# 9주차 CNN Architectures

1기 박가현 1기 이선민

2. VGGnet

3. GoogLeNet

4. ResNet

목차 (선택)

#### 0. LeNet



# Digit recognition에서 좋은 성능을 보임

EURON

- 2012년에 발표
- ImageNet Classification에서 최초로 좋은 성능을 보인 CNN 모델
- Non-deep learning 모델을 월등히 뛰어넘는 성능

CONV1

MAXPOOL1

ď

NORM1

CONV2

MAXPOOL2

NORM2

CONV3

CONV4

CONV5

MAXPOOL3

FC6

FC7

FC8



#### (위) AlexNet 구조 (아래) LeNet 구조



#### Convolution layer<sup>2</sup> output tensor size

- 각각 기호를 아래와 같이 정의
  - O: Size(width) of output image
  - I: Size(width) of input image
  - *K*: Size(width) of kernels used in the Conv layer
  - N: Number of kernels
  - S: Stride of the convolution operation
  - ∘ P: Padding size
- O(Size(width) of output image)는 다음과 같이 정의 됨

$$O = \frac{I - K + 2P}{S} + 1$$

• 출력 이미지의 채널 수는 커널의 갯수(N)와 같음

Input: 227 x 227 x 3 이미지

Conv1: 96 11x11 (stride 4)

Output size?

```
** Width / Height
(Input Width - Filter width) / stride +1
227 - 11 / 4 +1 = 55
```

\*\* Depth Filter의 개수 :96

=> 최종 output : 55 x 55 x 96

 $O = \frac{I - K + 2P}{S} + 1$ 

Conv1 의 파라미터 개수?

Input depth : 3 -> Filter는 11 x 11 x 3 씩 봄 ->Filter 개수 96개

: (11 \* 11 \* 3) \* 96 개 = 35K

```
Conv1의 output : 96 55x55
Pool1: 3x3 filters (stride 2)
Output size?
  ** Width / Height
   (Input Width – Filter width) / stride +1
       55 - 3 / 2 +1 = 27
  ** Depth
  Pooling 층에서 depth 는 동일하게 유지
```

output: 27 x 27 x 96

Pool1 의 파라미터 개수?

0

## Why?

Parameter란, 학습하려고 하는 weights Pooling 층은 각 구역의 max를 뽑아오는 "규칙"

Input: 227x227x3

$$O = \frac{I - K + 2P}{S} + 1$$

|          | Size<br>(Stride/Padding) | W                         | Н                         | С  | # of Parameter |
|----------|--------------------------|---------------------------|---------------------------|----|----------------|
| Conv1    | 11x11x96<br>(S:4 / P:0)  | (227- 11+ 0)/4 +1<br>= 55 | (227- 11+ 0)/4 +1<br>= 55 | 96 | 11x11x3x96     |
| MaxPool1 | 3x3<br>(S:2)             | (55- 3+ 0)/2 +1<br>=27    | (55- 3+ 0)/2 +1<br>=27    | 96 | 0              |
| Conv2    | 5x5x256<br>(S:1 / P:2)   |                           |                           |    |                |
| MaxPool2 | 3x3<br>(S:2)             |                           |                           |    |                |
| Conv3    | 3x3x384<br>(S:1 / P:1)   |                           |                           |    |                |
| Conv4    | 3x3x384<br>(S:1 / P:1)   |                           |                           |    |                |
| Conv5    | 3x3x256<br>(S:1 / P:1)   |                           |                           |    |                |
| MaxPool3 | 3x3<br>(S:2)             |                           |                           |    |                |

Input: 227x227x3

$$O = \frac{I - K + 2P}{S} + 1$$

|          | Size<br>(Stride/Padding) | W                         | н                         | С   | # of Parameter            |
|----------|--------------------------|---------------------------|---------------------------|-----|---------------------------|
| Conv1    | 11x11x96<br>(S:4 / P:0)  | (227- 11+ 0)/4 +1<br>= 55 | (227- 11+ 0)/4 +1<br>= 55 | 96  | 11x11x3x96<br>=34,848     |
| MaxPool1 | 3x3<br>(S:2)             | (55- 3+ 0)/2 +1<br>=27    | (55- 3+ 0)/2 +1<br>=27    | 96  | 0                         |
| Conv2    | 5x5x256<br>(S:1 / P:2)   | (27- 5+ 2*2)/1+1<br>=27   | (27- 5+ 2*2)/1 +1<br>=27  | 256 | 5x5x96x256<br>=614,400    |
| MaxPool2 | 3x3<br>(S:2)             | (27- 3)/2+1<br>=13        | (27- 3)/2+1<br>=13        | 256 | 0                         |
| Conv3    | 3x3x384<br>(S:1 / P:1)   | (13- 3+2)/1+1<br>=13      | (13- 3+2)/1+1<br>=13      | 384 | 3x3x256x384<br>=86,400    |
| Conv4    | 3x3x384<br>(S:1 / P:1)   | (13- 3+2)/1+1<br>=13      | (13- 3+2)/1+1<br>=13      | 384 | 3x3x384x384<br>=1,327,104 |
| Conv5    | 3x3x256<br>(S:1 / P:1)   | (13- 3+2)/1+1<br>=13      | (13- 3+2)/1+1<br>=13      | 256 | 3x3x384x256<br>=86,400    |
| MaxPool3 | 3x3<br>(S:2)             | (13- 3)/2+1<br>=6         | (13- 3)/2+1<br>=6         | 256 | 0                         |

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

논문 상에서 input 224로 되어있으나 계산해보려면 패딩등으로 고려해서 227로 계산해야 맞음

https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

- 처음으로 ReLu 사용
- 이웃한 Channel 끼리 Normalization 적용 -> 영향이 미미해서 사용 하지 않음
- Data augmentation을 많이 함
- Dropout 0.5
- Batch size 128
- SGD momentum 0.9
- Base Learning Rate: 1e-2 Val accuracy 가 일정 상태를 유지하면 1/10 시킴

- L2 Weight decay: 5e-4

#Weight decay?

overfitting을 방지하기 위한 방법 중 하나. Loss function을 줄이기 위한 방향으로 단순 학습되는 것 방지 모델의 weight가 너무 큰 값을 갖지 않도록 패널티 항목 추가 L1 Regularization과 L2 Regularization에 대표적인 항목

- 7 CNN Model Ensemble을 통해 성능 향상



CONV1, CONV2, CONV4, CONV5 같은 GPU상의 feature map 만 사용



CONV3, FC6, FC7, FC8 이전 Layer feature map과 연결. 다른 GPU와도 communicate

EURON

#### ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



최초의 CNN 기반 우승. 최근엔 많이 쓰이지 않음

| Model          | Top-1 (val) | Top-5 (val) | Top-5 (test) |
|----------------|-------------|-------------|--------------|
| SIFT + FVs [7] |             |             | 26.2%        |
| 1 CNN          | 40.7%       | 18.2%       |              |
| 5 CNNs         | 38.1%       | 16.4%       | 16.4%        |
| 1 CNN*         | 39.0%       | 16.6%       |              |
| 7 CNNs*        | 36.7%       | 15.4%       | 15.3%        |

The CNN described in this paper: a top-5 error rate of 18.2%.

Averaging the predictions of five similar CNNs: error rate of 16.4%

1 CNN with an extra sixth convolutional layer over the last pooling layer + "fine-tuning": error rate of 16.6%.

Averaging the predictions of two CNNs that were pre-trained on the entire Fall 2011 re- lease with the aforementioned five CNNs: error rate of 15.3%.

**EURON** 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



## 1-2. ZFNet

- 같은 구조, 같은 Layer 개수
- Conv1 의 stride, Conv 3,4,5의 filter 사이즈 변경
- Error Rate: 16.4 -> 11.7%



**ZFNet** 

#### 1-2.ZFnet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



이후 우승 모델들은 훨씬 DEEP 함

#### 2. VGGNet



신경망의 깊이가 딥러닝의 정확도에 큰 영향을 미침

# 2-1. VGGNet 연구

#### 연구의 핵심

네트워크의 깊이를 깊게 만드는 것이 성능에 어떤 영향을 미치는 확인





- · 16 ~ 19 Layer
- · 8 ~ 16 Convolutional layer + 3 Fully-Connected Layer

#### **Convolutional Layer**

- 3x3 filter, stride = 1, padding = True
- 의사결정함수에 Non-linearity를 부여할 목적

| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ConvNet Configuration |           |           |           |           |           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|
| layers   l | A                     | A-LRN     | В         | С         | D         | E         |  |  |  |
| Input (224 × 224 RGB image)   Conv3-64   Conv3-128   Conv3-256   | 11 weight             | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight |  |  |  |
| conv3-64         conv3-128         conv3-256         conv3-251         conv3-512         conv3-512         conv3-512         conv3-512         conv3-512 </td <td>layers</td> <td>layers</td> <td>layers</td> <td>layers</td> <td>layers</td> <td>layers</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | layers                | layers    | layers    | layers    | layers    | layers    |  |  |  |
| Conv3-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |           |           |           |  |  |  |
| maxpool   conv3-128   conv3- | conv3-64              | conv3-64  | conv3-64  | conv3-64  | conv3-64  | conv3-64  |  |  |  |
| Conv3-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | LRN       | conv3-64  | conv3-64  | conv3-64  | conv3-64  |  |  |  |
| Conv3-128   Conv3-128   Conv3-128   Conv3-128     maxpool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |           |           |           |  |  |  |
| maxpool   conv3-256   conv3- | conv3-128             | conv3-128 |           |           |           |           |  |  |  |
| CONV3-256   CONV |                       |           | conv3-128 | conv3-128 | conv3-128 | conv3-128 |  |  |  |
| Conv3-256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |           |           |           |           |           |  |  |  |
| maxpool   maxpool   conv3-256   conv3-2512   conv3 |                       |           |           |           |           |           |  |  |  |
| maxpool   conv3-256   maxpool   conv3-512   conv3-51 | conv3-256             | conv3-256 | conv3-256 |           |           |           |  |  |  |
| maxpool   conv3-512   conv3- |                       |           |           | conv1-256 | conv3-256 |           |  |  |  |
| conv3-512 con                      |                       |           |           |           |           | conv3-256 |  |  |  |
| conv3-512   conv |                       |           |           |           |           |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | conv3-512             | conv3-512 | conv3-512 | conv3-512 |           | conv3-512 |  |  |  |
| maxpool   conv3-512   conv3- | conv3-512             | conv3-512 | conv3-512 | conv3-512 |           | conv3-512 |  |  |  |
| maxpool   conv3-512   conv3- |                       |           |           | conv1-512 | conv3-512 | conv3-512 |  |  |  |
| conv3-512 con                      |                       |           |           |           |           | conv3-512 |  |  |  |
| conv3-512   conv |                       |           |           | pool      |           |           |  |  |  |
| conv1-512   conv3-512   conv | conv3-512             | conv3-512 | conv3-512 | conv3-512 |           | conv3-512 |  |  |  |
| maxpool<br>FC-4096<br>FC-4096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | conv3-512             | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |
| maxpool<br>FC-4096<br>FC-4096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |           |           | conv1-512 | conv3-512 | conv3-512 |  |  |  |
| FC-4096<br>FC-4096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |           |           |           |           | conv3-512 |  |  |  |
| FC-4096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |           | max       | pool      |           |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           |           |           |           |           |  |  |  |
| FC-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | FC-4096   |           |           |           |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |           | FC-       | 1000      |           |           |  |  |  |
| soft-max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |           | soft-     | -max      |           |           |  |  |  |

Table 2: Number of parameters (in millions).

| Network              | A,A-LRN | В   | C   | D   | E   |
|----------------------|---------|-----|-----|-----|-----|
| Number of parameters | 133     | 133 | 134 | 138 | 144 |

#### Max-Pooling Layer

- 2x2 filter, stride = 2
- Conv Layer 수와 관계없이 5장 사용
- 특정 맵을 🖟로 줄여줌

|           | ConvNet Configuration |                       |              |           |           |  |  |
|-----------|-----------------------|-----------------------|--------------|-----------|-----------|--|--|
| A         | A-LRN                 | В                     | С            | D         | E         |  |  |
| 11 weight | 11 weight             | 13 weight             | 16 weight    | 16 weight | 19 weight |  |  |
| layers    | layers                | layers                | layers       | layers    | layers    |  |  |
|           | i                     | nput ( $224 \times 2$ | 24 RGB image | e)        |           |  |  |
| conv3-64  | conv3-64              | conv3-64              | conv3-64     | conv3-64  | conv3-64  |  |  |
|           | LRN                   | conv3-64              | conv3-64     | conv3-64  | conv3-64  |  |  |
|           |                       | max                   | pool         |           |           |  |  |
| conv3-128 | conv3-128             | conv3-128             | conv3-128    | conv3-128 | conv3-128 |  |  |
|           |                       | conv3-128             | conv3-128    | conv3-128 | conv3-128 |  |  |
|           |                       |                       | pool         |           |           |  |  |
| conv3-256 | conv3-256             | conv3-256             | conv3-256    | conv3-256 | conv3-256 |  |  |
| conv3-256 | conv3-256             | conv3-256             | conv3-256    | conv3-256 | conv3-256 |  |  |
|           |                       |                       | conv1-256    | conv3-256 | conv3-256 |  |  |
|           |                       |                       |              |           | conv3-256 |  |  |
|           |                       |                       | pool         |           |           |  |  |
| conv3-512 | conv3-512             | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |  |
| conv3-512 | conv3-512             | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                       | conv1-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                       |              |           | conv3-512 |  |  |
|           |                       |                       | pool         |           |           |  |  |
| conv3-512 | conv3-512             | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |  |
| conv3-512 | conv3-512             | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                       | conv1-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                       |              |           | conv3-512 |  |  |
|           |                       |                       | pool         |           |           |  |  |
|           |                       |                       | 4096         |           |           |  |  |
|           | FC-4096               |                       |              |           |           |  |  |
|           | FC-1000               |                       |              |           |           |  |  |
|           |                       |                       | -max         |           |           |  |  |

Table 2: **Number of parameters** (in millions).

| Network              | A,A-LRN | В   | C   | D   | E   |
|----------------------|---------|-----|-----|-----|-----|
| Number of parameters | 133     | 133 | 134 | 138 | 144 |

#### **Fully-Connected Layer**

- 3개의 layer (4096 -> 4096 -> 1000)
- 파라미터가 많아짐
- 많은 메모리를 사용하여 연산

| ConvNet Configuration |           |                       |              |           |           |  |
|-----------------------|-----------|-----------------------|--------------|-----------|-----------|--|
| Α                     | A-LRN     | В                     | С            | D         | E         |  |
| 11 weight             | 11 weight | 13 weight             | 16 weight    | 16 weight | 19 weight |  |
| layers                | layers    | layers                | layers       | layers    | layers    |  |
|                       | i         | nput ( $224 \times 2$ | 24 RGB image | e)        |           |  |
| conv3-64              | conv3-64  | conv3-64              | conv3-64     | conv3-64  | conv3-64  |  |
|                       | LRN       | conv3-64              | conv3-64     | conv3-64  | conv3-64  |  |
|                       |           |                       | pool         |           |           |  |
| conv3-128             | conv3-128 | conv3-128             | conv3-128    | conv3-128 | conv3-128 |  |
|                       |           | conv3-128             | conv3-128    | conv3-128 | conv3-128 |  |
|                       |           |                       | pool         |           |           |  |
| conv3-256             | conv3-256 | conv3-256             | conv3-256    | conv3-256 | conv3-256 |  |
| conv3-256             | conv3-256 | conv3-256             | conv3-256    | conv3-256 | conv3-256 |  |
|                       |           |                       | conv1-256    | conv3-256 | conv3-256 |  |
|                       |           |                       |              |           | conv3-256 |  |
|                       |           |                       | pool         |           |           |  |
| conv3-512             | conv3-512 | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |
| conv3-512             | conv3-512 | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |
|                       |           |                       | conv1-512    | conv3-512 | conv3-512 |  |
|                       |           |                       |              |           | conv3-512 |  |
|                       |           | max                   | pool         |           |           |  |
| conv3-512             | conv3-512 | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |
| conv3-512             | conv3-512 | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |
|                       |           |                       | conv1-512    | conv3-512 | conv3-512 |  |
|                       |           |                       |              |           | conv3-512 |  |
|                       |           |                       | pool         |           |           |  |
|                       |           |                       | 4096         |           |           |  |
|                       |           |                       | 4096         |           |           |  |
|                       |           |                       | 1000         |           |           |  |
|                       |           | soft-                 | -max         |           |           |  |

Table 2: Number of parameters (in millions).

| Network              | A,A-LRN | В   | C   | D   | E   |
|----------------------|---------|-----|-----|-----|-----|
| Number of parameters | 133     | 133 | 134 | 138 | 144 |

#### A < B < C,D < E

학습해야할 파라미터 수 줄어듬

= 네트워크의 깊이가 깊어짐

= 좋은 성능

|           | ConvNet Configuration |                      |              |           |           |  |  |
|-----------|-----------------------|----------------------|--------------|-----------|-----------|--|--|
| A         | A-LRN                 | В                    | С            | D         | Е         |  |  |
| 11 weight | 11 weight             | 13 weight            | 16 weight    | 16 weight | 19 weight |  |  |
| layers    | layers                | layers               | layers       | layers    | layers    |  |  |
|           | i                     | nput ( $224 	imes 2$ | 24 RGB image | e)        |           |  |  |
| conv3-64  | conv3-64              | conv3-64             | conv3-64     | conv3-64  | conv3-64  |  |  |
|           | LRN                   | conv3-64             | conv3-64     | conv3-64  | conv3-64  |  |  |
|           |                       |                      | pool         |           |           |  |  |
| conv3-128 | conv3-128             | conv3-128            | conv3-128    | conv3-128 | conv3-128 |  |  |
|           |                       | conv3-128            | conv3-128    | conv3-128 | conv3-128 |  |  |
|           |                       |                      | pool         |           |           |  |  |
| conv3-256 | conv3-256             | conv3-256            | conv3-256    | conv3-256 | conv3-256 |  |  |
| conv3-256 | conv3-256             | conv3-256            | conv3-256    | conv3-256 | conv3-256 |  |  |
|           |                       |                      | conv1-256    | conv3-256 | conv3-256 |  |  |
|           |                       |                      |              |           | conv3-256 |  |  |
|           |                       | max                  | pool         |           |           |  |  |
| conv3-512 | conv3-512             | conv3-512            | conv3-512    | conv3-512 | conv3-512 |  |  |
| conv3-512 | conv3-512             | conv3-512            | conv3-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                      | conv1-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                      |              |           | conv3-512 |  |  |
|           |                       |                      | pool         |           |           |  |  |
| conv3-512 | conv3-512             | conv3-512            | conv3-512    | conv3-512 | conv3-512 |  |  |
| conv3-512 | conv3-512             | conv3-512            | conv3-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                      | conv1-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                      |              |           | conv3-512 |  |  |
|           |                       |                      | pool         |           |           |  |  |
|           | FC-4096               |                      |              |           |           |  |  |
|           | FC-4096               |                      |              |           |           |  |  |
|           | FC-1000               |                      |              |           |           |  |  |
|           |                       | soft-                | -max         |           |           |  |  |

Table 2: Number of parameters (in millions).

| Network              | A,A-LRN | В   | C   | D   | E   |
|----------------------|---------|-----|-----|-----|-----|
| Number of parameters | 133     | 133 | 134 | 138 | 144 |

# 2-3. VGGNet의 특징

#### 3x3 Filters 를 사용하는 이유?





7x7 Filters 1번 > 3x3 Filters 3번

Receptive filter



7 x 7

파라미터의 개수가 줄어듬

- -> ReLu 활성화 함수가 들어갈 수 있는 공간이 많아짐
- -> 망이 깊어짐

 $3 \times 3$ 

Stride 1로

컨볼루션

-> 더 많은 non-linearities 적용 가능

# 2-4. VGG16와 VGG19

6개의 구조 개발 = 깊이에 따른 성능 변화 비교

D: VGG16

- Layer 깊이: VGG16 < VGG19

E: VGG19

- 소모하는 메모리 수 : VGG16 < VGG19

=> VGG16 더 많이 사용



|           | ConvNet Configuration |                       |              |           |           |  |  |
|-----------|-----------------------|-----------------------|--------------|-----------|-----------|--|--|
| A         | A-LRN                 | В                     | С            | D         | E         |  |  |
| 11 weight | 11 weight             | 13 weight             | 16 weight    | 16 weight | 19 weight |  |  |
| layers    | layers                | layers                | layers       | layers    | layers    |  |  |
|           | i                     | nput ( $224 \times 2$ | 24 RGB image | e)        |           |  |  |
| conv3-64  | conv3-64              | conv3-64              | conv3-64     | conv3-64  | conv3-64  |  |  |
|           | LRN                   | conv3-64              | conv3-64     | conv3-64  | conv3-64  |  |  |
|           |                       |                       | pool         |           |           |  |  |
| conv3-128 | conv3-128             | conv3-128             | conv3-128    | conv3-128 | conv3-128 |  |  |
|           |                       | conv3-128             | conv3-128    | conv3-128 | conv3-128 |  |  |
|           |                       |                       | pool         |           |           |  |  |
| conv3-256 | conv3-256             | conv3-256             | conv3-256    | conv3-256 | conv3-256 |  |  |
| conv3-256 | conv3-256             | conv3-256             | conv3-256    | conv3-256 | conv3-256 |  |  |
|           |                       |                       | conv1-256    | conv3-256 | conv3-256 |  |  |
|           |                       |                       |              |           | conv3-256 |  |  |
|           |                       |                       | pool         |           |           |  |  |
| conv3-512 | conv3-512             | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |  |
| conv3-512 | conv3-512             | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                       | conv1-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                       |              |           | conv3-512 |  |  |
|           |                       |                       | pool         |           |           |  |  |
| conv3-512 | conv3-512             | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |  |
| conv3-512 | conv3-512             | conv3-512             | conv3-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                       | conv1-512    | conv3-512 | conv3-512 |  |  |
|           |                       |                       |              |           | conv3-512 |  |  |
|           |                       |                       | pool         |           |           |  |  |
| •         |                       |                       | 4096         |           |           |  |  |
|           |                       |                       | 4096         |           |           |  |  |
|           |                       |                       | 1000         |           |           |  |  |
|           |                       | soft                  | -max         |           |           |  |  |
|           |                       |                       |              |           |           |  |  |

Table 2: **Number of parameters** (in millions).

| Network              | A,A-LRN | В   | С   | D   | Е   |
|----------------------|---------|-----|-----|-----|-----|
| Number of parameters | 133     | 133 | 134 | 138 | 144 |

#### 2-4.1. VGG16



#### 2-4.2. VGG19



- · VGG16과 구조가 비슷함
- · Layer 수 많음 = 파라미터 수 많음 = 메모리 많이 씀 = 성능 떨어짐
- · Exploding Gradient / Vanishing 문제로 인한 깊은 레이어 학습 때 발생하는 문제 해결

# 2-5. VGGNet 요약

# **VGGNet**

- · 3x3의 작은 필터를 깊게 쌓음
- -> 동일 효과 유지 = 파라미터수 줄어듬 = 많은 ReLU 함수 사용
- -> 많은 non-linearity 사용 가능 = representation 능력 향상
- · FC7 Layer 부근이 잘 generalize 되어있음
- -> 좋은 feature representation을 가짐 = feature 추출 잘됨
- -> 일반화 능력이 뛰어남
- · AlexNet보다 좋은 성능을 가짐

# 3. GoogLeNet



신경망의 깊이가 딥러닝의 정확도에 큰 영향을 미침

# 3-1. GoogLeNet 연구

#### 망이 깊어지면 생기는 문제점 2가지

- · 자유 파라미터의 수 증가 ( overfitting에 빠질 가능성 높아짐 )
- · 연산량 늘어남 ( 학습 시간 늘어남 )

# GoogLeNet 문제 해결 방법

신경망 깊게 유지하여 성능을 올리면서 파라미터 수 줄임



효율성을 높일 수 있는 architecture 제안

# 3-2. Network in Network(NIN) 연구



- · 일반 filter보다 데이터의 non-linear한 성질을 잘 표현
- · 1x1 convolution을 이용하여 feature map의 크기를 줄일 수 있음

## 3-3, 1x1 Convolution



1x1 Convolution을 통해 비선형성 해결, 깊이 축소, 성능 개선

## 3-4. Inception



- · 다양한 scale의 피쳐를 추출하기 위해 다양한 convolution으로 연산 시도
- · 망이 넓어지고 깊어질때, 3x3 5x5는 연산량이 너무 많음



- · 1x1 convolution 사용 = 연산량 줄임
- · 깊이 256 -> 64 -> 192 -> bottleneck 구조

1x1 Filter 64개 도입

## 3-5. GoogLeNet Architecture



파란색: Convolution Layer

빨간색: Max-Pooling Layer

노란색: Softmax Layer

녹색:기타 Function

노란색 박스: Inception Module

박스 위 숫자: Feature-map

## 3-5.1. GoogLeNet Architecture



## 3-5.2. GoogLeNet Architecture

### < Inception Module >



## 3-5.3. GoogLeNet Architecture

### 〈Architecture의 중간 부분〉



- · 분류기 형식 부분
- · 해당 두 부분은 auxiliary classifiers로써 network가 깊어짐에 따라 vanishing gradient가 생기는 것을 방지

## 3-5.4. GoogLeNet Architecture

### 〈Architecture의 마지막 부분〉



· 최종적인 분류를 하기 위한 output layer 부분

# 3-6. Auxiliary classifier



## 3-7. GoogLeNet Layer

| type           | patch size/<br>stride | output<br>size | depth | #1×1 | #3×3<br>reduce | #3×3 | #5×5<br>reduce | #5×5 | pool<br>proj | params | ops  |
|----------------|-----------------------|----------------|-------|------|----------------|------|----------------|------|--------------|--------|------|
| convolution    | 7×7/2                 | 112×112×64     | 1     |      |                |      |                |      |              | 2.7K   | 34M  |
| max pool       | 3×3/2                 | 56×56×64       | 0     |      |                |      |                |      |              |        |      |
| convolution    | 3×3/1                 | 56×56×192      | 2     |      | 64             | 192  |                |      |              | 112K   | 360M |
| max pool       | 3×3/2                 | 28×28×192      | 0     |      |                |      |                |      |              |        |      |
| inception (3a) |                       | 28×28×256      | 2     | 64   | 96             | 128  | 16             | 32   | 32           | 159K   | 128M |
| inception (3b) |                       | 28×28×480      | 2     | 128  | 128            | 192  | 32             | 96   | 64           | 380K   | 304M |
| max pool       | 3×3/2                 | 14×14×480      | 0     |      |                |      |                |      |              |        |      |
| inception (4a) |                       | 14×14×512      | 2     | 192  | 96             | 208  | 16             | 48   | 64           | 364K   | 73M  |
| inception (4b) |                       | 14×14×512      | 2     | 160  | 112            | 224  | 24             | 64   | 64           | 437K   | 88M  |
| inception (4c) |                       | 14×14×512      | 2     | 128  | 128            | 256  | 24             | 64   | 64           | 463K   | 100M |
| inception (4d) |                       | 14×14×528      | 2     | 112  | 144            | 288  | 32             | 64   | 64           | 580K   | 119M |
| inception (4e) |                       | 14×14×832      | 2     | 256  | 160            | 320  | 32             | 128  | 128          | 840K   | 170M |
| max pool       | 3×3/2                 | 7×7×832        | 0     |      |                |      |                |      |              |        |      |
| inception (5a) |                       | 7×7×832        | 2     | 256  | 160            | 320  | 32             | 128  | 128          | 1072K  | 54M  |
| inception (5b) |                       | 7×7×1024       | 2     | 384  | 192            | 384  | 48             | 128  | 128          | 1388K  | 71M  |
| avg pool       | 7×7/1                 | 1×1×1024       | 0     |      |                |      |                |      |              |        |      |
| dropout (40%)  |                       | 1×1×1024       | 0     |      |                |      |                |      |              |        |      |
| linear         |                       | 1×1×1000       | - 1   |      |                |      |                |      |              | 1000K  | 1M   |
| softmax        |                       | 1×1×1000       | 0     |      |                |      |                |      |              |        |      |

#### Patch size / Stride

: 커널의 크기, stride 간격

### **Output size**

: feature-map의 크기 및 개수

### Depth

: 연속적인 convolution layer 개수

#### #1x1

: 1x1 convolution을 수행하고 얻는 Feature-map 개수

### #3x3

: 3x3 convolution을 적용하고 얻는 Feature-map 개수

### #5x5

: 5x5 convolution을 적용하고 얻는 Feature-map 개수

#### Pool / proj

: max-pooling 뒤에오는 1x1 convolution을 적용한 것

#### **Params**

: 해당 layer에 있는 free parameter 개수

#### Ops

: 연산의 수

# 3-8. GoogLeNet 요약

# GoogLeNet

- · Inception Module 사용
- -> 더 깊고 넓은 네트워크 구성
  - 1x1 Convolution Layer
- -> 연산량 줄임
- · Bottleneck Layer 추가
- -> 유연하게 대응하기 위해 여러가지 필터 사이즈 (1x1, 3x3, 5x5) 사용
- -> 이로 인한 계산량 증가 방지

## 4. ResNet



네트워크가 깊어지면서 top-5 error가 낮아짐 = 성능 좋아짐

## 4-1. ResNet 연구

## 망을 깊게 하면 무조건 성능이 좋아질까요?



더 깊은 구조를 갖는 56층의 네트워크가 20층의 네트워크보다 더 나쁜 성능을 보인다.

EURON

## 4-1.1. ResNet 연구 가설

### ResNet 연구의 가설

더 깊은 모델 학습 시 optimization에 문제가 생긴다 (모델이 깊어질수록 최적화가 어렵다)



## 모델이 더 깊다면 적어도 더 얕은 모델만큼 성능이 나와야 한다.



더 얕은 모델의 가중치를 깊은 모델의 일부 레이어에 복사, 나머지 레이어는 identity mapping



이렇게 구성하면 shallower layer 만큼 성능이 나온다

# 4-1.2. ResNet 모델 비교

### 〈기존 모델〉







### 기존 방식

### ResNet 목적

- : <u>F(x) + x 를 최소화하는 것</u>
- -> forward / backward가 단순해지는 효과

### ResNet Effect

- · 깊은 망도 쉽게 최적화 가능
- · 늘어난 깊이로 인해 정확도 개선

# 4-1.3. ResNet Computation Graph

### < Computation graph >



## 4-2. ResNet Architecture





#### Plain Net 구조

: (뼈대) VGG19 + 컨볼루션 층들

#### ResNet 구조

- : (뼈대) VGG19 + 컨볼루션 층들 + shortcut들
  - · 균일하게 3x3 사이즈의 컨볼루션 필터 사용
- · 특성맵의 사이즈 🗦 = 특성맵의 뎁스 2배

# 4-3. ResNet Layer

| layer name | output size | 18-layer                                                                           | 34-layer                                                                           | 50-layer                                                                                        | 101-layer                                                                                           | 152-layer                                                                                        |  |  |  |  |  |  |
|------------|-------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| conv1      | 112×112     | 7×7, 64, stride 2                                                                  |                                                                                    |                                                                                                 |                                                                                                     |                                                                                                  |  |  |  |  |  |  |
|            |             | 3×3 max pool, stride 2                                                             |                                                                                    |                                                                                                 |                                                                                                     |                                                                                                  |  |  |  |  |  |  |
| conv2_x    | 56×56       | $\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$       | $\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$       | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$    | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$        | \[ \begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \times 3 \]  |  |  |  |  |  |  |
| conv3_x    | 28×28       | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$ | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$  | \[ \begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array} \times 4      | \[ \begin{pmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{pmatrix} \times 8  |  |  |  |  |  |  |
| conv4_x    | 14×14       | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$     | $\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6$        | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$ | \[ \begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23 | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$ |  |  |  |  |  |  |
| conv5_x    | 7×7         | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$        | $\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$        | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$ | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$     | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$  |  |  |  |  |  |  |
|            | 1×1         |                                                                                    | softmax                                                                            |                                                                                                 |                                                                                                     |                                                                                                  |  |  |  |  |  |  |
| FLOPs      |             | 1.8×10 <sup>9</sup>                                                                | $3.6 \times 10^{9}$                                                                | $3.8 \times 10^{9}$                                                                             | $7.6 \times 10^{9}$                                                                                 | 11.3×10 <sup>9</sup>                                                                             |  |  |  |  |  |  |



18층, 34층, 50층, 101층, 152층의 ResNet Layer 구성

## 4-4. ResNet Experiment

- 실험 원칙 · 출력 feature-map 크기가 같은 경우, 해당 모든 layer는 모두 동일한 수의 fillter를 갖음
  - · Feature-map의 크기가 절반으로 작아지는 경우는 연산량의 균형을 맞추기 위해 <mark>필터의 수를 두 배</mark>로 놀림



Plain Network: 망이 깊어지면서 에러가 커졌음

-> 34층의 Plain Network가 18층의 Plain Network보다 성능이 나쁨



ResNet: 망이 깊어지면서 에러가 작아짐

EURON I

-> Shortcut을 연결해서 residual를 최소가 되게 학습

## 4-5. ResNet 요약

## ResNet

- · 이미지 분류에 쓰이는 CNN
- · 문제점: 망의 깊이가 늘어날수록 무조건 성능이 좋아지는 것은 아님
- -> Over-fitting 때문이 아님
- · 해결책: Residual Block 사용 = 지름길 만들기
- -> Gradient vanishing 문제 해결

감사합니다 Q&A