Introduction to deep learning

INTRODUCTION TO DEEP LEARNING IN PYTHON

Dan Becker

Data Scientist and contributor to Keras and TensorFlow libraries

Example as seen by linear regression

Example as seen by linear regression

Model with no interactions

Example as seen by linear regression

Interactions

- Neural networks account for interactions really well
- Deep learning uses especially powerful neural networks
 - Text
 - Images
 - Videos
 - Audio
 - Source code

Course structure

- First two chapters focus on conceptual knowledge
 - Debug and tune deep learning models on conventional prediction problems
 - Lay the foundation for progressing towards modern applications
- This will pay off in the third and fourth chapters

Build and tune deep learning models using keras

```
import numpy as np
from keras.layers import Dense
from keras.models import Sequential
predictors = np.loadtxt('predictors_data.csv', delimiter=',')
n_cols = predictors.shape[1]
model = Sequential()

model.add(Dense(100, activation='relu', input_shape = (n_cols,)))
model.add(Dense(100, activation='relu'))
model.add(Dense(1))
```

Deep learning models capture interactions

Interactions in neural network

Forward propagation

INTRODUCTION TO DEEP LEARNING IN PYTHON

Dan Becker

Data Scientist and contributor to Keras and TensorFlow libraries

Bank transactions example

- Make predictions based on:
 - Number of children
 - Number of existing accounts

Forward propagation

Forward propagation

- Multiply add process
- Dot product
- Forward propagation for one data point at a time
- Output is the prediction for that data point

Forward propagation code

Forward propagation code

```
hidden_layer_values = np.array([node_0_value, node_1_value]
print(hidden_layer_values)
```

[5, 1]

```
output = (hidden_layer_values * weights['output']).sum()
print(output)
```

S

Activation functions

INTRODUCTION TO DEEP LEARNING IN PYTHON

Dan Becker

Data Scientist and contributor to Keras and TensorFlow libraries

Linear vs Nonlinear Functions

Activation functions

Applied to node inputs to produce node output

Improving our neural network

Activation functions

ReLU (Rectified Linear Activation)

$$RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > = 0 \end{cases}$$

Activation functions

```
print(output)
```

1.2382242525694254

Deeper networks

INTRODUCTION TO DEEP LEARNING IN PYTHON

Dan Becker

Data Scientist and contributor to Keras and TensorFlow libraries

Multiple hidden layers

Calculate with ReLU Activation Function

Multiple hidden layers

Calculate with ReLU Activation Function

Representation learning

- Deep networks internally build representations of patterns in the data
- Partially replace the need for feature engineering
- Subsequent layers build increasingly sophisticated representations of raw data

Representation learning

Deep learning

- Modeler doesn't need to specify the interactions
- When you train the model, the neural network gets weights that find the relevant patterns to make better predictions