

Dual N-Channel Power MOSFET

30V, 51A, 8.5mΩ

FEATURES

- Low R_{DS(ON)} to minimize conductive losses
- Logic level
- Low gate charge for fast power switching
- 100% UIS and R_g Tested
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

KEY PERFORMANCE PARAMETERS				
PARAMETER		VALUE	UNIT	
V_{DS}		30	V	
R _{DS(on)} (max)	V _{GS} = 10V	8.5		
	$V_{GS} = 4.5V$	15	mΩ	
Q_g		10	nC	

APPLICATIONS

- BLDC Motor Control
- Battery Power Management
- DC-DC Converter
- Secondary Synchronous Rectification

PDFN56 Dual

Note: MSL 1 (Moisture Sensitivity Level) per J-STD-020

PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V_{DS}	30	V
Gate-Source Voltage		V_{GS}	±20	V
Continuous Drain Current (Note 1)	$T_C = 25^{\circ}C$		51	
	$T_A = 25^{\circ}C$	I _D	12	A
Pulsed Drain Current		I _{DM}	204	А
Single Pulse Avalanche Current (Note 2)		I _{AS}	17	Α
Single Pulse Avalanche Energy (Note 2)		E _{AS}	43	mJ
Total Power Dissipation	$T_C = 25^{\circ}C$	Б	40	107
	T _C = 125°C	P _D	8	W
Total Power Dissipation	T _A = 25°C	D	2	107
	T _A = 125°C	P _D	0.4	W
Operating Junction and Storage Temperature Range		T_J, T_{STG}	- 55 to +150	°C

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	MAXIMUM	UNIT	
Junction to Case Thermal Resistance	R _{eJC}	3.1	°C/W	
Junction to Ambient Thermal Resistance	$R_{\Theta JA}$	61	°C/W	

Thermal Performance Note: $R_{\Theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistances. The case-thermal reference is defined at the solder mounting surface of the drain pins. $R_{\Theta JC}$ is guaranteed by design while $R_{\Theta CA}$ is determined by the user's board design. The $R_{\Theta JA}$ limit presented here is based on mounting on a 1 in² pad of 2 oz copper.

1

PARAMETER	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNIT
Static						•
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	30			V
Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	$V_{GS(TH)}$	1.3	1.8	2.5	V
Gate-Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$	I _{GSS}			±100	nA
	$V_{GS} = 0V, V_{DS} = 30V$				1	μA
Drain-Source Leakage Current	$V_{GS} = 0V, V_{DS} = 30V$ $T_{J} = 125^{\circ}C$	I _{DSS}			100	
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 12A$			6.5	8.5	mΩ
(Note 3)	$V_{GS} = 4.5V, I_D = 9A$	$R_{DS(on)}$		11	15	
Forward Transconductance (Note 3)	$V_{DS} = 10V, I_{D} = 12A$	g _{fs}		30		S
Dynamic (Note 4)						
Total Gate Charge	$V_{GS} = 10V, V_{DS} = 15V,$ $I_{D} = 12A$	Q_g		20		
Total Gate Charge	$V_{GS} = 4.5V, V_{DS} = 15V,$ $I_{D} = 9A$	Q_g		10		nC
Gate-Source Charge		Q _{gs}		4		1
Gate-Drain Charge		Q_{gd}		5		
Input Capacitance	$V_{GS} = 0V, V_{DS} = 15V,$ f = 1.0MHz	C _{iss}		1091		
Output Capacitance		C _{oss}		176		pF
Reverse Transfer Capacitance		C _{rss}		106		
Gate Resistance	f = 1.0MHz	R_g	0.6	2	4	Ω
Switching (Note 4)						
Turn-On Delay Time		t _{d(on)}		4		
Turn-On Rise Time	$V_{GS} = 10V, V_{DS} = 15V,$ $I_D = 12A, R_G = 2\Omega$	t _r		6		
Turn-Off Delay Time		t _{d(off)}		14		ns
Turn-Off Fall Time		t _f		5		
Source-Drain Diode						
Forward Voltage (Note 3)	$V_{GS} = 0V, I_{S} = 12A$	V_{SD}			1	V
Reverse Recovery Time	I _S = 12A,	t _{rr}		13		ns
Reverse Recovery Charge	dl/dt = 100A/µs	Q _{rr}		4		nC

Notes:

- 1. Silicon limited current only.
- 2. L = 0.3mH, $V_{GS} = 10$ V, $V_{DD} = 25$ V, $R_G = 25\Omega$, $I_{AS} = 17$ A, Starting $T_J = 25$ °C
- 3. Pulse test: Pulse Width \leq 300 μ s, duty cycle \leq 2%.
- 4. Switching time is essentially independent of operating temperature.

ORDERING INFORMATION

ORDERING CODE	PACKAGE	PACKING
TSM085NB03DCR RLG	PDFN56 Dual	2,500pcs / 13" Reel

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Maximum Safe Operating Area, Junction-to-Case 1000

Normalized Thermal Transient Impedance, Junction-to-Case

t, Square Wave Pulse Duration (sec)

Taiwan Semiconductor

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

PDFN56 Dual

SUGGESTED PAD LAYOUT (Unit: Millimeters)

MARKING DIAGRAM

Y = Year Code

WW = Week Code (01~52)

L = Lot Code (1~9,A~Z)

F = Factory Code

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.