PROBABILITES ET STATISTIQUES POUR LA BIOLOGIE (STAT1, ENSBBAU16L) EXAMEN DE RATTRAPAGE – 11 MAI 2018

Calculatrices Autorisées ; Documents Non Autorisés.

Pondération: cet examen compte pour 100% de la note finale.

Question 1 (8 points)

On effectue une série de 60 tirs de dés, et on observe que la valeur 6 tombe 20 fois.

- a. En supposant le dé équilibré, combien de 6 se serait-on attendu à obtenir ?
- b. Comment pourrait-on calculer la p-valeur du résultat obtenu ? Justifiez le choix d'une distribution théorique de probabilité.
- c. Ecrivez la formule générique (avec les symboles) pour calculer la p-valeur, puis remplacez les symboles par les valeurs de paramètres extraites de l'énoncé. Il n'est pas nécessaire de calculer le résultat final.
- d. Après calcul (avec un ordinateur), on obtient une p-valeur de 0.001. Comment interprétez-vous ce résultat ?

Question 2 (6 points)

On scanne la séquence d'un génome bactérien de 1 Mb sur les deux brins, pour y trouver toutes les occurrences exactes du motif ATACGHNWKATGC (voir table IUPAC ci-dessous pour les codes des nucléotides ambigus). On suppose que les nucléotides du génome se succèdent de façon indépendante. La composition nucléotidique du génome est de 30% de A et T et 20% de C et G.

- a. Comment calcule-t-on la probabilité des résidus dégénérés (K, W, N) ? Indiquez la formule générique en termes de probabilités de résidus (P_A , P_C , ..., P_K , P_N), puis remplacez les symboles par des valeurs, et calculez le résultat. Justifiez votre choix de la formule utilisée.
- b. Quelle est la probabilité de trouver une occurrence du motif à une position donnée du génome ? Expliquez les étapes de votre raisonnement, en justifiant les modèles probabilistes.
- c. Quel est le nombre d'occurrences attendues au hasard sur l'ensemble du génome ? Expliquez le raisonnement, en justifiant le choix du modèle de calcul.

Table: IUPAC ambiguous nucleotide code

A	A	Adenine
С	С	Cytosine
G	G	Guanine
T	T	T hymine
R	A or G	pu R ine
Y	C or T	p Y rimidine
W	A or T	Weak hydrogen bonding
S	G or C	Strong hydrogen bonding
M	A or C	aMino group at common position
K	G or T	K eto group at common position
Н	A, C or T	not G
В	G, C or T	not A
V	G , A , C	not T
D	G, A or T	not C
N	G , A , C or T	a N y

Question 3 (6 points)

Un chercheur a mesuré par qPCR le niveau d'expression d'un gène d'intérêt à partir d'échantillons sanguins prélevés chez 50 patients $(n_p=50)$ et chez 50 sujets témoins $(n_t=50)$. Il obtient

- pour les patients, une moyenne $m_p = 21$
- pour les contrôles, une moyenne $m_t = 10$
- des écarts-types identiques pour les 2 groupes $s_b = s_c = s = 15$

Afin de tester si la différence observée entre les moyennes est significative, le chercheur décide d'effectuer un test de Student.

- a. Le choix du test de Student vous semble-t-il approprié ? Justifiez le choix du chercheur.
- b. Quelles auraient été les situations alternatives possibles, et quels tests auraient été appropriés ?
- c. Sachant qu'*a priori* on ignore dans quel sens la maladie pourrait affecter le niveau d'expression de ce gène, formulez l'hypothèse nulle et expliquez-la en une phrase.
- d. Sur base du formulaire joint, calculez la statistique t de Student.
- e. Indiquez, en vous basant sur la table t ci-jointe, la p-valeur correspondante.
- f. Interprétez la p-valeur, et aidez le chercheur à tirer les conclusions concernant l'impact éventuel de la maladie sur l'expression de ce gène.

Formules de probabilités et statistique

Probabilités et statistique pour la biologie (STAT1)

Jacques van Helden 2018-05-10

Combinatoire

Nom	Conditions	Formule
Permutations (factorielle) Arrangements Combinaison (choose,	Sans remise, ordonné Sans remise, sans ordre	$n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$ $A_n^x = \frac{n!}{(n-x)!} = n \cdot (n-1) \cdot \dots \cdot (n-x+1)$ $\binom{n}{x} = C_n^x = \frac{n!}{x!(n-x)!}$
$coefficient\ binomial)$		

Concepts de probabilité

Description	Conditions	Formule				
Définition fréquentielle de la probabilité		$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$				
Probabilité de non-réalisation		$P(\neg A) = 1 - P(A)$				
Probabilités conditionnelles		$P(A \mid B) = \frac{P(A \land B)}{P(B)}$ $P(B \mid A) = \frac{P(A \land B)}{P(A)}$				
Probabilité de A ou B	En général	$P(A \lor B) = P(A) + P(B) - P(A \land B)$				
Probabilité de A ou B	Evénements mutuellement exclusifs	$P(A \lor B) = P(A) + P(B)$				
Probabilité de A et B	En général	$P(A \land B) = P(A) \cdot P(B \mid A)$				
Probabilité de A et B	Evénements indépendants	$P(A \wedge B) = P(A) \cdot P(B)$				
Règle de Bayes		$P(A \land B) = P(A) \cdot P(B \mid A) = P(B) \cdot P(A \mid B)$ $\implies P(A \mid B) = \frac{P(A) \cdot P(B \mid A)}{P(B)}$ $\implies P(B \mid A) = \frac{P(B) \cdot P(A \mid B)}{P(A)}$				

Distributions de probabilité discrètes

Géométrique

- Conditions : nombre d'échecs avant le premier succès dans un schéma de Bernoulli
- Densité:

$$P(X = x) = (1 - p)^x p$$

• Répartition :

$$P(X \le x) = \sum_{i=0}^{x} (1-p)^{i} p$$

- Moyenne : $\mu_G = (1-p)/p$ Variance : $\sigma_G^2 = \frac{(1-p)}{p^2}$

Binomiale

- Conditions : Nombre de succès au cours d'une série d'essais indépendants avec probabilité constante de succès (Schéma de Bernoulli)
- Densité:

$$P(X = x) = C_n^x p^x (1 - p)^{n-x}$$

• Répartition :

$$P(X \le x = \sum_{i=0}^{x} C_n^i p^i (1-p)^{n-i}$$

- Moyenne : $\mu_B = np$
- Variance : $\sigma_B^2 = np(1-p)$ Rapport moyenne/variance: $\sigma_B^2 < \mu_B$

Poisson

- Conditions : nombre de succès observés au cours d'un intervalle de temps, en fonction du nombre attendu (λ)
- Application : approximation de la binomiale quand $n \to \infty, p \to 0$ et $\mu = np$ faible $(\mu_B \to \lambda)$
- Densité :

$$P(X = x) = \frac{e^{-\lambda}\lambda^x}{r!}$$

• Répartition :

$$P(X \le x) = \sum_{i=0}^{x} \frac{e^{-\lambda} \lambda^{i}}{i!}$$

- Moyenne : $\mu_P = \lambda$
- Variance : $\sigma_P^2 = \lambda$
- Rapport moyenne/variance: $\sigma_P^2 = \mu_P$

Hypergéométrique

- Conditions : Tirage non ordonné, sans remise dans un ensemble fini avec deux catégories.
- Exemple-type: urne avec boules de deux couleurs
- Densité :

$$P(X=x) = \frac{C_m^x C_n^{k-x}}{C_{m+n}^k}$$

• Répartition :

$$P(X \le x = \sum_{i=x}^{\min(k,m)} \frac{C_m^i C_n^{k-i}}{C_{m+n}^k}$$

 $\begin{array}{ll} \bullet & \text{Moyenne}: \ \mu_H = k \cdot \frac{m}{m+n} \\ \bullet & \text{Variance}: \ \sigma_H^2 = \frac{k \frac{m}{N} (1 - \frac{m}{N}) (N-k)}{(N-1)}; N = m+n \end{array}$

Echantillonnage et estimation

- Les symboles grecs (μ, σ) correspondent aux statistiques de population, les symboles romains (\bar{x}, s) aux statistiques d'échantillon.
- L'accent circonflexe () indique les estimateurs de paramètres de population calculés à partir de paramètres d'échantillons.

Symbole	Description
\overline{N}	Taille (nombre d'individus) de la population.
$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$	Moyenne de la population.
$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \mu^2$	Variance de la population
$\sigma = \sqrt{\sigma^2}$	Écart-type de la population
n	Effectif (nombre d'individus) de l'échantillon.
$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	Moyenne d'échantillon.
$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$	Variance de l'échantillon
$s = \sqrt{s^2}$	Écart-type de l'échantillon
$\hat{\sigma^2} = \frac{n}{n-1} s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$	Estimateur non-biaisé de la variance de la population.
$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$	Estimateur non-biaisé de l'écart-type de la population.
$<\sigma_{\bar{X}}>=\frac{\hat{\sigma}}{\sqrt{n}}$	Erreur standard: écart-type attendu sur la moyenne d'échantillon.
$ar{x}\pmrac{\hat{\sigma}}{\sqrt(n)}\cdot t_{1-lpha/2}^{n-1}$	Intervalle de confiance autour de la moyenne.

Test de comparaison de moyennes

Symbole	Description
$\overline{\mu_1,\mu_2}$	Moyennes respectives des populations 1 et 2.
σ_1,σ_2	Écarts-types respectifs des populations 1 et 2 .
n_1,n_2	Effectifs (nombre d'individus) des échantillons prélevés sur les populations 1 et 2 .
$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	Formule générale de la moyenne d'échantillon
$ar{x}_1,ar{x}_2$	Moyennes d'échantillons.
$\delta = \mu_2 - \mu 1$	Différence entre les moyennes des populations.
$d = \hat{\delta} = \hat{\mu}_2 - \hat{\mu}_1 = \bar{x}_2 - \bar{x}_1$	$d=$ Taille d'effet: dans un test de comparaison de moyennes, il s'agit de la différence entre les moyennes d'échantillons, utilisée comme estimateur de δ .
$s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$	Formule générale de la variance d'échantillon
s_1^2, s_2^2	Variances mesurées sur les échantillons.
$\hat{\sigma}_p = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}}$	Écart-type groupé (pooled standard deviation), utilisé comme estimateur de l'écart-type commun des deux populations, en supposant leurs variances égales (hypothèse de travail d'homoscédasticité).
$\hat{\sigma}_{\delta} = \hat{\sigma}_p \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$	Erreur standard sur la différence entre moyennes, en supposant que les populations ont la même variance (test de Student).
$t_S = rac{\hat{\delta}}{\hat{\sigma}_{\delta}} = rac{ar{x}_2 - ar{x}_1}{\sqrt{rac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} \left(rac{1}{n_1} + rac{1}{n_2} ight)}}$	Statistique t de Student, $\nu = n_1 + n_2 - 2$ d.l.
$t_W = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\hat{\sigma}_1^2}{n_1} + \frac{\hat{\sigma}_2^2}{n_2}}}$	Statistique t de Welch, $\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2^2}\right)^2}{\frac{s_1^4}{n_1^2(n_1 - 1)} + \frac{s_2^4}{n_2^2(n_2 - 1)}}$ d.l.

t Table

cum. prob one-tail two-tails	<i>t</i> _{.50} 0.50 1.00	<i>t</i> . ₇₅ 0.25 0.50	t _{.80} 0.20 0.40	<i>t</i> .85 0.15 0.30	t _{.90} 0.10 0.20	<i>t</i> _{.95} 0.05 0.10	<i>t</i> _{.975} 0.025 0.05	<i>t</i> _{.99} 0.01 0.02	t _{.995} 0.005 0.01	<i>t</i> .999 0.001 0.002	t _{.9995} 0.0005 0.001
df	1.00	0.00	0.40	0.00	0.20	0.10	0.00	0.02	0.01	0.002	0.001
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29 30	0.000 0.000	0.683 0.683	0.854 0.854	1.055 1.055	1.311 1.310	1.699 1.697	2.045 2.042	2.462 2.457	2.756 2.750	3.396 3.385	3.659
40											3.646
60	0.000 0.000	0.681 0.679	0.851 0.848	1.050 1.045	1.303 1.296	1.684 1.671	2.021 2.000	2.423 2.390	2.704 2.660	3.307 3.232	3.551 3.460
					1.290						
80 100	0.000 0.000	0.678 0.677	0.846 0.845	1.043 1.042	1.292	1.664 1.660	1.990 1.984	2.374 2.364	2.639 2.626	3.195 3.174	3.416 3.390
1000	0.000	0.677	0.842	1.042	1.282	1.646	1.96 4 1.962	2.330	2.520	3.174	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
<u> </u>	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confi	dence Le	evel				