Natural Language Processing Assignment 7

Type of Question: MCQ

Number of Questions: 7	Total Marks: (5×1)+(3×2)=10	
=======================================	=======================================	
Question 1: Suppose you have a raw text of occurrence matrix from there. Which of the fit to learn word representations? (Choose all to	following algorithm(s) can you utilize	
a. CBOW b. SVM c. PCA d. Bagging		
Answer: a, c Solution:		
=======================================	=======================================	
Question 2: What is the method for solving B and D, find C such that A:B::C:D, using we		
a. $v_c = v_a + (v_b - v_d)$, then use cosine simil b. $v_c = v_a + (v_d - v_b)$ then do dictionary loo c. $v_c = v_d + (v_a - v_b)$ then use cosine similad. $v_c = v_d + (v_a - v_b)$ then do dictionary loo e. None of the above	kup for v_c arity to find the closest word of v_c .	
Answer: c Solution: $v_d - v_c = v_b - v_a$ $v_c = v_d + v_a - v_b$ then use cosine similarity to	find the closest word of v_c .	

Question 3: What is the value of $PMI(w_1, w_2)$ for $C(w_1) = 250$, $C(w_2) = 1000$, $C(w_1, w_2) = 160$, N = 100000? N: Total number of documents. $C(w_i)$: Number of documents, w_i has appeared in. $C(w_i, w_i)$: Number of documents where both the words have appeared in. Note: Use base 2 in logarithm. [1 mark] a. 4 b. 5 c. 6 d. 5.64 Answer: c Solution: PMI = log2 [(160*100000) / (250*1000)] = log2(64) = 6______ **Question 4:** Given two binary word vectors w_1 and w_2 as follows: $W_1 = [1010101010]$ $W_2 = [00111111100]$ Compute the Dice and Jaccard similarity between them. [2 marks] a. 6/11, 3/8 b. 10/11, 5/6 c. 4/9, 2/7 d. 5/9, 5/8 Answer: a

$$\label{eq:decomposition} \begin{aligned} \text{Dice coefficient} &= \frac{2 \times 3}{5+6} = \frac{6}{11} \\ \text{Jaccard coefficient} &= \frac{3}{8} \end{aligned}$$

Solution:

Question 5: Consider two probability distributions for two words be p and q. Compute their similarity scores with KL-divergence. [2 marks]

p = [0.20, 0.75, 0.50]q = [0.90, 0.10, 0.25]

Note: Use base 2 in logarithm.

a. 4.704, 1,720

b. 1.692, 0.553

c. 2.246, 1.412

d. 3.213, 2.426

Answer: c Solution:

$$\begin{aligned} \text{KL-div}(p,q) &= \sum_{i} p_{i} \log_{2} \frac{p_{i}}{q_{i}} \\ &= 0.2 \log \frac{0.2}{0.9} + 0.75 \log \frac{0.75}{0.1} + 0.5 \log \frac{0.5}{0.25} \\ &\approx 2.246 \\ \text{KL-div}(q,p) &= 0.9 \log \frac{0.9}{0.2} + 0.1 \log \frac{0.1}{0.75} + 0.25 \log \frac{0.25}{0.5} \\ &\approx 1.412 \end{aligned}$$

Question 6: Consider the following word co-occurrence matrix given below. Compute the cosine similarity between

(i) w1 and w2, and (ii) w1 and w3.

[2 mark]

- a. 0.773, 0.412
- b. 0.881, 0.764
- c. 0.987, 0.914
- d. 0.897, 0.315

Answer: c Solution:

$$\text{cosine-sim } (\overrightarrow{p}, \overrightarrow{q}) = \frac{\overrightarrow{p} \cdot \overrightarrow{q}}{\|\overrightarrow{p}\| \cdot \|\overrightarrow{q}\|}$$

Cosine-sim (w1, w2) = $(2*4 + 8*9 + 5*7) / (\sqrt{2*2 + 8*8 + 5*5}) * \sqrt{4*4 + 9*9 + 7*7} = 0.987$ Cosine-sim (w1, w3) = $(2*1 + 8*2 + 5*3) / (\sqrt{2*2 + 8*8 + 5*5}) * \sqrt{1*1 + 2*2 + 3*3} = 0.914$

Question 7: Which of the following type of relations can be captured by word2vec (CBOW or Skipgram)? [1 mark]

- 1. Analogy (A:B::C:?)
- 2. Antonymy
- 3. Polysemy
- 4. All of the above

Answer: 1

Solution: Word vectors learnt using CBOW or Skipgram models can't disambiguate between Antonyms or Polysemous words.

=