

Borbála Fazakas

The Goal

1. develop a model that can **categorize the cells** in breast cancer slides based on the **type of the tissue** to which they belong

Multi-class Semantic Segmentation

2. develop a model that can **categorize the cells** in breast cancer slides as **cancerous/non-cancerous**

Binary Semantic Segmentation

- Breast cancer is the most common type of Cancer in the UK
- In the UK, 1 in 8 women are diagnosed with breast cancer during their lifetime
- The segmentation of cancerous cells can help physicians quantify the volume of tissue in the breast for treatment planning

The Dataset

- 151 histology images with segmentation masks
 - images from the Cancer Genome Atlas (TCGA)
 - masks created through a crowd-sourcing method, by specialists

• 1 = tumor

U-Net

- specifically developed for biomedical image segmentation
- encoder-decoder model, based on convolutional layers
- encoder: contracting part that captures the context
- decoder: enables precise localization
- published in 2015, achieved SOTA results in the ISBI cell tracking challenge and the Warping Error of the EM segmentation challenge

SegFormer

- attention-based network architecture
- relies on a positional-encoding-free, hierarchical Transformer-encoder and a lightweight All-MLP decoder
- published in 2021, achieved SOTA results on common benchmarks, such as ADE20K, COCO-Stuff and Cityscapes

Two Approaches...

U-Net

 simple architecture, easy to implement

Implemented and Trained from Scratch

SegFormer

- more complex architecture
- pretraining offers relevant knowledge

Fine-Tuned a pretrained checkpoint, from Huggingface

- both models take fixed sized images → reshape
 - o introduces a distortion
- 2. some parts of the images are outside the Region of Interest (ROI)
 - apply sample weights to ignore these pixels during the training
- 3. train-test split
 - 0 80-20%
 - no validation set used

Initial Results

U-Net

(from scratch)

- converged in 30 epochs
- steady growth in accuracy, decrease in loss
- 56.29% test accuracy achieved

SegFormer

(transfer-learning)

- converged in 10 epochs
- oscillating loss and accuracy
- 20.84% accuracy achieved

(low performance probably because of the limited amount of data)

Decided to continue working with the U-Net

U-Net

Ist experiment: U-Net with balanced class weights

- motivation: the initial U-Net only detected the "tumor" and the "stroma" classes
- goal: balance out the over-representation of the above two-classes
- implementation: added balances sample weights on a pixel-level

2nd experiment: U-Net trained on an augmented dataset

- motivation: the original dataset contains relatively few images, not enough for the model to generalize well
- implementation: increased the dataset size 5x, by repeating each image 5x, with some simple preprocessing operations each time:
 - randomized brightness adjustments
 - randomized contrast adjustments
 - randomized rotations
 - randomized horizontal and vertical flips

2nd experiment: U-Net trained on an augmented dataset

3rd experiment: U-Net regularized

- goal: allow the model to generalize better, not to learn the particularities of the training dataset
- implementation:
 - o applied a dropout after every double convolutional block (final dropout factor: 0.003)
 - applied L2-regularization on every convolutional layer (final dropout factor: 0.03)

experiment 2 and 3 combines

Results

Model	Test Accuracy
Simple U-Net	56.29%
U-Net trained with balanced Sample Weights	1.34%
U-Net trained on the Augmented Dataset	57.76%
Regularized U-Net	56.33%
Regularized U-Net trained on the Augmented Dataset	51.86%

Data Preprocessing

- preprocessed the masks:
 - tumor class: 1
 - o no-tumor class: 0
 - outside ROI class: 2
 (ignored in the loss and evaluation)

Trained a Simple U-Net

• accuracy: 77.7%

• f1-score: 62.8%

• precision: 65.8%

• recall: 60.1%

Simple U-Net - Sample Predictions

Improvement: filter out the noise via morphological operations

 applied an alternating sequence of opening and closing operations, with increasing kernel size, on the predicted mask, to filter out the salt-and-pepper noise

Morphological Post-processing - Example

Results

Experiments for post-processing:

- S1: closing (5) + opening (5)
- S2: closing (5) + opening (9)
- S3: closing (5) + opening (5) + closing (11) + opening (11)
- S4: closing (5) + opening (9) + closing (11) + opening (15)
- S5: closing (5) + opening (5) + closing (11) + opening (11) + closing (17) + opening (17)

Post-processing sequence on the U-Net Prediction	Accuracy	F1	Precision	Recall
None	77.05%	62.8%	65.8%	60.1%
S1	76.9%	67.2%	61.9%	73.5%
S2	78.2%	66.9%	65.7%	68.3%
S3	76.3%	68.0%	60.2%	78.0%
S4	78.1%	66.8%	65.3%	68.4%
S5	75.3%	67.2%	58.9%	78.3%

- the U-Net is better suited for this problem than the SegFormer
- data augmentation and regularization can bring significant model improvements
- morphological post-processing is helpful for filtering out the noise

- data augmentation brings significant improvements in detecting under-represented classes
- data augmentation and regularization do not work well together on this problem
- noise filtering helps to make the output easier to interpret for humans, apart from increasing the accuracy

Further Work

- trying networks, which allow varying input image sizes, to avoid distortions at the preprocessing steps
- trying "less balanced" class weights to learn the underrepresented classes
- trying other attention-based models
- ...

Borbála Fazakas January, 2023

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Please keep this slide for attribution

References

- P. F. Olaf Ronneberger and T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015
- Z. Y. A. A. . J. M. A. P. L. Enze Xie1, Wenhai Wang2, SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers, 2021
- "Nhs breast cancer in women." Available: https://www.nhs.uk/conditions/ breast-cancer/
- "Mayo clinic breast cancer." Available: https://www.mayoclinic.org/ diseases-conditions/breast-cancer/symptoms-causes/syc-20352470
- H. L. . F. K. . J. L. Epimack Michael 1, He Ma 1, "Breast cancer segmentation methods: Current status and future potentials," BioMed research international
- Habiba Elfandy2 and L. A. D. Cooper, "Structured crowdsourcing enables convolutional segmentation of histology images," Bioinformatics.