Translucent Mode Transport

Tiago Esteves

Tuesday, 28-11-2017

Outline

- Description Variables
 - Table Variables
 - Objective Function

Description Variables

Variables	Description
(i,j)	Origin node, i and destination node, j of a Link
(o,d)	Origin node, o and destination node, d of a Demand
С	Client traffic Type (1 to 5)
l L	number of ODU-o from node o to node d between (i,j)
W	Number of optical channels
В	Client signals granularities (1.25, 2.5, 10, 40, 100)
D	Client traffic demands
G	Network topology in form of Adjacency matrix
BD	Bandwith

Table: Table with description of variables

Objective Function

minimize
$$\sum_{(o,d,b)} W_{od} \tag{1}$$

subject to

$$\sum_{i \neq i} L_{ij}^{od} = D_{odc} \qquad \forall o, c, d : o < d$$
 (2)

$$\sum_{j \neq i} L_{ij}^{od} = \sum_{j \neq i} L_{ji}^{od} \qquad \forall s, d, p, o : s < d : p \neq s : p \neq d \quad (3)$$

$$\sum_{i \neq i} L_{ji}^{od} = D_{odc} \qquad \forall o, d, c : o < d$$
 (4)

$$\sum_{(o,d,c):o< d} (B(c) \times L_{ij}^{od}) \le \sum_{b} BD_{b} \times W_{ijb}$$
 $\forall i,j$ (5)

Objective Function

$$L_{ij}^{od} \geq 0;$$

$$\forall o, d, i, j : o < d \tag{6}$$

$$\sum_{i\neq j}y_{ij}^{od}=W_{od}$$

$$\forall i, j, b \tag{7}$$

$$\sum_{j \neq i} y_{ij}^{od} = \sum_{j \neq i} y_{ji}^{od}$$

$$\forall o, d, i, b : i \neq d : i \neq o \quad (8)$$

$$\sum_{j\neq i}y_{ji}^{od}=W_{od}$$

$$\forall o, d, b$$
 (9)

$$\sum_{(o,d,b)} \left(y_{ij}^{od} + y_{ji}^{od} \right) \le 80 G_{ij}$$

$$\forall i, j : i < j \qquad (10)$$

$$y_{ii}^{od} \geq 0$$

$$\forall o, d, i, j, b$$
 (11)