Introduction to Probability

Random Experiment

- Any well-defined procedure that produces an observable outcome that could not be perfectly predicted in advance
 - Tossing a coin
 - Rolling a dice twice
 - Goals scored in a soccer match
 - Rainfall today
- Outcome: result of a random experiment
- Random variable: outcome mapped to a numerical value

Sample Space

• Set of all possible outcomes – Ω

- Elements of the set must be
 - Mutually exclusive
 - Collectively exhaustive

Sample Space: Two rolls of a 4 faced die

Probability Events

- Event: a subset of the sample space
- Probability of an event: Value P(A) assigned to an event A
- Event space (Σ) : collection of all possible events
- σ -algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair (X , Σ) is called a measurable space.
- (Ω , Σ , P) is a called probability space, with sample space Ω , event space Σ and probability measure P s.t. satisfying the axioms

Axioms of Probability

- Nonnegativity: $P(A) \ge 0$
- Normalization: $P(\Omega) = 1$
- (Finite) additivity: (to be strengthened later) If $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

Simple consequences (Theorems):

Axioms

$$P(A) \geq 0$$

$$P(\Omega) = 1$$

For disjoint events:

$$P(A \cup B) = P(A) + P(B)$$

Consequences

$$P(A) \leq 1$$

$$P(\emptyset) = 0$$

$$P(A) + P(A^c) = 1$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

More consequences (Theorems):

- If $A \subset B$, then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $P(A \cup B) \le P(A) + P(B)$

Probability Models

Rules/mechanism for assigning probability values to events

- Should be faithful to real life phenomenon
- Should produce valid probability values

Discrete Uniform Law

- Assume Ω consists of n equally likely elements
- Assume A consists of k elements

$$P(A) =$$

Continuous Uniform Law

- (x,y) such that $0 \le x,y \le 1$
- Uniform probability law: Probability = Area

$$P(\{(x,y) \mid x+y \le 1/2\}) =$$

$$P({(0.5,0.3)}) =$$

Probability Calculation Steps

- Specify the sample space
- Specify a probability model
- Identify an event of interest
- Calculate ...

Building Probability Models

Depends on interpretation of probability values

- Frequentist: (Theorem: "Frequency" of event A "is" P(A))
 - Are probabilities frequencies?
 - P(coin toss yields heads) = 1/2
 - P(the president of ... will be reelected) = 0.7
- Probabilities are often interpreted as:
 - Description of beliefs/knowledge

Building Probability Model: Statistical Inference/Learning

Model Inference vs Estimating a Variable

$$X = aS + W$$

- Model building:
 - know "signal" S, observe X
 - infer a
- Variable estimation:
 - know a, observe X
 - infer S

Conditioning

• Use new information to revise a model (12 equally likely outcomes)

$$P(A) = \frac{5}{12}$$
 $P(B) = \frac{6}{12}$

$$P(A \mid B) = P(B \mid B) =$$

Conditional Probability

• P(A|B) = "probability of A, given that B occurred"

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

defined only when P(B) > 0

Example: 2 rolls of a 4 sided die

• Let B be the event: min(X, Y) = 2Let M = max(X, Y)

$$P(M = 1 \mid B) =$$

$$P(M = 3 | B) =$$

Conditional Probabilities Share Property of Original Probabilities

$$P(A \mid B) \geq 0$$

assuming P(B) > 0

$$P(\Omega \mid B) =$$

$$P(B \mid B) =$$

If
$$A \cap C = \emptyset$$
, then $P(A \cup C \mid B) = P(A \mid B) + P(C \mid B)$

Model Based on Conditional Probability

Event A: Airplane is flying above

Event B: Something registers on radar screen

• $P(A \cap B) =$

 \bullet P(B) =

 \bullet P(A | B) =

Multiplication Rule

The multiplication rule

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(B) P(A \mid B)$$
$$= P(A) P(B \mid A)$$

$$P(A^{c} \cap B \cap C^{c}) =$$

Total Probability Theorem

- Partition of sample space into A_1, A_2, A_3
- Have $P(A_i)$, for every i
- Have $P(B | A_i)$, for every i

$$P(B) =$$

$$\mathbf{P}(B) = \sum_{i} \mathbf{P}(A_i) \mathbf{P}(B \mid A_i)$$

Bayes Rule

- Partition of sample space into A_1, A_2, A_3
- Have $P(A_i)$, for every i initial "beliefs"
- Have $P(B | A_i)$, for every i

revised "beliefs," given that B occurred:

$$P(A_i \mid B) =$$

$$\mathbf{P}(A_i \mid B) = \frac{\mathbf{P}(A_i)\mathbf{P}(B \mid A_i)}{\sum_j \mathbf{P}(A_j)\mathbf{P}(B \mid A_j)}$$

Bayesian Inference

- initial beliefs $P(A_i)$ on possible causes of an observed event B
- model of the world under each A_i : $P(B \mid A_i)$

$$A_i \xrightarrow{\mathsf{model}} B$$

$$P(B \mid A_i)$$

draw conclusions about causes

$$\frac{B}{P(A_i \mid B)} \xrightarrow{A_i}$$

Joint Probability

- For events A and B, **joint probability** Pr(AB) stands for the probability that both events happen.
- Example: A={HH}, B={HT, TH}, what is the joint probability Pr(AB)?

Independence

• Two events *A and B are independent* in case

$$Pr(AB) = Pr(A)Pr(B)$$

• A set of events {A_i} is independent in case

$$\Pr(\bigcap_{i} A_{i}) = \prod_{i} \Pr(A_{i})$$

Random Variable and Distribution

- A random variable X is a numerical outcome of a random experiment
- The distribution of a random variable is the collection of possible outcomes along with their probabilities:
 - Discrete case:
 - Continuous case:
 - Probability density function $\Pr(X = x) = p_{\theta}(x)$ Probability mass function $\Pr(a \le X \le b) = \int_a^b p_{\theta}(x) dx$
 - Probability mass function

$$\Pr(a \le X \le b) = \int_{a}^{b} p_{\theta}(x) dx$$

Random Variable: Example

- Let S be the set of all sequences of three rolls of a die. Let X be the sum of the number of dots on the three rolls.
- What are the possible values for X?
- Pr(X = 5) = ?, Pr(X = 10) = ?

Expectation

• A random variable X~Pr(X=x). Then, its expectation is

$$E[X] = \sum_{x} x \Pr(X = x)$$

• In an empirical sample, x1, x2,..., xN,

$$E[X] = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Continuous case: $E[X] = \int_{-\infty}^{\infty} x p_{\theta}(x) dx$
- Expectation of sum of random variables

$$E[X_1 + X_2] = E[X_1] + E[X_2]$$

Variance

The variance of a random variable X is the expectation of (X-E[x])²:

$$Var(X) = E((X - E[X])^{2})$$

$$= E(X^{2} + E[X]^{2} - 2XE[X])$$

$$= E(X^{2} - E[X]^{2})$$

$$= E[X^{2}] - E[X]^{2}$$

Bernoulli Distribution

- The outcome of an experiment can either be success (i.e., 1) and failure (i.e., 0).
- Pr(X=1) = p, Pr(X=0) = 1-p, or

•
$$E[X] = p$$
, $Var(X) = p(1-p)$

Binomial Distribution

- n draws of a Bernoulli distribution
 - $X_i \sim Bernoulli(p), X = \sum_{i=1}^n X_i, X \sim Bin(p, n)$
- Random variable X stands for the number of times that experiments are successful.

$$Pr(X = x) = p_{\theta}(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & x = 1, 2, ..., n \\ 0 & \text{otherwise} \end{cases}$$

• E[X] = np, Var(X) = np(1-p)

Plots of Binomial Distribution

Poisson Distribution

- Coming from Binomial distribution
 - Fix the expectation λ =np
 - Let the number of trials $n \rightarrow \infty$

A Binomial distribution will become a Poisson distribution

$$\Pr(X = x) = p_{\theta}(x) = \begin{cases} \frac{\lambda^{x}}{x!} e^{-\lambda} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$
• E[X] = \lambda, \quad Var(X) = \lambda

Plots of Poisson Distribution

Normal (Gaussian) Distribution

• X~N(μ,σ)

$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

$$\Pr(a \le X \le b) = \int_a^b p_{\theta}(x) dx = \int_a^b \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$

- $E[X] = \mu$, $Var(X) = \sigma^2$
- If $X_1 \sim N(\mu_1, \sigma_1)$ and $X_2 \sim N(\mu_2, \sigma_2)$, $X = X_1 + X_2$?