# Internetworking IP

#### Teoría de las Comunicaciones



Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

# Direcciones IP: (a) clase A; (b) clase B; (c) clase C; (classful, 1981-1992)



# Direcciones y máscaras

Los hosts y routers interpretan las direcciones IP separándolas en dos partes, la de red y la de host:

| Red (n bits) | Host (32-n bits) |
|--------------|------------------|
|--------------|------------------|

- La longitud de cada parte se indica mediante un parámetro denominado **máscara de red.**
- La máscara tiene también una longitud de 32 bits y está formada por un conjunto de unos seguido de ceros. Los unos indican la parte red.
- Como la dirección IP, la máscara se expresa mediante cuatro números decimales separados por puntos, ej.: 255.255.255.0

# Dirección IP y máscara

Al configurar la dirección IP de una interfaz hay que especificar la máscara utilizada. Por ejemplo:



## Otro ejemplo



# Uso reservado de la primera y la última direcciones de cada red

- Cuando tenemos una red, por ejemplo la 40.40.25.0 con máscara 255.255.255.0:
  - La primera dirección posible (40.40.25.0) identifica la red.
  - La última dirección posible (40.40.25.255) es la de broadcast en esa red.
  - El rango asignable en este caso sería desde 40.40.25.1 hasta 40.40.25.254.
- No se puede asignar a una interfaz ni la primera ni la última direcciones de cada red.

## Asignación de dirección IP a un host

- La asignación de direcciones y máscaras puede hacerse:
  - Por configuración manual en el propio equipo.
  - Automáticamente, mediante un protocolo de asignación de direcciones desde un servidor: típicamente DHCP.
- Normalmente le asignamos además al host un router por defecto ('puerta de enlace predeterminada' o 'default gateway'). No es obligatorio.

### La LAN y el resto de la Internet

#### Enrutamiento en un host

Desde el punto de vista de un **host** el mundo se divide en dos partes: sus vecinos (los que tienen la **misma dirección de red**) y el resto del mundo. Con sus **vecinos** habla **directamente**, con los **demás** lo hace a través del **router.** 



#### Enrutamiento en un host

El paquete se enruta de acuerdo con su dirección de destino



Dir. IP: 147.156.135.57 Máscara: 255.255.255.0

Dir. IP: 147.156.135.22 Máscara: 255.255.255.0

Def. gw: 147.156.135.1

B

Def. gw: 147.156.135.1

Dir. IP: 147.156.135.134 Máscara: 255.255.255.0

puerta de enlace

predeterminada

147.156.135.1

Def. gw: 147.156.135.1

#### Enrutamiento en la red

- Objetivo: Transportar los paquetes IP desde el origen al destino.
- Cada paquete "viaja" de router en router.
- El paquete se enruta de acuerdo con su dirección de destino.
- Las direcciones origen y destino no se modifican en el proceso.
- Para transportar el paquete al destino, cada router mantiene una **tabla** de la forma general:

Las tablas pueden ser cargadas de manera manual por el administrador de la red (enrutamiento estático) o de manera automática mediante algoritmos de ruteo (enrutamiento dinámico).



# Notación para los ejercicios

| Network        | Next hop  |
|----------------|-----------|
| 172.16.5.0/24  | IF 0/1    |
| 10.4.2.0/27    | IF 0/0    |
| 192.168.2.0/26 | 10.4.2.25 |
| Default        | 10.4.2.25 |

| Network (Red) | Next hop (Próximo salto)                                                                |
|---------------|-----------------------------------------------------------------------------------------|
|               | <ul> <li>interface de salida, si la red destino se encuentra directamente</li> </ul>    |
| Red destino   | conectada a esa interface; o bien                                                       |
|               | <ul> <li>dirección IP del próximo salto, si la red destino es una red remota</li> </ul> |

#### Resumen

- □ IP es un protocolo de capa de red, sin conexión, basado en el modelo de datagramas y best-effort delivery "mejor esfuerzo" (servicio no confiable).
- Se define un esquema de direccionamiento global (las direcciones IP son únicas en la red).
- Cada interfaz de un dispositivo en Internet tiene asociada dirección IP y una máscara de red.
- Los hosts y routers interpretan las direcciones IP separándolas en dos partes, la de **red** y la de **host**. La parte de red se identifica mediante la máscara de red:

| Red (n bits) | Host (32-n bits) |
|--------------|------------------|
| ` ,          | ,                |

- Cada datagrama se rutea en forma independiente tomando en cuenta su dirección destino. En cada salto a partir de la dirección destino se infiere la red destino usando la máscara de red.
- Para transportar el paquete al destino, cada router mantiene una tabla de ruteo con entradas de la forma: