MI-ARI

(Computer arithmetics) winter semester 2017/18

NS. Non-standard number systems

© Alois Pluháček, Pavel Kubalík, 2017 Department of digital design Faculty of Information technology Czech Technical University in Prague

NS. Non-standard number systems

- Standard number systems
- Non-standard positional number systems
 - Negative radix number system (Polish system)
 - Signed digit number system (with symmetrical base)
 - Multiple radix digit system
- Non-positional number system
 - Residue number system (Czech system)

Standard number systems

$$a_n a_{n-1} \dots a_0, a_{-1} \dots a_{-m} \sim A$$

$$A = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 + a_{-1} z^{-1} \ldots a_{-m} z^{-m}$$

or
$$A = \sum\limits_{i=-m}^n a_i z^i$$

$$z \geq 2$$

radix (or base) system — natural number

$$0 \le a_i \le z - 1 < z$$

digits — positive natural integers

$$0 \le A \le z^{n+1} - z^{-m}$$

Negative radix number system

$$z \leq -2$$
 z is an integer $z = -2$... Polish system

$$z = -2 \dots$$
 Polish system

$$0 \le a_i < |z|$$

$$a_n a_{n-1} \dots a_0, a_{-1} \dots a_{-m} \quad \sim \quad A = \sum_{i=-m}^n a_i z^i$$

ex.:
$$z = -2$$
 $0_{-2} = 0_{10}$ $1_{-2} = 1_{10}$ $0,01_{-2} = 0,25_{10}$ $10_{-2} = -2_{10}$ $0,10_{-2} = -0,50_{10}$ $11_{-2} = -1_{10}$ $0,11_{-2} = -0,25_{10}$ $100_{-2} = 4_{10}$ $1,00_{-2} = 1,00_{10}$ $101_{-2} = 5_{10}$ $1,01_{-2} = 1,25_{10}$ $110_{-2} = 2_{10}$ $1,10_{-2} = 0,25_{10}$ $111_{-2} = 3_{10}$ $1,11_{-2} = 0,75_{10}$ $1000_{-2} = -8_{10}$ $10,00_{-2} = -2,00_{10}$ $1001_{-2} = -7_{10}$ $10,01_{-2} = -1,75_{10}$ $1010_{-2} = -10_{10}$ $10,10_{-2} = -2,50_{10}$:

Negative radix number system ii

It is possible to represent not only positive numbers but also negative numbers.

$$\left. egin{aligned} a_j
eq 0 \\ (orall \ i > j) \ a_i = 0 \end{aligned}
ight. \left. egin{aligned} j \ ext{is even} &\Leftrightarrow A > 0 \\ j \ ext{is odd} &\Leftrightarrow A < 0 \end{aligned}
ight.$$

There are not used special codes (e.g. 1's complement and etc.) to represent negative numbers.

significantly non-symmetrical range:

ex.:
$$z=-10$$
, $n=3$, $m=0 \implies -9090 \le A \le 909$ $z=-2$, $n=6$, $m=0 \implies -42 \le A \le 85$

addition:

ex.:
$$z = -10$$
 $5+8 = 13 = 3 - z$ \Rightarrow carry = -1 $0+(-1) = -1 = 9 + z$ \Rightarrow carry = $+1$ $z = -2$ $1+1 = 2 = 1 - z$ \Rightarrow carry = -1 $0+(-1) = -1 = 1 + z$ \Rightarrow carry = $+1$

Negative radix number system iii

full adder for base z = -2

a	\boldsymbol{b}	\boldsymbol{p}	$oldsymbol{q}$	s
0	0	$\overline{-1}$	+1	1
0	0	0	0	0
0	0	+1	0	1
0	1	-1	0	0
0	1	0	0	1
0	1	+1	-1	0
1	0	-1	0	0
1	0	0	0	1
1	0	+1	-1	0
1	1	-1	0	1
1	1	0	-1	0
1	1	+1	-1	1

$$\mathsf{carry} = \begin{cases} -1 \\ 0 \\ +1 \end{cases}$$

Negative radix number system iv

subtraction:
$$A - B = A + (-B)$$

$$-B = ?$$

$$z=-2$$
 $-B=B\cdot (-1)=B\cdot 11_{-2}$ $-B=B+B \triangleleft 1$

multiplication: similarly to the standard number system (shifts and addition)

division: a little bit complicated

Signed digit number system

$$z \geq 2$$
 z is an integer $\left| -\frac{1}{2}z \right| \leq a_i \leq \frac{1}{2}z$

$$-\frac{1}{2}z \leq a_i \leq \frac{1}{2}z$$

$$a_n a_{n-1} \dots a_0, a_{-1} \dots a_{-m}$$

$$a_n a_{n-1} \dots a_0, a_{-1} \dots a_{-m} \sim A = \sum_{i=-m}^n a_i z^i$$

(our) **notation**:
$$\widehat{a} = -a$$

$$|\hat{a} = -a|$$

ex.:
$$z = 10$$
 $166_{10} = 2\widehat{3}\widehat{4}_{10\pm}$ $155_{10} = 155_{10+} = 2\widehat{4}\widehat{5}_{10+} = 2\widehat{5}5_{10+}$

even $z \Rightarrow$ One number can be represented by many images,

because
$$\left[\frac{1}{2}z = z - \frac{1}{2}z\right]$$
.

This ambiguous can be excluded by some restrictions:

$$-rac{1}{2}z$$
 $< a_i \le rac{1}{2}z$ or $-rac{1}{2}z$ $\le a_i < rac{1}{2}z$

Restrictions brings other problems to solve (e.g. for multiplication).

It is better to do not use any restrictions.

Signed digit number system

It is possible to represent not only positive numbers, but also negative numbers.

$$\begin{array}{c} a_j \neq \mathbf{0} \\ (\forall \ i > j) \ a_i = \mathbf{0} \end{array} \right\} \ \stackrel{\text{\tiny les}}{=} \ \begin{cases} a_j > \mathbf{0} \ \Leftrightarrow \ A \ > 0 \\ a_j < \mathbf{0} \ \Leftrightarrow \ A \ < 0 \end{cases}$$

There are not used special codes (e.g. 1's complement and etc.) to represent negative numbers.

addition:

one-positional (full) adder:

$$a+b+p\geq rac{1}{2}z$$
 \Rightarrow $q=+1$, $s=a+b+p-z$ $a+b+p\leq -rac{1}{2}z$ \Rightarrow $q=-1$, $s=a+b+p+z$ other: $q=0$, $s=a+b+p$

subtraction: A - B = A + (-B)

$$A \sim a_n \dots a_0, a_{-1} \dots a_{-m} \Longrightarrow$$
 $\Rightarrow -A \sim \widehat{a_n} \dots \widehat{a_0}, \widehat{a_{-1}} \dots \widehat{a_{-m}}$

Signed digit number system ii

multiplication: similar to the standard number system

(shifts and addition)

division: a little bit complicated

significant applications:

- "temporarysystem" for multiplication (e.g. Booth method)
- "temporarysystem" for division (SRT methods)

Multiple radix digit system

The integers are take into account for the next consideration.

bases z_n, \ldots, z_1, z_0 — natural numbers > 1

$$0 \le a_i \le z_i - 1 < z_i$$

$$a_n \dots a_2 a_1 a_0 \sim A$$

$$A = = a_n \cdot z_{n-1} \cdot \dots \cdot z_2 \cdot z_1 \cdot z_0 + \dots + a_2 \cdot z_1 \cdot z_0 + a_1 \cdot z_0 + a_0 = = (\dots \cdot (a_n \cdot z_{n-1} + a_{n-1}) \cdot z_{n-2} + \dots + a_1) \cdot z_0 + a_0$$

note: 1. base z_n is significant only for limit a_n .

2. $\forall i \ z_i = z \implies$ standard number system with base z

ex.: $A = 5^{\text{weeks}} 3^{\text{days}} 13^{\text{hours}} 50^{\text{minutes}} 11^{\text{seconds}}$ notation of time information in system with bases ?, 7, 24, 60, 60

Multiple radix digit system ii

range of representable numbers A:

$$0 \le A < z_n \cdot z_{n-1} \cdot \cdot \cdot z_1 \cdot z_0$$

conversion of integer A into the system with bases z_n , ..., z_0 :

$$A_0 := A;$$
 for $i := 0$ to n do begin $a_i := A_i \% z_i;$ $A_{i+1} := A_i \div z_i;$ end;

practical application — see residual number system

Residue number system

The integers are take into account for the next consideration.

(Scale can be used to represent rational numbers.)

bases z_n , ..., z_1 , z_0 — different prime numbers

$$A \sim a_{n} \ldots a_{2} a_{1} a_{0}$$
, where $a_{i} = A \% z_{i}$

ex.:
$$z_2=5, \ z_1=3, \ z_0=2$$

$$0 \sim 000 \qquad 6 \sim 100 \qquad 12 \sim 200 \qquad 18 \sim 300 \qquad 24 \sim 400$$

$$1 \sim 111 \qquad 7 \sim 211 \qquad 13 \sim 311 \qquad 19 \sim 411 \qquad 25 \sim 011$$

$$2 \sim 220 \qquad 8 \sim 320 \qquad 14 \sim 420 \qquad 20 \sim 020 \qquad 26 \sim 120$$

$$3 \sim 301 \qquad 9 \sim 401 \qquad 15 \sim 001 \qquad 21 \sim 101 \qquad 27 \sim 201$$

$$4 \sim 410 \qquad 10 \sim 010 \qquad 16 \sim 110 \qquad 22 \sim 210 \qquad 28 \sim 310$$

$$5 \sim 021 \qquad 11 \sim 121 \qquad 17 \sim 221 \qquad 23 \sim 321 \qquad 29 \sim 421$$

Residue number system ii

range of representable numbers A:

$$0 \leq A < z_n \cdot z_{n-1} \cdot \cdot \cdot \cdot z_1 \cdot z_0$$

operation addition, subtraction and multiplication:

 $a_i \ldots 1$. digit of operand in position i

 b_i ... 2. digit of operand in position i

 c_i ... digit of result in position i

 \odot ... symbol of operation (is replacing +, - or \times)

$$\forall i \quad c_i \equiv a_i \odot b_i \mod z_i$$

ex.:
$$211 + 301 = 010 \sim 7+3 = 10$$

 $211 - 301 = 410 \sim 7-3 = 4$
 $211 \times 301 = 101 \sim 7 \times 3 = 21$

Residue number system iii

problems:

- division
- overflow detection
- detection of negative number result
- comparison of two numbers

- 즐기 !!!!

without problems: division if the reminder is=0
it is converted on the multiplication with inverted va

ex.:
$$101 / 211 = 101 \times 311 = 301 \sim 21 \times 7 = 3$$

comparison of two operands

- convert both numbers to the standard number system with same base
 - required operations: subtraction and division without reminder
- Greater number is detected by the bigger digit in first positions, where the numbers are different.

Residue number system iv

ex.:
$$z_2 = 5$$
, $z_1 = 3$, $z_0 = 2$
 $2^{-1} \sim 32$? $3^{-1} \sim 2$?1

 α_2 , α_1 , α_0 — digit in positional number system with bases 5, 3, 2

$$A \sim 211 = (a_2, a_1, a_0)$$
 $A_0 = A \sim 211$
 $\alpha_0 = A_0 \% z_0 = a_0 = 1 \sim 111$
 $A_1 = \frac{A_0 - \alpha_0}{z_0} \sim 211 - 111 = 100$
 $100 \times 32? = 30?$
 $\alpha_1 = A_1 \% z_1 = a'_1 = 0 \sim 000$
 $A_2 = \frac{A_1 - \alpha_1}{z_1} \sim 30? \times 2?1 = 1??$
 $\alpha_2 = A_2 \% z_2 = a'_2 = 1 \sim 111$
 $(\alpha_2, \alpha_1, \alpha_0) = 101$

Residue number system v

conversion to the different number system — e.g. to the standard decimal number system (required operations are processed in this number system)

orthogonal base

$$egin{array}{lll} B_i & \equiv & 1 \mod z_i \ B_i & \equiv & 0 \mod rac{z_n \cdot \cdot \cdot z_1 \cdot z_0}{z_i} \end{array}$$

$$A \equiv a_n \cdot B_n + \dots + a_1 \cdot B_1 + a_0 \cdot B_0 \mod z_n \cdots z_1 \cdot z_0$$

ex.:
$$z_2=5, z_1=3, z_0=2$$

$$B_0=15 \sim 001$$

$$B_1=10 \sim 010$$

$$B_2=6 \sim 100$$

$$211 \sim 2 \cdot 6 + 1 \cdot 10 + 1 \cdot 15 =$$

$$=12 + 10 + 15 = 37 \equiv 7 \mod 30$$