Implementing Pure Lambda Calculus in Haskell

Chad Reynolds

Lambda Calculus

Three forms of lambda terms:

```
<terms> t ::= <variable> x | <abstraction> λx.t | <application> t t'
```

• Calculation is done through beta-reduction and substitution - $(\lambda x.t)t' = [t'/x]t$

Lambda Calculus

• Different reduction strategies:

$$(\lambda x.\lambda y.y)((\lambda x.xx)\lambda x.xx) \rightsquigarrow \lambda y.y$$

$$(\lambda x.\lambda y.y)((\lambda x.xx)\lambda x.xx) \rightsquigarrow (\lambda x.\lambda y.y)((\lambda x.xx)\lambda x.xx)$$

 Leftmost reduction will always result in a normal form if a normal form exists

Variable Capture

What happens when reducing a term with free variables?

$$(\lambda x.\lambda y.x)y \rightsquigarrow \lambda y.y$$

When what we really want is:

$$(\lambda x.\lambda y.x)y \rightsquigarrow \lambda y.z$$

De Bruijn Indices

- Avoid the variable capture problem by having variables represented as numbers referencing their binder
- Our new syntax becomes:

```
<terms> t ::= <variable> 0,1,... | <abstraction> λ.t | <application> t t'
```

λx.x becomes λ.0 and λx.y becomes λ.1

De Bruijn Indices

Beta-reduction becomes:

$$(\lambda.t)t' = [t'/0]t$$

 Substitution involves comparison of the variables and addition/ subtraction as it drills down

 $(\lambda.\lambda.1)(\lambda.0)$ = $[(\lambda.0)/0](\lambda.1)$ = $\lambda.([(\lambda.0)/1]1)$ = $\lambda.\lambda0$

C. Hankin. An Introduction to Lambda Calculi for Computer Scientists. Texts in computing. Kings College, 2004.

Demo

Questions?