

Managing and querying datasets with Data Factory, Cosmos DB and Azure Functions.

Marc Duiker

The Case

A murder has happened in New York City on 29th Jan 2014.

The suspect most likely escaped by using a taxi.

It's our job to find out which taxi the suspect could have used.

Original data sources

NYPD Complaint Data 2014

NYC Taxi Trip Data 2014

5.6M rows 1.3 GB 15M rows 2.3 GB

https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i

https://www.kaggle.com/kentonnlp/2014-new-york-city-taxi-trips

NYPD Complaint Data (trimmed down)

CSV with 39k records for Jan 2014

Attributes

- Date & time
- Offense classification (KY_CD)
- Latitude & longitude
- •

509630273 12/31/2015 22:36:00 12/31/2015 22:500 12/31/2015 579 HADDASSMENT 2 639 "HADASSMENT SURD 2 4 5" COMPLETED VIOLATION N V

NYC Taxi Trip Data (trimmed down)

CSV with 477k records for 29th Jan 2014

Attributes

- Pickup date & time
- Pickup latitude & longitude
- •

nyc taxi data 2014 first1000.csv × vendor id, pickup datetime, dropoff datetime, passenger count, trip distance, pickup longitude, pickup latitude, rate code, store and fwd f CMT, 2014-01-09 20:45:25, 2014-01-09 20:52:31, 1, 0.6999999999999999, -73.994770000000003, 40.736828000000003, 1, N, -73.982226999999999, 40 CMT, 2014-01-09 20:46:12, 2014-01-09 20:55:12, 1, 1.3999999999999, -73.982392000000004, 40.773381999999998, 1, N, -73.960448999999997, 40. CMT, 2014-01-09 20:44:47, 2014-01-09 20:59:46, 2, 2.29999999999999, -73.98856999999996, 40.739406000000002, 1, N, -73.9866260000000001, 40. CMT, 2014-01-09 20:45:07, 2014-01-09 20:51:01, 1, 0.9000000000000000, -73.983811000000003, 40.74965499999997, 1, N, -73.989746999999994, 40 CMT, 2014-01-09 20:44:04, 2014-01-09 21:05:45, 1, 3.6000000000000001, -73.984138000000002, 40.7263170000000002, 1, N, -73.96286899999998, 40. $\mathsf{CMT}, 2014 - 01 - 09 \ 20:43:04, 2014 - 01 - 09 \ 20:54:29, 1, 3.39999999999999, -73.981147000000007, 40.758918000000001, 1, N, -73.9425099999999999, 40.$ $\mathsf{CMT}, 2014 - 01 - 09 \ 20:50:23, 2014 - 01 - 09 \ 20:58:10, 1, 2.299999999999999, -73.955192999999994, 40.765467999999998, 1, N, -73.979022999999998, 40.$ CMT, 2014-01-09 20:51:36, 2014-01-09 21:15:07, 1, 9.5, -73.88527499999993, 40.773048000000003, 1, N, -73.9808790000000002, 40.777383999999998 CMT,2014-01-09 20:48:04,2014-01-09 21:01:37,1,3.299999999999999,-73.991782000000001,40.748911,1,N,-73.988359000000003,40.714205,CRI $\mathsf{CMT}, 2014 - 01 - 09 \ 20:47:49, 2014 - 01 - 09 \ 20:56:11, 2, 1.8, -73.96571699999998, 40.758674999999997, 1, N, -73.984059000000002, 40.737448000000001$ $\mathsf{CMT}, 2014 - 01 - 09 \ 20:47:51, 2014 - 01 - 09 \ 21:02:31, 3, 2.60000000000000001, -73.977655999999996, 40.7536800000000003, 1, N, -73.952248999999995, 40.$ CMT, 2014-01-09 20:49:49, 2014-01-09 21:20:38, 1, 11.19999999999999, -73.78826599999993, 10.64754200000001 1 N, -73.9492249999999998, 40. CMT, 2014-01-09 16:51:35, 2014-01-09 17:00:17, 1, 1.7, -74.007503, 40.72599199999998, 1, N, - col# 7, "pickup_latitude" .734583000000001, CRD, 8.5, CMT, 2014-01-09 16:46:50, 2014-01-09 16:56:41, 1, 1.6000000000000001, -73.967675, 40.763109, 1, N, -73.952590999999998, 40.778185999999998, CRI CMT, 2014-01-09 16:47:00, 2014-01-09 17:37:58, 1, 17.89999999999999, -73.78173099999994, 40.644728999999998, 2, N, -73.978604000000004, 40. $CMT_{1} = CMT_{1} = CMT_$ CMT, 2014-01-09 16:42:16, 2014-01-09 16:58:42, 1, 2.1000000000000001, -73.988810000000001, 40.751013, 1, Y, -73.996002000000004, 40.726658, CRI CMT,2014-01-09 16:43:37,2014-01-09 16:56:23,1,1.6000000000000001,-73.9701170000000002,40.752862,1,N,-73.954138,40.764080999999997,CRI CMT, 2014-01-09 16:49:16, 2014-01-09 17:01:00, 1, 1.3, -73.960639, 40.768771999999998, 1, N, -73.976676999999995, 40.7653400000000002, CRD, 9, 1, CMT, 2014-01-09 16:48:12, 2014-01-09 16:52:09, 3, 0.8000000000000000, -73.979729000000006, 40.7817110000000001, 1, Y, -73.976643999999993, 40 $\mathsf{CMT}, 2014 - 01 - 09 \ 16:50:42, 2014 - 01 - 09 \ 17:10:17, 1, 3.799999999999999, -73.946211000000005, 40.77299099999999, 1, N, -73.994018999999994, 40.$ $\mathsf{CMT}, 2014 - 01 - 09 \ 16 : 48 : 14, 2014 - 01 - 09 \ 16 : 57 : 56, 1, 1.8, -73.9921539999999, 40.731084000000003, 1, \mathbf{N}, -73.975376999999995, 40.750450999999998$ CMT, 2014-01-09 16:48:35, 2014-01-09 16:55:40, 1, 1.2, -73.990262000000001, 40.72905099999998, 1, N, -73.995738000000003, 40.741028, CRD, 6.5, CMT 2014-01-00 16:45:21 2014-01-00 16:40:01 2 0 5000000000000000000000000000 40 7420510000000000 1 N -72 09520500

What can we use on Azure?

Cosmos DB

Cosmos DB: databases & collections

Account (gabc-nyc-db)

SQL API

Database (nycdatabase)

Collection (complaints)

Collection (taxitrips)

Documents

{..}

Documents { .. }

Cosmos DB: GeoJSON

Azure Cosmos DB supports indexing and querying of geospatial point data that's represented using the GeoJSON specification.

```
{
   "type":"Point",
   "coordinates":[-73.88, 40.76]
}
```


Cosmos DB: Change feed

 Cosmos DB persists events about insertion and updates to documents in the change feed.

Cosmos DB

Azure Data Factory (v2)

Source

- Mapping
- Transforms
- Scheduling
- Throughput

Sink

Data Factory: source schema

- When importing a csv DataFactory looks at the first line of data to determine the data types.
- Inspect the data for empty and numeric values
 - "" → empty value for String, Int64 or Double?
 - $0 \rightarrow Int64$ or Double?
- Sometimes numbers are categories (String).

Azure Data Factory

Azure Functions (Runtime 2)

- Serverless compute service to run code on demand
- Support for various languages: C#, F#, Node.js, Java, or PHP
- Automatic scaling
- Pay-per-use

Azure Functions Triggers

Blob

Queue

Azure Functions

Integrating the services

Lab 2

UpdateTaxiTripGeoData

NYC Taxi Trip CSV

Data Factory Pipelines

Cosmos DB Collections

 ${\bf GetTaxiTripsWithinRange}$

NYPD Complaint CSV

GetComplaintsByOffenseld

Xpirit

Hands-on labs

https://github.com/XpiritBV/GABC2018_HandsOnLabs/

Hands-on Lab 1

Retrieve the complaint data about the murders that took place on the 29th Jan 2014. How many murders were committed that day?

See the readme.md in the source how to complete this lab.

Hands-on Lab 2

A murder was committed at 00:06 on the 29th Jan 2014. What are the pick up and drop off locations of the taxi that was closest to the murder around that time (00:05-00:10)?

See the readme.md in the source how to complete this lab.

