Python Pipeline Primer

ETL in Azure

Simon Whiteley | Adatis

https://github.com/SiWhiteley/DatabricksETL

Agenda

What is
Databricks?

Patterns & Orchestration

Data Factory
Dataflows

DATA LAKE ANALYTICS

Azure Databricks

Databricks?

Google File System Papers Released

2003

2004

2006
Apache Hadoop
project created

Matei Zaharia starts Spark project

2012

Project donated to Apache Foundation

2013

Databricks founded by Matei

2013

It's new to Azure, not to everyone else!

So What?

- Most up to date Spark optimisations
- Doesn't need specialist hardware
- Quicker than traditional MapReduce
- Cluster Management, Notebooks, Jobs...

INSTANCE	СРИ	RAM	OS	HDINSIGHT PRICE	TOTAL PRICE++
D3 v2	4	14 GB	£0.171/hour	£0.05/hour	£0.22/hour

Databricks

INSTANCE	vCPU	RAM	DBU COUNT	LINUX VM PRICE	DBU PRICE	PAY AS YOU GO TOTAL PRICE	1 YEAR RESERVED (% SAVINGS) TOTAL PRICE	3 YEAR RESERVED (% SAVINGS) TOTAL PRICE
D3 v2	4	14.00 GiB	0.75	£0.208/hour	£0.168/hour	£0.376/hour	£0.296/hour (~21%)	£0.25/hour (~34%)

Open Source

20 min provisioning

Integrates Well

Secure

Hadoop, Spark, Kafka, Hbase, HIVE, Storm...

Slow Release Cycle

Open Source

5 min provisioning

Integrates Well

Secure

Spark (Python/Scala/R)

Fast Release Cycle

Databricks Basics

Under the Hood

Environments

Data Sources

Patterns & Implementation

So.... What size?

Size of Driver

What is the largest dataset that we will perform need to return to the user? What actions do we need to perform outside of the spark engine? How performance / memory intensive is it? How many concurrent workers does my driver need to handle?

Size of Worker

What is the largest data set/single partition that needs to fit on a single executor? How much memory should be left over for performing calculations? How fast should each executor finish their job?

Number of Workers

What is the total amount of data that needs to be held in memory (both for in transformation queries, and cached tables)
How much concurrency do I need?

Example workloads

Standard ETL Load - Small Data

Small cluster, shared across multiple low priority workloads. Autoscaling for better concurrency

Standard ETL Load – Large Data

Many small worker nodes, assuming transformations can be distributed

Large Data Science Process

Fewer high-power worker nodes, each executor needs more compute power to train models

Analytics Load – Small Data

Few, low-powered worker nodes with autoscaling. If using cached tables, needs memory for full data set, plus additional transformation capacity

Secrets

User Management

Databricks Secrets

Secrets are never displayed in databricks notebooks, even if you have access!

Any attempt to display the value will return [REDACTED]!

Executions

Distributed Compute

Distributed Compute

Distributed Compute

All languages perform the same

...except...

Performance comparison of different UDF methods in Databricks

https://bit.ly/2CAXkVl

Orchestration

Azure Data Factory

But what if I don't want to write any code?

Azure Data Factory

Mapping

Data Flows

New Data Factory DataFlows can write Databricks processing packages for you!!

Thanks for Listening

Simon Whiteley @MrSiWhiteley

http://blogs.adatis.co.uk