SI LV8 Linjär Algebra

Niklas Gustafsson | Gustav Örtenberg niklgus@student.chalmers.se | gusort@student.chalmers.se

2017-03-10

1

Tenta IT, 2015 april, uppg. 5

Antag att $G=(\vec{g_1},\ \vec{g_2},\ \vec{g_3})$ är en bas där $||\vec{g_1}||=1,\ ||\vec{g_2}||=\sqrt{2},\ ||\vec{g_3}||=2$ och vinkeln $\angle \vec{g_1}\vec{g_2}$ är $\pi/4$ och vinkeln $\angle \vec{g_1}\vec{g_3}$ är $\pi/2$. Låt \vec{u} och \vec{v} vara de vektorer som i basen G har koordinater

$$\vec{u_G} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \ \vec{v_G} = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}$$

Beräkna vinkeln $\angle \vec{u}\vec{v}$ mellan dessa vektorer \vec{u} och \vec{v} .

2

Tenta IT, 2015 augusti, uppq. 7

Bestäm alla 3×3 matriser A som har en egenvektor $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ med egenvärde 2, en egenvektor $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ med egenvärde 1 och en egenvektor $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ med egenvärde 1.

3

Tenta IT, 2015 april, uppg. 3

Avgör för vilka reella värden på a som de tre vektorerna

$$\begin{bmatrix} a \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} a^2 \\ 1 \\ 1 \end{bmatrix}$$

är linjärt beroende och skriv i vart och ett av dessa fall en av vektorerna som en linjärkombination av de övriga.

4

Tenta IT, 2015 augusti, uppg. 6

Låt
$$M=\frac{1}{12}\begin{bmatrix}2&5&5\\3&4&5\\5&6&1\end{bmatrix}$$
. Visa att M utgör övergångsmatrisen för en Markov-

kedja och beräkna dennas stationära fördelning.

5

Tenta IT, 2015 april, uppg. 2

Beräkna avståndet från punkten (5,0,-1) till den räta linjen som går genom punkterna (1,-1,2) och (4,-3,3).

6

Tenta IT, 2016 april, uppg. 2

Låt f vara den linjära avbildning av planet som projicerar ortogonalt på linjen x+y=0. Låt g vara den linjära avbildning av planet som roterar moturs vinkeln $\pi/3$ kring origo. Bestäm matrisen för den sammansatta avbildning som först avbildar med f och sedan med g.

7

Tenta IT, 2015 augusti, uppg. 1
 Låt
$$M=\begin{bmatrix}-1&a&2\\1&2&3\\2a&9&15\end{bmatrix}$$
 och betrakta det linjära ekvationssystemet

$$M\vec{x} = \vec{b}$$

där \vec{b} är en given 3-vektor.

- a) Bestäm samtliga värden på parametern a, för vilka ekvationssytemet inte har en unik lösning \vec{x} .
- b) Ge ett exempel på a och \vec{b} , för vilka ekvationssytemet är olösbart.

8

Tenta IT, 2015 augusti, uppg. 3

Betrakta linjen L_1 vars ekvation på parameterform är $\begin{bmatrix} 0\\1\\11 \end{bmatrix} + t \begin{bmatrix} -1\\1\\4 \end{bmatrix}$, och linjen L_2 vars ekvation på parameterform är $\begin{bmatrix} -2\\0\\4 \end{bmatrix} + s \begin{bmatrix} 4\\-1\\-1 \end{bmatrix}$. Avgör om linjerna L_1 och L_2 skär varandra. Om så är fallet ska den spetsion i den spetsion.

och L_2 skär varandra. Om så är fallet ska den spetsiga vinkeln mellan linjerna beräknas om så inte är fallet ska avståndet mellan linjerna beräknas.

9

Tenta IT, 2013 Januari, uppg. 2 Låt

$$\vec{u} = \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \ \vec{v} = \begin{bmatrix} 4\\2\\1 \end{bmatrix}, \ \vec{w} = \begin{bmatrix} 3\\1\\2 \end{bmatrix}.$$

- Bestäm arean av parallellogrammen som \vec{u} och \vec{v} spänner upp.
- Bestäm volymen av parallellpipeden som \vec{u} , \vec{v} och \vec{w} spänner upp.

Lycka till med tentorna