Gluing Problems

Jesse Kass

Spring 2015

Problem 1

In this problem k is your favorite field and $p(x) \in k[x]$ is your favorite monicdegree 2g + 2 polynomial

$$p(x) = x^{2g+2} + a_1 x^{2g+1} + a_2 x^{2g} + \dots + a_{2g+1} x + a_{2g+2}$$

with distinct roots in \overline{k} . Set

$$q(u) = a_{2g+2}x^{2g+2} + a_{2g+1}x^{2g+1} + \dots + a_1x + 1.$$

- 1. Prove that the affine scheme $U := \operatorname{Spec}(k[x,y]/(y^2 p(x)))$ is normal. (One approach is to prove directly that the localization of $R := k[x,y]/(y^2 p(x))$ at a prime is either a field or a discrete valuation ring. Another approach is to use Serre's Criteria for normality, a criteria you should google if you haven't seen it before.)
- 2. Construct an open immersion $U \to X$ for X the projectivization of $k[X,Y,Z]/(Y^2Z^{2g}-p(X))$. (Geometrically this is the closure of $U \subset \mathbb{A}^2_k$ in \mathbb{P}^2_k .)
- 3. Give an alternative description of X as the scheme obtained by glueing together a finite collection of affine schemes. (You can do this by looking at the three different dehomogenizations of $Y^2Z^{2g} p(X)$.)
- 4. Define Y to be the scheme obtained by glueing U to $V = \operatorname{Spec}(k[u,v]/(v^2 q(u)))$ by the isomorphism

$$k[x,y]/(y^2 - p(x))[x^{-1}] \to k[u,v]/(v^2 - q(u))[u^{-1}],$$

 $x \mapsto u^{-1},$
 $y \mapsto v/u^{g+1}.$

Prove that Y is well-defined (i.e. that the morphism actually is an isomorphism), that Y contains U as a dense open subset, and that Y is NOT isomorphism to X. (For the last part, one approach is to show that X is normal but Y is not.)

5. Construct a morphism $Y \to X$ that restricts to the identity $U \subset Y \to U \subset X$. Can you construct a morphism $X \to Y$ that restricts to the identity $U \subset X \to U \subset Y$?