K-means case study:

i	х	у	c ₁ X=15, Y=0	c ₂ X=20, Y=0	cluster
1	5	0	$\overline{c_1} \cdot \overline{p_1} = \sqrt{(15-5)^2 + (0-0)^2} = 10$	$\overline{c_2 \cdot p_1} = \sqrt{(20-5)^2 + (0-0)^2} = 15$	$\overline{c_1.p_1} < \overline{c_2.p_1} \to 10 < 15 \to \textbf{C_1}$
2	10	0	$\overline{c_1 \cdot p_2} = \sqrt{(15 - 10)^2 + (0 - 0)^2} = 5$	$\overline{c_2 \cdot p_2} = \sqrt{(20 - 10)^2 + (0 - 0)^2} = 10$	$\overline{c_1 \cdot p_2} < \overline{c_2 \cdot p_2} \rightarrow 5 < 10 \rightarrow \textbf{C_1}$
3	25	0	$\frac{\overline{c_1 \cdot p_3}}{\sqrt{(15 - 25)^2 + (0 - 0)^2}} = 10$	$\overline{c_2 \cdot p_3} = \sqrt{(20 - 25)^2 + (0 - 0)^2} = 5$	$\overline{c_1 \cdot p_3} > \overline{c_2 \cdot p_3} \to 10 > 5 \to \mathbf{C_2}$
4	30	0	$\frac{\overline{c_1} \cdot \overline{p_4}}{\sqrt{(15 - 30)^2 + (0 - 0)^2}} = 15$	$\overline{c_3 \cdot p_4} = \sqrt{(20 - 30)^2 + (0 - 0)^2} = 10$	$\overline{c_1 \cdot p_4} > \overline{c_2 \cdot p_4} \to 15 > 10 \to \mathcal{C}_2$
5	35	0	$\frac{\overline{c_1 \cdot p_5}}{\sqrt{(15 - 35)^2 + (0 - 0)^2}} = 20$	$\overline{c_4 \cdot p_5} = \sqrt{(20 - 35)^2 + (0 - 0)^2} = 15$	$\overline{c_1.p_5} > \overline{c_2.p_5} \rightarrow 20 > 15 \rightarrow C_2$

Distances between points and centroids:

$$\overline{c_j.p_i} = \sqrt{\left(c_{jx} - p_{ij}\right)^2 + \left(c_{jy} - p_{iy}\right)^2}$$

New centroids:

$$c_{jx(new)} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
$$c_{jy(new)} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

New centroids - calculation:

$$c_{1x(new)} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{(10+5)}{2} = 7.5$$

$$c_{1y(new)} = 0$$

$$c_{1x(new)} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{(10+5)}{2} = 7.5$$

$$c_{1y(new)} = 0$$

$$c_{2x(new)} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{(25+30+35)}{3} = 30$$

$$c_{2y(new)} = 0$$