Public reporting burden for th	is collection of information is	COMENIAII		,	OMB No. 0704-0188
maintaining the data needed,	, and completing and reviewi	ng this collection of information.	response, including the time for Send comments regarding this b	reviewing instructions, surden estimate or any o	searching existing data sources, gathering and other aspect of this collection of information,
Highway, Suite 1204, Arlingto	on VA 22202-4302 Beend	donte chould be aware that a -t	iduariers services, Directorate	for information Operation	ons and Reports (0704-0188), 1215 Jefferson Davis
1. REPORT DATE (D	Oes not display a currently vi	alid OMB control number. PLEA 2. REPORT TYPE	SE DO NOT RÉTURN YOUR FO	DEM TO THE ABOVE A	ADDRESS.
, , , , , , , , , , , , , , , , , , , ,	2 10	Technical Papers			3. DATES COVERED (From - To)
4. TITLE AND SUBTI	TLE	1 recimieur rupers			5a. CONTRACT NUMBER
					Ja. CONTRACT NUMBER
					5b. GRANT NUMBER
					5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)					
o. Ad mon(s)					5d. PROJECT NUMBER
				_	1011
				1	Se. TASK NUMBER
				L	CA9F
_				1:	of. WORK UNIT NUMBER
7. PERFORMING OR	GANIZATION NAME	S) AND ADDRESS(ES)			DEDECTION OF AN INC.
					B. PERFORMING ORGANIZATION REPORT
Air Force Research	Laboratory (AFM)	C) .		[]	
AFRL/PRS					1
5 Pollux Drive Edwards AFB CA	02524 7040				
Edwards AFD CA	93324-7048				1
9 SPONSORING / MC	DNITODING AGENO	/ NAME (0)			ļ
5. SPONSONING / INC	MITORING AGENCY	NAME(S) AND ADDRE	ESS(ES)	1	0. SPONSOR/MONITOR'S
				<i>-</i>	ACRONYM(S)
Air Force Research	Laboratory (AFMC	C)			i
AFRL/PRS				1	1. SPONSOR/MONITOR'S
5 Pollux Drive				1	NUMBER(S)
Edwards AFB CA 9	3524-7048				1
12. DISTRIBUTION / A	VAILABILITY STATE	EMENT			
A					
Approved for public	release; distributio	n unlimited.			
12 CUDDI EMENTADI	/ No				
13. SUPPLEMENTARY	NOTES				i
14. ABSTRACT					1
					J
					_
	•				10 127
			- A1	1かてのり	111 177
			/\	ו טכנוו	10 12.
			- 1	0000	
15 CUD ISON					
15. SUBJECT TERMS					
16. SECURITY CLASSI	FICATION OF:		17. LIMITATION	10 100	
			OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
	····		2	J. I AGES	Leilani Richardson
a. REPORT	b. ABSTRACT	c. THIS PAGE	1 ()		19b. TELEPHONE NUMBER
Unclassified	Unclassified	771	(A)		(include area code)
Cacasineu	Onciassined	Unclassified			(661) 275-5015

REPORT DOCUMENTATION PAGE

18 separate itens enclosed

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18

Form Approved

MEMORANDUM FOR PRR (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

1011 CA 9 F TP-FY99-0092

18 May 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0092 C.T. Liu "2302M1 Fracture Mechanics and Service Life Prediction Research"

U of Illinois at Urbana/Champagne Team Presentation

(Statement A)

2302M1 Fracture Mechanics and Service Life Prediction Research

Dr. C. T. Liu

Air Force Research Laboratory Edwards AFB

Approved for public release; distribution unlimited

Insulator/ Case BONDING... Propellant/Liner/(Barrier)/

a) 0 mm STRESS

2174 0007 3066 85KU 46.1X

A SERIES OF SEM PHOTOGRAPHS AS STRESS (TENSILE) IS GRADUALLY INCREASED ON AN ANB 3066 (SD-851) INTER-FACE;

- (a) INITIAL (NO STRESS)
- (B) LOW LEVEL OF STRESS
- (c) INTERMEDIATE STRESS

M Aerojet Strategic Propulsion Company

The second secon

Local Dewetting About Filler Particles in Propellant

——— Direction of Strain ———

30% Strain

Unstrained

Two Crack Failure Modes in Solid Rocket Motors

- Does Crack Propagate Under Service Loads?
- If the Crack Propagates, How Does it Propagate?

and Service Life Prediction Methodologies **Deficiencies of Current Structural Design**

- Adequately Define the Ultimate Strength and the The Current Crack Initiation Criterion Does Not Ultimate Service Life of Solid Rocket Motors
- Crack Growth has Severely Restricted the Ability Condition and a Reliable Methodology to Predict **Crack Growth Behavior Under Service Loading** The Lack of a Fundamental Understanding of to Predict Motor's Service Life

Approach....

The Effect of Damage on Crack Growth Behavior Depends on Damage Intensity and Applied Loading Rate

(A) Crack Growth Velocity Decreases When the Crack Enters the Damaged Region

(B) A Severely Damaged Region has no Significant Effect on Crack Growth Behavior (C) The Preexisting Damage
May Change the Criticality
of the Crack

Damage Characteristics Near the Crack Tip.... Time and Load History Dependence of

b.

Iso-Intensity Contour Plots of Acoustic Imaging Near the Crack Tip (a. was Taken Before the 10 Strain Cycles and b. was Taken After the 10 Strain Cycles)

ف

Iso-Intensity Contour Plots of Acoustic Imaging Near the Crack Tip (ϵ = 0%, b was Taken 65 Hours After a.)

The state of the s

No Thumbnailing Observed in Either unfilled Binder of Corresponding Solid Propellant During Opening of Growth of Crack

CRACK FRONT SHAPE

- A Local Plane Strain Constraint May Not Exist
- Sever Blunting Occurs in the Solid Propellant Which Inhibits Cracked Growth Relative to that in the Binder Material

Local Distribution of Strain (ϵ_y) Normal to Crack Plane (Head Rate 2.5 mm/sec)

A Change in Damage Characteristics Affects the Crack Opening Displacement, Failure Process Zone Size, and Crack Growth Behavior

(A) Time Dependent Damage Evolution and Crack-Damage Interaction Processes are Responsible for Time Dependent Crack Growth Behavior

(B) This Information Will Provide Guidance for Numerical Modeling of Crack Growth

First Stage of Crack Growth

Second Stage of Crack Growth

Third Stage of Crack Growth

Change With Temperature Toughening Mechanisms

- (A) At High Temperature, Toughening Mechanism is Associated With the Development of a Large Damage Zone at the Crack Tip
- (B) At -65°F, Toughening Mechanism is Associated With the Increase in Particle / Binder Interface Strength and Binder Strength
- (C) This Information Will Provide Insight into How to Increase the Fracture Toughness of Solid Propellants

65°F

Temperature Has a Significant **Effect on Crack Growth** Behavior

(A) A Power Law Relationship Exists Between the Crack Growth Rate and the Mode I Stress Intensity Factor as Predicted by the Probabilistic Crack Growth Model

(B) At -65°F, the 0.5 in Thick Specimen Develops a High Transverse Constraint Near the Crack Tip, Resulting in a Classical Brittle Fracture

Propellant Studied Can be Considered On the Macroscopic Scale, the Solid as an Isotropic, Homogeneous Continuum

Temperature	Loading Rate	γn
L °	(mm/min)	
-65	12.7	0.74
-65	2.54	0.78
72	12.7	0.65
72	2.54	99.0
165	12.7	0.74
165	2.54	0.77
	Average	0.72
The	Theoretical Value =	= 0.67

- (A) A Good Correlation Exists Between the Measured and the Theoretical λu , Based on a Continuum Approach, Values of the Order of Singularity
- This Information Provides Confidence in Using Continuum Approach to Determine Material Responses of the Solid Propellant Studied (B)

THE REAL PROPERTY OF THE PARTY OF THE PARTY

Numerical and Experimental Results **Good Correlation Between**

Modeling of Incompressible Materials Under Plane Strain Conditions

Typical Bimaterial Specimen

Data for Stress Intensity Factor Magnitudes

= Effective plane strain modulus E^* $= \int [\sigma_{ij} u_{j,1} - W d_{1,j}] q_{1,i} dA, \quad |K| = \sqrt{JE^*},$

Future Visions

Transition of Crack Growth Prediction Technology to Research Community and Rocket Industry Interfacing of Crack Growth Prediction Technology with NDE Methodology

Crack Tip Damage Induces Stress Intensity Factor K a Shielding Effect on

- (a) The Extent of Shielding is Related to the Degree of Degradation of the Material in the Saturation Region
- (b) The Variation of the Degree of Shielding is Responsible for the Fluctuations of the Crack Growth Rate

Numerical Modeling results Compare Well With Experimental Results

- A) The Critical DamageCriterion Can be Used toPredict the Crack GrowthBehavior
- B) The Numerical Simulations are Able to Predict the Initiation Toughness (K_{IC}) and the Subsequent Stable Crack Growth

Comparison Between Predicted and Experimental Resistance (K Vs. △a) Curves for the Two Loading Rates, 2.54 mm/min and 12.7 mm/min.