Comparações dos Métodos Iterativos para Encontrar Raízes de Funções Reais

Nome: Caio Fernando Peres 2000784

Introdução

O presente trabalho visou implementar métodos conhecidos da comunidade acadêmica para encontrar zeros de funções. Tais métodos serão explicitados na próxima seção.

Métodos

Os métodos utilizados foram: método da secante, método de newton, método da falsa posição e método da bisseção, e teve o objetivo de resolver os seguintes problemas matemáticos:

$$1 f(x) = 3x - e^x$$

2
$$f(x) = x - 2^{-x}$$

3 $2^x - 3x = 0$

$$3 2^x - 3x = 0$$

Resultados

Tabela 1 para a função: $f(x) = 3x - e^x$

	Bisseção	Falsa Posição	Newton	Secante
Dados Iniciais	x1 = 0.9 x2 = 1.6	x1 = -2 x2 = 4	x0 = 3	x0 = 0.7 x1 = 2
$f(\overline{x})$	$f(x) = 3x - e^x$	$f(x) = 3x - e^x$	$f(x) = 3x - e^x$	$f(x) = 3x - e^x$
Número de iterações	3	11	5	8
Tolerância	0.001	0.001	0.001	0.001
Convergência	-0.000562	-0.000873	-0.000551	-0.000022

Tabela 2 para a função:

$$f(x) = x - 2^{-x}$$

	Bisseção	Falsa Posição	Newton	Secante
Dados Iniciais	x1 = 0.9 x2 = 1.6	x1 = -2 x2 = 4	x0 = 3	x0 = 0.7 x1 = 2
$f(\overline{x})$	$f(x) = x - 2^{-x}$	$f(x) = x - 2^{-x}$	$f(x) = x - 2^{-x}$	$f(x) = x - 2^{-x}$
Número de iterações	2	4	3	3
Tolerância	0.001	0.001	0.001	0.001
Convergência	0.829552	0.000525	-0.000014	-0.000000

Tabela 3 para função: $2^x - 3x = 0$

$$2^x - 3x = 0$$

	Bisseção	Falsa Posição	Newton	Secante
Dados Iniciais	x1 = 0.9 x2 = 1.6	x1 = -2 x2 = 4	x0 = 3	x0 = 0.7 x1 = 2
$f(\overline{x})$	$2^x - 3x = 0$	$2^x - 3x = 0$	$2^x - 3x = 0$	$2^x - 3x = 0$
Número de iterações	2	9	3	6
Tolerância	0.001	0.001	0.001	0.001
Convergência	-1.371586	0.000932	0.000032	0.000065

• Conclusão

Segundo os dados da tabela, podemos concluir que o método da bisseção é o que sempre(dentro das funções testadas) apresenta menor número de iterações necessárias. Porém, o método da secante é o que geralmente se aproxima mais do 0 da função.

Referências

Alfio Quarteroni, R. S. and Saleri, F. (2000). *Numerical mathematics*. Springer, New York, 1 edition.

Burden, R. L. and Faires, J. D. (2001). Numerical Analysis. Cengage Learnig, 9 edition.

Franco, N. B. (2006). *Cálculo numérico*, volume 1. São Paulo: Pearson Prentice Hall, 1 edition.

Ruggiero, M. A. and da Rocha Lopes, V. L. (1996). Cálculo numérico: aspectos teóricos e computacionais. Makron Books do Brasil.