

NLP Emotion Presentation

DHANI POZNIAK

Overview

- Documentation is a form of communication
- Instantaneous
- Messenger
- Texting
- RealTime chat
- Chat bots

- NLP used to improve products by reviews
- Improve well-being
- Self-evaluation
- Guide to assist in therapy assessment
- Promote positive behaviour patterns

Dataset:

A. Tripathi, "Emotion Classification NLP", Kaggle.com, 2021. [Online].

Available: https://www.kaggle.com/datasets/anjaneyatripathi/emotion-classification-nlp.

[Accessed: 16- Jul- 2022].

7102 Rows, 2 Columns

Joy, Sadness, Anger, Fear

Data Preparation

Initial analysis shows a balanced dataset

- handle encoding
- handle extraneous and international charaters
- handle symbols/ emojis
- handle metadata and embedded information
- handle repetitions (such multiple spaces or newlines)
- Stopwords
- Stemming and lemmatization
- Important phase to be reproducible

Word Extraction

Used to indicate similarities/ differences between target labels

Baseline Model

- Used count and tf-idf vectorizer with LinearSVC
- Accuracy: 84.34% with tf-idf/ LinearSVC

Model Comparison- Phase 01

	Count Vectors	WordLevel TF-IDF	N-Gram Vectors	CharLevel Vectors	
Naive Bayes	0.830	0.809	0.395	0.695	
Logistic Regression	0.843	0.848	0.395	0.780	
Support Vector Machine	0.836	0.855	0.388	0.803	
Random Forest	0.835	0.828	0.391	0.764	
Gradient Boosting	0.814	0.811	0.384	0.788	

Chose one of each machine algorithm with highest accuracy score to move onto phase 02

Learning Curves (GNB, SVC, LogReg)

Baseline Accuracy: 0.843

Learning Curves (GradBst, RFC, Stacking)

Baseline Accuracy: 0.843

Precision/ Recall Curve

Roc-Curve

Bonus: Neural Network

- 3 Hidden Layers
- [100, 25, 15] neurons
- Output Layer: 4 neurons
- 15 epochs

Model Comparison-Phase 02 Hyper-Parameters

Baseline Accuracy: 0.843

	accuracy	precision	recall	f1-score	roc_auc	runtime (ms)	meanAcc
logisticRegression tf_idfVect	0.849	0.853	0.845	0.849	0.966	1050	0.843
supportVectorMachine tf_idfVect	0.860	0.860	0.857	0.859	0.970	243	0.856
randomForestClassifier countVect	0.839	0.873	0.826	0.840	0.971	567	0.821
naiveBayes countVect	0.830	0.833	0.824	0.827	0.950	4	0.798
gradientBoosting countVect	0.854	0.878	0.845	0.857	0.974	4394	0.842
stacking countVect	0.874	0.878	0.870	0.873	0.974	19341	0.854
stacking tfidfVect	0.872	0.873	0.869	0.871	0.974	12787	0.863
neuralNetwork countVect	0.820	0.822	0.816	0.819	-	308	0.622

Superior Model

Model Accuracy > Baseline Model

Superior Model

- Support Vector Machine (LinearSVC)
- Evaluation speed: 243 ms
- Implementing the chosen legitimate model, it is able to predict with 86% confidence matching emotion to the related text as either:
- Joy
- Sadness
- Anger
- Fear

Thank You

Any Questions?