Министерство высшего образования и науки Российской Федерации Национальный научно-исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №3 по дисциплине «Основы профессиональной деятельности».

Вариант №846.

Работу выполнил: Афанасьев Кирилл Александрович, Студент группы Р3106. Преподаватель: Афанасьев Дмитрий Борисович.

Содержание

ЗАДАНИЕ	.3
ТЕКСТ ИСХОДНОЙ ПРОГРАММЫ	.3
ОПИСАНИЕ ПРОГРАММЫ	.5
ОБЛАСТЬ ПРЕДСТАВЛЕНИЯ И ДОПУСТИМЫХ ЗНАЧЕНИЙ	.6
вывол	.7

Задание

«По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.» Вариант 846:

35E:	0377	36C:	F407	37A:	0001
35F:	0200	36D:	0480		
360:	4000	36E:	F405		
361:	0200	36F:	0400		
362:	+ AF40	370:	0400		
363:	0680	371:	7EEF		
364:	0500	372:	F801		
365	EEFB	373:	EEED		
366:	AF04	374:	8360		
367:	EEF8	375	CEF4		
368:	AEF5	376:	0100		
369:	EEF5	377:	A360		
36A:	AAF4	378:	B36C		
36B:	0480	379:	0502		

Рисунок №1: Вариант 846.

Текст исходной программы

Таблица №1: Текст исходной программы

		1 40.	лица №1: 1екст исхоонои программы				
Адрес	Код команды	Мнемоника	Комментарий				
35E 0377	0377	X: WORD 0377	Ячейка с адресом первого элемента				
33L	0377	X. WORD 0377	массива.				
			Ячейка хранения текущего элемента				
35F	0200	Y: WORD 0200	массива. По нему будет проходить				
			получение значений массива.				
360	4000	L: WORD 4000	Длина массива (счетчик).				
361	0200	R: WORD 0200	Результат работы программы и				
201		R. WORD 0200	промежуточных вычислений.				
362	AF40	START: LD #0x40	Прямая загрузка в АС значения 0х40.				
302	AF4U	START. LD #UX40	Программа начинается здесь.				
			Обмен байтами в АС. Так как в АС прямо				
363	0680	SWAB	загружено 40(16), результат всегда будет				
			равен 4000.				
264	0500	ASL	Сдвиг АС влево. Так как нам известен				
364	0500	ASL	результат предыдущей операции,				

			2000				
			результат этой всегда будет равен 8000				
			(умножение на 2). Таким образом, мы				
			получаем в аккумуляторе минимально				
			возможное знаковое число.				
			Прямая относительная адресация: ST 366				
365	EEFB	ST R	+ FFB = (1)361 (C=1;V=0). Сохраняет				
			содержимое аккумулятора (8000) в				
			ячейку результата R.				
366	AF04	LD #0x04	Прямая загрузка в АС значения 0х04				
			длины массива.				
			Прямая относительная адресация: ST 368				
367	EEF8	ST L	+ FF8 = (1)360 (C=1;V=0). Сохраняет				
			содержимое аккумулятора в ячейку L				
			Прямая относительная адресация: LD				
368	AEF5	LD X	369 + FF5 = (1)35E (C=1;V=0). Загружает из				
308	ALIS	LDX	ячейки памяти значение Х в				
			аккумулятор.				
			Прямая относительная адресация: ST				
			36A + FF5 = (1)35F (C=1;V=0). Сохраняет				
369	EEF5	ST Y	содержимое аккумулятора в ячейку				
			памяти Ү. Это нужно, чтобы в				
			дальнейшем работать с этим адресом.				
			Косвенная относительная				
			автоинкрементная адресация: Значение				
	AAF4		адреса берется из ячейки 35F (метка Y),				
			далее мы получаем по полученному				
			адресу значение другого адреса, в				
36A		LP ST: LD (Y)+	котором хранятся данные для				
00/1		21 _011 25 (1)	дальнейшей работы программы (эти				
			данные будут загружены в аккумулятор),				
			а значение ячейки увеличиваем на 1.				
			Является фактической точкой начала				
			цикла.				
			Значение АС сдвигается вместе с Carry				
36B	0480	ROR	флагом вправо. Фактически, происходит				
300	0400	NUN					
			пробное деление на 2.				
			Если Carry флаг установился (то бишь 0-й				
266	5407	DCC ID ADDD	бит был 1) перемещаемся на ячейку ІР				
36C	F407	BCS LP_ADDR	+ 7 + 1 (сразу к проверке условия				
			продолжения цикла – далее LP_ADDR).				
			Иначе продолжаем выполнение.				
			Если мы продолжили выполнение, то				
	0480	ROR	значение АС снова сдвигается вместе с				
36D			Carry флагом вправо. Снова пробно				
			поделили на 2 (а в общей сложности,				
			уже на 4).				
36E			Если Carry флаг установился (то бишь 1-й				
	F405	BCS LP_ADDR	бит исходного числа был 1)				
			перемещаемся на ячейку ІР + 5 + 1				

			(LP ADDR). Иначе продолжаем				
			выполнение.				
			Если мы продолжили выполнение,				
36F	0400	ROL	циклически сдвигаем АС и С влево.				
301	0400	NOL	Возвращаем все к исходному значению.				
			Циклически сдвигаем AC и C влево. В AC				
370	0400	ROL					
			теперь исходное значение из массива.				
			Прямая относительная адресация: СМР				
			372 + FEF = (1)361 (C=1; V=0). Производит				
371	7EEF	CMP R	вычитание значения ячейки R из				
			аккумулятора, результат операции				
			установка флагов, соответствующие				
			флагам результата операции.				
			Если не произошло переполнение, но				
			15-й разряд обратился в 1, или наоборот,				
372	F801	BLT LP ADDR	это означает, что значение АС больше				
		_	значения из ячейки, мы перейдем на				
			ячейку IP + 1 + 1 (LP_ADDR). Иначе				
			продолжим выполнение.				
			Прямая относительная адресация: ST 374				
		ST R	+ FED = (1)361. Если мы продолжили				
	EEED		выполнение, обновляем значение				
373			ячейки R новым результатом. Учитывая,				
373			что мы находимся в цикле, фактически				
			это сохранение максимального				
			элемента, который прошел предыдущие				
			проверки.				
			По абсолютному адресу 0х360				
374	8360	LP ADDR: LOOP 0x360	уменьшаем счетчик на 1. Если он				
374	8300	LF_ADDIN. LOOF 0X300	оказался <= 0 -> перейдем на IP + 1 + 1,				
			иначе продолжим выполнение.				
			Прямая относительная адресация: JUMP				
375	CEF4	JUMP LP_ST	376 + FF4 = (1)36A. Если цикл не				
3/3	CEF4	JOINIA TA-21	закончился, мы безусловно перейдем в				
			ячейку IP-C (LP_ST – в начало цикла).				
			Если оказалось, что цикл завершил				
376	0100	HLT	работу, мы останавливаем работу ЭВМ и				
			возвращаем управление оператору.				
377	A360	WORD 0xA360	Элемент массива.				
378	B36C	WORD 0xB36C	Элемент массива.				
379	0502	WORD 0x0502	Элемент массива.				
37A	0001	WORD 0x0001	Элемент массива.				
379	0502	WORD 0x0502	Элемент массива.				

Окончание таблицы

Описание программы

- Назначение программы: находит в массиве из 4-х чисел максимальное число, кратное 4. Если таких чисел нет, результатом работы программы будет минимальное знаковое число.
- Описание исходных данных:

- о X Адрес 1-го элемента массива.
- Y, L служебные данные, заполняются и редактируются автоматически.
- \circ (X) (X + 3) элементы массива.
- О Исходные данные должны располагаться в ячейках памяти: X − 35E, массив − последовательно, начиная с (X) до (X+3) − 4 элемента. ОПИ и ОДЗ расписано в следующем пункте.
- Исходные данные нужны для правильного чтения массива и его обработки.
- \circ Для хранения служебных данных используются ячейки памяти Y -35F; L-360.
- Результат работы программы будет находиться в ячейке 361.
- Вся программа располагается в памяти в ячейках между адресами 362 и 376 включительно.
- Первая команда располагается по адресу 362. Последняя 376.

Область представления и допустимых значений ОПИ:

- R знаковое 16-разрядное число.
- Х адрес: беззнаковое 11-разрядное целое число.
- Элемент массива знаковое 16-разрядное число.

ОД3:

R: $-2^{15} \le R \le 2^{15} - 1$

X: $\begin{bmatrix} 0 \le X \le 0x35A \\ 0x377 \le X \le 0x7FC \end{bmatrix}$

Элемент массива: $-2^{15} \le$ Элемент массива $\le 2^{15} - 1$

Таблица трассировки выполнения команд:

Таблица №2: трассировка выполнения команд

Таолица №2: трассировка выполнения коман									комино		
							Яче	йка,			
										содержимое	
R _{EID}	олняемая	COHODWIAMOO DOFIACTDOR EDOLLOCCODO HOCAO							которой		
	манда	Содержимое регистров процессора после								изменилось	
	мапда	выполнения команды							после		
										выполнения	
			ı		ı	ı			ı	кома	энды
Апрос	Код	IP	СР	AR	DR	SP	DR	AC	NZVC	Адрес	Новый
Адрес	команды	IF	Cr	ΑN	DK	31	אט	ť	INZVC	Адрес	код
362	AF40	363	AF40	362	0040	000	0040	0040	0000		
363	0680	364	0680	363	0680	000	0363	4000	0000		
364	0500	365	0500	364	4000	000	0364	8000	1010		
365	EEFB	366	EEFB	361	8000	000	FFFB	8000	1010	361	8000
366	AF04	367	AF04	366	0004	000	0004	0004	0000		
367	EEF8	368	EEF8	360	0004	000	FFF8	0004	0000	360	0004
368	AEF5	369	AEF5	35E	0377	000	FFF5	0377	0000		
369	EEF5	36A	EEF5	35F	0377	000	FFF5	0377	0000	35F	0377

36A	AAF4	36B	AAF4	377	A360	000	FFF4	A360	1000	35F	0378
36B	0480	36C	0480	36B	0480	000	036B	51B0	0000		
36C	F407	36D	F407	36C	F407	000	036C	51B0	0000		
36D	0480	36E	0480	36D	0480	000	036D	28D8	0000		
36E	F405	36F	F405	36E	F405	000	036E	28D8	0000		
36F	0400	370	0400	36F	0400	000	036F	51B0	0000		
370	0400	371	0400	370	0400	000	0370	A360	1010		
371	7EEF	372	7EEF	361	8000	000	FFEF	A360	0001		
372	F801	373	F801	372	F801	000	0372	A360	0001		
373	EEED	374	EEED	361	A360	000	FFED	A360	0001	361	A360
374	8360	375	8360	360	0003	000	0002	A360	0001	360	0003
375	CEF4	36A	CEF4	375	036A	000	FFF4	A360	0001		
36A	AAF4	36B	AAF4	378	B36C	000	FFF4	B36C	1001	35F	0379
36B	0480	36C	0480	36B	0480	000	036B	D9B6	1010		
36C	F407	36D	F407	36C	F407	000	036C	D9B6	1010		
36D	0480	36E	0480	36D	0480	000	036D	6CDB	0000		
36E	F405	36F	F405	36E	F405	000	036E	6CDB	0000		
36F	0400	370	0400	36F	0400	000	036F	D9B6	1010		
370	0400	371	0400	370	0400	000	0370	B36C	1001		
371	7EEF	372	7EEF	361	A360	000	FFEF	B36C	0001		
372	F801	373	F801	372	F801	000	0372	B36C	0001		
373	EEED	374	EEED	361	B36C	000	FFED	B36C	0001	361	B36C
374	8360	375	8360	360	0002	000	0001	B36C	0001	360	0002
375	CEF4	36A	CEF4	375	036A	000	FFF4	B36C	0001		
36A	AAF4	36B	AAF4	379	0502	000	FFF4	0502	0001	35F	037A
36B	0480	36C	0480	36B	0480	000	036B	8281	1010		
36C	F407	36D	F407	36C	F407	000	036C	8281	1010		
36D	0480	36E	0480	36D	0480	000	036D	4140	0011		
36E	F405	374	F405	36E	F405	000	0005	4140	0011		
374	8360	375	8360	360	0001	000	0000	4140	0011	360	0001
375	CEF4	36A	CEF4	375	036A	000	FFF4	4140	0011		
36A	AAF4	36B	AAF4	37A	0001	000	FFF4	0001	0001	35F	037B
36B	0480	36C	0480	36B	0480	000	036B	8000	1001		
36C	F407	374	F407	36C	F407	000	0007	8000	1001		
374	8360	376	8360	360	0000	000	FFFF	8000	1001	360	0000
376	0100	377	0100	376	0100	000	0376	8000	1001		

Окончание таблицы

Вывод

Во время выполнения данной лабораторной работы я ознакомился с нелинейным управлением вычислительным процессом в БЭВМ, режимами адресации, управлением элементами одномерного массива и работой циклических программ.