<u> </u>	
	\otimes
- T	

c4-1 · pC · ac02 Le courant électrique dans un circuit en dérivation.

Groupe : 5e . . Durée : 60 min.

NOTE:	APPRÉCIATION :

Ref	intitulé de la compétence(cycle4)	État			
	intitute de la competence (cycle4)		F	S	Т
A3	Mesurer des grandeurs physiques de manière directe ou indirecte.				
A4	Interpréter des résultats expérimentaux, en tirer des conclusions et les communiquer				
Λ4	en argumentant.				
 E1	Utiliser des outils d'acquisition et de traitement de données, de simulations et de mo-				
121	dèles numériques.				

I Protocole à suivre.

Pour pouvoir compléter le questionnaire :

- Allez chercher une tablette,
- Allumez-là et saisissez entièrement l'adresse qui suit ou vérifiez la présence d'un icône "Circuit Lab UTwente".
- Construisez le circuit qui suit sans les appareils de mesure : circuit en dérivation avec un générateur de 4,75 V, un conducteur ohmique de résistance $R=100~\Omega$ et une lampe de 5 V; 0.5 W.

II Comment est répartie l'intensité du courant électrique?

Protocole. Placez l'ampèremètre (A) aux positions suivantes et remplissez le tableau.

- entre 0-0 et 0-1 : Ici l'ampèremètre mesure l'intensité du courant électrique I₁,
- entre 2-0 et 2-1 : Ici l'ampèremètre mesure l'intensité d courant électrique I₂,
- entre 4-0 et 4-1 : Ici l'ampèremètre mesure l'intensité d courant électrique I₃.

Faites varier la valeur de la résistance du conducteur ohmique et complétez le tableau dans le paragraphe "mesures".

Mesures. Changez la valeur de la résistance en cliquant dessus puis mesurez

	R en Ω	I_1	I_2	I_3	$I_2 + I_3$
100					
1 000					
10 000					

III Conclusion.

Proposez une relation entre I_1 , I_2 et I_3 .

