تحليلية الفضاء

1- إحداثيات نقطة بالنسبة لمعلم، إحداثيات متجهة بالنسبة لأساس

أً الأساس - المعلم في الفضاء

نشاط لیکن OIJK رباعی الأوجه و M نقطة من الفضاء و P مسقطها علی المستوی OIJK رباعی الأوجه و OI بتواز مع OI و OI مسقط OI علی OI بتواز مع OI بتواز مع OI و OI مسقط OI علی OI بتواز مع OI بتواز مع OI بتواز مع OI بتواز مع OI

1- أنشئ الشكل

و z أفصول z و (O;J) و z أفصول z و أفصول z و أفصول z أفصول z و أفصول z أفصول z

(O;K) بالنسبة للمعلم Q"

$$\overrightarrow{OK}$$
 و \overrightarrow{OJ} و \overrightarrow{OI} و y و x أكتب \overrightarrow{OM} بدلالة

المال

1- الشكل

 \overrightarrow{OK} و \overrightarrow{OJ} و \overrightarrow{OI} و \overrightarrow{OI} و \overrightarrow{OM} بدیناQ مسقط P علی Q بتواز مع Q مسقط Q علی Q بتواز مع Q مسقط Q علی Q بتواز مع

 $\overrightarrow{OP} = \overrightarrow{OQ} + \overrightarrow{OQ'}$ ومنه OQPQ' متوازي الأضلاع و بالتالي (OQPQ') وحيث x أفصول Q بالنسبة للمعلم

 $\left(O;J
ight)$ و y أفصول Q' بالنسبة للمعلم

$$\overrightarrow{OQ'} = y\overrightarrow{OJ}$$
 و $\overrightarrow{OQ} = x\overrightarrow{OI}$ فان $\overrightarrow{OP} = x\overrightarrow{OI} + y\overrightarrow{OJ}$ ومنه

 $\left(OIJ
ight)$ مسقط M على $\left(OK
ight)$ بتواز مع Q

 $ig(\mathit{OK}ig)$ و P مسقطها على المستوى $ig(\mathit{OIJ}ig)$ بتواز مع

 $\overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{OQ}^{\dagger}$ ومنه ("OPMQ") متوازي الأضلاع ومنه

 \overrightarrow{OQ} " = $z\overrightarrow{OK}$ فان (O;K) فان بالنسبة للمعلم وحيث أن z

$$\overrightarrow{OM} = x\overrightarrow{OI} + y\overrightarrow{OJ} + z\overrightarrow{OK}$$
 إذن

و بما أن OIJK رباعي الأوجه فان I و J و K غير مستوائية

 $M\left(x;y;z
ight)$ نكتب $\left(O;\overrightarrow{OI};\overrightarrow{OJ};\overrightarrow{OK}
ight)$ نكتب M بالنسبة للمعلم $\left(x;y;z
ight)$ نكتب $M\left(x;y;z
ight)$

تع ىف

. إذا كانت $ec{i}$ و $ec{k}$ ثلاث متجهات غير مستوائية و $ec{o}$ نقطة من الفضاء

نقول إن المثلوث $\left(\vec{i}\,; \vec{j}; \vec{k}\,
ight)$ معلم للفضاء، و أن المربوع $\left(\vec{i}\,; \vec{j}; \vec{k}\,
ight)$ معلم للفضاء

ملاحظة:

 $(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC})$ أربع نقط غير مستوائية O و B و B و A و O

 $\left(O;\overrightarrow{OA};\overrightarrow{OB};\overrightarrow{OC}\right)$ و معلما للفضاء مثلا

خاصىة

 $\overline{\left(O;ec{t}\;;ec{j};ec{k}
ight)}$ ليكن $\left(O;ec{t}\;;ec{j};ec{k}
ight)$ معلما في الفضاء

 $\overrightarrow{OM} = x.\overrightarrow{i} + y.\overrightarrow{j} + z.\overrightarrow{k}$ من الفضاء توجد ثلاثة أعداد حقيقية وحيدة x و y و y و z حيث x من الفضاء توجد ثلاثة أعداد حقيقية وحيدة M(x;y;z) نكتب M(x;y;z) يسمى إحداثيات M(x;y;z) بالنسبة للمعلم M(x;y;z) نكتب M(x;y;z)

 $\vec{u} = x.\vec{i} + y.\vec{j} + z.\vec{k}$ من الفضاء توجد ثلاثة أعداد حقيقية وحيدة \vec{v} و \vec{v} و \vec{v} و \vec{v} من الفضاء توجد ثلاثة أعداد حقيقية وحيدة $\vec{u}(x;y;z)$ نكتب \vec{v} نكتب \vec{v} يسمى إحداثيات \vec{v} بالنسبة للأساس \vec{v} المثلوث \vec{v}

ب/ إحداثيات $\vec{u} + \vec{v}$ و \vec{AB} و منتصف قطعة

حاصية

لتكن $(\vec{i}; \vec{j}; \vec{k})$ لتكن الأساس $\vec{v}(x'; y'; z')$ و متجهتين من الفضاء المنسوب إلى الأساس $\vec{v}(x'; y'; z')$ و التكن

$$z=z$$
' و $y=y$ ' و $x=x$ ' و $\vec{u}=\vec{v}$

$$\vec{u} + \vec{v}(x + x'; y + y'; z + z') *$$

$$\lambda \vec{u}(\lambda x; \lambda y; \lambda z) *$$

خاصية

I و $\left(O;\vec{i}\,;\vec{j};\vec{k}
ight)$ و $B\left(x_B;y_B;z_B
ight)$ و $B\left(x_B;y_B;z_B
ight)$ و منتصف القطعة $A(x_A;y_A;z_A)$

$$(x_B - x_A; y_B - y_A; z_B - z_B)$$
 هو \overrightarrow{AB} هاوث إحداثيات *

$$\left(rac{x_A+x_B}{2};rac{y_A+y_B}{2};rac{z_A+z_B}{2}
ight)$$
 هو I مثلوث إحداثيات *

2- الشرط التحليلي لاستقامية متجهتين

نشاط

لتكن $\vec{v}(a';b';c')$ و $\vec{u}(a;b;c)$ متجهتين من الفضاء

ac '- a' c = 0 و bc '- b' c = 0 و ab '- a' b = 0 ان ab و ab '- a' و ab' المناف والمناف والمناف

مبرهنة

لتكن $\vec{u}(a;b;c)$ و $\vec{v}(a';b';c')$ متجهتين من الفضاء

$$\begin{vmatrix} a & a' \\ c & c' \end{vmatrix} = 0$$
 و $\begin{vmatrix} b & b' \\ c & c' \end{vmatrix} = 0$ و $\begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = 0$ تكون \vec{v} و \vec{v} و \vec{v} تكون \vec{v}

$$\begin{vmatrix} a & a' \\ c & c' \end{vmatrix} \neq 0$$
 و أ $\begin{vmatrix} b & b' \\ c & c' \end{vmatrix} \neq 0$ و أ $\begin{vmatrix} a & a' \\ b & b' \end{vmatrix} \neq 0$ تكون \vec{u} و \vec{v} و \vec{u} غير مستقيميتين إذا و فقط إذا كان

$$\vec{v}$$
 و \vec{u} تسمى المحددات المستخرجة للمتجهتين و $\begin{vmatrix} a & a' \\ b & b' \end{vmatrix}$ و $\begin{vmatrix} a & a' \\ c & c' \end{vmatrix}$ و $\begin{vmatrix} b & b' \\ c & c' \end{vmatrix}$

ملاحظة

يمكن أن نحصل على المحددات المستخرجة بالتقنية التالية

$$\begin{vmatrix} a & a' \\ b & b' \end{vmatrix} = d_3 \leftarrow \begin{pmatrix} a & a' \\ b & b' \\ c & c' \end{pmatrix} \qquad \begin{vmatrix} a & a' \\ c & c' \end{vmatrix} = d_2 \leftarrow \begin{pmatrix} a & a' \\ b & b' \\ c & c' \end{pmatrix} \qquad \begin{vmatrix} b & b' \\ c & c' \end{vmatrix} = d_1 \leftarrow \begin{pmatrix} a & a' \\ b & b' \\ c & c' \end{pmatrix}$$

3- المتجهات المستوائية

نشاط

 $(\vec{i}\,;\vec{j}\,;\vec{k}\,)$ ساس $\vec{w}(a";b";c")$ و $\vec{v}(a';b';c')$ و $\vec{u}(a;b;c)$ متجهات من الفضاء منسوب إلى أساس \vec{v} 0 و \vec{v} 1 و \vec{v} 2 و \vec{v} 3 مستوائية.

$$\begin{vmatrix} a \begin{vmatrix} b' & b'' \\ c' & c'' \end{vmatrix} - b \begin{vmatrix} a' & a'' \\ c' & c'' \end{vmatrix} + c \begin{vmatrix} a' & a'' \\ b' & b'' \end{vmatrix} = 0$$
 بر بین أن $\begin{vmatrix} a \begin{vmatrix} b' & a'' \\ b' & b'' \end{vmatrix} = 0$

2- أكتب النتيجة العكسية لنتيجة السؤال 1 . لنقبلها هل المتجهات $\vec{w}(3;1;3)$ و $\vec{v}(2;0;1)$ و $\vec{u}(1;2;3)$ مستوائية.

أ- محددة ثلاث متجهات

تعريف

$$(\vec{i}\,;\vec{j}\,;\vec{k})$$
 لتكن $(a';\vec{v};\vec{v})$ و $(a';\vec{v}';c')$ و $(a';\vec{v};\vec{v})$ متجهات من الفضاء منسوب إلى أساس $(a';\vec{v};\vec{v})$ و $(a';\vec{v};\vec{v})$ متجهات من الفضاء منسوب إلى أساس $(a';\vec{v};\vec{v})$ و $($

ملاحظة

 $ec{w}$ و $ec{v}$ من $ec{v}$ و المحددات المستخرجة من d_3

$$\det(\vec{u}; \vec{v}; \vec{w}) = \begin{vmatrix} a & a' & a'' \\ b & b' & b'' \\ c & c' & c'' \end{vmatrix} = ad_1 - bd_2 + cd_3$$

ب- مبرهنة

 $\left(ec{i}\,;ec{j}\,;ec{k}
ight)$ لتكن $ec{u}\left(a;b;c
ight)$ و $ec{w}\left(a";b";c"
ight)$ متجهات من الفضاء منسوب إلى أساس $ec{v}\left(a';b';c"
ight)$

 $\det(\vec{u}; \vec{v}; \vec{w}) \neq \vec{0}$ تکون \vec{u} و \vec{v} و \vec{v} مستوائیة إذا و فقط إذا

 $\det(\vec{u}; \vec{v}; \vec{w}) = \vec{0}$ تکون \vec{u} و \vec{v} غیر مستوائیة إذا و فقط إذا

تمرين

Cig(1;-1;0ig) و Big(2;1;3ig) و فضاء منسوب إلى معلم $ig(O;ec{i}\,;ec{j}\,;ec{k}ig)$ ، نعتبر النقط

$$\vec{w}(-1;1;4)$$
و $\vec{v}(1;-3;2)$ و المتهجات $(-1;2;1)$ و المتهجات $D(-1;2;1)$

- $ec{v}$ و $ec{u}$ و ادرس استقامیة
- $ec{w}$ و $ec{v}$ و $ec{u}$ ادرس استوائية -2
- D و B و A و النقط A و B و A

تمرين

 $ec{u}\left(m\,;2;1-m
ight)$ في الفضاء V_3 المنسوب إلى أساس متعامد ممنظم

و
$$v\left(2m+1;2;-2m+3\right)$$
 و

و $ec{v}$ غير مستقيميتين m من m و من أن مهما كانت m

ر لتكن $\vec{w}(1;-2;1)$ بين أن \vec{v} و \vec{v} مستوائية -2

4- تمتيل بارامتري لمستقيم- معادلتان ديكارتيان لمستقيم في الفضاء

أ- تمثيلُ بأرامتري لمستقيم

 $Aig(x_0;y_0;z_0ig)$ في الفضاء منسوب الى معلم $ig(O;ec{i};ec{j};ec{k}ig)$ نعتبر. في الفضاء منسوب الى معلم المام معلم أينعتبر.

 $\vec{u}(\alpha; \beta; \lambda)$ و الموجه بالمتجهة

لتكن M(x; y; z) من الفضاء

$$\exists t \in \mathbb{R} / \ \overrightarrow{AM} = t \cdot \overrightarrow{u}$$
 تكافئ $M \in (D)$

$$\left\{egin{aligned} x=x_0+lpha t \ y=y_0+eta t \ z=z_0+\lambda t \end{aligned}
ight.$$
 $z=x_0+at$

الفضاء منسوب إلى معلم
$$(\alpha;eta;ar{j};ar{k})$$
. لتكن $Aig(x_0;y_0;z_0ig)$ نقطة من الفضاء و $(0;ar{i};ar{j};ar{k}ig)$ متجهة غير منعدمة

$$Aig(x_0;y_0;z_0ig)$$
 المار من $x=x_0+lpha t$ النظمة $y=y_0+eta t$ سمى تمثيلا بارامتريا للمستقيم $z=z_0+\lambda t$ و موجه بالمتجهة $u\left(lpha;eta;\lambda
ight)$

$$\vec{u}$$
 (-2;3;1) و موجه ب A و موجه ب A المار من D المار من المستقيم z $z=-1-2t$ و موجه ب $z=5+3t$ و موجه ب $z=-2+t$

ب- معادلتان ديكارتيان لمستقيم في الفضاء

ليكن
$$\vec{u}(a;b;c)$$
 مارا من النقطة $A(x_0;y_0;z_0)$ و $A(x_0;y_0;z_0)$ مارا من النقطة

لتكن M(x; y; z) من الفضاء

تکافئ
$$\overrightarrow{AM}$$
 و $\overrightarrow{u} \in (D)$

تكافئ جميع المحدد المستخرجة من
$$\overline{AM}$$
 و \overline{AM} و منعدمة $c(y-y_0)-b(z-z_0)=0$ و $c(x-x_0)-a(z-z_0)=0$ و $b(x-x_0)-a(y-y_0)=0$

الأعداد a و b و c ليست جميعها منعدمة

الاعداد
$$a
eq 0$$
 و $b \neq 0$ و $b \neq 0$ و $b \neq 0$

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$
 تكافئ $M \in (D)$

 $c \neq 0$ و $b \neq 0$ و a = 0 لنفرض أن أحدهما منعدما مثلا

$$x-x_0=0$$
 و $\frac{y-y_0}{h}=\frac{z-z_0}{c}$ تكافئ $M\in(D)$

 $c \neq 0$ و b = 0 و a = 0 لنفرض أن اثنين منهما منعدمين مثلا $x-x_0=0$ تكافئ $y-y_0=0$ تكافئ $M\in (D)$

 $\overline{\left(O;ec{i}\;;ec{j};ec{k}\;
ight)}$ الفضاء منسوب إلى معلم

إذا كان مستقيم (D) مارا من النقطة $A(x_0;y_0;z_0)$ و $A(x_0;y_0;z_0)$ مارا من النقطة

 $b \neq 0$ و $a \neq 0$ و كان كان $a \neq 0$ و كان كان يكارتيين للمستقيم و $a \neq 0$ تسمى نظمة معادلتين ديكارتيين للمستقيم و $c \neq 0$ أما إذا كان أحد المعاملات منعدما فان البسط المرتبط به يكون منعدما أيضا.

$$\vec{u}(-2;3;1)$$
 و موجه ب $A(1;5;-2)$ المار من (D) المار عن

$$(D)$$
 משור בעטריבוי נוט משור $\frac{x-1}{-2} = \frac{y-5}{3} = z+2$

 $\vec{u}'(-3;0;2)$ و موجه ب B(1;-2;2) المار من (D') المار *

$$(D')$$
 פ $y+2=0$ و $\frac{x-1}{-3}=\frac{z-2}{2}$

 \vec{u} "(-3;0;0) و موجه ب C(3;2;-5) المار من (D") المار من (D") و z+5=0 و معادلتان ديكارتيان للمستقيم y-2=0

5 - تمتيل بارامتري لمستوى- معادلة ديكارتية للمستوى أ/ تمتيل بارامتري لمستوى

 $A(x_0;y_0;z_0)$ في الفضاء منسوب إلى معلم $O(\vec{i};\vec{j};\vec{k})$ نعتبر $O(\vec{i};\vec{j};\vec{k})$ المستوى المار من النقطة $\vec{u}'(\alpha';\beta';\lambda')$ و الموجه بالمتجهتين $\vec{u}(\alpha;\beta;\lambda)$ لتكن M(x; y; z) من الفضاء

$$\exists (t;t') \in \mathbb{R}^2 / \overline{AM} = t \cdot \vec{u} + t' \cdot \vec{u}'$$
 تكافئ $M \in (P)$ $\begin{cases} x = x_0 + \alpha t + \alpha' t' \\ y = y_0 + \beta t + \beta' t' \\ z = z_0 + \lambda t + \lambda' t' \end{cases}$ تكافئ $T \in \mathbb{R}^2$ تكافئ

 $ec{u}(lpha;eta;\lambda)$ الفضاء منسوب إلى معلم $\left(O;ec{t};ec{j};ec{k}
ight)$. لتكن $\left(A(x_0;y_0;z_0)
ight)$ نقطة من الفضاء و و $\vec{u}'(\alpha'; \beta'; \lambda')$ متجهتین غیر منعدمتین

المار من
$$\left(P\right)$$
تسمى تمثيلا بارامتريا للمستوى
$$\begin{cases} x=x_0+\alpha t+\alpha't'\\ y=y_0+\beta t+\beta't' & \left(t;t'\right)\in\mathbb{R}^2 \end{cases}$$
 النظمة $z=z_0+\lambda t+\lambda't'$

 \vec{u} ' $(\alpha'; \beta'; \lambda')$ و موجه بالمتجهتين $\vec{u}(\alpha; \beta; \lambda)$ و موجه بالمتجهتين $A(x_0; y_0; z_0)$ ب- معادلة ديكارتية للمستوى

 \vec{u} ' $(\alpha'; \beta'; \lambda')$ و $\vec{u}(\alpha; \beta; \lambda)$ المستوى المار من $A(x_0; y_0; z_0)$ و موجه بالمتجهتين (P) المستوى $M(x; y, z) \in (P) \Leftrightarrow \det(\overrightarrow{AM}; \overrightarrow{u}; \overrightarrow{v}) = 0$

$$M(x; y, z) \in (P) \Leftrightarrow \begin{vmatrix} x - x_0 & \alpha & \alpha' \\ y - y_0 & \beta & \beta' \\ z - z_0 & \lambda & \lambda' \end{vmatrix} = 0$$

$$M(x; y, z) \in (P) \Leftrightarrow (x - x_0) \begin{vmatrix} \beta & \beta' \\ \lambda & \lambda' \end{vmatrix} - (y - y_0) \begin{vmatrix} \alpha & \alpha' \\ \lambda & \lambda' \end{vmatrix} + (z - z_0) \begin{vmatrix} \alpha & \alpha' \\ \beta & \beta' \end{vmatrix} = 0$$

$$M(x; y, z) \in (P) \Leftrightarrow a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

بوضع d_3 و d_2 و d_3 و d_3 حيث d_3 عيث $c=d_3$; $b=-d_2$; $a=d_1$ $\vec{u}'(\alpha';\beta';\lambda')$ و $\vec{u}(\alpha;\beta;\lambda)$ بالمتجهتين

$$d = -(ax_0 + by_0 + cz_0)$$
 نضع

$$M \in (P) \Leftrightarrow ax + by + cz + d = 0$$

 $\left(O; \vec{i}; \vec{j}; \vec{k}\right)$ الفضاء منسوب إلى معلم

 $\vec{u}'(\alpha';\beta';\lambda')$ و $\vec{u}(\alpha;\beta;\lambda)$ المار من $A(x_0;y_0;z_0)$ والموجه بالمتجهتين المار من $(a;b;c) \neq (0;0;0)$ معادلة من شكل ax + by + cz + d = 0

 $(a;b;c) \neq (0;0;0)$ من الفضاء التي تحقق العلاقة ax+by+cz+d=0 من الفضاء التي تحقق العلاقة

مستوى

(P) تسمى معادلة ديكارتية للمستوى ax + by + cz + d = 0

 $ec{v}(-2;-1,0)$ و المار من A(1;-1;0) و الموجه بالمتجهتين (P) و المار من (P)(P) نحدد معادلة ديكارتية للمستوى

لتكن M(x; y, z) من الفضاء

$$M(x; y, z) \in (P) \Leftrightarrow \det(\overline{AM}; \vec{u}; \vec{v}) = 0$$

$$M(x; y, z) \in (P) \Leftrightarrow \begin{vmatrix} x-1 & 0 & -2 \\ y+1 & 3 & -1 \\ z & 2 & 0 \end{vmatrix} = 0$$

$$M(x; y, z) \in (P) \Leftrightarrow 2(x-1) + 4(y+1) + 6z = 0$$

$$M(x; y, z) \in (P) \Leftrightarrow 2x + 4y + 6z + 2 = 0$$

(P) معادلة ديكارتية للمستوى 2x+4y+6z+2=0

6- الأوضاع النسبية للمستقيمات و المستويات في الفضاء

ا- الأوضاع النسبية لمستقيمين في الفضاء

ليكن $(D) = D(A; \vec{u})$ و $D(B; \vec{v}) = D(A; \vec{u})$ مستقيمين في الفضاء

 $(D) = (\Delta)$ فان $B \in (D)$ إذا كان \vec{v} و \vec{v} مستقيميتين و

إذا كان $ec{u}$ و $ec{v}$ مستقيميتين و $\Delta
ot \in A$ فان $\Delta
ot \in A$ متوازيان قطعا

إذا كان \vec{u} و (Δ) و (Δ) متقاطعان $\det(\overrightarrow{AB}; \vec{u}; \vec{v}) = 0$ إذا كان \vec{v} و \vec{v} غير مستقيميتين و

إذا كان \vec{v} و \vec{v} غير مستقيميتين و \vec{v} و $\det(\overrightarrow{AB}; \vec{u}; \vec{v}) \neq 0$ فان \vec{v} و \vec{v}

ب- الأوضاع النسبية لمستوبين في الفضاء

$$(Q) = P(B; \vec{u}'; \vec{v}')$$
 e $(P) = P(A; \vec{u}; \vec{v})$

یکون (P') و (P') متوازیین إذا و فقط إذا کان \vec{u} و \vec{v} و \vec{v} مستوائیة

أي $\det(\vec{u}; \vec{v}; \vec{u}') = 0$ و $\det(\vec{u}; \vec{v}; \vec{v}') = 0$

یکون (P') و (P') متقاطعان إذا و فقط إذا کان $ec{u}$ و $ec{v}$ و $ec{v}'$ غیر مستوائیة $ec{u}$

خاصيات

 $(a;b;c) \neq (0;0;0)$ حيث (P): ax + by + cz + d = 0

 $(a';b';c') \neq (0;0;0)$ حیث (P):a'x+b'y+c'z+d'=0

ac'-a' $c\neq 0$ أو bc'-b' $c\neq 0$ أو ab'-a' $b\neq 0$ أو ab'-a' أو ab'-a' أو ab

t یکون (P') و (P') متوازیین قطعا إذا وفقط إذا وجد عدد حقیقی غیر منعدم *

 $d' \neq td$ 9 c' = tc ; b' = tb ; a' = ta

t يكون (P') و (P') منطبقين إذا وفقط إذا وجد عدد حقيقي غير منعدم *

d'=tdو c'=tc ; b'=tb ; a'=taج- الأوضاع النسبية لمستقيم و مستوى في الفضاء

$$(D) = D(B; \vec{u}')$$
 $ext{ } ext{ } e$

 $\det(\vec{u}; \vec{v}; \vec{u}') = 0$ و(D) متوازیان إذا و فقط إذا كانت \vec{u} و \vec{v} و مستوائیة أي (D) -

 $\det(\vec{u}; \vec{v}; \vec{u}') \neq 0$ و(D) متقاطعان إذا و فقط إذا كانت \vec{u} و \vec{v} و \vec{v} عير مستوائية أي (D)

و (
$$D$$
) و (P) حیث (D) و (P) عتوازیان (P) و (P) عنان (P) و (P) عنان (P) و (P) عنان (P) و اخا کان (P) خان (P) عنان (P

افان (P) يوازي $B \notin (P)$ قطعا -

تمرين

. Cig(1;2;2ig) و Big(1;0;2ig) و في فضاء منسوب إلى معلم $Big(0;ec{i}\,;ec{j}\,;ec{k}ig)$ نعتبر النقط

ليكن (P) المستقيم المار من A و الموجه بالمتجهة $\vec{u}(1;0;2)$ و $\vec{u}(1;0;2)$ و الموجه بالمتجهة x+2y-z+3=0 الديكارتية

- (D) حدد تمثيلا بارامتريا للمستقيم -1
- (D) حدد معادلتين ديكارتيتين للمستقيم -2
- (ABC) عير مستقيمية ثم حدد معادلة ديكارتية للمستوى (ABC) عير مستقيمية ثم حدد (ABC)
 - (P) حدد تمثيلا بارمتريا للمستوى -4
 - (P) و (D) حدد تقاطع حدد
 - x+y-2z+1=0 نعتبر المستوى (P') المعرف بالمعادلة الديكارتية -6
 - أ- تأكد أن (P) و (P') يتقاطعان

 (Δ) عامتريا للمستقيم (Δ) تقاطع (P') و (P') عامتجهة موجهة لـ (Δ)

نمرين

:في فضاء منسوب إلى معلم $\left(O; \vec{i}\;; \vec{j}\;; \vec{k}\;\right)$ نعتبر المستويين

 (P_m) : 2x + 4y + mz - 2 = 0

(P): 2x + 4y - z - 3 = 0

(D): $\begin{cases} x = 1 + t \\ y = 1 - t \quad t \in \mathbb{R} \\ z = 2t \end{cases}$

حیث m بارامتری حقیقی

(P) أدرس حسب قيم m الوضع النسبي للمستويين (P_m) و

ig(Dig) و المستقيم الوضع النسبي للمستوى المستقيم m أدرس حسب قيم

