Actividad Práctica: Resolución de Consignas

Actividad Práctica

Señales 1P

Actividad Práctica Resumen

Análisis de Señales y Sistemas R2041 – R2072

Señales Continuas

- Señales Discretas
- Señales *Analógicas*
- Señales Digitales
- Señales Reales
- Señales Complejas
- Señales Deterministas
- Señales Estocásticas
- Señales Pares
- Señales Impares
- Señales Ortogonales

SEÑALES PERIÓDICAS

$$x(t) = x(t \pm mT_0)$$

$$f_0 = \frac{1}{T_0}; \quad \omega_0 = \frac{2\pi}{T_0} = 2\pi f_0$$

$$x[n] = x[n \pm mN_0]$$

$$F_0 = \frac{k}{N_0}; \quad \Omega_0 = \frac{2k\pi}{N_0} = 2\pi F_0$$

SUMA DE SEÑALES PERIÓDICAS

Ayudas de Consignas

Consigna de la clase #A (15 minutos)

1. Determinar **analiticamente** lo valores de ω_{θ} , f_{θ} y T_{θ} (Ω_{θ} , F_{θ} y N_{θ} en el caso discreto) de las siguientes funciones:

a)
$$x(t) = sen(2\pi 1000t + \frac{\pi}{4})$$

b)
$$x(t) = sen\left(\frac{2}{3}t + \frac{\pi}{4}\right)$$

c)
$$x[n] = \cos\left[\frac{5\pi}{4}n + \frac{\pi}{2}\right]$$

$$d$$
) $x[n] = sen[4\pi n]$

- 2. **Utilizar Matlab** para graficar la forma de la función y **verificar el período calculado junto con la fase temporal** (tener cuidado al elegir T_s y la cantidad de ciclos a visualizar)
- 3. Considerar F_S =8000Hz para discretizar la señal a) (recordar que T_S = $1/F_S$). Reproducirla audiblemente y luego duplicar la frecuencia del tono (f_θ =2000Hz) ¿Qué se oye?

Actividad Práctica Ayudas de Consigna

Ayudas –

1.a)
$$x(t) = seno(2.\pi. 1000.t + \frac{\pi}{4})$$

$$t: Continuo \rightarrow w_0 = 2. \pi. 1000 \; ; \; T_0 = \frac{2.\pi}{w_0} = \frac{2.\pi}{2.\pi. 1000} = \frac{1}{1000} \; ; \; f_0 = \frac{1}{T_0} = \frac{1}{1/1000} = 1000$$

1.b) Completar

1.c)
$$x[n] = cos\left[\frac{5}{4}.n + \frac{\pi}{2}\right]$$

$$n: discreto \rightarrow \Omega_0 = \frac{2.k.\pi}{N_0} = 2.\pi.F_0 \; ; F_0 = \frac{k}{N_0} \; ; \; \Omega_0 = \frac{5}{4} \; ;$$

$$N_0=rac{2.k.\pi}{\Omega_0}=rac{2.k.\pi}{\frac{5}{2}}=rac{8.k.\pi}{5}$$
 ; N_0 tiene que ser cociente de enteros, k : Nro. entero

$$N_0 = \frac{8 \cdot k \cdot \pi}{5}$$
 $\not\exists \mathbb{Q}$ (\mathbb{Q} : Nros Racionales: se pueden expresar como cocientes de enteros)

1.d)
$$x[n] = seno[4.\pi.n]$$
 ... Mhhh....

n	$x[n] = seno[4.\pi.n]$
0	completar
1	
2	
3	

Actividad Práctica EN MATLAB...

Ej. 2)

Continuación

```
%% Tarea xxxx Apellidos
% Ej 2 Verificar con Matlab
% a) Si f0=1000, vamos a probar con fs= 20 x f0 o fs= 10xf0, para que
se vea % continuo (no escalonado)
fs=20000; dt=1/fs;
t=0: dt : (5/1000) -dt; % Si T0= 1/1000, 5/1000 son 5 ciclos
xa = sin( ..... ); Pseudocódigo COMPLETAR
figure ; % Figura Nueva !!!
plot(t,xa); grid on;
Pseudocódigo Completar title, xlabel, ylabel
Usar zoom y/O Data Cursor para analizar período (en clases)
% b) completar
                                             Para n uso «stem»
figure ... plot...
                                             Completar
                                             Comparar analítico y matalab
% c) tengo señal con n discreto
                                             Conclusiones
n = 0: 15; % Muestras
xc = cos(5/4*pi *n +pi/2);
figure; stem(n, xc); % Analizar, tiene período ?
응 d)
```

Actividad Práctica EN MATLAB...

Ej. 3)

```
x(t) = sen\left(2.\pi.1000.t + \frac{\pi}{4}\right) % Ej 3 Verificar con Matlab % a) Si f0=1000, fs= 8000 Hz !!!
```

```
Después de sound usar pause
Sino se superponen los sonidos
Fs = 8000; Ts = 1/Fs;
t = 0: Ts: (2-Ts);
x1 = completar ...; Uso fo=1000
x2 = completar ...; Uso fo=2000

sound(x1, Fs)
duracion =length(x1) / Fs;
pause(duracion +1)
f02= 2000;
x2 = 0.1* sin(2*pi* f02*t +pi/4);
sound(x2, Fs)
```

Completar Ver
consigna punto 3)

Ayudas de Consignas

Consigna de la clase #B (10 minutos)

1. Determinar ω_{θ} , f_{θ} y T_{θ} (Ω_{θ} , F_{θ} y N_{θ} en el caso discreto) de las siguientes funciones:

a)
$$x(t) = sen\left(2\pi 260t + \frac{\pi}{4}\right) + 4\cos(2\pi 440t)$$

b)
$$x[n] = sen\left[\frac{\pi}{3}n\right] + cos\left[\frac{\pi}{6}n\right]$$

- 2. Verificar el resultado obtenido en Matlab a partir de sus gráficos. Reproducir audiblemente x(t) utilizando $F_S = 8000 Hz$ para efectuar el muestreo. Comparar con la componente de 260 Hz y la de 440 Hz.
- 3. Proponga una frecuencia angular para una de las señales en a) de manera que la suma no resulte periódica ¿Se advierte algo particular en su comportamiento?¿Se puede efectuar lo mismo en el caso b)?¿Cuál sería la diferencia?

Actividad Práctica Ayudas de Consigna

Ayudas - Repasar Teoría: pág. 34 hasta 38

Para suma de señales:

Tc corresponde al mínimo común múltiplo (MCM) de los «períodos» intervinientes T_{Total} MCM: mínimo común múltiplo de Períodos $T_1, T_2, ...$

Fc corresponde al máximo común divisor (MCD) de las «frecuencias» intervinientes w_{Total} Máximo Común Divisor (MCD) de w_1, w_2 ,

Actividad Práctica Ayudas de Consigna

Ejemplos "similares" de periodicidad:

i)
$$x(t) = sen\left(8.\pi.t + \frac{\pi}{4}\right)$$
 ; $w_0 = 8.\pi$; $T_0 = \frac{2.\pi}{w_0} = \frac{2.\pi}{8.\pi} = \frac{1}{4}$;

mcm: mínimo común múltiplo de $3.\pi$ y $6.\pi$ es $12.\pi$ Periódica $T_0 = 12.\pi$

Otra forma:

$$w_{01} = \frac{2}{3}$$
; $w_{02} = \frac{1}{2}$ \rightarrow MCD de $\frac{2}{3}$ y $\frac{1}{2}$ es $\frac{1}{6}$ \rightarrow $w_0 = \frac{1}{6}$

Actividad Práctica Ayudas de Consigna

Ejemplos "similares" de periodicidad:

iii)

$$x[n] = \cos\left(\frac{\pi}{2}.n + \frac{\pi}{2}\right)$$

$$x[n] = cos\left(\frac{\pi}{2}.n + \frac{\pi}{2}\right)$$
 ; $N_0 = \frac{2.\pi.K}{\Omega_0} = \frac{2.\pi}{1/2.\pi}.1 = 4$

<u>iv)</u>

$$x[n] = sen\left(\frac{3}{4}\pi.n\right)$$

$$\overline{x[n]} = sen\left(\frac{3}{4}\pi.n\right)$$
; $N_0 = \frac{2.\pi.K}{\Omega_0} = \frac{2.\pi}{3/4.\pi}.k = \frac{8}{3}.k$; $k = 3$; $N_0 = 8$

$$k = 3$$

;
$$N_0 = 8$$

<u>v)</u>

$$x[n] = sen(10.\pi.n)$$

$$x[n] = sen(10.\pi.n)$$
; $N_0 = \frac{2.\pi.K}{\Omega_0} = \frac{2.\pi}{10.\pi}.k = \frac{1}{5}.k$; $k = 5$; $N_0 = 1$ **NO**

;
$$N_0 = 1 \text{ NC}$$

Periódica

$$x[n] = sen(10.\pi.n) = sen(2.\pi.n) = 0$$

$$\underline{\mathbf{vi}}$$
 $x[n] = sen\left(\frac{5}{3}n\right) + cos\left(\frac{10}{4}n\right)$

$$N_{01} = \frac{2.\pi}{Q_{01}} k = \frac{2.\pi}{5/3}$$
. $k = \frac{6.\pi}{5}$. $k \notin Q$ Número Irracional, NO Periódica

A ctividad Práctica Ayudas de Consigna

Ayudas Consigna B

Para suma de señales:

Tc corresponde al mínimo común múltiplo (MCM) de los «períodos» intervinientes

 T_{Total} MCM: mínimo común múltiplo de Períodos $T_1, T_2, ...$

Fc corresponde al máximo común divisor (MCD) de las «frecuencias» intervinientes w_{Total} Máximo Común Divisor (MCD) de w_1, w_2 ,

1)
$$w1 = 2.\pi.260$$
 ; $w2 = 2.\pi.440$ ft = 260 ; $f2 = 440$; $w_0 = 20$ gcd(260,440) Ej MCI ans = 20 $w_0 = 20$; $T_0 = \frac{2.\pi}{w_0} = \frac{2.\pi}{20} = \frac{\pi}{10} \cong 0,314$; $f_0 = \frac{1}{\frac{\pi}{10}} = \frac{10}{\pi} \cong 3,18$

gcd: Greatest common divisor (MCD) https://www.mathworks.com/help/matlab/ref/gcd.html

Ej MCM: lcm(3,4) es MCM de 3 y 4 en Matlab

% 1.b) tengo señal con n discreto
n=0:25; x= sin(pi/3*n) + cos(pi/6*n);
stem(n,x)% Analizar,período

2) completar. Muy Similar a Tarea B

3)

Análisis de Señales y Sistemas R2041

Actividad Práctica: Resolución de Consignas

Actividad Práctica

¿CONSULTAS?

Foro Campus Virtual

