

Custom Memory Cube (CMC)

RC Class Presentation

UNIVERSITY

Gongyu Wang Ph.D candidate

Mar. 30th, 2015

Agenda

- Introduction: Hybrid memory cube (HMC)
- Motivation and goals for CMC
- Approach to CMC
 - Two phases
 - FPGA/HMC board Merlin
- Programming Merlin
 - Hybrid-threading toolset
- Potential RC class course projects

Introduction

Logic Base

- Wide, high-speed local bus for data movement
- Advanced memory controller functions
- DRAM control at memory rather than distant host controller
- Reduced memory controller complexity and increased efficiency

Hybrid memory cube

- High-performance RAM interface for throughsilicon vias (TSV)-based stacked DRAM memory
- Logic base (layer)

High bandwidth

 ~10% energy per bit of current DDR memories

		Bandwidth	Power	W / GBs
	DDR3-1333	10.66 GB/s	5.52 W	518 x
	DDR4-2666	21.34 GB/s	6.60 W	309 x
	HMC (4 DRAMs)	128.00 GB/s	11.08 W	87 x

Vertical Slice

Custom Memory Cube (CMC)

Motivation

- Increasing need for fast and low-power parallel processing
- Memory accesses of data-intensive apps consumes considerable time and power

HMC presents much higher memory bandwidth than current

Goals

- HMC as high-bandwidth memory
 - Exploit performance and power advantages
- CMC: Develop a customizable logic layer for HMC
- Offload processing tasks to CMC
 - Concepts of C-RAM & PIM (e.g., SIMD, ARM64, & RISC-V in logic layer)

The Laboratory for Physical Sciences

CMC

Approach to CMC

Phase 1

HMC studies

- Test and study HMC's amenability in selected app. domains
 - Amenability: bandwidth, latency, power, etc.
 - App. Domains: sort, search, cryptography, FFT, etc.

Approach

- Develop test applications on FPGA/HMC board
- Measure report access time of HMC in FPGA and report results

Phase 1 with Merlin Board

- Goal: test various user apps and report access time of HMC
 - Wanted latency: Round-trip latency at inputs of HMCC
 - Unwanted latencies: PCle, HIX, switch logic
 - □ Ability to set parameters of HMC access: packet size, etc.
- Approaches to measuring route-trip latency of HMC access
 - Direct measurement OR subtract unwanted

Phase 2

phase 2

- Prototype CMC using FPGA/HMC boards
 - Emulate processing capabilities of CMC on FPGA
- Tasks
 - Define CMC operations based on apps
 - Explore processing capabilities
 - Data processing: "wide" (many-core) and "shallow" (simple) processors; e.g., SIMD
 - Control: e.g., Simplified RISC-V/ARM64
 - Develop demo applications

CMC Prototype

Phase 2 with Merlin Board

Prototype CMC

- Leverage LLNL's DRE* work for initial prototyping
- Long term: evaluate CMC based on requirements of other relevant apps

Tasks

- Study, port, and modify DRE for our need
 Port to Arria 10 FPGA on Merlin board
- Prototype CMC architecture in FPGA
- Develop demo applications

*DRE: Data Reordering/Rearrangement Engine

Agenda

- Introduction: Hybrid memory cube (HMC)
- Motivation and goals for CMC
- Approach to CMC
 - Two phases
 - FPGA/HMC board Merlin
- Programming Merlin
 - Hybrid-threading toolset
- Potential RC class course projects

Convey HT Background

- Convey computers
 - Startup since 2006, based @ Texas
 - Hybrid-core computing platforms
 - Joined CHREC in 2013
 - Via F3, focusing on bioinformatics app acceleration
- Convey system philosophy hybrid-core computing

Features	Gidel	Convey	SRC
Programming	C/Cpp + HDL	C/Cpp/ASM + HT + (HDL)	C/C++
Data Addressing	explicit, separate	explict, consistent	implicit
Host Connection	PCle	FSB, QPI*	PCle

Overview of HT Programming Model

Reconfigural

HT Infrastructure

- Host-coproc. strucutre
 - Message/Data interfaces
- HT unit
 - Replication mechanism
- HT module
 - Essential functional blocks
 - Memory hierarchy
 - Can be replicated
 - Messaging interfaces among modules
- Instructions
 - User-defined behaviors of modules

HT Private Variables for Thread X

User Programmable Parts

- Hardware description files (.htd)
 - Declare modules, variables, memory interfaces, etc.
- Module instruction files (.cpp)
 - Define behaviors of modules, including memory I/O, messaging interface, computation, etc.
- CTL module example on next slide
 - Responsible for:
 - Accept calls from host
 - Spawn threads onto other HT modules
 - Return to host after all threads returned from other HT modules

HT Code Example

High-level Design Flow

- HT bases on SystemC
 - Cycle-accurate simulation
 - Weed out intercycle bugs
- OpenCL
 - Behavioral emulation
 - Tools handle timing issues

Potential Course Project

Goals

- Learn HT programming and develop application for Merlin board using HMC device
- Get involved with CMC research

Tasks

- Start with simple code examples
 - Hello world, Vadd, Bucket Sort, etc.
- Pick an application
 - Smith-Waterman, Radix Sort, Improved bucket sort, DRE, etc.
 - Or bring your own application
- Use SystemC simulation to validate design

Bonus task

- Code review with Gongyu Wang
- Compile to bit file and run application on Merlin board

