CSCE-629 Analysis of Algorithms

Fall 2019

Instructor: Dr. Jianer Chen Teaching Assistant: Qin Huang

 Office: HRBB 338C
 Office: HRBB 309D

 Phone: 845-4259
 Phone: (979) 402-6216

Email: chen@cse.tamu.edu

Office Hours: T,Th 10:50 am-12:30 pm

Email: huangqin@email.tamu.edu

Office Hours: MWF 3:30 pm-4:30 pm

Assignment # 6 (Prepared with the TA Qin Huang)

1. A vertex cover in an undirected graph G is a set C of vertices in G such that every edge in G has at least one end in C. Consider the following two versions of the Vertex-Cover problem:

VC-D: Given a graph G and an integer k, decide whether G contains a vertex cover of at most k vertices.

VC-O: Given a graph G, construct a minimum vertex cover for G

Prove: VC-D is solvable in polynomial time if and only if VC-O is solvable in polynomial time.

Solutions. Suppose there is a polynomial time algorithm \mathcal{A} for VC-O problem. We can construct a polynomial time algorithm for VC-D as follows: given an instance (G, k) of the VC-D problem, run \mathcal{A} on G to obtain an optimal cover \mathcal{C} , if $|\mathcal{C}| \leq k$, then (G, k) is a yes-instance; otherwise, it's a no-instance.

Conversely, assume there is a polynomial time algorithm \mathcal{B} for the VC-D problem. We can construct a polynomial time algorithm for VC-O is as follows:

Algorithm 1 Pseudocode for VC-O in Problem 1

```
1: for i = 0 to n do
        if \mathcal{B}(G,i) returns yes then
 3:
           break;
 4: let \mathcal{C} = \emptyset:
 5: while i > 0 do
        for each vertex v \in G do
 6:
           if \mathcal{B}(G-v,i-1) return yes then
 7:
                add v into C;
 8:
                let G = G - v; i - -;
 9:
10:
                break:
```

Obviously, if the algorithm \mathcal{B} runs in polynomial time, then Algorithm 1 is also of polynomial time and correctly constructs a minimum vertex cover \mathcal{C} .

2. Prove that the VC-D problem given in Question 1 is in NP.

Solutions. To show that VC-D is in NP, for a given instance (G = (V, E), k), the certificate we choose is the vertex cover $V' \subseteq V$ itself. The verification algorithm affirms that $|V'| \leq k$, and then it checks, for each edge $[u, v] \in E$, that $u \in V'$ or $v \in V'$. We can easily verify the certificate in polynomial time. Hence, VC-D is in NP.

3. Using the fact that the independent set problem is NP-complete, prove that the following problem is NP-complete:

Clique: Given a graph G and an integer k, is there a set C of k vertices in G such that for every pair v and w of vertices in C, v and w are adjacent in G?

Solutions. We first show that Clique is in NP. Suppose we are given a graph G=(V,E) and an integer k. The certificate is the clique $V'\subseteq V$ itself. The verification algorithm affirms that |V'|=k, and then it checks, for each pair $u,v\in V'$, that $[u,v]\in E$. We can verify the certificate in polynomial time.

Now, we show that Independent Set problem \leq_p Clique. This reduction relies on the notion of the "complement" of a graph. Given an undirected graph G = (V, E), we define the complement of G as $\overline{G} = (V, \overline{E})$, where $\overline{E} = \{[u, v] : u, v \in V, u \neq v, \text{ and } [u, v] \notin E\}$.

The reduction algorithm takes as input an instance $\langle G, k \rangle$ of the Independent Set problem. It computes the complement \overline{G} , which we can easily do in polynomial time. The output of the reduction algorithm is the instance $\langle \overline{G}, k \rangle$.

Obviously, G has an independent set of size k if and only if \overline{G} has a clique of size k. Therefore, Clique is NP-complete.

4. Prove: if the problem VC-O is solvable in polynomial time then P = NP. *Hint:* you may use the result in Question 1.

Solutions. If VC-O is solvable in polynomial time, then by Question 1, the decision problem VC-D is also solvable in polynomial time. Thus, there is an algorithm A_1 that solves the VC-D problem in time $O(n^{c_1})$, where c_1 is a constant. Now let Q be any problem in NP. Since the problem VC-D is NP-complete, we have $Q \leq_m^p \text{VC-D}$. That is, there is an algorithm A_2 that on an instance x of Q produces an instance y of VC-D in time $O(|x|^{c_2})$, where c_2 is a constant, such that x is a yes-instance for Q if and only if y is a yes-instance for VC-D.

Now consider the following algorithm A_3 for the problem Q in NP: on an instance x of Q, first apply the algorithm A_2 to produce an instance y for VC-D, then apply the algorithm A_1 for VC-D on the instance y to decide if y is a yes-instance of VC-D, which will directly give a decision on the instance x of Q. Note that the algorithm A_2 on x runs in time $O(|x|^{c_2})$ while the algorithm A_1 on y runs in time $O(|y|^{c_1}) = O(|x|^{c_1c_2})$ (note that the length |y| of y cannot be larger than $O(|x|^{c_1})$ because y was produced by the algorithm A_2 that runs in time $O(|x|^{c_1})$). Therefore, the algorithm A_3 solves the problem Q in time $O(|x|^{c_1}+|x|^{c_1c_2})$, which is a polynomial of |x|. Thus, the problem Q is solvable in polynomial time, thus, is in P. Since Q is an arbitrary problem in NP, this shows that P = NP.