CS3300 - Compiler Design Parsing

KC Sivaramakrishnan

IIT Madras

The role of the parser

A parser

- performs context-free syntax analysis
- guides context-sensitive analysis
- constructs an intermediate representation
- produces meaningful error messages
- attempts error correction

For the next several classes, we will look at parser construction

Syntax analysis by using a CFG

Context-free syntax is specified with a context-free grammar. Formally, a CFG G is a 4-tuple (V_t, V_n, S, P) , where:

- V_t is the set of *terminal* symbols in the grammar. For our purposes, V_t is the set of tokens returned by the scanner.
- V_n , the *nonterminals*, is a set of syntactic variables that denote sets of (sub)strings occurring in the language.
 - S is a distinguished nonterminal $(S \in V_n)$ denoting the entire set of strings in L(G). This is sometimes called a *goal symbol*.
 - P is a finite set of productions Each production must have a single non-terminal on its left hand side.

The set $V = V_t \cup V_n$ is called the *vocabulary* of G.

Notation and terminology

- \bullet $a,b,c,\ldots \in V_t$
- \bullet $A, B, C, \ldots \in V_n$
- \cup $U, V, W, \ldots \in V$
- \bullet $\alpha, \beta, \gamma, \ldots \in V^*$
- $u, v, w, \ldots \in V_t^*$

If $A \rightarrow \gamma$ then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ is a *single-step derivation* using $A \rightarrow \gamma$

Similarly, \Rightarrow^* and \Rightarrow^+ denote derivations of ≥ 0 and ≥ 1 steps

If $S \Rightarrow^* \beta$ then β is said to be a *sentential form* of G

$$L(G) = \{ w \in V_t^* \mid S \Rightarrow^+ w \}, w \in L(G) \text{ is called a } sentence \text{ of } G$$

Note,
$$L(G) = \{ \beta \in V^* \mid S \Rightarrow^* \beta \} \cap V_t^*$$

Syntax analysis

Grammars are often written in Backus-Naur form (BNF). Example:

This describes simple expressions over numbers and identifiers. In a BNF for a grammar, we represent

- non-terminals with angle brackets or capital letters
- 2 terminals with typewriter font or underline
- g productions as in the example

Derivations

We can view the productions of a CFG as rewriting rules. Using our example CFG (for x + 2 * y):

$$\begin{array}{lll} \langle goal \rangle & \Rightarrow & \langle expr \rangle \\ & \Rightarrow & \langle expr \rangle \langle op \rangle \langle expr \rangle \\ & \Rightarrow & \langle id, x \rangle \langle op \rangle \langle expr \rangle \\ & \Rightarrow & \langle id, x \rangle + \langle expr \rangle \\ & \Rightarrow & \langle id, x \rangle + \langle expr \rangle \langle op \rangle \langle expr \rangle \\ & \Rightarrow & \langle id, x \rangle + \langle num, 2 \rangle \langle op \rangle \langle expr \rangle \\ & \Rightarrow & \langle id, x \rangle + \langle num, 2 \rangle * \langle expr \rangle \\ & \Rightarrow & \langle id, x \rangle + \langle num, 2 \rangle * \langle id, y \rangle \end{array}$$

We have derived the sentence x + 2 * y. We denote this $\langle goal \rangle \Rightarrow^* id + num * id$. Such a sequence of rewrites is a *derivation* or a *parse*. The process of discovering a derivation is called *parsing*.

Derivations

At each step, we chose a non-terminal to replace. This choice can lead to different derivations. Two are of particular interest:

leftmost derivation
the leftmost non-terminal is replaced at each step
rightmost derivation
the rightmost non-terminal is replaced at each step

The previous example was a leftmost derivation.

Rightmost derivation

For the string x + 2 * y:

$$\begin{array}{ll} \langle \text{goal} \rangle & \Rightarrow & \langle \text{expr} \rangle \\ & \Rightarrow & \langle \text{expr} \rangle \langle \text{op} \rangle \langle \text{expr} \rangle \\ & \Rightarrow & \langle \text{expr} \rangle \langle \text{op} \rangle \langle \text{id}, y \rangle \\ & \Rightarrow & \langle \text{expr} \rangle * \langle \text{id}, y \rangle \\ & \Rightarrow & \langle \text{expr} \rangle \langle \text{op} \rangle \langle \text{expr} \rangle * \langle \text{id}, y \rangle \\ & \Rightarrow & \langle \text{expr} \rangle \langle \text{op} \rangle \langle \text{num}, 2 \rangle * \langle \text{id}, y \rangle \\ & \Rightarrow & \langle \text{expr} \rangle + \langle \text{num}, 2 \rangle * \langle \text{id}, y \rangle \\ & \Rightarrow & \langle \text{id}, x \rangle + \langle \text{num}, 2 \rangle * \langle \text{id}, y \rangle \end{array}$$

Again, $\langle goal \rangle \Rightarrow^* id + num * id$.

Precedence

Treewalk evaluation computes (x + 2) * y — the "wrong" answer! Should be x + (2 * y)

Precedence

These two derivations point out a problem with the grammar.

It has no notion of precedence, or implied order of evaluation.

The grammar is ambiguous, as a string in the language can have multiple parse trees.

Is precedence the only source of ambiguity? Other examples of strings with multiple parse trees?

Ambiguity - Associativity

The expression a-b-c may be parsed as:

- (a-b)-c **or**
- a-(b-c)

In C, assignment = is right-associative. a=b=c may be parsed as:

- a = (b=c) or
- (a=b)=c

Removing Ambiguity

To remove ambiguity, the grammar needs to be modified:

This grammar enforces a *precedence* and *associativity* on the derivation:

- terms must be derived from expressions
- forces the "correct" tree

Precedence

Now, for the string x + 2 * y:

$$\begin{array}{lll} \langle goal \rangle & \Rightarrow & \langle expr \rangle \\ & \Rightarrow & \langle expr \rangle + \langle term \rangle \\ & \Rightarrow & \langle expr \rangle + \langle term \rangle * \langle factor \rangle \\ & \Rightarrow & \langle expr \rangle + \langle term \rangle * \langle id, y \rangle \\ & \Rightarrow & \langle expr \rangle + \langle factor \rangle * \langle id, y \rangle \\ & \Rightarrow & \langle expr \rangle + \langle num, 2 \rangle * \langle id, y \rangle \\ & \Rightarrow & \langle term \rangle + \langle num, 2 \rangle * \langle id, y \rangle \\ & \Rightarrow & \langle id, x \rangle + \langle num, 2 \rangle * \langle id, y \rangle \\ & \Rightarrow & \langle id, x \rangle + \langle num, 2 \rangle * \langle id, y \rangle \end{array}$$

Again, $\langle goal \rangle \Rightarrow^* id + num * id$, but this time, we build the desired tree.

Precedence

Treewalk evaluation computes x + (2 * y)

Role of CFGs in Compilers

CFGs offer significant advantages for language designers, compiler developers, and end-users of the compiler:

- A grammar gives a formal, precise, yet easy-to-understand syntactic specification of the programming languages. Useful for end-users
- For certain classes of grammars, there are procedures to automatically construct efficient parsers from the grammar description. Useful for compiler developers
- A grammar can reveal syntactic ambiguities and trouble spots.
 Useful for language designers
- A grammar imparts structure to a program, which is directly used for its translation into object code. Useful for compiler developers
- A grammar allows a language to be evolved iteratively by adding new constructs. Useful for language designers and compiler developers

Ambiguity

If a grammar has more than one derivation for a single sentential form, then it is *ambiguous*

Example:

Consider deriving the sentential form:

```
if E_1 then if E_2 then S_1 else S_2
```

This ambiguity is purely grammatical. It is a *context-free* ambiguity.

Ambiguity

We would like to parse if-then-else statements using the following rule:

match each else with the closest unmatched then

Grammar which eliminates the ambiguity by following the above rule:

```
\begin{tabular}{lll} $\langle stmt \rangle$ & $::=$ & $\langle matched \rangle$ & $|$ & $\langle unmatched \rangle$ & $|$ & $\langle unmatched \rangle$ & $|$ & $\langle matched \rangle$ & $|$ & $\langle unmatched \rangle$ & $|
```

Ambiguity

Ambiguity is often due to confusion in the context-free specification. Context-sensitive confusions can arise from *overloading*. Example:

$$a = b + c$$

In many languages, + can refer to both integer addition and floating point addition. Disambiguating this statement requires context:

- need values of declarations
- not context-free
- really an issue of type

Rather than complicate parsing, we will handle this separately.

Scanning vs. parsing

Where do we draw the line?

```
 \begin{array}{lll} \langle id \rangle & ::= & [\mathsf{a} - \mathsf{z} \mathsf{A} - \mathsf{z}] ([\mathsf{a} - \mathsf{z} \mathsf{A} - \mathsf{z}] \mid [\mathsf{0} - \mathsf{9}])^* \\ \langle num \rangle & ::= & 0 \mid [\mathsf{1} - \mathsf{9}][\mathsf{0} - \mathsf{9}]^* \\ \langle op \rangle & ::= & + \mid -\mid *\mid / \\ \langle expr \rangle & ::= & \langle expr \rangle \langle op \rangle \langle expr \rangle \mid \langle id \rangle \mid \langle digit \rangle \\ \end{array}
```

Regular expressions are used to classify:

- identifiers, numbers, keywords
- REs are more concise and simpler for tokens than a grammar
- more efficient scanners can be built from REs (DFAs) than grammars

Scanning vs. parsing

Context-free grammars are used to count:

- brackets: (), begin...end, if...then...else
- imparting structure
 - arithmetic expressions can be described by regular expressions
 - but, must deal with precedence and associativity separately . . .

Syntactic analysis is complicated enough: grammar for C has around 200 productions. Factoring out lexical analysis as a separate phase makes compiler more manageable.

Parsing: the big picture

Our goal is a flexible parser generator system

Different ways of parsing: Top-down Vs Bottom-up

Top-down parsers

- start at the root of derivation tree and fill in
- picks a production and tries to match the input
- may require backtracking
- some grammars are backtrack-free (predictive)

Bottom-up parsers

- start at the leaves and fill in
- start in a state valid for legal first tokens
- as input is consumed, change state to encode possibilities (recognize valid prefixes)
- use a stack to store both state and sentential forms

Top-down parsing

A top-down parser starts with the root of the parse tree, labelled with the start or goal symbol of the grammar.

To build a parse, it repeats the following steps until the fringe of the parse tree matches the input string

- ① At a node labelled A, select a production $A \to \alpha$ and construct the appropriate child for each symbol of α
- When a terminal is added to the fringe that doesn't match the input string, backtrack
- ③ Find next node to be expanded (must have a label in V_n)

The key is selecting the right production in step 1.

Example

```
\begin{array}{lll} \langle \mathit{term} \rangle & ::= & \mathrm{id} \mid \mathrm{num} \\ \langle \mathit{op} \rangle & ::= & + \mid - \\ \langle \mathit{expr} \rangle & ::= & \langle \mathit{expr} \rangle \langle \mathit{op} \rangle \langle \mathit{term} \rangle \mid \langle \mathit{term} \rangle \end{array}
```

Consider the string x+5.

Immediate Left-recursion

Top-down parsers cannot handle left-recursion in a grammar.

Formally, a grammar is *immediate left-recursive* if $\exists A \in V_n \text{ such that } A \Rightarrow^+ A\alpha \text{ for some string } \alpha$

Our simple expression grammar is immediate left-recursive.

Eliminating immediate left-recursion

To remove immediate left-recursion, we can transform the grammar Consider the grammar fragment:

$$\langle \text{foo} \rangle ::= \langle \text{foo} \rangle \alpha$$
 $\mid \beta$

where α and β do not start with $\langle foo \rangle$ We can rewrite this as:

$$\begin{array}{rcl} \langle foo \rangle & ::= & \beta \langle bar \rangle \\ \langle bar \rangle & ::= & \alpha \langle bar \rangle \\ & | & \varepsilon \end{array}$$

where \langle bar \rangle is a new non-terminal

This fragment contains no immediate left-recursion

Eliminating immediate left-recursion

In general, if the grammar contains the following production rules:

$$\langle A \rangle ::= \langle A \rangle \alpha_1 \mid \langle A \rangle \alpha_2 \mid \ldots \mid \langle A \rangle \alpha_m \mid \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

they can be replaced by the following:

$$\begin{array}{lll} \langle A \rangle & ::= & \beta_1 \langle A' \rangle \mid \beta_2 \langle A' \rangle \mid \dots \mid \beta_n \langle A' \rangle \\ \langle A' \rangle & ::= & \alpha_1 \langle A' \rangle \mid \alpha_2 \langle A' \rangle \mid \dots \alpha_m \langle A' \rangle \mid \varepsilon \end{array}$$

Example

Consider the simplified expression grammar:

$$\begin{array}{ccc} E & ::= & E+T \mid T \\ T & ::= & \operatorname{id} \mid \operatorname{num} \end{array}$$

After eliminating left-recursion:

$$\begin{array}{ccc} E & ::= & TE' \\ E' & ::= & +TE' \mid \varepsilon \\ T & ::= & \operatorname{id} \mid \operatorname{num} \end{array}$$

How much lookahead is needed?

We saw that top-down parsers need to select a production rule at every step, for which we may have to look ahead in the input string Do we need arbitrary lookahead to parse CFGs?

- in general, yes
- use the Earley or CYK algorithms

Fortunately

- large subclasses of CFGs can be parsed with limited lookahead
- most programming language constructs can be expressed in a grammar that falls in these subclasses

Among the interesting subclasses are:

- LL(1): left to right scan, left-most derivation, 1-token lookahead; and
- LR(1): left to right scan, reversed right-most derivation, 1-token lookahead

Predictive parsing

Basic idea:

- For any two productions $A \to \alpha \mid \beta$, we would like a distinct way of choosing the correct production to expand.
- For some RHS $\alpha \in G$, define FIRST(α) as the set of tokens that appear first in some string derived from α .
 - That is, for some $a \in V_t$, $w \in FIRST(\alpha)$ iff. $\alpha \Rightarrow^* a\gamma$.

Key property:

- Whenever two productions $A \to \alpha$ and $A \to \beta$ both appear in the grammar, we would like:
 - FIRST(α) \cap FIRST(β) = ϕ
- This would allow the parser to make a correct choice with a lookahead of only one symbol!

Recursive descent parsing and Predictive parsing

- If top-down parsing is performed recursively, it is also called recursive descent parsing.
 - To prevent infinite recursion, the grammar should not be left-recursive.
 - In general, may require backtracking if the wrong production rule is picked.
- Top-down parsing with lookahead which ensures that the correct production rule is always picked is called predictive parsing.

Recursive descent parsing

A set of procedures, one for each non-terminal.

```
1 int A()
2 begin
      foreach production of the form A \rightarrow X_1 X_2 X_3 \cdots X_k do
           for i = 1 to k do
               if X_i is a non-terminal then
                   if (X_i() = 0) then
                        backtrack; break; // Try the next production
               else if X_i matches the current input symbol a then
                   advance the input to the next symbol;
               else
10
                   backtrack; break; // Try the next production
11
           if i = k + 1 then
12
               return 1; // Success
13
      return 0; // Failure
14
```

Recursive descent parsing

- Backtracks in general in practise may not do much.
- How to backtrack?
- A left recursive grammar will lead to infinite loop.

For Predictive Parsing

- For a production $A \to \alpha$, define FIRST(α) as the set of tokens that appear first in some string derived from α .
 - That is, for some $a \in V_t$, $w \in FIRST(\alpha)$ iff. $\alpha \Rightarrow^* a\gamma$.
- Whenever two productions $A \to \alpha$ and $A \to \beta$ both appear in the grammar, we would like
 - FIRST(α) \cap FIRST(β) = ϕ

• If the grammar has two productions rules of the form $A \to \alpha \beta_1 \mid \alpha \beta_2$, we cannot directly use predictive parsing.

Left factoring

Some grammars can be transformed by left-factoring to enable predictive parsing.

For each non-terminal A find the longest prefix α common to two or more of its production rules.

if $\alpha \neq \varepsilon$ then replace all of the A productions $A \to \alpha \beta_1 \mid \alpha \beta_2 \mid \cdots \mid \alpha \beta_n$ with

$$A \to \alpha A'$$

$$A' \to \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

where A' is a new non-terminal.

Repeat until no two alternatives for a single non-terminal have a common prefix.

Example

There are two non-terminals to left factor:

$$\begin{array}{cccc} \langle expr \rangle & ::= & \langle term \rangle + \langle expr \rangle \\ & | & \langle term \rangle - \langle expr \rangle \\ & | & \langle term \rangle \\ \end{array}$$

$$\langle term \rangle & ::= & \langle factor \rangle * \langle term \rangle \\ & | & \langle factor \rangle / \langle term \rangle \\ & | & \langle factor \rangle \end{array}$$

Question: What's different here from the previous similar grammar that we've seen?

Applying the transformation:

Left-recursion Elimination

 Predictive Parsing is a form of recursive-descent parsing, and hence cannot handle grammars with left recursion.

- We have seen how to eliminate immediate left-recursion, i.e. when there is a production rule of the form $A \rightarrow A\alpha$.
- However, left-recursion can also be indirect.
 - Example: $A \rightarrow B\alpha$ and $B \rightarrow A\beta$.

• In the general case, A grammar is left-recursive if $\exists A \in V_n$ such that $A \Rightarrow^+ A\alpha$ for some string α .

Indirect Left-recursion Elimination

- Given a left-factored CFG, to eliminate left-recursion:
- 1 **Input**: Grammar G with no *cycles* (no $A \Rightarrow^* A$) and no ε productions.
- 2 Output: Equivalent grammar with no left-recursion.
- 3 begin

```
Arrange the non terminals in some order A_1, A_2, \dots A_n; foreach i = 1 \dots n do
```

foreach
$$i = 1 \cdots i - 1$$
 do

For production p of the form $A_i \rightarrow A_j \gamma$ and

$$A_j \rightarrow \delta_1 |\delta_2| \cdots |\delta_k;$$

Replace the production p by:

$$A_i \rightarrow \delta_1 \gamma |\delta_2 \gamma| \cdots \delta_n \gamma;$$

Eliminate immediate left recursion in A_i ;

Indirect Left-recursion Elimination Algorithm Analysis

- At the end of *i*th iteration of the outer loop, the algorithm ensures that in all productions of the form $A_i \rightarrow A_i \gamma$, i < j.
- The algorithm assumes that the grammar has no cycles, i.e. $A \Rightarrow^* A$ is not possible for any non-terminal A.
- Questions to ponder:
 - What happens if there are cycles in the input grammar?
 - What happens if there are ε -productions in the input grammar?
- Does the algorithm work for all context-free languages?
 - Yes, it works for all CFL which do not contain ε . For any such CFL, we can always obtain a CFG which does not contain ε -productions and unit-productions.

Example

Consider the following grammar:

$$\begin{array}{lll} \langle \mathbf{S} \rangle & ::= & \langle \mathbf{A} \rangle a \mid b \\ \langle \mathbf{A} \rangle & ::= & \langle \mathbf{S} \rangle d \mid c \\ \end{array}$$

It has indirect left recursion: $\langle S \rangle \Rightarrow^* \langle S \rangle da$ Grammar after eliminating left recursion:

$$\begin{array}{lll} \langle \mathbf{S} \rangle & ::= & \langle \mathbf{A} \rangle a \mid b \\ \langle \mathbf{A} \rangle & ::= & bd \langle \mathbf{A}' \rangle \mid c \langle \mathbf{A}' \rangle \\ \langle \mathbf{A}' \rangle & ::= & ad \langle \mathbf{A}' \rangle \mid \varepsilon \end{array}$$

Generality

Question:

By left factoring and eliminating left-recursion, can we transform an arbitrary context-free grammar to a form where it can be predictively parsed with a single token lookahead?

Answer: No. Example:

$${a^n 0b^n \mid n \ge 1} \cup {a^n 1b^{2n} \mid n \ge 1}$$

Must look past an arbitrary number of a's to discover the 0 or the 1 and so determine the derivation.

Not all CFG are LL(1).

Non-recursive predictive parsing

Now, a predictive parser looks like:

Rather than writing recursive code, we build tables. *Building tables can be automated easily.*

Table-driven parsers

A parser generator system often looks like:

 We will first look at the information required for generating the parsing table.

FIRST

For a string of grammar symbols α , define FIRST(α) as:

- the set of terminals that begin strings derived from α : $\{a \in V_t \mid \alpha \Rightarrow^* a\beta\}$
- If $\alpha \Rightarrow^* \varepsilon$ then $\varepsilon \in FIRST(\alpha)$

To build FIRST(X):

- ① If $X \in V_t$ then FIRST(X) is $\{X\}$
- ② If $X \to \varepsilon$ then add ε to FIRST(X)
- - ① Put FIRST $(Y_1) \{\varepsilon\}$ in FIRST(X)
 - $\forall i: 1 < i \leq k, \text{ if } \varepsilon \in \mathsf{FIRST}(Y_1) \cap \cdots \cap \mathsf{FIRST}(Y_{i-1}) \\ \text{ (i.e., } Y_1 \cdots Y_{i-1} \Rightarrow^* \varepsilon) \\ \text{ then put } \mathsf{FIRST}(Y_i) \{\varepsilon\} \text{ in } \mathsf{FIRST}(X)$
 - 3 If $\varepsilon \in \text{FIRST}(Y_1) \cap \cdots \cap \text{FIRST}(Y_k)$ then put ε in FIRST(X)

Repeat until no more additions can be made.

FOLLOW

For a non-terminal A, define FOLLOW(A) as

the set of terminals that can appear immediately to the right of A in some sentential form

Thus, a non-terminal's FOLLOW set specifies the tokens that can legally appear after it.

A terminal symbol has no FOLLOW set.

To build FOLLOW(A):

- Put \$ in FOLLOW(\(\langle\))
- ② If $A \rightarrow \alpha B \beta$:
 - ① Put FIRST(β) { ε } in FOLLOW(B)
 - ② If $\beta = \varepsilon$ (i.e., $A \to \alpha B$) or $\varepsilon \in \text{FIRST}(\beta)$ (i.e., $\beta \Rightarrow^* \varepsilon$) then put FOLLOW(A) in FOLLOW(B)

Repeat until no more additions can be made

LL(1) grammars

Previous definition

A grammar G is LL(1) iff. for all non-terminals A, each distinct pair of productions $A \to \beta$ and $A \to \gamma$ satisfy the condition $\mathsf{FIRST}(\beta) \cap \mathsf{FIRST}(\gamma) = \phi$.

What if $\varepsilon \in FIRST(\beta)$?

Consider that the current imput symbol is *a*. Introduces ambiguity between choosing:

- $A \to \beta$ when $a \in FOLLOW(A)$
- ullet $A o \gamma$ when $a \in \mathsf{FIRST}(\gamma)$

Ambiguity is bad because we may need to backtrack – not predictive parsing anymore!

LL(1) grammars

Revised definition

A grammar G is LL(1) iff. for each set of productions $A \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$:

- ① FIRST(α_1), FIRST(α_2),..., FIRST(α_n) are all pairwise disjoint
- ② If $\alpha_i \Rightarrow^* \varepsilon$ then FIRST $(\alpha_j) \cap \text{FOLLOW}(A) = \phi, \forall 1 \leq j \leq n, i \neq j$.

If G is ε -free, condition 1 is sufficient.

LL(1) grammars

Provable facts about LL(1) grammars:

- No left-recursive grammar is LL(1)
 - Consider $A \to A\alpha \mid \beta$. Here, $\mathsf{FIRST}(\beta) \subseteq \mathsf{FIRST}(A)$ (by definition). Also, $\mathsf{FIRST}(A) \subseteq \mathsf{FIRST}(A\alpha)$. We know FIRST sets are never empty. Hence, $\mathsf{FIRST}(\beta) \cap \mathsf{FIRST}(A\alpha) \neq \emptyset$.
- No ambiguous grammar is LL(1)
- Some languages have no LL(1) grammar
 - Some CFLs are inherently ambiguous i.e., no unambiguous CFGs exist for that CFL.
- A grammar which is not LL(1) may be converted into a LL(1) grammar.
 - Consider $S \to aS \mid a$. Not LL(1) since FIRST(aS) = FIRST(a). Use left-factoring to get: $S \to aS' \mid \varepsilon$ $S' \to aS' \mid \varepsilon$

accepts the same language and is LL(1)

LL(1) parse table construction

Input: Grammar G

Output: Parsing table M

Method:

- ① \forall productions $A \rightarrow \alpha$:
 - ① $\forall a \in \mathsf{FIRST}(\alpha)$, add $A \to \alpha$ to M[A, a]
 - 2 If $\varepsilon \in \mathsf{FIRST}(\alpha)$:
 - ① $\forall b \in \mathsf{FOLLOW}(A)$, add $A \to \alpha$ to M[A, b]
 - ② If $\$ \in \mathsf{FOLLOW}(A)$ then $\mathsf{add}\, A \to \alpha$ to M[A,\$]
- Set each undefined entry of M to error

If $\exists M[A,a]$ with multiple entries then grammar is not LL(1).

Example

Our expression grammar:

	FIRST	FOLLOW	id	num	+	_	*	\$
S								
E								
E'								
T								
T'								
F								
id								
num			1					
*								
+								
_]					

Example: Calculating FIRST

1.
$$S \rightarrow E \mid 6$$
. $T \rightarrow FT'$
2. $E \rightarrow TE' \mid 7$. $T' \rightarrow *T$
3. $E' \rightarrow +E \mid 8$. \mid /T
4. $\mid -E \mid 9$. $\mid \varepsilon$
5. $\mid \varepsilon \mid 10$. $F \rightarrow \text{num} \mid 11$. $\mid \text{id}$

FIRST(E) \subseteq FIRST(S)

FIRST(T) \subseteq FIRST(E)

 $\{+,-,\varepsilon\} \subseteq$ FIRST(E')

FIRST(F) \subseteq FIRST(T')

 $\{*,/,\varepsilon\} \subseteq$ FIRST(T')

 $\{\text{num},\text{id}\} \subseteq$ FIRST(F)

Example: Calculating FIRST

	FIRST	FOLLOW	id	num	T +	_	*	<i> </i>	Γ
		1022011	ıα	mann	-			L /	L
S	num,id								
E	num,id								
E'	$\epsilon,+,-$								
T	num,id								
T'	$\epsilon,*,/$								Γ
F	num,id								Γ
id	id	_							
num	num	1							
*	*	_							
		_							
+	+	_							
_	_	_							

Example: Calculating FOLLOW

Example: Calculating FOLLOW

$$\begin{array}{c|ccccc} 1. & S & \rightarrow E & 6. & T & \rightarrow FT' \\ 2. & E & \rightarrow TE' & 7. & T' & \rightarrow *T \\ 3. & E' & \rightarrow +E & 8. & |/T \\ 4. & |-E & 9. & |\varepsilon \\ 5. & |\varepsilon & |10. & F & \rightarrow \text{num} \\ |11. & | \text{id} \end{array}$$

	FIRST	FOLLOW	id	num	+	_	*	\$
S	num,id	\$						
E	num,id	\$						
E'	$\epsilon,+,-$	\$						
T	num,id	+,-,\$						
T'	$oldsymbol{arepsilon}, *, /$	+,-,\$						
F	num,id	+,-,*,/,\$						
id	id	_						
num	num	_						
*	*	_						
	/	_						
+	+	_						
_	_	_	1					

Example: Calculating the Parsing Table

$$\begin{array}{c|ccccc} 1. & S & \rightarrow E & 6. & T & \rightarrow FT' \\ 2. & E & \rightarrow TE' & 7. & T' & \rightarrow *T \\ 3. & E' & \rightarrow +E & 8. & |/T \\ 4. & |-E & 9. & |\varepsilon \\ 5. & |\varepsilon & 10. & F & \rightarrow \text{num} \\ |11. & | \text{id} \end{array}$$

	FIRST	FOLLOW	id	num	+	_	*		\$
S	num,id	\$	1	1	-	_	_	-	_
E	num,id	\$	2	2	_	_	_	_	_
E'	$\varepsilon,+,-$	\$	_	_	3	4	_	_	5
T	num,id	+, -, \$	6	6	_	_	_	_	_
T'	$\varepsilon,*,/$	+, -, \$	_	_	9	9	7	8	9
F	num,id	+,-,*,/,\$	11	10	_	_	_	_	_
id	id	_				•			
num	num	_							
*	*	_							
	/	_							
+	+	_							
_	_	_]						

Table driven Predictive parsing

```
Input: A string w and a parsing table M for a grammar G
  Output: If w is in L(G), a leftmost derivation of w; otherwise, indicate an
            error
1 push $ onto the stack; push S onto the stack;
2 let a = first\_symbol(w);
3 X = \text{stack.top()};
4 while X \neq \$ do
      if X == a then
          stack.pop(); let a = next_symbol(w);
      else if X is a terminal then
          error();
      else if M[X,a] is an error entry then
          error();
      else if M[X,a] = X \rightarrow Y_1 Y_2 \cdots Y_k then
          output the production X \to Y_1 Y_2 \cdots Y_k;
          stack.pop();
          push Y_k, Y_{k-1}, \dots Y_1 in that order;
      X = stack.top():
```

11

12

13

14

A grammar that is not LL(1)

```
\langle stmt \rangle ::= if \langle expr \rangle then \langle stmt \rangle
                  | if \langle expr \rangle then \langle stmt \rangle else \langle stmt \rangle other
Left-factored: \langle stmt \rangle ::= if \langle expr \rangle then \langle stmt \rangle \langle stmt' \rangle | other
                               \langle \operatorname{stmt}' \rangle ::= else \langle \operatorname{stmt} \rangle \mid \varepsilon
              FIRST(\langle stmt' \rangle) = \{else, \varepsilon\}
                                       \$ \in FOLLOW(\langle stmt \rangle)
          FOLLOW(\langle stmt \rangle) \subseteq FOLLOW(\langle stmt' \rangle)
 FIRST(\langle stmt' \rangle) - \{ \varepsilon \} \subset FOLLOW(\langle stmt \rangle)
```

Picking the smallest set that can satisfy the constraints gives us: $FOLLOW(\langle stmt' \rangle) = \{else, \$\}$

Given $\langle \operatorname{stmt}' \rangle \Rightarrow^* \varepsilon$, LL(1) grammar requires FIRST($\operatorname{else}(\operatorname{stmt}) \cap \operatorname{FOLLOW}(\langle \operatorname{stmt}' \rangle) = \emptyset$.

A grammar that is not LL(1)

```
 \begin{array}{cccc} \text{Left-factored:} & \langle stmt \rangle & ::= & \text{if } \langle expr \rangle \text{ then } \langle stmt \rangle \mid \text{other} \\ & \langle stmt' \rangle & ::= & \text{else } \langle stmt \rangle \mid \mathcal{E} \\ \end{array}
```

Picking the smallest set that can satisfy the constraints gives us:

$$\texttt{FOLLOW}(\langle \mathsf{stmt'} \rangle) \ = \ \{\texttt{else},\$\}$$

Given $\langle \operatorname{stmt}' \rangle \Rightarrow^* \varepsilon$, LL(1) grammar requires FIRST($\operatorname{else}\langle \operatorname{stmt} \rangle$) \cap FOLLOW($\langle \operatorname{stmt}' \rangle$) = \emptyset .

$$\mathsf{But}\;\mathsf{FIRST}(\mathsf{else}\langle\mathsf{stmt}\rangle)\cap\mathsf{FOLLOW}(\langle\mathsf{stmt'}\rangle)=\{\mathsf{else}\}$$

The parsing table entry for $M[\langle stmt' \rangle, else]$ will contain both:

- $\bullet \langle stmt' \rangle ::= else \langle stmt \rangle$
- $\langle \operatorname{stmt'} \rangle ::= \varepsilon$

Intuitively, prioritise $\langle stmt' \rangle ::= else \langle stmt \rangle$ to associate else with closest then.

Another common example

 Here is a typical example where a programming language fails to be LL(1):

```
\begin{array}{ccc} \langle stmt \rangle & \rightarrow & \langle assignment \rangle \mid \langle call \rangle \mid \langle other \rangle \\ \langle assignment \rangle & \rightarrow & \langle id \rangle = \langle expr \rangle \\ \langle call \rangle & \rightarrow & \langle id \rangle (\langle expr\text{-list} \rangle) \end{array}
```

 This grammar is not in a form that can be left factored. We must first replace assignment and call by the right-hand sides of their defining productions:

$$\langle \text{stmt} \rangle \rightarrow \langle \text{id} \rangle = \langle \text{expr} \rangle \mid \langle \text{id} \rangle (\langle \text{expr-list} \rangle) \mid \langle \text{other} \rangle$$

We left factor:

$$\begin{array}{ccc} \langle stmt \rangle & \rightarrow & \langle id \rangle \langle stmt' \rangle \mid \langle other \rangle \\ \langle stmt' \rangle & \rightarrow & = \langle expr \rangle \mid (\langle expr-list \rangle) \end{array}$$

- See how the grammar obscures the language semantics.
 - Most of PL syntax cannot be expressed naturally as LL(1) grammar.

Error recovery in Predictive Parsing

• An error is detected when the terminal on top of the stack does not match the next input symbol or M[A,a] = error.

Panic mode error recovery

Skip input symbols till a "synchronizing" token appears.

Q: How to identify a synchronizing token?

Some heuristics:

- All symbols in FOLLOW(A) in the synchronizing set for the non-terminal A.
 - For example, while parsing id *+ id, after parsing *, T will on the top of the stack. This will lead to error, since M[T,+] is empty. Since $+ \in FOLLOW(T)$, we consider + as a synchronizing token. T will be removed from top of the stack, and parsing can proceed.
- Semicolon after a Stmt production: assignmentStmt; assignmentStmt;
- If a terminal on top of the stack cannot be matched?
 - pop the terminal.
 - issue a message that the terminal was inserted.