SOC542 Statistical Methods in Sociology II Probability and Bayesian Inference

Thomas Davidson

Rutgers University

February 7, 2022

Plan

- Probability review
- Bayes' theorem and its applications
- Comparing Bayesian and Frequentist approaches
- Bayesian estimation
- ► Lab: Bayesian regression in R

- \triangleright P(A) refers to the probability of an event A
 - e.g. P(A) = 0.5 when referring to the probability of receiving a heads on a fair coin toss.
 - e.g. $P(B) = \frac{1}{6}$ is the probability of rolling six with a fair die.
- ▶ In each case, we have a *random process* with a set of possible outcomes (e.g. heads or tails) referred to as the *sample space*.

Simple probability

► What is the probability of tossing a coin twice and getting two heads?

- ► What is the probability of tossing a coin twice and getting two heads?
 - P(A)P(A) = P(A) * P(A) = 0.5 * 0.5 = 0.25

- ▶ What is the probability of tossing a coin twice and getting two heads?
 - P(A)P(A) = P(A) * P(A) = 0.5 * 0.5 = 0.25
- ▶ What is the probability of a sequence of *N* heads?

- What is the probability of tossing a coin twice and getting two heads?
 - P(A)P(A) = P(A) * P(A) = 0.5 * 0.5 = 0.25
- ▶ What is the probability of a sequence of *N* heads?
 - \triangleright $P(A)^N$

- What is the probability of tossing a coin twice and getting two heads?
 - P(A)P(A) = P(A) * P(A) = 0.5 * 0.5 = 0.25
- What is the probability of a sequence of N heads?
 ► P(A)^N
- ▶ In this case, P(A) becomes vanishingly small as $n \to \infty$ ▶ $0.5^{10} = 0.00098 = \frac{1}{1024}$

Simple probability

▶ We can easily use simulations to verify our calculation. In this case, I use the rbinom function to simulate 1024 sequences of 10 tosses of a fair coin.

```
sims <- rbinom(1024, 10, 0.5)
print(length(sims[sims >= 10]))
## [1] 0
```

Independence

Assume we roll a single die and flip a single coin. What is the probability of rolling a six and getting a tails?

Independence

Assume we roll a single die and flip a single coin. What is the probability of rolling a six and getting a tails?

$$P(A, B) = P(A)P(B) = \frac{1}{2} * \frac{1}{6} = \frac{1}{12}$$

Independence

Assume we roll a single die and flip a single coin. What is the probability of rolling a six and getting a tails?

$$P(A, B) = P(A)P(B) = \frac{1}{2} * \frac{1}{6} = \frac{1}{12}$$

➤ The two events are independent of one another, so the joint probability is simply the product of the probabilities of the two events.

Conditional probability and independence

- ▶ P(A) and P(B) are independent if and only if P(A|B) = P(A).
 - e.g. The number we rolled on the die has no effect on the outcome of the coin toss.

Conditional probability and independence

► Consider a deck of 52 standard playing cards. What is the probability of randomly drawing an Ace?¹

 $^{^{1}}$ This example is taken from Cunningham 2021, p. 17. It is an example of sampling without replacement.

Conditional probability and independence

Consider a deck of 52 standard playing cards. What is the probability of randomly drawing an Ace?

$$P(Ace) = 4/52 = 1/13$$

Let's assume we pick an Ace and put it to the side. What's the probability we get another Ace?

Conditional probability and independence

Consider a deck of 52 standard playing cards. What is the probability of randomly drawing an Ace?

$$P(Ace) = \frac{4}{52} = \frac{1}{13}$$

- ► Let's assume we pick an Ace and put it to the side. What's the probability we get another Ace?
- Wrong answer: $P(Ace_2) = \frac{4}{52} = \frac{1}{13}$.

Conditional probability and independence

Consider a deck of 52 standard playing cards. What is the probability of randomly drawing an Ace?

$$P(Ace) = \frac{4}{52} = \frac{1}{13}$$

- ▶ Let's assume we pick an Ace and put it to the side. What's the probability we get another Ace?
- Wrong answer: $P(Ace_2) = \frac{4}{52} = \frac{1}{13}$.
- Correct answer: $P(Ace_2) = P(Ace_2|Ace_1) = 3/51 = 0.059$.
- This is an example of *conditional probability* since $P(Ace_2|Ace_1) \neq P(Ace_1)$.

Conditional probability and independence

▶ We can express a conditional probability as:

$$P(A|B) = \frac{P(B,A)}{P(B)}$$

- ► The probability of *A* conditional on *B* is the **joint probability** of *A* and *B*, divided by the **marginal probability** of *B*.
- The denominator the sum of over possible joint probabilities of B and A, $\sum_{A^*} P(B, A^*)$.
 - ▶ The * denotes that A^* may take multiple values.

Conditional probability and independence

- ▶ If two events are independent, then P(A|B) = P(A).
- ► To reject independence, we need to show that $P(A, B) \neq P(A)P(B)$

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes' theorem

What's the probability it is going to rain given that we can see clouds?

$$P(Rain|Cloud) = \frac{P(Cloud|Rain)P(Rain)}{P(Cloud)}$$

Bayes' theorem

- Let's say we live in England...
 - ▶ P(Cloud) = 0.7
 - P(Rain) = 0.3
 - ightharpoonup P(Cloud|Rain) = 1

$$P(Rain|Cloud) = \frac{P(Cloud|Rain)P(Rain)}{P(Cloud)} = \frac{1*0.3}{0.7} = \frac{0.3}{0.7} \approx 0.429$$

Deriving Bayes' theorem

▶ Start with the definition of conditional probability:

$$P(A|B) = \frac{P(B,A)}{P(B)}$$

► Multiply each side by *P*(*B*):

$$P(A|B)P(B) = P(B,A)$$

▶ Analogously, if we start with P(B|A) we can get:

$$P(B|A)P(A) = P(B,A)$$

Deriving Bayes' theorem

► The previous example shows that the following quantities are equal:

$$P(A|B)P(B) = P(B|A)P(A)$$

▶ Divide both sides by P(B) to get Bayes' theorem:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

COVID-19 tests

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(C19|+) = \frac{P(+|C19)P(C19)}{P(+)}$$

COVID-19 tests

$$P(C19|+) = \frac{P(+|C19)P(C19)}{P(+)}$$

- ▶ P(C19|+): Probability you have COVID-19 given that you test positive.
- ▶ P(+|C19): Probability you test positive given that you have COVID-19.
- ► *P*(*C*19): Probability you have COVID-19 given population infection rates.
- \triangleright P(+): Probability a test returns a positive result.

COVID-19 tests

- ► Assume there is a 1% chance you have COVID-19.
- ► Assume a test has a false negative rate of 2%.
 - ▶ 98% of the time it correctly diagnoses COVID-19, 2% of the time it fails to detect it.
- ► Assume the same test has a false positive rate of 5%
 - ▶ 95% of the time it correctly rejects COVID-19 when a person is negative, 5% of the time it falsely diagnoses COVID-19.
- What is the probability you really have COVID-19 following a positive test?

COVID-19 tests: P(+|C19)

$$P(C19|+) = \frac{P(+|C19)P(C19)}{P(+)}$$

If we assume a false negative rate of 2%. Then the probability of a positive test given COVID-19 is P(+|C19) = 1 - 0.02 = 0.98.

COVID-19 tests: P(C19)

$$P(C19|+) = \frac{P(+|C19)P(C19)}{P(+)}$$

Assume 1% of the population has COVID-19, then P(C19) = 0.01.

COVID-19 tests: P(+)

- ► To calculate the proportion of positive tests we need to count all the positive tests.
- ▶ We can thus reformulate Bayes rule as

$$\frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A*)P(A*)}$$

$$\frac{P(+|C19)P(C19)}{P(+|C19)P(C19) + P(+|C19-)P(C19-)}$$

COVID-19 tests: P(+)

$$P(C19|+) = \frac{P(+|C19)P(C19)}{P(+)}$$

- We already know the first part of the denominator, P(+|C19)P(C19) = 0.98 * 0.01.
- ► If the test has a false positive rate of 5%, P(+|C19-) = 0.05*(1-0.01)
- ▶ Thus, we take the sum of these probabilities to get the marginal probability of a positive test:

$$P(+) = (0.98 * 0.01) + (0.05 * (1 - 0.01))$$

COVID-19 tests: Calculating P(C19|+)

▶ If we plug the numbers into Bayes' theorem we get

$$P(C19|+) = \frac{0.98 * 0.01}{0.98 * 0.01 + 0.05 * 0.99}$$

▶ We can use R to do the calculation for us

Terminology

Posterior \propto **Likelihood** \times **Prior**

- In the previous example,
 - \triangleright P(C19|+) is the **posterior**.
 - ▶ P(+|C19) is the **likelihood of the data**.
 - \triangleright P(C19) is the **prior**.
- ▶ The denominator P(+) is ensures the result is a probability. It is often described as the **evidence** or the **marginal likelihood**.

COVID-19 tests: Tabular explanation

- ► The four cells in the middle of the table represent the *joint* probabilities of two events.
- ► The row and column totals represent the *marginal probabilities* of each event.
- \triangleright θ is used to denote the parameters we are estimating.

Test result	$\theta = C19+$	$\theta = C19-$	Marginal (Test)
+	P(+ C19)P(C19)	P(+ C19-)P(C19-)	$\sum_{\theta} P(+ \theta)P(\theta)$
-	P(- C19)P(C19)	P(- C19-)P(C19-)	$\sum_{\theta} P(- \theta)P(\theta)$
Marginal C19	P(C19+)	P(C19-)	1.0

COVID-19 tests: Tabular explanation

- ▶ To calculate P(C19|+) we can take the *joint probability* of C19 and a positive test and divide it by the *marginal probability* of a positive test.
- We can get the relevant values directly from the table: 0.98 * 0.01/0.06.

Test result	$\theta = C19+$	$\theta = C19-$	Marginal (Test)
+	0.98*0.01	0.05*(1-0.01)	0.06
_	(1-0.98)*0.01	(1-0.05)*(1-0.01)	0.94
Marginal C19	0.01	(1-0.01)	1.0

Changing our priors

▶ Let's change our prior to assume 10% COVID-19 prevalence in the population (perhaps this is a more reasonable assumption at the moment...)

```
(0.98*0.1) / ((0.98*0.1) + (0.05*0.9))
```

[1] 0.6853147

- Now we get a much higher posterior probability.
- ► We could easily alter the calculation by incorporating other prior information, e.g. symptoms, exposure

McElreath's marble counting example

- Consider a bag containing four marbles
- The marbles can be white or blue
- We draw a sample of marbles from the bag (with replacement)

Conjecture: Five possibilities

A sample from the bag produces

Sampling and possibilities

McElreath 2020, Fig. 2.2 (p. 22)

Counting the possibilities

<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Conjecture	Ways to produce [B,W,B]
[W,W,W,W]	$0 \times 4 \times 0 = 0$
[B,W,W,W]	$1 \times 3 \times 1 = 3$
[B,B,W,W]	$2 \times 2 \times 2 = 8$
[B,B,B,W]	$3 \times 1 \times 3 = 9$
[B,B,B,B]	$4 \times 0 \times 4 = 0$

From counts to probability

Conjecture	Propoportion B	Ways [B,W,B]	Plausibility
[W,W,W,W]	0.00	0	0.00
B,W,W,W]	0.25	3	0.15
[B,B,W,W]	0.50	8	0.40
[B,B,B,W]	0.75	9	0.45
[B,B,B,B]	1.00	0	0.00

Summary

- We enumerated the set of plausible data generating processes p
- ▶ We counted the ways we could produce the data given each value of *p*. This is known as the *likelihood*.
- ▶ We normalized these counts to get *posterior* probabilities, which indicate the relative plausibility of each option *p*.
- The most plausible value is the one that has the most ways of generating the data.

Incorporating prior information

Now let's say we pick another marble and it's blue. We can use the prior information to update our counts.

Conjecture	Ways to produce [B]	Prior counts	New counts
[W,W,W,W]	0	0	$0 \times 0 = 0$
[B,W,W,W]	1	3	$3 \times 1 = 3$
[B,B,W,W]	2	8	$8 \times 2 = 16$
[B,B,B,W]	3	9	$9 \times 3 = 27$
[B,B,B,B]	4	0	$0 \times 4 = 0$

Bayes' theorem and data analysis

▶ In a general sense, we can think about Bayesian inference as calculating the posterior distribution in the following way:

$$\textit{Posterior} = \frac{\textit{Probability of the data} * \textit{Prior}}{\textit{Average probability of the data}}$$

Bayesian inference

"Bayesian inference is reallocation of credibility across possibilities" - John Kruscke²

²Chapter 2 of Kruschke's 2015 book *Doing Bayesian Data Analysis* provides an outline of his argument and is available online.

Bayesian inference for a continuous parameter

Estimating the marriage rate

- Assume a demographer is interested in estimating the marriage rate in the populuation.
- The demographer starts out with a "flat" prior
 - ► The marriage rate could be anywhere from 0 (nobody is married) to 1 (everybody is married).
- ► The demographer samples people at random and asks them their marital status.

Assume zero knowledge with a flat (uniform) prior

First observation: Married

Second observation: Married

Third observation: Single

Fourth observation: Married

Fifth observation: Single

Sixth observation: Single

Seventh observation: Single

Eighth observation: Married

Nineth observation: Single

Overview

Bayesian Updating

- This example demonstrates the concept of Bayesian updating
 We use new information to update our beliefs
- ► Each time we update we use the previous **posterior** as the new **prior**!

Bayesian Updating

- This example demonstrates the concept of Bayesian updating
 We use new information to update our beliefs
- ► Each time we update we use the previous **posterior** as the new **prior**!
- ► Most of the time we use all our data at once to get the final posterior rather than iteratively updating.

Bayesian Updating

- This example demonstrates the concept of Bayesian updating
 We use new information to update our beliefs
- ► Each time we update we use the previous **posterior** as the new **prior**!
- ▶ Most of the time we use all our data at once to get the final posterior rather than iteratively updating.
- ▶ Bayesian updating is order invariant: we will get the same result regardless of the way observations are ordered.

Formalizing a model

- ► The previous calculations are an example of the *binomial* distribution
 - \triangleright Recall the distribution has two parameters N and p
- ► The goal of this analysis is to produce an estimate of the parameter *p*.
- We can thus write down a model to describe our analysis of marriage:

Marriage
$$\sim$$
 Binomial(N, p)
p \sim Uniform(0, 1)

► The goal of this analysis is to produce an estimate of the parameter *p*. In this case, we started with a flat, uniform prior.

Thomas Bayes (1701-1761)

Source: Wikipedia.

Pierre-Simon Laplace (1749-1827)

Source: Wikipedia.

Ronald Fisher (1890-1962)

Source: Wikipedia.

Historical developments

- Frequentist (or "Fisherian") statistics dominated for most of the 20th century.
- Bayesian inference critiqued as too subjective and difficult to implement for complex problems.
- Reversal over the past couple of decades as critiques of Bayesian approach debunked, cheap compute power makes it tractable, and key tenets of Frequentist statistics are questioned (e.g. controversy over p-hacking³).
- ► The Bayesian approach is now mainstream in statistics and much of the natural sciences, but the social sciences have been slower to adopt.⁴

³See Imbens 2021 reading from Week 1.

⁴See Scott and Bartlett 2019

Theoretical foundations

- Frequentist
 - Long-run probabilities
 - Sampling distributions
- Bayesian
 - Probability theory

Sample size

- Frequentist
 - Properties of estimators depend on minimal sample size
- Bayesian
 - ► No minimum sample size
 - But larger samples allow for more precise estimates

Point estimates

- Frequentist
 - Models produce point estimates
- Bayesian
 - No singular point estimates
 - Many different summaries of the posterior distribution are possible (e.g. mean, median, mode)

P-values

- Frequentist
 - p-values used to communicate statistical significance
- Bayesian
 - Critique: p-values are based on arbitrary distributional assumptions
 - Uncertainty is captured by entire posterior distribution
 - ▶ Bayes' Factor is a Bayesian version of a p-value⁵

See Kruschke and Liddell 2018

Confidence intervals

- Frequentist
 - Confidence intervals defined using test statistics and conventions
 - Assumption that a parameter is fixed and that interval is derived from a sample
- Bayesian
 - Critique: Frequentist conventions are arbitrary
 - Assumption that a parameter has a distribution
 - Credible intervals or compatibility intervals can be used to summarize the posterior distribution

Confidence intervals: Interpretation of a 95% interval

- Frequentist
 - Over many repeat samples, 95% of calculated confidence intervals would contain the true value of the parameter
- Bayesian (assume an interval over 95% of the posterior distribution)
 - There is a 95% probability that the estimated parameter lies within the defined range, given the model and the data.
 - "What the interval indicates is a range of parameter values compatible with the model and the data." McElreath, p. 54.

Bayesian Estimation

- ► Three methods for estimating the posterior distribution
 - Analytical calculations
 - Grid and quadratic approximation
 - Markov Chain Monte Carlo

Analytical calculations

- ► For simple problems we can use calculus to provide an analytical solution for the posterior distribution
- But this approach does not scale well beyond simple problems like the marriage example

Grid and quadratic approximation

- Grid approximation (see McElreath 2.4.3)
 - We can approximate continuous spaces by using grids
 - ▶ But the method also scales very poorly to complex examples
- Quadratic approximation (see McElreath 2.4.4)
 - ▶ A more robust approach that involves using distributions to approximate the posterior
 - Flexible for many regression problems but also has trouble scaling

Markov Chain Monte Carlo (MCMC)

- Use simulation to draw samples from the posterior distribution
 - A computationally intensive approach
 - ► Samples provide an approximation for complex spaces
 - More efficient for complex models than quadratic approximation
- ▶ MCMC has led to major advances in Bayesian methods since the 1990s (see McElreath 2.4.5).

Samples from a Markov Chain

Stan and Hamiltonian Monte Carlo

- Stan is a programming language developed for statistical computing
- It implements Hamiltonian Monte Carlo (HMC) sampling
 - A variant of MCMC methods based on Hamiltonian physics
 - Approximates the posterior by "flicking" a particle and observing its movement
- ► HMC is highly effective at solving even complex problems⁶
 - ► It provides lots of useful diagnostics making it easier to debug than early MCMC approaches
 - Greater flexibility as it not require conjugacy

⁶See McElreath Chapter 9 and Betancourt 2018 for a more advanced conceptual overview.

Bayesian Regression

- ► Regression coefficients are the *unknown* parameters that we want to estimate given a model and the observed data.
- We can formalize these assumptions by writing down a model that looks something like this:

$$y_i \sim ext{Normal}(\mu_i, \sigma)$$
 $\mu_i = eta_0 + eta_1 x_i$
 $eta_0 \sim ext{Normal}(0, 10)$
 $eta_1 \sim ext{Normal}(0, 1)$
 $\sigma \sim ext{Uniform}(0, 1)$

Bayesian Regression

- In this case, we make the assumption that y_i is normally distributed and that we can express its mean in terms of x (recall that $E[y|x] = \beta_0 + \beta_1 x_i$)
- ► Each *parameter* in the model has a *prior* distribution. We specify these before we have seen any data
- After estimating a model using the data we get the *posterior* distribution for each parameter

Bayesian Regression

- We will be using stan_glm to estimate these kinds of models using HMC
- ► The *posterior distributions* of the parameters are then analyzed to make inferences about the relationship between *x* and *y*
- ► We can also use the posterior to generate new data consistent with the model

Final remarks

"All models are wrong, but some are useful" - George Box⁷

 $^{^{7}\}mathrm{This}$ aphorism is attributed to statistician George Box. See Wikipedia for further discussion.