TMS 2716-30 JL AND TMS 2716-45 JL 2048-WORD BY 8-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORIES

DECEMBER 1979-REVISED MAY 1982

- 2048 X 8 Organization
- All Inputs and Outputs Fully TTL Compatible
- Static Operation (No Clocks, No Refresh)
- Performance Ranges:

	ACCESS TIME	CYCLE TIME
	(MAX)	(MIN)
TMS 2716-30	300 ns	300 ns
TMS 2716-45	450 ns	450 ns

- 3-State Outputs for OR-Ties
- N-Channel Silicon-Gate Technology
- 8-Bit Output for Use in Microprocessor-Based Systems
- Low Power . . . 315 mW (Typical)

24-PIN CERPAK DUAL-IN-LINE PACKAGE (TOP VIEW)

description

The TMS 2716 is an ultra-violet light-erasable, electrically programmable read only memory. It has 16,384 bits organized as 2048 words of 8-bit length. The device is fabricated using N-channel silicon-gate technology for high-speed and simple interface with MOS and bipolar circuits. All inputs (including program data inputs) can be driven by Series 74 circuits without the use of external pull-up resistors and each output can drive one Series 74 or 74LS TTL circuit without external resistors. The TMS 2716 guarantees 250 mV dc noise immunity in the low state. Data outputs are three-state for OR-tying multiple devices on a common bus. The TMS 2716 is plug-in compatible with the TMS 2708 and the TMS 27LO8. Pin compatible mask programmed ROMs are available for large volume requirements.

This EPROM is designed for high-density fixed-memory applications where fast turn arounds and/or program changes are required. It is supplied in a 24-pin dual-in-line cerpak (JL suffix) package designed for insertion in mounting-hole rows on 600-mil (15.2 mm) centers. It is designed for operation from 0 °C to 70 °C.

operation (read mode)

address (A0-A10)

The address-valid interval determines the device cycle time. The 11-bit positive-logic address is decoded on-chip to select one of 2048 words of 8-bit length in the memory array. A0 is the least-significant bit and A10 most-significant bit of the word address.

chip select, program [CS (Program)]

When the chip select is low, all eight outputs are enabled and the eight-bit addressed word can be read. When the chip select is high, all eight outputs are in a high-impedance state.

program

In the program mode, the chip select feature does not function as pin 18 inputs only the program pulse. The program mode is selected by the $V_{CC}(PE)$ pin. Either 0 V or + 12 V on this pin will cause the TMS 2716 to assume program cycle.

data out (Q1-Q8)

The chip must be selected before the eight-bit output word can be read. Data will remain valid until the address is changed or the chip is deselected. When deselected, the three-state outputs are in a high-impedance state. The outputs will drive TTL circuits without external components.

TMS 2716-30 JL AND TMS 2716-45 JL 2048-WORD BY 8-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORIES

operation (program mode)

erase

Before programming, the TMS 2716 is erased by exposing the chip through the transparent lid to high intensity ultraviolet light (wavelength 2537 angstroms). The recommended minimum exposure dose (= UV intensity × exposure time) is fifteen watt-seconds per square centimeter. Thus, a typical 12 milliwatt per square centimeter, filterless UV lamp will erase the device in a minimum of 21 minutes. The lamp should be located about 2.5 centimeters above the chip during erasure. After erasure, all bits are in the high state.

programming

Programming consists of successively depositing a small amount of charge to a selected memory cell that is to be changed from the erased high state to the low state. A low can be changed to a high only by erasure. Programming is normally accomplished on a PROM or EPROM Programmer, an example of which is TI's Universal PROM Programming Module in conjunction with the 990 prototyping system. Programming must be done at room temperature (25 °C) only.

to start programming (see program cycle timing diagram)

First bring the V_{CC}(PE) pin to +12 V or 0 V to disable the outputs and convert them to inputs. This pin is held high for the duration of the programming sequence. The first word to be programmed is addressed (it is customary to begin with the "0" address) and the data to be stored is placed on the Q1-Q8 program inputs. Then a +26 V program pulse is applied to the program pin. After 0.1 to 1.0 milliseconds the program pin is brought back to 0 V. After at least one microsecond the word address is sequentially changed to the next location, the new data is set up and the program pulse is applied.

Programming continues in this manner until all words have been programmed. This constitutes one of N program loops. The entire sequence is then repeated N times with $N \times t_{\mathbf{W}(PR)} \ge 100$ ms. Thus, if $t_{\mathbf{W}(PR)} = 1$ ms; then N = 100, the minimum number of program loops required to program the EPROM.

to stop programming

After cycling through the N program loops, the last program pulse is brought to 0 V, then Program Enable $V_{CC}(PE)$ is brought back to \pm 5 volts which takes the device out of the program mode. The data supplied by the programmer must be removed before the address is changed since the program inputs are now data outputs and a change of address could cause a voltage conflict on the output buffer. Q1-Q8 outputs are invalid up to 10 microseconds after the program enable pin is brought from $V_{IH}(PE)$ to $V_{IL}(PE)$.

logic symbol†

[†] This symbol is in accordance with IEEE Std 91/ANSI Y32.14 and recent decisions by IEEE and IEC. See explanation on page 289.

TMS 2716-30 JL AND TMS 2716-45 JL 2048-WORD BY 8-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORIES

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)*

Supply voltage, VCC (see Note 1)	
Supply voltage, VDD (see Note 1)).3 to 20 V
Supply voltage, VSS (see Note 1)).3 to 15 V
All input voltage (except program) (see Note 1)).3 to 20 V
Program input (see Note 1)).3 to 35 V
Output voltage (operating, with respect to VSS)	-2 to 7 V
Operating free-air temperture range	
Storage temperature range	to 125 °C

^{*} Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operating of the device at these or any other conditions beyond those indicated in the "Recommended Operting Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

PARAMETER	MIN	NOM	MAX	UNIT
Supply voltage, VBB	-4.75	- 5	-5.25	V
Supply voltage, V _{CC}	4.75	5	5.25	٧
Supply voltage, V _{DD}	11.4	12	12.6	٧
Supply voltage, VSS		0		V
High-level input voltage, VIH (except program and program enable)	2.4		V _{CC} +1	V
High-level program enable input voltage, V _{IH(PE)}	11.4	12	12.6	V
High-level program input voltage, VIH(PR)	25	26	27	V
Low-level input voltage, V _{IL} (except program)	V _{SS}		0.65	V
Low-level program input voltage, V _{IL(PR)} Note: V _{IL(PR)} max ≤ V _{IH(PR)} −25 V	V _{SS}		1	V
High-level program pulse input current (sink), I _{IH} (PR)			40	mA
Low-level program pulse input current (source), IIL(PR)			3	mA
Operating free-air temperature, TA	0		70	°C

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

·	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
	High lavel autout valence	$I_{OH} = -100 \mu\text{A}$	3.7			v
Vон	High-level output voltage	$I_{OH} = -1 \text{ mA}$	2.4			L *
VOL	Low-level output voltage	I _{OL} = 1.6 mA			0.45	V
4	Input current (leakage)	V _I = 0 V to 5.25 V		1	10	μΑ
Ю	Output current (leakage)	$\overline{\text{CS}}$ (Program) = 5 V, V _O = 0.4 V to 5.25 V		1	10	μΑ
IBB	Supply current from VBB	All inputs high,		10	20	mA
lcc	Supply current from V _{CC}	CS (Program) = 5 V,		1	8	mA
IDD	Supply current from V _{DD}	T _A = 0 °C (worst case)		26	45	mA
IPE	Supply current from PE on V _{CC} Pin	VPE = VDD		2	4	mA
		T _A = 70°C			540	
P _{D(AV)}	Power Dissipation	$T_A = 0$ °C $\overline{CS} = 0$ V		315	595	mW
		$T_A = 0$ °C $\overline{CS} = +5$ V		375	720	1

 $^{^{\}dagger}$ All typical values are at $T_{A} = 25 \, ^{\circ}\text{C}$ and nominal voltages.

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the most-negative supply voltage, VBB (substrate), unless otherwise noted.

Throughout the remainder of this data sheet, voltage values are with respect to VSS.

TMS 2716-30 JL AND TMS 2716-45 JL 2048-WORD BY 8-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORIES

capacitance over recommended supply voltage range and operating free-air temperature range, f = 1 MHz

	PARAMETER	TYP†	MAX	UNIT
Ci	Input capacitance [except CS (Program)]	4	6	pF
C _{i(CS)}	CS (Program) input capacitance	20	30	pF
Co	Output capacitance	20	12	pF

 $^{^{\}dagger}$ All typical values are at $T_{A} = 25 \, ^{\circ}\text{C}$ and nominal voltages.

switching characteristics over recommended supply voltage range and operating free-air temperature range

PARAMETER	TEST CONDITIONS	TMS2716-30		TMS2716-45		Τ	
		TEST CONDITIONS	MIN	MAX	MIN	MAX	UNIT
ta(ad)	Access time from address	C _L = 100 pF		300		450	ns
ta(CS)	Access time from CS			120	 	120	ns
t _V (A)	Output data valid after address change	1 Series 74 TTL Load	0		0	120	ns
^t dis	Output disable time [†]	tf(CS), tf(ad) = 20 ns See Figure 1	0	120	0	120	ns
t _{c(rd)}	Read cycle time		300		450		ns

[†] Value calculated from 0.5 volt delta to measured output level.

170

$T_A = 25\,^{\circ}C$ program characteristics over recommended supply voltage range

	PARAMETER	MIN	MAX	UNIT
tw(PR)	Pulse width, program pulse	0.1	1	ms
tŢ	Transition times (except program pulse)		20	ns
^t T(PR)	Transition times, program pulse	30	2000	ns
t _{su(ad)}	Address setup time	10	2000	μS
^t su(da)	Data setup time	10		μs
^t su(PE)	Program enable setup time	10		μs
^t h(ad)	Address hold time	1000		ns
^t h(ad,da R)	Address hold time after program input data stopped	0		ns
^t h(da)	Data hold time	1000		ns
th(PE)	Program enable hold time	500		ns
tCL,adX	Delay time, CS (Program) low to address change	0		ns

PARAMETER MEASUREMENT INFORMATION

FIGURE 1 - TYPICAL OUTPUT LOAD CIRCUIT

TMS 2716-30 JL AND TMS 2716-45 JL 2048-WORD BY 8-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORIES

read cycle timing

program cycle timing

* V_{CC} (PE) is at 0 V or +12 V through N program loops where N \geqslant 100 ms/tw (PR).

NOTE: Q1-Q8 outputs are invalid up to 10 $\mu {
m sec}$ after programing (${
m V_{CC}}$ (PE) goes low).