

Earth Observation Mission CFI Software

EO_POINTING SOFTWARE USER MANUAL

Code: EO-MA-DMS-GS-0005

Issue: 4.17

Date: 10/05/2019

	Name	Function	Signature
Prepared by:	Fabrizio Pirondini	Project Engineer	
	José Antonio González Abeytua	Project Manager	
	Juan José Borrego	Project Engineer	
	Carlos Villanueva	Project Engineer	
	Rubén Castro	Project Engineer	
Checked by:	José Antonio González Abeytua	Project Manager	
Approved by:	José Antonio González Abeytua	Project Manager	

DEIMOS Space S.L.U. Ronda de Poniente, 19 Edificio Fiteni VI, Portal 2, 2ª Planta 28760 Tres Cantos (Madrid), SPAIN Tel.: +34 91 806 34 50

Fax: +34 91 806 34 51 E-mail: deimos@deimos-space.com

© DEIMOS Space S.L.U

All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of DEIMOS Space S.L. or ESA.

Date:

Issue: 10/05/2019

Page: 2

DOCUMENT INFORMATION

	Contract Data	Classification	n
Contract Number	400040304444O/NII /EE/af	Internal	
Contract Number:	4000102614/1O/NL/FF/ef	Public	
Contract leaves	FCA / FCTFC	Industry	х
Contract Issuer:	ESA / ESTEC	Confidential	

External Distribution		
Name	Organisation	Copies

	Electronic handling
Word Processor:	LibreOffice 5.2.3.3
Archive Code:	P/SUM/DMS/01/026-024
Electronic file name:	eo-ma-dms-gs-005-21

Date:

Issue: 10/05/2<u>Q</u>.1197

Page: 3

DOCUMENT STATUS LOG

	DOCUMENT STAT	00 200	
Issue	Change Description	Date	Approval
0.1	First draft version	23/05/02	
1.0	First release	19/07/02	
2.0	Second release	29/11/02	
2.1	Maintenance release	13/05/03	
2.2	Added the following functions: • xp_target_extra_aux • xp_target_extra_target_to_sun • xp_target_extra_ef_to_sat • xp_converterAdded the following functions: • xp_target_extra_aux • xp_target_extra_target_to_sun • xp_target_extra_ef_to_sat • xp_converterAdded the following functions: • xp_target_extra_aux • xp_target_extra_aux • xp_target_extra_aux • xp_target_extra_target_to_sun • xp_target_extra_target_to_sat • xp_target_extra_ef_to_sat • xp_converter	30/09/03	
3.0	Completely new initialization strategy and attitude functions.	21/07/04	
3.1	New attitude models implemented. New multitarget functions.New attitude models implemented. New multitarget functions.New attitude models implemented. New multitarget functions.	13/10/04	
3.2	DEM Model implementation.DEM Model implementation.DEM Model implementation.	15/11/04	
3.3	New features:	11/07/05	

Date:

Issue: 10/05/2019

	 Idenfier accessorsNew features: xp_target_travel_time New attitude models (Cryosat YSM, ADM model) New attitude files for initialization Identifier accessors 		
	New features:		
	New attitude model for ADM		
	xp_dem_compute		
	 xp_target_reflected and xp_target_extra_specular_reflection (only interface definition) 		
	 xp_target_extra_target_to_moon 		
	 New axis for the generic attitude models: 		
	- XP_SC_EF_VEL_VEC		
	XP_ORBIT_POLENew features:		
	New attitude model for ADM		
	xp_dem_compute		
	 xp_target_reflected and 		
3.4	xp_target_extra_specular_reflection (only interface definition)	18/11/05	
	 xp_target_extra_target_to_moon 		
	 New axis for the generic attitude models: 		
	XP_SC_EF_VEL_VEC		
	XP_ORBIT_POLENew features:		
	 New attitude model for ADM 		
	xp_dem_compute		
	 xp_target_reflected and 		
	xp_target_extra_specular_reflection (only interface definition)		
	 xp_target_extra_target_to_moon 		
	New axis for the generic attitude models:		
	- XP_SC_EF_VEL_VEC		
	XP_ORBIT_POLE		
	Maintenance release		
	New features:		
	Aberration correction for Cryosat attitude		
	based on star-trackersMaintenance release		
3.5	New features:	26/05/06	
	Aberration correction for Cryosat attitude based on star-trackersMaintenance release		
	New features:		
	Aberration correction for Cryosat attitude		
	based on star-trackers		
	based on star-trackers		

Date:

Issue: 10/05/2019

	Maintenance release		
	New features:		
	 New attitude models for SENTINEL 1A and 1B 		
	New Axis defined: XP_INERTIAL_POS_VEC_CORRECTED		
	and XP_INERTIAL_VEL_VEC_ROTATEDMaint enance release		
	New features:		
3.6	 New attitude models for SENTINEL 1A and 1B 	24/11/06	
	New Axis defined: XP_INERTIAL_POS_VEC_CORRECTED and XP_INERTIAL_VEL_VEC_ROTATEDMaint angles release.		
	enance release New features:		
	New attitude models for SENTINEL 1A and 1B		
	 New Axis defined: XP_INERTIAL_POS_VEC_CORRECTED and XP_INERTIAL_VEL_VEC_ROTATED 		
	Maintenance release		
	New features:		
	Function expcfi_check_libs		
	 Library version for MAC OS X on Intel (32 and 64-bits)Maintenance release 		
	New features:		
3.7	Function expcfi_check_libs	13/07/07	
	 Library version for MAC OS X on Intel (32 and 64-bits)Maintenance release 		
	New features:		
	Function expcfi_check_libs Continue = Continue		
	Library version for MAC OS X on Intel (32 and 64-bits)		
3.7.2	Maintenance release	13/07/07	
	New features:		
	Support for missalignment for attitude frame		
	Azimuth and Elevation definition for attitude frames		
	Improvement in the quaternion interpolationMaintenance release		
	New features:		
	Support for missalignment for attitude frame Azimuth and Elevation definition for attitude		
	Azimuth and Elevation definition for attitude		

Date:

Issue: 10/05/2019

	frames Improvement in the quaternion interpolationMaintenance release New features: Support for missalignment for attitude frame Azimuth and Elevation definition for attitude frames Improvement in the quaternion interpolation		
4.0	Maintenance releaseMaintenance releaseMaintenance release	19/01/09	
4.1	Maintenance release. New features: Pointing functions support DEM GETASSEv2 Sentinel-1 attitude model (roll steering) Instrument offsets for attitude computations	07/05/10	
4.2	Maintenance release. New features: • Support to DEM ACE2 9SEC		
4.3	Maintenance release. New features: Raytracing model in target fucntions determined by input atmos_id New attitude model for SENTINEL2 (XP_MODEL_SENTINEL2)		
4.4	Maintenance release. New features: Support for GEO satellites: New Yaw flip attitude New function xp_target_sc Option to use a memory cache for DEM computations. New function to configure cache New function xp_target_list_inter		

Date:

Issue: 10/05/2019

4.5	Maintenance release New features: New functions: xp_target_list_extra_vector xp_target_list_extra_main xp_target_list_extra_aux xp_target_list_extra_ef_target xp_target_list_extra_specular_reflection xp_target_list_extra_target_to_moon xp_target_list_extra_target_to_sun New DEM algorithm of maximum heights		
4.6	Maintenance release New features: New function xp_attitude_define. Internal improvements for runtime performance in DEM computations.		
4.7	Maintenance release	28/03/14	
4.8	Maintenance release New features: • Added support for Earth Fixed input in initialization of satellite nominal attitude with harmonics.	29/10/2014	
4.9	Maintenance release	23/04/2015	
4.10	Maintenance release New features: Support for DEM ACE2 30 secs Target functions: possibility of considering light travel time in target computation Run-time improvements in target functions	29/10/2015	

Date:

Issue: 10/05/2019

4.11	Maintenance release New features: • Support for DEM ACE2 3 secs • New functions xp_gen_attiude_data and xp_gen_attitude_file	15/04/2016	
4.12	Maintenance release	03/11/2016	
4.13	Maintenance release	05/04/2017	
4.14	Maintenance release New features: • Support for MetOp-SG attitude law • New function xp_free_target_id_data	16/11/2017	
4.15	Maintenance release	20/04/2018	
4.16	Maintenance release New features: • Support for DEM ACE2 5 minutes	09/11/2018	
4.17	Maintenance release New features: • xp_dem_get_cell_value • xp_dem_get_cell_geod	10/05/2019	

Date:

Issue: 10/05/2019

Page: 9

TABLE OF CONTENTS

DOCUMENT INFORMATION	2
DOCUMENT STATUS LOG	3
TABLE OF CONTENTS	9
LIST OF TABLES	32
LIST OF FIGURES	39
1 SCOPE	40
2 ACRONYMS, NOMENCLATURE AND TERMINOLOGY	41
2.1 Acronyms	41
2.2 Nomenclature	42
2.3 Note on Terminology	42
3 APPLICABLE AND REFERENCE DOCUMENTS	43
3.1 Applicable Documents	43
3.2 Reference Documents	43
4 INTRODUCTION	44
4.1 Functions Overview	44
4.1.1 Attitude Data Flow	45
4.1.2 Geolocation Routines Data Flow	48
4.1.2.1 LOS targets	52
4.1.2.2 DEM targets	53
4.1.2.3 Light propagation model	54
5 LIBRARY INSTALLATION	58
6 LIBRARY USAGE	59
6.1 Usage hints	62

Code: E	O-MA-DM	S-GS-0005
---------	---------	-----------

Issue: 10/05/2019

6.2 General Enumerations	63
6.3 Data Structures	70
7 CFI FUNCTIONS DESCRIPTION	79
7.1 xp_sat_nominal_att_init	80
7.1.1 Overview	80
7.1.2 Calling Interface	80
7.1.3 Input Parameters	81
7.1.4 Output Parameters	81
7.1.5 Warnings and Errors	81
7.2 xp_sat_nominal_att_init_model	82
7.2.1 Overview	82
7.2.2 Calling Interface	82
7.2.3 Input Parameters	83
7.2.3.1 Generic Model description	84
7.2.3.2 Sentinel-1 Model parameters description	86
7.2.3.3 Sentinel-2 Model description	86
7.2.3.4 Yaw flip attitude Model description	86
7.2.3.5 MetOp-SG Model description	87
7.2.4 Output Parameters	87
7.2.5 Warnings and Errors	87
7.3 xp_sat_nominal_att_init_harmonic	89
7.3.1 Overview	89
7.3.2 Calling Interface	89
7.3.3 Input Parameters	91
7.3.4 Output Parameters	92
7.3.5 Example	92
7.3.6 Warnings and Errors	93
7.4 xp_sat_nominal_att_init_file	94
7.4.1 Overview	94
7.4.2 Calling Interface	94
7.4.3 Input Parameters	95

Code: EO-MA-DMS-GS-00	05
-----------------------	----

Issue: 10/05/2019

	 11
nutant Daramatara	06

7.4.4	Output Parameters	96
7.4.5	Warnings and Errors	96
7.5 xp_	_sat_nominal_att_close	98
7.5.1	Overview	98
7.5.2	Calling Interface	98
7.5.3	Input Parameters	99
7.5.4	Output Parameters	99
7.5.5	Warnings and Errors	99
7.6 xp_	_sat_nominal_att_get_aocs	100
7.6.1	Overview	100
7.6.2	Calling interface	100
7.6.3	Input parameters	100
7.6.4	Output parameters	100
7.6.5	Warnings and errors	101
7.7 xp_	_sat_nominal_att_set_aocs	102
7.7.1	Overview	102
7.7.2	Calling interface	102
7.7.3	Input parameters	102
7.7.4	Output parameters	102
7.7.5	Warnings and errors	103
7.8 xp_	_sat_nominal_att_get_param	104
7.8.1	Overview	104
7.8.2	Calling interface	104
7.8.3	Input parameters	104
7.8.4	Output parameters	104
7.8.5	Warnings and errors	105
7.9 xp_	sat_nominal_att_set_param	106
	Overview	
7.9.2	Calling interface	106
7.9.3	Input parameters	106
7.9.4	Output parameters	106

Code:	EO-MA-DMS-GS-0005
-------	-------------------

Issue: 10/05/2019

7.10 xp_	_sat_nominal_att_get_harmonic	108
7.10.1	Overview	108
7.10.2	Calling interface	108
7.10.3	Input parameters	108
7.10.4	Output parameters	108
7.10.5	Warnings and errors	109
7.11 xp_	_sat_nominal_att_set_harmonic	110
7.11.1	Overview	110
7.11.2	Calling interface	110
7.11.3	Input parameters	110
7.11.4	Output parameters	110
7.11.5	Warnings and errors	111
7.12 xp_	_sat_nominal_att_get_file	112
7.12.1	Overview	112
7.12.2	Calling interface	112
7.12.3	Input parameters	112
7.12.4	Output parameters	112
7.12.5	Warnings and errors	113
7.13 xp_	_sat_nominal_att_set_file	114
7.13.1	Overview	114
7.13.2	Calling interface	114
7.13.3	Input parameters	114
7.13.4	Output parameters	114
7.13.5	Warnings and errors	115
7.14 xp_	_sat_att_angle_init	116
7.14.1	Overview	116
7.14.2	Calling Interface	116
7.14.3	Input Parameters	117
7.14.4	Output Parameters	117
7.14.5	Warnings and Errors	117
7.15 xp_	_sat_att_matrix_init	119
	Overview	

Code:	EO-MA-DMS-GS-0005

Issue: 10/05/2019

		Page:	13
7.15.2	Calling Interface	119	9
7.15.3	Input Parameters	120	0
7.15.4	Output Parameters	120	0
7.15.5	Example	120	0
7.15.6	Warnings and Errors	120	0
7.16 xp_	sat_att_init_harmonic	122	2
7.16.1	Overview		2
7.16.2	Calling Interface		2
7.16.3	Input Parameters	124	4
7.16.4	Output Parameters	12:	5
7.16.5	Warnings and Errors	12:	5
7.17 xp_	sat_att_init_file	12′	7
7.17.1	Overview	12′	7
7.17.2	Calling Interface.	12′	7
7.17.3	Input Parameters	128	8
7.17.4	Output Parameters	129	9
7.17.5	Warnings and Errors		9
7.18 xp_	sat_att_quat_plus_matrix_init	13	1
7.18.1	Overview	13	1
7.18.2	Calling Interface	13	1
7.18.3	Input Parameters		2
7.18.4	Output Parameters		2
7.18.5	Warnings and Errors		2
7.19 xp_	sat_att_quat_plus_angle_init	13	4
7.19.1	Overview	134	4
7.19.2	Calling Interface		4
7.19.3	Input Parameters	13.	5
7.19.4	Output Parameters		5
7.19.5	Warnings and Errors		5
7.20 xp_	sat_att_close	13′	7
7.20.1	Overview		7
7.20.2	Calling Interface	13′	7

Code:	EO-MA-DMS-GS-0005
-------	-------------------

Issue: 10/05/2019

		Page:	1
7.20.3	Input Parameters		138
7.20.4	Output Parameters.		138
7.20.5	Warnings and Errors		138
7.21 xp	sat_att_get_angles	•••••	140
7.21.1	Overview		140
7.21.2	Calling interface		140
7.21.3	Input parameters		140
7.21.4	Output parameters		140
7.21.5	Warnings and errors		141
7.22 xp	_sat_att_set_angles	•••••	142
7.22.1	Overview		142
7.22.2	Calling interface		142
7.22.3	Input parameters		142
7.22.4	Output parameters		142
7.22.5	Warnings and errors		143
7.23 xp	_sat_att_get_matrix	•••••	144
7.23.1	Overview		144
7.23.2	Calling interface		144
7.23.3	Input parameters		144
7.23.4	Output parameters		144
7.23.5	Warnings and errors		145
7.24 xp	_sat_att_set_matrix		146
7.24.1	Overview		146
7.24.2	Calling interface		146
7.24.3	Input parameters		146
7.24.4	Output parameters		147
7.24.5	Warnings and errors		147
7.25 xp	_sat_att_get_harmonic	•••••	148
7.25.1	Overview		148
7.25.2	Calling interface		148
7.25.3	Input parameters		148
7.25.4	Output parameters		148

Code:	EO-MA-DMS-GS-0005
-------	-------------------

Issue: 10/05/2019

7.25.5	Warnings and errors	149
7.26 xp_	_sat_att_set_harmonic	150
7.26.1	Overview	150
7.26.2	Calling interface	150
7.26.3	Input parameters	150
7.26.4	Output parameters	150
7.26.5	Warnings and errors	151
7.27 xp_	_sat_att_get_file	152
7.27.1	Overview	152
7.27.2	Calling interface	152
7.27.3	Input parameters	152
7.27.4	Output parameters	152
7.27.5	Warnings and errors	153
7.28 xp	_sat_att_set_file	154
	Overview	
	Calling interface	
	Input parameters	
	Output parameters	
	Warnings and errors	
7.29 xp	_sat_att_get_quat_plus_angle	156
	Overview	
7.29.2	Calling interface	156
7.29.3	Input parameters	156
7.29.4	Output parameters	156
7.29.5	Warnings and errors	157
7.30 xp	sat att set quat plus angle	158
	Overview	
	Calling interface	
	Input parameters	
	Output parameters	
	Warnings and errors	
7.31 xn	sat att get quat plus matrix	160
···· AU		

Code:	EO-MA-DMS-GS-0005

Issue: 10/05/2019

		Page:	16
7.31.1	Overview		160
7.31.2	Calling interface		160
7.31.3	Input parameters		160
7.31.4	Output parameters		161
7.31.5	Warnings and errors		161
7.32 xp_	sat_att_set_quat_plus_matrix		162
7.32.1	Overview		162
7.32.2	Calling interface		162
7.32.3	Input parameters		162
7.32.4	Output parameters		163
7.32.5	Warnings and errors		163
7.33 xp_	_instr_att_angle_init		164
7.33.1	Overview		164
7.33.2	Calling Interface		164
7.33.3	Input Parameters		165
7.33.4	Output Parameters		165
7.33.5	Warnings and Errors		165
7.34 xp_	_instr_att_matrix_init		167
7.34.1	Overview		167
7.34.2	Calling Interface		167
7.34.3	Input Parameters		168
7.34.4	Output Parameters		168
7.34.5	Warnings and Errors		168
7.35 xp_	_instr_att_init_harmonic	•••••	170
7.35.1	Overview		170
7.35.2	Calling Interface		170
7.35.3	Input Parameters		172
7.35.4	O utput Parameters		173
7.35.5	Warnings and Errors		173
7.36 xp_	instr_att_init_file	•••••	175
7.36.1	Overview		175
7.36.2	Calling Interface		175

Code:	EO-MA-DMS-GS-0005
Code.	EO-MA-DMS-GS-0003

Issue: 10/05/2019

7.36.3	Input Parameters.	176
7.36.4	Output Parameters	176
7.36.5	Warnings and Errors	177
7.37 xp	_instr_att_close	178
7.37.1	Overview	178
7.37.2	Calling Interface	178
7.37.3	Input Parameters	178
7.37.4	Output Parameters	178
7.37.5	Warnings and Errors	179
7.38 xp	_instr_att_get_angles	180
	Overview	
7.38.2	Calling interface	180
7.38.3	Input parameters	180
7.38.4	Output parameters	180
7.38.5	Warnings and errors	181
7.39 xp_	_instr_att_set_angles	182
7.39.1	Overview	182
7.39.2	Calling interface	182
7.39.3	Input parameters	182
7.39.4	Output parameters	182
7.39.5	Warnings and errors	183
7.40 xp	_instr_att_get_matrix	184
7.40.1	Overview	184
7.40.2	Calling interface	184
7.40.3	Input parameters	184
7.40.4	Output parameters	185
7.40.5	Warnings and errors	185
7.41 xp	_instr_att_set_matrix	186
7.41.1	Overview	186
7.41.2	Calling interface	186
7.41.3	Input parameters	186
7.41.4	Output parameters	187

Code:	EO-MA-DMS-GS-0005

Issue: 10/05/2019

7.41.5	Warnings and errors	187
7.42 xp_	_instr_att_get_harmonic	188
7.42.1	Overview	188
7.42.2	Calling interface	188
7.42.3	Input parameters	188
7.42.4	Output parameters	188
7.42.5	Warnings and errors	189
7.43 xp_	_instr_att_set_harmonic	190
7.43.1	Overview	190
7.43.2	Calling interface	190
7.43.3	Input parameters	190
7.43.4	Output parameters	190
7.43.5	Warnings and errors	191
7.44 xp	instr_att_get_file	192
	Overview	
7.44.2	Calling interface.	192
7.44.3	Input parameters	192
7.44.4	Output parameters	192
7.44.5	Warnings and errors	193
7.45 xp	instr_att_set_file	194
	Overview	
7.45.2	Calling interface	194
7.45.3	Input parameters	194
7.45.4	Output parameters	194
7.45.5	Warnings and errors	195
7.46 xp	set az el definition	195
7.46.1	 Overview	195
7.46.2	Calling interface.	195
	Input parameters	
7.46.4	Output parameters	196
7.46.5	Warnings and errors	196
7.47 xn	attitude define	198

Code: EO-MA-DMS-GS-00	05
-----------------------	----

Page:

Issue: $10/05/20 \, \text{lg}$

19

7.47.1	Overview	198
7.47.2	Calling Interface	198
7.47.3	Input Parameters	199
7.47.4	Output Parameters	199
7.47.5	Warnings and Errors	199
7.48 xp	_run_init	201
7.48.1	Overview	201
7.48.2	Calling interface	201
7.48.3	Input parameters	202
7.48.4	Output parameters	202
7.48.5	Warnings and errors	202
7.49 xp	_run_get_ids	204
7.49.1	Overview	204
7.49.2	Calling interface	204
7.49.3	Input parameters	205
7.49.4	Output parameters.	205
7.49.5	Warnings and errors	205
7.50 xp	_run_close	206
7.50.1	Overview	206
7.50.2	Calling interface	206
7.50.3	Input parameters	206
7.50.4	Output parameters.	206
7.50.5	Warnings and errors	206
7.51 xp	attitude init	207

 7.51.3 Input Parameters.
 208

 7.51.4 Output Parameters.
 208

 7.51.5 Warnings and Errors.
 208

Code:	EO-MA-DMS-GS-0005

Issue: 10/05/2019

		rage. 2
7.52.3	Input parameters	210
7.52.4	Output parameters	211
7.52.5	Warnings and errors	211
7.53 xp	_attitude_user_set	214
	- – – Overview	
7.53.2	Calling interface	214
	Input parameters	
7.53.4	Output parameters	216
7.53.5	Warnings and errors	216
7.54 xp	get_attitude_dataget_attitude_data	218
	Overview	
7.54.2	Calling interface	218
	Input parameters	
7.54.4	Output parameters	219
	Warnings and errors	
7.55 xp_	_gen_attitude_data	221
7.55.1	Overview	221
7.55.2	Calling interface	221
7.55.3	Input parameters	222
7.55.4	Output parameters	223
7.55.5	Warnings and errors	223
7.56 xp_	_gen_attitude_file	225
7.56.1	Overview	225
7.56.2	Calling interface	225
7.56.3	Input parameters	226
7.56.4	Output parameters	227
7.56.5	Warnings and errors	228
7.56.6	Executable Program	228
7.57 xp_	_attitude_close	232
	- – Overview	

 7.57.2 Calling Interface.
 232

 7.57.3 Input Parameters.
 233

Code:	EO-MA-DMS-GS-0005

Issue: 10/05/2019

7.57.4	Output Parameters	233
7.57.5	Warnings and Errors.	233
7.58 xp	_attitude_get_id_data	234
7.58.1	Overview	234
7.58.2	Calling interface	234
7.58.3	Input parameters	234
7.58.4	Output parameters	234
7.58.5	Warnings and errors	235
7.59 xp	_attitude_set_id_data	236
7.59.1	Overview	236
7.59.2	Calling interface	236
7.59.3	Input parameters	236
7.59.4	Output parameters	236
7.59.5	Warnings and errors	237
7.60 xp	_attitude_get_model_id	238
7.60.1	Overview	238
7.60.2	Calling interface	238
7.60.3	Input parameters	238
7.60.4	Output parameters	238
7.60.5	Warnings and errors	238
7.61 xp	_change_frame	240
7.61.1	Overview	240
7.61.2	Calling interface	240
7.61.3	Input parameters	242
7.61.4	Output parameters	243
7.61.5	Warnings and errors	243
7.62 xp	_atmos_init	245
7.62.1	Overview	245
7.62.2	Calling Interface	245
7.62.3	Input Parameters	246
7.62.4	Output Parameters	246
7.62.5	Warnings and Errors	246

Code: E	O-MA-DM	S-GS-0005
---------	---------	-----------

Issue: 10/05/2019

7.63	kp_atmos_clos	se	248
7.63	.1 Overview		248
7.63	.2 Calling Into	erface	248
7.63	.3 Input Parar	meters	249
7.63	.4 Output Para	ameters	249
7.63	.5 Warnings a	and Errors	249
7.64	xp_atmos_get_	_id_data	251
7.64	.1 Overview		251
7.64	.2 Calling into	erface	251
7.64	.3 Input paran	meters	251
7.64	.4 Output para	ameters	251
7.64	.5 Warnings a	and errors	252
7.65	xp_dem_init		253
7.65	.1 Overview		253
7.65	.2 Location of	f DEM dataset	253
7.65	.3 Access to D	DEM dataset	253
7.65	.4 DEM maxi	imum altitude algorithm	254
7.65	.5 DEM Geoi	id computation	254
7.65	.6 Calling Into	erface	255
7.65	.7 Input Parar	meters	256
7.65	.8 Output Par	ameters	256
7.65	.9 Warnings a	and Errors	256
7.66	xp_dem_close.		259
7.66	.1 Overview		259
7.66	.2 Calling Into	erface	259
7.66	.3 Input Parar	meters	259
7.66	.4 Output Para	ameters	259
7.66	.5 Warnings a	and Errors	260
7.67	xp_dem_comp	oute	261
7.67	.1 Overview		261
7.67	.2 Calling Into	erface	261
7.67	.3 Input Parar	meters	262

Code:	EO-MA-DMS-GS-0005
Code.	EO-MA-DMS-GS-0003

Issue: 10/05/2019

		Page:	23
7.67.4	Output Parameters		262
7.67.5	Warnings and Errors		262
7.68 xp_	dem_get_info		263
7.68.1	Overview		263
7.68.2	Calling Interface		263
7.68.3	Input Parameters		264
7.68.4	Output Parameters		264
7.68.5	Warnings and Errors		264
7.69 xp	_dem_get_id_data		266
7.69.1	Overview		266
7.69.2	Calling interface		266
7.69.3	Input parameters		266
7.69.4	Output parameters		266
7.69.5	Warnings and errors		267
7.70 xp_	_dem_id_configure		267
7.70.1	Overview		267
7.70.2	Calling Interface		267
7.70.3	Input Parameters		268
7.70.4	Output Parameters		268
7.70.5	Warnings and Errors		268
7.71 xp_	_dem_get_cell_value		270
7.71.1	Overview		270
7.71.2	Calling Interface		270
7.71.3	Input Parameters		272
7.71.4	Output Parameters		272
7.71.5	Warnings and Errors		272
7.72 xp_	_dem_get_cell_geod		274
7.72.1	Overview		274
7.72.2	Calling Interface		274
7.72.3	Input Parameters		275
7.72.4	Output Parameters		275

Code:	EO-MA-DMS-GS-0005

Issue: 10/05/2019

7.73 xp	_target_inter	277
7.73.1	Overview	277
7.73.2	Calling Interface.	277
7.73.3	Input Parameters	279
7.73.4	Output Parameters	280
7.73.5	Warnings and Errors	280
7.74 xp	_target_ground_range	282
7.74.1	Overview	282
7.74.2	Calling Interface	282
7.74.3	Input Parameters	284
7.74.4	Output Parameters	285
7.74.5	Warnings and Errors	285
7.75 xp	_target_incidence_angle	287
7.75.1	Overview	287
7.75.2	Calling Interface	287
7.75.3	Input Parameters	289
7.75.4	Output Parameters	290
7.75.5	Warnings and Errors	290
7.76 xp	_target_range	292
	Overview	
7.76.2	Calling Interface	292
7.76.3	Input Parameters	294
7.76.4	Output Parameters	295
7.76.5	Warnings and Errors	295
7.77 xp	_target_range_rate	297
7.77.1	Overview	297
7.77.2	Calling Interface	297
7.77.3	Input Parameters	299
7.77.4	Output Parameters	300
7.77.5	Warnings and Errors	300
7.78 xp	_target_tangent	302
	Overview	302

Code:	EO-MA-DMS-GS-0005

Page:

Issue: 10/05/20 1/9/

25

7.78.2	Calling Interface	302
7.78.3	Input Parameters	304
7.78.4	Output Parameters.	305
7.78.5	Warnings and Errors	305
7.79 xp_	_target_altitude	307
7.79.1	Overview	307
7.79.2	Calling Interface	307
7.79.3	Input Parameters	309
7.79.4	Output Parameters.	310
7.79.5	Warnings and Errors	310
7.80 xp_	_target_star	312
7.80.1	Overview	312
7.80.2	Calling Interface	312
7.80.3	Input Parameters	314
7.80.4	Output Parameters.	315
7.80.5	Warnings and Errors	315
7.81 xp_	_target_station	317
7.81.1	Overview	317
7.81.2	Calling Interface	317
7.81.3	Input Parameters	319
7.81.4	Output Parameters	320

Code: EO-MA-DMS-GS-00	05
-----------------------	----

Date: Issue: 10/05/20.1197

•	Page:	26

7.83.4	Output Parameters	327
7.83.5	Warnings and Errors	327
7.84 xp_	_target_travel_time	330
7.84.1	Overview	330
7.84.2	Calling Interface	330
7.84.3	Input Parameters	332
7.84.4	Output Parameters	333
7.84.5	Warnings and Errors	333
7.85 xp_	_target_tangent_sun	335
7.85.1	Overview	335
7.85.2	Calling Interface	335
7.85.3	Input Parameters	337
7.85.4	Output Parameters	337
7.85.5	Warnings and Errors	338
7.86 xp_	_target_tangent_moon	340
7.86.1	Overview	340
7.86.2	Calling Interface	340
7.86.3	Input Parameters	341
7.86.4	Output Parameters	341
7.86.5	Warnings and Errors	342
7.87 xp_	_target_sc	344
7.87.1	Overview	344
7.87.2	Calling Interface	344
7.87.3	Input Parameters	344
7.87.4	Output Parameters	345
7.87.5	Warnings and Errors	345
7.88 xp_	_multi_target_inter	347
7.88.1	Overview	347
7.88.2	Calling Interface	347
7.88.3	Input Parameters	349
7.88.4	Output Parameters	350
7.88.5	Warnings and Errors	350

Code:	EO-MA-DMS-GS-0005
-------	-------------------

Issue: 10/05/2019

7.89 xp	_multi_target_travel_time	353
7.89.1	Overview	353
7.89.2	Calling Interface	353
7.89.3	Input Parameters	355
7.89.4	Output Parameters	357
7.89.5	Warnings and Errors	357
7.90 xp	_target_list_inter	359
7.90.1	Overview	359
7.90.2	Calling Interface	360
7.90.3	Input Parameters	361
7.90.4	Output Parameters	362
7.90.5	Warnings and Errors	362
7.91 xp	_target_extra_vector	364
7.91.1	Overview	364
7.91.2	Calling Interface	364
7.91.3	Input Parameters	365
7.91.4	Output Parameters	366
7.91.5	Warnings and Errors	367
7.92 xp	_target_list_extra_vector	369
7.92.1	Overview	369
7.92	.1.1 Note on multithreading:	369
7.92.2	Calling Interface	369
7.92.3	Input Parameters	371
7.92.4	Output Parameters	372
7.92.5	Warnings and Errors	372
7.93 xp	_target_extra_main	374
7.93.1	Overview	374
7.93.2	Calling Interface	374
7.93.3	Input Parameters	375
7.93.4	Output Parameters	376
7.93.5	Warnings and Errors	378
7.94 xp	target list extra main	381

Code:	EO-MA-DMS-GS-0005

Page:

Issue: 10/05/2019

28

7.94.1	Overview	381
7.94.2	Calling Interface	381
7.94.3	Input Parameters	382
7.94.4	Output Parameters	383
7.94.5	Warnings and Errors	383
7.95 xp	target_extra_aux	385
	Overview	
7.95.2	Calling Interface	385
7.95.3	Input Parameters	386
7.95.4	Output Parameters	387
7.95.5	Warnings and Errors	389
7.96 xp	target_list_extra_aux	391
	Overview	
	Calling Interface	
	Input Parameters	
	Output Parameters	
	Warnings and Errors	
7.97 xp	target_extra_ef_target	395
	Overview	
7.97.2	Calling Interface	395
7.97.3	Input Parameters	396
7.97.4	Output Parameters	397
7.97.5	Warnings and Errors	398
7.98 xp_	target_list_extra_ef_target	400
	Overview	
7.98.2	Calling Interface	400
	Input Parameters	
	Output Parameters	
	Warnings and Errors	
7.99 xp	target extra target to sun	404
	Overview	
	Calling Interface	
		* .

Code:	EO-MA-DMS-GS-0005
-------	-------------------

Issue: 10/05/2019

7.99.3	Input Parameters	406
7.99.4	Output Parameters	407
7.99.5	Warnings and Errors	407
7.100 xp	_target_list_extra_target_to_sun	410
	Overview	
7.100.2	Calling Interface	410
7.100.3	Input Parameters	411
7.100.4	Output Parameters	412
7.100.5	Warnings and Errors	412
7.101 xp	_target_extra_target_to_moon	415
	Overview	
7.101.2	Calling Interface	415
	Input Parameters	
7.101.4	Output Parameters	417
7.101.5	Warnings and Errors	417
7.102 xp	_target_list_extra_target_to_moon	420
7.102.1	Overview	420
7.102.2	Calling Interface	420
7.102.3	Input Parameters	421
7.102.4	Output Parameters	422
7.102.5	Warnings and Errors	422
7.103 xp	_target_extra_specular_reflection	425
7.103.1	Overview	425
7.103.2	Calling Interface	425
7.103.3	Input Parameters	426
7.103.4	Output Parameters	427
7.103.5	Warnings and Errors	428
7.104 xp	_target_list_extra_specular_reflection	431
7.104.1	Overview	431
7.104.2	Calling Interface	431
7.104.3	Input Parameters	432
7.104.4	Output Parameters	433

Code:	EO-MA-DMS-GS-0005

Issue: 10/05/2019

7.104.5	Warnings and Errors	433
7.105 xp_	_target_close	435
7.105.1	Overview	435
7.105.2	Calling Interface	435
7.105.3	Input Parameters	436
7.105.4	Output Parameters	436
7.105.5	Warnings and Errors	436
7.106 xp	_target_get_id_data	437
7.106.1	Overview	437
7.106.2	Calling interface	437
7.106.3	Input parameters	437
7.106.4	Output parameters	437
7.106.5	Warnings and errors	438
7.107 xp_	_gen_dem_max_altitude_file	439
7.107.1	Overview	439
7.107.2	Calling Interface	439
7.107.3	Input Parameters	440
7.107.4	Output Parameters	441
7.107.5	Warnings and Errors	441
7.107.6	Executable Program.	442
7.108 xp	_gen_dem_altitudes_from_ellipsoid	443
7.108.1	Overview	443
7.108.2	Calling Interface	443
7.108.3	Input Parameters	444
7.108.4	Output Parameters	445
7.108.5	Warnings and Errors	445
7.109 xp_	_attitude_transform	447
	Overview	
7.109.2	Calling Interface	447
7.109.3	Input Parameters	448
7.109.4	Output Parameters	449
7.109.5	Warnings and Errors	449

Code:	EO-MA-DMS-GS-0005
-------	-------------------

Issue: 10/05/2019

7.110 xp	_free_target_id_data	450
7.110.1	Overview	450
7.110.2	Calling interfaces.	450
	Input Parameters	
7.110.4	Output Parameters	450
7.110.5	Warnings and Errors.	450
8 RUNTI	ME PERFORMANCES	451
9 LIBRA	RY PRECAUTIONS	455
10 USEF	R REFRACTION FILE	456

Date:

Issue: 10/05/2019

Page: 32

LIST OF TABLES

Table 1: xp_target functions	49
Table 2: CFI functions included within EO_POINTING library	60
Table 3: Enumerations within EO_POINTING library	63
Table 4: EO_POINTING structures	
Table 5: Input parameters of xp_sat_nominal_att_init function	81
Table 6: Output parameters of xp_sat_nominal_att_init	
Table 7: Error messages of xp_sat_nominal_att_init function	
Table 8: Input parameters of xp_sat_nominal_att_init_model function	
Table 9: Model parameters depending on the attitude model	
Table 10: Output parameters of xp_sat_nominal_att_init_model	
Table 11: Error messages of xp_sat_nominal_att_init_model function	87
Table 12: Input parameters of xp_sat_nominal_att_init_harmonic function	
Table 13: Output parameters of xp sat nominal att init harmonic	
Table 14: Error messages of xp sat nominal att init harmonic function	93
Table 15: Input parameters of xp_sat_nominal_att_init_file function	95
Table 16: Output parameters of xp_sat_nominal_att_init_filefile	
Table 17: Error messages of xp_sat_nominal_att_init_file function	
Table 18: Input parameters of xp sat nominal att close function	
Table 19: Output parameters of xp_sat_nominal_att_close	99
Table 20: Error messages of xp_sat_nominal_att_close function	99
Table 21: Input parameters of xp_sat_nominal_att_get_aocs function	
Table 22: Output parameters of xp sat nominal att get aocs function	
Table 23: Input parameters of xp sat nominal att set aocs function	102
Table 24: Output parameters of xp sat nominal att set aocs function	102
Table 25: Input parameters of xp_sat_nominal_att_get_param function	
Table 26: Output parameters of xp sat nominal att get param function	
Table 27: Input parameters of xp sat nominal att set param function	
Table 28: Output parameters of xp_sat_nominal_att_set_param function	106
Table 29: Input parameters of xp_sat_nominal_att_get_harmonic function	
Table 30: Output parameters of xp_sat_nominal_att_get_harmonic function	
Table 31: Input parameters of xp_sat_nominal_att_set_harmonic function	
Table 32: Output parameters of xp sat nominal att set harmonic function	
Table 33: Input parameters of xp sat nominal att get file function	112
Table 34: Output parameters of xp sat nominal att get file function	
Table 35: Input parameters of xp_sat_nominal_att_set_file function	
Table 36: Output parameters of xp sat nominal att set file function	
Table 37: Input parameters of xp_sat_att_angle_init function	
Table 38: Output parameters of xp sat att angle init	
Table 39: Error messages of xp_sat_att_angle_init function	
Table 40: Input parameters of xp_sat_att_matrix_init function	
Table 41: Output parameters of xp_sat_att_matrix_init	
Table 42: Error messages of xp sat att matrix init function	
Table 43: Input parameters of xp sat att init harmonic function	
Table 44: Output parameters of xp sat att init harmonic	
Table 45: Error messages of xp sat att init harmonic function	
Table 46: Input parameters of xp_sat_att_init_file function	
· · · · · · · · · · · · · · · · · · ·	

Code:	EO-MA-DMS-GS-0005

Issue: 10/05/2019

		Page:	33
Table 47	Output parameters of xp_sat_att_init_file	1	29
	Error messages of xp_sat_att_init_file function		
	Input parameters of xp_sat_att_quat_plus_matrix_init function		
Table 50:	Output parameters of xp_sat_att_quat_plus_matrix_init	1	32
Table 51:	Error messages of xp_sat_att_quat_plus_matrix_init function	1	33
	Input parameters of xp_sat_att_quat_plus_matrix_init function		
	Output parameters of xp sat att quat plus angle init		
	Error messages of xp_sat_att_quat_plus_angle_init function		
	Input parameters of xp sat att close function		
	Output parameters of xp_sat_att_close		
Table 57:	Error messages of xp_sat_att_close function		38
	Input parameters of xp_sat_att_get_angles function		
	Output parameters of xp sat att get angles function		
	Input parameters of xp_sat_att_set_angles function		
	Output parameters of xp_sat_att_set_angles function		
	Input parameters of xp_sat_att_get_matrix function		
	Output parameters of xp sat att get matrix function		
	Input parameters of xp_sat_att_set_matrix function		
	Output parameters of xp sat att set matrix function		
	Input parameters of xp_sat_att_get_harmonic function		
	Output parameters of xp_sat_att_get_harmonic function		
	Input parameters of xp_sat_att_set_harmonic function		
	Output parameters of xp_sat_att_set_harmonic function		
	Input parameters of xp_sat_att_set_file functionInput parameters of xp_sat_att_set_file function		
	Output parameters of xp_sat_att_get_file function		
	Input parameters of xp_sat_att_set_file functionInput parameters of xp_sat_att_set_file function		
	Output parameters of xp_sat_att_set_file function		
	Input parameters of xp_sat_att_get_file functionInput parameters of xp_sat_att_get_file function		
Table 75:	Output parameters of xp_sat_att_get_file function	1	56
	Input parameters of xp_sat_att_set_jue junetion Input parameters of xp_sat_att_set_quat_plus_angle function		
	Output parameters of xp_sat_att_set_quat_plus_angle function		
	Input parameters of xp_sat_att_set_quat_plus_angle function Input parameters of xp_sat_att_get_quat_plus_matrix function		
	Output parameters of xp_sat_att_get_quat_plus_matrix function		
	Input parameters of xp_sat_att_get_quat_plus_matrix function		
	Output parameters of xp_sat_att_get_quat_plus_matrix function Output parameters of xp_sat_att_get_quat_plus_matrix function		
	Input parameters of xp_instr_att_angle_init function		
	Output parameters of xp_instr_att_angle_init_unction		
	Error messages of xp_instr_att_angle_init function		
	Input parameters of xp_instr_att_matrix_init function		
Table 86:	Output parameters of xp_instr_att_matrix_init junction Output parameters of xp_instr_att_matrix_init	1	68
Table 87:	Error messages of xp instr att matrix init function	1	68
	Input parameters of xp_instr_att_init_harmonic function		
	Output parameters of xp_instr_att_init_harmonic_unction Output parameters of xp_instr_att_init_harmonic		
	Error messages of xp instr att init harmonic function		
	Input parameters of xp_instr_att_init_file functionInput parameters of xp_instr_att_init_file function		
	Output parameters of xp_instr_att_init_fileOutput parameters of xp_instr_att_init_file		
	Error messages of xp instr att init file function		
	Input parameters of xp_instr_att_close functionInput parameters of xp_instr_att_close function		
	Output parameters of xp_instr_att_close junctionOutput parameters of xp_instr_att_close		
14015 93:	Output parameters 0j λp_thstr_att_ct0se	1	. / 0

Code:	EO-MA-DMS-GS-0005

Page:

Issue: 10/05/2019

34

Table 96: Error messages of xp instr att close function	179
Table 97: Input parameters of xp instr att get angles function	
Table 98: Output parameters of xp_instr_att_get_angles function	
Table 99: Input parameters of xp_instr_att_set_angles function	
Table 100: Output parameters of xp_instr_att_set_angles function	
Table 101: Input parameters of xp instr att get matrix function	
Table 102: Output parameters of xp instr att get matrix function	
Table 103: Input parameters of xp_instr_att_set_matrix function	
Table 104: Output parameters of xp instr att set matrix function	
Table 105: Input parameters of xp instr att get harmonic function	
Table 106: Output parameters of xp_instr_att_get_harmonic function	
Table 107: Input parameters of xp instr att set harmonic function	
Table 108: Output parameters of xp instr att set harmonic function	
Table 109: Input parameters of xp instr att get file function	
Table 110: Output parameters of xp_instr_att_get_file function	
Table 111: Input parameters of xp instr att set file function	
Table 112: Output parameters of xp_instr_att_set_file function	
Table 113: Input parameters of xp instr att set file function	
Table 114: Output parameters of xp instr att set file function	
Table 115: Error messages of xp_set_az_el_definition function	
Table 116: Input parameters of xp_attitude_define function	
Table 117: Output parameters of xp_attitude_define	
Table 118: Error messages of xp_attitude_define function	
Table 119: Input parameters of xp run init function	
Table 120: Output parameters of xp_run_init function	
Table 121: Error messages of xl run init function	
Table 122: Input parameters of xp_run_get_ids function	
Table 123: Output parameters of xp run get ids function	
Table 124: Input parameters of xp run close function	
Table 125: Output parameters of xp_run_close function	
Table 126: Output parameters of xp_run_close function Table 126: Output parameters of xp_attitude_init	
Table 127: Error messages of xp_attitude_init_function	
Table 128: Input parameters of xp attitude compute function	
Table 129: Output parameters of xp_attitude_compute function	210
Table 130: Error messages of xp_attitude_compute function	
Table 131: Input parameters of xp_attitude_user_set function	
Table 132: Output parameters of xp_attitude_user_set function	
Table 133: Error messages of xp_attitude_user_set function	
Table 134: Input parameters of xp get attitude data function	
Table 135: Output parameters of xp get attitude data function	
Table 136: Error messages of xp_get_attitude_data function	
Table 137: Input parameters of xp gen attitude data function	
Table 138: Output parameters of xp gen attitude data function	
Table 139: Error messages of xp gen attitude data function	
Table 140: Input parameters of xp gen_attitude_file function	
Table 141: Output parameters of xp_gen_attitude_file function	
Table 143: Input parameters of xp_gen_attitude_close function	
Table 144: Output parameters of xp_attitude_close	233
TOURS LET A MAINE DULLUIGE A AU AU AU HUMBE LIONE	/ 1 1

Code:	EO-MA-	DMS-	GS-	0005

Page:

Issue: 10/05/2019

35

Table 145: Error messages of xp_attitude_close function	233
Table 146: Input parameters of xp_attitude_get_id_data function	234
Table 147: Output parameters of xp attitude get id data function	
Table 148: Input parameters of xp attitude set id data function	
Table 149: Output parameters of xp attitude set id data function	
Table 150: Input parameters of xp attitude get model id function	
Table 151: Output parameters of xp attitude get model id function	
Table 152: Input parameters of xp change frame function	
Table 153: Output parameters of xp_change_frame function	
Table 154: Error messages of xp_change_frame function	
Table 155: Input parameters of xp atmos init function	
Table 156: Output parameters of xp_atmos_init	
Table 157: Error messages of xp atmos init function	
Table 158: <i>Input parameters of xp_atmos_close function</i>	
Table 159: Output parameters of xp_atmos_close	
Table 160: Error messages of xp atmos close function	
Table 161: Input parameters of xp atmos get id data function	
Table 162: Output parameters of xp_atmos_get_id_data function	
Table 163: Input parameters of xp_dem_init function	
Table 164: Output parameters of xp dem init	
Table 165: Error messages of xp dem init function	
Table 166: Input parameters of xp_dem_close function	259
Table 167: Output parameters of xp_dem_close	
Table 168: Error messages of xp dem close function	
Table 169: Input parameters of xp dem compute function	
Table 170: Output parameters of xp_dem_compute	262
Table 171: Error messages of xp_dem_compute function	
Table 172: Input parameters of xp_dem_get_info function	264
Table 173: Output parameters of xp_dem_get_info	264
Table 174: Error messages of xp_dem_get_info function	
Table 175: Input parameters of xp_dem_get_id_data function	266
Table 176: Output parameters of xp_dem_get_id_data function	266
Table 177: Input parameters of xp_dem_id_configure function	268
Table 178: Output parameters of xp_dem_id_configure	268
Table 179: Error messages of xp_dem_get_info function	269
Table 180: Input parameters of xp_dem_get_cell_value function	272
Table 181: Output parameters of xp_dem_get_cell_value	272
Table 182: Error messages of xp_dem_get_cell_value function	273
Table 183: Input parameters of xp_dem_get_cell_geod function	
Table 184: Output parameters of xp_dem_get_cell_geod	
Table 185: Error messages of xp_dem_get_cell_geod function	
Table 186: Input parameters of xp_target_inter function	
Table 187: Output parameters of xp_target_inter	
Table 188: Error messages of xp_target_inter function	
Table 189: Input parameters of xp_target_ground_range function	
Table 190: Output parameters of xp_target_ground_range	
Table 191: Error messages of xp_target_ground_range function	
Table 192: Input parameters of xp_target_incidence_angle function	
Table 193: Output parameters of xp_target_incidence_angle	290

Code:	EO-MA-DMS-GS-0005

Page:

Issue: 10/05/20 197

Table 194: Error messages of xp_target_incidence_angle function	290
Table 195: Input parameters of xp_target_range function	294
Table 196: Output parameters of xp_target_range	295
Table 197: Error messages of xp_target_range function	295
Table 198: Input parameters of xp_target_range_rate function	299
Table 199: Output parameters of xp_target_range_rate	300
Table 200: Error messages of xp_target_range_rate function	300
Table 201: Input parameters of xp_target_tangent function	304
Table 202: Output parameters of xp_target_tangent	305
Table 203: Error messages of xp_target_tangent function	305
Table 204: Input parameters of xp_target_altitude function	309
Table 205: Output parameters of xp_target_altitude	310
Table 206: Error messages of xp_target_altitude function	310
Table 207: Input parameters of xp_target_star function	314
Table 208: Output parameters of xp_target_star	315
Table 209: Error messages of xp_target_star function	315
Table 210: Input parameters of xp_target_station function	319
Table 211: Output parameters of xp_target_station	320
Table 212: Error messages of xp_target_station function	320
Table 213: Input parameters of xp_target_generic function	323
Table 214: Output parameters of xp_target_generic	323
Table 215: Error messages of xp_target_generic function	324
Table 216: Input parameters of xp_target_reflected function	326
Table 217: Output parameters of xp_target_reflected	327
Table 218: Error messages of xp_target_reflected function	327
Table 219: Input parameters of xp_target_travel_time function	332
Table 220: Output parameters of xp_target_travel_time	333
Table 221: Error messages of xp_target_travel_time function	333
Table 222: Input parameters of xp_target_tangent_sun function	
Table 223: Output parameters of xp target tangent sun	
Table 224: Error messages of xp_target_tangent_sun function	338
Table 225: Input parameters of xp_tangent_target_moon function	341
Table 226: Output parameters of xp tangent target moon	

Table 229: Output parameters of xp_target_sc......345 Table 230: Error messages of xp target sc function.......346 Table 236: Error messages of xp multi target travel time function......357 Table 240: Input parameters of xp_target_extra_vector function......365 Table 242: Error messages of xp target extra vector function.......367

Code: I	EO-MA-DN	MS-GS-	-0005
---------	----------	--------	-------

Date:

Page:

Issue: 10/05/2019

37

Table 243.	Input parameters of xp_target_list_extra_vector function	371
	Output parameters of xp target list extra vector	
	Error messages of xp_target_list_extra_vector function	
	Input parameters of xp_target_extra_main function	
Table 247:	Output parameters of xp_target_extra_main	376
	Error messages of xp target extra main function	
	Input parameters of xp_target_list_extra_main function	
	Output parameters of xp target list extra main	
	Error messages of xp_target_list_extra_main function	
	Input parameters of xp target extra aux	
	Output parameters of xp_target_extra_aux	
	Error messages of xp target extra aux function	
	Input parameters of xp_target_list_extra_aux function	
Table 256:	Output parameters of xp_target_list_extra_aux	393
	Error messages of xp_target_list_extra_aux function	
	Input parameters of xp_target_extra_ef_target function	
	Output parameters of xp target extra ef target	
	Error messages of xp target extra ef target function	
	Input parameters of xp_target_list_extra_ef_target function	
	Output parameters of xp target list extra ef target	
	Error messages of xp target list extra ef target function	
	Input parameters of xp_target_extra_target_to_sun function	
	Output parameters of xp_target_extra_target_to_sun	
	Error messages of xp_target_extra_target_to_sun function	
	Input parameters of xp target list extra target to sun function	
	Output parameters of xp target list extra target to sun	
	Error messages of xp_target_list_extra_target_to_sun functionfunction	
	Input parameters of xp_target_extra_target_to_moon function	
	Output parameters of xp_target_extra_target_to_moon	
	Error messages of xp_target_extra_target_to_moon function	
	Input parameters of xp_target_list_extra_target_to_moon function	
	Output parameters of xp_target_list_extra_target_to_moon	
	Error messages of xp target list extra target to moon function	
Table 276:	Input parameters of xp_target_extra_specular_reflection function	426
	Output parameters of xp_target_extra_specular_reflection	
	Error messages of xp_target_extra_specular_reflection function	
	Input parameters of xp_target_list_extra_specular_reflection function	
	Output parameters of xp_target_list_extra_specular_reflection	
Table 281:	Error messages of xp_target_list_extra_specular_reflection function	433
Table 282:	Input parameters of xp_target_close function	436
Table 283:	Output parameters of xp_target_close	436
	Error messages of xp_target_close function	
Table 285:	Input parameters of xp_target_get_id_data function	437
	Output parameters of xp_target_get_id_data function	
	Input parameters of xp_gen_dem_max_altitude_file function	
	Output parameters of xp_gen_dem_max_altitude_file	
	Error messages of xp_gen_dem_max_altitude function	
	Input parameters of xp_gen_dem_altitudes_from_ellipsoid function	
Table 291:	Output parameters of xp_gen_dem_altitudes_from_ellipsoid	445

Code:	EO-MA-	DMS-	GS-	0005

Date:

Page:

Issue: 10/0

38

Table 292: Error messages of xp_gen_dem_max_altitude function	445
Table 293: Input parameters of xp_attitude_transform function	
Table 294: Output parameters of xp_attitude_transform	449
Table 295: Error messages of xp attitude transform function	449
Table 296: Input parameters of xp_free_target_id_data function	450

Code: E	O-MA-DM	S-GS-0005
---------	---------	-----------

Date:

Issue: 10/05/2019

Page: 39

LIST OF FIGURES

Figure 1: Attitude Initialization Overview	45
Figure 2: Satellite Nominal Initialization	
Figure 3: Satellite Initialization	
Figure 4: Instrument Initialization	
Figure 5: Geolocation Routines Calling Sequence	
Figure 6: Example of light travel time with xp target inter	

Date:

Issue: 10/05/2019

Page: 40

1 SCOPE

The EO_POINTING Software User Manual provides a detailed description of usage of the CFI functions included within the EO_POINTING CFI software library.

Date:

Issue: 10/05/2019

Page: 41

2 ACRONYMS, NOMENCLATURE AND TERMINOLOGY

2.1 Acronyms

ANX Ascending Node Crossing

AOCS Attitude and Orbit Control Subsystem

ASCII American Standard Code for Information Interchange

CFI Customer Furnished Item

CS Coordinate System
DRS Data Relay Satellite

ESA European Space Agency

ESTEC European Space Technology and Research Centre

GPL GNU Public Library

GPS Global Positioning System

GS Ground Station

H/W Hardware

IERS International Earth Rotation Service

I/F Interface

LOS Line Of Sight
LUT Look-Up Table

OBT On-board Binary Time

OSF Orbit Scenario File

RAM Random Access Memory

SBT Satellite Binary Time

SRAR Satellite Relative Actual Reference

SSP Sub Satellite Point

SUM Software User Manual

S/W Software

TAI International Atomic Time
UTC Coordinated Universal Time

UT1 Universal Time UT1

WGS[84] World Geodetic System 1984

Date:

Issue: 10/05/2019

Page: 42

2.2 Nomenclature

CFI A group of CFI functions, and related software and documentation that will be distributed

by ESA to the users as an independent unit

CFI function A single function within a CFI that can be called by the user

Library A software library containing all the CFI functions included within a CFI plus the

supporting functions used by those CFI functions (transparently to the user)

2.3 Note on Terminology

In order to keep compatibility with legacy CFI libraries, the Earth Observation Mission CFI Software makes use of terms that are linked with missions already or soon in the operational phase like the Earth Explorers.

This may be reflected in the rest of the document when examples of Mission CFI Software usage are proposed or description of Mission Files is given.

Date:

Issue: 10/05/2019

Page: 43

3 APPLICABLE AND REFERENCE DOCUMENTS

3.1 Applicable Documents

No applicable documents.

3.2 Reference Documents

[MCD]	Earth Observation Mission CFI Software. Conventions Document. EO-MA-DMS-GS-0001.
[MSC]	Earth Observation Mission CFI Software. Mission Specific Customizations. EO-MA-DMS-GS-0018.
[GEN_SUM]	Earth Observation Mission CFI Software. General Software User Manual. EO-MA-DMS-GS-0002.
[F_H_SUM]	Earth Observation Mission CFI Software. EO_FILE_HANDLING Software User Manual. EO-MA-DMS-GS-0008.
[D_H_SUM]	Earth Observation Mission CFI Software. EO_DATA_HANDLING Software User Manual. EO-MA-DMS-GS-007.
[LIB_SUM]	Earth Observation Mission CFI Software. EO_LIB Software User Manual. EO-MA-DMS-GS-003.
[LOS_ALG]	LOS Intersection. PE-TN-ESA-SY-0043

The latest applicable version of [MCD], [GEN_SUM], [F_H_SUM], [D_H_SUM], [LIB_SUM] is v4.17 and can be found at: http://eop-cfi.esa.int/REPO/PUBLIC/DOCUMENTATION/CFI/EOCFI/BRANCH_4X/

Date:

Issue: 10/05/2019

Page: 44

4 INTRODUCTION

4.1 Functions Overview

This software library contains the CFI functions required to perform accurate computation of pointing parameters from and to a satellite for various types of targets.

It includes a set of functions to initialize the attitude of the platform and the instruments. The values provided by these functions are later used by all the other functions of the library.

A detailed description of each function is provided in Section 7.

Please refer also to:

[MCD] for a detailed description of the time references and formats, coordinate systems, parameters and models used in this document

[GEN_SUM] for a complete overview of the CFI, and in particular the detailed description of the *Id* concept and usage and the error handling functions.

Date:

Issue: 10/05/2019

Page: 45

4.1.1 Attitude Data Flow

The following figure shows the typical data flow for the attitude functions. First, the different transformations between the various reference frames are initialised. Then, given the spacecraft position, the attitude is calculated:

Figure 1: Attitude Initialization Overview

Date:

Satellite Initialisation

Issue: 10/05/2019

Page: 46

Each different transformation can be initialised with different models (note that all the attitudes can be initialized at the same time using the function xp_atttitude_define (see section 7.47) and an Attitude definition file):

Figure 2: Satellite Nominal Initialization

xp_sat_att_angle_Init angles Satellite Frame xp_sat_att_matrix Ini Initialisation matrix (section 7.6- 7.9) xp_sat_att_InIt harmonic Satellite Satellite Nominal Frame rotation xp_sat_att_Init_file attitude initialised with file Frame sat att id all initialisation possible

Figure 3: Satellite Initialization

Date:

Issue: 10/05/2\(\text{2}\)1\(\text{1}\)2

Page: 47

Instrument Initialisation

Figure 4: Instrument Initialization

Date:

Issue: 10/05/2019

Page: 48

4.1.2 Geolocation Routines Data Flow

The following figure shows the tipical data flow for the geolocation routines functions. First, the attitude should be calculated, and, if needed, the refraction and Digital Elevation Models initialised.

Geolocation Routines Data Flow [attitude definition file] [attitude files] results selection [attitude parameters] geolocation parameters target selection orbit state vector target id target id attitude Target Result lds Target Routines Attitude Close Initialisation ld Routines (aeolocation) Line of Sight attitude ids (xp_target_xxx) xp target extra xxx Defined (See Figure 2) atmos attitude Refraction ld Initialisation ancillary (atmos id Number of targets results atmos dem id Elevation Model Initialisation (dem id calling application data flow ld based data flow

Figure 5: Geolocation Routines Calling Sequence

Date:

Issue: 10/05/2<u>Q</u>.1₁9₇

Page: 49

The table below and the diagrams on the next pages describe the various **xp_target_<function>**.

Table 1: xp_target functions

xp_target_ <function></function>	Description
xp_(multi)_target_ inter xp_target_list_inter	It calculates the intersection point(s) of the line of sight defined by an elevation and an azimuth angle (or a set of them) expressed in the input Attitude frame, with a surface(s) located at a certain geodetic altitude(s) over the Earth.
xp_(multi)_target_ travel_time	It calculates the point of the line or sight from the satellite (defined by an elevation and an azimuth angle expressed in the selected Attitude Frame) at a given travel time(s) along the (curved) line of sight.
xp_target_ground _range	It calculates the location of a point that is placed on a surface at a certain geodetic altitude over the Earth, that lays on the plane defined by the S/C position, the nadir and a reference point, and that is at a certain distance or ground range measured along that surface from that reference point. This reference point is calculated being the intersection of the previous surface with the line of sight defined by an elevation and azimuth angle in the input Attitude coordinate system.
xp_target_inciden ce_angle	It calculates the location of a point that is placed on a surface at a certain geodetic altitude over the Earth and that is seen from the S/C on a line of sight that forms a certain azimuth angle in the input Attitude frame and that intersects that surface with a certain incidence angle.
xp_target_range	It calculates the location of a point that is placed on a surface at a certain geodetic altitude over the Earth, that is seen from the S/C on a line of sight that forms a certain azimuth angle in the input Attitude frame, and that is at a certain range or slant-range from the S/C.
xp_target_range_r ate	It calculates the location of a point that is placed on a surface at a certain geodetic altitude over the Earth, that is at a certain range from S/C, and whose associated Earth-fixed target has a certain range-rate value.
xp_target_tangent	It calculates the location of the tangent point over the Earth that is located on the line of sight defined by an elevation and azimuth angles expressed in the input Attitude frame.
xp_target_altitude	It calculates the location of the tangent point over the Earth that is located on a surface at a certain geodetic altitude over the Earth and that is on a line of sight that forms a certain azimuth angle in the input Attitude frame.
xp_target_star	It calculates the location of the tangent point over the Earth that is located on the line of sight that points to a star defined by its right ascension and declination coordinates.
xp_target_generic	The cartesian state vector of the target is taken as an input.
xp_target_tangent _sun	It calculates the location of the tangent point over the Earth that is located on the line of sight that points to the Sun
xp_target_tangent _moon	It calculates the location of the tangent point over the Earth that is located on the line of sight that points to the Moon
xp_target_station	It calculates the most relevant observation parameters of the link between the satellite and a ground station
xp_target_sc	It calculates the most relevant observation parameters of the link between one satellite and another Satellite.

Date:

Issue: 10/05/2019

Date:

Issue: 10/05/2<u>Q</u>.1₁9₇

Date:

Issue: 10/05/20 197

Page: 52

[Xs,Ys,Zs] = Attitude F rame

() = Input data to the mode

(Az,EI) = Azimuth + Elevation of the LOS

(h) = Geodetic altitude of the target

(R) = Range Satellite \Leftrightarrow Reference Point/Target

(D) = Distance or Ground range Ref. Point ⇔ Target

(In) = Incidence angle of the LOS

(Rr) = Range-rate of the Earth-fixed target

T = Target

SSP = Sub Satellite Point = Nadir of the satellite

Rp = Reference Point

N = Normal vector to the surface at a geodetic altitude = h

As it can be seen from the list of functions, there are some functions that calculate several targets (xp_multi_target_xxxx, xp_target_list_inter). The number of targets found by the functions is returned through the interface.

In addition to these "user" targets, two other categories of targets can be defined, "LOS" targets and "DEM" targets.

4.1.2.1 **LOS** targets

The idea is to get information about all the ray path points computed by a specific target routine along the Line of Sight (LOS) trajectory.

For every target routine, the output parameter num_los_target will return the number of points in the path. It applies when the variable "target type" is equal to XP LOS TARGET TYPE.

1. Start point of LOS

The spacecraft position (Instrument CS) shall be considered as the start point for the LOS path.

Date:

Issue: 10/05/2019

Page: 53

2. Stop point of LOS

The stop point for the LOS path will be different depending on the selected target function; nominally it will be the resulting target point.

- xp_target_inter, xp_target_list_inter and xp_multi_target_inter: 1st or 2nd intersection point (Point corresponding to the last altitude for the multi-target routine)
- xp target ground range: Target point
- xp target incidence angle: Target point
- xp target range: Target point
- xp target range rate: Target point
- xp_target_tangent: Two different cases to consider depending on whether refraction is selected or not:
 - No refraction mode: Tangent point
 - Refraction mode:
 - ☐ The 2nd intersection point with a surface located at Refraction Model Maximum Height (geodetic altitude) over the Earth if tangent height <= Refraction Model Maximum Height
 - □ The tangent point if tangent height > Refraction Model Maximum Height
- xp target altitude: Point at selected altitude
- xp target star: Two different cases to consider depending on whether refraction is selected or not:
 - No refraction mode: Tangent point
 - Refraction mode:
 - ☐ The 2nd intersection point with a surface located at Refraction Model Maximum Height (geodetic altitude) over the Earth if tangent height <= Refraction Model Maximum Height
 - ☐ The tangent point if tangent height > Refraction Model Maximum Height
- xp target station: Ground Station position
- xp target generic: Target position
- xp target reflected: Reflection point
- xp_target_travel_time and xp_multi_target_travel_time: Point at selected travel time (Point corresponding to the last travel time for the multi target routine)
- xp target tangent sun: Tangent point
- xp target tangent moon: Tangent point
- xp target sc: Target position.

4.1.2.2 DEM targets

A DEM Target is defined as the intersection of a line of sight with the Earth Surface defined using a digital elevation model (DEM).

Date:

Issue: 10/05/2019

Page: 54

A DEM Target is calculated using as line of sight the LOS targets that has been computed previously with a target routine (Note that such LOS consist in a polygonal line, no necessarily a straight line). Consequently, to get a DEM target it is necessary to follow these steps:

- Initialize the DEM model using the xp dem init routine and a configuration file (Section 7.60).
- One call to the target routine for getting the LOS targets.
- One call to the target extra routine requesting the DEM target.

The digital elevation model of the Earth consists in a set of points defining a grid for which a measure of the altitude over the Earth reference ellipsoid is given. The altitude of the points within each cell of the grid is computed by the CFI using a bilinear interpolation with the points of the corner of the cell. Details about the bilinear algorithm used to compute the intersection can be seen in [LOS ALG].

4.1.2.3 Light propagation model

When the light propagation model is enabled, the target functions keep into account the time spent by a generic signal traveling at the speed of light to:

- in the TRANSMITTER mode: go from the satellite to the target;
- in the RECEIVER mode: go from the target to the satellite.

Two distinct times are considered:

- 1) The satellite time (T) is the time provided as input to the target function. It is:
 - in the TRANSMITTER mode: the time at which the satellite (instrument) emits the signal towards the target;
 - in the RECEIVER mode: the time at which the satellite (instrument) receives the signal emitted by the target.
- 2) The target time is the satellite time T plus or minus the light travel time between satellite and target (dT). It is:
 - in the TRANSMITTER mode: T+dT, i.e. the target receives the signal sent by the satellite with a delay dT;
 - in the RECEIVER mode: T-dT, i.e. the satellite receives the signal emitted by the target with a delay dT.

dT is calculated as the light travel time from the satellite to target calculated with dT=0. When the light propagation model is not activated, it is assumed dT=0, therefore target and satellite are considered at the same time T.

According to the definitions above, the Line of Sight (LOS) can be defined as the segment joining satellite and target at their correspondent times.

For the following functions the calculation method is slightly different:

- xp target range: the input range is used to calculate the light travel time;
- xp target travel time: the input travel time is used as dT;

Date:

Issue: 10/05/20 197

Page: 55

• xp_target_generic, xp_target_sc: in this case the input is the target at time T+/-dT. The function estimates the target at T to compute the line of sight parameters also considering (if provided as inputs) velocity and acceleration of the target.

Target geometric properties (returned by the extra functions) are evaluated considering the two distinct times, for example:

- The target position (i.e. position in EF co-ordinates and geodetic co-ordinates) is evaluated at time T-dT:
- Direction from satellite to target and viceversa are evaluated considering the satellite position at time T and target position at time T+/-dT;
- Direction from target to e.g. sun/moon take into account the target position at T+/-dT and other celestial bodies at the same time.

Following figure 6. shows an example using the xp target inter function.

Figure 6: Example of light travel time with xp_target_inter

The light propagation mode is set to RECEIVER and input azimuth, elevation are **0**, **90 deg** (assuming a local normal pointing). The signal is emitted by the target at time T-dT (blue point, let's assume at geodetic co-ordinates (lon,lat,h) and EF co-ordinates (X,Y,Z)) and is received by the satellite at time T (red triangle). Due to Earth rotation, at time T the observed target has moved to the red point.

Here are some examples of results from xp target extra... functions:

- xp target extra vector:
 - Target position: the vector (**X**,**Y**,**Z**), i.e. the target point considered at T-dT;

Date:

Issue: 10/05/20 1/97

Page: 56

- Direction LOS: the vector corresponding to the purple line in Fig. X (it is the line joining satellite position at time T and target position at time T-dT);

- xp_target_extra_main:
 - Target geodetic co-ordinates: (lon,lat,h)
 - Satellite to target azimuth, elevation: **0,90**, i.e. the same azimuth and elevation used as input for xp target inter.
 - Target to satellite azimuth, elevation: **0,90**, this is the view direction from the target at time T-dT to the satellite at time T.

The same results are given by the xp_target_extra... functions if the xp_target_generic is called with input target at EF co-ordinates (X,Y,Z) and velocity set to zero.

To activate the light propagation mode the *model_id* structure must be initialized using the function xl model init as follow:

1) for TRANSMITTER mode:

2) for RECEIVER mode:

```
#include <explorer_lib.h>
{
   long mode, models[XL_NUM_MODEL_TYPES_ENUM];
   xl_model_id model_id = {NULL};
```


Date:

Issue: 10/05/2019

Date:

Issue: 10/05/2019

Page: 58

5 LIBRARY INSTALLATION

For a detailed description of the installation of any CFI library, please refer to [GEN_SUM].

Date:

Issue: 10/05/20 1/97

Page: 59

6 LIBRARY USAGE

The EO POINTING software library has the following dependencies:

- Other EOCFI libraries:
 - EO FILE HANDLING (See [F H SUM]).
 - EO DATA HANDLING (See [D H SUM]).
 - EO_LIB (See [LIB_SUM]).
- Third party libraries:
 - POSIX thread library: libpthread.so (Note: this library is normally pre-installed in Linux and MacOS platforms. For Windows platforms, pthread.lib is included in the distribution package, with license LGPL);
 - GEOTIFF, TIFF, PROJ, LIBXML2 libraries (these libraries are included in the distribution package. Their usage terms and conditions are available in the file "TERMS AND CONDITIONS.TXT" which is part of the distribution package).

In order to improve run-time performance, some functions (e.g. xp_target_list_extra_vector, xp_target_list_extra_main, xp_target_list_extra_aux, xp_target_list_extra_ef_target, xp_target_list_extra_target_to_sun, xp_target_list_extra_target_to_moon, xp_target_list_extra_specular_reflection) perform their computations in multi-threading mode.

The multi-threading code of the Pointing functions uses the OpenMP API (see http://en.wikipedia.org/wiki/OpenMP).

OpenMP is not supported in the clang compiler, therefore such functions work in single-thread mode in MacOS.

The following is required to compile and link a Software application that uses the EO_POINTING software library functions (it is assumed that the required EOCFI and third-part libraries are located in directory *cfi_lib_dir* and the required header files are located in *cfi_include*, see [GEN_SUM] for installation procedures):

- 1) include the following header files in the source code:
 - explorer pointing.h (for a C application)
- 2) use the following compile and link options:

Linux platforms:

- -Icfi_include_dir -Lcfi_lib_dir -lexplorer_pointing
- -lexplorer_lib lexplorer_data_dandling -lexplorer_file_handling -lgeotiff -ltiff -lproj -lxml2 -lm -lc -lpthread -fopenmp

MacOS platforms (openmp is not supported):

-Icfi include dir -Lcfi lib dir -lexplorer pointing

Date:

Issue: 10/05/20 197

Page: 60

-lexplorer_lib - lexplorer_data_dandling -lexplorer_file_handling -lgeotiff -ltiff -lproj -lxml2 -lm -lc -lpthread

Windows platforms:

/I "cfi_include_dir" /libpath: "cfi_lib_dir" libexplorer_pointing.lib

libexplorer_lib.lib libexplorer_data_handling.lib libexplorer_file_handling.lib libgeotiff.lib libtiff.lib libproj.lib libxml2.lib pthread.lib Ws2 32.lib /openmp

All functions described in this document have a name starting with the prefix xp

To avoid problems in linking a user application with the EO_POINTING software library due to the existence of names multiple defined, the user application should avoid naming any global software item beginning with either the prefix XP or XP.

It is possible to call the following CFI functions from a user application.

Table 2: CFI functions included within EO_POINTING library

Function Name	Enumeration value	Long
Main CFI Functions		
xp_sat_nominal_att_init	XP_SAT_NOMINAL_ATT_INIT_ID	0
xp_sat_nominal_att_init_model	XP_SAT_NOMINAL_ATT_INIT_MODEL_ID	1
xp_sat_nominal_att_init_harmonic	XP_SAT_NOMINAL_ATT_INIT_HARMONIC_ID	2
xp_sat_nominal_att_init_file	XP_SAT_NOMINAL_ATT_INIT_FILE_ID	3
xp_sat_nominal_att_close	XP_SAT_NOMINAL_ATT_CLOSE_ID	4
xp_sat_att_angle_init	XP_SAT_ATT_ANGLE_INIT_ID	5
xp_sat_att_matrix_init	XP_SAT_ATT_MATRIX_INIT_ID	6
xp_sat_att_init_harmonic	XP_SAT_ATT_INIT_HARMONIC_ID	7
xp_sat_att_init_file	XP_SAT_ATT_INIT_FILE_ID	8
xp_sat_att_quat_plus_matrix_init	XP_SAT_ATT_QUAT_PLUS_MATRIX_INIT_ID	9
xp_sat_att_quat_plus_angle_init	XP_SAT_ATT_QUAT_PLUS_ANGLE_INIT_ID	10
xp_sat_att_close	XP_SAT_ATT_CLOSE_ID	11
xp_instr_att_angle_init	XP_INSTR_ATT_ANGLE_INIT_ID	12
xp_instr_att_matrix_init	XP_INSTR_ATT_MATRIX_INIT_ID	13
xp_instr_att_init_harmonic	XP_INSTR_ATT_INIT_HARMONIC_ID	14
xp_instr_att_init_file	XP_INSTR_ATT_INIT_FILE_ID	15
xp_instr_att_close	XP_INSTR_ATT_CLOSE_ID	16
xp_change_frame	XP_CHANGE_FRAME_ID	17
xp_attitude_init	XP_ATTITUDE_INIT_ID	18
xp_attitude_compute	XP_ATTITUDE_COMPUTE_ID	19

Date:

Issue: 10/05/2019

xp_attitude_user_set	XP_ATTITUDE_USER_SET_ID	20
xp_attitude_close	XP_ATTITUDE_CLOSE_ID	21
xp_set_az_el_definition	XP_SET_AZ_EL_DEFINITION_ID	22
xp_atmos_init	XP_ATMOS_INIT_ID	23
xp_atmos_close	XP_ATMOS_CLOSE_ID	24
xp_dem_init	XP_DEM_INIT_ID	25
xp_dem_compute	XP_DEM_COMPUTE_ID	26
xp_dem_close	XP_DEM_CLOSE_ID	27
xp_dem_get_info	XP_DEM_GET_INFO_ID	28
xp_dem_id_configure	XP_DEM_ID_CONFIGURE_ID	29
xp_dem_get_cell_value	XP_DEM_GET_CELL_VALUE_ID	30
xp_dem_get_cell_geod	XP_DEM_GET_CELL_GEOD_ID	31
xp_target_inter	XP_TARGET_INTER_ID	32
xp_target_travel_time	XP_TARGET_TRAVEL_TIME_ID	33
xp_target_ground_range	XP_TARGET_GROUND_RANGE_ID	34
xp_target_incidence_angle	XP_TARGET_INCIDENCE_ANGLE_ID	35
xp_target_range	XP_TARGET_RANGE_ID	36
xp_target_range_rate	XP_TARGET_RANGE_RATE_ID	37
xp_target_tangent	XP_TARGET_TANGENT_ID	38
xp_target_altitude	XP_TARGET_ALTITUDE_ID	39
xp_target_star	XP_TARGET_STAR_ID	40
xp_target_station	XP_TARGET_STATION_ID	41
xp_target_drs	XP_TARGET_DRS_ID	42
xp_target_generic	XP_TARGET_GENERIC_ID	43
xp_target_reflected	XP_TARGET_REFLECTED_ID	44
xp_target_sc	XP_TARGET_SC_ID	45
xp_multi_target_inter	XP_MULTI_TARGET_INTER_ID	46
xp_multi_target_travel_time	XP_MULTI_TARGET_TRAVEL_TIME_ID	47
xp_target_list_inter	XP_TARGET_LIST_INTER_ID	48
xp_target_extra_vector	XP_TARGET_EXTRA_VECTOR_ID	49
xp_target_extra_main	XP_TARGET_EXTRA_MAIN_ID	50
xp_target_extra_aux	XP_TARGET_EXTRA_AUX_ID	51
xp_target_extra_ef_target	XP_TARGET_EXTRA_EF_TARGET_ID	52
xp_target_extra_target_to_sun	XP_TARGET_EXTRA_TARGET_TO_SUN_ID	53
xp_target_extra_target_to_moon	XP_TARGET_EXTRA_TARGET_TO_MOON_ID	54

Date:

Issue: 10/05/2019

Page: 62

xp_target_extra_specular_reflectio n	XP_TARGET_EXTRA_SPECULAR_REFLECTIO N_ID	55		
xp_target_list_extra_vector	XP_TARGET_LIST_EXTRA_VECTOR_ID	56		
xp_target_list_extra_main	XP_TARGET_LIST_EXTRA_MAIN_ID	57		
xp_target_list_extra_aux	XP_TARGET_LIST_EXTRA_AUX_ID	58		
xp_target_list_extra_ef_target	XP_TARGET_LIST_EXTRA_EF_TARGET_ID	59		
xp_target_list_extra_specular_reflection	XP_TARGET_LIST_EXTRA_SPECULAR_REFLEC T_ID	60		
xp_target_list_extra_target_to_moo	XP_TARGET_LIST_EXTRA_TARGET_TO_SUN_I D	61		
xp_target_list_extra_target_to_sun	XP_TARGET_LIST_EXTRA_TARGET_TO_MOON _ID	62		
xp_target_tangent_sun	XP_TARGET_TANGENT_SUN_ID	63		
xp_target_tangent_moon	XP_TARGET_TANGENT_MOON_ID	64		
xp_target_close	XP_TARGET_CLOSE_ID	65		
xp_gen_dem_max_atitude	XP_GEN_DEM_MAX_ALTITUDE_ID	66		
xp_gen_dem_altitude_from_ellipsoi	XP_GEN_DEM_ALTITUDE_FROM_ELLIPSOID_ID	67		
xp_attitude_define	XP_ATTITUDE_DEFINE_ID	68		
xp_attitude_transform	XP_ATTITUDE_TRANSFORM_ID	69		
xp_run_init	XP_RUN_INIT_ID	70		
	Error Handling Functions			
xp_verbose	not applicable			
xp_silent				
xp_get_code				
xp_get_msg				
xp_print_msg				

Notes about the table:

- To transform the extended status flag returned by a CFI function to either a list of error codes or list of error messages, the enumeration value (or the corresponding long value) described in the table must be used
- The error handling functions have no enumerated values

Whenever available it is strongly recommended to use enumeration values rather than integer values.

6.1 Usage hints

The runtime performances of some of the CFI functions are improved to a large extent if they are called two consecutive times keeping constant some of their inputs.

Date:

Issue: 10/05/20 197

Page: 63

Nevertheless, although the user may not need to call the CFI functions two consecutive times with the same inputs, there are internal functions that are actually called in those conditions, and thus improving the runtime performances of the former.

Thus, the runtime improvement is achieved with any sequence of calls to those CFI functions, not only with a sequence of calls to the same function.

In fact, the time, position, velocity, acceleration vectors, AOCS and mispointing angles do not need to keep exactly constant as long as the difference between two consecutive calls lays within the following thresholds:

Time: 0.0864 microsec
Position vector: 0.6e-3 m
Velocity vector: 0.6e-6 m/s
Acceleration vector: 0.6e-9 m/s²

AOCS: 5e-9 deg

• Mispointing angles: 5e-9 deg

• Mispointing angles-rate: 5e-12 deg

• Mispointing angles-rate-rate: 5e-15 deg

Every CFI function has a different length of the Error Vector, used in the calling I/F examples of this SUM and defined at the beginning of the library header file. In order to provide the user with a single value that could be used as Error Vector length for every function, a generic value has been defined (XP_ERR_VECTOR_MAX_LENGTH) as the maximum of all the Error Vector lengths. This value can therefore be safely used for every call of functions of this library.

6.2 General Enumerations

The aim of the current section is to present the enumeration values that can be used rather than integer parameters for some of the input parameters of the EO_POINTING routines, as shown in the table below. The enumerations presented in [GEN_SUM], [F_H_SUM] and [LIB_SUM] are also applicable.

Table 3: Enumerations within EO_POINTING library

Input	Description	Enumeration value	Long
Time Initialization	Initialization from file (data-driven)	XP_SEL_FILE	0
Mode	Initialization within a time range	XP_SEL_TIME	1
	Initialization within a range of orbits	XP_SEL_ORBIT	2
	(not used in POINTING)	XP_SEL_DEFAULT	3
Earth Intersection	No intersection with Earth geoid	XP_NO_INTER	0
Mode	First intersection with Earth geoid	XP_INTER_1ST	1
	Second intersection with Earth geoid	XP_INTER_2ND	2
AOCS mode	Geocentric pointing	XP_AOCS_GPM	0
	Local normal pointing	XP_AOCS_LNP	1
	Yaw steering + local normal pointing	XP_AOCS_YSM	2

Date:

Issue: 10/05/2019

	Zero-Doppler YSM	XP_AOCS_ZDOPPLER	3
Satellite Nominal Atti	Generic model	XP_MODEL_GENERIC	0
tude Model	Envisat model	XP_MODEL_ENVISAT	1
	Cryosat model	XP_MODEL_CRYOSAT	2
	ADM model	XP_MODEL_ADM	3
	SENTINEL 1 model	XP_MODEL_SENTINEL1	4
	SENTINEL 2 model	XP_MODEL_SENTINEL2	5
	Geostationary satellite model	XP_MODEL_GEO	6
	MetOp-SG	XP_MODEL_METOPSG	7
Axis enumeration	X axis	XP_X_AXIS	0
	-X axis	XP_NEG_X_AXIS	1
	Y axis	XP_Y_AXIS	2
	-Y axis	XP_NEG_Y_AXIS	3
	Z axis	XP_Z_AXIS	4
	-Z axis	XP_NEG_Z_AXIS	5
Axis target	Sun pointing	XP_SUN_VEC	0
	Moon pointing	XP_MOON_VEC	1
	Earth pointing	XP_EARTH_VEC	2
	Nadir pointing	XP_NADIR_VEC	3
	Inertial velocity pointing	XP_INERTIAL_VEL_VEC	4
	Earth Fixed velocity pointing	XP_EF_VEL_VEC	5
	Inertial target pointing	XP_INERTIAL_TARGET_VEC	6
	Spacecraft Earth Fixed velocity	XP_EF_TARGET_VEC	7
	Earth Fixed target pointing	XP_SC_EF_VEL_VEC	8
	Orbit Pole	XP_ORBIT_POLE	9
	Corrected Satellite Position (ToD)	XP_INERTIAL_POS_VEC_CORREC TED	10
	Rotated Inertial velocity vector (ToD)	XP_INERTIAL_VEL_VEC_ROTATED	11
	North (EF)	XP_EF_NORTH	12
	South (EF)	XP_EF_SOUTH	13
Mode Flag	Flag for location calculus	XP_MODE_FLAG_LOCATION	0
	Flag for direction calculus	XP_MODE_FLAG_DIRECTION	1
Frame Flag	Selection of coordinate frame	XP_FRAME_FLAG_EXT	0
	Selection of attitude frame	XP_FRAME_FLAG_SAT	1
Angle Type	True Latitude (TOD)	XP_ANGLE_TYPE_TRUE_LAT_TOD	0
	True latitude (EF)	XP_ANGLE_TYPE_TRUE_LAT_EF	1
Attittude Frame ID	No attitude frame defined	XP_NONE_ATTITUDE	-1

Date:

Issue: 10/05/2019

	Satellite Orbital Reference Frame	XP_SAT_ORBITAL_REF	0
	Satellite Nominal Attitude Frame	XP_SAT_NOMINAL_ATT	1
	Satellite Attitude Frame	XP_SAT_ATT	2
	Instrument(s) Attitude Frame(s)	XP_INSTR_ATT	3
Target Type	User Target	XP_USER_TARGET_TYPE	0
	Line of Sight Target	XP_LOS_TARGET_TYPE	1
	DEM Target	XP_DEM_TARGET_TYPE	2
Source Type	Star	XP_SOURCE_STAR	0
	Sun	XP_SOURCE_SUN	1
	Moon	XP_SOURCE_MOON	2
	Generic source	XP_SOURCE_GENERIC	3
Atmosphere	No refraction mode	XP_NO_REF_INIT	0
Initialization		XP_STD_INIT	1
Mode	User defined mode (n-z table, see section 10)	XP_USER_INIT	2
	Predefined LUT mode	XP_PRED_INIT	3
	Standard refraction mode (US76)	XP_STD_INIT_N	10
	User defined mode (n-z table, see section 10))	XP_USER_INIT_N	20
	Predefined LUT mode	XP_PRED_INIT_N	30
	User's predefined refraction LUTs	XP_US76_INIT	300
		XP_TROPIC_INIT	301
		XP_MID_SUM_INIT	302
		XP_MID_WIN_INIT	303
		XP_SUBAR_SUM_INIT	304
		XP_SUBAR_WIN_INIT	305
		XP_LUT_INIT	400
		XP_US76_INIT_N	3000
		XP_TROPIC_INIT_N	3001
		XP_MID_SUM_INIT_N	3002
		XP_MID_WIN_INIT_N	3003
		XP_SUBAR_SUM_INIT_N	3004
		XP_SUBAR_WIN_INIT_N	3005
		XP_LUT_INIT_N	4000
Attitude file type	Attitude generic file containing a list for angles or quaternions	XP_ATTITUDE_GENERIC_FILE_MO DEL	0
	CryoSat Star Tracker File	XP_ATTITUDE_STAR_TRACKER_FI LE_MODEL	1

Date:

Issue: 10/05/2019

	Frame based on satellite initialized with quaternions and a rotation to the satel lite frame (rotation matrix or angles), not from a file.	XP_ATTITUDE_QUATERNION_NO_ FILE_MODEL	2
Target extra main	Geocentric longitude and latitude.	XP_TARG_EXTRA_MAIN_GEO	1
results choice	Geodetic altitude and latitude.		
	Geocentric longitude and latitude rates. Geodetic altitude and latitude rates.	XP_TARG_EXTRA_MAIN_GEO_D	2
	Geocentric longitude and latitude rate rates. Geodetic altitude and latitude rate rates.	XP_TARG_EXTRA_MAIN_GEO_2D	4
	Target to satellite azimuth and eleva tion (Topocentric CS)	XP_TARG_EXTRA_MAIN_TARG2SA T_TOP	8
	Target to satellite azimuth and eleva tion rates (Topocentric CS)	XP_TARG_EXTRA_MAIN_TARG2SA T_TOP_D	16
	Target to satellite azimuth and eleva tion rate rates (Topocentric CS)	XP_TARG_EXTRA_MAIN_TARG2SA T_TOP_2D	32
	Satellite to target azimuth and eleva tion (Topocentric CS)	XP_TARG_EXTRA_MAIN_SAT2TAR G_TOP	64
	Satellite to target azimuth and eleva tion rates (Topocentric CS)	XP_TARG_EXTRA_MAIN_SAT2TAR G_TOP_D	128
	Satellite to target azimuth and eleva tion rate rates (Topocentric CS)	XP_TARG_EXTRA_MAIN_SAT2TAR G_TOP_2D	256
	Satellite to target azimuth and eleva tion (Attitude Frame)	XP_TARG_EXTRA_MAIN_SAT2TAR G_ATTITUDE	512
	Satellite to target azimuth and eleva tion rates (Attitude Frame)	XP_TARG_EXTRA_MAIN_SAT2TAR G_ATTITUDE_D	1024
	Satellite to target azimuth and eleva tion rate rates (Attitude Frame)	XP_TARG_EXTRA_MAIN_SAT2TAR G_ATTITUDE_2D	2048
	Target to satellite azimuth and elevation (Attitude Frame). Only meaningful for xp_target_sc	XP_TARG_EXTRA_MAIN_TARG2SA T_ATTITUDE	4096
	Target to satellite azimuth and elevation rates (Attitude Frame). Only meaningful for xp_target_sc	XP_TARG_EXTRA_MAIN_TARG2SA T_ATTITUDE_D	8192
	Target to satellite azimuth and elevation rate rates (Attitude Frame). Only meaningful for xp_target_sc	XP_TARG_EXTRA_MAIN_TARG2SA T_ATTITUDE_2D	16384
	All parameters	XP_TARG_EXTRA_MAIN_ALL	32767
Target extra aux results choice	Minimum distance from the nadir of the target to the ground track.	XP_TARG_EXTRA_AUX_DIST_NAD _TARG_GT	1
	Radius of curvature in the look direc tion at the nadir of the target.	XP_TARG_EXTRA_AUX_RAD_CUR	2
	Minimum distance rate from the nadir	XP_TARG_EXTRA_AUX_DIST_NAD	4

Date:

Issue: 10/05/2019

	of the target to the ground track.	_TARG_GT_D	
	Minimum distance rate rate from the nadir of the target to the ground track.	XP_TARG_EXTRA_AUX_DIST_NAD _TARG_GT_2D	8
	Radius of curvature rate in the look direction at the nadir of the target.	XP_TARG_EXTRA_AUX_RAD_CUR _D	16
	Radius of curvature rate rate in the look direction at the nadir of the target.	XP_TARG_EXTRA_AUX_RAD_CUR _2D	32
	Target Nadir Velocity relative to the Earth. (Topocentric CS)	XP_TARG_EXTRA_AUX_TARGET_ NADIR_VEL	64
	Mean Local Solar Time at target.	XP_TARG_EXTRA_AUX_MLST	128
	True Local Solar Time at target.	XP_TARG_EXTRA_AUX_TLST	256
	Distance from the nadir of the target to the satellite nadir (Earth fixed CS)	XP_TARG_EXTRA_AUX_DIST_NAD _TARG_SAT_NAD	512
	Distance rate from the nadir of the tar get to the satellite nadir (Earth fixed CS)	XP_TARG_EXTRA_AUX_DIST_NAD _TARG_SAT_NAD_D	1024
	Distance rate rate from the nadir of the target to the satellite nadir (Earth fixed CS)	XP_TARG_EXTRA_AUX_DIST_NAD _TARG_SAT_NAD_2D	2048
	R.A. and declination at which the look direction from the satellite to the target point after crossing the atmosphere.	XP_TARG_EXTRA_AUX_LOOK_DIR	4096
	Distance from the SSP to the point on the ground track nearest to the nadir of the target. (Earth fixed CS)	XP_TARG_EXTRA_AUX_DIST_SSP _MIN_DIST_GT	8192
	Distance rate from the SSP to the point on the ground track nearest to the nadir of the target. (Earth fixed CS)	XP_TARG_EXTRA_AUX_DIST_SSP _MIN_DIST_GT_D	1638 4
	Distance rate rate from the SSP to the point on the ground track nearest to the nadir of the target. (Earth fixed CS)	XP_TARG_EXTRA_AUX_DIST_SSP _MIN_DIST_GT_2D	3276 8
	All parameters	XP_TARG_EXTRA_AUX_ALL	6553 5
Satellite Nominal Atti tude Mode	Satellite Nominal Attitude initialised with AOCS mode	XP_SAT_NOMINAL_ATT_INIT_MOD E	0
	Satellite Nominal Attitude initialised with Model	XP_SAT_NOMINAL_ATT_INIT_MOD EL_MODE	1
	Satellite Nominal Attitude initialised with Harmonics	XP_SAT_NOMINAL_ATT_INIT_HAR MONIC_MODE	2
	Satellite Nominal Attitude initialised with a File	XP_SAT_NOMINAL_ATT_INIT_FILE _MODE	3
Satellite Attitude Mode	Satellite Attitude initialised with angles	XP_SAT_ATT_ANGLE_INIT_MODE	0
	Satellite Attitude initialised with matri ces	XP_SAT_ATT_MATRIX_INIT_MODE	1

Date:

Issue: 10/05/2019

	Satellite Attitude initialised with Har monics	XP_SAT_ATT_INIT_HARMONIC_MO DE	2
	Satellite Attitude initialised with a File	XP_SAT_ATT_INIT_FILE_MODE	3
Instrument Attitude Mode	Instrument Attitude initialised with angles	XP_INSTR_ATT_ANGLE_INIT_MOD E	0
	Instrument Attitude initialised with matrices	XP_INSTR_ATT_MATRIX_INIT_MOD E	1
	Instrument Attitude initialised with Har monics	XP_INSTR_ATT_INIT_HARMONIC_ MODE	2
	Instrument Attitude initialised with a File	XP_INSTR_ATT_INIT_FILE_MODE	3
Attitude Mode	Attitude not calculated	XP_ATTITUDE_INIT_NO_DATA_MO DE	0
	Attitude calculated	XP_ATTITUDE_COMPUTE_MODE	1
	Attitude defined by the user	XP_ATTITUDE_USER_SET_MODE	2
Target Mode	Target calculated with Inter (1st) function	XP_TARGET_INTER_1ST_MODE	0
	Target calculated with Inter (2nd) function	XP_TARGET_INTER_2ND_MODE	1
	Target calculated with Travel Time (1st) function	XP_TARGET_TRAVEL_TIME_1ST_ MODE	2
	Target calculated with Travel Time (2nd) function	XP_TARGET_TRAVEL_TIME_2ND_ MODE	3
	Target calculated with Ground Range function	XP_TARGET_GROUND_RANGE_M ODE	4
	Target calculated with Incidence Angle function	XP_TARGET_INCIDENCE_ANGLE_ MODE	5
	Target calculated with Range function	XP_TARGET_RANGE_MODE	6
	Target calculated with Range Rate function	XP_TARGET_RANGE_RATE_MODE	7
	Target calculated with Tangent function	XP_TARGET_TANGENT_MODE	8
	Target calculated with Altitude function	XP_TARGET_ALTITUDE_MODE	9
	Target calculated with Star function	XP_TARGET_STAR_MODE	10
	Target calculated with Tangent to Sun function	XP_TARGET_TANGENT_SUN_MOD E	11
	Target calculated with Tangent to Moon function	XP_TARGET_TANGENT_MOON_M ODE	12
	Target calculated with Station function	XP_TARGET_STATION_MODE	13
	Target calculated with DRS function	XP_TARGET_DRS_MODE	14
	Target calculated with Generic function	XP_TARGET_GENERIC_MODE	15
	Target calculated with S/C function	XP_TARGET_SC_MODE	16

Date:

Issue: 10/05/2019

	Target calculated with Multi Inter (1st) function	XP_MULTI_TARGET_INTER_1ST_M ODE	17
	Target calculated with Multi Inter (2nd) function	XP_MULTI_TARGET_INTER_2ND_M ODE	18
	Target calculated with Multi Travel Time (1st) function	XP_MULTI_TARGET_TRAVEL_TIME _1ST_MODE	19
	Target calculated with Multi Travel Time (2nd) function	XP_MULTI_TARGET_TRAVEL_TIME _2ND_MODE	20
	Target calculated with Target reflected function	XP_TARGET_REFLECTED_MODE	21
	Target calculated with Target List Inter (1st) function	XP_TARGET_LIST_INTER_1ST_MO DE	22
	Target calculated with Target List Inter (2nd) function	XP_TARGET_LIST_INTER_2ND_MO DE	23
DEM configuration operations	XP_LOAD_TILE_SET	Load a set of tiles identified by a rectangular region	0
	XP_CLEAR_CACHE	Unload all the tiles in cache but do not free memory	1
	XP_FREE_CACHE	Unload all the tiles in cache but and free memory	2
	XP_SET_MAX_SIZE	Set new maximum size for cache	3
Azimuth elevation	XP_AZ_EL_LIST	List of azimuth/elevation points	0
type	XP_AZ_EL_STRIP	Strip of points with fixed azimuth	1
	XP_AZ_EL_GRID	Grid of azimuth/elevation points	2
Yaw flip attitude configuration	XP_AUTOMATIC_FLIP_MODE	The mode will be updated automatically to Winter or Summer mode	0
	XP_WINTER_MODE	Yaw flip Winter mode	1
	XP_SUMMER_MODE	Yaw flip Summer mode	2
Set of DEM selection	XP_ALL_DEM	All DEM tiles will be computed	0
COLOT DEIVI SCIECTION	XP_DEM_SET	Only tiles in input range will be computed	1

Date:

Issue: 10/05/2019

Page: 70

6.3 Data Structures

The aim of the current section is to present the data structures that are used in the EO_POINTING library. The structures are currently used for the CFI Identifiers accessor functions. The following table show the structures with their names and the data that contain:

Table 4: EO_POINTING structures

Structure name	Data		
	Variable Name	C type	Description
xp_param_model_ str	model_param	double [XP_NUM_MODEL_ PARAM]	Model Parameters
	model_enum	long	Model type
xp_harmonic_data	num_terms	long [3]	Number of harmonics coefficient(pitch, roll and yaw)
	harmonic_type_pitch	long [XP_MAX_NUM_HA RMONIC]	Harmonic type
	harmonic_type_roll	long [XP_MAX_NUM_HA RMONIC]	Harmonic type
	harmonic_type_yaw	long [XP_MAX_NUM_HA RMONIC]	Harmonic type
	harmonic_coef_pitch	double [XP_MAX_NUM_HA RMONIC]	Harmonic coefficient
	harmonic_coef_roll	double [XP_MAX_NUM_HA RMONIC]	Harmonic coefficient
	harmonic_coef_yaw	double [XP_MAX_NUM_HA RMONIC]	Harmonic coefficient
xp_harmonic_mod	angle_type	long	Angle type
el_str	harmonic	xp_harmonic_data	Harmonic data
xp_att_data_rec	time_ref	long	Time reference
	time	double	Time for the quaternions/angles
	quaternion	double [4]	Quaternions
	angles	double [3]	Angles
	file_model	long	File model
xp_sat_nom_att_fil	val_time0	double	Validity start time

Date:

Issue: 10/05/2019

e_model_str	val_time1	double	Validity stop time
	data_type	long	0 = quaternions
			1 = angles
	inertial_frame	long	initial reference frame: Inertial refer ence frame
	lines	long	number of records in the attitude lists
	max_gap	double	Maximum gap between consequtive data
	att_data	xp_att_data_rec*	array with the angle/quaternion records
xp_angle_model_s	pitch	double	Pitch
tr	roll	double	Roll
	yaw	double	Yaw
xp_matrix_model_ str	att_matrix	double [3][3]	Attitude matrix
xp_star_tracker	quaternion[4]	float	Quaternions
	time	double	Quaternion time in TAI
	status	unsigned char	Quaternions status
xp_star_tracker_au	star_tr_id	long	Star tracker Id (1,2 or 3)
x	aberr_correction	long	Aberration correction flag: -1 = Aberration correction with trans posed matrix 0 = No aberration 1 = Aberration correction
	str_att_rot	double [3][3]	Satellite attitude frame to star tracker rotation matrix
xp_sat_att_file_mo	file_model	long	file model
del_str	val_time0	double	Validity start time
	val_time1	double	Validity stop time
	data_type	long	0 = quaternions 1 = angles
	inertial_frame	long	initial reference frame
	lines	long	number of records in the attitude lists
	max_gap	double	Maximum time gap between angles or quaternions
	att_data	xp_att_data_rec*	Array with the angle/quaternion records
	aux_data	xp_star_tracker_aux	Data from the auxiliary file
	tm_data	xp_star_tracker*	Cryosat Star Tracker attitude data
	rot_to_sat	double**	Matrix with the rotation from the frame

Date:

Issue: 10/05/2019

			based on the satellite to the satellite frame.
xp_instr_att_file_	file_model	long	File model
model_str	val_time0	double	Validity start time
	val_time1	double	Validity stop time
	data_type	long	0 = quaternions 1 = angles
	inertial_frame	long	initial reference frame
	lines	long	number of records in the attitude lists
	max_gap	double	Maximum gap between quaternions/ angles
	att_data	xp_att_data_rec*	array with the angle/quaternion records
xp_quat_plus_angle	inertial_frame	long	Inertial reference frame
_model_str	num_quat	long	Number of quaternions
	quat	xd_att_rec*	List of quaternions
	angles	double[3]	Rotation angles
xp_quat_plus_matri	inertial_frame	long	Inertial reference frame
x_model_str	num_quat	long	Number of quaternions
	quat	xd_att_rec*	List of quaternions
	rot_matrix	double[3][3]	Rotation matrix
xp_attitude_id_dat a	model	long	Attitude model
	time_ref	long	Time reference
	time	double	Time
	sat_vector	xl_cord	Satellite vector (EF)
	source_frame	long	Source reference frame (according to the extended reference frames enu meration in [LIB_SUM])
	target_frame	long	Target reference frame according to the Attitude Frame ID enumeration, defined in the current document (see Table 3)
	sat_mat	xl_cs_tra	Attitude matrix. Provides transformation from source to target frame
	offset	double [3]	Instrument offset from initial reference frame
	attitude_EF	xl_cs_tra	Attitude matrix in EF: position and orientation of the instrument/satellite frame.
xp_atmos_id_data	atm_max_alt_std	double	Standard atmosphere geometric

Date:

Issue: 10/05/2019

			altitude
	atm_max_alt_user	double	User atmosphere geometric altitude
xp_dem_ace	dir	char [100]	Directory for the the DEM files
(deprecated)	res_X	double	Interval between points along X-axis
	res_Y	double	Interval between points along Y-axis
	res_unit	double	Conversion factor from x,y units to the res_X, res_Y units. for example if res_X is given in seconds and X in degrees => res_unit=3600
	X_num_points	long	Number of points along X-axis (columns)
	Y_num_points	long	Number of points along Y-axis (lines)
	x_range	double	Longitude of the x-axis for one file (grid)
	y_range	double	longitude of the y-axis for one file (grid)
	data_size	long	Size in bytes of the data stored in the files
	data_type	long	data type (int, long, float, double)
	north_alt	double[4]	Altitude at the North pole cell
	south_alt	double[4]	Altitude at the South pole cell
xp_dem_id_data	model	long	DEM model
	dem_data	xp_dem_ace *	DEM configuration data (deprecated)
	dem_user_params	xd_dem_user_params	DEM user parameters (see [D_H_SUM])
	dem_metadata	xd_dem_metadata	DEM metadata (see [D_H_SUM])
xp_dem_info	dem_model	long	DEM model (according to XD_Dem_model_enum in [D_H_SUM])
	data_source	long	Source flag. According to the dem _model, the value is one of the following enumerations (see [D_H_SUM]):
			DEM Data Source Types for GETASSE30 v1, v2 and v3
			DEM Data Source Types for ACE2
			DEM Data Source Types for GDEM v2
xp_generic_data	time_ref	long	Time reference
	time	double	Time
	sat_vector	xl_cord	Satellite state vector (see [LIB_SUM])

Date:

Issue: 10/05/2019

	iray	long	Refraction model
	freq	double	Frequency
	deriv	long	Derivative flag according to deriva tives enumeration in [LIB_SUM]
xp_target_data	tar_vector	xl_cord	target vector
	z_tan	xl_par_der	Tangent altitude
	range	xl_par_der	target range
	time	xl_par_der	time
	tar_sat_vector	xl_cord	target to satellite vector
	sat_tar_vector	xl_cord	satellite to target vector
xp_target_str	num_target	long	Number of targets
	target	xp_target_data *	target data
xp_target_id_data	generic_data	xp_generic_data	Target generic data
	earth_crossed	long	Flag to indicate if the Earth is crossed
	atm_crossed	long	Flag to indicate if the atmosphere is crossed
	user	xp_target_str	User target
	los	xp_target_str	LOS target
	earth	xp_target_str	Earth target
	exit_atm_vector	xl_cord	Pointing vector at exit from atmos phere
xp_latlon_area	lon_min	double	Minimum longitude of rectangular area
	lon_max	double	Maximum longitude of rectangular area
	lat_min	double	Minimum latitude of rectangular area
	lat_max	double	Maximum latitude of rectangular area
xp_dem_id_config	command	long	Operation to be executed (DEM configuration enum)
	max_cache_size	long	Maximum cache size (MegaBytes)
	area	xp_latlon_area	Rectangular area
xp_azimuth_elevati	azimuth	double	Azimuth [deg]
on	elevation	double	Elevation [deg]
	azimuth_rate	double	Azimuth rate [deg/s]
	elevation_rate	double	Elevation rate [deg/s]
xp_azimuth_elevati	num_rec	long	Number of azimuth/elevation points
!!-4	az_el_list	xp_azimuth_elevation*	Array of azimuth/elevation points
xp_azimuth_elevati	azimuth	double	Fixed azimuth of strip [deg]
on_strip			

Date:

Issue: 10/05/2019

	max_elevation	double	Maximum elevation of strip points [deg]
	step_elevation	double	Step between elevation points [deg]
xp_azimuth_elevati	min_azimuth	double	Lower azimuth of grid points [deg]
on_grid	max_azimuth	double	Maximum azimuth of grid points [deg]
	step_azimuth	double	Step between azimuth points [deg]
	min_elevation	double	Lower elevation of grid points [deg]
	max_elevation	double	Maximum elevation of grid points [deg]
	step_elevation	double	Step between elevation points [deg]
xp_azimuth_elevati on_input_union	azimuth_elevation_list	xp_azimuth_elevation_li st	List of points
	azimuth_elevation_stri p	xp_azimuth_elevation_s trip	Strip of points
	azimuth_elevation_gri d	xp_azimuth_elevation_g rid	Grid of points
xp_instrument_dat	type	long	Type of instrument data (see Azimuth elevation type enumeration)
	azimuth_elevation_inp ut_union	xp_azimuth_elevation_i nput_union	Azimuth/elevation points
	signal_frequency	double	Signal frequency
xp_target_output	num_user_target	long	Number of user targets
	num_los_target	long*	Array of length num_user_targets with the number of LOS targets corresponding to every user target
xp_target_list_inpu t_info	input_type	long	List/Grid/Strip (see XP_Az_el_type_enum)
	azimuth	double	Azimuth used as input to compute the target
	elevation	double	Elevation used as input to compute the target
	azimuth_idx	long	Azimuth index in azimuth/elevation grid
	elevation_idx	long	Elevation index in azimuth/elevation grid
xp_target_input_inf o_union	target_list_input_info	xp_target_list_input_info	Target input information union
xp_target_input_inf	target_function	long	It defines the function used to compute the target
	target_input_info_unio n	xp_target_input_info_uni on	Target input information

Date:

Issue: 10/05/2019

xp_target_extra_ve	status	long	Target computation status
ctor_results	target_input_info	xp_target_input_info	Input information used to compute the target
	vector_results	double[]	Results
	vector_results_rate	double[]	Results rate
	vector_results_rate_ra te	double[]	Results rate rate
xp_target_extra_ve	num_rec	long	Number of targets computed
ctor_results_list	extra_vector_results	xp_target_extra_vector_ results*	Array with results for every target
xp_target_extra_m	status	long	Target computation status
ain_results	target_input_info	xp_target_input_info	Input information used to compute the target
	main_results	double[]	Results
	main_results_rate	double[]	Results rate
	main_results_rate_rat e	double[]	Results rate rate
xp_target_extra_m	num_rec	long	Number of targets computed
ain_results_list	extra_main_results	xp_target_extra_main_r esults*	Array with results for every target
xp_target_extra_a	status	long	Target computation status
ux_results	target_input_info	xp_target_input_info	Input information used to compute the target
	aux_results	double[]	Results
	aux_results_rate	double[]	Results rate
	aux_results_rate_rate	double[]	Results rate rate
xp_target_extra_a	num_rec	long	Number of targets computed
ux_results_list	extra_aux_results	xp_target_extra_aux_re sults*	Array with results for every target
xp_target_extra_ef	status	long	Target computation status
_target_results	target_input_info	xp_target_input_info	Input information used to compute the target
	ef_target_results	double[]	Results
	ef_target_results_rate	double[]	Results rate
	ef_target_results_rate _rate	double[]	Results rate rate
xp_target_extra_ef	num_rec	long	Number of targets computed
_target_results_list	extra_ef_target_result s	xp_target_extra_ef_targ et_results*	Array with results for every target
xp_target_extra_sp	status	long	Target computation status

Date:

Issue: 10/05/2019

ec_reflec_target_r esults	target_input_info	xp_target_input_info	Input information used to compute the target
	spec_reflec_results	double[]	Results
	spec_reflec_results_rat e	double[]	Results rate
	spec_reflec_results_ra te_rate	double[]	Results rate rate
xp_target_extra_sp	num_rec	long	Number of targets computed
ec_reflec_target_r esults_list	extra_spec_reflec _target_results	xp_target_extra_spec_r eflec_target_results*	Array with results for every target
xp_target_extra_m	status	long	Target computation status
oon_target_results	target_input_info	xp_target_input_info	Input information used to compute the target
	moon_results	double[]	Results
	moon_rate	double[]	Results rate
	moon_rate_rate	double[]	Results rate rate
xp_target_extra_m	num_rec	long	Number of targets computed
oon_target_results _list	extra_moon _target_results	xp_target_extra_moon_t arget_results*	Array with results for every target
xp_target_extra_su	status	long	Target computation status
n_target_results	target_input_info	xp_target_input_info	Input information used to compute the target
	sun_results	double[]	Results
	sun_rate	double[]	Results rate
	sun_rate_rate	double[]	Results rate rate
xp_target_extra_su	num_rec	long	Number of targets computed
n_target_results_li st	extra_sun _target_results	xp_target_extra_sun_tar get_results*	Array with results for every target
xp_gen_dem_alt_fr om_ellipsoid_input	set_type	long	DEM set selected for computation (see DEM set enum)
s	lon_min	double	Minimum longitude of DEM set
	lon_max	double	Maximum longitude of DEM set
	lat_min	double	Minimum latitude of DEM set
	lat_max	double	Maximum latitude of DEM set
	verbose	long	If == 0, no log message will be printed. If > 0, a log message will be printed every "verbose" points processed in DEM.
xp_attitude_def	type	long	Attitude type. Possible values: XP_NONE_ATTITUDE: No attitude defined

Date:

Issue: 10/05/2019

			XP_SAT_NOMINAL_ATT: Satellite Nominal attitude target. XP_SAT_ATT: Satellite attitude target. XP_INSTR_ATT: Instrument attitude target.
	sat_nom_trans_id	xp_sat_nom_trans_id	Satellite Nominal attitude
	sat_trans_id	xp_sat_trans_id	Satellite attitude target
	instr_trans_id	xp_instr_trans_id	Instrument attitude target
xp_transform_cfg	ref_frame	long	New reference frame. See enumeration "Reference frame" in [D_H_SUM]
	time_id	xl_time_id	Time Id.
	model_id	xl_model_id	Model Id.

Date:

Issue: 10/05/2019

Page: 79

7 CFI FUNCTIONS DESCRIPTION

The following sections describe each CFI function.

The calling interfaces are described for C users.

Input and output parameters of each CFI function are described in tables, where C programming language syntax is used to specify:

- Parameter types (e.g. long, double)
- Array sizes of N elements (e.g. param[N])
- Array element M (e.g. [M])

Date:

Issue: 10/05/2019

Page: 80

7.1 xp_sat_nominal_att_init

7.1.1 Overview

The **xp_sat_nominal_att_init** CFI function initialises the AOCS mode for a given satellite. The initialised mode will be stored in the *sat nom trans id* output structure.

7.1.2 Calling Interface

The calling interface of the **xp_sat_nominal_att_init** CFI function is the following (input parameters are <u>underlined</u>):

The XP_NUM_ERR_SAT_NOM_ATT_INIT constant is defined in the file *explorer_pointing.h*.

Date:

Issue: 10/05/2019

Page: 81

7.1.3 Input Parameters

The xp_sat_nominal_att_init CFI function has the following input parameters:

Table 5: Input parameters of xp_sat_nominal_att_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
aocs_mode	long *	-	AOCS Mode ID	-	Complete

It is possible to use enumeration values rather than integer values for some of the input arguments: AOCS Mode ID: aocs_mode. See current document, Table 3.

7.1.4 Output Parameters

The output parameters of the **xp_sat_nominal_att_init** CFI function are:

Table 6: Output parameters of xp_sat_nominal_att_init

C name	C type	Array Element	Description (Reference)	Unit	(Format)	Allowed Range
sat_nom_trans_id	xp_sat_nom _trans_id*		Structure that contains the Satellite nominal Transformation	-		-
ierr	long	-	Error vector	-		-

7.1.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_nominal_att_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_nominal_att_init** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM])

Table 7: Error messages of xp_sat_nominal_att_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	•	XP_CFI_SAT_NOMINAL_ATT_ INIT_MEMORY_ERR	0

Date:

Issue: 10/05/2019

Page: 82

7.2 xp_sat_nominal_att_init_model

7.2.1 Overview

The **xp_sat_nominal_att_init_model** CFI function initialises the satellite nominal attitude model for a given satellite. The initialised model will be stored in the *sat nom trans id* output structure.

7.2.2 Calling Interface

The calling interface of the **xp_sat_nominal_att_init_model** CFI function is the following (input parameters are <u>underlined</u>):

The XP_NUM_ERR_SAT_NOM_ATT_INIT_MODEL and XP_NUM_MODEL_PARAM constants are defined in the file *explorer pointing.h*.

Date:

Issue: 10/05/2019

Page: 83

7.2.3 Input Parameters

The xp_sat_nominal_att_init_model CFI function has the following input parameters:

Table 8: Input parameters of xp_sat_nominal_att_init_model function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
model_enum	long *	-	Sat Nom Attitude Model ID	-	Complete
model_param	double	-	Model dependant parameters	-	Complete

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Satellite Nominal Attitude Model ID: model_enum. See current document, Table 3.
- Model dependant parameters: model param. See current document, Table 9.

Table 9: Model parameters depending on the attitude model

Attitude Model	Array Element	Description (Reference)	Unit (Format)
XP_MODEL_GENERIC	[0]	First Axis enumeration value	-
	[1]	First Target enumeration value	-
	[2]	First Vector[0]	- or deg
	[3]	First Vector[1]	- or deg
	[4]	First Vector[2]	- or deg
	[5]	Second Axis enumeration value	
	[6]	Second Target enumeration value	
	[7]	Second Vector[0]	- or deg
	[8]	Second Vector[1]	- or deg
	[9]	Second Vector[2]	- or deg
XP_MODEL_ENVISAT	[0]	AOCS Cx parameter [pitch]	deg
	[1]	AOCS Cy parameter [roll]	deg
	[2]	AOCS Cz parameter [yaw]	deg
XP_MODEL_CRYOSAT	[0]	Local Normal Z Coefficient	-
XP_MODEL_ADM	[0]	Scan Angle	deg
	[1]	Scan Limit	deg
	[2]	Velocity Offset	m/s
XP_MODEL_SENTINEL1 [0] Local Normal Coefficient		Local Normal Coefficient	-
	[1]	Earth's angular velocity vector	rad/s
	[2]	Antenna bore sight off nadir angle at reference altitude (Θ_{ref})	deg

Date:

Issue: 10/05/2019

Page: 84

	[3]	Reference altitude (H _{ref})	km
	[4]	Roll steering sensitivity versus altitude (α_{roll})	deg/km
	[5]	h_0	m
	[6]	h ₁	m
	[7]	h ₂	m
	[8]	h ₃	m
	[9]	h_4	m
	[10]	$ \phi_1 $	rad
	[11]	$ \phi_2 $	rad
	[12]	$ \phi_3 $	rad
	[13]	$ \phi_4 $	rad
XP_MODEL_SENTINEL2	[0]	Earth's angular velocity vector	rad/s
XP_MODEL_GEO	[0]	Flag (enumeration values can be used): XP_AUTOMATIC_FLIP_MODE = enable the automatic Yaw Flip XP_WINTER_MODE = Winter XP_SUMMER_MODE = Summer	-
XP_MODEL_METOPSG	[0]	Local Normal Coefficient	-
	[1]	Earth's angular velocity vector	rad/s

7.2.3.1 Generic Model description

The generic model builds the reference frames from the specified direction vectors.

The model parameters are:

- first_axis: It can be any of {XP_X_AXIS, XP_NEG_X_AXIS, XP_Y_AXIS, XP_NEG_Y_AXIS, XP_Z_AXIS, XP_NEG_Z_AXIS}
- first_target: It can be any of {XP_SUN_VEC, XP_MOON_VEC, XP_EARTH_VEC, XP_NADIR_VEC, XP_INERTIAL_VEL_VEC, XP_EF_VEL_VEC, XP_INERTIAL_TARGET_VEC, XP_EF_TARGET_VEC, XP_SC_EF_VEL_VEC, XP_ORBIT_POLE, XP_INERTIAL_POS_VEC_CORRECTED, XP_INERTIAL_VEL_VEC ROTATED, XP_EF_NORTH, XP_EF_SOUTH}
- first_vector[3]: contains either:
 - dummies
 - [long, lat, alt] if first target = XP_EF_TARGET_VEC
 - [ra, decl, parallax] if first target = XP INERTIAL TARGET VEC
 - correction coefficients if first target = XP INERTIAL POS VEC CORRECTED
 - rotation vector if first target = XP INERTIAL VEL VEC ROTATED

Date:

Issue: 10/05/2019

Page: 85

second_axis: It can be any of {XP_X_AXIS, XP_NEG_X_AXIS, XP_Y_AXIS, XP_NEG_Y_AXIS,XP_Z_AXIS,XP_NEG_Z_AXIS}

second_target: It can be any of {XP_SUN_VEC, XP_MOON_VEC, XP_EARTH_VEC, XP_NADIR_VEC, XP_INERTIAL_VEL_VEC, XP_EF_VEL_VEC, XP_INERTIAL_TARGET_VEC, XP_EF_TARGET_VEC, XP_SC_EF_VEL_VEC, XP_ORBIT_POLE, XP_INERTIAL_POS_VEC_CORRECTED, XP_INERTIAL_VEL_VEC_ROTATED, XP_EF_NORTH, XP_EF_SOUTH}

- second_vector[3]: contains either:
 - dummies
 - [long, lat, alt] if second target= XP_EF_TARGET_VEC
 - [ra, decl, parallax] if fsecond target=XP INERTIAL TARGET VEC
 - correction coefficients if second target=XP INERTIAL POS VEC CORRECTED
 - rotation vector if second target = XP_INERTIAL_VEL_VEC_ROTATED

It is necessary to define a convention for each target type (e.g., always from Satellite to XXX):

- XP SUN VEC: Unit direction vector from Satellite to Sun
- XP_MOON_VEC: Unit direction vector from Satellite to Moon
- XP_EARTH_VEC: Unit direction vector from Satellite to Earth centre (opposite to Satellite Position Vector)
- XP_NADIR_VEC: Unit direction vector from Satellite to Nadir point
- XP_INERTIAL_VEL_VEC: Inertial Velocity vector (in TOD)
- XP_EF_VEL_VEC: Earth Fixed Velocity vector
- XP_INERTIAL_TARGET_VEC: Unit direction vector from Satellite to a target defined by a given [ra, decl, parallax]. The annual parallax is used in case we are pointing to a close object (for instance, the Moon), in order to get the distance. For stars, parallax=0 shall be used, meaning infinite distance. Units: degrees
- XP_EF_TARGET_VEC: Unit direction vector from Satellite to a target defined by a given [long, lat, alt]
- XP SC EF VEL VEC: Satellite Earth Fixed Velocity vector
- XP_ORBIT_POLE: Unit direction vector normal to the orbital plane (computed as the cross product of the Satellite Position vector and its Velocity vector)
- XP_INERTIAL_POS_VEC_CORRECTED: Unit Satellite position vector in ToD corrected by coefficients (e.g to approximate the local normal direction)
- XP_INERTIAL_VEL_VEC_ROTATED: Inertial Velocity vector in ToD rotated (e.g correcting for the Earth rotation)
- XP EF NORTH: Unit direction vector pointing North (in Earth Fixed)
- XP_EF_SOUTH: Unit direction vector pointing South (in Earth Fixed)

With these parameters, the calculation is done as follows:

- Compute the unit direction vector specified by first target
 - Assign the calculated first target vector to the first axis vector
- Compute the unit direction vector specified by second_target
 - Cross-product of the first axis vector and the second target vector
 - Assign the resulting vector to the second axis vector
 - Complete the right-handed frame

Date:

Issue: 10/05/20 197

Page: 86

The following are some examples:

Sun-Fixed Reference Frame

• $model_param = \{XP_X_AXIS, XP_SUN_VEC, 0.0, 0.0, 0.0, XP_Z_AXIS, XP_EARTH_VEC, 0.0, 0.0, 0.0\}$

Then:

- X-axis = Unit vector from Satellite to Sun (Sun Vector)
- Z-axis = Unit cross product: X-axis x (Unit vector from Satellite to Earth (Earth Vector))
- Y-axis = Z-axis x X-axis (completing the right-handed frame)

Yaw Steering Mode

- model_param={XP_NEG_Z_AXIS, XP_NADIR_VEC, 0.0, 0.0, 0.0, XP_X_AXIS, XP_SC_EF_VEL_VEC, 0.0, 0.0, 0.0}
 Then:
- Z-axis = -(Unit vector from Satellite to Nadir (Nadir Vector))
- X-axis = Unit cross product: Z-axis x (Satellite Earth-Fixed Velocity Vector)
- Y-axis = Z-axis x X-axis (completing the right-handed frame)

7.2.3.2 <u>Sentinel-1 Model parameters description</u>

The parameters for the Sentinel-1 attitude model corresponds to the roll steering law:

$$\theta_{\text{offNadir}} = \theta_{\text{ref}} - \alpha_{\text{roll}} (H - H_{\text{ref}})$$

where the actual altitude of the satellite is approximated by the harmonic function:

$$H(t) = h_0 + \sum_{n=1}^{N} h_n \cdot \sin(n \cdot \omega_{orb} \cdot (t - t_{ANX}) + \phi_n)$$

The first fourth terms of the series are considered.

Consult [MSC] for more information.

7.2.3.3 Sentinel-2 Model description

Sentinel 2 model is implemented as generic model with the following definitions:

- First axis: XP NEG Z AXIS; first target = XP EARTH VEC.
- Second axis: XP_X_AXIS; second target = XP_INERTIAL_VEL_VEC_ROTATED

7.2.3.4 Yaw flip attitude Model description

Yaw Flip model is implemented as generic model with the following definitions:

- 1. For WINTER mode:
 - First axis: XP NEG Z AXIS; first target = XP NADIR VEC.
 - Second axis: XP X AXIS; second target = XP EF SOUTH
- 2. For SUMMER mode:
 - First axis: XP NEG Z AXIS; first target = XP NADIR VEC.
 - Second axis: XP X AXIS; second target = XP EF NORTH

Date:

Issue: 10/05/20 197

Page: 87

3. For AUTOMATIC Yaw Flip, the attitude is set to WINTER or SUMMER mode depending on the Sun position: if the Sun position is above the equatorial plane, SUMMER mode is selected; if the Sun position is below the equatorial plane, WINTER mode is selected.

7.2.3.5 MetOp-SG Model description

MetOp-SG model is identical to the ideal YSM law with the following definitions:

- The Z axis that is computed with an approximation for the local normal vector using an altitude dependent correction factor.
- The input parameters are the local normal coefficient and the Earth's rotation speed.
- First axis: XP Z AXIS; first target = XP INERTIAL POS VEC CORRECTED
- Second axis: XP X AXIS; second target = XP INERTIAL VEL VEC ROTATED

7.2.4 Output Parameters

The output parameters of the **xp_nominal_att_init_model** CFI function are:

Table 10: Output parameters of xp_sat_nominal_att_init_model

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_trans_id	xp_sat_nom _trans_id*	-	Structure that contains the Satellite nominal Transformation	-	-
ierr	long	-	Error vector	-	-

7.2.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_nominal_att_init_model** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_nominal_att_init_model** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM])

Table 11: Error messages of xp_sat_nominal_att_init_model function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_NOMINAL_ATT_ INIT_MODEL_MEMORY_ERR	0

Date:

Issue: 10/05/2019

Date:

Issue: 10/05/2019

Page: 89

7.3 xp_sat_nominal_att_init_harmonic

7.3.1 Overview

The **xp_sat_nominal_init_harmonic** CFI function initialises the satellite orbital to satellite nominal attitude mispointing angles (i.e. roll, pitch, yaw) for a given satellite with a user-provided set of values. The initialised values will be stored in the *sat nom trans id* output structure.

The mispointing angle (attitude angle in the formula) will be calculated by functions using such sat_nominal_trans_id (i.e. xp_attitude_compute or xp_change_frame) according to the following formula (the "angle" variable will be calculated as in xl position on orbit (see [LIB SUM]), using as inputs:

- the input state vector in EF passed to such functions;
- the angle_type passed as input to xp_sat_nominal_att_init_harmonic.

7.3.2 Calling Interface

The calling interface of the **xp_sat_nominal_att_init_harmonic** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
    long angle type, num terms[3];
    long harmonic type pitch [XP MAX NUM HARMONIC],
         harmonic type roll[XP MAX NUM HARMONIC],
         harmonic type yaw[XP MAX NUM HARMONIC];
    double harmonic coef pitch[XP MAX NUM HARMONIC],
        harmonic coef roll[XP MAX NUM HARMONIC],
        harmonic coef yaw[XP MAX NUM HARMONIC];
    xp sat nom trans id sat nom trans id = {NULL};
    long ierr[XP NUM ERR SAT NOM ATT INIT HARMONIC], status;
                 xp sat nominal att init harmonic (& angle type,
    status =
                                    num terms,
                                    harmonic type pitch,
                                    harmonic type roll,
                                    harmonic type yaw,
                                    harmonic coef pitch,
                                    harmonic coef roll,
                                    harmonic coef yaw,
                                    &sat nom trans id,
                                    ierr);
```


Date:

Issue: 10/05/2019

Page: 90

}

The $XP_NUM_ERR_SAT_NOM_ATT_INIT_HARMONIC$ and $XP_MAX_NUM_HARMONIC$ constants are defined in the file $explorer_pointing.h.$

Date:

Issue: 10/05/2019

Page: 91

7.3.3 Input Parameters

The xp_sat_nominal_att_init_harmonic CFI function has the following input parameters:

Table 12: Input parameters of xp_sat_nominal_att_init_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
angle_type	long *	-	Type of angle	-	XP_ANGLE_TYP E_TRUE_LAT_T OD XP_ANGLE_TYP E_TRUE_LAT_EF
num_terms[3]	long	[0]	Number of elements used in vectors harmonic_type_pitch and harmonic_coef_pitch	-	>=0
		[1]	Number of elements used in vectors harmonic_type_roll and harmonic_coef_roll	-	>=0
		[2]	Number of elements used in vectors harmonic_type_yaw and harmonic_coef_yaw	-	>=0
harmonic_type _pitch	long[XP_MA X_NUM_HA RMONIC]	all	Type of coefficients: =0 for the bias parameter <0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n) >0 for the cosinus coefficients (+n means that correponds to the cosinus coefficient of order n)		
harmonic_type _roll	long[XP_MA X_NUM_HA RMONIC]	all	Type of coefficients: =0 for the bias parameter <0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n) >0 for the cosinus coefficients (+n means that correponds to the cosinus coefficient of order n)	-	-
harmonic_type _yaw	long[XP_MA X_NUM_HA RMONIC]	all	Type of coefficients: =0 for the bias parameter <0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n) >0 for the cosinus coefficients (+n means that correponds to	-	_

Date:

Issue: 10/05/2019

Page: 92

			the cosinus coefficient of order n)		
harmonic_coef _pitch	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the pitch angle	deg	-
harmonic_coef _roll	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the roll angle	deg	-
harmonic_coef _yaw	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the yaw angle	deg	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Angle Type: See current document, Table 3.

7.3.4 Output Parameters

The output parameters of the xp_sat_nominal_att_init_harmonic CFI function are:

Table 13: Output parameters of xp_sat_nominal_att_init_harmonic

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_trans_id	xp_sat_nom _trans_id*	-	Structure that contains the Satellite nominal Transformation	-	-
ierr	long	-	Error vector	-	-

7.3.5 Example

```
For the satellite ERS:
pitch = -0.16725*cos(true_lat)*sin(true_lat)*2=-0.16725*sin(2*true_lat)
num_terms[0]=1
harmonic_type_pitch={-2} harmonic_coef_pitch={-0.16725}

roll = 0.05012*sin(true_lat)
num_terms[1]=1
harmonic_type_roll={-1} harmonic_coef_roll={0.05012}

yaw= 3.9163*cos(true_lat)
num_terms[2]=1
```


Date:

Issue: 10/05/2019

Page: 93

harmonic type yaw={+1} harmonic coef yaw={3.9163}

7.3.6 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_nominal_att_init_harmonic** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_nominal_att_init_harmonic** function by calling the function of the EO POINTING software library **xp get code** (see [GEN SUM])

Table 14: Error messages of xp_sat_nominal_att_init_harmonic function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_NOMINAL_ATT_ INIT_HARMONIC_MEMORY_E RR	0

Date:

Issue: 10/05/2019

Page: 94

7.4 xp_sat_nominal_att_init_file

7.4.1 Overview

The **xp_sat_nominal_att_init_file** CFI function initialises the satellite nominal attitude angles for a given satellite reading values from the attitude file(s). The validity time or orbital range for the attitude angles can be specified by the user. The initialised values will be stored in the *sat nom trans id* output structure.

In order to read files, xp_sat_nominal_att_init_file function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

7.4.2 Calling Interface

The calling interface of the **xp_sat_nominal_att_init_file** CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR SAT NOM ATT INIT FILE constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 95

7.4.3 Input Parameters

The xp_sat_nominal_att_init_file CFI function has the following input parameters:

Table 15: Input parameters of xp_sat_nominal_att_init_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-
n_files	long *	-	Number of reference data files	-	> 0
attitude_file	char **	-	Filenames of the reference data files. In case multiple files are used, the files should be time ordered. The supported Attitude File format is the Generic Attitude File as described in Error: Reference source not found.	-	-
time_init_mode	long *	-	Flag for selecting the time range of the initialization.	-	Select either: · XP_SEL_TIME · XP_SEL_FILE
time_ref	long *	-	Time reference ID	-	Complete
time0	double*	-	If:time_init_mode=XP_SEL_TIME S Start of the time range defined by[time0,time1]	Decimal days (Process ing format)	[-18262.0,36524.0]
time1	double*	-	If: time_init_mode=XP_SEL_TIME End of the time range defined by [time0,time1]	Decimal days (Process ing format)	[-18262.0,36524.0] > time0

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Time Reference ID: time ref. See [GEN SUM].
- Time Init Mode ID: time init mode. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 96

7.4.4 Output Parameters

The output parameters of the xp_sat_nominal_att_init_file CFI function are:

Table 16: Output parameters of xp_sat_nominal_att_init_file

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
val_time1	double*	-	Validity end time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
sat_nom_trans_id	xp_sat_nom _trans_id*	-	Structure that contains the Satellite nominal Transformation	-	-
ierr	long	-	Error vector	-	-

7.4.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_nominal_att_init_file** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_nominal_att_init_file** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 17: Error messages of xp_sat_nominal_att_init_file function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_NOMINAL_AT T_INIT_FILE_MEMORY_ER R	0
ERR	Wrong input time reference	No calculation performed	XP_CFI_SAT_NOMINAL_AT T_INIT_FILE_WRONG_TIME _REF_ERR	1
ERR	Error opening attitude file: %s	No calculation performed	XP_CFI_SAT_NOMINAL_AT T_INIT_FILE_OPEN_FILES_ ERR	2
ERR	Error reading generic attitude files	No calculation performed	XP_CFI_SAT_NOMINAL_AT T_INIT_FILE_READ_ATT_FI	3

Date:

Issue: 10/05/2019

			LES_ERR	
	Could not perform a time transformation	No calculation performed	XP_CFI_SAT_NOMINAL_AT T_INIT_FILE_TIME_CONV_ ERR	4

Date:

Issue: 10/05/2019

Page: 98

7.5 xp_sat_nominal_att_close

7.5.1 Overview

The **xp_sat_nominal_att_close** CFI function cleans up any memory allocation performed by the satellite nominal attitude initialization functions.

7.5.2 Calling Interface

The calling interface of the **xp_sat_nominal_att_close** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xp_sat_nom_trans_id sat_nom_trans_id = {NULL};
    long ierr[XP_NUM_ERR_SAT_NOM_ATT_CLOSE], status;

    status = xp_sat_nominal_att_close(&sat_nom_trans_id, ierr);
}
```

The XP NUM ERR SAT NOM ATT CLOSE constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/20 197

Page: 99

7.5.3 Input Parameters

The xp_sat_nominal_att_close CFI function has the following input parameters:

Table 18: Input parameters of xp_sat_nominal_att_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_trans_id	xp_sat_nom _trans_id*	-	Structure that contains the Satellite Nom. Trans.	-	-

7.5.4 Output Parameters

The output parameters of the **xp** sat **nominal** att close CFI function are:

Table 19: Output parameters of xp_sat_nominal_att_close

C name	C type	Array Element	Description (Reference)	_	
ierr	long	-	Error vector	-	-

7.5.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_nominal_att_close** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_nominal_att_close** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 20: Error messages of xp_sat_nominal_att_close function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Could not close the ld. as it is not initialized or it is being used	No calculation performed	XP_CFI_SAT_NOMINAL_A TT_CLOSE_WRONG_ID_E RR	0

Date:

Issue: 10/05/20 197

Page: 100

7.6 xp_sat_nominal_att_get_aocs

7.6.1 Overview

The **xp_sat_nominal_att_get_aocs** CFI function returns AOCS mode used for the satellite nominal attitude initialization.

7.6.2 Calling interface

The calling interface of the **xp_sat_nominal_att_get_aocs** CFI function is the following (input parameters are underlined):

7.6.3 Input parameters

The xp sat nominal att get aocs CFI function has the following input parameters:

Table 21: Input parameters of xp_sat_nominal_att_get_aocs function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_tr ans_id	xp_sat_nom_tr ans_id *	-	Satellite nominal transformation ID.	_	-

7.6.4 Output parameters

The output parameters of the **xp_sat_nominal_att_get_aocs** CFI function are:

Table 22: Output parameters of xp_sat_nominal_att_get_aocs function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_nominal_att _get_aocs	long	-	Status flag	-	-
aocs_model	long	-	AOCS model	-	-

Date:

Issue: 10/05/2019

Page: 101

7.6.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat nom trans id was not initialised.
- The sat nom trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 102

7.7 xp_sat_nominal_att_set_aocs

7.7.1 Overview

The **xp_sat_nominal_att_set_aocs** CFI function changes the AOCS mode used for the satellite nominal attitude initialization.

7.7.2 Calling interface

The calling interface of the **xp_sat_nominal_att_set_aocs** CFI function is the following (input parameters are underlined):

7.7.3 Input parameters

The xp sat nominal att set aocs CFI function has the following input parameters:

Table 23: Input parameters of xp_sat_nominal_att_set_aocs function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_tr ans_id	xp_sat_nom_tr ans_id *	-	Satellite nominal transformation ID (input / output parameter)	-	-
aocs_model	long	-	AOCS model	-	-

7.7.4 Output parameters

The output parameters of the xp sat nominal att set aocs CFI function are:

Table 24: Output parameters of xp_sat_nominal_att_set_aocs function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_nominal_att _set_aocs	long	-	Status flag	-	-

Date:

Issue: 10/05/2019

Page: 103

sat_nom_trans_id	xp_sat_nom_tra ns_id *	Satellite nominal transformation ID (input / output	-	-
		parameter)		

7.7.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat_nom_trans_id was not initialised.
- The sat nom trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 104

7.8 xp_sat_nominal_att_get_param

7.8.1 Overview

The **xp_sat_nominal_att_get_param** CFI function returns parameters used for the satellite nominal attitude initialization.

7.8.2 Calling interface

The calling interface of the **xp_sat_nominal_att_get_param** CFI function is the following (input parameters are <u>underlined</u>):

7.8.3 Input parameters

The xp sat nominal att get param CFI function has the following input parameters:

Table 25: Input parameters of xp_sat_nominal_att_get_param function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_tr ans_id	xp_sat_nom_tr ans_id *	-	Satellite nominal transformation ID.	_	-

7.8.4 Output parameters

The output parameters of the xp_sat_nominal_att_get_param CFI function are:

Table 26: Output parameters of xp_sat_nominal_att_get_param function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_nominal_att _get_param	long	-	Status flag	-	-
data	xp_param_mode	-	Attitude initialization	-	-

Date:

Issue: 10/05/2019

Page: 105

I_str		data		
-------	--	------	--	--

7.8.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat_nom_trans_id was not initialised.
- The sat_nom_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 106

7.9 xp_sat_nominal_att_set_param

7.9.1 Overview

The **xp_sat_nominal_att_set_param** CFI function changes the parameters used for the satellite nominal attitude initialization.

7.9.2 Calling interface

The calling interface of the **xp_sat_nominal_att_set_param** CFI function is the following (input parameters are <u>underlined</u>):

7.9.3 Input parameters

The xp_sat_nominal_att_set_param CFI function has the following input parameters:

Table 27: Input parameters of xp_sat_nominal_att_set_param function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_tr ans_id	xp_sat_nom_tr ans_id *	-	Satellite nominal transformation ID (input / output parameter)	-	-
data	xp_param_mo del_str	-	Attitude initialization data	-	-

7.9.4 Output parameters

The output parameters of the xp_sat_nominal_att_set_param CFI function are:

Table 28: Output parameters of xp_sat_nominal_att_set_param function

C name	C type	Array	Description	Unit	Allowed Range	

Date:

Issue: 10/05/2\(\text{1}\)

Page: 107

		Element	(Reference)	(Format)	
xp_sat_nominal_att _set_param	long	-	Status flag	-	-
sat_nom_trans_id	xp_sat_nom_tra ns_id *	-	Satellite nominal transformation ID (input / output parameter)	-	-

7.9.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat_nom_trans_id was not initialised.
- The sat nom trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/2019

Page: 108

7.10 xp_sat_nominal_att_get_harmonic

7.10.1 Overview

The **xp_sat_nominal_att_get_harmonic** CFI function returns harmonic data used for the satellite nominal attitude initialization.

7.10.2 Calling interface

The calling interface of the **xp_sat_nominal_att_get_harmonic** CFI function is the following (input parameters are <u>underlined</u>):

7.10.3 Input parameters

The xp_sat_nominal_att_get_harmonic CFI function has the following input parameters:

Table 29: Input parameters of xp_sat_nominal_att_get_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_tr ans_id	xp_sat_nom_tr ans_id *	-	Satellite nominal transformation ID.	-	-

7.10.4 Output parameters

The output parameters of the xp_sat_nominal_att_get_harmonic CFI function are:

Table 30: Output parameters of xp_sat_nominal_att_get_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_nominal_att _get_harmonic	long	-	Status flag	-	-
data	xp_harmonic_m	-	Attitude initialization	-	-

Date:

Issue: 10/05/2019

Page: 109

odel_str	data		
----------	------	--	--

7.10.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat_nom_trans_id was not initialised.
- The sat_nom_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/2019

Page: 110

7.11 xp_sat_nominal_att_set_harmonic

7.11.1 Overview

The **xp_sat_nominal_att_set_harmonic** CFI function changes the harmonic data used for the satellite nominal attitude initialization.

7.11.2 Calling interface

The calling interface of the **xp_sat_nominal_att_set_harmonic** CFI function is the following (input parameters are <u>underlined</u>):

7.11.3 Input parameters

The xp_sat_nominal_att_set_harmonic CFI function has the following input parameters:

Table 31: Input parameters of xp_sat_nominal_att_set_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_tr ans_id	xp_sat_nom_tr ans_id *	-	Satellite nominal transformation ID (input / output parameter)	-	-
data	xp_harmonic_ model_str	-	Attitude initialization data	-	-

7.11.4 Output parameters

The output parameters of the xp_sat_nominal_att_set_harmonic CFI function are:

Table 32: Output parameters of xp_sat_nominal_att_set_harmonic function

C name	C type	Array	Description	Unit	Allowed Range	

Date:

Issue: 10/05/2\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\r

Page: 111

		Element	(Reference)	(Format)	
xp_sat_nominal_att _set_harmonic	long	-	Status flag	-	-
sat_nom_trans_id	xp_sat_nom_tra ns_id *	-	Satellite nominal transformation ID (input / output parameter)	-	-

7.11.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat_nom_trans_id was not initialised.
- The sat nom trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 112

7.12 xp_sat_nominal_att_get_file

7.12.1 Overview

The **xp_sat_nominal_att_get_file** CFI function returns initialization data from the satellite nominal attitude Id. when it was initialised with a file.

7.12.2 Calling interface

The calling interface of the **xp_sat_nominal_att_get_file** CFI function is the following (input parameters are underlined):

7.12.3 Input parameters

The xp_sat_nominal_att_get_file CFI function has the following input parameters:

Table 33: Input parameters of xp_sat_nominal_att_get_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_tr ans_id	xp_sat_nom_tr ans_id *	-	Satellite nominal transformation ID.	-	-

7.12.4 Output parameters

The output parameters of the xp_sat_nominal_att_get_file CFI function are:

Table 34: Output parameters of xp_sat_nominal_att_get_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_nominal_att _get_file	long	-	Status flag	-	-
data	xp_file_model_str	-	Attitude initialization	-	-

Code: I	EO-MA-DN	MS-GS-	-0005
---------	----------	--------	-------

Date:

Issue: 10/05/2019

Page: 113

	data		
--	------	--	--

7.12.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat_nom_trans_id was not initialised.
- The sat_nom_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/2019

Page: 114

7.13 xp_sat_nominal_att_set_file

7.13.1 Overview

The **xp_sat_nominal_att_set_file** CFI function changes the initialization data for the satellite nominal attitude Id, when it was initialised with a file.

If quaternions are introduced, it is checked that they are normalized.

7.13.2 Calling interface

The calling interface of the **xp_sat_nominal_att_set_file** CFI function is the following (input parameters are <u>underlined</u>):

7.13.3 Input parameters

The **xp_sat_nominal_att_set_file** CFI function has the following input parameters:

Table 35: Input parameters of xp_sat_nominal_att_set_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_tr ans_id	xp_sat_nom_tran s_id *	-	Satellite nominal transformation ID (input / output parameter)	-	-
data	xp_file_model_str	-	Attitude initialization data	-	-

7.13.4 Output parameters

The output parameters of the xp sat nominal att set file CFI function are:

Date:

Issue: 10/05/2019

Page: 115

Table 36: Output parameters of xp_sat_nominal_att_set_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_nominal_att _set_file	long	-	Status flag	-	-
sat_nom_trans_id	xp_sat_nom_tra ns_id *	_	Satellite nominal transformation ID (input / output parameter)	-	-

7.13.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat nom trans id was not initialised.
- The sat_nom_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/2019

Page: 116

7.14 xp_sat_att_angle_init

7.14.1 Overview

The **xp_sat_att_angle_init** CFI function initialises the satellite nominal attitude to satellite attitude mispointing angles for a given satellite with a user-provided set of values. The initialised values will be stored in the *sat trans id* output structure.

7.14.2 Calling Interface

The calling interface of the **xp_sat_att_angle_init** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    double ang[3];
    xp_sat_trans_id sat_trans_id = {NULL};
    long ierr[XP_NUM_ERR_MISP_ANGLE_INIT_DEF], status;
    status = xp_sat_att_angle_init(ang, &sat_trans_id, ierr);
}
```

The XP NUM ERR SAT ATT ANGLE INIT constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/20 197

Page: 117

7.14.3 Input Parameters

The **xp_sat_att_angle_init** CFI function has the following input parameters:

Table 37: Input parameters of xp_sat_att_angle_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ang	double[3]	[0]	Pitch mispointing angle (Satellite Nominal Attitude Frame)	deg	If no better value, assume 0.0
		[1]	Roll mispointing angle (Satellite Nominal Attitude Frame)	deg	If no better value, assume 0.0
		[2]	Yaw mispointing angle (Satellite Nominal Attitude Frame)	deg	If no better value, assume 0.0

7.14.4 Output Parameters

The output parameters of the xp sat att angle init CFI function are:

Table 38: Output parameters of xp_sat_att_angle_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans _id*	-	Structure that contains the Satellite Transformation	-	-
ierr	long	-	Error vector	-	-

7.14.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_att_angle_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_att_angle_init** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 39: Error messages of xp_sat_att_angle_init function

Error	Error message	Cause and impact	Error code	Error
-------	---------------	------------------	------------	-------

Date:

Issue: 10/05/2019

Page: 118

type				No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_ATT_ANGLE_IN IT_MEMORY_ERR	0

Date:

Issue: 10/05/20 197

Page: 119

7.15 xp_sat_att_matrix_init

7.15.1 Overview

The **xp_sat_att_matrix_init** CFI function initializes misalignment matrix between the satellite nominal attitude frame and satellite attitude frame with a user-provided matrix. The initialized values will be stored in the *sat trans id* output structure. It is checked that the input matrix is orthonormal.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.15.2 Calling Interface

The calling interface of the **xp_sat_att_matrix_init** CFI function is the following (input parameters are underlined):

The XP NUM ERR SAT ATT MATRIX INIT constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 120

7.15.3 Input Parameters

The **xp_sat_att_matrix_init** CFI function has the following input parameters:

Table 40: Input parameters of xp_sat_att_matrix_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
att_matrix	double[3][3]	all	Mispointing Matrix	-	-

7.15.4 Output Parameters

The output parameters of the xp sat att matrix init CFI function are:

Table 41: Output parameters of xp_sat_att_matrix_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_ id*	-	Structure that contains the Satellite Transformation	-	-
ierr	long	-	Error vector	-	-

7.15.5 Example

TBD

7.15.6 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_att_matrix_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_att_matrix_init** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Date:

Issue: 10/05/2<u>Q</u>.1₁9₇

Page: 121

Table 42: Error messages of xp_sat_att_matrix_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_ATT_MATRIX_I NIT_MEMORY_ERR	0
ERR	Matrix not orthonormal	No calculation performed The CFI performs a check, with a tolerance of 10 ⁻⁶ , that the product of the input matrix and its transposed is the unitary matrix	XP_CFI_SAT_ATT_MATRIX_IN IT_ORTHONORMAL_ERR	1

Date:

Issue: 10/05/2019

Page: 122

7.16 xp_sat_att_init_harmonic

7.16.1 Overview

The **xp_sat_att_init_harmonic** CFI function initialises the satellite nominal orbital to satellite attitude mispointing angles (i.e. roll, pitch, yaw) for a given satellite with a user-provided set of values. The initialised values will be stored in the *sat trans id* output structure.

The mispointing angle (attitude angle in the formula) will be calculated by functions using such sat_trans_id (i.e. xp_attitude_compute or xp_change_frame) according to the following formula (the "angle" variable will be calculated as in xl position on orbit (see [LIB SUM]), using as inputs:

- the input state vector in EF passed to such functions;
- the angle_type passed as input to xp_sat_att_init_harmonic.

7.16.2 Calling Interface

The calling interface of the **xp_sat_att_init_harmonic** CFI function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
    long angle type, num_terms[3];
    long harmonic type pitch [XP MAX NUM HARMONIC],
         harmonic type roll[XP MAX NUM HARMONIC],
         harmonic type yaw[XP MAX NUM HARMONIC];
    double harmonic coef pitch[XP MAX NUM HARMONIC],
        harmonic coef roll[XP MAX NUM HARMONIC],
        harmonic coef yaw[XP MAX NUM HARMONIC];
    xp sat trans id sat trans id = {NULL};
    long ierr[XP NUM ERR SAT ATT INIT HARMONIC], status;
    status = xp sat att init harmonic (&angle type, num terms,
                                    harmonic type pitch,
                                    harmonic type roll,
                                    harmonic type yaw,
                                    harmonic coef pitch,
                                    harmonic coef roll,
                                    harmonic coef yaw,
                                    &sat trans id, ierr);
```


Date:

Issue: 10/05/2<u>Q</u>.1₁9₇

Page: 123

The $XP_NUM_ERR_SAT_ATT_INIT_HARMONIC$ and $XP_MAX_NUM_HARMONIC$ constants are defined in the file *explorer_pointing.h.*

Date:

Issue: 10/05/2<u>0</u>19

Page: 124

7.16.3 Input Parameters

The xp_sat_att_init_harmonic CFI function has the following input parameters:

Table 43: Input parameters of xp_sat_att_init_harmonic function

C name	C type	Array	Description	Unit	Allowed Range
Chame	Стурс	Element	(Reference)	(Format)	Amowed Range
angle_type	long *	-	Type of angle	-	XP_ANGLE_TYP E_TRUE_LAT_T OD XP_ANGLE_TYP
num_terms[3]	long	[0]	Number of elements used in vectors harmonic_type_pitch and harmonic_coef_pitch	-	E_TRUE_LAT_EF >=0
		[1]	Number of elements used in vectors harmonic_type_roll and harmonic_coef_roll	-	>=0
		[2]	Number of elements used in vectors harmonic_type_yaw and harmonic_coef_yaw	-	>=0
harmonic_type _pitch	long[XP_MA X_NUM_HA RMONIC]	all	Type of coefficients: =0 for the bias parameter <0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n) >0 for the cosinus coefficients (+n means that correponds to the cosinus coefficient of order n)		
harmonic_type _roll	long[XP_MA X_NUM_HA RMONIC]	all	Type of coefficients: =0 for the bias parameter <0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n) >0 for the cosinus coefficients (+n means that correponds to the cosinus coefficient of order n)		-
harmonic_type _yaw	long[XP_MA X_NUM_HA RMONIC]	all	Type of coefficients: =0 for the bias parameter <0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n) >0 for the cosinus coefficients (+n means that correponds to	-	-

Date:

Issue: 10/05/2019

Page: 125

			the cosinus coefficient of order n)		
harmonic_coef _pitch	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the pitch angle	deg	
harmonic_coef _roll	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the roll angle	deg	
harmonic_coef _yaw	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the yaw angle	deg	

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Angle Type: See current document, Table 3.

7.16.4 Output Parameters

The output parameters of the xp_sat_att_init_harmonic CFI function are:

Table 44: Output parameters of xp_sat_att_init_harmonic

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans _id*	-	Structure that contains the Satellite Transformation	-	-
ierr	long	-	Error vector	-	-

7.16.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_att_init_harmonic** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_att_init_harmonic** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM])

Date:

Issue: 10/05/2<u>Q</u>.1₁9₇

Page: 126

Table 45: Error messages of xp_sat_att_init_harmonic function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_ATT_INIT_HAR MONIC_MEMORY_ERR	0

Date:

Issue: 10/05/2019

Page: 127

7.17xp_sat_att_init_file

7.17.1 Overview

The **xp_sat_att_init_file** CFI function initialises the satellite attitude angles for a given satellite reading values from the attitude file(s). The validity time or orbital range for the attitude angles can be specified by the user. The initialised values will be stored in the *sat_trans_id* output structure. The quaternions that could be read from the file are checked to be normalized.

In order to read files, xp_sat_att_init_file function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

7.17.2 Calling Interface

The calling interface of the **xp_sat_att_init_file** CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR SAT ATT INIT FILE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2<u>0</u>19

Page: 128

7.17.3 Input Parameters

The **xp_sat_att_init_file** CFI function has the following input parameters:

Table 46: Input parameters of xp_sat_att_init_file function

C name	C type	Array	Description (Reference)	Unit	Allowed Range
		Element		(Format)	
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-
n_files	long *	-	Number of reference data files	-	> 0
attitude_file	char **	-	Filenames of the reference data files. In case multiple files are used, the files should be time ordered. The supported Attitude File for mats are the Generic Attitude File (described in [D_H_SUM]Error: Reference source not found) and Star Tracker files. If multiple files are used, Generic Attitude Files and Star Tracker files	-	-
			cannot be given to the func tion as part of the same list.		
			When using Star-Tracker files, the function assumes that all the input files belong to the same Star-Tracker. As a consequence of this assumption only the Star-Tracker identifier of the first file provided in the list is read. Note that the Star-Tracker identification number should be either 1, 2 or 3 (no internal check is performed)		
auxiliary_file	char **	-	Filename of an auxiliary file con taining the Star-Tracker misaligne ment matrices	-	-
time_init_mode	long *	-	Flag for selecting the time range of the initialization.	_	Select either: · XP_SEL_TIME · XP_SEL_FILE
time_ref	long *	-	Time reference ID	-	Complete
time0	double*	-	If: time_init_mode=XP_SEL_TIME Start of the time range defined by [time0,time1]	Decimal days (Process ing format)	[-18262.0,36524.0]
time1	double*	-	If: time_init_mode=XP_SEL_TIME End of the time range defined by	Decimal days	[-18262.0,36524.0] > time0

Date:

Issue: 10/05/2019

Page: 129

		[time0,time1]	(Process ing format)
			ing format)

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Time Reference ID: time ref. See [GEN SUM].
- Time Init Mode ID: time init mode. See current document, Table 3.

7.17.4 Output Parameters

The output parameters of the **xp** sat att init file CFI function are:

Table 47: Output parameters of xp_sat_att_init_file

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
val_time1	double*	-	Validity end time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
sat_trans_id	xp_sat_trans _id*	-	Structure that contains the Satellite Transformation	-	-
ierr	long	-	Error vector	-	-

7.17.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_att_init_file** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_att_init_file** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN_SUM]).

Table 48: Error messages of xp_sat_att_init_file function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ MEMORY_ERR	0
ERR	Error opening attitude file: %s	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ OPEN_FILES_ERR	1
ERR	Error reading input star	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_	2

Date:

Issue: 10/05/2019

Page: 130

	tracker files		READ_FILES_ERR	
ERR	Error reading generic attitude files	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ READ_ATT_FILES_ERR	3
ERR	No data has been read from the files	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ NO_READ_DATA_ERR	4
ERR	Error reading auxiliary file	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ READ_AUX_FILE_ERR	5
ERR	Wrong input time reference	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ WRONG_TIME_REF_ERR	6
ERR	Could not perform a time transformation	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ TIME_REF_ERR	7
ERR	Could not find word "SPH_DESCRIPTOR" in attitude file	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ READ_STR_ID_ERR	8
ERR	Quaternion is not normalized	No calculation performed	XP_CFI_SAT_ATT_INIT_FILE_ QUAT_UNITARY_ERR	9

Date:

Issue: 10/05/2019

Page: 131

7.18 xp_sat_att_quat_plus_matrix_init

7.18.1 Overview

The **xp_sat_att_quat_plus_matrix_init** CFI function initialises the satellite attitude angles using the input quaternions, and stores the rotation matrix from the satellite-based reference frame defined by the quaternions to the satellite frame, that must be provided by the user. The initialised values will be stored in the *sat_trans_id* output structure. The input quaternions are checked to be normalized, and the input matrix is checked to be orthonormal.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.18.2 Calling Interface

The calling interface of the **xp_sat_att_quat_plus_matrix_init** CFI function is the following (input parameters are <u>underlined</u>):

The XP_NUM_ERR_SAT_ATT_QUAT_PLUS_MATRIX_INIT constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 132

7.18.3 Input Parameters

The **xp_sat_att_init_file** CFI function has the following input parameters:

Table 49: Input parameters of xp_sat_att_quat_plus_matrix_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
inertial_frame	long*	-	Inertial reference frame.	-	Defined in XD_Cs_enum
num_rec	long *	-	Number of quaternions	-	> 0
quaternions	xd_att_rec	-	Quaternions that give the rotation from the inertial reference frame to the frame based on the satellite.	-	-
matrix	double**	-	Rotation matrix from the frame based on the satellite to the satel lite frame.	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Inertial frame. See [D H SUM].

7.18.4 Output Parameters

The output parameters of the **xp** sat att init file CFI function are:

Table 50: Output parameters of xp_sat_att_quat_plus_matrix_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans _id*	-	Structure that contains the Satellite Transformation	-	-
ierr	long	-	Error vector	-	-

7.18.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_att_quat_plus_matrix_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

Date:

Issue: 10/05/2019

Page: 133

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_att_quat_plus_matrix_init** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 51: Error messages of xp_sat_att_quat_plus_matrix_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_ATT_QUAT_PL US_MATRIX_INIT_MEMORY_ ERR	0
ERR	Quaternion is not normalized	No calculation performed	XP_CFI_SAT_ATT_QUAT_PLU S_MATRIX_INIT_QUAT_UNITA RY_ERR	1
ERR	Matrix is not orthonormal	No calculation performed. The CFI performs a check, with a tolerance of 10 ⁻⁶ , that the product of the input matrix and its transposed is the unitary matrix.	XP_CFI_SAT_ATT_QUAT_PLU S_MATRIX_INIT_MATRIX_ORT HONORMAL_ERR	

Date:

Issue: 10/05/2019

Page: 134

7.19 xp_sat_att_quat_plus_angle_init

7.19.1 Overview

The **xp_sat_att_quat_plus_angle_init** CFI function initialises the satellite attitude angles using the input quaternions, and stores the rotation matrix from the satellite-based reference frame defined by the quaternions to the satellite frame, calculated with the input angles. The initialised values will be stored in the *sat trans id* output structure. The input quaternions are checked to be normalized.

7.19.2 Calling Interface

The calling interface of the **xp_sat_att_quat_plus_angle_init** CFI function is the following (input parameters are <u>underlined</u>):

The XP_NUM_ERR_SAT_ATT_QUAT_PLUS_ANGLE_INIT constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 135

7.19.3 Input Parameters

The xp_sat_att_quat_plus_angle_init CFI function has the following input parameters:

Table 52: Input parameters of xp_sat_att_quat_plus_matrix_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
inertial_frame	long*	-	Inertial reference frame.	-	Defined in XD_Cs_enum
num_rec	long *	-	Number of quaternions	-	> 0
quaternions	xd_att_rec *	-	Quaternions that give the rotation from the inertial reference frame to the frame based on the satellite.	-	-
angles	double[3]	-	Angles that define the rotation from the frame based on the satellite to the satellite frame.	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Inertial frame. See [D H SUM].

7.19.4 Output Parameters

The output parameters of the xp sat att quat plus angle init CFI function are:

Table 53: Output parameters of xp_sat_att_quat_plus_angle_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans _id*	-	Structure that contains the Satellite Transformation	-	-
ierr	long	-	Error vector	-	-

7.19.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_att_quat_plus_angle_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

Date:

Issue: 10/05/2019

Page: 136

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_att_quat_plus_angle_init** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 54: Error messages of xp_sat_att_quat_plus_angle_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_SAT_ATT_QUAT_PL US_ANGLE_INIT_MEMORY_E RR	0
ERR	Error calculating rotation matrix for eurler angles	No calculation performed	XP_CFI_SAT_ATT_QUAT_PL US_ANGLE_EULER_TO_MAT RIX_ERR	1
ERR	Quaternion is not normalized	No calculation performed The CFI performs a check, with a tolerance of 10 ⁻⁶ , that the product of the input matrix and its transposed is the unitary matrix.	XP_SAT_ATT_QUAT_PLUS_A NGLE_INIT_QUAT_UNITARY_ ERR	2

Date:

Issue: 10/05/2019

Page: 137

7.20 xp_sat_att_close

7.20.1 Overview

The **xp_sat_att_close** CFI function cleans up any memory allocation performed by the satellite attitude initialization functions.

7.20.2 Calling Interface

The calling interface of the **xp_sat_att_close** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xp_sat_trans_id sat_trans_id = {NULL};
    long ierr[XP_NUM_ERR_SAT_ATT_CLOSE], status;
    status = xp_sat_att_close(&sat_trans_id, ierr);
}
```

The XP NUM ERR SAT ATT CLOSE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/20 197

Page: 138

7.20.3 Input Parameters

The xp_sat_att_close CFI function has the following input parameters:

Table 55: Input parameters of xp_sat_att_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans _id*	-	Structure that contains the Sat. Trans.	-	-

7.20.4 Output Parameters

The output parameters of the xp sat att close CFI function are:

Table 56: Output parameters of xp_sat_att_close

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long	-	Error vector	-	-

7.20.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_sat_att_close** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_sat_att_close** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 57: Error messages of xp_sat_att_close function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Could not close the ld. as it is not initialized or it is being used	No calculation performed	XP_CFI_SAT_ATT_CLOSE_W RONG_ID_ERR	0

Date:

Issue: 10/05/2019

Page: 139

Date:

Issue: 10/05/20 197

Page: 140

7.21 xp_sat_att_get_angles

7.21.1 Overview

The xp_sat_att_get_angles CFI function returns angle data used for the satellite attitude initialization.

7.21.2 Calling interface

The calling interface of the **xp_sat_att_get_angles** CFI function is the following (input parameters are <u>underlined</u>):

7.21.3 Input parameters

The xp_sat_att_get_angles CFI function has the following input parameters:

Table 58: Input parameters of xp_sat_att_get_angles function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_id *	-	Satellite transformation ID.	-	-

7.21.4 Output parameters

The output parameters of the xp sat att get angles CFI function are:

Table 59: Output parameters of xp_sat_att_get_angles function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_get_angl	long	-	Status flag	-	-
data	xp_angle_model _str	-	Attitude initialization data	-	-

Date:

Issue: 10/05/2019

Page: 141

7.21.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat trans id was not initialised.
- The sat trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 142

7.22 xp_sat_att_set_angles

7.22.1 Overview

The **xp_sat_att_set_angles** CFI function changes the harmonic data used for the satellite attitude initialization.

7.22.2 Calling interface

The calling interface of the **xp_sat_att_set_angles** CFI function is the following (input parameters are <u>underlined</u>):

7.22.3 Input parameters

The xp_sat_att_set_angles CFI function has the following input parameters:

Table 60: Input parameters of xp_sat_att_set_angles function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID (input / output parameter)	-	-
data	xp_angle_mod el_str	-	Attitude initialization data	-	-

7.22.4 Output parameters

The output parameters of the xp_sat_att_set_angles CFI function are:

Table 61: Output parameters of xp_sat_att_set_angles function

Date:

Issue: 10/05/2\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\right)\r

Page: 143

		Element	(Reference)	(Format)	
xp_sat_att_set_angl	long	-	Status flag	-	-
sat_trans_id	xp_sat_trans_id *	-	Satellite transformation ID (input / output parameter)	-	-

7.22.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The sat_trans_id was not initialised.
- The sat_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 144

7.23 xp_sat_att_get_matrix

7.23.1 Overview

The xp_sat_att_get_matrix CFI function returns the matrix data used for the satellite attitude initialization.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.23.2 Calling interface

The calling interface of the **xp_sat_att_get_matrix** CFI function is the following (input parameters are underlined):

7.23.3 Input parameters

The xp sat att get matrix CFI function has the following input parameters:

Table 62: Input parameters of xp_sat_att_get_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_id *	-	Satellite transformation ID.	-	-

7.23.4 Output parameters

The output parameters of the xp_sat_att_get_matrix CFI function are:

Date:

Issue: 10/05/2019

Page: 145

Table 63: Output parameters of xp_sat_att_get_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_get_matr ix	long	-	Status flag	-	-
data	xp_matrix_mode I_str	-	Attitude initialization data	-	-

7.23.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat trans id was not initialised.
- The sat_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 146

7.24 xp_sat_att_set_matrix

7.24.1 Overview

The **xp_sat_att_set_matrix** CFI function changes matrix data used for the satellite attitude initialization. It is checked that the input matrix is orthonormal.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.24.2 Calling interface

The calling interface of the **xp_sat_att_set_matrix** CFI function is the following (input parameters are underlined):

7.24.3 Input parameters

The **xp** sat att set matrix CFI function has the following input parameters:

Table 64: Input parameters of xp_sat_att_set_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID (input / output parameter)	-	-
data	xp_angle_mod el_str	-	Attitude initialization data	-	-

Date:

Issue: 10/05/2019

Page: 147

7.24.4 Output parameters

The output parameters of the xp sat att set matrix CFI function are:

Table 65: Output parameters of xp_sat_att_set_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_set_matr ix	long	-	Status flag	-	-
sat_trans_id	xp_sat_trans_id *	-	Satellite transformation ID (input / output parameter)	-	-

7.24.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat trans id was not initialised.
- The sat_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 148

7.25 xp_sat_att_get_harmonic

7.25.1 Overview

The **xp_sat_att_get_harmonic** CFI function returns harmonic data used for the satellite attitude initialization.

7.25.2 Calling interface

The calling interface of the **xp_sat_att_get_harmonic** CFI function is the following (input parameters are underlined):

7.25.3 Input parameters

The xp_sat_att_get_harmonic CFI function has the following input parameters:

Table 66: Input parameters of xp_sat_att_get_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID.	_	-

7.25.4 Output parameters

The output parameters of the xp sat att get harmonic CFI function are:

Table 67: Output parameters of xp_sat_att_get_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_get_har monic	long	-	Status flag	-	-
data	xp_harmonic_m	-	Attitude initialization	-	-

Date:

Issue: 10/05/2019

Page: 149

odel_str	data		
----------	------	--	--

7.25.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat_trans_id was not initialised.
- The sat trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/2019

Page: 150

7.26 xp_sat_att_set_harmonic

7.26.1 Overview

The **xp_sat_att_set_harmonic** CFI function changes the harmonic data used for the satellite attitude initialization.

7.26.2 Calling interface

The calling interface of the **xp_sat_att_set_harmonic** CFI function is the following (input parameters are underlined):

7.26.3 Input parameters

The **xp_sat_att_set_harmonic** CFI function has the following input parameters:

Table 68: Input parameters of xp_sat_att_set_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID (input / output parameter)	-	-
data	xp_harmonic_ model_str	-	Attitude initialization data	-	-

7.26.4 Output parameters

The output parameters of the xp_sat_att_set_harmonic CFI function are:

Table 69: Output parameters of xp_sat_att_set_harmonic function

C name	C type	Array	Description	Unit	Allowed Range	

Date:

Issue: 10/05/2019

Page: 151

		Element	(Reference)	(Format)	
xp_sat_att_set_har monic	long	-	Status flag	-	-
sat_trans_id	xp_sat_trans_id *	-	Satellite transformation ID (input / output parameter)	-	-

7.26.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat_trans_id was not initialised.
- The sat trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/2019

Page: 152

7.27 xp_sat_att_get_file

7.27.1 Overview

The **xp_sat_att_get_file** CFI function returns satellite attitude data from the satellite attitude Id. that was initialized with a file.

7.27.2 Calling interface

The calling interface of the **xp_sat_att_get_file** CFI function is the following (input parameters are underlined):

7.27.3 Input parameters

The **xp_sat_att_get_file** CFI function has the following input parameters:

Table 70: Input parameters of xp_sat_att_get_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID.	_	-

7.27.4 Output parameters

The output parameters of the xp sat att get file CFI function are:

Table 71: Output parameters of xp_sat_att_get_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_get_file	long	-	Status flag	-	-
data	xp_sat_att_file_m odel_str	-	Attitude initialization data	-	-

Date:

Issue: 10/05/2019

Page: 153

7.27.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat trans id was not initialised.
- The sat_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 154

7.28 xp_sat_att_set_file

7.28.1 Overview

The **xp_sat_att_set_file** CFI function changes the initalization data in the satellite attidude Id. when it was initialised with a file. Quaternions are checked to be normalized.

7.28.2 Calling interface

The calling interface of the **xp_sat_att_set_file** CFI function is the following (input parameters are underlined):

7.28.3 Input parameters

The **xp_sat_att_set_file** CFI function has the following input parameters:

Table 72: Input parameters of xp_sat_att_set_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID (input / output parameter)	-	-
data	xp_sat_att_file _model_str	-	Attitude initialization data	-	-

7.28.4 Output parameters

The output parameters of the xp_sat_att_set_file CFI function are:

Table 73: Output parameters of xp_sat_att_set_file function

Date:

Issue: 10/05/2019

Page: 155

		Element	(Reference)	(Format)	
xp_sat_att_set_file	long	-	Status flag	-	-
sat_trans_id	xp_sat_trans_id *	-	Satellite transformation ID (input / output parameter)	-	-

7.28.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat trans id was not initialised.
- The sat_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 156

7.29 xp_sat_att_get_quat_plus_angle

7.29.1 Overview

The **xp_sat_att_get_quat_plus_angle** CFI function returns satellite attitude data from the satellite attitude Id. that was initialized with quaternions and angles.

7.29.2 Calling interface

The calling interface of the **xp_sat_att_get_quat_plus_angle** CFI function is the following (input parameters are <u>underlined</u>):

7.29.3 Input parameters

The xp_sat_att_get_quat_plus_angle CFI function has the following input parameters:

Table 74: Input parameters of xp_sat_att_get_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID.	-	-

7.29.4 Output parameters

The output parameters of the xp sat att get quat plus angle CFI function are:

Table 75: Output parameters of xp_sat_att_get_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_get_qua t_plus_angle	long	-	Status flag	-	-
data	xp_quat_plus_an	-	Attitude initialization	-	-

Date:

Issue: 10/05/2019

Page: 157

gle_model_str	data		
---------------	------	--	--

7.29.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat trans id was not initialised.
- The sat trans id initialization does not allow the use of this function.
- There was an error in the calculation of the angles from the rotation matrix.

Date:

Issue: 10/05/20 197

Page: 158

7.30 xp_sat_att_set_quat_plus_angle

7.30.1 Overview

The **xp_sat_att_set_quat_plus_angle** CFI function changes the initalization data in the satellie attidude Id. when it was initialised with quaternions and angles. The input quaternions are checked to be normalized.

7.30.2 Calling interface

The calling interface of the **xp_sat_att_set_quat_plus_angle** CFI function is the following (input parameters are <u>underlined</u>):

7.30.3 Input parameters

The xp_sat_att_set_quat_plus_angle CFI function has the following input parameters:

Table 76: Input parameters of xp_sat_att_set_quat_plus_angle function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID (input / output parameter)	-	-
data	xp_quat_plus_ angle_model_s tr	-	Attitude initialization data	-	-

7.30.4 Output parameters

The output parameters of the xp sat att set quat plus angle CFI function are:

Date:

Issue: 10/05/2019

Page: 159

Table 77: Output parameters of xp_sat_att_set_quat_plus_angle function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_set_quat _plus_angle	long	-	Status flag	-	-
sat_trans_id	xp_sat_trans_id *	_	Satellite transformation ID (input / output parameter)	-	-

7.30.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat trans id was not initialised.
- The sat trans id initialization does not allow the use of this function.
- There was an error in the calculation of the rotation matrix from angles.

Date:

Issue: 10/05/20 197

Page: 160

7.31 xp_sat_att_get_quat_plus_matrix

7.31.1 Overview

The **xp_sat_att_get_quat_plus_matrix** CFI function returns satellite attitude data from the satellite attitude Id. that was initialized with quaternions and a rotation matrix.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.31.2 Calling interface

The calling interface of the **xp_sat_att_get_quat_plus_matrix** CFI function is the following (input parameters are <u>underlined</u>):

7.31.3 Input parameters

The xp sat att get quat plus matrix CFI function has the following input parameters:

Table 78: Input parameters of xp_sat_att_get_quat_plus_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID.	-	-

Date:

Issue: 10/05/2019

Page: 161

7.31.4 Output parameters

The output parameters of the xp_sat_att_get_quat_plus_matrix CFI function are:

Table 79: Output parameters of xp_sat_att_get_quat_plus_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_get_qua t_plus_matrix	long	-	Status flag	-	-
data	xp_quat_plus_ma trix_model_str	-	Attitude initialization data	-	-

7.31.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat trans id was not initialised.
- The sat_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 162

7.32 xp_sat_att_set_quat_plus_matrix

7.32.1 Overview

The **xp_sat_att_set_quat_plus_matrix** CFI function changes the initalization data in the satellie attitude Id. when it was initialised with quaternions and a rotation matrix. The input quaternions are checked to be normalized, and the input matrix is checked to be orthonormal.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.32.2 Calling interface

The calling interface of the **xp_sat_att_set_quat_plus_matrix** CFI function is the following (input parameters are <u>underlined</u>):

7.32.3 Input parameters

The xp sat att set quat plus matrix CFI function has the following input parameters:

Table 80: Input parameters of xp_sat_att_set_quat_plus_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_trans_id	xp_sat_trans_i d *	-	Satellite transformation ID (input / output parameter)	-	-
data	xp_quat_plus_	-	Attitude initialization	-	-

Date:

Issue: 10/05/2019

Page: 163

matrix_n	nodel_	data	
str			

7.32.4 Output parameters

The output parameters of the xp_sat_att_set_quat_plus_matrix CFI function are:

Table 81: Output parameters of xp_sat_att_get_quat_plus_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_sat_att_set_quat _plus_matrix	long	-	Status flag	-	-
sat_trans_id	xp_sat_trans_id *	-	Satellite transformation ID (input / output parameter)	-	-

7.32.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

- The sat trans id was not initialised.
- The sat trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/2019

Page: 164

7.33 xp_instr_att_angle_init

7.33.1 Overview

The **xp_instr_att_angle_init** CFI function initialises the instrument attitude mispointing angles for a given satellite and instrument with a user-provided set of values. The initialised values will be stored in the *instr trans id* output structure.

7.33.2 Calling Interface

The calling interface of the **xp_instr_att_angle_init** CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR INSTR ATT ANGLE INIT constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/20 197

Page: 165

7.33.3 Input Parameters

The **xp_instr_att_angle_init** CFI function has the following input parameters:

Table 82: Input parameters of xp_instr_att_angle_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ang	double[3]	[0]	Pitch mispointing angle (Satellite Attitude Frame)	deg	If no better value, assume 0.0
		[1]	Roll mispointing angle (Satellite Attitude Frame)	deg	If no better value, assume 0.0
		[2]	Yaw mispointing angle (Satellite Attitude Frame)	deg	If no better value, assume 0.0
offset	double[3]	all	Instrument Frame Origin position vector (Satellite Attitude Frame)	m	-

7.33.4 Output Parameters

The output parameters of the xp_instr_att_angle_init CFI function are:

Table 83: Output parameters of xp_instr_att_angle_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_id	xp_instr_trans _id*	-	Structure that contains the Instrument Transformation	-	-
ierr	long	-	Error vector	-	-

7.33.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_instr_att_angle_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_instr_att_angle_init** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM])

Date:

Issue: 10/05/2<u>Q</u>.1₁9₇

Page: 166

Table 84: Error messages of xp_instr_att_angle_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	•	XP_CFI_INSTR_ATT_ANGLE_ INIT_MEMORY_ERR	0

Date:

Issue: 10/05/2019

Page: 167

7.34 xp_instr_att_matrix_init

7.34.1 Overview

The **xp_instr_att_matrix_init** CFI function initialises the instrument attitude mispointing angles for a given satellite and instrument with a user-provided matrix. The initialised values will be stored in the *instr_trans_id* output structure. Input matrix is checked to be orthonormal.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.34.2 Calling Interface

The calling interface of the **xp_instr_att_matrix_init** CFI function is the following (input parameters are underlined):

The XP NUM ERR INSTR ATT MATRIX INIT constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 168

7.34.3 Input Parameters

The **xp_instr_att_matrix_init** CFI function has the following input parameters:

Table 85: Input parameters of xp_instr_att_matrix_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
att_matrix	double[3][3]	all	Mispointing Matrix	-	-
offset	double[3]	all	Instrument Frame Origin posi tion vector (Satellite Attitude Frame)	m	-

7.34.4 Output Parameters

The output parameters of the xp instr att matrix init CFI function are:

Table 86: Output parameters of xp_instr_att_matrix_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_id	xp_instr_trans _id*	-	Structure that contains the Instrument Transformation	-	-
ierr	long	-	Error vector	-	-

7.34.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_instr_att_matrix_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_instr_att_matrix_init** function by calling the function of the EO POINTING software library **xp get code** (see [GEN SUM]).

Table 87: Error messages of xp_instr_att_matrix_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_INSTR_ATT_MATRIX _INIT_MEMORY_ERR	0

Date:

Issue: 10/05/2019

Page: 169

ERR	Matrix is not orthonormal	No calculation performed. The CFI performs a check, with a tolerance of 10 ⁻⁶ , that the product of the input matrix and its transposed is the unitary matrix.	XP_CFI_INSTR_ATT_MATRIX_ INIT_MATRIX_ORTHONORMA L_ERR	1

Date:

Issue: 10/05/2019

Page: 170

7.35 xp_instr_att_init_harmonic

7.35.1 Overview

The **xp_instr_att_init_harmonic** CFI function initialises the instrument attitude mispointing angles (i.e. roll, pitch, yaw) for a given satellite and instrument with a user-provided set of values. The initialised values will be stored in the *instr_trans_id* output structure.

The mispointing angle (attitude angle in the formula) will be calculated by functions using such instr_trans_id (i.e. xp_attitude_compute or xp_change_frame) according to the following formula (the "angle" variable will be calculated as in xl position on orbit (see [LIB SUM]), using as inputs:

- the input state vector in EF passed to such functions;
- the angle_type passed as input to xp_instr_att_init_harmonic.

7.35.2 Calling Interface

The calling interface of the **xp_instr_att_init_harmonic** CFI function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
    long angle type, num terms[3];
    long harmonic type pitch [XP MAX NUM HARMONIC],
         harmonic type roll[XP MAX NUM HARMONIC],
         harmonic type yaw[XP MAX NUM HARMONIC];
    double harmonic coef pitch[XP MAX NUM HARMONIC],
        harmonic coef roll[XP MAX NUM HARMONIC],
        harmonic coef yaw[XP MAX NUM HARMONIC];
    double offset[3];
    xp instr trans id instr trans id = {NULL};
    long ierr[XP_NUM_ERR_INSTR_ATT_INIT_HARMONIC], status;
    status = xp instr att init harmonic (& angle type, num terms,
                                    harmonic type pitch,
                                    harmonic type roll,
                                    harmonic type yaw,
                                    harmonic coef pitch,
                                    harmonic coef roll,
                                    harmonic coef yaw,
                                    offset,
```


Date:

Issue: 10/05/2019

Page: 171

&instr_trans_id, ierr);

}

The $XP_NUM_ERR_INSTR_ATT_INIT_HARMONIC$ and $XP_MAX_NUM_HARMONIC$ constants are defined in the file <code>explorer_pointing.h</code>.

Date:

Issue: 10/05/2<u>0</u>19

Page: 172

7.35.3 Input Parameters

The **xp_instr_att_init_harmonic** CFI function has the following input parameters:

Table 88: Input parameters of xp_instr_att_init_harmonic function

C name	C type	Array	Description	Unit	Allowed Range
		Element	(Reference)	(Format)	
angle_type	long *	-	Type of angle	-	XP_ANGLE_TYP E_TRUE_LAT_T OD XP_ANGLE_TYP
					E_TRUE_LAT_EF
num_terms[3]	long	[0]	Number of elements used in vectors harmonic_type_pitch and harmonic_coef_pitch	-	>=0
		[1]	Number of elements used in vectors harmonic_type_roll and harmonic_coef_roll	-	>=0
		[2]	Number of elements used in vectors harmonic_type_yaw and harmonic_coef_yaw	-	>=0
harmonic_type	long[XP_MA	all	Type of coefficients:	-	
_pitch	X_NUM_HA	NUM_HA ONIC]	=0 for the bias parameter		
	RIVIONIC		<0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n)		
			>0 for the cosinus coefficients (+n means that correponds to the cosinus coefficient of order n)		
harmonic_type	long[XP_MA	all	Type of coefficients:	-	-
_roll	X_NUM_HA RMONIC]		=0 for the bias parameter		
	Tavioraloj		<0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n)		
			>0 for the cosinus coefficients (+n means that correponds to the cosinus coefficient of order n)		
harmonic_type	long[XP_MA	all	Type of coefficients:	-	_
_yaw	X_NUM_HA RMONIC]		=0 for the bias parameter		
	KIVIOIVIO		<0 for the sinus coefficients (-n means that correponds to the sinus coefficient of order n)		
			>0 for the cosinus coefficients (+n means that correponds to		

Date:

Issue: 10/05/2019

Page: 173

			the cosinus coefficient of order n)		
harmonic_coef _pitch	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the pitch angle	deg	
harmonic_coef _roll	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the roll angle	deg	
harmonic_coef _yaw	dou ble[XP_MA X_NUM_HA RMONIC]	all	Bias, sinus and cosinus coefi cients for the yaw angle	deg	
offset	double[3]	all	Instrument Frame Origin posi tion vector (Satellite Attitude Frame)	m	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Angle Type: See current document, Table 3.

7.35.40 utput Parameters

The output parameters of the xp_instr_att_init_harmonic CFI function are:

Table 89: Output parameters of xp_instr_att_init_harmonic

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_id	xp_instr_trans _id*	-	Structure that contains the Instrument Transformation	-	-
ierr	long	-	Error vector	-	-

7.35.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_instr_att_init_harmonic** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN_SUM]).

Date:

Issue: 10/05/2019

Page: 174

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_instr_att_init_harmonic** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 90: Error messages of xp_instr_att_init_harmonic function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_INSTR_ATT_INIT_HA RMONIC_MEMORY_ERR	0

Date:

Issue: 10/05/2019

Page: 175

7.36 xp_instr_att_init_file

7.36.1 Overview

The **xp_instr_att_init_file** CFI function initialises the instrument attitude mispointing angles for a given satellite reading values from the attitude file(s). The validity time or orbital range for the attitude angles can be specified by the user. The initialised values will be kept in memory and used by other CFI functions.

In order to read files, xp_instr_att_init_file function internally uses Data Handling functions. Please refer to [D H SUM], in particular sections 4.2 and 4.3, for further details.

7.36.2 Calling Interface

The calling interface of the **xp_instr_att_init_file** CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR INSTR ATT INIT FILE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 176

7.36.3 Input Parameters

The **xp_instr_att_init_file** CFI function has the following input parameters:

Table 91: Input parameters of xp_instr_att_init_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
time_id	xl_time_i d*	-	Structure that contains the time correlations.	-	-
n_files	long *	-	Number of reference data files	-	> 0
instrument_file	char **	-	Filenames of the reference data files. In case multiple files are used, the files should be time ordered. The supported Attitude File format is the Generic Attitude File as described in [D_H_SUM]	-	
time_init_mode	long *	-	Flag for selecting the time range of the initialization.	-	Select either: · XP_SEL_TIME · XP_SEL_FILE
time_ref	long *	-	Time reference ID	-	Complete
time0	double*	-	If:time_init_mode=XP_SEL_TIME Start of the time range defined by [time0,time1]	Decimal days (Processing format)	[-18262.0,36524.0]
time1	double*	-	If:time_init_mode=XP_SEL_TIME End of the time range defined by [time0,time1]	Decimal days (Processing format)	[-18262.0,36524.0] > time0

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Time Reference ID: time ref. See [GEN SUM].
- Time Init Mode ID: time init mode. See current document, Table 3.

7.36.4 Output Parameters

The output parameters of the **xp_instr_att_init_file** CFI function are:

Table 92: Output parameters of xp_instr_att_init_file

Date:

Issue: 10/05/2019

Page: 177

val_time0	double*	-	Validity start time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
val_time1	double*	-	Validity end time of the initialization	Decimal days (Processing format)	[-18262.0,36524.0]
instr_trans_id	xp_instr_trans _id*	-	Structure that contains the Instrument Transformation	-	-
ierr	long	-	Error vector	-	-

7.36.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_instr_att_init_file** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_instr_att_init_file** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 93: Error messages of xp_instr_att_init_file function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	No calculation performed	XP_CFI_INSTR_ATT_INIT_ FILE_MEMORY_ERR	0
ERR	Wrong input time reference	No calculation performed	XP_CFI_INSTR_ATT_INIT_ FILE_WRONG_TIME_REF_ ERR	1
ERR	Error opening attitude file: %s	No calculation performed	XP_CFI_INSTR_ATT_INIT_ FILE_OPEN_FILES_ERR	2
ERR	Error reading generic attitude files	No calculation performed	XP_CFI_INSTR_ATT_INIT_ FILE_READ_ATT_FILES_E RR	3
ERR	Could not perform a time transformation	No calculation performed	XP_CFI_INSTR_ATT_INIT_ FILE_TIME_CONV_ERR	4

Date:

Issue: 10/05/2019

Page: 178

7.37 xp_instr_att_close

7.37.1 Overview

The **xp_instr_att_close** CFI function cleans up any memory allocation performed by the instrument attitude initialization functions.

7.37.2 Calling Interface

The calling interface of the **xp_instr_att_close** CFI function is the following (input parameters are underlined):

```
#include <explorer_pointing.h>
{
    xp_instr_trans_id instr_trans_id = {NULL};
    long ierr[XP_NUM_ERR_INSTR_ATT_CLOSE], status;

    status = xp_instr_att_close(&instr_trans_id, ierr);
}
```

The XP NUM ERR INSTR ATT CLOSE constant is defined in the file explorer_pointing.h.

7.37.3 Input Parameters

The **xp** instr att close CFI function has the following input parameters:

Table 94: Input parameters of xp_instr_att_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_id	xp_instr_trans _id*	-	Structure that contains the Instr. Trans.	-	-

7.37.4 Output Parameters

The output parameters of the **xp** instr att close CFI function are:

Table 95: Output parameters of xp_instr_att_close

C name	C type	Array	Description	Unit	Allowed Range
--------	--------	-------	-------------	------	---------------

Date:

Issue: 10/05/2019

Page: 179

		Element	(Reference)	(Format)	
ierr	long	-	Error vector	-	-

7.37.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_instr_att_close** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_instr_att_close** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 96: Error messages of xp_instr_att_close function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Could not close the ld. as it is not initialized or it is being used	No calculation performed	XP_CFI_INSTR_ATT_CLOS E_WRONG_ID_ERR	0

Date:

Issue: 10/05/20 197

Page: 180

7.38 xp_instr_att_get_angles

7.38.1 Overview

The **xp_instr_att_get_angles** CFI function returns the angle data used for the instrument attitude initialization.

7.38.2 Calling interface

The calling interface of the **xp_instr_att_get_angles** CFI function is the following (input parameters are <u>underlined</u>):

7.38.3 Input parameters

The xp_instr_att_get_angles CFI function has the following input parameters:

Table 97: Input parameters of xp_instr_att_get_angles function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_i d	xp_instr_trans_id *		Instrument transformation ID.	-	-

7.38.4 Output parameters

The output parameters of the xp instr att get angles CFI function are:

Table 98: Output parameters of xp_instr_att_get_angles function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_instr_att_get_an gles	long	-	Status flag	-	-
data	xp_angle_model	-	Attitude initialization	-	-

Date:

Issue: 10/05/2019

Page: 181

_str		data		
------	--	------	--	--

7.38.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The instr_trans_id was not initialised.
- The instr trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 182

7.39xp_instr_att_set_angles

7.39.1 Overview

The **xp_instr_att_set_angles** CFI function changes the harmonic data used for the satellite attitude initialization.

7.39.2 Calling interface

The calling interface of the **xp_instr_att_set_angles** CFI function is the following (input parameters are <u>underlined</u>):

7.39.3 Input parameters

The xp_instr_att_set_angles CFI function has the following input parameters:

Table 99: Input parameters of xp_instr_att_set_angles function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_i d	xp_instr_trans _id *	-	Instrument transformation ID (input / output parameter)	-	-
data	xp_angle_mod el_str	-	Attitude initialization data	-	-

7.39.4 Output parameters

The output parameters of the xp_instr_att_set_angles CFI function are:

Table 100: Output parameters of xp_instr_att_set_angles function

Date:

Issue: 10/05/2@.1197

Page: 183

		Element	(Reference)	(Format)	
xp_instr_att_set_an gles	long	-	Status flag	-	-
instr_trans_id	xp_instr_trans_i d *	-	Instrument transformation ID (input / output parameter)	-	-

7.39.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The instr_trans_id was not initialised.
- The instr trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 184

7.40 xp_instr_att_get_matrix

7.40.1 Overview

The **xp_instr_att_get_matrix** CFI function returns the matrix data used for the satellite attitude initialization.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.40.2 Calling interface

The calling interface of the **xp_instr_att_get_matrix** CFI function is the following (input parameters are underlined):

7.40.3 Input parameters

The **xp** instr att get matrix CFI function has the following input parameters:

Table 101: Input parameters of xp_instr_att_get_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_i d	xp_instr_trans_id *	-	Instrument transformation ID.	-	-

Date:

Issue: 10/05/2019

Page: 185

7.40.4 Output parameters

The output parameters of the xp_instr_att_get_matrix CFI function are:

Table 102: Output parameters of xp_instr_att_get_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_instr_att_get_ma trix	long	-	Status flag	-	-
data	xp_matrix_mode I_str	-	Attitude initialization data	-	-

7.40.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The instr trans id was not initialised.
- The instr trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 186

7.41 xp_instr_att_set_matrix

7.41.1 Overview

The **xp_instr_att_set_matrix** CFI function changes matrix data used for the satellite attitude initialization. The matrix is checked to be orthonormal.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.41.2 Calling interface

The calling interface of the **xp_instr_att_set_matrix** CFI function is the following (input parameters are underlined):

7.41.3 Input parameters

The **xp** instr att set matrix CFI function has the following input parameters:

Table 103: Input parameters of xp_instr_att_set_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_i d	xp_instr_trans _id *	-	Instrument transformation ID (input / output parameter)	-	-
data	xp_angle_mod el_str	-	Attitude initialization data	-	-

Date:

Issue: 10/05/2019

Page: 187

7.41.4 Output parameters

The output parameters of the xp instr att set matrix CFI function are:

Table 104: Output parameters of xp_instr_att_set_matrix function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_instr_att_set_ma trix	long	-	Status flag	-	-
instr_trans_id	xp_instr_trans_i d *	-	Instrument transformation ID (input / output parameter)	-	-

7.41.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The instr trans id was not initialised.
- The instr_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 188

7.42 xp_instr_att_get_harmonic

7.42.1 Overview

The **xp_instr_att_get_harmonic** CFI function returns harmonic data used for the satellite attitude initialization.

7.42.2 Calling interface

The calling interface of the **xp_instr_att_get_harmonic** CFI function is the following (input parameters are <u>underlined</u>):

7.42.3 Input parameters

The xp_instr_att_get_harmonic CFI function has the following input parameters:

Table 105: Input parameters of xp_instr_att_get_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_i d	xp_instr_trans _id *	-	Instrument transformation ID.	-	-

7.42.4 Output parameters

The output parameters of the xp_instr_att_get_harmonic CFI function are:

Table 106: Output parameters of xp_instr_att_get_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_instr_att_get_har monic	long	-	Status flag	-	-
data	xp_harmonic_m	-	Attitude initialization	-	-

Date:

Issue: 10/05/2019

Page: 189

odel_str data		
---------------	--	--

7.42.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The instr_trans_id was not initialised.
- The instr_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/2019

Page: 190

7.43 xp_instr_att_set_harmonic

7.43.1 Overview

The **xp_instr_att_set_harmonic** CFI function changes the harmonic data used for the satellite attitude initialization.

7.43.2 Calling interface

The calling interface of the **xp_instr_att_set_harmonic** CFI function is the following (input parameters are underlined):

7.43.3 Input parameters

The **xp_instr_att_set_harmonic** CFI function has the following input parameters:

Table 107: Input parameters of xp_instr_att_set_harmonic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_i d	xp_instr_trans _id *	-	Instrument transformation ID (input / output parameter)	-	-
data	xp_harmonic_ model_str	-	Attitude initialization data	-	-

7.43.4 Output parameters

The output parameters of the xp_instr_att_set_harmonic CFI function are:

Table 108: Output parameters of xp_instr_att_set_harmonic function

C name C type Array Description Unit Anowed Range		C name	C type	Array	Description	Unit	Allowed Range
---	--	--------	--------	-------	-------------	------	---------------

Date:

Issue: 10/05/2@.1197

Page: 191

		Element	(Reference)	(Format)	
xp_instr_att_set_har monic	long	-	Status flag	-	-
instr_trans_id	xp_instr_trans_i d *	-	Instrument transformation ID (input / output parameter)	-	-

7.43.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The instr_trans_id was not initialised.
- The instr trans id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 192

7.44 xp_instr_att_get_file

7.44.1 Overview

The **xp_instr_att_get_file** CFI function returns satellite attitude data from the satellite attitude Id. that was initialized with a file.

7.44.2 Calling interface

The calling interface of the **xp_instr_att_get_file** CFI function is the following (input parameters are underlined):

7.44.3 Input parameters

The **xp_instr_att_get_file** CFI function has the following input parameters:

Table 109: Input parameters of xp_instr_att_get_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_i d	xp_instr_trans _id *	-	Instrument transformation ID.	-	-

7.44.4 Output parameters

The output parameters of the xp instr att get file CFI function are:

Table 110: Output parameters of xp_instr_att_get_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_instr_att_get_file	long	-	Status flag	-	-
data	xp_instr_att_file_ model_str	-	Attitude initialization data	-	-

Date:

Issue: 10/05/2019

Page: 193

7.44.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The instr trans id was not initialised.
- The instr_trans_id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 194

7.45 xp_instr_att_set_file

7.45.1 Overview

The **xp_instr_att_set_file** CFI function changes the initialization data in the satellite attitude Id. when it was initialised with a file. Quaternions are checked to be normalized.

7.45.2 Calling interface

The calling interface of the **xp_instr_att_set_file** CFI function is the following (input parameters are <u>underlined</u>):

7.45.3 Input parameters

The **xp_instr_att_set_file** CFI function has the following input parameters:

Table 111: Input parameters of xp_instr_att_set_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
instr_trans_i d	xp_instr_trans _id *	-	Instrument transformation ID (input / output parameter)	-	-
data	xp_instr_att_fil e_model_str	-	Attitude initialization data	-	-

7.45.4 Output parameters

The output parameters of the xp_instr_att_set_file CFI function are:

Table 112: Output parameters of xp_instr_att_set_file function

C name C type Array Description	Unit	Allowed Range
---------------------------------	------	---------------

Date:

Issue: 10/05/2019

Page: 195

		Element	(Reference)	(Format)	
xp_instr_att_set_file	long	-	Status flag	-	-
instr_trans_id	xp_instr_trans_i d *	-	Instrument transformation ID (input / output parameter)	-	-

7.45.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The instr trans id was not initialised.
- The instr trans id initialization does not allow the use of this function.

7.46 xp_set_az_el_definition

7.46.1 Overview

The **xp_set_az_el_definition** function sets an user-defined azimuth/elevation in a satellite nominal attitude id, satellite attitude id or instrument attitude id.

7.46.2 Calling interface

The calling interface of the **xp_set_az_el_definition** CFI function is the following (input parameters are <u>underlined</u>):

7.46.3 Input parameters

The xp set az el definition CFI function has the following input parameters:

Date:

Issue: 10/05/2019

Page: 196

Table 113: Input parameters of xp_instr_att_set_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
att_frame_i d	void*	-	Attitude where the definition will be inserted.	-	It must be a Satellite Nominal id (xp_sat_nom_tran s_id*), satellite attitude id (xp_sat_trans_id*) or instrument attitude id (xp_instr_trans_id*).
azel_def	xl_az_el_defini tion	-	Azimuth/elevation definition	-	-

7.46.4 Output parameters

The output parameters of the xp_set_az_el_definition CFI function are:

Table 114: Output parameters of xp_instr_att_set_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long	-	Error vector	-	-

7.46.5 Warnings and errors

This function returns error if the input id is not initialized, it is not of the correct type, or there is a problem with the azimuth/elevation definition introduced by the user. In Table 115 are summarized the possible errors.

Table 115: Error messages of xp_set_az_el_definition function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Argument ID is not initialized.	No calculation performed	XP_CFI_SET_AZ_EL_DE F_ID_NOT_INITIALIZE D_ERR	0
ERR	Argument ID is not a satellite nominal, satellite or instrument attitude ID.	No calculation performed	XP_CFI_SET_AZ_EL_DE F_NOT_ATTITUDE_ID_ ERR	1
ERR	Azimuth axis are nor	No calculation performed	XP_CFI_SET_AZ_EL_DE	2

Date:

Issue: 10/05/2019

Page: 197

	perpendicular.		F_NOT_PERPENDICUL AR_AZIMUTH_AXIS_E RR	
ERR	Elevation axis not perpendicular to azimuth plane.	No calculation performed	XP_CFI_SET_AZ_EL_DEF _NOT_PERPENDICULAR_ ELEVATION_AXIS_ERR	3

Date:

Issue: 10/05/2019

Page: 198

7.47 xp_attitude_define

7.47.1 Overview

The **xp_attitude_define** CFI function initializes the satellite nominal attitude, satellite attitude and instrument attitude according to the input data.

The input data is stored in a structure of type xd_attitude_definition_data (see section 6.3 of [D_H_SUM]). The user can fill this structure within his application program or by reading an attitude definition file using function xd read att def (see [D H SUM]).

7.47.2 Calling Interface

The calling interface of the **xp_attitude_define** CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR ATTITUDE DEFINE constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 199

7.47.3 Input Parameters

The **xp_attitude_define** CFI function has the following input parameters:

Table 116: Input parameters of xp_attitude_define function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
Data	xd_attitude_ definition_da ta	-	Attitude file definition data	-	-

7.47.4 Output Parameters

The output parameters of the xp attitude define CFI function are:

Table 117: Output parameters of xp_attitude_define

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_nom_trans_i d	xp_sat_nom_t rans _id*	_	Structure that contains the Satellite nominal Transformation	-	-
sat_trans_id	xp_sat_trans _id*	-	Structure that contains the Satellite Transformation	-	-
instr_trans_id	xp_instr_trans _id*	-	Structure that contains the Instrument Transformation	-	-
ierr	long	-	Error vector	-	-

7.47.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_attitude_define** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_attitude_define** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Date:

Issue: 10/05/2<u>Q</u>.1₁9₇

Page: 200

Table 118: Error messages of xp_attitude_define function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Error initializing satellite nominal attitude	No computation performed	XP_ATTITUDE_DEFINE_SAT_ NOM_TRANS_INIT	0
ERR	Error initializing satellite attitude	No computation performed	XP_ATTITUDE_DEFINE_SAT_ TRANS_INIT	1
ERR	Error initializing instrument attitude	No computation performed	XP_ATTITUDE_DEFINE_INST R_TRANS_INIT	2

Date:

Issue: 10/05/2019

Page: 201

7.48 xp_run_init

7.48.1 Overview

The **xp_run_init** CFI function adds to the *run id* the sat_nom_trans_id, sat_trans_id, instr_trans_id, atmos Id and dem Id.

7.48.2 Calling interface

The calling interface of the **xp_run_init** CFI function is the following:

```
#include <explorer pointing.h>
    long run id;
    xp sat nom trans id sat nom trans id = {NULL};
    xp sat trans id
                        sat trans id = {NULL};
    xp instr trans id
                         instr trans id = {NULL};
    xp atmos id
                        atmos id = {NULL};
    xp dem id
                        dem id = {NULL};
    long ierr[XP NUM ERR RUN INIT], status;
    status = xp run init (&run id, &sat nom trans id,
                            &sat trans id, &instr trans id,
                            &atmos id, &dem id,
                            ierr);
```


Date:

Issue: 10/05/2019

Page: 202

7.48.3 Input parameters

The **xp_run_init** CFI function has the following input parameters:

Table 119: Input parameters of xp_run init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
run_id	long *	-	Run ID	-	>=0
sat_nom_tr ans_id	xp_sat_nom_tr ans_id*	-	Structure that contains the Sat. Nom. Trans.	-	-
sat_trans_id	xp_sat_trans_i d*	-	Structure that contains the Sat. Trans.	-	-
instr_trans_i d	xp_instr_trans _id*	-	Structure that contains the Instr. Trans.	-	-
atmos_id	xp_atmos_id*	-	Structure that contains the atmosphere initialization.	-	-
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-

7.48.4 Output parameters

The output parameters of the xp run init CFI function are:

Table 120: Output parameters of xp_run init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_run_init	long	-	Status flag	-	-
run_id	long *	-	Run ID	-	>=0
ierr	long	-	Error vector	-	-

7.48.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xp_run_init** CFI function after translating the returned extended status flag into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

Date:

Issue: 10/05/2019

Page: 203

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained translating the extended status flag returned by the **xp_run_init** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 121: Error messages of xl_run_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong input run_id. It is not correctly initialized	No calculation performed	XP_CFI_RUN_INIT_STA TUS_ERR	0
ERR	Memory allocation error	No calculation performed	XP_CFI_RUN_INIT_ME MORY_ERR	1
ERR	Incompatible input lds	No calculation performed	XP_CFI_RUN_INIT_INC ONSISTENCY_ERR	2

Date:

Issue: 10/05/2019

Page: 204

7.49 xp_run_get_ids

7.49.1 Overview

The **xp_run_get_ids** CFI function returns the *ids* being used..

7.49.2 Calling interface

The calling interface of the **xp run get ids** CFI function is the following:

```
#include <explorer pointing.h>
    long run id;
    xp sat nom trans id sat nom trans id = {NULL};
    xp sat trans id
                         sat trans id = {NULL};
    xp instr trans id
                        instr trans id = {NULL};
    xp atmos id
                         atmos id = {NULL};
                         dem id = {NULL};
    xp dem id
                     (&run id,
    xp run get ids
                      &sat_nom_trans_id,
                      &sat trans id,
                      &instr trans id,
                      &atmos id,
                      &dem id);
}
```


Date:

Issue: 10/05/2019

Page: 205

7.49.3 Input parameters

The xp_run_get_ids CFI function has the following input parameters:

Table 122: Input parameters of xp_run_get_ids function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
run_id	long *	-	Run ID	-	>=0

7.49.4 Output parameters

The output parameters of the **xp_run_get_ids** CFI function are:

Table 123: Output parameters of xp_run_get_ids function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xl_run_get_ids	void	-	-	-	-
sat_nom_trans_id	xp_sat_n om_tran s_id*	-	Structure that contains the Sat. Nom. Trans.	-	-
sat_trans_id	xp_sat_t rans_id*	-	Structure that contains the Sat. Trans.	-	-
instr_trans_id	xp_instr_ trans_id*	-	Structure that contains the Instr. Trans.	-	-
atmos_id	xp_atmo s_id*	-	Structure that contains the atmosphere initialization.	-	-
dem_id	xp_dem _id*	-	Structure that contains the DEM initialization.	-	-

7.49.5 Warnings and errors

TBW

Date:

Issue: 10/05/2019

Page: 206

7.50 xp_run_close

7.50.1 Overview

The xp_run_close CFI function cleans up any memory allocation performed by the initialization functions.

7.50.2 Calling interface

The calling interface of the **xp run close** CFI function is the following:

```
#include <explorer_pointing.h>
{
        long run_id;
        xp_run_close (&run_id);
}
```

7.50.3 Input parameters

The **xp_run_close** CFI function has the following input parameters:

Table 124: Input parameters of xp_run_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
run_id	long *	-	Run ID	-	>=0

7.50.4 Output parameters

The output parameters of the **xp run close** CFI function are:

Table 125: Output parameters of xp_run_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_run_close	void	-	-	-	-

7.50.5 Warnings and errors

This function does not return errors nor warnings.

Date:

Issue: 10/05/2019

Page: 207

7.51 xp_attitude_init

7.51.1 Overview

The xp_attitude_init CFI function creates an empty attitude Id.

7.51.2 Calling Interface

The calling interface of the **xp_attitude_init** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
     xp_attitude_id attitude_id = {NULL};
     long ierr[XP_NUM_ERR_ATTITUDE_INIT], status;

     status = xp_attitude_init(&attitude_id, ierr);
}
```

The XP NUM ERR ATTITUDE INIT constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/20 197

Page: 208

7.51.3 Input Parameters

The **xp_attitude_init** CFI function has no input parameters.

7.51.4 Output Parameters

The output parameters of the **xp_attitude_init** CFI function are:

Table 126: Output parameters of xp_attitude_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_id	xp_attitude_id*	-	Structure that contains the Attitude.	-	-
ierr	long	-	Error vector	-	-

7.51.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_attitude_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_attitude_init** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 127: Error messages of xp_attitude_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Memory allocation error	•	XP_CFI_ATTITUDE_INIT_ MEMORY_ERR	0

Date:

Issue: 10/05/2019

Page: 209

7.52 xp_attitude_compute

7.52.1 Overview

The **xp_attitude_compute** CFI function calculates the Attitude Frame for a given S/C state vector.

Note: a correction can be applied in order to compensate the travel time of Sun light travel time. This correction is not applied with default model. To activate this correction, the Sun model in xl_model_id must be initialized with the enum XL_MODEL_SUN_TRAVEL_TIME using the function xl_model_init (see [LIB SUM]).

7.52.2 Calling interface

The calling interface of the **xp_attitude_compute** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
{
    xl model id
                         model id = {NULL};
                         time id = \{NULL\};
    xl time id
    xp sat nom trans id sat nom trans id = {NULL};
                         sat trans id = {NULL};
    xp sat trans id
                         instr trans id = {NULL};
    xp instr trans id
    xp attitude id
                         attitude id = {NULL};
    long time ref, target_frame;
    double time, pos[3], vel[3], acc[3];
    long ierr[XP NUM ERR ATTITUDE COMPUTE];
    status =xp attitude compute(&model id, &time id,
                                 &sat nom trans id,
                                 &sat trans id,
                                 &instr trans id,
                                 &attitude id,
                                   /* input/output */
                                 &time ref, &time, pos, vel, acc,
                                 &target frame,
                                 ierr);
    /* Or, using the run id */
    long run id;
```


Date:

Issue: 10/05/2019

Page: 210

The XP NUM ERR ATTITUDE COMPUTE constant is defined in the file explorer_pointing.h.

7.52.3 Input parameters

The **xp_attitude_compute** CFI function has the following input parameters:

Table 128: Input parameters of xp_attitude_compute function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
model_id	xl_model_id*	-	Model ID.	-	-
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-
sat_nom_trans _id	xp_sat_nom _trans_id*	-	Structure that contains the Sat. Nom. Trans.	-	-
sat_trans_id	xp_sat_trans _id*	-	Structure that contains the Sat. Trans.	-	-
instr_trans_id	xp_instr_tran s_id*	-	Structure that contains the Instr. Trans.	-	-
attitude_id	xp_attitude_i d*	-	Structure that contains the Attitude (input/output)	-	-
time_ref	long *	-	Time reference ID	-	Complete
time	double	-	Time in Processing Format	Decimal days, MJD2000	[-18262.0,36524.0]
pos[3]	double	all	Satellite position vector (Earth Fixed CS)	m	-
vel[3]	double	all	Satellite velocity vector (Earth Fixed CS)	m/s	-
acc[3]	double	all	Satellite acceleration vector (Earth Fixed CS)	m/s²	-
target_frame	long *	-	Attitude FrameID	-	Complete

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Time Reference ID: time_ref. See [GEN_SUM].
- Attitude Frame ID: attitude frame id. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 211

7.52.4 Output parameters

The output parameters of the **xp_attitude_compute** CFI function are:

Table 129: Output parameters of xp_attitude_compute function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
ierr	long	-	Error vector	-	-

7.52.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xp_attitude_compute** CFI function after translating the returned extended status flag into the equivalent list of error messages by calling the function of the EO POINTING software library **xl get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained translating the extended status flag returned by the **xp_attitude_compute** function by calling the function of the EO POINTING software library **xl get code** (see [GEN SUM])

Table 130: Error messages of xp_attitude_compute function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Time Id. not initialized	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_TIME_STATUS _ERR	0
ERR	Instrument Trans. Id. not initialized	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_INSTR_TRANS _STATUS_ERR	1
ERR	Satellite Att. Trans. not initialized	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_SAT_TRANS_S TATUS_ERR	2
ERR	Satellite Nom. Trans not initialized	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_SAT_NOM_TR ANS_STATUS_ERR	3
ERR	Attitude Id. not initialized	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_ATTITUDE_ST ATUS_ERR	4
ERR	Wrong input time reference	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_WRONG_TIME	5

Date:

Issue: 10/05/2019

Page: 212

			_REF_ERR	
ERR	Attitude Id is being used by another Id.	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_BEING_USED_ ERR	6
ERR	Could not compute orbit reference frame	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_ORB_REF_ERR	7
ERR	Could not calculate AOCS parametes	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_AOCS_CALC_E RR	8
ERR	Could not compute Sat. Nom. Trans frame	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_SAT_NOM_TR ANS_ERR	9
ERR	"Could not calculate the true latitude"	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_TRUE_LAT_ER R	10
ERR	Could not calculate harmonic angles	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_HARMONIC_C ALC_ERR	11
ERR	Could not compute Sat.Trans. frame	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_SAT_TRANS_E RR	12
ERR	Error computing direction cosine matrix from Sat. Att. to BJ2000	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_ATT_TO_J2000 _ERR	13
ERR	Could not compute Instrument Trans. frame	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_INSTR_TRANS _ERR	14
ERR	Memory allocation error	No calculation performed	XP_CFI_ATTITUDE_CO MPUTE_MEMORY_ERR	15
ERR	Both input targets are the same		XP_CFI_ATTITUDE_CO MPUTE_SAME_TARGET S_ERR	16
ERR	Error occured during call to XP_Vec_Find		XP_CFI_ATTITUDE_CO MPUTE_VEC_FIND_ERR	17
ERR	Error occured during call to XP_Create_Base		XP_CFI_ATTITUDE_CO MPUTE_CREATE_BASE_ ERR	18
ERR	Error occured trying to get the interpolated value for the quaternions/angles		XP_CFI_ATTITUDE_CO MPUTE_ATT_FILE_INTE R_ERR	19
ERR	Error in a change of coordinate frame		XP_CFI_ATTITUDE_CO MPUTE_CHANGE_CS_E RR	20
WARN	Warning raised by XP_Vec_Find		XP_CFI_ATTITUDE_CO MPUTE_VEC_FIND_WA RN	21

Date:

Issue: 10/05/2019

Page: 213

ERR	Error computing Sun position	No calculation performed	XP_ATTITUDE_COMPUT E_SUN_ERR	22
ERR	Error in a change of time system	No calculation performed	XP_ATTITUDE_COMPUT E_CHANGE_TIME_ERR	23

Date:

Issue: 10/05/2019

Page: 214

7.53 xp_attitude_user_set

7.53.1 Overview

The **xp_attitude_user_set** CFI function assigns a user defined Attitude Frame to the *attitude Id*. Input matrix is checked to be orthonormal.

Note on matrix notation:

If XYZ are the axes of the original reference frame, and X'Y'Z' are the axes of the rotated frame, the rows of the rotation matrix are respectively X, Y and Z axes expressed in X'Y'Z' system.

In the C representation, M[0][], M[1][], M[2][] are respectively 1st, and and 3rd row of a rotation matrix M.

The rotation matrix M satisfies the following equivalence:

$$V = M*V$$

where V' is a vector expressed in the X'Y'Z' reference system and V is expressed in the XYZ reference system.

7.53.2 Calling interface

The calling interface of the **xp_attitude_user_set** CFI function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
    xl model id
                         model id = {NULL};
    xl time id
                         time id = \{NULL\};
                         attitude id = {NULL};
    xp attitude id
    long time ref, target frame;
    double time, pos[3], vel[3], acc[3];
    double matrix[3][3];
    double matrix rate[3][3];
    double matrix rate rate[3][3];
    double offset[3],;
    long ierr[XP NUM ERR ATTITUDE USER SET];
    long xp attitude user set (&model id, &time id,
                                &attitude id,
                                  /* input / output */
                                &time ref, &time, pos, vel, acc,
                                &target frame,
                                matrix, matrix rate, matrix rate rate,
                                offset,
                                ierr);
```


Date:

Issue: 10/05/2019

Page: 215

The XP NUM ERR ATTITUDE USER SET constant is defined in the file explorer_pointing.h.

7.53.3 Input parameters

The **xp_attitude_user_set** CFI function has the following input parameters:

Table 131: Input parameters of xp_attitude_user_set function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
model_id	xl_model_id*	-	Model ID	-	-
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-
attitude_id	xp_attitude_i d*	-	Structure that contains the Attitude (input/output)	-	-
time_ref	long *	-	Time reference ID	-	Complete
time	double	-	Time in Processing Format	Decimal days, MJD2000	[-18262.0,36524.0]
pos[3]	double	all	Satellite position vector (Earth Fixed CS)	m	-
vel[3]	double	all	Satellite velocity vector (Earth Fixed CS)	m/s	-
acc[3]	double	all	Satellite acceleration vector (Earth Fixed CS)	m/s ²	-
target_frame	long *	-	Attitude FrameID	-	Complete
matrix[3][3]	double	all	Matrix representing the transformation from ToD to target_frame	-	-

Date:

Issue: 10/05/20 197

Page: 216

matrix_rate [3][3]	double	all	Matrix representing the transformation rate from ToD to target_frame	-	-
matrix_rate_rate [3][3]	double	all	Matrix representing the transformation rate rate from ToD to target_frame	-	-
offset[3]	double	all	Offset in the instrument frame origin	m	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Time Reference ID: time ref. See [GEN SUM].
- Attitude Frame ID: attitude frame id. See current document, Table 3.

7.53.4 Output parameters

The output parameters of the xp attitude user set CFI function are:

Table 132: Output parameters of xp_attitude_user_set function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
ierr	long	-	Error vector	-	-

7.53.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xp_attitude_user_set** CFI function after translating the returned extended status flag into the equivalent list of error messages by calling the function of the EO POINTING software library **xl get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained translating the extended status flag returned by the **xp_attitude_user_set** function by calling the function of the EO_POINTING software library **xl_get_code** (see [GEN_SUM]).

Table 133: Error messages of xp_attitude_user_set function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Time Id. not initialized	No calculation performed	XP_CFI_ATTITUDE_US ER_SET_TIME_STATUS _ERR	0
ERR	Wrong input target frame	No calculation performed	XP_CFI_ATTITUDE_US	1

Date:

Issue: 10/05/2019

Page: 217

			ER_SET_WRONG_TAR GET_FRAME_ERR	
ERR	Attitude Id. not initialized	No calculation performed	XP_CFI_ATTITUDE_US ER_SET_ATTITUDE_ST ATUS_ERR	2
ERR	Attitude Id is being used by another Id	No calculation performed	XP_CFI_ATTITUDE_US ER_SET_BEING_USED_ ERR	3
ERR	Could not compute orbit reference frame	No calculation performed	XP_CFI_ATTITUDE_US ER_SET_ORB_REF_ERR	4
ERR	Memory allocation error	No calculation performed	XP_CFI_ATTITUDE_US ER_SET_MEMORY_ERR	5
ERR	Matrix is not orthonormal	No calculation performed. The CFI performs a check, with a tolerance of 10 ⁻⁶ , that the product of the input matrix and its transposed is the unitary matrix.	XP_CFI_ATTITUDE_USER_ SET_MATRIX_ORTHONOR MAL_ERR,	

Date:

Issue: 10/05/2019

Page: 218

7.54 xp_get_attitude_data

7.54.1 Overview

The **xp_get_attitude_data** CFI function computes the quaternions or attitude angles (roll, pitch, yaw) that define the rotation between two reference frames:

- A source reference frame (given as input).
- The attitude reference frame given by the input attitude_id. Note that the attitude_id has to be previously computed using the functions xp_attitude_compute or xp_attitude_user_set.

7.54.2 Calling interface

The calling interface of the **xp_get_attitude_data** CFI function is the following (input parameters are underlined):

The XP NUM ERR GET ATTITUDE DATA constant is defined in the file explorer pointing.h.

7.54.3 Input parameters

The xp get attitude data CFI function has the following input parameters:

Table 134: Input parameters of xp_get_attitude_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_id	xp_attitude_i d*		Structure that contains the Attitude	-	-

Date:

Issue: 10/05/2019

Page: 219

data_type	long	-	Requested data type: angles or quaternions.	-	XD_ATT_QUATERNIONS XD_ATT_ANGLES
source_ref_type	long	-	Source reference type: External or Satellite.	-	XP_FRAME_FLAG_EXT XP_FRAME_FLAG_SAT
source_ref	long	-	Source reference CS	-	XL_BM2000, XL_HM2000, XL_GM2000, XL_MOD, XL_TOD, XL_PEF, XL_EF XL_LIF, XL_GALACTIC, XL_SAT_ORBITAL_REF, XL_SAT_NOMINAL_ATT, XL_SAT_ATT, XL_INSTR_ATT

It is possible to use enumeration values rather than integer values for some of the input arguments:

- data_type: See XD_Attitude_data_type_enum [D_H_SUM].
- source ref type: See enumeration XP Frame flag enum in current document (Table 3).
- source ref: See enumeration XL CS rl enum and XL Attitude fr enum in [LIB SUM].

7.54.4 Output parameters

The output parameters of the **xp_get_attitude_data** CFI function are:

Table 135: Output parameters of xp_get_attitude_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
att_rec	xd_att_rec	-	Structure containing the attitude angles/quaternions	-	-
ierr	long	-	Error vector	-	-

7.54.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xp_get_attitude_data** CFI function after translating the returned extended status flag into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

Date:

Issue: 10/05/2019

Page: 220

The table is completed by the error code and value. These error codes can be obtained translating the extended status flag returned by the **xp_get_attitude_data** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 136: Error messages of xp_get_attitude_data function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Wrong input satellite source frame	No calculation performed	XP_CFI_GET_ATT_DATA WRONG_SAT_CS_ERR	0
ERR	Wrong input exteranl source frame	No calculation performed	XP_CFI_GET_ATT_DATA WRONG_EXT_CS_ERR	1
ERR	Wrong inpute source frame type. Should be external or satellite	No calculation performed	XP_CFI_GET_ATT_DATA _WRONG_FRAME_ERR	2
ERR	from input attitude Id.	No calculation performed	XP_CFI_GET_ATT_DATA GET_ATT_DATA_ERR	3
ERR	Error computing rotation matrix	No calculation performed	XP_CFI_GET_ATT_DATA _GET_ROTATION_MATR IX_ERR, ERR	4
ERR	Error in attitude initialization	No calculation performed	XP_CFI_GET_ATT_DATA GET_ATT_INIT_ERR	5
ERR	Error in attitude compute	No calculation performed	XP_CFI_GET_ATT_DATA _GET_ATT_COMPUTE_E RR	6
ERR	Error in matrix inversion	No calculation performed	XP_CFI_GET_ATT_DATA MATRIX_INV_ERR	7
ERR	Could not close the attitude id.	No calculation performed	XP_CFI_GET_ATT_DATA _CLOSE_ATT_ERR	8
ERR	Could not compute the Euler angles	No calculation performed	XP_CFI_GET_ATT_DATA ANGLE_COMP_ERR	9
ERR	Could not compute the quaternions	No calculation performed	(XP_CFI_GET_ATT_DAT A_QUAT_COMP_ERR	10

Date:

Issue: 10/05/2019

Page: 221

7.55 xp_gen_attitude_data

7.55.1 Overview

The **xp_gen_attitude_data** function computes a list of quaternions or attitude angles (roll, pitch, yaw) at an interval given by the user (with a regular time separation) that define the rotation between two reference frames:

- A source reference frame (given as input).
- The attitude frame given by the input attitude definition file.

7.55.2 Calling interface

The calling interface of the **xp_gen_attitude_data** function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
    xo orbit id
                      orbit id = {NULL};
    xp attitude def att def;
    xo time interval time interval;
    double
                      time step;
    long
                      data type;
    long
                      source ref type;
    long
                      source ref;
                      *att file;
    xd att file
    long ierr[XP NUM ERR GEN ATTITUDE DATA];
    long xp gen attitude data(&orbit id,
                               &att def,
                               &time_interval,
                               &time step,
                                &data type,
                                &source ref type,
                                &source ref,
                                /* output */
                                &att file,
                                ierr);
    /* Or, using the run id */
    long run id;
    long xp_gen_attitude_data_run(&run_id,
                                    &time interval,
```


Date:

Issue: 10/05/2019

Page: 222

```
&time_step,
&data_type,
&source_ref_type,
&source_ref,
/* output */
&att_file,
ierr);
```

The XP_NUM_ERR_GEN_ATTITUDE_DATA constant is defined in the file explorer_pointing.h.

7.55.3 Input parameters

The xp_gen_attitude_data CFI function has the following input parameters:

Table 137: Input parameters of xp_gen_attitude_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xp_orbit_id*	-	Structure that contains the satellite orbit data	-	-
att_def	xp_attitude_def*	-	Structure defining the attitude frames. It also defines the destination frame.	-	
time_interval	xo_time_interva l*	-	start-stop time interval for the data generation	-	-
time_step	double*	-	Time step between records in the output file data.	seconds	-
data_type	long	-	Requested data type: angles or quaternions.	-	XD_ATT_QUATERNIONS XD_ATT_ANGLES
source_ref_type	long	-	Source reference type: External or Satellite.	-	XP_FRAME_FLAG_EXT XP_FRAME_FLAG_SAT
source_ref	long	-	Source reference CS	-	XL_BM2000, XL_HM2000, XL_GM2000, XL_MOD, XL_TOD, XL_PEF, XL_EF XL_LIF, XL_GALACTIC,

Date:

Issue: 10/05/2019

Page: 223

		XL_SAT_ORBITAL_REF, XL_SAT_NOMINAL_ATT,
		XL_SAT_ATT,
		XL_INSTR_ATT

It is possible to use enumeration values rather than integer values for some of the input arguments:

- data_type: See XD_Attitude_data_type_enum [D_H_SUM].
- source_ref_type: See enumeration XP_Frame_flag_enum in current document (Table 139).
- source ref: See enumeration XL CS rl enum and XL Attitude fr enum in [LIB SUM].

7.55.4 Output parameters

The output parameters of the xp_gen_attitude_data CFI function are:

Table 138: Output parameters of xp_gen_attitude_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
att_file	xd_att_file	-	Structure containing the list of attitude angles/quaternions	-	-
ierr	long	-	Error vector	-	-

7.55.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xp_gen_attitude_data** CFI function after translating the returned extended status flag into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message return ed, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained translating the extended status flag returned by the **xp_gen_attitude_data** function by calling the function of the EO_POINTING software library **xp_gen_code** (see [GEN_SUM]).

Table 139: Error messages of xp gen attitude data function

Error type	Error message	Cause and impact	Error code	Error No
	Wrong input orbit Id. It is not initialized	No calculation performed	XP_CFI_GEN_ATT_DATA _ORBIT_INIT_ERR	0
ERR	Error in attitude initialization	No calculation performed	XP_CFI_GEN_ATT_DATA _ATT_INIT_ERR	1
ERR	Wrong input attitude	No calculation performed	XP_CFI_GEN_ATT_DATA	2

Date:

Issue: 10/05/2019

Page: 224

	definition structure: Attitude type has a wrong value		_ATT_TARGET_TYPE_E RR	
ERR	Wrong input attitude definition structure: Instrument attitude is not initialized		XP_CFI_GEN_ATT_DATA _INSTR_ATT_ERR	3
ERR	Wrong input attitude definition structure: Satellite attitude is not initialized	No calculation performed	XP_CFI_GEN_ATT_DATA _SAT_ATT_ERR	4
ERR	Wrong input attitude definition structure: Satellite nominal attitude is not initialized		XP_CFI_GEN_ATT_DATA _SAT_NOM_ATT_ERR	5
ERR	Could not compute the start interval UTC time	No calculation performed	XP_CFI_GEN_ATT_DATA _START_INTERVAL_ERR	
ERR	Could not compute the stop interval UTC time	No calculation performed	XP_CFI_GEN_ATT_DATA _STOP_INTERVAL_ERR	7
ERR	Wrong input time step. It cannot be negative	No calculation performed	XP_CFI_GEN_ATT_DATA _TIME_STEP_ERR	8
ERR	Wrong input data type. It should be quaternions or angles	No calculation performed	XP_CFI_GEN_ATT_DATA _DATA_TYPE_ERR	9
ERR	Wrong input satellite source frame	No calculation performed	XP_CFI_GEN_ATT_DATA _SAT_CS_ERR	10
ERR	Wrong input exteranl source frame	No calculation performed	XP_CFI_GEN_ATT_DATA _EXTERNAL_CS_ERR	11
ERR	Wrong input source frame type. Should be external or satellite	No calculation performed	XP_CFI_GEN_ATT_DATA _CS_TYPE_ERR	12
ERR	Memory allocation error	No calculation performed	XP_CFI_GEN_ATT_DATA _MEM_ALLOC_ERR	13
ERR	Error computing the satellite state vector	No calculation performed	XP_CFI_GEN_ATT_DATA _OSV_COMP_ERR	14
ERR	Error in attitude compute	No calculation performed	XP_CFI_GEN_ATT_DATA _ATT_COMP_ERR	15
ERR	Could not compute the attitude data	No calculation performed	XP_CFI_GEN_ATT_DATA _GET_ATT_DATA_ERR	16

Date:

Issue: 10/05/2019

Page: 225

7.56 xp_gen_attitude_file

7.56.1 Overview

The **xp_gen_attitude_file** function creates an attitude file with the list of quaternions or attitude angles (roll, pitch, yaw) at an interval given by the user (with a regular time separation) that define the rotation between two reference frames:

- A source reference frame (given as input).
- The attitude frame given by the input attitude definition file.

7.56.2 Calling interface

The calling interface of the **xp_gen_attitude_file** function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
    xo orbit id
                      orbit id = {NULL};
    xp attitude def
                      att def;
    xo time interval time interval;
                      time step;
    double
    long
                       data type;
    long
                       source ref type;
    long
                       source ref;
    char
                       *output dir,
                       *file class,
    char
    long
                       *version number,
    char
                       *fh system,
    char
                       filename[XD MAX STR],
    long ierr[XP NUM ERR GEN ATTITUDE_FILE];
    long xp gen attitude file (&orbit id,
                                &att def,
                                &time interval,
                                &time step,
                                &data_type,
                                &source ref type,
                                &source ref,
                                output dir,
                                file class,
                                &version number,
                                fh system,
```


Date:

Issue: 10/05/2019

Page: 226

```
/* input/output */
                           filename,
                           ierr);
/* Or, using the run id */
long run id;
long xp_gen_attitude_data_run(&run_id,
                                &time interval,
                                &time step,
                                &data type,
                                &source_ref_type,
                                &source ref,
                                output dir,
                                file class,
                                &version_number,
                                fh system,
                                /* input/output */
                                filename,
                                ierr);
```

The XP NUM ERR GEN ATTITUDE FILE constant is defined in the file explorer pointing.h.

7.56.3 Input parameters

The xp gen attitude file CFI function has the following input parameters:

Table 140: Input parameters of xp_gen_attitude_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
orbit_id	xp_orbit_id*	-	Structure that contains the satellite orbit data	-	-
att_def	xp_attitude_def	-	Structure defining the attitude frames. It also defines the destination frame.	-	
time_interval	xo_time_interva	-	start-stop time interval for the data generation	-	-
time_step	double*	-	Time step between records in the output file data.	seconds	-
data_type	long	-	Requested data type:	-	XD_ATT_QUATERNIONS

Date:

Issue: 10/05/2019

Page: 227

			angles or quaternions.		XD_ATT_ANGLES
source_ref_type	long	-	Source reference type: External or Satellite.	-	XP_FRAME_FLAG_EXT XP_FRAME_FLAG_SAT
source_ref	long	-	Source reference CS	-	XL_BM2000, XL_HM2000, XL_GM2000, XL_MOD, XL_TOD, XL_PEF, XL_EF XL_LIF, XL_GALACTIC, XL_SAT_ORBITAL_REF, XL_SAT_NOMINAL_ATT, XL_SAT_ATT, XL_INSTR_ATT
output_dir	char	-	Directory for the output file. If empty, the current directory is chosen.	-	-
file_class	char	-	File class	-	-
version_number	long	-	File version	-	-
fh_system	char	-	system	-	-
filename	char	-	Output file name. If emtpy, the file is generated autmatically and returned to this variable.	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

- data type: See XD Attitude data type enum [D H SUM].
- source ref type: See enumeration XP Frame flag enum in current document (Table 142).
- source ref: See enumeration XL CS rl enum and XL Attitude fr enum in [LIB SUM].

7.56.4 Output parameters

The output parameters of the **xp_gen_attitude_file** CFI function are:

Table 141: Output parameters of xp_gen_attitude_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long	-	Error vector	-	-

Date:

XP CFI GEN ATT FILE

WRITE ERR

Issue: 10/05/20 197

Page: 228

7.56.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xp_gen_attitude_file** CFI function after translating the returned extended status flag into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained translating the extended status flag returned by the **xp_gen_attitude_file** function by calling the function of the EO POINTING software library **xp gen code** (see [GEN SUM]).

Error Cause and impact Error code Error Error message type No **ERR** No calculation performed 0 XP CFI GEN ATT FILE Error generating attitude data GENDATA ERR **ERR** No calculation performed Could not get the Fixed XP CFI GEN ATT FILE header data GENFHR ERR **ERR** No calculation performed 2 No data generated for the XP CFI GEN ATT FILE requested interval NO DATA ERR **ERR** No calculation performed Memory allocation error XP CFI GEN ATT FILE MEM ERR

No calculation performed

Table 142: Error messages of xp_gen_attitude_file function

7.56.6 Executable Program

disk

Error writing attitude file to

ERR

The gen_attitude executable program can be called form a shell as: gen attitude

```
-sat satellite_name
-tref time_ref
{
        -tstart start_time -tstop stop_time (decimal days) |
        -tastart start_time -tastop stop_time (CCSDSA format) |
        -ostart start_orbit -ostop stop_orbit (orbits)
}
-orbtyp "orbit file type"
-orbf "orbit file name"
-atdef "attitude definition file name"
```


Date:

Issue: 10/05/20 197

Page: 229

```
-attyp "attitude data type, angles or quaternions"
-tstep "Time step between generated attitude records (seconds)"
-cs "source reference frame"
[-dir output dir] (default: current directory)
[-atf output filename] (default: name generated automatically)
[-flcl file class] (empty string by default)
[-vers version] (version=1 by default)
[-eoffs ffs version] (Earth Observation File Format Standard Version)
[-fhsys fh system] (empty string by default)
[-v]
[-xd v]
[-x1 \ v]
[-xo v]
[-xp v]
[-help]
[-show]
[-with xslt] (add xslt reference with default style sheet)
        (-tai TAI_time -gps GPS time -utc UTC time -ut1 UT1 time) |
        (-tmod time model -tfile time file -trid time reference
        {(-tm0 time0 -tm1 time1) | (-orb0 orbit0 -orb1 orbit1) } )
```

Note that:

]

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- Options between curly brackets and separated by a vertical bar are mutually exclusive.
- [-xd v] option for EXPLORER DATA HANDLING Verbose mode.
- [-xl v] option for EXPLORER LIB Verbose mode.
- [-xo v] option for EXPLORER ORBIT Verbose mode.
- [-xp v] option for EXPLORER POINTING Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.
- Possible values for satellite name: ERS1, ERS2, ENVISAT, METOP1, METOP2, METOP3,

CRYOSAT, ADM, GOCE, SMOS, TERRASAR, EARTHCARE,

Date:

Issue: 10/05/2019

Page: 230

SWARM A, SWARM B, SWARM C,

SENTINEL 1A, SENTINEL 1B, SENTINEL 1C,

SENTINEL 2A, SENTINEL 2B, SENTINEL 2C,

SENTINEL_3A, SENTINEL_3B, SENTINEL_3C,

JASON CSA, JASON CSB,

METOP SG A1, METOP SG A2, METOP SG A3,

METOP SG B1, METOP SG B2, METOP SG B3,

SENTINEL 5P,

BIOMASS, SENTINEL 5, SAOCOM CS, FLEX,

SEOSAT, GENERIC.

- Possible values for time_model: USER, NONE, IERS_B_PREDICTED,

IERS_B_RESTITUTED,FOS_PREDICTED,

FOS RESTITUTED, DORIS PRELIMNARY, DORIS PRECISE,

DORIS NAVIGATOR, OSF.

- Possible values for time ref and time reference: UNDEF, TAI, UTC, UT1.
- Possible values for "orbit file type": OSF, POF, DORISNAV, ROF, TLE, DORISPREM, DORISPREC.
- Possible values for ffs version: 0 (Default FFS), 1 (FFS version 1), 2 (FFS version 2), 3 (FFS version 3).
- Possible values for "Attitude data type": ANGLES, QUATERNIONS.
- Possible values for "source reference frame": GALACTIC (= Galactic CS)

BM2000 (= Barycentric Mean of 2000.0 CS)

HM2000 (= Heliocentric Mean of 2000.0 CS)

GM2000 (= Geocentric Mean of 2000.0 CS)

MOD (= Mean of Date CS)

TOD (= True of Date CS)

PEF (= Pseudo Earth Fixed CS)

EF (= Earth Fixed CS)

LIF (= Launch Inertial CS)

ORBITAL (= Satellite orbital frame CS)

NOM ATT (= Satellite nominal attitude CS)

ATT (= Satellite attitude CS)

INSTR (= Satellite instrument CS)

- Time references need to be initialized.

The inputs needed for this issue are provided in the last three lines of parameters. Note that only one set of parameters should be introduced:

Date:

Issue: 10/05/2\(\text{2}\)1\(\text{1}\)2

Page: 231

1. TAI, GPS, UTC and UT1 input times (as in xl_time_ref_init) \n");

2. A file with time reference data, the time mode, the time reference name and a time range (as in $xl_time_ref_init_file$)

Date:

Issue: 10/05/2019

Page: 232

7.57 xp_attitude_close

7.57.1 Overview

The xp_attitude_close CFI function cleans up any memory allocation performed by the Attitude functions.

7.57.2 Calling Interface

The calling interface of the **xp_attitude_close** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xp_attitude_id attitude_id = {NULL};
    long ierr[XP_NUM_ERR_ATTITUDE_CLOSE], status;
    status = xp_attitude_close(&attitude_id, ierr);
}
```

The XP NUM ERR ATTITUDE CLOSE constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 233

7.57.3 Input Parameters

The **xp_attitude_close** CFI function has the following input parameters:

Table 143: Input parameters of xp_attitude_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_id	xp_attitude_id		Structure that contains the Attitude.	-	-

7.57.4 Output Parameters

The output parameters of the **xp attitude close** CFI function are:

Table 144: Output parameters of xp_attitude_close

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long	-	Error vector	-	-

7.57.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_attitude_close** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_attitude_close** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 145: Error messages of xp_attitude_close function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Could not close Attitude Id. The Attitude Id. is not initialized or it is being used	No calculation performed	XP_CFI_ATTITUDE_CLOS E_WRONG_ID_ERR	0

Date:

Issue: 10/05/20 197

Page: 234

7.58 xp_attitude_get_id_data

7.58.1 Overview

The xp_attitude_get_id_data CFI function returns attitude initialization data.

7.58.2 Calling interface

The calling interface of the **xp_attitude_get_id_data** CFI function is the following (input parameters are underlined):

```
#include <explorer_lib.h>
{
          xp_attitude_id attitude_id;
          long status;
          xp_attitude_id_data data;
          status = xp_attitude_get_id_data (&attitude_id, &data);
}
```

7.58.3 Input parameters

The xp attitude get id data CFI function has the following input parameters:

Table 146: Input parameters of xp_attitude_get_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_id	xp_attitude_id *	-	Structure that contains the Attitude.	-	-

7.58.4 Output parameters

The output parameters of the xp_attitude get id_data CFI function are:

Table 147: Output parameters of xp_attitude_get_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_attitude_get_id_ data	long	-	Status flag	-	-
data	xp_attitude_id_d ata	-	Attitude initialization data	-	-

Date:

Issue: 10/05/2019

Page: 235

7.58.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The attitude id was not initialised.
- The attitude id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 236

7.59 xp_attitude_set_id_data

7.59.1 Overview

The **xp_attitude_set_id_data** CFI function changes the harmonic data used for the satellite attitude initialization. Input matrix is checked to be orthonormal.

7.59.2 Calling interface

The calling interface of the **xp_attitude_set_id_data** CFI function is the following (input parameters are <u>underlined</u>):

7.59.3 Input parameters

The xp_attitude_set_id_data CFI function has the following input parameters:

Table 148: Input parameters of xp_attitude_set_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_id	xp_attitude_id *	-	Structure that contains the Attitude (input / output parameter)	-	-
data	xp_attitude_id_ data	-	Attitude initialization data	-	-

7.59.4 Output parameters

The output parameters of the xp_attitude_set_id_data CFI function are:

Table 149: Output parameters of xp_attitude_set_id_data function

Date:

Issue: 10/05/2019

Page: 237

		Element	(Reference)	(Format)	
xp_attitude_set_id_ data	long	-	Status flag	-	-
attitude_id	xp_attitude_id *	-	Structure that contains the Attitude. (input / output parameter)	-	-

7.59.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

- The attitude id was not initialised.
- The attitude id initialization does not allow the use of this function.

Date:

Issue: 10/05/20 197

Page: 238

7.60 xp_attitude_get_model_id

7.60.1 Overview

The xp_attitude_get_model_id CFI function retrieves the model ID from the input attitude ID.

7.60.2 Calling interface

The calling interface of the **xp_attitude_get_model_id** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_lib.h>
{
          xp_attitude_id attitude_id = {NULL};
          xl_model_id model_id;
          model_id = xp_attitude_get_model_id (&attitude_id);
}
```

7.60.3 Input parameters

The **xp_attitude_get_model_id** CFI function has the following input parameters:

Table 150: Input parameters of xp_attitude_get_model_id function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_id	xp_attitude_id *	-	Structure that contains the attitude	-	-

7.60.4 Output parameters

The output parameters of the xp attitude get model id CFI function are:

Table 151: Output parameters of xp_attitude_get_model_id function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_attitude_get_model_id	long	-	Status flag	-	-

7.60.5 Warnings and errors

This function does not return any error/warning code. If there is an error, then the returned model ID will be set to NULL (no initialised)

The possible causes of error are:

• The attitude id was not initialised.

Date:

Issue: 10/05/2019

Page: 239

Date:

Issue: 10/05/2019

Page: 240

7.61 xp_change_frame

7.61.1 Overview

The **xp_change_frame** CFI function changes the coordinate or attitude frame of a location or direction by keeping the location or direction in inertial space identical. Both all coordinate frames and all attitude frames are supported.

When changing the frame for a location (mode_flag = XP_MODE_FLAG_LOCATION), the difference between the frame origins is taken into account.

When changing the frame for a direction (mode_flag = XP_MODE_FLAG_DIRECTION), the output of the function is a direction, that does not depend on the origin of reference frame of the input vector. Therefore, in this specific case, the instrument offsets are not taken into account.

7.61.2 Calling interface

The calling interface of the **xp_change_frame** CFI function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
    xl model id model id = {NULL};
    long sat id, mode flag, frame flag in, frame id in,
          frame flag out, frame id out, time ref;
    xl time id
                         time id = \{NULL\};
    xp sat nom trans id sat nom trans id = {NULL};
    xp sat trans id
                         sat trans id = {NULL};
                         instr trans id = {NULL};
    xp instr trans id
    double time;
    double pos[3], vel[3], acc[3];
    long deriv;
    double vec in[3], vec rate in[3], vec rate rate in[3];
    double vec_out[3], vec_rate_out[3], vec_rate_rate_out[3];
    long ierr[XP NUM ERR CHANGE FRAME], status;
    status = xp change frame (&sat id, &model id,
                           &time id,
                           &sat nom trans id,
                           &sat trans id,
                           &instr trans id,
                           &mode flag,
```


}

&frame flag in, &frame id in,

Code: EO-MA-DMS-GS-0005

Date:

Issue: 10/05/2019

Page: 241

```
&frame flag out, &frame id out,
                       &time ref, &time,
                       pos, vel, acc, &deriv,
                       vec in, vec rate in, vec rate rate in,
                       vec out, vec rate out, vec rate rate out,
                       ierr);
/* Or, using the run id */
long run id;
status =
            xp change frame run (&run id,
                       &mode flag,
                       &frame flag in, &frame id in,
                       &frame flag out, &frame id out,
                       &time ref, &time,
                       pos, vel, acc, &deriv,
                       vec in, vec rate in, vec rate rate in,
                       vec_out, vec_rate_out, vec_rate_rate_out,
                       ierr);
```

The XP NUM ERR CHANGE FRAME constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2<u>0</u>19

Page: 242

7.61.3 Input parameters

The **xp_change_frame** CFI function has the following input parameters:

Table 152: Input parameters of xp_change_frame function

C name C type		Array Element	Description (Reference)	Unit (Format)	Allowed Range	
sat_id	long *	-	Satellite ID	-	Complete	
model_id	xl_model_id*	-	Model ID	-	-	
time_id	xl_time_id*	-	Structure that contains the time correlations.	-	-	
sat_nom_trans _id	xp_sat_nom_trans _id*	-	Structure that contains the Sat. Nom. Trans.	-	-	
sat_trans_id	xp_sat_trans_id*	-	Structure that contains the Sat. Trans.	-	-	
instr_trans_id	xp_instr_trans_id*	-	Structure that contains the Instr. Trans.	-	-	
mode_flag	long *	-	Selection of location or direction calculus		Complete	
frame_flag_in	long *	-	Selection of Coordinate or Attitude Frame on input		Complete	
frame_id_in	long *		Coordinate Frame id or Attitude Frame id on input		Complete	
frame_flag_out	long *	-	Selection of Coordinate or Attitude Frame on output		Complete	
frame_id_out	long *		Coordinate Frame id or Attitude Frame id on output		Complete	
time_ref	long *	-	Time reference ID	-	Complete	
time	double	-	Time in Processing Format	Decimal days, MJD2000	[-18262.0,36524.0]	
pos[3]	double	all	Satellite position vector (Earth Fixed CS)	m	-	
vel[3]	double	all	Satellite velocity vector (Earth Fixed CS)	m/s	-	
acc[3]	double	all	Satellite acceleration vector (Earth Fixed CS)	m/s ²	-	
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND	
vec_in[3]	double	all	Position (direction) vector	m or -	-	

Date:

Issue: 10/05/2019

Page: 243

			(Frame in)		
vec_rate_in[3]	double	all	Velocity (direction) vector (Frame in)	m/s or 1/s	-
vec_rate_rate_ in[3]	double	all	Acceleration (direction) vec tor (Frame in)	m/s2 or 1/s2	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Time Reference ID: time ref. See [GEN SUM].
- Selection of location or direction calculus: mode flag. See current document, Table 3.
- Selection of Coordinate or Attitude Frame: frame flag. See current document, Table 3.

7.61.4 Output parameters

The output parameters of the **xp_change_frame** CFI function are

Table 153: Output parameters of xp_change_frame function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
vec_out[3]	double	all	Position (direction) vector (Frame out)	m or -	-
vec_rate_out[3]	double	all	Velocity (direction) vector (Frame out)	m/s or 1/s	-
vec_rate_rate_ out[3]	double	all	Acceleration (direction) vector (Frame out)	m/s ² or 1/s ²	-
ierr	long	-	Error vector	-	-

7.61.5 Warnings and errors

Next table lists the possible error messages that can be returned by the **xp_change_frame** CFI function after translating the returned extended status flag into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained translating the extended status flag returned by the **xp_change_frame** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 154: Error messages of xp_change_frame function

Error	Error message	Cause and impact	Error code	Error
type				No

Date:

Issue: 10/05/2019

Page: 244

ERR	Could not initialize the attitude	No calculation performed	XP_CHANGE_FRAME_ ATTITUDE_INIT_ERR	0
ERR	Frame input flag is not correct	No calculation performed	XP_CHANGE_FRAME_I NPUT_FRAME_ERR	1
ERR	Frame output flag is not correct	No calculation performed	XP_CHANGE_FRAME_ OUTPUT_FRAME_ERR	2
ERR	Error calling xl_change_cart_cs	No calculation performed	XP_CHANGE_FRAME_ CHANGE_CART_CS_ER R	3
ERR	Could not compute the attitude	No calculation performed	XP_CHANGE_FRAME_ ATTITUDE_COMP_ERR	4
ERR	The Attitude Id could not be closed	No calculation performed	XP_CHANGE_FRAME_ ATTITUDE_CLOSE_ER R	5

Date:

Issue: 10/05/2019

Page: 245

7.62 xp_atmos_init

7.62.1 Overview

The **xp_atmos_init** CFI function initialises the atmospheric model for a given satellite. The initialised values will be stored in the *atmos id* output structure.

7.62.2 Calling Interface

The calling interface of the **xp_atmos_init** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    long atmos_mode, atmos_model;
    char atmos_file[XL_MAX_STR];
    xp_atmos_id atmos_id = {NULL};
    long ierr[XP_NUM_ERR_ATMOS_INIT], status;

    status = xp_atmos_init(&atmos_mode, &atmos_model, atmos_file, &atmos_id, ierr);
}
```

The XP NUM ERR ATMOS INIT constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 246

7.62.3 Input Parameters

The **xp_atmos_init** CFI function has the following input parameters:

Table 155: Input parameters of xp_atmos_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
atmos_mode	long *	-	Atmosphere initialization mode	-	Complete
atmos_model	long *	-	Not Used in the current implementation.	-	-
atmos_file	char[]	-	File used for atmosphere initialization. It is required when the input atmos_mode is: - User initalization mode (n-z table, see section 10) - User LUT mode	-	Complete

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Atmosphere Initialization Mode: atmos mode. See current document, Table 3.

7.62.4 Output Parameters

The output parameters of the **xp_atmos_init** CFI function are:

Table 156: Output parameters of xp_atmos_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
atmos_id	xp_atmos_id*	-	Structure that contains the atmosphere initialization.	-	-
ierr	long	-	Error vector	-	-

7.62.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_atmos_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

Date:

Issue: 10/05/2019

Page: 247

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_atmos_init** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 157: Error messages of xp_atmos_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Atmosphere Mode ID is not correct	No calculation performed	XP_CFI_ATMOS_INIT_MOD E_ID_ERR	0
ERR	Atmosphere Model ID is not correct	No calculation performed	XP_CFI_ATMOS_INIT_MOD EL_ID_ERR	1
ERR	Atmosphere initialization file could not be opened	No calculation performed	XP_CFI_ATMOS_INIT_FILE_ NOT_OPEN_ERR	2
ERR	Unable to store atmosphere initialization file (not enough memory	No calculation performed	XP_CFI_ATMOS_INIT_MEM ORY_ERR	3
ERR	Error while reading atmosphere initialization file	No calculation performed	XP_CFI_ATMOS_INIT_FILE_ READING_ERR	4

Date:

Issue: 10/05/2019

Page: 248

7.63 xp_atmos_close

7.63.1 Overview

The **xp_atmos_close** CFI function cleans up any memory allocation performed by the **xp_atmos_init** functions.

7.63.2 Calling Interface

The calling interface of the **xp_atmos_close** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xp_atmos_id atmos_id = {NULL};
    long ierr[XP_NUM_ERR_ATMOS_CLOSE], status;
    status = xp_atmos_close(&atmos_id, ierr);
}
```

The XP NUM ERR ATMOS CLOSE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 249

7.63.3 Input Parameters

The **xp_atmos_close** CFI function has the following input parameters:

Table 158: Input parameters of xp_atmos_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
atmos_id	xp_atmos_id*	-	Structure that contains the atmosphere initialization.	-	-

7.63.4 Output Parameters

The output parameters of the **xp_atmos_close** CFI function are:

Table 159: Output parameters of xp_atmos_close

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long	-	Error vector	-	-

7.63.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_atmos_close** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_atmos_close** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 160: Error messages of xp_atmos_close function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Could not close the Atmos. Id. as it is not initialized or it is being used	No calculation performed	XP_CFI_ATMOS_CLOSE_ WRONG_ID_ERR	0

Date:

Issue: 10/05/2019

Page: 250

Date:

Issue: 10/05/20 197

Page: 251

7.64 xp_atmos_get_id_data

7.64.1 Overview

The xp_atmos_get_id_data CFI function returns atmospheric initialization data.

7.64.2 Calling interface

The calling interface of the **xp_atmos_get_id_data** CFI function is the following (input parameters are <u>underlined</u>):

7.64.3 Input parameters

The xp atmos get id data CFI function has the following input parameters:

Table 161: Input parameters of xp_atmos_get_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
atmos_id	xp_atmos_id *	-	Atmospheric Id.	-	-

7.64.4 Output parameters

The output parameters of the xp atmos get id data CFI function are:

Table 162: Output parameters of xp_atmos_get_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_atmos_get_id_d ata	long	-	Status flag	-	-
data	xp_atmos_id_da ta	-	Atmospheric initialization data	-	-

Date:

Issue: 10/05/2\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\ri

Page: 252

7.64.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

• The atmos id was not initialised.

Date:

Issue: 10/05/2019

Page: 253

7.65 xp_dem_init

7.65.1 Overview

The **xp_dem_init** CFI function initializes the digital elevation model (DEM). The DEM is initialized using the DEM configuration file (see [D_H_SUM]) which contains some characteristics that can be configured (see [MCD] for further details about the DEM models).

Finally the initalisation values will be stored in the *dem id* output structure.

7.65.2 Location of DEM dataset

The DEM files are looked for in the directory specified in the field Directory in the DEM configuration file (see [D_H_SUM]). If this field is empty, the DEM files are looked for in the directory where the DEM configuration file is placed.

7.65.3Access to DEM dataset

Depending on the Cache_Type field in the DEM configuration file (see [D_H_SUM]), one of the following methods is used to access the DEM dataset:

- FIFO_CACHE (default): memory is reserved for holding DEM data. As soon as an altitude value is requested and is not yet available in memory, the corresponding data file is loaded in memory. When the maximum size of reserved memory (configurable with the field Cache_Max_Size) is exceeded, memory is made available with a First In First Out policy, that is memory correspondent to the file loaded earliest is made available for the file to be loaded.
- PRELOAD_CACHE: memory is reserved for holding DEM data. The user shall load in memory the needed files in advance via the function xp_dem_id_configure (see section 7.70). Request of a value not available in memory would result in an error.
- NO_CACHE: no memory is reserved for holding DEM data. The dataset is accessed via a single direct I/O access to the file storing the requested value.

In the case of GDEM, due to the special structure of the tiles, loading them to memory can take much time, so it is not recommended the use of cache methods.

Choice of the method that best fits user's needs depends on many aspects including HW/SW setup and the type of user application:

- 1) The FIFO_CACHE is recommended for user applications able to request to the operating system a large amount of physical memory and that require making a large numbers of DEM computations per DEM area i.e. when several DEM computations are done reading the same file or small set of files covering the same region.
- 2) The PRELOAD_CACHE is recommended for multithreading applications. Note that memory holding DEM data can be shared amongst several threads. In the FIFO_CACHE, as memory content can change at runtime, mutual exclusion mechanisms are implemented in order to avoid threads to access inconsistent data. Such mechanisms are not needed in the PRELOAD_CACHE methods and therefore multithreading applications may run more efficiently. However the user is requested to estimate the area (in terms of the longitude/latitude boundaries) that will be requested during computations.

Date:

Issue: 10/05/2019

Page: 254

3) The above methods using memory to hold DEM data do not improve performance (or make even performance worse) of applications running with low amount of physical memory available or when DEM request is sporadic per DEM area. In all these cases, the user is recommended to set Cache_Type to NO_CACHE. For example, applications making sporadic accesses and in different DEM areas will not benefit of the caching methods, as the advantage of having a fast access to data is lost by the disadvantage of continuously load new files correspondent to different areas.

The default configuration is (i.e. when fields are not provided in the file):

- Cache Type = FIFO CACHE
- Cache Max Size = 2 GigaBytes

Values of Cache_Type and Cache_Max_Size can be changed at runtime under certain conditions using the function xp_dem_id_configure.

Memory is allocated using the malloc() C library function. Therefore performance of DEM access using caching strictly depends on the implementation of such library and on memory management from the Operating System. Performance of access to memory depends on many factors that can be tuned by the user. For the sake of example, if, as it normally happens in Linux systems, the memory request is larger than a given threshold size, the memory will be allocated in the virtual memory space and this may result in several page faults at runtime, leading to inefficiencies in the execution. The user can improve this by tuning the threshold size (i.e. using the mallopt() C library, if available). In order to get the best advantages from the caching methods, the user is therefore recommended to evaluate and tackle platform specific issues to memory allocation and management.

7.65.4 DEM maximum altitude algorithm

If the mini tile configuration is provided (MiniTile_Configuration tag) in the DEM configuration file (see [D_H_SUM]), the maximum altitude algoritm is used to compute DEM intersection. This algorithm consists in the following:

- The tiles are divided in sub-sections (mini-tiles), according to the configuration provided in DEM configuration file: Lon_Size and Lat_Size tags. For example, if the tile is 15 degrees long in longitude and 15 degrees long in latitude, and Lon_Size and Lat_Size are 5 degrees and 5 degrees respectively, the tile would have 9 mini-tiles equal in size between them.
- In the DEM configuration of mini-tiles, also the tag Filename is provided, which corresponds to the name (or path) of the binary file which contains the maximum altitude corresponding to each minitile. This file can be generated with function xp_gen_dem_max_altitude_file. If no path is provided, the binary file in looked for in current directory and the DEM directory.
- Internally, the algorithm checks if the altitude of the rays when crossing above each mini-tile is higher or lower than maximum altitude contained in the mini-tile. If the altitude is lower, the mini-tile is computed to look for an intersection; if not, the mini-tile is skipped and the following mini-tile is checked.

Note: the algorithm is not executed if the difference in latitude/longitude of start and end points in ray search is less than mini-tile size.

7.65.5 DEM Geoid computation

The DEM ACE2 and GDEM V2 files provide the altitude with respect to its reference geoid. In the internal DEM computations, the altitude is transformed to altitude over the reference ellipsoid. To perform this

Date:

Issue: 10/05/20 1/97

Page: 255

operation, a number of harmonics must be used, which can be configured with the following DEM configuration user tags (see [D_H_SUM]):

- Geoid Computation tag: this field can take the values:
 - "Enabled": geoid computation is performed.
 - "Disabled": geoid computation is not performed.
- Geoid Nof Harmonics tag: the number of harmonics to be used in geoid computation.

If this fields are not provided, the default values are:

- Geoid Computation: Enabled
- Geoid_Nof_Harmonics: 30

The computation precision increases with the number of harmonics (maximum is 360 harmonics) but the runtime performance gets worse. The computation of the geoid at runtime can be avoided by generating offline a DEM dataset storing altitudes w.r.t ellipsoid using xp_gen_dem_altitudes_from_ellipsoid function. In this case, when the DEM is used, the geoid computation shall be disabled in the DEM configuration file.

7.65.6 Calling Interface

The calling interface of the **xp dem init** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    long mode, model;
    char dem_file[XL_MAX_STR];
    xp_dem_id dem_id = {NULL};
    long ierr[XP_NUM_ERR_DEM_INIT], status;

    status = xp_dem_init(&mode, &model, dem_file, &dem_id, ierr);
}
```

The XP NUM ERR DEM INIT constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 256

7.65.7 Input Parameters

The **xp_dem_init** CFI function has the following input parameters:

Table 163: Input parameters of xp_dem_init function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
mode	long *	-	Digital Elevation Model initialization mode. This parameter has no effect in current implementation (the DEM type is taken from configuration file), but a warning will be raised if the value does not coincide with the one in configuration file.	-	Complete
model	long *	-	Digital Elevation Model initialization model (dummy in current implementation)	-	Complete
dem_file	char[]	-	File used for DEM initialization (See DEM Configuration file in [D_H_SUM])		Complete

It is possible to use enumeration values rather than integer values for some of the input arguments:

• DEM Initilization Mode: initialization mode (according to XD Dem model enum in [D H SUM])

7.65.8 Output Parameters

The output parameters of the **xp_dem_init** CFI function are:

Table 164: Output parameters of xp_dem_init

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
ierr	long	-	Error vector	-	-

7.65.9 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_dem_init** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN_SUM]).

Date:

Issue: 10/05/2019

Page: 257

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_dem_init** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM])

Table 165: Error messages of xp_dem_init function

Error type	Error message	Cause and impact	Error code	Error No
ERR	DEM Mode ID is not correct	No calculation performed	XP_CFI_DEM_INIT_MODE_I D_ERR	0
ERR	DEM Model ID is not correct	No calculation performed	XP_CFI_DEM_INIT_MODEL_ ID_ERR	1
ERR	DEM initialization file could not be opened	No calculation performed	XP_CFI_DEM_INIT_FILE_NO T_OPEN_ERR	2
ERR	Unable to store DEM initialization file (not enough memory)	No calculation performed	XP_CFI_DEM_INIT_MEMOR Y_ERR	3
ERR	Error while reading DEM initialization file. In case of using a Generic Raster DEM, this error message is used also to indicate problems in 'dem_raster_configuration.xml'.	No calculation performed	XP_CFI_DEM_INIT_FILE_RE ADING_ERR	4
WARN	Default DEM values at Poles will be taken	Calculation performed. If required, default altitude values at the poles will be used.	XP_CFI_DEM_INIT_FILE_READI NG_WARN	5
WARN	DEM file mode and input mode are not the same	No calculation performed	XP_CFI_DEM_INIT_WRONG_M ODEL_WARN	6
WARN	Input DEM configuration file version is deprecated	Calculation performed	XP_CFI_DEM_INIT_DEPRECATE D_WARN	7
WARN	DEM Cache Type not supplied, assuming FIFO_CACHE with maximum size of 2 GB	Calculation performed	XP_CFI_DEM_INIT_CACHE_WARN	8
ERR	Error initializing TILE Database	No calculation performed	XP_CFI_DEM_INIT_TILE_DB_ER	9
ERR	Error computing altitude at the poles	No calculation performed	XP_CFI_DEM_INIT_READ_POLE S_ERR	10

Earth Observation Mission CFI Software. EO POINTING Software User Manual

Date:

Issue: 10/05/2019

Page: 258

WARN	DEM files at the poles not found. Default altitude will be	Calculation performed	XP_CFI_DEM_INIT_READ_POLE S_WARN	11
	used			
WARN	Mini tile longitude size adjusted to %lf deg	Calculation performed	XP_CFI_DEM_INIT_MINI_TILE_L ON_SIZE_WARN	12
WARN	Mini tile latitude size adjusted to %If deg	Calculation performed	XP_CFI_DEM_INIT_MINI_TILE_L AT_SIZE_WARN	13
ERR	Error opening maximum altitude file %s	No calculation performed	XP_CFI_DEM_INIT_OPEN_MAX _ALT_FILE_ERR	14
ERR	Error reading maximum altitude file %s	No calculation performed	XP_CFI_DEM_INIT_READ_MAX_ ALT_FILE_ERR	15

Date:

Issue: 10/05/2019

Page: 259

7.66 xp_dem_close

7.66.1 Overview

The **xp_dem_close** CFI function cleans up any memory allocation performed by the **xp_dem_init** functions.

7.66.2 Calling Interface

The calling interface of the **xp dem close** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xp_dem_id dem_id = {NULL};
    long ierr[XP_NUM_ERR_DEM_CLOSE], status;

    status = xp_dem_close(&dem_id, ierr);
}
```

The XP NUM ERR DEM CLOSE constant is defined in the file explorer_pointing.h.

7.66.3 Input Parameters

The **xp dem close** CFI function has the following input parameters:

Table 166: Input parameters of xp_dem_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-

7.66.4 Output Parameters

The output parameters of the **xp_dem_close** CFI function are:

Table 167: Output parameters of xp_dem_close

C name	C type	Array	Description	Unit	Allowed Range
--------	--------	-------	-------------	------	---------------

Date:

Issue: 10/05/2019

Page: 260

		Element	(Reference)	(Format)	
ierr	long	-	Error vector	-	-

7.66.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_dem_close** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_dem_close** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 168: Error messages of xp_dem_close function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Could not close the Dem. Id. as it is not initialized or it is being used	No calculation performed	XP_CFI_DEM_CLOSE_WR ONG_ID_ERR	0

Date:

Issue: 10/05/2019

Page: 261

7.67 xp_dem_compute

7.67.1 Overview

The **xp_dem_compute** CFI function compute the altitude over the see level for a point in the Earth. The altitude is calculated from the altitudes read from a digital elevation model (DEM).

7.67.2 Calling Interface

The calling interface of the **xp_dem_compute** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xl_model_id model_id = {NULL};
    xp_dem_id dem_id = {NULL};
    long ierr[XP_NUM_ERR_DEM_COMPUTE], status;
    double lon, lat, alt;
    status = xp_dem_compute(&model_id, &dem_id, &lon, &lat, ierr);
}
```

The XP NUM ERR DEM COMPUTE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/20 197

Page: 262

7.67.3 Input Parameters

The **xp_dem_compute** CFI function has the following input parameters:

Table 169: Input parameters of xp_dem_compute function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
model_id	xl_model_id*	-	Model ID	-	-
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
lon	double	-	Input longitude	degrees	[0, 360)
lat	double	-	Input latitude	degrees	[-90, 90]

7.67.4 Output Parameters

The output parameters of the **xp_dem_compute** CFI function are:

Table 170: Output parameters of xp_dem_compute

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
alt	double	-	Altitude	meters	-
ierr	long	-	Error vector	-	-

7.67.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_dem_compute** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_dem_compute** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 171: Error messages of xp_dem_compute function

Error	Error message	Cause and impact	Error code	Error
type				No

Date:

Issue: 10/05/2019

Page: 263

ERR	Error getting cell altitude	No calculation performed	XP_CFI_DEM_COMPUTE_ GET_CELL_ERR	0
ERR	Error allocating memory	No calculation performed	XP_CFI_DEM_COMPUTE_ME MORY_ERR	1
WARN	Void value detected. Altitude computation based on the ellipsoid.	Calculation performed. A message informs the user.	XP_CFI_DEM_COMPUTE_VOI D_VALUE_DETECTED_WARN	

7.68xp_dem_get_info

7.68.1 Overview

The **xp_dem_get_info** CFI function reads DEM information for a given geodetic point.

7.68.2 Calling Interface

The calling interface of the **xp_dem_get_info** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xl_model_id model_id = {NULL};
    xp_dem_id dem_id = {NULL};
    long ierr[XP_NUM_ERR_DEM_GET_INFO], status;
    double lon, lat;
    xp_dem_info dem_info
    status = xp_dem_get_info(&model_id, &dem_id, &dem_id, &dem_info, &dem_inf
```

The XP NUM ERR DEM GET INFO constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/20 197

Page: 264

7.68.3 Input Parameters

The **xp_dem_get_info** CFI function has the following input parameters:

Table 172: Input parameters of xp_dem_get_info function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
model_id	xl_model_id*	-	Model ID	-	-
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
lon	double	-	Input longitude	degrees	[0, 360)
lat	double	-	Input latitude	degrees	[-90, 90]

7.68.4 Output Parameters

The output parameters of the xp dem get info CFI function are:

Table 173: Output parameters of xp_dem_get_info

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_info	xp_dem_info	-	Structure containing DEM information	-	-
ierr	long	-	Error vector	-	-

7.68.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_dem_get_info** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_dem_get_info** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 174: Error messages of xp_dem_get_info function

Error	Error message	Cause and impact	Error code	Error
-------	---------------	------------------	------------	-------

Date:

Issue: 10/05/2019

Page: 265

type				No
ERR	DEM Id. is not initalized	No calculation performed	XP_CFI_DEM_GET_INFO_STA TUS_ERR	0
ERR	Input longitude is out of allowed range [0, 360]	No calculation performed	XP_CFI_DEM_GET_INFO_WR ONG_LONGITUDE_ERR	1
ERR	Input latitude is out of allowed range [90, -90]	No calculation performed	XP_CFI_DEM_GET_INFO_WR ONG_LATITUDE_ERR	2
ERR	Could not open DEM file: %s	No calculation performed	XP_CFI_DEM_GET_INFO_OP EN_FILE_ERR	3
ERR	Could not read DEM file: %s	No calculation performed	XP_CFI_DEM_GET_INFO_RE AD_FILE_ERR	4
ERR	Could not read dem_raster_configuration.xml	•	XP_DEM_GET_INFO_READ_R ASTER_ERR	5

Date:

Issue: 10/05/20 197

Page: 266

7.69 xp_dem_get_id_data

7.69.1 Overview

The xp_dem_get_id_data CFI function returns DEM initialization data.

7.69.2 Calling interface

The calling interface of the **xp_dem_get_id_data** CFI function is the following (input parameters are <u>underlined</u>):

7.69.3 Input parameters

The xp dem get id data CFI function has the following input parameters:

Table 175: Input parameters of xp_dem_get_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_id	xp_dem_id *	-	Structure that contains the DEM initialization.	-	-

7.69.4 Output parameters

The output parameters of the xp dem get id data CFI function are:

Table 176: Output parameters of xp_dem_get_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_dem_get_id_data	long	-	Status flag	-	-
data	xp_dem_id_data	-	DEM initialization data	-	-

Date:

Issue: 10/05/2019

Page: 267

7.69.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

• The dem id was not initialised.

7.70 xp_dem_id_configure

7.70.1 Overview

The **xp_dem_id_configure** CFI function performs configuration operations on DEM cache. The following operations can be performed:

- CLEAR CACHE: all the tiles in the cache are unloaded but cache memory is not freed.
- FREE CACHE: all the tiles in the cache are unloaded and cache memory is freed.
- SET MAXIMUM CACHE SIZE: this operation can only be performed for FIFO cache. A new maximum size for cache is set. If there are more tiles loaded in cache than new maximum size, the tiles are unloaded in a FIFO (First in- First out) order till new maximum size is reached.
- LOAD TILE SET: this operation can only be performed for PRELOAD cache. A set of tiles corresponding to an input rectangular longitude-latitude area is loaded in cache.

7.70.2 Calling Interface

The calling interface of the **xp_dem_id_configure** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xp_dem_id    dem_id = {NULL};
    long ierr[XP_NUM_ERR_DEM_ID_CONFIGURE], status;
    xp_dem_id_config config;

    status = xp_dem_id_configure(&dem_id, &config, ierr);
}
```

The XP_NUM_ERR_DEM_ID_CONFIGURE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 268

7.70.3 Input Parameters

The **xp_dem_id_configure** CFI function has the following input parameters:

Table 177: Input parameters of xp_dem_id_configure function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
config	xp_dem_id_co nfig	-	Input operation on cache	-	- Possible values for command field: XP_LOAD_TILE_SET XP_CLEAR_CACHE XP_FREE_CACHE XP_SET_MAX_SIZE - For rectangular area: 0. ≤ longitude ≤ 360. -90. ≤ latitude ≤ 90.

7.70.4 Output Parameters

The output parameters of the **xp_dem_id_configure** CFI function are:

Table 178: Output parameters of xp_dem_id_configure

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
xp_dem_id _configure	long	-	Status flag	-	-
ierr	long	-	Error vector	-	-

7.70.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_dem_id_configure** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

Date:

Issue: 10/05/2019

Page: 269

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_dem_id_configure** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 179: Error messages of xp_dem_get_info function

Error type	Error message	Cause and impact	Error code	Error No
ERR	DEM id configured without cache	No calculation performed	XD_CFI_DEM_ID_CONFIGUR E_NO_CACHE_ERR	0
ERR	Wrong configuration command provided	No calculation performed	XD_CFI_DEM_ID_CONFIGUR E_WRONG_COMMAND_ERR	1
ERR	Error allocating memory	No calculation performed	XD_CFI_DEM_ID_CONFIGUR E_MEMORY_ERR	2
ERR	Error in input longitudes	No calculation performed	XD_CFI_DEM_ID_CONFIGUR E_LON_ERR	3
ERR	Error in input latitudes	No calculation performed	XD_CFI_DEM_ID_CONFIGUR E_LAT_ERR	4
ERR	Requested area needs more memory than maximum cache size	No calculation performed	XD_CFI_DEM_ID_CONFIGUR E_MAX_CACHE_ERR	5
ERR	Error loading tile	No calculation performed	XD_CFI_DEM_ID_CONFIGUR E_LOAD_TILE_ERR	6
ERR	Error locking thread	No calculation performed	XD_CFI_DEM_ID_CONFIGUR E_LOCK_THREAD_ERR	7

Date:

Issue: 10/05/20 197

Page: 270

7.71 xp_dem_get_cell_value

7.71.1 Overview

The **xp_dem_get_cell_value** CFI function retrives the altitude value for the corresponding DEM and the given row and column.

The altitude value returned by the function is the value stored in the corresponding DEM file (without any processing of the value). Note that some DEM's can give this value as the altitude over the ellipsoid while others give the altitude over the geoid.

The row/column value refers to the number of row/column considering a DEM covering the whole Earth.

This way, row 0 corresponds to the first row in DEM that gives the altitudes at latitude 90deg south and the last row will contain the altitudes at latitude 90deg north.

The column 0 corresponds to the altitudes for longitude 0 deg while the last column refers to the altitudes at longitude 360 deg.

The total number of rows/columns can be get with the function **xp_dem_get_id_data** (the returned structure contains these numbers: **xp_dem_id_data.dem_metadata.n_rows** and **xp_dem_id_data.dem_metadata.n_cols**). Note that the total number of rows/columns of the DEM is related to the DEM resolution as follows:

```
number of rows = 180deg / (resolution along latitude axis)
```

number of columns = 360deg / (resolution along latitude axis)

For instance, a DEM with a resolution of 30 arcsecond:

```
number of rows = 180 \text{deg} / (30/3600) = 21600
```

number of columns = 360 deg / (30/3600) = 43200

7.71.2 Calling Interface

The calling interface of the **xp_dem_get_cell_value** CFI function is the following (input parameters are underlined):

```
#include <explorer_pointing.h>
{
    xp_dem_id    dem_id = {NULL};
    long ierr[XP_NUM_ERR_DEM_GET_CELL_VALUE], status;
    long row;
    long column;
    double value;

status = xp_dem_get_cell_value(&dem_id, row, column, &value, ierr);
```


Date:

Issue: 10/05/2<u>Q</u>.1197

Page: 271

}

The XP_NUM_ERR_DEM_GET_CELL_VALUE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 272

7.71.3 Input Parameters

The xp_dem_get_cell_value CFI function has the following input parameters:

Table 180: Input parameters of xp_dem_get_cell_value function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
row	long	-	DEM row number	-	.>=0 < total number of rows in DEM (see total number of rows/ columns)
column	long	-	DEM column number	-	>=() < total number of columns in DEM (see total number of rows/ columns)

7.71.4 Output Parameters

The output parameters of the **xp dem get cell value** CFI function are:

Table 181: Output parameters of xp_dem_get_cell_value

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
value	double*	-	Altitude in DEM	m	-
ierr	long*	-	Error vector	-	-

7.71.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_dem_get_cell_value** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_dem_get_cell_value** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Date:

Issue: 10/05/2019

Page: 273

Table 182: Error messages of xp_dem_get_cell_value function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Error reading DEM point from file: %s	No calculation performed	XP_CFI_DEM_GET_CELL_VAL UE_READ_POINT_ERR	0
ERR	Requested row is out of DEM	No calculation performed	XP_CFI_DEM_GET_CELL_VAL UE_WRONG_ABS_ROW_ERR	1
ERR	Requested column is out of DEM	No calculation performed	XP_CFI_DEM_GET_CELL_VAL UE_WRONG_ABS_COL_ERR	2
ERR	Requested row is out of preloaded DEM	No calculation performed	XP_CFI_DEM_GET_CELL_VAL UE_WRONG_ROW_ERR	3
ERR	Requested column is out of preloaded DEM	No calculation performed	XP_CFI_DEM_GET_CELL_VAL UE_WRONG_COLUMN_ERR	4
ERR	Error computing the geoid undulation	No calculation performed	XP_CFI_DEM_GET_CELL_VAL UE_GET_GEOID_UNDU_ERR	5
ERR	Error getting DEM value from cache	No calculation performed	XP_CFI_DEM_GET_CELL_VAL UE_READ_CACHE_POINT_E RR	6

Date:

Issue: 10/05/2019

Page: 274

7.72 xp_dem_get_cell_geod

7.72.1 Overview

The **xp_dem_get_cell_geod** CFI function retrives the geodetic point (latitude/longitude) for the corresponding DEM for the given row and column.

The row/column value refers to the number of row/column considering a DEM covering the whole Earth (see details in section 7.71.1)

7.72.2 Calling Interface

The calling interface of the **xp_dem_get_cell_geod** CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR DEM GET CELL GEOD constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 275

7.72.3 Input Parameters

The **xp_dem_get_cell_geod** CFI function has the following input parameters:

Table 183: Input parameters of xp_dem_get_cell_geod function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
row	long	-	DEM row number	-	.>=0 < total number of rows in DEM (see total number of rows/columns)
column	long	-	DEM column number	-	>=0 < total number of columns in DEM (see total number of rows/columns)

7.72.4 Output Parameters

The output parameters of the **xp** dem get cell geod CFI function are:

Table 184: Output parameters of xp_dem_get_cell_geod

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
lat	double*	-	latitude corresponding to the input row/column	deg	[-90, 90]
lon	double*	-	longitudecorresponding to the input row/column	deg	[0, 360]
ierr	long*	-	Error vector	-	-

7.72.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_dem_get_cell_geod** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

Date:

Issue: 10/05/2019

Page: 276

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_dem_get_cell_geod** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 185: Error messages of xp_dem_get_cell_geod function

Error type	Error message	Cause and impact	Error code	Error No
ERR	DEM Id. is not initalized	No calculation performed	XP_CFI_DEM_GET_CELL_GE OD_DEM_STATUS_ERR	0

Date:

Issue: 10/05/2019

Page: 277

7.73 xp_target_inter

7.73.1 Overview

The **xp_target_inter** CFI function computes the first or the second intersection point of the line of sight from the satellite (defined by an elevation and an azimuth angle expressed in the selected Attitude Frame) with a surface located at a certain geodetic altitude over the Earth.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.73.2 Calling Interface

The calling interface of the **xp_target_inter** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
{
                    sat id;
    long
    xp attitude id attitude id = {NULL};
    xp atmos id
                    atmos id = {NULL};
    xp dem id
                    dem id = {NULL};
                   target id = {NULL};
    xp target id
    long deriv, inter flag, iray;
    double los az, los_el, geod_alt, los_az_rate, los_el_rate, freq;
    long ierr[XP NUM ERR TARGET INTER], status, num user target,
        num los target;
    status = xp target inter(&sat id,
              &attitude id,
              &atmos id,
              &dem id,
              &deriv, &inter flag, &los az, &los el, &geod alt,
              &los az rate, &los el rate, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target inter run(&run id,
```


}

Code: EO-MA-DMS-GS-0005

Date:

Issue: 10/05/2019

Page: 278

&attitude_id,
&deriv, &inter_flag, &los_az, &los_el, &geod_alt,
&los_az_rate, &los_el_rate, &iray, &freq,
&num_user_target, &num_los_target,

&target id, ierr);

The $\texttt{XP_NUM_ERR_TARGET_INTER}$ constant is defined in the file $explorer_pointing.h.$

Date:

Issue: 10/05/2<u>0</u>19

Page: 279

7.73.3 Input Parameters

The **xp_target_inter** CFI function has the following input parameters:

Table 186: Input parameters of xp_target_inter function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude_id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_id*	-	Structure that contains the atmosphere initialization.	-	The atmos_id has to be initialized with any of these modes: - XP_NO_REF_INIT - XP_STD_INIT - XP_USER_INIT
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
inter_flag	long *	-	Flag for first or second inter section point selection	-	Allowed values: (1) XP_INTER_1ST (2) XP_INTER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
los_el	double *	-	Elevation of the LOS (Attitude Frame)	deg	>= -90 <= 90
geod_alt	double *	-	Geodetic altitude over the Earth	m	>= -bWGS
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-
los_el_rate	double *	-	Elevation-rate of the LOS (Attitude Frame)	deg/s	-
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization. If iray is different of XP_NO_REF_INIT, a warning is raised.	-	-

Date:

Issue: 10/05/20 197

Page: 280

freq double *	-	Frequency of the signal	Hz	>= 0
---------------	---	-------------------------	----	------

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Derivative switch: deriv. See current document, Table 3.
- Intersection flag: inter flag. See current document, Table 3.

•

7.73.4 Output Parameters

The output parameters of the **xp_target_inter** CFI function are:

Table 187: Output parameters of xp_target_inter

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.73.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_inter** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_inter** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 188: Error messages of xp_target_inter function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_INTER_ ATTITUDE_STATUS_ERR	0
	Intersection flag is not correct	No calculation performed	XP_CFI_TARGET_INTER_I NTER_FLAG_ERR	1
ERR	Invalid Frequency	No calculation performed	XP_CFI_TARGET_INTER_	2

Date:

Issue: 10/05/2019

Page: 281

			FREQ_ERR	
ERR	Time reference ID is not correct	No calculation performed	XP_CFI_TARGET_INTER_ TIME_REF_ERR	3
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_INTER_ DERIV_FLAG_ERR	4
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_TARGET_INTER_I RAY_ID_ERR	5
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_TARGET_INTER_ LOS_AZIMUTH_ERR	6
ERR	Invalid LOS Elevation	No calculation performed	XP_CFI_TARGET_INTER_ LOS_ELEVATION_ERR	7
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_TARGET_INTER_ GEODETIC_ALT_ERR	8
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_INTER_ MEMORY_ERR	9
ERR	Internal computation error # 3	No calculation performed	XP_CFI_TARGET_INTER_I NITIAL_LOOK_DIR_OR_P LANE_ERR	10
ERR	Time Reference not initialised	No calculation performed	XP_CFI_TARGET_INTER_ TIME_REF_INIT_ERR	11
ERR	No target was found	No calculation performed	XP_CFI_TARGET_INTER_ TARGET_NOT_FOUND_E RR	12
ERR	Internal computation error # 4	No calculation performed	XP_CFI_TARGET_INTER_ RANGE_OR_POINTING_C ALC_ERR	13
WARN	Path from satellite to target occulted by the Earth	Calculation performed. A message informs the user.	XP_CFI_TARGET_INTER_ NEGATIVE_ALTITUDE_W ARN	14
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided.	XP_CFI_TARGET_INTER_IRA Y_ID_WARN	15

Date:

Issue: 10/05/2019

Page: 282

7.74 xp_target_ground_range

7.74.1 Overview

The **xp_target_ground_range** CFI function computes the location of a point that is placed on a surface at a certain geodetic altitude over the Earth, that lays on the plane defined by the satellite position, the nadir and a reference point, and that is at a certain distance or ground range measured along that surface from that reference point.

This reference point is calculated being the intersection of the previous surface with the line of sight defined by an elevation and azimuth angle in the selected Attitude Frame.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.74.2 Calling Interface

The calling interface of the **xp_target_ground_range** CFI function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
{
    long
                    sat id;
    xp attitude id attitude id = {NULL};
    xp dem id
                    dem id = {NULL};
                    target id = {NULL};
    xp target id
    long deriv;
    double los az, los el, geod alt, distance;
    double los az rate, los_el_rate;
    long ierr[XP NUM ERR TARGET GROUND RANGE], status,
             num user target, num los target;
    status = xp target ground range (&sat id,
              &attitude id,
              &dem id,
              &deriv, &los az,
              &los el, &geod alt, &distance, &los az rate,
              &los el rate, &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run id */
    long run id;
```


Date:

Issue: 10/05/2\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\ri

Page: 283

The XP_NUM_ERR_TARGET_GROUND_RANGE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 284

7.74.3 Input Parameters

The xp_target_ground_range CFI function has the following input parameters:

Table 189: Input parameters of xp_target_ground_range function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude_id*	-	Structure that contains the Attitude. (input/output)	-	-
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
los_el	double *	-	Elevation of the LOS (Attitude Frame)	deg	>= -90 <= 90
geod_alt	double *	-	Geodetic altitude over the Earth (Earth fixed CS)	m	>= -bWGS
distance	double *	-	Distance or ground range to the reference point, positive from nadir in the azimuth direction (Earth Fixed CS)	m	-
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-
los_el_rate	double *	-	Elevation-rate of the LOS (Attitude Frame)	deg/s	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 285

7.74.4 Output Parameters

The output parameters of the xp_target_ground_range CFI function are:

Table 190: Output parameters of xp_target_ground_range

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.74.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_ground_range** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_ground_range** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 191: Error messages of xp_target_ground_range function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_GR_RA NGE_ATTITUDE_STATUS _ERR	0
ERR	Time reference ID is not correct	No calculation performed	XP_CFI_TARGET_GR_RA NGE_TIME_REF_ERR	1
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_GR_RA NGE_DERIV_FLAG_ERR	2
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_TARGET_GR_RA NGE_LOS_AZIMUTH_ERR	3
ERR	Invalid LOS Elevation	No calculation performed	XP_CFI_TARGET_GR_RA NGE_LOS_ELEVATION_E RR	4

Date:

Issue: 10/05/2019

Page: 286

ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_TARGET_GR_RA NGE_GEODETIC_ALT_ER R	5
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_GR_RA NGE_MEMORY_ERR	6
ERR	Internal computation error # 3	No calculation performed	XP_CFI_TARGET_GR_RA NGE_INITIAL_LOOK_DIR _OR_PLANE_ERR	7
ERR	Time reference is not initialized	No calculation performed	XP_CFI_TARGET_GR_RA NGE_TIME_REF_INIT_ER R	8
ERR	No target was found	No calculation performed	XP_CFI_TARGET_GR_RA NGE_TARGET_NOT_FOU ND_ERR	9
ERR	Internal computation error #4	No calculation performed	XP_CFI_TARGET_GR_RA NGE_RANGE_OR_POINTI NG_CALC_ERR	10

Date:

Issue: 10/05/2019

Page: 287

7.75 xp_target_incidence_angle

7.75.1 Overview

The **xp_target_incidence_angle** CFI function computes the location of a point that is placed on a surface at a certain geodetic altitude over the Earth and that is seen from the satellite on a line of sight that forms a certain azimuth angle in the selected Attitude Frame and that intersects that surface with a certain incidence angle.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.75.2 Calling Interface

The calling interface of the **xp_target_incidence_angle** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
    long
                   sat id, deriv;
    xp attitude id attitude id = {NULL};
                   dem id = {NULL};
    xp dem id
    xp target id
                   target id = {NULL};
    double los az, inc angle, geod alt, los az rate;
    long ierr[XP NUM ERR TARGET INCIDENCE ANGLE], status,
             num user target, num los target;
    status = xp target incidence angle (&sat id,
                  &attitude id, &dem id,
                  &deriv, &los az,
                  &inc angle, &geod alt, &los az rate,
                  &num user target, &num los target,
                  &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target incidence angle run(&run id, &attitude id,
                  &deriv, &los az,
                  &inc angle, &geod alt, &los az rate,
                  &num user target, &num los target,
```


Date:

Issue: 10/05/2019

Page: 288

&target_id, ierr);

The XP NUM ERR TARGET INCIDENCE ANGLE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 289

7.75.3 Input Parameters

The **xp_target_incidence_angle** CFI function has the following input parameters:

Table 192: Input parameters of xp_target_incidence_angle function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
inc_angle	double *	-	Incidence angle of the LOS (Earth fixed CS)	deg	>= 0 <= 90
geod_alt	double *	-	Geodetic altitude over the Earth (Earth fixed CS)	m	>= -bWGS
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/20 197

Page: 290

7.75.4 Output Parameters

The output parameters of the xp_target_incidence_angle CFI function are:

Table 193: Output parameters of xp_target_incidence_angle

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.75.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_incidence_angle** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_incidence_angle** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 194: Error messages of xp_target_incidence_angle function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_INC_AN GLE_ATTITUDE_STATUS_ ERR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_INC_AN GLE_DERIV_FLAG_ERR	1
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_TARGET_INC_AN GLE_LOS_AZIMUTH_ERR	2
ERR	Invalid Incidence Angle	No calculation performed	XP_CFI_TARGET_INC_AN GLE_INC_ANGLE_ERR	3
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_TARGET_INC_AN GLE_GEODETIC_ALT_ER R	4

Date:

Issue: 10/05/2019

Page: 291

ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_INC_AN GLE_MEMORY_ERR	5
ERR	Internal computation error #3	No calculation performed	XP_CFI_TARGET_INC_AN GLE_INITIAL_LOOK_DIR_ OR_PLANE_ERR	6
ERR	Time Reference not initialised	No calculation performed	XP_CFI_TARGET_INC_AN GLE_TIME_REF_INIT_ERR	7
ERR	No target was found	No calculation performed	XP_CFI_TARGET_INC_AN GLE_TARGET_NOT_FOUN D_ERR	8

Date:

Issue: 10/05/2019

Page: 292

7.76 xp_target_range

7.76.1 Overview

The **xp_target_range** CFI function computes the location of a point that is placed on a surface at a certain geodetic altitude over the Earth, that is seen from the satellite on a line of sight that forms a certain azimuth angle in the selected Attitude Frame, and that is at a certain range or slant-range from the satellite. If more than one target is found, the first one will be the one with an elevation closer to 90 degrees (targets will have the same azimuth, equal to input azimuth).

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.76.2 Calling Interface

The calling interface of the **xp_target_range** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
    long
                    sat id;
    xp attitude id attitude id = {NULL};
    xp dem id
                   dem id = {NULL};
                   target id = {NULL};
    xp target id
    long deriv;
    double los az, range, geod alt, los az rate, range rate;
    long ierr[XP NUM ERR TARGET_RANGE], status, num_user_target,
             num los target;
    status = xp target range (&sat id, &attitude id, &dem id,
                  &deriv, &los az, &range,
                  &geod alt, &los az rate, &lrange rate,
                   &num user target, &num los target,
                   &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target range run(&run id, &attitude id,
                  &deriv, &los az, &range,
                  &geod alt, &los az rate, &lrange rate,
                   &num user target,
                                                 &num los target,
```


Date:

Issue: 10/05/2<u>Q</u>.1197

Page: 293

&target_id, ierr);

The XP NUM ERR TARGET RANGE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 294

7.76.3 Input Parameters

The xp_target_range CFI function has the following input parameters:

Table 195: Input parameters of xp_target_range function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
range	double *	-	Range to the satellite (Earth fixed CS)	m	> 0
geod_alt	double *	-	Geodetic altitude over the Earth	m	>= -bWGS
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-
range_rate	double *	-	Range-rate to the satellite (Earth fixed CS)	m/s	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 295

7.76.4 Output Parameters

The output parameters of the **xp_target_range** CFI function are:

Table 196: Output parameters of xp_target_range

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated (per user target)	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.76.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_range** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_range** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 197: Error messages of xp_target_range function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_RANG E_ATTITUDE_STATUS_E RR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_RANG E_DERIV_FLAG_ERR	1
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_TARGET_RANG E_LOS_AZIMUTH_ERR	2
ERR	Invalid Range	No calculation performed	XP_CFI_TARGET_RANG E_RANGE_ERR	3
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_TARGET_RANG E_GEODETIC_ALT_ERR	4
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_RANG	5

Date:

Issue: 10/05/2019

Page: 296

			E_MEMORY_ERR	
ERR	Internal computation error #3	No calculation performed	XP_CFI_TARGET_RANG E_INITIAL_LOOK_DIR_O R_PLANE_ERR	6
ERR	Could not perform a time transformation	No calculation performed	XP_CFI_TARGET_RANG E_TIME_TRANSFORMAT ION_ERR	7
ERR	No target was found	No calculation performed	XP_CFI_TARGET_RANG E_TARGET_NOT_FOUND _ERR	8

Date:

Issue: 10/05/2019

Page: 297

7.77 xp_target_range_rate

7.77.1 Overview

The **xp_target_range_rate** CFI function computes the location of a point that is placed on a surface at a certain geodetic altitude over the Earth, that is at a certain range from the satellite, and this range has a certain change rate (range rate). Associated Earth-fixed target is supposed to have zero range-rate value.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.77.2 Calling Interface

The calling interface of the **xp_target_range_rate** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
{
                    sat id;
    long
    xp attitude id attitude id = {NULL};
                   dem id = {NULL};
    xp dem id
                   target id = {NULL};
    xp target id
    long deriv;
    double ef range rate, range, geod alt;
    double ef range rate rate, range rate;
    long ierr[XP NUM ERR TARGET RANGE RATE], status, num user target,
             num los target;
    status = xp target range rate(&sat id,
              &attitude id,
              &dem id,
              &deriv, &ef range rate, &range,
              &geod alt, &ef range rate rate, &range rate,
              &num user target, &num los target, &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target range rate run (&run id,
              &attitude id,
              &deriv, &ef range rate, &range,
```


}

Code: EO-MA-DMS-GS-0005

Date:

Issue: 10/05/2019

Page: 298

```
&geod_alt, &ef_range_rate_rate, &range_rate,
&num_user_target, &num_los_target, &target_id, ierr);
```

The XP NUM ERR TARGET RANGE RATE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 299

7.77.3 Input Parameters

The **xp_target_range_rate** CFI function has the following input parameters:

Table 198: Input parameters of xp_target_range_rate function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
attitude_frame_ id	long *	-	Attitude Frame ID	-	Complete
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
ef_range_rate	double *	-	Range-rate of the related Earth-fixed target (Earth fixed CS)	m/s	-
range	double *	-	Range or slant-range from tar get to satellite (Earth fixed CS)	m	> 0
geod_alt	double *	-	Geodetic altitude over the Earth	m	>= -bWGS
ef_range_rate _rate	double *	-	Range-rate-rate of the related Earth-fixed target (Earth fixed CS)	m/s2	-
			Dummy parameter.		
range_rate	double *	-	Range-rate from target to sat ellite	m/s	-
<u> </u>			(Earth fixed CS) Dummy parameter.		

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 300

7.77.4 Output Parameters

The output parameters of the **xp_target_range_rate** CFI function are:

Table 199: Output parameters of xp_target_range_rate

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.77.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_range_rate** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_range_rate** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 200: Error messages of xp_target_range_rate function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_RANG E_RATE_ATTITUDE_STA TUS_ERR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_RANG E_RATE_DERIV_FLAG_E RR	1
ERR	Invalid Range	No calculation performed	XP_CFI_TARGET_RANG E_RATE_RANGE_ERR	2
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_TARGET_RANG E_RATE_GEODETIC_ALT _ERR	3
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_RANG	4

Date:

Issue: 10/05/2019

Page: 301

			E_RATE_MEMORY_ERR	
ERR	Time Reference not initialised	No calculation performed	XP_CFI_TARGET_RANG E_RATE_TIME_REF_INIT _ERR	5
ERR	Internal computation error #3	No calculation performed	XP_CFI_TARGET_RANG E_RATE_INITIAL_LOOK_ DIR_OR_PLANE_ERR	6
ERR	No target was found	No calculation performed	XP_CFI_TARGET_RANG E_RATE_TARGET_NOT_ FOUND_ERR	7
WARN	Range rate algo only returns results without derivatives	Calculation performed. A message informs the user.	XP_CFI_TARGET_RANGE_RA TE_DERIV_FLAG_WARN	8

Date:

Issue: 10/05/2019

Page: 302

7.78 xp_target_tangent

7.78.1 Overview

The **xp_target_tangent** CFI function computes the location of the tangent point over the Earth that is located on the line of sight defined by an elevation and azimuth angles expressed in the selected Attitude Frame.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.78.2 Calling Interface

The calling interface of the **xp_target_tangent** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
{
                    sat id;
    long
    xp attitude id attitude id = {NULL};
    xp atmos id
                   atmos id = {NULL};
    xp dem id
                   dem id = {NULL};
    xp target id
                   target id = {NULL};
    long deriv,
                      iray;
    double los_az, los_el, los_az_rate, los_el_rate, freq;
    long ierr[XP NUM ERR TARGET TANGENT], status, num user target,
        num los target;
    status = xp target tangent(&sat id, &attitude id,
                              &dem id,
                  &atmos id,
                  &deriv, &los az, &los el,
                  &los az rate, &los el rate, &iray, &freq,
                  &num user target, &num los target,
                  &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target tangent run(&run id, &attitude id,
                  &deriv, &los az, &los el,
                  &los az rate, &los el rate, &iray, &freq,
```


Date:

Issue: 10/05/2<u>Q</u>.1197

Page: 303

```
&num_user_target, &num_los_target,
&target_id, ierr);
```

The XP_NUM_ERR_TARGET_TANGENT constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 304

7.78.3 Input Parameters

The xp_target_tangent CFI function has the following input parameters:

Table 201: Input parameters of xp_target_tangent function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_ id*	-	Structure that contains the atmosphere initialization.	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
los_el	double *	-	Elevation of the LOS (Attitude Frame)	deg	>= -90 <= 90
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-
los_el_rate	double *	-	Elevation-rate of the LOS (Attitude Frame)	deg/s	-
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 305

7.78.4 Output Parameters

The output parameters of the xp_target_tangent CFI function are:

Table 202: Output parameters of xp_target_tangent

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.78.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_tangent** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_tangent** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 203: Error messages of xp_target_tangent function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_TANGE NT_ATTITUDE_STATUS_E RR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_TANGE NT_DERIV_FLAG_ERR	1
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_TARGET_TANGENT_ LOS_AZIMUTH_ERR	2
ERR	Invalid LOS Elevation	No calculation performed	XP_CFI_TARGET_TANGENT_ LOS_ELEVATION_ERR	3
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_TARGET_TANGE NT_IRAY_ID_ERR	4
ERR	Invalid Frequency	No calculation performed	XP_CFI_TARGET_TANGENT_	5

Date:

Issue: 10/05/2019

Page: 306

			FREQ_ERR	
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_TANGE NT_MEMORY_ERR	6
ERR	Internal computation error # 3	No calculation performed	XP_CFI_TARGET_TANGE NT_INITIAL_LOOK_DIR_ OR_PLANE_ERR	7
ERR	Time Reference not initialised	No calculation performed	XP_CFI_TARGET_TANGE NT_TIME_REF_INIT_ERR	8
ERR	No target was found	No calculation performed	XP_CFI_TARGET_TANGE NT_TARGET_NOT_FOUN D_ERR	9
ERR	Error computing target when it is behind looking direction	No calculation performed	XP_CFI_TARGET_TANGENT_ TG_PT_BEHIND_LOOK_DIR_ ERR	10
ERR	Internal computation error # 4	No calculation performed	XP_CFI_TARGET_TANGE NT_RANGE_OR_POINTIN G_CALC_ERR	11
WARN	Path from satellite to target occulted by the Earth	Calculation performed. A message informs the user.	XP_CFI_TARGET_TANGE NT_NEGATIVE_ALTITUD E_WARN	12
WARN	Tangent point latitude is outside the selected corrective function latitude band	Calculation performed. A message informs the user.	XP_CFI_TARGET_TANGENT_ PRED_WRONG_LAT_WARN, WARN	13
WARN	Tangent point is behind looking direction	Calculation performed. A message informs the user.	XP_CFI_TARGET_TANGENT_ TG_PT_BEHIND_LOOK_DIR_ WARN	14
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided	XP_CFI_TARGET_TANGENT_I RAY_ID_WARN	15

Date:

Issue: 10/05/2019

Page: 307

7.79 xp_target_altitude

7.79.1 Overview

The **xp_target_altitude** CFI function computes the location of the tangent point over the Earth that is located on a surface at a certain geodetic altitude over the Earth and that is on a line of sight that forms a certain azimuth angle in the selected Attitude Frame.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.79.2 Calling Interface

The calling interface of the **xp_target_altitude** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
{
                    sat id;
    long
    xp attitude id attitude id = {NULL};
    xp atmos id
                    atmos id = {NULL};
    xp dem id
                    dem id = {NULL};
    xp target id
                    target id = {NULL};
    long deriv,
                      iray;
    double los_az, geod_alt, los_az_rate, freq;
    long ierr[XP NUM ERR TARGET ALTITUDE], status, num user target,
             num los target;
    status = xp target altitude (sat id, &attitude id,
              &atmos id, &dem id,
              &deriv, &los az, &geod alt,
              &los az rate, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target altitude run(run id, &attitude id,
              &deriv, &los az, &geod alt,
              &los az rate, &iray, &freq,
```


Date:

Issue: 10/05/2<u>Q</u>.1197

Page: 308

```
&num_user_target, &num_los_target,
&target_id, ierr);
}
```

The XP_NUM_ERR_TARGET_ALTITUDE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 309

7.79.3 Input Parameters

The xp_target_altitude CFI function has the following input parameters:

Table 204: Input parameters of xp_target_altitude function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_ id*	-	Structure that contains the atmosphere initialization.	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
geod_alt	double *	-	Geodetic altitude over the Earth	m	>= -bWGS
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 310

7.79.4 Output Parameters

The output parameters of the xp_target_altitude CFI function are:

Table 205: Output parameters of xp_target_altitude

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.79.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_altitude** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_altitude** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 206: Error messages of xp_target_altitude function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_ALT_AT TITUDE_STATUS_ERR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_ALT_DE RIV_FLAG_ERR	1
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_TARGET_ALT_LO S_AZIMUTH_ERR	2
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_TARGET_ALT_GE ODETIC_ALT_ERR	3
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_TARGET_ALT_IR AY_ID_ERR	4
ERR	Invalid Frequency	No calculation performed	XP_CFI_TARGET_ALT_FR	5

Date:

Issue: 10/05/2019

Page: 311

			EQ_ERR	
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_ALT_M EMORY_ERR	6
ERR	Time Reference not initialised	No calculation performed	XP_CFI_TARGET_ALT_TI ME_REF_INIT_ERR	7
ERR	Internal computation error #3	No calculation performed	XP_CFI_TARGET_ALT_INI TIAL_LOOK_DIR_OR_PLA NE_ERR	8
ERR	No target was found	No calculation performed	XP_CFI_TARGET_ALT_TA RGET_NOT_FOUND_ERR	9
ERR	Internal computation error #4	No calculation performed	XP_CFI_TARGET_ALT_RA NGE_OR_POINTING_CAL C_ERR	10
WARN	Path from satellite to target occulted by the Earth	Calculation performed. A message informs the user.	XP_CFI_TARGET_ALT_NE GATIVE_ALTITUDE_WAR N	11
WARN	Tangent point latitude is outside the selected corrective function latitude band	Calculation performed. A message informs the user.	XP_CFI_TARGET_ALT_PR ED_WRONG_LAT_WARN	12
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this parameter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided.	XP_CFI_TARGET_ALT_IRAY_I D_WARN	13

Date:

Issue: 10/05/2019

Page: 312

7.80 xp_target_star

7.80.1 Overview

The **xp_target_star** CFI function computes the location of the tangent point over the Earth that is located on the line of sight that points to a star defined by its right ascension and declination coordinates.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.80.2 Calling Interface

The calling interface of the xp_target_star CFI function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
                    sat id;
    long
    xp attitude id attitude id = {NULL};
                    atmos id = {NULL};
    xp atmos id
                    dem id = {NULL};
    xp dem id
    xp target id
                   target id = {NULL};
    long deriv, iray;
    double star ra, star dec, star ra rate, star dec rate, freq;
    long ierr[XP NUM ERR TARGET STAR], status, num user target,
             num los target;
    status = xp target star(&sat id, &attitude id,
              &atmos id, &dem id,
              &deriv, &star ra, star dec,
              &star ra rate, &star dec rate, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target star run(&run id, &attitude id,
              &deriv, &star ra, star dec,
              &&star ra rate, &star dec rate, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
```


Date:

Issue: 10/05/2<u>Q</u>.1197

Page: 313

}

The XP_NUM_ERR_TARGET_STAR constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 314

7.80.3 Input Parameters

The **xp_target_star** CFI function has the following input parameters:

Table 207: Input parameters of xp_target_star function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_ id*	-	Structure that contains the atmosphere initialization.	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
star_ra	double *	-	Right ascension of the star (True of Date CS)	deg	>= 0 < 360
star_dec	double *	-	Declination of the star (True of Date CS)	deg	>= -90 <= +90
star_ra_rate	double *	-	Right ascension rate of the star (True of Date CS)	deg/s	-
star_dec_rate	double *	-	Declination rate of the star (True of Date CS)	deg/s	-
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 315

7.80.4 Output Parameters

The output parameters of the xp_target_star CFI function are:

Table 208: Output parameters of xp_target_star

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.80.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_star** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_star** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 209: Error messages of xp_target_star function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_STAR_A TTITUDE_STATUS_ERR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_STAR_D ERIV_FLAG_ERR	1
ERR	Invalid Right Ascension of the star	No calculation performed	XP_CFI_TARGET_STAR_R A_ERR	2
ERR	Invalid Declination of the star	No calculation performed	XP_CFI_TARGET_STAR_D EC_ERR	3
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_TARGET_STAR_I RAY_ID_ERR	4
ERR	Invalid Frequency	No calculation performed	XP_CFI_TARGET_STAR_F	5

Date:

Issue: 10/05/2019

Page: 316

			REQ_ERR	
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_STAR_ MEMORY_ERR	6
ERR	Internal computation error # 3	No calculation performed	XP_CFI_TARGET_STAR_I NITIAL_LOOK_DIR_OR_P LANE_ERR	7
ERR	Time reference ID is not correct	No calculation performed	XP_CFI_TARGET_STAR_T IME_REF_INIT_ERR	8
ERR	No target was found	No calculation performed	XP_CFI_TARGET_STAR_T ARGET_NOT_FOUND_ER R	9
ERR	Tangent point is behind looking direction	No calculation performed	XP_CFI_TARGET_STAR_T G_PT_BEHIND_LOOK_DIR _ERR	10
ERR	Internal computation error # 4	No calculation performed	XP_CFI_TARGET_STAR_R ANGE_OR_POINTING_CA LC_ERR	11
WARN	Path from satellite to target occulted by the Earth	Calculation performed. A message informs the user.	XP_CFI_TARGET_STAR_N EGATIVE_ALTITUDE_WA RN	12
WARN	Tangent point latitude is outside the selected corrective function latitude band	Calculation performed. A message informs the user.	XP_CFI_TARGET_STAR_P RED_WRONG_LAT_WAR N	13
WARN	Tangent point is behind looking direction		XP_CFI_TARGET_STAR_TG_ PT_BEHIND_LOOK_DIR_WAR N	14
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided	XP_CFI_TARGET_STAR_IRAY _ID_WARN	15

Date:

Issue: 10/05/2019

Page: 317

7.81 xp_target_station

7.81.1 Overview

The **xp_target_station** CFI function computes the most relevant observation parameters of the link between the satellite and a ground station.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.81.2 Calling Interface

The calling interface of the **xp_target_station** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
    long
                    sat id;
    xp attitude id attitude id = {NULL};
                   dem id = {NULL};
    xp dem id
    xp target id
                    target id = {NULL};
    long deriv;
    double geoc long, geod lat, geod alt, min link el;
    long ierr[XP NUM ERR TARGET STATION], status, num user target,
             num los target;
    status = xp target station(&sat id,
              &attitude id, &dem id,
              &deriv, &geoc long, &geod lat,
              &geod alt, &min link el,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target station run(&run id,
              &attitude id,
              &deriv, &geoc long, &geod lat,
              &geod alt, &min link el,
              &num user target, &num los target,
```


Date:

Issue: 10/05/2<u>Q</u>.1₁9₇

Page: 318

&target_id, ierr);

The XP_NUM_ERR_TARGET_STATION constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 319

7.81.3 Input Parameters

The **xp_target_station** CFI function has the following input parameters:

Table 210: Input parameters of xp_target_station function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
geoc_long	double *	-	GS geocentric longitude (Earth fixed CS)	deg	>= 0 < 360
geod_lat	double *	-	GS geodetic latitude (Earth fixed CS)	deg	>= -90 < = 90
geod_alt	double *	-	GS geodetic altitude (Earth fixed CS)	m	>= -bWGS
min_link_el	double *	-	GS minimum link elevation (Topocentric CS)	deg	>= -90 <= 90

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 320

7.81.4 Output Parameters

The output parameters of the xp_target_station CFI function are:

Table 211: Output parameters of xp_target_station

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.81.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_station** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_station** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 212: Error messages of xp_target_station function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_STATIO N_ATTITUDE_STATUS_E RR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_STATIO N_DERIV_FLAG_ERR	1
ERR	Invalid GS Geocentric Longitude	No calculation performed	XP_CFI_TARGET_STATIO N_GEOC_LONG_ERR	2
ERR	Invalid GS Geodetic Latitude	No calculation performed	XP_CFI_TARGET_STATIO N_GEOD_LAT_ERR	3
ERR	Invalid GS Geodetic Altitude	No calculation performed	XP_CFI_TARGET_STATIO N_GEODETIC_ALT_ERR	4
ERR	Invalid GS Minimum Link	No calculation performed	XP_CFI_TARGET_STATIO	5

Date:

Issue: 10/05/2019

Page: 321

	Elevation		N_MIN_LINK_EL_ERR	
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_STATIO N_MEMORY_ERR	6
ERR	Internal computation error #3	No calculation performed	XP_CFI_TARGET_STATIO N_STAVIS_COMP_FAILED _ERR	7

Date:

Issue: 10/05/2019

Page: 322

7.82 xp_target_generic

7.82.1 Overview

The **xp_target_generic** CFI function allows the user to provide the target location (position and velocity) and later calculate extra results from it.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.82.2 Calling Interface

The calling interface of the **xp_target_generic** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
    long
                    sat id;
    xp attitude id attitude id = {NULL};
                   dem id = {NULL};
    xp dem id
    xp target id
                    target id = {NULL};
    long deriv;
    double targ pos[3], targ_vel[3], targ_acc[3];
    long ierr[XP NUM ERR TARGET GENERIC], status, num user target,
             num los target;
    status = xp target generic(&sat id,
              &attitude id,
              &dem id,
              &deriv, targ pos, targ vel, targ acc,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target generic run(&run id,
              &attitude id,
              &deriv, targ pos, targ vel, targ acc,
              &num user target, &num los target,
              &target id, ierr);
```


Date:

Issue: 10/05/2019

Page: 323

}

The XP NUM ERR TARGET GENERIC constant is defined in the file explorer_pointing.h.

7.82.3 Input Parameters

The **xp_target_generic** CFI function has the following input parameters:

Table 213: Input parameters of xp_target_generic function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
targ_pos	double[3]	[0-2]	Target position vector (Earth Fixed CS)	m	-
targ_vel	double[3]	[0-2]	Target velocity vector (Earth Fixed CS)	m/s	-
targ_acc	double[3]	[0-2]	Target acceleration vector (Earth Fixed CS)	m/s2	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

7.82.4 Output Parameters

The output parameters of the **xp_target_generic** CFI function are:

Table 214: Output parameters of xp_target_generic

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar	long*	-	Number of LOS targets calculated	-	>= 0

Date:

Issue: 10/05/2019

Page: 324

get					
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.82.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_generic** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_generic** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 215: Error messages of xp_target_generic function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_GENERIC_ ATTITUDE_STATUS_ERR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_GENERIC_ DERIV_FLAG_ERR	1
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_GENERIC_ MEMORY_ERR	2
ERR	Internal computation error # 3	No calculation performed	XP_CFI_TARGET_GENERIC_ INITIAL_LOOK_DIR_OR_PL ANE_ERR	3

Date:

Issue: 10/05/2019

Page: 325

7.83 xp_target_reflected

7.83.1 Overview

The **xp_target_reflected** CFI function allows the user to compute, from S/C position and attitude, and emitting source position, the point of reflection from the source towards the SC at a certain geodetic altitude.

Note: in some limit configurations the function will return a degraded solution (returning also a warning of type XP_CFI_TARGET_REFLECTED_DEGRADED_SOL_WARN), where a maximum difference between the incidence angle and the reflected angle can be up to 5 milidegrees.

7.83.2 Calling Interface

The calling interface of the **xp_target_reflected** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
    long
                    sat id, deriv, source type;
    long
                    status, num user target, num los target;
    xp attitude id attitude id = {NULL};
    xp target id
                    target id = {NULL};
    double
                    geod alt, deflection north, deflection east,
                     source param[XP NUM SOURCE PARAM];
                   ierr[XP NUM ERR TARGET REFLECTED]
    long
    status = xp target reflected( &sat id, &attitude id,
                         &deriv, &geod alt,
                         &deflection north, &deflection east,
                         &source type, source param,
                          /* outputs */
                       &num_user_target, &num_los_target,
                       &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target reflected run( &run id,
                        &attitude id, &deriv, &geod alt,
                          &deflection north, &deflection east,
                          &source type, source param,
                          /* outputs */
```


Date:

Issue: 10/05/2019

Page: 326

```
&num_user_target, &num_los_target,
&target_id, ierr);
```

The XP NUM ERR TARGET GENERIC constant is defined in the file explorer_pointing.h.

7.83.3 Input Parameters

The **xp_target_reflected** CFI function has the following input parameters:

Table 216: Input parameters of xp_target_reflected function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
geod_lat	double *	-	GS geodetic latitude (Earth fixed CS)	deg	>= -90 <= 90
deflection_nort	double *	-	North-South component of the vertical deflection	deg	>= -90 < = 90
deflection_east	double *	-	East-West component of the vertical deflection	deg	>= -90 <= 90
source_type	long *	-	The type of source	-	Allowed values: XP_SOURCE_STAR XP_SOURCE_SUN XP_SOURCE_MOON XP_SOURCE_GENE RIC
source param	double[XP_ NUM_SOU RCE_PAR AM]	[0-5]	 if source_type is XP_SRC_STAR is selected, source_param = [ra (deg), dec (deg), paral lax, 0.0, 0.0, 0.0], i.e. star coordinates in BM2000 CS. if source_type is XP_SOURCE_GENERI C source_param = [x, y, z, vx,vy,vz] position and velocity in EF else dummy values. 	Right ascension and decli nation in degrees. Position vector in meters, velocity in meters/ second	-

Date:

Issue: 10/05/2019

Page: 327

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Derivative switch: deriv. See current document, Table 3.
- Source Identification: source type. See current document, Table 3.

7.83.4 Output Parameters

The output parameters of the **xp_target_reflected** CFI function are:

Table 217: Output parameters of xp_target_reflected

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.83.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_reflected** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_reflected** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 218: Error messages of xp_target_reflected function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_REFLECT ED_ATTITUDE_STATUS_ER R	0
ERR	Error when calling xp_target_star	No calculation performed	XP_CFI_TARGET_REFLECT ED_TARGET_STAR_ERR	1
ERR	Error when calling	No calculation performed	XP_CFI_TARGET_REFLECT	2

Date:

Issue: 10/05/2019

Page: 328

	xp_target_tangent_sun		ED_TARGET_TG_SUN_ERR	
ERR	Error when calling xp_target_tangent_moon	No calculation performed	XP_CFI_TARGET_REFLECT ED_TARGET_TG_MOON_ER R	3
ERR	Error when calling xl_change_cart_cs	No calculation performed	XP_CFI_TARGET_REFLECT ED_CHANGE_CS_ERR	4
ERR	Could not get direction pointing	No calculation performed	XP_CFI_TARGET_REFLECT ED_DIR_POINT_ERR	5
ERR	Error when calling xp_target_tangent	No calculation performed	XP_CFI_TARGET_REFLECT ED_TARGET_TG_ERR	6
ERR	Wrong input parameter "source_type"	No calculation performed	XP_CFI_TARGET_REFLECT ED_WRONG_SRC_TYPE_ER R	7
ERR	Error when calling xp_target_extra_main	No calculation performed	XP_CFI_TARGET_REFLECT ED_TGT_EXTRA_MAIN_ER R	8
ERR	Target tangent altitude is less than the requested altitude	No calculation performed	XP_CFI_TARGET_REFLECT ED_WRONG_ALTITUDE_ER R	9
ERR	Could not get cartesian coordinates for the star	No calculation performed	XP_CFI_TARGET_REFLECT ED_RADEC_TO_CART_ERR	10
ERR	Could not get the Sun coordinates	No calculation performed	XP_CFI_TARGET_REFLECT ED_SUN_ERR	11
ERR	Could not get the Moon coordinates	No calculation performed	XP_CFI_TARGET_REFLECT ED_MOON_ERR	12
ERR	Iteration did not converge. Impossible to find the deflection point	No calculation performed	XP_CFI_TARGET_REFLECT ED_ITER_ERR	13
ERR	Could not compute GPM attitude frame	No calculation performed	XP_CFI_TARGET_REFLECT ED_SAT_NOM_ATT_INIT_E RR	14
ERR	Could not initialise the attitude frame	No calculation performed	XP_CFI_TARGET_REFLECT ED_ATT_INIT_ERR	15
ERR	Could not compute the attitude frame	No calculation performed	XP_CFI_TARGET_REFLECT ED_ATT_COMPUTE_ERR	16
ERR	Error when calling xp_target_extra_specular_re flection	No calculation performed	XP_CFI_TARGET_REFLECT ED_TGT_EXTRA_REF_ERR	17
ERR	Error when calling xp_target_inter	No calculation performed	XP_CFI_TARGET_REFLECT ED_TARGET_INTER_ERR	18
ERR	Error when calling xp_target_extra_vector	No calculation performed	XP_CFI_TARGET_REFLECT ED_TARGET_EXTRA_ERR	19
ERR	Error when calling xp_target_generic	No calculation performed	XP_CFI_TARGET_REFLECT ED_TARGET_GENERIC_ERR	20
ERR	Could not change EF	No calculation performed	XP_CFI_TARGET_REFLECT	21

Date:

Issue: 10/05/2019

Page: 329

	coordinates to topocentric		ED_EF_TO_TOP_ERR	
ERR	Could not change topocentric coordinates to EF	No calculation performed	XP_CFI_TARGET_REFLECT ED_TOP_TO_EF_ERR	22
ERR	Could not close target	No calculation performed	XP_CFI_TARGET_REFLECT ED_TGT_CLOSE_ERR	23
ERR	Could not close attitude	No calculation performed	XP_CFI_TARGET_REFLECT ED_ATT_CLOSE_ERR	24
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_REFLECT ED_MEMORY_ERR	25
ERR	Could not compute the satellite to target range	No calculation performed	XP_CFI_TARGET_REFLECT ED_RANGE_CALC_ERR	26
WARN	Degraded solution returned	Calculation performed	XP_CFI_ARGET_REFLECTED_D EGRADED_SOL_WARN	27

Date:

Issue: 10/05/2019

Page: 330

7.84 xp_target_travel_time

7.84.1 Overview

The **xp_target_travel_time** CFI function computes the point of the line or sight from the satellite (defined by an elevation and an azimuth angle expressed in the selected Attitude Frame) at a given travel time along the (curved) line of sight.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.84.2 Calling Interface

The calling interface of the **xp_target_travel_time** CFI function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
{
                    sat id;
    long
    xp attitude id attitude id = {NULL};
    xp atmos id
                    atmos id = {NULL};
    xp dem id
                    dem id = {NULL};
    xp target id
                    target id = {NULL};
    long deriv, iray;
    double los az, los el, travel time
    double los az rate, los el rate, travel time rate, freq;
    long ierr[XP NUM ERR TARGET TRAVEL TIME], status,
             num user target, num los target;
    status = xp target travel time(&sat id,
              &attitude id,
              &atmos id,
              &dem id,
              &deriv, &los az,
              &los el, &travel time, &los az rate, &los el rate,
              &travel time rate, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run_id */
    long run id;
```


Date:

Issue: 10/05/2019

Page: 331

The XP NUM ERR TARGET TRAVEL TIME constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 332

7.84.3 Input Parameters

The **xp_target_travel_time** CFI function has the following input parameters:

Table 219: Input parameters of xp_target_travel_time function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_ id*	-	Structure that contains the atmosphere initialization.	-	The atmos_id has to be initialized with any of these modes: - XP_NO_REF_INIT - XP_STD_INIT - XP_USER_INIT
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
los_el	double *	-	Elevation of the LOS (Attitude Frame)	deg	>= -90 <= 90
travel_time	double *	-	Travel time along the (curved) line of sight	S	> 0
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-
los_el_rate	double *	-	Elevation-rate of the LOS (Attitude Frame)	deg/s	-
travel_time_rat e	double *	-	Travel time-rate along the (curved) line of sight	s/s	-
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

Date:

Issue: 10/05/2019

Page: 333

• Derivative switch: deriv. See current document, Table 3.

7.84.4 Output Parameters

The output parameters of the **xp** target travel time CFI function are:

Table 220: Output parameters of xp_target_travel_time

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.84.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_travel_time** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_travel_time** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 221: Error messages of xp_target_travel_time function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_ATTITUDE_STAT US_ERR	0
ERR	Intersection flag is not correct	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_INTER_FLAG_ER R	1
ERR	Invalid Frequency	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_FREQ_ERR	2
ERR	Time reference ID is not	No calculation performed	XP_CFI_TARGET_TRAVE	3

Date:

Issue: 10/05/2019

Page: 334

	correct		L_TIME_TIME_REF_ERR	
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_DERIV_FLAG_ER R	4
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_IRAY_ID_ERR	5
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_LOS_AZIMUTH_E RR	6
ERR	Invalid LOS Elevation	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_LOS_ELEVATION _ERR	7
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_GEODETIC_ALT_ ERR	8
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_MEMORY_ERR	9
ERR	Internal computation error # 3	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_INITIAL_LOOK_ DIR_OR_PLANE_ERR	10
ERR	Time Reference not initialised	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_TIME_REF_INIT_ ERR	11
ERR	No target was found	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_TARGET_NOT_F OUND_ERR	12
ERR	Internal computation error # 4	No calculation performed	XP_CFI_TARGET_TRAVE L_TIME_RANGE_OR_POI NTING_CALC_ERR	13
WARN	Path from satellite to target occulted by the Earth	Calculation performed. A message informs the user.	XP_CFI_TARGET_TRAVE L_TIME_NEGATIVE_ALTI TUDE_WARN	14
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided	XP_CFI_TARGET_TRAVEL_TI ME_IRAY_ID_WARN	15

Date:

Issue: 10/05/2019

Page: 335

7.85 xp_target_tangent_sun

7.85.1 Overview

The **xp_target_tangent_sun** CFI function computes the location of the tangent point over the Earth that is located on the line of sight that points to the Sun.

Note: a correction can be applied in order to compensate the travel time of Sun light travel time. This correction is not applied with default model. To activate this correction, the Sun model in xl_model_id must be initialized with the enum XL_MODEL_SUN_TRAVEL_TIME using the function xl_model_init (see [LIB SUM]).

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.85.2 Calling Interface

The calling interface of the **xp_target_tangent_sun** CFI function is the following (input parameters are underlined):

```
#include <explorer pointing.h>
{
                    sat id;
    long
    xp attitude id attitude id = {NULL};
    xp atmos id
                    atmos id = {NULL};
                    dem id = {NULL};
    xp dem id
    xp target id
                    target id = {NULL};
    long deriv,
                      iray;
    double freq;
    long ierr[XP NUM ERR TARGET TANGENT SUN], status,
         num user target, num los target;
    status = xp target tangent sun(&sat id,
              &attitude id, &atmos id, &dem id,
              &deriv, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target tangent sun run(&run id,
```


}

Code: EO-MA-DMS-GS-0005

Date:

Issue: 10/05/2019

Page: 336

```
&attitude_id,
&deriv, &iray, &freq,
&num_user_target, &num_los_target,
&target_id, ierr);
```

The XP_NUM_ERR_TARGET_TANGENT_SUN constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 337

7.85.3 Input Parameters

The xp_target_tangent_sun CFI function has the following input parameters:

Table 222: Input parameters of xp_target_tangent_sun function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_ id*	-	Structure that contains the atmosphere initialization.	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

7.85.4 Output Parameters

The output parameters of the xp_target_tangent_sun CFI function are:

Table 223: Output parameters of xp_target_tangent_sun

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

Date:

Issue: 10/05/2019

Page: 338

7.85.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_tangent_sun** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_tangent_sun** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 224: Error messages of xp_target_tangent_sun function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude ID is not initialized	No calculation performed	XP_CFI_SUN_ATTITUDE_ STATUS_ERR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_SUN_DERIV_FLA G_ERR	1
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_SUN_IRAY_ID_ER R	2
ERR	Invalid Frequency	No calculation performed	XP_CFI_SUN_FREQ_ERR	3
ERR	Input state vector does not satisfy loose tolerance requirement	No calculation performed	XP_CFI_SUN_INVALID_S V_ERR	4
ERR	Time Reference not initialised	No calculation performed	XP_CFI_SUN_TIME_REF_I NIT_ERR	5
ERR	Internal computation error # 1	No calculation performed	XP_CFI_SUN_SUN_POSITI ON_CALC_ERR	6
ERR	Internal computation error # 2	No calculation performed	XP_CFI_SUN_SUN_CS_CA LC_ERR	7
ERR	Internal computation error # 3	No calculation performed	XP_CFI_SUN_SUN_POINTI NG_CALC_ERR	8
ERR	Internal computation error # 4	No calculation performed	XP_CFI_SUN_TARGET_ST AR_ERR	9
ERR	Internal computation error # 5	No calculation performed	XP_CFI_SUN_TG_PT_BEHI ND_LOOK_DIR_ERR	10
WARN	Input state vector does not satisfy tight tolerance requirement	Calculation performed. A message informs the user.	XP_CFI_SUN_INVALID_S V_WARN	11

Date:

Issue: 10/05/2019

Page: 339

WARN	Tangent point is behind looking direction	Calculation performed. A message informs the user.	XP_CFI_SUN_TG_PT_BEHI ND_LOOK_DIR_WARN	12
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided.	XP_CFI_SUN_IRAY_ID_WARN	13

Date:

Issue: 10/05/20 197

Page: 340

7.86 xp_target_tangent_moon

7.86.1 Overview

The **xp_target_tangent_moon** CFI function computes the location of the tangent point over the Earth that is located on the line of sight that points to the Moon.

7.86.2 Calling Interface

The calling interface of the **xp_target_tangent_moon** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
{
    long
                    sat id;
    xp attitude id attitude id = {NULL};
    xp atmos id
                    atmos id = {NULL};
    xp dem id
                    dem id = {NULL};
                   target id = {NULL};
    xp target id
    long deriv,
                      iray;
    double freq;
    long ierr[XP NUM ERR TARGET TANGENT MOON], status,
        num user target, num los target;
    status = xp target tangent moon(&sat id,
              &attitude id, &atmos id, &dem id,
              &deriv, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run id */
    long run id;
    status = xp target tangent moon run(&run id,
              &attitude id,
              &deriv, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
```


Date:

Issue: 10/05/2019

Page: 341

The XP NUM ERR TARGET TANGENT MOON constant is defined in the file explorer_pointing.h.

7.86.3 Input Parameters

The xp target tangent moon CFI function has the following input parameters:

Table 225: Input parameters of xp_tangent_target_moon function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_ id*	-	Structure that contains the atmosphere initialization.	-	-
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

7.86.4 Output Parameters

The output parameters of the **xp** target tangent moon CFI function are:

Table 226: Output parameters of xp_tangent_target_moon

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0

Date:

Issue: 10/05/2019

Page: 342

target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.86.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_tangent_moon** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_tangent_moon** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 227: Error messages of xp_target_tangent_moon function

Error type	Error message	Cause and impact	Error code	Error No
ERR			XP_CFI_MOON_ATTITUD E_STATUS_ERR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_MOON_DERIV_FL AG_ERR	1
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_MOON_IRAY_ID_ ERR	2
ERR	Invalid Frequency	No calculation performed	XP_CFI_MOON_FREQ_ER R	3
ERR	Input state vector does not satisfy loose tolerance requirement	No calculation performed	XP_CFI_MOON_INVALID_ SV_ERR	4
ERR	Time Reference not initialised	No calculation performed	XP_CFI_MOON_TIME_REF _INIT_ERR	5
ERR	Internal computation error #1	No calculation performed	XP_CFI_MOON_MOON_P OSITION_CALC_ERR	6
ERR	Internal computation error #2	No calculation performed	XP_CFI_MOON_MOON_CS _CALC_ERR	7
ERR	Internal computation error #3	No calculation performed	XP_CFI_MOON_MOON_P OINTING_CALC_ERR	8
ERR	Internal computation error #4	No calculation performed	XP_CFI_MOON_TARGET_ STAR_ERR	9
ERR	Internal computation error #5	No calculation performed	XP_CFI_MOON_TG_PT_BE	10

Date:

Issue: 10/05/2019

Page: 343

			HIND_LOOK_DIR_ERR	
WARN	Input state vector does not satisfy tight tolerance requirement	Calculation performed. A message informs the user.	XP_CFI_MOON_INVALID_ SV_WARN	11
WARN	Tangent point is behind looking direction	Calculation performed. A message informs the user.	XP_CFI_MOON_TG_PT_BE HIND_LOOK_DIR_WARN	12
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided.	XP_CFI_MOON_IRAY_ID_WARN	13

Date:

Issue: 10/05/2019

Page: 344

7.87 xp_target_sc

7.87.1 Overview

The xp_target_sc CFI function computes the pointing from one satellite to another satellite.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.87.2 Calling Interface

The calling interface of the xp target sc CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR TARGET SC constant is defined in the file explorer pointing.h.

7.87.3 Input Parameters

The **xp_target_sc** CFI function has the following input parameters:

Table 228: Input parameters of xp_target_sc function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id1	long *	-	Satellite ID of source satellite	-	Complete
attitude_id1	xp_attitude _id*	-	Structure that contains the Attitude (input/output) of source satellite	-	-

Date:

Issue: 10/05/2019

Page: 345

sat_id2	long *	-	Satellite ID of target satellite	-	Complete
attitude_id2	xp_attitude _id*	-	Structure that contains the Attitude (input/output) of target satellite	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

7.87.4 Output Parameters

The output parameters of the **xp_target_sc** CFI function are:

Table 229: Output parameters of xp_target_sc

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 (Set to 1 for non multi-target routines)
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.87.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_sc** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_sc** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Date:

Issue: 10/05/2019

Page: 346

Table 230: Error messages of xp_target_sc function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_SC_ATTITUD E_STATUS_ERR	0
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_SC_DERIV_F LAG_ERR	1
ERR	Error in call to xp_target_generic	No calculation performed	XP_CFI_TARGET_SC_TARGET_ GENERIC_ERR	2
ERR	Error changing reference frame	No calculation performed.	XP_CFI_TARGET_SC_CHANGE _FRAME_ERR	3
ERR	Error computing pointing parameters	No calculation performed	XP_CFI_TARGET_SC_POINT_P ARAM_COMPUTE_ERR	4

Date:

Issue: 10/05/2019

Page: 347

7.88 xp_multi_target_inter

7.88.1 Overview

The **xp_multi_target_inter** CFI function computes the first or the second intersection points of the line of sight from the satellite (defined by an elevation and an azimuth angle expressed in the selected Attitude Frame) with surfaces located at certain geodetic altitudes over the Earth.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.88.2 Calling Interface

The calling interface of the **xp_multi_target_inter** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
{
                    sat id;
    long
    xp attitude id attitude id = {NULL};
    xp atmos id
                    atmos id = {NULL};
    xp dem id
                    dem id = {NULL};
                   target id = {NULL};
    xp target id
    long deriv, inter flag, iray;
    double los az, los el, geod alt[XP MAX NUM MULTI TARGET],
             los az rate, los el rate, freq;
    long ierr[XP NUM ERR MULTI TARGET INTER], num target, status
             num user target, num los target;
    status = xp multi target inter(&sat id,
              &attitude id,
              &atmos id,
              &dem id,
              &deriv, &inter flag, &los az,
              &los el, &num target, geod alt, &los az rate,
              &los el rate, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run_id */
    long run id;
```


Date:

Issue: 10/05/2019

Page: 348

The XP_NUM_ERR_MULTI_TARGET_INTER constant is defined in the file *explorer_pointing.h*.

Date:

Issue: 10/05/2<u>0</u>19

Page: 349

7.88.3 Input Parameters

The **xp_multi_target_inter** CFI function has the following input parameters:

Table 231: Input parameters of xp_multi_target_inter function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_ id*	-	Structure that contains the atmosphere initialization.	-	The atmos_id has to be initialized with any of these modes: - XP_NO_REF_INIT - XP_STD_INIT - XP_USER_INIT
dem_id	xp_dem_id	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
inter_flag	long *	-	Flag for first or second inter section point selection	-	Allowed values: (1) XP_INTER_1ST (2) XP_INTER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
los_el	double *	-	Elevation of the LOS (Attitude Frame)	deg	>= -90 <= 90
num_target	long *	-	Number of user defined altitudes	-	> 0
geod_alt	double [XP_MAX_ NUM_MUL TI_TARGE T]	-	Geodetic altitude over the Earth, sorted vector, strict monotonic decreasing	m	>= -bWGS
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-
los_el_rate	double *	-	Elevation-rate of the LOS (Attitude Frame)	deg/s	-
iray	long *	-	Not used. The atmosphere refraction model can be	-	-

Date:

Issue: 10/05/2019

Page: 350

			defined via atmos_id initialization.		
freq	double *	-	Frequency of the signal	Hz	>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Derivative switch: deriv. See current document, Table 3.
- Intersection flag: inter flag. See current document, Table 3.

7.88.4 Output Parameters

The output parameters of the **xp_multi_target_inter** CFI function are:

Table 232: Output parameters of xp_multi_target_inter

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*		Number of user defined targets calculated		>= 0 <= num_target
num_los_tar get	long*		Number of LOS targets calculated		>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.88.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_multi_target_inter** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_multi_target_inter** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN_SUM]).

Table 233: Error messages of xp_multi_target_inter function

Error Error message Cause and impact Error code Er	Error	er Error message	Cause and impact	Error code	Error
--	-------	------------------	------------------	------------	-------

Date:

Issue: 10/05/2019

Page: 351

type				No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_ATTITUDE_STATU S_ERR	0
ERR	Intersection flag is not correct	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_INTER_FLAG_ERR	1
ERR	Invalid Frequency	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_FREQ_ERR	2
ERR	Time reference ID is not correct	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_TIME_REF_ERR	3
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_DERIV_FLAG_ERR	4
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_IRAY_ID_ERR	5
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_LOS_AZIMUTH_E RR	6
ERR	Invalid LOS Elevation	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_LOS_ELEVATION_ ERR	7
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_GEODETIC_ALT_E RR	8
ERR	Memory allocation error	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_MEMORY_ERR	9
ERR	Internal computation error #3	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_INITIAL_LOOK_DI R_OR_PLANE_ERR	10
ERR	Time Reference not initialised	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_TIME_REF_INIT_E RR	11
ERR	No target was found	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_TARGET_NOT_FO UND_ERR	12
ERR	Internal computation error #4	No calculation performed	XP_CFI_MULTI_TARGET_ INTER_RANGE_OR_POIN TING_CALC_ERR	13
WARN	Path from satellite to target occulted by the Earth	Calculation performed. A message informs the user.	XP_CFI_MULTI_TARGET_ INTER_NEGATIVE_ALTIT UDE_WARN	14
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0),	XP_CFI_MULTI_TARGET_INT ER_IRAY_ID_WARN	15

Date:

Issue: 10/05/2019

Page: 352

the warning is avoided.

Date:

Issue: 10/05/2019

Page: 353

7.89 xp_multi_target_travel_time

7.89.1 Overview

The **xp_multi_target_travel_time** CFI function computes the points of the line or sight from the satellite (defined by an elevation and an azimuth angle expressed in the selected Attitude Frame) at given travel times along the (curved) line of sight.

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.89.2 Calling Interface

The calling interface of the **xp_multi_target_travel_time** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
{
                    sat id;
    long
    xp attitude id attitude id = {NULL};
    xp atmos id
                    atmos id = {NULL};
    xp dem id
                    dem id = {NULL};
                    target id = {NULL};
    xp target id
    long deriv, iray;
    double los az, los el, travel time[XP_MAX_NUM_MULTI_TARGET];
    double los az rate, los el rate, travel time rate, freq;
    long num target, num user target, num los target;
    long ierr[XP NUM ERR MULTI TARGET TRAVEL TIME], status;
    status = xp multi target travel time(&sat id,
              &attitude id,
              &atmos id,
              &dem id,
              &deriv, &los az, &los el,
              &num target, travel time, &los az rate,
              &los el rate,
                               &travel time rate, &iray, &freq,
              &num user target, &num los target,
              &target id, ierr);
    /* Or, using the run_id */
    long run id;
```


Date:

Issue: 10/05/2019

Page: 354

The XP_NUM_ERR_MULTI_TARGET_TRAVEL_TIME constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2<u>0</u>19

Page: 355

7.89.3 Input Parameters

The **xp_multi_target_travel_time** CFI function has the following input parameters:

Table 234: Input parameters of xp_multi_target_travel_time function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude _id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_ id*	-	Structure that contains the atmosphere initialization.	-	The atmos_id has to be initialized with any of these modes: - XP_NO_REF_INIT - XP_STD_INIT - XP_USER_INIT
dem_id	xp_dem_id *	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
los_az	double *	-	Azimuth of the LOS (Attitude Frame)	deg	>= 0 < 360
los_el	double *	-	Elevation of the LOS (Attitude Frame)	deg	>= -90 <= 90
num_target	long *	-	Number of user defined times	-	> 0
travel_time	double [XP_MAX_ NUM_MUL TI_TARGE T]	-	Travel time along the (curved) line of sight,sorted vector, strict monotonic increasing	s	> 0
los_az_rate	double *	-	Azimuth-rate of the LOS (Attitude Frame)	deg/s	-
los_el_rate	double *	-	Elevation-rate of the LOS (Attitude Frame)	deg/s	-
travel_time_rat e	double *	-	Travel time-rate along the (curved) line of sight. Constant number.	s/s	-
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-

EO-MA-DMS-GS-0005

Date:

10/05/2019 Issue:

Page: 356

freq	double *	-	Frequency of the signal	Hz	>= 0
------	----------	---	-------------------------	----	------

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Derivative switch: deriv. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 357

7.89.4 Output Parameters

The output parameters of the xp_multi_target_travel_time CFI function are:

Table 235: Output parameters of xp_multi_target_travel_time

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
num_user_t arget	long*	-	Number of user defined targets calculated	-	>= 0 <= num_target
num_los_tar get	long*	-	Number of LOS targets calculated	-	>= 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.89.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_multi_target_travel_time** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_multi_target_travel_time** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 236: Error messages of xp_multi_target_travel_time function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_ATTITUD E_STATUS_ERR	0
ERR	Intersection flag is not correct	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_INTER_FL AG_ERR	1
ERR	Invalid Frequency	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_FREQ_ER R	2
ERR	Time reference ID is not correct	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_TIME_REF _ERR	3
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_DERIV_FL	4

Date:

Issue: 10/05/2019

Page: 358

			AG_ERR	
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_IRAY_ID_ ERR	5
ERR	Input state vector does not satisfy loose tolerance requirement	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_INVALID_ SV_ERR	6
ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_LOS_AZI MUTH_ERR	7
ERR	Invalid LOS Elevation	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_LOS_ELE VATION_ERR	8
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_GEODETI C_ALT_ERR	9
ERR	Memory allocation error	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_MEMORY _ERR	10
ERR	Internal computation error #3	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_INITIAL_L OOK_DIR_OR_PLANE_ER R	11
ERR	Time Reference not initialised	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_TIME_REF _INIT_ERR	12
ERR	No target was found	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_TARGET_ NOT_FOUND_ERR	13
ERR	Internal computation error #4	No calculation performed	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_RANGE_O R_POINTING_CALC_ERR	14
WARN	Input state vector does not satisfy tight tolerance requirement	Calculation performed. A message informs the user.	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_INVALID_ SV_WARN	15
WARN	Path from satellite to target occulted by the Earth	Calculation performed. A message informs the user.	XP_CFI_MULTI_TARGET_ TRAVEL_TIME_NEGATIV E_ALTITUDE_WARN	16
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided.	XP_MULTI_TARGET_TRAVEL _TIME_IRAY_ID_WARN	17

Date:

Issue: 10/05/2019

Page: 359

7.90 xp_target_list_inter

7.90.1 Overview

The **xp_target_list_inter** CFI function computes the first or the second intersection point of the line of sight from the satellite (expressed as pairs of azimuth and elevation angles in the selected Attitude Frame) with a surface located at a certain geodetic altitude over the Earth.

The sets of azimuth and elevation points can be defined in 3 different ways:

- A list of azimuth and elevation pairs.
- A strip of lines of sight, with a fixed azimuth and elevation angles changing with a given step.
- A grid of lines of sight, with both azimuth and elevation angles changing with a given step.

For each pair a user target is computed. To obtain the extra values for all the targets, the functions xp_target_list_extra_xxx can be used. The position of the target in the output array of these extra functions has the following criterion (note also that xp_target_extra_xxx functions can also be used to obtain the results of only one target with the same index criterion, but xp_target_list_extra_xxx are optimized to obtain the results for all the targets):

- 1) In case of a list, the index of the list.
- 2) In case of a strip: being n_el the number of elevation values (note that minimum and maximum elevation values are always included in the list):

```
n el=TRUNC((max elevation-min elevation)/step elevation+1)
```

The target number is computed in increasing elevation order, from lower to upper elevation:

- For $0 \le i < n_el-1$: target number i corresponds to pair (azimuth, min_elevation + $i*step_elevation$).
- For i = n el-1: target number n el-1 corresponds to pair (azimuth, max elevation).
- 3) In case of a grid: being n_el the number of elevation values (note that minimum and maximum elevation values are always included in the list):

```
n el=TRUNC((max elevation-min elevation)/step elevation+1)
```

being n_az the number of azimuth values (note that minimum and maximum azimuth values are always included in the list):

```
n_az=TRUNC((max_azimuth-min_azimuth)/step_azimuth+1)
```

The target number is computed by increasing azimuth and elevation order: from minimum azimuth to maximum azimuth and, for every azimuth value, from minimum elevation to maximum elevation. That is:

- For $0 \le i < n_el-1$: target number i corresponds to pair (min_azimuth, min_elevation + i*step elevation).
- For i = n el-1: target number n el-1 corresponds to pair (min azimuth, max elevation).
- For $n_el \le i < 2*n_el-1$ target number i corresponds to pair (min_azimuth + step_azimuth, min elevation + i*step_elevation).

Date:

Issue: 10/05/2019

Page: 360

```
... (for 0 \le j \le n_az-1 and defining k = i-j*n_el)
```

- For $j*n_el \le i < (j+1)*n_el-1$ target number i corresponds to pair (min_azimuth + $j*step_azimuth$, min_elevation + $k*step_elevation$).
- For $i = (j+1)*n_el-1$ target number i corresponds to pair $(min_azimuth + j*step_azimuth, max elevation).$

```
(for j = n az-1 and defining k=i-(n \text{ az-1})*n \text{ el})
```

- For $(n_az-1)*n_el \le i < n_az*n_el-1$: target number i corresponds to pair $(max_azimuth , min_elevation + k*step_elevation)$.
- For i = n az*n el-1 target number i corresponds to pair (max azimuth, max elevation)

The light travel time (from the satellite to the target or vice versa) can be taken into account by the computations. For details about light propagation mode see the section 4.1.2.3.

7.90.2 Calling Interface

The calling interface of the **xp_target_list_inter** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
                    sat id;
    long
    xp attitude id attitude id = {NULL};
                    atmos id = {NULL};
    xp atmos id
    xp dem id
                    dem id = {NULL};
                    target id = {NULL};
    xp target id
    long deriv, inter flag;
    xp instrument data instrument data;
    double geod alt;
    long ierr[XP NUM ERR TARGET LIST INTER], status;
    xp target output target out;
    status = xp target list inter(&sat id,
              &attitude id,
              &atmos id,
              &dem id,
              &deriv, &inter flag,
```


Date:

Issue: 10/05/2019

Page: 361

```
&instrument_data, &geod_alt,
&target_out,
&target_id, ierr);
}
```

The XP_NUM_ERR_TARGET_INTER constant is defined in the file explorer_pointing.h.

7.90.3 Input Parameters

The **xp_target_list_inter** CFI function has the following input parameters:

Table 237: Input parameters of xp_target_lists_inter function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sat_id	long *	-	Satellite ID	-	Complete
attitude_id	xp_attitude_id*	-	Structure that contains the Attitude. (input/output)	-	-
atmos_id	xp_atmos_id*	-	Structure that contains the atmosphere initialization.	-	The atmos_id has to be initialized with any of these modes: - XP_NO_REF_INIT - XP_STD_INIT - XP_USER_INIT
dem_id	xp_dem_id*	-	Structure that contains the DEM initialization.	-	-
deriv	long *	-	Derivative ID	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
inter_flag	long *	-	Flag for first or second inter section point selection	-	Allowed values: (1) XP_INTER_1ST (2) XP_INTER_2ND
instrument_dat a	xp_instrument_ data	-	Azimuth/elevation input data and frequency	deg	0 ≤ azimuth < 360 -90 ≤ elevation <= 90
geod_alt	double *	-	Geodetic altitude over the Earth	m	>= -bWGS

It is possible to use enumeration values rather than integer values for some of the input arguments:

- Derivative switch: deriv. See current document, Table 3.
- Intersection flag: inter flag. See current document, Table 3.
- Azimuth elevation input type. See current document, Table 3.

Date:

Issue: 10/05/2019

Page: 362

7.90.4 Output Parameters

The output parameters of the **xp_target_list_inter** CFI function are:

Table 238: Output parameters of xp_target_list_inter

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_out	xp_target_ou tput*	-	Number of user and LOS defined targets calculated. Note: the memory allocated in this struct must be freed by the user	-	≥ 0
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
ierr	long	-	Error vector	-	-

7.90.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_list_inter** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_list_inter** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 239: Error messages of xp_target_list_inter function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Attitude Id. is not initialized	No calculation performed	XP_CFI_TARGET_LIST_INTE R_ATTITUDE_STATUS_ERR	0
ERR	Intersection flag is not correct	No calculation performed	XP_CFI_TARGET_LIST_INTE R_I NTER_FLAG_ERR	1
ERR	Invalid Frequency	No calculation performed	XP_CFI_TARGET_LIST_INTE R_FREQ_ERR	2
ERR	Time reference ID is not correct	No calculation performed	XP_CFI_TARGET_LIST_INTE R_TIME_REF_ERR	3
ERR	Deriv flag is not correct	No calculation performed	XP_CFI_TARGET_LIST_INTE R_ DERIV_FLAG_ERR	4
ERR	Ray Tracing Model ID is not correct	No calculation performed	XP_CFI_TARGET_LIST_INTE R_I RAY_ID_ERR	5

Date:

Issue: 10/05/2019

ERR	Invalid LOS Azimuth	No calculation performed	XP_CFI_TARGET_LIST_INTE R_LOS_AZIMUTH_ERR	6
ERR	Invalid LOS Elevation	No calculation performed	XP_CFI_TARGET_LIST_INTE R_LOS_ELEVATION_ERR	7
ERR	Invalid Geodetic Altitude	No calculation performed	XP_CFI_TARGET_LIST_INTE R_GEODETIC_ALT_ERR	8
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_LIST_INTE R_MEMORY_ERR	9
ERR	Internal computation error # 3	No calculation performed	XP_CFI_TARGET_LIST_INTE R_I NITIAL_LOOK_DIR_OR_P LANE_ERR	10
ERR	Time Reference not initialized	No calculation performed	XP_CFI_TARGET_LIST_INTE R_TIME_REF_INIT_ERR	11
ERR	No target was found	No calculation performed	XP_CFI_TARGET_LIST_INTE R_TARGET_NOT_FOUND_E RR	12
ERR	Internal computation error # 4	No calculation performed	XP_CFI_TARGET_LIST_INTE R_RANGE_OR_POINTING_C ALC_ERR	13
WARN	Path from satellite to target occulted by the Earth	Calculation performed. A message informs the user.	XP_CFI_TARGET_LIST_INTE R_NEGATIVE_ALTITUDE_W ARN	14
ERR	Wrong instrument data type	No calculation performed	XP_CFI_TARGET_LIST_INTE R_INSTRUMENT_TYPE_ERR	15
ERR	Error linking IDs	No calculation performed	XP_CFI_TARGET_LIST_INTE R_LINK_IDS_ERR	16
ERR	Maximum number of targets exceeded	No calculation performed	XP_CFI_TARGET_LIST_INTE R_MAX_TARGETS_ERR	17

Date:

Issue: 10/05/2019

Page: 364

7.91 xp_target_extra_vector

7.91.1 Overview

The **xp_target_extra_vector** CFI function provides the following output parameters for the target(s) in input data structure: target position, velocity and acceleration vectors, line of sight direction, range, travel time and their corresponding derivatives.

Note on target number with targets computed with xp target list inter or xp target range:

the target_number to be used to get a specific LOS target is an incremental number. That is, if there are N user targets US1, US2, ... USN and a number of LOS targets for every user target NLOS1, NLOS2, ..., NLOSN, if we want to get LOS target with index 1 corresponding to user target US3, the target_number to be used is NLOS1+NLOS2+1.

The target number can also be got with the array returned by xp target get id data.

7.91.2 Calling Interface

The calling interface of the **xp_target_extra_vector** CFI function is the following (input parameters are underlined):

The XP_SIZE_TARGET_RESULT_VECTOR and XP_NUM_ERR_TARGET_EXTRA_VECTOR constants are defined in the file *explorer pointing.h.*

Date:

Issue: 10/05/2019

Page: 365

7.91.3 Input Parameters

The **xp_target_extra_vector** CFI function has the following input parameters:

Table 240: Input parameters of xp_target_extra_vector function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
target_number	long *	-	Target number		>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/2<u>0</u>19

Page: 366

7.91.4 Output Parameters

The output parameters of the **xp_target_extra_vector** CFI function are:

Table 241: Output parameters of xp_target_extra_vector

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
vector_results		[0]	Target Position X (Earth-Fixed)	m	
double[XP_SIZ		[1]	Target Position Y (Earth-Fixed)	m	
ET_RESULT_	VECTOR	[2]	Target Position Z (Earth-Fixed)	m	
		[3]	Direction LOS X (Earth-Fixed)	-	
		[4]	Direction LOS Y (Earth-Fixed)	-	
		[5]	Direction LOS Z (Earth-Fixed)	-	
		[6]	Range to Attitude Frame Origin	m	
		[7]	Travel Time to Attitude Frame Origin	S	
		[8]	Target time UTC	days	
		[9:XP_SIZ E_TARGE T_RESUL T_VECTO R]	(dummy)	-	-
vector_results	rate	[0]	Target Velocity X (Earth-Fixed)	m/ s	
double[XP_SI	_	[1]	Target Velocity Y (Earth-Fixed)	m/ s	
ET_ RESULT_VEC	CTORI	[2]	Target Velocity Z (Earth-Fixed)	m/ s	
TEGOLI_VEC)	[3]	Direction Rate LOS X (Earth-Fixed)	1/s	
		[4]	Direction Rate LOS Y (Earth-Fixed)	1/s	
		[5]	Direction Rate LOS Z (Earth-Fixed)	1/s	
		[6]	Range Rate to Attitude Frame Origin	m/s	
		[7]	Travel Time Rate to Attitude Frame Origin	s/s	
		[8]	Dummy		
	E_T/ T_RI T_VI	[9:XP_SIZ E_TARGE T_RESUL T_VECTO R]	(dummy)	-	-
vector_results_	_rate_rate	[0]	Target Acceleration X (Earth-Fixed)	m/s2	
double[XP_SIZ		[1]	Target Acceleration Y (Earth-Fixed)	m/s2	
ET_RESULT_	VECTOR	[2]	Target Acceleration Z (Earth-Fixed)	m/s2	
		[3]	Direction Rate Rate LOS X (Earth-	1/s2	

Date:

Issue: 10/05/20 197

Page: 367

			Fixed)		
		[4]	Direction Rate Rate LOS Y (Earth-Fixed)	1/s2	
		[5]	Direction Rate Rate LOS Z (Earth-Fixed)	1/s2	
		[6]	Range Rate Rate to Attitude Frame Origin	m/s2	
		[7]	Travel Time Rate Rate to Attitude Frame Origin	s/s2	
		[8]	Dummy		
		[9:XP_SIZ E_TARGE T_RESUL T_VECTO R]		-	-
ierr	long	-	Error vector	-	-

Note that:

- first derivative parameters (vector_results_rate) are returned as zeros if derivative flag (deriv) was set to NO_DER when the target was computed and that second derivative parameters (vector_results_rate_rate) are returned as zeros if derivative flag (deriv) was set to NO_DER or 1ST_DER.
- when a refraction mode is selected, the second derivative parameters (vector_results_rate_rate) are returned as zeros.
- when light propagation mode is used the target position is at **target time** (see section Error: Reference source not found).

7.91.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_extra_vector** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_extra_vector** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 242: Error messages of xp_target_extra_vector function

Error	Error message	Cause and impact	Error code	Error
type				No

Date:

Issue: 10/05/2019

ERR	The Target ID does not contain any data	No calculation performed	XP_CFI_TARGET_EXTRA_V ECTOR_NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_V ECTOR_NO_SUCH_USER_T ARGET_ERR	1
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_V ECTOR_NO_SUCH_LOS_TA RGET_ERR	2
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_V ECTOR_NO_SUCH_EARTH_ TARGET_ERR	3
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_EXTRA_V ECTOR_EARTH_TARGET_C OMPUT_ERR	4
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_EXTRA_V ECTOR_WRONG_TARGET_T YPE_ERR	5
ERR	Wrong deriv input flag	No calculation performed	XP_CFI_TARGET_EXTRA_V ECTOR_DERIV_FLAG_ERR	6
WARN	1st. Derivatives are not available	Calculation performed. A message informs the user.	XP_CFI_TARGET_EXTRA_V ECTOR_DER_1ST_NOT_AVA IL_WARN	7
WARN	2nd. Derivatives are not available	Calculation performed. A message informs the user.	XP_CFI_TARGET_EXTRA_V ECTOR_DER_2ND_NOT_AV AIL_WARN	8
WARN	DEM files were not found	Calculation performed.	XP_CFI_TARGET_EXTRA_VECT OR_ELLIPSOID_WARN	9
WARN	Warning in XP_DEM_inter	Calculation performed.	XP_CFI_TARGET_EXTRA_VECT OR_DEM_INTER_WARN	10
ERR	Error converting time to UTC	No calculation performed	XP_CFI_TARGET_EXTRA_VECT OR_CONVERT_TO_UTC_ERR	11
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_EXTRA_VECT OR_DEM_DEGRADED_SOLUTI ON_WARN	12

Date:

Issue: 10/05/20 197

Page: 369

7.92 xp_target_list_extra_vector

7.92.1 Overview

The **xp_target_list_extra_vector** CFI function provides the same results as **xp_target_extra_vector** function but for all the targets computed with **xp_target_list_inter** function.

This function has been optimized to improve the run-time performance of the target computation of all the targets and runs in multithreading (Remark: multithreading is not enabled on MacOS platforms, see section 6).

7.92.1.1 Note on multithreading:

Improvement in performance due to mutithread parallelization depends on many factors, including hardware set-up (i.e. multicore processor) and number of targets computed. In some cases (e.g. low number of targets), due to the high overhead of starting threads, parallelization may even degrade performances. In this case, it is recommended to disable multithreading or reduce the number of threads by using omp_set_num_threads openmp function.

NOTE for MACIN64 platform, Xcode 5 users:

As of version 5, llvm-gcc has been removed from Xcode and the default compiler is clang.

clang can build an application linking against the EOCFI C / C++ libraries.

However openmp is not supported by clang. Therefore, the -fopenmp shall not be used.

Functions using parallelized computations, e.g. xp target list... functions will work in single-thread mode.

7.92.2 Calling Interface

The calling interface of the **xp_target_list_extra_vector** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    long choice, target_type, target_number;
    xp_target_id target_id = {NULL};
    xp_target_extra_vector_results_list list;
    long ierr[XP_NUM_ERR_TARGET_LIST_EXTRA_VECTOR], status;

    status = xp_target_list_extra_vector (&target_id, &choice, &target_type, &list, ierr);
}
```

The XP_NUM_ERR_TARGET_LIST_EXTRA_VECTOR constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Date:

Issue: 10/05/2\(\right)\frac{1}{2}\(\right)\right)\frac{1}{2}\(\right)\frac{1}{2}\(\ri

Page: 371

7.92.3 Input Parameters

The xp_target_list_extra_vector CFI function has the following input parameters:

Table 243: Input parameters of xp_target_list_extra_vector function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 372

7.92.4 Output Parameters

The output parameters of the xp_target_list_extra_vector CFI function are:

Table 244: Output parameters of xp_target_list_extra_vector

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
list	xp_target_extra_vec tor_results_list	-	List of extra results	-	-
ierr	long	-	Error vector	-	-

The values corresponding to returned arrays are the same as in the case of xp_target_extra_vector (see 7.91.4).

7.92.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_list_extra_vector** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_list_extra_vector** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 245: Error messages of xp_target_list_extra_vector function

Error type	Error message	Cause and impact	Error code	Error No
ERR	The Target ID does not contain any data	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ V ECTOR_NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ V ECTOR_NO_SUCH_USER_T ARGET_ERR	1
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ V ECTOR_NO_SUCH_EARTH_ TARGET_ERR	2
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ V ECTOR_EARTH_TARGET_C OMPUT_ERR	3
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ V ECTOR_WRONG_TARGET_T YPE_ERR	4
ERR	Wrong deriv input flag	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_	5

Date:

Issue: 10/05/2019

			V ECTOR_DERIV_FLAG_ERR	
WARN	1st. Derivatives are not available	Calculation performed. A message informs the user.	XP_CFI_TARGET_LIST_EXTRA_ V ECTOR_DER_1ST_NOT_AVA IL_WARN	6
WARN	2nd. Derivatives are not available	Calculation performed. A message informs the user.	XP_CFI_TARGET_LIST_EXTRA_ V ECTOR_DER_2ND_NOT_AV AIL_WARN	7
WARN	DEM files were not found	Calculation performed.	XP_CFI_TARGET_LIST_EXTRA_ VECTOR_ELLIPSOID_WARN	8
WARN	Warning in XP_DEM_inter	Calculation performed.	XP_CFI_TARGET_LIST_EXTRA_ VECTOR_DEM_INTER_WARN	9
ERR	Error allocating memory	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ VECTOR_MEMORY_ERR	10
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ VECTOR_DEM_DEGRADED_SO LUTION_WARN	
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ VECTOR_DEM_VOID_VALUE_D ETECTED_ERR	12

Date:

Issue: 10/05/2019

Page: 374

7.93 xp_target_extra_main

7.93.1 Overview

The **xp_target_extra_main** CFI function computes the extra parameter for the target(s) in input data structure.

Note on target number with targets computed with xp target list inter or xp target range:

the target_number to be used to get a specific LOS target is an incremental number. That is, if there are N user targets US1, US2, ... USN and a number of LOS targets for every user target NLOS1, NLOS2, ..., NLOSN, if we want to get LOS target with index 1 corresponding to user target US3, the target_number to be used is NLOS1+NLOS2+1.

The target_number can also be got with the array returned by xp_target_get_id_data.

7.93.2 Calling Interface

The calling interface of the **xp_target_extra_main** CFI function is the following (input parameters are underlined):

The XP_SIZE_TARGET_EXTRA_MAIN and XP_NUM_ERR_TARGET_RESULT_MAIN constants are defined in the file *explorer_pointing.h*.

Date:

Issue: 10/05/2019

Page: 375

7.93.3 Input Parameters

The **xp_target_extra_main** CFI function has the following input parameters:

Table 246: Input parameters of xp_target_extra_main function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_i d*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed.	-	Complete
			Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).		
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE
					XP_LOS_TARGET_TY PE
					XP_DEM_TARGET_T YPE
target_number	long *	-	Target number		>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/2<u>0</u>19

Page: 376

7.93.4 Output Parameters

The output parameters of the xp_target_extra_main CFI function are:

Table 247: Output parameters of xp_target_extra_main

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
main_results double[XP_SIZE	_	[0]	Target geocentric longitude (Earth Fixed CS)	deg	>= 0 < 360
ET_ RESULT	_MAIN]	[1]	Target geocentric latitude (Earth Fixed CS)	deg	>= -90 <= +90
		[2]	Target geodetic latitude (Earth Fixed CS)	deg	>= -90 <= +90
		[3]	Target geodetic altitude (Earth Fixed CS)	m	-
		[4]	Satellite to target azimuth (Topocentric CS)	deg	>= 0 < 360
		[5]	Satellite to target elevation (Topocentric CS)	deg	>= -90 <= +90
		[6]	Satellite to target pointing: Azimuth (attitude frame)	deg	>= 0 < 360
		[7]	Satellite to target pointing: Elevation (attitude frame)	deg	>= -90 <= +90
		[8]	Target to satellite pointing: Azimuth (Topocentric)	deg	>= 0 < 360
		[9]	Target to satellite pointing: Elevation (Topocentric)	deg	>= -90 <= +90
	[10]	Target to source Satellite Pointing: Azimuth (attitude frame). Note: this value is only meaningful when target has been computed with xp_target_sc	deg	>= 0 < 360	
		[11]	Target to source Satellite Pointing: Elevation (attitude frame)	deg	>= -90 <= 90
			Note: this value is only meaningful when target has been computed with xp_target_sc		
	ZE ET	[12:XP_SI ZE_TARG ET_RESU LT_MAIN]	(dummy)	-	-
main_results_	rate	[0]	Target geocentric longitude rate	deg/s	-

EO-MA-DMS-GS-0005

Date:

Issue: 10/05/20.49

Page: 377

double[XP_SIZE_TARG		(Earth Fixed CS)		
ET_ RESULT_MAIN]	[1]	Target geocentric latitude rate (Earth Fixed CS)	deg/s	-
	[2]	Target geodetic latitude rate (Earth Fixed CS)	deg/s	-
	[3]	Target geodetic altitude rate (Earth Fixed CS)	m/s	-
	[4]	Satellite to target azimuth rate (Topocentric CS)	deg/s	-
	[5]	Satellite to target elevation rate (Topocentric CS)	deg/s	-
	[6]	Satellite to target pointing: Azimuth rate (attitude frame)	deg/s	-
	[7]	Satellite to target pointing: Elevation rate (attitude frame)	deg/s	-
	[8]	Target to satellite pointing: Azimuth rate (Topocentric)	deg/s	-
	[9]	Target to satellite pointing: Elevation rate (Topocentric)	deg/s	-
	[10]	Target to source Satellite Pointing: Azimuth rate (attitude frame).	deg	-
		Note: this value is only meaningful when target has been computed with xp_target_sc		
	[11]	Target to source Satellite Pointing: Elevation rate (attitude frame)	deg	-
		Note: this value is only meaningful when target has been computed with xp_target_sc		
	[12:XP_SI ZE_TARG ET_RESU LT_MAIN]		-	-
main_results_rate_rate double[XP_SIZE_TARG ET_ RESULT_MAIN]	[0]	Target geocentric longitude rate-rate (Earth Fixed CS)	deg/s2	-
	[1]	Target geocentric latitude rate-rate (Earth Fixed CS)	deg/s2	-
	[2]	Target geodetic latitude rate-rate (Earth Fixed CS)	deg/s2	-
	[3]	Target geodetic altitude rate-rate (Earth Fixed CS)	m/s2	-

Date:

Issue: 10/05/2019

Page: 378

	[4]	Satellite to target azimuth rate-rate (Topocentric CS)	deg/s2	-
	[5]	Satellite to target elevation rate-rate (Topocentric CS)	deg/s2	-
	[6]	Satellite to target pointing: Azimuth rate-rate (attitude frame)	deg/s2	-
	[7]	Satellite to target pointing: Elevation rate-rate (attitude frame)	deg/s2	-
	[8]	Target to satellite pointing: Azimuth rate-rate (Topocentric)	deg/s2	-
	[9]	Target to satellite pointing: Elevation rate-rate (Topocentric)	deg/s2	-
	[10]	Target to source Satellite Pointing: Azimuth rate rate (attitude frame).	deg	-
		Note: this value is only meaningful when target has been computed with xp_target_sc		
	[11]	Target to source Satellite Pointing: Elevation rate rate (attitude frame)	deg	-
		Note: this value is only meaningful when target has been computed with xp_target_sc		
	[12:XP_SI ZE_TARG ET_RESU LT_MAIN]		-	-
ierr long	-	Error vector	-	-

Note that first derivative parameters (vector_results_rate) are returned as zeros if derivative flag (deriv) was set to NO_DER when the target was computed and that second derivative parameters (vector results rate rate) are returned as zeros if derivative flag (deriv) was set to NO_DER or 1ST_DER.

Note also that when a refraction mode is selected, the second derivative parameters (vector_results_rate_rate) are returned as zeros.

7.93.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_extra_main** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

Date:

Issue: 10/05/2019

Page: 379

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_extra_main** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 248: Error messages of xp_target_extra_main function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_NO_SUCH_USER_TARG ET_ERR	1
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_NO_SUCH_LOS_TARGE T_ERR	2
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_NO_SUCH_EARTH_TA RGET_ERR	3
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_EARTH_TARGET_COM PUT_ERR	4
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_WRONG_TARGET_TYP E_ERR	5
ERR	Invalid time reference in target data	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_INVALID_TIME_REF_E RR	6
ERR	Error calling to XL_Car_Geo CFI function	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_CAR_TO_GEO_ERR	7
ERR	Error getting tranformation matrix to Topocentric CS	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_TOPO_ERR	8
ERR	Error getting direction angles	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_DIR_POINTING_ERR	9
ERR	Error while changing coordinate system	No calculation performed	XP_CFI_TARGET_EXTRA_M AIN_CS_CHANGE_ERR	10
WARN	Warning: Derivatives cannot be calculated	Calculation performed	XP_CFI_TARGET_EXTRA_M AIN_DERIV_WARN	11
WARN	Warning calling to XL_Car_Geo CFI function	Calculation performed, but derivatives will not be computed	XP_CFI_TARGET_EXTRA_M AIN_AMBIGUOUS_SINGUL AR_WARN	12
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_EXTRA_MAIN _ELLIPSOID_WARN	13
WARN	Warnging in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_EXTRA_MAIN	14

Date:

Issue: 10/05/2019

			_DEM_INTER_WARN	
WARN	No precise intersection found with DEM. Degraded solution returned		XP_CFI_TARGET_EXTRA_MAIN _DEM_DEGRADED_SOLUTION_WARN	15
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_EXTRA_MAIN _DEM_VOID_VALUE_DETECTE D_ERR	16

Date:

Issue: 10/05/20 197

Page: 381

7.94 xp_target_list_extra_main

7.94.1 Overview

The **xp_target_list_extra_main** CFI function provides the same results as **xp_target_extra_main** function but for all the targets computed with **xp** target list inter function.

This function has been optimized to improve the run-time performance of the target computation of all the targets and runs in multithreading (Remark: multithreading is not enabled on MacOS platforms, see section 6).

See note on mutithreading in section 7.92.1.1.

7.94.2 Calling Interface

The calling interface of the **xp_target_list_extra_main** CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR TARGET LIST EXTRA MAIN constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 382

7.94.3 Input Parameters

The **xp_target_list_extra_main** CFI function has the following input parameters:

Table 249: Input parameters of xp_target_list_extra_main function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed.	-	Complete
			Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).		
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE
					XP_LOS_TARGET_TY PE
					XP_DEM_TARGET_T YPE

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 383

7.94.4 Output Parameters

The output parameters of the xp_target_list_extra_main CFI function are:

Table 250: Output parameters of xp_target_list_extra_main

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
list	xp_target_extra_mai n_results_list	-	List of extra results	-	-
ierr	long	-	Error vector	-	-

The values corresponding to returned arrays are the same as in the case of xp_target_extra_main (see section 7.93.4).

7.94.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_list_extra_main** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_list_extra_main** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 251: Error messages of xp_target_list_extra_main function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_NO_DATA_ERR	0
ERR	Invalid time reference in target data	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_INVALID_TIME_REF_E RR	1
ERR	Error calling to XL_Car_Geo CFI function	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_CAR_TO_GEO_ERR	2
ERR	Error getting tranformation matrix to Topocentric CS	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_TOPO_ERR	3
ERR	Error getting direction angles	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_DIR_POINTING_ERR	4
ERR	Error while changing coordinate system	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_CS_CHANGE_ERR	5

Date:

Issue: 10/05/2019

WARN	Warning: Derivatives cannot be calculated	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_DERIV_WARN	6
WARN	Warning calling to XL_Car_Geo CFI function	Calculation performed, but derivatives will not be computed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_AMBIGUOUS_SINGUL AR_WARN	7
ERR	Error allocating memory	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ MAIN_MEMORY_ERR	8
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_NO_SUCH_EARTH_TA RGET_ERR	9
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_EARTH_TARGET_COM PUT_ERR	10
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ MAIN_ELLIPSOID_WARN	11
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ MAIN_DEM_INTER_WARN	12
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ M AIN_WRONG_TARGET_TYP E_ERR	13
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ MAIN_DEM_DEGRADED_SOLU TION_WARN	14
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ MAIN_DEM_VOID_VALUE_DETE CTED_ERR	15

Date:

Issue: 10/05/2019

Page: 385

7.95 xp_target_extra_aux

7.95.1 Overview

The xp_target_extra_aux CFI function computes auxiliary parameters for the target in input data structure.

Note on target number with targets computed with xp target list inter or xp target range:

the target_number to be used to get a specific LOS target is an incremental number. That is, if there are N user targets US1, US2, ... USN and a number of LOS targets for every user target NLOS1, NLOS2, ..., NLOSN, if we want to get LOS target with index 1 corresponding to user target US3, the target_number to be used is NLOS1+NLOS2+1.

The target number can also be got with the array returned by xp target get id data.

7.95.2 Calling Interface

The calling interface of the **xp_target_extra_aux** CFI function is the following (input parameters are <u>underlined</u>):

The XP_SIZE_TARGET_RESULT_AUX and XP_NUM_ERR_TARGET_EXTRA_AUX constants are defined in the file *explorer_pointing.h*.

Date:

Issue: 10/05/2019

Page: 386

7.95.3 Input Parameters

The xp_target_extra_aux CFI function has the following input parameters:

Table 252: Input parameters of xp_target_extra_aux

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Complete
target_type	long *		Flag to select the type of target		XP_USER_TARG ET_TYPE XP_LOS_TARGE T_TYPE XP_DEM_TARG ET_TYPE
target_number	long *	-	Target number		>= 0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/2<u>0</u>19

Page: 387

7.95.4 Output Parameters

The output parameters of the **xp_target_extra_aux** CFI function are:

Table 253: Output parameters of xp_target_extra_aux

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
aux_results double[XP_SI		[0]	Radius of curvature in the look direction at the nadir of the target (Earth fixed CS)	m	>= 0
T_ RESULT_/	AUX]	[1]	Distance from the nadir of the target to the satellite nadir. (Earth fixed CS)	m	>= 0
		[2]	Minimum distance from the nadir of the tar get to the ground track (Earth Fixed CS). It is regarded as positive distance when the nadir of the target is located on the left hand side of the ground track.	m	-
		[3]	Distance from the SSP to the point located on the ground track that is at a minimum distance from the nadir of the target (Earth fixed CS) It is regarded as positive distance when that point is located on the ground track ahead the SSP (in the direction of the motion of the SSP)		-
		[4]	Mean Local Solar Time at target.	decimal hour	>= 0 < 24
		[5]	True Local Solar Time at target.	decimal hour	>= 0 < 24
	E_TARGE	Right ascension at which the look direction from the satellite to the target points at tar get point. (True of Date CS)	deg	>= 0 < 360	
		[7]	Declination at which the look direction from the satellite to the target points at target point. (True of Date CS)	deg	>= -90 < 90
		[8:XP_SIZ E_TARGE T_RESUL T_AUX]	(dummy)	-	-
aux_results_radouble[XP_SIT_ RESULT_A	ZE_TARGE	[0]	Radius of curvature-rate in the look direction at the nadir of the target (Earth fixed CS)	m/s	-

Date:

Issue: 10/05/2019

		[1]	Distance-rate from the nadir of the target to the satellite nadir. (Earth fixed CS)	m	>= 0
		[2]	Distance-rate from the nadir of the target to the ground track (Earth fixed CS)	m/s	-
		[3]	Distance-rate from the SSP to the point located on the ground track that is at a minimum distance from the nadir of the target (Earth fixed CS)		
		[4:7]	(dummy)	-	-
		[8]	Northward component of the velocity rela tive to the Earth of the nadir of the target (Topocentric CS)	m/s	-
		[9]	Eastward component of the velocity relative to the Earth of the nadir of the target (Topocentric CS)	m/s	-
		[10]	Azimuth of the velocity relative to the Earth of the nadir of the target. (Topocentric CS)	deg	>= 0 < 360
		[11]	Magnitude of the velocity relative to the Earth of the nadir of the target. (Topocentric CS)	m/s	>= 0
			(dummy)	-	-
aux_results_ rate_rate	double[XP_ SI ZE_TARG ET_RESU LT_AUX]	[0]	Radius of curvature-rate-rate in the look direction at the nadir of the target (Earth fixed CS)	m/s	-
	[:	[1]	Distance-rate-rate from the nadir of the tar get to the satellite nadir. (Earth fixed CS)	m	>= 0
		[2]	Distance-rate-rate from the nadir of the tar get to the ground track (Earth fixed CS)	m/s	-
		[3]	Distance-rate-rate from the SSP to the point located on the ground track that is at a minimum distance from the nadir of the target (Earth fixed CS)		
		[4:XP_SIZ E_TARGE T_RESUL T_AUX]	(dummy)	-	-

Date:

Issue: 10/05/2019

Page: 389

ierr	long	-	Error vector	-	-
------	------	---	--------------	---	---

7.95.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_extra_aux** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_extra_aux** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 254: Error messages of xp_target_extra_aux function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_NO_SUCH_USER_TARG ET_ERR	1
ERR	The target does not exist	No calculation performed.	XP_CFI_TARGET_EXTRA_A UX_NO_SUCH_LOS_TARGE T_ERR	2
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_NO_SUCH_EARTH_TAR GET_ERR	3
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_EARTH_TARGET_COMP UT_ERR	4
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_WRONG_TARGET_TYPE _ERR	5
ERR	Invalid time reference in target data	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_INVALID_TIME_REF_ER R	6
ERR	Error calling to XL_Car_Geo CFI function	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_CAR_TO_GEO_ERR	7
ERR	Error getting tranformation matrix to Topocentric CS.	No calculation performed	XP_CFI_TARGET_EXTRA_AUX_ TOPO_ERR	8
ERR	Error getting direction angles	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_DIR_POINTING_ERR	9
ERR	Error computing radius of	No calculation performed	XP_CFI_TARGET_EXTRA_A	10

Date:

Issue: 10/05/2019

	curvature		UX_RADII_CURVATURE_C ALC_ERR	
ERR	Error computing pointing after crossing the Earth atmosphere	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_POINTING_AFTER_ATM _CALC_ERR	11
ERR	Error computing distance	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_DISTANCE_CALC_ERR	12
ERR	Error computing velocity of the target's nadir	No calculation performed	XP_CFI_TARGET_EXTRA_A UX_TOP_VEL_CALC_ERR	13
WARN	Error computing MLST of TLST	Calculation performed	XP_CFI_TARGET_EXTRA_A UX_MLST_OR_TLST_CALC_ ERR	14
WARN	Warning: Path from satellite to target occulted by the Earth	Calculation performed	XP_CFI_TARGET_EXTRA_A UX_NEGATIVE_ALTITUDE_ WARN	15
WARN	Warning calling to XL_Car_Geo CFI function	Calculation performed	XP_CFI_TARGET_EXTRA_A UX_AMBIGUOUS_SINGULA R_WARN	16
WARN	Warning: Derivatives cannot be calculated	Calculation performed	XP_CFI_TARGET_EXTRA_A UX_DERIV_WARN	17
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_EXTRA_AUX_ ELLIPSOID_WARN, WARN	18
WARN	Warnging in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_EXTRA_AUX_ DEM_INTER_WARN	19
ERR	This function cannot be used with a target id computed with target S/C	Calculation not performed	XP_CFI_TARGET_EXTRA_AUX_ SC_ERR	20
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_EXTRA_AUX_ DEM_DEGRADED_SOLUTION_ WARN	21
ERR	Void value detected in DEM	Calculation not performed	XP_CFI_TARGET_EXTRA_AUX_ DEM_VOID_VALUE_DETECTED _ERR	22

Date:

Issue: 10/05/20 197

Page: 391

7.96 xp_target_list_extra_aux

7.96.1 Overview

The **xp_target_list_extra_aux** CFI function provides the same results as xp_target_extra_aux function but for all the targets computed with xp_target_list_inter function.

This function has been optimized to improve the run-time performance of the target computation of all the targets and runs in multithreading (Remark: multithreading is not enabled on MacOS platforms, see section 6).

See note on mutithreading in section 7.92.1.1.

7.96.2 Calling Interface

The calling interface of the **xp_target_list_extra_aux** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    long choice, target_type, target_number;
    xp_target_id target_id = {NULL};
    xp_target_extra_aux_results_list list;
    long ierr[XP_NUM_ERR_TARGET_LIST_EXTRA_AUX], status;

    status = xp_target_list_extra_aux (&target_id, &choice, &target_type, &list, ierr);
}
```

The XP NUM ERR TARGET LIST EXTRA AUX constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 392

7.96.3 Input Parameters

The xp_target_list_extra_aux CFI function has the following input parameters:

Table 255: Input parameters of xp_target_list_extra_aux function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed.	-	Complete
			Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).		
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE
					XP_LOS_TARGET_TY PE
					XP_DEM_TARGET_T YPE

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 393

7.96.4 Output Parameters

The output parameters of the xp_target_list_extra_aux CFI function are:

Table 256: Output parameters of xp_target_list_extra_aux

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
list	xp_target_extra_aux _results_list	-	List of extra results	-	-
ierr	long	-	Error vector	-	-

The values corresponding to returned arrays are the same as in the case of xp_target_extra_aux (see section 7.95.4).

7.96.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_list_extra_aux** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_list_extra_aux** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 257: Error messages of xp_target_list_extra_aux function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_NO_SUCH_EARTH_TAR GET_ERR	1
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_EARTH_TARGET_COMP UT_ERR	2
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_WRONG_TARGET_TYPE _ERR	3
ERR	Invalid time reference in target data	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_INVALID_TIME_REF_ER R	
ERR	Error calling to XL_Car_Geo	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_	5

Date:

Issue: 10/05/2019

	CFI function		A UX_CAR_TO_GEO_ERR	
ERR	Error getting tranformation matrix to Topocentric CS.	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ AUX_TOPO_ERR	6
ERR	Error getting direction angles	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_DIR_POINTING_ERR	7
ERR	Error computing radius of curvature	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_RADII_CURVATURE_C ALC_ERR	8
ERR	Error computing pointing after crossing the Earth atmosphere	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_POINTING_AFTER_ATM _CALC_ERR	9
ERR	Error computing distance	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_DISTANCE_CALC_ERR	10
ERR	Error computing velocity of the target's nadir	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_TOP_VEL_CALC_ERR	11
WARN	Error computing MLST of TLST	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_MLST_OR_TLST_CALC_ ERR	12
WARN	Warning: Path from satellite to target occulted by the Earth	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_NEGATIVE_ALTITUDE_ WARN	13
WARN	Warning calling to XL_Car_Geo CFI function	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_AMBIGUOUS_SINGULA R_WARN	14
WARN	Warning: Derivatives cannot be calculated	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ A UX_DERIV_WARN	15
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ AUX_ELLIPSOID_WARN, WARN	16
WARN	Warnging in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ AUX_DEM_INTER_WARN	17
ERR	This function cannot be used with a target id computed with target S/C	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ AUX_SC_ERR	18
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ AUX_MEMORY_ERR	19
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ AUX_DEM_DEGRADED_SOLUTI ON_WARN	20
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ AUX_DEM_VOID_VALUE_DETE CTED_ERR	21

Date:

Issue: 10/05/2019

Page: 395

7.97 xp_target_extra_ef_target

7.97.1 Overview

The **xp_target_extra_ef_target** CFI function computes the parameter for an Earth fixed target related to the target in input data structure.

Note on target_number with targets computed with xp_target_list_inter or xp_target_range:

the target_number to be used to get a specific LOS target is an incremental number. That is, if there are N user targets US1, US2, ... USN and a number of LOS targets for every user target NLOS1, NLOS2, ..., NLOSN, if we want to get LOS target with index 1 corresponding to user target US3, the target_number to be used is NLOS1+NLOS2+1.

The target number can also be got with the array returned by xp target get id data.

7.97.2 Calling Interface

The calling interface of the **xp_target_extra_ef_target** CFI function is the following (input parameters are underlined):

The XP_SIZE_TARGET_RESULT_EF_TARGET and XP_NUM_ERR_TARGET_EXTRA_EF_TARGET constants are defined in the file *explorer_pointing.h*.

Date:

Issue: 10/05/2019

Page: 396

7.97.3 Input Parameters

The xp_target_extra_ef_target CFI function has the following input parameters:

Table 258: Input parameters of xp_target_extra_ef_target function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
target_number	long *	-	Target number		>= 0
freq	double *	-	Frequency of the signal	Hz	>=0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/2<u>0</u>19

Page: 397

7.97.4 Output Parameters

The output parameters of the xp_target_extra_ef_target CFI function are:

Table 259: Output parameters of xp_target_extra_ef_target

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ef_target_res ults_rate	double [XP_SIZE_EF_T ARGET_RESULT]	[0]	2-way Doppler shift of the signal (Earth Fixed CS)	Hz	-
		[1]	Earthfixed target to satellite rangerate. (Earth Fixed CS)	m/s	-
		[2]	Earthfixed target to satellite azimuth-rate. (Topocentric CS)	deg/s	-
		[3]	Earthfixed target to satellite elevation-rate. (Topocentric CS)	deg/s	-
		[4]	Satellite to earthfixed target azimuthrate. (Topocentric CS)	deg/s	-
		[5]	Satellite to earthfixed target elevation-rate. (Topocentric CS)	deg/s	-
		[6]	Satellite to earthfixed target azimuthrate. (Attitude Frame)	deg/s	-
		[7]	Satellite to earthfixed target elevation-rate. (Attitude Frame)	deg/s	-
ef_target_re	double	[0]	(dummy)	-	-
sults_rate_ra te	[XP_SIZE_EF_T ARGET_RESULT]	[1]	Earthfixed target to satellite rangerate- rate. (Earth Fixed CS)	m/s2	-
		[2]	Earthfixed target to satellite azimuth-rate- rate. (Topocentric CS)	deg/s2	-
		[3]	Earthfixed target to satellite elevation-rate-rate. (Topocentric CS)	deg/s2	-
		[4]	Satellite to earthfixed target azimuth-rate- rate. (Topocentric CS)	deg/s2	-
		[5]	Satellite to earthfixed target elevation-rate-rate. (Topocentric CS)	deg/s2	-
		[6]	Satellite to earthfixed target azimuth- rate- rate-rate. (Attitude Frame)	deg/s2	-
		[7]	Satellite to earthfixed target elevation-rate-rate.	deg/s2	-

Date:

Issue: 10/05/2019

Page: 398

			(Attitude Frame)		
ierr	long	-	Error vector	-	-

7.97.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_extra_ef_target** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_extra_ef_target** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM])

Table 260: Error messages of xp_target_extra_ef_target function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_NO_SUCH_USER _TARGET_ERR	1
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_NO_SUCH_LOS_ TARGET_ERR	2
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_NO_SUCH_EAR TH_TARGET_ERR	3
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_EARTH_TARGE T_COMPUT_ERR	4
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_WRONG_TARGE T_TYPE_ERR	5
ERR	Wrong input deriv flag	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_DERIV_FLAG_ERR	6
ERR	Error getting target geodetic coordinates	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_GEO_COORD_ERR	7
ERR	Invalid time reference in target data	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_INVALID_TIME_ REF_ERR	8
ERR	Internal computation error	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_RANGE_OR_POI	9

Date:

Issue: 10/05/2019

			NTING_CALC_ERR	
ERR	Wrong Atmospheric model in target data	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_MODE_COMBIN ATION_SWITCHES_ERR	10
ERR	Error calling to XL_Car_Geo CFI function	No calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_CAR_GEO_ERR	11
WARN	2nd. Derivatives are not available	Calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_DER_2ND_NOT_ AVAIL_WARN	12
WARN	Warning calling to XL_Car_Geo CFI function	Calculation performed	XP_CFI_TARGET_EXTRA_E F_TARGET_AMBIGUOUS_SI NGULAR_WARN	13
WARN	1ST Derivative not computed for target. Satellite to target azimuth and elevation rates (SRAR CS) cannot be calculated	Calculation performed, except for azimuth and elevation rates in SRAR coordinate system.	XP_CFI_TARGET_EXTRA_E F_TARGET_DERIV_FLAG_W ARN	14
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_EXTRA_EF_E LLIPSOID_WARN	15
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_EXTRA_EF_D EM_INTER_WARN	16
ERR	This function cannot be used with a target id computed with target S/C	No calculation performed	XP_CFI_TARGET_EXTRA_EF_T ARGET_SC_ERR	17
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_EXTRA_EF_T ARGET_DEM_DEGRADED_SOL UTION_WARN	18
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_EXTRA_EF_T ARGET_DEM_VOID_VALUE_DE TECTED_ERR	19

Date:

Issue: 10/05/20 197

Page: 400

7.98 xp_target_list_extra_ef_target

7.98.1 Overview

The **xp_target_list_extra_ef_target** CFI function provides the same results as **xp_target_extra_ef_target** function but for all the targets computed with **xp_target_list_inter_function**.

This function has been optimized to improve the run-time performance of the target computation of all the targets and runs in multithreading (Remark: multithreading is not enabled on MacOS platforms, see section 6).

See note on mutithreading in section 7.92.1.1.

7.98.2 Calling Interface

The calling interface of the **xp_target_list_extra_ef_target** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    long choice, target_type, target_number;
    double freq;
    xp_target_id target_id = {NULL};
    xp_target_extra_ef_target_results_list list;
    long ierr[XP_NUM_ERR_TARGET_LIST_EXTRA_EF_TARGET], status;

    status = xp_target_list_extra_ef_target (&target_id, &choice, &target_type, &freq &list, ierr);
}
```

The XP_NUM_ERR_TARGET_LIST_EXTRA_EF_TARGET constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 401

7.98.3 Input Parameters

The xp_target_list_extra_ef_target CFI function has the following input parameters:

Table 261: Input parameters of xp_target_list_extra_ef_target function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *	-	Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
freq	double *	-	Frequency of the signal	Hz	>=0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 402

7.98.4 Output Parameters

The output parameters of the xp_target_list_extra_ef_target CFI function are:

Table 262: Output parameters of xp_target_list_extra_ef_target

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
list	xp_target_extra_ef_t arget_results_list	-	List of extra results	-	-
ierr	long	-	Error vector	-	-

The values corresponding to returned arrays are the same as in the case of xp_target_extra_ef_target (see section 7.97.4).

7.98.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_list_extra_ef_target** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_list_extra_ef_target** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 263: Error messages of xp_target_list_extra_ef_target function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_NO_DATA_ERR	0
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_WRONG_TARGE T_TYPE_ERR	1
ERR	Wrong input deriv flag	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_DERIV_FLAG_E RR	2
ERR	Error getting target geodetic coordinates	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_GEO_COORD_E RR	3
ERR	Invalid time reference in target data	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_INVALID_TIME_ REF_ERR	4
ERR	Internal computation error	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_	5

Date:

Issue: 10/05/2019

			E F_TARGET_RANGE_OR_POI NTING_CALC_ERR	
ERR	Wrong Atmospheric model in target data	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_MODE_COMBIN ATION_SWITCHES_ERR	6
ERR	Error calling to XL_Car_Geo CFI function	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_CAR_GEO_ERR	7
WARN	2nd. Derivatives are not available	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_DER_2ND_NOT_ AVAIL_WARN	8
WARN	Warning calling to XL_Car_Geo CFI function	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_AMBIGUOUS_SI NGULAR_WARN	9
WARN	1ST Derivative not computed for target. Satellite to target azimuth and elevation rates (SRAR CS) cannot be calculated	Calculation performed, except for azimuth and elevation rates in SRAR coordinate system.	XP_CFI_TARGET_LIST_EXTRA_ E F_TARGET_DERIV_FLAG_W ARN	10
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ EF_ELLIPSOID_WARN	11
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ EF_DEM_INTER_WARN	12
ERR	This function cannot be used with a target id computed with target S/C	No calculation performed	XP_CFI_TARGET_EXTRA_EF_T ARGET_SC_ERR	13
ERR	Memory allocation error	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ AUX_MEMORY_ERR	14
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ EF_TARGET_DEM_DEGRADED _SOLUTION_WARN	15
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ EF_TARGET_NO_SUCH_EARTH _TARGET_ERR	16
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ EF_TARGET_EARTH_TARGET_ COMPUT_ERR	17
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ EF_TARGET_DEM_VOID_VALU E_DETECTED_ERR	18

Date:

Issue: 10/05/2019

Page: 404

7.99 xp_target_extra_target_to_sun

7.99.1 Overview

The **xp_target_extra_target_to_sun** CFI function computes extra parameters related to the pointing from the target in input data structure to the sun.

Notes:

1) On target number with targets computed with xp target list inter or xp target range:

the target_number to be used to get a specific LOS target is an incremental number. That is, if there are N user targets US1, US2, ... USN and a number of LOS targets for every user target NLOS1, NLOS2, ..., NLOSN, if we want to get LOS target with index 1 corresponding to user target US3, the target_number to be used is NLOS1+NLOS2+1.

The target_number can also be got with the array returned by xp_target_get_id_data.

2) A correction can be applied in order to compensate the travel time of light. This correction is not applied with default model. To activate this correction, the Sun model in xl_model_id must be initialized with the enum XL_MODEL_SUN_TRAVEL_TIME using the function xl_model_init (see [LIB_SUM]).

7.99.2 Calling Interface

The calling interface of the **xp_target_extra_target_to_sun** CFI function is the following (input parameters are <u>underlined</u>):

Date:

Issue: 10/05/2019

Page: 405

The XP_SIZE_TARGET_RESULT_TARGET_TO_SUN and XP_NUM_ERR_TARGET_EXTRA_TARGET_TO_SUN constants are defined in the file *explorer_pointing.h.*

Date:

Issue: 10/05/2019

Page: 406

7.99.3 Input Parameters

The xp_target_extra_target_to_sun CFI function has the following input parameters:

Table 264: Input parameters of xp_target_extra_target_to_sun function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
target_number	long *	-	Target number		>= 0
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>=0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/2019

Page: 407

7.99.4 Output Parameters

The output parameters of the xp_target_extra_target_to_sun CFI function are:

Table 265: Output parameters of xp_target_extra_target_to_sun

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
sun_results	double [XP_SIZE_SU N_RESULT]	[0]	Target to Sun (centre) azimuth. (Topocentric CS)	deg	>= 0 < 360
		[1]	Target to Sun (centre) elevation. (Topocentric CS)	deg	>= -90 <= +90
		[2]	Tangent altitude over the Earth in the target to Sun (centre) look direction. (Earth fixed CS)	m	-
		[3]	Target to Sun visibility flag: - 1: Sun eclipsed by the Earth. +1: Sun in sight.	-	+1, -1
		[4:XP_SIZ E_SUN_R ESULT]	(dummy)	-	-
sun_results _rate	double [XP_SIZE_SU N_RESULT]	[0]	Target to Sun (centre) azimuth-rate. (Topocentric CS)	deg/s	-
		[1]	Target to Sun (centre) elevation- rate. (Topocentric CS)	deg/s	-
		[2:XP_SIZ E_SUN_R ESULT]	(dummy)	-	-
sun_results _rate_rate	double [XP_SIZE_SU	[0]	Target to Sun (centre) azimuth-rate. (Topocentric CS)	deg/s2	-
	N_RESULT]	[1]	Target to Sun (centre) elevation- rate. (Topocentric CS)	deg/s2	-
		[2:XP_SIZ E_SUN_R ESULT]	(dummy)	-	-
ierr	long	-	Error vector	-	-

7.99.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_extra_target_to_sun** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN_SUM]).

Date:

Issue: 10/05/2019

Page: 408

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_extra_target_to_sun** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 266: Error messages of xp_target_extra_target_to_sun function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_TO_SUN_ NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_TO_SUN_ NO_SUCH_USER_TARGET_ ERR	1
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_TO_SUN_ NO_SUCH_LOS_TARGET_E RR	2
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_TO_SUN_ NO_SUCH_EARTH_TARGET _ERR	3
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_TO_SUN_ EARTH_TARGET_COMPUT_ ERR	4
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_TO_SUN_ WRONG_TARGET_TYPE_ER R	5
ERR	Wrong input deriv flag	No calculation performed	XP_CFI_TARGET_TO_SUN_ DERIV_FLAG_ERR	6
ERR	Error getting Sun position	No calculation performed	XP_CFI_TARGET_TO_SUN_S UN_POS_ERR	7
ERR	Invalid time reference in target data.	No calculation performed	XP_CFI_TARGET_TO_SUN_I NVALID_TIME_REF_ERR	8
ERR	Error changing from TOD to EF.	No calculation performed	XP_CFI_TARGET_TO_SUN_ TOD_TO_EF_ERR	9
ERR	Error getting direction vector from target to Sun.	No calculation performed	XP_CFI_TARGET_TO_SUN_ DIR_VECTOR_ERR	10
ERR	Error getting geodetic coordinates of the target	No calculation performed	XP_CFI_TARGET_TO_SUN_ CAR_GEO_ERR	11
ERR	Internal Computation Error. Target not Found.	No calculation performed	XP_CFI_TARGET_TO_SUN_ TARGET_NOT_FOUND_ERR	12
ERR	Wrong Atmospheric model in target data.	No calculation performed	XP_CFI_TARGET_TO_SUN_ MODE_COMBINATION_SWI TCHES_ERR	13

Date:

Issue: 10/05/2019

ERR	Error getting tranformation matrix to Topocentric CS.	No calculation performed	XP_CFI_TARGET_TO_SUN_ TOPO_ERR	14
ERR	Error getting Azimut/Elevation	No calculation performed	XP_CFI_TARGET_TO_SUN_ DIR_POINTING_ERR	15
WARN	Input Derivative flag level is too high. Derivative flag set to the value used in the main target function	Calculation performed	XP_CFI_TARGET_TO_SUN_ DERIV_FLAG_WARN	16
WARN	Precission not reached while calculating Sun pointing parameters	Calculation performed	XP_CFI_TARGET_TO_SUN_ MAX_ALLOWED_ITERATIO NS_WARN	17
WARN	DEM files were not found. Intersection with the ellipsoid is returned"	Calculation performed	XP_CFI_TARGET_TO_SUN_ELLI PSOID_WARN	18
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_TO_SUN_DE M_INTER_WARN	19
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided	XP_CFI_TARGET_TO_SUN_IRA Y_ID_WARN	20
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_TO_SUN_DE M_DEGRADED_SOLUTION_WA RN	21
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_TO_SUN_DE M_VOID_VALUE_DETECTED_E RR	22

Date:

Issue: 10/05/2019

Page: 410

7.100 xp_target_list_extra_target_to_sun

7.100.1 Overview

The xp_target_list_extra_target_to_sun CFI function provides the same results as xp_target_extra_target_to_sun function but for all the targets computed with xp_target_list_inter function.

This function has been optimized to improve the run-time performance of the target computation of all the targets and runs in multithreading (Remark: multithreading is not enabled on MacOS platforms, see section 6).

See note on mutithreading in section 7.92.1.1.

Note: a correction can be applied in order to compensate the travel time of Sun light travel time. This correction is not applied with default model. To activate this correction, the Sun model in xl_model_id must be initialized with the enum XL_MODEL_SUN_TRAVEL_TIME using the function xl_model_init (see [LIB SUM]).

7.100.2 Calling Interface

The calling interface of the **xp_target_list_extra_to_sun** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    long choice, target_type, target_number;
    double freq;
    long iray;
    xp_target_id target_id = {NULL};
        xp_target_extra_sun_target_results_list list;
        long ierr[XP_NUM_ERR_TARGET_LIST_EXTRA_TARGET_TO_SUN], status;

    status = xp_target_list_extra_target_to_sun (&target_id, &choice, &target_type, &iray, &freq &list, ierr);
}
```

The XP_NUM_ERR_TARGET_LIST_EXTRA_TARGET_TO_SUN constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 411

7.100.3 Input Parameters

The xp_target_list_extra_target_to_sun CFI function has the following input parameters:

Table 267: Input parameters of xp_target_list_extra_target_to_sun function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *	-	Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>=0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 412

7.100.4 Output Parameters

The output parameters of the xp_target_list_extra_target to sunCFI function are:

Table 268: Output parameters of xp_target_list_extra_target_to_sun

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
list	xp_target_extra_sun target_results_list	-	List of extra results	-	-
ierr	long	-	Error vector	-	-

The values corresponding to returned arrays are the same as in the case of xp_target_extra_target_to_sun (see section 7.99.4).

7.100.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_list_extra_target_to_sun** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_list_extra_target_to_sun** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 269: Error messages of xp_target_list_extra_target_to_sun function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_NO_SUCH_EARTH_TARGET _ERR	1
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_EARTH_TARGET_COMPUT_ ERR	2
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_ WRONG_TARGET_TYPE_ER R	3
ERR	Wrong input deriv flag	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_DERIV_FLAG_ERR	4
ERR	Error getting Sun position	No calculation performed	XP_CFI_TARGET_LIST_TO_SU	5

Date:

Issue: 10/05/2019

			N_S UN_POS_ERR	
ERR	Invalid time reference in target data.	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_I NVALID_TIME_REF_ERR	6
ERR	Error changing from TOD to EF.	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_TOD_TO_EF_ERR	7
ERR	Error getting direction vector from target to Sun.	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_DIR_VECTOR_ERR	8
ERR	Error getting geodetic coordinates of the target	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_ CAR_GEO_ERR	9
ERR	Internal Computation Error. Target not Found.	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_TARGET_NOT_FOUND_ERR	10
ERR	Wrong Atmospheric model in target data.	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_MODE_COMBINATION_SWI TCHES_ERR	11
ERR	Error getting tranformation matrix to Topocentric CS.	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_TOPO_ERR	12
ERR	Error getting Azimut/Elevation	No calculation performed	XP_CFI_TARGET_LIST_TO_SU N_ DIR_POINTING_ERR	13
WARN	Input Derivative flag level is too high. Derivative flag set to the value used in the main target function	Calculation performed	XP_CFI_TARGET_LIST_TO_SU N_ DERIV_FLAG_WARN	14
WARN	Precission not reached while calculating Sun pointing parameters	Calculation performed	XP_CFI_TARGET_LIST_TO_SU N_ MAX_ALLOWED_ITERATIO NS_WARN	15
WARN	DEM files were not found. Intersection with the ellipsoid is returned"	Calculation performed	XP_CFI_TARGET_LIST_TO_SU N_ELLIPSOID_WARN	16
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_LIST_TO_SU N_DEM_INTER_WARN	17
WARN	The ray tracing flag (iray) is ignored	Calculation performed. A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided	XP_CFI_TARGET_LIST_TO_SU N_IRAY_ID_WARN	18
ERR	Error allocating memory	No calculation performed	XP_CFI_TARGET_LIST_LIST_T O_SUN_MEMORY_ERR	19
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_LIST_TO_SU N_DEM_DEGRADED_SOLUTIO N_WARN	20

Date:

Issue: 10/05/2019

ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_LIST_TO_SU	21
			N_DEM_VOID_VALUE_DETECT	
			ED_ERR	

Date:

Issue: 10/05/2019

Page: 415

7.101 xp_target_extra_target_to_moon

7.101.1 Overview

The **xp_target_extra_target_to_moon** CFI function computes extra parameters related to the pointing from the target in input data structure to the moon.

Note on target number with targets computed with xp target list inter or xp target range:

the target_number to be used to get a specific LOS target is an incremental number. That is, if there are N user targets US1, US2, ... USN and a number of LOS targets for every user target NLOS1, NLOS2, ..., NLOSN, if we want to get LOS target with index 1 corresponding to user target US3, the target_number to be used is NLOS1+NLOS2+1.

The target number can also be got with the array returned by xp target get id data.

7.101.2 Calling Interface

The calling interface of the **xp_target_extra_target_to_moon** CFI function is the following (input parameters are <u>underlined</u>):

The XP_SIZE_TARGET_RESULT_TARGET_TO_MOON and XP_NUM_ERR_TARGET_EXTRA_TARGET_TO_MOON constants are defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 416

7.101.3 Input Parameters

The xp_target_extra_target_to_moon CFI function has the following input parameters:

Table 270: Input parameters of xp_target_extra_target_to_moon function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
target_number	long *	-	Target number		>= 0
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>=0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/2019

Page: 417

7.101.4 Output Parameters

The output parameters of the xp_target_extra_target_to_moon CFI function are:

Table 271: Output parameters of xp_target_extra_target_to_moon

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range					
moon_resul ts	double [XP_SIZE_M OON_RESUL T]	[0]	Target to Moon (centre) azimuth. (Topocentric CS)	deg	>= 0 < 360					
		[1]	Target to Moon (centre) el. (Topocentric CS)	deg	>= -90 <= +90					
		[2]	Tangent altitude over theEarth in the target to Moon (centre) look direction. (Earth fixed CS)	m	-					
		[3]	Target to Moon visibility flag: - 1: Moon eclipsed by the Earth. +1: Moon in sight.	-	+1, -1					
		[4:XP_SIZ E_MOON _RESULT]	(dummy)	-	-					
moon_resul ts_rate	double [XP_SIZE_M	[0]	Target to Moon (centre) azimuthrate. (Topocentric CS)	deg/s	-					
	OON_RESUL T]	[1]	Target to Moon (centre) eleva tion- rate. (Topocentric CS)	deg/s	-					
							[2:XP_SIZ E_MOON _RESULT]	(dummy)	-	-
moon_resul ts_rate_rate	double [XP_SIZE_M	[0]	Target to Moon (centre) azimuth-rate. (Topocentric CS)	deg/s2	-					
	OON_RESUL T]	[1]	Target to Moon (centre) eleva tion- rate. (Topocentric CS)	deg/s2	-					
		[2:XP_SIZ E_MOON _RESULT]	(dummy)	-	-					
ierr	long	-	Error vector	-	-					

7.101.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_extra_target_to_moon** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

Date:

Issue: 10/05/2019

Page: 418

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_extra_target_to_moon** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 272: Error messages of xp_target_extra_target_to_moon function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_TO_MOON _NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_TO_MOON _NO_SUCH_USER_TARGET_ ERR	1
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_TO_MOON _NO_SUCH_LOS_TARGET_E RR	2
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_TO_MOON _NO_SUCH_EARTH_TARGE T_ERR	3
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_TO_MOON _EARTH_TARGET_COMPUT _ERR	4
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_TO_MOON _WRONG_TARGET_TYPE_E RR	5
ERR	Wrong input deriv flag	No calculation performed	XP_CFI_TARGET_TO_MOON _DERIV_FLAG_ERR	6
ERR	Error getting Moon position	No calculation performed	XP_CFI_TARGET_TO_MOON _MOON_POS_ERR	7
ERR	Invalid time reference in target data.	No calculation performed	XP_CFI_TARGET_TO_MOON _INVALID_TIME_REF_ERR	8
ERR	Error changing from TOD to EF.	No calculation performed	XP_CFI_TARGET_TO_MOON _TOD_TO_EF_ERR	9
ERR	Error getting direction vector from target to Moon.	No calculation performed	XP_CFI_TARGET_TO_MOON _DIR_VECTOR_ERR	10
ERR	Error getting geodetic coordinates of the target	No calculation performed	XP_CFI_TARGET_TO_MOON _CAR_GEO_ERR	11
ERR	Internal Computation Error. Target not Found.	No calculation performed	XP_CFI_TARGET_TO_MOON _TARGET_NOT_FOUND_ER R	12
ERR	Wrong Atmospheric model in target data.	No calculation performed	XP_CFI_TARGET_TO_MOON _MODE_COMBINATION_SW	13

Date:

Issue: 10/05/2019

			ITCHES_ERR	
ERR	Error getting tranformation matrix to Topocentric CS.	No calculation performed	XP_CFI_TARGET_TO_MOON _TOPO_ERR	14
ERR	Error getting Azimut/Elevation	No calculation performed	XP_CFI_TARGET_TO_MOON _DIR_POINTING_ERR	15
WARN	Input Derivative flag level is too high. Derivative flag set to the value used in the main target function	Calculation performed	XP_CFI_TARGET_TO_MOON _DERIV_FLAG_WARN	16
WARN	Precission not reached while calculating Moon pointing parameters	Calculation performed	XP_CFI_TARGET_TO_MOON _MAX_ALLOWED_ITERATI ONS_WARN	17
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_TO_MOON_E LLIPSOID_WARN	18
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_TO_MOON_D EM_INTER_WARN	19
WARN	The ray tracing flag (iray) is ignored	Calculation performed A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided	XP_CFI_TARGET_TO_MOON_IR AY_ID_WARN	20
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_TO_MOON_D EM_DEGRADED_SOLUTION_W ARN	21
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_TO_MOON_D EM_VOID_VALUE_DETECTED_ ERR	22

Date:

Issue: 10/05/2019

Page: 420

7.102 xp_target_list_extra_target_to_moon

7.102.1 Overview

The **xp_target_list_extra_target_to_moon** CFI function provides the same results as xp_target_extra_target_to_moon function but for all the targets computed with xp_target_list_inter function.

This function has been optimized to improve the run-time performance of the target computation of all the targets and runs in multithreading (Remark: multithreading is not enabled on MacOS platforms, see section 6).

See note on mutithreading in section 7.92.1.1.

7.102.2 Calling Interface

The calling interface of the **xp_target_list_extra_to_moon** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    long choice, target_type, target_number;
    double freq;
    long iray;
    xp_target_id target_id = {NULL};
        xp_target_extra_moon_target_results_list list;
        long ierr[XP_NUM_ERR_TARGET_LIST_EXTRA_TARGET_TO_MOON], status;

    status = xp_target_list_extra_target_to_moon (&target_id, &choice, &target_type, &iray, &freq &list, ierr);
}
```

The $XP_NUM_ERR_TARGET_LIST_EXTRA_TARGET_TO_MOON$ constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 421

7.102.3 Input Parameters

The xp_target_list_extra_target_to_moon CFI function has the following input parameters:

Table 273: Input parameters of xp_target_list_extra_target_to_moon function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *	-	Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
iray	long *	-	Not used. The atmosphere refraction model can be defined via atmos_id initialization.	-	-
freq	double *	-	Frequency of the signal	Hz	>=0

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 422

7.102.4 Output Parameters

The output parameters of the xp_target_list_extra_target_to_moon CFI function are:

Table 274: Output parameters of xp_target_list_extra_target_to_moon

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
list	xp_target_extra_mo on_target_results_lis t		List of extra results	-	-
ierr	long	-	Error vector	-	-

The values corresponding to returned arrays are the same as in the case of xp_target_extra_target_to_moon (see section 7.101.4).

7.102.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_list_extra_target_to_moon** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_list_extra_target_to_moon** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 275: Error messages of xp_target_list_extra_target_to_moon function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_NO_DATA_ERR	0
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_NO_SUCH_EARTH_TARGE T_ERR	1
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON _EARTH_TARGET_COMPUT _ERR	2
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON _WRONG_TARGET_TYPE_E RR	
ERR	Wrong input deriv flag	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_DERIV_FLAG_ERR	4

Date:

Issue: 10/05/2019

ERR	Error getting Moon position	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON _MOON_POS_ERR	5
ERR	Invalid time reference in target data.	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_INVALID_TIME_REF_ERR	6
ERR	Error changing from TOD to EF.	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_TOD_TO_EF_ERR	7
ERR	Error getting direction vector from target to Moon.	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_DIR_VECTOR_ERR	8
ERR	Error getting geodetic coordinates of the target	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_CAR_GEO_ERR	9
ERR	Internal Computation Error. Target not Found.	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON _TARGET_NOT_FOUND_ER R	10
ERR	Wrong Atmospheric model in target data.	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON _MODE_COMBINATION_SW ITCHES_ERR	11
ERR	Error getting tranformation matrix to Topocentric CS.	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON _TOPO_ERR	12
ERR	Error getting Azimut/Elevation	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_DIR_POINTING_ERR	13
WARN	Input Derivative flag level is too high. Derivative flag set to the value used in the main target function	Calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_DERIV_FLAG_WARN	14
WARN	Precission not reached while calculating Moon pointing parameters	Calculation performed	XP_CFI_TARGET_LIST_TO_MO ON _MAX_ALLOWED_ITERATI ONS_WARN	15
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_ELLIPSOID_WARN	16
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_DEM_INTER_WARN	17
WARN	The ray tracing flag (iray) is ignored	Calculation performed A message informs the user that this paremeter is not used. If the variable iray is equal to XP_NO_REF_INIT (=0), the warning is avoided	XP_CFI_TARGET_LIST_TO_MO ON_IRAY_ID_WARN	18
ERR	Error allocating memory	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_MEMORY_ERR	19
WARN	No precise intersection found	Calculation performed	XP_CFI_TARGET_LIST_TO_MO	20

Date:

Issue: 10/05/2019

	with DEM. Degraded solution returned		ON_DEM_DEGRADED_SOLUTI ON_WARN	
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_LIST_TO_MO ON_DEM_VOID_VALUE_DETEC TED_ERR	

Date:

Issue: 10/05/2019

Page: 425

7.103 xp_target_extra_specular_reflection

7.103.1 Overview

The **xp_target_extra_specular_reflection** CFI function calculates the direction of the specular reflection associated to a given target.

Note on target number with targets computed with xp target list inter or xp target range:

the target_number to be used to get a specific LOS target is an incremental number. That is, if there are N user targets US1, US2, ... USN and a number of LOS targets for every user target NLOS1, NLOS2, ..., NLOSN, if we want to get LOS target with index 1 corresponding to user target US3, the target_number to be used is NLOS1+NLOS2+1.

The target number can also be got with the array returned by xp target get id data.

7.103.2 Calling Interface

The calling interface of the **xp_target_extra_specular_reflection** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer pointing.h>
    long target type, target number, choice, iray;
    double freq;
    double spec reflec results[XP SIZE TARGET RESULT SPEC REFL],
     spec reflec results rate[XP SIZE TARGET RESULT SPEC REFL],
     spec reflec results rate rate [XP SIZE TARGET RESULT SPEC REFL];
                   target id = {NULL};
    xp target id
    long ierr[XP NUM ERR TARGET EXTRA SPEC REFL], status;
    status = xp target extra specular reflection
                               (&target id, &choice, &target type,
                                &target number,
                                 &deflection north, &deflection east,
                                 spec reflec results,
                                 spec reflec results rate,
                                spec reflec results rate rate, ierr);
}
```

The XP_SIZE_TARGET_RESULT_SPEC_REFL and XP_NUM_ERR_TARGET_EXTRA_SPEC_REFL constants are defined in the file *explorer pointing.h*.

Date:

Issue: 10/05/2019

Page: 426

7.103.3 Input Parameters

The xp_target_extra_specular_reflection CFI function has the following input parameters:

Table 276: Input parameters of xp_target_extra_specular_reflection function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *		Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
target_number	long *	-	Target number		>= 0
deflection_nort h	double *	-	North-South component of the vertical deflection	deg	>= -90 < = 90
deflection_east	double *	-	East-West component of the vertical deflection	deg	>= -90 < = 90

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/2<u>0</u>19

Page: 427

7.103.4 Output Parameters

The output parameters of the xp_target_extra_specular_reflection CFI function are:

Table 277: Output parameters of xp_target_extra_specular_reflection

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
spec_reflec _results	double [XP_SIZE_TA RGET_ RESULT_SP EC_REFL]	[0]	X coordinate of reflected pointing direction. (EF CS)	m	-
		[1]	Y coordinate of reflected pointing direction. (EF CS)	m	-
		[2]	Z coordinate of reflected pointing direction. (EF CS)	m	-
		[3]	Azimuth of the reflected pointing direction. (Topocentric CS)	deg	[0, 360)
		[4]	Elevation of the reflected pointing direction. (Topocentric CS)	deg	[-90, 90]
		[5]	Right ascension at which the reflected pointing direction points at target point. (True of Date CS)	deg	[0, 360)
		[6]	Declination at which the reflected pointing direction points at target point. (True of Date CS)	deg	[-90, 90]
spec_reflec _results_rat e	double [XP_SIZE_TA RGET_ RESULT_SP EC_REFL]	[0]	X velocity of reflected pointing direction. (EF CS)	m/s	-
		[1]	Y velocity of reflected pointing direction. (EF CS)	m/s	-
		[2]	Z velocity of reflected pointing direction. (EF CS)	m/s	-
		[3]	Azimuth rate of the reflected pointing direction (Topocentric CS)	deg/s	-
		[4]	Elevation rate of the reflected pointing direction (Topocentric CS)	deg/s	-
		[5]	Right ascension rate at which the reflected pointing direction points at target point. (True of Date CS)	deg/s	-
		[6]	Declination rate at which the reflected pointing direction points at target point. (True of Date CS)	deg/s	-

Date:

Issue: 10/05/2019

Page: 428

spec_reflec _results_rat	double [XP_SIZE_TA RGET_ RESULT_SP EC_REFL]	[0]	X acceleration of reflected point ing direction. (EF CS)	m/s2	-
e_rate		[1]	Y acceleration of reflected point ing direction. (EF CS)	m/s2	-
		[2]	Z acceleration of reflected point ing direction. (EF CS)	m/s2	-
		[3]	Azimuth rate rate of the reflected pointing direction (Topocentric CS)	deg/s2	-
		[4]	Elevation rate rate of the reflected pointing direction (Topocentric CS)	deg/s2	-
		[5]	Right ascension rate rate at which the reflected pointing direction points at target point. (True of Date CS)	deg/s2	-
		[6]	Declination rate rate at which the reflected pointing direction points at target point. (True of Date CS)	deg/s2	-
ierr	long	-	Error vector	-	-

7.103.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the xp target extra specular reflectionCFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library xp get msg (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_extra_specular_reflection** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 278: Error messages of xp_target_extra_specular_reflection function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_NO_D ATA_ERR	0
ERR	Input deflection angle is out of range	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_WRON G_DEF_ANGLE_ERR	1

Date:

Issue: 10/05/2019

ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_NO_SU CH_USER_TARGET_ERR	2
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_NO_SU CH_LOS_TARGET_ERR	3
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_EART H_TARGET_COMPUT_ERR	4
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_NO_SU CH_EARTH_TARGET_ERR	5
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_WRON G_TARGET_TYPE_ERR	6
ERR	Error getting geodetic coordinates of the target	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_CAR_T O_GEO_ERR	7
ERR	Error getting tranformation matrix to Topocentric CS	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_TOPO_ CS_ERR	8
ERR	Error getting direction angles	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_DIR_P OINTING_ERR	9
ERR	Error while changing coordinate system	No calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_CHAN GE_CS_ERR	10
WARN	Input Derivative flag level is too high. Derivative flag set to the value used in the main target function	Calculation performed	XP_CFI_TARGET_EXTRA_S PECULAR_REFLECT_DERIV _WARN	11
WARN	DEM files were not found. Intersection with the ellipsoid is returned	Calculation performed	XP_CFI_TARGET_EXTRA_SPEC ULAR_REFLECT_WARN	12
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_EXTRA_SPEC ULAR_REFLECT_DEM_INTER_ WARN	13
ERR	This function cannot be used with a target id computed with target S/C	No calculation performed	XP_CFI_TARGET_EXTRA_SPEC ULAR_REFLECT_SC_ERR	14
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_EXTRA_SPEC ULAR_REFLECT_DEM_DEGRA DED_SOLUTION_WARN	15
ERR	Void value detected in DEM	No calculation performed	XP_CFI_TARGET_EXTRA_SPEC ULAR_REFLECT_DEM_VOID_V ALUE_DETECTED_ERR	16

Date:

Issue: 10/05/2019

Date:

Issue: 10/05/2019

Page: 431

7.104 xp_target_list_extra_specular_reflection

7.104.1 Overview

The **xp_target_list_extra_specular_reflection** CFI function provides the same results as xp_target_extra_specular_reflection function but for all the targets computed with xp_target_list_inter function.

This function has been optimized to improve the run-time performance of the target computation of all the targets and runs in multithreading (Remark: multithreading is not enabled on MacOS platforms, see section 6).

See note on mutithreading in section 7.92.1.1.

7.104.2 Calling Interface

The calling interface of the **xp_target_list_extra_specular_reflection** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    long choice, target_type, target_number;
    double deflection_north, deflection_east;
    long iray;
    xp_target_id target_id = {NULL};
    xp_target_extra_spec_reflec_target_results_list list;
    long ierr[XP_NUM_ERR_TARGET_LIST_EXTRA_SPEC_REFL], status;

status = xp_target_list_extra_specular_reflection (&target_id, &choice, &target_type, &deflection_north, &deflection_east, &list, ierr);
}
```

The XP_NUM_ERR_TARGET_LIST_EXTRA_SPEC_REFL constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 432

7.104.3 Input Parameters

The xp_target_list_extra_specular_reflection CFI function has the following input parameters:

Table 279: Input parameters of xp_target_list_extra_specular_reflection function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-
choice	long *	-	Flag to select the extra results to be computed. Even though derivatives could be requested by user, they will not be calculated if the target was computed without derivatives (a warning is raised in this case).	-	Allowed values: (0) XP_NO_DER (1) XP_DER_1ST (2) XP_DER_2ND
target_type	long *	-	Flag to select the type of target		XP_USER_TARGET_T YPE XP_LOS_TARGET_TY PE XP_DEM_TARGET_T YPE
deflection_north	double *	-	North-South component of the vertical deflection	deg	>= -90 < = 90
deflection_east	double *	-	East-West component of the vertical deflection	deg	>= -90 < = 90

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 433

7.104.4 Output Parameters

The output parameters of the xp_target_list_extra_specular_reflection CFI function are:

Table 280: Output parameters of xp_target_list_extra_specular_reflection

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
list	xp_target_extra_spe c_reflec_target_resu lts_list		List of extra results	-	-
ierr	long	-	Error vector	-	-

The values corresponding to returned arrays are the same as in the case of xp target extra specular reflection (see section 7.103.4).

7.104.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_list_extra_specular_reflection** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp get msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_list_extra_specular_reflection** function by calling the function of the EO_POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 281: Error messages of xp_target_list_extra_specular_reflection function

Error type	Error message	Cause and impact	Error code	Error No
ERR	No target data available	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_NO_D ATA_ERR	0
ERR	Input deflection angle is out of range	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_WRON G_DEF_ANGLE_ERR	1
ERR	Could not compute the DEM target	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_EART H_TARGET_COMPUT_ERR	2
ERR	Wrong target type	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_WRON G_TARGET_TYPE_ERR	3
ERR	The target does not exist	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_	4

Date:

Issue: 10/05/2019

Page: 434

			S PECULAR_REFLECT_NO_SU CH_EARTH_TARGET_ERR	
ERR	Error getting geodetic coordinates of the target	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_CAR_T O_GEO_ERR	5
ERR	Error getting tranformation matrix to Topocentric CS	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_TOPO_ CS_ERR	6
ERR Error getting direction angles		No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_DIR_P OINTING_ERR	7
ERR	Error while changing coordinate system	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_CHAN GE_CS_ERR	8
WARN	Input Derivative flag level is too high. Derivative flag set to the value used in the main target function	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ S PECULAR_REFLECT_DERIV _WARN	9
WARN	DEM files were not found. Intersection with the ellipsoid is returned	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ SPECULAR_REFLECT_ELLIPSO ID_WARN	10
WARN	Warning in XP_DEM_inter	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ SPECULAR_REFLECT_DEM_IN TER_WARN	11
ERR	This function cannot be used with a target id computed with target S/C	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ SPECULAR_REFLECT_SC_ERR	12
ERR	Error allocating memory	No calculation performed	XP_CFI_TARGET_LIST_EXTRA_ SPECULAR_REFLECT_MEMOR Y_ERR	13
WARN	No precise intersection found with DEM. Degraded solution returned	Calculation performed	XP_CFI_TARGET_LIST_EXTRA_ SPECULAR_REFLECT_DEM_DE GRADED_SOLUTION_WARN	14

Date:

Issue: 10/05/2019

Page: 435

7.105xp_target_close

7.105.1 Overview

The xp_target_close CFI function cleans up any memory allocation performed by the Target functions.

7.105.2 Calling Interface

The calling interface of the **xp_target_close** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xp_target_id target_id = {NULL};
    long ierr[XP_NUM_ERR_TARGET_CLOSE], status;

    status = xp_target_close(&target_id, ierr);
}
```

The XP NUM ERR TARGET CLOSE constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/20 197

Page: 436

7.105.3 Input Parameters

The xp_target_close CFI function has the following input parameters:

Table 282: Input parameters of xp_target_close function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id*	-	Structure that contains the Target results	-	-

7.105.4 Output Parameters

The output parameters of the **xp_target_close** CFI function are:

Table 283: Output parameters of xp_target_close

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long	-	Error vector	-	-

7.105.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_target_close** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_target_close** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 284: Error messages of xp_target_close function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Target ID is not initialized or it is being used	•	XP_CFI_TARGET_CLOSE_ WRONG_ID_ERR	11

Date:

Issue: 10/05/2019

Page: 437

7.106 xp_target_get_id_data

7.106.1 Overview

The xp_target_get_id_data CFI function returns the target initialization data.

If the target_id has been computed with xp_target_list_inter or xp_target_range function, this function returns an array with as many elements as num_user_target. For every element, the list of LOS targets corresponding to user target are provided.

If the target_id has been computed with any other function, the returned array has only one position with the list of user targets and the list of LOS targets.

Note on usage: the user must reserve the input-output array to the function, no internal allocation is done.

7.106.2 Calling interface

The calling interface of the **xp_target_get_id_data** CFI function is the following (input parameters are underlined):

7.106.3 Input parameters

The xp target get id data CFI function has the following input parameters:

Table 285: Input parameters of xp_target_get_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
target_id	xp_target_id *	-	Target Id.	-	-

7.106.4 Output parameters

The output parameters of the xp target get id data CFI function are:

Table 286: Output parameters of xp_target_get_id_data function

C name	C type	Array	Description	Unit	Allowed Range
--------	--------	-------	-------------	------	---------------

Date:

Issue: 10/05/2019

Page: 438

		Element	(Reference)	(Format)	
xp_target_get_id_da ta	long	-	Status flag	-	-
data	xp_target_id_dat a*	-	Target initialization data	-	-

7.106.5 Warnings and errors

This function does not return any error/warning code. Only the status of the function indicates if the execution was correct or not.

The possible causes of error are:

• The target id was not computed.

Date:

Issue: 10/05/2019

Page: 439

7.107 xp_gen_dem_max_altitude_file

7.107.1 Overview

The **xp_gen_dem_max_altitude_file** CFI function generates a binary file with the maximum altitudes corresponding to every mini-tile, as described in input DEM configuration file. This file is needed to the maximum altitudes algo as described in section 7.65.4.

7.107.2 Calling Interface

The calling interface of the **xp_gen_dem_max_altitude_file** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    char *dem_config_file;
    long ierr[XP_NUM_ERR_DEM_MAX_ALT_FILE], status;

    status = xp_gen_dem_max_altitude_file(dem_config_file, ierr);
}
```

The XP NUM ERR DEM MAX ALT FILE constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2019

Page: 440

7.107.3 Input Parameters

The xp_gen_dem_max_altitude_file CFI function has the following input parameters:

Table 287: Input parameters of xp_gen_dem_max_altitude_file function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_config_file	Char*		DEM configuration file with description of mini tiles	-	-

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 441

7.107.4 Output Parameters

The output parameters of the xp_gen_dem_max_altitude_file CFI function are:

Table 288: Output parameters of xp_gen_dem_max_altitude_file

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long	-	Error vector	-	-

7.107.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_gen_dem_max_altitude_file** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_gen_dem_max_altitude_file** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN SUM]).

Table 289: Error messages of xp_gen_dem_max_altitude function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Error reading DEM configuration file	No computation performed	XP_GEN_DEM_MAX_ALTITUDE _READ_DEM_CFG_ERR	0
ERR	Error allocating memory	No computation performed	XP_GEN_DEM_MAX_ALTITUDE _MEMORY_ERR	1
WARN	Some DEM tiles are not present. Corresponding altitudes set to zero.	Computation performed	XP_GEN_DEM_MAX_ALTITUDE _OPEN_TILE_WARN	2
ERR	Error reading DEM tile %s	No computation performed	XP_GEN_DEM_MAX_ALTITUDE _READ_TILE_ERR	3
ERR	Error initializing DEM ID	No computation performed	XP_GEN_DEM_MAX_ALTITUDE _DEM_INIT_ERR	4
ERR	Error closing DEM ID	No computation performed	XP_GEN_DEM_MAX_ALTITUDE _DEM_CLOSE_ERR	5
ERR	Error opening output file %s	No computation performed	XP_GEN_DEM_MAX_ALTITUDE _OPEN_OUTPUT_FILE_ERR	6
ERR	Error writing to output file %s	No computation performed	XP_GEN_DEM_MAX_ALTITUDE _WRITE_OUTPUT_ERR	7
ERR	No output file name provided	No computation performed	XP_GEN_DEM_MAX_ALTITUDE _CONFIG_ERR	8

Date:

Issue: 10/05/2019

Page: 442

7.107.6 Executable Program

The **gen_dem_max_altitude_file** executable program can be called from a Unix shell as:

> [-xo_v] [-xp_v]

[-help]

[-show]

Note that:

- Order of parameters does not matter.
- Bracketed parameters are not mandatory.
- The input DEM configuration file must have the "MiniTiles_Configuration" tag in "DEM User Parameters" section.
- [-xl_v] option for EO_LIB Verbose mode.
- [-xo_v] option for EO_ORBIT Verbose mode.
- [-xp_v] option for EO_POINTING Verbose mode.
- [-v] option for Verbose mode for all libraries (default is Silent).
- [-show] displays the inputs of the function and the results.

Example:

gen_dem_max_altitude_file -dem_config_file
S1A TEST INT DEMCFG 00000000T000000 999999999999999 0003.EOF

Date:

Issue: 10/05/2019

Page: 443

7.108 xp_gen_dem_altitudes_from_ellipsoid

7.108.1 Overview

The **xp_gen_dem_altitudes_from_ellipsoid** CFI function generates, for an input DEM ACE2 or GDEM V2 dataset, whose altitudes are expressed w.r.t the geoid, an equivalent DEM but with the heights referenced to the ellipsoid, not to the geoid. This way the geoid undulation computation can be avoided at runtime and performance can be improved.

It can be computed the whole DEM or only a set of tiles, depending on the inputs to the function. The field "set_type" of xp_gen_dem_alt_from_ellipsoid_inputs struct can take the following values to select which DEM set to compute:

- XP ALL DEM: all DEM tiles will be computed.
- XP_DEM_SET: only the tiles of the DEM fully inside the interval provided by "lon_min", "lon_max", "lat_min" and "lat_max" fields of xp_gen_dem_alt_from_ellipsoid_inputs struct are computed.

7.108.2 Calling Interface

The calling interface of the **xp_gen_dem_altitudes_from_ellipsoid** CFI function is the following (input parameters are <u>underlined</u>):

The XP NUM ERR DEM ALT FROM ELLIPSOID constant is defined in the file explorer_pointing.h.

Date:

Issue: 10/05/2019

Page: 444

7.108.3 Input Parameters

The xp_gen_dem_altitudes_from_ellipsoid CFI function has the following input parameters:

Table 290: Input parameters of xp_gen_dem_altitudes_from_ellipsoid function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
dem_config_file	char*	-	DEM configuration file with description of mini tiles	-	-
num_harmonics	long*	-	Number of harmonics to be used in geoid computation.	-	>0
output_dir	char*	-	Output directory where generated DEM will be placed	-	-
inputs	xp_gen_dem _alt_from_ell ipsoid_inputs *		DEM set to be processed	For range limits: deg	Longitude: [-180., 180.] Latitude: [-90., 90.]

It is possible to use enumeration values rather than integer values for some of the input arguments:

• Choice. (See Table 3).

Date:

Issue: 10/05/20 197

Page: 445

7.108.4 Output Parameters

The output parameters of the xp gen_dem_altitudes_from_ellipsoid CFI function are:

Table 291: Output parameters of xp_gen_dem_altitudes_from_ellipsoid

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
ierr	long	-	Error vector	-	-

7.108.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_gen_dem_altitudes_from_ellipsoid** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO_POINTING software library **xp_get_msg** (see [GEN_SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_gen_dem_altitudes_from_ellipsoid** function by calling the function of the EO POINTING software library **xp_get_code** (see [GEN_SUM]).

Table 292: Error messages of xp_gen_dem_max_altitude function

Error type	Error message	Cause and impact	Error code	Error No
ERR	Error reading DEM configuration file	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_READ_DEM _CFG_ERR	0
ERR	Wrong input DEM type	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_WRONG_DE M_TYPE_ERR	1
ERR	Error allocating memory	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_MEMORY_E RR	2
ERR	Error reading DEM tile %s	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_READ_TILE_ ERR	3
ERR	Error computing geoid undulation	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_GEOID_UND U_ERR	4
ERR	Error opening output file %s	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_OPEN_OUT PUT_ERR	5
ERR	Error writing to output file %s	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_WRITE_OUT	

Date:

Issue: 10/05/2019

Page: 446

			PUT_ERR	
WARN	Some DEM tiles are not present. Corresponding altitudes set to zero.	Computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_OPEN_TILE_ WARN	7
ERR	Wrong input DEM set type	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_WRONG_DE M_SET_TYPE_ERR	8
ERR	Wrong input longitude interval (must be in interval [-180, 180] deg	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_WRONG_SE T_LONGITUDE_ERR	9
ERR	Wrong input latitude interval (must be in interval [-90, 90] deg	No computation performed	XP_CFI_GEN_DEM_ALTITUDE_ FROM_ELLIPSOID_WRONG_SE T_LATITUDE_ERR	10

Date:

Issue: 10/05/2019

Page: 447

7.109 xp_attitude_transform

7.109.1 Overview

The **xp_attitude_transform** CFI function allows the user to change the reference frame in which the internal data of the attitude ids are expressed.

Remark: all attitude related computations are performed in the True of Date Coordinate System. This means that, if one attitude id has been initialized with data expressed in another reference frame (e.g. attitude file with quaternions expressed in EF), at each call of a function using such attitude id (e.g. xp_attitude_compute) one or more conversions to True of Date will be performed. If the reference frame is changed to True of Date (using xp_attitude_transform), such conversions will not be executed and this will result in a run-time performance improvement.

Note: transformation of attitude ids that are initialized with Start Tracker files is not supported.

7.109.2 Calling Interface

The calling interface of the **xp_attitude_transform** CFI function is the following (input parameters are <u>underlined</u>):

```
#include <explorer_pointing.h>
{
    xp_transform_cfg transform_cfg;
    xp_attitude_def attitude_def;
    long ierr[XP_NUM_ERR_ATTITUDE_TRANSFORM], status;

    status = xp_attitude_transform(&transform_cfg, &attitude_def ierr);
}
```

The XP NUM ERR ATTITUDE TRANSFORM constant is defined in the file explorer pointing.h.

Date:

Issue: 10/05/2<u>0</u>19

Page: 448

7.109.3 Input Parameters

The **xp_attitude_transform** CFI function has the following input parameters:

Table 293: Input parameters of xp_attitude_transform function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
transform_cfg	xp_transform _cfg*	-	Structure containing parameters used for the transformation	-	-
attitude_def	xp_attitude_ def*	-	Structure containing: satellite nominal attitude, satellite attitude target, instrument attitude target and attitude type		

Date:

Issue: 10/05/20 197

Page: 449

7.109.4 Output Parameters

The output parameters of the xp_attitude_transform CFI function are:

Table 294: Output parameters of xp_attitude_transform

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
attitude_def	xp_attitude_def*		Structure containing: satellite nominal attitude, satellite attitude target, instrument attitude target and attitude type (Input/Output parameter)	-	-
ierr	long	-	Error vector	-	-

7.109.5 Warnings and Errors

Next table lists the possible error messages that can be returned by the **xp_attitude_transform** CFI function after translating the returned error vector into the equivalent list of error messages by calling the function of the EO POINTING software library **xp_get_msg** (see [GEN SUM]).

This table also indicates the type of message returned, i.e. either a warning (WARN) or an error (ERR), the cause of such a message and the impact on the performed calculation.

The table is completed by the error code and value. These error codes can be obtained by translating the error vector returned by the **xp_attitude_transform** function by calling the function of the EO_POINTING software library **xp get code** (see [GEN SUM]).

Table 295: Error messages of xp_attitude_transform function

Error type	Error message	Cause and impact	Error code	Error No
	Error transforming quaternions to vectors	No computation performed	XP_ATTITUDE_TRANSFORM_Q UAT_2_VEC_ERR	0
	Error computing rotation matrix	No computation performed	XP_ATTITUDE_TRANSFORM_G ET_ROTATION_ERR	1
	Error transforming vectors to quaternions	No computation performed	XP_ATTITUDE_TRANSFORM_VE C_2_QUAT_ERR	2
ERR	Uninitialized attitude	No computation performed	XP_ATTITUDE_TRANSFORM_U NINIT_ATTITUDE_ERR	3
	Only XP_SAT_NOMINAL_ATT, XP_SAT_ATT and XP_INSTR_ATT allowed	performed	XP_ATTITUDE_TRANSFORM_U NALLOWED_ATT_TYPE_ERR	4
ERR	Transformation not supported for Star Tracker data	No computation performed	XP_ATTITUDE_TRANSFORM_ST AR_TRACKER_NOT_SUPPORTE D_ERR	

Date:

Issue: 10/05/20 197

Page: 450

7.110 xp_free_target_id_data

7.110.1 Overview

The **xp_free_target_id_data** CFI function allows the user to free the memory allocated by the xp_target_id_data structure.

7.110.2 Calling interfaces

The calling interface of the **xp_free_target_id_data** CFI function is the following (input parameters are underlined):

```
#include <explorer_pointing.h>
{
    xp_target_id_data *data;
    long num_user_target;
    long status;

status = xp_free_target_id_data(data, num_user_target);
}
```

7.110.3 Input Parameters

The **xp_free_target_id_data** CFI function has the following input parameters:

Table 296: Input parameters of xp_free_target_id_data function

C name	C type	Array Element	Description (Reference)	Unit (Format)	Allowed Range
data	xp_target_id _data	-	Structure containing the target parameters	-	-
num_user_target	long	-	Number of the targets defined by user	-	-

7.110.4 Output Parameters

The **xp** free target id data CFI function has no output parameters.

7.110.5 Warnings and Errors

The xp_free_target_id_data CFI function has no warnings and errors defined.

Date:

Issue: 10/05/2019

Page: 451

8 RUNTIME PERFORMANCES

The library performance has been measured by dedicated test procedures run in 5 different platforms under the below specified machines:

OS ID	Processor	os	RAM
LINUX64	Intel(R) Xeon(R) CPU E5- 2609 v4 @ 1.70GHz (8 cores)	GNU LINUX 4.10.0-42-generic (Ubuntu 17.04)	64 GB
LINUX64_LEGACY	Intel(R) Xeon(R) CPU E5- 2470 0 @ 2.30GHz (16 cores)	GNU LINUX 2.6.24-16-generic (Ubuntu 10.04)	16 GB
MACIN64	Intel Core i7 4 cores @2,6 GHz	MACOSX 10.12	16 GB
WINDOWS64	Intel(R) Xeon(R)CPU ES- 2630 @ 2.40GHz 2.40GHz	Microsoft Windows 7	16 GB

The table below shows the time (in miliseconds - ms) each function takes to be run under each platform:

Function ID	WINDOWS64	LINUX64	LINUX64	MACIN64
			LEGACY	
xp_attitude_init	0.002400	0.001000	0.000000	0.002000
xp_sat_nominal_att_init	0.001495	0.000190	0.000160	0.000220
xp_sat_nominal_att_init_file 5 Quaternions	* 0.452000	0.180000	0.230000	0.210000
xp_sat_nominal_att_get_file	0.000249	0.000200	0.000260	0.000190
xp_sat_nominal_att_set_file	0.000292	0.000170	0.000140	0.000120
xp_sat_nominal_att_init_model	0.001490	0.000200	0.000200	0.000200
xp_sat_nominal_att_get_param	0.000048	0.000010	0.000010	0.000010
xp_sat_nominal_att_set_param	0.000050	0.000012	0.000012	0.000008
xp_sat_att_matrix_init	0.001700	0.001000	0.001000	0.000000
xp_sat_att_init_harmonic	0.001530	0.000400	0.000300	0.000200
xp sat att init file	0.446000	0.190000	0.220000	0.190000
xp sat att angle init	0.001441	0.000390	0.000280	0.000190
xp sat att get angles	0.000013	0.000011	0.000010	0.000005
xp sat att set angles	0.000014	0.000000	0.000020	0.000010

Date:

Issue: 10/05/2019

Page: 452

xp_sat_att_quat_plus_matrix_init	0.001880	0.000900	0.000600	0.000800
xp_sat_att_quat_plus_angle_init	0.002000	0.001000	0.000800	0.001500
xp_sat_att_set_quat_plus_matrix	0.000180	0.000100	0.000100	0.000100
xp_sat_att_set_quat_plus_angle	0.000280	0.000100	0.000200	0.000100
xp_instr_att_init_harmonic	0.001560	0.000200	0.000200	0.000200
xp instr att get harmonic	0.000095	0.000050	0.000030	0.000020
xp_instr_att_set_harmonic	0.000100	0.000000	0.000100	0.000100
xp_instr_att_init_file	0.442000	0.180000	0.200000	0.260000
xp_instr_att_matrix_init	0.001516	0.000680	0.000860	0.000660
xp_instr_att_get_matrix	0.000041	0.000012	0.000010	0.000008
xp_instr_att_angle_init	0.001507	0.000180	0.000170	0.000230
xp_instr_att_get_angles	0.000013	0.000010	0.000010	0.000010
xp_instr_att_set_angles	0.000013	0.000010	0.000010	0.000000
xp_attitude_compute * target frame: XP INSTR ATT	0.028600	0.018000	0.028000	0.014000
xp attitude get id data	0.000204	0.000060	0.000060	0.000030
xp atmos init	0.644800	0.324000	0.336000	0.498000
xp atmos get id data	0.000008	0.000010	0.000000	0.000010
xp dem init	1.994000	0.320000	0.540000	0.580000
xp dem get info	0.117000	0.004000	0.013000	0.010000
xp dem compute	0.095000	0.010000	0.110000	0.010000
xp_dem_id_configure *		16 600000	22.500000	15 500000
load tiles->free cache	53.020000	16.600000	32.500000	15.500000
xp_get_attitude_data	0.009000	0.006000	0.010000	0.002000
xp_target_inter	0.004200	0.004000	0.004000	0.002000
xp_target_get_id_data	0.000840	0.000500	0.000600	0.000600
xp_target_extra_vector * No derivates	0.000433	0.000340	0.000340	0.000180
xp_target_ground_range	0.034000	0.036000	0.044000	0.026000
xp_target_incidence_angle	0.039800	0.026000	0.036000	0.024000
xp_target_range	0.012800	0.008000	0.012000	0.006000
xp_target_range_rate	0.014000	0.000000	0.010000	0.010000
xp_target_tangent	0.013000	0.008000	0.012000	0.004000

Date:

Issue: 10/05/2019

Page: 453

xp_target_altitude	0.010300	0.007000	0.012000	0.006000
xp_target_star	0.000000	0.000000	0.000000	5.000000
xp_target_extra_vector * 1st Derivates	0.000438	0.000347	0.000351	0.000171
xp target tangent moon	0.027000	0.020000	0.040000	0.010000
xp target generic	0.002910	0.001100	0.000800	0.001000
xp_target_station	0.005180	0.002400	0.002500	0.002000
xp target extra main	0.014570	0.011800	0.014000	0.006200
xp target extra aux	0.070000	0.060000	0.070000	0.100000
xp target extra target to sun	0.021990	0.016600	0.025800	0.008400
xp target extra target to moon	0.022790	0.020400	0.034100	0.008900
xp target extra ef target	0.013000	0.010000	0.020000	0.010000
xp_target_extra_specular_reflection	0.007950	0.006000	0.008800	0.003200
xp target sc	0.154000	0.110000	0.160000	0.070000
xp_target_reflected	12.869000	8.920000	11.660000	7.030000
xp_target_travel_time	0.018270	0.013400	0.018000	0.007000
xp_multi_target_inter	0.042000	0.040000	0.040000	0.020000
xp_multi_target_travel_time	0.031300	0.021000	0.026000	0.013000
xp_change_frame	0.028400	0.017000	0.026000	0.011000
xp_target_list_inter * (time per user target)	0.002549	0.000000	0.001961	0.001961
xp_target_inter + xp_target_extra_main * (DEM target)	0.046000	0.026000	0.056000	0.024000
xp_target_list_extra_vector * (time per user target - DEM target)	0.009607	0.008823	0.012744	0.006862
xp_target_list_extra_main * (time per user target - DEM target)	0.010881	0.008823	0.012744	0.012744
xp_target_list_extra_aux * (time per user target - DEM target)	0.012646	0.009803	0.021567	0.037251
xp_target_list_extra_ef_target * (time per user target - DEM target)	0.010783	0.008823	0.013724	0.010783
xp_target_list_extra_specular_reflection *				
(time per user target - DEM target)	0.010783	0.008823	0.010783	0.010783
xp_target_list_extra_target_to_moon * (time per user target - DEM target)	0.011077	0.007842	0.012744	0.010783

Date:

Issue: 10/05/2019

Page: 454

xp_target_list_extra_target_to_sun *				
(time per user target - DEM target)	0.010979	0.007842	0.012744	0.009803
xp gen dem max altitude file *				
3x3 minitiles (9 minitiles/tile)	39545.00000	30890.00000	45230.000000	20970.000000
xp gen dem altitudes from ellipsoid *				
1 tile, 30 harmonics	84266.00000	32740.00000	1280.000000	252780.00000
xp_attitude_transform	0.010000	0.000000	0.000000	0.000000
xp gen attitude data *				
(sat nominal, 2 orbits, time_step=10 sec)	63.330002	43.599998	68.000000	24.299999
xp_gen_attitude_file *				
(sat nominal, 2 orbits, time_step=10 sec)	93.000000	93.800003	138.199997	74.800003

Note that when the value "0.000000" is defined for a function in a certain platform, it means that its running time is lower than 1 nano-second and so it can be considered as "0".

Date:

Issue: 10/05/2019

Page: 455

9 LIBRARY PRECAUTIONS

The following precaution shall be taking into account when using EO POINTING library:

When a message like

<LIBRARY NAME> >>> ERROR in xp_function: Internal computation error # n
or

<LIBRARY NAME>>>> WARNING in xp_function: Internal computation warning # n appears, run the program in verbose mode for a complete description of warnings and errors and call for maintenance if necessary.

Date:

Issue: 10/05/2019

Page: 456

10 USER REFRACTION FILE

The refraction table is needed to initialize the atmosphere id with an user initialization mode.

The file must contain the co-index of refraction at different geometric altitudes, starting from 0 Km. The altitude should be strict monotonic increasing.

The format of that file must be as follows (a text file without headers):

Table 297: User refraction file format

1st column	2 nd column	
Geometric altitude [m]	Co-index of refraction N	
0.000	<u>262.049</u>	
1000.000	238.630	
2000.000	216928	
3000.000	195.392	
<u></u>	<u></u>	
90000.000	0.001	
95000.000	0.000	
100000.000	0.000	

Note in this table that:

- the relative index of refraction $m = 1 + N \times 10^{-6}$, where N is the co-index of refraction.
- The fields of each row must be separated by blanks (at least one).