一個用到很多引理的好題目

න

August 30, 2021

某天邱昱翔問我一題毒 G,做一做發現比我想像中的有趣許多,也用到了很多好引理所以就打算放上來了,先來看題目。

Problem. 設 O, H 爲 $\triangle ABC$ 的外心、垂心,O 關於 O 對 $\triangle ABC$ 的正交截線 的垂足爲 P, P^* 爲 P 的等角共軛點。

證明: P^*H , $X_{125}O$ 交在 $\triangle ABC$ 的九點圓上。

1 記號和常用引理

Definition 1. 我們記 $\mathcal{O}_{\triangle ABC}(X)$ 爲 X 關於 $\triangle ABC$ 的正交截線。

Definition 2. 設 C 爲一圓錐曲線, P, ℓ 爲任意點和任意直線,則 $\mathfrak{p}_{\mathcal{C}}(P), \mathfrak{p}_{\mathcal{C}}(\ell)$ 分別爲 P, ℓ 關於 C 的極線和極點。

Definition 3. 給定 $\triangle ABC$, 我們記 $(\triangle ABC, X_n)$ 爲三角形 $\triangle ABC$ 的 X_n

Lemma 1 (well-known). 給定 $\triangle ABC$, X 爲任意點, 設 (X) 是以 X 爲圓心的 圓, $H^{\mathfrak{p}}$ 爲 $\mathfrak{p}_{(X)}(\triangle ABC)$ 的垂心,則

$$\mathfrak{p}_{(X)}(H^{\mathfrak{p}}) = \mathcal{O}_{\triangle ABC}(X)$$

Lemma 2. 給定 $\triangle ABC$ 和任意點 X, 設 \mathcal{H} 爲過 A,B,C,X 的等軸雙曲線, $T_X(\mathcal{H})$ 爲 X 在 \mathcal{H} 上的切線,則

$$\mathcal{O}_{\triangle ABC}(X) \perp T_X(\mathcal{H})$$

Lemma 3. 給定三角形 $\triangle ABC$ 和任意點 X,設 $\triangle DEF$ 爲 X 關於 $\triangle ABC$ 的 西瓦三角形, P,P^* 爲關於 $\triangle DEF$ 的一對等角共軛點,設 \mathcal{H} 爲過 A,B,C,P 的 等軸雙曲線,則我們有 P,P^* 關於 \mathcal{H} 共軛,即

$$P^* \in \mathfrak{p}_{\mathcal{H}}(P), P \in \mathfrak{p}_{\mathcal{H}}(P^*)$$

Definition 4. 給定 $\triangle ABC$ 則我們說 X, X' 爲關於 $\triangle ABC$ 的一對 antigonal conjugate 若 A, B, C, X, X' 共等軸雙曲線且 X, X' 爲一對對徑點。

Lemma 4. 給定三角形 $\triangle ABC$,設 (\cdot) * 為等角共軛變換, φ 為關於外接圓的 反演變換,則

 $(\varphi(X^*))^*$ 為X的 antigonal conjugate

Author: 80

1

Lemma 5. 三角形 $\triangle ABC$, O, H 分別爲外心、垂心,X 爲外接圓上一點,設 S_X 爲 X 關於 $\triangle ABC$ 的斯坦那線,則

$$\angle HXO = \angle (S_X, \mathcal{O}_{\triangle ABC}(X))$$

在接下來的段落中 $\triangle ABC$ 爲一個三角形,I,O,H,Fe,T 爲内心、外心、垂心、 費爾巴哈點、 X_{65} , $\triangle DEF$ 爲切點三角形, $\triangle H_DH_EH_F$ 爲 $\triangle DEF$ 的垂足三角 形, $\mathcal{H}_{(Fe)}$ 爲 $\triangle ABC$ 的費爾巴哈雙曲線。

Lemma 6. $I, H \land \triangle H_D H_E H_F$ 的一對等角共軛點。

Corollary 1. 設 \mathcal{J}_I 爲 $\triangle DEF$ 的 Jerabek 雙曲線,則 IH 和 \mathcal{J}_I 相切。

Corollary 2. 我們有

$$IH = \mathcal{O}_{\triangle DEF}(Fe)$$

Lemma 7. 我們有

$$\mathfrak{p}_{\mathcal{H}_{(Fe)}}(T) = IH$$

2 回到原題

首先我們由 Lemma 1. 知道 P 就是 $\triangle ABC$ 的外切三角形的垂心關於外接圓反演的像,並且由 Lemma 4. 我們知道 P^* 和外切三角形的垂心關於 $\triangle ABC$ 的等角共軛點互爲 antigonal conjugate,因此我們把原三角形換成切點三角形,得到以下等價命題。

Problem. 三角形 $\triangle ABC$, $\triangle DEF$ 為切點三角形,I,O,H,Fe 為 $\triangle ABC$ 内心、外心、垂心、費爾巴哈點, $T=(\triangle ABC,X_{65}),J=(\triangle DEF,X_{125})$,設 H 關於 $\triangle DEF$ 的等角共軛點為 H^* , H^* 的 antigonal conjugate 為 H',則 TH',IJ 交在 $\triangle DEF$ 的九點圓上。

Proof.

Claim 1. 我們有 T, H, H^* 共線。

Proof of Claim 1. 注意到 $\triangle DEF$ 爲 $\mathcal{H}_{(Fe)}$ 的一自共軛三角形,故由 Lemma 3.

$$H^* \in \mathfrak{p}_{\mathcal{H}_{(Fe)}}(H)$$

另一方面由 Lemma 7. 我們有

$$T \in \mathfrak{p}_{\mathcal{H}_{(Fe)}}(H)$$

注意到 $H \in \mathcal{H}_{(Fe)}$,因此 T, H, H^* 共線。

考慮過 D, E, F, T, H^* 的等軸雙曲線 \mathcal{H} ,則顯然有 $H' \in \mathcal{H}$,接著我們考慮 $Fe' = (\triangle DEF, X_{74})$,以及 \mathcal{H} 和 (DEF) 的第四個交點 S,也就是 IH 方向無窮遠點關於 $\triangle DEF$ 的等角共軛點。

Claim 2. 我們有 Fe, T, S 共線。

Author: State 2

 $Proof\ of\ Claim\ 2.$ 注意到 S,Fe' 關於 $\triangle DEF$ 的斯坦那線分別垂直於 IH,IT,而 IH,IT 分別爲 Fe 的正交截線、斯坦那線,故

$$\angle SFeFe' = \angle (IT, IH) = \angle TFeI$$

П

由 Fe, I, Fe' 共線, 我們有 Fe, T, S 共線。

Claim 3. I 關於 \mathcal{H} 的極線爲 TH^* 。

 $Proof\ of\ Claim\ 3.$ 由 Claim\ 1. 我們只須證明 $I\in\mathfrak{p}_{\mathcal{H}}(H), I\in\mathfrak{p}_{\mathcal{H}}(T)$,而前者由 Lemma 3. 和 Lemma 6. 得證,後者只須注意到 Fe,T,S 共線,因此 Fe 關於 \mathcal{H} 的 Li4 點爲 T,故 T 在 \mathcal{H} 上的切線爲 Fe 的斯坦那線,也就是 IT,故 $I\in\mathfrak{p}_{\mathcal{H}}(T)$ 。

設 \mathcal{H} 的中心爲 U,則我們有 U 爲 $\overline{H^*H'}$, \overline{ST} 中點,注意到 Fe,T,S 共線,故取補點會知道 S 的補點即爲 IJ 和 $\triangle DEF$ 九點圓的交點,則顯然有此點爲 $\overline{FeS'}$ 的中點,其中 S' 爲 S 關於 (DEF) 的對徑點,因此我們等價要證明 S',T,H' 共線。

Claim 4. S', T, H' 共線。

 $Proof\ of\ Claim\ 4.$ 注意到由平行弦定理我們有 IU 過 $\overline{TH^*}$ 中點,故 $IU\parallel H^*S$,因此由 $H^*SH'T$ 爲平行四邊形,我們有 $IU\parallel H'T$,而另一方面,由 I,U 分別是 SS',ST 中點,我們有 $IU\parallel S'T$,因此原題得證。

Author: S