Cryptanalyse — M1MA9W06 Responsable : G. Castagnos

Devoir surveillé — 17 novembre 2015

Durée 1h30

accès aux fonctions programmées en TP, aux énoncés des TP et à la fiche d'initiation à Sage autorisés, autres documents non autorisés Les deux exercices sont indépendants, cependant il est nécessaire d'avoir fait la question (c) de l'exercice 1 pour pouvoir faire les deux dernières questions de l'exercice 2.

- Dans cet exercice, $z = (z_t)_{t \ge 0}$ désigne une suite binaire strictement périodique non constante produite par un LFSR de longueur ℓ et de polynôme de rétroaction $f(X) \in \mathbf{F}_2[X]$. On note Z(X) la série génératrice définie par $Z(X) = \sum_{t \ge 0} z_t X^t$.
 - (a) Rappeler sans démonstration l'expression du polynôme $g(X) \in \mathbb{F}_2[X]$ tel que Z[X] = g(X)/f(X).
 - **(b)** On suppose connaître les polynômes g(X) et f(X), montrer comment retrouver l'état initial du LFSR.
 - (c) Application, avec Sage, donner le code d'une fonction prenant en entrée g et f et ressortant cet état initial. Avec $g = X^{10} \oplus X^7 \oplus X^4 \oplus 1$ et $f = X^{15} \oplus X^5 \oplus X^4 \oplus X^2 \oplus 1$, quel est cet état initial?
- 2 Une attaque par corrélation d'ordre 2
 - (a) On considère la fonction booléenne f en quatre variables, $f(x_1, x_2, x_3, x_4) = x_1 \oplus x_2 x_4 \oplus x_2 \oplus x_3 x_4$. Montrer que f est non corrélée à l'ordre 1, mais corrélée à l'ordre 2 (c'est à dire corrélée avec une somme de deux variables). La fonction f est elle équilibrée? Pour répondre à cette question, on peut raisonner sans machine ou utiliser Sage (dans ce cas fournir le code utilisé).
 - **(b)** On considère les 4 LFSR suivants :
 - LFSR1 de longueur 5 de polynôme de rétroaction $P_1(X) = X^5 \oplus X^2 \oplus 1$;
 - LFSR2 de longueur 7 de polynôme de rétroaction $P_2(X) = X^7 \oplus X \oplus 1$;
 - LFSR3 de longueur 9 de polynôme de rétroaction $P_3(X) = X^9 \oplus X^4 \oplus 1$;
 - LFSR4 de longueur 11 de polynôme de rétroaction $P_4(X) = X^{11} \oplus X^2 \oplus 1$.

Avec Sage : Donner les 10 premiers bits de sortie du générateur combinant les sorties de ces quatre LFSR avec la fonction f, en utilisant pour initialisations des 4 LFSR les clefs $K_1 = [1,0,1,0,1], K_2 = [1,0,1,0,1,0,1], K_3 = [1,0,1,0,1,0,1,0,1]$ et $K_4 = [1,0,1,0,1,0,1,0,1,0,1]$. Expliquer la méthode, ne pas donner tout le code utilisé.

- (c) Quelle est la complexité linéaire de la suite produite par ce générateur? Bien justifier le résultat, en particulier, préciser les éventuelles commandes Sage utilisées.
- (d) Soit z une suite de sortie de ce générateur, avec des initialisations inconnues. En s'inspirant de l'attaque par corrélation, expliquer comment trouver l'initialisation d'un LFSR de polynôme de rétroaction P₁ × P₂ produisant une suite z' « proche » de z.
- (e) Application avec Sage: Récupérer une telle suite z par la commande load("http://www.math.u-bordeaux1.fr/~gcastagn/z.sage")

 Donner cette initialisation ainsi que le polynôme g tel que g(X)/(P₁(X)P₂(X)) = Z'(X) la série
- formelle associée à la suite z'. (f) À l'aide d'une relation de Bézout entre P_1 et P_2 , trouver **avec Sage**, un polynôme g_1 avec

 $deg g_1 < deg P_1$ et un polynôme g_2 avec $deg g_2 < deg P_2$ tels que $Z'(X) = g_1/P_1 + g_2/P_2$.

(g) En déduire avec Sage l'initialisation des LFSR1 et des LFSR2 ayant produit la suite z.

Expliquer la méthode, et donner le code utilisé.

(h) Donner une méthode pour trouver l'initialisation des LFSR3 et des LFSR4 ayant produit la suite z et sa complexité. Programmer cette attaque avec Sage et donner ces initialisations.