

SLIATE

RI LANKA INSTITUTE OF ADVANCED TECHNOLOGICAL EDUCATION

(Established in the Ministry of Higher Education, vide in Act No. 29 of 1995)

Higher National Diploma in Information Technology First Year, Second Semester Examination – 2018 HNDIT 1211: Data Structures and Algorithms

Instructions for Candidates:

No. of Questions

: 05 Questions

Answer any four (04) questions only.

No. of Pages

: 04 Pages

Time

: Two (02) Hours

Δ	estion	MI	
T)U	esuou	UΙ	

a) Briefly explain the term "Data Structure" in computer programming.

(02 Marks)

- b) Explain the following terms by using suitable examples.
 - I. Primitive Data type
 - II. Abstract Data type

(04 Marks)

c) Identify the difference between Linear Data Structures and Non-Linear Data Structures. Give suitable examples for each type.

(04 Marks)

d) Fill in the blanks by using suitable words given in the brackets.

(05 Marks)

- efficiency explains the minimum number of steps that an algorithm can take with any collection of data values. (Best Case, Worst Case, Average Case)
- II. If the number of operations in an algorithm is $n^3 + 2n + 10$, the big O' notation of this algorithm is(O(1), O(n), O(n²), O(n³))
 - III. is an example for non-linear data structure. (Array, Linked List, Graph)
 - IV. Generally $O(n^2)$ is faster than (O(n), $O(n^3)$)
 - V.has last-in-first-out behavior. (Stack, Array, Queue, Tree)
- e) Write suitable C++ codes to the followings.

I. Create the following array with the name "first" using a single statement.

3 20 10 7 11 (02 Marks)

II. Declare an integer array with the name "second", with the size 5 and without assigning any value.

III. Write a C++ code segment to assign values taken as keyboard inputs to the "second" array using a 'for' loop.

(02 Marks)

IV. Write a C++ code to compare the two arrays "first" and "second".
 Note: If two arrays are similar, you need to display "Arrays are matching" and if not, you need to display "Arrays are not matching" (05 Marks)

Question 02	
a) What is Linked List?	(02 Marks)
b) State an advantage of Linked List over Arrays	(02 Marks)
c) Graphically illustrate the following stack operations sequentially.	
I. initializeStack()	(03 Marks)
II. push (10)	1.
III. a = pop () IV. y = isEmpty()	
V. push (7)	
VI. x = topElement()	
d) Graphically illustrate the static (array based) implementation for the formations	ollowing stack
operations. Note: Size of the array is 3	0
I. initializeStack()	(06 Marks)
II. push (100)	in the
III. push (50) IV. a= pop ()	
V. push (70); push (80)	
VI. $b = isFull()$	4. (4.)
e) Consider following stack operations	
isFull ()isEmpty ()	
I Write C++ code for the arroy based (static) implementations of the	
 Write C++ code for the array based (static) implementations of the operations. 	e above
II. Write C++ code for the linked list based (dynamic) implementation	(04 Marks)
operations.	
f) What do you understand by the term "Stack Overflow"?	(04 Marks)
	(02 Marks)
g) Give two examples for applications of stacks.	(02 Marks)
Question 03	
a) What is Queue Data Structure?	
b) Give two examples for applications of queues.	(02 Marks)
•	(02 Marks)
 c) Graphically illustrate the following scenario using a Queue. Assume has already initialized and it is empty at the beginning. Scenario: 	that the queue
Consider the following sequence.	
M A $@+-@$ In the above sequence;	
HNDIT 1211: Data Structures and Algorithms (2018 Second Semester)	Page 2 of 4

• Each alphabetic letter inserts the letter into the	queue.
• Each operator (+, -, etc.) deletes an item from	he queue.
 Each @ symbol represents y=isEmpty() 	(06 Marks)
d) Graphically illustrate the static (array based) imple operations sequentially. Note: Size of the array is	
I. initializeQueue() II. enQueue (M) III. enQueue (S) IV. q = isFull() V. x = deQueue ()	(05 Marks)
 e) Write down the C++ implementation of a Node w (Linked list) implementation of a Queue. 	hich can be used in Dynamic
Quoud.	(04 Marks)
f) Give static (Array based) implementation of the f	ollowing queue operations.
I. Insert operationII. Deletion operation	(06 M-d-)
	(06 Marks)
Question 04	
a) Explain "Tree Data Structure" with a suitable gra	phical example.
b) Explain how binary search trees are different fro examples.	(03 Marks) m binary trees. Use suitable graphical
	(06 Marks)
 c) Briefly explain the following terms related to the I. Root 	e tree data structures.
II. Leaf	
III. Size of a tree	
IV. Depth of a node	
V. Degree of a node	
VI. Degree of a tree	(06)(1)
d) Briefly explain the following types of binary tre	(06 Marks)
I. Full binary tree	
II. Complete binary tree	
III. Perfect binary tree	
D	(03 Marks)
e) State one advantage and one disadvantage of b	-
	(02 Marks)
f) Insert following data set into a binary search to	ee.
Data Set: 21, 40, 15, 30, 16, 11, 19, 1, 50, 45	(05 Marks)
Question 05	101 (V) 1744110)
a) What is sorting?	•
	(01 Mark)
b) Consider the following data set. Data Set: 65, 20, 40, 6, 15	

HNDIT 1211: Data Structures and Algorithms (2018 Second Semester)

Page 3 of 4

- I. Sort the above data set using selection sort.
- II. Sort the above data set using bubble sort.

Note: Show your step by step work clearly.

(2 x 4 Marks)

c) Write a C++ code to implement swap function which can be used in selection sort algorithm.

(03 Marks)

d) What do you understand by the term Searching Algorithm?

(01 Mark)

- e) Briefly explain following searching algorithms.
 - I. Sequential Search
 - II. Binary Search

(04 Marks)

- f) Write down the pseudo codes for following algorithms.
 - I. Linear search
 - II. Binary search

(2 x 04 Marks)