Transformation of Yeast

Contents

1	Introduction													1					
	1.1	Solutio	ons / reagents.																1
	1.2 Equipment																		
		1.2.1	User supplied			•													1
2	Protocol									1									
	2.1 Treatment 1													1					

1 Introduction

1.1 Solutions / reagents

- 1. □ Plasmid DNA
- 2. \square Carrier DNA (Salmon /Herring sperm DNa in H₂O, 2 mg/ml stock, 500 μ l aliquots, heat inactivated at 95°Cfor 5–6 minutes and keep on ice (has to be done once))
- 3. □ 50% Polyethylene glycol (PEG)MW 3350 solution (filter sterilized)
- 4. □ 1 M Lithium acetate (autoclaved)
- 5. \square Cells scrapped from plate
- 6.

 Plates containing appropriate dropout medium
- 7. □ ddH₂O

1.2 Equipment

- 1. \square Machine 1
- 2. \square Machine 2

1.2.1 User supplied

1. \square Ultra Pure Water

2 Protocol

2.1 Treatment 1

- 1. \square Try to do this
- 2. \square and then this