Bio393: Genetic Analysis

Family-based analysis, Modes of inheritance, Phase

- How many individuals are affected?
- In each generation?
- Are males preferentially affected from affected mothers?
- Are females preferentially affected from affected fathers?

X-linked dominant

Examples of human X-linked dominant disorders

Rett syndrome

Fragile X syndrome

All daughters of affected fathers are affected

- How many individuals are affected?
- In each generation?
- Are males preferentially affected from affected mothers?
- Are females preferentially affected from affected fathers?

X-linked recessive

Examples of human X-linked recessive disorders

Duchenne muscular dystrophy

All sons of affected mothers are affected

- How many individuals are affected?
- In each generation?
- Are males preferentially affected from affected mothers?
- Are females preferentially affected from affected fathers?

Cytoplasmic inheritance

Examples of human cytoplasmic inheritance disorders

Mitochondrial myopathy

Wolff-Parkinson-White syndrome

All children of affected mothers are affected

- How many individuals are affected?
- In each generation?
- Are males preferentially affected from affected mothers?
- Are females preferentially affected from affected fathers?

Recessive maternal-effect inheritance

- How many individuals are affected?
- In each generation?
- Are males preferentially affected from affected mothers?
- Are females preferentially affected from affected fathers?

Y-linked inheritance

Some pedigrees can contain millions of individuals

Yaniv Erlich

Ancestry websites offer rich family data

Remember all of the genetics we've learned so far

Incomplete penetrance

Non-complementation

Haploinsufficiency

Suppression and enhancement

We want to be able to find a marker linked with the disease to identify the disease gene

Autosomal dominant

Genetic variants are used as markers to track disease

Single nucleotide variants (SNVs)

Reference ATGTGCAGACGTAGACGTA

Alternative ATGTGCAGACTTAGACGTA

Insertion-deletion variants (indels)

Reference ATGTGCAGACGTAGACGTA

Alternative ATGTGCAGACGTAGACGTA

Addition of 126 bp

Copy-number variants (CNVs)

Reference Diploid (2 copies)

Alternative More (or fewer) than 2 copies

Microsatellites or short tandem repeats (STRs)

Reference ATGTGCAGCAGCAGCGTA

Alternative ATGTGCAGCAGCGTAGTGACT

Recombination between the marker and the disease-causing allele will confound the mapping

We must determine phase or the allelic combination found in the parent so we can tell if the offspring is a parental or a recombinant.

Sometimes, we don't know the phase of the parent, and both possibilities of phase are equally likely

What about cystic fibrosis?

- 1. Autosomal recessive disorder
- 2. Not caused by chromosomal aberrations or meiotic NDJ
- 3. Mapped to chromosome 7
- 4. Mutations in CF gene are null or hypomorphs
- 5. Compound heterozygosity (failure to complement) is common
- 6. No known epistatic genes to CF gene
- 7. Genetic enhancers are known (immune modulatory genes)
- 8. No genetic suppressors are known yet.

Cell autonomy of CF mutation was shown in the 1960's

Cystic fibrosis was mapped to the chloride ion channel CFTR

Cystic fibrosis is caused by a mix of common and rare variants

Cystic Fibrosis Lung

Healthy Lung

Rare disease affects 1/10,000 live births

Caused by mutations in the CFTR gene

Selection removes homozygotes from population

Hardy-Weinberg equilibrium tell us that 1/50 people are carriers

Why is eugenics (or genome editing) next to impossible?

Cystic fibrosis is caused by a mix of common and rare variants

Cystic Fibrosis Lung

Healthy Lung

50% of all cases have the same allele Δ F508

Over 1000 other mutations are known

Compound heterozygotes found often

Genetic heterogeneity

What do you think the phenotypes of these mutations are?