В.Т. Дубровин

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО. ТЕОРИЯ И ПРАКТИКА

Казанский государственный университет 2010

УДК 517.5

Печатается по решению Редакционно-издательского совета ГОУ ВПО методической комиссии факультета ВМК Протокол №7 от 16 марта 2010г.

заседания кафедры математической статистики Протокол №8 от 14 апреля 2010г.

Научный редактор доктор физ.-мат. наук, зав.каф. В.С. Желтухин

Рецензенты:

канд. физ.-мат. наук, доцент КГАСУ Ф.Г. Габбасов канд. физ.-мат. наук, доцент К (Π) ФУ С.В. Симушкин

Дубровин В.Т.

Теория функций комплексного переменного (теория и практика): Учебное пособие / В.Т. Дубровин. – Казань: Казанский государственный университет, 2010.-102 с.

В предлагаемом учебном пособии излагаются основы теории функций комплексного переменного в объеме, необходимом для студентов специальности "Прикладная математика". Каждая тема сопровождается набором решенных практических задач и задачами для самостоятельного решения.

©Казанский государственный университет, 2010 ©Дубровин В.Т., 2010

ПРЕДИСЛОВИЕ

Учебное пособие написано на основе многолетнего опыта чтения лекций по теории функций комплексного переменного для студентов специальности "Прикладная математика" Казанского государственного университета. Автор делает попытку соединить в одной книге теорию (лекционный материал) и практику (сборник задач). Возможно, что такое соединение поможет студентам наилучшим образом усвоить такой предмет, как теория функций комплексного переменного.

1. КОМПЛЕКСНЫЕ ЧИСЛА

Определение. Комплексным числом называется пара действительных чисел $\overline{z = (x, y), \, x, y} \in \mathbb{R}$, взятых в определенном порядке.

Замечание. Множество действительных чисел \mathbb{R} есть часть множества комплексных чисел. При y=0, обозначая(x,0) через x, мы получим действительное число x.

1.1 Операции над комплексными числами

- 1. Сложение: $z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$, если $z_1 = (x_1, y_1)$, $z_2 = (x_2, y_2)$.
- 2. <u>Умножение</u>: $z_1z_2=(x_1x_2-y_1y_2,x_1y_2+y_1x_2)$.

<u>Замечание.</u> Особую роль играет комплексное число (0,1), обозначаемое буквой i - мнимая единица.

$$i^2 = i \cdot i = (0, 1)(0, 1) = (-1, 0) = -1 \Rightarrow i = \sqrt{-1}.$$

Используя мнимую единицу i, любое комплексное число можно записать следующим образом:

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0)(0, 1) = x + yi = x + iy$$

(алгебраическая форма комплексного числа), где x - действительная часть числа z (x = Re z), y - мнимая часть z (y = Im z).

3. <u>Разность</u>: $z_1 - z_2 = (x_1 - x_2, y_1 - y_2)$.

Определение 1. $z_1 = z_2$, если $x_1 = x_2$ и $y_1 = y_2$.

Определение 2. Комплексное число $\bar{z} = (x, -y) = x - iy$ называется сопряженным к комплексному числу z = (x, y) = x + iy.

Заметим, что $z \cdot \bar{z} = x^2 + y^2$.

4. <u>Частным</u> комплексных чисел z_1 и z_2 называется комплексное число z такое, что $z_1 \cdot z = z_2$.

Умножая равенство $z_1\cdot z=z_2$ на $\frac{\bar{z}_1}{x_1^2+y_1^2}$, получим $z=\frac{z_2\cdot \bar{z}_1}{x_1^2+y_1^2}=\frac{z_2}{z_1}$, где $z_1=x_1+iy_1\neq 0$.

1.2 Свойства арифметических операций

Операции сложения и умножения комплексных чисел обладают следующими свойствами:

1. Коммутативность:

$$z_1 + z_2 = z_2 + z_1$$
, $z_1 z_2 = z_2 z_1$.

2. Ассоциативность:

$$(z_1+z_2)+z_3=z_1+(z_2+z_3), (z_1z_2)z_3=z_1(z_2z_3).$$

3. Дистрибутивность:

$$z_1(z_2+z_3)=z_1z_2+z_1z_3.$$

Для примера докажем коммутативность сложения. Пусть $z_1=x_1+iy_1$, $z_2=x_2+iy_2$. Тогда $z_1+z_2=(x_1+x_2)+i(y_1+y_2)$, $z_2+z_1=(x_2+x_1)+i(y_2+y_1)$. По свойству коммутативности сложения действительных чисел $x_1+x_2=x_2+x_1$, $y_1+y_2=y_2+y_1$. Следовательно, $z_1+z_2=z_2+z_1$.

Аналогично доказываются остальные свойства 1-3.

1.3 Геометрическое изображение комплексных чисел

Любое комплексное число z = x + iy изображается точкой плоскости с координатами (x,y), и эта точка обозначается той же буквой z. Действительные числа изображаются точками оси абсцисс, а чисто мнимые - точками оси ординат. Поэтому ось абсцисс называется действительной осью, а ось ординат - мнимой осью. Плоскость, точки которой изображают комплексные числа, называется комплексной числовой плоскостью (обозначение: \mathbb{C}).

Комплексное число z изображается также вектором с началом в точке o и концом в точке z.

1.4 Понятие о модуле и аргументе комплексного числа

$$ho = \sqrt{x^2 + y^2} = \sqrt{z \cdot \bar{z}}$$
 - модуль комплексного числа $z = x + iy$.

Очевидно, ρ - длина вектора \overline{OM} , изображающего комплексное число z. Обычно используется обозначение: $\rho=|z|$. Угол φ , образованный вектором \overline{OM} с осью x, называется аргументом комплексного числа z и обозначается $\varphi=\operatorname{Arg} z$. Определяется аргумент φ не однозначно, а с точностью до слагаемого, кратного 2π :

Arg
$$z = \arg z + 2k\pi, k = 0, \pm 1, \pm 2, \dots,$$

где $\arg z$ - главное значение $\operatorname{Arg} z,$ определяемое условиями $-\pi \leq \arg z \leq \pi,$ причем

$$\arg z = \begin{cases} \arctan \frac{y}{x} &, \text{ если } x > 0, \\ \pi + \arctan \frac{y}{x} &, \text{ если } x < 0, y \ge 0, \\ -\pi + \arctan \frac{y}{x} &, \text{ если } x < 0, y < 0, \\ \frac{\pi}{2} &, \text{ если } x = 0, y > 0, \\ -\frac{\pi}{2} &, \text{ если } x = 0, y < 0. \end{cases}$$

<u>Замечание.</u> 1. φ считается положительным, если измеряется против хода часовой стрелки. В противном случае аргумент φ - отрицательный.

2. Принимая ρ и φ за полярные координаты точки z=(x,y), имеем: $x=\rho\cos\varphi,\ y=\rho\sin\varphi$. Отсюда следует тригонометрическая форма записи комплексного числа: $z=\rho(\cos\varphi+i\sin\varphi)$.

1.5 Теорема о модуле и аргументе

Теорема.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
, Arg $(z_1 \cdot z_2) = \text{Arg } z_1 + \text{Arg } z_2$; $\left| \frac{z_2}{z_1} \right| = \frac{|z_2|}{|z_1|}$, Arg $\frac{z_2}{z_2} = \text{Arg } z_2 - \text{Arg } z_1$

Вторая часть утверждения теоремы (модуль и аргумент частного) является следствием первой части. Действительно, $z_2=\frac{z_2}{z_1}\cdot z_1,\, z_1\neq 0. \Rightarrow |z_2|=$

$$\left|\frac{z_2}{z_1}\right| \cdot |z_1| \Rightarrow \left|\frac{z_2}{z_1}\right| = \frac{|z_2|}{|z_1|}$$
. Arg $z_2 = \operatorname{Arg} \frac{z_2}{z_1} + \operatorname{Arg} z_1 \Rightarrow \operatorname{Arg} \frac{z_2}{z_1} = \operatorname{Arg} z_2 - \operatorname{Arg} z_1$. Теорема доказана.

Замечание 1. Из теоремы следуют равенства $|z^n| = |z|^n$, Arg $z^n =$ $n \operatorname{Arg} z$, которые выражают так называемую формулу Муавра:

$$(r(\cos\varphi + i\sin\varphi))^n = r^n(\cos n\varphi + i\sin n\varphi).$$

Замечание 2. При доказательстве теоремы о модуле и аргументе использовалась тригонометрическая форма записи комплексных чисел, поэтому имеет смысл сделать следующее замечание: "Из геометрической интерпретации вытекает правило равенства комплексных чисел, записанных в тригонометрической форме: если $z_1 = |z_1|(\cos\varphi_1 + i\sin\varphi_1), z_2 =$ $|z_2|(\cos \varphi_2 + i \sin \varphi_2)$, то $z_1 = z_2$ тогда и только тогда, когда $|z_1| = |z_2|$ и $\varphi_1 = \varphi_2 + 2k\pi, \ k \in \mathbb{Z}$."

Свойства модуля комплексных чисел

1.
$$|\bar{z}| = |z|$$
;

$$2. \ z \cdot \bar{z} = |z|^2$$

1.
$$|\bar{z}| = |z|$$
; 2. $z \cdot \bar{z} = |z|^2$;
3. $|z_1 z_2| = |z_1| \cdot |z_2|$; 4. $|z^n| = |z|^n$;

4.
$$|z^n| = |z|^n$$
;

5.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, \ z_2 \neq 0;$$

6. $|\operatorname{Re} z| \leq |z|, \ |\operatorname{Im} z| \leq |z|;$

6.
$$|\operatorname{Re} z| \leq |z|$$
, $|\operatorname{Im} z| \leq |z|$;

7.
$$|z_1 + z_2| \le |z_1| + |z_2|$$
;

7.
$$|z_1 + z_2| \le |z_1| + |z_2|$$
;
8. $||z_1| - |z_2|| \le |z_1 - z_2|$.

Свойства 1 и 2 следуют из определения \bar{z} и определения модуля. Свойства 3, 4, 5 - часть утверждения теоремы о модуле и аргументе. Справедливость свойств 6, 7, 8 следует из векторного представления комплексных чисел (см. рис).

Извлечение корня 1.7

Определение. Если $z = \rho(\cos\varphi + i\sin\varphi)$, где $\rho = |z|$, $\varphi = \arg z$, то $\sqrt[n]{z}$ мы определим как комплексное число, которое, будучи возведённым в степень n, равно z: $(\sqrt[n]{z})^n = z$. Модуль числа $\sqrt[n]{z}$, очевидно, будет равен $\sqrt[n]{\rho}$, аргумент же будет равен $\frac{\varphi+2k\pi}{n}$, где $k=0,\pm 1,\pm 2,\ldots$. Давая k значения $k = 0, 1, \dots, n - 1$, получим n различных значений аргумента числа $\sqrt[n]{z}$.

Таким образом,

$$\sqrt[n]{z} = \sqrt[n]{\rho}(\cos\frac{\varphi + 2k\pi}{n} + i\sin\frac{\varphi + 2k\pi}{n}), \ k = 0, 1, \dots, n - 1.$$

Геометрически эти n значений выражения $\sqrt[n]{z}$ изображаются вершинами некоторого правильного n-угольника, вписанного в окружность с центром в нулевой точке и радиусом $\sqrt[n]{\rho}$.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Выполнить действия

1)
$$(2+i)^3$$
 2) $\frac{3+i}{(1+i)(1-2i)}$.

$$\frac{\text{Решение.}}{2.} \frac{1.) (2+i)^3 = 8+3 \cdot 2^2 \cdot i + 3 \cdot 2 \cdot i^2 + i^3 = 2+11i.}{(1+i)(1-2i)} = \frac{(3+i)\overline{(1+i)(1-2i)}}{((1+i)(1-2i))(\overline{(1+i)(1-2i)})} = \frac{(3+i)\overline{(3-i)}}{|3-i|^2} = \frac{(3+i)^2}{|3-i|^2} = \frac{9+6i-1}{10} = \frac{4}{5} + \frac{3}{5}i.}{\frac{10}{2}} = \frac{10}{10} = \frac{10}{2} =$$

Пример 3. Найти действительные решения уравнения

$$(4+2i)x + (5-3i)y = 13+i.$$

<u>Решение.</u> Выделим в левой части уравнения действительную и мнимую части: (4x+5y)+i(2x-3y)=13+i.

$$\begin{cases} 4x + 5y = 13, \\ 2x - 3y = 1. \end{cases}$$

Решая систему, находим x = 2, y = 1.

Пример 4. Найти модуль и аргумент комплексного числа

$$z = -\sin\frac{\pi}{10} - i\cos\frac{\pi}{10}.$$

Решение. Имеем $x = -\sin\frac{\pi}{10} < 0$, $y = -\cos\frac{\pi}{8} < 0$. $\Rightarrow \arg z = -\pi + \arctan\left(\frac{\cos\frac{\pi}{10}}{\sin\frac{\pi}{10}}\right) = -\pi + \arctan\left(\operatorname{tg}\left(\frac{\pi}{2} - \frac{\pi}{10}\right)\right) = -\pi + \arctan\left(\operatorname{tg}\left(\frac{2}{5}\pi\right)\right) = -\pi + \frac{2}{5}\pi = -\frac{3}{5}\pi, \Rightarrow \operatorname{Arg} z = -\frac{3}{5}\pi + 2k\pi, k = 0, \pm 1, \pm 2, \dots$

$$|z| = \sqrt{\sin^2 \frac{\pi}{10} + \cos^2 \frac{\pi}{10}} = 1.$$

<u>Пример 5.</u> Записать в тригонометрической форме комплексное число $z=-1-i\sqrt{3}.$

Решение. $|z| = \sqrt{(-1)^2 + (-\sqrt{3})^2} = 2$; $\operatorname{tg} \varphi = \frac{-\sqrt{3}}{1} = \sqrt{3}$, $\varphi = -\pi +$ $+ \arctan \sqrt{3} = -\pi + \frac{\pi}{3} = -\frac{2}{3}\pi. \Rightarrow -1 - i\sqrt{3} = 2(\cos(-\frac{2}{3}\pi) + i\sin(-\frac{2}{3}\pi)).$

Пример 6. Вычислить $(-1 + i\sqrt{3})^{60}$.

<u>Решение.</u> Представим число $-1 + i\sqrt{3}$ в тригонометрической форме

$$-1 + i\sqrt{3} = 2(\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi).$$

По формуле Муавра возведем в степень $(-1+i\sqrt{3})^{60}=2^{60}(\cos{(60\frac{2}{3}\pi)}+$ $+i\sin\left(60\frac{2}{3}\pi\right) = 2^{60}(\cos 40\pi + i\sin 40\pi) = 2^{60}.$

Пример 7. Найти все значения $\sqrt[4]{1-i}$.

<u>Решение.</u> Запишем комплексное число 1-i в тригонометрической форме

$$1 - i = \sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})).$$

По формуле извлечения корня получим:

$$\sqrt[4]{1-i} = \sqrt[8]{2}(\cos(\frac{-\frac{\pi}{4} + 2k\pi}{n}) + i\sin(\frac{-\frac{\pi}{4} + 2k\pi}{n})).$$

Полагая
$$k=0,\,1,\,2,\,3,\,$$
 найдем
$$\sqrt[4]{1-i}=\sqrt[8]{2}(\cos\frac{\pi}{16}-i\sin\frac{\pi}{16})\qquad,\;k=0;$$

$$\sqrt[4]{1-i} = \sqrt[8]{2}(\cos\frac{7}{16}\pi + i\sin\frac{7}{16}\pi)$$
, $k = 1$;

$$\sqrt[4]{1-i} = \sqrt[8]{2}(\cos\frac{15}{16}\pi - i\sin\frac{15}{16}\pi)$$
, $k = 2$;

$$\sqrt[4]{1-i} = \sqrt[8]{2}(\cos\frac{23}{16}\pi - i\sin\frac{23}{16}\pi)$$
, $k = 3$.

Пример 8. Какое множество точек на комплексной плоскости опреде-

ляется условиями: $1 \le |z+i| \le 2, \frac{\pi}{4} < \arg z < \frac{\pi}{2}$.

<u>Решение.</u> Условие $1 \le |z + i| \le 2$ определяет кольцо с центром в точке z=-i, с меньшим радиусом r=1 и большим радиусом $R=\sqrt{2}$. Условие $\frac{\pi}{4} < \arg z < \frac{\pi}{2}$ ограничивает часть этого кольца, находящегося между лучами $\arg z = \frac{\pi}{4}$ и $\arg z = \frac{\pi}{2}$ (на рис. заштрихованная область).

Рис.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Найти значение:

1.
$$\frac{1-i}{1+i}$$
.

$$2. \frac{1}{i} \cdot \frac{1+i}{1-i}.$$

3.
$$\frac{1 + r(\cos \varphi + i \sin \varphi)}{1 - r(\cos \varphi + i \sin \varphi)}$$

4.
$$\frac{2+3i}{(1+i)^2}$$
.

$$3. \frac{1+i}{1-r(\cos\varphi+i\sin\varphi)}.$$

$$4. \frac{2+3i}{(1+i)^2}.$$

$$5. (2+3i)(4-5i) + (2-3i)(4+5i).$$

$$6. \frac{1+i\operatorname{tg}\varphi}{1-i\operatorname{tg}\varphi}.$$

6.
$$\frac{1 + i \operatorname{tg} \varphi}{1 - i \operatorname{tg} \varphi}.$$

7.
$$\frac{a+bi}{a-bi}$$
.

8.
$$(-1-i)(-1+i)(1+i)(1-i)$$
.

Найти действительные решения уравнений:

9.
$$(3x - i)(2 + i) + (x - iy)(1 + 2i) = 5 - 6i$$
.

9. (3x-i)(2+i)+(x-iy)(1+2i)=5-6i. 10. $(x-iy)(a-ib)=i^5$, где a,b - заданные действительные числа, $|a| \neq |b|$.

11.
$$\frac{1}{z-i} + \frac{2+i}{1+i} = \sqrt{2}$$
, где $z = x+iy$.

12.
$$(1+2i)x + (3-5i)y = 1-3i$$
.

Решить систему уравнений:

13.
$$\begin{cases} (3-i)x + (4+2i)y = 2+6i, \\ (4+2i)x - (2+3i)y = 5+4i. \end{cases}$$

14.
$$\begin{cases} (2+i)x + (2-i)y = 6, \\ (3+2i)x + (3-2i)y = 8 \end{cases}$$

Решить систему уравнений:
13.
$$\begin{cases} (3-i)x + (4+2i)y = 2+6i, \\ (4+2i)x - (2+3i)y = 5+4i. \end{cases}$$
14.
$$\begin{cases} (2+i)x + (2-i)y = 6, \\ (3+2i)x + (3-2i)y = 8. \end{cases}$$
15.
$$\begin{cases} x+yi-2z=10, \\ x-y+2iz=20, \\ ix+3iy-(1+i)z=30. \end{cases}$$

16. Представить комплексное число
$$\frac{1}{(a+ib)^2} + \frac{1}{(a-ib)^2}$$
 в алгебраической форме.

17. Доказать, что
$$\frac{\sqrt{1+x^2}+ix}{x-i\sqrt{1+x^2}}=i$$
 (х-действительное).

18. Найти все комплексные числа, удовлетворяющие условию $\bar{z}=z^2.$ Найти модуль и главное значение аргумента комплексных чисел:

19.
$$z = 4 + 3i$$
.

20.
$$z = -2 + 2\sqrt{3}i$$
.

21.
$$z = -7 - i$$
.

21.
$$z = -7 - i$$
. 22. $z = -\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}$.

23.
$$z = 4 - 3i$$
.

24.
$$z = \cos \alpha - i \sin \alpha$$
, $(0 < \alpha < \frac{3}{2}\pi)$.

Записать комплексное число в тригонометрической форме:

$$25. - 2.$$

$$27. -\sqrt{2} + i\sqrt{2}.$$

28.
$$1 - \sin \alpha + i \cos \alpha$$
, $(0 < \alpha < \frac{\pi}{2})$.

29.
$$\frac{1 + \cos \alpha + i \sin \alpha}{1 + \cos \alpha - i \sin \alpha}, (0 < \alpha < \frac{\pi}{2}).$$

30.
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{40}$$
. 31. $(2-2i)^7$. 32. $(\sqrt{3}-3i)^6$.

31.
$$(2-2i)^7$$

$$32. \ (\sqrt{3} - 3i)^6.$$

$$33. \left(\frac{1-i}{1+i}\right)^8.$$

34. Доказать, что
$$\left(\frac{1+i\operatorname{tg}\alpha}{1-i\operatorname{tg}\alpha}\right)^n = \frac{1+i\operatorname{tg} n\alpha}{1-i\operatorname{tg} n\alpha}$$
.

35. Доказать, что если
$$(\cos \alpha + i \sin \alpha)^n = 1$$
, то $(\cos \alpha - i \sin \alpha) = 1$.

Найти все значения корня:

36.
$$\sqrt[4]{-1}$$
. 37. \sqrt{i} .

38.
$$\sqrt[3]{i}$$

$$39. \sqrt[4]{-i}$$

40.
$$\sqrt[4]{1}$$
. 41. $\sqrt[3]{-1+i}$.

$$42. \sqrt{2 - 2\sqrt{3}i}.$$

40.
$$\sqrt[4]{1}$$
. 41. $\sqrt[3]{-1+i}$. 42. $\sqrt{2-2\sqrt{3}i}$. 43. $\sqrt[5]{\sqrt{2}(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6})}$.

Найти множества точек на комплексной плоскости, определяемые условиями:

44.
$$|z| \ge 2$$
.

45.
$$\frac{1}{|z|} \ge 1, \ z \ne 0.$$

45.
$$\frac{1}{|z|} \ge 1$$
, $z \ne 0$. 46. $\left| \frac{1}{z} \right| \le 2$, $z \ne 0$.

47.
$$|z - 5i| = 8$$

48.
$$|z - 1 - i| \le 4$$
.

47.
$$|z - 5i| = 8$$
. 48. $|z - 1 - i| \le 4$. 49. $2 < |z| < 3$, $\frac{\pi}{8} < \arg z < \frac{4}{3}\pi$.

50.
$$\left| \frac{z-1}{z+1} \right| \le 1$$
. 51. $0 \le \text{Im } z \le 1$. 52. $1 \le |z+2+i| \le 2$

51.
$$0 \le \text{Im } z \le 1$$
.

$$52. \ 1 \le |z+2+i| \le 2$$

$$53. |z-1| < |z-i|$$
. $54. 1 < \text{Re } z < 2$.

54.
$$1 < \text{Re } z < 2$$

2. ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

Определение. Говорят, что на множестве $\Omega \subset \mathbb{C}$ задана функция $w = \overline{f(z)}$, если задано правило (закон), по которому каждой точке $z \in \Omega$ ставится в соответствие определенная точка $w \in \mathbb{C}$ (в таком случае функция называется однозначной) либо совокупность точек $w \in \mathbb{C}$ (в этом случае функция называется многозначной).

<u>Примеры.</u> 1. Функции $w=\overline{z},\ w=\operatorname{Re} z,\ w=\operatorname{Im} z$ определены на всей $\overline{\mathbb{C}}$ и являются однозначными функциями комплексного переменного. 2. Функция $w=\operatorname{Arg} z=\operatorname{arg} z+2k\pi,\ k\in\mathbb{Z}$ определена на всей \mathbb{C} и является многозначной функцией комплексного переменного.

Замечание. Если $z=x+iy,\ w=u+iv,$ то задание функции w=f(z)=f(x+iy) эквивалентно заданию двух действительных функций $u(x,y),\ v(x,y),$ так как w=f(z)=f(x+iy)=u(x,y)+iv(x,y).

Определение. Если отображение (функция) $w = f(z), z \in \Omega$, является взаимно-однозначным, то f(z) называется однолистной. Если область определения функции Ω можно разбить на несколько областей однолистности, то f(z) называется многолистной.

2.1 Элементарные функции комплексного переменного

 $1.\ w=az+b,\ a,b\in\mathbb{C},\ a\neq0,\ z\in\mathbb{C}.$ - линейная функция. Очевидно, что линейная функция является однозначной. Функция обратная линейной: z=1 — b — очевидно, также является однозначной. Таким образом, линейная функция $w=az+b,\ z\in\mathbb{C},$ является однолистной.

Рассмотрим функцию $\zeta = az$. Очевидно, что $\zeta = |a| \cdot |z| (\cos{(\arg{a} + \arg{z})} + i\sin{(\arg{a} + \arg{z})}). \Rightarrow |\zeta| = |a| \cdot |z|,$ атд $\zeta = \arg{a} + \arg{z}$. Таким образом, геометрический смысл отображения $\zeta = az$ следующий: $\mathbb C$ растягивается в |a| раз и поворачивается вокруг точки z = 0 на угол атд a. В свою очередь, $f(z) = \zeta + b$ есть сдвиг плоскости ζ , характеризуемый вектором b. Таким образом, линейная функция w = az + b растягивает, поворачивает и сдвигает комплексную плоскость $\mathbb C$.

2. Показательная функция $w = e^z, z \in \mathbb{C}$.

По определению: $e^z = e^x(\cos y + i\sin y)$, для любого z = x + iy.

<u>Замечание 1.</u> При x = 0: $e^{iy} = \cos y + i \sin y$ (формула Эйлера).

Замечание 2. Используя формулу Эйлера, любое комплексное число z можно записать в показательной форме

$$z=re^{iarphi}$$
, где $r=|z|,\,arphi={
m Arg}\,z$

(здесь $e^{i\varphi} = \cos \varphi + i \sin \varphi$).

Свойства показательной функции.

- а.) При y = 0: $e^z = e^x$.
- б.) $e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2}$, где $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.

Доказательство. $e^{z_1} \cdot e^{z_2} = e^{x_1}(\cos y_1 + i\sin y_1)e^{x_2}(\cos y_2 + i\sin y_2) = e^{x_1+x_2}(\cos(y_1+y_2) + i\sin(y_1+y_2)) = e^{z_1+z_2}$, так как $z_1+z_2=(x_1+x_2)+$ $i(y_1 + y_2)$.

в.) e^z периодическая функция с периодом $T=2\pi i$.

Доказательство. $e^{z+2\pi i} = e^{x+i(y+2\pi)} = e^x(\cos(y+2\pi)+i\sin(y+2\pi)) =$ $= e^x(\overline{\cos y + i\sin y}) = e^z.$

Замечание. Из формулы Эйлера следуют равенства: $e^{2\pi ni}=1,\,n\in\mathbb{Z};$ $e^{\pi(2n+1)i}=-1;\,e^{(\frac{\pi}{2}+2\pi n)i}=i.$

3. Тригонометрические функции $\sin z, \cos z, z \in \mathbb{C}$. По определению:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

Свойства тригонометрических функций $\sin z$, $\cos z$.

а.) При y=0, т. е. при $z=x\in\mathbb{R}$, имеем: $\sin z=\sin x$, $\cos z=\cos x$.

Доказательство.
$$\sin z = \frac{e^{ix} - e^{-ix}}{2i} = \frac{\cos x + i \sin x - (\cos x - i \sin x)}{2i} = \frac{\cos x + i \sin x}{2i} = \frac{\cos x + i \sin x - (\cos x - i \sin x)}{2i} = \frac{\cos x + i \sin x - (\cos x - i \sin x)}{2i} = \frac{\cos x + i \sin x - (\cos x - i \sin x)}{2i} = \frac{\cos x + i \sin x - (\cos x - i \sin x)}{2i} = \frac{\cos x + i \sin x}{2i} = \frac{\cos x +$$

- $=\sin x$. Аналогично доказывается, что $\cos z = \cos x$, при y=0.

б.) $\sin z$, $\cos z$ - периодические функции с периодом $T=2\pi$. Доказательство. $\sin (z+2\pi)=\frac{e^{i(z+2\pi)}-e^{-i(z+2\pi)}}{2i}=\frac{e^{iz}-e^{-iz}}{2i}=\sin z$. Аналогично доказывается, что $\cos(z + 2\pi) = \cos z$.

в.) $\sin z$ - нечетная функция, $\cos z$ - четная функция. Доказательство. $\sin(-z)=\frac{e^{-iz}-e^{iz}}{2i}=-\frac{e^{iz}-e^{-iz}}{2i}=-\sin z$. Также проверяется равенство $\cos(-z) = \cos z$.

Замечание. 1.) Функции $\sin z$, $\cos z$ подчиняются обычным тригонометрическим соотношениям: $\sin^2 z + \cos^2 z = 1$, $\sin 2z = 2\cos z\sin z$ и т. д.

2.) Из определения $\sin z$ и $\cos z$ следует формула

$$e^{iz} = \cos z + i \sin z$$
,

которая называется формулой Эйлера.

4. Логарифмическая функция $w = \operatorname{Ln} z$, определяется как обратная к функции e^z .

Так как $e^z \neq 0$, а любое другое значение e^z принимает в бесконечном множестве точек, то $\operatorname{Ln} z$ есть бесконечнозначная функция, определенная на всей \mathbb{C} , за исключением z=0.

Чтобы найти логарифм, нужно решить уравнение $e^w = z$ относительно w. Положим $w=u+iv,\ z=re^{i\varphi},\ r>0$. Из равенства $e^{u+iv}=re^{i\varphi}$ следует $e^u=r,\ v=arphi+2k\pi,\ k\in\mathbb{Z}$ (\mathbb{Z} - множество целых чисел). $\Rightarrow u=\ln r,\ v=arphi+2k\pi,\ k\in\mathbb{Z}$. Таким образом, $\ln z=\ln |z|+i\operatorname{Arg} z$, где $|z|=r,\ arphi+2k\pi=\operatorname{Arg} z$.

Свойства логарифмической функции.

a.) $\operatorname{Ln}(z_1 \cdot z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2$.

Доказательство. $\operatorname{Ln}(z_1 \cdot z_2) = \ln|z_1 \cdot z_2| + i \operatorname{Arg}(z_1 \cdot z_2) = \ln|z_1| + \ln|z_2| + i(\operatorname{Arg}z_1 + \operatorname{Arg}z_2) = \operatorname{Ln}z_1 + \operatorname{Ln}z_2.$

6.)
$$\operatorname{Ln} \frac{z_1}{z_2} = \operatorname{Ln} z_1 - \operatorname{Ln} z_2$$
.

Доказательство. $\operatorname{Ln} \frac{z_1}{z_2} = \operatorname{ln} \left| \frac{z_1}{z_2} \right| + i \operatorname{Arg} \frac{z_1}{z_2} = \operatorname{ln} |z_1| - \operatorname{ln} |z_2| + i (\operatorname{Arg} z_1 - \operatorname{Arg} z_2) = \operatorname{Ln} z_1 - \operatorname{Ln} z_2.$

Замечание. В каждом из приведенных равенств а.) и б.) левая и правая части при заданных z_1 и $z_2 \in \mathbb{C}$ изображают бесконечные множества комплексных чисел. Равенства следует понимать в том смысле, что эти множества одинаковы, т.е. состоят из одних и тех же чисел.

5. Степенная функция.

Если
$$n \in \mathbb{N}$$
, то $z^n = \underbrace{z \cdot \cdot \cdot z}_{n \text{ pas}}, z \in \mathbb{C}$.

Очевидно, что $|z^n| = |z|^n$, $\operatorname{Arg} z^n = n \operatorname{Arg} z$, и что функция $w = z^n$ однозначна.

Пусть α - произвольное комплексное число. Тогда $\underline{z^{\alpha}=e^{\alpha \ln z}}$. Так как $\ln z$ - бесконечнозначная функция, то и z^{α} будет бесконечнозначной функцией.

6. Гиперболические функции $\sh z, \, \ch z, \, \th z, \, \th z$ определяются равенствами

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2} , \quad \operatorname{ch} z = \frac{e^z + e^{-z}}{2} ,$$

$$\operatorname{th} z = \frac{\operatorname{sh} z}{\operatorname{ch} z} , \quad \operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z} .$$

ПРИМЕРЫ С РЕШЕНИЯМИ

Решение. Пусть
$$z = x + iy$$
, $w = u + iv$. Тогда $u + iv = (x + iy)^3 - i(x - iy) = (x^3 - 3xy^2 - y) + i(3x^2y - y^3 - x)$. $\Rightarrow u = x^3 - 3xy^2 - y$,

 $v = 3x^2y - y^3 - x$ есть, соответственно, действительная и мнимая части функции $w = z^3 - i\bar{z}$.

Пример 2. Найти значение модуля и главное значение аргумента

функции
$$w = \sin z$$
 в точке $z = \pi + i \ln (2 + \sqrt{5})$.

Решение. $w = \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{ix-y} - e^{-ix+y}}{2i} = \frac{e^{-y}e^{ix} - e^{-ix}e^{y}}{2i} = \frac{e^{-y}e^{ix} - e^{-ix}e^{y}}{2i} = \frac{e^{-y}e^{-ix}e^{y}}{2i} = \frac{e^{-y}e^{-ix}e^{y}}{2i}$

$$u(x,y) = e^{-y} \frac{\sin x}{2} + e^{y} \frac{\sin x}{2} = \sin x \cdot \text{ch } y ,$$

$$v(x,y) = -e^{-y} \frac{\cos x}{2} + e^{y} \frac{\cos x}{2} = \cos x \cdot \text{sh } y .$$

$$|\sin z| = \sqrt{\sin^2 x \cdot \cosh^2 y + \cos^2 x \cdot \sinh^2 y} = \sqrt{\sin^2 x \cdot \cosh^2 y + (1 - \sin^2 x) \cdot \sinh^2 y} =$$
 $= \sqrt{\sin^2 x + \sinh^2 y}$. Полагая $z = \pi + i \ln (2 + \sqrt{5})$, найдем
 $|\sin (\pi + i \ln (2 + \sqrt{5}))| = \sinh (\ln (2 + \sqrt{5})) = \frac{e^{\ln (2 + \sqrt{5})} - e^{-\ln (2 + \sqrt{5})}}{2} =$
 $= \frac{2 + \sqrt{5} - \frac{1}{2 + \sqrt{5}}}{2} = 2$.

Аналогично высчитывается $u(\pi, \ln(2+\sqrt{5}))=0, v(\pi, \ln(2+\sqrt{5}))=-2.$ Отсюда следует $\arg w = -\frac{\pi}{2}$.

Пример 3. Найти логарифм числа z = e.

<u>Решение.</u> Ln $z = \ln e + i \arg e + 2k\pi i, k \in \mathbb{Z}. \Rightarrow \operatorname{Ln} e = 1 + 2k\pi i.$

Пример 4. Найти i^i .

<u>Решение.</u> $i^i = e^{i \operatorname{Ln} i} = e^{i (\ln |i| + i \frac{\pi}{2} + 2k\pi i)} = e^{-\frac{\pi}{2} - 2k\pi}$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Для следующих функций найти действительную и мнимую части:

55.
$$w = \bar{z} - iz^2$$
.

56.
$$w = z^2 + i$$
.

57.
$$w = i - z^3$$
.

58.
$$w = \frac{1}{\bar{z}}$$
.

59.
$$w = \frac{iz+1}{1+\bar{z}}$$
. 60. $w = \frac{\bar{z}}{z}$.

$$60. \ w = \frac{\bar{z}}{z}.$$

61.
$$w = 2z - 1$$
.

62.
$$w = z + z^2$$
.

63.
$$w = z^{-1}$$

64.
$$w = e^{-z}$$
.

65
$$w = e^{\bar{z}^2}$$

66.
$$w = \sin z$$
.

67.
$$w = \operatorname{ch}(z - i)$$
. 68. $w = 2^{z^2}$.

68
$$w = 2^{z^2}$$

69.
$$w = \sin z$$
.

70. $w = \lg z$.

В следующих задачах найти значение модуля и главное значение аргумента данных функций в указанных точках:

71.
$$w = \cos z$$
, a) $z_1 = \frac{\pi}{2} + i \ln 2$, 6) $z_2 = \pi + i \ln 2$.

72.
$$w = \sinh z$$
, $z_0 = 1 + i\frac{\pi}{2}$.

73.
$$w = ze^z$$
, $z_0 = \pi i$.

74.
$$w = \operatorname{ch}^2 z$$
, $z_0 = i \ln 3$.

Найти модуль и аргумент комплексных чисел:

75. a) th
$$\pi i$$
. 6) 10^i . B) 3^{2-i} .

Найти логарифмы следующих чисел:

76. а)
$$-i$$
. б) i . в) $-1-i$. г) $3-2i$. д) i^i .

Найти:

77. a)
$$i^{\frac{1}{i}}$$
. 6) 1^{i} . B) $(-1)^{\sqrt{2}}$.

а)
$$i^{\frac{1}{i}}$$
. б) 1^{i} . в) $(-1)^{\sqrt{2}}$. г) $\left(\frac{1+i}{\sqrt{2}}\right)^{2i}$. д) $\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{1+i}$. е) $(1-i)^{3-3i}$.

ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ 3. КОМПЛЕКСНЫХ ЧИСЕЛ. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

Определение 1. Комплексное число z_0 называется пределом последовательности комплексных чисел z_n (пишут: $\lim z_n=z_0$ или $z_n \to z_0$), если $\forall \varepsilon > 0, \exists N = N(\varepsilon) \in \mathbb{N}, \forall n > N : |z_n - z_0| < \varepsilon.$

<u>Замечание.</u> Последовательность (z_n) , имеющая предел, называется сходящейся.

Теорема 1. $\lim z_n=z_0$ тогда и только тогда, когда $x_n\to x_0,\,y_n\to y_0$ (здесь $\overline{z_n = x_n + iy_n}, z_0 = x_0 + iy_0$).

Доказательство. Необходимость. Пусть $z_n \rightarrow z_0$. $\Rightarrow \forall n > N : |z_n - z_0| <$

$$\varepsilon. \Rightarrow |\overline{z_n - z_0|} = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} < \varepsilon. \Rightarrow |x_n - x_0| < \varepsilon,$$

 $|y_n - y_0| < \varepsilon, \forall n > N. \Rightarrow x_n \to x_0, y_n \to y_0.$

Достаточность. Пусть
$$x_n \to x_0$$
, $y_n \to y_0$:
$$|x_n - x_0| < \frac{\varepsilon}{\sqrt{2}}, |y_n - y_0| < \frac{\varepsilon}{\sqrt{2}}. \Rightarrow |z_n - z_0| = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} < \varepsilon,$$

 $\forall n > N. \Rightarrow z_n \to z_0$. Теорема доказана.

Определение 2. Последовательность (z_n) называется ограниченной, если существует число M>0 такое, что $|z_n|\leq M, \forall n\in\mathbb{N}.$

Теорема 2. Любая сходящаяся последовательность (z_n) ограничена.

 $\overline{\text{Теорема 3.}}$ Если $\lim z_n' = a, \lim z_n'' = b \ (a, b \in \mathbb{C}),$ то

$$\overline{1.\,\lim\,(z'_n\pm z''_n)}=a\pm \ddot{b}$$

$$2. \lim (z_n'' \cdot z_n'') = ab$$

3.
$$\lim \frac{z'_n}{z''_n} = \frac{a}{b} \quad (b \neq 0).$$

Доказываются теоремы как в случае последовательностей действительных чисел, поэтому доказательства мы не приводим.

<u>Определение 3.</u> Если $\forall E > 0, \exists N = N(E) \in \mathbb{N}, \forall n > N : |z_n| > E,$ то говорят, что последовательность (z_n) сходится к бесконечности, и пишут $\lim z_n = \infty$.

Иногда бывает удобно присоединить к комплексной плоскости $\mathbb C$ бесконечно удаленную точку $z=\infty.$

<u>Определение 4.</u> Множество $\mathbb{C} \bigcup \{\infty\}$ называется расширенной комплексной плоскостью.

Определение 5. Окрестностью бесконечно удаленной точки называется множество $\{z:|z|>E\}.$

Точка z называется внутренней точкой множества G, если все точки достаточно малого круга с центром в этой точке принадлежат множеству G.

Множество G точек комплексной плоскости называется областью, если

- 1) G состоит из одних внутренних точек.
- 2) Любые две точки множества можно соединить ломаной линией так, чтобы все точки этой линии принадлежали самому множеству.

Определение 6. Окрестностью точки z_0 комплексной плоскости называется всякая область, содержащая эту точку; ε -окрестностью точки z_0 называется множество точек комплексной плоскости, удовлетворяющих неравенству $|z-z_0|<\varepsilon$.

Определение 7. Комплексное число W называется пределом функции f(z) в точке z_0 (пишут: $\lim_{z \to z_0} f(z) = W$), если

- 1) f(z) определена в некоторой окрестности точки z_0 , за исключением может быть самой точки z_0 .
 - 2) Для любой последовательности (z_n) :

$$z_n \to z_0, \ z_n \neq z_0, \Rightarrow f(z_n) \to W.$$

<u>Замечание.</u> Условие 2) в определении 7 можно заменить эквивалентным ему условием:

2') $\forall \varepsilon > 0, \ \exists \delta > 0: \ |z - z_0| < \delta, \ z \neq z_0, \Rightarrow |f(z) - W| < \varepsilon.$

 $\lim_{z\to z_0} \frac{\text{Теорема 4.}}{f(z)=W} = \frac{1}{a+ib}$ Пусть $f(z)=U(x,y)+iV(x,y), z=x+iy, z_0=x_0+iy_0.$

$$\lim_{(x,y)\to(x_0,y_0)} V(x,y) = b.$$

Доказательство. Пусть $z_n \to z_0$, $z_n \neq z_0$ $(z_n = x_n + iy_n)$. $\lim_{z \to z_0} f(z) = W = a + ib$, что означает $f(z_n) \to a + ib$. \Rightarrow

 $f(z_n) = U(x_n, y_n) + iV(x_n, y_n) \to a + ib$. По теореме 1 данное утверждение верно тогда и только тогда, когда $U(x_n, y_n) \to a$, $V(x_n, y_n) \to b$. \Rightarrow утверждение теоремы.

Определение 8. Функции f(z) называется непрерывной в точке z_0 , если $\overline{f(z)}$ определена в некоторой окрестности точки z_0 и $\lim_{z_n \to z_0} f(z) = f(z_0)$.

Теорема 5. Функция f(z) = f(x+iy) = U(x,y) + iV(x,y) непрерывна в точке $z_0 = x_0 + iy_0$ тогда и только тогда, когда функции U(x,y), V(x,y) непрерывны в точке (x_0,y_0) .

Справедливость данной теоремы следует из теоремы 4.

Определение 9. Функция f(z) называется непрерывной в области $G \subset \mathbb{C}$, если она непрерывна в каждой точке этой области.

Теорема 6. Пусть функции f(z) и g(z) непрерывны в области G. Тогда функции $f(z) \pm g(z)$, $f(z) \cdot g(z)$, f(z)/g(z), $g(z) \neq 0$, будут непрерывны в области G.

Примеры непрерывных функций

1. f(z) = C, где C - const из \mathbb{C} .

Данная функция непрерывна на всей C.

- $2. \ f(z) = z, \ z \in \mathbb{C}$ непрерывна на всей $\mathbb{C}.$
- $3. \ f(z) = az + b \ (a, b \in \mathbb{C})$ непрерывна на всей \mathbb{C} .
- $4. \ f(z) = z^n, \ n \in \mathbb{N}$ непрерывна на всей \mathbb{C} .
- 5. $f(z) = e^z, z \in \mathbb{C}$.

 $e^{z} = e^{x+iy} = e^{x}(\cos y + i\sin y) = e^{x}\cos y + ie^{x}\sin y. \Rightarrow U(x,y) = e^{x}\cos y, V(x,y) = e^{x}\sin y.$ Функции U(x,y), V(x,y) непрерывны на \mathbb{R}_{2} , следовательно, e^{z} непрерывна на всей \mathbb{C} (см. теорему 5).

$$6. \cos z = \frac{e^{iz} + e^{-iz}}{2}, \ \sin z = \frac{e^{iz} - e^{-iz}}{2i}, \ z \in \mathbb{C}.$$

$$\cos z = \frac{1}{2}(e^{ix-y} + e^{-ix+y}) = \frac{1}{2}(e^{-y}(\cos x + i\sin x) + e^{y}(\cos x - i\sin x)) =$$

$$= \frac{1}{2}(e^{-y}\cos x + e^{y}\cos x) + i\frac{1}{2}(e^{-y}\sin x - e^{y}\sin x). \Rightarrow$$

$$U(x,y) = \cos x \frac{e^y + e^{-y}}{2} = \cos x \cdot \text{ch } y, \ V(x,y) = \sin x \cdot \frac{e^{-y} - e^y}{2} = -\sin x \cdot \text{sh } y.$$

Функции U(x,y), V(x,y) непрерывны на \mathbb{R}_2 , следовательно, $\cos z$ непрерывна на всей \mathbb{C} (см. теорему 4). Аналогично доказывается непрерывность функции $\sin z$ на всей \mathbb{C} .

7. Из арифметических свойств непрерывных функций (теорема 6) следует непрерывность на всей $\mathbb C$ гиперболических функций

$$\operatorname{ch} z = \frac{e^z + e^{-z}}{2}, \ \operatorname{sh} z = \frac{e^z - e^{-z}}{2}.$$

ПРИМЕРЫ С РЕШЕНИЯМИ

<u>Пример 1.</u> Доказать с помощью определения $\lim z_n$, что последовательность

$$z_n = \frac{n-i}{n+i}, \ n \in \mathbb{N},$$

имеет пределом число $z_0 = 1$.

<u>Решение.</u> Пусть задано произвольное число $\varepsilon>0$. Покажем, что существует $N\in\mathbb{N}$ такое, что как только n>N, то $|z_n-1|<\varepsilon$.

$$|z_n - 1| = \left| \frac{n-i}{n+i} - 1 \right| = \left| \frac{1+i}{n+i} \right| = \frac{\sqrt{2}}{n+1} < \varepsilon. \Rightarrow n > \frac{\sqrt{2}}{n} - 1. \Rightarrow$$

в качестве N можно взять $N=N(\varepsilon)=[\frac{\sqrt{2}}{n}-1]$. Здесь [x] означает целую часть числа x.

Пример 2. Доказать, что если $z_n \to z_0$, то $|z_n| \to |z_0|$.

<u>Решение.</u> Так как $z_n \to z_0$, то

$$\lim |z_n - z_0| = 0. \tag{1}$$

Для любых комплексных чисел z_n и z_0 верно неравенство

$$||z_n| - |z_0|| \le |z_n - z_0|. \tag{2}$$

Из (1) и (2) следует, что $|z_n| \to |z_0|$.

Достаточное условие сходимости последовательности

комплексных чисел

Пусть $z_n=\rho_n e^{i\varphi_n}$, где $\rho_n=|z_n|$, $\varphi_n=\arg z_n$. Тогда, если $\lim \rho_n=\rho_0$, $\lim \varphi_n=\varphi_0$, то $\lim z_n=\rho_0 e^{i\varphi_0}$.

Пример 3. Доказать, что

$$\lim_{n\to\infty} \left(1 + \frac{z}{n}\right)^n = e^z, \text{ где } z = x + iy.$$

<u>Решение.</u> Пусть $z_n = \left(1 + \frac{z}{n}\right)^n$. Тогда $\lim |z_n| = \lim_{n \to \infty} \left|\left(1 + \frac{z}{n}\right)^n\right| = \lim_{n \to \infty} \left(\left(1 + \frac{x}{n}\right)^2 + \frac{y^2}{n^2}\right)^{\frac{n}{2}} = \lim_{n \to \infty} \left(1 + \frac{x^2 + y^2 + 2xn}{n^2}\right)^{\frac{n}{2}} = e^x$.

$$\arg z_n = \arg (1 + \frac{z}{n})^n = n \arg (1 + \frac{z}{n}) = n \cdot \operatorname{arctg} \frac{\frac{y}{n}}{1 + \frac{x}{n}} = n \cdot \operatorname{arctg} \frac{y}{n + x}. \Rightarrow$$

 $\lim_{n \to \infty} \arg z_n = \lim_{n \to \infty} n \arctan \frac{y}{n+x} = y.$

Используя достаточные условия сходимости последовательности комплексных чисел, получим

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = e^x \cdot e^{iy} = e^{x+iy} = e^z.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Найти пределы следующих последовательностей:

78.
$$z_n = (1 + \frac{1}{n})e^{i\frac{\pi}{n}}$$
. 79. $z_n = \frac{i^n}{n}$. 80. $z_n = (1 + 3i)^n$.

81.
$$z_n = \frac{e^{in}}{n^2}$$
. 82. $z_n = \frac{n+2i}{3n+7i}$. 83. $z_n = e^{-i(\frac{\pi}{2} + \frac{1}{2n})}$.

84.
$$z_n = n \sin \frac{i}{n}$$
. 85. $z_n = n \cos \frac{n\pi}{2} + in \sin \frac{n\pi}{2}$. 86. $z_n = \frac{\sinh in}{n}$.

Пользуясь определением предела, показать, что:

87.
$$\lim_{z\to 1} \frac{2z+1}{z+2} = 1$$
. 88. $\lim_{z\to 3-4i} |z| = 5$. Вычислить следующие пределы:

89.
$$\lim_{z \to -i} \frac{z^2 + 3iz - 2}{z + i}$$
. 90. $\lim_{z \to \frac{\pi}{4}} \frac{\cos 2z}{\cosh iz + i \sinh iz}$.

91.
$$\lim_{z \to 0} \frac{\sin z}{\sinh iz}$$
. 92. $\lim_{z \to -\frac{\pi}{2}i} \frac{e^{2z} + 1}{e^z + i}$.

Доказать, что следующие функции непрерывны на всей комплексной плоскости:

93.
$$f(z) = \bar{z}$$
. 94. $f(z) = \text{Re } z$. 95. $f(z) = \text{Im } z$.

96.
$$P_n(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_n$$
, где $a_k (k = 0, 1, 2, \dots, n)$ - комплексные постоянные.

97. Доказать, что $R(z) = \frac{P(z)}{Q(z)}$, где P(z), Q(z) - многочлены, непрерывна во всех точках \mathbb{C} , в которых $Q(z) \neq 0$.

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ 4. КОМПЛЕКСНОГО ПЕРЕМЕННОГО. УСЛОВИЕ КОПИ-РИМАНА

Пусть однозначная функция w=f(z) определена в некоторой области $G\subset\mathbb{C}.$ Пусть точки z и $z+\Delta z$ принадлежать области G. Обозначим $\Delta w=$ $\Delta f = f(z + \Delta z) - f(z)$, где $\Delta z = \Delta x + i\Delta y$.

Определение 1. Функция w=f(z) называется дифференцируемой в точке $z \in G$, если $\frac{\Delta w}{\Delta z}$ стремится к определенному пределу, когда $\Delta z \to 0$ любым образом. Этот предел называется производной функции w=f(z) в точке z и обозначается f'(z), так что по определению

$$f'(z) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}$$
.

Замечание 1. Равенство $\Delta w = A \cdot \Delta z + \mathrm{o}\,(\Delta z), \, \Delta z \to 0$, где A - комплексная постоянная, не зависящая от Δz , является необходимым и достаточным условием дифференцируемости функции f(z) в точке z, при этом A = f'(z).

Доказывается данное замечание так же, как для функции действительного переменного.

Замечание 2. Дифференциал функции w=f(z) определяется, как в случае функции действительного переменного: dw=f'(z)dz, где $dz=\Delta z$ - дифференциал независимого переменного z.

Определение 2. Функция $w = f(z), z \in G$, называется <u>аналитической</u> в области G, если она дифференцируема в любой точке $z \in G$.

Замечание. Аналитичность f(z) в точке $z \in G$ подразумевает аналитичность f(z) в некоторой окрестности точки z, принадлежащей области G.

Пример 1. Функция f(z)=C (C - const) дифференцируема на всей $\mathbb C$ и ($\overline C$)' = 0.

Доказательство.

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \lim_{\Delta z \to 0} \frac{C - C}{\Delta z} = 0, \text{ r.e. } (C)' = 0.$$

<u>Пример 2.</u> Функция $f(z)=z^n\ (n\ge 1$ - целое) дифференцируема на всей $\overline{\mathbb{C}}$ и $(z^n)'=nz^{n-1}.$

Доказательство.

$$\lim_{\Delta z \to 0} \frac{(z + \Delta z)^n - z^n}{\Delta z} = \lim_{\Delta z \to 0} \frac{z^n + C_n^1 z^{n-1} \Delta z + C_n^2 z^{n-2} (\Delta z)^2 + \dots + C_n^n (\Delta z)^n - z^n}{\Delta z} =$$

$$= \lim_{\Delta z \to 0} \frac{n z^{n-1} \Delta z + o(\Delta z)}{\Delta z} = n z^{n-1}.$$

<u>Пример 3.</u> Функция $w=z\,{\rm Re}\,z$ дифференцируема в точке z=0 и не дифференцируема в любой точке $z\neq 0$.

Доказательство. В точке z=0: $\frac{\Delta w}{h}=\frac{h\operatorname{Re}h}{h}=\operatorname{Re}h=h_1\to 0$, если $h=h_1+h_2i\to 0$. Таким образом, $w=z\operatorname{Re}z$ дифференцируема в точке z=0. Пусть $z\neq 0$. Тогда $\frac{\Delta w}{h}=\frac{w(z+h)-w(z)}{h}=\frac{(z+h)\operatorname{Re}(z+h)-z\operatorname{Re}z}{h}=z\frac{\operatorname{Re}(z+h)-\operatorname{Re}z}{h}+\operatorname{Re}(z+h)$. Если $h=h_1\to 0$, то $\frac{\operatorname{Re}(z+h)-\operatorname{Re}z}{h}=\frac{x+h_1-x}{h_1}\to 1$ и $\frac{\Delta w}{h}\to 2x+iy$ при $h=h_1\to 0$. Пусть $h=h_2i\to 0$. Тогда $\frac{\operatorname{Re}(z+h)-\operatorname{Re}z}{h}=\frac{x-x}{h_2i}=0$ при любом h_2 .

Таким образом, $\frac{\Delta w}{h} \to x$. Мы получили, что при разных способах стремления h к нулю отношение $\frac{\Delta w}{h}$ имеет различные пределы. Это означает, что функция $w=z \operatorname{Re} z$ не дифференцируема при $z \neq 0$.

Пример 4. Функция $w = \operatorname{Re} z$ нигде не дифференцируема на \mathbb{C} .

<u>Замечания.</u> 1.) $w=z\operatorname{Re} z$ и $w=\operatorname{Re} z$ непрерывны в любой точке $z\in\mathbb{C}.$

2.) Функция $w=z\operatorname{Re} z$ не аналитична в точке z=0.

Теорема (Условия Коши-Римана). Пусть f(z) = U(x,y) + iV(x,y) определена в некоторой окрестности точки z = x + iy, причем функции $U(x,y),\ V(x,y)$ дифференцируемы в точке $(x,y) \in \mathbb{R}_2$, что соответствует точке z = x + iy. Тогда для дифференцируемости f(z) в точке z необходимо и достаточно, чтобы в этой точке имели место соотношения

$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y}, \ \frac{\partial U}{\partial y} = -\frac{\partial V}{\partial x},$$
 (*)

называемые условиями Коши-Римана.

Доказательство. Необходимость.

Пусть существует $f'(z) = \lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$. Заметим, что f'(z) не зависит от способа стремления $h\to 0$. Положим $h=s\to 0,\ s\in \mathbb{R}$, т.е. будем двигаться к 0 по прямой параллельной действительной оси. Получим

$$f'(z) = \lim_{s \to 0} \frac{U(x+s,y) - U(x,y)}{s} + i \lim_{s \to 0} \frac{V(x+s,y) - V(x,y)}{s} = \frac{\partial U}{\partial x} + i \frac{\partial V}{\partial x}.$$
(1)

Далее, найдем f'(z), двигаясь теперь по прямой параллельной мнимой оси, т.е. положим $h=it\to 0$, где $t\in\mathbb{R}$. Получим

$$f'(z) = \lim_{t \to 0} \frac{U(x, y+t) - U(x, y)}{it} + i \lim_{t \to 0} \frac{V(x, y+t) - V(x, y)}{it} =$$

$$= -i \frac{\partial U}{\partial y} + \frac{\partial V}{\partial y}.$$
(2)

Приравнивая действительные и мнимые части в (1) и (2), придем к условиям (*).

Достаточность. В силу дифференцирования функций U(x,y) и V(x,y) выполняются соотношения (h=s+it):

$$\begin{cases} U(x+s,y+t) - U(x,y) = \frac{\partial U}{\partial x}s + \frac{\partial U}{\partial y}t + \alpha \cdot |h|, \\ V(x+s,y+t) - V(x,y) = \frac{\partial V}{\partial x}s + \frac{\partial V}{\partial y}t + \beta \cdot |h|, \end{cases}$$
(3)

где $\alpha, \beta \to 0$ при $h \to 0$. Тогда

$$\Delta f(z) = f(z+h) - f(z) = \frac{\partial U}{\partial x}s + \frac{\partial U}{\partial y}t + i(\frac{\partial V}{\partial x}s + \frac{\partial V}{\partial y}t) + \eta \cdot |h|,$$

где $\eta = \alpha + i\beta$.

Используя условия Коши-Римана, перепишем это равенство следующим образом

$$\Delta f(z) = (\frac{\partial U}{\partial x} - i \frac{\partial V}{\partial x})h + \eta \cdot |h|. \Rightarrow$$

$$\lim_{h\to 0} \frac{\Delta f(z)}{h} = \frac{\partial U}{\partial x} + i \frac{\partial V}{\partial x}$$
, т.е. $f'(z)$ существует.

Замечание. С учетом условий Коши-Римана f'(z) можно представить в следующих равносильных формах

$$f'(z) = \frac{\partial U}{\partial x} + i \frac{\partial V}{\partial x} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial U}{\partial x} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} + i \frac{\partial V}{\partial x}.$$

4.1 Правила дифференцирования функций комплексного переменного

Из определения производной и свойств пределов вытекает, что на функции комплексного переменного распространяются известные из курса математического анализа правила дифференцирования:

1. Если функции f(z) и g(z) дифференцируемы в точке z, то их сумма, разность, произведение и частное (при $g(z) \neq 0$) также дифференцируемы в этой точке и имеют место равенства:

$$(f \pm g)' = f' \pm g', \ (fg)' = f'g + fg', \ \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.$$

2. Если функция $\varphi(z)$ дифференцируема в точке z, а функция f(w) дифференцируема в точке $w=\varphi(z)$, то функция $F(z)=f(\varphi(z))$ дифференцируема в точке z, причем

$$F'(z) = f'(\varphi(z)) \cdot \varphi'(z).$$

ПРИМЕРЫ С РЕШЕНИЯМИ

<u>Пример 5.</u> Функция $f(z)=z^m$, где m<0 - целое число, дифференцируема на всей $\mathbb C$, кроме точки z=0 и $(z^m)'=mz^{m-1}$. В частности, $(z^{-1})'=(\frac{1}{z})'=-\frac{1}{z^2}$.

Доказательство. Из примера 2 следует $(z^{-m})' = -mz^{-m-1}$. Далее, используя правило дифференцирования частного, получим

$$(z^m)' = \left(\frac{1}{z^{-m}}\right)' = -\frac{-mz^{-m-1}}{z^{-2m}} = mz^{m-1}.$$

Пример 6. Функция e^z является аналитической на всей \mathbb{C} .

Доказательство. $e^z = e^x(\cos y + i\sin y)$. $\Rightarrow U(x,y) = e^x\cos y$, $V(x,y) = e^x\sin y$. Функции U(x,y), V(x,y) имеют непрерывные частные производные любого порядка, поэтому они дифференцируемы в любой точке (x,y), при этом удовлетворяют условиям Коши-Римана. Следовательно функция $w=e^z$ всюду аналитична и

$$(e^z)' = (e^x \cos y)_x' + i(e^x \sin y)_x' = e^x(\cos y + i \sin y) = e^z.$$

<u>Пример 7.</u> Функции $\cos z$, $\sin z$, $\cot z$, $\sin z$ дифференцируемы на всей \mathbb{C} , при этом

$$(\sin z)' = \cos z, \qquad (\cos z)' = -\sin z,$$

$$(\sinh z)' = \cosh z, \qquad (\cosh z)' = \sinh z.$$

Доказательство.

$$(\sin z)' = \left(\frac{e^{iz} - e^{-iz}}{2i}\right)' = \frac{1}{2i} \left(e^{iz} \cdot i - e^{-iz} \cdot (-i)\right) = \frac{e^{iz} + e^{-iz}}{2} = \cos z.$$

Аналогично доказываются и другие формулы.

Пример 8. Пусть $\ln z = \ln |z| + i \arg z$ - главное значение $\operatorname{Ln} z =$

$$|z| = \ln |z| + i \arg z + 2k\pi i, k \in \mathbb{Z}$$
. Тогда $(\ln z)' = \frac{1}{z}$.

<u>Доказательство.</u> Пусть $z=re^{i\varphi}$, тогда $\tilde{f}(z)=U(r,\varphi)+iV(r,\varphi)$. Используя формулы $x=r\cos\varphi,\ y=r\sin\varphi$ условия Коши-Римана можно записать в полярных координатах

$$\frac{\partial U}{\partial r} = \frac{1}{r} \cdot \frac{\partial V}{\partial \varphi} \; , \qquad \frac{\partial V}{\partial r} = -\frac{1}{r} \cdot \frac{\partial U}{\partial \varphi} \tag{**}$$

и получить следующие формулы для производной:

$$f'(z) = \frac{r}{z} \left(\frac{\partial U}{\partial r} + i \frac{\partial V}{\partial r} \right) = \frac{1}{z} \left(\frac{\partial V}{\partial \varphi} - i \frac{\partial U}{\partial \varphi} \right).$$

Для функции $\ln z = \ln r + i \varphi, \, 0 < \varphi < 2\pi$ условия (**) выполняются

 $(\ln z)' = \frac{r}{z} ((\ln r)'_r + (\varphi)'_r) = \frac{1}{z}$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Пользуясь условиями Коши-Римана, выяснить, какие из следующих функций являются аналитическими хотя бы в одной точке, а какие - нет:

98. a.) $w = z\bar{z}$. 6.) $w = \bar{z}$.

И

д.) $w = |z|\bar{z}$. e.) $w = e^{z^2}$. ж.) $|z| \operatorname{Re} \bar{z}$. з.) $w = \sin 3z - i$.

99. а.) $w = \bar{z} \operatorname{Re} z$. б.) $w = \bar{z} \operatorname{Im} z$. в.) $w = |z| \operatorname{Im} z$. г.) $w = \operatorname{ch} z$.

100. Показать, что если аналитическая функция w = f(z) в некоторой области действительна, то она постоянна.

101. Показать, что если функция f(z) = U(x,y) + iV(x,y) аналитична в области D, то в этой области выполняется равенство

$$\frac{\partial U}{\partial x} \cdot \frac{\partial V}{\partial x} + \frac{\partial U}{\partial y} \cdot \frac{\partial V}{\partial y} = 0.$$

ИНТЕГРИРОВАНИЕ ФУНКЦИЙ **5**. КОМПЛЕКСНОГО ПЕРЕМЕННОГО

Определение. Сведение к криволинейным 5.1интегралам. Свойства

Рассмотрим однозначную функцию f(z), определенную в области G. Пусть Γ - кусочно-гладкая ориентированная кривая, с началом в точке z_0 и концом в точке z, лежащая в области G. Разобьём Γ на n частичных дуг с помощью точек $z_0, z_1, \ldots, z_{n-1}, z_n = Z$, расположенных последовательно в положительном направлении линии Γ . На каждой дуге z_k, z_{k+1} выберем произвольные точки ξ_k . Пусть далее $\sigma = \max_{j} |z_{k+1} - z_k|$.

Определение. Если при $\sigma \to 0$ существует

$$\lim \sum_{k=0}^{n-1} f(\xi_k)(z_{k+1} - z_k),$$

не зависящий от способа разбиения Γ и от выбора точек ξ_k , то этот предел называется интегралом от функции f(z) вдоль кривой Γ и обозначается $\int_{\Gamma} f(z)dz.$

Теорема. Если Γ - кусочно-гладкая кривая, а f(z) = f(x+iy) = $=U(\overline{x,y)}+iV(x,y)$ - кусочно-непрерывная функция, то $\int\limits_{\Gamma}f(z)dz$ всегда существует, при этом

$$\int_{\Gamma} f(z)dz = \int_{\Gamma} U(x,y)dx - V(x,y)dy + i \int_{\Gamma} V(x,y)dx + U(x,y)dy,$$

т.е. вычисление интеграла от функции f(z) вдоль Γ сводится к вычислению криволинейных интегралов второго рода $\int\limits_{\Gamma} U dx - V dy, \int\limits_{\Gamma} V dx + U dy.$

Доказательство. $f(z) = f(x+iy) \stackrel{\text{1}}{=} U(x,y) + iV(x,y), \ z_k = x_k + iy_k,$ $\xi_k = x_k + iy_k, \ \Delta z_k = \Delta x_k + i\Delta y_k, \ \Delta x_k = x_{k+1} - x_k, \ \Delta y_k = y_{k+1} - y_k,$ $f(\xi_k) = U_k + iV_k, \ \text{где} \ U_k = U(x_k^\circ, y_k^\circ), \ V_k = V(x_k^\circ, y_k^\circ).$ Далее,

$$\sum_{k=0}^{n-1} f(\xi_k) \Delta z_k = \sum_{k=0}^{n-1} (U_k \Delta x_k - V_k \Delta y_k) + i \sum_{k=0}^{n-1} (V_k \Delta x_k + U_k \Delta y_k).$$

Суммы в правой части данного равенства есть интегральные суммы для соответствующих криволинейных интегралов. В условиях теоремы эти криволинейные интегралы существуют, и, следовательно, существует

$$\int_{\Gamma} f(z)dz = \int_{\Gamma} U(x,y)dx - V(x,y)dy + i\int_{\Gamma} V(x,y)dx + U(x,y)dy.$$

Теорема доказана.

Основные свойства интеграла по комплексному переменному

1.)
$$\int_{\Gamma} (af(z) + bg(z))dz = a \int_{\Gamma} f(z)dz + b \int_{\Gamma} g(z)dz, \ a, b \in \mathbb{C}.$$

$$2.) \int_{\Gamma_1 + \Gamma_2} f(z) dz = \int_{\Gamma_1} f(z) dz + \int_{\Gamma_2} f(z) dz$$

 $2.)\int\limits_{\Gamma_1+\Gamma_2}f(z)dz=\int\limits_{\Gamma_1}f(z)dz+\int\limits_{\Gamma_2}f(z)dz$ Здесь $\Gamma_1+\Gamma_2$ обозначает кривую, составленную из дуг Γ_1 и Γ_2 так, что конец Γ_1 совпадает с началом Γ_2 .

3.)
$$\int_{\Gamma} f(z)dz = -\int_{\Gamma_{-}} f(z)dz$$

Здесь Г. имеет ориентацию противоположную ориентации кривой Г.

Все эти три свойства доказываются исходя из определения интеграла как предела интегральной суммы, аналогично соответствующим свойствам обыкновенных интегралов.

4.)
$$|\int\limits_{\Gamma} f(z)dz| \leq \int\limits_{\Gamma} |f(z)|dz \leq M \cdot l,$$
 где $M=\sup_{z\in \Gamma} |f(z)|,\ l$ - длина $\Gamma.$

Доказательство. Напишем очевидные неравенства:

$$\left| \sum_{k=0}^{n-1} f(\xi_k) \Delta z_k \right| \le \sum_{k=0}^{n-1} |f(\xi_k)| \cdot |\Delta z_k| \le \sum_{k=0}^{n-1} |f(\xi_k)| \Delta s_k,$$

где $\Delta z_k = z_{k+1} - z_k$, Δs_k - длина дуги Γ между точками z_k и z_{k+1} .

Переходя к пределу в этих неравенствах, получим неравенства из свойства 4.).

Замечание 1. Если Γ задаётся параметрически уравнением z=z(t), $t\in [\alpha,\beta]$ (здесь z(t)=x(t)+iy(t)), то

$$\int_{\Gamma} f(z)dz = \int_{\alpha}^{\beta} f(z(t))z'(t)dt.$$

Доказательство.

$$\int\limits_{\Gamma}\!\! f(z)dz = \!\!\int\limits_{\alpha}^{\beta} \!\! \left(U(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) + U(z(t))y'(t) \right) dt = i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t) - V(z(t))y'(t) \right) dt + i \!\!\int\limits_{\alpha}^{\beta} \!\! \left(V(z(t))x'(t)$$

$$= \int_{\alpha}^{\beta} (U(z(t)) + iV(z(t))x'(t) + i(U(z(t)) + iV(z(t)))y'(t))dt = \int_{\alpha}^{\beta} f(z(t))z'(t)dt.$$

Замечание 2. Если f(z(t))z'(t) = R(t) + iI(t), то

$$\int_{\Gamma} f(z)dz = \int_{\alpha}^{\beta} R(t)dt + i \int_{\alpha}^{\beta} I(t)dt,$$

т.е. вычисление интеграла $\int\limits_{\Gamma} f(z)dz$ свелось к вычислению двух определенных интегралов.

<u>Пример.</u> Пусть Γ - произвольная кусочно-гладкая линия, соединяющая точки z_0 и Z. Тогда

$$\int_{\Gamma} z^n dz = \frac{1}{n+1} \left(Z^{n+1} - z_0^{n+1} \right),$$

если n есть целое число $\neq -1$ (при отрицательном n кривая Γ не должна проходить через точку z=0).

Доказательство. Пусть $z=z(t),\ t\in [\alpha,\beta],$ есть параметрическое изображение линии Γ . Тогда

$$\int_{\Gamma} z^n dz = \int_{\alpha}^{\beta} z^n(t)z'(t)dt = \frac{1}{n+1} \int_{\alpha}^{\beta} d(z(t))^{n+1} = \frac{1}{n+1} (Z^{n+1} - z_0^{n+1}).$$

Таким образом, $\int\limits_{\Gamma} z^n dz$ не зависит от пути интегрирования. В частности, если Γ - замкнутый контур, то $Z=z_0$ и $\int\limits_{\Gamma} z^n dz=0$.

5.2 Теорема Коши

<u>Определение 1.</u> Область $G \subset \mathbb{C}$ называется односвязной, если внутренняя область любой замкнутой непрерывной линии, проведённой в G, также принадлежит G. Области, не обладающие таким свойством, называются многосвязными.

Примеры.

 $\overline{1.}$ $\{z: |z-a| < r\}$ - односвязная область.

 $(z, |z-a| \ge r), \{z: |z-a| < R\}$ - многосвязные области.

Пусть $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$ замкнутые непрерывные линии такие, что каждая из линий $\Gamma_1, \ldots, \Gamma_n$ лежит вне остальных и все они расположены внутри Γ_0 (см. Рис.).

Определение 2. Область, состоящая из точек плоскости, лежащих внутри Γ_0 и вне $\Gamma_1, \ldots, \Gamma_n$, называется (n+1)-связной областью.

Замечание. На рисунке изображена 4-связная область.

Теорема 1 (интегральная теорема Коши). Если f(z) аналитична в некоторой однозначной области G, то $\int_{\Gamma} f(z)dz = 0$, где Γ - любой замкнутый контур, лежащий в G.

Доказательство. 1 сл.) Пусть Γ есть периметр Δ некоторого треугольника. Положим

$$\Big| \int_{\hat{A}} f(z) dz \Big| = M.$$

Докажем, что M=0. Разобьём данный треугольник на 4 конгруэнтных треугольника с периметрами $\Delta_1, \ldots, \Delta_4$. Тогда (см. Рис.)

$$\int_{\triangle} f(z)dz = \int_{\triangle_1} f(z)dz + \dots + \int_{\triangle_4} f(z)dz \tag{1}$$

Так как $\left|\int\limits_{\Delta} f(z)dz\right|=M$, то из (1) \Rightarrow Существует k=1,2,3,4 такое, что $\left|\int\limits_{\Delta_k} f(z)dz\right|\geq \frac{M}{4}$. Пусть, для определенности, k=1, т.е.

$$\left| \int_{\Delta_1} f(z) dz \right| \ge \frac{M}{4}.$$

Разобьем треугольник с периметром \triangle_1 на четыре конгруэнтных треугольника с периметрами $\triangle_1^{(2)},\dots,\triangle_4^{(2)}$ и опять найдём треугольник с периметром $\triangle^{(2)}$ такой, что

$$\left| \int_{\Lambda^{(2)}} f(z) dz \right| \ge \frac{M}{4^2}.$$

Очевидно, что этот процесс можно продолжить до бесконечности. В результате получим последовательность треугольников с периметрами $\triangle = \triangle^{(0)}, \, \triangle_1 = \triangle^{(1)}, \triangle^{(2)}, \dots, \triangle^{(n)}, \dots$ такую, что

$$\left| \int_{\Lambda^{(n)}} f(z)dz \right| \ge \frac{M}{4^n}, \ n = 0, 1, 2, \dots$$
 (2)

Пусть l - длина периметра $\Delta = \Delta^{(0)}$. Тогда длины периметров $\Delta^{(1)}, \Delta^{(2)}, \dots, \Delta^{(n)}, \dots$ есть соответственно $\frac{l}{2}, \frac{l}{2^2}, \dots, \frac{l}{2^n} \dots$ Используя это, оценим $\Big|\int_{\Delta^{(n)}} f(z)dz\Big|$. Так как мы имеем последовательность треугольников, из которых каждый содержит все следующие и длины периметров

ников, из которых каждый содержит все следующие и длины периметров которых стремятся к нулю при $n \to +\infty$, то существует точка z_0 , принадлежащая всем треугольникам указанной последовательности. Эта точка лежит в области G, где функция f(z) является аналитической, т.е. f(z) имеет в точке z_0 конечную производную. Следовательно, $\forall \varepsilon > 0, \exists \delta > 0, \forall z \in (z_0 - \delta, z_0 + \delta)$:

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon.$$

 \Rightarrow Если $|z-z_0|<\delta$, то

$$|f(z) - f(z_0) - (z - z_0)f'(z_0)| < \varepsilon |z - z_0|.$$
(3)

Очевидно, существует $N\in\mathbb{N}$ такое, что $\forall\,n>N$ периметр $\triangle^{(n)}$ лежит внутри круга $|z-z_0|<\delta$ и следовательно мы можем воспользоваться при

оценке интеграла $\int_{\wedge^{(n)}} f(z)dz$ неравенством (3). Заметим, что

$$\int_{\Delta^{(n)}} f(z)dz = \int_{\Delta^{(n)}} (f(z) - f(z_0) - (z - z_0)f'(z_0))dz,$$

так как $\int\limits_{\triangle^{(n)}} dz = 0$ и $\int\limits_{\triangle^{(n)}} z dz = 0$. Отсюда, используя (3), получим

$$\left| \int_{\Delta^{(n)}} f(z)dz \right| < \int_{\Delta^{(n)}} \varepsilon |z - z_0| dz. \tag{4}$$

 $z \in \triangle^{(n)}$, поэтому $|z - z_0| < \frac{l}{2^n}$ и из $(4) \Rightarrow$

$$\left| \int_{\Lambda^{(n)}} f(z) dz \right| < \varepsilon \cdot \frac{l}{2^n} \cdot \frac{l}{2^n} = \varepsilon \cdot \frac{l^2}{4^n}.$$

Сравнивая (2)и полученное неравенство, получим

$$\frac{M}{4^n} < arepsilon rac{l^2}{4^n}$$
 или $M < arepsilon l^2.$

Так как ε - сколь угодно мало, то M=0. Случай 1 доказан.

2 сл.) Γ - замкнутая ломаная линия. Покажем, используя 1 сл., что и в этом случае $\int\limits_{\Gamma} f(z)dz=0.$

 Γ - замкнутая ломаная линия, поэтому она является границей некоторого многоугольника. Разобъем этот многоугольник диагоналями на треугольники (см. Рис.) и представим $\int f(z)dz$ как сум-

му интегралов, взятых по периметрам треугольников, на которые разбит данный многоугольник:

$$\int_{\Gamma} f(z)dz = \int_{ABCA} f(z)dz + \int_{ACDA} f(z)dz + \int_{ADEA} f(z)dz.$$

Рис. Это возможно, так как интегрирование по каждой диагонали совершается дважды в противоположных направлениях, а поэтому уничтожается. Теперь из 1 сл. (Γ - периметр треугольника) следует $\int_{\Gamma} f(z)dz = 0$.

3 сл.) Γ - произвольная замкнутая кусочно-гладкая линия. Докажем, что $\int\limits_{\Gamma} f(z)dz=0$. Для этого нужно показать, что для любого $\varepsilon>0$ существует ломаная линия P, вписанная в Γ такая, что

$$\Big| \int_{\Gamma} f(z)dz - \int_{P} f(z)dz \Big| < \varepsilon. \tag{5}$$

Так как по 2 сл. $\int_P f(z)dz = 0$, то из (5) следует, что $\int_\Gamma f(z)dz = 0$.

По условию $\Gamma \subset G$ и функция f(z) аналитична в области G. Пусть D - замкнутая область $\subset G$ и содержащая в себе Γ . f(z) - непрерывна в любой точке $G. \Rightarrow f(z)$ - непрерывна в любой точке $D. \Rightarrow f(z)$ - равномерно непрерывна в $D. \Rightarrow$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall z', z'' \in D: \ |z' - z''| < \delta \Rightarrow |f(z') - f(z'')| < \varepsilon.$$

Разобъем линию Γ на n дуг $s_0, s_1, \ldots, s_{n-1}$, длины которых меньше δ . Впишем в Γ ломаную P, звенья которой $l_0, l_1, \ldots, l_{n-1}$ стягивают эти дуги. Очевидно, $l_k < \delta, \forall \ k = 0, \ldots, n$. Рассмотрим сумму

$$S = \sum_{k=1}^{n-1} f(z_k) \Delta z_k = \sum_{k=1}^{n-1} f(z_k) \int_{S_k} dz = \sum_{k=0}^{n-1} \int_{S_k} f(z_k) dz.$$
 (6)

Очевидно:

$$\int_{\Gamma} f(z)dz = \sum_{k=0}^{n-1} \int_{S_k} f(z)dz.$$
 (7)

Вычитая (6) из (7), получим

$$\int_{\Gamma} f(z)dz - S = \sum_{k=0}^{n-1} \int_{S_k} (f(z) - f(z_k))dz.$$

На каждой дуге S_k имеем: $|f(z) - f(z_k)| < \varepsilon$. \Rightarrow

$$\left| \int_{\Gamma} f(z)dz - S \right| < \sum_{k=0}^{n-1} \varepsilon |S_k| = \varepsilon l, \tag{8}$$

где l - длина Γ , $|S_k|$ - длины дуг S_k .

Поступая аналогично, оценим $\left| \int\limits_P f(z)dz - S \right|$. $S = \sum_{k=0}^{n-1} \int\limits_{l_k} f(z_k)dz$, так

как
$$\Delta z_k = \int_{l_k} dz$$
. $\int_P f(z)dz - S = \sum_{k=0}^{n-1} \int_{l_k} (f(z) - f(z_k))dz$.

Так как на любом звене $l_k: |f(z) - f(z_k)| < \varepsilon$, то

$$\left| \int_{P} f(z)dz - S \right| < \varepsilon \sum_{k=0}^{n-1} l_k < \varepsilon l. \tag{9}$$

Из (8) и $(9) \Rightarrow$

$$\Big| \int_{\Gamma} f(z) dz - \int_{P} f(z) dz \Big| \leq \Big| \int_{\Gamma} f(z) dz - S \Big| + \Big| S - \int_{P} f(z) dz \Big| < 2\varepsilon l.$$

Случай 3 доказан.

Доказательство. Пусть D - замкнутая область, состоящая из точек, лежащих внутри Γ и на Γ . Около любой точки $z \in D$ можно описать круг, внутри которого f(z) будет аналитичной. Так как D - замкнута и ограничена, то существует конечное число кругов, покрывающих D. Совокупность точек, лежащих внутри этих кругов, представляет собой область G, содержащую линию Γ вместе с внутренними точками. В области G функция f(z) будет аналитична и линия Γ лежит внутри G, поэтому $\int_{\Gamma} f(z) dz$.

<u>Замечание 1.</u> Усиленный вариант теоремы Коши остается справедливым и в случае, когда Γ есть граница многосвязной области.

Доказательство. Пусть Γ - граница (n+1)-связной области:

$$\Gamma = \Gamma_0^+ + \Gamma_1^- + \dots + \Gamma_n^-.$$

Здесь $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$ - кусочно-гладкие линии такие, что каждая из линий $\Gamma_0, \ldots, \Gamma_n$ лежит вне остальных и все они расположены внутри Γ_0 . Покажем, что

$$\int_{\Gamma} = \int_{\Gamma_0^+} + \int_{\Gamma_1^-} + \dots + \int_{\Gamma_n^-} = 0.$$

Пусть $\gamma = abcdefmlna, \gamma' = anl'mfe'dcb'a$. По доказанному выше

$$\int_{\gamma} f(z)dz = 0, \int_{\gamma'} f(z)dz = 0.$$

Интегрирование по линиям an, mf, dc совершается дважды в противоположных направлениях и поэтому интегралы по этим линиям уничтожаются. \Rightarrow

$$\int_{\Gamma} f(z)dz = \int_{\gamma} f(z)dz + \int_{\gamma'} f(z)dz = 0.$$

Так как
$$\int\limits_{\Gamma_k^-} f(z)dz = -\int\limits_{\Gamma_k} f(z)dz$$
, то

$$\int_{\Gamma_0} f(z)dz = \int_{\Gamma_1} f(z)dz + \dots + \int_{\Gamma_n} f(z)dz.$$

Замечание 2. Из теоремы Коши следует, что если f(z) аналитична в области G и $z_0, z \in G$, то $\int\limits_{\Gamma} f(z)dz$, где Γ - линия, лежащая в G, соединяющая z_0 и z, не зависит от формы линии Γ , а зависит лишь от z_0 и z.

Доказательство. Из теоремы Коши следует $\int_{\Gamma_1+\Gamma_2^-} f(z)dz=0$, т.е.

$$\int_{\Gamma_1} f(z)dz + \int_{\Gamma_2^-} f(z)dz = 0. \Rightarrow$$

$$\int_{\Gamma_1} f(z)dz = \int_{\Gamma_2} f(z)dz.$$

5.3 Неопределённый интеграл в комплексной области

<u>Определение.</u> Неопределенным интегралом от f(z), определенной в области G, называется любая функция $\Phi(z)$, удовлетворяющая в области G условиям: $\Phi'(z) = f(z)$.

Пусть f(z) аналитична в области G. Рассмотрим $F(z) = \int\limits_{z_0}^z f(\zeta) d\zeta$, где $z_0, z \in G$ и путь интегрирования - любая кусочно-гладкая линия, лежащая в области G, соединяющая точки z_0 и z. Из теоремы Коши следует: F(z) не зависит от пути интегрирования и, следовательно, F(z) есть однозначная функция, определенная в области G.

Теорема 1. Если f(z) аналитичная в односвязной области G, то F(z) является неопределенным интегралом от функции f(z).

Доказательство. Покажем, что в $\forall z \in G : F'(z) = f(z)$. Пусть $z + h \in G$. Рассмотрим разность

$$F(z+h) - F(z) = \int_{z_0}^{z+h} f(\zeta)d\zeta - \int_{z_0}^{z} f(\zeta)d\zeta = \int_{z}^{z+h} f(\zeta)d\zeta.$$
 (1)

Так как $\int\limits_{z}^{z+h}d\zeta=h,$ то

$$f(z) = \frac{f(z)}{h} \int_{z}^{z+h} d\zeta = \frac{1}{h} \int_{z}^{z+h} f(z)d\zeta.$$
 (2)

Интегралы (1) и (2) не зависят от пути интегрирования, что позволяет за путь интегрирования в этих интегралах взять прямолинейный отрезок, соединяющий точки z и z+h.

Используя (1) и (2), запишем

$$\frac{F(z+h)-F(z)}{h}-f(z)=\frac{1}{h}\int_{z}^{z+h}(f(\zeta)-f(z))d\zeta.$$

f(z) - аналитична в области $G\Rightarrow f(z)$ - непрерывна в точке $z\in G$, т.е. $\forall\, \varepsilon>0\,\exists\, \delta>0$ такое, что если $|\zeta-z|<\delta$, то $|f(\zeta)-f(z)|<\varepsilon$. Используя непрерывность f(z), в точке $z\in G$, получим

$$\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| < \varepsilon \cdot \frac{|h|}{|h|} = \varepsilon$$
 при $|h| < \delta$.

$$\Rightarrow \lim_{h\to 0} \frac{F(z+h) - F(z)}{h} = f(z)$$
, r.e. $F'(z) = f(z)$.

Теорема 2. Пусть f(z) - аналитична в односвязной области G. Тогда любой неопределенный интеграл от f(z) имеет вид:

$$\Phi(z) = F(z) + C$$
, где $F(z) = \int\limits_{z_0}^z f(\zeta) d\zeta$, C - const, $z_0, z \in G$.

Доказательство. Пусть $\Phi(z)$ такая, что $\Phi'(z)=f(z)$. По теореме 1: $F'(z)=f(z).\Rightarrow \Phi'(z)-F'(z)=(\Phi(z)-F(z))'=f(z)-f(z)=0.$ Пусть $\Phi(z)-F(z)=\psi(z)=U(x,y)+iV(x,y).$ Тогда $\psi'(z)=U'_x+iV'_x=V'_y-iU'_y.$ Так как $\psi'(z)=0,$ то $U'_x=V'_x=V'_y=U'_y=0$ в области $G.\Rightarrow\Phi$ ункции U и V - const в области G и следовательно $\psi(z)=U+iV$ - const и следовательно $\Phi(z)=F(z)+C.$

Следствие 1. При условиях теоремы 2 имеет место формула Ньютона - Лейбница:

$$\int_{z_0}^{z_1} f(\zeta)d\zeta = \Phi(z_1) - \Phi(z_0).$$

<u>Доказательство.</u> Положим $z=z_0$ в формуле $\Phi(z)=\int\limits_{z_0}^z f(\zeta)d\zeta+C.$ Получим $C=\Phi(z_0).$ Взяв, далее, в этой же формуле $z=z_1$, находим

$$\Phi(z_1) = \int_{z_0}^{z_1} f(\zeta)d\zeta + \Phi(z_0),$$

откуда и вытекает формула Ньютона - Лейбница.

Следствие 2. Если функции f(z) и g(z) аналитичны в односвязной области G, а z_0 и z_1 - произвольные точки этой области, то имеет место формула интегрирования по частям

$$\int_{z_0}^{z_1} f(z)g'(z)dz = f(z)g(z)|_{z_0}^{z_1} - \int_{z_0}^{z_1} g(z)f'(z)dz.$$

Доказательство. Проинтегрируем тождество

$$(f(z)g(z))' = f'(z)g(z) + f(z)g'(z) :$$

$$\int_{z_0}^{z_1} (f(z)g(z))'dz = \int_{z_0}^{z_1} f'(z)g(z)dz + \int_{z_0}^{z_1} f(z)g'(z)dz.$$

По формуле Ньютона - Лейбница имеем

$$\int_{z_0}^{z_1} (f(z)g(z))'dz = f(z_1)g(z_1) - f(z_0)g(z_0) = f(z)g(z)\Big|_{z_0}^{z_1}.$$

Отсюда и из предыдущей формулы следует формула интегрирования по частям.

<u>Замечание.</u> Замена переменных в интегралах от функций комплексного переменного производится аналогично случаю действительного переменного.

Пусть аналитическая функция $z=\varphi(w)$ отображает взаимно однозначно контур Γ_1 в w-плоскости на контур Γ в z-плоскости. Тогда

$$\int_{\Gamma} f(z)dz = \int_{\Gamma_1} f(\varphi(z))\varphi'(z)dz.$$

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Вычислить интеграл

$$\int\limits_{\Gamma} (1+i-2\bar{z})dz$$

по линиям, соединяющим точки $z_1=0$ и $z_2=1+i$:

- 1.) по прямой;
- 2.) по параболе $y = x^2$;

3.) по ломаной $z_1z_3z_2$, где $z_3=1$. <u>Решение.</u> $1+i-2\bar{z}=(1-2x)+i(1+2y)$. $\Rightarrow U(x,y)=1-2x$, V(x,y)=1+2y. Применяя формулу

$$\int_{\Gamma} f(z)dz = \int_{\Gamma} U(x,y)dx - V(x,y)dy + i \int_{\Gamma} V(x,y)dx + U(x,y)dy,$$

получим

$$\int_{\Gamma} (1+i-2\bar{z})dz = \int_{\Gamma} (1-2x)dx - (1+2y)dy + i \int_{\Gamma} (1+2y)dx + (1-2x)dy.$$

1.) Уравнение прямой, проходящей через точки $z_1=0$ и $z_2=1+i,$ будет $y=x,\,x\in[0\,;1].$ \Rightarrow

$$\int_{\Gamma} (1+i-2\bar{z})dz = \int_{0}^{1} ((1-2x)+(1+2x))dx + i \int_{0}^{1} ((1+2x)+(1-2x))dx = 2(i-1).$$

2.) Для параболы $y=x^2$ имеем $dy=2xdx,\,x\in[0\,;1].\Rightarrow$

$$\int_{\Gamma} (1+i-2\bar{z})dz = \int_{0}^{1} (1-2x-(1+2x^{2})\cdot 2x)dx + i\int_{0}^{1} (1+2x^{2}+(1-2x)\cdot 2x)dx = \int_{0}^{1} (1+i-2\bar{z})dz = \int_{0}^{1} (1-2x-(1+2x^{2})\cdot 2x)dx + i\int_{0}^{1} (1+2x^{2}+(1-2x)\cdot 2x)dx = \int_{0}^{1} (1+2$$

$$=-2+\frac{4}{3}i.$$

3.) На отрезке z_1z_3 : $y=0,\ dy=0,\ 0\leq x\leq 1$. На отрезке z_2z_3 : $x=1,\ dx=0,\ 0\leq y\leq 1.$ \Rightarrow

$$\int_{\Gamma} (1+i-2\bar{z})dz = \int_{z_1 z_3} (1+i-2\bar{z})dz + \int_{z_3 z_2} (1+i-2\bar{z})dz =$$

$$= \int_{0}^{1} (1-2x)dx + i \int_{0}^{1} dx - \int_{0}^{1} (1+2y)dy + \int_{0}^{1} (1-2\cdot 1)dy = -2.$$

Пример 2. Вычислить интеграл

$$\int_{\Gamma} (z^2 + z\bar{z})dz,$$

где Γ - дуга окружности $|z|=1,\,0\leq \arg z\leq \pi.$

Решение. Положим $z=e^{i\varphi},\, 0\leq \varphi\leq \pi. \Rightarrow dz=ie^{i\varphi}d\varphi$ и

$$\int\limits_{\Gamma}(z^2+z\bar{z})dz=\int\limits_{0}^{\pi}ie^{i\varphi}(e^{i2\varphi}+1)d\varphi=i\int\limits_{0}^{\pi}(e^{i3\varphi}+e^{i\varphi})d\varphi=\left.\left(\frac{1}{3}e^{i3\varphi}+e^{i\varphi}\right)\right|_{0}^{\pi}=-\frac{8}{3}.$$

<u>Пример 3.</u> Вычислить интеграл $\int\limits_{\Gamma}e^{\bar{z}}dz$, где Γ - отрезок прямой y=-x, соединяющий точки $z_1=0$ и $z_2=\pi-i\pi$.

Решение. Кривая Г задается параметрически уравнениями: x=t, y=-t, или в комплексной форме: z=t-it, $0 \le t \le \pi.$ ⇒

$$\int_{\Gamma} e^{\bar{z}} = \int_{0}^{\pi} e^{t+it} (1-i) dt = (1-i) \int_{0}^{\pi} e^{(1+i)t} dt = \frac{1-i}{1+i} \cdot e^{(1+i)t} \Big|_{0}^{\pi} = (e^{\pi} + 1)i.$$

Пример 4. Вычислить интеграл

$$\int_{1-i}^{2+i} (3z^2 + 2z)dz.$$

<u>Решение.</u> Функция $f(z) = 3z^2 + 2z$ аналитична всюду на $\mathbb C$, поэтому по формуле Ньютона - Лейбница найдем

$$\int_{1-i}^{2+i} (3z^2 + 2z)dz = (z^3 + z^2) \Big|_{1-i}^{2+i} = (2+i)^3 + (2+i)^2 - (1-i)^3 - (1-i)^2 = 8 + 19i.$$

Пример 5. Вычислить интеграл

$$\int_{0}^{i} z \cos z dz.$$

<u>Решение.</u> Функции $f(z) = z, g(z) = \cos z$ аналитичны всюду на $\mathbb{C},$ поэтому мы можем применить формулу интегрирования по частям:

$$\int_{0}^{i} z \cos z dz = \int_{0}^{i} z (\sin z)' dz = z \sin z \Big|_{0}^{i} - \int_{0}^{i} \sin z dz = i \sin i + \cos z \Big|_{0}^{i} = i \frac{e^{i^{2}} - e^{-i^{2}}}{2i} + \frac{e^{i^{2}} + e^{-i^{2}}}{2} - 1 = -\sinh 1 + \cosh 1 - 1 = \frac{1 - e}{e}.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Вычислить следующие интегралы:

- 102. $\int_{\Gamma}z\operatorname{Im}z^2dz$, $\Gamma:|z|=1$ $(-\pi\leq \arg z\leq 0)$. 103. $\int_{\Gamma}e^{|z|^2}\operatorname{Re}zdz$, где Γ прямая, соединяющая точки $z_1=0,\,z_2=1+i$.
- 104. $\int \ln z dz \; (\ln z = \ln |z| + i \arg z$ главное значение логарифма),

 $\Gamma:|z|=1$, а) начальная точка пути интегрирования $z_0=1$; б) $z_0=-1$. Обход против часовой стрелки.

- 105. $\int_{\Gamma} z \operatorname{Re} z dz$, $\Gamma : |z| = 1$. Обход против часовой стрелки.
- 106. $\int_{\Gamma}^{1} z\bar{z}dz$, $\Gamma:|z|=1$. Обход против часовой стрелки.
- $108.\int\limits_{\Gamma}^{1} {
 m Re}\,zdz, \quad \Gamma: {
 m a})\,\,z=(2+i)t,\, 0\leq t\leq 1;\, {
 m б})$ ломаная, состоящая из отрезка $[0\,;2]$ действительной оси и отрезка, соединяющего точки $z_1=2$ и $z_2 = 2 + i$.
 - 109. $\int_{1+i}^{-1-i} (2z+1)dz.$ 110. $\int_{0}^{1+i} z^{3}dz.$

 - 111. $\int_{1}^{i} (3z^4 2z^3) dz$.
- 112. $\int_{\Gamma}^{1} e^{z} dz$, Γ : а) дуга параболы $y=x^{2}$, соединяющая точки $z_{1}=0$
- лемом, соединяющий эти же точки.
 113. $\int_{\Gamma}\cos zdz$, Γ : отрезок прямой, соединяющий точки $z_1=\frac{\pi}{2}$ и $z_2=\pi+i.$
 - 114. $\int_{1+i}^{2i} (z^3 z)e^{\frac{z^2}{2}} dz.$

 - 115. $\int_{0}^{i} z \cos z dz$. 116. $\int_{1}^{i} z \sin z dz$. 117. $\int_{0}^{i} (z i)e^{-z} dz$.

118.
$$\int\limits_1^i \frac{\ln{(z+1)}}{z+1} dz$$
 по дуге окружности $|z|=1,\, {\rm Im}\, z\geq 0,\, {\rm Re}\, z\geq 0.$

119.
$$\int\limits_1^i \frac{\ln z}{z} dz$$
 по отрезку прямой, соединяющей точки $z_1=1$ и $z_2=i$.

120.
$$\int_{0}^{1+i} \sin z \cos z dz.$$

121.
$$\int_{1}^{i} \frac{1+\operatorname{tg} z}{\cos^{2} z} dz$$
 по прямой, соединяющей точки $z_{1}=1$ и $z_{2}=i$.

122.
$$\int_{\Gamma}^{1} \text{Re} (\sin z) \cos z dz$$
, $\Gamma : |\operatorname{Im} z| \le 1$, $\operatorname{Re} z = \frac{\pi}{4}$.
123. $\int_{\Gamma}^{1} z \operatorname{Im} z^{2} dz$, $\Gamma : |\operatorname{Im} z| \le 1$, $\operatorname{Re} z = 1$.

123.
$$\int_{\Gamma} z \operatorname{Im} z^2 dz, \quad \Gamma : |\operatorname{Im} z| \le 1, \operatorname{Re} z = 1.$$

$$124. \int_{0}^{i} ze^{z^2} dz.$$

$$124. \int\limits_{-i}^{r}ze^{z^2}dz.$$
 $125. \int\limits_{\Gamma}^{r}\mathrm{tg}\,zdz, \quad \Gamma:$ дуга параболы $y=x^2,$ соединяющая точки $z_1=0$ и $z_2=1+i$.

126. $\int\limits_{-i}^{i}|z|dz$ вдоль: а) прямолинейного отрезка; б) левой полуокружности |z|=1; в) правой полуокружности |z|=1. 127. $\int\limits_{0}^{1+i}e^{\bar{z}}dz$ вдоль: а) ломаной с вершинами 0,1,1+i; б) ломаной с

вершинами 0, i, 1+i

Интегральная формула Коши

Теорема (Формула Коши). Пусть G - n-связная область, ограниченная кусочно-гладкой границей Γ и пусть функция f(z) - аналитична в области G и на границе Γ . Тогда справедлива интегральная формула Коши

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta,$$

где $z \in G$ и интегрирование по Γ происходит в положительном направлении, т.е. при обходе Γ область G остается всё время слева.

Доказательство. Рассмотрим (n+1)-связную область $G^*=G\setminus S$, где S - круг радиуса r с центром в точке $z \in G$. Причем r такое, что $S \subset G$. Пусть γ - граница S, проходимая по часовой стрелке. По теореме Коши для многосвязных областей:

$$\int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta + \int_{\gamma_{-}} \frac{f(\zeta)}{\zeta - z} d\zeta = 0.$$

Отсюда следует

$$\int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta. \tag{1}$$

Так как на окружности $\gamma: \zeta=z+re^{i\varphi},\, d\zeta=ire^{i\varphi}d\varphi,$ то

$$\int_{\gamma} \frac{d\zeta}{\zeta - z} = \int_{0}^{2\pi} \frac{ire^{i\varphi}d\varphi}{re^{i\varphi}} = 2\pi i. \Rightarrow f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{\zeta - z} d\zeta.$$
 (2)

Ha основании (1) и (2) имеем:

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{\zeta - z} d\zeta =$$

$$= \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta. \tag{3}$$

Оценим правую часть (3):

$$\left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta \right| \le \frac{1}{2\pi} \max_{\zeta \in \gamma} |f(\zeta) - f(z)| \cdot 2\pi = \max_{\zeta \in \gamma} |f(\zeta) - f(z)|.$$

Так как f(z) непрерывна в точке z, то при $r \to 0$

$$\max_{\zeta \in \gamma} |f(\zeta) - f(z)| \to 0. \Rightarrow \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta = 0. \Rightarrow$$
$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = f(z).$$

Формула Коши доказана.

Замечание. Если, в частности, кривая Γ представляет собой окружность $|\zeta-z|=R$ с центром в точке z и радиусом R, то, полагая $\zeta-z=Re^{i\varphi}$, мы получим из формулы Коши

$$f(z) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z + Re^{i\varphi}) d\varphi.$$
 (4)

Равенство (4) оформляется в виде следующей теоремы.

 $\underline{\text{Теорема (о среднем})}$. Если f(z) аналитична в замкнутом круге, то её значение в центре круга равно среднему арифметическому значению на граничной окружности.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Вычислить интеграл

$$\int_{|z|=2} \frac{\operatorname{ch} iz}{z^2 + 4z + 3} dz.$$

<u>Решение.</u> Точка $z_0 = -1$, в которой $z^2 + 4z + 3 = 0$, находится внутри окружности |z|=2. Для применения формулы Коши необходимо выделить функцию f(z). Для этого перепишем интеграл следующим образом

$$\int_{|z|=2} \frac{\operatorname{ch} iz}{z^2 + 4z + 3} dz = \int_{|z|=2} \frac{\operatorname{ch} iz}{(z+1)(z+3)} dz = \int_{|z|=2} \frac{\frac{\operatorname{ch} iz}{z+3}}{z - (-1)} dz.$$

Таким образом, $z_0 = -1$, $f(z) = \frac{\text{ch } iz}{z+3}$. Функция f(z) будет аналитической в круге $|z| \leq 2$. Применяя формулу Коши, получим

$$\int_{|z|=2} \frac{\operatorname{ch} iz}{z^2 + 4z + 3} dz = 2\pi i f(-1) = 2\pi i \frac{\operatorname{ch} (-i)}{2} = \pi i \operatorname{ch} i = \pi i \cos 1.$$

Пример 2. Используя формулу Коши, вычислить

$$\int_{\Gamma} \frac{e^{z^2}}{z^2 - 6z} dz, \text{ если}$$

1.)
$$\Gamma: |z-2|=1;$$
 2.) $\Gamma: |z-2|=3;$ 3.) $\Gamma: |z-2|=5.$

1.) $\Gamma:|z-2|=1;$ 2.) $\Gamma:|z-2|=3;$ 3.) $\Gamma:|z-2|=5.$ Решение. 1.) Подынтегральная функция $\frac{e^{z^2}}{z^2-6z}$ является аналитической в замкнутом круге |z-2|=1. Следовательно, по теореме Коши:

$$\int_{|z-2|=1} \frac{e^{z^2}}{z^2 - 6z} dz = 0.$$

2.) $z^2-6z=z(z-6)=0$ при z=0 и z=6. Точка z=0 находится внутри окружности |z-2|=3, а функция $f(z)=\frac{e^{z^2}}{z-6}$ является аналитической в круге $|z-2| \le 3$. Применяя формулу Коши, получим

$$\int_{|z-2|=3} \frac{e^{z^2}}{z^2-6z} dz = \int_{|z-2|=3} \frac{\frac{e^{z^2}}{z-6}}{z} dz = 2\pi i f(0) = 2\pi i \left(-\frac{1}{6}\right) = -\frac{\pi}{3}.$$

3.) Оба нуля z=0 и z=6 функции z^2-6z находятся внутри окружности |z-3|=5. Поэтому непосредственное применение формулы Коши невозможно. Опишем два способа вычисления интеграла.

Способ I. Разложим дробь $\frac{1}{z^2-6z}$ на простейшие

$$\frac{1}{z^2 - 6z} = \frac{1}{6} \cdot \frac{1}{z - 6} - \frac{1}{6} \cdot \frac{1}{z}.$$

После чего запишем

$$\int_{|z-2|=5} \frac{e^{z^2}}{z^2 - 6z} dz = \frac{1}{6} \int_{|z-2|=5} \frac{e^{z^2}}{z - 6} dz - \frac{1}{6} \int_{|z-2|=5} \frac{e^{z^2}}{z} dz =$$

$$= \frac{1}{6} 2\pi i e^{z^2} \Big|_{z=6} - \frac{1}{6} 2\pi i e^{z^2} \Big|_{z=0} = \frac{e^{36} - 1}{3} \pi i.$$

Способ II. Около точек z=0 и z=6 опишем окружности γ_1 и γ_2 , целиком лежащие в круге $|z-2|\leq 5$ (см. Рис). В трехсвязной области, ограниченной окружностями $|z-2|=5,\,\gamma_1$ и γ_2 , подынтегральная функция всюду аналитична. По теореме Коши для многосвязных областей

$$\int_{\substack{|z-2|=5}} \frac{e^{z^2}}{z^2-6z} dz = \int_{\gamma_1} \frac{e^{z^2}}{z^2-6z} dz + \int_{\gamma_2} \frac{e^{z^2}}{z^2-6z} dz.$$

К каждому интегралу в правой части данного равенства можно применить интегральную формулу Коши. В результате получим

$$\int_{|z-2|=5} \frac{e^{z^2}}{z^2 - 6z} dz = 2\pi i \frac{e^{z^2}}{z - 6} \Big|_{z=0} + 2\pi i \frac{e^{z^2}}{z} \Big|_{z=6} = \frac{e^{36} - 1}{3} \pi i.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

С помощью формулы Коши вычислить следующие интегралы:

$$128. \int_{|z|=1} \frac{e^{z}}{z^{2} + 2z} dz. \qquad 129. \int_{|z-i|=1} \frac{e^{iz}}{z^{2} + 1} dz.$$

$$130. \int_{|z-1|=2} \frac{\sin \frac{\pi z}{2}}{z^{2} + 2z - 3} dz. \qquad 131. \int_{|z|=2} \frac{\sin iz}{z^{2} - 4z + 3} dz.$$

$$132. \int_{|z|=1} \frac{\operatorname{tg} z}{z e^{\frac{1}{z+2}}} dz. \qquad 133. \int_{|z|=3} \frac{\cos (z + \pi i)}{z (e^{z} + 2)} dz.$$

$$134. \int_{|z|=5} \frac{dz}{z^{2} + 16}. \qquad 135. \int_{|z|=4} \frac{dz}{(z^{2} + 9)(z + 9)}.$$

$$136. \int_{|z|=1} \frac{\sinh \frac{\pi}{2}(z + i)}{z^{2} - 2z} dz. \qquad 137. \int_{|z|=2} \frac{\sin z \cdot \sin (z - 1)}{z^{2} - z} dz.$$

5.5 Высшие производные. Неравенства Коши

Теорема 1. Если f(z) аналитична в области G и на её границе Γ , то для любого натурального n имеет место формула

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta,$$

где $\zeta \in G$.

— Доказательство. Применим метод индукции. Докажем формулу при n=1. Используя формулу Коши, запишем

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \frac{1}{2\pi i} \lim_{h \to 0} \frac{1}{h} \int_{\Gamma} f(\zeta) \left(\frac{1}{\zeta - z - h} - \frac{1}{\zeta - z} \right) d\zeta =$$

$$= \frac{1}{2\pi i} \lim_{h \to 0} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z - h)(\zeta - z)} = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta.$$

Переход к пределу под знаком интеграла возможен, так как при $h\to 0$ функция $\frac{1}{\zeta-z-h}\to \frac{1}{\zeta-z}$ равномерно для всех $\zeta\in \Gamma.$

Пусть формула для $f^{(n)}(z)$ выполняется для всех $n \leq m-1$. Тогда

$$f^{(m)}(z) = \left(f^{(m-1)}(z)\right)' = \lim_{h \to 0} \frac{f^{(m-1)}(z+h) - f^{(m-1)}(z)}{h} =$$

$$= \frac{(m-1)!}{2\pi i} \lim_{h \to 0} \frac{1}{h} \int_{\Gamma} f(\zeta) \left(\frac{1}{(\zeta - z - h)^m} - \frac{1}{(\zeta - z)^m}\right) dz. \tag{1}$$

Далее исследуем разность:

$$\begin{split} \frac{1}{(\zeta-z-h)^m} - \frac{1}{(\zeta-z)^m} &= \frac{(\zeta-z)^m - (\zeta-z-h)^m}{(\zeta-z)^m (\zeta-z-h)^m} = \\ &= \frac{(\zeta-z)^m - (\zeta-z)^m (1 - \frac{h}{\zeta-z})^m}{(\zeta-z)^m (\zeta-z-h)^m} = \frac{(\zeta-z)^m - (\zeta-z)^m (1 - \frac{mh}{\zeta-z} + \mathcal{O}(h^2))}{(\zeta-z)^m (\zeta-z-h)^m} = \\ &= \frac{mh(\zeta-z)^{m-1} + \mathcal{O}(h^2)}{(\zeta-z)^m (\zeta-z-h)^m} = \frac{mh}{(\zeta-z)^m (\zeta-z-h)^m} + \frac{\mathcal{O}(h^2)}{(\zeta-z)^m (\zeta-z-h)^m}. \end{split}$$

Подставим теперь полученное соотношение в (1):

$$f^{(m)}(z) = \frac{m!}{2\pi i} \lim_{h \to 0} \int_{\Gamma} \frac{f(\zeta)d\zeta}{(\zeta - z)(\zeta - z - h)^m} + \frac{(m - 1)!}{2\pi i} \lim_{h \to 0} \int_{\Gamma} \frac{f(\zeta) O(h)d\zeta}{(\zeta - z)^m (\zeta - z - h)^m} = \frac{m!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z)^{m+1}} d\zeta.$$

Замечание. Формула для $f^{(n)}(z)$ получается формальным дифференцированием формулы Коши по переменной z. Доказанная теорема утверждает законность такого дифференцирования.

$$|f^{(n)}(z_0)| \le \frac{n!M}{R^n},$$

где $M = \max_{z \in \Gamma} |f(z)|, \Gamma = \{z : |z - z_0| = R\}.$

Доказательство. Из теоремы 1 о высших производных следует

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta.$$

Отсюда

$$|f^{(n)}(z_0)| \le \frac{n!M}{2\pi R^{n+1}} \int_{\Gamma} dl = \frac{n!M}{2\pi R^{n+1}} = \frac{n!M}{R^n}.$$

5.6 Теорема Лиувилля. Теорема Морера

Теорема (Ж. Лиувилль). Если функция f(z) аналитична на всей $\mathbb C$ и ограничена, то она постоянна.

<u>Доказательство.</u> Пусть для любого $z \in \mathbb{C}: |f(z)| \leq M$. Тогда при любом R>0 из неравенства Коши следует, что $|f'(z)| \leq \frac{M}{R}$. Устремляя

 $R \to +\infty$, получим $|f'(z)| \equiv 0. \Rightarrow$ Используя формулу Ньютона - Лейбница, получим

$$f(z) - f(z_0) = \int_{z_0}^{z} f'(z)dz = 0. \Rightarrow f(z) - \text{const.}$$

Теорема (Г. Морер). Если f(z) непрерывна в односвязной области G и интеграл $\int\limits_{\Gamma} f(z)dz$ по любому замкнутому контуру $\Gamma \subset G$ равен нулю, то f(z) аналитична в G.

<u>Доказательство.</u> Из условий теоремы следует, что интеграл $\int_{z_0}^z f(\zeta)d\zeta$ не зависит от пути интегрирования, т.е. при фиксированном z_0 он определяет функцию $F(z) = \int_{z_0}^z f(\zeta)d\zeta$. Ранее мы доказывали, что F'(z) = f(z), если f(z) аналитична в области G. Нетрудно убедиться, что условие аналитичности можно заменить условием непрерывности f(z) в G. Таким образом, F'(z) = f(z) для $\forall z \in G$, т.е. F(z) аналитична в области G. Но тогда, по теореме Коши о высших производных, f(z), как производная от аналитической функции, является функцией аналитической. Теорема Морера доказана.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Вычислить интеграл

$$\int_{|z-1|=1} \frac{\sin \pi z}{(z^2-1)^2} dz.$$

<u>Решение.</u> Функция $\frac{\sin \pi z}{(z^2-1)^2}$ является аналитической в круге $|z-1| \le 1$, кроме точки $z_0=1$. Запишем

$$\frac{\sin \pi z}{(z^2 - 1)^2} = \frac{\frac{\sin \pi z}{(z+1)^2}}{(z-1)^2}.$$

Очевидно, функция $f(z)=\frac{\sin \pi z}{(z+1)^2}$ является аналитической в круге $|z-1|\leq 1$. Поэтому мы можем применить формулу для $f^{(n)}(z)$ при n=1. В результате получим

$$\int_{\substack{|z-1|=1}} \frac{\sin \pi z}{(z^2-1)^2} dz = \int_{\substack{|z-1|=1}} \frac{\frac{\sin \pi z}{(z+1)^2}}{(z-1)^2} dz = 2\pi i f'(1).$$

$$f'(z) = \left(\frac{\sin \pi z}{(z+1)^2}\right)' = \frac{\pi \cos \pi z \cdot (z+1) - 2\sin \pi z}{(z+1)^3}. \Rightarrow f'(1) = \frac{2\pi \cos \pi}{2^3} = -\frac{\pi}{4}.$$

Таким образом,

$$\int_{|z-1|=1} \frac{\sin \pi z}{(z^2-1)^2} dz = -\frac{\pi^2}{2}i.$$

Пример 2. Вычислить интеграл

$$\int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^3 (z-1)} dz.$$

<u>Решение.</u> Способ I. Разложим функцию $\frac{1}{(z+1)^3(z-1)}$ на простейшие дроби

$$\frac{1}{(z+1)^3(z-1)} = \frac{1}{8} \cdot \frac{1}{z-1} - \frac{1}{8} \cdot \frac{1}{z+1} - \frac{1}{4} \cdot \frac{1}{(z+1)^2} - \frac{1}{2} \cdot \frac{1}{(z+1)^3}.$$

Используя полученное разложение, получим

$$\int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^3 (z-1)} dz = \frac{1}{8} \int_{|z|=2} \frac{\operatorname{ch} z}{z-1} dz - \frac{1}{8} \int_{|z|=2} \frac{\operatorname{ch} z}{z+1} dz - \frac{1}{4} \int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^2} dz - \frac{1}{2} \int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^3} dz.$$

Первые два интеграла вычисляем по формуле Коши:

$$\int_{|z|=2} \frac{\operatorname{ch} z}{z-1} dz = 2\pi i \operatorname{ch} 1, \quad \int_{|z|=2} \frac{\operatorname{ch} z}{z+1} dz = 2\pi i \operatorname{ch} 1.$$

Третий и четвертый интегралы вычисляем по формуле Коши для высших производных:

$$\int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^2} dz = 2\pi i (\operatorname{ch} z)' \Big|_{z=-1} = -2\pi i \operatorname{sh} 1,$$

$$\int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^3} dz = \frac{2\pi i}{2!} (\operatorname{ch} z)'' \Big|_{z=-1} = \pi i \operatorname{ch} 1.$$

Окончательно получим

$$\int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^3 (z-1)} dz = \frac{2\pi i \operatorname{ch} 1}{8} - \frac{2\pi i \operatorname{ch} 1}{8} + \frac{2\pi i \operatorname{sh} 1}{4} - \frac{\pi i \operatorname{ch} 1}{2} =$$

$$=\frac{\operatorname{sh} 1 - \operatorname{ch} 1}{2}\pi i = -\frac{\pi i}{2e}.$$

Способ II. $(z+3)^3(z-1)=0$ в точках z=-1 и z=1. Построим окружности γ_1 и γ_2 с центрами в этих точках такие, что γ_1 и γ_2 принадлежат кругу $|z|\leq 2$. В трехсвязной области, ограниченной окружностями |z|=2, γ_1 и γ_2 , функция $\frac{\operatorname{ch} z}{(z+3)^3(z-1)}$ всюду аналитична. По теореме Коши для многосвязных областей, имеем:

$$\int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^3(z-1)} dz = \int_{\gamma_1} \frac{\operatorname{ch} z}{(z+1)^3(z-1)} dz + \int_{\gamma_2} \frac{\operatorname{ch} z}{(z+1)^3(z-1)} dz.$$

В первом интеграле представим подынтегральную функцию в виде

$$\frac{\operatorname{ch} z}{(z+1)^3(z-1)} = \frac{\frac{\operatorname{ch} z}{z-1}}{(z+1)^3}.$$

Функция $\frac{\operatorname{ch} z}{z-1}$ - аналитична внутри γ_1 , поэтому, по формуле Коши для высших производных, имеем

$$\int_{\gamma_1} \frac{\operatorname{ch} z dz}{(z+1)^3 (z-1)} = \int_{\gamma_1} \frac{\frac{\operatorname{ch} z}{(z-1)}}{(z+1)^3} dz = \frac{2\pi i}{2!} \left(\frac{\operatorname{ch} z}{z-1} \right)'' \bigg|_{z=-1} = \pi i \frac{2e^{-1} + \operatorname{ch} 1}{4}.$$

Для вычисления второго интеграла применим формулу Коши:

$$\int_{\gamma_2} \frac{\operatorname{ch} z}{(z+1)^3 (z-1)} dz = \int_{\gamma_2} \frac{\frac{\operatorname{ch} z}{(z+1)^3}}{(z-1)} dz = 2\pi i \frac{\operatorname{ch} z}{(z+1)^3} \bigg|_{z=1} = \pi i \frac{\operatorname{ch} 1}{4}.$$

Окончательный результат будет следующий:

$$\int_{|z|=2} \frac{\operatorname{ch} z}{(z+1)^3 (z-1)} dz = -\pi i \frac{2e^{-1} + \operatorname{ch} 1}{4} + \pi i \frac{\operatorname{ch} 1}{4} = -\frac{\pi i}{2e}.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

138.
$$\int_{|z|=1}^{\cos z} \frac{\cos z}{z^{2}} dz.$$
139.
$$\int_{|z|=1}^{\sin \frac{\pi}{2}} \frac{z \sin z}{z^{3}} dz.$$
140.
$$\int_{|z-1|=1}^{\sin \frac{\pi}{2}} \frac{z dz}{(z-1)^{2}(z-3)} dz.$$
141.
$$\int_{|z|=2}^{\sin z} \frac{z \sin z}{(z^{2}-1)^{2}} dz.$$
142.
$$\int_{|z-3|=6}^{\cos z} \frac{z dz}{(z-2)^{3}(z+4)}.$$
143.
$$\int_{|z-2|=3}^{\sin z} \frac{\cosh e^{i\pi z}}{z^{3} - 4z^{2}} dz.$$
144.
$$\int_{|z|=\frac{1}{2}}^{\sin z} \frac{1}{z^{3}} \cos \frac{z}{z+1} dz.$$
145.
$$\int_{|z-2|=1}^{\cos z} \frac{e^{\frac{1}{z}}}{(z^{2}+4)^{2}} dz.$$
146.
$$\int_{|z|=\frac{1}{2}}^{\sin z} \frac{1}{z^{2}} dz.$$
147.
$$\int_{|z-1|=\frac{1}{2}}^{\cos z} \frac{e^{iz}}{(z^{2}-1)^{2}} dz.$$

6. ПРЕДСТАВЛЕНИЕ АНАЛИТИЧЕСКИХ ФУНКЦИЙ РЯДАМИ

6.1 Ряд Тейлора функции аналитической в круге

Для любого $q \in \mathbb{C}$ такого, что |q| < 1, при любом натуральном n имеет место равенство:

$$\frac{1}{1-q} = 1 + q + q^2 + \dots + q^n + \frac{q^{n+1}}{1-q} \tag{1}$$

Пусть функция f(z) аналитична в некоторой области G, точки z, a - внутренние точки G. ζ - переменная точка, пробегающая замкнутый контур $\Gamma \subset G$, внутри которого лежат z и a. Тогда в силу равенства (1) можно записать:

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \cdot \frac{1}{1 - \frac{z - a}{\zeta - a}} = \frac{1}{\zeta - a} \left(1 + \frac{z - a}{\zeta - a} + \left(\frac{z - a}{\zeta - a} \right)^2 + \dots + \left(\frac{z - a}{\zeta - a} \right)^n + \frac{1}{1 - \frac{z - a}{\zeta - a}} \cdot \left(\frac{z - a}{\zeta - a} \right)^{n+1} \right).$$

Умножим обе части данного равенства на $\frac{f(\zeta)}{2\pi i}$ и проинтегрируем по ζ вдоль Γ . Используя формулу Коши и формулу для высших производных, получим

$$f(z) = f(a) + \frac{f'(a)}{1!}(z-a) + \dots + \frac{f^{(n)}(a)}{n!}(z-a)^n + R_n,$$

где остаточный член R_n имеет вид:

$$R_n = \frac{(z-a)^{n+1}}{2\pi i} \int_{\Gamma} \frac{f(\zeta)d\zeta}{(\zeta-z)(\zeta-a)^{n+1}}.$$

Возникает вопрос: при каких условиях $R_n \to 0$ при $n \to \infty$ или, что равносильно, при каких условиях f(z) представима своим рядом Тейлора с центром в точке a, т.е.

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n.$$
 (2)

Ответ на этот вопрос дает следующая теорема.

 $\underline{\text{Теорема (O. Kоши)}}$. Функция f(z) представима своим рядом Тейлора (2) в любом открытом круге с центром в a, в котором она аналитична. В любой замкнутой области, принадлежащей данному кругу, ряд (1) сходится равномерно.

<u>Д</u>оказательство. Пусть f(z) аналитична в круге |z-a| < R. Пусть R' произвольно и удовлетворяет неравенствам 0 < R' < R; $\Gamma = \{z: |z-a| = R'\}; z \in \{z: |z-a| < kR'\}$, где 0 < k < 1. Тогда $|\zeta-z| \ge 2$ $\ge R' - kR' = (1-k)R'$ и, следовательно,

$$|R_n| = \left| \frac{(z-a)^{n+1}}{2\pi i} \int_{\Gamma} \frac{f(\zeta)d\zeta}{(\zeta-z)(\zeta-a)^{n+1}} \right| \le \frac{k^{n+1}(R')^{n+1}}{2\pi} \cdot \frac{M2\pi R'}{(1-k)(R')^{n+2}} =$$

$$=\frac{Mk^{n+1}}{1-k}$$
, где $M=\max_{|z-a|< R'}|f(z)|$.

Так как 0 < k < 1, то $R_n \to 0$ при $n \to \infty$, причем оценка R_n не зависит от z. Очевидно, что $R_n \to 0$ равномерно в любом замкнутом круге $|z-a| \le r$, где r < R. Любую замкнутую область $G \subset \{z: |z-a| < R\}$ можно представить как подмножество круга $|z-a| \le r$. Следовательно, в любой замкнутой области, принадлежащей кругу |z-a| < R, ряд (2) будет сходиться равномерно.

Теорема доказана.

6.2 Свойства равномерно сходящихся функциональных рядов

Теорема 1 (об аналитичности суммы). Если ряд $\sum_{n=1}^{\infty} f_n(z)$, составленный из функций, аналитических в односвязной области G, равномерно сходится в этой области, то его сумма S(z) также является функцией аналитической в G.

Доказательство. Заметим, что S(z) как сумма равномерно сходящегося ряда, составленного из непрерывных функций, есть функция непрерывная в G. В силу равномерной сходимости ряд можно проинтегрировать почленно вдоль любого замкнутого контура $\Gamma \subset G$. В результате получим

$$\int_{\Gamma} S(z)dz = \sum_{n=0}^{\infty} \int_{\Gamma} f_n(z)dz = 0,$$

так как по теореме Коши $\int_{\Gamma} f_n(z) dz = 0$ при любом $n \geq 0$.

Теперь, по теореме Морера, можно утверждать, что S(z) аналитична в G.

Теорема 2 (о почленном дифференцировании). Ряд $\sum_{n=0}^{\infty} f_n(z)$, составленный из функций аналитических в области G и непрерывных в \overline{G} , равномерно сходящийся в \overline{G} , можно почленно дифференцировать в G любое число раз.

Доказательство. Пусть Γ - граница G и пусть $\zeta \in \Gamma$ и $z \in G$. Так как $\min_{\zeta \in \Gamma} |\zeta - z| = m > 0$, то ряд $\sum_{n=0}^{\infty} \frac{f_n(z)}{(\zeta - z)^{k+1}}$ сходится равномерно относительно ζ на Γ для любого натурального k, следовательно, этот ряд можно почленно интегрировать вдоль Γ и, следовательно, сходится ряд:

$$S^{(k)}(z) = \frac{k!}{2\pi i} \int_{\Gamma} \frac{S(\zeta)d\zeta}{(\zeta - z)^{k+1}} = \sum_{n=0}^{\infty} \frac{k!}{2\pi i} \int_{\Gamma} \frac{f_n(\zeta)d\zeta}{(\zeta - z)^{k+1}} = \sum_{n=0}^{\infty} f_n^{(k)}(z).$$

Заметим, что мы дважды воспользовались формулой Коши для высших производных.

Теорема 2 доказана.

Рассмотрим степенной ряд в случае комплексной переменной: $\sum_{n=0}^{\infty} a_n \cdot (z-a)^n$, где a_n - комплексные постоянные. Дословным повторением доказательств, все результаты, касающиеся степенных рядов, переносятся на случай комплексной переменной. Остаются справедливыми, в частности, формула Коши - Адамара для определения радиуса сходимости степенного ряда

 $\sum_{n=0}^{\infty} a_n (z-a)^n$: $\frac{1}{R} = \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|}$, а также тот факт, что в любой замкнутой ограниченной области, лежащей внутри круга сходимости |z-a| < R, степенной ряд сходится равномерно. Из этого факта, а также из теоремы об аналитичности функционального ряда вытекает следующее утверждение:

<u>Теорема 3 (об аналитичности степенного ряда).</u> Сумма любого степенного ряда в круге его сходимости является аналитической функцией.

<u>Д</u>оказательство. Любую точку z, принадлежащую кругу сходимости, можно погрузить в ограниченную замкнутую область \overline{G} , целиком лежащую в круге сходимости. Теперь результат теоремы следует из того, что степенной ряд равномерно сходится в \overline{G} и все его члены $f_n(z) = a_n(z-a)^n$ являются функциями аналитическими в \overline{G} .

6.3 Теоремы единственности, нули аналитических функций

 ${\rm \underline{Teopema~1.}}$ Любой степенной ряд является рядом Тейлора своей суммы.

<u>Доказательство.</u> Пусть в некотором круге $|z-a| \le r$ ряд $\sum_{n=0}^{\infty} a_n (z-a)^n = f(z)$ сходится равномерно. Полагая z=a, получим $a_0=f(a)$. Последовательно дифференцируя ряд и полагая z=a, получим для любого $n \ge 1$:

$$f^{(n)}(a) = n! a_n \Rightarrow a_n = \frac{f^{(n)}(a)}{n!}.$$

Определение. Нулем функции f(z) называется любая точка a, в которой f(a) = 0. Если аналитическая функция $f(z) \not\equiv 0$ в окрестности своего нуля, то в её ряде Тейлора (с центром в точке a) все коэффициенты $\not\equiv 0$ одновременно. Номер младшего $\not\equiv 0$ коэффициента этого разложения называется порядком нуля a. Таким образом, в окрестности нуля порядка n разложение в ряд Тейлора имеет вид:

$$f(z) = \sum_{k=n}^{\infty} a_k (z - a)^k, \ n > 1, \ a_n \neq 0.$$
 (*)

Замечание. Порядок нуля можно также определить как порядок младшей, отличной от нуля производной $f^{(n)}(z)$.

Теорема 2 (об изолированности нуля). Пусть f(z) аналитична в окрестности нуля a и $\not\equiv 0$ ни в какой его окрестности. Тогда существует окрестность точки z=a, в которой f(z) не имеет других нулей кроме a.

<u>Д</u>оказательство. Пусть a - нуль порядка n. Тогда из (*) следует $f(z)=(z-a)^n\varphi(z)$, где $\varphi(z)=\sum_{k=0}^\infty a_{n+k}(z-a)^k$, $\varphi(a)=a_n\neq 0$. Функция

 $\varphi(z)$ аналитична в окрестности точки a, так как представляется сходящимся степенным рядом. $\Rightarrow \varphi(z)$ - непрерывная функция. $\Rightarrow \varphi(z) \neq 0$ в некоторой окрестности точки a, т.е. $f(z) \neq 0$ в этой окрестности. Теорема доказана.

Теорема 3 (единственности аналитических функций). Если функции $f_1(z)$ и $f_2(z)$ аналитичны в области G и их значения совпадают на некоторой последовательности $a_n \to a \in G$, то всюду в G $f_1(z) = f_2(z)$.

Доказательство. Рассмотрим функцию $f(z) = f_1(z) - f_2(z)$. Она аналитична в области G и имеет своими нулями a_n . Так как f - непрерывна и $a_n \to a$, то $f(a_n) \to f(a) = 0$. Таким образом, f(z) = 0 в некоторой окрестности точки a, иначе нарушилась бы теорема 2. Следовательно, множество нулей f(z) имеет хотя бы одну внутреннюю точку. Обозначим через E множество всех внутренних точек множества нулей функции f(z). Если E = G, то теорема доказана. Пусть $E \neq G$. Тогда существует точка $b \in \Gamma$ (границе G) и существует $(b_n) \subset E$ такая, что $b_n \to b$. Функция f(z) является непрерывной, поэтому $f(b_n) \to f(b) = 0$. Но $f \not\equiv 0$ ни в какой окрестности точки b, иначе точка b была бы внутренней точкой множества нулей функции f. Тогда, по теореме 2 (об изолированности нулей), в некоторой окрестности точки b нет ни одного нуля f(z). Но это противоречит тому, что $b = \lim b_n$. Полученное противоречие доказывает, что E = G.

Ряды с комплексными членами

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Исследовать на сходимость ряд

$$\sum_{n=1}^{\infty} \frac{e^{in}}{n^2}.$$

Решение. Заметим, что ряд $\sum_{n=1}^{\infty} z_n$, где $z_n = x_n + iy_n$, сходится тогда и только тогда, когда сходятся ряды $\sum_{n=1}^{\infty} x_n$, $\sum_{n=1}^{\infty} y_n$. Имеем $e^{in} = \cos n + i \sin n$. Ряды $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$, $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ сходятся абсолютно, поэтому данный ряд сходится абсолютно (ряд $\sum_{n=1}^{\infty} z_n$ называется абсолютно сходящимся, если сходится ряд $\sum_{n=1}^{\infty} |z_n|$).

Пример 2. Исследовать на сходимость ряд

$$\sum_{n=1}^{\infty} \frac{e^{i\frac{\pi}{n}}}{n}.$$

<u>Решение.</u> $e^{i\frac{\pi}{n}}=\cos\frac{\pi}{n}+i\sin\frac{\pi}{n}$. Ряд $\sum_{n=1}^{\infty}\frac{\cos\frac{\pi}{n}}{n}$ расходится, а ряд $\sum_{n=1}^{\infty}\frac{\sin\frac{\pi}{n}}{n}$ сходится. Следовательно, данный ряд расходится.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Исследовать на сходимость ряды:

148.
$$\sum_{n=1}^{\infty} \frac{\cos in}{2^n}.$$
149.
$$\sum_{n=1}^{\infty} \frac{n \sin in}{3^n}.$$
150.
$$\sum_{n=1}^{\infty} \frac{\cos in^2}{5^{n^2}}.$$
151.
$$\sum_{n=1}^{\infty} \frac{e^{i2n}}{n\sqrt{n}}.$$
152.
$$\sum_{n=1}^{\infty} \frac{e^{i\frac{\pi}{n}}}{\sqrt{n}}.$$
153.
$$\sum_{n=1}^{\infty} \frac{(1+i)^n}{2^{\frac{n}{2}}\cos in}.$$
154.
$$\sum_{n=1}^{\infty} \frac{\sinh i\sqrt{n}}{\sin in}.$$
155.
$$\sum_{n=1}^{\infty} \frac{\ln n}{\sinh in}.$$
156.
$$\sum_{n=1}^{\infty} \frac{\cosh i\frac{\pi}{n}}{n^{\ln n}}.$$
157.
$$\sum_{n=1}^{\infty} \frac{n}{\tan n}.$$

Степенные ряды

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Определить радиус сходимости степенного ряда

$$\sum_{n=0}^{\infty} \cos in \cdot z^n.$$

 $\underline{\text{Решение.}} \ \ a_n = \cos in = \frac{e^{-n} + e^n}{2} = \operatorname{ch} n. \ \text{Радиус сходимости вычисля-}$ ем по формуле:

$$R = \lim \frac{|a_n|}{|a_{n+1}|} \implies R = \lim \frac{|\operatorname{ch} n|}{|\operatorname{ch} (n+1)|} = \lim \frac{\operatorname{ch} n}{\operatorname{ch} n \cdot \operatorname{ch} 1 + \operatorname{sh} n \cdot \operatorname{sh} 1} =$$

 $=\lim \frac{1}{\ch 1 + \ch n \cdot \sh 1} = \lim \frac{1}{\ch 1 + \sh 1} = e^{-1}$. Таким образом, радиус сходимости данного ряда $R = e^{-1}$.

<u>Пример 2.</u> Найти радиус сходимости степенного ряда $\sum_{n=1}^{\infty} (1+i)^n z^n$.

$$\frac{\text{Решение.}}{1} \quad a_n = (1+i)^n. \Rightarrow |a_n| = |1+i|^n = (\sqrt{2})^n = 2^{\frac{n}{2}}. R = 1 = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{2^{\frac{n}{2}}}} = \frac{1}{\sqrt{2}}.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Найти радиусы сходимости следующих степенных рядов:

158.
$$\sum_{n=1}^{\infty} e^{iz} z^{n}.$$
159.
$$\sum_{n=1}^{\infty} e^{i\frac{\pi}{n}} z^{n}.$$
160.
$$\sum_{n=0}^{\infty} \left(\frac{z}{1-i}\right)^{n}.$$
161.
$$\sum_{n=1}^{\infty} \left(\frac{z}{in}\right)^{n}.$$
162.
$$\sum_{n=1}^{\infty} \cosh \frac{i}{n} z^{n}.$$
163.
$$\sum_{n=1}^{\infty} \left(\frac{z}{\ln in}\right)^{n}.$$
164.
$$\sum_{n=0}^{\infty} i^{n} z^{n}.$$
165.
$$\sum_{n=1}^{\infty} \sin \frac{\pi i}{n} \cdot z^{n}.$$
166.
$$\sum_{n=1}^{\infty} \cos^{n} \frac{\pi i}{\sqrt{n}} z^{n}.$$
167.
$$\sum_{n=1}^{\infty} \frac{z^{n}}{\sin^{n} (1+in)}.$$
168.
$$\sum_{n=0}^{\infty} (n+1) z^{n}.$$
169.
$$\sum_{n=0}^{\infty} \cos in \cdot z^{n}.$$

Ряды Тейлора

Функция f(z), однозначная и аналитичная в точке $z=z_0$, разлагается в окрестности этой точки в ряд Тейлора

$$f(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k,$$

где $c_k = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)dz}{(z-z_0)^{k+1}} = \frac{f^{(k)}(z_0)}{k!}, \ k=0,1,2,...,\Gamma$ - окружность с центром в точке $z=z_0$, целиком лежащая в окрестности точки z_0 , в которой f(z) аналитична.

Аналогично случаю действительного переменного для функций e^z , $\sin z$, $\cos z$, $\sin z$, $\cot z$, $\ln (1+z)$, $(1+z)^{\alpha}$ имеют место следующие разложения в ряд Тейлора в окрестности точки $z_0=0$:

$$e^{z} = \sum_{k=0}^{\infty} \frac{z^{k}}{k!} \qquad (R = +\infty), \quad \sin z = \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2k+1}}{(2k+1)!} \quad (R = +\infty),$$

$$\cos z = \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2k}}{(2k)!} \quad (R = +\infty), \quad \sin z = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!} \quad (R = +\infty),$$

$$\cosh z = \sum_{k=0}^{\infty} \frac{z^{2k}}{(2k)!} \quad (R = +\infty), \quad \ln(1+z) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} z^{k}}{k} \quad (R = 1),$$

$$(1+z)^{\alpha} = \sum_{k=0}^{\infty} \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!} z^{k} \quad (R = 1).$$

В частности, при $\alpha=-1$ получаем

$$\frac{1}{1+z} = \sum_{k=0}^{\infty} (-1)^k z^k \quad (R=1), \quad \frac{1}{1-z} = \sum_{k=0}^{\infty} z^k \ (R=1).$$

Здесь везде R - радиус сходимости приведённых степенных рядов.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Разложить в ряд Тейлора в окрестности нуля функцию

$$f(z) = \frac{z}{z^2 - 2z - 3}.$$

Решение.
$$\frac{z}{z^2-2z-3} = \frac{1}{4} \cdot \frac{1}{z+1} + \frac{3}{4} \cdot \frac{1}{z-3} = \frac{1}{4} \cdot \frac{1}{1+z} - \frac{1}{4} \cdot \frac{1}{1-\frac{z}{3}}.$$

Используя указанные выше разложения для функций $\frac{1}{1+z}$ и $\frac{1}{1-z}$, получим

$$f(z) = \frac{1}{4} \left(1 - z + z^2 - z^3 + \dots \right) - \frac{1}{4} \left(1 + \frac{z}{3} + \frac{z^2}{9} + \dots \right) =$$

$$= \frac{1}{4} \left(-\frac{4}{3}z + \frac{8}{9}z^2 - \frac{28}{27}z^3 + \dots \right) = -\frac{z}{3} + \frac{2}{3^2}z^2 - \frac{7}{3^3}z^3 + \dots$$

Ближайшей к точке $z_0=0$ особой точкой данной функции является точка $z_0=-1$. Поэтому радиус сходимости полученного ряда R=1.

<u>Пример 2.</u> Разложить в ряд Тейлора функцию $f(z) = \frac{1}{3-2z}$ в окрестности точки z=3, т.е. по степеням z-3.

Решение.
$$\frac{1}{3-2z} = \frac{1}{3-2(z-3+3)} = \frac{1}{-3-2(z-3)} = -\frac{1}{3} \cdot \frac{1}{1+\frac{2}{3}(z-3)}$$
.

Далее применяем разложение для $\frac{1}{1+z}$, заменяя при этом z на $\frac{2}{3}(z-3)$. В результате получим

$$\frac{1}{3-2z} = -\frac{1}{3}, \left(1 - \frac{2}{3}(z-3) + \frac{2^2}{3^2}(z-3)^2 - \frac{2^3}{3^3}(z-3)^3 + \dots\right) =$$

$$= -\frac{1}{3} + \frac{2}{3^2}(z-3) - \frac{2^2}{3^3}(z-3)^2 + \frac{2^3}{3^4}(z-3)^3 - \dots$$

Этот ряд сходится при условии $\left|\frac{2}{3}(z-3)\right| < 1. \Rightarrow |z-3| < \frac{3}{2}$, т.е. радиус сходимости ряда $R = \frac{3}{2}$.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Разложить в ряд Тейлора, используя готовые разложения, и найти радиусы сходимости рядов:

170.
$$\sin(2z+1)$$
 по степеням $z+1$.

171.
$$\cos z$$
 по степеням $z + \frac{\pi}{4}$.

172.
$$e^z$$
 по степеням $2z - 1$.

173.
$$\frac{1}{3z+1}$$
 по степеням $z+2$.

174.
$$\frac{z+1}{z^2+4z-5}$$
 по степеням z .

175.
$$\frac{z}{z^2+i}$$
 по степеням z .

176.
$$\cos^2 \frac{iz}{2}$$
 по степеням z .

177.
$$\sinh^2 \frac{z^2}{2}$$
 по степеням z .

178.
$$\ln(2-z)$$
 по степеням z .

179.
$$\ln{(2+z-z^2)}$$
 по степеням z .

Найти несколько первых членов разложения в ряд Тейлора по степе-

ням
$$z$$
 следующих функций. Найти радиус сходимости рядов:
$$180. \ \frac{1}{1+e^z}. \qquad \qquad 181. \ \frac{1}{2+\sin z}. \qquad \qquad 182. \ \frac{1}{e^{-z}+5}.$$

$$183. \ \ln{(1+e^{-z})}. \qquad 184. \ \ln{\cos z}. \qquad \qquad 185. \ \ln{(1+\cos z)}.$$

$$186. \ e^{\frac{1}{1-z}}.$$

Нули функции

Пусть f(z) аналитична в окрестности точки z_0 . Точка z_0 называется нулем функции f(z) порядка n, если $f(z_0) = 0, \ldots, f^{(n-1)}(z_0) = 0, f^{(n)}(z_0) \neq 0$. При n = 1 точка z_0 называется простым нулем.

Отметим, что точка z_0 тогда и только тогда является нулем n-го порядка функции f(z), когда в некоторой окрестности этой точки справедливо равенство $f(z) = (z - z_0)^n \varphi(z)$, где $\varphi(z)$ - аналитична в точке z_0 и $\varphi(z_0) \neq 0$.

ПРИМЕРЫ С РЕШЕНИЯМИ

<u>Пример 1.</u> Найти нули функции $f(z) = 1 + \cos z$ и определить их порядок.

<u>Решение.</u> $1 + \cos z = 0. \Rightarrow z_n = (2n+1)\pi, \ n \in \mathbb{Z}$. Далее

$$f'((2n+1)\pi) = -\sin((2n+1)\pi) = 0,$$

$$f''((2n+1)\pi) = -\cos((2n+1)\pi) = 1 \neq 0.$$

Следовательно, точки $z_n = (2n+1)\pi$, $n \in \mathbb{Z}$, являются нулями второго порядка функции $f(z) = 1 + \cos z$.

<u>Пример 2.</u> Найти нули функции $f(z) = 1 - e^z$ и определить их порядок.

<u>Решение.</u> $1 - e^z = 0. \Rightarrow e^z = 1. \Rightarrow z_n = 2\pi ni \ (n \in \mathbb{Z})$ - нули функции $f(z) = 1 - e^z$. Далее, $f'(z_n) = -e^{2\pi ni} = -1 \neq 0$. Следовательно, точки $z_n = 2\pi ni \ (n \in \mathbb{Z})$ - нули первого порядка (простые нули) функции $f(z) = 1 - e^z$.

Пример 3. Найти порядок нуля $z_0 = 0$ для функции

$$f(z) = \frac{z^8}{z - \sin z}.$$

Положим $\varphi(z)=\frac{1}{\frac{1}{3!}-\frac{z^2}{5!}+\dots}$. Тогда $f(z)=z^5\varphi(z)$, где $\varphi(z)$ - аналитична в точке $z_0=0$, причем $\varphi(0)=6\neq 0$. Таким образом, $z_0=0$ есть нуль пятого порядка для данной функции.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

В следующих задачах найти нули и определить их порядок:

187. a)
$$f(z) = z^4 + 4z^2$$
; 6) $f(z) = \frac{\sin z}{z}$

187. a)
$$f(z) = z^4 + 4z^2$$
; 6) $f(z) = \frac{\sin z}{z}$.
188. a) $f(z) = z^2 \sin z$; 6) $f(z) = \frac{\sinh^2 z}{z}$.

189. a)
$$f(z) = 1 + \operatorname{ch} z$$
; 6) $f(z) = \frac{(1 - \operatorname{sh} z)^2}{z}$.

190. a)
$$f(z) = (z + \pi i) \operatorname{sh} z;$$
 6) $f(z) = \cos z^3$.

191. а)
$$f(z)=(z^2+\pi^2)(1+e^{-z});$$
 б) $f(z)=\cos z+\operatorname{ch} iz.$ Найти порядок нуля $z_0=0$ для следующих функций:

192.
$$f(z) = \frac{z^6}{\left(\frac{z}{2}\right)^2 - \left(\sin\frac{z}{2}\right)^2}$$
. 193. $f(z) = e^{\sin z} - e^{\operatorname{tg} z}$.

194.
$$f(z) = \frac{z^3}{1+z-e^{-z}}$$
. 195. $f(z) = 2(\operatorname{ch} z - 1) - z^2$.

196.
$$f(z) = \frac{(1-\cos 2z)^2}{z-\sin z}$$
. 197. $f(z) = (e^z - e^{z^2}) \ln (1-z)$.

198.
$$f(z) = z^2(e^{z^2} - 1)$$
. 199. $f(z) = 6\sin z^3 + z^3(z^6 - 6)$.

РЯДЫ ЛОРАНА 7.

Разложение аналитических функций 7.1в ряд Лорана

Теорема (П. Лоран). В любом кольце $K: r < |z-a| < R, 0 \le r <$ $R < \overline{\infty}$, в котором функция f(z) аналитична, эта функция может быть представлена сходящимся рядом вида:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n,$$

который называется рядом Лорана. Причем ряд Лорана сходится равномерно в любой замкнутой области, принадлежащей кольцу K.

Доказательство. Выберем \vec{r}' и R' так, что $r < \vec{r'} < R' < R$. Рассмотрим кольцо $\frac{r'}{k} < |z-a| < kR',$ где 0 < k < 1. В произвольной точке z этого кольца f(z) представима по формуле Коши в виде:

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - a} d\zeta,$$

где обе окружности $\Gamma: |\zeta-a|=R', \ \gamma: |\zeta-a|=r'$ проходятся против часовой стрелки.

Для $\zeta \in \Gamma$ имеем $\left| \frac{z-a}{\zeta-a} \right| < \frac{kR'}{R'} = k < 1$, следовательно:

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \cdot \frac{1}{1 - \frac{z - a}{\zeta - a}} = \sum_{n=0}^{\infty} \frac{(z - a)^n}{(\zeta - a)^{n+1}}.$$
 (1)

Умножая (1) на $f(\zeta)/2\pi i$ и интегрируя почленно по $\zeta \in \Gamma$, имеем:

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)(z - a)^n}{(\zeta - a)^{n+1}} a\zeta = \sum_{n=0}^{\infty} c_n (z - a)^n,$$
 (2)

где

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta, \ n = 0, 1, 2, \dots$$
 (3)

Для $\zeta \in \gamma$ имеем $\left| \frac{\zeta - a}{z - a} \right| \leq \frac{kr'}{r'} = k < 1$, следовательно:

$$\frac{1}{\zeta - z} = -\frac{1}{z - a} \cdot \frac{1}{1 - \frac{\zeta - a}{z - a}} = -\sum_{n=1}^{\infty} \frac{(\zeta - a)^{n-1}}{(z - a)^n}.$$
 (4)

Умножая (4) на $f(\zeta)/2\pi i$ и интегрируя почленно по $\zeta \in \gamma$, получим:

$$-\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \int_{\gamma} \frac{f(\zeta)(\zeta - a)^n}{(z - a)^{n+1}} d\zeta =$$

$$= \sum_{n=1}^{\infty} \int_{\gamma} \frac{f(\zeta)(\zeta - z)^{n-1}}{(z - a)^n} d\zeta = \sum_{n=1}^{\infty} b_{-n}(z - a)^{-n},$$

где
$$b_{-n} = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) (\zeta - a)^{n-1} d\zeta.$$

В полученном выражении заменим индекс (-n), где $n=1,2,3,\ldots$, на индекс n, пробегающий значения $-1,-2,-3,\ldots$ В результате получим

$$-\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n = -\infty}^{-1} b_n (z - a)^n, \tag{5}$$

где

$$b_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta.$$
 (6)

В формулах (3) и (6) окружности Γ и γ можно заменить согласно теореме Коши любой окружностью $C:|z-a|=\rho$, где $r'<\rho< R'$. После чего коэффициенты c_n и b_n будут записываться одинаково

$$\frac{1}{2\pi i} \int_{C} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta.$$

Далее, объединяя представления (2) и (5), придем к формуле

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n,$$

где

$$c_n = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta.$$

Замечание о том, что в кольце $\frac{r'}{k} \le |z-a| \le kR', \ 0 < k < 1,$ ряды (2) и (5) сходятся равномерно, завершает доказательство теоремы.

7.2 Правильная и главная части ряда Лорана

Рассмотрим отдельно два ряда, из которых состоит ряд Лорана. Ряд $\sum_{n=0}^{\infty} c_n(z-a)^n$ является обыкновенным степенным рядом, который сходится во всех точках круга $\{z:|z-a|< R\}$. Данный ряд называется <u>правильной частью</u> ряда Лорана. Второй ряд $\sum_{n=-\infty}^{-1} c_n(z-a)^n = \sum_{n=1}^{\infty} c_{-n}(z-a)^{-n}$ рассмотрим как обыкновенный степенной ряд, полагая $c_{-n} = b_n$, $\frac{1}{z-a} = z'$. В новых обозначениях ряд примет вид $\sum_{n=1}^{\infty} b_n(z')^n$. (1)

Ряд $\sum_{n=-\infty}^{\infty} c_n (z-a)^n$ сходится в кольце r<|z-a|< R, поэтому ряд (1) будет сходиться при $\frac{1}{R}<|z'|<\frac{1}{r}.$

Следовательно, ряд (1), являясь степенным относительно z', сходится для всех z', для которых имеем $|z'|<\frac{1}{r}$. Возвращаясь теперь к исходному переменному z, мы увидим, что ряд $\sum_{n=1}^{\infty} c_{-n}(z-a)^{-n}$ сходится при всех z, для которых имеет место неравенство |z-a|>r, т.е. для всех z, лежащих вне окружности |z-a|=r. Ряд $\sum_{n=-\infty}^{-1} c_n(z-a)^n=\sum_{n=1}^{\infty} c_{-n}(z-a)^{-n}$ называется главной частью ряда Лорана.

7.3 Единственность разложения в ряд Лорана

<u>Теорема.</u> Разложение в ряд Лорана $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$ является единственно возможным для данной функции в данном круговом кольце r < |z-a| < R.

Доказательство. Пусть для всех точек кольца r < |z-a| < R имеют место два разложения

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n = \sum_{n = -\infty}^{\infty} c'_n (z - a)^n.$$
 (1)

Выберем любое число $k=0,\pm 1,\pm 2,\ldots$ Умножим (1) на $(z-a)^{-k-1}$. Получим

$$c_k(z-a)^{-1} + \sum_{\substack{n=-\infty,\\n\neq k}} c_n(z-a)^{n-k-1} = c'_k(z-a)^{-1} + \sum_{\substack{n=-\infty,\\n\neq k}} c'_n(z-a)^{n-k-1}.$$
 (2)

Мы знаем, что $\int_{\Gamma} \frac{dz}{z-a} = 2\pi i$ по любому замкнутому контуру Γ , содержащему внутри себя точку a. Выберем в качестве Γ окружность с центром в точке a, лежащую внутри кольца r < |z-a| < R. Равенство (2) проинтегрируем почленно по контуру Γ . $\int_{\Gamma} c_n (z-a)^{n-k-1} dz = c_n \int_{\Gamma} (a-z)^{n-k-1} dz = 0$ при любом $k \neq n$, поэтому после интегрирования получим $2\pi i c_k = 2\pi i c_k'$, следовательно, $c_k = c_k'$ при любом $k = 0, \pm 1, \pm 2, \ldots$ Теорема доказана.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Разложить в ряд Лорана в кольце 0 < |z-1| < 2 функцию

$$f(z) = \frac{1}{(z^2 - 1)^2}.$$

<u>Решение.</u> Способ I. Функция $f(z) = \frac{1}{(z^2-1)^2}$ является аналитической в кольце 0 < |z-1| < 2. Находим коэффициенты ряда Лорана:

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{\frac{1}{(z^2 - 1)^2}}{(z - 1)^{n+1}} dz = \frac{1}{2\pi i} \int_{\Gamma} \frac{dz}{(z - 1)^{n+3} (z + 1)^2},$$

где Γ - любая окружность с центром в точке $z_0=1$, лежащая в данном кольце.

Если $n+3\leq 0$, т.е. $n\leq -3$, то подынтегральная функция $\frac{1}{(z-1)^{n+3}(z+1)^2}$ будет аналитической во всех точках внутри Γ , включая точку z=1. В этом случае

$$\int_{\Gamma} \frac{dz}{(z-1)^{n+3}(z+1)^2} = 0,$$

т.е. $c_n=0$ при $n=-3,-4,\ldots$. Если n+3>0, т.е. n>-3, то, применяя формулу для производной любого порядка от аналитической функции, получим

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{\frac{1}{(z+1)^2}}{(z-1)^{n+3}} dz = \frac{1}{(n+2)!} \frac{d^{n+2}}{dz^{n+2}} \left[\frac{1}{(z+1)^2} \right] \Big|_{z=1} =$$

$$= \frac{1}{(n+2)!} \frac{(-1)^n (n+3)!}{(z+1)^{n+4}} \Big|_{z=1} = \frac{(-1)^n (n+3)}{2^{n+4}}.$$

Таким образом, для $n = -2, -1, 0, 1, \dots$ имеем

$$c_n = \frac{(-1)^n (n+3)}{2^{n+4}}.$$

Ряд Лорана для функции $f(z) = \frac{1}{(z^2-1)^2}$ в кольце 0 < |z-1| < 2 будет иметь вид

$$\frac{1}{(z^2-1)^2} = \sum_{n=-2}^{+\infty} c_n (z-1)^n = \sum_{n=-2}^{+\infty} \frac{(-1)^n (n+3)}{2^{n+4}} (z-1)^n,$$

или

$$\frac{1}{(z^2-1)^2} = \frac{1}{4} \cdot \frac{1}{(z-1)^2} - \frac{1}{4} \cdot \frac{1}{z-1} + \frac{3}{16} - \frac{1}{8}(z-1) + \frac{5}{64}(z-1)^2 - \frac{3}{64}(z-1)^3 + \dots$$

<u>Способ II.</u> Преобразуем данную функцию следующим образом:

$$f(z) = \frac{1}{(z^2 - 1)^2} = \frac{1}{4} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right)^2 =$$

$$= \frac{1}{4} \cdot \frac{1}{(z - 1)^2} - \frac{1}{4} \cdot \frac{1}{z - 1} + \frac{1}{4} \cdot \frac{1}{z + 1} + \frac{1}{4} \cdot \frac{1}{(z + 1)^2}.$$
 (1)

Последние два слагаемых запишем в виде

$$\frac{1}{z+1} = \frac{1}{(z-1)+2} = \frac{1}{2} \cdot \frac{1}{1+\frac{z-1}{2}} , \quad \frac{1}{(z+1)^2} = \frac{1}{4} \cdot \left(1 + \left(\frac{z-1}{2}\right)\right)^{-2}.$$

Применяя разложение по степеням z для функции $(1+z)^{\alpha}$ при $\alpha{=}-1$ и $\alpha=-2$, получим

$$\frac{1}{z+1} = \frac{1}{2} \left(1 - \frac{z-1}{2} + \left(\frac{z-1}{2} \right)^2 - \left(\frac{z-1}{2} \right)^3 + \dots \right),$$

$$\frac{1}{(z+1)^2} = \frac{1}{4} \left(1 - 2 \cdot \frac{z-1}{2} + \frac{-2(-2-1)}{2!} \cdot \left(\frac{z-1}{2} \right)^2 - \frac{-2(-2-1)(-2-2)}{3!} \cdot \left(\frac{z-1}{2} \right)^3 + \dots \right).$$

Подставляя полученные разложения в (1), найдем

$$\frac{1}{(z^2-1)^2} = \frac{1}{4} \cdot \frac{1}{(z-1)^2} - \frac{1}{4} \cdot \frac{1}{z-1} + \frac{1}{8} \left(1 - \frac{z-1}{2} + \left(\frac{z-1}{2} \right)^2 - \left(\frac{z-1}{2} \right)^3 + \dots \right) + \frac{1}{16} \left(1 - (z-1) + \frac{3}{2^2} (z-1)^2 - \frac{4}{2^3} (z-1)^3 + \dots \right),$$

$$\frac{1}{(z^2-1)^2} = \frac{1}{4} \cdot \frac{1}{(z-1)^2} - \frac{1}{4} \cdot \frac{1}{z-1} + \frac{3}{16} - \frac{1}{8} (z-1) + \frac{5}{64} (z-1)^2 - \frac{3}{64} (z-1)^3 + \dots$$

Пример 2. Рассмотреть различные разложения в ряд Лорана функции

$$f(z) = \frac{2z+1}{z^2 + z - 2},$$

приняв a=0.

<u>Решение.</u> $z^2 + z - 2 = 0$ в точках $z_1 = -2$ и $z_2 = 1$. Следовательно, имеется три "кольца" с центром в точке a = 0, в каждом из которых f(z) является аналитической:

- а.) круг |z| < 1;
- б.) кольцо 1 < |z| < 2;
- в.) |z|>2 внешность круга $|z|\leq 2.$

Найдем ряды Лорана для функции f(z) в каждом из этих "колец". Представим f(z) в виде суммы элементарных дробей

$$f(z) = \frac{1}{z+2} + \frac{1}{z-1}. (1)$$

а.) Разложение f(z) в круге |z| < 1.

Преобразуем (1) следующим образом:

$$f(z) = \frac{1}{z-1} + \frac{1}{z+2} = \frac{1}{2} \cdot \frac{1}{1+\frac{z}{2}} - \frac{1}{1-z}.$$
 (2)

Используя формулы для разложения $(1+z)^{\alpha}$ при $\alpha=-1$, получим

$$\frac{1}{1-z} = 1 + z + z^2 + \dots, \quad |z| < 1, \tag{3}$$

$$\frac{1}{1+\frac{z}{2}} = 1 - \frac{z}{2} + \frac{z^2}{4} - \frac{z^3}{8} + \dots, \quad |z| < 2.$$
 (4)

Подставляя (3) и (4) в (2), получим

$$\frac{2z+1}{z^2+z+1} = \frac{1}{2} - \frac{z}{4} + \frac{z^2}{8} - \frac{z^3}{16} + \dots - (1+z+z^2+\dots) =$$
$$= -\frac{1}{2} - \frac{3}{4}z - \frac{7}{8}z^2 - \frac{15}{16}z^3 + \dots$$

Это разложение является рядом Тейлора функции f(z).

б.) Разложение f(z) в кольце 1 < |z| < 2.

Ряд (4) для функции $\frac{1}{1+\frac{z}{2}}$ остается сходящимся в этом кольце, так

как |z|<2. Ряд (3) для функции $\frac{1}{1-z}$ расходится для |z|>1. Поэтому преобразуем f(z) следующим образом:

$$f(z) = \frac{1}{2} \cdot \frac{1}{1 + \frac{z}{2}} + \frac{1}{z} \cdot \frac{1}{1 - \frac{1}{z}}.$$
 (5)

Применяя разложение (3), получим

$$\frac{1}{1 - \frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots$$
 (6)

Подставляя (4) и (6) в (5), найдем

$$\frac{2z+1}{z^2+z-2} = \frac{1}{2} - \frac{z}{4} + \frac{z^2}{8} - \frac{z^3}{16} + \dots + \frac{1}{z} + \frac{1}{z^2} + \dots =$$

$$= \dots + \frac{1}{z^2} + \frac{1}{z} + \frac{1}{2} - \frac{z}{4} + \frac{z^2}{8} - \frac{z^3}{16} + \dots$$

$$\frac{2z+1}{z^2+z-2} = \sum_{n=0}^{\infty} \frac{1}{z^n} + \frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n}.$$

или

в.) Разложение f(z) для |z|>2. Ряд (4) для функции $\frac{1}{1+\frac{z}{2}}$ при |z|>2 расходится, а ряд (6) для функции $\frac{1}{1-\frac{1}{2}}$ будет сходиться, так как, если |z|>2, то подавно |z|>1.

Функцию f(z) представим следующим образом:

$$f(z) = \frac{1}{z} \cdot \frac{1}{1 + \frac{2}{z}} + \frac{1}{z} \cdot \frac{1}{1 - \frac{1}{z}}.$$

Далее, используя разложения (3) и (4), получим

$$f(z) = \frac{1}{z} \left(1 - \frac{2}{z} + \frac{4}{z^2} - \frac{8}{z^3} + \dots + 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots \right) =$$

$$= \frac{1}{z} \left(2 - \frac{1}{z} + \frac{5}{z^2} - \frac{7}{z^3} + \dots \right)$$

$$\frac{2z+1}{z^2+z-2} = \frac{2}{z} - \frac{1}{z^2} + \frac{5}{z^3} - \frac{7}{z^4} + \dots$$

или

Таким образом, мы получили, что для одной и той же функции f(z)ряд Лорана имеет разный вид для разных колец.

Пример 3. Разложить в ряд Лорана функцию

$$f(z) = \frac{2z - 3}{z^2 - 3z + 2}$$

в окрестности точек $z_1=1$ и $z_2=2$, в которых $z^2-3z+2=0$. <u>Решение.</u> 1.) Разложение f(z) в окрестности точки $z_1=1$, т.е. в кольце 0 < |z - 1| < 1.

Представим функцию f(z) в виде суммы элементарных дробей

$$\frac{2z-3}{z^2-3z+2} = \frac{1}{z-1} + \frac{1}{z-2}.$$

Правую часть преобразуем следующим образом:

$$\frac{2z-3}{z^2-3z+2} = \frac{1}{z-1} - \frac{1}{1-(z-1)}.$$

Далее, разлагая $\frac{1}{1-(z-1)}$ по степеням z-1, получим

$$\frac{2z-3}{z^2-3z+2} = \frac{1}{z-1} - (1+(z-1)+(z-1)^2+\dots)$$

или

$$\frac{2z-3}{z^2-3z+2} = \frac{1}{z-1} - \sum_{n=0}^{\infty} (z-1)^n.$$

2.) Разложение f(z) в окрестности точки $z_2=2,$ т.е. в кольце 0<|z-2|<1. Имеем

$$\frac{2z-3}{z^2-3z+2} = \frac{1}{z-1} + \frac{1}{z-2} = \frac{1}{z-2} + \frac{1}{1+(z-2)} = \frac{1}{z-2} + 1 - (z-2) + (z-2)^2 - (z-2)^3 + \dots$$
$$\frac{2z-3}{z^2-3z+2} = \frac{1}{z-2} + \sum_{n=0}^{\infty} (-1)^n (z-2)^n.$$

ИЛИ

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Разложить в ряд Лорана в окрестности точки z=0 следующие функции:

200.
$$\frac{\sin z}{z^2}$$
. 201. $\frac{\sin^2 z}{z}$. 202. $\frac{e^z}{z}$. 203. $\frac{e^z}{z^3}$. 204. $z^3 e^{\frac{1}{z}}$. 205. $z^4 \cos \frac{1}{z}$. 206. $\frac{1}{z} \sin^2 \frac{2}{z}$. 207. $\frac{1 - \cos z}{z^2}$. 208. $\frac{e^z - 1}{z}$. 209. $\frac{1 + \cos z}{z^4}$. 210. $\frac{1 - e^{-z}}{z^3}$.

Разложить в ряд Лорана следующие функции в окрестностях указанных точек:

211.
$$\frac{z}{(z+1)^2}$$
, $z_0 = -1$. 212. $\frac{\sin z}{z-2}$, $z_0 = 2$.

213. $ze^{\frac{1}{z+i}}, z_0 = -i.$

Разложить следующие функции в ряд Лорана в указанных кольцах:

214.
$$\frac{1}{(z-2)(z-3)}$$
, a) $2 < |z| < 3$; 6) $3 < |z| < +\infty$.

215.
$$\frac{1}{z^2 + z}$$
, a) $0 < |z| < 1$; 6) $1 < |z| < +\infty$.

216.
$$\frac{1}{(z+2)(1+z^2)}$$
, a) $1 < |z| < 4$; 6) $4 < |z| < +\infty$.

$$217. \ \frac{2z+3}{z^2+3z+2}, \quad 1 < |z| < 2.$$

$$218. \ \frac{z^2-z+3}{z^3-3z+2}, \quad a) \ |z| < 1; \qquad 6) \ 1 < |z| < 2;$$

$$B) \ 2 < |z| < +\infty.$$

$$219. \ \frac{2}{z^2-1}, \qquad 1 < |z+2| < 3.$$

$$220. \ \frac{1}{z^2+2z-8}, \quad 1 < |z+2| < 4.$$

$$221. \ \frac{z+2}{z^2-4z+3}, \quad 2 < |z-1| < +\infty.$$

$$222. \ \frac{z^5}{(z^2-4)^2}, \qquad 2 < |z| < +\infty.$$

$$223. \ \frac{z}{(z^2-4)(z^2-1)}, \quad 1 < |z| < 2.$$

$$224. \ \frac{1}{z^2+1}, \qquad 0 < |z-i| < 2.$$

$$225. \ \frac{1}{(z^2-4)^2}, \qquad 4 < |z+2| < +\infty.$$

Классификация особых точек однозначной функции

Определение. Точка a называется изолированной особой точкой функции f(z), если существует окрестность 0 < |z - a| < R, в которой однозначная функция f(z) аналитична.

Различают три типа особых точек в зависимости от поведения f(z) в их окрестности:

- 1.) a <u>устранимая особая точка,</u> если существует конечный $\lim_{z \to a} f(z)$;

аналитичности 0 < |z - a| < R функция f(z) разлагается в ряд Лорана $\sum_{n=0}^{\infty} c_n(z-a)^n$. Это разложение имеет различный вид в зависимости от характера особой точки.

Теорема (об устранимой особой точке). Для того чтобы a была устранимой особой точкой функции f(z), необходимо и достаточно, чтобы лорановское разложение f(z) в окрестности точки a не содержало главной части.

Доказательство. Необходимость. Пусть a - устранимая особая точ-

ка. Тогда $\lim_{z\to a}f(z)$ существует и конечный. \Rightarrow Функция f(z) ограничена в некоторой окрестности точки a; пусть $|f(z)|\leq M$. Используя неравенства Коши для $f^{(n)}(z)$, получим оценки: $|c_n|\leq$

Используя неравенства Коши для $f^{(n)}(z)$, получим оценки: $|c_n| \le M\rho^{-n}$, где $\rho = |z-a| < R$. Так как ρ можно выбирать сколь угодно малым, то для всех n < 0 $c_n = 0$, т.е. разложение Лорана не содержит главной части.

<u>Достаточность.</u> Очевидно, что если ряд Лорана не содержит главной части, то $\lim_{z\to a} f(z) = c_0 < \infty$. $\Rightarrow a$ - устранимая особая точка.

Замечания. 1.) Фактически доказано большее, а именно, если в окрестности изолированной особой точки функция f(z) ограничена, то a - устранимая особая точка.

2.) Если переопределить (или доопределить) f(z) в точке a, положив $f(a)=c_0=\lim_{z\to a}f(z)$, то f(z) будет аналитичной и в точке a, т.е. во всем круге |z-a|< R будет представляться сходящимся степенным рядом $\sum_{n=0}^{\infty}c_n(z-a)^n$.

Рассмотрим случай, когда a - изолированный полюс функции f(z). Из определения полюса следует, что $f(z) \neq 0$ в некоторой окрестности точки a, в которой, кроме того, она аналитична (за исключением самой точки a). Тогда для функции $g(z) = \frac{1}{f(z)}, \lim_{z \to a} g(z) = 0$, следовательно, a - устранимая особая точка функции g(z). Положив g(a) = 0, получаем, что a является изолированным нулем функции g(z). Обратно, если g(z) имеет изолированный нуль в точке a, то f(z) имеет в точке a полюс. Будем называть порядком полюса a функции f(z) порядок нуля a функции $g(z) = \frac{1}{f(z)}$.

Теорема (о представлении в окрестности полюса). Для того чтобы точка a была полюсом функции f(z) порядка n>0, необходимо и достаточно, чтобы для всех $m\leq -n$ выполнялись следующие условия:

$$c_{-n} \neq 0, \ c_m = 0 \ (m < -n),$$

т.е. главная часть лорановского разложения в окрестности a содержала только конечное (но отличное от нуля) число членов.

 |z-a| < R и, значит,

$$\frac{1}{\varphi(z)} = \sum_{k=0}^{\infty} c_{-n+k} (z-a)^k, \ c_{-n} = \frac{1}{\varphi(a)} \neq 0.$$

Следовательно, в окрестности 0 < |z - a| < R

$$f(z) = \sum_{k=-n}^{\infty} c_k (z-a)^k.$$
 (1)

Достаточность. Пусть в некоторой окрестности 0 < |z-a| < R для функции f(z) имеет место разложение (1) и $c_{-n} \neq 0$, тогда функция $\varphi(z) = (z-a)^n f(z)$ представима в этой окрестности сходящимся степенным рядом и, значит, аналитична. При этом $\varphi(a) = c_{-n} \neq 0$. Следовательно, $\lim_{z \to a} |f(z)| = \lim_{z \to a} \frac{|\varphi(z)|}{|z-a|^n} = \infty$ и точка a - полюс порядка n.

Из двух предыдущих теорем непосредственно следует

Теорема (о представлении в окрестности существенной особой точки). Точка a тогда и только тогда - существенная особая точка, когда главная часть лорановского разложения функции в окрестности a содержит бесконечное число членов.

Поведение функции в окрестности существенной особой точки выясняет следующая теорема, которая приводится без доказательства.

Теорема (Ю.В. Сохоцкий). Если a - существенная особая точка функции f(z), то для любого числа $A \in \mathbb{C} \cup \infty$ существует последовательность $z_n \to a$ такая, что $\lim_{n \to \infty} f(z_n) = A$.

7.5 Поведение аналитических функций в бесконечности

Пусть $U(\infty) = \{z: |z| > R\}$ - окрестность бесконечно удаленной точки $z = \infty$.

Определение 1. Бесконечно удаленная точка $z = \infty$ называется изолированной особой точкой функции f(z), если существует $U(\infty)$, в которой нет особых точек функции f(z).

Пусть бесконечно удаленная точка $z=\infty$ - изолированная особая точка функции f(z). Рассмотрим функцию $\varphi(z')=f\left(\frac{1}{z'}\right):z=\frac{1}{z'}$. Очевидно, что $\varphi(z')$ аналитична в окрестности нуля плоскости z' и нуль будет изолированной особой точкой функции $\varphi(z')$.

<u>Определение 2.</u> Бесконечно удаленная точка для f(z) называется устранимой особой точкой, полюсом (порядка n), существенной особой точ-

кой, если точка z'=0 является устранимой особой точкой, полюсом (порядка n), существенной особой точкой для функции $\varphi(z')$, соответственно.

Пусть f(z) аналитична в $U(\infty)=\{z:|z|>R\}$. Рассмотрим $\varphi(z')=f\left(\frac{1}{z'}\right)$, где $z'=\frac{1}{z}$. Функция $\varphi(z')$ аналитична при $|z'|<\frac{1}{R}$ кроме точки z'=0.

Запишем разложение в ряд Лорана для функции $\varphi(z')$:

$$\varphi(z') = \sum_{n = -\infty}^{\infty} b_n(z')^n. \tag{1}$$

Полагая $z' = \frac{1}{z}$, получим

$$f(z) = \sum_{n=-\infty}^{\infty} b_n \frac{1}{z^n} = \sum_{n=-\infty}^{\infty} b_{-n} z^n = \sum_{n=-\infty}^{\infty} c_n z^n$$
, где $c_n = b_{-n}$. (2)

Разложение (2) содержит бесконечно много положительных степеней z, конечное число положительных степеней z или не содержит положительных степеней, если разложение (1) содержит бесконечно много отрицательных степеней z', конечное число отрицательных степеней z', не содержит отрицательных степеней z', соответстенно.

Замечание 1. 1. ∞ является для f(z) устранимой особой точкой, если в её разложении в ряд Лорана (2) отсутствуют положительные степени z.

- $2. \infty$ является для f(z) полюсом порядка n, если в её разложение в ряд Лорана (2) входит конечное число положительных степеней z, причём $c_n \neq 0, \ c_k = 0$ при k > n.
- $3. \infty$ является для функции f(z) существенной особой точкой, если её разложение в ряд Лорана (2) содержит бесконечно много положительных степеней.

Замечание 2. В первом случае $\lim_{z\to\infty} f(z) = c_0$. Особенность f(z) состоит в том, что f(z) не определена в ∞ . Принимая c_0 за значение f(z) в ∞ , мы устраним эту особенность, т.к. $\varphi(z')$ будет аналитичной при этом в точке z'=0. Поэтому, если $f(\infty)=c_0=\lim_{z\to\infty} f(z)$, то говорят, что f(z) аналитична в бесконечно удаленной точке $z=\infty$.

ПРИМЕРЫ С РЕШЕНИЯМИ

Определить особые точки и их характер в следующих примерах: $\underline{\text{Пример 1.}} \ f(z) = \frac{e^z-1}{z}.$

<u>Решение.</u> Особая точка функции f(z) есть z = 0. Имеем

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{e^z - 1}{z} = 1.$$

Следовательно, точка z = 0 есть устранимая особая точка.

Пример 2. $f(z) = \frac{1}{z^3}$.

<u>Решение.</u> Особая точка z=0. Положим $z=\rho e^{i\varphi}$, тогда $f(z)=\frac{e^{-i3\varphi}}{3}$. \Rightarrow $|f(z)|=rac{1}{
ho^3}.\Rightarrow\lim_{z o 0}|f(z)|=\infty$, т.е. точка z=0 есть полюс этой функции. Для функции $\varphi(z)=z^3$ точка z=0 есть нуль третьего порядка, следовательно, z=0 является полюсом третьего порядка для функции $f(z)=\frac{1}{z^3}$.

Для того чтобы точка z_0 являлась полюсом порядка n для функции f(z), необходимо и достаточно, чтобы функцию f(z) можно было представить в виде $f(z)=rac{arphi(z)}{(z-z_0)^n}$, где функция arphi(z) аналитична в точке z_0 и $\varphi(z_0) \neq 0.$

Пример 3.
$$f(z) = \frac{\sin z}{z^3 + z^2 - z - 1}$$
.

 $\frac{\text{Пример 3.}}{\underline{\text{Решение.}}} \ f(z) = \frac{\sin z}{z^3 + z^2 - z - 1}.$ <u>Решение.</u> Функция f(z) имеет две особые точки z = -1 и z = 1. Исследуем точку z = -1. Представим f(z) в виде

$$f(z) = \frac{\sin z}{z - 1}$$
$$(z + 1)^2.$$

Здесь $\varphi(z) = \frac{\sin z}{z-1}$ аналитична в окрестности точки z=-1, причем $\varphi(-1)=rac{\sin 1}{2}\neq 0$. Следовательно, точка z=-1 является двукратным полюсом данной функции. Аналогично, записав f(z) в виде

$$f(z) = \frac{\sin z}{(z+1)^2},$$

заключаем, что точка z=1 есть простой полюс этой функции.

<u>Пример 4.</u> Определить характер особой точки z=0 функции f(z)= e^{1/z^2}

<u>Решение.</u> Рассмотрим поведение этой функции на действительной и мнимой осях. На действительной оси z=x и $f(x)=e^{1/x^2}\to\infty$ при $x\to0$. На мнимой оси z=iy и $f(iy)=e^{-1/y^2}\to 0$ при $y\to 0$. Следовательно, предел f(z) в точке z=0 не существует. \Rightarrow Тогда z=0 является существенной особой точкой функции f(z).

Пример 5. Определить характер особой точки z=0 функции

$$f(z) = \frac{1}{2 + z^2 - 2\operatorname{ch} z}.$$

$$\varphi'(z) = 2z - 2 \operatorname{sh} z, \quad \varphi'(0) = 0;$$

 $\varphi''(z) = 2 - 2 \operatorname{ch} z, \quad \varphi''(0) = 0;$
 $\varphi'''(z) = -2 \operatorname{sh} z, \quad \varphi'''(0) = 0;$
 $\varphi^{IV}(z) = -2 \operatorname{ch} z, \quad \varphi^{IV}(0) = -2 \neq 0.$

Таким образом z=0 есть нуль четвертого порядка для $\varphi(z)$, а значит, для данной функции f(z) точка z=0 есть полюс четвертого порядка.

Пример 6. Установить характер особой точки z=0 функции

$$f(z) = \frac{1 - e^{-z}}{z}.$$

<u>Решение.</u> Используя разложение в ряд Тейлора для функции e^{-z} в окрестности точки $z_0=0$, получим разложение функции f(z) в окрестности нуля

$$f(z) = \frac{1}{z}(1 - e^{-z}) = \frac{1}{z}\left(1 - \left(1 - z + \frac{z^2}{2!} - \frac{z^3}{3!} + \dots\right)\right) = 1 - \frac{z}{2!} + \frac{z^2}{3!} - \dots$$

Это разложение не содержит главной части. Поэтому точка $z_0=0$ является устранимой особой точкой.

Если функцию f(z) доопределить единицей, то получим функцию аналитичную и в точке $z_0=0$.

Пример 7. Определить характер особой точки z=0 функции

$$f(z) = \frac{1 - \cos z}{z^7}.$$

<u>Решение.</u> Разлагая функцию $\cos z$ в ряд Тейлора по степеням z, получим лорановское разложение функции f(z) в окрестности нуля:

$$f(z) = \frac{1}{z^7} \left(\frac{z^2}{2!} - \frac{z^4}{4!} + \frac{z^6}{6!} - \dots \right) = \frac{1}{2!z^5} - \frac{1}{4!z^3} + \frac{1}{6!z} - \dots$$

Из полученного разложения видно, что точка $z_0=0$ является полюсом пятого порядка.

Пример 8. Определить характер особой точки z=1 функции

$$f(z) = (z - 1)e^{\frac{1}{z-1}}.$$

<u>Решение.</u> Используя разложение в ряд Тейлора для показательной функции, получим лорановское разложение функции f(z) в окрестности точки z=1:

$$f(z) = (z-1)\left(1 + \frac{1}{z-1} + \frac{1}{2!(z-1)^2} + \frac{1}{3!(z-1)^3} + \dots\right) =$$
$$= 1 + (z-1) + \frac{1}{2!(z-1)} + \frac{1}{3!(z-1)^2} + \dots$$

Полученное разложение содержит бесконечно много членов с отрицательными степенями z-1, поэтому точка z=1 является существенной особой точкой функции f(z).

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Определить характер особой точки $z_0 = 0$ для следующих функций:

227. a)
$$\frac{\sin z}{e^{-z} + z - 1}$$
; 6) $\frac{\operatorname{ch} z}{z - \operatorname{sh} z}$.

Найти особые точки и определить их характер у следующих функций:

228. a)
$$\frac{1}{1-\sin z}$$
; 6) $\frac{1-\cos z}{z^2}$.

229. a)
$$e^{\frac{1}{z+2}}$$
; 6) $\cos \frac{1}{z}$.

230. a)
$$\frac{z}{z^5 + 2z^4 + z^3}$$
; 6) $\frac{1}{e^{-z} - 1} + \frac{1}{z^2}$.

231. a)
$$e^{-\frac{1}{z^2}}$$
; 6) $\sin \frac{\pi}{z+1}$; B) $\cot \frac{1}{z}$.

232. a)
$$\frac{z^2}{\cos z - 1}$$
; 6) $\frac{1 - \sin z}{\cos z}$; B) $\frac{z - \pi}{\sin^2 z}$.

Определить характер указанных особых точек:

233.
$$\frac{1+\cos z}{z-\pi}$$
, $z=\pi$.

234. $\frac{z^2-3z+2}{z^2-2z+1}$, $z=1$.

235. $\frac{\sin z}{z^2}$, $z=0$.

236. $\frac{\sin z}{z}$, $z=0$.

237. $\cos \frac{1}{z+\pi}$, $z=-\pi$.

238. $\frac{z^2-1}{z^6+2z^5+z^4}$, $z=0$, $z=-1$.

239. $\frac{\ln(1+z^3)}{z^2}$, $z=0$.

240. $\frac{\sin^2 z}{z}$, $z=0$.

241. $\frac{e^{z+e}}{z+e}$, $z=-e$.

242. $\cos \frac{1}{z} + \sin \frac{2-\pi z}{2z}$, $z=0$.

243. $z \operatorname{sh} \frac{1}{z}$, $z=0$.

8. ТЕОРИЯ ВЫЧЕТОВ

8.1 Вычет функции относительно изолированной особой точки

Определение. Пусть a - изолированная особая точка функции f(z). Значение интеграла $\frac{1}{2\pi i}\int\limits_C f(z)dz$ называется вычетом функции f(z) относительно особой точки a. Здесь C - замкнутый контур, целиком лежащий в окрестности точки a, где f(z) аналитична, кроме точки a. Обозначение:

res
$$f(z)\Big|_{z=a}$$
 = res $f(a) = \frac{1}{2\pi i} \int_C f(z)dz$.

Разложим функцию f(z) в ряд Лорана:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n.$$

На контуре C данный ряд сходится равномерно, следовательно, мы можем почленно интегрировать ряд вдоль C. $\int\limits_C f(z)dz = \sum\limits_{n=-\infty}^\infty c_n \int\limits_C (z-a)^n dz$. Так как $\int\limits_C (z-a)^n dz = 0, \ \forall \ n \neq -1 \ \text{и} \int\limits_C \frac{dz}{z-a} = 2\pi i, \ \text{то} \int\limits_C f(z)dz = 2\pi i.$

Таким образом, res $f(a) = \frac{1}{2\pi i} \int_C f(z) dz = c_{-1}$.

Замечание. Если z=a устранимая особая точка, то $c_{-1}=0$ и, следовательно, res f(a)=0.

Теорема (основная теорема о вычетах). Пусть f(z) аналитична в любой точке области G, кроме конечного числа особых точек $a_1, \ldots, a_n \in G$. Пусть C - произвольная замкнутая кусочно-гладкая линия, лежащая в области G и содержащая внутри себя точки a_1, \ldots, a_n . Тогда, если C обходится в положительном направлении, то

$$\int_{C} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{res} f(a_{k}).$$

Доказательство. Вокруг каждой точки a_k опишем окружность так,

что $\gamma_i \cap \gamma_j = \emptyset$ если $i \neq j$. f(z) аналитична на C, на γ_k , внутри C и вне γ_k . Пусть $\Gamma = C + \gamma_1^- + \cdots + \gamma_n^-$. По теореме Коши $\frac{1}{2\pi i} \int_{\Gamma} f(z) dz = 0$, следовательно,

$$\frac{1}{2\pi i} \int_{C} f(z)dz = \sum_{k=1}^{n} \frac{1}{2\pi i} \int_{\gamma_{k}} f(z)dz = \sum_{k=1}^{n} resf(a_{k}).$$

Теорема доказана.

8.2 Вычисление вычетов относительно полюсов

Пусть a - простой полюс функции f(z). В этом случае $f(z) = c_0 + c_1(z-a) + \cdots + c_n(z-a)^n + \cdots + c_{-1} \cdot \frac{1}{z-a}$. $\Rightarrow (z-a)f(z) = c_{-1} + c_0(z-a) + c_1(z-a)^2 + \ldots$ $\Rightarrow \lim_{z \to a} (z-a)f(z) = c_{-1} = \operatorname{res} f(a)$. Обобщим эту формулу на случай полюса порядка n. $f(z) = \sum_{k=0}^{\infty} c_k(z-a)^k + \frac{c_{-1}}{z-a} + \cdots + \frac{c_{-n}}{(z-a)^n}$. $\Rightarrow (z-a)^n f(z) = c_{-n} + c_{-n+1}(z-a) + \ldots$

Обобщим эту формулу на случай полюса порядка n. $f(z) = \sum_{k=0}^{\infty} c_k (z-a)^k + \frac{c_{-1}}{z-a} + \cdots + \frac{c_{-n}}{(z-a)^n}. \Rightarrow (z-a)^n f(z) = c_{-n} + c_{-n+1}(z-a) + \ldots.$ Продифференцируем это равенство n-1 раз. Получим степенной ряд со свободным членом $c_{-1}(n-1)!$. Далее, переходя к пределу при $z \to a$, получим $\lim_{z\to a} \frac{d^{n-1}}{dz^{n-1}} \left((z-a)^n f(z) \right) = c_{-1}(n-1)!$. Следовательно, $c_{-1} = \frac{1}{(n-1)!} \lim_{z\to a} \frac{d^{n-1}}{dz^{n-1}} \left((z-a)^n f(z) \right)$.

1. Задачи на вычисление вычетов

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Найти вычеты функции

$$f(z) = \frac{\sin z^2}{z^3 - \frac{\pi}{4}z^2}$$

в её особых точках.

 $\underline{\text{Решение.}}$ Особыми точками данной функции являются точки z=0 и $z=\frac{\pi}{4}.$ В точке z=0 имеем

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\sin z^2}{z^2} \cdot \lim_{z \to 0} \frac{1}{z - \frac{\pi}{4}} = -\frac{4}{\pi}.$$

Следовательно, точка z=0 есть устранимая особая точка функции f(z). Поэтому res f(0)=0.

В точке $z=\frac{\pi}{4}$ имеем $\lim_{z\to\frac{\pi}{4}}f(z)=\infty,$ т.е. точка $z=\pi/4$ есть полюс (про-

стой) функции
$$f(z)$$
. $\Rightarrow \operatorname{res} f(\frac{\pi}{4}) = \lim_{z \to \frac{\pi}{4}} f(z)(z - \frac{\pi}{4}) = \lim_{z \to \frac{\pi}{4}} \frac{\sin z^2}{z^3 - \frac{\pi}{4}z^2}(z - \frac{\pi}{4}) =$

$$= \lim_{z \to \frac{\pi}{4}} \frac{\sin z^2}{z^2} = \frac{16}{\pi^2} \sin \frac{\pi^2}{16}.$$

Пример 2. Найти вычеты функции

$$f(z) = \frac{e^z}{(z+1)^3(z-2)}$$

в её особых точках.

$$\operatorname{res} f(-1) = \frac{1}{2!} \lim_{z \to -1} \frac{d^2}{dz^2} \left(\frac{e^z}{(z+1)^3 (z-2)} \cdot (z+1)^3 \right) =$$

$$= \lim_{z \to -1} \frac{1}{2} \cdot \frac{(z^2 - 6z + 10)e^z}{(z-2)^3} = -\frac{17}{54e}.$$

Точка z=2 - полюс первого порядка, поэтому

res
$$f(2) = \lim_{z \to 2} \frac{e^z}{(z+1)^3(z-2)} \cdot (z-2) = \frac{e^2}{27}$$
.

Замечание. Если функция f(z) в окрестности точки z_0 представима как частное двух аналитических функций

$$f(z) = \frac{\varphi(z)}{\psi z},$$

причем $\varphi(z_0) \neq 0, \psi(z_0) = 0,$ а $\psi'(z_0) \neq 0,$ т.е. z_0 - полюс (простой) функции f(z), то

$$\operatorname{res} f(z_0) = \frac{\varphi(z_0)}{\psi'(z_0)}.$$

Справедливость данного замечания следует из формулы для вычисления вычета в случае простого полюса:

$$\operatorname{res} f(z_0) = \lim_{z \to z_0} \frac{\varphi(z)}{\psi(z)} (z - z_0) = \lim_{z \to z_0} \frac{\varphi(z)}{\frac{\psi(z) - \psi(z_0)}{z - z_0}} = \frac{\varphi(z_0)}{\psi'(z_0)}.$$

Пример 3. Найти вычеты функции

$$f(z) = \frac{1}{z^4 + 1}$$

в её особых точках.

<u>Решение.</u> Особые точки f(z) - нули знаменателя, т.е. корни уравнения $z^4+1=0.\Rightarrow z_1=e^{i\frac{\pi}{4}}, z_2=e^{i\frac{3}{4}\pi}, z_3=e^{-i\frac{3}{4}\pi}, z_4=e^{-i\frac{\pi}{4}}.$ Используя замечание, получим

$$\operatorname{res} f(z_{1}) = \frac{1}{4z^{3}} \Big|_{z=z_{1}} = \frac{1}{4} e^{-i\frac{3}{4}\pi},$$

$$\operatorname{res} f(z_{2}) = \frac{1}{4z^{3}} \Big|_{z=z_{2}} = \frac{1}{4} e^{-i\frac{9}{4}\pi},$$

$$\operatorname{res} f(z_{3}) = \frac{1}{4z^{3}} \Big|_{z=z_{3}} = \frac{1}{4} e^{i\frac{9}{4}\pi},$$

$$\operatorname{res} f(z_{4}) = \frac{1}{4z^{3}} \Big|_{z=z_{4}} = \frac{1}{4} e^{i\frac{3}{4}\pi}.$$

Пример 4. Найти вычеты функции

$$f(z) = z^3 \sin \frac{1}{z^2}$$

в её особой точке.

<u>Решение.</u> Особая точка функции f(z) есть точка z=0. Она является существенной особой точкой фукции f(z), т.к. лорановское разложение функции в окрестности точки z=0 имеет вид

$$f(z) = z^3 \left(\frac{1}{z^2} - \frac{1}{3!z^6} + \frac{1}{5!z^{10}} - \dots \right) = z - \frac{1}{3!z^3} + \frac{1}{5!z^7} - \dots$$

т.е. содержит бесконечное число членов в главной части. Из приведенного лорановского разложения следует $c_{-1} = 0$. \Rightarrow res $f(0) = c_{-1} = 0$.

Пример 5. Найти вычет в точке z=0 функции

$$f(z) = \frac{\sin 3z - 3\sin z}{(\sin z - z)\sin z}.$$

Решение. Точка z=0 является нулем как числителя $\varphi(z)=\sin 3z-3\sin z$, так и знаменателя $\psi(z)=(\sin z-z)\sin z$. Определим порядки нуля

для этих функций, используя разложение в ряд Тейлора $\sin z$ в окрестности нуля:

$$\varphi(z) = 3z - \frac{3^3z^3}{3!} + \frac{3^5z^5}{5!} - \dots - 3\left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots\right) =$$

$$= -\frac{3^3 - 3}{3!}z^3 + \frac{3^5 - 3}{5!}z^5 - \dots = z^3\varphi_1(z),$$
где $\varphi_1(z) = -\frac{3^3 - 3}{3!} + \frac{3^5 - 3}{5!}z - \dots, \ \varphi_1(0) = -4 \neq 0.$

$$\psi(z) = \left(-\frac{z^3}{3!} + \frac{z^5}{5!} - \dots\right)\left(z - \frac{z^3}{3!} + \dots\right) =$$

$$= z^4\left(-\frac{1}{3!} + \frac{z^2}{5!} - \dots\right)\left(1 - \frac{z^2}{3!} + \dots\right) = z^4\psi_1(z),$$
где $\psi_1(z) = \left(-\frac{1}{3!} + \frac{z^2}{5!} - \dots\right)\left(1 - \frac{z^2}{3!} + \dots\right), \ \psi_1(0) = -\frac{1}{6} \neq 0.$

$$f(z) = \frac{z^3 \varphi_1(z)}{z^4 \psi_1(z)} = \frac{\varphi_1(z)}{z \psi_1(z)},$$

и так как $\varphi_1(0) \neq 0$, $\psi_1(z) \neq 0$, то точка z=0 является простым полюсом данной функции, поэтому

$$\operatorname{res} \frac{\sin 3z - 3\sin z}{(\sin z - z)\sin z} \bigg|_{z=0} = \lim_{z \to 0} \frac{\varphi_1(z)}{z\psi_1 z} \cdot z = \frac{\varphi_1(0)}{\psi_1(0)} = \frac{-4}{-\frac{1}{6}} = 24.$$

<u>Пример 6.</u> Найти вычеты функции $f(z) = \frac{e^{1/z}}{1-z}$ в её особых точках. <u>Решение.</u> Особыми точками данной функции будут z=1 и z=0. Точка z=1 - простой полюс, поэтому

$$\operatorname{res} f(1) = \lim_{z \to 1} \frac{e^{1/z}}{1 - z} (z - 1) = \lim_{z \to 1} \frac{e^{1/z}}{-1} = -e.$$

Для определения характера особой точки z=0 разложим функцию f(z) в ряд Лорана в окрестности этой точки.

$$e^{1/z} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots, \quad \frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots \Rightarrow$$

$$\frac{e^{1/z}}{1-z} = \left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots\right) \left(1 + z + z^2 + z^3 + \dots\right) =$$

$$= \left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots\right) \frac{1}{z} + c_{-2} \cdot \frac{1}{z^2} + \dots + \sum_{k=0}^{\infty} c_k z^k,$$

где $c_{-k} \neq 0, \ k = 2, 3, \dots$

Полученное разложение Лорана содержит бесконечно много членов с отрицательными степенями z, поэтому точка z=0 является существенной особой точкой функции f(z). res $f(0)=c_{-1}=1+\frac{1}{2!}+\frac{1}{3!}+\cdots=e-1$.

Пример 7. Найти вычет функции

$$f(z) = z^2 \sin \frac{1}{z+1}$$

в её особой точке.

<u>Решение.</u> Особой точкой данной функции является точка z=-1. Для определения характера этой особой точки разложим функцию f(z) в ряд Лорана в окрестности точки z=-1:

$$z^{2} = ((z+1)-1)^{2} = (z+1)^{2} - 2(z+1) + 1,$$
 (1)

$$\sin\frac{1}{1+z} = \frac{1}{z+1} - \frac{1}{3!(z+1)^3} + \frac{1}{5!(z+1)^5} - \dots$$
 (2)

Из (1) и (2) следует

$$f(z) = z^{2} \sin \frac{1}{z+1} =$$

$$= ((z+1)^{2} - 2(z+1) + 1) \cdot \left(\frac{1}{z+1} - \frac{1}{3!(z+1)^{3}} + \frac{1}{5!(z+1)^{5}} - \dots\right) =$$

$$= \left(1 - \frac{1}{3!}\right) \frac{1}{z+1} + \frac{2}{3!} \frac{1}{(z+1)^{2}} + \left(\frac{1}{5!} - \frac{1}{3!}\right) \frac{1}{(z+1)^{3}} + \dots + (-2 + (z+1)).$$

Полученный ряд Лорана содержит бесконечно много членов с отрицательными степенями (z+1), поэтому точка z=-1 является существенной особой точкой данной функции и res $f(-1)=c_{-1}=1-\frac{1}{3!}=\frac{5}{6}$.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Вычислить вычеты следующих функций в особой точке z=0:

244.
$$\frac{z^{n-1}}{\sin^n z}$$
, $n = 1, 2, \dots$ 245. $\frac{\sin 2z - 2z}{(1 - \cos z)^2}$.
246. $\frac{e^z - 1 - z}{(1 - \cos 2z)\sin z}$. 247. $\frac{(1 - \cot z)\sin z}{(1 - \cos z)\sin^2 z}$.
248. $\frac{z^{n-2}}{\sinh^n z}$, $n = 2, 3, \dots$ 249. $\frac{z^2}{\cot z - 1 - \frac{z^2}{2}}$.

Найти вычеты в особых точках следующих функций:

$$250. \ \frac{\operatorname{tg}\,z}{z^2 - \frac{\pi}{4}z}. \qquad \qquad 251. \ z^3 e^{1/z}. \qquad \qquad 252. \ \frac{\operatorname{ch}\,z}{(z^2 + 1)(z - 3)}. \\ 253. \ \frac{e^z}{\frac{1}{4} - \sin^2 z}. \qquad \qquad 254. \ \frac{e^z}{z^3(z - 1)}. \qquad 255. \ \frac{z}{(z + 1)^3(z - 2)^2}. \\ 256. \ \frac{e^{-1/z^2}}{1 + z^4}. \qquad \qquad 257. \ z^2 \sin \frac{1}{z}. \qquad 258. \ \cos \frac{1}{z} + z^3. \\ 259. \ \frac{\sin 2z}{(z + i)(z - \frac{i}{2})^2}. \qquad \qquad 260. \ \frac{1 - \cos z}{z^3(z - 3)}. \qquad 261. \ e^{z^2 + \frac{1}{z^2}}. \\ 262. \ \frac{e^{iz}}{(z^2 - 1)(z + 3)}. \qquad \qquad 263. \ \frac{\cos z}{z^3 - \frac{\pi}{2}z^2}. \qquad 264. \ \frac{e^{\pi z}}{z - i}. \\ 265. \ \frac{z^{2n}}{(z - 1)^n} \ (n > 0 - \text{ целое}). \qquad 266. \ \operatorname{ctg}^2 z. \qquad 267. \ \sin z \cdot \cos \frac{1}{z}. \\ 268. \ e^{\frac{z}{z - 1}}. \qquad \qquad 269. \ \frac{\sin \frac{1}{z}}{1 - z}. \qquad \qquad 270. \ \frac{e^{\frac{1}{z}}}{1 + z}. \\ 271. \ e^{\frac{z^2 + 1}{z}}. \qquad \qquad 272. \ e^z \sin \frac{1}{z}. \end{cases}$$

2. Применение основной теоремы о вычетах к вычислению интегралов

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Вычислить интеграл

$$\int_{|z|=4} \frac{e^z - 1}{z^2 + z} dz.$$

Решение. В круге |z|<4 функция $f(z)=\frac{e^z-1}{z^2+z}$ является всюду аналитической за исключением точек z=0 и z=-1. По основной теореме о вычетах имеем

$$\int_{|z|=4} \frac{e^z - 1}{z^2 + z} dz = 2\pi i \left(\text{res } f(0) + \text{res } f(-1) \right).$$

Точка z=0 - устранимая особая точка функции f(z), так как

$$\lim_{z \to 0} \frac{e^z - 1}{z^2 + z} = 1.$$

Поэтому $\operatorname{res} f(0) = 0$. Точка z = -1 - полюс (простой) функции f(z). Следовательно,

res
$$f(-1) = \lim_{z \to -1} \frac{e^z - 1}{z^2 + z} (z + 1) = 1 - e^{-1}$$
.

Окончательно получаем

$$\int_{|z|=4} \frac{e^z - 1}{z^2 + z} dz = 2\pi i (1 - e^{-1}).$$

<u>Пример 2.</u> Вычислить интеграл $\int_{|z|=2}$ tg zdz.

<u>Решение.</u> В круге |z|<2 функция $f(z)= {\rm tg}\,z$ является аналитической всюду, за исключением точек $z=\frac{\pi}{2}$ и $z=-\frac{\pi}{2}$. Заметим, что данные точки есть простые полюса, поэтому

$$\operatorname{res} f\left(\frac{\pi}{2}\right) = \frac{\sin z}{(\cos z)'} \bigg|_{z=\frac{\pi}{2}} = -1,$$

$$\operatorname{res} f\left(-\frac{\pi}{2}\right) = \frac{\sin z}{(\cos z)'} \Big|_{z=-\frac{\pi}{2}} = -1.$$

По основной теореме о вычетах имеем

$$\int_{|z|=2} \operatorname{tg} z dz = 2\pi i (-2) = -4\pi i.$$

<u>Пример 3.</u> Вычислить интеграл $\int_{|z-i|=\frac{3}{2}} \frac{e^{1/z^2}}{z^2+1} dz.$

Решение. В круге $|z-i|<\frac{3}{2}$ функция $f(z)=\frac{e^{1/z^2}}{z^2+1}$ имеет две особые точки: z=i - полюс первого порядка и z=0 - существенная особая точка. Вычислим вычет относительно точки z=i:

res
$$f(i) = \frac{e^{1/z^2}}{(z^2+1)'} \bigg|_{z=i} = \frac{e^{-1}}{2i}.$$

Для нахождения $\operatorname{res} f(0)$ необходимо иметь разложение в ряд Лорана в окрестности точки z=0. Однако в данном случае в этом нет необходимости, так как f(z) - четная и, следовательно, в её лорановском разложении содержатся только четные степени z и $\frac{1}{z}$, поэтому $c_{-1}=0$ и, следовательно, $\operatorname{res} f(0)=0$.

По основной теореме о вычетах имеем

$$\int_{|z-i|=\frac{3}{2}} \frac{e^{1/z^2}}{z^2+1} dz = 2\pi i \cdot \frac{e^{-1}}{2i} = \frac{\pi}{e}.$$

Пример 4. Вычислить интеграл

$$\int_{|z|=2} \frac{1}{z-1} \sin \frac{1}{z} dz.$$

<u>Решение.</u> В круге |z|<2 функции $f(z)=\frac{1}{z-1}\sin\frac{1}{z}$ имеет две особые точки z=1 и z=0. Точка z=1 - простой полюс, поэтому

res
$$f(1) = \frac{\sin\frac{1}{z}}{(z-1)'}\Big|_{z=1} = \sin 1.$$

Для определения характера особой точки z=0 разложим f(z) в ряд Лорана в окрестности этой точки:

$$\frac{1}{z-1}\sin\frac{1}{z} = -\frac{1}{1-z}\sin\frac{1}{z} =$$

$$= -\left(1+z+z^2+\ldots\right)\left(\frac{1}{z}-\frac{1}{3!z^3}+\frac{1}{5!z^5}-\ldots\right) =$$

$$= -\left(1-\frac{1}{3!}+\frac{1}{5!}-\ldots\right)\frac{1}{z}+\frac{c_{-2}}{z^2}+\frac{c_{-3}}{z^3}+\cdots+\sum_{k=0}^{\infty}c_kz^k, c_{-k}\neq 0, k=2,3,\ldots.$$

Таким образом, ряд Лорана содержит бесконечно много членов с отрицательными степенями z. Следовательно, точка z=0 является существенной особой точкой и поэтому

res
$$f(0) = c_{-1} = -\left(1 - \frac{1}{3!} + \frac{1}{5!} - \dots\right) = -\sin 1.$$

Для вычисления интеграла применяем основную теорему о вычетах:

$$\int_{|z|=2} \frac{1}{z-1} \sin \frac{1}{z} dz = 2\pi i (\sin 1 - \sin 1) = 0.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Вычислить интегралы:

Вычислить интегралы:
$$273. \int_{|z|=1}^{z} z \lg \pi z \, dz. \qquad 274. \int_{\Gamma} \frac{z dz}{(z-1)^2(z-2)}, \Gamma : x^{2/3} + y^{2/3} = 3^{2/3}.$$

$$275. \int_{|z|=2}^{e^z} \frac{e^z}{z^3(z+1)} dz. \qquad 276. \int_{|z-i|=3}^{e^z-1} \frac{e^{z^2}-1}{z^3-iz^2} dz.$$

$$277. \int_{|z|=1/2}^{z} z^2 \sin \frac{1}{z} dz. \qquad 278. \int_{|z|=\sqrt{3}} \frac{\sin \pi z}{z^2-z} dz.$$

$$279. \int_{|z+1|=4}^{e^z} \frac{e^z dz}{z^4+2z^2+1}. \qquad 280. \int_{|z|=1}^{e^z} \frac{e^{iz}}{\sin^2 z \cos z} dz.$$

$$281. \int_{\Gamma} \frac{e^z dz}{z^4+2z^2+1}. \qquad 282. \int_{|z|=4}^{e^z} \frac{e^{iz}}{(z-\pi)^3} dz.$$

$$283. \int_{\Gamma} \frac{\cos \frac{z}{2}}{z^2-4} dz, \ \Gamma : \frac{x^2}{9} + \frac{y^2}{4} = 1.$$

$$284. \int_{\Gamma} \frac{e^{2z}}{(z^2-1)^2} dz, \ \Gamma : x^2+y^2-2x=0.$$

$$285. \int_{\Gamma} \frac{\sin \pi z}{(z^2-1)^2} dz, \ \Gamma : x^2+y^2=16.$$

$$286. \int_{\Gamma} \frac{z \sin z}{(z-1)^5} dz, \ \Gamma : \frac{x^2}{3} + \frac{y^2}{9} = 1.$$

$$288. \int_{\Gamma} \frac{dz}{z^4+1}, \ \Gamma : x^2+y^2=2x. \ 289. \int_{|z|=1}^{z} z^2 \sin \frac{1}{z} dz.$$

$$290. \int_{\Gamma} (z+1)e^{1/z} dz. \qquad 291. \int_{\Gamma} \left(\sin \frac{1}{z^2} + e^{z^2} \cos z\right) dz.$$

8.3 Вычет функции относительно бесконечно удаленной точки

Пусть бесконечно удаленная точка $z=\infty$ является изолированной особой точкой функции f(z). Пусть $U(\infty)=\{z:|z|>R\}$ - окрестность бесконечно удаленной точки и пусть f(z) аналитична в $U(\infty)$. Обозначим через C замкнутый контур, целиком лежащий в $U(\infty)$.

Определение. Вычетом функции f(z) относительно бесконечно удаленной точки называется значение интеграла $\frac{1}{2\pi i}\int\limits_{C^-}f(z)dz$, где интегрирование вдоль контура C происходит в отрицательном направлении.

Разложение в ряд Лорана в $U(\infty)$ для функции f(z) имеет вид

$$f(z) = c_0 + \frac{c_{-1}}{z} + \frac{c_{-2}}{z^2} + \dots + c_1 z + c_2 z^2 + \dots$$

Так как этот ряд сходится равномерно на контуре C, то мы можем его почленно интегрировать. Замечая, что

$$\int_{C^{-}} c_{n} z^{n} dz = 0, \text{ если } n \neq 1; \int_{C^{-}} c_{-1} \frac{dz}{z} = -c_{-1} 2\pi i,$$

получим после интегрирования

$$\frac{1}{2\pi i} \int_{C^{-}} f(z)dz = -c_{-1}.$$

Таким образом, вычет функции относительно бесконечно удаленной точки $\operatorname{res} f(\infty) = -c_{-1}$.

<u>Замечание.</u> В случае устранимой особой точки, лежащей на конечном расстоянии, вычет всегда равен нулю. Этого может не быть в случае бесконечно удаленной точки. Например, функция $\frac{1}{z}$ в бесконечности имеет устранимую особенность, а соответствующий вычет равен -1.

 $\underline{\text{Теорема.}}$ Если f(z) аналитична в любой точке расширенной комплексной плоскости кроме конечного числа особых точек, то сумма вычетов относительно всех её особых точек (включая и бесконечно удаленную точку) всегда равна нулю.

Доказательство. Опишем окружность конечного радиуса такую, что все особые точки попадают в эту окружность. По основной теореме о вычетах, величина $\frac{1}{2\pi i}\int\limits_C f(z)dz$ равна сумме вычетов относительно всех особых точек, лежащих внутри C.

С другой стороны, величина $\frac{1}{2\pi i}\int\limits_{C^-}f(z)dz$ равна вычету функции f(z) относительно бесконечно удаленной точки. Следовательно, сумма всех вы-

четов равна

$$\frac{1}{2\pi i} \int_{C} f(z)dz + \frac{1}{2\pi i} \int_{C^{-}} f(z)dz = 0.$$

примеры с решениями

Пример 1. Найти вычет относительно бесконечно удаленной точки

для функции $f(z)=\frac{z+1}{z}$. $\underline{\text{Решение.}}$ $\lim_{z\to\infty}\frac{z+1}{z}=1$. \Rightarrow точка $z=\infty$ является устранимой особой точкой. Выражение $f(z)=1+\frac{1}{z}$ можно рассматривать как её лорановское разложение в окрестности бесконечно удаленной точки. Поэтому $c_{-1} = 1$ и, следовательно, res $f(\infty) = -1$.

Пример 2. Вычислить интеграл

$$\int_{|z|=2} \frac{dz}{1+z^4}.$$

<u>Решение.</u> Корни z_k (k=1,2,3,4) уравнения $1+z^4=0$ являются полюсами (конечными) функции $f(z)=\frac{1}{1+z^4}$. Заметим, что все эти корни лежат внутри окружности |z|=2. Функция $f(z)=\frac{1}{1+z^4}$ в окрестности бесконечно удаленной точки имеет разложение

$$f(z) = \frac{1}{1+z^4} = \frac{1}{z^4} \cdot \frac{1}{1+\frac{1}{z^4}} = \frac{1}{z^4} - \frac{1}{z^8} + \frac{1}{z^{12}} - \dots,$$

поэтому $\operatorname{res} f(\infty) = -c_{-1} = 0.$

По теореме из раздела 8.3 имеем

$$\sum_{k=1}^{4} \operatorname{res} f(z_k) + \operatorname{res} f(\infty) = 0.$$

Отсюда следует

$$\int_{|z|=2} \frac{dz}{1+z^4} = 2\pi i \sum_{k=1}^4 \text{res } f(z_k) = -2\pi i \text{ res } f(\infty) = 0.$$

Пример 3. Вычислить интеграл

$$\int_{|z|=3} \frac{z^{17}}{(z^2+2)^3(z^3+3)^4} dz.$$

<u>Решение.</u> Функция $f(z) = \frac{z^{17}}{(z^2+2)^3(z^3+3)^4}$ имеет внутри окружности |z|=3 пять особых точек z_k , являющихся кратными полюсами. Для вычисления данного интеграла удобно использовать теорему из раздела 8.3, по которой

$$\sum_{k=1}^{5} \operatorname{res} f(z_k) + \operatorname{res} f(\infty) = 0.$$

Следовательно,

$$\int_{|z|=3} \frac{z^{17}}{(z^2+2)^3(z^3+3)^4} dz = -\operatorname{res} f(\infty).$$

Вычислим res $f(\infty)$:

$$f(z) = \frac{z^{17}}{(z^2+2)^3(z^3+3)^4} = \frac{z^{17}}{z^6 \left(1+\frac{2}{z^2}\right)^2 z^{12} \left(1+\frac{3}{z^3}\right)^4} = \frac{1}{z} \cdot \frac{1}{\left(1+\frac{2}{z^2}\right)^3 \left(1+\frac{3}{z^3}\right)^4}.$$

Отсюда видно, что правильная часть лорановского разложения этой функции в окрестности бесконечно удаленной точки начинается с члена $\frac{1}{z}$. Следовательно, res $f(\infty) = -1$. Таким образом,

$$\int_{\substack{|z|=3\\|z|=3}} \frac{z^{17}}{(z^2+2)^3(z^3+3)^4} dz = 2\pi i.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Определить характер бесконечно удаленной точки для следующих функций:

292.
$$f(z) = \frac{z^3 - z^2 + z + 6}{z^2}$$
. 293. $f(z) = \frac{z + 1}{z^4}$. 294. $f(z) = \frac{e^z}{z^2}$. 295. $f(z) = \cos \frac{1}{z}$. 296. $f(z) = e^{1/z^2}$. 297. $f(z) = z^3 e^{1/z}$.

Используя вычет относительно бесконечно удаленной точки, вычис-

лить следующие интегралы:

298.
$$\int_{|z|=1}^{z^2+1} \frac{z^2+1}{z^3} dz.$$
299.
$$\int_{|z|=2}^{z^2+1} \frac{dz}{1+z^{12}}.$$
300.
$$\int_{|z|=2}^{1000z+2} \frac{1000z+2}{1+z^{1224}} dz.$$
301.
$$\int_{|z|=3}^{z^2+1} \frac{e^z}{z-1} dz.$$
302.
$$\int_{|z|=1}^{z^2} z^2 \sin \frac{1}{z} dz.$$
303.
$$\int_{|z|=3}^{z^9} \frac{z^9}{z^{10}-1} dz.$$

8.4 Логарифмический вычет функции

Определение. Значение интеграла

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz$$

называется логарифмическим вычетом функции f(z) относительно контура Γ (название это связано с тем, что $\frac{f'(z)}{f(z)}$ представляет логарифмическую производную $f(z):\frac{d}{dz}(\ln f(z))$).

Теорема. Пусть Γ - замкнутый кусочно-гладкий контур. Функция f(z) аналитична внутри Γ и на Γ , исключая, быть может, конечное число полюсов, расположенных внутри Γ . Предположим еще, что f(z) не обращается в нуль на Γ . Обозначим через a_1, \ldots, a_n нули f(z) внутри Γ , через $\alpha_1, \ldots, \alpha_n$ порядки этих нулей, через b_1, \ldots, b_m и β_1, \ldots, β_m полюсы f(z) внутри Γ и их порядки, соответственно. Тогда логарифмический вычет функции f(z) относительно контура Γ равен разности между суммой порядков нулей и суммой порядков полюсов внутри Γ , т.е.

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = \sum_{i=1}^{n} \alpha_i - \sum_{j=1}^{m} \beta_j.$$

<u>Доказательство.</u> Будем применять основную теорему о вычетах. Обозначим $F(z) = \frac{f'(z)}{f(z)}$. Особые точки для F(z) могут лежать либо в нулях, либо в полюсах функции f(z). Рассмотрим нуль a_i функции f(z). В окрестности точки a_i имеем разложения в ряд Тейлора:

$$f(z) = A_i(z - a_i)^{\alpha_i} + \dots, \ f'(z) = A_i\alpha_i(z - a_i)^{\alpha_i - 1} + \dots, \$$
где $A_i \neq 0. \Rightarrow$ $F(z) = \frac{A_i\alpha_i(z - a_i)^{\alpha_i - 1} + \dots}{A_i(z - a_i)^{\alpha_i} + \dots} = \frac{A_i\alpha_i + \dots}{A_i(z - a_i) \dots} = \frac{A_i\alpha_i + \dots}{(z - a_i)(A_i + \dots)}.$

Следовательно, F(z) имеет в точке a_i полюс первого порядка. Вычет F(z) относительно a_i считается по формуле $\operatorname{res} F(a_i) = \frac{A_i \alpha_i}{A_i} = \alpha_i$.

Пусть b_j - полюс для функции f(z). Тогда

$$f(z) = B_j(z - b_j)^{-\beta_j} + \dots, \ f'(z) = -B_j\beta_i(z - b_j)^{-\beta_j - 1} + \dots,$$

причем $B_j \neq 0$. Отсюда для F(z) получаем:

$$F(z) = \frac{-B_j \beta_j (z - b_j)^{-\beta_j - 1} + \dots}{B_j (z - b_j)^{-\beta_j} + \dots} = \frac{-B_j \beta_j + \dots}{B_j (z - b_j) + \dots}.$$

Это означает, что F(z) имеет в точке b_j полюс первого порядка. Вычет F(z) относительно b_j считается по формуле $\operatorname{res} F(b_j) = \frac{-B_j \beta_j}{B_j} = -\beta_j$.

Таким образом, сумма вычетов F(z) относительно всех её особых точек внутри Γ равна $\sum\limits_{i=1}^n \alpha_i - \sum\limits_{j=1}^m \beta_j$.

Здесь $\sum_{i=1}^{n} \alpha_i$ представляет число нулей функции f(z) внутри контура Γ , а $\sum_{j=1}^{m} \beta_j$ - число полюсов той же функции, причем каждый нуль или полюс считается столько раз, какова его кратность.

Теорема доказана.

8.5 Приложение теории вычетов

Теорема 1 (Основная теорема алгебры). Любая целая (с целыми степенями) рациональная функция степени $n: f(z) = a_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n$, где $n \geq 1$, имеет n нулей, считая каждый нуль столько раз, какова его кратность.

Доказательство. f(z) имеет единственную особую точку $z=\infty$, которая является полюсом порядка n. $\lim_{z\to\infty} f(z)=\infty$, следовательно существует круг с центром в нуле радиуса R такой, что в любой точке z, удовлетворяющей условию $|z|\geq R$ верно неравенство |f(z)|>1. Т.е. все нули функции f(z) находятся внутри круга |z|< R. Пусть N - число этих нулей (каждый нуль взят столько раз, какова его кратность). Тогда, по теореме о логарифмическом вычете, имеем:

$$N = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz$$
, где $\Gamma = \{z : |z| = R\}$.

Докажем, что N = n. Заметим, что

$$\frac{1}{2\pi i} \int_{\Gamma^{-}} \frac{f'(z)}{f(z)} dz = -N$$

изображает вычет функции $\frac{f'(z)}{f(z)}$ относительно бесконечно удаленной точки, а следовательно, N равно этому вычету с обратным знаком.

$$f(z) = z^n a_0 + z^{n-1} a_1 + \dots + a_n = z^n (a_0 + \frac{a_1}{z} + \dots + \frac{a_n}{z^n}) = z^n \varphi(z). \Rightarrow$$
$$\varphi'(z) = -a_1 z^{-2} - 2a_2 z^{-3} - \dots - na_n z^{n-1}$$

и следовательно,

$$\frac{\varphi'(z)}{\varphi(z)} = -\frac{\frac{a_1}{z^2} + \frac{2a_2}{z^3} + \dots + \frac{na_n}{z^{n+1}}}{a_0 + \frac{a_1}{z} + \dots + \frac{a_n}{z^n}} = -\frac{\frac{a_1}{z^2} + \frac{2a_2}{z^3} + \dots + \frac{na_n}{z^{n+1}}}{a_0(1 + \frac{a_1}{a_0}\frac{1}{z} + \dots + \frac{a_n}{a_0}\frac{1}{z_n})}.$$

Известно: $\frac{1}{1+z} = 1 - z + z^2 - z^3 + z^4 - \dots$ Отсюда

$$\frac{\varphi'(z)}{\varphi(z)} = -\frac{1}{a_0} \left(\frac{a_1}{z^2} + \frac{2a_2}{z^3} + \dots + \frac{na_n}{z^{n+1}} \right) \left(1 - \frac{a_1}{a_0} \cdot \frac{1}{z} - \frac{a_2}{a_0} \cdot \frac{1}{z^2} - \dots - \frac{a_n}{a_0} \cdot \frac{1}{z^n} + \dots \right) =$$

$$= -\frac{a_1}{a_0} \cdot \frac{1}{z^2} + \frac{b_1}{z^3} + \frac{b_2}{z^4} + \dots , \text{ где } b_k \in \mathbb{C}.$$

Используем полученный результат для разложения функции $\frac{f'(z)}{f(z)}$:

$$\frac{f'(z)}{f(z)} = (\ln z)'_z = (\ln z^n \varphi(z))'_z = (n \ln z + \ln \varphi(z))'_z =$$

$$= \frac{n}{z} + \frac{\varphi'(z)}{\varphi(z)} = \frac{n}{z} - \frac{a_1}{a_0} \cdot \frac{1}{z^2} + \dots \Rightarrow \operatorname{res} \frac{f'(z)}{f(z)} \Big|_{z=\infty} = -n.$$

Таким образом, N = n.

Теорема 1 доказана.

Теорема 2 (вычисление определенных интегралов). Пусть f(z) аналитична всюду, в верхней полуплоскости включая действительную ось, за исключением конечного числа особых точек a_1, \ldots, a_n , лежащих сверху от действительной оси. Пусть бесконечно удаленная точка является нулем функции f(z) порядка не менее 2. Тогда имеет место формула

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{k=1}^{n} \operatorname{res} f(a_k).$$

<u>Доказательство.</u> f(z) раскладывается в ряд Лорана в окрестности бесконечно удаленной точки:

$$f(z) = \frac{c_{-2}}{z^2} + \frac{c_{-3}}{z^3} + \dots$$

Проведем полуокружность в верхней полуплоскости с центром в нуле радиуса R такого, что все особые точки лежат строго внутри полукруга. По основной теореме о вычетах, имеем:

$$\int_{\Gamma+[-R,R]} f(z)dz = \int_{-R}^{R} f(x)dx + \int_{\Gamma} f(z)dz =$$

$$= 2\pi i \sum_{k=1}^{n} \operatorname{res} f(a_k).$$

Докажем, что $\lim_{R \to \infty} \int\limits_{\Gamma} f(z) dz = 0$. Из разложения в ряд Лорана следует:

$$|f(z)| \le \frac{|c_{-2}|}{R^2} + \frac{|c_{-3}|}{R^3} + \dots = \frac{1}{R^2} \left(|c_{-2}| + \frac{|c_{-3}|}{R} + \dots \right).$$

Начиная с достаточно большого R, имеем:

$$\frac{|c_{-3}|}{R} + \frac{|c_{-4}|}{R^2} + \dots < 1. \Rightarrow |f(z)| < \frac{|c_{-2}| + 1}{R^2}.$$

Пользуясь этой оценкой, оценим $\int_{\Gamma} f(z)dz$.

$$\left| \int_{\Gamma} f(z) dz \right| \le \int_{\Gamma} |f(z)| ds \le \frac{|c_{-2}| + 1}{R^2} \int_{\Gamma} ds = \frac{|c_{-2}| + 1}{R^2} \pi R = \frac{|c_{-2}| + 1}{R} \pi.$$

Следовательно $\lim_{R \to \infty} \int_{\Gamma} f(z) dz = 0$. Окончательно получаем

$$\lim_{R \to \infty} \left(\int_{-R}^{R} f(x) dx + \int_{\Gamma} f(z) dz \right) = \int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{k=1}^{n} \operatorname{res} f(a_k).$$

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример. Вычислить интеграл

$$\int_{0}^{+\infty} \frac{x^2}{(x^2 + a^2)^2} dx, \ a > 0.$$

<u>Решение.</u> Подынтегральная функция $f(x) = \frac{x^2}{(x^2 + a^2)^2}$ - четная, поэтому:

$$\int_{0}^{+\infty} \frac{x^2}{(x^2 + a^2)^2} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^2}{(x^2 + a^2)^2} dx.$$

Рассмотрим функцию $f(z)=\frac{z^2}{(z^2+a^2)^2}$. Данная функция имеет в верхней полуплоскости полюс второго порядка в точке z=ai.

$$\operatorname{res} f(a_i) = \lim_{z \to ai} \frac{d}{dz} (f(z)(z - ai)^2) =$$

$$= \lim_{z \to ai} \frac{d}{dz} \left(\frac{z^2}{(z + ai)^2} \right) = \lim_{z \to ai} \frac{2aiz}{(z + ai)^2} = \frac{1}{4ai}.$$

Используя формулу из теоремы 2 раздела 8.5, получим

$$\int_{0}^{+\infty} \frac{x^2}{(x^2 + a^2)^2} dx = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{x^2}{(x^2 + a^2)^2} dx = \frac{1}{2} \cdot 2\pi i \cdot \frac{1}{4ai} = \frac{\pi}{4a}.$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Вычислить следующие интегралы с бесконечными пределами:

$$304. \int_{0}^{+\infty} \frac{x^{2} + 1}{x^{4} + 1} dx. \qquad 305. \int_{-\infty}^{+\infty} \frac{dx}{(x^{2} + a^{2})(x^{2} + b^{2})}, \ a > 0, \ b > 0.$$

$$306. \int_{-\infty}^{+\infty} \frac{dx}{(x^{2} + 1)^{3}}. \qquad 307. \int_{-\infty}^{+\infty} \frac{dx}{(1 + x^{2})^{n+1}}.$$

$$308. \int_{-\infty}^{+\infty} \frac{x \, dx}{(x^{2} + 4x + 13)^{2}}. \quad 309. \int_{-\infty}^{+\infty} \frac{dx}{(x^{2} + a^{2})^{2}(x^{2} + b^{2})^{2}}.$$

$$310. \int_{0}^{+\infty} \frac{x^{4} + 1}{x^{6} + 1} dx. \qquad 311. \int_{-\infty}^{+\infty} \frac{x^{2m}}{1 + x^{2n}} dx.$$

$$312. \int_{-\infty}^{+\infty} \frac{dx}{1 + x^{6}}. \qquad 313. \int_{-\infty}^{+\infty} \frac{dx}{(x^{2} + 2x + 2)^{2}}.$$

314.
$$\int_{-\infty}^{+\infty} \frac{x^4 dx}{(a+bx^2)^4}, \ a > 0, \ b > 0.$$

315. Доказать формулу
$$\int_{-\infty}^{+\infty} \frac{dx}{(1+x^2)} = \frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2n} \pi.$$

ОТВЕТЫ

1.
$$-i$$
. 2. 1. 3. $\frac{1-r^2+i2r\sin\varphi}{1+r^2-2r\cos\varphi}$. 4. $\frac{3}{2}-i$. 5. 46. 6. $\cos2\alpha+i\sin2\alpha$. 7. $\frac{a^2-b^2}{a^2+b^2}+i\frac{2ab}{a^2+b^2}$. 8. 4. 9. $x=\frac{20}{17},\ y=-\frac{36}{17}$. 10. $x=\frac{-b}{a^2+b^2},\ y=\frac{-a}{a^2+b^2}$. 11. Действительного решения нет. 12. $x=-\frac{4}{11},\ y=\frac{5}{11}$. 13. $x=1+i,\ y=i$. 14. $x=2+i,\ y=2-i$. 15. $x=3-11i,\ y=-3-9i,\ z=1-7i$. 16. $\frac{2(a^2-b^2)}{(a^2+b^2)^2}$. 18. $z_1=0,\ z_2=1,\ z_3=-\frac{1}{2}+i\frac{\sqrt{3}}{2},\ z_4=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$.

11. Действительного решения нет. 12.
$$x = -\frac{4}{11}$$
, $y = \frac{5}{11}$. 13. $x = 1+i$, $y=i$

14.
$$x = 2 + i$$
, $y = 2 - i$. 15. $x = 3 - 11i$, $y = -3 - 9i$, $z = 1 - 7i$.

16.
$$\frac{2(a^2-b^2)}{(a^2+b^2)^2}$$
. 18. $z_1=0, z_2=1, z_3=-\frac{1}{2}+i\frac{\sqrt{3}}{2}, z_4=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$.

19.
$$|z| = 5$$
, $\arg z = \arctan \frac{3}{4}$. 20. $|z| = 4$, $\arg z = \frac{2}{3}\pi$.

21.
$$|z| = 5\sqrt{2}$$
, $\arg z = \arctan \frac{1}{7} - \pi$. 22. $|z| = 1$, $\arg z = \frac{4}{5}\pi$. 23. $|z| = 5$, $\arg z = -\arctan \frac{3}{4}$. 24. $|z| = 1$, $\arg z = 2\pi - \alpha$.

23.
$$|z| = 5$$
, $\arg z = -\arctan \frac{3}{4}$. 24. $|z| = 1$, $\arg z = 2\pi - \alpha$.

25.
$$2(\cos \pi + i \sin \pi)$$
. 26. $2(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})$. 27. $2(\cos \frac{3}{4}\pi + i \sin \frac{3}{4}\pi)$.

28.
$$\sqrt{2(1-\sin\alpha)}\left(\cos\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)+i\sin\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right)$$
. 29. $1(\cos\alpha+i\sin\alpha)$.

28.
$$\sqrt{2(1-\sin\alpha)} \left(\cos\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)+i\sin\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)\right)$$
. 29. $1(\cos\alpha+i\sin\alpha)$. 30. $-2^{19}(1+i\sqrt{3})$. 31. $2^{10}(1+i)$. 32. 1728. 33. 1. 36. $\pm\frac{1\pm i}{\sqrt{2}}$.

37.
$$\pm \frac{1}{\sqrt{2}}(1+i)$$
. 38. $\frac{1}{2}(\pm\sqrt{3}+i)$, $-i$.

39.
$$\pm (\cos \frac{\pi}{8} - i \sin \frac{\pi}{8}), \ \pm (\cos \frac{3}{8}\pi + i \sin \frac{3}{8}\pi).$$
 40. $\pm 1, \pm i.$

41.
$$\frac{\sqrt[3]{4}}{2}(1+i)$$
, $\sqrt[6]{2}(-\cos\frac{\pi}{12}+i\sin\frac{\pi}{12})$, $\sqrt[6]{12}(\sin\frac{\pi}{12}-i\cos\frac{\pi}{12})$.

42.
$$\pm (\sqrt{3} - i)$$
.

43.
$$\sqrt[10]{2}(\cos 6^{\circ} + i \sin 6^{\circ}), \quad \sqrt[10]{2}(\cos 78^{\circ} + i \sin 78^{\circ}), \quad \sqrt[10]{2}(\cos 150^{\circ} + i \sin 150^{\circ}),$$

 $\sqrt[10]{2}(\cos 222^{\circ} + i \sin 222^{\circ}), \quad \sqrt[10]{2}(\cos 294^{\circ} + i \sin 294^{\circ}).$

- 44. Вся комплексная плоскость, из которой вырезан круг радиуса 2 с центром в начале координат.
- 45. Круг радиуса r=1 с центром в начале координат, причем центр этого круга удален (круг "проколот").
- 46. Вся комплексная плоскость, из которой вырезан круг радиуса $r=1/2~{\rm c}$ центром в начале координат.
- 47. Окружность радиуса r = 8 с центром в точке z = 5i.
- 48. Круг вместе с границей радиуса r = 4 с центром в точке z = 1 + i.
- 49. Часть кольца, ограниченного двумя лучами $\arg z = \frac{\pi}{4}$ и $\arg z = \frac{\pi}{2}$ и окружностями радиусов r = 1 и r = 2 с центром в точке z = -i.
- 50. Правая полуплоскость, включая ось OY.
- 51. Полоса между прямыми y=0 и y=1, включая эти прямые.
- 52. Концентрическое кольцо, ограниченное окружностями радиусов $r_1 = 1$ и $r_2 = 2$ с центром в точке z = -(2+i). Обе окружности принадлежат множеству.
- 53. Часть плоскости, расположенная ниже прямой y = x.
- 54. Полоса между прямыми x = 1 и x = 2.

55.
$$u = x + 2xy$$
, $v = y^2 - x^2 - y$.

56.
$$u = x^2 - y^2$$
, $v = 1 + 2xy$.

56.
$$u = x^2 - y^2$$
, $v = 1 + 2xy$.
57. $u = 3xy^2 - x^3$, $v = 1 - 3x^2y + y^3$.

58.
$$\frac{x}{x^2+y^2}$$
, $v = \frac{y}{x^2+y^2}$.

```
59. u = \frac{x-2xy-y+1}{(x+1)^2+y^2}, v = \frac{x^2+y-y^2+x}{(x+1)^2+y^2}.
60. u = \frac{x^2-y^2}{x^2+y^2}, v = -\frac{2xy}{x^2+y^2}
61. u = 2x - 1, v = 2y.
62. u = x^2 - y^2 + x, v = (2x + 1)y.
63. u = \frac{x}{x^2 + y^2}, v = -\frac{y}{x^2 + y^2}.
64. u = e^{-x} \cos y, v = -e^{-x} \sin y.
65. u = e^{x^2 - y^2} \cos 2xy, v = -e^{x^2 - y^2} \sin 2xy.
66. u = \sin x \operatorname{ch} y, v = \cos x \operatorname{sh} y.
67. u = \operatorname{ch} x \cos(y - 1), v = \operatorname{sh} x \sin(y - 1).
68. u = e^{(x^2 - y^2) \ln 2 - 4k\pi xy} \cos(2k\pi(x^2 - y^2) + 2\ln 2 \cdot xy),
       v = e^{(x^2 - y^2) \ln 2 - 4k\pi xy} \sin(2k\pi(x^2 - y^2) + 2\ln 2 \cdot xy), \ k \in \mathbb{Z}.
69. u = \operatorname{ch} x \cos y, v = \operatorname{ch} x \sin y.
70. u = \frac{\sin x \cos x}{\cosh^2 y - \sin^2 x}, \ v = \frac{\sinh y \cosh y}{\cosh^2 y - \sin^2 x}.
71. a) \rho = \frac{3}{4}, \ \varphi_0 = -\frac{\pi}{2}; 6) \rho = \frac{5}{4}, \ \varphi_0 = \pi.
72. \rho = \text{ch } 1, \, \varphi_0 = \frac{\pi}{2}.
73. \rho = \pi, \, \varphi_0 = -\frac{\pi}{2}.
74. \rho = \cos^2(\ln 3), \varphi_0 = 0.
75. а) \rho=0,\, \varphi - неопределён;
      б) \rho = e^{-2k\pi}, \varphi = \ln 10 + 2m\pi, k, m \in \mathbb{Z}; в) \rho = 9e^{2k\pi}, \varphi = -\ln 3 + 2m\pi, k, m \in \mathbb{Z}.
76. a) (2k - \frac{1}{2})\pi i, k \in \mathbb{Z}; 6) 2k + \frac{1}{2}\pi i, k \in \mathbb{Z};
      B) \ln \sqrt{2} + (2k - \frac{3}{4})\pi i, \ k \in \mathbb{Z}; \Gamma) \ln \sqrt{13} + (2k\pi - \arctan \frac{2}{3})i, \ k \in \mathbb{Z};
      д) -(2k+\frac{1}{2})\pi + 2m\pi i, k, m \in \mathbb{Z}.
77. a) e^{(2k+\frac{1}{2})\pi}, k \in \mathbb{Z};
                                          б) e^{-2k\pi}, k \in \mathbb{Z};
      в) e^{\sqrt{2}(2k+1)\pi i}, k \in \mathbb{Z}; г) e^{-(4k+\frac{1}{2})\pi}, k \in \mathbb{Z}; д) e^{(i-1)(2k+\frac{1}{6})\pi}, k \in \mathbb{Z}; е) 2^{\frac{3}{2}}e^{3(2k\pi-\frac{\pi}{4})-3(\frac{\pi}{4}+\ln\sqrt{2}-2k\pi)i}, k \in \mathbb{Z}.
78. 1. 79. 0. 80. Не существует. 81. 0. 82. \frac{1}{3}. 83. -i.
                                            86. 0. 89. i. 90. \sqrt{2}. 91. -i. 92. -2i.
85. Не существует.
                                        в) Нет; г) Да; д) Нет; е) Да; ж) Нет; з) Да.
98. а) Нет; б) Нет;
99. а) Нет; б) Нет; в) Нет; г) Да. 102. -\frac{\pi}{2}. 103. \frac{1}{4}(e^2-1)(1+i).
104. a) 2\pi i; 6) -2\pi i. 105. 0. 106. 0. 107. (i-1)e^{i}. 108. a) 2+i; 6) 6+2i.
109. -2(1+i). 110. -1. 111. \frac{3}{5}(i-1). 112. a) e\cos 1 - 1 + ie\sin 1;
```

б) $e\cos 1 - 1 + ie\sin 1$. 113. $-(1+i\sin 1)$. 114. $-7e^{-2} + (3-2i)e^{i}$. 115. $e^{-1} - 1$. 116. $\cos 1 - \sin 1 - ie^{-1}$. 117. $1 - \cos 1 + i(\sin 1 - 1)$.

118. $-\frac{1}{8}(\frac{\pi^2}{4} + 3\ln^2 2) + i\frac{\pi}{8}\ln 2$. 119. $-\frac{\pi^2}{8}$. 120. $\frac{1}{4}(1 - \cos(2 + 2i))$. 121. $-(\operatorname{tg} 1 + \frac{1}{2}\operatorname{tg}^2 1 + \frac{1}{2}\operatorname{th}^2 1) + i\operatorname{th} 1$. 122. $(\frac{1}{4}\operatorname{sh} 2 + \frac{1}{2})i$. 123. $-\frac{4}{3}$.

```
124. 0. 125. -\ln\sqrt{\sinh^2 1 + \cos^2 1} + i \arctan(\tan 1).

126. a) i; 6) 2i; B) 2i. 127. a) e(2 - e^{-i} - 1); 6) 1 + e^{-i}(e - 2).

128. \pi i. 129. \pi e^{-1}. 130. \frac{\pi}{2}i. 131. \pi \sinh 1. 132. 0. 133. \frac{2}{3}\pi \cot \pi \cdot i.
134. 0. 135. -\frac{\pi}{45}i. 136. \pi. 137. 0. 138. -\pi i.
                                                                                                                                    139. 2\pi i.
140. -\frac{\pi(\pi+2)\sqrt{2}}{8}i. 141. 0. 142. -\frac{\pi i}{27}. 143. -\frac{\pi^2}{2} \sinh 1. 144. \pi^3 i. 145. 0. 146. -2\pi i. 147. \frac{1+i}{2}e^i\pi. 148. Расходится.
                                                                                                                 151. Сходится.
149. Сходится.
                                              150. Сходится.
152. Расходится. 153. Сходится абсолютно.
                                                                                                                  154. Сходится.
155. Расходится. 156. Сходится.
                                                                                                                  157. Расходится.
                                   159. R = 1. 160. R = \sqrt{2}.
158. R = 1.
                                                                                                                 161. R = \infty.
162. R = 1. 163. R = \infty. 164. R = 1. 165. R = 1.
166. R = 1. 167. R = \infty. 168. R = 1. 169. R = e^{-1}.
170. -\sin 1 + 2(z+1)\cos 1 + \frac{2^2}{2!}(z+1)^2\sin 1 - \frac{2^3}{3!}(z+1)^3\cos 1 - \dots,
R=\infty.
171. \frac{1}{\sqrt{2}} \left( 1 + \left( z + \frac{\pi}{4} \right) - \frac{1}{2!} \left( z + \frac{\pi}{4} \right)^2 - \frac{1}{3!} \left( z + \frac{\pi}{4} \right)^3 + \dots \right), R = \infty.
172. \sqrt{e} \left(1 + \frac{1}{2}(2z - 1) + \frac{1}{2!2^2}(2z - 1)^2 + \frac{1}{3!2^3}(2z - 1)^3 + \dots\right), R = \infty.
173. -\frac{1}{5}\left(1+\frac{3}{5}(z+2)+\frac{3^2}{5^2}(z+2)^2+\frac{3^3}{5^3}(z+2)^3+\ldots\right), R=\frac{5}{3}.
174. -\frac{1}{5} - \frac{9}{25}z - \frac{41}{125}z^2 - \dots, R = 1.
175. -iz + z^3 + iz^5 - z^7 + \dots, R = 1.
176. 1 + \frac{1}{2} \left( \frac{z^2}{2!} + \frac{z^4}{4!} + \frac{z^6}{6!} + \dots \right), R = \infty.
177. \frac{1}{2} \left( \frac{z^2}{2!} + \frac{z^4}{4!} + \frac{z^6}{6!} + \dots \right), R = \infty.
178. \ln 2 - \frac{1}{2} \left( \frac{z}{2} + \frac{z^2}{2 \cdot 4} + \frac{z^3}{3 \cdot 8} + \dots \right), R = 2.
179. \ln 2 + \frac{z}{2} - \frac{5z^2}{2 \cdot 4} + \frac{7z^3}{3 \cdot 8} - \dots, \ R = 1.

180. \frac{1}{2} - \frac{1}{2^2}z + \frac{1}{3!2^3}z^3 + \frac{3}{5!2^5}z^5 + \dots, \ R = \pi.
181. \frac{1}{2} - \frac{1}{2^2}z + \frac{1}{2!2^2}z^2 - \frac{1}{3!2^3}z^3 + \dots, R = \sqrt{\ln^2(2 - \sqrt{3}) + \pi^2}.
182. \frac{1}{6} + \frac{1}{6^2}z - \frac{4}{2!6^3}z^2 + \frac{1}{3!6^3}z^3 + \dots, R = \sqrt{\ln^2 5 + \pi^2}.

183. \ln 2 - \frac{1}{2}z + \frac{1}{2!2^2}z^2 - \frac{1}{4!2^3}z^3 + \dots, R = \pi.

184. -\frac{1}{2!}z^2 - \frac{2}{4!}z^4 - \frac{16}{6!}z^6 + \dots, R = \frac{\pi}{2}.
185. \ln 2 - \frac{z^2}{4} - \frac{z^4}{4 \cdot 4!} - \frac{z^6}{2 \cdot 6!} + \dots, R = \pi.

186. e(1 + z + \frac{3}{2!}z^2 + \frac{13}{3!}z^3 + \dots), R = 1.
187. а) z=0 - второго порядка, z_{1,2}=\pm 2i - простые;
```

б) z=0 - простой, $z_n=n\pi i\;(n\in\mathbb{Z})$ - второго порядка.

188. а) z=0 - третьего порядка, $z_n=\pi n \; (n\in \mathbb{Z})$ - простые;

б) $z_n = \pi \ (n \in \mathbb{Z})$ - простые.

189. а)
$$z_n = (2n+1)\pi i \; (n \in \mathbb{Z})$$
 - второго порядка;

б)
$$z_n = (4n+1)\frac{\pi}{2}i \; (n \in \mathbb{Z})$$
 - второго порядка.

190. a)
$$z = -\pi i$$
 - второго порядка, $z_n = n\pi i \ (n \in \mathbb{Z})$ - простые;

б)
$$z_n = \sqrt[3]{(2n+1)\frac{\pi}{2}}, z_n = \sqrt{(2n+1)\frac{\pi}{2}} \cdot \frac{1 \pm i\sqrt{3}}{2}$$
 $(n \in \mathbb{Z})$ - простые.

191. а)
$$z_{1,2}=\pm\pi i$$
 - второго порядка, $z_n=(2n+1)\pi i$ $(n\in\mathbb{Z})$ - простые;

200.
$$\frac{1}{z} - \frac{z}{3!} + \frac{z^3}{5!} - \frac{z^5}{7!} + \dots$$

$$201. \ \frac{9}{2!}z - \frac{8}{4!}z^3 + \frac{32}{6!}z^5 - \dots$$

202.
$$\frac{1}{z} + 1 + \frac{z}{2!} + \frac{z^2}{3!} + \dots$$

$$202. \frac{1}{z} + 1 + \frac{z}{2!} + \frac{z^{\frac{1}{2}}}{3!} + \dots$$

$$203. \frac{1}{z^{3}} + \frac{1}{z^{2}} + \frac{1}{2!} \cdot \frac{1}{z} + \frac{1}{3!} + \frac{z}{4!} + \dots$$

$$204. z^{3} + z^{2} + \frac{z}{2!} + \frac{1}{3!} + \frac{1}{4!} \cdot \frac{1}{z} + \dots$$

204.
$$z^3 + z^2 + \frac{z}{2!} + \frac{1}{3!} + \frac{1}{4!} \cdot \frac{1}{z} + \dots$$

205.
$$z^4 - \frac{z^2}{2!} + \frac{1}{4!} - \frac{1}{6!} \cdot \frac{1}{z^2} + \dots$$

204.
$$z + z + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} \cdot \frac{1}{z} + \dots$$

205. $z^4 - \frac{z^2}{2!} + \frac{1}{4!} - \frac{1}{6!} \cdot \frac{1}{z^2} + \dots$
206. $\frac{4^2}{2!} \cdot \frac{1}{2z^3} - \frac{4^4}{4!} \cdot \frac{1}{2z^5} + \frac{4^6}{6!} \cdot \frac{1}{2z^7} - \dots$
207. $\frac{1}{2!} - \frac{z^2}{4!} + \frac{z^4}{6!} - \frac{z^6}{8!} + \dots$

207.
$$\frac{1}{2!} - \frac{z^2}{4!} + \frac{z^4}{6!} - \frac{z^6}{8!} + \dots$$

208.
$$1 + \frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \dots$$

209.
$$\frac{2}{z^4} - \frac{1}{2!} \cdot \frac{1}{z^2} + \frac{1}{4!} - \frac{z^2}{6!} + \dots$$

$$208. \ 1 + \frac{z}{2!} + \frac{z^2}{3!} + \frac{z^3}{4!} + \dots$$

$$209. \ \frac{z}{z^4} - \frac{1}{2!} \cdot \frac{1}{z^2} + \frac{1}{4!} - \frac{z^2}{6!} + \dots$$

$$210. \ \frac{1}{z^2} - \frac{1}{2!} \cdot \frac{1}{z} + \frac{1}{3!} - \frac{z}{4!} + \dots$$

211.
$$\frac{1}{z+1} - \frac{1}{(z+1)^2}$$

$$212. \ \frac{\sin 2}{z-2} - \frac{\sin 2}{2!}(z-2) - \frac{\cos 2}{3!}(z-2)^2 + \dots$$

211.
$$\frac{1}{z+1} - \frac{1}{(z+1)^2}$$
.
212. $\frac{\sin 2}{z-2} - \frac{\sin 2}{2!}(z-2) - \frac{\cos 2}{3!}(z-2)^2 + \dots$
213. $(1-i) + (z+i) + (\frac{1}{2!} - \frac{1}{1!}) \cdot \frac{1}{z+i} + (\frac{1}{3!} - \frac{1}{2!}) \cdot \frac{1}{(z+i)^2} + \dots$

214. a)
$$-\sum_{n=1}^{\infty} \frac{2^{n-1}}{z^n} - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z}{3}\right)^n$$
; 6) $\sum_{n=1}^{\infty} \frac{3^{n-1} - 2^{n-1}}{z^n}$.

215. a)
$$\frac{1}{z} - \sum_{n=0}^{\infty} (-1)^n z^{2n}$$
; 6) $\sum_{n=0}^{\infty} \frac{(-1)^n}{z^{n+2}}$.

216. a) Не разлагается; б)
$$\frac{1}{5} \left(\frac{2^2+1}{z^3} - \frac{2^3+2}{z^4} + \frac{2^4-1}{z^5} - \frac{2^5-2}{z^6} + \dots \right)$$
.

217.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{z^n} + \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} z^n.$$

218. a)
$$\sum_{n=1}^{\infty} \left[n - \frac{(-1)^n}{2^n} \right] z^{n-1};$$
 6) $\sum_{n=1}^{\infty} \frac{n}{z^{n+1}} + \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} z^n;$

B)
$$\frac{1}{z} + \sum_{n=1}^{\infty} \frac{n + (-2)^n}{z^{n+1}}$$
.

219.
$$\sum_{n=1}^{\infty} \frac{1}{(z+2)^n} - \sum_{n=0}^{\infty} \frac{(z+2)^n}{3^{n+1}}.$$

220. Не разлагается.

221.
$$\frac{1}{z-1} + 5 \sum_{n=2}^{\infty} \frac{2^{n-2}}{(z-1)^n}$$
.

222.
$$z + \sum_{n=0}^{\infty} \frac{(n+2)\cdot 4^{n+1}}{z^{2n+1}}$$
.

223.
$$-\frac{1}{12}\sum_{n=0}^{\infty}\frac{z^{2n+1}}{4^n}-\frac{1}{3}\sum_{n=1}^{\infty}\frac{1}{z^{2n-1}}.$$

224.
$$-\frac{i}{2(z-i)} + \frac{1}{4} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2i)^n} (z-i)^n$$
.

225.
$$\sum_{n=1}^{\infty} \frac{n \cdot 4^{n-1}}{(z+2)^{n+3}}.$$

- 226. а) Полюс третьего порядка; б) Полюс четвертого порядка;
 - в) Полюс второго порядка.
- 227. а) Полюс простой;
- б) Полюс второго порядка.

228. а)
$$z_n = (4n+1)\frac{\pi}{2}, n \in \mathbb{Z}$$
 - полюсы второго порядка;

- б) z = 0 устранимая особая точка.
- 229. а) z = -2 существенная особая точка;
 - б) z = 0 существенная особая точка.
- 230. а) z=0 полюс второго порядка, z=-1 полюс второго порядка;
 - б) z=0 полюс второго порядка, $z=2n\pi i \ (n=\pm 1,\pm 2,\dots)$ простые полюсы.
- 231. a) z = 0 существенная особая точка;
 - б) z = -1 существенная особая точка;
 - в) z = 0 существенная особая точка.
- 232. а) z=0 устранимая особая точка, $z=2\pi n \; (n=\pm 1,\pm 2,\dots)$ полюсы второго порядка;

б)
$$z = \frac{\pi}{2} + 2\pi n \ (n \in \mathbb{Z})$$
 - устранимые особые точки,

$$z=-rac{\pi}{2}+2\pi n\ (n\in\mathbb{Z})$$
 - простые полюсы;

в)
$$z=\pi$$
 - простой полюс, $z=\pi n$ $(n=0,\pm 1,\pm 2,\pm 3,\dots)$ - полюсы второго порядка.

- 233. Устранимая особая точка. 234. Полюс простой.
- 235. Полюс простой. 236. Устранимая особая точка.
- 237. Существенная особая точка.
- z=0 полюс четвертого порядка, z=-1 простой полюс.

- 239. Устранимая особая точка.
- 240. Устранимая особая точка.

241. Полюс простой.

- 242. Устранимая особая точка.
- 243. Существенная особая точка.

$$244. 1.$$
 $245. -16/3.$ $246. 1.$ $247. -1.$ $248. 0.$ $249. 0.$

244. 1. 245.
$$-16/3$$
. 246. 1. 247. -1 . 248. 0. 250. $\operatorname{res} f(0) = 0$, $\operatorname{res} f(\frac{\pi}{4}) = \frac{4}{\pi}$, $\operatorname{res} f(\frac{\pi}{2} + \pi n) = \frac{-8}{\pi^2(2n+1)(4n+1)}$, $n \in \mathbb{Z}$.

251.
$$\operatorname{res} f(0) = 1/24$$
.

252.
$$\operatorname{res} f(-i) = -\frac{1+3i}{20}\cos 1$$
, $\operatorname{res} f(1) = -\frac{1-3i}{20}\cos 1$, $\operatorname{res} f(3) = \frac{\operatorname{ch} 3}{10}$.

$$\operatorname{res} f\left((-1)^{n\frac{\pi}{6}} + \pi n\right) = \begin{cases} -\frac{2}{\sqrt{3}} e^{\frac{\pi}{6} + 2\pi n}, \\ \frac{2}{\sqrt{3}} e^{-\frac{\pi}{6} + \pi(2n-1)}, \\ \frac{2}{\sqrt{3}} e^{-\frac{\pi}{6} + 2\pi n}, \\ -\frac{2}{\sqrt{3}} e^{\frac{\pi}{6} + \pi(2n-1)}. \end{cases}$$

254. res
$$f(0) = -\frac{5}{2}$$
, res $f(1) = e$.

254.
$$\operatorname{res} f(0) = -\frac{5}{2}, \operatorname{res} f(1) = e.$$

255. $\operatorname{res} f(-1) = \frac{1}{27}, \operatorname{res} f(2) = -\frac{1}{27}.$

256.
$$\operatorname{res} f(0) = 0$$
, $\operatorname{res} f(z_1) = -\frac{1+i}{4\sqrt{2}}e^i$, $\operatorname{res} f(z_2) = \frac{(1-i)e^{-i}}{4\sqrt{2}}$, $\operatorname{res} f(z_3) = \frac{(1+i)e^i}{4\sqrt{2}}$, $\operatorname{res} f(z_4) = -\frac{(1+i)e^{-i}}{4\sqrt{2}}$, где z_k $(k=1,2,3,4)$ - корни уравнения $z^4+1=0$.

257. res
$$f(0) = -\frac{1}{6}$$
. 258. res $f(0) = 0$.

257. res
$$f(0) = -\frac{1}{6}$$
. 258. res $f(0) = 0$.
259. res $f(-i) = \frac{4}{9} \operatorname{sh} 2 \cdot i$, res $f(\frac{i}{2}) = -\frac{4}{9} (e + 2e^{-1})i$.
260. res $f(0) = -\frac{1}{6}$, res $f(3) = \frac{2}{27} \sin^2(\frac{3}{2})$.

260. res
$$f(0) = -\frac{3}{6}$$
, res $f(3) = \frac{2}{27} \sin^2(\frac{3}{2})$

261. res
$$f(0) = 0$$
.

262.
$$\operatorname{res} f(-3) = \frac{1}{8}e^{-3i}$$
, $\operatorname{res} f(-1) = -\frac{e^{-i}}{4}$, $\operatorname{res} f(1) = \frac{e^{i}}{8}$.
263. $\operatorname{res} f(0) = -\frac{4}{\pi^{2}}$, $\operatorname{res} f(\frac{\pi}{2}) = 0$.

263. res
$$f(0) = -\frac{4}{\pi^2}$$
, res $f(\frac{\pi}{2}) = 0$.

264.
$$\operatorname{res} f(i) = -1$$
.

265. res
$$f(1) = \frac{2n(2n-1)(2n-2)...(2n-(n-2))}{(n-1)!}$$
.

266.
$$\operatorname{res} f(n\pi) = 0, \ n \in \mathbb{Z}.$$

267.
$$-\sum_{n=1}^{\infty} \frac{1}{(2n-1)!(2n)!}$$
 в точке $z=0$.

268.
$$e$$
 в точке $z = 1$.

269.
$$\sin 1$$
 в точке $z=0; -\sin 1$ в точке $z=1.$

270.
$$1 - e^{-1}$$
 в точке $z = 0$; e^{-1} в точке $z = -1$.

271.
$$e^{-1} - 1$$
 в точке $z = 0$.

271.
$$e^{-1}$$
 в точке $z=0$.
272. $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!(2n+1)!}$ в точке $z=0$.

273. 0. 274. 0. 275.
$$(1 - 2e^{-1})\pi i$$
. 276. $2(1 - e^{-1})\pi i$. 277. $-\frac{1}{3}\pi i$. 278. 0. 279. $-\frac{4}{3}\ln 3 \cdot \pi i$. 280. $2\pi i$.

278. 0. 279.
$$-\frac{4}{3}\ln 3 \cdot \pi i$$
. 280. $2\pi i$.

281. $(\cos 1 + \sin 1 + i(\sin 1 - \cos 1))\frac{\pi}{2}$. 282. πi . 283. 0. 284. $2\pi i \frac{e^2}{3}$. 285. $-\pi^2 i$. 286. $2\pi i$. 287. $\frac{\sin 1 - 4\cos 1}{12}\pi i$. 288. $-\frac{\pi i}{\sqrt{2}}$. 289. 0.

290. $3\pi i$. 291. 0.

 $292. \ z = \infty$ - простой полюс.

293. $z = \infty$ - устранимая особая точка.

294. $z = \infty$ - существенная особая точка.

295. $z = \infty$ - устранимая особая точка.

296. $z = \infty$ - устранимая особая точка.

298. $2\pi i$. 299. 0. 300. 0. 301. $2\pi e i$. 302. $-\frac{\pi}{3}i$. 303. $2\pi i$. 304. $\frac{\pi}{\sqrt{2}}$. 305. $\frac{\pi}{ab(a+b)}$. 306. $\frac{3}{8}\pi$. 307. $\frac{(2n)!}{(n!)^2}2^{-2n}\pi$. 308. $-\frac{\pi}{27}$. 309. $\frac{\pi}{2(b^2-a^2)^3}\left(\frac{5b^2-a^2}{b^3}+\frac{b^2-5a^2}{a^3}\right)$. 310. $\frac{2}{3}\pi$. 311. $\frac{\pi}{n\sin\frac{2m+1}{n}\pi}$. 312. $\frac{2}{3}\pi$. 313. $\frac{\pi}{2}$. 314. $\frac{\pi}{16a^{3/2}b^{5/2}}$.

ЛИТЕРАТУРА

- 1. Привалов И.И. Введение в теорию функций комплексного переменного. М.: Наука, 1977.
- 2. Маркушевич А.И. Краткий курс теории аналитических функций. М.: Наука, 1978.
- 3. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1973.
- 4. Сидоров Ю.В., Федорюк М.В., Шабунин М.И. Лекции по теории функций комплексного переменного. М.: Наука, 1976.
- 5. Краснов М.Л., Киселёв А.И., Макаренко Г.И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М.: Наука, 1981.

Оглавление

ПРЕ	ЕДИСЛ	ЮВИЕ
1.	KOMI	ПЛЕКСНЫЕ ЧИСЛА
	1.1	Операции над комплексными числами
	1.2	Свойства арифметических операций
	1.3	Геометрическое изображение комплексных чисел 5
	1.4	Понятие о модуле и аргументе
		комплексного числа
	1.5	Теорема о модуле и аргументе
	1.6	Свойства модуля комплексных чисел 7
	1.7	Извлечение корня
2.	ФУНИ	КЦИИ КОМПЛЕКСНОГО
	ПЕРЕ	МЕННОГО
	2.1	Элементарные функции комплексного
		переменного
3.	ПРЕД	[ЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ
	KOMI	ПЛЕКСНЫХ ЧИСЕЛ. ПРЕДЕЛ
	ИНЕ	ПРЕРЫВНОСТЬ ФУНКЦИИ
	KOMI	ПЛЕКСНОГО ПЕРЕМЕННОГО
4.	ДИФО	ФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ
	KOMI	ПЛЕКСНОГО ПЕРЕМЕННОГО.
	УСЛО	ОВИЕ КОШИ-РИМАНА
	4.1	Правила дифференцирования функций комплексного
		переменного
5.	ИНТЕ	ГРИРОВАНИЕ ФУНКЦИЙ
	KOMI	ПЛЕКСНОГО ПЕРЕМЕННОГО
	5.1	Определение. Сведение к криволинейным интегралам.
		Свойства
	5.2	Теорема Коши
	5.3	Неопределённый интеграл
		в комплексной области
	5.4	Интегральная формула Коши
	5.5	Высшие производные. Неравенства Коши
	5.6	Теорема Лиувилля. Теорема Морера

6.	ПРЕД	СТАВЛЕНИЕ АНАЛИТИЧЕСКИХ	
	ФУНК	ХЦИЙ РЯДАМИ	48
	6.1	Ряд Тейлора функции аналитической в круге	48
	6.2	Свойства равномерно сходящихся функциональных ря-	
		ДОВ	50
	6.3	Теоремы единственности, нули аналитических функций	51
7.	РЯДЫ	І ЛОРАНА	58
	7.1	Разложение аналитических функций	
		в ряд Лорана	58
	7.2	Правильная и главная части ряда Лорана	60
	7.3	Единственность разложения в ряд Лорана	61
	7.4	Классификация особых точек	
		однозначной функции	67
	7.5	Поведение аналитических функций	
		в бесконечности	69
8.	TEOP:	ИЯ ВЫЧЕТОВ	74
	8.1	Вычет функции относительно изолированной особой	
		точки	74
	8.2	Вычисление вычетов относительно полюсов	75
	8.3	Вычет функции относительно бесконечно удаленной	
		точки	84
	8.4	Логарифмический вычет функции	87
	8.5	Приложение теории вычетов	88
Отве	Ответы		
Лите	ература	1	100