

Webengineering

Cloud Computing

Hermann Dertenkötter Marcel Schmitz Tobias Füsting Alexander Kirilowski

Agenda

- 1. Grundlagen Cloud Computing
- 2. Architektur der Cloud
- 3. Organisatorische Aspekte
- 4. Cloud Hosting
- 5. Cloud Based IDE
- 6. Vorteile
- 7. Risiken
- 8. Ausblick

Grundlagen Cloud Computing

- Was ist Cloud Computing?
 - > Keine einheitlich, standardisierte Definition vorhanden
 - Generelles Ziel: IT-Ressourcen verschiedenster Art als elektronischen Dienst dynamisch bereitstellen (Vgl. Baun, et al. 2011)
 - Mehrere Anwender sollen die Ressourcen verlässlich nutzen und skalieren können
 - Die Skalierung erfolgt automatisch oder manuell
- Definition der Experton (Weltweiter Cloud Consultant)
 - Bereitstellung der Dienst im Self-Service-Modell
 - Orts- und Geräteunabhängiger Zugriff über IP-Netze
 - Nutzungsabhängige Bezahlung
 - Abstrahierte, virtuelle Infrastruktur

Hierlmeier, Märchenstunde Cloud Computing, 2010 Vgl. http://www.heise.de/resale/artikel/Maerchenstunde-Cloud-Computing-981746.html

Agenda

- 1. Grundlagen Cloud Computing
- 2. Architektur der Cloud
- 3. Organisatorische Aspekte
- 4. Cloud Hosting
- 5. Cloud Based IDE
- 6. Vorteile
- 7. Risiken
- 8. Ausblick

Architektur der Cloud

By Engineyard.com

Architektur der Cloud

Infrastructure as a Service (laaS)

- Zugang zu virtualisierter IT-Hardware
 - > Rechenleistung, Speicher, Kommunikationsverbindung
- Anwender sind für die Auswahl, Installation und Betrieb der Software selbst verantwortlich
- Anwender sind (meistens) IT-Spezialisten

Infrastructure as a Service – Seite 2

- Anbieter stellen vorkonfigurierte Systeme bereit
 - Anwender kann mit nur einen Klick ein neues System starten
 - Google bootet eine neue Instanz innerhalb von 30 Sekunden
- Das System kann nach belieben konfiguriert werden
 - Online Spiele
 - Verteilung großer Datenmangen
 - Mathematische Analysen
 - Ad-Serving
 - **)** ...

- Der Anbieter stellt die Programmiersprache, Frameworks Bibliotheken, API usw. zur Verfügung
- > Der Anbieter kümmert sich ebenfalls um die Infrastruktur
- Der Anwender kann seine Software innerhalb von Sekunden skalieren und dem aktuellen Bedarf anpassen

"Build apps, not infrastructure"

Software as a Service

- Die Software und Infrastruktur werden geliefert und verwaltet
- Der Anwender kann den Dienst ohne technische Kenntnisse benutzen
- Beispiele

Agenda

- 1. Grundlagen Cloud Computing
- 2. Architektur der Cloud
- 3. Organisatorische Aspekte
- 4. Cloud Hosting
- 5. Cloud Based IDE
- 6. Vorteile
- 7. Risiken
- 8. Ausblick

Organisatorische Aspekte

Public Cloud

- Anbieter und Nutzer gehören nicht derselben Organisation an
- Der Anbieter macht seine Cloud öffentlich zugänglich
- Die Abrechnung erfolgt auf Basis der tatsächlichen Nutzung
- Die Anwender sind virtuell getrennt
 - Die Daten liegen dennoch auf dem selben physikalischen Server

Fachhochschule Applied Sciences

Organisatorische Aspekte

Private Cloud

- Cloud, die vom Unternehmen selbst betrieben werden
- Zugriff exklusiv für Mitarbeiter/ Partner
- Zugriff über Intranet oder VPN
- Wird die Infrastruktur durch Dritte bereitgestellt und verwaltet, spricht man vom "Hosted Private Cloud"

23.06.14 12 von 41 Cloud Computing

Organisatorische Aspekte

- Xombination aus Private und **Public Cloud**
- Beispiel

Hybride Cloud

> Kritische Unternehmensanwendungen werden in einer Private Cloud betrieben. Bei Bedarf kann eine Public Cloud angemietet/ aufgeschaltet werden

Cloud Computing 23.06.14 13 von 41

Agenda

- 1. Grundlagen Cloud Computing
- 2. Architektur der Cloud
- 3. Organisatorische Aspekte
- 4. Cloud Hosting
- 5. Cloud Based IDE
- 6. Vorteile
- 7. Risiken
- 8. Ausblicke

> Umfassender Begriff für das Bereitstellen von digitaler Rechenleistung und Infrastruktur

- > "Ganz allgemein bezeichnet man mit Hosting eine Dienstleistung, bei der Programm-, Informations- und Rechner-Ressourcen den Anwendern zur Verfügung gestellt werden."
 - Kornel Terplan, Christian Voigt: Cloud Computing

im Vergleich zum lokalen Hosting, können in der Cloud schnelle Anpassungen an der Hardware vorgenommen werden

Vergleich von EngineYard & Heroku

- Sehr viele Möglichkeiten eine App zu verwalten
- Ab 500 Betriebsstunden kostenpflichtig
- Automatisches Scaling der Hardware
- Automatische Backups

- Einrichtung & Verwaltung sehr einfach gehalten
- Eingeschränkt kostenlos nutzbar
 - Billigster Dienstleister im Bereich von Low-Traffic-Seiten
- Dokumentation ist leichtgewichtig und einfach

Cloud Hosting

Cloud Hosting im Einsatz

- Verfügbarkeit einer Internetpräsenz
 - Verteilung über mehrere Server
 - Schnelle Anpassung der Hardware

- Load-Balancer
 - Maximierung des Datendurchsatzes bei gleichzeitiger Minimierung der Server-Last
 - Standortübergreifende Fehlertoleranz wird vergrößert
 - Yonfigurierbarkeit der Server-Cluster wird vereinfacht

Agenda

- 1. Grundlagen Cloud Computing
- 2. Architektur der Cloud
- 3. Organisatorische Aspekte
- 4. Cloud Hosting
- 5. Cloud Based IDE
- 6. Vorteile
- 7. Risiken
- 8. Ausblick

- Applikations-Hosting bzw. Software as a Service
 - ➤ Eine komplette Software, hier IDE, wird z.B. im Internet zur Verfügung gestellt
- Im Vergleich zu einer lokalen IDE bietet eine Cloud Based IDE zusätzliche Features
 - Collaboration
 - Chat
 - Angebot an Funktions-, Code-Sammlungen und Bibliotheken

Cloud Based IDE

Vor- & Nachteile

- Externer Betrieb
 - Keine eigene IT und Maintenance
 - IT-Ressourcen werden für Kernprozesse freigesetzt
-) Geteilter Workspace
 - Gleichzeitiges entwickeln, editieren und debuggen
 - Zusammenarbeit von Entwicklern wird gefördert

- SaaS Produkte sind stark standardisiert
 - Xaum Möglichkeit eine IDE an die eigenen Wünsche anzupassen
- Durch den externen Betrieb verliert man die Kontrolle über seine Daten / Code
- Keine nativen Debugger

23.06.14 20 von 41 Cloud Computing

Cloud Based IDE

Beispiel - Cloud9 IDE

Agenda

- 1. Grundlagen Cloud Computing
- 2. Architektur der Cloud
- 3. Organisatorische Aspekte
- 4. Cloud Hosting
- 5. Cloud Based IDE
- 6. Vorteile
- 7. Risiken
- 8. Ausblick

VorteileGesamtübersicht

- Einsparung lokaler Ressourcen
 - Total Cost of Ownership (TCO)bei lokaler Infrastruktur meist hoch

TCO-Zusammensetzung

Cloud

Lokale Infrastr.

- Ausnutzung von Größendegressionen
 - Effizienterer und günstigerer Betrieb möglich
 - Preise für Kunden sinken

Reservekapazitäten

Administration

Betriebskosten

Anschaffungskosten

Variable Kosten

Kostenersparnis - Weitere

- Personalkosten senken
 - Outsourcing
- Time-to-Market + Markteinstiegbarrieren sinken [Vgl. Bender 2012]
 - > Bessere Chancen für Start-UP Unternehmen
- Auslagerung von IT-Governance Verantwortung
 - Verantwortung und somit Aufwand wird verlagert

Skalierbarkeit

Quelle:http://upload.wikimedia.org/wikipedia/commons/4/45/Skalierbarkeit.png

- Gute Skalierbarkeit = (super) lineare Skalierbarkeit
 - Horizontal wie auch Vertikal

- Voraussetzung für Flexibilität
 - Einfaches Up- und Downscaling
 - Abfangen von Lastspitzen möglich
 - > Bereitstellung von Ressourcen "On-demand"
- > Bessere Kalkulierbarkeit der Kosten

Vorteile

Verfügbarkeit - Verfügbarkeitsklassen

- ➤ (Hoch-)Verfügbarkeit vom Provider gewährleistet
 - Wird ggf. individuell verhandelt
- Verfügbarkeitsklassen nach AEC

Stufen der Verfügbarkeit			
Verfügbarkeits- klasse	Bezeichnung	Verfügbarkeit in Prozent	Downtime pro Jahr
2	stabil	99,0	3,7 Tage
3	verfügbar	99,9	8,8 Stunden
4	hochverfügbar	99,99	52,2 Minuten
5	fehlerunempfindlich	99,999	5,3 Minuten
6	fehlertolerant	99,9999	32 Sekunden
7	fehlerresistent	99,99999	3 Sekunden

Beispiel Amazon:

Zuverlässig

Speichern Sie Daten mit bis zu 99,99999999 % Zuverlässigkeit und 99,99 % Verfügbarkeit. Einzelne Fehlerquellen sind nicht möglich. Fehler müssen ohne Ausfallzeiten vom System toleriert oder behoben werden. Quelle: http://aws.amazon.com/de/s3/

Verfügbarkeit – SLA's, Konventionalstrafen

- Vereinbarung von Verfügbarkeitsklassen in Service Level Agreements (SLA's) geregelt
 - Servicelevel werden definiert z.B. Verfügbarkeit, Bereitschaftszeiten etc.
 - > Vereinbarung für wiederkehrende Dienstgüte
- Vertragsverletzungen
 - Schadensersatz oder
 - Xonventionalstrafe (falls vereinbart)

Weitere - Kurzfassung

- Sicherheit
 - > Know-How in den Rechenzentren h\u00f6her als im Unternehmen
 - > Physikalische Sicherheit gegeben

- Zukunftssicherheit
 - It. Prognosen "Zukunftssicher"

- > Ortsunabhängigkeit
 - Services von überall Verfügbar
 - > Home-Office-Szenarien etc. denkbar

Agenda

- 1. Grundlagen Cloud Computing
- 2. Architektur der Cloud
- 3. Organisatorische Aspekte
- 4. Cloud Hosting
- 5. Cloud Based IDE
- 6. Vorteile
- 7. Risiken
- 8. Ausblick

Risiken

Herausforderungen von Cloud Computing

- Datenschutz
 - > Urheberrechte, Vertraulichkeiten, Gesetze
- Datensicherheit
 - Schutzmaßnahmen, Bedrohungen, CSA
- Datenverfügbarkeit
 - > Technologien, Backups, Ausfälle
- Sonstige Risiken
 - Datenkontrolle, Spionage

Datenschutz

Schützenswerte Daten

- Schützenswerte Daten als Privatperson
 - Mobilfunkvertrag im PDF-Format
 - Steuererklärung und Anhänge
 - Urlaubsfotos ...
- Schützenswerte Daten als Unternehmer
 -) Geschäfts-Emails
 - Rechnungen, Einkünfte, Ausgaben
 - > Personaldaten, Gehaltsstufen
 - Entwicklungen (Softwarehaus) ...

Zugriff durch Andere

- Schutz der Daten vor ...
 - Nutzung
 - Veröffentlichung
 - Vervielfältigung
 - Manipulation
 - Löschung
- ... durch andere Individuen
- > Schutz durch ...
 - Rechtliche Vorgaben
 - Technische Umsetzung

Datenschutz

Rechtsgrundlage national

- Regelung in Deutschland
 - > Bundesdatenschutzgesetzt (BDSG) als zentrale Norm
 - > Gilt für personenbezogene Daten
 - Yunde für die Einhaltung verantwortlich
 - Technische und organisatorische Eignung beachten
 - Angemessenes Datenschutzniveau für Drittländer (außerhalb EU)
- Anwendung des Urheberrechts
 - Gültigkeit für alle Daten
 - Xeine Sonderregelung für Cloud Computing
 - Abtretung der eigenen Rechte an Daten

Datenschutz

Rechtsgrundlage international

- > Europarecht
 - Europäische Grundrechtecharta (GRC)
 - Art. 8 GRC regelt Schutz von personenbezogenen Daten
 - Bindend für alle EU-Mitgliedsstaaten
 - Allgemeine Datenschutzrichtlinie
 - Wichtigste Regelung
 - Datenschutzmindeststandard
- Völkerrecht
 - Allgemeinen Erklärung der Menschenrechte der Vereinten Nationen
 - Internationaler Pakt über bürgerliche und politische Rechte (IPbpR)

(Vgl. Bedner, 2012)

- Xeine Kontrolle über Daten in der "Cloud"
- Sicherheitsstandards
 - > Redundante Datensicherung
 - Redundante Netzanbindung
 - Zugriffskontrollen
 - Zertifizierung nach ISO 27001
- > Bedrohung
 - Datenansammlung
 - Attraktives Angriffsziel für Hacker
- Cloud Security Alliance (CSA)

Fachhochschule Münster University of Applied Sciences

Zuverlässige Verfügbarkeit

- > Physische Sicherheitsmaßnahmen
 - > Physikalisch getrennte Systeme
 - Feuerlöschsysteme
 - Alarmanlagen, Kameras
 - Sicherheitspersonal vor Ort
- Logische Sicherheitsmaßnahmen
 - Authentifizierte und verschlüsselte Datenübertragung
 - Zugriffskontrollen durch Firewalls und Rollenverteilung
 - Permanente Virenfilterung auf allen Systemen

Sonstige Risiken

Beispiel an der NSA-Spähaffäre

- Datensammlung der NSA
 - > 40% der Unternehmen in Deutschland nutzen Cloud Computing
 - Unerlaubter Zugriff auf sensible Daten
 - Entschlüsselung der Daten durch "Backdoors"
 - Negativer Effekt → Nachfrage nach Cloud Computing sinkt
 - ➤ Positiver Effekt → Überarbeiten von Datenschutzkonzepten
- > Neue Angebote von Microsoft, HP etc.
 - Datenhaltung in europäischen Datenzentren

Agenda

- 1. Grundlagen Cloud Computing
- 2. Architektur der Cloud
- 3. Organisatorische Aspekte
- 4. Cloud Hosting
- 5. Cloud Based IDE
- 6. Vorteile
- 7. Risiken
- 8. Ausblick

Ausblick

Wachstum

Mittlere Wachstumsrate von 37 % zum Vorjahr bis einschl. 2016 (It. Verband der deutschen Internetwirtschaft)

- Technologie
 - Herkömmliche Software zukünftig nur noch als SaaS verfügbar?
- Datenschutz
 - Neue Datenschutzverordnung seitens der EU geplant?
 - Stichworte: Safe Harbor Abkommen, USA PATRIOT Act

> Festlegung auf einen Standard?

Cloud Computing

Fachhochschule

Münster University of
Applied Sciences

Danke für Ihre Aufmerksamkeit!

> Fragen?