Global Primary School Completion

Brian & Hannah

"Education is the most powerful weapon which you can use to change the world."

Goal: To Predict the primary school completion rate of each country

Data Sources

World Bank

- A "financial institution that provides loans and grants to the governments of poorer countries for the purpose of pursuing capital projects"
- Public data on all sorts of features of countries

UNICEF

- A division of the UN to "save children's lives, to defend their rights, and to help them fulfil their potential"
- Used their "State of the World's Children" report

Independent Variables Investigated

- Child employment rates
- Proportion of GDP spent on education
- Population density
- Urban population
- Proportion of agricultural land
- Adolescent birth rate
- Improved sanitation
- Average immunization
- Average support in learning from fathers
- Region
- Income relative to other countries

Our First Model

	coef	P> t	R-squared:	0.693
Intercept	69.6422	0.000	Adj. R-squared:	0.666
region[T.Europe & Central Asia]	-9.4332	0.004		
region[T.Latin America & Caribbean]	-3.5407	0.330		
region[T.Middle East & North Africa]	-13.3548	0.000		
region[T.North America]	-13.8065	0.212		
region[T.South Asia]	-0.9034	0.847		
region[T.Sub-Saharan Africa]	-12.2644	0.001		
avg_pop_density	-0.0010	0.528		
avg_urban_pop	0.0462	0.420		
agricultural_land	0.0155	0.719		
adolescent_birth_rate	-0.1068	0.003		
improved_sanitation_total	0.2412	0.000		
immunization_avg	0.1127	0.108		
relative_country_income	1.8889	0.240		

Wide variety of p values

• r² is pretty good

A Step in the Right Direction

0.632 R-squared: Adj. R-squared: 0.618 coef P>|t| 66.0661 0.000 Intercept -0.0239 0.662 avg urban pop -0.0285 0.506 agricultural land -0.1151 0.000 adolescent birth rate 0.2877 0.000 improved sanitation total 0.0883 0.198 immunization_avg 1.9333 0.233 relative country income

- Lower r², but this is not the end all, be all
- P values improved some
- No interaction terms
- Relative country income was not a good predictor - what's going on here?

Motivation for Final Model Adjustments

Our hypothesis with 95% confidence is:

H₀: Income does not affect the Average Urban Population and Primary School Completion relationship.

H_a: Income does affect the Average Urban Population and Primary School Completion relationship.

Low income is the only income group with a significant p-value, so we can reject the null hypothesis for low income.

All the other income groups have insignificant p-values, so we fail to reject the null hypothesis for them.

An important mathematical discovery!

That took more than an hour of seven whole people's time to come to a conclusion on

Question: If you standardize your variables, and *then* compute your interaction terms, will you get the same p values in your new LR model as computing interaction terms and *then* standardizing them?

Answer: No!!!!!!!!!!!

 By standardizing, then computing, you are in essence standardizing twice:

$$f(v_1) \cdot f(v_2) = f^2(v_1 \cdot v_2)$$

Instead of $f(v_1 \cdot v_2)$

(let f be the scaling function)

- MOTS: Always compute interaction terms and THEN scale.
 - Math makes sense

Another important mathematical discovery!

This one took less time to understand (yay)

Question: Why is multicollinearity not a problem when including interaction terms? Don't variable X and variable Y perfectly predict the interaction XY?

Answer:

- With dummy variable columns C_1 , C_2 , and C_3 , no new information is given by C_3 , so the model struggles to assign a meaningful non-zero coefficient to C_3 .
 - No new information because:

$$\blacksquare \quad \text{Else, C}_3 = 0$$

 With X and Y, additional information is given by XY that you couldn't get from just adding X and Y! So, a meaningful coefficient can be found for XY.

Another important mathematical discovery!

This one took less time to understand (yay)

Final Model

0.688 R-squared: 0.672 Adj. R-squared: P>|t| coef 0.000 Intercept 92.0492 -1.5156 0.168 avg_urban_pop 8.3424 0.050 agricultural_land -4.9168 0.000 adolescent birth rate 8.0647 0.000 improved_sanitation_total 4.9752 0.003 immunization_avg low income -27.4197 0.000 6.2117 0.004 li aup

al ia

-9.7128

0.032

- Better r² and adjusted
 r²
- Very low p values, for the most part
- Residual scatter plot improved

What can we conclude?

Biggest increasers of primary school completion:

- Having a lot of agricultural land
- Having improved sanitation
- Having higher rates of immunization

Biggest decreasers of primary school completion:

- Being a low income country
- The interaction of being a low income country with a high urban population
- Having a high adolescent birth rate