REPORT DOCUMENTATION PAGE

AFRL-SR-AR-TR-04-

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the till gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comm collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Direc Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Re

0344

Davis Highway, Suite 1204, Arlington, VA							
1. AGENCY USE ONLY (Leave	blank)	• "	3. REPORT TYPE A	ND DATE	S COVERED		
		02-JUĽ-2003	5-SEP-2	-SEP-2002 TO 14-JAN-2003)			
4. TITLE AND SUBTITLE					NDING NUMBERS		
AFOSR WORKSHOP ON M	1ULTIF	U NCTINAL AND HY B	RIDIZED AEROSPACE				
MATERIALS AND STRUCT	FURE S						
	F4962	F49620-02-1-0432					
6. AUTHOR(S)	1						
•		•					
PROFESSOR C. T. SUN				1			
TROTESSOR C. T. DOI.							
7. PERFORMING ORGANIZATION	ON NAMI	(S) AND ADDRESS(ES)		8. PER	FORMING ORGANIZATION		
PURDUE UNIVERSITY		ORT NUMBER					
SPONSORED PROGRAM S	EDVICE	26		i			
	EKVICI			ļ			
610 PURDUE MALL							
WEST LAFAYETTE, IN				İ			
				1			
9. SPONSORING/MONITORING	AGENCY	NAME(S) AND ADDRESS	(ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER			
AFOSR/NA			'		ENOT HEI ONT HOMBEN		
4015 WILSON BOULEVARI)			l			
ARLINGTON, VA 22203		•		İ			
				1			
				1			
11. SUPPLEMENTARY NOTES					_		
			200/	חד	09 019 _		
			7004	IU/	U y		
12a. DISTRIBUTION AVAILABILIT	TY STAT	EMENT		4 1	U / U / -		
13. ABSTRACT (Maximum 200 w The "Microstructure Testing at		vsis Laboratory" is a nev	v facility for the mechani	ical testi	ng of small specimens, soft		
material, and small structures.							
for axial/torsion and combined							
			non system for the meast	ii cilicili	or displacement fields, and a		
stereovision system for investig	gations o	i iracture surface		•			
				_			
The facilities have been used su							
polymeric materials, as well as				f Materia	als." In all experiments		
performed so far the experimer	ntal facil	ities have performed sat	isfactory.				
-							
			•				
			* * **				
14. SUBJECT TERMS					15. NUMBER OF PAGES		
					175		
					16. PRICE CODE		
17. SECURITY CLASSIFICATION	18. SEC	URITY CLASSIFICATION	19. SECURITY CLASSIFI	CATION	20. LIMITATION OF ABSTRACT		
OF REPORT	OF '	THIS PAGE	OF ABSTRACT				
UNCLASSIFIED		UNCLASSIFED	UNCLASSIFIE	D			

10/20/03

Standard Form 298 (Rev. 2-89) (EG) Prescribed by ANSI Std. 239.18 Designed using Perform Pro, WHS/DIOR, Oct 94

38 ATTENDEES:

10 Invited Guests 26 Speakers, Panelists & Discussion Leaders; 1 Moderator; 1 Organizer;

MODERATOR:

*C. T. Sun (Purdue U)

OPENING REMARK: 01 Les Lee (**AFOSR**) "AFOSR Perspective"

Background Overview (2:30 - 4:00 PM, 23 October 2002; Stewart Center Room 214C)

KEYNOTE SPEAKERS:

15 min. presentation & 5 min. question per each

03 David Banks (Boeing Phantom Works) "Overview of Multifunctional Structures Research" ⁰² Brian Sanders (**AFRL/VA**) "Overview of Research at AFRL Air Vehicles Directorate"

04 Steve Donaldson (AFRL/ML) "Overview of Research at AFRL Materials Directorate"

⁰⁵ Jeff Welsh (AFRLNS) "Overview of Research at AFRL Space Vehicles Directorate"

"MULTIFUNCTIONAL AEROSPACE MATERIALS" 1st AIR FORCE WORKSHOP ON

October 23-24, 2002, Purdue University, W. Lafayette, IN (Immediately following the 17th Technical Conference of American Society for Composites)

ORGANIZING COMMITTEE:

Les Lee (AFOSR), *Chair*Steve Donaldson (AFRL/ML)
Tom Hahn (UCLA)
Brian Sanders (AFRL/VA)
C. T. Sun (Purdue U)

Multifunctional Design (4:00 - 6:00 PM, 23 October 2002; Stewart Center Room 214C)

DISCUSSION LEADER: Bill Baron (AFRL/VA)

KEYNOTE SPEAKERS:

15 min. presentation

06 Bill Baron (AFRL/VA) "Conformal Load Bearing Antenna Structures"

⁰⁷ Barton Bennett (Odyssian) "Multifunctional Structures with Embedded Subsystem Functionality"

08 Jim Thomas (NRL) "Design Issues for Multifunctional Materials and Structures"

PANELISTS (Expertise):

10 min. comments or alternative opinion per each

09 Jim Mason (Notre Dame U) "Circuit Integration and Thermal Management"

10 Greg Schoeppner (AFRL/ML) "Design Issues for Multifunctional Composites"

11 David Banks (Boeing Phantom Works) "Health Monitoring of Multifunctional Structures"

OPEN DISCUSSION: 45 min

(DINNER SERVED)

Self-Diagnosis (8:00 - 10:00 AM, 24 October 2002; Stewart Center Room 313)

DISCUSSION LEADER: Munir Sindir (Boeing Rocketdyne)

KEYNOTE SPEAKERS:

15 min. presentation per each

12 Munir Sindir (Boeing Rocketdyne) "Health Management System Needs - Space Transportation Perspective"

¹³ Mark Derriso (AFRL/VA) "Structural Health Monitoring"

14 David Green (Physical Sciences) "Materials That Sense Their Environment"

PANELISTS (Expertise):

10 min. comments or alternative opinion per each

¹⁵ Bill Curtin (**Brown U**) "Self-diagnosis of Damage in CFRP by Electrical Resistance"

¹⁶ Fu-Kuo Chang (Stanford U) "Demand and Challenges in Structural Health Monitoring"
¹⁷ Alex Bogdanovich (3Tex) "3-D Woven Composite Structures with Integrated Fiber Optic Sensors"

¹⁸ Steve Kreger (Blue Road Research) "Multi-axis Fiber Grating Strain Sensors"

OPEN DISCUSSION: 45 min

Self-Cooling (10:15 AM - 12:25 PM, 24 October 2002; Stewart Center Room 313)

DISCUSSION LEADER: Roger Morgan (Texas A&M U)

KEYNOTE SPEAKERS:

15 min. presentation

19 David Brown (AFRL/VA) "Thermal Protection Systems"

²⁰ Keith Bowman (**AFRL/ML**) "Thermal Management Issues and Program Directions"

²¹ Roger Morgan (**Texas A&M U**) "Self Fast Cooling Mechanisms"

PANELISTS (Expertise):

10 min. comments or alternative opinion per each

²² Patrick Kwon (Michigan State U) "Micro Heat Exchanger"

²³ Jim Sutter (**NASA Lewis**) "Thermal Management and High Temperature Polymers" ²⁴ Khalid Lafdi (**AFRL/ML**) "Graphite Foams as Heat Carrier for Thermal Control"

OPEN DISCUSSION: 45 min

(LUNCHEON SERVED)

SPECIAL GUESTS INVITED:
Jaycee Chung (Global Contour)
Krishna Jonnalagadda (Motorola)
Doug Adams (Purdue U)
Tom Farris (Purdue U)
Hyonny Kim (Purdue U)
Thomas Siegmund (Purdue U)
John Starkovich (TRW)
Stephen Hallett (U Bristol, UK)
Brian Rice (U Dayton)
Philippe Geubelle (U Illinois)

MECHANICS OF MATERIALS AFOSR PERSPECTIVE AND DEVICES:

B. L. ("Les") Lee

Program Manager

Mechanics of Materials & Devices

Air Force Office of Scientific Research

MISSION

devices into future Air Force systems. integration of advanced materials and Establish the science base for

Materials/Devices

Manufacture of Materials Processing/

Mechanics & Devices

Design

Structures

Performance

Properties

Design, Manufacturing & Sustainability: **MECHANICS ISSUES IN**

Stealthy Materials High-Performance Metals *Advanced Fiber Composites

Propellants: particulate composites Functionally Graded Materials *Structural Ceramic Composites *Carbon Foam Shape-Memory Alloy

Nano-materials *Self-Healing Materials Self-Diagnosing Structures *Multifunction Composites

Adhesives & Joints

Sensors Micro-devices incl. MEMS Nano-devices

THRUST AREAS vs. STRATEGIC RESEARCH AREAS

THRUST AREAS -

Affordable Processing

Vibration Mitigation 1 (Materials Aspects)

Durability

Damage Tolerance

Micromechanics

Life Prediction

Nano-materials 2

Multifunctional Behavor:

Multifunction Materials 1

Micro- & Nano-devices 1

Self-Diagnosis 1

Self-Healing 1,3

Multi-scale Model

Life Extension

1 Smart Materials/Structures - SRA

2 Nano Science - SRA

3 Biomimetics - SRA

NOISIN

Biomimetics

Design for Coupled Multi-functionality

Nano-materials

Multi-scale Model Concurrent

Micro-& Nano-Devices Manufacturing Sci

Neural Network & Information Sci

STRUCTURES AEROSPAGE AUTONOMIC

site specific

Self-Diagnosis

- Self-Healing

Threat Neutralization

Self-Cooling

autonomic

PROGRAM INTERACTION

AFOSR/NA

Structural Mechanics Polymer Composites Ceramic Materials Metallic Materials OTHERS

EXTRAMURAL JNIVERSITIES INDUSTRY

AFRL/VSSV Multifunction

Sonic Fatigue **AFRL/VASM**

AFRL/PRSM Propellants

MATERIALS & DEVICES

AFOSR Theme -

2001: MEANS

MECHANICS of

AFRL/MLBC Composites & Carbon **AFRL/MNAV**

Nanocomposites **AFOSR MURI**

Fund Flow

& Glenn Langley NASA

Soldiers Center Army

Micro Devices

Air Force Research Laboratory AFRL Science and Technology for Tomorrow's Aerospace Force

AIR VEHICLES DIRECTORATE S&T Focus Areas

Sustainment:

Technology insertion to enable today's fleet to meet tomorrow's warfighter needs

Increased mission capable rates

Reduced operation and support costs

Unmanned Air Vehicles:

Technologies to enable routine operation of high payoff UAV alternatives across the full spectrum of warfare

Seamless manned / unmanned vehicle operation

Superior mission capability at reduced cost

Intelligent control of UAV swarms

Space Access &

Future Strike Technology:

Affordable space access and quick reaction trans-atmospheric capability

Aircraft like operation -- quick turnaround and flexible mission capability

Global engagement in less than 3 hours

Reduced cost for access to space

EXPERIMENTAL FACILITIES

- **Combined Environment Acoustic Chamber**
- Simulates severe aeroacoustic and engine environments
- Only facility capable of achieving 173dB and 2500°F on a 9'x4' specimen

STRUCTURAL DESIGN AND DEVELOPMENT BRANCH STRUCTURES DIVISION

MULTIFUNCTIONAL & ADAPTIVE STRUCTURES TEAM (MAST)

AFRL

External Collaborators

Baron, Bowman, Forster, Garner, Joo, Keihl, Washington, Ohio State University Weisshaar/ Crossley, Purdue Reich, Sanders, Cannon (VACC)

Murray, Univ of Dayton

Inman, VPI

Alton, Univ of Dayton

SCOPE OF PROGRAM

Mission Identification & Vehicle Configuration

Integrated Structures

- Shape Control
- Antenna Integration
- Energy Storage & Harvesting

Energy Based Design

Exergy ? $(u?u_o)$? $T_o(s?s_o)$? $\frac{P_o}{J}(???_o)$? $\frac{V^2}{2gJ}$? $\frac{g}{g_oJ}(z?z_o)$? $\frac{?}{?}(???_o)N_c$? \Box

DARPA/AF

MORPHING AIRCRAFT PROGRAM

From rigid airframes to commanded, time variant, variable geometry, load-bearing structures

specific missions - cross section - camber Variable Geometry Wings dihedral

Aircraft are currently designed around

Can we develop aircraft capable of multiple missions?

transform into effective ground attack vehicles

First challenge: Morph the wing

· sweep

wing ?wing planform

Technology Challenges: **Active Skins** Mechanism Design & Integration

Propulsion System Fuselage &

Multifunctional Structures Laboratory

Objective

Have the capability to conduct experimental research and rapidly evaluate sensor and actuator technology for application to MFS

Located in Bldg 65

Health Monitoring

Shape Control

Overview of Multifunctional Structures R&D at Boeing Dave Banks Boeing Phantom Works

David.L.Banks@Boeing.Com 206-655-3855

Some Definitions

Phantom Works

BOEING

Any structure with functions beyond load carrying capabilities

Possible integration features:

- Integrated attachments for other systems
- Conduits (for air, fuel venting, or other fluids)
- Energy Absorption (for vibration and acoustic noise suppression)
- Thermal Control (cooling and heating)
- Electrical Systems & Conductive Structures (for grounding and lightning)
- Actuation (for aerodynamic control, fluid movement
- Sensing (pressure, acceleration, acoustic, strain, temperature, Corrosion...)
- Optics (for data or for light transmission)
- Energy Generation (remote sensors & vibration suppression)
- Self-healing structures / self-repairing structures

Benefits

Battle Damage (BDEING Feedback Autonomic Response Systems System Level Integration & Life cycle 31500 9(30) Increased Flight Time Damage Detection Real-time Costs are Lower Production न्।।ତ୍ରାନ । देवां)न Production raditional System nstallation Reduced ெய்வி Part Phantom Works Multifunctional Structures Cost More ...than singlefunction structures Prognostics & Engineering Management Systems Few, but more Analysis complex parts Health Multifunctional Structures Multifunctional Teams

Technology Development Matrix Multifunctional Structures Systems /

Phantom Works

339	/^		1			ī	T	1	Г	r		\
	Analysis Models / Tools	×		×	×	×	×	×		×	X	
	Flat Wire through Spar/Ski n Joint	×	X	×	×	×	×	×		×	X	TRL 8-10
	Structur al Inter- connect s	×		×	×		×	×	×	×	X	TR
sme	Structurally Integrated Connectors (wire & FO)	×	×	X	×	X	×	×	×	×	X	5-7
Technology Development Items	Sensor Data Processing Algorithms		×	×	×	×	×	×		X	Х	TRL 5-7
evelop	Integrated MEMS Strain Sensors			×			×	×				
logy D	Power Integrated Integrated MEMS Bus Piezo Strain Actuators Sensors	X		×	×		×	×		X	X	
chno	Power Bus	X	X	X	×		×		×	X	X	
Tec	Signal Bus Hi/Low BW	X	X	×	X		X	×		X	×	
-	Flex Circuits	X	X	X	X		X	×	X	X	X	
	Fiber improved Optic Ultrasonic Data Sensor Bus		X		X					X		4
	Fiber Optic Data Bus	X								X	X	TRL 3-4
	Fiber Fiber Optic Optic Sensors Data Bus	×		X		X	×	X		X	×	
	Multifunctional Systems	Integratedicabiing	FueltMonitoring	StructuralHealth - Mönitöring	Demonstration Test System	Planaric Compensation 2	Sructural/Test	Integrated:	Lightning	Structurally Integrated Appertures	Active Rotor Blade	TRL 1-3
	Multi S.	Inte	. Fu	HS.	W		TS.	Ž		Střiřet	Aë	

Organic Matrix Composites Research Activities at AFRL/MLBC

Steven L. Donaldson Materials & Manufacturing Directorate Air Force Research Laboratory

ML Mission / Vision

operating commands to solve system and deployment Plan and execute the USAF program for materials and exploratory development, advanced development and industrial preparedness. Provide responsive support to Air Force product centers, logistics centers, and manufacturing in the areas of basic research, related problems and to transfer expertise.

Aerospace materials and manufacturing leadership for the Air Force and the nation.

Facilities

Materials & Manufacturing Directorate

Key 21st Century Challenges for Aerospace M&P

- Maintaining "The Revolution"
- Increased Performance at an "Acceptable" Cost
- Controlling Cost With Small Production Runs
- Orchestrating Strategic Partnerships
- Reducing R&D Cycle Times Without Sacrificing Quality
- Accelerated Insertion of Materials
- Transitioning "High Risk", but "High Performance" Materials in a Risk Averse Environment

Revolutionary Opportunity Areas

Nano-Tailoring

Multi-functional Materials

Computational Materials Science

Atomic Engineering

Virtual Prototyping of M&P

Virtual Databases

Self-inspection Capabilities/Vehicle Health Monitoring

Organic Matrix Composites (OMCs) CTA-3

CTA DIRECTION GOALS

- 1 Develop improved, lightweight, tailored, multifunctional composite materials highly resistant to degradation in realistic severe service environments
- for long range, pervasive technologies
- 5.2 Develop, demonstrate, and transition new and improved OMC materials, processes, and mechanics approaches for Air Force aircraft and weapons
- 5.3 Exploit the properties of OMCs through the development of innovative, affordable processes, material forms, and supporting repair/mechanics technologies

ACCOMPLISHMENTS

- Evaluated a new family of affordable, low recession, insulative C-C for a simulated Global Reach Trajectory (CAV application)
- Demonstrated first nanocomposite matrix advanced composite with 5% to 10% increase in laminate properties
- Demonstrated a large panel component of a low cost sandwich structure for use in JASSM and UCAV applications
- Demonstrated 40% reduction in processing time of C-C for thermal management applications
- Validated a 20% improvement in energy absorption of full scale testing of phase change enhanced aircraft brakes
 - Transitioned a flow model to industry for resin transfer molding of a fighter aircraft tail section with reduced fabrication time and costs

CTA DIRECTIONS

- 3.1 Advanced OMC Concepts
- 3.2 OMC M&P for Air Platforms
- 3.3 OMC M&P for Space Platforms

CTA 3 OVERVIEW Mission/Vision

Mission:

To develop, demonstrate, and transition new and improved composite materials, processes, and applicable science base's for Air Force Weapons Systems:

Performance with affordability

Improved durability and survivability

Reduced acquisition cost and times

Technology transition

Vision:

To develop, invest in, and implement the necessary technology for OMCs reach their full potential in affordable, flexible and mobile AF systems.

CTA-3 Organic Matrix Composites Organization

CTA-3 Organic Matrix Composites Ms. Tia Benson Tolle

> OMC Mechanics 3.1 Dr. Greg Schoeppner* Research Group

Adv. Comp: RG 3.2 Processing & Behavior Research Group Dr. David Curliss Adv. Comp: RG 3.3 Carbon Composites Research Group Dr. Benji Maruyama

OMC M&P for Air Platforms Dr. Rick Hall Direction 3-2

Direction 3-3

OMC M&P for Space Platforms Dr. Keith Bowman

CTA 3 Niche

The S&T for USAF composites

Integrated group - materials, processing, chemistry, mechanics, ...

Industry NASA DOD

/Users/ SPOS

- Basic research+ customer/industry interactions
- 6.3, 7.8/CAI ties
- Technical Directorates

AFRLIVA, VS, PR-Structures, Design,...

CTA3 - Materials, processing,
Behavior, mechanics,....

Technical challenges validate need

- F119 engine: composites replaced by Ti (\$)
- SOV: composite cryotanks, TPS: durability? compatibility?
- ABL: chemical compatibility
- Realize the 'why composites' full potential

Model: What we do

To Guide Today's Customers, Meet Future Needs, and Enable Tomorrow's Weapons Systems

OMC Development Emphasis

- Pervasive Materials Development
- Novel Materials Forms (Foam, Composite Preforms, NanoComposites, Bio-inspired Materials)
- Extreme Materials Environments
- High Temperature, Cryo, LOX & GOX Compatibility
- Improved Capabilities
- Thermal Management, Multifunctional
- Improved Understanding for Material Exploitation
- PACT, 6.1, 6.2, Collaborations

Materials Development: Carbon Foam

- **General qualities**
- Isotropic properties
- Moisture insensitive

YOUNG'S MODULUS, E (GPa) E

100

1000

- Ultralightweight structure
- 3-D preform (fill with various matrices)
- Sandwich structure

30

- Wide variety of densities (5 to 50 pounds/ft³)
- Low temperature processing:
- Insulator
- High temperature processing
- Conductor, Stronger

5

0.03

0.1

Carbon Foam Research Objective

Foam ligament of about 120-150? m in length with changing cross-section and varying microstructure

Overall Objective

- Integrated "Processing-Characterization-Modeling" approach to **OPTIMIZE foam properties**
- To Model Foam Microstructure
- To Characterize and Quantify Carbon Foam Ligament Microstructure

Optical Microscopy of Stabilized Foam

General View

Ligaments

WEDGE DISCLINATIONS

Nodes with Wedge & Twist Disclinations

Test Method Development (Mechanical, Thermal)

Modeling to Predict Properties

 $\frac{2??I?}{V_{tetra}} = \text{porosity}$

Materials Development: Preformed Composites

Processing Complex Shape

3D Weave (Z-reinforcement)

GMC (Z-reinforcement))

Angle Interlock - LO Dimensional Control

Fracture Mechanics of Preformed Composites

Unit Cell of Plain-Woven Composites

Interfacial Stress Distribution

Material Forms...Challenges of Nanoscale

- Well controlled morphology
- Repeatability
- Resins (Suitable E, Tg, ...)
- Nanoconstituent
- Processability
- Availability
- Geometry/aspect ratio/1-2-3D
- Potential for property enhancement
- Interface
- Fabrication: May need to look into 'new' techniques (IC fab'n, ..) or out-of-the-box constituents

Nano Composites Potential/Challenges

- Nanoconstituents offer an exciting new dimension of tailorability to composites
- Additional constituent for providing new behaviors to existing composites
- Not just mechanical properties of interest expect high interest in multifunctionality: CTE, electrical, thermal...
- Fundamental understanding of the predictive processing-structure-property relationship must be addressed
- Necessary to enable manipulation and exploitation of nanomaterials
- Key opportunity for mechanics community leadership
- Focus required for advancement
- Bring micromechanics/continuum, nanocomposites community and molecular modelers together to dialogue
- Advocate unified focus; harness mechanics community

Extreme Environment: High Temperature Composites

Rationale

- Today: Military aerospace platforms require performance that is currently not met by nonmetallic systems
- Ti primary material of choice
- BMI qualified for use at 325°F
- PMR-15, AFR-700B flying with issues
- Need: Reduced weight, reduced cost, special performance, fatigue...high payoff for many military applications
- Airframes high temperature primary and secondary structure
- Engines
- Exhaust washed structures
- Launch vehicles
- Needs identified by multiple existing and future military platforms

Weight

High-Temp PMC Research

Extreme Environments: Cryo Background

- generation civilian and military reusable launch Extensive use of PMCs is enabling for next vehicle concepts
- Use of PMCs proposed for structural cryotanks; limited number have been built
- Key is life and performance prediction including:
- Microcracking and permeation
- 1000s of thermal/mechanical cycles
- (-253 °C for LH₂) to re-entry temp. – Large temperature extremes: cryo
- Extremely limited test protocol / knowledge base available

Extreme Environments: Cryo MLBC Cryogenic Capabilities

LHe Cryostat + mech load

+ mech load, fatigue LN₂ Cryostat

LN₂ / GHe Permeability

LN₂ Cryo/Thermal Cycler + constant mech load

LN₂ Permeability + mech load

Ú N

Extreme Environments: Cryo Fatigue Data

Improved Capabilities: Thermal Management (TM) Materials

Rationale

- Challenge: Systems are becoming increasingly sophisticated. Structures are required to do more than perform load bearing or volume encasing functions-*multifunctionality*
- Thermal loads that must be managed are increasing as capability
- Pervasive in aerospace
- Military applications:
- Aircraft:
- Environmental Control System for C-130, F-22, JSF, F-18 E/F
- Electronics cooling: F-22, JSF
- Thermal Management: UCAV, Sonic Engine Cooling, Airborne Laser,
- Spacecraft:
- Minisats, Space Based Laser, Launch Vehicles

Improved Capabilities: TM Materials Strategy

Materials Technology Development TM - Air Applications

Thermal Management for Heat Exchangers

Low Cost Carbon-Carbon

Multiple approaches to a "one-step" process

Reduces processing time to less than a week

· Enables thin walled high density fin configurations

Oxidation Resistant Carbon-Carbon

 1200°F temperature goal requires novel oxidation schemes not previously demonstrated

The use of inhibitors is necessary

. Integral parting sheets and edge closures

Extend range due to 40% weight reduction and increase heat exchanger Extends time between failure by 2X

efficiency by 10%

TM - Current Programs: Non-metallic Heat Pipes

OMC Heat Pipes

Why OMCs?

- The trend towards OMC structures for weight, stiffness and dimensional stability has driven the need to have composite radiators
 - Aluminum heat pipes cannot be readily embedded in composite panels due to CTE mismatch issues

- Non permeable 2x10⁻¹⁰ scc/sec He
- •CTE match of hybrid OMC material and interface joint material –? CTE 0 to 1 ppm/K
- · Integration of thermal efficient heat pipes with OMC skins and honeycomb core components
- Fewer heat pipes per radiator possible
- Less weightLess complex design and fabrication processes

The use of OMC reduces component weight (i.e. up to 10-20%)

PACT: Parnership for Advanced Composites Transition

advancements in aircraft design and operational limits New and innovatiive composite systems can enable

Knockdown factors for environmental effects, effects of defects, etc. based on worst-case assumptions lead to unrealistic, excessively conservative designs.

 Knockdown factors (resulting in weight penalties) often remove composites from systems during EMD phase.

Motivation for PACT

- Complex 12+ year cycle
- Most data generated after commitment
- Producibility and performance issues are identified at a time when:
- design options are limited
- -abatement is costly
- Uncertainty creates risk for designers throughout the cycle

	9 10 11 12	Dependence	Fullscale Data Limited Material & Design Options Limited & Costly Abatement Options Full Investment
Years	5 6 7 8		Commitment Limited Uncertain Data Fewer Material & Design Options
	1 2 3 4 6		Promise Multiple Design Options Multiple Material Options Low Investment
			Risk Friedrich

Designers Need to Get Earlier Data with Less Uncertainty to Lower Insertion Risk

PACT: Grand Challenges

Processing/property relationships

Chemistry/mechanics linkage

Lack of robust/validated failure criteria Development of accurate deterministic engines

materials, process, handling Statistical variability in and loading

log Life (e.g. Cycles or TACs)

PACT: Hierarchy of Models

- Interdisciplinary task linkages are prime motivation
- Interdisciplinary programs are required
- Polymer Science and Mechanics expertise in MLBC

B-Spline Analysis Method (BSAM)

- 3-D Geometries
- p-, h-, and b-spline approximations
- 21- constant thermo-elasticity
- fracture mechanics

u(x,y,z)??? $? ? U_{ijk} X_i(x) ? Y_j(y) ? Z_k(z) ?$

u? continuous at all points $\frac{2u}{2x}$? continuous at all points $\frac{2u}{2y}$? continuous at all points

 $\frac{?u}{?z}$? discontinuous at ply interfaces

Similar to the old SVELT, but much more flexible!

Capabilities

Validated Open-Hole Solutions

Filled-Hole Analyses

Uz

Quick Solution Times

Capabilities

Summary

- Critical mass group: 26 government / 9 on-site professionals / 8 technicians
- History of innovation and transition of composites technology
- Enthusiasm, expertise, and ideas to keep the composites revolution alive

Overview of Research Activities at AFRL **Space Vehicles Directorate**

23 Oct 02

Jeffry S. Welsh, Ph.D.
Aerospace Engineer
Space Vehicles Directorate
Air Force Research Laboratory

Distribution authorized to DoD components only; Administrative or Operational Use, 17-Oct 02. Other requests for this document shall be referred to Air Force Research Laboratory/VSSV, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776.

Spacecraft Component Technology (VSSV) Our Position Within AFRL/VS

for Future Space Architectures Goal: Enabling Technologies

Spacecraft Component Technology Research Thrusts

Center for Spacecraft Component Technologies

Advanced Mirror Systems	Active Membrane Control		Membrane Deployment		Advanced		
PowerSail	Long Stroke Isolation		Mechanical Deployment System		Flexible Structure Control & Pointing		
Large Deployable Optics	Deployable Optical Test Bed	Precision	Deployable Optical System	Integrated	Modeling	On-Orbit	Vibration Isolation
Advanced Spacecraft Mechanisms	Vibration	Acoustic	Smart	Actuators	NanoSat		On-Orbit Servicing
Invegrated Constroll Systems	Adaptive Control		Flywheels		Agile Multi- Purpose Satellite Simulator		
Integrateed Structural Systems	Payload Accommodation	Large Deployables	Multifunction- al Structures	Structures for Optical Sys	Cryogenic	Tanks	High Temp Structures
Advanced Power Generation	High Efficiency Solar Cells		Thin Film Photovoltaics		Advanced Concepts		

Teannology Disapinas

Multi-Discipline Grand "Challenges"

Integrated Structural Systems Payload Accommodations

Low-Cost Fabrication of Advanced Grid-Stiffened Structures Results

Table 1. Comparative Results

ion	3.4	304	
Option 5	233.4	36	
Option 4	167.0	217	3
Option 3	121.1*	158	-
Option 2	200.7	261	-
Option 1	173.7	226	1
Base- line	76.8	100	2
Design	Average failure load (lbs/inch of joint)	Percent of Baseline	Testable Coupons

^{*} specimen failed in rib above the staples, not at the joint

Typical coupon test approaching failure load

Low-Cost Fabrication of Advanced Grid-Stiffened Structures Results

- All options improved joint performance
- Options reducing peeling stress worked better compared to direct reinforcement techniques
- Direct reinforcement ultimate strength was high but initial failure strength must be used for design

Low peel stress option (initial and ultimate failure coincident)

Direct reinforcement option (initial failure much lower than ultimate)

Integrated Structural Systems Cryogenic Tanks

- Provide lighter, less costly tanks for long term on-orbit storage of cryogens
- Reduce cost of space access thru low cost cryo tanks for expendable rockets

Composite Laminate Microcrack Mitigation Introduction/Background

Objective: Develop Manufacturing
Processes, & Novel Material Concepts to
Delay, Reverse, Prevent, or Stop
Composite Laminate Microcracking under
Extreme Thermo Cycling.

Background: Space Community rest unsuccessful thus far developing cryogenic composite tankage, forced to use Metallic Tankage (Payload margin not optimized).

Current Focus: Self Healing Laminate, & Laminate Surface Texture Research

Operational Benefits

50% Less Mass than Metallic Tanks

Enabling for SSTO, Reusable Vehicles

Reduced Tank Fabrication Costs

6

Composite Laminate Microcrack Mitigation Results

Data Summary - Results as Expected

- Leakage Increases as Temperature Decreases
- Slight Leak Rate Decrease during "Heatup" to Ambient
- Fiber/Resin CTE Difference Primary Cause of Microcrack
- Need additional data on Omni-Directional Fabric

Integrated Structural Systems High Temperature Structures

Integrated TPS and Load Bearing Structure

Annealed Pyrolitic Graphite

- Enable Single Stage to Orbit (SSTO)Reusable Launch Vehicles
- Integrate TPS and Structure into hybrid system
- Low maintenance between sorties
- Low cost

Integrated Structural Systems Large Deployable Structures

- Enable new ultra-large space system architectures
- Membrane structures
- Elastic Memory Composites (EMCs)
- Pultruded booms
- Stiffness critical structures

Integrated Structural Systems Structures for Optical Systems

Active Membrane Structures

- Enabling technologies for space-based optical systems
- Lightweight mirror structures
- Active membrane optics
- Stiffness critical joining
- Rapid mirror fabrication

Experimental Measurement of Surface Change Electroactive Polymer for Membrane Optics

LabView Based Interferometry Software Development 6" Diameter Vacuum Chamber

* Apply epoxy to membrane and monitor surface shape change over 30 minutes to 4 hours.

Observed movement <0.2mm

Analytically prediction supports observations

Vacuum loss interferes with test sensitivity

* Actuate PVDF (Electroactive) polymer Micron (?10?) level movement monitored Larger (mm level) movement not possible

Finite Element (ABAQUS) Analyses of Actuation **Electroactive Polymer for Membrane Optics**

Conclusion:

Possible shape correction is much less than the surface error! Based on Analytical (FEM) results and available test data,

Integrated Structural Systems Multifunctional Structures

Integral Power Storage

Chassis Systems

Magnetostictive Materials

LightWeight Flexible Solar Arrays

Launch Vehicle Systems

High-speed Rotors

- Revolutionary improvements in performance through multifunctional structures
- Lightweight flex cabling
- Miniaturized electronics
- Flywheel rotors for energy storage and attitude control
- Materials with high passive damping
- Energy storage materials/structures

Self Consuming Satellite Objectives/Background

Investigate the material properties of Tefzel (fuel for PPT) with Kevlar whiskers reinforcement

Variables to be investigated:

Fabrication techniques

«Number of layers in lamination construction

«Fiber contents

Fiber forms

Tensile specimen mold

Integrated Structural Systems Innovative Concepts

Cryo Test Facility

Deployment of Elastic Memory Composite

- Basic research provides the seeds to enable generation + 2 systems
- Electrically disbonding adhesives
 - Elastic memory composites
- Multiaxial testing of composites
- Self healing composite materials

Electrically Disbonding Adhesive

Electrically Dis-Bonding Epoxy Results

ElectRelease Tensile Stress:

Shear Stress (psi)

Dis-bond time affects failure mode of adhesive

250

200

Time (s)

Biaxial Testing of Composite Laminates Results

Close agreement between numerical predictions and experimental data!

Stiffness Critical Composite Joining Results

- Step 1 Predict static stiffness of lap-shear joint
- Compare numerical model to experiment

- Results
- Neglecting the adhesive bond results in errors > 25%
- behavior (3D brick element with nonlinear material properties) 21 One element through the thickness captures the dynamic

Stiffness Critical Composite Joining Results

- Step 2 Predict behavior of dynamic test article
- Compare numerical model to experiment

- FE model can predict performance for first 6 modes
- Higher modes not measured due to experimental setup

Conclusions

AFOSR support is vital to AFRL/VSSV programs.

1st Multifunctional Aerospace Materials Workshop

Purdue University 23-24 October 2002

Conformal Load-Bearing Antenna Structures (CLAS)

William G. Baron AFRL/VAS Joe Tenbarge AFRL/SNR

Critical ISR Needs Not Met with **Todays Systems**

Long Range Positive Detection, Identification, Tracking and Targeting

Critical Manpower Shortages, Aging Systems, and Significant Infrastructure Costs Associated with ISR

Sensorcraft Functionality

& Space Interdependence

X-Band aperture (20 ft \times 1.5 ft):

Current technology

 $$300K/ft^2 \times 30 ft^2 = $9M/array$ \$9M x 4 arrays = \$36M

 $351bs/ft^2 \times 30 ft^2 =$

1050lbs/array

1050lbs × 4 arrays = *4200lbs*

Low-Band (>40 ft - freq. dependent):

Current technology (UHF)

- array elements (>18 inches deep) Size – significant volume required

8001bs/array (antenna only)

800lbs/array × 4 arrays = 3200lbs,

volume and weight savings required SIGNIFICANT COS

RF-on-Flex

Conformal Load Bearing Arrays

Conformal Load Bearing Antenna Structure (CLAS)

Non load bearing cavity installations require support structure adding weight &

SOLUTION

- Antenna structure is load bearing
- LO enabling
- Reduced maintenance vulnerability

PAYOFFS

- Enhanced Antenna Performance by Exploiting Skin Acreage
- Improved Aerodynamics and Structural Efficiency

Wide Band Spiral Antenna Comm/Nav

Fuselage Panel

Conformal, Load-Bearing, Multifunction Designed, Developed & Tested a (0.15 - 2.0 GHz) Antenna

- Conformal, Load-Bearing, Spiral Antenna The First and Largest Multifunction, **Built for Airborne Application**
- Eliminates up to 10 Comm/Nav Elements
- Spiral Element Developed by SN
- Combined-Load Fatigue Testing
- Spinning Linear Mode Testing

Communication Element Development

Structural RF Excitation CLAS UHF/VHF Tail End Cap Concept Acoustic Test

- Blade Antennas not suitable for LO and subject to damage
- The CLAS end cap was flight tested with dramatic gain improvement results, as shown in the gain vs azimuth plot
- The CLAS end cap increased VHF voice communication range 17 fold

- Low & High Frequency Array Development
- Deformation Sensing for Beam-Forming
- Low Cost Flexible Electronics
- Design for Repair/Graceful Degradation
- **Bonded Structure**

Multifunctional Material Research Needs

Deformation sensing

Sensor integ & development, ingress/egress, algorithm development

Conductor development

- Nano based conductive polymers
- Conductive fiber
- Electroless reel to reel plating

Integrated thermal management

- High thermal conductivity tailored material
- Heat exchanger/heat pipe solutions for integrated electronics

Electrical distribution – data/power

- Direct write, thin films, co-cured conduits & conductors
- Self healing electrical conductors
- Bonding of conductors

Dielectric material development

- Voltage breakdown strength
- Nano particle dispersion for high dielectric constant polymers
- High strength/stiffness dielectric polymers
- Tunable dielectrics for broadband performance

1st Air Force Workshop on Multifunctional Aerospace Materials

Design Issues for Multifunctional Materials and Structures

J. P. Thomas, M. A. Qidwai, and P. Matic Multifunctional Materials Branch, Code 6350 Naval Research Laboratory Washington, DC Acknowledgements: Support for this work from Defense Advanced Research Projects Agency and Naval Research Laboratory Core Research Program is gratefully acknowledged.

Purdue University, West Lafayette, IN October 23, 2002

Multifunctional Structure-Power Materials

DARPA PROGRAM GOALS: Develop design strategies, analysis methods, performance indices, and UAV component prototypes for three multifunctional structure-power concepts.

Multifunctional structure-battery -- Telcordia's Plastic-Lithium-Concept #1:

on battery as UAV structure.

Autophagous structure-fuel – UAV structural elements that Concept #2:

transform into propulsion fuel.

Concept #3: Variform structure-power -- pressurized fuel structural

elements for morphing UAV's.

Industry Partners

M. Keennon and J. Asplund AeroVironment, Inc. Design Development Center

Simi Valley, CA

A. DuPasquier Telcordia Technologies, Inc. Energy Storage Research Red Bank, NJ

What's Possible with Structure-Power ??

Empirical Aircraft Weight Data

			\$	Weights			Str. Wgt.	Fuel Wat.
Micro	Total		Structure	Fuel	Propulsion Payload	Paytoad	Total Wgt.	Total Wgt.
Black Wildow								
(AeroVironment)	81 9	gms.	6	41.1	17.5	13.4	0.111	0.507
Microstar (Lockheed-Martin)	ō 58	gms.	7	44.5	13.5	20	0.082	0.524
Unmanned								
Dragon Eye (NRL)	₹	lbs.	0.5	1.5	1	1	0.125	0.375
Pointer (AeroVironment)*	9.2	sq.	4	2.2	1	2	0.435	0.239
Sender (NRL)	10	lbs.	4	3	+	2	0.400	0.300
LOCAAS (Lockheed-Martin)	82	lbs.	51	10	2	17	0.600	0.118
Shadow 200 (AAI)	328	lbs.	179	ဥ၅	26	90	0.546	0.192
Predator (General Atomics)	2250	lbs.	1,013	059	137	450	0.450	0.289
Darkstar (L-M/Boeing)	009'8	lbs.	4,107	2960	452	1081	0.478	0.344
Conventional								
F/A-18 (Boeing)	26,000	lbs.	19,268	15,000	4,564	17,168	0.344	0.268
F-16C (Lockheed-Martin)	42,300	lbs.	14,977	14,234	3,940	9,149	0.354	0.337
F-14D (Grumman)	74,349	lbs.	34,730	19,557	050'2	13,012	0.467	0.263
777-200 (Boeing)	545,000	lbs.	195,072	207,700	33,328	108,900	0.358	0.381
767-300ER (Boeing)	380,000	lbs.	103,262	162,340	18,998	95,400	0.272	0.427
747-200B (Boeing)	785,000	lbs.	233,260	364,400	35,540	151,800	0.297	0.464
737-900A (Boeing)	164,000	lbs.	62,805	46,063	10,512	44,620	0.383	0.281
MD-11 (Boeing)	602,555	lbs.	202,302	258,721	28,497	113,035	0.336	0.429
A320-200 (Airbus)	162,040	lbs.	57,054	52,495	10,826	41,665	0.352	0.324
A340-600 (Airbus)	804,675 lbs.	Bs.	299,103	344,936	21,976	138,660	0.372	0.429
						•		

References: Janes "All the World's Aircraft", "Unmanned Aerial Vehicles ...", "Aero-Engines", and unpublished data. 0.340 0.369 Average= Std.Dev.=

Liquid-Fuel Powered

Battery-Powered

Variform

Structure-Fuel

Aircraft with Liquid Fuel as Structure !! Morphing

UAV Flight Endurance Time System Optimization

Structure-Power Multifunctionality

Available Battery Energy

Propeller

 $\left| \frac{\rho SC^3}{\rho C_L} \right|^{1/2}$ Efficiency Aerodynamics, $2C_D^2$ $(W_S + W_B + W_{PR} + W_{PL} + W_{SB})$ $E_B \times \eta_B$ Total Weight

Geometry

$$\frac{\Delta E_E}{E_E} = \frac{\Delta (E_B \eta_B)}{E_B \eta_B} \frac{3}{2} \frac{(\Delta W_S + \Delta W_B + \Delta W_{SB})}{W_{total}}$$

$$\eta_B = \eta_B(E_B, W_{total})$$

Complication:

$$\eta_P = \eta_P \left(W_{total} \right)$$

→ System-Level Multidisciplinary Design Optimization Required !!!

Unifunctional Materials Performance

Design Objective: minimize the system weight

I. Unifunctional Design: Structure and Power Functions

Structure: Axial Tie

Power: Battery cell

:component weights:

 $m_1 = \rho_1 A_1 L$

 $m_2 = \rho_2 A_2 L$

M1 constraint: stress \leq strength $\sigma_1 = P_0 / A_1 \leq (\sigma_Y)_1 \Rightarrow m_1 \geq P_0 / \{\rho_1/(\sigma_Y)_1\}$ strength

M2 constraint: total stored energy \ge constant, E_0 $E_2=m_2\times(e_B)_2\ge E_0\Rightarrow m_2=E_0\bigg\{\frac{1}{(e_B)_2}\bigg\}$ specific

total unifunctional system weight, $(m_7)_u = m_1 + m_2$

$$\left| (m_T)_u = P_0 L \left\{ \rho_1 / (\sigma_Y)_1 \right\} + E_0 \left\{ \frac{1}{2} (e_B)_2 \right\} \right|$$

Multifunctional Materials Performance

II. Multifunctional Design: Structure-Battery Function

System constraints: $\delta_1 = \delta_2 = \delta_T = \frac{P_1L}{A_1E_1} = \frac{P_2L}{A_2E_2}$

 $P_0 = P_1 + P_2$

Total multifunctional system weight, $(m_T)_m$ $(m_T)_m = m_1 + m_2 = (\rho_1 A_1 + \rho_2 A_2)L$

Case 1: $\frac{(\sigma_x)_2}{(\sigma_x)_1} \ge \frac{(\sigma_x)_1}{(\sigma_x)_1} \Rightarrow \text{ Eliminate M}_1, \text{ replace with M}_2 \text{ structure-battery!!}$

1a:
$$(m_T)_m = E_0 \left\{ \frac{1}{(e_B)_2} \right\} << (m_T)_u$$

$$E_2 = m_2 \times (e_B)_2 = E_0$$
 and $\sigma_2 = \frac{P_2}{A_2} \le (\sigma_Y)_2$

1b:
$$\left[(m_T)_m = P_0 I \left\{ \frac{\rho_2}{\sigma_Y} \right\} \right] < < (m_T)_u$$
 $\sigma_2 = \frac{P_2}{\sigma_Y} = (\sigma_Y)_2$ and $\sigma_2 = m_2 \times (e_B)_2 \geq E_0$

Multifunctional Materials Performance

Case 2: $\frac{\left(\sigma_{Y}\right)_{1}}{\left(\sigma_{Y}\right)_{1}} > \frac{\left(\sigma_{Y}\right)_{2}}{\Rightarrow} \Rightarrow$

M₁ structure plus M₂ structure-battery!!

 $(m_T)_m = (m_T)_u - E_0 \left\{ \frac{1}{(e_B)_2} \right\} \times \left\{ \frac{E_2/\rho_2}{E_1/\rho_1} \right\} < (m_T)_u$

 $\sigma_1 = \frac{P_1}{A_1} = (\sigma_Y)_1$, $E_2 = m_2 \times (e_B)_2 = E_0$, and $\sigma_2 = \frac{P_2}{A_2} \le (\sigma_Y)_2$

 $(m_T)_m = (m_T)_u - E_0 \left\{ \frac{1}{\left(e_B\right)_2} \right\} \times \left\{ \frac{E_2/\rho_2}{E_1/\rho_1} \right\} + \rho_1 \left\{ \frac{\left(\sigma_Y\right)_1 - \left(\sigma_Y\right)_2}{\left(\sigma_Y\right)_1 \left(\sigma_Y\right)_1} \right\} P_0 I < (m_T)_u$ $\sigma_2 = \frac{P_2}{A_1} = (\sigma_Y)_2$, $E_2 = m_2 \times (e_B)_2 = E_0$, and $\sigma_1 = \frac{P_1}{A_1} \le (\sigma_Y)_1$ unifunctional

2b:

Important Conclusions

: 1月 System:weight*always:less* usingtmultifunctional material design!

-2 . System optimization generally occurs with "non⊧optimal" subsystem design

3. Multifunctional performance กลกหาดะ 1a.or 1b: 2a, then 2b.

Mechanical Performance Indices

Minimal Axial Displacement and Weight → Maximize Specific Axial Stiffness

Axial Displacement:

اا م

 $A^* := \sum_{i=1}^n \frac{E_i}{E_R} A_i$

Axial Stiffness: k

Mass Density:

$$k_a := \frac{L_R C}{L}$$

Composite Property

Composite Property

Unifunctional

Specific Axial Stiffness:
$$\rho_a := \frac{k_a \times L}{\rho} = \frac{\sum_{i=1}^{k} E_i A_i}{\sum_{i=1}^{k} \rho_i A_i} = \frac{E}{\rho}$$

Multifunctional

constituent material properties, shapes, and location within the cross-section Multifunctional Composite Performance Indices generally depend on the

Structure-Battery Design Tool (SBDT)

S-P Beam Materials

Tension, bending, torsion, shear, and buckling loading Other C-Sections

| Useful Design Ranking Information

SBDT Study: Structure-PLI Struts

Structure-Battery for UAV's

Black-Widow Micro-Air-Vehicle

Capabilities

- 6" wing span
- 81 g weight
- 30 min. endurance

New Multifunctional Unmanned-Air-Vehicle

Design Goals

- 12" wing span
 - 170 g weight
- 70+ min. endurance

Structure-Battery Design for UAV's

Desirable Features

- High energy density and specific energy
- Arbitrary shaping capability
- Durability in flight, field, and storage
- Reliability
- Safe-failure modes

Multiple-Mission UAV's

 ■ Rechargeability of the structure-battery → secondary cells or easily removed primary cells

Single-Mission UAV's

Low Cost

Multifunctional Design Rule: add functionality to the material with the more complex existing function.

Electrical Performance Indices

Ragone Plot for Electrical Energy Storage Devices

Wide range of Ragone performance due to intrinsic energy storage physics: stretching versus breaking of molecular bonds.

THE PROPERTY OF THE PARTY OF TH

Electrical Performance Indices

Li-Me (S) and Li/SPE (S) cells show best rechargeable performance!!

Multifunctional Structure-PLI

Structure-PLI= Plastic Li-Ion Bicell(s) + Barrier-Layer Packaging + Structural Additives

Telcordia's Plastic Lithium-Ion (PLI) Bicell

Nominal Properties

- 3.8 V & 7.2 mAh/cm²
- $\rho = 0.14 \text{ g/cm}^2$ E = 1020 MPa
- 3.9 MPa ط 0

Dai-Nippon EL-40 Packaging

Nominal Properties

- E = 4400 MPa
- $\sigma_0 = 16.8 \text{ MPa}$

Structure-PLI Performance

Components with wide range of mechanical performance

Multidisciplinary Design Optimization of UAV's

UAV Design Parameter Space

MDO Performance Analysis

	2
	A land
• 2-ply PLiON cells	• NiMH batteries
Rechargeable	Rechargeable
• 15 cm span	
82 gram mass	
• 29 min endurance	• 5 min endurance
Wind tunnel test	
Structural mockup	

WASP Multifunctional UAV

One hour and 47 minutes flight endurance time!

- 13 inch wingspan; 170 g total weight; 120 g structure-battery weight.
 - Structure-PLI (silver) integrated into top and bottom of the wing.

- Aircraft detail design, fabrication, and test flying by AeroVironment, Inc.
- Structure-battery conceptual design and fabrication of the plastic-lithium-ion cells by **Telcordia Technologies**
- Structure-battery conceptual design and prototype development coordination by Naval Research Laboratory

endurance of WASP UAV with fully integrated structure-battery!!! Benefits of multifunctionality clearly demonstrated by flight

Fabrication Procedures and Challenges

Fabrication Steps

- Cutting laminated PLI bicell to shape
- Pre-assembly and lead attachments
- Electrolyte imbibement
- (<0.3% humidity)
- Lamina bonding and molding
- Packaging and sealing
- Electrical charging and testing

Shape Factor: Size Does Not Matter!

Shape Factor is c-section size. invariant WRT

Unifunctional

$$\theta_t = \frac{TL}{GK}$$

Angle of twist:

 $\theta_t^* = \frac{TL}{G_{\rm R}K^*}$

Multifunctional

$$\phi_i^{e^*} := \frac{2\pi K^*}{A^{*2}} = 2\pi \left(\frac{E_R^2}{G_R}\right) \frac{\sum_{i=1}^n G_i K_i}{\left(\sum_{i=1}^n E_i A_i\right)^2}$$

Shape Factor for torsional
$$\phi_t^e := \frac{\theta_{circle}}{\theta} = \frac{2}{\theta}$$
 deformation

Multifunctional Composite Shape Factors generally depend on the constituent material properties, shapes, and location within the gross-section.

Health Management System Needs – Space Transportation Perspective

1st Air Force Workshop on

"Multifunctional Aerospace Materials" October 23-24, 2002

Purdue University

Munir M. Sindir, Ph.D.

Director

Advanced Analysis Processes

The Boeing Company

Rocketdyne Propulsion & Power Division

818 586-1627

munir.m.sindir@boeing.com

(BOEING

Architecture of an Advanced Health Management System

Real-time "transient model" based health management system capable of

detecting and identifying the source of anomalies/wear during all phases of Cutoff a propulsion system's operation (pre/during/post) S M M Main Throttle Steady Throttle State High Speed Data Advanced Sensors Acquisition & Architecture & Down Processing Electronic Platform Main Stage Launch Start Commit Model Based Fault solation Detection & Integrated IHMS Sys Real Time Transient easurement System recovery features) Algorithm Dev. error checking Software gnition StructuralLife **Typical Performance** Parameter Profile Predictions **Aerothermal Life** Assessments of Assessment Hardware Damage

() BOEING

Surrent Capabilities

Sensor Validation

- Reasonableness
- Inter-channel / voting
- Simple model

Detection / Isolation / Prognostics

- Dedicated sensors
- Redlines
- Flowpath
- Vibration

Mitigation

- Channel switchover
- Lock valves
- Shutdown

Maintenance

- Schedule based on run time
- Intrusive inspections

Future Capabilities

Sensor Validation

- System consistency / full non-linear model comparison
- Frequency analysis
- Sensor correlation
- Sensor replacement / virtual sensing
- Smart sensors

Detection / Isolation / Prognostics

- Non-linear model comparison
- Artificial intelligence
- Cameras
- Plume spectroscopy
- Trending

Mitigation

Maintenance

- Vehicle-to-ground data telemetry Channel switchover
- Maintenance for cause

Adaptive control

De-rating

- Non-intrusive inspection
- Direct damage measurement

Adjust mixture ratio

Shutdown

Centralized maintenance center – fleet operations \triangle **Batine**

Current / Future Capabilities

	Sensor Qualification	Detection/ Isolation/ Prognostics	Mitigation	Maintenance
Current	ReasonablenessInter-channel / votingSimple model	Dedicated sensorsRedlinesFlowpathVibration	Channel switchoverLock valvesShutdown	 Schedule based on run time Intrusive inspections
Future	System consistency/full non-linear model comparison Frequency analysis Sensor correlation Sensor replacement / virtual sensing Smart sensors	 Non-linear model comparison Artificial intelligence Cameras Plume spectroscopy Trending 	 Channel switchover Adaptive control De-rating Adjust mixture ratio Shutdown 	 Direct damage measurement Maintenance for cause Non-intrusive inspection Centralized maintenance center – fleet operations

Advanced Sensors

Functions

- · High-frequency data measurements (e.g. pressure, vibration, stress)
- Low-frequency data measurements (e.g. static pressure, temperature, mass flow, speed, displacement)
- Plume spectroscopy measurements

- Micro-sensors with built-in telemetry
- Embedded sensors
- Smart sensors

High Speed Data Acquisition And Processing

Functions

- Data collection
- Sensor validation
- Analysis algorithm
- Event/anomaly detection

- Multiple parallel processors
- Fiber optics transmission
- Real-time spectral analysis
- Real-time expert system
- Automated "smart" analysis

Real Time Transient Model Based Fault And Isolation Detection Algorithm

Functions

- Sensor output predictions based on actual engine operation
- Fault predictions for anomalies

- Real-time fault hypothesis testing and extrapolation
- 1-D lumped parameter calculations
- More sophisticated models
- Multiple parallel processors

Measurement System Software (Error checking, Recovery features)

Functions

- Sensors monitoring and qualification
- Monitoring of output of real time transient model
- Engine operation recommendations
- Virtual sensing

- Neural network/artificial intelligence/expert systems
- Multiple parallel processors
- Kalman filters
- Adaptive control with HMS
- Performance management
- Diagnostics/prognostics

Aerothermo Life Assessments

Function

- Inputs:
- Static pressure measurements
- Temperature measurements
- Mass flow measurements
- Algorithms to predict effects of temperature and flow on hardware

- Concurrent stochastic thermal modeling and validation
- Smart thermal structure

Structural Life Assessment

Function

- Inputs
- Vibration measurements
- Stress measurements
- Static pressure measurements
- Temperature measurements
- Algorithms to predict effects of vibration and stress on hardware

- Probabilistic models to assess damage and structural integrity in real
- Numerical models to evaluate fault and fault propagation in real time

HIMS Interfaces

Vehicle on-board control

- Recommendation for engine shut-down
- Recommendation for engine throttle
- Recommendation for fuel and oxidizer adjustments
- Controller re-configuration

Ground control

- Recommendation for engine shut-down
 - Recommendation for engine throttle
- Recommendation for fuel and oxidizer adjustment

Maintenance

- Hardware status
- Recommendations for:
- Hardware adjustments
 Hardware overall
- Hardware replacement
- Engine history

Structural Health Monitoring of Aerospace Vehicles

Mark M. Derriso AFRL/VASM

Structural Health Monitoring, Lead

Presented to 1st AIR FORCE WORKSHOP ON "MULTIFUNCTIONAL AEROSPACE MATERIALS" October 23-24, 2002, Purdue University, W. Lafayette, IN

Overview

- Purpose
- · Introduction
- **Applications**
- · Technical Challenges
- Technical Approach
- Key Technologies
- **Summary**

Purpose

scheduled inspections performed on structural To reduce the time and cost associated with components.

Benefits

- Reduce operation and support cost.
 - Reduce vehicle inspection times.
- Maintain vehicle safety and availability.

Goals

- Reduce Air force O&M Cost.
- Increase Operational Readiness.

- It's a well-known fact that aircraft within the Department of Defense are aging rapidly.
- In many cases aircraft are operating well beyond their original design lives.

KC-135

- In result, the Air Force emphasis has shifted from operational burden imposed by these older increasing performance to reducing the platforms.
- Decreasing the time required for maintenance and using parts longer.

cycle cost associated with maintaining and supporting reduction in maintenance requirements is realized due "This study indicates that significant reduction in life return on investment. Specifically, if a 30% - 40% structures could result in an operationally realistic to implementation and use of a health monitoring Health Monitoring System Technology Assessment- Cost Benefits Analysis.

NASA/CR-2000-209848

Renee M. Kent and Dennis A. Murphy

ARINC, Inc., Annapolis, Maryland

Four Levels of Structural Health Monitoring(SHM)

1. Detect Damage

- Cracks, delaminations, corrosion

2. Locate Damage

- Structural location of damage

3. Quantify Damage

- Crack length, amount corroded, percent delaminated

4. Predict Remaining Life

- How long before component fails

Active SHM Technique (supervised)

Approach for Crack Monitoring

Development Algorithm Damage

Passive SHM Technique (unsupervised)

Development Damage Algorithm

Operational Structural

Excitation

An envelope gives

• Amplitude

• Time-of flight reference of a agna

Damage Algorithm

Structural Health Monitoring of Bonded Repairs

- Bonded repair is one technique used to enhance the life of a damaged structure.
- Laboratory test have proven that a bonded repair could extend the life of a damaged structure by as much as a factor of eight.
- Bonded repair technology is currently being used on commercial and aircraft military aircraft.

Structural Health Monitoring of Bonded Repairs

- However, the non-repaired inspection intervals of the damage under the patch is still performed because of the unknown condition of the bondline.
- By performing these non-repaired inspections, the Air Force is not receiving the full benefits of using the bonded repair technology.
- A possible solution to this problem is using a structural whether or not the integrity of the repair is decreasing. health monitoring system that would determine

Structural Health Monitoring of Bonded Repairs

Smail points assembly Composes Composes Layer Asserte Film Asserte Film Constitute

Structural Health Monitoring System

Objective:

monitoring techniques that will detect structural crack growth, disbonds and patch integrity of a composite bonded repair patch.

Payoffs:

- Enhance the life of a damaged aircraft structure.
- Maintain structural safety and availability.
- Reduce operational and service cost.

Structural "HOT Spots" Health Monitoring

- Several aircraft in the Air Force fleet has known areas with structural problems.
- Maintainers have to inspect theses problem areas at predefined intervals.
- In some cases the problem resides in an inaccessible location such as the upper or lower wing spar which requires de-skinning the wing.
- Some of these inspections are quite costly.

Structural "HOT Spots" Health Monitoring

Objective:

detect and quantify structural cracks and corrosion in known Develop structural health monitoring techniques that would problem areas on existing aircraft.

Payoffs:

- Reduce operation and support cost.
- Reduce vehicle inspection intervals.
- Maintain structural safety.

Space Operational Vehicle (SOV) Structural Health Monitoring

- The Space Operations Vehicle (SOV) is a key vehicle to meet future Air Force requirements in the areas of Control of Space and Global Engagement.
- The launch costs of the SOV must be one order of magnitude less than current state of the art in order to be successful.

SOV Structural Health Monitoring

- The key to reducing launch costs is reducing turn-around time.
- maintenance costs. In this presentation, we will concentrate on The System Requirements Document (SRD) for the SOV lists several requirements that have the purpose of reducing one of these objectives.
- During normal conditions, the SOV shall have a turn-around time of 24 hours, with an objective of 12.
- To meet this goals, the assessment of the structure/TPS condition has to be reduce significantly.

SOV Structural Health Monitoring

System Requirements

- structure/TPS within hours of completed mission and certify it for An automated system that assess the health of the entire vehicles' re-flight.
- Acreage TPS
- Leading edge TPS
- Wing structure
- Fuel tanks

- Detect damage in the structure/TPS
- Locate damage
- Diagnose damage (delamination, impact damage, mechanical attachments state etc.)
- Prognosis of the health of the structure/TPS.

Technical Challenges

- Sensors development
- high temperature (space)
- wireless
- reliable
- Sensor optimization
- location
- quantity
- Data assimilation
- Data interpretation
- Structural life prediction methods

- Empirical Methods
- Neural Networks
- Pattern Recognition
- Analytical Methods
- Physics-based ModelingStatistical Analysis

Hybrid Approach

Combine
Analytical and Empirical
Means for Optimum
Solution

Pattern Recognition Approach

Basic Research:

- ·Identify Material Property Features
 - •Discriminate Discontinuities

Data Fusion Approach

Autoassociative - Heteroassociative Neural Network (A-HNN)

"Relationship" Between Data Features of Research: Invariant Identify. Gommon Basic

- Derive Transformation Matrix
- •Establish Reliability Metric
- Experimental Validation

Technical Approach:

Sets

Modeling Approach

Basile Reseaureli

Identify Basic Design Principles

Identify Basic Design Axioms

- •Finite element modeling is done to determine the response of the panel.
- •Advanced features are included such as the fasteners, contact, etc.
- •Comparison is made with the experimentally observed response(s) to validate the model
- •Sensitivities of the response(s) with respect to the damage states can be evaluated via analysis.

FEM of a TPS panel

Key Technologies

Advanced Digital Signal Processing (DSP)

- Discrete Fourier Transforms (DFT)
- Wavelet transforms

Narrow-Band Spectrogram

- Digital filters
- Advanced data analysis
- Feature extraction
- Pattern recognition
- Data fusion
- Structural characterization
- Impact damage analysis
- Structural fatigue analysis
- Acoustics fatigue analysis

- An envelope gives:

 Amplitude
 Time-of flight reference of a signal

Key Technologies

Physics Based Models

- Structural Impact damage models
- Structural Fatigue models
- Life prediction models

Data acquisition and instrumentation

- Sensor installation
- Sensor integration
- Sensor interrogation

Summary

- Warfighters have a need for this technology
- Reduction in O&M cost
- Maintain structural safety and availability

# Concepts technology is Enabling			4	13	: :-
Concepts	Technlogies	Affordable Prop Systems	Technology	Secure COMMs	
Тесһпоюу Митрег			PROP5	COM3	5.85 D. To
ојоду Агеа	Тесћп		Propulsion	Com	Water and the Control of the Control

LON				書きる。		20000	
TRUCTURAL ST PROJECT						15000	
F-15C/D UNIT STRUCTURAL MAINTENANCE COST PROJECTION						10000	Flight Hours
C/D UNI						5000	FII
F-15							
	00+30.1 00+30.1	llars	o Q ni t	500	CO+=0.2	0.05+00	

Materials That Sense Their Environment

B. D. Green and P. B. JoshiPhysical Sciences Inc.Andover, MAgreen@psicorp.com

Presentation at:

Multifunctional Aerospace Materials Workshop

Purdue University 24 October 2002 This document shall not be duplicated nor disclosed in whole or in part without prior written permission of Physical Sciences Inc. and it shall only be used for the sole purpose for which it has been supplied

Near-Earth Spacecraft Thermal Environment

(conduction within spacecraft structure) (equilibrium of various radiative fluxes) nternal temperature distribution?

F-6504

23

Temperature cycling as spacecraft moves in/out of eclipse

Radiation to space, solar input, internal power must be controlled to maintain spacecraft systems (especially electronics) within operating temperature (-30 C to 65 C, typical)

Electrochromic Thermal Control Device Structure

- Battery-like cell; charge changes optical properties
- The entire EC device is no more than 7 mils thick (0.177 mm) dominated by Mylar substrate (can be reduced to 0.9 mil)
- Goal: thin-film flexible device thermostatically controlled

Concept for Integration of Electrochromic Devices into Spacecraft Structure

Benefits of Thermal Control with Electrochromics Technology

Reflectance Variation with Film Oxidation

Reference: Topart and Hourguebie, Thin Solid Films, 352, p. 243, 1999.

Variable Emissivity/Reflectivity Materials First Flight Test

VG02-275-6

- Electrochromic materials for spacecraft thermal control, propulsion
- Vary R, a, ? in the visible IR by choice of substrate, active materials
- chemical switching of polymeric materials Alter optical properties via electro-

subsystem thermal management Application to solar sails, s/c and

PANI/CSA 44_5C (Leucoemaraldine) Reduced

8

70 8 22 45 ଝ moissimensiT %

carrier - first attached payload Passive samples on MISSE outside ISS (Aug 01)

E-6021

Wavelength (nm)

PANICSA 44_5C Emeraldine Salt) Initial

40 35 30 25 20

Inhibition of transduction

- disrupt planarity of polymer backbone
- swelling
- chemical reaction with an additive
- dedoping
- chemical reaction to remove dopant from polymer

Enhancement of transduction

- target compound acts as a dopant to increase conductivity of the polymer
- interaction of target compound with sensing material increases planarity of polymer backbone

Individual Chemical Alarm System (ICAS)

? Conductive polymer sensor system for

- chemical warfare agents
- toxic industrial compounds

Real time detection

- alerts wearer upon exposure
- stores exposure history

E TO TO THE AME

ICAS Prototype Badge Design

Simple user interface

- on/off switch
- self-test feature
- sampling interval selection
 - audible alert
- tox class indication

Insertable sensor array chip

AAA battery - 5-day lifetime

- 2.5 x 4.75 inches 3.5 ounces

Downloads exposure data to Access database <u>~·</u>

Exposure records

- exposure dose = concentration x time
- logged every 30 minutes or + 20% dose increase

Advanced Radiation Shielding Materials SBIR

VG02-275-10

Develop composites that provide more shielding per gram than Al

Tailor composition to enhance e or *p* shielding for specific mission

Benefit: significant mass savings reduce s/c weight or increase payload

2000 x 500 km 70 Deg Incl

GE + W GE = ZrHz GE + Ni GE + TiHz

1.6

5.

Protons

Commercial partner: Space Systems Loral

CHANS

CHZH3

5.3

Thickness/(Thickness)A?

1.

OFZF5

CHH3 CHN3 CHN3 CHT5-

7

7:

- Phase 3: Develop evaluation experiment
 - Manifest: Geosynchronous telecom satellite: Brazilsat (2002 launch)
- Following activities: STRV1D, LMA panel

1.2 D-29338

7

.

0.7

(g/cm²)/(g/cm²)_{A?}

Š

6

Summary

- ? Conductive polymer compounds have been synthesized to maximize
- optical properties changes
- response to toxic compounds
- Sensors for control network
- Undergoing demonstrations under real world conditions
- Polymer compounds are a useful accessory to composite structures

Self-Diagnosis of Damage in CFRP by Electrical Resistance

W. A. Curtin, Brown University, N. Takeda, T. Okabe, J. B. Park, U. Tokyo

- Carbon fibers: electrically conducting
- Fiber contacts & conducting network

breakage of carbon fiber

Fiber breaks (mechanical damage)

Contacts Between Fibers Due to Misalignment

| 50 ?m

🗷 electrical "damage"

Electrical resistance monitors damage evolution

On-Board Damage Detection, Failure Prediction from Resistance

Large changes in resistance at small strains

Highly non-linear response with strain; Can tune to coincide with failure strain

Resistance response can be tuned using fiber volume fraction

Resistance is independent of sample gauge length (spatial sensitivity)

Resistance carries a permanent record of prior damage Critical for damage due to overloads

Some Issues:

- What controls relationship between resistance and failure?
- How locally can damage be detected?
- How can signals be interpreted?
- How can this be used practically (outside the lab)?

Current effort:

Address some issues through computational modeling

Clearly need a coupled experimental effort

Coupled Mechanical, Electrical Models

Electrical Model: Local resistances

stress/strain/damage Resistance vs.

Ð

Damage, local stresses Mechanical Model:

Stress vs. strain, failure

Length scales associated with fiber damage:

Old concept: Mechanical "ineffective length"?

fiber, matrix, interface mechanical properties loss of load carrying capability depends on

New concept: Electrical "ineffective length" $?_{ce}$:

inter-fiber contacts, geometry, volume fraction loss of current carrying capability depends on

(a)
$$V_f = 22 \%$$

(c)
$$V_f = 32 \%$$

Modeling of Damage Detection by Electrical Resistance

€ Mechanical damage & Electrical resistance predictions Stochastic fiber damage + Mechanics Models + Electrical Models

How locally can damage be detected?

Damage sensing depends on Detection geometry Design for LOCALIZED damage sensing

Sensing Depends on Detection Geometry

Detection Geometries to Measure Localized Damage

Use model to test simple geometries; determine spatial resolution

Realistic ply-level detection geometry

How can signals be interpreted? Need stochastic analyses

Feasible Fabrication of "sensor array"?

Innovation in Design:

Design = Fundamental Materials Design

• Optimization of constituent materials for damage and sensing; control mechanical $?_c$ vs. electrical $?_{ce}$ characteristics

Specific Component

from Service

Remove

Evolved Time or Strain

Demand and Challenges in Structural Health Monitoring

"MULTIFUNCTIONAL AEROSPACE MATERIALS"
October 23-24, 2002, Purdue University, W. Lafayette,

Fu-Kuo Chang

Dept. of Aeronautics and Astronautics Stanford University Stanford, CA 94305

Problem Statement

GIVEN SENSOR MEASUREMENTS, DETERMINE EXTERNAL AND/OR INTERNAL PARAMETERS.

(NONLINEAR INVERSE AND NON-UNIQUENESS)

SIRUCIURE MATERIAL

MIXHIMATERIAL

SENSOR SIGNALS

Sensors

- - OPTICAL FIBER
 - STRAIN GAUGE
- MICROELECTRONIC SENSORS
- △ ACTIVE (receive and generate signals)
- PIEZOELECTRIC MATERIALSEtc.

PASSIVE SENSING

ACTIVE SENSING

Technical Challenges

- **≈** SENSORS
- SENSOR/MATERIAL INTEGRATION
- * HARDWARE DESIGN/IMPLEMENTATION
- ≤ SIGNAL PROCESSING AND INTERPRETATION
- ≈ RESIDUAL STRENGTH AND LIFE **PREDICTION**

SMART (Stanford Multi-Actuator Receiver Transduction) Layer Piezoelectric Sensor Network

∠
EXIBLE PRINTED-CIRCUIT BOARD TECHNIQUE

Given: {s}

- Sensor data from impact on stiffened panel

≥ Determine: F

- Impact location (x,y)
- Impact force history f(t)

Active Damage Detection

Bat Echolocation

- Bat uses time-of-flight for ranging.
- FM bats use frequency spectrum change for sizing.

Spectrogram

QuickTime™ and a Photo - JPEG decompressor are needed to see this picture.

Signal Processing

Interpretation - Damage index

$$\frac{?}{?}$$
 $\frac{?}{?}S_{sc}$

$$\begin{array}{cccc} ?^{t_{f}} \\ ? & ? |S_{sc}(?_{0},t)|^{2} dt ? \\ ? & ?^{t_{f}} \\ ? & ? |S_{b}(?_{0},t)|^{2} dt ? \\ ? & ? |S_{t_{f}}| \end{array}$$

11

where a=0.5: gain factor, 0? ?? 1 S_{sc} :STFT of a scatter signal S_b :STFT of a baseline signal t_t :lower bound of s0 wave packet in time domain t_t :upper bound of s0 wave packet in time domain t_t : t_t

Damage Index of SHM vs. NDT

SHM System for Vehicles

- Condition Monitoring
 - Crash Detection
- Active Suspension Control

SHM-based Structural Design Diagram

1st Air Force Workshop on "Multifunctional Aerospace Materials" Oct 23-24 2002

Thermal Structures for High Speed Aircraft

David A Brown
Air Vehicles Directorate
Structures Division

for Future High Speed Vehicles Thermal Structures

Current Air Force Studies Evaluating Long Range High Mach Vehicles

- Many Thermal and Structural Needs because of Aerodynamic and Propulsion Heat Loads
- Material Compatibility
- Lightweight High Temperature Structures
- Insulation/Thermal Management
- Multifunctional Technologies may be Key to Lightweight Affordable Solutions

for Future High Speed Vehicles Thermal Structures

Mach 2-4 Conceptual Vehicle

Thin wings

High Temperature Fuel Tanks

Structural Concepts for Consideration

- Unitized Structure
- Integral Composites, Formed Metallic, Preformed Joints
- Smart Structures
- Health Monitoring, Imbedded Sensors
- Adaptive Structures
- Adaptive Leading Edges, Fuel Integration, "Morphing Technologies"
- High Temperature Metals & Composites
- CMCs, Alum/Titanium,
- Structures/Propulsion/Subsystem Integration
- Inlet, Engine, Nozzle, Integrated Subsystems
- Active/Passive Structural Cooling
 - Advanced Analytical Techniques
- MDO, Probabilistic Analysis

Multifunctional Structural Concepts for **Future High Speed Vehicles**

Optimized Design Methods

Adaptive Structure

Concept W

Thermal Management for High Mach Vehicles

Aeroheating and Propulsion Heat Loads Drive Fuel Tank Temperatures

Fuel Tank Model

Boundary Layer Heat Transfer Rate to Wall

Depends on Wall Temperature for a Given Flow

Wall Heat Transfer Rate (BTU/ft²-sec) = $Qdot_{con} = k*dT/dy$, where k is air's thermal conductivity at the wall conditions, and dT/dy is the temperature gradient at the wall.

The Difference Between Convective and Radiative Heat Transfer Rates

When Qdot_{str} is 0 (insulated), T_w will equal the radiation equilibrium temperature, T_{RET}, otherwise Qdot_{str} and heat capacity determine the rate of temperature change of the surface material.

Structures and Materials Key Technical Challenges

- A Reduce Structural Weight Fraction (high temperature composites, insulation, stitched composites, structurally integrated inlet and Ti-Al, Al-Li Sandwich, composite landing gear, lightweight
- Aerodynamic and Propulsion Heat Loads (high temperature structures, ceramics, active/passive cooling)
- and Propulsion Heat Loads (lightweight insulation, active cooling, A Insulate Subsystem and Critical Components from Aerodynamic coatings)
- (advanced design tools, load optimization, probabilistic methods, thin fuselage design)

Key Technical Challenges (Cont) Structures and Materials

- A Provide Adequate Heat Sink for the Aerodynamic and Propulsion Heat Loads (high heat sink fuels, high temperature seals, expendables)
- (stiffness vs. thermal compliance, unitized structures)
- € Provide Cooling to High Temperature Components such as inlets, nozzles, propulsion components, generators (high temperature lightweight heat exchangers, fuel-air heat exchangers)
 - A Minimize Aeroheating and Propulsion Heating to Vehicle Components (high emissivity coatings, high performance insulation)

Technology Risk Elements

• Performance

- How difficult is the technology to mature?
- What is the probability of failure?
- What is the impact of failure to the related system?

Schedule

Can the technology be matured?When?

Cost

What is the ROM cost to mature the technology

Capability

Summary

E Long Range High Mach Vehicles have Unique Structural and Thermal Requirements

? Multidisciplinary Interactions Require New Solutions

? Multidisciplinary Tools Needed

? Multifunctional Concepts Needed to Meet Weight and Affordability Objectives

Leading Edge Thermal Protection **OMC Thermal Management AFRL/MLB**

24 Oct 2002

Keith B. Bowman, Ph.D., P.E. (937) 255-9076 keith.bowman@wpafb.af.mil

Air Force Research Laboratory

Agenda

- Overview
- Thermal Management for Air Applications
- Historical
- Present
- Planned
- Thermal Management/Protection for Space **Applications**
- Historical
- Space Operations Vehicle
- Present
- Planned
- Summary

Thermal Management Requirements

The "Why" Chart

Thermal Management **Needs and Solutions**

Electronic Push

capabilities (Directed Energy/Microwave ect.) Increased communications, and electronic More chips require more cooling.

using advanced materials. 2 to 4 Waste heat can be dissipated times better than copper.

Component Strength/Capability

aircraft/spacecraft increasing, consolidation of capabilities and space become imperative. With the number of systems on

Compact/Size

more critical. Upgrades in capability result in Efficient use of space/resources is becoming more equipment stuffed into space it was not designed for.

move more heat per unit area/unit and Pyrolytic graphite etc..) can Carbon based Materials (foam density hands down.

Retrofitting

Aging aircraft are upgraded and augmented with new components requiring creative design and compromises.

opportunities/possibilities for higher performance retrofit components and systems

Less Maintenance

Less costly Logistics will always be an issue. Operational cost far outweigh any other phase of the Acquisition Lifecycle.

lower operational temperatures, Considering lifecycle cost and deliver lower logistical costs. advanced materials can/will

Thermal Management Applications

Past Effort: C-C Heat Exchanger

- Program initiated July 1996 in AFRL/VA with tech support from AFRL/MLBC.
- · Objective:

Development/fabrication/demonstration of affordable lightweight, C-C F/A-18E/F primary heat exchanger with 6000 hour service life goal

- Design of C-C HX Core completed with better predicted results than metallic designs
- Methods to form thin-wall, high density fins per inch successfully developed
- Two designs resulted assembled using a BNi-5; Ni-19Cr-10Si (liquidus 2075°F) braze
- Integral layers fabricated using CVD C-C processing
- Conventional layers fabricated by brazing component
- Oxidation protection needs further work
- Impetus for contracts looking at one-step C-C processing and oxidation protection

Current Program: Carbon Foam Heat Exchanger

Next Generation Heat Exchanger - Carbon Foam

- Develop extremely light-weight, high
 conductivity composite V-22 heat exchangers
- Design and fabricate full size heat exchanger to decrease volume/increase cooling capacity
- Provide extended life, lightweight, corrosionresistant, very efficient Environmental Control System
- Extends time between failure by at least 2X
- Extend range due to 70% weight reduction and
- Increase heat exchanger efficiency by 25%
- Increase heat transfer coefficient, h by 5X

Coordination with Navy Advanced Concept

Carbon Foam Primary Heat Exchanger Future Program:

Next Generation Advanced Heat Exchanger - Carbon Foam

- Build from previous efforts in
- ·Carbon foam (Hi-K, graphitic)
- Carbon foam heat exchanger
- Oxidation protection (temps greater than NAVY SBIR)
- Design and fabricate full size heat exchanger (JSF??)

- Provide extended life, lightweight, corrosionresistant, very efficient Environmental Control System
- Extends time between failure by at least 2X
- Extend range due to 70% weight reduction and
- Increase heat exchanger efficiency by 25%
- Increase heat transfer coefficient, h by 5X

Phase Change Thermal Management **Current Program:**

Next Generation Aircraft Brake - Phase Change Brakes (PCB)

Current operating aircraft brake systems utilize the mass of the brake disks, change (i.e. melting and/or vaporization) of high heat capacity materials to either steel or carbon/carbon composites, to absorb the heat associated with braking the aircraft. The new concept takes advantage of phase provide at least a

- 30% increased heat absorption capability without increasing weight or volume.
- 30% weight and volume reduction without changing the total heat absorption.

Thermal Management for Space Structures

Light Weight Dimensionally Stable Structures

- Demonstrated C-C technology for spacecraft applications
 - Optical bench
- **Thermal doublers**
 - Heat sinks
- Engine shield
- Demonstrated equivalent or better properties than (M55J/K1100)/CE
- In-Plane thermal conductivity equivalent
 - 3X improvement in through-thethickness panel conductance
- Mechanical characteristics equivalent
 - Transitioned to
- Titan's Wideband Instrumentation
 - SubSystem
- Multifunctional Structure experiment on Deep Space 1 spacecraft

- Low density
- -Decreased launch cost Increased payload
 - High thermal conductivity -Reduced module
 - temperature
- Increased module density
 - · High stiffness
- Same Thermal Performance as Aluminum radiator with -Decreased deflections
 - · Flying on Earth Orbiter heat pipes
- AF/Navy/NASA/Industry · Collaborative effort:

Thermal Management for Space Structures

Thermal Structural Materials Solutions for Space

- Reduced Weight
- Weight savings (~50%)Aluminum: 6 lbs
- K1100/CE (PMC): 3.3 lbs
 - Maintain/improve thermal performance
 - Maintain structural
- performance
- Minimize hardware costs
- Radiator fins flown on STEX spacecraft.
- Battery panel flown on Mars '98 Orbiter.
- Thermal structural panel flown on STRV-1/d.
 - Transitioned technology to

Carbon-Carbon Thermal Planes for Electronics

- 30% lighter weight than Al Low thermal expansion
- Reduced solder fatigue
 - High thermal conductivity Increased lifetime
 - Reduced board temperature
- Increased module density
 - Reduced board High stiffness
- Increased board density deflections

Economical Carbon-Carbon for Spacecraft Thermal Doublers

- High thermal conductivity -Reduced module temperature
- -Increased module density Low density
- -Decreased launch cost
- -Increased payload Low modulus
- surrounding materials -Compliant with

Organic Matrix Composite Heat Pipes

Why OMCs?

- dimensional stability has driven the need to have composite The trend towards OMC structures for weight, stiffness and radiators
- Aluminum heatpipes cannot be readily embedded in composite panels due to CTE mismatch issues
- The use of OMC reduces component weight (i.e. up to 10-20%)
 - incorporation of high thermal conductive materials, resulting A CTE compatible heatpipe radiator would allow the in thermal efficient designs.

- Non permeable 2x10-10 scc/sec He
- •CTE match of hybrid OMC material and interface joint material –? CTE 0 to 1 ppm/K
- Integration of thermal efficient heat pipes with OMC skins and honeycomb core components
- Fewer heat pipes per radiator possible
 - Less weight
- Less complex design and fabrication processes

Organic Matrix Composite Heat Pipes

OMC Heat Pipes

Current Programs: OMC Heat Pipes/Radiators

Problem

- Aluminum heat pipes cannot be readily embedded in composite panels due to CTE mismatch issues
 - Aluminum radiator panels are incompatible with composite bus structures
- Aluminum doublers add unnecessary weight

Objective

- Develop affordable processing techniques for producing a non-permeable carbon-carbon heat pipes
- Develop techniques to integrate OMC heat pipes into the radiator
- Eliminate Al doublers

Benefits

- All composite bus
- Lower weight
- Lower fabrication costs
- · Greater thermal efficiency

Future Programs: OMC Heat Pipes/Radiators

Problem

- Aluminum heat pipes cannot be readily embedded in composite panels due to CTE mismatch issues
 - Aluminum radiator panels are incompatible with composite bus structures
- Aluminum doublers add unnecessary weight

Objective/Approach Next Generation Technologies (??)

Benefits

- All composite bus
- Lower weight
- Lower fabrication costs
- · Greater thermal efficiency

Beyond current tech

Military Space Plane

X-Vehicles LE TPS

• TPS (1500-3000F) - C-C and C-C/SiC

•TPS (>3000) – Active Cooling (C/SiC and C-C w/MoRe heatpipes, heat exchangers)

Nose Cap – C-C

• Leading Edges – C-C

Other – metals, tiles, blankets,

Nose Cap – TUFI/AETB tiles

 Leading Edges – TUFI/AETB tiles

Thermal Protection Materials **Current Programs:**

OBJECTIVE

 Develop low cost, advanced TPM for the CAV (Common Aero Vehicle)

APPROACH

- · Modified CC aeroshell: thermally efficient, structural, low cost
- · Insulation layer: lightweight, thin section
- Integral stackup: aeroshell + insulation + structure
 - Triaxial braiding: thin wall CC aeroshell
 - Leading edge to heatshield transitions
- Cold wall ablator (CWA) overlay: low CC aeroshell recession
- Integrated CC leading edge: high bending resistance
 - Modified CC processing: cost reduction

BENEFITS

- · Thermal efficiency = minimal areal weight & thickness
- Mechanical properties degradation? 15% of allowables
- Cost reduction over current material systems of 45%

CUSTOMERS

CAV; SOV/SMV/Launch Vehicle technology transfers

Next Generation Leading Edge TPS Concept

Rainbow Solution

- · "Think out of the Box" design philosophy
- Thermal management solution for thermal protection
- A hybrid concept
- Structurally integrated approach not parasitic
- Novel combination of materials
- ပ္
- Ceramics
- Metals
- · Foams
- · Aerogels
- · Phase Change Materials
- Focus is on
- · Reliability/Durability/Supportability
- Cost/Manufacturability
- One ongoing effort with Boeing, and one SBIR to be awarded on Jan 2003

Thermal Management Summary

AFRL/ML actively engaged in thermal management research and transition

- Identified the area as a key technology solution to address Air Force needs
- Successful technology transitions demonstrated
- Integrated well with other organizations
- Broad spectrum of R&D programs and applications
- Excellent potential for transition (military & commercial)
- Working closely with DoD, customers and industry
- Focus is on near and mid-term applications
- Future Work:
- Nanomaterials for enhanced multifunctionality
- Dimensional control, performance enhancement
- Carbon Foam applications: heat exchangers and radiator panels
- Novel thermal protection applications

OR MAKING FABRICATION **EXCHANGER**

P. Kwon

Department of Mechanical Engineering Michigan State University East Lansing, Michigan

Air Force Workshop on Multifunctional Materials

Methods to remove heat

Heat spreaders

- One of the most common methods
- Dissipates heat to the environment by forcing air through pin arrays or fins or cooling naturally.
- Materials with high thermal conductivities and heat capacities. (diamond, silicon nitride, molybdenum eic.)
- Cooling fluids circulating in closed channels
- "Microchannels" (100 to 300 microns in diameter)
- Stringent requirements
- Miniaturization
- Fluids One-phase and Two-phase System

Possible Designs

11/14/2002

Air Force Workshop on Multifunctional Materials

Two-phase System

OBJECTIVES

- Multifunctional Structure + Thermal Mangement
- Processing Issues
- Functionally Gradient Medium (FGM) with minimum residual stress
- Infroduction of channels and
- Joining techniques
- Process in general
- More Flexible: Powder Processing
- More Complex: Process techniques & model
- Applications: Electronic Cooling, Cutting Tool, **Turbine** Engine etc.

Micromechanical Desi

Air Force Workshop on Multifunctional Materials

Effective Properties

- "Homogeneous" Materials
- Fiber Composites:
- Rule and Inverse Rule of Mixture
- Particulate Composites:
- Single Ellipsoidal Inclusion [Eshelby; 1957, 1961,1962]
- Many Ellipsoidal Inclusions MT [Mori & Tanaka; 1973],

GSC [Christensen & Lo; 1979], DS [Norris; 1985] & Many Others

Eshelby's Problem

Mori-Tanaka Model

Fabrication Techniques

- Micro-texturing
- Multi-layers Each layer of macroscopically homogeneous mixed powders
- Micro-configuring
- ∠ Internal Geometry Fugitive phase
- Surface Geometry Fugitive phase & Machining partially sintered ceramics
- Joining Techniques
- Fully Sintered Ceramics (FSC)
- Partially Sintered Ceramics (PSC)
- Compacted Ceramic Powder (CCP)

Multilayer Powder Compaction

Die Cavity

Bottom Contact Dies

Air Force Workshop on Multifunctional Materials

Residual Stress Effect on FGM

Alumina

Air Force Workshop on Multifunctional Materials

Approach

- Develop a powder processing protocol
- Minimize process-induced residual stress in FGMs
- corresponding shrinkage and densification behaviors. The intertwined functionality existing among powder characteristics, processing conditions and
- Plans to develop Process Model
- Development of Compaction Model
- Yield Surface
- Flow rule
- Development of Sintering Model

Powder Characteristics

High Shrinkage

low CTE material

high CTE material

Si-material

Low Shrinkage

Air Force Workshop on Multifunctional Materials

Air Force Workshop on Multifunctional Materials

Internal & External Channels

CNC-Machined on PSC, Sinter & Join

CNC-Machined on PSC, Sinter & Join

Fugitive Phases: Various Polymers & Graphite

Air Force Workshop on munnunctional Materials

Powders Used

Materials	Manufacturer	Powder Name	Average Particle Size (micron)
Alumina	Tamai	TMDAR	0.2
FSZ	Tosoh	TZ-8YS	0.58
PSZ	Tosoh	TZ-3YS	9.0
	CERAC		1.23
	Sumitomo	OZC- 3YC	6.0

Air Force Workshop on Multifunctional Materials

Dimensional Changes

Member Shrinkere sime President

Joining with Silica film

ZrO2

 Al_2O_3

-Interface

5 mm

Air Force Workshop on Multifunctional Materials

Joining without Silica Film

11/14/2002

Summary of Processing

Internal Channels

- Powder Mixing
- Compaction
- Fugitive Phase
- Pre-sintering (1000°C for 3hrs)
- Sintering
- Polishing and Spincoating
- Joining

Surface Channels

- Powder Mixing
- Compaction
- Pre-sintering (1000°C for 3hrs)
- CNC-Machining
- Sintering
- Polishing and Spincoating
- Joining

3-D WOVEN COMPOSITE STRUCTURES WITH INTEGRATED FIBER OPTIC SENSORS

Dr. Alexander Bogdanovich

Vice President, Research & Development 3TEX, Inc.

109 MacKenan Drive, Cary, NC 27511

Phone: 919-481-2500 ext. 113

E-mail: bogdanovicha@3tex.com

October 23-23, 2002, Purdue University, W. Lafayette, IN Presented at the 1st Air Force Workshop on "Multifunctional Aerospace Materials"

IN SITU EVALUATION OF 3-D WOVEN COMPOSITE STRUCTURAL AFOSR STTR PHASE I and PHASE II (to start in November 2002) PERFORMANCE USING FIBER OPTIC SENSORS Awarded to 3TEX, Inc.

The concept of this novel technology:

To use three orthogonal reinforcement elements
(yarns placed in warp, weft and Z directions) of a
3-D woven fabric preform as natural carriers of
integrated optical fibers and sensor systems
associated with them.

Objective:

In-situ strain monitoring of composite structures at any location within the structure and in any of the three orthogonal directions by means of fiber optic sensor systems integrated in the 3-D reinforcement elements.

Concept validation:

Use of automated 3-D weaving machines for manufacturing fabric preforms and VARTM composite processing technology for producing composite panels and bonded joints with integrated EFPI sensors in all three directions.

Schematic of 3-D orthogonal woven preform

Industrial 3-D weaving machine (3TEX)

SENSOR SYSTEMS FOR SPECIFIC IMPLEMENTATIONS AVAILABLE FROM LUNA INNOVATIONS

Extrinsic Fabry-Perrot Sensor System

Bragg Grating Distributed Sensing System

EFPI SENSOR INSTRUMENTED CARBON/EPOXY

SPECIMENS USED FOR THE CONCEPT VALIDATION

Instrumented 3-D weave flexure specimens

4-point bending test of beam specimen

4-point bending test of beam with drilled hole

Sensor location in lap joint simulation specimens

Z3 Z2 Z1

F1

SOME RESULTS OF THE CONCEPT VALIDATION

4-point flexure test longitudinal strain data from EFPI sensor and foil gages

Strain concentration near hole captured by EFPI sensors in 4-point flexure test

A smaller foil gage shows strain (----) more characteristic for a resin pocket.

A larger strain gage (----) covers resin pocket and some of the yarn area next to the specimen surface. The EFPI sensor shows strain (----) within yarn adjacent to the specimen surface.

A through-thickness hole was drilled near integrated EFPI longitudinal strain sensor. Strain recorded by the sensor in the presence of hole (----) is significantly higher than the strain at the same location in the absence of hole (----).

ANTICIPATED BENEFITS FOR DESIGN AND **APPLICATIONS**

- Embedding fiber optic sensors into 3-D weave composites in the zones of anticipated high stress/strain gradients and simulating in-service loading conditions will provide invaluable information for
- optimizing 3-D fiber architecture in the preform for each specific type of loading conditions
- selecting most suitable fiber and resin combinations for composite structures
- optimizing thickness and other geometric parameters of the structure
- combining experimental and theoretical tools for structural analysis and design
- significantly increasing reliability of design, thus reducing cost of inspection, repair and maintenance.

In-Situ Evaluation of Composite Structural Multi-axis Fiber Grating Strain Sensors Performance in Presence of High Stress/Strain Gradients Using

Eric Udd Stephen Kreger 376 NE 219th Avenue Gresham, Oregon 97030

503-667-7772 (P) 503-667-7880 (F)

www.bluerr.com

Strain Measurement Interior to Composite Parts-Background/Partnerships

- dimensional strain interior to composite parts • First quantitative measurements of multi-
- •Blue Road Research partnered with U of DL, interest from Boeing (aircraft, spacecraft) and Thiokol (rocket motors)
- monitoring for composite cryo tanks and rocket Synergistic with funded research from NASA motors (AFRL/WPAFB and AFRL/Edwards (multi-axis strain measurement), health

Strain Measurement Interior to Composite Parts-Relevancy

- fiber gratings interior to complex composite parts Multi-dimensional strain measurement using
- Electrical alternatives are bulky and not compatible with conductive materials
- quantitative measurements of transverse strain • Embed multi-axis fiber grating and obtain and strain gradients
- Applies to aircraft and launch vehicle composite parts

Distributed Sensors in Space Vehicles

Schematic of the Microstructure and Unit Cell of Plain Weave Fabrics

Strain Measurement Interior to Composite Parts Innovation in Science

Initial Experiment

- fabrication of a small composite coupon for testing A biaxial weave structure was used to support the
- Multi-axis fiber gratings were placed in the four-layer coupon between the first and second layers and between the second and third layer

Placement of Sensor

Finished Composite Test Specimen

Increasing Temperature to Peak Temperature Monitoring Sensor #2 During the Cure Cycle:

0 min.

95 min.

Monitoring Sensor #2 During the Cure Cycle: After Cross Linking/Cure and Cool Down

200 min.

Polarization Extinction

Sensor #1: Shorter Wavelength

Sensor #1: Longer Wavelength

Fabrication of Smart Fabrics

Single and Dual Axis Grating Sensors in E-glass/ Vinylester and E-glass/ Epoxy Composites

- Several panels were manufactured with single Vacuum-Assisted Resin Transfer Molding and multi-axis Bragg gratings using the (VARTM) process
- The response of the sensors in different stages of the VARTM process was recorded

Mechanical Test Setup – Three Point Bend Test

- The specimens containing dual axis sensors were loaded by three point bending.
- The grating portion of the dual axis grating sensor was put beneath the load head.

Composites Strained in Tension, Right Peak Dual Axis FBG Sensor in E-glass/vinylester

Composites Strained in Compression, Right Peak Dual axis Grating Sensor in E-glass/epoxy

Composites Strained in Compression, Left Peak Dual Axis FBG Sensor in Glass/epoxy

Repeatability and Drop Test

- embedded in textile composites was evaluated Repeatability of the dual axis FBG sensor using a loading-unloading cycle test.
- The results demonstrated that the signal from the dual axis FBG sensor is repeatable.
- only a small permanent deformation (strain) A drop weight impact test was performed, was formed by the impact

cyclic compressive loading-unloading (0lb-400lb), left peak Dual axis FBG sensor in glass/epoxy composites under

Bonded Joint Health Monitoring System

Bonded joints Fiber sensors Distributed

Joint Instrumented for Shear

Pi-Channel Multi-Axis Strain Monitoring

High Density Fiber Grating Strain Sensor System

Composite Structures Summary

- Simultaneous measurement of axial and transverse strains
- distributions for "simple" conditions in Measurement of sub-grating strain weave structures
- Useful for structural monitoring during part formation and subsequent loading

Composite Structures Systems Development

Compare baseline loaded and unloaded strain signatures with current readings • Demonstrate static ground testing. to detect structural damage.

dynamic, low-power, rugged, compact Evolve monitoring equipment to system for in-flight monitoring.

Ongoing Improvements in System Capability

- Develop theory and modeling tools to better link multi-axis strain measurements to structural behavior.
- Use WDM and interferometric techniques to multiplex hundreds of sensors on single line.
- multiple peak structures into highly spatially Develop algorithms to translate complicated resolved multi-axis strain measurement.

FAST SELF COOLING MECHANISMS

Roger J. Morgan and Sai Lau

Texas A&M University

AFOSR WORKSHOP ON MULTIFUNCTIONAL AEROSPACE MATERIALS

24th OCTOBER 2002

THEME

- "OUT OF THE BOX"
 - SURFACE COOLING CONCEPTS
 - THERMAL ABLATION RESISTANT STRUCTURES
- GOALS
 - RAPID TEMPERATURE TIME
 COOLING
 - LIMIT IR-TIME SIGNATURES
 - ENHANCED THERMAL
 RESISTANT STRUCTURES PROCESSIBLE COATINGS AND
 STRUCTURES

SUBJECT MATTER

- HISTORY
 - LASER HARDENING MECHANISMS
 - HIGH MOISTURE BEARING FIBERS (FIBER -S)
 - TUNGSTEN CARBIDE, TANTALUM CARBIDE IN-SITU SERVICE ENVIRONMENT FORMATION
- SURFACE MOISTURE EVAPORATION
 - SKIN COOLING MECHANISM
 - MICROFLUIDICS
- THERMAL CONDUCTION INTERNAL COOLING "PIPES"
- RAPID SUPER THERMAL CONDUCTORS
- COATING SELF COOLING MECHANISMS (IN-SITU REPLENISHMENT)

Table 1
Aromatic Polyamides That Were Developed

for Commercial Fiber Production

Chemical Name (abbreviation)	Chemical Structure	Trade Namo (company)
poly (m-phenyleneisophthalamide) (PmPI)	CO-HN O NH	Nomex TM (du Pont); Conex TM (Teijin)
polybenzamide (PBA)	-{-HN(o)co-}	PRD 49-1TM* (Du Pont)
poly(p-phenylene terephthalamide) (PPTA)		Kevlar ⁿ (du Pont); Twaron TM (Akzo N.V.)
polyterephthaloyl- p-aminobenzhydrazide (PABH-T)		X-500 ^{TM A} (Monsanto)
copolyterephtralamide of p-phenylenediamine and 3,4' diamino-diphenyl ether (CPTA)	HN (50) - CO - CO - CO - CO - CO - CO - CO - C	HM-50 ^{FM} Technora ^T (Teijin)
polyamidobenišmidazole (PABI)		FVM ^{TX}

^{*}No longer commercially produced.

Figure 11. The 100°C and 510°C two-dimensional température contours in a 40 ply carbon fiber-epoxy composite after 10 s exposure to a 600 W/cm², 3.5 beam diameter laser.

THE MECHANISM OF ECCRINE SWEAT EXPULSION

Eccrine sweat glands are simple coiled tubular glands located in the deep dermis or underlying hypodermis and are present throughout the body. Their primary function is evaporative cooling.

- 1. They develop as invaginations of the epithelium of the dermal ridge. They grow into the dermis with its deep aspect becoming the glandular portion of the seat gland.
- 2. Eccrine sweat glands are simple coils of cuboidal epithelium containing two kinds of cells.
 - A. Dark cells produce sialo mucins.
 - B. Clear cells produce water and electrolytes.
- 3. The final production is hypotonic (99% water)
- 4. Adult produce between 0.5-10 leters/day.

CONDUCTIVITY MODEL

ASSUMPTIONS:

- The outer surface is heated instantaneously to 100 °C before cooling begins
- Inner surface temperature is maintained at 25 °C
- There is no cooling to atmosphere
- Water flow is semi-turbulent

GOVERNING EQUATION:

(HEAT ADDED -HEAT CONDUCTED ACROSS THE MATERIAL)
PER cm² PER s =
(HEAT INCREASE IN THE MATERIAL PER cm² PER s)

EVAPORATION MODEL

ASSUMPTIONS:

- ? Pore openings cover 50% of surface area
- ? 0.2 kg. Of water evaporates per second per square cm. of surface area
- ? Material and water properties are considered at conditions prevailing at an altitude of approximately 60,000 ft.

GOVERNING EQUATION:

(HEAT ADDED -HEAT TAKEN AWAY BY EVAPORATION) PER cm² PER s = (HEAT INCREASE IN THE MATERIAL PER cm² PER s)

Temperature vs Time

Temperature vs Time for different methods of cooling

Temperature vs Time

Temperature vs Time

Thermal conductivity=30,000 times that of silver

SUPER THERMAL CONDUCTOR

- COPPER SEALED TUBE 5
 MM D
- AIR 0.5 ATMOSPHERE
- 3 COATINGS 0.1 MM THICK
 - OXIDES
 - CHROMATES
- UP TO 3 x 10 THERMAL CONDUCTIVITY OF SILVER

Supertube with pressure transducer attached.

Pressure and temperature inside an operating Supertube.

Graphitic Foam as Heat Carrier For Therma Control in Phase Change Materials (PCM) Composite Systems

Khalid Lafdi

University of Dayton Research Institute 300 College Park, Dayton OH. 45469-0168 USA

Materials & Manufacturing Directorate, AFRL/MLBC, WPAFB, OH 45433 USA

Khalid.lafdi@wpafb.af.mil

ITAR restricted

Microscopy Characterization of Graphitic Foam

WEDGE DISCLINATIONS

Ligaments

ITAR restricted

TEM Characterization of Graphitic Foam

Thermal Conductivity Local K=250 = 750 w/m °C Bulk K= 50 - 200 w/m °C

Testing Conditions Using Sub-Scale Dynamometer

Schematic of the sub-scale dynamometer

Dimensions of C-C composite brakes

Test	Number of stops
Cold Taxi	100
Service Landing	100
Normal Landing	100
Taxi-Landing	50 (3 L.stps & 1 Taxi. stp)
Rejected take off	5 stops

Testing energy of the sub-scale dynamometer ITAR restricted

Temperature Profile at Landing condition

The thermocouple was located 5 mm from the sliding surface

Temperature profile during normal landing Stop of conventional carbon-carbon composites and PCM-graphitic foam based composites.

ITAR restricted

Temperature Profile at Rejected Takeoff condition

The thermocouple was located 5 mm from the sliding surface

ITAR restricted

Autonomic Healing of Polymers and Composites

University of Illinois at Urbana-Champaign

Beckman Institute for Advanced Science and Technology

Autonomic Healing Research Team

secutivy Second Withing Namey Sortons, Phillippe Geulbelle, Jeffi Moore, Pauli Braun, Jeffi Jenntfer Lewis

Students: Eric Brown, Joe Rule, Daniel Therriault, Jeff Thompson, Mike Kessler*, Suresh Sriram* Sabarivasan Viswanathan*

Support: UIUC-CRI AFOSR Motorola Beckman Institute

www.autonomic.uiuc.edu

Inspired by Biological Systems

William States

The ability to function in an independent and automatic fashion

site specific fashion without manual intervention. The ability to repair damage in an automatic and Autonomic or Self-healing Functionality:

Motivation

Survey of the Source Survey of the Section of the S

িশায়তিহাতী স্বানামীয়

्राणिकारका विकासित

্ দিয়ু ভাষানাদিষ্যতিন

. Microelectronics.

- ·> Interconnect fatigue
- Polymerencapsulate failure
- Adhesives
- Microcracking
- Cracks are often deep in a structure where detection is costly and difficult
- Repair of cracks by external intervention is often impossible

Cracking in cross-ply laminate Jennings (1990)

Self-Healing Concept

Self-Healing Materials

Goals:

- · 100% recovery of mechanical integrity
- · Continuous healing over lifetime
- Seamless integration in material structure

Research Needs:

- Reactive materials development
- Environmental stability
- · Mesoscale integration and fabrication
- Multiscale characterization
- · Multiscale modeling

Epoxy Healing Efficiency

 $\eta = K_{Ic}^{healed} \, / \, K_{Ic}^{virgin}$

5 wt% microcapsules 2.5 wt% catalyst

Healed Fracture Surface

polymerized DCPD film on fracture surface

Beckman Institute for Advanced Science and Technology

Healing Kinetics

Healing Fatigue Damage

Multiscale Modeling of Fatigue Response of Self-Healing Composite

Objective:

Model low and high-cycle fatigue response of autonomic healing in polymeric materials systems

Approach:

Realistic (simplified)
imocels of healing
agent structure

eaction rates and tensile strength

Local estimates o

1/10 Sinon (2) (1/2)

Coarse grafin Striulantons

Gure-dependent stiffin and tallure models

multiscale supporting and

validating experiments

multilevel numerical tools

Combination of

€ure kinetics model

Significant Signif

LEVEL 3

FATIGUE PREDIOTION Beckman Institute for Advanced Science and Technology

I ILLINOIS

Tech Transfer: Microelectronics

Sain-Habiling Polyrnar tor Improvate Family Lite of Whorean Polys CONTRIBOURAINA WORK WITH Dr. Arretraw Strippor, Worldford Laidorandas

Woven Composites

interleindineit itzoulite (deleimineitoni) is cominion

- low energy impact
- manufacturing defect
- initiate at stress concentrations such as holes and microcracks
- interstitial areas serve as storage sites for the microcapsules.

Graphite/Epoxy Healing Efficiency

polymerized DCPD

Tech Transfer: Cryogenic Storage Tanks

Signace Tainks aing Supparconclucinviny Applications. AFRIMAS STOFF Compositio Wellerials for Cinyogenia

- Leed by QU Aerospace, LLC (Rounneled 11905)

— WWG subscondact

— POC+ Captain Brandon 사례한 Khiland 시키의

New Healing Agent: 🐃

1

exo - DCPD

endo - DCPD

Beckman Institute for Advanced Science and Technology

ILLINOIS

xt Generation Self-Healing

Scott White University of Illinois at Urbana-Ghampaign

1st Air Force Workshop on "Multifunctional Aerospace Materials"

Current Limitations

temperatures & catalyst concentrations) ু Relatively slow healling (@ reasonable

 Catalyst cost, stability @ high temp, exposure to 0_2 No ability to replenish healing agent

New Healing Concepts

- o ROMP and ROP based approaches Cyclic esters, carbonates,
- Mechanochemistry approaches
- Microvascular Networks

Mechanochemistry:

SEMPENDE PROPRE OF SCHOOLS

- OWERS ENERGY DARMET to reactive Appleation of a sires field
- Radical generation is coupled directly (and tailored?) to mechanical field
- identified that undergo Bergman *cyclization* to test concept

Mechanochemistry:

MODEZNAMINA FINGROPIECI PONYMNENTZENDOM

radicals generated on freshly fractured surfaces Develop "catalyst-free" systems utilizing the

ISSUES:

- Radical turnover (amplification) by catalytic chain transfer processes
- Radical trapping (radical acceptors have been identified)
- Can we deliver monomer before secondary events (radical recombination, quenching,...) take place?

Microvascular Networks

Compartmentalization to Circulation

Microvascular Networks

HIBTORCHERI OFICHIREONY MENNORMS IN OROHOGHERI SYSKEMES Keyy rectuulre eti iline irilkoroseetke ks poervasilve eintel lintiskeneoininteeteel systeminoit inite<mark>rooineinineks</mark>

Microvascular Network Fabrication

Robotically controlled deposition (RCD) machine

TILLINOIS

THE WALL

I ILLINOIS

Isolated Flow Paths

Top view

Side view

200 µm

Micromixing Experiments

ैं: बीडिटale bars are 500 ? m.

A Challenge for Mechanics...

- Multiturgitorentality can be (and parheles should be) led by the mechanics community!
- · This is an opportunity as a community to step to the forefront and lead the next generation of materials developments.
- We MUST reach out to other disciplines and facilitate collaborative research from the ground up.
- We're talking about new materials, not bonding old ones together.

Thermally Re-mendable Cross-linked Polymeric Materials

Xiangxu Chen

Department of Chemistry & Biochemistry Exotic Materials Institute

University of California, Los Angeles

Polymeric Materials

Molecules

|
Chemical Bonds

A material formed by re-connectable

chemical bonds should be re-mendable.

Highly cross-linked re-mendable polymeric materials

Small, J. H.; Loy, D. A.; Wheeler, D. R. McElhanon, J. R.; Saunders, R. S. US Patent, 6,271,335 B1 (2001).

Loy, D. A.; Wheeler, D. R.; Russick, E. M.; McElhanon, J. R.; Saunders, R. S. US Patent, US 6,337,384 B1 (2002)

Synthesis of monomers

Mechanical properties

ASTM Test methods	D638					D695	· · · · · · · · · · · · · · · · · · ·			D790					··
Unsat Polvesters		4-88	2-4.4	<2.6			88-204				58-156	3.4-4.2			
Epoxy Resins		27-88	2.4	3-6			102-170	3.4			88-143				
2MEP4F					234			3.7	Z,				4,44	9.36	<u>.</u>
3M4F		89	•	1.6-4.7	241		121	3.6	25		143	3.5	4.72	0.32	2
	Tensile	Strength (MPa)	Modulus (GPa)	Elongation (%)	Ultimate Tensile (MPa)	Compression	Strength (MPa)	Modulus (GPa)	Strain to Failure (%)	Flexural	Strength (MPa)	Modulus (GPa)	Young's Modulus (GPa)	Poisson Ratio	Density

(a)80?C, 1 h; (b)150?C, 15 min and then quenched in 77K Thermal reversibility of polymer 3M4F

Thermal freatment

Healing (mending) efficiency of polymer 3M4F

Jan Jan A

Healing effect

Summary

multiple times. The healing process does Thermally re-mendable polymers have not require additional ingredients. been developed, which can be healed

Future designs of re-mendable polymeric materials

- Better mechanical properties
- Higher glass transition temperature
- Smart structures with self-response ability (shape memory)

.

San Berling

1911年,1911年中央第二次第二次第二次第二次

Acknowledgments

Professor Fred Wud

Prof. Steven R. Nutt

Prof. Ajiit Mal Prof. Kanji Ono

Differences of healing process between our remendable polymers and linear polymers

Regeneration of chain entanglement is necessary for Inear polymers

Much higher operating temperatures (PP: $250-300^{\circ}C$)

Monual pressure

dai S

Novel and Multi-Functional Composites

Michael Wisnom

and

Ian Bond

Shaped fibres made at Bristol

Impact detection with hollow fibre composites

- Hollow fibre layer on surface of structure
- Fibre crushing absorbs impact energy
- Leaves visible dent
- Layer can be tuned to impact severity

Active fibres

- Fibres can be filled with active component to create multi-functional composites
- Magnetic material for electric generation
- Stealth

Bleeding composites

- Fibres can be filled with dye that bleeds out and allows damage to be detected
- Uncured resin in fibres can act as healing agent

Bleeding composites

- Fluorescent dye mixed with uncured resin
- Impact damage clearly visible under UV light

Self-healing and Electronic Assemblies

Distinguished Member of the Technical Staff Andrew Skipor

Motorola Advanced Technology Center Mechanical Sciences Group Schaumburg, IL 847-576-0754

"MULTIFUNCTIONAL AEROSPACE MATERIALS" October 23-24, 2002, Purdue University, 1st AIR FORCE WORKSHOP ON W. Lafayette, IN

Self-Heal Materials:

get damaged, they heal themselves. Imagine a future when our products

Interconnect Stress: Background

Bending Fatigue vs. Thermal Fatigue

~ ∆P (load or deflection), L*

Bending Fatigue Reliability

Thermal Fatigue Reliability

 \sim (α 1- α 2), Δ 1

Electronic Package

PCB

"Squeeze" test.

high rate flexure.

Drop impact,

MOTOROLA and the Stylized M Logo are registered in the US Patent & intelligence (M) everywhere Trademark Office. All other product or service names are the property intelligence (M) everywhere of their respective owners. © Motorola, Inc. 2002.

Near Term Challenges

Opportunities fracture path not to scale) Controlled Self heal Compact Tension Specimen ~ 100 E

Model microelectronic package, "stress concentration.

Resin layer with self-healing material.

High stress

area FOOXY resim 25 (0.40)

Several self-heal opportunities

much smaller population.

Transition to PCB Laminate

MOTOROLA LABS

MOTOROLA and the Stylized M Logo are registered in the US Patent & *intelligence* All other product or service names are the property of their respective owners. © Motorola, Inc. 2002.

Material. Model microelectronic package, "stress concentration."

Resin layer with self-healing

specimen fracture Examples of test

Future Considerations

- Challenge: Transition concepts to PCB Laminate
- Room temperature self-heal process Can it work at – 40 C to 125 C? No premature activation Potential requirements: Non-invasive

Electronic Assembly Processing

- Tolerate product operating temperatures (- 40 C to 125 C)
- Tolerate component/PCB solder assembly processing temperatures (~ 240 C for 15 seconds)

Can the PCB be recycled?

