电磁学实验报告

姓名: 蒋薇 学院及专业: 计算机学院(工科试验班) 学号: 2110957 组别: C组 座号: 10 实验日期: 2022.05.02 星期二 早上

实验题目: 伏安法测电阻

- 一: 仪器及用具
- 1.1 仪器品牌与型号

示波器: 普源 DS1102E

信号发生器: F05 函数发生器

1.2 电阻阻值: 1kΩ

电容值: 0.1 µ F

二:基本使用

将信号源(1KHz, 3Vp-p)和变压器电压同时输出到示波器,分别稳定并显示适当的波形。重点熟悉触发对波形的作用

三: 实验数据

1:将信号源和变压器的测量结果填入下表

信号源	自动测量	光标测量	读格测量
电压(Vpp)	2.91V	2. 90V	2.90V
周期	1.00ms	1.00ms	1.00ms
频率	1000.00Hz	1000.00Hz	1000.00Hz
变压器	自动测量	光标测量	读格测量
电压 (峰峰值)	5.88V	5.90V	5.88V
周期	20.00ms	20.08ms	20.10ms
频率	50.00Hz	49.80Hz	49.75Hz

2 利用李萨如图形法测量市电频率的结果填入下表

与水平线交点数 与竖直线交点数 (n _x / n _y)	1: 2	1: 1	3: 2	2: 1	3: 1
频率发生器频率f _{ss} (HZ)	25.00	50.00	75.00	100.00	150.00
算出的市电频率f _# (HZ)	50.00	50.00	50.00	50.00	50.00
李萨如图形	8	0	\times	\bowtie	M

が方	0.	45°	90°	135°	180°
1:1	/	0		0	1
2:1	\otimes	M	\bigcap	M	\otimes
3:1	\bigvee	M	\bigcirc	M	A
3:2		X		ON	
	图 3-4-6	不同頻率比	信号合成的	Find - Co.	E

计算平均市电频率:

(50.00 + 50.00 + 50.00 + 50.00 + 50.00) / 5 = 50.00Hz

3: 测量 RC 电路的相位差

连接电路, 将信号发生器频率设定为 f = 1.59kHz

椭圆法: (公式+计算结果)

设一个单位表示 x,

与横轴交点距离 2x₀ = 19.4 小格 * x;

在横轴上投影距离 2x₁= 27.5 小格 * x;

 $\Theta = \arcsin(2x0 / 2x_1) = \arcsin(19.4 / 27.5) = 44.87^0$

位移法:(公式+计算结果)

一个周期长度 I₀ = 32.0 小格 * x;

波形位移 I = 4, 0 小格 * x;

$$\Theta = I / I_0 * 360 = 4 / 32 * 360 = 45^0$$

四: 思考题

1:实验三中调节电源输出频率 w,探究 w 与相位差以及幅值比 U1/U2 的关系

其中 R = 1k
$$\Omega$$
, C = 0.1 μ F

2. 改变信号源频率, 研究图 3-4-9 所示电路输出信号与输入信号的幅值比 u_2/u_1 与频率关系。

u2= IR, uc = 1/wC, u1 = u2 + uc,
$$i = Cw \sqrt{2} \ U1cos(wt + \phi + \Pi/2), \quad u2 = iR,$$
 u1 / u2 = (R + 1/wC):R

$\Phi = -\arctan(1/wCR)$

实验数据

输出频率	1.000	2.000	3.000	4.000	5.000
(KHz)					
相位差	-57.858	-38.513	-27.947	-21.697	-17.657
(0)					
幅值比	2.5915	1.7958	1.5305	1.3979	1.3183
U1/U2					

2: 不同频率下 U2 / U1 的关系 其中 R = 1k Ω , C = 0.1 μ F

输出频率	1.000	2.000	3.000	4.000	5.000
(KHz)					

U2/U1	0.3859	0.5569	0.6534	0.7154	0.7585

Н	l J	K	L	M	N	0	P	Q
1 0.38	59		112	/U1与频	恋羊系			Ĭ
2 0.55	69		02	101 300	1 / (//			
3 0.65	34 0.8						1	
4 0.71	54 0.7					-		
5 0.	7585							
	0.5							
	10/2n 0.4							
	770		•					
	0.3							
	0.2							
	0.1							
	0							
		0	1	2	3	4	5	6
				频率	(KHz)			
	<u> </u>							
								-

 $u2=IR,\quad uc=1/\ wC,\ u1=u2+uc,$ $i=Cw\ \sqrt{2}\ U1cos(wt+\phi\ +\ \Pi/2),\quad u2=iR,$ $u2\ /\ u1=R:\ (R+1/wC),$