TRABALHO AVALIATIVO PARCIAL 2

Questão 01 (1,0 pontos)

Realizamos um experimento no qual variamos o número de bytes lidos de 10 a 10.000 e medimos o tempo de leitura correspondente. Nossas medições resultantes são mostradas na tabela abaixo:

Tabela: Tempos medidos necessários para ler vários arquivos de entrada

Observações	Tamanho do Arquivo	Tempo
1	10	3,8
2	50	8,1
3	100	11,9
4	500	55,6
5	1000	99,6
6	5000	500,2
7	10000	1006,1

Desejamos desenvolver um modelo de regressão para relacionar o tempo necessário para realizar uma operação de leitura de arquivo com o número de bytes lidos.

Ache o modelo de regressão, calcule a correlação e o intervalo de confiança.

Questão 02 (1,5 pontos)

Estimativas do número de transistores em um certo tipo de chip de circuito integrado durante vários anos consecutivos

Anos (xi)	Número de Transistores (yi)	Dados transformados (y*= ln y)
1	9500	
2	16000	
3	23000	
4	38000	
5	62000	
6	105000	

Ache o modelo de regressão ajustado e calcule a correlação de confiança.

Modele a regressão: $y^* = a^+ b^x$

FORMULAS

$$a = \bar{y} - b\bar{x}$$

$$b = \frac{s_{xy}}{s_{xx}}$$

$$R = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}}$$

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n}$$

$$S_{yy} = \sum_{i=1}^{n} y_i^2 - \frac{(\sum_{i=1}^{n} y_i)^2}{n}$$

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}$$

Intervalo de confiança:

$$s^2 = \frac{s_{yy} - bs_{xy}}{n - 2}$$

$$(b_1, b_2) = b \pm \frac{t \left[1 - \frac{\alpha}{2}; n - 2\right] s}{\sqrt{n s_{xx}}}$$

$$(a_1, a_2) = a \pm \frac{t \left[1 - \frac{\alpha}{2}; n - 2\right] s \sqrt{\sum_{i=1}^{n} x_i^2}}{\sqrt{n s_{xx}}}$$

$$(yp_1, yp_2) = y_p \pm t \left[1 - \frac{\alpha}{2}; n - 2\right] s \sqrt{1 + \frac{1}{n} + \frac{\left(x_p - \bar{x}\right)^2}{s_{xx}}}$$