

TRAITEMENT DU SIGNAL Sciences du Numérique - Première année TD1 : SIGNAUX ET SPECTRES

Exercice 1: Etude du secteur

On considère dans cet exercice différents modèles du secteur et on étudie la densité spectrale de puissance des signaux obtenus à l'aide de ces modèles.

1. Dans une première approche, on utilise le modèle :

$$X(t) = A_0 \cos(2\pi f_0 t)$$

où $f_0 = 50Hz$ et $A_0 = 220\sqrt{2}V$. Préciser la classe à laquelle appartient le signal X(t) puis déterminer sa fonction d'autocorrélation $R_X(\tau)$ et sa densité spectrale de puissance $S_X(f)$.

2. On considère ensuite le modèle suivant :

$$X(t) = A_0 \cos(2\pi f_0 t + \theta)$$

 θ étant une variable aléatoire uniformément répartie sur l'intervalle $[0, 2\pi[$, $f_0 = 50Hz$ et $A_0 = 220\sqrt{2}V$. Préciser la classe à laquelle appartient le signal X(t) puis déterminer sa moyenne, sa fonction d'autocorrélation $R_X(\tau)$ et sa densité spectrale de puissance $S_X(f)$.

3. La fréquence du courant électrique n'est jamais exactement $f_0 = 50Hz$. Afin de modéliser les variations en fréquence, on considère le modèle :

$$X(t) = A_0 \cos(2\pi f t + \theta)$$

f étant une variable uniformément répartie sur l'intervalle $[f_0 - \Delta f, f_0 + \Delta f]$ indépendante de θ . Calculer alors la moyenne, la fonction d'autocorrélation et la densité spectrale de puissance de X(t).

Exercice 2: Modulation d'amplitude

Soit A(t) un signal aléatoire stationnaire, réel, de fonction d'autocorrélation $R_A(\tau)$ et de densité spectrale de puissance $S_A(f)$ définie par :

$$S_A(f) = \begin{cases} \alpha, & \text{si } |f| \le F \\ 0, & \text{sinon.} \end{cases}$$

On considère le signal $X(t) = A(t)\cos(2\pi f_0 t + \theta)$, avec $F \ll f_0$ et θ une variable aléatoire uniformément répartie sur l'intervalle $[0, 2\pi[$ indépendante de A(t).

- 1. Montrer que X(t) est un signal aléatoire stationnaire. Déterminer et représenter graphiquement sa densité spectrale de puissance.
- 2. Afin de retrouver le signal A(t) à partir de X(t), on construit le signal $Y(t) = X(t) \cos(2\pi f_0 t + \theta)$.
 - (a) Déterminer et tracer la densité spectrale de puissance de Y(t).
 - (b) Quel traitement doit-on utiliser pour retrouver A(t) à partir de Y(t)?

Rappels

$\begin{array}{c|c} \mathbf{Propri\acute{e}t\acute{e}s} \ \mathbf{g\acute{e}n\acute{e}rales} \\ \hline \parallel \mathbf{T.F.} \ \parallel \end{array}$

	T.F.	
ax(t) + by(t)	\Rightarrow	aX(f) + bY(f)
$x(t-t_0)$	\rightleftharpoons	$X(f)e^{-i2\pi ft_0}$
$x(t)e^{+i2\pi f_0t}$	\rightleftharpoons	$X(f-f_0)$
$x^*(t)$	\rightleftharpoons	$X^*(-f)$
$x(t) \cdot y(t)$	\rightleftharpoons	X(f) * Y(f)
x(t) * y(t)	\rightleftharpoons	$X(f) \cdot Y(f)$
x(at+b)	\rightleftharpoons	$\frac{1}{ a }X\left(\frac{f}{a}\right)e^{i2\pi\frac{b}{a}f}$
$\frac{dx^{(n)}(t)}{dt^n}$	\rightleftharpoons	$(i2\pi f)^n X(f)$
$\left(-i2\pi t\right)^n x(t)$	\rightleftharpoons	$\frac{dX^{(n)}(f)}{df^n}$

Formule de Parseval	Série de Fourier
$\int_{\mathbb{R}} x(t)y^*(t)dt = \int_{\mathbb{R}} X(f)Y^*(f)df$	$\sum_{n \in \mathbb{Z}} c_n e^{+i2\pi n f_0 t} \rightleftharpoons \sum_{n \in \mathbb{Z}} c_n \delta\left(f - n f_0\right)$
$\int_{\mathbb{R}} x(t) ^2 dt = \int_{\mathbb{R}} X(f) ^2 df$	

Table de Transformées de Fourier

	T.F.	
1	\Rightarrow	$\delta\left(f ight)$
$\delta\left(t ight)$	\rightleftharpoons	1
$e^{+i2\pi f_0 t}$	\rightleftharpoons	$\delta\left(f-f_0 ight)$
$\delta\left(t-t_{0}\right)$	\rightleftharpoons	$e^{-i2\pi f t_0}$
$\coprod_{T} (t) = \sum_{k \in \mathbb{Z}} \delta(t - kT)$	\rightleftharpoons	$\frac{1}{T}\coprod_{1/T}(f)$
$\cos\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2}\left[\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right)\right]$
$\sin\left(2\pi f_0 t\right)$	\rightleftharpoons	$\frac{1}{2i} \left[\delta \left(f - f_0 \right) - \delta \left(f + f_0 \right) \right]$
$e^{-a t }$	\rightleftharpoons	$\frac{\frac{2a}{a^2+4\pi^2f^2}}{e^{-\pi f^2}}$
$e^{-\pi t^2}$	\rightleftharpoons	$e^{-\pi f^2}$
$\Pi_{T}\left(t ight)$	\rightleftharpoons	$T\frac{\sin(\pi Tf)}{\pi Tf} = T\sin c \left(\pi Tf\right)$
$\Lambda_{T}\left(t ight)$	\rightleftharpoons	$T\sin c^2\left(\pi Tf\right)$
$B\sin c\left(\pi Bt\right)$	\rightleftharpoons	$\Pi_{B}\left(f ight)$
$B\sin c^2 \left(\pi Bt\right)$	\rightleftharpoons	$\Lambda_{B}\left(f ight)$

!!!!!! Attention!!!!!

 $\Pi_{T}(t)$ note une fenêtre rectangulaire de support égal à T.

 $\Lambda_T(t)$ note une fenêtre triangulaire de support égal à 2T (de demi-base égale à T).

$$\Pi_{T}(t) * \Pi_{T}(t) = T \Lambda_{T}(t)$$