Exponentiation

Let G be a group and let $q \in G$. For an integer n > 0 we denote:

•
$$g^n = \underbrace{g \cdot g \cdot \ldots \cdot g}_{n \text{ times}}$$

•
$$g^{-n} = \underbrace{g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1}}_{n \text{ times}}$$

$$\bullet \ g^0 = e$$

(additive notation: $ng = \underbrace{g + g + \ldots + g}_{n \text{ times}}$)

(additive notation: $(-n)g = \underbrace{-g - g - \ldots - g}_{n \text{ times}}$)

(additive notation: 0q = 0)

Properties of exponentiation

$$\bullet \ q^{m+n} = q^m \cdot q^n$$

(additive notation: (m + n)q = (mq) + (nq))

$$\bullet \ g^{mn} = (g^m)^n$$

(additive notation: (mn)q = m(nq))

Definition 5.1

Let G be a group. An order of an element $g \in G$ is the smallest integer $n \ge 1$ such that $q^n = e$. We write: |q| = n.

If $g^n \neq e$ for all $n \geq 1$ then we say that g is an element of an *infinite order* and we write $|q| = \infty$.

Note. If $g^n = e$ then $g^{-1} = g^{n-1}$. In particular, if $g^2 = e$ then $g = g^{-1}$

Exercise 5.2. Recall that the multiplication table of the dihedral group D_4 is as follows:

0	1	R_{90}	R_{180}	R_{270}	Н	V	D	D'
1	I R ₉₀ R ₁₈₀ R ₂₇₀ H V D	R_{90}	R_{180}	R_{270}	Н	V	D	D'
R_{90}	R_{90}	R_{180}	R_{270}	1	D'	D	Н	V
R_{180}	R_{180}	R_{270}	1	R_{90}	V	Н	D'	D
R_{270}	R_{270}	1	R_{90}	R_{180}	D	D'	V	Н
Н	Н	D	V	D'	1	R_{180}	R_{90}	R_{270}
V	V	D'	Н	D	R_{180}	1	R_{270}	R_{90}
D	D	Н	D'	V	R_{270}	R_{90}	1	R_{180}
D'	D'	V	D	Н	R_{90}	R_{270}	R_{180}	1

Find the order of every element of D_4

Exercise 5.3. Find the order of every element in the group \mathbb{Z}_6 .

Theorem 5.4

If *G* is a finite group and $g \in G$ then $|g| < \infty$.

Proof. Consider the sequence

$$q^1, q^2, q^3, \cdots \subseteq G$$

Since G consists of finitely many elements, we must have $g^m=g^n$ for some n>m. This gives

$$g^{-m}g^m = g^{-m}g^n$$
$$e = g^{n-m}$$

Thus $|g| \le n - m < \infty$.

Theorem 5.5

If G is a group, $g \in G$ and $n \ge 1$ is an integer such that $g^n = e$, then |g| divides n.

Proof. We have

$$n = |g| \cdot q + r$$

for some integers $q \ge 0$ and $0 \le r < |g|$. We want to show that r = 0. Assume that it is not true. Then we have

$$e=g^n=g^{|g|\cdot q+r}=g^{|g|\cdot q}\cdot g^r=\left(g^{|g|}
ight)^q\cdot g^r=e\cdot g^r=g^r$$

We obtain that $g^r = e$. This is however impossible, since r < |g|.

Theorem 5.6

If G is a group, and $a,b \in G$ are elements such that $|a|,|b| < \infty$ and ab = ba then |ab| divides $|a| \cdot |b|$.

Proof. Let |a| = m and |b| = n. We have

$$(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n \cdot (b^n)^m = e^n \cdot e^m = e$$

By Theorem 5.5 we get then that |ab| divides $mn = |a| \cdot |b|$.

Example. In the dihedral group D_4 take $a = R_{90}$, $b = R_{180}$. Then $a \cdot b = R_{90} \cdot R_{180} = R_{270}$ We have $|R_{90}| = 4$, $|R_{180}| = 2$, so $|R_{90}| \cdot |R_{180}| = 8$ which is divisible by $|R_{270}| = 4$.

Example. Theorem 5.6 is not true in general if $ab \neq ba$. Take for example a, b to be two different reflections in the dihedral group D_3 . Then |a| = |b| = 2, so $|a| \cdot |b| = 4$, but |ab| = 3.

Theorem 5.7

If G is a group, and $a \in G$ is element such that $|a| = n < \infty$ then

$$|a^k| = \frac{n}{\gcd(n, k)}$$

Exercise 5.8. Compute the order of the element $6 \in \mathbb{Z}_{10}$.

Proof of Theorem 5.7. First, notice that if r > 0 then $|a^{kr}| \le |a^k|$. This is true, since

$$\left(a^{kr}\right)^{|a^k|} = \left(\left(a^k\right)^{|a^k|}\right)^r = e$$

so by Theorem 5.5 $|a^{kr}|$ divides $|a^k|$.

Denote $d = \gcd(n, k)$. We will first show that $|a^k| = |a^d|$. Since d|k, we have $|a^k| \le |a^d|$. On the other hand, for some $p, q \in \mathbb{Z}$ we have d = pk + qn, so

$$a^{d} = a^{pk+qn} = a^{pk} \cdot a^{qn} = a^{pk} \cdot e = a^{pk}$$

which gives $|a^d| = |a^{pk}| \le |a^k|$.

It remains to show that $|a^d| = \frac{n}{d}$. Since $(a^d)^{\frac{n}{d}} = a^n = e$, we have $|a^d| \le \frac{n}{d}$. Also, if $1 \le i < \frac{n}{d}$, then di < n and so $(a^d)^i = a^{di} \ne e$. Thus $|a^d| \ge \frac{n}{d}$.