Question de cours :

- 1. Enoncer le théorème de comparaison et démontrer le cas de deux suites équivalentes.
- 2. Enoncer et démontrer la convergence des séries de Riemann
- 3. Enoncer le critère spéciale des séries alternées.

Exercice 1 : Série télescopique

Montrer que la série de terme général

$$u_n = \frac{1}{\sqrt{n-1}} - \frac{2}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}$$

(pour $n \ge 2$) est convergente, et calculer sa somme.

Exercice 2 : Quelques convergences

Etudier la convergence des séries $\sum u_n$ suivantes :

1.
$$u_n = \frac{n}{n^3 + 1}$$

2.
$$u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$$

$$3. u_n = n\sin(1/n)$$

1.
$$u_n = \frac{n}{n^3 + 1}$$
 2. $u_n = \frac{\sqrt{n}}{n^2 + \sqrt{n}}$ 3. $u_n = n\sin(1/n)$
4. $u_n = \frac{1}{\sqrt{n}}\ln\left(1 + \frac{1}{\sqrt{n}}\right)$ 5. $u_n = \frac{(-1)^n + n}{n^2 + 1}$ 6. $u_n = \frac{1}{n!}$
7. $u_n = \frac{3^n + n^4}{5^n - 2^n}$ 8. $u_n = \frac{n+1}{2^n + 8}$ 9. $u_n = \frac{1}{\ln(n^2 + 1)}$

5.
$$u_n = \frac{(-1)^n + n}{n^2 + 1}$$

6.
$$u_n = \frac{1}{n!}$$

7.
$$u_n = \frac{3^n + n^4}{5^n - 2^n}$$

8.
$$u_n = \frac{n+1}{2^n+8}$$

9.
$$u_n = \frac{1}{\ln(n^2 + 1)}$$

Exercice 3 : Reste de la série de Riemann

Soit $\alpha > 1$. On note

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}.$$

1. Soit a > 0. Déterminer

$$\lim_{x \to +\infty} \int_{a}^{x} \frac{dt}{t^{\alpha}}.$$

2. En déduire un équivalent simple de R_n .

Exercice 4: Attention aux signes!

- 1. Démontrer que la série $\sum_{n} \frac{(-1)^{n}}{\sqrt{n}}$ converge.
- 2. Démontrer que $\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} \frac{1}{n} + \frac{(-1)^n}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right).$
- 3. Étudier la convergence de la série $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.
- 4. Qu'a-t-on voulu mettre en évidence dans cet exercice?

Exercice 5 : Séries de Bertrand

Cet exercice est un classique à l'oral comme à l'écrit. Il vaut le coup d'être retravaillé. On souhaite étudier, suivant la valeur de $\alpha, \beta \in \mathbb{R}$, la convergence de la série de terme général

$$u_n = \frac{1}{n^{\alpha} (\ln n)^{\beta}}.$$

- 1. Démontrer que la série converge si $\alpha > 1$.
- 2. Traiter le cas $\alpha < 1$.
- 3. On suppose que $\alpha = 1$. On pose $T_n = \int_2^n \frac{dx}{x(\ln x)^{\beta}}$.
 - (a) Montrer si $\beta \leq 0$, alors la série de terme général u_n est divergente.
 - (b) Montrer que si $\beta > 1$, alors la suite (T_n) est bornée, alors que si $\beta \leq 1$, la suite (T_n) tend vers $+\infty$.
 - (c) Conclure pour la série de terme général u_n , lorsque $\alpha = 1$.

Exercice 6 : Règle de d'Alembret

C'est un résultat de cours de spé très utile.

Soit (u_n) une suite de réels positifs. On suppose qu'il existe $l \in \mathbb{R}$ tel que

$$\frac{u_{n+1}}{u_n} \to l.$$

- 1. On suppose l<1 et on fixe $\varepsilon>0$ tel que $l+\varepsilon<1$.
 - (a) Démontrer qu'il existe un entier n_0 tel que, pour $n \geq n_0$, on a

$$u_n < (l+\varepsilon)^{n-n_0} u_{n_0}.$$

- (b) En déduire que $\sum_n u_n$ converge.
- 2. On suppose l > 1. Démontrer que $\sum_n u_n$ diverge.
- 3. Étudier le cas l=1.

Exercice 7 : Développement asymptotique de la série harmonique

On pose $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.

- 1. Prouver que $H_n \sim_{+\infty} \ln n$.
- 2. On pose $u_n = H_n \ln n$, et $v_n = u_{n+1} u_n$. Étudier la nature de la série $\sum_n v_n$. En déduire que la suite (u_n) est convergente. On notera γ sa limite.
- 3. Soit $R_n = \sum_{k=n}^{+\infty} \frac{1}{k^2}$. Donner un équivalent de R_n .
- 4. Soit w_n tel que $H_n = \ln n + \gamma + w_n$, et soit $t_n = w_{n+1} w_n$. Donner un équivalent du reste $\sum_{k \ge n} t_k$. En déduire que $H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$.

Exercice 8 : Série des inverses des nombres premiers

Soit $(p_k)_{k\geq 1}$ la suite ordonnée des nombres premiers. Le but de l'exercice est d'étudier la divergence de la série $\sum_{k\geq 1}\frac{1}{p_k}$. Pour $n\geq 1$, on pose $V_n=\prod_{k=1}^n\frac{1}{1-\frac{1}{p_k}}$.

- 1. Montrer que la suite (V_n) est convergente si et seulement si la suite $(\ln V_n)$ est convergente.
- 2. En déduire que la suite (V_n) est convergente si et seulement si la série $\sum_{k\geq 1}\frac{1}{p_k}$ est convergente.
- 3. Démontrer que

$$V_n = \prod_{k=1}^n \left(\sum_{j \ge 0} \frac{1}{p_k^j} \right).$$

- 4. En déduire que $V_n \ge \sum_{j=1}^n \frac{1}{j}$.
- 5. Quelle est la nature de la série $\sum_{k\geq 1} \frac{1}{p_k}$?
- 6. Pour $\alpha \in \mathbb{R}$, quelle est la nature de la série $\sum_{k \geq 1} \frac{1}{p_k^{\alpha}}$?

Exercice 9: Transformation d'Abel

On considère deux suites complexes (u_n) et (v_n) . On s'intéresse à la convergence de la série $\sum_n u_n v_n$. Pour $n \ge 1$, on note $s_n = \sum_{k=0}^n u_k$.

1. Montrer que, pour tout $(p,q) \in \mathbb{N}^2$ tel que $p \leq q$, on a :

$$\sum_{k=p}^{q} u_k v_k = s_q v_q - s_{p-1} v_p + \sum_{k=p}^{q-1} s_k (v_k - v_{k+1}).$$

2. En déduire que $\sum \frac{\cos(n\theta)}{n}$ converge.