# **Cointegration Z-score**

## **Preprocessing**

# **Johansen Cointegration Test : (Ideal lag = 1)**

| Hypothesis | Eigenvalue | Trace<br>Statistic | Critical Value (Trace) | Max Eigenvalue<br>Statistic | Critical Value (Max Eigenvalue) | Decision<br>(Trace) | Decision (Max<br>Eigenvalue) |
|------------|------------|--------------------|------------------------|-----------------------------|---------------------------------|---------------------|------------------------------|
| H0         | 0.005376   | 7.714844           | 10.4741                | 7.040206                    | 12.3212                         | Fail to<br>Reject   | Fail to Reject               |
| H1         | 0.000516   | 0.674638           | 2.9762                 | 0.674638                    | 4.1296                          | Fail to<br>Reject   | Fail to Reject               |

<sup>\*\*</sup> IF Trace Statistic > Critical Value AND Max Eigenvalue > Critical Value then Reject Null of at most r cointegrating relationships.(r=0 in first test)

#### **ADF Test Results**

| Ticker | ADF Statistic | p-value  | Critical Value (1%) | Critical Value (5%) | Critical Value (10%) | Stationarity   |
|--------|---------------|----------|---------------------|---------------------|----------------------|----------------|
| spread | -2.800209     | 0.058244 | -3.435367           | -2.863756           | -2.56795             | Non-Stationary |

<sup>\*\*</sup> IF p-value < 0.05 and/or statistic < statistic @ confidence interval, then REJECT the Null that the time series posses a unit root (non-stationary).

#### **Phillips Perron Results**

| Ticke | PP Statistic | p-value  | Critical Value (1%%) | Critical Value (5%%) | Critical Value (10%%) | Stationarity   |
|-------|--------------|----------|----------------------|----------------------|-----------------------|----------------|
| sprea | -2.792619    | 0.059336 | -3.435367            | -2.863756            | -2.56795              | Non-Stationary |

<sup>\*\*</sup> IF p-value < 0.05, then REJECT the Null Hypothesis of a unit root (non-stationary time series).

#### **Cointegration Vector**

|                      | HE.n.0    | ZC.n.0    |  |
|----------------------|-----------|-----------|--|
| cointegration vector | 11.571898 | -8.052704 |  |
| standardized vector  | -1.437020 | 1.000000  |  |
| hedge ratios         | -3.000000 | 2.000000  |  |

### **Spread Statistics**

| Half-life | Hurst Exponent |
|-----------|----------------|
| 0.978197  | 59.097051      |





### **Performance Metrics**

## **Summary Stats**

|                           | Value     |
|---------------------------|-----------|
| annual_standard_deviation | 3.2644    |
| sharpe_ratio              | -0.5325   |
| max_drawdown              | -2.1202   |
| sortino_ratio             | -0.0234   |
| ending_equity             | 8770.0000 |







## **Regression Analysis**

**OLS Regression Results** 

| Dep. Variable:   |           |     | equity_value            |      |        | R-squared:      |                    |         | 0.002   |           |         |
|------------------|-----------|-----|-------------------------|------|--------|-----------------|--------------------|---------|---------|-----------|---------|
| Model:           |           |     | OLS                     |      |        | Adj. R-squared: |                    |         | -0.007  |           |         |
| Metho            | d:        |     | Leas                    | st S | Square | es              | F-statistic:       |         |         | :         | 0.2192  |
| Date:            |           |     | Sat,                    | 25   | May    | 2024            | F                  | rob (F  | -st     | atistic): | 0.641   |
| Time:            |           |     | 12:2                    | 1:1  | 12     |                 | L                  | .og-Lik | eli     | hood:     | -86.773 |
| No. Ob           | servation | ıs: | 117                     |      |        |                 | ļ                  | AIC:    |         |           | 177.5   |
| Df Res           | iduals:   |     | 115                     |      |        |                 | BIC:               |         |         |           | 183.1   |
| Df Mod           | del:      |     | 1                       |      |        |                 |                    |         |         |           |         |
| Covari           | ance Typ  | e:  | nonrobust               |      |        |                 |                    |         |         |           |         |
|                  | coef      | st  | d err                   | t    |        | P> t            |                    | [0.025  | ;       | 0.975]    |         |
| const            | -0.0648   | 0.0 | 048                     | -1   | 1.348  | 0.18            | 0                  | -0.160  |         | 0.030     |         |
| close            | 3.1907    | 6.8 | 314                     | 0    | .468   | 0.64            | 1                  | -10.30  | 7       | 16.689    |         |
| Omnibus:         |           | 1   | 27.02                   | 25   | Durb   | urbin-Watson:   |                    | son:    | 1       | .367      |         |
| Prob(Omnibus): 0 |           |     | 0.000 Jarque-Be         |      |        | ue-Be           | era (JB): 2802.672 |         | 802.672 |           |         |
| Skew: -          |           |     | 3.657 <b>Prob(JB)</b> : |      |        |                 |                    | 0       | .00     |           |         |
| Kurtos           | is:       | 2   | 5.834                   |      | Cond   | d. No.          |                    |         | 1       | 44.       |         |

#### Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

## **Regression Validation Results**

| R-squared | p-value (const) | p-value (close) | R-squared above threshold | P-values significant | Model is valid |
|-----------|-----------------|-----------------|---------------------------|----------------------|----------------|
| 0.001903  | 0.180443        | 0.640505        | False                     | False                | False          |

<sup>\*\*</sup> R-squared should be above the threshold and p-values should be below the threshold for model validity.

### **Alpha Analysis Results**

| Alpha<br>(Intercept) | p-value  | Confidence Interval Lower<br>Bound(2.5%) | Confidence Interval Upper<br>Bound(97.5%) | Alpha is significant |  |
|----------------------|----------|------------------------------------------|-------------------------------------------|----------------------|--|
| -0.064817            | 0.180443 | -0.160091                                | 0.030457                                  | False                |  |

<sup>\*\*</sup> Note: For model validity, alpha should be significant (p-value < 0.05), and confidence intervals should not include zero.

### **Beta Analysis Results**

| Beta (Slope) | p-value  | Confidence Interval Lower Bound(2.5%) | Confidence Interval Upper Bound(97.5%) | Beta is significant |
|--------------|----------|---------------------------------------|----------------------------------------|---------------------|
| 3.190739     | 0.640505 | -10.307356                            | 16.688834                              | False               |

<sup>\*\*</sup> Note: For model validity, beta should be significant (p-value < 0.05), and confidence intervals should not include zero.

#### zscore volatility Results

| Annualized<br>Volatility | Annualized Mean<br>Return | Z-score for 1 SD (annualized) | Z-score for 2 SD (annualized) | Z-score for 3 SD (annualized) |
|--------------------------|---------------------------|-------------------------------|-------------------------------|-------------------------------|
| 3.264422                 | -1.700878                 | -1.521035                     | -2.521035                     | -3.521035                     |

<sup>\*\*</sup> Note: Z-scores provide a statistical measure of the volatility's deviation from its mean, with larger absolute values indicating more significant deviations.

### **Summary Stats**

|   | Metric                     | Value         |
|---|----------------------------|---------------|
| 0 | Market Contribution        | 0.003904      |
| 1 | Idiosyncratic Contribution | -0.064817     |
| 2 | Total Contribution         | -0.060913     |
| 3 | Market Volatility          | 0.022276      |
| 4 | Idiosyncratic Volatility   | 0.510179      |
| 5 | Total Volatility           | 0.510665      |
| 6 | Sharpe Ratio               | -0.532900     |
| 7 | Portfolio Dollar Beta      | 27982.781348  |
| 8 | Market Hedge NMV           | -27982.781348 |
| 9 | Beta                       | 3.190739      |