Message Authentication Codes (MACs)

Tung Chou

Technische Universiteit Eindhoven, The Netherlands

October 8, 2015

Outline

- Introduction
- HMAC
- Universal-hash based MACs
 Poly1305
 security issues
 software implementation issues
- Diffie–Hellman key exchange

What are MACs?

• On Wikipedia:

"a message authentication code (often MAC) is a short piece of information used to authenticate a message and to provide integrity and authenticity assurances on the message. Integrity assurances detect accidental and intentional message changes, while authenticity assurances affirm the message's origin".

4/22

Digital Signatures

• Construction:

message
$$(m) \longrightarrow hash \rightarrow h$$
 TP signature (s)

• Usage:

- S computes h and the $\mathrm{SIGN}_{sk}(h)$.
 S sends (m,s).
 V gets (m',s').
 V computes and check $\mathrm{hash}(m') = \mathrm{VERIFY}_{pk}(s')$.

- Security attacker should not be able to forge a valid (m,s) pair attacker might have collected many (m,s) pairs

Message Authentication Codes

"Keyed hash function":

- Usage:
- S computes t = MAC_r(m) and sends (m,t).
 R gets (m',t').
 R computes and checks MAC_r(m') = t'.
- Security attacker should not be able to forge a valid (m,t) pair attacker might have collected many (m,t) pairs

6/22

MACs vs Signatures

	MACs	Signatures
Integrity	yes	yes
Authenticity	yes	yes
Non-repudiation	ou	yes
Key	secret-key	public-key

"Non-repudiation is about Alice showing to Bob a proof that some data really comes from Alice, such that not only Bob is convinced, but Bob also gets the assurance that he could show the same proof to Charlie, and Charlie would be convinced, too"

secret-key crypto is "fast"

- Build MAC from hash functions
- A naive construction:

$$t = H(r \parallel m)$$

Merkle–Damgård construction based hashes (e.g., MD5, SHA1)

$$IV \to \overbrace{f} \longrightarrow \overbrace{f} \longrightarrow IV \to h$$

• Length extension attack: $h' = f(h, m_{\ell+1})$

8 / 22

HMAC (cont.)

Another construction:

$$t = H(m \parallel r)$$

• HMAC:
$$t = H\left((r \oplus p_o)||H((r \oplus p_i)||m)\right)$$

- HMAC-SHA1
 widely used in Internet applications
 5.18 Sandy Bridge cycles/byte

A Reality: the most commonly used scheme might not be the best

SHA3

The "Sponge" construction:

http://en.wikipedia.org/wiki/SHA-3

The Wegman–Carter construction

- Why?
- provides information theoretic security
 usually involves field/ring arithmetic
 better performance than HMAC
- Construction
 "universal" hash function + one-time pad:

$$h_r(m_n) \oplus s_n$$

- universal hash: low differential probability
 one-time pad hides all information about the key

Poly1305

Construction:

$$t = (((m_1 r^{\ell} + m_2 r^{\ell-1} + \dots + m_{\ell}r) \mod 2^{130} - 5) + s) \mod 2^{128}$$

- $2^{130} 5$ is a prime r,s are shared secret 128-bit values $m_{i < \ell}$ is the ith 128-bit block of m padded by 1. m_{ℓ} is the "remainder" of m padded by 1.

- Without proper padding? $m={}^{\flat}{\rm FF}$, $m'={}^{\flat}{\rm FF}$, ${}^{\flat}00{}^{\flat}$ zero-pad the message obtain a 128-bit block

 $m_1 = m_1' = 'FF', '00', ..., '00'$

- Speed: 1.22 Sandy Bridge cycles/byte

12 / 22

Poly1305: avoiding security issue

• What is wrong with "real" polynomial evaluation?

$$t = m_1 r^{\ell - 1} + m_2 r^{\ell - 2} + \dots + m_\ell + s$$

• The attacker forges a valid message—tag pair easily:

$$t + \Delta = m_1 r^{\ell - 1} + m_2 r^{\ell - 2} + \dots + (m_\ell + \Delta) + s$$

• This does not provide low differential probability

Poly1305: avoiding security issue

• What is wrong with using the same pad twice?

$$t = m_1 r^{\ell} + m_2 r^{\ell-1} + \dots + m_{\ell} r + s$$

$$t' = m_1' r^{\ell} + m_2' r^{\ell-1} + \dots + m_{\ell}' r + s$$

 $\bullet\;$ The attacker gets information of r by finding roots of

$$t - t' = (m_1 - m_1')r^{\ell} + (m_2 - m_2')r^{\ell-1} + \dots + (m_{\ell} - m_{\ell}')r$$

- "nonce-misuse" issue In practice s is usually replaced by stream cipher output, e.g., AES $_k(n)$ for m_n HMAC does not use nonce

14 / 22

Poly1305: polynomial evaluation Consider $m_1 r^8 + m_2 r^7 + \cdots + m_8 r$

Horner's rule:

- $\qquad \quad n \ \, \mbox{multiplications (and } n-1 \ \, \mbox{additions)}$ $\qquad \quad \mbox{The issue of being } \ \, \mbox{"on-line"}$

GMAC

- The NIST-standard authenticated encryption scheme GCM
 Galois Counter Mode
 Special hardware support for AES-GCM in high-end CPUs
- Polynomial evaluation MAC:

$$t = (m_1 r^{\ell} + m_2 r^{\ell-1} + \dots + m_{\ell} r) + s$$

Based on arithmetic in

$$\mathbb{F}_{2^{128}} = \mathbb{F}_2[x]/(x^{128} + x^7 + x^2 + x + 1)$$

🔊 Binary fields: better in hardware

16/22

GCM

http://en.wikipedia.org/wiki/Galois/Counter_Mode

GMAC: speeds

PCLMUQDQ cycles per byte	14.40	13.10	2.00	1.79	0.40
РСГМИФРФ	ou	ou	yes	yes	yes
platform	Core 2	Sandy Bridge	Westmere	Gueron 2013 Sandy Bridge	Haswell
reference	Käsper–Schwabe 2009		Krovetz-Rogaway 2011	Gueron 2013	

18 / 22

Auth256*

- Construction
 a pseudo-dot-product MAC:

$$t = (m_1 + r_1)(m_2 + r_2) + (m_3 + r_3)(m_4 + r_4) + \dots + s$$

- base field $\mathbb{E}_{2^{256}}=\mathbb{F}_{2^8}[x]/(\phi).$ Tower field construction for $\mathbb{F}_{2^8}.$

- Compared to GMAC

 Initial ini

Wegman-Carter construction: security

• " $\delta\text{-xor-universal hash}"$: For all distinct (m,m') and Δ , we have

$$\Pr\left(\mathsf{Hash}_r(m) = \mathsf{Hash}_r(m') \oplus \Delta\right) \leq \delta$$

- The one-time pad hides all information about the key r. The best strategy for the attacker is to guess.

20 / 22

Auth256: Security Proof

Hash values:

 $\begin{array}{l} h = (m_1 + r_1)(m_2 + r_2) + (m_3 + r_3)(m_4 + r_4) + \cdots + (m_{2\ell-1} + r_{2\ell-1})(m_{2\ell} + r_{2\ell}), \\ h' = (m'_1 + r_1)(m'_2 + r_2) + (m'_3 + r_3)(m'_4 + r_4) + \cdots + (m'_{2\ell-1} + r_{2\ell-1})(m'_{2\ell} + r_{2\ell}). \end{array}$

Then
$$h=h'+\Delta$$
 if and only if
$$r_1(m_2-m_2')+r_2(m_1-m_1')+r_3(m_4-m_4')+r_4(m_3-m_3')+\cdots\\ =\Delta+m_1'm_2'-m_1m_2+m_3'm_4'-m_3m_4+\cdots.$$

 $m \neq m'$ implies that there are at most $|K|^{2\ell-1}$ solutions for r.

