Métodos y modelos de la I.A. Inspirados en la Naturaleza

 La aplicación del ordenador al estudio de la Naturaleza ha conducido desde sus orígenes a espectaculares simulaciones.

Sin embargo, y desde los orígenes de la simulación, los científicos e ingenieros emprendieron otro camino: aquel en el que es la propia Naturaleza la que se convierte en fuente de inspiración, diseñándose desde entonces un número cada vez mayor de procedimientos computacionales bioinspirados de probada eficacia y utilidad.

- La simulación de procesos naturales es un campo de investigación muy amplio en Inteligencia Artificial.
- Si ha funcionado bien en la naturaleza, ¿porqué una simulación de estos procesos no iba a proporcionar buenos resultados en un computador?

Este área de la I.A. es conocida por varios nombres que dependen un tanto de la orientación y el uso que se haga de la "bioinspiración":

- computación evolutiva,
- biocomputación,
- algoritmos bioinspirados,
- etc.

Ejemplos

- Algoritmos genéticos,
- Algoritmos basados en inteligencia de enjambres,
 Algoritmos basados en Colonias de Hormigas,
- Redes Neuronales Artificiales,
- Algoritmos basados en el Sistema inmunológico,
- Computación molecular,
- etc

- La teoría de la evolución (que no es tal teoría, sino una serie de hechos observados/ probados), fue descrita por Charles Darwin y Alfred Russell Wallace de modo casi independiente en 1858.
- Los cambios heredables en los seres vivos y la selección son los dos hechos que provocan el cambio en la Naturaleza y la generación de nuevas especies.

 Pero Darwin desconocía cual es la base de la herencia.

 Pensaba que los rasgos de un ser vivo eran como un fluido, y que los "fluidos" de los dos padres se mezclaban en la descendencia.

 Fue Gregorio Mendel, a mediados del siglo XIX, quien descubrió que los caracteres se heredaban de forma discreta (factores/genes), y que se tomaban del padre y de la madre.

http://pendientedemigracion.ucm.es/info/genetica/grupod/Mendel/mendel.htm

 En realidad, las teorías de Mendel, que trabajó solo, se olvidaron y no se volvieron a redescubrir hasta principios del siglo XX.

- En 1930 el genetista inglés Robert Aylmer relacionó ambas teorías, demostrando que los genes de Mendel eran los que proporcionaban el mecanismo necesario para la evolución.
- Más o menos por la misma época, el biólogo alemán Walther Flemming describió los cromosomas.

 Poco más adelante se descubrió que las células de cada especie viviente tenían un número fijo y característico de cromosomas.

 En los años 50, Watson y Crick descubrieron que la base molecular de los genes está en el ADN, ácido desoxirribonucleico.

 A principios de los 60, John Holland en la Universidad de Michigan en Ann Arbor, "descubre" la teoría genética de la selección natural y concluye que la evolución era una forma de adaptación más potente que el simple aprendizaje, y tomó la decisión de aplicar estas ideas para desarrollar programas bien adaptados para un fin determinado.

- En esa universidad, Holland impartía un curso titulado Teoría de sistemas adaptativos.
 - Dentro de este curso, fue donde se crearon las ideas que más tarde se convertirían en los algoritmos genéticos.

En un proceso de evolución, existe una población de individuos. Los más adecuados a su entorno se reproducen y tienen descendencia (a veces con mutaciones que mejoran su idoneidad al entorno).

Los más adecuados sobreviven para la siguiente generación.

- Hoy los algoritmos genéticos son métodos sistemáticos para la resolución de problemas de búsqueda y optimización que aplican a estos los mismos métodos de la evolución biológica:
 - selección basada en la población,
 - reproducción sexual y
 - mutación.

Desde un punto de vista general, el objetivo de cualquier A.G. es encontrar una solución óptima para una cierta función objetivo:

Max F(x)

x € X

- Cromosoma ←→ Vector representación de una solución al problema.
- Gen ←→ Característica/Variable/Atributo concreto del vector de representación de una solución
- **Población** ← → Conjunto de soluciones al problema.
- Adecuación al entorno ←→ Valor de función objetivo (fitness).
- Selección natural ← → Operador de selección.
- **Reproducción sexual** ← → Operador de cruce.
- Mutación ← → Operador de mutación.
- Cambio generacional ←→ Operador de reemplazamiento.

• **Ejemplo:** Cromosoma que codifica una solución a un problema. Cada característica del problema es un valor 0/1.

• **Ejemplo:** Población. Conjunto de individuos (cada uno con su fitness).

Población Conjunto de soluciones

```
1 1 0 0 0 1 0 1 1 1 0 1 Fitnes s= 6

0 1 1 1 1 0 0 1 0 1 1 0 Fitnes s= 4

1 0 1 1 0 0 1 1 1 1 1 0 0 Fitnes s= 7

0 1 0 1 0 1 0 1 1 1 1 1 1 Fitnes s= 1

0 0 0 0 0 1 1 0 0 1 0 0 Fitnes s= 9

...

0 0 1 1 1 1 1 0 1 0 1 1 0 Fitnes s= 8
```

• **Ejemplo:** Cruce. Combinación de soluciones de la población para generar descendientes.

• Ejemplo: Mutación. Uno o más genes de un individuo pueden mutar para generar una nueva solución.

• En la población, hay una probabilidad dada a priori de que un individuo pueda mutar. A su vez, cuando un individuo muta, existe otra probabilidad de que cada gen mute o no.

Proceso de un algoritmo genético:

Proceso genético/generacional

- Vamos a partir de una función f(x) muy sencilla: f(x) =x**2
- Se busca el valor de x que hace máximo f(x), restringiendo a la variable x a tomar valores comprendidos entre 0 y 31.
 - Obviamente el máximo se tiene para x = 31, donde f vale 961.
- A x sólo le vamos a permitir tomar valores enteros, es decir: 0,1, 2, 3,..., 30, 31.

No necesitamos saber algoritmos genéticos para resolver este problema, pero su sencillez hace que el algoritmo sea más fácil de comprender.

 Lo primero es encontrar una manera de codificar en forma de "cromosomas" las posibles soluciones (posibles valores de x).

 Con codificación binaria cada valor entre 0 y 31 se puede codificar con 5 bits (cromosoma).

El cromosoma que representa al valor 11 será (0, 1, 0, 1, 1).

 Una vez que tenemos codificada la solución, debemos escoger un tamaño de población.

 Para este ejemplo trabajaremos con poblaciones de 6 individuos.

 Debemos partir de una población inicial. Una manera de generarla es aleatoriamente.

 Se coge una moneda y se lanza, si sale cara anotamos un 0 y en caso contrario un 1.

 Con 30 lanzamientos "troceados" en 6 cromosomas de 5 genes (bits) tenemos la población inicial.

- El siguiente paso es hacer competir a los individuos entre sí. Este proceso se conoce como selección.
- Una forma de selección es mediante un torneo:
- 1. A cada individuo de la población se le asigna una pareja ambos se valoran con f(x) y se comparan (torneo).
- 2. El mejor es duplicado y el peor se desecha. Con esto se obtiene una nueva población de 6 individuos
- Existen muchas variantes de este proceso de selección.

- La tabla siguiente resume el proceso.
- Las columnas 1, 2, 3, 4 identifican cada cromosoma (solución).
- La columna (5) indica la pareja asignada, aleatoriamente en este caso, a cada individuo.
- La asignación aleatoria o por muestreo es lo usual

Población Inicial/Selección					
(1)	(2)	(3)	(4)	(5)	
1	(0,1,1,0,0)	12	144	6	
2	(1,0,0,1,0)	18	324	3	
3	(0,1,1,1,1)	15	225	2	
4	(1,1,0,0,0)	24	576	5	
5	(1,1,0,1,0)	26	676	4	
6	(0,0,0,0,1)	1	1	1	

• El mejor individuo es el 5 con f = 676.

 La media de f es para esta población es fmed =324.3.

Después de realizar el proceso de selección, la población que tenemos es la mostrada en la columna (2) de la tabla 2.

Observese, por ejemplo, que en el torneo entre el individuo 1 y el 6 de la población inicial, el primero de ellos ha recibido dos copias, mientras que el segundo cae en el olvido.

- Tras realizar la selección, se realiza el cruce.
- Una manera de hacerlo es mediante el cruce 1X: se forman parejas entre los individuos aleatoriamente de forma similar a la selección.
- Dada una pareja se establece un punto de cruce aleatorio, que no es más que un número aleatorio entre 1 y 4 (la longitud del individuo menos 1).

```
CRUCE/Tabla 2
(1)
       (2)
              (3)(4)
    (0,1,1,0,0) 5
    (0,1,1,0,0) 3
    (1,0,0,1,0) 2 3
3
    (1,0,0,1,0)
4
    (1,1,0,1,0) 1 1
6
    (1,1,0,1,0) 4 1
```

Por ejemplo, en la pareja 2-3 el punto de cruce es 3:

- un hijo de la pareja hereda los tres primeros bits del padre y los dos últimos de la madre,
- el otro hijo hereda los tres primeros bits de la madre y los dos últimos del padre.

La población resultante se muestra en la columna (2) de la tabla 3.

POBLACION TRAS EL CRUCE/Tabla 3

(1)	(2)	(3)	(4)
1 (0),1,0,1,0)	10	100
2 (1	.,1,1,0,0)	28	784
3 (0),1,1,1,0)	14	196
4 (1	.,0,0,0,0)	16	256
5 (1	.,1,0,1,0)	26	676
6 (1	.,0,0,1,0)	18	324

Observemos que

•el valor máximo de f es 784 (para el individuo 2), mientras que antes de la selección y el cruce era de 676.

•fmed ha subido de 324.3 a 389.3.

¿Qué quiere decir esto?

Los individuos después de la selección y el cruce son mejores que antes de estas transformaciones.

Ejemplo A.G.

 El siguiente paso es volver a realizar la selección y el cruce tomando como población inicial la de la tabla 3.

• Esta manera de proceder se repite tantas veces como número de iteraciones se desee.

Ejemplo A.G.

Y ¿cuál es el óptimo?

En realidad un algoritmo genético no garantiza la obtención del óptimo pero, si está bien construido, proporcionará una solución razonablemente buena.

Ejemplo A.G.

- Puede que se obtenga el óptimo, pero el algoritmo no confirma que lo sea. Así que es aconsejable quedarse con la mejor solución de la última iteración.
- También es buena idea ir guardando la mejor solución de todas las iteraciones anteriores y al final quedarse con la mejor solución de las exploradas.

Problema de las 8 reinas

Problema de las 8 reinas

• La forma inmediata de codificarlo es mediante un vector de 8 posiciones, numeradas de 0 a 7, donde cada posición representa una columna y el valor de dicha posición la fila donde está colocada la reina.

• [5,6,1,3,6,4,7,7]

[(101),(110),(001),(011),(110),(100),(111),(111)]

Ejemplo

Función de evaluación (8 reinas) = número de pares de reinas no atacadas

28=7+6+5+4+3+2+1 valor máximo correspondiente a una solución

Inteligencia de Enjambres

Hay muchos comportamientos de insectos sociales que son interesantes y no bien conocidos:

- Encontrar el camino (mas corto) a la comida,
- División del trabajo y trabajo cooperativo,
- Gestión de cementerios,
- Gestión de las crías,
- Etc.

Inteligencia de Enjambres

Comportamiento de los insectos sociales: muy "inteligente" y sorprendente

Causas:

- Condicionamiento genético
- Autoorganización

Autoorganización

 Conjunto de mecanismos dinámicos por los cuales un sistema presenta una estructura de alto nivel como consecuencia de la integración de componentes de bajo nivel.

Mecanismos de autoorganización

- Amplificación (positive feedback)
- Amortiguación (negative feedback)
- Fluctuaciones aleatorias
- Interacciones múltiples

Características de la autoorganización:

- Creación de estructuras espacio- temporales en un medio homogéneo
- Posible existencia de varios estados estables
- Cambios drásticos cuando se modifican los parámetros

Formas de interacción entre unidades:

- Directas (comunicación)
- Indirectas (señales en el medio ambiente: stimergia)

Robótica de Enjambres

Autoorganización + Robotica colectiva.

- Fallo de la I.A. "clásica"
- Miniaturización del hardware
- Desarrollo del campo de la "Vida Artificial"

- Son uno de los primeros modelos de Inteligencia de enjambres.
- Se basan en el comportamiento colectivo de las hormigas en la búsqueda de alimentos.
- Resulta fascinante que animales casi ciegos, moviéndose prácticamente al azar, pueden encontrar el camino más corto desde su nido hasta los alimentos y regresar.

- Cuando una hormiga se mueve, deja una señal odorífera, depositando una substancia denominada feromona, para que las demás puedan seguirla.
- En principio, una hormiga aislada se mueve esencialmente al azar, pero las siguientes deciden con probabilidad proporcional a la cantidad de feromonas.

- Las hormigas depositan feromona
- En una bifurcación escogen al zar com mayor probabilidad en función de la feromona encontrada

Experimento de puente simétrico

 Al cabo de un tiempo todas las hormigas van por una rama o la mitad por una y la mitad por la otra.

$$P_{A} = \frac{(R + Ai)^{n}}{(k + 4i)^{n} + (k + Bi)^{n}}$$

$$n = 2 \quad k \approx 20 \quad (Parametros experimentales)$$

Hormiga Artificial (agente simple):

- Mecanismo de deposición de feromona,
- Mecanismo de evaporación de feromona,
- Mecanismo probabilístico de elección en una bifurcación.,
- Información heuristica acerca del problema concreto

 Se emplean para resolver problemas que se puedan formularse como problemas de camino mínimo en un grafo.

 Los métodos basados en el comportamiento de las hormigas se engloban en la INTELIGENCIA DE ENJAMBRES.

- (Modelos Conexionistas)
- Son modelos de aprendizaje y aproximación inspirados en el comportamiento del cerebro biológico.

- El cerebro humano se compone de millones de neuronas interconectadas entre sí.
- Una neurona típica recoge señales procedentes de otras neuronas a través de unas estructuras llamadas dendritas.
- La neurona emite impulsos eléctricos a lo largo de una fibra axón, que se escinde en millares de ramificaciones.

- Estas ramificaciones llegan hasta las dendritas de otras neuronas y establecen unas conexiones llamadas sinapsis.
- De esta manera la información se transmite de unas neuronas a otras y va siendo procesada a través de las conexiones sinápticas y las propias neuronas.

 El origen de los modelos conexionistas se situa en la definición de la neurona formal dada por McCulloch y Pitts en 1943 como un autómata con umbral

X1 W_{1j} DENTRITAS CUERPO

X2 W_{2j} AXON

X3 W_{3j} Y_j f(z) y_j

Xn W_{nj} Axones Sinšpsis

- Neural Network Study (1988, AFCEA International Press):
- ... a neural network is a system composed of many simple processing elements operating in parallel whose function is determined by:
- network structure, connection strengths, and
- the processing performed at computing elements or nodes.

 Haykin, S. Neural Networks: A Comprehensive Foundation (1994, Macmillan NY):

A neural network is a massively parallel distributed processor that has a natural propensity for storing experiential knowledge and making it available for use.

It resembles the brain in two respects:

- 1. Knowledge is acquired by the network through a learning process.
- Interneuron connection strengths known as synaptic weights are used to store the knowledge.

- Las RNAs son « maquinas numéricas» compuestas de gran cantidad de procesadores (neuronas) conectados entre sí y actuando en paralelo.
- Los modelos de RNs biológicos son mucho más complejos que los modelos de RNAs actuales.

- El comportamiento de una RNA está determinado por:
- las características de las neuronas,
- la topología de la red y
- los pesos de las conexiones.

Existen muchos tipos de modelos para las neuronas artificiales:

- Automatas con umbral
- Adaptiva Linear Neuron (ADALINE)
- Neuronas binarias sin bucle (Hopfield),
- Etc.

En cuanto a la topología también hay mucha variedad con tres formas básicas:

- 1. Conexiones hacia delante.
- 2. Conexiones laterales.
- 3. Conexiones hacia atrás (o recurrentes).

Neuronas Biológicas	Neuronas Artificiales
Neuronas	Unidades de proceso
Conexiones sinápticas	Conexiones ponderadas
Efectividad de las sinápsis	Peso de las conexiones
Efecto excitatorio o inhibitorio de una conexión	Signo del peso de una conexión
Efecto combinado de las sinápsis	Función de propagación o de red
Activación -> tasa de disparo	Función de activación -> Salida

Aprendizaje (entrenamiento)

- Determinación de los pesos de modo que la relación de entrada-salida de la red capture la información contenida en una tabla (X,Y) de pares de entrada salida.
- Propósitos: interpolación y generalización.
- Métodos: Minimización del error cuadrático

El paradigma de RNA es el perceptron multicapa:

- Automatas con umbral,
- Dos o mas capas de neuronas,
- Conexiones hacia adelante.

Un perceptrón multicapa encapsula una función y=F(x)

 $x \in R^{**}Ni$; $y \in R^{**}No$.

Un perceptron puede "aprender", ajustando los pesos de las conexiones, cualquier relación de entrada salida y=F(x) a partir de una tabla de ejemplos con un cierto margen de error.

Teorema:

Un perceptron con dos capas y un numero "adecuado" de neuronas en la capa oculta, puede "aprender", ajustando los pesos de las conexiones, cualquier relación de entrada salida y=F(x) a partir de una tabla de ejemplos con un margen de error tan pequeño como se desee.

Enfoques actuales de los modelos conexionistas

- Enfoque computacional: se intenta desarrollar modelos de computación eficientes,
- Enfoque cognitivo: se interesa sobre todo por las capacidades cognitivas de estos modelos,
- Enfoque biocognitivo: Parecido al anterior pero toma como premisa la plausibilidad biológica de los modelos.