การใช้โครงข่ายประสาทเทียมในการพยากรณ์มูลค่าตลาดของสกุลเงิน ดิจิตอล Bitcoin

Neural network architecture for Bitcoin forecasting market cap

จักรกริช กองจินดา

ภาควิชาสถิติ คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่

Charkkrit kon@cmu.ac.th

บทคัดย่อ

วัตถุประสงค์ของการวิจัยครั้งนี้ คือเพื่อศึกษาวิธีพยากรณ์ด้วยโครงข่ายประสามเทียมและวัดค่า ความแม่นยำของค่าพยากรณ์ที่ได้จากโครงข่ายประสามเทียมแบบวนซ้ำ (Recurrent Neural Network: RNN) โดยใช้ข้อมูลข้อมูล Complete Historical Cryptocurrency Financial Data จากเว็บไซต์ Kaggle จำนวน 2192 วัน ซึ่งเกณฑ์ที่ใช้ในเปรียบเทียบความแม่นยำในการพยากรณ์ คือ ค่า รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (Root mean square error: RMSE) และกำหนด จำนวนโหนดในตัวแบบไว้ 2 ซั้นซ่อนคือ 50 และ 100 ผลการวิจัยพบว่าตัวแบบที่ประกอบด้วย โหนดจำนวน 50 โหนดให้ค่า RMSE น้อยที่สุดคือ 0.01692

คำสำคัญ: การพยากรณ์ โครงข่ายประสามเทียม สกุลเงินดิจิตอล Bitcoin RMSE

1 บทน้ำ

ในปัจจุบันตลาดสกุลเงินดิจิตอลถือได้ว่ามีการเปลี่ยนแปลงจากอดีตที่ผ่านมาเป็นอย่างมาก เนื่องจาก เศรษฐกิจโลกมีความผันผวนของตลาดและเกิดการแพร่ระบาดไวรัสโคโรนา 2019 จึงทำให้สกุลเงินดิจิตอลเริ่มมีการ นิยมนำมาใช้จ่ายซื้อสินค้าและบริการในอัตราที่สูงขึ้น ส่วนหนึ่งเป็นผลมาจากการตลาดที่ขยายตัวออกไปในยุคไร้ พรมแดนซึ่งสกุลเงินดิจิตอลที่มีการใช้จ่ายมากที่สุดนั้นก็คือ สกุลเงินที่มีชื่อว่า Bitcoin ดังนั้นจึงมีงานวิจัยที่ศึกษา เกี่ยวกับการสร้างตัวแบบพยากรณ์หลากหลายงานวิจัยและหลากหลายวิธี ซึ่งสามารถนำมากล่าวถึงได้ดังนี้

ไววิทย์ พานิชอัศดร และ มหศักดิ์ เกตุฉ่ำ (2017) ได้ทำการพยากรณ์ยอดขายปลีกแก๊สรถยนต์ด้วยวิธีการ วิเคราะห์อนุกรมเวลาและโครงข่ายประสาทเทียมสรุปผลได้ว่า สามารถพยากรณ์ค่าผิดพลาดเฉลี่ย(RMSE)เท่ากับ 686 ต่อวัน และมีความแม่นยำเท่ากับ 89 % สามารถนำโมเดลดังกล่าวไปพยากรณ์ยอดขายล่วงหน้าได้ 3 เดือน หรือ 90 วัน

ธรณินทร์ สัจวิริยทรัพย์ (2018) ได้ศึกษาเกี่ยวกับตัวแบบโครงข่ายประสาทเทียมสำหรับการพยากรณ์ราคา ข้าวโพดเลี้ยงสัตว์รายเดือนของประเทศไทยพบว่าตัวแบบโครงข่ายประสาทเทียมแบบป้อนไปข้างหน้าให้ค่า ความ แม่นยำมากกว่าตัวแบบอารีมาและตัวแบบการพยากรณ์รวมระหว่างวิธีบอกซ์-เจนกินส์และวิธีการปรับให้เรียบ ด้วย เส้นโค้งเลขที้กำลังที่มีแนวโน้มแบบแดม

ดังนั้น ผู้วิจัยจึงมีความสนใจที่จะสร้างตัวแบบพยากรณ์จากวิธีโครงข่ายประสาทเทียมแบบวนซ้ำ (Recurrent Neural Network: RNN) โดยใช้เกณฑ์รากของค่าคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE) เป็นเครื่องมือในการ เปรียบเทียบตัวแบบหากตัวแบบใดให้ค่า RMSE ต่ำสุดจะเป็นตัวแบบที่ดีที่สุดโดยการศึกษาครั้งนี้ ผู้วิจัยได้ทำการเลือก ข้อมูล Complete Historical Cryptocurrency Financial Dataจากเว็บไซต์ Kaggle จากนั้นทำการกรองข้อมูลโดย เลือกเฉพาะสกุลเงินดิจิตอลที่มีชื่อว่า Bitcoin

1.1 วัตถุประสงค์

- 1. เพื่อศึกษาวิธีพยากรณ์ด้วยโครงข่ายประสามเทียม
- 2. เพื่อวัดค่าความแม่นยำของค่าพยากรณ์ที่ได้จากโครงข่ายประสามเทียมแบบวนซ้ำ

1.2 ขอบเขตการวิจัย

ข้อมูลที่นำมาใช้ในการศึกษา คือ ชุดข้อมูล Complete Historical Cryptocurrency Financial Data รายวัน ประกอบด้วยข้อมูล ราคาเปิด (Open) ราคาสูงสุดของวัน (High) ราคาต่ำสุดของวัน (Low) ราคาปิด (Close) และ ปริมาณการซื้อขายของวัน (Volume) เป็นตัวแปร ซึ่งข้อมูลที่ต้องการพยากรณ์ในการวิจัยนี้ คือ มูลค่าตามราคา ตลาด (Market Cap) โดยใช้ข้อมูลย้อนหลัง 6 ปี ตั้งแต่วันที่ 4 ธันวาคม 2013 ถึงวันที่ 4 ธันวาคม 2019 รวมเป็น จำนวน 2192 วัน ชุดข้อมูลนี้ได้มาจาก https://www.kaggle.com/philmohun/cryptocurrency-financial-data

1.3 นิยามคำศัพท์

- 1. การพยากรณ์ (Forecasting) คือ การคาดการ์ณว่าอะไรจะเกิดขึ้นในอนาคต
- 2. ความแม่นยำ (Accuracy) คือ การวัดค่าที่สามารถให้ค่าที่ถูกต้องหรือใกล้เคียงกับค่าจริง
- 3. มูลค่าตามราคาตลาด (Market Cap) คือ ค่าที่คำนวณจากอุปทานหมุนเวียน x ราคาของเหรียญสกุลเงินดิจิตอล
- 4. Learning Rate คือ ตัวเลขที่ใช้ในการปรับระดับความเร็วการเรียนรู้ของโครงข่ายประสามเทียม

1.4 ประโยชน์ที่คาดว่าจะได้รับ

เป็นแนวทางสำหรับพยากรณ์สกุลเงินดิจิตอลสกุลอื่นๆ ด้วยตัวแบบโครงข่ายประสาทเทียมแบบวนซ้ำ

2 วิธีการศึกษา

2.1 แนวคิดและทฤษฎีที่เกี่ยวข้อง

2.1.1 โครงข่ายประสามเทียม (Artificial Neural Network: ANN)

หรือที่เรียกสั้นๆว่า ข่ายประสาทเทียม (Neural Network) คือโมเดลทางคณิตศาสตร์ที่ได้จำลองการทำงานของ เครือข่ายประสาทในสมองมนุษย์ซึ่งถูกคิดค้นขึ้นในปี ค.ศ. 1991 โดย Mc Culloch และ Pitts

โครงข่ายประสาทเทียมประกอบด้วย 5 องค์ประกอบ ดังนี้

- 1. ข้อมูลอินพุต (Input) คือ ข้อมูลที่เป็นตัวเลขหากเป็นข้อมูลเชิงคุณภาพต้องแปลงให้อยู่ในรูปเชิงปริมาณที่ โครงข่ายประสาทเทียมยอมรับได้
 - 2. ข้อมูลเอาต์พุต (Output) คือ ผลลัพธ์ที่เกิดขึ้นจริงจากกระบวนการเรียนรู้ของโครงข่ายประสาทเทียม
- 3. ค่าน้ำหนัก (Weights) คือ สิ่งที่ได้จากการเรียนรู้ของโครงข่ายประสาทเทียมหรือเรียกอีกอย่างหนึ่งว่าค่าความรู้ (knowledge) ค่านี้จะถูกเก็บเป็นทักษะเพื่อใช้ในการจดจำข้อมูลอื่น ๆ ที่อยู่ในรูปแบบเดียวกัน
 - 4. ฟังก์ชันผลรวม (Summation function: S) เป็นผลรวมของข้อมูลป้อนเข้า (p_i) และค่าน้ำหนัก (w_i)

$$S = \sum_{i=1}^{n} p_i w_i$$

5. ฟังก์ชันการแปลง (Transfer function) ฟังก์ชันการแปลง เป็นส่วนที่ทำหน้าที่รวมค่าเชิงตัวเลขจากเอาต์พุตของ นิวรอล แล้วทำการตัดสินใจว่าจะส่งสัญญาณเอาต์พุตออกไปในรูปใด ฟังก์ชันการแปลงสามารถเป็นได้ทั้งแบบเชิงเส้น หรือไม่เป็นเชิงเส้น

การเรียนรู้ของโครงข่ายประสาทเทียม

การเรียนรู้ของโครงข่ายประสาทเทียมมี 2 ประเภท คือ

1. การเรียนรู้แบบมีผู้สอน (Supervised Learning)

คือการทำให้คอมพิวเตอร์สามารถหาคำตอบของปัญหาได้ด้วยตัวเอง หลังจากเรียนรู้จากชุดข้อมูลตัวอย่างไปแล้วระยะหนึ่ง โดยชุดข้อมูลที่ใช้สอนวงจรข่ายจะมีคำตอบไว้คอยตรวจสอบว่าวงจรข่ายให้คำตอบที่ถูกหรือไม่ ถ้าตอบไม่ถูกวงจรข่ายจะ ทำการปรับตัวเองเพื่อให้ได้คำตอบที่ดีขึ้นเปรียบเหมือนกับการสอนนักเรียนโดยมีครูผู้สอนแนะนำ

2. การเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning)

เป็นการเรียนรู้แบบไม่มีผู้แนะนำ ไม่มีการตรวจคำตอบว่าถูกหรือผิด วงจรข่ายจะจัดเรียงโครงสร้างด้วยตัวเองตามลักษณะ ของข้อมูลผลลัพธ์ที่ได้วงจรข่ายจะสามารถจัดหมวดหมู่ของข้อมูลได้เปรียบเทียบกับคนที่สามารถเรียนรู้ในการแยกแยะ พันธุ์สัตว์ตามลักษณะของมันเองได้โดยไม่มีใครสอนการเรียนรู้เหล่านี้เช่น การจัดกลุ่มสิ่งของ

2.1.2 ทฤษฎีโครงข่ายประสาทเทียมวนซ้ำ (Recurrent Neural Network: RNN)

เป็นอัลกอริทึมสำหรับการสร้างโมเดลที่เหมาะกับข้อมูลที่เป็นอนุกรมเวลาซึ่งจะมีการเก็บข้อมูลสถานะไว้ใน Hidden State โดยมีการนำ Hidden State ก่อนหน้ามาใช้ในการคำนวณ Hidden State ปัจจุบันและใช้ Hidden State ปัจจุบันในการคำนวณข้อมูลที่อยู่ในช่วงเวลาถัดไป

2.2 การตรวจสอบความแม่นของตัวแบบพยากรณ์

เพื่อประเมินประสิทธิภาพการพยากรณ์ของตัวแบบ เกณฑ์ประเมินความถูกต้องของการ พยากรณ์ต่างๆ จึงถูกใช้ เพื่อวัดประสิทธิภาพ โดยเกณฑ์ที่ใช้ในการประเมินประสิทธิภาพของตัวแบบพยากรณ์ในงานวิจัยนี้คือรากของค่า คลาดเคลื่อนกำลังสองเฉลี่ย (Root mean square error: RMSE) มีสูตรในการคำนวณ ดังนี้

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$

2.3 กรอบแนวคิดวิจัย

2.4 เครื่องมือที่ใช้ในการวิจัย

- 1. Python Version 3.7.X
- 2. เว็บไซต์ Colab สำหรับรันโค้ด Python ออนไลน์
- 3. Package pandas, sklearn.preprocessing, keras, numpy, tensorflow และ matplotlib.pyplot

2.5 การวิเคราะห์ข้อมูล

2.5.1 การแบ่งข้อมูล

ทำการแบ่งข้อมูลออกเป็น 2 ชุดข้อมูล ประกอบไปด้วย ชุดข้อมูลสำหรับการฝึกสอน (Training set) และชุดข้อมูลสำหรับ ทดสอบ (Test set) ด้วยอัตราส่วน 80:20จากข้อมูล ทั้งหมด 2192 วัน ได้ดังนี้

- 1. ข้อมูลชุดฝึกสอน (Training set) 80% ของข้อมูล เป็นจำนวน 1754 วัน
- 2. ข้อมูลชุดทดสอบ (Test set) 20% ของข้อมูล เป็นจำนวน 438 วัน

2.5.2 โครงสร้างของโครงข่ายประสาทเทียมแบบวนซ้ำ

ผู้วิจัยได้ออกแบบโมเดลของโครงข่ายประสาทเทียมให้มี 2 ชั้นช่อนและปรับจำนวนโหนดเป็น 50 และ 100 โหนดโดย กำหนดอัตราการเรียนรู้ (Learning Rate) คือ 0.01 และจำนวนรอบของการเรียนรู้ (Epoch) คือ 150 รอบ

3 ผลการวิเคราะห์

3.1 การวิเคราะห์สถิติเชิงอนุมาน (Inferential Statistics)

ตารางที่ 1 ความสัมพันธ์ระหว่างตัวแปรอิสระและตัวแปรตาม

ตัวแปรอิสระ	Correlation	ระดับความสัมพันธ์
ราคาเปิด (Open)	0.997007	มีความสัมพันธ์กันอย่างมาก
ราคาสูงสุดของวัน (High)	0.997908	มีความสัมพันธ์กันอย่างมาก
ราคาต่ำสุดของวัน (Low)	0.998671	มีความสัมพันธ์กันอย่างมาก
ราคาปิด (Close)	0.999222	มีความสัมพันธ์กันอย่างมาก
ปริมาณการซื้อขายของวัน(Volume)	0.802045	มีความสัมพันธ์กันอย่างมาก

3.2 ผลการวิเคราะห์โมเดลด้วยโครงข่ายประสาทเทียมแบบวนซ้ำ

ตารางที่ 2 ผลการวิเคราะห์โมเดลด้วยโครงข่ายประสาทเทียมแบบวนซ้ำ

จำนวนโหนด	RMSE
50 - 50 - output 1 หน่วย	0.01692
50 – 100 – output 1 หน่วย	0.02758
100 – 100 – output 1 หน่วย	0.01748

จากตารางที่ 2 พบว่าโมเดลที่สร้างด้วยโครงข่ายประสาทเทียมแบบวนซ้ำที่มีชั้นช่อน 2 ชั้นโดยมีโหนดที่ 1 จำนวน 50 โหนดและโหนดที่ 2 จำนวน 50 โหนด ให้ค่า RMSE ที่น้อยที่สุด คือ 0.01692

3.3 กราฟแสดงประสิทธิภาพการพยากรณ์ด้วยโมเดลที่ให้ค่า RMSE น้อยที่สุด

ภาพที่ 1 กราฟแสดงประสิทธิภาพการพยากรณ์ด้วยโมเดลให้ค่า RMSE น้อยที่สุด

4 อภิปรายและสรุปผลการศึกษา

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อวัดค่าความแม่นยำของค่าพยากรณ์ที่ได้จากโครงข่ายประสามเทียมแบบวนซ้ำและ ศึกษาวิธีพยากรณ์ด้วยโครงข่ายประสามเทียม โดยใช้ชุดข้อมูล Complete Historical Cryptocurrency Financial Data รายวันตั้งแต่วันที่ 4 ธันวาคม 2013 ถึงวันที่ 4 ธันวาคม 2019 ทำการแบ่งข้อมูลออกเป็น 2 ส่วน คือ ส่วนแรกใช้ในการ สร้างตัวแบบ ซึ่งแบ่งเป็น 80% ของข้อมูลทั้งหมด คิดเป็นจำนวน 1754 วัน และข้อมูลส่วนที่สองนำมาใช้ในการทดสอบ ตัวแบบซึ่งแบ่งเป็น 20% ของข้อมูลทั้งหมด คิดเป็นจำนวน 438 วัน

จากการศึกษาพบว่าตัวแบบที่ให้ค่า RMSE น้อยที่สุดคือตัวแบบที่ประกอบไปด้วยจำนวนโหนดชั้นละ 50 โหนด จะได้ ค่า RMSE อยู่ที่ 0.01692

กิตติกรรมประกาศ

บทความวิจัยฉบับย่อนี้สำเร็จลุล่วงไปได้ด้วยดี เนื่องจากผู้ศึกษาได้รับการสนับสนุนและช่วยเหลือเป็นอย่างดียิ่ง จากผู้ช่วย ศาสตราจารย์ ดร.พิมผกา ธานินพงศ์ และอาจารย์ ดร.พิมพ์วรัชญ์ ศรีคำมูล อาจารย์ที่ปรึกษาหลักงานวิจัย เป็นอย่างสูง ที่ได้ให้ความรู้ คำชี้แนะ ตลอดจนการเอาใจใส่ในการปรับปรุงงาน ตรวจสอบ แก้ไขข้อบกพร่องต่าง ๆ ตลอด ผู้วิจัยขอกราบขอบพระคุณเป็นอย่างสูงไว้ ณ โอกาสนี้

สุดท้ายนี้ ขอขอบคุณเพื่อน ๆ ทุกคนที่ให้ความช่วยเหลือ ให้คำปรึกษา คำแนะนำ ตลอดจนเป็นกำลังใจให้ เสมอ มา ผู้วิจัยหวังเป็นอย่างยิ่งว่าการศึกษาครั้งนี้จะเป็นประโยชน์สำหรับผู้ที่สนใจศึกษาในแนวทางเดียวกัน หากเนื้อหาใน งานวิจัยนี้มีข้อผิดพลาดประการใด ผู้วิจัยก็ขออภัยไว้ ณ ที่นี่ด้วย

บรรณานุกรม

- [1] NakarinSTK. (2019). เริ่มต้น Deep Learning ด้วย Keras. จาก https://medium.com/@NakarinSTK/เริ่มต้น-deep-learning-ด้วย-keras-b13edc47b1b3
- [2] อำภา สาระศิริ. (2559). เทคนิคการเรียนรู้พื้นฐานโครงข่ายประสาทเทียม. จาก http://www.mut.ac.th/researchdetail-92.
- [3] ชิตพงษ์ กิตตินราคร. (2562). Feature Scaling. จาก https://guopai.github.io/ml-blog06.html.
- [4] ชิตพงษ์ กิตตินราดร. (2563). Neural Network Programming. จาก https://guopai.github.io/ml-blog15.html.
- [5] Mr.P L. (2018). Evaluate Model นั้นสำคัญอย่างไร?. จาก https://medium.com/mmp-li/evaluate-model-precision-recall-f1-score-machine-learning-101-89dbbada0c96
- [6] KENG SURAPONG. (2562). Recurrent Neural Network (RNN) คือจะไร Gated Recurrent Unit (GRU) คือ จะไร สอนสร้าง RNN ถึง GRU ด้วยภาษา Python NLP ep.9. จาก https://www.bualabs.com/archives/3103/what-is-gru-gated-recurrent-unit-teach-how-to-build-rnn-gru-with-python-nlp-ep.
- [7] ALGOADDICT. (2019. ว่าด้วย Recurrent Neural Networks: Part 1. จาก https://algoaddict.wordpress.com/2019/10/07/ว่าด้วย-recurrent-neural-networks-part-1/