Números Reais

Maria Joana Torres

2022/23

O conjunto dos números reais será indicado por $\mathbb R$

Duas operações:

- $lackbox{ adição } x,y\in\mathbb{R} \ \leadsto \ x+y\in\mathbb{R} \ (soma)$
- ▶ multiplicação $x, y \in \mathbb{R} \rightsquigarrow x.y \in \mathbb{R}$ (produto)

Os axiomas que essas operações satisfazem são os seguintes:

Axioma 1. Propriedade associativa:

$$(x+y)+z=x+(y+z)$$
 e $(x.y).z=x.(y.z), \forall x,y,z\in\mathbb{R}$

Axioma 2. Propriedade comutativa:

$$x + y = y + x$$
 e $x.y = y.x$, $\forall x, y \in \mathbb{R}$

Axioma 3. Elementos neutros: existem em $\mathbb R$ dois elementos distintos 0 e 1 t.q.

$$x + 0 = x$$
 e $x.1 = x$, $\forall x \in \mathbb{R}$

Axioma 4. Inversos:

todo o $x\in\mathbb{R}$ tem um inverso aditivo (ou simétrico) $-x\in\mathbb{R}$ t.q. x+(-x)=0 e,

se $x \neq 0$, existe também um inverso multiplicativo $x^{-1} \in \mathbb{R}$ t.q. $x.x^{-1} = 1$

Axioma 5. Propriedade distributiva:

$$x.(y+z) = x.y + x.z, \quad \forall x, y, z \in \mathbb{R}$$

\mathbb{R} é um corpo ordenado

Existe um subconjunto de \mathbb{R} , que representamos por \mathbb{R}^+ , chamado o conjunto dos números reais positivos, que satisfaz as seguintes propriedades:

Axioma 6. A soma e o produto de dois números reais positivos é um número positivo:

$$x, y \in \mathbb{R}^+ \Rightarrow x + y \in \mathbb{R}^+$$

 $x, y \in \mathbb{R}^+ \Rightarrow x.y \in \mathbb{R}^+$

Axioma 7. Dado $x \in \mathbb{R}$, verifica-se uma e uma só das situações seguintes:

$$x = 0, \ x \in \mathbb{R}^+, \ -x \in \mathbb{R}^+$$

Se denotarmos por \mathbb{R}^- o conjunto dos números -x onde $x\in\mathbb{R}^+$, a condição do Axioma 7 é equivalente a dizer que \mathbb{R} é a união disjunta de \mathbb{R}^- , $\{0\}$ e \mathbb{R}^+ . Os números $y\in\mathbb{R}^-$ chamam-se negativos.

\mathbb{R} é um corpo ordenado

Dados $x,y\in\mathbb{R}$, dizemos que x é menor do que y, e escrevemos x< y, quando $y-x\in\mathbb{R}^+$. De modo análogo, dizemos que x é maior do que y, e escrevemos x>y, quando $x-y\in\mathbb{R}^+$.

A relação binária < satisfaz as seguintes propriedades:

- **O1.** Transitividade: se x < y e y < z então x < z
- **Q2.** Tricotomia: dados $x,y \in \mathbb{R}$, ocorre exatamente uma das alternativas x=y, x < y ou y < x
- O3. Monotonia da adição:

se
$$x < y$$
 então $x + z < y + z, \ \forall x, y, z \in \mathbb{R}$

O4. Monotonia da multilplicação:

se
$$x < y$$
 e $z > 0$ então $x.z < y.z;$
se $x < y$ e $z < 0$ então $x.z > y.z$

Alguns subconjuntos de $\mathbb R$

o conjunto dos números naturais

$$\mathbb{N} = \{1, 2, 3, \cdots\}$$

o conjunto dos números inteiros

$$\mathbb{Z} = \{ \cdots, -2, -1, 0, 1, 2, \cdots \}$$

o conjunto dos números racionais

$$\mathbb{Q} = \left\{ \frac{p}{q} : \ p \in \mathbb{Z}, \ q \in \mathbb{Z} \setminus \{0\} \right\}$$

▶ aos números reais que não são racionais chamamos números irracionais e denotamos o conjunto dos números irracionais por R\Q.

Majorante, minorante, máximo e mínimo

Definição: Sejam $X\subseteq\mathbb{R}$ e $a\in\mathbb{R}$. Diz-se que a é

- majorante de X se $\forall x \in X$ $x \leq a$;
- minorante de X se $\forall x \in X$ $a \leq x$;
- máximo de X se a é majorante de X e $a \in X$. Representa-se $a = \max X$;
- **mínimo de** X se a é minorante de X e $a \in X$. Representa-se $a = \min X$.

Nota:

Observemos que, se a é majorante de X, qualquer elemento maior do que a é também majorante de X. Analogamente, se a é minorante de X, qualquer elemento menor do que a é minorante de X.

Conjunto limitado

Definição:

- Um conjunto $X\subseteq\mathbb{R}$ diz-se majorado ou limitado superiormente se possui algum majorante.
- Um conjunto $X\subseteq\mathbb{R}$ diz-se **minorado** ou **limitado inferiormente** se possui algum minorante.
- Um conjunto $X\subseteq\mathbb{R}$ diz-se **limitado** quando X é, simultaneamente, majorado e minorado, isto é, quando

$$\exists c, d \in \mathbb{R}, \quad \forall x \in X, \quad c \le x \le d,$$

ou, equivalentemente, quando

$$\exists c, d \in \mathbb{R}, \quad X \subseteq [c, d].$$

Supremo e ínfimo

Definição:

Seja X um subconjunto de $\mathbb R$. Um elemento $a\in\mathbb R$ diz-se **supremo de** X e representa-se $a=\sup X$, se verifica as duas condições seguintes:

- $\forall x \in X \quad x \leq a \quad (a \text{ \'e majorante de } X);$
- se $b\in\mathbb{R}$ é tal que $\,\,\forall\,x\in X,\,\,x\leq b,$ então $\,a\leq b\,\,$ (a é o menor dos majorantes).

Definição:

Seja X um subconjunto de \mathbb{R} . Um elemento $a \in \mathbb{R}$ diz-se **ínfimo de** X e representa-se $a = \inf X$, se verifica as duas condições seguintes:

- $\forall x \in X \quad a \leq x \quad (a \text{ \'e minorante de } X);$
- se $b \in \mathbb{R}$ é tal que $\forall x \in X, \ b \leq x$, então $b \leq a$ (a é o maior dos minorantes).

Consequências das definições

Nota:

- O supremo e o ínfimo de um conjunto, quando existem, são únicos.
- Um subconjunto X de $\mathbb R$ majorado tem máximo se e só se $\sup X \in X$. Em particular, se $a = \sup X$ e $a \in X$, então $a = \max X$.
- Um subconjunto X de $\mathbb R$ minorado tem mínimo se e só se $\inf X \in X$. Em particular, se $a=\inf X$ e $a\in X$, então $a=\min X$.

\mathbb{R} é um corpo ordenado completo

O seguinte axioma confere a $\mathbb R$ uma estrutura de corpo ordenado completo.

Axioma 8. Axioma do supremo (ou da completude de \mathbb{R})

Qualquer subconjunto de $\mathbb R$ não vazio e limitado superiormente possui supremo em $\mathbb R.$

Consequências da completude de $\mathbb R$

Propriedade 1

Qualquer subconjunto de $\mathbb R$ não vazio e limitado inferiormente possui ínfimo em $\mathbb R.$

Propriedade 2 [Propriedade Arquimediana dos reais]

Sejam $x \in \mathbb{R}^+$ e $y \in \mathbb{R}$, quaisquer. Então existe $n \in \mathbb{N}$ tal que nx > y.

Propriedade 3

Todo o intervalo não degenerado de números reais possui uma infinidade de racionais e uma infinidade de irracionais.

Valor absoluto ou módulo de um número real

Dado $x \in \mathbb{R}, \ |x|$ representa o **valor absoluto** ou **módulo** de x, definido da seguinte forma:

$$|x| = \left\{ \begin{array}{ccc} x & \text{se} & x \ge 0 \\ -x & \text{se} & x < 0 \, . \end{array} \right.$$

Propriedades do valor absoluto

O valor absoluto verifica as seguintes propriedades.

Propriedades Sejam $x, y, z \in \mathbb{R}$. Então:

1.
$$|x| \ge 0$$
 e $|x| = 0$ sse $x = 0$

2.
$$|-x| = |x|$$

3.
$$|x| \ge x$$
 e $|x| \ge -x$

4.
$$-|x| \le x \le |x|$$

5. sendo
$$a \ge 0$$
, tem-se que $|x| \le a$ sse $-a \le x \le a$

6. sendo
$$a \ge 0$$
, tem-se que $|x| \ge a$ sse $x \ge a \lor x \le -a$

7.
$$|x.y| = |x|.|y|$$

8.
$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$$
, sempre que $y \neq 0$

9.
$$|x+y| \le |x| + |y|$$

10.
$$|x| - |y| \le ||x| - |y|| \le |x - y|$$

11.
$$|x-z| \le |x-y| + |y-z|$$

Distância

A noção de valor absoluto permite introduzir o conceito de distância entre dois números reais. Dados $x,y\in\mathbb{R}$, chama-se distância de x a y ao número d(x,y) definido por

$$d(x,y) = |x - y|$$

Na figura seguinte está representado um ponto c e o intervalo aberto centrado em c e de raio (semi-amplitude) r>0, ou seja, o intervalo

$$]c-r, c+r[.$$

Este intervalo é o lugar geométrico dos

pontos da reta cuja distância a c é menor do que r

ou, dito de forma equivalente, o conjunto

$$\{x \in \mathbb{R}: |x - c| < r\}.$$

Topologia da reta real: conjunto aberto

Definição:

Dado um conjunto $X\subseteq\mathbb{R}$, um ponto $x\in X$ diz-se **ponto interior de** X se

$$\exists\, \epsilon>0:\]x-\epsilon,\, x+\epsilon[\ \subseteq X.$$

O conjunto dos pontos interiores a X designa-se por interior de X e representa-se por $\operatorname{int} X$ ou $\overset{\circ}{X}.$

Um conjunto $X\subseteq\mathbb{R}$ diz-se aberto quando $\operatorname{int} X=X.$

Topologia da reta real: conjunto fechado

Definição:

Dado um conjunto $X\subseteq\mathbb{R}$, um ponto $x\in\mathbb{R}$ diz-se **ponto aderente a** X se

$$\forall \epsilon > 0, \quad]x - \epsilon, \ x + \epsilon[\cap X \neq \emptyset.$$

O conjunto dos pontos aderentes a X designa-se por aderência de X ou por fecho de X e representa-se por $\operatorname{ad} X$ ou \overline{X} .

Um conjunto $X\subseteq \mathbb{R}$ diz-se **fechado** quando $\overline{X}=X.$

Topologia da reta real: ponto de acumulação

Definição:

Dado um conjunto $X\subseteq \mathbb{R}$, um ponto $x\in \mathbb{R}$ diz-se ponto de acumulação de X se

$$\forall \epsilon > 0, \quad (]x - \epsilon, x + \epsilon[\setminus \{x\}) \cap X \neq \emptyset.$$

Em particular, dizemos que x é **ponto de acumulação à direita de** X quando

$$\forall \epsilon > 0, \quad]x, x + \epsilon[\cap X \neq \emptyset$$

e que x é ponto de acumulação à esquerda de X quando

$$\forall \epsilon > 0, \quad]x - \epsilon, x[\cap X \neq \emptyset.$$

O conjunto dos pontos de acumulação de X designa-se por **derivado** de X e representa-se por X^{\prime} .

O conjunto dos pontos de acumulação à direita representa-se por X_+^\prime e o conjunto dos pontos de acumulação à esquerda por X_-^\prime .

Um ponto $x \in \mathbb{R}$ é ponto isolado de X se pertencer a X mas não for ponto de acumulação de X, isto é,

$$\exists\,\epsilon>0\qquad]x-\epsilon,\,x+\epsilon[\,\cap\,X=\{x\}.$$

Topologia da reta real: ponto de fronteira

Definição:

Dado um conjunto $X\subseteq\mathbb{R}$, um ponto $x\in\mathbb{R}$ diz-se **ponto de fronteira de** X se for ponto aderente a X e a $\mathbb{R}\backslash X$, isto é, quando

$$\forall \, \epsilon > 0, \quad |x - \epsilon, \, x + \epsilon[\, \cap X \neq \emptyset \quad \mathsf{e} \quad |x - \epsilon, \, x + \epsilon[\, \cap (\mathbb{R} \setminus X) \neq \emptyset.$$

O conjunto dos pontos de fronteira de X designa-se por fronteira de X e representa-se por ${\rm fr}\, X$ ou $\partial X.$