Homework Assignment 1

Mark

September 11, 2024

Abstract

Note: This is my first time using LaTeX, feel free to point out areas of improvement. Furthermore, I used AI to help me with LaTeX syntax but did not use it for the math portions.

1 Problem 1

Let $n \in \mathbb{N}$, define the relation R on $S = \mathbb{Z}$ as follows: For $a, b \in \mathbb{Z}$, we have aRb if a-b is divisible by n. Is R an equivalence relation on \mathbb{Z} ? Justify your answer. **Solution:** Relation R is an equivalence relation on \mathbb{Z} iff the relation is reflexive, symmetric, and transitive. I will prove that R is an equivalence relation (assuming $0 \notin \mathbb{N}$)

- *Proof.* 1. **Reflexive:** Assume $a \in \mathbb{Z}$, then aRa is a a|n = 0|n. 0 is divisible by all numbers other than 0. R is reflexive. If $0 \in \mathbb{N}$, then this would not be an equivalence relation, because nothing is divisible by 0.
- 2. **Symmetry:** Assume aRb, then $a-b|n \implies a-b=n*k$ for some $k \in \mathbb{Z}$. We can multiply both sides by -1. -1(a-b)=-1(n*k) which simplifies to b-a=n*(-k), which is bRa. Therefore aRb implies bRa, specifically the resulting integer of bRa will be the negative of aRb
- 3. **Transitivity:** Suppose aRb and bRc. This means $a b = k_1n$ and $b-c = k_2n$ for some $k, l \in \mathbb{Z}$. Adding these, we get $(a-b)+(b-c) = nk_1+nk_2 \implies a-c = (k_1+k_2)*n$, where $k_1+k_2 \in \mathbb{Z}$. Therefore, $aRb, bRc \implies aRc$

Because R is reflexive, symmetric, and transitive, R is an equivalence relation on \mathbb{Z} , assuming $0 \notin \mathbb{N}$.

2 Problem 2

Let $n \in \mathbb{N}$

2.1 Part (a)

Show that $(\mathbb{Z} \ n\mathbb{Z})$ is a monoid under the operation of multiplication. Assume ab = a * b, and that $(\mathbb{Z} \ n\mathbb{Z})$ is G

Solution: $(\mathbb{Z} \ n\mathbb{Z})$ is the set of equivalence classes $\{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$. We must prove association and that an identity element exists.

Proof. 1. **Associativity:** We must prove that $\overline{a}(\overline{b}\overline{c}) = (\overline{a}\overline{b})\overline{c}$. By definition $\overline{a}*\overline{b} = \overline{a*b}$ Thus, we can simplify both sides. The left-hand side simplifies to $\overline{a*b*c} = \overline{a*b*c}$, which are equal.

Therefore, $(\mathbb{Z} \ n\mathbb{Z})$ is associative.

2. **Identity Element:** We must prove that there exists some 1_G st $a*1_G = a = 1_G*a \quad \forall a \in G$. Clearly, this element is $\overline{1}$, by definition $\overline{a}*\overline{1} = \overline{a*1} = \overline{a}$ Therefore, $(\mathbb{Z} \ n\mathbb{Z})$ is a monoid.

2.2 Part (b)

Show that \overline{x} belongs to the unit group of $(\mathbb{Z} \ n\mathbb{Z})$ if and only if x and n are coprime

Solution:

Proof. 1. We will show that if x and n are coprime, then \overline{x} belongs to $(\mathbb{Z} n\mathbb{Z})^X$. \overline{x} exists in U_n iff there exists some inverse such that $\overline{x}*\overline{x^{-1}} \equiv \overline{1}$. Because Bézout's identity, we know that some ax + bn = 1, furthermore, because we are in the unit group, this fact can be used to say that $ax \equiv 1 \pmod{n}$. Therefore, in this set, x has an inverse a s.t. their product mod n is 1, and therefore they would (by definition) have to exist in the set

2.3 Part (c)

List all the elements of the unit group $U(\mathbb{Z} 15\mathbb{Z})$. You may use results from part **Solution:** Clearly 1. Because they need to be coprime, 3, 5, 6, 9, 10, and 12 are out. So, we are left with $\{1, 2, 4, 7, 8, 11, 13, 14\}$ their respective inverses are $\{1, 8, 4, 13, 2, 11, 7, 14\}$

2.4 Part (d)

Find the orders of $\overline{2}, \overline{4}, \overline{7}$ in $U(\mathbb{Z} 15\mathbb{Z})$. Justify your answer **Solution:** The order of an element in a group is the lowest $n \in \mathbb{N}$ s.t. $g^n = 1_G$, in our case $\overline{g}^n \equiv 1 \pmod{15}$. I can just brute force this. 1. For $\overline{2}$, it is $2^4 = 16$, which mod 15 is 1. n = 4 2. For $\overline{4}$, it is $4^2 = 16$. n = 2 3. For $\overline{7}$, it is $7^4 = 2401$, which mod 15 is also 1 = 4

Problem 3 3

Let G be the set of real numbers $(a, b) \in \mathbb{R}^2$ with $a \neq 0$ and define

$$(a,b)*(c,d) = (ac,ad+b)$$
 $1_G = (1,0)$

Verify that this defines a group

Solution: G is a group iff it is associative, there is an identity element 1_G , and there is an inverse element $\forall (a,b) \in G$. Assume that (a,b)(c,d) = (a,b)*(c,d)

Proof. 1. **Associativity:** Manually check that a(bc) = (ab)c, or in our case $(a,b)((c,d)(e,f)) = ((a,b)(c,d))(e,f) \quad \forall (a,b),(c,d),(e,f) \in G$

$$(a,b)((c,d)(e,f)) = (a,b)(cd,cf+d) = (ace,a(cf+d)+b) = (ace,acf+ad+b)$$

 $((a,b)(c,d))(e,f) = (ac,ad+b)(e,f) = (ace,acf+ad+b)$

These two equations are clearly equal, so G is associative.

2. **Identity Element:** We need to prove that the given identity element $1_G = (1,0)$ holds all properties, specifically $(a,b)1_G = (a,b) = 1_G(a,b) \quad \forall a,b \in$ G. Again, we can manually check that this is the case. Assume $(a,b) \in G$

$$(a,b)(1,0) = (a,0+b)$$
 $(1,0)(a,b) = (a,b+0)$

Clearly, this holds, therefore G has an identity element $1_G = (1,0)$

3. **Inverse Elements:** We now must prove that $\forall (a,b) \in G$ there is some (c,d)st(a,b) $(c,d) = 1_G$. Suppose $(a,b) \in G$ and there is some $(c,d) \in G$. (a,b)(c,d) = (ac,ad+b) for this to be the identity, we get two equations. ac=1 and ad+b=0, which solve to $c=\frac{1}{a}$ and $d=-\frac{b}{a}$. Thus for every (a,b) $a\neq 0$ has an inverse, specifically $(\frac{1}{a},-\frac{b}{a})$. Because G is associative, has an identity element that follows all the rules, and

has an inverse element for all sets, G is a group.

4 Problem 4

For $\theta \in (0, 2\pi)$, define the rotation map R and the vertical mirror symmetric map S on the plane \mathbb{R}^2 as follows:

$$R(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta), \quad S(x,y) = (x,-y)$$

for $(x,y) \in \mathbb{R}^2$. Show that RSR = S.

Solution: We can simply manually check that this is the case. Take the set T. RSR on T would be to apply the map R, then S, then R again onto T, and show that that is the same as just applying S to T.

Proof. Let $(x,y) \in \mathbb{R}^2$. R on $\mathbb{R}^2 = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$, next, $RS \text{ on } \mathbb{R}^2 = (x\cos\theta - y\sin\theta, -x\sin\theta - y\cos\theta), \text{ next (grossly)},$

RSR on $\mathbb{R}^2 = ((x\cos\theta - y\sin\theta)\cos\theta - (-x\sin\theta - y\cos\theta)\sin\theta), (x\cos\theta - y\sin\theta)\sin\theta + (-x\sin\theta - y\cos\theta)\cos\theta$

. This can be simplified into $x\cos^2\theta + x\sin^2\theta$, $-(y\sin^2\theta + y\cos^2\theta)$. Which, using trig identities, is just (x, -y), which is the same result as applying S onto \mathbb{R}^2 . Thus, applying $RSR : \mathbb{R}^2$ is the same as applying $S : \mathbb{R}^2$

5 Problem 5

Show that in a group (G, *), the equations a * x = b and y * a = b are solvable for any $a, b \in G$.

Solution:

Proof. Suppose $a,b \in G$ and they have inverses $a^{-1},b^{-1} \in G$. $a*x=b \to a^{-1}*a*x=a^{-1}*b$. By identity, $x=a^{-1}*b$. From this same logic $y*a=b \to y=b*a^{-1}$. This is solvable because $a,b,a^{-1},b^{-1} \in G$, through our assumption and inverse rules.

6 Problem 6

For an arbitrary group G, the center of G, denoted C(G), is a subset of G consisting of all elements which commute with every element of G, that is,

$$C(G) := \{ g \in G \mid gx = xg \text{ for all } x \in G \}.$$

For any group G, prove that C(G) is a subgroup of G.

Solution: For C(G) to be a subgroup of G, then $1_G \in C(G)$, $h, k \in C(G) \implies hk \in C(G)$, the inverse exists $\forall h \in C(G)$

Proof. 1. *Identity Element:* By definition, $1_G * x = x * 1_G \forall x \in G$, thus, the identity element must be in C(G)

- 2. Closed Under Products: Assume there exists some $h, k \in C(G)$. This implies that hx = xh and kx = xk. khx = kxh, by our equation kx = xk, we can pass hx as x, meaning that k(xh) = (xh)k using our first equation, (kh)x = x(kh) is proved directly, meaning that $\forall k, h \in C(G), kh \in C(G)$
- 3. **Inverse exists:** Assume there is $h \in C(G)$. By definition $hx = xh \forall x \in C(G)$ we can multiply both sides by the inverse of $h h^{-1}hxh^{-1} = h^{-1}xhh^{-1} \implies xh^{-1} = h^{-1}x$. So, hx = xh implies $xh^{-1} = h^{-1}x$

7 Problem 7

Let G be a group, and assume that $X^2 = 1$ for all $x \in G$. Show that G is abelian.

Solution: Group G is abelian iff ab = ba $a, b \in G$. We can prove this directly.

Proof. Assume some $x, y \in G$. We will prove that xy = yx $x^2 = 1$, we can multiply both sides by the inverse of x, $x^{-1}xx = x^{-1}1 \to x = x^{-1} \forall x \in G$. Thus, $xy = x^{-1}y^{-1}$. The right-hand side can be simplified into $(yx)^{-1}$. Because the product of x and y is also in the group, we can use our first equation and get $(yx)^{-1} = (yx)$, which can be substituted as $xy = yx \forall x, y \in G$.

Therefore, G is abelian. \Box

8 Problem 8

Let G be a group. Show that

8.1 (Part (a))

For any $x, y \in G$, we have $o(x) = o(y^{-1}xy$ **Solution:** By definition, o(x) = the smallest $n \in \mathbb{N}$ s.t. $x^n = 1_G$

Proof. Assume $x^n = 1_G$ and $(yxy^{-1})^m = 1_G$, and that $m \neq n$. We can expand the right side to be $1_G = yxy^{-1}yxy^{-1} \dots yxy^{-1}$ (with m factors), and, using associativity and the identity property of inverses, we can simplify this to $1_G = yx^my^{-1}$. This leads to the conclusion that $1_G = x^m = x^n$.

Therefore, m must equal n.

For any $a, b \in G$, we have o(ab) = o(ba)

8.2 (Part (b))

Solution: The solution here is pretty simple and just follows the definition and what we previously proved.

Proof. We know that $o(b) = o(a^{-1}ba)$. Now, we can simply take b = ab, subbing this in gives us $o(ab) = o(a^{-1}aba)$, which because of identity, is just o(ab) = o(ba)

9 Problem 9

Let G be a group and H be a non-empty subset of G. Show that H is a subgroup of G if and only if every $h \in H$ is invertible in G, and $h_1^{-1}h_2 \in H$ for all $h_1, h_2 \in H$

Solution: This can be proved essentially through definition. A subgroup must follow the following 3 properties. 1) $1_G \in H$, 2) $h, k \in H \implies hk \in H$, 3) $\forall h \in H \exists h^{-1}$

Proof. Assume $h_1, h_2, h_1^{-1} \in H$.

1. **Identity Element:** Because we are assuming that $\forall h \in H \exists h^{-1}$, by definition, their operation must be the identity element, and because those exact same elements exist in G, that identity element is also that of G

- 2. **Closed Under Product:** We can use some funny logic here. Because we are assuming that $h_1^{-1}h_2 \in H$ and that $h_1 \implies h_1^{-1}$, that means for every h in H, we know that the operation of it and every other element must exist, if we imagine h as the inverse of it's inverse.
 - 3. Closed Under Product: This is assumed