Example of Error Function

Batch and Stochastic Gradient Descent

Batch:

Do until stop condition is false

- 1. compute $\nabla E_{Tr}[\vec{w}]$
- 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_{Tr}[\vec{w}]$

Stochastic (Incremental):

Do until stop condition is false

- For all training example *p* in *Tr*
 - 1. compute $\nabla E_{p \in Tr}[\vec{w}]$
 - 2. $\vec{w} \leftarrow \vec{w} \eta \nabla E_{p \in Tr}[\vec{w}]$

where

$$E_{Tr}[\vec{w}] \equiv \frac{1}{2cN_{Tr}} \sum_{p \in Tr} \sum_{k=1}^{c} (t_k^{(p)} - z_k^{(p)})^2 \qquad E_{p \in Tr}[\vec{w}] \equiv \frac{1}{2c} \sum_{k=1}^{c} (t_k^{(p)} - z_k^{(p)})^2$$

Stochastic gradient descent (instantaneous gradient) can approximate Batch gradient descent (exact gradient) with arbitrary precision if η is sufficiently small

Some Problems ...

- ► Choice of network topology → determines Hypothesis Space;
- ▶ Choice of step descent size (value of η):

- slow learning..., but fast output computation
- ► LOCAL MINIMA!!

Inductive Bias: both in representation and in learning

Some Problems ...

Vanishing of the gradient with network depth

• The gradient of error for hidden weights \mathbf{W}_l at layer l < L in a network with L layers is given by

$$\frac{\partial E}{\partial \mathbf{W}_{l}} = \frac{\partial E}{\partial \mathbf{h}_{L}} \frac{\partial \mathbf{h}_{L}}{\partial \mathbf{W}_{l}} = \frac{\partial E}{\partial \mathbf{h}_{L}} \frac{\partial \mathbf{h}_{L}}{\partial \mathbf{h}_{L-1}} \frac{\partial \mathbf{h}_{L-1}}{\partial \mathbf{W}_{l}} = \frac{\partial E}{\partial \mathbf{h}_{L}} \left(\prod_{\tau=0}^{L-l-1} \frac{\partial \mathbf{h}_{L-\tau}}{\partial \mathbf{h}_{L-\tau-1}} \right) \frac{\partial \mathbf{h}_{l}}{\partial \mathbf{W}_{l}}$$

- ullet the term $rac{\partial h_{L- au}}{\partial h_{L- au-1}}$ depends on
 - hidden-to-hidden weights $\mathbf{W}_{L-\tau}$ and sigmoid(-like) first derivative

$$\frac{\partial \mathbf{h}_{L-\tau}}{\partial \mathbf{h}_{L-\tau-1}} = \mathbf{W}_{L-\tau}^{\mathsf{T}} \begin{bmatrix} \bullet & 0 & 0 & 0 & 0 \\ 0 & \bullet & 0 & 0 & 0 \\ 0 & 0 & \bullet & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \bullet \end{bmatrix}$$

$$Jacobian \ of \ sigmoidal \ unit$$

where ullet < $\frac{1}{4}$ (sigmoid unit)

Some Problems ...

- if the module of the hidden weight matrices is large enough, then $\|\frac{\partial \mathbf{h}_L}{\partial \mathbf{h}_{L-\tau}}\|$ will increase for increasing values of τ (exploding gradient \Rightarrow hard to decide the "right" descent step size)
- if the module of the hidden weight matrices is small, then gradients vanish going backward in the network
 - ⇒ no learning with gradient descent...

Computational Power

The following theorem establishes universality of feed-forward neural networks as approximators of continuos functions.

Theorem Let $\varphi(\cdot)$ a monotonically increasing continuous, bounded and non constant function. Denote by I_n the n-dimensional hypercube $[0,1]^n$ and let $C(I_n)$ denote the space of continuos function defined over it. Given any function $f \in C(I_n)$ and $\varepsilon > 0$, there exists an integer M and sets of real valued constants α_i , θ_i , and w_{ij} , where $i = 1, \ldots, M$ and $j = 1, \ldots, n$ such that $f(\cdot)$ can be approximated by

$$F(x_1,\ldots,x_n)=\sum_{i=1}^M\alpha_i\varphi(\sum_{j=1}^nw_{ij}x_j-\theta_i)$$
 (1)

in such a way that

$$|F(x_1,\ldots,x_n)-f(x_1,\ldots,x_n)|<\varepsilon \tag{2}$$

for all points $[x_1, \ldots, x_n] \in I_n$.

Computational Power

Notice that any sigmoidal function satisfies the conditions required by the theorem on $\varphi(\cdot)$. Moreover, equation (1) represents the output of a multilayer network described as follows

- 1. the network has n input units and a single hidden layer with M units; inputs are denoted as x_1, \ldots, x_n .
- 2. the i-th unit has associated weights w_{i1}, \ldots, w_{in} and threshold θ_i .
- 3. the network output is a linear combination of the hidden units outputs, where the coefficients of the combination are given by $\alpha_1, \ldots, \alpha_M$.

Thus, given a tolerance ε , a network with a single hidden layer can approximate any function in $C(I_n)$.

Notice that the theorem only states the existence of a network, however it does not give any formula for the computation of M (number of hidden units needed to approximate the target function with the desired tolerance.)

Speeding up learning with momentum

The momentum algorithm accumulates an exponentially decaying moving average of past gradients and continues to move in their direction

Gradient Descent

Gradient Descent with momentum

Clipping Gradients: avoiding overshooting

$$\text{if } \|\nabla_{\mathbf{W}} \overbrace{E(\mathbf{W})}^{Loss} \| > v \Rightarrow \nabla_{\mathbf{W}} E(\mathbf{W}) \leftarrow v \frac{\nabla_{\mathbf{W}} E(\mathbf{W})}{\|\nabla_{\mathbf{W}} E(\mathbf{W})\|}$$

Without clipping

With clipping

Learning the identity function: (lossy) compression of data

Supervised learning for.. Unsupervised learning!!

Input	Output		
00000001	00000001		
00000010	00000010		
00000100	00000100		
00001000	00001000		
00010000	00010000		
00100000	00100000		
01000000	01000000		
10000000	10000000		

After learning...

Input Hidden values			Output	
10000000	\rightarrow	0.89 0.04 0.08	\rightarrow	10000000
01000000	\rightarrow	0.01 0.11 0.88	\rightarrow	01000000
00100000	\rightarrow	0.01 0.97 0.27	\rightarrow	00100000
00010000	\rightarrow	0.99 0.97 0.71	\rightarrow	00010000
00001000	\rightarrow	0.03 0.05 0.02	\rightarrow	00001000
00000100	\rightarrow	0.22 0.99 0.99	\rightarrow	00000100
00000010	\rightarrow	0.80 0.01 0.98	\rightarrow	00000010
00000001	\rightarrow	0.60 0.94 0.01	\rightarrow	00000001

output of the hidden units for one input during training

105 A.A. 2018/19: Cognitive Services

