		Supplementary - September 2022			MENOR
6	a)	$(1 + x) = ax$ (ii) $pv^2 = x(v^2 + q^2)$	6	L1	
0.	۵,	Solve (i) $p(1+q)-q^2$ (ii) p			
	b)	Solve (i) $p(1+q) = q2$ (ii) py (iii) py (iii) py (iii) py (iii) py (iii) py (iv) y (iii) y (iv) y (i			16.
		$u(x,0) = 6e^{-3x}$.	7	L2	ani 2 Maura
	-1	Derive one dimensional wave equation in the form $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	7		on: 3 Hours
	c)		7	L2	AARMATAKA
		Unit – IV) Solve
7.	a)	Evaluate $\iiint_{2}^{3} \int_{0}^{2} \int_{0}^{1} 5x^{2}y^{3}z dxdydz$			
		2 1 0	6	L1) Solve
	b)	$\int_{0}^{\infty} \int_{0}^{x^{2}} \left(e^{-x^{2}/y}\right) dv dx$) The I
	,	Change the order of integration and hence evaluate $\int_{0}^{\infty} \int_{0}^{x} x^{2} (e^{-x^{3}/y}) dy dx$.	7	L2	mater
	1			3	in 10 c
	c)	Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.	7	L2	y=;
		2			Obtain
0.	a)	Evaluate $\int_{0}^{\infty} x(8-x^3)^{\frac{1}{3}} dx$ in terms of Gamma function.			r"=
	b)		6	L1	Solve
	c)	Find the area of the cardioid $r = a(1 + \cos \theta)$. Using double integration.	7	L2	
	-	Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.	7	L2	Solve
		Unit – V			Solve
9.	a)	Find (i) $L\{\cos 2t\cos 3t\}$, (ii) $L\{e^{-4t}\int \frac{\sin 3u}{t}du\}$.			Solve
		$_{0}$	6	L2	Solve
		Rewrite $f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \cos 2t, \pi < t < 2\pi \end{cases}$ using unit step functions and find			Solve
	b)	Rewrite $f(t) = \left\{ \begin{array}{l} \cos 2t, \pi < t < 2\pi \\ \cos 3t, t > 2\pi \end{array} \right\}$ using unit step functions and find			数 版
		its Laplace transform.			paran Solve
	c)	Find the Laplace transform of	7	L2	100
		f(t) = t ; 0 < t < c = 2c -t; c < t < 2c, $f(t+2c) = f(t)$.	Siz.		Form function
10.	a)		7	L2	i) 22
		Find (i) $L^{-1}\left\{\frac{5s+1}{(s^2+2s+15)}\right\}$, (ii) $L^{-1}\left\{\log\frac{s+4}{s+5}\right\}$			488
1	6		6	L2	Solve
	0)	Using convolution theorem find $L^{-1}\left\{\frac{2}{(s^2+1)(s+1)}\right\}$			variat
	c)	Solve $y''(t) + 2y'(t) + 5y(t) = e^{-t} \sin t$: $y(0) = e^{-t} \sin t$	7	L2	Derive
		y'(0) = 1 by Laplace transform method.			
	T* D		7	L2	1
В	ID	doom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome			200
					10 10 20 00 00

5

5

NMAM INSTITUTE OF TECHNOLOGY, NITTE OF

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester B.E. (Credit System) Degree Examinations (20) Supplementary Examinations - September 2022

20MA201- ENGINEERING MATHEMATICS - II

ation: 3 Hours

Max. Marks: 100

L2

P.T.O.

3

Derive one dimensional heat flow equation in the form $\frac{\partial}{\partial t}$

Note: Answer Five full questions choosing One full question from each	h Unit.			
Unit-1	Marks	BT*	CO*	PO*
Solve $[3x^2y + 6xy + x]dx + [x^3 + 3x^2 + y]dy = 0$.	6	L*1	1	1
If a body originally is at $85^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the				
temperature of air being $40^{\circ}C$, find the temperature of the body after 40 minutes from the original.	7	L2	1	2
Solve $\cos^2 x \frac{dy}{dx} + y = \tan x$.	17	L1	1	1
Solve $\sin(px - y) = p$. Find the member of the orthogonal trajectories of the family	6	L1	1	1
$y = ke^{-2x} + 5x$ passing through the point (0, 5).	7	L2	1	2
Solve $p(p+x) = y(y+x)$.	7	L1	1	1
Unit – II				
Solve $(D^2 + 5D + 6)y = xe^{3x} + e^{2x}$.	6	L1	2	1
Solve $(D^2 - 2D + 2)y = e^x \tan x$ using the method of variation of			2	
parameters.	,	LZ	2	
Solve $x \frac{d^3 y}{dx^3} + \frac{d^2 y}{dx^2} - \frac{2y}{x^2} = x + \frac{1}{x^3}$	7	L2	2	1
$d^2v dv$				
Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \cos 4x + 5x^2$.	6	L1	2	1
Solve $(D^2 + 2D + 3)y = 5 + 7x + 3x^2$	7	L2	2	1
Solve (D ² + 2D + 1) $y = 2e^{x}+e^{2x}+7$		L	2	2 2
Unit – III				
Solve by direct integration $\frac{\partial^3 u}{\partial x \partial y^2} = \sin(5x + 2y) + 2xy$		6 L		3 1
Solve by Lagrange's method $(mz - ny)\frac{\partial z}{\partial x} + (nx - lz)\frac{\partial z}{\partial y} + mx - ly = 0$		7 L	2	3 1

		21MA2			SEE - Sept Oct. 2022				
	c)	Find t	he inv	erse La	aplace transform of $\log \frac{s^2+1}{s(s+1)}$.	6	L2	4	
7.	a)	Form const	tants /						
	L	ii)) ;	x + y +	$+by + a^{2} + b^{2};$ $-z = f(x^{2} + y^{2} + z^{2}).$	7	L2	5	tion:
	b)	Solve	e the fo	ollowing	sional wave equation in the form $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$. g PDE by direct integration method:	7	L3	5	lote:
		$\frac{\partial^3 z}{\partial x \partial y}$	2 + 12	$x^2y + $	$\sin(x-2y)=0.$	6	L2	5	Solv
8.	a)	Solve	$\frac{\partial^2 z}{\partial x^2}$	$-2\frac{\partial z}{\partial z}$	$+\frac{\partial z}{\partial y} = 0$ by the method of separation of variables.	7	12	5	temp
	b)	Solve	$e(x^2 -$	$-y^2 - 2$	$z^2)p + 2xyq = 2xz.$	7 7	L2 L2	5	minu
	c)	Solve	$= p^2 y($	$1+x^2$	$=qx^2.$	6	L2	5	Solve
BT*	Bloc	om's T	axono	my, L*	Level; CO* Course Outcome; PO* Program Outcome	е			
					******				Solve
									v=
									Solve
									0
S		2	L3	7	and singular solutions of $n = \sin(y - xp)$.				Solve
		1	12		Unit-11				Solve
		3	EJ.	7	then prove that $L(t^n f(t)) = (-1)^n \frac{d^n}{ds^n}(F(s))$, also method find the inverse Laplace transform of				Solve
		4	L2	7	transform of a "(2cos 5t - 3 sin St).				
	2	3	72	9					Solve
					tunction with period T, than prove that			-726	Solve
	-	8	L3	7				Gin	Solve
	2	3	1.2	7	theorem and the inverse Laplace transform of			1	
				0					Solve
	2	4	12	9	ing function using unit step function and find its			ewn	
					(E) 0 S t < 2			1	Solve

7 12

Derive

Max. Marks: 100

NMAM INSTITUTE OF TECHNOLOGY, NITTE OF Technology

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester B.E. (Credit System) Degree Examinations' Second Semester B.E. (Credit System)

21MA201 - ENGINEERING MATHEMATICS - II

3

L3

L2

L2

L2

(s2+a2)2 ·

ation: 3 Hours

	Vote:	Answer Five full questions choosing Two full questions from L and One full question from Unit – III.	Init – I 8	& Unit	- II e	ach	
		Unit-I	Marks	BT*	CO+	PO*	
	a)	Solve $\frac{dy}{dx} + y \tan x = y^3 \sec x$.	7	L*2	1	2	
	b)	A body originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the					
		temperature of air being $40^{\circ}C$. Find the temperature of the body after 40 minutes from the original.	7	10			
	c)	Solve $(4D^2 - 1)y = e^{2x} + 1$.	6	L3 L2	1 2	2	
1	a)	Solve $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$.	7	L2	1		
3		Solve $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$.	7	L2 L2		2	
	c)	Find the orthogonal trajectories of $\frac{x^2}{a^2} + \frac{y^2}{a^2+1} = 1$ where λ is a		LZ	2	2	
		parameter.	6	L3	1	2	
	a) b)	Solve $(D^2 + 2D + 2)y = 1 + 3x + x^2$. Using the method of variation of parameters, solve	7	L2	2	2	
5		$(D^2+1)y=\sec x\tan x.$	7	L3 L2	2	2 2	
	0)	Find the general and singular solutions of $p = \sin(y - xp)$.	6	L2	1	2	
5	18	Unit – II					
	. 2	If $L\{f(t)\} = F(s)$ then prove that $L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} (F(s))$.	7	L3	3	1	
5	3	Using partial fraction method find the inverse Laplace transform of s^2+s-2					
	廛	s(s+3)(s-2).	7	L2	4 3	2	
	3	Find the Laplace transform of $e^{-3t}(2\cos 5t - 3\sin 5t)$.	6	L2	3	2	
5	3)	If $f(t)$ is a periodic function with period T , then prove that					
5		$L\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt.$	7	L3	3	1	
	2)	Find the Laplace transform of $\int_0^t \frac{\cos at - \cos bt}{t} dt$.	7	L2	3	2	
)	Using convolution theorem find the inverse Laplace transform of					

	the following transform:	function	using	unit	step	function	and	find	its
Lupidoc	dansioiti.	(+	2	0 < t	< 2				

	f(t)	= {4,	$2 \le t < 4$ $t \ge 4$					
		(0,	t ≥ 4		7	L2	3	2
9	transform	method,	solve the	differential equation				
			$\operatorname{nd} x'(0) = 0$		7	L3	4	2

L2

21MA201
5. a) Find (i)
$$(i)L^{-1}\left\{\frac{s^2-3\,s+4}{s^3}\right\}$$
 (ii) $L^{-1}\left\{\frac{s+2}{s^2-4\,s+13}\right\}$

b) If
$$L[f(t)] = \overline{f}(s)$$
, then prove that $L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} \overline{f}(s)$ for $t \in [t^n]$

c) Find the inverse Laplace transform of
$$\frac{1}{(s^2+1)(s^2+9)}$$
 by using the convolution theorem.

6. a) Find the inverse Laplace transform of (i)
$$\log \left[\frac{s+1}{(s-1)} \right]$$
 (ii) $\frac{1-e^{-2s}}{s^2}$.

b) Express
$$f(t) = \begin{cases} t^2, 0 < t \le 3 \\ 4t, t > 3 \end{cases}$$
 in terms of unit step function and hence find its Laplace transform.

c) Find
$$L(f(t))$$
 if $f(t) = \begin{cases} t, & 0 < t < c \\ 2c - t, c \le t < 2c \end{cases}$ and $f(t+2c) = f(t)$.

L2

7

i)
$$z=(x-a)^2+(y-b)^2+5$$
 ii) $z=f(x^2+y^2)$
b) Solve $\frac{\partial^3 z}{\partial x^2 \partial y} = \sin(5x+7y)$ by direct integration.

c) Derive one dimensional wave equation in the form
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
.

8. a) Solve the following non-linear partial differential equation
$$z pq = p+q$$

b) Solve
$$(y+z)p-(x+z)q=(x-y)$$
 by Lagrange's method

c) Solve
$$\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$
 by the method of separation of variables.

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

tion: 3

ote: A

So

AI ten

afte Sol

3

5

para

Solv Usir

 (D^2) Find

If L{ Usin

s(s+3 Find

If f(t L{f(

Find Using

(s2+a

Rewr Lapla

> Using x"(t)

			10000	-	-	_	-	-
USN		3						

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VTU Belagavi)

Second Semester B.E. (Credit System) Degree Examinations

Makeup Examination - November 2022

21MA201 - ENGINEERING MATHEMATICS -4

Duration: 3 Hours Max. Marks: 100

Note: Answer Five full questions choosing Two full questions from Unit – I & Unit – II each and One full question from Unit – III.

		Unit – I	Marks	BT*	co*	PO*
1.	a)	Find the general and singular solutions of the equation $sin(px-y)=p$.	6	L*2	1	1
	b)	Obtain the orthogonal trajectories for the curve $r = \frac{2a}{1 + c \circ s\theta}$.	7	L2	1	1
	c)	Solve $y''-2y'+2y=e^x cosx$	7	L1	2	1
2.	a)	Solve $(D^2-4D+4)y=\frac{e^{2x}}{x}$ by using the method of variation of				
		parameters.	6	L1	2	1
	b)	Solve $y-2px=tan^{-1}(xp^2)$	7	L3	1	2
	c)	Solve $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 12 y = x^2 \log x$	7	L2	2	2
3.	a)	Solve $x^3 \frac{dy}{dx} - x^2 y = -y^4 \cos x$	6	L2	1	1
	b)	A body is originally at 80°C cools down to 60°C in 20 min, the temperature of air being 40°C. Find the temperature of the body after 50 min from the original.	7	L2	1	1
	c)	Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^3 + 3x^2 + 5$	7	L2		2 1
		Unit – II				
4.	a)	Find (i) $L\{t^2 \sin 2t\}$ (ii) $L\{\frac{\sin t}{t}\}$	6	L	2	3 2
		If $f(t)$ is a periodic function with period T so that $f(t+T)=f(t)$ for all				
		values of t, then prove that L{f(t)} = $\frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt$		7 L	1	3 1
		Solve $x''(t)+4x(t)=2t-8$, $x(0)=1,x'(0)=0$ by the Laplace transform method.		7 L	1	4 1
		P.T.O		AST.	HAN.	STATE OF