Lecture 26: SPICE results

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

SPICE

- Simulation Program with Integrated Circuit Emphasis
 - Originally developed at UC Berkeley (first release in 1971)
 - It was a term project in a graduate course!

Is this SPICE? Not in this context... (Google Images)

Larry Nagel, the main author of SPICE (Google Images)

MOS IV (1/3)

- BSIM3 model (NMOS)
 - Tox = 9 [nm]
 - Vth0 = 0.6322 [V] for long-channel devices
- BSIM3 model (PMOS)
 - Tox = 9 [nm]
 - Vth0 = -0.6732829 [V] for long-channel devices

- Note that these models also consider many parasitic effects.
 - Perfect agreement with our simple results cannot be expected!

Chenming Hu (Google Images)

MOS IV (2/3)

- NMOS IV curve (L = 0.5 microns, W = 10 microns)
 - Channel-length modulation is visible.

MOS IV (3/3)

- PMOS IV curve (L = 0.5 microns, W = 10 microns)
 - Certainly, its current level is smaller than the NMOS.

Transconductance

- NMOS g_m (L = 0.5 microns, W = 10 microns)
 - Curve at $V_{DS} = \frac{1}{2}V_{DD}$.

Common-source (1/3)

- Consider a CS stage (L = 0.5 microns, W = 10 microns)
 - The VTC is shown for different load resistances, $1~\mathrm{k}\Omega$, $10~\mathrm{k}\Omega$, and $100~\mathrm{k}\Omega$.

Common-source (2/3)

- From the previous curve,
 - We can calculate the voltage gain.

Common-source (3/3)

- Checking directly with transient simulation
 - Load resistance of $10 \text{ k}\Omega$ is used. ($V_{GS} = 0.8 \text{ V}$, amplitude of 10 mV)

Measuring impedances

- Applying a small-signal voltage excitation
 - Amplitude was 10 mV.
 - Current has an amplitude of 1.1 μA.

- Therefore, $9 k\Omega$ of output resistance

 V_{DD}

Setting for calculating R_{out}

time [sec]

CMOS inverter

- Width ratio = 1:2 (NMOS:PMOS)
 - Improved VTC, as expected

 V_{in} [V]

Transient simulation (1/2)

- Load capacitor of 20 fF
 - 1 GHz signal

Transient simulation (2/2)

Higher value of load capacitance, 200 fF

Final exam.

- The day after tomorrow!
 - June 10 (Wed)
 - PM 01:00 ~ 02:15 (Class time)
 - In this time, we will have an ordinary paper exam.
 - Again, no calculator, no cell phone, ...