PCS 5869 Inteligência Artificial

Prof. Dr. Jaime Simão Sichman Prof. Dra. Anna Helena Reali Costa

Representação de Problemas Espaço de Estados

Arquiteturas Agente tabela Agente reativo Agente baseado em modelo Agente baseado em objetivos Agente baseado em utilidade Agente aprendiz

Agente baseado em objetivo sensores como está o mundo agora? como o mundo evolui (modelo) impacto de minhas ações Que devo fazer agora? Objetivos Agente • Vantagens e desvantagens: - Mais complicado e ineficiente, porém mais flexivel, autônomo - Não trata objetivos conflitantes

Agente solucionador de problemas (guiado por objetivo – deliberativo)

- Busca uma seqüência de ações que o leve a estados desejáveis (objetivos).
- Propriedades do ambiente para este agente:
 - Estático (não muda enquanto o agente delibera)
 - Discreto (enumera seqüências alternativas de ações)
 - Determinístico (solução é seqüência de ações, i.e., não lida com eventos inesperados pois executa a seqüência definida sem considerar percepções → sistema de controle em malha aberta)
 - Observável (e sabe seu estado inicial)
 - Algumas flexibilizações serão feitas em relação às propriedades de determinismo e observabilidade.

Agentes solucionadores de problemas

• O que é um problema em I.A.?

· Ambientes: determinístico

- Como formulá-lo?
- Como buscar a solução do problema?
- Como avaliar a solução e o processo de encontrá-la?

Definição de Problema Quatro componentes:

- Estado inicial do problema (onde o agente inicia)
- Descrição das possíveis ações do agente:
 - Pela <u>função sucessor</u>: dado um estado x, suc(x) retorna um conjunto de pares ordenados (a,y), onde a indica cada ação válida em x e y é o estado sucessor.
 - Pelo conjunto de <u>operadores</u> que podem ser aplicados em um estado para gerar os sucessores.
- Um teste de término:
 - Pode ser um conjunto de estados-objetivos ou
 - Propriedade mais abstrata (ex. cheque-mate em xadrez)
- Uma função de custo da solução
 - avalia numericamente cada solução (medida de desempenho)

1

Definição de Solução

- O estado inicial e a função sucessor implicitamente definem o espaço de estados do problema
- O espaço de estados é descrito por um grafo onde os vértices representam estados e as arestas, ações.
- Um caminho no espaço de estados é uma seqüência de estados conectada por uma seqüência de ações.
- Uma solução para um problema é um caminho do estado inicial para um estado meta (objetivo).
- A qualidade da solução é medida pela função de custo da solução.

Exemplo 1: Agente
Aspirador de Pó

Qual seria a noção de estado conveniente?

R: Localização do aspirador, grau de limpeza do quarto

Quantos seriam os possíveis estados ?

R: Possíveis estados: 8

Exemplo 1: Agente
Aspirador de Pó

Formulação do problema:

- Estado inicial: qualquer um dos 8 estados acima

- Operadores: mover direita (R), mover esquerda (L), aspirar (S)

- Função sucessor: suc(1) = {(R,2), (L,1), (S,5)}, ...

- Teste de término: os dois quartos limpos (estados 7 e 8)

- Custo do caminho: quantidade de ações realizadas (custo 1 para cada ação)

• Considerando os oito estados possíveis (ao lado), representar o espaço de estados como um grafo, com os estados como vértices e as ações como arestas. • Ações: R, L e S

Exercício 2

- Considere que o agente inicie no estado
 5.
- Utilizando o espaço de estados do problema, encontre pelo menos três soluções para o problema.

13

Exemplo 2: Jogo dos 8 Números

- Estado inicial:
 - cada estado especifica a posição de cada uma das 8 peças e do branco no tabuleiro de 9 posições
 - O estado inicial pode ser qualquer estado
- Função sucessor:
 - Gera os estados possíveis que resultam ao aplicar cada uma de 4 ações: branco para esquerda (L), para a direita (R), para cima (U), para baixo (D)
- Teste de término
 - Números ordenados, branco em [3,3].
- · Custo do caminho
 - quantidade de ações realizadas (custo 1 para cada ação)

Exemplo: Jogo das 8 Rainhas

- · Jogo das 8 Rainhas
 - Estado: cada estado especifica a posição de cada uma das posições do tabuleiro
 - Teste de término: dispor 8 rainhas de forma que não possam se "atacar"
 - Custo da solução: ignorado

•Formulação por estado completo: envolve operadores que alteram a linha de uma rainha no tabuleiro, mantendo a sua coluna

3

Importância da Formulação

- Formulação incremental (1)
 - **Estado**: qualquer disposição de 0 a 8 rainhas no tabuleiro
 - Estado inicial: tabuleiro sem rainhas;
 - Operador: adicionar uma rainha a qualquer casa vazia
 - Teste de término: 8 rainhas sem ataque mútuo

O espaço de estados tem 64x63x...x57 ≈ 3 x 10¹⁴ estados!!

Importância da Formulação

- Formulação incremental (2)
 - Estado: qualquer disposição de 0 a 8 rainhas no tabuleiro, dispostas da esquerda para a direita que não se ataquem
 - Estado inicial: tabuleiro sem rainhas:
 - Operador: adicionar uma rainha em gualquer casa na coluna vazia mais à esquerda de forma que não possa ser atacada (teste gradual)
 - Teste de término: 8 rainhas sem ataque mútuo

O espaço de estados tem 2057 estados!!

Importância da Formulação

- Formulação por **estado completo**:

 Estado: qualquer disposição 8 rainhas no tabuleiro, sendo uma em cada
- Estado inicial: qualquer estado
- Operador: alterar a posição de uma rainha atacada para outra linha, na mesma coluna (cada estado tem 8x7=56 sucessores)
- Teste de término: 8 rainhas sem ataque mútuo

Como encontrar a solução?

- Uma vez o problema bem formulado, o estado meta deve ser "buscado" no espaço de estados
- A busca é representada em uma árvore de busca:
 - 1. Raiz: corresponde ao estado inicial
 - Expande-se o estado corrente: aplica-se a função sucessor ao estado corrente, gerando um novo conjunto de sucessores
 - Escolhe-se o próximo estado a expandir seguindo uma estratégia de busca
 - Prossegue-se até sucesso (atingir estado meta retorna solução) ou falha
- Espaço de estados ≠ árvore de busca
 - TSP com 20 cidades: espaço de estados = 20 estados (=cidades), árvore de busca com infinitos vértices (na prática, a busca evita repetir estados).

Árvore de busca para o "jogo dos 8 números" 1 6 7 2 3 right

Medida de Desempenho na Busca (1)

- Desempenho de um algoritmo de busca:
 - Completo: se existir uma solução, ela certamente é encontrada?
 - Ótimo: a busca encontra a solução de menor custo?
 - Complexidade temporal: quanto tempo demora para encontrar a solução?
 - Complexidade espacial: quanto de memória é usado para realizar a busca?
- Em IA a árvore de busca é tipicamente infinita

 → complexidade é expressa por:

 b fator de ramificação (branching) ou número máximo de sucessores de um nó;

 - ${f d}$ profundidade (depth) do nó-meta mais próximo da raiz;
 - **m** comprimento máximo de um caminho no espaço de estados.

Medida de Desempenho na Busca (2)

- Custo total = custo da solução + custo da busca
 - custo da solução (ex. TSP: caminho a percorrer, em km)
 - custo da busca (tipicamente depende da complexidade em tempo)

<u>Problema</u>: relacionar custo da solução (km) com o da busca (seg)

- Espaço de estados grande:
 - compromisso (conflito) entre a melhor solução (menor custo da solução) e a solução mais barata (menor custo da busca)

Métodos de Busca

- Busca cega (busca não informada)
 - Não tem informação sobre qual sucessor é mais promissor para atingir a meta.
 - Estratégias de Busca (ordem de expansão dos nós):
 - busca em largura
 - busca de custo uniforme
 - busca em profundidade
 - busca em profundidade limitada
 - $\bullet\,$ busca em profundidade com aprofundamento iterativo
 - busca bidirecional
- Busca heurística (busca informada)
 - Possui informação (estimativa) de qual sucessor é mais promissor para atingir a meta.

26