<u>Unit I</u>

1.	First order and First-degree Ordinary Differential Equations:
1.1	Formation of Ordinary Differential Equation
1.2	Concept of general and particular solutions
1.3	Initial value problems
1.4	Solutions of first order and first degree differential equations: Linear, Bernoulli, Exact and non-exact differential equations

1.1 Formation of Ordinary differential equation

Examples

1.	Form the differential equation for a relation $y = Ax + B$, where A and B are arbitrary
	constants.
2.	Form the differential equation satisfied by $x^2 + y^2 = c$, where c is an arbitrary constant.
3.	Form the differential equation of the simple harmonic motion given by
	$x = \beta \sin(\omega t + \alpha)$, where α and β are an arbitrary constants and ω is fixed constant.
4.	Form the differential equation satisfied by $y = Ae^{\alpha x} + Be^{\beta x}$, where A and B are arbitrary constants, α and β are some fixed real numbers.
5.	Find the differential equation of the family of circles whose center is $(a, 0)$ and radius is a .

1.2 Concept of general and particular solutions

Examples

1.	Show that $\sin y + \cos x = 2$ is a particular solution of the differential equation
	$\frac{dy}{dx} = \frac{\sin x}{\cos y}.$
2.	Show that $y = Ae^{-3x} + Be^{-2x}$ is a general solution of the differential equation
	y'' + 5y' + 6y = 0, where A and B are arbitrary constants.
3.	Show that $x^2 + y^2 = 4$ is a particular solution of the differential equation

$\frac{dy}{}$	x					
$\frac{1}{dx}$ –	\overline{y} .					

1.3 Initial value problems

1.4 Solutions of first order and first degree differential equations

Following are the methods to find solution of 1^{st} ordinary differential equation.

- **1.4.1** Linear differential equation or Leibnitz's differential equation
- **1.4.2** Bernoulli's differential equation
- **1.4.3** Exact and non-exact differential equation

Examples

Ex.	Solve the following differential equations:
1.	$\frac{dy}{dx} + 2xy = 2e^{-x^2}$
2.	$\frac{dy}{dx} + 2y \tan x = \sin x, y\left(\frac{\pi}{3}\right) = 0.$
3.	$(1+y^2)dx = (\tan^{-1} y - x)dy.$
4.	$dr + (2r\cot\theta - \sin 2\theta)d\theta = 0.$
5.	$\frac{dy}{dx} - (1+3x^{-1})y = x+2, y(1) = e-1.$
6.	$\frac{dx}{dy} - \frac{1}{y} = \frac{e^{3x}}{y^3}.$
7.	$\frac{dy}{dx} + \frac{y}{x}\log y = \frac{y}{x^2}(\log y)^2.$
8.	$\cos y \frac{dy}{dx} + x \sin y = 2x.$
9.	$(2xy)dx + (1+x^2)dy = 0.$
10.	$(y^2e^{xy^2} + 4x^3)dx + (2xy e^{xy^2} - 3y^2)dy = 0.$
11.	$(xy - 2y^2)dx - (x^2 - 3xy)dy = 0.$
12.	$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0.$
13.	(1+2xy)ydx + (1-xy)xdy = 0.
14.	$(xy\sin xy + \cos xy)ydx + (xy\sin xy - \cos xy)xdy = 0.$

15.	$(2x\log x - xy)dy + 2ydx = 0.$
16.	$(x\sec^2 y - x^2\cos y)dy = (\tan y - 3x^4)dx.$
17 .	$(xy^3 + y)dx + 2(x + x^2y^2 + y^4)dy = 0.$
18.	$(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0.$

Applications:

1	The potential difference E across an element of inductance L is equal to the
	product of L and the time rate of change of current I in the inductor. Form the
	differential equation.
	$\mathbf{Ans:}\ L\frac{di}{dt} = E$
2	A particle moves along the x- axis such that its velocity is inversely proportional to
	time. Form the differential equation.
	$\mathbf{Ans:} \frac{dx}{dt} = \frac{k}{t}$
3	The current $i(t)$ flowing in an R-L circuit is governed by the equation $L\frac{di}{dt} + Ri =$
	$E_0 sin(\omega t)$, where R is the constant resistance, L is the constant inductance and
	$E_0 sin(\omega t)$ is the voltage at time t , E_0 and ω being constants. Find the current at any
	time t assuming that initially it is zero.
	Ans:
	$i(t) = \frac{E_0}{R^2 + w^2 L^2} [R \sin(\omega t) - \omega L \cos(\omega t)] + \frac{\omega L E_0}{R^2 + w^2 L^2} e^{-\frac{Rt}{L}}$
4	Let F be the constant force generated by the motor of an automobile of mass M, and
	its velocity be given by $M\frac{dV}{dt} = F - kV$, where k is a constant. Find V in terms of
	t given that $V = 0$ at $t = 0$.
	Ans: $V = \frac{F}{k} \left(1 - e^{-\frac{kt}{M}} \right)$
5	A chain coiled up near the edge of a smooth table begins to fall over the edge. When
	a length x of the chain has fallen ,the equation of th motion is given by
	$d_{(m,n,n)} = mns$
	$\frac{d}{dt}(m x v) = mxg$
	where m is the mass of the chain per unit length, v is the speed, g is the
	acceleration due to gravity and t is the time. Find the speed v at time t depending
	on the length x .
	$\frac{1}{2g}$
	$\mathbf{Ans:}\ \boldsymbol{v} = \sqrt{\frac{2g}{3}}\boldsymbol{x}$

