Language Technology

http://cs.lth.se/edan20/

Chapter 19: Speech Recognition

Pierre Nugues

Pierre.Nugues@cs.lth.se
http://cs.lth.se/pierre_nugues/

October 17, 2019

Speech Recognition

Conditions to take into account:

- Number of speakers
- Fluency of speech.
- Size of vocabulary
- Syntax
- Environment

Structure of Speech Recognition

Words:

$$W = w_1, w_2, ..., w_n$$
.

Acoustic symbols:

$$A = a_1, a_2, ..., a_m,$$

$$\hat{W} = \arg\max_{W} P(W|A).$$

Using Bayes' formula,

$$P(W|A) = \frac{P(A|W)P(W)}{P(A)}.$$

Language Technology http://cs.lth.se/edan20/

Two-Step Recognition

Speech Parameters

Recognition devices derive a set of acoustic parameters from speech frames. Parameters should be related to "natural" features of speech: voiced or unvoiced segments.

A simple parameter giving a rough estimate of it: the energy: the darker the frame, the higher the energy.

$$E(F_k) = \sum_{n=m}^{m+N-1} s^2(n).$$

Linear prediction coefficients:

$$\hat{s}(n) = a(1)s(n-1) + a(2)s(n-2) + a(3)s(n-3) + \dots + a(m)s(n-m),$$

Extraction of Speech Parameters

Features are extracted every 10 ms over a 20 s frame

Neural Networks: Representation

Another representation of the perceptron:

The base network: An input layer and an output layer

Neural Networks: Activation Function

And logistic regression:

The logistic function is the activation function of the node

Neural Networks: Hidden Layers

Word Decoding

Markov models are a probabilistic mapping of a string of acoustic symbols $a_1, a_2, ..., a_m$ onto a string of phonemes $\varphi_1, \varphi_2, ..., \varphi_m$.

A language model applies a second probability to a word sequence.

The complete speech recognition then consists in decoding word sequences $w_1, w_2, ..., w_n$ from phonemic strings and weighting them using the language model.

words
$$\phi_1^1$$
 ϕ_1^2 ϕ_1^{m1} ϕ_2^1 ϕ_2^1 ϕ_2^2 ϕ_2^{m2} ϕ_2^{m2} ϕ_j^{m1} ϕ_j^{m1} ac.symbols a_1^1 , a_1^2 , a_1^2 , a_2^1 , a_2^2 , a_2^2 , a_2^{m2} , a_j^{m2} , a_j^{mj} , ...,

Searching Words

A hypothesis search.

If the vocabulary contains k words $v_1, v_2, ..., v_k$, w_1 is to be selected amongst k possibilities, w_2 amongst k possible choices again and so on.

Decoding uses the A* algorithm

Commercial Systems

Speech recognition systems are accessible using an API

In addition to a language model, speech engines often give the possibility to use a phrase–structure grammar