

Ordenação Conceito

Exemplos de **algoritmos de ordenação** por comparação:

- Selection Sort
- Bubble Sort
- Mergesort
- Heapsort
- Quicksort

Exemplos de algoritmos de ordenação sem comparação:

- Count Sort
- Radix Sort

- -> Algoritmo de ordenação **não comparativo**.
- -> Utilizado para ordenar números inteiros (ou valores que possam ser mapeados para números inteiros).
- -> Algoritmo Estável (ou seja, respeita a ordem relativa de elementos iguais).
- -> Utiliza um vetor auxiliar de contagem
- -> Deve ser utilizado quando o range de valores é pequeno.

0 1 2 3 4 5 6 7

Array a ser Ordenado: 2 5 3 0 2 3 0 3

Passo: Criar um array auxiliar para contagem

0 1 2 3 4 5 6 7

Array a ser Ordenado: 2 5 3 0 2 3 0 3

Passo: Criar um array auxiliar para contagem

0 1 2 3 4 5 6 7

Array a ser Ordenado: 2 5 3 0 2 3 0 3

-> Obter maior valor do array de entrada (N).

Passo: Criar um array auxiliar para contagem

 0
 1
 2
 3
 4
 5
 6
 7

 2
 5
 3
 0
 2
 3
 0
 3

Array a ser Ordenado:

-> Obter maior valor do array de entrada (N).

5

Passo: Criar um array auxiliar para contagem

Array a ser Ordenado:

-> Obter maior valor do array de entrada (N).

5

-> Alocar um array de contagem com N+1 elementos, e inicializar com zero.

Passo: Realizar a Contagem

Array a ser Ordenado:

Array de Contagem:

U	1	2	3	4	5
0	0	0	0	0	0

Passo: Obter a Soma Cumulativa dos elementos no array de contagem

Array a ser Ordenado: 2 5 3 0 2 3 0 3

0 1 2 3 4 5

Array de Contagem: 2 0 2 3 0 1

Passo: Obter a Soma Cumulativa dos elementos no array de contagem

Array a ser Ordenado: 2 5 3 0 2 3 0 3

Array de Contagem:

0 1 2 3 4 5

2 0 2 3 0 1

Passo: Obter a Soma Cumulativa dos elementos no array de contagem

0 1 2 3 4 5 6 7

Array a ser Ordenado: 2 5 3 0 2 3 0 3

Passo: Obter a Soma Cumulativa dos elementos no array de contagem

Array a ser Ordenado: 2 5 3 0 2 3 0 3

Passo: Obter a Soma Cumulativa dos elementos no array de contagem

Array a ser Ordenado: 2 5 3 0 2 3 0 3

Passo: Obter a Soma Cumulativa dos elementos no array de contagem

Array a ser Ordenado: 2 5 3 0 2 3 0 3

Passo: Obter a Soma Cumulativa dos elementos no array de contagem

Array a ser Ordenado: 2 5 3 0 2 3 0 3

0 1 2 3 4 5

Array de Contagem: 2 2 4 7 7 1

Passo: Obter a Soma Cumulativa dos elementos no array de contagem

Array a ser Ordenado: 2 5 3 0 2 3 0 3

Array de Contagem:

Complexidade de Tempo: O(N+M)

Complexidade de Espaço: O(N+M)

**Considerando N sendo o tamanho do array de entrada e M o tamanho do array de contagem

Pontos Positivos:

- Usualmente mais rápido que outros algoritmos comparativos, quando o range dos valores de entrada é pequeno.
 - Simples de Implementar
 - Estável

Desvantagens:

- Não funciona para valores decimais
- Ineficiente se o range de valores de entrada for muito grande
- Não é in-place, utiliza espaço adicional.

- -> Ordena o vetor da casa decimal menos significativa para a mais significativa.
- -> Não precisa necessariamente ser de dígito em dígito, pois pode ser de byte em byte.
- -> Para ordenação de Strings, é utilizado iniciando do mais significativo.

-> Se utilizar para inteiros iniciando pelo dígito mais significativo, 10 seria colocado antes do 2.

-> Ordenação estável.

0 133

1 252

2 411

³ 323

4 510

⁵ **523**

101

Ordena primeiramente o dígito menos significativo, utilizando um método de ordenação estável.

0	133	510
1	252	411
2	411	101
3	323	252
4	510	133
5	523	323
6	101	523

Ordena primeiramente o dígito menos significativo, utilizando um método de

ordenação estável.

		~	~
0	133	510	101
1	252	411	510
2	411	101	411
3	323	252	323
4	510	133	523
5	523	323	133
6	101	523	252

Ordena primeiramente o dígito menos significativo, utilizando um método de ordenação estável.

		<u> </u>	~	<u> </u>
0	133	510	101	101
1	252	411	510	133
2	411	101	411	252
3	323	252	323	323
4	510	133	5 23	411
5	523	323	133	510
6	101	523	252	523

Ordena primeiramente o dígito menos significativo, utilizando um método de ordenação estável.

9

5

... 9

9

ada

9

ada

9

9

ada

Número de operações:

Dígitos do maior número * N (ordenação)

Sem Listas Encadeadas:

Dígitos do maior número * N log N

Dígitos do maior número:

log₁₀K, onde K é o maior número

Obrigado