

Green University Of Bangladesh Department Of Computer Science & Engineering

AgriBridge:

The Smart Farming Marketplace

Course Title: Integrated Design Project I
Section:222-D2

Course Instructor: Ms. Babe Sultana

MD Sajeeb Mia
ID:221002252
Sadik Saror
ID:212002136
MD.Rasel Mahmud
ID:212002134

Abstract

This project introduces a Flutter-based mobile app enabling farmers to sell products directly to consumers. It includes product listings, Albased product filtering by location, live chat, and in-app payments. The goal is to eliminate intermediaries, ensuring fair pricing and direct communication.

Problem Domain

Farmers often rely on middlemen who reduce their profits. Without direct access to digital tools, they struggle to connect with buyers, resulting in inefficiencies and reduced income.

Motivation

- Remove middlemen in agricultural sales
- **Empower farmers through technology**
- **→** Provide transparent buyer-seller interaction

Objectives

- To build a App For Farmer and Buyer
- To use Ai for smart product recomendation
- To enable realtime chat & secure payment

Literature Review

Table-1: Literature Review of our Project

		Contribution to our Proposed System		
Study/Source	Focus/Findings			
Singh, R. et al. (2022) [1]	Discusses blockchain-enabled agricultural marketplaces that enhance transparency and trust.	Highlights the importance of direct farmer-to-buyer transactions, guiding system design.		
Kumar, A. & Rani, R. (2021) [2]	Explores AI applications in agriculture for decision-making, prediction, and smart filtering.	Supports the use of Al for location-based product filtering in the buyer's search flow.		
Patel, D. & Mehta, S. (2020) [3]	Examines digital platforms that connect farmers directly with buyers, bypassing intermediaries.	Validates the project's core concept of direct sales and inspires feature development.		

Social Impect

- Empowers rural farmers with technology
- Ensures fair pricing and income
- Builds consumer trust through transparency
- Encourages digital adoption in agriculture

Methodology

Prototype

System Requirement

Table-2: System Requirement					
Functional Requirement	Non Functional Requirement				
Registration/Login	Cross-platform (Flutter)				
Product Management (Farmer)	Secure & scalable backend				
Search & Filter (Buyer)	Real-time chat support				
Chat & Payment Integration	Secure Data handling				

SDLC Table

Table 3: Comparison Matrix with Different SDLC Mode

Priority	Criteria	Waterfall	V-shape	Iterative	Spiral	Agile	Prototype
4	Well-defined requirements	Yes	Yes	No	No	No	No
3	Technological knowledge required	Yes	Yes	Yes	No	No	No
6	Efficiency with Agri-bridge implementation	No	No	No	Yes	Yes	No
4	Risk analysis for engaging and motivating users	No	No	Yes	Yes	Yes	No
5	User testing for agri-begidge elements	No	No	Yes	No	Yes	Yes
5	Security in user data and platform integrity	No	No	Yes	Yes	Yes	Yes
6	Dependability of the platform and its features	No	Yes	Yes	Yes	Yes	Yes
Total:33	Overall score	7	13	23	21	26	16

UML Sequence Diagram

Conclusion

The proposed system bridges the gap between farmers and consumers by creating a direct digital marketplace.It ensure a user-friendly, scalable platform that promotes sustainable agriculture and fair trade.

UML use case Diagram

UML Class Diagram

Data Flow Diagram

References

- [1] Singh, R. et al. (2022). Blockchain-enabled agricultural marketplaces. Accessed: 11 Feb, 2020.
- [2] Kumar, A. & Rani, R. (2021). AI in agriculture for decision-making and filtering. Accessed: 8 May ,2021.
- [3] Patel, D. & Mehta, S. (2020). Digital platforms connecting farmers and buyers. Accessed: Aug, 2020.