

Flood Forecasting Using Satellite Precipitation with Statistical Models

Krish Chhabra^{1*}, Vinit Sehgal², Binayak P. Mohanty³

¹Computer Science and Engineering, ²Water Management and Hydrological Science, ³Biological and Agricultural Engineering, Texas A&M University

Why is flood forecasting important?

Climate change has resulted in more unpredictable and extreme precipitation patterns. An improved ability to predict flooding can both save lives and reduce costly damages.

Satellite Precipitation Data

Satellite precipitation provides a labor- and cost-effective alternative to gage-based measurements, while better capturing the spatial variability of precipitation.

This study incorporates satellite-based precipitation data from NASA's Global Precipitation Measurement (GPM)
Constellation to forecast daily-streamflow.

The Precipitation-Runoff Relationship

This models in this study seek to represent and predict the **physical** relationship between precipitation and runoff. The graphs below visualize this relationship for each watershed of interest from 3/31/2015 to 9/30/2021.

Improving flood forecasting by incorporating satellite data of precipitation and soil moisture in statistical and machine learning models.

What are Watersheds?

A watershed is a cohesive unit of land which entirely drains into one exit stream or body of water. This study examines two watersheds within the United States with contrasting hydroclimates.

Upper Colorado River Basin

- Arid climate
- Streamflow from United States Geological Survey (USGS) stream station 09328920

Brazos Valley River Basin

- Semi-arid climate
- Streamflow from USGS stream station 08116650

Stochastic Statistical Models

Autoregressive (AR) Model

Predicts current streamflow, Q(t), from past p days of streamflow.

$$AR(p) := Q(t) = \phi_0 + \phi_1 Q_{t-1} + \phi_1 Q_{t-1} + \phi_2 Q_{t-2} + \dots + \phi_p Q_{t-p} + \varepsilon_t$$

Autoregressive Distributed Lag (ADL) Model

Predicts current streamflow from past p days of streamflow and past q days of precipitation, P(t).

$$ADL(p, q) := Q(t) = \beta_0 + \beta_1 Q_{t-1} + ... + \beta_p Q_{t-p} + \delta_0 P_t + ... + \delta_q P_{t-q} + \varepsilon_t$$

Results of the Study

Semi-Arid Watershed Analysis

- Significant improvement from the inclusion of precipitation data, especially at longer lead times
- Reliable forecasting up to 2-3 days lead time with ADL model
- Greater variability in streamflow reduces accuracy of models compared to arid region at longer lead times

Arid Watershed Analysis

- Minimal improvement from inclusion of precipitation data because of sparse precipitation in the region
- Reliable forecasting (R² > 0.9) up to **4-5 days lead time** with ADL model
- Relatively steady streamflow allows for more accurate forecasting

What is Next?

- Incorporating soil moisture stress (SMS) data from NASA's Soil Moisture Active Passive (SMAP) satellite.
- Additional models trained using machine learning algorithms to better capture the true, nonlinear relationship