Séance : Regression avec variable dépendante dichotomique

Régression logistique et probit

Visseho Adjiwanou, PhD.

Plan de présentation

- Rappel
- Introduction
- Variables dépendantes dichotomiques
 - Exemple
 - Estimation:
 - Pourquoi le MCO n'est pas approprié
 - Logit ou probit?
 - Estimation
 - Interprétation
 - Tests d'hypothèses

Rappel

Rappel

Quelle méthode de régression ?

 Le type de méthode dépend du type de la variable dépendante

Variables dépendantes	Méthodes
Quantitatives continues Qualitative dichotomique	Régression linéaire Logistique, probit
Qualitative avec plus de deux catégories nominale	Logit ou probit multinomial
Qualitative avec plus de deux catégories (ordinale)	Logit ou probit ordonné
Durée	Modèle de durée ou de survie

Séance : Regression avec variable dépendante dichotomique

Introduction

Introduction

Introduction

- La variable dépendante dichotomique est un cas particulier de variable dépendante qualitative où la variable dépendante n'a que deux catégories
 - Succès / perte, malade ou non, entrée dans la sexualité ou non
- Variable dépendante qualitative

Introduction

- L'analyse de régression d'une variable qualitative binaire ou dichotomique est un problème courant en sociologie
- Ces modèles se concentrent sur les déterminants de la probabilité p d'occurrence d'un résultat plutôt que d'un autre résultat qui se produit avec une probabilité de 1-p.
- Exemples:
 - Modéliser si le premier rapport sexuel a eu lieu pendant l'adolescence ou non
 - Modéliser si une personne a utilisé une méthode de contraception moderne ou pas
 - Donnez-moi d'autres exemples

Séance : Regression avec variable dépendante dichotomique

Estimation

Estimation

Estimation

- Dans l'analyse de régression, nous voulons mesurer comment la probabilité p varie d'un individu à l'autre en fonction des régresseurs (variables indépendantes0.
- Trois principales approches d'estimation sont utilisées:
 - 1 Le modèle de probabilité linéaire
 - Souvent dans le cas d'un régresseur endogène
 - 2 Le modèle logit
 - 3 le modèle probit

$$Y_i = \beta_0 + \beta_1 X_i + \dots + \beta_k X_k + \epsilon + j$$

$$Y_i = \beta_0 + \beta_1 X_i + \dots + \beta_k X_k + \epsilon + j$$

Parce que Y ne peut prendre que deux valeurs, β_j ne peut pas être interprété comme le changement de Y étant donné une augmentation d'une unité de X_j , en maintenant tous les autres facteurs fixes: Y passe de 0 à 1, ou de 1 à 0 (ou ne change pas).

$$Y_i = \beta_0 + \beta_1 X_i + \dots + \beta_k X_k + \epsilon + j$$

- Parce que Y ne peut prendre que deux valeurs, β_j ne peut pas être interprété comme le changement de Y étant donné une augmentation d'une unité de X_j , en maintenant tous les autres facteurs fixes: Y passe de 0 à 1, ou de 1 à 0 (ou ne change pas).
- Le modèle de régression linéaire multiple avec une variable dépendante binaire est appelé le modèle de probabilité linéaire (LPM) car la probabilité de réponse est linéaire dans les paramètres β_i .

 Il est évident que la droite d'estimation n'est pas appropriée pour traiter la variable dépendante dichotomique

- Formulation
- $Y_i = \beta_0 + \beta_1 X_i + \dots + \beta_k X_k + \epsilon_i$
- $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ (simple régression linéaire)
- $Y = X\beta + \epsilon$ sous la forme matricielle
- $E(Y|X) = \beta_0 + \beta_1 X_i + \dots + \beta_k X_k$
- Que vaut E(Y|X) ?

- Si Y est discrète:
- $E(Y|X) = \sum_{k} kP(Y = k|X)$
- Y variable dichotomique prend les valeurs 0 et 1
- E(Y|X) = 0 * P(Y = 0|X) + 1 * (Y = 1|X)

$$==> E(Y|X) = P(Y = 1|X)$$

■ donc, E(Y|X) est interprété comme une probabilité

- Si Y est discrète:
- $E(Y|X) = \sum_k kP(Y = k|X)$
- Y variable dichotomique prend les valeurs 0 et 1
- E(Y|X) = 0 * P(Y = 0|X) + 1 * (Y = 1|X)

$$==> E(Y|X) = P(Y = 1|X)$$

- donc, E(Y|X) est interprété comme une probabilité
- β_j mesure le changement de la probabilité de succès lorsque X_j change, en maintenant les autres facteurs fixes

- Exemple: calcul de l'espérance quand Y est discrète
- Soit la variable aléatoire age qui a la distribution suivante:

Age	Nombre de cas
10	5
11	6
12	4

■ Quelle est l'espérance de Y (moyenne de Y)

- Exemple: calcul de l'espérance quand Y est discrète
- Soit la variable aléatoire age qui a la distribution suivante:

Age	Nombre de cas
10	5
11	6
12	4

- Quelle est l'espérance de Y (moyenne de Y)
- M = (5*10 + 11*6 + 4*12)/15

■ Vous pouvez vous rendre compte que cela est exactement:

$$\blacksquare$$
 E(Y) = 10*P(Y=10) + 11*P(Y=11) + 12*P(Y=12)

$$P(Y=10) = 5/15$$

■
$$P(Y=11) = 6/15$$

■
$$P(Y=12) = 4/15$$

$$==> E(Y) = 10*5/15 + 11*6/15 + 12*4/15$$

- Deux principaux problèmes avec le LPM:
 - 1 La probabilité prédite est supérieure à 1 ou inférieure à 0
 - 2 Les termes d'erreurs sont hétéroscédastiques

1 Les valeurs prédites sont illimitées

- Les termes d'erreurs sont hétéroscédastiques
- \bullet ϵ_i prend deux valeurs:
- $-X\beta$ si Y = 0 avec P(Y = 0) = $1 X\beta$
- $(1 X\beta)$ si Y = 1 avec $P(Y = 1) = X\beta$

Valeur de ϵ	Probabilité
$-X\beta$	$1-X\beta$
$\frac{(1-X\beta)}{}$	$X\beta$

$$E(\epsilon) = -X\beta * (1 - X\beta) + (1 - X\beta) * X\beta = 0$$

Probabilité
$1-X\beta$
$X\beta$

$$E(\epsilon) = -X\beta * (1 - X\beta) + (1 - X\beta) * X\beta = 0$$

•
$$Var(\epsilon) = (-X\beta)^2 * (1 - X\beta) + (1 - X\beta)^2 * X\beta = X\beta(1 - X\beta)$$

Valeur de ϵ	Probabilité
$-X\beta$	$1-X\beta$
$\frac{(1-X\beta)}{}$	$X\beta$

$$E(\epsilon) = -X\beta * (1 - X\beta) + (1 - X\beta) * X\beta = 0$$

•
$$Var(\epsilon) = (-X\beta)^2 * (1 - X\beta) + (1 - X\beta)^2 * X\beta = X\beta(1 - X\beta)$$

 \blacksquare $Var(\epsilon)$ n'est pas constante

- Ces deux problèmes ne sont pas insurmontables:
 - Changer la valeur des valeurs prédites
 - 0 pour toutes les valeurs négatives
 - 1 pour toutes les valeurs supérieures à 1
- Estimation en contrôlant l'hétéroscédasticité

■ Ce qu'il faut, c'est un moyen de "presser" les probabilités estimées à l'intérieur de l'intervalle 0-1

- Ce qu'il faut, c'est un moyen de "presser" les probabilités estimées à l'intérieur de l'intervalle 0-1
- $P(Y = 1) = G(Y_i = \beta_0 + \beta_1 X_i + ... + \beta_k X_k)$

- $P(Y = 1) = G(\beta_0 + \beta_1 X_i + ... + \beta_k X_k)$
- De nombreuses fonctions sont disponibles
- Les deux plus populaires sont:
 - La fonction normale cumulative qui donne le modèle probit
 - La fonction logistique qui donne le modèle logit
- Le modèle log-log complémentaire pour la distribution non symétrique
 - Pour les phénomènes rares, où la probabilité de succès est faible

- Forme latente
- $Y_i^* = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + \epsilon_i$, i allant de 1 à n
- On observe :
 - $Y_i = 1 \text{ si } Y_i^* > 0$
 - $Y_i = 0 \text{ si } Y_i^* < 0$
- $P(Y_i = 1) = P(Y_i^* > 0) = P(X\beta + \epsilon > 0)$

- Forme latente
- $Y_i^* = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + \epsilon_i$, i allant de 1 à n
- On observe :
 - $Y_i = 1 \text{ si } Y_i^* > 0$
 - $Y_i = 0 \text{ si } Y_i^* < 0$
- $P(Y_i = 1) = P(Y_i^* > 0) = P(X\beta + \epsilon > 0)$
- $P(Y_i = 1) = P(\epsilon > -X\beta)$

- Forme latente
- $Y_i^* = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + \epsilon_i$, i allant de 1 à n
- On observe :
 - $Y_i = 1 \text{ si } Y_i^* > 0$
 - $Y_i = 0 \text{ si } Y_i^* < 0$
- $P(Y_i = 1) = P(Y_i^* > 0) = P(X\beta + \epsilon > 0)$
- $P(Y_i = 1) = P(\epsilon > -X\beta)$
- $P(Y_i = 1) = P(\epsilon < X\beta) = \psi(Y_i^*)$

- Forme latente
- $Y_i^* = \beta_0 + \beta_1 X_{1i} + ... + \beta_k X_{ki} + \epsilon_i$, i allant de 1 à n
- On observe :
 - $Y_i = 1 \text{ si } Y_i^* > 0$
 - $Y_i = 0 \text{ si } Y_i^* < 0$
- $P(Y_i = 1) = P(Y_i^* > 0) = P(X\beta + \epsilon > 0)$
- $P(Y_i = 1) = P(\epsilon > -X\beta)$
- $P(Y_i = 1) = P(\epsilon < X\beta) = \psi(Y_i^*)$
- lacksquare Où ψ est la fonction de distribution cumulative

Modèle Logit / Probit : Estimation

- Les techniques du maximum de vraisemblance sont utilisées pour estimer les paramètres
- Pour chaque observation, la probabilité d'observation Y conditionnelle à X peut s'écrire:
- $P(Y_i = y_i | X) = \psi(x_i \beta)^{y_i} (1 \psi(x_i \beta))^{1 y_i}$ avec $y_i = 0$ ou 1
- Le logarithme de la vraisemblance de l'observation i peut s'écrire:
- $I_i(\beta) = y_i \log[\psi(x_i\beta)] + (1-y_i) \log[(1-\psi(x_i\beta))]$
- Et la vraisemblance de l'échantillon vaut:

$$L(\beta) = \sum I_i(\beta)$$

Logit

- La fonction de distribution cumulative est la fonction logistique:
- $\psi(t) = \frac{exp(t)}{1 + exp(t)}$
- $P(Y=1|x) = \pi_i = \frac{e^{xp(x\beta)}}{1+e^{xp(x\beta)}}$
- $\log it(\pi_i) = Log(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$

Probit

- La fonction de densité cumulée est la fonction normale:
- $G(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{1}{2}x^2} dx$
- $P(Y=1) = G(X\beta)$
- $G^{-1}[P=1] = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$

- Choix entre les deux modèles:
 - Les deux fonctions sont très similaires
 - Le choix est une question de goût en raison de la disponibilité du logiciel
 - Logit populaire dans la santé publique tandis que probit est plus populaire parmi les économistes
 - Logit facilement manipulable : popularisé par la notion de rapport de chances (odd ratio)

Séance : Regression avec variable dépendante dichotomique

_ Interprétation

Interprétation

Logit

- $Log(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$
- $d(Log(\frac{\pi_i}{1-\pi_i})/d(X_{1i}))$ donne β_1
- On peut démontrer que:

$$d(\pi_i)/d(X_1) = \beta_1 \pi_i (1 - \pi_i)$$

 β_1 n'explique pas le changement de probabilité dû à un changement d'unité dans la variable X_1

Logit

- $Log(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$
- $d(Log(\frac{n_{\pi_i}}{1-\pi_i})/d(X_{1i}))$ donne β_1
- On peut démontrer que:

$$d(\pi_i)/d(X_1) = \beta_1 \pi_i (1 - \pi_i)$$

- β_1 n'explique pas le changement de probabilité dû à un changement d'unité dans la variable X_1
- $lack d(\pi_i)/d(X_1)$ dépend de la valeur des autres variables du modèle

Logit

- $Log(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$
- $= d(Log(\frac{\pi_i}{1-\pi_i})/d(X_{1i}))$ donne β_1
- On peut démontrer que:

$$d(\pi_i)/d(X_1) = \beta_1 \pi_i (1 - \pi_i)$$

- β_1 n'explique pas le changement de probabilité dû à un changement d'unité dans la variable X_1
- $lacktriangledown d(\pi_i)/d(X_1)$ dépend de la valeur des autres variables du modèle
- Pour interpréter l'effet de X_1 , il faut aussi fixer $\pi_i(1-\pi_i)$

Probit

- $P(Y=1) = \pi_i = G(X\beta)$
- $d(\pi_i)/d(X_1) = \beta_1 G'(X\beta)$
- Plus difficile que le modèle logit

Logit : Interprétation alternative

Odd ratio ou rapport de chances

- Odd ratio ou rapport de chances

- Odd ratio ou rapport de chances
- $Log(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$

- Odd ratio ou rapport de chances
- $Log(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$

- Odd ratio ou rapport de chances
- $Log(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$

- C'est ce qu'on appelle une chance ou une côte

- Odd ratio ou rapport de chances
- $Log(\frac{\pi_i}{1-\pi_i}) = \beta_0 + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$

- C'est ce qu'on appelle une chance ou une côte
- Si vous faites varier X_1 de 0 à 1, vous pouvez calculer le rapport de cette côte.

Séance : Regression avec variable dépendante dichotomique

Autres éléments à considérer

Autres éléments à considérer

Violation des hypothèses

- Toutes violations d'hypothèses comme dans le cas d'un modèle linéaire affectent les estimations et leurs erreurs standards
 - Variables omises
 - Hétéroscédasticité
 - Multicolinéarité
 - Endogénéité...

Mesure de la "qualité d'ajustement"

- En régression linéaire, ce rôle est joué par R^2 ou pseudo $-R^2$.
- \blacksquare R^2 ou pseudo R^2 ne conviennent pas dans le cas de modèle logit ou probit

Alternative:

- Tableau calculant le nombre de valeurs Y = 1 correctement et incorrectement prédites et le nombre de valeurs Y = 0 correctement et incorrectement prédites
- Une observation est prédite comme Y=1 si la probabilité estimée dépasse une valeur fixe (souvent la moitié)
- Doit être utilisé avec prudence

- Test d'hypothèse d'un paramètre
 - t Student est utilisé dans le cas de la modélisation logit
 - la statistique z est utilisée dans le cas de la modélisation probit
- Test d'hypothèse de nombreuses paramètres

- Test d'hypothèse d'un paramètre
 - t Student est utilisé dans le cas de la modélisation logit
 - la statistique z est utilisée dans le cas de la modélisation probit
- Test d'hypothèse de nombreuses paramètres
- Test du rapport de vraisemblance (LR) (test de Fischer en cas de régression linéaire)

- Test d'hypothèse d'un paramètre
 - t Student est utilisé dans le cas de la modélisation logit
 - la statistique z est utilisée dans le cas de la modélisation probit
- Test d'hypothèse de nombreuses paramètres
- Test du rapport de vraisemblance (LR) (test de Fischer en cas de régression linéaire)
- LR = -2[L(RM) L(UM)] suit une loi de chi-deux à m dégrés de liberté

- Test d'hypothèse d'un paramètre
 - t Student est utilisé dans le cas de la modélisation logit
 - la statistique z est utilisée dans le cas de la modélisation probit
- Test d'hypothèse de nombreuses paramètres
- Test du rapport de vraisemblance (LR) (test de Fischer en cas de régression linéaire)
- LR = -2[L(RM) L(UM)] suit une loi de chi-deux à m dégrés de liberté
- Où RM et UM sont respectivement le modèle restreint et le modèle non restreint, m est le nombre de contraintes

Modèle non contraint

 Probit regression
 Number of obs LR chi2(9)
 =
 9793

 LR chi2(9)
 =
 43.87

 Prob > chi2
 =
 0.0004

 Log likelihood = -2315.8856
 Pseudo R2
 =
 0.0004

Coef. Std. Err. P>|z| [95% Conf. Interval] dead z twin .4499684 .0961671 4.68 0.000 .2614843 .6384525 female -.0207827 .039677 -0.52 0.600 -.0985482 .0569827 age15_19 .0988493 .0609413 1.62 0.105 -.0205935 .218292 age35 49 -.0973036 .0776271 -1.25 0.210 -.2494499 .0548428 parity1 .1320236 .0611795 2.16 0.031 .012114 .2519333 parity6 .0330353 .0631601 0.52 0.601 -.0907563 .1568269 bambara .0041792 .0416883 0.10 0.920 -.0775283 .0858867 primary -.0478053 .0558566 -0.86 0.392 -.1572823 .0616716 secondary -.149802 .0590777 -2.540.011 -.2655921 -.0340119 -1.544451 .0393228 -39.28 0.000 -1.621523 -1.46738 _cons

- Test de nombreuses hypothèses
- Exemple: mortalité infantile
- Modèle sans restriction: probit mort jumelle femelle age15_19 age35_49 parity1 parity6 bambara primaire secondaire
 - L(UM) = -2315,8856

■ Modèle contraint

robit regress	ion			Numbe	er of obs	; =	9793
				LR ch	ni2(7)	=	37.13
		_		Prob > chi2		=	0.0000 0.0079
og likelihood	i = -2319.253	4		Pseudo R2		=	
dead	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
twin	.4499418	.0960745	4.68	0.000	.2616	393	. 6382443
female	0218886	.0396241	-0.55	0.581	0995	504	.0557732
age15_19	.1209075	.059881	2.02	0.043	.003	8543	.2382721
age35_49	0886136	.0776209	-1.14	0.254	2407	478	.0635205
parity1	.1046958	.0600342	1.74	0.081	0129	691	.2223608
parity6	.0505236	.0628512	0.80	0.421	0726	625	.1737097
bambara	.008781	.0416145	0.21	0.833	0727	818	.0903439
cons	-1.579112	.0366058	-43.14	0.000	-1.650	1858	-1.507366

- Modèle restreint: Modèle restreint: probit mort jumeau femelle age15_19 age35_49 parity1 parity6 bambara
 - L(RM) = -2319,2534
- m = 2

■ LR =
$$-2*(-2319,2534 + 2315,8856) = 6,74$$

- LR = -2*(-2319,2534 + 2315,8856) = 6,74
- Chi-deux lu = 5,99 pour un niveau de signification de 5%

- LR = -2*(-2319,2534 + 2315,8856) = 6,74
- Chi-deux lu = 5,99 pour un niveau de signification de 5%
- Conclusion: Nous rejetons l'hypothèse nulle. L'éducation a un effet significatif sur la mortalité infantile.

Extension

- La variable dépendante comprend plus de deux catégories:
 - Probit / logit ordonné
 - Il existe un classement clair entre les modalités
 - Ex. Quintile de richesse
- Logit / probit multinomial
 - Pas d'ordre, mais groupe distinct
 - Ex. Statut de travail (non, formel, informel)