Arithmétique des congruences

Exemple:

 $\mathbb{Z}/6\mathbb{Z}$

-6	-5	-4	-3	-2	-1
0	1	2	3	4	5
6	7	8	9	10	11
12	13	14	15	16	17
18	19	20	21	22	23
24	25				

$$\mathbb{Z}/6\mathbb{Z} = \{0,1,2,3,4,5 \mod(6)\}$$

Attention: dans $\mathbb{Z}/6\mathbb{Z}$ le nombre 1 représente tous les entiers de sa colonne:-11, -5, 1, 7, 13, 19, 25,...

 \bigcirc n écrira 13 \equiv 1(6) ou 21 \equiv 15 \equiv 3(6), ...

Congruence:

• <u>Définition</u>: 2 nombres entiers **a** et **b** sont *congrus* modulo n (avec n un entier >1) ssi ils ont le même reste dans la division euclidienne par n.

on note $a \equiv b(n)$

conséquence : a-b est multiple de n

donc a-b=kn ou a=b+kn avec k un entier relatif

• Exemples:

```
28 \equiv 0(7); 131 \equiv 14(13); 131 \equiv -12(13)
```

Définition de Z/nZ

- Soit **n** un entier >**1**. On regroupe dans une même classe tous les entiers ayant le même reste dans la division euclidienne par **n**.
- Il y a donc **n-1** classes.
- On note a mod(n) les entiers de la forme a+kn avec k un entier relatif.
- $\mathbb{Z}/n\mathbb{Z} = \{0,1,2,...,n-1 \mod(n)\}$
- $\mathbb{E}x : \mathbb{Z}/2\mathbb{Z} = \{0,1 \mod(2)\}$
 - (1 et 3 sont deux représentants de la même classe de $\mathbb{Z}/2\mathbb{Z}$ car $1\equiv 3(2)$)

$\mathbb{Z}/6\mathbb{Z}$: addition et multiplication

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

L'opposé de 2(6) est 4(6) donc -2≡4(6)

Χ	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Eléments inversibles pour la multiplication dans $\mathbb{Z}/6\mathbb{Z}$:

$$(\mathbb{Z}/6\mathbb{Z})^* = \{1,5 \mod(6)\}$$

Calculs dans $\mathbb{Z}/n\mathbb{Z}$

 Pour effectuer a+b ou a×b dans Z/nZ on peut prendre des représentants quelconques de a ou de b.

dans $\mathbb{Z}/6\mathbb{Z}$:

$$3+5\equiv 8\equiv 2(6)$$
 ou $15+17\equiv 32\equiv 2(6)$

$$7 \times 5 \equiv 35 \equiv 5(6)$$
 ou $7 \times 5 \equiv 1 \times 5 \equiv 5(6)$

ou
$$7\times5\equiv7\times(-1)\equiv-7\equiv5(6)$$

Calculs dans $\mathbb{Z}/n\mathbb{Z}$

 Dans Z/nZ le résultat de ap ne dépend pas du choix du représentant de a.

$$7^{1234} \equiv 1^{1234} \equiv 1(6)$$

• Attention avec la division :

 $2a\equiv 2(6)$ n'équivaut pas à $a\equiv 1(6)$

car 2 n'est pas inversible dans $\mathbb{Z}/6\mathbb{Z}$ $(2 \times 3 \equiv 0(6))$

 $5a\equiv 2(6)$ équivaut à $a\equiv 10\equiv 4(6)$ (car l'inverse de 5 est 5 lui-même dans $\mathbb{Z}/6\mathbb{Z}$)

Calculs dans $\mathbb{Z}/n\mathbb{Z}$

Propriété :

un nombre entier \mathbf{a} de $\mathbb{Z}/n\mathbb{Z}$ admet un inverse \mathbf{a}^{-1} (tel que $\mathbf{a} \times \mathbf{a}^{-1} \equiv \mathbf{1}(\mathbf{n})$) ssi \mathbf{a} et \mathbf{n} sont premiers entre eux (leur seul diviseur commun est 1)

- On note $a \land n = 1$ si a et n sont premiers entre eux
- Plus généralement a∧b représente le pgcd de a et b (le plus grand commun diviseur)

Algorithme d'Euclide

• **Propriété** : a et b deux entiers,

 $\mathbf{a} \wedge \mathbf{b} = \mathbf{b} \wedge \mathbf{r}$ ou \mathbf{r} est le reste de la division euclidienne de \mathbf{a} par \mathbf{b}

```
Algorithme Euclide(a,b)
si b==0 retourner a
sinon retourner Euclide(b,r)
```

- En Python: r=a %b
- Euclide (27,33)=Euclide (33,27)=Euclide (27,6)=Euclide (6,3)=Euclide (3,0)=3 donc $27 \land 33$ =3

Euclide-Etendu

Identité de Bézout :

Pour tout couple d'entiers (a,b) il existe un couple d'entiers (u,v) tel que :

au+bv=a∧b

• Application :

si a \land b=1 alors u est l'inverse de a dans $\mathbb{Z}/b\mathbb{Z}$

• L'algorithme \mathbb{E} uclide- \mathbb{E} tendu(a,b) renvoie $a \wedge b$, u et v.

Euclide-Etendu(a,b) si b==0 retourner (a,1,0) sinon (d',u',v')=Euclide-Etendu(b,r) (d,u,v)=(d',v',u'-qv') / q est le quotient de a par b retourner (d,u,v)

entrées			sorties			
a	b	q	d	u	V	
47	25	1 (1	8	-15	
25	22	1	1	-7	8	
22	3	7	1	1	-7	
3	1	3	1	0	1	
1	0	X	1	1	0	

Exponentiation-modulaire(a,b,n)

```
/ cet algo calcule « rapidement » a^b mod(n) d \leftarrow 1 
 /b_{\beta-1} b_{\beta-2} .....b_1 b_0 est l'écriture en base 2 de b
```

Pour $i=\beta-1$ jusqu'à 0 en décrémentant de -1 :

 $d \leftarrow d \times d \mod(n)$

si b_i==1 faire : d ← d×a mod(n)

fin Si

Fin Pour

Retourner d

Exponentiation-modulaire

• Trace de l'algo pour 7²⁸mod(11):

İ	4	3	2	1	0
bi	1	1	1	0	0
d	7	2	6	3	9

Donc 7^{28} =9 mod(11)

Fonction d'Euler

- $\phi(n)$ est le nombre d'éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$.
- C'est aussi le nombre d'entiers positifs inférieurs à n et premiers avec n.
- Si p est premier on a donc $\varphi(p) = p-1$
- On admettra que si p et q sont premiers on a φ(p×q)=(p-1)(q-1)

Théorème d'Euler

• Pour tous les entiers $n \ge 1$ et a tels que $a \land n = 1$ $a^{\varphi(n)} \equiv 1 \mod(n)$

Période de x dans $(\mathbb{Z}/n\mathbb{Z})^*$

 $(\mathbb{Z}/n\mathbb{Z}$)* est l'ensemble des éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$ (il y en a $\varphi(n)$)

Pour $x \in (\mathbb{Z}/n\mathbb{Z})^*$ on pose:

$$\langle x \rangle = \{x^i(n), i \in \mathbb{N}\}$$

La période de x dans $(\mathbb{Z}/n\mathbb{Z})^*$ est notée $\omega(x)$ elle est égale au cardinal de <x> et vérifie

$$X^{\omega(x)}\equiv 1(n)$$

 $\omega(x)$ est un diviseur de $\varphi(n)$