

Elimination Et Choix Traduisant la Réalité (ELECTRE) JOBSHEET 5

Rajendra Rakha Arya Prabaswara

(1941720080/20)

PROGRAM STUDI D-IV TEKNIK INFORMATIKA

JURUSAN TEKNOLOGI INFORMASI

POLITEKNIK NEGERI MALANG

AN EXAMPLE OF NORMALIZATION OF A DECISION MATRIX

$$X = \begin{bmatrix} 4 & 4 & 5 & 3 & 3 \\ 3 & 3 & 4 & 2 & 3 \\ 5 & 4 & 2 & 2 & 2 \end{bmatrix}$$

1. From the case study in the ELECTRE Handout/Material. Implement it in excel formulas!

HITUNG	ELECTRE F	KUW HANI	0001								
						BOBOT KR	ITERIA				
Alternatif			kriteria			c1	c2	c3	c4	c5	
Aiternatii	с1	с2	с3	c4	с5	5	0	0	0	0	
a1	4	4	5	3	3	0	3	0	0	0	
a2	3	3	4	2	3	0	0	4	0	0	
a3	5	4	2	2	2	0	0	0	4	0	
						0	0	0	0	2	
Normalisasi						Pembobotan					
Alternatif			kriteria			Alternatif	kriteria				
Aiternatii	c1	c2	c3	c4	c5	Aiternatii	c1	c2	c3	c4	c5
a1	0,565685	0,624695	0,745356	0,727607	0,639602	a1	2,828427	1,874085	2,981424	2,910428	1,279204
a2	0,424264	0,468521	0,596285	0,485071	0,639602	a2	2,12132	1,405564	2,385139	1,940285	1,279204
a3	0,707107	0,624695	0,298142	0,485071	0,426401	a3	3,535534	1,874085	1,19257	1,940285	0,852803

														_		
	M	ATRIX CAL	CULATION					D23	1	2						
								D31			3	4	5			
		BOB	OT KRITERI	IA				D32			3		5			
	D1	D2	D3	D4	D5											
a1	2,82842712	1,874085	2,981424	2,910428	1,279204		MATRIX	CONORDANCE		MATRIX D	ISORDANCE		DOMINA	AN CONCO	R & DISOR DANCE	
a2	2,12132034	1,405564	2,385139	1,940285	1,279204		C12	18		D12	0			THRES	HOLD	
a3	3,53553391	1,874085	1,19257	1,940285	0,852803		C13	13		D13	0,39528471		CONCO	RDANCE	DISORDANCE	
							C21	2		D21	1		10	0,5	0,73	
	CONORDANO	E MATRIX					C23	10		D23	1					
	1	2	3				C31	8		D31	1					
C1		18	13				C32	12		D32	1					
C2	2		10		DISORDA	NCE MATRIX										
C3	8	12				1	2	3		MATRI	X F (CONORD	ANCE)		ELECTRE		
					D1		0	0,3952			1	1				
					D2	1		1		0		0			0	0
					D3	1	1			0	1			0		0
														0	1	
										MATR	IX G (DISORDA	ANCE)				
											0	0				
										1		1				
										1	1					

2. Consider the following questions:

There are 3 types of alternative determinants of cancer cells in the human body, namely: p53 inactivation, activation Rb, c-myc activation. Based on these alternatives, there are criteria derived from the mutated gene, namely p53 protein expression(in%), Rb expression(in%), c-myc expression(in%).

Alternative	Criteria										
Atternative	C1	C2	C3								
A1	4	4	5								
A2	4	5	4								
A3	4	3	3								

The weight of the criteria is (3,3,4)

2. Mention the step by step solution to problem no. 2 with the ELECTRE method using a flowchart to determine the concordance and discordance matrix!

3. Count using the ELECTRE method for question no. 2 to determine the best alternative!

									HIMPUNA	N CONORD	ANCE & DIS	ORDANCE				
Alternatif		kriteria				BOB	BOBOT KRITERIA						CONORDANCE			
Aiteiliatii	c1	c2	с3			c1	c2	c3	Alternatif		kriteria		Matriks Concordance			
a1	4	4	5		a1	3	0	0	Alternatii	c1	c2	c3	widths concordance			
a2	4	5	4		a2	0	3	0	C12	3		4	7	DOMINA	N CONCOR	& DISOR DANCE
a3	4	3	5		a3	0	0	4	C13	3	3	4	10		THRES	HOLD
									C21	3	3		6	CONCO	CONCORDANCE	
Norma	alisasi				Pem	bobotan			C23	3	3		6	7,166	7,166666667	
Alternatif		kriteria			Alternatif		kriteria		C31	3		4	7			
Aiterilatii	c1	c2	с3		Aiternatii	c1	c2	с3	C32	3		4	7			
a1	0,57735	0,565685	0,615457		a1	1,732050808	1,697056	2,46183						ELECTRE		
a2	0,57735	0,707107	0,492366		a2	1,732050808	2,12132	1,969464	DISORI	DANCE					0	0
a3	0,57735	0,424264	0,615457		a3	1,732050808	1,272792	2,46183	Alternatif kriteria		Matriks Disordance	0		0		
									Accinati	c1	c2	с3	Waterks Disordance	0	0	
									D12		2		0			
MATE	RIX DISORE	DANCE			MAT	RIX CONORDA	NCE		D13				0	MA	TRIX F (CO	NORDANCE)
	1	2	3			1	2	3	D21			3	1		0	
C1		0	0		C1		7	10	D23			3	0	0		1
C2	1		0		C2	6		6	D31		2		1	0	0	
C3	1	1			C3	7	7		D32		2		1			
														MA	TRIX G (D	SORDANCE)
															0	1
														1		1
														1 1	1 1	

QUESTION

- 1. What is the difference between concordance and disordance matrices?
 - Concordance adds up the weights" included in the concordance subset
 - **Disordance** divides the maximum difference between the criteria included in the disordance subset
- 2. Write down the results of each step of the excel calculation on the page below!

									HIMPUNA	N CONORD	ANCE & DIS	ORDANCE					
		kriteria				BOBO	OT KRITERI	IA				CONORDANCE					
Alternatif	c1	c2	сЗ			c1	c2	сЗ	Alternatif		kriteria		Matriks Concordance				
a1	4	4	5		a1	3	0	0	Alternatif	c1	c2	c3	- Watriks Concordance				
a2	4	5	4		a2	0	3	0	C12	3		4	7		DOMINA	N CONCOR	& DISOR DANCE
a3	4	3	5		a3	0	0	4	C13	3	3	4	10			THRES	HOLD
									C21	3	3		6		CONCO	RDANCE	DISORDANCE
Norma	alisasi				Pem	bobotan			C23	3	3		6		7,1666	66667	0,50
Alternatif		kriteria			Alternatif		kriteria		C31	3		4	7				
raccinatii	c1	c2	c3		raccinocii	c1	c2	c3	C32	3		4	7				
a1	0,57735	0,565685			a1	1,732050808	1,697056								ELECTRE		
a2	_	_	0,492366		a2	1,732050808	2,12132	1,969464	DISOR	DANCE					0		0
a3	0,57735	0,424264	0,615457		a3	1,732050808	1,272792	2,46183	Alternatif	Alternatif kriteria			Matriks Disordance		0		0
									Arcenden	c1	c2	c3	Widthks Disordance		0	0	
									D12		2		0				
MATE	RIX DISORD	ANCE			MAT	RIX CONORDA	NCE		D13				0		MA	MATRIX F (CONORDANCE	
	1	2	3			1	2	3	D21			3	1			0	1
C1		0	0		C1		7	10	D23			3	0		0		0
C2	1		0		C2	6		6	D31		2		1		0	0	
C3	1	1			C3	7	7		D32		2		1				
															MA	TRIX G (DI	SORDANCE)
																0	0
															1		0
															- 1	1	I

3. What is the final result of the DSS calculation using the ELECTRE method in the above case?

There is no alternative in this case using the electre method