Presentation for Bachelor's Project (PHC401)

Use of Ga₂O₃ / ZnO heterostructure for fabricating enhanced UV photodetectors

Guide – Prof. R. Thangavel

Archit Agarwal,

Admission Number – 20JE0178 Department of Physics, IIT (ISM) Dhanbad.

Applications of UV photodetectors

- Deep Space Communication
- High-Speed Data Transfer
- Protein analysis
- DNA sequencing
- Sterilization and Disinfection
- UV Imaging
- Flame sensing and fire alarm systems
- Monitoring Air pollution and Ozone levels
- Missile plume detection

Fabrication of UV photodetectors

- Fabrication of ZnO thin film using sol-gel spin coating method
- Growth of ZnO nanorods using hydrothermal method
- Growth of GaOOH nanorod arrays using hydrothermal method
- Conversion of GaOOH nanorod arrays to β-Ga₂O₃ nanorod arrays

Fabrication of ZnO thin film using sol-gel spin coating method

- Zinc acetate dihydrate was dissolved in a mixture of 2-methoxyethanol (solvent) and monoethanolamine (stabilizer)
- Solution was aged for 24 hrs at room temperature

Fabrication of ZnO thin film using sol-gel spin coating method

- Clean glass substrates were spin-coated using the above solution at 3000 rpm for 30 sec
- The process of spin coating was repeated 5 times on each substrate
- Grown film was annealed in air at 550°C for 1 hr
- This resulted in ZnO seed layer

Growth of ZnO Nanorods using hydrothermal method

- Aqueous solution of zinc nitrate hexahydrate $(Zn(NO_3)_2.6H_2O)$ and hexamethylenetetramine $(C_6H_{12}N_4)$ was prepared
- ZnO seed layer was suspended upside down in the above solution
- The entire system was kept in oven at 90°C for 10 hrs
- This resulted in hydrothermal growth of ZnO nanorods

Growth of β-Ga2O3 nanorod arrays

- ZnO nanorod arrays were placed in Ga(NO₃)₃.9H₂O and heated at 150°C for 10hrs
- This resulted in growth of GaOOH nanorod arrays
- GaOOH nanorod arrays were annealed at 500°C for 30 mins

This resulted in conversion of GaOOH nanorod arrays to β-Ga₂O₃ Nanorod

arrays

Advantage of use of ZnO nanorods and β-Ga2O3 nanorods

- Large bandgap of ZnO and Ga₂O₃ corresponding to UV wavelength
- High exciton binding energy of ZnO
- Heterojunction acts as a better photodetector as compared to normal photodetectors due to built-in electric field

FESEM

UV Spectroscopy

I-V Characteristic Graph

Conclusion

- Formation of heterojunction between ZnO and Ga₂O₃
- UV absorption of Ga2O3 / ZnO heterostructure is much higher than when using only ZnO nanorods
- I-V Characteristic of both ZnO and Ga2O3 / ZnO heterostructure show that they behave like insulators with high bandgap

Conclusion

THANK YOU!!