

PQ070XZ02ZxH

Low Voltage Operation Low Power-loss Voltage Regulator

Features

1.Low voltage operation (Minimum operating voltage: 2.35V)

2.Low dissipation current

Dissipation current at no load: MAX.2mA Output OFF-state dissipation current: MAX.5µA

- 3.Low power-loss (Dropout voltage: MAX.0.5V)
- 4. Built-in overcurrent and overheat protection functions
- 5.RoHS directive compliant

Applications

- 1.Peripheral equipment of personal computers
- 2. Power supplies for various electronic equipment such as DVD player or STB

■ Model Line-up

Output current (Io)	Package type	Variable output
2A	Taping	PQ070XZ02ZPH
	Sleeve	PQ070XZ02ZZH

Absolute Maximum Ratings

(Ta=25°C)

Parameter	Symbol	Rating	Unit
*1Input voltage	Vin	10	V
*1 Output control voltage	Vc	10	V
*1 Output adjustment pin voltage	Vadj	5	V
Output current	lo	2	Α
*2 Power dissipation	Pd	8	W
*3 Junction temperature	Tj	150	°C
Operating temperature	Topr	-40 to +85	°C
Storage temperature	Tstg	-40 to +150	°C
Soldering temperature	Tsol	260(10s)	°C

*1 All are open except GND and applicable terminals.
*2 Pd:With infinite heat sink
*3 There is case that over heat protection operates at the temperature Tj:125°C to 150°C, so this item cannot be used in this temperature range.

Outline Dimensions

Lead finish:Lead-free solder plating (Composition: Sn2Cu)

Notice The content of data sheet is subject to change without prior notice.

■ Electrical Characteristics

(Unless otherwise specified, condition shall be V _{IN} =5V, Vo=3V(R1=1kΩ), Io=0.5A, Vc=2.7V,Ta=25°C
--

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input voltage	Vin	-	2.35	-	10	V
Output voltage	Vo	-	1.5	-	7	V
Load regulation	RegL	Io=5mA to 2.0A	-	0.2	2	%
Line regulation	Regl	VIN=4 to 8V,Io=5mA	-	0.2	1	%
Ripple rejection	RR	Refer to Fig.2	45	60	-	dB
Dropout voltage	VI-O	VIN=2.85V,IO=2.0A	-	-	0.5	V
Reference voltage	Vref	-	1.225	1.25	1.275	V
Temperature coefficient of reference voltage	TcVref	Tj=0 to 125°C, Io=5mA	-	±1.0	-	%
*4ON-state voltage for control	VC(ON)	₩4	2.0	-	-	V
ON-state current for control	IC(ON)	-	-	-	200	μA
OFF-state voltage for control	Vc(off)	Io=0A	-	-	0.8	V
OFF-state current for control	IC(OFF)	Io=0A, Vc=0.4V	-	-	2	μΑ
Quiescent current	Iq	Io=0A	-	1	2	mA
Output OFF-state consumption current	lqs	Vc=0.4V	-	-	5	μA

^{*4} In case of opening control terminal ② , output voltage turns off.

Fig.1 Test Circuit

Fig.2 Test Circuit for Ripple Rejection

Sheet No.: OP07009

Fig.3 Power Dissipation vs. Ambient Temperature

Note) Oblique line portion:Overheat protection may operate in this area.

Fig.5 Power Dissipation vs. Ambient Temperature (Typical Value)

Fig.6 Output Voltage Adjustment Characteristics (Typical Value)

Fig.4 Overcurrent Protection Characteristics

 $\begin{array}{lll} \text{Material} & : \text{ Glass-cloth epoxy resin} \\ \text{Size} & : 50 \times 50 \times 1.6 \text{mm} \\ \text{Cu thickness} & : 35 \mu \text{m} \end{array}$

Fig.7 Typical Application

Setting of Output Voltage

Output voltage is able to set from 1.5V to 7V when resistors R_1 and R_2 are attached to (3,4), terminals. As for the external resistors to set output voltage, refer to the figure below and Fig.6.

