Since $\phi(n)$ is multiplicative, if p is a prime greater than 3, and k divides p:

$$\phi(pn) \mid \phi(k)$$

$$\phi(pn) = (p-1) \cdot \phi(n),$$
(1)

$$\phi(pn) = (p-1) \cdot \phi(n), \tag{2}$$

so $\phi(n) = 1$, and n = 1 or 2! So, only numbers of the form 2^n , or p, or 2p with p prime could be valid. If p is a prime greater than 5, since p is odd, p-1 is not prime, so $\phi(p)$ and $\phi(2p)$ are not prime. For 2^n , we have $\phi(2^n) = 2^{n-1}$ which isn't prime for $n \geq 3$. So, p = 3 for p and 2p and k = 2 for 2^k are the only contenders left.

These all work:

X	$\phi(x)$
3	2
4	2
6	2