a homotopy from f to g is a cts h : $S \times [0, 1]$ to X

s.t. for all s in S,
$$h(s, 0) = f(s)$$

 $h(s, 1) = g(s)$

need, for all s,
$$h(s, 0) = 0$$

 $h(s, 1) = g(s)$

$$h(s, t) = t*g(s) works [draw]$$

Ex keep X = Rtake f(s) = 2025 for all s

$$h(s, t) = (1 - t)*2025 + t*g(s)$$
 works

 $\underline{\mathsf{Ex}}$ take X to be any convex subsp of R^n take \mathbf{x} any point in X

$$h(s, t) = (1 - t)*x + t*g(s)$$
 works
[where * now means scalar multiplication]

<u>Df</u> f, g : S to X are <u>homotopic</u> iff there is some homotopy from f to g

here we write f ~ g

<u>Thm</u>	~ is an equivalence relation
<u>Pf</u>	reflexive: take $h(s, t) = f(s)$ for

symmetric:

if h(s, t) is a homotopy from f to g
then h(s,
$$1 - t$$
) is a homotopy from g to f

need cts k :
$$S \times [0, 1]$$
 to X from f_1 to f_3

s.t. for all s,
$$k(s, 0) = f_1(s)$$

 $k(s, 1) = f_3(s)$

take k(s, t) = h(s, 2t) for
$$t \le 1/2$$

k(s, t) = j(s, 2t - 1) for $t \ge 1/2$

note that
$$t = 1/2$$
 gives $h(s, 1) = f_2(s) = j(s, 0)$

Q take
$$S = S^1$$

take $X = R^2 - \{0\}$ [not convex]

now: consider paths y, y': [0, 1] to X with the same start and end

take f(x, y) = (x + 2, y) and g(x, y) = (1, 0)still homotopic? [yes] a path homotopy from γ to γ' is a homotopy h

Q keep S = S^1 and X = $R^2 - \{0\}$

s.t. for all t in [0, 1], h(0, t) = y(0) = y'(0)h(1, t) = y(1) = y'(1)

take f(x, y) = (x, y) and g(x, y) = (1, 0)homotopic? [no: why?]

 γ , γ' with the same start & end are <u>path homotopic</u> iff there is a path homotopy from γ to γ'

fix a start point x & end point y

Q take S = [0, 1] and $X = R^2 - \{0\}$

here we write $\gamma \sim_p \gamma'$

Thm

take $f(s) = (cos(2\pi s), sin(2\pi s))$ and g(s) = (1, 0) homotopic? [yes: why?]

then \sim_p is an equiv relation on paths from x to y