CS2020 Data Structures and Algorithms

Welcome!

Today's Plan

Today's Plan

On the importance of being balanced

Today's Plan

On the importance of being balanced

- Height-balanced binary search trees
- AVL trees
- Splay trees

Recap: Binary Search Trees

- Two children: v.left, v.right
- Key: v.key
- BST Property: all in left sub-tree < key < all in right sub-right

Height:

Number of edges on longest path from root to leaf.

Modifying Operations

- insert: O(h)
- delete: O(h)

Query Operations:

- search: O(h)
- predecessor, successor: O(h)
- findMax, findMin: O(h)
- in-order-traversal: O(n)

Operations take O(h) time

Operations take O(h) time

 $h \leq n$

Operations take O(h) time

Operations take O(h) time

$$n \le 1 + 2 + 4 + ... + 2^h$$

 $\le 2^0 + 2^1 + 2^2 + ... + 2^h < 2^{h+1}$

Operations take O(h) time

$$log(n) -1 \le h \le n$$

A BST is <u>balanced</u> if $h = O(\log n)$

On a balanced BST: all operations run in O(log n) time.

Perfectly balanced:

Almost perfectly balanced:

Every subtree has (almost) the same number of nodes.

Not perfectly balanced:

Left tree has 6, right tree has 1.

Not perfectly balanced:

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[α] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)
- Scapegoat Trees (Anderson 1989)

How to get a balanced tree:

- Define a good property of a tree.
- Show that if the good property holds, then the tree is balanced.
- After every insert/delete, make sure the good property still holds. If not, fix it.

Step 1: Augment

– In every node v, store height:

```
v.height = h(v)
```

On insert & delete update height:

```
insert(x)
  if (x < key)
       left.insert(x)
      else right.insert(x)
  height = max(left.height, right.height) + 1</pre>
```


Step 1: Augment

– In every node v, store height:

```
v.height = h(v)
```

On insert & delete update height:

```
insert(x)
  if (x < key)
       left.insert(x)
      else right.insert(x)
  height = max(left.height, right.height) + 1</pre>
```

Step 2: Define Invariant

A node v is <u>height-balanced</u> if:

|v.left.height – v.right.height| ≤ 1

Step 2: Define Invariant

A node v is <u>height-balanced</u> if:

|v.left.height – v.right.height| ≤ 1

 A binary search tree is <u>height balanced</u> if every node in the tree is height-balanced.

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

$$\Leftrightarrow$$
 n > $2^{h/2}$

 \Leftrightarrow For a tree with height h, the tree can contain <u>at least</u> n > $2^{h/2}$ nodes

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Show:

$$n_h > 2^{h/2}$$
 \Rightarrow
 $2log(n_h) > h$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Show:

```
n_h > 2^{h/2}
```

If you give me a tree of height $h = 2\log(n)+1$, then it must have $> 2^{\log(n)+1/2} > n$ nodes.

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Show:

$$n_h > 2^{h/2}$$
 \Rightarrow
 $2log(n_h) > h$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

$$\geq 4n_{h-4}$$

$$\geq 8n_{h-6}$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

$$\geq 4n_{h-4}$$

$$\geq 8n_{h-6}$$

Base case:

$$n_0 = 1$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

$$\geq 2^{h/2} n_0$$

Base case:

$$n_0 = 1$$

Claim:

A height-balanced tree with n nodes has height h < 2log(n).

Show:

$$n_h > 2^{h/2}$$
 \Rightarrow
 $2log(n_h) > h$

Show (induction):

$$F_n = n^{th}$$
 Fibonacci number

$$n_h = F_{h+2} - 1 \cong \phi^{h+1}/\sqrt{5} - 1$$
 (rounded to nearest int)

$$h \cong log(n) / log(\phi)$$
 $\phi \cong 1.618$

Claim:

A height-balanced tree is balanced, i.e., has height h = O(log(n)).

AVL Trees [Adelson-Velskii & Landis 1962]

Step 3: Show how to maintain height-balance

A < B < C < D < E

Rotations maintain ordering of keys.

⇒ Maintains BST property.

The root of the subtree moves right

The root of the subtree moves right

The root of the subtree moves left

Rotations

```
right-rotate(v) // assume v has left != null

w = v.left

w.parent = v.parent

v.parent = w

v.left = w.right

w.right = v
```


rotate-right requires a left child rotate-left requires a right child

After insert:

Use tree rotations to restore balance.

Height is out-of-balance by 1

Use tree rotations to restore balance.

After insert, start at bottom, work your way up.

Assume tree is LEFT-heavy.

Assume **A** is the lowest node in the tree violating balance property.

Case 1: B is balanced :
$$h(L) = h(M)$$

 $h(R) = h(M) - 1$

right-rotate:

Case 1: **B** is balanced : h(L) = h(M)h(R) = h(M) - 1

right-rotate:

Case 2: **B** is left-heavy: h(L) = h(M) + 1

 $h(\mathbf{R}) = h(\mathbf{M})$

right-rotate:

Case 3: **B** is right-heavy: h(L) = h(M) - 1h(R) = h(L)

Are we done?

- 1. Yes.
- **✓**2. No.
 - 3. Maybe.

Let's do something first before we right-rotate(A)

Case 3: **B** is right-heavy: h(L) = h(M) - 1h(R) = h(L)

Tree Rotations

After left-rotate B: A and C still out of balance.

Tree Rotations

After right-rotate A: all in balance.

Rotations

Summary:

If v is out of balance and left heavy:

- 1. v.left is balanced: right-rotate(v)
- 2. v.left is left-heavy: right-rotate(v)
- 3. v.left is right-heavy: left-rotate(v.left) right-rotate(v)

If v is out of balance and right heavy: Symmetric three cases....

Insert in AVL Tree

Summary:

- Insert key in BST.
- Walk up tree:
 - At every step, check for balance.
 - If out-of-balance, use rotations to rebalance.

Note: only need to perform two rotations

- Why?
- In each case, reduce height of sub-tree by 1
- What about Case 1, above?

insert(23)

insert(23)

insert(55)

insert(55)

delete(v)

delete(v)

Three cases:

- 1. No children:
 - remove v
- 2. 1 child:
 - remove v

− delete(v) ←

- connect child(v) to parent(v)
- 3. 2 children
 - Swap v with x = successor(v)
- Will this cause more calls for the function delete()?
- (which is in the original position of the successor)

delete(v)

- 1. If v has two children, swap it with its successor.
- 2. Delete node v from binary tree (and reconnect children).
- 3. For every ancestor of the deleted node:
 - Check if it is height-balanced.
 - If not, perform a rotation.
 - Continue to the root.

Deletion may take up to log(n) rotations.

AVL Trees

What if you do not remove deleted nodes?

Mark a node "deleted" and leave it in the tree.

Logical deletes:

- Performance degrades over time.
- Clean up later? (Amortized performance...)

AVL Trees

What if you do not want to store the height in every node?

Only store difference in height from parent.

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[α] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)

Balanced Search Trees

Red-Black trees

- More loosely balanced
- Rebalance using rotations on insert/delete
- O(1) rotations for all operations.
- Java TreeSet implementation
- Faster (than AVL) for insert/delete
- Slower (than AVL) for search

Balanced Search Trees

Skip Lists and Treaps

- Randomized data structures
- Random insertions => balanced tree
- Use randomness on insertion to maintain balance

The Importance of Being Balanced

Is it really important?

The 90-10 Rule

90% of your queries access 10% of your data.

Remember Problem Set 2?

Move-to-Front List

- Whenever you search for an item, move it to the front of the list.
- Recently used items stay at the front of the list.

Move-to-Front Tree?

Move-to-Root Tree

search(70)

Move-to-Root Tree

search(70)

Move-to-Root Tree

search(70)

insert(1)
insert(2)

insert(1)

insert(2)

insert(3)


```
insert(1)
insert(2)
insert(3)
```


insert(1)

insert(2)

insert(3)

insert(4)

insert(5)

search(1)
search(2)

search(1)
search(2)

search(1)

search(2)

search(3)

search(1)

search(2)

search(3)

search(4)

On search/insert/delete:

- Move to root, not rotate-to-root.
- Balance more along the way.

Three cases:

- Zig: Parent is root.
- Zig-Zag: Parent is left, grandparent is right.
- Zig-Zig: Parent and grandparent are left children.

Zig: Parent is root.

Zig-Zig: Parent is right, grandparent is right.

On search/insert delete:

- Move to root, not rotate-to-root.
- Balance more along the way.
- Two levels at a time.

Mirror images are the same

Three cases:

- Zig: Parent is root.
- Zig-Zag: Parent is left, grandparent is right.
- Zig-Zig: Parent and grandparent are left children.

Only different from "Rotate-to-Root"

Balance Theorem:

- Assume tree T has n nodes.
- Assume there are m operations.

The total cost is: $O((m+n) \log n)$

Balance Theorem:

- Assume initially empty tree T.
- Assume there are m insert/search operations.
- Assume there are at most n inserts total.

The total cost is: O(m log n)

Scanning Theorem:

 Accessing all n elements in a splay tree, in order, costs O(n).

Static Optimality Theorem:

- Let q_i be the number of times i is accessed.
- Assume there are m searches and n nodes.

The total cost is: $O(m + \Sigma q_i \log(m/q_i))$

Balanced Search Trees

Summary:

- The Importance of Being Balanced
- Height Balanced Trees
- Rotations
- AVL trees
- Splay trees