Lab_10_Metagenomics_MBI3100A_2022_Assignment_Questions

2022-11-12

R Markdown

```
# clear the R environment
rm(list = ls())
```

Install required libraries

Installing these libraries may take some time. Try to update all other dependencies when prompted (type "a" and enter).

```
if (!require("BiocManager")) install.packages("BiocManager")
if (!require("phyloseq")) BiocManager::install("phyloseq")
if (!require("microbiomeMarker")) BiocManager::install("microbiomeMarkera")
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("dendextend")) install.packages("dendextend")
```

Load Libraries

```
library(phyloseq)
library(ggplot2)
library(dplyr)
library(dendextend)
library(microbiomeMarker)
```

Data import

Question 1: Import the three files named as 'GP_sp_assignment_otu_table_df.csv', 'GP_sp_assignment_sample_data_df.csv', and 'GP_sp_assignment_tax_table_df.csv' and make a phyloseq object named 'asgmt_physeq'? (2 points)

Please provide the correct file/folder path

```
# input files
```

Print asgmt_physeq

```
# Print
```

Question 2: How many taxa, samples, and sample variables are there in asgmt_physeq? (1 point)

Ans

Question 3: List the catagories present in the sample variable "SampleOrigin". (1 point)

Ans

Question 4: Generate a bar plot at "Phylum" level for sample vs abundance and facet it for the categories in SampleOrigin (1 point)

Ans

Question 5: Based on the plot generated in question 4, name all the phylum which have a big difference in abundance between "Feces" and "Freshwater" samples? (1 point)

Ans

Transform the absolute abundance into relative abundance and filter the taxa which have mean relative abundance less than 0.0001

```
# To convert to relative abundance
# Keep the taxa which have a mean values at least 0.0001
```

Question 6: How many taxa are left after the above filtering? (1 point)

Ans

For question 7 to 12, use dataset 'asgmt_physeq'.

Question 7: Generate a Hierarchical clustering plot using the distance "ward.D2". (2 points)

It will be a four step process

```
# OTU as data frame
```

Step1: Extract OTU table as data frame

```
# transpose the table (required by vegdist)
```

Step2: Transpose the table (required by vegdist package)

```
#compute Bray-Curtis dissimilarity
```

Step3: Compute Bray-Curtis dissimilarity

```
#Save as dendrogram

#Plot
```

Step4: Save as dendrogram

Question 8: Plot for alpha diversity using two measures, "Observed" and "Shannon". (1 points)

```
# Ans
```

Question 9: Apply wilcox.test to see if the Observed diversity is significantly different for SampleOrigin. (2 points)

```
# Make a dataframe to combine the ouputs of Observed, Shannon and SampleOrigin
```

Step 1: Make a dataframe to combine the outputs of Observed and SampleOrigin.

```
#Wilcoxon test for Shannon diversity for categories in SampleOrigin
```

Step 2: Check the significance level for wilcox.test

Ans

Note down the p-value? is the difference significant i.e is p-value less than 0.05?

Question 10: Make a PCoA plot using the "bray" method as distance for beta diversity. (1 point)

```
# Ans
```

Question 11: Apply DESeq2 method to identify the differentially abundant taxa based on SampleOrigin column. (1 point)

```
# Ans
set.seed(2345)
# run_deseq2 command run the program deseq2 to identify DA taxa
# Running this command takes a few seconds
```

Question 12: Plot the differentially abundant taxa identified by deseq2 method . (1 point)

```
# Ans
```

```
# Ans
```

Bonus Question: plot a heatmap for the differentially abundant taxa identified by ${\it deseq 2}$ method