

December 11, 2014 14:00–17:00

MATHEMATICAL MODELS 201-115-AB

Instructors: R.Masters and C.Morris

Student name:	
STUDENT NUMBER:	
Instructor:	

Instructions

- 1. Do not open this booklet before the examination begins.
- 2. Check that this booklet contains 5 pages, excluding this cover page and the formula sheet.
- 3. Write all of your solutions in this booklet and show all supporting work.
- 4. If the space provided is not sufficient, continue the solution on the opposite page.

- (4) **1.** Consider $f(x) = 5\cos(\frac{\pi}{2}x + \pi) + 1$
 - (a) What is the amplitude of the function?
 - (b) What is its period?
 - (c) What is its frequency?
 - (d) What is its phase shift?
- (3) **2.** A soccer ball has a circumference of approximately 53.5 cm. Find its volume.
 - **3.** Perform the indicated operations. Express the result in polar form.
- (3) (a) $\frac{4 \left[\cos 75^{\circ} + j \sin 75^{\circ}\right]}{24 \left[\cos 35^{\circ} + j \sin 35^{\circ}\right]}$
- (3) (b) $5 \left[\cos 95^{\circ} + j \sin 95^{\circ}\right] 8 \left[\cos 210^{\circ} + j \sin 210^{\circ}\right]$
 - **4.** Evaluate and express your answer in the form a + bj.
- (3) (a) $(5j^7 3j^{10} + 2j)(3j^{15} 4j^{24})$
- (3) (b) $\frac{-4}{2j+5} + \frac{3+j}{j^2}$
- (5) 5. Solve the following trigonometric equation for all values of x such that $0 \le x < 2\pi$.

$$3\cos^2\left(\frac{x}{2}\right) + 2\cos^2(x) = 2 - \sin^2\left(\frac{x}{2}\right)$$

- (5) **6.** An airplane traveling along a vector heading 50° North of West must reach a destination located 3200 km away from it's current position in exactly 5 hours. The plane flies against a head wind of 70 km/h in a direction of 80° South of East. What velocity should the airplane's motor achieve in order meet this objective?
- (4) 7. Use DeMoivre's Theorem to find the cube roots of -j. Express your answers in rectangular form x + yj.
 - **8.** Solve the following equations for x.
- (3) (a) $\log_{\sqrt{15}}(x-3) + \log_{\sqrt{15}}(x-1) = 2$
- (3) (b) $7^{2-3x} = \left(\frac{1}{49}\right)^{2x+3}$
- (3) 9. Solve the following system for y using Cramer's rule. (No marks will be awarded if Cramer's rule is not used)

10. Use the diagram above to determine :

- (a) The (complex) voltage across the resistor (between points A and B).
- (2) (b) The (complex) voltage across the inductor (between points B and C).
- (2) (c) The magnitude of the voltage across the combination (between points A and C).
- (2) (d) By what angle (in degrees) does the voltage lead the current.
- (5) 11. Solve the following linear system.

(2)

$$3x - 2y - z = 8
6y + 5z = 15
x + 5y + 2z = 3$$

(5) **12.** For the function f(x) given in the diagram below, find each of the following limits. If the limit does not exist, write DNE or $-\infty$ or ∞ where appropriate. If the function is undefined at a point write UND.

- (a) $\lim_{x \to -\infty} f(x) = \underline{\hspace{1cm}}$
- (b) $\lim_{x \to \infty} f(x) = \underline{\hspace{1cm}}$
- (c) $\lim_{x \to -3} f(x) =$ _____
- (d) $\lim_{x \to 1^+} f(x) =$ _____

- (e) $\lim_{x \to 4^{-}} f(x) =$ _____
- (f) $\lim_{x \to 4^+} f(x) =$ _____
- (g) f(-3) =_____
- (h) f(4) =_____
- (i) List points of discontinuity

- (4) **13.** Find the equation of the Tangent line to the curve $f(x) = x^2 5x + 4$ at the point (2, -2).
 - **14.** Given the function $f(x) = \cos^2 x$ Find,
- (2) (a) f'(x) =
- (2) (b) f''(x) =
- (2) (c) $f''(\pi/2) =$
 - 15. Evaluate the following limits if possible.
- (3) $1. \lim_{x \to 2} \frac{x^2 + 2x 8}{x^2 2x}$
- (3) $2. \lim_{x \to \infty} \frac{3x^3 + 5x 2}{-10x^4 + 12x^2}$
- (3) $3. \lim_{x \to 3^{-}} \frac{x+3}{|x-3|}$
- (3) 4. $\lim_{x \to -\infty} \frac{\sqrt{x^2 16}}{4x 12}$
- (3) **16.** Given $f(x) = e^x 2x$, find the x-coordinate(s) where the curve has horizontal tangents.
 - 17. Find y' by differentiating the following; (Do not simplify your answer)
- (3) $1. y = \sqrt[7]{x} 3x^5 + 2^x e^{\sin(e)}$
- (3) $2. y = \log_6(\sin x) + \frac{5x}{x+4}$
- (3) $3. y = \tan(4x) + e^{x^2} \ln(9x + 1)$
- (3) $4. \cos(x-y) = x^2y 15$
- (3) 5. $y = (x+2)(x-1)^x$ Hint: use logarithmic differentiation

Mathematical Models 115: Formula Sheet Fall 2014

1. Volume of sphere: $V = \frac{4}{3}\pi r^3$

2. Volume of cylinder: $V = \pi r^2 h$

3. Volume of cone: $V = \frac{1}{3}\pi r^2 h$

4. Rectangular: x + yj

5. Polar: $r(\cos \theta + j \sin \theta) = r \angle \theta$

6. Exponential: $re^{j\theta}$

7. $x = r \cos \theta$ $y = r \sin \theta$ $r = \sqrt{x^2 + y^2}$ $\tan \theta = \frac{y}{x}$

8. DeMoivre's Theorem: $[r(\cos \theta + j \sin \theta)]^n = r^n(\cos n\theta + j \sin n\theta)$

9. $V_R = IR$ $V_C = IX_C$ $V_L = IX_L$ $V_{RLC} = IZ$ $Z = R + j(X_L - X_C)$ $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $\theta = \tan^{-1} \frac{X_L - X_C}{R}$

10. $\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$ $\log_b(xy) = \log_b x + \log_b y$ $\log_b x^p = p \log_b x$ $\log_b b = 1$ $\log_b(1) = 0$ $x = \log_b y \Leftrightarrow b^x = y$

11. $c^2 = a^2 + b^2 - 2ab \cos C$ $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

12. $(x^3 \pm y^3) = (x \pm y)(x^2 \mp xy + y^2)$

13. $\sin^2 x + \cos^2 x = 1$ $1 + \tan^2 x = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$

14. $\sin 2x = 2\sin x \cos x$ $\cos 2x = \cos^2 x - \sin^x x$

15. $\sin^2 x = \frac{1 - \cos 2x}{2}$ $\cos^2 x = \frac{1 + \cos 2x}{2}$

16. $\frac{d}{dx}(fg) = f'g + fg'$

17. $\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}$

 $18. \ \frac{d}{dx}(x^n) = nx^{n-1}$

 $19. \ \frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$

 $20. \ \frac{d}{dx}(cf) = cf'$

Answers Fall 2014

1. (a) a = 5

(b)
$$p = 4$$

(c)
$$f = \frac{\pi}{2}$$

(d)
$$x = -2$$

- 2. $2581.5 cm^3$
- 3. (a) $\frac{1}{6} [\cos 40^{\circ} + j \sin 40^{\circ}]$
 - (b) $11.02[\cos 53.92^{\circ} + j \sin 53.92^{\circ}]$

4. (a) -21 + 3j

(b)
$$-\frac{107}{29} - \frac{21}{29}j$$

5.
$$x = \frac{\pi}{2}; \frac{2\pi}{3}; \frac{4\pi}{3}; \frac{3\pi}{2}$$

- 6. 701.50 km/h at 52.86° NW
- 7. j; $-\frac{\sqrt{3}}{2} \frac{1}{2}j$; $\frac{\sqrt{3}}{2} \frac{1}{2}j$

8. (a) x = 6

(b)
$$x = -8$$

- 9. $y = \frac{1}{3}$
- 10. (a) 34.4v
 - (b) 25.2v
 - (c) 42.6v
 - (d) 36.3°
- 11. x = 3; y = -2; z = 5

12. (a)
$$-4$$

(d)
$$-\infty$$

13.
$$y = -x$$

14. (a)
$$-2\sin x \cdot \cos x$$

(b)
$$-2\cos x$$

- (c) 2
- 15. (a) 3
 - (b) 0
 - (c) ∞
 - (d) $-\frac{1}{4}$

16.
$$x = \ln 2$$

17. (a)
$$\frac{1}{7x^{6/7}} - 15x^4 + 2^x \ln 2$$

(b)
$$\frac{\cot x}{\ln 6} + \frac{20}{(x+4)^2}$$

(c)
$$4\sec^2(4x) + 2xe^{x^2} - \frac{9}{9x+1}$$

(d)
$$\frac{2xy + \sin(x-y)}{-x^2 + \sin(x-y)}$$

(e)
$$(x+2)(x-1)^x \left(\frac{1}{x+2} + \ln(x-1) + \frac{x}{x-1}\right)$$