

Ingeniería Informática

Medios de Transmisión (MT)

Tema 8 Transmisión digital por canales con ruido

Curso 2006-07

Ejemplo de distorsión de una señal PAM por un canal con ruido

Ruido blanco gaussiano de media cero

Regla de decisión ML

Señalización ortogonal y anitpodal

- Señalización ortogonal \implies $p(e)=Q\left(\sqrt{\frac{E_b}{N_0}}\right)$
- Señalización antipodal \implies p(e)=Q $\left(\sqrt{\frac{2E_b}{N_0}}\right)$
- Para conseguir la misma p(e) se necesita dos veces (i.e., 3 dB) más E_b/N_0 con señalización ortogonal que con antipodal

$$\frac{E_b}{N_0}\bigg|_{ort} = 2\frac{E_b}{N_0}\bigg|_{ant} \Rightarrow 10\log_{10}\left(\frac{E_b}{N_0}\bigg|_{ort}\right) = 10\log_{10}\left(2\frac{E_b}{N_0}\bigg|_{ant}\right) \Rightarrow \frac{E_b}{N_0}\bigg|_{ort} dB = 10\log_{10}\left(2\right) + \frac{E_b}{N_0}\bigg|_{ant} dB$$

$$\frac{\left| \frac{E_b}{N_0} \right|_{ort} dB = \frac{E_b}{N_0} \left|_{ant} dB + 3 dB \right|$$

Pulso recibido sin ruido

Respuesta al impulso del filtro adaptado

1.5

-1.5

-0.5

0

0.5

1.5

1

2

2.5

3

Señal PAM recibida $E_b/N_0 = 30 \text{ dB}$

Señal PAM recibida $E_b/N_0 = 10 \text{ dB}$

Pulso bifase recibido sin ruido

Respuesta al impulso del filtro adaptado

Pulso bifase recibido $E_b/N_0 = 10 \text{ dB}$

Señal PAM con pulsos bifase sin ruido

2

3

4

5

6

7

8

9

10

Tren de pulsos transmitido

Señal PAM recibida $E_b/N_0 = 30 \text{ dB}$

Señal PAM recibida $E_b/N_0 = 10 \text{ dB}$

Pulso de Nyquist recibido sin ruido

Respuesta al impulso del filtro adaptado

1.5

Senhal Recibida

Pulso de Nyquist recibido $E_b/N_0 = 10 \text{ dB}$

Senhal Recibida

Señal PAM con pulsos de Nyquist sin ruido

Señal PAM recibida $E_b/N_0 = 30 \text{ dB}$

Señal PAM recibida $E_b/N_0 = 10 \text{ dB}$

Probabilidad de error de un sistema M-PAM

$$p(e) = \frac{2(M-1)}{M} Q \left(\sqrt{\frac{6\log_2 M}{M^2 - 1} \frac{E_b}{N_0}} \right)$$

