Binary representations

I Codes (direct, inverse, complementary) for signed integers and subunitary numbers. Representation on 16 bits.

- 1. +5674
- 2. +489
- 3. -945
- 4. -1897
- 5. +0.15
- 6. +11/16
- 7. -0,45
- 8. -9/16

Results: s

- 1. $[x]_D = 0|001011000101010$, $[x]_I = 0|001011000101010$, $[x]_C = 0|001011000101010$
- 2. $[x]_D=0|000000111101001, [x]_I=0|000000111101001, [x]_C=0|000000111101001$
- 3. $[x]_D=1|000001110110001$, $[x]_T=1|111110001001110$, $[x]_C=1|111110001001111$
- 4. $[x]_D=1|000011101101001, [x]_I=1|111100010010110, [x]_C=1|111100010010111$

S, S,

- 5. $[x]_D=0|001001100110011, [x]_I=0|00100110011, [x]_C=0|00100110011$
- 6. $[x]_D=0|101100000000000, [x]_I=0|10110000000000, [x]_C=0|101100000000000$
- 7. $[x]_D=1|011100110011001, [x]_I=1|100011001100110, [x]_C=1|100011001100111$
- 8. $[x]_D=1|100100000000000, [x]_I=1|0110111111111111, [x]_C=1|011100000000000$

II Addition in complementary code (on 8 bits) for signed integers and subunitary numbers:

- 9. +19 and +26
- 10. +94 and -85
- 11. -46 and +63
- 12. -84 and -79
- 13. ± 0.81 and ± 0.73
- 14. +0,51 and -0,76
- 15. -0,88 and +0,93
- 16. -0,12 and -0,34

Results:

uits.

- 9. $[19 +26]_{C} = 0|0101101$ 10. $[94 -85]_{C} = -0|0001001$
- 11. [-63+46]_C = 1|1101111
- 12. $[-84 79]_C = \frac{10}{1011101}$, overflow

13. $[0.81 + 0.73]_{\text{C}} = \frac{1}{1000100}$, overflow

- $14. [0,51-0,76]_{C} = 1|1100000$
- 15 [0 00 | 0 02]
- 15. $[-0.88 + 0.93]_{\rm C} = \frac{1}{4}0|0000111$,
- 16. $[-0.12 0.34]_{C} = \frac{1}{4}1|1000110,$

III Fixed-point representation on 16 bits, I=9 and F=6:

S I , F 0|000010101|101010 !!overflow

The most significant 2 binary digits from the integer part are lost!

18. +43,12 0|000101011|000111

19. -12,03 1|000001100|000001

20. -8097,48 1|110100001|011110 overflow

The most significant 4 binary digits from the integer part are lost!

IV Floating-point representation, single precision, m<1. $^{\text{N}}$

	S	Ċ,		111	
21. +5941,36	0 10	001100	1011100	11010101	01110000
22. +0,018	0 01	111010	1001001	10111010	01011110
236948,27	1 10	001100	1101100	10010001	00010100
240,071	1 01	111100	1001000	10110100	00111001

IV Floating-point representation, single precision, m>1.

	3	C	,	m
25. +6948,27	0 1000	1011	10110010010	0001000101000
26. +0,041	0 0111	1010	01001111110	0111110011101
272914,73	1 1000	1010	001101100010	0101110101110
280,009	1 0111	1000	0010011011	1010010111100