M1 Info - Cours de Réseaux Cours 4

« Couche Transport »

2018 - 2019

Dr Saadbouh O CHEIKH EL MEHDI

1

Couche Transport

Fonctions principales

- Aller au-delà des limites d'IP !!?
- Segmenter les données de la couche supérieure, et ré-assemble les segments en données (à la réception) pour la couche supérieure
- Gèrer la communication, <u>de bout en bout</u>, entre les processus exécutés sur des hôtes distants
- Assurer, si possible, la correction d'erreurs :
 - signalées par ICMP
 - non signalées
- 2 protocoles de transport disponibles dans TCP/IP :
 - **UDP** : transport rapide, non connecté, permettant la multi-diffusion
 - TCP : transport fiable en mode connecté point-à-point
- Distinguent les applications au sein d'un même hôte
- Garantissent l'indépendance des communications

M1 Info - Dr Saadbouh O Cheikh El Mehdi

2

Adressage des applications

Plusieurs applications réseaux peuvent s'exécuter simultanément sur la même machine.

<u>Problème</u>: Comment un émetteur peut-il préciser à quelle application est adressé un message?

Solution: utilisation de destinations abstraites : les ports

- Entiers positifs sur 16 bits
- UDP et TCP fournissent chacun un ensemble de ports indépendants: le port **n** de UDP est indépendant du port **n** de TCP
- Le système permet aux applications de se voir affecter un port UDP et/ou TCP (choisi ou de manière arbitraire)
- Certains numéros de port sont réservés et correspondent à des services particuliers

3

Protocole UDP

- « User Datagram Protocol » RFC 768 août 1980
- Utilise IP pour acheminer les messages d'un ordinateur à un autre (Se contente des services offerts par la couche inférieure -IP-).
- Numéro de protocole 17 quand transporté par IP
- Service rendu:
 - adressage des applications par numéro de port
 - multiplexage/démultiplexage par numéros de port
 - contrôle facultatif de l'intégrité des données
- Même type de service non fiable, non connecté que IP :
 - possibilité de perte, duplication, déséquencement de messages
 - pas de régulation de flux

Format des segments UDP

Port source	Port destination	
Longueur	Somme de contrôle	
Données		

M1 Info - Dr Saadbouh O Cheikh El Mehdi

6

Description des champs

Port source: est un champ facultatif contenant le numéro de port de l'expéditeur, compris entre 1 et **65 535**. Si aucun numéro de port n'est spécifié, le champ est mis à 0. Ce champ est par contre nécessaire au destinataire s'il doit renvoyer des données.

Port destination: est le numéro de port sur la machine de destination.

Longueur: est la taille du datagramme, exprimée en nombre d'octets, comprenant en-tête et données. Sa valeur minimum est 8 (taille de l'en-tête UDP) alors que le datagramme UDP le plus long peut transporter **65 535 - 8 = 65 527** octets de données utiles.

Somme de contrôle : est optionnel. S'il est employé, il porte sur un pseudo en-tête constitué de la manière suivante :

\leftarrow	321	oits	\longrightarrow
	Adresse IF	Source	
	Adresse IP D	estination	
0	Protocole	Longueur totale UDP	
← 8 bits	><8 bits><	16 bits-	\longrightarrow

Pseudo en-tête UDP

M1 Info - Dr Saadbouh O Cheikh El Mehdi

Couche Transport

Description des champs

Somme de contrôle (suite):

- Vérifie la totalité du datagramme + Pseudo en-tête UDP
- Permet de s'assurer :
 - que les données sont correctes
 - que les ports sont corrects
 - que les adresses IP sont correctes
- Même calcul que IP
- Pseudo en-tête UDP (interaction avec IP): (12 octets)

Données: elles sont de longueur variable

8

Utilisation d'UDP

Le protocole UDP est utilisé dans:

- Les applications orientées transaction telles que DNS, DHCP, ...
 - Seules une requête et une réponse associée doivent être transmise, de telle sorte qu'il est inutile d'établir une connexion pour cela
- Les contextes où la rapidité de la transmission des données prédomine sur la fiabilité.
 - Les flux d'applications multimédia (flux audio, vidéo)

9

M1 Info - Dr Saadbouh O Cheikh El Mehdi

Couche Transport

Protocole TCP

«Transmission Control Protocol » RFC 793 - Septembre 1981

Transmission de données :

- Par paquets de tailles variables
- En mode connecté (3 phases:)
 - Établissement de la connexion
 - Transfert de données
 - Libération de la connexion
- Bidirectionnelle (full duplex)
- Flux non structuré de données (suite d'octets "Stream")
 - Il n'y a pas de frontière entre les bits générés par l'application source.
 - La source dépose en 'continu' ou non des flots de bits dans le buffer TCP
 - TCP extrait un certain nombre de bits consécutifs pour former un segment et l'envoie
- Fiable
 - contrôle et récupération des erreurs
 - contrôle de flux et de congestion
 - contrôle de la duplication
 - reséquencement

10

L'en-tête TCP

Port source (16 bits): identifie l'utilisateur TCP local, comme dans le cas UDP.

Port destination (16 bits): identifie l'utilisateur TCP de la machine distante.

Numéro de séquence (32 bits): indique la position du bloc en cours dans l'ensemble du message.

Numéro d'accusé de réception (32 bits): : utilisé par l'expéditeur pour préciser à son correspondant le numéro de séquence qu'il attend dans le segment TCP suivant. (numéro du prochain octet attendu en provenance de l'interlocuteur)

Long (4 bits): indique la longueur de l'en-tête. La valeur de ce champ est importante car le champ options a une longueur variable!. Lorsque le champ options est vide Long= 20

Réservé (6 bits): réservé pour des utilisations ultérieures. Les 6 bits doivent être positionnés à 0.

Drapeaux (6 bits):

connexion

URG: Données urgentes (le champ "pointeur d'urgence" doit être exploité)

ACK: Acquittement (le champ "numéro d'accusé de réception" doit être exploité)

PSH: Délivrance immédiate « inutilisé»

(RST: Re-initialisation de la connexion (l'émetteur demande que la connexion TCP redémarre)

SYN: Le champ « numéro de séquence » contient la valeur de début de connexion

FIN: L'émetteur du segment a fini d'émettre

13

14

M1 Info - Dr Saadbouh O Cheikh El Mehdi

Couche Transport

L'en-tête TCP

Fenêtre (16 bits): indique le nombre d'octets que le destinataire peut recevoir. Si Fenêtre= **F** et que le segment contient un numéro d'acquittement = **A**, alors le récepteur accepte de recevoir les octets numérotés de A à A + F -1.

Somme de contrôle d'erreurs (16 bits):

- Obligatoire (pas comme en UDP!)
- Vérifie la totalité du segment + Pseudo en-tête TCP.
- Comme pour UDP, permet de s'assurer :
 - que les données sont correctes
 - que les ports sont corrects
 - que les adresses IP sont correctes
- Même calcul que IP/UDP + pseudo en-tête TCP
- Pseudo en-tête TCP (interaction avec IP) : (12 octets)

Adresse IP Source

Adresse IP Destination

O Protocole Longueur totale TCP

8 bits

Pseudo en-tête TCP

M1 Info - Dr Saadbouh O Cheikh El Mehd

7

L'en-tête TCP

Pointeur urgent (16 bits): un pointeur d'offset vers le N° de séquence marquant le début de toute Information urgente.

On n'a à tenir compte de ce champ que si le drapeau **URG** est activé (**URG =1**).

Options (taille variable) : options nécessitant des traitements particuliers.

15

