Number theory in cryptography

- Exercise set 8 -

The exercises P8.2, P8.3 have to be handed in on Tuesday, 23rd April 2024, 8:30 at latest.

THEORETICAL QUESTIONS

T 8.1 In this exercise, you will prove that for a group G and $g \in G$ of order a prime power q^e , the discrete log problem of solving $g^x = h$ for $h \in G$ can be solved in $\mathcal{O}(eS_q)$ steps, where S_q is such that the DLP can be solved in G for an element of order q in time $\mathcal{O}(S_q)$. The idea of the proof is to write the exponent x as

$$x = x_0 + x_1 q + x_2 q^2 + \dots + x_{e-1} q^{e-1}$$
 where $0 \le x_i < q$

and to successively determine the x_i .

- a) Show that one must have $h^{q^{e-1}} = (g^{q^{e-1}})^{x_0}$ and argue that therefore x_0 can be determined in S_q steps.
- b) Having found x_0 , now show that $h^{q^{e-2}} = g^{x_0q^{e-2}} \cdot g^{x_1q^{e-1}}$ and again use this to argue that x_1 can be found in S_q steps.
- c) Explain how to continue this procedure to find x_2, x_3, \ldots and finish the proof.

PROGRAMMING EXERCISES

- **P 8.1** Implement the sieve of Eratosthenes.
- **P 8.2** Implement a function sieve(n, B, L) that takes three arguments: an integer n, a smoothness bound B and the size of the sieving array L and sieves (as seen as part of the quadratic sieve) over the values of x in $\lfloor \sqrt{n} \rfloor + 1, \ldots, \lfloor \sqrt{n} \rfloor + L$, returning the list of the numbers $x^2 n$ that are B-smooth where $\lfloor \sqrt{n} \rfloor < x \le \lfloor \sqrt{n} \rfloor + L$. Note: you may use SAGE functions to compute the roots of a polynomial modulo p.
- **P 8.3** Implement a function factorQS(n, B, L) doing the quadratic sieve algorithm for trying to find a non trivial factor of n. Find a non trivial factor of n = 74354845706467 using your algorithm.

¹You can output more data if you want (for instance if needed in factorQS).