LABORATORIO BASES DE DATOS 1

Clase #8
Aux. Marvin J. Calderón
Vacaciones Junio 2020

CALENDARIZACIÓN DEL CURSO

MES	FECHA	TEMA
	1	Historia y conceptos básicos de bases de datos
	2	DBMS's, Atributos & Dominios y Tipos de Datos
	4	Sentencias DML, DDL
	8	Generación de consultas, Funciones Agregadas
	10	Carga masiva de datos, Subconsultas
	12	Producto Cartesiano, Joins
lucia	16	Usuarios
Junio	17	Normalización
	19	Transacciones, Índices
	22	Tablas temporales, Funciones
	24	Procedimientos Almacenados
	26	Sentencias de Control y Cursores
	29	Triggers, Vistas
	30	Examen Final

¿QUÉ ES NORMALIZACIÓN?

¿POR QUÉ ES IMPORTANTE NORMALIZAR?

NORMALIZACIÓN

- La normalización es la transformación de las vistas de usuario complejas y del almacén de datos a un juego de estructuras de datos más pequeñas y estables.
- Consiste en aplicar una serie de reglas a las relaciones obtenidas tras el paso del modelo entidad-relación al modelo relacional.

¿EN DONDE ES UTILIZADA LA NORMALIZACIÓN?

UTILIZACIÓN DE LA NORMALIZACIÓN

- 1. NUEVA ESTRUCTURA: Cuando se diseña una nueva estructura de bases de datos fundamentada en las necesidades de negocios de usuarios finales.
- 2. ANÁLISIS DE RELACIONES ENTRE ATRIBUTOS: Después de que el diseño inicial está completo, el diseñador puede usar normalización para analizar las relaciones que existen entre los atributos dentro de cada entidad, para determinar si la estructura se puede mejorar por medio de normalización.
- 3. MODIFICACIÓN DE ESTRUCTURA: Para diseñar una nueva estructura de datos o modificar una ya existente, el proceso de normalización es el mismo.

PRIMERA FORMA NORMAL (1FN)

- La regla de normalización 1FN se desglosa en lo siguiente:
 - Requiere que los datos sean atómicos.
- En otras palabras:
 - Prohíbe a un campo contener más de un dato de su dominio de columna.
 - Exige que todas las tablas deben tener una clave primaria.
 - Indica que una tabla no debe tener atributos que aceptan valores nulos.

EJEMPLO #1 -> PRIMERA FORMA NORMAL (1FN)

ID_CLIENTE	NOM_CLIENTE	APE_CLIENTE	TELÉFONO
1	Juan	Perez	44336523
2	Pedro	Moreno	27454211, 23564250
3	Jose	Argueta	54255344

Múltiples datos en número de teléfono...

ID_CLIENTE	NOM_CLIENTE	APE_CLIENTE	TELÉFONO
1	Juan	Perez	44336523
2	Pedro	Moreno	27454211
2	Pedro	Moreno	23564250
3	Jose	Argueta	54255344

Números de teléfono NORMALIZADOS

EJEMPLO #2 -> PRIMERA FORMA NORMAL (1FN)

ID_CLIENTE	NOM_CLIENTE	APE_CLIENTE	TELÉFONO
1	Juan	Perez	44336523
2	Pedro	Moreno	27454211
2	Pedro	Moreno	23564250
3	Jose	Argueta	54255344

ID_CLIENTE	NOM_CLIENTE	APE_CLIENTE
1	Juan	Perez
2	Pedro	Moreno
3	Jose	Argueta

ID_CLIENTE	TELÉFONO
1	44336523
2	27454211
2	23564250
3	54255344

SIN REDUNDANCIA

SEGUNDA FORMA NORMAL (2FN)

- La regla de normalización 2FN se desglosa en lo siguiente:
 - Se debe estar en 1FN.
 - Todos los atributos, fuera de la llave primaria, son funcionalmente dependientes de la misma de una manera completa.
- La segunda forma normal 2FN establece que todos los atributos (no las claves) deben depender por completo de la clave primaria.

DEPENDENCIA FUNCIONAL

Definición: Decimos que un atributo Y de una relación «depende funcionalmente» de otro atributo X de la relación si a todo valor de X le corresponde siempre el mismo valor de Y.

EJEMPLO PARTE 1 -> SEGUNDA FORMA NORMAL (2FN)

La siguiente tabla no se encuentra en 1FN, por lo que se normaliza.

CodLibr O	Titulo	Autor	Editorial	NombreLector	FechaDev
1001	Variable compleja	Murray Spiegel	McGraw Hill	Pérez Gómez, Juan	15/04/200 5
1004	Visual Basic 5	E. Petroustsos	Anaya	Ríos Terán, Ana	17/04/200 5
1005	Estadística	Murray Spiegel	McGraw Hill	Roca, René	16/04/200 5
1006	Oracle University	Nancy Greenberg y Priya Nathan	Oracle Corp.	García Roque, Luis	20/04/200
1007	Clipper 5.01	Ramalho	McGraw Hill	Pérez Gómez, Juan	18/04/200 5

Esta sería la forma que tendría la tabla anterior ya normalizada en 1FN.

CodLibro	Titulo	Autor	Editorial	Paterno	Matemo	Nombre s	FechaDev
1001	Variable compleja	Murray Spiegel	McGraw Hil	Pérez	Gómez	Juan	15/04/200 5
1004	Visual Basic 5	E. Petroustsos	Anaya	Ríos	Terán	Ana	17/04/200 5
1005	Estadística	Murray Spiegel	McGraw Hil	Roca		René	16/04/200 5
1006	OracleUniversit y	NancyGreenbe rg	Oracle Cor p.	García	Roque	Luis	20/04/200 5
1006	OracleUniversit y	Priya Nathan	Oracle Cor p.	García	Roque	Luis	20/04/200
1007	Clipper 5.01	Ramalho	McGraw Hil	Pérez	Gómez	Juan	18/04/200 5

EJEMPLO PARTE 2 -> SEGUNDA FORMA NORMAL (2FN)

Como parte de la 2FN se separan los datos del libro que sí dependen funcionalmente del código del libro.

CodLibro	Titulo	Autor	Editorial
1001	Variable compleja	Murray Spiegel	McGraw Hill
1004	Visual Basic 5	E. Petroustsos	Anaya
1005	Estadística	Murray Spiegel	McGraw Hill
1006	Oracle University	NancyGreenberg	Oracle Corp.
1006	Oracle University	Priya Nathan	Oracle Corp.
1007	Clipper 5.01	Ramalho	McGraw Hill

En una nueva tabla se agregan todos los campos que no dependían funcionalmente de la clave en la tabla anterior creando una nueva tabla: "Lector".

TERCERA FORMA NORMAL (3FN)

- La regla de normalización 3FN se desglosa en lo siguiente:
 - Se debe estar en 2FN.
 - Todos los atributos no llave no dependen de manera transitiva de la llave primaria.
- Todas las claves no primarias de la relación no deben poseer dependencias funcionales con otros atributos que tampoco son claves primarias.
- Lo que deberá hacerse es separar en una nueva tabla los atributos, que no son clave, que dependen de otros atributos que tampoco son clave.

DEPENDENCIA FUNCIONAL

DEPENDENCIA TRANSITIVA

EJEMPLO -> TERCERA FORMA NORMAL (3FN)

Ejemplo Practico 1:

Ntorneo	#año	Nganador	Dnacimiento
Torneo1	1998	Fernando	28/10/1991
Torneo2	1999	Carlos	12/04/1988
Torneo3	1999	Peter	12/12/1990

(Ntoreno,#año) → (Nganador,Dnacimiento)
Nganador → Dnacimiento

Ntorneo	#año	Nganador
Torneo1	1998	Fernando
Torneo2	1999	Carlos
Torneo3	1999	Peter

Nganador	Dnacimiento
Fernando	28/10/1991
Carlos	12/04/1988
Peter	12/12/1990

Como podemos apreciar, el atributo **Ganador** presenta dependencia funcional con (Torneo, Año), sin embargo, la fecha de nacimiento del ganador, no. Por esta razón se tiene que dividir en 2 tablas.

FORMA NORMAL BOYCE-CODD (FNBC)

- La regla de normalización FNBC se desglosa en lo siguiente:
 - Se debe estar en 3FN.
 - Todo determinante es una llave candidata.
- Hay dos casos donde se puede aplicar la FNBC:
 - Cuando hay dos llaves candidatas y cualquiera puede servir como llave primaria.
 - Cuando ya se seleccionó una llave primaria, pero la otra llave candidata aún sigue determinando atributos por su cualidad de "determinante".

¿QUÉ ES UN DETERMINANTE?

Definición: Un conjunto de atributos que determina funcionalmente a otro conjunto de atributos es llamado determinante.

EJEMPLO -> FORMA NORMAL BOYCE-CODD (FNBC)

Referencia cruzada de Tutor/Estudiante				
ID Tutor	Número de seguro social del tutor	ID Estudiante		
1078	088-51-0074	31850		
1078	088-51-0074	37921		
1293	096-77-4146	46224		
1480	072-21-2223	31850		

El propósito de la tabla es mostrar qué tutores están asignados a qué estudiantes. Las claves candidatas de la tabla son:

- {ID Tutor, ID Estudiante}
- {No. Seguro Social, ID Estudiante}

Una forma sencilla de comprobar si una relación se encuentra en FNBC consiste en comprobar, además de que esté en 3FN, lo siguiente:

- 1. Si no existen claves candidatas compuestas (con varios atributos), está en FNBC.
- 2. Si existen varias claves candidatas compuestas y éstas tienen un elemento común, no está en FNBC.

En la tabla de ejemplo anterior existen dos claves candidatas y ambas comparten el atributo ID Estudiante, por lo tanto no está en FNBC.

CUARTA FORMA NORMAL (4FN)

- La regla de normalización 4FN se desglosa en lo siguiente:
 - Se debe estar en FNBC.
 - Todas las dependencias funcionales y de múltiples valores son el resultado de las llaves.
- En la 4FN un registro no debe contener dos o más valores independientes en una entidad.
- La 4NF se asegura de que las dependencias multivaluadas independientes estén correcta y eficientemente representadas en un diseño de base de datos.

NOTA:

Una tabla con una dependencia multivaluada es una donde la existencia de dos o más relaciones independientes muchos a muchos causa redundancia; y es esta redundancia la que es suprimida por la cuarta forma normal.

EJEMPLO PARTE 1 -> CUARTA FORMA NORMAL (4FN)

RESTAURANTE	VARIEDAD DE PIZZA	ÁREA DE ENVÍO
Vincenzo's Pizza	Corteza gruesa	Springfield
Vincenzo's Pizza	Corteza gruesa	Shelbyville
Vincenzo's Pizza	Corteza fina	Springfield
Vincenzo's Pizza	Corteza fina	Shelbyville
Elite Pizza	Corteza fina	Capital City
Elite Pizza	Corteza rellena	Capital City
A1 Pizza	Corteza gruesa	Springfield
A1 Pizza	Corteza gruesa	Shelbyville
A1 Pizza	Corteza gruesa	Capital City
A1 Pizza	Corteza rellena	Springfield
A1 Pizza	Corteza rellena	Shelbyville
A1 Pizza	Corteza rellena	Capital City

- > Cada fila indica que un restaurante dado puede entregar una variedad dada de pizza a un área dada.
- > Debido a que las variedades de pizza que un restaurante ofrece son independientes de las áreas a las cuales el restaurante envía, hay redundancia en la tabla.
- > Por ejemplo, nos dicen tres veces que A1 Pizza ofrece la Corteza rellena, y si A1 Pizza comienza a producir pizzas de otra corteza entonces se necesitará agregar múltiples registros, uno para cada una de las áreas de envío de A1 Pizza.
- > En términos formales, esto se describe como que Variedad de pizza está teniendo una dependencia multivalor en Restaurante.

EJEMPLO PARTE 2 -> CUARTA FORMA NORMAL (4FN)

RESTAURANTE	VARIEDAD DE PIZZA
Vincenzo's Pizza	Corteza gruesa
Vincenzo's Pizza	Corteza fina
Elite Pizza	Corteza fina
Elite Pizza	Corteza rellena
A1 Pizza	Corteza gruesa
A1 Pizza	Corteza rellena

RESTAURANTE	ÁREA DE ENVÍO
Vincenzo's Pizza	Springfield
Vincenzo's Pizza	Shelbyville
Elite Pizza	Capital City
A1 Pizza	Springfield
A1 Pizza	Shelbyville
A1 Pizza	Capital City

Para satisfacer la 4NF, se debe colocar los hechos sobre las variedades de pizza ofrecidas en una tabla y los hechos sobre las áreas de envio en otra tabla.

QUINTA FORMA NORMAL (5FN)

- La regla de normalización 5FN se desglosa en lo siguiente:
 - o Se está en 4FN.
 - Si y sólo si cada dependencia de reunión está implicada en las llaves candidatas y debe satisfacer que la reunión de sus proyecciones sea igual a la relación original.
- Si se aplicara una consulta entre al menos tres relaciones independientes entre sí dentro de la 4FN y se obtuvieron tuplas espurias, entonces no estaría dentro de la 5FN.

¿QUÉ ES UNA TUPLA ESPURIA?

Definición: Las tuplas espurias son tuplas que se generan de manera redundante provocando inconsistencia de los datos.

EJEMPLO PARTE 1 -> QUINTA FORMA NORMAL (5FN)

EMPLEADO	PROYECTO	ETAPA
Carlos	A	Análisis
Carlos	A	Diseño
Carlos	В	Análisis
Carlos	В	Diseño
Luis	A	Análisis
Luis	A	Diseño
Mario	A	Análisis
Mario	В	Análisis
Mario	С	Análisis
Mario	С	Pruebas

Utilizando la 4FN la descomposición quedaría de la siguiente forma:

EMPLEADO	PROYECTO
Carlos	А
Carlos	В
Luis	Α
Mario	A
Mario	В
Mario	С

EMPLEADO	ЕТАРА
Carlos	Análisis
Carlos	Diseño
Luis	Análisis
Luis	Diseño
Mario	Análisis
Mario	Pruebas

EJEMPLO PARTE 2 -> QUINTA FORMA NORMAL (5FN)

Ahora se debe comprobar con una reunión (join) si el resultado es la misma relación que la original.

Este procedimiento se realiza uniendo cada empleado y proyecto de una entidad que corresponda con el mismo empleado de la otra entidad agregando la etapa.

EMPLEADO	PROYECTO	ETAPA
Carlos	Α	Análisis
Carlos	Α	Diseño
Carlos	В	Análisis
Carlos	В	Diseño
Luis	А	Análisis
Luis	Α	Diseño
Mario	А	Análisis
Mario	А	Pruebas
Mario	В	Análisis
Mario	В	Pruebas
Mario	С	Análisis
Mario	С	Pruebas

En la reunión (join) se generaron dos tuplas espurias (rojas).

Para solucionar este problema, se normaliza a la 5FN para descomponer la relación en tres relaciones, utilizando la combinación de los atributos empleado/proyecto, empleado/etapa y proyecto/etapa.

EJEMPLO PARTE 3 -> QUINTA FORMA NORMAL (5FN)

Al hacer la reunión (join) de las proyecciones se obtiene la relación original.

EMPLEADO	PROYECTO
Carlos	Α
Carlos	В
Luis	А
Mario	A
Mario	В
Mario	С

EMPLEADO	ETAPA
Carlos	Análisis
Carlos	Diseño
Luis	Análisis
Luis	Diseño
Mario	Análisis
Mario	Pruebas

PROYECTO	ЕТАРА
A	Análisis
A	Diseño
В	Análisis
В	Diseño
С	Análisis
С	Pruebas

i EJERCICIO!

Ordenes

Id_orden	Fecha	Id_cliente	Nom_cliente	Estado	Num_art	nom_art	cant	Precio
2301	23/02/11	101	Martin	Caracas	3786	Red	3	35,00
2301	23/02/11	101	Martin	Caracas	4011	Raqueta	6	65,00
2301	23/02/11	101	Martin	Caracas	9132	Paq-3	8	4,75
2302	25/02/11	107	Herman	Coro	5794	Paq-6	4	5,00
2303	27/02/11	110	Pedro	Maracay	4011	Raqueta	2	65,00
2303	27/02/11	110	Pedro	Maracay	3141	Funda	2	10,00

¿DUDAS? ¿PREGUNTAS? ¿COMENTARIOS?

¡GRACIAS!