Twitter Feeds Profiling With TF-IDF

Juraj Petrik & Daniela Chuda

Task

- O Given celebrity Twitter feed (English not guaranteed)
- O Determine:
 - Fame level
 - Occupation
 - O Age
 - O Gender

Motivation

- Our background:
 - O Source code authorship attribution deep learning and frequency methods
 - O Source code plagiarism detection string similarity and character/word frequency methods
- Useful in plagiarism and also source code comments for example

Preprocessing

First approach

- Convolutional hierarchical recurrent NN
- Class imbalance problem trained network tends to prefer majority class
 - Oversampling, synthetic, random better, but not enough
 - Undersampling little to no effect
- Another problem variable length feeds and pretty long
- Custom loss function to reflect f1 score
- ...also painfully slow
- Result from testing dataset 1 is from this approach

Preprocessing

Handles removal

• @superuser ->

Same letters normalization

faaaaancy -> fancy

URL filtering

https://t.co/adsadasd ->URL_TOKEN

Preprocessing

Emoji translation

• © -> :smiling face:

Lowercase

• AaaaA -> aaaaa

Accent removal

• Čo sa deje -> Co sa deje

Stop words removal

• The, on, an, a... ->

Dataset balancing

- Random Oversampling
- SMOTE, TOMEK

Feature extraction

- O N-gram based TF-IDF (1-3,5)
- O Top 5000 features grid search (matrix 5000x5000)

Classification

- One model per each "subtask"
- Random forest
- Extremely randomized trees
- Both have similar results, were more resistant to overfitting than our deep learning approaches
- Hyperparameter tuning very similar results with 200+ trees

Regression

- Random forest regressor
- Used for birthyear trait
- O Scaled to [0-1]
- Not so good in terms of the challenge as binning approaches

Name	cRank		F1					Accuracy		
		(occupatic					occupatio		
		gender	n	fame	age	mean	gender	n	fame	age
radivchev19	0.558	0.608	0.461	0.547	0.657	0.743	0.930	0.757	0.770	0.517
morenosandoval										
19	0.497	0.560	0.418	0.517	0.515	0.627	0.861	0.722	0.547	0.376
martinc19	0.465	0.594	0.485	0.506	0.347	0.712	0.915	0.733	0.753	0.448
fernquist19	0.412	0.465	0.300	0.481	0.467	0.666	0.784	0.640	0.776	0.466
petrik19	0.440	0.555	0.385	0.525	0.360	0.597	0.852	0.661	0.529	0.345
asif19	0.401	0.587	0.427	0.504	0.254	0.696	0.905	0.758	0.776	0.346
bryan19	0.230	0.335	0.165	0.288	0.206	0.515	0.722	0.402	0.763	0.173

						Classy	wise F1							
				manage										
Name	Name female male nonbinary			star	superstar	rising	performer creator sports		r	politics science professional religious				
radivchev19	0.874	0.952	0	0.858	0.396	0.350	0.763	0.527	0.900	0.250	0.756	0.150	0.200	0
morenosandovo	al1													
9	0.772	0.902	0	0.641	0.466	0.246	0.740	0.417	0.893	0.242	0.715	0.190	0.080	0
martinc19	0.835	0.943	0	0.848	0.383	0.178	0.730	0.470	0.869	0.300	0.736	0.142	0.200	0
fernquist19	0.449	0.866	0	0.869	0.258	0.111	0.617	0.362	0.785	0	0.632	0	0	0
petrik19	0.759	0.894	0	0.620	0.434	0.292	0.708	0.344	0.854	0.086	0.700	0.142	0.160	0
asif19	0.825	0.937	0	0.870	0.189	0.120	0.776	0.481	0.884	0	0.773	0.095	0	0
bryan19	0.014	0.838	0	0.865	0	0	0.318	0.108	0.550	0	0.218	0	0	0

Feature importance - fame

Feature importance - gender

Feature importance - occupation

Possible improvements

- Oversampling more sophisticated ones, focused on texts (synonyms, hypernyms from wordnet for example)
- Age prediction regression vs bins (classification)
- Expand dataset more data from Twitter (minority classes mainly)
- Language specific tuning