Lecture 6: Dependency Parsing

2018年7月8日 10:31

Some Terminologies

participial phrase	分词短语
prepositional phrase	介词短语
Adverbial	副词
Infinitive	不定式
Syntactic structure	句法结构
Lexical item	词法项
Conjunction	连词

Two views of linguistic structure

- 1. Context-free grammar
- 2. Dependency grammar

Context-free grammar CFG (1947)

- Attachments Ambiguity 挂靠歧义
 - o Scientists [study whales] [from space]
 - 科学家在太空中 (通过卫星) 研究鲸鱼。
 - Scientists study [whales from space]
 - 科学家研究宇宙中的庞然大物。

Annotated Data: Treebanks

定义一套规则,如介词短语,不定式,动宾短语,进行机械地分解

http://blog.csdn.net/u014422406

Dependency Grammar (1959)

In early 20 years, dependency grammar gains more and more popularity

- Single head
- Connected
- Asymmetry

http://blog.csdn.net/u014422406

中文文本首先寄进行分词, 中文文本首先寄进行分词, 分词的结果会影响Parsing效果。 【武汉中长江大桥】 【武汉中长江大桥】

How do we choose features?

Bilexical affinities	双词汇亲和: [discussion-> issue]
Dependency distance	距离越近的词语越容易有依存关系
Intervening material:	中介词语:依存关系几乎不会跨动词/标点
Valecy of heads	词语配价: 一个词语最多有几个依赖者。

Dependency Parsing

- Constrains:
 - o Only one word is dependent of Root
 - o No cycle!
- Methods:
 - o DP
 - o Graph algorithms:
 - Minimum Spanning Tree
 - Constraint Satisfaction:
 - Eliminate edges that do not meet constrians
 - o Transition-based Parsing and Deterministic Dependency Parsing:
 - Machine learning classifiers

Arc-standard transition-based parser

拥有三种操作 ("Left-Arc", "Right-Arc", "Shift") 的自动机

一个stack与一个buffer, 当stack仅剩ROOT, buffer为空时解析完成

stack	buffer	new dependency	transition
[ROOT, parsed, this]	[sentence, correctly]		SHIFT
[ROOT, parsed, this, sentence]	[correctly]		SHIFT
[ROOT, parsed, sentence]	[correctly]	sentence→this	LEFT-ARC
[ROOT, parsed]	[correctly]	parsed→sentence	RIGHT-ARC
[ROOT, parsed, correctly]			SHIFT
[ROOT, parsed]		parsed→correctly	RIGHT-ARC
[ROOT]		$ROOT \rightarrow parsed$	RIGHT-ARC

当stack中仅有 ROOT.而Buffer非空 预测 Lefe/Right-Air 造成序机,如何解决?

Use classifier to predict operations at a specific condition

Fast and scalable: O(n) time Close to the best parser.

- Categorical feature: very sparse , cost a lot of time to compute features
- NN: dense representation of features.