THE Zysman-Colman GROUP

Calculation Report

Naphthalene

Optimisation, Frequencies (Singlet)

Silico 1.0.0-pre.32 Page 1 of 12

Summary of Results

Metadata

Username: osl

24/06/2022 Date:

12:43:12

Duration: 1 m, 43 s

Success: **True** Converged: True

Computational

Turbomole (7.5.0) package:

Methods: DFT **Functional:** PBE0 Basis set:

6-31G** Optimisation,

Calculations: Frequencies Orbital spin: restricted

1 (singlet)

SCF Energies

No. of steps: 4

Final energy: -10488.7997 eV

Final energy: -1,012,015 kJmol⁻¹

Geometry

Formula: $C_{10}H_{8}$

Molar mass: 128.1705 gmol⁻¹

Alianment method:

Minimal

6.74 Å X extension: Y extension: 4.97 Å Z extension: 0.00 Å 0.26

Linearity ratio: Planarity ratio: 1.00

HOMO & LUMO

E_{HOMO,LUMO}: 5.20 eV

Multiplicity:

E_{HOMO}: -6.07 eV

E_{LUMO}: -0.87 eV

Permanent Dipole Moment

Total: 0.00 D

90.00° X axis angle:

XY plane angle: 90.00 °

Vibrational Frequencies

Negative

0 frequencies:

Silico 1.0.0-pre.32 Page 2 of 12

SCF Energies

SCF Energies

No. of steps: 4

Final energy: -10488.7997 eV Final energy: -1,012,015 kJmol⁻¹

Geometry

Geometry

Formula: $C_{10}H_8$

Molar mass: 128.1705 gmol⁻¹

Alignment method: Minimal

X extension: 6.74 Å

Y extension: 4.97 Å

Z extension: 0.00 Å

Linearity ratio: 0.26

Planarity ratio: 1.00

Silico 1.0.0-pre.32 Page 3 of 12

SCF Density

SCF density (isovalue: 0.0004)

Permanent Dipole Moment

Dipole Moment

0.00 D
0.00 D
0.00 D
-0.00 D
-0.00 D
-0.00 D
0.00 D
90.00°
90.00°

Aligned structure (dipole moment in red)

Silico 1.0.0-pre.32 Page 4 of 12

HOMO & LUMO

Silico 1.0.0-pre.32 Page 5 of 12

Vibrations

IR spectrum (simulated Gaussian functions with FWHM: 80 cm⁻¹)
Peaks /cm⁻¹: 173, 365, 488, 631, 805, 1054, 1160, 1291, 1426, 1582, 1675, 3224.

Silico 1.0.0-pre.32 Page 6 of 12

Table of Vibrational Frequencies

Level	Symmetry	Frequency /cm ⁻¹	Intensity /km mol ⁻¹
1	А	173.8900	1.9600
2	Α	188.7600	0.0000
3	Α	363.1000	1.2600
4	Α	395.4100	0.0000
5	Α	478.4100	0.0000
6	Α	488.2700	15.5600
7	Α	517.1100	0.0000
8	Α	523.4600	0.0000
9	Α	632.0700	3.6700
10	Α	636.9300	0.0000
11	Α	733.3100	0.0000
12	Α	783.2300	0.0000
13	Α	789.1200	0.0000
14	Α	805.2800	103.7700
15	Α	809.9100	0.2400
16	Α	854.7500	0.0000
17	Α	900.3200	0.0000
18	Α	948.3000	0.0000
19	Α	958.2500	0.0000
20	Α	975.8600	3.6500
21	Α	995.7800	0.0000
22	Α	1003.4600	0.0000
23	Α	1057.1100	6.2700
24	Α	1066.1500	0.0000
25	Α	1157.9100	5.0900
26	Α	1179.0900	0.8300
27	Α	1179.9300	0.0000
28	Α	1188.1900	0.0000
29	Α	1256.2900	2.0900
30	Α	1273.3900	0.0000
31	A	1296.9100	7.5700
32	A	1425.3000	5.2900
33	A	1432.3300	1.6100
34	 А	1455.0500	0.0000

Silico 1.0.0-pre.32 Page 7 of 12

	Naphthalene - Optii	misation, Frequencie	s (Singlet)
35	Α	1507.0400	0.0000
36	Α	1511.4100	0.0000
37	Α	1581.5300	8.3900
38	Α	1658.1900	0.0000
39	A	1678.9300	4.9400
40	A	1716.7200	0.0000
41	А	3201.6100	0.0000
42	А	3202.4800	6.2700
43	A	3205.4800	0.4000
44	A	3207.6900	0.0000
45	A	3220.3300	0.0000
46	Α	3220.9700	47.0100
47	A	3233.1600	38.0800
48	Α	3234.0200	0.000

Silico 1.0.0-pre.32 Page 8 of 12

Table of Selected Molecular Orbitals

Level	Label	Symmetry	Energy /eV
50	LUMO+15	А	8.6772
49	LUMO+14	Α	7.9408
48	LUMO+13	Α	6.9385
47	LUMO+12	Α	6.0199
46	LUMO+11	Α	5.8556
45	LUMO+10	Α	5.3160
44	LUMO+9	Α	5.1150
43	LUMO+8	Α	4.9563
42	LUMO+7	Α	4.9002
41	LUMO+6	Α	3.6416
40	LUMO+5	Α	3.3840
39	LUMO+4	A	3.0181
38	LUMO+3	Α	2.8726
37	LUMO+2	A	1.1210
36	LUMO+1	A	-0.0372
35	LUMO	Α	-0.8685
34	НОМО	Α	-6.0723
33	HOMO-1	A	-6.8459
32	HOMO-2	A	-8.0113
31	HOMO-3	A	-9.1658
30	HOMO-4	Α	-9.1940
29	HOMO-5	Α	-9.3747
28	HOMO-6	Α	-10.2483
27	HOMO-7	A	-10.9559
26	HOMO-8	A	-11.1181
25	HOMO-9	A	-11.5629
24	HOMO-10	Α	-11.5950
23	HOMO-11	Α	-12.2691
22	HOMO-12	А	-12.4566
21	HOMO-13	A	-13.7514
20	HOMO-14	Α	-14.2144
19	HOMO-15	Α	-14.3454

Silico 1.0.0-pre.32 Page 9 of 12

Table of Atoms

Element	X Coord	Y Coord	Z Coord
С	-1.2401190	-1.3986652	0.0000236
С	-2.4257456	-0.7064589	-0.0000163
С	-2.4257455	0.7064589	-0.0000245
С	-1.2401189	1.3986651	0.0000155
С	0.0000000	0.7136890	0.0000487
С	0.0000000	-0.7136891	0.0000482
С	1.2401190	-1.3986652	0.0000162
С	1.2401189	1.3986651	0.0000249
С	2.4257455	0.7064589	-0.0000165
С	2.4257456	-0.7064589	-0.0000247
Н	-1.2360956	-2.4857078	0.0000366
Н	-3.3697021	-1.2435414	-0.0000442
Н	-3.3697019	1.2435415	-0.0000637
Н	-1.2360954	2.4857078	0.0000215
Н	1.2360956	-2.4857078	0.0000257
Н	1.2360954	2.4857078	0.0000403
Н	3.3697019	1.2435415	-0.0000460
Н	3.3697021	-1.2435414	-0.0000653

Silico 1.0.0-pre.32 Page 10 of 12

Silico Calculation Report

Part of the silico software package

Version 1.0.0-pre.32 11 February 2022

Silico makes use of a number of 3^{rd} party libraries and programs; please cite these appropriately in your works:

Extraction and processing of results: **cclib**^[1] Rendering of 3D images: **VMD**^[2], **Tachyon**^[3]

Rendering of graphs: Matplotlib^[4]

Calculation of CIE colour coordinates: Colour Science^[5]

Generation of reports: Mako^[6], Weasyprint^[7]

Scientific constants: SciPy^[8]

Conversion of file formats: Pybel^[9], Openbabel^[10]

Calculation of spin-orbit coupling: PySOC^[11]

Rendering of 2D structures: **RDKit**^[12]

Saving of state during submission: $Dill^{[13,14]}$

Silico 1.0.0-pre.32 Page 11 of 12

Bibliography

- [1] N. M. O'boyle, A. L. Tenderholt and K. M. Langner, Journal of Computational Chemistry, 2008, 29, 839--845
- [2] W. Humphrey, A. Dalke and K. Schulten, Journal of Molecular Graphics, 1996, 14, 33-38
- [3] J. Stone, Masters Thesis, Computer Science Department, University of Missouri-Rolla, 1998
- [4] J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90--95
- [5] T. Mansencal, M. Mauderer, M. Parsons, N. Shaw, K. Wheatley, S. Cooper, J. D. Vandenberg, L. Canavan, K. Crowson, O. Lev, K. Leinweber, S. Sharma, T. J. Sobotka, D. Moritz, M. Pppp, C. Rane, P. Eswaramoorthy, J. Mertic, B. Pearlstine, M. Leonhardt, O. Niemitalo, M. Szymanski and M. Schambach, Colour 0.3.15, Zenodo, 2020
- [6] M. Bayer, https://www.makotemplates.org, (accessed May 2020)
- [7] K. Community, https://weasyprint.org, (accessed May 2020)
- [8] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. 1. 0. Contributors, *Nature Methods*, 2020, **17**, 261--272
- [9] N. M. O'Boyle, C. Morley and G. R. Hutchison, Chemistry Central Journal, 2008, 2, 5
- [10] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, *Journal of Cheminformatics*, 2011, **3**, 33
- [11] X. Gao, S. Bai, D. Fazzi, T. Niehaus, M. Barbatti and W. Thiel, *Journal of Chemical Theory and Computation*, 2017, 13, 515--524
- [12] G. Landrum, https://www.rdkit.org/, (accessed February 2022)
- [13] M. McKerns, L. Strand, T. Sullivan, A. Fang and M. Aivazis, *Proceedings of the 10th Python in Science Conference*, 2011,
- [14] M. McKerns and M. Aivazis, https://uqfoundation.github.io/project/pathos, (accessed February 2022)
- [15] K. Shizu and H. Kaji, The Journal of Physical Chemistry A, 2021, 125, 9000-9010

Silico 1.0.0-pre.32 Page 12 of 12