

Tabel 1: Zintuiglijk waargenomen bijzonderheden

Boring	Diepte boring (m -mv)	Traject (m -mv)	Grondsoort	Waargenomen bijzonderheden
11	7,50	4,50 - 5,50	Zand	matig veenhoudend
11a	7,50	4,50 - 5,50	Zand	matig veenhoudend
11b	7,50	4,50 - 5,50	Zand	matig veenhoudend
11c	7,50	4,50 - 5,50	Zand	matig veenhoudend
11d	7,50	4,50 - 5,50	Zand	matig veenhoudend
11e	7,50	4,50 - 5,50	Zand	matig veenhoudend
12	5,70	3,00 - 5,70	Zand	sporen slib
14	7,40	2,00 - 7,40	Zand	zwak slibhoudend
14a	7,40	2,00 - 7,40	Zand	zwak slibhoudend
14b	7,40	2,00 - 7,40	Zand	zwak slibhoudend
14c	7,40	2,00 - 7,40	Zand	zwak slibhoudend
14d	7,40	2,00 - 7,40	Zand	zwak slibhoudend
15	6,80	2,00 - 3,00	Zand	matig roesthoudend
15a	6,80	2,00 - 3,00	Zand	matig roesthoudend
31	0,50	0,00 - 0,50	Slib	Tussen stenen door
32	0,50	0,00 - 0,50	Slib	Tussen stenen door
33	0,50	0,00 - 0,50	Slib	Tussen stenen door
34	0,50	0,00 - 0,50	Slib	Tussen stenen door
35	0,50	0,00 - 0,50	Slib	Tussen stenen door
36	0,50	0,00 - 0,50	Slib	matig veenhoudend, Tussen stenen door
104	0,50	0,00 - 0,50	Klei	sporen baksteen, zwak koolashoudend
107	0,50	0,00 - 0,50	Klei	sporen baksteen

Tabel 2: Visuele inspectie

Locatie	Oppervlakte	Inspectie-	Mate	Туре	Neerslag	Inspectie	Inspectie	ZichtType	Opmerking	Geinsp.
Mengmonster	(m2)	efficiëntie	bedekking	bedekking		begin	eind			Opp. (m2)
-		(%)	(%)							, , ,

Tabel 3: Metingen grondwater

Watermonster	Filterdiepte	Grondwater-stand	pН	EC	Troebelheid
	(m -mv)	(m -mv)	(-)	(µS/cm)	(NTU)

Tabel 4: Monsterselectie

•			
Analyse-	Traject	Deelmonsters	Analysepakket
monster	(m -mv)		
1.1.1	0,00 - 0,50	11 (0,00 - 0,50)	AS3000 : Pakket Standaard C2 (A), AS3000 : Tributyltin + Trifenyltin
		12 (0,00 - 0,50)	(A), Chloride (opgelost na extractie met water) (AA)
		13 (0,00 - 0,50)	
		14 (0,00 - 0,50)	
		15 (0,00 - 0,50)	
		16 (0,00 - 0,50)	
1.1.2	0,00 - 0,50	11 (0,00 - 0,50)	PFAS (28) Handelingskader
		12 (0,00 - 0,50)	, ,
		13 (0.00 - 0.50)	
		14 (0,00 - 0,50)	
		15 (0,00 - 0,50)	
		16 (0,00 - 0,50)	
1.2.1	0,50 - 1,00	11 (0,50 - 1,00)	AS3000 : Pakket Standaard C2 (A), AS3000 : Tributyltin + Trifenyltin
		12 (0,50 - 1,00)	(A), Chloride (opgelost na extractie met water) (AA)
		13 (0,50 - 1,00)	
		14 (0,50 - 1,00)	
		15 (0,50 - 1,00)	
		16 (0,50 - 1,00)	
1.2.2	0,50 - 1,00	11 (0,50 - 1,00)	PFAS (28) Handelingskader
		12 (0,50 - 1,00)	
		13 (0,50 - 1,00)	
		14 (0,50 - 1,00)	

Analyse- monster	Traject (m -mv)	Deelmonsters	Analysepakket
		15 (0,50 - 1,00) 16 (0,50 - 1,00)	
1.3.1	1,00 - 1,50	11 (1,00 - 1,50) 12 (1,00 - 1,50) 13 (1,00 - 1,50) 14 (1,00 - 1,50) 15 (1,00 - 1,50)	AS3000 : Pakket Standaard C2 (A), Chloride (opgelost na extractie met water) (AA)
4.0.0	4.00, 4.50	16 (1,00 - 1,50)	DEAC (20) Handelingshaden
1.3.2	1,00 - 1,50	11 (1,00 - 1,50) 12 (1,00 - 1,50) 13 (1,00 - 1,50) 14 (1,00 - 1,50) 15 (1,00 - 1,50) 16 (1,00 - 1,50)	PFAS (28) Handelingskader
1.4.1	1,50 - 2,00	11 (1,50 - 2,00) 11a (1,50 - 2,00) 11b (1,50 - 2,00) 12 (1,50 - 2,00) 13 (1,50 - 2,00) 16 (1,50 - 2,00)	AS3000 : Pakket Standaard C2 (A), Chloride (opgelost na extractie met water) (AA)
1.4.2	1,50 - 2,00	11 (1,50 - 2,00) 11a (1,50 - 2,00) 11b (1,50 - 2,00) 12 (1,50 - 2,00) 13 (1,50 - 2,00)	PFAS (28) Handelingskader
1.5.1	2,00 - 2,50	16 (1,50 - 2,00) 11 (2,00 - 2,50) 11a (2,00 - 2,50) 11b (2,00 - 2,50) 12 (2,00 - 2,50) 13 (2,00 - 2,50) 16 (2,00 - 2,50)	AS3000 : Pakket Standaard C2 (A), Chloride (opgelost na extractie met water) (AA)
1.5.2	2,00 - 2,50	11 (2,00 - 2,50) 11a (2,00 - 2,50) 11b (2,00 - 2,50) 12 (2,00 - 2,50) 13 (2,00 - 2,50) 16 (2,00 - 2,50)	PFAS (28) Handelingskader
1.6.1	2,50 - 3,00	11 (2,50 - 3,00) 11a (2,50 - 3,00) 11b (2,50 - 3,00) 12 (2,50 - 3,00) 13 (2,50 - 2,70) 16 (2,50 - 3,00)	AS3000 : Pakket Standaard C2 (A), Chloride (opgelost na extractie met water) (AA)
1.6.2	2,50 - 3,00	11 (2,50 - 3,00) 11 (2,50 - 3,00) 11a (2,50 - 3,00) 11b (2,50 - 3,00) 12 (2,50 - 3,00) 13 (2,50 - 2,70) 16 (2,50 - 3,00)	PFAS (28) Handelingskader
1.7.1	3,00 - 3,50	11 (3,00 - 3,50) 11a (3,00 - 3,50) 11b (3,00 - 3,50) 11c (3,00 - 3,50) 11d (3,00 - 3,50) 11e (3,00 - 3,50)	AS3000 : Pakket Standaard C2 (A), AS3000 : Tributyltin + Trifenyltin (A), Chloride (opgelost na extractie met water) (AA)
1.7.2	3,00 - 3,50	11 (3,00 - 3,50) 11a (3,00 - 3,50) 11b (3,00 - 3,50) 11b (3,00 - 3,50) 11c (3,00 - 3,50) 11d (3,00 - 3,50) 11e (3,00 - 3,50)	PFAS (28) Handelingskader
2.1.1	0,00 - 0,50	21 (0,00 - 0,50) 22 (0,00 - 0,50) 23 (0,00 - 0,50) 24 (0,00 - 0,50) 25 (0,00 - 0,50) 26 (0,00 - 0,50)	AS3000 : Pakket Standaard C2 (A), AS3000 : Tributyltin + Trifenyltin (A), Chloride (opgelost na extractie met water) (AA)
2.1.2	0,00 - 0,50	21 (0,00 - 0,50) 22 (0,00 - 0,50) 23 (0,00 - 0,50)	PFAS (28) Handelingskader

Analyse- monster	Traject (m -mv)	Deelmonsters	Analysepakket
	,,	24 (0,00 - 0,50)	
		25 (0,00 - 0,50) 26 (0,00 - 0,50)	
2.2.1	0,50 - 1,00	21 (0,50 - 1,00)	AS3000 : Pakket Standaard C2 (A), AS3000 : Tributyltin + Trifenyltin
		22 (0,50 - 1,00)	(A), Chloride (opgelost na extractie met water) (AA)
		23 (0,50 - 1,00) 24 (0,50 - 1,00)	
		25 (0,50 - 1,00)	
		26 (0,50 - 1,00)	
2.2.2	0,50 - 1,00	21 (0,50 - 1,00)	PFAS (28) Handelingskader
		22 (0,50 - 1,00) 23 (0,50 - 1,00)	
		24 (0,50 - 1,00)	
		25 (0,50 - 1,00)	
3.1.1	0.00 - 0.50	26 (0,50 - 1,00) 31 (0,00 - 0,50)	AS3000 : Pakket Standaard C2 (A)
0	3,00 0,00	32 (0,00 - 0,50)	()
		33 (0,00 - 0,50)	
		34 (0,00 - 0,50) 35 (0,00 - 0,50)	
		36 (0,00 - 0,50)	
3.1.2	0,00 - 0,50	31 (0,00 - 0,50)	PFAS (28) Handelingskader
		32 (0,00 - 0,50) 33 (0,00 - 0,50)	
		34 (0,00 - 0,50)	
		35 (0,00 - 0,50)	
L D4	0.00 0.50	36 (0,00 - 0,50)	A COOOL Character and be deep in all luture houses. As Cr. DEAC (20)
LB1	0,00 - 0,50	101 (0,00 - 0,50) 103 (0,00 - 0,50)	AS3000: Standaard bodem incl lutum humus As Cr, PFAS (28) Handelingskader
		106 (0,00 - 0,50)	, tandom gottado.
1.00	0.00 0.50	109 (0,00 - 0,50)	A00000 0: 1 11 1 1 1 1 1 1 A 0 PF40 (00)
LB2	0,00 - 0,50	104 (0,00 - 0,50)	AS3000: Standaard bodem incl lutum humus As Cr, PFAS (28) Handelingskader
LB3	0,00 - 0,50	107 (0,00 - 0,50)	AS3000: Standaard bodem incl lutum humus As Cr, PFAS (28)
LB4	0,00 - 0,50	110 (0,00 - 0,50)	Handelingskader AS3000: Standaard bodem incl lutum humus As Cr, PFAS (28)
		, , , , , , , , , , , , , , , , , , , ,	Handelingskader
Z1.1.1	1,50 - 4,00	11 (3,50 - 4,00) 12 (3,00 - 3,50)	AS3000 : Pakket Standaard C2 (A), AS3000 : Tributyltin + Trifenyltin (A), Chloride (opgelost na extractie met water) (AA)
		13 (2,70 - 3,00)	(A), Chionde (opgelost na extractie met water) (AA)
		14 (1,50 - 2,00)	
		15 (1,50 - 2,00)	
Z1.1.2	1,50 - 4,00	16 (3,00 - 3,50) 11 (3,50 - 4,00)	PFAS (28) Handelingskader
	1,00 1,00	12 (3,00 - 3,50)	1 1 7 to (25) Harrasiningstador
		13 (2,70 - 3,00)	
		14 (1,50 - 2,00) 15 (1,50 - 2,00)	
		16 (3,00 - 3,50)	
Z1.2.1	2,00 - 4,50	11 (4,00 - 4,50)	AS3000 : Pakket Standaard C2 (A), Chloride (opgelost na extractie
		12 (3,50 - 4,00) 13 (3,00 - 3,50)	met water) (AA)
		13 (3,00 - 3,50)	
		15 (2,00 - 2,50)	
74.0.0	2.00 4.50	16 (3,50 - 4,00)	DEAC (20) Handelingskader
Z1.2.2	2,00 - 4,50	11 (4,00 - 4,50) 12 (3,50 - 4,00)	PFAS (28) Handelingskader
		13 (3,00 - 3,50)	
		14 (2,00 - 2,50)	
		15 (2,00 - 2,50) 16 (3,50 - 4,00)	
Z1.3.1	2,50 - 5,00	11 (4,50 - 5,00)	AS3000 : Pakket Standaard C2 (A), Chloride (opgelost na extractie
		12 (4,00 - 4,50)	met water) (AA)
		13 (3,50 - 4,00)	
		14 (2,50 - 3,00) 15 (2,50 - 3,00)	
		16 (4,00 - 4,50)	
Z1.3.2	2,50 - 5,00	11 (4,50 - 5,00)	PFAS (28) Handelingskader
		12 (4,00 - 4,50) 13 (3 50 - 4 00)	
		13 (3,50 - 4,00)	

Analyse-	Traject	Deelmonsters	Analysepakket
monster	(m -mv)		
		14 (2,50 - 3,00)	
		15 (2,50 - 3,00)	
		16 (4,00 - 4,50)	

Tabel 5: Analyses grondwater

Analyse-	Filterdiepte (m -mv)	Analysepakket
monster		

Tabel 6: Overschrijdingstabel grond

Analyse- monster	Monstertraject (m -mv)	> AW (+index)	> T	> I (+index)	BBK monster- conclusie
1.1.1	0,00 - 0,50	PCB (som 7) (0,08) Minerale olie C10 - C40 (0,08) Chroom (0,15) Zink (0,39) Arseen (0,06) Molybdeen (-) Cadmium (0,05) Kwik (0,02) Lood (0,1) PAK 10 VROM (0,12)	Tributyltin (als Sn) ()	Koper (1,17)	Niet Toepasbaar > Interventiewaarde
1.1.2	0,00 - 0,50	-	-	-	
1.2.1	0,50 - 1,00	PCB (som 7) (0,04) Minerale olie C10 - C40 (0,15) Chroom (0,04) Koper (0,26) Zink (0,31) Cadmium (0,03) Kwik (0,01) Lood (0,04) Organotin, som TBT+TFT, als SN () PAK 10 VROM (0,2) Organotin (-)	Tributyltin (als Sn) ()	-	Niet Toepasbaar > industrie
1.2.2	0,50 - 1,00	-	-	-	
1.3.1	1,00 - 1,50	PCB (som 7) (0,19) Minerale olie C10 - C40 (0,14) Chroom (0,01) Zink (0,22) Arseen (0,01) Cadmium (0,02) Kwik (0,02) Lood (0,06) PAK 10 VROM (0,26)	Koper (0,77)	-	Niet Toepasbaar > industrie
1.3.2	1,00 - 1,50	-	-	-	
1.4.1	1,50 - 2,00	PCB (som 7) (0,19) Minerale olie C10 - C40 (0,26) Koper (0,2) Zink (0,06) Cadmium (-) Kwik (0,01) Pentachloorfenol (PCP) (-)	PAK 10 VROM (0,89)	-	Niet Toepasbaar > industrie
1.4.2	1,50 - 2,00	-	-	-	
1.5.1	2,00 - 2,50	PCB (som 7) (0,11) Minerale olie C10 - C40 (0,22) Chroom (0,13) Zink (0,4) Arseen (0,06)	-	Koper (1,93)	Niet Toepasbaar > Interventiewaarde

Analyse- monster	Monstertraject (m -mv)	> AW (+index)	> T	> I (+index)	BBK monster- conclusie
		Cadmium (0,01) Kwik (0,03) Lood (0,13) PAK 10 VROM (0,16)			
1.5.2	2,00 - 2,50	-	-	-	
1.6.1	2,50 - 3,00	PCB (som 7) (0,07) Minerale olie C10 - C40 (0,17) Zink (0,24) Cadmium (-) Kwik (0,02) Lood (0,09) PAK 10 VROM (0,16)	Koper (0,81)	-	Niet Toepasbaar > industrie
1.6.2	2,50 - 3,00	-	-	-	
1.7.1	3,00 - 3,50	Minerale olie C10 - C40 (0,08) Zink (0,06) Kwik (0,01) Lood (0,01) PAK 10 VROM (0,2)	-	-	Niet Toepasbaar > industrie
1.7.2	3,00 - 3,50	-	-	-	
2.1.1	0,00 - 0,50	PCB (som 7) (0,08) Minerale olie C10 - C40 (0,12) Chroom (0,26) Arseen (0,16) Molybdeen (0,01) Cadmium (0,08) Kwik (0,03) Lood (0,13) Organotin, som TBT+TFT, als SN () PAK 10 VROM (0,18) Organotin (-)	Tributyltin (als Sn) () Koper (0,81) Zink (0,55)	-	Niet Toepasbaar > industrie
2.1.2	0,00 - 0,50	-	-	-	
2.2.1	0,50 - 1,00	PCB (som 7) (0,08) Minerale olie C10 - C40 (0,11) Koper (0,35) Zink (0,31) Molybdeen (-) Cadmium (0,02) Kwik (0,01) Lood (0,02) PAK 10 VROM (0,09)	Tributyltin (als Sn) ()	-	Niet Toepasbaar > industrie
2.2.2	0,50 - 1,00	-	-	-	
3.1.1	0,00 - 0,50	PCB (som 7) (0,03) Minerale olie C10 - C40 (0,02) Chroom (0,03) Kobalt (0,01) Nikkel (0,01) Molybdeen (-) Kwik (-) Lood (0,15) PAK 10 VROM (0,02)	Koper (0,99) Zink (0,89)	-	Klasse industrie
3.1.2	0,00 - 0,50	-	-	-	
LB1	0,00 - 0,50	PCB (som 7) (0,04) Koper (0,21) Zink (0,37) Kwik (-) Lood (0,44) PAK 10 VROM (0,25)	-	-	Klasse industrie
LB2	0,00 - 0,50	Zink (0,29) Kwik (0,01) Lood (0,2) PAK 10 VROM (0,12)	-	-	Klasse industrie
LB3	0,00 - 0,50	PCB (som 7) (0,01) Koper (0,17) Zink (0,2)	-	-	Klasse industrie

Analyse- monster	Monstertraject (m -mv)	> AW (+index)	> T	> I (+index)	BBK monster- conclusie
		Kwik (-) Lood (0,35)			
LB4	0,00 - 0,50	PCB (som 7) (0,07) Koper (0,28) Kwik (0,01) Lood (0,36) PAK 10 VROM (0,14)	Zink (0,53)	-	Klasse industrie
Z1.1.1	1,50 - 4,00	Minerale olie C10 - C40 (0,02)	-	-	Klasse industrie
Z1.1.2	1,50 - 4,00	=	-	=	
Z1.2.1	2,00 - 4,50	-	-	-	Altijd toepasbaar
Z1.2.2	2,00 - 4,50	-	-	-	
Z1.3.1	2,50 - 5,00	-	-	-	Altijd toepasbaar
Z1.3.2	2,50 - 5,00	-	-	-	

> AW : > Achtergrondwaarde > T : > Tussenwaarde > I : > Interventiewaarde Index : (GSSD - AW) / (I - AW)

Tabel 7: Overschrijdingstabel grondwater

Watermonster	Filterdiepte	> S (+index)	> T	> I (+index)
	(m -mv)			

> S : > Streefwaarde > T : > Tussenwaarde > I : > Interventiewaarde Index : (GSSD - S) / (I - S)

Tabel 8: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster		1.1.1			1.1.2			1.2.1		
Certificaatcode		1449956			1449956			1449956		
Boring(en)		11, 12, 13, 14	1, 15, 16		11, 12, 13, 1	4, 15, 16		11, 12, 13, 1	4, 15, 16	
Traject (m -mv)		0,00 - 0,50			0,00 - 0,50			0,50 - 1,00		
Humus	% ds	8,60			10,00			8,00		
Lutum	% ds	22,1	22,1 2					19,90		
Datum van toetsing		1-3-2023			1-3-2023			1-3-2023		
Monsterconclusie		Overschrijdin	g Interventiew	aarde				Overschrijdii Achtergrond		
Monstermelding 1										
Monstermelding 2										
Monstermelding 3										
		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE VERBINDINGEN										
Chloride	mg/kg ds	29000	29000 (7,40)					17000	17000 (7,40)	
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds	56	65					180	225	
Trifenyltin (als Sn)	μg/kg ds	<4	<3					<4	<4	
trans-Heptachloorepoxide	μg/kg ds	<1	<1					<1	<1	
Endosulfansulfaat	μg/kg ds	<2	<2 (6)					<2	<2 (6)	
cis-Heptachloorepoxide	μg/kg ds	<1	<1					<1	<1	
Tributyltin	mg/kg ds	0,14						0,45		
Heptachloorepoxide (som, 0.7 factor	μg/kg ds	1						1		
OCB (0,7 som, grond)	mg/kg ds	0,015#	-	-	_			0,018#	-	

Certificationcide	Grondmonster		1.1.1	1.1.2	1.2.1	
11,12,13,14,15,16						
Traject (m-my)						
Humus						
13-2073 13-2		% ds	8,60	10,00	8,00	
Overschrijding Interventiewaarde	Lutum	% ds	22,1	25,0	19,90	
Achtergrondwiserde	Datum van toetsing		1-3-2023	1-3-2023	1-3-2023	
Organoini, som TBT-FTF, alts MS NS	Monsterconclusie		Overschrijding Interventiewaarde			
SN						
Hexachlorotudatien	SN	ds	,		, in the second	.50
Alleh Line					- / -	
bels+HCH						
gamma+ICH					1	-0
delta-HCH			_		1	-0
Isodin						-0
Telodrin						(6)
Heptachloropoxide					<1 <1	
Heptathoropoxide						
Aldrin						0
Deldrin			<1,63 -0		<1	75 -0
Endrin		μg/kg ds				
DDE (som)	Dieldrin				<1 <1	
DDE (som)	Endrin	μg/kg ds	2# 2 (41)		2# 2	(41)
4.4-DDE (para, para-DDE) μg/kg ds <1 <1 <1 <1 <1 <1	DDE (som)	μg/kg ds	1 <2 -0,04		1 <2	-0,04
4.4-DDE (para, para-DDE)	2,4-DDE (ortho, para-DDE)		<1 <1		<1 <1	
DDD (som)	4,4-DDE (para, para-DDE)	μg/kg ds	<1 <1		<1 <1	
2.4-DDD (ortho, para-DDD)		μg/kg ds	1 <2 -0		4# 5	-0
4.4-DDD (para, para-DDD)					4# 4	(41)
DDT (som)			<1 <1		1 1	
2.4-DDT (ortho, para-DDT)			1 <2 -0,13		1 <2	-0,13
4.4-DDT (para, para-DDT)			•		<1 <1	,
Alla-Endosulfan			<1 <1		<1 <1	
Chloordaan (cis + trans)						-0
Cis-Chlordaan						
trans-Chloordaan μg/kg ds						
Organotin						
DDT/DDE/DDD (som) µg/kg ds 4						
HCHs (som, STI-tabel)						
Drins (Aldrin-Dieldrin-Endrin) μg/kg ds μg/kg ds						
Som 23 Organochloorhoud. μg/kg ds 18# 20# 22,3						-0
Destrijdingsm						<u>-</u>
Destrijdingsm Second Process Secon	bestrijdingsm					3
KOOLWATERSTOFFEN mg/kg ds PCB (som 7) mg/kg ds PCB (som 7) µg/kg ds 94.2 0.08 PcB (som 7) µg/kg ds 55.0 0.00 PcB (som 7) µg/kg ds <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <1 <0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <		μg/kg us	17,91		22	,5
KOOLWATERSTOFFEN mg/kg ds PCB (som 7) mg/kg ds PCB (som 7) µg/kg ds 94.2 0.08 PcB (som 7) µg/kg ds 55.0 0.00 PcB (som 7) µg/kg ds <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <0 <1 <1 <1 <1 <0 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	GECHI OREEDDE					
PCB (som 7) mg/kg ds 94.2 0.08 55.0 0.0 Pentachloorbenzeen (QCB) µg/kg ds <1						
PCB (som 7) μg/kg ds 94,2 0,08 55,0 0,0 Pentachloorbenzeen (QCB) μg/kg ds <1		ma/ka de				
Pentachloorbenzeen (QCB)	,		0/12 0.09		55	0 004
Hexachloorbenzeen (HCB)						<u>.0 0,04</u> -0
Pentachloorfenol (PCP) μg/kg ds <3 <3 <3 <6 PCB 28 μg/kg ds 2 2 1 1 1 PCB 28 μg/kg ds 2 2 1 1 1 PCB 52 μg/kg ds 8 9 6 8 8 9 6 8 9 1 <		ug/kg da				-0
PCB 28 mg/kg ds 2 2 1 1 PCB 52 mg/kg ds 2 2 1 1 PCB 52 mg/kg ds 8 9 6 8 PCB 101 mg/kg ds 13 15 8 10 PCB 118 mg/kg ds 9 10 6 8 PCB 118 μg/kg ds 9 10 6 8 PCB 138 mg/kg ds 9 10 6 8 PCB 138 mg/kg ds 9 10 6 8 PCB 153 mg/kg ds 16 19 7 9 PCB 153 mg/kg ds 21 24 11 14 PCB 180 mg/kg ds 12 14 5 6 METALEN METALEN 6 8 9 1						
PCB 28 μg/kg ds 2 2 1 1 PCB 52 μg/kg ds 8 9 6 8 PCB 101 μg/kg ds 13 15 8 10 PCB 108 μg/kg ds 9 10 6 8 PCB 118 μg/kg ds 9 10 6 8 PCB 138 μg/kg ds 9 10 6 8 PCB 138 μg/kg ds 16 19 7 9 PCB 153 μg/kg ds 16 19 7 9 PCB 153 μg/kg ds 21 24 11 14 PCB 180 μg/kg ds 12 14 5 6 METALEN METALEN 14 5 6			_ <3 <2 -0		<3	-0
PCB 52 mg/kg ds 9 6 8 PCB 101 mg/kg ds -<			2 2		1 1	
PCB 52 μg/kg ds 8 9 6 8 PCB 101 mg/kg ds <td< td=""><td></td><td>100</td><td><u> </u></td><td></td><td>1 1</td><td></td></td<>		100	<u> </u>		1 1	
PCB 101 mg/kg ds 13 15 8 10 PCB 118 mg/kg ds -			0 0		6 0	
PCB 101 μg/kg ds 13 15 8 10 PCB 118 mg/kg ds 9 10 6 8 PCB 138 mg/kg ds 9 10 6 8 PCB 138 μg/kg ds 16 19 7 9 PCB 153 mg/kg ds 21 24 11 14 PCB 180 mg/kg ds 12 14 5 6 METALEN METALEN 13 15 8 10 10 8 10 11 14 11 14 10 10 10 10 10 10 10 1			о 9		0 8	
PCB 118 mg/kg ds PCB 118 μg/kg ds 9 10 6 8 PCB 138 mg/kg ds -			12 45		0 10	
PCB 118 μg/kg ds 9 10 6 8 PCB 138 mg/kg ds -			13 15		δ 10	
PCB 138 mg/kg ds 16 19 7 9 PCB 153 mg/kg ds -			10		-	
PCB 138 μg/kg ds 16 19 7 9 PCB 153 mg/kg ds -			9 10		6 8	
PCB 153 mg/kg ds PCB 153 μg/kg ds 21 24 11 14 PCB 180 mg/kg ds			10		_	
PCB 153 μg/kg ds 21 24 11 14 PCB 180 mg/kg ds -			16 19		/ 9	
PCB 180 mg/kg ds PCB 180 μg/kg ds 12 14 5 6 METALEN					1	
PCB 180 μg/kg ds 12 14 5 6 METALEN			21 24		11 14	
METALEN METALEN						
	PCB 180	μg/kg ds	12 14		5 6	
Chroom mg/kg ds 69 73 0.15 54 60 0.0-						
	Chroom	mg/kg ds	<u>69 73 0,15</u>		<u>54</u> <u>60</u>	<u>0,04</u>

I C rondmonotor		1 1 1			1.1.2		1.2.1		
Grondmonster		1.1.1					1.2.1		
Certificaatcode		1449956	1 45 40		1449956	1.45.40		45.40	
Boring(en)		11, 12, 13, 14	1, 15, 16		11, 12, 13, 14	, 15, 16	11, 12, 13, 14	, 15, 16	
Traject (m -mv)		0,00 - 0,50			0,00 - 0,50		0,50 - 1,00		
Humus	% ds	8,60			10,00		8,00		
Lutum	% ds	22,1			25,0		19,90		
Datum van toetsing		1-3-2023			1-3-2023		1-3-2023		
Monsterconclusie		Overschrijdin	g Interventiew	aarde			Overschrijding		
							Achtergrondw	aarde	
Kobalt	mg/kg ds	9,5	10,4	-0,03			7,6	9,0	-0,03
Nikkel	mg/kg ds	31	34	-0,02			21	25	-0,16
Koper	mg/kg ds	200	215	1.17			<u>69</u>	78	0.26
Zink	mg/kg ds	<u>340</u>	368	0.39			280	322	0.31
Arseen	mg/kg ds	22	23	0.06			17	19	-0,02
Molybdeen	mg/kg ds	<u>2,1</u>	<u>2,1</u>	0,00			<1,5	<1,1	-0
Cadmium	mg/kg ds	1,2	1,3	0,05			0.84	0.93	0.03
				0,05					<u>0,03</u>
Barium	mg/kg ds	83	92 ⁽⁶⁾	0.00			51	61 ⁽⁶⁾	0.04
Kwik	mg/kg ds	<u>1,0</u>	<u>1,0</u>	0,02			<u>0,41</u>	<u>0,44</u>	<u>0,01</u>
Lood	mg/kg ds	<u>93</u>	<u>98</u>	<u>0, 1</u>			<u>65</u>	<u>71</u>	<u>0,04</u>
OVERIG									
Gloeirest	% ds	89,9					90,6		
Gloeiverlies	% ds	10,1					9,4		
Trifenyltin	mg/kg ds	<0,005					<0,005		
Aard artefacten	-	,					-,		
Gewicht artefacten	g								
Droge stof	%								
Droge stof	% ds	39,6	39,6 ⁽⁶⁾		50,1	50,1 ⁽⁶⁾	43	43 (6)	
Lutum	% us	22,1	39,0 1		50,1	50,1 **		45 17	
							19,9		
Organische stof (humus)	%	8,6					8,0		
OVERIGE (ORGANISCHE)									
VERBINDINGEN									
Minerale olie C10 - C40	mg/kg ds	<u>490</u>	<u>570</u>	<u>0,08</u>			<u>720</u>	<u>900</u>	<u>0,15</u>
PAK									
Naftaleen	mg/kg ds	0,20	0,20				0,15	0,15	
Anthraceen	mg/kg ds	0,87	0,87				0,56	0,56	
Fenanthreen	mg/kg ds	0,98	0,98				0,96	0,96	
Fluorantheen	mg/kg ds	1,2	1,2				2,1		
Chryseen	mg/kg ds							2.1	
Benzo(a)anthraceen		1 0.73	0.73					2,1 1.2	
DCH20(a)antinacccii		0,73	0,73 0.57				1,2	1,2	
	mg/kg ds	0,57	0,57				1,2 0,86	1,2 0,86	
Benzo(a)pyreen	mg/kg ds mg/kg ds	0,57 0,56	0,57 0,56				1,2 0,86 1,1	1,2 0,86 1,1	
Benzo(a)pyreen Benzo(k)fluorantheen	mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42	0,57 0,56 0,42				1,2 0,86 1,1 0,77	1,2 0,86 1,1 0,77	
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen	mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31	0,57 0,56 0,42 0,31				1,2 0,86 1,1 0,77 0,71	1,2 0,86 1,1 0,77 0,71	
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen	mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35				1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen	mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31	0,57 0,56 0,42 0,31	<u>0,12</u>			1,2 0,86 1,1 0,77 0,71	1,2 0,86 1,1 0,77 0,71	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM	mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	<u>0,12</u>			1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	<u>0,12</u>			1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	<u>0,12</u>	<0,1	0,1 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	<0,1	0,1 ⁽⁶⁾ 0,7 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	<u>0,12</u>	<0,1	0,7 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	<u>0,12</u>	<0,1 0,7	0,1 ⁽⁶⁾ 0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0.2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren	mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	<u>0,12</u>	0,7	0,7 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0.2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren	mg/kg ds pg/kg ds pg/kg ds pg/kg ds pg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0,2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat	mg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7	0,7 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair)	mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat	mg/kg ds pg/kg ds pg/kg ds pg/kg ds pg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0.12	0,7 0,2 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair)	mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0.2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair)	mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	<u>0,12</u>	0,7 0,2 <0,1 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0.2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair)	mg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0.2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair)	mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0,2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0,2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair)	mg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0,2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1 <0,1	0,7 (6) 0,2 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	<u>0.2</u>
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds pg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,7 (6) 0,2 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0.2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds pg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	<u>0,12</u>	0,7 0,2 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,7 (6) 0,2 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0.2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,7 (6) 0,2 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0.2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,7 (6) 0,2 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0,2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-perflu	mg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,7 (6) 0,2 (6) 0,1 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0,2
Benzo(a)pyreen Benzo(k)fluorantheen Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds µg/kg ds	0,57 0,56 0,42 0,31 0,35	0,57 0,56 0,42 0,31 0,35	0,12	0,7 0,2 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,7 (6) 0,2 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,86 1,1 0,77 0,71 0,82	1,2 0,86 1,1 0,77 0,71 0,82	0,2

Grondmonster		1.1.1	1.1.2		1.2.1
Certificaatcode		1449956	1449956		1449956
Boring(en)		11, 12, 13, 14, 15, 16	11, 12, 13, 14, 15,	, 16	11, 12, 13, 14, 15, 16
Traject (m -mv)		0,00 - 0,50	0,00 - 0,50		0,50 - 1,00
Humus	% ds	8,60	10,00		8,00
Lutum	% ds	22,1	25,0		19,90
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023
Monsterconclusie		Overschrijding Interventiewaarde			Overschrijding Achtergrondwaarde
perfluortridecaanzuur	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluortetradecaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluorundecaanzuur	μg/kg ds		0,1	0,1 (6)	
2-(perfluorhexyl)ethaan-1- sulfonzuur	μg/kg ds		<0,1	0,1 (6)	
perfluorhexadecaanzuur	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluoroctadecaanzuur	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluoroctaansulfonylamide(N-	μg/kg ds		1,8	1,8 ⁽⁶⁾	
ethyl)acetaat					
1H,1H,2H,2H-	μg/kg ds		<0,1	0,1 (6)	
perfluordecaansulfonzuur					
1H,1H,2H,2H- perfluordodecaansulfonzuur	μg/kg ds		<0,1	0,1 (6)	
perfluorpentaan-1-sulfonzuur	μg/kg ds		<0,1	0,1 (6)	
perfluoroctaansulfonylamide(N-methyl)acetaat	μg/kg ds		0,4	0,4 (6)	
1H,1H,2H,2H- perfluorhexaansulfonzuur	μg/kg ds		<0,1	0,1 (6)	
bisperfluordecyl fosfaat	μg/kg ds		<0,1	0,1 (6)	
N-methyl	μg/kg ds		<0,1	0,1 (6)	
perfluoroctaansulfonamide					
som lineair en vertakt	μg/kg ds		0,1	0,1 (6)	
perfluoroctaanzuur					
som lineair en vertakt perfluoroctylsulfonaat	μg/kg ds		0,9	0,9 (6)	

Tabel 9: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster		1.2.2			1.3.1			1.3.2		
Certificaatcode		1449956			1449956			1449956		
Boring(en)		11, 12, 13, 14	4, 15, 16		11, 12, 13,	14, 15, 16		11, 12, 13, 1	4, 15, 16	
Traject (m -mv)		0,50 - 1,00			1,00 - 1,50			1,00 - 1,50		
Humus	% ds	10,00			7,80			10,00		
Lutum	% ds	25,0			21,4			25,0		
Datum van toetsing		1-3-2023			1-3-2023			1-3-2023		
Monsterconclusie					Overschrijd Achtergrond					
Monstermelding 1										
Monstermelding 2										
Monstermelding 3										
		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE VERBINDINGEN										
Chloride	mg/kg ds				15000	15000 (7,40)				
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds									
Trifenyltin (als Sn)	μg/kg ds									
trans-Heptachloorepoxide	μg/kg ds				<1	<1				
Endosulfansulfaat	μg/kg ds				<2	<2 (6)				
cis-Heptachloorepoxide	μg/kg ds				<1	<1				
Tributyltin	mg/kg ds									
Heptachloorepoxide (som, 0.7 factor	μg/kg ds				1					
OCB (0,7 som, grond)	mg/kg ds				0,026#					
Organotin, som TBT+TFT, als	mg Sn/kg									
SN	ds									
Organotin, som TBT+TFT	mg/kg ds					·				
Hexachloorbutadieen	μg/kg ds				<1	·				

Grondmonster		1.2.2	1.3.1			1.3.2
Certificaatcode		1449956	1449956			1449956
Boring(en)		11, 12, 13, 14, 15, 16	11, 12, 13, 14,	15, 16		11, 12, 13, 14, 15, 16
Traject (m -mv)		0,50 - 1,00	1,00 - 1,50	,		1,00 - 1,50
Humus	% ds	10,00	7,80			10,00
Lutum	% ds	25,0	21,4			25,0
Datum van toetsing		1-3-2023	1-3-2023			1-3-2023
Monsterconclusie			Overschrijding			
15 11011			Achtergrondwa			
alfa-HCH	μg/kg ds		<1	<1	-0	
beta-HCH	μg/kg ds		<1 <1	<1 <1	-0 -0	
gamma-HCH delta-HCH	μg/kg ds μg/kg ds		<1	<1 (6)	-0	
Isodrin	μg/kg ds μg/kg ds		<1	<1		
Telodrin	μg/kg ds		<1	<1		
Heptachloor	μg/kg ds		<1	<1	0	
Heptachloorepoxide	μg/kg ds			<1,79	-0	
Aldrin	μg/kg ds		<1	<1		
Dieldrin	μg/kg ds		<1	<1		
Endrin	μg/kg ds		<1	<1		
DDE (som)	μg/kg ds		3	3	-0,04	
2,4-DDE (ortho, para-DDE)	μg/kg ds		<1	<1		
4,4-DDE (para, para-DDE)	μg/kg ds		2	3		
DDD (som)	μg/kg ds		11#	14 12 ⁽⁴¹⁾	-0	
2,4-DDD (ortho, para-DDD) 4,4-DDD (para, para-DDD)	μg/kg ds μg/kg ds		13# 2	3		
DDT (som)	μg/kg ds μg/kg ds		1	<u> </u>	-0,13	
2,4-DDT (ortho, para-DDT)	μg/kg ds μg/kg ds		<1	<1	0,10	
4,4-DDT (para, para-DDT)	μg/kg ds		<1	<1		
alfa-Endosulfan	μg/kg ds		<1	<1	-0	
Chloordaan (cis + trans)	μg/kg ds			<1,79	-0	
cis-Chloordaan	μg/kg ds		<1	<1		
trans-Chloordaan	μg/kg ds		<1	<1		
Organotin	μg/kg ds					
DDT/DDE/DDD (som)	μg/kg ds		15#			
HCHs (som, STI-tabel)	μg/kg ds		3			
Drins (Aldrin+Dieldrin+Endrin) Som 23 Organochloorhoud.	μg/kg ds		28#	<3	-0	
bestrijdingsm	μg/kg ds		20#			
Som 21 Organochloorhoud.	μg/kg ds			32,9		
bestrijdingsm	pg/kg do			02,0		
, ,						
GECHLOREERDE						
KOOLWATERSTOFFEN						
PCB (som 7)	mg/kg ds					
PCB (som 7)	μg/kg ds		4	<u>208</u>	<u>0,19</u>	
Pentachloorbenzeen (QCB)	μg/kg ds		<1	<1	-0 -0	
Hexachloorbenzeen (HCB) Pentachloorfenol (PCP)	μg/kg ds μg/kg ds		<1 <3	<1 <3	-0 -0	
PCB 28	mg/kg ds		\3	\ J	-0	
PCB 28	µg/kg ds		6	8		
PCB 52	mg/kg ds		-			
PCB 52	μg/kg ds		13	17		
PCB 101	mg/kg ds					
PCB 101	μg/kg ds		26	33		
PCB 118	mg/kg ds					
PCB 118	μg/kg ds		22	28		
PCB 138	mg/kg ds		00	10		
PCB 138	μg/kg ds		33	42		
PCB 153	mg/kg ds		40	E1		
PCB 153 PCB 180	μg/kg ds mg/kg ds		40	51		
PCB 180	µg/kg ds		22	28		
. 55 100	pg/ng us			20		
METALEN						
Chroom	mg/kg ds		<u>52</u>	<u>56</u>	0,01	
Kobalt	mg/kg ds		7,4	8,3	-0,04	
Nikkel	mg/kg ds		21	23	-0,18	
I/aman	mg/kg us				-, -	
Koper Zink	mg/kg ds mg/kg ds		140 240	155 267	0,77 <u>0,22</u>	

Grondmonster		1.2.2		1.3.1			1.3.2	
Certificaatcode		1449956		1449956			1449956	
Boring(en)		11, 12, 13, 14,	15, 16	11, 12, 13, 14	. 15. 16		11, 12, 13, 14	1. 15. 16
Traject (m -mv)		0,50 - 1,00	10, 10	1.00 - 1.50	, .0, .0		1,00 - 1,50	., .0, .0
Humus	% ds	10,00		7,80			10,00	
Lutum	% ds	25,0		21,4			25,0	
Datum van toetsing		1-3-2023		1-3-2023			1-3-2023	
Monsterconclusie				Overschrijding	1			
				Achtergrondw				
Arseen	mg/kg ds			<u>19</u>	<u>21</u>	0,01		
Molybdeen	mg/kg ds			<1,5	<1,1	-0		
Cadmium	mg/kg ds			<u>0,79</u>	<u>0,87</u>	0,02		
Barium	mg/kg ds			61	69 ⁽⁶⁾			
Kwik	mg/kg ds			<u>0,81</u>	<u>0,86</u>	<u>0,02</u>		
Lood	mg/kg ds			<u>74</u>	<u>79</u>	0,06		
OVERIG								
Gloeirest	% ds			90,7				
Gloeiverlies	% ds			9,3				
Trifenyltin	mg/kg ds							
Aard artefacten	-							
Gewicht artefacten	g							
Droge stof	%							
Droge stof	% ds	55,1	55,1 ⁽⁶⁾	46,7	46,7 ⁽⁶⁾		56,7	56,7 ⁽⁶⁾
Lutum	%			21,4				
Organische stof (humus)	%			7,8				
OVERIGE (ORGANISCHE)								
VERBINDINGEN								
Minerale olie C10 - C40	mg/kg ds			<u>690</u>	<u>885</u>	<u>0,14</u>		
DAK								
PAK				0.04	0.04			
Naftaleen	mg/kg ds			0,31	0,31			
Anthraceen	mg/kg ds			0,48	0,48			
Fenanthreen	mg/kg ds			0,92	0,92			
Fluorantheen	mg/kg ds			3,0	3,0			
Chryseen	mg/kg ds			1,6	1,6			
Benzo(a)anthraceen	mg/kg ds			1,3	1,3			
Benzo(a)pyreen	mg/kg ds			1,2	1,2			
Benzo(k)fluorantheen	mg/kg ds			0,64	0,64			
Indeno-(1,2,3-c,d)pyreen	mg/kg ds			1,1	1,1			
Benzo(g,h,i)peryleen	mg/kg ds			0,88	0,88	0.00		
PAK 10 VROM	mg/kg ds			<u>11</u>	<u>11</u>	<u>0,26</u>		
PFAS								
perfluoroctaanzuur (lineair)	ua/ka ds	<0.1	0,1 (6)				<0.1	0,1 (6)
perfluoroctaanzuur (iineair)	μg/kg ds μg/kg ds	0,9	0,1 (9)				0,2	0,1 (6)
(lineair)	µg/kg us	0,9	0,9				0,2	0,2
som vertakte PFOS-isomeren	μg/kg ds	0,2	0,2 (6)				<0,1	0,1 (6)
som vertakte PFOA-isomeren	μg/kg ds μg/kg ds	<0,1	0,2 (6)				<0,1	0,1 (6)
perfluor-1-butaansulfonaat	μg/kg ds μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
(lineair)	µg/ng us	~ 0, 1	0,1				~o, i	0,1
perfluor-1-decaansulfonaat	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
(lineair)	pg, ng us	30,1	٥, ١				٦٥, ١	5,1
perfluor-1-heptaansulfonaat	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
(lineair)	J	.=, .	-, -				, •	±1:
perfluor-1-hexaansulfonaat	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
(lineair)	J	, •					, •	- 1:
perfluorbutaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluordecaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluordodecaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluorheptaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluorhexaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluornonaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds	0,9	0,9 (6)				0,2	0,2 (6)
perfluorpentaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds	<0,1	0,1 (6)				<0,1	0,1 (6)
perfluorundecaanzuur	μg/kg ds	0,3	0,3 (6)				<0,1	0,1 (6)
	1 - 3 3 GC	,.	5,5				,.	٠,٠

Grondmonster		1.2.2		1.3.1		1.3.2	
Certificaatcode		1449956		1449956		1449956	
Boring(en)		11, 12, 13, 14, 15,	, 16	11, 12, 13, 14, 15, 1	6	11, 12, 13, 14,	15, 16
Traject (m -mv)		0,50 - 1,00		1,00 - 1,50		1,00 - 1,50	
Humus	% ds	10,00		7,80		10,00	
Lutum	% ds	25,0		21,4		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monsterconclusie				Overschrijding Achtergrondwaarde			
2-(perfluorhexyl)ethaan-1- sulfonzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 (6)
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 ⁽⁶⁾
perfluoroctadecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 ⁽⁶⁾
perfluoroctaansulfonylamide(N-	μg/kg ds	2,0	2,0 (6)			0,3	0,3 (6)
ethyl)acetaat							
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordecaansulfonzuur							
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordodecaansulfonzuur			(0)				(0)
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-methyl)acetaat	μg/kg ds	1,2	1,2 (6)			0,1	0,1 (6)
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 (6)
perfluorhexaansulfonzuur							
bisperfluordecyl fosfaat	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 ⁽⁶⁾
N-methyl	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 ⁽⁶⁾
perfluoroctaansulfonamide							
som lineair en vertakt	μg/kg ds	0,1	0,1 (6)			0,1	0,1 (6)
perfluoroctaanzuur							
som lineair en vertakt	μg/kg ds	1,1	1,1 ⁽⁶⁾			0,3	0,3 (6)
perfluoroctylsulfonaat							

Tabel 10: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster		1.4.1			1.4.2			1.5.1		
Certificaatcode		1449956			1449956			1449956		
Boring(en)		11, 11a, 11b,	12, 13, 16		11, 11a, 11	b, 12, 13, 16		11, 11a, 11b, 12, 13, 16		
Traject (m -mv)		1,50 - 2,00			1,50 - 2,00			2,00 - 2,50		
Humus	% ds	6,40			10,00			5,80		
Lutum	% ds	15,30			25,0			12,90		
Datum van toetsing		1-3-2023			1-3-2023			1-3-2023		
Monsterconclusie		Overschrijdin Achtergrondv						Overschrijdin	g Interventiev	vaarde
Monstermelding 1										
Monstermelding 2										•
Monstermelding 3										
		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE VERBINDINGEN										
Chloride	mg/kg ds	15000	15000 (7,40)					15000	15000 (7,40)	
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds									
Trifenyltin (als Sn)	μg/kg ds									
trans-Heptachloorepoxide	μg/kg ds	<1	<1					<1	<1	
Endosulfansulfaat	μg/kg ds	<2	<2 (6)					<2	<2 (6)	
cis-Heptachloorepoxide	μg/kg ds	<1	<1					<1	<1	
Tributyltin	mg/kg ds									
Heptachloorepoxide (som, 0.7 factor	μg/kg ds	1						1		
OCB (0,7 som, grond)	mg/kg ds	0,027#						0,020#		
Organotin, som TBT+TFT, als	mg Sn/kg	- , -						-,-		
SN	ds									
Organotin, som TBT+TFT	mg/kg ds									
Hexachloorbutadieen	μg/kg ds	<1						<1		
alfa-HCH	μg/kg ds	<1	<1	0				<1	<1	0
beta-HCH	μg/kg ds	<1	<1	-0				<1	<1	-0
gamma-HCH	μg/kg ds	<1	<1	-0				<1	<1	-0

Grondmonster		1.4.1			1.4.2	1.5.1		
Certificaatcode		1449956			1449956	1449956		
Boring(en)		11, 11a, 11b, 12, 1	3, 16		11, 11a, 11b, 12, 13, 16	11, 11a, 11b,	12, 13, 16	
Traject (m -mv)		1,50 - 2,00	-, -		1,50 - 2,00	2,00 - 2,50		
Humus	% ds	6,40			10,00	5,80		
Lutum	% ds	15,30			25,0	12,90		
Datum van toetsing		1-3-2023			1-3-2023	1-3-2023		
Monsterconclusie		Overschrijding				Overschrijding	Interventiew	vaarde
		Achtergrondwaarde	е					
delta-HCH	μg/kg ds		<1 (6)			<1	<1 ⁽⁶⁾	
Isodrin	μg/kg ds	<1	<1			<1	<1	
Telodrin	μg/kg ds	<1	<1			<1	<1	
Heptachloor	μg/kg ds	<1	<1	0		<1	<1	0
Heptachloorepoxide Aldrin	μg/kg ds	-4	<2,19	0		-4	<2,41	0
Dieldrin	μg/kg ds μg/kg ds	<1 <1	<1 <1			<1 <1	<u><1</u> <1	
Endrin	μg/kg ds μg/kg ds	<1	<1			<1	<u> </u>	
DDE (som)	μg/kg ds μg/kg ds	5	7	-0,04		3	5	-0,04
2,4-DDE (ortho, para-DDE)	μg/kg ds μg/kg ds	<1	<1	-0,04		<1	<u></u>	-0,04
4,4-DDE (para, para-DDE)	µg/kg ds	4	6			2	3	
DDD (som)	μg/kg ds	10#	16	-0		6#	9	-0
2,4-DDD (ortho, para-DDD)	μg/kg ds	10#	11 (41)			5#	6 (41)	
4,4-DDD (para, para-DDD)	μg/kg ds	3	5			2	3	
DDT (som)	μg/kg ds	1	<2	-0,13		1	<2	-0,13
2,4-DDT (ortho, para-DDT)	μg/kg ds	<1	<1			<1	<1	
4,4-DDT (para, para-DDT)	μg/kg ds	<1	<1			<1	<1	
alfa-Endosulfan	μg/kg ds	<1	<1	0		<1	<1	0
Chloordaan (cis + trans)	μg/kg ds		<2,19	0			<2,41	0
cis-Chloordaan	μg/kg ds	<1	<1			<1	<1	
trans-Chloordaan	μg/kg ds	<1	<1			<1	<1	
Organotin	μg/kg ds							
DDT/DDE/DDD (som)	μg/kg ds	16#				10#		
HCHs (som, STI-tabel)	μg/kg ds	3				3		
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds	2	<3	-0		2	<4	-0
Som 23 Organochloorhoud.	μg/kg ds	29#				22#		
bestrijdingsm Som 21 Organochloorhoud.	μg/kg ds		41,6				34,7	
bestrijdingsm	µg/kg d3		41,0				J-1,1	
GECHLOREERDE								
KOOLWATERSTOFFEN								
PCB (som 7)	mg/kg ds							
PCB (som 7)	μg/kg ds	2	206	0,19			129	0.11
Pentachloorbenzeen (QCB)	μg/kg ds	<1	<1	-0		<1	<1	-0
Hexachloorbenzeen (HCB)	μg/kg ds	<1	<1	-0		<1	<1	-0
Pentachloorfenol (PCP)	μg/kg ds	<u>42#</u>	<u>46</u> (41)	<u>0</u>		<3	<4	0
PCB 28	mg/kg ds							
PCB 28	μg/kg ds	5	8			3	5	
PCB 52	mg/kg ds							
PCB 52	μg/kg ds	24	38			5	9	
PCB 101	mg/kg ds							
PCB 101	μg/kg ds	22	34			12	21	
PCB 118	mg/kg ds							
PCB 118	μg/kg ds	16	25			8	14	
PCB 138	mg/kg ds	00	00				0.1	
PCB 138 PCB 153	μg/kg ds	23	36			14	24	
	mg/kg ds	27	42			10	22	
PCB 153 PCB 180	µg/kg ds mg/kg ds	27	42			19	33	
PCB 180	µg/kg ds	15	23			14	24	
1 00 100	µg/kg us	10	20			14	24	
METALEN								
Chroom	mg/kg ds	38	47	-0,06		<u>54</u>	<u>71</u>	0,13
Kobalt	mg/kg ds	5,3	7,6	-0,04		6,7	10,7	-0,02
Nikkel	mg/kg ds	19	26	-0,13		21	32	-0,04
Koper	mg/kg ds	<u>55</u>	71	0,2		240	330	1,93
Zink	mg/kg ds		173	0,06		<u>260</u>	<u>374</u>	<u>0,4</u>
Arseen	mg/kg ds	12	15	-0,09		<u>18</u>	<u>23</u>	<u>0,06</u>
	. —		4.4					
Molybdeen	mg/kg ds	<1,5 <u>0,50</u>	<1,1	-0 <u>0</u>		<1,5 <u>0,54</u>	<1,1	-0 0,01

Grondmonster		1 1 1			1.4.2		1.5.1		
		1.4.1			1.4.2		1.5.1		
Certificaatcode Boring(en)		1449956 11, 11a, 11b,	12 12 16		1449956 11, 11a, 11b,	12 12 16	11, 11a, 11b,	12 12 16	
		1,50 - 2,00	12, 13, 10		1,50 - 2,00	12, 13, 10	2,00 - 2,50	12, 13, 10	
Traject (m -mv)	0/								
Humus	% ds	6,40			10,00		5,80		
Lutum	% ds	15,30			25,0		12,90		
Datum van toetsing		1-3-2023			1-3-2023		1-3-2023		
Monsterconclusie		Overschrijding					Overschrijdin	g Interventiewa	aarde
		Achtergrondw	aarde					100(6)	
Barium	mg/kg ds	53	77 ⁽⁶⁾				83	136 ⁽⁶⁾	
Kwik	mg/kg ds	<u>0,35</u>	<u>0,40</u>	<u>0,01</u>			<u>0,97</u>	<u>1,15</u>	0,03
Lood	mg/kg ds	36	43	-0,02			<u>91</u>	<u>113</u>	<u>0,13</u>
OVERIG									
Gloeirest	% ds	92,5					93,3		
Gloeiverlies	% ds	7,5					6,7		
Trifenyltin	mg/kg ds								
Aard artefacten	-								
Gewicht artefacten	g								
Droge stof	%								
Droge stof	% ds	57	57 ⁽⁶⁾		54,3	54,3 ⁽⁶⁾	54,3	54,3 ⁽⁶⁾	
Lutum	%	15,3					12,9		
Organische stof (humus)	%	6,4					5,8		
OVERIGE (ORGANISCHE)									
VERBINDINGEN									
Minerale olie C10 - C40	mg/kg ds	<u>930</u>	<u>1453</u>	<u>0,26</u>			<u>730</u>	<u>1259</u>	0,22
PAK									
Naftaleen	mg/kg ds	17	17				1,7	1,7	
Anthraceen	mg/kg ds	1,4	1,4				0,73	0,73	
Fenanthreen	mg/kg ds	7,6	7,6				1,0	1,0	
Fluorantheen	mg/kg ds	3,2	3,2				1,2	1,2	
Chryseen	mg/kg ds	1,7	1,7				0,74	0,74	
Benzo(a)anthraceen	mg/kg ds	1,5	1,5				0,54	0,54	
Benzo(a)pyreen	mg/kg ds	1,2	1,2				0,53	0,53	
Benzo(k)fluorantheen	mg/kg ds	0,54	0,54				0,39	0,39	
Indeno-(1,2,3-c,d)pyreen	mg/kg ds	0,95	0,95				0,42	0,42	
Benzo(g,h,i)peryleen	mg/kg ds	0,80	0,80				0,47	0,47	
PAK 10 VROM	mg/kg ds	36	36	0.89			7.7	7.7	0.16
	J. J			,					
PFAS									
perfluoroctaanzuur (lineair)	μg/kg ds				0,2	0,2 (6)			
perfluoroctaansulfonaat	μg/kg ds				0,7	0,7 (6)			
(lineair)	mg/g ac				٥,.	٥,.			
som vertakte PFOS-isomeren	μg/kg ds				0,2	0,2 (6)			
som vertakte PFOA-isomeren	μg/kg ds				<0,1	0,1 (6)			
perfluor-1-butaansulfonaat	μg/kg ds				<0,1	0,1 (6)			
(lineair)	µg/kg d3				\(\cup_0, 1\)	0,1			
perfluor-1-decaansulfonaat	μg/kg ds				<0,1	0,1 (6)			
(lineair)	pg/kg do				10,1	0,1			
perfluor-1-heptaansulfonaat	μg/kg ds				<0,1	0,1 (6)			
(lineair)	pg/kg do				νο, ι	0,1			
perfluor-1-hexaansulfonaat	μg/kg ds				<0,1	0,1 (6)			
(lineair)	µg/kg d3				\(\cup_0, 1\)	0,1			
perfluorbutaanzuur	μg/kg ds				<0,1	0,1 (6)			
perfluordecaanzuur	μg/kg ds μg/kg ds				<0,1	0,1 (6)			
perfluordecaanzuur	μg/kg ds μg/kg ds				<0,1	0,1 (6)			
perfluorheptaanzuur	μg/kg ds μg/kg ds	1			<0,1	0,1 (6)			
perfluorhexaanzuur	μg/kg ds μg/kg ds	1			<0,1	0,1 (6)			
perfluornexaanzuur	μg/kg ds μg/kg ds	1			<0,1	0,1 ⁽⁶⁾			
						1,1 ⁽⁶⁾			
perfluoroctaansulfonamide	μg/kg ds				1,1	0.4 (6)			
perfluorpentaanzuur	μg/kg ds				<0,1	0,1 (6)			
perfluortridecaanzuur	μg/kg ds	1			<0,1	0,1 (6)			
perfluortetradecaanzuur	μg/kg ds				<0,1	0,1 (6)			
perfluorundecaanzuur	μg/kg ds				<0,1	0,1 (6)			
2-(perfluorhexyl)ethaan-1-	μg/kg ds				<0,1	0,1 ⁽⁶⁾			
sulfonzuur					2 .	0 (6)			
perfluorhexadecaanzuur	μg/kg ds				<0,1	0,1 (6)			
perfluoroctadecaanzuur	μg/kg ds	1			<0,1	0,1 (6)	1		

Grondmonster		1.4.1	1.4.2		1.5.1
Certificaatcode		1449956	1449956		1449956
Boring(en)		11, 11a, 11b, 12, 13, 16	11, 11a, 11b,	12, 13, 16	11, 11a, 11b, 12, 13, 16
Traject (m -mv)		1,50 - 2,00	1,50 - 2,00		2,00 - 2,50
Humus	% ds	6,40	10,00		5,80
Lutum	% ds	15,30	25,0		12,90
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023
Monsterconclusie		Overschrijding Achtergrondwaarde			Overschrijding Interventiewaarde
perfluoroctaansulfonylamide(N-	μg/kg ds		1,6	1,6 ⁽⁶⁾	
ethyl)acetaat					
1H,1H,2H,2H-	μg/kg ds		<0,1	0,1 (6)	
perfluordecaansulfonzuur					
1H,1H,2H,2H-	μg/kg ds		<0,1	0,1 (6)	
perfluordodecaansulfonzuur					
perfluorpentaan-1-sulfonzuur	μg/kg ds		<0,1	0,1 (6)	
perfluoroctaansulfonylamide(N-	μg/kg ds		0,6	0,6 (6)	
methyl)acetaat					
1H,1H,2H,2H-	μg/kg ds		<0,1	0,1 (6)	
perfluorhexaansulfonzuur					
bisperfluordecyl fosfaat	μg/kg ds		<0,1	0,1 (6)	
N-methyl	μg/kg ds		<0,1	0,1 (6)	
perfluoroctaansulfonamide					
som lineair en vertakt	μg/kg ds		0,3	0,3 (6)	
perfluoroctaanzuur					
som lineair en vertakt	μg/kg ds		0,9	0,9 (6)	
perfluoroctylsulfonaat					

Tabel 11: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster		1.5.2			1.6.1			1.6.2		
Certificaatcode		1449956			1449956			1449956		
Boring(en)		11, 11a, 11b,	12, 13, 16		11, 11a, 11	b, 12, 13, 16		11, 11a, 11	b, 12, 13, 16	
Traject (m -mv)		2,00 - 2,50			2,50 - 3,00			2,50 - 3,00		
Humus	% ds	10,00			4,60			10,00		
Lutum	% ds	25,0			14,80			25,0		
Datum van toetsing		1-3-2023			1-3-2023			1-3-2023		
Monsterconclusie					Overschrijd	ing				
					Achtergrone					
Monstermelding 1										
Monstermelding 2										
Monstermelding 3										
		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE										
VERBINDINGEN										
Chloride	mg/kg ds				12000	12000 (7,40)				
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds									
Trifenyltin (als Sn)	μg/kg ds									
trans-Heptachloorepoxide	μg/kg ds				<1	<2				
Endosulfansulfaat	μg/kg ds				<2	<3 ⁽⁶⁾				
cis-Heptachloorepoxide	μg/kg ds				<1	<2				
Tributyltin	mg/kg ds									
Heptachloorepoxide (som, 0.7	μg/kg ds				1					
factor										
OCB (0,7 som, grond)	mg/kg ds				0,018#	!				
Organotin, som TBT+TFT, als	mg Sn/kg									
SN	ds									
Organotin, som TBT+TFT	mg/kg ds									
Hexachloorbutadieen	μg/kg ds				<1					
alfa-HCH	μg/kg ds				<1	<2	0			
beta-HCH	μg/kg ds				<1	<2	-0			
gamma-HCH	μg/kg ds				<1	<2	-0			
delta-HCH	μg/kg ds				<1	<2 (6)			<u> </u>	
Isodrin	μg/kg ds				<1	<2				
Telodrin	μg/kg ds				<1	<2				
Heptachloor	μg/kg ds				<1	<2	0			

		1450	1.0.1			1.00
Grondmonster		1.5.2	1.6.1			1.6.2
Certificaatcode		1449956	1449956			1449956
Boring(en)		11, 11a, 11b, 12, 13, 16	11, 11a, 11b, 12	2, 13, 16		11, 11a, 11b, 12, 13, 16
Traject (m -mv)		2,00 - 2,50	2,50 - 3,00	_,,		2,50 - 3,00
Humus	% ds	10,00	4,60			10,00
Lutum	% ds	25,0	14,80			25,0
Datum van toetsing		1-3-2023	1-3-2023			1-3-2023
Monsterconclusie			Overschrijding			
			Achtergrondwaa	arde		
Heptachloorepoxide	μg/kg ds		a to the sign of t	<3.04	0	
Aldrin	μg/kg ds		<1	<2		
Dieldrin	μg/kg ds		<1	<2		
Endrin	μg/kg ds		<1	<2		
DDE (som)	μg/kg ds		2	4	-0,04	
2,4-DDE (ortho, para-DDE)	μg/kg ds		<1	<2	- , -	
4,4-DDE (para, para-DDE)	μg/kg ds		1	2		
DDD (som)	μg/kg ds		5#	10	-0	
2,4-DDD (ortho, para-DDD)	μg/kg ds		4#	6 ⁽⁴¹⁾		
4,4-DDD (para, para-DDD)	μg/kg ds		2	4		
DDT (som)	μg/kg ds		1	<3	-0,13	
2,4-DDT (ortho, para-DDT)	μg/kg ds		<1	<2	5,10	
4,4-DDT (para, para-DDT)	μg/kg ds		<1	<2		
alfa-Endosulfan	μg/kg ds		<1	<2	0	
Chloordaan (cis + trans)	μg/kg ds			<3,04	0	
cis-Chloordaan	μg/kg ds		<1	<2		
trans-Chloordaan	μg/kg ds		<1	<2		
			<u> </u>	<∠		
Organotin	μg/kg ds					
DDT/DDE/DDD (som)	μg/kg ds		8#			
HCHs (som, STI-tabel)	μg/kg ds		3			
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds		2	<5	-0	
Som 23 Organochloorhoud.	μg/kg ds		20#			
	μg/kg us		20#			
bestrijdingsm						
Som 21 Organochloorhoud.	μg/kg ds			40,0		
bestrijdingsm						
GECHLOREERDE						
KOOLWATERSTOFFEN						
PCB (som 7)	mg/kg ds					
PCB (som 7)	μg/kg ds			<u>89,1</u>	<u>0,07</u>	
Pentachloorbenzeen (QCB)	μg/kg ds		<1	<2	-0	
Hexachloorbenzeen (HCB)	μg/kg ds		<1	<2	-0	
Pentachloorfenol (PCP)	μg/kg ds		<3	<5	0	
			\ 3	\ J	- 0	
PCB 28	mg/kg ds					
PCB 28	μg/kg ds		1	2		
PCB 52	mg/kg ds					
PCB 52	μg/kg ds		4	9		
PCB 101	mg/kg ds					
			0	20		
PCB 101	μg/kg ds		9	20		
PCB 118	mg/kg ds					
PCB 118	μg/kg ds		6	13		
PCB 138	mg/kg ds					
PCB 138	μg/kg ds		2	4		
PCB 153	mg/kg ds		 			
			10			
PCB 153	μg/kg ds		13	28		
PCB 180	mg/kg ds			_		
PCB 180	μg/kg ds		6	13		
			<u> </u>			
METALEN	1		1			
METALEN			40	5 0	2 2 1	
Chroom	mg/kg ds		40	50	-0,04	
Kobalt	mg/kg ds		5,7	8,3	-0,04	
Nikkel	mg/kg ds		17	24	-0,17	
Koper	mg/kg ds		120	162	0.81	
			.=0	0.70	- 1 - 1	
Zink	mg/kg ds		<u>200</u>	<u>276</u>	<u>0,24</u>	
Arseen	mg/kg ds		14	18	-0,04	
Molybdeen	mg/kg ds		<1,5	<1,1	-0	
Cadmium	mg/kg ds		0,47	0,61	0	
Barium			62	92 ⁽⁶⁾		
	mg/kg ds				0.00	
Kwik	mg/kg ds		<u>0,84</u>	<u>0,98</u>	0,02	
Lood	mg/kg ds		<u>77</u>	<u>94</u>	<u>0,09</u>	
				·		
·	•	•	•			

Grondmonster		1.5.2		1.6.1		1.6.2	
Certificaatcode		1449956		1449956		1449956	
Boring(en)		11, 11a, 11b, 12	2, 13, 16	11, 11a, 11b,	12, 13, 16	11, 11a, 11b	, 12, 13, 16
Traject (m -mv)		2,00 - 2,50		2,50 - 3,00	, ,	2,50 - 3,00	
Humus	% ds	10,00		4,60		10,00	
Lutum	% ds	25,0		14,80		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monsterconclusie				Overschrijding			
				Achtergrondw	/aarde		
OVERIG							
Gloeirest	% ds			94,4			
Gloeiverlies	% ds			5,6			
Trifenyltin	mg/kg ds						
Aard artefacten	-						
Gewicht artefacten	g						
Droge stof	%		(6)		22.2 (6)		(6)
Droge stof	% ds	55,3	55,3 ⁽⁶⁾	60,8	60,8 (6)	57	57 ⁽⁶⁾
Lutum	%			14,8			
Organische stof (humus)	%			4,6			
OVERIGE (ORGANISCHE) VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds			470	1022	0,17	
	Jg 4.0						
PAK							
Naftaleen	mg/kg ds			1,3	1,3		
Anthraceen	mg/kg ds			0,49	0,49		
Fenanthreen	mg/kg ds			0,93	0,93		
Fluorantheen	mg/kg ds			1,5	1,5		
Chryseen	mg/kg ds			0.77	0,77		
Benzo(a)anthraceen	mg/kg ds			0,70	0,70		
Benzo(a)pyreen	mg/kg ds			0,63	0,63		
Benzo(k)fluorantheen	mg/kg ds			0,28	0,28		
Indeno-(1,2,3-c,d)pyreen	mg/kg ds			0,50	0,50		
Benzo(g,h,i)peryleen	mg/kg ds			0,45	0,45		
PAK 10 VROM	mg/kg ds			7.6		0.16	
	g/g us			<u>.,,o</u>	<u>. 170</u>	0,70	
PFAS							
perfluoroctaanzuur (lineair)	μg/kg ds	0,2	0,2 (6)			<0,1	0,1 (6)
perfluoroctaansulfonaat (lineair)	μg/kg ds	0,7	0,7 (6)			0,4	0,4 (6)
som vertakte PFOS-isomeren	μg/kg ds	0,2	0,2 (6)			<0,1	0,1 (6)
som vertakte PFOA-isomeren	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluor-1-butaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluor-1-decaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluor-1-heptaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluor-1-hexaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorbutaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordodecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorheptaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorhexaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluornonaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds	0,9	0,9 (6)			0,3	0,3 (6)
perfluorpentaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorundecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
2-(perfluorhexyl)ethaan-1- sulfonzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctadecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonylamide(Nethyl)acetaat	μg/kg ds	1,3	1,3 (6)			0,7	0,7 (6)
1H,1H,2H,2H- perfluordecaansulfonzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)

Grondmonster		1.5.2		1.6.1	1.6.2	
Certificaatcode		1449956		1449956	1449956	
Boring(en)		11, 11a, 11b, 12,	13, 16	11, 11a, 11b, 12, 13, 16	11, 11a, 11b, 12	2, 13, 16
Traject (m -mv)		2,00 - 2,50		2,50 - 3,00	2,50 - 3,00	
Humus	% ds	10,00		4,60	10,00	
Lutum	% ds	25,0		14,80	25,0	
Datum van toetsing		1-3-2023		1-3-2023	1-3-2023	
Monsterconclusie				Overschrijding Achtergrondwaarde		
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 ⁽⁶⁾		<0,1	0,1 ⁽⁶⁾
perfluordodecaansulfonzuur						
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾		<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-	μg/kg ds	0,6	0,6 (6)		0,3	0,3 (6)
methyl)acetaat						
1H,1H,2H,2H-	µg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorhexaansulfonzuur						
bisperfluordecyl fosfaat	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
N-methyl	µg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonamide						
som lineair en vertakt	µg/kg ds	0,3	0,3 (6)		0,1	0,1 (6)
perfluoroctaanzuur						
som lineair en vertakt	µg/kg ds	0,9	0,9 (6)		0,5	0,5 (6)
perfluoroctylsulfonaat						

Tabel 12: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster		1.7.1			1.7.2			2.1.1		
Certificaatcode		1449956			1449956			1449957		
Boring(en)		11. 11a. 11b.	11c, 11d, 11e	9	11. 11a. 11	b, 11c, 11d, 1	1e	21, 22, 23, 24	4. 25. 26	
Traject (m -mv)		3,00 - 3,50	, , ,		3,00 - 3,50	-, -, -,		0.00 - 0.50	, -, -	
Humus	% ds	5,70			10,00			21,3		
Lutum	% ds	10,00			25,0			43.1		
Datum van toetsing		1-3-2023			1-3-2023			1-3-2023		
Monsterconclusie		Overschrijdin	iq					Overschrijdin	a	
		Achtergrondy						Achtergrond		
Monstermelding 1										
Monstermelding 2										
Monstermelding 3										
_		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE VERBINDINGEN										
Chloride	mg/kg ds	11000	11000 (7,40)					19000	19000 (7,40)	
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds	<4	<5					770	362	
Trifenyltin (als Sn)	μg/kg ds	<4	<5					<4	<1	
trans-Heptachloorepoxide	μg/kg ds	<1	<1					<1	<0	
Endosulfansulfaat	μg/kg ds	<2	<2 (6)					<2	<1 ⁽⁶⁾	
cis-Heptachloorepoxide	μg/kg ds	<1	<1					<1	<0	
Tributyltin	mg/kg ds	0,007						1,9		
Heptachloorepoxide (som, 0.7	μg/kg ds	1						1		
factor										
OCB (0,7 som, grond)	mg/kg ds	0,015						0,035#		
Organotin, som TBT+TFT, als SN	mg Sn/kg ds	0,006	<9,825					0,77	362,82	
Organotin, som TBT+TFT	mg/kg ds	0,015						1,9		
Hexachloorbutadieen	μg/kg ds	<1						<1		
alfa-HCH	μg/kg ds	<1	<1	0				<1	<0	-0
beta-HCH	μg/kg ds	<1	<1	-0				<1	<0	-0
gamma-HCH	μg/kg ds	<1	<1	-0				<1	<0	-0
delta-HCH	μg/kg ds	<1	<1 (6)					<1	<0 (6)	
Isodrin	μg/kg ds	<1	<1					<1	<0	
Telodrin	μg/kg ds	<1	<1					<1	<0	
Heptachloor	μg/kg ds	<1	<1	0				<1	<0	-0
Heptachloorepoxide	μg/kg ds		<2,46	0					<0,66	-0
Aldrin	μg/kg ds	<1	<1					<1	<0	
Dieldrin	μg/kg ds	<1	<1					2	1	
Endrin	μg/kg ds	<1	<1					5	2	

Crandmanatar		1474	4 7 0	211		
Grondmonster Certificaatcode		1.7.1 1449956	1.7.2 1449956	2.1.1 1449957		
Boring(en)		11, 11a, 11b, 11c, 11d, 11e	11, 11a, 11b, 11c, 11d, 11e	21, 22, 23, 24, 2	25. 26	
Traject (m -mv)		3,00 - 3,50	3.00 - 3.50	0,00 - 0,50	23, 20	
Humus	% ds	5,70	10,00	21,3		
Lutum	% ds	10,00	25,0	43,1		
Datum van toetsing	70 GS	1-3-2023	1-3-2023	1-3-2023		
Monsterconclusie		Overschrijding	1 0 2020	Overschrijding		
Wierietereerietee		Achtergrondwaarde		Achtergrondwaa	arde	
DDE (som)	μg/kg ds	1 <2 -0.04		5	2	-0,04
2,4-DDE (ortho, para-DDE)	μg/kg ds	<1 <1		<1	<0	-,-
4,4-DDE (para, para-DDE)	μg/kg ds	<1 <1		4	2	
DDD (som)	μg/kg ds	1 <2 -0		12#	6	-0
2,4-DDD (ortho, para-DDD)	μg/kg ds	<1 <1		13#	4 (41)	
4,4-DDD (para, para-DDD)	μg/kg ds	<1 <1		3	1	
DDT (som)	μg/kg ds	1 <2 -0,13		1	<1	-0,13
2,4-DDT (ortho, para-DDT)	μg/kg ds	<1 <1		<1	<0	
4,4-DDT (para, para-DDT)	μg/kg ds	<1 <1		<1	<0	
alfa-Endosulfan	μg/kg ds	<1 <1 0		<1	<0	-0
Chloordaan (cis + trans)	μg/kg ds	<2,46 0			<0,66	-0
cis-Chloordaan	μg/kg ds	<1 <1		<1	<0	
trans-Chloordaan	μg/kg ds	<1 <1		<1	<0	
Organotin	μg/kg ds	<26,5			886	
DDT/DDE/DDD (som)	μg/kg ds	4		18#		
HCHs (som, STI-tabel)	μg/kg ds	3		3		
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds	2 <4 -0		8	4	-0
Som 23 Organochloorhoud.	μg/kg ds	17		36#		
bestrijdingsm	//	05.0			40.04	
Som 21 Organochloorhoud.	μg/kg ds	<25,8			16,24	
bestrijdingsm						
GECHLOREERDE						
KOOLWATERSTOFFEN						
PCB (som 7)	mg/kg ds					
PCB (som 7)	μg/kg ds	19,47 -0			98,1	0,08
Pentachloorbenzeen (QCB)	μg/kg ds	<1 <1 -0		2	1	-0
Hexachloorbenzeen (HCB)	μg/kg ds	<1 <1 -0		1	0	-0
Pentachloorfenol (PCP)	μg/kg ds	<3 <4 0		<3	<1	-0
PCB 28	mg/kg ds					
PCB 28	μg/kg ds	<1 <1		5	2	
PCB 52	mg/kg ds					
PCB 52	μg/kg ds	2# 2 ⁽⁴¹⁾		17	8	
PCB 101	mg/kg ds					
PCB 101	μg/kg ds	2 4		34	16	
PCB 118	mg/kg ds					
PCB 118	μg/kg ds	1 2		25	12	
PCB 138	mg/kg ds					
PCB 138	μg/kg ds	2 4		43	20	
PCB 153	mg/kg ds			50	05	
PCB 153	μg/kg ds	3 5		53	25	
PCB 180 PCB 180	mg/kg ds	4 0		22	15	
PCB 180	μg/kg ds	1 2		32	15	
METALEN	1					
Chroom	mg/kg ds	28 40 -0,12		120	88	0,26
Kobalt	mg/kg ds	3,9 7,3 -0,04		17	11	-0,02
Nikkel	mg/kg ds	10 18 -0,27		51	34	-0,02
Koper	mg/kg ds	19 28 -0,08		240	161	0,81
Zink	mg/kg ds	110 174 0.06		690	457	0,55
Arseen	mg/kg ds	9,3 12,7 -0,13		<u>41</u>	29	0,16
Molybdeen	mg/kg ds	<1,5 <1,1 -0		4,1	4,1	0,01
Cadmium	mg/kg ds	0,28 0,37 -0,02		2,3	<u>1,6</u>	0,08
Barium	mg/kg ds	42 81 ⁽⁶⁾		110	69 ⁽⁶⁾	
Kwik	mg/kg ds	<u>0,39</u> <u>0,48</u> <u>0,01</u>		<u>1,5</u>	<u>1,2</u>	0,03
Lood	mg/kg ds	<u>42 54 0,01</u>		<u>150</u>	111	0,13
OVERIG						
Gloeirest	% ds	93,6		75,7		
Gloeiverlies	% ds	6,4		24,3		
Trifenyltin	mg/kg ds	<0,005		<0,006		

PFAS μg/kg ds <0,1	Cura dura a sata u		474			470		0.4.4		
Boingle(e)										
Traject for may) 8				1c 11d 11e			11c 11d 11c		1 25 26	
Humus	3 \			ic, i iu, i ie			110, 110, 116		, 20, 20	
Listum		% ds				- / /				
Datum van teetsing										
Monsterondusian		70 GS								
Achtergrondwaarde						1 0 2020			n	
Aard artefacten	Wichistercontolasie			arde						
Gewicht arefacten	Aard artefacten	-	g. c					- I i i i i i i i i i i i i i i i i i i		
Droge stof % 6 59.9 59.9 10.0 58.8 58.8 19.8	Gewicht artefacten	q								
Droge stof % ds 59,9 59,9 \$6,8 \$6,9 \$	Droge stof									
Lillum % 10,0 43,1			59.9	59,9 ⁽⁶⁾		58,8	58,8 ⁽⁶⁾	19,8	19,8 ⁽⁶⁾	
OyerRide (Organische stof (humus) % 5.7 21.3				•		Í	•	43,1	,	
VERBINDINGEN	Organische stof (humus)	%	5,7					21,3		
PAK										
PAK Naftaleen		ma/ka ds	340	596	0.08			1600	751	0.12
Natfaleen	Milliorate ene e la elle	mg/kg do	<u>070</u>	<u>000</u>	0,00			7000	<u>701</u>	<u>U, 12</u>
Natfaleen	PAK									
Anthraceen mg/kg ds 0,41 0,41 0,58 0,27 Fenanthren mg/kg ds 0,63 0,63 0,63 0,63 0,63 0,63 0,63 0,63		ma/ka ds	0.23	0.23				7.7	3.6	
Fenanthren										
Fluorantheen				- /					- ,	
Chryseen	Fluorantheen			2,2					1,1	
Benzo(a)anthraceen mg/kg ds 1,1 1,1 1,2 0,6 Benzo(k)lfuorantheen mg/kg ds 1,1 1,1 1,2 0,6 Benzo(k)fluorantheen mg/kg ds 0,84 0,84 0,98 0,46 Indeno-(1,2,3-c,d)pyreen mg/kg ds 0,86 0,66 0,66 0,89 0,42 Benzo(g,h,l)peryleen mg/kg ds 0,71 0,71 0,81 0,38 PAK 10 VROM mg/kg ds 0,71 0,71 0,81 0,38 PAK 10 VROM mg/kg ds 0,71 0,71 0,16 Perfluoroctaanzuur (lineair) μg/kg ds 0,71 0,16 perfluoroctaanzuur (lineair) μg/kg ds 0,71 0,16 perfluor-thoutaanzuur (lineair) μg/kg ds 0,71 0,16 perfluor-thoutaanzuur μg/kg ds 0,71 0,16 perfluor-thout	Chryseen									
Benzo(a)pyreen									0,46	
Benzok(k uorantheen mg/kg ds 0.84 0.94 0.98 0.46 0.16 0.96 0.38 0.42 0.25 0.66 0.96 0.39 0.42 0.25 0	Benzo(a)pyreen		1,1	1,1				1,2	0,6	
Indenor(1,2,3-c,d)pyreen mg/kg ds 0,66 0,66 0,68 0,89 0,42		mg/kg ds	0,84	0,84					0,46	
PAK 10 VROM	Indeno-(1,2,3-c,d)pyreen		0,66	0,66				0,89	0,42	
PFAS μg/kg ds <0,1 0,1 (%) perfluoroctaansulronaat (ineair) μg/kg ds <0,1		mg/kg ds	0,71	0,71				0,81	0,38	
perfluoroctaanzuur (lineair)	PAK 10 VROM	mg/kg ds	<u>9,3</u>	<u>9,3</u>	<u>0,2</u>			<u>18</u>	<u>8</u>	<u>0,18</u>
perfluoroctaanzuur (lineair)										
perfluoroctaansulfonaat µg/kg ds										
(ineair) som vertakte PFOS-isomeren pg/kg ds som vertakte PFOA-isomeren pg/kg ds vertakte PFOA-isomeren pg/kg ds vertakte PFOA-isomeren pg/kg ds vertakte PFOA-isomeren perfluor-1-butaansulfonaat (ineair) perfluor-1-heptaansulfonaat (ineair) perfluor-1-heptaansulfonaat (ineair) perfluor-1-heptaansulfonaat (ineair) perfluor-1-hexaansulfonaat (ineair) perfluor-1-hexaansulfonaat (ineair) perfluor-1-hexaansulfonaat (ineair) perfluor-1-hexaansulfonaat (ineair) perfluor-1-hexaansulfonaat (ineair) perfluor-1-hexaansulfonaat (ineair) perfluor-1-hexaansuur pg/kg ds vertakte PFOA-isomeren pg/kg ds vertakte PFOA-isomeren perfluor-1-hexaansulfonaat (ineair) perfluor-1-heptaansuur pg/kg ds vertakte PFOA-isomeren perfluor-1-hexaansulfonaat (ineair) perfluorbaanzuur pg/kg ds vertakte PFOA-isomeren perfluorbaanzuur pg/kg ds vertakte PFOA-isomeren perfluorhexaanzuur pg/kg ds vertakte PFOA-isomeren perfluorhexanzuur pg/kg ds vertakte PFOA-isomeren vertakte PFOA-isomeren perfluorhexanzuur pg/kg ds vertakte PFOA-isomeren vertakte PFOA-isomere										
Som vertakte PFOA-isomeren Ig/kg ds Vol.1 Vol.16	(lineair)					-,	•			
perfluor-1-butaansulfonaat pg/kg ds						,				
Up/kg ds Co.1 Co										
(lineair) perfluor-1-hexaansulfonaat μg/kg ds	(lineair)	µg/kg ds				<0,1	•			
(lineair) µg/kg ds perfluor-1-hexansulfonaat (lineair) µg/kg ds perfluorbutaanzuur µg/kg ds perfluordecaanzuur µg/kg ds perfluordecaanzuur µg/kg ds perfluordecaanzuur µg/kg ds perfluorheptaanzuur µg/kg ds perfluorhexaanzuur µg/kg ds perfluornonaanzuur µg/kg ds perfluornonaanzuur µg/kg ds perfluorpentaanzuur µg/kg ds perfluorpentaanzuur µg/kg ds perfluorpentaanzuur µg/kg ds perfluortridecaanzuur µg/kg ds perfluortridecaanzuur µg/kg ds perfluorthexyl)ethaan-1- µg/kg ds sulfonzuur µg/kg ds perfluorotaansulfonylamide(N- µg/kg ds perfluorotaansulfonylamide(N- µg/kg ds perfluordecaanzuur µg/kg ds quality de ds quality ds quality ds quality ds quality ds quality ds quality ds quality ds quality ds quality ds	(lineair)	μg/kg ds				<0,1	·			
(lineair) µg/kg ds <0,1 0,1 (6) perfluordecaanzuur µg/kg ds <0,1		μg/kg ds				<0,1	·			
perfluorbutaanzuur		μg/kg ds				<0,1	0,1 (6)			
реrfluordecaanzuur µg/kg ds		μg/kg ds				<0,1				
perfluordodecaanzuur							0,1 (6)			
Perfluorheptaanzuur							0.1 (6)			
реrfluorhexaanzuur ру/kg ds	perfluorheptaanzuur					<0,1	0,1 ⁽⁶⁾			
perfluornonaanzuur						· · · · · · · · · · · · · · · · · · ·	0.1 (6)			
perfluoroctaansulfonamide μg/kg ds <0,1	perfluornonaanzuur	μg/kg ds					0,1 (6)			
perfluorpentaanzuur	perfluoroctaansulfonamide	μg/kg ds					0,1 (6)			
perfluortridecaanzuur μg/kg ds <0,1 0,1 (6) perfluortetradecaanzuur μg/kg ds <0,1						<0,1	0,1 (6)			
perfluortetradecaanzuur							0,1 (6)			
perfluorundecaanzuur μg/kg ds <0,1 0,1 (6) 2-(perfluorhexyl)ethaan-1- sulfonzuur μg/kg ds <0,1	perfluortetradecaanzuur						0,1 (6)			
2-(perfluorhexyl)ethaan-1- sulfonzuur μg/kg ds <0,1							0.1 (6)			
perfluorhexadecaanzuur μg/kg ds <0,1 0,1 (6) perfluoroctadecaanzuur μg/kg ds <0,1	2-(perfluorhexyl)ethaan-1-						0,1 (6)			
perfluoroctadecaanzuur μg/kg ds <0,1 0,1 (6) perfluoroctaansulfonylamide(N- ethyl)acetaat μg/kg ds <0,1		µg/ka ds				<0.1	0,1 (6)			
perfluoroctaansulfonylamide(N- ethyl)acetaat μg/kg ds <0,1										
1H,1H,2H,2H- μg/kg ds <0,1	perfluoroctaansulfonylamide(N-									
1H,1H,2H,2H- μg/kg ds										

Grondmonster		1.7.1	1.7.2		2.1.1
Certificaatcode		1449956	1449956		1449957
Boring(en)		11, 11a, 11b, 11c, 11d, 11e	11, 11a, 11b, 11c,	11d, 11e	21, 22, 23, 24, 25, 26
Traject (m -mv)		3,00 - 3,50	3,00 - 3,50		0,00 - 0,50
Humus	% ds	5,70	10,00		21,3
Lutum	% ds	10,00	25,0		43,1
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023
Monsterconclusie		Overschrijding Achtergrondwaarde			Overschrijding Achtergrondwaarde
perfluoroctaansulfonylamide(N-methyl)acetaat	μg/kg ds	, , , , , , , , , , , , , , , , , , ,	<0,1	0,1 (6)	
1H,1H,2H,2H- perfluorhexaansulfonzuur	μg/kg ds		<0,1	0,1 (6)	
bisperfluordecyl fosfaat	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
N-methyl perfluoroctaansulfonamide	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
som lineair en vertakt perfluoroctaanzuur	μg/kg ds		0,1	0,1 ⁽⁶⁾	
som lineair en vertakt perfluoroctylsulfonaat	μg/kg ds		0,1	0,1 ⁽⁶⁾	

Tabel 13: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster		2.1.2			2.2.1			2.2.2		
Certificaatcode		1449957			1449957			1449957		
Boring(en)		21, 22, 23,	24, 25, 26		21, 22, 23, 24	4, 25, 26		21, 22, 23,	24, 25, 26	
Traject (m -mv)		0,00 - 0,50			0,50 - 1,00	.,,		0,50 - 1,00	, ,	
Humus	% ds	10,00			6,60			10.00		
Lutum	% ds	25,0			19,30			25,0		
Datum van toetsing	70 40	1-3-2023			1-3-2023			1-3-2023		
Monsterconclusie		. 0 2020			Overschrijdin	na		. 0 2020		
					Achtergrond					
Monstermelding 1					g. c					
Monstermelding 2										
Monstermelding 3										
3		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE VERBINDINGEN										
Chloride	mg/kg ds				21000	21000 (7,40)				
Chiloride	mg/kg do				21000	21000				
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds				65	98				
Trifenyltin (als Sn)	μg/kg ds				<4	<4				
trans-Heptachloorepoxide	μg/kg ds				<1	<1				
Endosulfansulfaat	μg/kg ds				<2	<2 (6)				
cis-Heptachloorepoxide	μg/kg ds				<1	<1				
Tributyltin	mg/kg ds				0,16					
Heptachloorepoxide (som, 0.7	μg/kg ds				1					
factor	F. J. T. J. J. T. J. J. J. T. J.				-					
OCB (0,7 som, grond)	mg/kg ds				0,016					
Organotin, som TBT+TFT, als	mg Sn/kg				0,068	102,727				
SN	ds									
Organotin, som TBT+TFT	mg/kg ds				0,17					
Hexachloorbutadieen	μg/kg ds				<1					
alfa-HCH	μg/kg ds				<1	<1	0			
beta-HCH	μg/kg ds				<1	<1	-0			
gamma-HCH	μg/kg ds				<1	<1	-0			
delta-HCH	μg/kg ds				<1	<1 ⁽⁶⁾				
Isodrin	μg/kg ds				<1	<1				
Telodrin	μg/kg ds				<1	<1				
Heptachloor	μg/kg ds				<1	<1	0			
Heptachloorepoxide	μg/kg ds					<2,12	0			
Aldrin	μg/kg ds				<1	<1				
Dieldrin	μg/kg ds				<1	<1				
Endrin	μg/kg ds				<1	<1				
DDE (som)	μg/kg ds				2	3	-0,04			
2,4-DDE (ortho, para-DDE)	μg/kg ds				<1	<1				
4,4-DDE (para, para-DDE)	μg/kg ds				1	2				

Crandmanatar		2.1.2	221			2.2.2
Grondmonster		2.1.2	2.2.1			2.2.2
Certificaatcode		1449957	1449957	26		1449957
Boring(en)		21, 22, 23, 24, 25, 26	21, 22, 23, 24, 25	, Zb		21, 22, 23, 24, 25, 26
Traject (m -mv)	0/ -1-	0,00 - 0,50	0,50 - 1,00			0,50 - 1,00
Humus	% ds	10,00	6,60			10,00
Lutum	% ds	25,0	19,30			25,0
Datum van toetsing		1-3-2023	1-3-2023			1-3-2023
Monsterconclusie			Overschrijding	40		
DDD ()	" 1		Achtergrondwaard			
DDD (som)	μg/kg ds		3	4	-0	
2,4-DDD (ortho, para-DDD)	μg/kg ds		<1	<1		
4,4-DDD (para, para-DDD)	μg/kg ds		2	3	0.40	
DDT (som)	μg/kg ds		1	<2	-0,13	
2,4-DDT (ortho, para-DDT)	μg/kg ds		<1	<1		
4,4-DDT (para, para-DDT)	μg/kg ds		<1	<1		
alfa-Endosulfan	μg/kg ds		<1	<1	0	
Chloordaan (cis + trans)	μg/kg ds			<2,12	0	
cis-Chloordaan	μg/kg ds		<1	<1		
trans-Chloordaan	μg/kg ds		<1	<1		
Organotin	μg/kg ds			253		
DDT/DDE/DDD (som)	μg/kg ds		6			
HCHs (som, STI-tabel)	μg/kg ds		3		_	
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds		2	<3	-0	
Som 23 Organochloorhoud.	μg/kg ds		18			
bestrijdingsm	, .					
Som 21 Organochloorhoud.	μg/kg ds			24,7		
bestrijdingsm						
GECHLOREERDE						
KOOLWATERSTOFFEN						
PCB (som 7)	mg/kg ds					
PCB (som 7)	μg/kg ds			<u>93,9</u>	<u>0,08</u>	
Pentachloorbenzeen (QCB)	μg/kg ds		<1	<1	-0	
Hexachloorbenzeen (HCB)	μg/kg ds		<1	<1	-0	
Pentachloorfenol (PCP)	μg/kg ds		<3	<3	0	
PCB 28	mg/kg ds					
PCB 28	μg/kg ds		3	5		
PCB 52	mg/kg ds					
PCB 52	μg/kg ds		7	11		
PCB 101	mg/kg ds					
PCB 101	μg/kg ds		10	15		
PCB 118	mg/kg ds					
PCB 118	μg/kg ds		7	11		
PCB 138	mg/kg ds					
PCB 138	μg/kg ds		12	18		
PCB 153	mg/kg ds					
PCB 153	μg/kg ds		15	23		
PCB 180	mg/kg ds					
PCB 180	μg/kg ds		8	12		
METALEN						
Chroom	mg/kg ds		46	52	-0,02	
Kobalt	mg/kg ds		6,3	7,7	-0,04	
Nikkel	mg/kg ds		18	22	-0,21	
Koper	mg/kg ds		<u>79</u>	<u>93</u>	<u>0,35</u>	
Zink	mg/kg ds		<u>270</u>	<u>321</u>	<u>0,31</u>	
Arseen	mg/kg ds		15	17	-0,05	
Molybdeen	mg/kg ds		<u>1,8</u>	<u>1,8</u>	<u>0</u>	
Cadmium	mg/kg ds		<u>0,68</u>	<u>0,79</u>	0,02	
Barium	mg/kg ds		42	51 ⁽⁶⁾		
Kwik	mg/kg ds		<u>0,37</u>	<u>0,40</u>	0,01	
Lood	mg/kg ds		<u>53</u>	<u>59</u>	0,02	
OVERIG						
Gloeirest	% ds		92,0			
Gloeiverlies	% ds		8,0			
Trifenyltin	mg/kg ds		<0,005			
Aard artefacten	-		,			
Gewicht artefacten	g					
Droge stof	%					
	•		•			

Grondmonster		2.1.2		2.2.1		2.2.2	
Certificaatcode		1449957		1449957		1449957	
Boring(en)		21, 22, 23, 24, 25, 2	26	21, 22, 23, 24,	25, 26	21, 22, 23, 24,	25, 26
Traject (m -mv)		0,00 - 0,50		0,50 - 1,00	·	0,50 - 1,00	·
Humus	% ds	10,00		6,60		10,00	
Lutum	% ds	25,0		19,30		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monsterconclusie				Overschrijding			
_			(0)	Achtergrondwa			(0)
Droge stof	% ds	43,4	43,4 ⁽⁶⁾	47,2	47,2 ⁽⁶⁾	42,8	42,8 ⁽⁶⁾
Lutum	%			19,3			
Organische stof (humus)	%			6,6			
OVERIGE (ORGANISCHE)							
VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds			480	<u>727</u> <u>0,11</u>	1	
William Sile Sile Sile Sile	mg/kg do			<u>100</u>	<u> 727</u> <u>0,11</u>		
PAK							
Naftaleen	mg/kg ds			0,26	0,26		
Anthraceen	mg/kg ds			0,32	0,32		
Fenanthreen	mg/kg ds			0,49	0,49		
Fluorantheen	mg/kg ds			1,1	1,1		
Chryseen	mg/kg ds			0,72	0,72		
Benzo(a)anthraceen	mg/kg ds			0,45	0,45		
Benzo(a)pyreen	mg/kg ds			0,55	0,55		
Benzo(k)fluorantheen	mg/kg ds		<u> </u>	0,45	0,45		
Indeno-(1,2,3-c,d)pyreen	mg/kg ds		_	0,34	0,34		
Benzo(g,h,i)peryleen	mg/kg ds			0,37	0,37		
PAK 10 VROM	mg/kg ds			<u>5,0</u>	<u>5,0</u> <u>0,09</u>	2	
PFAS							
perfluoroctaanzuur (lineair)	ua/ka da	0.2	0,2 (6)			0.0	0,2 (6)
perfluoroctaanzuur (iineair)	μg/kg ds μg/kg ds	0,2 1,5	1,5 (6)			0,2 1,9	1,9 (6)
(lineair)	µg/kg us	1,5	1,5 **			1,9	1,9
som vertakte PFOS-isomeren	μg/kg ds	0,3	0,3 (6)			0,3	0.3 (6)
som vertakte PFOA-isomeren	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluor-1-butaansulfonaat	μg/kg ds	0,3#	0,2 (6)			<0,1	0,1 (6)
(lineair)	J. 1.9 . 1.9	-,	-,-			, , ,	-,.
perfluor-1-decaansulfonaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
(lineair)							
perfluor-1-heptaansulfonaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
(lineair)			(0)				(0)
perfluor-1-hexaansulfonaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
(lineair)	, .		2 1 (6)				2 4 (6)
perfluorbutaanzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 (6)
perfluordecaanzuur	μg/kg ds	<0,1				<0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾
perfluordodecaanzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 (6)
perfluorheptaanzuur perfluorhexaanzuur	μg/kg ds μg/kg ds	<0,1 <0,1	0,1 (6)	1		<0,1 <0,1	0,1 (6)
perfluornonaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)	1		<0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds μg/kg ds	1,9	1,9 (6)			1,8	1,8 (6)
perfluorpentaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorundecaanzuur	μg/kg ds	<0,1	0,1 (6)			0,3	0,3 (6)
2-(perfluorhexyl)ethaan-1-	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
sulfonzuur		· 	•	<u> </u>			
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 (6)
perfluoroctadecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-	μg/kg ds	4,7	4,7 (6)			4,1	4,1 ⁽⁶⁾
ethyl)acetaat			(6)				(4)
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordecaansulfonzuur		0.4	0.4 (6)	1		2.4	0.4 (6)
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordodecaansulfonzuur	110/100 -1-	40 4	0,1 (6)	1		-0.4	0,1 (6)
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	1,4 (6)	-		<0,1	2,6 (6)
perfluoroctaansulfonylamide(N-methyl)acetaat	μg/kg ds	1,4	1,4 ***			2,6	۷,0 ٠-/
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)	1		<0,1	0,1 (6)
perfluorhexaansulfonzuur	µg/kg us	~ 0,1	J, 1			\(\cup\) , 1	0,1
LF	1	<u> </u>		I		1	

Grondmonster		2.1.2		2.2.1	2.2.2	
Certificaatcode		1449957		1449957	1449957	
Boring(en)		21, 22, 23, 24, 25, 2	26	21, 22, 23, 24, 25, 26	21, 22, 23, 24, 25	5, 26
Traject (m -mv)		0,00 - 0,50		0,50 - 1,00	0,50 - 1,00	
Humus	% ds	10,00		6,60	10,00	
Lutum	% ds	25,0		19,30	25,0	
Datum van toetsing		1-3-2023		1-3-2023	1-3-2023	
Monsterconclusie				Overschrijding		
				Achtergrondwaarde		
bisperfluordecyl fosfaat	μg/kg ds	<0,1	0,1 ⁽⁶⁾		<0,1	0,1 ⁽⁶⁾
N-methyl	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 ⁽⁶⁾
perfluoroctaansulfonamide						
som lineair en vertakt	μg/kg ds	0,3	0,3 (6)		0,3	0,3 (6)
perfluoroctaanzuur						
som lineair en vertakt	μg/kg ds	1,8	1,8 ⁽⁶⁾		2,2	2,2 (6)
perfluoroctylsulfonaat						

Tabel 14: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster		3.1.1			3.1.2			LB1		
Certificaatcode		1449958			1449958			1448214		
Boring(en)		31, 32, 33, 34	25 26		31, 32, 33, 3	24 25 26		101, 103, 1	06 100	
Traject (m -mv)		0,00 - 0,50	, 55, 50		0.00 - 0.50	34, 33, 30		0,00 - 0,50	00, 109	
Humus	% ds	15,80			10,00			4,50		
Lutum	% ds	3,80			25,0			7,40		
Datum van toetsing	% us	1-3-2023			1-3-2023			1-3-2023		
Monsterconclusie					1-3-2023				l'	
Monsterconclusie		Overschrijding						Overschrijd		
Manatarmalding 1		Achtergrondw	<i>r</i> aarde					Achtergron	dwaarde	
Monstermelding 1										
Monstermelding 2 Monstermelding 3										
Monsterneiding 3		Master	0000	lu dan	Mastur	0000	la dav	Master	0000	la da u
		Meetw	GSSD	Index	Meetw	GSSD	index	Meetw	GSSD	Index
ANORGANISCHE VERBINDINGEN										
Chloride	mg/kg ds									
-	J J									
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds									
Trifenyltin (als Sn)	μg/kg ds									
trans-Heptachloorepoxide	μg/kg ds	<1	<0							
Endosulfansulfaat	μg/kg ds	<2	<1 (6)							
cis-Heptachloorepoxide	μg/kg ds	<1	<0							
Tributyltin	mg/kg ds									
Heptachloorepoxide (som, 0.7	μg/kg ds	1								
factor	J. 1.9									
OCB (0,7 som, grond)	mg/kg ds	0,020#								
Organotin, som TBT+TFT, als	mg Sn/kg	0,0=0								
SN	ds									
Organotin, som TBT+TFT	mg/kg ds									
Hexachloorbutadieen	μg/kg ds	<1								
alfa-HCH	μg/kg ds	<1	<0	-0						
beta-HCH	μg/kg ds	<1	<0	-0						
gamma-HCH	µg/kg ds	<1	<0	-0						
delta-HCH	μg/kg ds	<1	<0 (6)							
Isodrin	µg/kg ds	<1	<0							
Telodrin	μg/kg ds	<1	<0							
Heptachloor	μg/kg ds	<1	<0	-0						
Heptachloorepoxide	μg/kg ds		<0,89	-0						
Aldrin	μg/kg ds	<1	<0							
Dieldrin	µg/kg ds	<1	<0							
Endrin	μg/kg ds	<1	<0							
DDE (som)	μg/kg ds	1	<1	-0,05						
2,4-DDE (ortho, para-DDE)	μg/kg ds	<1	<0	-,						
4,4-DDE (para, para-DDE)	μg/kg ds	<1	<0							
DDD (som)	μg/kg ds	7#	5	-0						
			0 (41)					1		
12.4-DDD (ortho, para-DDD)	ua/ka ds	6#	3(41)							
2,4-DDD (ortho, para-DDD) 4,4-DDD (para, para-DDD)	μg/kg ds μg/kg ds	6# 3	3 ⁽⁴¹⁾ 2							

Certificateacode	Overalessants		0.4.4			0.4.0		LD4		
Boring(en) 31, 32, 33, 34, 56 31, 32, 23, 34, 35, 36 101, 103, 106, 109	Grondmonster		3.1.1			3.1.2		LB1		
Traject (in-my) 0.00 - 0.50 0.00 - 0.50 0.00 - 0.50										
Humus	U /			5, 36			35, 36		109	
Lutum % ds 3.80 25.0 7.40	Traject (m -mv)		0,00 - 0,50			0,00 - 0,50		0,00 - 0,50		
Datum van toetsing	Humus	% ds	15,80			10,00		4,50		
Datum van toetsing	Lutum	% ds	3,80			25,0		7,40		
Monstronoclusie										
Achtergrondwaarde	9					. 0 2020				
2,4-DPT (ortho, para-DDT)	Worldtercorleade			de						
4.4-DDT (para, para-DDT)	2.4 DDT (artha para DDT)	ua/ka da						Achtergrondwa	aaiue	
alla-Endosulan										
Chloordaan (is-1 trans)										
Control Cont			<1							
Itans-Chlorolaan					-0					
Document	cis-Chloordaan	μg/kg ds	<1	<0						
DOTI/DDE/DDD (som)	trans-Chloordaan	μg/kg ds	<1	<0						
DDT/DDE/DDD (50m)	Organotin									
HCHs (som, STI-table)			10#							
Diris (Aldrin-Deldrin-Endrin) yg/kg ds 2 <1										
Som 23 Organochloorhoud. pg/kg ds 23#				-1						
Destriplingsm				<1	-0					
Som 21 Organochloorhoud. pg/kg ds 12,97		µg/kg ds	23#							
Bestrijdingsm										
NOLWATERSTOFFEN PCB (som 7)		μg/kg ds		12,97						
FCB Scorn 7										
PCB (Som 7)		ma/ka ds							0.063	0.04
Pentachloorbenzeen (ICCB)				44.9	0.03				<u> </u>	
Hexachloorbenzeen (HCB)			-1							
Pentachlorfenol (PCP)										
PCB 28										
PCB 28			<3	<1	-0					
PCB 52								<0,001	<0,002	
PCB 52		μg/kg ds	1	1						
PCB 52	PCB 52	mg/kg ds						0,001	0,002	
PCB 101	PCB 52		2	1						
PCB 118								0.003	0.007	
PCB 118			11	7				5,000	0,00.	
PCB 118			11					<0.001	<0.002	
PCB 138				4				<0,001	<0,002	
PCB 138 μg/kg ds 15 9 PCB 153 mg/kg ds 0,007 0,016 PCB 153 μg/kg ds 21 13 PCB 180 mg/kg ds 15 9 METALEN Chroom mg/kg ds 34 59 0.03 24 37 Kobalt mg/kg ds 5,5 16,2 0,01 5,2 11,5 Nikkel mg/kg ds 14 36 0,01 14 28 Koper mg/kg ds 140 188 0,99 44 72 Zink mg/kg ds 400 658 0,89 200 355 Arseen mg/kg ds 12 15 -0,09 11 16 Molybdeen mg/kg ds 12 15 -0,09 111 16 Kwik mg/kg ds 0,48 0,50 -0,01 0,27 0,39 Barium mg/kg ds 0,41 0,22 0,30 <			б	4						
PCB 153 mg/kg ds 21 13 PCB 180 μg/kg ds 21 13 PCB 180 μg/kg ds 0,005 0,011 PCB 180 μg/kg ds 15 9 METALEN Chroom mg/kg ds 34 59 0,03 24 37 Kobalt mg/kg ds 5,5 16,2 0,01 5,2 11,5 Nikkel mg/kg ds 14 36 0,01 14 28 Koper mg/kg ds 40 188 0,99 44 72 Zink mg/kg ds 400 658 0,89 200 355 Arseen mg/kg ds 12 15 -0,09 11 16 Molybdeen mg/kg ds 2,4 2,4 0 <1,5 <1,1 Cadmium mg/kg ds 0,48 0,50 -0,01 0,27 0,39 Barium mg/kg ds 0,48 0,50 -0,01 0,27								0,011	0,024	
PCB 153 μg/kg ds 21 13 PCB 180 mg/kg ds 0,005 0,011 PCB 180 μg/kg ds 15 9 METALEN Description Memory of the property of the pro	PCB 138	μg/kg ds	15	9						
PCB 153	PCB 153	mg/kg ds						0,007	0,016	
PCB 180			21	13				,	,	
PCB 180								0.005	0.011	
METALEN METALEN 24 37 Chroom mg/kg ds 34 59 0,03 24 37 Kobalt mg/kg ds 14 36 0,01 14 28 Nikkel mg/kg ds 14 36 0,01 14 28 Koper mg/kg ds 140 188 0,99 44 72 Zink mg/kg ds 400 658 0,89 200 355 Arseen mg/kg ds 12 15 -0,09 111 16 Molybdeen mg/kg ds 2,4 2,4 0 <1,5			15	٥				0,000	0,011	
Chroom mg/kg ds 34 59 0.03 24 37 Kobalt mg/kg ds 5.5 16.2 0.01 5,2 11,5 Nikkel mg/kg ds 14 36 0.01 14 28 Koper mg/kg ds 140 188 0.99 44 72 Zink mg/kg ds 400 658 0.89 200 355 Arseen mg/kg ds 12 15 -0.09 11 16 Molybdeen mg/kg ds 2.4 2.4 0 <1,5	1 05 100	µg/kg us	10							
Chroom mg/kg ds 34 59 0.03 24 37 Kobalt mg/kg ds 5.5 16.2 0.01 5,2 11,5 Nikkel mg/kg ds 14 36 0.01 14 28 Koper mg/kg ds 140 188 0.99 44 72 Zink mg/kg ds 400 658 0.89 200 355 Arseen mg/kg ds 12 15 -0.09 11 16 Molybdeen mg/kg ds 2.4 2.4 0 <1,5	METALEN	1								
Kobalt mg/kg ds 5.5 16,2 0,01 5,2 11,5 Nikkel mg/kg ds 14 36 0,01 14 28 Koper mg/kg ds 140 188 0,99 44 72 Zink mg/kg ds 400 658 0,89 200 355 Arseen mg/kg ds 12 15 -0,09 11 16 Molybdeen mg/kg ds 2,4 2,4 0 <1,5		ma/ka ds	34	59	0.03			24	37	-0,14
Nikkel mg/kg ds 14 36 0.01 14 28 Koper mg/kg ds 140 188 0.99 44 72 Zink mg/kg ds 400 658 0.89 200 355 Arseen mg/kg ds 12 15 -0,09 11 16 Molybdeen mg/kg ds 2.4 2.4 0 <1,5										-0,14
Koper mg/kg ds 140 188 0,99 44 72 Zink mg/kg ds 400 658 0,89 200 355 Arseen mg/kg ds 12 15 -0,09 11 16 Molybdeen mg/kg ds 2,4 2,4 0 <1,5										
Zink mg/kg ds 400 658 0,89 200 355 Arseen mg/kg ds 12 15 -0,09 11 16 Molybdeen mg/kg ds 2,4 2,4 0 <1,5										-0,11
Arseen mg/kg ds 12 15 -0,09 11 16 Molybdeen mg/kg ds 2,4 2,4 0 <1,5										0,21
Molybdeen mg/kg ds 2.4 2.4 0 <1,5 <1,1 Cadmium mg/kg ds 0,48 0,50 -0,01 0,27 0,39 Barium mg/kg ds 67 212 (6) 62 143 (6) Kwik mg/kg ds 0.17 0.21 0 0,23 0,30 Lood mg/kg ds 100 122 0,15 190 261 OVERIG Gloeirest % ds 83,9 9 16,1 190 261 Trifenyltin mg/kg ds 16,1 1 <td< td=""><td></td><td></td><td></td><td></td><td>- /</td><td></td><td></td><td></td><td></td><td><u>0,37</u></td></td<>					- /					<u>0,37</u>
Cadmium mg/kg ds 0,48 0,50 -0,01 0,27 0,39 Barium mg/kg ds 67 212 (6) 62 143 (6) Kwik mg/kg ds 0,17 0,21 0 0,23 0,30 Lood mg/kg ds 100 122 0,15 190 261 OVERIG Gloeirest % ds 83,9 9 9 9 Gloeiverlies % ds 16,1		mg/kg ds								-0,07
Barium mg/kg ds 67 212 (6) 62 143 (6) Kwik mg/kg ds 0,17 0,21 0 0,23 0,30 Lood mg/kg ds 100 122 0,15 190 261 OVERIG Gloeirest % ds 83,9 83,9 83,9 9 <t< td=""><td></td><td></td><td></td><td><u>2,4</u></td><td></td><td></td><td></td><td></td><td></td><td>-0</td></t<>				<u>2,4</u>						-0
Barium mg/kg ds 67 212 (6) 62 143 (6) Kwik mg/kg ds 0,17 0,21 0 0,23 0,30 Lood mg/kg ds 100 122 0,15 190 261 OVERIG Gloeirest % ds 83,9 83,9 83,9 9 <t< td=""><td>Cadmium</td><td></td><td>0,48</td><td>0,50</td><td>-0,01</td><td>·</td><td></td><td>0,27</td><td>0,39</td><td>-0,02</td></t<>	Cadmium		0,48	0,50	-0,01	·		0,27	0,39	-0,02
Kwik mg/kg ds 0,17 0,21 0 0,23 0,30 Lood mg/kg ds 100 122 0,15 190 261 OVERIG Gloeirest % ds 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,1										
Lood mg/kg ds 100 122 0,15 190 261 OVERIG Gloeirest % ds 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,9 83,1 83,2 83,2 83,2 83,2 83,2 <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td>					0					0
OVERIG Gloeirest % ds 83,9 Gloeiverlies % ds 16,1 Trifenyltin mg/kg ds Aard artefacten - Gewicht artefacten g Droge stof % Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)										0.44
Gloeirest % ds 83,9 Gloeiverlies % ds 16,1 Trifenyltin mg/kg ds Aard artefacten - Gewicht artefacten g Droge stof % Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)		g/11g GO			0,10					0,11
Gloeirest % ds 83,9 Gloeiverlies % ds 16,1 Trifenyltin mg/kg ds Aard artefacten - Gewicht artefacten g Droge stof % Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)	OVERIG	1								
Gloeiverlies % ds 16,1 Trifenyltin mg/kg ds Aard artefacten - Gewicht artefacten g Droge stof % Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)		% de	83.0							
Trifenyltin mg/kg ds Aard artefacten - Gewicht artefacten g Droge stof % Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)			· · · · · · · · · · · · · · · · · · ·							
Aard artefacten - Gewicht artefacten g Droge stof % Droge stof 81,1 81,1 81,1 (6) Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)			10,1							
Gewicht artefacten g Droge stof % Droge stof 81,1 81,1 81,1 (6) Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)		mg/kg ds								
Droge stof % 81,1 81,1 (6) Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)		<u> </u>								
Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)										
Droge stof % ds 32,2 32,2 (6) 26,7 26,7 (6)	Droge stof	%						81,1	81,1 ⁽⁶⁾	
			32,2	32,2 (6)		26.7	26,7 ⁽⁶⁾			
1 ⊑00 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1	Lutum	%	3,8	, -		-,	,,	7,4		
Organische stof (humus) % 15,8 4,5										
7,0	- gameone ster (marriae)	†**	. 5,5					.,0		

Grondmonster		3.1.1			3.1.2		LB1		
Certificaatcode		1449958			1449958		1448214		
Boring(en)		31, 32, 33, 34	35 36		31, 32, 33, 34	35_36	101, 103, 106	109	
Traject (m -mv)		0,00 - 0,50	, 00, 00		0,00 - 0,50	, 00, 00	0,00 - 0,50	, 100	
Humus	% ds	15,80			10,00		4,50		
Lutum	% ds	3,80			25,0		7,40		
Datum van toetsing		1-3-2023			1-3-2023		1-3-2023		
Monsterconclusie		Overschrijding	<u> </u>				Overschrijding		
		Achtergrondw					Achtergrondw		
OVERIGE (ORGANISCHE) VERBINDINGEN									
Minerale olie C10 - C40	mg/kg ds	<u>420</u>	<u>266</u>	<u>0,02</u>			50	111	-0,02
PAK									
Naftaleen	mg/kg ds	0,19	0,12				0,23	0.23	
Anthraceen	mg/kg ds	0,17	0,11				0,49	0,49	
Fenanthreen	mg/kg ds	0,53	0,34				1.7	1.7	
Fluorantheen	mg/kg ds	0,73	0,46				2,6	2,6	
Chryseen	mg/kg ds	0,46	0,29				1,3	1,3	
Benzo(a)anthraceen	mg/kg ds	0,41	0,26				1,1	1,1	
Benzo(a)pyreen	mg/kg ds	0,40	0,25				1,1	1,1	
Benzo(k)fluorantheen	mg/kg ds	0,24	0,15				0,85	0,85	
Indeno-(1,2,3-c,d)pyreen	mg/kg ds	0,27	0,17				0,72	0,72	
Benzo(g,h,i)peryleen	mg/kg ds	0,28	0,18				0,86	0,86	
PAK 10 VROM	mg/kg ds	<u>3,7</u>	<u>2,3</u>	0,02			<u>11</u>	<u>11</u>	<u>0,25</u>
PFAS									
perfluoroctaanzuur (lineair)	μg/kg ds				0,1	0,1 (6)	1,7	1,7 (6)	
perfluoroctaansulfonaat (lineair)	μg/kg ds				0,5	0,5 (6)	2,4	2,4 (6)	
som vertakte PFOS-isomeren	μg/kg ds				<0,1	0,1 ⁽⁶⁾	0,5	0,5 (6)	
som vertakte PFOA-isomeren	μg/kg ds				<0,1	0,1 ⁽⁶⁾	<0,1	0,1 (6)	
perfluor-1-butaansulfonaat (lineair)	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluor-1-decaansulfonaat (lineair)	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluor-1-heptaansulfonaat (lineair)	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluor-1-hexaansulfonaat (lineair)	μg/kg ds				<0,1	0,1 ⁽⁶⁾	0,1	0,1 (6)	
perfluorbutaanzuur	μg/kg ds				<0,1	0,1 (6)	0,4	0,4 (6)	
perfluordecaanzuur	μg/kg ds				<0,1	0,1 ⁽⁶⁾	0,1	0,1 (6)	
perfluordodecaanzuur	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluorheptaanzuur	μg/kg ds				<0,1	0,1 (6)	0,2	0,2 (6)	
perfluorhexaanzuur	μg/kg ds				<0,1	0,1 (6)	0,2	0,2 (6)	
perfluornonaanzuur	μg/kg ds				<0,1	0,1 ⁽⁶⁾	0,2	0,2 (6)	
perfluoroctaansulfonamide	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluorpentaanzuur	μg/kg ds				<0,1	0,1 (6)	0,2	0,2 (6)	
perfluortridecaanzuur	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluortetradecaanzuur	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluorundecaanzuur	μg/kg ds		-		<0,1	0,1 (6)	<0,1	0,1 (6)	
2-(perfluorhexyl)ethaan-1-	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	-
sulfonzuur perfluorhexadecaanzuur	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluoroctadecaanzuur	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluoroctaansulfonylamide(Nethyl)acetaat	μg/kg ds				0,1	0,1 (6)	<0,1	0,1 (6)	
1H,1H,2H,2H- perfluordecaansulfonzuur	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
1H,1H,2H,2H-	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluordodecaansulfonzuur perfluorpentaan-1-sulfonzuur	ua/ka da				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluoroctaansulfonylamide(N-	μg/kg ds μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
methyl)acetaat 1H,1H,2H,2H- porfluorbeygangulfanzuur	μg/kg ds				<0,1	0,1 (6)	<0,1	0,1 (6)	
perfluorhexaansulfonzuur	ua/ka da				<0.1	0,1 (6)	ZO 1	0,1 (6)	
bisperfluordecyl fosfaat N-methyl	μg/kg ds				<0,1 <0,1	0,1 (6)	<0,1 <0,1	0,1 (6)	
perfluoroctaansulfonamide	μg/kg ds				<u, i<="" td=""><td>0,1 **</td><td><U, I</td><td>0,1 11</td><td></td></u,>	0,1 **	< U, I	0,1 11	

Grondmonster		3.1.1	3.1.2		LB1	
Certificaatcode		1449958	1449958		1448214	
Boring(en)		31, 32, 33, 34, 35, 36	31, 32, 33, 34, 35	5, 36	101, 103, 106, 10	9
Traject (m -mv)		0,00 - 0,50	0,00 - 0,50		0,00 - 0,50	
Humus	% ds	15,80	10,00		4,50	
Lutum	% ds	3,80	25,0		7,40	
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023	
Monsterconclusie		Overschrijding Achtergrondwaarde			Overschrijding Achtergrondwaard	de
som lineair en vertakt perfluoroctaanzuur	μg/kg ds		0,2	0,2 (6)	1,8	1,8 ⁽⁶⁾
som lineair en vertakt perfluoroctylsulfonaat	μg/kg ds		0,6	0,6 (6)	2,9	2,9 (6)

Tabel 15: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

raber 13. Gemeten genatte								•		
Grondmonster		LB2			LB3			LB4		
Certificaatcode		1448214			1448214			1448214		
Boring(en)		104			107			110		
Traject (m -mv)		0,00 - 0,50			0,00 - 0,50			0,00 - 0,50		
Humus	% ds	5,90			2,30			2,90		
Lutum	% ds	7,80		18,60		3,80				
Datum van toetsing		1-3-2023			1-3-2023		1-3-2023			
Monsterconclusie		Overschrijd	ing		Overschrijding		Overschrijd	ling		
		Achtergrond			Achtergrond			Achtergron		
Monstermelding 1										
Monstermelding 2										
Monstermelding 3										
		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE VERBINDINGEN										
Chloride	mg/kg ds									
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds									
Trifenyltin (als Sn)	μg/kg ds									
trans-Heptachloorepoxide	µg/kg ds									
Endosulfansulfaat	μg/kg ds									
cis-Heptachloorepoxide	μg/kg ds									
Tributyltin	mg/kg ds									
Heptachloorepoxide (som, 0.7	μg/kg ds									
factor	pg/ng do									
OCB (0,7 som, grond)	mg/kg ds									
Organotin, som TBT+TFT, als	mg Sn/kg									
SN	ds									
Organotin, som TBT+TFT	mg/kg ds									
Hexachloorbutadieen	μg/kg ds									
alfa-HCH	μg/kg ds									
beta-HCH	μg/kg ds									
gamma-HCH	μg/kg ds									
delta-HCH	μg/kg ds									
Isodrin	μg/kg ds									
Telodrin	μg/kg ds									
Heptachloor	μg/kg ds									
Heptachloorepoxide	μg/kg ds									
Aldrin	μg/kg ds									
Dieldrin	μg/kg ds									
Endrin	μg/kg ds									
DDE (som)	μg/kg ds									
2,4-DDE (ortho, para-DDE)	μg/kg ds									
4,4-DDE (para, para-DDE)	μg/kg ds									
DDD (som)	μg/kg ds									
2,4-DDD (ortho, para-DDD)	μg/kg ds							1		
4,4-DDD (para, para-DDD)	μg/kg ds							1		
DDT (som)	μg/kg ds									
2,4-DDT (ortho, para-DDT)	μg/kg ds μg/kg ds									
4,4-DDT (para, para-DDT)	μg/kg ds μg/kg ds	+						 		
alfa-Endosulfan	μg/kg ds μg/kg ds							 		
ana-Lnuosunan	μg/kg dS	1						1		

Certification Certificatio	Grondmonster		LB2			LB3			LB4		
Solingle(n)											
Name	Boring(en)										
Lutum	Traject (m -mv)					0,00 - 0,50			0,00 - 0,50		
1-3-2023 1-3-2023	Humus	% ds	5,90			2,30			2,90		
Morestenoricusis	Lutum	% ds									
Achtergrondwaarde Achtergrondw											
Chilopotanan Chil	Monsterconclusie										
Dischlordenam Uping de Dischlordenam Upi	Obliganda as (sia a tagas)		Achtergrondw	aarde		Achtergrondw	/aarde		Achtergrondw	aarde	
Trans-Chlorodaen											
Driganotin											
DOT/DDE/DDE/DDE (pom)											
High steam, STH-state)											
Drins (Aldrin-Dieldrin-Endin) µg/kg ds µ											
Som 23 Organochloorhoud, bestrijdingsm sestingsm 24 Organochloorhoud, bestrijdingsm 25											
Destrigings Destriging Destrict De											
Destridingsm Destrict De	bestrijdingsm	1.0.0									
MOLIMATERSTOFFEN Morked St	Som 21 Organochloorhoud. bestrijdingsm	μg/kg ds									
PCB (som 7)	GECHLOREERDE KOOLWATERSTOFFEN										
Pentachloothenzeen (CCB) ug/kg ds Hetaxachloothenzeen (HCB) ug/kg ds Pentachloothenzeen (HCB) ug/kg ds Pentachloothenzeen (HCB) ug/kg ds PCB 28 ug/kg ds PCB 52 ug/kg ds PCB 52 ug/kg ds PCB 52 ug/kg ds PCB 101 ug/kg ds Ug/kg	PCB (som 7)			0,011	-0,01		<u>0,028</u>	0,01		<u>0,093</u>	0,07
Hexachlorotherusen (HCB)	PCB (som 7)										
Pentachloofrenol (PCP)											
PCB 28											
PCB 28			-0.004	.0.004		-0.004	.0.000		-0.004	.0.000	
PCB 52			<0,001	<0,001		<0,001	<0,003		<0,001	<0,002	
PCB 52			<0.001	-0 001		<0.001	~0 003		<0.001	<0.002	
PCB 101			<0,001	<0,001		<0,001	<0,003		<0,001	<0,002	
PCB 101			< 0.001	<0.001		<0.001	< 0.003		0.002	0.007	
PCB 118		ug/kg ds	10,001	10,001		10,001	10,000		0,002	0,001	
PCB 118	PCB 118		<0,001	<0,001		<0,001	<0,003		<0,001	<0,002	
PCB 138	PCB 118										
PCB 153	PCB 138		0,002	0,003		0,002	0,009		0,010	0,034	
PCB 153	PCB 138										
PCB 180 mg/kg ds			0,001	0,002		0,001	0,004		0,007	0,024	
METALEN MGKg ds MGKg			2.224			2.221					
METALEN Chroom mg/kg ds 28 43 -0,1 26 30 -0,2 18 31 -0,1 Kobalt mg/kg ds 6,1 13,1 -0,01 4,9 6,1 -0,05 4,0 11,7 -0,0 Nikkel mg/kg ds 15 29 -0,08 15 18 -0,26 11 28 -0,1 Koper mg/kg ds 25 39 -0,01 50 65 0,17 43 81 0,2 Zink mg/kg ds 180 306 0,29 200 256 0,2 210 447 0,5 Arseen mg/kg ds 11 16 -0,08 8,6 10,7 -0,17 8,4 13,8 -0,1 Molybdeen mg/kg ds -1,5 <1,1 -0 <1,5 <1,1 -0 <1,5 <1,1 -0 <1,5 <1,1 -0 Cadmium mg/kg ds 0,28 0,38 -0,02 0,27 0,37 -0,02 0,30 0,48 -0,0 Barium mg/kg ds 83 186 0 110 139 0 63 199 0 Kwik mg/kg ds 0,26 0,33 0,01 0,26 0,29 0 0,30 0,48 -0,0 OVERIG Gloeiverlies % ds Trifenyltin mg/kg ds Gewicht artefacten g Droge stof % 80,8 80,8 80,8 87,1 87,1 87,1 88,5 86,5 86,5 0 OVERIGE (ORGANISCHE) VERBINDINIGEN			<0,001	<0,001		<0,001	<0,003		0,006	0,021	
Chroom	PCB 180	µg/kg as									
Chroom	METALEN	+									
Kobalt		ma/ka ds	28	43	-O 1	26	30	-0.2	18	31	-0 10
Nikkel mg/kg ds 15 29 -0,08 15 18 -0,26 11 28 -0,1 Koper mg/kg ds 25 39 -0,01 50 65 0,17 43 81 0.2 Mg/kg ds 180 306 0,29 200 256 0,2 210 447 0.5 Mg/kg ds 11 16 -0,08 8,6 10,7 -0,17 8,4 13,8 -0,1 Molybdeen mg/kg ds 11 16 -0,08 8,6 10,7 -0,17 8,4 13,8 -0,1 Molybdeen mg/kg ds 0,28 0,38 -0,02 0,27 0,37 -0,02 0,30 0,48 -0,0 Barium mg/kg ds 83 186 11 10 139 6 63 199 6 Kwik mg/kg ds 0,26 0,33 0,01 0,26 0,29 0 0,30 0,48 -0,0 Mg/kg ds 0,26 0,33 0,01 0,26 0,29 0 0,30 0,42 0,0 Lood mg/kg ds 110 147 0,2 180 216 0,35 150 225 0,3 Mg/kg								-0.05			
Koper mg/kg ds 25 39 -0,01 50 65 0,17 43 81 0,2 Zink mg/kg ds 180 306 0,29 200 256 0,2 210 447 0.5 Arseen mg/kg ds 11 16 -0,08 8,6 10,7 -0,17 8,4 13,8 -0,1 Molybdeen mg/kg ds <1,5											-0,11
Zink	Koper										0.28
Arseen	Zink			<u>306</u>		200		0,2			0,53
Cadmium mg/kg ds 0,28 0,38 -0,02 0,27 0,37 -0,02 0,30 0,48 -0,0 Barium mg/kg ds 83 186 (6) 110 139 (6) 63 199 (6) Kwik mg/kg ds 0,26 0,33 0,01 0,26 0,29 0 0,30 0,42 0,0 Lood mg/kg ds 110 147 0,2 180 216 0,35 150 225 0,3 OVERIG Gloeirest % ds Gloeiverlies Westernell Gewicht artefacten Gewi	Arseen		11	16	-0,08	8,6	10,7	-0,17	8,4	13,8	-0,11
Barium mg/kg ds 83 186 (6) 110 139 (6) 63 199 (6) Kwik mg/kg ds 0,26 0,33 0,01 0,26 0,29 0 0,30 0,42 0,0 Lood mg/kg ds 110 147 0,2 180 216 0,35 150 225 0,3 OVERIG Gloeirest % ds Gloeiverlies % ds Trifenyltin mg/kg ds Aard artefacten - Gewicht artefacten g Droge stof % ds Droge stof % ds Lutum % 7,8 18,6 3,8 Organische stof (humus) % 5,9 2,3 2,9 OVERIGE (ORGANISCHE) VERBINDINGEN	-										-0
Kwik mg/kg ds 0,26 0,33 0,01 0,26 0,29 0 0,30 0,42 0,0 Lood mg/kg ds 110 147 0,2 180 216 0,35 150 225 0,3 OVERIG Gloeirest % ds					-0,02			-0,02			-0,01
Lood mg/kg ds 110 147 0,2 180 216 0,35 150 225 0,3											
OVERIG Gloeirest % ds Gloeiverlies % ds											
Gloeirest % ds Gloeiverlies % ds Trifenyltin mg/kg ds Aard artefacten Gewicht artefacten Droge stof % ds Lutum % 7,8 18,6 3,8 Organische stof (humus) % 5,9 2,3 2,9 OVERIGE (ORGANISCHE) VERBINDINGEN	L000	mg/kg as	<u>110</u>	<u>147</u>	<u>0,2</u>	<u>180</u>	<u>216</u>	<u>0,35</u>	<u>150</u>	<u>225</u>	<u>0,36</u>
Gloeirest % ds Gloeiverlies % ds Trifenyltin mg/kg ds Aard artefacten Gewicht artefacten Droge stof % ds Lutum % 7,8 18,6 3,8 Organische stof (humus) % 5,9 2,3 2,9 OVERIGE (ORGANISCHE) VERBINDINGEN	OVERIG		+								
Gloeiverlies		% ds	 								
Trifenyltin mg/kg ds Aard artefacten - Gewicht artefacten g Droge stof % 80,8 80,8 80,8 87,1 87,1 87,1 87,1 86 86,5 86,5 86,5 86 Droge stof % ds Lutum % 7,8 18,6 3,8 Organische stof (humus) % 5,9 2,3 2,9 OVERIGE (ORGANISCHE) VERBINDINGEN											
Aard artefacten - Gewicht artefacten g Droge stof % 80,8 80,8 (6) 87,1 87,1 (6) 86,5 86,5 (6) Droge stof % ds <	Trifenyltin										
Gewicht artefacten g Droge stof % 80,8 80,8 (6) 87,1 87,1 (6) 86,5 (6) 86,5 (6) Droge stof % ds </td <td>Aard artefacten</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Aard artefacten	-									
Droge stof % ds Lutum % 7,8 18,6 3,8 Organische stof (humus) % 5,9 2,3 2,9 OVERIGE (ORGANISCHE) VERBINDINGEN VERBINDINGEN VERBINDINGEN VERBINDINGEN	Gewicht artefacten										
Lutum % 7,8 18,6 3,8 Organische stof (humus) % 5,9 2,3 2,9 OVERIGE (ORGANISCHE) VERBINDINGEN VERBINDINGEN	Droge stof		80,8	80,8 (6)		87,1	87,1 ⁽⁶⁾		86,5	86,5 ⁽⁶⁾	
Organische stof (humus) % 5,9 2,3 2,9 OVERIGE (ORGANISCHE) VERBINDINGEN	Droge stof										
OVERIGE (ORGANISCHE) VERBINDINGEN	Lutum										
VERBINDINGEN	Organische stof (humus)	%	5,9			2,3			2,9		
	OVERIGE (ORGANISCHE) VERBINDINGEN										
	Minerale olie C10 - C40	mg/kg ds	<35	<42	-0,03	<35	<107	-0,02	<35	<84	-0,02

Grondmonster		LB2		LB3		LB4	
Certificaatcode		1448214		1448214		1448214	
Boring(en)		104		107		110	
Traject (m -mv)		0,00 - 0,50		0,00 - 0,50		0,00 - 0,50	
Humus	% ds	5,90		2,30		2,90	
Lutum	% ds	7,80		18,60		3,80	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monsterconclusie		Overschrijding		Overschrijding		Overschrijding	
		Achtergrondwa		Achtergrondwa		Achtergrondwa	
PAK							
Naftaleen	mg/kg ds	<0,05	<0,04	<0,05	<0,04	<0,05	<0,04
Anthraceen	mg/kg ds	0,23	0,23	0,17	0,17	0,19	0,19
Fenanthreen	mg/kg ds	0,48	0,48	0,11	0,11	0,39	0,39
Fluorantheen	mg/kg ds	1,1	1,1	0,26	0,26	1,9	1,9
Chryseen	mg/kg ds	1,2	1,2	0,17	0,17	1,2	1,2
Benzo(a)anthraceen	mg/kg ds	0,84	0,84	0,14	0,14	0,97	0,97
Benzo(a)pyreen	mg/kg ds	0,73	0,73	0,14	0,14	0,68	0,68
Benzo(k)fluorantheen	mg/kg ds	0,63	0,63	0,10	0,10	0,62	0,62
Indeno-(1,2,3-c,d)pyreen	mg/kg ds	0,46	0,46	0,10	0,10	0,48	0,48
Benzo(g,h,i)peryleen	mg/kg ds	0,51	0,51	0,14	0,14	0,53	0,53
PAK 10 VROM	mg/kg ds	<u>6,2</u>	<u>6,2</u> <u>0,12</u>	1,4	1,4	-0 <u>7,0</u>	<u>7,0 </u>
PFAS							
perfluoroctaanzuur (lineair)	μg/kg ds	1,5	1,5 (6)	1,2	1,2 (6)	1,2	1,2 (6)
perfluoroctaansulfonaat	μg/kg ds	0,9	0,9 (6)	1,3	1,3 (6)	1,2	1,2 (6)
(lineair)	Hyrny us	0,3	0,0	1,5	1,0	1,2	1,4
som vertakte PFOS-isomeren	μg/kg ds	0,7	0,7 (6)	0,6	0,6 (6)	0,3	0,3 (6)
som vertakte PFOA-isomeren	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluor-1-butaansulfonaat	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
(lineair)	pg/kg do	νο, ι	0,1	νο, ι	0,1	30,1	0,1
perfluor-1-decaansulfonaat	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
(lineair)	pg/itg do	10,1	٥,.	10, .	٥, .	10,1	٥, .
perfluor-1-heptaansulfonaat	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
(lineair)	1 3 3 3	-,	-,	-,	-,	,	-,
perfluor-1-hexaansulfonaat	μg/kg ds	0,1	0,1 (6)	0,1	0,1 (6)	<0,1	0,1 (6)
(lineair)	100	,	•	,	,	,	•
perfluorbutaanzuur	μg/kg ds	0,3	0,3 (6)	0,2	0,2 (6)	0,3	0,3 (6)
perfluordecaanzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾	0,1	0,1 (6)	0,1	0,1 ⁽⁶⁾
perfluordodecaanzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾	<0,1	0,1 (6)	<0,1	0,1 ⁽⁶⁾
perfluorheptaanzuur	μg/kg ds	0,2	0,2 (6)	0,2	0,2 (6)	0,1	0,1 (6)
perfluorhexaanzuur	μg/kg ds	0,2	0,2 (6)	0,2	0,2 (6)	0,2	0,2 (6)
perfluornonaanzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾	<0,1	0,1 (6)	0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluorpentaanzuur	μg/kg ds	0,1	0,1 (6)	<0,1	0,1 (6)	0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluorundecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
2-(perfluorhexyl)ethaan-1-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	0,3#	0,2 (6)
sulfonzuur							
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluoroctadecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
ethyl)acetaat			(9)		(8)		(0)
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluordecaansulfonzuur	, .		0.4(6)		0 . (6)		0.4(6)
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluordodecaansulfonzuur	/	.0.4	0.4(6)	.0.4	0.4 (6)	0.4	0,1 (6)
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	
perfluoroctaansulfonylamide(N-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
methyl)acetaat	110/100 -10	-O 1	0,1 (6)	۵0.4	0,1 (6)	-0.1	0,1 (6)
1H,1H,2H,2H-	μg/kg ds	<0,1	U,T (S)	<0,1	U,T (9)	<0,1	U,T (e)
perfluorhexaansulfonzuur	וומ/וימ לה	-0 1	0,1 (6)	∠∩ 1	0,1 (6)	-0.1	0,1 (6)
bisperfluordecyl fosfaat N-methyl	µg/kg ds	<0,1 <0,1	0,1 (6)	<0,1 <0,1	0,1 (6)	<0,1 <0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds	<0,1	U, I ***	<0,1	U, I 😽	<0,1	U, I ***
som lineair en vertakt	μg/kg ds	1,6	1,6 (6)	1,3	1,3 (6)	1,3	1,3 (6)
perfluoroctaanzuur	µg/ng us	1,0	1,0 - /	1,3	1,0	1,3	1,0 ' '
som lineair en vertakt	μg/kg ds	1,6	1,6 (6)	1,9	1,9 (6)	1,5	1,5 (6)
perfluoroctylsulfonaat	Hy, Ny us	1,0	٠,٠	1,5	1,0	1,5	1,0
LE STRUCTURE CONTROLLER	<u> </u>	<u> </u>		l			

Tabel 16: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster Certificaatcode Boring(en) Traject (m -mv) Humus Lutum Datum van toetsing Monsterconclusie Monstermelding 1 Monstermelding 2 Monstermelding 3	% ds % ds	Z1.1.1 1449959 11, 12, 13, 14 1,50 - 4,00 2,90 4,20 1-3-2023	4, 15, 16		Z1.1.2 1449959 11, 12, 13, 1 1,50 - 4,00	14, 15, 16		Z1.2.1 1449959 11, 12, 13, 14 2,00 - 4,50	4, 15, 16	
Boring(en) Traject (m -mv) Humus Lutum Datum van toetsing Monsterconclusie Monstermelding 1 Monstermelding 2		11, 12, 13, 14 1,50 - 4,00 2,90 4,20 1-3-2023	4, 15, 16		11, 12, 13, 1	14, 15, 16		11, 12, 13, 14	4, 15, 16	
Traject (m -mv) Humus Lutum Datum van toetsing Monsterconclusie Monstermelding 1 Monstermelding 2		1,50 - 4,00 2,90 4,20 1-3-2023	1, 10, 10			1 1, 10, 10		2.00 4.50	1, 10, 10	
Humus Lutum Datum van toetsing Monsterconclusie Monstermelding 1 Monstermelding 2		2,90 4,20 1-3-2023								
Lutum Datum van toetsing Monsterconclusie Monstermelding 1 Monstermelding 2		4,20 1-3-2023			10,00			3,40		
Datum van toetsing Monsterconclusie Monstermelding 1 Monstermelding 2	70 US	1-3-2023			25,0			4,70		
Monsterconclusie Monstermelding 1 Monstermelding 2					1-3-2023			1-3-2023		
Monstermelding 1 Monstermelding 2		Overschrijdin	<u>α</u>		1-3-2023				Achtergrondwa	aarda
Monstermelding 2		Achtergrondy						voluoet aarr	Acritergrondwa	aarue
Monstermelding 3	1									
		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE										
VERBINDINGEN										
Chloride	mg/kg ds	3600	3600 (7,40)					4200	4200 (7,40)	
Chienae	mg/kg do	0000	0000					4200	4200	
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds	<4	<10							
Trifenyltin (als Sn)	μg/kg ds	<4	<10							
trans-Heptachloorepoxide	μg/kg ds	<1	<2					<1	<2	
Endosulfansulfaat	μg/kg ds	<2	<5 ⁽⁶⁾					<2	<4 (6)	
cis-Heptachloorepoxide	μg/kg ds	<1	<2					<1	<2	
Tributyltin	mg/kg ds	<0.005						7.		
Heptachloorepoxide (som, 0.7	µg/kg ds	1						1		
factor										
OCB (0,7 som, grond)	mg/kg ds	0,015						0,015		
Organotin, som TBT+TFT, als SN	mg Sn/kg ds	0,006	<19,310							
Organotin, som TBT+TFT	mg/kg ds	0,015								
Hexachloorbutadieen	μg/kg ds	<1						<1		
alfa-HCH	μg/kg ds	<1	<2	0				<1	<2	0
beta-HCH	μg/kg ds μg/kg ds	<1	<2	0				<1	<2	0
gamma-HCH	μg/kg ds μg/kg ds	<1	<2	-0				<1	<2	-0
0		<1	<2 (6)	-0					<2 (6)	-0
delta-HCH	μg/kg ds							<1		
Isodrin	μg/kg ds	<1	<2					<1	<2	
Telodrin	μg/kg ds	<1	<2					<1	<2	
Heptachloor	μg/kg ds	<1	<2	0				<1	<2	0
Heptachloorepoxide	μg/kg ds		<4,83	0					<4,12	0
Aldrin	μg/kg ds	<1	<2					<1	<2	
Dieldrin	μg/kg ds	<1	<2					<1	<2	
Endrin	μg/kg ds	<1	<2					<1	<2	
DDE (som)	µg/kg ds	1	<5	-0,04				1	<4	-0,04
2,4-DDE (ortho, para-DDE)	μg/kg ds	<1	<2	-,				<1	<2	
4,4-DDE (para, para-DDE)	μg/kg ds	<1	<2					<1	<2	
DDD (som)	μg/kg ds	1	<5	-0				1	<4	-0
2,4-DDD (ortho, para-DDD)	μg/kg ds μg/kg ds	<1	<2	-0				<1	<2	
4,4-DDD (para, para-DDD)	μg/kg ds	<1	<2	0.40				<1	<2	0.40
DDT (som)	μg/kg ds	1	<5	-0,13				1	<4	-0,13
2,4-DDT (ortho, para-DDT)	μg/kg ds	<1	<2					<1	<2	
4,4-DDT (para, para-DDT)	μg/kg ds	<1	<2					<1	<2	
alfa-Endosulfan	μg/kg ds	<1	<2	0				<1	<2	0
Chloordaan (cis + trans)	μg/kg ds		<4,83	0					<4,12	0
cis-Chloordaan	μg/kg ds	<1	<2					<1	<2	
trans-Chloordaan	μg/kg ds	<1	<2					<1	<2	
Organotin	µg/kg ds		<52,0							
DDT/DDE/DDD (som)	μg/kg ds	4	,-					4		
HCHs (som, STI-tabel)	μg/kg ds	3						3		
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds μg/kg ds	2	<7	-0				2	<6	-0
		17	<u> </u>	-0				17	<υ	-0
Som 23 Organochloorhoud. bestrijdingsm	μg/kg ds	17						17		
Som 21 Organochloorhoud.	μg/kg ds		<50,7						<43,2	
bestrijdingsm	rgg 40								- 10,2	

Grondmonster		74 4 4			Z1.1.2		Z1.2.1		
Certificaatcode		Z1.1.1 1449959			1449959		1449959		
Boring(en)		11, 12, 13, 14, 1	5 16		11, 12, 13, 14,	15 16	11, 12, 13, 14	15 16	
Traject (m -mv)		1,50 - 4,00	3, 10		1,50 - 4,00	13, 10	2,00 - 4,50	, 10, 10	
Humus	% ds	2,90			10,00		3,40		
Lutum	% ds	4,20			25,0		4,70		
Datum van toetsing	70 00	1-3-2023			1-3-2023		1-3-2023		
Monsterconclusie		Overschrijding			. 0 2020		Voldoet aan A	Achterarondwa	aarde
		Achtergrondwaa	arde				100000000000000000000000000000000000000	g	
GECHLOREERDE		Ŭ							
KOOLWATERSTOFFEN									
PCB (som 7)	mg/kg ds								
PCB (som 7)	μg/kg ds		<16,90	-0				<14,41	-0,01
Pentachloorbenzeen (QCB)	μg/kg ds	<1	<2	-0			<1	<2	-0
Hexachloorbenzeen (HCB)	μg/kg ds	<1	<2	-0			<1	<2	-0
Pentachloorfenol (PCP)	μg/kg ds	<3	<7	0			<3	<6	0
PCB 28	mg/kg ds								
PCB 28	μg/kg ds	<1	<2				<1	<2	
PCB 52	mg/kg ds								
PCB 52	μg/kg ds	<1	<2				<1	<2	
PCB 101	mg/kg ds	-4					.4	.0	
PCB 101 PCB 118	μg/kg ds	<1	<2				<1	<2	
PCB 118 PCB 118	mg/kg ds µg/kg ds	<1	<2				<1	<2	
PCB 118	mg/kg ds	<u> </u>	< ∠				<1	<2	
PCB 138	µg/kg ds	<1	<2				<1	<2	
PCB 153	mg/kg ds	<u> </u>	<u> </u>					\ <u>\</u>	
PCB 153	µg/kg ds	<1	<2				<1	<2	
PCB 180	mg/kg ds	<u> </u>	~~					\Z_	
PCB 180	µg/kg ds	<1	<2				<1	<2	
1 02 100	pg/ng do						- 1		
METALEN									
Chroom	mg/kg ds	13	22	-0,26			16	27	-0,22
Kobalt	mg/kg ds	<3,0	<6,0	-0,05			<3,0	<5,7	-0,05
Nikkel	mg/kg ds	6	15	-0,31			8	19	-0,25
Koper	mg/kg ds	5,4	10,1	-0,2			7,6	13,8	-0,17
Zink	mg/kg ds	32	67	-0,13			26	53	-0,15
Arseen	mg/kg ds	5,0	8,1	-0,21			5,0	7,9	-0,22
Molybdeen	mg/kg ds	<1,5	<1,1	-0			<1,5	<1,1	-0
Cadmium	mg/kg ds	<0,20	<0,22	-0,03			<0,20	<0,22	-0,03
Barium	mg/kg ds	<20	<43 ⁽⁶⁾				<20	<41 ⁽⁶⁾	
Kwik	mg/kg ds	0,07	0,10	-0			0,05	0,07	-0
Lood	mg/kg ds	<10	<10	-0,08			<10	<10	-0,08
OVERIG									
Gloeirest	% ds	96,8					96,3		
Gloeiverlies	% ds	3,2					3,7		
Trifenyltin	mg/kg ds	<0,005							
Aard artefacten	-						-		
Gewicht artefacten	g %								
Droge stof Droge stof	% ds	77,1	77,1 ⁽⁶⁾		79	79 ⁽⁶⁾	75,8	75,8 ⁽⁶⁾	
Lutum	% us	4,2	11,157		13	13.7	4,7	10,0	
Organische stof (humus)	%	2,9					3,4		
Organisone stor (numus)	/0	2,3					3,4		
OVERIGE (ORGANISCHE)									
VERBINDINGEN Minerale olie C10 - C40	ma/ka da	86	297	0.02			<35	<72	-0,02
IVIII IEI AIE OIIE C TO - C40	mg/kg ds	<u>00</u>	<u> 291</u>	0,02			<აა	<12	-0,02
PAK	1								
Naftaleen	mg/kg ds	<0,05	<0,04				<0,05	<0.04	
Anthraceen	mg/kg ds	<0,05	<0,04				<0,05	<0,04	
Fenanthreen	mg/kg ds	0,06	0,04				<0,05	<0,04	
Fluorantheen	mg/kg ds	0,13	0,00				<0,05	<0.04	
Chryseen	mg/kg ds	0,12	0,13				<0,05	<0,04	
Benzo(a)anthraceen	mg/kg ds	0,08	0,08				<0,05	<0,04	
Benzo(a)pyreen	mg/kg ds	0,10	0,10				<0,05	<0,04	
Benzo(k)fluorantheen	mg/kg ds	0,07	0,10				<0,05	<0,04	
Indeno-(1,2,3-c,d)pyreen	mg/kg ds	0,07	0,07				<0.05	<0,04	
Benzo(g,h,i)peryleen	mg/kg ds	0,08	0,08				<0,05	<0,04	
= 5=0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	g,g uu		0,00				10,00	~0,0~	

Grondmonster		Z1.1.1	Z1.1.2		Z1.2.1		
Certificaatcode		1449959	1449959		1449959		
Boring(en)		11, 12, 13, 14, 15, 16	11, 12, 13, 14,	15. 16	11, 12, 13, 14,	15. 16	
Traject (m -mv)		1,50 - 4,00	1,50 - 4,00	10, 10	2,00 - 4,50	10, 10	
Humus	% ds	2,90	10,00		3,40		
Lutum	% ds	4,20	25,0		4,70		
Datum van toetsing	70 US	1-3-2023	1-3-2023		1-3-2023		
Monsterconclusie			1-3-2023			htoraron du o	ordo
		Overschrijding Achtergrondwaarde			Voldoet aan Ad		
PAK 10 VROM	mg/kg ds	0,78 0,78 -0,02			0,35	<0,35	-0,03
PFAS							
perfluoroctaanzuur (lineair)	μg/kg ds		<0,1	0,1 ⁽⁶⁾			
perfluoroctaansulfonaat (lineair)	μg/kg ds		<0,1	0,1 (6)			
som vertakte PFOS-isomeren	μg/kg ds		<0,1	0,1 (6)			
som vertakte PFOA-isomeren	μg/kg ds		<0,1	0,1 (6)			
perfluor-1-butaansulfonaat	μg/kg ds		<0,1	0,1 (6)			
(lineair)							
perfluor-1-decaansulfonaat (lineair)	μg/kg ds		<0,1	0,1 (6)			
perfluor-1-heptaansulfonaat (lineair)	μg/kg ds		<0,1	0,1 (6)			
perfluor-1-hexaansulfonaat (lineair)	μg/kg ds		<0,1	0,1 (6)			
perfluorbutaanzuur	μg/kg ds		<0,1	0,1 (6)			
perfluordecaanzuur	μg/kg ds		<0,1	0,1 (6)			
perfluordodecaanzuur	μg/kg ds		<0,1	0,1 (6)			
perfluorheptaanzuur	μg/kg ds μg/kg ds		<0,1	0,1 (6)			
perfluorhexaanzuur	µg/kg ds		<0,1	0,1 (6)			
perfluornonaanzuur	μg/kg ds μg/kg ds		<0,1	0,1 (6)			
perfluoroctaansulfonamide	μg/kg ds μg/kg ds		<0,1	0,1 (6)			
perfluorpentaanzuur	μg/kg ds μg/kg ds		<0,1	0,1 (6)			
perfluortridecaanzuur			<0,1	0,1 (6)			
	μg/kg ds		· · · · · · · · · · · · · · · · · · ·	0,1 (6)			
perfluortetradecaanzuur	μg/kg ds		<0,1	0,1 (6)			
perfluorundecaanzuur	μg/kg ds		<0,1	0,1 (6)			
2-(perfluorhexyl)ethaan-1- sulfonzuur	μg/kg ds		<0,1	0,1 (6)			
perfluorhexadecaanzuur	μg/kg ds		<0,1	0,1 ⁽⁶⁾			
perfluoroctadecaanzuur	μg/kg ds		<0,1	0,1 ⁽⁶⁾			
perfluoroctaansulfonylamide(N- ethyl)acetaat	μg/kg ds		<0,1	0,1 (6)			
1H,1H,2H,2H- perfluordecaansulfonzuur	μg/kg ds		<0,1	0,1 (6)			
1H,1H,2H,2H- perfluordodecaansulfonzuur	μg/kg ds		<0,1	0,1 (6)			
perfluorgodecaansullonzuur	ua/ka da		-O 1	0,1 (6)			
perfluoroctaansulfonylamide(N-	μg/kg ds μg/kg ds		<0,1 <0,1	0,1 (6)			
methyl)acetaat	, ,			,			
1H,1H,2H,2H- perfluorhexaansulfonzuur	μg/kg ds		<0,1	0,1 (6)			
bisperfluordecyl fosfaat	μg/kg ds		<0,1	0,1 (6)			
N-methyl perfluoroctaansulfonamide	μg/kg ds		<0,1	0,1 (6)			
som lineair en vertakt	μg/kg ds		0,1	0,1 (6)			
perfluoroctaanzuur som lineair en vertakt	μg/kg ds		0,1	0,1 (6)			
perfluoroctylsulfonaat							

Tabel 17: Gemeten gehalten in grond met beoordeling conform de Wet Bodembescherming

Grondmonster		Z1.2.2			Z1.3.1			Z1.3.2		
Certificaatcode		1449959			144995	50		1449959		
Boring(en)		11, 12, 13, 14	1 15 16			13, 14, 15, 16		11, 12, 13,	14 15 16	
Traject (m -mv)		2,00 - 4,50	+, 10, 10		2,50 - 3			2,50 - 5,00	14, 10, 10	
Humus	% ds	10.00			2,30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10.00		
Lutum	% ds	25,0			1,40			25,0		
Datum van toetsing	70 40	1-3-2023			1-3-20	23		1-3-2023		
Monsterconclusie		. 0 2020				t aan Achtergrondw	aarde	. 0 2020		
Monstermelding 1					. 0.000	t dan / torner gronan	<u>uu. uo</u>			
Monstermelding 2										
Monstermelding 3										
•		Meetw	GSSD	Index	Meetw	GSSD	Index	Meetw	GSSD	Index
ANORGANISCHE VERBINDINGEN										
Chloride	mg/kg ds				3200	3200 (7,40)				
BESTRIJDINGSMIDDELEN										
Tributyltin (als Sn)	μg/kg ds									
Trifenyltin (als Sn)	μg/kg ds					-				
trans-Heptachloorepoxide	μg/kg ds				<1	<3				
Endosulfansulfaat	μg/kg ds				<2	<6 ⁽⁶⁾				
cis-Heptachloorepoxide	μg/kg ds				<1	<3				
Tributyltin	mg/kg ds									
Heptachloorepoxide (som, 0.7 factor	μg/kg ds				1					
OCB (0,7 som, grond)	mg/kg ds				0.0	015				
Organotin, som TBT+TFT, als	mg Sn/kg				- /	-				
SN	ds									
Organotin, som TBT+TFT	mg/kg ds									
Hexachloorbutadieen	μg/kg ds				<1					
alfa-HCH	μg/kg ds				<1	<3	0			
beta-HCH	μg/kg ds				<1	<3	0			
gamma-HCH	μg/kg ds				<1	<3	0			
delta-HCH	μg/kg ds				<1	<3 ⁽⁶⁾				
Isodrin	μg/kg ds				<1	<3				
Telodrin	µg/kg ds				<1	<3				
Heptachloor	μg/kg ds				<1	<3	0			
Heptachloorepoxide	μg/kg ds					<6,09	0			
Aldrin	μg/kg ds				<1	<3				
Dieldrin	μg/kg ds				<1	<3				
Endrin	μg/kg ds				<1	<3				
DDE (som)	μg/kg ds				1	<6	-0,04			
2,4-DDE (ortho, para-DDE)	μg/kg ds				<1	<3				
4,4-DDE (para, para-DDE)	μg/kg ds				<1	<3				
DDD (som)	μg/kg ds				1	<6	-0			
2,4-DDD (ortho, para-DDD)	μg/kg ds				<1	<3				
4,4-DDD (para, para-DDD) DDT (som)	μg/kg ds				<1	<3	0.40			
2,4-DDT (ortho, para-DDT)	μg/kg ds				1	<6	-0,13			
	μg/kg ds				<1	<3 <3				
4,4-DDT (para, para-DDT) alfa-Endosulfan	μg/kg ds μg/kg ds	1			<1 <1	<3 <3	0			
Chloordaan (cis + trans)	μg/kg ds μg/kg ds	 			<1	<3 <6,09	0			
cis-Chloordaan	μg/kg ds μg/kg ds	 			<1	<3	U			
trans-Chloordaan	μg/kg ds μg/kg ds	1			<1	<3				
Organotin	μg/kg ds μg/kg ds				<u> </u>	ζ.)				
DDT/DDE/DDD (som)	μg/kg ds μg/kg ds				4					
HCHs (som, STI-tabel)	μg/kg ds	1			3					
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds	1			2	<9	-0			
Som 23 Organochloorhoud.	μg/kg ds				17					
bestrijdingsm Som 21 Organochloorhoud.	μg/kg ds					<63,9				
bestrijdingsm										
GECHLOREERDE										
KOOLWATERSTOFFEN	, ,									
PCB (som 7)	mg/kg ds	-				2.2	-			
PCB (som 7)	μg/kg ds	L				<21,3	0			

Grondmonster		Z1.2.2	Z1.3.1			Z1.3.2
Certificaatcode		1449959	1449959			1449959
Boring(en)		11, 12, 13, 14, 15, 16	11, 12, 13, 14	15 16		11, 12, 13, 14, 15, 16
Traject (m -mv)		2,00 - 4,50	2,50 - 5,00	, 10, 10		2,50 - 5,00
Humus	% ds	10,00	2,30 - 3,00			10,00
Lutum		25,0				25,0
Datum van toetsing	% ds	1-3-2023	1,40 1-3-2023			1-3-2023
U		1-3-2023				1-3-2023
Monsterconclusie	, ,		Voldoet aan A			
Pentachloorbenzeen (QCB)	μg/kg ds		<1	<3	0	
Hexachloorbenzeen (HCB)	μg/kg ds		<1	<3	-0	
Pentachloorfenol (PCP)	μg/kg ds		<3	<9	0	
PCB 28	mg/kg ds					
PCB 28	μg/kg ds		<1	<3		
PCB 52	mg/kg ds					
PCB 52	μg/kg ds		<1	<3		
PCB 101	mg/kg ds					
PCB 101	μg/kg ds		<1	<3		
PCB 118	mg/kg ds					
PCB 118	μg/kg ds		<1	<3		
PCB 138	mg/kg ds					
PCB 138	μg/kg ds		<1	<3		
PCB 153	mg/kg ds					
PCB 153	μg/kg ds		<1	<3	_	
PCB 180	mg/kg ds					
PCB 180	μg/kg ds		<1	<3		
METALEN						
Chroom	mg/kg ds		13	24	-0,25	
Kobalt	mg/kg ds		<3,0	<7,4	-0,04	
Nikkel	mg/kg ds		<4	<8	-0,41	
Koper	mg/kg ds		<5,0	<7,2	-0,22	
Zink	mg/kg ds		<20	<33	-0,22	
Arseen			<4.0	<4,9	-0,18	
	mg/kg ds mg/kg ds		<1,5	<1,1	-0,2 <i>1</i> -0	
Molybdeen Cadmium					-0,03	
	mg/kg ds		<0,20	<0,24	-0,03	
Barium Kwik	mg/kg ds		<20 <0.05	<54 ⁽⁶⁾		
	mg/kg ds			<0,05	-0	
Lood	mg/kg ds		<10	<11	-0,08	
OVER10						
OVERIG						
Gloeirest	% ds		97,6			
Gloeiverlies	% ds		2,4			
Trifenyltin	mg/kg ds					
Aard artefacten	-					
Gewicht artefacten	g					
Droge stof	%					
Droge stof	% ds	74 74 ⁽⁶⁾	80,9	80,9 ⁽⁶⁾		82,1 82,1 ⁽⁶⁾
Lutum	%		1,4			
Organische stof (humus)	%		2,3			
OVERIGE (ORGANISCHE) VERBINDINGEN						
Minerale olie C10 - C40	mg/kg ds		<35	<107	-0,02	
PAK					_	
Naftaleen	mg/kg ds		0,06	0,06		
Anthraceen	mg/kg ds		<0,05	<0,04		
Fenanthreen	mg/kg ds		<0,05	<0,04		
Fluorantheen	mg/kg ds		<0,05	<0,04		
Chryseen	mg/kg ds		<0,05	<0,04		
Benzo(a)anthraceen	mg/kg ds		<0,05	<0,04		
Benzo(a)pyreen	mg/kg ds		<0,05	<0,04		
Benzo(k)fluorantheen	mg/kg ds		<0,05	<0,04		
Indeno-(1,2,3-c,d)pyreen	mg/kg ds		<0,05	<0,04		
Benzo(g,h,i)peryleen	mg/kg ds		<0,05	<0,04		
PAK 10 VROM			0,38	0,38	-0,03	
I AN IU VNOW	mg/kg ds		0,36	0,36	-0,03	
DEAC			+			
PFAS	110/les de	<0,1 0,1 (6)	+			<0,1 0,1 (6)
perfluoroctaanzuur (lineair)	μg/kg ds	<0,1 0,1 (6)				<0,1 0,1 (6)

Grondmonster		Z1.2.2	Z1.3.1	Z1.3.2	
Certificaatcode		1449959	1449959	1449959	
Boring(en)		11, 12, 13, 14, 15, 16	11, 12, 13, 14, 15, 16	11, 12, 13, 14, 1	5. 16
Traject (m -mv)		2,00 - 4,50	2,50 - 5,00	2,50 - 5,00	
Humus	% ds	10,00	2,30	10.00	
Lutum	% ds	25.0	1.40	25.0	
Datum van toetsing		1-3-2023	1-3-2023	1-3-2023	
Monsterconclusie			Voldoet aan Achtergrondwaarde		
perfluoroctaansulfonaat (lineair)	μg/kg ds	<0,1 0,1 (6)	, , , , , , , , , , , , , , , , , , ,	<0,1	0,1 (6)
som vertakte PFOS-isomeren	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
som vertakte PFOA-isomeren	μg/kg ds	<0,1 0,1 (6)		<0.1	0.1 (6)
perfluor-1-butaansulfonaat (lineair)	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluor-1-decaansulfonaat (lineair)	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluor-1-heptaansulfonaat (lineair)	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluor-1-hexaansulfonaat (lineair)	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluorbutaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluordecaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 ⁽⁶⁾
perfluordodecaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 ⁽⁶⁾
perfluorheptaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 ⁽⁶⁾
perfluorhexaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 ⁽⁶⁾
perfluornonaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 ⁽⁶⁾
perfluorpentaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 ⁽⁶⁾
perfluortridecaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 ⁽⁶⁾
perfluorundecaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
2-(perfluorhexyl)ethaan-1- sulfonzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluorhexadecaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluoroctadecaanzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonylamide(Nethyl)acetaat	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
1H,1H,2H,2H- perfluordecaansulfonzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
1H,1H,2H,2H- perfluordodecaansulfonzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-methyl)acetaat	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
1H,1H,2H,2H- perfluorhexaansulfonzuur	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
bisperfluordecyl fosfaat	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
N-methyl	μg/kg ds	<0,1 0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonamide	. 5 5			1	
som lineair en vertakt perfluoroctaanzuur	μg/kg ds	0,1 0,1 (6)		0,1	0,1 (6)
som lineair en vertakt perfluoroctylsulfonaat	μg/kg ds	0,1 0,1 (6)		0,1	0,1 (6)

: kleiner dan de detectielimiet : <= Achtergrondwaarde : Kleiner of gelijk aan Tussenwaarde 8,88

<u><=T</u>

: <= Interventiewaarde : > Interventiewaarde

: Overschrijding norm zeezand voor toepassing op speciale plaatsen : Verhoogde rapportagegrens geconstateerd door BoToVa service 40 41

6 : Heeft geen normwaarde

: Heeft andere normwaarde: zorgplicht van toepassing

: verhoogde rapportagegrens GSSD : Gestandaardiseerde meetwaarde Index : (GSSD - AW) / (I - AW)

- Getoetst via de BoToVa service, versie 3.1.0 -

Tabel 18: Normwaarden conform de Wet Bodembescherming

		AW	WO	IND	
BESTRIJDINGSMIDDELEN					
Tributyltin (als Sn)	mg/kg ds	0,065	0,065	0,065	
Tributyltin	mg/kg ds	0.065	0.065	0.065	
Organotin, som TBT+TFT, als SN	mg/kg ds	0,15	0,5		
Hexachloorbutadieen	mg/kg ds	0.003			
alfa-HCH	mg/kg ds	0,001	0,001	0,5	17
beta-HCH	mg/kg ds	0,002	0,002	0,5	1,6
gamma-HCH	mg/kg ds	0,003	0,04	0,5	1,2
Heptachloor	mg/kg ds	0,0007	0,0007	0,1	4
Heptachloorepoxide	mg/kg ds	0,002	0,002	0,1	4
Aldrin	mg/kg ds				0,32
DDE (som)	mg/kg ds	0,1	0,13	1,3	2,3
DDD (som)	mg/kg ds	0,02	0,84	34	34
DDT (som)	mg/kg ds	0,2	0,2	1	1,7
alfa-Endosulfan	mg/kg ds	0,0009	0,0009	0,1	4
Chloordaan (cis + trans)	mg/kg ds	0,002	0,002	0,1	4
Organotin	mg/kg ds			2,5	2,5
Drins (Aldrin+Dieldrin+Endrin)	mg/kg ds	0,015	0,04	0,14	4
Som 21 Organochloorhoud. bestrijdingsm	mg/kg ds	0,4			
GECHLOREERDE KOOLWATERSTOFFEN					
PCB (som 7)	mg/kg ds	0,02	0,04	0,5	1
Pentachloorbenzeen (QCB)	mg/kg ds	0,0025	0,0025	5	6,7
Hexachloorbenzeen (HCB)	mg/kg ds	0,0085	0,027	1,4	2
Pentachloorfenol (PCP)	mg/kg ds	0,003	1,4	5	12
METALEN					
Chroom	mg/kg ds	55	62	180	180
Kobalt	mg/kg ds	15	35	190	190
Nikkel	mg/kg ds	35	39	100	100
Koper	mg/kg ds	40	54	190	190
Zink	mg/kg ds	140	200	720	720
Arseen	mg/kg ds	20	27	76	76
Molybdeen	mg/kg ds	1,5	88	190	190
Cadmium	mg/kg ds	0,6	1,2	4,3	13
Kwik	mg/kg ds	0,15	0,83	4,8	36
Lood	mg/kg ds	50	210	530	530
OVERIGE (ORGANISCHE) VERBINDINGEN					
Minerale olie C10 - C40	mg/kg ds	190	190	500	5000
PAK					
PAK 10 VROM	mg/kg ds	1,5	6,8	40	40

Tabel 19: Gemeten concentraties in grondwater met beoordeling conform de Wet Bodembescherming

Watermonster	
Datum	
Filterdiepte (m -mv)	
Datum van toetsing	
Monsterconclusie	
Monstermelding 1	
Monstermelding 2	
Monstermelding 3	
-	

: kleiner dan de detectielimiet

8,88 : <= Streefwaarde : > Streefwaarde

: Groter dan Tussenwaarde : > Interventiewaarde 8,88 # : verhoogde rapportagegrens GSSD : Gestandaardiseerde meetwaarde

Index : (GSSD - S) / (I - S)

- Getoetst via de BoToVa service, versie 3.1.0 -

Tabel 20: Normwaarden conform de Wet Bodembescherming

Tabel 21: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster		1.1.1		1.1.2		1.2.1	
Humus (% ds)		8,60		10,00		8,00	
Lutum (% ds)		22,1		25,0		19,90	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Niet Toepash Interventiewa				Niet Toepasbaar > industrie	
Samenstelling monster							
Monstermelding 1							
Monstermelding 2							
Monstermelding 3							
Zintuiglijke bijmengingen							
Hoofd grondsoort		Slib		Slib		Slib	
		Meetw	GSSD	Meetw	GSSD	Meetw	GSSD
ANORGANISCHE VERBINDINGEN							
Chloride	mg/kg ds	29000	29000 (7,40)			17000	17000 (7,40)
BESTRIJDINGSMIDDELEN							
Tributyltin (als Sn)	μg/kg ds	56	65			180	225
Trifenyltin (als Sn)	µg/kg ds	<4	<3			<4	<4
trans-Heptachloorepoxide	μg/kg ds	<1	~5			<1	<1
Endosulfansulfaat	μg/kg ds	<2	<2 (6)			<2	<2 ⁽⁶⁾
cis-Heptachloorepoxide	μg/kg ds μg/kg ds	<1	<1			<1	<1
Tributyltin	mg/kg ds	0,14				0,45	
Heptachloorepoxide (som, 0.7 factor	μg/kg ds	1				1	
OCB (0,7 som, grond)	mg/kg ds	0,015#				0,018#	
Organotin, som TBT+TFT, als SN	mg Sn/kg	0,059	68,372			0,18	228,50
Organotin, som TBT+TFT	mg/kg ds	0,14				0,45	
Hexachloorbutadieen	μg/kg ds	<1				<1	
alfa-HCH	μg/kg ds	<1	<1			<1	<1
beta-HCH	μg/kg ds	<1	<1			<1	<1
gamma-HCH	μg/kg ds	<1	<1			<1	<1
delta-HCH	μg/kg ds	<1	<1 (6)			<1	<1 (6)
Isodrin	μg/kg ds	<1	<1			<1	<1
Telodrin	μg/kg ds	<1	<1			<1	<1
Heptachloor	μg/kg ds	<1	<1			<1	<1
Heptachloorepoxide	μg/kg ds		<1,63				<1,75
Aldrin	μg/kg ds	<1	<1			<1	<1
Dieldrin	μg/kg ds	<1	<1			<1	<1
Endrin	μg/kg ds	2#	2 (41)			2#	2 (41)
DDE (som)	μg/kg ds	1	<2			1	<2
2,4-DDE (ortho, para-DDE)	μg/kg ds	<1	<1			<1	<1
4,4-DDE (para, para-DDE)	μg/kg ds	<1	<1			<1	<1
DDD (som)	ug/kg ds	1	<2			4#	5

<1 <2

Projectcode: 22139V1

DDD (som)

μg/kg ds

0		1444		1440		14.0.4	
Grondmonster		1.1.1		1.1.2		1.2.1	
Humus (% ds)		8,60		10,00		8,00	
Lutum (% ds)		22,1		25,0		19,90	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Niet Toepasba Interventiewa				Niet Toepasba	aar > industrie
Samenstelling monster							(44)
2,4-DDD (ortho, para-DDD)	μg/kg ds	<1	<1			4#	4 (41)
4,4-DDD (para, para-DDD)	μg/kg ds	<1	<1			1	1
DDT (som)	μg/kg ds	1	<2			1	<2
2,4-DDT (ortho, para-DDT)	μg/kg ds	<1	<1			<1	<1
4,4-DDT (para, para-DDT)	μg/kg ds	<1	<1			<1	<1
alfa-Endosulfan	μg/kg ds	<1	<1			<1	<1
Chloordaan (cis + trans)	μg/kg ds	``	<1,63			1	<1,75
cis-Chloordaan	μg/kg ds	<1	<1			<1	<1
trans-Chloordaan	μg/kg ds	<1	<1			<1	<1
Organotin	μg/kg ds	_	168				559
DDT/DDE/DDD (som)	μg/kg ds	4				7#	
HCHs (som, STI-tabel)	μg/kg ds	3				3	
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds	3#	3			3#	4
Som 23 Organochloorhoud.	μg/kg ds	18#				20#	
bestrijdingsm							
Som 21 Organochloorhoud. bestrijdingsm	μg/kg ds		17,91				22,3
GECHLOREERDE KOOLWATERSTOFFEN							
PCB (som 7)	mg/kg ds			1		1	
PCB (som 7)	µg/kg ds		94,2				<u>55,0</u>
		.4				4	
Pentachloorbenzeen (QCB)	μg/kg ds	<1	<1			<1	<1
Hexachloorbenzeen (HCB)	μg/kg ds	<1	<1			<1	<1
Pentachloorfenol (PCP)	μg/kg ds	<3	<2			<3	<3
PCB 28	mg/kg ds						
PCB 28	μg/kg ds	2	2			1	1
PCB 52	mg/kg ds						
PCB 52	μg/kg ds	8	9			6	8
PCB 101	mg/kg ds						
PCB 101	μg/kg ds	13	15			8	10
PCB 118	mg/kg ds						
PCB 118	μg/kg ds	9	10			6	8
PCB 138	mg/kg ds	, , , , , , , , , , , , , , , , , , ,	10			0	<u> </u>
PCB 138		16	19			7	9
	μg/kg ds	10	19			/	9
PCB 153	mg/kg ds						
PCB 153	μg/kg ds	21	24			11	14
PCB 180	mg/kg ds			1		1	
PCB 180	μg/kg ds	12	14			5	6
METALEN							
Chroom	mg/kg ds	<u>69</u>	<u>73</u>			54	60
Kobalt	mg/kg ds	9,5	10,4			7,6	9,0
Nikkel	mg/kg ds	31	34			21	25
Koper	mg/kg ds	200	<u>215</u>			<u>69</u>	<u>78</u>
Zink	mg/kg ds	340	368			280	322
Arseen	mg/kg ds	22	23			17	19
Molybdeen						<1,5	<1,1
	mg/kg ds	2,1	2,1				
Cadmium	mg/kg ds	<u>1,2</u>	<u>1,3</u>			0,84	0,93
Barium	mg/kg ds	83	92 (6)	_		51	61 ⁽⁶⁾
Kwik	mg/kg ds	<u>1,0</u>	<u>1,0</u>			0,41	0,44
Lood	mg/kg ds	93	98			65	71
OVERIG							
Gloeirest	% ds	89,9				90,6	
Gloeiverlies	% ds	10,1				9,4	
Trifenyltin	mg/kg ds	<0,005				<0,005	
Aard artefacten	-	,		1		12,200	
Gewicht artefacten	g			1		1	
Droge stof	%	<u> </u>		+		+	
Droge stof	% ds	39,6	39,6 ⁽⁶⁾	50,1	50,1 ⁽⁶⁾	43	43 (6)
Lutum	% us	22,1	J9,U **/	JU, I	JU, I 📆		40.7
Lutuiii	/0	۷۷,۱				19,9	

Grondmonster		1.1.1		1.1.2		1.2.1	
Humus (% ds)		8,60		10,00		8,00	
Lutum (% ds)		22,1		25,0		19,90	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Niet Toepasbaar >				Niet Toepasba	aar > industrie
		Interventiewaarde					
Samenstelling monster							
Organische stof (humus)	%	8,6				8,0	
		- / -				-,-	
OVERIGE (ORGANISCHE)							
VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds	490 5	70			720	900
PAK							
Naftaleen	mg/kg ds	0,20	0,20			0,15	0,15
Anthraceen	mg/kg ds	0,87	0,87			0,56	0,56
Fenanthreen	mg/kg ds	0,98	0,98			0,96	0,96
Fluorantheen	mg/kg ds	1,2	1,2			2,1	2,1
Chryseen	mg/kg ds	0,73	0,73			1,2	1,2
Benzo(a)anthraceen	mg/kg ds	0,57	0,57			0,86	0,86
Benzo(a)pyreen	mg/kg ds	0,56	0,56			1,1	1,1
Benzo(k)fluorantheen	mg/kg ds	0,42	0,42			0,77	0,77
Indeno-(1,2,3-c,d)pyreen	mg/kg ds	0,31	0,31			0,71	0,71
Benzo(g,h,i)peryleen	mg/kg ds	0,35	0,35			0,82	0,82
PAK 10 VROM	mg/kg ds	6,2	6,2			9,2	9,2
PFAS							
perfluoroctaanzuur (lineair)	μg/kg ds			<0,1	0,1 ⁽⁶⁾		
perfluoroctaansulfonaat	μg/kg ds			0,7	0,7 (6)		
(lineair)					•		
som vertakte PFOS-isomeren	μg/kg ds			0,2	0,2 (6)		
som vertakte PFOA-isomeren	μg/kg ds			<0,1	0,1 (6)		
perfluor-1-butaansulfonaat	μg/kg ds			<0,1	0,1 (6)		
(lineair)							
perfluor-1-decaansulfonaat	μg/kg ds			<0,1	0,1 (6)		
(lineair)							
perfluor-1-heptaansulfonaat	μg/kg ds			<0,1	0,1 (6)		
(lineair)							
perfluor-1-hexaansulfonaat	μg/kg ds			<0,1	0,1 (6)		
(lineair)					(0)		
perfluorbutaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluordecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluordodecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluorheptaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluorhexaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluornonaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonamide	μg/kg ds			0,3	0,3 (6)		
perfluorpentaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluortridecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluortetradecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluorundecaanzuur	μg/kg ds			0,1	0,1 (6)		
2-(perfluorhexyl)ethaan-1-	μg/kg ds			<0,1	0,1 (6)		
sulfonzuur					(0)		
perfluorhexadecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluoroctadecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonylamide(N-	μg/kg ds			1,8	1,8 (6)		
ethyl)acetaat				0.4	0.4 (6)		
1H,1H,2H,2H-	μg/kg ds			<0,1	0,1 (6)		
perfluordecaansulfonzuur	110/100			-0.4	0.4 (6)		
1H,1H,2H,2H-	μg/kg ds			<0,1	0,1 (6)		
perfluordodecaansulfonzuur	110/100			-0.4	0.4 (6)		
perfluorpentaan-1-sulfonzuur	μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonylamide(N-	μg/kg ds			0,4	0,4 (6)		
methyl)acetaat				0.4	0.4 (6)		
1H,1H,2H,2H-	μg/kg ds			<0,1	0,1 (6)		
perfluorhexaansulfonzuur	110/100 -1-			-0.4	0.4 (6)		
bisperfluordecyl fosfaat	μg/kg ds			<0,1	0,1 (6)		
N-methyl	μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonamide	<u> </u>	1		1			

Grondmonster		1.1.1	1.1.2		1.2.1
Humus (% ds)		8,60	10,00		8,00
Lutum (% ds)		22,1	25,0		19,90
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023
Monster getoetst als		partij	partij		partij
Bodemklasse monster		Niet Toepasbaar >			Niet Toepasbaar > industrie
		Interventiewaarde			
Samenstelling monster					
som lineair en vertakt	μg/kg ds		0,1	0,1 (6)	
perfluoroctaanzuur					
som lineair en vertakt	μg/kg ds		0,9	0,9 (6)	
perfluoroctylsulfonaat					

Tabel 22: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster		1.2.2		1.3.1		1.3.2	
Humus (% ds)		10,00		7,80		10,00	
Lutum (% ds)		25.0		21,4		25.0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		partij			sbaar > industrie	partij	
Samenstelling monster				Tviet Toepa	sbaai > iiiuusiiie		
Monstermelding 1							
Monstermelding 2							
Monstermelding 3							
Zintuiglijke bijmengingen	-	Slib		Clib		Clib	
Hoofd grondsoort		Meetw	GSSD	Slib Meetw	GSSD	Slib Meetw	GSSD
		Wicciw	СООВ	MCCLW	ОООР	Wicciw	ОООР
ANORGANISCHE VERBINDINGEN							
Chloride	mg/kg ds	1		15000	15000 (7,40)	1	
- Indiana	ing/ing us	1		10000	10000	1	
BESTRIJDINGSMIDDELEN							
Tributyltin (als Sn)	μg/kg ds						
Trifenyltin (als Sn)	μg/kg ds						
trans-Heptachloorepoxide	μg/kg ds			<1	<1		
Endosulfansulfaat	µg/kg ds			<2	<2 (6)		
cis-Heptachloorepoxide	μg/kg ds			<1	<1		
Tributyltin	mg/kg ds						
Heptachloorepoxide (som, 0.7	μg/kg ds			1			
factor	pg/kg do						
OCB (0,7 som, grond)	mg/kg ds			0,026#	ŧ		
Organotin, som TBT+TFT, als	mg Sn/kg			Í			
SN	ds						
Organotin, som TBT+TFT	mg/kg ds						
Hexachloorbutadieen	μg/kg ds			<1			
alfa-HCH	μg/kg ds			<1	<1		
beta-HCH	μg/kg ds			<1	<1		
gamma-HCH	μg/kg ds			<1	<1		
delta-HCH	μg/kg ds			<1	<1 (6)		
Isodrin	μg/kg ds			<1	<1		
Telodrin	μg/kg ds			<1	<1		
Heptachloor	μg/kg ds			<1	<1		
Heptachloorepoxide	μg/kg ds				<1,79		
Aldrin	μg/kg ds			<1	<1		
Dieldrin	μg/kg ds μg/kg ds	+		<1	<1	+	
Endrin	μg/kg ds μg/kg ds	+		<1	<1	+	
DDE (som)	μg/kg ds μg/kg ds	+		3	3	+	
2,4-DDE (ortho, para-DDE)	μg/kg ds	+		<1	<u>5</u> <1	+	
4,4-DDE (para, para-DDE)	μg/kg ds μg/kg ds	+		2	3	+	
DDD (som)	µg/kg ds	+		11#	14	+	
2,4-DDD (ortho, para-DDD)	μg/kg ds μg/kg ds			13#	12 ⁽⁴¹⁾		
	μg/kg ds μg/kg ds	+		2	3	+	
4,4-DDD (para, para-DDD)		+				+	
DDT (som)	μg/kg ds	+		1	<2	+	
2,4-DDT (ortho, para-DDT)	μg/kg ds	+		<1	<1	+	
4,4-DDT (para, para-DDT)	μg/kg ds	-		<1	<1	-	
alfa-Endosulfan	μg/kg ds	 		<1	<1	 	
Chloordaan (cis + trans)	μg/kg ds				<1,79		

Grondmonster		1.2.2		1.3.1		1.3.2	
Humus (% ds)		10,00		7,80		10,00	
Lutum (% ds)		25,0		21,4		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster				Niet Toepasba	ar > industrie		
Samenstelling monster							
cis-Chloordaan	μg/kg ds			<1	<1		
trans-Chloordaan	μg/kg ds			<1	<1		
Organotin	μg/kg ds						
DDT/DDE/DDD (som)	μg/kg ds			15#			
HCHs (som, STI-tabel)	μg/kg ds			3			
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds			2	<3		
Som 23 Organochloorhoud.	μg/kg ds			28#			
bestrijdingsm Som 21 Organochloorhoud.	μg/kg ds				32,9		
bestrijdingsm	µg/kg us				32,9		
bestrijanigsm							
GECHLOREERDE							
KOOLWATERSTOFFEN							
PCB (som 7)	mg/kg ds						
PCB (som 7)	μg/kg ds				<u>208</u>		
Pentachloorbenzeen (QCB)	μg/kg ds			<1	<1		
Hexachloorbenzeen (HCB)	μg/kg ds			<1	<1		
Pentachloorfenol (PCP)	μg/kg ds			<3	<3		
PCB 28	mg/kg ds						
PCB 28	μg/kg ds			6	8		
PCB 52	mg/kg ds						
PCB 52	μg/kg ds			13	17		
PCB 101	mg/kg ds						
PCB 101	μg/kg ds			26	33		
PCB 118	mg/kg ds						
PCB 118	μg/kg ds			22	28		
PCB 138	mg/kg ds			00	40		
PCB 138	μg/kg ds			33	42		
PCB 153 PCB 153	mg/kg ds			40	51		
PCB 133 PCB 180	μg/kg ds mg/kg ds			40	31		
PCB 180	µg/kg ds			22	28		
1 CB 160	pg/kg us			22	20		
METALEN							
Chroom	mg/kg ds			52	56		
Kobalt	mg/kg ds			7,4	8,3		
Nikkel	mg/kg ds			21	23		
Koper	mg/kg ds			140	<u>155</u>		
Zink	mg/kg ds			240	267		
Arseen	mg/kg ds			19	21		
Molybdeen	mg/kg ds			<1,5	<1,1		
Cadmium	mg/kg ds			0,79	0,87		
Barium	mg/kg ds			61	69 ⁽⁶⁾		
Kwik	mg/kg ds			<u>0,81</u>	<u>0,86</u>		
Lood	mg/kg ds			74	79		
OVERIG	0, 1						
Gloeirest	% ds			90,7			
Gloeiverlies	% ds			9,3			
Trifenyltin	mg/kg ds			1			
Aard artefacten	-			-			
Gewicht artefacten	g %						
Droge stof Droge stof	% ds	55,1	55,1 ⁽⁶⁾	46,7	46,7 ⁽⁶⁾	56,7	56,7 ⁽⁶⁾
Lutum	% ds	ეე, I	υυ, I 🐃		40,7	30,7	30,7 (3)
Organische stof (humus)	%			21,4 7,8			
Organisone stor (numus)	70			7,0			
OVERIGE (ORGANISCHE)							
VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds			690	885		
	J J 72						
PAK							
Naftaleen	mg/kg ds			0,31	0,31		

Grondmonster		1.2.2		1.3.1		1.3.2	
Humus (% ds)		10,00		7,80		10,00	
Lutum (% ds)		25,0		21,4		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		partij		Niet Toepasbaa	ar > industrie	p a.r.i.j	
Samenstelling monster				THOU TOOPGODGE	ii z iiidaotiio		
Anthraceen	mg/kg ds			0,48	0,48		
Fenanthreen	mg/kg ds			0,92	0,92		
Fluorantheen	mg/kg ds			3,0	3,0		
Chryseen	mg/kg ds			1,6	1,6		
Benzo(a)anthraceen	mg/kg ds			1,3	1,3		
	mg/kg ds			1,3	1,3		
Benzo(a)pyreen Benzo(k)fluorantheen				0,64	0,64		
	mg/kg ds			,	-		
Indeno-(1,2,3-c,d)pyreen	mg/kg ds			1,1	1,1		
Benzo(g,h,i)peryleen	mg/kg ds			0,88	0,88		
PAK 10 VROM	mg/kg ds			<u>11</u>	<u>11</u>		
DEAC							
PFAS (line sin)		0.4	0.4 (6)			0.4	0.4 (6)
perfluoroctaanzuur (lineair)	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonaat (lineair)	μg/kg ds	0,9	0,9 (6)			0,2	0,2 (6)
som vertakte PFOS-isomeren	μg/kg ds	0,2	0,2 (6)			<0,1	0,1 (6)
som vertakte PFOA-isomeren	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluor-1-butaansulfonaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
(lineair)	100	,	•			,	,
perfluor-1-decaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluor-1-heptaansulfonaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
(lineair) perfluor-1-hexaansulfonaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
(lineair) perfluorbutaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordodecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorheptaanzuur	µg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorhexaanzuur	µg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluornonaanzuur	µg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds	0,9	0,9 (6)			0,2	0,2 (6)
perfluorpentaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorundecaanzuur	µg/kg ds	0,3	0,3 (6)			<0,1	0,1 (6)
2-(perfluorhexyl)ethaan-1-	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
sulfonzuur	µg/ng do	30,1	0,1			10,1	0,1
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctadecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-	µg/kg ds	2,0	2,0 (6)			0,3	0,3 (6)
ethyl)acetaat 1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 ⁽⁶⁾
perfluordecaansulfonzuur 1H,1H,2H,2H-			0,1 (6)				0,1 (6)
perfluordodecaansulfonzuur	μg/kg ds	<0,1	•			<0,1	•
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-methyl)acetaat	μg/kg ds	1,2	1,2 (6)			0,1	0,1 (6)
1H,1H,2H,2H- perfluorhexaansulfonzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
bisperfluordecyl fosfaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
N-methyl	μg/kg ds μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonamide	µg/kg us	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	υ, ι 😯			\(\cup_{0}, 1\)	0,1
som lineair en vertakt	μg/kg ds	0,1	0,1 (6)			0,1	0,1 (6)
perfluoroctaanzuur som lineair en vertakt	μg/kg ds	1,1	1,1 ⁽⁶⁾			0,3	0,3 (6)
perfluoroctylsulfonaat							

Tabel 23: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster		1.4.1		1.4.2	1.5.1	
Humus (% ds)		6,40		10,00	5,80	
Lutum (% ds)		15,30		25,0	12,90	
Datum van toetsing		1-3-2023		1-3-2023	1-3-2023	
Monster getoetst als		partij		partij	partij	
Bodemklasse monster		Niet Toepasb	aar > industrie		Niet Toepas	baar >
					Interventiew	
Samenstelling monster						
Monstermelding 1						
Monstermelding 2						
Monstermelding 3						
Zintuiglijke bijmengingen						
Hoofd grondsoort		Slib		Slib	Slib	
Tiodia graniacont		Meetw	GSSD	Meetw GSSD	Meetw	GSSD
ANORGANISCHE						
VERBINDINGEN						
Chloride	mg/kg ds	15000	15000 (7,40)		15000	15000 (7,40)
Onionac	mg/kg do	10000	10000		10000	10000
BESTRIJDINGSMIDDELEN	<u> </u>	+				
Tributyltin (als Sn)	μg/kg ds	 				
Trifenyltin (als Sn)	μg/kg ds μg/kg ds	+				
trans-Heptachloorepoxide	μg/kg ds μg/kg ds	-1	-1	+	-1	-4
rans-Heptacnioorepoxide Endosulfansulfaat		<1	<1 <2 ⁽⁶⁾		<1	<1 <2 ⁽⁶⁾
	μg/kg ds	<2			<2	
cis-Heptachloorepoxide	μg/kg ds	<1	<1		<1	<1
Tributyltin	mg/kg ds	1				
Heptachloorepoxide (som, 0.7	μg/kg ds	1			1	
factor		0.00=::			2 22	
OCB (0,7 som, grond)	mg/kg ds	0,027#			0,020#	
Organotin, som TBT+TFT, als	mg Sn/kg					
SN	ds					
Organotin, som TBT+TFT	mg/kg ds					
Hexachloorbutadieen	μg/kg ds	<1			<1	
alfa-HCH	μg/kg ds	<1	<1		<1	<1
beta-HCH	μg/kg ds	<1	<1		<1	<1
gamma-HCH	μg/kg ds	<1	<1		<1	<1
delta-HCH	μg/kg ds	<1	<1 ⁽⁶⁾		<1	<1 ⁽⁶⁾
Isodrin	μg/kg ds	<1	<1		<1	<1
Telodrin	μg/kg ds	<1	<1		<1	<1
Heptachloor	μg/kg ds	<1	<1		<1	<1
Heptachloorepoxide	μg/kg ds		<2,19			<2,41
Aldrin	μg/kg ds	<1	<1		<1	<1
Dieldrin	μg/kg ds	<1	<1		<1	<1
Endrin	μg/kg ds	<1	<1		<1	<1
DDE (som)	µg/kg ds	5	7		3	5
2,4-DDE (ortho, para-DDE)	μg/kg ds	<1			<1	<1
4,4-DDE (para, para-DDE)	μg/kg ds	4	6	1	2	3
DDD (som)	μg/kg ds	10#	16		6#	9
2,4-DDD (ortho, para-DDD)	μg/kg ds μg/kg ds	10#	11 (41)		5#	6 (41)
4,4-DDD (ortilo, para-DDD)	μg/kg ds μg/kg ds	3	5		2	3
DDT (som)	μg/kg ds μg/kg ds	1	<u>5</u> <2		1	<u>3</u> <2
				+		
2,4-DDT (ortho, para-DDT)	μg/kg ds	<1	<1		<1	<1
4,4-DDT (para, para-DDT)	μg/kg ds	<1	<1		<1	<1
alfa-Endosulfan	μg/kg ds	<1	<1		<1	<1
Chloordaan (cis + trans)	μg/kg ds	 	<2,19			<2,41
cis-Chloordaan	μg/kg ds	<1	<1		<1	<1
rans-Chloordaan	μg/kg ds	<1	<1		<1	<1
Organotin	μg/kg ds					
DDT/DDE/DDD (som)	μg/kg ds	16#			10#	
HCHs (som, STI-tabel)	μg/kg ds	3			3	
Orins (Aldrin+Dieldrin+Endrin)	μg/kg ds	2	<3		2	<4
Som 23 Organochloorhoud.	μg/kg ds	29#			22#	
pestrijdingsm	<u></u>					
Som 21 Organochloorhoud.	μg/kg ds		41,6			34,7
bestrijdingsm	1.5		•			•
GECHLOREERDE						
KOOLWATERSTOFFEN	1	I		1		

Grondmonster		1.4.1		1.4.2		1.5.1	
Humus (% ds)		6,40		10,00		5,80	
Lutum (% ds)		15,30		25,0		12,90	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Niet Toepasba	aar > industrie			Niet Toepasb	aar >
						Interventiewa	arde
Samenstelling monster							
PCB (som 7)	mg/kg ds						
PCB (som 7)	μg/kg ds		<u>206</u>				<u>129</u>
Pentachloorbenzeen (QCB)	μg/kg ds	<1	<1			<1	<1
Hexachloorbenzeen (HCB)	μg/kg ds	<1	<1			<1	<1
Pentachloorfenol (PCP)	μg/kg ds	42#	46 ⁽⁴¹⁾			<3	<4
PCB 28	mg/kg ds						
PCB 28	μg/kg ds	5	8			3	5
PCB 52	mg/kg ds						
PCB 52	μg/kg ds	24	38			5	9
PCB 101	mg/kg ds						
PCB 101	μg/kg ds	22	34			12	21
PCB 118	mg/kg ds						
PCB 118	μg/kg ds	16	25			8	14
PCB 138	mg/kg ds						
PCB 138	μg/kg ds	23	36			14	24
PCB 153	mg/kg ds	_					
PCB 153	μg/kg ds	27	42			19	33
PCB 180	mg/kg ds						
PCB 180	μg/kg ds	15	23			14	24
METALEN							
Chroom	mg/kg ds	38	47			<u>54</u>	<u>71</u>
Kobalt	mg/kg ds	5,3	7,6			6,7	10,7
Nikkel	mg/kg ds	19	26			21	32
Koper	mg/kg ds	<u>55</u>	<u>71</u>			<u>240</u>	<u>330</u>
Zink	mg/kg ds	130	173			<u>260</u>	<u>374</u>
Arseen	mg/kg ds	12	15			18	23
Molybdeen	mg/kg ds	<1,5	<1,1			<1,5	<1,1
Cadmium	mg/kg ds	0,50	0,61			0,54	0,69
Barium	mg/kg ds	53	77 (6)			83	136 ⁽⁶⁾
Kwik	mg/kg ds	0,35	0,40			<u>0,97</u>	<u>1,15</u>
Lood	mg/kg ds	36	43			91	113
OVERIG							
Gloeirest	% ds	02.5				02.2	
Gloeiverlies	% ds	92,5				93,3	
		7,5				6,7	
Trifenyltin Aard artefacten	mg/kg ds -						
Gewicht artefacten							
Droge stof	g %						
Droge stof	% ds	57	57 ⁽⁶⁾	54,3	54,3 ⁽⁶⁾	54,3	54,3 ⁽⁶⁾
Lutum	% us	15,3	31 11	54,5	54,5	12,9	54,5 17
Organische stof (humus)	%	6,4				5,8	
Organische stor (numus)	70	0,4				3,0	
OVERIGE (ORGANISCHE)							
VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds	930	1453			730	1259
	g,g us					100	
PAK							
Naftaleen	mg/kg ds	17	17			1,7	1,7
Anthraceen	mg/kg ds	1,4	1,4			0,73	0,73
Fenanthreen	mg/kg ds	7,6	7,6			1,0	1,0
Fluorantheen	mg/kg ds	3,2	3,2			1,2	1,2
Chryseen	mg/kg ds	1,7	1,7			0,74	0,74
Benzo(a)anthraceen	mg/kg ds	1,5	1,5			0,54	0,54
Benzo(a)pyreen	mg/kg ds	1,2	1,2			0,53	0,53
Benzo(k)fluorantheen	mg/kg ds	0,54	0,54			0,39	0,39
Indeno-(1,2,3-c,d)pyreen	mg/kg ds	0,95	0,95			0,42	0,42
Benzo(g,h,i)peryleen	mg/kg ds	0,80	0,80			0,47	0,47
PAK 10 VROM	mg/kg ds	<u>36</u>	<u>36</u>			<u>7,7</u>	<u>7,7</u>
PFAS							
<u> </u>							

Grondmonster		1.4.1	1.4.2		1.5.1
Humus (% ds)		6,40	10,00		5,80
Lutum (% ds)		15,30	25,0		12,90
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023
Monster getoetst als		partij	partij		partij
Bodemklasse monster		Niet Toepasbaar > industrie	partij		Niet Toepasbaar >
Dodominasso monster		Trict Toopassaar > maastric			Interventiewaarde
Samenstelling monster					The ventiowaarde
perfluoroctaanzuur (lineair)	μg/kg ds		0,2	0,2 (6)	
perfluoroctaansulfonaat	μg/kg ds		0,7	0,7 (6)	
(lineair)			·	•	
som vertakte PFOS-isomeren	μg/kg ds		0,2	0,2 (6)	
som vertakte PFOA-isomeren	μg/kg ds		<0,1	0,1 (6)	
perfluor-1-butaansulfonaat (lineair)	μg/kg ds		<0,1	0,1 (6)	
perfluor-1-decaansulfonaat (lineair)	μg/kg ds		<0,1	0,1 (6)	
perfluor-1-heptaansulfonaat (lineair)	μg/kg ds		<0,1	0,1 (6)	
perfluor-1-hexaansulfonaat (lineair)	μg/kg ds		<0,1	0,1 (6)	
perfluorbutaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluordecaanzuur	µg/kg ds		<0,1	0,1 (6)	
perfluordodecaanzuur	µg/kg ds		<0,1	0,1 (6)	
perfluorheptaanzuur	µg/kg ds		<0,1	0,1 (6)	
perfluorhexaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluornonaanzuur	µg/kg ds		<0,1	0,1 (6)	
perfluoroctaansulfonamide	μg/kg ds		1.1	1,1 ⁽⁶⁾	
perfluorpentaanzuur	µg/kg ds		<0,1	0,1 (6)	
perfluortridecaanzuur	µg/kg ds		<0,1	0,1 (6)	
perfluortetradecaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluorundecaanzuur	µg/kg ds		<0,1	0,1 (6)	
2-(perfluorhexyl)ethaan-1-	μg/kg ds		<0,1	0,1 (6)	
sulfonzuur			,		
perfluorhexadecaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluoroctadecaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluoroctaansulfonylamide(Nethyl)acetaat	μg/kg ds		1,6	1,6 (6)	
1H,1H,2H,2H- perfluordecaansulfonzuur	μg/kg ds		<0,1	0,1 (6)	
1H,1H,2H,2H- perfluordodecaansulfonzuur	μg/kg ds		<0,1	0,1 (6)	
perfluorpentaan-1-sulfonzuur	μg/kg ds		<0,1	0,1 (6)	
perfluoroctaansulfonylamide(N-			0,6	0,6 (6)	
methyl)acetaat					
1H,1H,2H,2H- perfluorhexaansulfonzuur	μg/kg ds		<0,1	0,1 (6)	
bisperfluordecyl fosfaat	μg/kg ds		<0,1	0,1 (6)	
N-methyl	μg/kg ds		<0,1	0,1 (6)	
perfluoroctaansulfonamide			1		
som lineair en vertakt perfluoroctaanzuur	μg/kg ds		0,3	0,3 (6)	
som lineair en vertakt perfluoroctylsulfonaat	μg/kg ds		0,9	0,9 (6)	

Tabel 24: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster	1.5.2	1.6.1	1.6.2
Humus (% ds)	10,00	4,60	10,00
Lutum (% ds)	25,0	14,80	25,0
Datum van toetsing	1-3-2023	1-3-2023	1-3-2023
Monster getoetst als	partij	partij	partij
Bodemklasse monster		Niet Toepasbaar > industrie	
Samenstelling monster			
Monstermelding 1			
Monstermelding 2			
Monstermelding 3			
Zintuiglijke bijmengingen			
Hoofd grondsoort	Slib	Slib	Slib

Grondmonster		1.5.2		1.6.1		1.6.2	
Humus (% ds)		10.00		4,60		10,00	
Lutum (% ds)		25,0		14,80		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster				Niet Toepas	baar > industrie		
Samenstelling monster							
		Meetw	GSSD	Meetw	GSSD	Meetw	GSSD
ANORGANISCHE							
VERBINDINGEN				10000	10000 (740)		
Chloride	mg/kg ds			12000	12000 (7,40)		
BESTRIJDINGSMIDDELEN							
Tributyltin (als Sn)	μg/kg ds						
Trifenyltin (als Sn)	μg/kg ds μg/kg ds						
trans-Heptachloorepoxide	μg/kg ds μg/kg ds			<1	<2		
Endosulfansulfaat	μg/kg ds μg/kg ds			<2	<3 (6)		
cis-Heptachloorepoxide	μg/kg ds μg/kg ds			<1	<2		
Tributyltin	mg/kg ds				~~		
Heptachloorepoxide (som, 0.7	µg/kg ds			1			
factor	F 5 5 G C			'			
OCB (0,7 som, grond)	mg/kg ds			0,018#			
Organotin, som TBT+TFT, als	mg Sn/kg			,			
SN	ds	<u> </u>					
Organotin, som TBT+TFT	mg/kg ds		<u> </u>				
Hexachloorbutadieen	μg/kg ds			<1			
alfa-HCH	μg/kg ds			<1	<2		
beta-HCH	μg/kg ds			<1	<2		
gamma-HCH	μg/kg ds			<1	<2		
delta-HCH	μg/kg ds			<1	<2 (6)		
Isodrin	μg/kg ds			<1	<2		
Telodrin	μg/kg ds			<1	<2		
Heptachloor	μg/kg ds			<1	<2		
Heptachloorepoxide	μg/kg ds			-4	<3,04		
Aldrin Dieldrin	μg/kg ds μg/kg ds			<1 <1	<2 <2		
Endrin	μg/kg ds μg/kg ds			<1	<2		
DDE (som)	μg/kg ds μg/kg ds			2	4		
2,4-DDE (ortho, para-DDE)	μg/kg ds			<1	<2		
4,4-DDE (para, para-DDE)	µg/kg ds			1	2		
DDD (som)	μg/kg ds			5#	10		
2,4-DDD (ortho, para-DDD)	µg/kg ds			4#	6 (41)		
4,4-DDD (para, para-DDD)	μg/kg ds			2	4		
DDT (som)	μg/kg ds			1	<3		
2,4-DDT (ortho, para-DDT)	μg/kg ds			<1	<2		
4,4-DDT (para, para-DDT)	μg/kg ds			<1	<2		
alfa-Endosulfan	μg/kg ds			<1	<2		
Chloordaan (cis + trans)	μg/kg ds				<3,04		
cis-Chloordaan	μg/kg ds			<1	<2		
trans-Chloordaan	μg/kg ds			<1	<2		
Organotin	μg/kg ds			6"			
DDT/DDE/DDD (som)	μg/kg ds	-		8#		+	
HCHs (som, STI-tabel) Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds μg/kg ds			3 2	<5		
Som 23 Organochloorhoud.	μg/kg ds μg/kg ds	+		20#	<υ		
bestrijdingsm	µg/ng us			20#			
Som 21 Organochloorhoud.	μg/kg ds				40,0		
bestrijdingsm	-5.19 do				.0,0		
GECHLOREERDE							
KOOLWATERSTOFFEN							
PCB (som 7)	mg/kg ds						
PCB (som 7)	μg/kg ds				<u>89,1</u>		
Pentachloorbenzeen (QCB)	μg/kg ds			<1	<2		
Hexachloorbenzeen (HCB)	μg/kg ds			<1	<2		
Pentachloorfenol (PCP)	μg/kg ds	1		<3	<5		
PCB 28	mg/kg ds	 		4	2		
PCB 28 PCB 52	μg/kg ds mg/kg ds			1	2		
1 00 02	myrky us	<u> </u>				1	

		1450		1404		1400	
Grondmonster		1.5.2		1.6.1		1.6.2	
Humus (% ds)		10,00		4,60		10,00	
Lutum (% ds)		25,0		14,80		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster				Niet Toepasb	aar > industrie		
Samenstelling monster							
PCB 52	μg/kg ds			4	9		
PCB 101	mg/kg ds				<u> </u>		
PCB 101	μg/kg ds			9	20		
PCB 118	mg/kg ds			9	20		
					40		
PCB 118	μg/kg ds			6	13		
PCB 138	mg/kg ds						
PCB 138	μg/kg ds			2	4		
PCB 153	mg/kg ds						
PCB 153	μg/kg ds			13	28		
PCB 180	mg/kg ds						
PCB 180	μg/kg ds			6	13		
	pgrig sic						
METALEN							
	ma/ka de			40	50		
Chroom	mg/kg ds	 		40	50	1	
Kobalt	mg/kg ds			5,7	8,3		
Nikkel	mg/kg ds	 		17	24		
Koper	mg/kg ds			<u>120</u>	<u>162</u>		
Zink	mg/kg ds			<u>200</u>	<u>276</u>		
Arseen	mg/kg ds			14	18		
Molybdeen	mg/kg ds			<1,5	<1,1		
Cadmium	mg/kg ds			0,47	0,61		
Barium	mg/kg ds			62	92 ⁽⁶⁾		
Kwik	mg/kg ds			0.84	0.98		
Lood				<u>0,84</u> 77	94		
LOOG	mg/kg ds			//	94		
OVERIG							
Gloeirest	% ds			94,4			
Gloeiverlies	% ds			5,6			
Trifenyltin	mg/kg ds						
Aard artefacten	-						
Gewicht artefacten	g						
Droge stof	%						
Droge stof	% ds	55,3	55,3 ⁽⁶⁾	60,8	60,8 (6)	57	57 ⁽⁶⁾
Lutum	% us	55,5	55,5	14,8	00,0	31	31 0
Organische stof (humus)	%			4,6			
OVERIGE (ORGANISCHE) VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds			470	1022		
	mg/ng ac						
PAK							
Naftaleen	mg/kg ds			1,3	1,3		
Anthraceen	mg/kg ds			0,49	0,49		
Fenanthreen				0,49	0,93		
	mg/kg ds						
Fluorantheen	mg/kg ds			1,5	1,5		
Chryseen	mg/kg ds			0,77	0,77		
Benzo(a)anthraceen	mg/kg ds			0,70	0,70		
Benzo(a)pyreen	mg/kg ds			0,63	0,63		
Benzo(k)fluorantheen	mg/kg ds			0,28	0,28		
Indeno-(1,2,3-c,d)pyreen	mg/kg ds			0,50	0,50		
Benzo(g,h,i)peryleen	mg/kg ds			0,45	0,45		
PAK 10 VROM		+		7,6	<u>7,5</u>		
. , at 10 vittoivi				7,0	<u>1,0</u>		
	mg/kg ds						
PFAS							
PFAS	mg/kg ds	0.0	0.0 (6)			.0.4	0.4 (6)
perfluoroctaanzuur (lineair)	mg/kg ds µg/kg ds	0,2	0,2 (6)			<0,1	0,1 (6)
perfluoroctaanzuur (lineair) perfluoroctaansulfonaat	mg/kg ds	0,2	0,2 ⁽⁶⁾ 0,7 ⁽⁶⁾			<0,1 0,4	0,1 ⁽⁶⁾ 0,4 ⁽⁶⁾
perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair)	mg/kg ds µg/kg ds µg/kg ds	0,7	0,7 (6)			0,4	0,4 (6)
perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren	mg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,7	0,7 ⁽⁶⁾			0,4	0,4 ⁽⁶⁾
perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren	mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,7 0,2 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾			0,4 <0,1 <0,1	0,4 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾
perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren	mg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,7	0,7 ⁽⁶⁾			0,4	0,4 ⁽⁶⁾
perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren	mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,7 0,2 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾			0,4 <0,1 <0,1	0,4 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾
perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat	mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,7 0,2 <0,1	0,7 ⁽⁶⁾ 0,2 ⁽⁶⁾ 0,1 ⁽⁶⁾			0,4 <0,1 <0,1	0,4 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾

Grondmonster		1.5.2		1.6.1	1.6.2	
Humus (% ds)		10,00		4,60	10,00	
Lutum (% ds)		25,0		14,80	25,0	
Datum van toetsing		1-3-2023		1-3-2023	1-3-2023	
Monster getoetst als		partij		partij	partij	
Bodemklasse monster				Niet Toepasbaar > industrie		
Samenstelling monster						
perfluor-1-heptaansulfonaat	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
(lineair)						
perfluor-1-hexaansulfonaat	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
(lineair)						
perfluorbutaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluordecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluordodecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorheptaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorhexaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluornonaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds	0,9	0,9 (6)		0,3	0,3 (6)
perfluorpentaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorundecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
2-(perfluorhexyl)ethaan-1-	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
sulfonzuur						
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctadecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonylamide(Nethyl)acetaat	μg/kg ds	1,3	1,3 (6)		0,7	0,7 (6)
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluordecaansulfonzuur	, J J	1-7.	-, -		,-	-, -
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluordodecaansulfonzuur	, J J	1-7.	-, -		,-	-, -
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-	µg/kg ds	0,6	0,6 (6)		0,3	0,3 (6)
methyl)acetaat		<u> </u>	•		,	•
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorhexaansulfonzuur						<u> </u>
bisperfluordecyl fosfaat	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
N-methyl	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonamide						
som lineair en vertakt	μg/kg ds	0,3	0,3 (6)		0,1	0,1 (6)
perfluoroctaanzuur						
som lineair en vertakt	μg/kg ds	0,9	0,9 (6)		0,5	0,5 (6)
perfluoroctylsulfonaat						

Tabel 25: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster		1.7.1		1.7.2		2.1.1	
Humus (% ds)		5,70		10,00		21,3	
Lutum (% ds)		10,00		25,0		43,1	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij	partij		partij		
Bodemklasse monster		Niet Toepa	sbaar > industrie			Niet Toepa	sbaar > industrie
Samenstelling monster							
Monstermelding 1							
Monstermelding 2							
Monstermelding 3							
Zintuiglijke bijmengingen							
Hoofd grondsoort		Slib		Slib		Slib	
		Meetw	GSSD	Meetw	GSSD	Meetw	GSSD
ANORGANISCHE VERBINDINGEN							
Chloride	mg/kg ds	11000	11000 (7,40)			19000	19000 (7,40)
BESTRIJDINGSMIDDELEN							
Tributyltin (als Sn)	μg/kg ds	<4	<5			770	362
Trifenyltin (als Sn)	μg/kg ds	<4	<5			<4	<1
trans-Heptachloorepoxide	μg/kg ds	<1	<1			<1	<0

Grondmonster		1.7.1		1.7.2	2.1.1	
Humus (% ds)		5,70		10,00	21,3	
Lutum (% ds)		10,00		25,0	43,1	
Datum van toetsing		1-3-2023		1-3-2023	1-3-2023	
Monster getoetst als		partij		partij	partij	
Bodemklasse monster Samenstelling monster		Niet Toepasbaa	r > industrie		Niet Toepasbaa	ar > industrie
Endosulfansulfaat	μg/kg ds	<2	<2 (6)		<2	<1 (6)
cis-Heptachloorepoxide	μg/kg ds μg/kg ds	<1	<1		<1	<0
Tributyltin	mg/kg ds	0,007			1,9	- 10
Heptachloorepoxide (som, 0.7	μg/kg ds	1			1	
factor						
OCB (0,7 som, grond)	mg/kg ds	0,015			0,035#	
Organotin, som TBT+TFT, als SN	mg Sn/kg ds	0,006	<9,825		0,77	362,82
Organotin, som TBT+TFT	mg/kg ds	0,015			1,9	
Hexachloorbutadieen	µg/kg ds	<1			<1	
alfa-HCH	μg/kg ds	<1	<1		<1	<0
beta-HCH	μg/kg ds	<1	<1		<1	<0
gamma-HCH	μg/kg ds	<1	<1		<1	<0
delta-HCH	μg/kg ds	<1	<1 (6)		<1	<0 (6)
Isodrin	μg/kg ds	<1	<1		<1	<0
Telodrin	μg/kg ds	<1	<1	-	<1	<0
Heptachloor Heptachloorepoxide	μg/kg ds μg/kg ds	<1	<1 <2,46	+	<1	<0 <0,66
Aldrin	μg/kg ds μg/kg ds	<1	<2,46	<u> </u>	<1	<0,66
Dieldrin	μg/kg ds	<1	<1		2	1
Endrin	μg/kg ds	<1	<1		5	2
DDE (som)	μg/kg ds	1	<2		5	2
2,4-DDE (ortho, para-DDE)	μg/kg ds	<1	<1		<1	<0
4,4-DDE (para, para-DDE)	μg/kg ds	<1	<1		4	2
DDD (som)	μg/kg ds	1	<2		12#	6 4 ⁽⁴¹⁾
2,4-DDD (ortho, para-DDD) 4,4-DDD (para, para-DDD)	μg/kg ds	<1 <1	<1 <1		13#	1
DDT (som)	μg/kg ds μg/kg ds	1	<2		3	<u> </u>
2,4-DDT (ortho, para-DDT)	μg/kg ds μg/kg ds	<1	<1		<1	<0
4,4-DDT (para, para-DDT)	μg/kg ds	<1	<1		<1	<0
alfa-Endosulfan	μg/kg ds	<1	<1		<1	<0
Chloordaan (cis + trans)	μg/kg ds		<2,46			<0,66
cis-Chloordaan	μg/kg ds	<1	<1		<1	<0
trans-Chloordaan	μg/kg ds	<1	<1		<1	<0
Organotin DDT/DDE/DDD (som)	μg/kg ds μg/kg ds	4	<26,5		18#	886
HCHs (som, STI-tabel)	μg/kg ds μg/kg ds	3			3	
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds μg/kg ds	2	<4		8	4
Som 23 Organochloorhoud.	μg/kg ds	17			36#	·
bestrijdingsm	73 3 4					
Som 21 Organochloorhoud.	μg/kg ds		<25,8			16,24
bestrijdingsm						
CECHI ODEEDDE						
GECHLOREERDE KOOLWATERSTOFFEN						
PCB (som 7)	mg/kg ds					
PCB (som 7)	μg/kg ds		19,47			<u>98,1</u>
Pentachloorbenzeen (QCB)	μg/kg ds	<1	<1		2	1
Hexachloorbenzeen (HCB)	μg/kg ds	<1	<1		1	0
Pentachloorfenol (PCP)	μg/kg ds	<3	<4		<3	<1
PCB 28	mg/kg ds					
PCB 28	μg/kg ds	<1	<1		5	2
PCB 52 PCB 52	mg/kg ds µg/kg ds	2#	2 (41)		17	8
PCB 52 PCB 101	mg/kg ds	<u> </u>	۷٠٬		17	U
PCB 101	µg/kg ds	2	4	1	34	16
PCB 118	mg/kg ds	_	•		Ŭ.	
PCB 118	μg/kg ds	1	2		25	12
PCB 138	mg/kg ds					
PCB 138	μg/kg ds	2	4		43	20
PCB 153	mg/kg ds					
PCB 153	μg/kg ds	3	5		53	25
PCB 180	mg/kg ds					

		1474		1470		10.4.4	
Grondmonster		1.7.1		1.7.2		2.1.1	
Humus (% ds)		5,70		10,00		21,3	
Lutum (% ds)		10,00		25,0		43,1	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Niet Toepasba	aar > industrie			Niet Toepasb	aar > industrie
Samenstelling monster							
PCB 180	μg/kg ds	1	2			32	15
1 00 100	µg/kg us	'				32	10
METAL EN							
METALEN			40			40.0	00
Chroom	mg/kg ds	28	40			<u>120</u>	<u>88</u>
Kobalt	mg/kg ds	3,9	7,3			17	11
Nikkel	mg/kg ds	10	18			51	34
Koper	mg/kg ds	19	28			240	161
Zink	mg/kg ds	110	174			<u>690</u>	<u>457</u>
Arseen	mg/kg ds	9,3	12,7			41	29
						4.1	
Molybdeen	mg/kg ds	<1,5	<1,1				4,1
Cadmium	mg/kg ds	0,28	0,37			<u>2,3</u>	<u>1,6</u>
Barium	mg/kg ds	42	81 ⁽⁶⁾			110	69 ⁽⁶⁾
Kwik	mg/kg ds	0,39	0,48			<u>1,5</u>	<u>1,2</u>
Lood	mg/kg ds	42	54			150	111
	T						
OVERIG							
Gloeirest	% ds	93,6		1		75,7	
				+			
Gloeiverlies	% ds	6,4				24,3	
Trifenyltin	mg/kg ds	<0,005				<0,006	
Aard artefacten	-						
Gewicht artefacten	g						
Droge stof	%						
Droge stof	% ds	59.9	59.9 ⁽⁶⁾	58,8	58.8 ⁽⁶⁾	19,8	19.8 ⁽⁶⁾
Lutum	%	10,0	00,0	00,0	00,0	43,1	10,0
				1			
Organische stof (humus)	%	5,7				21,3	
OVERIGE (ORGANISCHE) VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds	340	596			1600	751
PAK							
Naftaleen	mg/kg ds	0,23	0,23			7,7	3,6
Anthraceen	mg/kg ds	0,41	0,41			0,58	0,27
	mg/kg ds	0,63	0,63	1		0,88	0,27
Fenanthreen							
Fluorantheen	mg/kg ds	2,2	2,2			2,4	1,1
Chryseen	mg/kg ds	1,4	1,4			1,3	0,6
Benzo(a)anthraceen	mg/kg ds	1,1	1,1			0.98	
Benzo(a)pyreen						0,96	0,46
	l ma/ka ds	1.1					-, -
i Denzukinuorantneen	mg/kg ds ma/ka ds	1,1 0.84	1,1			1,2	0,6
Benzo(k)fluorantheen	mg/kg ds	0,84	1,1 0,84			1,2 0,98	0,6 0,46
Indeno-(1,2,3-c,d)pyreen	mg/kg ds mg/kg ds	0,84 0,66	1,1 0,84 0,66			1,2 0,98 0,89	0,6 0,46 0,42
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen	mg/kg ds mg/kg ds mg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71			1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen	mg/kg ds mg/kg ds	0,84 0,66	1,1 0,84 0,66			1,2 0,98 0,89	0,6 0,46 0,42
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM	mg/kg ds mg/kg ds mg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71			1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS	mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71		720	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1	0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS	mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	· · · · · · · · · · · · · · · · · · ·	0,1 (6)	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds ug/kg ds ug/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1	0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren	mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds pg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1	0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren	mg/kg ds mg/kg ds mg/kg ds mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat	mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds pg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1	0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat	mg/kg ds mg/kg ds mg/kg ds mg/kg ds µg/kg ds µg/kg ds µg/kg ds µg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat	mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat	mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds µg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair)	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,1 ⁽⁶⁾	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-perfluo	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluorbutaanzuur perfluordodecaanzuur	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38
Indeno-(1,2,3-c,d)pyreen Benzo(g,h,i)peryleen PAK 10 VROM PFAS perfluoroctaanzuur (lineair) perfluoroctaansulfonaat (lineair) som vertakte PFOS-isomeren som vertakte PFOA-isomeren perfluor-1-butaansulfonaat (lineair) perfluor-1-decaansulfonaat (lineair) perfluor-1-heptaansulfonaat (lineair) perfluor-1-hexaansulfonaat (lineair) perfluor-1-	mg/kg ds mg/kg ds mg/kg ds mg/kg ds mg/kg ds pg/kg ds	0,84 0,66 0,71	1,1 0,84 0,66 0,71	<0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6) 0,1 (6)	1,2 0,98 0,89 0,81	0,6 0,46 0,42 0,38

Grondmonster		1.7.1	1.7.2		2.1.1
Humus (% ds)		5,70	10,00		21,3
Lutum (% ds)		10,00	25,0		43,1
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023
Monster getoetst als		partij	partij		partij
Bodemklasse monster		Niet Toepasbaar > industrie			Niet Toepasbaar > industrie
Samenstelling monster					
perfluoroctaansulfonamide	μg/kg ds		<0,1	0,1 (6)	
perfluorpentaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluortridecaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluortetradecaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluorundecaanzuur	μg/kg ds		<0,1	0,1 (6)	
2-(perfluorhexyl)ethaan-1-	μg/kg ds		<0,1	0,1 (6)	
sulfonzuur					
perfluorhexadecaanzuur	μg/kg ds		<0,1	0,1 (6)	
perfluoroctadecaanzuur	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluoroctaansulfonylamide(N-	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
ethyl)acetaat					
1H,1H,2H,2H-	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluordecaansulfonzuur					
1H,1H,2H,2H-	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluordodecaansulfonzuur					
perfluorpentaan-1-sulfonzuur	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluoroctaansulfonylamide(N-	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
methyl)acetaat					
1H,1H,2H,2H-	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluorhexaansulfonzuur					
bisperfluordecyl fosfaat	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
N-methyl	μg/kg ds		<0,1	0,1 ⁽⁶⁾	
perfluoroctaansulfonamide					
som lineair en vertakt	μg/kg ds		0,1	0,1 (6)	
perfluoroctaanzuur					
som lineair en vertakt	μg/kg ds		0,1	0,1 ⁽⁶⁾	
perfluoroctylsulfonaat	_				

Tabel 26: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster		2.1.2		2.2.1		2.2.2	
Humus (% ds)		10,00		6,60		10,00	
Lutum (% ds)		25,0		19,30		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster				Niet Toepasl	baar > industrie		
Samenstelling monster							
Monstermelding 1							
Monstermelding 2							
Monstermelding 3							
Zintuiglijke bijmengingen							
Hoofd grondsoort		Slib		Slib		Slib	
		Meetw	GSSD	Meetw	GSSD	Meetw	GSSD
ANORGANISCHE							
VERBINDINGEN							
Chloride	mg/kg ds			21000	21000 (7,40)		
BESTRIJDINGSMIDDELEN							
Tributyltin (als Sn)	μg/kg ds			65	98		
Trifenyltin (als Sn)	μg/kg ds			<4	<4		
trans-Heptachloorepoxide	μg/kg ds			<1	<1		
Endosulfansulfaat	μg/kg ds			<2	<2 (6)		
cis-Heptachloorepoxide	μg/kg ds			<1	<1		
Tributyltin	mg/kg ds			0,16			
Heptachloorepoxide (som, 0.7	μg/kg ds			1			
factor							
OCB (0,7 som, grond)	mg/kg ds			0,016			
Organotin, som TBT+TFT, als	mg Sn/kg			0,068	102,727		
SN	ds						
Organotin, som TBT+TFT	mg/kg ds			0,17			
Hexachloorbutadieen	μg/kg ds			<1			

Litume (% 65)	Grondmonster		2.1.2	2.2.1		2.2.2
Listum (% 68)						
1-3-2023						
Monster petoetst als						
Samenstelling monster Infa-Inf-Inf Infa-Inf-Inf Infa-Inf-Inf Infa-Inf-Inf Infa-Inf-Inf Infa-Inf-Inf-Inf-Inf-Infa-Inf-Inf-Infa-Inf-Infa-Inf-Infa-Inf-Infa-Infa			partij	partij		
alla-HCH				Niet Toepasbaar >	· industrie	
Deta-HCH						
Gamma-HCH						
deliza-HCH						
Isadrin	gamma-HCH					
Telodrin						
Heptachlororepoxide						
Heptanbloropoxide		µg/kg ds				
Aldrin				<u> </u>		
Deldrin				<1	-	
Endrin						
DDE (som)						
4.4-DDE (para, para-DDE) μg/kg ds 1 2	DDE (som)			2	3	
DDD (som)				<1	<1	
2.4-DDD (ortho, para-DDD) μg/kg ds <1 <1						
4.4-DDD (para, para-DDD)						
DDT (som)	2,4-DDD (ortho, para-DDD)					
2.4-DDT (ortho, para-DDT)		µg/kg ds				<u> </u>
4.4-DDT (para, para-DDT) μg/kg ds <1						
alfa=Endosulflan μg/kg ds <1						
Chloordaan (cis + trans)						
Cis-Chloordaan				<u> </u>		
Itans-Chloordaan				<1		
Organotin						
DDT/DDE/DDD (som) µg/kg ds 6 HCHs (som, STH-tabel) µg/kg ds 3 DDrins (Aldrin+Dieldrin+Endrin) µg/kg ds 2 <3 Som 23 Organochloorhoud. µg/kg ds 18 bestrijdingsm Som 21 Organochloorhoud. µg/kg ds 24,7 BECHLOREERDE KOOLWATERSTOFFEN Som 7) µg/kg ds 93,9 PCB (som 7) µg/kg ds 41 <1 Hexachloorbenzeen (QCB) µg/kg ds 41 <1 Hexachloorbenzeen (HCB) µg/kg ds <1 <1 Hexachloorbenzeen (HCB) µg/kg ds <3 <3 PCB 28 µg/kg ds 3 5 PCB 28 µg/kg ds 3 5 PCB 28 µg/kg ds 3 5 PCB 52 µg/kg ds 7 11 PCB 101 µg/kg ds 7 11 PCB 101 µg/kg ds 7 11 PCB 118 µg/kg ds 7 11 PCB 118 µg/kg ds 7 11 PCB 118 µg/kg ds 7 11 PCB 138 µg/kg ds 7 11 PCB 138 µg/kg ds 7 11 PCB 138 µg/kg ds 12 18 PCB 153 µg/kg ds 12 18 PCB 153 µg/kg ds 15 23 PCB 150 µg/kg ds 15 23 PCB 151 µg/kg ds 15 23 PCB 152 µg/kg ds 15 23 PCB 153 µg/kg ds 15 23 PCB 150 µg/kg ds 15 23 PCB 151 µg/kg ds 15 23 PCB 152 µg/kg ds 15 23 PCB 153 µg/kg ds 15 23 PCB 150 µg/kg ds 15 23 PCB 151 µg/kg ds 15 22 PCB 152 µg/kg ds 15 22 PCB 153 µg/kg ds 15 22 PCB 160 µg/kg ds 16 3 7,7 Nikkel µg/kg ds 18 22 Koper µg/kg ds 15 17 DATACHOOTHOUS µg/kg ds 15 17						
Drins (Aldrin-Dieldrin-Endrin) ug/kg ds 2 <3	DDT/DDE/DDD (som)			6		
Som 23 Organochloorhoud. pg/kg ds bestrijdingsm		μg/kg ds		3		
Destrijdingsm					<3	
Som 21 Organochloorhoud. μg/kg ds 24,7		μg/kg ds		18		
Bestrijdingsm GECHLOREERDE KOOLWATERSTOFFEN PCB (som 7) µg/kg ds PCB (som 7) µg/kg ds Pentachloorbenzeen (QCB) µg/kg ds Hexachloorbenzeen (HCB) µg/kg ds Pentachloorfenol (PCP) µg/kg ds PCB 28 µg/kg ds PCB 28 µg/kg ds PCB 28 µg/kg ds PCB 52 µg/kg ds PCB 101 mg/kg ds PCB 101 mg/kg ds PCB 118 mg/kg ds PCB 118 µg/kg ds PCB 138 µg/kg ds PCB 138 µg/kg ds PCB 153 µg/kg ds PCB 154 µg/kg ds PCB 180 µg/kg d		/			04.7	
CECHLOREERDE KOOLWATERSTOFFEN PCB (som 7)		µg/kg as			24,7	
KOOLWATERSTOFFEN mg/kg ds PCB (som 7) μg/kg ds PCB (som 7) μg/kg ds Pentachloorbenzeen (QCB) μg/kg ds Hexachloorbenzeen (HCB) μg/kg ds Pentachloorbenzeen (HCB) μg/kg ds PCB 28 μg/kg ds PCB 28 μg/kg ds PCB 28 μg/kg ds PCB 52 mg/kg ds PCB 52 μg/kg ds PCB 101 mg/kg ds PCB 118 μg/kg ds PCB 118 μg/kg ds PCB 138 mg/kg ds PCB 138 μg/kg ds PCB 153 μg/kg ds PCB 153 μg/kg ds PCB 180 μg/kg ds RETALEN E Chroom<	Destrijungsm					
KOOLWATERSTOFFEN mg/kg ds PCB (som 7) μg/kg ds PCB (som 7) μg/kg ds Pentachloorbenzeen (QCB) μg/kg ds Hexachloorbenzeen (HCB) μg/kg ds Pentachloorbenzeen (HCB) μg/kg ds PCB 28 μg/kg ds PCB 28 μg/kg ds PCB 28 μg/kg ds PCB 52 mg/kg ds PCB 52 μg/kg ds PCB 101 mg/kg ds PCB 118 μg/kg ds PCB 118 μg/kg ds PCB 138 mg/kg ds PCB 138 μg/kg ds PCB 153 μg/kg ds PCB 153 μg/kg ds PCB 180 μg/kg ds RETALEN E Chroom<	GECHLOREERDE					
PCB (som 7) mg/kg ds PCB (som 7) μg/kg ds PCB (som 7) μg/kg ds Pentachloorbenzeen (QCB) μg/kg ds Pentachloorfenol (PCP) μg/kg ds <1 <1 Pentachloorfenol (PCP) μg/kg ds <3 <3 PCB 28 mg/kg ds PCB 28 μg/kg ds PCB 29 μg/kg ds PCB 29 μg/kg ds PCB 52 mg/kg ds PCB 101 mg/kg ds PCB 102 μg/kg ds PCB 118 mg/kg ds PCB 118 mg/kg ds PCB 138 μg/kg ds PCB 153 μg/kg ds PCB 153 μg/kg ds <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
PCB (som 7)	PCB (som 7)	mg/kg ds				
Hexachloorbenzeen (HCB)		μg/kg ds			<u>93,9</u>	
Pentachloorfenol (PCP) μg/kg ds <3						
PCB 28 μg/kg ds 3 5 PCB 28 μg/kg ds 3 5 PCB 52 μg/kg ds 7 11 PCB 101 mg/kg ds 10 15 PCB 101 μg/kg ds 10 15 PCB 118 mg/kg ds 7 11 PCB 118 μg/kg ds 7 11 PCB 138 μg/kg ds 7 11 PCB 138 μg/kg ds 12 18 PCB 138 μg/kg ds 12 18 PCB 153 μg/kg ds 15 23 PCB 180 mg/kg ds 15 23 PCB 180 μg/kg ds 8 12 METALEN To 10 18 22 Kobalt mg/kg ds 46 52 Kobalt mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 15 17						
PCB 28 μg/kg ds 3 5 PCB 52 mg/kg ds 7 11 PCB 52 μg/kg ds 7 11 PCB 101 mg/kg ds 10 15 PCB 101 μg/kg ds 10 15 PCB 118 mg/kg ds 7 11 PCB 118 μg/kg ds 7 11 PCB 138 mg/kg ds 12 18 PCB 153 mg/kg ds 12 18 PCB 153 mg/kg ds 15 23 PCB 180 mg/kg ds 8 12 METALEN Chroom mg/kg ds 6,3 7,7 Nikkel mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 270 321 Arseen mg/kg ds 15 17				<3	<3	
PCB 52 mg/kg ds 7 11 PCB 101 mg/kg ds 10 15 PCB 101 µg/kg ds 10 15 PCB 118 mg/kg ds 7 11 PCB 118 µg/kg ds 7 11 PCB 138 µg/kg ds 12 18 PCB 153 mg/kg ds 15 23 PCB 153 µg/kg ds 15 23 PCB 180 mg/kg ds 8 12 METALEN 8 12 Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 270 321 Arseen mg/kg ds 15 17				2		<u> </u>
PCB 52 μg/kg ds 7 11 PCB 101 mg/kg ds 10 15 PCB 118 mg/kg ds 7 11 PCB 118 μg/kg ds 7 11 PCB 138 mg/kg ds 12 18 PCB 138 μg/kg ds 12 18 PCB 153 mg/kg ds 15 23 PCB 153 μg/kg ds 15 23 PCB 180 mg/kg ds 8 12 METALEN Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 15 17				3	5	
PCB 101 mg/kg ds PCB 101 μg/kg ds PCB 118 mg/kg ds PCB 118 μg/kg ds PCB 138 mg/kg ds PCB 138 μg/kg ds PCB 153 mg/kg ds PCB 153 μg/kg ds PCB 153 μg/kg ds PCB 180 mg/kg ds PCB 180 μg/kg ds PCB 180 μg/kg ds Ng/kg ds 46 Kobalt mg/kg ds Kobalt mg/kg ds Koper mg/kg ds Zink mg/kg ds 15 22 18 22 270 321 Arseen mg/kg ds				7	11	+
PCB 101 μg/kg ds 10 15 PCB 118 mg/kg ds 7 11 PCB 138 μg/kg ds 12 18 PCB 138 μg/kg ds 12 18 PCB 153 mg/kg ds 15 23 PCB 180 mg/kg ds 8 12 PCB 180 μg/kg ds 8 12 METALEN Tohroom mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 15 17	PCB 101			'	11	
PCB 118 mg/kg ds 7 11 PCB 138 mg/kg ds 7 11 PCB 138 mg/kg ds 12 18 PCB 138 µg/kg ds 12 18 PCB 153 mg/kg ds 15 23 PCB 180 mg/kg ds 8 12 METALEN Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17				10	15	†
PCB 118 μg/kg ds 7 11 PCB 138 mg/kg ds 12 18 PCB 138 μg/kg ds 12 18 PCB 153 mg/kg ds 15 23 PCB 180 mg/kg ds 8 12 METALEN Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 15 17					_ · -	
PCB 138 mg/kg ds 12 18 PCB 138 μg/kg ds 12 18 PCB 153 mg/kg ds 15 23 PCB 180 mg/kg ds 8 12 METALEN Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17				7	11	
PCB 138 μg/kg ds 12 18 PCB 153 mg/kg ds 15 23 PCB 180 mg/kg ds 8 12 PCB 180 μg/kg ds 8 12 METALEN Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17	PCB 138					
PCB 153 mg/kg ds PCB 153 μg/kg ds PCB 180 mg/kg ds PCB 180 μg/kg ds B 12 METALEN 12 Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17	PCB 138	μg/kg ds		12	18	
PCB 180 mg/kg ds PCB 180 μg/kg ds METALEN 8 Chroom mg/kg ds Kobalt mg/kg ds Nikkel mg/kg ds Koper mg/kg ds Zink mg/kg ds Arseen mg/kg ds 15 17						
PCB 180 μg/kg ds 8 12 METALEN Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17				15	23	
METALEN Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17						
Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17	PCB 180	μg/kg ds		8	12	
Chroom mg/kg ds 46 52 Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17	METALEN	1				-
Kobalt mg/kg ds 6,3 7,7 Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17		ma/ka da		46	52	+
Nikkel mg/kg ds 18 22 Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17						
Koper mg/kg ds 79 93 Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17						
Zink mg/kg ds 270 321 Arseen mg/kg ds 15 17						
Arseen mg/kg ds 15 17						
				15		
				1,8		

Grondmonster		2.1.2		2.2.1		2.2.2	
Humus (% ds)		10,00		6,60		10,00	
Lutum (% ds)		25,0		19,30		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster				Niet Toepasbaa	r > industrie		
Samenstelling monster							
Cadmium	mg/kg ds			0,68	0,79		
Barium	mg/kg ds			42	51 ⁽⁶⁾		
Kwik	mg/kg ds			0,37	0,40		
Lood	mg/kg ds			53	59		
OVERIG							
Gloeirest	% ds			92,0			
Gloeiverlies	% ds			8,0			
Trifenyltin	mg/kg ds			<0,005			
Aard artefacten	-			10,000			
Gewicht artefacten	g						
Droge stof	%						
Droge stof	% ds	43,4	43,4 (6)	47,2	47,2 ⁽⁶⁾	42,8	42,8 (6)
Lutum	%	,	,	19,3	,	,	,
Organische stof (humus)	%			6,6			
OVERIGE (ORGANISCHE)							
VERBINDINGEN				400	707		
Minerale olie C10 - C40	mg/kg ds			480	727		
DAK							
PAK Naftaleen	ma/ka da			0,26	0.06		
Anthraceen	mg/kg ds mg/kg ds			0,26	0,26 0,32		
Fenanthreen	mg/kg ds			0,32	0,32		
Fluorantheen	mg/kg ds			1,1	1,1		
Chryseen	mg/kg ds			0,72	0,72		
Benzo(a)anthraceen	mg/kg ds			0,45	0.45		
Benzo(a)pyreen	mg/kg ds			0,55	0,55		
Benzo(k)fluorantheen	mg/kg ds			0,45	0,45		
Indeno-(1,2,3-c,d)pyreen	mg/kg ds			0,34	0,34		
Benzo(g,h,i)peryleen	mg/kg ds			0,37	0,37		
PAK 10 VROM	mg/kg ds			5,0	5,0		
PFAS							
perfluoroctaanzuur (lineair)	μg/kg ds	0,2	0,2 (6)			0,2	0,2 (6)
perfluoroctaansulfonaat	μg/kg ds	1,5	1,5 ⁽⁶⁾			1,9	1,9 ⁽⁶⁾
(lineair)			(2)				(0)
som vertakte PFOS-isomeren	μg/kg ds	0,3	0,3 (6)			0,3	0,3 (6)
som vertakte PFOA-isomeren	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluor-1-butaansulfonaat	µg/kg ds	0,3#	0,2 (6)			<0,1	0,1 ⁽⁶⁾
(lineair) perfluor-1-decaansulfonaat	μg/kg ds	<0,1	0,1 (6)	-		<0,1	0,1 (6)
(lineair)	µg/kg as	<0,1	0,1 (*)			<0,1	0,1 (*)
perfluor-1-heptaansulfonaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
(lineair)	P9/119 43] 30,1	٥, ١			30,1	0,1
perfluor-1-hexaansulfonaat	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
(lineair)	Fg/.tg Go	10,1	٥, .			10,1	٥,٠
perfluorbutaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluordodecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorheptaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorhexaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluornonaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds	1,9	1,9 (6)		_	1,8	1,8 (6)
perfluorpentaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
perfluorundecaanzuur	μg/kg ds	<0,1	0,1 (6)			0,3	0,3 (6)
2-(perfluorhexyl)ethaan-1-	μg/kg ds	<0,1	0,1 (6)			<0,1	0,1 (6)
sulfonzuur	110/100 4-	-0.1	0.4 (6)			-O 1	0.4 (6)
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 ⁽⁶⁾			<0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾
perfluoroctadecaanzuur	μg/kg ds	<0,1	U,T (°)	1		<0,1	U,T (°)

Grondmonster		2.1.2		2.2.1	2.2.2	
Humus (% ds)		10,00		6,60	10,00	
Lutum (% ds)		25,0		19,30	25,0	
Datum van toetsing		1-3-2023		1-3-2023	1-3-2023	
Monster getoetst als		partij		partij	partij	
Bodemklasse monster				Niet Toepasbaar > industrie		
Samenstelling monster						
perfluoroctaansulfonylamide(Nethyl)acetaat	μg/kg ds	4,7	4,7 (6)		4,1	4,1 ⁽⁶⁾
1H,1H,2H,2H- perfluordecaansulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
1H,1H,2H,2H- perfluordodecaansulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-methyl)acetaat	μg/kg ds	1,4	1,4 ⁽⁶⁾		2,6	2,6 (6)
1H,1H,2H,2H- perfluorhexaansulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
bisperfluordecyl fosfaat	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
N-methyl perfluoroctaansulfonamide	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
som lineair en vertakt perfluoroctaanzuur	μg/kg ds	0,3	0,3 (6)		0,3	0,3 (6)
som lineair en vertakt perfluoroctylsulfonaat	μg/kg ds	1,8	1,8 ⁽⁶⁾		2,2	2,2 (6)

Tabel 27: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster		3.1.1		3.1.2		LB1	
Humus (% ds)		15,80		10,00		4,50	
Lutum (% ds)		3.80		25.0		7.40	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partii		partij		partij	
Bodemklasse monster		Klasse indust	rie	partij		Klasse indu	strie
Samenstelling monster		Triadoc iriadot				Triadoc iriaa	5010
Monstermelding 1							
Monstermelding 2							
Monstermelding 3							
Zintuiglijke bijmengingen		matic veenho	udend, Tussen	matia veenh	oudend, Tussen		
Zintaigiijke bijirierigirigeri		stenen door	ductiu, Tussett	stenen door	Judena, russen		
Hoofd grondsoort		Slib		Slib		Klei	
3		Meetw	GSSD	Meetw	GSSD	Meetw	GSSD
ANORGANISCHE							
VERBINDINGEN							
Chloride	mg/kg ds						
BESTRIJDINGSMIDDELEN							
Tributyltin (als Sn)	μg/kg ds					ļ	
Trifenyltin (als Sn)	μg/kg ds						
trans-Heptachloorepoxide	μg/kg ds	<1	<0				
Endosulfansulfaat	μg/kg ds	<2	<1 ⁽⁶⁾				
cis-Heptachloorepoxide	μg/kg ds	<1	<0				
Tributyltin	mg/kg ds						
Heptachloorepoxide (som, 0.7	μg/kg ds	1					
factor							
OCB (0,7 som, grond)	mg/kg ds	0,020#					
Organotin, som TBT+TFT, als	mg Sn/kg						
SN	ds					ļ	
Organotin, som TBT+TFT	mg/kg ds					ļ	
Hexachloorbutadieen	μg/kg ds	<1					
alfa-HCH	μg/kg ds	<1	<0			ļ	
beta-HCH	μg/kg ds	<1	<0			1	
gamma-HCH	μg/kg ds	<1	<0				
delta-HCH	μg/kg ds	<1	<0 (6)				
Isodrin	μg/kg ds	<1	<0				
Telodrin	μg/kg ds	<1	<0				
Heptachloor	μg/kg ds	<1	<0				
Heptachloorepoxide	μg/kg ds		<0,89	<u> </u>			

		10.4.4		10.40	1.54	
Grondmonster		3.1.1		3.1.2	LB1	
Humus (% ds)		15,80		10,00	4,50	
Lutum (% ds)		3,80		25,0	7,40	
Datum van toetsing		1-3-2023		1-3-2023	1-3-2023	
Monster getoetst als		partij		partij	partij	
Bodemklasse monster		Klasse industrie			Klasse industrie	
Samenstelling monster						
Aldrin	μg/kg ds	<1	<0			
Dieldrin	μg/kg ds	<1	<0			
Endrin	μg/kg ds	<1	<0			
DDE (som)	μg/kg ds	1	<1			
2,4-DDE (ortho, para-DDE)	μg/kg ds	<1	<0			
4,4-DDE (para, para-DDE)	μg/kg ds	<1	<0			
DDD (som)	μg/kg ds	7#	5 3 ⁽⁴¹⁾			
2,4-DDD (ortho, para-DDD)	μg/kg ds	6#				
4,4-DDD (para, para-DDD)	μg/kg ds	3	2			
DDT (som)	μg/kg ds	1	<1			
2,4-DDT (ortho, para-DDT)	μg/kg ds	<1	<0			
4,4-DDT (para, para-DDT) alfa-Endosulfan	μg/kg ds	<1 <1	<0 <0			
Chloordaan (cis + trans)	μg/kg ds	<1				
cis-Chloordaan (cis + trans)	μg/kg ds	-1	<0,89			
trans-Chloordaan	μg/kg ds	<1	<0			
	μg/kg ds	<1	<0			
Organotin	μg/kg ds	10#				
DDT/DDE/DDD (som) HCHs (som, STI-tabel)	μg/kg ds	10#				
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds μg/kg ds	3 2	<1			
Som 23 Organochloorhoud.		23#	< 1			
bestrijdingsm	μg/kg ds	23#				
Som 21 Organochloorhoud.	μg/kg ds		12,97	+		
bestrijdingsm	µg/kg us		12,97			
Destrijungsm						
GECHLOREERDE						
KOOLWATERSTOFFEN						
PCB (som 7)	mg/kg ds					0.063
PCB (som 7)	μg/kg ds		44.9			0,000
Pentachloorbenzeen (QCB)	μg/kg ds	<1	<0			
Hexachloorbenzeen (HCB)	μg/kg ds	<1	<0			
Pentachloorfenol (PCP)	μg/kg ds	<3	<1			
PCB 28	mg/kg ds				<0.001	<0,002
PCB 28	μg/kg ds	1	1		-,	-,
PCB 52	mg/kg ds				0,001	0,002
PCB 52	μg/kg ds	2	1		-,	-,
PCB 101	mg/kg ds				0,003	0,007
PCB 101	μg/kg ds	11	7		,	•
PCB 118	mg/kg ds				<0,001	<0,002
PCB 118	μg/kg ds	6	4		·	
PCB 138	mg/kg ds				0,011	0,024
PCB 138	μg/kg ds	15	9			•
PCB 153	mg/kg ds				0,007	0,016
PCB 153	μg/kg ds	21	13			
PCB 180	mg/kg ds				0,005	0,011
PCB 180	μg/kg ds	15	9			
						·
METALEN						
Chroom	mg/kg ds	34	59		24	37
Kobalt	mg/kg ds	5,5	16,2		5,2	11,5
Nikkel	mg/kg ds	14	36		14	28
Koper	mg/kg ds	<u>140</u>	<u>188</u>		<u>44</u>	<u>72</u>
Zink	mg/kg ds	<u>400</u>	<u>658</u>		<u>200</u>	<u>355</u>
Arseen	mg/kg ds	12	15		11	16
Molybdeen	mg/kg ds	2,4	2,4		<1,5	<1,1
Cadmium	mg/kg ds	0,48	0,50		0,27	0,39
Barium	mg/kg ds	67	212 ⁽⁶⁾		62	143 ⁽⁶⁾
Kwik	mg/kg ds	0,17	0,21		0,23	0,30
Lood	mg/kg ds	100	122		<u>190</u>	<u>261</u>
	1					
OVERIG	L					
Gloeirest	% ds	83,9				
Gloeiverlies	% ds	16,1				

Humus (% ds)	Grondmonster		3.1.1		3.1.2		LB1	
Datum van toelsing	Humus (% ds)		15,80		10,00		4,50	
Datum van toelsing	Lutum (% ds)							
Monster perotest als Masse industrie			1-3-2023		1-3-2023		1-3-2023	
Bodemklasse monster								
Samenstelling monster mg/kg ds				ie.				rie
Tridenyllin			Triacco irracoti	10			Ttiacoo iriaaci	
Aard artefacten		ma/ka ds						
Gewicht artefactern		-						
Droge stof		0						
Droge stof							01.1	Q1 1 (6)
Comparison stort (humus) % 15.8 7.4			22.2	22 2 (6)	26.7	26 7 (6)	01,1	01,1
OVERIGE (ORGANISCHE) VERBINDINGEN Minerale olie C10 - C40 mg/kg ds 420 206 50 1111				32,2	20,1	20,7	7.1	
VERBINDINGEN WINDRINGEN W								
Naffaleen	Organische stor (numus)	/0	13,0				4,5	
Name								
Nafitaleen		ma/ka ds	420	266			50	111
Nafitaleen		J. J						
Nafitaleen	PAK							
Anthraceen mg/kg ds 0.17 0.11 0.49 0.49 0.49 Fenanthreen mg/kg ds 0.53 0.34 1.7 1.7 Fluorantheen mg/kg ds 0.73 0.46 2.6 2.6 2.6 Chryseen mg/kg ds 0.46 0.29 1.3 1.3 Berzo(a)lanthraceen mg/kg ds 0.41 0.26 1.1 1.1 Berzo(a)lanthraceen mg/kg ds 0.40 0.25 1.1 1.1 Berzo(a)lyveen mg/kg ds 0.40 0.25 1.1 1.1 Berzo(a)lyveen mg/kg ds 0.24 0.15 0.85 0.85 Indeno-(1.2.3-c.d)pyreen mg/kg ds 0.24 0.15 0.72 0.72 0.72 Berzo(g)lypyreen mg/kg ds 0.27 0.17 0.72 0.72 0.72 Berzo(g)lypyreen mg/kg ds 0.28 0.18 0.86 0.86 0.86 PAK 10 VROM mg/kg ds 0.27 0.17 0.72 0.72 0.72 Perfluoroctaanzuur (lineair) μg/kg ds 0.28 0.18 0.86 0.86 0.86 PAK 10 VROM mg/kg ds 0.7 0.1 0.1 0.7 0.7 0.7 Perfluoroctaanzuur (lineair) μg/kg ds 0.7 0.7 0.7 0.7 0.7 Perfluoroctaanzuur (lineair) μg/kg ds 0.7 0.7 0.7 0.7 0.7 Som vertakte PFOS-isomeren μg/kg ds 0.7 0.1 0.1 0.5 0.5 0.5 Som vertakte PFOS-isomeren μg/kg ds 0.7 0.1 0.1 0.7 0.7 0.7 Perfluor-1-decaanzulfonaat μg/kg ds 0.7 0.1 0.1 0.7 0.7 0.7 Perfluor-1-decaanzulfonaat μg/kg ds 0.7 0.1 0.1 0.7 0.7 0.7 Perfluor-1-decaanzulfonaat μg/kg ds 0.7 0.1 0.1 0.7 0.7 0.7 Perfluor-1-decaanzulfonaat μg/kg ds 0.7 0.7 0.7 0.7 0.7 Perfluor-1-decaanzulfonaat μg/kg ds 0.7 0.7 0.7 0.7 0.7 0.7 Perfluor-1-decaanzuur μg/kg ds 0.7 0.7 0.7 0.7 0.7 0.7 Perfluor-1-decaanzuur μg/kg ds 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Perfluor-1-decaanzuur μg/kg ds 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Perfluor-1-decaanzuur μg/kg ds 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Perfluor-1-decaanzuur μg/kg ds 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 Perfluor-1-decaanzuur μg/kg ds 0.7 0.7 0.7 0.7 0.7 0.7 0.7		mg/kg ds	0.19	0,12			0,23	0,23
Fenanthreen								
Fluorantheen								
Chryseen					1			
Benzo(a)anthraceen mg/kg ds 0.41 0.26 1.1 1.1 1.1								
Benzo(k) University Universit					+			
Benzo(k)fluorantheen								
Indeno-(1,2,3-c,1)pyreen mg/kg ds 0,27 0,17 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,72 0,73					+			
Benzo(g,h,i)peryleen								
PAK 10 VROM								
PFAS perfluoroctaanzuur (lineair) μg/kg ds 0,1 0,1 (%) 1,7 1,7 (%) perfluoroctaansulfonaat (lineair) μg/kg ds 0,5 0,5 (%) 2,4 2,4 (%) som vertakte PFOS-isomeren μg/kg ds <0,1							,	
Perfluoroctaanzuur (lineair) µg/kg ds 0,1 0,1 (6) 1,7 1,7 (6) 0,5 (6) 2,4 2,4 (6) 0,5 (6) 0,5 (6) 2,4 2,4 (6) 0,5 (6)	PAK 10 VROW	mg/kg as	3,7	2,3			<u> </u>	<u> </u>
Perfluoroctaanzuur (lineair) µg/kg ds 0,1 0,1 (6) 1,7 1,7 (6) 0,5 (6) 2,4 2,4 (6) 0,5 (6) 0,5 (6) 2,4 2,4 (6) 0,5 (6)	DEAS							
perfluoroctaansulfonaat Ig/kg ds 0,5		ua/ka da			0.1	0 1 (6)	1.7	1 7 (6)
Som vertakte PFOS-isomeren								
Som vertakte PFOS-isomeren		µg/kg us			0,5	0,5 **	2,4	2,4 (7)
Som vertakte PFOA-isomeren μg/kg ds	()	المراادة طم			-0.1	0.4 (6)	0.5	O E (6)
perfluor-1-butaansulfonaat µg/kg ds								
(lineair)								
Clineair)	(lineair)					•	,	
Clineair)	(lineair)						·	
Clineair)	(lineair)							
регfluordecaanzuur µg/kg ds	(lineair)				·	•	,	•
Perfluordodecaanzuur	•							
perfluorheptaanzuur	•							
perfluorhexaanzuur								
Perfluornonaanzuur								
Perfluoroctaansulfonamide μg/kg ds								
perfluorpentaanzuur			ļ					
perfluortridecaanzuur								
Perfluortetradecaanzuur μg/kg ds						0,1 (6)		
Perfluorundecaanzuur μg/kg ds			1					
2-(perfluorhexyl)ethaan-1- sulfonzuur μg/kg ds <0,1								0,1 (6)
Sulfonzuur perfluorhexadecaanzuur pg/kg ds								0,1 (6)
perfluoroctadecaanzuur μg/kg ds <0,1 0,1 (6) <0,1 0,1 (6) perfluoroctaansulfonylamide(N- ethyl)acetaat μg/kg ds 0,1 0,1 (6) <0,1	sulfonzuur				,	•		
perfluoroctaansulfonylamide(N-ethyl)acetaat μg/kg ds 0,1 0,1 (6) <0,1								
ethyl)acetaat								0,1 (6)
ethyl)acetaat	perfluoroctaansulfonylamide(N-	μg/kg ds			0,1	0,1 (6)	<0,1	0,1 (6)
Derfluordecaansulfonzuur								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		μg/kg ds			<0,1	0,1 (6)	<0,1	0,1 (6)
perfluordodecaansulfonzuur perfluorpentaan-1-sulfonzuur µg/kg ds <0,1 0,1 (6) <0,1 0,1 (7)								
perfluorpentaan-1-sulfonzuur μg/kg ds <0,1 0,1 (6) <0,1 0,1 (6)		µg/kg ds			<0,1		<0,1	0,1 (6)
		µg/kg ds			<0,1	0,1 (6)	<0,1	0,1 (6)
permuoroctaansumonyiamide(in- pg/kg dS $= 1.7\%$ 1 < 0.1 $= 0.7\%$ 1 < 0.1 $= 0.7\%$	perfluoroctaansulfonylamide(N-	µg/kg ds			<0,1	0,1 (6)	<0,1	0,1 (6)
methyl)acetaat		0 0 1			1	,	1	,

Grondmonster		3.1.1	3.1.2		LB1	
Humus (% ds)		15,80	10,00		4,50	
Lutum (% ds)		3,80	25,0		7,40	
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023	
Monster getoetst als		partij	partij		partij	
Bodemklasse monster		Klasse industrie			Klasse industrie	
Samenstelling monster						
1H,1H,2H,2H-	μg/kg ds		<0,1	0,1 (6)	<0,1	0,1 (6)
perfluorhexaansulfonzuur						
bisperfluordecyl fosfaat	μg/kg ds		<0,1	0,1 (6)	<0,1	0,1 (6)
N-methyl	μg/kg ds		<0,1	0,1 (6)	<0,1	0,1 (6)
perfluoroctaansulfonamide						
som lineair en vertakt	μg/kg ds		0,2	0,2 (6)	1,8	1,8 ⁽⁶⁾
perfluoroctaanzuur						
som lineair en vertakt	μg/kg ds		0,6	0,6 (6)	2,9	2,9 (6)
perfluoroctylsulfonaat						

Tabel 28: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster		LB2		LB3		LB4	
Humus (% ds)		5,90		2,30		2,90	
Lutum (% ds)		7,80		18.60		3.80	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Klasse industrie		Klasse indu	etria	Klasse indu	ıctrio
Samenstelling monster		Masse muusine	•	Masse muc	ISUIC	Nasse muc	151116
Monstermelding 1							
Monstermelding 2							
Monstermelding 3							
Zintuiglijke bijmengingen		sporen baksteel	n zwak	sporen bak	ctoon		
Zintaigiijke bijinerigiiigeri		koolashoudend	ii, zwak	Sporen bak	310011		
Hoofd grondsoort		Klei		Klei		Zand	
		_	GSSD	Meetw	GSSD	Meetw	GSSD
ANORGANISCHE VERBINDINGEN							
Chloride	mg/kg ds						
- Childride	ing/ing us						
BESTRIJDINGSMIDDELEN		1					
Tributyltin (als Sn)	μg/kg ds						
Trifenyltin (als Sn)	μg/kg ds						
trans-Heptachloorepoxide	μg/kg ds						
Endosulfansulfaat	μg/kg ds						
cis-Heptachloorepoxide	μg/kg ds						
Tributyltin	mg/kg ds						
Heptachloorepoxide (som, 0.7	μg/kg ds						
factor	mg/.tg ac						
OCB (0,7 som, grond)	mg/kg ds						
Organotin, som TBT+TFT, als	mg Sn/kg						
SN	ds						
Organotin, som TBT+TFT	mg/kg ds						
Hexachloorbutadieen	μg/kg ds						
alfa-HCH	μg/kg ds						
beta-HCH	μg/kg ds						
gamma-HCH	μg/kg ds						
delta-HCH	μg/kg ds						
Isodrin	μg/kg ds						
Telodrin	μg/kg ds						
Heptachloor	μg/kg ds						
Heptachloorepoxide	μg/kg ds						
Aldrin	μg/kg ds						
Dieldrin	μg/kg ds						
Endrin	μg/kg ds						
DDE (som)	μg/kg ds						
2,4-DDE (ortho, para-DDE)	μg/kg ds						
4,4-DDE (para, para-DDE)	μg/kg ds						
DDD (som)	μg/kg ds						
2,4-DDD (ortho, para-DDD)	μg/kg ds						
4,4-DDD (para, para-DDD)	μg/kg ds						

Grondmonster		LB2		LB3		LB4	
Humus (% ds)		5,90		2,30		2,90	
Lutum (% ds)		7,80		18,60		3,80	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Klasse industrie	<i>j</i>	Klasse industri	e	Klasse industri	е
Samenstelling monster		That are the second		Tricker in ideal.		Thicoo made	
DDT (som)	μg/kg ds						
2,4-DDT (ortho, para-DDT)	µg/kg ds						
4,4-DDT (para, para-DDT)	µg/kg ds						
alfa-Endosulfan	μg/kg ds						
Chloordaan (cis + trans)	µg/kg ds						
cis-Chloordaan	µg/kg ds						
trans-Chloordaan	µg/kg ds						
Organotin	µg/kg ds						
DDT/DDE/DDD (som)	µg/kg ds						
HCHs (som, STI-tabel)	µg/kg ds						
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds						
Som 23 Organochloorhoud.	μg/kg ds						
bestrijdingsm							
Som 21 Organochloorhoud.	μg/kg ds						
bestrijdingsm		<u> </u>		<u> </u>		<u> </u>	
GECHLOREERDE							
KOOLWATERSTOFFEN							
PCB (som 7)	mg/kg ds		0,011		0,028		<u>0,093</u>
PCB (som 7)	μg/kg ds						
Pentachloorbenzeen (QCB)	μg/kg ds						
Hexachloorbenzeen (HCB)	μg/kg ds						
Pentachloorfenol (PCP)	μg/kg ds						
PCB 28	mg/kg ds	<0,001	<0,001	<0,001	<0,003	<0,001	<0,002
PCB 28	μg/kg ds						
PCB 52	mg/kg ds	<0,001	<0,001	<0,001	<0,003	<0,001	<0,002
PCB 52	μg/kg ds						
PCB 101	mg/kg ds	<0,001	<0,001	<0,001	<0,003	0,002	0,007
PCB 101	μg/kg ds						
PCB 118	mg/kg ds	<0,001	<0,001	<0,001	<0,003	<0,001	<0,002
PCB 118	μg/kg ds						
PCB 138	mg/kg ds	0,002	0,003	0,002	0,009	0,010	0,034
PCB 138	μg/kg ds						
PCB 153	mg/kg ds	0,001	0,002	0,001	0,004	0,007	0,024
PCB 153	μg/kg ds						
PCB 180	mg/kg ds	<0,001	<0,001	<0,001	<0,003	0,006	0,021
PCB 180	μg/kg ds						
METALEN							
Chroom	mg/kg ds	28	43	26	30	18	31
Kobalt	mg/kg ds	6,1	13,1	4,9	6,1	4,0	11,7
Nikkel	mg/kg ds	15	29	15	18	11	28
Koper	mg/kg ds	25	39	<u>50</u>	<u>65</u>	<u>43</u>	<u>81</u>
Zink	mg/kg ds	<u>180</u>	<u>306</u>	<u>200</u>	<u>256</u>	<u>210</u>	<u>447</u>
Arseen Molybdeen	mg/kg ds mg/kg ds	11 <1,5	16 <1,1	8,6 <1,5	10,7 <1,1	8,4 <1,5	13,8 <1,1
Cadmium	mg/kg ds mg/kg ds	0,28	0,38	0,27	0,37	0,30	<1,1 0,48
Barium	mg/kg ds	83	186 ⁽⁶⁾	110	139 ⁽⁶⁾	63	199 ⁽⁶⁾
Kwik	mg/kg ds	0.26	0.33	0,26	0.29	0.30	0.42
Lood	mg/kg ds	110	147	180	<u>216</u>	150	<u>225</u>
2000	mg/ng us	110	171	100	210	100	<u>LLU</u>
OVERIG						+	
Gloeirest	% ds					<u> </u>	
Gloeiverlies	% ds					1	
Trifenyltin	mg/kg ds					†	
Aard artefacten	-					†	
Gewicht artefacten	g						
Droge stof	%	80,8	80.8 (6)	87,1	87,1 ⁽⁶⁾	86,5	86,5 ⁽⁶⁾
Droge stof	% ds	,-	,-	,-	~- 1 -	,-	,-
Lutum	%	7,8		18,6		3,8	
Organische stof (humus)	%	5,9		2,3		2,9	
		-,-		,-		1	
	•	•		•		•	

Grondmonster Humus (% ds)		LB2		LB3		LB4	
		5,90		2,30		2,90	
Lutum (% ds)		7,80		18,60		3,80	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partii	
Bodemklasse monster		Klasse indust	rie	Klasse indust	rie	Klasse indust	rie
Samenstelling monster							
OVERIGE (ORGANISCHE)							
VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds	<35	<42	<35	<107	<35	<84
DAK		1				_	
PAK Naftaleen	ma/ka da	<0.05	<0.04	<0.05	<0.04	<0.05	<0.04
Anthraceen	mg/kg ds mg/kg ds	0,05	0,23	0,17	<0,04 0.17	0,19	0,19
Fenanthreen	mg/kg ds	0,23	0,23	0,17	0,17	0,19	0,19
Fluorantheen	mg/kg ds	1,1	1,1	0,26	0,26	1,9	1,9
Chryseen	mg/kg ds	1,2	1,2	0,17	0,17	1,2	1,2
Benzo(a)anthraceen	mg/kg ds	0,84	0,84	0,14	0,14	0,97	0,97
Benzo(a)pyreen	mg/kg ds	0,73	0,73	0,14	0,14	0,68	0,68
Benzo(k)fluorantheen	mg/kg ds	0,63	0,63	0,10	0,10	0,62	0,62
Indeno-(1,2,3-c,d)pyreen	mg/kg ds	0,46	0,46	0,10	0,10	0,48	0,48
Benzo(g,h,i)peryleen	mg/kg ds	0,51	0,51	0,14	0,14	0,53	0,53
PAK 10 VROM	mg/kg ds	6,2	6,2	1,4	1,4	<u>7,0</u>	<u>7,0</u>
PFAS		1					
perfluoroctaanzuur (lineair)	μg/kg ds	1,5	1,5 (6)	1,2	1,2 (6)	1,2	1,2 (6)
perfluoroctaansulfonaat	μg/kg ds μg/kg ds	0.9	0,9 (6)	1,3	1,3 (6)	1,2	1,2 (6)
(lineair)	pg/kg do	0,0	0,0	1,0	1,0	1,2	1,2
som vertakte PFOS-isomeren	μg/kg ds	0,7	0,7 (6)	0,6	0,6 (6)	0,3	0,3 (6)
som vertakte PFOA-isomeren	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluor-1-butaansulfonaat	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
(lineair)			(0)		(0)		(0)
perfluor-1-decaansulfonaat	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
(lineair)	ua/ka da	-0.1	0,1 (6)	-0.1	0,1 (6)	-0.1	0,1 (6)
perfluor-1-heptaansulfonaat (lineair)	μg/kg ds	<0,1	0,1	<0,1	0,1	<0,1	0,1 (5)
perfluor-1-hexaansulfonaat	μg/kg ds	0,1	0,1 (6)	0,1	0,1 (6)	<0,1	0,1 (6)
(lineair)	pg/ng do	0,1	0, 1	0,1	0,1	40,1	0,1
perfluorbutaanzuur	μg/kg ds	0,3	0,3 (6)	0,2	0,2 (6)	0,3	0,3 (6)
perfluordecaanzuur	μg/kg ds	<0,1	0,1 (6)	0,1	0,1 (6)	0,1	0,1 (6)
perfluordodecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluorheptaanzuur	μg/kg ds	0,2	0,2 (6)	0,2	0,2 (6)	0,1	0,1 (6)
perfluorhexaanzuur	μg/kg ds	0,2	0,2 (6)	0,2	0,2 (6)	0,2	0,2 (6)
perfluornonaanzuur perfluoroctaansulfonamide	μg/kg ds	<0,1 <0,1	0,1 ⁽⁶⁾	<0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾	0,1 <0,1	0,1 ⁽⁶⁾ 0,1 ⁽⁶⁾
perfluorpentaanzuur	μg/kg ds μg/kg ds	0,1	0,1 (6)	<0,1	0,1 (6)	0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluortetradecaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluorundecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
2-(perfluorhexyl)ethaan-1-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	0,3#	0,2 (6)
sulfonzuur				·			
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluoroctadecaanzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
ethyl)acetaat	/	.0.4	0,1 (6)	0.4	0,1 (6)	0.4	0.4 (6)
1H,1H,2H,2H- perfluordecaansulfonzuur	μg/kg ds	<0,1	0,1 %	<0,1	0,1 %	<0,1	0,1 (6)
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluordodecaansulfonzuur	mg,g 40	10,1	٠, ،	10,1		10,1	•
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
methyl)acetaat						1	
1H,1H,2H,2H-	μg/kg ds	<0,1	0,1 (6)	<0,1	0,1 (6)	<0,1	0,1 (6)
perfluorhexaansulfonzuur	المرادة عاء	-0.4	0,1 (6)	-0.4	0.4 (6)	-0.4	0.4 (6)
bisperfluordecyl fosfaat N-methyl	μg/kg ds	<0,1 <0,1	0,1 (6)	<0,1 <0,1	0,1 ⁽⁶⁾	<0,1 <0,1	0,1 ⁽⁶⁾
perfluoroctaansulfonamide	μg/kg ds	<0,1	U, I (°)	<0,1	U, I (°'	<0,1	U, I (-/
som lineair en vertakt	μg/kg ds	1,6	1,6 ⁽⁶⁾	1,3	1,3 ⁽⁶⁾	1,3	1,3 (6)
. John Illican Cli Veriani		.,-	.,-	, , , ,	.,-	, ,,,	.,•

Grondmonster		LB2		LB3		LB4	
Humus (% ds)		5,90		2,30		2,90	
Lutum (% ds)		7,80		18,60		3,80	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Klasse industrie		Klasse industrie		Klasse industrie	
Samenstelling monster							
som lineair en vertakt perfluoroctylsulfonaat	μg/kg ds	1,6	1,6 (6)	1,9	1,9 ⁽⁶⁾	1,5	1,5 ⁽⁶⁾

Tabel 29: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

One of the constant		74.4.4		74.4.0		74.0.4	
Grondmonster		Z1.1.1		Z1.1.2		Z1.2.1	
Humus (% ds)		2,90		10,00		3,40	
Lutum (% ds)		4,20		25,0		4,70	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Klasse indus	trie			Altijd toepas	baar
Samenstelling monster							
Monstermelding 1							
Monstermelding 2							
Monstermelding 3							
Zintuiglijke bijmengingen		sporen slib		sporen slib			oudend, zwak , sporen slib
Hoofd grondsoort		Zand		Zand		Zand	, -1
g		Meetw	GSSD	Meetw	GSSD	Meetw	GSSD
ANORGANISCHE VERBINDINGEN							
Chloride	mg/kg ds	3600	3600 (7,40)			4200	4200 (7,40)
		1					
BESTRIJDINGSMIDDELEN	ļ.,	_					
Tributyltin (als Sn)	μg/kg ds	<4	<10				
Trifenyltin (als Sn)	μg/kg ds	<4	<10				
trans-Heptachloorepoxide	μg/kg ds	<1	<2			<1	<2
Endosulfansulfaat	μg/kg ds	<2	<5 ⁽⁶⁾			<2	<4 ⁽⁶⁾
cis-Heptachloorepoxide	μg/kg ds	<1	<2			<1	<2
Tributyltin	mg/kg ds	<0,005					
Heptachloorepoxide (som, 0.7 factor	μg/kg ds	1				1	
OCB (0,7 som, grond)	mg/kg ds	0,015				0,015	
Organotin, som TBT+TFT, als SN	mg Sn/kg	0,006	<19,310			5,5.5	
Organotin, som TBT+TFT	mg/kg ds	0,015					
Hexachloorbutadieen	µg/kg ds	<1				<1	
alfa-HCH	μg/kg ds μg/kg ds	<1	<2			<1	<2
beta-HCH			<2				<2
	μg/kg ds	<1				<1	<2
gamma-HCH	μg/kg ds	<1	<2			<1	
delta-HCH	μg/kg ds	<1	<2 (6)			<1	<2 (6)
Isodrin	μg/kg ds	<1	<2			<1	<2
Telodrin	μg/kg ds	<1	<2			<1	<2
Heptachloor	μg/kg ds	<1	<2			<1	<2
Heptachloorepoxide	μg/kg ds		<4,83				<4,12
Aldrin	μg/kg ds	<1	<2			<1	<2
Dieldrin	μg/kg ds	<1	<2			<1	<2
Endrin	μg/kg ds	<1	<2			<1	<2
DDE (som)	μg/kg ds	1	<5			1	<4
2,4-DDE (ortho, para-DDE)	μg/kg ds	<1	<2			<1	<2
4,4-DDE (para, para-DDE)	μg/kg ds	<1	<2			<1	<2
DDD (som)	μg/kg ds	1	<5			1	<4
2,4-DDD (ortho, para-DDD)	μg/kg ds	<1	<2			<1	<2
4,4-DDD (para, para-DDD)	μg/kg ds	<1	<2			<1	<2
DDT (som)	μg/kg ds	1	<5			1	<4
2,4-DDT (ortho, para-DDT)	μg/kg ds	<1	<2			<1	<2
4,4-DDT (para, para-DDT)	μg/kg ds	<1	<2			<1	<2
alfa-Endosulfan	μg/kg ds	<1	<2			<1	<2
Chloordaan (cis + trans)	μg/kg ds		<4,83			7.	<4,12
cis-Chloordaan	μg/kg ds	<1	<2			<1	<2
SIS STITUSTICALITY	I May hig us	_ ` `	~~	1			~~

		74.4.4		74.4.0		74.04	
Grondmonster		Z1.1.1		Z1.1.2		Z1.2.1	
Humus (% ds)		2,90		10,00		3,40	
Lutum (% ds)		4,20		25,0		4,70	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Klasse industr	rie			Altijd toepasb	aar
Samenstelling monster							
trans-Chloordaan	μg/kg ds	<1	<2			<1	<2
Organotin	μg/kg ds		<52,0				
DDT/DDE/DDD (som)	μg/kg ds	4				4	
HCHs (som, STI-tabel)	μg/kg ds	3				3	
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds	2	<7			2	<6
Som 23 Organochloorhoud.	μg/kg ds	17				17	
bestrijdingsm							
Som 21 Organochloorhoud. bestrijdingsm	μg/kg ds		<50,7				<43,2
GECHLOREERDE KOOLWATERSTOFFEN							
PCB (som 7)	mg/kg ds						
PCB (som 7)	μg/kg ds		<16,90				<14,41
Pentachloorbenzeen (QCB)	μg/kg ds	<1	<2			<1	<2
Hexachloorbenzeen (HCB)	μg/kg ds	<1	<2			<1	<2
Pentachloorfenol (PCP)	μg/kg ds	<3	<7			<3	<6
PCB 28	mg/kg ds	<u> </u>				1	
PCB 28	µg/kg ds	<1	<2			<1	<2
PCB 52	mg/kg ds	- `'	<u> </u>				<u> </u>
PCB 52	µg/kg ds	<1	<2			<1	<2
PCB 101		<u> </u>	<u> </u>			<u> </u>	ζ <u>ζ</u>
	mg/kg ds	.4				- 4	.0
PCB 101	μg/kg ds	<1	<2			<1	<2
PCB 118	mg/kg ds						
PCB 118	μg/kg ds	<1	<2			<1	<2
PCB 138	mg/kg ds						
PCB 138	μg/kg ds	<1	<2			<1	<2
PCB 153	mg/kg ds						
PCB 153	μg/kg ds	<1	<2			<1	<2
PCB 180	mg/kg ds						
PCB 180	μg/kg ds	<1	<2			<1	<2
METALEN							
Chroom	mg/kg ds	13	22			16	27
Kobalt	mg/kg ds	<3,0	<6,0			<3,0	<5,7
Nikkel	mg/kg ds	6	15			8	19
Koper	mg/kg ds	5,4	10,1			7,6	13,8
Zink	mg/kg ds	32	67			26	53
Arseen	mg/kg ds	5,0	8,1			5,0	7,9
Molybdeen	mg/kg ds	<1,5	<1,1			<1,5	<1,1
Cadmium	mg/kg ds	<0,20	<0,22			<0,20	<0,22
Barium	mg/kg ds	<20	<0,22 <43 ⁽⁶⁾			<20	<0,22 <41 ⁽⁶⁾
Kwik	mg/kg ds	0,07	0,10			0,05	0,07
Lood			<10			<10	
LUUU	mg/kg ds	<10	<10			< 10	<10
OVERIC						+	
OVERIG	0/ do	06.0				00.0	
Gloeirest	% ds	96,8				96,3	
Gloeiverlies	% ds	3,2				3,7	
Trifenyltin	mg/kg ds	<0,005					
Aard artefacten	-						
Gewicht artefacten	g						
Droge stof	%						
Droge stof	% ds	77,1	77,1 ⁽⁶⁾	79	79 ⁽⁶⁾	75,8	75,8 ⁽⁶⁾
Lutum	%	4,2				4,7	
Organische stof (humus)	%	2,9				3,4	
OVERIGE (ORGANISCHE) VERBINDINGEN							
Minerale olie C10 - C40	mg/kg ds	86	297			<35	<72
Willierale Olle CTU - C40	mg/kg us	00	<u> </u>			<00	\1Z
PAK							
Naftaleen	mg/kg ds	<0,05	<0,04		-	<0,05	<0,04
Anthraceen	mg/kg ds	<0,05	<0,04			<0,05	<0,04
		-,	-,			-,	- ,

Grondmonster		Z1.1.1		Z1.1.2		Z1.2.1	
Humus (% ds)		2,90		10.00		3,40	
Lutum (% ds)		4,20		25,0		4,70	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		Klasse industrie		p can trij		Altijd toepasba	aar
Samenstelling monster		Thacee madeline				7 mija toopaobe	aci
Fenanthreen	mg/kg ds	0,06	0,06			<0.05	<0,04
Fluorantheen	mg/kg ds	0,13	0,13			<0.05	<0,04
Chryseen	mg/kg ds	0,12	0,12			<0,05	<0,04
Benzo(a)anthraceen	mg/kg ds	0,08	0,08			<0.05	<0,04
Benzo(a)pyreen	mg/kg ds	0,10	0,10			<0,05	<0,04
Benzo(k)fluorantheen	mg/kg ds	0,07	0,07			<0,05	<0,04
Indeno-(1,2,3-c,d)pyreen	mg/kg ds	0,07	0,07			<0,05	<0,04
Benzo(g,h,i)peryleen	mg/kg ds	0,08	0,08			<0,05	<0,04
PAK 10 VROM	mg/kg ds	0,78	0,78			0,35	<0,35
TAK TO VICOM	mg/kg us	0,70	0,70			0,00	<0,00
PFAS							
perfluoroctaanzuur (lineair)	μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonaat	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
(lineair)	pg/ng us			,,,,	0,1		
som vertakte PFOS-isomeren	μg/kg ds			<0,1	0,1 (6)		
som vertakte PFOA-isomeren	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
perfluor-1-butaansulfonaat	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
(lineair)	µg/kg us			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0,1		
perfluor-1-decaansulfonaat	μg/kg ds			<0,1	0,1 (6)		
(lineair)	µg/kg us			\(\)	0,1		
perfluor-1-heptaansulfonaat	μg/kg ds			<0,1	0,1 (6)		
(lineair)	pg/kg do			νο, τ	0,1		
perfluor-1-hexaansulfonaat	μg/kg ds			<0,1	0,1 (6)		
(lineair)	µg/kg us			40,1	0,1		
perfluorbutaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluordecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluordodecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluorheptaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluorhexaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluornonaanzuur	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonamide	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
perfluorpentaanzuur	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
perfluortridecaanzuur	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
perfluortetradecaanzuur	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
perfluorundecaanzuur	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
2-(perfluorhexyl)ethaan-1-	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
sulfonzuur	µg/kg us			<0,1	0,1		
perfluorhexadecaanzuur	μg/kg ds			<0,1	0,1 (6)		
perfluoroctadecaanzuur	μg/kg ds μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonylamide(N-				<0,1	0,1 (6)		
ethyl)acetaat	µg/Ng us			~0,1	0,1		
1H,1H,2H,2H-	μg/kg ds			<0,1	0,1 (6)		
perfluordecaansulfonzuur	µg/Ng us			~0,1	0,1		
1H,1H,2H,2H-	μg/kg ds			<0,1	0,1 (6)		
perfluordodecaansulfonzuur	pg/ng us			,,,,	0,1		
perfluorpentaan-1-sulfonzuur	μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonylamide(N-	μg/kg ds			<0,1	0,1 (6)		
methyl)acetaat	rg/11g 00			30,1	٥, ١		
1H,1H,2H,2H-	μg/kg ds			<0,1	0,1 (6)		
perfluorhexaansulfonzuur	rg/11g 00			30,1	٥, ١		
bisperfluordecyl fosfaat	μg/kg ds			<0,1	0,1 (6)		
N-methyl	μg/kg ds			<0,1	0,1 (6)		
perfluoroctaansulfonamide	,] ,,,	٠, .		
som lineair en vertakt	μg/kg ds			0,1	0,1 (6)		
perfluoroctaanzuur	, 5 . 5				-,.		
som lineair en vertakt	μg/kg ds			0,1	0,1 (6)		
perfluoroctylsulfonaat	, 3 .30				-,-		
	l	1		•		1	

Tabel 30: Samenstellingwaarden en toetsing voor grond conform Besluit Bodemkwaliteit

Grondmonster		Z1.2.2		Z1.3.1		Z1.3.2	
Humus (% ds)		10,00		2,30		10,00	
Lutum (% ds)		25,0		1,40		25,0	
Datum van toetsing		1-3-2023		1-3-2023		1-3-2023	
Monster getoetst als		partij		partij		partij	
Bodemklasse monster		, ,		Altijd toepa	sbaar		
Samenstelling monster				7			
Monstermelding 1							
Monstermelding 2							
Monstermelding 3							
Zintuiglijke bijmengingen		matig roest	houdend, zwak	matig roest	houdend, zwak	matig roest	noudend, zwak
		slibhoudend	d, sporen slib		d, sporen slib,		d, sporen slib,
			•	matig veen		matig veenl	
Hoofd grondsoort		Zand		Zand		Zand	
		Meetw	GSSD	Meetw	GSSD	Meetw	GSSD
ANORGANISCHE							
VERBINDINGEN							
Chloride	mg/kg ds			3200	3200 (7,40)		
BESTRIJDINGSMIDDELEN							
Tributyltin (als Sn)	μg/kg ds						
Trifenyltin (als Sn)	μg/kg ds						
trans-Heptachloorepoxide	μg/kg ds			<1	<3		
Endosulfansulfaat	μg/kg ds			<2	<6 ⁽⁶⁾		
cis-Heptachloorepoxide	μg/kg ds			<1	<3		
Tributyltin	mg/kg ds						
Heptachloorepoxide (som, 0.7	μg/kg ds			1			
factor							
OCB (0,7 som, grond)	mg/kg ds			0,015			
Organotin, som TBT+TFT, als	mg Sn/kg						
SN	ds						
Organotin, som TBT+TFT	mg/kg ds						
Hexachloorbutadieen	μg/kg ds			<1			
alfa-HCH	μg/kg ds			<1	<3		
beta-HCH	μg/kg ds			<1	<3		
gamma-HCH	μg/kg ds			<1	<3		
delta-HCH	μg/kg ds			<1	<3 ⁽⁶⁾		
Isodrin	μg/kg ds			<1	<3		
Telodrin	μg/kg ds			<1	<3		
Heptachloor	μg/kg ds			<1	<3		
Heptachloorepoxide	μg/kg ds				<6,09		
Aldrin	μg/kg ds			<1	<3		
Dieldrin	μg/kg ds			<1	<3		
Endrin	μg/kg ds			<1	<3		
DDE (som)	μg/kg ds			1	<6		
2,4-DDE (ortho, para-DDE)	μg/kg ds			<1	<3		
4,4-DDE (para, para-DDE)	μg/kg ds			<1	<3		
DDD (som)	μg/kg ds			1	<6		
2,4-DDD (ortho, para-DDD)	μg/kg ds			<1	<3		
4,4-DDD (para, para-DDD)	μg/kg ds			<1	<3		
DDT (som)	μg/kg ds			1	<6		
2,4-DDT (ortho, para-DDT)	μg/kg ds			<1	<3		
4,4-DDT (para, para-DDT)	μg/kg ds			<1	<3		
alfa-Endosulfan	μg/kg ds			<1	<3		
Chloordaan (cis + trans)	μg/kg ds				<6,09		
cis-Chloordaan	μg/kg ds			<1	<3		
trans-Chloordaan	μg/kg ds			<1	<3		
Organotin	μg/kg ds						
DDT/DDE/DDD (som)	μg/kg ds			4			
HCHs (som, STI-tabel)	μg/kg ds			3			
Drins (Aldrin+Dieldrin+Endrin)	μg/kg ds			2	<9		
Som 23 Organochloorhoud.	μg/kg ds			17			
bestrijdingsm							
Som 21 Organochloorhoud.	μg/kg ds				<63,9		
bestrijdingsm		1					

Grondmonster		Z1.2.2	Z1.3.1		Z1.3.2	
Humus (% ds)		10,00	2,30		10,00	
Lutum (% ds)		25.0	1,40		25,0	
Datum van toetsing		1-3-2023	1-3-2023		1-3-2023	
Monster getoetst als		partij	partij		partij	
Bodemklasse monster			Altijd toepasb	aar		
Samenstelling monster						
GECHLOREERDE KOOLWATERSTOFFEN						
PCB (som 7)	mg/kg ds					
PCB (som 7)	µg/kg ds			<21,3		
Pentachloorbenzeen (QCB)	μg/kg ds		<1	<3		
Hexachloorbenzeen (HCB)	μg/kg ds		<1	<3		
Pentachloorfenol (PCP)	μg/kg ds		<3	<9		
PCB 28	mg/kg ds					
PCB 28	μg/kg ds		<1	<3		
PCB 52 PCB 52	mg/kg ds		.4			
PCB 52 PCB 101	μg/kg ds mg/kg ds		<1	<3		
PCB 101	µg/kg ds		<1	<3		
PCB 118	mg/kg ds		~ 1			
PCB 118	μg/kg ds		<1	<3		
PCB 138	mg/kg ds					
PCB 138	μg/kg ds		<1	<3		
PCB 153	mg/kg ds					
PCB 153	μg/kg ds		<1	<3		
PCB 180 PCB 180	mg/kg ds µg/kg ds		-1	<3		
PCB 160	µg/kg as		<1	<3		
METALEN						
Chroom	mg/kg ds		13	24		
Kobalt	mg/kg ds		<3,0	<7,4		
Nikkel	mg/kg ds		<4	<8		
Koper	mg/kg ds		<5,0	<7,2		
Zink	mg/kg ds		<20	<33		
Arseen Molybdeen	mg/kg ds		<4,0 <1,5	<4,9 <1.1		
Cadmium	mg/kg ds mg/kg ds		<0,20	<0,24		
Barium	mg/kg ds		<20	<54 ⁽⁶⁾		
Kwik	mg/kg ds		<0,05	<0,05		
Lood	mg/kg ds		<10	<11		
OVERIG	2/ 1					
Gloeirest	% ds		97,6			
Gloeiverlies	% ds		2,4			
Trifenyltin Aard artefacten	mg/kg ds					
Gewicht artefacten	g					
Droge stof	%					
Droge stof	% ds	74 74 (6) 80,9	80,9 ⁽⁶⁾	82,1	82,1 ⁽⁶⁾
Lutum	%		1,4			
Organische stof (humus)	%		2,3			
OVERICE (ORGANISCHE)						
OVERIGE (ORGANISCHE) VERBINDINGEN						
Minerale olie C10 - C40	mg/kg ds		<35	<107		
			100			
PAK						
Naftaleen	mg/kg ds		0,06	0,06		
Anthraceen	mg/kg ds		<0,05	<0,04		
Fenanthreen	mg/kg ds		<0,05	<0,04		
Fluorantheen	mg/kg ds		<0,05	<0,04 <0,04	+	
Chryseen Benzo(a)anthraceen	mg/kg ds mg/kg ds		<0,05 <0,05	<0,04 <0,04		
Benzo(a)pyreen	mg/kg ds		<0,05	<0,04		
Benzo(k)fluorantheen	mg/kg ds		<0,05	<0,04		
Indeno-(1,2,3-c,d)pyreen	mg/kg ds		<0,05	<0,04		
Benzo(g,h,i)peryleen	mg/kg ds		<0,05	<0,04		
PAK 10 VROM	mg/kg ds		0,38	0,38		
	<u> </u>					

Grondmonster		Z1.2.2		Z1.3.1	Z1.3.2	
Humus (% ds)		10,00		2,30	10,00	
Lutum (% ds)		25,0		1,40	25,0	
Datum van toetsing		1-3-2023		1-3-2023	1-3-2023	
Monster getoetst als		partij		partij	partij	
Bodemklasse monster		p can any		Altijd toepasbaar		
Samenstelling monster				7 mga teepaesaan		
PFAS						
perfluoroctaanzuur (lineair)	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonaat	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
(lineair)		,	•		,	•
som vertakte PFOS-isomeren	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
som vertakte PFOA-isomeren	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluor-1-butaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluor-1-decaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluor-1-heptaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluor-1-hexaansulfonaat (lineair)	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorbutaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluordecaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluordodecaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorheptaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorhexaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluornonaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonamide	μg/kg ds μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
		<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorpentaanzuur	μg/kg ds		0,1 (6)		<0,1	0,1 (6)
perfluortridecaanzuur	μg/kg ds	<0,1 <0,1	0,1 (6)			0,1 (6)
perfluortetradecaanzuur perfluorundecaanzuur	μg/kg ds μg/kg ds	<0,1	0,1 (6)		<0,1 <0,1	0,1 (6)
2-(perfluorhexyl)ethaan-1-		<0,1	0,1 (6)			0,1 (6)
sulfonzuur	μg/kg ds	,	•		<0,1	
perfluorhexadecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctadecaanzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonylamide(Nethyl)acetaat	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
1H,1H,2H,2H- perfluordecaansulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
1H,1H,2H,2H- perfluordodecaansulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluorpentaan-1-sulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
perfluoroctaansulfonylamide(N-	μg/kg ds μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
methyl)acetaat		,				•
1H,1H,2H,2H- perfluorhexaansulfonzuur	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
bisperfluordecyl fosfaat	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
N-methyl perfluoroctaansulfonamide	μg/kg ds	<0,1	0,1 (6)		<0,1	0,1 (6)
som lineair en vertakt perfluoroctaanzuur	μg/kg ds	0,1	0,1 (6)		0,1	0,1 (6)
som lineair en vertakt perfluoroctylsulfonaat	μg/kg ds	0,1	0,1 (6)		0,1	0,1 (6)

: kleiner dan de detectielimiet : <= Achtergrondwaarde

: Wonen : Industrie

< 8,88 8,88 8,88 8,88 8,88 <= Interventiewaarde Niet Toepasbaar > IW

 Overschrijding norm zeezand voor toepassing op speciale plaatsen
 Verhoogde rapportagegrens geconstateerd door BoToVa service
 Heeft geen normwaarde
 Heeft andere normwaarde: zorgplicht van toepassing 40 41

6

: verhoogde rapportagegrens : Gestandaardiseerde meetwaarde **GSSD**

- Getoetst via de BoToVa service, versie 3.1.0 -

Tabel 31: Normwaarden (mg/kg) conform Regeling Besluit Bodemkwaliteit

		AW	WO	IND	I
BESTRIJDINGSMIDDELEN					
Tributyltin (als Sn)	mg/kg ds	0,065	0,065	0,065	
Tributyltin	mg/kg ds	0.065	0.065	0.065	
Organotin, som TBT+TFT, als SN	mg/kg ds	0,15	0,5	0,000	
Hexachloorbutadieen	mg/kg ds	0,003	0,0		
alfa-HCH	mg/kg ds	0,001	0,001	0,5	17
beta-HCH	mg/kg ds	0,002	0,002	0,5	1,6
gamma-HCH	mg/kg ds	0,003	0,04	0,5	1,2
Heptachloor	mg/kg ds	0,0007	0,0007	0,1	4
Heptachloorepoxide	mg/kg ds	0,002	0,002	0,1	4
Aldrin	mg/kg ds				0,32
DDE (som)	mg/kg ds	0,1	0,13	1,3	2,3
DDD (som)	mg/kg ds	0,02	0,84	34	34
DDT (som)	mg/kg ds	0,2	0,2	1	1,7
alfa-Endosulfan	mg/kg ds	0,0009	0,0009	0,1	4
Chloordaan (cis + trans)	mg/kg ds	0,002	0,002	0,1	4
Organotin	mg/kg ds			2,5	2,5
Drins (Aldrin+Dieldrin+Endrin)	mg/kg ds	0,015	0,04	0,14	4
Som 21 Organochloorhoud. bestrijdingsm	mg/kg ds	0,4			
GECHLOREERDE KOOLWATERSTOFFEN					
PCB (som 7)	mg/kg ds	0,02	0,04	0,5	1
Pentachloorbenzeen (QCB)	mg/kg ds	0,0025	0,0025	5	6,7
Hexachloorbenzeen (HCB)	mg/kg ds	0,0085	0,027	1,4	2
Pentachloorfenol (PCP)	mg/kg ds	0,003	1,4	5	12
METALEN					
Chroom	mg/kg ds	55	62	180	180
Kobalt	mg/kg ds	15	35	190	190
Nikkel	mg/kg ds	35	39	100	100
Koper	mg/kg ds	40	54	190	190
Zink	mg/kg ds	140	200	720	720
Arseen	mg/kg ds	20	27	76	76
Molybdeen	mg/kg ds	1,5	88	190	190
Cadmium	mg/kg ds	0,6	1,2	4,3	13
Kwik	mg/kg ds	0,15	0,83	4,8	36
Lood	mg/kg ds	50	210	530	530
OVERIGE (ORGANISCHE) VERBINDINGEN					
Minerale olie C10 - C40	mg/kg ds	190	190	500	5000
PAK					
PAK 10 VROM	mg/kg ds	1,5	6,8	40	40