Recall: In the previous lecture, we've seen for a polynomial p(x) with integer coefficients that

 $a \equiv b \pmod{m} \implies p(a) \equiv p(b) \pmod{m}$

For example, let $p(x) = x^3 + 2x^2 + 3x + 5$. Then, we have p(1) = 11, p(4) = 113, and $11 = 113 \pmod{3}$.

This is actually a very useful tool to prove that some equations have no solution in the integers.

Example: $x^3 - x + 1 = 42$ has no integer solution.

 $p(0) \equiv 1 \pmod{3}$, $p(1) \equiv 1 \pmod{3}$, $p(2) \equiv 7 \equiv 1 \pmod{3}$

 $x \equiv 0, 1, \text{ or } 2 \pmod{3} \Rightarrow p(x) \equiv p(0), p(1), \text{ or } p(2) \pmod{3}$

 \Rightarrow p(x) = 1 (mod 3), but $42 \neq 1$ (mod 3).

An interesting problem: Is there a polynomial p(x) with integer coefficients such that p(n) is prime for every $n \in \mathbb{Z}$, except the constant polynomial? The answer is no, see Theorem 3.6 for that.

Now, some properties of the congruences

• Suppose $d \ge 1$ and $d \mid m$, then $a \equiv b \pmod{m} \implies a \equiv b \pmod{d}$

 $a \equiv b \pmod{m} \Rightarrow m \mid a - b \Rightarrow d \mid a - b \Rightarrow a \equiv b \pmod{d}$.

e.g. $3 \equiv 19 \pmod{8} \Rightarrow 3 \equiv 19 \pmod{2}$

• Suppose c70, then

 $a \equiv b \pmod{m} \Rightarrow ac \equiv bc \pmod{mc}$

 $a \equiv b \pmod{m} \implies m \mid a - b \implies a - b = m \cdot k$

 \Rightarrow ac-bc = c·(a-b) = (mc)·k

⇒ mclac-bc ⇒ ac = bc (mod mc).

The next property is similar to $m \mid ab \Rightarrow m \mid (m,a) \cdot b$

• $ax \equiv ay \pmod{m} \implies x \equiv y \pmod{\frac{m}{(m,a)}}$

 $ax \equiv ay \pmod{m} \Rightarrow m \mid ax - ay \Rightarrow m \mid a \cdot (x - y)$

 \Rightarrow m | (m,a)·(x-y) \Rightarrow (m,a)·(x-y) = m·k

 \Rightarrow $x-y=\frac{m}{(m_1a)}$ $k \Rightarrow x \equiv y \pmod{\frac{m}{(m_1a)}}$.

Special case: (m,a) = 1, we say $x \equiv y \pmod{m}$

This property is useful solving linear congruences:

ax = b (mod m)

given

Example: Which integers x satisfy 15x = 30 (mod 40)?

15. $\times = 15.2 \pmod{40}$ and $\frac{40}{(40,15)} = 8$

⇒ x = 2 (mod 8).

Check: $x = 2 \pmod{\delta} \implies x = 8k + 2$

 $15 \times = 15(8k + 2) = 120k + 30 = 30 \pmod{40}$.

we'll solve $ax \equiv b \pmod{m}$ in general case (similar to linear diophantine equations).

 $ax \equiv b \pmod{m}$ means $m \mid ax - b$, i.e. ax - b = m - k.

Rewrite it as ax-mk=b.

- No solution unless (a,m) | b.
- When $(a,m) \mid b$: There is a solution, say (x_0,k_0) . Then the all solutions will have

$$X = X_0 - t \cdot \frac{m}{(a,m)}$$
 with $t \in \mathbb{Z}$.

Set of all solutions =
$$\left\{x \in \mathbb{Z} : x = x_0 - t \cdot \frac{m}{(a_i m)}, t \in \mathbb{Z}\right\}$$
.
= $\left\{x \in \mathbb{Z} : x = x_0 \left(\text{mod } \frac{m}{(a_i m)}\right)\right\}$.

Examples: Solve (a) 3x = 7 (mod 11)

(b)
$$9 \times = 6 \pmod{12}$$
 (c) $66 \times = 100 \pmod{121}$

(a)
$$x_0 = 6$$
 is a solution \Rightarrow $x = 6 \pmod{1}$

(b)
$$9x = 6 \pmod{12} \implies 3.3x = 3.2 \pmod{12}$$
 and $(12,3)=3$

$$\Rightarrow$$
 3x = 2 (mod 4). $x_0 = 2$ is a solution

(c) (121, 66) = 11
$$\neq$$
 100 \Rightarrow no solution.

(d)
$$|4 \times = 1 \pmod{45} \implies |4 \times = 45k + 1$$

$$\Rightarrow$$
 $14x - 45k = 1$

Euclidean algorithm:
$$1 = 5 \cdot 45 - 16 \cdot 14$$
.
 $\Rightarrow x_0 = -16$ is a solution $\Rightarrow x = -16 \pmod{45}$.