Analysis I und Lineare Algebra für Ingenieurwissenschaften Hausaufgabe 07 - Geuter 29

Moaz Haque, Felix Oechelhaeuser, Leo Pirker, Dennis Schulze ${\bf September\ 15,\ 2020}$

Contents

Aufgabe 1	2
1.1 a)	2
	2
1.3 c)	2
Aufgabe 2	3
	3
2.2 b)	3
Aufgabe 3	3
3.1 a)	3
3.2 b)	3
Aufgabe 4	3
9	3
4.2 b)	3
Aufgabe 5	3
Aufgabe 6	3
9	3
6.2 b)	3
	1.3 c)

1 Aufgabe 1

1.1 a)

Es gilt

$$\frac{1}{b} + \frac{1}{g} = \frac{1}{f}$$

$$\Leftrightarrow \frac{1}{b} = \frac{g - f}{fg}$$

$$\Leftrightarrow b = \frac{fg}{g - f}$$

Damit ist b betrachtet als Funktion

$$b(g) = \frac{fg}{g - f}$$

1.2 b)

Da der Bruch nur für alle $g \neq f$ definiert ist, ist b nur auf $\mathbb{R} \setminus \{f\}$ stetig.

1.3 c)

Es gilt für den ersten Term

$$\lim_{g \to \infty} b(g) = \lim_{g \to \infty} \frac{fg}{g - f}$$

$$= \lim_{g \to \infty} \frac{f}{1 - \frac{f}{g}}$$

$$= \frac{f}{1 - 0}$$

$$= f$$

Es gilt für den zweiten Term

$$\begin{split} \lim_{g \to f} b(g) &= \lim_{g \to f} \frac{fg}{g - f} \\ &= \frac{\lim_{g \to f} fg}{\lim_{g \to f} (g - f)} \\ &= \frac{f^2}{f - f} \\ &\Rightarrow \lim_{g \to f} b(g) = \infty \end{split}$$

- 2 Aufgabe 2
- 2.1 a)
- 2.2 b)
- 3 Aufgabe 3
- 3.1 a)
- 3.2 b)
- 4 Aufgabe 4
- 4.1 a)
- 4.2 b)
- 5 Aufgabe 5
- 6 Aufgabe 6
- 6.1 a)
- 6.2 b)