

Álgebra y Geometría Analítica I

Funciones - Resolución de ejercicios selectos

- 1. Determinar si cada una de las siguientes relaciones es una función. En caso que lo sea, determinar su imagen.
 - (a) $\mathcal{R} = \{(x,y) : x,y \in \mathbb{Z}; y = x^2 + 7\}, \mathcal{R}$ es una relación de \mathbb{Z} en \mathbb{Z} .
 - (b) $\mathcal{R} = \{(x,y) : x,y \in \mathbb{R}; y^2 = x\}, \mathcal{R}$ es una relación de \mathbb{R} en \mathbb{R} .
 - (c) $\mathcal{R} = \{(x,y) : x,y \in \mathbb{R}; y = 3x + 1\}, \mathcal{R}$ es una relación de \mathbb{R} en \mathbb{R} .
 - (d) $\mathcal{R} = \{(x,y) : x,y \in \mathbb{Q}; x^2 + y^2 = 1\}, \mathcal{R}$ es una relación de \mathbb{Q} en \mathbb{Q} .

Solución:

(a) \mathcal{R} es función.

$$Im(R) = \{7, 8, 11, 16, 23, 32, \dots\}$$

(b) \mathcal{R} no es función porque para x>0 todos los pares ordenados (x,y) de la forma (x, \sqrt{x}) y $(x, -\sqrt{x})$ satisfacen que $y^2 = x$ a la relación, por lo tanto para cada valor de x existen dos pares ordenados que .

Por ejemplo, en la gráfica podemos ver que los pares (4,2) y (4,-2) pertenecen a \mathcal{R} .

- 3. Para cada una de las siguientes funciones, determinar Im(f), f(A) y $f^{-1}(B)$ para los subconjuntos A y B indicados.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = 2x + 1, A = \{1, 2, 3\}, B = \{7, 8, 9\}.$
 - (b) $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^3 x, A = \{-2, -1, 0, 1, 2\}, B = \{-5, -4, -3\}.$
 - (c) $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}, f(x) = \sin x, A = \left[0, \frac{\pi}{2}\right], B = [-1, 0].$
 - (d) $f: \mathbb{Q} \to \mathbb{Q}, f(x) = 2x, A = \{2^{-n} : n \in \mathbb{Z}\}, B = \{4^n : n \in \mathbb{Z}\}$
 - (e) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2, A = [1, +\infty), B = [4, 9].$

Solución:

(a)
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = 2x + 1, A = \{1, 2, 3\}, B = \{7, 8, 9\}.$$

 $Im(f) = \{2x+1, x \in \mathbb{Z}\}$. El conjunto imagen de f está formado por todos los números enteros impares.

$$f(A) = \{3, 5, 7\}$$

$$f^{-1}(B) = \{3, 4\}.$$

(c)
$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}, f(x) = \sin x, A = \left[0, \frac{\pi}{2}\right], B = [-1, 0].$$

$$Im(f) = [-1,1].$$

$$f(A) = [0, 1]$$

$$f(A) = [0, 1]$$

 $f^{-1}(B) = \left[-\frac{\pi}{2}, 0\right]$

Av. Pellegrini 250, S2000BTP, Rosario, Argentina

5. Dar un ejemplo de una función $f:A\to B$ y de dos subconjuntos $A_1,\ A_2$ de A de modo que $f(A_1\cap A_2)\neq f(A_1)\cap f(A_2)$.

Solución:

Podemos tomar la función $f: \mathbb{R} \to [-1,1], f(x) = \operatorname{sen}(x)$ y los subconjuntos $A_1 = \left[0, \frac{\pi}{2}\right]$ y $A_2 = \left[2\pi, \frac{5\pi}{2}\right]$.

Tenemos que:

$$A_1 \cap A_2 = \emptyset \Rightarrow f(A_1 \cap A_2) = \emptyset$$

mientras que:

$$f(A_1) = f(A_2) = [0, 1] \Rightarrow f(A_1) \cap f(A_2) = [0, 1]$$

7. Dar, en cada caso, un ejemplo de conjuntos finitos A y B con |A|, $|B| \ge 4$, y una función f tal que:

- (a) f no sea inyectiva ni sobre;
- (b) f sea inyectiva pero no sobre;
- (c) f sea sobre pero no inyectiva;
- (d) f sea sobre e inyectiva.

Solución:

- (a) Si $A = \{1, 2, 3, 4\}$, $B = \{w, x, y, z\}$ y $f = \{(1, w), (2, x), (3, w), (4, x)\}$ f no es inyectiva ni sobre.
- (b) Si $A = \{1, 2, 3, 4\}$, $B = \{w, x, y, z, v\}$ y $f = \{(1, w), (2, x), (3, y), (4, z)\}$ f es inyectiva pero no sobre.
- (c) Si $A = \{1, 2, 3, 4, 5\}, B = \{w, x, y, z\}$ y $f = \{(1, w), (2, x), (3, y), (4, z), (5, z)\}$ f es sobre pero no inyectiva.
- 9. Determinar si cada una de las siguientes funciones $f: \mathbb{Z} \to \mathbb{Z}$ es inyectiva y/o sobreyectiva. En caso de que no sea sobre, determinar su imagen.

(a)
$$f(x) = x + 7$$

(c)
$$f(x) = 2x - 3$$

(e)
$$f(x) = x^2 + x$$

(b)
$$f(x) = x^2$$

(d)
$$f(x) = -x + 5$$

(f)
$$f(x) = x^3$$

Solución:

- (a) f es inyectiva y sobre.
- (b) f no es inyectiva y tampoco sobre.

$$Im(f) = \mathbb{Z}_0^+$$

No es inyectiva porque x y -x tienen la misma imagen, es decir, f(x) = f(-x).

No es sobre porque los enteros negativos no forman parte del conjunto Im(f).

(c) f es inyectiva pero no sobre.

 $Im(f) = \{y : y = 2n + 1, n \in \mathbb{Z}\}$, es decir, el conjunto imagen de f está formado por los números enteros impares.