

Universidad Nacional de Colombia Facultad de Ciencias

Análisis Numérico I Parcial III

1. Problema 1

Dada la función

$$f(x) = x + \frac{1}{x} - 2$$
, $f: \mathbb{R}_{>0} \to \mathbb{R}$,

se construye el siguiente algoritmo para aproximar la raíz r = 1:

$$x_{n+1} = 2 - \frac{1}{x_n}.$$

- Verificar que si $x_0 > 1$ entonces la sucesión $\{x_n\}$ es monótona decreciente y acotada inferiormente por 1. Concluir que $x_n \to 1$, aunque esta iteración no está en las hipótesis del teorema del punto fijo. ¿Qué hipótesis no se cumple?
- Dar un algoritmo para aproximar la raíz de *f* que converja cuadráticamente.

2. Problema 2

Sea

$$f(x) = (x - r_1)(x - r_2) \dots (x - r_d),$$

donde $r_1 < r_2 < ... < r_d$.

■ Probar que si $x_0 > r_d$ la sucesión de Newton-Raphson converge a r_d .

Demostración. Escribamos $f(x) = (x - r_d)g(x)$ con $g(x) = (x - r_1)\cdots(x - r_{d-1})$. De esta manera, $f'(x) = g(x) + (x - r_d)g'(x)$, luego la iteración del metodo de Newton Raphson es de la forma:

$$x_{k+1} = x_k - \frac{(x_k - r_d)g(x)}{(x_k - r_d)g'(x_k) + g(x_k)}$$

Ahora asuma que $x_0 > r_d$, es decir $x_0 - r_d > 0$, esto implica que $x_0 - r_i > 0$ para i = 1, ..., a pues r_d es la mayor raíz de f(x). Con esto en mente note que:

$$x_1 - r_d = x_0 - r_d - \frac{(x_0 - r_d)g(x)}{(x_0 - r_d)g'(x_0) + g(x_0)}$$
$$= (x_0 - r_d) \left(1 - \frac{g(x_0)}{(x_0 - r_d)g'(x_0) + g(x_0)} \right)$$

Ahora, veamos que $g'(x_0) > 0$:

$$g'(x_0) = \sum_{i=1}^{d-1} \left(\prod_{\substack{j=1\\j\neq i}}^{d-1} (x_0 - r_j) \right)$$

Como cada factor de cada producto es positivo, tenemos que cada sumando es positivo, y por lo tanto $g'(x_0) > 0$, luego $(x_0 - r_d)g'(x_0) + g(x) > g(x)$. Así

$$0 < \frac{g(x_0)}{(x_0 - r_d)g'(x_0) + g(x_0)} < 1$$

Y así

$$x_1 - r_d = (x_0 - r_d) \left(1 - \frac{g(x_0)}{(x_0 - r_d)g'(x_0) + g(x_0)} \right) > 0$$

Por lo tanto $x_1 - r_d > 0$. Procediendo de manera inductiva llegamos a que $x_k - r_d > 0$ y además, como

$$0 < \left(1 - \frac{g(x_{k-1})}{(x_{k-1} - r_d)g'(x_{k-1}) + g(x_{k-1})}\right) < 1$$

Vemos que existe una constante $M \in (0,1)$ tal que $x_k - r_d < M(x_{k+1} - r_d)$ lo cual implica que $x_k - r_d < M^k(x_0 - r_d)$, como $M^k \xrightarrow{n \to \infty} 0$, tenemos que x_k converge a r_d

• Para un polinomio

$$P(x) = a_d x^d + \dots + a_0, \quad a_d \neq 0,$$

tal que sus d raíces son reales y distintas, se propone el siguiente método para aproximar todas sus raíces:

• Se comienza con un valor x_0 mayor que

$$M = \max \left\{ 1, \sum_{i=0}^{d-1} \frac{|a_i|}{|a_{di}|} \right\}.$$

- Se genera a partir de x_0 la sucesión de Newton-Raphson, que, según el ítem anterior, converge a la raíz más grande de P, llamémosla r_d ; obteniéndose de este modo un valor aproximado $\tilde{r_d}$.
- Se divide P por $x \tilde{r_d}$ y se desprecia el resto, dado que $r_d \approx \tilde{r_d}$. Se redefine ahora P como el resultado de esta división y se comienza nuevamente desde el primer ítem, para hallar las otras raíces.
- Aplicar este método para aproximar todas las raíces del polinomio

$$P(x) = 2x^3 - 4x + 1.$$

3. Problema 3

Sea $f \in C^2[a, b]$, y sean $x_0 = a, x_1 = a + h, ..., x_n = b$, donde $h = \frac{b-a}{n}$. Considerar la poligonal l(x) que interpola a f en los puntos $x_i, i = 0...n$. Probar que

a)
$$|f(x)-l(x)|\leq \frac{h^2}{2}\max_{x\in[a,b]}|f''(x)|$$
 . b)
$$|f'(x)-l'(x)|\leq h\max_{x\in[a,b]}|f''(x)|$$

4. Problema 4: Silueta de la Mano

Para dibujar la silueta de su mano, siga los siguientes pasos:

• Preparamos una tabla de abcisas y ordenadas usando los siguientes comandos de MATLAB:

- Dibuje su mano en un papel y póngalo sobre la pantalla del computador. Use el ratón para seleccionar alrededor de 37 puntos que delineen su mano (como se muestra en la figura). Termine la instrucción ginput oprimiendo enter.
- Grafique los puntos (x, y) obtenidos y la mano correspondiente mediante el comando plot de MATLAB.
- Implemente el método de splines cúbicos.
- Interpole por separado los puntos (i, x_i) e (i, y_i) mediante splines cúbicos usando su programa.
- Grafique la curva parametrizada que se obtiene.
- Estime el área de su mano usando la fórmula del área de Gauss:

$$A = \frac{1}{2} \left| \sum_{i=1}^{n-1} x_i y_{i+1} + x_n y_1 - \sum_{i=1}^{n-1} x_{i+1} y_i - x_1 y_n \right|.$$

5. Problema 5: Integración Numérica

Se tiene la integral

$$I = \int_0^1 \frac{4}{1+x^2} dx = \pi.$$

- Use las reglas compuestas del punto medio, del trapecio y de Simpson para aproximar I para varios tamaños de paso de integración $h_n = 1/n$, n = 10,50,100,250,500,1000,1500,2000. Grafique el logaritmo del error absoluto versus n para cada paso. Describa el efecto de redondeo de los errores cuando $h \rightarrow 0$.
- Implemente el método de integración de Romberg para calcular *I*. Grafique el logaritmo del error en los términos diagonales en la tabla de extrapolación versus log *h*. Verifique sus resultados con la teoría.