Diffusion pour des trajectoires

Amina MANSEUR ENSAE 2A

Année scolaire 2023/2024

Maîtres de stage : Badih GHATTAS, Georges OPPENHEIM Aix Marseille School of Economics, Université d'Aix Marseille

Plan de la présentation

- 1 Introduction et problématique
- 2 Partie théorique : les modèles de diffusion
 - Idée générale
 - Un modèle adapté aux séries temporelles
- 3 Partie application : Données et génération
 - Données d'entraînement et faits stylisés
 - Simulations réalisées
 - Évaluation de la qualité de la génération
- Conclusion
- 6 Annexe

Introduction et problématique
Partie théorique : les modèles de diffusion
Partie application : Données et génération
Conclusion
Références
Annexe

Introduction et problématique

Introduction générale

Contexte : Données financières rares et coûteuses.

Méthode : Modèles génératifs de diffusion, une alternative aux approches traditionnelles (GANs, VAEs).

Objectif : Produire des signaux unidimensionnels réalistes et diversifiés => augmentation des données.

Introduction et problématique
Partie théorique : les modèles de diffusion
Partie application : Données et génération
Conclusion
Références
Annexe

Enjeux du projet

Explorer les modèles de diffusion pour séries temporelles.

Introduction et problématique
Partie théorique : les modèles de diffusion
Partie application : Données et génération
Conclusion
Références
Annexe

Enjeux du projet

Explorer les modèles de diffusion pour séries temporelles.

Évaluer la qualité des signaux générés selon des critères usuels :

Explorer les modèles de diffusion pour séries temporelles.

Évaluer la qualité des signaux générés selon des critères usuels :

• Similarité des distributions.

Explorer les modèles de diffusion pour séries temporelles.

Évaluer la qualité des signaux générés selon des critères usuels :

- Similarité des distributions.
- Diversité des données produites.

Explorer les modèles de diffusion pour séries temporelles.

Évaluer la qualité des signaux générés selon des critères usuels :

- Similarité des distributions.
- Diversité des données produites.
- Simplicité et interprétabilité du modèle.

Explorer les modèles de diffusion pour séries temporelles.

Évaluer la qualité des signaux générés selon des critères usuels :

- Similarité des distributions.
- Diversité des données produites.
- Simplicité et interprétabilité du modèle.

Proposer des métriques adaptées aux caractéristiques statistiques particulières des signaux financiers.

Idée générale Un modèle adapté aux séries temporelles

Partie théorique : les modèles de diffusion

Annexe

Idée générale Un modèle adapté aux séries temporelles

Modèle de diffusion : définition et objectifs

Problème : Générer de nouvelles données à partir d'une distribution p_0 inconnue.

Annexe

Problème : Générer de nouvelles données à partir d'une distribution p_0 inconnue.

Annexe

Objectif: Apprendre la distribution de données réelles p_0 à partir d'un échantillon $\{\mathbf{x}_0^i\}_{i=1}^N \subset \mathbb{R}^d$.

Problème : Générer de nouvelles données à partir d'une distribution p_0 inconnue.

Annexe

Objectif: Apprendre la distribution de données réelles p_0 à partir d'un échantillon $\{x_0^i\}_{i=1}^N \subset \mathbb{R}^d$.

Approche des modèles de diffusion en deux étapes :

Problème : Générer de nouvelles données à partir d'une distribution p_0 inconnue.

Objectif: Apprendre la distribution de données réelles p_0 à partir d'un échantillon $\{\mathbf{x}_0^i\}_{i=1}^N \subset \mathbb{R}^d$.

Approche des modèles de diffusion en deux étapes :

 $\textbf{Bruitage} : Ajout \ itératif \ d'un \ bruit \ a \ un \ signal \ initial \ \textbf{x}_0 \ en \ \mathcal{T} \ \text{\'etapes}.$

Figure – Illustration des processus de bruitage et de débruitage

Problème : Générer de nouvelles données à partir d'une distribution p_0 inconnue.

Objectif: Apprendre la distribution de données réelles p_0 à partir d'un échantillon $\{\mathbf{x}_0^i\}_{i=1}^N \subset \mathbb{R}^d$.

Approche des modèles de diffusion en deux étapes :

Bruitage : Ajout itératif d'un bruit à un signal initial \mathbf{x}_0 en T étapes. **Débruitage** : Apprendre la transition entre un signal bruité à l'étape t et un signal à l'étape t-1.

Figure – Illustration des processus de bruitage et de débruitage

Un modèle adapté aux séries temporelles : Diffusion-TS, (YUAN et QIAO 2024).

Annexe

Le processus de diffusion directe est :

• Distribution des échantillons inconnue : $p_0(\mathbf{x}_0)$

Un modèle adapté aux séries temporelles : Diffusion-TS, (YUAN et QIAO 2024).

Le processus de diffusion directe est :

- Distribution des échantillons inconnue : $p_0(\mathbf{x}_0)$
- Ajout d'un bruit Gaussien entre chaque étape selon le noyau de transition : $p_{t|t-1}(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\sqrt{1-\beta_t}\mathbf{x}_{t-1},\beta_t\mathbf{I}_d)$

$$\forall t \in \{1, \dots, T\}: \quad \mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \sqrt{\beta_t} \mathbf{z}_t \quad \text{où} \quad z_t \overset{\text{i.i.d.}}{\sim} \textit{N}(0, \textit{I}_d)$$

et (β_t) un ensemble fixé de paramètres contrôlant le bruit ajouté.

Un modèle adapté aux séries temporelles : Diffusion-TS, (YUAN et QIAO 2024).

Le processus de diffusion directe est :

- Distribution des échantillons inconnue : $p_0(\mathbf{x}_0)$
- Ajout d'un bruit Gaussien entre chaque étape selon le noyau de transition : $p_{t|t-1}(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\sqrt{1-\beta_t}\mathbf{x}_{t-1},\beta_t\mathbf{I}_d)$

$$\forall t \in \{1, \dots, T\}: \quad \mathbf{x}_t = \sqrt{1 - \beta_t} \mathbf{x}_{t-1} + \sqrt{\beta_t} \mathbf{z}_t \quad \text{où} \quad z_t \overset{\text{i.i.d.}}{\sim} \textit{N}(\mathbf{0}, \textit{I}_d)$$

et (β_t) un ensemble fixé de paramètres contrôlant le bruit ajouté.

• Ajout de bruit en une étape, selon le noyau de transition :

$$p_{t|0}(\mathbf{x}_t|\mathbf{x}_0) = N(\sqrt{\bar{lpha}_t}\mathbf{x}_0, (1-ar{lpha}_t)\mathbf{I}_d)$$
, avec $lpha_t = 1-eta_t$ et $ar{lpha}_t = \prod_{k=1}^t lpha_k$

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon_t \quad \text{où} \quad \varepsilon_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \mathbf{I}_d). \tag{1}$$

Le processus de diffusion indirecte, en partant d'un échantillon $\mathbf{x}_{\mathcal{T}}$ de $p_{\mathcal{T}} \approx \mathcal{N}(0, \mathbf{I}_d)$, est :

Annexe

• Chaîne de Markov : $p_{t-1|t}(\mathbf{x}_{t-1}|\mathbf{x}_t) = N(\mu_{\theta}(\mathbf{x}_t, t), \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t \mathbf{I}_d)$.

Le processus de diffusion indirecte, en partant d'un échantillon $\mathbf{x}_{\mathcal{T}}$ de $p_{\mathcal{T}} \approx \mathcal{N}(0, \mathbf{I}_d)$, est :

Annexe

- Chaîne de Markov : $p_{t-1|t}(\mathbf{x}_{t-1}|\mathbf{x}_t) = N(\mu_{\theta}(\mathbf{x}_t, t), \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t \mathbf{I}_d)$.
- ullet Estimation de heta par maximum de vraisemblance.

Le processus de diffusion indirecte, en partant d'un échantillon $\mathbf{x}_{\mathcal{T}}$ de $p_{\mathcal{T}} \approx \mathcal{N}(0, \mathbf{I}_d)$, est :

Annexe

- Chaîne de Markov : $p_{t-1|t}(\mathbf{x}_{t-1}|\mathbf{x}_t) = N(\mu_{\theta}(\mathbf{x}_t, t), \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}\beta_t \mathbf{I}_d)$.
- ullet Estimation de heta par maximum de vraisemblance.
- Revient à minimiser l'écart entre : $\tilde{\mu}(\mathbf{x}_t, \mathbf{x}_0) = \sqrt{\alpha_t} \frac{1 \tilde{\alpha}_{t-1}}{1 \tilde{\alpha}_t} \mathbf{x}_t + \sqrt{\frac{\tilde{\alpha}_{t-1}}{1 \tilde{\alpha}_t}} \mathbf{x}_0$ et $\mu_{\theta}(\mathbf{x}_t, t) = \sqrt{\alpha_t} \frac{1 \tilde{\alpha}_{t-1}}{1 \tilde{\alpha}_t} \mathbf{x}_t + \sqrt{\frac{\tilde{\alpha}_{t-1}}{1 \tilde{\alpha}_t}} \hat{\mathbf{x}}_0(\mathbf{x}_t, t, \theta)$ pour tout t.

Estimation de \mathbf{x}_0 par $\hat{\mathbf{x}}_0(\mathbf{x}_t, t, \theta)$, pour chaque étape t, obtenu par le modèle de paramètres θ , entraîné en minimisant la perte :

Annexe

$$\mathcal{L}_{\theta} = \mathbb{E}_{t,\mathbf{x}_0} \left[w_t \left[\lambda_1 \| \mathbf{x}_0 - \hat{\mathbf{x}}_0(\mathbf{x}_t, t, \theta) \|^2 + \lambda_2 \| \mathcal{F}\mathcal{F}\mathcal{T}(\mathbf{x}_0) - \mathcal{F}\mathcal{F}\mathcal{T}(\hat{\mathbf{x}}_0(\mathbf{x}_t, t, \theta)) \|^2 \right] \right]$$
(2)

avec $w_t = f(\beta_t, t)$ et λ_1 , λ_2 des réels.

Entraînement

Figure - Principe de l'entraînement de Diffusion-TS

Annexe

Figure – Principe de la génération de Diffusion-TS

<u>Génération</u>: à partir d'un bruit blanc gaussien \mathbf{x}_T , on débruite le signal de manière itérative, pour $t \in \{1, \dots, T\}$:

$$\mathbf{x}_{t-1} = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t}\hat{\mathbf{x}}_0(\mathbf{x}_t, t, \theta^*) + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}\mathbf{x}_t + \sqrt{\frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t}\mathbf{z}_t, \quad \mathbf{z}_t \overset{\text{i.i.d.}}{\sim} \textit{N}(0, \textit{I}_d)$$

Données d'entraînement et faits stylisés Simulations réalisées Évaluation de la qualité de la génération

Partie application : Données et génération

Annexe

Données d'entraînement et faits stylisés

Les données :

- Évolution temporelle du prix des produits financiers les plus capitalisés du S&P500 : 2400 jours du 2 janvier 2015 au 17 juillet 2024.
- Évolution temporelle du prix du Bitcoin : 2 416 722 minutes du 1er janvier 2017 à 00h00 au 6 août 2021 à 06h42.

Les faits stylisés considérés :

- Absence d'autocorrélations des rendements.
- Existence de clusters de volatilité des rendements.
- Présence de queues de distributions des rendements lourdes.

Definition

Le rendements logarithmique à l'instant t est défini comme le logarithme du ratio des prix successifs :

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right)$$

où P_t est le prix de l'actif à l'instant t.

Annexe

Données d'entraînement et faits stylisés

Les données du Bitcoin :

Figure - Evolution temporelle du prix

Figure – Evolution temporelle des rendements

Figure – Volatilité des rendements (fenêtre glissante de 60h)

Figure - QQ plot des rendements

Simulations réalisées

Données d'entraînement : séries bidimensionnelles de longueur 120 (Bitcoin en minute et S&P500 en jours)

Annexe

Les critères de qualité considérés

- Critères graphiques (évolutions temporelles des prix, rendements et volatilité, QQ plot, ACF, réduction de la dimensionnalité).
- Tests statistiques (ADF et Ljung-Box).
- Caractéristiques statistiques (Coefficient de Hurst et Kurtosis).
- Distances (L2, Divergence KL-Fourier, Wasserstein-Fourier (CAZELLES, ROBERT et TOBAR 2020))

Données d'entraînement et faits stylisés Simulations réalisées Évaluation de la qualité de la génération

Évaluation de la qualité de la génération

Annexe

Méthode 1 : Comparaison simple entre signal initial et signal généré

Figure – Schéma explicatif de la méthode 1

Limite de la méthode :

Le signal bruité \mathbf{x}_T , est distribué selon une densité de probabilité gaussienne dont le bruit ajouté masque en grande partie le signal initial \mathbf{x}_0 , \mathbf{x}_T n'est donc pas associé de façon unique au signal \mathbf{x}_0 , ce qui peut altérer la qualité de la comparaison.

Méthode 1 : Résultats

Annexe

Figure – Évolution temporelle du prix du Bitcoin : en haut, la première coordonnée ; en bas, la deuxième coordonnée

Références Annexe

Figure - ACF des rendements : à gauche, série originelle ; à droite, série générée

Méthode 1 : Résultats

- Points positifs :
 - Relations temporelles entre les coordonnées de la série bien capturées.
 - Reproduction des queues de distribution des rendements lourdes (QQ plot et valeurs positives des Kurtosis des rendements).
 - ullet Densités spectrales de puissance proches (Wasserstein-Fourier $\sim 10^{-3}$)

Annexe

 Points négatifs: Autocorrélations des rendements plus importantes pour les données générées (ACF et test de Ljung-Box).

Méthode 2 : Génération multiple et moyenne des signaux

Annexe

Figure – Schéma explicatif de la méthode 2

Limite de la méthode : :

La courbe moyenne obtenue est lissée et les caractéristiques importantes des séries comme les tendances, les saisonnalités et le bruit sont atténuées.

Méthode 2 : Résultats

Annexe

Figure – À gauche : Évolution temporelle des prix du S&P 500; à droite : Évolution temporelle des rendements du S&P 500

• Point négatif : Perte d'information concernant les fluctuations des prix et rendements dû au calcul de la moyenne des séries générées.

Méthode 3 : Génération multiple et comparaison individuelle des signaux générés

Annexe

Figure – Schéma explicatif de la méthode 3

Limite de la méthode : :

• Grande diversité des signaux réels existants.

L'idée :

• Observation des distributions des distances et des coefficients calculés

Figure - L2

Figure - KL-Fourier

Figure - Kurtosis

Annexe

Méthode 3 : Résultats

Points positifs:

- Faibles distances KL-Fourier et Wasserstein-Fourier entre les signaux.
- Capture la mémoire longue des séries et leur structure fréquentielle (avec coefficient de Hurst réel appartenant à la distribution des coefficients générés).

Points négatifs :

- Écarts considérables entre les kurtosis des rendements réels et issus de la génération (comportement des queues de distribution différent).
- Variabilité importante (avec écart-type de l'ordre de la moyenne) => la convergence vers le signal réel n'est pas toujours significative.

Méthode 4 : Comparaison agrégée entre données réelles et simulées

Le principe de la méthode est de :

• Comparer la distribution des données d'entraînement $\{\mathbf{x}_0^i\}_{i=1}^R$ et celle des données générées $\{\hat{\mathbf{x}}_0^i\}_{i=1}^S$ de manière agrégée.

Limite de la méthode : :

 L'analyse agrégée peut masquer des variations spécifiques et des comportements particuliers des séries individuelles. Références Annexe

Méthode 4 : Résultats

Figure – Distribution des Kurtosis (rélle et issue de la génération); Visualisations après réduction de dimension

Méthode 4 : Résultats

Points positifs:

- Diversité et structure des données d'entraînement bien capturées.
- Distribution des coefficients de Hurst (prix) et Kurtosis (prix et rendements) semblables.
- Faibles distances KL-Fourier et Wasserstein-Fourier.

Annexe

Points négatifs :

- Distribution des coefficients de Hurst des rendements présentant des différences notables.
- Comportements individuels peuvent différés (avec certaines autocorrélations des rendements trop marquées).

Introduction et problématique
Partie théorique : les modèles de diffusion
Partie application : Données et génération
Conclusion
Références
Annexe

Conclusion

Conclusion et discussion

- Exploration des modèles de diffusion pour générer des séries temporelles financières.
- Sélection d'approches et de métriques spécifiques pour mesurer la qualité de la génération.
- Étude des caractéristiques apprises malgré leur non présence dans le critère.
- Idées d'amélioration :

Affiner le critère d'apprentissage pour améliorer la qualité des données notamment par rapport aux autocorrélations des rendements.

Modèle de diffusion continu.

Utiliser d'autres modèles (Transfusion (SIKDER et AL. 2024))

Références I

SIKDER, Md Fahim et AL. (avr. 2024). "TransFusion: Generating Long, High Fidelity Time Series using Diffusion Models with Transformers". In: arXiv. eprint: 2307.12667. URL: https://doi.org/10.48550/arXiv.2307.12667.

YUAN, Xinyu et Yan QIAO (mars 2024). "Diffusion-TS: Interpretable Diffusion for General Time Series Generation". In: arXiv. arXiv: 2403.01742. arXiv: 2403.01742. URL:

https://doi.org/10.48550/arXiv.2403.01742.

Introduction et problématique
Partie théorique : les modèles de diffusion
Partie application : Données et génération
Conclusion
Références
Annexe

Annexe

Le modèle de Diffusion-TS

Caractéristiques du modèle :

- Estimation du signal réel.
- Techniques de décomposition de la série selon tendance et saisonnalité.
- Fonction de perte basée sur les transformées de Fourier.
- Architecture de type transformer.

Figure - Architecture du décodeur de Diffusion-TS

Premières expériences

Paramètre	Valeur
Timestep T	500
Seq_length	120, 128 ou 250
Feature_size	2, 3 ou 16
Batch_size	128
n_layer_enc	3
n_layer_dec	2 ou 3
max_epochs	10000, 30000 ou 50000
save_cycle	max_epochs / 10
patience	2000, 6000 ou 10000

Figure – Valeurs des paramètres utilisées dans les expériences

Premières expériences

Paramètre	Définition
seq_length	Longueur de la série temporelle
feature_size	Nombre de coordonnées de la série
batch_size	Taille d'un lot de données dans le processus d'entraînement
	(nombre de séries temporelles dans le lot)
max_epochs	Nombre maximal d'epochs pendant lesquelles le modèle sera en-
	traîné, c'est-à-dire le nombre maximum de passages complets à
	travers l'ensemble des données d'entraînement (S dans l'algo-
	rithme 1)
save_cycle	Détermine la fréquence à laquelle le modèle est sauvegardé pen-
	dant l'entraînement
timesteps	Nombre total d'étapes de bruitage dans le processus de diffusion
n_heads	Nombre de têtes d'attention dans le mécanisme d'attention
	multi-têtes des Transformers
n_layer_encod	Nombre de couches dans le bloc encodeur du modèle
n_layer_dec	Nombre de couches dans le bloc décodeur du modèle
patience	Nombre d'epochs à attendre sans amélioration avant d'arrêter
	l'entraînement (permet d'éviter l'overfitting)

Algorithme d'entraînement

Algorithm 1: Boucle d'entraînement

```
Input: S : Nombre de pas d'entraînement, N : Nombre de batchs avant
        mise à jour des paramètres, b : Taille d'un batch de données
s \leftarrow 0 while s < S do
    total loss \leftarrow 0:
    for n = 1 to N do
        Charger le batch de données S_n: \{\mathbf{x}_0^i\}_{i=1}^b;
        Calculer la perte sur le batch des données S_n: loss/N;
        Calculer et accumuler les gradients:
        total\_loss \leftarrow total\_loss + loss;
    Mise à jour des paramètres \theta_s avec l'optimiseur Adam;
    Ajuster le taux d'apprentissage \eta_s;
    s \leftarrow s + 1:
    Mettre à jour la moyenne mobile exponentielle : \bar{\theta}_{s+1} \leftarrow \beta \bar{\theta}_s + (1-\beta)\theta_s;
```

Algorithme d'entraînement

Figure – Calcul de la perte dans un batch de données 😩 🔻 😩 🦠

Fonction d'autocorrélation (ACF) : L'ACF d'une série temporelle $\{X_t\}_{t=1}^N$ à un lag k est définie par :

$$ACF(k) = \frac{\sum_{t=1}^{N-k} (X_t - \bar{X})(X_{t+k} - \bar{X})}{\sum_{t=1}^{N} (X_t - \bar{X})^2}$$

où
$$\bar{X} = \frac{1}{N} \sum_{t=1}^{N} X_t$$
.

L'ACF prend des valeurs entre -1 et +1. Elle est positive lorsqu'il existe une corrélation positive entre les valeurs à des moments espacés par k, négative lorsqu'il y a une corrélation inverse et nulle lorsqu'il n'y a pas de corrélation à ce lag.

Réduction de la dimensionnalité

- ACP: projette les données dans un espace de plus faible dimension tout en maximisant la variance des données projetées (projection sur le sous-espace des k vecteurs propres associés k plus grandes valeurs propres de la matrice de covariance).
- **t-SNE** : réduit les dimensions tout en préservant la structure locale en minimisant la divergence KL entre les distributions des distances dans les espaces original et réduit. Il minimise $KL(P||Q) = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$ où p_{ij} est une probabilité basée sur la distance gaussienne et q_{ij} sur une distribution t de Student.
- KDE: méthode non paramétrique pour estimer la densité de probabilité d'une variable aléatoire en sommant des noyaux autour des données (utilisée après l'ACP)

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

où K est une fonction noyau (par exemple, gaussienne) et h est un paramètre de lissage.

Divergence de Kullback-Leibler (KL) : La divergence KL est une mesure qui quantifie la différence entre deux distributions de probabilité P (distribution réelle) et Q (distribution approximée). Elle indique la perte d'information lorsqu'on utilise Q pour représenter P. Pour des distributions continues :

$$D_{\mathsf{KL}}(P||Q) = \int_{-\infty}^{\infty} P(x) \log \left(\frac{P(x)}{Q(x)}\right) dx$$

Distance de Wasserstein : mesure le coût minimal pour transformer une distribution en une autre. *Cas unidimensionnel* : Pour deux distributions de probabilité unidimensionnelles P et Q, définies par leurs fonctions de répartition cumulées respectives $F_P(x)$ et $F_Q(x)$, la distance de Wasserstein d'ordre 1 est donnée par :

$$W_1(P,Q) = \int_{-\infty}^{\infty} |F_P(x) - F_Q(x)| \ dx$$

où:

• $F_P(x)$ et $F_Q(x)$ représentent les probabilités cumulées des distributions P et Q à chaque point x.

Coefficient de Hurst : noté H, c'est une mesure utilisée pour quantifier la persistance ou l'antipersistante d'une série temporelle. Il est défini mathématiquement à partir de l'analyse du *rapport range étendu sur l'écart type*, souvent noté R/S, et se base sur une loi de puissance.

$$\frac{R(n)}{S(n)} \propto n^H$$

où:

- R(n): la portée (range) de la série sur une fenêtre de taille n, définie comme $\max(X_1,\ldots,X_n) \min(X_1,\ldots,X_n)$, où X_1,\ldots,X_n sont les valeurs de la série temporelle.
- S(n): l'écart-type des données sur la même fenêtre.

Interprétation du coefficient *H* :

- H = 0.5: une série **aléatoire pure** (processus de type bruit blanc).
- 0.5 < H < 1 : série persistante, c'est-à-dire que des valeurs élevées sont suivies par des valeurs élevées, et des valeurs basses par des valeurs basses.
- 0 < H < 0.5 : série **antipersistante**, où des valeurs élevées sont souvent suivies par des valeurs basses, et vice versa.

Kurtosis: Ce coefficient mesure l'épaisseur des queues de distribution des rendements en comparant le coefficient calculé à celui de la distribution normale, qui vaut 3. La formule de la Kurtosis pour une série $X = \{X_t\}_{t=1}^N$ est

$$K = \frac{\frac{1}{N} \sum_{t=1}^{N} (X_t - \bar{X})^4}{\left(\frac{1}{N} \sum_{t=1}^{N} (X_t - \bar{X})^2\right)^2}, \text{ avec } \bar{X} = \frac{1}{N} \sum_{t=1}^{N} X_t \text{ la moyenne empirique de la série.}$$

On lui soustrait habituellement la kurtosis de la distribution normale pour obtenir la kurtosis excédentaire

Interprétation de la Kurtosis excédentaire :

- Kurtosis excédentaire > 0 : queues plus épaisses
- Kurtosis excédentaire < 0 : queues plus légères
- Kurtosis excédentaire = 0 : similaire à la normale.

Test de Dickey-Fuller augmenté (ADF) : utilisé pour vérifier si une série temporelle est stationnaire.

Hypothèses:

 H_0 (hypothèse nulle) : La série a une racine unitaire (non stationnaire).

 H_1 (hypothèse alternative) : La série est stationnaire.

Le test repose sur l'estimation du modèle suivant pour une série temporelle y_t :

$$\Delta y_t = \phi y_{t-1} + \sum_{i=1}^{p} \gamma_i \Delta y_{t-i} + \epsilon_t$$

où:

 $\Delta y_t = y_t - y_{t-1}$ est la différence première, ϕ mesure la présence d'une racine unitaire.

 $\sum_{i=1}^{p} \gamma_i \Delta y_{t-i}$ sont des termes de retard pour gérer la corrélation entre observations successives, et ϵ_t un terme d'erreur blanc.

Statistique de test : Le test ADF vérifie la nullité du coefficient ϕ :

$$t_{\mathsf{stat}} = \frac{\hat{\phi}}{\mathsf{SE}(\hat{\phi})}$$

où $\hat{\phi}$ est l'estimation de ϕ et $\mathsf{SE}(\hat{\phi})$ est l'erreur standard associée.

Test de Ljung-Box : utilisé pour détecter la présence d'autocorrélations significatives dans une série temporelle, jusqu'à un certain décalage m.

Hypothèses

 ${\it H}_0$ (hypothèse nulle) : La série est aléatoire (aucune autocorrélation significative).

 ${\it H}_{1}$ (hypothèse alternative) : La série présente une autocorrélation significative.

Statistique de test Le test calcule la statistique ${\it Q}$ basée sur les autocorrélations de la série :

$$Q = n(n+2) \sum_{k=1}^{m} \frac{\hat{\rho}_{k}^{2}}{n-k}$$

où n est le nombre d'observations, m le nombre de décalages considérés et $\hat{\rho}_k$ l'autocorrélation estimée au décalage k.

Sous H_0 , Q suit approximativement une distribution χ^2 avec m degrés de liberté.

Si Q dépasse une valeur critique de la distribution χ^2 , on rejette H_0 , indiquant la présence d'autocorrélations significatives. Sinon, on accepte H_0 , suggérant que la série est aléatoire.

L'architecture du code

Figure - Architecture du code