Fall Real Analysis Willie Xie Fall 2021

CONTENTS

Contents

1	Day	1: The Real Number System
	1.1	Number Systems
	1.2	Real Number System
	1.3	Least Upper Bound Property
ว	Doz	2: Fields
4	v	
	2.1	Greatest Upper Bound Property
	2.2	Fields
	2.3	Ordered Fields

1 The Real Number System

1.1 Number Systems

Integer: $Z = \{-2, -1, 0, 1, 2, \dots\}$

Rational: $Q = p_{\overline{q} \text{ where } p,q \in \mathbb{N}}$

*** Q is countable, but fails to have the least upper bound property ***

Example 1.1.1

Let $\alpha \in \mathbb{R}$ where $\alpha^2 = 2$. Then α cannot be rational.

Proof

Let $\alpha = \frac{p}{q}$ where p and q cannot both be even.

Let set $A = \{x \in \mathbb{Q} \text{ for } x^2 < 2\}$ where $A \neq \emptyset$ and 2 is an upper bound for A. A has no least upper bound in Q, but A has a least upper bound in R.

1.2 Real Number System

 \mathbb{R} is the unique ordered field with the least upper bound property. \mathbb{R} exists and unique.

Definition 1.2.1

Let S be a set. An order on S is a relation < satisfying two axioms:

• Trichotomy: For all $x,y \in S$, only one holds true:

- x < y- x = y

-x > y

• Transitivity: If x < y and y < z, then x < z.

Definition 1.2.2

An ordered set is a set with an order.

Definition 1.2.3

Let S be an ordered set. Let $E \subset S$.

An upper bound of E is a $\beta \in S$ if $x \leq \beta$ for all $x \in E$.

If such a β exists, then E is bounded from above.

Definition 1.2.4

Let S be an ordered set. Let $E \subset S$ be bounded from above.

Then, there exists a least upper bound α if:

- α is an upper bound for E
- If $\gamma < \alpha$, then γ is not an upper bound for E.

Then $\alpha = \sup(E)$.

*** Greatest Lower Bound: inf(E) ***

Example 1.2.5

Let $S = (1, 2) \cup [3, 4) \cup (5, 6)$ with the order < from \mathbb{R} . For subsets E of S:

- E = (1,2) is bounded above and $\sup(E) = 3$
- E = (5,6) is not bounded above so $\sup(E) = DNE$
- E = [3,4) is bounded below inf(E) = 3 and sup(E) = DNE

Observations on the Least Upper Bound

If sup E exists, it may or may not exists at E.

If α exists, then α is unique. If $\gamma \neq \alpha$, then $\gamma < \alpha$ or $\gamma > \alpha$.

1.3 Least Upper Bound Property

Theorem 1.3.1

An ordered set of S has a least upper bound property if:

For every nonempty subset $E \subset S$ that is bounded from above: $\sup(E)$ exists in S.

Example 1.3.2

 \mathbb{Q} doesn't have a least upper bound property. For example, $z = \sqrt{2}$.

Proo

Let
$$z = y - \frac{y^2 - 2}{y + 2} = \frac{2y + 2}{y + 2}$$
, then take $z^2 - 2 = \frac{2(y^2 - 2)}{(y + 2)^2}$.
Let set $A = \{y > 0 \in \mathbb{Q} \text{ where } y^2 < 2\}$ and set $B = \{y > 0 \in \mathbb{Q} \text{ where } y^2 > 2\}$

- If $y^2 2 < 0$, then y is not an upper bound for E.
- If $y^2 2 > 0$, y is an upper bound for E, but not the sup(E).

Thus, E has no least upper bound in \mathbb{Q} .

However in \mathbb{R} , $\sqrt{2}$ is in E.

2 Day 2: Fields

2.1 Greatest Upper Bound Property

Theorem 2.1.1: Least Upper Bound implies Greatest Upper Bound

Let S be a ordered set with the least upper bound property.

Let non-empty $B \subset S$ be bounded below.

Let L be the set of all lower bounds of B.

Then $\alpha = \sup(L)$ exists in S and $\alpha \in B$.

Proof

L is non-empty since B is bounded from below.

Thus, by the least upper bound property of S, $\alpha = \sup(L)$ exists in S. We claim that $\alpha = \inf(B)$.

If $\gamma < \alpha$, then γ is not an upper bound for L so $y \notin B$.

Thus, for every $x \in B$, $\alpha \le x$.

If $\gamma \geq \alpha$, then γ is an upper bound of L so $\gamma \in B$. Thus, $\inf(B) = \alpha$.

2.2 Fields

Addition Axioms

- If $x,y \in F$, then $x+y \in F$
- x+y = y+x for all $x,y \in F$
- (x+y)+z = x+(y+z) for all $x,y,z \in F$
- There exists $0 \in F$ such that 0+x = x for all $x \in F$
- For every $x \in F$, there is $-x \in F$ where x+(-x)=0

Multiplicative xioms

- If $x,y \in F$, then $xy \in F$
- yx = xy for all $x,y \in F$
- (xy)z = x(yx) for all $x,y,z \in F$
- There exists $1 \neq 0 \in F$ such that 1x = x for all $x \in F$
- If $x \neq 0 \in F$, there is $\frac{1}{x} \in F$ where $x(\frac{1}{x}) = 1$

Distributive Law

x(y+z) = xy + xz hold for all $x,y,z \in F$.

Definition 2.2.1

(a) If x+y = x+z, then y = z

<u>Proof</u>

$$y = 0+y = (-x)+x+y = (-x)+x+z = 0+z = z$$

2.2

Fields

- (b) If x+y = x, then y = 0 $\frac{\text{Proof}}{x + y} = 0$ From (a) let x = 0
 - From (a), let z = 0.
- (c) If x+y = 0, then y = -x $\frac{\text{Proof}}{\text{From(a), let } z = -x}.$
- (d) -(-x) = x $\frac{\text{Proof}}{\text{From (a), let } x = -x \text{ and } y = x.}$
- (e) If $x \neq 0$ and xy = xz, then y = z $\frac{\text{Proof}}{y = 1y = \frac{1}{x}xy = \frac{1}{x}xz = 1z = z}$
- (f) If $x \neq 0$ and xy = x, then y = 1 $\frac{\text{Proof}}{\text{From (e), let } z = 1.}$
- (g) If $x \neq 0$ and xy = 1, then $y = \frac{1}{x}$ Proof

 From (e), let $z = \frac{1}{x}$.
- (h) If $x \neq 0$, then $\frac{1}{1/x} = x$ $\frac{\text{Proof}}{\text{From (e), let } x = \frac{1}{x} \text{ and } y = x.}$
- (i) 0x = 0 $\underline{\text{Proof}}$ Since 0x + 0x = (0+0)x = 0x, then 0x = 0.
- (j) If $x,y \neq 0$, then $xy \neq 0$ $\frac{\text{Proof}}{\text{Suppose } xy = 0, \text{ then } \frac{1}{y}\frac{1}{x}xy = \frac{1}{y}1y = \frac{1}{y}y = 1.}$ xy = 0 = 1 is a contradiction.
- (k) (-x)y = -(xy) = x(-y)Proof xy + (-x)y = (x+(-x))y = 0y = 0.Then by part (c), (-x)y = -(xy).

 Similarly, xy + x(-y) = x(y+(-y)) = x0 = 0.Then by part (c), x(-y) = -(xy).

(l)
$$(-x)(-y) = xy$$

Proof

By part (k), then
$$(-x)(-y) = -[x(-y)] = -[-(xy)]$$
.

By part (d),
$$-[-(xy)] = xy$$
.

2.3 Ordered Fields

An ordered field F is a field F which is also an ordered set for all $x,y,z \in F$.

- If y < z, then y+x < z+x
- If x,y > 0, then xy > 0

Definition 2.3.1: $\mathbb Q$ and $\mathbb R$ are ordered fields

 \mathbb{Q} , \mathbb{R} are ordered fields, but \mathbb{C} is not an ordered field.

Definition 2.3.2

Let F be an ordered field. For all $x,y,z \in F$.

- If x > 0, -x < 0 and vice versa
- If x > 0 and y < z, then xy < xz
- If x < 0 and y < z, then xy > xz
- If $x \neq 0, x^2 > 0$
- If 0 < x < y, then 0 < 1/y < 1/x

Theorem 2.3.3: R is a ordered field with <

There exists a unique ordered field \mathbb{R} with the least upper bound property. Also, $\mathbb{Q} \subset \mathbb{R}$.

Theorem 2.3.4

For all $x,y \in \mathbb{R}$:

• Archimedean Property: If x > 0, there is $n \in \mathbb{Z}$ such that nx > y.

Proof

Fix x > 0. Suppose there is a y such that the property fails.

Let
$$A = \{ nx: n = 1, 2, 3, ... \}.$$

Then, A is nonempty and bounded from above by y.

Then by the least upper bound property by \mathbb{R} , $\alpha = \sup(A)$ exists in \mathbb{R} .

Since x > 0, then -x < 0 so $\alpha - x < \alpha - 0 = \alpha$.

So $\alpha - x$ is not an upper bound of A.

So there is a $mx \in A$ such that $mx > \alpha - x$

But then $\alpha < (m+1)x$ where $(m+1)x \in A$ which contradicts α is an upper bound for A.

• \mathbb{Q} is dense in \mathbb{R} : If x < y, there is a $p \in \mathbb{Q}$ such that x .

Proof

Since x < y, then y-x > 0. Then by the Archimedean Property, there exists a $n \in Z$ such that n(y-x) > 1. Thus, ny > nx+1 > nx

By the well-ordering principle, there is a smallest $m \in \mathbb{Z}_+$ such that m > nx.

Then, $m > nx \ge m-1$ so $nx+1 \ge m > nx$.

Since $ny > nx+1 \ge m > ny$, then y > m/n > x.

REFERENCES REFERENCES

References