Deep Reinforcement Learning

John Schulman

OpenAl Berkeley₁

MLSS, May 2016, Cadiz

Agenda

Introduction and Overview

Markov Decision Processes

Reinforcement Learning via Black-Box Optimization (CE method)

Policy Gradient Methods

Variance Reduction for Policy Gradients

Trust Region and Natural Gradient Methods

Open Problems

Course materials: goo.gl/5wsgbJ

Introduction and Overview

What is Reinforcement Learning?

- Branch of machine learning concerned with taking sequences of actions
- Usually described in terms of agent interacting with a previously unknown environment, trying to maximize cumulative reward

Motor Control and Robotics

Robotics:

- ▶ Observations: camera images, joint angles
- Actions: joint torques
- ► Rewards: stay balanced, navigate to target locations, serve and protect humans

Business Operations

- Inventory Management
 - Observations: current inventory levels
 - Actions: number of units of each item to purchase
 - Rewards: profit
- Resource allocation: who to provide customer service to first
- ► Routing problems: in management of shipping fleet, which trucks / truckers to assign to which cargo

Games

A different kind of optimization problem (min-max) but still considered to be RL.

- ▶ Go (complete information, deterministic) AlphaGo²
- Backgammon (complete information, stochastic) TD-Gammon³
- Stratego (incomplete information, deterministic)
- Poker (incomplete information, stochastic)

²David Silver, Aja Huang, et al. "Mastering the game of Go with deep neural networks and tree search". In: *Nature* 529,7587 (2016), pp. 484–489.

³Gerald Tesauro. "Temporal difference learning and TD-Gammon". In: Communications of the ACM 38.3 (1995), pp. 58–68.

Approaches to RL

What is Deep RL?

- ► RL using nonlinear function approximators
- Usually, updating parameters with stochastic gradient descent

What's Deep RL?

Whatever the front half of the cerebral cortex does (motor and executive cortices)

Markov Decision Processes

Definition

- Markov Decision Process (MDP) defined by (S, A, P), where
 - ▶ S: state space
 - ▶ A: action space
 - ▶ P(r, s' | s, a): a transition probability distribution
- Extra objects defined depending on problem setting
 - $\blacktriangleright \mu$: Initial state distribution
 - γ: discount factor

Episodic Setting

- ▶ In each episode, the initial state is sampled from μ , and the process proceeds until the *terminal state* is reached. For example:
 - ► Taxi robot reaches its destination (termination = good)
 - Waiter robot finishes a shift (fixed time)
 - Walking robot falls over (termination = bad)
- Goal: maximize expected reward per episode

Policies

- ▶ Deterministic policies: $a = \pi(s)$
- ▶ Stochastic policies: $a \sim \pi(a \mid s)$
- Parameterized policies: π_{θ} it is a function

Episodic Setting

Objective:

$$somple \ \textit{first state}$$

$$s_0 \sim \mu(s_0)$$

$$a_0 \sim \pi(a_0 \mid s_0)$$

$$s_1, r_0 \sim P(s_1, r_0 \mid s_0, a_0)$$

$$a_1 \sim \pi(a_1 \mid s_1)$$

$$s_2, r_1 \sim P(s_2, r_1 \mid s_1, a_1)$$

$$\dots$$

$$a_{T-1} \sim \pi(a_{T-1} \mid s_{T-1})$$

$$s_T, r_{T-1} \sim P(s_T \mid s_{T-1}, a_{T-1})$$

$$\textit{terminal state}$$
given a police, the average reward (current + future)
$$maximize \ \eta(\pi), \ \text{where}$$

$$\eta(\pi) = E[r_0 + r_1 + \dots + r_{T-1} \mid \pi]$$

Episodic Setting

Objective:

maximize
$$\eta(\pi)$$
, where
$$\eta(\pi) = E[r_0 + r_1 + \cdots + r_{T-1} \mid \pi]$$

Parameterized Policies

- lacktriangle A family of policies indexed by parameter vector $heta \in \mathbb{R}^d$
 - ▶ Deterministic: $a = \pi(s, \theta)$
 - ▶ Stochastic: $\pi(a \mid s, \theta) = (Y, S')$
- Analogous to classification or regression with input *s*, output *a*. E.g. for neural network stochastic policies:
 - Discrete action space: network outputs vector of probabilities
 - Continuous action space: network outputs mean and diagonal covariance of Gaussian

Reinforcement Learning via Black-Box Optimization

Derivative Free Optimization Approach

► Objective:

Maximize current + future rewards maximize $E[R \mid \pi(\cdot, \theta)]$

- ▶ View $\theta \rightarrow \blacksquare \rightarrow R$ as a black box
- ► Ignore all other information other than *R* collected during episode

- Evolutionary algorithm
- ► Works **embarrassingly** well

Method	Mean Score	Reference
Nonreinforcement learning		
Hand-coded	631,167	Dellacherie (Fahey, 2003)
Genetic algorithm	586,103	(Böhm et al., 2004)
Reinforcement learning		
Relational reinforcement	≈50	Ramon and Driessens (2004)
learning+kernel-based regression		
Policy iteration	3183	Bertsekas and Tsitsiklis (1996)
Least squares policy iteration	<3000	Lagoudakis, Parr, and Littman (2002)
Linear programming + Bootstrap	4274	Farias and van Roy (2006)
Natural policy gradient	≈6800	Kakade (2001)
CE+RL	21,252	
CE+RL, constant noise	72,705	
CE+RL, decreasing noise	348,895	

Approximate Dynamic Programming Finally Performs Well in the Game of Tetris

Victor Gabillon INRIA Lille - Nord Europe, Team SequeL, FRANCE victor.gabillon⊕inria.fr Mohammad Ghavamzadeh* INRIA Lille - Team Sequel. & Adobe Research mohammad.ghavamzadeh@inria.fr Bruno Scherrer INRIA Nancy - Grand Est, Team Maia, FRANCE bruno.scherrer@inria.fr István Szita and András Lörincz. "Learning Tetris using the noisy cross-entropy method". In: Neural computation 18.12 (2006), pp. 2936–2941

DPL works better on high-dimen space

Victor Gabillon, Mohammad Ghavamzadeh, and Bruno Scherrer. "Approximate Dynamic Programming Finally Performs Well in the Game of Tetris". In: Advances in Neural Information Processing Systems. 2013

- Evolutionary algorithm
- Works embarrassingly well
- ► A similar algorithm, Covariance Matrix Adaptation, has become standard in graphics:

Optimal Gait and Form for Animal Locomotion

Kevin Wampler* Zoran Popović University of Washington

Optimizing Walking Controllers for Uncertain Inputs and Environments

Jack M. Wang David J. Fleet Aaron Hertzmann University of Toronto


```
Initialize \mu \in \mathbb{R}^d, \sigma \in \mathbb{R}^d
for iteration = 1, 2, \dots do
    Collect n samples of \theta_i \sim N(\mu, \text{diag}(\sigma))
    Perform a noisy evaluation R_i \sim \theta_i
    Select the top p\% of samples (e.g. p = 20), which we'll
          call the elite set
    Fit a Gaussian distribution, with diagonal covariance.
          to the elite set, obtaining a new \mu, \sigma.
end for
Return the final \mu.
```

- Analysis: a very similar algorithm is an minorization-maximization (MM) algorithm, guaranteed to monotonically increase expected reward
- Recall that Monte-Carlo EM algorithm collects samples, reweights them, and them maximizes their logprob
- ▶ We can derive MM algorithm where each iteration you maximize $\sum_{i} \log p(\theta_i) R_i$

Policy Gradient Methods

Policy Gradient Methods: Overview

Problem: maximize $E[R \mid \pi_{\theta}]$ Intuitions: collect a bunch of trajectories, and ... high var

1. Make the good trajectories more probable reduce variance

2. Make the good actions more probable (actor-critic, GAE)

- 3. Push the actions towards good actions (DPG, SVG)

Trajectory?

Score Function Gradient Estimator

▶ Consider an expectation $E_{x \sim p(x \mid \theta)}[f(x)]$. Want to compute gradient wrt θ

$$\nabla_{\theta} E_{x}[f(x)] = \nabla_{\theta} \int dx \ p(x \mid \theta) f(x)$$

$$= \int dx \ \nabla_{\theta} p(x \mid \theta) f(x)$$

$$= \int dx \ p(x \mid \theta) \frac{\nabla_{\theta} p(x \mid \theta)}{p(x \mid \theta)} f(x)$$

$$= \int dx \ p(x \mid \theta) \nabla_{\theta} \log p(x \mid \theta) f(x)$$

$$= E_{x}[f(x) \nabla_{\theta} \log p(x \mid \theta)].$$

- Last expression gives us an unbiased gradient estimator. Just sample $x_i \sim p(x \mid \theta)$, and compute $\hat{g}_i = f(x_i) \nabla_{\theta} \log p(x_i \mid \theta)$.
- ▶ Need to be able to compute and differentiate density $p(x \mid \theta)$ wrt θ

Derivation via Importance Sampling

Alternate Derivation Using Importance Sampling

$$egin{aligned} \mathbb{E}_{ ext{x}\sim heta}\left[f(x)
ight] &= \mathbb{E}_{ ext{x}\sim heta_{ ext{old}}}\left[rac{p(x\mid heta)}{p(x\mid heta_{ ext{old}})}f(x)
ight] \
abla_{ heta}\mathbb{E}_{ ext{x}\sim heta}\left[f(x)
ight] &= \mathbb{E}_{ ext{x}\sim heta_{ ext{old}}}\left[rac{
abla_{ heta}p(x\mid heta)}{p(x\mid heta_{ ext{old}})}f(x)
ight] \
abla_{ heta}\mathbb{E}_{ ext{x}\sim heta}\left[f(x)
ight]ig|_{ heta= heta_{ ext{old}}}\left[rac{
abla_{ heta}p(x\mid heta)ig|_{ heta= heta_{ ext{old}}}}{p(x\mid heta_{ ext{old}})}f(x)
ight] \
&= \mathbb{E}_{ ext{x}\sim heta_{ ext{old}}}\left[
abla_{ heta}\log p(x\mid heta)ig|_{ heta= heta_{ ext{old}}}f(x)
ight] \end{aligned}$$

Score Function Gradient Estimator: Intuition

- Let's say that f(x) measures how good the sample x is.
- Moving in the direction \hat{g}_i pushes up the logprob of the sample, in proportion to how good it is
- Valid even if f(x) is discontinuous, and unknown, or sample space (containing x) is a discrete set

Score Function Gradient Estimator: Intuition

$$\hat{g}_i = f(x_i) \nabla_{\theta} \log p(x_i \mid \theta)$$

$$\text{P(x) con slide left or right}$$

$$\text{P(x)}$$

$$\text{Y, x_1 -- ... x_8}$$

Score Function Gradient Estimator: Intuition

$$\hat{g}_i = f(x_i) \nabla_{\theta} \log p(x_i \mid \theta)$$

$$\nabla \log p(x_i) \qquad \qquad f(x)$$

Score Function Gradient Estimator for Policies

Now random variable x is a whole trajectory $\tau = (s_0, a_0, r_0, s_1, a_1, r_1, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$ $\nabla_{\theta} E_{\tau}[R(\tau)] = E_{\tau}[\nabla_{\theta} \log p(\tau \mid \theta)R(\tau)]$

▶ Just need to write out $p(\tau \mid \theta)$:

$$p(\tau \mid \theta) = \mu(s_0) \prod_{t=0}^{T-1} [\pi(a_t \mid s_t, \theta) P(s_{t+1}, r_t \mid s_t, a_t)]$$

$$\log p(\tau \mid \theta) = \log \mu(s_0) + \sum_{t=0}^{T-1} [\log \pi(a_t \mid s_t, \theta) + \log P(s_{t+1}, r_t \mid s_t, a_t)]$$

$$\nabla_{\theta} \log p(\tau \mid \theta) = \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi(a_t \mid s_t, \theta)$$

$$abla_{ heta} \mathbb{E}_{ au} \left[R
ight] = \mathbb{E}_{ au} \left[R
abla_{ heta} \sum_{t=0}^{T-1} \log \pi(a_t \mid s_t, heta)
ight]$$

► Interpretation: using good trajectories (high R) as supervised examples in classification / regression

Policy Gradient-Slightly Better Formula

Previous slide:

$$abla_{ heta} \mathbb{E}_{ au} \left[R
ight] = \mathbb{E}_{ au} \left[\left(\sum_{t=0}^{T-1} r_t
ight) \left(\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta)
ight)
ight]$$

▶ But we can cut trajectory to t steps and derive gradient estimator for one reward term $r_{t'}$.

$$abla_{ heta} \mathbb{E}\left[r_{t'}
ight] = \mathbb{E}\left[r_{t'} \sum_{t=0}^{t}
abla_{ heta} \log \pi(a_t \mid s_t, heta)
ight]$$

▶ Sum this formula over t, obtaining

$$\nabla_{\theta} \mathbb{E}\left[R\right] = \mathbb{E}\left[\sum_{t=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta)\right]$$
$$= \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \sum_{t'=t}^{T-1} r_{t'}\right]$$

Adding a Baseline

- ▶ Suppose $f(x) \ge 0$, $\forall x$
- ▶ Then for every x_i , gradient estimator \hat{g}_i tries to push up it's density
- We can derive a new unbiased estimator that avoids this problem, and only pushes up the density for better-than-average x_i.

$$egin{aligned}
abla_{ heta} \mathbb{E}_{ imes} \left[f(x)
ight] &=
abla_{ heta} \mathbb{E}_{ imes} \left[f(x) - b
ight] \ &= \mathbb{E}_{ imes} \left[
abla_{ heta} \log p(x \mid heta) (f(x) - b)
ight] \end{aligned}$$

A near-optimal choice of b is always $\mathbb{E}[f(x)]$ (which must be estimated)

Policy Gradient with Baseline

Recall

$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \sum_{t'=0}^{T-1} r_{t'} \sum_{t=t}^{T-1} \nabla_{\theta} \log \pi (a_t \mid s_t, \theta)$$

▶ Using the $\mathbb{E}_{a_t}[\nabla_{\theta}\log\pi(a_t\mid s_t,\theta)]=0$, we can show

$$egin{aligned}
abla_{ heta} \mathbb{E}_{ au}\left[R
ight] &= \mathbb{E}_{ au}\left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta) \left(\sum_{t=t'}^{T-1} r_{t'} - b(s_t)
ight)
ight] \end{aligned}$$

for any "baseline" function $b:\mathcal{S} \to \mathbb{R}$

- Increase logprob of action a_t proportionally to how much returns $\sum_{t=t'}^{T-1} r_{t'}$ are better than expected
- ▶ Later: use value functions to further isolate effect of action, at the cost of bias
- For more general picture of score function gradient estimator, see stochastic computation graphs⁴.

That's all for today

Course Materials: goo.gl/5wsgbJ

Variance Reduction for Policy Gradients

Review (I)

Process for generating trajectory

Trocess for generating trajectory
$$au = (s_0, a_0, r_0, s_1, a_1, r_1, \ldots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

$$s_0 \sim \mu(s_0)$$

$$a_0 \sim \pi(a_0 \mid s_0)$$

$$s_1, r_0 \sim P(s_1, r_0 \mid s_0, a_0)$$

$$a_1 \sim \pi(a_1 \mid s_1)$$

$$s_2, r_1 \sim P(s_2, r_1 \mid s_1, a_1)$$

$$\ldots$$

$$a_{T-1} \sim \pi(a_{T-1} \mid s_{T-1})$$

$$s_T, r_{T-1} \sim P(s_T \mid s_{T-1}, a_{T-1})$$

• Given parameterized policy $\pi(a \mid s, \theta)$, the optimization problem is

$$\mathsf{maximize}_{\theta} \mathbb{E}_{\tau} \left[R \mid \pi(\cdot \mid \cdot, \theta) \right]$$

where $R = r_0 + r_1 + \cdots + r_{T-1}$.

Review (II)

▶ In general, we can compute gradients of expectations with the *score function gradient estimator*

$$\nabla_{\theta} \mathbb{E}_{x \sim p(x \mid \theta)} [f(x)] = \mathbb{E}_{x} [\nabla_{\theta} \log p(x \mid \theta) f(x)]$$

We derived a formula for the policy gradient

$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t=t'}^{T-1} r_{t'} - b(s_t) \right) \right]$$

Value Functions

▶ The state-value function V^{π} is defined as:

$$V^{\pi}(s) = E[r_0 + r_1 + r_2 + \dots \mid s_0 = s]$$

Measures expected future return, starting with state s

▶ The state-action value function Q^{π} is defined as

$$Q^{\pi}(s,a) = E[r_0 + r_1 + r_2 + \dots \mid s_0 = s, a_0 = a]$$

► The advantage function A^{π} is

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Measures how much better is action a than what the policy π would've done.

Refining the Policy Gradient Formula

Recall

$$\nabla_{\theta} \mathbb{E}_{\tau} \left[R \right] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t=t'}^{T-1} r_{t'} - b(s_t) \right) \right]$$

$$= \sum_{t=0}^{T-1} \mathbb{E}_{\tau} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \left(\sum_{t=t'}^{T-1} r_{t'} - b(s_t) \right) \right]$$

$$= \sum_{t=0}^{T-1} \mathbb{E}_{s_0 \dots a_t} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \mathbb{E}_{r_t s_{t+1} \dots s_T} \left[\left(\sum_{t=t'}^{T-1} r_{t'} - b(s_t) \right) \right] \right]$$

$$= \sum_{t=0}^{T-1} \mathbb{E}_{s_0 \dots a_t} \left[\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \mathbb{E}_{r_t s_{t+1} \dots s_T} \left[Q^{\pi}(s_t, a_t) - b(s_t) \right] \right]$$

Where the last equality used the fact that

$$\mathbb{E}_{r_t s_{t+1} \dots s_T} \left[\sum_{t=t'}^{T-1} r_{t'} \right] = Q^{\pi}(s_t, a_t)$$

Refining the Policy Gradient Formula

From the previous slide, we've obtained

$$abla_{ heta} \mathbb{E}_{ au}\left[R
ight] = \mathbb{E}_{ au}\left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta)(Q^{\pi}(s_t, a_t) - b(s_t))
ight]$$

Now let's define $b(s) = V^{\pi}(s)$, which turns out to be near-optimal⁵. We get

$$egin{aligned}
abla_{ heta} \mathbb{E}_{ au}\left[R
ight] &= \mathbb{E}_{ au}\left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta) A^{\pi}(s_t, a_t)
ight] \end{aligned}$$

 Intuition: increase the probability of good actions (positive advantage) decrease the probability of bad ones (negative advantage)

⁵Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. "Variance reduction techniques for gradient estimates in reinforcement learning". In: The Journal of Machine Learning Research 5-(2004), pp. 1471-1530.

Variance Reduction

Now, we have the following policy gradient formula:

$$abla_{ heta} \mathbb{E}_{ au} \left[R
ight] = \mathbb{E}_{ au} \left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t \mid s_t, heta) A^{\pi}(s_t, a_t)
ight]$$

- ▶ A^{π} is not known, but we can plug in a random variable \hat{A}_t , an advantage estimator
- Previously, we showed that taking

$$\hat{A}_t = r_t + r_{t+1} + r_{t+2} + \cdots - b(s_t)$$

for any function $b(s_t)$, gives an unbiased policy gradient estimator. $b(s_t) \approx V^{\pi}(s_t)$ gives variance reduction.

The Delayed Reward Problem

 One reason RL is difficult is the long delay between action and reward

The Delayed Reward Problem

▶ With policy gradient methods, we are confounding the effect of multiple actions:

$$\hat{A}_t = r_t + r_{t+1} + r_{t+2} + \cdots - b(s_t)$$

mixes effect of $a_t, a_{t+1}, a_{t+2}, \dots$

- ▶ SNR of \hat{A}_t scales roughly as 1/T
 - Only a_t contributes to signal $A^{\pi}(s_t, a_t)$, but a_{t+1}, a_{t+2}, \ldots contribute to noise.

Var. Red. Idea 1: Using Discounts

- ▶ Discount factor γ , $0 < \gamma < 1$, downweights the effect of rewars that are far in the future—ignore long term dependencies
- ▶ We can form an advantage estimator using the discounted return:

$$\hat{A}_t^{\gamma} = \underbrace{r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots}_{\text{discounted return}} - b(s_t)$$

reduces to our previous estimator when $\gamma = 1$.

▶ So advantage has expectation zero, we should fit baseline to be discounted value function

$$V^{\pi,\gamma}(s) = \mathbb{E}_{\tau} \left[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s \right]$$

 \blacktriangleright \hat{A}_t^{γ} is a biased estimator of the advantage function

Var. Red. Idea 2: Value Functions in the Future

 Another approach for variance reduction is to use the value function to estimate future rewards

$$r_t + r_{t+1} + r_{t+2} + \dots$$
 use empirical rewards \Rightarrow $r_t + V(s_{t+1})$ cut off at one timestep $r_t + r_{t+1} + V(s_{t+2})$ cut off at two timesteps \dots

Adding the baseline again, we get the advantage estimators

$$\hat{A}_t = r_t + V(s_{t+1}) - V(s_t)$$
 cut off at one timestep $\hat{A}_t = r_t + r_{t+1} + V(s_{t+2}) - V(s_t)$ cut off at two timesteps

Combining Ideas 1 and 2

- Can combine discounts and value functions in the future, e.g., $\hat{A}_t = r_t + \gamma V(s_{t+1}) - V(s_t)$, where V approximates discounted value function $V^{\pi,\gamma}$.
- The above formula is called an actor-critic method, where actor is the policy π , and critic is the value function V^6
- Going further, the generalized advantage estimator⁷

$$\hat{A}_t^{\gamma,\lambda} = \delta_t + (\gamma\lambda)\delta_{t+1} + (\gamma\lambda)^2\delta_{t+2} + \dots$$

where $\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$

Interpolates between two previous estimators:

$$\lambda = 0$$
: $r_t + \gamma V(s_{t+1}) - V(s_t)$ (low v, high b)

$$\lambda = 1$$
: $r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots - V(s_t)$ (low b, high v)

⁷John Schulman, Philipp Moritz, et al. "High-dimensional continuous control using generalized advantage estimation". In: arXiv preprint arXiv:1506.02438 (2015). 4日 → 4周 → 4 目 → 4 目 → 9 Q P

⁶Vijay R Konda and John N Tsitsiklis. "Actor-Critic Algorithms." In: Advances in Neural Information Processing Systems. Vol. 13. Citeseer. 1999, pp. 1008-1014.

Alternative Approach: Reparameterization

- ▶ Suppose problem has continuous action space, $a \in \mathbb{R}^d$
- ▶ Then $\frac{d}{da}Q^{\pi}(s,a)$ tells use how to improve our action
- We can use reparameterization trick, so a is a deterministic function a = f(s, z), where z is noise. Then,

$$abla_{ heta}\mathbb{E}_{ au}\left[R
ight] =
abla_{ heta}Q^{\pi}(s_0, a_0) +
abla_{ heta}Q^{\pi}(s_1, a_1) + \dots$$

- ► This method is called the deterministic policy gradient⁸
- A generalized version, which also uses a dynamics model, is described as the stochastic value gradient⁹

⁸David Silver, Guy Lever, et al. "Deterministic policy gradient algorithms". In: *ICML*. 2014; Timothy P Lillicrap et al. "Continuous control with deep reinforcement learning". In: *arXiv* preprint arXiv:1509.02971 (2015).

⁹Nicolas Heess et al. "Learning continuous control policies by stochastic value gradients". In: Advances in Neural Information Processing Systems. 2015, pp. 2926–2934.

Trust Region and Natural Gradient Methods

Optimization Issues with Policy Gradients

- ► Hard to choose reasonable stepsize that works for the whole optimization
 - we have a gradient estimate, no objective for line search
 - statistics of data (observations and rewards) change during learning
- ► They make inefficient use of data: each experience is only used to compute one gradient.
 - Given a batch of trajectories, what's the most we can do with it?

Policy Performance Function

Let $\eta(\pi)$ denote the performance of policy π

$$\eta(\pi) = \mathbb{E}_{\tau}\left[R|\pi\right]$$

▶ The following neat identity holds:

$$\eta(\tilde{\pi}) = \eta(\pi) + \mathbb{E}_{\tau \sim \tilde{\pi}} \left[A^{\pi}(s_0, a_0) + A^{\pi}(s_1, a_1) + A^{\pi}(s_2, a_2) + \dots \right]$$

▶ Proof: consider nonstationary policy $\pi_0\pi_1\pi_2,...$

$$\eta(\tilde{\pi}\tilde{\pi}\tilde{\pi}\cdots) = \eta(\pi\pi\pi\cdots)
+ \eta(\tilde{\pi}\pi\pi\cdots) - \eta(\pi\pi\pi\cdots)
+ \eta(\tilde{\pi}\tilde{\pi}\pi\cdots) - \eta(\tilde{\pi}\pi\pi\cdots)
+ \eta(\tilde{\pi}\tilde{\pi}\tilde{\pi}\cdots) - \eta(\tilde{\pi}\tilde{\pi}\pi\cdots)
+ \dots$$

• t^{th} difference term equals $A^{\pi}(s_t, a_t)$

Local Approximation

 \blacktriangleright We just derived an expression for the performance of a policy $\tilde{\pi}$ relative to π

$$\begin{split} \eta(\tilde{\pi}) &= \eta(\pi) + \mathbb{E}_{\tau \sim \tilde{\pi}} \left[A^{\pi}(s_0, a_0) + A^{\pi}(s_1, a_1) + \ldots \right] \\ &= \eta(\pi) + \mathbb{E}_{s_{0:\infty} \sim \tilde{\pi}} \left[\mathbb{E}_{a_{0:\infty} \sim \tilde{\pi}} \left[A^{\pi}(s_0, a_0) + A^{\pi}(s_1, a_1) + \ldots \right] \right] \end{split}$$

- \blacktriangleright Can't use this to optimize $\tilde{\pi}$ because state distribution has complicated dependence.
- Let's define L_{π} the *local approximation*, which ignores change in state distribution—can be estimated by sampling from π

$$\begin{split} L_{\pi}(\tilde{\pi}) &= \mathbb{E}_{s_{0:\infty} \sim \pi} \left[\mathbb{E}_{a_{0:\infty} \sim \tilde{\pi}} \left[A^{\pi}(s_0, a_0) + A^{\pi}(s_1, a_1) + \ldots \right] \right] \\ &= \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \tilde{\pi}} \left[A^{\pi}(s_t, a_t) \right] \right] \\ &= \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \pi} \left[\frac{\tilde{\pi}(a_t \mid s_t)}{\pi(a_t \mid s_t)} A^{\pi}(s_t, a_t) \right] \right] \\ &= \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{T-1} \frac{\tilde{\pi}(a_t \mid s_t)}{\pi(a_t \mid s_t)} A^{\pi}(s_t, a_t) \right] \end{split}$$

Local Approximation

Now let's consider parameterized policy, $\pi(a \mid s, \theta)$. Sample with θ_{old} , now write local approximation in terms of θ .

$$egin{aligned} L_{\pi}(ilde{\pi}) &= \mathbb{E}_{s_{0:\infty}}\left[\sum_{t=0}^{T-1}\mathbb{E}_{a\sim\pi}\left[rac{ ilde{\pi}(a_t\mid s_t)}{\pi(a_t\mid s_t)}A^{\pi}(s_t,a_t)
ight]
ight] \ \Rightarrow L_{ heta_{ ext{old}}}(heta) &= \mathbb{E}_{s_{0:\infty}}\left[\sum_{t=0}^{T-1}\mathbb{E}_{a\sim heta}\left[rac{\pi(a_t\mid s_t, heta)}{\pi(a_t\mid s_t, heta_{ ext{old}})}A^{ heta}(s_t,a_t)
ight]
ight] \end{aligned}$$

▶ $L_{\theta_{\text{old}}}(\theta)$ matches $\eta(\theta)$ to first order around θ_{old} .

$$egin{aligned} \left.
abla_{ heta ext{old}} (heta)
ight|_{ heta = heta_0} &= \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim heta} \left[rac{
abla_{ heta} \pi(a_t \mid s_t, heta)}{\pi(a_t \mid s_t, heta_{ ext{old}})} A^{ heta}(s_t, a_t)
ight]
ight] \ &= \mathbb{E}_{s_{0:\infty}} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim heta} \left[
abla_{ heta \sim heta} \left[
abla_{ heta} \log \pi(a_t \mid s_t, heta) A^{ heta}(s_t, a_t)
ight]
ight] \ &= \left.
abla_{ heta} \eta(heta)
ight|_{ heta = heta_{ ext{old}}} \end{aligned}$$

MM Algorithm

▶ Theorem (ignoring some details)¹⁰

$$\eta(\theta) \geq \underbrace{L_{\theta_{\text{old}}}(\theta)}_{\text{local approx. to } \eta} - \underbrace{C \max_{s} D_{\textit{KL}} \left[\pi(\cdot \mid \theta_{\text{old}}, s) \parallel \pi(\cdot \mid \theta, s)\right]}_{\text{penalty for changing policy}}$$

• If $\theta_{\mathrm{old}} \to \theta_{\mathrm{new}}$ improves lower bound, it's guaranteed to improve η

Review

- ▶ Want to optimize $\eta(\theta)$. Collected data with policy parameter θ_{old} , now want to do update
- ▶ Derived local approximation $L_{\theta_{\text{old}}}(\theta)$
- \blacktriangleright Optimizing KL penalized local approximation givesn guaranteed improvement to η
- More approximations gives practical algorithm, called TRPO

TRPO—Approximations

- Steps:
 - Instead of max over state space, take mean
 - ► Linear approximation to *L*, quadratic approximation to KL divergence
 - Use hard constraint on KL divergence instead of penalty
- Solve the following problem approximately

$$\begin{array}{l} \mathsf{maximize} \ L_{\theta_{\mathrm{old}}}(\theta) \\ \mathsf{subject} \ \mathsf{to} \quad \overline{D}_{\mathit{KL}}[\theta_{\mathrm{old}} \parallel \theta] \leq \delta \end{array}$$

- Solve approximately through line search in the *natural* gradient direction $s = F^{-1}g$
- Resulting algorithm is a refined version of natural policy gradient¹¹

¹¹Sham Kakade. "A Natural Policy Gradient." In: NIPS. vol. 14. 2001, pp. 1531–1538. ▶ ⟨ ≧ ▶ ⟨ ≧ ▶ ⟨ ≧ ♥ ⟨ ○ ⟩

Empirical Results: TRPO + GAE

► TRPO, with neural network policies, was applied to learn controllers for 2D robotic swimming, hopping, and walking, and playing Atari games¹²

 Used TRPO along with generalized advantage estimation to optimize locomotion policies for 3D simulated robots¹³

¹² John Schulman, Sergey Levine, et al. "Trust Region Policy Optimization". In: arXiv preprint arXiv:1502.05477 (2015).

¹³ John Schulman, Philipp Moritz, et al. "High-dimensional continuous control using generalized advantage estimation". In: arXiv preprint arXiv:1506.02438 (2015).

Putting In Perspective

Quick and incomplete overview of recent results with deep RL algorithms

- Policy gradient methods
 - ► TRPO + GAE
 - Standard policy gradient (no trust region) + deep nets + parallel implementation¹⁴
 - Repar trick¹⁵
- Q-learning¹⁶ and modifications¹⁷
- Combining search + supervised learning¹⁸

¹⁴V. Mnih et al. "Playing Atari with Deep Reinforcement Learning". In: arXiv preprint arXiv:1312.5602 (2013).

¹⁵Nicolas Heess et al. "Learning continuous control policies by stochastic value gradients". In: Advances in Neural Information Processing Systems. 2015, pp. 2926–2934; Timothy P Lillicrap et al. "Continuous control with deep reinforcement learning". In: arXiv preprint arXiv:1509.02971 (2015).

¹⁶V. Mnih et al. "Playing Atari with Deep Reinforcement Learning". In: arXiv preprint arXiv:1312.5602 (2013).

¹⁷Ziyu Wang, Nando de Freitas, and Marc Lanctot. "Dueling Network Architectures for Deep Reinforcement Learning". In: arXiv preprint arXiv:1511.06581 (2015); Hado V Hasselt. "Double Q-learning". In: Advances in Neural Information Processing Systems. 2010, pp. 2613–2621.

¹⁸ X. Guo et al. "Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning". In:

Advances in Neural Information Processing Systems. 2014, pp. 3338–3346; Sergey Levine et al. "End-to-end training of deep visuomotor policies". In: arXiv preprint arXiv:1504.00702 (2015); Igor Mordatch et al.

"Interactive Control of Diverse Complex Characters with Neural Networks". In: Advances in Neural Information Processing Systems. 2015, pp. 3114–3122.

Open Problems

What's the Right Core Model-Free Algorithm?

- Policy gradients (score function vs. reparameterization, natural vs. not natural) vs. Q-learning vs. derivative-free optimization vs others
- Desiderata
 - scalable
 - sample-efficient
 - robust
 - learns from off-policy data

Exploration

- Exploration: actively encourage agent to reach unfamiliar parts of state space, avoid getting stuck in local maximum of performance
- Can solve finite MDPs in polynomial time with exploration¹⁹
 - optimism about new states and actions
 - maintain distribution over possible models, and plan with them (Bayesian RL, Thompson sampling)
- ► How to do exploration in deep RL setting? Thompson sampling²⁰, novelty bonus²¹

¹⁹Alexander L Strehl et al. "PAC model-free reinforcement learning". In: Proceedings of the 23rd international conference on Machine learning. ACM. 2006, pp. 881–888.

²⁰Ian Osband et al. "Deep Exploration via Bootstrapped DQN". . In: arXiv preprint arXiv:1602.04621 (2016).

²¹Bradly C Stadie, Sergey Levine, and Pieter Abbeel. "Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models". In: arXiv preprint arXiv:1507.00814 (2015).

Hierarchy

More Open Problems

- Using learned models
- ▶ Learning from demonstrations

The End

Questions?