MAC239

Lógica de Predicados (teoria de prova)

Teoria de Prova da Lógica de Predicados

- Regras de dedução natural para lógica de predicados:
 - Regras de prova da lógica proposicional (ainda são válidas)

Teoria de Prova da Lógica de Predicados

- Regras de dedução natural para lógica de predicados:
 - Regras de prova da lógica proposicional (ainda são válidas)
- Precisamos definir algumas regras novas:
 - Regras de prova para igualdade
 - Regras de prova para o quantificador universal
 - Regras de prova para o quantificador existencial

Teoria de Prova da Lógica de Predicados

- Regras de dedução natural para lógica de predicados:
 - Regras de prova da lógica proposicional (ainda são válidas)
- Precisamos definir algumas regras novas:
 - Regras de prova para igualdade
 - Regras de prova para o quantificador universal
 - Regras de prova para o quantificador existencial
- e também algumas equivalências de quantificadores

As regras de dedução da LP servem para a LPO (I)

- Se considerarmos proposições como predicados de aridade 0 (zero), a lógica proposicional é uma sub-linguagem da lógica de predicados.
- Podemos traduzir as regras de dedução natural diretamente para a lógica de predicados. Cada uma das regras que aprendemos se aplicam para qualquer fórmula Φ e Ψ da lógica de predicados.

As regras de dedução da LP servem para a LPO (II)

Regras de prova para a igualdade (=e) (=i)

Regras de prova para igualdade: regra de introdução da igualdade (=i)

- A igualdade é útil para dizer que dois termos são iguais, isto é, que eles correspondem a um mesmo objeto do universo.
- A *regra de introdução da igualdade* diz que não precisamos de premissas para introduzir que um termo é igual a ele mesmo.
- Note que só vale para termos e não para fórmulas (a LPO não permite falar de igualdade entre fórmulas).

Regras de prova para igualdade: regra de eliminação da igualdade (=e)

$$t_1 = t_2 \quad \Phi[t_1/x]$$
----= =e
 $\Phi[t_2/x]$

• A regra de eliminação da igualdade permite substituir um termo t_1 por um termo t_2 , dado que sabemos que $t_1 = t_2$.

Regras de prova para igualdade: regra de eliminação da igualdade (=e)

- A regra de eliminação da igualdade permite substituir um termo t_1 por um termo t_2 , dado que sabemos que $t_1 = t_2$.
- Idéia: "para provar a fórmula Ψ , na qual um termo t_2 aparece (1 ou mais vezes) é suficiente provar $t_1 = t_2$ e a fórmula Ψ ' (que resulta de Ψ substituindo t_2 por t_1)"

Importante: Quando escrevemos uma substituição na forma $\Phi[t/x]$, assumimos (implicitamente) que t é livre para x em Φ .

Queremos provar que o seguinte sequente é válido:

$$(x+1) = (1+x), (x+1 > 1) \rightarrow (x+1 > 0) \vdash (1+x > 1) \rightarrow (1+x > 0)$$

Queremos provar que o seguinte sequente é válido:

$$(x+1) = (1+x), (x+1 > 1) \rightarrow (x+1 > 0) \vdash (1+x > 1) \rightarrow (1+x > 0)$$

usando a regra =e:

$$t_1 = t_2 \quad \Phi[t_1/x] = e$$

$$\Phi[t_2/x]$$

Queremos provar que o seguinte sequente é válido:

$$(x+1) = (1+x), (x+1 > 1) \rightarrow (x+1 > 0) \vdash (1+x > 1) \rightarrow (1+x > 0)$$

usando a regra =e:

Queremos provar que o seguinte sequente é válido:

Queremos provar que o seguinte sequente é válido:

Prova:

1
$$(x+1) = (1+x)$$
 premissa
2 $(x+1 > 1) \rightarrow (x+1 > 0)$ premissa

Queremos provar que o seguinte sequente é válido:

Prova:

1
$$(x+1) = (1+x)$$
 premissa
2 $(x+1 > 1) \rightarrow (x+1 > 0)$ premissa
3 $(1+x > 1) \rightarrow (1+x > 0)$ =e 1,2 $\phi = (x>1) \rightarrow (x>0)$

Regras de prova para o Quantificador Universal (∀e) (∀i)

Condição: t livre para x em ϕ

• Uma vez que tenha sido provado $\forall x \phi$, podemos substituir x por qualquer termo em ϕ , dado que t é livre para x em ϕ .

Condição: t livre para x em ϕ

- Uma vez que tenha sido provado $\forall x \phi$, podemos substituir x por qualquer termo em ϕ , dado que t é livre para x em ϕ .
- Exemplo: Prove que
 S(g(pedro)), ∀x(S(x) → ¬L(x)) ⊢ ¬L(g(pedro))

Condição: t livre para x em ϕ

- Uma vez que tenha sido provado $\forall x \phi$, podemos substituir x por qualquer termo em ϕ , dado que t é livre para x em ϕ .
- Exemplo: Prove que

```
S(g(pedro)), \forall x(S(x) \rightarrow \neg L(x)) \vdash \neg L(g(pedro))
```

S(g(pedro))

premissa

 $2 \qquad \forall x(S(x) \rightarrow \neg L(x))$

premissa

Condição: t livre para x em ϕ

- Uma vez que tenha sido provado $\forall x \phi$, podemos substituir x por qualquer termo em ϕ , dado que t é livre para x em ϕ .
- Exemplo: Prove que

```
S(g(pedro)), \forall x(S(x) \rightarrow \neg L(x)) \vdash \neg L(g(pedro))
```

```
1 S(g(pedro)) premissa
2 \forall x(S(x) \rightarrow \neg L(x)) premissa
3 (S(g(pedro)) \rightarrow \neg L(g(pedro)) \forall e \ 2
```


Condição: t livre para x em 🍎

- Uma vez que tenha sido provado $\forall x \phi$, podemos substituir x por qualquer termo em ϕ , dado que t é livre para x em ϕ .
- Exemplo: Prove que
 S(g(pedro)), ∀x(S(x) → ¬L(x)) ⊢ ¬L(g(pedro))

```
1 S(g(pedro)) premissa

2 \forall x(S(x) \rightarrow \neg L(x)) premissa

3 (S(g(pedro)) \rightarrow \neg L(g(pedro)) \forall e \ 2

4 \neg L(g(pedro)) \rightarrow e \ 3, 1
```

Escopo de variável

 Vamos primeiro considerar um novo tipo de caixa, semelhante à que usamos em LP, porém essa caixa marca o escopo da variável temporária z (ao invés do escopo de uma hipótese temporária).

 Por exemplo, essa é uma caixa de escopo temporário na qual a variável z pode ser usada em termos como

Condição: x₀ é arbitrário e só ocorre dentro da caixa.

- Se selecionamos uma variável nova x_0 em uma caixa de escopo de variável e conseguimos provar uma fórmula em que x_0 aparece, isto é, conseguimos provar $\Phi[x_0/x]$, então podemos deduzir $\forall x \Phi$.
- x₀ é uma variável arbitrária nova, que não aparece em nenhum lugar fora da caixa (nem é introduzida em caixas aninhadas).
- Como não fizemos nenhuma suposição específica sobre x₀, então qualquer termo poderia ter sido usado em seu lugar, por isso concluimos ∀xΦ.

Exemplo 1: vamos provar

$$\forall x (P(x) \rightarrow Q(x))$$
, $\forall x P(x) \vdash \forall x Q(x)$

Exemplo 1: vamos provar

$$\forall x (P(x) \rightarrow Q(x))$$
, $\forall x P(x) \vdash \forall x Q(x)$

usando a regra ∀*i*:

$$1 \qquad \forall x (P(x) \to Q(x))$$

 $2 \forall x P(x)$

premissa premissa

• Exemplo 1: vamos provar

$$\forall x (P(x) \rightarrow Q(x))$$
, $\forall x P(x) \vdash \forall x Q(x)$

usando a regra ∀*i*:

 X_0

1 $\forall x(P(x) \rightarrow Q(x))$

 $\forall x P(x)$

premissa

premissa

• Exemplo 1: vamos provar

$$\forall x (P(x) \rightarrow Q(x))$$
, $\forall x P(x) \vdash \forall x Q(x)$

usando a regra ∀*i*:

1 $\forall x(P(x) \rightarrow Q(x))$ premissa 2 $\forall x P(x)$ premissa

$$3 \qquad P(x_0) \to Q(x_0) \qquad \forall e \ 1 \qquad x_0$$

• Exemplo 1: vamos provar

$$\forall x (P(x) \rightarrow Q(x))$$
, $\forall x P(x) \vdash \forall x Q(x)$

1	$\forall x (P(x) \rightarrow Q(x))$	premissa	
2	∀x P(x)	premissa	
3	$P(x_0) \rightarrow Q(x_0)$	∀e 1	x_0
4	$P(x_0)$	∀e 2	Ĭ

• Exemplo 1: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\forall x P(x) \vdash \forall xQ(x)$

1	$\forall x (P(x) \to Q(x))$	premissa	
2	∀x P(x)	premissa	
3	$P(x_0) \to Q(x_0)$	∀ e 1	x_0
4	$P(x_0)$	∀e 2	Ĭ
5	$Q(x_0)$	→e 3, 4	

• Exemplo 1: vamos provar

$$\forall x (P(x) \rightarrow Q(x))$$
, $\forall x P(x) \vdash \forall x Q(x)$

1	$\forall x (P(x) \rightarrow Q(x))$	premissa	
2	∀x P(x)	premissa	
3	$P(x_0) \rightarrow Q(x_0)$	∀ e 1	x_0
4	$P(x_0)$	∀ e 2	ĭ
5	$Q(x_0)$	→e 3, 4	
6	∀x Q(x)	∀ <i>i</i> 3-5	

Regras de prova para o Quantificador Existencial (∃e) (∃i)

Regra de Introdução do Quantificador Existencial (∃i)

Condição: t livre para x em ϕ

Para provar ∃xФ, é suficiente encontrar um termo t como "testemunha", dado que t é livre para x em Ф.

Exemplo: Prove que $\forall x \phi \vdash \exists x \phi$

- Vamos supor que a fórmula ϕ seja P(x). Assim queremos provar que $\forall x P(x) \vdash \exists x P(x)$
- Assumimos que o conjunto $C = \{c_1, c_2, ...\}$ contém pelo menos uma constante c que satisfaz P(x), dado que sabemos que todos os objetos do universo satisfazem P, ou seja, P(c) é verdadeiro e portanto podemos concluir $\exists x P(x)$.

$(\exists i)$ Exemplo 1

Prove que $\forall x \Phi \vdash \exists x \Phi$ (prova geral para qualquer Φ)

```
1 \forall x \Phi premissa
```

 $\begin{array}{ccc}
2 & \Phi[t/x] & \forall e 1 \\
3 & \exists x \Phi & \exists i 2
\end{array}$

$(\exists i)$ Exemplo 2

Prove que $\vdash R(a,a) \rightarrow \exists x R(x,x)$

1	R(a,a)	hipótese
2	$\exists x R(x,x)$	∃ <i>i</i> 1
3	$R(a,a) \rightarrow \exists x R(x,x)$	→i 1-2

Regra de <u>Eliminação do Quantificador Existencial</u> (∃e)

Condição: x₀ não aparece fora da caixa.

- Sabemos que $\exists x \phi$ é verdade, logo sabemos que existe pelo menos um objeto x para o qual ϕ é verdade. Chamamos esse elemento de x_0 e assumimos que $\phi[x_0/x]$ vale dentro da caixa do escopo de x_0 .
- Uma vez que não fizemos nenhuma suposição sobre x_0 e que a partir disso demonstramos χ , podemos concluir que qualquer que seja o x_0 que torne $\phi[x_0/x]$ verdade, χ vale.

Exemplo: Vamos provar $\forall x(P(x) \rightarrow Q(x))$, $\exists x P(x) \vdash \exists xQ(x)$

Regra de <u>Eliminação</u> do <u>Quantificador Existencial</u> (∃e)

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

usando a regra ∃ e:

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

usando a regra ∃ e:

- $1 \qquad \forall x (P(x) \to Q(x))$
- $\exists x P(x)$

premissa premissa

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

usando a regra ∃ e:

- $1 \qquad \forall x (P(x) \to Q(x))$
- $\exists x P(x)$

premissa

premissa

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

usando a regra ∃ e:

- 1 $\forall x(P(x) \rightarrow Q(x))$
 - ∃x P(x)

 $\frac{1}{3}$ $P(x_0)$

premissa

premissa

hipótese

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

usando a regra ∃ e:

- 1 $\forall x(P(x) \rightarrow Q(x))$
 - ∃x P(x)

premissa

premissa

3 $P(x_0)$

4

 $P(x_0) \rightarrow Q(x_0)$

hipótese

∀ *e* 1

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

usando a regra ∃ e:

- 1 $\forall x(P(x) \rightarrow Q(x))$
- $\exists x P(x)$

premissa

premissa

3 $P(x_0)$

4

- $P(x_0) \rightarrow Q(x_0)$
- 5 $Q(x_0)$

hipótese

∀ *e* 1

→e 4, 3

Regra de <u>Eliminação</u> do <u>Quantificador Existencial</u> (∃e)

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

usando a regra ∃ e:

- $1 \qquad \forall x (P(x) \to Q(x))$
- $\exists x P(x)$

premissa

premissa

 $P(x_0)$

4

- $P(x_0) \rightarrow Q(x_0)$
- 5 $Q(x_0)$
- 6 $\exists x Q(x)$

hipótese

∀ *e* 1

→e 4, 3

∃ *i* 5

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

 $\Delta / \omega / D / \omega = O / \omega / \Delta$

usando a regra ∃ e:

1	$\forall X(P(X) \rightarrow Q(X))$	premissa	
2	∃x P(x)	premissa	
3	$P(x_0)$	hipótese	X_0
4	$P(x_0) \to Q(x_0)$	∀ e 1	
5	$Q(x_0)$	→e 4, 3	
6	∃ x Q(x)	∃ <i>i</i> 5	
7	∃ x Q(x)	∃ e 2,3-6	

Exemplo: vamos provar

$$\forall x(P(x) \rightarrow Q(x))$$
, $\exists x P(x) \vdash \exists xQ(x)$

usando a regra ∃ e:

- $1 \qquad \forall x (P(x) \to Q(x))$
 - ∃x P(x)

premissa

premissa

3 $P(x_0)$

4

- $P(x_0) \rightarrow Q(x_0)$
- 5 $Q(x_0)$
- 6 $\exists x Q(x)$

 $\exists x Q(x)$

hipótese

∀ *e* 1

 \rightarrow e 4, 3

∃ *i* 5

Note que a fórmula ∃ x Q(x) dentro da caixa não contém x₀ e desta forma podemos "exportá-la" para fora da caixa.

Outro exemplo: vamos provar

$$\forall x (Q(x) \rightarrow R(x))$$
, $\exists x (P(x) \land Q(x)) \vdash \exists x (P(x) \land R(x))$

usando a regra ∃ e:

Outro exemplo: vamos provar

$$\forall x (Q(x) \to R(x)) \ , \ \exists x \ (P(x) \land Q(x)) \ \ \vdash \exists x \ (P(x) \land R(x))$$

usando a regra∃ <i>e</i> :				
1 2	$\forall x (Q(x) \to R(x))$ $\exists x (P(x) \land Q(x))$	$\begin{array}{c} premise \\ premise \end{array}$		
3 4	$P(x_0) \wedge Q(x_0)$ $Q(x_0) \rightarrow R(x_0)$	$\exists x \ e \ 1$	x	

 X_{0}

 $\Phi[x_0/x]$

Essa prova está correta?

$$\exists x P(x), \ \forall x (P(x) \rightarrow Q(x)) \ \vdash \ \forall y Q(y)$$

Essa prova está correta?

$$\exists x P(x), \ \forall x (P(x) \rightarrow Q(x)) \ \vdash \ \forall y Q(y)$$

Essa prova está correta?

$$\exists x P(x), \ \forall x (P(x) \rightarrow Q(x)) \ \vdash \ \forall y Q(y)$$

Equivalências

Equivalências

Definição [Equivalência] Duas fórmulas da LPO são equivalentes, propriedade denotada por $\Phi \dashv \vdash \Psi$, sse $\Phi \vdash \Psi \in \Psi \vdash \Phi$.

Algumas equivalências simples:

$$\neg \forall x \phi \quad \dashv \vdash \quad \exists x \neg \phi$$

$$\neg \exists x \phi \quad \dashv \vdash \quad \forall x \neg \phi$$

$$\forall x \forall y \phi \quad \dashv \vdash \quad \forall y \forall x \phi$$

$$\exists x \exists y \phi \quad \dashv \vdash \quad \exists y \exists x \phi$$

$$\forall x \phi \land \forall x \psi \quad \dashv \vdash \quad \forall x (\phi \land \psi)$$

$$\exists x \phi \lor \exists x \psi \quad \dashv \vdash \quad \exists x (\phi \lor \psi)$$

Outro exemplo interessante de prova da LPO

$$\neg \forall x \Phi \vdash \exists x \neg \Phi$$

1	$\neg \forall x \phi$	premise	
2	$\neg \exists x \neg \phi$	assumption	
3			x_0
4 5 6	$\neg \Phi[x_0/x]$ $\exists x \neg \phi$ \bot	assumption $\exists x \ i \ 4$ $\neg e \ 5, \ 2$	
7	$\Phi[x_0/x]$	DPA 4-6	
8	$\forall x \phi$	$\forall x \ i \ 3-7$	
9	上	$\neg e 8, 1$	
10	$\exists x \neg \phi$	DPA 2-9	

