CLAIMS:

2

3

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1. A method of forming a conductive line comprising the following steps:

forming a polysilicon layer;

forming a silicide layer against the polysilicon layer;

providing a conductivity-enhancing impurity within the silicide layer;

providing the polysilicon layer and the silicide layer into a conductive line shape.

- 2. The method of claim wherein the silicide comprises a metal selected from the group consisting of tungsten, titanium, molybdenum and cobalt.
- 3. The method of claim 1 wherein the steps of forming the silicide layer and providing the conductivity-enhancing dopant therein together comprise:

depositing a metal together with the conductivity-enhancing impurity on the polysilicon layer; and

reacting the metal with the polysilicon to form the silicide layer having the conductivity-enhancing impurity therein.

20

21

22

23

I

2

3

4. The method of claim 1 wherein,

the step of forming the silicide layer comprises chemical vapor depositing silicide on the polysilicon layer; and

the step of providing the conductivity enhancing impurity comprises chemical vapor depositing the conductivity-enhancing impurity in situ with the chemical vapor depositing of the silicide.

5. The method of claim 1 wherein,

the step of forming the silicide layer comprises chemical vapor depositing a tungsten-comprising silicide on the polysilicon;

the step of providing the conductivity-enhancing impurity comprises chemical vapor depositing the conductivity-enhancing impurity in situ with the chemical vapor depositing of the tungsten-comprising silicide; and

the conductivity-enhancing impurity comprises a group III or a group V element.

6. The method of claim 5 wherein the step of chemical vapor depositing the conductivity-enhancing impurity comprises utilizing a precursor compound selected from the group consisting of PH₃, AsH₃, and diborane.

i

7. The method of claim 1 wherein the conductivity-enhancing
impurity is provided to a concentration of at least
about 1 x 10 ¹⁸ ions/cm ³ within the silicide layer.
8. The method of claim 1 wherein the step of forming the
silicide layer and the step of doping the silicide layer together comprise:
providing a target comprising a metal, silicon and the conductivity-
enhancing impurity; and
sputtering of the target to form the silicide layer and the
conductivity-enhancing impurity within the silicide layer, the silicide layer
comprising the metal.
9. The method of claim 1 wherein the step of providing the
conductivity-enhancing impurity comprises:
ion implanting the conductivity-enhancing impurity into the silicide
layer after forming the silicide layer.
10. The method of claim 1 wherein the polysilicon layer is doped
with the conductivity-enhancing impurity, and wherein the step of
providing the conductivity-enhancing impurity comprises:
out-diffusing the conductivity-enhancing impurity from the doped
polysilicon layer into the silicide layer.

	2
	3
	4
	5
	б
	7
	8
	9
	10
	11
	12
	13
	14
:	15
	16
	17
	18
	19
	20
	21
	22
	23

11. The method of claim 1 wherein the step of providing the conductivity-enhancing impurity comprises:

gas phase chemical doping of the silicide layer.

- 12. The method of claim 1 wherein the conductive line is a wordline.
- 13. A method of lowering the resistivity of a metal-silicide layer comprising doping the metal-silicide layer with a Group III dopant or a Group V dopant.
- 14. The method of claim 13 wherein the dopant is provided to a concentration within the metal-silicide layer of at least about 1×10^{18} ions/cm³.

б

15. A method of forming a conductive line comprising the following steps:

forming a polysilicon layer;

forming a silicide layer against the layer of polysilicon;

providing a conductivity-enhancing impurity within the silicide layer;

after providing the conductivity-enhancing impurity within the silicide layer, subjecting the silicide layer to a processing step of over 850°C for at least 10 seconds.

- 16. The method of claim 15 wherein the forming the silicide layer comprises depositing a metal layer over the polysilicon and reacting the metal layer with the polysilicon, and wherein the conductivity-enhancing impurity is provided within the metal layer prior to the reacting the metal layer with the polysilicon.
- 17. The method of claim 15 wherein the forming the silicide layer comprises depositing a metal layer over the polysilicon and reacting the metal layer with the polysilicon, and wherein the conductivity-enhancing impurity is provided within the metal layer after the reacting the metal layer with the polysilicon.

1	18. The method of claim 15 wherein the conductivity-enhancing
2	impurity is implanted into the silicide layer.
3	
4	19. The method of claim 15 wherein the conductivity-enhancing
5	impurity is provided to a concentration within the silicide layer of at
6	least about 1 x 10 ¹⁸ ions/cm ³ .
7	
8	20. A method of forming a conductive line comprising the
9	following steps:
10	forming a polysilicon layer;
11	forming a silicide layer against the layer of polysilicon;
12	providing a conductivity-enhancing impurity within the silicide layer;
13	and
14	subjecting the silicide layer to a processing step of over 850°C for
15	at least 10 seconds while exposing the silicide layer to an oxygen-
16	comprising atmosphere.
17	\ \
18	21. A conductive line comprising:
19	a polysilicon layer; and
20	a metal-silicide layer against the layer of polysilicon, the metal-
21	silicide layer comprising a Group III dopant or a Group V dopant.
22	L
22	

	1	The conductive line of claim 21 wherein the metal-silicide
	2	layer comprises a concentration of the dopant of at least
	3	about 1 x 10 ¹⁸ ions/cm ³ .
	4	
	5	23. A metal-silicide layer comprising a Group III dopant or a
	б	Group V dopant.
	7	
	8	24. The metal-silicide of claim 23 comprising a concentration of
	9	the dopant of at least about 1×10^{18} ions/cm ³ .
	10	
	11	25. A programmable-read-only-memory device comprising:
	12	a first dielectric layer over a substrate;
101	13	a floating gate over the first dielectric layer;
	14	a second dielectric layer over the floating gate;
	15	a conductive line over the second dielectric layer; and
	16	a metal-silicide layer over the conductive line, the metal-silicide
	17	layer comprising a Group III dopant or a Group V dopant.
	18	
	19	26. The programmable-read-only-memory device of claim 25
	20	wherein the device is an EPROM.
	21	
	22	
	23	

The programmable-read-only-memory device of claim 25 wherein the device is an EEPROM. The programmable-read-only-memory device of claim 25 28. wherein the metal-silicide layer comprises a concentration of the dopant of at least about 1 x 10¹⁸ ions/cm³.