Le deuxième principe de la thermodynamique

P1 - Chapitre 3

I. Enoncé du deuxième principe

Pour tout système fermé, il existe une grandeur extensive appelée entropie du système et dont la valeur S est une fonction des variables d'état.

$$S(t_2) - S(t_1) = S_{1 \to 2}^r + S_{1 \to 2}^p$$
 donc avec $S_{1 \to 2}^r = \int_{t_1}^{t_2} \frac{\delta Q}{T_{front \ ext}}$ et $S_{1 \to 2}^p \ge 0$

II. Transformations irréversibles $\Leftrightarrow \delta S^p > 0$

1. Détermination empirique

Si l'évolution du système était un film, si on repère des « anomalies logiques » en le passant à l'envers, la transformation est irréversible.

2. Causes d'irréversibilité

- **Gradient d'une grandeur intensive :** Une grandeur intensive dépend de la coordonnée d'espace pendant la transformation.
- **Frottements**: S'il y a des frottements, la transformation est irréversible. (A l'envers, les frottements refroidiraient la zone de contact.)
- **Réaction chimique :** Une réaction chimique orientée entraine l'irréversibilité.

III. Transformations réversibles $\Leftrightarrow \delta S^p = 0$

Une transformation est **réversible si elle n'est pas irréversible** : il faut éliminer les causes d'irréversibilité

Une transformation réversible est toujours parfaitement décrite par son équation d'état, contrairement aux transformations irréversibles.

- Parois déformables : $P_{gaz} = P_{ext}$ nécessaire pour que la transformation soit réversible.
- Parois diathermanes : $T_{syst} = T_{ext}$ nécessaire pour que la transformation soit réversible.

Le deuxième principe de la thermodynamique

P1 - Chapitre 3

IV. L'entropie

1. Signification physique

L'entropie augmente quand on perd des informations sur la position d'une particule aléatoire i. Elle est minimale au zéro absolu.

2. La fonction d'état entropie d'une transformation réversible

$$dS = \frac{dE - \delta W^{r + v}}{T}$$

Système soumis à des :	Fonction d'état entropie
Forces de pression	$dS = \frac{dE}{T} + \frac{P}{T}dV$
Forces de traction	$dS = \frac{dE}{T} - \frac{f}{T}dl$
Forces électriques	$dS = \frac{dE}{T} - \frac{\varphi}{T}dq$

3. Entropie d'un gaz parfait

$$dS = nC_{mv}\frac{dT}{T} + nR\frac{dV}{V}$$

$$\begin{cases} S(T,V) = nC_{mv} \ln T + nR & \ln V + cte \\ S(V,P) = nC_{mp} \ln V + nC_{mv} \ln P + cte \\ S(T,P) = nC_{mp} \ln T - nR & \ln P + cte \end{cases}$$

avec $C_{mp} = C_{mv} + R$ capacité thermique molaire à P cst

4. Exemples de transformation

a. Détente de Joule-Gay-Lussac : transformation adiabatique irréversible d'un GP

$$S_f - S_i = S_{i \to f}^p = nR \ln \left(\frac{V_1 + V_2}{V_1} \right) > 0$$
et $S_{i \to f}^r = 0$ (adiabatique)

b. Transformation adiabatique réversible d'un GP

$$\begin{array}{ll} \text{adiabatique} \Rightarrow & \delta S^r = 0 \\ \text{réversible} \Rightarrow & \delta S^p = 0 \end{array} \right\} \quad dS = 0 \quad \Rightarrow \quad \boxed{S = cte}$$

Relation de Laplace :
$$\begin{cases} \boxed{P\ V^{\gamma} &= cte} \\ T\ V^{\gamma-1} &= cte \\ P^{\gamma-1}\ T^{\gamma} &= cte \end{cases} \qquad \boxed{\gamma = \frac{C_{mp}}{C_{mv}}}$$