

PARAMETERIZED DISTRIBUTIONS

Why

1

Definition

A parametric distribution family (parametric density family) on X is a family of distributions (densities) $\{p^{(\theta)}\}_{\theta\in\Theta}$ on X. We call the index set Θ (see Families) the parameters.

Similarly, a parametric conditional distribution family (parametric conditional density family) on Z from X is a family $\{q^{(\theta)}\}_{\theta\in\Theta}$ whose terms $q^{(\theta)}:Z\times X\to \mathbf{R}$ are such that $q^{(\theta)}(\cdot,\xi):Z\to\mathbf{R}$ is a distribution (density) for every $\xi\in X$.

A conditional distribution $q:Z\times X\to \mathbb{R}$ is functionally parametrizable if there exists a function $f:X\to\Theta$ and parameteric distribution family $\{p^{(\theta)}\}_{\theta\in\Theta}$ on Z satisfying $q(\cdot,\xi)\equiv p^{(f(\xi))}$. In this case we call f the parametrization function and we call $\{p^{(\theta)}\}_{\theta\in\Theta}$ the parameterized family. We call $\{f,\{p^{(\theta)}\}_{\theta}\}$ a functionally parameterized conditional distribution on Z from X. All conditional distributions $q:Z\times X\to\mathbb{R}$ are functionally parametrizable, since $\{q(\cdot,\xi)\}_{\xi\in X}$ with parameters X and identity parameterization satisfies the conditions.

Examples

2

¹Future editions will include.

²Future editions will include.

