \cup M''$ is a complete matching from X to Y

Path (Undirected)

DEFINITION: Let G = (V, E) be an undirected graph and let $k \in \mathbb{N}$. A **path** \mathfrak{k} of **length** k from u to v in G is a sequence of k edges e_1, \ldots, e_k of G for which there exist vertices $x_0 = u, x_1, \ldots, x_{k-1}, x_k = v$ such that $e_i = \{x_{i-1}, x_i\}$ for every $i \in [k]$.

- The path is **circuit**_{BB} if u=v and k>0
- The path **passes through**_{Add} x_1, \dots, x_{k-1}
- The path **traverses** e_1, e_2, \dots, e_k
- The path is **simple**[⋒] if it doesn't contain an edge more than once.
- If G is simple, the path can be denoted as $x_0, x_1, ..., x_k$

Example

- The right-hand side graph is a path from u to v
- The path is $e_1, e_2, e_3, e_4, e_5, e_6$
- The path is simple
- The path can be denoted by u, x_1 , x_2 , x_3 , x_4 , x_5 , v
- The path passes through x_1, x_2, x_3, x_4, x_5
- The path traverses e_1 , e_2 , e_3 , e_4 , e_5 , e_6
- $e_1, e_2, e_3, e_4, e_5, e_6, e_7 = \{v, u\}$ is a (simple) circuit

Path (Directed)

DEFINITION: Let G = (V, E) be a directed graph and let $k \in \mathbb{N}$. A **path of** length k from u to v in G is a sequence of k edges e_1, \ldots, e_k of G for which there exist vertices $x_0 = u, x_1, \ldots, x_{k-1}, x_k = v$ such that $e_i = (x_{i-1}, x_i)$ for every $i \in [k]$.

- The path is a **circuit** if u = v and k > 0
- The path **passes through** $x_1, ..., x_{k-1}$
- The path **traverses** e_1 , e_2 , ..., e_k
- The path is **simple** if it doesn't contain an edge more than once.
- If G has no multiple edges, the path can be denoted as x_0, \dots, x_k

Example

- e_1, e_2, e_3, e_4 is a path
- The path is simple
- The path can be denoted by u, x_1, x_2, x_3, v
- The path passes through x_1, x_2, x_3
- The path traverses e_1 , e_2 , e_3 , e_4
- e_2 , e_3 , e_4 , e_5 is a (simple) circuit

Connectivity

DEFINITION: An undirected graph G is said to be **connected**_{EMB} if there is a path between any pair of distinct vertices.

- Graph of order 1 is connected; the complete graph K_n is connected
- **disconnected** 非连通的: not connected
- **disconnect** G: remove vertices or edges to produce a disconnected subgraph

A Connected Graph

A Disconnected Graph

Connectivity

THEOREM: Let G = (V, E) be a connected undirected graph. Then there is a simple path between any pair of distinct vertices.

- Let $u, v \in V$ and $u \neq v$. Find a simple path from u to v.
- G is connected \Rightarrow there are paths from u to v.
 - Let $x_0 = u, x_1, \dots, x_{k-1}, x_k = v$ be one that has least length k.
 - This path must be simple.
 - otherwise, the path contains some edge more than once
 - $\exists i, j \in \{0,1,...,k\}$, say i < j, such that $x_i = x_j$
 - $x_0, x_1, \dots, x_{i-1}, x_j, \dots, x_k$ is a shorter path from u to v
 - The contradiction shows that the path must be simple

Connected Component

DEFINITION: A **connected component**_{\not is a graph G = (V, E) is a <u>connected</u> subgraph of G that is <u>not a proper subgraph</u> of a connected subgraph of G. //i.e., maximal \mathbb{R} that connected subgraph}

Connected Component

DEFINITION: A connected component of a graph G = (V, E) is a connected subgraph of G that is not a proper subgraph of a connected subgraph of G. //i.e., maximal \mathbb{R} that is not a proper subgraph

- $v \in V$ is a **cut vertex**_{||A||} if G v has more connected components than G
- $e \in E$ is a **cut edge**_{\mathbb{B}} \mathbb{D} , **bridge** \mathbb{B} if G e has more connected components than G

- There are 2 connected components in the graph G
- cut vertices: u, v, w, x
- cut edge: e

Vertex Connectivity

DEFINITION: A connected undirected graph G=(V,E) is said to be **nonseparable** G has no cut vertex.

DEFINITION: Let G = (V, E) be a connected simple graph.

- vertex cut_{slame}: A subset $V' \subseteq V$ such that G V' is disconnected
- **vertex connectivity** $\kappa(G)$: the <u>minimum</u> number of vertices whose removal <u>disconnect G</u> or <u>results in K_1 </u>; equivalently,
 - if G is disconnected, $\kappa(G) = 0$; //additional definition
 - if $G = K_n$, $\kappa(G) = n 1$ // K_n has no vertex cut
 - else, $\kappa(G)$ is the minimum size of a vertex cut of G

These graphs are all nonseparable

Vertex Connectivity

THEOREM: Let G = (V, E) be a simple graph of order n. Then

- $0 \le \kappa(G) \le n-1$
 - Removing n-1 vertices gives K_1
 - $\kappa(G) \leq n-1$
- $\kappa(G) = 0$ iff G is disconnected or $G = K_1$
 - trivial
- $\kappa(G) = n 1$ iff $G = K_n (n \ge 2)$
 - If: obvious
 - Only if:
 - n = 2: $\kappa(G) = 1 \Rightarrow G = K_2$
 - $n \geq 3$: Prove by contradiction. Suppose that $G \neq K_n$.
 - There exist distinct $u, v \in V$ such that $u \neq v$ and $\{u, v\} \notin E$
 - Let $X = V \{u, v\}$. Then G X is disconnected.
 - $\kappa(G) \le |X| = n 2 < n 1$.
 - This contradicts the condition $\kappa(G) = n 1$.

Vertex Connectivity

- **THEOREM**: Let G = (V, E) be a simple graph of order n. Then
 - *G* is 1-connected iff *G* is connected and $G \neq K_1$.
 - Only if: G disconnected or $G = K_1 \Rightarrow \kappa(G) = 0$
 - If : $G \neq K_1 \Rightarrow n \geq 2$; G is connected \Rightarrow removing 0 vertex cannot disconnect G or give $K_1 \Rightarrow \kappa(G) \geq 1$
 - G is 2-connected iff G is nonseparable and $n \geq 3$.
 - Only if: $n \le 2 \Rightarrow \kappa(G) \le 1$; G not nonseparable $\Rightarrow G$ has cut vertex $\Rightarrow \kappa(G) \le 1$.
 - If: $n \ge 3 \Rightarrow$ removing ≤ 1 vertex cannot result in K_1 ; G nonseparable \Rightarrow removing ≤ 1 vertex cannot disconnect G; Hence. $\kappa(G) \ge 2$.
 - G is k-connected iff G is j-connected for all $j \in \{0,1,...,k\}$
 - Only if: $\kappa(G) \ge k \Rightarrow \kappa(G) \ge j$ for all $j \in \{0,1,...,k\} \Rightarrow G$ is j connected
 - If: G is obviously k-connected

Edge Connectivity

DEFINITION: Let G = (V, E) be a connected simple graph. $E' \subseteq E$ is an edge cut₂₀₀ of G if G - E' is disconnected.

DEFINITION: Let G = (V, E) be a simple graph.

The edge connectivity $\lambda(G)$ of G is defined as below:

- G disconnected: $\lambda(G) = 0$
- *G* connected:
 - $|V| = 1: \lambda(G) = 0$
 - $|V| > 1: \lambda(G)$ is the minimum size of edge cuts of G.

Edge Connectivity

THEOREM: Let G = (V, E) be a simple graph of order n. Then

- $0 \le \lambda(G) \le n-1$
 - n = 1: $G = K_1$ and $\lambda(G) = 0$
 - n > 1: $\deg(u) \le n 1$ for every $u \in V$
 - By removing $\{\{u, x\}: \{u, x\} \in E\}$, we can disconnect G.
 - Hence, $\lambda(G) \leq n 1$.
- $\lambda(G) = 0$ iff G is disconnected or $G = K_1$
 - Only if: n > 1 and G connected $\Rightarrow \lambda(G) \ge 1$;
 - If: definition
- $\lambda(G) = n 1$ iff $G = K_n$ $(n \ge 2)$
 - Only if: if $G \neq K_n$, then $\deg(u) < n-1$ for some $u \in V$.
 - Remove $\{\{u,x\}: \{u,x\} \in E\}$. Then G is disconnected. $\lambda(G) < n-1$
 - If: $\lambda(K_n) \ge \kappa(K_n) = n 1$. (see the next theorem)

Connectivity

THEOREM: Let G = (V, E) be a simple graph. Then $\kappa(G) \le \lambda(G) \le \delta(G)$, where $\delta(G) = \min_{v \in V} \deg(v)$ is the least degree of G's vertices.

- $\kappa(G) = 2$
- $\lambda(G) = 3$
- $\delta(G) = 4$

https://cp-algorithms.com/graph/edge_vertex_connectivity.html

http://www.math.caltech.edu/~2014-15/2term/ma006b/05%20connectivity%201.pdf

Connected Directed Graphs

DEFINITION: Let G = (V, E) be a directed graph. G is said to be **strongly connected** if there is a path from u to v and a path from v to u for all $u, v \in V$ ($u \neq v$).

 weakly connected: the graph is connected if we remove the directions of all direct edges.

Strongly connected

Weakly connected

Paths and Isomorphism

Theorem

The existence of a simple circuit of length k, $k \ge 3$ is an isomorphism invariant for simple graphs.

6 vertices, 8 edges

Degree sequence: 3, 3, 3, 3, 2, 2

Paths and Isomorphism*

Theorem

The existence of a simple circuit of length k, $k \ge 3$ is an isomorphism invariant for simple graphs.

Proof: Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be isomorphic graphs: there is a bijective function $f: V_1 \to V_2$ respecting adjacency conditions. Assume G_1 has a simple circuit of length k: $u_0, u_1, \ldots, u_k = u_0$, with $u_i \in V_1$ for $0 \le i \le k$. Let's denote $v_i = f(u_i)$, for $0 \le i \le k$. $(u_i, u_{i+1}) \in E_1 \Rightarrow (f(u_i), f(u_{i+1})) = (v_i, v_{i+1}) \in E_2$, for $0 \le i \le k-1$. So v_0, \ldots, v_k is a path of length k in G_2 . It is a circuit because $v_k = f(u_k) = f(u_0) = v_0$. It is simple: if not, at least one edge is traversed more than once, so it would mean that there exist $0 \le i \ne j \le k-1$ such that $(v_i, v_{i+1}) = (v_i, v_{i+1})$. But this implies $(u_i, u_{i+1}) = (u_i, u_{i+1})$ by

bijectivity of f. This is impossible because u_0, u_1, \ldots, u_k is simple.

5 vertices, 6 edges
Degree sequence: 3, 3, 2, 2, 2
1 simple circuit of length 3,
1 simple circuit of length 4,
1 simple circuit of length 5.

Isomorphic graphs?

If there is an iso $f: V_G \to V_H$, the simple circuit of length 5 u_1, u_4, u_3, u_2, u_5 must be sent to the simple circuit of length 5 in H, respecting the degrees of vertices.

Check that $f(u_1) = v_1$, $f(u_4) = v_2$, $f(u_3) = v_3$, $f(u_2) = v_4$, $f(u_5) = v_5$ is an isomorphism by writing adjacency matrices.

Counting Paths Between Vertices

Theorem

Let G be a graph with adjacency matrix A with respect to the ordering of vertices v_1, \ldots, v_n . The number of different paths of length $r \geq 1$ from v_i to v_j equals the (i,j) entry of the matrix A^r .

Proof: By induction

• r = 1: the number of paths of length 1 from v_i to v_j is equal to the (i,j) entry of A by definition of A, as it corresponds to the number of edges from v_i to v_j .

• Assume the (i,j) entry of the matrix A^r is the number of different paths of length r from v_i to v_j . We can write $A^{r+1} = A^r A$ Let's denote $A^r = (b_{ij})_{1 \le i,j \le n}$, and $A = (a_{ij})_{1 \le i,j \le n}$. The (i,j) entry of A^{r+1} is given by:

$$\sum_{k=1}^{n} b_{ik} a_{kj} = b_{i1} a_{1j} + b_{i2} a_{2j} + \dots + b_{in} a_{nj}$$
 (1)

By hypothesis: b_{ik} equals the number of paths of length r from v_i to v_k .

"Path of length r + 1 from v_i to $v_j = path$ of length r from v_i to any vertex $v_k + an$ edge from v_k to v_j ."

This is equal to the sum (1).

Example

How many paths of length four are there from a to d in the simple graph G

with ordering of vertices (a, b, c, d, e):

$$A_G = \left(egin{array}{cccc} 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 1 \ 1 & 0 & 0 & 1 \ 0 & 1 & 1 & 0 \end{array}
ight)$$

$$A_G^2 = \begin{pmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{pmatrix} \quad A_G^3 = \begin{pmatrix} 0 & 4 & 4 & 0 \\ 4 & 0 & 0 & 4 \\ 4 & 0 & 0 & 4 \\ 0 & 4 & 4 & 0 \end{pmatrix} \quad A_G^4 = \begin{pmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{pmatrix}$$

$$A_G^3 = \left(\begin{array}{ccccc} 0 & 4 & 4 & 0 \\ 4 & 0 & 0 & 4 \\ 4 & 0 & 0 & 4 \\ 0 & 4 & 4 & 0 \end{array}\right)$$

$$A_G^4 = \begin{pmatrix} 8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8 \end{pmatrix}$$