Instructions. 2 hours. Closed book examination. Be neat in your presentation. When invoking a theorem from previous courses, name the theorem and thoroughly check its hypotheses. You must solve a significant portion of each of the three problems in order to pass the exam.

1. Let (X, \mathcal{M}, μ) be a measure space. Let (f_n) be a sequence of nonnegative functions functions in $L^1(X, \mathcal{M}, \mu)$ and let f be a nonnegative function in $L^1(X, \mathcal{M}, \mu)$. Suppose that

$$\int_X f_n \ \mathrm{d}\mu \ \longrightarrow \ \int_X f \ \mathrm{d}\mu$$

and that $f_n \to f$ pointwise. Prove that f_n converges to f in $L^1(X, \mathcal{M}, \mu)$. Hint: consider $g_n = \min(f, f_n)$.

- **2**. Let (X, \mathcal{M}, μ) be a measure space. Let $p \in [1, \infty)$.
 - (a) Let (f_n) be a sequence of functions in $L^p(X, \mathcal{M}, \mu)$ and let f be a function in $L^p(X, \mathcal{M}, \mu)$. Suppose that f_n converges to f in $L^p(X, \mathcal{M}, \mu)$. Prove that there exists a subsequence (f_{n_k}) such that for μ -almost all x, $\lim_{k\to\infty} f_{n_k}(x) = f(x)$. Hint: remember the proof of completeness of L^p .
 - (b) Let h be a measurable function on X. Let

$$D = \{ f \in L^p(X, \mathcal{M}, \mu) \mid hf \in L^p(X, \mathcal{M}, \mu) \} .$$

Let (f_n) be a sequence of elements of D, and let $f, g \in L^p(X, \mathcal{M}, \mu)$ be such that f_n converges to f in L^p , and hf_n converges to g in L^p . Show that $f \in D$ and g = hf.

3. For μ a Borel probability measure on \mathbb{R} , we will denote by $\widehat{\mu}$ the function $\mathbb{R} \to \mathbb{C}$ given by

$$\widehat{\mu}(t) = \int_{\mathbb{R}} e^{itx} \mathrm{d}\mu(x) .$$

We will also adopt the notational convention $\operatorname{sinc}(x) = \frac{\sin x}{x}$ if $x \neq 0$ and $\operatorname{sinc}(0) = 1$.

- (a) Show that $\hat{\mu}$ is a bounded continuous function.
- (b) Let $\delta > 0$. Show that

$$\frac{1}{2\delta} \int_{-\delta}^{\delta} (1 - \operatorname{Re}(\widehat{\mu}(t))) \, dt = \int_{\mathbb{R}} (1 - \operatorname{sinc}(\delta x)) \, d\mu(x) \, .$$

(c) Show that for all $u \in \mathbb{R}$,

$$1 - \operatorname{sinc}(u) \ge \frac{1}{2} \chi_{(-\infty, -2) \cup (2, \infty)}(u)$$
,

and deduce that

$$\mu(\{x \in \mathbb{R} \mid |x| > 2\delta^{-1}\}) \leq \frac{1}{\delta} \int_{-\delta}^{\delta} (1 - \operatorname{Re}(\widehat{\mu}(t))) \, dt .$$

(d) Let μ_n be a sequence of Borel probability measures on \mathbb{R} . Suppose that for all t, the limit $\Phi(t) = \lim_{n \to \infty} \widehat{\mu_n}(t)$ exists and that the resulting function $\Phi(t)$ is continuous at t = 0. Prove that for all $\epsilon > 0$, there exists a compact set K inside \mathbb{R} such that, for all n, $\mu_n(K) \geq 1 - \epsilon$.