ECONOMETRICS 2

M.BEN SALEM and C.DOZ

Exercises: session 3

AR processes

2022-2023

Exercise # 1

Consider the AR process (x_t) defined by: $x_t = 0.2 + 0.8x_{t-1} + u_t$ where (u_t) is a WN with variance σ_u^2 .

- 1. Is (u_t) the innovation process of (x_t) and why?
- 2. Compute Ex_t .
- 3. Compute the variance of x_t and its autocovariance of order 1.
- 4. Compute the autocovariances of order h, and give the autocorrelation function of (x_t) .
- 5. Give the $MA(\infty)$ representation of (x_t) .

Exercise # 2

Suppose that (v_t) is a WN with variance σ_v^2 and consider the AR(2) process (y_t) defined by:

$$y_t = 0.5 + \frac{5}{6}y_{t-1} - \frac{1}{6}y_{t-2} + v_t$$

also denoted as

$$\phi(L)y_t = 0.5 + v_t$$

with $\phi(L) = 1 - \frac{5}{6}L + \frac{1}{6}L^2$.

- 1. Is (v_t) the innovation process of (y_t) and why?
- 2. Compute Ey_t .
- 3. Compute the variance of y_t and its autocovariances of order 1 and 2.
- 4. i) Give the general equation which relates $\gamma_y(h)$ to the $\gamma_y(h-k)$'s, when h>0, k>0 and restate how this equation is obtained.
 - ii) Show that, if $\gamma_y(h)$ is defined as $\gamma_y(h) = \alpha \frac{1}{2^h} + \beta \frac{1}{3^h}$, it is a solution of this equation: we'll admit that this is indeed the general solution of such an equation. What can you say of $\frac{1}{2}$ and $\frac{1}{3}$ with respect to the roots of $\phi(z)$?
 - iii) Compute α and β (*Hint*: use question 3).
 - iv) What can you say about $\gamma_u(h)$ when $h \to \infty$?

Remark: all the results which have been obtained in this question can be extended to the AR(p) case.

5. How would you compute the MA(∞) representation of (y_t) ? Give the 3 first terms of this representation.

Exercise # 3

Consider the following AR process (y_t) defined by:

$$(1 - \phi L^4)y_t = u_t$$

where $0 < \phi < 1$ and u_t is a WN with variance σ_u^2 .

- 1. Is (u_t) the innovation process of (y_t) and why?
- 2. Compute the variance of y_t .
- 3. Compute the autocovariances of order 1, 4, 5, 8.
- 4. Compute the partial autocorrelations of order 1, 4, 5, 8.
- 5. Compute the autocorrelations of order 1, 4, 5, 8.
- 6. Give the general formula for autocorrelation of order 4m, where m is some integer.