Examples of factor groupoids: Cantor functions and iterated function systems Glasgow Analysis Seminar

Mitch Haslehurst

Department of Mathematics & Statistics University of Victoria

April 7, 2022

A groupoid G is like a group, but not every pair of elements can be multiplied.

A groupoid G is like a group, but not every pair of elements can be multiplied.

Every element x of G has an inverse x^{-1} , but there are many "units". The set of units is denoted $G^{(0)}$ and they are of the form $x^{-1}x$. Define the maps $r(x) = xx^{-1}$ and $s(x) = x^{-1}x$.

A groupoid G is like a group, but not every pair of elements can be multiplied.

Every element x of G has an inverse x^{-1} , but there are many "units". The set of units is denoted $G^{(0)}$ and they are of the form $x^{-1}x$. Define the maps $r(x) = xx^{-1}$ and $s(x) = x^{-1}x$.

Example. Let X be a nonempty set and $R \subseteq X \times X$ an equivalence relation. Then R is a groupoid:

$$(x,y)(y',z) = (x,z)$$
 $(x,y)^{-1} = (y,x)$

only when y = y'.

Given a groupoid with some nice topological properties, we can make a C^* -algebra out of it. Assume G is locally compact Hausdorff and étale (the map r is a local homeomorphism).

Given a groupoid with some nice topological properties, we can make a C^* -algebra out of it. Assume G is locally compact Hausdorff and étale (the map r is a local homeomorphism).

 $C_c(G) = \text{all continuous, compactly supported functions } f: G \to \mathbb{C}.$

$$(f \star g)(x) = \sum_{r(y)=r(x)} f(y)g(y^{-1}x) \qquad f^*(x) = \overline{f(x^{-1})}$$

Given a groupoid with some nice topological properties, we can make a C^* -algebra out of it. Assume G is locally compact Hausdorff and étale (the map r is a local homeomorphism).

 $C_c(G) = \text{all continuous, compactly supported functions } f: G \to \mathbb{C}.$

$$(f \star g)(x) = \sum_{r(y)=r(x)} f(y)g(y^{-1}x) \qquad f^*(x) = \overline{f(x^{-1})}$$

To get a complete norm, represent $C_c(G)$ on a Hilbert space and take the closure to get the reduced C*-algebra of G, called $C_r^*(G)$.

Example. Let $X = \{1, 2, ..., n\}$ and $R = X \times X$.

Example. Let $X = \{1, 2, ..., n\}$ and $R = X \times X$. Then if f and g are in $C_c(R)$, we have

$$(f \star g)(i,k) = \sum_{j=1}^{n} f(i,j)g(j,k) \qquad f^{*}(i,k) = \overline{f(k,i)}$$

Example. Let $X = \{1, 2, ..., n\}$ and $R = X \times X$. Then if f and g are in $C_c(R)$, we have

$$(f \star g)(i,k) = \sum_{j=1}^{n} f(i,j)g(j,k)$$
 $f^*(i,k) = \overline{f(k,i)}$

Hopefully these formulae look familiar. It's matrix multiplication and the conjugate transpose, so $C_c(R) \cong M_n(\mathbb{C})$.

Example. Let $X = \{1, 2, ..., n\}$ and $R = X \times X$. Then if f and g are in $C_c(R)$, we have

$$(f \star g)(i,k) = \sum_{j=1}^{n} f(i,j)g(j,k)$$
 $f^*(i,k) = \overline{f(k,i)}$

Hopefully these formulae look familiar. It's matrix multiplication and the conjugate transpose, so $C_c(R) \cong M_n(\mathbb{C})$.

If X is a locally compact Hausdorff space and $R = \{(x, x) \mid x \in X\}$, then $C_r^*(R) \cong C_0(X)$.

Let X be a compact Hausdorff space and Γ a discrete group acting on X by homeomorphisms. Then $X \times \Gamma$ is a locally compact Hausdorff étale groupoid:

$$(x,g)(y,h) = (x,gh)$$
 $(x,g)^{-1} = (g \cdot x,g^{-1})$

only when $g \cdot x = y$. Moreover, $C_r^*(X \times \Gamma)$ is isomorphic to the (reduced) crossed product $C(X) \rtimes \Gamma$.

Problem. Given a C*-algebra A, find a groupoid G such that $A \cong C_r^*(G)$.

Problem. Given a C*-algebra A, find a groupoid G such that $A \cong C_r^*(G)$.

If A is classifiable, then this becomes

Problem. Given a C*-algebra A, find a groupoid G such that $A \cong C_r^*(G)$.

If A is classifiable, then this becomes

Problem. Given some K-theory data, find a groupoid G such that the data is $K_*(C_r^*(G))$.

Problem. Given a C*-algebra A, find a groupoid G such that $A \cong C_r^*(G)$.

If A is classifiable, then this becomes

Problem. Given some K-theory data, find a groupoid G such that the data is $K_*(C_r^*(G))$.

Notable references:

Li, X. "Every classifiable simple C^* -algebra has a Cartan subalgebra". Invent. math. 219, 653–699 (2020).

Putnam, I.F. "Some classifiable groupoid C^* -algebras with prescribed K-theory". Math. Ann. 370, 1361–1387 (2018).

Factor groupoids

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid homomorphism.

Factor groupoids

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid homomorphism.

Assume:

- $oldsymbol{0}$ G and G' are locally compact Hausdorff and étale,
- \bullet $\pi|_{G^u}: G^u \to (G')^{\pi(u)}$ is bijective for all u in $G^{(0)}$.

Factor groupoids

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid homomorphism.

Assume:

- $oldsymbol{0}$ G and G' are locally compact Hausdorff and étale,

Obtain an inclusion $C^*_r(G') \subseteq C^*_r(G)$ via $b \mapsto b \circ \pi$ (b in $C_c(G')$)

Define the map $\varphi:\{0,1\}^{\mathbb{N}} o S^1$ by

$$\varphi(\lbrace x_n\rbrace) = \exp\left(2\pi i \sum_{n=1}^{\infty} x_n 2^{-n}\right)$$

Define the map $\varphi:\{0,1\}^{\mathbb{N}} \to S^1$ by

$$\varphi(\lbrace x_n\rbrace) = \exp\left(2\pi i \sum_{n=1}^{\infty} x_n 2^{-n}\right)$$

Let S be tail-equivalence on $\{0,1\}^{\mathbb{N}}$, that is, $(\{x_n\}, \{y_n\}) \in S$ if and only if $x_n = y_n$ for sufficiently large n.

Define the map $\varphi:\{0,1\}^{\mathbb{N}} \to S^1$ by

$$\varphi(\lbrace x_n\rbrace) = \exp\left(2\pi i \sum_{n=1}^{\infty} x_n 2^{-n}\right)$$

Let S be tail-equivalence on $\{0,1\}^{\mathbb{N}}$, that is, $(\{x_n\}, \{y_n\}) \in S$ if and only if $x_n = y_n$ for sufficiently large n.

S has a natural étale topology generated by the basic sets

$$\gamma(p,q) = \left\{ (\{x_n\}, \{y_n\}) \mid (y_1, y_2, \dots, y_n) = (p_1, p_2, \dots, p_n) \\ (x_n\}, \{y_n\}) \mid (y_1, y_2, \dots, y_n) = (q_1, q_2, \dots, q_n) \\ x_k = y_k \text{ for all } k \ge n + 1 \right\}$$

where $p, q \in \{0, 1\}^n$, and $C_r^*(S) \cong M_{2^{\infty}}$.

What happens when we let $T = (\varphi \times \varphi)(S)$ and give T the quotient topology?

What happens when we let $T = (\varphi \times \varphi)(S)$ and give T the quotient topology? We get

$$T = \{(w, z) \in S^1 \times S^1 \mid w = e^{2\pi i \theta} z \text{ for some } \theta \in \mathbb{Z}[\frac{1}{2}]\}$$

with basic open sets $U_{W,\theta} = \{(z, e^{2\pi i \theta}z) \mid z \in W\}$ where $W \subseteq S^1$ is open and $\theta \in \mathbb{Z}[\frac{1}{2}]$.

What happens when we let $T = (\varphi \times \varphi)(S)$ and give T the quotient topology? We get

$$T = \{(w, z) \in S^1 \times S^1 \mid w = e^{2\pi i \theta} z \text{ for some } \theta \in \mathbb{Z}[\frac{1}{2}]\}$$

with basic open sets $U_{W,\theta} = \{(z, e^{2\pi i \theta}z) \mid z \in W\}$ where $W \subseteq S^1$ is open and $\theta \in \mathbb{Z}[\frac{1}{2}]$.

T is a second-countable locally compact Hausdorff étale groupoid in the quotient topology, and $C_r^*(T) \cong B$, where B is the Bunce-Deddens algebra of type 2^{∞} .

What happens when we let $T = (\varphi \times \varphi)(S)$ and give T the quotient topology? We get

$$T = \{(w, z) \in S^1 \times S^1 \mid w = e^{2\pi i \theta} z \text{ for some } \theta \in \mathbb{Z}[\frac{1}{2}]\}$$

with basic open sets $U_{W,\theta} = \{(z, e^{2\pi i \theta}z) \mid z \in W\}$ where $W \subseteq S^1$ is open and $\theta \in \mathbb{Z}[\frac{1}{2}]$.

T is a second-countable locally compact Hausdorff étale groupoid in the quotient topology, and $C_r^*(T) \cong B$, where B is the Bunce-Deddens algebra of type 2^{∞} .

$$K_0(C_r^*(T)) \cong \mathbb{Z}[\frac{1}{2}] \qquad K_1(C_r^*(T)) \cong \mathbb{Z}$$

and $C_r^*(T)$ has a unique tracial state.

Let (V, E) be a Bratteli diagram.

Let (V, E) be a Bratteli diagram.

Let (V, E) be a Bratteli diagram.

The *infinite path space* X_E of (V, E) is a totally disconnected compact metric space.

Let (V, E) be a Bratteli diagram.

The *infinite path space* X_E of (V, E) is a totally disconnected compact metric space.

Tail-equivalence $R_E \subseteq X_E \times X_E$ has an étale topology in which $C_r^*(R_E)$ is an AF-algebra.

Let (V, E) and (W, F) be two Bratteli diagrams.

Let (V, E) and (W, F) be two Bratteli diagrams.

Two graph embeddings $\xi^0, \xi^1: (W, F) \to (V, E)$ with $\xi^0|_W = \xi^1|_W$ and $\xi^0(F) \cap \xi^1(F) = \emptyset$.

Let (V, E) and (W, F) be two Bratteli diagrams.

Two graph embeddings $\xi^0, \xi^1: (W, F) \to (V, E)$ with $\xi^0|_W = \xi^1|_W$ and $\xi^0(F) \cap \xi^1(F) = \emptyset$.

Equivalence relation \sim_{ξ} on X_E :

$$(x_1, x_2, \dots, x_{n_0-1}, x_{n_0}, \xi^0(z_{n_0+1}), \xi^0(z_{n_0+2}), \dots)$$
 (1)

$$\sim_{\xi} (x_1, x_2, \dots, x_{n_0-1}, x'_{n_0}, \xi^1(z_{n_0+1}), \xi^1(z_{n_0+2}), \dots)$$
 (2)

where $x_{n_0} = x'_{n_0}$ if $x_{n_0} \notin \xi^0(F) \cup \xi^1(F)$, and $x_{n_0} = \xi^1(f)$ if $x'_{n_0} = \xi^0(f)$.

Denote $X_{\xi} := X_E / \sim_{\xi}$ and $\rho : X_E \to X_{\xi}$ the quotient map.

Denote $X_{\xi}:=X_{E}/\sim_{\xi}$ and $\rho:X_{E}\to X_{\xi}$ the quotient map.

Facts:

- **1** X_{ξ} is a second-countable compact metrizable space,
- ② the covering dimension of X_{ξ} is 1,
- \odot each connected component is either a single point or homeomorphic to S^1 .

Examples

Proposition. If $E = \xi^0(F) \cup \xi^1(F)$, then X_{ξ} is homeomorphic to $X_F \times S^1$.

Proposition. If $E = \xi^0(F) \cup \xi^1(F)$, then X_{ξ} is homeomorphic to $X_F \times S^1$.

Example. Let (V, E) have one vertex and three edges at each level. Identify X_E with $\{0, 1, 2\}^{\mathbb{N}}$.

Let (W, F) consist of a single path, and for f in F, $\xi^0(f) = 0$ and $\xi^1(f) = 1$.

Proposition. If $E = \xi^0(F) \cup \xi^1(F)$, then X_{ξ} is homeomorphic to $X_F \times S^1$.

Example. Let (V, E) have one vertex and three edges at each level. Identify X_E with $\{0, 1, 2\}^{\mathbb{N}}$.

Let (W, F) consist of a single path, and for f in F, $\xi^0(f) = 0$ and $\xi^1(f) = 1$.

There is a nested sequence $X_1 \subseteq X_2 \subseteq X_3 \subseteq \cdots \subseteq X_E$ such that

$$X_E = \overline{\bigcup_{n=1}^{\infty} X_n}$$

and each $\rho(X_n)$ is a disjoint union of finitely many circles.

The groupoid R_{ξ}

Let
$$R_{\xi} = \rho \times \rho(R_E)$$
.

With the quotient topology, R_{ξ} is a second-countable locally compact Hausdorff étale groupoid, and a factor of R_{E} via $\rho \times \rho : R_{E} \to R_{\xi}$.

The groupoid R_{ξ}

Let
$$R_{\xi} = \rho \times \rho(R_E)$$
.

With the quotient topology, R_{ξ} is a second-countable locally compact Hausdorff étale groupoid, and a factor of R_{E} via $\rho \times \rho : R_{E} \to R_{\xi}$.

We want to analyze the K-theory of $C_r^*(R_\xi) \subseteq C_r^*(R_E)$.

If $A' \subseteq A$, there is a six-term exact sequence

If $A' \subseteq A$, there is a six-term exact sequence

If $A' \subseteq A$, there is a six-term exact sequence

 $K_*(A'; A)$ is the *relative* K-theory of the inclusion $A' \subseteq A$.

If $A' \subseteq A$, there is a six-term exact sequence

$$K_1(A) \longrightarrow K_0(A';A) \longrightarrow K_0(A')$$

$$\downarrow^{\iota_*} \qquad \qquad \downarrow^{\iota_*}$$
 $K_1(A') \longleftarrow K_1(A';A) \longleftarrow K_0(A)$

 $K_*(A'; A)$ is the *relative* K-theory of the inclusion $A' \subseteq A$.

Excision: (Putnam, 2020)

$$K_*(C_r^*(G'); C_r^*(G)) \cong K_*(C_r^*(H'); C_r^*(H))$$

where $H \subseteq G$ and $H' \subseteq G'$ are where π is not one-to-one.

Theorem (H.)

We have $K_0(C_r^*(R_\xi)) \cong K_0(C_r^*(R_E))$ and $K_1(C_r^*(R_\xi)) \cong K_0(C_r^*(R_F))$. If R_E is minimal, then $C_r^*(R_\xi)$ is classifiable.

Theorem (H.)

We have $K_0(C_r^*(R_\xi)) \cong K_0(C_r^*(R_E))$ and $K_1(C_r^*(R_\xi)) \cong K_0(C_r^*(R_F))$. If R_E is minimal, then $C_r^*(R_\xi)$ is classifiable.

Through the set-up $\xi^0, \xi^1: (W, F) \to (V, E)$, we can prescribe $K_*(C_r^*(R_\xi))$.

Corollary

If G_0 is a simple acyclic dimension group and G_1 is a countable torsion free abelian group, we can find R_ξ such that $K_0(C_r^*(R_\xi)) \cong G_0$ (with order) and $K_1(C_r^*(R_\xi)) \cong G_1$.

An iterated function system (X, \mathcal{F}) (abbreviated IFS) is a complete metric space X with a finite set \mathcal{F} of functions $f_j: X \to X$ for j = 1, 2, ..., n.

An iterated function system (X, \mathcal{F}) (abbreviated IFS) is a complete metric space X with a finite set \mathcal{F} of functions $f_j: X \to X$ for j = 1, 2, ..., n.

If the IFS is hyberbolic (every f_j is a contraction) then there is a unique compact subset $C \subseteq X$ such that

$$C=\bigcup_{j=1}^n f_j(C)$$

C is called the attractor of the IFS.

An iterated function system (X, \mathcal{F}) (abbreviated IFS) is a complete metric space X with a finite set \mathcal{F} of functions $f_j: X \to X$ for j = 1, 2, ..., n.

If the IFS is hyberbolic (every f_j is a contraction) then there is a unique compact subset $C \subseteq X$ such that

$$C=\bigcup_{j=1}^n f_j(C)$$

C is called the attractor of the IFS.

We will also assume every function f_i is injective.

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{2}x$ and $f_2(x) = \frac{1}{2}x + \frac{1}{2}$. The attractor is C = [0, 1].

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{2}x$ and $f_2(x) = \frac{1}{2}x + \frac{1}{2}$. The attractor is C = [0, 1].

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{3}x$ and $f_2(x) = \frac{1}{3}x + \frac{2}{3}$. The attractor C is the Cantor set.

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{2}x$ and $f_2(x) = \frac{1}{2}x + \frac{1}{2}$. The attractor is C = [0, 1].

Example. Take $X = \mathbb{R}$ and $f_1(x) = \frac{1}{3}x$ and $f_2(x) = \frac{1}{3}x + \frac{2}{3}$. The attractor C is the Cantor set.

Example. Take $X = \mathbb{R}^2$ and

$$f_1(x) = \frac{1}{2}x$$
 $f_2(x) = \frac{1}{2}x + \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$ $f_3(x) = \frac{1}{2}x + \begin{bmatrix} 1/4 \\ \sqrt{3}/4 \end{bmatrix}$

Example. Take $X = \mathbb{R}^2$ and

$$f_1(x) = \frac{1}{2}x$$
 $f_2(x) = \frac{1}{2}x + \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$ $f_3(x) = \frac{1}{2}x + \begin{bmatrix} 1/4 \\ \sqrt{3}/4 \end{bmatrix}$

The attractor C is the Sierpiński triangle.

Theorem (Deeley, Putnam, Strung. 2019)

Let (C, \mathcal{F}) be a compact hyperbolic IFS and (X, φ) a Cantor minimal system. There exists a minimal extension $(\tilde{X}, \tilde{\varphi})$ of (X, φ) with factor map $\tilde{\pi}: \tilde{X} \to X$ such that $\tilde{\pi}^{-1}(x)$ is either a single point or homeomorphic to C (both possibilities always occur).

Theorem (Deeley, Putnam, Strung. 2019)

Let (C, \mathcal{F}) be a compact hyperbolic IFS and (X, φ) a Cantor minimal system. There exists a minimal extension $(\tilde{X}, \tilde{\varphi})$ of (X, φ) with factor map $\tilde{\pi}: \tilde{X} \to X$ such that $\tilde{\pi}^{-1}(x)$ is either a single point or homeomorphic to C (both possibilities always occur).

Idea: (X, φ) is topologically conjugate to a Bratteli-Vershik system on a Bratteli diagram (V, E). To each edge e in E, assign a function f_e in $\mathcal{F} \cup \{ \mathrm{id}_C \}$.

$$\tilde{X}_n = \{(x,c) \in X_E \times C \mid c \in f_{x_1} \circ f_{x_2} \circ \cdots \circ f_{x_n}(C)\}$$

Set
$$\tilde{X} = \bigcap_{n=1}^{\infty} \tilde{X}_n$$
 and $\tilde{\pi}(x, c) = x$.

We get a surjective groupoid homomorphism $\tilde{\pi} \times \mathrm{id}_{\mathbb{Z}} : \tilde{X} \times \mathbb{Z} \to X_E \times \mathbb{Z}$.

We get a surjective groupoid homomorphism $\tilde{\pi} \times \mathrm{id}_{\mathbb{Z}} : \tilde{X} \times \mathbb{Z} \to X_E \times \mathbb{Z}$. Using the excision theorem and the Pimsner-Voiculescu exact sequence, we get an exact sequence

$$0 \to K_0(C^*_r(R_E)) \to K_0(C^*_r(\tilde{X} \times \mathbb{Z})) \to K_0(C^*_r(R^C_E)) \otimes (K^0(C)/\mathbb{Z}) \to 0$$

and an exact sequence

$$0 \to \mathbb{Z} \to K_1(\mathit{C}^*_r(\tilde{X} \times \mathbb{Z})) \to K_0(\mathit{C}^*_r(R_E^C)) \otimes \mathit{K}^{-1}(\mathit{C}) \to 0$$

 $R_E^C \subseteq R_E$ are the tail-equivalent paths that are "eventually id $_C$ ".

If there is only one path in X_E with $f_{x_n} = \mathrm{id}_C$ for all n, then we get

$$K_0(C_r^*(\tilde{X} \times \mathbb{Z}))/K_0(C_r^*(R_E)) \cong K^0(C)/\mathbb{Z}$$

and

$$K_1(C_r^*(\tilde{X}\times\mathbb{Z}))/\mathbb{Z}\cong K^{-1}(C)$$

If there is only one path in X_E with $f_{x_n} = \mathrm{id}_C$ for all n, then we get

$$K_0(C_r^*(\tilde{X}\times\mathbb{Z}))/K_0(C_r^*(R_E))\cong K^0(C)/\mathbb{Z}$$

and

$$K_1(C_r^*(\tilde{X}\times\mathbb{Z}))/\mathbb{Z}\cong K^{-1}(C)$$

- Possibilities for $K^*(C)$?
- 2 When do the sequences split?

Thank you!

References

- Deeley, R.J.; Putnam, I.F.; Strung, K.R. "Non-homogeneous extensions of Cantor minimal systems". to appear, Proc. A.M.S.
- **②** Haslehurst, M.J. "Relative K-theory for C^* -algebras", preprint.
- Haslehurst, M.J. "Some examples of factor groupoids". (in preparation)
- Li, X. "Every classifiable simple C*-algebra has a Cartan subalgebra". Invent. math. 219, 653–699 (2020).
- Putnam, I.F. "Some classifiable groupoid C*-algebras with prescribed K-theory". Math. Ann. 370, 1361–1387 (2018).
- Putnam, I.F. "An excision theorem for the K-theory of C*-algebras, with applications to groupoid C*-algebras". to appear, Munster Mathematics Journal.