

完成率	正确率/平均分
_	97%
	94%
	94%
	97%
	97%

单选题 5分

(Q→R)→((P→Q)→(P→R)) 是: (单选题, 如重言式则不需要 选可满足式)

- (A) 重言式
- B 永假式
- (c) 可满足式

$p \land (p \rightarrow q) \rightarrow q$ 的真值表

р	q	<u>p→q</u>	$p \land (p \rightarrow q)$	$p \land (\underline{p} \rightarrow \underline{q}) \rightarrow q$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

命题公式的分类

- 定义1.9 重言式 矛盾式 可满足式设A为任一命题公式,
- 1. 若*A*在它的各种赋值下取值均为真,则称*A*是重言式或永真式。
- 2. 若A在它的各种赋值下取值均为假,则称A是矛盾式或永假式。
- 3. 若A不是矛盾式,则称A是可满足式

命题公式的分类(续)

真值表可用来判断公式的类型:

- (1) 若真值表最后一列(公式结果)全为1,则公式为重言式;
- (2) 若真值表最后一列全为0,则公式为矛盾式;
- (3) 若真值表最后一列中至少有一个1, 则公式为可满足式。

真值表及其构造方法

定义1.8 真值表

将命题公式A在所有赋值下的取值情况列成表,称作A的真值表。

构造真值表的具体步骤:

- (1) 找出公式中所含的全体命题变项 p_1 , p_2 , …, p_n (若无下角标就按字典顺序排列),列出2 n 个赋值。规定赋值从00…0开始,然后按二进制加法,直到11…1为止。
- (2) 按照运算的优先次序写出各子公式。
- (3) 对应各个赋值计算出各子公式的真值,直到最后计算出公式的真值。

Discrete Mathematics

离散数学(1)

第一章 命题逻辑的基本概念

马昱春

命题(proposition)

命题是一个能判断真假且非真即假的陈述句。

- 1. 命题必须是一个<mark>陈述句,</mark>而祈使句、疑问句和感叹句都 不是命题。
- 2. 作为命题的陈述句所表达的判断结果有真假之别

命题的真值:命题所表达的判断结果,

真值只取两个值:真或假(1或0)。

真命题: 与事实相符或表达的判断正确; 真值为真

假命题: 与事实不符或表达的判断错误; 真值为假

规定: 任何命题的真值都是唯一的;

不能非真非假,也不能既真又假。

内容回顾

- 命题
 - 是一个能判断真假且非真即假的陈述句
 - 两个特征
- 简单命题与复合命题
- 否定联结词
- 合取联结词
- 析取联结词
- 蕴涵联结词
- 双蕴涵联结词

- (非, ¬)
- (与, ∧)
- (或, ∨)
- (如果···,则···, \rightarrow)
- (当且仅当, \leftrightarrow)

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

关于联结词的几点说明

- 对简单命题多次使用联结词集中的联结词,可以组成 更为复杂的复合命题。
- 求复合命题的真值时,除依据前面的真值表外,还要 规定联结词的优先顺序
- 教材中规定的联结词优先顺序为:

() , \neg , \wedge , \vee , \rightarrow , \leftrightarrow ,

同一优先级的联结词,先出现者先运算。

 在逻辑中所关心的是复合命题中命题之间的真值关系, 而并不关心命题的内容。

合式公式或命题公式

合式公式或命题公式的表示

将命题变项用联结词和圆括号按一定的逻辑关系联结起来的符号串。

当使用联结词集 $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ 中的联结词时,合式公式定义如下

合式公式(命题公式)的定义

- 定义1.6 合式公式 (wff) (well formed formulas)
 - (1) 单个命题变项是合式公式,并称为原子命题公式。
 - (2) 若 是合式公式,则(也是合式公式。
 - (3) 若A, B是合式公式,则($A \land B$),($A \lor B$),($A \rightarrow B$),($A \leftrightarrow B$) 也是合式公式。
 - (4) 只有有限次地应用(1)~(3) 形成的符号串 才是合式公式。
 - 合式公式也称为命题公式或命题形式, 简称公式。

命题公式的赋值或解释

定义1.7 赋值或解释

设 p_1 , p_2 , ···, p_n 是出现在公式A中的全部的命题变项,给 p_1 , p_2 , ···, p_n 各指定一个<u>真值</u>,称为对A的一个赋值或解释。

若指定的一组值使A的真值为1,则称这组值为A的成真赋值;

若使A的真值为0,则称这组值为A的成假赋值。

1.4 重言式与代入规则

代入规则

一个重言式,对其中所有相同的<mark>命题变项</mark>都用一合式公式代换,其结果仍为一重言式。这一规则称为代入规则。

换句话说,A是一个公式,对A使用代入规则得到公式B,若A是重言式,则B也是重言式。

1.4 重言式与代入规则

代入规则的具体要求为:

- 1. 公式中被代换的只能是命题变项(原子命题),而不能是复合命题。
- 2. 对公式中某命题变项施以代入,必须对该公式中出现的所有同一命题变项施以相同的代换。

1.5 命题形式化

所谓命题形式化(符号化),就是用命题公式的符号由来表示给定的命题。

- 命题符号化的方法
 - 1. 明确给定命题的含义。
 - 2. 对复合命题,找联结词,分解出各个原子命题。
 - 3. 设原子命题符号,并用逻辑联结词联结原子命题符号,构成给定命题的符号表达式。

化繁为简,各个击破

例6: 若天不下雨,我就上街;否则在家。

解:

设 P: 天下雨。Q: 我上街。R: 我在家。

该命题若写成: $(\neg P \rightarrow Q) \land (P \rightarrow R)$? ?

IF¬P THEN Q ELSE R 逻辑是否完全表达了例6呢?

Q=1 and R=1?

因为原命题表示: "天不下雨时我做Q,天下雨我做R"的两种作法,但是我不能同时做Q和R。

问题: 若天不下雨, 我就上街; 否则

PQR	$\neg P$	$\neg P \rightarrow Q$	$P \rightarrow R$	$(\neg P \rightarrow Q) \land (P \rightarrow R)$
0 0 0	1	0	1	0
0 0 1	1	0	1	O
0 1 0	1	$\langle 1 \rangle$	1	1
0 1 1	1	1	í	1
1 0 0	0	0	1	0
1 0 1	0	1	1	1
1 1 0	0	1	0	O
111	0	1	1	1

例6: 若天不下雨, 我就上街; 否则在家

P:天下雨。Q:我上街。R:我在家。

该命题可写成: $(\neg P \rightarrow Q) \land (P \rightarrow R) \land \neg (Q \land R)$

还可以形式化为: $(\neg P \land Q \land \neg R) \nabla (P \land \neg Q \land R)$

PC) R	¬P	¬P→Q	$P \rightarrow R$	$\neg (Q \land R)$	$(\neg P \rightarrow Q) \land (P \rightarrow R)$ $\neg (Q \land R)$	
0 (0 0	1	0	1	1	0	
0 (1	0	1	1	0	
			_		1	-	$\wedge \cap \wedge \mathbf{p}$
0	1 0	1	1	1	1	1 (¬P,	$\langle Q \rangle \neg R$
0 1	1 1	1	1	1	0	0	
1 (0 0	0	0	1	1	0	
1 () 1	0	1	1	1	1 (P∧	$\neg Q \land R$)
1 1	1 0	0	1	0	1	0	
1 1	1 1	0	1	1	0	0	

例6: 若天不下雨, 我就上街; 否则在家

P:天下雨。Q:我上街。R:我在家。

该命题可写成: $(\neg P \rightarrow Q) \land (P \rightarrow R) \land \neg (Q \land R)$

还可以形式化为: $(\neg P \land Q \land \neg R) \nabla (P \land \neg Q \land R)$

还可以形式化为: $(\neg P \land Q \land \neg R) \lor (P \land \neg Q \land R)$

两项不会同时为1

p	q	p∨q
0	0	0
0	1	1
1	0	1
1	1	1

p	q	$p\overline{\vee}q$
0	0	0
0	1	1
1	0	1
1	1	0

1.6 波兰表达式

括号的使用,联结词的中辍、前辍、后辍形式的 选择,都直接影响到同一公式描述和计算的复杂 程度。

若用计算机来识别、计算、处理逻辑公式,不同的表示方法会带来不同的效率。

合式公式的定义中使用的是联结词的中<mark>辍</mark>表示,又引入括号以便区分运算次序,这些都是人们常用的方法。

计算机识别处理这种中辍表示的公式,需反复自左向右,自右向左的扫描。

如考察下面公式真值的计算过程 $(P \lor (Q \land R)) \lor (S \land T)$

开始从左向右扫描,至发现第一个右半括号为止,便返回至最近的左半括号,得部分公式(Q/R)方可计算真值。

随后又向右扫描,至发现第二个右半括号,便返回至第二个左半括号,于是得部分公式(P\/(Q\R))并计算真值,重复这个过程直至计算结束。

如图1.6.1所示的扫描过程 $1\rightarrow 2\rightarrow 3\rightarrow ...\rightarrow 6\rightarrow 7$ 。

开始从左向右扫描,至发现第一个右半括号为止,便返回至最近的左半括号,得部分公式(Q\R)方可计算真值。

随后又向右扫描,至发现第二个右半括号,便返回至第二个左半括号,于是得部分公式(P\(Q\R))并计算真值,重复这个过程直至计算结束。

公式中的运算符是否非要括号才能定义呢?

若一个式子中同时使用<mark>两种或两种以上</mark>运算符放置方式时,无论对运算符的优先级怎样进行规定,括号都不能完全避免。

例如:对数运算符 log 是前缀运算符;

阶乘运算符!是后缀运算符;

5!+lg10 + 3*(5+10)

如果想去掉括号该怎么办? 是不是不要考虑a+b, 而考虑"a和b相加"? 操作符放前还是放后?

一般而言, 使用联结词构成公式有三种方式,

中置式如

 $P \lor Q$ (中缀式)

前置式如 \(\text{PQ}\)

(前缀式)

后置式如

 $PQ \vee$

(后缀式)

前置式用于逻辑学是由波兰的数理逻辑学家

J. Lukasiewicz提出的,故称之为波兰表达式。

解决方案:将中置、后置全部换成前置 或将中置、前置全部换成后置 这样,便可不使用任何括号。

 如将公式P\/((Q\R)\/S)的这种中置表示化成波 兰式(前缀表达式),可由内层括号逐步向外层 脱开(或由外层向内逐层脱开)的办法。

举例: 中置变前置 $P \lor ((Q \lor R) \land S)$

由里向外:

 $P \lor ((Q \lor R) \land S)$

 $P \lor (\lor QR \land S)$

PV / VQRS

√P∧ ∨QRS

由外向里:

 $P \lor ((Q \lor R) \land S)$

 $\bigvee P ((Q \bigvee R) \land S)$

 $\bigvee P \land (Q \bigvee R) S$

∨P∧∨QRS

中置变后置 $P \lor ((Q \lor R) \land S)$

举例:中置变后置 $P \lor ((Q \lor R) \land S)$

$$P \lor ((Q \lor R) \land S)$$

$$P((Q \lor R) \land S) \lor$$
 $P(Q \lor R) S \land \lor$
 $PQR \lor S \land \lor$

思考题:

单目运算符怎么处理?

二叉树表示法

注意从左到右 的结合性

 $B = a \wedge b \wedge c$

波兰表达式:

∧∧ *abc* 逆波兰表达式:

 $ab \wedge c \wedge$

 $D = (\neg a \to b) \lor b \lor (a \land b)$

波兰表达式:

 $\vee\vee\to\neg abb\wedge ab$

逆波兰表达式:

 $a \neg b \rightarrow b \lor ab \land \lor$

- $(P \lor (Q \land R)) \lor (S \land T)$
- 波兰式: ∨∨ *P* ∧ *QR* ∧ *ST*
- 计算机如何进行求值?

 $\vee \vee P \wedge Q R \wedge S T$

 $(P \lor (Q \land R)) \lor (P(S \land Q(S) \land R))$

- 以波兰式表达的公式,当计算机识别处理时,可自右向左扫描一次完成,避免了重复扫描。
- 同样后置表示(逆波兰式)也有类似的优点。而且自左向右一次扫描(看起来更合理)可识别处理一个公式,非常方便,常为计算机的程序系统所采用。
- 只不过这种表示的公式,人们阅读起来不大习惯。

第一章小结

命题逻辑(Logic)

- 研究命题的推理演算
- 命题逻辑的应用
 - 数学上定理的推导
 - 在计算机科学上,验证程序的正确性

主要内容

- 命题的基本概念
- 命题联结词
- 命题合式公式、重言式
- 自然语句的形式化

第一章小结(续)

- 本章主要介绍了命题逻辑的基本概念,它是后面 两章的基础;
- 介绍了命题、命题变项、简单命题和复合命题;
- 介绍了命题联结词及其真值表
 - 否定联结词-
 - 合取联结词 /
 - 析取联结词 >
 - 蕴涵联结词→
 - 双蕴涵联结词↔

第一章小结(续)

- 介绍了合式公式及其递归定义;
- 介绍了重言式、矛盾式和可满足式;在此基础上, 介绍了代入规则以及如何利用代入规则证明重言式;
- 介绍了如何形成自然语句的合式公式(命题的形式 化)以及较为复杂的自然语句形式化;
- 介绍了计算机识别合式公式(括号)的过程,在此基础上,介绍了波兰表达式及其在计算机识别处理过程的优势。

Discrete Mathematics 离散数学(1)

第二章: 命题逻辑的 等值和推理演算

马昱春

主要内容

- 主要讨论命题逻辑的等值和推理演算,是命题逻辑的核心内容。
- 介绍命题公式等值的概念,并通过等值定理给出 命题公式等值的充要条件。
- 介绍推理形式和推理演算,给出近于数学的推理

主要内容

- 2.1 等值定理
- 2.2 等值公式
- 2.3 命题公式与真值表的 关系
- 2.4 联接词的完备集
- 2.5 对偶式

- 2.6 范式
- 2.7 推理形式
- 2.8 基本的推理公式
- 2.9 推理演算
- 2.10 归结推理法
- 补充: 应用举例

前言

- 推理形式和推理演算是数理逻辑研究的基本内容
- 推理形式是由前提和结论经蕴涵词联结而成的
- 推理过程是从前提出发,根据所规定的规则来推 导出结论的过程
- 重言式是重要的逻辑规律,正确的推理形式、等值式都是重言式

2.1 等值定理

等值:

给定两个命题公式 A和 B,设 P_1 , P_2 , ..., P_n 为出现于A和B中的所有命题变项,则公式A和B共有 2^n 个解释。

若在任一解释下,公式A和B的真值都相同,则称A和B是等值的、或称等价记作

A=B 或 $A \Leftrightarrow B$ 。

判断公式是否等值

- $P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$
- $(P \rightarrow Q) \rightarrow R = (P \land Q) \rightarrow R$

PQR	$Q \rightarrow R$	$P \wedge Q$	$P{ ightarrow}Q$	$P \rightarrow (Q \rightarrow R)$	$(P \land Q) \rightarrow R$	$(P \rightarrow Q) \rightarrow R$
0 0 0	1					
0 0 1	1					
0 1 0	0					
0 1 1	1					
1 0 0	1					
1 0 1	1					
1 1 0	0					
1 1 1	1					

PQR	$Q \rightarrow R$	$P \wedge Q$	$P{ ightarrow}Q$	$P \rightarrow (Q \rightarrow R)$	$(P \land Q) \rightarrow R$	$(P \rightarrow Q) \rightarrow R$
0 0 0	1			1		
0 0 1	1			1		
0 1 0	0			1		
0 1 1	1			1		
1 0 0	1			1		
1 0 1	1			1		
1 1 0	0			0		
1 1 1	1			1		

PQR	$Q \rightarrow R$	$P \wedge Q$	$P{ ightarrow}Q$	$P \rightarrow (Q \rightarrow R)$	$(P \land Q) \rightarrow R$	$(P \rightarrow Q) \rightarrow R$
0 0	1	0		1		
0 0	1	0		1		
0 1	0	0		1		
0 1	1	0		1		
1 0	1	0		1		
1 0	1	0		1		
1 1 0	0	1		0		
1 1 1	1	1		1		

PQR	$Q \rightarrow R$	$P \wedge Q$	$P{ ightarrow}Q$	$P \rightarrow (Q \rightarrow R)$	$(P \land Q) \rightarrow R$	$(P \rightarrow Q) \rightarrow R$		
0 0 0	1	0		1	1			
0 0 1	1	0		1	1			
0 1 0	0	n		1	11			
0 1 1	$P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$							
1 0 0	1	U		1	1			
1 0 1	1	0		1	1			
1 1 0	0	1		0	0			
1 1 1	1	1		1	1			

PQR	$Q \rightarrow R$	$P \wedge Q$	$P{ ightarrow}Q$	$P \rightarrow (Q \rightarrow R)$	$(P \land Q) \rightarrow R$	$(P \rightarrow Q) \rightarrow R$
0 0 0	1	0	1	1	1	
0 0 1	1	0	1	1	1	
0 1 0	0	0	1	1	1	
0 1 1	1	0	1	1	1	
1 0 0	1	0	0	1	1	
1 0 1	1	0	0	1	1	
1 1 0	0	1	1	0	0	
1 1 1	1	1	1	1	1	

PQR	$Q \rightarrow R$	$P \wedge Q$	$P{ ightarrow}Q$	$P \rightarrow (Q \rightarrow R)$	$(P \land Q) \rightarrow R$	$(P \rightarrow Q) \rightarrow R$
0 0 0	1	0	1	1	1	0
0 0 1	1	0	1	1	1	1
0 1 0	0	. 0	1	1	1	0
0 1 1	(P -	$\rightarrow Q)$ -	$\rightarrow R \neq$	$(P \wedge Q)$	$\rightarrow R$	1
1 0 0			Ü	-	<u> </u>	1
1 0 1	1	0	0	1	1	1
1 1 0	0	1	1	0	0	0
1 1 1	1	1	1	1	1	1

2.1 等值定理

• 定理2.1.1 设A, B为两个命题公式,A = B的<mark>充分必要条件是</mark> $A \leftrightarrow B$ 为一个重言式。

等值定理的证明

1. 必要性: ←

由 $A \leftrightarrow B$ 的定义,仅当 $A \lor B$ 真假值相同时,才有 $A \leftrightarrow B = T$ 。

所以在任一解释下, $A \setminus B$ 都有相同的真值,从而有A = B。

等值定理的证明

2. 充分性: →

若有A = B,则在任一解释下,A和B都有相同的真值,依 $A \leftrightarrow B$ 的定义, $A \leftrightarrow B$ 的取值一定为真,故推出 $A \leftrightarrow B$ 是重言式。

证毕

等值定理

等值定理的实用性之一:

若证明两个公式等值,只要证明由这两个公式构成的双条件式是重言式。

等值关系满足等价关系的三个性质:

自反性 A = A.

等价关系

逆命题、否命题与逆否命题

逆命题: 若将 $P \rightarrow Q$ 视为原命题,则

称Q→P为它的逆命题。

否命题: 若将 $P \rightarrow Q$ 视为原命题,则

称¬P→¬Q为它的否命题。

逆否命题:若将 $P \rightarrow Q$ 视为原命题,则

称¬Q→¬P为它的逆否命题。

四种命题

逆命题、否命题与逆否命题

两个重要结论

1. 一个命题(原命题)与它的逆否命题等值

2. 一个命题的逆命题与它的否命题等值

 $\angle P$ 证明 若 a^2 是偶数,则a 是偶数。利用结论1。

四种命题间的逆否关系

2.2 等值公式

2.2 等值公式

2. 2. 2 置换规则

设X为公式 A的子公式,用与X等值的公式Y 将A中的X 施以代换,称为置换,该规则称为置换规则。

置换后公式 A化为公式 B,置换规则的性质保证公式 A与公式 B等值,即A=B。

且当A是重言式时,置换后的公式B也是重言式。

2.2 等值公式

定理2.2.1:

设 $\Phi(A)$ 是含命题公式A的命题公式, $\Phi(B)$ 是用命题公式B置换了 $\Phi(A)$ 中的A之后得到的命题公式

如果 A = B, 则 $\Phi(A) = \Phi(B)$ 。

1. 双重否定律

$$\neg \neg P = P$$

2. 结合律

$$(P \lor Q) \lor R = P \lor (Q \lor R)$$

$$(P \land Q) \land R = P \land (Q \land R)$$

$$(P \leftrightarrow Q) \leftrightarrow R = P \leftrightarrow (Q \leftrightarrow R)$$

$$(P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$$

"→"不满足结合律

思考当P=0, R=0

PQR	$Q \rightarrow R$	$P{ ightarrow}Q$	$P \rightarrow (Q \rightarrow R)$	$(P \rightarrow Q) \rightarrow R$
0 0 0	1	1	1	0
0 0 1	1	1	1	1
0 1 0	0	1	1	0
0 1 1	1	1	1	1
1 0 0	1	0	1	1
1 0 1	1	0	1	1
1 1 0	0	1	0	0
1 1 1	1	1	1	1

3. 交換律

$$P \lor Q = Q \lor P$$

$$P \land Q = Q \land P$$

$$P \leftrightarrow Q = Q \leftrightarrow P$$

$$P \rightarrow Q \neq Q \rightarrow P$$

"→"不满足交换律

4. 分配律

$$P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$$

$$P \land (Q \lor R) = (P \land Q) \lor (P \land R)$$

$$P \rightarrow (Q \rightarrow R) = (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

若P=1,则Q->R成立与否;若P=0,则两边都为真

$$P \leftrightarrow (Q \leftrightarrow R) \neq (P \leftrightarrow Q) \leftrightarrow (P \leftrightarrow R)$$

"↔"不满足分配律

比如P=0, Q=0, R=1

5. 等幂律(恒等律)

$$P \lor P = P$$
 $P \land P = P$
 $P \rightarrow P = T$
 $P \leftrightarrow P = T$

6. 吸收律

$$P \lor (P \land Q) = P$$

 $P \land (P \lor Q) = P$

7. 摩根(De Morgan)律:

$$\neg (P \lor Q) = \neg P \land \neg Q$$
$$\neg (P \land Q) = \neg P \lor \neg Q$$

对蕴含词、双条件词作否定有

$$\neg (P \to Q) = P \land \neg Q
\neg (P \leftrightarrow Q) = \neg P \leftrightarrow Q = P \leftrightarrow \neg Q
= (\neg P \land Q) \lor (P \land \neg Q) (借助图形)$$

$P \leftrightarrow Q$ 和 $\neg (P \leftrightarrow Q)$ 的文氏图

•
$$P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P) = (\neg P \lor Q) \land (P \lor \neg Q)$$

•
$$\neg (P \leftrightarrow Q) = (\neg P \land Q) \lor (P \land \neg Q)$$

 $\neg (P \leftrightarrow Q)$

8. 同一律:

$$P \lor F = P$$
 $P \land T = P$
 $T \rightarrow P = P$ $T \leftrightarrow P = P$

$$P \rightarrow F = \neg P$$
 $F \leftrightarrow P = \neg P$

9. 零律:

$$P \lor T = T$$

 $P \land F = F$

还有

$$P \rightarrow T = T$$

$$F \rightarrow P = T$$

10. 补余律:

$$P \lor \neg P = T$$
 $P \land \neg P = F$

$$P \ igwedge \
eg P = F$$

还有

$$P \rightarrow \neg P = \neg P$$

$$\neg P \rightarrow P = P$$

$$P \leftrightarrow \neg P = F$$

常用的等值公式

- 蕴涵等值式 $P \rightarrow Q = \neg P \lor Q$
- 前提合取合并 $P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$
- 等价等值式: $P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$
- 假言易位: $P \rightarrow Q = \neg Q \rightarrow \neg P$
- ・ 等价否定等值式: $P \leftrightarrow Q = \neg P \leftrightarrow \neg Q$
- 归谬论: $(P \rightarrow Q) \land (P \rightarrow \neg Q) = \neg P$

常用的等值公式

•
$$P \leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q)$$
 从取真来描述双条件

•
$$P \leftrightarrow Q = (P \lor \neg Q) \land (\neg P \lor Q)$$

从取假来描述双条件

•
$$P \rightarrow (Q \rightarrow R) = Q \rightarrow (P \rightarrow R)$$

前提交换

•
$$(P \rightarrow R) \land (Q \rightarrow R) = (P \lor Q) \rightarrow R$$
 前提析取合并

证明其他等值式

文氏图(Venn Diagram)

- 将P、Q理解为某总体论域上的子集合,并规定:
 - P∧Q为两集合的公共部分(交集合)
 - P V Q 为两集合的全部(并集合)
 - ¬P为总体论域(如矩形域)中P的余集

 $P \vee Q$

 $\neg P$

文氏图

从Venn 图, 因P△Q较P来得"小", P▽Q较P来得 "大", 从而有

$$P \lor (P \land Q) = P$$

$$P \wedge (P \vee Q) = P$$

 $\neg P$

2.2.4 等值演算

定义

由已知等值式推演出另外一些等值式的过程称为等值演算。

方法

- 方法1: 列真值表。
- 方法2: 公式的等价变换.

置换定律:A是一个命题公式,X是A中子公式,如果X=Y,用Y代替A中的X得到公式B,则A=B。

公式等值演算的用途

- 判别命题公式的类型
 - 重言式
 - 矛盾式
 - 可满足式
- 验证两个公式等值
- 解决实际问题

用途1: 判别命题公式的类型

• 例1 判别 $\neg (P \land Q) \rightarrow (\neg P \lor (\neg P \lor Q))$ 公式类型.

解原式

$$\neg \neg (P \land Q) \lor ((\neg P \lor \neg P) \lor Q)$$
 (蕴涵等值式,结合律)

$$=(P \land Q) \lor (\neg P \lor Q)$$
 (双重否定律,幂等律)

$$= (P \land Q) \lor (Q \lor \neg P) \qquad (交換律)$$

$$= ((P \land Q) \lor Q) \lor \neg P \qquad (结合律)$$

$$= Q \lor \neg P$$
 (吸收律)

可满足式

用途1: 判别命题公式的类型

• 例2 判别 $\neg (P \rightarrow (P \lor Q)) \land R$ 公式类型.

解原式

$$= \neg (\neg P \lor P \lor Q) \land R$$
 (蕴涵等值式)

$$= (P \land \neg P \land \neg Q) \land R \qquad (摩根律)$$

$$= F \wedge R$$
 (补余律,零律)

用途2:验证两个公式等值

例3: 证明 $P \rightarrow (Q \rightarrow R) = (P \land Q) \rightarrow R$

• 证明:

$$P \rightarrow (Q \rightarrow R) = P \rightarrow (\neg Q \lor R)$$
 (蕴含等值式)
 $= \neg P \lor (\neg Q \lor R)$ (**蕴含等值式**)
 $= (\neg P \lor \neg Q) \lor R$ (结合律)
 $= \neg (P \land Q) \lor R$ (摩根律)
 $= (P \land Q) \rightarrow R$ (**蕴含等值式**)

山无梭且天地合,乃敢与君绝山若无梭,只要再等天地合,就能与君绝

例4: 证明 $(P \rightarrow R) \land (Q \rightarrow R) = (P \lor Q) \rightarrow R$

$$(P \rightarrow R) \land (Q \rightarrow R)$$

$$= (\neg P \lor R) \land (\neg Q \lor R)$$

$$= (\neg P \land \neg Q) \lor R$$

$$= \neg (P \lor Q) \lor R$$

$$= (P \lor Q) \rightarrow R$$

蕴含等值式 分配律 摩根律 蕴含等值式

例5:
$$(P \land (Q \lor R)) \lor (P \land \neg Q \land \neg R) = P$$

证明:

$$(P \land (Q \lor R)) \lor (P \land \neg Q \land \neg R)$$
 $= P \land ((Q \lor R) \lor (\neg Q \land \neg R))$ 分配律
 $= P \land ((Q \lor R) \lor \neg (Q \lor R))$ 摩根律
 $= P \land T$ 同一律
 $= P$

用途3:解决实际问题

· 例6: 试用较少的开关设计一个与下图有相同功能的电路。

解: 可将该图所示之开关

电路用下述命题公式表示:

$(P \land Q \land S) \lor (P \land R \land S)$

利用基本等值公式,将上述公式转化为:

 $(P \land Q \land S) \lor (P \land R \land S)$

 $= ((P \land S) \land Q) \lor ((P \land S) \land R)$

 $= (P \land S) \land (Q \lor R)$

所以其开关设计图可简化为

2.3 命题公式与真值表的关系

- 对任一依赖于命题变元 $P_1, P_2, ..., P_n$ 的命题公式 A来说,可由 $P_1, P_2, ..., P_n$ 的真值,根据命题公式 A,给出A的真值,从而建立起由 $P_1, P_2, ..., P_n$ 到 A的真值表。
- 反之,若给定了由 $P_1, P_2, ..., P_n$ 到 A的真值表,可以用下述方法写出命题公式A对 $P_1, P_2, ..., P_n$ 的逻辑表达式:

例1: 从取1的行来列写

$$A = (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$$

$$B = (\neg P \land \neg Q) \lor (\neg P \land Q)$$

例2: 从取0的行来列写

$$\neg A = P \land \neg Q \qquad A = (\neg P \lor Q)$$

$$B = (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

2.3 命题公式与真值表的关系

1. 从取1的行来列写

考查命题公式 A的真值表中取1 的行,若取1的行数共有m行,则命题公式 A可以表示成如下形式:

$$A = Q_1 \lor Q_2 \lor \cdots \lor Q_m$$

其中 $Qi = (R_1 \land R_2 \land ... \land R_n)$,
 $R_i = P_i$ 或 $\neg P_i (i = 1, 2, ..., n)$
若该行的 $P_i = 1$,则 $R_i = P_i$;否则 $R_i = \neg P_i$

进一步理解

• 从取1的行来列写

• 故从取0的行来列写

2.3 命题公式与真值表的关系

2. 从取0的行来列写

考查真值表中取0的行,若取0的行数共有k行,则命题公式 A可以表示成如下形式:

$$A = Q_1 \land Q_2 \land \bullet \bullet \bullet \land Q_k$$

其中 $Q_i = (R_1 \lor R_2 \lor \bullet \bullet \bullet \lor R_n)$,
 $R_i = P_i$ 或 $R_i = \neg P_i$ $(i = 1, 2, ..., n)$
若该行的 $P_i = 1$,则 $R_i = \neg P_i$
若该行的 $P_i = 0$,则 $R_i = P_i$

例2: 从取0的行来列写

$$A = (\neg P \lor Q)$$

$$B = (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

P	Q	A	В
F	F	T	T
F	T	T	T
T	F	F	F
T	T	T	F

两个重要的命题联结词

与非联接词

与非联接词是二元命题联结词。两个命题P 和Q 用与非联接词"↑"联结起来,构成一个新的复合命题,记作P↑Q。读作P 和Q的"与非"。当且仅当P 和Q的真值都是1时,P↑Q的真值为0,否则P↑Q的真值为1。

 $P \uparrow Q = \neg (P \land Q)$ (真值表)

P	Q	$P \uparrow Q$
0	0	1
0	1	1
1	0	1
1	1	0

两个重要的命题联结词

或非联接词

或非联接词是二元命题联结词。两个命题P 和Q 用或非联接词 " \downarrow " 联结起来,构成一个新的复合命题,记作 $P \downarrow Q$ 。读作P 和Q的"或非"。当且仅当P 和Q的真值都是0 时, $P \downarrow Q$ 的真值为1,否则 $P \downarrow Q$ 的真值为F。

$$P \downarrow Q = \neg (P \lor Q)$$
 (真值表)

P	Q	$P \downarrow Q$
0	0	1
0	1	0
1	0	0
1	1	0

异或联结词

- 不可兼或。 $P \nabla Q = (\neg P \land Q) \lor (P \land \neg Q)$
 - 当且仅当P和Q的值不一样的时候,的真值为1;
 - 当P和Q的值相同,异或结果为0。

P	Q	$P \overline{\lor} Q$
0	0	0
0	1	1
1	0	1
1	1	0

2.4 联接词的完备集

2.4.1 真值函项

对所有的合式公式加以分类,将等值的公式视 为同一类,从中选一个作代表称之为真值函项。每 一个真值函项就有一个联结词与之对应。

举例: N=2时的所有真值函项

N = 2时的所有真值函项

注意真值函项方向的设定。

$$g_0 = F$$
 $g_1 = P \land Q$ $g_6 = P \triangledown Q$ $g_7 = P \lor Q$ $g_8 = P \downarrow Q$ $g_9 = P \leftrightarrow Q$ $g_{13} = P \rightarrow Q$ $g_{14} = P \uparrow Q$ $g_{15} = T$ $g_3 = P$ $g_5 = Q$ 尚余 $g_{10} = \neg Q$ $g_{12} = \neg P$ $g_2 = P \land \neg Q$ $g_4 = \neg P \land Q$ $g_{11} = P \lor \neg Q = Q \rightarrow P$

对于二值逻辑,n个命题变元 $P_1, P_2, ..., P_n$ 可定义 2^{2^n} 个 n元联接词

若推广到多值逻辑结果如何

 m^{m^n} ?

2.4.2 联接词的完备集

C是一个联结词的集合,如果任何n元($n \ge 1$)真值函项都可以由仅含C中的联结词构成的公式表示,则称C是完备的联结词集合,或说C是联结词的完备集。

联结词的完备集

定理2.4.1

{ ¬, ∨, ∧}是完备的联结词集合。

- 从前面介绍的由真值表列写命题公式的过程可知, 任一公式都可由¬, ∨, ∧表示, 从而{¬, ∨, ∧} 是完备的。
- 一般情形下,该定理的证明应用数学归纳法,施 归纳于联结词的个数来论证。

联结词的完备集

推论: 以下联结词集都是完备集:

$$(1) S_1 = \{\neg, \land\}$$

(2)
$$S_2 = \{ \neg, \lor \}$$

$$(3) S_3 = \{\neg, \rightarrow\}$$

$$(4) S_4 = \{\uparrow\}$$

$$(5) S_5 = \{\downarrow\}$$

证明{↑}, {↓}都是联结词完备集。

• 已知{¬, ∨, ∧} 是完备集, 证明其中每个联结词都可以由↑来表示

$$\neg P = \neg (P \land P) = P \uparrow P$$

$$P \land Q = \neg \neg (P \land Q) = \neg (P \uparrow Q) = (P \uparrow Q) \uparrow (P \uparrow Q)$$

$$P \lor Q = \neg (\neg P \land \neg Q) = \neg P \uparrow \neg Q = (P \uparrow P) \uparrow (Q \uparrow Q)$$
证毕

一些重要的全功能联结词集合

- {¬, ^}, {¬, '}可以构成功能联结词集合。使用上述全功能联结词集合表达的命题公式类的系统常称为Boole代数系统。
- {¬,→}也可构成全功能联结词集合。该全功能联结词集合在研究逻辑系统的演绎与推理,以及在程序系统的研究中经常遇到。
- {[↑]}, {[↓]}是全功能联结词集合。在大规模集成电路中有广泛的应用。

小结

- 等值定理
 - 若在任一解释下,公式A和B的真值都相同,则称A和B是等值的
- 等值公式
 - 置换规则
 - 基本的等值公式
 - 常用等值公式
 - 等值演算及其应用
- 命题公式与真值表的关系
 - 从取T的行来写
 - 从取F的行来写

小结

- 联结词的完备集
 - 一可以证明, {¬, ∨}, {¬, ∧}, {¬, →}, {↑}, {↓}都
 是联结词功能完全组;
 - 而 {¬, ↔}, {¬}, {∧}, {∨}, {∧, ∨}都不是联结词功能完全组;
 - 使用联结词集 {¬ , ∧, ∨}.

谢谢 myc@tsinghua.edu.cn