PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

 $\begin{array}{ccc} \textit{09 May 2025} & \textit{120 minutes} \\ \textit{This paper contains SIX questions worth a total of 175 points.} \\ \textit{Final examination} \end{array}$

Calculators, textbooks, notes and cribsheets are **not** permitted in this examination.

Do not turn over until instructed.

- 1 (5+5+5+5+5=30) Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".
 - (a) The cardinality of the Galois group of any finite extension K L does not exceed [L : K].
 - (b) Every finite normal extension is Galois.
 - (c) It is possible to construct by ruler and compass the number $2^{1/4} + 2^{1/3}$.
 - (d) Any subgroup of a soluble group is soluble.
 - (e) Any cyclotomic polynomial has integer coefficients.
 - (f) If a group acts transitively on the roots $f \in K[t]$, then f is irreducible over K.
- **2** (5+5+10+15=35) *a*) Formulate the Tower Law.
 - b) Is it true that the degree of the product of two algebraic $\alpha, \beta \in \mathbb{R}$ does not exceed the product of its degrees? Justify your answer.
 - c) Prove that $\sqrt{7}$ does not belong to $\mathbb{Q}(3^{1/3}, \varepsilon_3)$, where ε_3 is a primitive root of unity of order 3.
 - d) Compute algebraic conjugates of $i3^{1/6}$ over \mathbb{Q} , then over $\mathbb{Q}(i\sqrt{3})$ and, finally, over $\mathbb{Q}(3^{1/3})$.
- 3 (5+10+10+15=40) a) Let L:K be an extension, $G=\operatorname{Aut}_K L$ and H be a subgroup of G. Define the fixed field of H.
 - b) Formulate the Fundamental Theorem of Galois theory.
 - c) Let L be the splitting field of $t^3 a \in \mathbb{Q}$, where a is a positive integer and a is not a cube. Find all of the subfields of L.
 - d) Draw the lattice of subfields and corresponding lattice of subgroups of $\operatorname{Gal}_{\mathbb{Q}}(L)$.
- 4 (5+5+5+5+15=35) a) Define what it means for a polynomial $f \in K[t]$ to be solvable by radicals.
 - b) Formulate the criterion for solvability by radicals of $f \in K[t]$ in terms of $Gal_K(f)$.
 - c) Is it true that any equation f(t) = 0, where $f \in \mathbb{Q}[t]$ is an irreducible polynomial of degree at least five, is not solvable by radicals?
 - d) Is the polynomial $t^6 10t^2 + 1$ solvable by radicals over \mathbb{Q} ?
 - e) Is the polynomial $t^5 9t^4 + 3$ solvable by radicals over \mathbb{Q} ?
- **5** (5+5=10) a) Define what it means for a group **G** to be soluble.
 - b) Is $Gal_{\mathbb{Q}}(t^n a)$ soluble?
- **6** (5+20=25) a) Let $\mathbb{F}_p \subseteq K$ be a field, $\operatorname{char}(K) = p > 0$. Define the Frobenius automorphism Φ and show that Φ is a linear map over \mathbb{F}_p .
 - b) Find $Gal_{\mathbb{F}_2(t^3)}(\mathbb{F}_4(t))$.