

"Voy lento porque llevo prisa"

¿Cuál es el problema que estamos analizando?

En periférico se hacen cuellos de botellas, debido a la reducción de carriles y alta demanda vehicular que transita diariamente en la CDMX.

¡Todos los carros quieren pasar rápido y al mismo tiempo! Los usuarios pierden mucho tiempo detenidos en el tráfico y esto causa efectos negativos, tanto para la sociedad como para el ambiente

3 CARRILES

2 CARRILES

EMBOTELLAMIENTO

¿Por qué lento es más rápido?

Existe un principio físico donde prueba que a menor velocidad mayor eficiencia se tiene en el fenómeno estudiado.

Esto quiere decir que a mayor velocidad menor capacidad de vehículos en el periférico, por lo tanto más embotellamientos.

En cambio si los automóviles disminuyeran su velocidad de manera constante los embotellamientos disminuirían o incluso se evitarían. Realizamos varias simulaciones donde probamos que cuando conduzco lento llego más rápido a mi destino.

Lo que proponemos...

Se necesita que en aplicaciones como Waze o Google Maps se desarrolle un algoritmo autoorganizante que además de asignar la mejor ruta te indique la velocidad que se debe de mantener para evitar embotellamientos.

Referencias

Helbing, D., Farkas, I. J., & Vicsek, T. (2000). Freezing by heating in a pedestrian model. In Traffic and Granular Flow'99 (pp. 245-250). Springer, Berlin, Heidelberg.

Pastor, J. M., Garcimartín, A., Gago, P. A., Peralta, J. P., Martín-Gómez, C., Ferrer, L. M., ... & Zuriguel, I. (2015). Experimental proof of faster-is-slower in systems of frictional particles flowing through constrictions. Physical Review E, 92(6), 062817.

Gershenson, C. (2011). Self-organization leads to supraoptimal performance in public transportation systems. PLoS One, 6(6).