Théorie des groupes

Table des matières

1	informations utiles	2
I	Théories des groupes	2
2	Les sous-groupes	5
3	Sous-groupe engendré	6
	3.1 Produit de groupes	7
	3.2 Morphismes	7

1 informations utiles

Slavyana GENINSKA Jean RAIMBAUT

cours sur: http://www.math.univ-toulouse.fr/ jraimbau/Enseignement/theorie_des_groupes.html

Première partie

Théories des groupes

Exemple. Isométries préservant un triangle équilateral

Rappel 1. Isométrie du plan:

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$\forall x, y \in \mathbb{R}^2, d(x, y) = d(f(x), f(y))$$

Exemple. Isométries

- symétrie
- rotation
- translation
- symétrie glissée

Remarque 1. L'identité, notée Id, peut être vue comme une rotation (d'angle 0) ou comme une translation (par le vecteur nul).

Soit T, un triangle équilatéral.

$$Isom(T) = \{f : \mathbb{R}^2 \to \mathbb{R}^2, isométrie || f(T) = T\}$$

est l'ensemble des isométries du plan sui préservent T.

Une telle application f a forcement au moins un point fixe:

$$Isom(T) = \{Id, r_{\frac{2\pi}{3}}, r_{-\frac{2\pi}{3}}, S_A, S_B, S_C\}$$

On peut alors faire les deux remarques suivantes :

Remarque 2. — Isom(T) est stable par composition :

$$S_A \circ S_B = r_{\frac{2\pi}{3}}$$

$$S_B \circ S_A = r_{-\frac{2\pi}{3}}$$

— Toute application $f \in Isom(T)$ admet une transformation inverse $f^{-1} \in Isom(T)$

Exemple. Le groupe symétrique :

Soit E, un ensemble de n objets, S_n est l'ensemble des bijection de E, appelé groupe symétrique.

Par exemple, le groupe symétrique S_3 avec $E = \{1, 2, 3\}$

Remarque 3. — S_3 est stable par composition

— Toute bijection admet un inverse qui est encore dans S₃

Remarque 4. Les deux exemples sont les mêmes d'un certain point de vue, il s'agit de la même structure algébrique (nous verrons plus tard qu'il s'agit d'un isomorphisme)

Définition 1. *Un groupe est un ensemble G muni d'une application (appelée loi de groupe) :*

$$*: {G \times G \rightarrow G \atop (g,h) \mapsto g * h}$$

Cette loi vérifie les propriétés suivantes :

- associativité:

$$\forall g, h, k \in G, (g * h) * k = g * (h * k)$$

— présence d'un élément neutre :

$$\exists e \in G / \forall g \in G, g * e = e * g = g$$

— existance de l'inverse (ou symétrique) :

$$\forall g \in G, \ \exists h \in G \ / \ g * h = h * g = e$$

Exemple. 1. \mathbb{R} avec la loi +, l'élément neutre est alors 0 et le symétrique est l'opposé.

- 2. \mathbb{R}^* avec la loi ·, l'élément neutre est alors 1 et le symétrique est l'inverse.
- 3. Soit $P \subset \mathbb{R}^2$, un polygone régulier à n cotés. On note alors I som(P), l'ensemble des isométries le concervant :

$$Isom(P) = \{ f : \mathbb{R}^2 \to \mathbb{R}^2, isométrie \mid\mid f(P) = P \}$$

 $Isom(P)\ est\ alors\ un\ groupe\ si\ on\ le\ muni\ de\ la\ loi\ de\ composition\circ.$

L'élément neutre est alors l'identité : $\forall f \in Isom(P), f \circ Id = Id \circ f = f$.

Le symétrique est la transformation réciproque f^{-1} Ce groupe est alors appelé groupe diédral, on le note D_n (ou D_{2n} étant donné

Ce groupe est alors appelé groupe diédral, on le note D_n (ou D_{2n} étant donne que ce groupe possède 2n éléments).

Exemple. — $D_3 = Isom(T)$ est le groupe présenté dans l'exemple 1,

*D*₃ possède six éléments

- D₄ est l'ensemble des isométries préservant le carré.
 - $D_4 = Isom(C) = \{Id, r_{\frac{\pi}{2}}, r_{\pi}, r_{-\frac{\pi}{2}}, S_{AC}, S_{MP}, S_{BD}, S_{NQ}\}$

 D_4 possède donc 8 éléments

4. Si E est un ensemble, l'ensemble des bijections de E dans E est un groupe pour la loi \cdot comme précédemment.

 $Si E = \{1, ..., n\}, Bi j(E)S_n$

 $Si E = \mathbb{R}$, $Bi j(\mathbb{R})$ est un groupe

- 5. \mathbb{R}^n muni de l'addition vectorielle est un groupe. Plus généralement, tout espace vectoriel E est un groupe pour l'addition
- 6. $GL_n(\mathbb{R}) = \{A \in M_{n,n}(\mathbb{R}) \mid det A \neq 0\}$ Pour la multiplication matricielle, voir l'exercice 1.

Contre-exemple. 1. $(\mathbb{N},+)$ n'est pas un groupe car aucun élément n'admet de symétrique

- 2. (\mathbb{R},\cdot) n'est pas un groupe car 0 n'admet pas de symétrique
- 3. (\mathbb{Z}^*,\cdot) n'est pas un groupe car 1 et -1 sont les seuls éléments admettant un symétrique
- 4. $(\{-1,0,1\},+)$ n'est pas un groupe car $1+1=2 \notin \{-1,0,1\}$

Remarque 5. Le groupe \mathbb{Z} est $(\mathbb{Z}, +)$.

Le groupe \mathbb{R}^* *est* (\mathbb{R}^*, \cdot) .

Le groupe \mathbb{R}^n est $(\mathbb{R}^n, +)$.

Définition 2. On dit qu'un groupe G est commutatif (ou abélien) si :

$$\forall g, h \in G, \Rightarrow g * h = h * g$$

Exemple. $(\mathbb{Z},+)$, (\mathbb{R}^*,\cdot) , (\mathbb{C}^*,\cdot) , $(\mathbb{R}^n,+)$ sont des groupes abéliens.

Contre-exemple. S_n pour $n \ge 3$, $GL_n(\mathbb{R})$ pour $n \ge 2$ ne sont pas des groupes abléliens

Exemple. *Soit* n > 0, *un entier fixé*.

 $\mathbb{Z}/n\mathbb{Z}$, l'ensemble des entiers $a \in \mathbb{Z}$ considéré modulo n:

$$\bar{a} = \{a + kn \mid k \in \mathbb{R}^n\} \in \mathbb{Z}/n\mathbb{Z}$$

Pour $a, b \in \mathbb{Z}$, $\bar{a} = \bar{b}$ si et seulement si, pour $k \in \mathbb{Z}$, a - b = kn

Exemple. Dans $\mathbb{Z}/3\mathbb{Z}$,

 $\bar{1} = \bar{4} = \bar{10} = -2 \text{ mais } \bar{1} \neq \bar{2}$

$$\mathbb{Z}/3\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}\}$$

$$\bar{0} = \{3k \mid k \in \mathbb{Z}\}$$

$$\bar{1} = \{1 + 3k \mid k \in \mathbb{Z}\}$$

$$\bar{2} = \{2 + 3k \mid k \in \mathbb{Z}\}$$

$$\bar{0} \cup \bar{1} \cup \bar{2} = \mathbb{Z}$$

On définit l'addition sur $\mathbb{Z}/n\mathbb{Z}$ telle que : $\bar{a} + \bar{b} = a + b$. On vérifie que cette définition ne dépend pas du choix des représentants.

$$\bar{a} + \bar{b} = a + \bar{k}_1 n + b + \bar{k}_2 n$$

= $a + k_1 n + b + k_2 n$
= $a + b + (\bar{k}_1 + k_2) n$
= $a + \bar{b}$

```
Remarque 6. Sur \mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\}
\bar{0} = \{2k \mid k \in \mathbb{Z}\}, l'ensemble des nombres pairs \bar{1} = \{1 + 2k \mid k \in \mathbb{Z}\}, l'ensemble des nombres impairs
```

 $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe abélien.

Remarque 7. *Comment définir une multiplication sur* $\mathbb{Z}/n\mathbb{Z}$?

Notation. *Un groupe est noté G*

Notation. notation multiplicative Il s'agit de la notation par défaut,

"produit" du g et h : gh élément neutre : e, 1 ou 1_G l'inverse de g : g^{-1} (et jamais $\frac{1}{g}$)

Notation. notation additive Il s'agit de la notation préférée pour les groupes abéliens,

"somme" de a et b: a+b élément neutre: 0 ou 0_G l'inverse de a: -a

2 Les sous-groupes

Définition 3. *Soit G, un groupe.*

Un sous-ensemble $H \subset G$ est appelé sous-groupe de G et noté H < G si la loi sur G induit une structure de groupe sur H, c'est-à-dire:

- $\forall h_1, h_2 \in H$, $h_1h_2 \in H$ (la loi est interne)
- l'élément neutre e de G est dans H
- $\forall h \in H$, h admet un symétrique $h^{-1} \in H$ (on dit que H est stable par passage au symétrique)

```
Exemple. -n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\} < \mathbb{Z}
```

- Le cercle unité $U = \{x \mid |z| = 1\} < \mathbb{C}^*$

Le groupe des racines n-ièmes de l'unité $U_n = \{z \in \mathbb{C} \mid z^n = 1\} < \mathbb{C}^*$

Remarque 8. $\forall n, U_n \subset U \text{ mais } \forall n, U_n \neq U$

Soit P un polygone.

Isom(P), le groupe d'isométries préservant P (rotations et symétries). $Isom^+(P)$, les isométries de Isom(P) qui préservent l'orientation du plan (ici,

seulement les rotation).

- $On\ a\ Isom^+(P) < Isom(P)$
- $Diff(\mathbb{R}) < Bij(\mathbb{R})$, le sous-groupe des bijections de \mathbb{R} de classe \mathscr{C}^{∞}

Proposition 1. *Soit G, un groupe.*

Un sous-ensemble H de G est un sous-groupe si et seulement si les deux consitions suivantes sont satisfaites :

```
\begin{split} & - \quad H \neq \emptyset \\ & - \quad \forall \, h_1, h_2 \in H, h_1 \, h_2^{-1} \in H \end{split}
```

 $D\acute{e}monstration.~$ On suppose que H satisfait les deux points de la propriété ci-dessus. $H\neq \emptyset$ donc $\exists h\in H$

pour vérifier que $e \in H$,

on applique la seconde propriété à h, donc $hh^{-1} = e \in H$ on vérifie ensuite que tout élément de H possède un inverse dans H,

soit $h \in H$, on applique la seconde propriété à e donc $eh^{-1} = h^{-1} \in H$ on vérifie enfin que le produit de tout élément de H appartient à H Soient $h_1, h_2 \in H$. On applique la seconde propriété à $h_1, h_2^{-1} \in H$. Donc $h_1(h_2^{-1})^{-1} = h_1h_2 \in H$

3 Sous-groupe engendré

Proposition 2. *Soit G, un groupe, soit de plus S* \subset *G.*

 $\exists ! H < G \mid S \subset H \ et \ \forall F < G \mid S \subset F, \ H \subset F$

Remarque 9. Un groupe monogène est nécessairement commutatif.

Démonstration. Si
$$G = \langle g \rangle$$
, alors $G = \{g^n, n \in \mathbb{Z}\}$
De plus, si $k, l \in \mathbb{Z}$, on a $g^k g^l = g^{k+l} = g^{l+k} = g^l g^k$

Remarque 10. En particulier, un groupe non commutatif ne peut pas être monogène (contraposée de la remarque précédente)

Exemple. S_3 , par exemple, n'étant pas commutatif, n'est pas non plus monogène.

3.1 Produit de groupes

Soient G_1 et G_2 , deux groupes.

Le groupe produit $G = G_1 \times G_2$ est défini par l'ensemble $\{(g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2\}$ avec l'opération $*: G \times G \to G$ définie par

$$(g_1, g_2) \times (h_1, h_2) = (g_1 h_1, g_2 h_2)$$

On définit de manière similaire le produit d'une famille de groupes.

Remarque 11.

$$G_1 \times (G_2 \times G_3) = (G_1 \times G_2) \times G_3 = G_1 \times G_2 \times G_3$$

Exemple.

$$\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z} = \{(m, n) \mid m, n \in \mathbb{Z}\}$$
$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$

$$\begin{split} \frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}} &= \{ (a,b) \mid a \in \frac{\mathbb{Z}}{2\mathbb{Z}}, \ b \in \frac{\mathbb{Z}}{3\mathbb{Z}} \} \\ &= \{ (\bar{0},\bar{0}), (\bar{0},\bar{1}), (\bar{0},\bar{2}), (\bar{1},\bar{0}), (\bar{1},\bar{1}), (\bar{1},\bar{2}) \} \\ &= < (\bar{1},\bar{1}) > \ qui \ est \ un \ groupe \ cyclique \ d'ordre \ 6 \end{split}$$

— $\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$ n'est pas cyclique : $\{(\bar{0},\bar{0}),(\bar{0},\bar{1}),(\bar{1},\bar{0}),(\bar{1},\bar{1})\}$ contient un élément d'ordre 1 et trois éléments d'ordre

{(0,0), (0,1), (1,0), (1,1)} contient un element à ordre 1 et trois elements à ordre 2.

 $\frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{2\mathbb{Z}}$ ne contient pas d'élément d'ordre 4 et n'est donc pas cyclique.

3.2 Morphismes

Définition 4. *Soient* (G, \star) *et* (Γ, \diamond) , *deux groupes.*

On appelle morphisme (ou homomorphisme) de groupes de G vers Γ toute application

$$\varphi: G \to \Gamma$$

telle que $\forall g, h \in G$, $\varphi(g \star h) = \varphi(g) \diamond \varphi(h)$

Remarque 12. S'il n'y a pas d'ambiguïté, on utilisera la notation multiplicative pour G et Γ :

$$\varphi(gh) = \varphi(g)\varphi(h)$$

Propriété 1. — $\varphi(e_G) = e_{\Gamma}$

Démonstration.

$$\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$$

On multiplie par $\varphi(e_G)^{-1}$ l'égalité précédente et on obtient

$$\varphi(e_G)\varphi(e_G)^{-1} = \varphi(e_G)\varphi(e_G)\varphi(e_G)^{-1}$$

$$\Rightarrow e_\Gamma = \varphi(e_G)e_\Gamma$$

Donc, $e_{\Gamma} = \varphi(e_G)$

- ∀ *g* ∈ *G*, φ (*g*⁻¹) = φ (*g*)⁻¹

 $- \forall n \in \mathbb{Z}, \forall g \in G, \varphi(g^n) = \varphi(g)^n$

Démonstration. Par récurrence pour n > 0,

On utilise $\varphi(g^1) = \varphi(g)$

Pour $n \ge 2$,

$$\varphi(g^n) = \varphi(g^{n-1}g)$$

$$= \varphi(g^{n-1})\varphi(g)$$

$$= \varphi(g)^{n-1}\varphi(g)$$

$$= \varphi(g)^n$$

Pour n = 0, $g^0 = e_G$ et $\varphi(g)^0 = e_\Gamma$ Pour n = 1,

Définition 5. Soit $\varphi : G \to \Gamma$, un morphisme de groupes. On appelle :

— Image de φ, l'ensemble

$$Im(\varphi) = \{ \varphi(g) \mid g \in G \} = \{ \gamma \in \Gamma \mid \exists g \in G \mid \varphi(g) = \Gamma \} \subset \gamma$$

— noyau de φ,

Remarque 13. — Les exemples 1, 3 et 4 sont des isomorphismes — Le déterminant n'est pas bijectif pour n > 1

Définition 6. *Soit G un groupe.*

Un sous-groupe H de G est distingué (ou normal) dans G si

$$\forall g \in G, \ \forall h \in H, \ ghg^{-1} \in H$$

Notation. *On note alors* $H \triangleleft G$

Un élément de type ghg^{-1} est dit conjugué de h par g.

Proposition 3. *Soit* φ : $G \rightarrow \Gamma$, *un morphisme*.

- $Im(\varphi)$ est un sous-groupe de Γ
- Ker(φ) est un sous-groupe distingué de G

 $--- \varphi(e_G) = e_\Gamma \text{ donc } e_\Gamma \in Im(\varphi)$ Démonstration.

Proposition 4. *Soit* φ : $G \rightarrow \Gamma$, *un morphisme*. Alors φ est injectif si et seulement si $Ker(\varphi) = \{e_G\}$

Démonstration. Dans le sens direct : On suppose que φ , est injectif, i.e.

$$\forall g_1, g_2 \in G, \ \varphi(g_1) = \varphi(g_2) \Rightarrow g_1 = g_2$$

Soit $g \in Ker(\varphi)$. On sait que $e_G \in Ker(\varphi)$

On a alors, $\varphi(g) = e_{\Gamma} = \varphi(e_G)$.

Par l'injectivité de φ , on a $g = e_G$.

Donc $Ker(\varphi) = \{e_G\}$

Dans le sens indirect :

On suppose que $Ker(\varphi) = \{e_G\}$

On veut montrer que φ est injectif.

Soient $g_1, g_2 \in G$ tels que $\varphi(g_1) = \varphi(g_2)$

$$\varphi(g_1g_2^{-1}) = \varphi(g_1)\varphi(g_2^{-1})$$

$$= \varphi(g_2)\varphi(g_2)^{-1}$$

$$= e_{\Gamma}$$

Donc $g_1g_2^{-1} \in Ker(\varphi) = \{e_G\}$ Donc $g_1g_2^{-1} = e_G$

Donc $g_1 = g_2$

Donc φ est injectif.

Proposition 5. Si $\varphi: G \to \Gamma$ est un morphisme bijectif, alors l'application $\varphi^{-1}: \Gamma \to G$ est un morphisme (lui aussi bijectif).

Autrement dit, si $\varphi: G \to \Gamma$ est un isomorphisme, alors $\varphi^{-1}: \Gamma \to G$ est aussi un isomorphisme.

Démonstration. Soient $\gamma_1, \gamma_2 \in \Gamma$

Il existe $g_1, g_2 \in G$ tels que $\gamma_1 = \varphi(g_1)$ et $\gamma_2 = \varphi(g_2)$

$$\varphi^{-1}(\gamma_1 \gamma_2) = \varphi^{-1}(\varphi(g_1) \varphi(g_2))$$

$$= \varphi^{-1}(\varphi(g_1 g_2))$$

$$= g_1 g_2$$

$$= \varphi^{-1}(\gamma_1) \varphi^{-1}(\gamma_2)$$

Donc φ^{-1} est un morphisme.

Définition 7. Deux groupes G et F sont isomorphes s'il existe un isomorphisme φ : $G \rightarrow \Gamma$.

Notation. *On note alors* $G \cong \Gamma$

Remarque 14. Deux groupes sont isomorphes quand ils possèdent la même structure de groupe.

Exemple. — $exp:(\mathbb{R},+)\to(\mathbb{R}_{>0},\cdot)$ est un isomorphisme.

$$Donc\left(\mathbb{R},+\right)\cong\left(\mathbb{R}_{>0},\cdot\right)$$

$$-f: Isom(T) \to S_3$$

est un isomorphisme

$$g \mapsto f(g) \ / \ g(x_i) = x_{f(g)(i)}$$

$$Donc \ Isom(T) \cong S_3$$

— Les trois groupes suivants sont deux à deux isomorphes :

 $\mathbb{Z}/n\mathbb{Z}$, les racines n-ièmes de l'unité U_n et I som $(n-g\hat{o}nes\ réguliers)$

$$f_1: \mathbb{Z}/n\mathbb{Z} \to U_n$$

$$\bar{k} \mapsto e^{i\frac{2k\pi}{n}}$$

est un isomorphisme

$$f_2: U_n \to Isom(n-g\hat{o}nes\ r\acute{e}guliers)$$

$$e^{i\frac{2k\pi}{n}} \mapsto r_{\frac{2k\pi}{n}}$$

Proposition 6. *Soit G un groupe.*

1. $Si \varphi : (\mathbb{Z}, +) \to G$ est un morphisme, alors il existe un unique élément de G tel que $\forall n \in \mathbb{Z}$, $\varphi(n) = g^n$ l'élément neutre est donné par $\varphi(1) = g$.

Démonstration. $g = \varphi(1)$ est unique.

Puis on se sert de la troisième propriété (qui nous donne $\varphi(n) = \varphi(1)^n = g^n$)

2. Si g est un élément quelconque de G, alors il existe un unique morphisme φ_g : $(\mathbb{Z},+) \to G$, tel que $\varphi(1) = g^n$

Démonstration. φ est un morphisme de groupes car

$$\varphi(m+n) = g^{m+n} = g^m g^n = \varphi(m)\varphi(n)$$

Rappel 2. Pour φ : $G \to \Gamma$, un isomorphisme $(\forall g, h \in G, \varphi(gh) = \varphi(g)\varphi(h))$ φ est un isomorphisme si et seulement s'il est un morphisme bijectif.

Proposition 7. *Soit* φ : $G \rightarrow Gamma$, *un isomorphisme* :

- 1. Si G est abélien, alors Γ est abélien.
- 2. Si $g \in G$ est d'ordre n, alors $\varphi(g) \in \Gamma$ est d'ordre n.

Démonstration.

1. Soient $\gamma_1 = \varphi(g_1), \gamma_2 = \varphi(g_2) \in \Gamma(g_1, g_2 \in G)$

$$\gamma_1 \gamma_2 = \varphi(g_1) \varphi(g_2)$$

$$= \varphi(g_1 g_2)$$

$$= \varphi(g_2 g_1)$$

$$= \varphi(g_2) \varphi(g_1)$$

$$= \gamma_2 \gamma_1$$

Donc Γ est abélien.

2. Soit $g \in G$ d'ordre n, c'est-à-dire que n est le plus petit entier naturel non nul tel que $g^n = e^g$.

On veut montrer que $\varphi(g)$ est d'ordre n.

$$\varphi(g)^n = \varphi(g^n)$$

$$= \varphi(e_G)$$

$$= e_{\Gamma}$$

— Il reste à montrer que $\forall k \in \mathbb{Z}$, 0 < k < n, $\varphi(g)^k \neq e_{\Gamma}$

$$\varphi(g)^k = \varphi(g^k) = e_\Gamma \Leftrightarrow g^k \in ker(\varphi) = \{e_G\}$$

Donc $\varphi(g)^k=e_\Gamma$ si et seulement si $g^k=e_G$ Ainsi, $\varphi(g)$ et g ont le même ordre.

П

Exemple. 1. $\mathbb{Z}/6\mathbb{Z}$ n'est pas isomorphe à Isom(T)

- $\mathbb{Z}/6\mathbb{Z}$ contient un élément d'ordre G et les ordres possibles pour les éléments de I som(T) sont 1, 2 et 3.
- $\mathbb{Z}/6\mathbb{Z}$ est abélien mais Isom(T) ne l'est pas.
- 2. $\mathbb{Z}/4\mathbb{Z}$ (d'ordre 4) n'est pas isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (dont l'ordre maximal est 2).

Si G est cyclique d'ordre n, alors il existe un $g \in G$ d'ordre n.

 $Donc \varphi(g)$ est d'ordre n.

Ainsi, si φ est bijective, Γ est d'ordre n.

Remarque 15. De façon générale, si φ : $G \to \Gamma$, est un isomorphisme et G, un groupe cyclique, alors Γ est aussi un groupe cyclique.

Théorème 1. de Lagrange Soit G, un groupe d'ordre fini et H < G, alors |H| divise |G|.

En particulier, $\forall g \in G$, $|g| = | \langle g \rangle |$ divise |G|

Corrolaire 1. *Tout groupe d'ordre premier p est isomorphe* à $\mathbb{Z}/p\mathbb{Z}$.

Démonstration. Soit G tel que $|G| = \emptyset$ Soit $g \in G$, $g \neq e$. On a l'ordre de |G| = p (donné par le théorème de Lagrange) Donc |g| vaut 1 ou p. Étant donné que $g \neq e$, on a |g| = p Donc |<g>|=p. On a <g><G et |G| = p Donc |<g>=G

Donc G est cyclique d'ordre pDonc $G \cong \mathbb{Z}/p\mathbb{Z}$

Théorème 2. Identité de Bézout Soient $m, n \in \mathbb{Z}$, tels que PGCD(m, n) = k Alors, $\exists u, v \in \mathbb{Z}$, tels que mu + nv = k

Démonstration. |x| = m, |y| = n, PGCD(m, n) = 1mu + nv = 1

$$(xy)^{nv} = x^{nv} y^{nv}$$

$$= x^{nv} (y^n)^v$$

$$= x^{nv} e$$

$$= x^{nv}$$

$$= x^{1-mu}$$

$$= x(x^m)^{-u}$$

$$= x$$