0.5W AF Power Amplif

- . Output power 0.5W typ ($V_{CC}=6V$, $R_L=8ohms$, THD=10%). Low quiescent current.
- . Wide operating voltage range: VCC=3.5 to 12V.
- . 9-pin SEP permitting sets to be small-sized and eliminating the need to use

Maximum Ratings at Ta=25°C					unit
Maximum Supply Voltage	Vccmax	Quiescent mode		14	v
	1:	Operating mode	R _T =16ohms	14	v
			R _T =8ohms	12	v
Maximum Output Current	IO	English Committee		500	mA
Allowable Power Dissipation	Pdmax*			* 750	mW
Operating Temperature	Topg		-20 t	o +70	°C
Storage Temperature	Tstq		-40 to	+150	°.C
*Pdmax: Installed on 50x5	50mm ² PCI	B, See figure of	Pdmax - Ta	•	
				*	

Recommended Operating	Conditions at Ta=25°C				unit
Supply Voltage	VCC		•	6	v
Load Resistance	R _T .			. 8	ohm

Operating Characteristics at Ta=25°C, v_{CC} =6v, R_L =8ohms, R_g =600ohms, R_f =47ohms, f=1kHz

			******	c J P	2110421	
Quiescent Current	ICCO		48.5	11		mΑ
voltage Gain	VG	•	47	50	52	đВ
Output Power	Po	THD=10%	0.45	0.5		W
Total Harmonic Distortion	THD	Po=100mW		0.3	1.0	8
Input Resistance	ri			15k		ohm
Output Noise Voltage	v_{NO}	Rg=10kohms, via filter		0.4	1.0	mV
		of 50Hz to 20kHz			•	

Equivalent Circuit

Notice for Using IC

(1) Maximum Ratings

Enough margin covering supply voltage drifting should be prepared and designing over maximum ratings should be absolutely avoided because operation near these ratings causes going across the ratings and leading to destruction.

(2) Terminating Pins

Turning the circuit on leaving pin to pin of IC shorted causes destruction or failure. Turn on ascertaining that solder has never shorted pins when setting IC to printed board.

(3) Location

When used in a radio receiver, IC is designed to locate apart from a bar antenua enough.

(4) Printed Pattern Designing

As designing a printed pattern, lines of power supply, output and ground are to be widely short and pattern and peripheral parts are considerably set not to feedback from output to input.

Also, a capacitor C8 at power line, C5 and C9 of anti-oscillator are to be arranged near to pins of IC.

An Example of Printed Pattern (bottom view, 35 x 50 mm²)

[Peripheral Parts]

Cl,220pF: Anti-noise capacitor.

C2,3.3uF: Coupling capacitor. Large C2 makes operating noise of variable resistor large. Small one makes frequency response of low frequency range narrow.

C3,47uF: Feedback capacitor Small C3 makes the starting time short, but frequency response of low range narrow.

C4,100pF: For frequency response adjusting of high range, but excessive small one is apt to oscillate.

C5,0.068uF: For anti-oscillation. Polyester film capacitor is available which has good thermal and high frequency characteristics. C6,470uF: Output capacitor. It decides power of low frequency.

C7,47uF: Bootstrap capacitor. Excessive small C7 causes wave form clipp-

ing point to be unbalanced at low frequency range.

CB,470uF: Filter capacitor.

C9,0.0luF: Anti-oscillation. Polyester film capacitor is available.

Cl0,100uF: Filter capacitor. Rejects power line hum. Small Cl0 decreases

ripple rejection ratio.

Rf,47ohm: Decides voltage gain. Closed loop voltage gain is nearly calcula-

ted as follows. But about ±3dB tolerance should be prepared owing

to scatter of internal resistance of IC.

VG=20 log (15000/R_f[ohm]) [dB]

