|生活・技术・探索|

# 制作"智能"的荧光舞道具

陈俊廷 南方科技大学 谢作如 浙汀省温州中学

#### 引言

两年前,在温州中学的文艺汇 演上, 笔者为表演舞蹈的学生们制 作了荧光舞表演服。漆黑的舞台, 闪烁的灯光,配合音乐、舞蹈,引来 观众此起彼伏的欢呼声。相对于常 见的唱歌和舞蹈节目, 酷炫的荧光 舞的确能给观众带来完全不一样的 感觉。事后有很多人跟笔者交流, 说如果演员的服装能够变色,效果 肯定更好。

在南方科技大学的迎新晚会 上, 街舞社邀请笔者制作能变色、 变身的荧光舞表演服,笔者欣然答 应了。经过一周的准备,笔者在上 一版本的荧光舞表演服基础上做 出相应的改进。和两年前一样,这 个节目同样成为迎新晚会上最酷炫 的节目, 吸引了观众的眼球。图1为 荧光舞节目的参与人员合影。



图1

# ● 制作准备阶段

对于表演服的制作,笔者有两 个选择:一是做一套开关在手上、 完全由演员在跳舞的过程中自行控 制灯光的荧光舞服装; 二是做一个 由芯片控制灯光的"智能"荧光舞 服装, 演员只需专心跳舞, 灯光会 和音乐根据时间同步变化。考虑到 同学们没有太多的时间排练舞蹈, 笔者选择了后者。在微型芯片的帮 助下, 演员在跳舞的过程中就不会 因分心而忙中出错了。

接下来的工作是要解决灯光控 制的具体实现。控制芯片肯定首选 Arduino。光源选择市面上常见的 EL冷光线,控制它只需要一个I/O 口,很方便。EL冷光线的电源需要 12V,经过变压后电压可能达到40V 以上, 因为Arduino是没法直接供电 的, 所以笔者购买了继电器模块来 控制灯光。至于衣服,只能选择黑色 了,能让人在黑暗中不易被发现。

记得第一次制作的时候,使用 的EL冷光线电源是商家提供的8节 1.5V干电池的电源。当时觉得理所 当然,毕竟它要求12V电池。结果 仅一个电源就十分沉重, 电源体积 也十分庞大。再加上笔者使用了

DFrobot的Romeo1.4的控制板,电 源是一块同样沉重的锂电池,这导 致了第一代的荧光舞表演服极其沉 重,对舞蹈者的动作也产生了一定 的影响。第二次制作时笔者就学聪 明了:一是用12V干电池作为电源。 经过测试,一节干电池的供电时间 足够支持一次舞蹈。于是笔者自制 了4节12V电池的电源,从而舍弃了 商家给的8节1.5V电池的电源。二是 换用了DFrobot的RemeoV2.2的控 制器。这款控制器的接口是普通的 迷你USB, 可以用体积和质量都比 较小的一次性充电宝供电。二者一 结合, 在电源方面就大大减轻了表 演服的重量。图2是12V的干电池, 图3是充电宝。





图3

# ● 制作过程

首先,要将EL冷光线缝到衣服 上,这之前应设计好图案,图案最 好能展现出关节、肌肉的轮廓,这 样舞蹈会显得美观。两条不同颜色 的EL冷光线的切换将实现变色,这 是变色的第一步(如图4)。



图4

其次,将继电器接入到EL冷 光线的电路中,一并缝制在衣服上 (如图5)。



图5

衣服做好以后,笔者开始对 Arduino进行编程, 让灯光随着音 乐的时间闪烁。经过规划,表演服 可以实现人在高空中消失,从空中 落下,原地翻转,甚至实现了千手 观音的效果。

要实现更酷的效果, 灯光肯定要 进行分段控制。如图6所示,一个继电 器控制着一段灯光,如继电器1控制

的是紫色的灯光,继电器2控制的是一 段蓝色的灯光,继电器3控制的是另外 一段蓝色的灯光。这样便可以实现变 色、变身等效果了。Arduino的I/O端 口有20个,足够用了。

至于Arduino的编程, 倒真没有 任何的技术含量,就是用delav来控 制端口的开和关即可。从下面的一小 段程序中,可以看出控制的实现。



int VARIABLE = 0; //给变量 赋值

void setup(){

pinMode(4,INPUT); //设定4号 口为输入端

pinMode(9,OUTPUT); //设定9 号口为输出端

pinMode(8,OUTPUT); //设定8 号口为输出端

}

void loop(){

if (digitalRead(4)) //如果按钮 按下

for (VARIABLE = 1;VARIABLE <= (1);VARIABLE ++ ) //执行一次

delay(6800);//延时6.8秒 digitalWrite(9,HIGH); //给9号

# 口一个高电频

digitalWrite(8,HIGH); //给8号 口一个高电频

delay(3400);//延时3.4秒

digitalWrite(9,LOW); //给9号口 一个低电频 digitalWrite(8,LOW); // 给8号口一个低电频

以上是一个简单的例子。当 然,在时间的编写过程中最好能在 每一个延时后面标记上这是第几 秒,会更方便之后的修改。笔者第 一次写的时候没有经验,并没有留 下注释,这导致后期修改的时候十 分麻烦, 很容易出错, 最后不得不 从头到尾重新写了一次。

写完代码后,就要进行严格的 测试, 如当跳舞的同学跳到半空中 时要灭灯,可不能让灯灭早了或灭 晚了,要让效果精确,只能靠不断 测试,不断修改,达成最完美的设 计,这一过程中并没有捷径可走。

# ● 遇到的问题

所谓没有最好只有更好,虽然 是第二次做表演服了,还是遇到如 下的一些问题。

#### 1.灯光的色彩变换

虽然第二次制作做了一些改 进,但也仅仅实现了变色、变身的 第一步,而且颜色变换很僵硬,如 衣服上有蓝色、黄色两种颜色的 冷光线, 那么就只能实现蓝色变黄 色,不能变成其他颜色。等衣服做

# 3D 打印技术在创新实验教学中的 学习活动设计框架研究

摘要: 3D打印技术的普及和应用, 为创新教育提供了新资源、新工具。创新实验教学作为创新教育的关键环节, 引 入3D打印技术, 构造出虚拟实验室和实体实验室相结合的教学平台, 能够促进学生的设计思维和创新能力。本研究首 先阐述了创新实验教学的概念, 然后, 基于学习理论、"做中学"理论及活动理论, 构建出3D打印技术应用在创新实验 教学中学习活动设计的框架。最后,设计并展示了数学实验正多面体学习活动的教学案例,以验证其有效性。

关键词: 3D打印技术, 设计思维, 创新能力, 创新实验教学, 学习活动

中图分类号: G434 文献标识码: A 论文编号: 1674-2117 (2016) 23-0066-05

# ● 引言

在创客运动的大浪潮下,以信 息技术为基础的创新教育,融合了

项目学习活动、体验式教育及DIY 理念的思想。3D打印作为创客运动 中的重要的一部分, 近年在建筑、

材料、医学和教学科研等领域,逐 渐引起广泛关注与研究。 尤其是中 小学基础教育领域, 3D打印技术为

好了, 笔者才想到了有RGB调色的 方法, 用几根规格比较细的三原色 的EL冷光线组合,也许可以实现多 种颜色自由变化。这就只能等笔者 第三次做衣服的时候改进了。

#### 2.衣服布线有些凌乱

因为增加了色彩, 意味着会 同步增加EL冷光线和继电器的数 量。这样带来的结果则是衣服的 背面都是导线和电子元件,看起 来很凌乱。这导致衣服的保护和 维修工作成为"技术活"了。最糟 糕的是线路也容易损坏。笔者想, 有效的解决方案应该是采用模块 集成的方式来让整件衣服更加精 致, 也更适合舞蹈。而且, 导线模 块化后, 衣服背面也可以添加一些

灯光,那样演员舞蹈时的转身动作 看起来会更加美观。

### 3.整体质量还是太重

现在衣服需要两个电源,一个 是芯片供电,一个给EL冷光线供 电,因此,需要找个稳定的方案,将



图6

两个电源合二为一以减轻重量。

#### ● 结束语

在制作衣服的过程中,笔者和 Arduino的关系变得更加密切了, 熟悉了一些原本不知道的Arduino 新功能,"做中学"说的也许就是 这样的道理。这套荧光舞的表演服 装还有很多可以改进的地方, 限于 技术瓶颈或者时间紧迫等暂时没有 解决。真心希望今后做第三版的时 候能一并解决上述问题, 让表演服 的功能更加强大。 2

如果对相关内容感为 趣,请关注主持人博客。

