

Построение модели

Результаты

ПЕРВИЧНАЯ ОБРАБОТКА ДАННЫХ включала в себя:

- сортировку данных по дате и клиенту;
- обработка признаков с пропусками:
 - удаление признаков с пропусками более 50% значений;
 - признаки с небольшим количеством пропусков заполняем в категориальных признаках Unknown, в количественном – медианой
- обработка категориальных признаков:
 - Meтод ONE HOT ENCODING для категориальных признаков с небольшим числом вариаций признака
 - Meтод MEAN TARGET замена категориальных признаков групповыми средними по признаку gi_smooth_3m
- подготовка целевой переменной CLTV как сумму gi_smooth_3m по месяцам с 7 по 12 в тренировочных данных
- ввиду избыточного размера выборки и ограниченного времени на выработку решения было принято решение о сокращении датасета в 4 раза путем отбора 25% клиентов в train-набор данных на вход модели

В итоговом виде датасет представил собой выборку 25% клиентов с 6 записями (за первые 6 месяцев 2018) для каждого из клиентов и указанием целевой переменной CLTV и наборов признаков.

ССЫЛКА НА ПОДГОТОВЛЕННЫЙ ДАТАСЕТ

Построение модели

Результаты

ВТОРИЧНАЯ ОБРАБОТКА ДАННЫХ включала в себя отбор признаков:

- использовали оценку важности признаков 2мя методами: f_regression и Ridge
- по усредненному показателю важности каждого из признаков были отобраны наиболее значимые:

Признаки	F test	Ridge	average_all_models
gi_smooth_3m	1	0.02	0.51
cur_quantity_mort	0.02	1	0.51
cur_quantity_pl	0.08	0.53	0.31
cur_quantity_cc	0.04	0.2	0.12
cc_cash_spend_c	0.01	0.19	0.1
cu_education_level_1	0.01	0.19	0.1
active	0.01	0.18	0.1
big_city_SPB	0	0.12	0.06
cur_quantity_mf	0	0.12	0.06
big_city_MLN	0	0.11	0.06
standalone_nonpayroll_d c_f	0.01	0.11	0.06
cu_education_level_Unk nown	0.01	0.1	0.05
standalone_dc_f	0.01	0.09	0.05
cu_education_level_3	0	0.09	0.05
cur_quantity_dc	0.01	0.08	0.05
big_city_OTH	0	0.08	0.04
cu_education_level_2	0	0.08	0.04
big_city_MSK	0	0.08	0.04
ca_f	0	0.07	0.03
cur_quantity_deposits	0	0.05	0.03
ПРОЧИЕ ПРИЗНАКИ	-	-	Менее 0.03

ИСПОЛЬЗУЕМЫЕ МЕТРИКИ КАЧЕСТВА:

- MAPE np.mean(np.abs((y_true y_pred) / y_true)) * 100
- **MAE** стандартная реализация Scikit-learn 0.22.2

ОТБОР МОДЕЛЕЙ ПРОИЗВОДИЛСЯ ИЗ:

- sklearn.linear_model.LinearRegression
- sklearn.linear model.Ridge
- sklearn.neighbors.KNeighborsRegressor
- sklearn.ensemble.RandomForestRegressor(n_estimators=500, max_depth=7)
- sklearn.tree.DecisionTreeRegressor(max depth=7)
- sklearn.linear_model.**SGDRegressor**

РЕЗУЛЬТАТЫ ОТБОРА МОДЕЛЕЙ ПРИ РАЗБИЕНИИ ДАННЫХ 70% TRAIN/ 30% TEST:

Модель	MAPE	MAE
LinearRegression	120.46	35364.61
Ridge	121.75	35364.62
KNeighborsRegressor	nan	36540.90
RandomForestRegressor	67.69	31528.46
DecisionTreeRegressor	68.86	31905.78
SGDRegressor	100.00	8.95e+18

Построение модели

Результаты

В РЕЗУЛЬТАТЕ ОТБОРА БЫЛА ВЫБРАНА МОДЕЛЬ **RANDOMFORESTREGRESSOR**.

Для тестовых данных была произведена подготовка аналогично этапам предобработке тренировочных данных:

- Удаление/замена признаков с пропусками значений
- Обработка категориальных признаков методами ONE HOT ENCODING и MEAN TARGET

ГОТОВОЕ РЕШЕНИЕ ПО ССЫЛКЕ

https://drive.google.com/open?id=1Q3OcuKoJGMuEGb0d3KKscH-oQPIDII5Z

возможности модели:

- возможную модель можно использовать для предсказаний показателя CLTV в условиях доступности данных о 6 последних месяцев показателей клиента;
- подготовленный датасет

ССЫЛКА НА ПОДГОТОВЛЕННЫЙ ДАТАСЕТ

https://drive.google.com/open?id=1-8bF7x dN0kBm oaz73 mmK 6vPJ73-Y

можно использовать в качестве источника обучения более сложных моделей, например CatBoost, XGBoost, а также нейронные сети. К сожалению, в силу ограниченного времени были проверены только классические решения.

Команда NewFolder2

Денис Дубовицкий

e-mail: dubovitskyden@gmail.com

tel: +7-923-705-19-46

Дарья Пирожкова

e-mail: pirozhkova-dasha@mail.ru

tel: +7-913-018-17-78

Владимир Викулов

e-mail: vikulov-vl@yandex.ru

tel: +7 (950) 733-42-31

Кирилл Чертоганов

e-mail: chertoganov.kirill@gmail.com

tel: +7 (928) 041 51 40