ahgagahan yan:		
abgegeben von:		
	Name in Blockschrift	Matrikel/Identnr.

Aufgabe	1	2	3	4	5	6	7	8	9	10	11	\sum	Note
Max. Punkte	6	4	5	10	10	10	10	7	10	16	8	96+4	
Punkte													

Für die Bearbeitung der Aufgaben sind 150 min veranschlagt. Es dürfen alle nichtkommunikationsfähigen Hilfsmittel verwendet werden. Alle Berechnungsaufgaben sind schriftlich zu lösen. Jeder Lösungsweg muss nachvollziehbar sein. Die mit (*) gekennzeichneten Aufgaben sind Zusatzaufgaben, für die zusätzliche Punkte erreicht werden können.

Aufgabe 1: Es seien x und y reelle Zahlen. Man stelle die folgenden Aussagen mit Hilfe von Quantoren dar und gebe ihren Wahrheitsgehalt an (mit Begründung).

- (a) Für alle y gibt es ein x, so dass gilt: $x^2 2xy + y^2 = 0$.
- (b) Es gibt ein x, so dass für alle y gilt: $\sin^2 y + \cos^2 y = x$.

Aufgabe 2: Gegeben seien die Mengen A, B und C. Vereinfachen Sie die folgenden Mengenausdrücke soweit wie möglich.

- (a) $(A \setminus B) \cup (A \cap B)$
- (b) $(C \setminus A) \cup (C \setminus B) \cup (A \cap B \cap C)$

Aufgabe 3: Gegeben seien die Mengen $A = \{1, 2, 3, 11, 13, 15, 17\}, B = \{0, 3, 11, 19\}$ und $C = \{6, 8, 12, 13\}$. Bestimmen Sie die folgenden Mengen.

- (a) $A \cap B$
- (b) $A \setminus B$
- (c) $A \cup C$
- (d) $\{x \in B \mid \frac{x}{3} \in \mathbb{Z}\}$
- (e) $\{u \in \mathbb{Z} \mid u^2 \in A \cup B\}$

Aufgabe 4: Gegeben sei die Menge $M = \{a, b, c, d, e, f, g, h\}$. Auf der Menge M sei eine Relation $R \subseteq M \times M$ durch das Hasse-Diagramm in Abbildung (1) erklärt. Dabei stehen zwei Elemente x und y von M in Relation (d.h. $(x, y) \in R$), wenn x und y durch einen Pfeil von x nach y verbunden sind.

- (a) Geben Sie die Relation R elementweise an.
- (b) Ermitteln Sie die **transitive Hülle** R^+ von R. (Rechnung angeben!)
- (c) Geben Sie für die Teilmenge $T = \{e, f, g\}$ bezüglich der strikten Ordnung R^+ an: obere Schranken, Supremum, Maximum, maximale Elemente, untere Schranken, Infimum, Minimum und minimale Elemente.

Abbildung 1: Hasse-Diagramm der Relation R auf der Menge M.

Aufgabe 5: Es sei $S = \{a, b, c, d\}$ eine Menge von Studenten eines Studienganges. $V = \{1, 2, 3, 4\}$ sei eine Menge von Vorlesungen. Student a besucht die Vorlesung 1 und 3, b die Vorlesung 2 und 3, c die Vorlesung 4 sowie d die Vorlesungen 2 und 4.

- (a) Die angegebenen Zuordnungen legen eine Relation $T \subseteq S \times V$ fest. Man gebe die Elemente von T an.
- (b) Man gebe die Elemente der inversen Relation T^{-1} an. In welcher Produktmenge liegt T^{-1} ?
- (c) Geben Sie die Elemente der Komposition $K := T \circ T^{-1}$ an. In welcher Produktmenge liegt K?
- (d) Ist K eine Äquivalenzrelation? (Begründen Sie ihre Antwort.)
- (e) Beschreiben Sie die Aussage $(x, y) \in K$ in Worten.

Aufgabe 6: Berechnen Sie mit Hilfe des erweiterten euklidischen Algorithmus die modulare Inverse von a = 18 zum Modul m = 79.

Aufgabe 7: Wandeln Sie die folgende im 32-Bit-Format der IEEE-754-Norm gegebene Zahl in eine Dezimalzahl x um:

(Darstellung: V|E|M. Dabei ist V das Vorzeichenbit, M die (binäre) Nachkomma-Mantisse, $E=e+B,\,B=127$ (Bias), e (binärer) Exponent.)

Aufgabe 8: (a) Stellen Sie die komplexe Zahl $z = 4 \cdot e^{\pi i}$ in arithmetischer Form dar. Geben Sie die Rechnung an.

(b) Berechnen Sie $(1-i)^{16}$ und geben Sie das Ergebnis in arithmetischer Form an.

Aufgabe 9: Berechnen Sie die allgemeine Lösung des linearen Gleichungssystems

$$x + y - z = 4$$

$$-3x - 2y + 2z = 0$$

$$-7x - 4y + 4z = 8.$$

Aufgabe 10: Gegeben seien die Punkte P(1,0,1), Q(0,1,1) und R(1,2,3) sowie die Ebene E durch die Gleichung x-2y+3z+1=0.

- (a) Geben Sie eine Parameterdarstellung der senkrecht zu E liegenden Geraden g an, welche den Punkt P enthält.
- (b) Berechnen Sie den Winkel α zwischen den Vektoren $\mathbf{x} = \overrightarrow{PQ}$ und $\mathbf{y} = \overrightarrow{PR}$.
- (c) Berechnen Sie den Flächeninhalt F des Dreiecks ΔPQR .
- (d) Berechnen Sie den Abstand d des Punktes R von der Ebene E.

Aufgabe 11: Gegeben sei die reellwertige Funktion f einer reellen Variablen x durch die Abbildungsvorschrift

$$y = f(x) = 2 \cdot \sqrt{1 - \sqrt{x}}.$$

- (a) Bestimmen Sie den maximalen Definitionsbereich D von f, d.h. die Menge der reellen Zahlen, für die f(x) erklärt ist. Geben Sie die Rechnung an.
- (b) Berechnen Sie die Umkehrfunktion f^{-1} und geben Sie deren Definitionsbereich und Wertebereich an.

Aufgabe 12*: Ermitteln Sie alle Eigenwerte und Eigenvektoren der Matrix

$$\left(\begin{array}{cc} -3 & 0 \\ 0 & 2 \end{array}\right).$$