UEE4611 Assignment #4 Solution

- 1.Demonstrate whether each of these statements is true or false for polynomials over a field.
- (a) The product of monic polynomials is monic.
- (b) The product of polynomials of degrees m and n has degree m+n.
- (c) The sum of polynomials of degrees m and n has degree $\max\{m, n\}$.

Let A(x) and B(x) be two polynomials as follows

$$A(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_0,$$

$$B(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0,$$

where $m, n, a_i, b_j \in \mathbb{Z}$ for i = 0, 1, ..., m and j = 0, 1, ..., n, respectively, and $a_m \neq 0, b_n \neq 0$.

(a) If A(x) and B(x) are monic polynomials, a_m and b_n are both 1.

Because the leading term of the product of A(x) and B(x) is $c_{m+n}x^{m+n}$, and its coefficient is the product of a_m and b_n , which is 1.

So the product of monic polynomials is also monic.

- (b) While a_m and b_n are both nonzero, the coefficient of $x^{m+n} \neq 0$. So the product of A(x) and B(x) has degree m+n.
- (c) False.

If m = n and $a_m = -b_n$, then the degree of A(x) + B(x) is less than $n = m = \max\{m, n\}$.

2. Determine which of the following polynomials are reducible over GF(2).

(a)
$$x^2 + 1$$
.

(b)
$$x^2 + x + 1$$
.

(c)
$$x^4 + x + 1$$
.

(a)

$$x^{2} + 1 = x^{2} - 1$$

$$= (x+1)(x-1)$$

$$= (x+1)(x+1)$$

 $x^2 + 1$ is reducible over GF(2).

(b)

Let
$$f(x) = x^2 + x + 1$$
.
 $f(0) = 1$, which mean x is not a factor of $x^2 + x + 1$.
 $f(1) = 1$, which mean $x + 1$ is not a factor of $x^2 + x + 1$.
So $x^2 + x + 1$ is irreducible over $GF(2)$.

(c)

Let
$$f(x) = x^4 + x + 1$$
.
 $f(0) = 1$, which mean x is not a factor of $x^4 + x + 1$.
 $f(1) = 1$, which mean $x + 1$ is not a factor of $x^4 + x + 1$.
So there is no first-order factor \Rightarrow no degree-3 factors.

The possible second order factors are $x^2 + x + 1$ and $x^2 + 1$. We divide $x^4 + x + 1$ by them, respectively, and find out these two are not factors of $x^4 + x + 1$.

Thus $x^4 + x + 1$ is irreducible.

3. Determine the gcd of the following pairs of polynomials.

(a)
$$(x^3 + x + 1)$$
 and $(x^2 + 1)$ over $GF(3)$.
(b) $(x^3 - 2x + 1)$ and $(x^2 - x - 2)$ over $GF(5)$.

(a) Use Euclidean Algorithm

$$(x^3 + x + 1) = (x^2 + 1) \times x + 1$$

 $\Rightarrow \gcd(x^3 + x + 1, x^2 + 1) = 1$ over $GF(3)$

(b) Use Euclidean Algorithm

$$(x^3 - 2x + 1) = (x^2 - x - 2) \times (x + 1) + (x + 3)$$
$$(x^2 - x - 2) = (x + 3) \times (x + 1)$$
$$\Rightarrow \gcd(x^3 - 2x + 1, x^2 - x - 2) = (x + 3) \quad \text{over } GF(5)$$

4. Determine the multiplicative inverse of $x^2 + 1$ in $GF(2^3)$ with $m(x) = x^3 + x - 1$.

$$x^{3} + x + 1 = (x^{2} + 1)x + 1$$

$$\Rightarrow (x^{2} + 1)x \equiv 1 \pmod{x^{3} + x + 1}$$

$$= 1 \pmod{x^{3} + x - 1}$$

So the multiplicative inverse of $x^2 + 1$ in $GF(2^3)$ with $m(x) = x^3 + x - 1$ is x.

5. Develop a set of tables similar to Table 5.3 for GF(4) with $m(x) = x^2 + x + 1$.

Addition:

+	0	1	x	x + 1
0	0	1	x	x+1
1	1		x+1	x
x	x	x + 1	0	1
x + 1	x+1	x+1 x	1	0

Multiplication: