Topology Homework 07

Ethan Jensen

April 6, 2020

EXERCISE 4.1

(a) Let X have the discrete topology and Y be an arbitrary topological space.

Show that every function $f: X \to Y$ is continuous.

- (b) Let Y have the trivial topology and Y be an arbitrary topological space. Show that every function $f: X \to Y$ is continuous.
- (a) Let X have the discrete topology. Consider some surjective function $f: X \to Y$. Consider some open set $U \subseteq Y$.

 $f^{-1}(U) \subseteq X$, which is open, since X has the discrete topology. So for every open set U in Y, $f^{-1}(U)$ is open in X. \therefore Every function $f: X \to Y$ is continuous.

(b) Let Y have the trivial topology. Consider some surjective function $f: X \to Y$. The open sets in Y consist of \varnothing and Y.

 $f^{-1}(\varnothing) = \varnothing$ and $f^{-1}(Y) = X$ \varnothing and X are open sets in X. So for every open set U in Y, $f^{-1}(U)$ is open in X. \therefore Every function $f: X \to Y$ is continuous.

Prove Theorem 4.8: Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set $C \subset Y$.

Proof.

 (\rightarrow) Assume $f: X \rightarrow Y$ is continuous.

Consider some closed set $C \subseteq Y$.

Then Y - C is open in Y.

Since f is continuous, $f^{-1}(Y-C)$ is open in X.

By Theorem 0.22, $f^{-1}(Y - C) = f^{-1}(Y) - f^{-1}(C)$

So $f^{-1}(C)$ is the complement of an open set.

So $f^{-1}(C)$ is closed in X.

Thus, $f^{-1}(C)$ is closed in X for every closed set $C \subseteq Y$.

 (\leftarrow) Assume $f^{-1}(C)$ is closed in X for every closed set $C \subseteq Y$.

Consider some open set $U \subseteq Y$.

U = Y - C for some closed set C in Y.

 $f^{-1}(U) = f^{-1}(Y - C) = f^{-1}(Y) - f^{-1}(C)$ By Theorem 0.22.

 $f^{-1}(U) = X - f^{-1}(C)$, where $f^{-1}(C)$ is closed in X.

So $f^{-1}(U)$ the complement of a closed set in X, which is open in X for every set U that is open in Y.

Thus, $f: X \to Y$ is continuous.

 \therefore A function $f: X \to Y$ is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set $C \subseteq Y$.

Suppose X is a space with topologies \mathcal{T}_1 and \mathcal{T}_2 . Let id(x) = x, and assume that the domain X has the topology \mathcal{T}_1 and that the range of X has the topology \mathcal{T}_2 . Show that id is continuous if and only if \mathcal{T}_1 is finer than \mathcal{T}_2 .

Proof.

(→) Assume id is continuous. Consider some open set in $U \in \mathcal{T}_2$, where $U \subseteq Y$. $id^{-1}(U) = U$, so $U \in \mathcal{T}_1$ since id is continuous. So $U \in \mathcal{T}_2 \implies U \in \mathcal{T}_1$. Thus, \mathcal{T}_1 is finer than \mathcal{T}_2 . \square (←) Assume \mathcal{T}_1 is finer than \mathcal{T}_2 . Consider some open set $U \in \mathcal{T}_2$, where $U \subseteq Y$. Since \mathcal{T}_1 is finer than \mathcal{T}_2 , $id^{-1}(U) = U \in \mathcal{T}_2$. In other words, $id^{-1}(U)$ is also open in X. Thus, id is continuous. \square ∴ id is continuous if and only if \mathcal{T}_1 is finer than \mathcal{T}_2 .

Let $f, g: X \to Y$ be continuous functions. Assume that Y is Hausdorff and that there exists a dense subset D of X such that f(x) = g(x) for all $x \in D$. Prove that f(x) = g(x) for all $x \in X$.

Proof.

Consider some point $x \in X$.

Suppose $f(x) \neq g(x)$.

Since Y is Hausdorff, there exist open sets $U, V \subseteq Y$ such that $f(x) \in U$, $g(x) \in V$, $U \cap V = \emptyset$.

Since f and g are continuous functions, there exist two sets $U_x, V_x \subseteq X \ni f(U_x) = U$, $g(V_x) = V$, where U_x and V_x are open in X.

 U_x and V_x are both open sets that contain the point x.

So $U_x \cap V_x$ is a non-empty open set.

Since D is a dense subset of X, $\exists y \in D \ni y \in U_x \cap V_x$.

So $y \in U_x$ and $y \in V_x$.

So $f(y) \in U$ and $g(y) \in V$.

Since $y \in D$, f(y) = g(y), and $f(y) \in U \cap V$.

This is a contradiction since we said $U \cap V = \emptyset$.

 $\therefore f(x) = g(x) \text{ for all } x \in X.$

4

- (a) Let $f_1: X \to Y_1$ and $f_2: X \to Y_2$ be continuous functions. Show that $h: X \to Y_1 \times Y_2$, defined by $h(x) = (f_1(x), f_2(x))$, is continuous as well.
- (b) Extend the result of (a) to n functions, for n > 2.
- (a) Let $U \times V$ be open in $Y_1 \times Y_2$ $h^{-1}(U \times V) = \{x | f_1(x) \in U \text{ and } f_2(x) \in V\}$ $h^{-1}(U \times V) = \{x | f_1(x) \in U\} \cap \{x | f_2(x) \in V\}$ $h^{-1}(U \times V) = f_1^{-1}(U) \cap f_2^{-1}(V)$

Since f_1, f_2 are continuous, $f_1^{-1}(U)$ and $f_2^{-1}(V)$ are both open in X. So $f_1^{-1}(U) \cap f_2^{-1}(V) = h^{-1}(U \times V)$ is open in X. \therefore h is continuous as well.

(b)

Let $f_i: X \to Y_i$, i = 1, 2, ...n be continuous functions. Let $h: X \to Y_1 \times Y_2 \times ... \times Y_n$ defined by $h(x) = (f_1(x), f_2(x), ..., f_n(x))$.

Let $U_1 \times U_2 \times ... \times U_n$ be open in $Y_1 \times Y_2 \times ... \times Y_n$ $h^{-1}(U_1 \times U_2 \times ... \times U_n) = \{x | f_i(x) \in U_i \ \forall i\}$ $h^{-1}(U_1 \times U_2 \times ... \times U_n) = \bigcap_{i=1}^n f_i^{-1}(U_i)$

Since f_i is continuous for all i, $f_i^{-1}(U_i)$ is open in X for all i. Thus, $\bigcap_{i=1}^n f_i^{-1}(U_i) = h^{-1}(U_1 \times U_2 \times ... \times U_n)$ is a finite intersection of open sets in X, and thus must also be open in X. \therefore h is continuous as well.

5

Show that the addition function, $f: \mathbb{R}^2 \to \mathbb{R}$, given by f(x,y) = x + y, is a continuous function.

Consider an open interval $(a, b) \subseteq \mathbb{R}$. $f^{-1}((a, b)) = \{(x, y) \in \mathbb{R}^2 | a < x + y < b\}$ Now consider some p = (x, y) where $p \in f^{-1}((a, b))$.

Let $B_p = B(p, r)$ where $r = min\left(\frac{x+y-a}{\sqrt{2}}, \frac{b-x-y}{\sqrt{2}}\right)$. Now consider some $q \in B(p, r)$. Let m = d(p, q), which is less than r.

So $q = (x + m\cos\theta, y + m\sin\theta)$ for some θ

$$m < r$$

$$m < \frac{x + y - a}{\sqrt{2}}$$

$$\sqrt{2}m < x + y - a$$

Since $\cos \theta + \sin \theta < \sqrt{2}$, $\forall \theta$

$$m(-\cos\theta - \sin\theta)m < x + y - a$$

$$m(\cos\theta + \sin\theta)m > -x - y + a$$

$$x + y + m\cos\theta + m\sin\theta > a$$

$$(x + m\cos\theta) + (y + m\cos\theta) > a$$

Similarly, it can be shown that

$$(x + m\cos\theta) + (y + m\cos\theta) < b$$

So
$$q \in f^{-1}(a, b)$$

So $B_p \subseteq f^{-1}((a, b))$

By the Union Lemma, $f^{-1}((a,b)) = \bigcup_{p \in f^{-1}((a,b))} B_p$. $f^{-1}((a,b))$ is an arbitrary union of open sets in \mathbb{R}^2 , which makes it open. So $f^{-1}((a,b))$ is open for all basis elements $(a,b) \in \mathbb{R}$.

Consider an open set $U \in \mathbb{R}$. $U = B_1 \cup B_2 \cup B_3...$ where B_i are basis elements in \mathbb{R} . By Theorem 0.22 $f^{-1}(U) = f^{-1}(B_1) \cup f^{-1}(B_2) \cup f^{-1}(B_3)...$

 $f^{-1}(U)$ can thus be written as a union of open sets in \mathbb{R}^2 . So $f^{-1}(U)$ is open in \mathbb{R}^2 , and indeed is open for all $U \in \mathbb{R}$

... The addition function, $f: \mathbb{R}^2 \to \mathbb{R}$, given by f(x,y) = x + y, is continuous.

Let f be the multiplicative function, f(x,y) = xy. Complete the proof of continuity of f that was outlined in Example 4.6, by doing the following:

- (a) Show that if p and q are both positive, and δ is described in the example, then $(p \delta, p + \delta) \times (q \delta, q + \delta) \subseteq f^{-1}((a, b))$.
- (b) Consider the rest of the posibilities for p and q being positive or negative, and show that $(p \delta, p + \delta) \times (q \delta, q + \delta) \subseteq f^{-1}((a, b))$.
- (a) **Proof.** Consider an open interval $(a, b) \in \mathbb{R}$. $f^{-1}((a, b)) = \{(x, y) \in \mathbb{R}^2 | a < xy < b\}$ Now consider some t = (p, q) where $t \in f^{-1}((a, b))$. Let $m = \min\{b - pq, pq - a\}$ Let $B_t = (p - \delta, p + \delta) \times (q - \delta, q + \delta)$

where $\delta > 0$ is chosen such that $\delta |p|, \delta |q|, \delta^2$ are all less than $\frac{m}{3}$.

Let
$$(x', y') \in (p - \delta, p + \delta) \times (q - \delta, q + \delta)$$

$$x'
$$x'y' < (p + \delta)(q + \delta)$$

$$x'y' < pq + \delta|p| + \delta|q| + \delta^{2}$$

$$x'y' < pq + m$$

$$x'y' < b - m + m$$

$$x'y' < b$$$$

$$x' > p - \delta, \ y' > q - \delta$$
$$x'y' > pq - |p|\delta - |q|\delta + \delta^{2}$$
$$x'y' > pq - m/3$$
$$x'y' > a + m - m/3$$
$$x'y' > a$$

a < x'y' < b, so $(x', y') \in f^{-1}((a, b))$. So $B_t \subseteq f^{-1}((a, b))$.

By the Union Lemma, $f^{-1}((a,b)) = \bigcup_{t \in f^{-1}((a,b))} B_t$. $f^{-1}((a,b))$ is an arbitrary union of open sets in \mathbb{R}^2 , which makes it open. So $f^{-1}((a,b))$ is open for all basis elements $(a,b) \in \mathbb{R}$.

Consider an open set $U \in \mathbb{R}$. $U = B_1 \cup B_2 \cup B_3...$ where B_i are basis elements in \mathbb{R} . By Theorem 0.22 $f^{-1}(U) = f^{-1}(B_1) \cup f^{-1}(B_2) \cup f^{-1}(B_3)...$

 $f^{-1}(U)$ can thus be written as a union of open sets in \mathbb{R}^2 .

So $f^{-1}(U)$ is open in \mathbb{R}^2 , and indeed is open for all $U \in \mathbb{R}$

... For positive p and positive q, the multiplicative function, $f: \mathbb{R}^2 \to \mathbb{R}$, given by f(x,y)=xy, is continuous.

(b) Proof.

We must consider the rest of the possibilities for p and q being positive or negative.

- (1) If both p and q are negative, then the same argument can be given as above since the shape $f^{-1}((a,b))$ is symmetric about y=-x.
- (2) The shape of $f^{-1}((-a, -b))$ is identical to $f^{-1}((a, b))$, but flipped about the y-axis and the x-axis, allowing one of p and q to be negative, but still allowing the same argument to be used.

Flipping and rotation are linear transformations, which are continuous, which makes this argument rigorous.

: in all cases, the multiplicative function, $f: \mathbb{R}^2 \to \mathbb{R}$, given by f(x,y) = xy, is continuous.

Use Example 4.6, Exercises 4.13 and 4.14, and Theorem 4.9 to show that the sum and product of a finite number of continuous functions are also continuous functions. That is, assuming that $f_1, ..., f_m : \mathbb{R} \to \mathbb{R}$ are continuous, prove that $S : \mathbb{R} \to \mathbb{R}$ and $P : \mathbb{R} \to \mathbb{R}$, defined by $S(x) = f_1(x) + ... + f_m(x)$ and $P(x) = f_1(x)f_2(x)...f_m(x)$, are continuous.

Proof.

These proofs will use Mathematical Induction.

Basis Step: Let $S : \mathbb{R} \to \mathbb{R}$ be defined by $S(x) = f_1(x)$.

Since f_1 is a continuous function, S is also a continuous function.

Likewise, like $P: \mathbb{R} \to \mathbb{R}$ be defined by $P(x) = f_1(x)$.

Since $f_1(x)$ is a continuous function, P is also a continuous function.

Induction Hypothesis: Assume $S : \mathbb{R} \to \mathbb{R}$ defined by $S(x) = f_1(x) + f_2(x) + ... f_k(x)$ is continuous, for some $k \in \mathbb{Z}_+$

Likewise, Assume $P: \mathbb{R} \to \mathbb{R}$ defined by $P(x) = f_1(x)f_2(x)...f_k(x)$ is continuous, for some $k \in \mathbb{Z}_+$

Induction Step: Consider the function $S': \mathbb{R} \to \mathbb{R}$ defined by $S'(x) = f_1(x) + f_2(x) + ... + f_k(x) + f_{k+1}(x)$. $S'(x) = S(x) + f_{k+1}(x)$

By our induction hypothesis, S is continuous.

Since S and f_{k+1} are both continuous, $A: \mathbb{R} \to \mathbb{R}^2$ defined by $A(x) = (S(x), f_{k+1}(x))$ is continuous using our result from Exercise 4.13.

The addition function $B: \mathbb{R}^2 \to \mathbb{R}$ is also continuous using Exercise 4.14.

Notice that the function $S': \mathbb{R} \to \mathbb{R} = B \circ A$.

S' is a continuous function by Theorem 4.9.

 $S: \mathbb{R} \to \mathbb{R}$, defined by $S(x) = f_1(x) + ... + f_m(x)$ is continuous for all $m \in \mathbb{Z}_+$, by Mathematical Induction.

Consider the function $P': \mathbb{R} \to \mathbb{R}$ defined by $P'(x) = f_1(x)f_2(x)...f_k(x)f_{k+1}(x)$. $P'(x) = S(x)f_{k+1}(x)$

By our induction hypothesis, P is continuous.

Since P and f_{k+1} are both continuous, $A : \mathbb{R} \to \mathbb{R}^2$ defined by $A(x) = (S(x), f_{k+1}(x))$ is continuous using our result from Exercise 4.13.

The multiplicative function $B: \mathbb{R}^2 \to \mathbb{R}$ is continuous using Exercise 4.15.

Notice that the function $P': \mathbb{R} \to \mathbb{R} = B \circ A$.

P' is a continuous function by Theorem 4.9.

 $P: \mathbb{R} \to \mathbb{R}$, defined by $P(x) = f_1(x)f_2(x)...f_m(x)$ is continuous for all $m \in \mathbb{Z}_+$, by Mathematical Induction.

EXERCISE 4.17 Use Exercise 4.16 to show that every polynomial function $p : \mathbb{R} \to \mathbb{R}$, given by $p(x) = a_n x^n + ... + a_1 x + a_0$, is continuous.

- (1) Constant functions defined by $c(x) = x_0$ are continuous. (Exm. 4.2)
- (2) The identity function defined by id(x) = x is continuous (Exm. 4.2)
- (3) Functions composed of successive addition or multiplication of continuous functions are continuous. (Exr. 4.16)

Consider the function $p: \mathbb{R} \to \mathbb{R}$, given by $p(x) = a_n x^n + ... + a_1 x + a_0$. Now consider a particular term in the series $a_k x^k$ for some $0 \le k \le n$.

Define a function $f_k : \mathbb{R} \to \mathbb{R}$ where $f_k(x) = a_k(x) id(x) id(x) ... id(x)$. From (1), (2), and (3), f_k is continuous for all k.

So $p(x) = f_n(x) + ... + f_1(x) + f_0(x)$, where each f_k is continuous. Thus, by (3), p is a continuous function.

 \therefore every polynomial function $p: \mathbb{R} \to \mathbb{R}$, given by $p(x) = a_n x^n + ... + a_1 x + a_0$, is continuous.

1