Prueba 1

2S - 2015

}

NOMBRE: NRO.MATRICULA:		
☐ Estructura de Datos	☐ Complejidad Computacional	

Programación Orientada a Objetos

posY = 0;

1. Escriba los métodos para mover la pelota en el plano X-Y:
 public class Pelota {
 int posX;
 int posY;

 public Pelota() {
 posX = 0;

```
2. ¿Qué valor de z imprime este código? [3 ptos]
    boolean go = true;
    int x=5;
    int y=1;
    int z=4;
    while(go) {
        z += x++ - y;
        if(y >= 5) go = false;
        else y++;
    }
    System. out.println("z:"+z);
}
```

Ar

c. 0(

d. O(

)

)

re	S
3.	a. Toma el mismo tiempo independiente del número de elementos actuales. b. Requiere N² comparaciones c. Requiere mover log(N) elementos. d. Toma un tiempo proporcional a tamaño del arreglo e. Ninguna de las anteriores
4.	un arreglo desordenado, es generalmente más rápido encontrar un elemento que no ta en el arreglo, a encontrar un elemento que se encuentra en el. JUSTIFIQUE. [2 ptos]
	verdadero b. falso
	rque,
5.	s arreglos ordenados, comparados con los arreglos desordenados [1 pto] a. Ocupan mas espacio en memoria b. Son más rápidos de crear. c. Pueden crecer dinámicamente. d. Son más rápidos en la inserción. e. Ninguna de las anteriores
	 a. Ocupan mas espacio en memoria b. Son más rápidos de crear. c. Pueden crecer dinámicamente. d. Son más rápidos en la inserción.
	 a. Ocupan mas espacio en memoria b. Son más rápidos de crear. c. Pueden crecer dinámicamente. d. Son más rápidos en la inserción. e. Ninguna de las anteriores dene los siguientes tiempos de ejecución del más eficiente al menos eficiente: O(N³), N²), O(N log N), O(log N), O(N).

7. De que orden es el siguiente algoritmo [*2 ptos*]

```
a=5
b=6
c=10
for i in range(n):
    for j in range(n):
        x = i * i
        y = j * j
        z = i * j
for k in range(n):
        w = a*k + 45
        v = b*b
d = 33
O( )
```

- 8. La notación **0** indica [1 pto]
 - a. El tiempo de ejecución de un algoritmo para el tamaño de una estructura de datos determinada.
 - b. Cómo se relaciona la velocidad de un algoritmo al número de ítems.
 - c. El tiempo en segundos que tarda un algoritmo en procesar un numero determinado de ítems.
 - d. Como el tamaño de la estructura de datos se relaciona con el número de ítems.
 - e. Ninguna de las anteriores
 - 9. Dada la siguiente clase. Implemente el método insertar. No olvide incluir los comentarios respectivos al código según corresponda. [6 ptos]

```
class arregloOrdenado {
   private long[] a;
   private int nElems;

public arregloOrdenado (int max) {
      a = new long[max];
      nElems = 0;
}
```

}

```
public void insertar (long valor)
{
```

Ordenamiento Simple

- 10. Los algoritmos de ordenamiento de computadores son más limitados que el ordenamiento hecho por humanos porque: [1 pto]
 - a. Los humanos saben lo que hay que ordenar, mientras que las computadoras necesitan una especificación de lo que hay que ordenar.
 - b. Los computadores sólo pueden manejar una cantidad limitada de datos.
 - c. Los computadores sólo pueden comparar dos cosas a la vez.
 - d. Ninguna de las anteriores

11	1. ¿En que caso el ordenamiento por <u>Inserción</u> podría ser menos eficiente que el la <u>Burbu</u> j [<i>1 pto</i>]						
12	.¿Por que el o pto]	rdenan	niento por Selección es mejor que el ordenamiento por Ins	erción? [1			
13	Describa los Inserción. Ex <valor>) [6]</valor>	plique (necesarios para ordenar el arreglo A = [3,2,1] usando el Alg en cada paso cual fue la operación realizada (copiar <valor< td=""><td>goritmo de >>, mover</td></valor<>	goritmo de >>, mover			

```
Identifique el nombre del algoritmo [4 ptos]
public void A() {
  int in, out;
  for(out=1; out<nElems; out++) {</pre>
     long temp = a[out];
     in = out;
     while(in>0 && a[in-1] >= temp) {
           a[in] = a[in-1];
           --in;
     }
     a[in] = temp;
           public void B(long value) {
  int j;
  for(j=0; j<nElems; j++)</pre>
     if(a[j] > value)
          break;
  for(int k=nElems; k>j; k--)
     a[k] = a[k-1];
  a[j] = value;
  nElems++;
}
 ______L
public int D(int L, int R, long p) {
     int LP = L - 1;
     int RP = R + 1;
     while(true) {
           while(LP < R && theArray[++LP] < p);</pre>
           while(RP > L && theArray[--RP] > p);
           if(LP >= RP) break;
           else swap(LP, RP);
     return LP:
   public int C(long value) {
     int LB = 0;
     int UB = nElems-1;
     int curIn;
     while(true) {
           curIn = (LB + UB) / 2;
           if(a[curIn] == value) return curIn;
           else if(LB > UB) return nElems;
           else {
                 if(a[curIn] < value) LB = curIn + 1;</pre>
                else UB = curIn - 1;
           }
     }
```