

CSM025AY Hall-effect Current Sensor Series

Closed loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mixed current.

Electrical characteristics								
	Туре	CSM025AY						
I_{PN}	Primary nominal input current	25						
I_P	Measuring range of primary current	0~±36						
I_{SN}	Secondary nominal output current	25						
$\mathbf{K}_{\mathbf{N}}$	Conversion ratio	1-2-3-4:1000						
R_{M}	Measuring resistance (V _C =±15V)	$I_P = \pm 25A$ 54~360 $I_P = \pm 36A$ 68~190	R_{M}					
$\mathbf{v}_{\mathbf{c}}$	Supply voltage	±12~±15(±5%)						
I_{C}	Current consumption	$V_C = \pm 15V$ 10+Is						
V_{D}	Insulation voltage	AC/50Hz/1min 2.5						
$\epsilon_{ m L}$	Linearity	<0.2						
X	Accuracy	$T_A = 25^{\circ} C V_C = \pm 15 V$ <= 0.7						
Io	Zero offset current	T _A =25°C <±0.15	mA					
I_{OM}	Residual current	I _P →0 <±0.15						
IoT	Thermal drift of I ₀	I _P =0 T _A =-25~+70°C <±0.5						
T_R	Response time	<1						
f	Frequency bandwidth(-1dB)	DC~100						
TA	Ambient operating temperature	-25~+70						
T_{S}	Ambient storage temperature	-40~+100						
R _P	Primary coil resistance	T _A =25℃ ≤1.25						
R_{S}	Secondary coil resistance	T _A =70℃ 40						
R _{IS}	Isolation resistance	T _A =25℃ ≥1500						
	Standard	Q/3201CHGL02-2007						

Dimensions of drawing (mm)

Conversion ratio	I _{PN} (A)	I _P (A)	Isn(mA)	Primary connection
1:1000	25	36	25	8 0-0-0-0 50UT IN1 0-0-0-0 4
2:1000	12	18	24	80-0 0-050UT IN10-0 0-04
3:1000	8	12	24	80 0 0-050UT IN10 0 0 04
4:1000	6	9	24	80 0 0 050UT IN10 0 0 04

Remarks

- ·Incorrect connection may lead to the damage of the sensor.
- $\cdot I_{SN}$ is positive when the I_P flows in the direction of the arrow.