The AI Renaissance

Neural Networks

Kyler Nunery
June 1

How to spot opportunity:

Look for disrupting technology that creates a gap between how things have been done and how they can be done.

- Aaron Levie (Box CEO)

Neural Network Hello World

```
0000000000000000000000
22222222222222222
33333333333333333333333
444444444444444444
855553355555555555
フキーファフフフフフフフファチィアファ
99999999999999
```

MNIST

Neural Network

Ex: right side detector

Neural Network

Ex: right side detector

4 input 1 output neurons neuron

But wait, where did the weights come from?

Supervised Learning

Labelled Data

Unsupervised Learning

Neural Network

Ex: right side detector

Training Sets

Should be $\mathbf{0}$, so error is 0.33

Stochastic Gradient Descent

A harder problem: MNIST

784 input neurons

10 output neurons

28 x 28 784 pixels

Deep Neural Network

Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN)

Designing Neural Networks

Choosing "Hyperparameters"...

How many layers?

How many neurons in each layer?

What size convolution?

What normalization function?

What learning rate?

Designs that perform well...

LeNet

AlexNet

Caffe has a Model "Zoo"

Frameworks

PYTORCH

Caffe

Deep Learning in your browser

theano

Classification Instance Classification **Object Detection** + Localization **Segmentation** CAT, DOG, DUCK CAT, DOG, DUCK CAT CAT

Single object

Multiple objects

Presented clip

Clip reconstructed from brain activity

Not just image recognition

Instead of...

Pixels → numbers in array

How about...

Sound → numbers in array Think Shazam

Words → numbers in array Think Contract Review

Activity → number in array Think Fraud Detection

Use Cases

Instruct robots to perform tasks

Classify 'handedness' of galaxy images Predict crop yields, poverty from images

Detect engine noise indicating failure Detect electrical noise indicating failure Determine ordering supply chain parts

Recognize specific faces Detect people (not pets) security video Recognition specific voices Do 'Neural Forensic' police work Analyze text sentiment Generate audio from text

FMRI 'thought reader' reconstruction Identify radar signature of aircraft Detect internet traffic irregularities

Detect executing application irregularities

Determine meaning from text Deduce gene sequence manifestations

Count vehicles by FHWA class Determine calorie count of food Make product recommendations

Drive a car

Trade stocks

Recognize handwriting

Detect speech from audio

Filter SPAM

The cutting edge...

RNN - Recurrent Neural Network - reinforcement learning

Use the output of the network as feedback input

Where is all this going?

The Cutting Edge

GAN (Generative Adversarial Network) - can *generate* content

Silent video

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Dec 2016

Photorealistic Facial Texture Inference Using Deep Neural Networks

Dec 2016

Face Aging with Conditional Generative Adversarial Networks

Feb 2017

All in the last 6 months

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Mar 2017

Mind Blown

Tacotron: Towards End-To-End Speech Synthesis

Apr 2017

Learning to Discover Cross-Domain Relations with Generative Adversarial Networks May 2017

Fin

Source Actor

Real-time Reenactment

Reenactment Result

School bus Ostrich problem

