Differentialrechnung: Teil 1

Andreas Henrici

MANIT1 IT18ta_ZH

12.11.2018

Überblick

Grenzwerte von Funktionen

Stetigkeit von Funktionen

Fragestellung

- Gegeben: Funktion y = f(x) mit Definitionsbereich $D, x_0 \in \mathbb{R}$
- Es muss nicht unbedingt $x_0 \in D$ gelten
- Grenzwert von y = f(x) an der Stelle x_0 ?
- Idee: Wir wählen eine Folge (x_n) mit $\lim_{n\to\infty} x_n = x_0$ und schauen, wie sich die Folge $(f(x_n))$ verhält!

Beispiel

Wir betrachten die Funktion $f(x) = x^2$ an der Stelle $x_0 = 2$ $x_0 \in D$.

n	$x_n = 2 - \frac{1}{n}$	$f(x_n)$	$\tilde{x}_n = 2 + \frac{1}{n}$	$f(\tilde{x}_n)$
1	1	1	3	9
2	1.5	2.25	2.5	6.25
3	1.666	2.777	2.333	5.444
4	1.75	3.0625	2.25	5.0625
5	1.8	3.24	2.2	4.84
10	1.9	3.61	2.1	4.41
100	1.99	3.9601	2.01	4.0401
1000	1.999	3.996001	2.001	4.004001
Grenzwert für $n \to \infty$	$x_0 = 2$	4	$x_0 = 2$	4

Es gilt

$$\lim_{x\to 2} f(x) = 4$$

Beispiel

Wir betrachten die Funktion $f(x) = \frac{x^2 - 1}{x - 1}$ an der Stelle $x_0 = 1, x_0 \notin D!$

n	$x_n = 1 - \frac{1}{n}$	$f(x_n)$	$\tilde{x}_n = 1 + \frac{1}{n}$	$f(\tilde{x}_n)$
1	0	1	2	3
2	0.5	1.5	1.5	2.5
3	0.666	1.666	1.333	2.333
4	0.75	1.75	1.25	2.25
5	0.8	1.8	1.2	2.2
10	0.9	1.9	1.1	2.1
100	0.99	1.99	1.01	2.01
1000	0.999	1.999	1.001	2.001
Grenzwert für $n \to \infty$	$x_0 = 1$	2	$x_0 = 1$	2

Es gilt

$$\lim_{x\to 1} f(x) = 2$$

Beispiel

Wir betrachten die Funktion $f(x) = \frac{x}{|x|}$ an der Stelle $x_0 = 0$ $x_0 \notin D$.

n	$x_n = \frac{1}{n}$	$f(x_n)$	$\tilde{x}_n = -\frac{1}{n}$	$f(\bar{x}_n)$	$\hat{x}_n = \frac{(-1)^n}{n}$	$f(\hat{x}_n)$
1	1	1	-1	-1	-1	-1
2	0.5	1	-0.5	-1	0.5	1
3	0.333	1	-0.333	-1	-0.333	-1
4	0.25	1	-0.25	-1	0.25	1
5	0.2	1	-0.2	-1	-0.2	-1
10	0.1	1	-0.1	-1	0.1	1
100	0.01	1	-0.01	-1	0.01	1
101	0.0099	1	-0.0099	-1	-0.0099	-1
Grenzwert für $n \to \infty$	$x_0 = 0$	1	$x_0 = 0$	-1	$x_0 = 0$	

Es gibt keinen Grenzwert

$$\lim_{x\to 0} f(x).$$

Grenzwert von Funktionen an der Stelle $x_0 \in \mathbb{R}$

Definition

- Gegeben: $y = f(x), x_0 \in \mathbb{R}$.
- Die Funktion y = f(x) hat an der Stelle x_0 den *Grenzwert* y_0 , falls für jede Folge (x_n) mit $\lim_{n \to \infty} x_n = x_0$ gilt: $\lim_{n \to \infty} f(x_n) = y_0$.
- Kurz notiert:

$$\lim_{x \to x_0} f(x) = y_0 \Longleftrightarrow \lim_{n \to \infty} f(x_n) = y_0 \quad \forall (x_n) \text{ mit } \lim_{n \to \infty} x_n = x_0$$

 Besitzt die Funktion f an der Stelle x₀ keinen Grenzwert, so ist f an der Stelle x₀ divergent.

Bemerkung

- Es wird nicht vorausgesetzt, dass $x_0 \in D(f)$ gilt.
- Falls $x_0 \in D(f)$ gilt, wird nicht verlangt, dass $\lim_{x \to x_0} f(x) = f(x_0)$ gilt (falls das gilt, ist f stetig bei x_0 , siehe später).

Beispiel

Hat $f(x) = \sin(\frac{1}{x})$ an der Stelle $x_0 = 0$ einen Grenzwert?

- Durch Betrachtung des Graphen ist sofort ersichtlich, dass der gesuchte Grenzwert nicht existiert! Die folgenden Überlegungen dienen dazu, diesen Sachverhalt durch Anwendung des Grenzwertkriteriums auszudrücken.
- $x_n = \frac{1}{\frac{\pi}{2} + 2\pi \cdot n}$: $f(x_n) = 1$ für alle $n \in \mathbb{N}$, also $\lim_{n \to \infty} f(x_n) = 1$
- $x_n = \frac{1}{\frac{3\pi}{n} + 2\pi \cdot n}$: $f(x_n) = -1$ für alle $n \in \mathbb{N}$ also $\lim_{n \to \infty} f(x_n) = -1$
- Also kann f an der Stelle $x_0 = 0$ keinen Grenzwert haben!

Grenzwert von Funktionen für $x \to \infty$: Definition

Definition

- Gegeben: y = f(x)
- Die Funktion y = f(x) hat für $x \to \infty$ den Grenzwert y_0 , falls für jede Folge (x_n) mit $\lim_{n \to \infty} x_n = \infty$ gilt: $\lim_{n \to \infty} f(x_n) = y_0$.
- Kurz notiert:

$$\lim_{x\to\infty} f(x) = y_0 \Longleftrightarrow \lim_{n\to\infty} f(x_n) = y_0 \quad \forall (x_n) \text{ mit } \lim_{n\to\infty} x_n = \infty$$

Besitzt die Funktion f für x → ∞ keinen Grenzwert, so ist f für x → ∞ divergent.

Bemerkung

- Auch bestimmte Divergenz möglich, d.h. $\lim_{x\to\infty} f(x) = \pm \infty$
- Im Fall von $\lim_{x\to\infty} f(x) = \infty$ kann man oft eine Asymptote von f(x) für $x\to\infty$ angeben, siehe rationale Funktionen.

Grenzwert von Funktionen für $x \to \infty$: Beispiele

Beispiel

Grenzwert für $x \to \infty$?

- **a)** $f(x) = \frac{1}{x}$
- **b)** $f(x) = \frac{7x+1}{5x+6}$
- c) $f(x) = \frac{x^3}{x^2+1}$
- **d)** $f(x) = \sin(x)$
- e) $f(x) = \sin(\frac{1}{x})$

Grenzwert von Funktionen für $x \to \infty$: Beispiele

Beispiel

Grenzwert für $x \to \infty$?

a)
$$f(x) = \frac{1}{x}$$
: konvergent,

$$\lim_{x\to\infty}f(x)=0$$

b)
$$f(x) = \frac{7x+1}{5x+6}$$
: konvergent,

$$\lim_{x\to\infty}f(x)=\frac{7}{5}$$

c)
$$f(x) = \frac{x^3}{x^2+1}$$
: divergent,

$$\lim_{x\to\infty} f(x) = \infty$$

d)
$$f(x) = \sin(x)$$
: divergent,

$$\lim_{x\to\infty} f(x) \text{ existient nicht}$$

e)
$$f(x) = \sin(\frac{1}{x})$$
: konvergent, ...

$$\lim_{x\to\infty}f(x)=0$$

Rechnen mit Grenzwerten

Satz

Seien f(x) und g(x) zwei konvergente Funktionen mit

$$\lim_{x\to x_0} f(x) = y_1, \qquad \lim_{x\to x_0} g(x) = y_2 \qquad (y_1, y_2 \in \mathbb{R}),$$

und seien $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann gilt:

a)
$$\lim_{x \to x_0} (\lambda_1 f(x) + \lambda_2 g(x)) = \lambda_1 y_1 + \lambda_2 y_2$$

$$b) \lim_{x \to x_0} (f(x) \cdot g(x)) = y_1 \cdot y_2$$

c)
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{y_1}{y_2}$$
, falls $g(x) \neq 0$ und $y_2 \neq 0$

Bemerkung

Die Regeln gelten auch für $\lim_{x\to\infty} f(x) = y_1$ und $\lim_{x\to\infty} g(x) = y_2$, aber nur für $y_1,y_2\in\mathbb{R}$. Mit ∞ kann man nicht rechnen wie mit gewöhnlichen Zahlen!

Stetigkeit: Anschaulich und präzise

Verschiedene Konzepte von Stetigkeit:

- Anschaulich: Eine Funktion f heisst stetig auf einem Intervall
 I ⊆ D, falls man den zugehörigen Graphen der Funktion von
 einem Intervallendpunkt zum anderen zeichnen kann, ohne den
 Stift dabei abzusetzen.
- Präzise:

Definition

a) Eine Funktion f, die in einer Umgebung von x_0 (inkl. x_0) definiert ist, heisst stetig an der Stelle x_0 , falls der Grenzwert $\lim_{x \to x_0} f(x)$ existiert und mit $f(x_0)$ übereinstimmt, d.h. falls gilt:

$$f(x_0)=\lim_{x\to x_0}f(x).$$

b) Eine Funktion *f* heisst *stetig*, falls sie an jedem Punkt *x*₀ ihres Definitionsbereichs stetig ist.

Stetigkeit der Grundfunktionen

Satz

- a) Polynome $y = a_n x^n + \ldots + a_0$ sind auf ganz \mathbb{R} stetig.
- **b)** Gebrochenrationale Funktionen $y = \frac{p_1(x)}{p_2(x)}$ für Polynome p_1 , p_2 sind auf ihrem ganzen Definitionsbereich stetig.
- c) Exponentialfunktionen $y = a^x$ (für a > 0) sind auf ganz \mathbb{R} stetig.
- **d)** Logarithmusfunktionen $y = \log_a(x)$ (für a > 0) sind auf ganz \mathbb{R}^+ stetig.

Bemerkung

- Sind gebrochenrationale Funktionen $y = \frac{p_1(x)}{p_2(x)}$ stetig?
- Ja, denn sie sind für jedes $x_0 \in D(f)$ stetig.
- An den Definitionslücken (hebbar oder Polstelle) sind sie gar nicht definiert, also können sie dort auch nicht unstetig sein
- Die Frage der Stetigkeit an der Stelle x₀ stellt sich nur, wenn x₀ ∈ D(f) gilt.

Stetigkeit von rationalen Funktionen: Beispiel

Beispiel

a) Die Funktion

$$f(x) = \frac{x^2 - 1}{x - 1}$$

ist auf ihrem ganzen Definitionsbereich $\mathbb{R} \setminus \{1\}$ stetig.

b) Die Funktion

$$\tilde{f}(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & \text{für } x \neq 1 \\ 2, & \text{für } x = 1 \end{cases}$$

ist auf ganz \mathbb{R} stetig. Es gilt nämlich für alle $x \in \mathbb{R}$: $\tilde{f}(x) = x + 1$.

Stetigkeit von rationalen Funktionen: Beispiel

Beispiel

a) Die Funktion

$$f(x)=\frac{1}{x}$$

ist auf ihrem ganzen Definitionsbereich $\mathbb{R} \setminus \{0\}$ stetig.

b) Sei $c \in \mathbb{R}$ beliebig. Die Funktion

$$\tilde{f}(x) = \begin{cases} \frac{1}{x}, & \text{für } x \neq 0 \\ c, & \text{für } x = 0 \end{cases}$$

ist auf ganz \mathbb{R} definiert, aber an der Stelle $x_0 = 0$ unstetig.

Unstetige Funktionen: Beispiel

Beispiel

Die Funktion

$$f(x) = \begin{cases} 1, & \text{für } x \ge 0 \\ 0, & \text{für } x < 0 \end{cases}$$

ist an der Stelle $x_0 = 0$ unstetig und überall sonst stetig.

Unstetige Funktionen: Beispiel

Beispiel

Die Funktion

$$ilde{f}(x) = \left\{ egin{array}{ll} x, & ext{für } -1 < x \leq 1 \ (2 - ext{periodisch}), & ext{sonst} \end{array}
ight.$$

ist an den Stellen $x_0 = -1, 1, 3, 5, \dots$ unstetig, an allen anderen Stellen hingegen stetig.

Rechnen mit Grenzwerten

Satz (Rechnen mit Grenzwerten)

Seien f(x) und g(x) zwei Funktionen, die an der Stelle x_0 stetig sind, und seien $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann gilt:

- a) Die Funktion $\lambda_1 f(x) + \lambda_2 g(x)$ ist an der Stelle x_0 stetig.
- **b)** Die Funktion $f(x) \cdot g(x)$ ist an der Stelle x_0 stetig.
- c) Die Funktion $\frac{f(x)}{g(x)}$ ist an der Stelle x_0 stetig (falls $g(x_0) \neq 0$).
- **d)** Falls g(x) an der Stelle x_0 stetig ist und f(x) an der Stelle $g(x_0)$, so ist die Verknüpfung $(f \circ g)(x)$ an der Stelle x_0 stetig.

Eigenschaften von stetigen Funktionen

Satz

Die Funktion f sei im abgeschlossenen Intervall [a, b] stetig. Dann gilt:

- a) f ist in [a,b] beschränkt, d.h. es gibt ein $M \in \mathbb{R}$ mit $|f(x)| \leq M$ für alle $x \in [a,b]$.
- b) f nimmt in [a, b] zwischen zwei Funktionswerten jeden beliebigen Zwischenwert an.
- c) Insbesondere gilt: Falls f in [a,b] stetig ist, und falls f(a) < 0 und f(b) > 0 gilt, so gibt es ein $x_0 \in (a,b)$ (d.h. $a < x_0 < b$) mit $f(x_0) = 0$.

Bemerkung

Die letzte Tatsache wird zur Konstruktion numerischer Verfahren zur Bestimmung von Nullstellen verwendet (Bisektion).