

CLAIMS

1. An optical waveguide comprising:

5 a) a support layer;
 b) a core layer including a cross-linked polymeric material obtained by UV
 irradiation of a polyimide having repeating units of formula (I)

wherein R₁, R₂, and R₃ independently represent hydrogen or a (C₁-C₆)-alkyl group,

10 R₄, R₅, R₆, R₇, R₈ and R₉ independently represent hydrogen, a (C₁-C₆)-alkyl group, a (C₁-C₆)alkenyl or an aryl group;
 X is selected from a covalent bond; a (CH₂)_y group, wherein y is an integer from 1 to 10; O; S; NR, wherein R is (C₁-C₄)alkyl.

x is 0-5,

15 m is 1-10

n is an integer having an average value of from 5 to 50,000,
 and the deuterated derivatives thereof.

2. Optical waveguide according to claim 1 wherein R₁, R₂, R₃ and R₄ independently represent hydrogen or a (C₁-C₃)alkyl group.

20 3. Optical waveguide according to claim 1 wherein said support has a refractive index lower than that of said cross-linked polymeric material.

4. Optical waveguide according to claim 1 wherein said support layer is a glass layer.

25 5. Optical waveguide according to claim 1 comprising a cladding layer disposed over said core layer on the opposite side of that of the support layer.

6. Method for producing an optical waveguide comprising the steps of
 a) spin-coating a polyimide of general formula (I)

wherein R₁, R₂, and R₃ independently represent hydrogen or a (C₁-C₆)alkyl group,

R₄, R₅, R₆, R₇, R₈ and R₉ independently represent hydrogen, a (C₁-C₆)alkyl group, a (C₁-C₆)alkenyl or an aryl group;

X is selected from a covalent bond; a {CH₂}_y group, wherein y is an integer from 1 to 10; O; S; NR, wherein R is (C₁-C₄)alkyl,

x is 0-5,

m is 1-10

n is an integer having an average value of from 5 to 50,000,
 and the deuterated derivatives thereof,

on a substrate layer to obtain a film of the polyimide of formula (I);

15 b) irradiating the film with UV radiation according to a selected pattern.

7. Method according to claim 6 comprising the step of spin-coating a cladding layer over the core layer.