Einführung in die Wahrscheinlichkeitstheortie

16. Dezember 2017

Literatur: Sheldon Ross: Introduction to probability models.

0. Einführendes Beispiel

Münzexperiment Bei 50 aufeinanderfolgenden Würfen einer fairen Münze. Mit welcher Wahrscheinlichkeit erscheint im laufe der Würfe 5 mal hintereinander Zahl?

Antwort: die WSK beträgt ca. 0,55.

Dieses Bsp. zeigt:

- intuitive Schätzung ist oft weit von der tatsächlichen WSK entfernt.
- Pechsträhne bei Münzwürfen sehr häufig

1. Modelierung von Zufallsexperimenten

Ergebnisräume und Ereignisse

Ein Ergebnisraum (ER) ist eine Menge, die alle möglichen Ausgänge eines Zufallsexperiments umfasst. Bezeichnung: Ω .

Beispiele für Ereignisräume:

a) Zufallsexperiment ist ein einmaliger Münzwurf:

$$\Omega = \{K, Z\}$$

b) bei zweifachem Münzwurf:

$$\Omega = \{K,Z\}^2 = \{(K,K),(K,Z),(Z,K),(Z,Z)\}$$

"kartesisches Produkt"

c) einfacher Münzwurf:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

d) zweifacher Münzwurf:

$$\Omega = \{1, 2, 3, 4, 5, 6\}^2$$

e) erzielte Tore im einem Fußballspiel:

$$\Omega = \mathbb{N}_{>0} := \{0, 1, 2, \ldots\}$$

Vorerst: nur ER mit abzählbar vielen Elementen

Wir bezeichnen jede Teilmenge von Ω als ein Ereignis. Man sagt: Ein Ereignis $A \subset \Omega$ tritt ein, falls das Ergebnis des Zufallsexp. in A liegt.

Beispiele für Ereignisse:

a) Sei $\Omega = \{K, Z\}$ (zweifacher Münzwurf)

Ereignis in Worten	Ereignis als Teilmenge
1. Wurf ist Zahl	$\{(Z,K), (Z,Z)\}$
Höchstens ein Wurf ist Zahl	$\{(Z,K), (K,K), (K,Z)\}$

b) Sei $\Omega = \mathbb{Z}_{\geq 0}$ (Tore im Fußball)

Ereignis in Worten	Ereignis als Teilmenge
höchstens drei Tore	$\{0,1,2,3\}$
mindestens ein Tor gerade Anzahl an Toren	$\mathbb{Z}_{>0}$
gerade Anzahl an Toren	{0,2,4,6,}

Seien A,B zwei Ereignosse von Ω .

$$A \subset \Omega$$

$$B \subset \Omega$$

Neue Ereignisse: TABELLE

Ein Ereignis heißt Elementarereignis oder Ergebnis, falls das Ereignis nur ein Element enthält. Wir bezeichnen mit $\mathcal{P}(\Omega) := \{A : A \subset \Omega\}$ die Potenzmenge von Ω . $\mathcal{P}(\Omega)$ ist häufig sehr viel größer als der Ergebnisraum Ω .

1.2 Wahrscheinlichkeitsmaß (WM)

Definition 1.1. Sei $\Omega \neq \emptyset$ abzählbar. Das WSK-maß ist eine Abbildung $P : \mathcal{P}(\Omega)$.

$$P: \mathcal{P}(\Omega) \to [0;1]$$

mit zwei Eigenschaften. Eine Abbildung abbildung heißt WM, falls gilt:

- (W1) $P(\Omega) = 1$
- (W2) Sind $A_1,A_2,..$ disjunkte Ereignisse (d. h. $A_i\cap A_j=\emptyset,$ falls $i\neq j)$

$$P\left(\bigcup_{n=1}^{\infty}\right) = \sum_{n=1}^{\infty} P(A_n)$$