Whole genome alignment in High Performance Computing environments

Julio César García Vizcaíno Directores. Antonio Espinosa, Juan Carlos Moure

Caos

Computer Architecture & Operating Systems Department Universität Autónoma de Barcelona

25 de mayo de 2012

Contents

- 1 Problem definition
- 2 Objectives
- 3 Distributed suffix tree
- Distributed and paralle
- **5** Conclusions

UMB

Search of Maximal Exact Matches

Genome alignment: search of Maximal Exact Matches

UMB

Search of Maximal Exact Matches

Ways of finding exact matches

Brute Force (3 GB)

BANANA BAN ANA NAN ANA

Naive

Slow & Easy

Suffix Array (>15 GB)

5 A\$

1 ANANA\$ 0 BANANA\$

2 NANA\$

Vmatch, PacBio Aligner
Binary Search

Suffix Tree (>51 GB)

MUMmer, MUMmerGPU

Tree Searching

Hash Table (>15 GB)

BLAST, MAQ, ZOOM, RMAP, CloudBurst

Seed-and-extend

Traversal of suffix tree

General objective

General objective

Speed up the search of exact matches (distributed) and adapt it to application MUMmer for its execution in HPC environments.

Specific objective

- To have a data structure, efficient usage of memory and processor, that allows a quick search of maximal exact matches.
 - Save relevant information for the search of matches.
 - Be able to nimbly check the data structure.

Naive solution

Split sequence

Naive solution cont.

Distributed suffix tree

- New variant of the suffix tree.
- Handle of large strings efficiently.
- Based on linear time construction algorithm for subtrees of a suffix tree.
- It tackles the memory bottleneck problem by constructing these subtrees indepently and in parallel.

Distributed suffix tree

UMB

Traversal of a suffix tree

Every suffix of query (pointer) is searched in suffix tree. By using suffix links we jump to other depth of suffix tree and we avoid to check x characters.

Traversal of a suffix tree

The jumps in suffix tree are done while checking the parent node after finishing the last match.

Suffix links

The location of suffix links are made during suffix tree construction.

Suffix links

The location of suffix links are more likely to be in deeper regions of suffix tree.

Access to suffix tree

Finding of maximal matches (path from root) are marked in suffix tree. Improved detection of maximal matches.

Suffix tree: example

Standard suffix tree of aacacccacacacacaaa\$ with standard suffix links.

Distributed suffix tree

The SSTs for aacaccacacacacacacaaa\$ with their respective root nodes labelled r_{aa} , r_{ac} , r_{ca} , r_{cc} , $r_{a\$}$ and $r_{\$}$.

Distributed and parallel search of maximal matches

Conclusions

First year

It has been adapted a data structure which can be deployed in HPC environments.

It may be used to implement parallel and distributed techniques for search of maximal matches.

This data structure is able of handling large input sequences to search maximal exact matches.

Future work

Perform massive searchs of maximal matches: design and test a parallel and distributed algorithm to perform the search of maximal matches in HPC environments.

Whole genome alignment in High Performance Computing environments

Julio César García Vizcaíno Directores. Antonio Espinosa, Juan Carlos Moure

caos

Computer Architecture & Operating Systems Department Universität Autónoma de Barcelona

25 de mayo de 2012

