# Fórmulas para Avaliação de Desempenho de Processadores

## Sumário

| 1 | Fundamentos                                                                      |          |  |  |  |
|---|----------------------------------------------------------------------------------|----------|--|--|--|
|   | 1.1 Taxa e período do $clock$                                                    | 2        |  |  |  |
|   | 1.2 Desempenho e tempo de execução                                               | 2        |  |  |  |
|   | 1.3 Prefixos do SI e IEC                                                         | 2        |  |  |  |
| 2 | <ul><li>Speedup</li><li>2.1 Speedup calculado com modelo de referência</li></ul> | <b>3</b> |  |  |  |
| 3 | Ciclos por Instrução (CPI)                                                       | 3        |  |  |  |
|   | 3.1 Cálculo do CPI Médio                                                         |          |  |  |  |
| 4 | Equação de Desempenho do Processador                                             | 4        |  |  |  |
| 5 | Lei de Amdahl                                                                    | 4        |  |  |  |

Essa obra tem a licença Creative Commons "CC0 1.0 Universal".



## 1 Fundamentos

#### 1.1 Taxa e período do *clock*

$$taxa\ do\ clock = rac{1}{período\ do\ clock}$$

## 1.2 Desempenho e tempo de execução

$$desempenho_A = \frac{1}{tempo~de~execuç\~ao_A}$$

# 1.3 Prefixos do Sistema Internacional de Unidades (SI) e *International Electrotechnical Commission* (IEC)

A comunidade científica, por meio do Sistemas Internacional, criou prefixos (constantes numéricas) para facilitar a representação de magnitudes muito grandes ou muito pequenas.

Igualmente, houve pela *International Electrotechnical Commission* um esforço para criar constantes úteis no contexto da computação, pois a forma como circuitos digitais são implementados (álgebra booleana, aritmética em base binária etc.) torna os prefixos do SI por vezes inconvenientes.

Pela proximidade entre  $10^3 = 1000$  e  $2^{10} = 1024$ , definiu-se prefixos a partir de  $2^{10}$  para manter certa similaridade entre os dois conjuntos. A tabela 1 mostra os prefixos mais usados, bem como situações em que é preferível usar um conjunto de prefixos ao outro.

Tabela 1: Prefixos do SI e IEC

| Idolia I. I Iomios de SI e II-e |                   |           |               |       |  |  |  |  |
|---------------------------------|-------------------|-----------|---------------|-------|--|--|--|--|
|                                 | Para tempo, velo- |           | Para tamanho  |       |  |  |  |  |
|                                 | cidade o          | ı taxa de | ou capacidade |       |  |  |  |  |
|                                 | transferê         | ncia (SI) | (IEC)         |       |  |  |  |  |
| Prefixo                         | Símbolo           | Valor     | Símbolo       | Valor |  |  |  |  |

. . .

| pico  | p        | $10^{-12}$ | _        |          |
|-------|----------|------------|----------|----------|
| nano  | n        | $10^{-9}$  | _        | —        |
| micro | $\mu$    | $10^{-6}$  | <u> </u> |          |
| mili  | m        | $10^{-3}$  | _        |          |
| kilo  | K ou k   | $10^{3}$   | Ki       | $2^{10}$ |
| Mega  | M        | $10^{6}$   | Mi       | $2^{20}$ |
| Giga  | G        | $10^9$     | Gi       | $2^{30}$ |
| Tera  | $\Gamma$ | $10^{12}$  | Ti       | $2^{40}$ |
| Peta  | Р        | $10^{15}$  | Pi       | $2^{50}$ |
| Exa   | E        | $10^{18}$  | Ei       | $2^{60}$ |

. . .

## 2 Speedup

Lembre-se: speedup é uma medida que varia de acordo com o programa executado.

$$speedup_{A/B} = \frac{desempenho_A}{desempenho_B} = \frac{tempo\ de\ execução_B}{tempo\ de\ execução_A} \tag{1}$$

Alternativamente:

$$desempenho_A = speedup_{A/B} \times desempenho_B$$

$$tempo \ de \ execução_A = \frac{tempo \ de \ execução_B}{speedup_{A/B}}$$

Dada a natureza do cálculo do *speedup*, existe também a seguinte propriedade.

$$speedup_{A/B} = \frac{1}{speedup_{B/A}}$$

## 2.1 Speedup calculado com modelo de referência

Considere dois processadores, A e B, e um programa P. Deseja-se saber o valor de  $speedup_{A/B}$  para P, mas não se sabe os tempos de execução do programa em ambos os processadores.

No entanto, existe um processador, X, tal que  $speedup_{A/X}$  e  $speedup_{B/X}$  para P são conhecidos. Nesta situação, pode-se aproveitar a seguinte propriedade.

$$\begin{split} speedup_{A/B} &= \frac{desempenho_A}{desempenho_B} \\ &= \frac{speedup_{A/X} \times desempenho_X}{speedup_{B/X} \times desempenho_X} \\ &= \frac{speedup_{A/X}}{speedup_{B/X}} \end{split}$$

Isso significa que o *speedup* de um processador com relação a outro pode ser obtido com apenas os respectivos *speedups* destes com relação a um terceiro processador qualquer.

## 3 Ciclos por Instrução (CPI)

Lembre-se: o CPI varia de acordo com o tipo de instrução executada.

$$n^o$$
 de ciclos gastos =  $n^o$  de instruções executadas × CPI (2)

#### 3.1 Cálculo do CPI Médio

Lembre-se: o CPI médio varia de acordo com o código executado. Considere:

- $C_i$ : n° de instruções do tipo i executadas
- $CPI_i$ : nº de ciclos gastos com uma instrução do tipo i
- $n^o$  de ciclos gastos =  $\sum_{\forall i} (C_i \times CPI_i)$
- $n^o$  de instruções executadas =  $\sum_{\forall i} C_i$

$$CPI = \frac{n^o \ de \ ciclos \ gastos}{n^o \ de \ instruções \ executadas} = \frac{\sum_{\forall i} (C_i \times CPI_i)}{\sum_{\forall i} C_i}$$

Note que a equação acima é apenas a média ponderada dos CPI de cada tipo de instrução, onde os pesos são as proporções (%) de cada tipo de instrução no código executado.

## 4 Equação de Desempenho do Processador

Lembre-se: o processador executa vários trechos de código ao mesmo tempo, sejam do seu programa ou não. Portanto, o tempo de CPU não inclui a execução de outros programas nem a espera por dispositivos de entrada e saída.

$$tempo_{CPU} = n^{o} \ de \ ciclos \ gastos \times período \ do \ clock$$

$$= \frac{n^{o} \ de \ ciclos \ gastos}{taxa \ do \ clock}$$
(3)

Substituindo a equação 2 em 3, obtemos

$$tempo_{CPU} = n^{o} de instruções executadas \times CPI \times período do clock$$

$$= \frac{n^{o} de instruções executadas \times CPI}{taxa do clock}$$
(4)

#### 5 Lei de Amdahl

Considere:

- $\bullet$   $f \in [0,1]$ : fração do tempo de execução do programa a ser melhorada
- p: proporção da melhoria, se comparado ao programa sem a melhoria

tempo com melhoria = tempo sem melhoria
$$_{n\tilde{a}o}$$
  $_{afetado}$  +  $\frac{tempo sem melhoria}{proporç\tilde{a}o da melhoria}$  (5)
$$= tempo sem melhoria \times (1 - f) + \frac{tempo sem melhoria \times f}{p}$$

Manipulando-se a equação  $5~{\rm com}$  o tempo de execução do programa sem a melhoria, encontra-se uma nova equação.

$$speedup = \frac{1}{(1-f) + \frac{f}{p}} \tag{6}$$