

Lecture 4: Nonideal Transistor Theory

Outline

- Nonideal Transistor Behavior
 - High Field Effects
 - Mobility Degradation
 - Velocity Saturation
 - Channel Length Modulation
 - Threshold Voltage Effects
 - Body Effect
 - Drain-Induced Barrier Lowering(DIBL)
 - Short Channel Effect
 - Leakage
 - Subthreshold Leakage
 - Gate Leakage
 - Junction Leakage
- Process and Environmental Variations

p-type body

SiO₂ gate oxide (good insulator, $\varepsilon_{ox} = 3.9$)

Ideal Transistor I-V

□ Shockley long-channel transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

for nMOS

for pMOS

$$\beta = \beta_n = \mu_n \frac{\varepsilon_{ox}W}{t_{ox}L} \qquad \beta = \beta_p = \mu_p \frac{\varepsilon_{ox}W}{t_{ox}L} \qquad \mu_p < \mu_n (\mu_n \approx 2 \times \mu_p)$$

$$V_t = V_{tn} \qquad V_t = V_{tp}$$

Ideal vs. Simulated nMOS I-V Plot

Continue

- There is leakage current when the transistor is in cut off
- Ids depends on the temperature

Electric Fields Effects

- \Box Vertical electric field: $E_{vert} =$
 - Attracts carriers into channel
 - Long channel: $Q_{channel} = CV ∞ E_{vert}$
- □ Lateral electric field: E_{lat} = _____
 - Accelerates carriers from drain to source
 - Long channel: $v = \mu E_{lat}$
 - -t=L/v
 - -I=Q/t

Mobility Degradation

- ☐ High E_{vert} effectively reduces mobility
 - Collisions with oxide interface

$$\mu_{\text{eff}-n} = \frac{540 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \left(\frac{V_{gs} + V_t}{0.54 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}\right)^{1.85}} \qquad \mu_{\text{eff}-p} = \frac{18}{1 + \frac{V_s}{0.3}}$$

SOLUTION: Use $V_{gs} = 1.0$ for ON transistors, remembering that we are treating voltages as positive in a pMOS transistor. Substituting $V_t = 0.3$ V and $t_{ox} = 1.05$ nm into EQ (2.23) gives:

$$\mu_{\text{eff-n}}(V_{gs} = 1.0) = 96 \text{ cm}^2/\text{V}, \mu_{\text{eff-p}}(V_{gs} = 1.0) = 36 \text{ cm}^2/\text{V}$$

Velocity Saturation

- ☐ At high E_{lat}, carrier velocity rolls off
 - Carriers scatter off atoms in silicon lattice
 - Velocity reaches v_{sat}
 - Electrons: 10⁷ cm/s
 - Holes: 8 x 10⁶ cm/s
 - Better model

$$v = \begin{cases} \frac{\mu_{\text{eff}} E}{1 + \frac{E}{E_c}} & E < E_c \\ v_{\text{sat}} & E \ge E_c \end{cases} \qquad E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}$$

Velocity Saturation

Substituting,

$$I_{ds} = \begin{cases} \frac{\mu_{eff}}{1 + \frac{V_{ds}}{V_c}} C_{ox} \frac{W}{L} \left(V_{GT} - \frac{V_{ds}}{2} \right) V_{ds}, & V_{ds} < V_{d,sat} \\ C_{ox} W \left(V_{GT} - V_{d,sat} \right) V_{sat}, & V_{ds} > V_{d,sat} \end{cases}$$

- lacktriangleq Note that μ_{eff} is also a function of V_{GT} due to mobility degradation.
- $\Box \quad \text{Equating the two equations above at the boundary} \\ V_{ds} = V_{d.sat}$

$$V_{d,sat} = \frac{V_{GT}V_c}{V_{GT} + V_c}$$

Velocity Saturation

 Substituting this value in the velocity saturated regime,

$$I_{dsat} = WC_{ox}v_{sat} \frac{V_{GT}^2}{V_{GT} + V_c}$$

- \Box For $V_{GT} << V_c$, the equation reduces to the square law model.
- \Box For $V_{GT} >> V_c$, the the equation becomes

$$I_{dsat} \approx WC_{ox}v_{sat}V_{GT}$$

Vel Sat I-V Effects

☐ Ideal transistor ON current increases with V_{DD}²

$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_{t})^{2}}{2} = \frac{\beta}{2} (V_{gs} - V_{t})^{2}$$

□ Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{ox}W(V_{gs} - V_{t})v_{max}$$

- Real transistors are partially velocity saturated
 - Approximate with α -power law model
 - I_{ds} \propto V_{DD} $^{\alpha}$
 - 1 < α < 2 determined empirically (≈ 1.3 for 65 nm)

α -Power Model

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} & \text{linear} \\ I_{dsat} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

$$I_{dsat} = P_c \frac{\beta}{2} (V_{gs} - V_t)^{\alpha}$$

$$V_{dsat} = P_v (V_{gs} - V_t)^{\alpha/2}$$

Pc, Pv and α are found by fitting the model to the empirical modeling results

Channel Length Modulation

- ☐ Reverse-biased p-n junctions form a *depletion region*
 - Region between n and p with no carriers
 - Width of depletion L_d region grows with reverse bias

$$-L_{eff} = L - L_{d}$$

- ☐ Shorter L_{eff} gives ____ current
 - $-I_{ds}$ with V_{ds}
 - Even in saturation

$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_{t})^{2}}{2} = \frac{\beta}{2} (V_{gs} - V_{t})^{2}$$

Channel Length Mod I-V

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_{t} \right)^{2} \left(1 + \lambda V_{ds} \right)$$

- \square λ = channel length modulation coefficient
 - not feature size
 - Empirically fit to I-V characteristics

Threshold Voltage Effects

- \Box V_t is V_{qs} for which the channel starts to invert
- □ Ideal models assumed V_t is constant
- Really depends (weakly) on almost everything else:
 - Body voltage: Body Effect
 - Drain voltage: Drain-Induced Barrier Lowering
 - Channel length: Short Channel Effect

Body Effect

- Body is a fourth transistor terminal
- V_{sb} affects the charge required to invert the channel
 - Increasing V_s or decreasing V_b increases V_t

$$V_{t} = V_{t0} + \gamma \left(\sqrt{\phi_{s} + V_{sb}} - \sqrt{\phi_{s}} \right)$$

 \Box ϕ_s = surface potential at threshold

$$\phi_s = 2v_T \ln \frac{N_A}{n_i} \qquad v_T = \frac{kT}{q}$$

- Depends on doping level N_A
- And intrinsic carrier concentration n_i
- \Box $\gamma = body effect coefficient$

$$\gamma = \frac{t_{\text{ox}}}{\varepsilon_{\text{ox}}} \sqrt{2q\varepsilon_{\text{si}}N_A} = \frac{\sqrt{2q\varepsilon_{\text{si}}N_A}}{C_{\text{ox}}}$$

Body Effect Cont.

☐ For small source-to-body voltage, treat as linear

$$V_t = V_{t0} + k_{\gamma} V_{sb}$$

$$k_{\gamma} = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{\frac{q\varepsilon_{si}N_A}{v_T \ln \frac{N_A}{n_i}}}}{2C_{ox}}$$

DIBL

- ☐ Electric field from drain affects channel
- More pronounced in small transistors where the

drain is closer to the channel

- Drain-Induced Barrier Lowering
 - Drain voltage also affect V_t

$$V_t' = V_t - \eta V_{ds}$$

- High drain voltage causes current to _____
 - ➤ DIBL increases subthreshold leakage at high Vds

Short Channel Effect

- ☐ In small transistors, source/drain depletion regions extend into the channel.
 - Impacts the amount of charge required to invert the channel.
 - And thus makes V_t a function of channel length.
- ☐ Short channel effect: V_t increases with L.
 - Some processes exhibit a reverse short channel effect in which V_t decreases with L.
 - This is called Reverse Short Channel Effect (RSCE).

Leakage

- What about current in cutoff?
- Simulated results
- What differs?

Junction leakage

Leakage Sources

- Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
 - Dominant source in contemporary transistors
- □ Gate leakage
 - Tunneling through ultrathin gate dielectric
- Junction leakage
 - Reverse-biased PN junction diode current

Subthreshold Leakage

Junction leakage

Subthreshold leakage is the biggest source in modern transistors

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_t}{nv_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}} \right) \qquad v_T = \frac{kT}{q}$$

$$I_{ds0} = \beta v_T^2 e^{1.8} \quad n = 1.4-15$$

Gate Leakage

- Carriers tunnel through very thin gate oxides
- Exponentially sensitive to t_{ox} and V_{DD}

$$I_{\mathrm{gate}} = W\!A\!\!\left(\frac{V_{D\!D}}{t_{\mathrm{ox}}}\right)^{\!2} \mathrm{e}^{-B\frac{t_{\mathrm{ox}}}{V_{D\!D}}}$$

- A and B are tech constants
- Greater for electrons
 - So nMOS gates leak more

□ Critically important at 65 nm and below (t_{ox} ≈ 10.5 Å)

Junction Leakage

- ☐ Reverse-biased p-n junctions have some leakage
 - Ordinary diode leakage
 - Band-to-band tunneling (BTBT)
 - Gate-induced drain leakage (GIDL)

Diode Leakage

☐ Reverse-biased p-n junctions have some leakage

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

- \Box At any significant negative diode voltage, $I_D = -I_s$
- I_s depends on doping levels
 - And area and perimeter of diffusion regions
 - Typically < 1 fA/μm² (negligible)

Gate-Induced Drain Leakage

- Occurs at overlap between gate and drain
 - Most pronounced when drain is at V_{DD}, gate is at a negative voltage
 - Thwarts efforts to reduce subthreshold leakage using a negative gate voltage

Gate-Induced Drain Leakage (GIDL).

Temperature Sensitivity

- □ Increasing temperature
 - Reduces mobility
 - Reduces V_t
- □ I_{ON} with temperature
- □ I_{OFF} with temperature

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_{t} \right)^{2} \left(1 + \lambda V_{ds} \right)$$

$$\beta = \mu C_{\text{ox}} \frac{W}{L}$$

Temperature Sensitivity

☐ The mobility changes by

$$\mu(T) = \mu(T_r) \left(\frac{T}{T_r}\right)^{-k_{\mu}}$$

- $-k_{\mu}$ is a fitting parameter with a typical value 1.5
- \Box v_{sat} decreases with temperature, dropping by about 20% from 300 to 400K.
- The magnitude of the threshold voltage decreases nearly linearly with temperature as

$$V_{t}(T) = V_{t}(T_{r}) - k_{vt}(T - T_{r})$$

 $-k_{vt}$ is typically about 1-2 mV/K

So What?

- So what if transistors are not ideal?
 - They still behave like switches.
- But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation

So What?

- □ Velocity saturation and mobility degradation result in less than expected current at high voltage.
 - There is no point in trying to use high V_{DD} for speed.
 - Moreover, short channels and thin gate oxides will be damaged by high V_{DD} .
- ☐ Series transistors divide voltage. Thus, they are faster than a single transistor contrary to expected.

Parameter Variation

- ☐ Transistors have uncertainty in parameters
 - Process: L_{eff}, V_t, t_{ox} of nMOS and pMOS
 - Vary around typical (T) values
- ☐ Fast (F)
 - L_{eff}:_____
 - V_t: _____
 - t_{ox}: _____
- ☐ Slow (S): opposite
- □ Not all parameters are independent for nMOS and pMOS

Environmental Variation

- □ V_{DD} and T also vary in time and space
- ☐ Fast:
 - V_{DD}: _____
 - T:

Corner	Voltage	Temperature
F		
Т	1.8	70 C
S		

Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

Important Corners

■ Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time				
Power				
Subthreshold				
leakage				

$$P_{\text{switching}} = CV_{DD}^{2} f_{\text{sw}}$$