Числа на Каталан

Алекс Цветанов Йоана Кичева Маргарита Стефанова

Научен ръководител: Ваня Данова

Свойства и приложения

Интересни факти

Задачи

Числата на Каталан представляват числова редица, която се използва в много аспекти от информатиката и математиката. С Сп ще означаваме

n-тото число от редицата. То се изчислява по следната формула:

Програма

НАЗАД

H А З А Д

Т P Α П Ε Ц Н Α K Α Т Α Л Α Н

P И Ъ Γ Ъ Л Н И K Н Α K Α Т Α Л Α Н

П Ъ Л Н O <u>Д</u> В 0 И Ч Н O Д Ъ Р В 0

И 3 3 Д Б P Я Α Γ В В И Α C Щ В И Α Н Ε Д И Α Н Γ Α O Н K P Α Ъ Л Γ Α Л П Α Ъ Т M И Α C Щ Α Α

ПОЛИОМИНО

P E Д Н Α У M Н 0 Ж E Н И E

П Л Α Н И Н C K И В Ε P И И

П P Α В И Л Н 0 П 0 Д Р Ε Ж Д Α Н Ε Н Α C K O Б И

Т Р И Α Н Γ У Л Α Ц И Я

Проблем

Разполагаме с изпъкнал многоъгълник. Върховете му са номерирани от 1 до n. Можем да правим разрез по отсечка, съединяваща два произволни несъседни върха на многоъгълника. Целта ни е след няколко разреза да получим само триъгълници.

Решение

1)Избираме коя да е линия от даден *п*-ъгълник.

2)След прилагането на метода на триангулация, тя ще бъде страна на точно един триъгълник от общо *n-2* възможни.

3)Във всеки случай при избран триъгълник има оставащи многъгълници, за които също се прилага медода на триангулация.

Правилен осмоъгълник има $C_{8-2} = C_6$ начина за триангулиране. На показаната фигура той е разделен на триъгълник и седмоъгълник.

Процесът на триангулиране продължава, като разгледаме и

двете страни:

- 1) за триъгълника метода се прилага по C_o начина.
- 2) за седмоъгълника- по $C_{7-2} = C_5$ начина
- 3) общо по *C₀.C₅*

Този осмоъгълник пък е разделен на 2 триъгълника и един шестоъгълник. От тук следва, че начините за триангулитане са:

Правим същото и за останалите случаи.

Накрая получаваме, че начините за триангулиране на правилен осмоъгълник са:

$$C_6 = C_5 C_0 + C_4 C_1 + C_3 C_2 + C_2 C_3 + C_1 C_4 + C_0 C_5$$

НАЗАД

Програма

Имаме *п* чифта от скоби. Искаме да направим валидни групи от тях, където валидно означава за всяка отваряща скобка да има затваряща.

Ако в редицата заменим "(" с 1, а ")" с -1 (минус едно), когато съберем елементите на редицата трябва да получим 0.

Решение

Във всяка правилна редица от скоби, първият елемент винаги е отваряща скоба. Някъде в редицата има затваряща скоба, която затваря първата.

Между този чифт и вдясно от него има друга правилна последователност от скоби.

(A)B, където A и B са правилни последователности от скоби.

А и В общо съдържат *n-1* чифта скоби. А съдъжа *k* чифта, а В *n-k-1* чифта. По този начин ние можем да преброим всички конфигурации, където:

n = 0:	*	1 way
n = 1:	()	1 way
n = 2:	()(), (())	2 ways
n = 3:	()()(), ()(()), (()()), ((()())	5 ways
n = 4:	()()()(), ()(((()), ()(())(), ()((())), ()((())),	14 ways
	(())(()), (())(()), (()())(), ((()))(), (()()()),	
	(()(())), ((())()), ((()())), (((())))	
n = 5:	()()()(), ()()((()), ()((())(), ()(((())), ()(((())),	42 ways
	()(())(()), ()(())(()), ()(()())(), ()((()))(), ()(()(())),	
	()(()(())), ()((())()), ()((()())), ()(((()))), (())()(),	
	(())(()), (())(())(), (())(()()), (())((())), (()()()),	
	(()())(()), ((()))((), ((()))(()), (()(()))(), (()(()))(),	
	((())())(), ((()()))(), (((())))(), (()()()()	
	(()(())()), (()(()())), (()((()))), ((())()), ((())(())	
	((()())()), (((())()), ((()(()())), ((()(()))), (((())())), (((()()())))	
	(((()()))), ((((()))))	

А има 0 чифта и В има n-1 чифта А има 1 чифта и В има n-2 чифта А има 2 чифта и В има n-3 чифта ...

A има *n-1* чифта и *B* има *0* чифта

$$C_n = C_0 \cdot C_{n-1} + C_1 \cdot C_{n-2} + C_2 \cdot C_{n-3} + C_3 \cdot C_{n-4} + \dots + C_{n-1} \cdot C_0$$

НАЗАД

Програма

За да обясним планинските вериги ще използваме приликата им със скобите. Отварящата скобка съответства на "/", а затварящата на "\".

Ако заменим "/" с 1, а "\" с -1 (минус едно) и съберем елементите на редицата, трябва да получим нула.

Особеността на планинската верига е, че никога няма да достигне под хоризонта.

Проблем

Колко планински вериги можем да формираме от *п* чифта "/" и "\", така че всички символи да стоят над хоризонта?

Решение

Валидна планинска верига има n "/" и n "\". Ако пренебрегнем дали пътят е валиден или не, имаме n "/", които можем да изберем от общо 2n символа. Тоест питаме по колко начина можем да пренаредим n "\" и n "\".

Отговорът е $\binom{2n}{n}$

Сега трябва да извадим невалидните вериги.

P- точката, в която невалидна верига докосва за първи път хоризонта.

Променяме редицата от символи, започваща от *P*, като заменяме "/" с "\" и обратното.

Ясно е, че всяка верига, съдържаща n+1 "/" n-1 "\", ще завършва 2 стъпки над хоризонта. Обратното, всяка верига, завършваща 2 стъпки над хоризонта, ще бъде от този вид и ще съответства на точно една невалидна верига.

Колко такива невалидни вериги има?

- колкото е броя на начините да изберем *n*+1 "/" от общо *2n* символа.

$$C_n = {2n \choose n} - {2n \choose n+1} = {2n \choose n} - \frac{n}{n+1} \cdot {2n \choose n} = \frac{1}{n+1} \cdot {2n \choose n}$$

Имаме множество от n+1 числа. Без да променяме реда на числата, можем да ги умножим по много начини. Нека да разгледаме (a (((b c) d) e)).

1) Изтриваме всичко, освен точките и затварящите скоби

2) Заменяме точките с отварящи скоби

По колко начина можем да променяме зададения

ред?

По колко начина можем можем можем ред?

Решение

Тъй като можем да представим реда на умножение като правилна последователност от скоби , то изводът ни е същия.

n=0	(a)	1
n=1	(a·b)	1
n=2	$((a\cdot b)\cdot c), (a\cdot (b\cdot c))$	2
n=3	$(((a\cdot b)\cdot c)\cdot d),\ ((a\cdot b)\cdot (c\cdot d)),\ ((a\cdot (b\cdot c))\cdot d),\ (a\cdot ((b\cdot c)\cdot d)),\ (a\cdot (b\cdot (c\cdot d)))$	5
n=4	$ ((((a \cdot b) \cdot c) \cdot d) \cdot e), \ (((a \cdot b) \cdot c) \cdot (d \cdot e)), \ (((a \cdot b) \cdot ((c \cdot d) \cdot e)), \ (((a \cdot b) \cdot ((c \cdot d) \cdot e)), \ (((a \cdot (b \cdot c)) \cdot (d \cdot e)), \ (((a \cdot ((b \cdot c) \cdot d) \cdot e), \ ((a \cdot ((b \cdot (c \cdot d))) \cdot e), \ (a \cdot ((((b \cdot c) \cdot d) \cdot e)), \ (a \cdot ((((b \cdot (c \cdot d) \cdot e))), \ (a \cdot (((((a \cdot ((a \cdot ((((((((((((((((($	14

$$C_n = C_0 \cdot C_{n-1} + C_1 \cdot C_{n-2} + C_2 \cdot C_{n-3} + C_3 \cdot C_{n-4} + \dots + C_{n-1} \cdot C_0$$

НАЗАД

Програма

Неправилното полиомино се представя като мрежа от еднакви квадрати, на която:

- 1.) колоните от ляво свършват по-надолу или са на същото ниво с колоните отдясно.
- 2.) колоните отляво винаги започват понадолу или са на същото ниво от този на колоните отдясно.
- 3.) ако намерим периметъра на неправилните полиоминота ще получим 2n+2.

Ако преброим неправилните полиоминота, които имат периметър 2n+2 ще получим C_n . Важно е, че периметърът е фиксиран, а не броят на квадратчетата в полиоминото.

n = 1	
n=2	
n=3	
n=4	

НАЗАД

Програма

В квадратна таблицата *n x n* построяваме валидни пътища с дължина 2n, които започват от долния ляв ъгъл и завършват в горния десен и не пресичат диагонала.

Проблем

По колко начина можем да построим валиден път в таблица *n x n*?

Решение

Ще преброим всичките възможни пътища и после ще извадим невалидните.

Р-точката, в която невалиден път пресича диагонала за първи път.

Ще променим всеки път започващ от *P*, като заменим всеки ход надясно с ход нагоре и обратното.

1.) Преди да изменим пътя.

Разглеждаме пътя от началото до P. Ходовете надясно (κ) са с 1 по-малко от ходовете нагоре (κ +1).

Целият път има n хода надясно и n хода нагоре, следователно остават n-k хода надясно и n-k-1 хода нагоре.

2.) След като изменим пътя.

От P до края имаме n-k-1 стъпки надясно и n-k стъпки нагоре. Общо (k) + (n - k - 1) = n - 1 стъпки надясно и (k + 1) + (n - k) = n + 1 стъпки нагоре.

Така всички изменени пътища продължават *n-1* стъпки надясно и *n+1* стъпки нагоре.

Така всички изменени пътища продължават n-1 стъпки надясно и n+1 стъпки нагоре. Всеки невалиден път може да бъде изменен по този начин и всеки път, започващ от началната точка и продължаващ n+1 стъпки нагоре и n-1 стъпки надясно съответства на точно един лош път. Така че броят на невалидните пътища е равен на броят на маршрутите в тази мрежа , която е (n-1) x (n+1).

Броят на пътищата през $n \times n$ мрежа е: $\binom{2n}{n}$

Броят на невалидните пътища е $\binom{2n}{n+1}$

Следователно броят на избягващите диагонала пътищата е

равен на:

$$C_n = {2n \choose n} - {2n \choose n+1} = {2n \choose n} - \frac{n}{n+1} \cdot {2n \choose n} = \frac{1}{n+1} \cdot {2n \choose n}$$

Проблем

Колко са начините, по които 2n на брой хора, седнали около кръгла маса, могат да се здрависат, без никои две двойки да си кръстосват ръцете?

Решение

Ако има *п* човека на масата, избираме някого и той се здрависва с друг. Този човек трябва да се здрависа и с хората от двете страни на вече здрависалия се с него. Има *n-1* човека, с които може да се здрависа.

- 1.) *0* от ляво и *n-1* от дясно
- 2.) 1 от ляво и *n-2* от дясно

. . .

n.) *n-1* от ляво и *0* от дясно.

$$C_n = C_0 \cdot C_{n-1} + C_1 \cdot C_{n-2} + C_2 \cdot C_{n-3} + C_3 \cdot C_{n-4} + \dots + C_{n-1} \cdot C_0$$

НАЗАД

Програма

В информатиката двоично дърво е структура, в която всеки родител (връх) има наймного 2 деца (разклонения). Те се наричат ляво и дясно. Пълното двоично дърво е двоично дърво, в което всеки родител има 0 или 2 деца.

- h височина на дървото(дължината на пътя от корена до най-долното разклонение)
- 1.) Броят на всичките върхове е най-малко 2h + 1
- 2.) Броят на всичките върхове е най-много 2^{h+1} -1, Дърво съдържащо само начален корен има височина 0.

Проблем

По колко начина можем да построим дърво с височина *n*?

Решение

Очевино има един начин да направим двоично дърво с нула върхове. При дърво с *п* върха единият е корен и остават *n-1*, които се разпределят отляво и отдясно. Това може да се представи като

- 1.) *0* отляво и *n-1* отдясно
- 2.) *1* отляво и *n-2* отдясно

. . .

n) *n-1* отляво и *0* отдясно

При това разпределение можем да получим рекурентна зависимост.

НАЗАД

Програма

Триъгълник на Каталан

В комбинаториката триъгълникът на Каталан е триъгълник,

където:

```
1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
```

- 1) първият елемент от всеки ред е 1
- 2) всеки елемент е равен на сбора от горния и левия
- 3) сумата на всеки ред е равна на последния елемент на следващия ред
- 4) последният елемент от $n^{-\text{тия}}$ ред е равен на $n^{-\text{тото}}$ число на Каталан, където редовете се броят от 0.

Елемент от колона k и ред n, където редовете и колоните се броят от 0, се получава по следната формула: (n+1-k)(n+k)I

 $\frac{(n+1-k)(n+k)!}{k!(n+1)!}$

Catalan's conjecture

Трапец на Каталан

В комбинаториката трапец на Каталан е трапец, където:

```
1 1 1
1 2 3 3
1 3 6 9 9
1 4 10 19 28 28
...
```

- 1) първият елемент от всеки ред е 1
- 2) първият ред има m на брой единици
- 3) всеки елемент е равен на сбора на горното и лявото число
- 4) сумата на всеки ред е равна на последния елемент на следващия ред

НАЗАД

Програма

Биография

Йожен Каталан(1814-1894г.)
е роден в днешна Белгия
Получил е образованието
си в Парижкото
политехническо училище.
Отначало бил професор в
Шалонския борд, после
преподавател в училището,
което завършил.

НАПРЕД

Работа

Той е работил върху повтарящи се дроби, описателна геометрия, теория на числата и комбинаторика. Йожен представил решение на пробеми от комбинаториката чрез числова редица, която носи неговото име.

НАЗАД

<u>Задача 1:</u>

По колко начина могат да се разположат числата от 1 до 2n в таблица от 2 редици и n стълба така, че във всяка от редиците числата отляво надясно да нарастват и всяко число от по-долната редица да бъде по-малко от числото над него?

Нека разгледаме произволно подреждане на п чифта скоби. Нека заменим скобите с числата от 1 до 2п, започвайки с 1, и да ги поставим в таблица с размери 2 х п, като в долния ред поставим числата съответстващи на отваряща скоба,а в горния - тези, съответстващи на затваряща. Очевидно числата в редовете нарастват и всяко долно число в k-ти стълб е по-малко от това над него, защото оговарят съответно на к-тата отваряща и затваряща скоба (отварящата винаги е преди затварящата). Оттук следва, че всеки един начин за подреждане на скобите може да бъде представен по единствен начин в таблицата. Следователно начините за попълването на таблица 2хп са колкото начините за правилно подреждане на п чифта скоби.

НАЗАД

Следваща задача

<u>Задача 2:</u>

Да се докаже, че: $C_{n+1} = C_n \frac{4n+1}{n+2}$

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

$$C_{n+1} = \frac{1}{n+2} \binom{2(n+1)}{n+1} = \frac{(2n+1)!}{(n+2)!(n+1)!}$$

$$C_{n+1} = \frac{(2n+1)(2n+2)(2n)!}{(n+1)(n+2)(n+1)!n!}$$

$$C_{n+1} = \frac{2(2n+1)}{n+2}C_n = \frac{4n+2}{n+2}C_n$$

<u>Задача 4:</u>

Върху окръжност са дадени 2n точки. Да се намери броят на всички различни начини, по които могат да се прекарат п непресичащи се хорди, така че от всяка точка да излиза точно 1 хорда?

Хордите не се пресичат и всяка от тях минава точно през 2 точки. Следователно броят на начините за построението на хордите през 2n точки е равен на броят на начините за здрависване на 2n човека около кръгла маса, където всеки човек съответства на една точка, а всяка хорда- на едно ръкостискане.

Окончателно отговорът е:

$$\frac{1}{n+1} \binom{2n}{n}$$

<u>Благодарим за</u> <u>вниманието!!!</u>

<u>Задача 2:</u>

В кафене има 2п човека, като всеки от тях иска да си поръча кафе, което струва 50 ст. Половината от тези хора имат 50 ст., а другата половина 1 лв. на цяло.В началото продавачът нямал никакви пари.Да се намери броят на начините, по които тези хора могат да си купат кафе, така че рестото им (ако има такова) да се връща в момента на покупката.

Ясно е, че броят на хората с 1 лв., купили си кафе, не може да надминава този на хората с 50 ст.. Освен това има по равен брой хора от двата вида. От тук следва, че всеки човек с 50ст. можем да заместим с "(", а всеки с 1лв. - с ")". Следователно начините за подредба на *п* чифта скоби и търсеният в задачата отговор съвпадат. Окончателно отговорът е :

$$\frac{1}{n+1} \binom{2n}{n}$$

НАЗАД

Следваща задача