Automated Vehicles and Mobility Services

Alexander Carballo, Dr.Eng.

Autonomous vehi solutions

- Levels of Autonomy
- Smart Cities
- Urban revolution
- Social impact
- •Open source autonomous driving

®TierⅣ

Key Words in Today's Automotive Society

C ConnectedA AutomatedS Sharing & ServiceE Electric Drive

®TierⅣ

Autonomous Vehicles

Vehicles capable of **perceiving** and **understanding** it's environment to **autonomously navigate** through it.

®Tier W

Levels of Autonomy

Levels of Autonomy

SAE	SAE Name	SAE Narrative Definition	Execution of Steering/ Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of Dynamic Droving Task	System capability (driving modes)	BAS: Level	NTHS. Leve
	Human Driv	er monitors the driving environment						
0	No Automation	the full-time performance by the human driver of all aspects of the dynamic driving task	Hursan Driver	Human Driver	Human Driver	NA	Driver only	0
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration	Human Oriver and Systems	Human Driver	Human Driver	Some Driving Modes	Assisted	1
2	Partial Automation	Part time or driving mode dependent execution by one or more driver assistance systems of both steering and acceleration/deceleration. Human driver performs all other aspects of the dynamic driving task	System	Human Driver	Human Driver	Some Driving Modes	Partially Automated	2
Autom	ated driving sys	dem ("system") monitors the driving environment						
3	Conditional Automation	driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task. human driver does respond appropriately to a request to intervene	System	System	Human Driver	Some Driving Modes	Highly Automated	3
4	High Automation	driving mode-specific performance by an automated driving system of all aspects of the dynamic driving fasts. I human driver does not respond appropriately to a request to intervene	System	System	System	Some Driving Modes	Fully Automated	3/4
5	Full Automation	full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a Juman driver	System	System	System	Some Driving Modes		

Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE J3016, Sept. 2016.

SAE J3016, Sept. 2016.

|Level 2: Hands-off autonomous driving

- Fully autonomous capabilities for extended periods of time, but requires full attention of the driver.
 - · Example: fully autonomous highway driving with absolutely, no safety guarantees, the driver is still responsible.
- Tesla autopilot is certified SAE-2;
 - Can fully control the vehicle in some scenarios, i.e. highways
 - Expects full driver attention, i.e. same reaction time as if they were driving the vehicle

Level 3: Eyes-off autonomous driving

- Fully autonomous capabilities for extended periods of time, where full driver attention is not required.
 - Example: driver can read while the auto-pilot is active.
- 2018 Audi A8 has the first claimed level 3 functionality.
 - Traffic Jam Pilot can take over on one directional highways, traffic conditions below 60 km/h.

Safe to look away from the road when conditions are met, but must be ready to take over, e.g. when traffic dissolves.

Level 4 & 5: Fully Autonomous Driving

- Level 4: Fully autonomous capabilities for extended periods of time, any scenario in geo-fenced area.
- Level 5: Same as level 4, but any human drive-able area can be negotiated by the autopilot.

Level 4-capable vehicle claimed in testing;

- Tons of startuns:
- Uber, Waymo, nuTonomy, MobileEye many more
- Tech companies, Google
- Tesla, Toyota, Honda, GM, most major car companies

apparently will be in the market by 2019/2020.

®Tier Ⅳ

The Current State of Autonomous Driving

• Three different perspectives:

Marketers

"Level 4 autonomous driving is a solved problem and you can try it now*, level 5 is around the corner."

*safety not guaranteed

The Current State of Autonomous Driving

• Three different perspectives:

Companies

"Level 4 capable vehicles are now in testing phase and should be available within a few years."

®Tier Ⅳ

®Tier W

12 金元 名古屋大学

The Current State of Autonomous **Driving**

• Three different perspectives:

Researchers

"Significant advancements in technology and infrastructure are still required to make safe autonomous driving a reality."

Why Autonomous Vehicles and Smart Cities

RANK	CITY	COUNTRY	CONTINENT	PEAK HOURS SPENT IN CONGESTION	INRIX CONGESTION INDEX	AVERAGE CONGESTION RATE
1	Los Angeles; CA	USA	North America	102	18.3	12%
2	Moscow	Russia	Europe	91	20.1	26%
3	New York City; NY	USA	North America	91	17.4	13%
4	Sao Paulo	Brazil	South America	86	16.9	22%
5	San Francisco; CA	USA	North America	79	13.7	12%
6	Bogota	Colombia	South America	75	16.2	30%
7	London	UK	Europe	74	14.1	13%
8	Atlanta; GA	USA	North America	70	12.3	10%
9	Paris	France	Europe	69	13.1	13%
10	Miami; FL	USA	North America	64	11.8	9%
11	Bangkok	Thailand	Asia	64	12.5	23%
12	Jakarta	Indonesia	Asia	63	13.4	20%
13	Washington; DC	USA	North America	63	10.8	11%
14	Boston; MA	USA	North America	60	10.6	14%
15	Istanbul	Turkey	Europe	59	12.2 Source: N	19% umbeo (2017)

®Tier N

®TierⅣ

Self-Driving Vehicles Revolution

- 1. Reducing car density in cities through MaaS
 - More efficient and frequent public transit
 - · Affordable driverless taxi and ride-sharing services
 - · Increased availability of parking space
- 2. Improve road safety
 - Reduce number of crashes and fatalities
 - · Improve response time
- 3. Reduce environmental impact
 - Increased efficiency of traffic
 - Electric vehicles more practical for self-driving applications

Smart Cities in ASEAN

• South East Asian countries have the worst traffic conditions in the world; test case for smart cities

Smart cities in Southeast Asia can deliver real quality-of-life improve

260k—270k Kilotons of GHG emissions avoided Equal to the total emissions produced by Laos

4,900-5,000 Unnatural deaths averted annually

8M-12M Disability-adjusted life years (DALYs) reduced

1.2M-1.5M New jobs created

\$9B-16B Savings on the cost of living

6M-8M Man-years saved in commuting time

SOURCE: McKinsey Global Institute analysis

®Tier IV

®TierⅣ

Difficulties to Implementing New Transportation• 4 important factors: technology, infrastructure, Policy

and consumer acceptance

17 《公司》 名古屋大学 **®Tier** Ⅳ

Transitioning to Smart Cities

Lawmakers control policy

Overall rank	Country	Total score	Polic legis	y and lation		ology & vation	Infrastructure		Consumer acceptance	
					Rank		Rank		Rank	
1	The Netherlands	27.73	3	789	4	5.46	1	7.89	2	6.49
2	Singapore	26.08	1	8.49	8	4.26	2	6.72	1	6.63
3	United States	24.75	10	6.38	1	6.97	7	5.84	4	5.56
4	Sweden	24.73	8	6.83	2	6.44	6	6.04	6	5.41
- 5	United Kingdom	23.99	4	755	6	5.28	10	5.31	3	5.84
6	Germany	22.74	5	733	3	6.15	12	5.17	12	4.09
7	Canada	22.61	7	712	6	4.97	11	5.22	7	5.30
8	United Arab Emirates	20.89	6	726	14	2.71	5	6.12	8	4.79
9	New Zealand	20.75	2	792	12	3.26	16	4.14	5	5,43
10	South Korea	20.71	14	5.78	9	4.24	4	6.32	11	4.38
11	Japan	20.28	12	5.93	7	4.79	3	6.55	16	3.01
12	Austria	20.00	9	6.73	11	3.69	8	5.66	13	3.91
13	France	19.44	13	5.92	10	4.03	13	4.94	10	4.55
14	Australia	19.40	-11	6.01	13	3.18	9	5.43	9	4.78
16	Spain	14.58	15	4.95	16	2.21	14	4.69	17	2.72
16	China	13.94	16	4.38	15	2.25	15	4.18	15	3.13
17	Brazil	7.17	20	0.93	18	0.86	19	1.89	14	3.49
18	Russia	7.09	17	2.58	20	0.52	20	1.64	18	2.35
19	Mexico	6.51	19	1.16	17	1.01	17	2.34	19	2.00
20	India	6.14	18	1.41	19	0.54	18	2.28	20	1.91

Transitioning to Smart Cities

• Infrastructure needs to be in place

Overall rank	Country	Total score	Policy and legislation		Technology & innovation		Infrastructure		Consumer acceptance	
			Rank							
1	The Netherlands	27.73	3	7.89	4	5.46	1	789	2	6.49
2	Singapore	26.08	1	8.49	8	4.26	2	6.72	1	6.63
3	United States	24.75	10	6.38	1	6.97	7	5.84	4	5.56
4	Sweden	24.73	8	6.83	2	6.44	6	6.04	6	5.41
5	United Kingdom	23.99	4	7.55	5	5.28	10	5.31	3	5.84
6	Germany	22.74	5	7.33	3	6.15	12	5.17	12	4.09
7	Canada	22.61	7	7.12	6	4.97	11	5.22	7	5.30
8	United Arab Emirates	20.89	6	7.26	14	2.71	5	6.12	8	4.79
9	New Zealand	20.75	2	7.92	12	3.26	16	4.14	5	5.43
10	South Korea	20.71	14	5.78	9	4.24	4	6.32	11	4.38
11	Japan	20.28	12	5.93	7	4.79	3	6.55	16	3.01
12	Austria	20.00	9	6.73	11	3.69	8	5.66	13	3.91
13	France	19.44	13	5.92	10	4.03	13	4.94	10	4.55
14	Australia	19.40	-11	6.01	13	3.18	9	5.43	9	4.78
15	Spain	14.58	15	4.95	16	2.21	14	4.69	17	2.72
16	China	13.94	16	4.38	15	2.25	15	4.18	15	3.13
17	Brazil	7.17	20	0.93	18	0.86	19	1.89	14	3.49
18	Russia	7.09	17	2.58	20	0.52	20	1.64	18	2.35
19	Mexico	6.51	19	1.16	17	1.01	17	2.34	19	2.00
20	India	6.14	18	1.41	19	0.54	18	2.28	20	1.91

Transitioning to Smart Cities

· Our responsibility is technology and innovation

Overall rank	Country	Total score	Polic legis	y and lation	Technology & innovation		Infrastructure		Consumer acceptance	
1	The Netherlands	27.73	3	789	4	5.46	1	7.89	2	6.49
2	Singapore	26.08	1	8.49	8	4.26	2	6.72	1	6.63
3	United States	24.75	10	6.38	1	6.97	7	5.84	4	5.56
4	Sweden	24.73	8	6.83	2	6.44	6	6.04	6	5:41
5	United Kingdom	23.99	4	755	5	5.28	10	5.31	3	5.84
6	Germany	22.74	5	733	3	6.15	12	5.17	12	4.09
7	Canada	22.61	7	712	6	4.97	11	5.22	7	5.30
8	United Arab Emirates	20.89	6	726	14	2.71	5	6.12	8	4.79
9	New Zealand	20.75	2	792	12	3.26	16	4.14	5	5,43
10	South Korea	20.71	14	5.78	9	4.24	4	6.32	11	4.38
11	Japan	20.28	12	5.93	7	4.79	3	6.55	16	3.01
12	Austria	20.00	9	6.73	11	3.69	8	5.66	13	3.91
13	France	19.44	13	5.92	10	4.03	13	4.94	10	4.55
14	Australia	19.40	11	6.01	13	3.18	9	5.43	9	4.78
16	Spain	14.58	15	4.95	16	2.21	14	4.69	17	2.72
16	China	13.94	16	4.38	15	2.25	15	4.18	15	3.13
17	Brazil	7.17	20	0.93	18	0.86	19	1.89	14	3.49
18	Russia	7.09	17	2.58	20	0.52	20	1.64	18	2.35
19	Mexico	6.51	19	1.16	17	1.01	17	2.34	19	2.00
20	India	6.14	18	1.41	19	0.54	18	2.28	20	1.91

Achieving Level 5: Two Routes

Current Status of Each Route

Urban Traffic Revolution through CASE

Social Impacts of CASE Automated Vehicles

Wide Technology Areas

Al & Data Science Robotics
Vehicular Technologies Communications & Networks

Computer Software & Hardware

®Tier N

25 偏病,名占屋大学

Our Solution for Developing Automated Vehicles

Wide Application Areas & Difference of Traffic Rules / Manners

Wide Technology Areas

Even big OEMs, suppliers and IT companies find it difficult to develop whole systems by themselves.

How can universities and research institutes contribute to this development?

Using an Open Platform is one possible solution: To Accelerate Innovation To Sustain Mutual Benefits

®TierⅣ

26 @ 名古屋大学

Sensors

GNSS

LIDAR

Cameras

RADAR

®TierⅣ

| Autonomous driving - tasks

- Localization Where are we?
- Object detection What is around us?
- Driving control Path planning Physical driving of the vehicle

®TierⅣ

@而,名古屋大学

| Sensor technologies

- GNSS Global Navigation Satellite System GPS, GLONASS, BeiDou, etc For localization
- LIDAR Light Detection And Ranging Perception, localization, object detection
- Cameras Perception, localization, object detection
- RADAR Radio Detection And Ranging Perception, object detection

®Tier Ⅳ

| Sensor data

Camera

High resolution image ~30Hz

RADAR

Very sparse depth objects 30 @ 名古屋大学

| GNSS positioning systems

- Passive location estimation Relies on satellite signal Signal shadowing and multipath propagation
- Average errors often exceed 5 meters

| LIDAR - Velodyne

®TierⅣ

| In-vehicle cameras

- Already in many production vehicles
- •Used for drive recording, lane following, pedestrian detection systems
- Large amount of data

| RADAR

- •Already in many production vehicles
 Used for parking assistance, automated braking
- Low resolution, low range
- •Also measure object speed from Doppler effect
- Unobtrusive (bumper mounted)

®TierⅣ

35 金品 名古屋大学

| Which sensors for which tasks?

Localization

GNSS

- Initialization

- Rural localization LIDAR - Precise (~10cm) positioning

RADAR? Camera?

Perception

LIDAR

- Object detection - 3D tracking
- Camera - Object detection Classification

RADAR - 3D tracking

®Tier N

Fusion?

37 启杰,名古屋大学

Open source autonomous driving

ROS

Autoware

Apollo

| Why open source?

Development by the community Progress for everybody!

Removing the need to reinvent the wheel

Common tasks such as device drivers don't require reimplementation

Cutting-edge methods can be quickly added and tested by

Research on a specific element of autonomous driving can be carried out without building a whole framework

®TierⅣ

Pre-requisites

- 1. Linux operating system
- Nearly all development on Ubuntu 16.04
- 2. Robotic Operating System (ROS)
- Tools an libraries for robotics applications
- An ecosystem which provides a backbone for various modules to connect and communicate to one another

®TierW

| Robotic Operating System (ROS)

- Currently on 12th official release (ROS Melodic Morenia)
- :ROS
- Created to encourage collaborative robotics projects
- Provides a **core** for different modules to pass information

| Getting started with ROS

:::ROS

Huge amount of documentation and tutorials

http://www.ros.org

- Pre-built Debian packages make install simple
- C++ and Python for making new modules

®TierⅣ

42 金元 名古屋大学

| ROS system overview

| ROS messaging system

Autonomous driving frameworks

Nagoya University TierIV

Current release: 1.10 https://autoware.ai/

Baidu

Current release: 3.5 http://apollo.auto

®TierⅣ

| Platform comparison

Uses standard ROS Kinetic	Custom ROS (Apollo Platform)
Docker or native build/install	Docker only
Runtime manager + RViz	Web interface - Dreamview

®TierⅣ

| Autoware : Open-Source Software for Automated Driving

●TierIV47 **最初** 名中國大学

| Autoware Community

Autoware.Al, GitHub project has 2400+ stars, 1100+ forks,

60+ contributers; Slack group has 500+ members.

- International: 20+ different countries
- Widespread adoption: used in 100+ companies
- Flexible: used on 30+ different types of vehicles
- Used in Education: Autoware Academy currently offering courses in 5 countries and expanding
- Used by OEMs for mobility as a service development

®TierIV

48 超点 名古屋大学

Autoware Projects

• Certified to run driverless vehicles on the roads in Japan

®TierⅣ

Autoware Projects

Autoware.Al

- Original, fully open-source project on GitHub built on ROS1.
- Platform for any and all researchers to implement and test.

Autoware.IO

- Project interfacing Autoware with third-party hardware.
- Includes sensor drivers, drive-bywire controllers, SoC support.

Autoware.Auto

 Autoware Al best-of project, supported by software managers implemented to industry

50 名古屋大学 Nacosya Usanyassany

Autoware Projects

Autoware.Al

- Original, fully open-source project on GitHub built on ROS1.
- Platform for any and all researchers to implement and

®TierⅣ 51 @in. 名古屋大学

| Autoware : Open-Source Software for Automated Driving

https://github.com/cpfl/autoware

⇒ **800 Users** Industries>100, Universities>30

®TierⅣ

Autoware: Open-Source Software for Automated Driving

2015: First Automated Driving Trial on Public Roads

In Dec. 2015. Asoc. Prof. Kato and 3 other Professors founded Tier IV, Inc.

®TierⅣ

55 **但**而 名古屋大学 NACOYA UNIVERSITY

2016: Automated Driving Trial on Public Roads

®TierⅣ

6 個点,名古屋大学

2017: Automated Driving Trial on Public Roads

®TierⅣ

57 名古屋大学 NACOYA UNIVERSITY

2018: Automated Driving Trial on Public Roads

Collaboration with Japan Post

®Tier IV

超点,名古屋大学

Autoware Automated Driving Target

Standard Perception Flow of Autoware

OSensor Fusion (3D-LiDARs, Cameras)

OHigh-Precision Map

For Level 4 Automated Driving on Main Roads Point Cloud High-Definition Map Vector Data Sensors NDT Scan Matching Road Localization Recognition GNSS/INS Moving Objects Detection Fusion Recognition & Tracking 3D-LiDAR Detection **HD** Camera Detection **®Tier**Ⅳ 60 名古屋大学

Digital Infrastructure (High Definition Road Map)

®TierⅣ 61 金品,名古屋大学

Supports State-of-the-Arts DNN-based Recognition

®TierⅣ 62 名古屋大学

Supports Several Path Planning Algorithms

®TierIV 63 名古屋大学 NACOYA UNIVERSITY

| World-Wide Collaboration

| World-wide Collaboration

Supports Remote Surveillance and Control

66 名古屋大学

Supports Wide Variety of Computer Hardware

Automotive Spec. PC: NVIDIA DrivePX2

®TierⅣ 67 金品,名古屋大学

Open Platform for Automated Driving

| Baidu's Apollo

- A project started by the Chinese company Baidu
- Industry support still offered by Baidu
- Is supplied as a docker with custom ROS:
- Drivers for (some) sensors used in autonomous driving
- •3D mapping and localization with LIDAR
- •LIDAR and camera-based object detection and tracking
- Traffic light recognition
- Vehicle control

®Tier IV

| Baidu's Apollo

apollo

| Baidu's Apollo

apollo

| Baidu's Apollo

| Baidu's Apollo

| Closing

Autoware or Apollo?
Conclusion

Autoware or Apollo?

Autoware

- Closer to standard ROS, giving flexibility and ease of extension
- Wider variety of supported hardware
- Less polished in some areas i.e. web interface

Apollo

- Designed for specific hardware
- Much steeper learning curve for development and extension
- Fairly complete and solid implementation (on specific hardware)

®TierⅣ

®TierⅣ

| Conclusion

- Autonomous driving
 True driverless cars are on their way!
- Open source software for autonomous driving

Allows open development and contribution Collaboration helps foster research

• Autoware or Apollo?

Choose based on your available hardware and goals

Thanks you for kind attention!

⁷⁷
@inj 名古屋大学
Negoty Wildest
Negoty Wild

78 **ann 名**占屋大学