CSE 473: Machine Learning

Md. Shariful Islam Bhuyan

Recommended Materials

- 1. Artificial Intelligence: A Modern Approach. Stuart Russell and Peter Norvig [AIMA]
- 2. Machine Learning. Tom M. Mitchell [ML]
- 3. Deep Learning. 1an Goodfellow, Yoshua Bengio and Aaron Courville [DL]
- 4. Provided Blog articles, Videos, Tutorials etc.

Suggestions

- 1. Class participation is EXTREMELY important
- 2. There will be 4 (four) class tests
- 3. NO cheating
- 4. Brush up Linear Algebra, Probability, Statistics and Calculus (Chapter 2 & 3 [DL])
- 5. ASK questions
- 6. Class times

Learning algorithm

A computer program is said to learn from experience E
with respect to some class of task T and performance measure P
if its

performance at tasks in T as measured by P improves with experience E.

Task: Classification

- Specify which of k categories some input belongs to
 - f(article) = {sports, politics, finance}
- Labeled data as experience
 - Era of big data, deep learning
- Accuracy as performance measure
 - Not always appropriate e.g. cancer test

Example: Predict WillWait

- 1. Alternate: whether there is a suitable alternative restaurant nearby.
- 2. Bar: whether the restaurant has a comfortable bar area to wait in.
- 3. Fri/Sat: true on Fridays and Saturdays.
- 4. Hungry: whether we are hungry.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- 7. Raining: whether it is raining outside.
- 8. Reservation: whether we made a reservation.
- 9. Type: the kind of restaurant (French, Italian, Thai, or burger).
- 10. WaitEstimate: the wait estimated by the host (o-10 minutes, 10-30, 30-60, or > 60).

Example: samples

Sample	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	Goal
<i>x</i> 1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0—10	yı = Yes
<i>x</i> 2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	y2 = No
<i>x</i> 3	No	Yes	No	No	Some	\$	No	No	Burger	0—10	$y_3 = Yes$
<i>x</i> 4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y4 = Yes
<i>x</i> 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y5 = No
<i>x</i> 6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0—10	y6 = Yes
<i>x</i> 7	No	Yes	No	No	None	\$	Yes	No	Burger	0—10	y7 = No
<i>x</i> 8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0—10	y8 = Yes
<i>x</i> 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y9 = No
<i>x</i> 10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	1talian	10-30	y10 = No
X11	No	No	No	No	None	\$	No	No	Thai	0—10	y11 = No
X12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	y12 = Yes

Decision tree

Inducing decision trees from examples

Inducing decision trees from examples

- Four cases for subproblems
 - 1. All positive (or all negative): we are done
 - 2. Some positive and some negative: choose next important attribute (greedy)
 - 3. No examples left: unobserved case, use prior knowledge/plurality
 - 4. No attributes left: error, noise, partial information, inherent uncertainty

Decision tree pseudocode

```
function DECISION-TREE-LEARNING(examples, attributes, parent examples) returns a tree if examples is empty then return PLURALITY-VALUE(parent examples) else if all examples have the same classification then return the classification else if attributes is empty then return PLURALITY-VALUE(examples) else A \leftarrow \underset{a \in attributes}{\text{IMPORTANCE}(a, examples)}  tree \leftarrow \text{ a new decision tree with root test } A for each value \ v_k \text{ of } A \text{ do} exs \leftarrow \{e: e \in examples \text{ and } e.A = v_k\} subtree \leftarrow \text{ DECISION-TREE-LEARNING}(exs, attributes - A, examples) add a branch to tree with label (A = v_k) \text{ and subtree subtree} return tree
```