CS221: Digital Design

Finite State Machine

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Finite State Machine
- Formal definition
- FSM implementation
- FSM Examples

Combinational Circuit

 Can you formally model all the combinational circuit using Boolean Algebra?

Sequential Circuit: FSM

- Combinational Circuit: Formal Approach
 - Boolean Algebra
 - Circuit Minimization (K-Map, Quine McCluskey, Expresso...)
- Sequential Circuit: Formal Approach
 - Finite State Machine

Formally Describe/mathematically Describe

Boolean Algebra: Working Combinational Circuit

Finite State Machine: Working of Sequential Circuit

Sequential Circuit: FSM

Formally Describe/mathematically Describe

Boolean Algebra: Working Combinational Circuit Finite State Machine: Working of Sequential Circuit

Already Designed Sequential Circuit

- Flip Flops (RS, JK, T, D)
- Register (Shift, PIPO), Memory
- Counter: Async, Sync, Modulo Counter
- Counter using Shift register

Till now we have not used formal approach to design these

Need a Better Way to Design Sequential Circuits

- Combinational circuit design process had two important things
 - 1. A formal way to describe desired circuit behavior
 - Boolean equation, or truth table
 - 2. A well-defined process to convert that behavior to a circuit
- We need those things for sequence circuit design

Sequential Circuit

 Can we model all synchronous sequential circuit using some model?

Yes, with Finite State Machine (FSM)

Finite State Machine

- Finite-State Machine (FSM)
 - A way to describe desired behavior of sequential circuit
 - Similar/Akin to Boolean equations for combinational behavior
 - List states, and transitions among states

Set Theoretic Description

Moore Machine is an ordered quintuple

Moore =
$$(S,I,O,\delta,\lambda)$$

where

S = Finite set of states
$$\neq \Phi$$
, $\{s_1, s_2, \dots, s_n\}$

I= Finite set of inputs
$$\neq \Phi$$
, $\{i_1, i_2, \dots, i_m\}$

O = Finite set of outputs
$$\neq \Phi$$
, $\{o_1, o_2, \dots, o_1\}$

$$\delta$$
= Next state function which maps $\mathbf{S} \times \mathbf{I} \rightarrow \mathbf{S}$

$$\lambda$$
= Output function which maps

Clocked synchronous FSM

Clocked

 All storage elements employ a clock input (i.e. all storage elements are flipflops)

Synchronous

—All of the flip flops use the same clock signal

Clocked Asynchronous FSM

FSM

- State machine is simply another name for sequential circuits.
- Finite refers to the fact that the number of states the circuit can assume if finite
- Async FSM: A synchronous clocked FSM changes state only when a triggering edge (or tick) occurs on the clock signal
 - This will not be our focus in this course

Clocked synchronous FSM structure

- States: determined by possible values in sequential storage elements
- **Transitions**: change of state
- Clock: controls when state can change by controlling storage elements

Moore machine

FSM Example 1 ON-OFF FSM

Finite State Machine: Example 1

- On-off Example FSM
- Make x change toggle (0 to 1, or 1 to 0) every clock cycle
- Two states: "Off" (x=0), and "On" (x=1)
- Transition from Off to On, or On to Off, on rising clock edge
- Arrow with no starting state points to initial state (when circuit first starts)

Finite State Machine: Example

Outputs: x

FSM

We often draw FSM graphically, known as *state diagram*

Can also use table (state table), or textual languages

FSM Controller for On-Off Example

Input		Outp	ut
CLK	P	X	N
RE 1	0	1	1
RE 1	1	0	0

In this example For simplicity: we are using X, N are function of P and CLK But in FSM X is function of P

Think of Clock Enable: only **Rising Edge (RE)** Above one may not work: Level Sensitive

Controller for On-Off

Input		Outp	ut
CLK	P	X	N
RE 1	0	1	1
RE 1	1	0	0

D-FF used to store the Present state

Rising Edge: Clock implicit

Controller for On-Off

Input		Outp	ut
CLK	P	X	N
RE 1	0	1	1
RE 1	1	0	0

This a T-FF design using a D-FF Where T is always 1 == > T is not an external input

Rising Edge: Clock implicit

FSM Example 2 D-FF

FSM for D-FF

PS= Q(t)	Input	NS =Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

Q(t+1)=Input

State: 0, 1

Input: 0, 1

FSM Controller for D-FF is D-FF

PS= Q(t)	Input (D)	NS =Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

State: 0, 1

Input: 0, 1

FSM Example 3 T-FF

FSM for T-FF

PS= Q(t)	Input(T)	NS =Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Q(t+1)=Q'(t)T(t)+Q(t)T'(t)

State: 0, 1

Input: 0, 1

FSM Controller for T-FF

PS= Q(t)	Input	NS =Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

State: 0, 1 Input: 0, 1 Output: 0,1

FSM Example 4 JK-FF

FSM for JK-FF

FSM for JK-FF

PS= Q(t)	Input(JK)	NS =Q(t+1)
0	00	0
0	01	0
0	10	1
0	11	1
1	00	1
1	01	0
1	10	1
1	11	0

State: 0, 1

Input: 00, 01,10,11

$$Q(t+1)=JQ'(t)+K'Q(t)$$

FSM Controller for JK-FF

Q(t+1)=JQ'(t)+K'Q(t)

State: 0, 1

Input: 00, 01,10,11

FSM Example 5 RS-FF

FSM for RS-FF

FSM for RS-FF

PS= Q(t)	Input(RS)	NS =Q(t+1)
0	00	0
0	01	0
0	10	1
0	11	x
1	00	1
1	01	0
1	10	1
1	11	x

State: 0, 1

Input: 00, 01,10,11

$$Q(t+1)=R+Q(t).S'$$

FSM Controller for RS-FF

Q(t+1)=Q(t+1)=R+Q(t).S'

State: 0, 1

Input: 00, 01, 10, 11

