

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Fundamental Matrices and State Transition Matrices for CT LTV Systems

Continuous-Time Autonomous LTV Systems

Consider an autonomous linear time-varying (LTV) system

$$\dot{x}(t) = A(t)x(t), \quad t \ge 0,$$
 with initial condition $x(0) \in \mathbb{R}^n$

- $A(t) \in \mathbb{R}^{n \times n}$ varies with time $t \geq 0$
- A(t) is assumed to have some nice properties (e.g. continuous, piecewise continuous) so that, for any x(0), a unique solution x(t) exists for all $t \ge 0$

Example: Nonlinear ODEs

- **1** $\dot{x}(t) = 1 + [x(t)]^2$, x(0) = 0, has solution $x(t) = \tan(t)$, $t \in [0, \frac{\pi}{2})$
- **2** $\dot{x}(t) = [x(t)]^{1/3}$, x(0) = 0, has two solutions: $x(t) \equiv 0$ and $x(t) = (\frac{2t}{3})^{3/2}$

Scalar Autonomous LTV Systems

Consider the scalar case with $x(t), a(t) \in \mathbb{R}$:

$$\dot{x}(t) = a(t)x(t), \quad x(0) \in \mathbb{R}$$

Solution is $x(t) = e^{\int_0^t a(\tau) d\tau} x(0), \quad t \ge 0$

Conjecture: the solution of LTV system $\dot{x}(t) = A(t)x(t)$ is

$$x(t) = e^{\int_0^t A(\tau) d\tau} x(0), \quad t \ge 0$$

Unfortunately, this is not true since generally $rac{d}{dt}e^{\int_0^t A(au)\,d au}
eq A(t)e^{\int_0^t A(au)\,d au}$

Solution Space

For LTV system $\dot{x}(t) = A(t)x(t)$, its solution space is

$$X := \{x(t), t \ge 0 \mid \dot{x}(t) = A(t)x(t)\}$$

- \mathbb{X} is an *n*-dimensional vector space: $x(0) \in \mathbb{R}^n \mapsto x(t) \in \mathbb{X}$ is a bijection
- A basis of \mathbb{X} is given by $\{\phi_1(t),\ldots,\phi_n(t)\}$ where $\phi_i(t)\in\mathbb{R}^n$ is the solution with $x(0)=e_i=\begin{bmatrix}0&\cdots&0&1&0&\cdots&0\end{bmatrix}^T$, i.e.,

$$\dot{\phi}_i(t) = A(t)\phi_i(t), \quad \phi_i(0) = e_i$$

• Any solution $x(t) \in \mathbb{X}$ with initial condition x(0) can be written as

$$x(t) = x_1(0)\phi_1(t) + \cdots + x_n(0)\phi_n(t) = \underbrace{\left[\phi_1(t) \quad \cdots \quad \phi_n(t)\right]}_{\Phi(t)} x(0)$$

Fundamental Matrix

The fundamental matrix $\Phi(t)$, $t \geq 0$, is

$$\Phi(t) := \begin{bmatrix} \phi_1(t) & \cdots & \phi_n(t) \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad t \ge 0.$$

where $\phi_i(t)$ is the solution with initial condition $x(0) = e_i$, i = 1, ..., n

- $\Phi(t)$ describes how the state solution propagates an initial state at time t=0 to the state at time t: $x(t)=\Phi(t)x(0)$
- $\Phi(t)$ is invertible for all t (why?)
- $\Phi(t)$ is the solution of the matrix differential equation:

$$\dot{\Phi}(t) = A(t)\Phi(t), \quad \Phi(0) = I_n$$

• For LTI systems, $\Phi(t) = e^{At}$

State Transition Matrix

State transition matrix of the LTV systems $\dot{x}(t) = A(t)x(t)$ is defined as $\Phi(t,\tau) = \Phi(t)\Phi(\tau)^{-1} \in \mathbb{R}^{n \times n}, \ \forall t,\tau \geq 0$

• $\Phi(t,\tau)$ describes how the solution x(t) propagates from time τ to time t:

$$x(t) = \Phi(t, \tau)x(\tau), \quad \forall t, \tau \geq 0.$$

- $\Phi(t_3, t_2)\Phi(t_2, t_1) = \Phi(t_3, t_1)$ for any $t_1, t_2, t_3 \ge 0$
- Given t_0 , $\Phi(\cdot, t_0)$ is the solution of $\frac{d}{dt}\Phi(t, t_0) = A(t)\Phi(t, t_0)$, $\Phi(t_0, t_0) = I$
- For LTI system $\dot{x} = Ax$, $\Phi(t, \tau) = \Phi(t \tau) = e^{A(t \tau)}$