1 Hyperbolic Gluing

Consider the 2-d system

$$\dot{u} = Au + f(u), \quad u = (u^1(t), u^2(t))^T,$$

Where A is a constant coefficient hyperbolic matrix, with exactly 1 stable/unstable direction. And the dot is d/dt. f denotes higher order terms so f(0) = 0 and Df(0) = 0.

Fix some $\delta > 0$ small, we have a 1-d (local) stable and unstable manifold u_- and u_+ , which can be locally straightened: $u_-: \{u^1 = 0\}$ and $u_+: \{u^2 = 0\}$

so that $u_{\pm} \to (0,0)^T$ as $t \to \pm \infty$ and $u_{-}^2(0) = \delta$, $u_{+}^1(0) = \delta$ (after some shift in time).

Fix T > 0 (not necessarily large), we want to solve the boundary value problem $u^1(T) = u^2(-T) = \delta$ by looking for a solution u to the system in the vicinity of the stable/unstable manifold u_{\pm} .

We need the following property: u_{\pm} satisfies the estimate

$$||u_{-}(t)|| \le \delta e^{-\gamma t}$$
 for $t \ge 0$

and

$$||u_+(t)|| \le \delta e^{\gamma t}$$
 for $t \le 0$

for some constants $\gamma > 0$ and.

1.1 The Ansatz

Let $\chi_{\pm}(t)$ be a smooth partition of unity of the real line $(-\infty, \infty)$ such that

- (i) $\chi_- + \chi_+ = 1$;
- (ii) $\chi_{-} = 1$ for t < -T, $\chi_{-} = 0$ for t > T;
- (iii) $\chi_{+} = 0$ for t < -T, $\chi_{+} = 1$ for t > T

Our ansatz would take the form (note the time shift)

$$u(t) = \chi_{-}(t)u_{-}(t+T) + \chi_{+}(t)u_{+}(t-T) + w_{-}(t+T) + w_{+}(t-T)$$

Here the corrector term $w = w_- + w_+$ is split into two parts w_- and w_+ , which we consider on the halfline $\mathbb{R}^+ = (0, \infty)$ and $\mathbb{R}^- = (-\infty, 0)$.

We then introduce exponentially weighted function space on \mathbb{R}^+ and \mathbb{R}^- . Let us fix an exponential weight $\eta > 0$ whose exact value will be determined later, so that for $t \in \mathbb{R}^+ = (0, \infty)$ we have

$$||w_-||_{C_n^1} := |e^{\eta t}(w_-(t) + \dot{w}_-(t))|_{\infty} < \infty$$

and for $t \in \mathbb{R}^- = (-\infty, 0)$ we have

$$||w_+||_{C^1_\eta} := |e^{-\eta t}(w_+(t) + \dot{w}_+(t))|_{\infty} < \infty$$

these w_{\pm} are unshifted!

We need to determine equations in w_{\pm} separately! Note the equation is to be solved for |t| < T, together with the boundary values $u^{1}(T) = u^{2}(-T) = \delta$.

- (i) turns out $w_{-}(2T) + w_{+}(0) = (0, u^{2}(T))^{T}$ and $w_{-}(0) + w_{+}(-2T) = (u^{1}(-T), 0)^{T}$.
- (ii) need $\dot{u} = Au + f(u)$, so we have on the left

$$\dot{u} = (\dot{\chi}_{-}u_{-} + \chi_{-}\dot{u}_{-}) + (\dot{\chi}_{+}u_{+} + \chi_{+}\dot{u}_{+}) + \dot{w}_{-} + \dot{w}_{+}$$

which must equal to the right

$$Au + f(u) = A(\chi_{-}u_{-} + \chi_{+}u_{+} + w_{-} + w_{+}) + f(\chi_{-}u_{-} + \chi_{+}u_{+} + w_{-} + w_{+}).$$

Using the fact that u_{\pm} are solutions to the ODE and χ_{\pm} are scalar-valued which can be pulled out in front of A, we simplify:

$$(\dot{w}_{-} + \dot{w}_{+}) - A(w_{-} + w_{+}) = \dot{\chi}_{-}u_{-} + \dot{\chi}_{+}u_{+} + f(\chi_{-}u_{-} + \chi_{+}u_{+} + w_{-} + w_{+}) - \chi_{-}f(u_{-}) - \chi_{+}f(u_{+})$$

We next split the above equation separately in w_{-} and w_{+}

1.2 Spliting the error

Let us first adjust the linear part into

$$(\dot{w}_- + \dot{w}_+) - A(w_- + w_+) - (f'(u_+)w_+ + f'(u_-)w_-).$$

Then we first group the right hand as follows:

$$R := \underbrace{\dot{\chi}_{-}u_{-} + \dot{\chi}_{+}u_{+}}_{:=R_{0}} + f(\chi_{-}u_{-} + \chi_{+}u_{+} + w_{-} + w_{+}) - \chi_{-}f(u_{-}) - \chi_{+}f(u_{+}) - (f'(u_{+})w_{+} + f'(u_{-})w_{-}).$$

Next, define the commutator (f' is shorthand for Df, also keep in mind the time shift $u_{\pm}(t \mp T)$ on u_j .

$$[f, \chi_{\pm}] = \sum_{j=\pm} \chi_j f(u_j) - f(\sum_{j=\pm} \chi_j u_j); \quad [f', \chi_{\pm}] = \sum_{j=\pm} \chi_j f'(u_j) - f'(\sum_{j=\pm} \chi_j u_j),$$

We then group $R - R_0$ as follows:

$$R - R_0 = f(\sum_{j} \chi_j u_j + w_j) - f(\sum_{j} \chi_j u_j) - \underbrace{[f, \chi_{\pm}]}_{=-R_1} - \sum_{j} f'(u_j) w_j,$$

We next decompose $R - R_0 - R_1$ by first Taylor expand f around $\sum_i \chi_i u_i$

$$R - R_0 - R_1 = f'(\sum_j \chi_j u_j) \sum_j w_j - \sum_j f'(u_j) w_j + R_2$$

Here R_2 would be of the order $O(w^2)$ with $w = w_- + w_+$. We then have $R - R_0 - R_1 - R_2$ being decomposed again:

$$R - \sum_{j=0}^{2} R_{j} = f'(\sum_{j} \chi_{j} u_{j}) \sum_{j} w_{j} - \sum_{j} f'(u_{j}) w_{j}$$

$$= \sum_{j} \chi_{j} f'(u_{j}) \sum_{j} w_{j} - [f', \chi_{\pm}] \sum_{j} w_{j} - \sum_{j} f'(u_{j}) w_{j}$$

$$= R_{3} - (\chi_{-} f'(u_{+}) w_{+} + \chi_{+} f'(u_{-}) w_{-} + (\chi_{-} f'(u_{-}) w_{+} + \chi_{+} f'(u_{+}) w_{-})$$

in the end we group $\chi_-f'(u_+)w_+$ and $\chi_-f'(u_-)w_+$ to be R_4 , and the rest $\chi_+f'(u_-)w_-$ with $\chi_+f'(u_+)w_-$ to be R_5 .

Thus we have split the error R into 6 parts, summarize:

$$R_{0} = \dot{\chi}_{-}u_{-} + \dot{\chi}_{+}u_{+}$$

$$R_{1} = -[f, \chi_{\pm}] = [\chi_{\pm}, f]$$

$$R_{2} = f(\sum_{j} \chi_{j}u_{j} + w_{j}) - f(\sum_{j} \chi_{j}u_{j}) - f'(\sum_{j} \chi_{j}u_{j}) \sum w_{j}$$

$$R_{3} = -[f', \chi_{\pm}] = [\chi_{\pm}, f']$$

$$R_{4} = -\chi_{-}f'(u_{+})w_{+} + \chi_{-}f'(u_{-})w_{+}$$

$$R_{5} = -\chi_{+}f'(u_{-})w_{-} + \chi_{+}f'(u_{+})w_{-}$$

1.3 Equation of the corrector and estimates

We first set up the equation for w_- and w_+ , note these w_\pm are shifted, we define $w_-T(\cdot) := w_-(\cdot + T)$ and $w_+T(\cdot) := w_+(\cdot - T)$, the equation we have will be equation for w_-^T and w_+^T , respectively, and the domain for both w_+^T is (-T, T).

equation for w_{-}^{T} :

$$\mathcal{L}_{-}w_{-}^{T} := \dot{w}_{-}^{T} - (A + f'(u_{-}^{T}) + R_{3})w_{-}^{T} = \dot{\chi}_{-}u_{-}^{T} + \chi_{-}(R_{1} + R_{2}) + R_{4} := R_{-}(w_{-}^{T}; w_{+}^{T})$$

and equation for w_+^T :

$$\mathcal{L}_+ w_+^T := \dot{w}_+^T - (A + f'(u_+^T) + R_3) w_+^T = \dot{\chi}_+ u_+^T + \chi_+ (R_1 + R_2) + R_5 := R_+ (w_+^T; w_-^T)$$

Want to solve w_{-}^{T} and w_{+}^{T} through a fixed point argument. Use the space $C_{\eta}^{1}(R_{-})$ for w_{+} and $C_{\eta}^{1}(R_{+})$, consider \mathcal{L}_{\pm} as an operator from C_{η}^{1} to C_{η}^{0} . The control for linear parts must be done using exponential dichotomy inherited from the hyperbolicity of the matrix A and the smallness of $u_{\pm}^{T} + R_{3}$ in (-T, T).

(i) Estimates for R_0, R_1, R_3

These terms do not involve w, we shall show they are small in the η -weighted norm. The linear part will be controlled by using exponential dichtomy from the hyperbolicity of A and the fact that $f'(u_{\pm}^T) + R_3$ are uniformly small.

Let us focus on the equation for w_{-} first,

- note I have distributed R_0 into a χ_- -part and a χ_+ -part, for the equation for w_-^T , what needs to be estimated is just $\dot{\chi}_- u_-^T$. Since χ_- is constant outside of |t| > T, we need only consider |t| < T, but then $u_-^T(t) = u_-(t+T)$ will satisfy $||u_-^T(t)|| \le \delta$ (sup norm). Hence if δ is sufficiently small, then in the weighted norm $\dot{\chi}_- u_-^T$ will be as small as needed.
- for the commutator term R_1 , because of the χ_{\pm} , the time interval that are relevant is (-T,T) (outside of which $R_1=0$) But on these intervals again using $||u_-^T(t)|| < \delta$. and f(0)=0 to get R_1 and R_3 are as small as needed.

• similarly for R_3 , using f'(0) = 0.

Here I am not using any information about T being large, but just the smallness of u_{\pm}^{T} on the time interval (-T,T).

(ii) Estimates for R_2

Recall that for |t| < T, we have

$$R_2(t) = f(\sum_j \chi_j u_j + w_-(t-T) + w_+(t-T)) - f(\sum_j \chi_j u_j) - f'\left(\sum_j \chi_j u_j\right) \{w_-(t-T) + w_+(t-T)\}.$$

This is the remainder term which is of higher order in $w(t) = w_-(t+T) + w_+(t-T)$, since for |t| < T, we have $|u_{\pm}(t \mp T)| \le \delta$ by set up, using Taylor's theorem, we have $|R_2(t)| = \mathcal{O}(|w|^2)$, which will be small if we are working in some small ball in the function space C_n^1 for w.

(iii) Estimates for R_4 and R_5

We have set

$$R_4 = -\chi_- f'(u_+^T) w_+^T + \chi_- f'(u_-^T) w_+^T$$

Again, due to the cut off χ_- , for t < -T, the decay at infinity of w_+ ensures $e^{\eta(t+T)}w_+(t-T)$ is exponentially small. And the focus is on |t| < T.

For these t in these range, we need to estimate sup norm of R_4 under the weight $e^{\eta(t+T)}$. If I just use $||u_{\pm}|| \leq \delta$, I will end up with $||e^{t+T}R_4(t)|| \leq g(\delta)e^{\eta(t+T)}e^{\eta(t-T)} \leq e^{2\eta t}g(\delta)$ for some function $g(\delta) = O(\delta^2)$. Note $t \in [-T, T]$ could make $e^{2\eta t}$ big. But if δ is sufficiently small I think this can be taken care of.

A similar argument applies to R_5 .

from here we need to show the equation $\mathcal{L}_{\pm}w_{\pm}=R_{\pm}$ can be solved using an iteration argument, which amounts to show $\|R_{\pm}\|$ is small given w_{\pm} small, and $\mathcal{L}_{\pm}^{-1}R_{\pm}$ is a contraction, say when we working on some balls in the function space.

conclusion for the "flying time" if T is given, then the size of the boundary condition will depend on T. (if T is large, then δ need to be sufficiently small), which is quite natural since the flying time goes to infinity as the trajectories get close to the invariant manifolds.

2 Non-hyperbolic Gluing

2.1 A decoupled system

Start with the following very simple 2-d system:

$$\dot{u} = -u^2 \tag{2.1}$$

$$\dot{v} = v$$

This system decouples, of course. But we wish to demonstrate the method from a simple example.

Clearly, the u-axis $\{v=0\}$ is invariant and the solution is explicitly parameterized by

$$U_{-}(t) = (\frac{1}{t + C_{-}}, 0)^{T} := (u_{*}(t), 0)^{T}$$

for some constant C_{-} . Likewise, the invariant v-axis $\{u=0\}$ is parametrized by

$$U_{+}(t) = (0, C_{+}e^{t})^{T} := (0, v_{*})^{T}$$

for some constant C_+ .

We want to solve a boundary value problem $U(t) = (u(t), v(t))^T$ such that (u, v) satisfies the ODE, with the boundary condition $u(1) = \delta$, $v(1) = \delta$. We follow the hyperbolic case, take an ansatz of the form

$$U(t) = \chi_{-}(t)U_{-}(t+T+1) + \chi_{+}(t)U_{+}(t-T+1) + w_{-}(t+T+1) + w_{+}(t-T+1).$$

Now, use the fact that U satisfy the system $\dot{U} = AU + F(U)$, where A is the matrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and the

nonlinear term $F(U) = F(u, v) = (-u^2, 0)^T$, after some calculation we arrived at the following equations for w_{\pm} .

$$\dot{w}_{-} - Aw_{-} = -\dot{\chi}_{-}U_{-} + F(\chi_{\pm}U_{\pm} + w_{\pm}) - \chi_{\pm}F(U_{\pm})$$
(2.2)

$$\dot{w}_{+} - Aw_{+} = -\dot{\chi}_{+}U_{+} \tag{2.3}$$

Notice here w_{\pm} are vector-valued, $w_{\pm} = (w_{\pm}^1, w_{\pm}^2)^T$. Let us focus on the equation for w_{+} first, by the structure of A and U_{+} , the equation for the first component of w_{+} is actually just

$$\dot{w}_+^1 = 0,$$

and the equation for the second component is

$$\dot{w}_{+}^{2} = w_{+}^{2} - \dot{\chi}_{+} v_{*}$$

Following the moral of the hyperbolic gluing, $w_+(\cdot)$ should be decaying at $-\infty$, hence we must have $w_+^1 \equiv 0$. And we may explicitly solve w_+^2 , which is given by

$$w_{+}^{2}(t) = w_{+}^{2}(0)e^{t} + C_{+}e^{t}\left(\chi_{+}(T-1) - \chi_{+}(t+T-1)\right)$$

Of course in the general case we would not get such an explicit formula, but we can get the estimate that show w_+ lies in some exponentially weighted space on the interval $(-\infty, 0)$.

Next we focus on the equation for w_{-} , first we subtract both sides of the equation by the term $f'(U_{-})w_{-}$,

which equals
$$\begin{pmatrix} -2u_* & 0 \\ 0 & 0 \end{pmatrix} w_-$$
 to adjust the linear term.

The equation for w_{-} now reads

$$\dot{w}_{-} - \begin{pmatrix} -2u_{*} & 0\\ 0 & 1 \end{pmatrix} w_{-} = -\dot{\chi}_{-}U_{-} + \begin{pmatrix} \chi_{-}u_{*}^{2} - (\chi_{-}u_{*} + w_{+}^{1} + w_{-}^{1})^{2} + 2u_{*}w_{-}^{1}\\ 0 \end{pmatrix}$$

Again, the equation for the second component of w_{-} is just

$$\dot{w}_{-}^{2} - w_{-}^{2} = 0$$

we got $w_{-}(t) = Ae^{t}$ for some constant A, however, in order for $w_{-}(\cdot)$ to decay at $+\infty$, we must choose A = 0, thus we have $w_{-}^{2} = 0$.

Therefore, we end up with the equation for the first component, which is

$$\dot{w}_{-}^{1} - (-2u_{*})w_{-}^{1} = -\dot{\chi}_{-}u_{*} + (\chi_{-}u_{*}^{2} - (\chi_{-}u_{*} + w_{-}^{1})^{2} + 2u_{*}w_{-}^{1})$$

To solve it, we need to rescale in time.

Define the new time variable τ such that $dt/d\tau = (-2u_*(t+T+1))^{-1}$. Put $\tilde{w}(\tau) = w_-^1(t(\tau))$, after multiplying the equation by $(-2u_*)^{-1}$. We have

$$\frac{d}{d\tau}\tilde{w} - \tilde{w} = (-2u_*)^{-1} \left(-\dot{\chi}_- u_* + (\chi_- - \chi_-^2)u_*^2 + 2(1 - \chi_-)u_*\tilde{w} - (\tilde{w})^2 \right) := (-2u_*)^{-1}R$$

We can now work with exponentially weighted space (in the variable τ , let us solve the above equation for $\tau \in [0, \infty)$ (corresponding to $t \in [1, \infty)$, since explicitly $t = \exp(\tau)$.)

Now if we assume $\tilde{w} \in C^1_{\nu}$ for some weight ν , due to the multiplication of the right hand side by $(-2u_*)^{-1} \sim t \sim \exp(\tau)$, we lose the localization from ν to $\nu - 1$. Which means we need to estimate the remainder R in the $C^1_{\nu-1}$ norm.

 \bullet Estimates for R

2.2 Equation with more general nonlinear terms

$$\dot{u} = -u^2 + \mathcal{O}(uv, v^2, u^3)$$

$$\dot{v} = v + \mathcal{O}(uv, \frac{u^2}{v^2}, v^2)$$
(2.4)

The u^2 term might be a bit troublesome, since v is going to be exponentially localized, while u^2 decay at most algebraically

we want to do the same thing as in the hyperbolic case, now the problem is that due to non-hyperbolicity, we need to work in an appropritely re-scaled time (and accordingly choose the correct function space) to recover the Fredholm properties.

Now, by standard theory, equation (2.4) has a solution which asymptotically decays algebraically: $u_*(t) = \mathcal{O}(t^{-1})$ as $t \to \infty$.

The v equation determines uniquely the unstable manifold v_* , which decays exponentially in backward time $v_*(t) = \mathcal{O}(e^t)$ as $t \to -\infty$.

Our goal is to 2find an orbit near the origin by solve the following boundary value problem: (u, v)(t) solves (2.4) and $u(-T) = \delta$, $v(T) = \delta$ for flying time T and small $\delta > 0$ given.

Again, u_* and v_* are shifted in time so that it satisfies $u_*(1) = \delta$ and $v_*(1) = \delta$, with the same asymptotics. Let us denote the curve $U_-(t) = (u_*(t), 0)$ and $U_+(t) = (0, v_*(t))$

Following the hyperbolic case, we take the ansatz to be of the form

$$U(t) = \chi_{-}(t)U_{-}(t+T+1) + \chi_{+}(t)U_{+}(t-T+1) + w_{-}(t+T+1) + w_{+}(t-T+1)$$

where χ_{+} is the same partition of unity.

The calculation to determine the equation for w_- and w_+ follows pretty much the same procedure, note the matrix A here is of the form $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, also note the linearization $Df(U_-)$ now will decay algebraically due to the non-hyperbolicity $||Df(U_-(t))|| = \mathcal{O}(t^{-1}), t \to \infty$.

Let us again focus on the equation for w_{-} :

$$\mathcal{L}_{-}w_{-}^{T}:=\dot{w}_{-}^{T}-(A+Df(U_{-}^{T})+R_{3})w_{-}^{T}=\dot{\chi}_{-}U_{-}^{T}+\chi_{-}(R_{1}+R_{2})+R_{4}:=R_{-}(w_{-}^{T};w_{+}^{T}),$$

where the T super script means the time shift: $U_{-}^{T}(t) = U_{-}(t+T+1)$.

let us abbreviate w_-^T by w, so we can use the notation $w(t) = (w^1(t), w^2(t)) \in \mathbb{R}^2$.

Recall that $R_1 = [\chi_{\pm}, f]$ and $R_3 = [\chi_{\pm}, f']$ are the commutator terms, and $R_2 = f(\sum_j \chi_j u_j + w_j) - f(\sum_j \chi_j u_j) - f'(\sum_j \chi_j u_j) \sum_j w_j$ is the higher order remainder, with $R_4 = (f'(u_-) - f'(u_+))\chi_- w_+$ is w_+ considered as an perturbation of w_- .

To solve the above equation, we need to choose the appropriate function spaces. Due to the form of the matrix A, the second component $w^2(t)$ should still be the usual exponentially weighted space.

To see what space should we choose for w^1 , note the equation for w^1 takes the form

$$\dot{w}^{1}(t) - (D_{u}f^{1}(U_{-}^{T}) + R_{3}^{1})w^{1}(t) + D_{v}f^{2}(U_{-}^{T})w^{2}(t) = R_{-}^{1}(w_{-}, w_{+})(t)$$
(2.5)

where $f(u,v) = (f^1(u,v), f^2(u,v))^T$ is the nonlinear term, with $f^1(u,v) = -u^2 + \mathcal{O}(uv,v^2,u^3)$ and $f^2(u,v) = \mathcal{O}(uv,u^2,v^2)$. The linearization is evaluated at $U_-^T(t) = (u_*(t),0)$

We will do a rescale of time, since $u_*(t) \neq 0$, $D_u f^1(U_-^T) \neq 0$ for $t \in [-T, T]$, introduce a new variable τ such that

$$\frac{dt}{d\tau} = \frac{1}{D_u f^1(U_-(t))} = \frac{1}{D_u f^1(u_*(t), 0)}$$

This implicitly defines t as a function of τ , we write $t = t(\tau)$.

In the case $f^1(u,v) = -u^2$, we have $u_*(t) = 1/t$ and hence $t = \exp(\tau)$. Define $\tilde{w}^1(\tau) = w^1(t(\tau))$, we have $\frac{d}{d\tau}\tilde{w}^1 = \frac{dw^1}{dt}\frac{dt}{d\tau}$, multiply (2.5) by $(D_uf^1(u_*(t)))^{-1}$. We get the equation in the rescale time τ (we choose to suppress the superscript again):

$$\frac{d}{d\tau}\tilde{w}(\tau) - \left(1 + (D_u f^1)^{-1} R_3^1\right) \tilde{w}(\tau) + (D_u f^1)^{-1} D_v f^2 w^2(t(\tau)) = (D_u f^1)^{-1} R_-^1(t(\tau))$$

This suggest that we solve $\tilde{w}(\tau)$ in an exponentially weighted space, in terms of w, it will be an algebraically weighted space in the time variable t. Also, notice that the term $(D_u f^1)^{-1} R_-^1$ suggests that we loses 1 algebraic localization.

Let us choose an weight ν whose exact value will be specified later, and work with the exponentially localized space C^1_{ν} , with norm

$$\|\tilde{w}\|_{C^1_{\nu}} := |e^{\nu t}(\tilde{w}(t) + \dot{\tilde{w}}(t))|_{\infty} < \infty$$

Also note: there is a term involve the second component w^2 , however, it lies in the exponentially weighted space, hence will not cause any problem when considered as a perturbation of the first component \tilde{w} .

2.3 Estimate the remainder

We solve the problem

$$\frac{d}{d\tau}\tilde{w} - \tilde{w} = (D_u f^1)^{-1} \left(\tilde{w} + D_v f^2 w^2 + R_-^1 \right)$$

As an fixed point problem, from the space $X \subset C^1_{\nu+1}$ to the space $Y \subset C^1_{\nu}$, where X and Y are small- ε balls in the respect spaces.

(i) Estimates for $(D_u f^1)^{-1} D_v f^2 w^2(t(\tau))$

The second component $w^2(t)$ already lies in some exponentially weighted space (in the variable t!)

(ii) Estimates for $(D_u f^1)^{-1} \dot{\chi}_- U_-^T$

For this one I shall use the explicit construction of χ

(iii) Estimates for $(D_uf^1)^{-1}R_1$ and $(D_uf^1)^{-1}R_3$

This part is somewhat confusing.

(iv) Estimates for $(D_u f^1)^{-1} R_2$

This part we may determine the range of ν .