Ćwiczenie C1a

Wyznaczanie współczynnika rozszerzalności liniowej ciał stałych

C1a.1. Cel ćwiczenia

Celem ćwiczenia jest badanie zjawiska zmiany długości prętów metalowych w funkcji temperatury oraz doświadczalne wyznaczenie współczynnika ich rozszerzalności liniowej.

C1a.2. Zagadnienia związane z tematyką ćwiczenia

- Pojęcie temperatury i ciepła,
- zjawisko rozszerzalności cieplnej,
- rozszerzalność cieplna a budowa ciał stałych,
- definicja linowego współczynnika rozszerzalności cieplnej,
- zależność współczynnika rozszerzalności liniowej od temperatury,
- zastosowanie zjawiska rozszerzalności cieplnej,
- metoda najmniejszych kwadratów.

C1a.3. Literatura

- [1] Demtröder W., Fizyka doświadczalna, Mechanika i ciepło, Wydawnictwo Naukowe UMK.
- [2] Halliday D., Resnick R., Walker J.: Podstawy fizyki, cz. 2, PWN, Warszawa.
- [3] Szczeniowski S.: Fizyka doświadczalna, cz. 2, PWN, Warszawa.
- [4] Massalski J., Massalska M.: Fizyka dla inżynierów, WNT, Warszawa.
- [5] Metody wykonywania pomiarów i szacowania niepewności pomiarowych, http://ftims.pg.edu.pl/documents/10673/20436990/wstep.pdf

14 Ćwiczenie C1a

C1a.4. Przebieg ćwiczenia i zadania do wykonania

Układ doświadczalny

Rysunek C1a.1 przedstawia fotografię układu pomiarowego, który składa się z: ${\bf 1}$ – dylatometru, ${\bf 2}$ – listwy mocującej, ${\bf 3}$ – zestawu badanych prętów oraz ${\bf 4}$ – termostatu.

Rysunek C1a.1. Zdjęcie układu pomiarowego

Przebieg doświadczenia

Aby wykonać pomiar rozszerzalności cieplnej wybranego pręta najpierw należy dołączyć do niego gumowe węże, przez które będzie przepływać woda ogrzewająca lub chłodząca pręt. Następnie przymocować pręt do listwy i dosunąć do niego dylatometr. Na dylatometrze ustawiamy "0". Włączamy termostat i kolejno ustawiamy coraz wyższą temperaturę, dla której chcemy odczytywać wydłużenie pręta. Po osiągnięciu temperatury maksymalnej, chłodzimy pręt do temperatury pokojowej, ponownie odczytując wartości wydłużenia. Następnie wyłączamy obieg wody w układzie i zmieniamy pręt na kolejny. Listwa mocująca jest przystosowana do pomiaru wydłużenia termicznego również krótszych prętów (o długości 400 mm, 200 mm) – wtedy należy przesunąć punkt mocowania pręta.

Zadania do wykonania

C1a.1. Zmierzyć przyrost długości prętów metalowych (mosiądz, miedź, aluminium, żelazo) Δl w funkcji przyrostu temperatury ΔT (temperaturę można zmieniać od temperatury pokojowej do ok. 80 °C).

C1a.2. Wykonać wykres Δl w funkcji ΔT . Wykorzystując metodę najmniejszych kwadratów wyznaczyć wartość współczynnika rozszerzalności liniowej α dla wybranych prętów.

Uzupełnienie do zadania C1a.2

Jeśli zmiana temperatury nie jest zbyt duża, to zmianę długości ciała można scharakteryzować liniowym współczynnikiem rozszerzalności cieplnej α . Definiuje się go następująco:

 $\alpha = \frac{\Delta l}{l_0 \Delta T},\tag{C1a.1}$

gdzie Δl – przyrost długości ciała przy wzroście temperatury o ΔT , l_0 – długość początkowa ciała. Korzystając ze wzoru (C1a.1) możemy określić zależność funkcyjną $\Delta l = f(\Delta T)$ i na tej podstawie (metodą graficzną i/lub metodą najmniejszych kwadratów) wyznaczyć współczynnik rozszerzalności liniowej α . Należy pamiętać, że współczynnik liniowy danego materiału może mieć stałą wartość jedynie w pewnym przedziale temperatur. Dlatego ważne jest, aby zawsze podawać zakres temperatur, dla których został on wyznaczony.

C1a.5. Rachunek niepewności

Niepewności pomiaru l_0 , Δl , ΔT oceniamy w trakcie wykonywania pomiarów na podstawie podziałki użytych przymiarów i przyrządów.

Niepewność współczynnika rozszerzalności liniowej wyznaczamy jako niepewność złożoną. Niepewność współczynnika kierunkowego a liniowej zależności określamy stosując odpowiednie wzory metody najmniejszych kwadratów.