Triangle Detection on Randomly Generated Graphs

Experiment 1/2 Results

Niklas Dewally (nd60@st-andrews.ac.uk)

2023-08-16

Introduction

This document presents the results of our experiment into the transfer learning of Graph Neural Networks (GNNs)

We show that ...

Experiment Summary

The overarching aim of our work is to assess how well various GNN models transfer across graphs. In particular, we are interested in a few-shot learning scenario, in which a model trained on a small graph can be used to make predictions on a larger graph.

In this experiment, we use a triangle prediction task to assess this. Each GNN produces a set of unsupervised node embeddings, which are then used to train a downstream triangle prediction classifier. We train the GNN encoder on a source graph, and use these trained weights to produce embeddings for the target graphs without fine-tuning.

The graphs are drawn from an ensemble of synthetic graphs with identical distributions but different sizes. In this case, they are poisson distributed and have a maximal clique size of 3

For more details, see the experimental plan document (2023-08-experiment-plan.pdf).

Results

source_size	target_size	model	mean	$\overline{\mathrm{sd}}$
250	250	egi	0.5528053	0.0317362
250	250	graphsage-mean	0.5001650	0.0003690
250	250	triangle	0.6074257	0.0334102
250	1000	egi	0.5532388	0.0543888
250	1000	graphsage-mean	0.5000000	0.0000000
250	1000	triangle	0.6353664	0.0706912
250	10000	egi	0.5528974	0.0222259
250	10000	graphsage-mean	0.5010357	0.0012757
250	10000	triangle	0.6580362	0.0247529
250	100000	egi	0.5360132	0.0253314
250	100000	graphsage-mean	0.5011674	0.0018610
250	100000	triangle	0.6553850	0.0137790
1000	250	egi	0.5622112	0.0378307
1000	250	graphsage-mean	0.5003300	0.0007380
1000	250	triangle	0.6668317	0.0223565
1000	1000	egi	0.6008511	0.0273357
1000	1000	graphsage-mean	0.5008511	0.0012797
1000	1000	triangle	0.6982506	0.0313778
1000	10000	egi	0.6342605	0.0155234
1000	10000	graphsage-mean	0.5004784	0.0009761
1000	10000	triangle	0.7052227	0.0102492
1000	100000	egi	0.5868338	0.0103936
1000	100000	graphsage-mean	NA	NA
1000	100000	triangle	0.7067900	0.0097776

Figure 1: Triangle prediction accuracy

Discussion