RECEIVED CENTRAL FAX CENTER JAN 0 9 2007

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A composition comprising:
- (a) at least one 0.1 to 1000 milligrams of a sterol absorption represented by Formula (II):

or pharmaceutically acceptable salts or solvates thereof:

$$\begin{array}{c|c}
 & R & R^{2} \\
 & Ar^{1}-X_{m}-(C)_{q}-Y_{n}-(C)_{r}-Z_{p} & Ar^{3} \\
\hline
 & R^{1} & R^{3} \\
\hline
 & Ar^{2} & (I)
\end{array}$$

or isomers thereof, or pharmacoutically acceptable salts or solvates of the compounds of Formula (I) or of the isomers thereof, wherein:

Ar and Ar are independently selected from the group consisting of aryl-and R substituted aryl;

Ar is aryl or R -substituted aryl;

X, Y and Z are independently selected from the group consisting of CH2, CH(lower alkyl) and C(dilower alkyl):

R-and R²-are independently selected from the group consisting of OR⁶, $-O(CO)R^{6}, -O(CO)OR^{9} \text{ and } -O(CO)NR^{6}R^{7};$

R⁺-and R²-are independently-selected from the group-consisting of hydrogen, lower alkyl and aryl;

a is 0 or 1;

r is 0 or 1:

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

 R^4 is 1-5 substituents independently selected from the group consisting of lower alkyl, OR^6 , $O(CO)R^6$, $O(CO)OR^4$, $O(CH_2)_{1.5}OR^6$, $O(CO)NR^6R^7$, $O(CO)NR^6R^7$, $O(CO)NR^7$, $O(CO)NR^$

R⁵-is 1-5 substituents independently selected from the group consisting of OR⁶, O(CO)R⁶, O(CO)OR⁹, O(CH₂)₁₋₅OR⁶, O(CO)NR⁶R⁷, NR⁶R⁷, NR⁶(CO)R⁷, NR⁶(CO)OR⁹, NR⁶(CO)NR⁷R⁸, NR⁶SO₂R⁹, COOR⁶, CONR⁶R⁷, COR⁶, SO₂NR⁶R⁷, S(O)₀₋₂R⁹, O(CH₂)₁₋₁₀-COOR⁶, O(CH₂)₁₋₁₀-CONR⁶R⁷, (lower-alkylene)COOR⁶ and CH=CH-COOR⁶;

R⁶, R²-and R⁸-are independently-selected from the group-consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and

R is lower alkyl, aryl or aryl-substituted lower alkyl; and

- (b) 1 to 1000 milligrams of aspirin.
- 2. (Canceled).
- (Canceled).
- 4. (Withdrawn) The composition according to claim 1, wherein the at least one sterol absorption inhibitor is represented by Formula (III):

$$Ar^{1}-A-Y_{q}-\overset{R^{1}}{\overset{1}{C}}-Z_{p}$$

$$N$$

$$Ar^{2}$$
(III)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (III) or of the isomers thereof, or prodrugs of the compounds of Formula (III) or of the isomers, salts or solvates thereof, wherein, in Formula (III) above:

Ar is R -substituted aryl;

Ar is R -substituted aryl;

Ar³ is R⁵-substituted aryl;

Y and Z are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C(dilower alkyl)-;

A is selected from -O-, -S-, -S(O)- or -S(O)₂-;

R¹ is selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)OR⁹ and

-O(CO)NR⁶R⁷; R² is selected from the group consisting of hydrogen, lower alkyl and aryl; or R¹ and R² together are =O;

q is 1, 2 or 3;

p is 0, 1, 2, 3 or 4;

R⁵ is 1-3 substituents independently selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)OR⁹, -O(CH₂)₁₋₅OR⁹, -O(CO)NR⁶R⁷, -NR⁶R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)OR⁹, -NR⁶(CO)NR⁷R⁸, -NR⁶SO₂-lower alkyl, -NR⁶SO₂-aryl, -CONR⁶R⁷, -CONR⁶R⁷, -SO₂NR⁶R⁷, S(O)₀₋₂-alkyl, S(O)₀₋₂-aryl, -O(CH₂)₁₋₁₀-COOR⁶, -O(CH₂)₁₋₁₀CONR⁶R⁷, o-halogeno, m-halogeno, o-lower alkyl, m-lower alkyl, -(lower alkylene)-COOR⁶, and

-CH=CH-COOR⁶;

R³ and R⁴ are independently 1-3 substituents independently selected from the group consisting of R⁵, hydrogen, p-lower alkyl, aryl, -NO₂, -CF₃ and p-halogeno;

R⁶, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and

R⁹ is lower alkyl, aryl or aryl-substituted lower alkyl.

5. (Withdrawn) The composition according to claim 1, wherein the at least one sterol absorption inhibitor is represented by Formula (IV):

(IV)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (IV) or of the isomers thereof, or prodrugs of the compounds of Formula (IV) or of the isomers, salts or solvates thereof, wherein, in Formula (IV) above:

A is selected from the group consisting of R²-substituted heterocycloalkyl, R²-substituted heterocycloalkyl, R²-substituted benzofused heterocycloalkyl, and R²-substituted benzofused heterocycloalkyl;

Ar is aryl or R -substituted aryl;

Ar² is aryl or R⁴-substituted aryl;

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro

group
$$(R^7)_b$$
 $(R^6)_a$; and

R is selected from the group consisting of:

-(CH₂)_q-, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1;

 $-(CH_2)_c$ -G- $(CH_2)_r$ -, wherein G is -O-, -C(O)-, phenylene, -NR⁸- or -S(O)₀₋₂-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6;

-(C,-C, alkenylene)-; and

-(CH₂)_g-, wherein V is C₃-C₆ cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6;

R⁵ is selected from:

$$\begin{array}{c} \cdot \\ -\dot{C}H_{-}, \ -\dot{C}(C_{1}-C_{6} \ alkyl)_{-}, \ -\dot{C}F_{-}, \ -\dot{C}(OH)_{-}, \ -\dot{C}(C_{6}H_{4}-R^{9})_{-}, -\dot{N}_{-}, \ or \ -\overset{1}{\sim}NO^{-} \ ; \end{array}$$

 R^6 and R^7 are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆ alkyl)-, -C(di-(C₁-C₆) alkyl), -CH=CH- and

-C(C_1 - C_6 alkyl)=CH-; or R⁵ together with an adjacent R⁶, or R⁵ together with an adjacent R⁷, form a -CH=CH- or a -CH=C(C_1 - C_6 alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R^6 is -CH=CH- or -C(C_1 - C_6 alkyl)=CH-, a is 1; provided that when R^7 is -CH=CH- or -C(C_1 - C_6 alkyl)=CH-, b is 1; provided that when a is 2 or 3, the R^6 's can be the same or different; and provided that when b is 2 or 3, the R^7 's can be the same or different:

and when Q is a bond, R also can be selected from:

where M is -O-, -S-, -S(O)- or -S(O)₂-;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆ alkyl)- and -C(di-(C₁-C₆) alkyl);

R¹⁰ and R¹² are independently selected from the group consisting of -OR¹⁴, -O(CO)R¹⁴, -O(CO)OR¹⁶ and -O(CO)NR¹⁴R¹⁵;

 R^{11} and R^{13} are independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl and aryl; or R^{10} and R^{11} together are =0, or R^{12} and R^{13} together are =0;

d is 1, 2 or 3;

h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4; provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6; provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1:

j and k are independently 1-5, provided that the sum of j, k and v is 1-5;

 R^2 is 1-3 substituents on the ring carbon atoms selected from the group consisting of hydrogen, (C_1-C_{10}) alkyl, (C_2-C_{10}) alkenyl, (C_2-C_{10}) alkynyl, (C_3-C_6) cycloalkyl, (C_3-C_6) cycloalkenyl, R^{17} -substituted aryl, R^{17} -substituted benzyl, R^{17} -substituted benzyl, R^{17} -substituted benzyloxy, R^{17} -substituted aryloxy, halogeno, $-NR^{14}R^{15}$, $NR^{14}R^{15}(C_1-C_6)$ alkylene)-, $NR^{14}R^{15}C(O)(C_1-C_6)$ alkylene)-, $-NHC(O)R^{16}$, OH, C_1-C_6 alkoxy, $-OC(O)R^{16}$, $-COR^{14}$, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy (C_1-C_6) alkyl, (C_3-C_6) alkyl, $(C_3-C_$

substituent on a heterocycloalkyl ring, R^2 is as defined, or is =0 or $C^{(CH_2)_{1-2}}$; and where R^2 is a substituent on a substitutable ring nitrogen, it is hydrogen, (C_1-C_6) alkyl, aryl, (C_1-C_6) alkoxy, aryloxy, (C_1-C_6) alkylcarbonyl, arylcarbonyl, hydroxy, $-(CH_2)_{1-6}$ CONR C^{18} C^{18} ,

wherein J is -O-, -NH-, -NR 18- or -CH₂-;

R³ and R⁴ are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of (C₁-C₆)alkyl,

 $-OR^{14}, -O(CO)R^{14}, -O(CO)OR^{16}, -O(CH_2)_{1-5}OR^{14}, -O(CO)NR^{14}R^{15}, -NR^{14}R^{15}, -NR^{14}(CO)R^{15}, -NR^{14}(CO)OR^{16}, -NR^{14}(CO)NR^{15}R^{19}, -NR^{14}SO_2R^{16}, -COOR^{14}, -CONR^{14}R^{15}, -COR^{14}, -SO_2NR^{14}R^{15}, S(O)_{0-2}R^{16}, -O(CH_2)_{1-10}-COOR^{14}, -O(CH_2)_{1-10}CONR^{14}R^{15}, -(C_1-C_6 alkylene)-COOR^{14}, -CH=CH-COOR^{14}, -CF_3, -CN, -NO_2 and halogen;$

 R^8 is hydrogen, (C_1-C_6) alkyl, aryl (C_1-C_6) alkyl, $-C(O)R^{14}$ or $-COOR^{14}$;

R⁹ and R¹⁷ are independently 1-3 groups independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, -COOH, NO₂,

-NR 14 R 15, OH and halogeno;

 R^{14} and R^{15} are independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, aryl and aryl-substituted (C_1-C_6) alkyl;

R¹⁶ is (C₁-C₆)alkyl, aryl or R¹⁷-substituted aryl;

R¹⁸ is hydrogen or (C₁-C₆)alkyl; and

 R^{19} is hydrogen, hydroxy or (C_1-C_6) alkoxy.

6. (Withdrawn) The composition according to claim 1, wherein the at least one sterol absorption inhibitor is represented by Formula (V):

$$Ar^{1} \underset{R_{1}}{\underbrace{X_{n} \overset{R}{\underset{R_{1}}{|}} X_{n} \overset{S(O)}{\underset{O}{\underset{N}{\bigvee}}} Ar^{2}}}$$

(V)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (V) or of the isomers thereof, or prodrugs of the compounds of Formula (V) or of the isomers, salts or solvates thereof, wherein, in Formula (V) above:

Ar is aryl, R -substituted aryl or heteroaryl;

Ar is aryl or R -substituted aryl:

Ar is aryl or R -substituted aryl;

X and Y are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C(dilower alkyl)-;

R is -OR⁶, -O(CO)R⁶, -O(CO)OR⁹ or -O(CO)NR⁶R⁷; R¹ is hydrogen, lower alkyl or aryl; or R and R¹ together are =O;

q is 0 or 1;

r is 0, 1 or 2;

m and n are independently 0, 1, 2, 3, 4 or 5; provided that the sum of m, n and q is 1, 2, 3, 4 or 5;

R⁴ is 1-5 substituents independently selected from the group consisting of lower alkyl, -OR⁶, -O(CO)R⁶, -O(CO)OR⁹, -O(CH₂)_{1.5}OR⁶, -O(CO)NR⁶R⁷,

 $-NR^6R^7$, $-NR^6(CO)R^7$, $-NR^6(CO)OR^9$, $-NR^6(CO)NR^7R^8$, $-NR^6SO_2R^9$, $-COOR^6$,

-CONR⁶R⁷, -COR⁶, -SO₂NR⁶R⁷, S(O)₀₋₂R⁹, -O(CH₂)₁₋₁₀-COOR⁶,

-O(CH₂)₁₋₁₀CONR⁶R⁷, -(lower alkylene)COOR⁶ and -CH=CH-COOR⁶;

 R^5 is 1-5 substituents independently selected from the group consisting of $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$, $-O(CH_2)_{1-5}OR^6$, $-O(CO)NR^6R^7$, $-NR^6R^7$, $-NR^6(CO)R^7$, $-NR^6(CO)OR^9$, $-NR^6(CO)NR^7R^8$, $-NR^6SO_2R^9$, $-COOR^6$, $-CONR^6R^7$, $-COR^6$, $-SO_2NR^6R^7$, $S(O)_{0.2}R^9$, $-O(CH_2)_{1-10}$ - $-COOR^6$, $-O(CH_2)_{1-10}CONR^6R^7$, $-CF_3$, -CN, $-NO_2$, halogen, -(lower alkylene)COOR⁶ and $-CH=CH-COOR^6$;

R⁶, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl;

R⁹ is lower alkyl, aryl or aryl-substituted lower alkyl; and

 R^{10} is 1-5 substituents independently selected from the group consisting of lower alkyl, $-OR^6$, $-O(CO)OR^6$, $-O(CO)OR^9$, $-O(CH_2)_{1-5}OR^6$, $-O(CO)NR^6R^7$,

 $-NR^6R^7$, $-NR^6(CO)R^7$, $-NR^6(CO)OR^9$, $-NR^6(CO)NR^7R^8$, $-NR^6SO_2R^9$, $-COOR^6$,

 $\hbox{-CONR}^6R^7, \hbox{-COR}^6, \hbox{-SO}_2\hbox{NR}^6R^7, \hbox{-S(O)}_{0\text{-}2}R^9, \hbox{-O(CH}_2)_{1\text{-}10}\hbox{-COOR}^6,$

 $-O(CH_2)_{1-10}CONR^6R^7$, $-CF_3$, -CN, $-NO_2$ and halogen.

7. (Withdrawn) The composition according to claim 1, where the at least one sterol absorption inhibitor is represented by Formula (VI):

$$R_4$$
 R_1
 R_2
 R_2
 R_3
 R_{20}
 R_{21}

(VI)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (VI) or of the isomers thereof, or prodrugs of the compounds of Formula (VI) or of the isomers, salts or solvates thereof, wherein in Formula (VI) above:

R₁ is

R₂ and R₃ are independently selected from the group consisting of:
-CH₂-, -CH(lower alkyl)-, -C(di-lower alkyl)-, -CH=CH- and -C(lower alkyl)=CH-; or
R₁ together with an adjacent R₂, or R₁ together with an adjacent R₃, form a
-CH=CH- or a -CH=C(lower alkyl)- group;

u and v are independently 0, 1, 2 or 3, provided both are not zero; provided that when R₂ is -CH=CH- or -C(lower alkyl)=CH-, v is 1; provided that when R₃ is -CH=CH- or -C(lower alkyl)=CH-, u is 1; provided that when v is 2 or 3, the R₂'s can be the same or different; and provided that when u is 2 or 3, the R₃'s can be the same or different:

R4 is selected from B-(CH2)_mC(O)-, wherein m is 0, 1, 2, 3, 4 or 5; B-(CH2)q-, wherein q is 0, 1, 2, 3, 4, 5 or 6;

B- $(CH_2)_e$ -Z- $(CH_2)_r$, wherein Z is -O-, -C(O)-, phenylene, -N(R8)- or -S(O)₀₋₂-, e is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5, provided that the sum of e and r is 0, 1, 2, 3, 4, 5 or 6;

B-(C2-C6 alkenylene)-;

-(C4-C6 alkadienylene)-;

B-(CH₂)t-Z-(C₂-C₆ alkenylene)-, wherein Z is as defined above, and wherein t is 0, 1, 2 or 3, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B-(CH₂)f-V-(CH₂)g-, wherein V is C₃-C₆ cycloalkylene, f is 1, 2, 3, 4 or 5 and g is 0, 1, 2, 3, 4 or 5, provided that the sum of f and g is 1, 2, 3, 4, 5 or 6;

B-(CH2)t-V-(C2-C6 alkenylene)- or

B-(C2-C6 alkenylene)-V-(CH2)_t-, wherein V and t are as defined above, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6; B-(CH2)_a-Z-(CH2)_b-V-(CH2)_d-, wherein Z and V are as defined above and a, b and d are independently 0, 1, 2, 3, 4, 5 or 6, provided that the sum of a, b and d is 0, 1, 2, 3, 4, 5 or 6; or T-(CH2)_s-, wherein T is cycloalkyl of 3-6 carbon atoms and s is 0, 1, 2, 3, 4, 5 or 6; or

R₁ and R₄ together form the group B-CH=C-;

B is selected from indanyl, indenyl, naphthyl, tetrahydronaphthyl, heteroaryl or W-substituted heteroaryl, wherein heteroaryl is selected from the group consisting of pyrrolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, thiazolyl, pyrazolyl, thienyl, oxazolyl and furanyl, and for nitrogen-containing heteroaryls, the N-oxides thereof, or

W is 1 to 3 substituents independently selected from the group consisting of lower alkyl, hydroxy lower alkyl, lower alkoxy, alkoxyalkyl, alkoxyalkoxy, alkoxycarbonylalkoxy, (lower alkoxyimino)-lower alkyl, lower alkanedioyl, lower alkyl lower alkanedioyl, allyloxy, -CF3, -OCF3, benzyl, R7-benzyl, benzyloxy,

R7-benzyloxy, phenoxy, R7-phenoxy, dioxolanyl, NO₂,-N(R8)(R9), N(R8)(R9)-lower alkylene-, N(R8)(R9)-lower alkylenyloxy-, OH, halogeno, -CN, -N3, -NHC(O)OR₁₀, -NHC(O)R₁₀, R₁₁O₂SNH-, (R₁₁O₂S)₂N-, -S(O)₂NH₂, -S(O)₀-₂R₈, tert-butyldimethyl-silyloxymethyl, -C(O)R₁₂, -COOR₁₉, -CON(R8)(R9), -CH=CHC(O)R₁₂, -lower alkylene-C(O)R₁₂, R₁₀C(O)(lower alkylenyloxy)-, N(R8)(R9)C(O)(lower

alkylenyloxy)- and F₁₃ for substitution on ring carbon atoms, and the substituents on the substituted heteroaryl ring nitrogen atoms, when present, are selected from the group consisting of lower alkyl, lower alkoxy, -C(O)OR₁₀, -C(O)R₁₀, OH, N(R₈)(R₉)-lower alkylene-,N(R₈)(R₉)-lower alkylenyloxy-, -S(O)₂NH₂ and 2-(trimethylsilyl)-ethoxymethyl;

R7 is 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, -COOH, NO2, -N(R8)(R9), OH, and halogeno;

R8 and R9 are independently selected from H or lower alkyl;

R₁₀ is selected from lower alkyl, phenyl, R₇-phenyl, benzyl or R₇-benzyl;

R11 is selected from OH, lower alkyl, phenyl, benzyl, R7-phenyl or R7-benzyl;

R₁₂ is selected from H, OH, alkoxy, phenoxy, benzyloxy,

$$-N$$
 R_{13} , $-N(R_8)(R_9)$, lower alkyl, phenyl or R7-phenyl;

R₁₃ is selected from -O-, -CH₂-, -NH-, -N(lower alkyl)- or -NC(O)R₁₉;

R₁₅, R₁₆ and R₁₇ are independently selected from the group consisting of H and the groups defined for W; or R₁₅ is hydrogen and R₁₆ and R₁₇, together with adjacent carbon atoms to which they are attached, form a dioxolanyl ring;

R₁9 is H, lower alkyl, phenyl or phenyl lower alkyl; and

R20 and R21 are independently selected from the group consisting of phenyl, W-substituted phenyl, naphthyl, W-substituted naphthyl, indanyl, indenyl, tetrahydronaphthyl, benzodioxolyl, heteroaryl, W-substituted heteroaryl, benzofused heteroaryl, W-substituted benzofused heteroaryl and cyclopropyl, wherein heteroaryl is as defined above.

8. (Withdrawn) The composition according to claim 1, wherein the at least one sterol absorption inhibitor is represented by Formula (VIIA) or (VIIB):

(VIIA)

or

(VIIB)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formulae (VIIA) or (VIIB) or of the isomers thereof, or prodrugs of the compounds of Formulae (VIIA) or (VIIB) or of the isomers, salts or solvates thereof, wherein in Formulae (VIIA) and (VIIB) above:

A is -CH=CH-, -C=C- or -(CH₂)_p- wherein p is 0, 1 or 2;

B is

B' is

D is $-(CH_2)_mC(O)$ - or $-(CH_2)_q$ - wherein m is 1, 2, 3 or 4 and q is 2, 3 or 4;

E is C10 to C20 alkyl or -C(0)-(C9 to C19)-alkyl, wherein the alkyl is straight or branched, saturated or containing one or more double bonds;

R is hydrogen, C1-C15 alkyl, straight or branched, saturated or containing one or more double bonds, or B-(CH2)_r-, wherein r is 0, 1, 2, or 3;

R₁, R₂, R₃, R₁, R₂, and R₃ are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, carboxy, NO₂, NH₂, OH, halogeno, lower alkylamino, dilower alkylamino, -NHC(O)OR₅, R₆O₂SNH- and -S(O)₂NH₂;

R₄ is

wherein n is 0, 1, 2 or 3;

R5 is lower alkyl; and

R6 is OH, lower alkyl, phenyl, benzyl or substituted phenyl wherein the substituents are 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, carboxy, NO2, NH2, OH, halogeno, lower alkylamino and dilower alkylamino.

9. (Withdrawn) The composition according to claim 1, wherein the at least one sterol absorption inhibitor is represented by Formula (VIII):

(VIJI)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (VIII) or of the isomers thereof, or prodrugs of the compounds of Formula (VIII) or of the isomers, salts or solvates thereof, wherein, in Formula (VIII) above,

R²⁶ is H or QG¹:

G and G1 are independently selected from the group consisting of

H,
$$OR^3$$
 OR^4 OR^4 OR^5 OR^4 OR^5 OR^4 OR^5 OR^4 OR^5 OR^4 OR^5 OR^4 OR^5 OR^3 OR^4 OR^5 OR^3 OR^4 OR^5 OR^3 OR^4 OR^5 OR^3 OR^4 OR^5 OR^5 OR^5 OR^4 OR^5 OR^5

OH, G is not H;

R, R^a and R^b are independently selected from the group consisting of H, -OH, halogeno, -NH₂, azido, (C₁-C₆)alkoxy(C₁-C₆)-alkoxy or -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(\mathbb{R}^{31})-, -NH-C(O)-N(\mathbb{R}^{31})- and -O-C(S)-N(\mathbb{R}^{31})-;

16

R² and R⁶ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl(C₁-C₆)alkyl;

 R^3 , R^4 , R^5 , R^7 , R^{3a} and R^{4a} are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl(C₁-C₆)alkyl, -C(O)(C₁-C₆)alkyl and -C(O)aryl;

R³⁰ is selected from the group consisting of R³²-substituted T,

R³²-substituted-T-(C₁-C₆)alkyl, R³²-substituted-(C₂-C₄)alkenyl,

R³²-substituted-(C₁-C₆)alkyl, R³²-substituted-(C₃-C₇)cycloalkyl and

R³²-substituted-(C₃-C₇)cycloalkyl(C₁-C₆)alkyl;

R³¹ is selected from the group consisting of H and (C₁-C₄)alkyl;

T is selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R³² is independently selected from 1-3 substituents independently selected from the group consisting of halogeno, (C1-C4)alkyl, -OH, phenoxy,

-CF3, -NO2, (C1-C4)alkoxy, methylenedioxy, oxo, (C1-C4)alkylsulfanyl,

(C1-C4)alkylsulfinyl, (C1-C4)alkylsulfonyl, -N(CH3)2, -C(O)-NH(C1-C4)alkyl,

-C(O)-N((C₁-C₄)alkyl)₂, -C(O)-(C₁-C₄)alkyl, -C(O)-(C₁-C₄)alkoxy and pyrrolidinylcarbonyl; or R³² is a covalent bond and R³¹, the nitrogen to which it is attached and R³² form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a (C₁-C₄)alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group;

Ar¹ is aryl or R¹⁰-substituted aryl;

Ar² is aryl or R¹¹-substituted aryl;

Q is a bond or, with the 3-position ring carbon of the azetidinone,

forms the spiro group
$$(R^{14})_b$$
 $(R^{13})_a$; and R^1 is selected from the group consists

R1 is selected from the group consisting of

-(CH2)q-, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1;

-(CH2)e-E-(CH2)r, wherein E is -O-, -C(O)-, phenylene, -NR²²- or $-S(O)_{0-2}$, c is 0-5 and r is 0-5, provided that the sum of e and r is 1-6;

-(C2-C6)alkenylene-; and

-(CH2)f-V-(CH2)g-, wherein V is C3-C6 cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6;

R12 is

$$-\overset{1}{C}H-,\,-\overset{1}{C}(C_{1}-C_{6}\;\text{alkyl})-,\,-\overset{1}{C}F-,\,-\overset{1}{C}(OH)-,\,-\overset{1}{C}(C_{6}H_{4}-R^{23})-,\,-\overset{1}{N}-,\;\text{or}\;-\overset{1}{V}O^{-}\;;$$

 R^{13} and R^{14} are independently selected from the group consisting of -CH₂-, -CH(C1-C6 alkyl)-, -C(di-(C1-C6) alkyl), -CH=CH- and

-C(C1-C6 alkyl)=CH-; or R¹² together with an adjacent R¹³, or R¹² together with an adjacent R¹⁴, form a -CH=CH- or a -CH=C(C1-C6 alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R¹³ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, a is 1; provided that when R¹⁴ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, b is 1; provided that when a is 2 or 3, the R¹³'s can be the same or different; and provided that when b is 2 or 3, the R¹⁴'s can be the same or different; and when Q is a bond, R l also can be:

M is $-O_{-}$, $-S_{-}$, $-S(O)_{-}$ or $-S(O)_{2-}$;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆)alkyl- and -C(di-(C₁-C₆)alkyl);

R¹⁰ and R¹¹ are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of

 (C_1-C_6) alkyl, $-OR^{19}$, $-O(CO)R^{19}$, $-O(CO)OR^{21}$, $-O(CH_2)_{1-5}OR^{19}$,

-O(CO)NR¹⁹R²⁰, -NR¹⁹R²⁰, -NR¹⁹(CO)R²⁰, -NR¹⁹(CO)OR²¹,

 $-NR^{19}(CO)NR^{20}R^{25}$, $-NR^{19}SO_2R^{21}$, $-COOR^{19}$, $-CONR^{19}R^{20}$, $-COR^{19}$,

 $-SO_2NR^{19}R^{20}$, $S(O)_{0-2}R^{21}$, $-O(CH_2)_{1-10}-COOR^{19}$, $-O(CH_2)_{1-10}CONR^{19}R^{20}$,

(C1-C6 alkylene)-COOR19, -CH=CH-COOR19, -CF3, -CN, -NO2 and halogen;

R¹⁵ and R¹⁷ are independently selected from the group consisting of -OR¹⁹, -O(CO)R¹⁹, -O(CO)OR²¹ and -O(CO)NR¹⁹R²⁰;

 R^{16} and R^{18} are independently selected from the group consisting of H, (C1-C6)alkyl and aryl; or R^{15} and R^{16} together are =0, or R^{17} and R^{18} together are =0;

d is 1, 2 or 3;

h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4;

provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6;

provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1;

j and k are independently 1-5, provided that the sum of j, k and v is 1-5;

$$R_{j}^{15}$$
 -X_j-(C)_v-Y_k-S(O)₀₋₂-

and when Q is a bond and R¹ is R¹⁶, Ar¹ can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

 R^{19} and R^{20} are independently selected from the group consisting of H, (C1-C6)alkyl, aryl and aryl-substituted (C1-C6)alkyl;

R²¹ is (C₁-C₆)alkyl, aryl or R²⁴-substituted aryl;

$$R^{22}$$
 is H, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O) R^{19} or -COOR¹⁹;

R²³ and R²⁴ are independently 1-3 groups independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, -COOH, NO₂,

-NR¹⁹R²⁰, -OH and halogeno; and

10. (Withdrawn) The composition according to claim 1, wherein the at least one sterol absorption inhibitor is represented by Formula (IX):

$$Ar^1$$
 CH
 Q
 R_{26}
 R_{26}
 R_{26}
 R_{26}
 R_{26}

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (IX) or of the isomers thereof, or prodrugs of the compounds of Formula (IX) or of the isomers, salts or solvates thereof, wherein, in Formula (IX) above,

R²⁶ is selected from the group consisting of:

- a) OH;
- b) OCH3;
- c) fluorine and

d) chlorine;

R¹ is selected from the group consisting of

H,
$$OR^{5}$$
 OR^{4} OR^{5} OR^{4} OR^{7} OR^{7}

R, R^a and R^b are independently selected from the group consisting of H, -OH, halogeno, -NH₂, azido, (C₁-C₆)alkoxy(C₁-C₆)-alkoxy and -W-R³⁰;

W is independently selected from the group consisting of

-NH-C(O)-, -O-C(O)-, -O-C(O)-N(\mathbb{R}^{31})-, -NH-C(O)-N(\mathbb{R}^{31})- and -O-C(S)-N(\mathbb{R}^{31})-;

R² and R⁶ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl(C₁-C₆)alkyl;

R³, R⁴, R⁵, R⁷, R^{3a} and R^{4a} are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl(C₁-C₆)alkyl, -C(O)(C₁-C₆)alkyl and -C(O)aryl;

 R^{30} is independently selected form the group consisting of R^{32} -substituted T, R^{32} -substituted-T-(C₁-C₆)alkyl, R^{32} -substituted-(C₂-C₄)alkenyl, R^{32} -substituted-(C₃-C₇)cycloalkyl and R^{32} -substituted-(C₃-C₇)cycloalkyl(C₁-C₆)alkyl;

 R^{31} is independently selected from the group consisting of H and (C1-C4)alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R³² is independently selected from 1-3 substituents independently selected from the group consisting of H, halogeno, (C₁-C₄)alkyl, -OH, phenoxy, -CF₃, -NO₂, (C₁-C₄)alkoxy, methylenedioxy, oxo, (C₁-C₄)alkylsulfanyl, (C₁-C₄)alkylsulfinyl, (C₁-C₄)alkylsulfonyl, -N(CH₃)₂, -C(O)-NH(C₁-C₄)alkyl, -C(O)-N((C₁-C₄)alkyl)₂, -C(O)-(C₁-C₄)alkyl, -C(O)-(C₁-C₄)alkoxy and pyrrolidinylcarbonyl; or R³² is a covalent bond and R³¹, the nitrogen to which it is attached and R³² form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a (C₁-C₄)alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group;

Ar¹ is aryl, R¹⁰-substituted aryl; pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

Ar² is aryl or R¹¹-substituted aryl;

Q is -(CH₂)_q-, wherein q is 2-6, or, with the 3-position ring carbon of the azetidinone,

$$R^{12} - (R^{13})_a$$
 forms the spiro group $(R^{14})_b$;

$$-\overset{1}{C}H^{-},\ -\overset{1}{C}(C_{1}-C_{6}\ alkyl)^{-},\ -\overset{1}{C}F^{-},\ -\overset{1}{C}(OH)^{-},\ -\overset{1}{C}(C_{6}H_{4}-R^{23})^{-},\ -\overset{1}{N}^{-},\ or\ -\overset{1}{\overset{1}{N}}O^{-}\ ;$$

 R^{13} and R^{14} are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆ alkyl)-, -C(di-(C₁-C₆) alkyl), -CH=CH- and -C(C₁-C₆ alkyl)=CH-; or R^{12} together with an adjacent R^{13} , or R^{12} together with an adjacent R^{14} , form a

-CH=CH- or a -CH=C(C1-C6 alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R¹³ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, a is 1; provided that when R¹⁴ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, b is 1; provided that when a is 2 or 3, the R¹³'s can be the same or different; and provided that when b is 2 or 3, the R¹⁴'s can be the same or different;

 R^{10} and R^{11} are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of (C₁-C₆)alkyl, $-OR^{19}$, $-O(CO)R^{19}$, $-O(CO)OR^{21}$, $-O(CH_2)_{1-5}OR^{19}$, $-O(CO)NR^{19}R^{20}$, $-NR^{19}R^{20}$, $-NR^{19}(CO)R^{20}$, $-NR^{19}(CO)OR^{21}$, $-NR^{19}(CO)NR^{20}R^{25}$, $-NR^{19}SO_2R^{21}$, $-COOR^{19}$, $-CONR^{19}R^{20}$, $-COR^{19}$, $-SO_2NR^{19}R^{20}$, $-S(O)_{0-2}R^{21}$, $-O(CH_2)_{1-10}COOR^{19}$, $-O(CH_2)_{1-10}CONR^{19}R^{20}$, $-(C_1-C_6)$ alkylene)- $-COOR^{19}$, $-CH=CH-COOR^{19}$, $-CF_3$.

R¹⁹ and R²⁰ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl-substituted (C₁-C₆)alkyl;

R²¹ is (C₁-C₆)alkyl, aryl or R²⁴-substituted aryl;

R²² is H, (C₁-C₆)alkyl, aryl (C₁-C₆)alkyl, -C(O)R¹⁹ or -COOR¹⁹;

 R^{23} and R^{24} are independently 1-3 groups independently selected from the group consisting of H, (C1-C6)alkyl, (C1-C6)alkoxy, -COOH, NO2, -NR¹⁹R²⁰, -OH and halogeno; and

 R^{25} is H, -OH or (C₁-C₆)alkoxy.

11. (Canceled).

-CN, -NO2 and halogen;

- 12. (Withdrawn) The composition according to claim 11, wherein the at least one blood modifier is an anti-coagulant.
- 13. (Withdrawn) The composition according to claim 12, wherein the anticoagulant is selected from the group consisting of argatroban, bivalirudin, dalteparin sodium, desirudin, dicumarol, lyapolate sodium, nafamostat mesylate, phenprocoumon, tinzaparin sodium, warfarin sodium and combinations thereof.
- 14. (Withdrawn) The composition according to claim 11, wherein the at least one blood modifier is an anti-thrombotic agent.
- 15. (Withdrawn) The composition according to claim 14, wherein the antithrombotic agent is selected from the group consisting of anagrelide hydrochloride, bivalirudin, cilostazol, dalteparin sodium, danaparoid sodium, dazoxiben hydrochloride, efegatran sulfate, enoxaparin sodium, fluretofen, ifetroban, ifetroban sodium, lamifiban, lotrafiban hydrochloride, napsagatran, orbofiban acetate, roxifiban acetate, sibrafiban, tinzaparin sodium, trifenagrel, abeiximab, zolimomab aritox and combinations thereof.
- 16. (Withdrawn) The composition according to claim 11, wherein the at least one blood modifier is a fibrinogen receptor antagonist.
- 17. (Withdrawn) The composition according to claim 16, wherein the fibrinogen receptor antagonist is selected from the group consisting of roxifiban acetate, fradafiban, orbofiban, lotrafiban hydrochloride, tirofiban, xemilofiban, monoclonal antibody 7E3, sibrafiban and combinations thereof.

18-20. (Canceled).

- 21. (Withdrawn) The composition according to claim 11, wherein the at least one blood modifier is a platelet aggregation inhibitor.
- 22. (Withdrawn) The composition according to claim 21, wherein the platelet aggregation inhibitor is selected from the group consisting of acadesine, beraprost, beraprost sodium, ciprostene calcium, itazigrel, lifarizine, lotrafiban hydrochloride, orbofiban acetate, oxagrelate, fradafiban, orbofiban, tirofiban, xemilofiban and combinations thereof.
- 23. (Withdrawn) The composition according to claim 11, wherein the at least one blood modifier is a hemorrheologic agent.
- 24. (Withdrawn) The composition according to claim 23, wherein the hemorrheologic agent is pentoxifylline.
- 25. (Withdrawn) The composition according to claim 11, wherein the at least one blood modifier is a lipoprotein associated coagulation inhibitor.
- 26. (Withdrawn) The composition according to claim 11, wherein the at least one blood modifier is a Factor Xa inhibitor.
- 27. (Withdrawn) The composition according to claim 26, wherein the Factor Xa inhibitor is selected from the group consisting of disubstituted pyrazolines, disubstituted triazolines, substituted n-[(aminoiminomethyl)phenyl] propylamides, substituted n-[(aminomethyl)phenyl] propylamides, tissue factor pathway inhibitor (TFPI), low molecular weight heparins, heparinoids, benzimidazolines, benzoxazolinones, benzopiperazinones, indanones, dibasic (amidinoaryl) propanoic acid derivatives, amidinophenyl-pyrrolidines, amidinophenyl-pyrrolines, amidinophenylisoxazolidines. amidinoindoles, amidinoazoles, bis-arlysulfonylaminobenzamide

P.032

Response Under 37 CFR 1.116
Expedited Procedure
Examining Group 1617
Application No. 10/056,680
Amendment Dated: January 9, 2007

Reply to Final Office Action of July 11, 2006

JAN-09-2007 16:29

derivatives, peptidic Factor Xa inhibitors and combinations thereof.

- 28. (Withdrawn) The composition according to claim 1, wherein the at least one blood modifier is a low molecular weight heparin.
- 29. (Withdrawn) The composition according to claim 28, wherein the low molecular weight heparin is selected from the group of enoxaparin, nardroparin, dalteparin, certroparin, parnaparin, reviparin, tinzaparin and combinations thereof.
- 30. (Withdrawn) The composition according to claim 1, wherein the at least one blood modifier is a heparinoid.
- 31. (Withdrawn) The composition according to claim 30, wherein the heparinoid is danaparoid.
- 32. (Withdrawn) The composition according to claim 11, wherein the at least one blood modifier is a Factor VIIa inhibitor.
- 33. (Withdrawn) The composition according to claim 32, wherein the Factor VIIa Inhibitor is selected from the group consisting of 4H-31-benzoxazin-4-ones, 4H-3,1-benzoxazin-4-thiones, quinazolin-4-ones, quinazolin-4-thiones, benzothiazin-4-ones, imidazolyl-boronic acid-derived peptide analogues TFPI-derived peptides and combinations thereof.
- 34. (Withdrawn) The composition according to claim 32, wherein the Factor VIIa Inhibitor is selected from the group consisting of naphthalene-2-sulfonic acid {1-[3-(aminoiminomethyl)-benzyl]-2-oxo-pyrrolidin-3-(S)-yl} amide trifluoroacetate, dibenzofuran-2-sulfonic acid {1-[3-(aminomethyl)-benzyl]-5-oxo-pyrrolidin-3-yl}-amide, tolulene-4-sulfonic acid {1-[3-(aminoiminomethyl)-benzyl]-2-oxo-pyrrolidin-3-

- (S)-yl}-amide trifluoroacetate, 3,4-dihydro-1H-isoquinoline-2-sulfonic acid {1-[3-(aminoiminomethyl)-benzyl]-2-oxo-pyrrolin-3-(S)-yl}-amide trifluoroacetate and combinations thereof.
- 35. (Original) The composition according to claim 1, further comprising at least one cholesterol biosynthesis inhibitor.
- 36. (Original) The composition according to claim 35, wherein the at least one cholesterol biosynthesis inhibitor comprises at least one HMG CoA reductase inhibitor.
- 37. (Original) The composition according to claim 36, wherein the at least one HMG CoA reductase inhibitor is simvastatin.
- 38. (Withdrawn) The composition according to claim 1, further comprising at least one bile acid sequestrant.
- 39. (Withdrawn) The composition according to claim 1, further comprising at least one low-density lipoprotein receptor activator.
- 40. (Withdrawn) The composition according to claim 1, further comprising at least one Omega 3 fatty acid.
- 41. (Withdrawn) The composition according to claim 1, further comprising at least one natural water soluble fiber.

- 42. (Original) The composition according to claim 1, further comprising at least one antioxidant or vitamin.
 - 43. (Canceled).
 - 44. (Canceled).
- 45. (Previously Presented) A pharmaceutical composition for the treatment of vascular conditions, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal, comprising a therapeutically effective amount of the composition of claim 1 and a pharmaceutically acceptable carrier.
- 46. (Withdrawn) A method of treating or preventing vascular conditions, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal, comprising the step of administering to a mammal in need of such treatment:
- (a) an effective amount of at least one sterol absorption inhibitor or pharmaccutically acceptable salt or solvate thereof or prodrug of the at least one sterol absorption inhibitor or of the salt or solvate thereof; and
- (b) an effective amount of at least one blood modifier for vascular conditions which is different from the sterol absorption inhibitor.
 - 47. (Currently Amended) A therapeutic combination comprising:
 - (a) a first amount of 0.1 to 1000 milligrams of a sterol absorption represented by Formula (II):

or pharmaceutically acceptable salts or solvates thereof; at least one sterol absorption inhibitor represented by Formula (I):

$$\begin{array}{c|c}
R & R^{2} \\
Ar^{1}-X_{m}-(C)_{q}-Y_{n}-(C)_{r}-Z_{p} & Ar^{3} \\
\hline
R^{1} & R^{3} & \\
\hline
Ar^{2} & \\
\hline
(I)
\end{array}$$

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (I) or of the isomers thereof, wherein:

Ar and Ar are independently selected from the group consisting of aryl and R substituted aryl:

Ar is aryl or R substituted aryl;

X, Y and Z are independently selected from the group consisting of -CH2, -CH(lower alkyl) and -C(dilower alkyl);

R and R² are independently selected from the group consisting of OR⁶, -O(CO)R⁶, -O(CO)OR⁹ and -O(CO)NR⁶R⁷;

R² and R³ are independently selected from the group consisting of hydrogen, lower alkyl and aryl;

q is 0 or 1; r is 0 or 1;

m, n and p are independently-selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

R⁴ is 1-5 substituents independently selected from the group consisting of lower alkyl, OR⁶, O(CO)R⁶, O(CO)OR⁹, O(CH₂)₁₋₅OR⁶, O(CO)NR⁶R⁷, NR⁶(CO)NR⁷, NR⁶(CO)OR⁹, NR⁶(CO)NR⁷R⁸, NR⁶SO₂R⁹, COOR⁶, CONR⁶R⁷, OCR⁶, SO₂NR⁶R⁷, S(O)₀₋₂R⁹, O(CH₂)₁₋₁₀ COOR⁶; O(CH₂)₁₋₁₀CONR⁶R⁷, (lower alkylene)COOR⁶, CH-CH COOR⁶, CF₃, CN, NO₂ and halogen;

 R^5 is 1-5 substituents independently selected from the group consisting of $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$, $-O(CH_2)_{1-5}OR^6$, $-O(CO)NR^6R^7$, $-NR^6R^7$, $-NR^6(CO)R^7$, $-NR^6(CO)OR^9$, $-NR^6(CO)NR^7R^8$, $-NR^6SO_2R^9$, $-COOR^6$, $-CONR^6R^7$, $-COR^6$, $-SO_2NR^6R^7$, $-SO_2NR^6R^7$, $-O(CH_2)_{1-10}$ $-COOR^6$, $-O(CH_2)_{1-10}$ $-CONR^6R^7$, $-O(CH_2)_{1-10}$ $-OOR^6$; $-O(CH_2)_{1-10}$ $-OOR^6$;

R⁴, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower-alkyl; and

R is lower alkyl, aryl or aryl-substituted lower alkyl; and

(b) a second amount of 1 to 1000 milligrams of aspirin, wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment of vascular conditions, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.

48. (Withdrawn) A method of treating or preventing vascular conditions, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal, comprising the step of administering to a mammal in need of such treatment an effective amount of the therapeutic combination of claim 47.