

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/813,296	03/30/2004	Gary A. Kinstler	03-1265	4531
74576	7590	01/07/2009		
HUGH P. GORTLER			EXAMINER	
23 Arrivo Drive			YUEN, KAN	
Mission Viejo, CA 92692			ART UNIT	PAPER NUMBER
			2416	
			MAIL DATE	DELIVERY MODE
			01/07/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/813,296	Applicant(s) KINSTLER, GARY A.
	Examiner KAN YUEN	Art Unit 2416

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED. (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(o).

Status

- 1) Responsive to communication(s) filed on 30 September 2008.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 7-11, 15-20 and 37-46 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 7-11, 15-20, 37-46 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input checked="" type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413)
Paper No(s)/Mail Date: _____ |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | 5) <input type="checkbox"/> Notice of Informal Patent Application |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date: _____ | 6) <input type="checkbox"/> Other: _____ |

Response to Arguments

1. Applicant's arguments with respect to claims 7-11, 15-20 and 37-46 have been considered but are moot in view of the new ground(s) of rejection.

Claim Objections

2. Claim objected to because of the following informalities:

In claim 41, line 9, the term "a non-responding node" should be changed to "the non-responding node", because the term "a non-responding node" seems to referring back to the term "a node that does not respond" in lines 6-7.

In claim 44, the term "each nodes" should be changed to "each node". Furthermore, the term "include" should be changed to "includes". Appropriate correction is required.

Claim Rejections - 35 USC § 103

3. The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

Art Unit: 2416

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

5. Claims 37-40, 7, 9, 11, 16, 17, 19, 20, 41-45 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kramer et al. (Pat No.: 6466539) in view of Fuchs et al. (Pat No.: 5923830).

For claim 37, Kramer et al. disclosed the method of periodically transmitting a first message from a first node to a second node on a first line of the serial data bus (column 6, lines 34-60). The central bus subscriber 14 and the active subscriber 16 transmit and/or receive for instance periodically status messages (first message) via the data lines 10, 12;

determining whether the first message was received by the second node (column 6, lines 34-60). The subscribers check whether the status messages were transferred or received within a defined fault tolerance time; and

transmitting a recovery command to the second node if the second node does not respond to the first message, the recovery command transmitted via a second line of the serial bus or by another data bus (Kramer et al. see column 3, lines 15-35, see column 6, lines 35-67, and see column 7, lines 1-15, and see fig. 1). After fault detection, the transmitting module will generate a relevant message (recovery message) to the module again using any of the 2 buses (10, 12) or the second bus. Since all bus subscribers transmit message independently, the bus are different. The

fault-proof comparator consists of the two homogenous units A0 and B0, the galvanically separated link 96 such as an optical coupler, and relays K1, K2 or a comparable circuit and controls and output level, not described in any detail, in which the power supply of the relevant device or machine or plant is located and which will interrupt (disrupt) the power supply in case the comparator gives the relevant signal, so that the device, machine or plant can be restored in fail-safe state (correct operation).

However, Kramer et al. did not explicitly disclose the feature wherein the recovery command causing the second node to disrupt a monostable condition in the second node and restore functionality of the second node.

Fuchs et al. from the same or similar fields of endeavor disclosed the feature wherein the recovery command causing the second node to disrupt a monostable condition in the second node and restore functionality of the second node (Fuchs et al. column 15, lines 1-10). The CPU 32 are re-synchronized and returned to the "operating, voting enabled state" 156 by transition 196. When a CPU 32 has failed to re-synchronize after a disagreement and a subsequent re-synchronization, a latchup is suspected. Power is then removed and reapplied to the CPU to clear the latchup. Thus, it would have been obvious to the person of ordinary skill in the art at the time of the invention to use the feature as taught by Fuchs et al. in the network of Kramer et al. The motivation for using the feature being that it provides circuit stability in hazardous environment.

Regarding claim 38, Kramer et al. disclosed the feature wherein the second node includes a physical layer controller connected (Kramer et al. control modules 56,

Art Unit: 2416

58 or 60, 62) to the serial data bus (busses 10, 12) and link layer controller (Kramer et al. control modules 56, 58 or 60, 62); and wherein a monostable condition is disrupted in at least one of the physical layer controller and the link layer controller (Kramer et al. column 5, lines 10-67, column 6, lines 1-30). Both controller modules 56, 58 in subscriber 18 is monitoring each other for failure (when monostable condition is detected).

Regarding claim 39, Kramer et al. disclosed the feature wherein the link layer controller is coupled to and dc-isolated from the physical layer controller; and wherein disrupting a monostable condition in the link layer controller is independent of disrupting a monostable condition in the physical layer controller (Kramer et al. column 6, lines 1-35). The fault-proof comparator consists of the two homogenous units A0 and B0, the galvanically separated link 96 such as an optical coupler and relays K1, K2. The relays have forced controller contacts, a property where the contacts for the two relay states, i.e. the normally open and the normally closed contacts cannot be opened or closed at the same time, thus they are independent.

Regarding claim 40, Fuchs et al. disclosed the feature wherein the recovery command causes a bus interface circuit operatively connecting the second node to the first bus to be re- initialized (Fuchs et al. column 15, lines 1-10). The CPU 32 are re-synchronized and returned to the “operating, voting enabled state” 156 by transition 196. When a CPU 32 has failed to re-synchronized after a disagreement and a subsequent re-synchronization, a latchup is suspected. Power is then removed and reapplied to the CPU to clear the latchup.

Regarding claim 7, Kramer et al. disclosed the feature wherein the nodes transmit a plurality of messages in each of a plurality of frames on the first line of the serial data bus, the first message is one of the plurality of messages, and the first message is transmitted once in each frame (Kramer et al. see column 7, lines 49-55). As shown, all modules are independently and periodically transmitting data to other modules. Therefore we can interpret that each module transmits once in each frame. The frame can be any data packet or message such as status message.

Regarding claim 9, Kramer et al. disclosed the feature wherein determining whether the first message was received includes waiting for a reply from the second node (Kramer et al. column 7, lines 1-30).

Regarding claim 11, Kramer et al. disclosed the feature wherein the second bus is a different type of bus than the serial data bus (Kramer et al. see column 3, lines 15-35) Since all bus subscribers transmit message independently, the bus are different.

Regarding claim 41, Kramer et al. disclosed a system comprising: a serial data bus including at least one line (column 5, lines 5-15, fig. 1, buses 10, 12 and data lines 10' and 12'); and

a plurality of nodes operatively connected to the serial data bus, each node including a bus interface connected to the serial data bus (column 5, lines 5-25, fig. 1, Bus subscribers 14, 16, 18 and 20);

wherein at least one of the nodes periodically transmits a first message on a first line of the serial data bus to other nodes (column 6, lines 34-60). The central bus

subscriber 14 and the active subscriber 16 transmit and/or receive for instance periodically status messages (first message) via the data lines 10, 12; and transmits a recovery command to a node that does not respond to the first message, the recovery command transmitted via a second line of the serial bus or by a second data bus (Kramer et al. see column 3, lines 15-35, see column 6, lines 35-67, and see column 7, lines 1-15, and see fig. 1). After fault detection, the transmitting module will generate a relevant message (recovery message) to the module again using any of the 2 buses (10, 12) or the second bus. Since all bus subscribers transmit message independently, the bus are different. The fault-proof comparator consists of the two homogenous units A0 and B0, the galvanically separated link 96 such as an optical coupler, and relays K1, K2 or a comparable circuit and controls and output level, not described in any detail, in which the power supply of the relevant device or machine or plant is located and which will interrupt (disrupt) the power supply in case the comparator gives the relevant signal, so that the device, machine or plant can be restored in fail-safe state (correct operation).

However, Kramer et al. did not explicitly disclose the feature wherein a non-responding node receives the recovery command and, in response, clears a latch-up and restores correct operation, including disrupting a monostable condition.

Fuchs et al. from the same or similar fields of endeavor disclosed the feature wherein a non-responding node receives the recovery command and, in response, clears a latch-up and restores correct operation, including disrupting a monostable condition (Fuchs et al. column 15, lines 1-10). The CPU 32 are re-synchronized and

returned to the "operating, voting enabled state" 156 by transition 196. When a CPU 32 has failed to re-synchronized after a disagreement and a subsequent re-synchronization, a latchup is suspected. Power is then removed and reapplied to the CPU to clear the latchup. Thus, it would have been obvious to the person of ordinary skill in the art at the time of the invention to use the feature as taught by Fuchs et al. in the network of Kramer et al. The motivation for using the feature being that it provides circuit stability in hazardous environment.

Regarding claim 16, Kramer et al. disclosed the feature wherein the nodes are operatively configured to transmit a plurality of messages in each of a plurality of frames on the first bus, the first message is one of the plurality of messages, and the first message is transmitted once in each frame (Kramer et al. see column 7, lines 49-55). As shown, all modules are independently and periodically transmitting data to other modules. Therefore we can interpret that each module transmits once in each frame. The frame can be any data packet or message such as status message.

Regarding claim 17, Kramer et al. disclosed the feature wherein the nodes are operatively configured to transmit a plurality of messages in each of a plurality of frames on the first bus, the first message is one of the plurality of messages, each frame includes a plurality of minor frames, and the first message is transmitted once in each minor frame (Kramer et al. see column 7, lines 49-55). As shown, all modules are independently and periodically transmitting data to other modules. Therefore we can interpret that each module transmits once in each frame. The frame can be any data packet or message such as status message.

Regarding claim 19, Kramer et al. disclosed the feature wherein the second bus is a different type of bus than the first bus (Kramer et al. see column 3, lines 15-35) Since all bus subscribers transmit message independently, the bus are different.

Regarding claim 20, Fuchs et al. disclosed the feature wherein the nodes include a bus interface circuit operatively connected to the serial data bus; and means for receiving the recovery command on the second bus and for re-initializing the bus interface circuit in response to the command (Fuchs et al. column 15, lines 1-10). The CPU 32 are re-synchronized and returned to the “operating, voting enabled state” 156 by transition 196. When a CPU 32 has failed to re-synchronize after a disagreement and a subsequent re-synchronization, a latchup is suspected. Power is then removed and reapplied to the CPU to clear the latchup.

Regarding claim 42, Kramer et al. disclosed the feature wherein the bus interface includes a physical layer controller that is connected to the serial data bus, and a link layer controller that is coupled to and galvanically isolated from the physical layer controller, and wherein a monostable condition in the link layer controller is disrupted independently of a monostable condition in the physical layer controller (Kramer et al. column 6, lines 1-35). The fault-proof comparator consists of the two homogenous units A0 and B0, the galvanically separated link 96 such as an optical coupler and relays K1, K2 and controls an output level, in which the power supply of the relevant device is located and which will interrupt the power supply in case the comparator gives the relevant signal, so that the device can be rendered safe. The relays have forced controller contacts, a property where the contacts for the two relay states, i.e. the

normally open and the normally closed contacts cannot be opened or closed at the same time, thus they are independent.

Regarding claim 43, Kramer et al. disclosed the feature wherein each node further includes a second data bus and means for coupling the link layer controller to the second data bus, the means also dc-isolating the link layer controller from the second data bus (Kramer et al. column 4, lines 39-67, column 6, lines 15-35).

Regarding claim 44, Kramer et al. disclosed the feature wherein each node further includes a watchdog timer for monitoring its bus interface (Kramer et al. column 3, lines 1-35).

Regarding claim 45, Fuchs et al. disclosed the feature wherein clearing the latch-up and restoring correct operation includes turning off and then turning back on the bus interface, and also reinitializing affected bus circuitry (Fuchs et al. column 15, lines 1-10). The CPU 32 are re-synchronized and returned to the "operating, voting enabled state" 156 by transition 196. When a CPU 32 has failed to re-synchronized after a disagreement and a subsequent re-synchronization, a latchup is suspected. Power is then removed and reapplied to the CPU to clear the latchup.

6. Claim 8 is rejected under 35 U.S.C. 103(a) as being unpatentable over Kramer et al. (Pat No.: 6466539) in view of Fuchs et al. (Pat No.: 5923830) as applied to claim 37 above, and further in view of Engels et al. (Pub No.: 2004/0213174).

For claim 8, Kramer et al. and Fuchs et al. both did not disclose the feature wherein the nodes transmit a plurality of messages in each of a plurality of frames on the first line of the serial data bus, the first message is at least one of the plurality of messages, each frame includes a plurality of minor frames, and the first message is transmitted once each minor frame. Engels et al. from the same or similar fields of endeavor disclosed the feature wherein the nodes transmit a plurality of messages in each of a plurality of frames on the first line of the serial data bus, the first message is at least one of the plurality of messages, each frame includes a plurality of minor frames, and the first message is transmitted once each minor frame (Engels et al. see paragraph 0028, lines 1-4). The uplink frame, which includes plurality of mini time slot frames, is allocated for data transmission in each individual slot frame. The data can be any kind of messages. Thus, it would have been obvious to the person of ordinary skill in the art at the time of the invention to use the feature as taught by Engels et al. in the network of Kramer et al. and Fuchs et al. The motivation for using the feature as taught by Engels et al. in the network of Kramer et al. Fuchs et al. being that the minor frames can be transmitted without major delay.

7. Claims 10, 15, 18 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kramer et al. (Pat No.: 6466539) in view of Fuchs et al. (Pat No.: 5923830) as applied to claim 37 above, and further in view of Kim (Pat No.: 6064554).

For claim 10, Kramer et al. and Fuchs et al. both did not disclose the feature of detecting a current surge in a bus interface circuit operatively connecting the second node to the first bus; and cycling power to the bus interface circuit in response to detecting the current surge in the bus interface circuit. Kim et al. from the same or similar fields of endeavor disclosed the feature of detecting a current surge in a bus interface circuit operatively connecting the second node to the first bus; and cycling power to the bus interface circuit in response to detecting the current surge in the bus interface circuit (Kim et al. see column 2, lines 13-40). The power unit is couple to the over-current or current surge detector.

Thus, it would have been obvious to the person of ordinary skill in the art at the time of the invention to use the feature as taught by Kim in the network of Kramer et al. and Fuchs et al. The motivation for using the feature as taught by Kim in the network of Kramer et al. Fuchs et al. being that the over-current detection can provide protections to system cause by power outage.

Regarding claim 15, Kim disclosed the feature wherein the nodes further detect a current surge in the bus interface and report the current surge in the bus interface circuit to the node sending the first message (Kim see column 3, lines 52-67, and see column 4, lines 1-3). As shown, the detected current is transmitting to the USB controller 100.

Regarding claim 18, Kim disclosed the feature wherein each node includes a bus interface circuit operatively connected to the serial data bus; means for detecting a current surge in the bus interface circuit; and means for cycling power to the bus

interface circuit in response to detecting the current surge (Kim et al. see column 2, lines 13-40). The power unit is couple to the over-current or current surge detector.

8. Claim 46 is rejected under 35 U.S.C. 103(a) as being unpatentable over Kramer et al. (Pat No.: 6466539) in view of Fuchs et al. (Pat No.: 5923830) as applied to claim 37 above, and further in view of Groff (Pat No.: 6525436).

For claim 46, Kramer et al. and Fuchs et al. both did not disclose the feature wherein the bus interface is not radiation-hardened. Groff from the same or similar fields of endeavor disclosed the feature wherein the bus interface is not radiation-hardened (Groff column 2, lines 55-65). Thus, it would have been obvious to the person of ordinary skill in the art at the time of the invention to use the feature as taught by Groff in the network of Kramer et al. and Fuchs et al. The motivation for using the feature being that increases reliability in the system by spacing the interface connected to I/O busses to suppress the emissions of radiation caused by interaction of the device circuit.

Conclusion

9. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to KAN YUEN whose telephone number is (571)270-1413. The examiner can normally be reached on Monday-Friday 10:00a.m-3:00p.m EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ricky O. Ngo can be reached on 571-272-3139. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Kan Yuen/
Examiner, Art Unit 2416

/Ricky Ngo/
Supervisory Patent Examiner, Art
Unit 2416

KY