Программное обеспечение

LComp

Руководство программиста

Комплект ПО для разработки приложений (SDK) Windows 98/Me/2000/XP L-264/L-305/L-1221/L-1250/L-1450/L-761/L-780/L-783/L-791

ЗАО "Л-КАРД"

117105, г. Москва, Варшавское ш., д. 5, корп. 4, стр. 2

тел.: (095) 785-95-25 факс: (095) 785-95-14

Адреса в Интернет:

www.lcard.ru ftp.lcard.ru

E-Mail:

Отдел продаж: sale@lcard.ru

Техническая поддержка: support@lcard.ru

Отдел кадров: job@lcard.ru Общие вопросы: lcard@lcard.ru

Представители в регионах:

Украина: HOLIT Data Sistems, www.holit.com.ua, (044) 241-6754 Санкт-Петербург: Autex Spb Ltd., www.autex.spb.ru, (812) 567-7202

Новосибирск: Сектор-Т, www.sector-t.ru, (383-2) 396-592

Екатеринбург: Аск, www.ask.ru, 71-4444

Казань: ООО 'Шатл', shuttle@kai.ru, (8432) 38-1600

Предупреждение

Version 3.0r3

Copyright (c) 1998-2004 L-Card Ltd.

Интерфейс и функциональные возможности драйвера и библиотеки могут измениться в последующих версиях.

Учтите это при проектировании своих приложений.

Корректная поддержка плат с помощью это драйвера возможна только при соответствующих прошивках BIOS ADSP. Пока это выполняется для L-305 L-264 L-1250 L-1251 L-1221 L-761 L-780 L-783 L-1450 L-791.

Описание технологии

Данный релиз драйвера и библиотеки поддерживает следующие платы:

L032	ISA	W98/200 0/XP	Установите плату как L-1250 и используйте функции ввода/вывода в порты.
L305	ISA	W98/200 0/XP	
L264	ISA	W98/200 0/XP	
L1250	ISA	W98/200 0/XP	
L1450	ISA	W98/200 0/XP	
L1620	ISA	W98/200 0/XP	Установите плату как L-1250, при загрузке используйте БИОС от платы L-1620. Далее вызывайте функции L-1250. Разница только в формате данных.
L1251	ISA with fast read	W98/200 0/XP	
L1221	ISA with fast read	W98/200 0/XP	
L761	PCI	W98/200 0/XP	
L780	PCI	W98/200 0/XP	
L783	PCI	W98/200 0/XP	
L791	PCI	W98/200 0/XP	

Принцип действия:

Плата АЦП собирает данные в кольцевой буфер, реализованный в ОЗУ сигнального процессора. При заполнении части буфера генерируется прерывание. Виртуальный драйвер по этим прерываниям вычитывает данные и помещает их в большой кольцевой буфер, реализованный в ОЗУ компьютера. Большой кольцевой буфер драйвера доступен пользовательскому приложению - имеется указатель на начало этого буфера. Кроме этого пользователю доступен счетчик заполнения буфера (тоже посредством указателя). Используя этот счетчик, пользователь может забирать данные из правильной части кольцевого буфера (т.е. из той, в которую драйвер уже записал данные).

Приложение может:

- забирать данные из буфера для сохранения непрерывного потока данных;
- обрабатывать данные на месте тогда старые данные будут затираться новыми;

Связь драйвера с приложением возможна двумя способами:

- чтение счетчика заполнения буфера (циклическое заполнение буфера);
- ожидание сообщения о готовности буфера (однократное заполнение буфера);

Первый способ работает всегда, но требует ресурсов от компьютера при ожидании в цикле.

Второй способ удобно использовать при осциллографическом режиме работы.

Использование такого режима работы - по прерываниям - обусловлено тем, что платы PCI L-761/780/L783 построены на микросхеме без поддержки BusMastering и для них такой способ ввода непрерывного потока данных является единственно возможным. При этом загрузка ЦПУ минимальна благодаря высокой скорости чтения на шине PCI. Для ISA плат при таком режиме работы удается достичь наивысшей скорости передачи данных, однако для них загрузка процессора может достигать 50-90% на предельных скоростях, что не очень хорошо, но все же позволяет осуществлять непрерывный сбор данных на диск. Для ISA плат поддерживающих ввод/вывод данных по DMA введен еще один режим. В этом режиме плата передает данные в компьютер по DMA в режиме автоинициализации. Буфер DMA маленький - до 2048 слов. При заполнении половины этого буфера плата генерирует прерывание, по которому драйвер копирует данные из буфера DMA в большой кольцевой буфер. Кроме этого возможен одновременный вывод на ЦАП платы данных из такого же маленького буфера - по DMA с автоинициализацией. В таком режиме работы скорость ввода данных не превышает 200 кГц, но при этом загрузка машины существенно ниже. Возможна работа двух плат на ввод по DMA.

Для платы L791 режим ввода и принцип сбора немного другие. Эта плата поддерживает режим ввода/вывода BusMaster. При этом основной принцип работы с библиотекой остается прежний – приложение забирает данные из кольцевого буфера в памяти компьютера. Только поступают они туда не по прерывания от платы, а по BusMaster каналу. Заполнение буфера контролируется также по чтению счетчика, только этот счетчик находится непосредственно в плате. Прерывания от платы тоже могут выступать сигналами готовности данных – пользователь может установить события на них и потом обрабатывать.

Установка и настройка РСІ плат

Первое правило при установке плат - необходимо убедиться, что компьютер настроен и все драйвера для него установлены. Особенно драйвера для чипсета. Также надо проверить, что в плате L-Card прошита самая свежая конфигурационная ПЗУ (см. каталог UTILS после установки драйверов). Как правило, для установки PCI платы необходимо просто вставить ее в компьютер и установить драйвера. После этого плата готова к использованию. Но возможны ситуации, когда это не так. Новые драйвера - это полноценные WDM драйвера способные работать в Windows с поддержкой ACPI и соответственно shared IRQ. Но возможны ситуации, когда другие устройства некорректно работают с ACPI и при этом разделяют ресурсы с платой L-Card. Тогда возможны зависания системы и частичная или полная неработоспособность платы L-Card или какой-то другой. Для решения этой проблемы, необходимо какими либо средствами исключить разделение ресурсов платой L-Card с другими устройствами компьютера. Разделение ресурсов также может понизить производительность системы и/или платы L-Card и тогда тоже желательно его ликвидировать. Ниже приведены пути отключения ACPI и исключения ситуации Shared IRQ для Windows 98 и 2000 (под Ме и XP аналогично).

Общая часть:

- В БИОСЕе компьютера надо поискать ключ вида **Plug & Play OS Installed** и установить его в **No**. Это заставит именно БИОС производить первоначальную настройку PCI плат и Windows, потом будет использовать именное ee.
- В БИОСе компьютера найти, если есть ключ **ACPI function** и поставить его в **Disabled**.
- В БИОСе компьютера найти, если есть ключи вида **PCI Slot(0,1..) use IRQ** и поставить там фиксированное свободное прерывание вместо **Auto**.

Если это все проделать на компьютере до установки ОС, то при установке ОС она установится в варианте без поддержки АСРІ. Если ОС уже стоит, то придется отключить АСРІ в ОС.

Windows 98:

- Загрузиться в Safe Mode.
- Зайти в Панель Управления.
- Открыть иконку Система.
- В ней в Диспетчере устройств выбрать Системные устройства.
- Если у Вас там значится **Plug & play BIOS** и нет нигде слова ACPI, то и ACPI соответственно нет и ничего делать больше не надо.
- Иначе надо удалить все системные устройства, а Системная кнопка ACPI заменить на Plug & play BIOS с помощью обновления драйвера(выбрать все устройства).
- Перезагрузиться.
- Посмотреть в **Диспетчер устройств**. Там все должно быть в одном экземпляре и без восклицательных знаков. Если это не так, то надо удалять дублеров вместе с оригиналами и перезагружаться пока все не придет в норму. К сожалению, это процесс довольно трудно формализуется(PCI irq holder может быть много это нормально).
- Как результат у Вас должна получиться нормальная система с **Plag & play BIOS** в системных устройствах.

Windows 2000:

- Зайти в Панель Управления.
- Открыть иконку Система.
- Выбрать закладку Оборудование.
- В ней в Диспетчере устройств выбрать Компьютер.
- Если у Вас там значится **Standart PC**, то ACPI соответственно нет и ничего делать больше не надо.
- Иначе надо сменить тип компьютера на Standart PC с помощью кнопки обновления

- драйвера (выбрать все устройства).
- Перезагрузиться.
- Посмотреть в Диспетчер устройств. Там все должно быть в одном экземпляре и без восклицательных знаков. Если это не так то надо удалять дублеров вместе с оригиналами и перезагружаться пока все не придет в норму. К сожалению, это процесс довольно трудно формализуется.
- Как результат у Вас должна получиться нормальная система с типом компьютера **Standart PC**.

Если ресурсы по прежнему разделяются, то можно попробовать переставить плату L-Card в другой слот PCI т.к. некоторые слоты PCI всегда разделяют прерывания с AGP слотом или дополнительными PCI слотами (если слотов >4).

Установка и настройка ISA плат

Первое правило при установке плат - необходимо убедиться, что компьютер настроен и все драйвера для него установлены. Особенно драйвера для чипсета. После установки платы в компьютер и инсталляции драйверов надо вызвать мастер установки новых устройств Windows:

- Далее выбрать Добавить устройство.
- Подождать пока система поищет в своей базе, и выбрать Добавить новое устройство.
- Выбрать Выбор из списка.
- Выбрать L-Card ADC/DAC ISA boards.
- Выбрать нужную плату появится диалог настройки ресурсов.
- В диалоге выбрать нужную конфигурацию и настроить ресурсы в соответствии с установленными перемычками. Не обязательно выбирать самую сложную конфигурацию. Можно ограничиться просто адресом и прерыванием, если требуется только ввод с АЦП и наоборот вывод на ЦАП будет работать только при конфигурации с ПДП для ЦАП. Некоторые платы требуют для работы АЦП наличие ПДП.
- Завершить работу мастера и перезагрузить компьютер в списке устройств должна появиться установленная плата с выбранными ресурсами.

Использование peecrpa Windows

Напрямую с реестром библиотека и пользователь больше не работают. Информация о системных ресурсах назначенных плате извлекается драйверами при помощи PnP менеджера Windows. Она хоть и хранится в реестре, но в служебном формате. Для PCI плат эта информация видна на вкладке ресурсов для соответствующей платы. Для ISA плат она там устанавливается. Только тип платы и процессора DSP задаются посредством INF файла при установке плат. Получить их можно посредством вызова библиотечной функции GetSlotParam. Изменить соответственно - изменив INF файл.

Создание своего дистрибутива

Если Вы написали свое приложение и хотите оформить его в виде дистрибутива, то включите в него следующие файлы:

ldevisa.sys - WDM драйвер для ISA плат - копировать в WINDOWS\SYSTEM32\DRIVERS; ldevpcim.sys - WDM драйвер для PCI плат L791 - копировать в WINDOWS\SYSTEM32\DRIVERS;

windows\system32\drivers; ldevpci.sys - WDM драйвер для PCI плат - копировать в WINDOWS\SYSTEM32\drivers; ldevs.sys - поддерживающий драйвер - копировать в WINDOWS\SYSTEM32\drivers; lcardisa.inf - INF файл для ISA плат - копировать в WINDOWS\INF; lcardpci.inf - INF файл для PCI плат - копировать в WINDOWS\INF; ldevpcim.inf - INF файл для PCI плат L791 - копировать в WINDOWS\INF; lcomp.dll - DLL библиотека для работы с платами - класть лучше всего в один каталог с приложением;

Все это будет работать под операционными системами Windows 98/Me/2000/XP. Оригинальный скрипт инсталляции написан с помощью бесплатной программы NSIS(www.nullsoft.com) и прилагается.

Низкоуровневое АРІ драйвера

Введение

Драйвер поддерживает некоторый низкоуровневый интерфейс, с помощью которого можно управлять платой без использования промежуточной DLL библиотеки. Все обращения к драйверу выполняются посредством вызова стандартной функции DeviceIoControl с передачей ей соответствующих параметров. Предварительно драйвер должен быть открыт с помощью CreateFile. При завершении работы с драйвером необходимо вызвать CloseHandle.

Еще не написано. См. исходники библиотеки, если есть необходимость.

Описание API DLL библиотеки

Введение

Библиотека функций создана для того, чтобы упростить связь приложений с драйверами. Ниже приведен полный список функций поддерживаемых библиотекой - фактически это файл ifc_ldev.h. Работа с библиотекой построена на принципах СОМ-интерфейса, но это не СОМ в полном смысле этого слова. Для всех плат функции имеют одно и тоже название. Те из них, которые не поддерживаются конкретной платой, возвращают статус L_NOTSUPPOTRED. Трактовка параметров в некоторых функциях различается для конкретных типов плат, о чем написано в описании функции.

```
struct LUnknown
   IFC (HRESULT)
                   QueryInterface(const IID& iid, void** ppv) = 0;
                   AddRef() = 0;
   IFC (ULONG)
                   Release() = 0;
   IFC (ULONG)
struct IDaqLDevice:LUnknown
   IFC(ULONG) inbyte (ULONG offset, PUCHAR data, ULONG len=1, ULONG key=0) = 0;
   IFC(ULONG) inword (ULONG offset, PUSHORT data, ULONG len=2, ULONG key=0) = 0;
   IFC (ULONG) indword (ULONG offset, PULONG data, ULONG len=4, ULONG key=0) = 0;
   IFC(ULONG) outbyte (ULONG offset, PUCHAR data, ULONG len=1, ULONG key=0) = 0;
   IFC(ULONG) outword ( ULONG offset, PUSHORT data, ULONG len=2, ULONG key=0) = 0;
   IFC(ULONG) outdword( ULONG offset, PULONG data, ULONG len=4, ULONG key=0) = 0;
   IFC(ULONG) inmbyte (ULONG offset, PUCHAR data, ULONG len=1, ULONG key=0) = 0;
   IFC(ULONG) inmword (ULONG offset, PUSHORT data, ULONG len=2, ULONG key=0) = 0; IFC(ULONG) inmdword(ULONG offset, PULONG data, ULONG len=4, ULONG key=0) = 0; IFC(ULONG) outmbyte (ULONG offset, PUCHAR data, ULONG len=1, ULONG key=0) = 0; IFC(ULONG) outmword (ULONG offset, PUSHORT data, ULONG len=2, ULONG key=0) = 0;
   IFC(ULONG) outmdword( ULONG offset, PULONG data, ULONG len=4, ULONG key=0) = 0;
   IFC(ULONG) GetWord_DM(USHORT Addr, PUSHORT Data) = 0;
   IFC(ULONG) PutWord_DM(USHORT Addr, USHORT Data) = 0;
   IFC(ULONG) PutWord_PM(USHORT Addr, ULONG Data) = 0;
   IFC(ULONG) GetWord_PM(USHORT Addr, PULONG Data) = 0;
   IFC(ULONG) GetArray_DM(USHORT Addr, ULONG Count, PUSHORT Data) = 0;
IFC(ULONG) PutArray_DM(USHORT Addr, ULONG Count, PUSHORT Data) = 0;
IFC(ULONG) PutArray_PM(USHORT Addr, ULONG Count, PULONG Data) = 0;
   IFC(ULONG) GetArray_PM(USHORT Addr, ULONG Count, PULONG Data) = 0;
   IFC (ULONG) SendCommand (USHORT Cmd) = 0;
   IFC(ULONG) PlataTest() = 0;
   IFC(ULONG) GetSlotParam(PSLOT_PAR slPar) = 0;
   IFC(HANDLE) OpenLDevice() = 0;
   IFC (ULONG) CloseLDevice() = 0;
   IFC(ULONG) SetParametersStream(PDAQ_PAR sp, ULONG *UsedSize, void** Data, void**
Sync, ULONG StreamId = L_STREAM_ADC) = 0;
   IFC(ULONG) RequestBufferStream(ULONG *Size, ULONG StreamId = L STREAM ADC) = 0;
   IFC(ULONG) FillDAQparameters(PDAQ PAR sp) = 0;
   IFC (ULONG)
                InitStartLDevice() = 0;
                StartLDevice() = 0;
   IFC (ULONG)
   IFC (ULONG)
                StopLDevice() = 0;
   IFC(ULONG) LoadBios(char *FileName) = 0;
   IFC(ULONG) IoAsync(PDAQ_PAR sp) =0;
   IFC(ULONG) ReadPlataDescr(LPVOID pd) = 0;
   IFC(ULONG) WritePlataDescr(LPVOID pd, USHORT Ena) = 0;
   IFC(ULONG) ReadFlashWord(USHORT FlashAddress, PUSHORT Data) = 0;
                WriteFlashWord(USHORT FlashAddress, USHORT FlashWord) = 0;
   IFC (ULONG)
   IFC(ULONG) EnableFlashWrite(USHORT Flag) = 0;
   IFC(ULONG) EnableCorrection(USHORT Ena=1) = 0;
   IFC(ULONG) GetParameter(ULONG name, PULONG param) = 0;
   IFC(ULONG) SetParameter(ULONG name, PULONG param) = 0;
```

CreateInstance

Функция создает объект для конкретного слота. Тип объекта определяется автоматически внутри этой функции.

Описание:

C: LUnknown* CreateInstance(ULONG Slot);
Pascal: function CreateInstance(Slot:ULONG): LUnknown;

Параметры:

ULONG Slot - номер слота, для которого создается объект (0,1...).

Возвращает:

- указатель на объект типа LUnknown или NULL в случае ошибки.

Реализована:

L7XX L1250 L1221 L305 L264 L1450

Примечание:

Дополнительную информацию о типе ошибки можно получить вызвав GetLastError. Если она вернула L_ERROR_NOBOARD значит в запрашиваемом слоте нет платы. L_ERROR_INUSE - плата в этом слоте уже используется кем-то. L_ERROR - возвращается когда невозможно создать объект. L_NOTSUPPORTED - если в слоте установлена плата, которая не поддерживается этой библиотекой. Пример использования этой функции при сканировании слотов см. L1221.DSK. После вызова CreateInstance надо вызвать QueryInteface для получения указателя на интерфейс с которым дальше работать.

Подключение и работа с библиотекой (на СРР)

Общий принцип работы с библиотекой:

- Загрузить библиотеку с помощью LoadLibrary.
- Создать объект, связанный с конкретным виртуальным слотом при помощи вызова CreateInstance.
- Получить указатель на интерфейс вызвав QueryInterface
- Далее вызывать функции этого интерфейса.

Виртуальные слоты это собственно порядковые числа в названиях линков драйверов. Начинаются с 0 и так далее по порядку. Разделения на ISA или PCI платы нет. Причем определить, что за плата соответствует конкретному слоту, можно только открыв его и прочитав информацию GetSlotParam и ReadPlataDescr (+ для L1450 предварительно надо загрузить плату). GetSlotParam даст информацию о типе платы и назначенных ей ресурсах. Далее для PCI плат более подробную информацию даст ReadPlataDescr. Для L-1450 также можно вызвать ReadPlataDescr, но предварительно в нее надо загрузить БИОС.

Для одной платы начало работы выглядит примерно так:

Файл create.h

```
#ifndef __TEST__
#define __TEST__

typedef IDaqLDevice* (*CREATEFUNCPTR) (ULONG Slot);

ULONG CallCreateInstance(char* name);

extern CREATEFUNCPTR CreateInstance;

#endif
```

Файл create.cpp

```
#include <windows.h>
#include "..\include\ioctl.h"
#include "..\include\ifc_ldev.h"
#include "..\include\create.h"

CREATEFUNCPTR CreateInstance;

ULONG CallCreateInstance(char* name)
{
    HINSTANCE hComponent = ::LoadLibrary(name);
    if(hComponent==NULL)
    {
        return 0;
    }

    CreateInstance = (CREATEFUNCPTR)::GetProcAddress(hComponent, "CreateInstance");
    if(CreateInstance==NULL)
    {
        return 0;
    }
    return 1;
}
```

Где-то в Вашем проекте (в компьютере одна плата L-783):

```
ULONG slot = 0;
trace("Get IUnknown pointer");
CallCreateInstance("lcomp.dll");
```

```
LUnknown* pIUnknown = CreateInstance(slot);
if (pIUnknown == NULL) { trace("CallCreateInstance failed"); return 1; }

trace("Get IDaqLDevice interface");
IDaqLDevice* pI;
HRESULT hr = pIUnknown->QueryInterface(IID_ILDEV,(void**)&pI);
if(!SUCCEEDED(hr)) { trace("Get IDaqLDevice failed"); return 1; }
trace("IDaqLDevice get success");
trace("Free IUnknown");
pIUnknown->Release();

pI->OpenLDevice(); // начало работы с платой
pI->LoadBios("1783");
...

pI->CloseLDevice(); // завершение работы
pI->Release();
```

Подробнее - смотрите примеры.

Подключение и работа с библиотекой (на Pascal/Delphi)

Общий принцип работы с библиотекой:

- Загрузить библиотеку с помощью LoadLibrary.
- Создать объект, связанный с конкретным виртуальным слотом при помощи вызова CreateInstance.
- Получить указатель на интерфейс, вызвав QueryInterface
- Далее вызывать функции этого интерфейса.

Виртуальные слоты это собственно порядковые числа в названиях линков драйверов. Начинаются с 0 и так далее по порядку. Разделения на ISA или PCI платы нет. Причем определить, что за плата соответствует конкретному слоту, можно только открыв его и прочитав информацию GetSlotParam и ReadPlataDescr (+ для L1450 предварительно надо загрузить плату). GetSlotParam даст информацию о типе платы и назначенных ей ресурсах. Далее для PCI плат более подробную информацию даст ReadPlataDescr. Для L-1450 также можно вызвать ReadPlataDescr, но предварительно в нее надо загрузить биос.

Для одной платы начало работы выглядит примерно так:

Файл create.pas

```
unit Create;
interface
uses Windows, ioctl, ifc ldev;
 TCreateInstance = function(Slot:ULONG): LUnknown; cdecl;
 hModule: THandle;
 CreateInstance: TCreateInstance;
  function CallCreateInstance(name:PChar):ULONG;
implementation
function CallCreateInstance(name:PChar):ULONG;
  hModule:=0;
  hModule:=LoadLibrary(name);
  if(hModule=0) then
  begin
     Result:=0;
     Exit;
  @CreateInstance:=GetProcAddress(hModule, 'CreateInstance');
  if(@CreateInstance=nil) then
  begin
      Result:=0;
      Exit;
  end;
  Result:=1;
end;
end.
```

Где-то в Вашем проекте (в компьютере одна плата L-1450):

```
var
  pLDev: IDaqLDevice;
  pIUnknown:LUnknown;
  hr:Integer;
  dev: THandle;
```

```
if(CallCreateInstance('lcomp.dll')=1) then
begin
    {cooбщение oб успехе загрузки библиотеки}
end;

pIUnknown:=CreateInstance(0);
hr := pIUnknown.QueryInterface(IID_ILDEV,pLDev);
if(not Succeeded(hr)) then MessageBox(0,'Get interface failed','Error',MB_OK);
pIUnknown.Release;
dev:=pLDev.OpenLDevice;
...

pLDev.CloseLDevice;
pLDev.Release;
```

Подробнее - смотрите примеры.

Основные функции

OpenLDevice

Эту функцию необходимо вызвать перед началом работы с платой. Функция открывает соответствующий линк драйвера для платы.

Описание:

C: HANDLE OpenLDevice();

Pascal: function OpenLDevice: THandle;

Параметры:

Возвращает:

HANDLE - в случае успеха (дескриптор для работы с платой); **INVALID_HANDLE_VALUE** - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

Для каждой платы установленной в компьютер драйвер формирует линк по следующему принципу: LDev## (где ## - номер 1..). Номер в названии линка - это виртуальный слот. Номер виртуального слота, для которого будет выполнена функция OpenLDevice, передается как параметр в функции CreateInstance.

CloseLDevice

Эта функция вызывается при завершении работы с платой.

Описание:

C: ULONG CloseLDevice();
Pascal: function CloseLDevice:ULONG;

Параметры:

Возвращает:

L_SUCCESS - в случае успеха; **L_ERROR** - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

После вызова этой функции значение дескриптора устройства больше недействительно и не может использоваться при вызове функций библиотеки. Для платы L791 еще происходит удаление выделенной в функции RequsetBufferStream памяти для буфера ПДП

SetParametersStream

Вызов этой функции настраивает плату АЦП/ЦАП на заданные параметры ввода или вывода данных, устанавливает размера кольцевого буфера на плате, задает интервал генерации прерываний (через столько-то точек), передает приложению адреса большого буфера и переменой синхронизации.

Описание:

C: ULONG SetParametersStream(PDAQ_PAR sp, ULONG *UsedSize, void** Data, void** Sync, ULONG StreamId);

Pascal: function SetParametersStream(var sp:DAQ_PAR; var UsedSize:ULONG; out Data; out Sync; StreamId:ULONG):ULONG;

Параметры:

PDAQ_PAR sp - структура, которая описывает параметры ввода или вывода данных (ADC_PAR,DAC_PAR или другая в зависимости от типа поля s_Type);

ULONG *UsedSize - переменная, в которой будет возвращено количество реально используемой памяти (в отсчетах АЦП);

void** Data - переменная, в которой будет возвращен адрес начала большого буфера; void** Sync - переменная, в которой будет возвращен адрес переменной синхронизации; ULONG StreamId - дескриптор потока (L_STREAM_ADC, L_STREAM_DAC или другой);

Возвращает:

L_SUCCESS - в случае успеха;

L_ERROR - в случае ошибки;

PDAQ_PAR sp - структура, которая описывает параметры ввода или вывода данных. У этой структуры, если она не NULL, обновляются поля с учетом возможностей платы.

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

Принцип быстрого и непрерывного ввода или вывода данных с платы в драйверах всегда одинаков. Различается только направление передачи данных. Поэтому было введено понятие потоков данных. Поток создается 3 функциями - RequestBufferStream SetParametersStream FullDAQparameters. Фактически это большой кольцевой буфер и структура, описывающая параметры сбора данных. Поток может быть с АЦП, на ЦАП, на цифровые линии, с цифровых линий или какой-то нестандартный реализованный в драйвере платы. Интерфейс при этом не меняется. Чтобы различать потоки служит переменная StreamId - это некоторая константа, определенная в заголовочных файлах.

RequestBufferStream

Функция служит для выделения памяти под большой кольцевой буфер.

Описание:

C: ULONG RequestBufferStream(ULONG *Size, ULONG StreamId);
Pascal: function RequestBufferStream(var Size:ULONG; StreamId:ULONG):ULONG;

Параметры:

ULONG *Size - размер большого буфера в USHORT; ULONG StreamId - дескриптор потока (L STREAM ADC, L STREAM DAC или другой);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; Size - возвращается количество реально выделенной памяти;

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

Выделяет память в ОЗУ компьютера под большой кольцевой буфер. Память выделяется с выравниванием размера на 4096 байт. Принцип быстрого и непрерывного ввода или вывода данных с платы в драйверах всегда одинаков. Различается только направление передачи данных. Поэтому было введено понятие потоков данных. Поток создается 3 функциями - RequestBufferStream SetParametersStream FullDAQparameters. Фактически это большой кольцевой буфер и структура, описывающая параметры сбора данных. Поток может быть с АЦП, на ЦАП, на цифровые линии, с цифровых линий или какой-то нестандартный реализованный в драйвере платы. Интерфейс при этом не меняется. Чтобы различать потоки служит переменная StreamId - это некоторая константа, определенная в заголовочных файлах.

Для платы L791 выделяется всегда 512*1024 слов. Это буфер отсчетов ЦАП и АЦП - по 128К 32 битных отсчетов соответственно. Удаляется этот буффер при вызове CloseLDevice .

InitStartLDevice

Функция инициализирует внутренние переменные драйвера перед началом сбора.

Описание:

C: ULONG InitStartLDevice();
Pascal: function InitStartLDevice:ULONG;

Параметры:

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

Надо вызывать перед вызовом функции StartLDevice.

StartLDevice

Функция запускает сбор данных с платы в большой кольцевой буфер.

Описание:

C: ULONG StartLDevice();
Pascal: function StartLDevice:ULONG;

Параметры:

Возвращает:

L_SUCCESS - в случае успеха; **L_ERROR** - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

После выполнения функции можно переходить к откачиванию данных из буфера. При этом необходимо следить за синхронизацией поступления данных и их откачки.

StopLDevice

Функция останавливает сбор данных с платы в большой кольцевой буфер.

Описание:

C: ULONG StopLDevice();
Pascal: function StopLDevice:ULONG;

Параметры:

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

После остановки данные в буфере соответствуют последним данным, полученным от платы. Их можно обрабатывать любым способом. Необходимо только учитывать, что остановка могла произойти в любом месте этого буфера и гарантировать целостность можно только той части буфера, на готовность которой указывала переменная синхронизации.

Для L791 не следует пытаться разрешить режим BusMaster после выполнения команды StopLDevice. При старте буфер данных блокируется в ОЗУ компьютера, формируется таблица адресов и передается в плату. При остановке блокировка снимается и разрешение на передачу данных вызовет повреждение операционной системы.

LoadBios

Загрузка BIOS в плату.

Описание:

C: ULONG LoadBios(char *FileName);

Pascal: function LoadBios(FileName:PChar):ULONG;

Параметры:

char *FileName - имя файла прошивки БИОС без расширения (lbios009);

Возвращает:

L_SUCCESS - в случае успеха;

L_ERROR - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450

$GetWord_DM$

Читает слово из памяти данных DSP.

Описание:

C: ULONG GetWord_DM(USHORT Addr, PUSHORT Data);
Pascal: function GetWord_DM(Addr:USHORT; var Data:USHORT):ULONG;

Параметры:

USHORT Addr - адрес переменной; PUSHORT Data - возвращаемые данные;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PUSHORT Data - возвращаемые данные;

Реализована:

L7XX L1250 L305 L264 L1450 L1221

$PutWord_DM$

Записывает слово в память данных DSP.

Описание:

C: ULONG PutWord_DM(USHORT Addr, USHORT Data);
Pascal: function PutWord_DM(Addr:USHORT; Data:USHORT):ULONG;

Параметры:

USHORT Addr - адрес переменной; USHORT Data - записываемые данные;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1250 L305 L264 L1450 L1221

$GetWord_PM$

Читает слово из памяти программ DSP.

Описание:

C: ULONG GetWord_PM(USHORT Addr, PULONG Data);
Pascal: function GetWord_PM(Addr:USHORT; var Data:ULONG):ULONG;

Параметры:

USHORT Addr - адрес переменной; PULONG Data - возвращаемые данные;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PULONG Data - возвращаемые данные;

Реализована:

L7XX L1450 L1221

PutWord_PM

Читает слово из памяти программ DSP.

Описание:

C: ULONG PutWord_PM(USHORT Addr, ULONG Data);
Pascal: function PutWord_PM(Addr:USHORT; Data:ULONG):ULONG;

Параметры:

USHORT Addr - адрес переменной; ULONG Data - записываемые данные;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1450 L1221

GetArray_DM

Читает массив слов из памяти данных DSP.

Описание:

C: ULONG GetArray_DM(USHORT Addr, ULONG Count, PUSHORT Data);
Pascal: function GetArray_DM(Addr:USHORT; Count:ULONG; var Data:USHORT):
ULONG;

Параметры:

USHORT Addr - адрес переменной; ULONG Count - размер массива в словах; PUSHORT Data - возвращаемые данные;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PUSHORT Data - возвращаемые данные;

Реализована:

L7XX L1450 L1221

PutArray_DM

Записывает массив слов в память данных DSP.

Описание:

C: ULONG PutWord_DM(USHORT Addr, ULONG Count, USHORT Data);
Pascal: function PutWord_DM(Addr:USHORT; Count:ULONG; Data:USHORT):ULONG;

Параметры:

USHORT Addr - адрес переменной; ULONG Count - размер массива в словах; USHORT Data - записываемые данные;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1450 L1221

GetArray_PM

Читает массив слов из памяти программ DSP.

Описание:

C: ULONG GetArray_PM(USHORT Addr, ULONG Count, PULONG Data);
Pascal: function GetArray_PM(Addr:USHORT; Count:ULONG; var Data:ULONG):
ULONG;

Параметры:

USHORT Addr - адрес переменной; ULONG count - размер массива в двойных словах; PULONG Data - возвращаемые данные;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PULONG Data - возвращаемые данные;

Реализована:

L7XX L1450 L1221

PutArray_PM

Записывает массив слов в память программ DSP.

Описание:

C: ULONG PutArray_PM(USHORT Addr, ULONG Count, ULONG Data);
Pascal: function PutArray_PM(Addr:USHORT; Count:ULONG; Data:ULONG):ULONG;

Параметры:

USHORT Addr - адрес переменной; ULONG Count - размер массива в двойных словах; ULONG Data - записываемые данные;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1450 L1221

SendCommand

Посылает выбранную команду DSP.

Описание:

C: ULONG SendCommand(USHORT Cmd);
Pascal: function SendCommand(Cmd:USHORT):ULONG;

Параметры:

USHORT Cmd - код команды;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1250 L264 L305 L1450 L1221

PlataTest

Тест на наличие платы и успешную загрузку.

Описание:

C: ULONG PlataTest();
Pascal: function PlataTest:ULONG;

Параметры:

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

Для L791 это просто заглушка всегда возвращающая успех.

IoAsync

Функция для асинхронных операций ввода/вывода (чтение данных с АЦП, вывод данных на ЦАП, работа с цифровыми линиями).

Описание:

C: ULONG IoAsync(PDAQ_PAR sp);

Pascal: function IoAsync(var sp:DAQ_PAR):ULONG;

Параметры:

PDAQ_PAR sp - структура с параметрами запроса;

Возвращает:

L SUCCESS - в случае успеха;

L_ERROR - в случае ошибки;

PDAQ_PAR sp - структура с результатами запроса (если была операция ввода данных);

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

Эта функция реализует все асинхронные операции ввода/вывода (типа одиночного ввода данных).

· Плата L-1450

• Для ввода одного отсчета с АЦП надо заполнить структуру ASYNC_PAR так:

s_Type -L_ASYNC_ADC_INP

Chn[0] - логический номер канала;

Результат в Data[0].

• Для вывода одного отсчета на TTL линии:

s_Type -L_ASYNC_TTL_OUT

Data[0] - данные для вывода;

Для ввода одного отсчета с TTL линий:

s Type -L ASYNC TTL INP

Data[0] - введенные данные;

• Разрешить/запретить цифровые линии:

s_Type -L_ASYNC_TTL_CFG

Mode - (0/1);

• Для вывода одного отсчета на ЦАП:

s Type -L ASYNC DAC OUT

Mode - (0/1) номер ЦАП;

Data[0] - данные для ЦАП;

Платы L-1250/L-264/L-305/L-1620

• Для ввода одного отсчета с АЦП надо заполнить структуру ASYNC_PAR так:

s_Type -L_ASYNC_ADC_INP

Chn[0] - логический номер канала;

Результат в Data[0].

• Для вывода одного отсчета на TTL линии:

s_Type -L_ASYNC_TTL_OUT

Data[0] - данные для вывода;

Mode - (0 - for multiplexer ttl(SETCHANNEL in fact))/(1- dsp out)

• Для ввода одного отсчета с TTL линий:

```
s_Type -L_ASYNC_TTL_INP
```

Mode - (0 - прямые линии)/(1 - линии через DSP)

Data[0] - введенные данные;

• Для вывода одного отсчета на ЦАП:

s_Type -L_ASYNC_DAC_OUT

Mode - (0 - синхронный/1 - асинхронный) вывод на ЦАП;

Data[0] - данные для ЦАП;

• Для установки номера ЦАП и режима вывода:

s_Type -L_ASYNC_DAC_CFG

Mode - (0 - выкл режим одновременного вывода)(1 - вкл режим одновременного вывода на ЦАП со вводом с АЦП);

Chn[0] - номер ЦАП(0/1);

• Плата L-1221

• Для ввода одного отсчета с АЦП надо заполнить структуру ASYNC_PAR так:

s_Type -L_ASYNC_ADC_INP

Chn[0] - логический номер канала;

Результат в Data[0].

• Для вывода одного отсчета на TTL линии:

s_Type -L_ASYNC_TTL_OUT

Data[0] - данные для вывода;

• Для ввода одного отсчета с TTL линий:

s_Type -L_ASYNC_TTL_INP

Data[0] - введенные данные;

• Для настройки цифровых линий:

s_Type -L_ASYNC_TTL_CFG

Mode - маска направлений (0XXX 0000)

• Платы L-761/L-780/L-783

• Для ввода одного отсчета с АЦП надо заполнить структуру ASYNC_PAR так:

s_Type -L_ASYNC_ADC_INP

Chn[0] - логический номер канала;

Результат в Data[0].

Для вывода одного отсчета на TTL линии:

s_Type -L_ASYNC_TTL_OUT

Data[0] - данные для вывода;

• Для ввода одного отсчета с TTL линий:

s_Type -L_ASYNC_TTL_INP

Data[0] - введенные данные;

• Для вывода одного отсчета на ЦАП:

s_Type -L_ASYNC_DAC_OUT

Mode - номер ЦАП (0/1);

Data[0] - данные для ЦАП;

Разрешить/запретить цифровые линии: (только L780C)

s_Type -L_ASYNC_TTL_CFG

Mode - (0/1);

• Платы L-791

• Для ввода одного отсчета с АЦП надо заполнить структуру ASYNC_PAR так:

s_Type -L_ASYNC_ADC_INP

Chn[0] - логический номер канала;

Результат в Data[0].

• Для вывода одного отсчета на TTL линии:

s_Type -L_ASYNC_TTL_OUT

Data[0] - данные для вывода;

• Для ввода одного отсчета с TTL линий:

s_Type -L_ASYNC_TTL_INP

Data[0] - введенные данные;

• Разрешить/запретить цифровые линии:

s_Type -L_ASYNC_TTL_CFG

Mode – (0/1) разрешить/запретить цифровые линии;

EnableCorrection

Включает/выключает режим коррекции. Сама загружает коэффициенты в плату.

Описание:

C: ULONG EnableCorrection(USHORT Ena=1);
Pascal: function EnableCorrection(Ena:USHORT):ULONG;

Параметры:

USHORT Ena - новое значение переменной разрешения/запрещения коррекции (1/0);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1450 L1221

FillDAQparameters

Заполняет внутреннюю структуру параметров сбора данных значениями из структуры ADC_PAR,DAC_PAR или другой в зависимости от типа поля s_Type.

Описание:

C: ULONG FillDAQparameters(PDAQ_PAR sp);
Pascal: function FillDAQparameters(var sp:DAQ_PAR):ULONG;

Параметры:

PDAQ_PAR sp - структура с параметрами сбора данных;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

PDAQ_PAR sp - в структуре обновлены поля Rate, Kadr, NCh с учетом возможностей платы.

Реализована:

L7XX L1250 L305 L264 L1450 L1221 L791

ReadPlataDescr

Чтение пользовательского Flash.

Описание:

C: ReadPlataDescr(LPVOID pd);

Pascal: function ReadPlataDescr(var pd):ULONG;

Параметры:

LPVOID pd - указатель на структуру PLATA_DESCR_U;

Возвращает:

L_SUCCESS - в случае успеха;

L_ERROR - в случае ошибки;

LPVOID pd - указатель на заполненную структуру PLATA_DESCR_U;

Реализована:

L7XX L1450 L791

WritePlataDescr

Запись пользовательского Flash.

Описание:

C: ULONG WritePlataDescr(LPVOID pd, USHORT Ena);
Pascal: function WritePlataDescr(var pd; Ena:USHORT):ULONG;

Параметры:

LPVOID pd - указатель на структуру PLATA_DESCR_U; **USHORT Ena** - разрешение(1) / запрещение(0) записи служебной части пользовательского Flash;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1450 L791

ReadFlashWord

Чтение слова из пользовательского Flash.

Описание:

C: ULONG ReadFlashWord(USHORT FlashAddress, PUSHORT Data);
Pascal: function ReadFlashWord(FlashAddress:USHORT; var Data:USHORT):ULONG;

Параметры:

USHORT FlashAddress - адрес, с которого читать; PUSHORT Data - прочитанное слово;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PUSHORT Data - прочитанное слово;

Реализована:

L7XX L1450 L1221 L791

Примечание:

Для L1221 и L791 читает байт. Старший байт слова не используется.

WriteFlashWord

Запись слова в пользовательский Flash.

Описание:

C: ULONG WriteFlashWord(USHORT FlashAddress, USHORT Data);
Pascal: function WriteFlashWord(FlashAddress:USHORT; Data:USHORT):ULONG;

Параметры:

USHORT FlashAddress - адрес, по которому писать; USHORT Data - записываемое слово;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1450 L1221 L791

Примечание:

Для L1221 записывает младший байт из слова. Для L791 записывает младший байт из слова в буфер микросхемы. Реальная запись происходит по команде EnableFlashWrite в указанную страницу.

EnableFlashWrite

Разрешение записи в пользовательский Flash.

Описание:

C: ULONG EnableFlashWrite(USHORT Flag);
Pascal: function EnableFlashWrite(Flag:USHORT):ULONG;

Параметры:

USHORT Flag - разрешение (1) / запрещение (0) записи во Flash;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1450 L791

Примечание:

Для платы L791 Flag это номер страницы в которую будут записаны данные из буфера микросхемы. **0** - это страница со структурой PLATA_DESCR.

GetParameter

Функция служит для считывания разнообразных параметров с платы. Замещает некоторые простые функции из старых АРІ.

Описание:

```
C: ULONG GetParameter(ULONG name, PULONG param);
Pascal: function GetParameter(name:ULONG; var param:ULONG):ULONG;
```

Параметры:

```
ULONG name - условное название параметра (см примечание); PULONG param - значение параметра;
```

Возвращает:

```
L_SUCCESS - в случае успеха;
L_ERROR - в случае ошибки;
PULONG param - значение параметра;
```

Реализована:

L1221 L1250 L264 L305

- Для 1221 есть следующие параметры:
 - L1221_EXT_COUNTER считать значение внешнего счетчика (ячейки 0x3D5C 0x3D5B);
 - L1221_OVERFLOW считать значение ячейки переполнения (0x3D4E);
 - L1221_BIT_RES считать ячейку с разрядностью АЦП (0x3D58);
- Для 1250/264/305:
 - L1251_MEM_STATE возвращает размер установленной внешней памяти данных: 0 нет; 1 8К; 2 32К; 3 128К;
 - L1251_MEM_PM_STATE тестирует наличие внешней памяти программ на плате: 0 нет; 1 есть;

SetParameter

Функция служит для записи разнообразных параметров в плату. Замещает некоторые простые функции из старых API.

Описание:

C: ULONG SetParameter(ULONG name, PULONG param);
Pascal: function SetParameter(name:ULONG; var param:ULONG):ULONG;

Параметры:

ULONG name - условное название параметра (см примечание); **PULONG param** - значение параметра;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PULONG param - значение параметра;

Реализована:

L1221

Примечание:

Для 1221 есть следующие параметры:

• L1221_BIT_RES - считать ячейку с разрядностью АЦП (0x3D58);

SetLDeviceEvent

Функция служит для установки события в драйвере. Работа события облегчает ожидание готовности данных от платы при однократном заполнении буфера. Также позволяет более удобно получать информацию о других процессах в плате.

Описание:

C: ULONG SetLDeviceEvent(HANDLE hEvent, ULONG EventId=L_EVENT_ADC); Pascal: function SetParameter(hEvent:THandle; EventId:ULONG):ULONG;

Параметры:

ULONG hEvent - условное название параметра (см примечание); **ULONG EventId** – идентификатор события на который установлен event;

Возвращает:

```
L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;
```

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Примечание:

Для EventId есть следующие значения:

- L_EVENT_ADC_BUF 1 событие по заполнении буфера АЦП:
- L_EVENT_DAC_BUF 2 событие при работе с буфером ЦАП (L1450, L780M):
- L_EVENT_ADC_OVF 3 L791 -см описание по генерации прерываний от платы;
- L_EVENT_ADC_FIFO 4 L791 -см описание по генерации прерываний от платы;
- L_EVENT_DAC_USER 5 L791 -см описание по генерации прерываний от платы;
- L_EVENT_DAC_UNF 6 L791 -см описание по генерации прерываний от платы;
- L_EVENT_PWR_OVR 7 L791 -см описание по генерации прерываний от платы;

Вспомогательные функции

GetSlotParam

Функция возвращает информацию для указанного виртуального слота.

Описание:

C: ULONG GetSlotParam(PSLOT_PAR slPar);
Pascal: function GetSlotParam(var slPar:SLOT_PAR):ULONG;

Параметры:

PSLOT_PAR slPar - переменная, в которой будут возвращены параметры;

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PSLOT_PAR slPar - параметры установленные для данного слота;

Реализована:

L7XX L1250 L1221 L305 L264 L1450 L791

Функции для работы с портами ввода/вывода

inbyte

Ввод байта из І/О порта.

Описание:

C: ULONG inbyte (ULONG offset, PUCHAR data, ULONG len=1, ULONG key=0); Pascal: function inbyte (offset:ULONG; var data:UCHAR; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса; PUCHAR data - массив, в который будут занесены прочитанные данные; ULONG len - размер массива в байтах; ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PUCHAR data - прочитанные данные;

Реализована:

L7XX L1221 L1250 L264 L305 L1450

Примечание:

inword

Ввод слова из І/О порта.

Описание:

C: ULONG inword (ULONG offset, PUSHORT data, ULONG len=2, ULONG key=0); Pascal: function inword (offset:ULONG; var data:USHORT; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса; PUSHORT data - массив, в который будут занесены прочитанные данные; ULONG len - размер массива в байтах; ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PUSHORT data - прочитанные данные;

Реализована:

L7XX L1221 L1250 L264 L305 L1450

Примечание:

indword

Ввод двойного слова из І/О порта.

Описание:

C: ULONG indword (ULONG offset, PULONG data, ULONG len=4, ULONG key=0); Pascal: function indword (offset:ULONG; var data:ULONG; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса; PULONG data - массив, в который будут занесены прочитанные данные; ULONG len - размер массива в байтах; ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PULONG data - прочитанные данные;

Реализована:

L7XX L1221 L1250 L264 L305 L1450

Примечание:

outbyte

Вывод байта в І/О порт.

Описание:

C: ULONG outbyte (ULONG offset, PUCHAR data, ULONG len=1, ULONG key=0); Pascal: function outbyte (offset:ULONG; var data:UCHAR; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса;
PUCHAR data - массив данных;
ULONG len - размер массива в байтах;

ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450

Примечание:

outword

Вывод слова в І/О порт.

Описание:

C: ULONG outword (ULONG offset, PUSHORT data, ULONG len=1, ULONG key=0); Pascal: function outword (offset:ULONG; var data:USHORT; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса;
PUSHORT data - массив данных;
ULONG len - размер массива в байтах;

ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450

Примечание:

outdword

Вывод двойного слова в І/О порт.

Описание:

C: ULONG outdword (ULONG offset, PULONG data, ULONG len=1, ULONG key=0); Pascal: function outdword (offset:ULONG; var data:ULONG; len:ULONG; key:ULONG): **ULONG**;

Параметры:

ULONG offset - смещение порта относительно базового адреса; PULONG data - массив данных; ULONG len - размер массива в байтах;

ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; **L_ERROR** - в случае ошибки;

Реализована:

L7XX L1250 L1221 L305 L264 L1450

Примечание:

inmbyte

Ввод байта из памяти.

Описание:

C: ULONG inmbyte (ULONG offset, PUCHAR data, ULONG len=1, ULONG key=0); Pascal: function inmbyte (offset:ULONG; var data:UCHAR; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса; PUCHAR data - массив, в который будут занесены прочитанные данные; ULONG len - размер массива в байтах; ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PUCHAR data - прочитанные данные;

Реализована:

L7XX L791

Примечание:

imword

Ввод слова из памяти.

Описание:

C: ULONG inmword (ULONG offset, PUSHORT data, ULONG len=1, ULONG key=0); Pascal: function inmword (offset:ULONG; var data:USHORT; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса; PUSHORT data - массив, в который будут занесены прочитанные данные; ULONG len - размер массива в байтах; ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PUSHORT data - прочитанные данные;

Реализована:

L7XX L791

Примечание:

inmdword

Ввод двойного слова из памяти.

Описание:

C: ULONG inmdword (ULONG offset, PULONG data, ULONG len=1, ULONG key=0); Pascal: function inmdword (offset:ULONG; var data:ULONG; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса; PULONG data - массив, в который будут занесены прочитанные данные; ULONG len - размер массива в байтах; ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки; PULONG data - прочитанные данные;

Реализована:

L7XX L791

Примечание:

outmbyte

Вывод байта в память.

Описание:

C: ULONG outmbyte (ULONG offset, PUCHAR data, ULONG len=1, ULONG key=0); Pascal: function outmbyte (offset:ULONG; var data:UCHAR; len:ULONG; key:ULONG): ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса;

PUCHAR data - массив данных;

ULONG len - размер массива в байтах;

ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L791

Примечание:

outmword

Вывод слова в память.

Описание:

C: ULONG outmword (ULONG offset, PUSHORT data, ULONG len=1, ULONG key=0); Pascal: function outmword (offset:ULONG; var data:USHORT; len:ULONG; key:ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса;
PUSHORT data - массив данных;
ULONG len - размер массива в байтах;
ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

```
L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;
```

Реализована:

L7XX L791

Примечание:

outmdword

Вывод двойного слова в память.

Описание:

C: ULONG outmdword (ULONG offset, PULONG data, ULONG len=1, ULONG key=0); Pascal: function outmdword (offset:ULONG; var data:ULONG; len:ULONG; key:ULONG;

Параметры:

ULONG offset - смещение порта относительно базового адреса;
PULONG data - массив данных;

ULONG len - размер массива в байтах;

ULONG key - номер региона (фактически выбирает базовый адрес из списка возможных);

Возвращает:

L_SUCCESS - в случае успеха; L_ERROR - в случае ошибки;

Реализована:

L7XX L791

Примечание:

Типы данных

ADC_PAR

Это обобщенная структура для удобства работы со структурами задачи параметров сбора данных разных плат.

Описание:

```
C:
typedef union _ADC_PARAM_U_:
{
     ADC_PAR_0 t1;
     ADC_PAR_1 t2;
} ADC_PAR, *PADC_PAR;
```

Параметры:

ADC_PAR_0

Структура служит для передачи параметров сбора данных в плату. Заполняется пользователем и передается в драйвер где и хранится.

Описание:

```
C:
typedef struct _ADC_PARAM_U_0 : public DAQ_PAR
// USHORT s_Type;
// USHORT FIFO;
// USHORT IrqStep;
// USHORT Pages;
  USHORT AutoInit;
  double dRate;
  double dKadr;
  double dScale;
* USHORT Rate;
* USHORT Kadr;
* USHORT Scale;
* USHORT FPDelay
  USHORT SynchroType;
  USHORT SynchroSensitivity;
  USHORT SynchroMode;
  USHORT AdChannel;
  USHORT AdPorog:
  USHORT NCh;
  USHORT Chn[128];
  USHORT IrqEna;
  USHORT AdcEna;
} ADC_PAR_0, *PADC_PAR_0;
```

Параметры:

опроса каналов;

```
USHORT s Type - тип структуры (должен быть L ADC PARAM);
USHORT AutoInit - флаг указывающий на тип сбора данных 0 - однократный 1 -
циклический;
double dRate - частота опроса каналов в кадре (к\Gammaц);
double dKadr - интервал между кадрами (мс);
double dScale - масштаб работы таймера для 1250 или делителя для 1221;
USHORT Rate - частота опроса каналов в кадре (в кодах для процессора);
USHORT Kadr - интервал между кадрами (в кодах для процессора);
USHORT Scale - масштаб работы таймера для 1250 или делителя для 1221 (в кодах для
процессора);
USHORT FPDelay - служебная величина задержки выдачи первого отсчета;
USHORT Synchro Type - тип синхронизации;
USHORT SynchroSensitivity - вид синхронизации;
USHORT SynchroMode - режим синхронизации;
USHORT AdChannel - канал, по которому выполняется синхронизация;
USHORT AdPorog - уровень синхронизации;
USHORT NCh - количество опрашиваемых каналов;
USHORT Chn[128] - массив с номерами каналов и усилением на них; описывает порядок
```

USHORT FIFO - размер половины аппаратного буфера FIFO на плате;

USHORT Pages - размер кольцевого буфера в шагах прерываний; **USHORT IrqEna** - разрешение генерации прерывания от платы (1/0);

USHORT IrqStep - шаг генерации прерываний;

USHORT AdcEna - разрешение работы АЦП (1/0);

Примечание:

Структура ADC_PAR используется совместно с вызовом FillDAQparameters для настройки параметров ввода данных с платы АЦП. Поля отмеченные комментарием (//) наследуются из структуры DAQ_PAR. Пользователь должен заполнять все поля кроме тех, которые помечены (*). Особенности трактовки полей этой структуры для различных плат:

- L-761/780/783/L-1450 полностью так, как описано;
- L-1250/51/L-1450C/L-305/L-264:
 - NCh количество каналов (максимум 32);
 - **IrqStep** должен быть равен FIFO т.к. плата может работать только по половинкам фифо буфера;
 - SynchroType тип синхронизации (SMode по описанию DOS);
 - SynchroMode режим синхронизации (TtlMask по описанию DOS);
- L-1221:
 - dRate частота опроса на каждом канале.
 - **NCh** битовая маска активных каналов (10101010 for example);
 - Chn[32] первые 8 членов задают усиление на соответствующих каналах;

ADC_PAR_1

Структура служит для передачи параметров сбора данных в плату. Заполняется пользователем и передается в драйвер где и хранится.

Описание:

```
\mathbf{C}:
typedef struct _ADC_PARAM_U_1 : public DAQ_PAR
// USHORT s_Type;
// USHORT FIFO;
// USHORT IrqStep;
// USHORT Pages;
   USHORT AutoInit;
   double dRate;
   double dKadr;
   double Reserved1;
* ULONG Rate;
* ULONG Kadr;
   USHORT SynchroType;
   USHORT Reserved2;
   USHORT Reserved3;
   USHORT SynchroSrc;
   USHORT Reserved4;
   USHORT NCh;
   USHORT Chn[128]:
   USHORT IrgEna;
   USHORT AdcEna;
} ADC PAR 1, *PADC PAR 1;
```

Параметры:

```
USHORT s_Type - тип структуры (должен быть L_ADC_PARAM);
USHORT AutoInit - флаг указывающий на тип сбора данных 0 - однократный 1 - циклический;
double dRate - частота опроса каналов в кадре (кГц);
double dKadr - интервал между кадрами (мс);
double Reserved1 – зарезервировано;
ULONG Rate - частота опроса каналов в кадре (в кодах для цифрового автомата);
ULONG Kadr - интервал между кадрами (в кодах для цифрового автомата);
USHORT SynchroType - тип синхронизации;
USHORT Reserved2 – зарезервировано;
USHORT Reserved3 - зарезервировано;
USHORT Reserved4 - зарезервировано;
USHORT Reserved4 - зарезервировано;
USHORT NCh - количество опрашиваемых каналов;
USHORT NCh - количество опрашиваемых каналов;
USHORT Chn[128] - массив с номерами каналов и усилением на них; описывает порядок
```

USHORT FIFO - размер половины аппаратного буфера FIFO на плате;

USHORT IrqStep;

опроса каналов;

USHORT Pages – произведение этих двух параметров IrqStep*Pages задает количество отсчетов которое соберет плата при однократном сборе, но не больше чем 128К отсчетов. При циклическом сборе они игнорируются – буфер всегда 128К.

USHORT IrqEna - разрешение генерации прерывания от платы (mask/0), при этом mask - это младшие 16 бит в слове разрешающем прерывания от платы (блок АЦП);

USHORT AdcEna - разрешение работы АЦП (1/0);

Структура ADC_PAR _1 используется совместно с вызовом FillDAQparameters для настройки параметров ввода данных с платы АЦП. Поля отмеченные комментарием (//) наследуются из структуры DAQ_PAR. Пользователь должен заполнять все поля кроме тех, которые помечены (*). Особенности трактовки полей этой структуры для различных плат:

• L-791 - полностью так, как описано;

DAC_PAR

Это обобщенная структура для удобства работы со структурами задачи параметров сбора данных разных плат.

Описание:

```
C:
typedef union _DAC_PARAM_U_ :
{
     DAC_PAR_0 t1;
     DAC_PAR_1 t2;
} DAC_PAR, *PDAC_PAR;
```

Параметры:

DAC_PAR_0

Структура служит для передачи параметров вывода данных в плату. Заполняется пользователем и передается в драйвер где хранится в похожей структуре, но в удобном для платы представлении.

Описание:

```
C:
typedef struct _DAC_PARAM_U_0: public DAQ_PAR
{
    // USHORT s_Type;
    // USHORT FIFO;
    // USHORT IrqStep;
    // USHORT Pages;

    USHORT AutoInit;
    double dRate;
* USHORT Rate;
    USHORT IrqEna;
    USHORT DacEna;
    USHORT DacNumber;
} DAC_PAR_0, *PDAC_PAR_0;
```

Параметры:

```
USHORT s_Type -; тип структуры (должен быть L_DAC_PARAM);
USHORT AutoInit - флаг указывающий на тип сбора данных 0 - однократный 1 - циклический; (пока не используется)
double dRate - частота вывода данных на ЦАП (кГц);
USHORT Rate - частота вывода данных на ЦАП (в кодах для процессора);
USHORT FIFO - размер половины аппаратного буфера FIFO на плате;
USHORT IrqStep - шаг генерации прерываний;
USHORT Pages - размер кольцевого буфера в шагах прерываний;
USHORT IrqEna - разрешение генерации прерывания от платы (1/0);
USHORT DacEna - разрешение работы ЦАП (1/0);
USHORT DacNumber - номер канала ЦАП на который выводить данные;
```

Примечание:

Структура DAC_PAR_0 используется совместно с вызовом FillDAQ parameters для настройки параметров вывода данных с ЦАП платы. Поля отмеченные комментарием (//) наследуются из структуры DAQ_PAR. Пользователь должен заполнять все поля кроме тех, которые помечены (*). Особенности трактовки полей этой структуры для различных плат:

- L-761/780/783/L-1450 полностью так, как описано кроме:
 - **DacNumber** не задействован (номер ЦАП задается в самих данных);
 - **IrqEna,Pages** прерывания и реальный кольцевой буфер работают только в L-1450 и L780C, для остальных плат Pages всегда надо задавать 2;
 - IrqStep должен быть равен FIFO;
- L-1250/51/L-305/L-264:
 - **IrqEna,Pages** прерывания и реальный кольцевой буфер работают только в L-1450 и L780C, для остальных плат Pages всегда надо задавать 2;
 - **IrqStep** должен быть равен FIFO т.к. плата может работать только по половинкам фифо буфера;
 - **dRate** надо ставить такой же как и для АЦП т.к. ЦАП на этих платах как бы синхронен с АЦП на ввод одного кадра с АЦП происходит один вывод на ЦАП;

DAC_PAR_1

Структура служит для передачи параметров вывода данных в плату. Заполняется пользователем и передается в драйвер где хранится в похожей структуре, но в удобном для платы представлении.

Описание:

```
C:

typedef struct _DAC_PARAM_U_1: public DAQ_PAR
{
    // USHORT s_Type;
    // USHORT FIFO;
    // USHORT IrqStep;
    // USHORT Pages;

    USHORT AutoInit;
    double dRate;
    * ULONG Rate;
    USHORT IrqEna;
    USHORT DacEna;
} DAC_PAR_1, *PDAC_PAR_1;
```

Параметры:

```
USHORT s_Type -; тип структуры (должен быть L_DAC_PARAM);
USHORT AutoInit - флаг указывающий на тип сбора данных 0 - однократный 1 - циклический; (пока не используется)
double dRate - частота вывода данных на ЦАП (кГц);
ULONG Rate - частота вывода данных на ЦАП (в кодах для процессора);
USHORT FIFO - размер половины аппаратного буфера FIFO на плате;
USHORT IrqStep - шаг генерации прерываний;
USHORT Pages - размер кольцевого буфера в шагах прерываний;
USHORT IrqEna - разрешение генерации прерывания от платы (1/0);
USHORT DacEna - разрешение работы ЦАП (1/0);
```

Примечание:

Структура DAC_PAR_1 используется совместно с вызовом FillDAQ parameters для настройки параметров вывода данных с ЦАП платы. Поля отмеченные комментарием (//) наследуются из структуры DAQ_PAR. Пользователь должен заполнять все поля кроме тех, которые помечены (*). Особенности трактовки полей этой структуры для различных плат:

- L-791 полностью так, как описано кроме:
 - **AutoInit** не используется;
 - **IrqStep** не используется;
 - **Pages** не используется, буфер всегда 128К отсчетов;
 - **FIFO,IrqStep** не используется, буфер всегда 128К отсчетов; прерывания генерируются по флагам в данных ЦАП

ASYNC_PAR

Структура служит для передачи в плату параметров асинхронного ввода/вывода данных. Используется совместно IoAsync.

Описание:

```
C:

typedef struct _ASYNC_PARAM_ : public DAQ_PAR
{
   // USHORT s_Type;
   // USHORT FIFO;
   // USHORT IrqStep;
   // USHORT Pages;

   double dRate;
* USHORT Rate;
   USHORT NCh;
   USHORT Chn[128];
   USHORT Data[128];
   ULONG Mode;
} ADC_PAR, *PADC_PAR;
```

Параметры:

```
USHORT s_Type - указывает для какой опреации ввода/вывода содержатся данные в структуре (L_ASYNC_ADC_CFG, L_ASYNC_TTL_CFG,L_ASYNC_DAC_CFG, L_ASYNC_ADC_INP, L_ASYNC_TTL_INP, L_ASYNC_TTL_OUT, L_ASYNC_DAC_OUT); USHORT Data[128] - массив для данных; double dRate - частота опроса каналов в кадре (кГц); USHORT Rate - частота опроса каналов в кадре (в кодах для процессора); USHORT NCh - количество опрашиваемых каналов; USHORT Chn[128] - массив с номерами каналов и усилением на них; описывает порядок опроса каналов; USHORT FIFO - размер половины аппаратного буфера FIFO на плате; USHORT IrqStep - шаг генерации прерываний; USHORT Pages - размер кольцевого буфера в шагах прерываний; USHORT Mode - задает различные режимы при конфигурации.
```

Примечание:

Структура ASYNC_PAR используется совместно с вызовом IoAsync. Поля отмеченные комментарием (//) наследуются из структуры DAQ_PAR. Пользователь должен заполнять все поля кроме тех, которые помечены (*). Как заполнять или что читать из этой структуры см. описание функции IoAsync.

PLATA_DESCR

Структура описывает FLASH на PCI платах L-761/L-780/L-783.

Описание:

```
C:
typedef struct __PLATA_DESCR
{
    char SerNum[9];
    char BrdName[5];
    char Rev;
    char DspType[5];
    long Quartz;
    USHORT IsDacPresent;
    USHORT Reserv1[7];
    USHORT KoefADC[8];
    USHORT KoefDAC[4];
    USHORT Custom[32];
} PLATA_DESCR , *PPLATA_DESCR;
```

Параметры:

```
сhar SerNum[9] - серийный номер платы; char BrdName[5] - название платы; char Rev - ревизия платы; char DspType[5] - тип DSP; long Quartz - частота кварца; USHORT IsDacPresent - наличие ЦАПа; USHORT Reserv1[7] - зарезервировано; USHORT KoefADC[8] - калибровочные коэффициенты АЦП; USHORT KoefDAC[4] - калибровочные коэффициенты ЦАП; USHORT Custom[32] - пользовательское место;
```

PLATA_DESCR_1450

Структура описывает FLASH на ISA плате L-1450.

Описание:

```
C:
typedef struct __PLATA_DESCR_1450
{
    char SerNum[9];
    char BrdName[7];
    char Rev;
    char DspType[5];
    char IsDacPresent;
    char IsExtMemPresent;
    long Quartz;
    USHORT Reserv1[6];
    USHORT KoefADC[8];
    USHORT Custom[32];
} PLATA_DESCR_1450 , *PPLATA_DESCR_1450;
```

Параметры:

```
сhar SerNum[9] - серийный номер платы; char BrdName[7] - название платы; char Rev - ревизия платы; char DspType[5] - тип DSP; char IsDacPresent - наличие ЦАПа; char IsExtMemPresent - наличие внешней памяти данных; long Quartz - частота кварца; USHORT Reserv1[6] - зарезервировано; USHORT KoefADC[8] - калибровочные коэффициенты АЦП; USHORT KoefDAC[4] - калибровочные коэффициенты ЦАП; USHORT Custom[32] - пользовательское место;
```

Примечание:

PLATA_DESCR_L791

Структура описывает FLASH на PCI плате L-791.

Описание:

```
C:
typedef struct __PLATA_DESCR_L791
{
    USHORT crc;
    char SerNum[16];
    char BrdName[16];
    char Rev;
    char DspType[5];
    long Quartz;
    USHORT IsDacPresent;
    float KoefADC[16];
    float KoefDAC[4];
    USHORT Custom;
} PLATA_DESCR_L791 , *PPLATA_DESCR_L791;
```

Параметры:

```
char SerNum[16] - серийный номер платы; char BrdName[16] - название платы; char Rev - ревизия платы; char DspType[5] - тип DSP; USHORT IsDacPresent - наличие ЦАПа; long Quartz - частота кварца; float KoefADC[16] - калибровочные коэффициенты АЦП; float KoefDAC[4] - калибровочные коэффициенты ЦАП; USHORT Custom - пользовательское место;
```

Примечание:

Данная структура используется в интерфейсных функциях, которые работают со служебной областью пользовательского ППЗУ: **ReadPlataDescr** и **WritePlataDescr**.

Название поля	Назначение и допустимые значения поля
crc	Контрольная сумма, расчитанная по всем полям структуры.
SerNum	Серийный номер модуля (строка символов максимальной с длиной 16)
BrdName	Название модуля (строка символов максимальной с длиной 16)
Rev	Ревизия модуля (ascii символ)
DspType	Тип используемого в модуле процессора (строка символов с максимальной длиной 16)
Quartz	Частота задающего кварца (32-х разрядное целое)
IsDacPresented	Флаг наличия ЦАП в модуле (логическая величина)
KoefAdc[0]	Коэффициент коррекции смещения нуля АЦП. Усилении 'х1'. (число с плавающей точкой одинарной точности)
KoefAdc[1]	Коэффициент коррекции смещения нуля АЦП. Усилении 'х2'.(число с плавающей точкой двойной точности)

Название поля	Назначение и допустимые значения поля
KoefAdc[2]	Коэффициент коррекции смещения нуля АЦП. Усилении 'x4'.(число с плавающей точкой двойной точности)
KoefAdc[3]	Коэффициент коррекции смещения нуля АЦП. Усилении 'x8'.(число с плавающей точкой двойной точности)
KoefAdc[4]	Коэффициент коррекции смещения нуля АЦП. Усилении 'x16'.(число с плавающей точкой двойной точности)
KoefAdc[5]	Коэффициент коррекции смещения нуля АЦП. Усилении 'х32'.(число с плавающей точкой двойной точности)
KoefAdc[6]	Коэффициент коррекции смещения нуля АЦП. Усилении 'х64'.(число с плавающей точкой двойной точности)
KoefAdc[7]	Коэффициент коррекции смещения нуля АЦП. Усилении 'х128'.(число с плавающей точкой двойной точности)
KoefAdc[8]	Коэффициент коррекции масштаба АЦП. Усилении 'x1'. (число с плавающей точкой двойной точности)
KoefAdc[9]	Коэффициент коррекции масштаба АЦП. Усилении 'x2'. (число с плавающей точкой двойной точности)
KoefAdc[10]	Коэффициент коррекции масштаба АЦП. Усилении 'х4'. (число с плавающей точкой двойной точности)
KoefAdc[11]	Коэффициент коррекции масштаба АЦП. Усилении 'х5'. (число с плавающей точкой двойной точности)
KoefAdc[12]	Коэффициент коррекции масштаба АЦП. Усилении 'x16'.(число с плавающей точкой двойной точности)
KoefAdc[13]	Коэффициент коррекции масштаба АЦП. Усилении 'х32'. (число с плавающей точкой двойной точности)
KoefAdc[14]	Коэффициент коррекции масштаба АЦП. Усилении 'x64'.(число с плавающей точкой двойной точности)
KoefAdc[15]	Коэффициент коррекции масштаба АЦП. Усилении 'x128'. (число с плавающей точкой двойной точности)
KoefDac[0]	Коэффициент коррекции смещения нуля ЦАП. Канал '0'. (число с плавающей точкой двойной точности)
KoefDac[1]	Коэффициент коррекции смещения нуля ЦАП. Канал '1'. (число с плавающей точкой двойной точности)
KoefDac[2]	Коэффициент коррекции масштаба ЦАП. Канал '0'. (число с плавающей точкой двойной точности)
KoefDac[3]	Коэффициент коррекции масштаба ЦАП. Канал '1'.(число с плавающей точкой двойной точности)

Корректировка данных АЦП/ЦАП.

Схемотехника и использованные компоненты обеспечивают линейность передаточной характеристики АЦП/ЦАП модуля. Однако, в виду отсутствия автоматической коррекции как внутри модуля так и в штатной dll-библиотеки, показания АЦП/ЦАП могут иметь некоторое смешение нуля и неточность в передаче масштаба. Работа по коррекции показаний возлагается на

пользовательское приложение.

Для корректировки показаний АЦП/ЦАП можно воспользоваться собственными калибровочными коэффициентами и формулами или штатными коэффициентами.

Штатные коэффициенты вычисляются при наладке модуля на производстве и хранятся в системном ППЗУ модуля. Для того чтобы ими воспользоваться, необходимо:

- -считать системное ППЗУ модуля при помощи функции ReadPlataDescr()
- -из считанной системной информации выбрать коэффициенты масштаба и смещения нуля соответствующие диапазону измерения АЦП или номеру канала ЦАП (см. описание структуры **PLATA_DESCR_L791**)
- -воспользоваться приведенной ниже формулой:

Корректировка данных АЦП:

Y = (X+B)*A, где:

Х – некорректированные данные АЦП [в отсчетах АЦП]

Y – скорректированные данные АЦП [в отсчетах АЦП]

А – коэффициент масштаба [безразмерный]

В – коэффициент смещение нуля [в отсчетах АЦП]

<u>Примечание</u>: Коэффициенты A и B одни и те же для всех каналов АЦП, но различные для разных диапазонов измерения.

Корректировка данных ЦАП:

$$Y = (X+B)*A$$
, где:

Х – некорректированные данные ЦАП [в отсчетах ЦАП]

Y – корректированные данные ЦАП [в отсчетах ЦАП]

А – коэффициент масштаба [безразмерный]

 ${\bf B}$ – коэффициент смещение нуля [в отсчетах ЦАП]

Пример 1:

С АЦП, настроенного на диапазон ±2.5В (усиление x4), получены следующие данные:

$$X_1 = 1000, X_2 = -1000, X_3 = 0$$

тогда, если положить что **pd** – структура типа **PLATA_DESCR_L791** предварительно участвовавшая в вызове функции **ReadPlataDescr**(), то коэффициенты коррекции и скорректированные данные можно получить так:

$$Y_1 = (B+1000)*A, Y_2 = (B-1000)*A, Y_3 = B*A$$

Пример 2:

На втором канале ЦАП необходимо выставить напряжение, соответствующее следующим кодам:

$$X_1 = 1000, X_2 = -1000, X_3 = 0$$

тогда, если положить что **pd** – структура типа **PLATA_DESCR_L791** предварительно участвовавшая в вызове функции **ReadPlataDescr**(), то коэффициенты коррекции и данные, которые необходимо записать во второй канал ЦАП, можно получить так:

$$Y_1 = (B+1000)*A, Y_2 = (B-1000)*A, Y_3 = B*A$$

PLATA_DESCR_U

Это обобщенная структура для удобства работы с флешами разных плат.

Описание:

```
C:
typedef union __PLATA_DESCR_U
{
    PLATA_DESCR t1;
    PLATA_DESCR_1450 t2;
    PLATA_DESCR_L791 t3;
    WORD_IMAGE wi;
} PLATA_DESCR_U, *PPLATA_DESCR_U;
```

Примечание:

WORD_IMAGE

Представление структуры флеша в виде массива слов.

Описание:

```
C:
typedef struct __WORD_IMAGE
{
    WORD data[64];
} WORD_IMAGE, *PWORD_IMAGE;
```

Примечание:

SLOT_PAR

Структура описывает параметры виртуального слота.

Описание:

```
C:
typedef struct __SLOT_PARAM
   ULONG Base;
   ULONG BaseL;
   ULONG Base1;
   ULONG BaseL1;
   ULONG Mem;
   ULONG MemL;
   ULONG Mem1;
   ULONG MemL1;
   ULONG Irq;
   ULONG BoardType;
   ULONG DSPType;
   ULONG Dma;
   ULONG DmaDac;
   ULONG DTA_REG;
   ULONG IDMA_REG;
   ULONG CMD_REG;
   ULONG IRQ_RST;
   ULONG DTA_ARRAY;
   ULONG RDY_REG;
   ULONG CFG_REG;
} SLOT_PAR, *PSLOT_PAR;
```

Параметры:

```
ULONG Base - базовый адрес первого региона портов;
ULONG BaseL - протяженность первого региона портов в байтах;
ULONG Base1 - базовый адрес второго региона портов;
ULONG BaseL1 - протяженность второго региона портов в байтах;
ULONG Mem - адрес первого региона памяти;
ULONG MemL - протяженность первого региона памяти в байтах;
ULONG Mem1 - адрес второго региона памяти;
ULONG MemL1 - протяженность второго региона памяти в байтах;
ULONG Irq - используемое драйвером аппаратное прерывание;
ULONG Board Type - тип платы;
ULONG DSPType - тип установленного на плате DSP;
ULONG Dma - используемый для ввода данных канал ПДП: 0 - не использовать, 5,6;
ULONG DmaDac - используемый для вывода данных канал ПДП: 0 - не использовать,6;
ULONG DTA REG;
ULONG IDMA_REG;
ULONG CMD REG:
ULONG IRQ_RST;
ULONG DTA ARRAY;
ULONG RDY REG;
ULONG CFG_REG; - адреса регистров платы относительного базового адреса;
```

Примечание:

Структура SLOT_PAR используется совместно с вызовом GetSlotParam для получения параметров виртуальных слотов.

Для платы L791 занчение имеют только поля Mem, MemL, Irq, BoardType. Все остальные ничего

не значат.

Коды ошибок

Пока определены следующие коды ошибок:

- L_SUCCESS 0 функция выполнена успешно;
- L_NOTSUPPORTED 1 функция не поддерживается этой платой;
- L_ERROR 2 ошибка при выполнении функции;
- L_ERROR_NOBOARD 3 нет платы в запрашиваемом слоте;
- L_ERROR_INUSE 4 плата в запрашиваемом слоте уже используется;

Типы плат

В заголовочных файлах определены следующие типы плат поддерживаемые библиотекой:

- **NONE 0** нет платы;
- **L1250 1** плата L1250;
- **N1250 2** плата N1250 (работоспособность не проверялась);
- **L1251 3** плата L1251;
- **L1221 4** плата L1221;
- **PCIA 5** плата серии L7XX rev A;
- **PCIB 6** плата серии L7XX rev B;
- **L264 8** плата L264;
- **L305 9** плата L305;
- **L1450С 10** плата L1450 с совместимым биосом L1250;
- **L1450 11** плата L1450;
- **L032 12** плата L032;
- **HI8 13** плата HI8;
- **PCIC 14** плата серии L7XX rev C (L780M);
- **PCIC 19** плата серии L79X (L791);

Другие константы

В заголовочных файлах определены следующие константы:

- L_ADC_PARAM 1 трактовать DAQ_PAR как ADC_PAR при передаче в FillDAQparameters;
- L_DAC_PARAM 2 трактовать DAQ_PAR как DAC_PAR при передаче в FillDAQparameters;
- L_ASYNC_ADC_CFG 3 ASYNC_PAR содержит запрос на конфигурирование АЦП;
- L_ASYNC_TTL_CFG 4 ASYNC_PAR содержит запрос на конфигурирование цифровых линий;
- L_ASYNC_DAC_CFG 5 ASYNC_PAR содержит запрос на конфигурирование ЦАП;
- L_ASYNC_ADC_INP 6 ASYNC_PAR содержит запрос на ввод данных с АЦП;
- L_ASYNC_TTL_INP 7 ASYNC_PAR содержит запрос на ввод данных с цифровых линий;
- L_ASYNC_TTL_OUT 8 ASYNC_PAR содержит запрос на вывод данных на цифровые линии;
- L_ASYNC_DAC_OUT 9 ASYNC_PAR содержит запрос на вывод данных на ЦАП;
- L_STREAM_ADC 1 тип потока поток данных с АЦП;
- L_STREAM_DAC 2 тип потока поток данных с ЦАП;
- L_EVENT_ADC_BUF 1
- L EVENT DAC BUF 2
- L_EVENT_ADC_OVF 3
- L_EVENT_ADC_FIFO 4
- L_EVENT_DAC_USER 5
- L EVENT DAC UNF 6
- L_EVENT_PWR_OVR 7 макросы для различных событий устанавливаемых в функции SetLDeviceEvent для платы L791.

Справочные данные по платам

Адресное пр-во и команды биос L-1250/L-264/L-305

Адресное пространство L-1250/L-264/L-305

Адрес	Чтение	Запись
Base+	Данные от платы. До тех пор, пока процессор ADSP ничего не записал в порт данных, соответствующий бит готовности равен нулю. После записи слова в порт данных процессором ADSP автоматически устанавливается в единичное значение бит готовности, который переключится в ноль после того, как компьютер считает переданное слово.	Данные для передачи в плату. После записи слова в порт данных автоматически устанавливается в нулевое значение бит готовности, который переключится в единицу автоматически после того, как процессор ADSP считает переданное слово.
Base+ 0x8	Сброс прерывания от платы в РС. В том случае если используется прерывание IRQ10/11, то обработчик прерывания обязан произвести одно чтение из этого порта для сброса запроса прерывания. В противном случае линия прерываний окажется заблокированной.	При записи команды в этот порт автоматически генерируется прерывание в процессоре ADSP IRQ2. Драйвер LBIOS использует это порт для передачи команд, при этом обработчик прерывания в процессоре в ответ на IRQ2 считывает переданный код через порт данных и вызывает функцию, соответствующую переданному коду.
Base+ 0xC	Порт битов готовности и двух ТТЛ цифровых линий (34 и 35 на внешнем разъеме)	Порт конфигурации. При помощи порта конфигурации можно: - загрузить в процессор управляющую программу; - отключить линию прерывания IRQ10/11; - перевести порт данных в режим работы по каналам ПДП;

Список команд поддерживаемых биос L-1250/L-264/L-305

Номер	Обозначение	Описание
0	cmSTOP_1251	перевод платы в "тихое" состояние
1	cmADC_CHAN_1251	ввод с АЦП с переустановкой каналов
2	cmOUT_DAC_1251	вывод на ЦАП
3	cmSTREAM_1251	одноканальный ввод с синхронизацией от внутреннего таймера
4	cmSOFT_1251	многоканальный ввод с синхронизацией от внутреннего таймера
5	cmSAMPLE_1251	ввод с АЦП без переустановки каналов
6	cmTTL_IN_1251	ввод цифровых портов
7	cmTTL_OUT_1251	вывод в цифровые порты
8	cmIRQ_SIMPLE_1251	генерирование прерываний от внутреннего таймера
9	cmIRQ_ADC_CHAN_12 51	генерирование прерываний от внутреннего таймера с одноканальным вводом с АЦП
10	cmIRQ_KADR_1251	генерирование прерываний от внутреннего таймера с многоканальным вводом с АЦП
11	cmCALIBR_1251	зарезервирована

12	cmTEST_1251	тестирование наличия платы
13	cmDAC_STREAM_1251	вывод на ЦАП массива
14	cmMEMORY_STATE_12 51	тестирование памяти
15	cmFILTER_1251	зарезервирована
16	cmFLT_NO_LOAD_1251	зарезервирована
17	cmSET_MULTI_1251	зарезервирована
18	cmSET_SCALE_1251	установка коэффициента масштабирования таймера
19	cmSET_UVX_1251	зарезервирована
20	cmSET_DSP_SPEED_12 51	установка типа скорости процессора
21	cmSET_WAITSTATE_12 51	установка задержки на память
22	cmSET_DELAY_1251	установка межканальной задержки
23	cmSYNCHRO_MODE_1 251	установка типа синхронизации
24	cmDAC_CONFIG_1251	установка номера ЦАПа
25	cmFIFO_CONFIG_1251	режим FIFO буфера
26	cmSOFT_MEMORY_125	ввод во внутреннюю память
28	cmPROGRAM_1251	программирование модулей в крейте
29	cmWRITE_TO_MEM_12 51	ввод в память массива
30	cmREAD_FROM_MEM_ 1251	чтение массива из памяти
31	cmGET_LSM_NAME_12 51	чтение кода модуля
32	cmSET_2FIFO_TYPE_12 51	установка двойного FIFO
33	cmSET_LM_DAC_1251	установка ЦАПа LM модуля
34	cmGET_LM_TTL_1251	чтение цифрового модуля
35	cmCOMPARATPR_1251	частотомер
36	cmTEST_PM_1251	проверка наличия памяти программ
37	cmLOW_POWER_1251	cmLOW_POWER_1251
39	cmLM404_1251	работа с модулем LM-404

Адресное пр-во и команды биос L-7XX

Существует две ревизии РСІ плат - А и В. Они различаются адресацией портов. Ревизия А очень редкая. Наиболее распространенная ревизия — В. Ваѕе - один из трех возможных вариантов базового адреса:порты ввода/вывода,память ниже 1Мб,память выше 1Мб.Значения Ваѕе можно увидеть под Windows в Панели Управления/Система в ресурсах соответствующих РСІ плат. Под Windows всегда используется доступ к плате через память выше 1Мб.

Адресное пространство L-761/L-780/L-783 (Rev A).

Адрес	Чтение	Запись
Base+0	Порт для чтения данных с платы по IDMA как при одиночных операция, так и при блочных.	Порт для записи данных в плату по IDMA как при одиночных операция, так и при блочных.
Base+40 96	_	Порт для установки адреса IDMA.
Base+81 92	-	Порт генерации IRQ2 DSP.
Base+12 288	-	Порт сброса прерываний.

Адресное пространство L-761/L-780/L-783 (Rev B).

Адрес	Чтение	Запись
Base+0	Порт для чтения данных с платы по IDMA при одиночных операция.	Порт для записи данных в плату по IDMA при одиночных операция.
Base+2	-	Порт для установки адреса IDMA.
Base+4	_	Порт генерации IRQ2 DSP.
Base+6	_	Порт сброса прерываний.
Base+40 96	Порт для чтения данных с платы по IDMA при блочных операциях.	Порт для записи данных в плату по IDMA при блочных операциях.

Список команд поддерживаемых биос L-761/L-780/L-783

Номер	Обозначение	Описание	Использует
0	cmTEST_PLX	Проверка загрузки платы и ее работоспособности;	L_TEST_LOAD_PLX
1	cmLOAD_CONT ROL_TABLE_P LX	Загрузка управляющей таблицы в память DSP;	L_CONTROL_TABLE_PLX, L_CONTROL_TABLE_LENGTH_PL X
2	cmADC_ENABL E_PLX	Разрешение/Запрещение работы АЦП;	L_ADC_ENABLE_PLX
3	cmADC_FIFO_C ONFIG_PLX	Конфигурирование параметров кольцевого буфера АЦП;	L_ADC_FIFO_BASE_ADDRESS_PL X, L_ADC_FIFO_BASE_ADDRESS_IN DEX_PLX, L_ADC_FIFO_LENGTH_PLX, L_ADC_NEW_FIFO_LENGTH_PLX
4	cmSET_ADC_K ADR_PLX	Установка временных параметров работы АЦП;	L_ADC_RATE_PLX, L_INTER_CADR_DELAY_PLX

5	cmENABLE_DA C_STREAM_PL X	Разрешение/запрещение выдачи данных из буфера ЦАП.	L_DAC_ENABLE_STREAM_PLX
6	cmDAC_FIFO_C ONFIG_PLX	Конфигурирование параметров буфера ЦАП;	L_DAC_FIFO_BASE_ADDRESS_PL X, L_DAC_FIFO_LENGTH_PLX, L_DAC_NEW_FIFO_LENGTH_PLX
7	cmSET_DAC_R ATE_PLX	Установка частоты вывода данных на ЦАП;	L_DAC_RATE_PLX
8	cmADC_SAMPL E_PLX	Однократный ввод с АЦП;	L_ADC_SAMPLE_PLX, L_ADC_CHANNEL_PLX
9	cmTTL_IN_PLX	Чтение данных с цифровых линий;	L_TTL_IN_PLX
10	cmTTL_OUT_PL	Вывод данных на цифровые линии;	L_TTL_OUT_PLX
11	cmSYNCHRO_C ONFIG_PLX	Управление синхронизацией;	L_SYNCHRO_TYPE_PLX, L_SYNCHRO_AD_CHANNEL_PLX, L_SYNCHRO_AD_POROG_PLX, L_SYNCHRO_AD_MODE_PLX, L_SYNCHRO_AD_SENSITIVITY_PL X
12	cmENABLE_IR Q_PLX	Разрешение/запрещение работы с прерываниями;	L_ENABLE_IRQ_PLX, L_ENABLE_IRQ_VALUE_PLX, L_IRQ_STEP_PLX
13	cmIRQ_TEST_P LX	Тестовая команда генерирует прерывания 10 раз в сек;	L_ENABLE_IRQ_PLX
14	cmSET_DSP_TY PE_PLX	Передает в драйвер тип установленного на плате DSP и соответствующим образом модифицирует код драйвера;	L_DSP_TYPE_PLX

Список внутренних переменных биос L-761/L-780/L-783 (8 - признак того, что это DM)

Адрес	Обозначение	Описание
0x8A00	L_CONTROL_TABL E_PLX	Управляющая таблица содержащая логические номера каналов (до 96). В соответствии с ней DSP производит последовательный циклический сбор данных с АЦП. Размер этой таблицы задается переменной L_CONTROL_TABLE_LENGTH_PLX. По умолчанию { 0, 1, 2, 3, 4, 5, 6, 7 }
0x8D00	L_SCALE_PLX	Массив с 4 калибровочными коэффициентами используемый при корректировке масштаба данных с АЦП. По умолчанию {7FFF, 0x7FFF, 0x7FFF} }
0x8D04	L_ZERO_PLX	Массив с 4 калибровочными коэффициентами используемый при корректировке смещения нуля данных с АЦП. По умолчанию { 0x0, 0x0, 0x0, 0x0 }
0x8D08	L_CONTROL_TABL E_LENGHT_PLX	Размер управляющей таблицы. По умолчанию 8.
0x8D40	L_READY_PLX	Флажок готовности платы к дальнейшей работе. После загрузки управляющей программы в DSP необходимо дождаться установления данного флажка в 1.
0x8D41	L_TMODE1_PLX	Тестовая переменная. После загрузки управляющей программы по этому адресу должно читаться число 0x5555.

0x8D42	L_TMODE2_PLX	Тестовая переменная. После загрузки управляющей программы по этому адресу должно читаться число 0хAAA.
0x8D48	L_DSP_TYPE_PLX	Переменная, передающая драйверу тип установленного на модуле DSP. 0 - ADSP2184; 1 - ADSP2185; 2 - ADSP2186; По умолчанию 0.
0x8D49	L_COMMAND_PLX	Переменная, при помощи которой драйверу передается номер команды.
0x8D4 C	L_TTL_OUT_PLX	Переменная, в которой хранятся значения 16-ти выходных цифровых линий.
0x8D4 D	L_TTL_IN_PLX	Переменная, в которой хранятся значения 16-ти входных цифровых линий.
0x8D50	L_FIFO_PTR_PLX	Переменная, в которой хранится текущий адрес заполнения кольцевого буфера. Данная переменная по мере ввода данных меняет свое значение от L_ADC_FIFO_BASE_ADDRESS_PLX L_ADC_FIFO_ADDRESS_PLX + L_ADC_FIFO_LENGTH_PLX.
0x8D52	L_TEST_LOAD_PLX	Тестовая переменная.
0x8D53	L_ADC_RATE_PLX	Переменная, задающая частоту работы АЦП.
0x8D54	L_INTER_KADR_DE LAY_PLX	Переменная, задающая межкадровую задержку при вводе данни с АЦП.
0x8D55	L_DAC_RATE_PLX	Переменная, задающая частоту вывода данных с ЦАП-ов.
0x8D56	L_DAC_VALUE_PL X	Величина, которую требуется установить на выходе ЦАП-а.
0x8D57	L_ENABLE_IRQ_PL X	Запрещение(0)/разрешение(1) генерации прерывания в РС при соответствующем заполнении кольцевого буфера АЦП. По умолчанию - 0.
0x8D58	L_IRQ_STEP_PLX	Переменная, задающая число отсчетов при заполнении кольцевого буфера АЦП, каждый раз при превышении которого генерируется прерывание в РС
0x8D5 A	L_IRQ_FIFO_ADDR ESS_PLX	Если произошло прерывание в PC, то начиная с этого адреса можно считать L_IRQ_STEP_PLX отсчетов из кольцевого буфе АЦП.
0x8D5B	L_ENABLE_IRQ_VA LUE_PLX	Переменная, значение которой при выполнении соответствующей команды передается в переменную L_ENABLE_IRQ_PLX.
0x8D5 C	L_ADC_SAMPLE_P LX	Данная переменная используется при однократном вводе с АЦІ храня считанное значение.
0x8D5 D	L_ADC_CHANNEL_ PLX	Данная переменная используется при однократном вводе с АЦІ задавая логический номер канала.
0x8D5E	L_DAC_SCLK_DIV_ PLX	-
0x8D60	L_CORRECTION_E NABLE_PLX	Разрешение(1)/запрещение(0) корректировки данных аналоговыканалов при помощи калибровочных коэффициентов. По умолчанию - 0.
0x8D62	L_ADC_ENABLE_P LX	Запрещение(0)/разрешение(1) работы АЦП.
0x8D63	L_ADC_FIFO_BASE _ADDRESS_PLX	Текущий базовый адрес кольцевого буфера АЦП. По умолчани - 0х2000.

0x8D64	L_ADC_FIFO_BASE _ADDRESS_INDEX_ PLX	Переменная, задающая базовый адрес кольцевого буфера АЦП. Может принимать три значения:0 - (0х0000 для ADSP-2185),1 - (0х2000 для ADSP-2185 -2186), 2 - (0х3000 для ADSP-2185 -2186; 0х2000 для ADSP-2184).
0x8D65	L_ADC_FIFO_LENG TH_PLX	Текущая длина кольцевого буфера АЦП. По умолчанию 0х800.
0x8D66	L_ADC_NEW_FIFO_ LENGTH_PLX	Переменная, задающая длину кольцевого буфера АЦП.
0x8D67	L_DAC_ENABLE_S TREAM_PLX	Запрещение(0)/разрешение(1) вывода данных из буфера ЦАП на ЦАП.
0x8D68	L_DAC_FIFO_BASE _ADDRESS_PLX	Текущий базовый адрес буфера ЦАП. Данный буфер расположен в памяти программ DSP. По умолчанию 0хС00.
0x8D69	L_DAC_FIFO_LENG TH_PLX	Текущая длина буфера ЦАП. По умолчанию 0х400.
0x8D6 A	L_DAC_NEW_FIFO_ LENGTH_PLX	Переменная, задающая длину буфера ЦАП.
0x8D70	L_SYNCHRO_TYPE _PLX	Переменная, задающая тип синхронизации.
0x8D73	L_SYNCHRO_AD_C HANNEL_PLX	При аналоговой синхронизации задает логический номер канала, по которому происходит синхронизация.
0x8D74	L_SYNCHRO_AD_P OROG_PLX	Порог аналоговой синхронизации.
0x8D75	L_SYNCHRO_AD_M ODE_PLX	Переменная, задающая режим синхронизации по переходу "снизу - вверх"(0) или "сверху - вниз"(1)
0x8D76	L_SYNCHRO_AD_S ENSITIVITY_PLX	Переменная, задающая тип синхронизации по уровню(0) или по переходу(1).

Адресное пр-во и команды биос L-1221

Адресное пространство L-1221.

Адрес	Чтение	Запись
Base+	16-битные данные передаваемые по каналу IDMA.	16-битные данные передаваемые по каналу IDMA.
Base+	Вызывает генерацию прерывания IRQ1 в сигнальном процессоре. Служит для генерации команды.	Устанавливает начальный адрес IDMA. Данные передаваемые/считываемые в/из DSP будут размещаться/считываться начиная с этого адреса.

Список команд поддерживаемых биос L-1221

Номер	Обозначение	Описание	Использует
0	cmTEST_1221	Проверка загрузки платы и ее работоспособности;	L_TEST_LOAD_1221
1	cmFLASH_WRIT E_1221	Запись байта в ППЗУ. {зарезервирована}	-
2	cmFLASH_READ _1221	Чтение байта из ППЗУ.	L_FLASH_ADDRESS_1221, L_FLASH_BYTE_1221
3	cmSET_TTL_122	Установка цифровых линий.	L_TTL_CONFIG_1221, L_TTL_OUT_1221
4	cmGET_TTL_122	Чтение цифровых линий.	L_TTL_CONFIG_1221, L_TTL_IN_1221
5	cmENABLE_IRQ _1221	Разрешение/запрещение прерываний.	L_ENABLE_IRQ_1221
6	cmRESET_AD_1 221	Переинициализация аналогового тракта.	L_CHANNEL_MASK_1221, L_RATE_SCALE_1221, L_READY_1221
7	cmSET_GAIN_12 21	Установка входного диапазона.	L_GAIN_CHANNEL_1221, L_GAIN_1221
8	cmSET_RATE_12 21	Установка частоты ввода.	L_GAIN_1221
9	cmCONFIG_FIFO _1221	Установка параметров буфера.	L_FIFO_START_ADDRESS_1221, L_FIFO_LENGTH_1221

Список внутренних переменных биос L-1221

Адрес	Обозначение	Описание
0x2000	L_BUFFER_1221	По умолчанию базовый адрес буфера в плате L-1221, размером 4096 слов. Данный адрес используется при чтении данных, поступающих с аналоговых каналов. Если были сделаны переустановки параметров буфера с помощью команды cmCONFIG_FIFO_1221, то надо пользоваться переменными L_FIFO_START_ADDRESS_1221 и L_FIFO_LENGTH.
0x3C80	L_SCALE_1221	Массив с 64 калибровочными коэффициентами масштаба аналоговых каналов.
0x3CC0	L_ZERO_1221	Массив с 64 калибровочными коэффициентами смещения нуля в режиме измерения постоянного напряжения.

0x3D00	L_ZERO_FLT_1221	Массив с 64 калибровочными коэффициентами смещения нуля в режиме фильтрации постоянной составляющей.
0x3D40	L_KADR_1221	Массив из 8 чисел с последними данными со всех восьми аналоговых каналов платы. Независимо от переменной L_CHANNEL_MASK_1221 в массив L_KADR_1221 постоянно подгружаются данные со всех аналоговых каналов. При этом по адресу L_KADR_1221 будет считываться код с первого канала АЦП, а по адресу L_KADR_1221+7 - с восьмого канала.
0x3D48	L_TMODE_1221	Тестовая переменная, после загрузки управляющей программы по этому адресу должно читаться число 5.
0x3D49	L_COMMAND_122	Переменная, при помощи которой задается номер команды.
0x3D4 A	L_FLASH_ADDRES S_1221	Адрес байта в ППЗУ. ППЗУ - энергонезависимая память на плате, в которой хранятся калибровочные коэффициенты.
0x3D4B	L_FLASH_BYTE_1 221	Байт данных записываемый/считываемый в/из ППЗУ.
0x3D4 C	L_TTL_OUT_1221	Слово, в котором хранятся значения 3 выходных цифровых линий Формат - 00000000 0XXX000Y.Y - управляет режимом отсечки.
0x3D4 D	L_TTL_IN_1221	Слово, в котором хранятся значения 3 входных цифровых линий. Формат - 00000000 0XXX0000.
0x3D4E	L_OVERFLOW_122	Слово, в котором запоминаются биты, фиксирующие переполнение на аналоговых каналах. 1 - переполнение. Младший бит соответствует 0 каналу, старший - 7. Формат - 00000000 XXXXXXXX
0x3D4F	L_ENABLE_IRQ_12 21	Слово, разрешающее(1)/запрещающее(0) генерирование прерываний от платы к компьютеру.
0x3D50	L_FIFO_PTR_1221	Переменная, в которой хранится текущий адрес заполнения буфера. Данная переменная по мере ввода данных меняет свое значение от L_FIFO_START_ADDRESS_1221 до L_FIFO_START_ADDRESS_1221 + L_FIFO_LENGTH_1221-1.
0x3D51	L_CHANNEL_MAS K_1221	Битовая маска, при помощи которой задаются активные каналы, т.е. те каналы АЦП, данные с которых надо помещать в буфер. Формат - 00000000 XXXXXXXX.
0x3D52	L_TEST_LOAD_122	Тестовая переменная. 0хАА55.
0x3D53	L_RATE_1221	Переменная устанавливающая частоту ввода данных. Целое число от 0 до 14:0-6.99 kHz,1-7.46 kHz,2-7.99 kHz,3-8.6 kHz,4-9.32 kHz,5-10.17 kHz,6-11.19 kHz,7-12.43 kHz,8-13.98 kHz,9-15.98 kHz,10-18.64 kHz,11-22.37 kHz,12-27.97 kHz,13-37.29 kHz,14-55.92 kHz.
0x3D54	L_RATE_SCALE_1 221	Масштаб частоты ввода. Уменьшает частоту ввода : 0-1,1-16,2-256,3-4096.
0x3D55	L_GAIN_CHANNE L_1221	Номер канала на котором изменяется входной диапазон.
0x3D56	L_GAIN_1221	Устанавливаемый входной диапазон : 0-6.3 B,1-3.15 B,2-1.5 B,3-0.75 B,4-0.375 B,5-0.18 B,6-0.08 B,7-0.04 B.
0x3D57	L_IRQ_STEP_1221	Шаг, с которым генерируется прерывание по мере заполнения буфера.

0x3D58	L_N_BIT_1221	Разрядность АЦП. Фактически сдвиг данных в право. 16 бит - (0) 15 бит - (-1)
0x3D59	L_FIFO_N_LOW_12 21	Младшее слово числа введенных частей буфера.
0x3D5 A	L_FIFO_N_HIGH_1 221	Старшее слово числа введенных частей буфера.
0x3D5B	L_IRQ0_N_LOW_1 221	Младшее слово счетчика внешних импульсов.
0x3D5 C	L_IRQ0_N_HIGH_1 221	Старшее слово счетчика внешних импульсов.
0x3D5 D	L_TTL_CONFIG_12 21	Конфигурация TTL линий. 1 - выход 0 — вход. Формат - $00000000000000000000000000000000000$
0x3D63	L_CORRECTION_E NABLE_1221	Переменная запрещающая(0)/разрешающая(1) коррекцию вводимых данных. По умолчанию - 0;
0x3D64	L_FIFO_START_A DDRESS_1221	Переменная, задающая начальный адрес буфера. Если она равна нулю, то адрес равен 0х0000. Если не равна нулю - адрес равен 0х2000. По умолчанию - 0х2000.
0x3D65	L_FIFO_LENGTH_1 221	Определяет длину буфера. По умолчанию 0х1000.
0x3D69	L_READY_1221	0 - do calibration 1 – ready. Переменная сигнализирующая о готовности платы.
0x3D70	L_IRQ_ADDRESS_ 1221	Переменная указывающая на каком адресе в буфере произошло прерывание.
0x3F6C	L_TEMPERATURE _1221	Температура платы.
0x3D5E	L_SYNCHRO_TYP E_1221	Переменная, задающая тип синхронизации.
0x3D5F	L_SYNCHRO_AD_ CHANNEL_1221	При аналоговой синхронизации задает номер канала, по которому происходит синхронизация.
0x3D60	L_SYNCHRO_AD_ POROG_1221	Порог аналоговой синхронизации.
0x3D61	L_SYNCHRO_AD_ MODE_1221	Переменная, задающая режим синхронизации по переходу "снизу - вверх"(0) или "сверху - вниз"(1)
0x3D62	L_SYNCHRO_AD_ SENSITIVITY_1221	Переменная, задающая тип синхронизации по уровню (0) или по переходу (1) .

Адресное пр-во и команды биос L-1450

Адресное пространство L-1450.

Адрес	Чтение	Запись
Base+ 0x0	Порт данных. Чтение 16-битного слова из порта данных. Все 16 считываемых бит являются значимыми. До тех пор, пока процессор DSP ничего не записал в порт данных, соответствующий бит готовности равен нулю. После записи 16-битного слова в порт данных сигнальным процессором автоматически устанавливается в единичное значение бит готовности RDYR, который переключится в ноль после того, как компьютер считает переданное слово.	Порт данных. Запись 16-битного слова в порт данных. Все 16 записываемых бит являются значимыми. После записи слова в порт данных автоматически устанавливается в нулевое значение бит готовности RDYW, который переключится в единицу автоматически после того, как процессор ADSP считает переданное слово.
Base+	Порт дополнительных данных. Имеют значение только два младших бита в принимаемых данных, которые используются в штатном LBIOS при работе с платой по прерываниям.	Порт EIORDY. Разрешения использования сигнала I/O CH RDY магистрали ISA.
Base+ 0x8	Порт сброса запроса прерывания. В том случае если используется прерывание IRQ 10/11/12/15, то обработчик данного прерывания в РС обязан произвести одно чтение из описываемого порта для сброса запроса прерывания. В противном случае линия прерываний окажется заблокированной.	Порт команд. При записи номера команды в данный порт автоматически генерируется прерывание IRQ2 в сигнальном процессоре и, одновременно с этим, записывает передаваемое число в порт данных. При этом обработчик прерывания драйвера LBIOS в ответ на запрос IRQ2 считывает переданный номер команды и вызывает процедуру, соответствующую переданному номеру команд.
Base+	Порт статуса. Порт битов готовности записи RDYW и чтения RDYR.	Порт управления. При помощи порта конфигурации можно: загрузить в процессор управляющую программу, отключить линию прерывания IRQ 10/11/12/15, перевести плату в режим работы по каналам Прямого Доступа к Памяти (ПДП).

Список команд поддерживаемых биос L-1450

Номер	Обозначение	Описание	Использует
0	cmTEST_L1450	Проверка загрузки платы и ее работоспособности.	L_TEST_LOAD_L1450
1	cmGET_DM_W ORD_L1450	Чтение слова из памяти данных DSP	
2	cmPUT_DM_W ORD_L1450	Запись слова в память данных DSP	_
3	cmGET_PM_W ORD_L1450	Чтение слова из памяти программ DSP	_
4	cmPUT_PM_W ORD_L1450	Запись слова в память программ DSP	

5	cmGET_DM_AR RAY_L1450	Чтение массива слов из памяти данных DSP	-
6	cmPUT_DM_AR RAY_L1450	Запись массива слов в память данных DSP	-
7	cmGET_PM_AR RAY_L1450	Чтение массива слов из памяти программ DSP	-
8	cmPUT_PM_AR RAY_L1450	Запись массива слов в память программ DSP	-
9	cmENABLE_FL ASH_WRITE_L 1450	Разрешение процедуры записи в пользовательское ППЗУ	L_FLASH_ENABLE_L1450
10	cmREAD_FLAS H_WORD_L145 0	Чтение слова из ППЗУ	L_FLASH_ADDRESS_L1450, L_FLASH_DATA_L1450
11	cmWRITE_FLA SH_WORD_L14 50	Запись слова в ППЗУ	L_FLASH_ADDRESS_L1450, L_FLASH_DATA_L1450
12	cmSTART_L145	Разрешение работы АЦП и/или ЦАП	L_ADC_ENABLE_L1450, L_ENA_ADC_IRQ_L1450, L_ADC_DATA_STEP_L1450, L_DAC_ENABLE_L1450, L_ENA_DAC_IRQ_L1450, L_DAC_DATA_STEP_L1450
13	cmSET_ADC_P ARS_L1450	Установка параметров работы АЦП	L_CONTROL_TABLE_L1450, L_CONTROL_TABLE_LENGHT_L14 50, L_ADC_RATE_L1450, L_INTER_KADR_SCALE_L1450, L_INTER_KADR_PERIOD_L1450
14	cmADC_FIFO_C ONFIG_L1450	Конфигурирование параметров FIFO буфера АЦП.	L_ADC_FIFO_BASE_ADDRESS_L14 50, L_ADC_FIFO_BASE_ADDRESS_IN DEX_ L1450, L_ADC_FIFO_LENGTH_L1450, L_ADC_NEW_FIFO_LENGTH_L145 0
15	cmADC_SAMPL E_L1450	Однократный ввод отсчета АЦП с заданного канала	L_ADC_SAMPLE_L1450, L_ADC_CHANNEL_L1450
16	cmSYNCHRO_C ONFIG_L1450	Управление синхронизацией начала ввода данных с АЦП.	L_SYNCHRO_TYPE_L1450, L_SYNCHRO_AD_CHANNEL_L145 0, L_SYNCHRO_AD_POROG_L1450, L_SYNCHRO_AD_MODE_L1450, L_SYNCHRO_AD_SENSITIVITY_L1 450
17	cmDAC_FIFO_C ONFIG_L1450	Конфигурирование пара-метров FIFO буфера ЦАП.	L_DAC_FIFO_BASE_ADDRESS_L14 50, L_DAC_FIFO_LENGTH_L1450, L_DAC_NEW_FIFO_LENGTH_L145 0
18	cmSET_DAC_R ATE_L1450	Установка частоты вывода данных из FIFO буфера ЦАП	L_DAC_RATE_L1450
19	cmENABLE_TT L_OUT_L1450	Разрешение выходных цифровых линий	L_ENABLE_TTL_OUT_L1450

20	cmTTL_IN_L145	Считывание состояния 16ти внешних цифровых линий.	L_TTL_IN_L1450
21	cmTTL_OUT_L1 450	Управление 16тью внешними цифровыми линиями.	L_TTL_OUT_L1450
22	cmIRQ_TEST_L 1450	Тестовая функция для генерирования прерываний в РС с частотой примерно 300 Гц.	L_ENABLE_IRQ_L1450
23	cmSET_PAGE_ MEMORY_L145 0	Установка номера страницы внешней памяти	L_PAGE_MEMORY_L1450
24	cmSET_DSP_TY PE_L1450	Передает в драйвер LBIOS тип установленного на плате DSP и соответствующим образом модифицирует код драйвера.	L_DSP_TYPE_L1450

Список внутренних переменных биос L-1450 (8 - признак того, что это DM)

Адрес	Обозначение	Описание
0x8A00	L_CONTROL_TAB LE_L1450	Управляющая таблица, содержащая последовательность логических номеров каналов (максимум 128 элементов). В соответствии с ней DSP производит последовательный циклический сбор данных с АЦП. Размер этой таблицы задается переменной L_CONTROL_TABLE_LENGHT_ L1450 (см. ниже). По умолчанию - { 0, 1, 2, 3, 4, 5, 6, 7}
0x8D00	L_SCALE_L1450	Массив с 4 калибровочными коэффициентами, используемый при корректировки масштаба данных с АЦП. По умолчанию - { 0x7FFF, 0x7FFF, 0x7FFF}
0x8D04	L_ZERO_L1450	Массив с 4 калибровочными коэффициентами, используемый при корректировки смещения нуля данных с АЦП. По умолчанию - { 0x0, 0x0, 0x0, 0x0}
0x8D08	L_CONTROL_TAB LE_LENGHT_PLX	Размер управляющей таблицы (максимум 128 логических каналов). По умолчанию - 8.
0x8D0 A	L_IS_EXT_MEM_E XIST_L1450	Флажок наличия внешней памяти данных
0x8D0B	L_PAGE_MEMOR Y_L1450	Текущий номер используемой страницы внешней памяти (только для плат Rev.'A')
0x8D41	L_TMODE1_L1450	Тестовая переменная. После загрузки драйвера (LBIOS) по этому адресу должно читаться число 0x5555.
0x8D42	L_TMODE2_L1450	Тестовая переменная. После загрузки драйвера (LBIOS) по этому адресу должно читаться число 0хAAAA.
0x8D43	L_ENA- DAC_IRQ_L1450	Данная переменная разрешает (0x1) либо запрещает (0x0) генерирование прерываний в РС по мере необходимости новых данных для FIFO буфера ЦАП. По умолчанию - 0x0.
0x8D48	L_DSP_TYPE_L145	Переменная, передающая драйверу (LBIOS) тип установленного на модуле DSP. Если она равна 0, то на плате установлен ADSP-2184 (4 КСлов памяти программ и 4 КСлов памяти данных). Если она равна 1, то - ADSP-2185 (16 кСлов памяти программ и 16 КСлов памяти данных). Если она равна 2, то - ADSP-2186 (8 КСлов памяти программ и 8 КСлов памяти данных). По умолчанию L_DSP_TYPE_L1450=0.

0x8D4B	L_DAC_DATA_ST EP_L1450	Переменная, задающая шаг (число отсчетов) при генерировании прерываний в РС по мере необходимости в получении новых данных для FIFO буфера ЦАП. При помощи этой перемен-ной можно сделать так, что прерывания в РС будут генерироваться, например, после каждых 20 отсчетов выведенных на ЦАП. По умолчанию - 0х200.
0x8D4 C	L_TTL_OUT_L1450	Слово (16 бит), в котором по-битово хранятся значения 16ти выходных цифровых линий для их выставления по команде C_TTL_OUT_L1450.
0x8D4 D	L_TTL_IN_L1450	Слово (16 бит), в котором после выполнения команды С_TTL_IN_L1450 по-битово хранятся значения 16ти входных цифровых линий.
0x8D4E	L_ENABLE_TTL_O UT_L1450	Данная переменная разрешает (0x1) либо запрещает (0x0) использование выходных цифровых линий (перевод их в третье состояние)
0x8D53	L_ADC_RATE_L14 50	Переменная, задающая частоту работы АЦП.
0x8D54	L_INTER_KADR_S CALE_L1450	Переменная, совместно с L_INTER_KADR_ PERIOD_L1450 задающая межкадровую задержку при вводе данных с АЦП.
0x8D55	L_DAC_RATE_L14 50	Переменная, задающая частоту вывода данных с ЦАП-ов.
0x8D57	L_ENA_ADC_IRQ_ L1450	Данная переменная разрешает (0x1) либо запрещает (0x0) генерирование прерываний в РС по мере заполнения FIFO буфера АЦП. По умолчанию - 0x0.
0x8D58	L_ADC_DATA_ST EP_L1450	Переменная, задающая шаг (число отсчетов) при генерировании прерываний в РС по мере заполнения FIFO буфера АЦП. При помощи этой переменной можно сделать так, что прерывания в РС будут генерироваться, например, через каждые 20 отсчетов. По умолчанию - 0х400.
0x8D5 A	L_INTER_KADR_P ERIOD_L1450	Переменная, совместно с L_INTER_KADR_SCALE_L1450 задающая межкадровую задержку при вводе данных с АЦП.
0x8D5 C	L_ADC_SAMPLE_ L1450	Данная переменная используется при однократном вводе с АЦП, храня считанное значение.
0x8D5 D	L_ADC_CHANNEL _L1450	Данная переменная используется при однократном вводе с АЦП, задавая логический номер канала.
0x8D60	L_CORRECTION_E NABLE_L1450	Переменная запрещающая (0)/ разрешающая (1) корректировку данных аналоговых каналов при помощи калибровочных коэффициентов. По умолчанию L_CORRECTION_ENABLE=0x0.
0x8D62	L_ADC_ENABLE_ L1450	Переменная запрещающая(0)/разрешающая (1) работу АЦП.
0x8D63	L_ADC_FIFO_BAS E_ADDRESS_L145 0	Текущий базовый адрес FIFO буфера АЦП. По умолчанию L_ADC_FIFO_BASE_ADDRESS_ L1450 = 0x2000.
0x8D64	L_ADC_FIFO_BAS E_ADDRESS_INDE X_L1450	Переменная, задающая требуемый базовый адрес FIFO буфера АЦП. Может принимать три значения:0 - базовый адрес начинается с адреса 0х0 только для ADSP-2185,1 - базовый адрес начинается с адреса 0х2000 только для ADSP-2185 и ADSP-2186,2 - базовый адрес начинается с адреса 0х3000 для ADSP-2185 и ADSP-2186 и с адреса 0х2000 для ADSP-2184.

0x8D65	L_ADC_FIFO_LEN GTH_L1450	Текущая длина FIFO буфера АЦП. По умолчанию L_ADC_FIFO_LENGTH_L1450 = 0x800.
0x8D66	L_ADC_NEW_FIFO _LENGTH_L1450	Переменная, задающая требуемую длину FIFO буфера АЦП.
0x8D67	L_DAC_ENABLE_ L1450	Переменная запрещающая (0)/разрешающая (1) вывод данных из FIFO буфера ЦАП на сам ЦАП.
0x8D68	L_DAC_FIFO_BAS E_ADDRESS_L145 0	Текущий базовый адрес FIFO буфера ЦАП. Данный буфер расположен в памяти программ DSP. По умолчанию L_DAC_FIFO_BASE_ ADDRESS_L1450 = 0xC00.
0x8D69	L_DAC_FIFO_LEN GTH_L1450	Текущая длина FIFO буфера ЦАП. По умолчанию $L_DAC_FIFO_LENGTH_L1450 = 0x400$.
0x8D6 A	L_DAC_NEW_FIFO _LENGTH_L1450	Переменная, задающая требуемую длину FIFO буфера ЦАП.
0x8D70	L_SYNCHRO_TYP E_L1450	Переменная, задающая тип синхронизации.
0x8D73	L_SYNCHRO_AD_ CHANNEL_L1450	При аналоговой синхронизации задает логический номер канала, по которому происходит синхронизация.
0x8D74	L_SYNCHRO_AD_ POROG_L1450	Порог аналоговой синхронизации.
0x8D75	L_SYNCHRO_AD_ MODE_L1450	Переменная, задающая режим синхронизации по переходу "снизувверх" (0) или "сверху - вниз" (1)
0x8D76	L_SYNCHRO_AD_ SENSITIVITY_L14 50	Переменная, задающая тип синхронизации по уровню(0) или по переходу(1).

Замечания для платы L791

Пояснения по работе с платой L791.

Это плата без сигнального процессора на борту - просто цифровой автомат. Передачу данных осуществляет по BusMaster каналу PCI.

Временные параметры сбора задаются таймерами.

Библиотека для работы с платой имеет интерфейс аналогичный интерфейсу других плат. Но есть некоторые особенности и ограничения:

- циклические буфера в компьютере всегда имеют одно и тоже значение 128К отсчетов (32 разрядных) для АЦП и 128К отсчетов для ЦАП;
- переменная sync служит не только для чтения счетчиков ПДП каналов, но и для прямого доступа к 32-х битным регистрам платы;
- при этом sync от потока ЦАП и от потока АЦП это одно и тоже;
- прерывания от платы доходят к пользователю через события. При этом они разрешаются битами в параметре IrqEna в структуре описывающей сбор данных АЦП (младшие 16 бит) и ЦАП (старшие 16 бит).
- с платой можно работать и напрямую по регистрам управляя сбором данных, но только после команды StartLDevice надо дождаться появления бита ADC_En в регистре управления, после чего запретить сбор. Дальше можно делать что хочется. В плату уже прописаны адреса памяти для BusMaster каналов и установлен обработчик прерывания. Все что хочется можно делать до команды StopLDevice.
- про регистры платы читайте печатную книжку;
- про логические номера каналов читайте печатную книжку;
- размер половины фифо буфера АЦП 1,2,4,8,16,32,64,128 отсчетов;
- при работе следует иметь ввиду что настройки параметров сбора сохраняются внутри драйвера и при старт/стоп режиме если запрограммировали ЦАП и АЦП то они и будут работать, а если ЦАП стал не нужен, то надо сделать новую установку параметров где ЦАП отключить.

Оглавление

Предупреждение	3
Описание технологии	4
Установка и настройка РСІ плат	6
Установка и настройка ISA плат	8
Использование peecтpa Windows	9
Создание своего дистрибутива	10
Низкоуровневое API драйвера	11
Введение	11
Описание API DLL библиотеки	12
Введение	12
<u>CreateInstance</u>	14
Подключение и работа с библиотекой (на СРР)	
Подключение и работа с библиотекой (на Pascal/Delphi)	17
Основные функции	
OpenLDevice	19
CloseLDevice	20
SetParametersStream	21
RequestBufferStream	22
InitStartLDevice	23
StartLDevice	24
StopLDevice	25
LoadBios	26
GetWord_DM	27
PutWord_DM	28
GetWord_PM	29
PutWord_PM	30
GetArray_DM	31
PutArray_DM	32
GetArray_PM	33
PutArray_PM	34
<u>SendCommand</u>	35
PlataTest	36
<u>IoAsync</u>	37
EnableCorrection.	40
FillDAQparameters	41
ReadPlataDescr	42
WritePlataDescr	43
ReadFlashWord	44
WriteFlashWord	45
EnableFlashWrite	46
GetParameter	47
SetParameter	48
<u>SetLDeviceEvent</u>	49
Вспомогательные функции	50
GetSlotParam	50
Функции для работы с портами ввода/вывода	
<u>inbyte</u>	
inword	
<u>indword</u>	53
outbyte	54
outword	55
<u>outdword</u>	56

inmbyte	57
imword	58
inmdword	59
outmbyte	60
outmword	61
outmdword	62
Типы данных	63
ADC_PAR	63
ADC_PAR_0	64
ADC_PAR_1	66
DAC_PAR	68
DAC_PAR_0	69
DAC_PAR_1	70
ASYNC_PAR	71
PLATA_DESCR	72
PLATA_DESCR_1450	73
PLATA_DESCR_L791	74
PLATA_DESCR_U	78
WORD_IMAGE	79
SLOT_PAR	80
 Коды ошибок	82
 Типы плат	83
	84
Справочные данные по платам	85
Адресное пр-во и команды биос L-1250/L-264/L-305	85
Адресное пр-во и команды биос L-7XX	87
Адресное пр-во и команды биос L-1221	91
Адресное пр-во и команды биос L-1450	94
Замечания для платы L791	99