

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

DOE/NASA/DEN 175-1
NASA CR -165326
GR&DC 625RN209

FUEL QUALITY/PROCESSING STUDY

VOLUME I - OVERVIEW & RESULTS

(NASA-CR-165326-Vol-1) FUEL
QUALITY-PROCESSING STUDY. VOLUME 1:
OVERVIEW AND RESULTS Final Report (Gulf
Research and Development Co.) 66 p
HC A04/MF A01 CSCL 10B G3/44 09649 N83-22750
Unclassified

Chemicals and Minerals Division
Gulf Research & Development Company

May 1982

Prepared for
NATIONAL AERONAUTICS AND SPACE
ADMINISTRATION
Lewis Research Center
Under Contract DEN3-175

for
U.S.DEPARTMENT OF ENERGY
Energy Technology
Fossil Fuel Utilization Division

National Aeronautics and
Space Administration

Lewis Research Center
Cleveland, Ohio
44135

Reply to Attn of 4521

August 10, 1982

Distribution:

Enclosed, per your request, is a copy of the Gulf Research & Development Company Volume I Summary Report for the Fuel Processing Quality Study.

Sincerely,

A handwritten signature in black ink, appearing to read "John W. Dunning, Jr." The signature is fluid and cursive, with "John W." on top and "Dunning" below it, ending with a small flourish.

John W. Dunning, Jr.
FP/Q Project Manager

Enclosure

ORIGINAL PAGE IS
OF POOR QUALITY

FUELS QUALITY/PROCESSING STUDY

GULF RESEARCH & DEVELOPMENT COMPANY - FINAL REPORT

DOE/NASA/DEN 175-1

NASA CR-165326

GR&DC 625RN209

MAY 1982

VOLUME I

OVERVIEW AND RESULTS

Prepared For

National Aeronautics and Space Administration
Lewis Research Center
2100 Brookpark Road
Cleveland, Ohio 44135

Under Contract No. DEN 3-175

for

U.S. Department of Energy
Energy Technology
Fossil Fuel Utilization Division
Washington, DC 20545

Under Interagency Agreement DE-AI01-77ET-13111

Approved by:

Project Manager

George E. Jones, Jr.

ORIGINAL PAGE IS
OF POOR QUALITY.

1. Report No. NASA CR-165326	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle FUEL QUALITY/PROCESSING STUDY - Final Report Volume I - Overview & Results		5. Report Date May 1982	6. Performing Organization Code
7. Author(s) George E. Jones, Jr.		8. Performing Organization Report No. 625RN209	10. Work Unit No.
9. Performing Organization Name and Address Gulf Research & Development Company P. O. Drawer 2038 Pittsburgh, PA 15230		11. Contract or Grant No. DEN 3-175	13. Type of Report and Period Covered Contractor Report
12. Sponsoring Agency Name and Address U. S. Department of Energy Fossil Fuel Utilization Division Washington, DC 20545		14. Sponsoring Agency Code DOE/NASA/0175-1	
15. Supplementary Notes Final report. Prepared under Interagency Agreement DE-AJ01-77ET-13111 Project Manager, J. Dunning, Wind & Stationary Power Division NASA Lewis Research Center, Cleveland, Ohio 44135			
16. Abstract The final report for this study consists of four volumes. This volume, Volume I, Overview & Results, outlines the methods whereby the intermediate results were obtained, and presents the conclusions the study obtained from its evaluation of the feasible paths from liquid fossil fuel sources to generated electricity. The segments from which these paths were built are the results from the fuel upgrading schemes, on-site treatments, and exhaust gas treatments detailed in the subsequent volumes. Volume I also includes the salient cost and quality parameters generated by the study. Volume II is a literature survey. Volume III contains processing details and economics for upgrading fuels for use in industrial gas turbines. Volume IV contains processing details and economics for on-site fuel treatments and for exhaust gas purifications.			
17. Key Words (Suggested by Author(s)) Industrial Gas Turbines Fuel Processing Fuel Upgrading Path Economics		18. Distribution Statement Unclassified - unlimited Star category 44 DUE category UC 90d	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 66	22. Price*

* For sale by the National Technical Information Service, Springfield, Virginia 22161

TABLE OF CONTENTS

	<u>Page</u>
ACKNOWLEDGMENTS.....	ii
I. OVERVIEW AND RESULTS.....	1
Introduction.....	1
Data Analysis Approach.....	1
Highlights of Results.....	2
Description of Path Concept.....	3
II. BACKGROUND AND SCOPE.....	5
III. REPORT ORGANIZATION.....	7
IV. BASIS OF COSTS FOR UPGRADING.....	9
V. BASIS FOR ON-SITE OPTIONS COSTS.....	12
VI. DATA ANALYSIS.....	15
Summary.....	15
Results.....	16
General Comments on Upgrading.....	22
Path Evaluations.....	23
Description of Path Tables.....	25

APPENDIX I - FIGURES 1 THROUGH 5

APPENDIX II - TABLES 1 THROUGH 15

ACKNOWLEDGMENTS

The results reported by this contract evolved from a team effort. The prime contractor, the Chemicals and Minerals Division of the Gulf Research and Development Company, sincerely acknowledges the contribution made by their subcontractor, the Gas Turbine Division of the General Electric Company. The team combined backgrounds about fuel upgrading technology and economics as well as turbine technology and economics.

Individuals involved included:

For Gulf Research and Development:

G. E. Jones Jr., Project Manager and Overall Analysis
R. C. Amero, Literature Survey
P. R. Bruggink, Fuel Upgrading
R. A. Gibson, Overall Analysis and Fuel Upgrading
J. E. Haebig, Literature Survey
B. N. Murthy, On Site Gas Clean Up
C. E. Sinett, Fuel Upgrading

For General Electric Company:

M. B. Cutrone, Project Manager and Overall Analysis
H. von E. Doering, Literature Survey and On Site Fuel Processing
J. W. Hickey, Literature Survey and On Site Fuel Processing
P. M. Jarvis, On Site Fuel Processing
L. O. Tomlinson, Literature Survey

I. OVERVIEW AND RESULTS

Introduction

Industrial gas turbines can more effectively be used for electrical power generation if an appropriate balance can be found between turbine improvements, fuel choices, fuel upgrading, on-site fuel processing, and exhaust gas treatment. This study provides information that can facilitate finding that balance. Furthermore, because the study examined paths starting with raw liquid fuel sources and leading to the generation of electrical power and acceptable exhaust gasses, the study reveals interactions between the turbine operation cycle and the cost effectiveness of fuel upgrading vs on-site processing options.

Variations in turbine design were, as directed, excluded from this study. Upgrading schemes were limited to those expected to be commercially available in the next few years. Nevertheless the cost/quality relationships and tradeoffs developed in this study should help guide both future turbine design as well as the selection of raw materials, their upgrading schemes, and the on-site fuel or exhaust gas processing options.

Data Analysis Approach

The various combinations among raw materials, processing schemes, on-site upgrading choices, turbine cycle types and turbine duty cycles provided about 600 feasible paths from fossil fuel sources to electrical power and acceptable exhaust gas.

Because available fuel upgrading schemes simultaneously alter several attributes of the fuel being upgraded, the study has not produced "one quality at a time" upgrading information. Instead, the study did develop comprehensive cost/quality tradeoffs by comparisons among the several hundred feasible paths.

Highlights of Results

From the path comparisons these conclusions become apparent:

- Upgrading costs for a turbine fuel are frequently reduced because high quality blending components can be diverted from the turbine fuel thus increasing the amounts of more valuable products available for sale.
- The least cost paths for a given raw material usually have the highest thermal efficiency.
- Fuel costs represent about 85 to 90% of the generated electricity cost.
- Upgrading either a petroleum based or a shale oil based fuel in a modified existing refinery resulted in lower costs for generating electricity than upgrading in a new facility.
- It does not make sense to upgrade a coal liquid in modified existing refinery.
- The best fuel upgrading strategy varied with raw material. One strategy used direct impurity removal while the other upgraded indirectly by altering the boiling point range.
- For upgrading fuels from shale oils altering the boiling range was best.
- For upgrading fuels from crude petroleums direct impurity removal was best.
- For coal liquids only impurity removal was possible, there being no high boiling fraction into which the impurities might be concentrated.

- An intermediate level of on-site fuel washing was more economical than either a low or a high level for a simple cycle 1500 hr/yr peaking application with a 30 MW output.
- In contrast a high level of on-site fuel washing gave better economics for the larger combined cycle turbines.
- Simple cycle operation requires a lower level of fuel nitrogen at this time than does a combined cycle operation.
- Simple cycle operation requires a lower level of fuel sulfur at this time than does a combined cycle operation.
- Credible exhaust gas treatment systems require some exhaust gas cooling before treatment. This is not an economically attractive addition for a simple cycle but is an inherent aspect of a combined cycle.

Description of Path Concept

The results from the upgrading studies (reported in Volume III) are summarized in the appended Tables 1 and 2. These two tables give the calculated selling prices for the industrial turbine fuels produced by those fuel upgrading studies.

The results from on-site options studies (reported in Volume IV) were combined with the upgrading results to generate the paths from raw liquids to generated electrical power. Table 3 shows these paths for four studies using augmented existing refineries. Table 4 shows these paths for four studies using new facilities.

The several paths associated with a given upgrading scheme represent the feasible on-site processing options appropriate for the turbine cycles (one simple and three combined) by which electrical power was generated.

Similar groups of paths were generated for all upgrading studies. An evaluation of this collection of paths produced the results reported in this volume. Additional tables and charts included in this volume provide more quantitative information. The methods used for the evaluation and the results produced are presented in more detail in this volume.

II. BACKGROUND AND SCOPE

The more efficient generation of electricity from liquid fuels could be a significant factor in alleviating future effects of a world petroleum shortage on the United States.

For stationary gas turbines, the issue of fuel availability becomes crucially important. Natural gas is unlikely to be available in sufficient quantities toward the end of the century to allow its use in stationary turbines. The premium fuels derived from petroleum may go to the transportation and home-heating markets and be largely unavailable for turbine use. Thus, development of gas turbines able to use either synthetic fuels or the less desirable fuels from petroleum should place them in a desirable position insofar as fuel availability is concerned.

This study addresses the cost and energy efficiency of achieving various fuel characteristics and purity levels in residual oils, coal-derived liquids, and shale oils. The study develops the costs associated with using on-site fuel treatment, blending, additives, and exhaust gas cleaning to allow the turbine user to tolerate poorer quality fuels. Then the study examines the trade-offs between these options and the fuel processing options. Minimum cost paths are identified from consideration of the above trade-offs.

A major difficulty for a study such as this is the number of possible options which appear to be available. The literature survey (Volume II) led to some valid simplifications. Two residual oils, two coal liquids, and one oil shale provide an adequate resource data base. The only coal liquefaction processes likely to be commercialized in the time frame of interest are the SRC-II, Exxon Donor Solvent (EDS) and H Coal processes. An additional simplification is that for a given coal, each process yields a roughly similar product.

Indirect liquefaction processes are excluded from the study. The products of such processes are premium products. It is unlikely that they would be available at a competitive price for use in future stationary gas turbines.

Only two generic types of shale oil were considered in this study. One shale oil came from surface retorting and the other from modified in situ retorting. True in situ is excluded on the basis that methods for creating the necessary permeability in the oil shale formation are not likely to be developed in the time frame of interest.

For the purpose of the present study, conventional refining refers to the application of proven petroleum refining concepts to the particular problems of synthetic fuels and residual oils, where changes to existing domestic refineries could be made to accomplish this. In contrast, New Refining Concepts will be used to refer to grassroots designs, specifically intended for handling such feedstocks.

The various combinations among raw materials, processing schemes, on-site upgrading choices, turbine cycle types, and turbine duty cycles provided about 600 feasible paths from the fossil fuel liquids to electricity and acceptable exhaust gas by way of industrial gas turbines. Despite their number, the processing schemes could not represent one quality at a time upgrading of a fuel. This study, therefore, developed the cost/quality trade-offs by exhaustive comparison among the almost 600 feasible paths.

III. REPORT ORGANIZATION

The final report for this study consists of four volumes. This volume, Volume I, SUMMARY REPORT, represents an overview of the entire study. This overview outlines the methods whereby the intermediate results were obtained. This volume presents the conclusions the study obtained from its evaluation of the feasible paths from liquid fossil fuel sources to generated electricity. The segments from which these paths were built are the results from the fuel upgrading schemes, on-site treatments, and exhaust gas treatments detailed in the subsequent volumes. Volume I also includes the salient cost and quality parameters which were generated by the study and are needed to identify and define the paths whereby the cost/quality trade-offs were investigated. Volume I presents these results in a number of tables. Some of these tables serve to quantitatively support the conclusions of the study. Other tables included in Volume I provide the interested investigator with results of this structure to facilitate making additional comparisons.

Volume II, LITERATURE SURVEY, generally confirms the validity of our initial assumptions about raw material choices and relevant upgrading processing options. The literature survey also serves to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.

Volume III, FUEL UPGRADING STUDIES, describes the methods used to calculate the refinery selling prices for the turbine fuels of low quality. Also included in Volume III are detailed descriptions of the upgrading schemes. These descriptions include flow diagrams showing the interconnection between processes and the stream flows involved. Each scheme is in fact a complete, integrated, stand-alone facility. Except for the purchase of electricity and water, each scheme provides its own fuel and manufactures, when appropriate, its own hydrogen. Volume III also presents the economic summaries for each scheme.

Volume IV presents the results of the study related to treating the fuel at the turbine and processing the turbine exhaust gas at the turbine site. Fuel treatments are used to protect the turbine from contaminants or impurities either in the upgrading fuel as-produced or picked up by the fuel during normal transportation. Exhaust gas treatments provided for the reduction of NO_x and SO_x to environmentally acceptable levels. Volume IV results also permitted the study to consider the impact of fuel quality upon turbine maintenance and deterioration. This was achieved by including on-site base cases wherein a premium fuel was used. On-site costs reported in Volume IV include not only the fuel treatment costs as such, but also incremental components representing an estimated typical cost penalty incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded.

IV. BASIS OF COSTS FOR UPGRADING

In this study the product of interest, a turbine fuel of low quality, is not yet an item of commerce. In some instances the raw material (e.g., coal liquids or shale oils) is also not items of commerce. For these materials the study must provide itself with consistent prices. Fortunately the other raw materials (high- and low-sulfur crudes), as well as all the other products, are items of commerce. For those raw materials and products which are items of commerce, the study uses nonproprietary price forecasts.

The raw materials used in the upgrading studies were all liquid hydrocarbons.

Two petroleums were used. One, a South Louisiana crude, is a low-sulfur, low-metals crude produced and refined in the United States in large volumes. The other crude, Ceuta crude oil, contains high concentrations of both metals and sulfur. It is processed in the United States to make residual fuel products. These two petroleum crudes assure a wide range in turbine fuel upgrading costs. The low sulfur crude contained 3.1 ppm nickel, 0.7 ppm vanadium, 0.31 wt% sulfur, and had a density of 32.3° API. The high sulfur crude contained 20 ppm nickel, 133 ppm vanadium, 1.32 wt% sulfur, and had a density of 30.8° API.

Two shale oils were used. The first was intended to be representative of a shale oil produced by surface retorting. It was similar to shale oil produced by the Paraho process. It contained 0.2 ppm of vanadium, 0.66 wt% sulfur, 2.18 wt% nitrogen, 1.16 wt% oxygen, and had a density of 20.2° API. The second shale oil was intended to be representative of a shale oil produced by modified in situ retorting. It had a similar vanadium content, 0.5 wt% sulfur, 1.4 wt% nitrogen, 1.00 wt% oxygen, and had a density of 20.3° API.

Two coal liquids were used: one from Eastern Coal (an SRC-II liquid) and the other from Western coal (Wyodak H-Coal). The liquid from Eastern coal had 0.27 wt% sulfur, 1.0 wt% nitrogen, 3.0 wt% oxygen, and had a density of 14.2° API gravity. The liquid from Western coal contained 0.04 wt% sulfur, 0.17 wt% nitrogen, 0.85 wt% oxygen, and had a density of 35.1° API.

Additional information about these raw materials is to be found in Volume III of this report.

The results of the study are clearly influenced by the methods used to arrive at costs for the shale oils and coal liquids. The unknown prices for shale oils were estimated in the following manner. A refinery scheme producing products having forecast prices from a crude oil having a forecast price was established as a base case. The base-case scheme was then altered so that some of the original raw material could be replaced by a specific shale oil. Neither the kinds of products nor their qualities were permitted to change, although the relative amounts of these products could, of course, shift slightly.

The price of the shale oil raw material was calculated to provide this altered scheme with (1) the same profit as was produced in its base case, and (2) an appropriate return on any additional investment required for altering the scheme used in the base case. This methodology was quite satisfactory for shale oils because these raw materials could sensibly be processed within the context of a modified existing petroleum refinery.

For coal liquids, a somewhat different approach was needed because these raw materials are not sensibly processed in the context of a modified existing refinery. Therefore, a base case was established involving a scheme whereby the coal liquid was processed to produce products which, as items of commerce, had available forecast prices. The cost of the coal liquid was adjusted so that this base case could produce an acceptable rate of return on the investment required for such a new facility. The coal liquids fed into these schemes were of a quality such as might usually be produced from a coal liquefaction plant. The upgrading processing schemes were independent, stand-alone facilities.

It is worth noting that these raw material costing schemes were substantially self-contained. We did not need to assume transfer costs for intermediate streams nor estimate internal costs of the various appropriate utility streams.

Once raw material prices were developed on this consistent basis, the study addressed the costs of manufacturing turbine fuel of low quality from each raw material.

For petroleums, the product slate was altered to produce a low-quality turbine fuel. The base-case refinery scheme was also altered to produce a variety of upgrading schemes. The cost of the turbine fuel of low quality was calculated to provide the scheme in question with: (1) the same profit as was produced in the base case, and (2) an appropriate return on any additional investment required for altering the scheme used in the base case. This was appropriate for both the existing refinery and the new refinery situations involving petroleum.

For coal liquids, an analogous method was appropriate. As already mentioned, these raw materials could not sensibly be processed as adjuncts to petroleum in an existing refinery. Therefore, new processing schemes were defined for upgrading coal liquids with the product slates altered to also produce turbine fuel of low quality. The turbine fuel price was calculated to produce, for the scheme in question: (1) the same profit as was produced in the base case, and (2) an appropriate return on any additional investment required for altering the scheme used in the base case.

For each feasible raw material-operating facility combination, a base case existed. Each such base case produced conventional products for which price forecasts were available. The economics of these cases were thereby established. Now these schemes and their product slates were altered to produce turbine fuels of low quality. In each such instance the selling price of the turbine fuel of low quality was calculated to provide the altered scheme with: (1) the same profit as was produced in the base case, and (2) an appropriate return on any additional investment required for altering the scheme used in the base case.

Some of these schemes involved processing that emphasized direct removal of impurities. The other schemes involved processing intended to upgrade by altering boiling ranges.

V. BASIS FOR ON-SITE OPTIONS COSTS

Costs have been generated for fuel washing/treatment operations and exhaust gas DeNO_x for selected cases. These costs are presented as incremental costs over a base case.

1. The base case for cost estimating purposes for the combined cycle is as follows:

- Combined-cycle power plant
- Nominal 400 MW plant output
- Maximum fuel flow 400 gpm
- Distillate fuel
 - no fuel treatment system required
 - exhaust gas DeNO_x not required.

2. The base case for the simple cycle is as follows:

- Simple-cycle power plant
- 30 MW plant output
- Maximum fuel treatment system fuel flow is 33 gpm
- Distillate fuel
 - no fuel treatment system required.

As noted above, the base case combined cycle operates on distillate fuel. Consequently, all costs (capital, operating, and maintenance) associated with installation and operation of a fuel treatment system and the exhaust gas DeNO_x system are, by definition, incremental over the base case. Similarly, costs for installation and operation of a fuel treatment system are incremental for the simple-cycle case. No costs have been generated for exhaust gas DeNO_x for the simple-cycle case since this technology is not applicable at simple cycle exhaust gas temperatures.

Costs are presented for the following items:

1. Power plant operating and maintenance costs (including hot gas path parts replacement costs, turbine cleaning costs)
 - simple- and combined-cycle cases, distillate and ash-forming residual fuels with as-burned fuel alkali levels of 0.5, 1.0, and 2.0 ppm sodium.
2. Fuel treatment system capital, operating, and maintenance costs for the combined cycle and simple-cycle case
 - for 50 ppm alkali residual fuel supplied to the power plant site,
 - as-burned fuel alkali levels of 0.5, 1.0, 2.0 ppm sodium,
 - provision for other sodium levels in the fuel supplied to the power plant site.
3. Exhaust gas DeNO_x system capital, operating, and maintenance costs for the combined cycle case.
 - for 50 ppm NO_x level exhaust gas (corresponds to the maximum NO_x expected at 2.0% nitrogen in the fuel),
 - 90% effectiveness, i.e., NO_x reduction from 450 ppm to 45 ppm in the stack effluent.

The data in this report includes a complete cost estimate case for high-nitrogen, ash-forming fuel in simple-cycle and combined-cycle applications.

Fuel treatment costs are presented for petroleum residual fuel. Coal-derived liquids and shale oils are not expected to require on-site treatment since CDL's are expected to be commercially available as essentially ash-free distillates; whereas shale oils produced by above ground retort will be

upgraded at the conversion facility to reduce gums and meet transportation requirements. The upgrading is expected to reduce trace element constituents, e.g., arsenic (whose corrosive effects are not known), nickel, vanadium, etc., to levels tolerable by today's gas turbines.

NO_x reduction by exhaust gas treatment (catalytic DeNO_x) is treated generically as a function of nitrogen content and DeNO_x effectiveness. Costs at effectiveness levels of 77.5%, 85%, and 90% are presented in this report.

SO_x reduction by exhaust gas treatment by three processes (lime/limestone, Wellman-Lord, and Shell-UOP) has been evaluated. Economics are expressed in \$/ $\text{kW}\cdot\text{h}$ cost for sulfur removal levels consistent with fuel sulfur levels from 0.8 to 2.5 wt% sulfur in the fuel.

VI. DATA ANALYSIS

Summary

This work collects the costs and energy efficiencies of various processing steps to produce and treat a residual or synthetic-based gas turbine fuel for use in 1985 power plants. The processing steps include: production of gas turbine fuels in refineries; followed by power plant on-site fuel treatment; and then followed by turbine exhaust gas cleanup. This work also examines the trade-offs between the above processing steps in order to develop minimum total cost-paths.

The total costs of producing and treating (from raw material to exhaust stack) have been calculated, in the 1985 time frame, for a wide range of turbine fuel qualities. This range resulted from the following variations in fuel processing:

1. Variations in refinery processing to upgrade residual or synthetic oil to gas turbine fuel
 - 19 existing refinery processing schemes
 - 26 grassroots refinery processing schemes.
2. Variations in power plant on-site fuel treatment costs
 - three output sodium levels
 - a range of input vanadium levels
 - two different size power plants (simple-cycle and combined-cycle)
 - three utilization levels for the combined cycle plant.
3. Variations in exhaust gas NO_x reduction costs; three utilization levels for the combined cycle case.
4. Variations in exhaust gas SO_x reduction costs; three SO_x removal processes.

These variations have generated several hundred total cost paths for the production and treating processes required in order to utilize gas turbine fuel. These paths have been studied to determine minimum cost paths.

In addition, energy consumptions and thermal efficiencies have also been examined for the various paths.

Illustrative examples for total costs of producing and treating refinery turbine fuel for use in 30 MW and 400 MW power plants are given in Tables 3 and 4. All upgrading cases were developed to this level.

These tables also show the effect of various processing conditions on the total cost of gas turbine fuel. Power plant on-site fuel treatment costs are calculated for a range of output sodium levels, input vanadium levels, and various service factors (utilization levels) for the simple-cycle and combined-cycle power plants. Exhaust gas NO_x reduction costs have also been calculated for a range of utilization levels for the combined-cycle case. Although not detailed in this table, exhaust gas SO_x removal costs, discussed later, are calculated for three SO_x removal processes.

It is important to note that the total cost of gas turbine fuels is sensitive to the refinery feedstock price. For feedstocks based on synthetic crudes, a calculated market value of the feedstock is used in determining the price of the refinery gas turbine fuel. If the refinery feedstock market value changes, possibly because of feedstock availability or higher transportation costs, the results be greatly affected.

Results

The ultimate total cost of gas turbine fuel will be heavily dependent on the refinery feedstock selected. However, it is important to note that the selection of the best feedstock is determined partly from its market value at the time of processing. These selections should be re-evaluated in light of new feedstock price data.

In evaluating the minimum cost paths for a particular feedstock, it is clear that the refinery processing step is the critical path in achieving the lowest total cost gas turbine fuel. In many cases, it is more economical to reduce the severity of refinery operations, thereby producing a lower-quality and lower-priced refinery gas turbine fuel, and increase costs at the power plant fuel treatment site. The fuel cost savings thereby realized have more than offset increased on-site processing cost.

Properties and selling prices of gas turbine fuels produced by the upgrading cases detailed in Volume III are summarized in Tables 1 and 2. Fuel distillate category is specified by gravity. The prices of these turbine fuels are prices needed in order to obtain an acceptable profit plus an acceptable return on new investments.

Gas turbine fuel properties listed in these tables include quantity of impurities (vanadium, nitrogen, and sulfur), viscosity, and carbon/hydrogen ratio.

Energy consumption and thermal efficiency for upgrading are also summarized in Tables 1 and 2. Thermal efficiency is the percent quotient of heating value of all products divided by the heating value of the liquid feed to the upgrading facility.

Low thermal efficiency usually results in higher fuel selling costs because energy consumed by upgrading reduces the output of saleable products. The losses are charged against all the products.

A major part of the on-site energy consumption is concentrated in the fuel treatment process. Energy consumption for the exhaust gas treatment is reportedly minimal in comparison. The following tabulation summarizes energy costs for the on-site fuel treatment of refinery gas turbine fuel.

ORIGINAL PAGE IS
OF POOR QUALITY

Energy Costs for On-Site Fuel Treatment

	Mills/kW·h	
	Simple Cycle	Combined Cycle
Fuel Heating	0.17	0.07
Electricity	0.13	0.07
Water	0.01	0.009

In this study, vanadium levels in the refinery gas turbine fuels range from 0.0 to 50.4 ppm of vanadium. In general, fuel treatment cost for vanadium inhibitor is 0.016 mills/kW·h/ppm of vanadium. Thus, for vanadium levels less than 5 ppm, vanadium inhibitor cost is minimal and does not greatly affect total gas turbine fuel cost.

Cases 2.31-2.33 (in Table 3) and Cases 6010-6030 (in Table 4) illustrate the small effect of vanadium level on vanadium inhibitor cost. In Cases 2.31-2.33 the vanadium level of the refinery gas turbine fuel decreases from 50.4 ppm to 10.9 ppm as the severity of hydrotreating increases. On-site fuel treatment cost decrease by about 0.7 mills/kW·h for the combined-cycle case. The refinery gas turbine fuel price, meanwhile, has increased from 80.7 to 82.5 mills/kW·h.

The same result is illustrated in Cases 6010-6030 where sour resid is hydrotreated at three severities resulting in a reduction of vanadium from 49 ppm to 11 ppm. The cost of refinery gas turbine fuel increases by about 2.3 mills/kW·h with increasing hydrotreating severity. However, the fuel treatment cost decreases by only 0.6 mills/kW·h. In both instances it is more economical to increase the power plant fuel treatment cost and reduce the initial upgrading metals removal.

Nitrogen levels for the refinery gas turbine fuels range from 0.02-0.70 wt% nitrogen. Exhaust gas DeNO_x removal costs are included only for the combined-cycle case, since simple-cycle DeNO_x removal is not feasible.

In general, it is more economical to produce a lower quality refinery gas turbine fuel (with a higher nitrogen level) and increase DeNO_x exhaust gas treatment costs at the power plant than to produce a higher

quality gas turbine fuel at the refinery. This result is illustrated in Cases 2.31-2.33 (sour resid hydrotreating) where refinery turbine fuel nitrogen is decreased from 0.36 to 0.30% nitrogen, resulting in a refinery gas turbine increase from 80.7 to 82.5 mills/kW·h, but resulting in a decrease of DeNO_x exhaust gas clean-up cost of only 0.1 mills/kW·h.

The same result is more pronounced in Cases 1010-1030 (eastern coal liquid hydrotreating). In these cases, nitrogen level is reduced from 0.70 to 0.30%, with a resulting increase in refinery fuel price from 73.4 to 84.6 mills/kW·h, but only a 0.8 mills/kW·h decrease in DeNO_x costs at the power plant. Thus, it is more economical to produce a lower quality refinery gas turbine fuel (with a higher nitrogen content) and increase exhaust gas treatment costs at the power plant.

It is difficult to draw any conclusions about the effect of decreasing fuel sulfur at the refinery site since DeSO_x exhaust gas treatment is not required for the majority of the gas turbine fuels produced at the refinery. DeSO_x exhaust gas treatment is required only for fuel sulfur levels greater than 0.8 wt% sulfur, and only one case, 1.10, with a sulfur level of 0.83% sulfur may require DeSO_x exhaust gas treatment.

DeSO_x removal costs are high in comparison to possible hydrotreating costs required to remove sulfur from the fuel. For a fuel sulfur of 2.5%, the following exhaust gas SO_x removal costs have been calculated to be:

<u>SO_x Removal Process</u>			
	Lime/ Limestone	Wellman/ Lord	Shell/ UOP
Cost, mills/kW·h	11.0	30.0	8.0

Fortunately, it has been demonstrated that residual fuel sulfur, with a minimum of refinery processing, should be decreased to the safe level of 0.8%. However, further processing to reduce sulfur level results in a higher gas turbine fuel price. For example, in Cases 1010-1030, gas turbine fuel sulfur is reduced from 0.13 to 0.07 with a resulting increase in fuel price from 73.4 to 84.6 mills/kW·h (combined cycle).

The carbon/hydrogen ratio of the refinery turbine fuel does not affect downstream power plant fuel treatment and exhaust gas treatment costs; however, the C/H ratio is reflected in refinery gas turbine fuel price. As C/H ratio is decreased, as a result of increasing hydrogenation from hydro-treating, the refinery fuel price increases. Impacts of C/H ratio upon turbine cost was outside the scope of this study.

Table 5 summarizes upgrading cases which provide a basis for demonstrating the impact of reducing the carbon to hydrogen ratio on the fuel cost component in the generated electrical power. A decrease of 0.1 in C/H ratio costs about 5 mills/kW·h.

The effect of increasing fuel viscosity at the refinery has a minimal impact on downstream power plant fuel treatment costs. The capital cost of the fuel treatment plant is affected only when the viscosity of the fuel is greater than 900 cSt, and the effect on capital cost when this occurs is only .1-1 mills/kW·h. For many of the turbine fuels developed in the upgrading studies fuel viscosity is in the 0.0 to 35.0 cSt range. However, fuels produced by refinery hydrotreating are blended to 1100 cSt which is the maximum viscosity allowed for fuel transportation (based on No. 6 fuel). Thus, in these cases, it is either unfeasible to increase refinery fuel viscosity or increasing viscosity in the low viscosity range (0-900 cSt) has no effect on the cost of gas turbine fuel.

Certain useful conclusions can also be established by examination of plots related to the sulfur content of the upgraded turbine fuels. In all of the attached graphs, the best paths for both the high duty combined cycle turbine and for the simple cycle turbine have been included. By including only the best paths, the plots are not cluttered with results from using less attractive on-site processing options. However by including information about all feasible raw material - plant - processing combinations, the graphs show some significant interactions between upgrading with respect to sulfur and overall economics.

ORIGINAL PAGE IS
OF POOR QUALITY

The first figure "TOTAL POWER COST VS FUEL SULFUR CONTENT, USES COMBINED CYCLE TURBINE" suggests a very minor effect of fuel sulfur content upon power cost over a sulfur concentration range from 0.2 to 0.9 wt% sulfur. However below 0.2 wt% sulfur power cost rises rapidly as fuel sulfur content is reduced.

This first figure also shows a rather unusual trend. For turbine fuels made by upgrading a low sulfur crude (the LOWS points) total power cost decreases as fuel sulfur content decreases from about 0.8 to about 0.2 wt% sulfur. This occurs because the available upgrading processes simultaneously improve several attributes, one of which is viscosity. As a result of this viscosity reduction, other low viscosity streams may be released from the turbine fuel and blended into more valuable refinery products.

The second figure "TOTAL POWER COST VS FUEL SULFUR CONTENT, USES SIMPLE CYCLE TURBINE" confirms the power cost vs sulfur in fuel trend. In addition this figure also reveals that turbine fuel from an Eastern coal is not a feasible raw material for a simple-cycle turbine. As mentioned elsewhere in this report, this turbine fuel's nitrogen content requires exhaust gas treatment. Unfortunately present exhaust gas treatments are not compatible with the high temperatures of the exhaust gas from a simple-cycle turbine system.

The third figure "FUEL PRICE vs THERMAL EFFICIENCY" relates to a trend in the upgrading information. The Turbine Fuel Selling Price is the price at which the operator of an upgrading facility would wish to sell a turbine fuel in order to realize an acceptable profit from his operation. Thermal Efficiency indicates how much of the heating value in the feed to the upgrading facility is available as heating value in the products from the upgrading facility. The points in the figure are labeled to indicate the raw material used to generate the fuel. In general, low thermal efficiency accompanies high fuel selling price. The fourth and fifth figures segregate the data of the third figure according to type of facility. In these last two figures the relation between selling price and thermal efficiency is even more apparent. For a given raw material in a given type of facility, fuel selling

price declines as the thermal efficiency of the upgrading improves. This clearly indicates that a major component of upgrading costs is the value of the fuel consumed in upgrading.

General Comments on Upgrading

The refinery processing step is the critical path in achieving the lowest total cost of using gas turbine fuel in power plants. Since the price of gas turbine fuel produced from the refinery is approximately 85% of the total cost of using turbine fuel in the power plant, the refinery gas turbine fuel price overshadows any further plant on-site fuel treatment costs. For this reason, it is important to optimize the refinery processing step in order to produce a minimum-cost turbine fuel.

This study also demonstrates that, in many cases, it is more economical to produce a lower quality refinery gas turbine fuel (thereby reducing the refinery turbine fuel price) and invest in fuel treatment equipment at the turbine site, rather than produce a higher quality fuel at the refinery in order to reduce treating costs at the power plant.

Gas turbine fuel prices exceeding distillate price occurs in one-third of the processing schemes studied. In the remaining two-thirds of the 30 cases, only four refinery schemes produce a gas turbine fuel which, after power plant on-site fuel treatment, costs less than distillate fuel. Three of these schemes are based on refining Eastern coal liquid, which has a relatively low market value in comparison to other refinery feedstocks. Thus, for all cases studied, the cost differential between total gas turbine fuel cost (including treatment costs) and distillate cost, although dependent on refinery feedstock cost, is usually adverse. This adverse picture for two turbine fuels of low quality may reflect our choice of cost estimating methods. We did charge the new product for any new equipment required and for any loss in productivity of existing equipment.

ORIGINAL PAGE IS
OF POOR QUALITY

Path Evaluations

The various combinations among raw materials, processing schemes, on-site upgrading choices, turbine cycle types, and turbine duty cycles provided about 600 feasible paths from fossil fuel sources to electricity and acceptable exhaust gas by way of industrial gas turbines. Despite their number, the upgrading schemes could not represent one quality at a time upgrading of a fuel. This study therefore developed the cost/quality trade-offs by exhaustive comparison among the almost 600 feasible paths.

From the path comparisons, these conclusions became apparent.

The least cost paths for a given raw material usually have the highest thermal efficiency.

Fuel costs represent about 85 to 90% of the generated electricity cost.

For both the petroleum-based, as well as the shale oil-based fuels, upgrading in a modified existing facility resulted in lower total costs for generating electricity. Except for the low-sulfur petroleum-based turbine fuels, the modified existing facility paths had about a 5% cost advantage. Even in the case of the low sulfur-based, petroleum-based turbine fuels, the modified existing facility had a 1% advantage. In the case of coal liquids, no such comparison can be made because it does not make sense to upgrade a coal liquid in a modified existing petroleum refinery.

The least cost paths for a combined-cycle turbine operation were unaltered over the operating cycle range (7000 to 3000 hr/yr at a 400 MW capacity) investigated. Therefore, the bulk of the path analysis was conducted using only the 7000 hr/yr combined-cycle operation. Paths for the other two duty cycles were always the same as the paths for the 7000 hr/yr duty cycle paths. Cost of generated electricity was, of course, somewhat higher because shorter duty cycles increased the capital charges allocated to a unit of produced electrical energy.

ORIGINAL PAGE IS
OF POOR QUALITY

There are some significant path differences between the combined-cycle operating paths and the simple-cycle operating paths. The best level of washing was one such difference. For the simple-cycle (a peaking application operating 1500 hr/yr with a 30 MW output), an intermediate level of on-site fuel washing was more economical than either a low-level or a high-level of on-site fuel washing. In contrast, the combined-cycle operating paths using the highest level of on-site fuel washing gave better economics than corresponding paths at levels of site fuel washing. In the simple-cycle cases, the cost savings from turbine deterioration and maintenance could only justify the costs of the intermediate level of fuel washing. The savings at issue were but a fraction of a cent per kW. Nevertheless, our method of analysis thus demonstrated responsiveness to these kinds of economic issues.

Simple-cycle operation requires a lower level of fuel nitrogen at this time than does a combined-cycle operation. A credible exhaust gas NO_x removal process requires that the exhaust gas be cooled extensively before the exhaust gas is treated. If the costs of equipment required for such cooling are recovered, then the simple-cycle installation has for all practical purposes been converted into a combined-cycle operation. The scale of operation is deemed to be too low to make sense as a combined cycle. Although outside the scope of this study, the unforeseen development of a high temperature NO_x exhaust gas treatment process would provide a simple-cycle turbine with greater tolerance to nitrogen in its fuel.

For similar reasons, simple-cycle turbines are less tolerant of sulfur in their fuels. Credible SO_x exhaust gas treatment systems also require that the exhaust gas be cooled before it is processed.

At this time the exhaust gas cooling inherent in a combined-cycle operation permits exhaust gas treatment for a combined-cycle operation. Therefore, a combined-cycle operation can process less fully upgraded fuels.

The fuel upgrading schemes involve one of two upgrading approaches. One approach removes impurities as a result of boiling point modification. The other approach directly removes impurities. Coking is an example of

boiling range modification. Direct impurity removal involves two alternatives. A variety of processes hydrogenate the fuel. Although most such processes add hydrogen to the fuel hydrocarbons, some such processes selectively react with the non-hydrocarbon elements to produce chemical substances readily separated from the hydrocarbons of the fuel. Another form of direct impurity removal occurs because of the selective affinity between some non-organic impurities and the catalyst substances used to facilitate hydrocarbon fuel processing. Much of the present fuel upgrading with respect to metals contact involves the use of spent catalysts for just such purposes.

This study provides a basis for comparing the two different upgrading approaches. This could be done for all the feed materials except coal liquids. Coal liquids are not amenable to the boiling range approach because the coal liquids have no inherently very high boiling ends into which impurities can be concentrated. For the shale oils (both surface retorted and modified in situ retorted), the boiling range approach provided a 5% advantage on total cost of producing electricity. For both high- and low-sulfur petroleums, the impurity removal approach was better. For the high-sulfur petroleum, a 7% advantage could be realized for the impurity removal approach. For the low-sulfur petroleum, the impurity removal approach had a 2% advantage. The best approach did vary with raw material and, for a given raw material, the cost difference between approaches appeared to be consistent, even as the schemes varied in detail.

Description of Path Tables

This study generated and compared feasible paths from liquid raw materials for turbine fuels to generated electrical power. Tables 6 through 13 contain subsets of these paths. The higher numbered tables contain fewer paths and thus highlight the better alternative paths.

Each row in any one of these tables represents a path from a liquid raw material to electrical power. A unique combination of raw material, plant type, upgrading process, on-site processing, and turbine cycle is involved in any row. Some of the columns in these tables contain code names whereby the

nature of the path can be determined. Other columns in these tables present cost or quality information. Although some of these tables include table of nomenclature, two "nomenclature tables" are included for the reader's convenience. Table 14 defines the column names used in the earlier tables, and Table 15 defines the abbreviated upgrading process descriptions used in the earlier tables.

Tables 1 and 2 contain path information unique to the fuel upgrading studies, details of which appear in Volume III.

Tables 3 and 4, on the other hand contain path information relevant to both upgrading, on-site processing, and turbine cycle.

Table 5 depicts information from Tables 1 and 2 organized so as to highlight one particular upgrading phenomena.

Tables 3 and 4 contain paths for four turbine cycles (HIGH, MED, LOW, and SIMP). As discussed in the DATA ANALYSIS section, the HIGH, MED, and LOW are merely different duty cycles for a combined cycle operation.

Tables 6 through 13 include only HIGH (7000 hr) combined-cycle paths. They do not include any of the paths involving the 3000 or 5000 hr cycles because the nature and ranking of the paths is the same for all three duty cycles in the combined-cycle cases. The paths in Tables 6 through 13 contain the information essential to the overall cost path trade-off assessments for this study.

The paths in Table 6 have been placed in a particular sequence.

- All paths related to a given CASE are contiguous.
- Within each case, the combined cycle paths (CYCLE = HIGH) are segregated from the simple cycle cases (CYCLE = SIMP)
- Within each CASE - CYCLE combination the paths are sorted by total cost of generated electricity (TOTCST, mills/kW·h). For

each CASE - CYCLE combination there are three paths. These three paths represent three different levels of sodium removal (NA = 0.5, 1.0, 2.0 ppm of sodium).

With this ordering of the paths in Table 6 one can immediately identify the best on-site fuel treatment options for each CASE - CYCLE combination.

The First Path of each CASE - CYCLE combination in Table 6 has the best on-site fuel treatment option for that combination because it has the least "TOTCOST" for that combination.

Table 7 contains these best on-site fuel treatment paths disclosed by the path ordering of Table 6. Table 7 is retained and its genesis has been described to provide an insight into the "best path" selection process used in this study. By examining a sorted table one can detect patterns, make comparisons and draw conclusions. The row sorting done to organize and cull Tables 6 through 13 always involves sorting on the total cost of generating electricity. This provides us with a simple bases upon which to eliminate less attractive alternatives. The procedure was rendered less tedious, less costly, and less error prone by using machine data processing techniques.

Table 8 contains exactly the same paths as does Table 7. However by placing the paths in a different sequence some useful patterns become apparent. In Table 8 combined cycle (HIGH) paths are segregated from simple cycle (SIMP) paths. Furthermore within each type of cycle the paths using upgrading in a grass roots facility (PLANT=NEW) are segregated from paths using upgrading in a modified existing facility (PLANT=OLD). Within each CYCLE - PLANT combination paths are sorted by cost of generated electricity. Some patterns with respect to cost of produced electricity cost vs raw material appear. More importantly, it is readily apparent that the more intensive upgrading schemes are often less attractive than their less intensive equivalents.

Table 8 helps one decide the best paths for a given CYCLE - PLANT combination. For example:

ORIGINAL PAGE IS
OF POOR QUALITY

The least cost combined-cycle operation using a new upgrading facility involves a coal liquid from Eastern Coal upgraded by moderate hydrotreating.

The least cost combined cycle operation using a modified existing facility involves a low sulfur crude upgraded by intermediate hydrodesulfurization.

Table 9 also contains the same paths as do Tables 7 and 8. However, Table 9 is sorted by cycle, raw material, and total cost. Table 9 shows that (when the option is available for a fuel source) electricity costs are less when the upgrading facility is a modified petroleum refinery than when it is a grass roots facility. Table 9 also shows that, except for the shale oils, impurity removal (MODE=IMP) is generally more economically attractive than boiling range alteration (MODE=BOIL).

Table 10 has fewer paths than do Tables 7, 8, and 9. Only the best upgrading option for each raw material, given a particular cycle-plant combination appears in Table 10. Note that Eastern coal is the best choice if one wishes to use a grass roots upgraded fuel in a combined-cycle operation. However, an Eastern coal liquid cannot be used in a simple cycle. The nitrogen content of this liquid fuel is too great because the simple-cycle turbine exhaust gas is too hot for exhaust gas treatment.

For a given cycle-plant combination, Table 10 orders the feasible raw material-cycle-plant combinations according to total power cost. For any raw material-cycle-plant combination, Table 10 includes only the best processing option for that particular combination. Table 10 shows the best raw material for a given cycle-plant combination.

Table 11 has the same paths as Table 10, but they are arranged to highlight a different issue. Table 11 shows the best plant type for a given raw material-cycle combination.

Table 12 retains the most attractive plant type option for each raw material-cycle option that appeared in Tables 10 or 11. Table 12 is ordered to indicate preference for a given turbine cycle.

Table 13 has the same paths as Table 12. Table 13 displays its paths to show preferences for a given plant type.

To recapitulate the path tables:

- Tables 1 and 2 depict upgrading information for all paths.
- Tables 3 and 4 depict both upgrading and onsite processing information for several representative raw material-plant-upgrading options.
- Table 6 retains all simple cycle and all the high duty combined-cycle paths.
- Tables 7, 8, and 9 retain all the best paths with respect to on-site processing options.
- Tables 10 and 11 retain all the best paths with respect to both upgrading and on-site processing options.
- Tables 12 and 13 retain all the best paths with respect to both plant choice and upgrading and on-site processing options.
- Tables 14 and 15 define terms.

Table 12 eliminates the less attractive of the plant type options if (for a given raw material-turbine cycle combination) more than one plant option is available. The grass roots facility is used only if a modified existing facility cannot adequately upgrade a fuel. The distinctive differences between the fuel qualities for the combined- and simple-cycle fuels relate to nitrogen content (must be lower for the simple cycle) and carbon-to-hydrogen ratio (more hydrogen in the simple-cycle fuel). The two are related because denitrification of the fuel is accompanied by more extensive hydro-generation of the fuel.

GEJ:skr
(2567)

APPENDIX I

FIGURES 1 THROUGH 5

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 1

TOTAL POWER COST VS FUEL SULFUR CONTENT

USES COMBINED CYCLE TURBINE

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 2
TOTAL POWER COST VS FUEL SULFUR CONTENT
USFS SIMPLE CYCLE TURBINE

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 3

FUEL PRICE VS THERMAL EFFICIENCY

Fig. 4

FUEL PRICE VS THERMAL EFFICIENCY
FOR UPGRADING IN NEW FACILITIES

ORIGINAL PAGE IS
OF POOR QUALITY

Fig. 5
FUEL PRICE VS THERMAL EFFICIENCY
FOR UPGRADING IN MODIFIED EXISTING FACILITIES

APPENDIX II

TABLES 1 THROUGH 15

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE I
SUMMARY OF UPGRADING SCHEMES
FOR AUGMENTED EXISTING FACILITIES

CASE	PLANT	TYPE	MODE	PROCESS	RMCOST	METALS API	CTOH	N	S	VIS	FRTML	ELLEC	EWAT	TH_EFF	FUELPR	
1*1.0	OLD	LWLS	BIL	DECARB	62.00	0.2	17.4	9.75	0.100	0.8300	1100.00	0.92	0.029	0.0005	92.7	65.58
1*2.1	OLD	LWLS	BIL	CURE_HYD5+	62.00	0.0	37.7	6.63	0.090	0.0500	1.00	0.90	0.033	0.0005	92.3	65.95
1*2.2	OLD	LWLS	BIL	CURE_HYD75+	62.00	0.0	31.0	6.85	0.110	0.0700	5.00	0.92	0.033	0.0006	92.2	62.21
1*3.1	OLD	LWLS	IMP	HDS_MUD	62.00	1.3	27.9	7.37	0.090	0.2500	1100.00	0.84	0.032	0.0006	92.7	60.72
1*3.2	OLD	LWLS	IMP	HDS_INTER	62.00	0.6	23.1	7.36	0.090	0.2100	1100.00	0.84	0.032	0.0006	92.8	60.67
1*3.3	OLD	LWLS	IMP	HDS_HIGH	62.00	0.1	24.4	7.33	0.070	0.1700	1100.00	0.89	0.032	0.0006	92.4	60.71
2*1.0	OLD	HIGHS	BIL	DECARB	59.00	11.6	21.7	7.55	0.270	0.2600	1130.00	0.87	0.034	0.0005	92.2	63.63
2*2.1	OLD	HIGHS	BIL	CURE_HYD5+	59.00	0.0	37.7	6.65	0.190	0.1600	1.00	1.67	0.044	0.0006	86.4	69.79
2*2.2	JLD	HIGHS	BIL	CURE_HYD75+	59.00	0.0	31.5	6.83	0.110	0.2000	5.00	0.92	0.042	0.0006	91.8	70.45
2*2.3	OLD	HIGHS	BIL	COKT_HYD50+	59.00	0.0	22.3	7.45	0.170	0.2500	26.50	1.03	0.041	0.0006	91.0	69.85
2*3.1	OLD	HIGHS	IMP	HDS_MUD	59.00	50.4	23.0	7.36	0.360	0.3700	1130.00	0.90	0.045	0.0006	91.8	62.76
2*3.2	OLD	HIGHS	IMP	HDS_INTER	59.00	31.0	23.2	7.35	0.360	0.2900	1130.00	0.91	0.046	0.0006	91.7	63.31
2*3.3	OLD	HIGHS	IMP	HDS_HIGH	59.00	10.9	23.4	7.33	0.300	0.2000	1130.00	0.92	0.047	0.0006	91.6	64.16
3*1.0	OLD	SUR	BIL	1STAGE_HYDRO	50.9+	0.2	38.0	6.60	0.019	0.0115	2.35	1.80	0.092	0.0016	82.2	68.63
3*2.0	OLD	SUR	BIL	HYDRO_HIGH	50.8b	0.2	37.5	6.65	0.050	0.0040	2.35	1.74	0.280	0.0016	82.8	65.93
3*3.0	OLD	SUR	BIL	COKT_HYD5+	50.8b	0.0	39.0	6.55	0.300	0.0040	2.40	1.93	0.074	0.0010	80.1	85.58
4*1.0	OLD	WT	BIL	1STAGE_HYDRO	53.81	0.2	37.2	6.63	0.019	0.0015	2.35	1.19	0.078	0.0014	88.2	68.63
4*2.0	GTU	WT	BIL	HYDRO_HIGH	53.91	0.2	35.7	6.65	0.050	0.0040	2.35	1.12	0.064	0.0013	88.9	66.04

PATH IDENTIFIERS

Name	Definition	Name	Definition
CASE	Identifier for the fuel upgrading scheme uses an augmented existing facility	API	Density, degrees API
PLANT-TYP	Upgrading scheme uses a grass roots facility	GTH	Carbon to Hydrogen weight ratio
-NEW	Upgrading scheme uses coal liquid from eastern bituminous coal	METALS	Vanadium content, ppm by weight
-TYP-EQUAL	A coal liquid from western bituminous coal	N	Nitrogen Content, % by weight
-TYP-UNI	A coal liquid from western bituminous coal	S	Sulfur content, % by weight
-SOL	A shale oil from a modified insitu retort	VIS	Viscosity, centistoke at 100 deg.
-SUL	A shale oil from a surface retort		
-LWS	A low sulfur petroleum crude oil		
-HIGHS	A high sulfur petroleum crude oil		
MODE-SOIL	Upgrading scheme primarily alters boiling ranges		
-IMP	Upgrading scheme primarily removes impurities		
PROCESS	An abbreviated description of the upgrading scheme		

UPGRADING SCHEME COST PARAMETERS

Name	Definition
COLT	Cost of fuel for processing, \$ per mm BTU of products
ELLEC	Cost of electricity for processing, \$ per mm BTU of products
EWAT	Cost of water for processing, \$ per mm BTU of products
FUELPR	Turbine fuel selling price for scheme, \$ per BTU
KWTDS	Raw material purchase cost for scheme, \$ per gal
TFEFF	Thermal efficiency (energy in products / energy in fuel)

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 7
SUMMARY OF OPERATING SCHEMES
FOR GRASS/COAL FACILITIES

CAST	PLANT	WTYPE	MODE	PROCESS	AvgOST	MATERIALS	API	CLOH	N	S	VIS	FMTL	FEATL	FELEC	EWAT	TH_EFF	FUELPR
1010	NEW	ECOAL	IMP	HYDRO_MUD	51.66	0.00	13.4	9.10	0.700	0.130	3.60	0.70	0.030	0.0003	92.2	57.09	
1020	NEW	ECOAL	IMP	HYDRO_INTER	51.66	0.00	14.1	9.00	0.500	0.110	2.90	0.93	0.037	0.0004	89.9	59.10	
1030	NEW	ECOAL	IMP	HYDRO_HIGH	51.66	0.00	14.8	8.90	0.300	0.070	2.45	1.37	0.064	0.0006	85.7	65.79	
2010	NEW	ECOAL	IMP	HYDRO_NAPH	62.71	0.00	27.0	7.05	0.260	0.070	1.70	0.56	0.010	0.0002	75.1	63.52	
2020	NEW	ACUAL	IMP	HYDRO_ALL	62.71	0.00	32.3	6.78	0.001	0.014	1.70	0.66	0.038	0.0005	94.1	71.93	
3010	NEW	SUR	IMP	HYD650+_MUD	53.70	0.00	25.0	7.10	0.500	0.0350	*	1.43	0.078	0.0011	85.5	73.46	
3020	NEW	SUR	IMP	HYD650+_INTER	53.90	0.00	27.0	6.86	0.300	0.040	*	1.49	0.084	0.0012	84.9	75.57	
3030	NEW	SUR	IMP	HYD650+-HIGH	53.90	0.00	29.0	6.93	0.1900	0.012	*	1.64	0.090	0.0012	83.7	82.07	
3040	NEW	SUR	IMP	HYD350+-MUD	53.90	0.00	29.9	6.90	0.5400	0.024	*	1.27	0.063	0.0010	86.9	68.27	
3050	NEW	SUR	IMP	HYD350+-INTER	53.90	0.00	32.8	6.80	0.3400	0.021	*	1.41	0.069	0.0011	85.5	69.76	
3060	NEW	SUR	IMP	HYD350+-HIGH	53.90	0.00	34.2	6.73	0.1080	0.007	*	1.56	0.075	0.0011	84.5	72.02	
4020	NEW	MIS	IMP	HYD650_VAC_MUD	53.90	0.00	37.0	6.60	0.5000	0.010	*	1.57	0.077	0.0010	84.4	85.01	
5010	NEW	LWS	IMP	HYD650_VAC_INTER	53.90	0.00	39.0	6.57	0.3000	0.009	*	1.59	0.074	0.0010	84.4	83.06	
5020	NEW	LWS	IMP	HYD650_VAC_HIGH	53.90	0.00	40.7	6.50	0.0600	0.000	*	1.75	0.093	0.0012	82.8	84.51	
5030	NEW	LWS	IMP	HYD650_VAC_INTER	53.00	0.10	27.0	6.36	0.3000	0.020	*	0.98	0.071	0.0010	90.5	76.81	
5040	NEW	LWS	IMP	HYD650_VAC_HIGH	53.00	0.10	32.0	6.80	0.3000	0.025	*	0.64	0.056	0.0009	93.3	70.70	
5050	NEW	LWS	IMP	HYD650_VAC_MUD	49.02	1.30	22.4	7.45	0.0900	0.260	11.00	0.00	0.042	0.0003	98.5	61.59	
5060	NEW	LWS	IMP	HYD650_VAC_INTER	49.02	0.50	22.6	7.45	0.0900	0.230	11.00	0.00	0.045	0.0003	98.3	61.71	
5070	NEW	LWS	IMP	HYD650_VAC_HIGH	49.02	0.05	23.0	7.18	0.0900	0.190	11.00	0.00	0.047	0.0003	98.1	61.94	
5080	NEW	LWS	3JIL	COKE_HYD5+	49.02	0.00	37.2	6.64	0.0900	0.350	1.70	0.31	0.064	0.0003	95.4	64.20	
5090	NEW	HIGHS	IMP	HYDRO_VAC_MUD	45.44	4.90	22.9	7.40	0.3500	0.360	11.00	0.00	0.44	0.093	0.0006	93.8	66.19
5100	NEW	HIGHS	IMP	HYDRO_VAC_INTER	45.44	32.00	23.0	7.37	0.3500	0.270	11.00	0.00	0.43	0.090	0.0006	93.8	66.65
5110	NEW	HIGHS	IMP	HYDRO_VAC_HIGH	45.44	11.00	23.2	7.35	0.2900	0.190	11.00	0.00	0.48	0.093	0.0007	93.2	67.93
5120	NEW	HIGHS	IMP	HYD650_VAC_MUD	45.44	0.00	37.7	6.58	0.0900	0.160	1.70	0.36	0.067	0.0004	94.5	69.99	

UPGRADING SCHEMES

Name	Definition	Name	Definition
CASE_PLANT-OLG	Identifier for the fuel upgrading scheme uses an augmented existing facility	API	Degree, degree API
WTYPE-INTER	Upgrading scheme uses a grass roots facility	CLOH	Carbon to Hydrogen weight ratio
WTYPE-ECUAL	A coal liquid from an eastern bituminous coal	WTALS	Vanadium content, ppm by weight
-ECUAL	A coal liquid from an western bituminous coal	W	Nitrogen content, % by weight
-MIS	A shale oil from a modified insitu retort	S	Sulfur content, % by weight
-SUR	A shale oil from a surface retort	VIS	Viscosity, centistoke at 100 deg.
-LWS	A low sulfur petroleum crude oil		
-HIGHS	A high sulfur petroleum crude oil		
MODE-SUR	Upgrading scheme primarily alters boiling ranges		
MODE-INT	Upgrading scheme primarily removes impurities		
PROCESSES	An abbreviated description of the upgrading scheme		

UPGRADING SCHEME COST PARAMETERS

Name	Definition	Name	Definition
CMTL	Cost of fuel for processing, t per mm Btu of products	CTOH	Carbon to Hydrogen weight ratio
ERLT	Cost of electricity for processing, t per mm Btu of products	WTALS	Vanadium content, ppm by weight
EWAT	Cost of water for processing, t per mm Btu of products	W	Nitrogen content, % by weight
FUELTYPE	Turbo fuel selling price for scheme, \$ per bbl	S	Sulfur content, % by weight
FUGEFF	Material purchase cost for scheme, \$ per bbl	VIS	Viscosity, centistoke at 100 deg.
FUGEFF	Turbo fuel efficiency (% efficiency in turbines/energy in fuel)		

TABLE 1 (Page 1 of 2)
 PATH DETAILS FOR A FEW REPRESENTATIVE CASES
 EMPHASIS ON SITE OPTION INFORMATION
 ALL COMBINED CYCLE PATHS OF A CASE USE THE SAME WASHING OPTION

RWTYP	MODE	PRINCIP	MUTE	CYCLE	METALS	N	PLANT=OLD	CASE=1.1C	NACST	NOXCSF	SITECST	FUEL CST	TOTCST
L0WS	B0IL	DECARN	HIGH	0.2	0.1	0.83	11.00	0.5	4.6	b.2	10.3	84.317	95.117
L0WS	B0IL	DECARN	HIGH	0.2	0.1	0.83	11.00	1.0	5.2	b.2	11.4	84.317	95.117
L0WS	B0IL	DECARN	HIGH	0.2	0.1	0.83	11.00	2.0	7.1	b.2	13.3	84.317	95.117
L0WS	B0IL	DECARN	LOW	0.2	0.1	0.83	11.00	0.5	5.9	b.2	13.0	84.317	95.117
L0WS	B0IL	DECARN	LOW	0.2	0.1	0.83	11.00	1.0	6.2	b.2	13.7	84.317	95.117
L0WS	B0IL	DECARN	LOW	0.2	0.1	0.83	11.00	2.0	8.1	b.2	15.9	84.317	100.117
L0WS	B0IL	DECARB	MEU	0.2	0.1	0.83	11.00	0.5	5.0	b.7	11.7	84.317	96.017
L0WS	B0IL	DECARB	MEU	0.2	0.1	0.83	11.00	1.0	5.5	b.7	12.2	84.317	96.517
L0WS	B0IL	DECARB	MEU	0.2	0.1	0.83	11.00	2.0	7.4	b.7	14.1	84.317	98.417
L0WS	B0IL	DECARB	SIMP	0.2	0.1	0.83	11.00	1.0	20.3	b.0	20.3	124.914	145.214
L0WS	B0IL	DECARB	SIMP	0.2	0.1	0.83	11.00	2.0	21.6	b.0	20.6	124.914	145.514
L0WS	B0IL	DECARB	SIMP	0.2	0.1	0.83	11.00	0.5	21.3	b.0	21.8	124.914	146.714

RWTYP	MODE	PROCESS	CYCLE	METALS	N	PLANT=OLD	CASE=1.1C	NACST	NOXCSF	SITECST	FUEL CST	TOTCST	
SUR	B0IL	1STAGE_HYDRO	HIGH	0.2	0.019	0.0015	2.35	0.5	4.5	b.0	1.5	88.238	98.738
SUR	B0IL	1STAGE_HYDRO	HIGH	0.2	0.019	0.0015	2.35	1.0	5.1	b.0	11.1	88.238	99.338
SUR	B0IL	1STAGE_HYDRO	HIGH	0.2	0.019	0.0015	2.35	2.0	7.0	b.0	13.0	88.238	101.238
SUR	B0IL	1STAGE_HYDRO	LOW	0.2	0.019	0.0015	2.35	0.5	5.6	b.0	13.1	86.238	101.558
SUR	B0IL	1STAGE_HYDRO	LOW	0.2	0.019	0.0015	2.35	1.0	6.0	b.0	13.5	86.238	101.736
SUR	B0IL	1STAGE_HYDRO	LOW	0.2	0.019	0.0015	2.35	2.0	7.9	b.0	15.4	86.238	102.736
SUR	B0IL	1STAGE_HYDRO	MEU	0.2	0.019	0.0015	2.35	0.5	4.8	b.0	14.3	88.238	99.538
SUR	B0IL	1STAGE_HYDRO	MEU	0.2	0.019	0.0015	2.35	1.0	5.4	b.0	11.9	88.238	100.138
SUR	B0IL	1STAGE_HYDRO	MEU	0.2	0.019	0.0015	2.35	2.0	7.3	b.0	13.8	88.238	102.038
SUR	B0IL	1STAGE_HYDRO	SIMP	0.2	0.019	0.0015	2.35	1.0	19.1	b.0	19.1	130.724	149.824
SUR	B0IL	1STAGE_HYDRO	SIMP	0.2	0.019	0.0015	2.35	2.0	20.1	b.0	20.1	130.724	150.824
SUR	B0IL	1STAGE_HYDRO	SIMP	0.2	0.019	0.0015	2.35	0.5	20.6	b.0	20.6	130.724	151.324

PATH IDENTIFIERS

Definition

Identifier for the fuel upgrading scheme.

An abbreviated description of the upgrading scheme.

Upgrading scheme uses an augmented existing facility

A coal liquid from grass roots facility

A coal liquid from an Eastern bituminous coal

A shale oil from Western bituminous coal

A shale oil from a modified insitu retort

A shale oil from a surface retort

A low sulfur petroleum crude oil

A high sulfur petroleum crude oil

Upgrading scheme primarily removes impurities

Simple cycle 1500 hours/year for power generation

Combined cycle 700 hours/year for power generation

On site sodium purification capability from 90 ppm to 1.5 ppm in washed fuel

From 4.0 ppm to 1.0 ppm Na in washed fuel from 1.0 ppm to 0.1 ppm Na in washed fuel

From 4.0 ppm to 0.1 ppm Na in washed fuel from 1.0 ppm to 0.1 ppm Na in washed fuel

NAMES

ATAILS

N

S

VIS

Vanadium content, ppm by weight

Nitrogen Content, % by weight

Sulfur content, % by weight

Viscosity, centistoke at 100 degree F

(+) are mills per kWh net power produced)

Costs for on site fuel treatment, incremental maintenance, incremental depreciation on turbine

Costs for on site exhaust gas treatment sum of SITECST plus FUEL CST

Costs for on site fuel treatment, incremental maintenance, incremental depreciation on turbine fuel

Sum of SITECST and FUEL CST

Lost of turbine fuel

Sum of SITECST and FUEL CST

Lost of turbine fuel

ORIGINAL PAGE IS
 OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 3 (page 2 of 2)
PATH DETAILS FOR A FEW REPRESENTATIVE CASES
IMPHASIS ON SITE OPTION INFORMATION
ALL COMBINED CYCLE PATHS OF A CASE USE THE SAME WASHING OPTION

RMTYPE	MUNDE	PLANT=OLD			CASE=2•31			PLANT=OLD			CASE=2•33			PLANT=OLD			CASE=2•34		
		PROCESS	CYCLE	METALS	N	S	VIS	NA	NACST	NOXST	NA	NACST	NOXST	NA	SITECST	FUEL CST	TOTCST		
HIGHS	IMP	HDS-MOD	HIGH	50•4	0•36	0•37	1130	0•5	5•5	6•5	12•1	80•6912	92•7912						
HIGHS	IMP	HDS-MOD	HIGH	50•4	0•36	0•37	1130	1•0	6•1	6•5	12•7	80•5312	93•3912						
HIGHS	IMP	HDS-MOD	HIGH	50•4	0•36	0•37	1130	2•0	3•0	6•6	14•6	80•6912	95•2912						
HIGHS	IMP	HDS-MOD	LOW	50•4	0•36	0•37	1130	0•5	6•8	8•1	14•9	80•6912	95•5912						
HIGHS	IMP	HDS-MOD	LOW	50•4	0•36	0•37	1130	1•0	7•1	9•1	15•2	80•6912	95•8912						
HIGHS	IMP	HDS-MOD	LOW	50•4	0•36	0•37	1130	2•0	9•0	9•1	17•1	80•6912	97•7912						
HIGHS	IMP	HDS-MOD	MED	50•4	0•36	0•37	1130	0•5	5•9	7•1	13•0	80•6912	93•6912						
HIGHS	IMP	HDS-MOD	MED	50•4	0•36	0•37	1130	1•0	6•4	7•1	13•5	80•6912	94•1912						
HIGHS	IMP	HDS-MOD	MED	50•4	0•36	0•37	1130	2•0	9•3	7•1	15•4	80•6912	96•0912						
PATH IDENTIFIERS																			
NAME																			
CASE																			
PROCESS																			
PLANT=OLD																			
RMTYPE=NEW																			
MUNDE=HIGH																			
CYCLE=SIMP																			
NA																			

NAME
 CASE
 PROCESS
 PLANT=OLD
 RMTYPE=NEW
 MUNDE=HIGH
 CYCLE=SIMP
 NA

Identifier for the fuel upgrading scheme.
 An abbreviated description of the upgrading scheme.
 Upgrading scheme uses an augmented existing facility.
 Upgrading scheme uses a grass roots facility.
 A coal liquid from Eastern bituminous coal.
 A coal liquid from Western bituminous coal.
 A shale oil from a modified insitu retort.
 A shale oil from a surface retort.
 A low sulfur petroleum crude oil.
 A high sulfur petroleum crude oil.
 Upgrading scheme primarily alters boiling ranges.
 Simple cycle, 1500 hours/year, for power generation.
 Continuous cycle, 7000 hours/year, for power generation.
 On site sodium purification capability.
 From 50 ppm to 10 ppm Na in washed fuel.
 From 50 ppm to 100 ppm Na in washed fuel.
 From 50 ppm to 200 ppm Na in washed fuel.

Definition
 Identifier for the fuel upgrading scheme.
 An abbreviated description of the upgrading scheme.
 Upgrading scheme uses an augmented existing facility.
 Upgrading scheme uses a grass roots facility.
 A coal liquid from Eastern bituminous coal.
 A coal liquid from Western bituminous coal.
 A shale oil from a modified insitu retort.
 A shale oil from a surface retort.
 A low sulfur petroleum crude oil.
 A high sulfur petroleum crude oil.
 Upgrading scheme primarily removes impurities.
 Simple cycle, 1500 hours/year, for power generation.
 Continuous cycle, 7000 hours/year, for power generation.
 On site sodium purification capability.
 From 50 ppm to 10 ppm Na in washed fuel.
 From 50 ppm to 100 ppm Na in washed fuel.
 From 50 ppm to 200 ppm Na in washed fuel.

Name
 MFTALS
 N
 S
 VIS
 PATH COSTS (all are mills per kWh net power produced)
 Name
 NACST
 NOXST
 SITECST
 FUEL CST
 TOTCST
 Definition
 Vanadium content, ppm by weight
 Nitrogen Content, % by weight
 Sulfur content, % by weight
 Viscosity, centistoke at 100 degree F
 Refinement costs for on site fuel treatment, incremental
 maintenance, incremental deprec. on turbine
 Costs for on site exhaust gas treatment
 Sum of NACST plus SITECST
 Cost of turbine fuel
 Sum of SITECST and FUEL CST

ORIGINAL PAGE IS
OF POOR QUALITY.

TABLE 4 (page 1 of 2)
PATH DETAILS FOR A FIRM REPRESENTATIVE CASES
EMPHASIS ON SITE OPTIMUM INFORMATION
ALL COMINDED CYCLE PATHS OF A CASE USE THE SAME WASHING OPTION

TABLE 4 (PAGE 2 OF 2)
PATH DETAILS FOR A FEW REPRESENTATIVE CASES
EMPHASIS ON SITE OPTION INFORMATION
ALL COMBINING CYCLE PATHS
OF A CASE USE THE SAME WASHING OPTION

ORIGINAL PAGE IS
OF POOR QUALITY.

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 5
PATH DETAILS TO EXAMINE EFFECT OF C/H RATIO
EMPHASIS ON SITE OPTION INFORMATION

CASE	PLANT	RHTYPE	MODE	PROCESS	CYCLE	METALS	CTOH	FUEL COST
2*31	OLD	HIGH\$	IMP	HD\$_MND	HIGH	50.40	7.36	80.691
2*33	OLD	HIGH\$	IMP	HD\$_HIGH	HIGH	10.90	7.33	82.491
3*10	OLD	SUR	BOIL	1STAGE_HYDRO	HIGH	0.20	6.50	88.239
3*20	OLD	SUR	BOIL	HYDRO_HIGH	HIGH	0.20	6.65	84.767
4*10	OLD	MIS	BOIL	1STAGE_HYDRO	HIGH	0.20	6.63	88.239
4*20	OLD	MIS	BOIL	HYDRO_HIGH	HIGH	0.20	6.65	84.908
1010	NEW	ECOAL	IMP	HYDRO_MND	HIGH	0.00	9.10	73.401
1030	NEW	ECUAL	IMP	HYDRO_HIGH	HIGH	0.00	8.90	84.587
2010	NEW	WCUAL	IMP	HYDRO_NAPH	HIGH	0.00	7.05	81.668
2020	NEW	WCUAL	IMP	HYDRO_ALL	HIGH	0.00	6.78	92.481
3010	NEW	SUR	IMP	HYD650+_MJD	HIGH	0.00	7.10	94.449
3030	NEW	SUR	IMP	HYD650+_HIGH	HIGH	0.00	6.93	105.518
301A	NEW	SUR	IMP	HYD350+_MJD	HIGH	0.00	6.90	87.775
303A	NEW	SUR	IMP	HYD350+_HIGH	HIGH	0.00	6.73	92.597
5010	NEW	LOWS	IMP	HYDRO_VAL_MJD	HIGH	1.30	7.45	79.187
5030	NEW	LOWS	IMP	HYDRO_VAC_HIGH	HIGH	0.05	7.38	79.637
6010	NEW	HIGH\$	IMP	HYDRO_VAC_MJD	HIGH	49.00	7.10	85.101
6030	NEW	HIGH\$	IMP	HYDRO_VAC_HIGH	HIGH	11.00	7.35	87.338

A decrease of 0.1 in C/H ratio costs about 5 mills/kWhr

PATH IDENTIFIERS

Name	Definition	Name	Definition
CASE	Identifier for the fuel upgrading scheme	API	Density, degrees API
PLANT-OLD	Upgrading scheme uses an augmented existing facility	CTOH	Carbon to Hydrogen weight ratio
-NEW	Upgrading scheme uses an grassroots roots facility	METALS	Vanadium content, ppm by weight
RHTYPE-ECUAL	A coal liquid from an Eastern bituminous coal	N	Nitrogen Content, % by weight
-WCUAL	A coal liquid from an Western bituminous coal	S	Sulfur content, % by weight
-MIS	A shale oil from a modified insitu retort	VTS	Viscosity, centistoke at 100 degree F
-SUR	A shale oil from a surface retort		
MJD-E-UNIL	A low sulfur petroleum crude oil	PATH COSTS (all mills/kWhr)	
-HIGH\$	A high sulfur petroleum crude oil		
UPR-UNIL	Upgrading scheme primarily alters boiling ranges		
-IMP	Upgrading scheme primarily removes impurities		
PROCES	An abbreviated description of the upgrading scheme.	Name	Definition
CYCLE-HIGH	Combined cycle, 7000 hours/year, for power generation	FUEL COST	Purchased cost of turbine fuel

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 6 (Data 1 of 4)
ALL PATHS FOR SIMPLE (IMP) AND HIGH DUTY CYCLE (HIGH) CYCLES

CASE	PLANT	WTTYPE	Mode	PROCESS	CYCLE	NA	FUELST	SITECST	TOTCST	RMCST	METALS	API	CTOH	N	S	VIS	TH_EFF
1.1.0	OLD	LWMS	BUILT	DECARB	HIGH	0.5	84.317	10.8	95.117	62.00	0.2	17.4	8.25	0.10	0.83	1100.00	92.7
1.1.0	OLD	LWMS	BUILT	DECARB	HIGH	1.0	84.317	11.4	95.717	62.00	0.2	17.4	8.25	0.10	0.83	1100.00	92.7
1.1.0	OLD	LWMS	BUILT	DECARB	HIGH	2.0	84.317	13.3	97.617	62.00	0.2	17.4	8.25	0.10	0.83	1100.00	92.7
1.1.0	OLD	LWMS	BUILT	DECARB	SIMP	1.0	124.914	2.0	145.714	62.00	0.2	17.4	8.25	0.10	0.83	1100.00	92.7
1.1.0	OLD	LWMS	BUILT	DECARB	SIMP	2.0	124.914	20.6	145.514	62.00	0.2	17.4	8.25	0.10	0.83	1100.00	92.7
1.1.0	OLD	LWMS	BUILT	DECARB	SIMP	0.5	124.914	21.3	146.714	62.00	0.2	17.4	8.25	0.10	0.83	1100.00	92.7
1.1.0	OLD	LWMS	BUILT	COKE_HYDC5+	HIGH	0.5	84.793	10.7	95.493	62.00	0.0	37.2	6.63	0.09	0.05	1.00	92.3
1.1.21	OLD	LWMS	BUILT	COKE_HYDC5+	HIGH	1.0	84.793	11.3	95.093	62.00	0.0	37.2	6.63	0.09	0.05	1.00	92.3
1.1.21	OLD	LWMS	BUILT	COKE_HYDC5+	HIGH	2.0	84.793	13.2	97.993	52.00	0.0	37.2	6.63	0.09	0.05	1.00	92.3
1.1.21	OLD	LWMS	BUILT	COKE_HYDC5+	SIMP	1.0	125.619	19.1	144.719	62.00	0.0	37.2	6.63	0.09	0.05	1.00	92.3
1.1.21	OLD	LWMS	BUILT	COKE_HYDC5+	SIMP	2.0	125.619	20.1	145.719	62.00	0.0	37.2	6.63	0.09	0.05	1.00	92.3
1.1.21	OLD	LWMS	BUILT	COKE_HYDC5+	SIMP	0.5	125.619	20.6	146.219	62.00	0.0	37.2	6.63	0.09	0.05	1.00	92.3
1.1.22	OLD	LWMS	BUILT	COKE_HYD375*	HIGH	0.5	79.984	10.7	90.684	62.00	0.0	31.0	6.85	0.11	0.07	5.00	92.2
1.1.22	OLD	LWMS	BUILT	COKE_HYD375*	HIGH	1.0	79.984	11.3	91.284	62.00	0.0	31.0	6.85	0.11	0.07	5.00	92.2
1.1.22	OLD	LWMS	BUILT	COKE_HYD375*	HIGH	2.0	79.984	13.2	91.184	62.00	0.0	31.0	6.85	0.11	0.07	5.00	92.2
1.1.31	OLD	LWMS	IMP	HDS_MOD	HIGH	0.5	79.068	10.8	88.868	62.00	1.3	22.9	7.37	0.09	0.25	1100.00	92.7
1.1.31	OLD	LWMS	IMP	HDS_MOD	HIGH	1.0	79.068	11.4	89.468	62.00	1.3	22.9	7.37	0.09	0.25	1100.00	92.7
1.1.31	OLD	LWMS	IMP	HDS_MOD	HIGH	2.0	78.068	13.3	91.368	62.00	1.3	22.9	7.37	0.09	0.25	1100.00	92.7
1.1.31	OLD	LWMS	IMP	HDS_MOD	SIMP	1.0	115.657	20.3	135.957	62.00	1.3	22.9	7.37	0.09	0.25	1100.00	92.7
1.1.31	OLD	LWMS	IMP	HDS_MOD	SIMP	2.0	115.657	20.6	135.257	62.00	1.3	22.9	7.37	0.09	0.25	1100.00	92.7
1.1.31	OLD	LWMS	IMP	HDS_MOD	SIMP	0.5	115.657	21.4	137.457	62.00	1.3	22.9	7.37	0.09	0.25	1100.00	92.7
1.1.32	OLD	LWMS	IMP	HDS_INTER	HIGH	0.5	78.004	10.8	88.804	62.00	0.6	23.1	7.36	0.09	0.25	1100.00	92.8
1.1.32	OLD	LWMS	IMP	HDS_INTER	HIGH	1.0	78.004	11.4	89.404	62.00	0.6	23.1	7.36	0.09	0.25	1100.00	92.8
1.1.32	OLD	LWMS	IMP	HDS_INTER	HIGH	2.0	78.004	13.3	91.304	62.00	0.6	23.1	7.36	0.09	0.25	1100.00	92.8
1.1.32	OLD	LWMS	IMP	HDS_INTER	SIMP	1.0	115.502	20.3	135.682	62.00	0.6	23.1	7.36	0.09	0.21	1100.00	92.8
1.1.32	OLD	LWMS	IMP	HDS_INTER	SIMP	2.0	115.502	20.6	136.162	62.00	0.6	23.1	7.36	0.09	0.21	1100.00	92.8
1.1.32	OLD	LWMS	IMP	HDS_INTER	SIMP	0.5	115.502	21.8	137.362	62.00	0.6	23.1	7.36	0.09	0.21	1100.00	92.8
1.1.33	OLD	LWMS	IMP	HDS_HIGH	HIGH	0.5	73.055	10.8	88.855	62.00	0.1	24.4	7.33	0.09	0.17	1100.00	92.4
1.1.33	OLD	LWMS	IMP	HDS_HIGH	HIGH	1.0	78.055	11.4	89.455	62.00	0.1	24.4	7.33	0.09	0.17	1100.00	92.4
1.1.33	OLD	LWMS	IMP	HDS_HIGH	HIGH	2.0	78.055	13.3	91.355	62.00	0.1	24.4	7.33	0.09	0.17	1100.00	92.4
1.1.33	OLD	LWMS	IMP	HDS_HIGH	HIGH	1.0	115.638	20.3	135.939	62.00	0.1	24.4	7.33	0.09	0.17	1100.00	92.4
1.1.33	OLD	LWMS	IMP	HDS_HIGH	HIGH	2.0	115.638	20.6	136.236	62.00	0.1	24.4	7.33	0.09	0.17	1100.00	92.4
1.1.33	OLD	LWMS	IMP	HDS_HIGH	SIMP	0.5	115.638	21.8	137.439	62.00	0.1	24.4	7.33	0.09	0.17	1100.00	92.4
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	0.5	73.401	11.8	85.201	51.66	0.0	13.4	9.10	0.70	0.13	3.60	92.2
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	1.0	73.401	12.4	85.801	51.66	0.0	13.4	9.10	0.70	0.13	3.60	92.2
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	2.0	73.401	14.3	87.701	51.66	0.0	13.4	9.10	0.70	0.13	3.60	92.2
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	0.5	75.985	11.4	87.385	51.66	0.0	14.1	9.00	0.50	0.11	2.90	89.9
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	1.0	75.985	17.0	87.985	51.66	0.0	14.1	9.00	0.50	0.11	2.90	89.9
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	2.0	75.985	13.9	89.885	51.66	0.0	14.1	9.00	0.50	0.11	2.90	89.9
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	0.5	84.587	11.0	95.587	51.66	0.0	14.8	8.90	0.30	0.07	2.45	85.7
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	1.0	84.587	11.6	96.187	51.66	0.0	14.8	8.90	0.30	0.07	2.45	85.7
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	2.0	84.587	13.5	94.087	51.66	0.0	14.8	8.90	0.30	0.07	2.45	85.7
1.010	NEW	ECOAL	IMP	HYDRO_MUD	HIGH	0.5	81.874	11.3	93.174	59.00	1.16	21.7	7.55	0.27	0.26	1130.00	92.2
2.110	OLD	HIGHS	BUILT	DECARB	HIGH	1.0	81.874	11.9	93.774	59.00	1.16	21.7	7.55	0.27	0.26	1130.00	92.2
2.110	OLD	HIGHS	BUILT	DECARB	HIGH	2.0	81.874	13.9	95.674	59.00	1.16	21.7	7.55	0.27	0.26	1130.00	92.2

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 6 (PAGE 2 OF 4)
ALL PATHS FOR SAMPLE (SIMP) AND HIGH DUTY COMBINED (HIGH) CYCLES

CASE	PLANT	WTYPE	WONE	PROCESS	CYCLE	NA	FUEL/CST	SIT/CST	HMCUST	METALS	API	CTOH	N	S	VIS	TH_EFF
2*21	OLD	HIGH5	BUIL	COKE_HYDGS*	HIGH	0*5	89.730	10*9	100.530	59.00	0*0	37.7	6*65	0.1900	0*150	*00 86*4
2*21	OLD	HIGH5	BUIL	COKE_HYDGS*	HIGH	1*0	89.730	11*5	101.230	59.00	0*0	37.7	6*65	0.1900	0*1	*00
2*21	OLD	HIGH5	BUIL	COKE_HYDGS*	HIGH	2*0	89.730	13*4	103.130	59.00	0*0	37.7	6*65	0.1900	0*1	*00 86*4
2*22	OLD	HIGH5	BUIL	COKE_HYDTS*	HIGH	0*5	90.578	10*7	101.278	59.00	0*0	31.5	6*83	0.1100	J	91*8
2*22	OLD	HIGH5	BUIL	COKE_HYDTS*	HIGH	1*0	90.578	11*3	101.878	59.00	0*0	31.5	6*83	0.1100	J	91*8
2*22	OLD	HIGH5	BUIL	COKE_HYDTS*	HIGH	2*0	89.578	13*2	103.778	59.00	0*0	31.5	6*83	0.1100	J	91*8
2*23	OLD	HIGH5	BUIL	COKE_HYD650*	HIGH	0*5	89.907	10*9	100.707	59.00	0*0	22.3	7*45	0*1	L	86*4
2*23	OLD	HIGH5	BUIL	COKE_HYD650*	HIGH	1*0	89.907	11*5	101.307	59.00	0*0	22.3	7*45	0*1	L	86*4
2*23	OLD	HIGH5	BUIL	COKE_HYD650*	HIGH	2*0	89.907	13*4	103.207	59.00	0*0	22.3	7*45	0*1	L	86*4
2*31	OLD	HIGH5	TMP	HDS_MDO	HIGH	0*5	80.691	12*1	92.791	59.00	50*4	23.0	7*35	0*3600	J	25*J
2*31	OLD	HIGH5	TMP	HDS_MDO	HIGH	1*0	80.691	12*7	93.391	59.00	50*4	23.0	7*36	0*3600	J	25*J
2*31	OLD	HIGH5	TMP	HDS_MDO	HIGH	2*0	80.691	14*6	95.291	59.00	50*4	23.0	7*36	0*3500	J	25*J
2*32	OLD	HIGH5	TMP	HDS_INTER	HIGH	0*5	81.398	11*7	93.098	59.00	31*0	23*2	7*35	0*3600	J	26*J
2*32	OLD	HIGH5	TMP	HDS_INTER	HIGH	1*0	81.398	12*3	93.598	59.00	31*0	23*2	7*35	0*3600	J	26*J
2*32	OLD	HIGH5	TMP	HDS_INTER	HIGH	2*0	81.398	14*2	95.598	59.00	31*0	23*2	7*35	0*3600	J	26*J
2*33	OLD	HIGH5	TMP	HDS_HIGH	HIGH	0*5	82.4*1	11*3	93.791	59.00	10*9	23*4	7*33	0*3000	J	26*J
2*33	OLD	HIGH5	TMP	HDS_HIGH	HIGH	1*0	82.4*1	11*9	94.391	59.00	10*9	23*4	7*33	0*3000	J	26*J
2*33	OLD	HIGH5	TMP	HDS_HIGH	HIGH	2*0	82.4*1	13*4	96.2*1	59.00	10*9	23*4	7*33	0*3000	J	26*J
2010	NEW	WCUAL	IMP	HYDRU_NAPH	HIGH	0*5	81.669	11*0	97.669	62.71	0*0	27.0	7*05	0*2600	J	1*70 95*1
?2010	NEW	WCUAL	IMP	HYDRU_NAPH	HIGH	1*0	81.568	11*5	93.258	62.71	0*0	27.0	7*05	0*2600	J	1*70 95*1
?2010	NEW	WCUAL	IMP	HYDRU_NAPH	HIGH	2*0	81.568	13*5	95.168	62.71	0*0	27.0	7*05	0*2600	J	1*70 95*1
2020	NEW	WCUAL	IMP	HYDRU_ALL	HIGH	0*5	92.481	10*5	102.981	62.71	0*0	32.3	6*73	0*2000	J	1*70 95*1
?2020	NEW	WCUAL	IMP	HYDRU_ALL	HIGH	1*0	92.481	11*1	103.581	52.71	0*0	32.3	6*78	0*2000	J	1*70 95*1
?2020	NEW	WCUAL	IMP	HYDRU_ALL	HIGH	2*0	92.481	13*0	105.481	52.71	0*0	32.3	6*78	0*2000	J	1*70 95*1
ZU2J	NEW	WCUAL	IMP	HYDRU_ALL	SIMP	1*0	137.303	19*1	156.109	52.71	0*0	32.3	6*78	0*2000	J	1*70 95*1
ZU2J	NEW	WCUAL	IMP	HYDRU_ALL	SIMP	2*0	137.303	20*1	157.109	52.71	0*0	27.0	7*05	0*2600	J	1*70 95*1
ZU2J	NEW	WCUAL	IMP	HYDRU_ALL	SIMP	0*5	137.000	20*6	157.609	52.71	0*0	32.3	6*73	0*2000	J	1*70 95*1
ZU2J	NEW	WCUAL	IMP	HYDRU_ALL	SIMP	0*5	83.231	10*5	9b.739	50.86	0*2	36*0	6*60	0*0190	J	2*35 82*2
3*10	OLD	SUR	BUIL	1STAGE_HYDRO	HIGH	1*0	H1*719	11*1	99.338	50.86	0*2	38*0	6*60	0*0190	J	2*35 82*2
3*10	OLD	SUR	BUIL	1STAGE_HYDRO	HIGH	2*0	88.724	13*0	101.234	50.86	0*2	38*0	6*60	0*0190	J	2*35 82*2
3*10	OLD	SUR	BUIL	1STAGE_HYDRO	HIGH	1*0	130.724	19*1	149.824	50.86	0*2	38*0	6*60	0*0190	J	2*35 82*2
3*10	OLD	SUR	BUIL	1STAGE_HYDRO	HIGH	2*0	130.724	20*1	150.824	50.86	0*2	38*0	6*60	0*0190	J	2*35 82*2
3*10	OLD	SUR	BUIL	1STAGE_HYDRO	HIGH	2*5	130.724	20*7	151.324	50.86	0*2	38*0	6*60	0*0190	J	2*35 82*2
3*10	OLD	SUR	BUIL	HYDRO_HIGH	HIGH	0*5	84.767	10*6	95.367	50.86	0*2	37*5	6*65	0*0500	J	2*35 82*2
3*10	OLD	SUR	BUIL	HYDRO_HIGH	HIGH	1*0	84.767	11*2	95.967	50.86	0*2	37*5	6*65	0*0500	J	2*35 82*2
3*10	OLD	SUR	BUIL	HYDRO_HIGH	HIGH	2*0	84.767	13*1	97.867	50.86	0*2	37*5	6*65	0*0500	J	2*35 82*2
3*10	OLD	SUR	BUIL	HYDRO_HIGH	HIGH	1*0	125*581	19*1	144*6d1	50.86	0*2	37*5	6*65	0*0500	J	2*35 82*2
3*10	OLD	SUR	BUIL	HYDRO_HIGH	HIGH	2*0	125*581	20*1	145*681	50.86	0*2	37*5	6*65	0*0500	J	2*35 82*2
3*10	OLD	SUR	BUIL	HYDRO_HIGH	HIGH	0*5	125*581	20*6	146*181	50.86	0*2	37*5	6*65	0*0500	J	2*35 82*2
3*10	OLD	SUR	BUIL	COKE_HYDGS*	HIGH	0*5	110*931	11*0	121*031	50.86	0*0	39*0	6*65	0*0080	J	2*35 82*2
3*10	OLD	SUR	BUIL	COKE_HYDGS*	HIGH	1*0	110*931	11*5	121*631	50.86	0*0	39*0	6*65	0*0080	J	2*35 82*2
3*10	OLD	SUR	BUIL	COKE_HYDGS*	HIGH	2*0	110*931	13*5	123*531	50.86	0*0	39*0	6*65	0*0080	J	2*35 82*2
3*10	OLD	SUR	TMP	HYD150_+MOU	HIGH	0*5	87*775	11*5	99*775	51.93	0*0	2*35 82*2	96*9	96*9	96*9	96*9
3*10	OLD	SUR	TMP	HYD150_+MOU	HIGH	1*0	87*775	12*1	97*475	51.93	0*0	2*35 82*2	96*9	96*9	96*9	96*9
3*10	OLD	SUR	TMP	HYD150_+MOU	HIGH	2*0	87*775	14*0	101*775	51.93	0*0	2*35 82*2	96*9	96*9	96*9	96*9

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 5 (page 3 of 4)
ALL PATHS FIND SIMPLEST CYCLES
AND HIGH NUTR COMBINED (HIGH) CYCLES

CASE	PLANT	RATE TYPE	MODE	PACCESS	CYCLE	NA	FUELCAST	SITECAST	ROTCAST	RMCAST	METALS	API	CTNH	N	S	VIS	TH_EFF
3010	New	SUR	IMP	HYD650+ MOD	HIGH	0..5	94..448	11..4	105..843	53..9	0..0	25..0	7..10	0..500	0..0500	85..5	
3010	New	SUP	IMP	HYD650+-MOD	HIGH	1..0	74..448	12..0	106..448	53..9	0..0	25..0	7..10	0..500	0..0500	85..5	
3010	New	SUR	IMP	HYD650+-MJD	HIGH	2..0	94..448	13..9	108..348	53..9	0..0	25..0	7..10	0..500	0..0500	95..5	
302A	New	SUR	IMP	HYD350+-INTER	HIGH	0..5	89..991	11..1	100..791	53..9	0..0	32..9	6..80	0..340	0..0210	85..5	
302A	New	SUR	IMP	HYD350+-INTER	HIGH	1..0	89..991	11..7	101..291	53..9	0..0	32..8	6..80	0..340	0..0210	85..5	
3020	New	SUP	IMP	HYD650+-INTER	HIGH	0..5	97..161	11..0	108..161	53..9	0..0	32..8	6..80	0..340	0..0210	85..5	
3020	New	SUP	IMP	HYD650+-INTER	HIGH	1..0	97..161	11..6	108..761	53..9	0..0	27..0	6..86	0..300	0..0400	84..9	
3070	New	SUR	IMP	HYD550+-INTER	HIGH	2..0	97..161	13..5	110..661	53..9	0..0	27..0	6..86	0..300	0..0400	84..9	
307A	New	SUP	IMP	HYD350+-HIGH	HIGH	0..5	92..297	10..7	103..297	53..9	0..0	34..2	6..73	0..103	0..0070	84..5	
307A	New	SUP	IMP	HYD350+-HIGH	HIGH	1..0	92..297	11..3	103..897	53..9	0..0	34..2	6..73	0..103	0..0070	84..5	
307A	New	SUR	IMP	HYD150+-HIGH	HIGH	2..0	92..597	13..6	101..797	53..9	0..0	34..2	6..73	0..103	0..0070	84..5	
307A	New	SUR	IMP	HYD650+-HIGH	HIGH	0..5	105..51H	10..9	116..41d	53..9	0..0	29..0	6..93	0..190	0..0120	83..7	
3070	New	SUR	IMP	HYD650+-HIGH	HIGH	1..0	105..51B	11..5	117..01B	53..9	0..0	29..0	6..93	0..190	0..0120	83..7	
3070	New	SUP	IMP	HYD650+-HIGH	HIGH	2..0	105..51B	13..4	118..91d	53..9	0..0	29..0	6..93	0..190	0..0120	83..7	
3070	New	SUP	BOIL	COKE-HYDRO-MOD	HIGH	0..5	109..298	11..4	120..698	53..9	0..0	37..0	6..60	0..500	0..0100	84..4	
3070	New	SUR	BOIL	COKE-HYDRO-MOD	HIGH	1..0	109..298	12..0	121..298	53..9	0..0	37..0	6..60	0..500	0..0100	84..4	
3070	New	SUR	BOIL	COKE-HYDRO-MOD	HIGH	2..0	109..298	13..9	123..198	53..9	0..0	37..0	6..60	0..500	0..0100	84..4	
3070	New	SUP	BOIL	COKE-HYDRO-MOD	HIGH	0..5	105..791	11..0	117..791	53..9	0..0	39..0	6..57	0..300	0..0030	84..2	
3070	New	SUP	BOIL	COKE-HYDRO-MOD	HIGH	1..0	105..791	11..6	118..391	53..9	0..0	39..0	6..57	0..300	0..0030	84..2	
3070	New	SUP	BOIL	COKE-HYDRO-MOD	HIGH	2..0	105..791	13..2	120..291	53..9	0..0	39..0	6..57	0..300	0..0030	84..2	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	0..5	108..655	10..6	119..255	53..9	J..0	40..7	6..50	0..060	0..00C0	82..8	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	1..0	108..655	11..2	119..855	53..9	0..0	40..7	6..50	0..060	0..00D0	82..8	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	2..0	103..655	13..1	121..755	53..9	0..0	40..7	6..50	0..060	0..00D0	82..8	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	1..0	105..791	11..6	118..391	53..9	0..0	40..7	6..50	0..060	0..00D0	82..8	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	2..0	105..791	13..2	120..291	53..9	0..0	40..7	6..50	0..060	0..00D0	82..8	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	0..5	109..971	20..6	181..571	53..9	0..0	49..7	6..50	0..060	0..00D0	82..8	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	1..0	109..971	20..6	181..571	53..9	0..0	49..7	6..50	0..060	0..00D0	82..8	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	2..0	109..971	20..6	181..571	53..9	0..0	49..7	6..50	0..060	0..00D0	82..8	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	0..5	88..233	10..5	99..738	53..9	0..2	37..2	6..63	0..019	0..0015	2..35	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	1..0	88..233	11..1	99..313	53..9	0..2	37..2	6..63	0..019	0..0015	2..35	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	2..0	88..233	13..0	101..238	53..8	0..2	37..2	6..63	0..019	0..0015	2..35	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	1..0	136..724	19..1	149..824	53..8	0..2	37..2	6..63	0..019	0..0015	2..35	
3070	New	SUP	BOIL	COKE-HYDRO-HIGH	HIGH	2..0	130..724	20..1	150..874	53..8	0..2	37..2	6..63	0..019	0..0015	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	0..5	139..774	20..6	161..374	53..8	0..2	37..2	6..63	0..019	0..0015	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	1..0	84..238	11..1	99..313	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	2..0	88..238	13..0	101..238	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	1..0	136..724	19..1	149..824	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	2..0	130..724	20..1	150..874	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	0..5	139..774	20..6	161..374	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	1..0	84..908	10..6	95..523	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	2..0	84..908	11..2	96..104	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	1..0	125..790	19..1	144..620	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	2..0	125..790	20..1	145..390	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	0..5	84..908	10..6	95..523	53..8	0..2	36..7	6..65	0..050	0..0040	2..35	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	0..5	80..910	11..0	101..900	54..0	0..1	32..0	6..80	0..300	0..0250	93..3	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	1..0	80..910	11..6	102..900	55..0	0..1	32..0	6..80	0..300	0..0250	93..3	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	2..0	93..970	13..5	104..470	58..0	0..1	32..0	6..80	0..300	0..0250	93..3	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	0..5	94..75	11..0	109..765	58..0	0..1	27..0	6..86	0..300	0..0400	90..5	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	1..0	92..755	11..6	116..755	53..0	0..1	27..0	6..86	0..300	0..0400	90..5	
3070	New	SUP	BOIL	STAGE-HYDRO	HIGH	2..0	95..755	13..5	112..755	54..0	0..1	27..0	6..86	0..300	0..0400	90..5	

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 6 (PAGE 4 OF 4)
ALL PATHS FOR SAMPLE (SIMP) AND HIGH SUTY CUMULATIVE (HTCH) CYCLES

CASE	PLANT	RMTY	MUD	PRICES	CYCLE	NA	FILTER	SITFC_T	TOT_ST	RMCST	METALS	API	CTOH	N	S	VIS	TH_EFF
5010	N	L	W	IMP	HYDR_O_VAC_MUD	HIGH	0.5	79.187	10.8	89.987	4.9_02	1.39	22.4	7.45	0.09	0.26	100.0
5011	N	L	W	IMP	HYDR_O_VAC_MUD	HIGH	1.0	79.197	11.6	90.587	4.9_02	1.30	22.4	7.45	0.09	0.26	100.0
5010	N	L	W	IMP	HYDR_O_VAC_MUD	HIGH	2.0	79.187	13.3	92.437	4.9_02	1.30	22.4	7.45	0.09	0.26	100.0
5011	N	L	W	IMP	HYDR_O_VAC_MUD	SIMP	1.0	117.314	20.3	137.616	4.9_02	1.30	22.4	7.45	0.09	0.26	100.0
5010	N	L	W	IMP	HYDR_O_VAC_MUD	SIMP	2.0	117.314	20.6	137.914	4.9_02	1.30	22.4	7.45	0.09	0.26	100.0
5011	N	L	W	IMP	HYDR_O_VAC_MUD	SIMP	0.5	117.314	21.9	133.114	4.9_02	1.30	22.4	7.45	0.09	0.26	100.0
5010	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	0.5	79.141	10.3	90.141	4.9_02	0.50	22.6	7.45	0.09	0.23	100.0
5011	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	1.0	79.341	11.4	90.741	4.9_02	0.50	22.6	7.45	0.09	0.23	100.0
5020	N	L	W	IMP	HYDR_O_VAC_INTEP	HIGH	2.0	79.341	13.3	92.641	4.9_02	0.50	22.6	7.45	0.09	0.23	100.0
5021	N	L	W	IMP	HYDR_O_VAC_INTEP	SIMP	1.0	117.543	20.3	137.943	4.9_02	0.50	22.6	7.45	0.09	0.23	100.0
5020	N	L	W	IMP	HYDR_O_VAC_INTEP	SIMP	2.0	117.543	20.6	133.14	4.9_02	0.50	22.6	7.45	0.09	0.23	100.0
5021	N	L	W	IMP	HYDR_O_VAC_INTEP	SIMP	0.5	117.543	20.9	139.343	4.9_02	0.50	22.6	7.45	0.09	0.23	100.0
5020	N	L	W	IMP	HYDR_O_VAC_INTEP	SIMP	0.5	117.543	21.9	139.281	4.9_02	0.50	22.6	7.45	0.09	0.23	100.0
5021	N	L	W	IMP	HYDR_O_VAC_INTEP	SIMP	0.5	117.543	22.9	138.281	4.9_02	0.50	22.6	7.45	0.09	0.23	100.0
5030	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	1.0	79.337	10.9	90.437	4.9_02	0.05	23.0	7.39	0.09	0.19	100.0
5031	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	1.0	79.537	11.4	91.037	4.9_02	0.05	23.0	7.38	0.09	0.19	100.0
5030	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	2.0	79.537	13.3	92.637	4.9_02	0.05	23.0	7.38	0.09	0.19	100.0
5031	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	1.0	117.941	20.3	137.937	4.9_02	0.05	23.0	7.38	0.09	0.19	100.0
5030	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	1.0	117.941	20.6	138.281	4.9_02	0.05	23.0	7.38	0.09	0.19	100.0
5031	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	0.5	117.941	20.9	138.281	4.9_02	0.05	23.0	7.38	0.09	0.19	100.0
5030	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	0.5	117.941	21.9	138.281	4.9_02	0.05	23.0	7.38	0.09	0.19	100.0
5031	N	L	W	IMP	HYDR_O_VAC_HIGH	HIGH	0.5	117.941	22.9	138.281	4.9_02	0.05	23.0	7.38	0.09	0.19	100.0
5040	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	0.5	82.543	10.7	93.243	4.9_02	0.09	37.2	6.64	0.09	0.05	1.7
5041	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	11.3	93.8	4.9_02	0.09	37.2	6.64	0.09	0.05	1.7
5042	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	2.0	82.543	13.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5043	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	13.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5044	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	14.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5045	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	14.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5046	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	15.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5047	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	15.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5048	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	16.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5049	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	16.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5050	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	17.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5051	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	17.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5052	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	18.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5053	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	18.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5054	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	19.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5055	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	19.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5056	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	20.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5057	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	20.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5058	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	21.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5059	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	21.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5060	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	22.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5061	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	22.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5062	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	23.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5063	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	23.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5064	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	24.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5065	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	24.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5066	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	25.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5067	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	25.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5068	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	26.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5069	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	26.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5070	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	27.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5071	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	27.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5072	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	28.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5073	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	28.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5074	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	29.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5075	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	29.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5076	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	30.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5077	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	30.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5078	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	31.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5079	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	31.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5080	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	32.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5081	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	32.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5082	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	33.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5083	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	33.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5084	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	34.2	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5085	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	34.7	95.743	4.9_02	0.03	37.2	6.64	0.09	0.05	1.7
5086	N	L	W	IMP	HYDR_O_VAC_HYD5+	HIGH	1.0	82.543	35.2</								

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 7 (page 1 of 3)
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMINDED (HIGH) CYCLES
SPLINES REST ON SITE UP TO EACH CAST / CYCLE COMBINATION

CASE	CAST	PLANT	MODE PROCESS	CYCLE NA	FUELST	SIMPLST	TOTCST	RMCOST	METALS	API	CTOH	N	S	VIS	TH_EFF	
1•10	OLD	LOW	BUILT DECARB	HIGH	0•5	94•317	10•8	95•117	62•00	0•20	17•4	8•25	0•1000	0•8300	1100•00	92•7
1•11	OLD	LOW	BUILT DECARB	SIMP	1•0	124•914	20•3	145•214	52•00	0•20	17•4	8•25	0•1000	0•8300	1100•00	92•7
1•21	OLD	LOW	BUILT COKE_HYDGS+	HIGH	0•5	84•793	10•7	95•493	62•00	0•20	37•2	5•63	0•0900	0•0500	1•00	92•3
1•21	OLD	LOW	BUILT COKE_HYDGS+	SIMP	1•0	125•619	19•1	144•719	62•00	0•00	37•2	6•63	0•0900	0•0500	1•00	92•3
1•22	OLD	LOW	BUILT COKE_HYD375*	HIGH	0•5	79•984	10•7	90•684	62•00	0•00	31•0	6•85	0•1100	0•0700	5•00	92•2
1•31	OLD	LOW	IMP_HDS_M00	HIGH	0•5	78•0•8	10•8	88•868	62•00	1•30	22•9	7•37	0•0900	0•2500	1100•00	92•7
1•31	OLD	LOW	IMP_HDS_M00	SIMP	1•0	115•657	20•3	135•957	62•00	1•30	22•9	7•37	0•0900	0•2500	1100•00	92•7
1•32	OLD	LOW	IMP_HDS_INTER	HIGH	0•5	78•074	10•8	88•804	62•00	0•60	23•1	7•36	0•0900	0•2100	1100•00	92•8
1•32	OLD	LOW	IMP_HDS_INTER	SIMP	1•0	115•562	20•3	135•862	62•00	0•60	23•1	7•36	0•0900	0•2100	1100•00	92•8
1•33	OLD	LOW	IMP_HDS_HIGH	HIGH	0•5	78•055	10•8	89•855	62•00	0•10	24•4	7•33	0•0900	0•1700	1100•00	92•4
1•33	OLD	LOW	IMP_HDS_HIGH	SIMP	1•0	115•638	20•3	135•938	62•00	0•10	24•4	7•33	0•0900	0•1700	1100•00	92•4
1•34	OLD	ECUAL	IMP_HYDRO_M00	HIGH	0•5	73•401	11•8	95•201	51•66	0•00	13•4	9•10	0•7000	0•1300	2•60	92•2
1•34	OLD	ECUAL	IMP_HYDRO_M00	HIGH	0•5	75•935	11•4	87•385	51•66	0•00	14•1	9•00	0•5000	0•1100	2•90	89•9
1•34	NEW	ECUAL	IMP_HYDRO_M00	HIGH	0•5	84•287	11•0	95•587	51•66	0•00	14•8	8•90	0•3000	0•0700	2•45	85•7
1•34	NEW	ECUAL	IMP_HYDRO_M00	HIGH	0•5	81•974	11•3	93•174	59•00	11•60	21•7	5•50	0•2700	0•2600	1130•00	92•2
2•10	OLD	HIGH	BUILT DECARB	HIGH	0•5	89•730	10•9	101•630	59•00	0•00	37•7	6•65	0•1900	0•1600	1•00	86•4
2•21	OLD	HIGH	BUILT COKE_HYDGS+	HIGH	0•5	90•778	10•7	101•278	59•00	0•00	31•5	6•83	0•1100	0•2000	5•00	91•8
2•22	OLD	HIGH	BUILT COKE_HYD375*	HIGH	0•5	99•407	10•9	100•707	59•00	0•00	22•3	7•45	0•1200	0•2500	26•50	91•0
2•23	OLD	HIGH	BUILT COKE_HYDGS*	HIGH	0•5	90•911	12•1	92•791	59•00	50•40	23•0	7•36	0•3600	0•3700	1130•00	91•8
2•31	OLD	HIGH	IMP_HDS_M00	HIGH	0•5	81•378	11•7	93•098	59•00	31•00	23•2	7•35	0•3600	0•2900	1130•00	91•7
2•42	OLD	HIGH	IMP_HDS_INTER	HIGH	0•5	82•471	11•3	93•791	59•00	10•00	23•4	7•33	0•3000	0•2000	1130•00	91•6
2•33	OLD	HIGH	IMP_HDS_NAPH	HIGH	0•5	81•658	11•0	92•668	62•71	0•00	27•9	7•05	0•2600	0•0700	1•70	95•1
2•34	NEW	ECUAL	IMP_HYDRO_ALL	HIGH	0•5	92•481	10•5	102•931	62•71	0•00	32•3	6•78	0•0001	0•0140	1•70	94•1
2•34	NEW	ECUAL	IMP_HYDRO_ALL	SIMP	1•0	137•009	19•1	150•109	62•71	0•00	32•3	6•78	0•0001	0•0140	1•70	94•1

PATH IDENTIFIERS

Name

CASE

PLANT

MODE

PROCESS

CAST

TYPE

-ECUAL

-M1S

-S1R

-L1S

-IMP

-SIMPL

-H1H

-NA

-11H

Definition for the fuel upgrading scheme

An abbreviated description of the upgrading scheme uses an augmented existing facility upgrading scheme uses a grates roots facility

A coal liquid from an eastern bituminous coal

-ECUAL

-M1S

-S1R

-L1S

-IMP

-SIMPL

-H1H

-NA

-11H

-11H</p

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 7 (page 2 of 3)
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMBINED (HIGH) CYCLES
SHOWS BEST ON SITE OPTION FOR EACH CASE / CYCLE COMBINATION

CASE	PLANT	RWTYPE	MJDE PROCESS	CYCLE	NA	FUELST	SITFCST	TOTFCST	RMCOST	METALS	API	CTOH	N	S	VIS	TH_EFF
3•10	OLD	SUR	BUILT 1STAGE HYDRO	HIGH	0•5	BB•138	1•0•5	98•738	50•86	0•20	38•0	6•60	0•0190	0•0015	2•35	82•2
3•10	OLD	SUR	BUILT 1STAGE HYDRO	SIMP	1•0	130•724	1•9•1	149•824	50•86	0•20	38•0	6•60	0•0190	0•0015	2•35	82•2
3•20	OLD	SUR	BUILT HYDRO_HIGH	HIGH	0•5	84•767	1•0•6	95•367	50•86	0•20	37•5	6•65	0•0500	0•0040	2•35	82•8
3•20	OLD	SUR	BUILT COKE_HYD5+	SIMP	1•0	125•581	1•9•1	144•681	50•86	0•20	37•5	6•65	0•0500	0•0040	2•35	82•8
3•30	OLD	SUR	BUILT COKE_HYD5+	HIGH	0•5	110•031	1•1•0	121•031	50•86	0•00	39•0	6•55	0•30CO	0•0080	2•40	80•1
301A	NEW	SUR	IMP HYD150+ - HOU	HIGH	0•5	87•775	1•1•5	99•275	53•90	0•00	29•9	6•90	0•5400	0•0280	*	85•9
3010	NEW	SUR	IMP HYD650+ - MOD	HIGH	0•5	94•448	1•1•6	105•848	53•90	0•00	25•0	7•10	0•5000	0•0500	*	85•5
302A	NEW	SUR	IMP HYU350+ - INTER	HIGH	0•5	89•691	1•1•1	100•791	53•90	0•00	32•8	6•80	0•3400	0•0210	*	35•5
3020	NEW	SUR	IMP HYD650+ - INTER	HIGH	0•5	97•161	1•1•0	108•161	53•90	0•00	27•0	6•86	0•3000	0•0400	*	84•9
303A	NEW	SUR	IMP HYD150+ - HIGH	HIGH	0•5	92•597	1•0•7	103•297	53•90	0•00	34•2	6•73	0•1080	0•0070	*	84•5
3030	NEW	SUR	IMP HYD650+ - HIGH	HIGH	0•5	105•518	1•0•9	115•418	53•90	0•00	29•0	6•93	0•1900	0•0120	*	83•7
3040	NEW	SUR	TL COKE-HYDRO_MDN	HIGH	0•5	107•293	1•1•4	120•99	53•90	0•00	37•0	6•60	0•5000	0•0100	*	84•4
3050	NEW	SUR	BUILT COKE_HYDRO_INT	HIGH	0•5	106•791	1•1•0	117•791	53•90	0•00	39•0	6•57	0•3000	0•0080	*	84•2
3050	NEW	SUR	BUILT COKE_HYDRO_HIGH	HIGH	0•5	108•655	1•0•6	119•255	53•90	0•00	40•7	6•50	0•0600	0•0000	*	82•8
3060	NEW	SUR	BUILT COKE_HYDRO_HIGH	SIMP	1•0	160•971	1•2•1	140•071	53•90	0•00	40•7	6•50	0•0600	0•0000	*	82•8
4•10	OLD	M12	BUILT 1STAGE_HYDRO	HIGH	0•5	88•238	1•0•5	98•738	53•91	0•20	37•2	6•63	0•0190	0•0015	2•35	88•2
4•10	OLD	M12	BUILT 1STAGE_HYDRO	SIMP	1•0	130•324	1•9•1	149•824	53•91	0•20	37•2	6•63	0•0190	0•0015	2•35	88•2
4•20	OLD	M12	BUILT HYDRO_HIGH	HIGH	0•5	94•908	1•0•6	125•508	53•91	0•20	36•7	6•65	0•0500	0•0040	2•35	88•9
4•20	OLD	M12	BUILT HYDRO_HIGH	SIMP	1•0	125•700	1•7•1	144•890	53•91	0•20	36•7	6•65	0•0500	0•0040	2•35	88•9
402A	NEW	M12	IMP HYD150+ - INTER	HIGH	0•5	90•500	1•1•0	101•900	58•00	0•10	32•0	6•80	0•3000	0•0250	*	93•3
402U	NEW	M12	IMP HYD650+ - INTER	HIGH	0•5	98•755	1•1•0	109•755	53•90	0•10	27•0	6•86	0•3000	0•0400	*	90•5

PATH IDENTIFIERS

Name	Definition
CASE	Identifier for the fuel upgrading scheme
PRICESS	An abbreviated description of the upgrading scheme
PLANT-OLD	An abbreviated description of the upgrading scheme uses an augmented existing facility
-NEW	An upgrading scheme uses a grass roots facility
RWTYP-T-ECNAL	A coal liquid from Eastern bituminous coal
-M12	A coal liquid from Western bituminous coal
-MTS	A shale oil from a modified insitu restart
-SUK	A shale oil from a surface restart
-LWS	A low sulfur petroleum crude oil
-HIGHS	A high sulfur petroleum crude oil
MODE-BJII	Upgrading scheme primarily removes impurities
-IMP	Upgrading scheme primarily removes impurities
CYCLE-SIMP	Simple cycle, 1500 hours/year, for power generation
-HIGH	Combined cycle, 7000 hours/year, for power generation
NA	In Situ sodium purification capability
-0.5	from 50 ppm to 0.5 ppm Na in washed fuel
-1.0	from 50 ppm to 1.0 ppm Na in washed fuel
-2.0	from 50 ppm to 2.0 ppm Na in washed fuel

PROPERTIES OF CONSUMED TURBINE FUEL

Name	Definition
API	Density, degree API
CTOH	Carbon to Hydrogen weight ratio
MFALS	Vanadium content, ppm by weight
N	Nitrogen content, % by weight
S	Sulfur content, % by weight
VIS	Viscosity, centistoke at 100 degree F

UPGRADING SCHEME COST PARAMETERS	
Name	Raw material purchase cost for scheme, \$ per BBL
RMCOST	Raw material cost for on site fuel treatment, \$ per KWH
STECST	Costs for on site fuel treatment + incremental maintenance and on site exhaust gas treatment
FUELT	Cost of turbine fuel
FUICST	Sum of STECST and FUELT

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 7 (page 3 of 3)
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMBINED (HIGH) CYCLES
SHOWS BEST UPSITE OPTION FOR EACH CASE / CYCLE COMBINATIONS

CASE	PLANT	RATE	MODE	PROCESS	CYCLE	NA	FUELST	SITECST	TOTCST	RMCOST	METALS	CTOH	N	S	VIS	TH_EFF	
5010	NEW	LOW	LIMP	HYDRO_VAC_MOD	HIGH	0.5	79.187	10.8	89.987	49.02	1.30	22.4	7.45	0.0700	0.2600	1100.00	98.5
5010	NEW	LOW	LIMP	HYDRO_VAC_MOD	SIMP	1.0	117.314	20.3	137.614	42.02	1.30	22.4	7.45	0.0900	0.2600	1100.00	98.5
5020	NEW	LOW	LIMP	HYDRO_VAC_INTER	HIGH	0.5	79.341	10.8	90.141	49.02	0.50	22.6	7.45	0.0900	0.2300	1100.00	98.3
5020	NEW	LOW	LIMP	HYDRO_VAC_INTER	SIMP	1.0	117.543	20.3	137.843	49.02	0.50	22.6	7.45	0.0900	0.2300	1100.00	98.3
5030	NEW	LOW	LIMP	HYDRO_VAC_HIGH	HIGH	0.5	79.617	10.8	90.437	49.02	0.05	23.0	7.38	0.0900	0.1900	1100.00	98.1
5030	NEW	LOW	LIMP	HYDRO_VAC_HIGH	SIMP	1.0	117.281	20.3	138.281	49.02	0.05	23.0	7.38	0.0900	0.1900	1100.00	98.1
5040	NEW	LOW	BOIL	COKE_HYDC5+	HIGH	0.5	82.543	10.7	93.243	49.02	0.00	37.2	6.64	0.0900	0.0500	1.70	95.4
5040	NEW	LOW	BOIL	COKE_HYDC5+	SIMP	1.0	122.286	19.1	141.386	49.02	0.00	37.2	6.64	0.0900	0.0500	1.70	95.4
6010	NEW	HIGHS	LIMP	HYDRO_VAC_MOD	HIGH	0.5	85.101	12.0	97.101	45.44	49.00	22.9	7.40	0.3500	0.3600	1100.00	93.8
6020	NEW	HIGHS	LIMP	HYDRO_VAC_INTER	HIGH	0.5	85.693	11.7	97.393	45.44	30.00	23.0	7.37	0.3500	0.2700	1100.00	93.8
6030	NEW	HIGHS	LIMP	HYDRO_VAC_HIGH	HIGH	0.5	87.338	11.3	98.638	45.44	11.00	23.2	7.35	0.2900	0.1900	1100.00	93.2
6040	NEW	HIGHS	BOIL	COKE_HYDC5+	HIGH	0.5	82.997	10.7	100.687	45.44	0.00	37.7	6.68	0.0900	0.1600	1.70	94.2
6040	NEW	HIGHS	BOIL	COKE_HYDC5+	SIMP	1.0	133.314	19.1	152.414	45.44	0.00	37.7	6.68	0.0900	0.1600	1.70	94.5

PROPERTIES OF CONSUMED TURBINE FUEL

PATH IDENTIFIERS

NAME	DEFINITION	NAME	DEFINITION
CASE	Identifier for the fuel upgrading scheme	API	Density, degree API
PROCESS	An abbreviated description of the upgrading scheme	CTOH	Carbon to Hydrogen weight ratio
PLANT-OLU	An upgrading scheme uses an augmented existing facility	METALS	Vanadium content, ppm by weight
-NEW	Upgrading scheme uses a grass roots facility	N	Nitrogen Content, % by weight
RMTYPE-ECDAL	A coal liquid from an Eastern bituminous coal	S	Sulfur content, % by weight
-WCUAL	A coal liquid from an Western bituminous coal	VIS	Viscosity. centistoke at 100 degree F
-MIS	A shale oil from a modified insitu retort	UPGRADING SCHEME COST PARAMETERS	
-LINS	A shale oil from a surface retort	NAME	Definition
-HIGHS	A low sulfur petroleum crude oil	RMCOST	Raw material purchase cost for scheme, \$ per BBL
-LIMP	A high sulfur petroleum crude oil	TH_EFF	Thermal eff. (energy in products/ energy in fuel)
CYCLE-BOT	Upgrading scheme primarily removes impurities	PATH COSTS	(all are mills per kWhr net power produced)
-IMP	Simple cycle, 1500 hours/year, for power generation	NAME	Definition
NA	Combined cycle, 7000 hours/year, for power generation	SITECST	Costs for on site fuel treatment + incremental
-0.05	In site sodium purification capability		maint. and incremental deprec. on turbine
-1.0	From 50 ppm to 0.5 ppm NA in washed fuel	FUELST	and on site exhaust gas treatment
-2.0	From 50 ppm to 1.0 ppm NA in washed fuel	TOTCST	Cost of turbine fuel
	From 50 ppm to 2.0 ppm NA in washed fuel		Sum of SITECST and FUELST

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 3 (Page 1 of 3)
PATHS FOR SIMPLIFIED AND HIGH DUTY COMBINED (HIGH) CYCLES
SHOWS ASSY UNITS / UPGRADING SCHEME FOR EACH CASE / CYCLE COMBINATION
HIGHLIGHTS COST PROFILES FOR (CYCLE-PLANT) COMBINATIONS

CASE	PLANT	PLANT TYPE	WINE PROCESS	CYCLE	NA	FUELCY	SITEFCY	SITEFCY	METALS	API	C104	N	S	VIS	TH_EFF			
101U	NEW	ECUAL	HIGH	IMP	HYDRO_MUD	HIGH	0.5	73.401	11.8	85.201	51.66	0.00	13.4	9.10	0.7000	0.1300	3.60	92.2
102U	NEW	ECUAL	HIGH	IMP	HYDRO_INFER	HIGH	0.5	75.785	11.4	87.385	51.66	0.00	14.1	9.00	0.5000	0.1100	2.90	89.9
501U	NEW	LONS	HIGH	IMP	HYDRO_VAC_MUD	HIGH	0.5	79.187	10.8	89.987	49.02	1.30	27.4	7.45	0.0900	0.2600	1100.00	98.5
502U	NEW	LONS	HIGH	IMP	HYDRO_VAC_INFER	HIGH	0.5	79.341	10.8	89.161	49.02	0.50	22.6	7.45	0.0900	0.2300	1100.00	98.3
503U	NEW	NEW	HIGH	IMP	HYDRO_VAC_HIGH	HIGH	0.5	79.637	10.8	90.437	49.02	0.05	23.0	7.38	0.0900	0.1900	1100.00	98.1
201U	NEW	ECUAL	HIGH	IMP	HYDRO_NAPH	HIGH	0.5	81.668	11.0	92.668	62.71	0.00	27.0	7.05	0.2500	0.0700	1.70	95.1
504U	NEW	LONS	HIGH	BOIL	COKE_HYD5+	HIGH	0.5	82.343	10.7	93.243	49.02	0.00	37.2	6.64	0.0900	0.0500	1.70	95.4
103U	NEW	ECUAL	HIGH	IMP	HYDRO_HIGH	HIGH	0.5	84.587	11.0	95.537	51.66	0.00	14.8	8.90	0.3000	0.0700	2.45	85.7
601U	NEW	HIGHS	HIGH	IMP	HYDRO_VAC_MUD	HIGH	0.5	85.101	12.0	97.101	45.44	4.00	22.9	7.40	0.3500	0.3600	1100.00	93.8
602U	NEW	HIGHS	HIGH	IMP	HYDRO_VAC_INFER	HIGH	0.5	85.693	11.7	97.393	45.44	30.00	23.0	7.37	0.3500	0.2700	1100.00	93.8
603U	NEW	HIGHS	HIGH	IMP	HYDRO_VAC_HIGH	HIGH	0.5	87.338	11.3	98.638	45.44	11.00	23.2	7.35	0.2900	0.1900	1100.00	93.2
301A	NEW	SUR	IMP	HYD350+ MUD	HIGH	HIGH	0.5	87.775	11.5	99.275	53.90	0.00	29.9	6.90	0.5400	0.0280	*	86.9
604U	NEW	HIGHS	SUR	BOIL	COKE_HYD5+	HIGH	0.5	99.947	10.7	100.697	45.44	0.00	37.7	6.68	0.0900	0.1600	1.70	94.5
302A	NEW	SUR	IMP	HYD350+ INTER	HIGH	HIGH	0.5	99.991	11.1	100.791	53.90	0.00	32.8	6.80	0.3400	0.0210	*	85.5
402A	NEW	MIS	IMP	HYD350+ INTER	HIGH	HIGH	0.5	90.900	11.0	101.900	58.00	0.10	32.0	6.80	0.3000	0.0250	*	93.3
202U	NEW	ECUAL	IMP	HYDRO_ALL	HIGH	HIGH	0.5	92.491	10.5	102.981	62.71	0.00	32.3	6.78	0.0001	0.0140	1.70	94.1
303A	NEW	SUR	IMP	HYD150+ HIGH	HIGH	HIGH	0.5	92.597	10.7	103.297	53.90	0.00	34.2	6.73	0.1080	0.0070	*	84.5
3010	NEW	SUR	IMP	HYD650+ MUD	HIGH	HIGH	0.5	94.443	11.4	105.648	53.90	0.00	25.0	7.10	0.5000	0.0500	*	95.5
302U	NEW	SUR	IMP	HYD650+ INTER	HIGH	HIGH	0.5	97.161	11.0	108.161	53.90	0.00	27.0	6.86	0.3000	0.0400	*	84.9
402U	NEW	MIS	IMP	HYD650+ INTER	HIGH	HIGH	0.5	98.755	11.0	109.755	58.00	0.10	27.0	6.86	0.3000	0.0400	*	90.5
2030	NEW	SUR	IMP	HYD650+ HIGH	HIGH	HIGH	0.5	105.519	10.9	115.418	53.90	0.00	29.0	6.93	0.1900	0.0120	*	83.7
3010	NEW	SUR	BOIL	COKE_HYDRO_INT	HIGH	HIGH	0.5	106.791	11.0	117.791	53.90	0.00	39.0	6.57	0.3000	0.0080	*	84.2
3020	NEW	SUR	BOIL	COKE_HYDRO_HIGH	HIGH	HIGH	0.5	108.655	10.6	119.255	53.90	7.00	40.7	6.50	0.6000	0.0000	*	82.2
3040	NEW	SUR	BOIL	COKE_HYDRO_MUD	HIGH	HIGH	0.5	109.278	11.4	120.698	53.90	0.00	37.0	6.60	0.5000	0.0100	*	84.4

PROPERTIES OF CONSUMED TURBINE FUEL

CYCLE IDENTIFIERS

Definition

NAME
CASE
PRINCIPLES
PLANT-OLY
-NEA
PLANT-ECUAL
-MIS
-SUR
-LONS
-HTG5
-T-BOIL
CYCLE-SIMP
NA
-IMP
-T-IMP
-C104
-V
-S
-T-EFF

Identifier for the fuel upgrading scheme.
An abbreviated description of the upgrading scheme.
Upgrading scheme uses an augmented existing facility.
Upgrading scheme uses a grass roots facility.
A coal liquid from an Eastern bituminous coal.
A coal liquid from an Western bituminous coal.
A shale oil from a modified in situ retort.
A shale oil from a surface retort.
A low sulfur petroleum crude oil.
Upgrading scheme primarily alters boiling point's impurities.
Simple cycle, 1500 hours/year, for power generation.
Combined cycle, 7000 hours/year, for power generation.
On site, sodium purification capability.
From 5 ppm to 1.5 ppm Na in washed fuel.
From 5 ppm to 1.0 ppm Na in washed fuel.
From 5 ppm to 1.0 ppm Na in washed fuel.
From 5 ppm to 1.0 ppm Na in washed fuel.

DEFINITION

NAME
API
LTLH
METALS
N
S
VIS
VISCOSITY.
CENTISTOKE AT 100 DEGREE F

Density, degree API
Carbon to Hydrogen weight ratio
Vanadium Content, ppm by weight
Nickel Content, ppm by weight
Sulfur Content, % by weight
Viscosity, centistoke at 100 degree F

UPGRADING SCHEME COST PARAMETERS

Definition

NAME
AP1
RMCNST
T-EFF
FUELCST
TTCST

(all are mills per kWh net power produced)
Raw material purchase cost for scheme, \$ per kWh
Raw material purchase cost for scheme, \$ per kWh
Thermal eff. (energy in products/ energy in fuel)
Costs for on site fuel treatment, incremental
maint. and incremental deprec. on turbine
and on site exhaust gas treatment
Cost of turbine fuel
Sum of SITECST and FUELCST

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 9 (page 2 of 3)
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY CYCLES
SHOWN INSTITUTE OF POISON FOR EACH CASE / CYCLE COMBINATIONS
HIGHLIGHTS COST PROFILES FOR (CYCLE-PLANT) COMBINATIONS

CASE	PLANT	RATE	TYPE	MODULE	PROCESS	CYCLE	NA	FUEL COST	SITE COST	TOTAL COST	METALS	API	CTOH	N	S	VIS	TH_EFF	
1*32	OLD	LOWS	IMP	HDS	INTER	HIGH	0.5	78.004	10.8	88.804	62.00	0.50	23.1	7.36	0.0900	0.2100	1100.00	92.8
1*33	OLD	LOWS	IMP	HDS	HIGH	HIGH	0.5	78.055	10.8	88.855	62.00	0.10	24.4	7.33	0.0900	0.1790	1100.00	92.4
1*31	OLD	LOWS	IMP	HDS	MOU	HIGH	0.5	79.058	10.8	89.864	62.00	1.30	22.9	7.37	0.0900	0.2500	1100.00	92.7
1*22	OLD	LOWS	BUILT	COKE	HYD375*	HIGH	0.5	79.994	10.7	90.094	62.00	0.00	31.0	6.85	0.1100	0.0700	5.00	92.2
2*31	OLD	HIGHS	IMP	HDS	MOU	HIGH	0.5	80.671	12.1	92.791	59.00	50.40	23.0	7.36	0.3600	0.3700	1130.00	91.8
2*32	OLD	HIGHS	IMP	HDS	INTER	HIGH	0.5	81.398	11.7	93.098	50.00	31.00	23.2	7.35	0.3600	0.2900	1130.00	91.7
2*10	OLD	HIGHS	BUILT	DECARR	HIGH	HIGH	0.5	81.874	11.3	93.174	59.00	11.60	21.7	7.55	0.2700	0.2600	1130.00	92.2
2*33	OLD	HIGHS	IMP	HDS	HIGH	HIGH	0.5	92.421	11.3	93.791	59.00	10.90	23.4	7.33	0.3000	0.2000	1130.00	91.6
1*10	OLD	LOWS	BUILT	DECARR	HIGH	HIGH	0.5	84.317	10.8	95.117	62.00	0.20	17.4	8.25	0.1000	0.8300	1100.00	92.7
3*20	OLD	SUR	BUILT	HYDRO	HIGH	HIGH	0.5	84.767	10.6	95.367	50.86	0.20	37.5	6.65	0.0500	0.0040	2.35	82.8
1*21	OLD	LOWS	BUILT	COKE	HYD5*	HIGH	0.5	84.793	10.7	95.493	52.00	0.00	37.7	6.53	0.0900	0.0500	1.00	92.3
4*20	OLD	MIS	BUILT	HYDRO	HIGH	HIGH	0.5	84.908	10.6	95.508	51.81	0.20	36.7	6.65	0.0500	0.0040	2.35	88.9
4*10	OLD	MIS	BUILT	1STAGE	HYDRO	HIGH	0.5	86.238	10.5	94.738	51.81	0.20	37.2	6.63	0.0190	0.0015	2.35	88.2
3*10	OLD	SUR	BUILT	1STAGE	HYDRO	HIGH	0.5	88.238	10.5	99.738	50.86	0.20	39.9	6.60	0.0190	0.0015	2.35	82.2
2*21	OLD	HIGHS	BUILT	COKE	HYD5*	HIGH	0.5	99.730	10.9	100.630	52.00	0.00	37.7	6.65	0.1900	0.1600	1.00	86.4
2*23	OLD	HIGHS	BUILT	COKE	HYD50*	HIGH	0.5	89.807	10.9	100.707	59.00	0.00	22.3	7.45	0.1900	0.2500	26.50	91.0
2*22	OLD	HIGHS	BUILT	COKE	HYD375*	HIGH	0.5	90.578	10.7	101.278	59.00	0.00	31.5	6.93	0.1100	0.2000	5.00	91.8
3*30	OLD	SUR	BUILT	COKE	HYD5*	HIGH	0.5	110.031	11.0	121.031	50.86	0.00	39.0	6.55	0.2000	0.0090	2.40	80.1

PATH IDENTIFIERS

Name: Identifier for the fuel upgrading scheme

CASE: An abbreviated description of the upgrading scheme

PLANT-OLD: Upgrading scheme uses an augmented existing facility

-NEW: Upgrading scheme uses a green roots facility

-EQUAL: A coal liquid from an Eastern bituminous coal

-EQUAL: A coal liquid from an Western bituminous coal

-MIS: A shale oil from a modified in situ retort

-SUR: A shale oil from a surface retort

-LIDS: A low sulfur petroleum crude oil

-HIGHS: A high sulfur petroleum crude oil

WUD-E-BILT: Upgrading scheme primarily removes impurities

-1UP: Simple cycle, 1500 hours/year, for power generation

-HIGH: Combined cycle, 7000 hours/year, for power generation

NA: In situ sodium purification capability

from 50 ppm to 20 ppm Na in washed fuel

from 50 ppm to 10 ppm Na in washed fuel

from 50 ppm to 5 ppm Na in washed fuel

PROPERTIES OF CONSUMED TURBINE FUEL

Name: Density, degree API

API: Carbon to Hydrogen weight ratio

CTOH: Vanadium content, ppm by weight

N: Nitrogen content, % by weight

S: Sulfur content, % by weight

VIS: Viscosity, centistoke at 100 degree F

UPGRADING SCHEME COST PARAMETERS

Name: Name

RWLCOST: Raw material purchase cost for scheme, \$ per BBL

TH_EFF: Thermal eff. (% of raw material purchase cost)

SITECST: Costs for on site fuel treatment, incremental

maint. and incremental deprec. on turbine

and on site exhaust gas treatment

FUELCST: Cost of turbine fuel

Sum of SITECST and FUELCST

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 8 (page 3 of 3)
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMINDED (HIGH) CYCLES
SHOWS FIRST ON SITE OPTION FOR EACH CASE / CYCLE COMBINATION
HIGHLIGHTS COST PROFILES FOR (CYCLE-PLANT) COMBINATIONS

CASE	PLANT	TYPE	MODE	PROCESS	CYCLE	NA	FUEL_CST	SITE_CST	TOT_CST	METALS	API	CTOH	N	S	VIS	TH_EFF	
5010	NEW	LOWS	IMP	HYDRO_VAC_MUD	SIMP	1.0	117.314	20.3	137.614	49.02	1.30	22.4	7.45	0.0300	0.2600	1100.00	98.5
5020	NEW	LOWS	IMP	HYDRO_VAC_INFER	SIMP	1.0	117.543	20.3	137.443	49.02	0.50	22.6	7.45	0.0900	0.2300	1100.00	98.3
5030	NEW	LOWS	IMP	HYDRO_VAC_HIGH	SIMP	1.0	117.981	20.3	138.281	49.02	0.05	23.0	7.38	0.0900	0.1900	1100.00	98.1
5040	HIGH	LOWS	BUIL	COKE_HYDSC+	SIMP	1.0	172.286	19.1	141.386	49.02	0.00	37.2	6.64	0.0900	0.0500	1.70	95.4
5040	HIGH	LOWS	BUIL	COKE_HYDSC+	SIMP	1.0	133.314	19.1	152.414	45.44	0.00	37.7	6.68	0.0700	0.1600	1.70	94.5
5040	HIGH	MCUAL	IMP	HYDRO_ALL	SIMP	1.0	137.009	19.1	156.109	62.71	0.00	32.3	6.78	0.0001	0.0140	1.70	94.1
5050	SUR	LOWS	BUIL	COKE_HYDRO_HIGH	SIMP	1.0	160.971	19.1	180.071	53.90	0.00	40.7	6.50	0.0600	0.0000	*	82.8
5050	SUR	LOWS	IMP	HYDRO_INFER	SIMP	1.0	115.562	20.3	135.862	62.00	0.60	23.1	7.16	0.2100	1100.00	92.8	
1.32	ULD	LOWS	IMP	HYDRO_HIGH	SIMP	1.0	115.638	20.3	135.938	62.00	0.10	24.4	7.33	0.0900	0.1700	1100.00	92.4
1.33	ULD	LOWS	IMP	HYDSC_MUD	SIMP	1.0	115.657	20.3	135.957	62.00	1.32	22.9	7.37	0.0900	0.2500	1100.00	92.7
1.34	ULD	SUR	BUIL	HYDRO_HIGH	SIMP	1.0	125.581	19.1	144.681	50.86	0.20	37.5	6.65	0.0500	0.0040	2.35	82.8
3.20	ULD	LOWS	BUIL	COKE_HYDSC+	SIMP	1.0	125.619	19.1	144.719	62.00	0.00	37.2	6.63	0.0900	0.0500	1.00	92.3
1.21	ULD	LOWS	RDIL	HYDRO_HIGH	SIMP	1.0	125.790	19.1	144.890	53.81	0.20	36.7	6.65	0.0500	0.0040	2.35	88.9
4.20	ULD	MIS	BUIL	DECARA	SIMP	1.0	124.914	20.3	145.214	62.00	0.20	17.4	8.25	0.1000	0.8300	1100.00	92.7
4.10	ULD	MIS	9011	1STAGE_HYDRO	SIMP	1.0	130.724	19.1	149.824	53.91	0.20	37.2	6.63	0.0190	0.0015	2.35	88.2
3.10	ULD	SUR	9011	1STAGE_HYDRO	SIMP	1.0	130.724	19.1	149.874	50.86	0.20	33.0	6.60	0.0190	0.0015	2.35	82.2

CASE IDENTITIES

Name	Definition
BASE	Identifier for the fuel upgrading scheme
WHLSS	An abbreviated description of the upgrading scheme users an augmented existing facility
PLANT-ULD	Upgrading scheme uses a grass roots facility
-NEW	4 coal liquid from Eastern bituminous coal
TYPE-ECUAL	4 coal liquid from Western bituminous coal
-MIS	A shale oil from a modified insitu retort
-SUR	A shale oil from a surface retort
-LWS	A low sulfur petroleum crude oil
-HIGH	A high sulfur petroleum crude oil
UPGRADE-OIL	Upgrading scheme primarily removes impurities
-IMP	Upgrading scheme 1500 hours/year. For power generation
-SYN-SIMP	Combined cycle, 7000 hours/year. For power generation
-HIGH	On site sodium purification capability
A	from 50 ppm to 0.5 ppm Na in washed fuel
-LWS	from 50 ppm to 1.0 ppm Na in washed fuel
-1.0	from 50 ppm to 7.0 ppm Na in washed fuel
-2.0	from 50 ppm to 20 ppm Na in washed fuel

PROPERTIES OF CONSUMED TURBINE FUEL

Name	Definition
API	Density, degree API
CTOH	Carbon to Hydrogen weight ratio
METALS	Vanadium content, ppm by weight
N	Nitrogen Content, % by weight
S	Sulfur content, % by weight
VTS	Viscosity. centistoke at 100 degree F

UPGRADING SCHEME COST PARAMETERS

Name	Definition
PATH_CSTS	Fuel material purchase cost for scheme. \$ per BBL
TH_EFF	Thermal eff. (energy in products/ energy in fuel)
NAME	(all are mills per kWh net power produced)
SITECST	Costs for on site fuel treatment + incremental maint. and incremental deprec. on turbine
ATHTCST	and on site exhaust gas treatment
FUFCST	Cost of turbine fuel
TOTCST	Sum of SITECST and FUFCST

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 9 (page 1 of 3)
PATHS FOR SIMPLE (STMO) AND HIGH DUTY COMBINATIONS (HIGH CYCLES
SHOWS BEST UNSUPERVISED OPTION FOR EACH CASE / CYCLE COMBINATION
HIGHLIGHTS COST PROFILES FOR (CYCLE-RHYME) COMBINATIONS

RMTYPE	CASE	PLANT	PROCESS	MFG	CYCLE	NA	FUELST	SITESLT	TOYCST	RMCUSL	METALS	API	CINH	N	S	VIS	TH_EFF		
NEW	ECUAL	IMP	HYDRO_MUD	HIGH	0..5	73..401	11..8	85..201	51..66	0..00	13..4	9..10	0..7000	0..1300	3..60	32..2	3..60	2..90	89..9
NEW	ECUAL	IMP	HYDRO_INFR	HIGH	0..5	75..945	11..4	87..345	51..66	0..00	14..1	9..00	0..5000	0..1100	2..45	85..7	2..45	2..45	85..7
NEW	ECUAL	IMP	HYDRO_HIGH	HIGH	0..5	84..587	11..0	95..587	51..66	0..00	16..0	9..90	0..3000	0..0700	2..45	85..7	2..45	2..45	85..7
NEW	ECUAL	IMP	HYDRO_MUD	HIGH	0..5	80..691	12..1	92..791	59..00	50..40	23..0	7..36	0..3600	0..3700	11..30	0..00	91..8	2..45	85..7
NEW	ECUAL	IMP	HOS_MUD	HIGH	0..5	81..398	11..7	93..098	59..00	31..00	23..2	7..35	0..3600	0..2900	11..30	0..00	91..7	2..45	85..7
NEW	ECUAL	IMP	HOS_INFR	HIGH	0..5	81..398	11..7	93..098	59..00	31..00	23..2	7..35	0..3600	0..2900	11..30	0..00	91..7	2..45	85..7
NEW	ECUAL	IMP	DECARB	HIGH	0..5	81..874	11..3	93..174	59..00	11..60	21..7	7..55	0..2700	0..2600	11..30	0..00	92..2	2..45	85..7
NEW	ECUAL	IMP	HOS_HIGH	HIGH	0..5	82..491	11..3	93..791	59..00	10..90	23..4	7..33	0..3000	0..2000	11..30	0..00	91..6	2..45	85..7
NEW	ECUAL	IMP	HYDRO_VAC_MUD	HIGH	0..5	85..611	12..0	97..310	45..44	49..00	22..9	7..47	0..3500	0..3600	11..00	0..00	93..8	2..45	85..7
NEW	ECUAL	IMP	HYDRO_VAC_INTER	HIGH	0..5	85..693	11..7	97..393	45..44	30..00	23..0	7..37	0..3500	0..2700	11..00	0..00	93..8	2..45	85..7
NEW	ECUAL	IMP	HYDRO_VAC	HIGH	0..5	87..338	11..3	98..538	45..44	11..00	23..2	7..35	0..2900	0..1900	11..00	0..00	93..2	2..45	85..7
NEW	ECUAL	IMP	HYDRO_INFR	HIGH	0..5	89..730	10..9	100..610	59..00	0..00	37..7	6..65	0..1900	0..1600	1..00	86..4	2..45	85..7	
NEW	ECUAL	IMP	COKE_HYDC5+	HIGH	0..5	89..987	10..7	100..687	45..44	0..00	37..7	6..68	0..0900	0..1600	1..70	74..5	2..45	85..7	
NEW	ECUAL	BOIL	COKE_HYD650*	HIGH	0..5	89..807	10..9	100..707	59..00	0..00	22..3	7..45	0..1900	0..2500	26..50	91..0	2..45	85..7	
OLD	LWMS	IMP	COKE_HYD375*	HIGH	0..5	90..578	10..7	101..278	59..00	0..00	31..5	6..83	0..1100	0..2000	5..00	91..8	2..45	85..7	
OLD	LWMS	IMP	HOS_INFR	HIGH	0..5	98..804	10..8	98..804	62..00	0..60	23..1	7..36	0..0700	0..2100	11..00	0..00	92..8	2..45	85..7
OLD	LWMS	IMP	HOS_HIGH	HIGH	0..5	98..955	10..8	98..955	62..00	0..10	24..4	7..31	0..0900	0..1700	11..00	0..00	92..4	2..45	85..7
OLD	LWMS	IMP	HOS_MUD	HIGH	0..5	98..868	10..8	98..868	62..00	1..30	22..9	7..17	0..0900	0..2500	11..00	0..00	92..7	2..45	85..7
NEW	ECUAL	IMP	HYDRO_VAC_MUD	HIGH	0..5	79..147	10..8	89..997	49..02	1..30	22..4	7..45	0..0900	0..2600	11..00	0..00	98..5	2..45	85..7
NEW	ECUAL	IMP	HYDRO_VAC_INFR	HIGH	0..5	79..341	10..8	90..141	49..02	0..50	22..6	7..45	0..0900	0..2300	11..00	0..00	98..3	2..45	85..7
NEW	ECUAL	IMP	HYDRO_VAC	HIGH	0..5	79..637													

PATH IDENTIFIERS

Name	Definition	Name	Definition
CASE PROCESS	Identifier for the fuel upgrading scheme	API	Density, degree API
PLANT-OLD	An abbreviated description of the upgrading scheme	CTOH	Carbon to Hydrogen weight ratio
-NEW	Upgrading scheme uses an augmented existing facility	WT-TALS	Vanadium Content, ppm by weight
MT,PE-ECUAL	Upgrading scheme uses a grass roots facility	N	Nitrogen Content, % by weight
-MCUAL	A coal liquid from an Eastern bituminous coal	S	Sulfur content, % by weight
-MIS	A coal liquid from an Western bituminous coal	VIS	Viscosity, centistoke at 100 degree F
-SUR	A shale oil from a modified insitu retort	UPGRADING SCHEME COST PARAMETERS	
-LUMS	A low sulfur petroleum crude oil	NAME	Raw material purchase cost for scheme, \$ per BBL thermal eff. (energy in products/ energy in fuel)
-THIGHS	A high sulfur petroleum crude oil	KMCOST	
-IMP	Upgrading scheme primarily alters boiling ranges	TH_EFF	
CYCLE-SIMP	Upgrading scheme primarily removes impurities	COSTS	(all are mills per kWhr net power produced)
-HIGH_NA	Simple cycle, 1500 hours/year, for power generation	PATH	
	Combined cycle, 7000 hours/year, for power generation	N_m	Definition
	on site sodium purification capability	SITCOST	Costs for on site fuel treatment + incremental
	from 50 ppm to 1.5 ppm Na in washed fuel		maint. and incremental deprec. on turbine
	from 50 ppm to 1.0 ppm Na in washed fuel	FUFCOST	and on site exhaust gas treatment
	from 50 ppm to 0.5 ppm Na in washed fuel	TTCOST	cost of turbine fuel
			Sum of SITECOST and FUFCOST

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 9 (page 2 of 3)
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMBINED (HIGH) CYCLES
SHOWS BEST ON SITE COSTS FOR EACH CASE / CYCLE COMBINATION
HIGHLIGHTS COST PROFILES FOR (CYCLE-RMTYPE) COMBINATIONS

CASE	PLANT	RMTYPE	MODE	PROCESS	CYCLE	NA	FUEL	CST	SITECST	TOTCST	RMCOST	METALS	API	CTOH	N	S	VIS	TH_EFF
4-20	OLD	MIS	BUILT	HYDRO HIGH	HIGH	0.5	84-908	10-6	95-508	53-81	0-20	36-7	6-65	0-0500	0-0040	2-35	88-9	
4-10	ULD	MIS	BUILT	1STAGE HYDRO	HIGH	0.5	88-238	10-5	99-738	53-81	0-20	37-2	6-63	0-0190	0-0015	2-35	88-2	
4-02A	NEW	MIS	IMP	HYD350+ INTER	HIGH	0.5	70-900	11-0	101-900	59-00	0-10	32-0	6-80	0-3000	0-0250	*	93-3	
4-02	NEW	MIS	IMP	HYD550+ INTER	HIGH	0.5	98-755	11-0	109-755	58-00	0-10	27-0	6-86	0-3000	0-0400	*	90-5	
3-20	ULD	SUR	BUILT	HYDRC HIGH	HIGH	0.5	84-767	10-6	95-367	50-86	0-20	37-5	6-65	0-0500	0-0040	2-35	82-8	
3-10	ULD	SUR	BUILT	1STAGE HYDRO	HIGH	0.5	89-238	10-5	98-738	50-86	0-20	38-0	6-60	0-0190	0-0015	2-35	82-2	
3-02A	NEW	SUR	IMP	HYD350+ MOD	HIGH	0.5	87-775	11-5	99-275	53-90	0-00	29-9	6-90	0-5400	0-0280	*	86-9	
3-02	NEW	SUR	IMP	HYD350+ INTER	HIGH	0.5	89-691	11-1	100-791	53-90	0-00	32-8	6-80	0-3400	0-0210	*	85-5	
3-03A	NEW	SUR	IMP	HYD350+ HIGH	HIGH	0.5	92-597	10-7	103-297	51-30	0-00	34-2	6-73	0-1080	0-0070	*	94-5	
3-03U	NEW	SUR	IMP	HYD650+ MOD	HIGH	0.5	94-448	11-4	105-848	53-90	0-00	25-0	7-10	0-5000	0-0500	*	95-5	
3-02U	NEW	SUR	IMP	HYD650+ INTER	HIGH	0.5	97-161	11-1	108-161	53-90	0-00	27-0	6-86	0-3000	0-0400	*	84-9	
3-03U	NEW	SUR	IMP	HYD650+ HIGH	HIGH	0.5	105-518	10-9	115-418	53-90	0-00	29-0	6-93	0-1900	0-0120	*	83-7	
3-050	NEW	SUR	ROLL	COKE HYDRO INT	HIGH	0.5	106-791	11-0	117-791	53-90	0-00	39-0	6-57	0-3000	0-0080	*	84-2	
3-060	NEW	SUR	ROLL	COKE HYDRO HIGH	HIGH	0.5	108-655	10-6	119-255	51-90	0-00	40-7	6-50	0-0500	0-0000	*	82-8	
3-040	NEW	SUR	BUILT	COKE HYDRO MOD	HIGH	0.5	109-298	11-4	120-698	53-90	0-00	37-0	6-60	0-5000	0-0100	*	84-4	
3-030	NEW	SUR	BUILT	COKE HYD50+	HIGH	0.5	110-031	11-0	121-031	50-86	0-00	39-0	6-55	0-3000	0-0080	2-40	80-1	
2-010	NEW	MCUAL	IMP	HYDRO_NAPH	HIGH	0-5	81-568	11-0	92-658	62-71	0-00	27-0	7-05	0-2500	0-0700	1-70	95-1	
2-020	NEW	MCUAL	IMP	HYDRO_ALL	HIGH	0-5	92-431	10-5	102-931	62-71	0-00	32-3	6-78	0-0001	0-0140	1-70	94-1	

CYCLE IDENTIFIERS

Name

BASE

Definition: Identifiers for the fuel upgrading scheme

An abbreviated description of the upgrading scheme

An upgrading scheme uses an augmented existing facility

Upgrading scheme uses a grass roots facility

A coal liquid from eastern bituminous coal

A coal liquid from western bituminous coal

A shale oil from a modified insitu retort

A shale oil from a surface retort

A low sulfur petroleum crude oil

A high sulfur petroleum crude oil

Upgrading scheme primarily alters boiling ranges

Upgrading scheme primarily removes impurities

Simple cycle, 1500 hours/year, for power generation

Combination cycle, 7000 hours/year, for power generation

On site sodium purification capability

From 50 ppm to 0.5 ppm Na in washed fuel

from 50 ppm to 1.0 ppm Na in washed fuel

from 50 ppm to 2.0 ppm Na in washed fuel

-IMP

-LUD

-HIS

-MCUAL

-MIS

-SUR

-LUDS

-HIS

-MCU

-IMP

-LUDS

-HIS

-MCU

-IMP

-LUDS

-HIS

-MCU

Name

API

CTOH

METALS

N

S

VIS

PROPERTIES OF CONSUMED TURBINE FUEL

Name

API

CTOH

METALS

N

S

VIS

UPGRADING SCHEME COST PARAMETERS

Name

RMCOST

TH_EFF

Path Costs

N-imp

SITECST

TH_EFF

FUELCST

TOTCST

Definition

Density, degree API

Carbon to Hydrogen weight ratio

Vanadium content, ppm by weight

Nitrogen content, % by weight

Sulfur content, % by weight

Viscosity, centistoke at 100 degree F

Definition

Raw material purchase cost for scheme, \$ per BBL

Definition

Costs for on site fuel treatment, incremental

maint. and incremental deprec. on turbine

and on site exhaust gas treatment

Cost of turbine fuel

Cost of SITECST and FUELCST

(all are mills per kWhr net power produced)

Definition

Costs for on site fuel treatment, incremental

maint. and incremental deprec.

on turbine

and on site exhaust gas treatment

Cost of turbine fuel

Cost of SITECST and FUELCST

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE II (CONT'D.)
PATHS FOR STOKE (TEMP) AND HIGH DUTY CYCLED (HIGH) CYCLES
SHOWS LIST OF POSITIVE OPTIMUM FOR EACH CASE / CYCLE COMBINATIONS
HIGH LIGHTS COST PROFILERS FOR (CYCLE-HIGHPOINT) COMBINATIONS
CYCLE NA FULLCYT SITEFLST TOTFLST UNCONST METALS API C

CASE	PLANT	RMTYPE	MJDST	PRULSS	HIGHLIGHTS				COSTS				PERFORMANCE				SITES				VIS			
					CYCLE	NA	FULLST	SITEST	TOTCST	RMCST	METALS	API	CTOH	N	S	VIS	TH_EFF	TH_EFF	TH_EFF	TH_EFF	TH_EFF	TH_EFF	TH_EFF	TH_EFF
6050	NEW	HIGH5	30JUL	LOKE_HYD5+	SIMP	1.0	133.3	314	19.1	152.4	14	45.44	0.00	37.7	6.68	0.0200	0.01600	1.70	94.5	32.8	32.8	32.8	32.8	
1.1.32	OLD	L055	IMP	HDS_INFR	SIMP	1.0	115.5	552	20.3	135.8	62	30	0.69	23.1	7.36	0.0370	0.02100	1100.00	92.4	92.4	92.4	92.4	92.4	
1.1.33	OLD	L055	IMP	HDS_HIGH	SIMP	1.0	115.5	638	20.3	135.9	938	52.00	0.10	24.4	7.33	0.0390	0.01700	1100.00	92.4	92.4	92.4	92.4	92.4	
1.1.34	OLD	L055	IMP	HDS_MID	SIMP	1.0	115.5	657	20.3	135.9	957	52.00	1.30	22.9	7.37	0.0390	0.02500	1100.00	92.7	92.7	92.7	92.7	92.7	
50110	NEW	L055	IMP	HYDRO_VAC_MUD	SIMP	1.0	117.3	314	20.3	137.6	614	47.02	1.33	22.4	7.45	0.0390	0.02630	1100.00	98.5	98.5	98.5	98.5	98.5	
50220	NEW	L055	IMP	HYDRO_VAC_INTER	SIMP	1.0	117.5	543	20.3	137.8	843	49.02	0.50	22.5	7.45	0.0200	0.02300	1100.00	98.3	98.3	98.3	98.3	98.3	
50330	NEW	L055	IMP	HYDRO_VAC_HIGH	SIMP	1.0	117.9	981	20.3	138.2	281	49.02	0.05	23.0	7.38	0.0390	0.01900	1100.00	98.1	98.1	98.1	98.1	98.1	
50440	NEW	L055	IMP	BAJL_LOKE_HYD5+	SIMP	1.0	122.2	283	19.1	141.3	98	49.02	0.00	37.2	6.64	0.0390	0.00500	1.70	75.4	75.4	75.4	75.4	75.4	
1.1.10	OLD	L055	IMP	BAJL_LOKE_HYD5+	SIMP	1.0	125.1	121	19.1	144.7	719	62.00	0.00	37.2	6.53	0.0390	0.00500	1.00	92.7	92.7	92.7	92.7	92.7	
1.1.11	OLD	L055	IMP	BUIL_DECARB	SIMP	1.0	124.9	914	20.3	145.2	214	62.00	0.20	17.4	8.25	0.1000	0.08300	1100.00	92.7	92.7	92.7	92.7	92.7	
4.4.20	OLD	M15	IMP	BUIL_HYDRO_HIGH	SIMP	1.0	125.7	720	19.1	144.8	30	53.81	0.20	36.7	6.65	0.0500	0.00040	2.35	88.9	88.9	88.9	88.9	88.9	
4.4.10	OLD	M15	IMP	BUIL_ISSTAGE_HYDRO	SIMP	1.0	130.7	24	19.1	149.8	24	53.81	0.20	37.2	6.63	0.0190	0.00015	2.35	88.2	88.2	88.2	88.2	88.2	
3.3.20	OLD	SUR	IMP	BUIL_HYDRO_HIGH	SIMP	1.0	125.5	541	19.1	144.6	81	50.86	0.20	37.5	6.65	0.0500	0.00040	2.35	82.8	82.8	82.8	82.8	82.8	
3.3.00	NEW	SUR	IMP	BUIL_ISSTAGE_HYDRO	SIMP	1.0	130.7	724	19.1	149.8	24	50.85	0.20	38.0	6.50	0.0190	0.00015	2.35	82.2	82.2	82.2	82.2	82.2	
3.3.00	NEW	SUR	IMP	BUIL_LOKE_HYDRO_HIGH	SIMP	1.0	160.9	971	19.1	180.0	71	53.90	0.00	40.7	6.50	0.0600	0.00000	*	82.8	82.8	82.8	82.8	82.8	
2.2.00	NEW	MCUAL	IMP	HYDRO_ALL	SIMP	1.0	137.0	009	19.1	156.1	09	62.71	0.03	32.3	6.78	0.0001	0.0140	1.70	94.1	94.1	94.1	94.1	94.1	

PATH IDENTIFIERS

Name	Definition
CASE	Identifier for the fuel upgrading scheme
PROCESS	An abbreviated description of the upgrading scheme
PLANT-010	Upgrading scheme uses an augmented existing facility
-014	Upgrading scheme uses a grassroots facility
PROTYPE-EQUAL	A coal liquid from an Eastern bituminous coal
-EQUAL	A coal liquid from an Western bituminous coal
-MIS	A shale oil from a modified insitu retort
-SUR	A shale oil from a surface retort
-LWS	A low sulfur petroleum crude oil
-HIGHS	A high sulfur petroleum crude oil
MOUNT-010	Upgrading scheme primarily alters boiling ranges
-11P	Upgrading scheme primarily removes impurities
CYCLET-STAP	Simple cycle, 1500 hours/year, for power generation
-11TH	Combined cycle, 1700 hours/year, for power generation
NA	In site sodium purification capability
-0.5	from 50 ppm to 0.5 ppm Na in washed fuel
-1.0	from 50 ppm to 1.0 ppm Na in washed fuel
-2.0	from 50 ppm to 7.0 ppm Na in washed fuel

PRUDENTIAL FEES OF CONSUMED TUPHINE FUEL

TABLE 10
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMINDED (HIGH) CYCLES
BEST ONSITE OPTIONS FOR EACH TURBINE-FUEL/DUTY CYCLE COMBINATION
AND BEST RAW MATERIAL PROCESSING OPTIONS
SHOWS COST PROFILES FOR (CYCLE-PLANT) COMBINATIONS

CASE	PLANT	RMTYPE	MODE	PROCESS	CYCLE	NA	FUEL CST	SITECST	TOTCST	METALS	CTOH	N	S	VIS	TH_EFF		
1010	NEW	ECDAL	IMP	HYDRO_MOD	HIGH	0.5	73.401	11.8	85.201	51.66	0.0	13.4	9.10	0.7000	0.130	3.60	92.2
5010	NEW	LWMS	IMP	HYDRO_VAC_MOD	HIGH	0.5	79.187	10.8	89.987	4.9.02	1.3	22.4	7.45	0.0260	1100.00	0.260	98.5
2010	NEW	WCDAL	IMP	HYDRO_NAPH	HIGH	0.5	91.668	11.0	92.668	62.71	0.0	27.0	7.05	0.2600	0.070	1.70	95.1
6010	NEW	HIGHS	IMP	HYDRO_VAC_MOD	HIGH	0.5	85.101	12.0	97.101	4.5.44	4.9.0	22.9	7.40	0.3500	0.360	1100.00	93.8
301A	NEW	SUR	IMP	HYD350+_MOD	HIGH	0.5	87.775	11.5	98.275	53.90	0.0	29.9	6.90	0.5400	0.029	*	86.9
402A	NEW	MIS	IMP	HYD350+_INTER	HIGH	0.5	90.900	11.0	101.900	58.00	0.1	32.3	6.80	0.3000	0.025	*	93.3
1.32	OLD	LWMS	IMP	HDS_INTER	HIGH	0.5	78.004	10.8	88.904	62.00	0.6	23.1	7.36	0.0900	0.210	1100.00	92.8
2.31	OLD	HIGHS	IMP	HDS_MOD	HIGH	0.5	90.691	12.1	92.791	59.00	50.4	23.0	7.36	0.3600	0.370	1130.00	91.8
3.20	OLD	SUR	BOIL	HYDRO_HIGH	HIGH	0.5	94.767	10.6	95.367	50.86	0.2	37.5	6.65	0.0500	0.004	2.35	82.8
4.20	OLD	MIS	BOIL	HYDRO_HIGH	HIGH	0.5	88.908	10.6	95.508	53.81	0.2	36.7	6.65	0.0500	0.004	2.35	88.9
5010	NEW	LWMS	IMP	HYDRO_VAC_MOD	SIMP	1.0	117.314	20.3	137.614	4.9.02	1.3	22.4	7.45	0.0900	0.260	1100.00	98.5
6040	NEW	HIGHS	BOIL	COKE_HYDCS+	SIMP	1.0	133.314	19.1	152.414	4.5.44	0.0	37.7	6.68	0.0900	0.160	1.70	94.5
2020	NEW	WCDAL	IMP	HYDRO_ALL	SIMP	1.0	137.009	19.1	156.109	62.71	0.0	32.3	6.78	0.0001	0.014	1.70	94.1
3050	NEW	SUR	BOIL	COKE_HYDRO_HIGH	SIMP	1.0	160.971	19.1	130.071	53.90	0.0	40.7	6.50	0.0600	0.000	*	82.9
1.32	OLD	LWMS	IMP	HDS_INTER	SIMP	1.0	115.562	20.3	135.862	62.00	0.6	23.1	7.36	0.0900	0.210	1100.00	92.8
3.20	OLD	SUR	BOIL	HYDRO_HIGH	SIMP	1.0	125.581	19.1	144.681	50.86	0.2	37.5	6.65	0.0500	0.004	2.35	82.8
4.20	OLD	MIS	BOIL	HYDRO_HIGH	SIMP	1.0	125.790	19.1	144.890	53.81	0.2	36.7	6.65	0.0500	0.004	2.35	88.9

PATH IDENTIFIERS

Name:	Definition	Name:	Definition
CASE	Identifier for the fuel upgrading scheme	API	Density, degree API
PROCESS	An abbreviated description of the upgrading scheme	CTOH	Carbon to Hydrogen weight ratio
PLANT-OLD	Upgrading scheme uses an augmented existing facility	METALS	Vanadium content, ppm by weight
-NEW	Upgrading scheme uses a grass root's facility	N	Nitrogen content, % by weight
RMTYPE-EQUAL	A coal liquid from an Eastern bituminous coal	S	Sulfur content, % by weight
-WCDAL	A coal liquid from an Western bituminous coal	VIS	Viscosity, centistoke at 100 degree F
-MIS	A shale oil from a modified insitu retort		
-SUR	A shale oil from a surface retort		
-LWMS	A low sulfur petroleum crude oil		
-HIGHS	A high sulfur petroleum crude oil		
MODE-BOIL	Upgrading scheme primarily alters boiling ranges	PATH COSTS	UPGRADING SCHEME COST PARAMETERS
-IMP	Upgrading scheme primarily removes impurities	NAME	NAME
CYCLE-SIMP	Simple cycle, 1500 hours/year, for power generation	NAME	NAME
-HIGH	Combined cycle, 7000 hours/year, for power generation	SIFCST	Raw material purchase cost for scheme, \$ per KWHr net power produced
NA	On site sodium purification capability	TH_EFF	Thermal eff. (energy in products/ energy in fuel)
-0.05	from 50 ppm to 0.5 ppm NA in washed fuel		(all are mills per KWHr net power produced)
-1.0	from 50 ppm to 1.0 ppm NA in washed fuel		Definition
-2.0	from 50 ppm to 2.0 ppm NA in washed fuel		Definition
		FUEL CST	Cost of turbine fuel
		TOTCST	Sum of SITECST and FUEL CST

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE II
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMBINED (HIGH) CYCLES
BFST ONSITE OPTIONS FOR EACH TURBINE-FUEL/DUTY CYCLE COMBINATION
AND BEST PAW WATER TREATMENT PROCESSING OPTIONS
SHOWS COST PROFILES FOR (CYCLE-RM TYPE) COMBINATIONS

CASE	PLANT	RMTYPE	MODE	PROCESS	CYCLE	NA	FUEL_CST	SITE_CST	TRFCST	RMCUST	METALS	API	CTOH	N	S	VIS	TH_EFF
2*31	OLD	HIGHS	IMP	HDS_MOD	HIGH	0.5	80.691	12.1	92.791	59.00	50.4	23.0	7.36	0.3600	0.370	1130.00	91.8
6010	NEW	HIGHS	IMP	HYDRO_VAC_MOD	HIGH	0.5	85.101	12.0	97.101	45.44	49.0	22.9	7.40	0.3500	0.260	1100.00	93.8
1*32	OLD	LOWS	IMP	HDS_INTER_MOD	HIGH	0.5	78.004	10.8	88.804	62.00	0.6	23.1	7.36	0.0900	0.210	1100.00	92.8
5010	NEW	LOWS	IMP	HYDRO_VAC_HIGH	HIGH	0.5	79.187	10.8	89.987	49.02	1.3	22.4	7.45	0.0900	0.260	1100.00	98.5
4*20	ULD	MIS	D0IL	HYDRO_HIGH	HIGH	0.5	84.908	10.6	95.508	53.01	0.2	36.7	6.65	0.0500	0.004	2*35	88.9
402A	NEW	MIS	IMP	HYDRO350+INTER	HIGH	0.5	90.900	11.0	101.900	58.00	0.1	32.0	6.80	0.3000	0.025	*	93.3
3*20	OLD	SUR	B0IL	HYDRO_HIGH	HIGH	0.5	84.787	10.6	95.367	50.86	0.2	37.5	6.65	0.0500	0.004	2*35	82.8
301A	NEW	SUR	IMP	HYDRO350+_MOD	HIGH	0.5	87.775	11.5	99.275	53.90	0.0	29.9	6.90	0.5400	0.028	*	86.9
1010	NEW	ECOAL	IMP	HYDRO_MOD	HIGH	0.5	73.401	11.8	85.201	51.66	0.0	13.4	9.10	0.7000	0.130	3*60	92.2
2010	NEW	WC0AL	IMP	HYDRO_NAPH	HIGH	0.5	81.668	11.0	92.668	62.71	0.0	27.0	7.05	0.2600	0.070	1.70	95.1

CASE	PLANT	RMTYPE	MODE	PROCESS	CYCLE	NA	FUEL_CST	SITE_CST	TRFCST	RMCUST	METALS	API	CTOH	N	S	VIS	TH_EFF
6040	NEW	HIGHS	BOIL	COKE_HYDOS+	SIMP	1.0	133.314		152.414	45.44	0.0	37.7	6.68	0.0900	0.160	1.70	74.5
1*32	OLD	LOWS	IMP	HDS_INTER	SIMP	1.0	115.562	20.4	135.952	62.00	0.6	23.1	7.36	0.0900	0.210	1100.00	92.8
5010	NEW	LOWS	IMP	HYDRO_VAC_MOD	SIMP	1.0	117.314	20.3	137.614	49.02	1.3	22.4	7.45	0.0900	0.260	1100.00	98.5
4*20	OLD	MIS	BOIL	HYDRO_HIGH	SIMP	1.0	125.790	19.1	144.890	53.81	0.2	36.7	6.65	0.0500	0.004	2*35	88.9
3*20	OLD	SUR	BOIL	HYDRO_HIGH	SIMP	1.0	125.581	19.1	144.681	50.86	0.2	37.5	6.65	0.0500	0.004	2*35	82.8
306D	NEW	SUR	DMIL	COKE_HYDRO_HIGH	SIMP	1.0	160.971	19.1	180.071	53.90	0.0	40.7	6.50	0.0600	0.000	*	82.8
2020	NEW	WC0AL	IMP	HYDRO_ALL	SIMP	1.0	137.009	19.1	155.109	62.71	0.0	32.3	6.78	0.0001	0.014	1.70	94.1

PATH IDENTIFIERS

Name	Definition	Name	Definition
CASE	Identifier for the fuel upgrading scheme	API	Density, degree API
PROCESS	An abbreviated description of the upgrading scheme	CTOH	Carbon to Hydrogen weight ratio
PLANT-OLD	Upgrading scheme uses an augmented existing facility	MFTALS	Vanadium Content, ppm by weight
-NEW	Upgrading scheme uses a grass roots facility	N	Nitrogen Content, % by weight
RMTYPE-ECUAL	A coal liquid from an Eastern bituminous coal	S	Sulfur Content, % by weight
-WC0AL	A coal liquid from a Western bituminous coal	VIS	Viscosity, centistoke at 100 degree F
-MIS	A shale oil from a modified insitu retort		
-SUR	A low sulfur petroleum crude oil		UPGRADING SCHEME COST PARAMETERS *
-LOWS	A high sulfur petroleum crude oil	NAME	Name
-HIGHS	Upgrading scheme primarily alters boiling ranges	RMC0ST	Raw material purchase cost for scheme, \$ per BBL
-BOIL	Upgrading scheme primarily removes impurities	TH_EFF	Thermal eff. (energy in products/ energy in fuel)
-IMP	Simple cycle, 1500 hours/year, for power generation	PATH_C0STS	(all are mills per kWhr net power produced)
CYCLF-SIMP	Combined cycle, 7000 hours/year, for power generation	NAME	Definition
-HIGH	On site sodium purification capability	SITECST	Costs for on site fuel treatment + incremental maint. and incremental deprec. on turbine
NA	from 50 ppm to 0.5 ppm NA in washed fuel		and on site exhaust gas treatment
-0.05	from 50 ppm to 1.0 ppm NA in washed fuel		Cost off turbine fuel
-1.0	from 50 ppm to 2.0 ppm NA in washed fuel		Cost of SITECST and FUEL0ST
-2.0	from 50 ppm to 7.0 ppm NA in washed fuel	FUEL0ST	
		TYCST	Sum of SITECST and FUEL0ST

TABLE 12
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMBINED (HIGH) CYCLES
BEST ON SITE OPTIONS FOR EACH TURBINE-FUEL/DUTY CYCLE COMBINATION
AND BEST RAW MATERIAL-PROCESSING-PLANT OPTIONS

CYCLE=HIGH																
CASE	PLANT	RMTYPE	MODE	PROCESS	NA	FUEL CST	SITE CST	TOT CST	RMCOST	METALS	API	CTOH	N	S	VIS	TH_EFF
1010	NEW	ECOAL	IMP	HYDRO_MOD	0.5	73.4012	11.8	85.2012	51.66	0.0	13.4	9.10	0.130	3.60	92.2	
1.32	OLD	LUMS	IMP	HUS_INTER	0.5	78.0040	10.8	89.8040	62.00	0.6	23.1	7.36	0.09	0.210	1100.00	
2010	NEW	WCAL	IMP	HYDRO_NAPH	0.5	81.666J	11.0	92.6683	62.71	0.0	27.0	7.05	0.26	0.070	92.8	
2.31	- OLD	HIGHS	IMP	HDS_MOD	0.5	80.6912	12.1	92.7912	59.00	50.4	23.0	7.36	0.3	0.370	95.1	
3.20	SUR	BUIL	HYDRO_HIGH	0.5	84.7669	10.6	95.3669	50.86	0.2	37.5	6.65	0.05	0.004	2.35	91.8	
4.20	OLD	MIS	BUIL	HYDRO_HIGH	0.5	84.9083	10.6	95.5083	53.81	0.2	36.7	6.65	0.05	0.004	2.35	
																88.9

CYCLE=SIMP																
CASE	PLANT	RMTYPE	MODE	PROCESS	NA	FUEL CST	SITE CST	TOT CST	RMCOST	METALS	API	CTOH	N	S	VIS	TH_EFF
1.32	OLD	LUMS	IMP	HDS_INFR	1	115.562	20.3	135.862	62.00	0.6	23.1	7.36	0.0900	0.210	1100.00	
1.20	OLD	SUR	BOIL	HYDRO_HIGH	1	125.581	19.1	144.681	50.86	0.2	37.5	6.65	0.0500	0.004	2.35	
4.20	OLD	MIS	BOIL	HYDRO_HIGH	1	125.790	19.1	144.890	53.81	0.2	36.7	6.65	0.0500	0.004	2.35	
6040	NEW	HIGHS	BOIL	COKE_HYDCS+	1	133.314	19.1	152.414	45.44	0.0	37.7	6.68	0.0900	0.160	1.70	
				HYDRO_ALL	1	137.009	19.1	156.109	62.71	0.0	32.3	6.78	0.0001	0.014	1.70	
																94.5

A row in this table shows the best (least total cost) feasible plant-raw material-upgrading-onsite processing combination for a combined and for a simple turbine cycle

PATH IDENTIFIERS

Name	CASE	Identifier for the fuel upgrading scheme	Definition
PR_ICFS		An abbreviated description of the upgrading scheme	
PLANT-OLD		Upgrading scheme uses an augmented existing facility	
-NEW		Upgrading scheme uses a grass roots facility	
RMTYPE-TCUAL		A coal liquid from an Eastern bituminous coal	
-WCAL		A coal liquid from an Western bituminous coal	
-MIS		A shale oil from a modified insitu retort	
-SUR		A shale oil from a surface retort	
-LUMS		A low sulfur petroleum crude oil	
-HIGHS		A high sulfur petroleum crude oil	
MINE-UDIL		Upgrading scheme primarily alters boiling ranges	
-IMP		Upgrading scheme primarily removes impurities	
CYCLE-SIMP		Simple cycle, 1500 hours/year, for power generation	
-HIGH		Combined cycle, 7000 hours/year, for power generation	
NA		On site sodium purification capability	
-0.5		from 50 ppm to 0.5 ppm in washed fuel	
-1.0		from 50 ppm to 1.0 ppm NA in washed fuel	
-2.0		from 50 ppm to 2.0 ppm NA in washed fuel	

ORIGINAL PAGE IS
OF POOR QUALITY

PROPERTIES OF CONSUMED TURBINE FUEL

Name	API	Definition
CTOH	Density, degree API	
METALS	Carbon to Hydrogen weight ratio	
N	Vanadium Content, ppm by weight	
S	Nitrogen Content, % by weight	
VIS	Sulfur Content, % by weight	
	Viscosity, centistoke at 100 degree F	
UPGRADING SCHEME COST PARAMETERS		
Name	RMCOST	Definition
TH_EFF	Raw material cost, for scheme, \$ per BBL	
	Thermal eff. (energy in products/ energy in fuel)	
PATH COSTS	(all are mills per kWhr net power produced)	
Name	SIITECST	Definition
	Costs for on site fuel treatment , incremental	
	maint. and incremental deprec. on turbine	
	and on site exhaust gas treatment	
FULLCST	Cost of turbine fuel	
TOTCST	Sum of SITECST and FUELCST	

TABLE 13
PATHS FOR SIMPLE (SIMP) AND HIGH DUTY COMBINED (HIGH) CYCLES
BEST ONSITE OPTIONS FOR EACH TURBINE-FUUEL/DUTY CYCLE COMBINATION
AND BEST RAW MATERIAL-PROCESSING-PLANT OPTIONS

PLANT=NEW												PLANT=OLD																					
CASE	RMTYPE	MODE	PROCESS	CYCLE	NA	FUEL CST	SITE CST	TOT COST	RMCOST	METALS	API	CTOH	N	S	VIS	TH_EFF	CASE	RMTYPE	MODE	PROCESS	CYCLE	NA	FUEL CST	SITE CST	TOT COST	RMCOST	METALS	API	CTOH	N	S	VIS	TH_EFF
1010	ECDAL	IMP	HYDRO_MOD	HIGH	0.5	73.401	11.8	85.201	51.66	0	13.4	9.10	0.7000	0.130	3.6	92.2	1.32	LWMS	IMP	HDS_INTER	HIGH	0.5	78.004	10.8	88.804	62.90	0.6	23.1	7.36	0.09	0.210	1100.00	92.8
2010	WCDAL	IMP	HYDRO_NAPH	HIGH	0.5	81.668	11.0	92.668	62.71	0	27.0	7.05	0.2600	0.070	1.7	95.1	2.31	HIGHS	IMP	HDS_MOD	HIGH	0.5	80.091	12.1	92.791	59.00	50.4	23.0	7.36	0.36	0.370	1130.00	91.8
6040	HIGHS	BUIL	CORE_HYDCS+	SIMP	1.0	133.314	19.1	152.414	45.44	0	37.7	6.68	0.0900	0.150	1.7	94.5	1.32	LWMS	IMP	HDS_HYDCS+	SIMP	1.0	137.009	19.1	156.109	62.71	0	32.3	6.78	0.0001	0.014	1.7	94.1
2020	WCDAL	IMP	HYDRO_ALL	SIMP	1.0	137.009	19.1	156.109	62.71	0	32.3	6.78	0.0001	0.014	1.7	94.1																	

A row in this table shows the best (least total cost) feasible cycle-raw material-upgrading-onsite processing combination for a new and for an augmented existing facility.

PATH IDENTIFIERS

Name	CAST	Identifier for the fuel upgrading scheme
PROCESS		An abbreviated description of the upgrading scheme
PLANT-OLD		Upgrading scheme uses an augmented existing facility
-NEW		Upgrading scheme uses a grass roots facility
RMTYPE-ECDAL		A coal liquid from an Eastern bituminous coal
-WCDAL		A coal liquid from an Western bituminous coal
-LWMS		A shale oil from a modified insitu retort
-SUR		A shale oil from a surface retort
-HIGHS		A low sulfur petroleum crude oil
-MIS		A high sulfur petroleum crude oil
MODE-BUIL		Upgrading scheme primarily alters boiling ranges
-IMP		Upgrading scheme primarily removes impurities
CYCLE-SIMP		Simple cycle, 1500 hours/year, for power generation
-HIGH		Combined cycle, 7000 hours/year, for power generation
NA		On site sodium purification capability
-0.05		from 50 ppm to 1.5 ppm Na in washed fuel
-1.0		from 50 ppm to 1.0 ppm Na in washed fuel
-2.0		from 50 ppm to 2.0 ppm Na in washed fuel

ORIGINAL PAGE IS
OF POOR QUALITY

PROPERTIES OF CONSUMED TURBINE FUEL

Name	API	Definition
KMCOST		Density, degree API
CTOH		Carbon to Hydrogen weight ratio
METALS		Vanadium content, ppm by weight
N		Nitrogen Content, % by weight
S		Sulfur content, % by weight
VIS		Viscosity, centistoke at 100 degree F
UPGRADING SCHEME COST PARAMETERS		
Name		Definition
KMCOST		Raw material purchase cost for scheme, \$ per BBL
TH_EFF		Thermal eff. (energy in products/ energy in fuel)
Path CUSTS		(all are mills per kWhr net power produced)
Name		Definition
SITECST		Costs for on site fuel treatment , incremental maint. and incremental deprec. on turbine and on site exhaust gas treatment
FUEL CST		Cost of turbine fuel
TITCST		Sum of SITECST and FUEL CST

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 14
NOMENCLATURE FOR TABLES

PATH IDENTIFIERS

Name	Definition
CASE	Identifier for the fuel upgrading scheme used on the path
PROCESS	An abbreviated description of the upgrading scheme
PLANT-OLD	Upgrading scheme uses an augmented existing facility
-NEW	Upgrading scheme uses a grass roots facility
RMTYPE-ECOAL	A coal liquid from an Eastern bituminous coal
-WCOAL	A coal liquid from an Western bituminous coal
-MIS	A shale oil from a modified insitu retort
-SUR	A shale oil from a surface retort
-LOWS	A low sulfur petroleum crude oil
-HIGHS	A high sulfur petroleum crude oil
MODE-BOIL	Upgrading scheme primarily alters boiling ranges
-IMP	Upgrading scheme primarily removes impurities
CYCLE-SIMP	Simple cycle, 1500 hours/year, for power generation
-HIGH	Combined cycle, 7000 hours/year for power generation
NA	On site sodium purification capability
-0.5	from 50 ppm to 0.5 ppm NA in washed fuel
-1.0	from 50 ppm to 1.0 ppm NA in washed fuel
-2.0	from 50 ppm to 2.0 ppm NA in washed fuel

PROPERTIES OF CONSUMED TURBINE FUEL

Name	Definition
API	Density, degree API
CTOH	Carbon to Hydrogen weight ratio
METALS	Vanadium content, ppm by weight
N	Nitrogen Content, % by weight
S	Sulfur content, % by weight
VIS	Viscosity, centistoke at 100 degree F

UPGRADING SCHEME COST PARAMETERS

Name	Definition
ERMTL	Cost of fuel for processing, \$ per mm BTU of products
ELECT	Cost of electricity for processing, \$ per mm BTU of products
EWAT	Cost of water for processing, \$ per mm BTU of products
FUELPR	Turbine fuel selling price for scheme, \$ per BBL
RMCOST	Raw material purchase cost for scheme, \$ per BBL
TH_EFF	Thermal efficiency (energy in products/ energy in fuel)

PATH COSTS (all are mills per KWHR net power produced)

Name	Definition
NACST	Costs for on site fuel treatment plus incremental maintenance and incremental depreciation on turbine
NOXCST	Costs for on site exhaust gas treatment
SITECST	Sum of NACST plus NOXCST
FUELCST	Cost of turbine fuel
TOTCST	Sum of SITECST and FUELCST

ORIGINAL PAGE IS
OF POOR QUALITY

TABLE 15
DEFINITION OF PROCESS NAMES

CASE	PROCESS	ABBREVIATED DESCRIPTION
1.10,2.10	DECARB	Solvent decarbonization vac bottoms
1.21,2.21,3.30 5040,6040	COKE_HYD5+	Delayed coking + hydrotreating of naphtha distillate
1.22,2.22 2.21,2.22	COKE_HYD375+	Delayed coking + hydrotreating of c5+ to 950 distillate
1.23,2.23	COKE_HYD650+	Delayed coking + hydrotreating of 650 to 950 distillate
1.31,2.31	HDS_MOD	Hydrodesulf vac bottoms,mod sever
1.32,2.32	HDS_INTER	Hydrodesulf vac bottoms,inter sever
1.33,2.33	HDS_HIGH	Hydrodesulf vac bottoms,high sever
3.10,4.10	1STAGE_HYDRO	Severe hydrotreating + distillate desulf
3.20,4.20,1030	HYDRO_HIGH	Hydrotreating, high severity
1010	HYDRO_MOD	Hydrotreating, moderate severity
1020	HYDRO_INTER	Hydrotreating, intermediate severity
2010	HYDRO_NAPH	Hydrotreating, naphtha only
2020	HYDRO_ALL	Hydrotreating, entire raw feed
301A	HYD350+_MOD	Hydrotreating, mod sever,350+ dist
3010	HYD650+_MOD	Hydrotreating, mod sever,650+ dist
302A,402A	HYD350+_INTER	Hydrotreating, inter sever,350+ dist
3020,4020	HYD650+_INTER	Hydrotreating, inter sever,650+ dist
303A	HYD350+_HIGH	Hydrotreating, high sever,350+ dist
3030	HYD650+_HIGH	Hydrotreating, high sever,650+ dist
3040	COKE-HYDRO_MOD	Delayed coking,mod hydrotreat,c5+ dist
3050	COKE_HYDRO_INT	Delayed coking,inter hydrotreat,c5+ dist
3060	COKE_HYDRO_HIGH	Delayed coking,severe hydrotreat,c5+ dist
5010,6010	HYDRO_VAC_MOD	Hydrotreating vac bottoms, mod severity
5020,6020	HYDRO_VAC_INTER	Hydrotreating vac bottoms, inter severity
5030,6030	HYDRO_VAC_HIGH	Hydrotreating vac bottoms, high severity