GEOMETRY OF MANIFOLDS QUALIFYING EXAM Spring 1999

(Miller and Auckly)

WORK THE FIRST FOUR AND AS MANY OF THE OTHERS AS YOU CAN.

1. On \mathbb{R}^3 with coordinates (x, y, z), let

$$X = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$$

$$Y = x^2 y \frac{\partial}{\partial x} + z \frac{\partial}{\partial y} + y \frac{\partial}{\partial z}$$

$$\alpha = (x^3 + y^3 + z^3)(dx \wedge dy + dz \wedge dx + dy \wedge dz)$$

- a) calculate the Lie bracket [X, Y].
- b) describe the flow of the vector field Y through the point (x_0, y_0, z_0) .
- c) calculate $d\alpha$ as a function times the usual volume element.
- d) if $f: \mathbb{R}^2 \to \mathbb{R}^3$ by $f(s,t) = (s,t,s^2+t^2)$, compute $f^*\alpha$.
- **2.** On $\{(x,y)|x,y\in\mathbb{R},y>0\}$ let g be the metric $g=y\,dx^2+dy^2$. Determine the differential equations for parallel transport of a vector field $\xi=\xi^1\frac{\partial}{\partial x}+\xi^2\frac{\partial}{\partial y}$ along a curve x=x(t), y=y(t).
- **3.** Let $C = \{(x, y, z) | x^2 + y^2 = 1\}$ with the orientation $\Omega_C = x \, dy \wedge dz y \, dx \wedge dz$. Compute

$$\int_C \frac{(x+1)}{(1+z^2)(x^2+y^2)} (x \, dy \wedge dz - y \, dx \wedge dz)$$

4. Construct a cell complex X, with

$$\pi_1(X) = \langle a, b | a^2 = b^3 \rangle$$

$$H_0(X) = Z$$
 and $H_2(X) = Z \oplus Z_2$.

- **5.** On a Riemannian manifold define the scalar curvature to be $S = -\sum_{n,k} g(R(e_n,e_k)e_n,e_k)$ where
 - (e_n) is an orthonormal basis.
 - a) Prove that S is independent of the choice of basis.
 - b) Let $S_r^n=\{x\in\mathbb{R}^{n+1}\mid \|x\|=r\}$, with the induced metric. Compute the scalar curvature of $S_a^2\times S_b^3$.
- **6.** Let M be a simply connected manifold, ω a closed differential 2-form, X a vector field and H a smooth real valued function on M. Suppose they are related by $dH = i_X \omega = \omega(X,)$. Further suppose that Y is a second vector field such that $L_Y \omega = 0$ and Y(H) = 0.
 - a) Show that there is a smooth function f on M such that $i_Y\omega=df$.
 - b) Show that the function f of part a) is constant along the flows of X.

Note: If you do not remember the formula giving the Lie derivative L_Y acting on differential forms in terms of i_Y and d, you may ask at the cost of a penalty.

- 7. Let G be a Lie group and $\pi_G: P \to M$ be a principal G-bundle, and H be a closed subgroup of G. We say that the structural group of P may be reduced to H if and only if there is a principal H-bundle $\pi_H: Q \to M$ and a bundle map $i: Q \to P$ so that $i(q \cdot h) = i(q) \cdot h$. Let $E = P \times_G (G/H) = P \times (G/H)/\sim$ where $(p, [g]) \sim (pk, [k^{-1}g])$, $p \in P, g, k \in G$. Prove that $E \to M$ admits a global section if and only if the structural group of P may be reduced to H.
- **8.** On \mathbb{R}^3 with coordinates (x, y, z) let $\alpha = x \, dy + dz$ and $E = \{v \in T\mathbb{R}^3 | \alpha(v) = 0\}$. Prove or disprove:
 - a) There is a codimension 2 foiliation \mathcal{F} of \mathbb{R}^3 so that any leaf N of \mathcal{F} satisfies $TN\subseteq E\mid N$.
 - b) There is a codimension 1 foiliation \mathcal{F} of \mathbb{R}^3 so that any leaf of \mathcal{F} satisfies $TN\subseteq E\mid N$.
- **9.** Let $S0_3 = \{A : \mathbb{R}^3 \to \mathbb{R}^3 | A \text{ is linear, } A^*A = I \text{ and } \det A = 1\}$. Prove that

$$\{A \in S0_3 \mid A^* = A, A \neq I\}$$

is a compact manifold. What is its dimension?