JEE Chapter 19 CD

AI24BTECH11028 - Ronit Ranjan

C. MCQ WITH ONE CORRECT ANSWER

1. A solution of the differential equation (1999 -2 Marks)

$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0 \text{ is}$$

- (a) y = 2
- (b) y = 2x 4(d) $y = 2x^2 - 4$
 - 2. If $x^2 + y^2 = 1$, then (2000S)
- (a) $yy'' 2(y')^2 + 1 = 0$ (b) $yy'' + (y')^2 + 1 = 0$ (b) $yy'' + (y')^2 + 1 = 0$ (c) $yy'' + (y')^2 + 1 = 0$
- 3. If y(t) is a solution of $(1+t)\frac{dy}{dt} ty = 1$ and y(0) = -1, then

y(1) is equal to

- then $y(\frac{\pi}{2})$
- (a) $\frac{1}{3}$ (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) 1
- 5. If y = y(x) and it follows the relation $x \cos y +$ (2005S)
- $y \cos x = \pi$ then y''(0) =(a) 1 (b) -1
- (b) $\pi 1$ (d) $-\pi$
- 6. The solution of primitive integral equation $(x^2 + y^2) dy = xy dx$ is y = y(x). If y(1) = 1 and $\dot{x}_0 = e$, then x_0 is equal to (2005S)
- (a) $\sqrt{2(e^2-1)}$ (b) $\sqrt{2(e^2+1)}$ (b) $\sqrt{3e}$ (d) $\sqrt{\frac{e^2+1}{2}}$
- 7. For the primitive integral equation $ydx+y^2dy =$ $x \, dy$; $x \in \mathbb{R}$, y > 0, y = y(x), y(1) = 1, then y(-3) is (2005S)
- (a) 3 (b) 2
- (d) 5(b) 1
- 8. The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ determines a family of circles with (2005S)
- (a) variable radii and a fixed centre at (0,1)
- (b) variable radii and a fixed centre at (0, -1)

- (c) fixed radius 1 and variable centres along the x-axis
- (d) fixed radius 1 and variable centres along the y-axis
- 9. The function y = f(x) is the solution of the differential equation

$$\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^4 + 2x}{\sqrt{1 - x^2}}$$

in (-1, 1) satisfying f(0) = 0. Then

$$\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) \, dx \text{ is}$$

- (a) $\frac{\pi}{3} \frac{\sqrt{3}}{2}$ (b) $\frac{\pi}{3} \frac{\sqrt{3}}{4}$ (b) $\frac{\pi}{6} \frac{\sqrt{3}}{4}$ (d) $\frac{\pi}{6} \frac{\sqrt{3}}{2}$

(a)
$$-\frac{1}{2}$$
 (b) $e + \frac{1}{2}$ (c) $\frac{\pi}{6} - \frac{\sqrt{3}}{4}$ (d) $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$ (e) $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$ (f) $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$ (f) $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$ (g) $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$ (h) $\frac{\pi}{6} -$

- $y(0) = \sqrt{7}$, then y(256) =
- (a) 3 (b) 9
- (b) 16 (d) 80
- D. MCQ WITH ONE OR MORE THAN CORRECT ANSWER
- 1. The order of the differential equation whose general solution is given $(C_1 + C_2)\cos(x + C_3) - C_4e^{x+C_5}$, where C_1, C_2, C_3, C_4, C_5 are arbitrary constants, is (1998 -2 Marks)
- (a) 5 (b) 4
- (b) 3 (d) 2
- 2. The differential equation representing the family of curves $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter, is of (1999 - 3 Marks)
- (b)order 2 (a) order 1
- (b) degree 3 (d)degree 4
- 3. A curve y = f(x) passes through (1, 1) and at P(x, y), the tangent cuts the x-axis and y-axis at A and B respectively such that BP : AP = 3 : 1, then

- (a) equation of curve is xy' 3y = 0
- (b) normal at (1, 1) is x + 3y = 4
- (c) curve passes through $(2, \frac{1}{8})$ (d) equation of curve is xy' + 3y = 0
- 4. If y(x) satisfies the differential equation y' $y \tan x = 2x \sec x$ and y(0) = 0, then
- (a) $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}}$ (b) $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$ (c) $y\left(\frac{\pi}{3}\right) = \frac{\pi^2}{3\sqrt{3}}$ (d) $y\left(\frac{\pi}{3}\right) = \frac{4\pi}{3} + \frac{2\pi^2}{3\sqrt{3}}$
- 5. A curve passes through the point $(1, \frac{\pi}{6})$. Let the slope of the curve at each point (x, y) be $\frac{y}{x}$ + $\sec\left(\frac{y}{x}\right)$, x > 0. Then the equation of the curve is
- (a) $\sin\left(\frac{y}{x}\right) = \log x + \frac{1}{2}$ (b) $\csc\left(\frac{y}{x}\right) = \log x + 2$ (b) $\sec\left(\frac{2y}{x}\right) = \log x + 2$ (d) $\cos\left(\frac{2y}{x}\right) = \log x + \frac{1}{2}$