2021 年度 解析学特論 (Lebesgue 積分編) (担当:松澤 寛) 自己チェックシート No.4

学科 (コース)・プログラム・領域 学籍番号 氏名

- 1. μ が可測空間 (X, \mathcal{F}) 上の測度であることの定義を述べよ。また測度の完全加法性とは何かについても触れよ。
- 2. μ が可測空間 (X, \mathcal{F}) 上の測度であるとする。このとき次を示せ。
 - (1) $A, B \in \mathcal{F}$ に対して

$$\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$$

(Hint: $A, B, A \cup B$ を 3 つの互いに共通部分のない F の集合の和集合で表す。)

- (2) $A, B \in \mathcal{F}$ に対して $A \subset B$ ならば $\mu(A) \leq \mu(B)$ が成り立つ.
- 3. X の部分集合の列 $\{A_n\}$ が単調増加である、単調減少であることの定義を述べ、それぞれの場合について $\lim_{n\to\infty}A_n$ を述べよ.
- 4. (X, \mathcal{F}, μ) を測度空間, $\{A_n\} \subset \mathcal{F}$ が単調増加である場合と単調減少である場合, $\lim_{n \to \infty} \mu(A_n)$ についての命題を条件も含めて述べよ.
- 5. 有界な実数列 $\{a_n\}$ に対して $\overline{\lim_{n\to\infty}} a_n$ および $\underline{\lim_{n\to\infty}} a_n$ の定義を述べよ.
- 6. X の部分集合の列 $\{A_n\}$ に対して上極限集合 $\overline{\lim_{n\to\infty}}\,A_n$, 下極限集合 $\underline{\lim_{n\to\infty}}\,A_n$ の定義を述べよ.
- 7. 集合列に対する Fatou の補題を述べよ.
- 8. (X, \mathcal{F}, μ) が測度空間であるとする.このとき Borel-Cantelli の補題:

$$\sum_{n=1}^{\infty} \mu(A_n) < \infty \quad \Rightarrow \quad \mu\left(\overline{\lim}_{n \to \infty} A_n\right) = 0$$

を証明せよ.

9. $\{a_n\}$ を有界な実数列とする. このとき次を証明せよ.

$$\{a_n\}$$
 が収束 \iff $\overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n$