

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Introduction to lasers

Pr A. Desfarges-Berthelemot – Limoges University

Chapter 2: Amplifier gain

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

I - Population inversion

1. Generalities

3 types of photon-atom interaction

Absorption

Spontaneous emission

Stimulated emission

E((

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Stimulated emission

The emitted photon has the same:

- frequency
- phase
- polarization
- direction of propagation

Laser transition

that the incident photon

Requirements:

- E incident photon = E transition
- population inversion ΔN :

Number of atoms/volume unit in the excited state > Number of atoms/volume unit in the fundamental state

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

If $\Delta N > 0$: amplifying medium

If $\Delta N < 0$: absorbent medium

If $\Delta N = 0$: transparent medium

Steady state: populations governed by Boltzmann statistics

 $\Delta N = N1 - N2 > 0$: Amplifying medium

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

 \square W = probability density (s⁻¹) that an unexcited atom absorb one single photon

$$\square W = \sigma(v).\phi$$

 $\sigma(v)$: transition cross section at the frequency v i.e. transition probability between two energy levels

$$\phi$$
: photon-flux density (photons /cm².s) = I/hv and I(z) = $\frac{\varepsilon_0 c}{2}$. $|E(z)|^2$

W: probability density of both stimulated emission and absorption

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

2. Four-level pumping scheme

- Population inversion (without signal)
- Na = N_1+N_2 : Total number of atoms per volume unit
- W_p: pumping rate (s⁻¹), transition probability between levels (0) and (3)

Figure 1: Energy level structure and common pump and laser transitions of the trivalent neodymium ion in Nd³⁺:YAG.

https://www.rp-photonics.com/yag_lasers.html

Narrow bandwidth: 120GHz, 0.4nm

without tunability

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

II - Small-signal gain

→ Link between gain and population inversion

Concept of gain

A monochromatic beam of frequency $v_L = \frac{E_1 - E_2}{h}$ is illuminating an amplifying medium under pumping and population inversion

$$G_0 = \frac{P(d)}{P(0)}$$

The intensity I(z) increases as the length of propagation inside the amplifying medium increases

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Let us consider an incremental cylinder of length dz and unit area

 $\phi(z)$: photon flux density **entering** the cylinder

 $\phi(z+dz) = \phi(z) + d\phi$: photon flux density **exiting** the cylinder

To complete

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Comment:

 γ_0 is a function of the frequency v: $\gamma_0(\nu) = \Delta N_0 \sigma(\nu)$

Emission cross section of a Nd/YAG crystal

Figure 1: Effective absorption and emission cross sections of ytterbium-doped germanosilicate glass, as used in the **cores** of ytterbium-doped **fibers**. (Data from spectroscopic measurements by R. Paschotta)

https://www.rp-photonics.com/transition_cross_sections.html

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Gain of amplification:

$$G_0 = \frac{P(d)}{P(0)} = e^{\gamma_0 d}$$
 with $\gamma_0 = \sigma$. ΔN_0

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

III - Gain saturation

$$\Delta N(P) = \frac{\Delta N_0}{1 + P/P_{sat}}$$
 P: signal power Psat: saturation power

Small signal intensity Unmodified population inversion

Reduced population inversion

To complete