

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 15

Manuel A. Sánchez 2024.10.07

Preliminares

Espacio de Banach

Definición

Un **espacio de Banach** es un espacio vectorial normado $(X, \| \cdot \|)$ sobre los números reales o complejos que es completo con respecto a la norma. Es decir, cualquier sucesión de Cauchy en X converge a un elemento de X.

 $\forall (x_n) \subset X$, $si ||x_n - x_m|| \to 0$ cuando $n, m \to \infty$, entonces existe $x \in X$ tal que $x_n \to x$.

Ejemplo de Espacio de Banach

Un ejemplo típico de espacio de Banach es el espacio de funciones continuas acotadas C([a, b]) sobre un intervalo cerrado [a, b], con la norma:

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|.$$

Este es un espacio de Banach, ya que toda sucesión de Cauchy con esta norma converge uniformemente a una función continua y acotada.

Espacio de Hilbert

Definición

Un **espacio de Hilbert** es un espacio vectorial H sobre los números reales o complejos que está dotado de un producto interno $\langle \cdot, \cdot \rangle$ y es completo con respecto a la norma inducida por el producto interno:

$$||x|| = \sqrt{\langle x, x \rangle}.$$

La completitud implica que cualquier sucesión de Cauchy con respecto a la norma converge en el espacio.

Ejemplo de Espacio de Hilbert

El espacio ℓ^2 , que consiste en todas las sucesiones (x_n) de números reales o complejos tales que:

$$\sum_{n=1}^{\infty} |x_n|^2 < \infty,$$

es un espacio de Hilbert con el producto interno dado por:

$$\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y_n}.$$

Espacios L^p

Definition

Sea $(\Omega, \mathcal{F}, \mu)$ un espacio de medida. Para $1 \leq p < \infty$, el **espacio** $L^p(\Omega)$ está formado por todas las funciones medibles $f : \Omega \to \mathbb{R}$ (o \mathbb{C}) tales que:

$$||f||_{L^p}=\left(\int_{\Omega}|f(x)|^p\,d\mu(x)\right)^{1/p}<\infty.$$

Para $p = \infty$, definimos:

$$||f||_{L^{\infty}} = \operatorname{ess sup}_{x \in \Omega} |f(x)|,$$

es decir, el supremo esencial de f.

Propiedades de los Espacios L^p

- □ Para $1 \le p < \infty$, $L^p(\Omega)$ es un **espacio de Banach**.
- \square El espacio $L^2(\Omega)$ es un **espacio de Hilbert**, con el producto interno:

$$\langle f, g \rangle = \int_{\Omega} f(x) \overline{g(x)} \, d\mu(x).$$

Los espacios $L^p(\Omega)$ satisfacen la desigualdad de Hölder, que relaciona las normas L^p y L^q para p y q conjugados.

Definición

 $M(\Omega)$: espacion de funciones escalares sobre el dominio $\Omega \subset \mathbb{R}^d$ que son Lebesgue-medibles.

Definición

El espacio $L^1(\Omega)$ es el esapcio de funciones escalares que son Lebegue-integrables sobre Ω . El espacio $L^1_Ioc(\Omega)$ es el espacio de funciones localmente integrables sobre Ω , definido por

$$L^1_{loc}(\Omega) := \{ f \in M(\Omega); \text{ para todo compactor } K \subset \Omega, f \in L^1(K) \}$$

Definición

El espacio vectorial $\mathcal{D}(\Omega)$ es el espacio de funciones C^{∞} cuyo soporte es compacto en Ω .

Teorema

Sea $1 \leq p < \infty$. Entonces, $\mathcal{D}(\Omega)$ es denso en $L^p(\Omega)$.

Lema

Sea
$$f \in L^1_{loc}(\Omega)$$
 tal que $\int_{\Omega} f \varphi = 0$, para todo $\varphi \in \mathcal{D}(\Omega)$. Entonces $f = 0$ a.e. en Ω .

Definición

Un mapeo lineal

$$u:\mathcal{D}(\Omega)\mapsto\mathbb{R}(\mathsf{o}\,\mathbb{C})$$

 $\varphi\mapsto\langle u,\varphi\rangle_{\mathcal{D}',\mathcal{D}}$

se dice una distribución sobre Ω si y sólo sí la siguiente propiedad se satisface:

 $\forall \ compacto \ K \subset \Omega, \ \exists p \in \mathbb{N}_0 \ y \ C \in \mathbb{R}, \ tales \ que: \\ \forall \varphi \in \mathcal{D}(\Omega), \ supp(\varphi) \subset K, \quad |\langle u, \varphi \rangle_{\mathcal{D}', \mathcal{D}}| \leq C \sup_{x \in K} \frac{|\partial^{\alpha} \varphi(x)|}{|\partial^{\alpha} \varphi(x)|}$

Ejemplos:

 $lue{}$ Cada función $f \in L^1_{loc}(\Omega)$ puede ser identificada con la distribución

$$ilde{f}:\mathcal{D}(\Omega)\mapsto,\quad arphi\mapsto \langle ilde{f},arphi
angle_{\mathcal{D}',\mathcal{D}}=\int_{\Omega}farphi$$

- □ Cada función del espacio $C^{k,\alpha}(\Omega)$, $k \ge 0$, puede ser identificada como una distribución.
- \square Sea a un punto de Ω . La medida de Dirac en a es la distribución

$$\delta_{\mathsf{x}=\mathsf{a}}: \mathcal{D}(\Omega) \mapsto \mathbb{R}, \quad \varphi \mapsto \langle \delta_{\mathsf{x}=\mathsf{a}}, \varphi \rangle_{\mathcal{D}', \mathcal{D}} = \varphi(\mathsf{a})$$

Observe que $\delta_{x=a}$ no pertenece al espacio $L^1(\Omega)$. En efecto, si $\delta_{x=a} \in L^1(\Omega)$, entonces existe una función $f \in L^1(\Omega)$ tal que:

$$arphi(\mathsf{a}) = \int_{\Omega} \mathsf{f} arphi, \quad orall arphi \in \mathcal{D}(\Omega),$$

pero

$$\int_{\Omega} f\varphi = 0, \quad \forall \varphi \in \mathcal{D}(\Omega \setminus \{a\})$$

lo que implica que f=0, a.e. en $\Omega\setminus\{a\}$, y así f=0, a.e. en Ω .

Definición

Sea $u \in \mathcal{D}'(\Omega)$ una distribución y sea $1 \leq i \leq d$. La **derivada distribucional** $\partial_i u \in \mathcal{D}'(\Omega)$ es definida por:

$$\partial_i u : \mathcal{D}(\Omega) \mapsto \mathbb{R}$$

$$\varphi \mapsto \langle \partial_i u, \varphi \rangle_{\mathcal{D}', \mathcal{D}} = (-1) \langle u, \partial_i \varphi \rangle_{\mathcal{D}', \mathcal{D}}$$

En general, para un multiíndice α , la distribución $\partial^{\alpha} u$ se define por

$$\begin{split} \partial^{\alpha} u : \mathcal{D}(\Omega) &\mapsto \mathbb{R} \\ \varphi &\mapsto \langle \partial^{\alpha} u, \varphi \rangle_{\mathcal{D}', \mathcal{D}} = (-1)^{|\alpha|} \langle u, \partial^{\alpha} \varphi \rangle_{\mathcal{D}', \mathcal{D}} \end{split}$$

La noción de derivada distribucional es una extensión de la derivada clásica. Cuando $u \in L^1_{loc}(\Omega)$, las derivadas distribucionales de u son llamadas **derivadas débiles**.

Ejemplo:

□ Sea $\Omega = (-1, 1)$, y u(x) = 1 - |x|. La derivada débil de u es

$$\partial_x u = egin{cases} 1, & \operatorname{si} x < 0, \ -1, & \operatorname{si} x > 0. \end{cases}$$

En efecto, sea $\varphi \in \mathcal{D}(\Omega)$, entonces

$$\begin{split} \int_{\Omega} \partial_x u \varphi &= \int_{-1}^0 (1) \varphi + \int_0^1 (-1) \varphi \\ &= -\int_{-1}^0 (x+C) \partial_x \varphi + (x+C) \varphi \Big|_{-1}^0 - \int_0^1 (-x+D) \partial_x \varphi + (-x+D) \varphi \Big|_0^1 \\ &= -\int_{-1}^1 (|x|+C) \partial_x \varphi + (C) \varphi(0) - (C) \varphi(0) \end{split}$$

Ejemplo:

□ La función Heaviside sobre $\Omega = (-1, 1)$

$$H(x) = \begin{cases} 0, & \text{si } x < 0, \\ 1, & \text{si } x \ge 0 \end{cases}$$

no es derivable en el sentido clásico en Ω. Sin embargo, $\partial_x H = \delta_{x=0}$. En efecto,

$$\int_{-1}^{1} H \partial_{x} \varphi = \int_{0}^{1} \partial_{x} = \varphi \Big|_{0}^{1} = -\varphi(0) = -\int_{-1}^{1} \delta_{x=0} \varphi$$

Definición

Sean $s \ge 0$, $1 \le < \infty$ números enteros. Se define el espacio de Sobolev (Serguéi Lvóvich Sobolev 1930s)

$$W^{s,p}(\Omega) := \{ u \in \mathcal{D}(\Omega) : \partial^{\alpha} u \in L^p(\Omega), \quad |\alpha| \le s \}$$

 $W^{s,p}(\Omega)$ es un espacio de Banach con la norma

$$||u||_{W^{s,p}(\Omega)} = \sum_{|\alpha| \le s} ||\partial^{\alpha} u||_{L^p(\Omega)}$$

Para p=2, $W^{s,2}(\Omega)=H^s(\Omega)$ es un espacio de Hilbert con producto escalar

$$(u,v)_{H^s(\Omega)} = \sum_{|\alpha| \le s} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v$$

Ejemplo:

Sea $\Omega=(0,1)$ y $u(x)=x^{\alpha}$, $\alpha\in\mathbb{R}$. Entonces: Si $\alpha<-\frac{1}{2}$ entonces $u\in L^{2}(\Omega)$, en efecto

$$\int_0^1 u^2 = \int_0^1 x^{2\alpha} = 2\alpha x^{1+2\alpha} \Big|_0^1 < \infty$$

Si $\alpha > \frac{1}{2}$, entonces $u \in H^1(\Omega)$, en efecto

$$\int_{0}^{1} (\partial_{x} u)^{2} = \int_{0}^{1} \alpha x^{2\alpha - 2} = \alpha (2\alpha - 2) x^{2\alpha - 1} \Big|_{0}^{1} < \infty$$

Si $\alpha > s - \frac{1}{2}$, entonces $u \in H^s(\Omega)$.

Manuel A. Sánchez 22/

Figure: La función con gráfica a) está en $L^2(\Omega)$ pero no en $C(\Omega)$. Tampoco está en $H^1(\Omega)$ ya que su derivada distribucional es la suma de dos medidas de Dirac. La función con gráfica b) está en $H^1(\Omega)$, pero no está en $C^1(\Omega)$ ni en $H^2(\Omega)$.

Ejemplo:

□ Sea $\Omega = B(0, 1/2) \subset \mathbb{R}^2$. Considere la función

$$u(x,y) = \log(-\log(x^2 + y^2))$$

Entonces, $u \in H^1(\Omega)$, en efecto

$$\begin{split} \int_{B(0,1/2)} u \nabla \cdot \varphi &= \int_{B(0,1/2)} \nabla u \cdot \varphi + \int_{\partial B(0,1/2)} u \varphi \cdot n \\ &= \int_{B(0,1/2)} \nabla u \cdot \varphi + \int_{\partial B(0,1/2)} \log(-\log(1/2)) \varphi \cdot n \end{split}$$

Observación

En dos dimensiones funciones en $H^1(\Omega)$ no son necesariamente continuas ni acotadas.

Lema

Asuma que Ω es un conjunto conexo. Sea $1 \le p < \infty$. Sea $u \in W^{1,p}(\Omega)$ tal que

 $\nabla u = 0$, a.e. sobre Ω .

Entonces, u es constante.

Desigualdad de Poincaré

Enunciado de la Desigualdad de Poincaré

Sea $\Omega \subset \mathbb{R}^n$ un dominio acotado y sea $u \in H_0^1(\Omega)$. Entonces, existe una constante C > 0 tal que para todo $u \in H_0^1(\Omega)$:

$$||u||_{L^2(\Omega)} \leq C||\nabla u||_{L^2(\Omega)}.$$

Demostración

Ejercicio

Manuel A. Sánchez 28/41

Dominios con frontera curva (d=2)

Diferencias finitas con frontera curva, d=2

Sea $\Omega \subseteq \mathbb{R}^2$ un dominio abierto, acotado, convexo y con frontera continua $\partial\Omega$. Definimos una malla o grilla sobre Ω , con tamaño de malla $h=h_x=h_y$. Consideramos la ecuación de diferencias en un nodo x_{ij} :

$$-\frac{u_{i-1,j}+u_{i+1,j}-4u_{i,j}+u_{i,j-1}+u_{i,j+1}}{h^2}=f_{i,j}$$
 (1)

Si el nodo $x_{i,j} \in \Omega$ es tal que los nodos asociados al stencil de diferencias finitas, $\{x_{i-1,j}, x_{i+1,j}, x_{i,j-1}, x_{i,j+1}\}$, también están en Ω , entonces podemos calcular 1. Estos puntos son la malla Ω_h . Aquellos nodos que pertenecen al stencil pero no están en Ω_h son los puntos de frontera $\partial\Omega_h$ (ver figura). Si tenemos condición homogénea de Dirichlet, podemos resolver usando

$$u_{kl} = 0 \quad \forall x_{kl} \in \partial \Omega_h$$

Esta aproximación a los valores de frontera causan un error de orden h.

Diferencias finitas con frontera curva, d=2

Manuel A. Sánchez 31/4

Diferencias finitas con frontera curva, d=2

Para construir valores de frontera más exactos, se puede utilizar interpolación lineal. Sean los puntos co-lineales $x_{i-1,j} \in \Omega_h, x_{i,j} \in \partial \Omega_h$ definimos $x_{.,j} \in \partial \Omega$. Sea $\delta = |x_{i,j} - x_{.,j}|$. Así,

$$u_{i,j} = \frac{\delta}{h+\delta}u(x_{i-1,j}) + \frac{h}{h+\delta}u(x_{i,j}) + \mathcal{O}(h^2).$$

Si $u(x_{.,j}) = 0$ (condición de Dirichlet homogénea) e ignoramos el término cuadrático, tenemos

$$u_{i,j} - \frac{\delta}{h+\delta} u_{i-1,j} = 0 \quad x_{i,j} \in \partial \Omega_h.$$

La aproximación de 9 puntos del Laplaciano

Se puede aproximar el Laplaciano con el siguiente stencil de 9 puntos:

$$\triangle_9 = \frac{1}{6h^2} (4u_{i-1,j} + 4u_{i+1,j} + 4u_{i,j-1} + 4u_{i,j+1} + u_{i-1,j-1} + u_{i-1,j+1} + u_{i+1,j-1} + u_{i+1,j+1} - 20u_{i,j})$$

Ejercicio: Muestre que:

$$\Delta_9 u(x_{i,j}) = \Delta u(x_{i,j}) + \frac{h^2}{12} \left(\frac{\partial^4 u}{\partial x^4} + 2 \frac{\partial^2}{\partial y^2} \frac{\partial^2}{\partial x^2} u + \frac{\partial^4 y}{\partial x^4} \right) + \mathcal{O}(h^4)$$
$$= \Delta u(x_{i,j}) + \frac{h^2}{12} \Delta^2 u(x_{i,j}) + \mathcal{O}(h^2)$$

La aproximación de 9 puntos del Laplaciano

Este método es de orden 2, tal como el stencil de 5 puntos. Sin embargo, podemos usarlo para obtener un método de orden 4. Muestre que modificando el lado derecho con

$$f_{i,j} = f(x_{i,j}) + \frac{h^2}{12} \triangle f(x_{i,j})$$

el método es de orden 4. En el caso de que $\triangle f$ no se tengan de manera exacta, estos se pueden aproximar de forma numérica.

Método de Galerkin

Método de Galerkin

Sea V un espacio de Hilbert, $a: V \times V \to \mathbb{R}$ una forma bilineal y $I: V \to \mathbb{R}$ un funcional lineal y acotado. Consideramos el problema de encontrar $u \in V$ tal que

$$a(u,v) = I(v), \quad \forall v \in V$$
 (2)

El método de Galerkin es una manera de encontrar una solución aproximada para 2. Utiliza un espacio de dimensión $N V_N \subset V$ para resolver el problema

$$u_N \in V_N : a(u_N, v) = I(v), \quad \forall v \in V_N.$$

Si a es acotada y elíptica en V, entonces podemos aplicar Lax-Milgram y mostrar que el problema de dimensión finita tiene una única solución $u_N \in V_N$.

Manuel A. Sánchez 36/

Método de Galerkin

Sistema matricial: Sea $\phi_{i_{i=1}}^N$ una base de V_N y sean los coeficientes $\{\xi_i\}_{i=1}^N$ tales que $u_N(x) = \sum_{i=1}^N \xi_i) - \phi_i(x)$. Entonces, el problema de dimensión finita es equivalente a

$$A\xi = b$$
; con $A_{ij} = a(\phi_j, \phi_i)$ $1 \le i, j \le N$
 $b_i = I(\phi_i)$ $1 \le i \le N$.

Energía mínima: Si a es simétrica, el problema 2 es equivalente a

$$u \in V : E(u) = \inf_{v \in V} E(v); E(v) = \frac{1}{2}a(v, v) - I(v)$$

y respectivamente el problema de dimensión finita

$$u_N \in V_N: \quad E(u_N) = \inf_{v \in V_N} E(v)$$

el cual se conoce como método de Ritz.

Ejemplo:

Considere el siguiente problema

$$\begin{cases} -u'' = f & \text{en } (0,1) \\ u(0) = u(1) = 0 \end{cases}$$

Buscamos $u \in V := H_0^1(0,1)$

$$\int_0^1 u'v' = \int_0^1 fv \quad \forall v \in V$$

 $\square V_N = span\{x^i(1-x) : i=1,\ldots,N\} \subset V.$ Tenemos

$$A_{ij} = \int_0^1 (x^j (1-x))' (x^i (1-x))' dx$$

$$= \frac{(i+1)(j+1)}{i+j+1} + \frac{(i+2)(j+2)}{i+j+3} - \frac{(i+1)(j+2) + (i+2)(j+1)}{i+j+2}$$

Manuel A, Sánchez 38/41

Ejemplo:

 $\Box V_N = \{\sin(i\pi x) : i = 1, ..., N\} \subset V \text{ y ortogonales.}$

$$A_{ij} = \int_0^1 (\sin(j\pi x)'(\sin(i\pi x)'dx) dx$$

$$= ij\pi^2 \int_0^1 \cos(j\pi x)\cos(i\pi x)dx$$

$$= \frac{ij8^2}{2}\delta_{ij}$$

$$\to \xi_i = \frac{2}{\pi^2 j^2} \int_0^1 f(x)\sin(i\pi x)dx, \quad 1 \le i \le N$$

Ejemplo:

 \square Elementos finitos: malla con nodos $0 = x_0 < x_1 < \ldots < x_{N+1} = 1$.

$$V_{N} = \{ v \in V : v |_{K} \in \mathcal{P}^{1}(K), K = [x_{i}, x_{i+1}], 0 \leq i \leq N \}$$

$$\phi_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, & x \in [x_{i-1}, x_{i}] \\ \frac{x_{i+1} - x}{x_{i+1} - x_{i}}, & x \in [x_{i}, x_{i+1}] \\ 0, & \text{e.o.c.} \end{cases}$$

Observe que

$$\phi_i'(x) = \begin{cases} \frac{1}{x_i - x_{i-1}}, & x \in [x_{i-1}, x_i] \\ \frac{-1}{x_{i+1} - x_i}, & x \in [x_i, x_{i+1}] \\ 0, & \text{e.o.c.} \end{cases}$$

Así, si además la malla es uniforme de tamaño h, entonces

$$A_{ij} = \int_0^1 \phi_j'(x) \phi_i'(x) = egin{cases} 2/h, & ext{si } i = j \ 1/h, & ext{si } |i-j| = 1 \ 0, & ext{e.o.c.} \end{cases}$$

Manuel A. Sánchez 40/41

INSTITUTO DE INGENIERÍA Matemática y computacional

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE