The Stability of Euclidean Wormholes

Exploring the Factorization Problem in the AdS/CFT Correspondence

James Chryssanthacopoulos 25 October 2022

- 1 Introduction to Wormholes
- 2 The AdS/CFT Correspondence and the Factorization Problem
- 3 Wormholes and the Black Hole Information Paradox
- 4 Einstein-Maxwell Theory in 4D AdS
- 5 Conclusion

- 1 Introduction to Wormholes
- 2 The AdS/CFT Correspondence and the Factorization Problem
- 3 Wormholes and the Black Hole Information Paradox
- 4 Einstein-Maxwell Theory in 4D AdS
- 5 Conclusion

Introduction to Wormholes

Wormholes are solutions to general relativity connecting distant asymptotic regions of spacetime

Euclidean Wormholes

Euclidean wormholes emerge as saddles of gravitational path integral, and can be used to approximate it

$$Z = \int \mathcal{D}g \, e^{-S[g]}$$

- 1 Introduction to Wormholes
- 2 The AdS/CFT Correspondence and the Factorization Problem
- 3 Wormholes and the Black Hole Information Paradox
- 4 Einstein-Maxwell Theory in 4D AdS
- 5 Conclusion

The AdS/CFT Correspondence

Concrete example of holography relating partition functions of different theories

$$Z_{\mathsf{CFT}} = Z_{\mathsf{string}}$$

$\overline{\mathsf{AdS}/\mathsf{CFT} + \mathsf{Wormhole}}$

Gravity is dual to two CFTs over different boundaries, but if Z_{string} has extra wormhole contribution, CFTs must be correlated

Factorization Problem

On gravity side, this means path integral fails to factorize

$$\langle Z \rangle = \bigcirc$$

$$\langle Z^2 \rangle = \bigcirc$$

$$\neq \langle Z \rangle^2$$

- 1 Introduction to Wormholes
- 2 The AdS/CFT Correspondence and the Factorization Problem
- 3 Wormholes and the Black Hole Information Paradox
- 4 Einstein-Maxwell Theory in 4D AdS
- 5 Conclusion

Entropy of Hawking Radiation

Wormholes can help explain how information can be recovered from black hole

The Replica Trick

The entropy can be computed using

$$S = (1 - n\partial_n) \log \operatorname{Tr}(\rho^n) \Big|_{n=1}$$
 with $\rho_{ab} = \langle \Psi_a | \Psi_i \rangle \langle \Psi_i | \Psi_b \rangle$

- 1 Introduction to Wormholes
- 2 The AdS/CFT Correspondence and the Factorization Problem
- 3 Wormholes and the Black Hole Information Paradox
- 4 Einstein-Maxwell Theory in 4D AdS
- 5 Conclusion

Einstein-Maxwell Theory in 4D AdS

Low-energy model very similar to string theory that captures important properties while remaining analytically tractable

$$S = -\int_{\mathcal{M}} d^4 x \sqrt{g} \left(R + \frac{6}{L^2} - \sum_{i=1}^3 F^i_{\mu\nu} F^{\mu\nu}_i \right) - 2 \int_{\partial \mathcal{M}} d^3 x \sqrt{h} K + \mathcal{S}_{\mathcal{B}}$$

with ansatzes

$$ds^{2} = \frac{dr^{2}}{f(r)} + g(r) d\Omega^{2} \qquad A^{i} = L\frac{\sigma_{i}}{2}\Phi(r)$$

Code-Driven Analysis

Since calculations are elaborate, different programs were written to produce and analyze results

Small and Large Wormhole Solutions

There are two wormhole solutions with different throats r_0 if source of Maxwell fields Φ_0 is large enough

When Does Wormhole Dominate?

Large wormhole has lower action than disconnected solution in certain regime, suggesting it may dominate path integral

Wormhole Stability

Wormhole can dominate in path integral if it is local minimum, meaning it is perturbatively stable

$$S^{(2)} = \frac{\pi^2}{4} \int dr \sqrt{\frac{\overline{g}}{\overline{f}}} q \left[\underbrace{-\sqrt{\frac{\overline{f}}{\overline{g}}} \left(\sqrt{\overline{f}} \, \overline{g} \, \mathsf{K} q'\right)' + Vq}_{\lambda q} \right]$$

$$\lambda > 0 \qquad \lambda < 0$$

$$\mathsf{stable} \qquad \mathsf{unstable}$$

Negative Modes

Discretizing eigenvalue problem, negative modes can be searched for by varying r_0 , demonstrating large wormhole is free of them

r_0/r_0^{min}	Eigenvalues
0.8	One negative eigenvalue, $\lambda=-118$
1.0	No negative eigenvalues, $\lambda_{min} = 1.92 \times 10^{-7}$
1.1	No negative eigenvalues, $\lambda_{min} = 1.41 \times 10^{-6}$

- 1 Introduction to Wormholes
- 2 The AdS/CFT Correspondence and the Factorization Problem
- 3 Wormholes and the Black Hole Information Paradox
- 4 Einstein-Maxwell Theory in 4D AdS
- 5 Conclusion

Conclusion

- Wormholes introduce factorization problem, which suggests extra correlations in AdS/CFT but only serious if wormholes free of negative modes
- In low-energy model inspired by string theory, large wormhole is perturbatively stable and dominates over disconnected solution, analogous to Page transition of black hole entropy
- Other kinds of perturbations, non-perturbative channels, and string theory models need to be considered
- Factorization problem is still open and likely object of future research