Mathematical Foundation of Computer Sciences VI

Algorithms on Pushdown Automata

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Summary

Language	regular	context-free
Machine	DFA/NFA	PDA
Syntax	regular expression	context-free grammar

General Computations

Closure Properties

The context-free languages are closed under union, concatenation, and kleene star.

Closure Properties - Union

Proof

$$N_1 = (V_1, \Sigma_1, R_1, S_1)$$
 recognize A_1 ,
 $N_2 = (V_2, \Sigma_2, R_2, S_2)$ recognize A_2 . w.l.o.g. $V_1 \cap V_2 = \emptyset$.

• **Union.** *S* is a new symbol. Let $N = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$, where $R = R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\}$.

Closure Properties - Concatenation

Proof

$$N_1 = (V_1, \Sigma_1, R_1, S_1)$$
 recognize A_1 ,
 $N_2 = (V_2, \Sigma_2, R_2, S_2)$ recognize A_2 . w.l.o.g. $V_1 \cap V_2 = \emptyset$.

• Concatenation. S is a new symbol. Let $N = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$, where $R = R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}$.

Closure Properties - Kleene Star

Proof

$$N_1 = (V_1, \Sigma_1, R_1, S_1)$$
 recognize A_1 .

• **Kleene Star.** S is a new symbol. Let $N = (V_1 \cup \{S\}, \Sigma_1, R, S)$, where $R = R_1 \cup \{S \to \epsilon, S \to SS_1\}$.

Intersection of a CFL and a RL

Theorem The intersection of a context-free language with a regular language is a context-free language.

Proof

PDA
$$M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$$
 and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

- $Q = Q_1 \times Q_2$;
- $s = (s_1, s_2);$
- $F = (F_1, F_2)$, and
- ∆ is defined as follows
 - 1. for each PDA rule $(q_1,a,eta) o (p_1,r)$ and each $q_2 \in Q_2$ add the following rule to Δ

$$((q_1, q_2), a, \beta) \rightarrow ((p_1, \delta_2(q_2, a)), r)$$

2. for each PDA rule $(q_1,\epsilon,\beta) \to (p_1,r)$ and each $q_2 \in Q_2$ add the following rule to Δ

$$((q_1,q_2),\epsilon,\beta)\to((p_1,q_2),r)$$

Negative Results

The context free language are not closed under intersection or complementation.

Proof

Clearly $\{a^nb^nc^m\mid m,n\geq 0\}$ and $\{a^mb^nc^n\mid m,n\geq 0\}$ are both CFL. However their intersection, $\{a^nb^nc^n\mid n\geq 0\}$, is not.

To the second part of the statement,

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

rules out the closure under complementation.

8

Pumping Lemma

The Pumping Lemma

If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided as s = xuyvz satisfying the conditions

- 1. for each $i \ge 0$, $xu^i yv^i z \in A$,
- 2. |uv| > 0,
- 3. |uyv| < p.

Let G be a CFG for CFL A. Let b be the maximum number of symbols in the right-hand side of a rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h, the length of the string generated is at most b^h .

If a generated string is at least $b^h + 1$ long, each of its parse trees must be at least h + 1 high.

We choose the pumping length

$$p = b^{|V|+1}$$

For any string $s \in A$ with $|s| \ge p$, any of its parse trees must be at least |V|+1 high.

Let au be one parse tree of s with smallest number of nodes, whose height is at least |V|+1. So au has a path from the root to a leaf of length |V|+1 with |V|+2 nodes. One variable R must appear at least twice in the last |V|+1 variable nodes on this path.

We divide s into xuyvz:

- x from the leftmost leaf of τ to the leaf left next to the leftmost leaf of the subtree hanging on the first R,
- *u* from the leftmost leaf of the subtree hanging on the first *R* to the leaf left next to the leftmost leaf of the subtree hanging on the second *R*,
- y for all the leaves of the subtree hanging on the second R,
- *v* from the leaf right next to the rightmost leaf of the subtree hanging on the second *R* to the rightmost leaf of the subtree hanging on the first *R*,
- z from the leaf right next to the rightmost leaf of the subtree hanging on the first R to the rightmost leaf of au.

Pumping Lemma

from Wikipedia

Condition 1. Replace the subtree of the second R by the subtree of the first R would validate that for each $i \ge 0$, $xu^iyv^iz \in A$.

Condition 2. If |uv|=0, i.e., $u=v=\epsilon$, then τ cannot have the smallest number of nodes.

Condition 3. To see $|uyv| \le p = b^{|V|+1}$, note that uyv is generated by the first R. We can always choose R so that its last two occurrences fall within the bottom |V|+1 high. A tree of this height can generate a string of length at most $b^{|V|+1}=p$.

```
\{a^nb^nc^n\mid n\geq 0\} is not context free.
```

Assume otherwise, and let p be the pumping length. Consider $s = a^p b^p c^p$ and divide it to xuyvz according to the Pumping Lemma.

- When both u and v contain only one type of symbols, i.e., one of a, b, c, then xu^2yv^2z cannot contain equal number of a's, b's, and c's.
- If either u or v contains more than one type of symbols, then xu^2yv^2z would have symbols interleaved.

```
\{ww \mid w \in \{0, 1\}^*\} is not context free.
```

Assume otherwise, and let p be the pumping length. Consider $s = 0^p 1^p 0^p 1^p$ and divide it to xuyvz with $|uyv| \le p$.

- If uyv occurs only in the first half of s, then the second half of xu^2yv^2z must start with an 1. This is impossible.
- Similarly *uyv* cannot occur only in the second half of *s*.
- If *uyv* straddles the midpoint of *s*, then pumping *s* to the form $0^p 1^i 0^j 1^p$ cannot ensure i = j = p.

Emptiness

The Emptiness of PDA is decidable.

Some decision problems related to FA

Problems from Formal Language Theory

Decision Problems

- Acceptance: does a given string belong to a given language?
- Emptiness: is a given language empty?
- Equality: are given two languages equal?

Language Problems Concerning CFL

The following three problems:

- Acceptance: Given a CFG G and a string w, does G accept w?
- Emptiness: Given a CFG G is the language L(G) empty?
- Equality: Given two DFA CF(NFA) A and B is L(A) equal to L(B)?

The Acceptance and Emptiness problem for CFG are decidable, the Equality problem is not decidable.

Assignment 2

Assignment 2

Exercises 2.4 (b, c, d); 2.6 (a, d); 2.14; 2.18 (b); 2.20; 2.26; 2.30; 2.40; 2.42 deadline Apr. 8