

FRANK MC SHERRY

What are we trying to solve?

Why Differential Privacy?

What is Differential Privacy?

What is PINQ?

What functionality does PINQ offer?

How does PINQ operate?

- Select 5 people at random from the room for a health survey
- Release aggregate statistics

- Select 5 people at random from the room for a health survey
- Release aggregate statistics

- Select 5 people at random from the room for a health survey
- Release aggregate statistics

- Select 5 people at random from the room for a health survey
- Release aggregate statistics

- Select 5 people at random from the room for a health survey
- Release aggregate statistics

B: 12Y2M

- Select 5 people at random from the room for a health survey
- Release aggregate statistics

B: 12Y2M

• Release aggregate statistics

AVERAGE AGE

B: 12Y2M

ACCURACY

ACCURACY

PRIVACY

ACCURACY

PRIVACY

ACCURACY

PRIVACY

- √ Want 'reasonable' numbers
- ✓ Be able to give some 'privacy guarantee' to a user no deanonymization

What guarantee can you give a user?

What guarantee can you give a user?

The published answer looks 'roughly' the same if the user is present or absent

What guarantee can you give a user?

The published answer looks 'roughly' the same if the user is present or absent

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

Add random noise to Avg Age

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

Add random noise to Avg Age

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

~ Not too different

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

~ Not too different

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

~ Not too different $on \epsilon!$

A randomized computation M provides ϵ -differential privacy if for any two data sets A and B, and any set of possible outputs $S \subseteq Range(M)$,

$$\Pr[M(A) \in S] \le \Pr[M(B) \in S] \times \exp(\epsilon \times |A \oplus B|)$$

~ Not too different $on \epsilon!$

For one user = I

What happens as ϵ becomes greater?

BUT....

Can we add ANY noise?

BUT....

Can we add ANY noise?

Can we allow **ANY** number of queries?

BUT....

Can we add ANY noise?

Can we allow **ANY** number of queries?

BUT....

Can we add ANY noise?

Can we allow **ANY** number of queries?

 Declarative programming platform based on LINQ (Language Integrated Queries) in C#

- Declarative programming platform based on LINQ (Language Integrated Queries) in C#
- SQL-like syntax to interact with data source

- Declarative programming platform based on LINQ (Language Integrated Queries) in C#
- SQL-like syntax to interact with data source

- Declarative programming platform based on LINQ (Language Integrated Queries) in C#
- SQL-like syntax to interact with data source

- Declarative programming platform based on LINQ (Language Integrated Queries) in C#
- SQL-like syntax to interact with data source
- Make differential privacy accessible

- Declarative programming platform based on LINQ (Language Integrated Queries) in C#
- SQL-like syntax to interact with data source
- Make differential privacy accessible
- Data owners protect data sources with a differential privacy 'budget'

- Declarative programming platform based on LINQ (Language Integrated Queries) in C#
- SQL-like syntax to interact with data source
- Make differential privacy accessible
- Data owners protect data sources with a differential privacy 'budget'
- PINQ manages this privacy budget

- Declarative programming platform based on LINQ (Language Integrated Queries) in C#
- SQL-like syntax to interact with data source
- Make differential privacy accessible
- Data owners protect data sources with a differential privacy 'budget'
- PINQ manages this privacy budget
- Privacy guarantees come from differential privacy

PINQ SYSTEM

- Central Type PINQueryable
- PINQueryable = Iqueryable (unprotected) + PINQAgent (privacy)

• How does a PINQAgent calculate the privacy cost for every query?

- How does a PINQAgent calculate the privacy cost for every query?
- What kinds of queries are supported?

- How does a PINQAgent calculate the privacy cost for every query?
- What kinds of queries are supported?

Aggregations: COUNT SUM MEDIAN AVG

- How does a PINQAgent calculate the privacy cost for every query?
- What kinds of queries are supported?

Aggregations:

COUNT

SUM

MEDIAN

AVG

Transformations:

WHERE

SELECT

GROUP BY

JOIN*

- How does a PINQAgent calculate the privacy cost for every query?
- What kinds of queries are supported?

Aggregations: COUNT SUM MEDIAN AVG

Transformations:
WHERE

SELECT
GROUP BY
JOIN*

Count = 107 + Laplace noise – would only shift by a multiplicative factor if Count = 108 instead – if the Laplace noise parameter is $1/\epsilon$ you get ϵ -differentially private counts

Count = 107 + Laplace noise – would only shift by a multiplicative factor if Count = 108 instead – if the Laplace noise parameter is $1/\epsilon$ you g

What happens as ϵ becomes greater?

Count = 107 + Laplace noise – would only shift by a multiplicative factor if Count = 108 instead – if the Laplace noise parameter is $1/\epsilon$ you g

What happens as ϵ becomes greater?

Is this enough?

When you apply the transformation with and without a user, how many records in the output change?

When you apply the transformation with and without a user, how many records in the output change?

WHERE
SELECT
GROUP BY
JOIN*

When you apply the transformation with and without a user, how many records in the output change?

WHERE
SELECT
GROUP BY
JOIN*

C = I

When you apply the transformation with and without a user, how many records in the output change?

WHERE
SELECT
GROUP BY
JOIN*

C = I

C = I

When you apply the transformation with and without a user, how many records in the output change?

WHERE C = ISELECT C = IGROUP BY C = 2IOIN*

When you apply the transformation with and without a user, how many records in the output change?

WHERE C = I

SELECT C = I

GROUP BY C = 2

|OIN*| C = 2

When you apply the transformation with and without a user, how many records in the output change?

WHERE C = ISELECT C = IGROUP BY C = 2 IOIN*

An ϵ -DP aggregation on a c-stable transformation gives c ϵ -DP

Example 5 Measuring query frequencies in PINQ.

Example 5 Measuring query frequencies in PINQ.

0.1

Example 5 Measuring query frequencies in PINQ.

0.2

0.1

HOW DOES IT WORK?

Example 5 Measuring query frequencies in PINQ.

0.2

0.2

0.1

HOW DOES IT WORK?

Example 5 Measuring query frequencies in PINQ.

0.2

0.2

0.2

0.1

HOW DOES IT WORK?

Example 5 Measuring query frequencies in PINQ.

0.2

0.2

0.2

0.1

Is this enough?

Sequential ϵ -DP analyses simply ADD ϵ for total effective ϵ

What $A \oplus B$ are you protecting?

Parallel (Disjoint) ϵ -DP analyses take MAX ϵ for total effective ϵ

Parallel (Disjoint) ϵ -DP analyses take MAX ϵ for total effective ϵ

Parallel (Disjoint) ϵ -DP analyses take MAX ϵ for total effective ϵ

0.2

Parallel (Disjoint) ϵ -DP analyses take MAX ϵ for total effective ϵ

0.2

What if you needed the counts for 10 queries?

Parallel (Disjoint) ϵ -DP analyses take MAX ϵ for total effective ϵ

0.2

What if you needed the counts for 10 queries?

Use PARTITION

Parallel (Disjoint) ϵ -DP analyses take MAX ϵ for total effective ϵ

0.2

```
// prepare data with privacy budget
var agent = new PINQAgentBudget(1.0);
var data = new PINQueryable<string>(rawdata, agent);
// break out fields, but partition rather than filter
var parts = data.Select(line => line.Split(','));
                .Partition(args, fields => fields[20]);
foreach (var query in args)
  // use the searches for query, grouped by IP address
  var users = parts[query].GroupBy(fields => fields[0]);
  // further partition by the frequency of searches
  var freqs = users.Partition(new int[] {1,2,3,4,5},
                              group => group.Count());
 // output the counts to the screen, or anywhere else
 Console.WriteLine(query + ":");
 foreach (var count in new int[] \{1,2,3,4,5\})
   Console.WriteLine(freqs[count].NoisyCount(0.1));
```

Example 6 Measuring many query frequencies in PINQ.

Parallel (Disjoint) ϵ -DP analyses take MAX ϵ for total effective ϵ

Example 5 Measuring query frequencies in PINQ. // prepare data with privacy budget var agent = new PINQAgentBudget(1.0); var data = new PINQueryable<string>(rawdata, agent); // break out fields, filter by query, group by IP var users = data.Select(line => line.Split(',')) .Where(fields => fields[20] == args[0]) .GroupBy(fields => fields[0]); // output the count to the screen, or anywhere else Console.WriteLine(args[0] + ": " + users.NoisyCount(0.1)); 0.2 **Example 6** Measuring many query frequencies in PINQ.

0.2

```
// prepare data with privacy budget
var agent = new PINQAgentBudget(1.0);
var data = new PINQueryable<string>(rawdata, agent);
// break out fields, but partition rather than filter
var parts = data.Select(line => line.Split(','));
                .Partition(args, fields => fields[20]);
foreach (var query in args)
 // use the searches for query, grouped by IP address
  var users = parts[query].GroupBy(fields => fields[0]);
  // further partition by the frequency of searches
  var freqs = users.Partition(new int[] {1,2,3,4,5},
                              group => group.Count());
 // output the counts to the screen, or anywhere else
 Console.WriteLine(query + ":");
 foreach (var count in new int[] \{1,2,3,4,5\})
   Console.WriteLine(freqs[count].NoisyCount(0.1));
```

FINALLY...

FINALLY...

FINALLY...

Performance?

DISCUSSION

DISCUSSION

- Accessible
- Not much overhead
- Mathematical guarantee
- Allows richer queries

DISCUSSION

- Accessible
- Not much overhead
- Mathematical guarantee
- Allows richer queries

- Is it really?
- Budget is finite (DP)
- One user can use up
- Data source available always
- Note: Works with static data

SOURCES

- PINQ I https://dl.acm.org/citation.cfm?id=1559850
- PINQ 2 https://www.microsoft.com/en-us/research/wp-content/uploads/2010/09/pinq-CACM.pdf
- PINQ talk Frank McSherry https://www.youtube.com/watch?v=GnlB7KJ5kVg
- https://www.refinery29.com/en-us/2017/10/179039/this-is-fine-meme-halloween-costume
- https://www.vulture.com/2019/06/this-is-fine-dog-meme-comic-kc-green-interview.html
- https://knowyourmeme.com/memes/math-lady-confused-lady