# Archisman Panigrahi

Graduate Student · Physics

Massachusetts Institute of Technology, MA, USA

□ +1 (857) 706-9484 | **Second Second Second** 

## **Education**

**Ph.D. in Physics**Cambridge, MA, USA

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2022 - Ongoing

• C.G.P.A - 5.0/5.0

Master of Science in Physics

Bangalore, India

Indian Institute of Science Aug. 2021 - Jun. 2022

• C.G.P.A - 9.8/10.0

Bachelor of Science (Research) in Physics

Bangalore, India

Indian Institute of Science Aug. 2017 - Jun. 2021

• C.G.P.A - 9.8/10.0

## **Achievements**

| 2022    | 1st Rank in India in CSIR-NET (JRF) in Physics (score 186/200)                                 | India              |
|---------|------------------------------------------------------------------------------------------------|--------------------|
| 2022    | 1st Rank in India in Graduate Aptitute Test in Engineering (G.A.T.E.) in Physics               | India              |
| 2017-22 | C.G.P.A 9.8/10 in B.S. (Research) and M.S., highest GPA in batch                               | IISc, Bangalore    |
| 2017    | 1st rank (99.2 %) in Board in Higher Secondary Examination, among about 0.7 million candidates | West Bengal, India |

2017 10th rank in National Entrance Screening Test (NEST)

India

2017 Qualified for JEE Mains (All India Rank - 381) - an all India Engineering entrance

Qualified for JEE Advanced examination (All India Rank- 543), Entrance examination of Indian Institute(s)

of Technology (IIT)

2017 Qualified for Indian Statistical Institute, Kolkata and Chennai Mathematical Institute

2015 Qualified for K.V.P.Y. (All India Rank - 128)

2015 **2nd rank (97.57 %) in Board** in Secondary Examination, among about 1 million candidates West Bengal, India

## Research Articles

- A. Panigrahi, S. Mukerjee; Energy magnetization and transport in systems with a non-zero Berry curvature in a magnetic field SciPost Phys. Core 6, 052 (2023)
- A. Panigrahi, V. Juričić, B. Roy; *Projected Topological Branes* Commun Phys **5**, 230 (2022)
- A. Panigrahi, R. Moessner, B. Roy; Non-Hermitian dislocation modes: Stability and melting across exceptional points PRB 106, L041302 (2022)

## Research Interests\_

#### **Broadly interested in theoretical Condensed Matter Physics**

- Electronic transport in two-dimensional systems
- Topological phases of matter and Quantum Phase transitions
- Thermo-electric transport and the effects of Berry curvature
- Thermalization of quantum systems and Many body localization

## Skills\_

**Mathematical skills** Differential Equations, Integral Calculus, Linear Algebra

Comfortable with performing long algebraic calculations in pen and paper

**Programming skills** Julia, MATLAB/Octave, Mathematica, Python

Advanced Physics Courses Condensed Matter Physics II, Advanced Statistical Physics, Quantum Field Theory I, General Relativity

**Languages** Fluent in English, Bengali, Hindi



## **Transport Signatures of Electronic Ordering in Graphene Flat Bands**

CLICK HERE TO DOWNLOAD THE PRESENTATION

Indian Institute of Science, Bangalore, India January 2024

#### Topological phases in quasicrystals: A general principle of construction

CLICK HERE TO DOWNLOAD THE PRESENTATION

APS March Meeting (virtually)

March 2022

#### Dislocation as a bulk probe of non-Hermitian topology

CLICK HERE TO DOWNLOAD THE PRESENTATION

MPIPKS, Dresden, Germany (remotely)

July 6, 2021

# **Research Experience**

#### Many Body Localization (MBL) and thermalization of interacting quantum spin chain

IISc, Bangalore, India (Master's thesis)

September 2021 - April 2022

WITH PROF. SUBROTO MUKERJEE

- Studied how the Out-of-Time Ordered Correlator (OTOC) behaves for MBL and thermal systems
- Studied behavior of OTOC in MBL systems with random and incommensurate potential, with and without interaction

#### Topological phases in projected lower dimensional branes

MPIPKS, Dresden, Germany

June 2021 - September 2021

(remotely)

JOINTLY WITH PROF. BITAN ROY AND PROF. VLADIMIR JURIČIĆ

- · Numerically studied how topological properties of parent systems emerge in projected crystals and Fibonacci quasicrystals
- · Verified the existence of dislocation modes, Weyl points, and Landau levels in projected crystals and quasicrystals
- Proposed how this method can be utilized to study higher dimensional (>3D) topological phases within 3D systems

#### Berry curvature effects on thermoelectric transport

IISc, Bangalore, India (Bachelor's thesis)

WITH PROF. SUBROTO MUKERJEE

October 2020 - June 2021

- · Studied how Berry curvature can alter thermoelectric transport, leading to anomalous Hall and anomalous Nernst effects
- Studied the Boltzmann transport formalism
- · Studied how the Onsager relation can be demonstrated from microscopic theories for a system with a non-trivial Berry curvature
- Found a condition on the energy magnetization such that the Einstein relation holds for the transport energy current in these systems
- Showcased a physical interpretation of this condition, and obtained a closed expression for energy magnetization
- Analytically solved the Boltzmann transport equation (including Berry curvature effects) for two-dimensional systems

#### **Non-Hermitian Topological Insulators and Dislocations**

MPIPKS, Dresden, Germany

May 2020 - September 2020

(remotely)

• Studied and numerically implemented SSH Model, Chern Insulators, Quantum Spin Hall Insulators

- Studied the effects of dislocation in Hermitian and Non-Hermitian Chern Insulators
- Obtained phase diagrams for regimes where topological states get pinned at dislocation centers
- Proposed how dislocations can be used to probe topological phases in non-Hermitian systems, where the non-Hermitian skin effect masks the traditional bulk-boundary correspondence

#### **Nano Heat Engines beyond the Carnot Efficiency**

IISc, Bangalore, India

WITH PROF. H. R. KRISHNAMURTHY

WITH PROF. BITAN ROY

May 2019 - July 2019

- Studied how harmonic oscillators and two state systems can be used as efficient heat engines
- Read articles claiming Carnot efficiency can be surpassed with "squeezed" thermal baths
- Figured out the sense in which Carnot efficiency is surpassed without violating 2<sup>nd</sup> law of thermodynamics
- Studied about Brownian Motion and Langevin equation
- Solved the Langevin equation for a special kind of stochastic force, for which a classical harmonic oscillator behaves like a squeezed state
- Created a computer simulation to verify the nature of this solution

## References

- Prof. Leonid Levitov, Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
   Email Address levitov@mit.edu
- Prof. Subroto Mukerjee, Dept. of Physics, Indian Institute of Science, Bangalore, India.
   Email Address smukerjee@iisc.ac.in

