Haozhe Tian

Email: mailto:haozhe.tian21@ic.ac.uk

Personal Website: Link

Current Interests: Deep Reinforcement Learning | Planning | Model Predictive Control

EDUCATION

Imperial College London

London, UK

PhD ongoing Department: Dyson School of Design Engineering Sep 2023 - Sep 2027

Imperial College London

London, UK

MSc in Communications and Signal Processing Distinction Sep 2021 - Nov 2022

Department: Electrical and Electronic Engineering

The Ivor Tupper Prize For Excellence in Signal Processing, Broadcast And Video Technology

Beihang University

Beijing, China

BEng GPA: 3.844/4.0 Sep 2017 - Jun 2021

Specialization: Pattern Recognition | Department: Automation and Electrical Engineering

China National Scholarship (0.2%) | Twice Outstanding Student List (5%) | Outstanding Graduate (10%)

Tian H, Hu H, Ye Q. In 2023 IEEE International Conference on Big Data (BigData) 2023 Dec 15 (pp. 554-561). IEEE. Publications

- CGP: Centroid-guided Graph Poisoning for Link Inference Attacks in Graph Neural Networks: Tian H, Hu H, Ye Q, in 2023 IEEE International Conference on Big Data (BigData) 2023 Dec 15 (pp. 554-561). IEEE.
- Hearables: Heart Rate Variability from Ear Electrocardiogram and Ear Photoplethysmogram (Ear-ECG and Ear-PPG): Tian H, Occhipinti E, Nassibi A, Mandic DP, in 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2023 Jul 24 (pp. 1-5). IEEE.
- Instrumentation of Surface Plasmon Microscopy: Complete Scheme of Signal Extractions: , B. Zhang, H. Tian, T. Xiao and J. Zhang, in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-10, 2021, Art no. 7003710, doi: 10.1109/TIM.2021.3072137.

SKILLS

• English: GRE General (330+4.0) | TOEFL iBT (115)

Python | MATLAB | julia | C/C++ | Verilog HDL • Languages:

• Frameworks: SciPy | Numpy | PyTorch | Scikit-learn | OpenCV | pandas | Matplotlib

• Others: LaTeX | html | CSS

EXPERIENCE

Heart Rate Variability from Ear ECG and PPG

Imperial College London

Supervisor: Prof. Danilo Mandic

Jan 2022 - (ongoing)

- o Protocol Design: Designed an interactive recording MATLAB app
- Feature Extraction: Used matched filter and Hilbert transform to identify ECG R-peaks; estimated time- and frequency-domain heart rate variability features; estimated breathing rate and blood oxygen saturation from PPG; estimated blood pressure using pulse arrival time
- Classification: classified physical states using random forest, support vector machine, and naive Bayes classier; compared the significance of different features

Epileptic Seizure Detection Based on Graph Neural Network

Beihang University Jan 2021 - Jun 2021

Supervisor: Prof. Yang Li

- Data Preparation: Adopted the MIT-CHB data set, analysed the power spectrum density, identified key frequencies, and performed noise removal
- o Adjacency Matrix: Constructed the adjacency matrix using spatial and spectral coherence between EEG channels; the spatial coherence was based on geodesic distance; the spectral coherence was based on normalized cross spectral density
- Graph Neural Network: train, validate, and tested the performance of fully connected neural network, shallow GCN, and deep GCN. Comparison was carried out based on several metrics

Surface Plasmon Microscopy Based on Object Detection Networks

Beihang University

Supervisor: Dr. Bei Zhang (in cooperation with Prof. Michael Somekh)

May 2020 - Apr 2021

- o Instrumentation: Built an Surface Plasmon Microscopy (SPM) system and acquired surface plasmon (SP) profiles
- o Object Detection Network: Trained a Faster R-CNN network for classifying polarization mode and localizing SP profiles (the first time deep-learning was applied to back focal plane SPM, to our best knowledge)
- o Radius Measurements: Proposed self-correlation for center identification; Gray-scale statistics for the measurement of SP and aperture's radii
- Verification: Applied the complete algorithm to measure the excitation angle of MgO; bench-marked the model against traditional approaches (based on Hough transform or Fourier correlation analysis; compared the performance of several object detection networks (YOLO, SSD, Faster R-CNN)