Compact Sobolev embedding:

Let
$$5>0$$
, $P < P < =$

$$\begin{cases} \frac{2d}{d-2s} & \text{if } 5 < d/2 \\ + to & 5 > d/2 \end{cases}$$

Then HSC3 Licc compactly.

Proof: 1° Id: H°(Rd) \rightarrow L²(B(O,R)) compact, approximate Id by $T_{\epsilon}: f \mapsto \chi_{\epsilon} \star f$ $\Rightarrow \|T_{\epsilon}f - f\|_{L^{2}} \leq C \epsilon^{2s} \|f\|_{H^{s}}$ hence $T_{\epsilon} \rightarrow Id$ in L²(Hs, L²)

$$\chi_{\varepsilon} = \varepsilon^{-d} \chi (\varepsilon^{-1})$$

$$\hat{\chi} = 1 \text{ on } B(0,1)$$

$$0 \le \hat{\chi} \le 1$$

$$\sup_{\varepsilon} \hat{\chi} \in B(0,2)$$

+ TE - Hilbert-Schmidt => compact from L2(Rd) to L2(B(QR))

2° Interpolate with critical Sobolev embedding

Dual statement: $1 \le p \le 2 \Rightarrow L^p \hookrightarrow H^{-s}$ compactly if $s > s_c$ Out the $\frac{d}{p} = \frac{d}{2} + s_c$

<u>Chapter 2:</u> Incompressible Novier - Stokes equations

Introduction: $\begin{cases} \partial_t u + u \cdot \nabla u - 2\Delta u + \nabla p = 0 \\ (NS_2) \end{cases} \begin{cases} \partial_t u + u \cdot \nabla u - 2\Delta u + \nabla p = 0 \end{cases}$

 $u = u(t, x) \in \mathbb{R}^d$ - velocity field $p = p(t, x) \in \mathbb{R}$ - pressure

Energy: Ju. (NS,)

 $\int_{\mathbb{R}^{3}} u \cdot \partial_{t} u = \frac{1}{2} \frac{d}{dt} \|u\|_{L^{2}}^{2}$

- JAu. u = 11 Dull 2

Sop. n = - Spair n = 0

 $\int (u \cdot \nabla u) \cdot u = \sum_{i,j} \int u^j \partial_j u^j \cdot u^j$ $= -\frac{1}{2} \sum_{i,j} \int (u^i)^2 \partial_j u^j = 0$

1 d ||u||2 + > || \under u||^2 = 0

Energy equality! $\|u(t)\|_{L^2}^2 + 2\sqrt{3}\|\nabla u\|_{L^2}^2 dt = \|u(0)\|_{L^2}^2$

Expected: nelo([0,T]; L2) n L2([0,T]; H')

(II) Levay theorem:

If
$$u \in \text{smooth}$$
 then $(u \cdot \nabla u)^{i} = (\text{div}(u \otimes u))^{i} = \sum_{i=1}^{n} \partial_{i}(u^{i}u^{i})$

Def: of a weak solution:

Is
$$u \cdot \nabla \phi \, dxdt = 0$$
, $\forall \phi \in C_c^{\infty}$, $\forall \phi \in C_c^{\infty}$, $div \phi = 0$

$$\int_{\mathbb{R}^d} u(\xi, x) \cdot \psi(\xi, x) \, dx + \int_{\mathbb{R}^d} (\partial \nabla u \cdot \nabla \phi - (u \otimes u) \cdot \nabla \phi - u \partial_{\xi} \psi)$$

$$= \int_{\mathbb{R}^d} u_{\delta}(x) \cdot \psi(0, x) dx$$

$$= \int_{\mathbb{R}^d} u_{\delta}(x) \cdot \psi(0, x) dx$$

Leray thm: Let $u_i \in L^2(\mathbb{R}^d)$ with $div_i = 0$. Then (Ns_i) has a global weak solution st. $\forall t \in \mathbb{R}^+$, $\|u_i(t)\|_{L^2}^2 + 2J \int \|\nabla u_i\|_{L^2}^2 d\tau \leq \|u_0\|_{L^2}^2$.

Proof: Step 1: Construction of approximate function solutions. $\widehat{T}_{hv}(\xi) = 1_{B(0,n)}(\xi) \widehat{P}_{v}(\xi)$

$$P = Id + \nabla div (-A)^{-1}$$
 $div Pv = 0$

P-Helmholtz projection on div free vector fields $\hat{R}(\xi) = Id + \frac{\xi \xi}{|\xi|^2}$

Consider
$$\frac{d}{dt}u = F_n(u) = \sqrt{J_n} \Delta u - J_n \operatorname{div}(J_n u \otimes J_n u)$$
 (NS_{V,n})

Claim: It is an ODE on L2

$$J_n$$
 has range : $H^{\infty} = \Lambda H^S$

cauchy-Lipschitz theorem implies (NSV,n) has a unique maximal solution $u^n \in C^1(Eq.T_n); L^2)$ $^o J_n^2 = J_n = > J_n u^n$ is also a solution. Hence $u^n = J_n u^n$ Hence $u^n \in C^1(Eq.T_n); H^{or}$ and div $u^n = 0$.

1 de 11 un 112 = (ot un 1 un) 12

- 2 S J, Δu · u dx = -2 S Δu · u dx = 2 11 vu 1/2

- S J, div ("ou"). " = - Sdiv ("ou"). " = 0

We Eq. T_n^*), $\|u^*(t)\|_{L^2}^2 + 27 \int_0^t \|\nabla u^*\|_{L^2}^2 = \|J_n u_0\|_{L^2}^2 \le \|u_0\|_{L^2}^2$ Hence $T_n^* = +\infty$.

Step 2: Compactness

 $\frac{d}{dt} u'' = - \sqrt{\Delta u''} - \sqrt{\int_{n}^{\infty} div \left(u'' \otimes u'' \right)}$

Claim: $\left(\frac{d}{dt}u^{n}\right)_{n\in\mathbb{N}}$ bounded in $L_{loc}^{p}\left(\mathbb{R}^{t},H^{-1}\right)$ for some p>1 if d=2,3.

Energy inequality => n' & Lon 2 (Rt, H1) => Dri & L2 (Rt, H1)

 $\frac{d=2}{\|u\|_{L^{4}}} \leq C\sqrt{\|u\|_{L^{2}}} \sqrt{\frac{(R^{+}, H^{1})}{(R^{+}, H^{1})}} \sqrt{\frac{u^{n} \text{ bounded}}{(R^{+} \times R^{2})}}$ $= \sqrt{\frac{(R^{+} \times R^{2})}{(R^{+}, H^{1})}} \sqrt{\frac{u^{n} \text{ bounded}}{(R^{+} \times R^{2})}}$ $= \sqrt{\frac{(R^{+}, H^{1})}{(R^{+}, H^{1})}}$

" d=3

|| u_n||_{L4} ≤ C || u_n||_{L2} || ∇u_n||_{L2}

=) u_n bounded in L^{8/3} (R⁺; L⁴)

div (uⁿ ⊗ uⁿ) in L^{4/3} (R⁺; H⁻¹)

Consequence: 3 d>0, un bounded in Cd (IR+, Hat)

consequence: 3 x>0

un bounded in Cx (R+; H-1)

un bounded in Lo (12t; L2)

L2 locally compact in H-1. Apply Asidi theorem on any EQTJ.

At the end, one gets ue Lice (IRT; Hillow) st. ug(m) -> u in L'ac (IR+; H-1)

As un bounded in La (IR+, L2) on L2 (IR+, H1) one may assume that up(n) In in Los(IR+, Lz) n L2(IR+, H4) It suffices to show that u is a weak solution of (NS).

(II) Fujita- Kato theorem Potu - Dan = - mon- Op 1 div n = 0

Getting rid of the pressure: Use P = Id + Vdiv (-D)-1 $\begin{cases} \partial_t u - \sqrt[3]{\Delta u} = -P(\operatorname{div}(u \otimes u)) \\ u|_{t=0} = u_0 \qquad Q_{NS}(u,u) \end{cases}$

u(t) = e > + B(u,u) with $\begin{cases} \partial_t B(u,u) - 2\Delta B(u,u) = Q_{NS}(u,u) \\ u|_{t=0} = 0 \end{cases}$ Hethod will work for (GNS_v) : $\partial_t u - v\Delta u = Q(u, u)$ with $(Q(v, \omega))^i = \sum_i (x_{i,k}^i)(\xi) v_i^i \omega^k$ be homogenous of degree 1.

Abstract fixed point theorem:

X Banach space, $B: X \times X \rightarrow X$ bilinear, continuous $\forall v_o \in X$, s.t. $4 \|B\| \|v_o\|_X < 1 \Rightarrow \exists |v \in B_X(0, 2 \|v_o\|_X),$ $v = v_o + B(v, v)$

Proof: Bonach fixed point theorem.

 $u(t) = e^{\gamma t \Delta} u_0 + B(u, u)$. Find a good "X". $\times C S'(R^+ \times R^d)$

Scaling invariance of (GNS,)

· n solution of (GNS,) with no

 u_{λ} solution of (GNS₈) with $u_{0,\lambda}: x \mapsto u_{0}(\lambda x)$ $u_{\lambda}(t,x) = u(\lambda^{2}t, \lambda x)$

Look for X with norm invariant by $u \mapsto u_{\lambda}$ Examples: $L^{\infty}(\mathbb{R}^{+}, H^{\frac{d}{2}-1}) \cap L^{2}(\mathbb{R}^{+}, H^{\frac{d}{2}})$ (energy space if d=2) $L^{4}(\mathbb{R}^{+}, H^{\frac{d-1}{2}})$ $L^{\infty}(\mathbb{R}^{+}, L^{d})$

Fujita - Kato theorem: Let $n_0 \in H^{d_2-1}(\mathbb{R}^d)$. Then (GNS) has a unique maximal solution $n \in C(T_0, T^*), H^{\frac{d}{2}-1})$ or $L^2(T_0, T^*), H^{\frac{d}{2}-1})$.

Militario Della Militario di Californio di C

· If || u₀|| || d/2-1 ≤ c > then T*= + ∞ and Inu(t) II is nonincreasing (3 c>0 - universal, dep) only on dim. · If $T^* < +\infty$ then $\|u\|_{L^4(E_0,T^*)}, H^*^{\frac{d-1}{2}}) = +\infty$ Proof: Solve n= V + B(n,n) with V = er No B(u,u) solution of $\int_{\mathbb{R}} B(u,u) - v \Delta B(u,u) = Q(u,u)$ $\int_{\mathbb{R}} B(u,u) \Big|_{t=0} = 0$ X= L4 ([OT] , H =). Lemma: $\begin{cases} \partial_{t} v - v \Delta v = f & \text{in } \mathbb{R}^{t} \times \mathbb{R}^{d}, f \in L_{lec}^{2}(\mathbb{R}^{t}, H^{s-1}) \\ v|_{t=0} = v_{0} \end{cases}$ 3! solution VEC(IR+, HS) NLice (IR+, HS+1) 11v(t)||2 + 22 S 110v 112 = 11v 112 + 2 S (flv) Hs dt (33) $\hat{V}(t,\xi) = e^{-2t|\xi|^2} \hat{V}_0(\xi) + \int_0^t -2(t-\tau)|\xi|^2 \hat{f}(\tau,\xi) d\tau$ gives (11) Return to the proof: Apply lemma with p=4

 $Q(u,u) \in L^{2}(\dot{H}^{d}\underline{y}^{-2}) \qquad (s = \frac{d}{2} - 1)$ $Q(u,u) \parallel_{L^{4}} \leq \|Q(u,u)\|_{L^{2}(\dot{H}^{d}\underline{y}^{-2})} \leq C\|u\|_{L^{4}(\dot{H}^{d}\underline{y}^{-2})}^{2}$ $Q(u,\omega)(\xi) \approx |\xi| \ V \otimes \omega$

Claim: $\|Q(\mathbf{v}, \omega)\|_{\dot{H}^{2}-2} \le C \|\mathbf{v}\|_{\dot{H}^{\frac{d-1}{2}}} \|\mathbf{w}\|_{\dot{H}^{\frac{d-1}{2}}}$ Hence B maps $X \times X$ in X with $\|B\| \le \frac{C}{\sqrt{3}/4}$ Abstract lemma $\Rightarrow \mathbb{I}f$ $4 \|\mathbf{v}_{0}\|_{X} \frac{C}{\sqrt{3}/4} \le 1$ then $\exists |u| \in B(0, 2 \|\mathbf{v}_{0}\|_{X})$ factisfying $u = V_{0} + B(u, u)$ $\frac{Proof}{|u|} \text{ of claim: } \frac{d=2}{|u|} \text{ we have to prove}$ $\|Q(v, \omega)\|_{\dot{H}^{-1}} \le C \|v\|_{\dot{H}^{1/2}} \|u\|_{\dot{H}^{1/2}}$ $\|Q(v, \omega)\|_{\dot{H}^{-1}} \le C \|v\|_{u} \|u\|_{L^{2}} \le C \|v\|_{L^{4}} \|u\|_{L^{4}} \le C \|v\|_{\dot{H}^{1/2}} \|u\|_{\dot{H}^{1/2}}$ (Critical Sobolev embedding)

d=3 ||Q(v,w)||+1/2 < c||v⊗w||+1/2

 $\| \operatorname{div} (v \otimes \omega) \|_{\dot{H}^{-1/2}} \leq C \| \operatorname{div} (v \otimes \omega) \|_{L^{3/2}}$ $\leq C (\| v \otimes \nabla \omega \|_{L^{3/2}} + \| u \otimes \nabla v \|_{L^{3/2}})$ $\leq C (\| v v \|_{L^{6}} \| \nabla \omega \|_{L^{2}} + \| u \omega \|_{L^{6}} \| \nabla v \|_{L^{2}})$ $\leq C (\| v v \|_{L^{6}} \| \nabla \omega \|_{L^{2}} + \| u \omega \|_{L^{6}} \| \nabla v \|_{L^{2}})$ $\leq C \| \nabla v \|_{L^{2}} \| \nabla \omega \|_{L^{2}}$

SECRETARY (* 1875)