Métodos de Aprendizaje Automático para Grounding en Planning Clásico

Julia Olcese

Director: Dr. Carlos Areces

FaMAF - Universidad Nacional de Córdoba

14 de marzo de 2025

Estructura de la presentación

- 1. Introducción
- 2. Marco teórico
- 3. El problema
- 4. Nuestra solución
- 5. Resultados
- 6. Conclusiones y trabajo futuro

Aprendizaje Automático y Planning

Ramas de la Inteligencia Artificial

Aprendizaje Automático

- Sistemas que mejoran su desempeño a partir de datos → Aprenden
- Útil para una gran variedad de problemas
- ChatGPT, sistemas de recomendación, etc.
- No garantiza resultados correctos

Planning

- Generar una secuencia de acciones para alcanzar un objetivo
- Necesita una representación precisa
- Rovers, gestión empresarial, etc.
- Es correcto

Aprendizaje Automático

¿Cómo aprende? —— Aprendizaje Supervisado

Se propone una arquitectura

$$f(x) = a \times x + b$$

Conjunto de entrenamiento

{(1, 6), (50, 251), (1000, 5001), ...}

Se inicializan los parámetros

$$m(x) = 2 \times x + 57$$

Modelo final

$$m(x) = 5 \times x + 1$$

Se calcula la salida para cada ejemplo

Se ajustan los parámetros para reducir la distancia

Se calcula la distancia entre la salida y el valor esperado

Planning

Elegir y organizar acciones para alcanzar un objetivo partiendo desde un estado inicial

STRIPS

Hechos

{aterrizado(Avión1, Ezeiza), tieneComb(Avión2), ...}

Operadores

volar(Avión1, Ezeiza, IngAT)

pre: {aterrizado(Avión1, Ezeiza), tieneComb(Avión1)}

add: {aterrizado(Avión1, IngAT)}

del: {aterrizado(Avión1, Ezeiza),

tieneComb(Avión1)

• Estado inicial {aterrizado(Avión1, Ezeiza)}

Objetivo

{aterrizado(Avión1, IngAT), tieneComb(Avión1)}

Problema de STRIPS

volar(Avión2, IngAT, Ezeiza)

```
pre: {aterrizado(Avión2, IngAT), tieneComb(Avión2)}
```

add: {aterrizado(Avión2, Ezeiza)}

del: {aterrizado(Avión2, IngAT), tieneComb(Avión2)}

volar(Avión2, Ezeiza, IngAT)

```
pre: {aterrizado(Avión2, Ezeiza), tieneComb(Avión2)}
```

add: {aterrizado(Avión2, IngAT)}

del: {aterrizado(Avión2, Ezeiza), tieneComb(Avión2)}

volar(Avión1, Ezeiza, IngAT)

tieneComb(Avión1)}

¡Mucho texto!

PDDL

• Objetos Variables {avión, aero, aero'}

• **Predicados** {aterrizado(avión, aero), tieneComb(avión)}

• Esquemas de acciones volar(avión, aero, aero') <

pre: {aterrizado(avión, aero),
 tieneComb(avión)}

add: {aterrizado(avión, aero')}

del: {aterrizado(avión, aero),
 tieneComb(avión)}

• Objetos Constantes {Avión1, Avión2, IngAT, Ezeiza}

• Estado inicial {aterrizado(Avión1, Ezeiza)}

• Objetivo {aterrizado(Avión1, IngAT), tieneComb(Avión1)}

Grounding

Instanciar esquemas de acciones y predicados para obtener operadores y hechos

Variables:

{avión, aero, aero'}

Constantes:

{Avión1, Avión2, IngAT, Ezeiza}

Variables:

{avión, aero, aero'}

Constantes:

{Avión1, Avión2, IngAT, Ezeiza}

∀

Volar(avión, aero, aero'

Volar(Avión1, Ezeiza, IngAT)

Volar (Ezciza, Avion1, Avion2)

Volar(Avión1, Ezciza, Ezciza)

Volar(Avión2, IngAT, Ezeiza)

Tipado

Restricciones del dominio

Acciones

Volar(Avión2, IngAT, Ezeiza)

Volar(Avión1, Ezeiza, IngAT)

Aterrizado(Avión1, Ezeiza) TieneComb(Avión1)

Aterrizado(Avión1, IngAT)

Acciones

Volar(Avión2, IngAT, Ezeiza) → Irrelevante para el problema Volar(Avión1, Ezeiza, IngAT)

Aterrizado(Avión1, Ezeiza) TieneComb(Avión1) Volar(Avión1, Ezeiza, IngAT)

Aterrizado(Avión1, IngAT)

Grounding parcial con criterio heurístico

¿Qué acciones son relevantes para el problema? ———— Aprendizaje Automático

{Aterrizado(Avión1, Ezeiza)}

Hechos del objetivo

{Aterrizado(Avión1, IngAT)}

Hechos relajados

{Aterrizado(Avión1, Ezeiza), tieneComb(Avión1) Aterrizado(Avión1, IngAT)}

Hechos Relajados

¿Qué hacemos con los hechos relajados?

Hechos relajados

aterrizado(Avión1, Ezeiza) tieneComb(Avión1) aterrizado(Avión1, IngAT)

Plan

cargarComb(Avión1)
volar(Avión1, Ezeiza, IngAT)

Arquitectura Transformer

¿Cómo asignamos relevancia?


```
Acción 1 — Muy distinta a los testigos — Nada relevante

Acción 2 — Parecida algunos testigos — Un poco relevante

Acción 3 — Igual a algunos testigos — Muy relevante
```

• • •

Métrica usada: PUO

Porcentaje de operadores no instanciados

Acción1	0,70	
Acción2	0,54	
Acción3	0,50	
Acción4	0,43	
Acción5	0,30	
Acción6	0,14	

PUO: 0,66

Acción1	0,70
Acción4	0,54
Acción3	0,50
Acción6	0,43
Acción2	0,30
Acción5	0,14

PUO: 0,16

Generar testigos

¿Cómo usamos el modelo de traducción?

Greedy Decode

Elegir siempre el token más probable

Beam Search

Mantener varias traducciones según su probabilidad acumulada

Conjunto de Testigos

cargarComb(Avión1)

volar(Avión1, Ezeiza, IngAT)

cargarComb(Avión1)

volar(Avión2, IngAT, Ezeiza)

volar(Avión1, Ezeiza, IngAT)

Distancia ¿Cómo usamos los testigos?

Conjunto de testigos

Acciones a puntuar

Experimento 1: Función de distancia

Experimento 1: Función de distancia

Distancia mínima

Distancia promedio

Objetos no presentes en los Hechos Relajados

¿Qué acciones parecen tener sentido?

Hechos relajados

aterrizado(Avión1, Ezeiza) tieneComb(Avión1) aterrizado(Avión1, IngAT)

Acciones a puntuar

cargarComb(Avión1)

volar(Avión2, IngAT, Ezeiza)

Obj no presentes en HR: 0

Obj no presentes en HR: 1/3

Experimento 2: Objetos no presentes en HR

Experimento 3: Objetos en los hechos

Distancia promedio

Dist promedio + objetos no presentes en HR

Entrada del modelo

¿Cómo ordenamos los hechos relajados?

Estado Inicial:

{Aterrizado(Avión1, Ezeiza), TieneComb(Avión1)}

Plan relajado

volar(Avión1, Ezeiza, IngAT)

Hechos relajados

tieneComb(Avión1)
aterrizado(Avión1, IngAT)
aterrizado(Avión1, Ezeiza)

Orden de aparición

Aterrizado(Avión1, Ezeiza) TieneComb(Avión1) Aterrizado(Avión1, IngAT)

Orden alfabético

Aterrizado(Avión1, Ezeiza) Aterrizado(Avión1, IngAT) TieneComb(Avión1)

Experimento 3: Orden de hechos

Experimento 3: Orden de hechos

Experimento 3: Orden de hechos

Orden alfabético

Orden de aparición

Muchos experimentos

1.1	Hechos relajados	No se usa		Distancia mínima	0,996
ļ.,	en orden alfabético		dores		
1.2	Hechos relajados	No se usa	Buenos Opera-	Distancia mínima	0,512
	en orden alfabético		dores, reempla-		
			zado uno por un		
1.0	**		Mal Operador	51.	0.450
1.3	Hechos relajados	No se usa	Buenos Opera-	Distancia mínima	0,470
	en orden alfabético		dores, reempla-		
			zando dos por		
			Malos Operado-		
2.1	TT-1		res	Discontinuo	0.020
2.1	Hechos relajados	$N_{Encoder}$: 2	Greedy Decode	Distancia mínima	0,038
	en orden alfabético	$N_{Decoder}$: 6			
		d: 128			
2.2	Hashas relaindes	h: 2	Doom Coords	Distancia mínima	0.040
2.2	Hechos relajados en orden alfabético	$N_{Encoder}$: 2 $N_{Decoder}$: 6	Beam Search (tamaño 4)	Distancia mínima	0,040
	en orden an abetico	d: 128	(tamano 4)		
		h: 2			
2.3	Hechos relajados	$N_{Encoder}$: 2	Greedy Decode	Distancia mínima	0.048
3.1	en orden alfabético	N _{Decoder} : 6	y Beam Search	Distancia illimina	0,040
3.1	ch orden an abetico	d: 128	(tamaño 4)		
		h: 2	(tumumo 4)		
3.2	Hechos relajados	$N_{Encoder}$: 2	Greedy Decode	Distancia prome-	0,101
4.2	en orden alfabético	N _{Decoder} : 6	y Beam Search	dio	-,
		d: 128	(tamaño 4)		
		h: 2	(**************************************		
4.1	Hechos relajados	N _{Encoder} : 2	Greedy Decode	Distancia prome-	0,110
	en orden alfabético	$N_{Decoder}$: 6	y Beam Search	dio	,
		d: 128	(tamaño 2)		
		h: 2			
4.3	Hechos relajados	$N_{Encoder}$: 2	Greedy Decode	Distancia prome-	0,107
5.1	en orden alfabético	N _{Decoder} : 6	y Beam Search	dio	
		d: 128	(tamaño 7)		
		h: 2			
5.2	Hechos relajados	$N_{Encoder}$: 2	Greedy Decode	Porcentaje de ob-	0,098
	en orden alfabético	$N_{Decoder}$: 6	y Beam Search	jetos no presentes	
		d: 128	(tamaño 7)	en los hechos re-	
		h: 2		lajados	

Exp.	Datos de Entrada	Configuración del Modelo	Generación de testigos	Distancia Final	PUO pro-
					me- dio
5.3	Hechos relajados en orden alfabético	$N_{Encoder}$: 2 $N_{Decoder}$: 6 d: 128 h: 2	Greedy Decode y Beam Search (tamaño 7)	Distancia prome- dio y porcentaje de objetos no pre- sentes en los he- chos relajados	0,294
6.2 7.1 8.1	Hechos relaja- dos en orden de aparición	N _{Encoder} : 2 N _{Decoder} : 6 d: 128 h: 2	Greedy Decode y Beam Search (tamaño 7)	Distancia prome- dio y porcentaje de objetos no pre- sentes en los he- chos relajados	0,301
7.2 8.2	Hechos relaja- dos en orden de aparición descar- tando pares con ruido mayor a 0,5 (1961 pares de entrenamiento)	N _{Encoder} : 2 N _{Decoder} : 6 d: 128 h: 2	Greedy Decode y Beam Search (tamaño 7)	Distancia prome- dio y porcentaje de objetos no pre- sentes en los he- chos relajados	0,251
7.3	Hechos relajados en orden de apari- ción descartando pares con ruido mayor a 0,25 (1243 pares de entrenamiento)	N _{Encoder} : 2 N _{Decoder} : 6 d: 128 h: 2	Greedy Decode y Beam Search (tamaño 7)	Distancia prome- dio y porcentaje de objetos no pre- sentes en los he- chos relajados	0,274
8.3	Hechos relaja- dos en orden de aparición descar- tando pares con ruido mayor a 0,5 (1961 pares de entrenamiento)	$N_{Decoder}$: 2	Greedy Decode y Beam Search (tamaño 7)	Distancia prome- dio y porcentaje de objetos no pre- sentes en los he- chos relajados	0,288

Conclusiones

- Estructura para usar con cualquier dominio
- Uso estratégico del Transformer
- 30% de operadores descartados
- Descarta operadores en poco tiempo

Trabajo Futuro

- Ida y vuelta entre grounding y búsqueda de planes
- Mejorar la distancia individual
- Incorporar explícitamente reglas gramaticales
- Evaluar distintos dominios

