

523 87
Rec'd PC... TO 07 FEB 2005

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2004年2月19日 (19.02.2004)

PCT

(10)国際公開番号
WO 2004/015363 A1

(51)国際特許分類: G01B 11/00, G01N 21/84, H05K 13/04

(21)国際出願番号: PCT/JP2003/008231

(22)国際出願日: 2003年6月27日 (27.06.2003)

(25)国際出願の言語: 日本語

(26)国際公開の言語: 日本語

(30)優先権データ:
特願2002-231668 2002年8月8日 (08.08.2002) JP

(71)出願人(米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府門真市大字門真1006番地 Osaka (JP).

(72)発明者: および

(75)発明者/出願人(米国についてのみ): 中野 和幸 (NAKANO,Kazuyuki) [JP/JP]; 〒400-0423 山梨県南アルプス市落合 1677-13 Yamanashi (JP). 田中陽一 (TANAKA,Yoichi) [JP/JP]; 〒400-0115 山梨県中巨摩郡竜王町猿原 47-1-B 202 Yamanashi (JP). 斎藤 広能 (SAITO,Hiroyoshi) [JP/JP]; 〒409-3851 山梨県中巨摩郡昭和町河西 638-4-202 Yamanashi (JP). 秦 純一 (HADA,Junichi) [JP/JP]; 〒400-0336 山梨県南アルプス市十日市場 1713-27 Yamanashi (JP).

(74)代理人: 小栗 昌平, 外 (OGURI,Shohel et al.); 〒107-6028 東京都港区赤坂一丁目12番32号 アーク森ビル28階 栄光特許事務所 Tokyo (JP).

(81)指定国(国内): CN, US.

/締葉有/

(54) Title: ILLUMINATION DEVICE, RECOGNIZING DEVICE WITH THE ILLUMINATION DEVICE, AND PART MOUNTING DEVICE

(54)発明の名称: 照明装置、及びこれを備えた認識装置並びに部品実装装置

(57) Abstract: An illumination device capable of recognizing a detected object without error by properly illuminating the detected object according to the state of the surface thereof even if the surface of the detected object is formed in a mirror finished surface or irregular surface while reducing a cost and a size with a simple structure, a recognizing device having the illumination device, and a part mounting device, the illumination device wherein an annular diffusion plate (14), a fixed plate (15) having a light source for directional light (12) and a light source for diffused light (13) annularly installed on the upper and lower surfaces thereof, and an annular reflective plate (17) reflecting light from the light source for directional light (12) to the detected object (10) are disposed in a case (11) in order from the side of the detected object (10), and through-holes (18, 21, 22) for passing light to an imaging camera (20) therethrough are provided in the case, whereby the diffused light (L1) can be generated by radiating the light from the light source for diffused light (13) to the detected object (10) through the diffusion plate (14) and the directional light (L2) can be generated by radiating the light from the light source for directional light (12) on the detected object (10) after reflecting on the reflective plate (17).

(57)要約: 本発明の課題は、簡単な構造で低コスト化及び小型化を図りながら、検出対象物が鏡面状や凹凸状であっても、それに対応した適切な照明を行う

/締葉有/

WO 2004/015363 A1

(84) 指定国(広域): ヨーロッパ特許(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR). 2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

添付公開書類:
— 國際調査報告書

ことができて、結果的に検出対象物をエラーなく認識することができるようになる照明装置、及びこれを備えた認識装置並びに部品実装装置を提供することである。本発明においては、検出対象物10の側から順にケース11に、環状の拡散板14と、指向性光用光源12及び拡散光用光源13を上下面に環状に取り付けた固定板15と、指向性光用光源12からの光を検出対象物10側へ反射する環状の反射板17とを配設した。また、撮像カメラ20への光が通る貫通孔18、21、22を設けてある。拡散光用光源13からの光を拡散板14を介して検出対象物10に照射することで拡散光L1を生成し、指向性光用光源12からの光を反射板17で反射させてから検出対象物10に照射することで指向性光L2を生成する。

明細書

照明装置、及びこれを備えた認識装置並びに部品実装装置

<技術分野>

本発明は、回路基板上のマークや電子部品等の検出対象物をカメラ等のセンサを用いて認識する場合に、認識を行いやすくするために当該検出対象物やその近傍を照明する照明装置、及びこれを備えた認識装置並びに部品実装装置に関する。

<背景技術>

例えば、回路基板に電子部品を実装する部品実装装置においては、回路基板の位置検出等のために、回路基板に付されているマークを撮像して、これを認識することが一般に行われている。このような回路基板上のマークの認識を行う場合、装着ヘッドに装備したカメラでマークやその近傍を撮影し、その画像を処理することでマークの認識を行っている。そして、カメラによる撮影の際には、マークやその近傍を照明するための照明装置を用いている。この種の認識装置の例は、特開平9-116297号公報や特開平11-249020号公報等において知られている。

図12は、特開平9-116297号公報に記載の認識装置の第1の例を示す側断面図である。この認識装置は、照明装置70により照明を行って撮像カメラ75により撮像し、得られた撮像画像を制御部86によって処理することでマーク等の認識動作を行うものである。照明装置70は、下面が開放した筒形のケース71を有する。ケース71の天井壁72の中心部には貫通孔73が開けられており、その貫通孔73の上方にレンズ74を介して撮像カメラ75が配置されている。撮像カメラ75の光軸は貫通孔73の中心を通っている。また、ケース71内の貫通孔73の下方位置には、後述の水平に入射する照明光を垂直下方に向けて反射すると共に、垂直下方から貫通孔73を抜けて撮像カメラ75に入射する光を透過するハーフミラー76が配置されている。

ハーフミラー76の下側のケース71の内部中段には、前記貫通孔73と同軸

の貫通孔77を有する固定板78が、ケース71の内部を上下に仕切る形で配置されている。その固定板78の下面には、固定板78の中央の貫通孔77を取り囲むように、LED等の多数の第1光源79が環状に配置されている。また、ケース71の下端面には、固定板78に設けられた第1光源79からの照明光を、拡散しながら下方へ透過する拡散板80が配置されている。この拡散板80の中央には、固定板78及びケース71の天井壁72にそれぞれ設けられた各貫通孔77、73と同軸の貫通孔81が設けられている。

また、ケース71の周壁82には開口83が形成されている。その開口83の外側には、ケース71内のハーフミラー76に向けて、レンズ84を通して水平に照明光を入射させるLED等の第2光源85が配置されている。そして、撮像カメラ75は、拡散板80と固定板78とケース71の天井壁72の各貫通孔81、77、73を通して、照明装置70により照明された状態の検出対象物10を撮影する。制御部86が、この取得した画像を処理することにより、検出対象物10を認識するようになっている。

このような照明装置70を備えた撮像カメラ75で、検出対象物10を撮影してそれを認識する場合は、照明装置70及び撮像カメラ75を検出対象物10の上方に位置させ、第1光源79及び第2光源85を点灯することで、検出対象物10やその近傍を照明しながら撮影する。こうした場合、第1光源79から照射された光88は、拡散板80で拡散されながら、検出対象物10やその近傍を周囲から広く照らす。また、第2光源85からレンズ84を通して水平に照射された光89は、ケース71内のハーフミラー76で反射された後、固定板78及び拡散板80の各貫通孔77、81を通って、検出対象物10やその近傍を、指向性をもって真上から照らす。従って、真上からの光と周囲からの光によって検出対象物10やその近傍が照明されることで、検出対象物10及びその近傍からの反射光が、各貫通孔81、77、73を通って撮像カメラ75に入射する。それにより検出対象物10とその近傍の画像が得られる。

図13は、上記特開平11-249020号公報に記載された従来の認識装置の第2の例を示す側断面図である。この認識装置の照明装置90は、図12の拡散板の代わりに光路調整板91が設けられており、ハーフミラーや第2光源は設

けられていない。その他の構成は、図12のものとほとんど同じであるから、同一構成要素に同一符号を付与することでその説明を省略する。

光路調整板91は、第1光源79が発した光を、複数の同心円帯状に分割された小領域によって異なる角度に屈折させ、検出対象物10が位置する所定の領域に集光させる。そして、検出対象物10に対し複数の異なる照射角の光を照射することで、検出対象物10の表面状態に適した照明を行うようしている。

また、図示はしないが、上記特開平11-249020号公報には、多数の光源を同心円状に配列し、同一円周上にある光源グループごとにその光量を調節できるようにし、検出対象物の表面状態に応じて、各円周単位で光源の光量を調節することにより、検出対象物の認識に適した照明光を照射するようにした照明装置が開示されている。

ところで、近年、基板マークに金メッキを施した回路基板が多くなってきており、照明の仕方によっては、基板マークからの反射光が撮像カメラに入射しにくくなり、コントラストの高い画像が得られずに、認識エラーが発生することがあった。

この点、図12に示す照明装置70では、ハーフミラー76によって、撮像カメラ75の光軸に沿った照明光を検出対象物10に当てるので、検出対象物10からの反射光を確実に撮像カメラで捕らえることができ、コントラストの高い画像を得ることができる。従って、上記の認識エラーが発生する問題を解消することができる。しかし、ハーフミラー76を設けたり、ケース71の外側にレンズ74を介して第2光源85を配置したりしているので、構造が複雑でコストがかかる上、装置が大型化し設置スペースが大きくなるという問題があった。

また、図13に示す照明装置90では、検出対象物10やその近傍に当てる光量は十分に確保できるものの、検出対象物を横方向からの光で照らすので、基板マークからの反射光が撮像カメラに入射しにくくなる問題を確実に解決することはできない。

同様に、特開平11-249020号公報に記載された、多数の光源を同心円状に配列して、同一円周上にある光源グループごとにその光量を調節できるようにした照明装置も、検出対象物を認識する上で最適の照明光を対象領域に照射

することはできるものの、検出対象物を横方向からの光で照らすので、基板マークからの反射光が撮像カメラに入射しにくくなる問題を確実に解決することはできない。

本発明は、上記事情を考慮し、簡単な構造で低コスト化及び小型化を図りながら、検出対象物が鏡面状であっても凹凸状であっても、それに対応した適切な照明を行うことができて、結果的に検出対象物をエラーなく認識することができるようとする照明装置、及びこれを備えた認識装置並びに部品実装装置を提供することを目的とする。

<発明の開示>

上記目的は下記構成により達成される。

(1) 中央部に検出用の貫通孔が形成され、検出対象物に拡散光と指向性光とを照射する照明装置であって、前記検出対象物の側から順に、少なくとも、光を拡散する環状の拡散板と、環状に配置された光源と、該光源からの光を前記検出対象物側へ反射する環状の反射板とを配設してなり、前記光源からの光を前記拡散板を介して検出対象物に照射することで前記拡散光を生成し、前記光源からの光を前記反射板で反射させてから検出対象物に照射することで指向性光を生成することを特徴とする照明装置。

この照明装置では、検出対象物に指向性光と拡散光の2種の光を照射することができるので、検出対象物が鏡面状であっても凹凸状であっても、それに対応した適切な照明を行うことができて、結果的に安定した検出ができるようになる。しかもハーフミラーを使わずに、環状の光源と環状の反射板を使って、検出対象物を照射する指向性光を生成するので、簡単な構造で小型化を図ることができる。

(2) 上記(1)において、前記光源が、拡散光用光源と指向性光用光源との2種類からなり、前記検出対象物側となる面に拡散光用光源、他方の面に指向性光用光源を配置した環状の固定板を、前記拡散板と前記反射板との間に設けたことを特徴とする照明装置。

この照明装置では、拡散光用光源と指向性光用光源との2種類の光源を設けて

おり、それら 2 種類の光源を固定板の表裏面に配置しているから、互いの光源からの照光を独立して制御することができ、指向性光と拡散光の光量割合を調節することができる。従って、検出対象物の表面状態に合った適切な照明状態を作り出すことができる。

(3) 上記(2)において、前記指向性光用光源が、前記固定板から屈曲自在な弾性ピンを介して取り付けてあることを特徴とする照明装置。

この照明装置では、指向性光用光源を屈曲自在な弾性ピンを介して取り付けているので、弾性ピンを曲げることで指向性光用光源の照光の指向性を調整することができる。

(4) 上記(2)又は(3)において、前記拡散光用光源と前記指向性光用光源を個別に制御する照明制御部を備え、該照明制御部が、各光源の点灯を切り換えるスイッチ動作と、各光源の照度を変更する調整動作を行うことを特徴とする照明装置。

この照明装置では、照明制御部によって、拡散光用光源と指向性光用光源の点灯及び光量を個別に制御することができるので、検出対象物の表面状態に合った適切な照明状態を作り出すことができる。

(5) 上記(1)～(3)のいずれかにおいて、前記反射板が、前記光源と前記拡散板とを収容するケース内面の側端面であることを特徴とする照明装置。

この照明装置では、ケース内面の側端面を反射板として使用するので、敢えて反射板を別に製作してケースに取り付ける必要がなく、ケースの小型化及びケース構造の単純化を図ることができる。

(6) 上記(5)において、前記ケース内面の少なくとも側端面が、白色又は金属色であることを特徴とする照明装置。

この照明装置では、ケース内面の少なくとも側端面を白色又は金属色にしたので、光の反射性能を良くすることができる。

(7) 上記(1)～(6)のいずれか 1 項記載の照明装置と、該照明装置により照明された検出対象物を撮像する撮像カメラと、撮像された画像を用いて検出対象物の認識処理を行う制御部とを備えたことを特徴とする認識装置。

この認識装置では、照明装置により照明された検出対象物を撮像カメラで撮像

し、得られた撮像画像を制御部が認識処理することで、検出対象物を精度よく認識することができる。

(8) 基板上方を移動する移載ヘッドに備えた吸着ノズルに部品を吸着保持させ、該部品を前記移載ヘッドを移送して基板上の所定位置へ実装する部品実装装置であって、前記移載ヘッドに設けられ、前記基板上に設けた位置合わせ用マークを検出し、該位置合わせ用マークの検出位置に応じて前記部品の実装位置を補正する認識装置が、上記(7)項記載の認識装置であることを特徴とする部品実装装置。

この部品実装装置では、基板上の位置合わせ用マークが金メッキ等の鏡面である場合でも、このマーク位置を精度良く検出でき、部品の実装位置精度を高めることができる。

(9) 基板上方を移動する移載ヘッドに備えた吸着ノズルに部品を吸着保持させ、該部品を前記移載ヘッドを移送して基板上の所定位置へ実装する部品実装装置であって、前記移載ヘッドの下方に設けられ、前記吸着ノズルに吸着保持された部品を認識する部品認識装置が、上記(7)項記載の認識装置であることを特徴とする部品実装装置。

この部品実装装置では、吸着ノズルに吸着保持される部品に鏡面や凹凸面があるても、この部品を精度良く認識することができ、装着ミスの発生頻度を低減できる。

<図面の簡単な説明>

図1は、本発明の照明装置の側断面図である。

図2は、図1のA-A矢視断面図である。

図3は、照明光の光路を説明する説明図である。

図4は、撮像カメラによる基板マークの撮像画像を示す説明図である。

図5は、弾性ピンを介して指向性用光源を設けた照明装置の側断面図である。

図6は、図5に示す照明装置の要部構成を示す拡大斜視図である。

図7は、照明光を切り替え可能とした照明装置の拡散光照明時における側断面図である。

図8は、照明光を切り替え可能とした照明装置の指向性光照明時における側断面図である。

図9は、本発明の照明装置が適用可能な照明対象の説明図である。

図10は、部品実装装置の概略構成を表した斜視図である。

図11は、移載ヘッドの動作説明図である。

図12は、従来の照明装置の例を示す側断面図である。

図13は、従来の照明装置の他の例を示す側断面図である。

なお、図中の符号、10は検出対象物、11はケース、12は指向性光用光源、13は拡散光用光源、14は拡散板、15は固定板、17は反射板、18, 21, 22は貫通孔、27は弾性ピン、30, 31は照明制御部、10, 10a, 10bは検出対象物、100, 200, 300は照明装置、L1は拡散光、L2は指向性光である。

<発明を実施するための最良の形態>

以下、本発明に係る照明装置、及びこれを備えた認識装置並びに部品実装装置の好適な実施の形態について、図面を参照して詳細に説明する。

図1は本発明に係る認識装置の主要構成を示す側断面図、図2は図1のA-A矢視断面図である。

認識装置1は、照明装置100により照明された検出対象物10を撮像カメラ20で撮像して、得られた撮像画像を制御部24により処理することで、検出対象物10の認識を行うものである。

この照明装置100は、下面が開放した筒形をなし且つ内面が白色又は金属色等の反射性色に統一されたケース11を有している。ケース11の内部には、LED等からなる多数の指向性光用光源12及び拡散光用光源13と、拡散板14とが収容されている。拡散板14はケース11の下端面に環状に配置され、その上側に、上面に指向性光用光源12が取り付けられ下面に拡散光用光源13が取り付けられた不透明な固定板15が配置されている。また、ケース11の天井壁16の内面（側端面）には、指向性光用光源12から照射される光を下に向けて反射するための環状の反射板17としての反射面が形成されている。なお、環状

の拡散板14、反射板17は、円環状としても多角形状としてもよい。

反射板17として機能する天井壁16の中心部には、検出孔としての貫通孔18を設けており、その貫通孔18の上方にレンズ19を介して、検出対象物10を撮影するための撮像カメラ（CCDカメラ等）20を配置している。この撮像カメラ20の光軸は貫通孔18の中心を通っている。撮像カメラ20の映像信号は、画像認識機能を有する制御部24に入力され、ここで画像処理することにより、撮像した画像より検出対象物10を認識する。レンズ19は、検出対象物10の拡大率を調整するものである。なお、撮像カメラ20の代わりに、他の光学的なセンサを使用することも可能である。

また、検出対象物10からの反射光を、拡散板14及び固定板15を通して撮像カメラ20で捕らえる関係上、固定板15及び拡散板14の中心部にも、ケース11の貫通孔18と同軸の貫通孔21、22を設けてある。そして、指向性光用光源12及び拡散光用光源13は、中央の貫通孔21を取り囲むように固定板15の上下面に環状に配列されている。図2に示すように、指向性光用光源12は、貫通孔21と同心の半径d1の円周上に環状に配列され、拡散光用光源13は、貫通孔21と同心の半径d2とd3の2つの円周上に環状に配列されている。なお、各光源の配置はこれに限らず、均等に光を照射できる配列であればよい。

拡散板14は、拡散光用光源13からの照明光を拡散しながら下方へ透過して拡散光L1を生成する機能を果たす。また、反射板17は、指向性光用光源12からの光を下向きに反射して、固定板15及び拡散板14の貫通孔21、22を通して、検出対象物10に照射する指向性光L2を生成する機能を果たす。なお、反射板17で反射した光を、貫通孔21、22を通して有効に検出対象物10に向かわせるために、指向性光用光源12は、傾斜台25を介して固定板15に取り付けられている。

次に本認識装置1の作用を説明する。

このような照明装置100を用いて撮像カメラ20で検出対象物10を撮影し、得られた撮像画像により認識処理を行う場合、照明装置100及び撮像カメラ20を検出対象物10の上方に配置させ、指向性光用光源12及び拡散光用光源13の2種類の光源を、同時或いはいずれか一方を点灯させることで、検出対象物

10やその近傍を照明しながら撮影する。その場合、検出対象物10の認識率や認識精度を高めるためには、検出対象物10に対して適切な光量と入射角度の照射光を当てる必要がある。

この点、本照明装置100によれば、拡散光用光源13から照射された光は、拡散板14を透過する際に拡散光L1となって、検出対象物10やその近傍を周囲から広く照らす。また、指向性光用光源12から照射された光は、反射板17で反射されて指向性光L2となって、固定板15及び拡散板14の各貫通孔21、22を通って、検出対象物10及びその近傍をほぼ真上から照らす。従って、真上からの指向性光L2と周囲からの拡散光L2によって、検出対象物10には異なる入射角度の光が照射されることになる。その結果、当該検出対象物10やその近傍からの反射光が、各貫通孔22、21、18を通って撮像カメラ20に入射し、それによりコントラストのはっきりした画像が得られる。従って、制御部24における認識結果が良好となり、認識率や認識精度が向上する。

図3は照明装置100による照明光の光路を説明するための説明図である。

図3(a)は指向性光用光源12を点灯させて、鏡面状の検出対象物10aを照明したときの様子を示している。指向性光用光源12からの光(指向性光L2)は、ケース11の天井内面の反射板17で一旦反射されて、検出対象物10aに照射される。このため、指向性光用光源12と反射板17との距離La、及び反射板17と検出対象物10aとの距離Lbが長い程、指向性の度合いは高くなり、より良好な指向性照明光が得られる。鏡面状の検出対象物10aからの反射光は、照明装置100の貫通孔22、21、18を通じて撮像カメラ20に導入される。なお、検出対象物10aからの反射光が貫通孔22、21、18に入るよう、反射板17や指向性光用光源12の位置は適宜調整されている。

図3(b)は指向性光用光源12を点灯させて、凹凸面状の検出対象物10bを照明したときの様子を示している。指向性光用光源12からの光(指向性光L2)は、検出対象物10bの凹凸面で拡散され、照明装置100の貫通孔22、21には殆ど入らない。

図3(c)は拡散光用光源13を点灯させて、鏡面状の検出対象物10aを照明したときの様子を示している。拡散光用光源13からの光は、拡散板14によ

り光路を拡散され、拡散光L1となって、検出対象物10aへランダムな入射角度で照射される。そのため、検出対象物10aからの反射光は、照明装置100の貫通孔22、21には殆ど入らない。

図3(d)は拡散光用光源13を点灯させて、凹凸面状の検出対象物10bを照明したときの様子を示している。拡散光用光源13から拡散板14を介して照射される拡散光L1は、検出対象物10bの凹凸面で反射されて、その一部が照明装置100の貫通孔22、21、18を通じて撮像カメラ20に導入される。

従って、拡散光用光源13と指向性光用光源12とを共に点灯させることで、図3(a)、(d)に示すように検出対象物10a、10bからの反射光が、検出対象物10a、10bの表面状態によらずに検出可能となり、鏡面であっても凹凸面であっても撮像カメラ20により検出することができる。

図4は撮像カメラによる基板マークの撮像画像の一例である。例えば検出対象物10として、鏡面状の基板マーク33を撮像する場合、検出対象物10からの反射光が確実に撮像カメラ20に導入されるため、コントラストの高い状態で、輪郭が明確な画像が得られる。これにより、基板マーク33の中心位置(図中“+”マーク位置)を画像処理により容易に求めることができ、必要十分な精度で認識処理が行える。

図5は本発明の第2実施形態の認識装置を示す側断面図、図6は照明装置の要部構成を示す拡大斜視図である。

この認識装置2は、前述の第1実施形態における認識装置1の照明装置の部分が異なるのみで、他の構成は同様である。そのため、同一構成要素に対しては同符号を付与することでその説明は省略する。

照明装置200では、固定板15の上面側に配置した指向性光用光源12を、固定板15に対して屈曲自在な弾性ピン27を介して取り付けてある。それ以外の構成は、図1に示す照明装置100と同様である。このように、弾性ピン27を介して指向性光用光源12を取り付けることにより、指向性光用光源12の向き、即ち、照射方向を任意に調整することができる。従って、検出対象物10への指向性光L2の照射角度を、図6に示すように、弾性ピン27の屈曲させることで微妙に調整することができる。

図7は本発明の第3実施形態の認識装置の拡散光照明時の側断面図、図8は同照明装置の指向性光照明時の側断面図である。

本実施形態の認識装置3は、拡散光用光源13を個別に制御するための照明制御部30を備えており、その他の構成は、第2実施形態の構成と同様である。この照明制御部30は、指向性光用光源12と拡散光用光源13の点灯を切り換えるスイッチ動作と、各光源12, 13の照度を変更する調整動作を行う。従って、本照明装置300においては、検出対象物10の表面状態に応じた適切な照明制御を行うことができる。

なお、照明制御部30は、検出対象物10の表面状態によって光源12、13を切り換える以外にも、照明光の照明方向に対する局所的な強弱、或いは、指向性光と拡散光との強弱配分等、光量バランス等を調整してもよい。

また、本発明の認識装置1, 2, 3が撮像カメラと共に装備される機械としては、部品実装装置、クリーム半田印刷装置、接着剤塗布装置等が例として挙げられる。その場合の照明対象の検出対象物としては、例えば、図9のような例がある。(a)部品実装装置においては、回路基板141上の基板マーク140、或いは部品吸着用のノズルに吸着保持された部品、(b)のクリーム半田印刷装置においては、スクリーン151上の位置決め孔150、(c)接着剤塗布装置においては、白色紙161上の接着剤160である。

ここで、上記認識装置を部品実装装置に適用した一例を以下に説明する。

図10は部品実装装置の概略構成を表した斜視図、図11は移載ヘッドの動作説明図である。

図10に示すように、部品実装装置5の基台上にはローダ部33、基板保持部35、アンローダ部37に渡って、一对のガイドレール39からなる搬送部が設けられている。このガイドレール39に備えられた搬送ベルトの同期駆動によって、回路基板41は一端側のローダ部33から基板保持部35、他端側のアンローダ部37に搬送される。

基台上にはY軸ロボット43, 43が設けられ、これら2つのY軸ロボット43, 43の間にはX軸ロボット45が懸架されて、Y軸ロボット43, 43の駆動によりX軸ロボット45がY軸方向に進退可能となっている。また、X軸ロボ

ット45には移載ヘッド47が取り付けられて、移載ヘッド47がX軸方向に進退可能となっており、これにより、移載ヘッド47をX-Y平面内で移動可能にしている。

X軸ロボット45、Y軸ロボット43、43からなるXYロボット49上に載置され、X-Y平面上を自在移動する移載ヘッド47は、例えば抵抗チップやチップコンデンサ等の電子部品が供給される部品供給部59から、所望の電子部品を、部品装着ヘッド51に取り付けた吸着ノズル52を介して吸着し、回路基板41の部品装着位置に装着できるように構成されている。このような電子部品の実装動作は、予め設定された実装プログラムに基づいて制御される。

移載ヘッド47には認識装置53（上述の認識装置1～3のいずれか）の撮像カメラ及び照明装置を搭載しており、認識装置53は検出対象の位置に照射された光の反射光量を検出する。この撮像カメラは制御部に接続されており、制御部はこの撮像カメラからの検出結果に応じて、検出対象の有無や座標等を認識処理する。つまり、認識装置53は、XYロボット49によって移動される移載ヘッド47と共に任意の位置に位置決めされ、検出対象である吸着ノズル52のマーク、同じく検出対象である回路基板41の生産管理マーク（位置補正用マーク、NGマーク等）を検出する。

また、ガイドレール39の側方には、部品装着ヘッド51に吸着された電子部品の二次元的な位置ずれ（吸着姿勢）を検出したり、部品装着ヘッド51に吸着された電子部品の良否（例えばリードの曲がり等の不良）を判定するための部品認識装置57（上述の認識装置1～3のいずれか）が設けられている。検出される位置ずれは、実装時にキャンセルされるように移載ヘッド47側で補正させるデータを生成するために用いられる。部品認識装置57は、ヘッド移動経路の下方に配置され、移載ヘッド47を停止することなく、部品供給部59から実装位置までの高速移動中に、部品装着ヘッド51で吸着保持された複数個の電子部品を一度に撮像する。

ここで、部品実装装置5の概略的な部品実装動作を説明する。

ローダ部33から搬入された回路基板41が所定の装着位置に搬送されると、移載ヘッド47はXYロボット49によりXY平面内で移動して図11に示すよ

うに、部品供給部 5 9 から所望の電子部品を吸着し、部品認識装置 5 7 上に移動して電子部品の吸着状態を確認して良否判定及び補正動作を行う。その後、回路基板 4 1 の所定位置に電子部品を装着する。この際、移載ヘッド 4 7 は、認識装置 5 3 の撮像カメラ及び照明装置により、回路基板 4 1 の対角位置に付した位置合わせ用の基板マークをそれぞれ検出し、回路基板 4 1 の固定位置情報を取得して、実装位置の補正を行いながら電子部品を装着する。

このようにして、部品実装装置 5 は、電子部品の吸着、及び回路基板 4 1 への装着の繰り返しにより、回路基板 4 1 に対する電子部品の装着を完了させる。部品実装装置 5 は、装着が完了した回路基板 4 1 を装着位置からアンローダ部 3 7 へ搬出する一方、新たな回路基板 4 1 をローダ部 3 3 に搬入し、上記動作を繰り返す。

以上説明したように、この部品実装装置 5 によれば、認識装置 5 3 及び部品認識装置 5 7 に、本発明の認識装置を適用することにより、検出対象物に応じた照明が選択できるようになり、基板マークに金メッキが施され、鏡面となっていても、この基板マークを精度よく検出でき、部品の実装位置精度を向上できる。また、吸着ノズルに吸着保持された部品の認識精度が向上し、装着ミスの発生頻度を低減できる。

<産業上の利用可能性>

本発明の照明装置、及びこれを用いた認識装置並びに部品実装装置によれば、検出対象物に指向性光と拡散光の 2 種の光を照射できるようにしたので、検出対象物が鏡面状であっても凹凸状であっても、それに対応した適切な照明を行うことができ、従って検出対象物を安定して検出することができる。しかも、ハーフミラー等を使わずに、環状の光源と環状の反射板を使って指向性光を生成するので、簡単な構造で小型化を図ることができ、コストダウンが図れる。

請求の範囲

1. 中央部に検出用の貫通孔が形成され、検出対象物に拡散光と指向性光とを照射する照明装置であって、

前記検出対象物の側から順に、少なくとも、光を拡散する環状の拡散板と、環状に配置された光源と、該光源からの光を前記検出対象物側へ反射する環状の反射板とを配設してなり、

前記光源からの光を前記拡散板を介して検出対象物に照射することで前記拡散光を生成し、前記光源からの光を前記反射板で反射させてから検出対象物に照射することで指向性光を生成することを特徴とする照明装置。

2. 前記光源が、拡散光用光源と指向性光用光源との2種類からなり、前記検出対象物側となる面に拡散光用光源、他方の面に指向性光用光源を配置した環状の固定板を、前記拡散板と前記反射板との間に設けたことを特徴とする特許請求の範囲第1項記載の照明装置。

3. 前記指向性光用光源が、前記固定板から屈曲自在な弾性ピンを介して取り付けてあることを特徴とする特許請求の範囲第2項記載の照明装置。

4. 前記拡散光用光源と前記指向性光用光源を個別に制御する照明制御部を備え、該照明制御部が、各光源の点灯を切り換えるスイッチ動作と、各光源の照度を変更する調整動作を行うことを特徴とする特許請求の範囲第2項又は第3項記載の照明装置。

5. 前記反射板が、前記光源と前記拡散板とを収容するケース内面の側端面であることを特徴とする特許請求の範囲第1項～第3項のいずれか1項記載の照明装置。

6. 前記ケース内面の少なくとも側端面が、白色又は金属色であることを

特徴とする特許請求の範囲第5項記載の照明装置。

7. 特許請求の範囲第1項～第6項のいずれか1項記載の照明装置と、該照明装置により照明された検出対象物を撮像する撮像カメラと、撮像された画像を用いて検出対象物の認識処理を行う制御部とを備えたことを特徴とする認識装置。

8. 基板上方を移動する移載ヘッドに備えた吸着ノズルに部品を吸着保持させ、該部品を前記移載ヘッドを移送して基板上の所定位置へ実装する部品実装装置であって、

前記移載ヘッドに設けられ、前記基板上に設けた位置合わせ用マークを検出し、該位置合わせ用マークの検出位置に応じて前記部品の実装位置を補正する認識装置が、特許請求の範囲第7項記載の認識装置であることを特徴とする部品実装装置。

9. 基板上方を移動する移載ヘッドに備えた吸着ノズルに部品を吸着保持させ、該部品を前記移載ヘッドを移送して基板上の所定位置へ実装する部品実装装置であって、

前記移載ヘッドの下方に設けられ、前記吸着ノズルに吸着保持された部品を認識する部品認識装置が、特許請求の範囲第7項記載の認識装置であることを特徴とする部品実装装置。

第1図

2/13

第2図

第3図

4/13

第4図

5/13

第5図

6/13

第6図

第7図

第8図

9/13

第9図

10/13

第10図

11/13

第11図

12 / 13

第12図

13/13

第13図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/08231

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ G01B11/00, G01N21/84, H05K13/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ G01B11/00, G01N21/84, H05K13/04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2003
Kokai Jitsuyo Shinan Koho	1971-2003	Toroku Jitsuyo Shinan Koho	1994-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	CD-ROM of the specification and drawings annexed to the request of Japanese Utility Model Application No. 11820/1993 (Laid-open No. 72046/1994) (Sanyo Electric Co., Ltd.), 07 October, 1994 (07.10.94), Full text; Fig. 1	1, 5-9
A	Full text; Fig. 1 (Family: none)	2-4
Y	JP 2001-304817 A (Juki Corp.), 31 October, 2001 (31.10.01), Par. Nos. [0010] to [0020]; Figs. 1 to 2 (Family: none)	1, 5-9

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
19 September, 2003 (19.09.03)Date of mailing of the international search report
07 October, 2003 (07.10.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/08231

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 1182919 A (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.), 27 February, 2002 (27.02.02), Page 3, line 56 to page 4, line 9; Fig. 5 & JP 2002-64296 A & US 2002-29486 A & CN 1339692 A	8, 9

A. 発明の属する分野の分類(国際特許分類(IPC))

I n t . C 1' G 0 1 B 1 1 / 0 0 , G 0 1 N 2 1 / 8 4 ,
H 0 5 K 1 3 / 0 4 ,

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

I n t . C 1' G 0 1 B 1 1 / 0 0 , G 0 1 N 2 1 / 8 4 ,
H 0 5 K 1 3 / 0 4 ,

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2003年
日本国実用新案登録公報	1996-2003年
日本国登録実用新案公報	1994-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

WPI

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y A	日本国実用新案登録出願5-11820号(日本国実用新案登録出願公開6-72046号)の願書に添付した明細書及び図面の内容を記録したCD-ROM (三洋電機株式会社), 1994.10.7 全文, 第1図 全文, 第1図 (ファミリーなし)	1, 5-9 2-4

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

19.09.03

国際調査報告の発送日

07.10.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)
郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

小野寺 麻美子

2 S 9505

電話番号 03-3581-1101 内線 3257

C (続き) 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2001-304817 A (ジューキ株式会社) 2001. 10. 31, 段落番号【0010】-【0020】，第1-2図 (ファミリーなし)	1, 5-9
Y	EP 1182919 A (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) 2002. 2. 27, 第3頁第56行-第4頁第9行, 第5図 & JP, 2002-64296, A & US 2002-29486, A & CN 1339692, A	8, 9