Lưu ý chung

- -Quá trình làm bài phải trình bày đầy đủ các bước biến đổi ma trận.
- Được phép ghi kết quả tính định thức, tìm ma trận nghịch đảo.

1. Chương 3

1.1. Tổ hợp tuyến tính-tập sinh, độc lập tuyến tính-cơ sở. .

- 1) Trong \mathbb{R}^4 cho các vecto $u_1, u_2, u_3, u_4, u = (a, b, c, d)$. Tìm điều kiện để u là tổ hợp tuyến tính của u_1, u_2, u_3, u_4 .
- a) $u_1 = (1, 2, 3, 6), u_2 = (3, -1, 2, 4), u_3 = (-3, 8, 5, 10), u_4 = (-1, 5, 4, 8).$
- b) $u_1 = (1, 1, 2, 0), u_2 = (2, 1, 1, 2), u_3 = (3, -1, 1, 1), u_4 = (0, 3, 2, 1).$
- c) $u_1 = (1, 1, 1, 1), u_2 = (2, 3, 3, 2), u_3 = (1, 0, 0, 1), u_4 = (1, 4, 4, 1).$
- d) $u_1 = (2, 3, -2, -3), u_2 = (2, 1, -3, 0), u_3 = (1, 1, -3, 1), u_4 = (5, 5, -8)$

d)
$$u_1 = (2, 3, -2, -3), u_2 = (2, 1, -3, 0), u_3 = (1, 1, -3, 1), u_4 = (5, 5, -8, -2).$$

Hướng dẫn a) Lập ma trận $A = (u_1^T u_2^T u_3^T u_4^T | u^T) = \begin{pmatrix} 1 & 3 & -3 & -1 & | & a \\ 2 & -1 & 8 & 5 & | & b \\ 3 & 2 & 5 & 4 & | & c \\ 6 & 4 & 10 & 8 & | & d \end{pmatrix}$

$$\sim \begin{pmatrix} 1 & 3 & -3 & -1 & | & a \\ 0 & -7 & 14 & 7 & | & b - 2a \\ 0 & 0 & 0 & | & c - a - b \\ 0 & 0 & 0 & | & d - 2a - 2b \end{pmatrix}. \text{ Diều kiện để } u \text{ là tổ hợp tuyến}$$

$$\sim \begin{pmatrix} 1 & 3 & -3 & -1 & | & a \\ 0 & -7 & 14 & 7 & | & b-2a \\ 0 & 0 & 0 & | & c-a-b \\ 0 & 0 & 0 & | & d-2a-2b \end{pmatrix}. \text{ Diều kiện để } u \text{ là tổ hợp tuyến}$$

tính của u_1, u_2, u_3, u_4 là hệ phương trình tương ứng có nghiệm. Vây điều kiên cần tìm là c - a - b = d - 2a - 2b = 0.

- b)c + d a b = 0
- c)a d = b c = 0
- d)2a + 2b + 2c + 2d = 0

Lưu ý:- Có thể có nhiều kết quả khác nhau, tùy vào kết quả của việc biến đổi ma trận thành bậc thang.

- 2) Trong \mathbb{R}^3 cho tập con S, kiểm chứng S có là tập sinh của \mathbb{R}^3 .
- a) $S = \{u_1 = (1, 3, 2), u_2 = (1, 2, 1), u_3 = (-2, 3, 5), u_4 = (2, 1, -1)\}$
- b) $S = \{u_1 = (2, 1, 1), u_2 = (1, 1, 0), u_3 = (3, -1, 4), u_4 = (2, 2, 3)\}$
- c) $S = \{u_1 = (1, 2, 3), u_2 = (2, 1, 3), u_3 = (2, 0, 1)\}$
- d) $S = \{u_1 = (1, 1, 3), u_2 = (2, 1, 4), u_3 = (0, 1, 2), u_4 = (1, 0, 1)\}$

Hướng dẫn a) Cho vecto $u=(a,b,c)\in\mathbb{R}^3$, lập ma trận $(u_1^Tu_2^Tu_3^Tu_4^T|u^T)=$

$$\begin{pmatrix} 1 & 1 & -2 & 2 & | & a \\ 3 & 2 & 3 & 1 & | & b \\ 2 & 1 & 5 & -1 & | & c \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2 & 2 & | & a \\ 0 & -1 & 9 & -5 & | & b - 3a \\ 0 & 0 & 0 & | & c - b - a \end{pmatrix}$$

Với a = b = 0, c = 1 ta có $c - a - b = 1 \neq 0$ nên hệ phương trình tương ứng vô nghiệm, khi đó u không là tổ hợp tuyến tính của S, vây S không là tập sinh của \mathbb{R}^3 .

1

b) Tương tự a)
$$(u_1^T u_2^T u_3^T u_4^T | u^T) \sim \begin{pmatrix} 1 & 1 & -1 & 2 & | & b \\ 0 & -1 & 5 & -2 & | & a-2b \\ 0 & 0 & 0 & 3 & | & c-a+b \end{pmatrix}$$
.

Hệ tương ứng có nghiệm với mọi a, b, c nên u luôn là tổ hợp tuyến tính của S với mọi $u \in \mathbb{R}^3$. Vậy S là tập sinh của \mathbb{R}^3 .

- c) S là tập sinh
- d) S không là tập sinh.
- 3) Xét tính độc lập, phụ thuộc tuyến tính của các vecto
- a) $u_1 = (1, 1, 1, 4), u_2 = (2, 1, 1, 4), u_3 = (1, 2, 1, 4), u_4 = (1, 1, 2, 6)$
- b) $u_1 = (-1, 1, 1, 1), u_2 = (1, 1, 1, 3), u_3 = (2, 1, -1, 2), u_4 = (2, 1, 1, 1)$
- c) $u_1 = (1, 1, 1, 2), u_2 = (1, 1, 2, 2), u_3 = (-1, 1, 2, 0), u_4 = (2, 1, 1, 1)$
- d) $u_1 = (2, -1, 3, 1), u_2 = (1, 0, 1, 2), u_3 = (3, 1, 2, 1)$

Hướng dẫn a) Lập ma trận
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 4 \\ 0 & -1 & -1 & -4 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & 0 & -2 \end{pmatrix} \Rightarrow$$

- r(A) = 4 bằng số vecto nên các vecto độc lập tuyến tính.
- b) r(A) = 4, các vecto độc lập tuyến tính.
- c) r(A) = 3 < số vecto, suy ra các vecto phụ thuộc tuyến tính.
- d) r(A) = 3 = số vecto, các vecto độc lập tuyến tính.
- 4) Chứng minh các tập hợp sau là cơ sở của \mathbb{R}^4 .
- a) $B = \{u_1 = (1, 1, 1, 1), u_2 = (2, 1, 1, 2), u_3 = (1, 3, 4, 0), u_4 = (1, 3, 2, 1)\}$
- b) $B = \{u_1 = (2, 3, 1, 1), u_2 = (-1, 1, 3, -2), u_3 = (4, 1, 1, 1), u_4 = (1, 4, 1, 0)\}$
- c) $B = \{u_1 = (3, -2, 1, 0), u_2 = (2, 3, 4, 1), u_3 = (1, -2, -3, 2), u_4 = (1, 1, 1, 2)\}$

Hường dẫn a) Lập
$$A=egin{pmatrix} u_1\\u_2\\u_3\\u_4 \end{pmatrix}$$
, ta có $r(A)=4=$ số vecto, suy ra B

độc lập tuyến tính, hơn nữa B có 4 vecto bằng $dim\mathbb{R}^4$ nên B là một cơ sở của \mathbb{R}^4 .

1.2. Cơ sở của không gian con. .

- 1) Tìm cơ sở cho không gian con W của \mathbb{R}^4 :
- a) W có một tập sinh là $S = \{u_1 = (2, -1, 1, 2), u_2 = (1, 1, -1, 1), u_3 = (2, 1, 0, 3), u_4 = (1, -1, 2, 2)\}.$
- b) $W = \langle u_1, u_2, u_3, u_4 \rangle$ với $u_1 = (2, 1, 1, 5), u_2 = (1, 2, 1, 6), u_3 = (1, 1, 2, 5), u_4 = (1, 1, 1, 4).$
- c) W được sinh bởi các vecto $u_1 = (1, 2, 3, 4), u_2 = (2, 1, 1, 0), u_3 = (2, 1, 1, 0)$

 $(-2,1,-1,2), u_4=(0,1,0,1).$

d) $W = \langle u_1, u_2, u_3, u_4 \rangle$ với $u_1 = (1, 1, 2, 1), u_2 = (2, 1, 3, 1), u_3 =$ $(3,-1,1,0), u_4 = (1,2,2,3).$

Hướng dẫn a) Lập ma trận
$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 & 2 \\ 1 & 1 & -1 & 1 \\ 2 & 1 & 0 & 3 \\ 1 & -1 & 2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & -1 & -1 \end{pmatrix}.$$

Vậy W có một cơ sở là $\{(1,1,-1,1),(0,-1,2,1),(0,0,-1,-1)\}$

- b) Co sở: $\{(1,1,1,4), (0,1,0,2), (0,0,1,2)\}$
- c) Co sở: $\{(1,2,3,4),(0,1,0,1),(0,0,-5,-5)\}$
- d) Co sở: $\{(1,1,2,1),(0,-1,-1,-1),(0,0,-1,1)\}.$
- 2) Tìm một cơ sở và số chiều cho không gian nghiệm của hệ phương trình:

trinn:
a)
$$\begin{cases} 2x_1 - x_2 + x_3 + 2x_4 = 0 \\ x_1 + x_2 - x_3 + x_4 = 0 \\ 2x_1 + x_2 + 3x_4 = 0 \\ x_1 - x_2 + 2x_3 + 2x_4 = 0 \end{cases}$$
b)
$$\begin{cases} x_1 + x_2 + 3x_3 + 2x_4 = 0 \\ -2x_1 + 3x_2 + x_3 - x_4 = 0 \\ x_1 + x_2 + x_3 + 4x_4 = 0 \end{cases}$$
c)
$$\begin{cases} x_1 + 3x_2 - x_3 + 2x_4 = 0 \\ 2x_1 + x_2 + x_3 + 2x_4 = 0 \\ x_1 + 2x_2 + x_3 + 3x_4 = 0 \end{cases}$$
d)
$$\begin{cases} x_1 + x_2 + 3x_3 + 2x_4 = 0 \\ x_1 + x_2 + x_3 + 4x_4 = 0 \\ 2x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_1 + 2x_2 + x_3 + x_4 = 0 \end{cases}$$

Tập nghiêm của hệ phương trình là $\{(-\alpha, -\alpha, -\alpha, \alpha) | \alpha \in \mathbb{R}\}$. Cho $\alpha = 1$ ta có nghiêm căn bản u = (-1, -1, -1, 1). Vây không gian nghiệm có một cơ sở là $B = \{u = (-1, -1, -1, 1)\}.$

- b) Hệ phương trình có nghiệm duy nhất, $W = \{(0,0,0,0)\}$, suy ra W có cơ sở là \emptyset (tập rỗng), dimW = 0
- c) Hệ phương trình có tập nghiệm là $W = \{(0, -\alpha, -\alpha, \alpha) | \alpha \in \mathbb{R}\}.$ Cho $\alpha = 1$ ta có nghiệm căn bản u = (0, -1, -1, 1). Vậy W có cơ sở là $B = \{u = (0, -1, -1, 1)\}, dimW = 1.$
- d) Hệ phương trình có tập nghiệm $W = \{(\alpha, 0, -3\alpha, \alpha) | \alpha \in \mathbb{R}\}$. Cơ sở: $\{(1,0,-3,1)\}, dimW=1.$

3) Trong \mathbb{R}^4 cho các không gian con $U = \langle u_1, u_2, u_3 \rangle$, $V = \langle v_1, v_2, v_3 \rangle$. Tìm cơ sở cho các không gian U, V, U + V, từ đó suy ra số chiều của $U \cap V$.

a)
$$u_1 = (4, 0, 5, 5), u_2 = (1, 2, 5, 1), u_3 = (4, 5, 1, 3), v_1 = (5, 1, 5, 5), v_2 = (5, 0, 5, 2), v_3 = (1, 0, 1, 2).$$

b)
$$u_1 = (0, 0, 2, 1), u_2 = (4, 4, 2, 0), u_3 = (2, 5, 3, 3), v_1 = (2, 5, 3, 0), v_2 = (1, 1, 2, 3), v_3 = (3, 4, 2, 3)$$

c)
$$u_1 = (1, 1, 3, 2), u_2 = (5, 4, 5, 2), u_3 = (0, 3, 0, 5), v_1 = (5, 2, 3, 4), v_2 = (1, 3, 5, 5), v_3 = (3, -4, -7, -6).$$

Hướng dẫn a) Cơ sở $U: \{(4,0,5,5), (0,8,15,-1), (0,0,107,11)\}$, cơ sở $V: \{(5,1,5,5), (0,-1,0,-3), (0,0,0,1)\}$. Cơ sở U+V: lập ma trận:

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ v_1 \\ v_2 \\ v_3 \end{pmatrix} \sim \begin{pmatrix} 4 & 0 & 5 & 5 \\ 0 & 8 & 15 & -1 \\ 0 & 0 & -5 & -17 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 \Rightarrow cơ sở của U+V là $\{(4,0,5,5),(0,8,15,-1),(0,0,-5,-17),(0,0,0,1)\}.$ Suy ra số chiều của $U\cap V$ là

$$dim(U \cap V) = dimU + dimV - dim(U + V) = 3 + 3 - 4 = 2.$$

b) Co sở $U: \{(4,4,2,0), (0,3,2,3), (0,0,2,1)\}.$ Co sở $V: \{(2,5,3,0), (0,-3,1,6), (0,0,-11,-12)\}.$ Co sở $U+V: \{(4,4,2,0), (0,3,2,3), (0,0,2,1), (0,0,0,-3)\}, dim(U\cap V)=2$ c) Co sở $U: \{(1,1,3,2), (0,-1,-10,-8), (0,0,-30,-19)\}$ Co sở $V: \{(5,2,3,4), (0,13,22,21)\}.$ Co sở $U+V: \{(1,1,3,2), (0,-1,-10,-8), (0,0,-30,-19), (0,0,0,1)\}, dim(U\cap V)=1.$

1.3. Tọa độ, ma trận chuyển cơ sở. .

1. Trong \mathbb{R}^3 cho các cơ sở B, B' và cơ sở chính tắc B_0 và vecto u. Tìm các ma trận $(B_0 \to B'), (B \to B_0)$ và $(B \to B'),$ tính tọa độ $[u]_B$

nếu biết
$$[u]_{B'} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 và:

a)
$$B = \{(1, 1, 0), (0, 1, 1), (0, 1, 0)\}, B' = \{(3, 1, -1), (6, 4, -3), (10, 5, -4)\}$$

b)
$$B = \{(2, 1, 1, 1), (1, 2, 1), (-2, -2, -1)\}, B' = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$$

c)
$$B = \{((2, 2, -1), (2, 5, -2), (5, 10, -4)\}, B' = \{(2, 1, -1), (0, 1, 0), (4, 2, -1)\}$$

Hướng dẫn a)
$$(B_0 \to B') = \begin{pmatrix} 3 & 6 & 10 \\ 1 & 4 & 5 \\ -1 & -3 & -4 \end{pmatrix}$$
 (chỉ cần ghi kết quả,

lấy các vecto của B' viết thành cột).

$$(B \to B_0) = (B_0 \to B)^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$
* Típh $(B \to B')$ Cách 1: Lập mạ trập
$$\begin{pmatrix} 1 & 0 & 0 & | & 3 & 6 & 10 \\ 1 & 1 & 1 & | & 1 & 4 & 5 \end{pmatrix}$$

* Tính
$$(B \to B')$$
. Cách 1: Lập ma trận $\begin{pmatrix} 1 & 0 & 0 & | & 3 & 6 & 10 \\ 1 & 1 & 1 & | & 1 & 4 & 5 \\ 0 & 1 & 0 & | & -1 & -3 & -4 \end{pmatrix}$

$$\sim \begin{pmatrix} 1 & 0 & 0 & | & 3 & 6 & 10 \\ 0 & 1 & 0 & | & -1 & -3 & -4 \\ 0 & 0 & 1 & | & -1 & 1 & -1 \end{pmatrix} \Rightarrow (B \to B') = \begin{pmatrix} 3 & 6 & 10 \\ -1 & -3 & -4 \\ -1 & 1 & -1 \end{pmatrix}.$$

Cách 2:
$$(B \to B') = (B \to B_0)(B_0 \to B') =$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 6 & 10 \\ 1 & 4 & 5 \\ -1 & -3 & -4 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 10 \\ -1 & -3 & -4 \\ -1 & 1 & -1 \end{pmatrix}$$

* Tính
$$[u]_B$$
. Cách 1: $[u]_{B'} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ nên $u = (3, 1, -1) + 2(6, 4, -3) + 2(6, 4, -3)$

$$3(10,5,-4) = (45,24,-19)$$
. Lập ma trận: $\begin{pmatrix} 1 & 0 & 0 & | & 45 \\ 1 & 1 & 1 & | & 24 \\ 0 & 1 & 0 & | & -19 \end{pmatrix}$. Giải

hệ tương ứng ta có nghiệm $x_1 = 45, x_2 = -19, x_3 = -2,$ vây $[u]_B = -2$

$$\begin{pmatrix} 45 \\ -19 \\ -2 \end{pmatrix}$$

Cách 2:
$$[u]_B = (B \to B')[u]_{B'} = \begin{pmatrix} 3 & 6 & 10 \\ -1 & -3 & -4 \\ -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 45 \\ -19 \\ -2 \end{pmatrix}$$

b)
$$(B_0 \to B') = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
, $(B \to B_0) = \begin{pmatrix} 0 & -1 & 2 \\ -1 & 0 & 2 \\ -1 & -1 & 3 \end{pmatrix}$,

$$(B \to B') = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}, [u]_B = \begin{pmatrix} 9 \\ 11 \\ 14 \end{pmatrix}$$

c)
$$(B_0 \to B') = \begin{pmatrix} 2 & 0 & 4 \\ 1 & 1 & 2 \\ -1 & 0 & -1 \end{pmatrix}$$
, $(B \to B_0) = \begin{pmatrix} 0 & -2 & -5 \\ -2 & -3 & -10 \\ 1 & 2 & 6 \end{pmatrix}$

$$(B \to B') = \begin{pmatrix} 3 & -2 & 1 \\ 3 & -3 & -4 \\ -2 & 2 & 2 \end{pmatrix}, [u]_B = \begin{pmatrix} 2 \\ -15 \\ 8 \end{pmatrix}.$$

2. Trong \mathbb{R}^3 cho 2 cơ sở B, B'. Tìm cơ sở B nếu biết:

a)
$$B' = \{(-10, 4, 1), (3, -1, -1), (-6, 3, -1)\}$$
 và $(B \to B') = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & 5 \end{pmatrix}$

b)
$$B' = \{(0, 2, 4), (1, 1, 2), (0, 1, 1)\}$$
 và $(B \to B') = \begin{pmatrix} 3 & 1 & -2 \\ 3 & -4 & -3 \\ -2 & 2 & 2 \end{pmatrix}$.

c)
$$B' = \{(10, 6, 3), (5, 4, 1), (4, 3, 1)\}$$
 và $(B \to B') = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix}$.

Hướng dẫn. Gọi B_0 là cơ sở chính tắc.

a)
$$(B_0 \to B) = (B_0 \to B')(B \to B')^{-1} = \begin{pmatrix} -10 & 3 & -6 \\ 4 & -1 & 3 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & 5 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} -10 & -37 & 25 \\ 4 & 15 & -10 \\ 1 & 4 & -3 \end{pmatrix} \Rightarrow B = \{(-10, 4, 1), (-37, 15, 4), (25, -10, -3)\}$$

b)
$$B = \{(0,3,5), (-1,9,14), (\frac{-3}{2},17,\frac{53}{2})\}$$

c)
$$B = \{(3, 2, 1), (-1, 1, -1), (2, 0, 1)\}$$

2. Chuong 4.

1. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$, xác định công thức f nếu biết $f(u_1)=(1,2), f(u_2)=(2,-1), f(u_3)=(1,1)$ và:

a)
$$u_1 = (1, 1, 0), u_2 = (0, 1, 1), u_3 = (0, 1, 0)$$

b)
$$u_1 = (2, 1, 1), u_2 = (1, 2, 1), u_3 = (2, 2, 1).$$

c)
$$u_1 = (2, 2, -1), u_2 = (2, 5, -2), u_3 = (5, 10, -4).$$

Hướng dẫn

a) Cho vecto
$$u = (a, b, c) \in \mathbb{R}^3$$
, lập ma trận: $\begin{pmatrix} 1 & 0 & 0 & | & a \\ 1 & 1 & 1 & | & b \\ 0 & 1 & 0 & | & c \end{pmatrix} \sim$

$$\begin{pmatrix} 1 & 0 & 0 & | & a \\ 0 & 1 & 0 & | & c \\ 0 & 0 & 1 & | & b - a - c \end{pmatrix} \Rightarrow (a, b, c) = au_1 + cu_2 + (b - a - c)u_3 \Rightarrow$$

 $f(a,b,c) = af(u_1) + cf(u_2) + (b-a-c)f(u_3) = a(1,2) + c(2,-1) + (b-a-c)(1,1) = (b+c,a+b-2c)$. Vậy f được xác định bởi công thức $f(a,b,c) = (b+c,a+b-2c) \forall (a,b,c) \in \mathbb{R}^3$.

b)
$$f(a,b,c) = (-b+2c)(1,2) + (-a+2c)(2,-1) + (a+b-3c)(1,1) =$$

(3c - a, 2a - b - c).

c)
$$f(a,b,c) = (-2b-5c)(1,2) + (-3b-2a-10c)(2,-1) + (a+2b+6c)(1,1) = (-3a-6b-19c,3a+b+6c).$$

2. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ có công thức f(x,y,z) =(x-2y+z,2x-y-z). Tính ma trận biểu diễn $[f]_{B,C}$ với:

a)
$$B = \{(1,1,2), (1,2,1), (1,2,2)\}, C = \{(1,3), (2,5)\}.$$

b)
$$B = \{(-1, 2, 2), (-2, 5, 2), (-4, 10, 5)\}, C = \{(5, 3), (2, 1)\}.$$

c)
$$B = \{(1, -3, 6), (1, 1, 3), (1, 4, -10)\}, C = \{(3, 2), (2, 1)\}.$$

Hướng dẫn. Gọi B_0, C_0 lần lượt là cơ sở chính tắc của \mathbb{R}^3 và \mathbb{R}^2 .

a) Cách 1.
$$f(1,1,2) = (1,-1), f(1,2,1) = (-2,-1), f(1,2,2) = (-1,-2).$$

Lập ma trận giải tọa độ các vecto trên theo cơ sở $C:\begin{pmatrix}1&2&|&1&-2&-1\\3&5&|&-1&-1&-2\end{pmatrix}$

$$\sim \begin{pmatrix} 1 & 0 & | & -7 & 8 & 1 \\ 0 & 1 & | & 4 & -5 & -1 \end{pmatrix} \Rightarrow [f]_{B,C} = \begin{pmatrix} -7 & 8 & 1 \\ 4 & -5 & -1 \end{pmatrix}.$$

Cách 2 Ta có $[f]_{B_0,C_0}=\begin{pmatrix}1&-2&1\\2&-1&-1\end{pmatrix}$ (viết các hệ số trong công thức

của
$$f$$
). $\Rightarrow [f]_{B,C} = (C_0 \to C)^{-1} [f]_{B_0,C_0} (B_0 \to B)$

$$= \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & -2 & 1 \\ 2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} -7 & 8 & 1 \\ 4 & -5 & -1 \end{pmatrix}.$$

b)
$$[f]_{B,C} = \begin{pmatrix} -9 & -12 & -27 \\ 21 & 25 & 58 \end{pmatrix}$$

c) $[f]_{B,C} = \begin{pmatrix} -15 & -6 & 33 \\ 29 & 10 & -58 \end{pmatrix}$.

c)
$$[f]_{B,C} = \begin{pmatrix} -15 & -6 & 33\\ 29 & 10 & -58 \end{pmatrix}$$
.

3. Trong
$$\mathbb{R}^3$$
 cho hai cơ sở B, C , cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ thỏa $[f]_{B,C} = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 0 \\ 1 & -8 & 3 \end{pmatrix}$. Xác định công thức của f và tìm cơ sở

cho Imf, Kerf nếu :

a)
$$B = \{(5, 6, -2), (-2, -2, 1), (2, 3, 0)\}, C = \{(5, -2, 2), (6, -2, 3), (-2, 1, 0)\}$$

b)
$$B = \{(-6, 14, 7), (-2, 5, 2), (-3, 6, 4)\}, C = \{(6, 2, 3), (14, 5, 6), (7, 2, 4)\}.$$

c)
$$B = \{(-4, 15, 5), (-1, 4, 1), (-2, 6, 3)\}, C = \{(4, 1, 2), (15, 4, 6), (5, 1, 3))\}$$

Hướng dẫn. Gọi B_0 là cơ sở chính tắc của \mathbb{R}^3 .

a) Tính ma trận biểu diễn toán tử f theo cơ sở chính tắc B_0 :

$$[f]_{B_0} = (C \to C_0)^{-1} [f]_{B,C} (B \to B_0) = (C_0 \to C) [f]_{B,C} (B_0 \to B)^{-1}$$

$$[f]_{B_0} = (C \to C_0)^{-1}[f]_{B,C}(B \to B_0) = (C_0 \to C)[f]_{B,C}(B_0 \to B)^{-1}$$

$$= \begin{pmatrix} 5 & 6 & -2 \\ -2 & -2 & 1 \\ 2 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 0 \\ 1 & -8 & 3 \end{pmatrix} \begin{pmatrix} 5 & -2 & 2 \\ 6 & -2 & 3 \\ -2 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} -187 & 121 & -112 \\ 85 & -55 & 50 \\ -34 & 22 & -23 \end{pmatrix}.$$

Suy ra f có công thức là

$$f(x, y, z) = (-187x + 121y - 112z, 85x - 55y + 50z, -34x + 22y - 23z)$$

*
$$Kerf$$
: là không gian nghiệm của hệ phuong trình:
$$\begin{cases} -187x + 121y - 112z = 0 \\ 85x - 55y + 50z = 0 \\ -34x + 22y - 23z = 0 \end{cases}$$
.

Lập ma trận:
$$\begin{pmatrix} -187 & 121 & -112 \\ 85 & -55 & 50 \\ -34 & 22 & -23 \end{pmatrix} \sim \begin{pmatrix} 17 & -11 & 10 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\Rightarrow Kerf$ có một cơ sở là $\{(\frac{11}{17}, 1, 0)\}$

*
$$Imf$$
 có một tập sinh là $\{f(1,0,0) = (-187,85,-34), f(0,1,0) = (121,-55,22), f(0,0,1) = (-112,50,-23)\}$, lập ma trận: $\begin{pmatrix} -187 & 85 & -34 \\ 121 & -55 & 22 \\ -112 & 50 & -23 \end{pmatrix} \sim$

$$\begin{pmatrix} -187 & 85 & -34 \\ 0 & 10 & 29 \\ 0 & 0 & 0 \end{pmatrix}. \Rightarrow Imf \text{ có một cơ sở là } \{(-187, 85, -34), (0, 10, 29)\}.$$
b)
$$f(x, y, z) = (1035x + 226y + 441z, 322x + 71y + 136z, 537x + 116y + 126z)$$

231z). Cơ sở $Kerf: \{(\frac{-25}{31}, \frac{54}{31}, 1)\}.$

Cơ sở $Imf: \{(226, 71, 116), (0, -713, 1302)\}$

c)
$$f(x, y, z) = (884x + 122y + 349z, 200x + 28y + 78z, 457x + 62y + 183z)$$

 $Kerf: \{(\frac{-8}{11}, \frac{53}{22}, 1)\}\ Imf: \{(884, 200, 457), (0, 176, -473)\}$

3. Chương 5.

1) Tìm trị riêng và cơ sở các không gian con riêng của các ma trận

a)
$$\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$. c) $\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$ d) $\begin{pmatrix} -1 & -3 & -3 \\ 3 & 5 & 3 \\ -1 & -1 & 1 \end{pmatrix}$

Hướng dẫn.- Trị riêng của ma trận A là số thực α sao cho tồn tại vecto cột $u \neq 0$ thỏa $Au = \alpha u$, vecto cột u được gọi là vecto riêng ứng với tri riêng α .

- -Trị riêng là nghiệm của đa thức đặc trung $P_A(x) = |A xI_n|$.
- Không gian con riêng ứng với trị riêng α là không gian con gồm tất cả vecto riêng ứng với α , không gian con riêng ứng với α được ký hiệu là $E(\alpha)$.

- $E(\alpha)$ là không gian nghiệm của hệ phương trình $A - \alpha I_n = 0$, giải không gian nghiệm này ta tìm được cơ sở cho $E(\alpha)$.

a)
$$P_A(x) = |A - xI_n| = \begin{vmatrix} 3 - x & 1 & 1 \\ 2 & 4 - x & 2 \\ 1 & 1 & 3 - x \end{vmatrix} = (6 - x)(2 - x)^2$$

 \Rightarrow A có trị riêng là x=2, x=6.

Các không gian con riêng

*E(2):
$$A - 2I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

 $\Rightarrow E(2) = \{(-s-t,s,t)|s,t\in\mathbb{R}\}\$ có nghiệm căn bản là (-1,1,0),(-1,0,1). Vậy E(2) có cơ sở là $\{(-1,1,0),(-1,0,1)\}$.

*
$$E(6): A - 6I_3 = \begin{pmatrix} -3 & 1 & 1 \\ 2 & -2 & 2 \\ 1 & 1 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -3 \\ 0 & -4 & 8 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\Rightarrow E(6)=\{(s,2s,s)|s\in\mathbb{R}\}$ có nghiệm căn bản là (1,2,1). vây E(6) có cơ sở là (1,2,1)

b) * Trị riêng: x=-1.

*
$$E(-1): A + I_3 = \begin{pmatrix} 3 & -1 & 2 \\ 5 & -2 & 3 \\ -1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

 $\Rightarrow E(-1) = \{(-s, -s, s) | s \in \mathbb{R}\}$ có nghiệm căn bản là (-1, -1, 1). vậy E(-1) có cơ sở là $\{(-1, -1, 1)\}$

c)* Trị riêng x=2.

*
$$E(2): A - 2I_3 = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} -2 & 1 & 0 \end{pmatrix}$$

 $\Rightarrow E(2)=\{(s,2s,t)|s,t\in\mathbb{R}\}$ có nghiệm căn bản là (1,2,0),(0,0,1). Vậy E(2) có cơ sở là $\{(1,2,0),(0,0,1)\}$

d)* Trị riêng x = 1 và x = 2

*
$$E(1): A - I_3 = \begin{pmatrix} -2 & -3 & -3 \\ 3 & 4 & 3 \\ -1 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} -1 & -1 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

 $\Rightarrow E(1) = \{(3s, -3s, s)\}$ có nghiệm căn bản là (3, -3, 1). Vậy E(1) có cơ sở là $\{(3, -3, 1)\}$.

*
$$E(2): A - 2I_3 = \begin{pmatrix} -3 & -3 & -3 \\ 3 & 3 & 3 \\ -1 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$

 $\Rightarrow E(2) = \{(-s-t,s,t)|s,t\in\mathbb{R}\}$ có nghiệm căn bản là (-1,1,0),(-1,0,1). vậy E(2) có cơ sở là $\{(-1,1,0),(-1,0,1)\}$

2. (Chéo hóa ma trận) Chỉ ra ma trận P khả nghịch (nếu có) sao cho $P^{-1}AP$ là ma trận đường chéo, với A là các ma trận được cho trong bài 1. Viết dạng chéo hóa của A.

Hướng dẫn.- Theo kết quả bài 1) ta đã có trị riêng và cơ sở các không gian con riêng.

- Nếu tổng số chiều các không gian con riêng bằng kích thước ma trận (trong bài này là 3) thì A chéo hóa được.
- Lấy hội các cơ sở không gian con riêng ta được cơ sở B là cơ sở chéo hóa A, ma trận $P=(B_0\to B)$ là ma trận cần tìm $(B_0$ là cơ sở chính tắc).
- a) Theo bài 1) A có các trị riêng là x=2, x=6, dim E(2)+dim E(6)=2+1=3 và A là ma trận vuông cấp 3 nên A chéo hóa được. E(2) có cơ sở $\{(-1,1,0),(-1,0,1)\}, E(6)$ có cơ sở $\{(1,2,1)\},$ suy ra A có một cơ sở chéo hóa là $B=\{(-1,1,0),(-1,0,1),(1,2,1)\}.$

Ma trận
$$P$$
 làm chéo hóa $A: P = (B_0 \to B) = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$

Dạng chéo hóa của
$$A: P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

- b) A có 1 trị riêng duy nhất là x=-1 và dim E(-1)=1<3 nên A không chéo hóa được (không tồn tại ma trận P thỏa yêu cầu đề bài).
- c) Không chéo hóa được.
- d) Chéo hóa được.

Cơ sở chéo hóa:
$$B = \{(3, -3, 1), (-1, 1, 0), (-1, 0, 1)\}$$

Ma trận chéo hóa
$$A: P = (B_0 \to B = \begin{pmatrix} 3 & -1 & -1 \\ -3 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Dạng chéo hóa của
$$A: P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$