Дмитриев М.Г., Макаров Д.А.

«Методы классического и интеллектуального управления динамическими системами»

Лекция №3

Критерий Сильвестра

Для того чтобы квадратичная форма $V(x)=x^{T}Qx$, $x \in \mathbb{R}^{n}$ была **положительно определенной** функцией, необходимо и достаточно, чтобы все угловые миноры Δ_{i} , т.е.

$$\Delta_1 = q_{11}, \quad \Delta_2 = \begin{vmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{vmatrix}, \quad \dots, \quad \det Q$$

были положительны.

Для того чтобы квадратичная форма $V(x)=x^{T}Qx$, $x \in \mathbb{R}^{n}$ была *отрицательной определенной* функцией, необходимо и достаточно, чтобы угловые миноры нечетного порядка были отрицательны, а четного — положительны.

Метод функций Ляпунова для автономных систем

Определение 1. Функция V(x) называется положительно определенной (полуопределенной) в области D, если V(0) = 0 и V(x) > 0 ($V(x) \ge 0$) всюду на D, кроме точки x = 0, и называется отрицательно определенной (полуопределенной) в области D, если V(0) = 0 и V(x) < 0 ($V(x) \le 0$) всюду на D, кроме точки x = 0.

Теорема 1 (теорема Ляпунова о локальной устойчивости). Положение равновесия x=0 автономной системы

$$\dot{x} = f(x), \quad f(0) = 0, \quad x \in \mathbb{R}^n, t \in [0, \infty).$$
 (1)

устойчиво по Ляпунову в D, если существует, положительно определенная функция V(x) такая, что ее производная по времени в силу уравнений (1) является отрицательно полуопределенной функцией.

Теорема 2 (теорема Ляпунова о локальной асимптотической устойчивости). Положение равновесия x=0 автономной системы (1) **асимптотически устойчиво**, если существует такая положительно определенная функция V(x), что ее производная по времени в силу уравнений (1) является *отрицательно определенной функцией*.

Теорема 3 (обобщенная теорема об асимптотической устойчивости). Положение равновесия x = 0 автономной системы (1) асимптотически устойчиво, если существует такая положительно определенная функция V(x), что ее производная по времени в силу (1) является отрицательно полуопределенной функцией, и она обращается в ноль вне начала координат на множестве $M \subset D$, не содержащим целых траекторий.

Определение 2. *Целой траекторией* системы называется фазовая траектория в пространстве R^n , соответствующая решению уравнения этой системы $x(x^0, t)$ ($x^0 = 0$) на всем интервале времени при $0 \le t < \infty$.

Отметим, что x=0 соответствует целой траектории, т.к. f(0,t)=0.

Пусть множество M задается уравнением $M = \{x: \phi(x)=0\}$, где $\phi(x)$ — гладкая функция. Тогда условие отсутствия в M целых траекторий можно записать следующим образом:

$$\sum_{i=1}^{n} \frac{\partial \varphi}{\partial x_{i}} \dot{x}_{i} = \frac{\partial \varphi}{\partial x} f(x) = \operatorname{grad} \varphi(x) f(x) \neq 0.$$

Теорема 4 (теорема об асимптотической устойчивости в целом). Положение равновесия x=0 автономной системы (1) асимптотически устойчиво), если существует такая положительно определенная функция V(x), допускающая бесконечно большой нижний предел, что ее производная по времени в силу уравнения этой системы является отрицательно определенной функцией.

Теорема 5 (теорема Барабашина-Красовского об асимптотической устойчивости в целом). Положение равновесия x=0 автономной системы асимптотически устойчиво), если существует такая положительно определенная функция V(x), допускающая бесконечно большой нижний предел, что ее производная по времени в силу системы является отрицательно полуопределенной функцией, и она обращается в нуль вне начала координат на множестве M, не содержащем целых траекторий.

Определение 3. Функция V(x.t) называется функцией, допускающей **бесконечно большой нижний предел**, если как бы велико ни было положительное число E, найдется такое положительное число Δ , что |V(x,t)| > E при всех $t \ge t_0$, если $|x| > \Delta$. Иначе говоря, если при $t \ge t_0$

$$|V(\mathbf{x}, \infty)| \to \infty$$
 при $|\mathbf{x}| \to \infty$.

Например, в пространстве R^3 функция

$$V(\mathbf{x},t) = (x_1^2 + x_2^2 + x_3^2)(\sin^2 t + 1)$$

допускает бесконечно большой нижний предел, а функции

$$V(\mathbf{x},t) = (x_1^2 + x_2^2)(\sin^2 t + 1),$$

$$V(\mathbf{x},t) = \left[\frac{x_1^2}{1+x_1^2} + \frac{x_2^2}{1+x_2^2} + \frac{x_3^2}{1+x_3^2}\right] (\sin^2 t + 1)$$

нет.

Методы построения функций Ляпунова

Не существует универсального метода построения функции Ляпунова. Однако, существует различные методы.

1. Энергетический подход. При таком подходе в качестве кандидата на функцию Ляпунова принимают полную энергию, представляющую сумму потенциальной и кинетической энергий.

Пример. На тело с массой m действует сила F, такая что

$$F=-f(y), \quad f(0)=0, \quad f(y)y>0 \quad$$
 при $y
eq 0.$ Движение тела: $\dot{x}_1=x_2, \quad \dot{x}_2=-rac{1}{m}\,f(x_1).$

$$V(\mathbf{x}) = W + U = \frac{mx_2^2}{2} + \int_{x_1^0}^{x_1} f(x_1) dx_1.$$

$$\dot{V}(\mathbf{x}) = mx_2\dot{x}_2 + f(x_1)\dot{x}_1 = -mx_2\frac{1}{m}f(x_1) + f(x_1)x_2 = 0$$
, $\chi=0$ локально устойчиво (см. Теорему 1).

2. Метод разделения переменных (Е.А. Барбашин). Кандидата на функцию Ляпунова ищут среди функций, которые, как и их производные по времени, представляют сумму функций, каждая из которых зависит только от одной фазовой переменной:

$$V = \sum_{i=1}^{n} f_i(x_i), \quad \frac{d}{dt}V = \sum_{i=1}^{n} \phi_i(x_i).$$

Пример.
$$\dot{x}_1 = -x_1^3 + 2x_2$$
, $\dot{x}_2 = -x_1 - 3x_2^3$.

В качестве кандидата на функцию Ляпунова принимаем функцию $V(\mathbf{x}) = F_1(x_1) + F_2(x_2)$. Тогда

$$\dot{V}(\mathbf{x}) = \frac{dF_1}{dx_1}\dot{x}_1 + \frac{dF_2}{dx_2}\dot{x}_2 = -\frac{dF_1}{dx_1}x_1^3 + \frac{dF_1}{dx_1}2x_2 - \frac{dF_2}{dx_2}x_1 - \frac{dF_2}{dx_2}3x_2^3.$$

Разность средних членов нужно занулить. Пусть

$$rac{dF_1}{dx_1}\,2x_2-rac{dF_2}{dx_2}x_1=0, \; extbf{otkyдa} \quad rac{dF_1}{dx_1}\Big/x_1=rac{dF_2}{dx_2}\Big/2x_2.$$

Т.к. левая часть равенства зависит от x_1 , а правая часть от x_2 , то это равенство возможно, если обе части являются константами и равны, например, единице. Тогда имеем $\frac{dF_1}{dx_1} = x_1$, $\frac{dF_2}{dx_2} = 2x_2$.

Проинтегрировав, получаем

$$F_1 = \frac{1}{2} x_1^2$$
, $F_2 = x_2^2$, $V(\mathbf{x}) = F_1(x_1) + F_2(x_2) = \frac{1}{2} x_1^2 + x_2^2$.

Следовательно, производная функции Ляпунова имеет вид

$$\dot{V}(\mathbf{x}) = -\frac{dF_1}{dx_1}x_1^3 - \frac{dF_2}{dx_2}3x_2^3 = -(x_1^4 + 6x_2^4).$$

Итак, построенная методом разделения переменных функция V(x) является положительно определенной и допускающей допускающая бесконечно большой нижний предел, а ее производная в силу уравнений системы - отрицательно определенной. Следовательно, по теореме Барабашина-Красовского положение равновесия x=0 является асимптотически устойчивым в целом.

3. *Метод Красовского*. В качестве кандидата на функцию Ляпунова для изучения (1) рассматривают квадратичную форму $V(x) = f(x)^T P f(x)$.

Симметричную матрица P выбирается так, чтобы сама квадратичная форма была положительно определенной, а ее производная — отрицательно определенной.

Пример.
$$\dot{x}_1=x_2, \quad \dot{x}_2=-bx_1-\varphi(x_2), \quad b>0, \quad \varphi(0)=0.$$
 Пусть $P=\begin{bmatrix}b_{11}&0\\0&b_{22}\end{bmatrix}$, тогда $V(\mathbf{x})=b_{11}x_2^2+b_{22}[-bx_1-\varphi(x_2)]^2.$

$$\dot{V}(\mathbf{x}) = 2b_{11}x_2\dot{x}_2 + 2b_{22}[-bx_1 - \varphi(x_2)]\left(-b\dot{x}_1 - \frac{\partial\varphi}{\partial x_2}\dot{x}_2\right) =$$

$$= 2[bx_1 + \varphi(x_2)](b_{22}b - b_{11})x_2 - 2b_{22}\frac{\partial\varphi}{\partial x_2}[bx_1 + \varphi(x_2)]^2.$$

Взяв $b_{11} = b$ и $b_{22} = 1$ имеем

$$V(\mathbf{x}) = bx_2^2 + [bx_1 + \varphi(x_2)]^2, \quad \dot{V}(\mathbf{x}) = -2\frac{\partial \varphi}{\partial x_2} [bx_1 + \varphi(x_2)]^2.$$

$$V(\mathbf{x}) = bx_2^2 + [bx_1 + \varphi(x_2)]^2, \quad \dot{V}(\mathbf{x}) = -2\frac{\partial \varphi}{\partial x_2} [bx_1 + \varphi(x_2)]^2.$$

Очевидно, что V(x) является положительно определенной функцией, бесконечно большой нижний предел $(V(x) \to \infty)$ при $|\mathbf{x}| \to \infty$). Теперь, если $\frac{\partial \varphi}{\partial x_2} > 0$ при $x_2 \neq 0$, то $\dot{V}(x)$ будет отрицательно полуопределенной и обращается в нуль на многообразии $\sigma(\mathbf{x}) = bx_1 + \varphi(x_2) = 0$. Можно убедиться, что это множество не содержит целых траекторий вне начала координат на указанном многообразии, поскольку

grad
$$\sigma(x) f(x) \Big|_{\sigma(x)=0} = bx_2 \neq 0$$
,

Поэтому по теореме Барбашина-Красовского положение равновесия рассматриваемой системы будет асимптотически устойчиво в целом.

4. *Метод Лурье-Постникова*. Применяется для нелинейной системы, особого вида.

$$\dot{x} = ax + bu$$
, $u = f(\xi)$, $\xi = -c^T x$, $u, \xi \in R$, (1)

$$f(0) = 0, \quad k_m \le \frac{f(\xi)}{\xi} \bigg|_{\xi \ne 0} \le k_M.$$
 (2)

В качестве кандидата на функцию Ляпунова сумму из квадратичной формы и интеграла от нелинейной функции:

$$V(x) = x^{T} P x + q \int_{0}^{\xi} f(\xi) d\xi, \quad P > 0, q = const > 0.$$
 (3)

Определение 6. Система (1) или положение равновесия x=0 системы (1) называется **абсолютно устойчивым** в угле (секторе) $[k_m, k_M]$, если нулевое решение x=0 системы (1) асимптотически устойчиво в целом (для любого $x^0 \in R$) при любой нелинейной функции f, удовлетворяющей условию (2).

Нелинейности из класса, удовлетворяющая условиями (2), также удовлетворяют условию $f(\xi)\xi \ge 0$. Следовательно, интеграл в (3) является неотрицательной функцией, а V функция положительно определенной. Т.о. нужно определить такую P>0, и такой положительной константы q>0, при которых $\dot{V}(x)<0$.

Пример. $\dot{x}_1 = x_2, \quad \dot{x}_2 = -a_2 x_1 - a_1 x_2 - k f(x_1).$ где k, a_1, a_2 — положительные постоянные, а нелинейная функция f удовлетворяет условию $f(0) = 0, \quad \alpha \leqslant \frac{f(\xi)}{\xi} \leqslant \beta, \quad 0 < a < \beta < \infty.$

Функцию Ляпунова будем искать в виде

$$V(\mathbf{x}) = x_1^2 + 2bx_1x_2 + cx_2^2 + q \int_0^{x_1} f(x_1) dx_1,$$

где b, c – произвольные постоянные, q – произвольная положительная постоянная. Для того, чтобы квадратичная форма была положительно определенной, нужно $c - b^2 > 0$.

Итак, для функции Ляпунова

 $\dot{V}(\mathbf{x}) = -2(ca_1 - b)x_2^2 - 2ba_2x_1^2 - 2bkx_1f(x_1),$

и для отрицательности производной нужно, чтобы b>0, $ca_1-b>0$ Откуда следует $0 < b < ca_1$ Подставив выражение для c, получим $0 < b < a_1/(a_1^2+a_2)$. Т.о. при достаточно малом b, имеем V>0, dV/dt < 0. При этом V будет неограниченно возрастать при стремлении |x| к бесконечности. Следовательно, положение равновесия системы $abconomho\ ycmoйчиво$.

4. *Метод Вокера-Кларка (Woker-Klark)*. Пусть имеем систему

$$\frac{d^n y}{dt^n} + f\left(y, \frac{dy}{dt}, \dots, \frac{d^{n-1} y}{dt^n}\right) = 0,$$

или в нормальной форме

$$\dot{x}_1 = x_2,$$
 $\dot{x}_2 = x_3,$
 \dots
 $\dot{x}_n = -f(x_1, x_2, \dots, x_n).$

В качестве кандидата на функцию Ляпунова рассматривается

$$V(\mathbf{x}) = \int_{0}^{x_{n-1}} f(x_1, x_2, \dots, x_n) dx_{n-1} + \frac{x_n^2}{2} + F(x_1, x_2, \dots, x_n),$$

где подлежащая определению функция F(x) строится так, чтобы $\dot{V}(x)$ в силу заданных уравнений системы была отрицательно полуопределенной.

Пример. Исследуем систему $\dot{x}_1=x_2, \quad \dot{x}_2=-f(x_1,x_2).$ Определим $V(\mathbf{x})=\int\limits_0^{x_1}f(x_1,x_2)\,dx_1+\frac{x_2^2}{2}+F(x_1,x_2).$

Тогда имеем

$$\dot{V}(\mathbf{x}) = f(x_1, x_2)\dot{x}_1 + \left(\int_0^{x_1} \frac{\partial f}{\partial x_2} dx_1\right)\dot{x}_2 + x_2\dot{x}_2 + \frac{\partial F}{\partial x_1}\dot{x}_1 + \frac{\partial F}{\partial x_2}\dot{x}_2 =$$

$$= -f(x_1, x_2)\int_0^{x_1} \frac{\partial f}{\partial x_2} dx_1 + \frac{\partial F}{\partial x_1}x_2 - \frac{\partial F}{\partial x_2}f(x_1, x_2).$$

Если положить $F(x_1, x_2) = 0$, то имеем

$$V(\mathbf{x}) = \int_{0}^{x_1} f(x_1, x_2) dx_1 + \frac{x_2^2}{2}, \quad \dot{V}(\mathbf{x}) = -f(x_1, x_2) \int_{0}^{x_1} \frac{\partial f}{\partial x_2} dx_1.$$

Откуда заключаем, что положение равновесия x=0 асимптотически устойчиво в целом, если выполняются условия

$$\int_0^{x_1} f(x_1, x_2) dx_1 \to \infty, \quad |\mathbf{x}| \to \infty,$$

$$x_1 f(x_1, x_2) > 0, \quad f(x_1, x_2) \int_0^{x_1} \frac{\partial f}{\partial x_2} dx_1 > 0 \quad \text{при} \quad \mathbf{x} \neq \mathbf{0}.$$

Экспоненциальная устойчивость

Пусть имеем систему неавтономную систему

$$\dot{x} = f(x,t), \quad f(0,t) = 0, \quad x \in \mathbb{R}^n, t \in [0,\infty).$$
 (2)

где правая часть является гладкой функцией: она непрерывно дифференцируема в области

$$|\mathbf{x}| < \rho$$
, $0 < t < \infty$ $(\rho = \text{const}$ или $\rho = \infty$),

выполняются условия
$$\left|\frac{\partial f_i}{\partial x_j}\right| < L$$
, $L = \mathrm{const} > 0$; $i, j = 1, 2, \dots n$.

Определение 4. Положение равновесия (или невозмущенное движение) x(t) = 0 системы (2) называется экспоненциально устойчивым, если существуют положительные постоянные α и M такие, что при $|x^0| < \rho/M$ возмущенное движение $x(x^0,t)$ удовлетворяет условию

$$|\mathbf{x}(\mathbf{x}^0, t)| \leqslant M|\mathbf{x}^0| e^{-\alpha(t-t_0)} \quad \forall t \geqslant t_0.$$

Если последнее условие выполняется при любых начальных условиях, то положение равновесия системы (2) называется глобально экспоненциально устойчивым или экспоненциально устойчивым в целом. Отметим, что если линейная стационарная система устойчива, то она экспоненциально устойчива в целом.

Теорема 6 (теорема Красовского). Положение равновесия системы (2) экспоненциально устойчиво в области D, если существуют функция Ляпунова V(x,t) и положительные постоянные c_i (i=1,2,3,4) такие, что выполняются неравенства

$$c_1 |\mathbf{x}|^2 \leqslant V(\mathbf{x}, t) \leqslant c_2 |\mathbf{x}|^2,$$

$$\dot{V}(\mathbf{x}, t) = w(\mathbf{x}, t) \leqslant -c_3 |\mathbf{x}|^2,$$

$$\left| \frac{\partial V(\mathbf{x}, t)}{\partial \mathbf{x}} \right| \leqslant c_4 |\mathbf{x}|.$$

Если система экспоненциально устойчива, то имеется экспоненциальная скорость затухания переходных процессов, что чрезвычайно важно для систем автоматического управления.

В случае экспоненциально устойчивой *линейной* стационарной или нестационарной системы существует квадратичная форма $V(x)=x^{T}Qx$ или $V(x,t)=x^{T}Q(t)x$, удовлетворяющая условию теоремы Красовского.

В случае экспоненциально устойчивой нелинейной системы соответствующая функция Ляпунова может быть неквадратичной формой.

Теоремы о неустойчивости

Напомним, что метод функции Ляпунова является определяет достаточные условия устойчивости. Если не удалось построить такие функции, то нельзя заключить об устойчивости положения равновесия. Поэтому важную роль играют условия неусточивости.

Теорема 7 (первая теорема Ляпунова о неустойчивости). Положение равновесия x=0 неавтономной системы (2) неустойчиво, если существует функция V(x,t), допускающая бесконечно малый верхний предел, такая, что ее производная $\dot{V}(x)$ в силу уравнения этой системы является положительно определенной функцией и при всех $t \geq t_0$ в любой малой окрестности начала координат найдется точка $x = x^0$, в которой функция V(x,t) принимает положительное значение.

Здесь функция V(x,t) не предполагается знакоопределенной, однако предполагается, что V(x,t) непрерывна, обладает непрерывными частными производными по всем своим аргументам и в начале координат обращается в ноль.

Определение 5. Функция V(x,t) называется функцией, допускающей *бесконечно малый верхний предел*, если как бы мало ни было положительное число ε' , найдется такое положительное число δ' , что $|V(x,t)| < \varepsilon'$ при всех $t \ge t_0$, если $|x| < \delta'$.

Теорема 7 (теорема Четаева о неустойчивости). Пусть существует непрерывно дифференцируемая функция V(x,t), V(0,t)=0, такая, что область $Q=\{|x|< H,\ V(x,t)>0\}$ удовлетворяет условиям:

- 1) Q состоит из нескольких связных открытых компонент;
- 2) в Q имеются точки x с произвольно малой нормой |x|.

Тогда если в области Q функция V(x,t) ограничена, а ее производная в силу системы (2) определенно-положительна (т. е. $\dot{V}(x) \ge \gamma_4(||x||), x \in Q, \gamma_4 \in \Gamma$), то тривиальное решение системы (2) (положение равновесия x=0) неустойчиво.

Здесь Γ класс строго возрастающих непрерывных функций γ : $R+ \to R+$ таких что $\gamma(0)=0$.