Lista 4

Arruti, Sergio, Jesús

- Ej 48.
- Ej 49.
- **Ej 50.** Sean $f: B \to C$ en Mod(R) y $g: B \longrightarrow B$ tales que fg = f. Pruebe que: $g: f \longrightarrow f$ es un isomorfismo en Mod(R)/C si y sólo si $g: B \longrightarrow B$ es un isomorismo en Mod(R).

Demostración.
$$g: f \longrightarrow f$$
 es un isomorfismo en $Mod(R)/C$
 $\iff \exists g^{-1}: f \longrightarrow f \text{ tal que } g^{-1}g = 1_f \text{ y } gg^{-1} = 1_f$
 $\iff \exists g^{-1}: f \longrightarrow f \text{ tal que } g^{-1}g = Id_B \text{ y } gg^{-1} = Id_B$
 $\iff \exists g^{-1} \in \text{Hom}_R(B, B) \text{ tal que } g^{-1}g = Id_B, gg^{-1} = Id_B \text{ y } f = fg^{-1}$
 $\iff g: B \longrightarrow B \text{ es isomorfismo en } Mod(R) \text{ tal que } fg = f.$

- Ej 51.
- Ej 52.
- **Ej 53.** Sean $M \xrightarrow{f} N \xrightarrow{f'} M$ en Mod(R) tal que $ff' = 1_N$. Pruebe que $M = Ker(f) \oplus Im(f')$.

Demostración. Como $ff'=1_N$, entonces Ker(f')=0 y Im(f)=N, es decir, f' es monomorfismo, f es epimorfismo y $Im(f')+Ker(f)\leq M$. Si $x\in Im(f')\cap Ker(f)$ entonces existe $y\in N$ tal que f'(y)=x y además f(x)=0 entonces $0=f(x)=ff'(y)=1_N(y)$ por lo que x=0 y así $Im(f)\cap Ker(f)=0$.

Si
$$x \in M$$
 entoces $f(x - f'f(x)) = f(x) - f(x) = 0$, y
 $x = (x - f'f(x)) + f'f(x) \in Ker(f) + Im(f')$.

- Ej 54.
- Ej 55.
- **Ej 56.** Sean $f: A \longrightarrow B$ y $g: B \longrightarrow B$ en Mod(R) tal que gf = f. Prueba que

$$g\colon f\stackrel{\sim}{\longrightarrow} f \ \text{ en } Mod(R)\backslash A \ \iff \ g\colon B\stackrel{\sim}{\longrightarrow} B \ \text{ en } Mod(R).$$

$$\begin{array}{ll} \textit{Demostración.} & g \colon f \stackrel{\sim}{\longrightarrow} f \ \text{ en } Mod(R) \backslash A \\ \iff \exists g^{-1} \colon f \longrightarrow f \ \text{tal que } g^{-1}g = 1_f \ \text{y } gg^{-1} = 1_f \\ \iff \exists g^{-1} \colon f \longrightarrow f \ \text{tal que } g^{-1}g = Id_B \ \text{y } gg^{-1} = Id_B \\ \iff \exists g^{-1} \in \operatorname{Hom}_R(B,B) \ \text{tal que } g^{-1}g = Id_B, \ gg^{-1} = Id_B \ \text{y } f = g^{-1}f \\ \iff g \colon B \longrightarrow B \ \text{ es isomorfismo en } Mod(R) \ \text{tal que } gf = f. \end{array}$$

- Ej 57.
- Ej 58.
- **Ej 59.** Sean $F: A \longrightarrow B$ un funtor contravariante aditivo entre categorías preaditivas. Pruebe que si F es fiel y pleno, entonces $F: End_{\mathcal{A}}(A) \longrightarrow End_{\mathcal{B}}(F(A))^{op}$ es isomorfismo de anillos.

Demostración. Como F es funtor contravariante aditivo, entonces es un morfismo de grupos abelianos. Considerando la composición, tenemos que $End_{\mathcal{A}}(A)$ y $End_{\mathcal{B}}(F(A))$ son anillos, así $End_{\mathcal{A}}(F(A))^{op}$ es anillo.

Por definición de funtor contravariate para cada $f,g \in End_{\mathcal{A}}(A)$ se tiene que

$$F(f \circ g) = F(g) \circ F(f)$$
 y $F(1_A) = 1_{F(A)}$ $\forall A \in Obj(A)$.

Entonces F es morfismo de anillos entre $End_{\mathcal{A}}(A)$ y $End_{\mathcal{B}}(F(A))^{op}$, y como F es fiel y pleno, la correspondencia debe ser biyectiva, es decir, F es un isomorfismo de anillos.

- Ej 60.
- Ej 61.

Lemma*

(Anderson, Fuller) 16.6

El funtor $\operatorname{Hom}_R(M,Y)$ es exacto izquierdo. En particular si U es un Rmódulo, entonces para cada sucesión exacta $0 \longrightarrow K \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ en $\operatorname{Mod}(R)$ las sucesiones $0 \longrightarrow \operatorname{Hom}_R(U,K) \xrightarrow{f_*} \operatorname{Hom}_R(U,M) \xrightarrow{g_*} \operatorname{Hom}_R(U,N) \longrightarrow 0$ y $0 \longrightarrow \operatorname{Hom}_R(M,X) \xrightarrow{g^*} \operatorname{Hom}_R(M,Y) \xrightarrow{f^*} \operatorname{Hom}_R(M,Z) \longrightarrow 0$ son exactas

- **Ej 62.** Para $M \in Mod(R)$ pruebe que las siguientes condiciones son equivalentes:
 - a) M es proyectivo.
 - b) Toda sucesión exacta $0 \longrightarrow X \longrightarrow Y \longrightarrow M \longrightarrow 0$ en Mod(R) se escinde.

- c) M es isomorfo a un sumando directo de R-módulos libre.
- d) Para toda sucesión exacta $0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$ en Mod(R), se tiene que

$$0 \longrightarrow \operatorname{Hom}_R(M,X) \xrightarrow{f_*} \operatorname{Hom}_R(M,Y) \xrightarrow{g_*} \operatorname{Hom}_R(M,Z) \longrightarrow 0$$
 es exacta en $Mod(\mathbb{Z})$, donde $f_* = \operatorname{Hom}_R(M,f)$ y $g_* = \operatorname{Hom}_R(M,g)$.

 $Demostraci\'on. \ \boxed{a) \Rightarrow b)}$

Sea M proyectivo y $0 \longrightarrow X \longrightarrow Y \longrightarrow M \longrightarrow 0$ una sucesión exacta en Mod(R). Como $Y \stackrel{h}{\longrightarrow} M$ es epi, entonces el morfismo $I_M \colon M \longrightarrow M$ se puede factorizar a través de h, es decir, existe $g \colon M \longrightarrow Y$ tal que $Id_M = hg$. Por lo tanto h es split-epi y por el ejercicio 54 la sucesión se escinde. $b \mapsto c$

Sea $F = \bigoplus_{y \in M} Ry$ el módulo libre generado por los elementos de M, enton-

ces existe un epimorfismo $g\colon F\longrightarrow M,$ por lo que

$$0 \longrightarrow Ker(g) \stackrel{i}{\longrightarrow} F \stackrel{g}{\longrightarrow} M \longrightarrow 0 \ \text{ es exacta con } i \text{ la inclusión}.$$

Por hipótesis esta sucesión exacta se escinde, por lo tanto $M \oplus Ker(g) = F$, es decir, M es un sumando directo de un módulo libre.

$$c) \Rightarrow a$$

 $\overline{\text{Suponga}}$ mos que tenemos el siguiente diagrama con g epi:

$$X \xrightarrow{g} Y \longrightarrow 0$$

$$\downarrow h \qquad \downarrow \qquad \qquad M$$

Por c) sabemos que existe F,K módulos tales que $M \oplus K = F$ con F un módulo libre. Ahora, como todo módulo libre es proyectivo y considerando a $\pi \colon F \longrightarrow M$, se tiene que existe $f \colon F \longrightarrow X$ tal que $h\pi = fg$, así $h\pi i = gfi$ con i la inclusión de M en F, por lo que $h = g \circ f_0$ con $f_0 \colon M \longrightarrow X$.

$$a) \iff d$$

Por el lema* la condición d) se cumple si y sólo si por cada epimorfismo $Y \xrightarrow{f} Z \xrightarrow{g} 0$ la sucesión $\operatorname{Hom}_R(M,Y) \xrightarrow{f_*} \operatorname{Hom}_R(M,Z) \longrightarrow 0$ es exacta. Pero f_* es epi si y sólo si por cada $\gamma \in \operatorname{Hom}_R(M,Z)$ existe un $\hat{\gamma} \in \operatorname{Hom}_R(U,M)$ tal que $\gamma = f_*(\hat{\gamma}) = f\hat{\gamma}$.

Ej 63.

Ej 64.

Ej 65. Para $M \in Mod(R)$, pruebe que las siguientes condiciones son equivalentes.

- a) M es inyectivo.
- b) Toda sucesión exacta $0 \longrightarrow M \longrightarrow X \longrightarrow Y \longrightarrow 0$ en Mod(R) se escinde.
- c) Para toda sucesión exacta $0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$ en Mod(R), se tiene que $0 \longrightarrow \operatorname{Hom}_R(Z,M) \xrightarrow{g^*} \operatorname{Hom}_R(Y,M) \xrightarrow{f^*} \operatorname{Hom}_R(X,M) \longrightarrow 0$ es exacta en $Mod(\mathbb{Z})$, donde $f^* = \operatorname{Hom}_R(f,M)$ $y = g^* = \operatorname{Hom}_R(g,M)$.

Demostraci'on. $a \Rightarrow b$

Sea $0 \longrightarrow M \xrightarrow{f} X \longrightarrow Y \longrightarrow 0$ exacta en Mod(R). Como f es mono, entonces, considerando $I_M \colon M \longrightarrow M$, tenemos que existe $h \colon M \longrightarrow Y$ tal que I_M se factoriza de f, es decir, $I_M = hf$ por lo tanto $0 \longrightarrow M \xrightarrow{f} X \longrightarrow Y \longrightarrow 0$ es split-mono y por el ejercicio 54 se escinde. $b \mapsto a$

Sean X, Y R-módulos y $f: X \longrightarrow Y$ mono. Si $h \in \operatorname{Hom}_R(X, Y)$ tenemos el signiente diagrama.

el siguiente diagrama $0 \xrightarrow{\hspace*{0.5cm} X} X \xrightarrow{\hspace*{0.5cm} f \hspace*{0.5cm}} Y$

que se extiende a un pushout

 $0 \longrightarrow X \xrightarrow{f} Y$ $\downarrow h \qquad \qquad \downarrow h'$ $M \xrightarrow{f'} D$

donde $D = (X \oplus Y/W), W = \{(fa - ga) : a \in R\}, h'(b) = (0, b) + W$ y g'(c) = (c, 0) + W.

Así f' es mono. Por hipótesis existe un morfismo $\beta \colon D \longrightarrow M$ con $\beta f' = 1_M$. Definamos $g = \beta h'$ entonces $g \colon Y \longrightarrow M$ y $gf = \beta h'f = \beta f'h = h$, por lo que M es inyectivo.

 $a) \iff c$

Como $\overline{\operatorname{Hom}}_R(\cdot, M)$ es contravariante exacto izquierdo, es suficiente mostrar que M es inyectivo si y sólo si $\operatorname{Hom}_R(\cdot, M)$ convierte monomorfismos en epimorfismos:

Si $\alpha \colon A \longrightarrow B$ es mono, entonces $\alpha^* \colon \operatorname{Hom}_R(B,M) \longrightarrow \operatorname{Hom}_R(A,M)$ es epi si y sólo si para cada $f \in \operatorname{Hom}_R(A,M)$ existe $g \in \operatorname{Hom}_R(B,M)$ tal que $\alpha^*(g) = f$, y esto pasa si y sólo si para cada $f \in \operatorname{Hom}_R(A,M)$ existe $g \in \operatorname{Hom}_R(B,M)$ tal que $g\alpha = f$, es decir, M es inyectivo. \square