Théorème de Frobenius-Zolotarev

Nous démontrons le théorème de Frobenius-Zolotarev qui permet de calculer la signature d'un endomorphisme d'un espace vectoriel sur un corps fini possédant au moins 3 éléments.

Soient $p \ge 3$ un nombre premier et V un espace vectoriel sur \mathbb{F}_p de dimension finie.

Définition 1. Soit H un hyperplan de V et soit G une droite supplémentaire de H dans V. La dilatation u de base H, de direction G, et de rapport $\lambda \in \mathbb{K}^*$ est l'unique endomorphisme de V défini par

$$\forall g \in G, \forall h \in H, u(g+h) = h + \lambda g$$

Remarque 2. On suppose connu le fait que les transvections et les dilatations engendrent GL(V).

Lemme 3. Soient $u \in GL(V)$ et H un hyperplan de V tel que $u_{|H} = \mathrm{id}_H$. Si $\det(u) \neq 1$, alors u est une dilatation.

Démonstration. On note $n = \dim(V)$. Comme $u_{|H} = \operatorname{id}_H$ et $\dim(H) = n - 1$, on en déduit que 1 est valeur propre de multiplicité n - 1 de u et que H est le sous-espace propre associé :

$$H = E_1(u) = \operatorname{Ker}(u - \operatorname{id}_V)$$

On pose $\lambda = \det(u) \notin \{0,1\}$. λ est valeur propre de u (on peut le voir par exemple en calculant le polynôme caractéristique de u) de multiplicité 1. Donc u est diagonalisable, et dans une base \mathcal{B} adaptée à la diagonalisation, on a :

$$Mat(u, \mathcal{B}) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ 0 & \dots & 0 & \lambda \end{pmatrix}$$

d'où le résultat.

Lemme 4. Les dilatations engendrent GL(V).

Démonstration. Pour obtenir le résultat, il suffit de montrer que toute transvection est la composée de deux dilatations (cf. Remarque 2). Soit u une transvection d'hyperplan H. Comme \mathbb{F}_p contient au moins 3 éléments, il existe alors v une dilatation d'hyperplan H et de rapport $\lambda \neq 1$.

Ainsi, l'application $w = u \circ v$ est dans GL(V) et fixe H. Comme $det(w) = det(v) = \lambda \neq 1$, le Lemme 3 permet de conclure que w est une dilatation. Ainsi, $u = w \circ v^{-1}$ est le produit de deux dilatations v^{-1} est une dilatation (toujours d'après le Lemme 3).

[**I-P**] p. 203

[**PER**] p. 99

p. 96

[I-P]

p. 203

Notation 5. Soit $a \in \mathbb{F}_p$. On note $\left(\frac{a}{p}\right)$ le symbole de Legendre de a modulo p.

Théorème 6 (Frobenius-Zolotarev).

$$\forall u \in GL(V), \varepsilon(u) = \left(\frac{\det(u)}{p}\right)$$

où u est vu comme une permutation des éléments de V.

Démonstration. Le groupe multiplicatif d'un corps fini est cyclique, donc il existe $a \in \mathbb{F}_p^*$ tel que

$$\mathbb{F}_p^* = \langle a \rangle$$

En conséquence, si u est la dilatation de V de base H, de direction G, et de rapport $\lambda \in \mathbb{F}_p^*$, alors il existe $k \in \mathbb{N}^*$ tel que $\lambda = a^k$. On en déduit que si v est la dilatation de V de base H, de direction G, et de rapport a, alors $\forall x \in V$ écrit x = g + h avec $g \in G$ et $h \in H$:

$$v^{k}(x) = v^{k}(g+h) = h + a^{k}g = h + \lambda g = u(g+h) = u(x)$$

d'où $v^k=u.$ Ainsi, toute dilatation est une puissance d'une dilatation de rapport a.

Comme det, $\left(\frac{\cdot}{p}\right)$ et ϵ sont tous trois des morphismes de groupes, et comme les dilatations engendrent GL(V) (cf. Lemme 4), il suffit de montrer le résultat pour les dilatations de rapport a.

Soit u une dilatation de base H, de direction G, et de rapport a. Supposons par l'absurde que $\left(\frac{\det(u)}{p}\right) = 1$. Comme $\det(u) = a$, on a $\left(\frac{a}{p}\right) = 1$. Mais, $\mathbb{F}_p^* = \langle a \rangle$, donc $\forall x \in \mathbb{F}_p^*$, $\left(\frac{x}{p}\right) = 1$ ie. tout élément de \mathbb{F}_p^* est un carré. Or, il y a $\frac{p-1}{2}$ carrés dans \mathbb{F}_p^* (et $|\mathbb{F}_p^*| = p-1$, bien-sûr): contradiction.

Il ne reste qu'à montrer que $\epsilon(u) = -1$. Pour cela, on va étudier les orbites des éléments V sous l'action de u.

Soit $h \in H$. On a u(h) = h, donc son orbite est réduite à $\{h\}$ qui est de cardinal 1. Elle compte donc comme un + dans le signe de $\epsilon(u)$.

Soit maintenant $x \in V$ écrit x = g + h avec $g \in G \setminus \{0\}$ et $h \in H$ de sorte que $u^k(x) = h + a^k g$ pour tout $k \in \mathbb{N}$.

- \mathbb{F}_p^* est cyclique d'ordre p-1, donc $a^{p-1}=1$. Ainsi, $u^{p-1}(x)=x$.
- Supposons par l'absurde que $\exists 1 \le i < j \le p-1$ tel que $u^i(x) = u^j(x)$. On a,

$$h + a^{j}g = h + a^{i}g \iff a^{j-i}(a^{i} - 1)\underbrace{g}_{\neq 0} = 0$$

$$\implies a^{j-i} = 0 \text{ ou } a^{i} = 1$$

ce qui est absurde dans les deux cas.

L'orbite de x sous l'action de u est donc $\{x, ..., u^{p-2}(x)\}$ qui est de cardinal p-1 (pair) et compte donc comme un – dans le signe de $\varepsilon(u)$.

Il ne reste qu'à compter le nombre d'orbites de cardinal p-1. Les éléments contenus dans ces orbites forment exactement l'ensemble

$$\bigcup_{h\in H}\{g+h\mid g\in G,\,g\neq 0\}$$

et il y en a donc

$$|H| \times (|G|-1) = p^{n-1}(p-1)$$

(car H est un hyperplan et G est une droite). Comme ces orbites sont de cardinal p-1, il y a donc exactement p^{n-1} orbites. Or, p^{n-1} est impair, donc $\varepsilon(u)$ est de signe négatif. Ainsi, $\varepsilon(u) = -1$. \square

Bibliographie

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'algèbre [PER]

Daniel Perrin. Cours d'algèbre. pour l'agrégation. Ellipses, 15 fév. 1996.

https://www.editions-ellipses.fr/accueil/7778-18110-cours-d-algebre-agregation-9782729855529.html.