Spezielle Eigenschaften von Funktionen

A 12.1 Welche der folgenden Funktionen $f: y = f(x), x \in D$, sind nach unten bzw. nach oben bzw. nach unten und oben beschränkt? Gegebenenfalls bestimme man eine untere und eine obere Schranke.

a)
$$y=x+1$$
, $D=\mathbb{R}$

(b)
$$y = -x + 1$$
, $D = [-4, +\infty)$

a)
$$y = x + 1$$
, $D = \mathbb{R}$ (D) $y = -x + 1$, $D = [-4, +\infty)$ (C) $y = \frac{1}{(x+1)^2}$, $D = \mathbb{R} \setminus \{-1\}$ d) $y = \frac{1}{(x-1)^2}$, $D = \mathbb{R}^-$ e) $y = \frac{1}{1+x^2}$, $D = \mathbb{R}$ f) $y = -x^2 + 4$, $D = \mathbb{R}$

d)
$$y = \frac{1}{(x-1)^2}$$
, $D = \mathbb{R}^2$

e)
$$y = \frac{1}{1 + \sigma^2}$$
, $D = IR$

f)
$$y = -x^2 + 4$$
, $D = IR$

g)
$$y = 2 + \cos(2x), D = II$$

h)
$$y = \tan x$$
, $D = (-\frac{\pi}{2}, \frac{\pi}{2})$

i)
$$y = e^{-2x} + 1$$
, $D = IR$

g)
$$y = 2 + \cos(2x)$$
, $D = \mathbb{R}$
i) $y = -x^2 + 4$, $D = \mathbb{R}$
h) $y = \tan x$, $D = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
j) $y = \frac{1}{1 + e^x}$, $D = \mathbb{R}$.

[A-17.2] Untersuchen Sie das Monotonieverhalten der Funktionen f: y = f(x):

(a)
$$y = x - 2$$
, $D = \mathbb{R}$

(b)
$$y = -3x + 1$$
, $D = IR$

$$y=x^2,\ D=\mathbb{R}^2$$

(d)
$$y = (x+1)^2 - 5, D = IR$$

e)
$$y = -x^3 + 1$$
, $D = \mathbb{R}$

$$f) \quad y = |x - 1|, \ D = IR$$

$$y = \sin(2x), D = [-\pi, \tau]$$

$$y = \frac{1}{x-1}, D = \mathbb{R} \setminus \{1\}$$

i)
$$y = \frac{1}{x^2} + 2, \ x \neq 0$$

(a)
$$y = x - 2$$
, $D = \mathbb{R}$
(b) $y = -3x + 1$, $D = \mathbb{R}$
(c) $y = x^2$, $D = \mathbb{R}^-$
(d) $y = (x + 1)^2 - 5$, $D = \mathbb{R}$
(e) $y = -x^3 + 1$, $D = \mathbb{R}$
(f) $y = |x - 1|$, $D = \mathbb{R}$
(g) $y = \sin(2x)$, $D = [-\pi, \pi]$
(h) $y = \frac{1}{x - 1}$, $D = \mathbb{R} \setminus \{1\}$
(i) $y = \frac{1}{x^2} + 2$, $x \neq 0$
(j) $y = \frac{x - 1}{x + 1}$, $D = \mathbb{R} \setminus \{-1\}$.

A 12.3 Welche der folgenden Funktionen f: y = f(x), die jeweils auf ihrem natürlichen Definitionsbereich erklärt sein mögen, sind gerade, welche ungerade? a) $y = 3x^2 - 7x^4 + 2$ b) $y = 4x^5 - 2x^3 + 6x$ c) $y = 2x^2 - x + 1$ d) $y = \frac{1}{x^2 + 1}$ e) $y = \frac{1}{x} + x$ f) $y = \frac{x}{x^2 + 1}$ g) $y = \frac{x}{x^3 + x}$ h) y = |x| + 1 i) y = |x + 1| j) $y = \sqrt{x^3 + x}$ k) $y = \sqrt[3]{x^4 + 2}$ l) $y = \ln(x^2)$ m) $y = 2 \ln x$ n) $y = (\ln x)^2$ o) $y = \frac{e^x - e^{-x}}{x}$ p) $y = \frac{e^x - 1}{e^x + 1}$ q) $y = \sqrt{\cos x + 1}$ r) $y = \sqrt[3]{x + \sin x}$

$$(a) \quad y = 3x^2 - 7x^2$$

$$y = 4x^5 - 2x^3 + 6x^4$$
 (c) $y = 2x^2 - x$

$$\dot{\mathbf{d}}) \quad y = \frac{1}{x^2 + 1}$$

$$e) \quad y = \frac{1}{x} + a$$

$$\underbrace{f} \quad y = \frac{x}{x^2 + 1}$$

$$g) \quad y = \frac{x}{x^3 + x}$$

i)
$$y = |x + 1|$$

$$\mathbf{j)} \quad y = \sqrt{x^3 + x^3}$$

k)
$$y = \sqrt[3]{x^4 + 2}$$

$$1) \quad y = \ln(x^2)$$

$$y = 2 \ln x$$

$$(n) \quad y = (\ln x)^2$$

$$y = \frac{e^x - e^{-x}}{e^x - e^{-x}}$$

$$p) \quad y = \frac{e^x - 1}{e^x + 1}$$

$$(q)$$
 $y = \sqrt{\cos x + 1}$

$$y = \sqrt[3]{x + \sin x}$$

A 12.4 Ermitteln Sie - falls möglich - von den folgenden Funktionen f: y = f(x)die Umkehrfunktion f^{-1} und geben Sie deren Definitions- und Wertebereich an: a) y = -2x + 3, $x \in \mathbb{R}$ (b) $y = \frac{x+1}{x}$, $x \in [1, 100]$ c) $y = \frac{x-2}{x+1}$, $x \in [0, 3)$ (d) $y = \ln(3 - e^{-x})$, $x \in [0, +\infty)$

b
$$y = \frac{x+1}{x}, x \in [1, 100]$$

c)
$$y = \frac{x-2}{x+1}, x \in [0, 3]$$

d)
$$y = \ln(3 - e^{-x}), x \in [0, +\infty)$$

e)
$$y = \ln\left(\frac{1+x}{1-x}\right)$$
, $x \in (-1, 1)$ f) $y = 1 - \frac{2}{e^x + 1}$, $x \in \mathbb{R}$

f)
$$y = 1 - \frac{2}{e^x + 1}, x \in \mathbb{R}$$

(g)
$$y = x^4 + 1, x \in \mathbb{R}$$

h)
$$y = \ln(\sqrt{x-1} + 1), x \in [1, +\infty)$$