

Data

- What is a data set?
- Examples
- Types
- Problems

What is a data set?

Object	Shape	Shape colour	Leaf colour	Class label
\	Round	Blue	Blue	1
	Square	Green	Blue	1
	Square	Green	Green	2
Y	Square	Red	Blue	1
	Round	Red	Red	1
	Square	Blue	Blue	2
Y	Square	Red	Green	1
8	Round	Green	Red	2

Blue

Green

Round

Round

Blue

Blue

2

2

the data set $\bullet \quad \mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$

the *N* **objects** (rows of the data matrix)

$$\mathbf{Z} = \begin{bmatrix} z_{11} & z_{12} & \dots & z_{1n} \\ z_{21} & z_{22} & \dots & z_{2n} \\ \dots & & & & \\ z_{N1} & z_{N2} & \dots & z_{Nn} \end{bmatrix}$$

the n features

(columns of the data matrix)

Examples

Iris Data Set

Download: Data Folder, Data Set Description

Abstract: Famous database; from Fisher, 1936

Data Set Characteristics:	Multivariate	Number of Instances:	150	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	4	Date Donated	1988-07-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	3539941

The famous iris data set. https://archive.ics.uci.edu/ml/datasets/iris

N = 150 objects

 $Z = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{150}\}$

. . .

n = 4 features:

 x_1 sepal length

 x_2 sepal width

 x_3 petal length

 x_4 petal width

class

c = 3 classes:

 ω_1 Iris Setosa

 ω_2 Iris Versicolour

 ω_3 Iris Virginica

The 4 features

Face recognition data set: (toy)

= 2 *classes*: Richard Armitage and Hugh Jackman

Each image is an *object* to classify

All images are scaled to the same dimension

 $300 \times 325 \text{ pixels} = 97500 \text{ pixels x 3 colours} = n = 292500$ **features**

Face recognition data set: (toy)

All images are scaled to the same dimension

300 × 325 pixels = 97500 pixels x 3 colours = 292500 *features*

Alternative/complementary *features* may be obtained by:

- finding important facial marks such as irises, eyebrows, nose, corners of mouth, etc., and measuring new, geometric features from these
- a pre-processing step extracting various colour and morphological features from the image

Face recognition data set: (toy)

https://en.wikipedia.org/wiki/List of datasets for machine-learning research

Thus far, \mathbf{Z} is a **tabular** data set (rows = objects and columns = features)

There are many other types of labelled and unlabelled data sets, for example:

- images (e.g., emotion recognition)
- videos (e.g., action recognition)
- time series (e.g., note sequences, coordinates of handwriting samples)
- continuous streaming data (e.g., speech recognition, earthquake prediction)
- text (e.g., automatic translation, sentiment recognition, spam detection)

Extracting tabular data from these is not easy!

- Over 14 million URLs of images have been hand-annotated by ImageNet to indicate what objects are pictured.
- In at least one million of the images, bounding boxes are also provided.
- ImageNet contains over 20 thousand categories; a typical category, such as "balloon" or "strawberry", contains several hundred images.
- Since 2010, the ImageNet project runs an annual software contest, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- A dramatic 2012 breakthrough in solving the ImageNet Challenge is widely considered to be the beginning of the DEEP LEARNING revolution.

For ImageNet data set:

N = 14,000,000 objects (or more)

c = 20,000 + classes (trimmed to 1,000 classes for the competition)

n = ??? features (different image dimensions)

Types of tabular data sets

computer vision

Big data (millions of objects, thousands of features)

Wide data

bioinformatics

Gene expression data analysis

Wide data set $n \gg N$ Genes (features) Patients (objects) class 1 class 2

Problems

Euclidean distance will not work

Solutions to the problem of mixed data:

- Quantise numerical variables and use all as categorical. For example, replace x_2 with y_2 : if $x_2 > 40$, $y_2 = Yes$, else $y_2 = No$.
- Replace a categorical variable with k binary variables, one for each value of the category. For example, replace "Fruit" with 3 binary variables:

Fruit		
apple		
apple		
pear		
plum		
apple		
plum		

Apple	Pear	Plum
1	0	0
1	0	0
0	1	0
0	0	1
1	0	0
0	0	1

Missing values: measurement errors, sensor failure, unavailable information

Solutions to the problem of missing data:

- Remove columns
- Remove rows
- Remove both
- Replace with mean or median of the column
- Use correlation with another feature to predict a missing value

Unavailable labels: when labelling is expensive / invasive / destructive.

A large volume of data is available but labelling or annotating are is not feasible

Solutions to the problem of unavailable labels:

- Use partial labelling (semi-supervised learning).
- Ask for labels only for "key" objects (active learning).
- Pour more money into the problem