Classification from Pairwise Similarity and Unlabeled Data

Han Baot Gang Niu Masashi Sugiyama t [‡]The University of Tokyo RIKEN AIP

Abstract

Supervised classification requires vast amount of labeled data, which is costly. In order to mitigate this bottleneck, we proposed a classification problem where only pairwise similarity (two examples belong to the same class) and unlabeled data points are needed.

Introduction

Pairwise Data in Classification

Supervised classification: Explicit labels might be difficult to obtain...

Instead,

Example: classification of sensitive matters (e.g., politics, religion, opinion on racial issue) ⇒ "Which person do you share the same belief as?"

Related Work: Semi-supervised Clustering[1]

Clustering with

- Similar pair (must-link)
- Dissimilar pair (cannot-link)

Problem

cluster

assumption

Strong assumption on datasets e.g., cluster assumption, manifold assumption

Goal of This Work

utilize pairwise information

★Classify data using pairwise information w/o strong assumption

Empirical Risk Minimization

Supervised classification = Minimize misclassification rate

Classification Risk
$$R_{\mathrm{PN}}(f) = \mathbb{E}\left[\ell_{0\text{--}1}(yf(\boldsymbol{x}))\right]$$
 unbiased

Empirical Risk
$$\widehat{R}_{\mathrm{PN}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell_{0\text{-}1}(y_i f(\boldsymbol{x}_i))$$

Similar and Unlabeled Data

S(imilar) Data Pairs

 $R_{ ext{PN},\ell}(f) = \mathbb{E}\left[\ell(yf(oldsymbol{x}))
ight]$

$$\{(\boldsymbol{x}_{\mathrm{S},i}, \boldsymbol{x}_{\mathrm{S},i}')\}_{i=1}^{n_{\mathrm{S}}} \sim p(\boldsymbol{x}, \boldsymbol{x}' \mid y = y' = +1 \lor y = y' = -1)$$

misclassification rate of f

U(nlabeled) Data Points

 $\{\boldsymbol{x}_{\mathrm{U},i}\}_{i=1}^{n_{\mathrm{U}}} \sim p(\boldsymbol{x})$

Unbiased Risk Estimator

unbiased Risk of similar data $+\frac{1}{n_{\mathrm{U}}}\sum_{i=1}^{\infty}\mathcal{L}_{\mathrm{U},\ell}(f(\boldsymbol{x}_{\mathrm{U},i}))$ Risk of unlabeled data

$$\pi_{+} \triangleq p(y=+1) \qquad \ell : \text{loss function}$$

$$\pi_{-} \triangleq p(y=-1) \qquad \pi_{\mathrm{S}} \triangleq \pi_{+}^{2} + \pi_{-}^{2}$$

$$\mathcal{L}_{\mathrm{S},\ell}(z) \triangleq \frac{\ell(z) - \ell(-z)}{2\pi_{+} - 1} \qquad \mathcal{L}_{\mathrm{U},\ell}(z) \triangleq \frac{-\pi_{-}\ell(z) + \pi_{+}\ell(-z)}{2\pi_{+} - 1}$$

★Empirical risk can be minimized without explicitly labeled data

Prop. 1: Error \rightarrow 0 asymptotically

Estimation Error Bound

$$R(\hat{f}) - R(f^*) = \mathcal{O}_p \left(\frac{1}{\sqrt{2n_{\mathrm{S}}}} + \frac{1}{\sqrt{n_{\mathrm{U}}}} \right)$$
 Estimation error of risk of empirical minimizer \hat{f} #S data #U data

Def. (Rademacher complexity): For function class \mathcal{H} , $\mathfrak{R}(\mathcal{H}; n, \mu) \triangleq \mathbb{E}_{Z_1, \dots, Z_n \sim \mu} \mathbb{E}_{\sigma} \left| \sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \sigma_i h(Z_i) \right|$

where $\sigma = (\sigma_1, \dots, \sigma_n)$ are Rademaher variables

Assumption:

 \mathcal{F} satisfies the following assumption:

$$\exists R \in \mathbb{R}_{>0} \text{ s.t. } ||f||_{\infty} \leq R \ (\forall f \in \mathcal{F})$$

$$\Re(\mathcal{F}; n, \mu) \leq \frac{C_{\mathcal{F}}}{\sqrt{n}} \ (\forall \mu) \qquad (C_{\mathcal{F}}: \text{constant})$$

where ρ is Lipschitz constant of ℓ

Estimation error converges to 0 in the optimal rate[2] w/o strong assumption

Prop. 2: Reduced to convex optimization

Theorem If ℓ satisfies $\ell(z) - \ell(-z) = -z$ then the optimization of $R_{\mathrm{SU},\ell}(f)$ with the classifier $f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{\phi}(\boldsymbol{x}) + b$

and the L2 regularization becomes convex.

Example Squared loss, Double-hinge loss

★ Computationally efficient to optimize / Unique global optimum

Experiments

Relationship between # of data and error

Setting

- linear-in-input model with squared loss
- regularization parameter \in {10⁻¹, 10⁻⁴, 10⁻⁷} (chosen by cross-validation)
- # of S data = 200
- # of U data \in {200, 400, 800, 1600}
- true class-prior $\in \{0.1, 0.4, 0.7\}$

Result

Comparison with Baselines

Setting

- loss: squared / double-hinge loss
- # of S data = # of U data = 500
- true class-prior = 0.7
- (model, regularization are the same with the above)

Baselines

- SERAPH[3] clustering with semi-supervised metric learning
- 3SMIC[4] semi-supervised clustering with information maximization
- DirtyIMC[5] clustering by matrix completion

Results

	SU(proposed)		Baselines		
Dataset	Squared	Double-hinge	SERAPH	3SMIC	DIMC
adult	66.3 (1.2)	84.5 (0.8)	66.5 (1.7)	58.5 (1.3)	63.7 (1.2)
banana	64.1 (1.7)	68.2 (1.2)	55.0 (1.1)	61.9 (1.2)	64.3 (1.0)
cod-rna	82.5 (1.1)	71.0 (0.9)	62.5 (1.4)	56.6 (1.2)	63.8 (1.1)
higgs	54.9 (1.6)	69.3 (0.9)	63.4 (1.1)	57.0 (0.9)	65.0 (1.1)
ijcnn1	68.2 (1.3)	73.6 (0.9)	59.8 (1.2)	58.9 (1.3)	66.2 (2.2)
magic	65.9 (1.5)	69.0 (1.3)	55.0 (0.9)	59.1 (1.4)	63.1 (1.1)
phishing	75.2 (1.3)	91.3 (0.6)	62.4 (1.1)	60.1 (1.3)	64.8 (1.4)
phoneme	68.0 (1.4)	70.8 (1.0)	69.1 (1.4)	61.3 (1.1)	64.5 (1.2)
spambase	69.5 (1.3)	85.5 (0.5)	65.4 (1.8)	61.5 (1.3)	63.6 (1.3)
susy	60.7 (1.0)	74.8 (1.2)	58.0 (1.0)	57.1 (1.2)	65.2 (1.0)
w8a	60.5 (1.2)	86.5 (0.6)	N/A	60.5 (1.5)	65.0 (2.0)
waveform	78.6 (1.6)	87.0 (0.5)	56.5 (0.9)	56.5 (0.9)	65.0 (0.9)

Classification accuracies for each dataset (with standard errors) Bold-faces are outperforming methods chosen by 5% t-test.

References

[1] Klein, D., Kamvar, S. D., and Manning, C. D. From instancelevel constraints to space-level constraints: Making the most of prior knowledge in data clustering. In ICML, 2002.

[2] Mendelson, S. Lower bounds for the empirical minimization algorithm. IEEE Transactions on Information Theory, 2008.

[3] Niu, G., Dai, B., Yamada, M., and Sugiyama, M. Informationtheoretic semi-supervised metric learning via entropy regularization. In ICML, 2012.

[4] Calandriello, D., Niu, G., and Sugiyama, M. Semisupervised information-maximization clustering. Neural Networks, 2014.

[5] Chiang, K.-Y., Hsieh, C.-J., and Dhillon, I. S. Matrix completion with noisy side information. In NIPS, 2015.

