

Taller 06, Productos notables Álgebra 8°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

Nombre:	_Curso:	Fecha:

Repaso

En las pasadas clases hemos visto como hacer determinar el cuadrado de un binomio y como hacer una suma por una diferencia. Recordemos que:

Cuadrado de un binomio

$$(a \pm b)^2 = a^1 \pm 2ab + b^2$$

Ejemplo:

$$(3x + 2y)^{2} = (3x)^{2} + 2(3x)(2y) + (2y)^{2}$$
$$= 9x^{2} + 12xy + 4y^{2}$$

Suma por diferencia

$$(a+b)(a-b) = a^2 - b^2$$

Ejemplo:

$$(3x+4y)(3x-4y) = (3x)^2 - (4y)^2$$
$$= 9x^2 - 16y^2$$

Otros productos notables

Continuando con nuestro aprendizaje acerca de los productos notables tenemos los siguientes:

Cubo de un binomio

Cubo de una suma

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Demostración

$$(a+b)^3 = (a+b)^2(a+b)$$

$$= (a^2 + 2ab + b^2)(a+b)$$

$$= a^2(a+b) + 2ab(a+b) + b^2(a+b)$$

$$= a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3$$

$$= a^3 + 3a^2b + 3ab^2 + b^3$$

Ejemplo: Resolver $(x+4)^3$ Usamos el producto notable anterior así:

$$(x+4)^3 = x^3 + 3(x)^2(4) + 3(x)(4)^2 + 4^3$$
$$= x^3 + 12x^2 + 48x + 64$$

Cubo de una diferencia

$$(a-b)^3 = (a-b)^2(a-b)$$

$$= (a^2 - 2ab + b^2)(a-b)$$

$$= a^2(a-b) - 2ab(a-b) + b^2(a-b)$$

$$= a^3 - a^2b - 2a^2b + 2ab^2 + ab^2 - b^3$$

$$= a^3 - 3a^2b + 3ab^2 - b^3$$

Ejemplo: Resolver $(3x - 2y)^3$ Procedemos así:

$$(3x - 2y)^3 = (3x)^3 - 3(3x)^2(2y) + 3(3x)(2y)^2 - (2y)^3$$

$$= 3^3x^3 - 3(3^2x^2)(2y) + 9x(2^2y^2) - 2^3y^3$$

$$= 27x^3 - 3(9x^2)(2y) + 9x(4y^2) - 8y^3$$

$$= 27x^3 - 54x^2y + 36xy^2 - 8y^3$$