2-way Deterministic Finite Automata

Balaji, Sannidhi, Sasmita, Ramanan

IISc Bangalore

Outline

- Introduction
- Pormal Definitions, Notations and Construction
- Stanguages accepted by 2DFA
- 4 Established Results

What is 2DFA?

2DFA

A Two-Way Deterministic Finite Automaton (2DFA) is a type of finite state machine that extends the capabilities of a regular Deterministic Finite Automaton (DFA) by allowing its read head to move bidirectionally along the input tape.

• 2DFAs were introduced in 1959 by Rabin and Scott.

How 2DFA works?

- Two-way Finite Automata has a read head, which can move left or right over the input string.
- Read head can revisit the input symbols any number of times.
- The input string is enclosed between left and right endmarkers \vdash and \dashv , which are not elements of the input alphabet Σ .
- The read head will not move outside of the endmarkers.
- A 2DFA needs only a single accept state and a single reject state.

Turing Machine vs 2DFA

Turing Machine:

- Contains a read/write head that moves left or right along the tape
- Has unbounded memory.

2DFA:

- Has read only head that moves left or right along the tape.
- Has finite memeory like DFA.

Formal representation of 2DFA

A 2DFA is of the form

$$(Q, \Sigma, \vdash, \dashv, \delta, s, t, r)$$

where,

- Q is a finite set of states.
- ullet Σ is a finite set of input symbols.
- \vdash is the left endmarker. ($\vdash \notin \Sigma$)
- \dashv is the right endmarker. $(\dashv \notin \Sigma)$
- $\delta: Q \times (\Sigma \cup \{\vdash, \dashv\}) \rightarrow Q \times \{L, R\}$ is a transition function. (L = left, R = right)
- $s \in Q$ is the start state.
- $t \in Q$ is the accept state.
- $r \in Q$ is the reject state $(r \neq t)$.

Properties of transition function

For all states p,

- $\delta(p,\vdash) = (q,R)$, for some $q \in Q$
- $\delta(p, \dashv) = (q, L)$, for some $q \in Q$

Current input symbol is $a \in \Sigma \cup \{\vdash\}$, t = accept state, r = reject state.

- $\delta(t, a) = (t, R)$ and $\delta(t, \dashv) = (t, L)$
- $\delta(r, a) = (r, R)$ and $\delta(r, \dashv) = (r, L)$

In general, $\delta(p, a) = (q, d)$ where $p, q \in Q$ and $d \in \{L, R\}$

Example 2DFA

2DFA for a*

 $(Q, \Sigma, \vdash, \dashv, \delta, s, t, r)$ where,

- $Q = \{q_0, q_1, q_2\}$
- $s = \text{start state} = q_0$
- $t = accept state = q_1$
- $r = \text{reject state} = q_2$

Table: Transition function δ

$\delta(,)$	H	a	b	4
q 0	(q_0, R)	(q_0, R)	(q_2,R)	(q_1, L)
q_1	(q_1,R)	(q_1,R)	(q_1,R)	(q_1,L)
q 2	(q_2,R)	(q_2,R)	(q_2,R)	(q_2, L)

Configurations

Fix an input $x \in \Sigma^*$. $x = a_1 a_2 a_3 \dots a_n$. Let $a_0 = \vdash$ and $a_{n+1} = \dashv$. $a_0a_1a_2a_3\ldots a_na_{n+1}=\vdash x\dashv$.

Configuration

A configuration of the machine on input x is a pair (q, i) such that $q \in Q$ and $0 \le i \le n+1$. Informally, the pair (q, i) gives a current state and current position of the read head.

The start configuration is (s,0), meaning that the machine is in its start state s and scanning the left endmarker.

A binary relation $\xrightarrow{1}$, the next configuration relation, is defined on configurations as follows:

$$\delta(p,a_i)=(q,L)\Rightarrow (p,i)\xrightarrow[\times]{1}(q,i-1),$$

$$\delta(p, a_i) = (q, R) \Rightarrow (p, i) \xrightarrow{1} (q, i + 1).$$

Configurations

The relation $\frac{1}{x}$ describes one step of the machine on input x. We define the relations $\frac{n}{x}$ inductively, $n \ge 0$:

- $(p,i) \xrightarrow{0} (p,i)$
- if $(p,i) \xrightarrow[\times]{n} (q,j)$ and $(q,j) \xrightarrow[\times]{1} (u,k)$, then $(p,i) \xrightarrow[\times]{n+1} (u,k)$.

For any configuration (p, i), there is exactly one configuration (q, j) such that $(p, i) \xrightarrow{n} (q, j)$.

Acceptance and Rejection

$$(p,i) \stackrel{*}{\underset{\times}{\longrightarrow}} (q,j)$$
 iff $\exists n \geq 0$ such that $(p,i) \stackrel{n}{\underset{\times}{\longrightarrow}} (q,j)$.

Acceptance

The input x is accepted by the machine iff $(s,0) \stackrel{*}{\underset{\times}{\longrightarrow}} (t,k)$ for some k.

Rejection

• The input x is rejected by the machine if $(s,0) \stackrel{*}{\underset{x}{\longrightarrow}} (r,k)$ for some k.

If the machine neither reaches accept state nor reject state then the machine is said to be looping on that input.

Language accepted by the machine $= \{x \in \Sigma^* | x \text{ is accepted by the machine} \}.$

Constructing 2DFA 'M'

 $L(M) = \{x \in \Sigma^* \mid \#a(x) \text{ is multiple of 3, } \#b(x) \text{ is multiple of 2} \}$

Machine Description

- Machine starts scanning from the left endmarker.
- Scan input string from left to right, counting only 'a's. If the count of 'a's is not a multiple of 3, reject and enter state r.
- Let q₀, q₁, q₂ be the states for counting 'a's.
 q₀: 3k; q₁: 3k+1; q₂: 3k+2.
- If the count of 'a's is a multiple of 3, start scanning from the right, counting only 'b's. If the count of 'b's is not a multiple of 2, enter state t; otherwise, enter state r.
- Let p₀, p₁ be the states for counting 'b's.
 p₀: 2k; p₁: 2k+1.

Constructing 2DFA 'M'

• input = bbaabab : $q_0 \xrightarrow{\vdash} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_2 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{\dashv} p_0 \xrightarrow{b}$ $p_1 \stackrel{a}{\rightarrow} p_1 \stackrel{b}{\rightarrow} p_0 \dots \stackrel{\dashv}{\rightarrow} t$

DFA to 2DFA conversion

Theorem

- 2DFA only accepts regular languages.
- L(2DFA) = L(DFA) = Regular languages

Proof: $L(DFA) \subseteq L(2DFA)$

For an arbitary DFA 'X', let us construct a 2DFA 'Y' that accepts the same language as X.

- X : (Q, Σ, δ, s, F)
- Let Y : (Q \cup {t, r}, Σ , \vdash , \dashv , δ' , s, t, r)
- δ' : $\delta_R \cup \delta'((s, \vdash)) = (s, R)$ • $\delta'((f, \dashv)) = (t, L)$ for $f \in F$; $\delta'((n, \dashv)) = (r, L)$ for $n \in Q$ -F. • $\delta'((t, a)) = (t, R)$; • $\delta'((r, a)) = (r, R)$ for $a \in \Sigma - \{\dashv\}$ • $\delta'((t, \dashv)) = (t, L)$; • $\delta'((r, \dashv)) = (r, L)$

DFA to 2DFA conversion

Proof: $L(X) \subseteq L(Y)$

- Let $x \in L(X)$, len(x)=n.
- Then, $\widehat{\delta}(s,x) = f$ where $f \in F$
- $\bullet \ (\mathsf{s},\!0) \xrightarrow[\vdash \mathsf{x} \dashv]{1} (\mathsf{s},\!1) \xrightarrow[\vdash \mathsf{x} \dashv]{n} (\mathsf{f},\!\mathsf{n}\!+\!1) \xrightarrow[\vdash \mathsf{x} \dashv]{1} (\mathsf{t},\!\mathsf{n}) \ .$
- As (s,0) $\xrightarrow[\vdash x \dashv \vdash]{}$ (t,n+1), $x \in L(Y)$.
- Hence, $L(X) \subseteq L(Y)$.

Recall:

A configuration of the machine on input x is the pair (q,i), which gives the current state and current position of the read head. (s,0) means that the machine is in its start state s and scanning the left endmarker.

DFA to 2DFA conversion

Proof: $L(Y) \subseteq L(X)$

- Let $x \in L(Y)$, len(x)=n.
- Then (s,0) $\xrightarrow[\vdash x \dashv \vdash]{*}$ (t,m) in Y
- $\bullet \ \ \text{So} \ (\text{s,0}) \xrightarrow[\vdash \text{x-} \dashv]{1} (\text{s,1}) \xrightarrow[\vdash \text{x-} \dashv]{n} (\text{f,n+1}) \xrightarrow[\vdash \text{x-} \dashv]{1} (\text{t,n}) \ .$
- As $\widehat{\delta}(s,x) = f$ where $f \in F$, $x \in L(X)$
- Hence, $L(Y) \subseteq L(X)$.

Therefore, L(Y) = L(X)

- Claim: The language accepted by a 2-way finite automaton is regular
- We will prove this using Myhill-Nerode theorem
- Recall that the Myhill-Nerode theorem states that a language is regular if and only if the canonical equivalence relation has finitely many equivalence classes

- Let $M = (Q, \Sigma, \vdash, \dashv, \delta, s, t, r)$ be a 2-way finite automaton
- Let w = xz be a string in Σ^*
- As the automaton is 2-way, its read head can cross the boundary between x and z several times.
- Consider the function $T_x: (Q \cup \{\bullet\}) \to (Q \cup \{\bot\})$
- If the automaton goes to state q when it first crosses the boundary between x and z, define $T_x(\bullet) = q$
- If the read head never crosses the boundary between x and z, define $T_x(ullet) = \bot$

- Suppose the read head comes back from z to x and reaches state q
- Then it may either go back to z reaching state p, in which case define $T_x(q) = p$
- Else, it may never go back to z, in which case define $T_{\times}(q) = \bot$
- Note that the function T_x is well-defined as the automaton is deterministic
- Also, T_x depends only on x and is independent of z
- And if y is another string in Σ^* such that $T_x = T_y$, then yz is accepted by the automaton if and only if xz is accepted by the automaton

- Hence, xRy if and only if $T_x = T_y$ becomes a canonical equivalence relation
- Since the number of unique functions is finite (at most $(k+1)^{k+1}$), the canonical equivalence relation has finitely many equivalence classes
- Hence the language accepted by the 2-way DFA is regular

Example

 Let us consider an example of a 2-way DFA accepting the language

 $L = \{x \in \{a, b\}^* | \#a(x) \text{ is a multiple of 3 and } \#b(x) \text{ is even}\}$

Example

- For any $x \in \{a, b\}^*$,
- If $\#a(x) = k \mod 3$, then $T_x(\bullet) = p_k$
- If $\#b(x) = 0 \mod 2$, then $T_x(p_0) = t$ and $T_x(p_1) = r$
- If $\#b(x) = 1 \mod 2$, then $T_x(p_0) = r$ and $T_x(p_1) = t$
- And $T_x(t) = t$, $T_x(r) = r$
- Hence, the canonical equivalence relation has 6 equivalence classes and the language is regular

Constructing DFA from 2-way DFA

- Once we have the canonical equivalence relation, we can easily construct a DFA.
- Let $M = (Q, \Sigma, \vdash, \dashv, \delta, s, t, r)$ be a 2-way finite automaton
- Let Q' be the set of all equivalence classes of the canonical equivalence relation
- $s' = T_{\epsilon}$
- $\delta'(T_x, a) = T_x a$
- $F' = \{ T_x | x \in L(M) \}$
- DFA $M'=(Q',\delta',s',F')$ will accept the same language as the 2-way DFA M

Example

 The DFA accepting the same language as the 2-way DFA is as follows:

Unary finite automata

Below, H(n) represents the function $e^{\sqrt{n\log(n)}}$

These are some statements related to unary finite automata

- Each unary n-state 2dfa can be simulated by a 1dfa with O(H(n)) states.
- For each n there is a unary n-state 2dfa A such that each 1dfa recognizing L(A) requires $\Omega(H(n))$ states.

Unary finite automata

- For each n there is a unary n-state 2dfa A such that each 1nfa recognizing L(A) requires $\Omega(H(n))$
- Each unary n-state 1nfa A can be simulated by a 2dfa B with $O(n^2)$ states.
- For each n there is a unary n-state 1nfa A such that each 2dfa recognizing L(A) requires $\Omega(n^2)$ states.

Unary finite automata

Informally speaking we can see that 2dfa's are hard to simulate by ldfa's, even if we consider only unary languages.

Also, for unary languages, two-way motion is more powerful, in a sense, because we can simulate unary Infa's by 2dfa's increasing the number of states only polynomially, which is not possible the other way round.

Introduction

1nfa to 2dfa

Lemma A: If gcd(a,b)=1, then the greatest number such that the equation ax + by = c has no solutions in natural numbers is (a-1)(b-1)-1.

Theorem: For each n there is a unary n-state 1nfa A such that each 2dfa recognizing L(A) requires $\Omega(n^2)$ states.

Proof: Let $L = \{x | x = nx_1 + (n-1)x_2 \text{ for } x_1, x_2 \in \mathbb{N} \}$. L can be recognized by a Infa A with n states. $A=(Q, q_0, E, F)$ is defined as follows: $Q=q_0,..., q_{n-1}, E = \{(q_i, q_{i+1})|i=0,...,n-1\} \cup (q_1, q_3)$ (the addition is mod n) and $F = q_0$. Let $m = \max(\mathbb{N}-L)$. By Lemma A, $m = O(n^2)$. Consider a 2dfa B recognizing L and its computation on m. Suppose that, in all passes on m, B enters a cycle and let $y_1,...,y_k$ be the lengths of these cycles. Then B would reject also m'= m + lcm $(y_1,...,y_k)$, which contradicts the fact that $m' \in L$. Therefore, there is a pass. of B on m without a cycle and the theorem follows.

(Unary)2-DFA to 1-NFA/1-DFA - A worst case example

- Let F(n) be defined as follows:
- Maximum value of $lcm(x_1, x_2, ..., x_k)$ such that $x_1 + x_2 + ... + x_k = n$ and $x_1, x_2, ..., x_k \in \mathbb{N}$

Some properties of F(n):

- $x_1, x_2, ... x_k$ can be found to be coprime satisfying $lcm(x_1, x_2 ... x_k) = F(n)$
- F(n) = O(H(n))

(Unary)2-DFA to 1-NFA/1-DFA - A worst case example

- Let the language $L = \{a^{iF(n)} \mid i \in \mathbb{N}, i \geq 1\}.$
- Take any 1-NFA accepting this language.
- Any simple path from a start state to a final state must have length at least F(n).
- Canonical MN Relation has atleast F(n) classes.
- But 2-DFA can do better. Have x_i states to check divisibility by x_i .
- Upon seeing right end marker transition to new set of x_{i+1} states if divisible by x_i .
- Reject if not divisible by any x_i . Go to final state if divisible by all x_i . Total number of states = n + 2.

(Unary)2-DFA to 1-DFA - Best known Bound

- Any unary 2-DFA with can be converted to 1-DFA with at most O(H(n)) states.
- Any 2-DFA can be converted into an equivalent sweeping 2-DFA without changing the number of states. [Chrobak]
- For accepting words of length $\leq n$ accepted by the 2-DFA, we have n states, mark them as final accordingly
- Note that any word of length longer than n accepted by the 2-DFA must pass through a cycle/pump.
- Any given state can be a part of at most one of these cycles.
- Say on a word u of length more than n the machine passes through at most k cycles.

(Unary)2-DFA to 1-DFA - Best known Bound

- Let the lengths of the cycles be $y_1, y_2, \dots y_k$. Then $y_1 + y_2 + \dots y_k \le n$.
- If a machine accepts a word u of length more than n, it must also accept a word of length $|u| + lcm(y_1, y_2, \dots y_k)$.
- Construct a 1-DFA with first n states as mentioned and a loop of length $lcm(y_1, y_2, ..., y_k)$ attached to the last state. Mark states as final accordingly.
- Prove: This accepts the same language as the 2-DFA.
- The number of states in the 1-DFA is at most $n + lcm(y_1, y_2, \dots y_k) \le n + F(n) = O(H(n))$.

Some other automata

- 2 way Non-deterministic Finite Automata:- A two-way nondeterministic finite automaton (2NFA) may have multiple transitions defined in the same configuration.
- Its transition function is $\delta: (Q \times \Sigma \cup \{L, R\}) \rightarrow 2^{Q \times \{left, right\}}$
- A 2NFA accepts a string if at least one of the possible computations is accepting. Like the 2DFAs, the 2NFAs also accept only regular languages.
- Sweeping Automata:- A two-way automaton performing head reversal only when the input head is visiting the endmarkers is called sweeping automaton.
- Rotating Automata:-A computation of a rotating automaton is a sequence of left-to-right scans of the input. In particular, when the right end of the input is reached, the computation continues on the leftmost input symbol.

Some other automata

Introduction

- In other words, we can imagine the input tape as circular, with a special cell containing a marker and connecting the end with the beginning of the tape.
- With a trivial transformation which doubles the number of the states, each rotating automaton can be transformed into an equivalent sweeping automaton.
- 2 way Alternating Finite Automata(AFA): Structure same as 2 way NFA. Transitions divided into 2: existential and universal.
- Existential and universal transitions simulate all possible moves that can be made. Every state is given a truth value.
- Even if there is one simulation that leads to a final state, existential transitions return 1. Universal transitions return 1 only if all simulations lead to a final state.

Other established results and open problems

- Christos Kapoutsis determined that transforming an n-state 2-DFA to an equivalent 1-DFA requires $n(n^n (n-1)^n)$ states in the worst case.
- If an *n*-state 2DFA or a 2NFA is transformed to a 1-NFA, the worst-case number of states required is $\binom{2n}{n+1} = O(\frac{4^n}{\sqrt{n}})$.
- Sipser constructed a sequence of languages, each accepted by an n-state NFA, yet which is not accepted by any sweeping automata with fewer than 2ⁿ states.
- Sakoda-Sipser's open problem:- Is there a 2-DFA with polynomial number of states accepting the same language as a 2-NFA?
- Another open problem: What is the relationship between unary 1-afa's (or 2-afa's) and other fa's? It is easy to show some lower and upper bounds for 1-afa's with only universal states.

- Papers referenced are available on Github
- Wikipedia link