MS-C2111 Stochastic Processes

Lecture 2
Long-term behavior of Markov chains

Jukka Kohonen Aalto University

Contents

Invariant and limiting distributions

Examples

Connectivity = Irreducibility

Periodicity

Convergence

Reducible MCs

What can we say about the state of a Markov chain:

$$\mathbb{P}_{\mathsf{x}}(X_t = y) \approx ?$$
 for t large?

What can we say about the state of a Markov chain:

$$\mathbb{P}_{x}(X_{t} = y) \approx ?$$
 for t large?

• Does the distribution of X_t have a limit as $t \to \infty$?

What can we say about the state of a Markov chain:

$$\mathbb{P}_{x}(X_{t} = y) \approx ?$$
 for t large?

- Does the distribution of X_t have a limit as $t \to \infty$?
- If yes, does it depend on the initial state x?

What can we say about the state of a Markov chain:

$$\mathbb{P}_{\mathsf{x}}(X_t = y) \approx ?$$
 for t large?

- Does the distribution of X_t have a limit as $t \to \infty$?
- If yes, does it depend on the initial state x?
- If yes, how can it be computed?

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

that is,

$$\pi(y) = \sum_{x} \pi(x) P(x, y), \quad y \in S.$$

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

that is,

$$\pi(y) = \sum_{x} \pi(x) P(x, y), \quad y \in S.$$

Note

$$\mu_t =$$

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

that is,

$$\pi(y) = \sum_{x} \pi(x) P(x, y), \quad y \in S.$$

Note

$$\mu_t = \pi P^t$$

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

that is,

$$\pi(y) = \sum_{x} \pi(x) P(x, y), \quad y \in S.$$

Note

$$\mu_t = \pi P^t = (\pi P)P^{t-1}$$

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

that is,

$$\pi(y) = \sum_{x} \pi(x) P(x, y), \quad y \in S.$$

Note

$$\mu_t = \pi P^t = (\pi P)P^{t-1} = \pi P^{t-1}$$

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

that is,

$$\pi(y) = \sum_{x} \pi(x) P(x, y), \quad y \in S.$$

Note

$$\mu_t = \pi P^t = (\pi P)P^{t-1} = \pi P^{t-1} = \dots = \pi P$$

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

that is,

$$\pi(y) = \sum_{x} \pi(x) P(x, y), \quad y \in S.$$

Note

$$\mu_t = \pi P^t = (\pi P)P^{t-1} = \pi P^{t-1} = \dots = \pi P = \pi.$$

An invariant distribution (or stationary or equilibrium distribution) of a transition matrix P and a corresponding Markov chain is a row vector π such that $\pi(x) \geq 0$, $\sum_{x} \pi(x) = 1$, and

$$\pi = \pi P$$
,

that is,

$$\pi(y) = \sum_{x} \pi(x) P(x, y), \quad y \in S.$$

Note

If the initial state is random and such that $\mu_0 = \pi$, then

$$\mu_t = \pi P^t = (\pi P)P^{t-1} = \pi P^{t-1} = \dots = \pi P = \pi.$$

Hence X_t is π -distributed for all t.

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

$$\mu_{t+1} = \mu_0 P^{t+1}$$

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P$$

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P = \mu_t P,$$

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P = \mu_t P,$$
 that is $\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x,y).$

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

Proof.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P = \mu_t P,$$

that is
$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x, y).$$

If $\mu_t(x) \to \pi(x)$ for all x, then

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P = \mu_t P,$$

that is
$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x, y).$$

If
$$\mu_t(x) \to \pi(x)$$
 for all x , then

$$\pi(y) =$$

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P = \mu_t P,$$

that is
$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x, y).$$

If
$$\mu_t(x) \to \pi(x)$$
 for all x , then

$$\pi(y) = \lim_{t \to \infty} \ \mu_{t+1}(y)$$

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

$$\mu_{t+1} \ = \mu_0 P^{t+1} \ = (\mu_0 P^t) P = \mu_t P,$$
 that is
$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x,y).$$

If
$$\mu_t(x) \to \pi(x)$$
 for all x , then

$$\pi(y) = \lim_{t \to \infty} \mu_{t+1}(y) = \sum_{x \in S} \lim_{t \to \infty} \mu_t(x) P(x, y)$$

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

Proof.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P = \mu_t P,$$

that is
$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x, y).$$

If $\mu_t(x) \to \pi(x)$ for all x, then

$$\pi(y) = \lim_{t \to \infty} \mu_{t+1}(y) = \sum_{x \in S} \lim_{t \to \infty} \mu_t(x) P(x, y) = \sum_{x \in S} \pi(x) P(x, y).$$

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

Proof.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P = \mu_t P,$$
 that is $\mu_{t+1}(y) = \sum_{x} \mu_t(x) P(x, y).$

If
$$\mu_t(x) \to \pi(x)$$
 for all x , then

$$\pi(y) = \lim_{t \to \infty} \mu_{t+1}(y) = \sum_{x \in S} \lim_{t \to \infty} \mu_t(x) P(x, y) = \sum_{x \in S} \pi(x) P(x, y).$$

Hence $\pi P = \pi$.

Theorem

Any limiting distribution π of a finite-state Markov chain is also an invariant distribution.

Proof.

$$\mu_{t+1} = \mu_0 P^{t+1} = (\mu_0 P^t) P = \mu_t P,$$

that is
$$\mu_{t+1}(y) = \sum_{x \in S} \mu_t(x) P(x, y).$$

If $\mu_t(x) \to \pi(x)$ for all x, then

$$\pi(y) = \lim_{t \to \infty} \mu_{t+1}(y) = \sum_{x \in S} \lim_{t \to \infty} \mu_t(x) P(x, y) = \sum_{x \in S} \pi(x) P(x, y).$$

Hence
$$\pi P = \pi$$
. Analogously $\implies \sum_{x \in S} \pi(x) = 1$.

Contents

Invariant and limiting distributions

Examples

Connectivity = Irreducibility

Periodicity

Convergence

Reducible MCs

A smartphone market is dominated by three manufacturers. When buying a new phone, a customer chooses a phone from the same manufacturer i as the previous one with probability β_i , and otherwise the customer randomly chooses one of the other manufacturers.

Company i	1	2	3
Loyalty β_i	0.8	0.6	0.4

A smartphone market is dominated by three manufacturers. When buying a new phone, a customer chooses a phone from the same manufacturer i as the previous one with probability β_i , and otherwise the customer randomly chooses one of the other manufacturers.

$$\begin{array}{c|cccc} \textbf{Company } i & 1 & 2 & 3 \\ \hline \textbf{Loyalty } \beta_i & 0.8 & 0.6 & 0.4 \\ \end{array}$$

Assume that all smartphones have the same lifetime regardless of the manufacturer. Will the market shares of the manufacturers stabilize in the long run?

Company i	1	2	3
Loyalty β_i	8.0	0.6	0.4

$$P = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

Company i	1	2	3
Loyalty β_i	0.8	0.6	0.4

$$P = \begin{bmatrix} 0.8 \\ \end{bmatrix}$$

Company i	1	2	3
Loyalty β_i	8.0	0.6	0.4

$$P = \begin{bmatrix} 0.8 & 0.1 \\ & & \end{bmatrix}$$

Company i	1	2	3
Loyalty β_i	8.0	0.6	0.4

$$P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ & & & \end{bmatrix}$$

Company i	1	2	3
Loyalty β_i	0.8	0.6	0.4

$$P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \end{bmatrix}$$

$$\begin{array}{c|cccc} \textbf{Company } i & 1 & 2 & 3 \\ \hline \textbf{Loyalty } \beta_i & 0.8 & 0.6 & 0.4 \\ \end{array}$$

$$P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

Let us model the manufacturer of a typical customer's phone after the t-th purchase instant by a Markov chain (X_0, X_1, \dots) with state space $S = \{1, 2, 3\}$ and transition matrix

$$P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

Question

What happens to $\mu_t = \mu_0 P^t$ in the long run as $t \to \infty$?

$$P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$P^2 = \begin{bmatrix} 0.69 & 0.17 & 0.14 \\ 0.34 & 0.44 & 0.22 \\ 0.42 & 0.33 & 0.25 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$P^2 = \begin{bmatrix} 0.69 & 0.17 & 0.14 \\ 0.34 & 0.44 & 0.22 \\ 0.42 & 0.33 & 0.25 \end{bmatrix}$$

$$P^{10} = \begin{bmatrix} 0.5471287 & 0.2715017 & 0.1813696 \\ 0.5430034 & 0.2745217 & 01824748 \\ 0.5441087 & 0.2737123 & 0.1821790 \end{bmatrix}$$

$$P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$P^{2} = \begin{bmatrix} 0.69 & 0.17 & 0.14 \\ 0.34 & 0.44 & 0.22 \\ 0.42 & 0.33 & 0.25 \end{bmatrix}$$

$$P^{10} = \begin{bmatrix} 0.5471287 & 0.2715017 & 0.1813696 \\ 0.5430034 & 0.2745217 & 01824748 \\ 0.5441087 & 0.2737123 & 0.1821790 \end{bmatrix}$$

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

After 20 phone purchases:

 An initial customer of brand 1 is a customer of brand 2 with probability

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

After 20 phone purchases:

• An initial customer of brand 1 is a customer of brand 2 with probability $P^{20}(1,2)\approx 0.273$

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

- An initial customer of brand 1 is a customer of brand 2 with probability $P^{20}(1,2)\approx 0.273$
- An initial customer of brand 2 is a customer of brand 2 with probability

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

- An initial customer of brand 1 is a customer of brand 2 with probability $P^{20}(1,2)\approx 0.273$
- An initial customer of brand 2 is a customer of brand 2 with probability $P^{20}(2,2)\approx 0.273$

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

- An initial customer of brand 1 is a customer of brand 2 with probability $P^{20}(1,2)\approx 0.273$
- An initial customer of brand 2 is a customer of brand 2 with probability $P^{20}(2,2)\approx 0.273$
- An initial customer of brand 3 is a customer of brand 2 with probability

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

- An initial customer of brand 1 is a customer of brand 2 with probability $P^{20}(1,2)\approx 0.273$
- An initial customer of brand 2 is a customer of brand 2 with probability $P^{20}(2,2)\approx 0.273$
- An initial customer of brand 3 is a customer of brand 2 with probability $P^{20}(3,2)\approx 0.273$

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

After 20 phone purchases:

- An initial customer of brand 1 is a customer of brand 2 with probability $P^{20}(1,2)\approx 0.273$
- An initial customer of brand 2 is a customer of brand 2 with probability $P^{20}(2,2)\approx 0.273$
- An initial customer of brand 3 is a customer of brand 2 with probability $P^{20}(3,2)\approx 0.273$

The relevance of the initial state is negligible after 20 purchases.

$$P^{20} = \begin{bmatrix} 0.5454610 & 0.2727226 & 0.1818165 \\ 0.5454452 & 0.2727341 & 0.1818207 \\ 0.5454494 & 0.2727310 & 0.1818196 \end{bmatrix}$$

After 20 phone purchases:

- An initial customer of brand 1 is a customer of brand 2 with probability $P^{20}(1,2)\approx 0.273$
- An initial customer of brand 2 is a customer of brand 2 with probability $P^{20}(2,2)\approx 0.273$
- An initial customer of brand 3 is a customer of brand 2 with probability $P^{20}(3,2)\approx 0.273$

The relevance of the initial state is negligible after 20 purchases.

⇒ Market shares seem to stabilize to

[0.545, 0.273, 0.182]

$$[\pi(1), \pi(2), \pi(3)] = [\pi(1), \pi(2), \pi(3)] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$[\pi(1), \pi(2), \pi(3)] = [\pi(1), \pi(2), \pi(3)] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$\pi(1) = \frac{8}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(2) = \frac{1}{10}\pi(1) + \frac{6}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(3) = \frac{1}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{4}{10}\pi(3)$$

$$[\pi(1), \pi(2), \pi(3)] = [\pi(1), \pi(2), \pi(3)] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$\pi(1) = \frac{8}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(2) = \frac{1}{10}\pi(1) + \frac{6}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(3) = \frac{1}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{4}{10}\pi(3)$$

(recall also:
$$\pi(1) + \pi(2) + \pi(3) = 1$$
)

$$[\pi(1), \pi(2), \pi(3)] = [\pi(1), \pi(2), \pi(3)] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$\pi(1) = \frac{8}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(2) = \frac{1}{10}\pi(1) + \frac{6}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(3) = \frac{1}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{4}{10}\pi(3)$$
(recall also: $\pi(1) + \pi(2) + \pi(3) = 1$)

$$\implies \pi = \left[\frac{6}{11}, \frac{3}{11}, \frac{2}{11}\right]$$

$$[\pi(1), \pi(2), \pi(3)] = [\pi(1), \pi(2), \pi(3)] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$\pi(1) = \frac{8}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(2) = \frac{1}{10}\pi(1) + \frac{6}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(3) = \frac{1}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{4}{10}\pi(3)$$
(recall also: $\pi(1) + \pi(2) + \pi(3) = 1$)
$$\implies \pi = [\frac{6}{11}, \frac{3}{11}, \frac{2}{11}] \approx [0.5454, 0.2727, 0.1818]$$

Invariant distribution is a solution of

$$[\pi(1), \pi(2), \pi(3)] = [\pi(1), \pi(2), \pi(3)] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$\pi(1) = \frac{8}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(2) = \frac{1}{10}\pi(1) + \frac{6}{10}\pi(2) + \frac{3}{10}\pi(3)$$

$$\pi(3) = \frac{1}{10}\pi(1) + \frac{2}{10}\pi(2) + \frac{4}{10}\pi(3)$$

(recall also:
$$\pi(1) + \pi(2) + \pi(3) = 1$$
)
$$\Longrightarrow \pi = \left[\frac{6}{11}, \frac{3}{11}, \frac{2}{11}\right] \approx [0.5454, 0.2727, 0.1818]$$

 ${\bf Conclusion}:$ Market shares appear to stabilize to the invariant distribution π

N gas particles in two containers (left, right) connected by a tiny hole.

• Each round a random particle jumps from a container to another

 $^{^{1}}$ Paul (1880–1993) and Tatyana (1867–1964) Ehrenfest $_{6}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$ $_{5}$

- Each round a random particle jumps from a container to another
- X_t = number of particles in the left container after t rounds is a Markov chain with transition probabilities

$$P = \begin{bmatrix} 0 & 4/4 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 4/4 & 0 \end{bmatrix} \qquad N = 4$$

- Each round a random particle jumps from a container to another
- X_t = number of particles in the left container after t rounds is a Markov chain with transition probabilities

$$P(i, i-1) = \mathbb{P}(X_{t+1} = i-1|X_t = i) =$$

¹Paul (1880–1993) and Tatyana (1867–1964) Ehrenfest → (2) → (2) → (2) → (2)

- Each round a random particle jumps from a container to another
- X_t = number of particles in the left container after t rounds is a Markov chain with transition probabilities

$$P = \begin{bmatrix} 0 & 4/4 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 4/4 & 0 \end{bmatrix} \qquad N = 4$$

$$P(i, i-1) = \mathbb{P}(X_{t+1} = i-1|X_t = i) = \frac{i}{N}, \qquad 1 \le i \le N$$

¹Paul (1880–1993) and Tatyana (1867–1964) Ehrenfest → (2) → (2) → (2) → (2)

- Each round a random particle jumps from a container to another
- X_t = number of particles in the left container after t rounds is a Markov chain with transition probabilities

$$P = \begin{bmatrix} 0 & 4/4 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 4/4 & 0 \end{bmatrix} \qquad N = 4$$

$$P(i, i-1) = \mathbb{P}(X_{t+1} = i-1|X_t = i) = \frac{i}{N}, \qquad 1 \le i \le N$$

$$P(i, i+1) = \mathbb{P}(X_{t+1} = i+1|X_t = i) =$$

- Each round a random particle jumps from a container to another
- X_t = number of particles in the left container after t rounds is a Markov chain with transition probabilities

$$P = \begin{bmatrix} 0 & 4/4 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 4/4 & 0 \end{bmatrix} \qquad N = 4$$

$$P(i, i-1) = \mathbb{P}(X_{t+1} = i-1|X_t = i) = \frac{i}{N}, \qquad 1 \le i \le N$$

$$P(i, i+1) = \mathbb{P}(X_{t+1} = i+1 | X_t = i) = \frac{N-i}{N}, \quad 0 \le i \le N-1$$

¹Paul (1880–1993) and Tatyana (1867–1964) Ehrenfest (□) (1880–1993) and Tatyana (1867–1964)

Compute powers of P...

$$P = \frac{1}{4} \begin{bmatrix} 0 & 4 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix}$$

$$P = \frac{1}{4} \begin{bmatrix} 0 & 4 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix} \qquad P^2 = \left(\frac{1}{4}\right)^2 \begin{bmatrix} 4 & 0 & 12 & 0 & 0 \\ 0 & 10 & 0 & 6 & 0 \\ 2 & 0 & 12 & 0 & 2 \\ 0 & 6 & 0 & 10 & 0 \\ 0 & 0 & 12 & 0 & 4 \end{bmatrix}$$

Compute powers of P...

$$P = rac{1}{4} egin{bmatrix} 0 & 4 & 0 & 0 & 0 \ 1 & 0 & 3 & 0 & 0 \ 0 & 2 & 0 & 2 & 0 \ 0 & 0 & 3 & 0 & 1 \ 0 & 0 & 0 & 4 & 0 \end{bmatrix}$$

$$P = \frac{1}{4} \begin{bmatrix} 0 & 4 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix} \qquad P^2 = \left(\frac{1}{4}\right)^2 \begin{bmatrix} 4 & 0 & 12 & 0 & 0 \\ 0 & 10 & 0 & 6 & 0 \\ 2 & 0 & 12 & 0 & 2 \\ 0 & 6 & 0 & 10 & 0 \\ 0 & 0 & 12 & 0 & 4 \end{bmatrix}$$

$$P^{3} = \left(\frac{1}{4}\right)^{3} \begin{bmatrix} 0 & 40 & 0 & 24 & 0 \\ 10 & 0 & 48 & 0 & 6 \\ 0 & 32 & 0 & 32 & 0 \\ 6 & 0 & 48 & 0 & 10 \\ 0 & 24 & 0 & 40 & 0 \end{bmatrix}$$

$$P^{3} = \left(\frac{1}{4}\right)^{3} \begin{bmatrix} 0 & 40 & 0 & 24 & 0 \\ 10 & 0 & 48 & 0 & 6 \\ 0 & 32 & 0 & 32 & 0 \\ 6 & 0 & 48 & 0 & 10 \\ 0 & 24 & 0 & 40 & 0 \end{bmatrix} \qquad P^{4} = \left(\frac{1}{4}\right)^{4} \begin{bmatrix} 40 & 0 & 192 & 0 & 24 \\ 0 & 136 & 0 & 120 & 0 \\ 32 & 0 & 192 & 0 & 32 \\ 0 & 120 & 0 & 136 & 0 \\ 24 & 0 & 192 & 0 & 40 \end{bmatrix}$$

Compute powers of P...

$$P = \frac{1}{4} \begin{bmatrix} 0 & 4 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix} \qquad P^2 = \left(\frac{1}{4}\right)^2 \begin{bmatrix} 4 & 0 & 12 & 0 & 0 \\ 0 & 10 & 0 & 6 & 0 \\ 2 & 0 & 12 & 0 & 2 \\ 0 & 6 & 0 & 10 & 0 \\ 0 & 0 & 12 & 0 & 4 \end{bmatrix}$$

$$P^{3} = \begin{pmatrix} \frac{1}{4} \end{pmatrix}^{3} \begin{bmatrix} 0 & 40 & 0 & 24 & 0 \\ 10 & 0 & 48 & 0 & 6 \\ 0 & 32 & 0 & 32 & 0 \\ 6 & 0 & 48 & 0 & 10 \\ 0 & 24 & 0 & 40 & 0 \end{bmatrix} \qquad P^{4} = \begin{pmatrix} \frac{1}{4} \end{pmatrix}^{4} \begin{bmatrix} 40 & 0 & 192 & 0 & 24 \\ 0 & 136 & 0 & 120 & 0 \\ 32 & 0 & 192 & 0 & 32 \\ 0 & 120 & 0 & 136 & 0 \\ 24 & 0 & 192 & 0 & 40 \end{bmatrix}$$

• $P^t(x,x) = 0$ for odd t = 1,3,5,... and $P^t(x,x) > 0$ for even t = 2,4,6,...

Compute powers of P...

$$P = \frac{1}{4} \begin{bmatrix} 0 & 4 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix} \qquad P^2 = \left(\frac{1}{4}\right)^2 \begin{bmatrix} 4 & 0 & 12 & 0 & 0 \\ 0 & 10 & 0 & 6 & 0 \\ 2 & 0 & 12 & 0 & 2 \\ 0 & 6 & 0 & 10 & 0 \\ 0 & 0 & 12 & 0 & 4 \end{bmatrix}$$

$$P^{3} = \begin{pmatrix} \frac{1}{4} \end{pmatrix}^{3} \begin{bmatrix} 0 & 40 & 0 & 24 & 0 \\ 10 & 0 & 48 & 0 & 6 \\ 0 & 32 & 0 & 32 & 0 \\ 6 & 0 & 48 & 0 & 10 \\ 0 & 24 & 0 & 40 & 0 \end{bmatrix} \qquad P^{4} = \begin{pmatrix} \frac{1}{4} \end{pmatrix}^{4} \begin{bmatrix} 40 & 0 & 192 & 0 & 24 \\ 0 & 136 & 0 & 120 & 0 \\ 32 & 0 & 192 & 0 & 32 \\ 0 & 120 & 0 & 136 & 0 \\ 24 & 0 & 192 & 0 & 40 \end{bmatrix}$$

- $P^t(x,x) = 0$ for odd t = 1,3,5,... and $P^t(x,x) > 0$ for even t = 2,4,6,...
- Periodic structure: If X_0 is even, then X_1 is odd, X_2 is even,

Compute powers of P...

$$P = \frac{1}{4} \begin{bmatrix} 0 & 4 & 0 & 0 & 0 \\ 1 & 0 & 3 & 0 & 0 \\ 0 & 2 & 0 & 2 & 0 \\ 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix} \qquad P^2 = \left(\frac{1}{4}\right)^2 \begin{bmatrix} 4 & 0 & 12 & 0 & 0 \\ 0 & 10 & 0 & 6 & 0 \\ 2 & 0 & 12 & 0 & 2 \\ 0 & 6 & 0 & 10 & 0 \\ 0 & 0 & 12 & 0 & 4 \end{bmatrix}$$

$$P^3 = \begin{pmatrix} \frac{1}{4} \end{pmatrix}^3 \begin{bmatrix} 0 & 40 & 0 & 24 & 0 \\ 10 & 0 & 48 & 0 & 6 \\ 0 & 32 & 0 & 32 & 0 \\ 6 & 0 & 48 & 0 & 10 \\ 0 & 24 & 0 & 40 & 0 \end{bmatrix} \qquad P^4 = \begin{pmatrix} \frac{1}{4} \end{pmatrix}^4 \begin{bmatrix} 40 & 0 & 192 & 0 & 24 \\ 0 & 136 & 0 & 120 & 0 \\ 32 & 0 & 192 & 0 & 32 \\ 0 & 120 & 0 & 136 & 0 \\ 24 & 0 & 192 & 0 & 40 \end{bmatrix}$$

- $P^t(x,x) = 0$ for odd t = 1,3,5,... and $P^t(x,x) > 0$ for even t = 2,4,6,...
- Periodic structure: If X_0 is even, then X_1 is odd, X_2 is even,
- $P^t(x,x)$ does not converge, so neither does μ_t

The transition matrix

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

satisfies $P^t = P$ for all t = 1, 2, ...

The transition matrix

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

satisfies
$$P^t=P$$
 for all $t=1,2,\ldots$ When $X_0=1$ i.e. $\mu_0=[1,0,0],$
$$\mu_t=\mu_0P^t=[0.5,0.5,0] \quad \text{for all } t\geq 1$$

The transition matrix

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

satisfies
$$P^t=P$$
 for all $t=1,2,\ldots$ When $X_0=1$ i.e. $\mu_0=[1,0,0],$
$$\mu_t = \mu_0 P^t = [0.5,0.5,0] \quad \text{for all } t \geq 1$$
 When $X_0=3$ i.e. $\mu_0=[0,0,1],$
$$\mu_t = [0,0,1] P^t = [0,0,1] \quad \text{for all } t \geq 0$$

The transition matrix

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

satisfies
$$P^t=P$$
 for all $t=1,2,\ldots$ When $X_0=1$ i.e. $\mu_0=[1,0,0],$
$$\mu_t=\mu_0P^t=[0.5,0.5,0] \quad \text{for all } t\geq 1$$
 When $X_0=3$ i.e. $\mu_0=[0,0,1],$

This MC has many limiting distributions, depending on initial state.

 $\mu_t = [0,0,1]P^t = [0,0,1]$ for all $t \ge 0$

The transition matrix

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

satisfies $P^t=P$ for all t=1,2,...When $X_0=1$ i.e. $\mu_0=[1,0,0]$,

$$\mu_t = \mu_0 P^t = [0.5, 0.5, 0]$$
 for all $t \ge 1$

When $X_0 = 3$ i.e. $\mu_0 = [0, 0, 1]$,

$$\mu_t = [0,0,1]P^t = [0,0,1]$$
 for all $t \ge 0$

This MC has many limiting distributions, depending on initial state. For all $\alpha \in [0,1]$, the distribution

$$\pi = \alpha[0.5, 0.5, 0] + (1 - \alpha)[0, 0, 1]$$

is an invariant distribution.

Examples: Summary

Unique	limiting
distribution	

(Brand loyalty)

No limiting distribution

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(Ehrenfest)

Many limiting distributions

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Contents

Invariant and limiting distributions

Examples

 ${\sf Connectivity} = {\sf Irreducibility}$

Periodicity

Convergence

Reducible MCs

 $x \rightsquigarrow y$ if the transition diagram contains a path from x to y

 $x \rightsquigarrow y$ if the transition diagram contains a path from x to y. The matrix and the MC is irreducible if $x \rightsquigarrow y$ for all x, y. (In graph theory terms: strongly connected)

 $x \rightsquigarrow y$ if the transition diagram contains a path from x to y The matrix and the MC is irreducible if $x \rightsquigarrow y$ for all x, y. (In graph theory terms: strongly connected) Which of the following are irreducible?

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer:

 $x \rightsquigarrow y$ if the transition diagram contains a path from x to y. The matrix and the MC is irreducible if $x \rightsquigarrow y$ for all x, y. (In graph theory terms: strongly connected)
Which of the following are irreducible?

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer: 2 first are irreducible, 3rd is not.

Theorem

For all $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x,y) > 0$ for some $t \geq 1$.

Theorem

For all $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x, y) > 0$ for some $t \geq 1$.

Proof.

$$P(x_0,x_1)P(x_1,x_2)\cdots P(x_{t-1},x_t)>0.$$

Theorem

For all $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x, y) > 0$ for some $t \geq 1$.

Proof.

$$P(x_0,x_1)P(x_1,x_2)\cdots P(x_{t-1},x_t)>0.$$

Hence
$$P^t(x, y) = \mathbb{P}(X_t = y \mid X_0 = x)$$

Theorem

For all $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x, y) > 0$ for some $t \geq 1$.

Proof.

$$P(x_0,x_1)P(x_1,x_2)\cdots P(x_{t-1},x_t) > 0.$$

Hence
$$P^{t}(x, y) = \mathbb{P}(X_{t} = y \mid X_{0} = x)$$

= $\mathbb{P}(X_{t} = x_{t} \mid X_{0} = x_{0})$

Theorem

For all $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x, y) > 0$ for some $t \geq 1$.

Proof.

$$P(x_0, x_1)P(x_1, x_2)\cdots P(x_{t-1}, x_t) > 0.$$

Hence
$$P^t(x, y) = \mathbb{P}(X_t = y \mid X_0 = x)$$

= $\mathbb{P}(X_t = x_t \mid X_0 = x_0)$
 $\geq \mathbb{P}(X_t = x_t, X_{t-1} = x_{t-1}, \dots, X_1 = x_1 \mid X_0 = x_0)$

Theorem

For all $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x, y) > 0$ for some $t \geq 1$.

Proof.

$$P(x_0, x_1)P(x_1, x_2)\cdots P(x_{t-1}, x_t) > 0.$$

Hence
$$P^{t}(x, y) = \mathbb{P}(X_{t} = y \mid X_{0} = x)$$

 $= \mathbb{P}(X_{t} = x_{t} \mid X_{0} = x_{0})$
 $\geq \mathbb{P}(X_{t} = x_{t}, X_{t-1} = x_{t-1}, \dots, X_{1} = x_{1} \mid X_{0} = x_{0})$
 $= P(x_{0}, x_{1})P(x_{1}, x_{2}) \cdots P(x_{t-1}, x_{t})$

Theorem

For all $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x, y) > 0$ for some $t \geq 1$.

Proof.

$$P(x_0,x_1)P(x_1,x_2)\cdots P(x_{t-1},x_t)>0.$$

Hence
$$P^t(x,y) = \mathbb{P}(X_t = y \mid X_0 = x)$$

 $= \mathbb{P}(X_t = x_t \mid X_0 = x_0)$
 $\geq \mathbb{P}(X_t = x_t, X_{t-1} = x_{t-1}, \dots, X_1 = x_1 \mid X_0 = x_0)$
 $= P(x_0, x_1)P(x_1, x_2) \cdots P(x_{t-1}, x_t)$
 $> 0.$

Theorem

For $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x,y) > 0$ for some $t \geq 1$.

... Proof (converse).

If $P^t(x, y) > 0$ for some $t \ge 1$,

Theorem

For $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x, y) > 0$ for some $t \geq 1$.

... Proof (converse).

If $P^t(x,y) > 0$ for some $t \ge 1$, then $\mathbb{P}(X_t = y \mid X_0 = x) > 0$, that a MC starting from x is after t time steps at possibly at y.

Theorem

For $x \neq y$: $x \rightsquigarrow y$ if and only if $P^t(x,y) > 0$ for some $t \geq 1$.

... Proof (converse).

If $P^t(x,y) > 0$ for some $t \ge 1$, then $\mathbb{P}(X_t = y \mid X_0 = x) > 0$, that a MC starting from x is after t time steps at possibly at y. Hence there must be a path in the transition diagram, of length t, so $x \rightsquigarrow y$.

Theorem

A transition matrix P is irreducible if and only if for all $x \neq y$ there exists an integer $t \geq 1$, such that $P^t(x, y) > 0$.

Theorem

A transition matrix P is irreducible if and only if for all $x \neq y$ there exists an integer $t \geq 1$, such that $P^t(x, y) > 0$.

Proof.

Directly from previous result, according to which $x \rightsquigarrow y$ iff $P^t(x, y) > 0$ for some $t \ge 1$.

 $x \longleftrightarrow y$, if $x \leadsto y$ and $y \leadsto x$.

 $x \longleftrightarrow y$, if $x \leadsto y$ and $y \leadsto x$.

 $C(x) = \{y : y \leftrightarrow x\}$ is the component of state x

 $x \longleftrightarrow y$, if $x \leadsto y$ and $y \leadsto x$.

 $C(x) = \{y : y \iff x\}$ is the component of state x

The components partition the state space.

 $x \leftrightarrow v$, if $x \leftrightarrow v$ and $v \leftrightarrow x$.

$$C(x) = \{y : y \leftrightarrow x\}$$
 is the component of state x

The components partition the state space.

 $x \leftrightarrow y$ is an equivalence relation (reflexive, symmetric, transitive)

Determine the components of the following chains:

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer:

 $x \longleftrightarrow y$, if $x \leadsto y$ and $y \leadsto x$.

$$C(x) = \{y : y \iff x\}$$
 is the component of state x

The components partition the state space.

 $x \leftrightarrow y$ is an equivalence relation (reflexive, symmetric, transitive)

Determine the components of the following chains:

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer: First two have only one component (full state space).

 $x \longleftrightarrow y$, if $x \leadsto y$ and $y \leadsto x$.

$$C(x) = \{y : y \leftrightarrow x\}$$
 is the component of state x

The components partition the state space.

 $x \leftrightarrow y$ is an equivalence relation (reflexive, symmetric, transitive)

Determine the components of the following chains:

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer: First two have only one component (full state space). Third has two components $C(1) = C(2) = \{1, 2\}$ ja $C(3) = \{3\}$.

Theorem

Every irreducible finite-state MC has a unique invariant distribution π , for which $\pi(x) > 0$ for all x.

Proof.

Precise proof: [Dur12, Thm. 1.14] or [LPW08, Sec 1.5].

Theorem

Every irreducible finite-state MC has a unique invariant distribution π , for which $\pi(x) > 0$ for all x.

Proof.

Precise proof: [Dur12, Thm. 1.14] or [LPW08, Sec 1.5]. Existence:

$$\pi(x) = \frac{1}{\mathbb{E}(T_x^+ | X_0 = x)}, \qquad T_x^+ = \min\{t \ge 1 : X_t = x\}.$$

Theorem

Every irreducible finite-state MC has a unique invariant distribution π , for which $\pi(x) > 0$ for all x.

Proof.

Precise proof: [Dur12, Thm. 1.14] or [LPW08, Sec 1.5]. Existence:

$$\pi(x) = \frac{1}{\mathbb{E}(T_x^+ | X_0 = x)}, \qquad T_x^+ = \min\{t \ge 1 : X_t = x\}.$$

Uniqueness: for an irreducible chain the column vectors solving Ph = h are of the form $h = [c, c, ..., c]^T$, so the kernel of matrix P - I is one-dimensional.

Theorem

Every irreducible finite-state MC has a unique invariant distribution π , for which $\pi(x) > 0$ for all x.

Proof.

Precise proof: [Dur12, Thm. 1.14] or [LPW08, Sec 1.5]. Existence:

$$\pi(x) = \frac{1}{\mathbb{E}(T_x^+ | X_0 = x)}, \qquad T_x^+ = \min\{t \ge 1 : X_t = x\}.$$

Uniqueness: for an irreducible chain the column vectors solving Ph = h are of the form $h = [c, c, ..., c]^T$, so the kernel of matrix P - I is one-dimensional. \implies also the solution space of the row-vector equaition $\pi(P - I) = 0$ has dimension one.

Theorem

Every irreducible finite-state MC has a unique invariant distribution π , for which $\pi(x) > 0$ for all x.

Proof.

Precise proof: [Dur12, Thm. 1.14] or [LPW08, Sec 1.5]. Existence:

$$\pi(x) = \frac{1}{\mathbb{E}(T_x^+ | X_0 = x)}, \qquad T_x^+ = \min\{t \ge 1 : X_t = x\}.$$

Uniqueness: for an irreducible chain the column vectors solving Ph = h are of the form $h = [c, c, \ldots, c]^T$, so the kernel of matrix P - I is one-dimensional. \Longrightarrow also the solution space of the row-vector equaition $\pi(P - I) = 0$ has dimension one. Condition $\sum_x \pi(x) = 1 \Longrightarrow$ that the equation $\pi = \pi P$ has at most one solution.

When do the distributions μ_t converge

$$\mu_0 P^t \to \pi$$
 as $t \to \infty$?

Contents

Invariant and limiting distributions

Examples

Connectivity = Irreducibility

Periodicity

Convergence

Reducible MCs

The period of state x is the gcd of the set of possible return times $\mathcal{T}_{x} = \{t \geq 1 : P^{t}(x,x) > 0\}$

The period of state x is the gcd of the set of possible return times $T_x = \{t \ge 1 : P^t(x, x) > 0\}$

A transition matrix P and a corresponding MC is aperiodic, if all states have period one.

The period of state x is the gcd of the set of possible return times $\mathcal{T}_{x} = \{t > 1 : P^{t}(x, x) > 0\}$

A transition matrix P and a corresponding MC is aperiodic, if all states have period one.

Which of the following are aperiodic?

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer:

The period of state x is the gcd of the set of possible return times $T_x = \{t \ge 1 : P^t(x, x) > 0\}$

A transition matrix P and a corresponding MC is aperiodic, if all states have period one.

Which of the following are aperiodic?

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer: For the second chain $\mathcal{T}_x = \{2, 4, 6, \dots\}$ for all x, and every state has period 2.

The period of state x is the gcd of the set of possible return times $T_x = \{t \ge 1 : P^t(x, x) > 0\}$

A transition matrix P and a corresponding MC is aperiodic, if all states have period one.

Which of the following are aperiodic?

$$\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/4 & 0 & 3/4 & 0 & 0 \\ 0 & 2/4 & 0 & 2/4 & 0 \\ 0 & 0 & 3/4 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Answer: For the second chain $\mathcal{T}_x = \{2, 4, 6, \dots\}$ for all x, and every state has period 2. The other chains are aperiodic.

Aperiodicity

Theorem

An irreducible MC is aperiodic if P(x,x) > 0 for some x.

Aperiodicity

Theorem

An irreducible MC is aperiodic if P(x,x) > 0 for some x.

Lemma

If P(x,x) > 0, then the period of x is 1.

Lemma

Every state of an irreducible chain has the same period.

Aperiodicity

Theorem

An irreducible MC is aperiodic if P(x,x) > 0 for some x.

Lemma

If P(x,x) > 0, then the period of x is 1.

Lemma

Every state of an irreducible chain has the same period.

Proof.

Exercise.

What is the period of state 0?

What is the period of state 0?

• From state 0 we move either to the left (L) or right (R) circuit

$$\mathcal{T}_0 = \{\underbrace{3}_{L}, \underbrace{4}_{R}, \underbrace{6}_{LL}, \underbrace{7}_{LR}, \underbrace{8}_{RR}, \underbrace{9}_{LLL}, \dots]$$

What is the period of state 0?

From state 0 we move either to the left (L) or right (R) circuit

$$\mathcal{T}_0 = \{\underbrace{3}_{L}, \underbrace{4}_{R}, \underbrace{6}_{LL}, \underbrace{7}_{LR}, \underbrace{8}_{RR}, \underbrace{9}_{LLL}, ...\}$$

• The gcd of \mathcal{T}_0 is 1 so the period of state 0 is 1.

What is the period of state 0?

• From state 0 we move either to the left (L) or right (R) circuit

$$\mathcal{T}_0 = \{\underbrace{3}_{L}, \underbrace{4}_{R}, \underbrace{6}_{LL}, \underbrace{7}_{LR}, \underbrace{8}_{RR}, \underbrace{9}_{LLL}, \dots\}$$

• The gcd of \mathcal{T}_0 is 1 so the period of state 0 is 1.

What is the period of state 1?

What is the period of state 0?

From state 0 we move either to the left (L) or right (R) circuit

$$\mathcal{T}_0 = \{\underbrace{3}_{L}, \underbrace{4}_{R}, \underbrace{6}_{LL}, \underbrace{7}_{LR}, \underbrace{8}_{RR}, \underbrace{9}_{LLL}, ...\}$$

• The gcd of \mathcal{T}_0 is 1 so the period of state 0 is 1.

What is the period of state 1?

• The chain is irreducible, so all states have the same period.

What is the period of state 0?

From state 0 we move either to the left (L) or right (R) circuit

$$T_0 = \{\underbrace{3}_{L}, \underbrace{4}_{R}, \underbrace{6}_{LL}, \underbrace{7}_{LR}, \underbrace{8}_{RR}, \underbrace{9}_{LLL}, ...\}$$

• The gcd of \mathcal{T}_0 is 1 so the period of state 0 is 1.

What is the period of state 1?

- The chain is irreducible, so all states have the same period.
- The MC is hence irreducible and aperiodic.

Contents

Invariant and limiting distributions

Examples

Connectivity = Irreducibility

Periodicity

Convergence

Reducible MCs

Theorem

Let P be an irreducible and aperiodic transition matrix. Then for all x and y,

$$P^t(x,y) \to \pi(y), \quad t \to \infty,$$

where π is the unique invariant distribution of P.

Theorem

Let P be an irreducible and aperiodic transition matrix. Then for all x and y,

$$P^t(x,y) \to \pi(y), \quad t \to \infty,$$

where π is the unique invariant distribution of P.

Corollary: For an arbitrary initial distribution μ_0 , $\mu_t = \mu_0 P^t \to \pi$:

Theorem

Let P be an irreducible and aperiodic transition matrix. Then for all x and y,

$$P^t(x,y) \to \pi(y), \quad t \to \infty,$$

where π is the unique invariant distribution of P.

Corollary: For an arbitrary initial distribution μ_0 , $\mu_t = \mu_0 P^t \rightarrow \pi$:

$$\mu_t(y)$$

Theorem

Let P be an irreducible and aperiodic transition matrix. Then for all x and y,

$$P^t(x,y) \to \pi(y), \quad t \to \infty,$$

where π is the unique invariant distribution of P.

Corollary: For an arbitrary initial distribution μ_0 , $\mu_t = \mu_0 P^t \to \pi$:

$$\mu_t(y) = \sum_{x} \mu_0(x) P^t(x, y)$$

Theorem

Let P be an irreducible and aperiodic transition matrix. Then for all x and y,

$$P^t(x,y) \to \pi(y), \quad t \to \infty,$$

where π is the unique invariant distribution of P.

Corollary: For an arbitrary initial distribution μ_0 , $\mu_t = \mu_0 P^t \rightarrow \pi$:

$$\mu_t(y) = \sum_{x} \mu_0(x) P^t(x, y) \to \sum_{x} \mu_0(x) \pi(y)$$

Theorem

Let P be an irreducible and aperiodic transition matrix. Then for all x and y,

$$P^t(x,y) \to \pi(y), \quad t \to \infty,$$

where π is the unique invariant distribution of P.

Corollary: For an arbitrary initial distribution μ_0 , $\mu_t = \mu_0 P^t \to \pi$:

$$\mu_t(y) = \sum_x \ \mu_0(x) P^t(x, y) \to \sum_x \mu_0(x) \pi(y) = \pi(y).$$

Theorem

Let P be an irreducible and aperiodic transition matrix. Then for all x and y,

$$P^t(x,y) \to \pi(y), \quad t \to \infty,$$

where π is the unique invariant distribution of P.

Corollary: For an arbitrary initial distribution μ_0 , $\mu_t = \mu_0 P^t \to \pi$:

$$\mu_t(y) = \sum_x \ \mu_0(x) P^t(x, y) \to \sum_x \mu_0(x) \pi(y) = \pi(y).$$

In matrix form:

$$\lim_{t \to \infty} P^t = \begin{bmatrix} \pi \\ \vdots \\ \pi \end{bmatrix}$$

Theorem

Let P be an irreducible and aperiodic transition matrix. Then for all x and y,

$$P^t(x,y) \to \pi(y), \quad t \to \infty,$$

where π is the unique invariant distribution of P.

Corollary: For an arbitrary initial distribution μ_0 , $\mu_t = \mu_0 P^t \to \pi$:

$$\mu_t(y) = \sum_{x} \mu_0(x) P^t(x, y) \to \sum_{x} \mu_0(x) \pi(y) = \pi(y).$$

In matrix form:

$$\lim_{t \to \infty} P^t = \begin{bmatrix} \pi \\ \vdots \\ \pi \end{bmatrix}$$

Proof.

See [LPW08, Sec. 4.3] (online book!) or [Dur12, Sec. 1.7].

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$$

• Is the chain irreducible?

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$$

• Is the chain irreducible? Yes.

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$$

- Is the chain irreducible? Yes.
- Is the chain aperiodic?

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$$

- Is the chain irreducible? Yes.
- Is the chain aperiodic? Yes.

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$$

- Is the chain irreducible? Yes.
- Is the chain aperiodic? Yes.

Find π such that $\pi P = \pi$:

$$\begin{split} \frac{1}{2}\pi_2 + \pi_3 &= \pi_1 \\ \pi_1 &= \pi_2 \\ \frac{1}{2}\pi_2 &= \pi_3. \end{split}$$

Hence $\pi_2 = \pi_1$ and further $\pi_3 = \frac{1}{2}\pi_1$.

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$$

- Is the chain irreducible? Yes.
- Is the chain aperiodic? Yes.

Find π such that $\pi P = \pi$:

$$\begin{split} \frac{1}{2}\pi_2 + \pi_3 &= \pi_1 \\ \pi_1 &= \pi_2 \\ \frac{1}{2}\pi_2 &= \pi_3. \end{split}$$

Hence $\pi_2 = \pi_1$ and further $\pi_3 = \frac{1}{2}\pi_1$. Condition $1 = \pi_1 + \pi_2 + \pi_3 = \pi_1(1 + 1 + \frac{1}{2})$ implies $\pi_1 = \frac{2}{5}$.

$$P = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{bmatrix}$$

- Is the chain irreducible? Yes.
- Is the chain aperiodic? Yes.

Find π such that $\pi P = \pi$:

$$\frac{1}{2}\pi_2 + \pi_3 = \pi_1$$

$$\pi_1 = \pi_2$$

$$\frac{1}{2}\pi_2 = \pi_3.$$

Hence $\pi_2 = \pi_1$ and further $\pi_3 = \frac{1}{2}\pi_1$. Condition $1 = \pi_1 + \pi_2 + \pi_3 = \pi_1(1 + 1 + 1)$

Condition $1 = \pi_1 + \pi_2 + \pi_3 = \pi_1(1 + 1 + \frac{1}{2})$ implies $\pi_1 = \frac{2}{5}$. Hence the MC has has invariant distribution $\pi = (\frac{2}{5}, \frac{2}{5}, \frac{1}{5})$. This is unique.

Using the convergence theorem:

$$\lim_{t \to \infty} P^t = \begin{bmatrix} \frac{2}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{2}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{2}{5} & \frac{2}{5} & \frac{1}{5} \end{bmatrix} \quad \left(\text{vrt. } P^{15} = \begin{bmatrix} 0.3984 & 0.3984 & 0.2031 \\ 0.4023 & 0.3984 & 0.1992 \\ 0.3984 & 0.4062 & 0.1953 \end{bmatrix} \right)$$

Contents

Invariant and limiting distributions

Examples

Connectivity = Irreducibility

Periodicity

Convergence

Reducible MCs

Reducible MCs

What happens for reducible MCs in the long run?

$$\mathbb{P}_{x}(X_{t}=y) \rightarrow ?$$

Note

- Reducible MCs have several components.
- The MC cannot exit an absorbing component.

Reducible MCs

What happens for reducible MCs in the long run?

$$\mathbb{P}_{x}(X_{t}=y) \rightarrow ?$$

Note

- Reducible MCs have several components.
- The MC cannot exit an absorbing component.

The long-term behavior of a reducible MC depends on the initial state X_0 .

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

The states and components of the chain can be divided as:

- Absorbing components: {0} ja {3,4}
- Transient components: {1,2}

A MC starting from 0 stays fixed to its initial state. Hence $\pi_{\{0\}}=[1,0,0,0,0]$ is an invariant distribution.

A MC starting from 0 stays fixed to its initial state. Hence $\pi_{\{0\}}=[1,0,0,0,0]$ is an invariant distribution.

A MC starting from the absorbing component $\{3,4\}$ is like

This has invariant distribution [2/3, 1/3].

A MC starting from 0 stays fixed to its initial state. Hence $\pi_{\{0\}}=[1,0,0,0,0]$ is an invariant distribution.

A MC starting from the absorbing component $\{3,4\}$ is like

This has invariant distribution [2/3,1/3]. Also $\pi_{\{3,4\}}=[0,0,0,2/3,1/3]$ is an invariant distribution.

A MC starting from 0 stays fixed to its initial state. Hence $\pi_{\{0\}}=[1,0,0,0,0]$ is an invariant distribution.

A MC starting from the absorbing component $\{3,4\}$ is like

This has invariant distribution [2/3,1/3]. Also $\pi_{\{3,4\}}=[0,0,0,2/3,1/3]$ is an invariant distribution.

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

The limiting distribution depends on the initial state:

$$\delta_0 P^t \to \pi_{\{0\}}$$
 but $\delta_3 P^t \to \pi_{\{3,4\}}$

A chain starting at 1 gets absorbed to $\{0\}$ or $\{3,4\}$.

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

The limiting distribution depends on the initial state:

$$\delta_0 P^t \to \pi_{\{0\}}$$
 but $\delta_3 P^t \to \pi_{\{3,4\}}$

A chain starting at 1 gets absorbed to $\{0\}$ or $\{3,4\}$. We analyze this more next time.

- Pierre Brémaud. *Markov Chains*.

 Springer, 1999.
- Richard Durrett.

 Essentials of Stochastic Processes.

 Springer, second edition, 2012.
- Vidyadhar G. Kulkarni.

 Introduction to Modeling and Analysis of Stochastic Systems.

 Springer, second edition, 2011.
- David A. Levin, Yuval Peres, and Elizabeth L. Wilmer.

 Markov Chains and Mixing Times.

American Mathematical Society, http://pages.uoregon.edu/dlevin/MARKOV/, 2008.

James R. Norris. *Markov Chains*.

Cambridge University Press, 1997.

References

Images used in the slides (in order of appearence)

1. Image courtesy of think4photop at FreeDigitalPhotos.net