

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задание 3_1_1 »

С тудент группы	ИКБО-13-21	Дамарад Д.В.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ
Постановка задачи
Метод решения
Описание алгоритма
Блок-схема алгоритма
Код программы
Тестирование
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

введение

Постановка задачи

Создать объект, который вычисляет значение целочисленного арифметического выражения.

Операция деления заменена на операцию вычисления целочисленного остатка.

Объект обладает следующей функциональностью:

- выполняет первую операцию выражения, в качестве параметров передается первый целочисленный параметр, символ операции (+,-,*,%), второй целочисленный параметр;
- вычисляет вторую и далее операцию, в качестве параметров передается
 символ операции (+,-,*,%), второй целочисленный параметр;
 возвращает значение вычисленного выражения.

Написать программу, которая обязательно вводит значения и выполняет

операцию.

Далее, в цикле осуществляет ввод очередной операции и значения второго аргумента.

Если на месте операции введен символ «С», то программа завершает работу, иначе выполняет очередную операцию и выводит результат каждой третьей операции.

Описание входных данных

первую

Первая строка:

«целое число в десятичном формате» «символ операции» «целое число в десятичном формате»

Последующие строки:

«символ операции» «целое число в десятичном формате»

последней В строке: C Описание выходных данных Первая первой строка, C позиции: «значение выражения» Последующие первой строки, C позиции:

«значение выражения»

Метод решения

Для решения поставленной задачи используются:

- Объекты стандартных потоков (cin и cout). Используются для ввода с клавиатуры и вывода на экран.
- Объект а класса Result

Класс Result:

- Свойства поля:
 - Поле:
 - Наименование sum;
 - Тип целочисленный;
 - Модификатор доступа закрытый.
 - Методы:
 - Метод Firstcall
 - Функционал выполняет первую операцию выражения, в качестве параметров передается первый целочисленный параметр, символ операции (+,-,*,%), второй целочисленный параметр.
 - Метод Nextcall
 - Функционал вычисляет вторую и далее операцию, в качестве праметров передается символ операции (+,-,*,%), второй целочисленный параметр.
 - Метод getresult
 - Функционал возвращает значение вычисленного выражения (значение можно получить после выполнения трех операций).

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: main

Функционал: Основной алгоритм программы

Параметры: Отсутсвуют

Возвращаемое значение: Целочисленный тип - код возврата

Алгоритм функции представлен в таблице 1.

Таблица 1. Алгоритм функции main

N₂	Предикат	Действия		Комментарий
1		Объявление объекта а класса Result	2	
2		Объявление целочисленных переменных х,у,г. Инициализаиция k=2.	3	
3		Объявление символьной переменной ор.	4	
4		Считывание с клавиатуры переменных х,ор,у.	5	
5		Вызов метода Firstcall объекта а с переменными х,ор,у.	6	
6		Считывание с клавиатуры переменной ор	7	
7	Значение ор- это символ		Ø	

	"C"			
		Считывание с клавиатуры переменной у	8	
8		Вызов метода Nextcall объекта а с переменными ор,у	9	
9	Значение k кратно 3	Вызов метода getresult объекта а, присвоенение результата переменной г	10	
			Ø	
10	Значение k равно 3	Вывод на экран символ переноса строки	11	
			Ø	
11		Вывод на экран г	12	
12		Увеличение k на единицу	13	
13		Считывание с клавиатуры переменной z	7	

Класс объекта: Result

Модификатор доступа: public

Метод: Firstcall

Функционал: Вычисляет значене первого выражения

Параметры: Целочисленный x - первое число арифмитической операции, символьный ор - арифмитическая операция, целочисленный y - второе число арифмитической операции

Возвращаемое значение: void

Алгоритм метода представлен в таблице 2.

Таблица 2. Алгоритм метода Firstcall класса Result

No	Предикат	Действия	№ перехода	Комментарий
1	Значение ор - "+"	Присваивание sum = x+y	Ø	

			2	
2	Значение ор - "-"	Присваивание sum = x-y	Ø	
2			3	
3	Значение ор - "*"	Присваивание sum = x*y	Ø	
3			4	
4	Значение ор - "%"	Присваивание sum = x&y	Ø	
4			Ø	

Класс объекта: Result

Модификатор доступа: public

Метод: Nextcall

Функционал: Вычисляет значение второй и последующих операций

Параметры: символьный ор - арифмитическая операция, целочисленный у - второе число арифмитической операции

Возвращаемое значение: void

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода Nextcall класса Result

N₂	Предикат	Действия	№ перехода	Комментарий
1		Вызов метода Firstcall c	Ø	
1		параметрами sum,op,y		

Класс объекта: Result

Модификатор доступа: public

Метод: getresult

Функционал: Возвращает текущее значение выражения

Параметры: нет

Возвращаемое значение: целочисленное sum - текущее значение выражения

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода getresult класса Result

No	Предикат	Действия	№ перехода	Комментарий
1		Возвращение значения поля sum текущего объекта а	Ø	

Блок-схема алгоритма

Представим описание алгорит	мов в графическом виде на рисунках ниже.
Deculusticate II/I I account of the	Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Рис. 4. Блок-схема алгоритма.

Рис. 7. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл main.cpp

```
#include "Result.h"
#include <iostream>
using namespace std;
int main(){
        Result a;
        int x,y,r,k=2;
        char op;
        cin>>x>>op>>y;
        a.Firstcall(x,op,y);
        cin>>op;
        while (op!='C'){
                cin>>y;
                 a.Nextcall(op,y);
                 if (k\%3==0){
                         r=a.getresult();
                         if (k!=3){
                                 cout<<'\n';
                         }
                         cout<<r;
                 k++;
                cin>>op;
        return 0;
}
```

Файл Result.cpp

```
#include "Result.h"
void Result::Firstcall(int x, char op, int y){
        if (op=='+'){
            sum=x+y;
        }
        if (op=='-'){
            sum=x-y;
        }
        if (op=='*'){
            sum=x*y;
        }
        if (op=='%'){
            sum=x%y;
        }
}
```

```
void Result::Nextcall(char op, int y){
          Firstcall(sum,op,y);
}
int Result::getresult(){
          return sum;
}
```

Файл Result.h

```
#ifndef _RESULT_
#define _RESULT_H
class Result{
private:
        int sum;
public:
        void Firstcall(int x, char op, int y);
        void Nextcall(char op, int y);
        int getresult();
};
#endif
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
1 + 2 + 3 + 4 C	10	10
0 + 0 + 0 * 0 C	0	0

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).