IN THE CLAIMS

Please amend the claims as follows:

- 1. (Currently Amended) A positive electrode active material containing comprising a compound represented by the general formula $\text{Li}_x Mn_y \text{Fe}_{1-y} PO_4$, where $0 < x \le 2$ and 0.5 < y < 0.95 and an electrification agent in an amount of 0.5 to 20 parts by weight to 100 parts by weight of $\text{Li}_x Mn_y \text{Fe}_{1-y} PO_4$, wherein a portion of the $\text{Li}_x Mn_y \text{Fe}_{1-y} PO_4$ has a grain size not larger than 10 um, with the Bulnauer Emmet Taylor specific surface area not being less than 0.5 m²/g.
 - 2. (Cancelled).
- 3. (Currently Amended) A positive electrode active material eontaining comprising a compound represented by the general formula $\text{Li}_x \text{Mn}_y \text{Fe}_z \text{A}_{1\text{-}(y+z)} \text{PO}_4$, where $0 < x \le 2$, 0.5 < y < 0.95, 0.5 < y+z < 1 and A is at least one metal element selected from Ti and Ag, wherein a portion of the $\text{Li}_x \text{Mn}_y \text{Fe}_z \text{A}_{1\text{-}(y+z)} \text{PO}_4$ has a grain size not larger than 10 μm , with the Bulnauer Emmet Taylor specific surface area being not less than $0.5 \text{ m}^2/\text{g}$.
 - 4. (Cancelled).
- 5. (Currently Amended) A non-aqueous electrolyte cell comprising: a positive electrode containing a positive electrode active material; and an electrolyte interposed between said positive and negative electrodes; wherein said positive electrode active material contains a compound represented by the general formula Li_xMn_yFe_{1-y}PO₄ where 0 < x ≤ 2 and 0.5 < y < 0.95 and an electrification agent in an amount of 0.5 to 20 parts by weight to 100 parts by weight of Li_xMn_yFe_{1-y}PO₄, wherein a portion of the Li_xMn_yFe_{1-y}PO₄ has a grain size not larger than 10 μm, with the Bulnauer Emmet Taylor specific surface area being not less than 0.5 m²/g.
 - 6. (Cancelled).

- (Currently Amended) A non-aqueous electrolyte cell comprising:

 a positive electrode containing a positive electrode active material;
 a negative electrode containing a negative electrode active material; and
 an electrolyte interposed between said positive and negative electrodes; wherein said positive electrode active material contains a compound represented by the
 general formula Li_xMn_yFe_zA_{1-(y+z)}PO₄ where 0 < x ≤ 2, 0.5 < y < 0.95 and 0.5 < y+z <

 1 and wherein A is at least one metal element selected from Ti and Mg, wherein a portion of the

 Li_xMn_yFe_zA_{1-(y+z)}PO₄ has a grain size not larger than 10 μm, with the Bulnauer Emmet Taylor specific surface area being not less than 0.5 m²/g.
 - 8. (Cancelled).
- 9. (Currently Amended) A positive electrode active material eontaining comprising a compound represented by the general formula $\text{Li}_x Mn_y B_{1-y} PO_4$, where $0 < x \le 2$ and 0 < y < 1 and an electrification agent in an amount of 0.5 to 20 parts by weight to 100 parts by weight of $\text{Li}_x Mn_y B_{1-y} PO_4$, wherein B is a metal element selected from among Ti, Zn, Mg and Co, wherein a portion of the $\text{Li}_x Mn_y B_{1-y} PO_4$ has a grain size not larger than 10 μ m, with the Bulnauer Emmet Taylor specific surface area being not less than 0.5 m²/g.
 - 10. (Cancelled).
- 11. (Currently Amended) A positive electrode active material eentaining comprising a compound represented by the general formula $\text{Li}_x \text{Mn}_y \text{B}_{1-y} \text{PO}_4$, where $0 < x \le 2$ and 0 < y < 1 and an electrification agent in an amount of 0.5 to 20 parts by weight to 100 parts by weight of $\text{Li}_x \text{Mn}_y \text{B}_{1-y} \text{PO}_4$, wherein B denotes plural metal elements selected from among Ti, Fe, Zn, Mg and Co, wherein a portion of the $\text{Li}_x \text{Mn}_y \text{B}_{1-y} \text{PO}_4$ has a grain size not larger than 10 μ m, with the Bulnauer Emmet Taylor specific surface area being not less than 0.5 m²/g.
 - 12. (Cancelled).

- 13. (Currently Amended) A non-aqueous electrolyte cell comprising: a positive electrode containing a positive electrode active material; and an electrolyte interposed between said positive and negative electrodes; wherein said positive electrode active material contains a compound represented by the general formula Li_xMn_yB_{1-y}PO₄ where 0 < x ≤ 2 and 0 < y < 1 and an electrification agent in an amount of 0.5 to 20 parts by weight to 100 parts by weight of Li_xMn_yB_{1-y}PO₄, wherein B denotes one metal element selected from among Ti, Zn, Mg and Co, wherein a portion of the Li_xMn_yB_{1-y}PO₄ has a grain size not larger than 10 μm, with the Bulnauer Emmet Taylor specific surface area being not less than 0.5 m²/g.
 - 14. (Cancelled).
- 15. (Currently Amended) A non-aqueous electrolyte cell comprising: a positive electrode containing a positive electrode active material; and an electrolyte interposed between said positive and negative electrodes; wherein said positive electrode active material contains a compound represented by the general formula Li_xMn_yB_{1-y}PO₄ where 0 < x ≤ 2 and 0 < y < 1 and an electrification agent in an amount of 0.5 to 20 parts by weight to 100 parts by weight of Li_xMn_yB_{1-y}PO₄, wherein B denotes plural metal elements selected from among Ti, Fe, Zn, Mg and Co, wherein a portion of the LixMnyFe1-yPO4 Li_xMn_yB_{1-y}PO₄ has a grain size not larger than 10 μm, with the Bulnauer Emmet Taylor specific surface area being not less than 0.5 m²/g.
 - 16. (Cancelled).
- 17. (New) The positive electrode material according to claim 1, wherein the electrification agent is made of carbon, copper or any electrically conductive high polymer material.

- 18. (New) The positive electrode material according to claim 5, wherein the electrification agent is made of carbon, copper or any electrically conductive high polymer material.
- 19. (New) The positive electrode material according to claim 9, wherein the electrification agent is made of carbon, copper or any electrically conductive high polymer material.
- 20. (New) The positive electrode material according to claim 11, wherein the electrification agent is made of carbon, copper or any electrically conductive high polymer material.
- 21. (New) The positive electrode material according to claim 13, wherein the electrification agent is made of carbon, copper or any electrically conductive high polymer material.
- 22. (New) The positive electrode material according to claim 15, wherein the electrification agent is made of carbon, copper or any electrically conductive high polymer material.