

CIRCUITOS ELECTRÓNICOS II - 66.10 DISEÑO DE CIRCUITOS ELECTRÓNICOS - 86.10

Trabajo práctico final

Diseño y construcción de un amplificador clase G - mediciones

Alumnos: Docentes:

LUNA Diego Padrón N° 75451 Ing. BERTUCCIO José Alberto

diegorluna@gmail.com

Ing. MARCHI Edgardo

NEUMARKT FERNÁNDEZ Leonardo Padrón N° 97471 Ing. BULACIO Matías

leoneu928@gmail.com Ing. D'ANGIOLO Federico

Rizzo Gonzalo Gabriel Padrón N° 96772 Ing. GAMEZ Pablo

gonzalorizzo95@gmail.com

12 de Diciembre de 2019

Circuitos electrónicos II - 66.10 Diseño de circuitos electrónicos - 86.10

Trabajo práctico final

Índice

Ín	dice	Ι
1.	Consideraciones previas al diseño	1
	1.1. Objetivo y requerimientos de usuario	1
	1.2. Especificaciones	1
2.	Simulaciones	2
	2.1. Polarización	2
	2.2. Simulación de ganancia de lazo	3
	2.3. Ancho de banda de potencia	4
	2.4. Impedancias de entrada y salida	6
	2.5. THD	8
3.	Observaciones y conclusiones	10
4.	Bibliografía	11
\mathbf{A}	péndices	13
A	. Hojas de datos	13
	A.1. BD135	13
	A.2. BD136	13
	A.3. BC556	13
	A.4. MJL21193	13
	A.5. MJL21194	14
	A.6. 1N4148	14
	A.7. Metal film resistor	14
	A.8. Carbon film resistor	14
	A.9. Ceramic capacitor	14
	A.10. Electrolitic Aluminum capacitor	15

Circuitos electrónicos II - 66.10 Diseño de circuitos electrónicos - 86.10

Trabajo práctico final

Índice de figuras

2.1.	Circuito simulado junto con los valores de polarización	:
2.2.	Ganancia de lazo simulado	4
2.3.	Ancho de banda de potencia simulado \dots	
2.4.	Valores de impedancia de entrada mediante simulación	6
2.5.	Valores de impedancia de salida mediante simulación	7
2.6.	THD en función de la frecuencia según la simulación	8
2.7.	THD en función de la potencia según la simulación	ć

Circuitos electrónicos II - 66.10 Diseño de circuitos electrónicos - 86.10

Trabajo práctico final

ź 1.	•		
Indice	de	cuac	iros

1. Consideraciones previas al diseño

1.1. Objetivo y requerimientos de usuario

El objetivo del presente trabajo es armar un circuito amplificador que amplifique una señal de audio que será reproducida en un Bafle (asumimos respuesta resistiva pura en todo el ancho de banda). Debe proveer al usuario con una buena calidad de sonido (algo subjetivo, no obstante acá solo se consideran medidas reales) con volumen alto, sin consumir mucha más energía de la necesaria, ni ser muy grande y pesado. Es decir, debe tener baja distorsión (THD), alta relación señal-ruido (SNR), eficiencia razonable y buena potencia máxima de salida.

1.2. Especificaciones

A continuación se enumeran las especificaciones que fueron tenidas en consideración para la implementación del amplificador de audio.

• Máxima Potencia de Salida: $\geq 40 \text{W} RMS@8\Omega$

ullet Salida clase ${f G}$

• THD: < 0.1%@1 kHz, < 0.2%@10 kHz, a $40WRMS@8\Omega$

• Slew-Rate: $> 5 \frac{V}{\mu S}$

• Impedancia de entrada: $> 21 \mathrm{k}\Omega$

• Sensibilidad: 1,1V pico @8 Ω

 $\bullet\,$ Ancho de banda: 10Hz $\longrightarrow 50 \mathrm{kHz}$

 $\bullet\,$ Factor de amortiguamiento: >100

• Ancho de banda de potencia: > 30kHz

• Alimentación:

• Baja tensión: ±15V nominal (desde transformador de 10V + 10V), ripple máximo 10%

• Alta tensión: $\pm 35 V$ nominal (desde fuente switching implementada de 15 V + 15 V más fuente de alimentación de 25 V + 25 V), ripple máximo 10 %

• Máxima excursión: 25V

2. Simulaciones

2.1. Polarización

Se simularon los valores en reposo de los transistores de la etapa amplificadora clase G, junto con la máxima potencia disipada en cada uno. Los resultados se muestran en el cuadro [2.1.1]:

Transistor	V_{BEQ}	V_{CEQ}	I_{CQ}	P_{max}
Q1 (BC546C)	$612 \mathrm{mV}$	33.87V	$549 \mathrm{uA}$	$18.6 \mathrm{mW}$
Q2 (BC556B)	$-610 \mathrm{mV}$	-1.31V	$549 \mathrm{uA}$	$722 \mathrm{uW}$
Q3 (BC546B)	$631 \mathrm{mV}$	31.78V	$1.1 \mathrm{mA}$	35 mW
Q4 (BC556B)	$-610 \mathrm{mV}$	33.78V	$549 \mathrm{uA}$	$334 \mathrm{mW}$
Q5 (BC546B)	$612 \mathrm{mV}$	34.6V	$549 \mathrm{uA}$	$19 \mathrm{mW}$
Q6 (BC546B)	$693 \mathrm{mV}$	28.8V	$9.71 \mathrm{mA}$	$280 \mathrm{mW}$
Q7 (BC556B)	-557 mV	30V	$170 \mathrm{uA}$	$5 \mathrm{mW}$
Q8 (BC556B)	$-669 \mathrm{mV}$	30.71V	$9.57 \mathrm{mA}$	294 mW
Q9 (BD135)	$676 \mathrm{mV}$	2.96V	$9.40 \mathrm{mA}$	$28\mathrm{mW}$
Q10(BD136)	-722 mV	13.9V	15 mA	$208\mathrm{mW}$
Q11(BD136)	10.95 V	20.32V	31 pA	$1.1 \mathrm{nW}$
Q12(BD135)	-10.93V	20.32V	31 pA	$1.1 \mathrm{nW}$
Q13(BD135)	$693 \mathrm{mV}$	13.88V	$18.9 \mathrm{mA}$	$263 \mathrm{mW}$
Q14(MJL21194)	$1.04 \mathrm{nV}$	20.32V	26 pA	522 pW
Q15(MJL21194)	722 mV	14.6V	714 mA	10.43W
Q16(MJL21193)	$-678 \mathrm{mV}$	14.6V	718 mA	10.49W
Q17(MJL21193)	$-986 \mathrm{mV}$	20.32V	1.76 pA	$459 \mathrm{pW}$
Q18(2N3906)	-72 mV	1.47V	1.47 pA	$2.2 \mathrm{pW}$
Q19(2N3904)	$72 \mathrm{mV}$	1.48V	1.58 pA	$2.3 \mathrm{pW}$

Cuadro 2.1.1: Punto de reposo de los transistores y máxima potencia disipada en operación

En la figura [2.1] se pueden verificar los resultados de la simulación con las referencias en el circuito pertinente.

Figura 2.1: Circuito simulado junto con los valores de polarización

2.2. Simulación de ganancia de lazo

En la figura [2.2] se puede observar la ganancia de lazo del circuito, simulado a distintas frecuencias. A su vez, se especifica el margen de ganancia y de fase, para verificar la correcta estabilización del circuito. Obteniéndose de este modo:

- Margen de ganancia: 29,21dB
- Margen de fase: $86,12^{\circ}$

Figura 2.2: Ganancia de lazo simulado

2.3. Ancho de banda de potencia

En la figura [2.3], se observa el resultado de la simulación del ancho de banda de potencia simulado.

Obtenemos en el circuito un ancho de banda de potencia de 97,89kHz con frecuencias de corte:

- $f_l = 22,34Hz$
- $f_h = 97,84kHz$

Figura 2.3: Ancho de banda de potencia simulado

2.4. Impedancias de entrada y salida

Figura 2.4: Valores de impedancia de entrada mediante simulación

Figura 2.5: Valores de impedancia de salida mediante simulación

2.5. THD

Figura 2.6: THD en función de la frecuencia según la simulación

Figura 2.7: THD en función de la potencia según la simulación

3. Observaciones y conclusiones

4. Bibliografía

Referencias

[1] Analysis and Design of Analog Integrated Circuits (3rd Edition)

Author: Paul R. Gray Author: Robert G. Meyer

Publisher: John Wiley & Sons, Inc.; 3rd Edition (Janury 15, 1993)

Copyright: © 1993, John Wiley & Sons, Inc.

ISBN 10: 0471574953

Website: Analysis and Design of Analog Integrated Circuits (3rd Edition)

[2] Analysis and Design of Analog Integrated Circuits (4th Edition)

Author: Paul R. Gray Author: Paul J. Hurst Author: Stephen H. Lewis Author: Robert G. Meyer

Publisher: John Wiley & Sons, Inc.; 4th Edition (2001)

Copyright: © 2001, John Wiley & Sons, Inc.

ISBN 10: 0471321680 ISBN 13: 9780471321682

Website: Analysis and Design of Analog Integrated Circuits (4th Edition)

[3] Analysis and Design of Analog Integrated Circuits (5th Edition)

Author: Paul R. Gray Author: Paul J. Hurst Author: Stephen H. Lewis Author: Robert G. Meyer

Publisher: John Wiley & Sons, Inc.; 5th Edition (2009)

Copyright: © 2001, John Wiley & Sons, Inc.

ISBN 10: 0470245999 ISBN 13: 9780470245996

Website: Analysis and Design of Analog Integrated Circuits ($5^{
m th}$ Edition)

[4] Circuitos microelectrónicos (4^{ta} Edición) español

Author: Adel. S. Sedra Author: Kenneth C. Smith

Publisher: Oxford, University press; 4^{ta} Edición (2001) Copyright: © 1999, Oxford, University press México.

Original Copyright: 0 1998, 1991, 1987, 1982, Oxford, University press Inc.

ISBN 10: 01951166310

Website: Circuitos microelectrónicos (4^{ta} Edición) español

[5] Microelectronic circuits (5th Edition)

Author: Adel. S. Sedra Author: Kenneth C. Smith

Publisher: Oxford, University press; 5th Edition (2004)

Copyright: © 2004, 1998, 1991, 1987, 1982, Oxford, University press Inc.

ISBN 10: 0195142527

Website: Microelectronic circuits (5th Edition)

[6] AUDIO POWER AMPLIFIER DESIGN HANDBOOK (5th Edition)

Author: Douglas Self

Publisher: Elsevier Ltd; 5th Edition (2009)

Copyright: © 2009, Douglas Self. Published by Elsevier Ltd. All rights reserved.

ISBN 13: 9780240521626

Website: AUDIO POWER AMPLIFIER DESIGN HANDBOOK (5th Edition)

Apéndices

A. Hojas de datos

A.1. BD135

BD135

NPN Plastic Medium-Power Silicon Transistors

Manufacturer page: https://www.onsemi.com/PowerSolutions/product.do?id=BD135

Manufacturer Datasheet: https://www.onsemi.com/pub/Collateral/BD135-D.PDF

A.2. BD136

BD136

PNP Plastic Medium-Power Silicon Transistors

Manufacturer page: https://www.onsemi.com/PowerSolutions/product.do?id=BD136

Manufacturer Datasheet: https://www.onsemi.com/pub/Collateral/BD136G-D.PDF

A.3. BC556

BC556

PNP Silicon Transistor

Manufacturer page: https://www.onsemi.com/PowerSolutions/product.do?id=BC556

Manufacturer Datasheet: https://www.onsemi.com/pub/Collateral/BC556BTA-D.pdf

A.4. MJL21193

MJL21193

PNP Bipolar Power Transistor

 $Manufacturer\ page:\ https://www.onsemi.com/PowerSolutions/product.do?id=MJL21193$

Manufacturer Datasheet: https://www.onsemi.com/pub/Collateral/MJL21193-D.PDF

1^{er} c. 2019

A.5. MJL21194

MJL21194

NPN Bipolar Power Transistor

Manufacturer page: https://www.onsemi.com/PowerSolutions/product.do?id=MJL21194

Manufacturer Datasheet: https://www.onsemi.com/pub/Collateral/MJL21193-D.PDF

A.6. 1N4148

NE5532

 $Small\ signal\ diode$

Manufacturer page: https://www.onsemi.com/PowerSolutions/product.do?id=1N4148

Manufacturer Datasheet: https://www.onsemi.com/pub/Collateral/1N914A-D.pdf2

A.7. Metal film resistor

Metal film resistor

Metal film resistor

Manufacturer page: https://www.vishay.com/resistors-fixed/metal-film/tab/doclibrary/

A.8. Carbon film resistor

Carbon film resistor

Carbon film resistor

Manufacturer page: http://www.vishay.com/resistors-fixed/carbon-film/tab/doclibrary/

A.9. Ceramic capacitor

Ceramic capacitor

Ceramic disk capacitor

Manufacturer page: https://www.vishay.com/capacitors/ceramic/disc/

A.10. Electrolitic Aluminum capacitor

$Electrolitic\ capacitor$

 $Electrolitic\ aluminum\ capacitor$

Manufacturer page: https://www.vishay.com/capacitors/aluminum/