Chapter 5 Handy Circuit Analysis Techniques

Linear Elements and Circuits

- a linear circuit element has a linear voltagecurrent relationship:
 - if i(t) produces v(t), then Ki(t) produces Kv(t)
 - if $i_1(t)$ produces $v_1(t)$ and $i_2(t)$ produces $v_2(t)$, then $i_1(t) + i_2(t)$ produces $v_1(t) + v_2(t)$,
- resistors, sources are linear elements¹
- a linear circuit is one with only linear elements

¹Dependent sources need linear control equations to be linear elements.

The Superposition Concept

For the circuit shown, the solution can be expressed as:

$$\begin{bmatrix} 0.7 & -0.2 \\ -0.2 & 1.2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} i_a \\ i_b \end{bmatrix}$$

Question: How much of v_1 is due to source A, and how much is because of source B?

We use the superposition principle to answer.

The Superposition Concept

If we define A as

$$A = \begin{bmatrix} 0.7 & -0.2 \\ -0.2 & 1.2 \end{bmatrix}$$

then

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = A^{-1} \begin{bmatrix} i_a \\ i_b \end{bmatrix} = A^{-1} \begin{bmatrix} 0 \\ i_b \end{bmatrix} + A^{-1} \begin{bmatrix} i_a \\ 0 \end{bmatrix}$$
 Superposition: the response is of experiments

Experiment A Experiment B

the response is the sum of experiments A and B.

The Superposition Theorem

In a linear network, the **voltage across** or the **current through** any element may be calculated by *adding algebraically* all the individual voltages or currents caused by the separate independent sources acting "alone", i.e. with

- all other independent voltage sources replaced by short circuits and
- all other independent current sources replaced by open circuits.

Applying Superposition

- Leave one source ON and turn all other sources OFF:
 - voltage sources: set v = 0.

These become short circuits.

• current sources: set i=0.

These become open circuits.

Find the response from this source.

 Add the resulting responses to find the total response.

Superposition Example (part 1 of 4)

Use superposition to solve for the current i_x

Superposition Example (part 2 of 4)

First, turn the current source off:

$$i_x' = \frac{3}{6+9} = 0.2$$

Superposition Example (part 3 of 4)

Then, turn the voltage source off:

$$i_x'' = \frac{6}{6+9}(2) = 0.8$$

Superposition Example (part 4 of 4)

Finally, combine the results:

$$i_x = i_x' + i_x'' = 0.2 + 0.8 = 1.0$$

Example: Power Ratings

Determine the maximum *positive* current to which the source I_x can be set before any resistor exceeds its power rating.

Answer: $I_x < 42.49 \text{ mA}$

Superposition with a Dependent Source

When applying superposition to circuits with dependent sources, these dependent sources are never "turned off."

Superposition with a Dependent Source

Practical Voltage Sources

- Ideal voltage sources: a first approximation model for a battery.
- Why do real batteries have a current limit and experience voltage drop as current increases?

Two car battery models:

Practical Source: Effect of Connecting a Load

Practical Voltage Source

The source has an internal resistance or output resistance, which is modeled as R_s

Practical Current Source

The source has an internal *parallel* resistance which is modeled as R_p

Source Transformation and Equivalent Sources

The sources are equivalent if

$$R_s = R_p$$
 and $v_s = i_s R_s$

Source Transformation

- The circuits (a) and (b) are equivalent at the terminals.
- If given circuit (a), but circuit (b) is more convenient, switch them!
- This process is called source transformation.

Example: Source Transformation

We can find the current *I* in the circuit below using source transformation, as shown.

$$I = (45-3)/(5+4.7+3) = 3.307 \text{ mA}$$

Thévenin Equivalent Circuits

Thévenin's theorem: a linear network can be replaced by its Thévenin equivalent circuit, as shown below:

Thévenin Equivalent using Source Transformation

- We can repeatedly apply source transformation on network A to find its Thévenin equivalent circuit.
- This method has limitations- not all circuits can be source transformed.

Finding the Thévenin Equivalent

- Disconnect the load.
- Find the open circuit voltage v_{oc}
- Find the equivalent resistance R_{eq} of the network with all independent sources turned off.

Then:

$$V_{TH} = v_{oc}$$
 and

$$R_{TH} = R_{eq}$$

Thévenin Example

Norton Equivalent Circuits

Norton's theorem: a linear network can be replaced by its Norton equivalent circuit, as shown below:

Finding the Norton Equivalent

- Replace the load with a short circuit.
- Find the short circuit current i_{sc}
- Find the equivalent resistance R_{eq} of the network with all independent sources turned off.

Then:

$$I_N = i_{sc}$$
 and $R_N = R_{eq}$

Source Transformation: Norton and Thévenin

The Thévenin and Norton equivalents are source transformations of each other!

$$R_{TH} = R_N = R_{eq}$$
 and $v_{TH} = i_N R_{eq}$

Example: Norton and Thévenin

Find the Thévenin and Norton equivalents for the network faced by the $1-k\Omega$ resistor.

Example: Norton and Thévenin

Thévenin Example: Handling Dependent Sources

One method to find the Thévenin equivalent of a circuit with a dependent source: find V_{TH} and I_N and solve for $R_{TH} = V_{TH} / I_N$

Example:

Thévenin Example: Handling Dependent Sources

Finding the ratio V_{TH}/I_N fails when both quantities are zero!

Solution: apply a test source.

Should be 1.5i

Thévenin Example: Handling Dependent Sources

Solve: $v_{test} = 0.6 \text{ V}$, and so $R_{TH} = 0.6 \Omega$

Maximum Power Transfer

What load resistor will allow the practical source to deliver the maximum power to the load?

Answer: $R_L = R_s$

[Solve dp_L/dR_L =0.]

[Or: $p_L = i(v_s - iR_s)$, set $dp_L/di = 0$ to find $i_{max} = v_s/2R_s$. Hence $R_L = R_s$]

Δ-Y (delta-wye) Conversion

• The following resistors form a Δ :

The following resistors form a Y:

Δ-Y (delta-wye) Conversion

this Δ is equivalent to the Y if

$$R_A = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_B = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

$$R_C = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

this Y is equivalent to the Δ if

$$R_1 = \frac{R_A R_B}{R_A + R_B + R_C}$$

$$R_2 = \frac{R_B R_C}{R_A + R_B + R_C}$$

$$R_3 = \frac{R_C R_A}{R_A + R_B + R_C}$$

Example: Δ -Y Conversion

• How do we find the equivalent resistance of the following network? Convert a Δ to a Y

Example: Δ -Y Conversion

