Travaux pratiques

Détection de cycles

À partir d'un ensemble *fini* E, d'une fonction $f : E \to E$ et d'un élément $x_0 \in E$ on appelle *suite des itérés de* x_0 la suite des valeurs $(x_n)_{n \in \mathbb{N}}$ définie par la relation de récurrence : $x_{n+1} = f(x_n)$.

Puisque E est supposé fini, cette suite va atteindre deux fois la même valeur : il existe i < j tel que $x_i = x_j$. Une fois que cette *collision* est obtenue, la suite des valeurs va répéter le cycle des valeurs de x_i à x_{j-1} . Nous allons nous intéresser au problème de la recherche de ce cycle, autrement dit déterminer les valeurs $\mu = i$ de la *pré-période* et $\lambda = j - i$ de la *période* du cycle minimal.

Par exemple, pour $f: x \mapsto (x^2 + 92) \mod 32069$ et $x_0 = 33$ on trouve $\lambda = 8$ et $\mu = 313$. Ces valeurs pourront être utilisées pour tester les fonctions que vous écrirez.

Question 1.

a) Sachant que x_n est égal à x_0 si n = 0 et à $f(x_{n-1})$ sinon, rédiger une fonction **itere** qui prend en argument la fonction f, la valeur de x_0 et un entier $n \in \mathbb{N}$ et qui retourne la valeur de x_n .

```
itere : ('a -> 'a) -> 'a -> int -> 'a
```

b) On peut aussi remarquer que si $(\tilde{x}_n)_{n \in \mathbb{N}}$ est la suite des itérés de $f(x_0)$ alors $x_n = \tilde{x}_{n-1}$. Exploiter cette remarque pour rédiger une seconde version de la fonction **itere**.

Question 2. L'algorithme de Floyd

On considère la suite $(y_n)_{n\in\mathbb{N}}$ définie par $y_0=x_0$ et $y_{n+1}=f(f(y_n))$, ainsi que le plus petit entier i>0 vérifiant $x_i=y_i$.

a) Rédiger une fonction floyd1 qui prend en arguments la fonction f et la valeur x_0 et qui retourne la valeur de x_i .

Modifier cette fonction pour obtenir une fonction floyd2 qui retourne cette fois la valeur de l'entier i.

Expliquer pourquoi ces algorithmes se terminent et pourquoi la valeur de i correspond au plus petit multiple de λ qui soit supérieur ou égal à μ .

b) Quel entier obtient-on si on applique la fonction floyd2 à f et à x_i ? En déduire une fonction periode qui retourne la période λ de la suite des itérés de x_0 .

```
periode : ('a -> 'a) -> 'a -> int
```

c) Observer enfin que $x_{i+\mu} = x_{\mu}$ et en déduire une fonction **pre_periode** qui calcule la pré-periode de la suite des itérés de x_0 .

```
pre_periode : ('a -> 'a) -> 'a -> int
```

http://info-llg.fr/ page 1

En guise de complément (ou pour les plus rapides)

Question 3. Algorithme de Brent

L'algorithme de Floyd permet de trouver une valeur de x_i dans le cycle et ensuite les valeurs de la période et de la pré-période en considérant la suite d'indices (i,2i) et en testant l'égalité $x_i=x_{2i}$. L'algorithme de Brent utilise la suite (i,j) et teste l'égalité $x_i=x_j$ en partant de (i,j)=(0,1) et en poursuivant avec :

$$\begin{cases} (i, j+1) & \text{si } j \leq 2i \\ (j, j+1) & \text{si } j = 2i+1 \end{cases}$$

Rédiger une fonction **brent** qui prend en arguments la fonction f et la valeur de x_0 et qui retourne le couple (i,j) trouvé par cet algorithme.

```
brent : ('a -> 'a) -> 'a -> int * int
```

Quel(s) avantage(s) voyez-vous à utiliser l'algorithme de Brent plutôt que celui de Floyd?