EAS 5830: BLOCKCHAINS

The SHA Family of Hash Functions

Professor Brett Hemenway Falk

The SHA family of hash functions

SHA0

- Designed by the NSA
- Published by NIST in 1993
- Output size 160 bits

SHA1

- Designed by the NSA
- Published by NIST in 1995
- Output size 160 bits

SHA2

- Designed by the NSA
- Published by NIST in 2001
- Output sizes 224, 256, 384, 512 bits

SHA3

- Designed by competition
- Standardized by NIST in 2015
- Output sizes 224, 256, 384, 512 bits

SHA2

- SHA2
- Developed by the NSA in 2001
- Standardized by NIST
- Takes arbitrary length inputs
- Outputs 256 bits (64 hexadecimal digits)

SHA3 Competition

- October 2008 Submissions due
- December 2008 First-round candidates announced
- July 2009 Second-round candidates announced
- December 2010 Final-round candidates announced
 - BLAKE
 - Grøstl
 - o JH
 - Keccak
 - Skein
- October 2012 Keccak declared the winner
 - Ethereum (launched in 2013) implements Keccak
- August 2015 NIST makes final tweaks to Keccak to create SHA-3

SHA1 is 'broken'

- Published by NIST in 1995
- First collision found in February 2017
- SHA1 has 160-bit outputs
- Attack required "only" 2⁶³ SHA1 computations
- 100,000 times faster than brute-force search
- Costs about \$100K
- https://shattered.io/

When is a hash function broken?

- When you can find collisions:
 - $\circ \quad h(x) = h(y)$
- Note:
 - A random collision may not lead to a concrete attack
 - To be conservative, if any collisions are found, the hash function is considered "broken"

What can you do if you break a hash function?

- Tamper with files
 - Insert viruses into widely distributed files
- Forge signatures
 - o If signature is on a public-key this allows Man-in-the-Middle attacks
- Disrupt blockchains
 - Mine faster
 - Get elected in sortition systems (e.g. Algorand)
 - Insert blocks into the middle of a chain (double spend)
 - Forge signatures (spend from other people's accounts)
 - Break commitments (break contracts)

Further Reading

- The First 30 Years of Cryptographic Hash Functions and the NIST SHA-3
 Competition
- SHA-3: Where We've Been, Where We're Going
- <u>Lecture notes on Cryptography</u> (Chapter 8)
- How cryptographers think about hashes (a theoretical perspective)
 - Collision-Free Hashing from Lattice Problems
 - A Design Principle for Hash Functions
 - Merkle-Damgård Revisited: How to Construct a Hash Function

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.