Hotel booking demand dataset

Objectives:

The goal of this project is to

- 1-Exploring the hotel booking data and finding answers for some questions such as:
 - ➤ what is the hotel types and which one is more demand?
 - ➤ Which type of hotel has the highest number of cancellations?
 - > what is the busy months?
 - ➤ How many guest from each country?
 - ➤ What is the percentage of repeat customers?
 - ➤ How many Customers with the history of cancellation?
- 2- Create a model to predict of the customer they cancel the booking or not.

Design:

First, I download the data from Kaggle website and read it. Then, I cleaned and explored the data. After that I showed the data to find the relation between the features. Then, I implemented three models .

Data:

This data set contains booking information for a city hotel and a resort hotel, and includes information such as when the booking was made, length of stay, the number of adults, children, and/or babies, and the number of available parking spaces, etc

This dataset includes 119390 entries with 32 features, here some clearly for the features:

Features:	Description:				
is_canceled	Value indicating if the booking was canceled (1) or not (0)				
lead_time	Number of days that elapsed between the entering date of the booking into				
	the PMS and the arrival date				
deposit_type	Indication on if the customer made a deposit to guarantee the booking. This				
	variable can assume three categories: No				
days_in_waiting_list	Number of days the booking was in the waiting list before it was confirmed				
	to the customer				
customer_type	Type of booking, assuming one of four categories:Transient - Transient-				
	Party - Contract - Group				
adr	Average Daily Rate as defined by dividing the sum of all lodging				
	transactions by the total number of staying nights				

Algorithms:

I started to clean the dataset by:

- Drop the duplicate rows.
- Drop the rows with column "adult=0"
- Converting the datatype of *children* and *agent* from float to integer.
- Remove column company, days_in_waiting_list, arrival_date_year, assigned_room_type, booking_changes,reservation_status, ,days_in_waiting_list'.
- Replace null values with 0 in *agent* feature.
- Replace NULL with "unknown" in column *country*, after I finish exploring my data I decided to Remove this column.
- Fill null value in *adr* with mean.

EDA & Modelling:

I did some exploration on the data to find the answers for these questions above. After that I implemented a linear & classification algorithms models ————"Random Forest Classifier, Decision Tree Classifier, Logistic Regression" to predict our target (is cancelled). I used these models to take the following features to predict if the customer will cancel the reservation or not:

'hotel', 'meal', 'market_segment', 'distribution_channel', 'reserved_room_type', 'deposit_type', 'customer_type', 'reservation_status_date', lead_time, arrival_date_month, arrival_date_week_number, arrival_date_day_of_month, stays_in_weekend_nights, stays_in_week_nights, adults ,children, babies, is_repeated_guest ,previous_cancellations, previous_bookings_not_canceled, agent ,adr ,required_car_parking_spaces, total_of_special_requests

To see the performance of these models I split my data into 80% (train-validation) sets /20% test set, and fit the models on train set, and test it on the validation and test sets.

The following is the accuracy Report for each model:

Logistic K	egression:				Decision Tree Classifier				Random Forest Classifier		
	precision	recall	f1-score		precision	recall	f1-score		precision	recall	f1-score
0 1	0.95 0.00	1.00	0.97 0.00	0 1	0.96 0.17	0.91 0.33	0.93 0.22	0 1	0.96 1.00	1.00 0.33	0.98 0.50
accuracy			0.95	accuracy			0.88	accuracy			0.96

These are the comparison accuracy scores of all the models arranged:

The best Model is **Random Forest Classifier** has test accuracy of 96%.

Tools:

- *numpy*, *pandas* for data manipulation.
- matplotlib and seaborn, for plotting.
- *sklearn* for modling.
- The worked done through *Jupyter* notebook using *python*.