

Technische Spezifikation im fachübergreifenden Projekt

Saugroboter

<u>Teammitglieder</u>: Leila Oppermann, Ala Al-Khazzan, Leon Wagner, Marc Zimmermann

Betreuer: Dr.-Ing. Christian Müller

Produkt: Saugroboter

Ort, Datum: Berlin, 14.06.2022

Versionshistorie

Tabelle 1: Versionshistorie

Version	Datum	Verantwortlich	Änderung
1.0	14.06.2022	Gruppe 1	Version 1

Inhaltsverzeichnis

		enverzeichnis	
ΑŁ	bildu	ıngsverzeichnis	III
Ve	erzeic	chnis vorhandener Dokumente	IV
1	Proz	zessüberblick	1
	1.1	Fachlicher Workflow	1
	1.2	Technischer Workflow	2
2	Tecl	hnische Spezifikation SW	3
	2.1	Überblick Komponenten	3
	2.2	Klassendiagramm	4
	2.3	Beschreibung der Implementierung	
		2.3.1 Funktion 1: Saugprozess starten	
		2.3.2 Funktion 2: Akkustand überprüfen	
		2.3.3 Funktion 3: Akku aufladen	5
		2.3.4 Funktion 4: Saugroboter einschalten	5
		2.3.5 Funktion 5: Saugroboter ausschalten	6
	2.4	System-Infrastruktur	7
_	O a la	altplan	0
3	Scn	aitpian	δ
4	Tech	hnische Spezifikation Konstruktion	9
	4.1	Strukturstückliste	9
	4.2	Baugruppen	10
	4.3	Einzelteile	12
F	Mod	dulahhängiakoiton	22

_													-
•	\mathbf{a}	h	\sim	••	\sim	•	10	rz	\sim	\sim	h	-	
•	-				-		_	'' /	-		•		

Tabelle 1: Versionshistorie	2
Tabelle 2: Verzeichnis vorhandener Dokumente	IV
Tabelle 3: Softwarekomponenten	3
Tabelle 4: Funktion 1 - Saugprozess starten	5
Tabelle 5: Funktion 2 - Akkustand überprüfen	5
Tabelle 6: Funktion 3 - Akku aufladen	5
Tabelle 7: Funktion 4 - Saugroboter einschalten	5
Tabelle 8: Funktion 5 - Saugroboter ausschalten	6
Tabelle 9: Modulabhängigkeiten	22

Seite II © HTW Berlin

Abbildungsverzeichnis

Abbildung 1: Fachlicher Workflow	
Abbildung 2: Technischer Workflow	2
Abbildung 3: Komponentendiagramm	3
Abbildung 4: Klassendiagramm	4
Abbildung 5: System-Infrastruktur	7
Abbildung 6: Schaltplan	8
Abbildung 7: Strukturstückliste	9
Abbildung 8: Baugruppe - Saugroboter	10
Abbildung 9: Baugruppe - Saugbehälter	11
Abbildung 10: Einzelteil - Bumper	12
Abbildung 11: Einzelteil: Button	13
Abbildung 12: Buttonsupport	14
Abbildung 13: Auffangbehälter	15
Abbildung 14: Auffangbehälterdeckel	16
Abbildung 15: Filtergitter	17
Abbildung 16: Filtergitterdeckel	18
Abbildung 17: Sensorhalterung	19
Abbildung 18: Obere Karosserie	20
Abbildung 10: Untere Karosseria	21

Verzeichnis vorhandener Dokumente

Alle für die vorliegende Spezifikation ergänzenden Unterlagen müssen hier aufgeführt werden.

Tabelle 2: Verzeichnis vorhandener Dokumente

Dokument	Autor	Datum
Lastenheft_Gruppe1.pdf	Leila, Ala, Leon, Marc	26.04.2022
Lastenheft_Gruppe1_CM.pdf (Kommentiert)	Leila, Ala, Leon, Marc	05.05.2022
	+ Christian Müller	
Pflichtenheft_Gruppe1.pdf	Leila, Ala, Leon, Marc	26.04.2022
Backlog_Gruppe1.xlsx	Leila, Ala, Leon, Marc	24.05.2022
Projektplan_Gruppe1.mpp (Version 1.0)	Leon	24.05.2022
G1_Pflichtenheft_Gruppe1_CM.pdf	Leila, Ala, Leon, Marc	30.05.2022
	+ Christian Müller	
Qualitätssicherung (Version 1.0)	Leila, Ala, Leon, Marc	14.06.2022

1 Prozessüberblick

Die Workflows stellen dar, wie das Programm abläuft (siehe Abbildung 2), mithilfe dessen der Saugroboter den Raum reinigt und wie der Roboter vom User bedient wird (siehe Abbildung 1).

1.1 Fachlicher Workflow

Abbildung 1: Fachlicher Workflow

1.2 Technischer Workflow

Abbildung 2: Technischer Workflow

2 Technische Spezifikation SW

2.1 Überblick Komponenten

Nachfolgend ist das Komponentendiagram des Saugroboters dargestellt.

Abbildung 3: Komponentendiagramm

Tabelle 3: Softwarekomponenten

SW-Komponente	Erfasste Funktion aus dem Pflichtenheft
Antrieb	F4: Saugroboter einschalten F5: Saugroboter ausschalten
Batterie	F2: Akkustand überprüfen F3: Akku aufladen
LED	F2: Akkustand überprüfen
Motor	F1: Saugprozess starten
Sensoren F1: Saugprozess starten	

2.2 Klassendiagramm

Abbildung 4: Klassendiagramm

2.3 Beschreibung der Implementierung

2.3.1 Funktion 1: Saugprozess starten

Tabelle 4: Funktion 1 - Saugprozess starten

#	Komponentendetail	Erforderliche Arbeiten
T1	Motor	Steuert die Bewegung des Saugroboters (vorwärts, links, rechts, rückwärts) oder stoppt den Motor. Input: Motor-PINs und Volt-Signal
Т2	Sensoren	Es wird die Entfernung zu einem Objekt bestimmt oder eine Kollision durch den Bump-Sensor detektiert. Input: Sensor-PINs Output: Abstand zu Objekt und Detektion der Kollision

2.3.2 Funktion 2: Akkustand überprüfen

Tabelle 5: Funktion 2 - Akkustand überprüfen

#	Komponentendetail	Erforderliche Arbeiten
Т3	Batterie	Hier wird der Ladezustand der Batterie erfasst und bei niedriger Akkukapazität wird dies auch gemeldet. Input: Batterie Ladezustand Output: Niedriger Akku: ja oder nein
T4	LED	Hier wird je nach Akkustand die LED entweder grün (genug Energie) oder rot (Energiestand gering) leuchten. Input: Niedriger Akku: ja oder nein Output: LED leuchtet grün oder rot

2.3.3 Funktion 3: Akku aufladen

Tabelle 6: Funktion 3 - Akku aufladen

#	Komponentendetail	Erforderliche Arbeiten
Т5	Batterie	Wenn der Akku vom Benutzer aufgeladen wird, so muss auch hier wie in Funktion 2 bei Start des Programms der neue Akkustand abgespeichert werden.

2.3.4 Funktion 4: Saugroboter einschalten

Tabelle 7: Funktion 4 - Saugroboter einschalten

#	Komponentendetail	Erforderliche Arbeiten
Т6	Antrieb	Sobald der An/Aus-Schalter zum Einschalten vom Benutzer getätigt wird, wird der Stromkreis geschlossen, sodass die Aktoren und Sensoren mit Strom versorgt sind. Es werden alle nötigen Instanzen für den Saug-Algorithmus erzeugt.

2.3.5 Funktion 5: Saugroboter ausschalten

Tabelle 8: Funktion 5 - Saugroboter ausschalten

#	Komponentendetail	Erforderliche Arbeiten
Т7	Antrieb	Sobald der An/Aus-Schalter zum Ausschalten vom Benutzer getätigt wird, wird die Stromversorgung unterbrochen. Dadurch wird auch das Programm auf dem Arduino beendet.

2.4 System-Infrastruktur

Nachfolgend ist die System-Infrastruktur des Saugroboters dargestellt.

Abbildung 5: System-Infrastruktur

3 Schaltplan

Abbildung 6: Schaltplan

4 Technische Spezifikation Konstruktion

In dieser Konstruktion besteht die Baugruppe "Saugroboter" aus der Baugruppe "Saugbehälter" und dem Bauteil "Bumper_2". Die restlichen Bauteile werden im Zusammenhang mit den noch kommenden Elektrobauteilen (für Sprint 2) benötigt, weshalb Sie in der Baugruppe "Saugroboter" noch nicht vorhanden sind.

4.1 Strukturstückliste

Abbildung 7: Strukturstückliste

4.2 Baugruppen

Abbildung 8: Baugruppe - Saugroboter

Abbildung 9: Baugruppe - Saugbehälter

4.3 Einzelteile

Abbildung 10: Einzelteil - Bumper

Abbildung 11: Einzelteil: Button

Abbildung 12: Buttonsupport

Abbildung 13: Auffangbehälter

Abbildung 14: Auffangbehälterdeckel

Abbildung 15: Filtergitter

Abbildung 16: Filtergitterdeckel

Abbildung 17: Sensorhalterung

Abbildung 18: Obere Karosserie

Abbildung 19: Untere Karosserie

5 Modulabhängigkeiten

Die Abhängigkeiten der Hardwaremodule voneinander sind im Folgenden tabellarisch dargestellt. Es wird das Modul benannt, die Anzahl der Abhängigkeiten angegeben sowie die Module genannt, zu denen die Abhängigkeit besteht. Des Weiteren wird die Art der Abhängigkeit kurz benannt.

Tabelle 9: Modulabhängigkeiten

#	Name	Anzahl	Abhängig von
1	Arduino Uno Board	1	 Stromversorgung der Module Stromversorgung durch Akku steuert und regelt die Sensoren & Aktoren Ein- und Ausschalter aktiviert /deaktiviert Arduino
2	IRF520 MOSFET Driver Module	2	Steuert MOSFET für Motor über Arduino an
3	H-bridge L298 Dual Motor Driver	2	Ansteuerung des Motors über Arduino
4	Micro Metall Getriebemotor HP	4	 MOSFET & Motortreiber regeln Strom & Spannung & Kommunikation mit Arduino Arduino gibt Signale zu Start, Stopp & Geschwindigkeit
5	Ventilator AVC BA10033B12G	2	 Arduino versorgt mit 3 V & gibt Signal zum Ein- und Ausschalten
6	IR-Bereichs Sensor GP2Y0A41SK0F (4 – 30 cm)	2	 Arduino versorgt mit 3 V und nimmt Daten entgegen
7	ZIPPY Compact 1.300 mAh Lipo Pack	1	Netzteil versorgt mit Strom
8	Filter / Auffangbehälter	2	 Ventilator erzeugt Luftstrom, der Partikel in Filter gibt, User (zum Wechseln des Fil- ters)
9	Pushbutton	2	 Akku, Arduino -> registriert Hindernisse, die Infrarot-Sensor nicht sehen kann & gibt Information an Arduino
10	Ein/Aus Schalter	1	Akku aufgeladen