# ECEN 3714-----Network Analysis Cover Sheet for Lab 3 to 11

**Spring 2022** 

**Lab** #\_\_\_\_\_\_

**Topic: Active Low Pass Filter** 

# Final Report (Pre-lab + Post-lab)

| Name of Group Members:      |                           |  |  |  |
|-----------------------------|---------------------------|--|--|--|
| Name (Print): Roger Bennett | Name (Print): Thomas Kidd |  |  |  |
| Signature: Reger M. Bennett | Signature: Thomas Kidd    |  |  |  |
| TA Signature:               | •                         |  |  |  |

#### 1. Introduction

1.1. In this lab we are dealing with a First-Order active low pass circuit and examining the circuit's frequency-response and assessing the load dependence of the First-Order low pass circuit. We will be using a capacitor and resistors alongside an Op-Amp

## 2. Pre-Lab Assignment:

2.1. Calculate the Cutoff Frequency of the Low-Pass Filter

$$f_C = \frac{1}{2\pi RC} = \frac{1}{2\pi (1k\Omega)(100nF)} = 1591.5Hz$$

2.2. PreLab Question 2



Figure 1 - Magnitude Response of Circuit

|          | Evaluate | Measurement                | Value     |
|----------|----------|----------------------------|-----------|
|          | ~        | Cutoff_Lowpass_3dB(V(out)) | 1.58777k  |
| •        | ~        | YatX(P(V(out)), 1587)      | -44.91797 |
| <u> </u> |          | Tab(r(v(out)), 1301)       | -44.51    |

Figure 2 - Cutoff Frequency and Phase Shift



Figure 3 - Phase Response of Circuit

As seen in Figure 2, our cutoff frequency is equivalent to what we calculated in section 2.1. The phase shift is negative as expected for a low pass filter.

#### 2.3. Filter Under Load:



Figure 4 - Magnitude Response for a  $4k\Omega$  load and cutoff frequency



Figure 5 - Magnited Response for a  $40k\Omega$  load and cutoff frequency

As seen both in *Figure 4* and *Figure 5*, regardless of the load, using an active filter does not change the magnitude response of the circuit. This can also be seen in each image with the cutoff frequency not changing.

#### 2.4. Passive Filter



Figure 6 -  $4k\Omega$  load for passive circuit and cutoff frequency



Figure 7 -  $40k\Omega$  load for passive circuit and cutoff frequency

As seen in both Figure 6 and Figure 7, with a passive filter when a load is applied the cutoff frequency changes based on the load.

# 3. Assignments:

## 3.1. Assignment 1:



Figure 8 - 100Hz Frequency



Figure 9 - 1.59kHz Frequency



Figure 10 - 100kHz Frequency

| Frequency              | Magnitude Response | Phase Response (°) |
|------------------------|--------------------|--------------------|
| 100Hz                  | 10.6v              | -5.735°            |
| 200Hz                  | 10.6v              | -10.10°            |
| 500Hz                  | 10.2v              | -17.59°            |
| 1kHz                   | 9.0v               | -31.72°            |
| 1.59kHz (Cut-off Freq) | 7.28v              | -45.54°            |
| 2kHz                   | 6.4v               | -53.30°            |
| 5kHz                   | 3.08v              | -72.24°            |
| 10kHz                  | 1.68v              | -88.04°            |
| 20kHz                  | .880v              | -96.01°            |
| 50kHz                  | .296v              | -118.8°            |
| 100kHz                 | .120v              | -141.0°            |



Figure 11 - Magnitude Response Plot from table above



Figure 12 - Phase Response graph from table above

## 3.2. Assignment 2:

After adding a  $5.6k\Omega$  Load to the circuit we discovered that it had no effect on the output of the circuit.

3.3.

| Frequency                    | Magnitude Response<br>(No Load) | Magnitude Response<br>(4kΩ Load) | Magnitude Response<br>(40kΩ Load) |
|------------------------------|---------------------------------|----------------------------------|-----------------------------------|
| 100Hz                        | 1.10v                           | .900v                            | 1.08v                             |
| 200Hz                        | 1.10v                           | .880v                            | 1.06v                             |
| 500Hz                        | 1.06v                           | .880v                            | 1.02v                             |
| 1kHz                         | .940v                           | .820v                            | .940v                             |
| 1.59kHz<br>(Cut-off<br>Freq) | .800v                           | .720v                            | .800v                             |
| 2kHz                         | .640v                           | .660v                            | .720v                             |
| 5kHz                         | .328v                           | .400v                            | .400v                             |
| 10kHz                        | .184v                           | .260v                            | .260v                             |
| 20kHz                        | .112v                           | .180v                            | .180v                             |
| 50kHz                        | .064v                           | .140v                            | .140v                             |
| 100kHz                       | .048v                           | .120v                            | .120v                             |



Figure 13: Assignment 3 - MATLAB Plot

#### 4. Discussion

- 4.1. We learned what low pass filters are and how to construct them. We also learned about the cut off frequency and what effect it has on the circuit. Low pass filters can achieve a gain higher than 1. Active low pass filters are good at handling any kind of load and maintaining the desired cutoff frequency. Passive low pass filters will change their cutoff frequency as the load changes in resistance. This can lead to undesired cutoff frequencies which can hinder the application of the device.
- 4.2. With a Passive Low-Pass Filter, when the load resistance becomes lower the Cut-off Frequency with that load will become greater. As seen in section 2.4 of the lab report.
- 4.3. Vin leads Vout in the time domain for the filter in this lab, this is given by the negative degree change from out to in, showing that Vin leads Vout.