Point estimation (Chapter 9)

Problem: $X \sim f_{\theta}(x)$, where θ is an unknown parameter. This θ may be a vector.

Data: X_1, \ldots, X_n — a random sample of X.

We have seen a number of descriptive statistics and what they estimate. But the choice of an $\hat{\theta}$ of θ may not be obvious.

A general method of parameter estimation: Method of maximum likelihood. It has generally good properties.

Method of Maximum Likelihood

<u>Likelihood function of data</u>: Joint pdf or pmf of sample data considered as a function of θ with data held fixed at the observed values $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

$$L(\theta) = L(\theta; x_1, x_2, x_n) =$$

• A function of θ — the data are held fixed.

Maximum likelihood estimator (MLE) of θ : The value $\hat{\theta}$ of θ that maximizes the likelihood function as a function of θ .

- Can think of MLE as the value of θ that is "most likely" to have led to the observed data.
- Essentially a calculus problem.

How to find MLE?

Direct approach: Directly maximize the likelihood function.

Ex: Let X_1, X_2, \ldots, X_n represent a random sample from a Uniform $(0, \theta)$ distribution where $\theta > 0$. Find the MLE of θ .

Differentiation technique: Maximize the log-likelihood function $\log\{L(\theta)\}$ with respect to θ instead of $L(\theta)$ as the former tends to be easier. The value of θ that maximizes $L(\theta)$ also maximizes $\log\{L(\theta)\}$. (Why?)

Step 1: Set up the log-likelihood function.

Step 2: Find the *likelihood equation* by partially differentiating $log\{L(\theta)\}$ with respect to θ and setting the derivative to equal to zero.

Step 3: Solve the likelihood equation for θ . The solution is MLE if it is a point of maxima (no need to verify).

Recall: Some useful properties of natural log:

- $\log(a^b) = b\log(a)$
- $\log(e^a) = a$

Ex: Let X_1, X_2, \ldots, X_n represent a random sample from an Exponential (λ) distribution where $\lambda > 0$. Find the MLE of λ .

Ex: Suppose X_1, X_2, \ldots, X_n denote a random sample from a Bernoulli (p) distribution, where p is unknown. Find its MLE.

Finding standard error (SE) of $\hat{\theta}$

Large sample properties of MLE $\hat{\theta}$ of θ

<u>Result:</u> Assume that $\{x: f_{\theta}(x) > 0\}$ is free of θ . Then, under certain conditions when n is large,

$$\hat{\theta} \approx N(\theta, \hat{I}^{-1}), \text{ where } \hat{I} = -\left. \frac{\partial^2 \log\{L(\theta)\}}{\partial \theta^2} \right|_{\theta = \hat{\theta}}.$$

Case 1: θ is scalar. Then, $\widehat{SE}(\hat{\theta}) \approx \sqrt{\hat{I}^{-1}}$

Case 2: θ is a vector, say, $\theta = (\theta_1, \dots, \theta_d)$. In this case, \hat{I} is a $d \times d$ matrix. Here $\widehat{SE}(\hat{\theta}_j) \approx (j$ -th diagonal element of $\hat{I}^{-1})^{1/2}$.

Properties of MLE:

- Consistent; asymptotically unbiased
- Asymptotically normal
- Optimal if the assumed model holds
- Not a good choice if the assumed model does not hold

Using R to get MLE

Ex: Recall the CPU data — CPU times for n=30 randomly chosen jobs (in seconds): 70, 36, 43, 69, 82, 48, 34, 62, 35, 15, 59, 139, 46, 37, 42, 30, 55, 56, 36, 82, 38, 89, 54, 25, 35, 24, 22, 9, 56, 19. Graphics suggested that the distribution of these CPU times may be right-skewed. Suppose we **assume** that the parent distribution is Gamma (α, λ) , with both parameters unknown. What are MLE's of these parameters?

```
# We will continue working with the CPU data
# that we saw earlier
cpu <- scan(file="cputime.txt")</pre>
# Negative of log-likelihood function assuming gamma
# parent distribution
neg.loglik.fun <- function(par, dat)</pre>
result <- sum(dgamma(dat, shape=par[1], rate=par[2],
log=TRUE))
return(-result)
# Minimize -log (L), i.e., maximize log (L)
ml.est <- optim(par=c(3, 0.1), fn=neg.loglik.fun,
```

```
method = "L-BFGS-B", lower=rep(0,2), hessian=TRUE,
dat=cpu)
# > ml.est
# $par
# [1] 3.63149628 0.07529459
# $value
# [1] 136.561
# $counts
# function gradient
                 20
      # 20
# $convergence
# [1] 0
# $message
```

```
# [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
# $hessian
            # [,1] [,2]
# [1.] 9.501374 -398.4584
# [2.] -398.458449 19223.5065
# >
# MLE
# > ml.est$par
# [1] 3.63149628 0.07529459
# >
# their standard errors
# > sqrt(diag(solve(ml.est$hessian)))
# [1] 0.89720941 0.01994668
```

```
# How well the fitted model represents the data?
# density histogram
hist(cpu, freq=FALSE, xlab="cpu time",
ylab="density",
main="histogram vs fitted gamma distribution")
# superimpose the fitted density
gamma.pdf <- function(x, shape=ml.est$par[1],
rate=ml.est$par[2])
{ dgamma(x, shape=shape, rate=rate) }
curve(gamma.pdf, from=0, to=140, add=TRUE)
```

>

histogram vs fitted gamma distribution

