Q1

Sunday, September 20, 2020

5:07 PM

Math 150

Quiz 2

Find the following derivative. You must show all of your work. Once you have taken the derivative you do not have to simplify.

- 1) Let $f(x) = \frac{x^3 + \cos(x) 1}{e^x 3}$. Find f'(x).
- 2) Let $f(x) = x^2 \sin(x)$. Find f''(x).
- 3) Let $f(x) = x^5 e^x sec(x)$. Find f'(x).

The Quotient Rule

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)}{dx} \frac{d}{dx} \left[f(x) \right] - f(x) \frac{d}{dx} \left[g(x) \right]^{2}$$

$$\left[g(x) \right]^{2}$$

Let $f(x) = \frac{x^3 + \cos(x) - 1}{e^x - 3}$. Find f'(x)

$$f(x) = x^3 + \cos(x) - 1$$

$$q(x) - e^{x} - 3$$

$$f'(x) = (e^{x} - 3) \frac{d}{dx} \left[x^{3} + \cos(x) - 1 \right] - \left[x^{3} + \cos(x) - 1 \right] \frac{d}{dx} (e^{x} - 3)$$

$$(e^{x} - 3)^{2}$$

$$= (e^{x} - 3) \left[3x^{2} - \sin(x) \right] - \left[x^{3} + \cos(x) - 1 \right] \left(e^{x} \right)$$

 $(e^{x}-3)^{2}$

$$f'(x) = (e^{x} - 3)[3x^{2} - \sin(x)] - e^{x}[x^{3} + \cos(x) - 1]$$

$$(e^{x} - 3)^{2}$$

The Product Rule

$$\frac{d}{dx}\left[f(x)g(x)\right] = f(x)\frac{d}{dx}\left[g(x)\right] + g(x)\frac{d}{dx}\left[f(x)\right]$$

3) Let
$$f(x) = x^{s} e^{x} sec(x)$$
. Find $f'(x)$

$$f(x) = x^{5}$$

$$q(x) = e^{x} sec(x)$$

xs instead

$$f'(x) = x^{s} \frac{d}{dx} \left[e^{x} \sec(x) \right] + e^{x} \sec(x) \frac{d}{dx} \left(e^{x} \right)$$

$$= x^{s} \left[e^{x} \frac{d}{dx} \left(\sec(x) \right) + \sec(x) \frac{d}{dx} \left(e^{x} \right) \right] + e^{x} \sec(x) \frac{d}{dx} \left(e^{x} \right)$$

=
$$x \left[e^{x} \left(sec(x) tan(x) \right) + sec(x) \left(e^{x} \right) \right] + e^{x} sic(x) \left(e^{x} \right)$$

=
$$x^{s} \left[e^{x} sec(x) \left(tan(x) + 1 \right) \right] + e^{x} sec(x) \left(e^{x} \right)$$

=
$$x^{e}$$
 e sec(x)(tan(x)+1) + e sec(x)(ex)

$$f'(x) = e^{x} sec(x) \left[x^{2} \left(tan(x) + 1\right) + e^{x}\right]$$