Système 4 barres ★★

C2-09

Pas de corrigé pour cet exercice.

On a:

- ► $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$ avec a = 355 mm et f = 13 mm; ► $\overrightarrow{AB} = b\overrightarrow{x_2}$ avec b = 280 mm; ► $\overrightarrow{BC} = -c\overrightarrow{x_3}$ avec c = 280 mm; ► $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec d = 89,5 mm et e = 160 mm.

De plus, on note:

- G_1 le centre d'inertie du solide 1 tel que $\overrightarrow{OG_1} = L\overrightarrow{x_1}$, m_1 sa masse et $I_{G_1}(1) =$ $\begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\Re_1}$ sa matrice d'inertie;
- ▶ G_2 le centre d'inertie du solide **2** tel que $\overrightarrow{AG_2} = \frac{b}{2}\overrightarrow{x_2}$, m_2 sa masse et $I_{G_2}(2) =$ $\begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}$ sa matrice d'inertie;
- ► G_3 le centre d'inertie du solide 3 tel que $\overrightarrow{CG_3} = \frac{c}{2}\overrightarrow{x_3}$, m_3 sa masse et $I_{G_3}(3) =$ $\begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{G}_{R_2}}$ sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{z_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

 $\begin{tabular}{ll} \bf Question 1 & Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides. \end{tabular}$

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble 1+2+3.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble 1+2+3.

Question 4 Déterminer \mathscr{E}_c (1 + 2 + 3/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir .