Numerical Optimization

Instructor: Sung Chan Jun

Week #2 : September 06, 2023 (Wednesday Class)

Course Syllabus (Tentative)

Calendar	Description	Remarks
1 st week	Introduction of optimization	
2 nd week	Univariate Optimization	
3 rd week	Univariate Optimization	
4 th week	Unconstrained Optimization	
5 th week	Unconstrained Optimization	
6 th week	Constrained Optimization	
7 th week	Constrained Optimization, No Class	Oct. 9 (National Holiday)
8 th week	Constrained Optimization, Midterm	Oct. 18 (Midterm)

- Optimality Condition: Unconstrained Univariate
 - (Generalization of optimal conditions) Assume objective

univariate function f(x) is at least <u>n times continuously differentiable</u>.

Let
$$f'(x^*) = f''(x^*) = ... = f^{(n-1)}(x^*) = 0 \& f^{(n)}(x^*) \neq 0$$
. Then

- If $f^{(n)}(x^*) > 0$ and n even, x^* is a local minimum.
- Multivariate Calculus
 - Differentiation of function $z = f(x, y) : R^2 \rightarrow R^1$
 - Partial differentiation (in general)

$$\partial f(x, y)/\partial x = \lim_{h_x \to 0} [f(x + h_x, y) - f(x, y)]/h_x$$

$$\partial f(x, y)/\partial y = \lim_{h_y \to 0} [f(x, y + h_y) - f(x, y)]/h_y$$

- Multivariate Calculus
 - Differentiation of vector valued function

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $F(x, y) = (f_1(x, y), f_2(x, y))$

- Partial differentiation : $D_xF(x, y) = (\partial f_1(x, y)/\partial x \partial f_2(x, y)/\partial x)^T$
- Derivative matrix DF

$$\lim_{\mathbf{h} = (h_x \ h_y) \to \mathbf{0}} \left\| F(x + h_x, y + h_y) - F(x, y) - DF(x, y) (h_x \ h_y)^T \right\| / \left\| (h_x \ h_y) \right\| = 0$$

- Multivariate Calculus
 - Gradient (grad f, ∇f): Let $f(\mathbf{x})$ be a scalar valued function $R^n \to R$.

■
$$\nabla f(\mathbf{x}) = \nabla f(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) = (\partial f/\partial \mathbf{x}_1 \ \partial f/\partial \mathbf{x}_2 \ ... \ \partial f/\partial \mathbf{x}_n)^T$$

- Physical meaning: steepest increasing direction
- Divergence (div F, $\nabla \cdot F$): Let $F = (f_1, f_2, ..., f_n) : \mathbb{R}^n \to \mathbb{R}^n$

■
$$\nabla \cdot \mathbf{F} = \partial \mathbf{f}_1 / \partial \mathbf{x}_1 + \partial \mathbf{f}_2 / \partial \mathbf{x}_2 + \dots + \partial \mathbf{f}_n / \partial \mathbf{x}_n$$

- Physical meaning: rate of volume change per unit volume
- 2nd derivative for multivariate $f(\mathbf{x}) = f(x_1, x_2)$: $R^2 \rightarrow R$

- Optimality Conditions: Unconstrained Multivariate
 - Assume objective function f(x) is at least twice-continuously differentiable.
 - (NC) Necessary condition for a local minimum
 - 1. $\operatorname{grad}(f(\mathbf{x})) = 0$
 - 2. H(x) ("hessian") ≥ 0 i.e H(x) is positive semi-definite.
 - (SC) Sufficient condition for a local minimum
 - $1. \quad \operatorname{grad}(f(\mathbf{x})) = 0$
 - 2. H(x) > 0 i.e H(x) is positive definite.
 - A symmetric real matrix **A** (n \times n)
 - is said to be positive definite if $\mathbf{z}^T \mathbf{A} \mathbf{z} > 0$ (strictly positive) for every non-zero vector \mathbf{z} of real numbers.

Univariate Optimization

Minimize f(x) on $x \in R$

Conventional strategy

Due to optimality conditions,

Optimality conditions for univariate problem

Necessary condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) \ge 0$$

Sufficient condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) > 0$$

- first seek points x with f'(x) = 0 (stationary points).
- then check the sign of f"(x) at those points.
- How to find zero of f'(x)? \Rightarrow root finding
 - Conventional techniques for root finding
 - Method of bisection, Newton's method
 - Secant method, Regula falsi method

Univariate Optimization

Minimize f(x) on $x \in R$

Necessary condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) \ge 0$$

Sufficient condition for a local minimum

$$f'(x^*) = 0 \& f''(x^*) > 0$$

Conventional strategy

Due to optimality conditions,

- first seek points x with f'(x) = 0 (stationary points).
- then check the sign of f"(x) at those points.

Univariate Optimization

How to find zero of f'(x)? \Rightarrow root finding

- Conventional techniques for root finding
 - Method of bisection
 - Newton's method
 - Secant method, Regula falsi method

Univariate Optimization:Root Finding - Method of Bisection

Method of bisection

- Interval [a, b] is given such that f(a)f(b) < 0.</p>
- Step 1. compute f(x) at the midpoint x = (a + b)/2.
- Step 2. if f(x) = 0 or (b a) < TOL, then terminate.

if
$$f(x)f(a) < 0$$
, then $b := x$,

else
$$a$$
: = x .

- Step 3. Go to Step 1.
- Pros : guaranteed to converge to zero
- Cons
 - too slow (convergence rate ½)
 - relative magnitude of f(x) is not taken account.

To make sure the existence of root in an interval [a, b]

Method of Bisection

Convergence Rate

- Assume sequence {x_k} converges to x*
 - The sequence $\{x_k\}$ converges with order r

When there is a constant c > 0 and integer N such that

$$\|X_{k+1} - X^*\| \le c \|X_k - X^*\|^r \text{ for } k > N, \text{ or } 0 \le \lim_{k \to \infty} \frac{\|X_{k+1} - X^*\|}{\|X_k - X^*\|^r} < \infty \text{ for } k > N.$$

- Convergence rate
 - r = 1, linear convergence
 - r = 2, quadratic convergence
 - r > 1, superlinear convergence
 - As r is bigger (in positive), we say that convergence speed is faster.

Univariate Optimization:Root Finding - Method of Bisection

- Generalization of method of bisection
 - Interval [a, b] is given such that f(a)f(b) < 0.</p>
 - Step 1. compute f(x) at the midpoint x = (a + b)/2.
 - Step 2. if f(x) = 0 or (b a) < TOL, then terminate.

if
$$f(x)f(a) < 0$$
, then $b := x$,

else
$$a$$
: = x .

Step 3. Go to Step 1.

Midpoint x is one of choices. Any interior point In the interval [a, b] is possible to choose as a new point.

- Possible choices of next point in the interval [a, b]
 - midpoint conventional method of bisection
 - internally dividing point of interval [a, b] AB in the ratio 1:2 or 2:1
 - internally dividing point of interval [a, b] AB in the ratio n:m
 - random: choice this lecture note is prohibited without instructor's permission.

Univariate Optimization:Newton's Method

- Newton's method
 - Approximate f(x) by tangent line at the given point.
 - Assume f(x) is differentiable.
 - $x_{k+1} = x_k f(x_k)/f'(x_k)$
 - Pros
 - Very fast converging (convergence rate 2)
 - Cons
 - Convergence depending on initial guess
 - not working when f'(x_k) is small
 - Derivative is required.

Newton's Method

Univariate Optimization: Secant Method

- Secant method (method of linear interpolation)
 - Computing f'(x) is very expensive and impossible to compute in some cases.
 - Approximating tangent line by straight line passing two recent iterates (many variants exist)
 - $x_{k+1} = x_k [(x_k x_{k-1})/(f(x_k) f(x_{k-1}))]f(x_k)$

Newton's Method $x_{k+1} = x_k - f(x_k)/f'(x_k)$

- Pros: rapid convergent (roughly rate 1.6180)
- Cons: may be divergent if straight line approximation is extrapolation

Secant Method

http://ocw.snu.ac.kr

Secant Method

- How to approximate tangent line
 - There are many ways to do it
 - Two point approximation

•
$$f'(x_n) \approx (f(x_n) - f(x_{n-1}))/(x_n - x_{n-1})$$

•
$$f'(x_n) \approx (f(x_n) - f(x_{n-2}))/(x_n - x_{n-2})$$

Three point approximation

•
$$f'(x_n) \approx \alpha(f(x_n) - f(x_{n-1}))/(x_n - x_{n-1}) + (1-\alpha)(f(x_n) - f(x_{n-2}))/(x_n - x_{n-2})$$

Secant Method

How to approximate tangent line (Richardson's extrapolation)

Assumption: all points on axis are even spaced, that is, h is fixed

- 3-point approximation
 - Forward difference $f'(t_i) \approx \frac{-f(t_i + 2h) + 4f(t_i + h) 3f(t_i)}{2h}$
 - Backward difference $f'(t_i) \approx \frac{3f(t_i) 4f(t_i h) + f(t_i 2h)}{2h}$
- 4-point approximation (Central difference)

$$f'(t_i) \approx \frac{-f(t_i + 2h) + 8f(t_i + h) - 8f(t_i - h) + f(t_i - 2h)}{12h}$$

6-point approximation (Central difference)

$$f'(t_i) \approx \frac{f(t_i + 3h) - 9f(t_i + 2h) + 45f(t_i + h) - 45f(t_i - h) + 9f(t_i - 2h) - f(t_i - 3h)}{60h}$$

Univariate Optimization: Regular Falsi Method

- Regular falsi method (method of false position)
 - Modified version of secant method & bisection method
 - Consider the given interval I_k = [a, b] such that f(a)f(b) < 0.
 - Apply a secant method with two initial points a & b. Find a point x_{k+1} intersecting with x-axis and a secant.
 - Choose updated interval as follows:
 - $I_{k+1} = [a, x_{k+1}]$, if f(a) and $f(x_{k+1})$ have different signs,
 - $I_{k+1} = [x_{k+1}, b]$, if f(a) and $f(x_{k+1})$ have the same signs.
 - This removes danger of extrapolation.
 - Keep doing in the same manner until termination criterion is satisfied.

Regular Falsi Method

https://commons.wikimedia.org/

Regula Falsi Method (False Position)

http://www.uobabylon.edu.iq

- Bracketing methods
 - General approaches choosing any nested interval of the previous interval.
 - Given interval I_0 such that $x \in I_0$ where f(x) = 0.
 - Find $\{I_j\}$ such that $I_j \subset I_{j-1}$ and $x \in I_j$. (make sure that length of interval I_i should be sufficiently reduced)
 - It generates a set of nested intervals, which is guaranteed to converge.
 - Example : the method of bisection.

- Root finding techniques
 - Method of bisection : bracketing, that is, interval is used.
 - Newton's method : straight line is used.
 - Secant method : straight line is used.
 - Regula falsi method: straight line and bracketing are used.
- Why are straight lines mainly used in root finding techniques?
 - Straight line (1st order polynomial) is the simplest shape in approximation.
 - Finding root (intersecting point with x-axis) of straight line is very easy.

$$f(x) = e^{x}$$

$$L(x) = 1 + x$$

$$Q(x) = 1 + x + \frac{1}{2}x^{2}$$

Q: In terms of approximation sense, which one is better, a straight line (1st order polynomial) or quadratic function (2nd order polynomial)?

- How about other approaches in place of a straight line?
 - Straight line (1st order polynomial) is the simplest shape in approximation, so more complex shape may be applicable in the same context.
 - Curve (2nd order or higher order polynomial) may be possible.
- More advanced root-finding approaches
 - Higher order polynomial or other function approximation
 - In place of a straight line, higher order polynomials (quadratic, cubic...) or other functions are possible to approximate original function f(x).

- More advanced root-finding approaches
 - Higher order polynomial approximation
 - Higher order polynomials (quadratic, cubic...) are used for approximation of original function f(x).
 - That would be much rapidly convergent.
 - One problem for higher polynomial approximation is to seek the zero point of it, which may be more difficult than a straight line.
 - Up to 4-th order polynomials, it is possible to find roots with the given root formulations.
 - Other function approximation than polynomial
 - Key points to consider
 - higher order approximation + easy to find a zero point

28

Root Formulation of Polynomials

- 1st order polynomial : y = ax + b (when $a \neq 0$)
 - x = -b/a
- 2^{nd} order polynomial : $y = ax^2 + bx + c$ (when $a \neq 0$)
 - $x = [-b \pm \sqrt{(b^2 4ac)}]/2a$
- 3^{rd} order polynomial : $y = ax^3 + bx^2 + cx + d$ (when $a \neq 0$)

$$x_{1} = -\frac{b}{3a}$$

$$-\frac{1}{3a}\sqrt{3}\frac{2b^{3} - 9abc + 27a^{2}d + \sqrt{(2b^{3} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{3}}}{2}$$

$$-\frac{1}{3a}\sqrt{3}\frac{2b^{3} - 9abc + 27a^{2}d - \sqrt{(2b^{3} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{3}}}{2}$$

$$x_{2} = -\frac{b}{3a}$$

$$+\frac{1 + i\sqrt{3}}{6a}\sqrt{3}\sqrt{3}\frac{2b^{3} - 9abc + 27a^{2}d + \sqrt{(2b^{3} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{3}}}{2}$$

$$+\frac{1 - i\sqrt{3}}{6a}\sqrt{3}\sqrt{3}\frac{2b^{3} - 9abc + 27a^{2}d - \sqrt{(2b^{3} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{3}}}{2}$$

$$x_{3} = -\frac{b}{3a}$$

$$+\frac{1 - i\sqrt{3}}{6a}\sqrt{3}\sqrt{3}\frac{2b^{3} - 9abc + 27a^{2}d + \sqrt{(2b^{3} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{3}}}{2}$$

$$+\frac{1 + i\sqrt{3}}{6a}\sqrt{3}\sqrt{3}\frac{2b^{3} - 9abc + 27a^{2}d + \sqrt{(2b^{3} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{3}}}{2}$$

$$+\frac{1 + i\sqrt{3}}{6a}\sqrt{3}\sqrt{3}\frac{2b^{3} - 9abc + 27a^{2}d - \sqrt{(2b^{3} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{3}}}{2}$$

Root Formulation of Polynomials

- 4^{th} order polynomial : $y = ax^4 + bx^3 + cx^2 + dx + e$ (when $a \neq 0$)
 - x = ?
 - For its detail, refer to https://en.wikipedia.org/wiki/Quartic_function#General_formula_for_r oots
- 5th or higher order polynomials
 - No general root formulation exists.
 - It was proved by Abel (1802–1829).

- Additional ideas
 - Rational function approximation (rational interpolation)
 - Approximate f(x) by rational function of the form

$$f_{rat}(x) = \frac{x - c}{d_0 + d_1 x + d_2 x^2}$$

- d_0 , d_1 , d_2 , c are chosen so that the function value and derivatives of $f_{rat}(x)$ agree with those of f(x) at two points.
- This approximation is easy to find zero point, which is just 'c'.
- Other function approximations
 - We can generate any kinds of approximations, which is better approximated and root is easy to find.

- Safeguarded methods
 - A guaranteed and reliable method: the method of bisection
 - A fast-convergent, but less reliable method : secant method
 - Mixed methods: bisection + secant
 - If f is well-behaved, it gives the rapid convergence (secant). In the worst case, it is not less efficient than the guaranteed method (bisection).