Embark: Securely Outsourcing Middleboxes to the Cloud

<u>Chang Lan</u>, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, Zhi Liu

UC Berkeley Tsinghua University

Background

- ➤ Middleboxes are prevalent and problematic
 - Number of Middleboxes ≈ Number of Routers (APLOMB [SIGCOMM '12])
 - Lots of Problems:
 - MB Manifesto [HotNets '11], CoMb [NSDI '12],
 Honda et al. [IMC'11], DOA [OSDI '04], ETTM [NSDI '11], ...
- A Promising Solution: Outsourcing
 - APLOMB [SIGCOMM '12]
 - Aryaka, Zscaler
 - AT&T NFV/CORD

New Challenge: Confidentiality and Privacy

The middleboxes sees the traffic unencrypted.

- Strawman: End-to-end Encryption (e.g. TLS):
 - Some middleboxes cannot process traffic (e.g. Deep Packet Inspection).
 - Unencrypted packet fields still leak information

Problem Statement

Can we outsource middleboxes without compromising privacy?

Embark

the first system that allows middlebox outsourcing, while keeping traffic confidential.

Overview

- > Approach
 - Middleboxes process encrypted traffic without decrypting it
- Crypto Primitives
 - KeywordMatch: For Signature Matching
 - BlindBox [SIGCOMM '15]: Prohibitive Setup Time Per Flow

Contribution: System Design + Implementation without Per-flow Setup Time

■ **PrefixMatch**: Prefix/Range Matching

Contribution: A fast, secure encryption scheme for prefix matching

Overview

- > Approach
 - Middleboxes process encrypted traffic without decrypting it
- Crypto Primitives
 - KeywordMatch: For Signature Matching
 - BlindBox [SIGCOMM '15]: Prohibitive Setup Time Per Flow
 Contribution: System Design + Implementation without Per-flow Setup Time
 - **PrefixMatch**: Prefix/Range Matching

Contribution: A fast, secure encryption scheme for prefix matching

Outline

- 1. Service Model of Embark
- 2. PrefixMatch: Two Functions
 - EncryptRanges
 - EncryptValue
- 3. Evaluation
- 4. Conclusion

Service Model

Packet Flow

2. Encrypt the traffic

- Encrypt packet headers field by field using <u>EncryptValue</u>
- Encrypt payloads using stream cipherImplication: no change to packet structure

Packet Flow

4. Middleboxes process encrypted traffic.

No change to algorithms: E.g., LPM, multi-dimensional classifiers, etc.

Outline

- 1. Service Model of Embark
- 2. PrefixMatch: Two Functions
 - EncryptRanges
 - EncryptValue
- 3. Evaluation
- 4. Conclusion

PrefixMatch

- Property
 - Answer if a value V matches a range R_i from $[R_1, R_2, ...]$
- Security
 - Do not reveal the value of V and R_i
 - If both V_1 and V_2 match R_1 , do not reveal the ordering between V_1 and V_2

PrefixMatch vs. OPE

- Order-preserving Encryption
 - Preserve the ordering of values after encryption
- > PrefixMatch is better than OPE in this scenario
 - More secure (No relative ordering)
 - Faster (10000x)
 - Compare with the state-of-the-art OPE schemes (BCLO and mOPE)

Operation	BCLO	mOPE	PrefixMatch
Encrypt, 10K rules	9333 us	6640 us	0.53 us
Encrypt, 100K rules	9333 us	8300 us	0.77 us
Decrypt	169 us	0.128 us	0.128 us

Firewall Rules

```
block from 192.168.1.0/24 to 205.203.224.0/19 block from 192.168.0.0/16 to 223.254.0.0/16 block from 10.1.0.0/16 to 223.201.0.0/16
```



```
block from 192.168.1.0/24 to 205.203.224.0/19
block from 192.168.0.0/16 to 223.254.0.0/16
block from 10.1.0.0/16 to 223.201.0.0/16
```

Source IP

```
192.168.1.0/24 -> 3.0.0.0/8
192.168.0.0/16 -> 3.0.0.0/8
162.0.0.0/8
10.1.0.0/16 -> 62.0.0.0/8
```

Destination IP

```
205.203.224.0/19 -> 12.0.0.0/8

223.254.0.0/16 -> 241.0.0.0/8

223.201.0.0/16 -> 163.0.0.0/8
```

```
block from 3.0.0.0/8 to 12.0.0.0/8
block from 3.0.0.0/8 to 241.0.0.0/8
block from 162.0.0.0/8 to 241.0.0.0/8
block from 62.0.0.0/8 to 163.0.0.0/8
```

- Encrypt each field independently
 - Source IP, Destination IP,

Source Port, Destination Port...

Encrypt each field independently

- Problem 1: How to support NAT and Load Balancers?
 - **Deterministic**: The value from the same flow will be mapped to the same value
 - Injective: Values from different flows will be mapped to different values
 - Sufficient condition

Sufficient condition: Let v = (sip, dip, sp, dp, proto) v' = (sip', dip', sp', dp', proto') v = v' if and only if Enc(v) = Enc(v')

```
Src IP = 10.1.123.123
Enc (Src IP) = 62.0.0.0 + Rand(0, 2^24)
```

- Problem 1: How to support NAT and Load Balancers?
 - Use pseudorandom function, seeded by 5-tuple
 - Use IPv6 to avoid collisions

```
Src IP = 10.1.123.123
Enc (Src IP) = 62.0.0.0 + Rand(0, 2^24)
```

Enc (Src IP) = 3e00::/8 + PRF(Src IP)

- Problem 1: How to support NAT and Load Balancers?
- Problem 2: How to decrypt?
 - Store AES(Src IP) in IP Options
 - Decrypt AES(Src IP)

Outline

- 1. Service Model of Embark
- 2. PrefixMatch: Two Functions
 - EncryptRanges
 - EncryptValue
- 3. Evaluation
- 4. Conclusion

Evaluation

- What kinds of middleboxes does Embark support?
 - Performance of each type of middleboxes
- How much does PrefixMatch increase the number of rules?
- Microbenchmarks
 - How does PrefixMatch compare with OPE?
 - How well does PrefixMatch scale with the number of rules?
- Performance
 - How fast is the gateway (with PrefixMatch and with KeywordMatch)
 - How much does the service model increase the page load time?

Supported Middleboxes

IP Firewall	Linux iptables		
NAT	Linux iptables	DuafiyMatah	
L3 Load Balancer	ECMP	PrefixMatch	
L4 Load Balancer	HAProxy		
HTTP Proxy	Embark vs Squid		
Parental Filter	Embark vs Squid	KeywordMatch	
Intrusion Detection (excluding scripts and other statistical techniques)	Embark vs Snort		

How much does PrefixMatch increase Firewall rules?

- Upper bound
 - $O(n^d), d is the number of fields$
- Empirically
 - Rulesets
 - 3 firewall rulesets from campus network at UC Berkeley
 - 1 firewall ruleset from Emerging Threats
 - Result
 - UCB rulesets: No increase
 - Emerging Threats: from 1363 to 1370
 - Intuition
 - Most firewall rules don't overlap

How fast is the gateway (without KeywordMatch)?

See the paper for ...

- How we design and implement middleboxes
- Formal proof of sufficient conditions for NAT and L3/TCP Load Balancers
- Limitations
- More in-depth evaluation

• ..

Conclusion

Middleboxes can be outsourced in a way that still keeps the traffic confidential with Embark.

Paper: changlan.org/papers/embark. pdf

Contact: clan@eecs.berkeley.edu

Thanks!