

Department of Civil and Environmental Engineering Courses of FLUID LABS and NUMERICAL FLUID LABS

Some best practices in applied CFD

Prof. Gianandrea Vittorio Messa

e-mail: gianandreavittorio.messa@polimi.it

Telefono: 02 2399 6287

Best practices in applied CFDWorkflow

Best practices in applied CFD

Workflow

Control of iterative algorithm

The solution of the discretized equations is performed in an iterative way

How can I guarantee that the solution is converged?

Types of meshes

Structured mesh

Unstructured mesh

Staggered grid arrangement

Staggered grid arrangement

Co-located grid arrangement

Grid independence study

Grid independence study

- Run several simulations increasing the mesh refinement level (number of cells?) and try to identify the 2 two regions. In practice, at least 3 grids are required.
- I stop when the finest mesh is in the second region.
- But what is f? Basically, f is the parameter I want to estimate through the numerical simulation (e.g., the pressure drop, the drag coefficient...)
- In principle, the verification of the grid independence of a given f does not extend to other features of the solution.

An example of grid independence study

Assessment of numerical convergence Best practice

It is clear that, for each simulation, the attainment of convergence with respect to the **number of iterations** must be verified.

The number of iterations requried to reach convergence increases with the **grid refinement** level.

check

Best practice in CFD

