

## **QUAD/DUAL N-CHANNEL MATCHED PAIR MOSFET ARRAY**

#### **GENERAL DESCRIPTION**

The ALD1106/ALD1116 are monolithic quad/dual N-channel enhancement mode matched MOSFET transistor arrays intended for a broad range of precision analog applications. The ALD1106/ALD1116 offer high input impedance and negative current temperature coefficient. The transistor pairs are matched for minimum offset voltage and differential thermal response, and they are designed for switching and amplifying applications in +2V to +12V systems where low input bias current, low input capacitance and fast switching speed are desired. These MOSFET devices feature very large (almost infinite) current gain in a low frequency, or near DC, operating environment. The ALD1106/ALD1116 are building blocks for differential amplifier input stages, transmission gates, and multiplexer applications, current sources and many precision analog circuits.

#### **FEATURES**

- · Low threshold voltage of 0.7V
- Low input capacitance
- Low Vos 2mV typical
- High input impedance --  $10^{14}\Omega$  typical
- Negative current (IDS) temperature coefficient
- Enhancement-mode (normally off)
- DC current gain 109
- · Low input and output leakage currents

## **ORDERING INFORMATION**

| Operating Temperature Range* |                               |                        |  |  |  |  |  |  |  |
|------------------------------|-------------------------------|------------------------|--|--|--|--|--|--|--|
| -55°C to +125°C              | 0°C to +70°C                  | 0°C to +70°C           |  |  |  |  |  |  |  |
| 8-Pin CERDIP<br>Package      | 8-Pin Plastic Dip<br>Package  | 8-Pin SOIC<br>Package  |  |  |  |  |  |  |  |
| ALD1116 DA                   | ALD1116 PA                    | ALD1116 SA             |  |  |  |  |  |  |  |
| 14-Pin CERDIP<br>Package     | 14-Pin Plastic Dip<br>Package | 14-Pin SOIC<br>Package |  |  |  |  |  |  |  |
| ALD1106 DB                   | ALD1106 PB                    | ALD1106 SB             |  |  |  |  |  |  |  |

<sup>\*</sup> Contact factory for industrial temperature range.

#### **BLOCK DIAGRAM**



#### **APPLICATIONS**

- · Precision current mirrors
- · Precision current sources
- Voltage choppers
- Differential amplifier input stage
- · Voltage comparator
- Data converters
- · Sample and Hold
- · Analog signal processing

#### PIN CONFIGURATION



## **BLOCK DIAGRAM**



### **ABSOLUTE MAXIMUM RATINGS**

| Drain-source voltage, VDS                          | 13.2V           |
|----------------------------------------------------|-----------------|
| Gate-source voltage, V <sub>GS</sub>               | 13.2V           |
| Power dissipation —                                | 500 mW          |
| Operating temperature range PA, SA, PB, SB package | 0°C to +70°C    |
| DA, DB package                                     | 55°C to +125°C  |
| Storage temperature range                          | -65°C to +150°C |
| Lead temperature, 10 seconds                       | +260°C          |

## **OPERATING ELECTRICAL CHARACTERISTICS**

## T<sub>A</sub> = 25°C unless otherwise specified

| Parameter                                            | Symbol                     | ALD1106 |      |          | ALD1116 |      |          | T        | Test                                                                 |
|------------------------------------------------------|----------------------------|---------|------|----------|---------|------|----------|----------|----------------------------------------------------------------------|
|                                                      |                            | Min     | Тур  | Max      | Min     | Тур  | Max      | Unit     | Conditions                                                           |
| Gate Threshold<br>Voltage                            | V <sub>T</sub>             | 0.4     | 0.7  | 1.0      | 0.4     | 0.7  | 1.0      | V        | $I_{DS} = 1.0 \mu A V_{GS} = V_{DS}$                                 |
| Offset Voltage<br>V <sub>GS1</sub> -V <sub>GS2</sub> | Vos                        |         | 2    | 10       |         | 2    | 10       | mV       | $I_{DS} = 10\mu A V_{GS} = V_{DS}$                                   |
| Gate Threshold<br>Temperature<br>Drift <sup>2</sup>  | TC <sub>VT</sub>           |         | -1.2 |          |         | -1.2 |          | mV/°C    |                                                                      |
| On Drain<br>Current                                  | IDS (ON                    | 3.0     | 4.8  |          | 3.0     | 4.8  |          | mA       | $V_{GS} = V_{DS} = 5V$                                               |
| Transconductance                                     | G <sub>IS</sub>            | 1.0     | 1.8  |          | 1.0     | 1.8  |          | mmho     | V <sub>DS</sub> = 5V I <sub>DS</sub> = 10mA                          |
| Mismatch                                             | $\Delta G_fs$              |         | 0.5  |          |         | 0.5  |          | %        |                                                                      |
| Output<br>Conductance                                | G <sub>OS</sub>            |         | 200  |          |         | 200  |          | μmho     | V <sub>DS</sub> = 5V I <sub>DS</sub> = 10mA                          |
| Drain Source<br>On Resistance                        | RDS (ON)                   |         | 350  | 500      |         | 350  | 500      | Ω        | V <sub>DS</sub> = 0.1V V <sub>GS</sub> = 5V                          |
| Drain Source<br>On Resistence<br>Mismatch            | $\Delta_{	extsf{DS}}$ (ON) |         | 0.5  |          |         | 0.5  |          | %        | V <sub>DS</sub> = 0.1V V <sub>GS</sub> = 5V                          |
| Drain Source<br>Breakdown<br>Voltage                 | BV <sub>DSS</sub>          | 12      |      |          | 12      |      |          | V        | I <sub>DS</sub> = 1.0μΑ V <sub>GS</sub> = 0V                         |
| Off Drain<br>Current <sup>1</sup>                    | I <sub>DS</sub> (OFF)      |         | 10   | 400<br>4 |         | 10   | 400<br>4 | pA<br>nA | V <sub>DS</sub> =12V V <sub>GS</sub> = 0V<br>T <sub>A</sub> = 125°C  |
| Gate Leakage<br>Current                              | I <sub>GSS</sub>           |         | 0.1  | 10<br>1  |         | 0.1  | 10<br>1  | pA<br>nA | V <sub>DS</sub> = 0V V <sub>GS</sub> = 12V<br>T <sub>A</sub> = 125°C |
| Input<br>Capacitance <sup>2</sup>                    | C <sub>ISS</sub>           |         | 1    | 3        |         | 1    | 3        | pF       |                                                                      |

Notes: <sup>1</sup> Consists of junction leakage currents

<sup>&</sup>lt;sup>2</sup> Sample tested parameters

#### TYPICAL PERFORMANCE CHARACTERISITCS

#### **OUTPUT CHARACTERISTICS**





#### FORWARD TRANSCONDUCTANCE vs. DRAIN SOURCE VOLTAGE







# **DRAIN SOURCE ON RESISTANCE**



#### OFF DRAIN CURRENT vs. **AMBIENT TEMPERATURE**



OFF DRAIN SOURCE CURRENT