

Bachelor's Thesis Flexible User-Friendly Trip Planning Queries

Adviser: Saeed Taghizadeh Violina Zhekova | May 10, 2019

INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION (IPD), CHAIR PROF. BÖHM

Outline

- Motivation
- Related Work
- 3 Example
- Problem Definition
- Introducing the Operators
 - Equality operator
 - Inequality operator
 - Or operator

- Order operator
- 6 Evaluation
 - Experiments
 - Equality operator
 - Inequality operator
 - Or operator
 - Order operator
- Conclusion
- B Discussion

Motivation

- Sequenced Route Queries (SRQ) finding routes passing through multiple Points of Interest (Pols)
- Advances in Location Based Services (LBS) and Geographic Information System (GIS) applications (e.g. logistics and supply chain management)
- <u>Aim</u>: Designing a language to enable the user to express his query requirements in a flexible manner

Violina Zhekova – Flexible User-Friendly Trip Planning Queries

Related work

- Vector vs. metric spaces
- Trip Planning Queries (TPQ) [1]
- The Optimal Sequenced Route (OSR) Query [2]
- The Skylyne concept applied to SRQ [3]
- Considering multiple factors of a route rating of Pols, distance and category weights, dynamic factors (e.g. traffic information) [4]
- SRQ issued by users moving along a route [5]
- Multi-rule Partial Sequenced Route (MRPSR) Query [6]

Example

- Category sequence: (restaurant, bank, movie theater, restaurant)
 Condition: equal restaurants
- Optimal Sequenced Route (OSR): (r₁, b₁, mt₁, r₂), length: 11 (shown with red lines)

Introducing the Operators

Optimal route with equal restaurants: (r_1, b_1, mt_1, r_1) , length: 12 (shown with dashed lines)

Related Work

Example

Example

- **Category sequence**: (restaurant, bank, movie theater, restaurant) **Condition**: equal restaurants
- Optimal Sequenced Route (OSR): (r_1, b_1, mt_1, r_2) , length: 11 (shown with red lines)
- Optimal route with equal restaurants: (r_1, b_1, mt_1, r_1) , length: 12 (shown with dashed lines)

Problem definition

- **Problem**: Need for flexibility in route finding queries
- **Solution**: Developing a query language operators to fulfill the essential user's requirements:
 - Relationships among the Pols
 - Order and priority of the Pols
 - Expressing multiple travel variations

Introducing the Operators

Problem definition

- **Problem**: Need for flexibility in route finding queries
- **Solution**: Developing a query language operators to fulfill the essential user's requirements:
 - Relationships among the Pols
 - Order and priority of the Pols
 - Expressing multiple travel variations
- Proposing four essential operators: "equality" operator, "inequality" operator, "or" operator, "order" operator
- Making use of existing approaches (PNE (*Progressive Neighbor* Exploration) [2]) to transform the complex user query

Example

"Equality" operator

- *Input*: A category sequence $M = (c_1, c_2, ..., c_l)$, a starting point sp in ${
 m I\!R}^2$ and indices of the equal Pols *i* and *j*, where $c_i=c_j$
- Output: Optimal route $R = (r_1, r_2, ..., r_l)$, where $r_i = r_i$
- **Proposed approach**: uses the Progressive Neighbor Explorator (PNE) as its base to upgrade on and extends it with a heuristic approach to shrink the search space
- **Baseline/trivial approach**: extends the PNE with forcing the Pols r_i and r_i to be equal; does not use optimization techniques

Heuristic

Given a sequence of categories $M = (c_1, c_2, ..., c_l)$ and a PSR $R' = (r_1, r_2, ..., r_k)$ the *heuristic* for this route is defined as:

$$h(R') = \max_{i \in [k+1,l]} nearestNeighbor(r_k, C_{M_i})$$
 (1)

Informal: The heuristic of a certain PSR is the maximum distance out of the distances to the nearest Pols from the set of categories that are yet to be expanded.

$$LB(R') = length(R') + h(R')$$
 (2)

000000000

Example

Problem Definition

Related Work

Heuristic

Given a sequence of categories $M = (c_1, c_2, ..., c_l)$ and a PSR $R' = (r_1, r_2, ..., r_k)$ the *heuristic* for this route is defined as:

$$h(R') = \max_{i \in [k+1,l]} nearestNeighbor(r_k, C_{M_i})$$
 (1)

Informal: The heuristic of a certain PSR is the maximum distance out of the distances to the nearest Pols from the set of categories that are yet to be expanded.

The *lower bound* of a PSR R' represents the sum of its length and its heuristic:

$$LB(R') = length(R') + h(R')$$
 (2)

The proposed algorithm uses a heap, sorted by the lower bound of the routes

000000000

Problem Definition

Example

Related Work

sp, M = (r, b, mt, r), EQUAL(0, 3)

- Optimal route found with PNE: (r_1, b_1, mt_1, r_2)
- Dummy SR: (r_1, b_1, mt_1, r_1) ; Upper Bound: length(dummySR) = 12, Candidate SR: dummySR

	Step	Heap contents (PSR R : $length(R)$, $heuristic(R)$)	
ſ	1	$(r_1:1,5), (r_2:5,4)$	

000000000

sp, M = (r, b, mt, r), EQUAL(0, 3)

Step	Heap contents (PSR R : $length(R)$, $heuristic(R)$)
1	$(r_1:1,5),(r_2:5,4)$
2	$(r_1, b_1: 4, 3), (r_2: 5, 4)$

Problem Definition

Example

Related Work

sp, M = (r, b, mt, r), EQUAL(0, 3)

Candidate SR: $(r_1, b_1, mt_1, r_1 : 12, 0)$

Step	Heap contents (PSR R : $length(R)$, $heuristic(R)$)	
	$(r_1, b_1, mt_1: 7, 5), (r_2, b_1, mt_1: 11, 4), (r_2, b_2, mt_1: 11, 4),$	
	$(r_1, b_2, mt_1: 11, 5)$	
8	$(r_2, b_1, mt_1: 11, 4), (r_2, b_2, mt_1: 11, 4), (r_1, b_2, mt_1: 11, 5)$	

4日 > 4周 > 4目 > 4目 > 5日 9 9 9

Example

Problem Definition

Related Work

sp, M = (r, b, mt, r), EQUAL(0, 3)

Candidate SR: $(r_2, b_1, mt_1, r_2 : 15, 0)$

Step	Heap contents (PSR R : $length(R)$, $heuristic(R)$)
8	$(r_2, b_1, mt_1: 11, 4), (r_2, b_2, mt_1: 11, 4), (r_1, b_2, mt_1: 11, 5)$
9	$(r_2, b_2, mt_1: 11, 4), (r_1, b_2, mt_1: 11, 5)$

Problem Definition

Example

Related Work

Example: Result

sp, M = (r, b, mt, r), EQUAL(0, 3)

Found SR: $(r_1, b_1, mt_1, r_1 : 12, 0)$

Example

Problem Definition

Related Work

"Inequality" operator

- *Input*: A category sequence $M = (c_1, c_2, ..., c_l)$, a starting point sp in \mathbb{R}^2 and indices of the unequal Pols i and j, where $c_i = c_i$
- Output: Optimal route $R = (r_1, r_2, ..., r_l)$, where $r_i \neq r_j$
- Proposed approach: generates routes based on the Progressive Neighbor Explorator (PNE) and inspects partial routes for satisfying the requirement of unequal Pols and modifies them accordingly

"Or" operator

- **OR sequence:** An OR sequence $OR = (M_1, M_2, ..., M_m)$ represents the disjunction of category sequences, such as $M_1 = (c_1, c_2, ..., c_l)$.
- Input: A sequence of OR sequences $S = (OR_1, OR_2, ..., OR_n)$ and a starting point sp in ${\rm I\!R}^2$
- Output: Optimal route $R = (r_1, r_2, ..., r_l)$
- **Proposed approach**: progressively inspects each option M_i from OR sequences OR_i in $S = (OR_1, OR_2, ..., OR_n)$, compares them and continues with the best one, based on length, until it reaches a full sequenced route
- Proposed approach: runs the PNE algorithm on all possible combinations of the query to find the shortest route out of them

Introducing the Operators

0000000000

Problem Definition

Example

Related Work

"Or" operator

- **OR sequence:** An OR sequence $OR = (M_1, M_2, ..., M_m)$ represents the disjunction of category sequences, such as $M_1 = (c_1, c_2, ..., c_l)$.
- *Input*: A sequence of OR sequences $S = (OR_1, OR_2, ..., OR_n)$ and a starting point sp in \mathbb{R}^2
- Output: Optimal route $R = (r_1, r_2, ..., r_l)$
- **Proposed approach**: progressively inspects each option M_i from the OR sequences OR_i in $S = (OR_1, OR_2, ..., OR_n)$, compares them and continues with the best one, based on length, until it reaches a full sequenced route
- Proposed approach: runs the PNE algorithm on all possible combinations of the query to find the shortest route out of them

"Order" operator

- **ORDER sequence:** An order sequence $ORDER = (i_1, i_2, ..., i_k)$, is a sequence of indices in a category sequence $M = (c_1, c_2, ..., c_l)$, which indicate that the categories at the given indices should remain in the fixed positions in this category sequence.
- *Input*: A sequence of categories $M = (c_1, c_2, ..., c_l)$, a starting point sp in \mathbb{R}^2 and an ORDER sequence $ORDER = (i_1, i_2, ..., i_k)$
- Output: Optimal route $R = (r_1, r_2, ..., r_l)$
- Proposed approach: inspects progressively each category option for the indices out of the NOTORDERED sequence NOTORDERED = ORDER, compares them and continues with the best one, based on length, until it reaches a full sequenced route.
- Proposed approach: runs the PNE algorithm on all possible permutations of the query to find the shortest route out of them

<ロ > < 部 > < き > < き > を き = り < で

15/27

"Order" operator

- **ORDER sequence:** An order sequence $ORDER = (i_1, i_2, ..., i_k)$, is a sequence of indices in a category sequence $M = (c_1, c_2, ..., c_l)$, which indicate that the categories at the given indices should remain in the fixed positions in this category sequence.
- Input: A sequence of categories $M = (c_1, c_2, ..., c_l)$, a starting point sp in \mathbb{R}^2 and an ORDER sequence $ORDER = (i_1, i_2, ..., i_k)$
- Output: Optimal route $R = (r_1, r_2, ..., r_l)$
- Proposed approach: inspects progressively each category option for the indices out of the NOTORDERED sequence *NOTORDERED* = *ORDER*, compares them and continues with the best one, based on length, until it reaches a full sequenced route.

Introducing the Operators

0000000000

Proposed approach: runs the PNE algorithm on all possible permutations of the query to find the shortest route out of them

Problem Definition

Conclusion

Example

Related Work

Experiments

- Road network of Berlin, with 428769 crossroad nodes, 504229 road edges, 5548 Pols and 7 category types
- 1000 gueries with randomly selected starting points

Categories	Size	Frequency
Restaurants	2081	
Coffee shops	1002	High
Pubs and bars	958	
Atms/Banks	597	
Pharmacies	589	Middle
Gas stations	180	
Movie theaters	141	Low

- Quantitative evaluation criteria: run time, number of heap fetches, maximum heap size (work space)
- Qualitative evaluation: compare against baseline approaches

Problem Definition

Related Work

Motivation

Example

"Equality" operator: Query length

Evaluation parameters: (1) query length, (2) frequency of the categories c_i , c_i in the category sequence and (3) distance between the categories c_i , c_i

Related Work

Motivation

Example

Problem Definition

"Equality" operator: Category frequency

Evaluation parameters: (1) query length, (2) frequency of the categories c_i , c_i in the category sequence and (3) distance between the categories c_i , c_i

Related Work

Motivation

Example

Problem Definition

"Equality" operator: Category distance

Evaluation parameters: (1) query length, (2) frequency of the categories c_i , c_j in the category sequence and (3) distance between the categories c_i , c_j

Related Work

Motivation

Example

Problem Definition

"Equality" operator: Baseline approach

"Inequality" operator: Query length

Evaluation parameters: (1) query length, (2) frequency of the categories c_i , c_i in the category sequence and (3) distance between the categories c_i , c_i

"Or" operator

- **Evaluation parameter**: type and number of operands
 - simple OR operand: |M| = 1
 - complex OR operand: |M| > 1

"Order" operator

Evaluation parameter: number of fixed positions in M

Problem Definition

Introducing the Operators

Example

Related Work

Conclusion

- Proposed four essential route query language operators
- Developed algorithms that deliver an optimal result in metric spaces
- Evaluated the approaches qualitatively and quantitatively and proved the efficiency of the algorithms

Discussion and Future Work

- Easily modified: using a different quantifying parameter such as travel duration, finding k optimal routes
- Additional operators are possible: "hop", "and", "not", "necessity"
- A different approach to implementing the operators
 - Skyline concept [3]
- Extending the proposed algorithms to also support dynamic road networks, in which traffic information is provided (e.g., travel time, traffic congestion, etc.). [7]

The End

Thank you for the attention!

Literatur I

- Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios and Shang-Hua Teng. *On trip planning queries in spatial databases*. In Bauzer Medeiros C., Egenhofer M.J., Bertino E. (eds) Advances in Spatial and Temporal Databases (SSTD), pages 273–290, 2005.
- Mehdi Sharifzadeh, Mohammad Kolahdouzan and Cyrus Shahabi. *The optimal sequenced route query.* The VLDB Journal, 17:765–787, 2008.
- Yuya Sasaki, Yoshiharu Ishikawa, Yasuhiro Fujiwara and Makoto Onizuka. Sequenced route query with semantic hierarchy. In EDBT, pages 37–48, 2018.
- Jian Dai, Chengfei Liu, Jiajie Xu4 and Zhiming Ding. *On personalized and sequenced route planning*. World Wide Web, 19:679–705, 2016.

Literatur II

- Jochen Eisner and Stefan Funke. Sequenced route queries: Getting things done on the way back home. In SIGSPATIAL '12 Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pages 502–505, 2012.
- Haiquan Chen, Wei-Shinn Ku, Min-Te Sun and Roger Zimmermann. The partial sequenced route query with traveling rules in road networks. Geoinformatica, 15:541–569, 2011.
- Nirmesh Malviya, Samuel Madden and Arnab Bhattacharya. A continuous query system for dynamic route planning. *A continuous query system for dynamic route planning*. In ICDE '11 Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, pages 792–803, 2011.

Inequality operator - category frequency

Evaluation parameters: (1) query length, (2) frequency of the categories c_i , c_j in the category sequence and (3) distance between the categories c_i , c_j

Inequality operator - category distance

■ Evaluation parameters: (1) query length, (2) frequency of the categories c_i , c_j in the category sequence and (3) distance between the categories c_i , c_j

PNE Algorithm

Algorithm 1: PNE

```
fetch a PSR from the heap;
  switch s = size(PSR) do
       case s == 1 do
           PSR is the optimal route;
           return PSR:
       case s \neq l do
           a)
               NN(r_{|PSR|}, C_{M_{|PSR|+1}});
               update PSR and perform trimming in case it is a candidate
                SR:
               put PSR back on the heap;
10
           b)
11
               \mathtt{kNN}(r_{|PSR|-1},C_{M_{|PSR|}});
12
               generate a new PSR and place it on the heap;
13
```

Violina Zhekova - Flexible User-Friendly Trip Planning Queries

Notations

Symbol	Meaning
C_i	a point set for a category in ${ m I\!R}^2$
$ C_i $	cardinality of the set C_i
n	number of point sets C_i
dist(.,.)	distance function in \mathbb{R}^2
М	category sequence, $=(c_1, c_2,, c_l)$
<i>M</i>	I, size of sequence M = number of items in M
Ci	ith member of M
R	route, = $(r_1, r_2,, r_r)$
<i>R</i>	r, size of route R = number of points in R
ri	ith point in R
length(R)	length of R
length(sp, R)	length of $R_{sp} = (sp, r_1, r_2,, r_r), = length(R_{sp})$
Q(sp, M)	sequenced route query
$NN(r_q, c_p)$	nearest neighbor from the category point set C_p to a route point
	$ r_q $
$KNN(r_q, c'_p)$	next nearest neighbor r'_{p} from the category point set C_{p} to a route
, ,	point r_q

Modified PNE

Algorithm 2: modifiedPNE()

```
1 foreach r_1 in C_{M_1} do Checking the upper bound for every r_1 neighbor
   of sp in the category set C_{M}.
      build a new PSR with r_1;
      if LB(PSR) \le UB then
          place the new PSR(r_1) on the heap:
  while heap is not empty do
      current \leftarrow fetch a PSR from the heap:
      switch s = size(current) do
          case s \le i - 1 do Finding PSRs before r_i
8
             caseBefore():
          case s = i do Finding PSR containing r_i
10
             caseContaining();
11
          case s = i + 1 do Finding PSR after/containing r_i
12
             caseAfterOrContaining();
13
          case s >= j + 2 do Finding PSRs after r_i
14
             caseAfter():
15
```

16 return foundSR

NEO - Trimming

Procedure trim(PSR)

```
if size(PSR) = l then
      if PSR[i] \neq PSR[j] then
         // Optimization: length check
         if length(PSR) <= length(candidate) then
             update candidate:
             place PSR on the heap;
      else
 7
         // In case i is the last index in the route, we
 8
             find the kth neighbor of the previous PoI to
             the last one
         if size(PSR) = j + 1 then
             kNN(r_{|PSR|-1}, C_{M_{|PSR|}});
             generate a new PSR;
11
             trim(PSR):
12
13 else
      // Optimization: length check
      if length(PSR) <= length(candidate) then
15
         place PSR on the heap;
16
```


$$M = (r, ph, r), UNEQUAL(0, 2)$$

• Optimal route found with PNE: (r_1, ph_1, r_1)

Step	Heap contents (PSR R : $length(R)$)
1	$(r_1:1)$

M = (r, ph, r), UNEQUAL(0, 2)

Step	Heap contents (PSR R : $length(R)$)
1	$(r_1:1)$
2	$(r_1, ph_1:3), (r_2:5)$

Violina Zhekova - Flexible User-Friendly Trip Planning Queries

M = (r, ph, r), UNEQUAL(0, 2)

Step	Heap contents (PSR R : $length(R)$)
2	$(r_1, ph_1: 3), (r_2: 5)$
3	$(r_2:5), (r_1, ph_2:5), (r_1, ph_1, r_2:10)$

M = (r, ph, r), UNEQUAL(0, 2)

S	tep	Heap contents (PSR R : $length(R)$)
4		$(r_1, ph_2: 5), (r_2, ph_2: 7), (r_1, ph_1, r_2: 10)$
5		$(r_1, ph_2, r_2: 7), (r_2, ph_2: 7), (r_1, ph_1, r_2: 10)$

$$S = (OR_1, OR_2, OR_3), OR_1 = ((b), (ph)), OR_2 = ((mt)), OR_2 = ((r))$$

Step	Heap contents (PSR R : $length(r)$, $index(R)$)
1	$(b_1:2,1)$

$$S = (OR_1, OR_2, OR_3), OR_1 = ((b), (ph)), OR_2 = ((mt)), OR_2 = ((r))$$

	Step	Heap contents (PSR R : $length(r)$, $index(R)$)
	1	$(b_1:2,1)$
Ī	2	$(ph_1:3,1),(b_1,mt_1:5,2)$

$$S = (OR_1, OR_2, OR_3), OR_1 = ((b), (ph)), OR_2 = ((mt)), OR_2 = ((r))$$

Step	Heap contents (PSR R : $length(r)$, $index(R)$)
5	$(b_1, mt_1: 5, 2), (ph_1, mt_1: 6, 2), (ph_2, mt_1: 7, 2), (b_2, mt_1: 9, 2)$
6	$(ph_1, mt_1 : 6, 2), (ph_2, mt_1 : 7, 2), (b_1, mt_1, r_2 : 9, 3), (b_2, mt_1 : 7, 2)$
	9,2)

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ト ・ 夏 | ■ り へ () ・

$$S = (OR_1, OR_2, OR_3), OR_1 = ((b), (ph)), OR_2 = ((mt)), OR_2 = ((r))$$

Step	Heap contents (PSR R : $length(r)$, $index(R)$)
6	$(ph_1, mt_1: 6, 2), (ph_2, mt_1: 7, 2), (b_1, mt_1, r_2: 9, 3), (b_2, mt_1: 7, 2)$
	9,2)
7	$(ph_2, mt_1 : 7, 2), (b_1, mt_1, r_2 : 9, 3), (b_2, mt_1 : 9, 2),$
	$\frac{(ph_1, mt_1, r_2: 10, 3)}{(ph_1, mt_1, r_2: 10, 3)}$
8	$(b_1, mt_1, r_2: 9, 3), (b_2, mt_1: 9, 2), (ph_2, mt_1, r_2: 11, 3)$

$$M = (b, r, ph), ORDER = (1)$$

Step	Heap contents (PSR R : $length(r)$, $r.notordered$)
1	$(b_1:2,[ph])$

$$M = (b, r, ph), ORDER = (1)$$

Step	Heap contents (PSR R : $length(r)$, $r.notordered$)
1	$(b_1:2,[ph])$
2	$(ph_1:3,[b]),(b_1,r_2:5,[ph])$

$$M = (b, r, ph), ORDER = (1)$$

Step	Heap contents (PSR R : $length(r)$, $r.notordered$)
5	$(ph_1, r_1 : 5, [b]), (b_2, r_2 : 5, [ph]), (ph_2, r_2 : 5, [b]), (b_1, r_2 : 5, [b])$
	5, [ph])
6	$(b_2, r_2: 5, [ph]), (ph_2, r_2: 5, [b]), (b_1, r_2: 5, [ph]), (ph_1, r_1, b_1: b_1)$
	8,[])

(ロ) (部) (注) (注) (注) (()

$$M = (b, r, ph), ORDER = (1)$$

Step	Heap contents (PSR R : $length(r)$, $r.notordered$)
10	$(b_2, r_2: 5, [ph]), (ph_2, r_2, b_2: 6, []), (b_1, r_1, ph_1: 7, []), (ph_2, r_1: b_1)$
	$7, [b]), (b_2, r_1 : 9, [ph]), (ph_1, r_2 : 10, [b])$
11	$(ph_2, r_2, b_2 : 6, []), (ph_2, r_1 : 7, [b]), (b_2, r_1 : 9, [ph]), (ph_1, r_2 : $
	$(b_1, [b]), (b_2, r_2, ph_1 : 12, [])$