1179: Probability Lecture 25 — Concentration Inequalities

Ping-Chun Hsieh (謝秉均)

December 15, 2021

Monte-Carlo Method?

- What is "Monte-Carlo method"?
- "... computational algorithms that rely on repeated random sampling to obtain numerical results... use randomness to solve problems that might be deterministic in principle." (by Wikipedia)
- Math principle behind Monte-Carlo?
- Use Monte-Carlo to estimate π

(Rafael Nadal: 11 titles at Monte Carlo Masters)

This Lecture

1. Multivariate Random Variables

2. Concentration Inequalities

3. Weak Law of Large Numbers (WLLN)

Reading material: Chapter 9.1 and 11.3-11.4

A Primer on Multiple Random Variables

• Could we study the CDF regarding X_1, X_2 , and X_3 ?

From Bivariate To Multivariate

- Key Idea: "Bivariate" definitions and properties can be directly extended to the "multivariate" cases
- For example:
 - 1. Joint CDF / PMF / PDF
 - 2. Expected value
 - 3. Marginal CDF / PMF / PDF
 - 4. Independence

Joint CDF of Multivariate R.V.s

Joint CDF of 2 Random Variables: Let X and Y be two random variables defined on the same sample space Ω . The joint CDF $F_{XY}(t,u)$ is defined as

$$F_{XY}(t, u) = P(X \le t, Y \le u), \ \forall t, u \in \mathbb{R}$$

Joint CDF of n Random Variables: Let X_1, \dots, X_n be random variables defined on the same sample space Ω . The joint CDF $F(x_1, x_2, \dots, x_n)$ is defined as

$$F(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n), \ \forall x_i \in \mathbb{R}$$

Joint PDF Multivariate R.V.s

Joint PDF of 2 Random Variables: Let X and Y be two continuous random variables. Then, $f_{XY}(x,y)$ is the joint PDF of X and Y if for every subset B of \mathbb{R}^2 , we have

$$P((X,Y) \in B) = \iint_{B} f_{XY}(x,y) dxdy$$

Joint PDF of n **Random Variables**: Let X_1, \dots, X_n be n continuous random variables. Then, $f(x_1, x_2, \dots, x_n)$ is the joint PDF of X_1, \dots, X_n if for every subset B of \mathbb{R}^n , we have

$$P((X_1, X_2, \dots, X_n) \in B) = \int \dots \int_B f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

Expected Value

Expected Value of a Function of 2 Continuous RVs:

Let X, Y be 2 continuous random variables with joint PDF $f_{XY}(x, y)$. Let $g(\cdot, \cdot)$ be a function from $\mathbb{R}^2 \to \mathbb{R}$ The expected value of g(X, Y) is

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dx dy$$

Expected Value of a Function of *n* **Continuous RVs:**

Let X_1, \dots, X_n be n continuous random variables with joint PDF $f(x_1, x_2, \dots, x_n)$. Let g be a function from $\mathbb{R}^n \to \mathbb{R}$. The expected value of $g(X_1, X_2, \dots, X_n)$ is

$$E[g(X_1, X_2, \dots, X_n)] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \underline{g(x_1, \dots, x_n)} \underline{f(x_1, \dots, x_n)} dx_1 dx_2 \dots dx_n$$

Concentration Inequalities

Motivating Example: Tossing Moon Blocks

- 3 possible outcomes: Yes / No / Laughing
- - Each toss is independent from other tosses
- Question: Suppose p is unknown
 - How to learn p?
 - Could we learn anything useful after n experiments?

Suppose the true p = 0.5

Loo times

P(see) Yes

experiments?

Concentration Inequalities

Markov's Inequality

For all west, X(w) >, 0

Markov's Inequality: Let X be a nonnegative random

variable. Then, for any t > 0,

continuous
$$\pm \infty$$

Visualization:

$$Y(\omega) = \begin{cases} 0, & \text{if } X(\omega) < t \\ t & \text{if } X(\omega) > t \end{cases} PMF of Y$$

$$P(X \ge t) \le E[X]$$

$$= 0. P(X = 0)$$

$$+ t.P(Y=t)$$

$$= t.P(X>t)$$

Proof of Markov's Inequality

• Markov's Inequality: Let X be a nonnegative random variable. Then, for any t>0,

$$P(X \ge t) \le \frac{E[X]}{t}$$

Proof: (Please refer to the previous page)

Chebyshev's Inequality

Quick Review: Mean and Variance of Sum of Independent Random Variables

- Example: Each X_i has mean μ_i and variance σ_i^2
 - X_1, X_2, \dots, X_n are assumed to be independent
 - Question 1: $E[X_1 + X_2 + \dots + X_n] = \mathcal{M}_1 + \mathcal{M}_2 + \dots + \mathcal{M}_n$ ($\sum_{i \neq j} \mathcal{M}_i$)
 - Question 2: $E\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\right] = \frac{1}{n}(M_1 + M_2 + \dots + M_n)$

empinical mean

Quick Review: Mean and Variance of Sum of Independent Random Variables (Cont.)

- **Example:** Each X_i has mean μ_i and variance σ_i^2
 - X_1, X_2, \dots, X_n are assumed to be independent
 - $\Lambda_1, \Lambda_2, \cdots, \Lambda_n$ are assumed to be independent Question 3: $Var[X_1 + X_2 + \cdots + X_n] = \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2$ $(= \sum_{i=1}^n \sigma_i^2)$

Question 4:
$$Var\left[\frac{1}{n}(X_1 + X_2 + \dots + X_n)\right] = \frac{1}{n}(S_1 + S_2 + \dots + S_n)$$

$$V_{qv}[X_1+X_2] = V_{av}[X_1] + V_{av}[X_2] + 2 \cdot \underbrace{Cov(X_1,X_2)}_{0}$$

$$= \sigma_1^2 + \sigma_2^2$$

$$V_{av}[x_1+x_2+\cdots+x_n] = E[(x_1+x_2+\cdots+x_n) - E[x_1+x_2+\cdots+x_n]$$

$$= E[(x_1+x_2+\cdots+x_n) + (x_2-x_2) + \cdots + (x_n-x_n)$$

$$= e_1+e_2+e_1+e_2+e_2+e_3+e_4$$

$$= e_1+e_2+e_3+e_4+e_4$$

$$= E/(X_1 - M_1) + (X_2 - M_2) + (X_1 - M_1) + (X_2 - M_2) + (X_1 - M_1) + (X_2 - M_2) + (X_1 - M_2) + (X_2 - M_2$$

Chebyshev's Inequality and Sample Mean

Example: Tossing moon blocks

- Each toss X_i is Bernoulli with P(outcome is "Yes")
- Each toss is independent from other tosses
- Question: Can we say anything about the sample mean

of
$$n$$
 tosses $\frac{1}{n}(X_1 + \dots + X_n)$?

Define $X = \frac{1}{n}(X_1 + \dots + X_n)$?

 $X = \frac{1}{n}(X_1 + \dots + X_n)$
 $X = \frac{1}{n}(X_1 + \dots + X_n)$

Chebyshev's Inequality and Sample Mean (Formally)

• Chebyshev's and Sample Mean: Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ^2 . Define

random variables with mean
$$\mu$$
 and variance σ^2 . Defining $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$. Then, for any $\varepsilon > 0$, we have
$$P(|\bar{X} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n}$$

$$P(|\bar{X} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2 n} = \mathcal{O}(\frac{1}{n})$$

Any Issue With Chebyshev's Inequality?

- Example: X_1, \dots, X_n are i.i.d. Bernoulli with parameter 0.5
 - $E[X_i] = \underline{\hspace{1cm}}$ and $Var[X_i]$
 - Chebyshev's $P(|\bar{X} \mu| \ge \varepsilon) \le \frac{\delta}{\varepsilon^{2} \hbar}$ Let's plot $P(|\bar{X} \mu| \ge \varepsilon)$ for small ε

Chernoff Bound

Proof:

• Chernoff Bound: Let X be a random variable with MGF $M_X(t)$ Suppose $M_X(t)$ exists for all t in some set S. Then, for any t>0 and $t\in S$, for any $a\in \mathbb{R}$, we have

$$P(X \ge a) \times e^{-ia} M_X(t)$$

$$= P(X \ge a) \times e^{-ia} M_X(t)$$

Optimizing the Chernoff Bound

• Chernoff Bound Let X be a random variable with MGF $M_X(t)$ Suppose $M_X(t)$ exists for all t in some set S. Then, for any t > 0 and $t \in S$, for any $a \in \mathbb{R}$, we have

$$P(X \ge a) \le e^{-\phi(a)},$$

where
$$\phi(a) = \max_{t>0, t\in S} (ta - \ln M_X(t))$$

where
$$\phi(a) = \max_{t>0, t \in S} (ta - \ln M_X(t))$$

Proof: $\gamma(x) = 0$
 $\gamma(x) = 0$

$$P(X>a) \leq \frac{-(\max_{t>0} \phi_{t}(a))}{t \in S}$$

Example: Chernoff Bound for Bernoulli R.V.s

- Example: Suppose $X \sim \text{Bernoulli}(p)$
 - What is $M_X(t)$?
 - What is the Chernoff bound for X? $(P(X \ge a) \le e^{-ta} \cdot M_X(t))$

Example: Optimizing Chernoff Bound for Bernoulli R.V.s

- Example: Suppose $X \sim \text{Bernoulli}(p)$
 - How to optimize the Chernoff bound for X? $(P(X \ge a) \le e^{-\phi(a)}, \phi(a) = \max_{t>0, t \in S} (ta \ln M_X(t)))$

How about applying Chernoff bound to "sum of independent random variables"?

Hoeffding's Inequality (Formally)

► Hoeffding's Inequality (For Bernoulli): Let X_1, \dots, X_n be a sequence of i.i.d. Bernoulli random variables with parameter p. Define $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$. Then, for any $\varepsilon > 0$, we have $P(|\bar{X} - p| \ge \varepsilon) \le 2 \exp(-2n\varepsilon^2)$

Proof of Hoeffding's Inequality (Positive Part)

$$P(\bar{X} - p \ge \varepsilon) \le \exp(-2n\varepsilon^2)$$

• [Hint] Chernoff bound: $P(X \ge a) \le e^{-ta} \cdot M_X(t)$

$$P(\bar{X} - p \ge \varepsilon) \le$$

Hoeffding's Lemma

► Hoeffding's Lemma: Let Z be a random variable with E[Z] = 0, and $Z \in [a,b]$ with probability 1. Then, for any t > 0, we have $E[e^{tZ}] \le \exp\left(\frac{t^2(b-a)^2}{2}\right)$

• Question: If $Z \sim \text{Bernoulli}(p)$, then $E[e^{t(Z-p)}] \leq$

Proof of Hoeffding's Inequality (Negative Part)

$$P(\bar{X} - p \le -\varepsilon) = P(p - \bar{X} \ge \varepsilon) \le \exp(-2n\varepsilon^2)$$

• [Hint] Chernoff bound: $P(X \ge a) \le e^{-ta} \cdot M_X(t)$

$$P(p - \bar{X} \ge \varepsilon) \le$$

Weak Law of Large Numbers (WLLN)

Review: Chebyshev's and Sample Mean: $n \to \infty$

• Chebyshev's and Sample Mean: Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ^2 . Define $S_n = (X_1 + \dots + X_n)$. Then, for any $\varepsilon > 0$, we have

$$P\Big(\left|\frac{S_n}{n} - \mu\right| \ge \varepsilon\Big) \le \frac{\sigma^2}{\varepsilon^2 n}$$

• What if we let $n \to \infty$?

The Weak Law of Large Numbers (WLLN)

► The Weak Law of Large Numbers (Khinchin's Law): Let X_1, \dots, X_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ . Define $S_n = (X_1 + \dots + X_n)$. Then, for every $\varepsilon > 0$, we have $P\left(\left|\frac{S_n}{n} - \mu\right| \ge \varepsilon\right) \to 0$ as $n \to \infty$

Question: Any change in technical conditions (cf: Chebyshev's)?

Question: What does "convergence" mean here?

Convergence in Probability

• Convergence of a Deterministic Sequence: Let $a_1, a_2 \cdots$ be a sequence of real numbers. We say that a_n converges to a if for every $\varepsilon > 0$, there exists N_0 such that

$$|a_n - a| \le \varepsilon$$
 for all $n \ge N_0$

• Convergence to a <u>Scalar</u> in <u>Probability</u>: Let $Y_1, Y_2 \cdots$ be a sequence of random variables, and let a be a real number. We say that Y_n converges to a in probability if for every $\varepsilon > 0$,

Question: How to interpret this definition?

Recall: Random Variables Defined on Ω

• $Y_1, Y_2, \dots, Y_n, \dots$ are defined on the same sample space Ω

How about $\lim_{n\to\infty} P(\{\omega: | Y_n(\omega) - a | > \varepsilon\}) = 0$?

Example: Convergence in Probability

ightharpoonup Example: Consider a sequence of r.v.s Y_n

$$P(Y_n = y) = \begin{cases} 1 - \frac{1}{n} & \text{, if } y = 0\\ \frac{1}{n} & \text{, if } y = n^2\\ 0 & \text{, otherwise} \end{cases}$$

- For every $\varepsilon > 0$, can we find $P(|Y_n 0| > \varepsilon)$?
- How about $\lim_{n\to\infty} P(|Y_n 0| > \varepsilon)$?