Dimensionamento para exemplo de Florianópolis

Sumário

1.	Consumo de 275 kWh mensais em Florianópolis	2
2.	Comparando Módulos	2
	Simulando o módulo Canadiana Solar (CS6K-260P)	
	Simulando módulo PANDA – 260W	
3.	Configuração dos módulos	5
	.1. Simulando configuração final	

1. Consumo de 275 kWh mensais em Florianópolis

Utilizando a fórmula: P = (E.G)/(H.TD)

Р	E	Gstc	Htot	TD
Pot.Pico.Modulo	Ene.Cons.Diaria	Irradiancia	Irrad.Diar	Desempenho
2.945,114 Wp	9,1667 kWh	1	4,15	75%

Potência a ser suprida: 2,95kWp

2. Comparando Módulos

2.1. Simulando o módulo Canadiana Solar (CS6K-260P)

Dados do Módulo - Canadian Solar (CS6K-260P)

Icurto [A]	Voperação [V]	Ioperação [A]	Vmax [V]	Pmax [W]	Eficiência	%/°C Pmax	%/°C Voc
9,12	30,4	8,56	37,5	260	15,88%	-0,41%	-0,31%

Valores do módulo simulados no PSIM Vpotmax [V] Ipotmax [A] T (°C) ΔP (%/°C) ΔV (%/°C) Pmax [W] 28,56 00 8,48 242,2 267,577 29,674 80° 185,201 24,328

$$R = \frac{28,56}{8,48} \approx 3,368\Omega$$

Assim, para um módulo temos:

Potência: **242,19505 W**Tensão de saída: 28,560685 V
Corrente de saída: 8,4800132 A

2.2. Simulando módulo PANDA - 260W

Para um módulo:

Potência: **246,49514 W**Tensão de saída: 29,664617 V
Corrente de saída: 8.3094165 A

Conclui-se então que o melhor módulo a ser usado é o PANDA – 260W.

3. Configuração dos módulos

Define-se o inversor a ser utilizado:

Inversor Grid Tie Fronius - Modelo Galvo 3_0

R\$ 6820,00

Dados do Inversor - FRONIUS GALVO 3.0 - 1 ()

* 3 ligações CC

Icurto [A]	Imax-in [A]	Faixa de tensão	MPP [V]	Vmax [V]	Vmin [V]	Pmax [Wp]	Eficiência
29,6	19,8	165	440	550	165	3.160	96,10%

Com esses valores, utilizando o Solver no Excel, encontra-se a melhor configuração a ser utilizada:

13 agrupamentos em **série** Total de módulos usados: 13

1 agrupamentos em **paralelo** Potência (ideal) de saída: **3,08 kW**

3.1. Simulando configuração final

Simulação de temperatura para um módulo:

T [ºC]	V	Р
00	30,814 V	271,35067 W
80°	25,504 V	191,12569 W

13*Número de células	780
13*Máxima Potência	3380 W
13*V _{POTÊNCIA} MÁXIMA	400,4 V 38,6 V
13*Voc	38,6 V
13*dv/di (slope) Voc	-8.84

Tempo: 8 ms

 Potência:
 3,2044368 kW

 Tensão de saída:
 31,808291 V

 Corrente de saída:
 8.9098854 A

Potência final: 3,2 kW