Title

D. Zack Garza

Tuesday 1st September, 2020

Contents

1 Tuesday, September 01

1

1 Tuesday, September 01

Last time: $V(I) = \{x \in \mathbb{A}^n \mid f(x) = 0 \,\forall x \in I\}$ and $I(X) = \{f \in k[x_1, \dots, x_n] \mid f(x) = 0 \,\forall x \in X\}$. We proved the Hilbert Nullstellensatz $I(V(J)) = \sqrt{J}$, defined the coordinate ring of an affine variety X as $A(X) := k[x_1, \dots, x_n]/I(X)$, the ring of "regular" (polynomial) functions on X.

Recall that a topology on X can be defined as a collection of "closed" subsets of X that are closed under arbitrary intersections and finite unions. A subset $Y \subset X$ inherits a subspace topology with closed sets of the form $Z \cap Y$ for $Z \subset X$ closed.

Definition 1.0.1 (Zariski Topology).

Let X be an affine variety. The closed sets are affine subvarieties $Y \subset X$.

We have \emptyset , X closed, since

- 1. $V_X(1) = \emptyset$,
- 2. $V_X(0) = X$

Closure under finite unions: Let $V_X(I), V_X(J)$ be closed in X with $I, J \subset A(X)$ ideals. Then $V_X(IJ) = V_X(I) \cup V_X(J)$.

Closure under intersections: We have $\bigcap_{i \in \sigma} V_X(J) = V_X(\sum_{i \in \sigma} J_i)$.