Mathematics study notes

Chris Taylor

Contents

 $2. \ c\vec{u} \in \vec{V}$

1	Function Analysis 1.1 Vector spaces
1	Function Analysis
1	.1 Vector spaces
A	vector space consists of: For a Vector space, the following 6 axioms must be satisfied:
	1. A set V with elements known as vectors.
	2. A field \mathbb{F} with elements known as scalars.
	3. An operation called <i>vector addition</i> which takes two vectors $v, w \in V$ and produces a third vector $v + w \in V$.
	4. An operation called scalar multiplication that takes a scalar $c \in \mathbb{F}$ and a vector $v \in V$ and produces a new vector $cv \in V$
	Vector rules: for all u, v, w E V and scalars c,d
	$1. \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$
	2. $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$
	3. $\vec{u} + 0 = \vec{u}$
	4. $\vec{u} + (-\vec{u}) = 0$
	$1. \ c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
	$2. (c+d)\vec{u} = c\vec{u} + d\vec{v}$
	3. $c(d\vec{u}) = (cd)\vec{u}$
	4. $1\vec{u} = \vec{u}$
	1. $\vec{u} + \vec{v} \in \vec{V}$