

MAY 08, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.81wgby723vpk/v1

Protocol Citation: C. Alexander Boecker, Erika L.F. Holzbaur 2023. Primary neuron culture for live imaging of axonal cargoes. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.81wgby723vpk/v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Oct 11, 2022

Last Modified: May 08,

2023

PROTOCOL integer ID: 71157

Keywords: Dissection, Mouse, Primary neuron, Live-

imaging

Primary neuron culture for live imaging of axonal cargoes

C. Alexander Erika L.F. Boecker¹, Holzbaur^{2,3}

¹Department of Neurology, University Medical Center Goettingen, 37077 Goettingen, Germany;

²Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;

³Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA

Dan Dou

ABSTRACT

This protocol describes the preparation and culture of mouse primary cortical neurons for live-imaging experiments. Cortices were dissected from mouse embryos at day 15.5. Cortical neurons were isolated by digestion with 0.25% Trypsin and trituration with a serological pipette. Neurons were plated on glass-bottom imaging dishes in Attachment Media. After 5 hours in culture, Attachment Media was replaced with Maintenance Media, and AraC was added on the next day to prevent glia cell proliferation. Neurons were transfected 16-24 hours before imaging using Lipofectamine 2000.

ATTACHMENTS

547-1143.pdf

MATERIALS

Materials:

Dissecting microscope

Equipment	
Dumont #5 - Mirror Finish Forceps	NAME
Forceps	TYPE
Durmont	BRAND

11251-23 SKU

https://www.finescience.com/en-US/Products/Forceps-Hemostats/Dumont-Forceps/Dumont-5-Mirror-Finish-Forceps/11251-23

Micro spring scissors (Fine Science Tools)

Equipment	
Countess 3 FL Automated Cell Counter	NAME
Automated Cell Counter	TYPE
Thermofisher scientific	BRAND
AMQAF2000	SKU
https://www.thermofisher.com/th/en/home/life-science/cell-analysis/cell-analysis-instruments/automated-cell-counters/models/countess-3-fl.html	

Equipment	
35 mm Dish No. 1.5 Coverslip 20 mm Glass Diameter Uncoated NAME	
Coverslip	TYPE
Mattek	BRAND
P35G-1.5-20-C	SKU
https://www.mattek.com/store/p35g-1-5-20-c-case/	LINK

- 15 mL conical tubes
- 10 cm cell culture dish

Reagents:

LINK

- Poly-L-lysine hydrobromide Merck MilliporeSigma (Sigma-Aldrich) Catalog #p1274
- 10X HBSS Thermo Fisher Scientific Catalog #14185-052
- HEPES Buffer Thermo Fisher Scientific Catalog #15630-
- Trypsin (2.5%), no phenol red **Thermo Fisher Catalog** #15090046
- MEM Thermo Fisher Catalog #11095072
- Morse serum Thermo Fisher Scientific Catalog #16050122
- 45% D-()-Glucose Merck MilliporeSigma (Sigma-Aldrich) Catalog #G8769
- Sodium Pyruvate (100 mM) Thermo Fisher Scientific Catalog #11360070
- Trypan Blue Stain (0.4%) for use with the Countess™ Automated Cell Counter Thermo Fisher Catalog #T10282
- Neurobasal™ Medium Thermo Fisher Catalog #21103049
- B-27™ Supplement (50X), serum free Gibco Thermo Fisher Catalog #17504044
- GlutaMAX™ Supplement Thermo Fisher Catalog #35050061
- Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific Catalog #15140122
- Cytosine β-D-arabinofuranoside hydrochloride (AraC) Merck MilliporeSigma (Sigma-Aldrich) Catalog #C6645
- Lipofectamine™ 2000 Transfection Reagent Thermo Fisher Scientific Catalog #11668019
- Hibernate E Low Fluorescence Imaging Medium (BrainBits, Cat# HELF)

SAFETY WARNINGS

Take necessary precautions with sharp objects during dissection.
Follow institutional recommendations for disposal of animal tissue and biohazardous materials.

Day before dissection

- 1 Coat glass-bottom imaging dishes with PLL.
- Hydrate A 100 mg PLL (Sigma) in A 50 mL [M] 0.1 Molarity (M) borate buffer,
- 1.2 Store PLL stock solution ([M] 2 mg/mL) in A 1 mL aliquots at 3 -80 °C
- 1.3 On the day before neuron dissection, dilute PLL in ddH $_2$ 0 1:20 to a final concentration of [M] 100 μ g/ml .
- 1.4 Add 1 mL PLL to each glass-bottom imaging dish (MatTek) and incubate

 Overnight at 37 °C.

1.5 Only coat the glass center with PLL.

Note

For easy handling, we find it helpful to place imaging dishes in 10 cm or 15 cm cell culture dishes.

- 2 Prepare HBSS, attachment media and maintenance media.
- 2.1 For A 500 mL 1x HBSS, combine

А	В
10 x HBSS	50 mL
1 M HEPES	5 mL
ddH2O	up to 500 mL
Filter-sterilize	

- 2.2 Store 1x HBSS at \$\mathbb{E} 4 \cdot \mathbb{C}\$ and use within one month.
- 2.3 For 4 50 mL attachment media, combine

A	В
Heat-inactivated horse serum	5 mL
100 mM Sodium pyruvate	500 μL
45% Glucose	660 µL
MEM	up to 50 mL

2.4 For 4 50 mL maintenance media, combine

A	В
GlutaMAX	500 μL
Penicillin/Streptomycin	500 μL
45% Glucose	660 µL
B-27	1 mL
Neurobasal	Up to 50 mL

2.5 Store attachment media and maintenance media at 4 °C

Note

Maintenance Media should be used within 7 days. Attachment media can be kept at $4 \, ^{\circ}\text{C}$ for 3-4 weeks.

Dissection of cortical neurons

In the morning of the day of dissection, wash PLL-coated imaging dishes twice with sterile ddH_2O .

3.1 Add <u>A 2 mL</u> attachment media per imaging dish and leave dishes at <u>\$ 37 °C</u> in cell culture incubator.

3.2

Warm required amount of attachment media and 1x HBSS (4.5 mL for one dissection) in water bath.

3.3 Aliquot maintenance media into 10 cm cell culture dish to equilibrate in cell culture incubator.

- 3.4 Let 2.5% trypsin aliquots thaw at \$\ \mathbb{F}\$ Room temperature
- **4.1** Using a dissecting microscope, remove meninges from brain hemispheres with fine forceps.

- **4.2** Isolate cortices using fine forceps and small spring scissors.
- 4.3 Transfer dissected cortices into a 15 mL conical tube filled with ∠ 5 mL HBSS and keep

 ♣ On ice until all cortices are collected.

Note

Use clean and sterile equipment for all dissection steps to prevent bacterial contamination of neuron cultures.

Note

We find that using ice-cold HBSS helps preventing the tissue from getting sticky during the dissection. If HBSS gets too warm during the dissection, replace with fresh cold HBSS.

5

Note

Perform all following steps under a sterile tissue culture hood.

Once all cortices are collected, remove HBSS from 15 mL conical tube and add warm (\$ 37 °C) HBSS and $$\bot$ 0.5 mL 2.5% trypsin.

5.1 After adding trypsin, invert the tube to mix.

5.2 Then incubate for 600:10:00 in a 8 37 °C water bath.

6 Remove HBSS-trypsin solution with a 5 mL serological pipette.

6.1 Wash thrice with A 7 mL attachment media.

Add attachment media, then wait until cortex tissue has settled at the bottom of the conical and remove attachment media with a serological pipette to repeat the washing step.

Note

We do not recommend using a vacuum aspirator for removing HBSS and attachment media, instead use a 10 mL serological pipette.

7 Add <u>A 5 mL</u> attachment media after the last washing step.

7.1 Triturate cortices by pipetting up and down forcefully with a 5 mL serological pipette 10 – 15 times.

Note

Trituration is complete when no tissue clumps are visible and attachment media turns turbid.

7.2 Let media with triturated tissue settle for 00:01:00 - 00:02:00

3m

7.3 Transfer top 4.5 mL to a new tube to remove any remaining cell clumps.

8 Mix $\underline{\mathbb{Z}}$ 10 μ L cell suspension with $\underline{\mathbb{Z}}$ 10 μ L 0.5% trypan blue in an Eppendorf tube.

8.1 Count cells using a hemocytometer or an automated cell counter.

9.1 For transfection and live-imaging, plate 200,000 cells per live-imaging dish.

9.2 Place imaging dishes in \$\ 37 \circ\$ cell culture incubator.

Note

10 After 03:00:00 - 04:00:00 use an aspirator to remove all attachment media.

_.

10.1 Replace with 🚨 2 mL pre-equilibrated maintenance media per imaging dish.

Note

Cells should be attached to the glass-bottom dish at this point. Maintenance media must always be pre-equilibrated to $5\% \text{ CO}_2$ in \$ 37 °C incubator before adding to cells.

Neuronal cell culture

On the day following the dissection, dilute AraC to [M] 10 micromolar (µM) in maintenance

11

media and bring to \$\ \bigs_ 37 \cdot C \\.

11.1

12

Every 3-4 days, remove \square 600 μ L maintenance media from each dish and replace with T50 μ L fresh, pre-equilibrated maintenance media.

Note

Cultured neurons are sensitive. Try to keep time outside the cell culture incubator to a minimum. If possible, use a separate incubator for primary neurons and keep openings to a minimum.

Transfection

16h 55m

13 Transfect primary neurons on DIV6-7, ~ (5) 16:00:00 before live-imaging.

16h

Replace conditioned media with fresh, pre-equilibrated maintenance media (Z 2 mL pe imaging dish).

Save old media = conditioned media in a 10 cm cell culture dish at culture incubator.

- 15 For each imaging dish, prepare two tubes with transfection reagents.

15.2

In tube 2, add Lipofectamine 2000 to 🔼 100 µL Neurobasal medium.

Note

It is important to use non-supplemented Neurobasal and not maintenance medium to set up the transfection reaction.

Note

The amount of Lipofectamine 2000 and plasmid DNA depends on the specific construct(s) used and may require optimization. We find that for transfection with one plasmid, \mathbb{Z} 0.4 μg DNA and \mathbb{Z} 1 μL Lipofectamine 2000 works well in most cases.

Combine contents of tube 1 + 2 and mix by gently pipetting up and down 4-5 times.

16.1 Incubate mix at \$\mathbb{S}\$ Room temperature for \infty 00:10:00

10m

17 Add Lipofectamine-DNA mix to imaging dishes dropwise.

17.1 Incubate for 00:45:00 at 37 °C in cell culture incubator.

45m

- 18 Remove all transfection media and replace with conditioned media collected earlier.
- **18.1** Return cells to incubator and image on the next day.

