ASEN 3112

Spring 2020

Lecture 7

February 4, 2020

7 Beam Deflections by 2nd Order Method

A Beam is a Structural Member Designed to Resist Primarily Transverse Loading

Distribution of Beam Normal Stress Due to Bending Moment

Simply Supported Beam BC Example

Cantilever Beam BC Example

Transverse Shear and Bending Moment Sign Conventions

Beam Slope and Deflection

Beam Notation & Sign Conventions

Quantity	Symbol	Sign convention(s)	
Problem specific load	varies	You pick'em	
Generic load for ODE work	p(x)	+ if up	
Transverse shear force	$V_{y}(x)$	+ if up on +x face	
Bending moment	$M_z(x)$	+ if it produces compression on top face	
Slope of deflection curve	dv(x)/dx = v'(x)	+ if positive slope, or cross-section rotates CCW	
Deflection curve	v(x)	+ if beam cross-section moves upward	

Note 1: Some textbooks (e.g. Vable and Beer-Johnson-DeWolf) use $V = -V_y$ as alternative transverse shear force symbol. This has the advantage of eliminating the minus sign in two of the ODEs listed on the next slide. V will only be used occsionally in this course.

Note 2. In our beam model, the slope v'(x) = dv(x)/dx is equal to the rotation $\theta(x)$ of the cross section

Beam Differential Equations

Connected quantities	Ordinary Differential Equations (ODEs)
From load to transverse shear force	$\frac{dV_y}{dx} = -p \text{or } p = -V_y' = V'$
From transverse shear to bending moment	$\frac{dM_z}{dx} = -V_y \text{or } M_z' = -V_y = V$
From bending moment to deflection	$EI_{zz}v'' = M_z$ or $v'' = \frac{M_z}{EI_{zz}}$
From load to moment	$M_z'' = p$
From load to deflection	$E I_{zz} v^{IV} = p$

Beam Boundary Conditions for Shear, Moment, Slope & Deflection

(Part of a Supplementary Crib Sheet for Midterm Exams 2 & 3)

Beam Boundary Conditions for Shear, Moment, Slope & Deflection						
Condition	Shear force $V_y(x)$	Bending moment $M_{\mathcal{Z}}(x)$	Slope (= rotation) $v'(x) = \theta(x)$	Deflection $v(x)$		
Simple support		0&		0		
Fixed end			0	0		
Free end	0*	0#				
Symmetry	0		0			
Antisymmetry		0		0		

^{*} Unless a point force is applied at the free end

Blank entry means that value is unknown and has to be determined by solving problem

[&]amp; Unless a point moment is applied at the simple support

[#] Unless a point moment is applied at the free end

Example 1: Cantilever Beam Under End Point Load

(a) Problem definition

(b) FBD to find $M_7(x)$

Example 2: Cantilever Beam Under Triangular Load

(a) Problem definition

(b) FBD to find $M_z(x)$

Example 3: Simply Supported Beam Under Uniform Load

(b) FBD to find $M_Z(x)$