16-17 学年《算法设计与分析》期中参考答案和评分标准

一、单选题(每题2分,共30分)

														15
В	В	A	Α	A	C	D	В	D	D	A	C	C	В	C

二、填空题(每题1分,共10分)

- 1. 10^3 $n \log n$ n^2 2^n
- 2. 出口条件(或者边界条件)
- 3. $O(n^{\log_2 7})$ 或者 $O(n^{2.81})$
- 4. 23
- 5. (1, 0.5, 1)
- 6. 限界函数
- 7. 最少
- 8. 优先队列式
- 9. 274
- 10. output(a, n 1)

三、算法应用题(每题8分,共40分)

1. (1) 加工次序(1,7,6,4,5,8,3,2), 最短加工时间 73 小时 (各 2 分) (2) (共 4 分)

产品编号	M ₁ 开始	M ₁ 结束	M ₂ 开始	M ₂ 结束	M ₂ 空闲
1	0	2	2	9	2
7	2	5	9	22	
6	5	22	22	32	
4	22	33	33	40	1
5	33	41	41	47	1
8	41	51	51	55	4
3	51	67	67	69	12
2	67	72	72	73	3

2. 覆盖方案: 其中阴影方格为特殊方格(标注出 L 型骨牌序号,从 1 号 开始)。

3	3	4	4	8	8	9	9
3	2	2	4	8	7	7	9
6	2	5	5	11		7	10
6	6	5	1	11	11	10	10
18	18	19	1	1	13	14	14
18	17	19	19	13	13	12	14
21	17	17	20	16	12	12	15
21	21	20	20	16	16	15	15

3. 根据递归关系式,求 $A_1 A_2 A_3 A_4$ 最少数乘次数为求 m[1][4] (2 分) 第一阶段 — 1 个矩阵:

m[1][1] = m[2][2] = m[3][3] = m[4][4] = 0

第二阶段 —2 个矩阵:

 $m[1][2] = m[1][1] + m[2][2] + p_0p_1p_2 = 0 + 0 + 50$ ' 10 ' 40 = 20000

 $m[2][3] = m[2][2] + m[3][3] + p_1p_2p_3 = 0 + 0 + 10' 40' 30 = 12000$

 $m[3][4] = m[3][3] + m[4][4] + p_2p_3p_4 = 0 + 0 + 40 ' 30 ' 5 = 6000$

第三阶段 — 3 个矩阵:

 $m[1][3] = \min(m[1][2] + m[3][3] + p_0p_2p_3, m[1][1] + m[2][3] + p_0p_1p_3) = \min(20000 + 0 + 50 ' 40 ' 30, 0 + 12000 + 50 ' 10 ' 30) = 27000$

 $m[2][4] = \min(m[2][3] + m[4][4] + p_1p_3p_4, m[2][2] + m[3][4] + p_1p_2p_4) = \min(12000 + 0 + 10 ´ 30 ´ 5, 0 + 6000 + 10 ´ 40 ´ 5) = 8000$ 第四阶段 — 4 个矩阵:

 $m[1][1] + m[2][4] + p_0p_1p_4 = 0 + 8000 + 50$ ' 10 ' 5 = 10500

 $m[1][2] + m[3][4] + p_0p_2p_4 = 20000 + 6000 + 50$ ' 40 ' 5 = 36000

 $m[1][3] + m[4][4] + p_0p_3p_4 = 27000 + 0 + 50$ ' 30 ' 5 = 34500

 $m[1][4] = \min(10500, 36000, 34500) = 10500$

每种划分表达式及乘法次数计算正确得2分。

4. (1) 将这 10 位客户的申请按照结束时间 f(i) 递增排序,如下表:

i	1	2	3	4	5	6	7	8	9	10
s(i)	1	3	0	5	3	5	6	8	8	11
f(i)	4	5	6	7	8	9	10	11	12	13

1) 选择申请 1(1,4) (3分)

2) 依次检查后续客户申请,只要与已选择的申请相容不冲突,则选择 该申请,直到所有申请检查完毕:

可以依次选择申请 4(5,7)、申请 8(8,11)、申请 10(11,13)。(3 分) 因此可以满足:申请 1(1,4)、申请 4(5,7)、申请 8(8,11)、申请 10(11,13) 共 4 个客户申请,为可以满足的最大客户人数。 (2 分)

- (2) 算法的时间复杂度为 $O(n\log n)$ 。因为在贪心选择之前,需要按申请的结束时间递增排序 (2分)
- 5. (1) 设 f(i) 表示: 从左向右扫描过来直到以 a[i] 元素结尾的序列, 获得的最长上升子序列的长度, 且子序列包含 a[i] 元素(1 £ i £ n)。

$$f(i) = \begin{cases} 1 & i = 1 \\ \max\{f(j) + 1 \colon \stackrel{\text{def}}{=} a[i] > a[j]; \ 1 \ \pounds j < i\} & i > 1 \\ 1 & i > 1; \ 1 \ \pounds j < i, \ a[i] \ \pounds a[j] \end{cases}$$

即,f(i)是从f(1), f(2), …到f(i-1) 中找最大的一个值,再加 1。或者就是 1。主要是看 a[i] 这个元素能否加入到之前已经获得的最长上升子序列,如果能加入,是之前已获得的最长上升子序列长度加 1;如果不能加入,就取这最后一个元素作为一个单独子序列,长度为 1。

最后,整个序列最长上升子序列长度为 $\max\{f(i): 1 \notin i \notin n\}$ (1分) (2) 对于序列 $\{4, 2, 6, 3, 1, 5, 2, 11, 14, 12\}$

最长上升子序列的长度为5

四、算法设计题(使用 C 或 C++或 Java 语言实现)(每题 10 分, 共 20 分)

(3分)

// 1分

1. 输入一个超长正整数 s 和一个正整数 c, 求 $s \times c$ 的精确值。

#include <stdio.h>

#include <string.h>

int main()

char *s*[256];

int c, b, d;

int a[256], i, j, n;

scanf("%s", &s);

scanf("%d", &c);

```
n = strlen(s):
                                                          // 2分
   d=0:
   for (i = 0, j = n - 1; i < n; i ++, j --)
       b = (s[i] - 48) * c + d;
       a[i] = b \% 10:
       d = b / 10;
                                                          // 4分
    while (d!=0)
       a[n] = d \% 10;
       d = d / 10:
       n ++;
                                                          // 2分
   for (i = n - 1; i >= 0; i --)
       printf("%d", a[i]);
                                                          // 1分
   return 0:
2. 时间复杂度为 O(n) 的求最大子段和的算法
int MaxSum(int a[], int n)
   int sum = 0, b = 0;
                                                          // 2分
   for (int i = 1; i <= n; i ++)
               //2 分
       if (b > 0)
           b += a[i];
       else
           b = a[i];
                                                          // 3分
       if (b > sum)
           sum = b;
                                                          // 2分
                                                          // 1分
    return sum;
注: 如果算法正确,时间复杂度大于O(n),扣4分。
```