Rule-based Systems

IE562 Computational Foundations of Smart Systems

Juxihong Julaiti

Sep, 2018

Outline

- Rule-based Systems
- Forward and Backward Chaining
- Packer
- Identifier
- PyKown
- Homework

Rule-based Systems

Major components:

- Rule base (Brain)
- Database of facts (State or observations)
- Inference engine (a function that maps state to conclusion(s) using "brain")

RBS: facts->conclusions via. a match-resolve-act cycle

Similar to a mathematical function

$$f(x): \mathbb{R} \to [0,1]$$
 $f(x) = \begin{cases} 1 & x >= 0 \\ 0 & x < 0 \end{cases}$

Or mathematical proofs:

Given conditions, expand the conditions, until goal is reached

Forward and Backward Chaining

• FC

- Start from facts (LHS)
- Check rules (RHS)

If LHS matches RHS (triggered): execute the action (fired), update the LHS

If the goal is reached: stop

else if: LHS is not updated, stop

else: check rules

BC:

- Start from hypothesis
- Check facts:
 - If facts support the hypothesis: stop
 - If need to check another hypothesis: check facts against it
 - Else: stop

Packer

- Observations/facts/state:
 - Suitcase content
 - Suitcase space size
 - Mound
 - Essentials
 - Articles
 - Article size
 - Mate
 - Step (checking or putting)
- Rule base:
 - 6 rules, see the lecture note
- Inference engine:
 - match-resolve-act cycle

Identifier

- Observations/facts/state:
 - If each of the hypothesis/evidence is true or unknown
 - Final hypothesis
 - Intermediate hypothesis
 - Evidences
- Rule base:
 - 10 rules, see the lecture note
- Inference engine:
 - match-resolve-act cycle

PyKown and Homework

- PyKnown: Check notebook and documentation
- Homework: Will be sent out tonight