Seoul National University School of Electrical and Computer Engineering

430.523: Random Signal Theory

Spring Semester, 2018 Instructor : Prof. Byonghyo Shim

> Midterm Exam 2 May 24, 2018 75 minutes

This is closed book test. However, one A4 page cheating sheet is allowed. $\frac{\text{Make sure to clearly show your work and full justification to get the full credit for the problem.}}{\text{You have 75 minutes to finish the exam.}}$

Please do not turn this page until requested to do so

Problem 1)[20pt] Let X be the exponential random variable with the parameters λ . Also, let $Z = \exp(-X)$. Find the PDF of Z.

Problem 2)[20pt] Let X_1, X_2, \dots, X_n be discrete random variables. Also, let $\Phi = \{x : p_i(x) > 0 \text{ for all } i\}$ where $p_i(x)$ be the PMF of X_i . Show the following inequalities:

- (a) $D(p_1(x)||p_2(x)) \ge 0, x \in \Phi$
- (b) $I(X_1; X_2) \ge 0$
- (c) $H(X_1, X_2, \dots, X_n) \leq \sum_{i=1}^n H(X_i)$

Problem 3)[20pt] Let X_i $(1 \le i \le n)$ be independent random variables satisfying $|X_i| \le M$, $E[X_i] = 0$, and $E[X_i^2] = \sigma_i^2$. Show the following inequalities:

(a)
$$P(\sum_{i=1}^{n} X_i > t) \le e^{-\lambda t} \prod_{i=1}^{n} E[e^{\lambda X_i}]$$
, for any $\lambda > 0$

(b)
$$E[e^{\lambda X_i}] \le \exp\left(\frac{\sigma_i^2}{M^2}(e^{\lambda M} - 1 - \lambda M)\right)$$

Hint: Note that $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$ and $e^y \ge 1 + y$ $(y \ge 0)$.

Problem 4)[20pt] Let $\mathbf{X} = \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}^T$ be the normal random vector where $X_i \sim \mathcal{N}(0, \sigma_i^2)$.

- (a) Show that $tr(\mathbf{C}) = \sum_{i} \lambda_{i}$ where λ_{i} is the eigenvalues of the covariance matrix \mathbf{C} of \mathbf{X} Hint: $tr(\mathbf{U}\mathbf{V}\mathbf{W}) = tr(\mathbf{W}\mathbf{U}\mathbf{V})$
- (b) Show that $\lambda_{\max} \geq \sigma_{\min}^2$ where λ_{\max} is the largest eigenvalue of \mathbf{C} and $\sigma_{\min}^2 = \min_i \sigma_i^2$.

Problem 5)[20pt] Suppose that there are n pairs of shoes in distinct styles and sizes. The shoes are mixed up. Peter randomly selects k shoes (k might not be even). What is the expected number of matched pairs of shoes that Peter selects?

Problem 6)[20pt] Let $\mathbf{X} = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$ be the normal random vector with

$$\mathbf{C} = \left[\begin{array}{ccc} a & b & 0 \\ b & a & 0 \\ 0 & 0 & a \end{array} \right],$$

where 0 < b < a.

- (a) Find the PDF of $X_2 + X_3$.
- (b) Find the joint PDF of $X_1 + X_2$ and $X_1 X_2$.
- (c) Find the conditional PDF of $\mathbf{Z} = \begin{bmatrix} X_1 & X_2 \end{bmatrix}^T$ given $X_3 = x$.
- (d) Find the linear transformation **A** such that $\mathbf{Y} = \mathbf{AX} \sim \mathcal{N}(\mathbf{0}, \begin{bmatrix} 9 & 3 \\ 3 & 2 \end{bmatrix})$.