M2

ymonbru

April 8, 2024

Presheaves and sheaves

Let X be a locally compact Hausdorf space.

1.1 Sheaves

Definition 1.1. A presheave on X is a contravariant functor from the category of open sets of X to abélian groups.

Definition 1.2. If \mathcal{F} is a presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim_{p \in U} \mathcal{F}(U)$.

Definition 1.3. If \mathcal{F} is a presheaf on X, it is said to be a sheaf if for any $U \subset X$ open and any covering family of U $(U_a)_{a \in A}$ one has the exact sequence:

$$0 \to \mathcal{F}(U) \to \prod_{a \in A} \mathcal{F}(U_a) \to \prod_{a,b \in A} F(U_a \cap U_b) \tag{1.1}$$

1.2 \mathcal{K} -sheaves

Definition 1.4. A K-presheave on X is a contravariant functor from the category of compact sets of X to abélian groups.

Definition 1.5. If \mathcal{F} is a \mathcal{K} -presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim_{p \in K \ compact} \mathcal{F}(K) = \mathcal{F}(\{p\}).$

Definition 1.6. If \mathcal{F} is a \mathcal{K} -presheaf on X, it is said to be a \mathcal{K} -sheaf if the following conditions are satisfied:

$$\mathcal{F}(\emptyset) = 0 \tag{1.2}$$

• For K_1 and K_2 two comapets of X the following sequence is exact:

$$0 \to \mathcal{F}(K_1 \cup K_2) \to \mathcal{F}(K_1) \bigoplus \mathcal{F}(K_2) \to \mathcal{F}(K_1 \cap K_2) \tag{1.3}$$

• Pour tout compact K de X, le morphisme naturel suivant est un isomorphisme

$$\lim_{K\subset U\ open\ relatively\ compact}\mathcal{F}(\overline{U})\to\mathcal{F}(K) \tag{1.4}$$

Remark 1.7. (1.4) is well defined because if K is a compact subset of X, then for $x \in K$ let U_x be an open neighborhood relatively compact (wich exists by local compactness), the family $(u_x)_{x\in K}$ covers K then one can extract a finite cover of it: $U_1, ... U_n$ and then $\bigcup_{i=1}^n U_i$ is an open neighborhood, and a finite union of relatively compact, then it's relatively compact. $(\overline{\bigcup_{i=1}^n U_i} = \bigcup_{i=1}^n \overline{U_i})$

1.3 Technical lemmas

Lemma 1.8. If $K_1, ... K_n$ are comapets of X then $\{U_1 \cap ... \cap U_n\}_{U_i \supset K_i \text{ open in } X}$ is a cofinal system of neighborhoods of $K_1 \cap ... K_n$.

Lemma 1.9. If \mathcal{C} and \mathcal{D} are two categories, $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ two functors such that (F,G) is an adjoint pair. Then for (F,G) to be an equivalence of category, it's enough to have that thes canonical naturals transformations $id_{\mathcal{D}}\Rightarrow F\circ G$ and $G\circ F\Rightarrow id_{\mathcal{D}}$ are isomorphisms.

$$Proof.$$
 TODO

Lemma 1.10. If $(K_a)_{a \in A}$ is a filtered directed system of comapets substes of X, and \mathcal{F} a \mathcal{K} -presheaf satisfying(1.4), then

$$\varinjlim_{a\in A}\mathcal{F}(K_a)\to\mathcal{F}(\bigcap_{a\in A}K_a)$$

is an isomorphism.

Proof. TODO

1.4 Equivalence of category

Definition 1.11.

• If \mathcal{F} is a presheaf then let $\alpha^*\mathcal{F}$ ne the \mathcal{K} -presheaf:

$$K \mapsto \varinjlim_{K \subset U \ open} \mathcal{F}(U)$$

• If $\mathcal G$ is a $\mathcal K$ -presheaf then let $\alpha_*\mathcal G$ ne the presheaf:

$$U \mapsto \varprojlim_{U \supset K \xleftarrow{compact}} \mathcal{F}(K)$$

Proposition 1.12. The pair (α^*, α_*) is an adjoint pair.

Proof. TODO

Lemma 1.13.

- α^* send sheaves to \mathcal{K} -sheaves
- α^* send K-sheaves to sheaves
- The reistrictions obtained still form an adjoint pair.

The previous adjoint pair give rise to an adjoint pair between shaeves and $\mathcal{K}\text{-sheaves}$

Proof. TODO □

Lemma 1.14. The previous adjoint pair give rise to an equivalence of category between shaeves and \mathcal{K} -sheaves

Proof.

Homotopy sheaves

Definition 2.1.	
Lemma 2.2.	
Proof.	
Lemma 2.3. If \mathcal{F}^{\bullet} is a homotopy- \mathcal{K} -sheaf, and $H^{-1}\mathcal{F}^{\bullet}=0$ then $H^0\mathcal{F}^{\bullet}$ is a \mathcal{K} -sheaf	
Proof.	

Pushforward, exceptional pushforward, and pullback

Čech cohomology

4.1	
Lemma 4.1. TODO	
Proof. TODO	
Proposition 4.2.	
Proof.	
4.2 Čech cohomology is determined by stalks	
Lemma 4.3. TODO	
Proof.	
Lemma 4.4. TODO	
Proof.	
Proposition 4.5. TODO	
Proof.	

Purehomotopy \mathcal{K} -sheaves

Definition 5.1. A homotopy \mathcal{K} -sheaf \mathcal{F}^{\bullet} is said to be pure on X if:

•
•
•
Lemma 5.2. Let \mathcal{F}^{\bullet} be a pure-homotopy \mathcal{K} -sheaf. Then:
• For i < 0 $H^{i}\mathcal{F}^{\bullet} = 0$ • $H^{0}\mathcal{F}^{\bullet}$ is a \mathcal{K} -sheaf.

Proof. TODO

Proposition 5.3. Let \mathcal{F}^{\bullet} be a pure-homotopy \mathcal{K} -sheaf. Then there is a canonical isomorphism: $H^{\bullet}\mathcal{F}^{\bullet}(X) = \check{H}^{\bullet}(X; H^{0}\mathcal{F}^{\bullet})$.
More generaly: TODO

Poincaré–Lefschetz duality

Definition 6.1.	
Lemma 6.2.	
Proof.	
Lemma 6.3.	
Proof. uses tout les poussé en avatn, tiré en arière et tout ça, la cohomologie à support e	compact

Homotopy colimits

7.1 Homotopy colimits

Definition 7.1.

Definition 7.2.

7.2 Homotopy colimits of pure homotopy \mathcal{K} -sheaves

Lemma 7.3.

Proof.

Lemma 7.4.

Steenrod homology