CS345 Assignment 3

Siddharth Agrawal (150716) AviRaj (150168)

September 24,2017

Question 1

Part 2

Algorithm

Algorithm 1 Algorithm to assign weights to the edges in G = (V, E) such that all edges from s to t have unique pathids

```
1: function UNIQUEPATHID(G, s, t)
        Apply topological ordering algorithm on graph G
                                                                                                                  \triangleright As given in class
        Num[t] \leftarrow 1
 3:
        for each v \in V \setminus \{t\} in decreasing order of the value of \tau_v do
                                                                                          \triangleright \tau_v = \text{topological number of vertex } v
 4:
            Num[v] \leftarrow 0
 5:
            for each edge (v, w) \in E, w \in V do
 6:
                w[v, w] \leftarrow Num[v]
 7:
                Num[v] \leftarrow Num[v] + Num[w]
 8:
            end for
 9:
10:
        end for
        return w
12: end function
```

In the above algorithm, the meaning of the various variables used are -

```
G = The given DAG

V = Set of vertices in G

E = Set of edges in G

s = Root vertex of the DAG G

t = Exit vertex of the DAG G
```

Num = array storing the number of paths to the exit vertex t, i.e., Num[v] = number of distinct paths from v to t w = 2D array storing the egde weights, i.e., w[v, w] = weight of edge (v, w)

Proof of Correctness

Lemma (1.1). Num[v] in the above Algorithm denotes the number of distinct paths from v to t.

Proof. We prove this lemma using induction on topological number τ in decreasing order.

Base Case.

 $\tau_v = |V| - 1$. Here v = t, i.e., the exit vertex. Hence Num[v] = 1 is trivial.

Induction Step.

Induction Hypothesis: Num[w] follows the given lemma $\forall w \in V$ such that $i \leq \tau_w \leq |V| - 1$ let $v \in V$ and $\tau_v = i - 1$.

Number of paths from v to $t = \sum_{(v,w) \in E} \text{Number of paths from } w$ to t.

Using induction hypothesis -

Number of paths from v to $t = \sum_{(v,w) \in E} Num[w] = Num[v]$ (As per the above Algorithm).

Hence Num[v] denotes the number of distict paths from v to t.

Theorem (1.2). In the above Algorithm, when we assign weights to the edges originating from v, then it is ensured that the pathids of all the paths from v to t are **unique** and have value in the range 0 to Num[v] - 1.

Proof. We prove this theorem using induction on topological number τ in decreasing order.

Base Case.

 $\tau_v = |V| - 1$. Here v = t, i.e., the exit vertex. Hence theorem is trivially satisfied since only one path is present. **Induction Step.**

Induction Hypothesis: The theorem holds $\forall w \in V$ such that $i \leq \tau_w \leq |V| - 1$.

Consider $v \in V$ such that $\tau_v = i - 1$.

Suppose edges from v end up at vertices $w_1, w_2,, w_k$.

Consider edge $(v, w_i), j \in [k]$

Using induction hypothesis, pathids of all paths from w_i to t uniquely lie between 0 to $Num[w_i] - 1$.

As per our Algorithm, weight of edge $(v, w_j) = \sum_{l=1}^{j-1} Num[w_l]$.

Therefore, all paths from v to t, starting with edge (v, w_j) , have unique pathids in the range $\sum_{l=1}^{j-1} Num[w_l]$ to $\sum_{l=1}^{j} Num[w_l] - 1$.

Hence pathids of any path from v to t lie uniquely in the range 0 to Num[v] - 1 (: $Num[v] = \sum_{l=1}^{k} Num[w_l]$).

Using the above theorem, we get that all paths from s to t have unique pathids in the range 0 to N-1. Thus our algorithm is correct.

Complexity Analysis

Time Analysis:

Topological Ordering takes O(m+n) time.

In the rest of the Algorithm, since we run a loop on the number of vertices (O(n)) and in each loop we inspect all edges $(\sum O(m_i) = O(m))$, hence its time complexity is O(m+n).

Hence total time complexity of our Algorithm is O(m+n).

Space Analysis:

We only need O(n) extra space to maintain the array Num which stores the number of paths to exit vertex t.

Question 2

Part 2

Algorithm

Algorithm 2 Algorithm to check if the graph G is a unique path graph, given vertex s reachable to all other vertices

```
1: function DFS(v)
        Visited[v] \leftarrow true
 2:
 3:
        D[v] \leftarrow count + +
        HighPoint_1[v] \leftarrow D[v]
 4:
 5:
        HighPoint_2[v] \leftarrow D[v]
 6:
        for each edge (v, w) do
            if Visited[w] = false then
 7:
 8:
                (HP_1, HP_2) \leftarrow \text{DFS}(w)
               if HP_1 < HighPoint_1[v] then
 9:
                   if HP_2 < HighPoint_1[v] then
10:
                        HighPoint_2[v] \leftarrow HP_2
11:
                    else if HP_2 < HighPoint_2[v] then
12:
                        HighPoint_2[v] \leftarrow HighPoint_1[v]
13:
                   end if
14:
                    HighPoint_1[v] \leftarrow HP_1
15:
               else if HP_1 < HighPoint_2[v] then
16:
                    HighPoint_2[v] \leftarrow HP_1
17:
               end if
18:
            else
19:
               if Finished[w] = true then
20:
                    UniquePathGraph \leftarrow false
21:
                    break
22:
23:
                else
                   if D[w] < HighPoint_1[v] then
24:
                        HighPoint_2[v] \leftarrow HighPoint_1[v]
25:
                        HighPoint_1[v] \leftarrow D[w]
26:
                    else if D[w] < HighPoint_2[v] then
27:
                        HighPoint_2[v] \leftarrow D[w]
28:
29:
                    end if
               end if
30:
            end if
31:
        end for
32:
        if HighPoint_2[v] < D[v] then
                                                   \triangleright \exists at least 2 backedges from the subtree rooted at v to its ancestors
33:
34:
            UniquePathGraph \leftarrow false
35:
        end if
        Finished[v] \leftarrow true
36:
        return (HighPoint_1[v], HighPoint_2[v])
37:
   end function
38:
39: function MAIN()
40:
        UniquePathGraph \leftarrow true
        for each v \in V do
41:
            Visited[v] \leftarrow false
42:
            Finished[v] \leftarrow false
43:
        end for
44:
        count \leftarrow 0
45:
        DFS(s)
46:
       if UniquePathGraph = true then
47:
            print: G is a unique-path graph
48:
49:
        else
                                                                3
50:
            print: G is not a unique-path graph
        end if
51:
52: end function
```

In the above Algorithm, the meaning of the various variables used are -

Visited = Array to check whether a vertex has been visited or not

 $HighPoint_1 = HighPoint_1[v]$ stores the earliest ancestor to which there exists an edge from v

 $HighPoint_2 = HighPoint_2[v]$ stores the second earliest ancestor to which there exists an edge from v

D = Array to store the order of appearance of a vertex by the DFS algorithm

Finished = Array to determine whether the DFS algorithm has exited the subtree rooted at any vertex

UniquePathGraph = Label to determine if the graph G is a unique-path-graph or not

s = The vertex reachable to all the other vertices in the given graph G

Proof of Correctness

Theorem (2.1). A vertex v has at most one path to all other vertices iff-

- 1. v has NO forward edge.
- 2. v has NO cross-edge.
- 3. Subtree rooted at v has ATMOST ONE vertex with backedge to v's ancestors.

Proof. Statement 1 and 2 have already been proved in class (if v has a forward/cross edge, then there exists $w \in V$ such that there are more than one paths from v to w).

Now we prove Statement 3 using 'proof by contradiction'.

Assume that Statement 3 is false, i.e., \exists a vertex v such that it has two distinct vertices w_1 & w_2 in its rooted subtree, which have backedges to v's ancestors.

Note: w_1 (or w_2) can also be the rooted vertex v itself. We have just considered the most general case Let the backedges be - (w_1, x_1) & (w_2, x_2) (Note: $D[x_1] < D[v]$ & $D[x_2] < D[v]$) Let $D[x_1] < D[x_2]$, i.e., x_1 is the ancestor of x_2 .

Figure 1: figure depicting the general case assumed

It can be clearly seen that $\exists 2$ 'distinct' paths from v to x_2 viz.-

- 1. $v \leadsto w_1 \to x_1 \leadsto x_2$
- $2. v \leadsto w_2 \to x_2$

Hence our initial assumption was wrong. This means that Statement 3 holds true (by Contradiction).

Using Theorem (2.1), we can see that our algorithm is correct (since it checks whether or not there are two backedges from subtree(v) to v's ancestors).

Complexity Analysis

Time Analysis:

In the above DFS search performed, each vertex and edge is visited only once. Hence time complexity of the algorithm = O(m+n)

Space Analysis:

In the above Algorithm, only O(n) space arrays are used (namely-Visited, $HighPoint_1$, $HighPoint_2$, D, Finished). Hence space complexity = O(n).