Riemann surfaces were historically introduced to deal with the multivalued nature of certain algebraic functions and their integrals.

* Eg. to evaluate $\int_{z_0}^{z_1} \frac{dz}{\sqrt{z_1^2+1}}$, you might use trig. substitutions (here: $z = \sinh(u)$)

but a more elegant approach is to think of this as a path integral on a Riemann surface: since $\sqrt{2}+1$ is not single-valued (2 choices wheneve $2\notin \{\pm i\}$), its graph is rather a 2-sheeted covering space of $\mathbb{C}\setminus \{\pm i\}$, $w=\pm\sqrt{2}-1$. If we vary z along eg. a circle around one of $\pm i$, the lift of this path to the civeing changes sheets: starting at w we come back to -w.

So : we introduce $\Sigma = \{(z,\omega) \in \mathbb{C}^2 / \omega^2 = z^2 + 1\}$ and now view z and ω as single-valued analytic functions on Σ rather than multivalued functions on Ω .

E is an example of a complex manifold - near each point of E we can we one of our on Z as local coordinate and express all quantities as analytic functions of it.

In particular, our integral is now best understood as $\int_{p_0}^{p_1} \frac{dz}{w}$ between points $[0,l_1 \in \Sigma]$. $p_0 = (z_0, u_0), p_1 = (z_1, u_1)$.

This is sometimes a pointless complication if you already had a clear mind about what to do with the integral but in general it can bring considerable insight.

* Here, the renal able fact is that Σ is biholomorphiz to a domain in the complex plane. Explicitly, in terms of the Rieman sphere S=Cusas, we have investe analytic bijections

$$S - \{\pm i\} \xrightarrow{\cong} \Sigma = \{(z, w) | 1^2 = z^2 + i\}$$

$$\lambda \longmapsto \left(\frac{2\lambda}{1 - \lambda^2}, \frac{1 + \lambda^2}{1 - \lambda^2}\right)$$

<u>₩-1</u> ← (2, w)

So: we can transform our path integral on Σ into one on $S-\{\pm 1\}$, by the change of variables $\omega=\frac{1+\lambda^2}{1-\lambda^2}$, $dz=d\left(\frac{2\lambda}{1-\lambda^2}\right)=\frac{2(1+\lambda^2)}{(1-\lambda^2)^2}d\lambda$.

So $\int_{P_0}^{P_1} \frac{dz}{w} = \int_{\lambda_0}^{\lambda_1} \frac{2 d\lambda}{1-\lambda^2}$ which is now easy to deal with by partial fractions.

* What's the geometry behind this change of variables - how does one come up with it?

 $\Sigma = \{(z, w) \in \mathbb{C}^2 | w^2 = z^2 + 1\}$ is an algebraic equation of degree 2, so its intersection with a (complex) line in \mathbb{C}^2 consists of (coupley) 2 points.

So: we can project it along the family of lines through a point $p_0 \in \Sigma$ (here (0,1)), and each of these lines meets Σ at p_0 and (usually) one other point.

(Compare u/ he idea of stereographic projection! SZCIR3 degree 2 eq?; it's the same conceptual idea, in C2 instead of R3)

The line of slope λ through po has eq $w = \lambda z + 1$ Plugging this into $w^2 = z^2 + 1$ gives a degree 2 equation in z (with coeffs degrading on λ), which always has z = 0 as one of its roots, so it's especially easy to find the other root! $(\lambda z + 1)^2 = z^2 + 1$

Ly line with slope λ through (Q1): $= \frac{2\lambda}{1-\lambda^2}$. W= $\lambda = 1$.

Abo, every point $p \in \Sigma$ ($p \neq p_0$) arises from this confinition, by taking the line (p_0p_0). (Special cases: for $\lambda=0$, L_{λ} is transport to Σ at p_0 so we get drusk root z=0. for $\lambda=\pm 1$, the other interction of L_{λ} and Σ goes missing ("at ∞ "). to obtain the point $(0,-1) \in \Sigma$, need to allow slope $\lambda=\infty$).

His gives a biholom. S-finite set } => E given by rational functions (say E is a rational curve; "curve" because it's complex t-dimensional) even though it looks achieve like a surface.... (real 2-d'inensional).

• This process allows us to evaluate path integrals on algebraic curves $\Sigma \subset \mathbb{C}^2$ defined by any quadratic polynomial $\mathbb{Q}(\mathbb{Z}, \omega) = 0...$ but then it breaks down.

P: calculate the arclarish of a protion of ellipse $x^2 + \frac{y^2}{2} = 1$ between $(x_0, y_0) \ k(x_1, y_1)$ If you write $y = \pm \sqrt{2(1-x^2)}$ and use $\int_{-x_0}^{x_1} \sqrt{1+dy} \, y_0^2 \, dx$ you end up with something like $\int_{-x_0}^{x_1} \sqrt{1+x^2} \, dx$. If you instead use parametric length, you end up with $\int_{-x_0}^{x_1} \sqrt{1+x^2} \, dx$. Managing this further we can reduce to e.g. $\int_{-x_0}^{x_1} \frac{dx}{\sqrt{1-x^4}} \, dx$.

But none of these "elliptic integrals" can be expressed in terms of known functions. So early 19th century mathematicians remained stuck until Riemann, Abel, ... provided the right view point - Riemann surfaces are needed to make sense of what's going on.

(This is a hopic at the interection of complex analysis, to pology, and algebraic yeareby!)

So we now look at the graph of $\sqrt{1-z^4}$; $\sum = \{(z,\omega) \in \mathbb{C}^2/w^2 = z^4-1\}$

Claim: the reason this one is so different from the precious one is that it's not an open subset of the Riemann sphere, but rather an open subset of a torus (an "elliptic cure" - he name comes from the problem of elliptic integrals & has strick) How do we see this? Ans: priject to the z-coordinate: (z,w) +> z. This map is a "branched lovering" - a two-sheeted weing map after we remove the roots p_i of the polynomial in Z (here $Z^4-1=9\pm1,\pm i$) from C, and $q_i=(p_i,0)$ from Z. \Rightarrow the map $\Sigma - \{q_i\} \xrightarrow{1} C - \{p_i\}$ is a 2:1 covering. The pi are branch points: the lift of a small circle around pi is a path that ends up on the opposite sheet of where it started (W H - W); in general, a loop in C-PAB lifts to a loop in Σ -{9;} iff the sum of its winding number around $p_1...p_q$ is even. Draw two arcs 8,8' in C connecting P1 to P2 and P3 to P4 (for example), and let U = C - (8U8'). Then any loop in U has even total winding number, so lifts to a loop in S Hence the retricted evering map from $V=\pi^*(U)$ to U is trivial: $V=V_+UV_-$, $\pi_{|V_+|}:V_\pm^-\to U$. making the slits in there planes more visible: Adding Lack in the missing ares YUX', the litt of a path in a jumps between the the sheets V+ each time it crosses & U 8', so E is obtained from V by attacking one

side of each slit in each sheet to the other side of the same slit in the other plane.

The implication for complex analysis is that, since Σ isn't simply connected, path integrals an it depend on the path of integration.

(or another polynomial of deg. 3 or 4) with simple roots • $\frac{dz}{L}$ is achally an analytic 1-form on $\overline{\Sigma}$, without poles a zeroes (at $(z, u) = (p_i, 0)$, the local coordinate on Σ is actually w, not z, but $w^2 = P(z) \sim 2w dw = P(z) dz = \frac{dz}{w} = \frac{2 dw}{P'(z)}$ no pole).

· the integral $\int_{P_0}^{\Gamma} \frac{dz}{w}$ is invavant under path homotopy (Cauchy) but depends on homotopy class. Chook loops α_{1}, α_{2} generating $\pi_{1}(\overline{\Sigma}) \simeq \overline{\mathbb{Z}}^{2}$, then a change of homotopy class modifies the value of $\int by$ on integer linear combination of the periods $\omega_1 = \int_{\alpha_1} \frac{dz}{w}$, $\omega_2 = \int_{\alpha_2} \frac{dz}{w}$. given 2 pales $P: \mathbb{Z}^{P_1}$, $[8-8'] = m_1[\alpha_1] + m_2[\alpha_2]$ for some $m_1, m_2 \in \mathbb{Z}$

=) $\int_{Y} - \int_{Y'} = m_1 \omega_1 + m_2 \omega_2$. • $\int_{R}^{P} \frac{dz}{w} = F(p)$ define an analytic mapping $\overline{\Sigma} \xrightarrow{F} \mathbb{C}/2\omega_1 \oplus 2\omega_2$ which - convot be expressed in terms of elentiting functions

- has everywhere nonzer deivalive, so Fis a local homeomorphism, and in fast a covering map.

- by winding number arguments (if you're a complex analyst) or studying the map on hudanetal groups (if you're a topologist), #F-'(c)=1 Vc, so in fact F is a biholomorphism.

· What is the inverse of F? Ans: a doubly periodic function! (& We'estray P- Function)

The We'estrass P- function: look for doubly periodic functions f(z+ux) = f(z+uz) = f(z)? If f is analytic then it's bounded hence contrast, so the only interesting such functions are meromorphic. Residue formula interesting around a large paralleleanan. meromorphic. Residue formula integrating around a large parallelegram ω_2 $\Rightarrow \Sigma$ of residues in fundamental domain must be zero ω_2 ω_3 ω_4 ω_4 ω_5 ω_6 ω_8 (since path 5 linear in N vs. ERes quadratiz in N) as can't have just a single pole of order 1 in the fundamental domain.

The simplest of all either have one pole of order 2, or 2 poles of order 1, in 12/1 We'estrass' starting point has a pole of order 2, with vanishing residue =) up to translation $Z \mapsto Z - a$ we can place the pole at 0, polar part $\frac{1}{Z^2}$ Following our study of infinite sums and how to achieve convergence, this leads to $\mathcal{P}(z) = \frac{1}{z^2} + \sum_{\omega \neq 0} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right) \quad (\omega = n_1 \omega_1 + n_2 \omega_2, (n_1, n_2) \in \mathbb{Z}^2 \{0, 0\} \}$ the Weierstrass P-function.

This seize converges uniformly on compact sets (using: $\sum_{\omega\neq 0} \frac{1}{|\omega|^3} < \infty$) $P'(z) = -2 \sum_{\omega} \frac{1}{(z-\omega)^3}$ is duringly periodic, so $P(z+\omega_1) - P(z) = cont$. $P(z+\omega_2) - P(z) = cont$. But clearly P(z) is an even function $P(-z) = P(z) \Rightarrow \text{take } z = \frac{\omega_1}{z}, z = \frac{\omega_2}{z}$ in to get I is periodic too. Working on the Laurest expansions at z=0 (contact term vanishes;
odd terms vanish since I even) $P(z) = \frac{1}{z^2} + \frac{3}{20}z^2 + \frac{3}{28}z^4 + \dots$ for some combats $g_2, g_3 \in C$ (depending on ω_1, ω_2). $P'(z) = \frac{-L}{z^3} + \frac{32}{10}z + \frac{33}{7}z^5 + \cdots$ $\Rightarrow \beta'(z)^2 = 4\beta(z)^3 - g_2\beta(z) - g_3$ $\Rightarrow \mathcal{P}'(z)^2 = \frac{4}{z^6} - \frac{2g_2}{5z^2} - \frac{4g_3}{7} + \cdots$ (polar parts match, so equal up to entire periodic function = constant, but constant terms match too) $vs. 4 \mathcal{P}(z)^{3} = \frac{4}{z^{6}} + \frac{3g_{2}}{5z^{2}} + \frac{3g_{3}}{7} + \cdots$ Outcome: $z \mapsto (S(z), S'(z))$ gives a biholomorphism $\mathbb{C}/\mathbb{Z}\omega_1+\mathbb{Z}\omega_2 \stackrel{\simeq}{\longrightarrow} \{(x,y)\in\mathbb{C}^2/y^2=4x^3-g_2x-g_3\} \cup \{\infty\}$ (another elliptic wee!) $dS(z) = S'(z) dz \Rightarrow dz = \frac{dS(z)}{S'(z)} = \frac{dx}{y}, ie. he invert furtion is <math display="block">\int \frac{dx}{y} = \int \frac{dx}{\sqrt{4x^3 - g_2 x - g_3}}$ This is almost what we had in the other direction, except this one has one of the 4 branch points at 00, unlike our previous example when all 4 P. E.C. Simple coordinate transformations by rational functions let us anitch between the two. * One more next fact to end with: consider $f(x,y) \in \mathbb{Q}[x,y]$ polynomial w/ rational coefficients.

A One more next fact to end with: consider $f(x,y) \in \mathbb{Q}[x,y]$ polynomial $\sqrt{\text{rational coefficient}}$ \mathbb{Q} ; how mony rational solutions $\{(x,y) \in \mathbb{Q}^2 / f(x,y) = 0\}$?

In fact the answer is governed by the topology of the Riemann surface Σ obtained by compactification of $\Sigma = \{(x,y) \in \mathbb{C}^2 / f(x,y) = 0\}$, specifically its genus g = 0 If g = 0 (rational curve, $\cong S = \mathbb{C} \cup \{\infty\}$) or 1 (elliptic $\cong \mathbb{C}/\mathbb{Z} \cup_1 \oplus \mathbb{Z} \cup_2$) $\cong g = 1$ then alg. operations (eg addition in elliptic curve) yield new rational solutions g = 0 from known ones, so # sol's one \mathbb{Q}^2 can be infinite

Than (Faltings) If $g \neq 2$ then here are only finitely many rational solutions.

(It this point we've brought together algebra, analysis, topology, geometry & number theory!)

This is a good place to end Math 55.