METAHEURÍSTICAS Relación de problemas

Configuración de PCs

La empresa informática iPC necesita configurar un nuevo catálogo con equipos informáticos de alta-media-baja gama que obtenga el máximo beneficio posible y que tenga la mayor acogida por parte del usuario.

Un PC se configura a partir de n componentes distintos. Cada uno de ellos puede tomar m_i (i=1, ..., n) posibles valores (v_{ij}) que representa el precio de la pieza, y para cada valor tenemos un valor a_{ii} de afinidad del usuario, y un beneficio b_{ii} .

Se desea encontrar una combinación de componentes que alcance el mayor beneficio y afinidad global para:

- a. Gama alta (PC superior a 2000€)
- b. Gama media (PC entre 1000€ y 2000€)
- c. Gama baja (PC inferior a 1000€)

Cuestiones:

- ¿Cómo representarías una solución al problema?
- Representa una función de evaluación para resolver cada uno de los problemas a, b y c, ¿se podría resolver mediante la misma función utilizando restricciones?
- Representa dos soluciones para un algoritmo evolutivo y diseña un operador de cruce idóneo para la representación que has diseñado.

Problema de la mochila

Se dispone una mochila y un conjunto de n objetos, cada uno de los cuales tiene un peso positivo y un beneficio. El objetivo el conjunto de objetos con peso menor a la capacidad de la mochila y mayor beneficio.

- ¿Qué algoritmo entre los vistos en la asignatura crees que serían el más adecuado para resolver este problema?
- Describe las ventajas de los seleccionados.
- Representa una función objetivo para un algoritmo evolutivo.

Museo Ibérico de Jaén

El nuevo museo provincial ibérico de Jaén necesita montar una muestra del Siglo IV al Siglo V a.C sobre "La heroización de los príncipes" durante el mes de junio y para ello cuenta con una sala de 500 metros cuadrados.

El problema de la dirección del museo es que cuenta con 150.000 piezas y necesita elegir las 150 piezas más diversas de entre todas ellas. Para ello, cuentan con una matriz de distancias donde d_{ij} indica la distancia entre el elemento e_i y e_j .

- a. ¿Consideras un algoritmo de Sistema de Hormigas adecuado para resolver este problema? Justifica la respuesta.
- b. Detalla las ventajas e inconvenientes de un Algoritmo Evolutivo para resolver este problema.
- c. Resuelve el problema mediante un algoritmo genético indicando la
 - i. representación de un individuo,
 - ii. inicialización basada en lista de 5000 candidatos,
 - iii. función de adaptación (maximizar),
 - iv. cruce en dos puntos entre dos individuos,
 - v. mutación de un individuo de un alelo.
- d. ¿Qué parámetros necesitamos considerar inicialmente para un correcto funcionamiento de este algoritmo genético?

Problema de la separación de una muestra en dos conjuntos

El Departamento de Informática necesita separar de forma equitativa al número total de sus alumnos n en dos conjuntos perfectamente separados, de forma que la distribución de alumnos se realice respecto a sus notas y edad de los mismos, es decir, para cada alumno tenemos su nota de expediente y edad a día de hoy.

El principal objetivo es conseguir un reparto equitativo de los dos conjuntos y que la diferencia entre ambos conjuntos sea mínima.

NOTA: Como el dominio de los datos es distinto, se recomienda hacer una normalización de los datos al intervalo [0, 1] previamente. ¿Cómo lo harías?

Cuestiones:

- Describe las ventajas e inconvenientes para resolver este problema para todas las técnicas vistas en clase, justificando la respuesta.
- Define la representación de una solución.
- Diseña la función de evaluación de la solución anterior.

Optimización de funciones

Se desea encontrar el valor óptimo para la siguiente función donde los valores para cada x_n están en el intervalo [-1000, 1000].

$$f(x_1, x_2, ..., x_n) = \frac{1}{n} \sum_{i=1}^{n} -x_i \cdot \sin(\sqrt[3]{x_i})$$

Cuestiones:

- ¿Qué opción de entre todos las Metaheurísticas basadas en poblaciones vistas en clase consideras más oportuna para resolver este problema?
- Representa una solución al problema y su función de evaluación, considerando un n=10.
- Resuelve el problema mediante un Enfriamiento Simulado y detalla todas las decisiones necesarias para el diseño correcto del algoritmo.
- Resuelve el problema mediante Evolución Diferencial y describe un operador ternario con las consideraciones tenidas en JADE.

Optimización de funciones (2)

Cuestiones:

- ¿Podrías resolver el problema anterior mediante una búsqueda tabú?
- Diseña la memoria a corto plazo.
- Diseña la memoria a largo plazo para resolver el problema, y determina dos estrategias: a) intensificación y b) diversificación, detallando cuándo se tomaría una u otra.

Alineación de equipo

A falta de 20 jornadas en la 2ª División B (blablablá) diseñar un sistema inteligente para la configuración de alineaciones.

Para cada jornada, los técnicos deben evaluar de 0 a 10 a los 25 jugadores, j_i donde i=1, ..., 25 (3 porteros, 8 defensas, 9 medios y 5 delanteros) en función de técnica t_{ik} , estado físico, f_{ik} y estado anímico a_{ik} , donde k es igual al número de partidos con datos recogidos.

El sistema diseñado deberá proporcionar la lista de 11 jugadores (1 portero, 4 defensas, 4 medios y 2 delanteros) que formarán la alineación titular para el siguiente partido, considerando todos los valores anteriores indicados recogidos, considerando que t y f tienen igual valor, mientras que a tiene la mitad de valor.

- 1. Representación de una solución con la codificación más idónea para el problema y justifícala.
- 2. Análisis de las posibles restricciones, de forma, que se empleen SIEMPRE soluciones factibles.
- 3. Calculo de la función objetivo, y poner un ejemplo de buena alineación y otro de mala alineación.
- 4. Generar un operador de vecindad para una posible metaheurísticas de trayectorias, considerando que la solución que genere sea factible.
- 5. Analizar un posible operador de cruce para este tipo de representación de los vistos en clase.