Integral Test Explained

If a sequence a_n is modeled by the function f(x) such that $f(n) = a_n$, then we can use integrals to determine whether or not $\sum_{n=k}^{\infty} a_n$ converges so long as the function f(x) is (1) positive and (2) constantly decreasing for some interval $[k,\infty)$.

Consider the sum:

$$a_1 + a_2 + a_3 + \cdots$$

This sum cane be expressed as the sum of the areas of rectangles that have width of 1 and height of a_i

$$a_1 + a_2 + a_3 + \cdots$$

1: $a_1 + 1$: $a_2 + 1$: $a_3 + \cdots$

$$1 \cdot a_1 + 1 \cdot a_2 + 1 \cdot a_3 + \cdots$$

If the sum of the areas of the rectangles is more than the area under the curve, and the area of the curve $\to \infty$, then $\sum_{n=k}^{\infty} a_n$ does not converge.

If the sum of the areas of the rectangles is less than the area under the curve, and the area of the cruve is finite as $x \to \infty$, then $\sum_{n=k}^{\infty} a_n$ converges.

$$\sum_{n=k}^{\infty} a_n < \int_{1}^{\infty} f(x) dx$$

Since $\int_{1}^{\infty} f(x) dx$ converges, so does $\sum_{n=k}^{\infty} a_n$

We don't know until we determine whether $\int_{1}^{\infty} f(x)dx$ converges or does not converge.

Notice that the differences between the two graphs is whether we are using a left-sum or right-sum to

approximate the area under the curve.

If $\int_{-\infty}^{\infty} f(x) dx \to \infty$, we will choose the perspective of the diagram on the left.

If $\int_{1}^{\infty} f(x)dx$ converges, we will choose the perspective the diagram on the right.

THERE IS NO NEED TO WORRY ABOUT THESE RECTANGLES!!

If
$$\int_{1}^{\infty} f(x) dx$$
 converges, so does $\sum_{n=1}^{\infty} a_n$ $\int_{1}^{\infty} f(x) dx \to \infty$, so does $\sum_{n=1}^{\infty} a_n$

p-series Test Explained

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

If p < 0 then $\lim_{n \to \infty} \frac{1}{n^p} = \lim_{n \to \infty} \frac{1}{n^{\text{something negative}}} = \lim_{n \to \infty} n^{\text{something positive}} \neq 0$, so $\sum_{n=1}^{\infty} \frac{1}{n^p}$ does not converge.

Since a *p*-series is a series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$, we can use the integral test to determine the values of *p* that will make the series converge.

If $p=1$	If $p > 0$
$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx$	$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{t \to \infty} \int_{1}^{t} x^{-p} dx$
$= \lim_{t \to \infty} \left[\ln x \right]_{1}^{t}$ $= \lim_{t \to \infty} \left(\ln t - \ln 1 \right)$	$=\lim_{t\to\infty} \left[\frac{1}{-p+1} x^{-p+1} \right]_1^t$
↓ ∞ ~ 1	$= \lim_{t \to \infty} \left(\left\lfloor \frac{1}{-p+1} t^{-p+1} \right\rfloor - \left\lfloor \frac{1}{-p+1} 1^{-p+1} \right\rfloor \right)$ $1 \qquad 1 \qquad 1$
By the Integral Test, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ does not converge.	$= \lim_{t \to \infty} \frac{1}{-p+1} \cdot \frac{1}{t^{p-1}} + \frac{1}{-p+1}$
	If $p > 1$, then $\lim_{t \to \infty} \frac{1}{t^{p-1}} = \lim_{t \to \infty} \frac{1}{t^{\text{something positive}}} = 0$
	Therefore by the Integral Test $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges
	If $0 , then \lim_{t \to \infty} \frac{1}{t^{p-1}} = \lim_{t \to \infty} \frac{1}{t^{\text{something negative}}} = \lim_{t \to \infty} t^{\text{something positive}} \to \infty$
	Therefore by the Integral Test $\sum_{n=1}^{\infty} \frac{1}{n^p}$ does not
	converge.