

Exercise 16A

Question 18:

Let O(0,0), A(3, $\sqrt{3}$) and B(3,- $\sqrt{3}$) are the given points.

∴ OA = AB = OB =
$$2\sqrt{3}$$
 units

Hence, DABC is equilateral and each of its sides being $2\sqrt{3}$ units.

Area of
$$\triangle ABC = \left[\frac{\sqrt{3}}{4} \times (\text{side})^2\right] \text{ sq.unit} = \times \left[\frac{\sqrt{3}}{4} \times (2\sqrt{3})^2\right] \text{ sq.unit}$$
$$= \left[\frac{\sqrt{3}}{4} \times 4 \times 3\right] \text{ sq.unit} = 3\sqrt{3} \text{ sq.unit}$$

Question 19:

Let A(2,1), B(5,2), C(6,4) and D(3,3) are the angular points of a parallelogram ABCD. Then

AB =
$$\sqrt{(5-2)^2 + (2-1)^2}$$

= $\sqrt{(3)^2 + (1)^2}$
= $\sqrt{10} = \sqrt{10}$ units
BC = $\sqrt{(6-5)^2 + (4-2)^2}$
= $\sqrt{(1)^2 + (2)^2}$
= $\sqrt{1+4} = \sqrt{5}$ units
DC = $\sqrt{(6-3)^2 + (4-3)^2} = \sqrt{(3)^2 + (1)^2} = \sqrt{9+1} = \sqrt{10}$ units
AD = $\sqrt{(3-2)^2 + (3-1)^2} = \sqrt{(1)^2 + (2)^2} = \sqrt{1+4} = \sqrt{5}$ units
Thus, AB = DC and AD = BC
Diagonal AC = $\sqrt{(6-2)^2 + (4-1)^2} = \sqrt{(4)^2 + (3)^2} = \sqrt{16+9}$
= $\sqrt{25} = 5$ units
Diagonal BD = $\sqrt{(3-5)^2 + (3-2)^2} = \sqrt{(2)^2 + (1)^2} = \sqrt{5}$ unit

Diagonal AC ≠ Diagonal BD.

Thus ABCD is not a rectangle but it is a parallelogram because its opposite sides are equal and diagonals are not equal.

********** END ********