МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

- ✓ Понятие плоского и планарного графа
- ✓ Свойства плоских укладок графа
- ✓ Теорема Эйлера для плоского графа
- ✓ Следствия из теоремы Эйлера
- ✓ Теорема Понтрягина-Куратовского (критерий планарности графа)

- Понятие плоского и планарного графа
- ✓ Свойства плоских укладок графа
- ✓ Теорема Эйлера для плоского графа
- ✓ Следствия из теоремы Эйлера
- ✓ Теорема Понтрягина-Куратовского (критерий планарности графа)

Плоским графом называется граф, который изображен на плоскости без пересечения и самопересечения ребер (дуг).

Если граф изображен на плоскости с пересечением и (или) самопересечением ребер (дуг), но существует плоский изоморфный ему граф, то такой граф называется **планарным**; в противном случае граф называется **непланарным**.

Непланарный

Из определения планарного графа следуют следующие утверждения:

- 1. Всякий подграф планарного графа планарен.
- 2. Граф планарен тогда и только тогда, когда каждая компонента его связности планарна.

- ✓ Понятие плоского и планарного графа
- Свойства плоских укладок графа
- ✓ Теорема Эйлера для плоского графа
- ✓ Следствия из теоремы Эйлера
- ✓ Теорема Понтрягина-Куратовского (критерий планарности графа)

Задача плоской укладки планарного графа.

Пусть имеется пространство L – плоскость для укладки графа G(X,U). Необходимо найти такое отображение вершин и ребер (дуг) графа G(X,U) в точки и кривые Жордана пространства L , чтобы:

- различным вершинам графа соответствовали различные точки;
- кривые Жордана, соответствующие различным ребрам (дугам) графа, пересекались между собой только в точках, соответствующих инцидентным этим ребрам (дугам) вершинам графа.

Гранью плоского графа называется максимальное по включению множество точек плоскости, в котором каждая пара точек может быть соединена кривой Жордана, не пересекающей ребра (дуги) графа. **Границей грани** будем считать множество вершин и ребер (дуг) графа, принадлежащих одной грани.

Утверждение 1.

В плоском графе имеется одна внешняя грань, остальные грани – внутренние.

Утверждение 2.

Плоская укладка дерева приводит к построению плоского графа с одной гранью; причем эта грань – внешняя.

Утверждение 3.

Понятие грани распространяется на псевдографы.

Утверждение 4.

Стереографическая проекция плоского графа позволяет превратить любую внутреннюю грань во внешнюю.

- - 1. Всякий планарный граф допускает плоскую укладку, в которой любая выбранная вершина будет принадлежать внешней грани (на основании утверждения №4).
 - 2. Склейка двух плоских графов по общей вершине (по общему ребру) приводит к образованию нового плоского графа.

3. Две различные вершины графа, находящиеся на границе некоторой грани плоского графа, можно соединить кривой Жордана, которая разобьет эту грань на две грани.

- 4. Каждая точка плоскости L, в которой уложен некоторый граф, входит:
 - только в одну грань, если она не лежит на ребре;
 - только в одну грань, если она лежит на ребре, являющемся мостом в графе;
 - точно в две грани, если она лежит на ребре, не являющемся мостом в графе.

- ✓ Понятие плоского и планарного графа
- ✓ Свойства плоских укладок графа
- Теорема Эйлера для плоского графа
- ✓ Следствия из теоремы Эйлера
- ✓ Теорема Понтрягина-Куратовского (критерий планарности графа)

Для всякого связного плоского графа выполняется следующее равенство:

$$n-m+f=2,$$

где n, m, f — количество вершин, ребер, граней плоского графа.

Доказательство.

Пусть G(X,U) – связный плоский n,m-граф, содержащий f граней.

Для всякого связного плоского графа выполняется следующее равенство:

$$n - m + f = 2$$
,

где n, m, f — количество вершин, ребер, граней плоского графа.

Доказательство.

Пусть G(X,U) – связный плоский n,m-граф, содержащий f граней.

Построим для графа G(X,U) его некоторое остовное дерево – граф T . Известно, что количество ребер в этом дереве – m(T)=n-1, а количество граней в нем – f(T)=1 (на основании утверждения №2). Подставим значения в формулу Эйлера: n-(n-1)+1=2. Следовательно, формула Эйлера верна для графа T.

Для всякого связного плоского графа выполняется следующее равенство:

$$n - m + f = 2$$
,

где n, m, f — количество вершин, ребер, граней плоского графа.

Доказательство.

Пусть G(X,U) – связный плоский n,m-граф, содержащий f граней.

Построим граф G' путем добавления в дерево T одного из новых ребер графа G, не вошедших в это дерево. Тогда m(G')=m(T)+1=n, а количество граней в нем f(G')=f(T)+1=2, (на основании свойства N $oldsymbol{0}$ 3). Подставим значения в формулу Эйлера: n-n+2=2. Следовательно, формула Эйлера верна для графа G'.

Для всякого связного плоского графа выполняется следующее равенство:

$$n-m+f=2,$$

где n, m, f — количество вершин, ребер, граней плоского графа.

Доказательство.

Пусть G(X,U) – связный плоский n,m-граф, содержащий f граней.

Достроим цепочку графов $T \to G' \to G'' \to ... \to G$ до тех пор, пока не будет построен исходный граф G. Каждый следующий граф в цепи строится на основе предыдущего путем добавления в него нового ребра из графа G.

Для всякого связного плоского графа выполняется следующее равенство:

$$n-m+f=2,$$

где n, m, f — количество вершин, ребер, граней плоского графа.

Доказательство.

Пусть G(X,U) – связный плоский n,m-граф, содержащий f граней.

При проверке формулы Эйлера для очередного графа в цепочке заметим, что добавление нового ребра приводит к увеличению количества граней на 1.

Таким образом, формула Эйлера верна и для графа G, завершающего эту цепочку.

- ✓ Понятие плоского и планарного графа
- ✓ Свойства плоских укладок графа
- ✓ Теорема Эйлера для плоского графа
- Следствия из теоремы Эйлера
- ✓ Теорема Понтрягина-Куратовского (критерий планарности графа)

1. Число граней в плоской укладке связного планарного n,m-графа определяется по формуле Эйлера как $\mathbf{f} = \mathbf{m} - \mathbf{n} + \mathbf{2}$, т.е. f – инвариант планарного графа, не зависит от способа его плоской укладки.

Утверждение. Количество внутренних граней в связном планарном n,m-графе определяется цикломатическим числом этого графа, т.е. равно максимальному числу независимых циклов в графе.

По теореме Эйлера n-m+f=2 или $f-1=\underline{m-n+1}$. Известно, что для связного n,m-графа ${\pmb \sigma}({\pmb G})=\underline{m-n+1}$. Любой плоский граф содержит точно одну внешнюю грань, поэтому ${\pmb \sigma}({\pmb G})$ совпадает с количеством внутренних граней в нем.

2. Для связного планарного n, m-графа при $n \geq 3$ выполняется следующее условие:

$$m < 3n - 6$$
.

$$n = 8, m = 10, f = 4$$

 $2m = 20$

Доказательство.

Пусть G – плоский граф без петель и кратных ребер.

Всякое ребро в нем — раздел двух граней или мост (свойство №4 плоских укладок).

Поэтому суммарное количество ребер во всех гранях этого графа - максимум 2m.

2. Для связного планарного n, m-графа при $n \ge 3$ выполняется следующее условие:

$$m \leq 3n - 6$$
.

$$n = 8, m = 10, f = 4$$

 $2m = 20$ $3f = 12$

Доказательство.

Пусть G – плоский граф без петель и кратных ребер.

Каждая грань в нем образована как минимум тремя ребрами. Поэтому суммарное количество ребер во всех гранях этого графа - минимум 3f.

2. Для связного планарного n, m-графа при $n \geq 3$ выполняется следующее условие:

$$m \leq 3n - 6$$
.

$$n=8, m=10, f=4$$
 $2m=20$ $3f=12$ $10 \le 3 \cdot 8 - 6$ (верно)

Доказательство.

Пусть G – плоский граф без петель и кратных ребер.

Следовательно, можно утверждать, что $3f \le 2m$.

Подставим в это неравенство f = m - n + 2.

Тогда $3(m-n+2) \le 2m$.

Отсюда и следует, что $\, m \leq 3n-6 . \,$

3. Полный 5-вершинный граф K_5 - непланарный граф.

Доказательство (от противного).

$$m(K_5) = 10, n(K_5) = 5.$$

Предположим, что граф K_5 планарен.

Тогда для него должно выполняться условие $m \leq 3n-6$.

Но после подстановки значений получим, что $10 \leq 3 \cdot 5 - 6$ (не верно).

Поэтому граф K_5 - непланарный граф.

4. Полный двудольный граф $K_{3,3}$ - непланарный граф.

Доказательство (от противного).

$$m(K_{3,3}) = 9$$
, $n(K_{3,3}) = 6$.

Предположим, что граф $K_{3,3}$ планарен. Из-за двудольности графа каждая грань в нем образована как минимум 4 ребрами. Поэтому суммарное количество ребер во всех гранях этого графа - минимум 4f. Следовательно, можно утверждать, что $4f \le 2m$. Подставим в это неравенство f=m-n+2. Тогда $m\leq 2n-4$. Но после подстановки значений получим, что $9 < 2 \cdot 6 - 4$ (не верно).

Поэтому граф $K_{3,3}$ - непланарный граф.

- ✓ Понятие плоского и планарного графа
- ✓ Свойства плоских укладок графа
- ✓ Теорема Эйлера для плоского графа
- ✓ Следствия из теоремы Эйлера
- Теорема Понтрягина-Куратовского (критерий планарности графа)

Теорема Понтрягина-Куратовского (критерий планарности графа).

Граф является планарным тогда и только тогда, когда в нем нет подграфов изоморфных и (или) гомеоморфных графам K_5 и $K_{3,3}$.

Примечание: Графы K_5 и $K_{3,3}$ называют графами Понтрягина-Куратовского.

Задача плоской укладки графа решается следующим образом:

- 1. Исследование графа на планарность.
- 2. Если граф не планарный, то определяется минимальное количество слоев для его укладки.
- 3. Плоская укладка графа в слоях монтажного пространства.

- ✓ Понятие плоского и планарного графа
- ✓ Свойства плоских укладок графа
- ✓ Теорема Эйлера для плоского графа
- ✓ Следствия из теоремы Эйлера
- Теорема Понтрягина-Куратовского (критерий планарности графа)

МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

- ✓ Понятие плоского и планарного графа
- ✓ Свойства плоских укладок графа
- ✓ Теорема Эйлера для плоского графа
- ✓ Следствия из теоремы Эйлера
- ✓ Теорема Понтрягина-Куратовского (критерий планарности графа)

