1 Aussagenlogik

1.1 Signatur Σ

Eine (aussagenlogische) Signaturist eine abzählbare Menge Σ von Symbolen, etwa

$$\Sigma = \{P_0, \dots, P_n\}$$
oder $\Sigma = \{P_0, P_1, \dots\}$

Die Elemente von Σ heißen auch atomare Aussagen, Atome oder Aussagevariablen.

1.2 Formeln $For0_{\Sigma}$

 $For0_{\Sigma}$ ist die Menge der Formeln über Σ induktiv definiert durch

$$1 \in For0_{\Sigma}, 0 \in For0_{\Sigma}, \Sigma \subseteq For0_{\Sigma}$$

Wenn $A, B \in For0_{\Sigma}$, dann sind auch

$$\neg A, (A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$$

Elemente von $For0_{\Sigma}$

1.3 Interpretation *I*

Es sei Σ eine aussagenlogische Signatur. Eine Interpretationüber Σ ist eine beliebige Abbildung

$$I: \Sigma \to \{W, F\}$$

1.4 Auswertung val_I

Zu jeder Interpretation Iüber Σ wird eine zugehörige Auswertungder Formeln über Σ definiert

$$val_I: For 0_{\Sigma} \to W, F$$

mit:

$$val_{I}(1) = W$$

$$val_{I}(0) = F$$

$$val_{I}(P) = I(P) \quad \text{für jedes } P \in \Sigma$$

$$val_{I}(\neg A) = \begin{cases} F \text{ falls} & val_{I}(A) = W \\ W \text{ falls} & val_{I}(A) = F \end{cases}$$

1.5 Logische Grundbegriffe

Modell Ein *Modell* einer Formel $A \in For0_{\Sigma}$ ist eine Interpretation I über Σ mit $val_I(A) = W$.

(Eine Belegung I der Aussagenvariablen die die Formel A wahr macht ist ein Modell.)

Modell - Formelmenge Zu einer Formelmenge $M \subseteq For0_{\Sigma}$ ist ein Modell von M eine Interpretation I, welche Modell von jedem $A \in M$ ist.

(Ein Modell - mit einer Interpretation I - einer Formelmenge ist für jede Formel in der Menge ein Modell.)

Allgemeingültigkeit $A \in For0_{\Sigma}$ heißt allgemeingültig gdw. $val_I(A) = W$ für jede Interpretation I über Σ .

(Eine Formel ist allgemeinültig wenn sie unter jeder Interpretation wahr ist.)

Erfülbar $A \in For0_{\Sigma}$ heißt erfüllbar gdw. es gibt eine Interpretation I über Σ mit $val_I(A) = W$.

(Eine Formel ist erfüllbar wenn sie unter einer Interpretation wahr ist.)

Folgerung \models Sei Σ eine Signatur, $M \subseteq For0_{\Sigma}, A \in For0_{\Sigma}$

 $M \models A$ lies: aus M folgt A gdw. Jedes Modell von M ist auch Modell von A.

(Jede Interpretation von M ist auch eine Interpretation von A)

Logische Äquivalenz $A, B \in For 0_{\Sigma}$ heißen logisch äquivalent gdw.

$$\{A\} \models_{\Sigma} B \text{ und } \{B\} \models_{\Sigma} A$$

1.6 Shannon-Formeln

1.7 Horn-Formeln

Eine aussagenlogische Formel A ist eine Horn-Formel, wenn

- \bullet A in KNF ist
- jede Disjunktion in A höchstens ein positives Literal enthält

Alternative Schreibweisen:

$$\neg P_1 \lor \dots \lor \neg P_n \lor A \equiv P_1 \land \dots \land P_n \to A$$
$$\neg P_1 \lor \dots \lor \neg P_n \equiv P_1 \land \dots \land P_n \to 0$$

Bezeichnungen: $\neg P_1 \lor \cdots \lor \neg P_n$: Rumpf, A: Kopf (bei leerem Rumpf: Fakt)

Erfüllbarkeit Für Horn-Formeln ist die Erfüllbarkeit in $O(n^2)$ entscheidbar.

1.8 Davis-Putnam-Logemann-Loveland (DPLL) Verfahren

Wichtigstes Verfahren zur Entscheidung des allgemeinen Erfüllbarkeitsproblems (SAT-Problem). Eingabe in KNF. Worst case complexity $O(2^n)$.

1.9 Schreibweisen

 \square für die leere Klausel \emptyset für die leere Klauselmenge

Es gilt: $I(\emptyset) = W$ Es gilt: $I(\square) = F$

2 Prädikatenlogik erster Stufe

2.1 Logische Zeichen

Wie in der Aussagenlogik: $\neg, \land, \lor, \rightarrow, \leftrightarrow, (,)$

Neu:

 \forall Allquantor

∃ Existenzquantor

 v_i Individuenvariablen, $i \in \mathbb{N}$

⇒ objektsprachliches Gleichheitssymbol

, Komma

Mit Var bezeichnet man die zur Verfügung stehenden Variablen.

2.2 Signatur

Eine Signatur ist ein Tripel $\Sigma = (F_{\Sigma}, P_{\Sigma}, \alpha_{\Sigma})$ mit:

- F_{Σ} , P_{Σ} sind endliche oder abzählbar unendliche Mengen
- F_{Σ}, P_{Σ} und die Menge der Sondersymbole sind paarweise disjunkt
- $\alpha_{\Sigma}: F_{\Sigma} \cup P_{\Sigma} \to \mathbb{N}$.

 $f \in F_{\Sigma}$ heißt Funktionssymbol, $p \in P_{\Sigma}$ heißt Prädikatssymbol.

f ist *n-stelliges Funktionssymbol*, wenn $\alpha_{\Sigma}(f) = n$;

p ist n-stelliges Prädikatssymbol, wenn $\alpha_{\Sigma}(p) = n$;

Ein nullstelliges Funktionssymbol heißt auch Konstantensymbol oder kurz Konstante,

ein nullsteliges Prädikatssymbol ist ein aussagenlogisches Atom.

2.3 Terme

 $Term_{\Sigma}$, die Menge der $Terme~\ddot{u}ber~\Sigma$, ist induktiv definiert durch

- 1. $Var \subseteq Term_{\Sigma}$
- 2. Mit $f \in F_{\Sigma}$, $\alpha_{\Sigma}(f) = n$, $t_1, \dots, t_n \in Term_{\Sigma}$ ist auch $f(t_1, \dots, t_n) \in Term_{\Sigma}$

Ein Term heißt Grundterm, wenn er keine Variablen enthält.

2.4 Formeln

 At_{Σ} ist die Menge der atomaren Formeln über Σ :

$$At_{\Sigma} := \{ s \doteq t | s, t \in Term_{\Sigma} \} \cup \{ p(t_1, \dots, t_n) | p \in P_{\Sigma}, \alpha_{\Sigma}(p) = n, t_i \in Term_{\Sigma} \}$$

 For_{Σ} , die Menge der Formeln über Σ , ist induktiv definiert durch

- 1. $1, 0 \cup At_{\Sigma} \subseteq For_{\Sigma}$
- 2. Mit $x \in Var$ und $A, B \in For_{\Sigma}$ sind ebenfalls in For_{Σ} :

$$\neg A, (A \land B), (A \lor B), (A \to B), (A \leftrightarrow B), \forall xA, \exists xA$$

Substitution Eine Substitution ist eine Abbildung

$$\sigma: Var \to Term_{\Sigma}$$

mit $\sigma(x) = x$ für fast alle $x \in Var$.

 σ heißt Grundsubstitution,wenn für alle xmit $\sigma(x) \neq x$ der Funktionswert $\sigma(x)$ ein Grundterm ist.

kollisionsfreie Substitution Eine Substitution σ heißt kollisionsfrei für eine Formel A, wenn für jede Variable z und jede Stelle freien Auftretens von z in A gilt:

Diese Stelle liegt nicht im Wirkungsbereich eines Präfixes $\forall x$ oder $\exists x,$ wo x eine Variable in $\sigma(z)$ ist.

$$\mu_1 = \{x/y\}$$
ist nicht kollisionsfrei für $\forall y p(x,y)$

2.5 Interpretation

Es sei Σ eine Signatur der PL1. Eine Interpretation~D von Σ ist ein Paar (D,I) mit

- 1. D ist eine beliebige, nichtleere Menge
- 2. I ist eine Abbildung der Signatursymbole, die
 - jeder Konstanten c ein Elemente $I(c) \in D$
 - für $n \geq 1$: jedem n-stelligen Funktionssymbol feine Funktion $I(f):D^n \rightarrow D$
 - $\bullet\,$ jedem 0-stelligen Prädikatssymbol P ein Wahrheitswert $I(P) \in \{W,F\}$
 - für $n \geq 1$: jedem n-stelligen Prädikatssymbol p eine n-stellige Relation $I(p) \subseteq D^n$ zuordnet.

2.6 Variablenbelegung

Es sei (D, I) eine Interpretation von Σ .

Eine Variablenbelegung (oder kurz Belegung über D) ist eine Funktion

$$\beta: Var \to D.$$

Zu $\beta, x \in Var$ und $d \in D$ definieren wir die *Modifikation* von β and der Stelle x zu d:

$$\beta_x^d(y) = \begin{cases} d & \text{falls } y = x \\ \beta(y) & \text{falls } y \neq x \end{cases}$$

2.7 Auswertung

Auswertung von Termen Sei (D, I) Interpretation von Σ, β Variablenbelegung über D. Wir definieren eine Funktion $val_{D,I,\beta}$, mit

$$val_{D,I,\beta}(t) \in D \text{ für } t \in Term_{\Sigma}$$

$$val_{D,I,\beta}(A) \in \{W,F\} \text{ für } A \in For_{\Sigma}$$

Auswertung von Formeln

$$val_{D,I,\beta}(1) = W$$

$$val_{D,I,\beta}(0) = F$$

$$val_{D,I,\beta}(s \doteq t) := \begin{cases} W & \text{falls } val_{D,I,\beta}(s) = val_{D,I,\beta}(t) \\ F & \text{sonst} \end{cases}$$

$$val_{D,I,\beta}(P) := I(P) \text{ für } 0\text{-stellige Pr\"{a}dikate } P$$

$$val_{D,I,\beta}(p(t_1, \cdots t_n)) := \begin{cases} W & \text{falls } (val_{D,I,\beta}(t_1), \cdots, val_{D,I,\beta}(t_n)) \in I(p) \\ F & \text{sonst} \end{cases}$$

$$val_{D,I,\beta}(X) \text{ für } X \in \{ \neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B \} \text{ wie in der Aussagenlogik.}$$

$$val_{D,I,\beta}(\forall xA) := \begin{cases} W & \text{falls f\"{u}r alle } d \in D : val_{D,I,\beta^d_x}(A) = W \\ F & \text{sonst} \end{cases}$$

$$val_{D,I,\beta}(\exists xA) := \begin{cases} W & \text{falls ein } d \in D \text{ existiert mit } val_{D,I,\beta^d_x}(A) = W \\ F & \text{sonst} \end{cases}$$

2.8 Unifikation

Es sei $T \subseteq Term_{\Sigma}, T \neq \{\}$, und σ eine Substitution über Σ . σ unifiziert T, oder: σ ist Unifikator von T, genau dann, wenn $\#\sigma(T)=1$. Theißt unifizierbar, wenn T einen Unifikator besitzt. Insbesondere sagen wir für zwei Terme s,t dass s unifizierbar sei mit t, wenn $\sigma(t)=\sigma(s)$.

Allgemeinster Unifikator Es sei $T \subseteq Term_{\Sigma}$.

Ein allgemeinster Unifikator oder m
gu (most general unifier) von T ist eine Substitution μ mit

- 1. μ unifiziert T
- 2. Zu jedem Unifikator σ von T gibt es eine Substitution σ' mit $\sigma = \sigma' \circ \mu$.