Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Unidade Acadêmica de Engenharia Elétrica

> Instrumentação Eletrónica Prof. Jaidilson Jó da Silva

Experimento 5: Laboratório Remoto

Data:25/09/2024 Aluno:

Rogério Moreira Almeida

1. FILTRO PASSA-FAIXA

Um filtro passa-faixa é um circuito que permite a passagem de sinais de tensão e corrente com frequências situadas numa faixa intermediária, atenuando os sinais com frequências abaixo ou acima dessa faixa. Essa faixa intermediária pode delimitada por uma frequência de corte inferior e uma frequência de corte superior ou por uma frequência central e uma largura de banda. O filtro passa-faixa mais simples é o filtro passivo, composto por um resistor, um indutor e um capacitor, conforme a figura 1. Sua resposta em frequência é exibida na figura 2.

Figura 1: filtro passa-faixa passivo.

Figura 2: resposta em frequência do filtro passa-faixa passivo.

2. PROCEDIMENTO EXPERIMENTAL

O experimento teve como objetivo mostrar como um sistema pode ser controlado e monitorado por meio de acesso remoto aos instrumentos. Os instrumentos utilizados são um gerador de funções Agilent 33220A e um osciloscópio Agilent DSO5014A, ambos do fabricante Agilent Technologies. Na aula referente ao experimento, o professor exibiu a realização do experimento, configurou-se o gerador de funções por meio de sua interface Web. Ligou-se sua saída e então ajustou-se a frequência para 60 Hz e a amplitude para 5 Vpp, sendo que esse valor significa 5 V de pico. Após isso, configurou-se o osciloscópio. O canal 1 foi

colocado para acoplamento AC, enquanto os canais 2 e 3 para acoplamento DC, sendo que para o canal 3 foi necessário inverter a visualização dos sinais.

3. QUESTÕES PROPOSTAS

1) Varie a frequência no gerador de funções conforme os valores da Tabela 1 e anote a amplitude do sinal de saída e o ângulo de defasagem dos sinais. Sendo Vi o valor de pico do sinal de entrada e Vo o valor de pico do sinal de saída, calcule o valor do ganho ou atenuação em dB para cada frequência, da saída em relação à entrada, utilizando a expressão H(dB) = 20log(Vo/Vi).

		_	
Frequência(HZ)	Amplitude Vo(V)	Defasagem (°)	H(dB)
100	0,295	130	-24,58295977
150	0,53	110	-19,49388269
200	0,72	90	-16,83275016
250	0,86	70	-15,28943106
300	0,94	50	-14,51684301
350	0,985	40	-14,11067548
400	1,015	37	-13,85007924
450	1,03	29	-13,72265559
500	1,045	25	-13,59707428
550	1,065	16	-13,43240793
600	1,065	13	-13,43240793
700	1,08	5	-13,31092498
800	1,08	-3	-13,31092498
900	1,08	-6	-13,31092498
1000	1,08	-10	-13.31092498
1200	1,08	-20	-13.31092498
1400	1,08	-33	-13,31092498
1600	1,065	-37	-13,43240793
1800	1.03	-50	-13,72265559
2000	0.985	-53	-14.11067548
2200	0,94	-63	-14,51684301
2400	0.89	-71	-14,99159995
2600	0,845	-77	-15.44226591
2800	0.78	-85	-16,13750803
3000	0,735	-91	-16,65365331
3200	0,69	-97	-17,20241827
3400	0.64	-101	-17,85580061
3600	0,595	-106	-18,48906077
3800	0,565	-110	-18,93843113
4000	0,515	-115	-19,74325551
4200	0,485	-118	-20,26456531
4400	0,455	-122	-20,81917215
4600	0.42	-126	-21,51441428
4800	0,405	-128	-21,83029962
5000	0,36	-131	-22,85335007
5400	0,315	-136	-24,01318901
5800	0,295	-142	-24,58295977
6200	0,28	-145	-25,03623946
6600	0,265	-148	-25,51448261
7000	0,25	-151	-26,02059991

2) com os dados da Tabela 1, plote o gráfico da resposta em frequência em dB (H versus f).

Figura 3: resposta em frequência.

3) Plote outro gráfico com o Diagrama de Bode, incluindo o diagrama de fase (Dica: Utiliza a função semilogx() do MATLAB).

Figura 4: resposta em frequência.

4) A partir da resposta em frequência e do Diagrama de Bode, foi possível identificar o sistema? Se sim, o que ele implementa? Quais as suas características? Observando os gráficos obtidos, podemos ver que temos uma

atenuação em várias faixas de frequências, com um ganho unitário próximo de 1000 Hz e após isso novamente uma atenuação, trata-se de um filtro passafaixa. Como dito anteriormente, o filtro atenua frequências que estão longe da frequência central.

5) Retorne para o gerador de sinais e aplique uma onda quadrada também com 1 Vpp. Através do botão giratório no lado direito do painel do gerador, varie a frequência e observe o sinal de saída. O que acontece? Explique. (Dica: Ajuste a frequência do gerador de funções para 250 Hz, 500 Hz, 1 kHz e 2 kHz, e faça um print da tela do osciloscópio para cada um desses valores). Iniciando na frequência de 250 Hz, percebe-se as deformações no sinal de saída. À medida que a frequência aumenta, o sinal de saída começa a apresentar-se como uma onda senoidal até a frequência de 2 kHz na qual vê-se o sinal definido. Uma onda quadrada é a soma de uma infinidade de sinais senoidais, com isso ao ser passado o filtro passa faixa acabamos excluindo alguns desses sinais, podendo eles impactar mais ou menos no sinal final. Vemos então que com o aumento da frequência do sinal, dessa forma, o que é visto na tela do osciloscópio constituise da harmônica da onda quadrada correspondente à faixa intermediária do filtro.

4. CONCLUSÃO

A partir do que foi exposto na aula, foi possível verificar neste experimento a possibilidade de se fazer um filtro passa-faixa utilizando um gerador de funções e um osciloscópio, os quais pode-se ter acesso e entender um pouco do seu funcionamento.

5. BIBLIOGRAFIA

- [1] MATLAB, "Curve Fitting," [Online]. Available: https://www.mathworks.com/help/curvefit/curve-fitting.html.
- [2] A. Sedra e K. Smith, Microelectronic Circuits, 7^a ed., Oxford University Press, 2014.