The Earth, and every living organism on it, are thermodynamically open systems

"Life" can be usefully thought of as a natural/chemical phenomenon whereby information directs work to reduce entropy

Components of metabolism Energy, electrons, carbon

Major nutritional groups
Photo / Chemo
Organo / Litho
Auto / Hetero

Overview of tree of life

Distribution of metabolic groups across phylogeny

A quick survey of the tree of life

This tree is kinda dumb.

Metabolism Definition

Cellular biochemical reactions that build biomass and generate E, sum total of biochemical reactions

Metabolism

3 components of metabolism:

Source of energy

Source of reducing equivalents (electrons)

Source of carbon

Reactions either yield energy, <u>exergonic</u> or consume energy, <u>endergonic</u>

Both types occur in metabolism

Biosynthesis results from endergonic reactions

Catabolism

Dismantling of organic substrates
Obtaining E from break down of E-rich
organic compounds
(Chemotrophs)

Other organisms use inorganic compounds to obtain E (also chemotrophs)

Other organisms use light as E source (i.e., phototrophs)

Anabolism

Processes that build up biomass (growth) Incorporating C into biological molecules

Sources of Energy:

Chemotrophs -

Obtain energy from organic or inorganic molecules to catalyze reactions

Phototrophs -

Use solar energy to catalyze reactions

Sources of reducing power:

- Organotrophs

Organisms that obtain reducing equivalents (i.e., stored electrons) from organic compounds (usually heterotrophs also)

Example: PO_3^{3-} (phosphite) $\rightarrow PO_4^{3-}$ (phosphate) + e^-

- Lithotrophs

Organisms that obtain reducing equivalents from inorganic compounds (usually autotrophs also)

Example: $2H_2O$ (water) $\rightarrow O_2 + 2H_2 + 2e^-$

Sources of carbon:

Autotrophs - Inorganic carbon source (Primary producers, "fix" carbon) CO_2 / H_2CO_3

Heterotrophs – Organic carbon source
Usually chemoorganotrophs
Obtain energy from oxidation of organic molecules
Use these products for growth (anabolic metabolism)

Energy source	Oxidizing donor source	Carbon source	Name	Examples
Sun Light Photo-	Organic -organo-	Organic -heterotroph	Photoorganoheterotroph	Some bacteria (Rhodobacter)
		Carbon dioxide -autotroph	Photoorganoautotroph	???
	Inorganic -litho-*	Organic -heterotroph	Photolithoheterotroph	Halobacterium in Great Salt Lake, yo!
		Carbon dioxide -autotroph	Photolithoautotroph	Some bacteria (blue green algae), some eukaryotes (eukaryotic algae, land plants). Photosynthesis.
Breaking Chemical Compounds Chemo-	Organic -organo-	Organic -heterotroph	Chemoorganoheterotroph	Some eukaryotes (heterotrophic protists, fungi, animals)
		Carbon dioxide -autotroph	Chemoorganoautotroph	Some archaea (anaerobic methanotrophic archaea).[8] Chemosynthesis.
	Inorganic -litho-*	Organic -heterotroph	Chemolithoheterotroph	Some bacteria (Oceanithermus profundus)[9]
		Carbon dioxide -autotroph	Chemolithoautotroph	Some bacteria (Nitrobacter, Methanobacteria). Chemosynthesis.

Wikipedia: "Primary nutritional groups"

Photo-litho-auto-trophic

Purple Sulfur Bacteria (Chromatiales)

Where should I look for these?

Not oxygen tolerant! Energy from light (Phototrophic) Reducing agent is H₂S, not H₂O (Lithotrophic) Carbon source is CO₂ (Autotrophic) Product of photosynthesis is

Purple Non-Sulfur Bacteria (Chromatiales)

How would I grow these in a lab?

Not oxygen tolerant! (usually) Energy from light (Phototrophic) sometimes! Reducing agents are organic, usually (Organotrophic) Carbon source is C0₂ (Autotrophic)

2 H2 + O2 → 2 H2O

Very hyperthermic Likes Oxygen Doesn't like H₂S

Chemo-litho-heterotrophic

Energy

Electrons

Carbon

Aquifex sp.

Methanococcus jannaschii

Cannot tolerate <u>any</u> oxygen

 $2 H_2 + CO_2 \rightarrow CH_4$ (methane)

Energy from chemical sources, not light

Classify its metabolism → Energy: Electron: Carbon:

Photo-litho-auto-trophs

Can plants undergo aerobic respiration? Can they be chemoheterotrophic?

Moss – Bryophytes

Energy source?

Electron source?

Carbon source?

Fungi

With oxygen: $C_6H_{12}O_6 + O_2 \rightarrow$ $CO_2 + H_2O$

Without oxygen: $C_6H_{12}O_6 \rightarrow$ $CO_2 + C_3H_4O_3 +$ C_2H_5OH

Some of the currently known metabolic pathways from the Kyoto Encyclopedia of Genomes and Genes (KEGG)

Anaerobic respiration

Loss of electron acceptors

Evidence of reduction

Concentration

 As O₂ is used & environment becomes reduced, organisms that use other compounds become active

Transposons and other viruses

Transposons and other viruses

