MANUAL **INSULPANEL** 4 DE 7

INSULPANEL ASESORÍA TÉCNICA INSULPANEL MURO INSULPANEL TECHO INSULFOIL INSTALACIÓN CUARTOS FRÍOS

Insulpanel[®] | TECHO

CARACTERÍSTICAS DE DISEÑO

Insulpanel® Techo: (Three Deck) es el panel compuesto por una cara superior de lámina tipo deck, una cara inferior de lámina con perfil Mini Ribs Mesa o Sin Perfil, con la rugosidad lisa o embozada.

Por su excelente unión entre paneles de unión de traslape (creando mayor hermeticidad) y por su resistencia estructural, Insulpanel Techo es el sistema ideal para la construcción en todo tipo de cubiertas.

Insulpanel Techo

A) Dimensiones

Insulpanel® Techo es rolado con un ancho efectivo igual a 1.00 m (aproximadamente 40 pulgadas), se puede fabricar en espesores que van desde 2" hasta 10" dependiendo de las necesidades de cada proyecto.

B) Uniones

1. Unión de Paneles. Insulpanel® Techo cuenta con una cuarta cresta sin aislamiento, utilizada para realizar la unión entre paneles.

2. Traslapes: En obras de grandes dimensiones es necesario realizar traslapes en forma transversal, para ello se debe de consultar el plano de modulación, verificando el suministro de ese panel y verificando la longitud en campo.

El traslape se realiza cuando los claros a cubrir superan los 12 m de longitud, cabe mencionar que éste trabajo se debe ejecutar en campo.

Primeramente, se coloca el panel que deberá quedar sobre la parte más baja de la estructura, esta zona comúnmente es conocida como "aguas abajo". El siguiente paso es colocar el panel que utilizaremos para cubrir lo que resta del claro (aguas arriba); antes de la colocación de esta pieza es es necesario llevar a cabo las siguientes indicaciones:

1. En la cara interior de uno de los extremos del panel medir de 20 a 30 cm (confirmar medida en la modulación del departamento técnico) y marcar con una línea a lo ancho de la pieza.

Insulpanel® TECHO

- 2. Hacer un corte en la lámina sobre la línea marcada.
- 3. Retirar la lámina así como el Poliestireno que define el espesor del panel, incluyendo el que se encuentra dentro de las crestas.
- 4. Remover el adhesivo hasta dejar libre de cualquier impureza la zona de traslape (20 -30 cm).

La pieza previamente tratada, embonará perfectamente sobre las crestas del panel colocado "aguas abajo"; para asegurar la hermeticidad y la correcta unión de estos elementos es indispensable tomar en cuenta el siguiente detalle.

Detalle de Traslape								
Α	Insulpanel® Techo aguas arriba							
В	2 pijas autotaladrantes con un diámetro de ¼" y de una longitud de 3" más larga que el espesor del Insulpanel en cada polín.							
C	Pija autotaladrante No. 14 x 7/8" @ 10 cm							
D	Box strut según cálculo estructural							
E	Cinta de butilo de 1/8" x 1-5/8" corrida							
F	1" para colocar cinta de butilo							
G	Insulpanel® Techo aguas abajo							

C) Cargas Máximas

1. TABLAS DE CAPACIDAD MÁXIMA DE CARGA DEL INSULPANEL® TECHO

	Carga Máxima de Insulpanel® Techo																				
Apoyo Simple (kg/m²)									Apoyo Continuo (kg/m²)												
Espesor (in)							Espesor (in)														
CLARO (m)							CLARO (m)	2"	2.5"	3"	4"	5"	6"	7"	8"	9"	10"				
1.22	429	487	-	-	-	-	-	-	-	-	1.22	718	-	-	-	-	-	-	-	-	-
1.50	290	337	384	478	-	-	-	-	-	-	1.50	459	511	-	-	-	-	-	-	-	-
2.00	171	205	240	310	380	451	-	-	-	-	2.00	257	295	333	409	485	-	-	-	-	-
2.50	112	139	166	220	276	332	388	445	501	-	2.50	167	197	226	286	345	405	464	-	-	-
3.00	<i>7</i> 8	99	120	164	210	255	302	348	395	442	3.00	118	142	166	214	262	310	359	408	455	504
3.50	57	73	90	126	164	202	241	280	319	359	3.50	88	108	127	167	207	247	288	330	370	410
4.00	42	55	69	99	130	163	196	229	263	297	4.00	68	84	100	134	168	203	237	273	308	343
4.50	32	43	54	79	105	133	161	190	219	249	4.50	53	67	81	110	140	169	200	230	261	291

Condiciones en el cálculo:

- 1.- Esfuerzo del acero a la fluencia = $2600 \text{ kg/cm}^2 (37 \text{ ksi})$
- 2.- Deflexión máxima permisible de L/240.
- 3.- Análisis basado en el criterio de esfuerzos permisibles de acuerdo con "Design of Foam-Filled Structures" de John A. Hartsock.
- *(-) Capacidades de carga mayores a 500 kg/m².

D) Propiedades Térmicas y Peso Propio

Propiedades Térmicas del Insulpanel ® Techo									
Espesor in (cm)	Valor R (ft²-°F-h/Btu)	Peso (kg/m²)							
2" (5.08)	7.69	10.05							
3" (7.62)	11.54	10.46							
4" (10.16)	15.38	10.87							
5" (12.70)	19.23	11.27							
6" (15.24)	23.08	11.68							
7" (17.78)	26.92	12.08							
8" (20.32)	30.77	12.49							
9" (22.86)	34.62	12.90							
10" (25.40)	38.46	13.30							

Notas: Para el cálculo de los valores de resistencia térmica se consideró un valor K=0.26 Btu•in/(h•ft²•°F) Referencia ASHRAE Fundamentals 2006

Tabla del Peso Propio del Insulpanel® Techo							
Espesor (in)	Peso Insulpanel® Techo (kg/m²)						
2"	10.05						
3″	10.46						
4"	10.87						
5″	11.27						
6"	11.68						
7"	12.08						
8″	12.49						
9″	12.90						
10"	13.30						

Insulpanel® TECHO

E) Análisis por viento

A continuación se ejemplifica un cálculo tipo.

Análisis de acciones producidas por el viento

Análisis de acuerdo con	el manua	al d	le obras civiles, diseño por viento de la C.F.E., 1993					
Lugar donde se desplantará la edi Hermosillo, Sonora	ficación		Datos generales de la construcción Ancho = 17.7 m Altura Cumbrera = 7.00 m Largo = 46.3 m Altura de alero = 6.48 m					
			lasificación de la estructura					
4.3 Clasificación de las estructuras según su importancia	Grupo	В	Estructura para la que se recomienda un grado de seguridad moderado. En este grupo se encuentran aquellas que representan daños materiales de magnitud intermedia.					
4.4 Clasificación de las estructuras según su respuesta ante la acción del viento	Tipo	1	Estructura poco sensible a las ráfagas y a los efectos dinámicos del viento. Abarcan todas aquellas en la que la relación de aspecto \(\) es menor o igual a cinco, y cuyo período fundamental de vibración es menor o igual a 1 segundo.					
	Detern	nin	ación de la velocidad de diseño V _D					
4.6.1 a Categoría del terreno	Tipo	2	Terreno plano u ondulado con pocas obstrucciones, ejemplos: campos de cultivo o granjas con pocas obstrucciones. Las obstrucciones tienen alturas de 1.5 a 10 m, en una longitud mínima de 1500 m.					
4.6.1 b Clase de la estructura según su tamaño	Clase	A	Todo elemento de recubrimiento de fachadas, de ventanearías y de techumbr y sus respectivos sujetadores. Todo elemento estructural aislado, expuesto a acción del viento. Asimismo todas las construcciones cuya menor dimensión, sea horizontal o vetical, sea menor a 20 m.					
4.6.2 Velocidad regional V_R	Velocidad regional del viento para un período de retorno igual a 50 años = 151 km/							
4.6.3 Velocidad de exposición F_{α}								
4.6.3.1 Factor de tamaño F _C	$F_{C} = 1.00$	0	Es el que toma en cuenta el tiempo en que la ráfaga de viento actúa de manera efectiva sobre una construcción de dimensiones dadas.					
4.6.3.2 Factor de rugosidad y altura F _{rz}	$F_{rz} = 1.00$	Factor que establece la variación de la velocidad del viento con la altura Z. Se obtiene de acuerdo a las siguientes expresiones:						
$F_{rz} = 1.56 \left[\frac{10}{\delta} \right]^{\alpha}$ Si Z es \leq o igual a 10			Altura gradiente (δ): 315.0 m Exponente de la variación de la velocidad (a): 0.128 $F_a = F_c F_{rz}$: 1.0031					
$F_{rz} = 1.56 \left[\frac{Z}{\delta} \right]^{\alpha}$ Si $10 < Z < \delta$			<u> </u>					
$F_{rz} = 1.56$ Si $Z \ge \delta$								
4.6.4 Factor de topografía \mathbf{F}_{T})	Sitio normal: Terreno prácticamente plano, campo abierto, ausencia de cambios topográficos importantes, con pendientes menores que 5%.					
4.7 Presión dinámica base								
Temperatura promedio anual de la localidad τ		=	25.20 °C Altitud de la localidad (msnm) = 237 msnm $ \Omega = 741.04 \text{ mm de Hg} $					
Factor de corrección por temperatura y por altura con respecto al nivel del mar. $G = \frac{0.3}{27}$		92 Ώ 8 + τ	0 = 0.974					

Presión dinámica de base $q_z = 0.0048 \text{ GV}_D^2 = 107.30 \text{ kg/m}^2$

Determinación de presiones

4.8 Análisis estático El método estático solo puede utilizarse para diseñar elementos estructurales poco sensibles a la acción turbulenta del viento. Relación H/D < 5 0.3661 < 5 *El análisis es estático* Presiones exteriores $P_e = C_{pe} K_A K_L q_z$

Velocidad de diseño $V_D = F_T F_\alpha V_R = 151.5 \text{ km/h}$

Determinación de la dimensión "a"

0.2 del ancho 3.54 m 0.2 del largo 9.26 m

Si $\Theta = 0^{\circ} y \gamma < 10^{\circ}$ de 0 a H -0.9 de H a 2H -0.5 de 2H a 3H -0.3 mayor a 3H -0.2

Coeficiente de presión exterior C_{pe} para zonas de techos

Nota: Las presiones negativas denotan succión sobre los recubrimientos. Presión máxima normal a las generatrices (a los marcos principales). Debido a la particularidad de cada proyecto, deberá de calcularse la presión interior de acuerdo con el manual de vientos de la C.F.E.

Debido a que el área tributaria de cada uno de los recubrimientos es menor a 10 m (Ancho del Insulpanel Techo 1.00 m y la separación entre polines es menor de 10 m) El factor de reducción por área K_A es igual a 1.00 acción del viento sobre recubrimientos de cubierta.

Distancia al muro barlovento	Distancia a cualquier borde del techo (m)	Сре	K _A	KL	Pe (kg/m²)	
de 0 a H	0 - a/2	-0.9	1.00	2.00	-193.0943	∞01
	a/2 - a	-0.9	1.00	1.50	-144.8207	∞02
	>a	-0.9	1.00	1.00	-96.54714	∞03
de Ha2H	0 - a/2	-0.5	1.00	2.00	-107.2746	∞04
	a/2 - a	-0.5	1.00	1.50	-80.45595	∞05
	>a	-0.5	1.00	1.00	-53.6373	∞06
de 2H a 3H	0 - a/2	-0.3	1.00	2.00	-64.36476	∞07
	a/2 - a	-0.3	1.00	1.50	-48.27357	∞08
	>a	-0.3	1.00	1.00	-32.18238	∞09
> a 3H	0 - a/2	-0.2	1.00	2.00	-42.90984	^ω 10
	a/2 - a	-0.2	1.00	1.50	-32.18238	^ω 11
	>a	-0.2	1.00	1.00	-21.45492	^ω 12

La presión máxima sobre el Insulpanel® Techo es de –193.0943 kg/m² (succión). Siguiendo con la tabla de capacidad máxima de carga se llega a la conclusión de que el Insulpanel requerido para esta situación es el de 2.5" con lámina calibre 26 colocado a una distancia no mayor a 2.50 m, es necesario contar con información referente a la resistencia térmica y a la temperatura de operación de la edificación para determinar si el espesor es el óptimo, de no ser así, se deberá de manejar al espesor como una variable ya definida y determinar la separación máxima de la polinería o estructura de soporte.

Datos para el análisis de viento de algunas ciudades representativas de la República Mexicana

Localidad	Velocidades Regionales	Velocidades Regionales	Velocidades Regionales	ASNM	Temperatura	
Localidad	Tr 50 años (km/h)	Tr 100 años (km/h)	Tr 200 años (km/h)	(m)	Media Anual (°C)	
Acapulco, Gro.	162	172	181	28	27.5	
Cd. Juárez, Chih.	144	152	158	1144	17.1	
Cd. Obregón, Son.	169	177	186	100	26.1	
Colima, Col.	128	138	147	494	24.8	
Culiacán, Sin.	118	128	140	84	24.9	
Chihuahua, Chih.	136	142	147	1423	18.7	
Durango, Dgo.	117	122	126	1889	17.5	
Ensenada, B.C.	148	170	190	13	16.7	
Guadalajara, Jal.	164	170	176	1589	19.1	
Guanajuato, Gto.	140	144	148	2050	17.9	
Guaymas, Son.	160	174	190	44	24.9	
Hermosillo, Son.	151	164	179	237	25.2	
La Paz, B.C.S.	171	182	200	10	24	
Manzanillo, Col.	158	177	195	8	26.6	
Mazatlán, Sin.	213	225	240	8	24.1	
Mexicali, B.C.	149	170	190	1	22.2	
CDMX	115	120	129	2240	23.4	
Monterrey, N.L.	143	151	158	538	22.1	
Morelia, Mich.	92	97	102	1941	17.6	
Orizaba, Ver.	153	163	172	1284	19	
Puebla, Pue.	106	112	117	2150	17.3	
Puerto Cortés, B.C.	155	164	172	5	21.4	
Puerto Vallarta, Jal.	146	159	171	2	26.2	
Querétaro, Qro.	118	124	131	1842	18.7	
Saltillo, Coah.	124	133	142	1609	17.7	
San Luis Potosí, S.L.P.	141	147	153	1877	17.9	
Tampico, Tamps.	160	177	193	12	24.3	
Tepic, Nay.	102	108	115	915	26.2	
Torreón, Coah.	168	180	193	1013	20.5	
Veracruz, Ver.	175	185	194	16	25.2	

FANOSA* proporciona la siguiente información como respaldo para la aplicación de los productos, por lo que no se le podrá hacer responsable del mal uso que se le pudiera dar. Asimismo, se recomienda la asesoría a su propio cargo, cuenta y riesgo, de un especialista que verifique la aplicabilidad de la misma. FANOSA* bajo ninguna circunstancia será responsable por la instalación y/o accesorios utilizados para la instalación de(l) el (los) producto(s) comercializados. FANOSA* expresamente renuncia a cualquier garantía, expresa o implícita. Al hacer disponible esta información, a cualquier garantía, expresa o implícita. Al hacer disponible esta información no está prestando servicios profesionales y no asume deberes o responsabilidades con respecto a persona alguna que haga uso de dicha información. De igual modo, FANOSA* no está responsable por alguna reclamación, demanda, lesión, pérdida, gasto, costo, honorarios legales o responsabilidad de algún tipo, que en alguna forma surja de o esté conectada con el uso de la información contenida en esta publicación; ya sea, o no, que tal reclamación, demanda, lesión, pérdida, gasto, costo, honorarios legales o responsabilidad resulte directa o indirectamente de alguna acción u omisión de FANOSA*. Cualquier parte que utilice la información contenida en este manual asume toda la responsabilidad que surja de tal uso. Puesto que existen riesgos asociados con el manejo, instalación o uso del acero y sus accesorios, recomendamos que las partes involucradas en el manejo, instalación o uso revisen todas las hojas de seguridad aplicables del material de fabricante, normas y reglamentos de la Secretaría del Trabajo y Previsión Social y otras agencias de Gobierno que tengas jurisdicción sobre tal manejo, instalación o uso y otras publicaciones relevantes de prácticas de construcción.

Insulpanel®

www.**fanosa**.com

01 800 2**FANOSA**