Mathematical Analysis - Exam Feb. 4, 2021

Please give complete explanations/proofs. Unjustified answers will not be marked. Good luck!

1. (3 p)

- a) Let $x_n = \ln(n+1) \ln n, \ n \in \mathbb{N}$.
 - i) Study if the sequence (x_n) is monotone, bounded and convergent.
 - ii) Find $\lim_{n\to\infty} ((2n+1)\cdot x_n)$ and $\lim_{n\to\infty} \frac{1+\frac{1}{3}+\ldots+\frac{1}{2n-1}}{\ln n}$.
 - iii) Study if the series $\sum_{n\geq 1} x_n$ is convergent or divergent.
- b) Let (x_n) be a sequence in $[0,\infty)$. Is the series $\sum_{n\geq 1}\frac{x_n}{1+n^3x_n}$ convergent?
- **2.** (1 p) Let $f: \mathbb{R}^2 \setminus \{0_2\} \to \mathbb{R}$, $f(x,y) = \frac{\sqrt[3]{3xy+8}-2}{x^2+y^2}$. Does f have a limit at 0_2 ?
- **3.** (2.5 p) Let $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 + 3xy^2 + 6xy$.
 - a) Find the gradient $\nabla f(x,y)$ and the Hessian matrix $H_f(x,y)$ of f at $(x,y) \in \mathbb{R}^2$.
 - b) Find the stationary points of f and then classify them (as local minimum points, local maximum points, or points that are not local extremum points).
 - c) Study whether the obtained local extremum points (if any) are in fact global extremum points.

4. (2.5 p)

- a) Let $f:[0,2)\to\mathbb{R}$, $f(x)=\ln(2-x)$. Study the improper integrability of f on its domain and, in case f is improperly integrable, determine the improper integral $\int_0^2 f(x)\,dx$.
- b) Let M be the triangle in \mathbb{R}^2 with vertices (0,0), (1,0), and (1,1). Compute $\iint_M \cos \frac{\pi x^2}{2} dx dy$.