STAT 240 Personal Notes

Marcus Chan (UW 25)
Taught by Ying-Li Qin

Chapter 1: What is Probability?

Random Experiments (1.1)

- " A "random experiment" is the process of obtaining a random observed result.
- Random experiments can be split into two types:
 - 1 Controlled experiments; and eg flipping a coin, rolling a die
 - 2 Observational studies.
 - eg # of students taking STAT 240 in F2021

FEATURES OF RANDOM EXPERIMENTS

- " Note that random experiments have the following common features:
 - 1) The outcomes/results cannot be predicted with certainty; and
 - (1) All the possible outcomes are known beforehand with certainty.

SAMPLE SPACE (1.2)

OUTCOME

- P' An "outcome" is an observed result of interest from a random experiment.
 - eg the number rolled after rolling a die.

SAMPLE SPACE

- "The "sample space" of a random experiment is the set of all possible distinct outcomes of said experiment eq when rolling a 6-sided die:
 - S = {1,2,3,4,5,6}

EVENTS

- " An "event" of a random experiment is a group or set of outcomes of said experiment; ie subsets
 - of the sample space.
- There are two types of events:
 - 1 Simple events consist of one outcome eg rolling a 1 on a 6-sidad die:
 - S = {1, ..., 6} E = {1} 2 Compound events - consist of multiple outcomes
 - eg volling an odd number on a 6-sided die: S= {1, ..., 6} E= {1,3,5}
- Note that
 - 1) Two simple events will never occur simultaneously;
 - eg can never roll a 1 & 3 at the same time with one die
 - 2 A compound event occurs if and only if one of its simple events occurs; and odd # rolled => 1 rolled or 3 rolled or 5 rolled
 - 3 Two compound events can occur simultaneously. eg 3 rolled \Rightarrow { odd number rolled $(E=\{i,3,5\})$; and multiple of 3 rolled $(E=\{i,3,5\})$.

DEFINITIONS OF PROBABILITY (1.3)

"Probability" is a quantitative measure of how likely an event is to occur.

CLASSICAL DEFINITION

- The "classical definition" of probability states that each distinct outcome in the sample space is equally likely to occur.
- $\mathcal{E}_2^{\mathcal{E}}$ In this case, the probability of an event \mathcal{E} is equal to eg roll a 6-sided die once.
 - P(E) = $\frac{\text{# of ways event can occur}}{\text{of outrones in the sample space.}} = \frac{E = \{1,3,5\}, \quad S = \{1,2,3,4,5,6\}, \quad S = \{1,3,5\}, \quad S = \{1,2,3,4,5,6\}, \quad S = \{1,3,5\}, \quad S = \{1,2,3,4,5,6\}, \quad S = \{1,3,5\}, \quad S = \{1,3,5$

RELATIVE FREQUENCY DEFINITION

- "I'me "relative frequency" definition of puobability states that the probability of an event occurring is the proportion it occurs in a very long senses of repetitions of the experiment. eg rolling a 6-sided die 300 times
 - => 3 shows up 49 of those 300 times ⇒ so P(die=3) = 49 ≈ %.

SUBJECTIVE PROBABILITY DEFINITION

- "In the "subjective probability" definition of probability, the probability of an event is determined by an opinion (se what a person thinks the probability is).
- eg the probability of COVID-19 being enadicated by 2022. \mathcal{B}_2' Note that this plays a role in fields like "Bayesian Statistics".

DISCRETE PROBABILITY MODELS (1.4)

- Fi In discrete probability models:
 - ie there are either a finite or countably infinite number of basic events; and
 - 2 Each probability p: satisfies Ospisl; and
 - 3 The probabilities of each basic event sum to 1; ie Epi = 1.

CLASSIC DISCRETE MODELS (1.5)

- In classic discrete models:
 - 1) The earple space S satisfies ISI < INI (ie it is finite); and
 - 2) All bosic events are equally likely to occur; ie $P(a_1) = \dots = P(a_{|S|}) = \frac{1}{|S|}$