

Chung-Han Liang, Da-Yuan Huang, Bing-Yu Chen

Background

- Interfaces for virtual human avatar controlling are widely used in gaming, digital storytelling and animation editing
 - Human avatars are very common
- Novel interfaces utilize <u>user's performances</u>, which provides intuitiveness, enjoyment interaction
 - Wii, Kinect, Switch,...

Background – Related work

- **Finger-walking** is a common performance for mimicking leg motion and has been adopted for avatar manipulation in following research
- FingerWalking [SCA 2012]
 - Identify that finger-walking is widely accepted by casual users
 - Use touchpad to collect contact information for locomotion generation
- Motion Editing with Data Glove [ACE 2004]
 - Use data glove to collect finger joint rotation for gait generation
- Both of them proposed a non-real time manipulation for animation editing, and only focus on walking

Background – Related work

- What's the actual mapping of Finger-walking?
- Miniature Haptics [CHI 2020]
 - Explored a skeletal mapping of haptic feedback between full-body and hand
 - Aim to provide a strong sense of embodiment
 - We are interested in adopting this mapping for avatar manipulation

Pilot study

• Goal:

- 1. Verify if naïve users prefer to use the finger-walking mapping for human avatar controlling
- Explore types of finger-walking movement they want to used for manipulating human avatar
- Interviewing 5 casual participants
 - Showing replays of 28 sports from Tokyo 2020 Olympics
 - Ask them to choose the best way to perform movement of the athlete
 - Between finger-walking movement, self-design hand gesture and body movement
- Half of the sports are preferred to be represented via finger-walking
- 7 types of finger-walking gestures are identified, and 5 of them are preferred by participants. We implement 4 of them in our application.

What problem are we going to solve?

Capture

We aim to achieve a retargeting method

Retarget

The proposed retargeting method

Result – Computation time and visualization

• Average computation cost is 34.03 ms \approx 30 Hz

Result – Digital storytelling prototype

Body motion	Finger-walking performance
Run	Run
Front kick	Kick
Side kick	Side split
Double leg jump	Crouch
Joyful jump	Crouch

 Adopting hardware solution of the hand pose estimation can improve the detection accuracy and delay time

Interface with finger performances expressing upper body actions

• Example animation includes frames that has **similar lower body motions** but **slightly different upper body motion** can cause ambiguity when performing <u>full-body pose reconstruction</u>.

Thank you for listening

