

Multivariate pattern analysis: An early example study

Yes, well, I saw a person. Yes. What it was... It was something like a scene that I hid a key in a place between a chair and a bed and someone took it.

Multivariate pattern analysis: An early example study

Reconstructing visual imagery during sleep – How is this possible?

Multivariate pattern analysis (MVPA)

Set of computational techniques to analyze <u>patterns</u> of brain activity by combining information <u>across multiple voxels</u>

What is MVPA and why would we use it?

What is MVPA and why would we use it?

Typical univariate result interpretation

- Region response to all fruit but oranges
- Region more active = more involved in task

Typical multivariate result interpretation

- Region carries information about oranges
- Pattern more distinct = more involved

MVPA is more than a technique, it is a mindset

- It asks about the <u>presence of information</u>
- Useful even if it is not clear what that information is (e.g., for brain-computer interfaces)
 - Prediction does not equal explanation

What is MVPA and why would we use it?

1) Increased sensitivity compared to classical GLM approaches

Example: BOLD signals reflecting behavioral choice during categorization

Li et al (2009)

2) Abstracting away from measurement (e.g., representational similarity) allows comparisons between species, data modalities & computational models

Will become clearer in the lecture!

MVPA – First demonstration

Visual stimuli from different categories

Response to Faces

Distributed category-selective brain activity

Correlation matrix

Within-category and acrosscategory similarity

Faces Houses
Odd runs

Critical logic

If category matters, then: Within-category similarity

oss-category s

Across-category similarity

There are many MVPA techniques. This lecture will focus on:

- Decoding
- Representational similarity analysis

Decoding

Decoding – What is it?

Encoding (e.g., GLM)

Predicting brain activity using stimulus- or behavioral features

Reconstructing stimulus- or behavioral features from brain activity **Decoding**

Decoding – What is it?

Two basic types of decoders

- Continuous outcomes (e.g., location in VR) are predicted by Regression Models
- Categorical outcomes (e.g., cat vs. dog) are predicted by Pattern Classifiers

Two basic types of Pattern Classifiers

Most common decoders fMRI

Decoding – Pattern classification

Decoding – Searchlight-based approaches

Analysis logic

- Center a sphere on each voxel and extract multivoxel pattern
- Train & test the decoder for sphere
- Assign decoding performance to center voxel

Decoding from all across the cortex

Decoding – Support Vector Machine (SVM)

Problem

How do we decide on a **decision boundary** that separates the classes?

SVM solution

- 1) Find **support vectors** (points on dashed lines).
- 2) The decision boundary maximizes margin between them (solid line)

In fMRI, SVMs are trained on **more than two voxels**. Rather than 1D lines, they find **Hyperplanes** (i.e., high dimensional decision boundaries)

Common because SVMs are robust and versatile in high-dimensional settings

Decoding – Common classifiers in fMRI

Support Vector Machine

Maximizes margin (distance between closest points of different classes)

Robust & versatile classifier for high-dimensional data, computationally expensive

Gaussian Naïve Bayes

Computes Bayesian probability of belonging to a specific class

High accuracy, Fast to compute, assumes normality and independence of voxels

Linear Discriminant Analysis

Maximizes ratio of between-class variance to within-class variance

High accuracy even in small samples, assumes normality and equal covariance across classes

^{*}Many more: Logistic regression, deep learning models...

Representational dissimilarity matrices (RDMs) are compared, NOT the BOLD signal

Comparisons across species

Different BOLD responses in monkeys and humans, but RDMs are similar

Multidimensional scaling

Embedding stimuli in a 2D space based on their representational dissimilarity. Intuitive visualization of representational dissimilarities (or "Representational spaces")

Comparing behavior to fMRI data

"Representational spaces" derived from behavioral & neural measurements

Model **RDMs** correlation **Data**

Simple hypothesis testing

Representational dissimilarity matrices can be constructed by experimenters (Model RDMs), reflecting hypotheses, and then compared to data RDMs

More complex models possible!

(e.g., comparing convolutional neural networks layers to fMRI data)

See e.g., Khaligh-Razavi & Kriegeskorte 2014

Comparing different recording techniques

RSA enables combining different techniques, such as those with high spatial (fMRI) and temporal (e.g., MEG) resolution (i.e., for review see Cichy & Oliva 2020)

Representational Dissimilarity Matrices (RDMs) are incredibly versatile hubs for relating different representations

Distance metric matters

(Pearson, Spearman, Euclidean distance...)

Data normalization matters

(Z-scoring, multivariate noise normalization...)

Dataset size matters

(More is better)

Always check diagonal of RDMs!

(The diagonal reflects SNR)

Cross-validate your results!

(Distance estimates can be corrupted by noise)

Conclusion & general remarks

Conclusion & general remarks

What is a pattern?

Would you say the pattern has changed?

Same correlation!

Image 1 is as similar to image 2, as image 3 is to image 4*

* Assuming both images were scrambled in the same way

When we talk about **patterns**, most often, we mean the **distribution** of voxel intensities, not their spatial organization (True for RSA, SVM,...)

Certain techniques are sensitive to **spatial organization** (e.g., convolutional neural networks)

Different **distance metrics** are sensitive to different patterns (e.g., correlation vs. Euclidean distance)

- Different techniques & metrics are sensitive to different patterns
- Reverse inference problem remains (e.g., What exactly drives the decoding?)

Rare footage of a discussion on "brain decoding" and Representational spaces at the school of Athens

Plato

"Representational spaces are so cool! It's like we are visualizing the content of the mind... the things up there in the clouds!"

Aristotle

"Errrm, maybe we should keep our feet on the ground down here. We are still measuring MRI signals and blood flow and stuff, not mental representations"

In other words: We can never fully "abstract away" from the measurement process!

Key terms to remember

- Univariate vs. Multivariate approaches
- Multivariate pattern analysis
- Information
- Encoding vs. Decoding
- Classification
- Linear vs. non-linear classifiers
- Searchlight-based analysis
- Support vector machines (SVM)
- Representational similarity analysis
- Representational dissimilarity matrix
- Multidimensional scaling
- Patterns (what are they?)
- Distance metric

