Particle Filters

Bryan Minor November 1, 2011

Outline

- Introduction: why particle filters?
- Particle Filter Tutorial
 - Basics
 - Strengths/Weaknesses
- Current Uses of Particle Filters
- Tracking Using a Detector Particle Filter
 - Analysis
 - Discussion

Why Particle Filters?

- Useful tools for a variety of situations
 - Tracking
 - Image processing
 - Smart environments
 - Etc.
- Allow analysis of complex systems
 - Non-linear
 - Non-Gaussian

Sources: [1], [2], [9]

Outline

- Introduction: why particle filters?
- Particle Filter Tutorial
 - Basics
 - Strengths/Weaknesses
- Current Uses of Particle Filters
- Tracking Using a Detector Particle Filter
 - Analysis
 - Discussion

- Consider hidden Markov model (HMM)
 - Can observe outputs Y_i
 - Cannot observe states X_i

Tutorial Source: [2]

- Simple model of:
 - State equation (transition): $X_1 \sim \mu(x_1)$ and $f(x_k|x_{k-1})$ (for k > 1)
 - Observation equation: $g(y_k|x_k)$
 - Assume homogeneous case
 - Probability of transitions and observations independent of time

- Goal: estimate the state x_n, given all of the observations up to that point (y_{1:n})
- Alternatively, want to find the posterior distribution:

$$p(x_{1:n}|y_{1:n})$$

• Using Bayes:
$$p(x_{1:n}|y_{1:n}) = \frac{p(x_{1:n}, y_{1:n})}{p(y_{1:n})}$$

The joint probability can be written

$$p(x_{1:n}, y_{1:n}) = p(x_{1:n-1}, y_{1:n-1}) f(x_n | x_{n-1}) g(y_n | x_n)$$

• Thus:

$$p(x_{1:n}|y_{1:n}) = p(x_{1:n-1}, y_{1:n-1}) \frac{f(x_n|x_{n-1})g(y_n|x_n)}{p(y_n|y_{1:n-1})}$$

- Ultimately we end up with two steps:
 - Update step:

$$p(x_n|y_{1:n}) = \frac{g(y_n|x_n)p(x_n|y_{1:n-1})}{p(y_n|y_{1:n-1})}$$

Prediction step:

$$p(x_n|y_{1:n-1}) =$$

$$\int f(x_n|x_{n-1})p(x_{n-1}|y_{1:n-1})dx_{n-1}$$

Problem:

- Often, these distributions are intractable in closedform
- This is especially the case in non-linear and non-Gaussian models

Tutorial - Sequential Monte Carlo Methods (SMC Methods)

Solution:

- Approximate the distributions using a large number of samples (particles)
- As the number of particles N increases toward ∞, this converges to the actual distribution

- Sample sequentially from sequence of probability densities $\{\pi_n(x_{1:n})\}$
- We sample N independent random variables $X_{1:n}^i$ from each probability distribution and estimate the distribution as

$$\widehat{\pi}_n(x_{1:n}) = \frac{1}{N} \sum_{i=1}^N \delta_{X_{1:n}^i}(x_{1:n})$$

where $\delta_{X_{1:n}^i}(x_{1:n})$ is the delta at each sample

- Two Problems:
 - 1. It is difficult to sample from complex distributions
 - 2. Sampling is computationally complex (at least linear with n)

- Solution 1: Importance Sampling
 - Use an "importance density" and weighting to model density

$$\pi_n(x_{1:n}) = \frac{\gamma_n(x_{1:n})}{Z_n}$$

$$\pi_n(x_{1:n}) = \frac{w_n(x_{1:n})q_n(1_{1:n})}{Z_n}$$

where $w_n(x_{1:n})$ are weights, $q_n(1_{1:n})$ is the importance density, and Z_n a normalization factor

The density can then be estimated as

$$\hat{\pi}_n(x_{1:n}) = \sum_{i=1}^N W_n^i \delta_{X_{1:n}^i}(x_{1:n})$$

where
$$W_n^i = \frac{w_n(X_{1:n}^i)}{\sum_{j=1}^N w_n(X_{1:n}^j)}$$

 $^{\text{\tiny D}}$ Note: we want to pick q so that variance is minimized – pick something close to π

- Solution 2: Sequential Importance Sampling
 - Select importance distribution so that $q_n(x_{1:n}) = q_{n-1}(x_{1:n-1})q_n(x_n|x_{1:n-1})$
 - At first time step, sample from original distribution initial probability $q_1(x_1)$
 - Probabilities $q_k(x_k|X_{1:k-1}^i)$
 - The variance of these estimations often increases with n, so further refinement is needed

Resampling

- To reduce variance, sample again from the newly created approximation distributions
- Each particle is associated with a number of "offspring" samples to estimate the estimate distribution

Tutorial - SMC Algorithm

- At time n = 1:
 - 1. Sample $X_1^i \sim q_1(x_1)$
 - 2. Compute weights $w_1(X_1^i)$ and W_1^i
 - 3. Resample{ W_1^i, X_1^i } to obtain N particles{ $\frac{1}{N}, \bar{X}_1^i$ }
- At time n ≥ 2:
 - 1. Sample $X_n^i \sim q_n(x_n|\bar{X}_{1:n-1}^i)$ and set $X_{1:n}^i \leftarrow (\bar{X}_{1:n-1}^i, X_n^i)$
 - 2. Compute weights $\alpha_n(X_{1:n}^i)$ and W_n^i
 - 3. If needed, resample $\{W_n^i, X_{1:n}^i\}$ to obtain $\{\frac{1}{N}, \bar{X}_{1:n}^i\}$

Tutorial - Particle Filters

- Let the distribution to be modeled be $\pi_n(x_{1:n}) = p(x_{1:n}|y_{1:n})$ we can find a importance density $q_n(x_n|x_{1:n-1}) = q(x_n|y_n,x_{n-1})$ and weights $\alpha_n(x_{1:n}) = p(y_n|x_{n-1})$
- This allows us to create a particle filter algorithm for estimating the posterior distribution
- Note that q need only depend on the previous state and current observation

Tutorial - Particle Filter Algorithm

- At n = 1:
 - 1. Sample $X_1^i \sim q(x_1|y_1)$
 - 2. Compute weights

$$w_1(X_1^i) = \frac{\mu(X_1^i)g(y_1|X_1^i)}{q(X_1^i|y_1)} \qquad W_1^i$$

3. Resample $\{W_1^i, X_1^i\}$ to obtain N equal-weight particles $\{\frac{1}{N}, \bar{X}_1^i\}$

Tutorial - Particle Filter Algorithm

- For n ≥ 2:
 - 1. Sample $X_n^i \sim q(x_n|y_n, \bar{X}_{1:n-1}^i)$ and set $X_{1:n}^i \leftarrow (\bar{X}_{1:n-1}^i, X_n^i)$
 - 2. Compute weights

$$\alpha_n(X_{n-1:n}^i) = \frac{g(y_n|X_n^i)f(X_n^i|X_{n-1}^i)}{q(X_n^i|y_n, X_{n-1}^i)} \qquad W_n^i$$

3. Resample $\{W_n^i, X_{1:n}^i\}$ to find N equal-weight particles $\{\frac{1}{N}, \bar{X}_{1:n}^i\}$

Tutorial - Particle Filter Algorithm

 At each time step, we obtain estimate distributions:

$$\hat{p}(x_{1:n}|y_{1:n}) = \sum_{i=1}^{N} W_n^i \delta_{X_{1:n}^i}(x_{1:n})$$

$$\hat{p}(y_n|y_{1:n-1}) = \sum_{i=1}^{N} W_{n-1}^i \alpha_n(X_{n-1:n}^i)$$

Tutorial - Particle Filters

- Problems:
 - Even if optimal importance distribution is used, the model may not be efficient
 - Only most recent particles are sampled at time n

Tutorial - Particle Filters

- This basic algorithm can be enhanced:
 - Resample before computing weights (from independence) – auxiliary particle filtering
 - Resample-move algorithm using Markov Chain Monte Carlo (MCMC)
 - Introduces diversity, but same number of resampling steps
 - Block sampling resamples previous components in blocks

Outline

- Introduction: why particle filters?
- Particle Filter Tutorial
 - Basics
 - Strengths/Weaknesses
- Current Uses of Particle Filters
- Tracking Using a Detector Particle Filter
 - Analysis
 - Discussion

Current Particle Filter Uses

- Localizing acoustic signals [3]
- Geosciences data assimilation [4]
- Video surveillance [5]
- Automated vehicles [6]
- Tracking
 - In smart environments [7], [8]
 - Visual people tracking [9]

Outline

- Introduction: why particle filters?
- Particle Filter Tutorial
 - Basics
 - Strengths/Weaknesses
- Current Uses of Particle Filters
- Tracking Using a Detector Particle Filter
 - Analysis
 - Discussion

Paper Review

 "Robust Tracking-by-Detection using a Detector Confidence Particle Filter" [9]

Motivation

- Current approaches using detection algorithms are sparse and often erroneous (false positives/negatives)
- Many attempts rely on future data, preventing real-time analysis
 - Online applications require the Markovian properties, and thus can use a particle filter
- Most approaches rely on detector output, without any confidence information

Normal detector output (top) misses some objects, the authors' algorithm (bottom) is more accurate.

Contribution

- Provide online tracker algorithm
- Utilize person-specific classifiers for each detected person
 - Particle filters
- Utilize confidence of the detection algorithms

Detection Confidence

- Detection algorithms create a confidence density
 - Sliding-window approaches (e.g. HOG) use sampling from 3D grid
 - Feature-based approaches (e.g. ISM) use a vote of matching features
 - Both approaches find local maxima and suppress non-maxima
- Most simply output a high-confidence detection, but lose the information found in densities

Detection Confidence

 Authors' algorithm utilizes confidence densities from the intermediate steps

Detector confidence density for ISM; green boxes show high-confidence detections.

Particle Filter Trackers

- Separate particle filter tracker initialized for each detection
- State $x = \{x, y, u, v\}$ maps 2D position (x,y) and velocity (u,v)
- Utilize a bootstrap filter importance distribution is the state transition density:

$$(x,y)_t = (x,y)_{t-1} + (u,v)_{t-1} \Delta t + \varepsilon_{(x,y)}$$

$$(u,v)_t = (u,v)_{t-1} + \varepsilon_{(u,v)}$$

Particle Filter Trackers

 Particle filter weights for each particle i are formed as

$$w_t^{(\mathrm{i})} \propto p(y_t | \boldsymbol{x}_t^{(\mathrm{i})})$$

- since the previous weights are resampled and normalized at each step
- Trackers initialized for overlapping detections in subsequent frames
 - Only for objects appearing at the edge
- Position and size are estimated from the particles and iterative detections

Data Association

Each tracker and detection pair is scored using:

$$s(tr,d) = g(tr,d) \left(c_{tr}(d) + \alpha \sum_{p \in tr}^{N} p_{\mathcal{N}(d-p)} \right)$$

tr is the tracker of interest, d is the detection, p are the particles, and $p_{\mathcal{N}(d-p)}$ normal based on the distance from d to p

- g(tr,d) is a gating function that assesses the direction the person may move
- $c_{tr}(d)$ is a classifier trained for the tracker

Data Association

- The highest-scored tracker and detection pair is associated and removed from the grid, along with its corresponding tracker and detector rows/columns
- This is repeated until all scores fall below a threshold
 - Some trackers may not be paired to a detector

Weight Calculation

- Particle weights are calculated using three criteria:
 - Detection term: strong if a detection is associated with the tracker, weak otherwise
 - Detector confidence term: uses intermediate detector confidence (verified by comparison with existing detections)
 - Classifier term: uses output of classifiers (color and texture) associated with particle

Experimental Results

- Algorithm used for a variety of image sequences
- Authors determined that red-green-intensity and local binary pattern features provide the best accuracy/complexity ratio
- CLEAR MOT metrics used to evaluate
 - Scored on precision and accuracy (misidentifications and ID switches)

Experimental Results

- Accuracy ranges around 73% -86%, with approximately 65% precision
- Most errors caused by close proximity of other people and obscured views
- Authors compare to original algorithms for the sequences
 - State that their algorithm performs better
 - Generally appears to be the case based on table

Dataset	Prec.	Accur.	F. Neg.	F. Pos.	ID Sw.
ETH Centr. ETH Centr. [16]	70.0% 66.0%	72.9 % 33.8%	26.8% 51.3%	0.3% 14.7%	0 5
UBC Hockey UBC Hockey [20]	57.0% 51.0%	76.5% 67.8%	22.3% 31.3%	1.2% 0.0%	0 11
i-LIDS easy i-LIDS med* i-LIDS [12] i-LIDS [26]	67.0% 66.0% -	78.1% 76.0% 68.4% 55.3%	16.4% 22.0% 29.0% 37.0%	5.3% 2.0% 13.7% 22.8%	18 2 -
TUD Cross.	71.0%	84.3%	14.1%	1.4%	2
Soccer	67.0%	85.7%	7.9%	6.2%	4

Table 1: CLEAR MOT results on 5 datasets demonstrate the performance of our algorithm compared to state-of-the-art methods.

Conclusions

- Algorithm helps to improve accuracy and complexity by using
 - Particle filter models
 - Detection confidence densities
 - Tracker and classifier associations
- Results seem strong
- Future work should look at using information about the scene in the model

- Strengths:
 - Markov model reduces complexity of calculations
 - Relatively high accuracy
 - Tested on a wide variety of datasets
 - Good description of methods

- Weaknesses:
 - No analysis of computational complexity
 - No theoretical analysis or discussion of parameter determination in model
 - Slow frame rate (at 0.4-2 fps)
 - No statistical tests performed for thorough comparison to other methods

- Questions:
 - What other state-of-the-art methods are used?
 - Fuzzy logic
 - Auxiliary particle filters
 - Iterated likelihood weighting filter
 - What other applications can this be applied to?
 - Found some examples:
 - Power amplifiers
 - Medical diagnosis
 - Neural systems

Questions:

- Would this algorithm be improved by incorporating
 3D or scene information?
- Is this work only an extension of specific knowledge to others' methods? Is it really a new approach?
- What if scenes have more people in them?
- How does data quality affect performance?
- Could this model be extended to track non-human objects?

References

- [1] M. Bolic, "Theory and Implementation of Particle Filters," University of Ottawa, Nov. 2004
- [2] M. Sanjeev Arulampalam, S. Maskell, and N. Gordon, "A Tutorial on Particle Filtering and Smoothing: Fifteen years later," Version 1.1, Dec. 2008
- [3] F. Xavier, G. Matz, P. Gerstoft, and C. Mecklenbräuker, "Localization of acoustic sources using a decnetralized particle filter," *EURASIP Journal on Wireless Coummunications and Networking 2011*, Sept. 2011
- [4] P. J. van Leeuwen, "Nonlinear data assimilation in geosciences: an extremely efficient particle filter," *Quarterly Journal of the Royal Meteorological Society*, vol. 136, issue 653, pp. 1991-1999, Oct. 2010

References

- [5] V. Thomas and A. K. Ray, "Fuzzy Particle Filter for Video Surveillance," *Fuzzy Systems, IEEE Transactions on*, vol.19, no.5, pp.937-945, Oct. 2011
- [6] H. Loose, U. Franke, and C. Stiller, "Kalman Particle Filter for lane recognition on rural roads," *Intelligent Vehicles Symposium, 2009 IEEE*, pp. 60-65, June 2009
- [7] A. Crandal, "Behaviometrics for Multiple Residents in a Smart Environment", Ph.D. dissertation, Dept. Elect. Eng. And Comp. Sci., Washington State Univ., Pullman, WA, 2011
- [8] K. Bernardin, T. Gehrig, and R. Stiefelhagen, "Multi-level Particle Filter Fusion of Features and Cues for Audio-Visual Person Tracking," *Lecture Notes on Computer Science*, vol. 4625, pp. 70-81, 2008

References

[9] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, "Robust Tracking-by-Detection using a Detector Confidence Particle Filter," *Computer Vision, 2009 IEEE 12th International Conference on*, pp. 1515-1522, Oct. 2009