

# KARATINA UNIVERSITY

# UNIVERSITY SPECIAL/SUPPLEMENTARY EXAMINATIONS

# **2023/2024 ACADEMIC YEAR**

# **FOURTH YEAR SECOND SEMESTER EXAMINATION**

## FOR THE DEGREE OF:

**BACHELOR OF SCIENCE WITH EDUCATION (P106)** 

BACHELOR OF EDUCATION science (E101)

COURSE CODE: MAT 426

COURSE TITLE: METHODS II

**DATE**: 23<sup>RD</sup> JULY 2024 **TIME**: 3.00PM TO 5.00PM

#### INSTRUCTION TO CANDIDATES

SEE INSIDE

#### INSTRUCTION: Answer question ONE and any other TWO QUESTIONS

## Question One (30 marks)

a) i) Define an integral equation

(1mark)

State two types of integral equations giving examples

(3marks)

b) Describe the tensor  $B_{kl}^{P}$ 

(3marks)

- Define the modified Bessel's differential equation of order n and give the form of its gene ral solution. (2marks)
- d) Express

$$\frac{d\phi}{dt} = \frac{\partial\phi}{\partial x^1} \frac{dx^1}{dt} + \frac{\partial\phi}{\partial x^2} \frac{dx^2}{dt} + - - - + \frac{\partial\phi}{\partial x^n} \frac{dx^n}{dt}$$

in summation convention

(2marks)

- e) Show that the Kronecker delta  $\delta_i^k$  is a mixed tensor of rank 2 having the same compone nts in every coordinate system. (4marks)
- f) Show that the expression A(i, j, k) is a covariant tensor of rank three if A(i, j, k)B<sup>k</sup> is covariant tensor of rank two and B<sup>k</sup> is contravariant vector (4marks)
- a) Construct the Green's function for the BVP

$$\frac{\partial^2 y}{\partial x^2} + \frac{1}{4}y = f(x) \text{ with } y(0) = 0 = y(\pi)$$
 (4marks)

- b) Given that  $A_i$  is a covariant tensor, prove that  $\frac{\partial A_i}{\partial x^i}$  do not form a tensor. (3marks)
- c) Reduce the initial value problem to the Volterra integral equation

$$u-3x^2u=0$$

$$u(0)=1$$
(4marks)

#### Answer any Two questions

### Question Two (20 marks)

a) State two properties of Asymptotic sequences

(2marks)

- b) Differentiate between linear integral equation and homogenous integral equation.
   (3marks)
- c) Find g and g<sup>ij</sup> corresponding to metric tensor

$$(ds)^2 = 5(dx^3)^2 + 3(dx^2)^2 + 4(dx^3)^2 - 6dx^3dx^2 + 4dx^2dx^3$$

(10marks)

- d) Show that any inner product of the tensors A<sub>r</sub> and B<sub>t</sub> is a tensor of rank three (5marks)
   Question Three (20marks)
  - a) If  $g_{ij}$  denotes a covariant tensor of rank 2, show that a product  $g_{ij}\partial x^i\partial x^j$  is an invariant. (4marks)
  - b) Find the solution of the integral equation by the Neumann series.

$$u(x) = e^x + \frac{1}{e} \int_0^1 u(y) dy$$
 (8marks)

Solve the differential equation using the Green's function

$$y' + y = 1$$
  
 $v(0) = v(1) = 0$  (8marks)

#### Question Four (20marks)

- a) If  $\phi = a_{jk} A^j A^k$  Show that we can always write  $\phi = b_{jk} A^j A^k$  where  $b_{jk}$  is symmetric. (5marks)
- **b)** Given the Bessel function  $J_n(x) = \sum_{p=0}^{\infty} \frac{(-1)^n}{p! \Gamma(p+n+1)} (\frac{x}{2})^{n+2p}$

show that 
$$J_{\frac{1}{2}}(x) = \left(\frac{2}{\pi x}\right)^{\frac{1}{2}} \sin x$$
 (6marks)

c) Find the steady-state temperature  $u(r,\theta)$  inside a sphere of radius a with  $u(a,\theta) = f(\theta)$  (9marks

## Question Five (20marks)

- a) Evaluate the rank of the tensor  $A_{\chi}^{YZ}$  (3marks)
- b) If  $g_{ij}$  denotes a covariant tensor of rank 2, show that a product  $g_{ij}\partial x^i\partial x^j$  is an invariant. (4marks)
- c) Convert the integral equation into an initial value problem

$$u(x) = x^3 + \int_0^x (x - y)^2 u(y) dy$$
 (4marks)

d) Find the solution of the integral equation with separable kernel.

$$y(x) = x + \lambda \int_0^1 (xt^2 + x^2t) y(t) dt$$
 (9marks)