Algebra, Number Theory and Combinatorics (2021)

Problem 1. (Individual round.) Let p be a prime number and \mathbb{Q}_p the field of p-adic numbers. Let $n \geq 1$ be an integer and $L = \mathbb{Q}_p(\zeta_{p^n})$, where ζ_{p^n} denotes a primitive p^n -th roots of unity. Determine the image of the norm map $N_{L/\mathbb{Q}_p} \colon L^{\times} \to \mathbb{Q}_p^{\times}$. You may use the inequality $[L : \mathbb{Q}_p] \leq (\mathbb{Q}_p^{\times} : N_{L/\mathbb{Q}_p}(L^{\times}))$ without proof in the case $n \geq 2$.

Problem 2. (Individual round.) Let k be a field and V a k-vector space of dimension n. Consider the group homomorphism:

$$\phi: \mathrm{GL}(V) \to \mathrm{GL}(\wedge^2 V), f \mapsto \wedge^2 f.$$

- (1) Determine the kernel of ϕ .
- (2) Show that ϕ induces a group homomorphism $\psi : SL(V) \to SL(\wedge^2 V)$. Express $det(\wedge^2 f)$ in terms of det(f).

Problem 3. (Individual round.) Let A be a rank 2 integer matrix of size 5×3 . Classify all possible groups of the form $\mathbb{Z}^5/A\mathbb{Z}^3$.

Solution to Problem 1. We will show that $N_{L/\mathbb{Q}_p}(L^{\times}) = p^{\mathbb{Z}}(1 + p^n\mathbb{Z}_p)$, where \mathbb{Z}_p denotes the ring of p-adic integers.

Let $\Phi(X) = (X^{p^n} - 1)/(X^{p^{n-1}} - 1)$ be the p^n -th cyclotomic polynomial. Then $\Phi(X+1)$ is an Eisenstein polynomial. Thus $\Phi(X)$ is the minimal polynomial of ζ_{p^n} , so that

$$N_{L/\mathbb{Q}_p}(1-\zeta_{p^n})=\Phi(1)=p.$$

We have $[L:\mathbb{Q}_p] = \phi(p^n) = p^n - p^{n-1}$. For p odd, the $\phi(p^n)$ -th power map on $1 + p\mathbb{Z}_p$ is the composition

$$1 + p\mathbb{Z}_p \xrightarrow{\log} p\mathbb{Z}_p \xrightarrow{\phi(p^n)} p^n\mathbb{Z}_p \xrightarrow{\exp} 1 + p^n\mathbb{Z}_p.$$

Thus

$$N_{L/\mathbb{Q}_p}(L^{\times}) \supseteq N_{L/\mathbb{Q}_p}(1+p\mathbb{Z}_p) = 1+p^n\mathbb{Z}_p.$$

For p=2, we may assume $n\geq 2$. The $\phi(2^n)$ -th power map on $1+4\mathbb{Z}_2$ is the composition

$$1 + 4\mathbb{Z}_2 \xrightarrow{\log} 4\mathbb{Z}_2 \xrightarrow{\phi(2^n)} 2^{n+1}\mathbb{Z}_2 \xrightarrow{\exp} 1 + 2^{n+1}\mathbb{Z}_2.$$

Thus

$$N_{L/\mathbb{O}_2}(L^{\times}) \supseteq N_{L/\mathbb{O}_2}(1+4\mathbb{Z}_2) = 1+2^{n+1}\mathbb{Z}_2.$$

It is easy to see that

$$1 + 2^{n} \mathbb{Z}_{2} = (1 + 2^{n+1} \mathbb{Z}_{2}) \prod 5^{2^{n-2}} (1 + 2^{n+1} \mathbb{Z}_{2})$$

and

$$5^{2^{n-2}} = N_{L/\mathbb{O}_2}(2+\zeta_4).$$

This finishes the proof of $N_{L/\mathbb{Q}_p}(L^{\times}) \supseteq p^{\mathbb{Z}}(1+p^n\mathbb{Z}_p)$ in all cases.

Let \mathcal{O}_L denote the integral closure of \mathbb{Z}_p in L. The residue field of L is \mathbb{F}_p , so that $N_{L/\mathbb{Q}_p}|_{\mathcal{O}_L^{\times}}$ is compatible with the $\phi(p^n)$ -th power map on \mathbb{F}_p^{\times} , which carries every element to 1. In other words, $N_{L/\mathbb{Q}_p}(L^{\times}) \cap \mathbb{Z}_p^{\times} = N_{L/\mathbb{Q}_p}(\mathcal{O}_L^{\times}) \subseteq 1 + p\mathbb{Z}_p$. This finishes the proof in the case n = 1. For $n \geq 2$, it suffices to apply the given inequality $(\mathbb{Q}_p^{\times}: N_{L/\mathbb{Q}_p}(L^{\times})) \geq \phi(p^n) = (\mathbb{Q}_p^{\times}: p^{\mathbb{Z}}(1 + p^n\mathbb{Z}_p))$.

Solution to Problem 2. (1) If n=2, then $\wedge^2 V \simeq k$ and $\phi(f) \in GL(k)$ is just the multiplication by det(f), hence the kernel is just $SL(V) = SL_2$. Now assume $n \geq 3$. By definition, $f \in Ker(\phi)$ if and only if $f(x) \wedge f(y) = x \wedge y$ for all $x, y \in V$. We claim x and f(x) are proportional: otherwise expand to a basis $e_1 = x, e_2 = f(x), e_3, ..., e_n$, then we have $e_2 \wedge f(e_3) = e_1 \wedge e_3$ which is not possible as $e_i \wedge e_j$ is a basis of $\wedge^2 V$. Hence x and f(x) are proportional for all $x \in V$. This implies that f(x) = ax for some $a \in k$. Then $f(x) \wedge f(y) = a^2 x \wedge y = x \wedge y$, thus $a = \pm 1$. So the kernel is just $\pm Id$.

(2) First we show the case for elementary matrices: Take a basis e_1, \dots, e_n of V and consider the endomorphism $f \in GL(V)$ defined by $f(e_i) = e_i + b\delta_{1,i}e_2$ for all i, where b is a constant. We have $(\wedge^2 f)(e_1 \wedge e_j) = e_1 \wedge e_j + be_2 \wedge e_j$ for all $j \geq 2$, and for $2 \leq i < j$, $(\wedge^2 f)(e_i \wedge e_j) = e_i \wedge e_j$. Thus $\wedge^2 f$ is lower triangular in the basis of $e_i \wedge e_j$ with 1 on the diagonal, which gives $det(\wedge^2 f) = 1$.

Recall that any matrix of determinant 1 is a product of elementary matrices, hence by (ii) ϕ sends SL(V) to $SL(\wedge^2V)$. Take t in an extension of k, such that $t^n det(f) = 1$. Then det(tf) = 1 and

$$1 = \det(\wedge^{2}(tf)) = \det(t^{2} \wedge^{2} f) = (t^{2})^{\binom{n}{2}} \det(\wedge^{2} f),$$

which gives $det(\wedge^2 f) = t^{-n(n-1)} = det(f)^{n-1}$.

Solution to Problem 3. We can change Z bases of Z^5 and Z^3 to turn A in to a "canonical form". Equivalently, we can do the usual row-column reduction on A. Since A rank 2 means that AZ^3 is a rank 2 subgroup of Z^5 , which means the free part of G is Z^3 . So, in the reduced form A has 3 zero rows, and 2 positive diagonal entries of all possibilities. We can arrange so that

$$G \simeq Z/a \oplus Z/b \oplus Z^3$$
 with $a \ge b > 0$.

Finally list all possible non-isomorphic torsion part $Z/a \oplus Z/b$, by factorizing a,b. Possible follow up: Generalize this as follows: A is rank k of size $m \times n$ with m > n > k. Classify all possible abelian groups of the form $G = \mathbb{Z}^m/A\mathbb{Z}^n$. The same method would likewise yield $G \simeq Z/a_1 \oplus \cdots \oplus Z/a_{n-k} \oplus Z^{m-k}$ with $a_1 \geq a_2 \geq \cdots \geq a_{n-k} > 0$.