# Assignment -2

# Data Visualization and Preprocessing

| Assignment Date     | 19 September 2022 |  |  |  |  |  |
|---------------------|-------------------|--|--|--|--|--|
| Student Name        | GIRIJA A          |  |  |  |  |  |
| Student Roll Number | 211419104078      |  |  |  |  |  |
| Maximum Marks       | 2 Marks           |  |  |  |  |  |

# Question-1:

Download the dataset:

# Question-2:

Load the dataset.

# **Solution:**

import pandas as pd
df=pd.read\_csv('/content/Churn\_Modelling.csv')

| in [1]: | import                                                    | import pandas as pd |            |           |             |           |        |     |        |           |               |           |                |                 |       |
|---------|-----------------------------------------------------------|---------------------|------------|-----------|-------------|-----------|--------|-----|--------|-----------|---------------|-----------|----------------|-----------------|-------|
|         |                                                           |                     |            |           |             |           |        |     |        |           |               |           |                |                 |       |
| in [3]: | <pre>df=pd.read_csv('/content/Churn_Modelling.csv')</pre> |                     |            |           |             |           |        |     |        |           |               |           |                |                 |       |
| n [4]:  | df                                                        |                     |            |           |             |           |        |     |        |           |               |           |                |                 |       |
| out[4]: | F                                                         | RowNumber           | Customerld | Surname   | CreditScore | Geography | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exite |
|         | 0                                                         | 1                   | 15634602   | Hargrave  | 619         | France    | Female | 42  | 2      | 0.00      | 1             | 1         | 1              | 101348.88       |       |
|         | 1                                                         | 2                   | 15647311   | Hill      | 608         | Spain     | Female | 41  | 1      | 83807.86  | 1             | 0         | 1              | 112542.58       |       |
|         | 2                                                         | 3                   | 15619304   | Onio      | 502         | France    | Female | 42  | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       |       |
|         | 3                                                         | 4                   | 15701354   | Boni      | 699         | France    | Female | 39  | 1      | 0.00      | 2             | 0         | 0              | 93826.63        |       |
|         | 4                                                         | 5                   | 15737888   | Mitchell  | 850         | Spain     | Female | 43  | 2      | 125510.82 | 1             | 1         | 1              | 79084.10        |       |
|         |                                                           |                     |            |           |             |           |        |     |        |           |               |           |                |                 |       |
|         | 9995                                                      | 9996                | 15606229   | Obijiaku  | 771         | France    | Male   | 39  | 5      | 0.00      | 2             | 1         | 0              | 96270.64        |       |
|         | 9996                                                      | 9997                | 15569892   | Johnstone | 516         | France    | Male   | 35  | 10     | 57369.61  | 1             | 1         | 1              | 101699.77       |       |
|         | 9997                                                      | 9998                | 15584532   | Liu       | 709         | France    | Female | 36  | 7      | 0.00      | 1             | 0         | 1              | 42085.58        |       |
|         | 9998                                                      | 9999                | 15682355   | Sabbatini | 772         | Germany   | Male   | 42  | 3      | 75075.31  | 2             | 1         | 0              | 92888.52        |       |
|         | 9999                                                      | 10000               | 15628319   | Walker    | 792         | France    | Female | 28  | 4      | 130142.79 | 1             | 1         | 0              | 38190.78        |       |

# Question-3:

Perform Below Visualizations.

1)Univariate Analysis

## **Solution:**

```
import matplotlib.pyplot as plt
import numpy as np

df_ex_0=df.loc[df['Exited']==0]

df_ex_1=df.loc[df['Exited']==1]

plt.plot(df_ex_0['Balance'],np.zeros_like(df_ex_0['Balance']),color='green'
) plt.xlabel('Balance')

plt.show()
```



# 2)Bi - Variate Analysis

## **Solution:**

import seaborn as sns
sns.FacetGrid(df,hue='Exited',size=5).map(plt.scatter,'CreditScore','Balance').add\_legend()



# 3)Multivariate Analysis

# **Solution:**

# sns.pairplot(df,hue='Exited',height=5)



# Question-4:

Perform descriptive statistics on the dataset.

# **Solution:**

df.describe(include='all')

|          | Descriptive Statistics                |             |              |         |              |           |        |              |              |               |               |             |                |       |  |
|----------|---------------------------------------|-------------|--------------|---------|--------------|-----------|--------|--------------|--------------|---------------|---------------|-------------|----------------|-------|--|
| In [12]: | <pre>df.describe(include='all')</pre> |             |              |         |              |           |        |              |              |               |               |             |                |       |  |
| Out[12]: |                                       | RowNumber   | CustomerId   | Surname | CreditScore  | Geography | Gender | Age          | Tenure       | Balance       | NumOfProducts | HasCrCard   | IsActiveMember | Estim |  |
|          | count                                 | 10000.00000 | 1.000000e+04 | 10000   | 10000.000000 | 10000     | 10000  | 10000.000000 | 10000.000000 | 10000.000000  | 10000.000000  | 10000.00000 | 10000.000000   | 100   |  |
|          | unique                                | NaN         | NaN          | 2932    | NaN          | 3         | 2      | NaN          | NaN          | NaN           | NaN           | NaN         | NaN            |       |  |
|          | top                                   | NaN         | NaN          | Smith   | NaN          | France    | Male   | NaN          | NaN          | NaN           | NaN           | NaN         | NaN            |       |  |
|          | freq                                  | NaN         | NaN          | 32      | NaN          | 5014      | 5457   | NaN          | NaN          | NaN           | NaN           | NaN         | NaN            |       |  |
|          | mean                                  | 5000.50000  | 1.569094e+07 | NaN     | 650.528800   | NaN       | NaN    | 38.921800    | 5.012800     | 76485.889288  | 1.530200      | 0.70550     | 0.515100       | 100   |  |
|          | std                                   | 2886.89568  | 7.193619e+04 | NaN     | 96.653299    | NaN       | NaN    | 10.487806    | 2.892174     | 62397.405202  | 0.581654      | 0.45584     | 0.499797       | 57    |  |
|          | min                                   | 1.00000     | 1.556570e+07 | NaN     | 350.000000   | NaN       | NaN    | 18.000000    | 0.000000     | 0.000000      | 1.000000      | 0.00000     | 0.000000       |       |  |
|          | 25%                                   | 2500.75000  | 1.562853e+07 | NaN     | 584.000000   | NaN       | NaN    | 32.000000    | 3.000000     | 0.000000      | 1.000000      | 0.00000     | 0.000000       | 511   |  |
|          | 50%                                   | 5000.50000  | 1.569074e+07 | NaN     | 652.000000   | NaN       | NaN    | 37.000000    | 5.000000     | 97198.540000  | 1.000000      | 1.00000     | 1.000000       | 100   |  |
|          | 75%                                   | 7500.25000  | 1.575323e+07 | NaN     | 718.000000   | NaN       | NaN    | 44.000000    | 7.000000     | 127644.240000 | 2.000000      | 1.00000     | 1.000000       | 149   |  |
|          | max                                   | 10000.00000 | 1.581569e+07 | NaN     | 850.000000   | NaN       | NaN    | 92.000000    | 10.000000    | 250898.090000 | 4.000000      | 1.00000     | 1.000000       | 199!  |  |
|          | 4                                     |             |              |         |              |           |        |              |              |               |               |             |                | -     |  |

## Question-5:

Handle the Missing values.

#### **Solution:**

## df.isnull().sum()



## Question-6:

Find the outliers and replace the outliers

## **Solution:**

# import seaborn as sns sns.boxplot(df['Balance'])



## Question-7:

Check for Categorical columns and perform encoding.

#### **Solution:**

**from** sklearn.preprocessing **import** LabelEncoder **from** collections **import** Counter **as** count

le=LabelEncoder()
df['Geography']=le.fit\_transform(df['Geography'])
df['Gender']=le.fit\_transform(df['Gender'])
df['Surname']=le.fit\_transform(df['Surname'])



#### Question-8:

Split the data into dependent and independent variables.

## **Solution:**

x=df.iloc[:,0:13
] y=df['Exited']

```
Dependent and Independent variables

In [20]: x=df.iloc[:,0:13]

In [21]: y=df['Exited']
```

## Question-9:

Scale the independent variables

#### **Solution:**

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
sc\_xtrain=sc.fit\_transform(xtrain)
sc\_xtest=sc.transform(xtest)

## Question-10:

## Testing and training data

#### **Solution:**

from sklearn.model\_selection import train\_test\_split
xtrain,xtest,ytrain,ytest=train test split(x,y,test size=0.3,random state=10)