Functional Analysis-Spring 2024

Paul Carmody Assignment #5- April 18, 2024

- p. 200 #2,3,4,5,6,10.
- 2. Let H be a Hilbert space and $T: H \to H$ a bijective bounded linear operator whose inverse is bounded. Show that $(T^*)^{-1}$ exists and

$$(T^*)^{-1} = (T^{-1})^*$$

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

$$\langle T^{-1}Tx, y \rangle = \langle T^{-1}x, T^*y \rangle$$

$$\langle x, y \rangle = \langle T^{-1}x, T^*y \rangle$$

$$\langle x, (T^*)^{-1}y \rangle = \langle T^{-1}x, (T^*)^{-1}T^*y \rangle$$

$$= \langle T^{-1}x, y \rangle$$

$$= \langle x, (T^{-1})^*y \rangle$$

$$(T^*)^{-1} = (T^{-1})^*$$

3. If (T_n) is a sequence of bounded linear operators on a Hilbert space and $T_n \to T$, show that $T_n^* \to T^*$.

$$||T_n - T||^2 \ge ||T_n||^2 - ||T||^2 = ||T_n^*||^2 - ||T^*||^2 \ge ||T_n^* - T^*||^2$$
similarly, $||T_n^* - T^*||^2 \ge ||T_n^*||^2 - ||T^*||^2 = ||T_n||^2 - ||T||^2 \ge ||T_n - T||^2$
hence $||T_n - T||^2 = ||T_n^* - T^*||^2$

We know that given any N > 0 then for all n > N when $||T_n - T|| < \epsilon$ implies that $||T_n^* - T^*|| < \epsilon$. Therefore, $T_n^* \to T^*$.

4. Let H_1 and H_2 be Hilbert spaces and $T: H_1 \to H_2$ a bounded linear operator. If $M_1 \subset H_1$ and $M_2 \subset H_2$ are such that $T(M_1) \subset M_2$, show that $M_1^{\perp} \subset T^*(M_2^{\perp})$.

Let $x \in M_1$ and $z \in M_2^{\perp}$ and $x \notin \mathcal{N}(T)$. Then, $\langle Tx, z \rangle = 0$ implies $\langle x, T^*z \rangle = 0$ and either $T^*z \in \mathcal{N}(T^*)$ or $T^*z \perp x$. x is arbitrary, therefore $T^*z \perp \mathrm{span}(M_1)$ or $T^*z \in M_1^{\perp}$. Thus, $T^*z \in \mathcal{N}(T^*) \cup M_1^{\perp}$. z is arbitrary so $T^*(M_2^{\perp}) = \mathcal{N}(T^*) \cup M_1^{\perp}$, hence, $M_1^{\perp} \subset T^*(M_2^{\perp})$.

- 5. Let M_1 and M_2 in Prob. 4 be closed subspaces. Show that $T(M_1) \subset M_2$ if and only if $M_1^{\perp} \supset T^*(M_2^{\perp})$.
 - (\Rightarrow) Assuming that $T(M_1) \subset M_2$. We can see that $H_1 = M_1 \oplus M_1^{\perp}$. Then, let $x \in H_1, x = a + b$ for some $a \in M_1$ and $b \in M_1^{\perp}$ and $z \in M_2^{\perp}$ such that $z \neq 0$. Then,

$$\begin{split} \langle \, Tx,z \, \rangle &= \langle \, Ta,z \, \rangle + \langle \, Tb,z \, \rangle \\ &= \langle \, Tb,z \, \rangle \\ &= \langle \, b,T^*z \, \rangle \\ z \neq 0 \implies T^*z \in M_1^\perp \end{split}$$

z is arbitrary, thus $T^*(M_2^{\perp}) \subset M_1^{\perp}$.

(\Leftarrow) Assuming that $M^{\perp} \supset T^*(M_2^{\perp})$. We can see that $H_2 = M_2 \oplus M_2^{\perp}$. Then, let $z \in H_2, z = c + d$ for some $c \in M_2$ and $d \in M_2^{\perp}$ and $x \in M_1$ and $x \neq 0$. Then,

$$\langle x, T^*z \rangle = \langle x, T^*c \rangle + \langle x, T^*d \rangle$$
$$= \langle x, T^*c \rangle$$
$$= \langle Tx, c \rangle$$
$$x \neq 0 \implies Tx \in M_2$$

x is arbitrary, thus $T(M_1) \subset M_2$

- 6. If $M_1 = \mathcal{N}(T) = \{x \mid Tx = 0\}$ in Prob. 4, show that
 - (a) $T^*(H_2) \subset M_1^{\perp}$ $\mathcal{N}(T)$ is a closed vector space and by Prob 5 we can see that if $M_2 = \{0\}$ then $M_2^{\perp} = H_2$. Thus, $T^*(M_2^{\perp}) = T^*(H_2) \subset M_1^{\perp}$.

- (b) $[T(H_1)]^{\perp} \subset \mathcal{N}(T^*)$ Let $x \in H_1 \setminus \mathcal{N}(T)$ and $z \in \mathcal{N}(T^*)$ then $0 = \langle x, T^*z \rangle = \langle Tx, z \rangle$ implies that $Tx \in \mathcal{N}(T^*)^{\perp}$. Since $H_1 = \mathcal{N}(T) \oplus \mathcal{N}(T)^{\perp}$ given any $x \in \mathcal{N}(T)$ then $Tx = 0 \in \mathcal{N}(T^*)$ or $x \in \mathcal{N}(T)^{\perp}$ then $Tx \in \mathcal{N}(T^*)^{\perp}$, then $[T(H_1)]^{\perp} \subset \mathcal{N}(T^*)$.
- (c) $M_1 = [T^*(H_2)]^{\perp}$ Let $z \in H_2 \backslash \mathcal{N}(T^*)$ and $x \in \mathcal{N}(T)$ then $0 = \langle Tx, z \rangle = \langle x, T^*z \rangle$ implies that $T^*z \in \mathcal{N}(T)^{\perp}$. Since $H_2 = \mathcal{N}(T^*) \oplus \mathcal{N}(T^*)^{\perp}$ given any $z \in \mathcal{N}(T^*)$ then $T^*z = 0 \in \mathcal{N}(T)$ or $z \in \mathcal{N}(T^*)^{\perp}$ then $T^*z \in \mathcal{N}(T)^{\perp}$, then $[T^*(H_2)]^{\perp} = \mathcal{N}(T)$.
- 10. (Right shift operator) Let (e_n) be a total orthonormal sequence in a separable Hilbert space H and define the right shift operator to be the linear operator $T: H \to H$ such that $Te_n = e_{n+1}$ for $n = 1, 2, \cdots$. Explain the name. Find the range, null space, norm and Hilbert-adjoint operator of T.

The right shift operator gets its name by shifting the element back one position.

The range of $\mathcal{R}(T)$ is the set of total orthornormal sequences.

The null space is the first element if $e_1 = 1, 0, 0, 0, \dots$ for clearly $Te_1 = (0)$.

The norm $||T|| = \sup_{x \in H, ||x|| = 1} Tx = 1$

The adjoint, T^* , note that

$$\langle Te_i, e_j \rangle = \langle e_{i+1}, e_j \rangle = \left\{ \begin{array}{ll} 1 & j = i+1 \\ 0 & \text{otherwise} \end{array} \right.$$
 then
$$\langle e_i, T^*e_j \rangle = \langle Te_i, e_j \rangle$$

$$\Longrightarrow T^*e_j = e_{j-1}$$

- p. 207 #4, 5
- 4. Show that for any bounded linear operator T on H, the operators

$$T_1 = \frac{1}{2}(T + T^*)$$
 and $T_2 = \frac{1}{2i}(T - T^*)$

are self-adjoint. Show that

$$T = T_1 + iT_2$$
 and $T^* = T_1 - iT_2$.

Show uniqueness, that is, $T_1 + iT_2 = S_1 + iS_2$ implies $S_1 = T_1$ and $S_2 = T_2$; here, S_1 and S_2 are self-adjoint by assumption.

$$T_{1} = \frac{1}{2}(T + T^{*})$$

$$\langle T_{1}x, y \rangle = \left\langle \left(\frac{1}{2}(T + T^{*})\right)x, y \right\rangle$$

$$= \frac{1}{2} \langle Tx + T^{*}x, y \rangle$$

$$= \frac{1}{2} (\langle Tx, y \rangle + \langle T^{*}x, y \rangle)$$

$$= \frac{1}{2} (\langle x, T^{*}y \rangle + \langle x, Ty \rangle)$$

$$= \frac{1}{2} \langle x, T^{*}y + Ty \rangle$$

$$= \left\langle x, \frac{1}{2i} (T - T^{*})y \right\rangle$$

$$= \frac{-1}{2} \langle x, Ty - T^{*}y \rangle$$

$$= \frac{-1}{2} (\langle x, Ty \rangle - \langle x, T^{*}y \rangle)$$

$$= \frac{-1}{2} (\langle T^{*}x, y \rangle - \langle Tx, y \rangle)$$

$$= \frac{-1}{2} \langle T^{*}x - Tx, y \rangle$$

$$= \left\langle T^{*}x, T^{*}y + Ty \right\rangle$$

$$T_1 + iT_2 = \frac{1}{2}(T + T^*) + \frac{1}{2i}(T - T^*)$$

$$= \frac{1}{2}T + \frac{1}{2}T^* + \frac{1}{2}T - \frac{1}{2}T^*$$

$$= T$$

$$T_1 - iT_2 = \frac{1}{2}(T + T^*) - \frac{1}{2i}(T - T^*)$$

$$= \frac{1}{2}T + \frac{1}{2}T^* - \frac{1}{2}T + \frac{1}{2}T^*$$

$$= T^*$$

5. On \mathbb{C}^2 (cf. 3.1-4) let the operator $T: \mathbb{C}^2 \to \mathbb{C}^2$ be defined by $Tx = (\xi_1 + i\xi_2, \xi_1 - i\xi_2)$, where $x = (\xi_1, \xi_2)$. Find T^* . Show that we have $T^*T = TT^* = 2I$. Find T_1 and T_2 as defined in prob. 4.

$$T(a+bi) = a+ib+i(a-ib) = a+b+i(a+b) = (a+b)(1+i)$$

$$\langle T(a+bi), c+di \rangle = \langle (a+b)(1+i), c+di \rangle = (a+b)\langle 1+i, c+di \rangle = (a+b)(c+d)$$

$$(a+b)(c+d) = \langle a+bi, 1+i \rangle (c+d) = \langle a+bi, (c+d)(1+i) \rangle$$

$$T^*(c+di) = (c+d)(1+i) = (c+id)+i(c-id)$$

$$T^* = T$$

$$||T1||^2 = \langle T1, T1 \rangle = \langle 1+i, 1+i \rangle = 2$$

$$||T|| = \sqrt{2} = ||T^*||$$

$$||TT^*|| = 2$$

$$TT^* = 2I$$

$$T_1 = \frac{1}{2} ((1+i)+(1+i)) = 1+i = T$$

$$T_2 = \frac{1}{2i} ((1+i)-(1+i)) = 0$$