- COLLECTION MET

Conception des guidages flexibles

PRESSES POLYTECHNICHES ET LINGERSTAIRES ROMANCES

Annexe B

Formulaire

	Moments d'inertie	Rigidités	Courses	
h,	$I_x = I_y = \frac{h^4}{12}$ $I_p = \frac{h^4}{6}$	$K_{tors}^{\diamond} = 0.141 \frac{h^4 G}{l}$	$\alpha_{tors}^{\diamond} = \frac{1.48 \tau_{adm} l}{Gh}$ où $\tau_{adm} = \frac{\sigma_{adm}}{\sqrt{3}}$	
8	$I_x = I_y = \frac{\pi d^4}{64}$ $I_p = \frac{\pi d^4}{32}$	$K_{tors}^{\circ} = \frac{GI_p}{l}$	$\alpha_M^{\circ} = \alpha_M^{t \circ} = \frac{2\sigma_{adm}l}{Ed}$ $\alpha_{tors}^{\circ} = \frac{2\tau_{adm}l}{Gd}$ où $\tau_{adm} = \frac{\sigma_{adm}}{\sqrt{3}}$. $f_{cis}^{\circ} = \frac{\sigma_{adm}l^2}{3Ed}$ $f_{cis}^{t \circ} = \frac{\sigma_{adm}l^2}{3Ed}$ $f_{cis}^{\circ} = \frac{\sigma_{adm}l^2}{3Ed}$ $f_{trac}^{\circ} = \frac{\sigma_{adm}l}{E}$	

Tab. B.1: Fil (sect. 4.3). Les formules des courses de la lame (Tab. B.2) sont également valables pour le fil de section carrée avec b=h.

	$I_x = \frac{hb^3}{12}$	$I_y = \frac{bh^3}{12}$
Cas de charge	Rigidités	Courses
$ \begin{array}{c} a & M \\ \hline \alpha & \\ K_{\alpha M} = M/\alpha ; K_{fM} = M/f \end{array} $	$K_{\alpha M} = rac{EI_y}{l}$ $K_{fM} = rac{2EI_y}{l^2}$	$\alpha_M = \frac{2\sigma_{adm}l}{Eh}$ Limite : $-28^\circ < \alpha_M < 28^\circ$
b P α $K_{\alpha P} = P / \alpha ; K_{\beta P} = P / f$	$K_{\alpha p} = rac{2EI_y}{l^2}$ $K_{fP} = rac{3EI_y}{l^3}$	$lpha_M = rac{\sigma_{adm}l}{Eh}$ $f = rac{2\sigma_{adm}l^2}{3Eh}$
c P K _{cis} =P/f	$K_{cis} = rac{12EI_y}{l^3}$	$f_{cis} = \frac{\sigma_{adm}l^2}{3Eh}$
$K_{trac} = P/f$	$K_{trac} = rac{bhE}{l}$	$f_{trac} = \frac{\sigma_{adm}l}{E}$
$K_{tors} = M / \alpha$	$K_{tors} = \frac{bh^3G}{3l}$	$lpha_{tors}=rac{ au_{adm}l}{hG}$ où $ au_{adm}=rac{\sigma_{adm}}{\sqrt{3}}$
g M $K'_{\alpha M} = M/\alpha \; ; K'_{fM} = M/f$	$K_{\alpha M}^{t} = \frac{EI_{x}}{l}$ $K_{fM}^{t} = \frac{2EI_{x}}{l^{2}}$	$\alpha_M^t = \frac{2\sigma_{adm}l}{Eb}$
P	$K_{cis}^t = rac{12EI_x}{l^3}$	$f_{cis}^t = \frac{\sigma_{adm}l^2}{3Eb}$

Tab. B.2: *Lame* (sect. 4.2).

Tab. B.3: Col circulaire (sect. 4.5).

Rigidité naturelle :

$$\bar{K}_o = \frac{24EI}{l^3}$$

 ${\bf Course~admissible:}$

$$f_{adm_o} = \frac{\sigma_{adm}l^2}{3Eh}$$

Déplacement vertical parasite :

$$\lambda \simeq \frac{3f^2}{5l}$$

Charge critique :

$$\bar{N}_c = \frac{8\pi^2 EI}{I^2}$$

Rigidité naturelle :

$$\bar{K} \simeq \bar{K}_o - \frac{\bar{K}_o}{\bar{N}_o} \bar{N}$$
 avec $\bar{K}_o = \frac{24EI}{l^3}$ et $\bar{N}_o = \frac{2\pi^2 EI}{l^2}$

Course admissible pour N < 0:

$$f_{adm} = \frac{h l^2 \pi^2 (N + b h \sigma_{adm})}{3b E h^3 \pi^2 + 3 l^2 N (\pi^2 - 12)}$$

Course admissible pour $0 \leq N < N_o$:

$$f_{adm} = \frac{hl^2\pi^2(-N + bh\sigma_{adm})}{3bEh^3\pi^2 + 3l^2N(\pi^2 - 12)}$$

Course admissible pour $N=N_c$:

$$f_{adm} = \frac{l^2 \sigma_{adm}}{E h \pi} - \frac{h \pi}{3}$$

Tab. B.4: Table à deux lames parallèles (sect. 5.1).

Caractéristique force-déplacement :

$$F \simeq \frac{6bhEf^4}{3fl^3 - \sqrt{6}hl^3 {\rm th} \frac{\sqrt{\frac{3}{2}}f}{h}}$$

Contrainte en fonction du déplacement :

$$\sigma = \frac{3Ef^3}{l^2\left(\sqrt{6}\;f\coth\frac{\sqrt{\frac{3}{2}}\;f}{h} - 2h\right)} + \frac{Ef^2}{2l^2}$$

Tab. B.5: Table hyperguidée à quatre lames parallèles (sect. 5.2)

 ${\bf Param\'etrisation}:$

$$\xi = \frac{2l_c}{l}$$
 avec $0 < \xi \leqslant 1$

Rigidité en translation :

$$\bar{K}_o = \frac{2bh^3 E}{\xi(3 - 3\xi + \xi^2)l^3}$$

Course admissible :

$$f_{adm} = \frac{\xi(3-3\xi+\xi^2)l^2\sigma_{adm}}{3Eh}$$

Charge critique :

$$\bar{N}_c = \frac{8\pi^2 EI}{\xi^2 l^2}$$

Rigidité sous charge :

$$\bar{K}_{tot} \simeq \bar{K}_o - \frac{\bar{N}}{l}$$

Charge qui résulte en une rigidité nulle :

$$\bar{N}_o \simeq l\bar{K}_o$$

Tab. B.6: Table à quatre cols prismatiques (sect. 5.3)

Rigidité angulaire (pour de faibles angles) :

$$K_{\theta}^{\mathrm{croise}} \simeq K_{\alpha M} \quad \text{avec} \quad K_{\alpha M} = \frac{2Ebe^{2.5}}{9\pi\sqrt{r}}$$

Course angulaire (pour de faibles angles) :

$$\theta_{adm} \simeq 2\alpha_M \text{ avec } \alpha_M \simeq \frac{3\pi\sigma_{adm}\sqrt{r}}{4E\sqrt{e}}$$

Translation parasite :

$$\frac{PP'}{l} = \sqrt{1 + \frac{\sqrt{1 - 4S^2}}{-1 + 2S^2}} \quad \text{avec} \quad S = \frac{\tan(\theta/2)}{\sqrt{2 + 4(\tan(\theta/2))^2}}$$

Modèle géométrique :

$$\alpha + \beta = \theta$$
 et $\beta = \frac{\pi}{4} - \arccos \frac{1 + 2\sqrt{2}S}{\sqrt{1 - 4S^2}}$

Pour de faibles angles $\alpha \simeq \beta \simeq \frac{\theta}{2}$

Tab. B.7: Pivot croisé à quatre cols (sect. 6.5).

Rigidité naturelle en translation :

$$K \simeq \frac{8Ebe^{2.5}}{9\pi l^2 \sqrt{r}}$$

Lois de similitude :

$$K^* = E^*, K^* = b^*, K^* \simeq 1/l^{*2}, K^* \simeq e^{*2.5}, K^* \simeq 1/\sqrt{r^*}$$

Abaque : Fig. A.8

Course admissible en translation :

$$f \simeq \frac{3\pi l \sigma_{adm} r^{0.5}}{4Ee^{0.5}}$$

Lois de similitude :

$$f^* = \sigma^*_{adm}; f^* = 1/E^*; f^* \simeq l^*; f^* \simeq 1/\sqrt{e^*}; f^* \simeq \sqrt{r^*}$$

Abaque: Fig. A.9

Déplacement vertical parasite :

$$f_v = l - \sqrt{l^2 - f^2} = l(1 - \cos \theta) \simeq \frac{l\theta^2}{2}$$

 ${\bf Rigidit\'e\ transverse\ en\ translation}:$

$$K^t \simeq \frac{4K^t_{\alpha M}}{l^2} \ \ {\rm avec} \ \ K^t_{\alpha M} \simeq 0.0295 \ \frac{Eb^3 \sqrt{e}}{\sqrt{r}}$$

Tab. B.8: Table à quatre cols circulaires (sect. 5.4)

Rigidité angulaire :

$$K_{\theta} = \frac{2EI}{l}$$
 où $I = \frac{bh^3}{12}$

Course angulaire admissible :

$$\theta_{adm} = \frac{2\sigma_{adm}l}{Eh}$$

Translation parasite:

$$PP' = \frac{\sqrt{2}}{12} l\theta^2 \simeq 0.118 l\theta^2$$

Tab. B.9: Pivot à deux lames croisées séparées (sect. 6.1)

Rigidité angulaire :

$$K_{\theta} = \frac{8EI}{L}$$
 avec $I = \frac{bh^3}{12}$

Course angulaire:

$$\theta_{adm} = \frac{\sigma_{adm}L}{2Eh}$$

Tab. B.10: Pivot à deux lames croisées non séparées (sect. 6.2).

Rigidité:

$$K_{\theta} = \frac{8EI(l^2 + 3pl + 3p^2)}{l^3}$$
 où $I = \frac{bh^3}{12}$

Course angulaire:

$$\theta_{adm} = \frac{\sigma_{adm} l^2}{E(2hl + 3hp)}$$

TAB. B.11: Pivot RCC à deux lames (sect. 6.3).

Rigidité angulaire :

$$K_{\theta}^{\text{RCC}} = K_{\alpha M} \left(4 \frac{\eta^2}{(1-\eta)^2} + 4 \frac{\eta}{(1-\eta)} + 2 \right)$$

$${\rm avec} \ K_{\alpha M} \simeq \frac{2Ebe^{2.5}}{9\pi \sqrt{r}}$$

Course angulaire :

$$\theta_{adm} = \frac{\alpha_M}{\frac{\eta}{1-\eta}+1}$$
 avec $\alpha_M \simeq \frac{3\pi\sigma_{adm}\sqrt{r}}{4E\sqrt{e}}$

Modèle géométrique simplifié :

$$\alpha = \frac{\eta}{1-\eta}\theta$$
 et $\delta = \left(1 + \frac{\eta}{1-\eta}\right)\theta$

Tab. B.12: Pivot RCC à quatre cols (sect. 6.4).

Tab. B.13: Barres de torsion de section ouverte à parois minces (sect. 4.4).

Alliage	DIN	E	G	R_m	$R_{0.2}$	$\sigma_D(10^7)$		σ_D/E	α°	ρ
		[GPa]	[GPa]	[MPa]	[MPa]	[MPa]		[%]	$[10^{-6}]$	$[\mathrm{Kg/dm^3}]$
Acier Böhler K190	X220CrVMo13-4	196	80	2350	2050	800*	trac. rep.	0.41	12.2	7.6
Acier Maraging W720	X3NiCoMoTi18-9-5	193	72	2000	1815	735	flex. alt.	0.38	10.2	
Alu. Perunal-215 (7075)	AlZnMgCu1.5	72	27	530	480	110	flex. alt.	0.15	23.6	2.81
Alu. Anticorodal 110-112	AlMgSi1	69	26	310	250	80	flex. alt	0.12	23.4	2.7
Alu Avional 660-662	AlCuSiMn	73	28	450	380	100	flex. alt.	0.14	23	2.79
Alu Contal	EN AW-7010	72		590	520	120	flex. alt.	0.16	23.6	2.81
Titane 6Al-4V	Ti Al6 V4	114	41	900	830	500		0.44	8.9	4.45
Bronze Pfinodal CN8TM04	Cu Ni 15 Sn 8	127	44	1300	1100	225	flex. alt.	0.14	16	8.94

TAB. B.14: Quelques matériaux appropriés à la réalisation de structures flexibles. E module de Young; G module de glissement; R_m limite de rupture; $R_{0.2}$ limite apparente d'élasticité; $\sigma_D(10^7)$ limite d'endurance pour 10 millions de cycles; "trac. rep." sollicitation en tractions répétées; "flex. alt." sollicitation en flexions alternées; σ_D/E allongement relatif pour 10 millions de cycles (la course des guidages flexibles et proportionnelle à σ_{adm}/E); α° coefficient de dilatation thermique; ρ densité. Toutes ces données proviennent des catalogues des fabricants de ces matériaux. Pour les aciers : Böhler Frères et Cie SA, Rue de Veyrier 7, CH-1227 Carouge; pour les Aluminiums : Alusuisse, CH-3960 Sierre; pour le titane : Bibus Metals AG, CH-8304 Wallisellen; pour le bronze : UMS Usines Métallurgiques Suisses SA, Usine Boillat, CH-2732 Reconvilier. * Cette valeur a été obtenue par des essais de fatique que nous avons réalisés au département des Matériaux, EPFL.

Remarques : L'acier X220CrVMo13-4 est dénommé K190 Isomatrix PM par notre fournisseur. Cet alliage est élaboré par la métallurgie des poudres¹. Il a subi une trempe après avoir été maintenu 30 minutes entre 1070° et 1090°, puis deux revenus de 2 heures à 515° et 535°. Le fournisseur ne disposant pas de données sur la fatigue de cet alliage nous avons effectué des essais de fatigue au département des matériaux de l'EPFL sur des éprouvettes standardisées.

L'acier X3NiCoMoTi18-9-5 est dénommé W720 par notre fournisseur qui nous a fourni les données sur son comportement en fatigue. Il a subi un recuit de 3 heures à 480°.

L'alliage CuNi15Sn8 élaboré par la métallurgie des poudres est dénommé Pfinodal CN8 TM04 par notre fournisseur. Il a subi une trempe à partir d'une température de 800° à 880°, puis un revenu à 370° environ. Les données sur la fatigue sont tirées de la notice technique (Robert Laminage 1997) qui nous a été donnée par le fournisseur.

¹Les matériaux élaborés par la métallurgie des poudres sont également appelés matériaux *frittés*. Leur mise en œuvre se fait par un procédé qui ne passe par la phase liquide, mais par le chauffage de poudres à températures élevées, avec ou sans application de pression.