Specialisation

Quantum Engineering

ELECCH

168 Units of Credit

Faculty

Faculty of Engineering

School

School of Electrical Engineering & Telecommunications

Study Level

Undergraduate

Minimum Units of Credit

168

Specialisation Type

Honours

Overview

The progress of nanotechnology allows the fabrication of devices whose physical dimensions approach the atomic scale. For over 100 years, it has been known that the behaviour of physical systems at the atomic scale does not obey the familiar laws of classical physics. Atomic-size systems behave according to quantum mechanics, which allows them to exhibit rather spectacular properties and dynamics. This stream trains students to design and operate devices that behave according to quantum mechanics, opening the possibility to exploit the peculiar laws of quantum physics to perform otherwise cumbersome or impossible tasks, such as the efficient solution of computationally hard problems, or the secure teleportation of information. Graduates from this stream will have

valuable skills that position them ideally for the burgeoning quantum engineering industry, as well as broad skills across most key electrical engineering disciplines.

Learning Outcomes

1. Show proficiency of knowledge in the fundamental enabling sciences of quantum mechanics, mathematics, computer science and electromagnetics that underpins Quantum Engineering, and relate the physical laws of quantum mechanics to the fundamental principles of engineering.

Scholars

2. Identify, select and proficiently apply specialist technical knowledge and mathematical and computational tools to analyse engineered quantum and electrical systems and networks.

Scholars

3. Critically evaluate quantum and electrical devices and systems to solve complex open-ended problems and recognize their relevance to the future development of the discipline.

Scholars

4. Demonstrate a broad understanding of design and operation principles for engineered quantum systems and networks, and articulate future directions for the development of enhanced quantum devices and their application to problems of practical relevance in the fields of computing, communications, and sensing.

Scholars

5. Design, assemble and utilise classical electrical engineering devices, for example electronic and microwave devices and computational tools, needed to interface with and operate quantum systems.

Professionals

Scholars

Global Citizens

6. Lead and manage quantum engineering projects, individually or as part of an interdisciplinary team, in a systematic and professional manner.

Professionals

Scholars

Global Citizens

7. Synthesize engineering practices with norms and regulations of relevance to the safe and ethical application of engineered quantum systems.

Professionals

Scholars

Global Citizens

8. Demonstrate proficiency in the effective communication of systematic engineering synthesis, design processes, critical evaluation, and implications of results to all audiences, in particular as they apply to quantum engineered systems.

Graduate Capabilities

Available in Program(s)

Single degree program(s) in which this specialisation is available:

Bachelor of Engineering (Honours) - BE (Hons)

3707 - Engineering (Honours)

Faculty: Faculty of Engineering

Campus Sydney

Units of Credit: 192

Typical duration: 4 Year(s)

Read More 🔼

Specialisation Structure

Students must complete 168 UOC.

Level 1 Core Courses

42 Units of Credit:

Students must take 42 UOC of the following courses.

Level 1 Core Courses

→ COMP1511 6 UOC

Programming Fundamentals

→ ELEC1111 6 UOC

Electrical Circuit Fundamentals

→ DESN1000 Introduction to Engineering Design and Innovation	6 UOC
→ PHYS1231 Higher Physics 1B	6 UOC
One of the following:	
→ MATH1131 Mathematics 1A	6 UOC
OR	
→ MATH1141 Higher Mathematics 1A	6 UOC
One of the following:	
→ PHYS1121 Physics 1A	6 UOC
OR	
→ PHYS1131 Higher Physics 1A	6 UOC
One of the following:	
→ MATH1231 Mathematics 1B	6 UOC
OR	

Level 2 Core Courses

36 Units of Credit:

Students must take 36 UOC of the following courses.

→ DESN2000 6 UOC

Engineering Design and Professional Practice

→ ELEC2133 6 UOC

Analogue Electronics

→ ELEC2134 6 UOC
Circuits and Signals

→ ELEC2141 6 UOC

Digital Circuit Design

→ MATH2069 6 UOC

Mathematics 2A

→ MATH2099 6 UOC

Mathematics 2B

Level 3 Core Courses

42 Units of Credit:

Students must take 42 UOC of the following courses.

→ ELEC3104 6 UOC

Digital Signal Processing

→ ELEC3106 6 UOC

Electronics

→ ELEC3114	6 UOC
Control Systems	
→ ELEC3115	6 UOC
Electromagnetic Engineering	
→ ELEC3117	6 UOC
Electrical Engineering Design	
→ ELEC3705	6 UOC
Fundamentals of Quantum Engineering	
→ PHYS3118	6 UOC
Quantum Physics of Solids and Devices	

Level 4 Core Courses 36 Units of Credit:	
Students must take 36 UOC of the following courses.	
→ ELEC4122 Strategic Leadership and Ethics	6 UOC
→ ELEC4123 Electrical Design Proficiency	6 UOC
→ ELEC4605 Quantum Devices and Computers	6 UOC
→ ELEC4951 Research Thesis A	4 UOC
→ ELEC4952 Research Thesis B	4 UOC
→ ELEC4953 Research Thesis C	4 UOC

Breadth Electives

Students can take up to a maximum of 12 UOC of the following courses.

COMP2041	6 UOC	Software Construction: Techniques and Tools
COMP3211	6 UOC	Computer Architecture
COMP3231	6 UOC	Operating Systems
ELEC3145	6 UOC	Real Time Instrumentation
ENGG2600	2 UOC	Engineering Vertically Integrated Project
ENGG3001	6 UOC	Fundamentals of Humanitarian Engineering
ENGG3600	2 UOC	Engineering Vertically Integrated Project
ENGG4600	2 UOC	Engineering Vertically Integrated Project
MATH3101	6 UOC	Computational Mathematics for Science and Engineering
MATH3121	6 UOC	Mathematical Methods and Partial Differential Equations

MATH3161	6 UOC	Optimization
MATH3201	6 UOC	Dynamical Systems and Chaos
MATH3411	6 UOC	Information, Codes and Ciphers
TELE3113	6 UOC	Analogue and Digital Communications
TELE3118	6 UOC	Network Technologies

Discipline (Depth) Electives List

Students can take up to 12 UOC of the following courses.

ELEC4445	6 UOC	Entrepreneurial Engineering
ELEC4601	6 UOC	Digital and Embedded Systems Design
ELEC4602	6 UOC	Microelectronic Design and Technology
ELEC4603	6 UOC	Solid State Electronics
ELEC4621	6 UOC	Advanced Digital Signal Processing
ELEC4622	6 UOC	Multimedia Signal Processing

	1	
ELEC4631	6 UOC	Continuous - Time Control System Design
ELEC4632	6 UOC	Computer Control Systems
ELEC4633	6 UOC	Real-Time Engineering
PHTN4661	6 UOC	Optical Circuits and Fibres
PHTN4662	6 UOC	Photonic Networks
TELE4642	6 UOC	Network Performance
TELE4651	6 UOC	Wireless Communication Technologies
TELE4652	6 UOC	Mobile and Satellite Communications Systems
TELE4653	6 UOC	Digital Modulation and Coding

Enrolment Disclaimer

Please note that this Handbook is a comprehensive catalogue of our offerings and includes courses that can be taken to satisfy program requirements irrespective as to their availability for a particular year. Availability of courses is best checked using filters on this site or on the class timetable site.

You are responsible for ensuring that you enrol in courses according to your program requirements and by following the advice of your Program Authority. myUNSW enrolment checks that you have met enrolment requirements such as pre-requisites for individual courses but not that you are enrolling in courses that will count

towards your program requirements.

Pre-2019 Handbook Editions

Access past handbook editions (2018 and prior)

Pre-2019 Handbook Editions

