Project 1

Markel Pisano 540002615

markel.p@digipen.edu

1. Description of the problem

(Wikipedia, a)

Given a set of n+1 data points (x_i, y_i) where no two x_i are the same, a polynomial $p: \mathbb{R} \to \mathbb{R}$ is said to *interpolate* the data if $p(x_j) = y_j$ for each $j \in \{0, 1, ..., n\}$.

2. Mathematical explanation of numerical methods

2.1 Gauss-Jordan

(Wikipedia, c)

Suppose that the interpolation polynomial is in the form

$$p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$
(1)

The statement that p interpolates the data points means that

$$p(t_i) = x_i \text{ for all } i \in \{0, 1, ..., n\}$$
 (2)

If we substitute equation (1) in here, we get a system of linear equations in the coefficients a_k . The system in matrix-vector form reads the following multiplication:

$$\begin{bmatrix} t_0^n & t_0^{n-1} & \cdots & t_0 & 1 \\ t_1^n & t_1^{n-1} & \cdots & t_1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ t_n^n & t_n^{n-1} & \cdots & t_n & 1 \end{bmatrix} \begin{bmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_0 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$
(3)

We have to solve this system for a_k to construct the interpolant p(x). The matrix on the left is commonly referred to as a *Vandermonde matrix*.

The condition number of the $Vandermonde\ matrix$ may be large causing large errors when computing the coefficients a_i if the system of equations is solved using **Gaussian** elimination.

2.2 Lagrange

(Wikipedia, d)

Given a set of k + 1 data points

$$(x_0, y_0), ..., (x_i, y_i), ..., (x_k, y_k)$$
 (4)

where no two x_j are the same, the interpolation polynomial in the Lagrange form is a linear combination

$$L(x) := \sum_{j=0}^{k} y_j l_j(x) \tag{5}$$

of Lagrange basis polynomials

$$l_j(x) := \prod_{\substack{0 \le m \le k \\ m \ne j}} \frac{x - x_m}{x_j - x_m} = \frac{x - x_0}{x_j - x_0} \cdots \frac{x - x_{j-1}}{x_j - x_{j-1}} \frac{x - x_{j+1}}{x_j - x_{j+1}} \cdots \frac{x - x_k}{x_j - x_k}$$
(6)

where $0 \le j \le k$. Note how, given the initial assumption that no two x_j are the same, then (when $m \ne j)x_j - x_m \ne 0$, so this expression is always well-defined. The reason pairs $x_i = x_j$ with $y_i \ne y_j$ are not allowed in that no interpolation function L such that $y_i = L(x_i)$ would exist; a function can only get one value for each argument x_i . On the other hand, if also $y_i = y_j$, then those two points would actually be one single point.

For all $i \neq j, l_j(x_i)$ includes the term $(x - x_i)$ in the enumerator, so the whole product will be zero at $x = x_i$:

$$\forall (j \neq i) : l_j(x_i) := \prod_{m \neq i} \frac{x_i - x_m}{x_j - x_m} = \frac{x_i - x_0}{x_j - x_0} \cdots \frac{x_i - x_i}{x_j - x_{j-1}} \cdots \frac{x_i - x_k}{x_j - x_k} = 0 \tag{7}$$

On the other hand,

$$l_j(x_j) := \prod_{m \neq j} \frac{x_j - x_m}{x_j - x_m} = 1 \tag{8}$$

In other words, all basis polynomials are zero at $x = x_j$, except $l_j(x)$, for which it holds that $l_j(x_j) = 1$, because it lacks the $(x - x_j)$ term.

It follows that $y_j l_j(x_j) = y_j$, so at each point x_j , $L(x_j) = y_i + 0 + 0 + \cdots + 0 = y_j$, showing that L interpolates the function exactly.

2.3 Newton

(Wikipedia, e)

Given a set of k + 1 data points

$$(x_0, y_0), \cdots, (x_i, y_i), \cdots, (x_k, y_k)$$
 (9)

where no two x_j are the same, the Newton interpolation polynomial is a linear combination of **Newton basis polynomials**

$$N(x) := \sum_{j=0}^{k} a_j n_j(x) \tag{10}$$

with the Newton basis polynomials defined as

$$n_j(x) := \prod_{i=0}^{j-1} (x - x_i)$$
(11)

for j > 0 and $n_0(x) \equiv 1$.

The coefficients are defined as

$$a_j := f[y_0, \cdots, y_j] \tag{12}$$

where $f[y_0, \dots, y_j]$ is the notation for the divided differences.

Thus the Newton polynomial can be written as

$$N(x) = f[y_0] + f[y_0, y_1](x - x_0) + \dots + f[y_0, \dots, y_k](x - x_0)(x - x_1) \dots (x - x_{k-1})$$
 (13)

Divided Differences

(Wikipedia, b)

Given k + 1 data points

$$(x_0, y_0), \cdots, (x_k, y_k) \tag{14}$$

The **forward divided differences** are defined as:

$$f[y_v] := y_v, \quad v \in \{0, \cdots, k\}$$
 (15)

$$f[y_v, \cdots, y_{v+j}] := \frac{[y_{v+1}, \cdots, y_{v+j}] - [y_v, \cdots, y_{v+j-1}]}{x_{v+j} - x_v}, \quad v \in \{0, \cdots, k-j\}, j \in \{1, \cdots, k\}$$
(16)

To make the recursive process more clear, the divided differences can be put in a tabular form:

3. Code implementation

The implemented solution is called from interpolation.m and takes a file single argument to read input from. It is called in the following way:

$$interpolation('input_data')$$
 (18)

3.1 Gauss-Jordan

For each axis computes k+1 coefficients for a polynomial in standard basis. Coefficient computation is done by extracting the last column in the *RREF* resultant matrix. The matrix is composed of k+1 rows of $v(t_i) = [1, t, t^2, \dots, t^k]$, where t_i is the value from the **mesh selected**.

3.2 Lagrange

For each axis computes every node in the grid by applying $O(n^2)$ complexity algorithm to compute the Lagrange basis.

3.3 Newton

For each axis computes every node in the grid with Newton method. Due to the increasing computational cost of a recursive approach at **divide difference** computation, a dynamic solution is used instead.

Using a triangular structure, where each level's element count is Lvl(i) = N - i, where $i \in \{0, \dots, N-1\}$ and N is input point count, each level's data is filled bottom up.

4. Examples

6 Points

15 points

5. Observations

By observing the example images it can be conclude that Gauss-Jordan method, although being the fastest at computation time, perform poorly with polynomials of high degree.

For a 6^{th} degree curve each 3 methods have a precise result, but as degrees are added to the polynomial, Gauss-Jordan loses lot of precision, while Lagrange and Newton don't.

References

- Wikipedia. Polynomial interpolation. https://en.wikipedia.org/wiki/Polynomial_interpolation#Definition, a.
- Wikipedia. Constructing the interpolation polynomial. https://en.wikipedia.org/wiki/Divided_differences, b.
- Wikipedia. Constructing the interpolation polynomial. https://en.wikipedia.org/wiki/Polynomial_interpolation#Constructing_the_interpolation_polynomial, c.
- Wikipedia. Constructing the interpolation polynomial. https://en.wikipedia.org/wiki/Lagrange_polynomial#Definition, d.
- Wikipedia. Constructing the interpolation polynomial. https://en.wikipedia.org/wiki/Newton_polynomial#Definition, e.