Miniproject - Introduction to Schemes

Simon Pohmann

March 19, 2022

1 Definition of Proj

This section is based on [Har77, p. II.2]

Reminder 1. A graded ring S is a ring S with a decomposition $S = \bigoplus_{d \in \mathbb{N}} S_d$ into groups $S_i \subseteq S$ (w.r.t. addition in S) such that $S_i S_j \subseteq S_{i+j}$ for all $i, j \in \mathbb{N}$. Write further $S_+ := \sum_{d>0} S_d$.

An element $f \in S$ is called *homogeneous* (of degree n), if $f \in S_n$. An ideal $I \leq S$ is called *homogeneous*, if it has a set of homogeneous generators.

Definition 2. For a graded ring S, define the set

$$\operatorname{Proj}(S) := \{ \mathfrak{p} \in \operatorname{Spec}(S) \mid \mathfrak{p} \text{ homogeneous, } S_+ \not\subseteq \mathfrak{p} \}$$

of homogeneous prime ideals not containing S_{+} .

This becomes a topological space by endowing it with the Zariski-topology on Proj(S), given by the open sets

$$D_{\mathfrak{a}} := \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a} \not\subseteq \mathfrak{p} \}$$

for any homogeneous ideal $\mathfrak{a} \leq S$.

From now on let S be a graded ring.

Proposition 3. The above definition is well-defined, i.e. the sets $D_{\mathfrak{a}}$ indeed form a topology on $\operatorname{Proj}(S)$.

Proof. Clearly $\operatorname{Proj}(S) = D_{\langle 1 \rangle}$ and $\emptyset = D_{\langle 0 \rangle}$ are open. Furthermore, for open sets $D_{\mathfrak{a}}$ and $D_{\mathfrak{b}}$, have that

$$D_{\mathfrak{a}} \cap D_{\mathfrak{b}} = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{a}, \mathfrak{b} \not\subseteq \mathfrak{p} \} = \{ \mathfrak{p} \in \operatorname{Proj}(S) \mid \mathfrak{ab} \not\subseteq \mathfrak{p} \} = D_{\mathfrak{ab}}$$

This holds, as $\mathfrak{a}, \mathfrak{b} \not\subseteq \mathfrak{p}$ implies that there are $f \in \mathfrak{a}$ and $g \in \mathfrak{b}$ with $f, g \notin \mathfrak{p}$. However, then $fg \notin \mathfrak{p}$ as \mathfrak{p} is prime. Obviously \mathfrak{ab} is homogeneous, and so $D_{\mathfrak{a}} \cap D_{\mathfrak{b}}$ is open.

Finally, given a collection \mathcal{A} of homogeneous ideals in S, have that

$$\bigcup_{\mathfrak{a}\in\mathcal{A}} D_{\mathfrak{a}} = \{\mathfrak{p}\in\operatorname{Proj}(S)\mid \exists \mathfrak{a}\in\mathcal{A}:\ \mathfrak{a}\not\subseteq\mathfrak{p}\} = \{\mathfrak{p}\in\operatorname{Proj}(S)\mid \exists \mathfrak{a}\in\mathcal{A}\exists f\in\mathfrak{a}:\ f\notin\mathfrak{p}\} \\
= \{\mathfrak{p}\in\operatorname{Proj}(S)\mid \exists f\in\sum_{\mathfrak{a}\in\mathcal{A}}\mathfrak{a}:\ f\notin\mathfrak{p}\} = D_{\mathfrak{b}} \quad \text{for } \mathfrak{b}=\sum_{\mathfrak{a}\in\mathcal{A}}\mathfrak{a}$$

Clearly \mathfrak{b} is again homogeneous, and so $\bigcup_{\mathfrak{a}\in\mathcal{A}} D_{\mathfrak{a}}$ is open.

Proposition 4. The sets $D_f := D_{\langle f \rangle}$ for homogeneous $f \in S$ form a basis of the topology on Proj(S).

Proof. Clearly $\langle f \rangle$ is a homogeneous ideal, so D_f is open. For any homogeneous ideal $\mathfrak{a} = \langle f_i \mid i \in I \rangle$ with $f_i \in S$ homogeneous have

$$\mathfrak{a} = \bigcup_{i \in I} D_{f_i}$$

as $\mathfrak{a} \not\subseteq \mathfrak{p}$ implies there is some $g = \sum_{i \in I} g_i f_i \notin \mathfrak{p}$, with $g_i \in S$. Hence, at least one $g_j f_j \notin \mathfrak{p}$ and so $f_j \notin \mathfrak{p}$, thus $\mathfrak{p} \in D_{f_j}$. It follows that the D_f generate the topology on $\operatorname{Proj}(S)$, so it is left to show that they are a basis.

Consider $\mathfrak{p} \in D_f \cap D_g$, so $f, g \notin \mathfrak{p}$. Since \mathfrak{p} is prime, it follows that $fg \notin \mathfrak{p}$ and so $D_{fg} \subseteq D_f \cap D_g$ is an open neighborhood of \mathfrak{p} .

Lemma 5. If $D_g \subseteq D_f$ then there is a homogeneous $h \in S$ such that $g^n = fh$ for some $n \in \mathbb{N}$.

Proof. Assume not, then f is not a unit in S_g . Thus $\langle f \rangle \subseteq \mathfrak{m}$ for a maximal ideal $\mathfrak{m} \leq S_g$. Now let \mathfrak{p} be the preimage of \mathfrak{m} under the localization map $S \to S_g$, so $g \in \mathfrak{p}$ and $f \notin \mathfrak{p}$.

Proposition 6. Let $B = \{D_f \mid f \in S \text{ homogeneous}\}$. The functor

$$\mathcal{F}: \operatorname{Top}(\operatorname{Proj}(S))|_{B} \to \mathbf{Ring}, \quad D_f \mapsto S_f$$

$$(D_{fg} \subseteq D_f) \mapsto \left(\frac{s}{f^n} \mapsto \frac{sg^n}{(fg)^n}\right)$$

is a B-sheaf on B (here Top(X) is the category given by the open sets of X and their inclusion, as defined in the lecture).

References

[Har77] Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer, 1977.