Analysis: Alien Generator

Test Set 1

We can check for every $i, (1 \le i \le \mathbf{G})$ whether there exists a k such that

$$\sum_{j=0}^k (i+j) = \sum_{j=0}^k i + \sum_{j=0}^k j = ((k+1) imes i) + rac{k imes (k+1)}{2} = {f G}$$

Finding such a k (if one exists) can be done by binary searching the range $[0, \mathbf{G}]$, and hence takes $O(\log \mathbf{G})$ time. For a candidate k in that range, we check if $((k+1) \times i) + \frac{k \times (k+1)}{2} = \mathbf{G}$ and alter the range based on the equality. Time complexity here is $O(\mathbf{G} \log \mathbf{G})$.

Alternative solution

For this Test Set, we can implement a brute force solution. We iterate over every $i, (1 \le i \le \mathbf{G})$ and try to sum up numbers $[i, i+1, i+2, \ldots]$ until the sum exceeds or equals \mathbf{G} . If the sum equals \mathbf{G} , then we increment our result by one. Here, each iteration takes $O(\mathbf{G}/i)$ time.

$$\sum_{i=1}^{\mathbf{G}} (1/i) = O(log(\mathbf{G}))$$

Therefore, the overall time complexity of this solution is $O(\mathbf{G} \log \mathbf{G})$.

Test Set 2

Since the upper bound on \mathbf{G} is 10^{12} , $O(\mathbf{G}\log\mathbf{G})$ solution times out. Let us define $H = \lceil \sqrt{2 \times \mathbf{G}} \rceil$. An observation can be made that $k \leq H$. Therefore, for each k in the range [0,H], we can binary search for i in the range $[1,\mathbf{G}]$ thereby making the total runtime $O(\sqrt{\mathbf{G}} \times \log(\mathbf{G}))$.

This solution might not pass within the time limit for slow languages. Therefore, we will look at a better solution next.

We can rewrite the equation we saw in Test Set 1 as $i=\frac{2\times \mathbf{G}-k^2-k}{2\times (k+1)}$. Next, for each k in the range [0,H], we can check in O(1) whether we can obtain a positive integer value for i that satisfies the above equation. The runtime here is $O(\sqrt{\mathbf{G}})$.

Alternative solution

We can dig deeper into the relationship between G, K, and d, the number of days it takes for the machine to produce exactly G gold starting at K on day one. They form the equation

$$\frac{d(K+(K+d-1))}{2}=\mathbf{G}$$

which is equivalent to $d(d + (2K - 1)) = 2\mathbf{G}$. Since one of d and (d + (2K - 1)) is even and the other is odd, any pair of positive integers x and y such that exactly one of them is even and

 $x imes y = 2\mathbf{G}$ can be mapped to them with the smaller of the two being d and the larger one (d+(2K-1)), which is always greater than d. Since each mapping produces a different d, each pair corresponds to a unique solution for d and K. Conversely, every pair of d and K that satisfies the equation corresponds to a different x, y pair.

To count the number of such pairs, let g be the largest odd factor of $2\mathbf{G}$. Note that any (ordered) pair x',y' such that $x'\times y'=g$ corresponds to a pair $x=\frac{2\mathbf{G}}{g}x'$ and y=y'. Finally, assume the prime factorization of g is

$$g=p_1^{lpha_1}p_2^{lpha_2}\cdots p_n^{lpha_n}$$

the number of such ordered pairs is $(\alpha_1+1)(\alpha_2+1)\cdots(\alpha_n+1)$. We can thus prime factorize \mathbf{G} , ignore the 2, and multiply all other prime powers accordingly. Prime factorization can be trivially implemented in $O(\sqrt{\mathbf{G}})$ complexity and there are $o(\log(\mathbf{G}))$ prime factors. Therefore the total time complexity is $O(\sqrt{\mathbf{G}})$.