13) Correlated Random Effects (CRE)

Vitor Kamada

August 2018

Vella and Verbeek (1998)

$$Log(wage)_{it} = \beta_0 + \beta_1 Union_{it} + X_{it} + u_{it}$$

use wagepan.dta

sum lwage educ black hisp exper married union

Variable	Obs	Mean	Std. Dev.	Min
lwage	4,360	1.649147	.5326094	-3.579079
educ	4,360	11.76697	1.746181	3
black	4,360	.1155963	.3197769	0
hisp	4,360	.1559633	.3628622	0
exper	4,360	6.514679	2.825873	0
married	4,360	. 4389908	. 4963208	0
union	4,360	.2440367	.4295639	0
			10710714	

Vitor Kamada ECO 7110 Econometrics II August 2018 2 / 13

Compare OLS, RE, and FE

xtset nr year

reg lwage educ black hisp exper expersq married union i.year estimates store OLS

xtreg lwage educ black hisp exper expersq married union i.year, re estimates store RE

xtreg lwage educ black hisp exper expersq married union i.year, fe estimates store FE

3/13

estimates table OLS RE FE, b(%7.4f) se

Variable	OLS	RE	FE
educ	0.0913	0.0919	(omitted)
	0.0052	0.0107	
black	-0.1392	-0.1394	(omitted)
	0.0236	0.0477	
hisp	0.0160	0.0217	(omitted)
	0.0208	0.0426	
exper	0.0672	0.1058	0.1321
	0.0137	0.0154	0.0098
expersq	-0.0024	-0.0047	-0.0052
	0.0008	0.0007	0.0007
married	0.1083	0.0640	0.0467
	0.0157	0.0168	0.0183
union	0.1825	0.1061	0.0800
	0.0172	0.0179	0.0193

 Vitor Kamada
 ECO 7110 Econometrics II
 August 2018 4 / 13

Hausman Test (1978)

$$H = (\hat{\delta}_{FE} - \hat{\delta}_{RE})'[Avar(\hat{\delta}_{FE}) - Avar(\hat{\delta}_{RE})]^{-1}(\hat{\delta}_{FE} - \hat{\delta}_{RE})$$

 $H \sim \chi_M^2$, where M is the vector of regressors varying across i and t

Hausman Test has no power under violation of assumption RE.3

Vitor Kamada ECO 7110 Econometrics II August 2018 5/13

hausman FE RE

	Coeffi			
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	FE	RE	Difference	S.E.
exper	.1321464	.1057545	.0263919	
expersq	0051855	0047239	0004616	.0001443
married	.0466804	.063986	0173057	.0073414
union	.0800019	.1061344	0261326	.0073572
year				
1981	.0190448	.040462	0214172	
1982	011322	.0309212	0422431	
1983	0419955	.0202806	0622762	
1984	0384709	.0431187	0815896	
1985	0432498	.0578155	1010653	
1986	0273819	.0919476	1193295	

b = consistent under Ho and Ha; obtained from xtreq B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

hausman FE RE, sigmamore

	Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	FE	RE	Difference	S.E.
exper	.1321464	.1057545	.0263919	
expersq	0051855	0047239	0004616	.0001533
married	.0466804	.063986	0173057	.0074632
union	.0800019	.1061344	0261326	.0074922
year				
1981	.0190448	.040462	0214172	
1982	011322	.0309212	0422431	
1983	0419955	.0202806	0622762	
1984	0384709	.0431187	0815896	
1985	0432498	.0578155	1010653	
1986	0273819	.0919476	1193295	

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

Vitor Kamada ECO 7110 Econometrics II August 2018

Correlated Random Effects - Mundlak (1978)

$$y_{it} = x_{it}\beta + c_i + u_{it}$$
$$x_{it}\beta = z_i\gamma + w_{it}\delta$$
$$c_i = \psi + \bar{w}_i\xi + \alpha_i$$

$$y_{it} = x_{it}\beta + \bar{w}_i\xi + \alpha_i + u_{it}$$

$$\hat{\beta}_{CRE} = \hat{\beta}_{FE}$$

Create Variables for CRE

```
egen experbar = mean(exper), by(nr)
egen expersqbar = mean(expersq), by(nr)
egen marriedbar = mean(married), by(nr)
egen unionbar = mean(union), by(nr)
```

	nr	year	union	unionbar	exper	experbar
1.	13	1980	0	.125	1	4.5
2.	13	1981	1	.125	2	4.5
3.	13	1982	0	.125	3	4.5
4.	13	1983	0	.125	4	4.5
5.	13	1984	0	.125	5	4.5
6.	13	1985	0	.125	6	4.5
7.	13	1986	0	.125	7	4.5
8.	13	1987	0	.125	8	4.5
9.	17	1980	0	0	4	7.5
10.	17	1981	0	0	5	7.5

xtreg lwage educ black hisp exper expersq married union experbar expersqbar marriedbar unionbar i.year , re

lwage	Coef.	Std. Err.	Z	P> z
educ black hisp exper expersq married union experbar	.0946036	.0109043	8.68	0.000
	1388124	.0488709	-2.84	0.005
	.0047758	.0426925	0.11	0.911
	.1321464	.0098247	13.45	0.000
	0051855	.0007044	-7.36	0.000
	.0466804	.0183104	2.55	0.011
	.0800019	.0193103	4.14	0.000
	1825835	.0512825	-3.56	0.000
expersqbar	.01031	.0032882	3.14	0.002
marriedbar	.0969833	.045084	2.15	0.031
unionbar	.1906747	.0504097	3.78	0.000

Vitor Kamada ECO 7110 Econometrics II August 2018 10 / 13

Test for Endogeneity

test expersqbar marriedbar unionbar

test unionbar

```
chi2(1) = 14.31
(1) unionbar = 0 Prob > chi2 = 0.0002
```

xtreg lwage educ black hisp exper expersq married union experbar expersqbar marriedbar unionbar i.year, re cluster(nr)

		Robust		
lwage	Coef.	Std. Err.	Z	P> z
educ	.0946036	.0112571	8.40	0.000
black	1388124	.0504943	-2.75	0.006
hisp	.0047758	.0386535	0.12	0.902
exper	.1321464	.0120177	11.00	0.000
expersq	0051855	.0008109	-6.39	0.000
married	.0466804	.0210207	2.22	0.026
union	.0800019	.0227614	3.51	0.000
experbar	1825835	.0467446	-3.91	0.000
expersqbar	.01031	.0028495	3.62	0.000
marriedbar	.0969833	.0448145	2.16	0.030
unionbar	.1906747	.0474693	4.02	0.000

Fully Efficient Test

test expersqbar marriedbar unionbar

```
(1) expersqbar = 0
(2) marriedbar = 0 chi2(3) = 29.87
(3) unionbar = 0 Prob > chi2 = 0.0000
```

test unionbar

```
chi2(1) = 16.13
(1) unionbar = 0 Prob > chi2 = 0.0001
```