Elaborato di Fisica Computazionale

A.A 2024/2025

Andrea Rossi N. 897139

23 ottobre 2024

Indice

In	dice		iii
1	Intr	roduzione	1
	1.1	Struttura dell'elaborato	1
2	Nur	meri	3
	2.1	Rappresentazione	3
	2.2	Esercizi	3
		2.2.1 Precisione	3
		2.2.2 Propagazione degli errori	4
3	App	prossimazioni	7
	3.1	Introduzione	7
	3.2	Esercizi	7
		3.2.1 Funzione esponenziale	7
		3.2.2 Problema di Basilea	8
4	Mat	trici	11
	4.1	Introduzione	11
	4.2	Esercizi	11
		4.2.1 Soluzione di sistemi lineari con matrici triangolari	11
		4.2.2 Eliminazione di Gauss	13
		4.2.3 Decomposizione LU	14
5	Inte	polazione	17
	5.1	Implementazione preliminaria	17
	5.2	Esercizi	17
		5.2.1 Metodo diretto e polinomio di Newton	17
		5.2.2 Funzione di Runge	19
		5.2.3 Esercizio 3?	19

Introduzione |1

1.1 Struttura dell'elaborato

1.1 Struttura dell'elaborato . . 1

Nel seguente elaborato verrà illustrata l'analisi degli argomenti proposti nel corso di Fisica Computazionale.

Di seguito sono riportate le informazioni richieste per una fruizione completa del documento:

- Codice sorgente e dati Il codice sorgente ed i dati analizzati nei vari esercizi sono reperibili al seguente repository Github nelle cartelle dei capitoli omonimi.
- Lingua del codice La lingua utilizzata nel codice sorgente sar'a l'inglese per avere una maggiore coesione sintattica con i linguaggi di programmazione utilizzati.
- Introduzione dei moduli Verranno ripetute, sopratutto nella parte introduttiva dei vari capi- toli, i punti chiave recuperati dalle risorse disponibili sull'e-learning del corso. Esse saranno riassuntive favorendo le precisazioni e lo studio degli esercizi per ottenere un quadro completo dei vari argomenti.

Numeri 2

2.1 Rappresentazione 3

2.2.2 Propagazione degli errori 4

2.1 Rappresentazione

La rappresentazione numerica a cui il calcolo scientifico si riferisce principalmente è quella dei numeri reali; nell'ambito informatico tale rappresentazione utilizza il concetto di numeri a virgola mobile come standard: i numeri reali vengono rappresentati attraverso una notazione scientifica in base due tramite la seguente formula:

$$(-1)^S \left(1 + \sum_n M_n 2^{-n}\right) \cdot 2^E$$

Dove:

S è il valore booleano per il **segno** M è la parte decimale detta **mantissa** E = e - d è l'**esponente** con d (offset), e (esponente dopo offset)

2.2 Esercizi

2.2.1 Precisione

Nozioni teoriche

Definizione La *precisione di macchina* (o ϵ *di macchina*) è la differenza tra 1 e il numero successivo rappresentabile dato il numero di bit richiesti, esso sarà dunque:

$$\epsilon = 2^{-M}$$

Nello standard dei numeri a virgola mobile (IEE 754) si studiano principalmente due sottoclassi di numeri i cui nominativi nei linguaggi C-like sono:

float numero a singola precisione (32 bit di memoria):

- ► M: 23 bit
- ► *E*: 8 bit
- ▶ Valore massimo: $3.40 \cdot 10^{38}$
- ightharpoonup ϵ : $\sim 10^{-7}$

double numero a doppia precisione (64 bit di memoria):

- ► *M*: 52 bit
- ► *E*: 11 bit
- ► Valore massimo: $1.8 \cdot 10^{308}$
- ▶ ϵ : ~ 10^{-16}

Implementazione e osservazioni

File necessari sorgente: number_precision.c, dati: number_precision.dat

Il codice sorgente scritto utilizza funzionalità base del linguaggio C. ¹

Analisi e conclusioni Dai dati ottenuti si possono notare in maniera esaustiva varie proprietà dei numeri a virgola mobile:

- 1. Esiste un *valore massimo* sia per singola ($\sim 3 \cdot 10^{38}$) sia per doppia precisione ($\sim 2 \cdot 10^{308}$), superato esso viene mostrato un valore esatto *inf* definito dallo standard descritto in precedenza;
- 2. I numeri hanno un *errore macchina* dettato dalla capienza di memoria della mantissa;
- 3. Come mostrerà più precisamente la prossima sezione, l'errore viene *propagato* nella somma:
 - ▶ $1 + f_{mult}$ perde completamente l'informazione su f_{mult}
 - ▶ $1 + d_{mult}$ la conserva soltanto per le prime iterazioni;

2.2.2 Propagazione degli errori

Nozioni teoriche E' immediato notare come i numeri a virgola mobile possano essere rappresentati come variaili casuali con errore associato, derivante dalla precisione di macchina.

Prendiamo in esame una funzione f(x, y) dove x, y sono variabili casuali indipendenti con rispettivo errore σ_x , σ_y , allora l'errore su f sarà:

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2$$

Assumendo ora f = x + y otteniamo:

$$\sigma_f^2 = \sigma_x^2 + \sigma_y^2$$

Notiamo immediatamente quindi che se $x \gg y$ allora $\sigma_f \approx \sigma_x$ quindi si perde l'informazione su y nella somma.

Implementazione e osservazioni

File necessari sorgente: error_propagation.c

In base alle richieste l'output è il seguente:

1.
$$(0.7 + 0.1) + 0.3 = 0.7 + (0.1 + 0.3)$$
:

Output: 1.1000000238418579, 1.1000000238418579

La somma risulta associativa.

1: Per formattare il codice secondo la richiesta del problema si usi la definizione EXERCISE_FORMAT, altrimenti verrà utilizzata una formattazione più compatta per leggere in maniera più diretta i dati, si consiglia di utilizzare quest'ultima per comprendere l'analisi sottostante

2.
$$[10^{20} + (-10^{20})] + 1 = 10^{20} + [(-10^{20}) + 1]$$
:

Output: 1.0000000000000000, 0.0000000000000000

La somma risulta non associativa.

Analisi Utilizzando le formule discusse si può studiare la propagazione dell'errore nella somma. In essa la propagazione dipende dall'errore assoluto dei singoli addendi. Assumendo numeri a singola precisione e ricordando che $\sigma_x \approx \epsilon \sim 10^{-7}$, si ottengono i seguenti casi:

- 1. Per i valori 0.7, 0.1, 0.3 l'ordine di grandezza è lo stesso, quindi, tutti i valori possegono un errore assoluto $\Delta x \sim 10^{-8}$; propagando l'errore nella somma si ottiene dunque $\Delta_{output} \sim 3 \cdot \Delta x$ in accordo con i risultati.
- 2. Il risultato è describile come un caso limite nell'errore di propagazione rispetto alla singola precisione, infatti, 10^{20} avrà un errore assoluto di $\sim 10^{13}$ mentre 1 di 10^{-7} !

 La spiegazione dell'output ottenuto, dunque, si basa sulla differenza

tra ordini di grandezza dei diversi addendi:

- ▶ Nel termine a sinistra vengono sommati prima numeri con errore assoluto paragonabile. Si ottiene quindi ~ 0 che sarà poi sommato con un numero avente errore assoluto simile a 1.
- ▶ Nel termine a destra, invece, si sommano due valori con venti ordini di grandezza di differenza: l'errore assoluto di 10²⁰ prevale e si perde qualsiasi informazione nella somma per termini:

$$x \ll 10^{20} \Rightarrow x + 10^{20} \sim 10^{20}$$

Segue che 1 sarà ignorato nella somma a destra.

Conclusioni Nel manipolare numeri in un calcolatore l'operazione eseguita, la precisione e la differenza in ordine di grandezza dei numeri partecipanti devono essere tenuti sempre in considerazione specialmente nelle addizioni.

Approssimazioni

3

3.1 Introduzione

Le approssimazioni di funzioni rivestono un ruolo fondamentale in ambito scientifico, specialmente nella fisica computazionale, dove spesso non è possibile risolvere esattamente le equazioni che descrivono i fenomeni fisici.

Queste approssimazioni permettono di semplificare funzioni complesse attraverso metodi numerici, rendendo più accessibile la loro analisi e il calcolo delle soluzioni. Tali tecniche consentono di ottenere stime accurate di grandezze fisiche che altrimenti sarebbero difficili da trattare analiticamente, con una precisione dipendente dalla complessità del modello e dalla quantità di risorse computazionali disponibili.

Alcuni dei metodi più comuni includono l'approssimazione polinomiale; le serie di Taylor, argomento di questa sezione; o tecniche come l'interpolazione che sarà l'argomento della quinta sezione.

3.2 Esercizi

3.2.1 Funzione esponenziale

Nozioni teoriche La funzione esponenziale è esprimibile in serie di McLaurin come:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} + \epsilon$$

dove ϵ rappresenta l'errore commesso nell'approssimare la funzione:

$$\epsilon \approx \frac{x^{n+1}}{(n+1)!}$$

ove n è il grado della serie di Taylor.

Implementazione e osservazioni

File necessari sorgente: $\exp_approx.c$, dati: $\exp_approx_n.d$ at n=1,2,3,4

La funzione esponenziale ottenuta approssimando si può osservare in Figura 3.1.

1. L'errore scala effettivamente come $\frac{x^{n+1}}{(n+1)!}$ per valori vicini a 0 e per valori di n maggiori, come si può osservare in Figura 3.2.

Figura 3.1: Confronto tra funzione esponenziale e la n-esima approssimazione

Figura 3.2: Differenza tra errore teorico ed errore ottenuto

2. Sempre dalla Figura 3.2 si può notare come l'errore aumenti all'allontanarsi da x=0 e cominci a differire dall'errore teorico. Ciò si intuscisce studiando la condizione per cui continui $\epsilon_{teorico} \approx \epsilon_{reale}$ è soddisfatta:

$$\epsilon_{teorico} \ll 1$$

La condizione dipende da n e x per valori bassi di n, x^n prevale sul fattoriale e la differenza da $\epsilon_{teorico}$ è maggiormente visibile. Come si può vedere in Figura 3.2 per n=4 e l'errore tende a 0 molto più velocemente.

3.2.2 Problema di Basilea

Nozioni teoriche Il problema di Basilea consiste nel calcolare il valore della serie armonica generalizzata:

$$S(N) = \sum_{n=1}^{N} \frac{1}{n^2} \xrightarrow{N \to \infty} \zeta(2) = \frac{\pi^2}{6}$$

Osservazioni e conclusioni

Singola precisione I valori ottenuti per numeri a singola precisione sono:

$$S_{incr}(N) \approx 1.6447253$$
 per $N = 6000$

$$S_{inv}(N) \approx 1.6447674$$
 per $N = 6000$

Figura 3.3: $|S(N) - \pi^6/2|$ per valori grandi di N, si nota un singolare andamento della somma a partire da valori $x \approx 4000$, la stessa cosa non succede invece per numeri a doppia precisione

Il risultato è spiegabile in maniera equivalente a 2.2.2: l'ordine della somma conta nella propagazione di errori in numeri a virgola mobile. Infatti:

▶ Nella somma incrementale, il valore di partenza è $1/1^2 = 1$ (il valore *più grande* della somma con errore $\epsilon \approx 10^{-7}$), dato che la somma si propaga con gli errori assoluti degli addendi, considerando N = 4000:

$$\epsilon_{tot} \approx N\epsilon \approx 4 \cdot 10^{-4}$$

Che è circa lo stesso ordine di grandezza in cui inizia l'andamento costante della somma. Per N>4000 la somma perde le informazioni su numeri piccoli poichè l'errore propagato è maggiore del valore sommato.

▶ La somma invertita, invece, inizia con il valore più piccolo della serie, per esempio 1/4000² ≈ 6.25·10⁻8, e propaga con errori sempre maggiori ma inferiori alle cifre significative del valore successivo (più grande). Ciò comporta che la perdita di informazioni non è abbastanza significativa per causare errori di arrotondamento notevoli.

Doppia precisione In doppia precisione l'errore macchina è ancora minore e l'effetto diventa trascurabile subentrano ulteriori errori non causati dalla precisione del numero ma da limiti del programma scritto o del compilatore/interprete utilizzato.

In conclusione, si sottilinea, come nel capitolo precedente, l'importanza di considerare l'ordine della somma e la precisione del calcolo in problemi numerici.

$_{ m Matrici} |_4$

4.1 Introduzione

Struttura del codice Da questo capitolo in poi, il codice sorgente utilizzerà come linguaggio primario C++. La librerie necessarie prima di proseguire sono le seguenti:

- ► tensor.hpp versione modificata di matrix.h disponibile su elearning: l'header è stato generalizzato per interpretare sia vettori sia matrici rendendo le operazioni compatibili fra i due e facilitando il successivo svolgimento degli esercizi.
- ► tensor_utils.hpp contentente varie funzionalità utili e contente gli argomenti creati per ogni esercizio.

Le cartelle corrispettive dei vari esercisi conterranno solo la richiesta e i dati proposti, mentre le funzionalità interne degli algoritmi verranno implementate principalmente in tensor_utils.hpp per facilitare il riutilizzo nei moduli successivi.

Introduzione

4.2 Esercizi

4.2.1 Soluzione di sistemi lineari con matrici triangolari

Nozioni teoriche I sistemi lineari con matrici triangolari sono la tipologia di matrici più semplice da risolvere.

Preso ora una matrice *A* triangolare superiore:

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ 0 & a_{11} & a_{12} \\ 0 & 0 & a_{22} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$

Otteniamo immediatamente

$$x_2 = \frac{b_2}{a_{22}}$$

si sostituisce ora ricorsivamente x_2 nella seconda equazione e si ottiene

$$x_1 = \frac{b_1 - a_{12} x_2}{a_{11}}$$

e così via. Si ottiene quindi in generale la seguente formula, detta di *Backward substitution*:

4.1	Introduzione	11
4.2	Esercizi	11
4.2.1	Soluzione di sistemi	
	lineari con matrici	
	triangolari	11
4.2.2	Eliminazione di Gauss .	13
4.2.3	Decomposizione LU	14

$$x_i = \frac{1}{a_{ii}}(b_i - \sum_{j=i+1}^{N-1} a_{ij}x_j)$$

Implementazione e stile di struttura tipica del codice La funzione può essere trovata in *tensor_utils.hpp*.

```
2
3 * Viene utilizzato T generico per rappresentare la precisione
4 * delle entrate matriciali, riferirsi alla documentazione di
   * Tensor per ulteriori informazioni (tensor.hpp)
6
7
   * Grazie alla generalizzazione a tensore b viene rappresentata
   * anche come matrice se necessario
8
9
  template <typename T> Tensor<T> BackwardSubstitution(Tensor<T>
       const &A, Tensor<T> const&b)
11 {
12
           Negli algoritmi saranno presenti vari assert a fini di
13
           debugging, si aggiunge il parametro -DNDEBUG durante la
14
15
           compilazione per evitare questi ulteriori controlli
16
17
       assert(A.Cols() == A.Rows());
18
19
       assert(A.Rows() == b.Rows());
20
       assert(IsUpperTriangular(A));
21
       ... // Definizione delle variabili
22
23
24
       * Si itera rispetto alle colonne di b
25
       * si risolve il sistema per ogni colonna
26
27
       * utile per il calcolo della matrice inversa
       * nei prossimi esercizi
28
29
       for (int k = 0; k < b.Cols(); k++)</pre>
30
31
           // Formula di backward substitution citata precedentemente
32
           for (int i = N - 1; i >= 0; i--)
33
34
               sum = 0:
35
               for (int j = i + 1; j \le N - 1; j++)
36
37
                   sum += A(i, j) * solution(j, k);
38
39
40
               solution(i, k) = (b(i, k) - sum) / A(i, i);
41
42
           }
43
       }
44
       return solution;
45
46 }
```

Analisi risultati

File necessari backward_subst.cpp

Risultato e controllo Inserendo U e b proposti dall'esercizio si ottiene il seguente risultato:

$$\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix} \quad \Rightarrow \quad \mathbf{X} = \begin{bmatrix} -5 \\ 7 \\ 4 \end{bmatrix}$$

Per controllare il risultato basta moltiplicare U per il risultato ottenuto e verificare che sia uguale a b.

4.2.2 Eliminazione di Gauss

Nozioni teoriche Il metodo di eliminazione di gauss utilizza le operazioni elementari delle matrici le quali lasciano invariate le soluzioni del sistema lineare. L'idea è quella di ridurre la matrice A in una matrice triangolare superiore U e di applicare a b le stesse operazioni elementari. Successivamente è possibile applicare la backward substitution per trovare la soluzione del sistema.

Prendiamo una matrice A generica 3×3 senza perdere di generalità:

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix}$$

possiamo applicare le seguenti operazioni elementari, ottenendo

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} \\ 0 & a'_{11} & a'_{12} \\ 0 & a'_{21} & a'_{22} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_0 \\ b'_1 \\ b'_2 \end{bmatrix}$$

iterando il processo si ottiene la matrice U triangolare superiore e la matrice b:

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} \\ 0 & a'_{11} & a'_{12} \\ 0 & 0 & a''_{22} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_0 \\ b'_1 \\ b''_2 \end{bmatrix}$$

In generale si otterrà che per a e dunque per b:

$$a_{ij} = a_{ij} - \frac{a_{ik}}{a_{kk}} a_{kj} \qquad b_i = b_i - \frac{a_{ik}}{a_{kk}} b_k$$

Estendendo *b* ad una matrice, la formula diventa:

$$b_{ij} = b_{ij} - \underbrace{\frac{a_{ik}}{a_{kk}}}_{l} b_{kj}$$

Implementazione Evitando verbosità la parte fondamentale del codice è la seguente:

```
... // Asserts e definizioni
       // Utilizziamo le formule sopra citate
       for (int j = 0; j < A.Rows() - 1; j++)
           for (int i = j + 1; i < A.Cols(); i++)</pre>
               // lambda
               scalar = -A(i, j) / A(j, j);
10
               // Effettuiamo la stessa combinazione lineare
11
               // sulle righe
12
               A.LinearCombRows(i, j, scalar, i);
13
               b.LinearCombRows(i, j, scalar, i);
14
15
           }
16
       }
17
       // Effettuiamo la backward substitution
18
       return BackwardSubstitution(A, b);
19
```

Analisi risultati

File necessari gauss_elim.cpp

Soluzione Data la matrice A e il vettore b proposti dall'esercizio si ottiene il seguente risultato:

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 8 \\ -2 \\ -2 \end{bmatrix} \quad \Rightarrow \quad \mathbf{X} = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix}$$

Il controllo si svolge in maniera equivalente al precedente esercizio.

4.2.3 Decomposizione LU

Nozioni teoriche Il compito della decomposizione LU di una matrice è il seguente: prendiamo una matrice A invertibile, allora essa è scomponibile in due matrici triangolari L, U inferiori e superiori rispettivamente:

$$A = LU = \begin{bmatrix} L_{00} & 0 & 0 \\ L_{10} & L_{11} & 0 \\ L_{20} & L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} U_{00} & U_{01} & U_{02} \\ 0 & U_{11} & U_{12} \\ 0 & 0 & U_{22} \end{bmatrix}$$

La decomposizione LU non è unica quindi si assume per semplicità che la diagonale sia unitaria ($L_{ii} = 1$).

Moltiplicando L ed U si ottiene una matrice che può essere ridotta tramite il metodo di Gauss: per comparazione si ottiene che la matrice ridotta è U e i termini di L sono i termini scalari moltiplicativi utilizzati per ridurla.

Ottenuta la decomposizione e provando a cercare di risolvere un sistema lineare si otteniene:

$$AX = b \Rightarrow LUX = b \Rightarrow L(UX) = b$$

Concludiamo che una matrice decomposta può essere risolta, risolvendo i sistemi lineari associati alle matrici triangolari utilizzando i metodi di backward e forward substitution.

Implementazione

File necessari tensor_utils.hpp

Conviene in questo algoritmo definire la seguente alias.

```
1 // Coppia di tensori L e U
2 template <typename T>
3 using TensorPair = std::pair<Tensor<T>, Tensor<T>;
```

La decomposizione LU può essere implementata come segue:

```
1 template <typename T> TensorPair<T> LUDecomposition(Tensor<T>
       const &A)
2
3
       ... // Asserts
4
5
       T scalar;
       auto L = Tensor<T>::SMatrix(A.Rows());
6
8
       // U parte come una "deep copy" di A
       auto U = Tensor<T>(A);
9
10
       // Scegliamo diagonale di L unitaria
11
       for (int i = 0; i < U.Rows(); i++)</pre>
12
13
14
           L(i, i) = 1;
15
       }
16
       // Effettuiamo l'eliminazione di gauss
17
       for (int j = 0; j < U.Rows() - 1; j++)
18
19
           for (int i = j + 1; i < U.Cols(); i++)</pre>
20
21
                scalar = -U(i, j) / U(j, j);
22
23
                // Lo scalare
                                effettivamente un elemento di L
24
                L(i, j) = -scalar;
25
26
                // Riduciamo U
27
                U.LinearCombRows(i, j, scalar, i);
28
29
           }
30
31
       return std::make_pair(L, U);
32
33 }
```

Presa una matrice decomposta tramite LU allora possiamo ottenerne facilmente il determinante (considerando che il determinante di una matrice triangolare è il prodotto degli elementi sulla sua diagonale).

$$\det A = \det LU = \det L \det U = \prod_{i=0}^{N-1} U_{ii}$$

```
1 template <typename T> T DeterminantFromLU(Tensor<T> const &A)
2
       // Prendiamo il secondo elemento della coppia
       auto U = std::get<1>(LUDecomposition(A));
      T det = 1;
      // Il determinante di una matrice triangolare
      // viene calcolato dagli elementi sulla diagonale
       for (int i = 0; i < A.Rows(); i++)
10
           // Assumiamo che L abbiamo 1 sulla diagonale
11
           det *= U(i, i);
12
13
       }
14
15
       return det;
16 }
```

Analisi risultati

File necessari lu_decomp.cpp

Eseguendo il codice si ottiene il seguente risultato:

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0.5 & 1 & 0 \\ 0.5 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0.5 & -2.5 \\ 0 & 0 & 8 \end{bmatrix}$$

Da cui segue che il determinante è 8 come risulta dall output.

Intepolazione 5

5.1 Implementazione preliminaria

Prima di procedere è necessario specificare varie funzioni/classi appositamente create per la scrittura del codice e una più facile implementazione degli algoritmi.

Classe FunctionData La classe FunctionData ha lo scopo di conservare i dati numerici ottenuti dalla computazione delle varie funzioni (in questo modulo principalmente polinomi) ¹.

Essa ha come membri due vettori di tipo std::vector che conservano le informazioni di x e f(x).

Classe Range La classe Range ha invece lo scopo di rappresentare una successione di punti $\{a_i\}_{i\in(a,b)\subset\mathbb{R}}$ (la rappresentazione prevede intervalli inclusivi ed esclusivi).

Scopo principale della classe sarà quello di generare nodi di distanza finita e nodi di Chebyshev.

Ulteriori informazioni sulle due classi possono essere trovate nella documenta- zione dedicata negli appositi header function_data.hpp *e* range.hpp.

5.2 Esercizi

5.2.1 Metodo diretto e polinomio di Newton

Nozioni teoriche Il metodo più semplice per ottenere il polinomio di interpolazione è quello di ottenere

Implementazione metodo diretto

File necessari interpolation.hpp

Come primo step si ottiene la matrice di Vandermonde dalla sua definizione:

```
1
2  // "values" sono i valori {x_1, x_2, ...} da inserire
3  template <typename T>
4  tensor::Tensor<T> VandermondeMatrix(std::vector<T> const &values)
      {
         auto mat = tensor::Tensor<T>::SMatrix(values.size());
6
7  for (int i = 0; i < values.size(); i++) {
         for (int j = 0; j < values.size(); j++) {</pre>
```

5.1	Implementazione	
	preliminaria	17
5.2	Esercizi	17
5.2.1	Metodo diretto e	
	polinomio di Newton	17
5.2.2	Funzione di Runge	19
5.2.3	Esercizio 3?	19

1: Nell'implementazione della classe può essere trovata anche un'implementazione apposita di un iterator per facilitare l'utilizzo dei valori quando ciclati.

Successivamente si risolve il sistema lineare utilizzando il metodo di Gauss (invertire la matrice sarebbe più dispendioso computazionalmente).

```
template <typename T>
std::vector<T> DirectCoefficients(func::FunctionData<T> const &f)
{
  auto f_tensor = tensor::Tensor<T>::FromData(f.F());

tensor::Tensor<T> vande_matrix = VandermondeMatrix(f.X());

tensor::Tensor<T> values =
  tensor::GaussianElimination(vande_matrix, f_tensor);

// Trasforma l'oggetto tensore in std::vector
  return values.RawData();
}
```

Implementazione metodo di Newton Analogamente al metodo diretto calcoliamo i coefficienti per il polinomio di newton seguendo la formula citata precedentemente otteniamo.

```
1 template <typename T>
  std::vector<T> NewtonCoefficients(func::FunctionData<T> const &f)
     int N = f.Size();
3
4
     std::vector<T> a(N);
5
     auto A = tensor::Tensor<double>::SMatrix(N);
8
     // Rempiamo la prima colonna con i valori della funzione
9
     for (int i = 0; i < N; i++) {</pre>
10
11
      A(i, 0) = f.F(i);
12
13
     // Calcoliamo le differenze divise
14
     for (int j = 1; j < N; j++) {
15
       for (int i = 0; i < N - j; i++) {
16
         A(i, j) = (A(i + 1, j - 1) - A(i, j - 1)) / (f.X(i + j) - f.
17
       X(i));
18
       }
     }
19
20
     // Estrapoliamo i coefficienti
21
22
     for (int i = 0; i < N; i++) {
       a[i] = A(0, i);
23
     }
24
25
     return a;
26
27 }
```

Considerazioni L'algoritmo è direttamente implementato rispetto a lla logica che abbiamo considerato per calcolare i coefficienti di Newton. Uno svantaggio di questo algoritmo sta nell utilizzo dell'oggetto Tensor, infatti il funzionamento interno della classe traduce una matrice 2x2 in una vettore contiguo: questo permette un ottimizzazzione della cache della cpu rispetto ad un vettore di vettori, ma nel caso utilizzato la matrice è solo occupata a metà, lasciando inizializzati a 0 molti valori non utilizzati nella computazione dei coefficient. Un modo per evitare ciò sarebbe per esempio quello di implementare un oggetto ad hoc per il problema, ai fini concettuali, però, l'implementazione sarebbe la medesima.

Analisi dei risultati Dalla implementazione dei metodi sopra citati e dai dati forniti dal problema otteniamo le seguenti interpolazioni:

5.2.2 Funzione di Runge

5.2.3 Esercizio 3?

Greek Letters with Pronunciations

Character	Name	Character	Name
α	alpha <i>AL-fuh</i>	ν	nu NEW
β	beta BAY-tuh	ξ , Ξ	xi KSIGH
γ, Γ	gamma GAM-muh	o	omicron OM-uh-CRON
δ , Δ	delta DEL-tuh	π , Π	pi <i>PIE</i>
ϵ	epsilon EP-suh-lon	ho	rho ROW
ζ	zeta ZAY-tuh	σ, Σ	sigma SIG-muh
η	eta AY-tuh	τ	tau TOW (as in cow)
θ, Θ	theta THAY-tuh	v, Υ	upsilon OOP-suh-LON
ι	iota eye-OH-tuh	ϕ , Φ	phi FEE, or FI (as in hi)
κ	kappa KAP-uh	χ	chi KI (as in hi)
λ , Λ	lambda <i>LAM-duh</i>	ψ , Ψ	psi SIGH, or PSIGH
μ	mu MEW	ω, Ω	omega oh-MAY-guh

Capitals shown are the ones that differ from Roman capitals.