### Modelos de Computación Máquinas de Turing Actividad 3

Dagoberto Quevedo

12 de febrero de 2020

#### Resumen

Una máquina de Turing puede simular cualquier algoritmo a través de una sola estructura de datos: sucesión de símbolos escrita en una cinta infinita, con operaciones de escritura y eliminación de símbolos.

Formalmente una máquina de Turing se describe como sigue  $M = (Q, s, r, \Sigma, \delta)$ , donde Q es un conjunto finito de estados, s un estado de aceptación, r un estado de rechazo,  $\Sigma$  es un conjunto finito de símbolos, llamado el alfabeto de M, que contiene dos símbolos especiales  $\rhd$  y  $\sqcup$ , D conjunto de direcciones  $\leftarrow$  (izquierda),  $\rightarrow$  (derecha), - (sin mover), la función,

$$\delta(q, \sigma) = (p, \rho, d), \tag{1}$$

es una función de transición de M, donde  $q \in Q \cup \{s,r\}$  es el estado actual y  $\sigma \in \Sigma$  es el símbolo actual en el puntero,  $p \in Q \cup \{s,r\}$  es el nuevo estado,  $\rho$  el nuevo símbolo que es escrito en reemplazo de  $\sigma$  en la posición actual y  $d \in D$  es la dirección hacia donde se mueve el puntero [1].

En esta actividad se proporcionan las funciones de transición  $\delta$  para dos máquinas de Turing de reconocimiento de lenguaje.

## 1. Máquina de Turing A

Proporcione una función de transición  $\delta$  para una máquina de Turing que determina si su entrada x contiene una a después de una b, tal que  $q_1 \in Q$  es el estado inicial,  $q_f$  un estado de aceptación,  $q_e$  un estado de rechazo y  $\Sigma = \{\triangleright, a, b, c, \sqcup\}$  el alfabeto.

#### Función de transición $\delta$ 1.1.

1. 
$$(q_1, \triangleright) = (q_1, \triangleright, \rightarrow)$$

6. 
$$(q_2, b) = (q_2, b, \rightarrow)$$

2. 
$$(q_1, a) = (q_1, a, \rightarrow)$$

7. 
$$(q_2, c) = (q_2, c, \to)$$

3. 
$$(q_1, c) = (q_1, c, \rightarrow)$$

8. 
$$(q_1, \sqcup) = (q_e, \sqcup, -)$$

4. 
$$(q_1, b) = (q_2, b, \rightarrow)$$

9. 
$$(q_2, +) = (q_2, +) = 0$$

# 5. $(q_2, a) = (q_f, a, -)$

9. 
$$(q_2, \sqcup) = (q_e, \sqcup, -)$$

### 1.1.1. Representación gráfica



#### 1.2. Casos de prueba

| x                 | q       | p     | $\rho$           | d             |
|-------------------|---------|-------|------------------|---------------|
| ⊵acbbac⊔          | $q_1$   | $q_1$ | $\triangleright$ | $\rightarrow$ |
| ⊳ <u>a</u> cbbac⊔ | $q_1$   | $q_1$ | a                | $\rightarrow$ |
| ⊳a <u>c</u> bbac⊔ | $ q_1 $ | $q_1$ | c                | $\rightarrow$ |
| ⊳ac <u>b</u> bac⊔ | $ q_1 $ | $q_1$ | b                | $\rightarrow$ |
| ⊳acb <u>b</u> ac⊔ | $ q_1 $ | $q_2$ | b                | $\rightarrow$ |
| ⊳acbb <u>a</u> c⊔ | $ q_2 $ | $q_f$ | a                | _             |

Cuadro 1: Caso con estado final aceptable  $q_f,$  donde  $\boldsymbol{x} = acbbac$ 

| $\overline{x}$    | q     | p     | ρ                | d             |
|-------------------|-------|-------|------------------|---------------|
| ⊵acbbcc⊔          | $q_1$ | $q_1$ | $\triangleright$ | $\rightarrow$ |
| ⊳ <u>a</u> cbbcc⊔ | $q_1$ | $q_1$ | a                | $\rightarrow$ |
| ⊳a <u>c</u> bbcc⊔ | $q_1$ | $q_1$ | c                | $\rightarrow$ |
| ⊳ac <u>b</u> bcc⊔ | $q_1$ | $q_1$ | b                | $\rightarrow$ |
| ⊳acb <u>b</u> cc⊔ | $q_1$ | $q_2$ | b                | $\rightarrow$ |
| ⊳acbb <u>c</u> c⊔ | $q_2$ | $q_2$ | $\mathbf{c}$     | $\rightarrow$ |
| ⊳acbbc <u>c</u> ⊔ | $q_2$ | $q_2$ | $\mathbf{c}$     | $\rightarrow$ |
| ⊳acbbcc⊔          | $q_2$ | $q_e$ | Ш                | _             |

Cuadro 2: Caso con estado final rechazado  $q_e$ , donde x = acbbcc

## 2. Máquina de Turing B

Proporcione una función de transición  $\delta$  para una máquina de Turing que identifica si una cadena proveniente de un alfabeto  $\Sigma$  es o no un palíndromo, tal que  $q_1 \in Q$  es el estado inicial,  $q_f$  un estado de aceptación,  $q_e$  un estado de rechazo y  $\Sigma = \{ \triangleright, a, b, \sqcup \}$  el alfabeto.

### 2.1. Función de transición $\delta$

1. 
$$(q_1, \triangleright) = (q_1, \triangleright, \to)$$

11. 
$$(q_1, b) = (q_5, \triangleright, \rightarrow)$$

2. 
$$(q_1, a) = (q_2, \triangleright, \rightarrow)$$

12. 
$$(q_5, a) = (q_5, a, \rightarrow)$$

3. 
$$(q_2, a) = (q_2, a, \rightarrow)$$

13. 
$$(q_5, b) = (q_5, b, \rightarrow)$$

4. 
$$(q_2, b) = (q_2, b, \rightarrow)$$

14. 
$$(q_5, \sqcup) = (q_6, \sqcup, \leftarrow)$$

5. 
$$(q_2, \sqcup) = (q_3, \sqcup, \leftarrow)$$

15. 
$$(q_6, b) = (q_7, \sqcup, \leftarrow)$$

6. 
$$(q_3, a) = (q_4, \sqcup, \leftarrow)$$

16. 
$$(q_6, a) = (q_e, a, -)$$

7. 
$$(q_3, b) = (q_e, b, -)$$

17. 
$$(q_7, a) = (q_7, a, \leftarrow)$$

8. 
$$(q_4, a) = (q_4, a, \leftarrow)$$

18. 
$$(q_7, b) = (q_7, b, \leftarrow)$$

9. 
$$(q_4, b) = (q_4, b, \leftarrow)$$

19. 
$$(q_7, \triangleright) = (q_1, \triangleright, \rightarrow)$$

10. 
$$(q_4, \triangleright) = (q_1, \triangleright, \rightarrow)$$

20. 
$$(q_1, \sqcup) = (q_f, \sqcup, -)$$

### 2.1.1. Representación gráfica



## 2.2. Casos de prueba

| $\overline{x}$  | q     | p     | ρ                | d             |
|-----------------|-------|-------|------------------|---------------|
| ⊵abbb⊔          | $q_1$ | $q_1$ | $\triangleright$ | $\rightarrow$ |
| ⊳ <u>a</u> bbb⊔ | $q_1$ | $q_2$ | $\triangleright$ | $\rightarrow$ |
| ⊳⊳ <u>b</u> bb⊔ | $q_2$ | $q_2$ | b                | $\rightarrow$ |
| ⊳⊳b <u>b</u> b⊔ | $q_2$ | $q_2$ | b                | $\rightarrow$ |
| ⊳⊳bb <u>b</u> ⊔ | $q_2$ | $q_2$ | a                | $\rightarrow$ |
| ⊳⊳bbb <u>⊔</u>  | $q_2$ | $q_3$ | Ш                | $\leftarrow$  |
| ⊳⊳bb <u>b</u> ⊔ | $q_3$ | $q_e$ | b                | _             |

Cuadro 3: Caso con estado final rechazado  ${\color{red}q_e},$  donde x=abbb

| $\overline{x}$                                                                      | q     | p     | ρ                | d                 |
|-------------------------------------------------------------------------------------|-------|-------|------------------|-------------------|
| ⊵abba⊔                                                                              | $q_1$ | $q_1$ | $\triangleright$ | $\rightarrow$     |
| ⊳ <u>a</u> bba⊔                                                                     | $q_1$ | $q_2$ | $\triangleright$ | $ $ $\rightarrow$ |
| ⊳⊳ <u>b</u> ba⊔                                                                     | $q_2$ | $q_2$ | b                | $\rightarrow$     |
| ⊳⊳b <u>b</u> a⊔                                                                     | $q_2$ | $q_2$ | b                | $\rightarrow$     |
| ⊳⊳bb <u>a</u> ⊔                                                                     | $q_2$ | $q_2$ | a                | $\rightarrow$     |
| ⊳⊳bba <u>⊔</u>                                                                      | $q_2$ | $q_3$ | Ш                | $\leftarrow$      |
| ⊳⊳bb <u>a</u> ⊔                                                                     | $q_3$ | $q_4$ | Ш                | $\leftarrow$      |
| hd                                              | $q_4$ | $q_4$ | b                | $\leftarrow$      |
| $ hitharpoonsar{b}b\sqcup\sqcup$                                                    | $q_4$ | $q_4$ | b                | $\leftarrow$      |
| ⊳⊵bb⊔⊔                                                                              | $q_4$ | $q_1$ | $\triangleright$ | $\leftarrow$      |
| $ hickspace  ho \underline{\mathbf{b}} \mathbf{b} \sqcup \sqcup$                    | $q_1$ | $q_5$ | $\triangleright$ | $\rightarrow$     |
| $\triangleright \triangleright \triangleright \underline{\mathbf{b}} \sqcup \sqcup$ | $q_5$ | $q_5$ | b                | $\rightarrow$     |
| ⊳⊳⊳b <u>⊔</u> ⊔                                                                     | $q_5$ | $q_6$ | Ш                | $\leftarrow$      |
| $\triangleright \triangleright \triangleright \underline{\mathbf{b}} \sqcup \sqcup$ | $q_6$ | $q_7$ | Ш                | $\leftarrow$      |
|                                                                                     | $q_7$ | $q_1$ | $\triangleright$ | $\leftarrow$      |
|                                                                                     | $q_1$ | $q_f$ | Ш                |                   |

Cuadro 4: Caso con estado final aceptable  $q_f,$  donde x=abba

# Referencias

[1] Elisa Schaeffer, *Modelos computacionales*, Complejidad computacional de problemas y el análisis y diseño de algoritmos, notas de curso, 2020.