Universidade Federal do Rio de Janeiro

IM/DCC & NCE

Processamento de Imagens Segmentação

Antonio G. Thomé thome@nce.ufrj.br
Sala – AEP/1033

Conceituação

• Segmentação é uma tarefa básica no processo de análise de imagens.

Análise

Conceituação

•A segmentação subdivide uma imagem em suas partes ou objetos constituintes que devem corresponder às áreas de interesse da aplicação.

• O nível até onde esta subdivisão deve ser realizada depende do problema a ser resolvido

Conceituação ...

- Segmentação é uma das tarefas mais difíceis em processamento de imagens.
- A segmentação determina o eventual sucesso ou fracasso da análise.
- Com o objetivo de aumentar a confiabilidade e o resultado da segmentação, deve-se fazer uso de todo e qualquer conhecimento prévio sobre o problema.
- Os algoritmos de segmentação são geralmente baseados na busca pelas descontinuidades ou pelas similaridades dos níveis de cinza.

(*) o movimento pode frequentemente ser usado como uma poderosa pista para melhorar o desempenho dos algoritmos.

Detecção de Descontinuidades

• Detecção de Pontos

-1	-1	-1
-1	8	-1
-1	-1	-1

$$|\mathbf{R}| > \mathbf{T}$$

Feita através do uso de um filtro passa altas e um limiar de aceitação

Detecção de Descontinuidades

• <u>Detecção de Linhas</u>

-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
h	orizon	tal		+450			vertica	ıl		-45 ⁰	

Feita através do uso de filtros passa altas direcionais

Detecção de Descontinuidades

• <u>Detecção de Bordas</u>

"Uma borda é o limite entre duas regiões com propriedades relativamente distintas de nível de cinza."

- é assumido que as regiões em questão são suficientemente homogêneas e que a transição entre as regiões pode ser determinada com base apenas na descontinuidade dos níveis de cinza;
- a idéia predominante nas técnicas de detecção de bordas é a computação de um operador diferencial;
- é importante ter em mente que bordas em imagens digitais são, geralmente, levemente borradas devido ao processo de amostragem.

A existência de imperfeições no processo de aquisição de imagem faz com que as bordas sejam "rampas"

Operadores Diferenciais

Operadores Diferenciais de 1^a Ordem

1^a derivada - Gradiente

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

taxa de aumento por unidade de distância em direção do gradiente

$$\left|\nabla f\right| = mag(\nabla f) = \left[G_x^2 + G_y^2\right]^{1/2} \approx \left|G_x\right| + \left|G_y\right|$$

$$\alpha(x,y) = \tan^{-1}\left(\frac{G_y}{G_x}\right)$$

ângulo de direção do vetor gradiente em relação ao eixo x

Operadores Diferenciais de 1^a Ordem 1^a derivada - Gradiente

Operador de Sobel

$$g(x,y) = X^2 + Y^2$$

(*) o operador de Sobel tem um efeito secundário de suavização que é atrativo visto que a derivação aumenta o ruído

Composição de :[-1, 0, 1] diferenciação + [1 2 1] suavização

Operadores Diferenciais de 1^a Ordem 1^a derivada - Gradiente

• Operador de Prewitt

$$g(x,y) = X^2 + Y^2$$

Operadores Diferenciais de 2^a Ordem 2^a derivada

• Operador Laplaciano

$$\nabla^2 f(x,y) = \frac{\partial^2}{\partial x^2} f(x,y) + \frac{\partial^2}{\partial y^2} f(x,y)$$

- (*) <u>operadores de gradiente</u> funcionam bem em casos envolvendo imagens com fortes transições de contraste e ruído relativamente baixo;
- (**) <u>operadores Laplaciano</u> (cruzamento de zero) oferecem uma alternativa nos casos em que as bordas forem borradas ou quando o ruído for elevado (custo computacional).

Operadores Diferenciais de 2ª Ordem 2ª derivada

• Operador Laplaciano

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

- Detecção de bordas não resulta em bordas conectadas
- Ligação de bordas e detecção de fronteiras devem ser aplicados após a detecção de bordas.

• Processamento Local

- "realizado pixel a pixel, com base na amplitude e na direção do gradiente."

Um pixel de borda com coordenadas (x', y'), que esteja dentro da vizinhança predefinida de (x, y) é similar se:

$$\left|\nabla f(x,y) - \nabla f(x',y')\right| \le T$$

$$e$$

$$\left|\alpha(x,y) - \alpha(x',y')\right| < A$$

• Processamento Local

Original

G,

 $G_{x,y}$

Limiares T e A

- Processamento Global Transformada de Hough
 - "realizado sobre todos os pixels com base em um novo espaço."
- a) espaço de parâmetros na forma: inclinação ponto de interseção

- Processamento Global Transformada de Hough
- a) espaço de parâmetros na forma: inclinação ponto de interseção

- Para cada (x_k, y_k) no plano da imagem varia-se "a" e calcula-se "b";
- A seguir faz-se A(a,b) = A(a,b)+1;
- No final, um valor "M" em A(i,j) indica que M pontos no plano da imagem (x,y)se localizam sobre uma reta de equação: $y = a_i x + b_i$

Algoritmo de Hough

1. Quantizar o espaço de parâmetros

```
A [a<sub>min</sub>,...,a<sub>max</sub>][b<sub>min</sub>,...,b<sub>max</sub>] (matriz acumuladora)
```

2. Para cada ponto de borda (x,y

```
for (a=a<sub>min</sub>;a<=a<sub>max</sub>;a++)
{
   b=-xa+y; /* arrendondar se necessário*/
   (A[a][b])++; /* Contagem de votos*/
}
```

3. Encontrar altas concentrações (maior contagem) em A[a][b]

(Se $A[a_j][b_k] = M$, então M pontos estão sobre a linha $y = a_j x + b_k$)

Efeitos da quantização

- Os parâmetros de uma linha podem ser estimados mais precisamente usando uma quantização mais fina do espaço de parâmetros
- Quantização mais fina aumenta os recursos de armazenamento e o tempo de execução
- Considerando tolerância ao ruído, é melhor usar uma quantização mais grosseira.

- Processamento Global Transformada de Hough
- a) espaço de parâmetros na forma: ρ / θ

a) espaço de parâmetros na forma: ρ / θ $y = ax + b \equiv \rho = x \cos \theta + y \sin \theta$

Exemplo em MatLab da transformada de Hough

```
% Carrega imagem
       a= imread('image.bmp');
% Transforma para níveis de cinza
       ag= im2double(rgb2gray(a));
% Acha os contornos via a função edge
       E=edge(ag);
       imshow(E);
% Calcula Transformada de Hough
       theta =(0:179)';
       [R, xp]=radon(E,theta);
% Mostra gráfico de Hough
       imagesc(theta, xp, R), colorbar;
```

Transformada de Hough

Reconstrução das Linhas com base em Hough

• Processamento Global – Uso de Grafos

Abordagem global baseada na representação de segmentos de borda na forma de um grafo e na busca por caminhos baratos que correspondam a bordas significativas. Boa tolerância ao ruído.

- cada nó do grafo representa um arco unindo 2 pixels (n, n;);
- um custo c(n_i, n_i) pode ser associado a cada arco;
- um elemento de borda é a fronteira entre 2 pixels p e q, tal que p e q seja vizinhos de 4;
- uma borda é uma seqüência de elementos de borda.

0 1 2 0 7 2 2 1 5 7 2 2 5 1 0

$$c(p,q) = H - [f(p) - f(q)]$$

(*) H maior nível de cinza da imagem

Grafos

Ligação de Bordas e Detecção de Fronteiras

Detecção de Similaridades

• Limiarização

$$g(x,y) = \begin{cases} 1 & se \ f(x,y) > T \\ 0 & se \ f(x,y) \le T \end{cases}$$

$$T=T[x, y, p(x,y), f(x,y)]$$

- quando T depende apenas de f(x,y) → limiar global
- quando T depende de f(x,y) e de p(x,y) \Rightarrow limiar dinâmico p(x,y) alguma propriedade local do ponto (ex. cinza médio região centrada em (x,y))

• Limiarização

Na prática a limiarização global só obtém sucesso em ambientes altamente controlados. Uma das áreas em que isto acontece é a de inspeção industrial, onde o controle da iluminação é normalmente possível.

• Limiarização Global

$$T = 90$$

• Limiarização Dinâmica

• Limiarização

Detecção de Similaridades

• Orientada a Regiões

A segmentação é o processo de particionar a imagem em n regiões R_1 , R_2 , ..., R_n tal que:

$$a)\bigcup_{i=1}^n R_i=R$$

b) R_i é uma regiao conexa, i = 1,2,...,n

c)
$$R_i \cap R_j = \phi, \forall i \ e \ j, i \neq j$$

d)
$$P(R_i) = verdadeiro para i = 1,2,...,n$$

e)
$$P(R_i \bigcup R_j) = falso para i \neq j$$

(*) $P(R_i)$ é uma propriedade lógica sobre os pontos do C_i . R_i

• Crescimento de Regiões

É um procedimento que agrupa pixels ou sub-regiões em regiões maiores. A mais simples dessas abordagens é a agregação de pixels, que começa com um conjunto de pontos "semente" e, a partir deles, cresce as regiões anexando a cada ponto semente aqueles pixels que possuam propriedades similares (nível de cinza, cor ou textura).

0	0	5	6	7
1	1	5	8	7
0	1	6	7	7
2	0	3	6	6
0	1	2	6	5

 $P(R_i) \rightarrow |\Delta f| < 3$

Detecção de Similaridades

• Divisão e Fusão de Regiões

- a) Divide em 4 quadrantes qualquer R_i em que $P(R_i) = FALSO$
- b) Funde quaisquer regiões adjacentes R_j e R_k sempre que $P(R_j U R_k) = VERDADEIRO$
- c) Pára quando nenhuma divisão ou fusão for mais possível

Segmentação com Utilização do Movimento

• Abordagem Básica

A técnica mais simples implementa a detecção de mudanças entre dois quadros de imagem f(x,y,ti) e f(x,y,tj), através da comparação das duas imagens pixel a pixel.

$$d_{i,j}(x,y) = \begin{cases} 1 & se \left| f(x,y,t_i) - f(x,y,t_j) \right| > \theta \\ 0 & caso \ contrário \end{cases}$$

(*) na prática $d_{i,j}(x,y)=1$ é originada de ruído, assim elimina-se regiões com número de vizinhos menor que um limiar predeterminado.

Segmentação com Utilização do Movimento

• Diferenças Cumulativas

Consiste na comparação de uma sequência de quadros com um quadro referência, para então detectar um objeto em movimento.

• Imagem de Referência

- A chave do sucesso consiste na existência de uma imagem de referência com a qual comparações subseqüentes possam ser feitas.
- Quando não se possui uma imagens estática para referência torna-se necessário construir uma a partir de um conjunto de imagens com objetos em movimento.