Lecture 13: Constant-size NIZK arguments

Zero-knowledge proofs

263-4665-00L

Lecturer: Jonathan Bootle

Announcements

- Graded homework due today, 15/12/2023 23:59 CET.
- Exam date 02/02/2023, 15:00-17:00.
- Past exam questions on Moodle. Will post summary of examinable materials later.
- Previous exams: 100 points. This year: shorter at 70 points.
- Continued office hours after New Year on 16/01, 23/01, 30/01.
- Today's exercise session: ZK implementation in Circom. It may be useful to try installation in advance.
- https://learn.microsoft.com/en-us/windows/wsl/install (windows users)
- https://docs.circom.io/getting-started/installation/

Agenda

Non-interactive zero-knowledge (NIZK) definitions

Pairing-based constructions of NIZK

- From reasonable cryptographic assumptions
 - The BGN cryptosystem
 - BGN bit proofs
 - BGN proofs for CSAT
- From strong cryptographic assumptions
 - Arithmetisation of R1CS into QAP
 - Linear PCP and pairing-based compiler

O(N) proof size for **Boolean circuits**

O(1) proof size for **Arithmetic circuits**

From R1CS to strong R1CS

$$\mathcal{R}_{R1CS} = \left\{ (\mathbb{F}, A, B, C, \vec{x}), \vec{w}) : \begin{array}{l} A, B, C \in \mathbb{F}^{N_r \times N_c}, \vec{x} \in \mathbb{F}^k \\ (\mathbb{F}, A, B, C, \vec{x}), \vec{w}) : \vec{w} \in \mathbb{F}^{N_c - k}, \vec{z} \coloneqq \vec{x} | | \vec{w} \\ A\vec{z} \circ B\vec{z} = C\vec{z} \end{array} \right\}$$

$$\text{entry-wise product}$$

$$\vec{x} \text{ makes the problem non-trivial. W.L.O.G}$$

$$\vec{x} \text{ in the problem of the problem of$$

first entry is 1.

Definition: strong R1CS instances are as above, and additionally, if $\vec{z}_i :=$ $\vec{x}||\vec{w}_i|$ for $i \in [3]$, $A\vec{z}_1 \circ B\vec{z}_2 = C\vec{z}_3$ implies that $\vec{z}_1 = \vec{z}_2 = \vec{z}_3$.

Lemma: for each R1CS instance, there is a *strong* R1CS instance with exactly the same witnesses and dimensions $N_r + 2N_c$, N_c .

Proof:

$$\begin{pmatrix} A \\ I_{N_c} \\ 1^{N_c} & 0_{N_c \times (N_c - 1)} \end{pmatrix} \vec{z}_1 \circ \begin{pmatrix} B \\ 1^{N_c} & 0_{N_c \times (N_c - 1)} \\ I_{N_c} \end{pmatrix} \vec{z}_2 = \begin{pmatrix} C \\ I_{N_c} \\ I_{N_c} \end{pmatrix} \vec{z}_3 \qquad \begin{pmatrix} A \vec{z}_1 \\ 1^{N_c} \\ \vec{z}_1 \end{pmatrix} \circ \begin{pmatrix} B \vec{z}_2 \\ \vec{z}_2 \\ 1^{N_c} \end{pmatrix} = \begin{pmatrix} C \vec{z}_3 \\ \vec{z}_3 \\ \vec{z}_3 \end{pmatrix}$$

$$\begin{pmatrix} A\vec{z}_1 \\ 1^{N_C} \\ \vec{z}_1 \end{pmatrix} \circ \begin{pmatrix} B\vec{z}_2 \\ \vec{z}_2 \\ 1^{N_C} \end{pmatrix} = \begin{pmatrix} C\vec{z}_3 \\ \vec{z}_3 \\ \vec{z}_3 \end{pmatrix}$$

Polynomial definitions and facts

• Let $H \subseteq \mathbb{F}$ with |H| = N.

$$L_{h,H}(\omega) = (\omega == h)$$

Definition:

• The Lagrange polynomials on H are defined, for $\omega \in H$, by

$$L_{\omega,H}(X) \coloneqq \prod_{\omega' \in H \setminus \{\omega\}} \frac{X - \omega'}{\omega - \omega'}$$
 Degree $|H| - 1$.

• The vanishing polynomial on H is defined as $v_H(X) \coloneqq \prod_{\omega \in H} (X - \omega)$.

Fact:

Degree |H|.

For $f \in \mathbb{F}[X]$, we have $f(h) = 0 \ \forall \omega \in H \Leftrightarrow v_H(X) \mid f(X)$.

R1CS as polynomial divisibility

- Choose $H = \{1, ..., N_r\} \subseteq \mathbb{F}$ (there are better choices).
- For each $j \in [N_c]$, define $a_j(X) \coloneqq \sum_{i \in [N_r]} a_{ij} L_{i,H}(X)$.

 Note that $a_j(i) = a_{i,j}$.
- Define $b_i(X)$, $c_i(X)$ similarly. $A = (a_{i,j})$
- Let $\vec{z} = (z_1, ..., z_{N_C})$ be an R1CS witness.
- Define $A_{\vec{z}}(X) \coloneqq \sum_{j \in [N_c]} z_j a_j(X)$ and $B_{\vec{z}}(X)$, $C_{\vec{z}}(X)$ similarly.
- **Lemma:** $v_H(X) \mid A_{\vec{z}}(X) \cdot B_{\vec{z}}(X) C_{\vec{z}}(X) \iff A\vec{z} \circ B\vec{z} = C\vec{z}$.
- **Proof:** $v_H(X) \mid A_{\vec{z}}(X) \cdot B_{\vec{z}}(X) C_{\vec{z}}(X) \Leftrightarrow A_{\vec{z}}(X) \cdot B_{\vec{z}}(X) C_{\vec{z}}(X)$ vanishes on H.

For each $i \in H = [N_r]$,

$$A_{\vec{z}}(i)B_{\vec{z}}(i) - C_{\vec{z}}(i) = \left(\sum_{j \in [N_c]} z_j a_j(i)\right) \left(\sum_{j \in [N_c]} z_j b_j(i)\right) - \left(\sum_{j \in [N_c]} z_j c_j(i)\right)$$

$$= \left(\sum_{j \in [N_c]} z_j a_{ij}\right) \left(\sum_{j \in [N_c]} z_j b_{ij}\right) - \left(\sum_{j \in [N_c]} z_j c_{ij}\right) = (A\vec{z})_i (B\vec{z})_i = (C\vec{z})_i.$$

The Quadratic Arithmetic Program (QAP) problem

Definition:

- QAP instance $x = \left(\mathbb{F}, \left\{a_j(X), b_j(X), c_j(X)\right\}_{j \in [N]}, \vec{x}, H\right)$, with $\vec{x} \in \mathbb{F}^k, H \subseteq \mathbb{F}$.
- QAP witness $\vec{w} \in \mathbb{F}^{N-k}$, such that if $\vec{z} := \vec{x} | |\vec{w}|$, $\exists Q(X) \in \mathbb{F}[X]$ such that $A_{\vec{z}}(X)B_{\vec{z}}(X) = C_{\vec{z}}(X) + Q(X)v_H(X).$
- A QAP instance is strong if

We can transform CSAT \rightarrow R1CS \rightarrow Strong R1CS \rightarrow Strong QAP

Agenda

Non-interactive zero-knowledge (NIZK) definitions

Pairing-based constructions of NIZK

- From reasonable cryptographic assumptions
 - The BGN cryptosystem
 - BGN bit proofs
 - BGN proofs for CSAT
- From strong cryptographic assumptions
 - Arithmetisation of R1CS into QAP
 - Linear PCP and pairing-based compiler

O(N) proof size for **Boolean circuits**

O(1) proof size for **Arithmetic circuits**

Succinct Non-Interactive Arguments via Linear Interactive Proofs

Nir Bitansky* Tel Aviv University

Alessandro Chiesa MIT Yuval Ishai[†] Technion

Rafail Ostrovsky[‡] UCLA Omer Paneth§
Boston University

point-query PCPs

linear-query PCPs

A linear-query PCP for QAP

$$P(\mathbf{X}, \overrightarrow{w})$$
Sample $r_A, r_B \leftarrow_{\$} \mathbb{F}$. Compute $\overrightarrow{z} \coloneqq \overrightarrow{x} | | \overrightarrow{w}$.
$$Q'(X) \coloneqq \frac{(A_{\overrightarrow{z}}(X) + r_A \cdot v_H(X))(B_{\overrightarrow{z}}(X) + r_B \cdot v_H(X)) - C_{\overrightarrow{z}}(X)}{v_H(X)}$$

$$\overrightarrow{Q'} \coloneqq \operatorname{Coeffs}(Q'(X))$$

$$\operatorname{degree} \leq h$$

 $|\overrightarrow{w}||r_A||r_B||\overrightarrow{w}||\overrightarrow{Q}'|$

Length O(N+h)

pad to \mathbb{F}^{h+1}

Allowing $v_H(X)$ multiples does not affect QAP satisfiability.

Note: $s \in \mathbb{F} \setminus |H|$ so $v_H(s) \neq 0$ so $a_{\overrightarrow{w},r_A}, b_{\overrightarrow{w},r_B}$ are uniformly random in \mathbb{F} .

V(x)Sample $s \leftarrow_{\$} \mathbb{F} \setminus |H|$. Compute $a_{\vec{x}} \coloneqq \sum_{i \le k} x_i a_i(s)$ $b_{\vec{x}} \coloneqq \sum_{i \le k} x_i b_i(s)$ $c_{\vec{x}} \coloneqq \sum_{i \le k} x_i c_i(s)$ Query to get $a_{\overrightarrow{w},r_A} \coloneqq \sum_{i>k} z_i a_i(s) + r_A \cdot v_H(s)$ $b_{\overrightarrow{w},r_B} \coloneqq \sum_{i>k} z_i b_i(s) + r_B \cdot v_H(s)$ $c_{\vec{w}.\vec{O}'} \coloneqq \sum_{i>k} z_i c_i(s) +$ $\sum_{i \in [0, \dots, |H|]} Q_i' s^j v_H(s)$ Accept iff $(a_{\vec{x}} + a_{\vec{w},r_A})(b_{\vec{x}} + b_{\vec{w},r_A})$ $==\left(c_{\vec{x}}+c_{\overrightarrow{w}.\vec{O}'}\right).$

Completeness analysis

If $x \in \mathcal{L}_{QAP}$ then $\exists \vec{w} \in \mathbb{F}^k$ such that setting $\vec{z} = \vec{x} | |\vec{w}$,

- $\exists Q(X): A_{\vec{z}}(X)B_{\vec{z}}(X) = C_{\vec{z}}(X) + Q(X)v_H(X).$
- $\exists Q'(X) : (A_{\vec{z}}(X) + r_A \cdot v_H(X))(B_{\vec{z}}(X) + r_B \cdot v_H(X)) = C_{\vec{z}}(X) + Q'(X)v_H(X).$
- $Q'(X) := Q(X) + r_A \cdot B_{\vec{z}}(X) + r_B \cdot A_{\vec{z}}(X) + r_A r_B \cdot v_H(X)$
- $A_{\vec{z}}(s) + r_A \cdot v_H(s) = \sum_{j \in [N]} z_j a_j(s) + r_A \cdot v_H(s) = a_{\vec{x}} + a_{\vec{w}, r_A}$. Similarly for $B_{\vec{z}}(s)$.
- $C_{\vec{z}}(s) + \sum_{j \in [0,..,|H|]} Q_j' s^j = c_{\vec{x}} + c_{\vec{w},\vec{Q}'}$.
- Hence $(a_{\vec{x}} + a_{\overrightarrow{w},r_A})(b_{\vec{x}} + b_{\overrightarrow{w},r_A}) = (c_{\vec{x}} + c_{\overrightarrow{w},\vec{Q}'})$ and V accepts.

Soundness analysis

If $x \notin \mathcal{L}_{OAP}$ then $\forall \vec{w} \in \mathbb{F}^k$, setting $\vec{z} = \vec{x} | |\vec{w}$,

•
$$\forall Q(X): A_{\vec{z}}(X)B_{\vec{z}}(X) \neq C_{\vec{z}}(X) + Q(X)v_H(X)$$
. Adding multiples of $v_H(X)$ does not affect divisibility.

•
$$\forall Q'(X)$$
, r_A , $r_B: (A_{\vec{z}}(X) + r_A \cdot v_H(X))(B_{\vec{z}}(X) + r_B \cdot v_H(X)) \neq C_{\vec{z}}(X) + Q'(X)v_H(X)$.

•
$$(A_{\vec{z}}(s) + r_A \cdot v_H(s))(B_{\vec{z}}(s) + r_B \cdot v_H(s)) \neq C_{\vec{z}}(s) + Q'(s)v_H(s)$$
 except w.p. $\leq \frac{2h}{|\mathbb{F}| - h}$

$$\bullet \ A_{\vec{z}}(s) + r_A \cdot v_H(s) = a_{\vec{x}} + a_{\vec{w},r_A}.$$

•
$$B_{\vec{z}}(s) + r_B \cdot v_H(s) = b_{\vec{x}} + b_{\vec{w},r_B}$$
.

•
$$C_{\vec{z}}(s) + \sum_{j \in [0,..,|H|]} Q'_j s^j = c_{\vec{x}} + c_{\vec{w},\vec{Q}'}$$
.

• Hence
$$(a_{\vec{x}} + a_{\overrightarrow{w},r_A})(b_{\vec{x}} + b_{\overrightarrow{w},r_A}) \neq (c_{\vec{x}} + c_{\overrightarrow{w},\vec{Q}'})$$
 and V rejects.

Apply S.Z. Lemma with degree 2|H| and $s \leftarrow_{\$} \mathbb{F} \setminus |H|$

Prover complexity analysis

- *P* computes $A_{\vec{z}}(X)$, $B_{\vec{z}}(X)$, $C_{\vec{z}}(X)$ from \vec{z} , $\{a_j(X), b_j(X), c_j(X)\}$, $v_H(X)$.
- Each $\{a_j(X), b_j(X), c_j(X)\}$ has O(h) coefficients.
- O(Nh) to compute $A_{\vec{z}}(X)$, $B_{\vec{z}}(X)$, $C_{\vec{z}}(X)$.
- $O(h^2)$ to compute $Q'(X)\coloneqq \frac{\left(A_{\overrightarrow{Z}}(X)+r_A\cdot v_H(X)\right)\left(B_{\overrightarrow{Z}}(X)+r_B\cdot v_H(X)\right)-C_{\overrightarrow{Z}}(X)}{v_H(X)}$ using long division.
- When H is specially chosen, we can reduce $O(h^2)$ to $O(h \log h)$ using the Fast Fourier Transform.

Agenda

Non-interactive zero-knowledge (NIZK) definitions

Pairing-based constructions of NIZK

- From reasonable cryptographic assumptions
 - The BGN cryptosystem
 - BGN bit proofs
 - BGN proofs for CSAT
- From strong cryptographic assumptions
 - Arithmetisation of R1CS into QAP
 - Linear PCP and pairing-based compiler

O(N) proof size for **Boolean circuits**

O(1) proof size for **Arithmetic circuits**

Analysis here is sketchy because

- The real proof contains many subtleties
- Protocol doesn't match our definitions

Prime-order asymmetric pairings

Definition:

An asymmetric bilinear group is a triple of 3 groups of prime order p and a bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ satisfying

```
\forall a, b \in \mathbb{Z}_p, \forall G, \in \mathbb{G}_1, \forall H, \in \mathbb{G}_2, Pairing maps e(a \cdot G, b \cdot H) = ab \cdot e(G, H) 'multiply DLOGs'
```

which is non-degenerate i.e.

If
$$\mathbb{G}_1 = \langle G \rangle$$
, $\mathbb{G}_2 = \langle H \rangle$, then $\mathbb{G}_T = \langle e(G, H) \rangle$

Clash for *H*

Assumptions

For some generation algorithm $(e, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, G, H, p) \leftarrow_{\$} \text{Gen}(1^{\lambda}),$ $p \approx 2^{\lambda}, \mathbb{G}_1 = \langle G \rangle, \mathbb{G}_2 = \langle H \rangle.$

Does not hold for all choices of polynomials $\{v_i(X)\}$!

Definition:

Let $\lambda \in \mathbb{N}$ and $N, h = \operatorname{poly}(\lambda)$. The Knowledge of Exponent assumption (KEA) over \mathbb{G}_1 for polynomials $\{v_j(X)\}_{j \in [N]}$ holds if for all efficient A,

there exists an efficient extractor X_A such that

$$\Pr\begin{bmatrix} C, \hat{C} \in \mathbb{G}_{1} & (e, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, G, H, p) \leftarrow_{\$} \operatorname{Gen}(1^{\lambda}) \\ \hat{C} = \alpha \cdot C & : \alpha, s \leftarrow_{\$} \mathbb{Z}_{p}^{*}, \sigma \coloneqq \left(\{v_{j}(s) \cdot G\}, \{\alpha v_{j}(s) \cdot G\} \right) \\ C \neq \left(\sum_{i=1}^{N} z_{i} v_{i}(s) \right) \cdot G & \left(C, \hat{C} | | z_{1}, \dots, z_{N} \right) \leftarrow_{\$} (A | | X_{A})(\sigma, Z) \end{bmatrix} \approx 0.$$

Non-falsifiable assumption

- DLOG can be 'falsified' by providing a DLOG breaker
- To break KEA, you have to provide A and prove that no X_A exists

Auxiliary information Z

Necessary for O(1) proof size [GW'10]

Previous knowledge soundness definition

Definition:

(K, P, V) is a proof of knowledge for a relation \mathcal{R} if \exists efficient extractors E_1, E_2 such that for all P^* ,

Quantifiers on extractor and adversary are in the opposite order!

•
$$\{\sigma: (\sigma, \xi) \leftarrow E_1(1^{\lambda})\} \approx \{\sigma: \sigma \leftarrow K(1^{\lambda})\}$$
, and

•
$$\Pr \left[\begin{array}{l} V(\sigma, x, \pi) = 0 \\ \forall (x, w) \in \mathcal{R} \end{array} : \begin{array}{l} (\sigma, \xi) \leftarrow E_1(1^{\lambda}), (x, \pi) \leftarrow P^*(\sigma) \\ w \leftarrow E_2(\sigma, \xi, x, \pi) \end{array} \right] \approx 1.$$

Idea for linear PCP to argument compiler

 $|\overrightarrow{w}||r_A||r_B||\overrightarrow{w}||\overrightarrow{Q}'|$

 $P(\mathbf{x}, \overrightarrow{w})$ Sample $r_A, r_B \leftarrow_{\$} \mathbb{F}$. Compute $\overrightarrow{z} \coloneqq \overrightarrow{x} | | \overrightarrow{w}$. $Q'(X) \coloneqq \frac{(A_{\overrightarrow{z}}(X) + r_A \cdot v_H(X))(B_{\overrightarrow{z}}(X) + r_B \cdot v_H(X)) - C_{\overrightarrow{z}}(X)}{v_H(X)}$ $\overrightarrow{Q}' \coloneqq \mathsf{Coeffs}(Q'(X))$

- In a real argument, we need *P* to answer the queries but stick to a linear strategy.
- We can't allow *V* to choose and send *s* because that requires interaction.
- We will use KEA to guarantee 'linear' answers to each query.
- We will use pairings to replace the verifier check.

```
Sample s \leftarrow_{\$} \mathbb{F} \setminus |H|.
Compute a_{\vec{x}} \coloneqq \sum_{i \le k} x_i a_i(s)
b_{\vec{x}} \coloneqq \sum_{j \le k} x_j b_j(s)
c_{\vec{x}} \coloneqq \sum_{i \le k} x_i c_i(s)
Query to get
a_{\overrightarrow{w},r_A} \coloneqq \sum_{i>k} z_i a_i(s) + r_A \cdot v_H(s)
b_{\overrightarrow{w},r_B} \coloneqq \sum_{i>k} z_i b_i(s) + r_B \cdot v_H(s)
c_{\vec{w}.\vec{O}'} \coloneqq \sum_{i>k} z_i c_i(s) +
                   \sum_{i \in [0,\dots|H|]} Q_i' s^j v_H(s)
 Accept iff
(a_{\vec{x}} + a_{\vec{w},r_A})(b_{\vec{x}} + b_{\vec{w},r_A})
==\left(c_{\vec{x}}+c_{\overrightarrow{w}.\overrightarrow{O}'}\right).
```

The $a_{\overrightarrow{w},r_A}$ query

$$K(\mathbb{X})$$
: Sample $(e, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, G, H, p), \alpha, \beta, \gamma, s \leftarrow_{\$} \mathbb{Z}_p^*$.

Output $\sigma_A := \begin{pmatrix} H, \alpha \cdot H, \{a_j(s) \cdot G\}_{j>k}, v_H(s) \cdot G, \\ \{\alpha a_j(s) \cdot G\}_{j>k}, \alpha v_H(s) \cdot G \end{pmatrix}$.

 $P(\sigma, \mathbb{X}, \mathbb{W})$: Sample $r_A \leftarrow_{\$} \mathbb{Z}_p$. Compute $\vec{z} \coloneqq \vec{x} | | \vec{w}$.

- Compute $A := \left(\sum_{j>k} z_j a_j(s) + r_A \cdot v_H(s)\right) \cdot G \in \mathbb{G}_1$.
- Compute $\hat{A} := \left(\sum_{j>k} z_j a_j(s) + r_A \cdot v_H(s)\right) \cdot \alpha G \in \mathbb{G}_1$.
- Output $\pi := (A, \hat{A}) \in \mathbb{G}_1^2$.

 $V(\sigma, x, \pi)$: Output 1 if and only if $e(A, \alpha \cdot H) == e(\hat{A}, H)$.

Completeness sketch:

Since $\hat{A} = \alpha \cdot A$, $e(A, \alpha \cdot H) = e(\alpha \cdot A, H) = e(\hat{A}, H)$. Hence, the verifier will accept.

Knowledge soundness sketch:

- Suppose $P^*(\sigma, \mathbf{x}) = (A, \hat{A})$, satisfying $e(A, \alpha \cdot H) = e(\hat{A}, H)$.
- Write $A = a \cdot G$, $\hat{A} = \hat{a} \cdot G$.
- We have $e(A, \alpha \cdot H) = a\alpha \cdot e(G, H)$, so $e(\hat{A}, H) = \hat{a} \cdot e(G, H)$.
- Since e(G, H) is a generator, $a\alpha = \hat{a}$, so $\hat{A} = \alpha \cdot A$.
- By the KEA assumption, \exists efficient X_A producing $z_{k+1}, \ldots, z_N, r_A$ satisfying $A = \left(\sum_{j>k} z_j a_j(s) + r_A v_H(s)\right) \cdot G$.

CRS generator for all three queries

$$K(\mathbf{x}): \mathsf{Sample}\ (e, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, G, H, p), \, \alpha, \beta, \gamma, s \leftarrow_{\$} \mathbb{Z}_{p}^{*}.$$

$$\mathsf{Output}\ \sigma \coloneqq \begin{pmatrix} \sigma_{A} \\ \sigma_{B} \\ \sigma_{C} \end{pmatrix}$$

$$= \begin{pmatrix} H, \alpha \cdot H, \{a_{j}(s) \cdot G\}_{j>k}, v_{H}(s) \cdot G, \{\alpha a_{j}(s) \cdot G\}_{j>k}, \alpha v_{H}(s) \cdot G, \\ G, \beta \cdot G, \{b_{j}(s) \cdot H\}_{j>k}, v_{H}(s) \cdot H, \{\beta b_{j}(s) \cdot H\}_{j>k}, \beta v_{H}(s) \cdot H, \\ H, \gamma \cdot H, \{c_{j}(s) \cdot G\}_{j>k}, \{s^{j}v_{H}(s) \cdot G\}_{j=0}^{h}, \{\gamma c_{j}(s) \cdot G\}_{j>k}, \{\gamma s^{j}v_{H}(s) \cdot G\}_{j=0}^{h} \end{pmatrix}.$$

- σ_B reverses \mathbb{G}_1 , \mathbb{G}_2 because we will want the $b_{\overrightarrow{w},r_B}$ in \mathbb{G}_2 later.
- σ_C uses a different multiplier from σ_A because if they both used α , $e(A, \alpha \cdot H) = e(\hat{A}, H)$ would imply that A was made from the $a_j(s)$ and $c_j(s)$, not just the $a_j(s)$.

All three queries

 $K(\mathbb{X})$: Sample $(e, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, G, H, p), \alpha, \beta, \gamma, s \leftarrow_{\$} \mathbb{Z}_p^*$. Output $\sigma \coloneqq (\sigma_A, \sigma_B, \sigma_C)$.

 $P(\sigma, \mathbb{X}, \mathbb{W})$: Sample $r_A, r_B \leftarrow_{\$} \mathbb{Z}_p$. Compute $\vec{z} \coloneqq \vec{x} | | \vec{w}$ and

- $A := \left(\sum_{j>k} z_j a_j(s) + r_A \cdot v_H(s)\right) \cdot G \in \mathbb{G}_1.$
- $\hat{A} := \left(\sum_{j>k} z_j a_j(s) + r_A \cdot v_H(s)\right) \cdot \alpha G \in \mathbb{G}_1.$
- $B := \left(\sum_{j>k} z_j b_j(s) + r_B \cdot v_H(s)\right) \cdot H \in \mathbb{G}_2.$
- $\widehat{B} := (\sum_{j>k} z_j b_j(s) + r_B \cdot v_H(s)) \cdot \beta H \in \mathbb{G}_2.$
- $C := \left(\sum_{j>k} z_j c_j(s) + \sum_{j\in[0,..,h]} Q_j' s^j v_H(s)\right) \cdot G \in \mathbb{G}_1.$
- $\hat{C} := \left(\sum_{j>k} z_j c_j(s) + \sum_{j\in[0,..,h]} Q_j' s^j v_H(s)\right) \cdot \gamma G \in \mathbb{G}_1.$
- Output $\pi := (A, \hat{A}, B, \hat{B}, C, \hat{C}) \in \mathbb{G}_1^2 \times \mathbb{G}_2^2 \times \mathbb{G}_1^2$.

 $V(\sigma, \mathbb{X}, \pi)$: Output 1 if and only if $e(A, \alpha \cdot H) == e(\hat{A}, H)$, $e(\beta \cdot G, B) == e(G, \widehat{H})$ and $e(C, \gamma \cdot H) == e(\widehat{C}, H)$.

Completeness sketch:

Since $\hat{A} = \alpha \cdot A$, $e(A, \alpha \cdot H) = e(\hat{A}, H)$. Since $\hat{B} = \beta \cdot B$, $e(\beta \cdot G, B) = e(G, \widehat{H})$. Since $\hat{C} = \gamma \cdot C$, $e(C, \gamma \cdot H) = e(\hat{C}, H)$. Hence V accepts.

Knowledge soundness sketch:

Suppose $P^*(\sigma, \mathbf{x}) = \pi$, satisfying all V's checks.

By various KEA assumptions, \exists efficient X_{P^*} producing

• z_{k+1}, \dots, z_N, r_A satisfying

$$A = \left(\sum_{j>k} z_j a_j(s) + r_A v_H(s)\right) \cdot G,$$

• $z'_{k+1}, \dots, z'_{N}, r_{B}$ satisfying

$$B = (\sum_{i>k} z_i' b_i(s) + r_B v_H(s)) \cdot H,$$

• $z_{k+1}^{\prime\prime},\ldots,z_N^{\prime\prime},Q_0^\prime,\ldots,Q_h^\prime$ satisfying

$$C = \left(\sum_{i>k} z_i^{\prime\prime} c_i(s) + \right)$$

$$\sum_{j\in[0,..,h]}Q_j's^jv_H(s))\cdot G.$$

CRS generator when adding the final check

$$K(\mathbf{x}) : \mathsf{Sample}\ (e, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, G, H, p), \alpha, \beta, \gamma, s \leftarrow_{\$} \mathbb{Z}_p^*.$$

$$\mathsf{CRS}\ \mathsf{generation}\ \mathsf{is}\ \mathsf{heavily}\ \mathsf{instance-dependent}$$

$$\mathsf{Universal}\ \mathsf{circuits} : \mathsf{capture}\ \mathsf{any}\ N\text{-}\mathsf{gate}\ \mathsf{circuit}\ \mathsf{in}$$

$$O(N\log N)\ \mathsf{gates}\ \mathsf{using}\ \mathsf{'control}\ \mathsf{bits'}$$

$$= \begin{pmatrix} H, \alpha \cdot H, \{a_j(s) \cdot G\}_{j \in [N]}, v_H(s) \cdot G, \{\alpha a_j(s) \cdot G\}_{j > k}, \alpha v_H(s) \cdot G, \\ G, \beta \cdot G, \{b_j(s) \cdot H\}_{j \in [N]}, v_H(s) \cdot H, \{\beta b_j(s) \cdot H\}_{j > k}, \beta v_H(s) \cdot H, \\ H, \gamma \cdot H, \{c_j(s) \cdot G\}_{j \in [N]}, \{s^j v_H(s) \cdot G\}_{j = 0}^h, \{\gamma c_j(s) \cdot G\}_{j > k}, \{\gamma s^j v_H(s) \cdot G\}_{j = 0}^h \end{pmatrix}.$$

- V needs to adjust A, B, C to incorporate \vec{x} .
- Since σ_A uses multiplier α , $e(A, \alpha \cdot H) = e(\hat{A}, H)$ implies that A was only made from $\{a_j(s)\}_{j>k}$, not $\{a_j(s)\}_{j\in[N]}$.
- This means a malicious prover cannot change \vec{x} .

Adding the final check

$$K(\mathbb{X})$$
: Sample $(e, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, G, H, p), \alpha, \beta, \gamma, s \leftarrow_{\$} \mathbb{Z}_p^*$. Output $\sigma \coloneqq (\sigma'_A, \sigma'_B, \sigma'_C)$.

$$P(\sigma, \mathbb{X}, \mathbb{W})$$
: Sample $r_A, r_B \leftarrow_{\$} \mathbb{Z}_p$. Compute $\vec{z} \coloneqq \vec{x} || \vec{w}$ and output $\pi \coloneqq (A, \hat{A}, B, \hat{B}, C, \hat{C}) \in \mathbb{G}_1^2 \times \mathbb{G}_2^2 \times \mathbb{G}_1^2$ as before.

Can be optimized to 3

QAP property removed.

group elements, and strong

$V(\sigma, \mathbb{X}, \pi)$:

Compute
$$A_x := \left(\sum_{j \le k} x_j a_j(s)\right) \cdot G \in \mathbb{G}_1$$
.

Compute
$$B_{\chi} := \left(\sum_{j \le k} x_j b_j(s)\right) \cdot H \in \mathbb{G}_2$$
.

Compute
$$C_x \coloneqq \left(\sum_{j \le k} z_j a_j(s)\right) \cdot G \in \mathbb{G}_1$$
.

Output 1 if and only if

$$e(A, \alpha \cdot H) == e(\hat{A}, H),$$

$$e(\beta \cdot G, B) == e(G, \widehat{H}),$$

 $e(C, \gamma \cdot H) == e(\hat{C}, H)$, and

$$e(A_x + A, B_x + B) == e(C_x + C, H).$$

Completeness:

As before, plus

$$A_{x} = a_{\vec{x}} \cdot G$$
, $A = a_{\vec{w},r_{A}} \cdot G$,

$$B_{\chi} = b_{\vec{\chi}} \cdot H, \qquad B = b_{\vec{W},r_R} \cdot H,$$

$$C_{x} = c_{\vec{x}} \cdot G, \qquad C = a_{\vec{w} \cdot \vec{O}'} \cdot G.$$

Final check implies $(a_{\vec{x}} + a_{\vec{w},r_A})(b_{\vec{x}} +$

$$b_{\overrightarrow{w},r_A}) = \left(c_{\overrightarrow{x}} + c_{\overrightarrow{w},\overrightarrow{Q}'}\right).$$

Hence *V* accepts by PCP completeness.

Communication complexity: $4\mathbb{G}_1 + 2\mathbb{G}_2$.

Verifier complexity: $O(k) \mathbb{G}_1$, \mathbb{G}_2 -ops and 1 pairing.

Prover complexity:

- $O(Nh + h^2) \mathbb{Z}_p$ -ops from the PCP.
- $O(N+h) \mathbb{G}_1, \mathbb{G}_2$ -ops to compute $A, \hat{A}, B, \hat{B}, C, \hat{C}$ from σ .
- Can be optimized a lot.

Zero-knowledge analysis

What is the verifier's view?

$$\pi \coloneqq \left(A, \hat{A}, B, \hat{B}, C, \hat{C}\right) \in \mathbb{G}_1^2 \times \mathbb{G}_2^2 \times \mathbb{G}_1^2.$$

- $e(A, \alpha \cdot H) = e(\hat{A}, H),$
- $e(\beta \cdot G, B) = e(G, \widehat{H}),$
- $e(C, \gamma \cdot H) = e(\hat{C}, H)$, and
- $e(A_x + A, B_x + B) = e(C_x + C, H)$
- *A*, *B* are uniformly random.
- *C* is uniquely determined by the final check.
- We have seen that e.g. \hat{A} must satisfy $\hat{A} = \alpha \cdot A$ so \hat{A} , \hat{B} , \hat{C} are uniquely determined from A, B, C.

Why is the simulator valid?

- The distributions of *A*, *B* are uniform.
- The other values are uniquely determined by V's checks, which are all satisfied are satisfied.

Use knowledge of DLOGs to satisfy all checks.

$$S_1(\mathbf{x}) \to (\sigma, \tau \coloneqq s, \alpha, \beta, \gamma)$$

$S_2(\sigma, \mathbf{x}, \tau)$:

- Sample r_A , $r_B \leftarrow_{\$} \mathbb{Z}_p$.
- Compute $A \coloneqq r_A \cdot G$ and $B \coloneqq r_B \cdot H$.
- Compute $a_{\vec{x}} := \sum_{j \le k} x_j a_j(s)$
- Compute $b_{\vec{x}} \coloneqq \sum_{j \le k} x_j b_j(s)$
- Compute $c_{\vec{x}} \coloneqq \sum_{j \le k} x_j c_j(s)$
- Compute $r_C := (a_{\vec{x}} + r_A)(b_{\vec{x}} + r_b) c_{\vec{x}}$.
- Compute $C \coloneqq r_C \cdot G$.
- $\hat{A} \coloneqq \alpha \cdot A, \hat{B} \coloneqq \beta \cdot B, \hat{C} \coloneqq \gamma \cdot C.$
- Output $\pi \coloneqq (A, \hat{A}, B, \hat{B}, C, \hat{C})$.

 s, α, β, γ are 'toxic waste' Must be forgotten after CRS generation or can be used to forge proofs

Knowledge soundness sketch l

- As before, using KEA, we have
- Defines r_A , and $\vec{z} = \vec{x} || \vec{w}$ • z_{k+1}, \dots, z_N, r_A satisfying $A = (\sum_{i>k} z_i a_i(s) + r_A v_H(s)) \cdot G$,

Defines r_R , and $\vec{z}' = \vec{x} || \vec{w}'$

- $z'_{k+1}, ..., z'_{N}, r_{B}$ satisfying $B = (\sum_{i>k} z'_{i}b_{i}(s) + r_{B}v_{H}(s)) \cdot H$,
- $z_{k+1}^{\prime\prime}, \dots, z_N^{\prime\prime}, Q_0^{\prime}, \dots, Q_h^{\prime}$ satisfying Defines \vec{Q}^{\prime} , and $\vec{z}^{\prime\prime} = \vec{x} || \vec{w}^{\prime\prime}$ $C = (\sum_{i>k} z_i'' c_i(s) + \sum_{i \in [0,...,h]} Q_i' s^j v_H(s)) \cdot G.$

Knowledge soundness sketch II

•
$$A_x := \left(\sum_{j \le k} x_j a_j(s)\right) \cdot G$$
, $A = \left(\sum_{j > k} z_j a_j(s) + r_A v_H(s)\right) \cdot G$,

•
$$B_{\chi} := \left(\sum_{j \le k} x_j b_j(s)\right) \cdot H$$
, $B = \left(\sum_{j > k} z_j' b_j(s) + r_B v_H(s)\right) \cdot H$,

•
$$C_{x} \coloneqq \left(\sum_{j \le k} z_{j} a_{j}(s)\right) \cdot G$$
,
$$C = \left(\sum_{j > k} z_{j}^{\prime \prime} c_{j}(s) + \sum_{j \in [0,\dots,h]} Q_{j}^{\prime} s^{j} v_{H}(s)\right) \cdot G.$$

•
$$e(A_x + A, B_x + B) = e(C_x + C, H)$$
.

- Taking DLOGs w.r.t. e(G, H), we have $\left(a_{\vec{x}} + a_{\overrightarrow{w}, r_A}\right) \left(b_{\vec{x}} + b_{\overrightarrow{w'}, r_A}\right) = \left(c_{\vec{x}} + c_{\overrightarrow{w''}, \vec{Q'}}\right)$.
- Suppose $(A_{\vec{z}}(X) + r_A \cdot v_H(X))(B_{\vec{z'}}(X) + r_B \cdot v_H(X)) \neq C_{\vec{z''}}(X) + Q'(X)v_H(X)$.

•
$$(A_{\vec{z}}(s) + r_A \cdot v_H(s))(B_{\vec{z}'}(s) + r_B \cdot v_H(s)) \neq C_{\vec{z}''}(s) + Q'(s)v_H(s)$$
 except w.p. $\leq \frac{2h}{p-h}$.

• This means
$$(a_{\vec{x}} + a_{\overrightarrow{\mathbf{w}}, r_A}) (b_{\vec{x}} + b_{\overrightarrow{\mathbf{w}'}, r_A}) \neq (c_{\vec{x}} + c_{\overrightarrow{\mathbf{w}''}, \vec{Q'}})$$
, so V would not accept.

Not rigorous; assumes π produced by P^* is independent of s.

The real security proof needs additional (CDH style) assumptions.

Knowledge soundness sketch III

- So $(A_{\vec{z}}(X) + r_A \cdot v_H(X))(B_{\vec{z}'}(X) + r_B \cdot v_H(X)) = C_{\vec{z}''}(X) + Q'(X)v_H(X).$
- $A_{\vec{z}}(X)B_{\vec{z}'}(X) = C_{\vec{z}''}(X) + Q(X)v_H(X).$
- $Q(X) := Q'^{(X)} r_A \cdot B_{\vec{z}}(X) r_B \cdot A_{\vec{z}}(X) r_A r_B \cdot v_H(X)$
- By the strong QAP property, $\vec{z} = \vec{z}' = \vec{z}''$.
- Hence $A_{\vec{z}}(X)B_{\vec{z}}(X) = C_{\vec{z}}(X) + Q(X)v_H(X)$, and we have extracted a QAP witness.

Agenda

Non-interactive zero-knowledge (NIZK) definitions

Pairing-based constructions of NIZK

- From reasonable cryptographic assumptions
 - The BGN cryptosystem
 - BGN bit proofs
 - BGN proofs for CSAT
- From strong cryptographic assumptions
 - Arithmetisation of R1CS into QAP
 - Linear PCP and pairing-based compiler

O(N) proof size for **Boolean circuits**

O(1) proof size for **Arithmetic circuits**

What we saw in this course:

Explosion of activity!

Sumcheck [LFKN'92]

Interactive Proofs Zero-knowledge [GMW'88]

Sigma protocols [Cramer'96]

GKR protocol [GKR'08]

MPC in the head [IKOS'07]

IOPs [BCS'16]

PolyCommit, logarithmic proofs from DLOG [BCCGP'16]

PolyCommit, logarithmic verification from pairings [Lee'21]

PolyIOP for CSAT [Setty'20]

NIZK [BFS'88] BGN-based NIZKs
[GOS'06]

NIZKs from KEA [GGPR'13]

3-element NIZKs [Groth'16]

These papers don't correspond exactly to course material due to subsequent mixing and simplification of ideas.

Sometimes the originals took a different view. Sometimes later papers (not the originals) were easier to present here.

Other important and relevant papers: too many to mention!

Other topics:

- Advanced security properties
- Malleability
- Recursive proof composition
- Proofs from point-query IOPs and codes
- Low-memory proofs
- Lattices and quantum-safe ZK
- Quantum ZK

If you want more zero-knowledge...

- Libraries: https://github.com/arkworks-rs, https://docs.circom.io/
- Standardization effort: https://zkproof.org/
- Podcast: https://zeroknowledge.fm/
- Events: https://www.zksummit.com/
- More: https://github.com/ventali/awesome-zk

• Or ask me for random trivia/references/open problems/MSc thesis topics!

End of course