Intelligent Robotics Navigation

Luís Paulo Reis, Armando Sousa, Nuno Lau

Ipreis@fe.up.pt

Director of LIACC – Artificial Intelligence and Computer Science Lab. Associate Professor at Faculty of Engineering, University of Porto, Portugal **President of APPIA – Portuguese Association for Artificial Intelligence**

Background

Localization – Where am !?

 Mapping – What are my (dynamic?) surroundings?

Navigation – How do I get where I want to go?

SLAM – Simultaneous Localization and Mapping

The Representation Problem

Representation is the form in which information is stored or encoded in the robot (Mataric)

Representation is more than memory

It has a significant impact on robot control

What can the robot represent

Self

 Stored proprioception, self-limitations, goals, intentions, plans

Environment

Navigable spaces, structures

Objects, people, other robots

Detectable things in the world

Actions

Outcomes of specific actions in the environment

Task

 What needs to be done, where, in what order, how fast, etc.

Navigation challenges

Path planning problem

Robot has a map, knows own and target positions

Localization problem

Robot has a map showing target, doesn't know own position

Coverage problem

 Robot has a map, knows where it is, but doesn't know where the target is

Mapping problem

Robot does not have a map, may known own position

Simultaneous localization and mapping

Robot does not have a map, and doesn't know own position

Navigation questions

- Where am I going?
 - Usually defined by human operator or mission planner
- What is the best way to get there?
 - Path planning problem
- Where have I been?
 - Mapping problem
- Where am I?
 - Localization problem

Different types of representation

Maze navigator robot

- Exact path it has taken: "Go straight 2m, turn left 90 deg, go straight...". This is an odometric path
- Sequence of moves at particular landmarks: "Left at 1st junction, right at 2nd junction, straight...". This is a landmark-based path
- What to do at each landmark: "At the green/red junction go left, at the red/blue junction go right, ...". This is a landmark-based map
- The map of the maze. This is a metric map

Metric Maps and Topological Maps

Figure from Meyer, "Map-based navigation in mobile robotics", 2003, some other figures follow

Path Planning

Methodologies

- Roadmap
- Cell decomposition

Roadmap

- Derive a graph from free space
- Graph building
 - Visibility graph
 - Voronoi Diagram

- Free space is decomposed into simple regions (cells)
- Path between two cells can be easily generated

Visibility graph

- Graph based representation
 - Nodes are obstacles angles
 - Edges connect nodes that are visible from each other

Visibility graph

Graph based representation

- Nodes are obstacles angles
- Edges connect nodes that are visible from each other

Voronoi diagram

Graph based representation

- Voronoi edges are equidistant to closest obstacles
- Nodes are situated at the points where edges meet

Voronoi diagram

Graph based representation

- Voronoi edges are equidistant to closest obtacles
- Nodes are situated at the points where edges meet

Graph based planning

- Search the graph to find optimal path
- Which path is optimal?
 - Minimal distance
 - Safest
 - Best view!
- Searching algorithms
 - Dikistra and A* Algorithm
 - D*, Focused D*, D* Lite (https://www.youtube.com/watch?v=skK- 3UfcXW0&ab channel=CSMinute, http://idmlab.org/bib/abstracts/papers/aaai02b.pdf, http://idm-lab.org/project-a.html)
 - RRT, RRT* (https://www.youtube.com/watch?v=Ob3BIJkQJEw&ab channel=AaronBecker, https://www.youtube.com/watch?v=QR3U1dgc5RE&t=95s&ab_channel=MATLAB

Dijkstra algorithm

1. Init

Assign starting node with a 0 distance, all other nodes with infinite distance, current = start, visited = {}

2. Update minimum distances of neighbors to current node

- While updating minimum distance keep track of previous node in minimum path
- 3. Add current to visited set
- Current = minimum distance node AND not in visited
- Repeat from step 2 until current = target

A* algorithm

Similar to Dijkstra but selection takes into distance to target into account:

- 4. Current = minimum distance to start + euclidian distance to target node AND not in visited
- Returns optimal path
- Tends to search in the direction of the target

A* algorithm

A* Algorithm Working

Dijkstra's Algorithm

RRT - Rapidly-exploring Random Tree

RRT*

- Exact cell decomposition
- Rectangular cell decomposition
- Regular cell decomposition
- Quadtree cell decomposition

- Exact cell decomposition
 - Partition the free space into convex polygons

- Exact cell decomposition
 - Partition the free space into convex polygons

Rectangular cell decomposition

Regular cell decomposition

Quadtree cell decomposition

Planning

Metric map of the environment

Planning using cell borders

Planning using cell centers

Planning using roadmaps

Optimized path

Optimized path

Wavefront planning

Metric map of the environment

Potential Field Local Planning

Potential Field (Virtual Obstacle)

+ =

Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Transactions on robotics and automation 8(5), 501–518 (1992) Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robots using potential field method. Autonomous robots 13(3), 207–222 (2002)

Potential Field Local Planning

Equipotential contours

(e)

Negative gradient

(f)

From Robot Motion Planning J.C. Latombe

Potential Field Planning

http://www.cs.mcgill.ca/~hsafad/robotics/index.html

http://www.emeraldinsight.com/journals.htm?issn=0143-991X&volume=37&issue=4&articleid=1846407&show=pdf

Also Manipulators...

- http://taylorwang.files.wordpress.com/2012/04/potential-field1 robot.jpg
- http://taylorwang.wordpress.com/2012/04/06/collision-free-path-planning-using-potential-field-methodfor-highly-redundant-manipulators/
- http://youtu.be/QTp1HRjXSSc

Also in Swarm

http://youtu.be/r9FD7P76zJs

Intelligent Robotics Navigation

Luís Paulo Reis, Armando Sousa, Nuno Lau

Ipreis@fe.up.pt

Director of LIACC – Artificial Intelligence and Computer Science Lab. Associate Professor at Faculty of Engineering, University of Porto, Portugal **President of APPIA – Portuguese Association for Artificial Intelligence**

