Случайные величины и их матожидания

Владимир Подольский

Факультет компьютерных наук, Высшая Школа Экономики

Случайные величины и их матожидания

Случайные величины

Среднее

Математическое ожидание

• Мы обсудили вероятностные распределения

- Мы обсудили вероятностные распределения
- Мы обсудили события (подмножества исходов) и их вероятности

- Мы обсудили вероятностные распределения
- Мы обсудили события (подмножества исходов) и их вероятности
- События соответствуют вопросам с ответом да или нет

- Мы обсудили вероятностные распределения
- Мы обсудили события (подмножества исходов) и их вероятности
- События соответствуют вопросам с ответом да или нет
- Но важно уметь работать с численными характеристиками вероятностных исходов

- Мы обсудили вероятностные распределения
- Мы обсудили события (подмножества исходов) и их вероятности
- События соответствуют вопросам с ответом да или нет
- Но важно уметь работать с численными характеристиками вероятностных исходов
- Для этого мы введем случайные величины

• Случайная величина f — это переменная, значение которой определяется вероятностным экспериментом

- Случайная величина f это переменная, значение которой определяется вероятностным экспериментом
- У нас есть вероятностное распределение $\Omega = \{u_1, \dots, u_n\}$

- Случайная величина f это переменная, значение которой определяется вероятностным экспериментом
- У нас есть вероятностное распределение $\Omega = \{u_1, \dots, u_n\}$
- Исходы имеют вероятности p_1, \dots, p_n

- Случайная величина f это переменная, значение которой определяется вероятностным экспериментом
- У нас есть вероятностное распределение $\Omega = \{u_1, \dots, u_n\}$
- Исходы имеют вероятности p_1, \dots, p_n
- Чтобы определить f мы задаем число a_i для каждого исхода u_i

- Случайная величина f это переменная, значение которой определяется вероятностным экспериментом
- У нас есть вероятностное распределение $\Omega = \{u_1, \dots, u_n\}$
- Исходы имеют вероятности p_1,\dots,p_n
- Чтобы определить f мы задаем число a_i для каждого исхода u_i
- Тогда f принимает значение a_i с вероятностью p_i

• Выглядит знакомо

- Выглядит знакомо
- Мы так уже делали!

- Выглядит знакомо
- Мы так уже делали!
- Исходам при бросании кубика присвоены числа

wikimedia.org

- Выглядит знакомо
- Мы так уже делали!
- Исходам при бросании кубика присвоены числа
- И мы оперировали с ними как с числами

wikimedia.org

Другие примеры:

• Подбрасывание монетки: решка=0, орел=1

- Подбрасывание монетки: решка=0, орел=1
- Возраст случайного человек в классе

- Подбрасывание монетки: решка=0, орел=1
- Возраст случайного человек в классе
- Оценка случайного слушателя на Курсере

- Подбрасывание монетки: решка=0, орел=1
 - Возраст случайного человек в классе
- Оценка случайного слушателя на Курсере
- Сумма исходов двух бросаний кубика

Случайные величины и их матожидания

Случайные величины

Среднее

Математическое ожидание

• Что такое средний доход на душу населения?

- Что такое средний доход на душу населения?
- Общий доход всего населения, поделенный на численность населения

- Что такое средний доход на душу населения?
- Общий доход всего населения, поделенный на численность населения
- Это стандартное понятие среднего

- Что такое средний доход на душу населения?
- Общий доход всего населения, поделенный на численность населения
- Это стандартное понятие среднего
- В математике это называется средним арифметическим

Задача

Студент получил 78,72 и 87 баллов за три теста. Каков его средний балл?

Задача

Студент получил 78,72 и 87 баллов за три теста. Каков его средний балл?

 Нужно сложить все оценки и поделить на их количество

Задача

Студент получил 78,72 и 87 баллов за три теста. Каков его средний балл?

- Нужно сложить все оценки и поделить на их количество
- Вот результат:

$$\frac{78+72+87}{3} = \frac{237}{3} = 79$$

Задача

Студент получил 78,72 и 87 баллов за три теста. Каков его средний балл?

- Нужно сложить все оценки и поделить на их количество
- Вот результат:

$$\frac{78+72+87}{3} = \frac{237}{3} = 79$$

 Нам повезло, и среднее оказалось целым; это не всегда так

Задача

Задача

Руководство компании использует следующее правило: увольнять всякого, кто работает ниже среднего. Что получится в результате применения этой стратегии?

• Это может звучать разумно, но ...

Задача

- Это может звучать разумно, но ...
- Если не случилось, что все работают одинаково хорошо (что большая редкость) ...

Задача

- Это может звучать разумно, но ...
- Если не случилось, что все работают одинаково хорошо (что большая редкость) ...
- Всегда есть кто-то, кто работает ниже среднего!

Задача

- Это может звучать разумно, но ...
- Если не случилось, что все работают одинаково хорошо (что большая редкость) ...
- Всегда есть кто-то, кто работает ниже среднего!
- Если таких сотрудников уволить, среднее вырастет

Задача

- Это может звучать разумно, но ...
- Если не случилось, что все работают одинаково хорошо (что большая редкость) ...
- Всегда есть кто-то, кто работает ниже среднего!
- Если таких сотрудников уволить, среднее вырастет
- И снова появятся люди, работающие ниже среднего!

Стратегия увольнения сотрудников

Задача

Руководство компании использует следующее правило: увольнять всякого, кто работает ниже среднего. Что получится в результате применения этой стратегии?

- Это может звучать разумно, но ...
- Если не случилось, что все работают одинаково хорошо (что большая редкость) ...
- Всегда есть кто-то, кто работает ниже среднего!
- Если таких сотрудников уволить, среднее вырастет
- И снова появятся люди, работающие ниже среднего!
- Мы уволим всех, кроме самого лучшего сотрудника

Задача

Пусть мы бросаем кубик много раз. Каково будет среднее значение этих бросаний?

Задача

Пусть мы бросаем кубик много раз. Каково будет среднее значение этих бросаний?

• Можем ли мы дать точный ответ?

Задача

Пусть мы бросаем кубик много раз. Каково будет среднее значение этих бросаний?

- Можем ли мы дать точный ответ?
- Нет, это случайная величина

Задача

Пусть мы бросаем кубик много раз. Каково будет среднее значение этих бросаний?

- Можем ли мы дать точный ответ?
- Нет, это случайная величина
- Но мы можем найти приближенное значение, которое будет хорошим приближением с большой вероятностью

- Пусть мы бросили кубик n раз для очень большого n

- Пусть мы бросили кубик n раз для очень большого n
- Тогда среди исходов будет примерно n/6 единиц, n/6 двоек, и так далее

- Пусть мы бросили кубик n раз для очень большого n
- Тогда среди исходов будет примерно n/6 единиц, n/6 двоек, и так далее
- Сумма результатов тогда примерно равна

$$\frac{n}{6} \times 1 + \frac{n}{6} \times 2 + \frac{n}{6} \times 3 + \frac{n}{6} \times 4 + \frac{n}{6} \times 5 + \frac{n}{6} \times 6$$
$$= \frac{n(1+2+3+4+5+6)}{6} = \frac{21n}{6} = 3.5n$$

- Пусть мы бросили кубик n раз для очень большого n
- Тогда среди исходов будет примерно n/6 единиц, n/6 двоек, и так далее
- Сумма результатов тогда примерно равна

$$\frac{n}{6} \times 1 + \frac{n}{6} \times 2 + \frac{n}{6} \times 3 + \frac{n}{6} \times 4 + \frac{n}{6} \times 5 + \frac{n}{6} \times 6$$
$$= \frac{n(1+2+3+4+5+6)}{6} = \frac{21n}{6} = 3.5n$$

• Средний результат можно получить делением на число бросаний n

- Пусть мы бросили кубик n раз для очень большого n
- Тогда среди исходов будет примерно n/6 единиц, n/6 двоек, и так далее
- Сумма результатов тогда примерно равна

$$\frac{n}{6} \times 1 + \frac{n}{6} \times 2 + \frac{n}{6} \times 3 + \frac{n}{6} \times 4 + \frac{n}{6} \times 5 + \frac{n}{6} \times 6$$
$$= \frac{n(1+2+3+4+5+6)}{6} = \frac{21n}{6} = 3.5n$$

- Средний результат можно получить делением на число бросаний n
- Так что среднее примерно равно 3.5

• Мы получили, что среднее примерно равно 3.5

- Мы получили, что среднее примерно равно 3.5
- Это число не зависит от n!

- Мы получили, что среднее примерно равно 3.5
- Это число не зависит от n!
- Оно называется ожидаемым значением или математическим ожиданием бросания кубика

- Мы получили, что среднее примерно равно 3.5
- Это число не зависит от n!
- Оно называется ожидаемым значением или математическим ожиданием бросания кубика
- В следующем видео мы обобщим и формализуем это рассуждение

Случайные величины и их матожидания

Случайные величины

Среднее

• Рассмотрим случайную величину в общем виде

- Рассмотрим случайную величину в общем виде
- Пусть случайная величина f задана на распределении с 4 исходами

- Рассмотрим случайную величину в общем виде
- Пусть случайная величина f задана на распределении с 4 исходами
- Вероятности исходов равны p_1 , p_2 , p_3 , p_4

- Рассмотрим случайную величину в общем виде
- Пусть случайная величина f задана на распределении с 4 исходами
- Вероятности исходов равны p_1 , p_2 , p_3 , p_4
- Значения f равны a_1 , a_2 , a_3 , a_4 соответственно

- Рассмотрим случайную величину в общем виде
- Пусть случайная величина f задана на распределении с 4 исходами
- Вероятности исходов равны p_1 , p_2 , p_3 , p_4
- Значения f равны a_1 , a_2 , a_3 , a_4 соответственно
- Повторим эксперимент много раз

- Повторяем n раз для большого числа n

- Повторяем n раз для большого числа n

- Повторяем n раз для большого числа n
- Чему равно среднее значение f в этих экспериментах?

• Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз

- Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз
- В среднем мы получили

$$\approx \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз
- В среднем мы получили

$$\approx \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

• Эта величина обозначается через $\mathsf{E} f$ и называется математическим ожиданием f или матожиданием f

- Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз
- В среднем мы получили

$$\approx \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$

$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- Эта величина обозначается через $\mathbf{E}f$ и называется математическим ожиданием f или матожиданием f
- Она не зависит от n

- Мы провели n экспериментов, значение a_i встретилось примерно $p_i n$ раз
- В среднем мы получили

$$\approx \frac{a_1p_1n + a_2p_2n + a_3p_3n + a_4p_4n}{n}$$
$$= a_1p_1 + a_2p_2 + a_3p_3 + a_4p_4$$

- Эта величина обозначается через $\mathbf{E}f$ и называется математическим ожиданием f или матожиданием f
- Она не зависит от n
- Она равна тому, что мы ожидаем получить в среднем при многократном повторении эксперимента

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны
- Для вычисления математического ожидания надо перемножить $a_i imes p_i$ по всем i

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны
- Для вычисления математического ожидания надо перемножить $a_i \times p_i$ по всем i
- И сложить результаты по i от 1 до k

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны
- Для вычисления математического ожидания надо перемножить $a_i \times p_i$ по всем i
- И сложить результаты по i от 1 до k
- Математическое ожидание это число!

- В общем случае значения f равны a_1,\dots,a_k с вероятностями p_1,\dots,p_k
- Все рассуждения аналогичны
- Для вычисления математического ожидания надо перемножить $a_i \times p_i$ по всем i
- И сложить результаты по i от 1 до k
- Математическое ожидание это число!
- Это важная характеристика случайной величины

Пусть f принимает значения a_1, a_2, a_3, a_4 с вероятностями p_1, p_2, p_3, p_4

Пусть f принимает значения a_1,a_2,a_3,a_4 с вероятностями p_1,p_2,p_3,p_4 Е $f=a_1p_1+a_2p_2+a_3p_3+a_4p_4$

• Еf — это площадь закрашенной области

• Математическое ожидание встречается повсюду в статистике и социологии

- Математическое ожидание встречается повсюду в статистике и социологии
- Средний возраст

- Математическое ожидание встречается повсюду в статистике и социологии
- Средний возраст
- Средняя продолжительность жизни

- Математическое ожидание встречается повсюду в статистике и социологии
- Средний возраст
- Средняя продолжительность жизни
- Средняя оценка за время обучения

- Математическое ожидание встречается повсюду в статистике и социологии
- Средний возраст
- Средняя продолжительность жизни
- Средняя оценка за время обучения
- В следующем уроке мы обсудим, почему с математическим ожиданием еще и удобно работать