C5443 - Networks 1/30/2013 - Next HW posted over crypto due Tuesday

Networking Basics: The OST Model

Application				
Presentation				
Session				
Transport				
Network				
Data Link				
Physical				

user application interaction
structure representation
session checkpointing and recovery
reliability
logical addressing, routing
physical addressing, 802.11
media, signal, binary transmission

There are different kyes + implementations in OSI Model.

The internet protocol suite (TCP/IP)

IS an implementation of the OSI.

It doesn't use as fine of granularity, but it also has different giveness.

TCP/IP Layers

Application
Presentation
Session
Transport
Network
Data Link
Physical

OSI Model

 ${\sf Application}$

Transport

Internet

Link

TCP/IP

TCP/IP Layers

Application

Determines how an application should use the network.

Transport

Internet

Link

Handles details of data transmission at the end-points of communication.

Expresses how packets should be forwarded and how packets should be addressed (also called **Network Layer**)

TCP/IP

TCP/IP Layers

Application

Transport

Internet

Link

TCP/IP

Sometimes divided into Link Layer and Physical Layer.

Link Layer: Provides for synchronization and transfer of information. Defines how physical machines address each other.

Physical Layer: Defines electrical aspects of sending signals along a wire or wirelessly. Also addresses switch and router hardware.

We'll focus on the Internet layer -**Application** addressed and Transport Arwarded over the network. Internet Link TCP/IP ransmithing Payload Payload Payload Payload Payload Payload Payload Payload **Application** Payload Transport Payload Internet Payload Link

Relevant Dates in Headers

- · IP-address : 192,168.53,1
- · MAC address; 50:68: AB:
- · Port number: 0-65535 80: webbrowser
- · Protocol id : identifies type of treffic

Headers in IPv4:
-Divided into 32-bit segments
- Headers are 5 segments long (usually), with data at the end

bit offset	0-3	4–7	8-13	14-15	16-18	19–31	
0	Version	Header Length	Differentiated Services Code Point	Explicit Congestion Notification	Total Length		
32	Identification				Flags	Fragment Offset	
64	Time to Live Protocol				Header Checksum		
96	Source IP Address						
128	Destination IP Address						
160	Options (if Header Length > 5)						
160 or	Data						
192+							

TP, 4

Class A	126 255 0 1 0 net id (7 bit) host id (24 bit)	126 networks, 16 million hosts
Class B	10 net id (14 bit) host id (16 bit)	16382 networks, 65,534 hosts
Class C	110 net id (21 bit) host id (8 bit)	2 million networks, 254 hosts
Class D	1110 multicast (28 bit)	designed for multicasting
Class E	11110 future use (27 bit)	reserved for experiments

Example: Consider the address:

10001000 11100101 11001001 0001000

128+64+32+ 4+1 128+64+8+1

Class? B: 136. 229. 201. 8) What IP? Problem:

IPv4 was designed in 1981.

Classes A - C allow for under

4.3 billion address total.

(Reality - much smaller!)

Conclusion: out of space

Solutions

(D) IPV6

2 NAT

3 Subnething

None is a perfect are but all have been used to offset issues.

The details:

- Packet headers are twice as long.

- However, processing is actually simpler + faster at routers.

- Privacy extensions exist to "hide" idealty: OS generates random host didentifier.

Detwork Address Translation

A router stands between a private network a outside would.

Every internal IP address maps to a single TP/port which is all outside sees.

(Combines well with Frewall Functionality.)

Pros of NAT: - More seare - bandwidth saver - cheaper Cons: - point of Failure - Islower

	bnetting				
				,	1
There	IS a ju	imp be	tween	class B	and
	S1705		,		
Class B	10 net id (14 bit)	host id (16 bit)	10	6382 networks, 65,534 h	osts
Class C	110 net id (21 bit)	ho	ost id (8 bit)	million networks, 254 ho	osts
				,	
Man	larger	network	es act	mally	
_	subdivide	them	furthe	ir /	
		1	(•	

Subnets cont:

Every computer gets a subnet mask,

eg 255,255.128

IIIIII IIIIII IIIIII 10000000

As well as an IP: 128.96.34.15

lake the bitwise AND to get the subnet versus host id: 0000 000 15 16 24 25 Net ID Subnet ID Host ID

Local Avea Networks

A LAN is a "small interconnection infrastructure that typically uses a shared transmission medium".

From Computer and Communication Networks by N. Mir

Note: A single LAN may actually be huge. "Local" is relative, but generally these all connect to same monter or switch.

LAN Topologies

Bus Configuration

Star Configuration

Ring Configuration

Bus Configuration

Bus Configuration

Transmissions are propagated on the bus in both directions.

All users (locally)
will receive all
packets.

Star configuration

Center of "ster" is a mult-port hub or switch.

Frames are sent to center, which either broadcasts or sends to targeted destruction.

Note:
None of these have much security!

All are vulnerable to attack and to eaves drapping.

Adding Security

To address this, we'll dive down a level to the Link layer.

Application

Transport

Internet

Link

TCP/IP

Two major issnes:

D System protection:

Machines must read packets, but into
in them could be I dangerous.

2) Holing in formation: Nothing in IP prevents intermediaries from I reading payloads of packets. Frewalls: System Protection

All traffic from the inside network to
the outside (or vice vosa) must
pass through the firenall.

- Systems Firewalls can be dedicated systems, or pieces of local Software.
Tresource hogs, local a customizable any different types, with different levels of saftly depending of the amount of checking or monitoring Generally, as always, faster means

Packet tiltering tirewalls - fast Rules are based on the packet headers. Sometimes called a "stateless frewall", since has no memory of previous connections or more /complex Generally, packets are simply authorized based on Source or destination IPs and ports, as well as particular protocol ids. Proxies

A proxy computer is an intermediate agent or sever that acts between two endpoints without allowing direct communications.

Ex: HTTP proxy:

- trade rebpage connection

- create local copies of data

- block certain communications

- single place for updates, filters, etc.

Proxy Frenzlls: stateful monitoring

A proxy frenzll bases access control
on a contents of packets as well
as header info.

Advantages: best searty

Disadvantages: - expensive
- single point of Falure
- throttle on speed

More on Stateful firewalls.

In general, TCP connections fix a port humber for all communication.

(Higher number ports are reallocated as needed for these connections.)

Stateful firewalls track established TCP connections a only allow traffic to specific ports for duration of one connection.

Example: IPTables

A native Linux frewall tool providing stateful monitoring.

Can be run on an individual machine, or on a server to protect larger networks.

This fool will be the focus of the next lab.

S iptables -t filter -A INPUT -m state state NEW -p tcp -s 192.168.0.1 dport 23 -j REJECT
iptables
We're going to use the iptables tool to insert a new rule into netfilter.
-t filter
This rule is going to go in the filter table, which is the built-in packet filtering table. This rule will apply only to:
-A INPUT
packets that have been put into the INPUT chain either by the kernel or by some previous rule and which:
-m statestate NEW
represent a new connection,
are Transmission Control Protocol (TCP) packets,
-s 192.168.0.1
are from the host 192.168.0.1,
dport 23
and are destined for port 23.
-j REJECT
Reject any matching packet. Processing of all packets matching this rule will instantly jump to the built-in target REJECT, which means that the packet will be rejected by the kernel with some kind of network error message.

	Notes on iptables:
-	
	- Can interact from command line or
	- (an interact from command line, or (more commonly) edit the shell the controlling it.
	tile controlling it.
	- Regures noot access!
	V
	- This is actually a user interface tool for adminstering net-fiter functions in the Linux Vernal.
	for adminstrating net-fiter functions
	in the Linux V kernal.
	- See assignment for full discussion and overview.
	and overview.
	· · · · · · · · · · · · · · · · · · ·

IPSec: Holing information

Data sent over a network is inherently insecure. IPSec is a protocol that adds encryption at a low layer of TCP/IP model.

Modes

• In transport mode, only the packets are encrypted. However, authentication headers provide assurance that IP addressed can't be modified (since hash value is invalidated).

• In tunnel mode, the entire packet is encrypted, and new headers are created.

(This is now VPNs are created.)

Tunnel Mode

"Refers to keeping the original IP packet intact and adding a new IP header and IPsec information outside.

Content taken from "Network Security: Private Communication in a Public World."

An example of tunnel mode: Alice wants to send Bob a message.

Step 1.

 ${\sf Application}$

Transport

Internet

Link

Payload Payload Payload Payload
Payload Payload Payload

Alice sends an e-mail as usual.

Application

Payload Payload Payload

Payload Payload

Payload

Payload

Payload

Payload

Payload

Payload

Payload

Payload

Payload

The e-mail is divided into packets. Headers are added at each layer.

Payload

Payload

Payload

At the french!: (either internal or external)

Each packet makes its way to Alice's firewall.

At the firewell (cont):

Firewall 1

The IPsec-enabled firewall encrypts the packet, adds a IPsec header and adds a new IP header.

Intermediate Vodes

As the IPsec packet is sent through the Internet, routers will look only at the new IP header.

At the next frewell:

Firewall 2

Internet

Link

When the IPsec packet reaches Bob's firewall 2...

Firewall 2 resends:

Firewall 2

Internet

Link

Firewall 2 decrypts it, gets the original packet, and forwards it along to Bob.

At Bob's machine, all the headers are removed and the packets are assembled into Alice's e-mail.

Advantage of TPSec:

Encryption of Security is at a low level.

So unlike a secure protocol (like SSH), this builds security on top of other protocols.

Provides authenticity, integrity, and confidentiality.

Next + mei