IX1303 Tentamen 2020 05 25, Del 2: räknetal

1. För vilka värden på konstanterna p och q är matrisen A nedan inte inverterbar.

$$A = \begin{pmatrix} 1 & 2 & q \\ 1 & 2 & 3 \\ p & 0 & 2 \end{pmatrix}$$

Matrisen är inte inverterbar om (t ex) determinanten är noll, det A = 0.

$$detA = 1 \cdot 2 \cdot 2 + 2 \cdot 3 \cdot p + q \cdot 1 \cdot 0 - p \cdot 2 \cdot q - 0 \cdot 3 \cdot 1 - 2 \cdot 1 \cdot 2 =$$
$$= p(6 - 2q) = 0$$

Svar: A är inverterbar om p = 0 och/eller q = 3.

2. Vid en otrevlig olycka i Schweiz en gång i tiden, spreds 100 kg giftigt cesium ut i sjön Sils. Sils är förbunden via floden Inn med Silvaplana-sjön, som i sin tur är anknuten till St Moritzsjön. Cesiumet spred sig med tiden i detta system och tillståndet (mängden i kg av cesium) i var och en av sjöarna efter t veckor kunde beskrivas med tillståndsvektorn

$$\mathbf{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix}$$

Mängden kg cesium i sjön Sils, som funktion av tiden, ges alltså av $x_1(t)$, i Silvaplana av $x_2(t)$ och i St Moritzsjön av $x_3(t)$. Förändringen per vecka kunde då bestämmas genom ekvationen

$$x(t+1) = x(t)A$$
, där matrisen $A = \begin{pmatrix} 0.7 & 0 & 0 \\ 0.1 & 0.6 & 0 \\ 0 & 0.2 & 0.8 \end{pmatrix}$

Bestäm egenvärden, λ_i , och egenvektorer, \boldsymbol{v}_i , för matrisen A (2p) och bestäm ett slutet uttryck för $\boldsymbol{x}(t)$ enligt $\boldsymbol{x}(t) = \sum_i c_i \lambda_i^t \boldsymbol{v}_i$ (2p).

Exempel på ett dynamiskt system där x(t+1) = x(t)A eller $x(t) = A^t x(0)$, där x(0) är startvektorn.

Egenvärden fås direkt från diagonalelementen i den triangulära matrisen A: $\lambda_1 = 0.7$, $\lambda_2 = 0.6$ och $\lambda_3 = 0.8$.

Egenvektorer fås ur nollrummet till matrisen $(A - \lambda_i I)$ för de olika egenvärdena.

1

$$\begin{array}{ll} \lambda_1\colon \begin{pmatrix} 0 & 0 & 0 \\ 0.1 & -0.1 & 0 \\ 0 & 0.2 & 0.1 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \text{ eller } \begin{pmatrix} x_1 = x_2 \\ x_3 = -2x_2 \end{pmatrix}. \text{ V\"{alj }} x_1 = 1 \text{ s\'{a} erh\'{a}lls} \\ \text{egenvektorn } \boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \end{array}$$

$$\lambda_2$$
: $\begin{pmatrix} 0.1 & 0 & 0 \\ 0.1 & 0 & 0 \\ 0 & 0.2 & 0.2 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ eller $\begin{pmatrix} x_1 = 0 \\ x_3 = -x_2 \end{pmatrix}$. Välj $x_2 = -1$ så erhålls

egenvektorn
$$v_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
.

$$\lambda_3$$
: $\begin{pmatrix} -0.1 & 0 & 0 \\ 0.1 & -0.2 & 0 \\ 0 & 0.2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ eller $\begin{pmatrix} x_1 = 0 \\ x_2 = 0 \end{pmatrix}$. Välj $x_3 = 1$ så erhålls

egenvektorn
$$\boldsymbol{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
.

Kolla genom sambandet AP = PD!

Sluten form:
$$\mathbf{x}(t) = c_1 \lambda_1^t \mathbf{v}_1 + c_2 \lambda_2^t \mathbf{v}_2 + c_3 \lambda_3^t \mathbf{v}_3$$

Startvektorn ges av $\mathbf{x}(0) = \begin{pmatrix} 100 \\ 0 \\ 0 \end{pmatrix}$, dvs vid tiden t = 0 finns 100 kg cesium i sjön Sils och inget i de andra sjöarna. Detta ger oss sambandet $\mathbf{x}(0) = \begin{pmatrix} 100 \\ 0 \\ 0 \end{pmatrix} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = c_1 \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, eller på matrisform (utökad koefficientmatris): $\begin{pmatrix} 1 & 0 & 0 & 100 \\ 1 & -1 & 0 & 0 \\ -2 & 1 & 1 & 0 \end{pmatrix} \sim \cdots \sim \begin{pmatrix} 1 & 0 & 0 & 100 \\ 0 & 1 & 0 & 100 \\ 0 & 0 & 1 & 100 \end{pmatrix}$, dvs $c_1 = c_2 = c_3 = 100$.

<u>Svar:</u> Egenvärden är $\lambda_1=0.7$, $\lambda_2=0.6$ och $\lambda_3=0.8$ och tillhörande egenvektorer

$$\boldsymbol{v}_1 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \, \boldsymbol{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \text{och } \boldsymbol{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Sambandet kan skrivas
$$x(t) = 100 \left[0.7^t \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} + 0.6^t \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + 0.8^t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right].$$

3. Funktionerna f och g tillhör det linjära rummet av kontinuerliga funktioner i det slutna intervallet [a,b], C[a,b]. Låt $\{g_1,g_2,...,g_n\}$ utgöra en ON-bas till underrummet W av ett inre produktrum V, då gäller för alla i V

$$proj_W f = \langle g_1, f \rangle g_1 + \langle g_2, f \rangle g_2 + \dots + \langle g_n, f \rangle g_n$$

Bestäm utgående från denna sats den linjära funktion på formen g(t) = a + bt, tillhörande rummet \mathbb{P}_1 , som utgör den bästa minsta kvadratanpassningen av funktionen $f(t) = e^t$ i intervallet -1 till 1. (4p)

Ledning: från analyskursen vet vi att $\int xe^x dx = xe^x - e^x + C$

Standardbasen till rummet av polynom av graden n utgörs av $\{1, t, t^2, ..., t^n\}$. Det betyder att dessa polynom är ortogonala, men man måste normalisera, dvs dividera med normen ("längden"), för att få ON-basen. För \mathbb{P}_1 är (den icke normerade) basen $\{1, t\}$.

Normen för en funktion f ges av $||f|| = \sqrt{\langle f, f \rangle}$, där den inre produkten ges av $\langle f, f \rangle = \int_a^b f^2 dt$.

Här fås alltså $\|1\| = \sqrt{\int_{-1}^{1} 1 dt} = \sqrt{2}$ och $\|t\| = \sqrt{\int_{-1}^{1} t^2 dt} = \sqrt{\frac{2}{3}}$. En ON-bas till \mathbb{P}_1 är således $\{g_1, g_2\} = \left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} t\right\}$.

Den bästa minsta kvadratanpassningen utgörs av $proj_W f$. Enligt den givna satsen ovan blir detta $proj_W f = \langle g_1, f \rangle g_1 + \langle g_2 f \rangle g_2$

Insättning ger nu $proj_W f = \langle 1/\sqrt{2}, e^t \rangle 1/\sqrt{2} + \langle \sqrt{3/2} t, e^t \rangle \sqrt{3/2} t =$

$$= \frac{1}{2} \int_{-1}^{1} e^{t} dt + \frac{3}{2} \int_{-1}^{1} t e^{t} dt = \dots = \frac{1}{2} (e - e^{-1}) + 3e^{-1}t$$

Svar: Den räta linjen $g(t) = \frac{1}{2}(e - e^{-1}) + 3e^{-1}t$ är den bästa minsta kvadratanpassningen till $f(t) = e^t$ i intervallet [-1,1].