1. Convert (1278.875)₁₀ to its equivalent representation in the following

```
bases: (4 \text{ FE} \cdot \text{E})_{16}

\Rightarrow \text{ Base 16}

\Rightarrow \text{ Base 8}

\Rightarrow \text{ Base 2}

\Rightarrow \text{ Base 7}

\Rightarrow \text{ Base 3}

(1202100 \cdot 212)_3
```

SOLUTION:

Base 2: (1278.875)10

$$\Rightarrow$$
 (1278.875)₁₀ = (100|||||||0.|||)₂

Base 16: (1278.875)10 0.875 x 16 = 14.0 - 14 16 1278 $\frac{16}{16} \frac{1278}{16} = 14.0 - 14$ $\frac{4}{16} \frac{79}{16} = 14.0 - 14$ $\frac{4}{16} = 14.0 - 14$ $\Rightarrow (0.875)_{10} = (E)_{16}$ $\Rightarrow (1278)_{10} = (4FE)_{16}$ > (1278.875) = (4FE.E)16 Base 8: (1278.875)10 \Rightarrow (1278)₁₀ = (2376)₈ / 55 \Rightarrow (1278.875)₁₀ = (2376.7)₈ Base 7: (1278.875)10 7 1278

0.875 \times 7 = 6.125 -6

7 182 - 4

0.125 \times 7 = 0.875 - 0

0.875 \times 7 = 6.125 -6

3 - 5

(1278) 10 = (3504) 7 \Rightarrow (0.875) 10 = (0.606) 7 ⇒ (1278.875)₁₀ = (3504.6060)₇ 56

$$\Rightarrow$$
 (1278)₁₀ = (1202100)₃

$$\Rightarrow (1278.875)_{10} = (1202100.212)_{3}$$

Find the Base 10 equivalents of the following numbers:

- → (3F1B.25)₁₆ (16155.14453)₁₀

 → (456723.75)₈ (155091.9531)₁₀
- → (1011110001110101.10011)₂ (48 245.59375)₁₀
- → (31242.2314)₅ (2072·5344)₁₀
- → (31242.60)₇ (7674.85714)₁₀

SOLUTION:

- → (3FIB.25)16
- = 3x 16 + Fx 16 + 1x 16 + Bx 16 + 2x 16 + 5x 16 /
- = 12288 + 3840 + 16 + 11 + 0.125 + 0.01953
- = (16155.14453)10
- 4 (456723.75)8
- = 4x8+ 5x8+6x8+7x8+2x8+3x8+7x8+5x8
- = 131072+20480+3072+448+16+3+0.875+0.0781
- = (155091.9531)10 55
- 4 (1011110001110101.10011)2
- $= 1 \times 2^{\frac{1}{4}} + 0 \times 2^{\frac{14}{4}} + 1 \times 2^{\frac{1}{4}} + 1 \times 2^{\frac{1}{4}} + 1 \times 2^{\frac{1}{4}} + 0 \times 2^{\frac{1}{4}} + 1 \times 2^{$
- = 32768 + 8192+ 4096 + 2048 + 1024 + 64 + 32 +16+4+1+0.5+0.0625+0.03125
 - = (48245.59375)10

2. Convert the following numbers directly to binary without using an intermediary base:

→ (3E89.AC27)16 (11111010001001.1010110000100111)2

→ (22144.3561)₈ (1001000|100100.0||101 110 00|)₂

4. Convert (1100110111001010.1011101)2 to:

→ Octal (146712.564)8

→ Hexadecimal (CDCA.BA)16

Don't use an intermediary base.

SOLUTION:

consider, the following table:

Binary Octal Hena decimal 0000 0000 0000 0000 0000 0000 0000							
00000000000000000000000000000000000000	Binary	y Octal Hena					
	000100000000000000000000000000000000000	1 2 3 4 5 6 T 10 H 12 13 14 15	A B C D				

```
Using the Table:
 3. (3E89.AC27)16
    converting each digit into its equivalent 4 bits:
    (2) - 0011 1110 1000 1001 . 1019, 1100, 0019 0111
=> (3E89.AC27)16 = (0011111010001001, 101011000010011)
    (22144.3561)g
 (8) Converting each digit into its equivalent 3 bits:
         ⇒ (22144.3561)8 = (010010001100100.011101110001)
4. (1100110111001010.1011101), 3

Splitting the given No into Bits groups

(2) - 001,100,110,111,001,010,.101,110,100,1

(3) - 1 4 6 7 1 2 . 5 6 4
=> (1100110111001010.1011101)2 = (146712.564)8
 L> (1100110111001010.1011101)<sub>2</sub>
Splitting the given No. into 4 bits groups
(2) → 1100, 1101, 1100, 1010, 1011, 1010
=> (11001101110010101.1011101)2 = (CD CA. BA)16
```

5. Complete the following tables:

Integer conversions between binary, octal, hex, decimal

Original Base	Number to convert	Base to convert to			
		Binary /	Octal	Hex	Decimal
Binary	110110	110110	, 66	36	54
Octal	123	1010011	1230	53/	83
Hex	2D .	101101	55 V	2D V	45 ~
Decimal	123	1111011.	/173	7B /	123

SOLUTION:

First converting each No. into its

decimal equivalent No. and then converting
the No. into required Base equivalents.

versions with fractions (max 3 places of precision)

Original Number to Base convert	Number to	Base to convert to			
	Binary /	Octal	Hex	Decimal	
Binary	1011.11	1011-110	13.600	B.COO	11.750
Octal	12.5	1010-101	12.500	A. A00	10.625
Hex	D.8	1101.1000	15.400	D.800V	13.500
Decimal	7.6	111.100	7.463	7.999/	7.600

SOLUTION:

First converting each No. into its decimal equivalent No. and then converting the No. into the hequiped Base equivalents

6. Convert the following binary numbers to their ones and twos complements:

> 1's Complement 2's Complement **Binary Number** 001100001110 001100001111 a. 110011110001 b. 111111111111

SOLUTION:

- a). For 1's complement, inverting the bits,

For 2's complement, adding I to I's complement

⇒ 001100001111 ✓ GG

- b). For I's complement, inverting the bits, >> 000000000000000

For 2's complement, adding 1, to 1's complement,

- c). For 1's complement, inverting the bits,
 - → 01111111110V AS

For 2's complement, adding I to i's complement,