

Course Introduction

Computer Graphics Instructor: Sungkil Lee

Course Overview

Contacts

Office hour

- Wednesday 10:30-11:30, at my office (27328)
- During the office hour, I will stay at my office as far as possible.

Teaching Assistants (TAs)

Section 41

Hyojin Jung (정효진)

cglab.skku@gmail.com

- Send an email to this address to contact any of the TAs
- Make sure to write your section in your email title.
- Examples
 - [cg41] Something to tell ...

Languages

English section

- Basically, most of the lecture will be given in English.
- But, when it is considered too complex or hard to explain, Korean can be also used for Korean students.

Korean section

- Lectures are given in Korean.
- But, the materials are shared with English lectures.

Course Summary

Implication of CG

 Computer graphics is a fundamental tool for creating and manipulating visual media including games, animation, virtual reality, and web, and is also a crucial component for science and engineering software.

What to cover

 This course covers basic theory and practical techniques of computer graphics for digital media.

Particulars in this course

 This course particularly deals with modern-style shader programming for its implementation.

What you will learn in this course

Algorithms for creating realistic images

Having fun improving your C++ programming skills

- CG is one of the most appropriate topics for object-oriented C++ programming
- You will also learn how to use third-party libraries

GPU programming

- The concepts of OpenGL programming
- This course is a *very unique class that covers modern-style OpenGL* which utilizes the power of modern GPU.
- The basic knowledge of GPU programming can be easily extended to mobile graphics (e.g., OpenGL ES) and general-purpose GPU programming (e.g., CUDA, OpenCL).

Prerequisites

Data structures, Algorithms

- The core of CG can be effective data structures and algorithms for computing realistic imagery, which can be also parallelized.
- If you did not learn data structures or algorithms, I recommend taking the course after having them first.

C++

- The concept of object-oriented programming
- The concept of event-driven programming
- Still one of the most powerful languages for high-performance computing

Linear Algebra

- The basics of vector and matrix manipulation
- Mostly high-school algebra

Textbook and References

Textbook

- Interactive Computer Graphics: A Top-Down Approach with Shader-Based OpenGL
- Edward Angel and Dave Shreiner
- 6th Edition, 2011

References

- OpenGL Programming Guide: The Official Guide to Learning OpenGL, Versions 4.3 or later} (aka Red Book). Dave Shreiner, 2013.
- http://www.opengl.org/

Course Webpage

Course web page: http://cg.skku.edu/course/cg/

ID: cg password: skku

- All course materials will be announced and uploaded on the web.
- Various resources concerning this course will be also available.
- Check the web page regularly.
- Only assignment submission will use i-campus.

Grading Policy

General grading rule

- In general, hard-working students will get a good grade.
- Programming assignments are very important throughout the course.
- Your attendance has a non-trivial effect on your grade.

Organization

Attendance and attitude: 10 %

Assignments: 40%

Mid-term exam: 20%

Final exam: 30%

Grading Policy

Rules on attendance

- When you are absent in the class more than 5 times (i.e., from 6 times), you will fail to pass this course; i.e., you get F grade.
- Absence with any reasons will not be considered presence.
 - For example, even a serious job interview will just be an absence.
 - Do not bring a document that proves you were absent.
- However, the following cases will be regarded as an exception:
 - Department/college activities
 - Military services (e.g., 예비군훈련)
 - Your family passed away; go there immediately and let me know later.
- Two late attendances are equivalent to one absence.
- One absence will be -1 point in your total score (100 pts).

Desired Attitudes for this Course

- This course is not an easy-going one.
 - You will learn a lot of unique stuffs, unavailable from other courses.
 - Participate the course actively.

Basic etiquettes

Attend in time: when you are late, it might interrupt lecture.

Desired Attitudes for this Course

No cheating!

- Many of the assignments are available from the last year ones.
- For many years, I have found a lot of cases.
- All of the assignments are intended to improve your programming skills.
 Hence, do it on your own. It will significantly raise your value.
- If cheating is found in any cases, you will not pass this course.
 - Remember that you immediately get F grade for the cheating.

Schedule

• The course will basically follow the schedule below:

Week	First (Tuesday)	Second (Thursday)	Assn.	Due	Notes
1	Course overview	OpenGL: Introduction			
2	Images and displays	OpenGL: Installation			
3	OpenGL: Hello triangles	OpenGL: Hello triangles	A1		
4	Holiday (9/24)	Holiday (9/26)			Thanksgiving day
5	Graphics Systems	Holiday (10/3)		National Foundation Day	
6	Graphics Systems	OpenGL: Circle Modeling			
7	Geometric Modeling	Transformations	A2	A1	
8	Midterm exam	_			
9	Viewing	OpenGL: Transformations			
10	Projection	OpenGL: Camera	A3	A2	
11	Shading	OpenGL: Shading			
12	Textures	OpenGL: Textures	A4	A3	
13	Ray Tracing	Ray Tracing			
14	Intro to VR (Special topics)	Business travel (12/5)		A4	Make-up classes (6/9; Sat.)
15	Global Illumination	Global Illumination			
16	Final exam	_			

^{*} Make-up classes, compensating for business travels, will cover special topics and advanced techniques.

Programming Assignments

Four assignments in total will be given in the course.

- They are designed for step-by-step improvements, leading from geometric modeling to a more complex 3D animation.
- When you follow the schedule step by step, they will be in an acceptable level of difficulty.
- A submission due for each is usually given 2-3 weeks in most cases.
- You may need to fully spend at least three to four days for each assignment.

Programming Assignments: Subjects

ID	Name	Percentages	Subjects
A1	Moving circles	25%	A simple 2D animation with collision detection
A2	Planet in space	25%	Geometric modeling of a 3D sphere
A3	Solar system I: moving planets	25%	3D transformations with a camera interaction
A4	Solar system II: full system	25%	Shading, textures, and more

Any questions?

Computer Graphics Overview

Big Picture of Computer Graphics (CG)

Computer graphics deals with:

 all aspects of creating images with a computer: hardware, software, and applications.

Three primary research areas in CG

Modeling

Rendering

Animation

Interactive Graphics System

Basic system for interactive graphics

 Recent mobile/embedded systems often include touch-sensitive display for both input and output.

Input devices

Output device

• 1950s:

- Computer graphics goes back to the earliest days of computing
- Strip chart recorder, pen plotters

Strip chart recorder and pen plotters (HP 7035B, Robotron K6418)

• 1960s:

- Raster graphics with wireframe display
 - Early predecessor of the modern raster graphics
- Sketchpad (Turing-awarded, 1988)
 - Software written by Ivan Sutherland (Ph.D. thesis at MIT).
 - The early concept of display loop, still common in computer graphics
 - Computer display new images by light pen movements

Wireframe display

Sketchpad (Sutherland)

• 1960s:

- Direct view storage tube (DVST), created by Tektronix
 - Did not require constant refresh
 - Similar to CRT but with highly persistent phosphor
 - Opened door to use of computer graphics to CAD community

Display processors

- Rather than have the host computer try to refresh display use a special purpose computer called a display processor units (DPUs)
- Host compiles display list and sends to DPU.
- Early OpenGL supports this display list mode.

Display-processor architecture

1970s:

- Two graphics standard committees formed by International Federation of Information Processing Societies (IFIPS; 1973)
 - GKS: Europeal effort (becomes ISO 2D standard)
 - Core: North Americal effort (3D but fails to become ISO Standard)
- Raster graphics
 - Allows us to go from lines and wire frame images to filled polygons
 - Image produced as an array of picture elements (pixels) in the frame buffer

Early raster display

• 1980s:

Realism comes to computer graphics

Smooth shading

Environment mapping

Bump mapping

• 1980s:

- Hardware geometry engine by Silicon Graphics Inc. (SGI)
 - VLSI implementation of graphics pipeline (1982)
 - Iris and Iris GL: Operating system and Graphics API of SGI
- Industry-based standards
 - CAD Community: PHIGS (Programmers Hierarchical Graphics System)
 - Pixar: RenderMan API (and REYES architecture)
- Networked graphics: X Windows system (by DEC/MIT)
 - Client-server architecture with graphics

• 1990s:

- Iris GL later became OpenGL (1992)
 - an easy-to-use platform-independent rendering API (no windowing support)
 - Close enough to hardware to get excellent performance
- New hardware capabilities
 - Texture mapping, blending, accumulation, stencil buffers
- Toy Story: the first completely computer-generated feature-length movie

Toy story, Pixar (1995)

2000s-now:

- Graphics cards for PCs dominate market
 - NVIDIA, ATI (now AMD), 3DLabs
- Game boxes and game players determine direction of market
 - Playstation, Wii, XBOX (+Kinect), ...
- Computer graphics software in movie industry
 - 3DS Max, Maya, Lightwave
- Programmable rendering pipelines: GPU named by NVIDIA
- Display technology
 - LCD, PDP (Plasma display panel), LED, OLED, ...

Applications: What can we do with CG?

Entertainment - Film Production (Toy Story, Pixar 1995)
First CG-Generated Full-Length Movie

Entertainment - Games (Unreal Engine RTX Demo, Epic Games)

Science and Engineering - Medical Visualization

Science and Engineering - Data Visualization

Science and Engineering - CAD (Virtual prototyping)

Training and Simulation - Virtual Reality (Flight Simulation)

Training and Entertainment - Virtual Reality (Oculus VR)

Any further questions?