

. reescale Semiconductor

Technical Data

RF Power LDMOS Transistors

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFETs

RF power transistors designed for both narrowband and broadband ISM, broadcast and aerospace applications operating at frequencies from 1.8 to 2000 MHz. These devices are fabricated using Freescale's enhanced ruggedness platform and are suitable for use in applications where high VSWRs are encountered.

Typical Performance: V_{DD} = 50 Volts

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)	IMD (dBc)
30-512 (1,3)	Two-Tone (100 kHz spacing)	100 PEP	19.0	30.0	-30
512 ⁽²⁾	CW	100	27.2	70.0	_
512 (2)	Pulse (200 μsec, 20% Duty Cycle)	100 Peak	26.0	70.0	_

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{out} (W)	Test Voltage	Result
512 (2)	Pulse (100 μsec, 20% Duty Cycle)	>65:1 at all Phase Angles	130 (3 dB Overdrive)	50	No Device Degradation
512 (2)	CW		126 (3 dB Overdrive)		

- 1. Measured in 30-512 MHz broadband reference circuit.
- 2. Measured in 512 MHz narrowband test circuit.
- 3. The values shown are the minimum measured performance numbers across the indicated frequency range.

Features

- Wide Operating Frequency Range
- · Extremely Rugged
- Unmatched, Capable of Very Broadband Operation
- · Integrated Stability Enhancements
- Low Thermal Resistance
- Integrated ESD Protection Circuitry
- In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13 inch Reel.

Document Number: MRFE6VP100H

Rev. 0, 5/2012

√RoHS

MRFE6VP100HR5 MRFE6VP100HSR5

1.8-2000 MHz, 100 W, 50 V BROADBAND RF POWER LDMOS TRANSISTORS

Figure 1. Pin Connections

_____**3**

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +133	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	-40 to +150	°C
Operating Junction Temperature (4,5)	TJ	-40 to +225	°C

- 4. Continuous use at maximum temperature will affect MTTF.
- 5. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (1,2)	Unit
Thermal Resistance, Junction to Case CW: Case Temperature 81°C, 100 W CW, 50 Vdc, I _{DQ(A+B)} = 100 mA, 512 MHz	$R_{ heta JC}$	0.38	°C/W
Thermal Impedance, Junction to Case Pulse: Case Temperature 73°C, 100 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 50 Vdc, I _{DQ(A+B)} = 100 mA, 512 MHz	$Z_{ heta JC}$	0.12	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 2500 V
Machine Model (per EIA/JESD22-A115)	B, passes 250 V
Charge Device Model (per JESD22-C101)	IV, passes 2000 V

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽³⁾			1	•	
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	400	nAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 50 mA)	V _{(BR)DSS}	133	141	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	3	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
On Characteristics					
Gate Threshold Voltage $^{(3)}$ (V _{DS} = 10 Vdc, I _D = 170 μ Adc)	V _{GS(th)}	1.6	2.1	2.6	Vdc
Gate Quiescent Voltage $(V_{DD} = 50 \text{ Vdc}, I_D = 100 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	2.1	2.6	3.1	Vdc
Drain-Source On-Voltage ⁽³⁾ (V _{GS} = 10 Vdc, I _D = 1 Adc)	V _{DS(on)}	_	0.23	_	Vdc
Dynamic Characteristics ⁽³⁾					
Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}		0.24	_	pF
Output Capacitance $(V_{DS} = 50 \text{ Vdc} \pm 30 \text{ mV(rms)ac} @ 1 \text{ MHz}, V_{GS} = 0 \text{ Vdc})$	C _{oss}		23.9	_	pF
Input Capacitance (Vps = 50 Vdc, Vps = 0 Vdc + 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	73.6	_	pF

Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc, I_{DQ(A+B)} = 100 mA, P_{out} = 100 W Peak (20 W Avg.), f = 512 MHz, 200 μsec Pulse Width, 20% Duty Cycle

Power Gain	G _{ps}	25.0	26.0	27.0	dB
Drain Efficiency	η_{D}	68.0	70.0	_	%
Input Return Loss	IRL	_	-14	-9	dB

Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system, I_{DQ(A+B)} = 100 mA)

Frequency (MHz)	Signal Type	VSWR	P _{out} (W)	Test Voltage, V _{DD}	Result
512	Pulse (100 μsec, 20% Duty Cycle)	>65:1 at all Phase Angles	130 Peak (3 dB Overdrive)	50	No Device Degradation
	CW		126 (3 dB Overdrive)		

- 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.
- 2. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers.* Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.
- 3. Each side of device measured separately.

MRFE6VP100HR5 MRFE6VP100HSR5

TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

Figure 2. Capacitance versus Drain-Source Voltage

Figure 3. Normalized V_{GS} versus Quiescent Current and Case Temperature

I _{DQ} (mA)	Slope (mV/°C)
100	-1.945
200	-1.826
300	-1.700
600	-1.648

Note: MTTF value represents the total cumulative operating time under indicated test conditions.

Figure 4. MTTF versus Junction Temperature - CW

512 MHz NARROWBAND PRODUCTION TEST FIXTURE

Figure 5. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Component Layout — 512 MHz

Table 5. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Component Designations and Values — 512 MHz

Part	Description	Part Number	Manufacturer
B1, B2	Small Ferrite Beads, Surface Mount	2743019447	Fair-Rite
C1, C8	22 μF, 35 V Tantalum Capacitors	T491X226K035AT	Kemet
C2, C9	120 pF Chip Capacitors	ATC100B121JT500XT	ATC
C3	4.3 pF Chip Capacitor	ATC100B4R3CT500XT	ATC
C4, C5	56 pF Chip Capacitors	ATC100B560CT500XT	ATC
C6, C7, C15, C16, C17, C18	27 pF Chip Capacitors	ATC100B270JT500XT	ATC
C10, C21	0.1 μF Chip Capacitors	C1812F104K1RACTU	Kemet
C11, C22	0.01 μF Chip Capacitors	C1825C103K1GACTU	Kemet
C12, C23	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
C13, C19	240 pF Chip Capacitors	ATC100B241JT200XT	ATC
C14, C20	2.2 μF Chip Capacitors	G2225X7R225KT3AB	ATC
C24	7.5 pF Chip Capacitor	ATC100B7R5CT500XT	ATC
Coax1, 2	25 Ω Semi Rigid Coax, 2.2" Shield Length	UT-141C-25	Micro-Coax
Coax3, 4	25 Ω Semi Rigid Coax, 2.0" Shield Length	UT-141C-25	Micro-Coax
L1, L2	5 Turns, 18.5 nH Inductors, Wire Wound	A05TKLC	Coilcraft
L3, L4	7 Turns, 22 nH Inductors, Wire Wound	B07TJLC	Coilcraft
PCB	0.030", ε _r = 2.55	AD255D	Arlon

MRFE6VP100HR5 MRFE6VP100HSR5

Figure 6. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Schematic — 512 MHz

 Table 6. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Microstrip
 Microstrip
 Description

Microstrip	Description	Microstr
Z1	0.366" × 0.082" Microstrip	Z9, Z22
Z2, Z15	0.070" × 0.102" Microstrip	Z10*, Z23
Z3, Z16	0.094" × 0.102" Microstrip	Z11, Z24
Z4, Z17	0.103" × 0.102" Microstrip	Z12, Z25
Z5, Z18	0.125" × 0.102" Microstrip	Z13
Z6, Z19	0.168" × 0.102" Microstrip	Z14
Z7*, Z20*	0.912" × 0.058" Microstrip	* Line len
Z8, Z21	0.420" × 0.726" Microstrip	

0.257" × 0.216" Microstrip

0.192" × 0.082" Microstrip

0.590" × 0.216" Microstrip

0.822" × 0.150" Microstrip

0.271" × 0.507" Microstrip

<u>()</u>
9
⊑
Φ.
9
0
.≌
₽
တ
0
≒
<u>5</u>
⊏
_
S
Φ
0
\rightarrow
0
\succeq
=
_
⇒
ō
\subseteq
Φ
_
Φ
Č

0.173" × 0.082" Microstrip

TYPICAL CHARACTERISTICS — 512 MHz

Figure 7. CW Output Power versus Gate-Source Voltage at a Constant Input Power

f	P1dB	P3dB
(MHz)	(W)	(W)
512	117	132

Figure 8. CW Output Power versus Input Power

Figure 9. Power Gain and Drain Efficiency versus CW Output Power

512 MHz NARROWBAND PRODUCTION TEST FIXTURE

 V_{DD} = 50 Vdc, $I_{DQ(A+B)}$ = 100 mA, P_{out} = 100 W Peak

f MHz	$Z_{source} \ \ \Omega$	Z _{load} Ω
512	1.50 + j8.90	12.2 + j18.0

Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

Figure 10. Narrowband Series Equivalent Source and Load Impedance — 512 MHz

30-512 MHz BROADBAND REFERENCE CIRCUIT

Table 7. 30-512 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system) $V_{DD} = 50 \text{ Volts}$, $I_{DQ(A+B)} = 400 \text{ mA}$

Signal Type	P _{out} (W)	f (MHz)	G _{ps} (dB)	η _D (%)	IMD (dBc)
Two-Tone (200 kHz spacing)	25 PEP	30	24.5	25.3	-37.8
		100	19.6	19.9	-35.7
		512	21.3	20.3	-42.8
	50 PEP	30	24.5	36.7	-29.1
		100	19.9	28.9	-32.9
		512	21.7	29.6	-43.7
	75 PEP	30	23.9	44.6	-24.1
		100	19.4	35.1	-25.1
		512	21.7	36.8	-37.4
	100 PEP	30	23.2	50.7	-20.1
		100	18.8	39.8	-20.4
		512	21.6	42.2	-28.6

30-512 MHz BROADBAND REFERENCE CIRCUIT

Figure 11. MRFE6VP100HR5(HSR5) Broadband Reference Circuit Component Layout — 30-512 MHz

Table 8. MRFE6VP100HR5(HSR5) Broadband Reference Circuit Component Designations and Values — 30-512 MHz

Part	Description	Part Number	Manufacturer
C1, C4	2.2 μF Chip Capacitors	C1825C225J5RAC	Kemet
C2, C3, C7, C8, C9, C10	20K pF Chip Capacitors	ATC200B203KT50XT	ATC
C5, C13	200 nF Chip Capacitors	C1812C224K5RAC-TU	Kemet
C6, C12	2.2 μF Chip Capacitors	G2225X7R225KT3AB	ATC
C11	2.7 pF Chip Capacitor	ATC100B2R7BT500XT	ATC
C14, C16	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
C15	2.0 pF Chip Capacitor	ATC100B2R0BT500XT	ATC
E1, E2	#43 Ferrite Beads	2643023402	Fair-Rite
E3, E4, E5	Binocular Toroid K Material	12-365-K	Ferronics
E6, E7	Toroid Ferrite K Material	11-750-K	Ferronics
L1, L2	10 Turns, #18 AWG, Toroid Transformer with Ferrites E6, E7	8075 Copper Magnetic Wire	Belden
Q1	RF Power LDMOS Transistor	MRFE6VP100HR5	Freescale
R1, R2	10 Ω, 1/4 W Chip Resistors	CRCW120610ROJNEA	Vishay
R3, R4	56 Ω, 1/4 W Chip Resistors	CRCW120656ROJNEA	Vishay
T1	50 Ω Flex Cable, 4"	Sucoform 141	Hubert+Suhner
T2, T3	22 Ω Flex Cable, 3.25"	M27500-16RC1509	Whitmor-Wirenetics
T4	25 Ω Semi Rigid, 2.75"	UT-90-25	Micro-Coax
PCB	$0.030''$, $\varepsilon_r = 2.55$	AD255A	Arlon

Figure 12. MRFE6VP100HR5(HSR5) Broadband Test Circuit Schematic — 30-512 MHz

Table 9. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Microstrips — 30-512 MHz

Microstrip	Description
Z1	0.366" × 0.082" Microstrip
Z2, Z3	0.070" × 0.102" Microstrip
Z4,Z5	0.094" × 0.102" Microstrip
Z6*, Z7*	1.375" × 0.063" Microstrip
Z8, Z9	0.561" × 0.219" Microstrip
Z10, Z11	0.250" × 0.219" Microstrip

Microstrip	Description
Z12*, Z13*	1.125" × 0.150" Microstrip
Z14, Z15	0.563" × 0.219" Microstrip
Z16, Z17	0.094" × 0.219" Microstrip
Z18, Z19	0.156" × 0.219" Microstrip
Z20	0.359" × 0.078" Microstrip

^{*} Line length includes microstrip bends

TYPICAL CHARACTERISTICS — 30-512 MHz BROADBAND REFERENCE CIRCUIT

Figure 13. Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power

Figure 14. CW Output Power versus Gate-Source Voltage at a Constant Input Power

Figure 15. CW Output Power versus Gate-Source Voltage at a Constant Input Power

TYPICAL CHARACTERISTICS — 30-512 MHz BROADBAND REFERENCE CIRCUIT

f (MHz)	P1dB (W)	P3dB (W)
30	78	107
100	81	118
512	123	142

Figure 16. CW Output Power versus Input Power

Figure 17. Power Gain and Drain Efficiency versus CW Output Power

TYPICAL CHARACTERISTICS — 30-512 MHz BROADBAND REFERENCE CIRCUIT — TWO-TONE (1)

Figure 18. Intermodulation Distortion Products versus Output Power — 30 MHz

Figure 19. Intermodulation Distortion Products versus Output Power — 100 MHz

Figure 20. Intermodulation Distortion Products versus Output Power — 520 MHz

1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone.

30-512 MHz BROADBAND REFERENCE CIRCUIT

 V_{DD} = 50 Vdc, P_{out} = 100 W CW

DD 7 OUL							
f MHz	Z _{source} Ω	Z _{load} Ω					
30	10.7 + j1.20	45.8 – j9.00					
64	10.9 + j0.70	39.7 – j15.4					
88	10.9 + j0.50	33.9 – j18.1					
108	10.3 + j0.70	30.0 – j14.4					
144	11.0 + j0.70	26.0 – j16.7					
170	10.4 + j0.60	21.8 – j13.4					
230	9.90 + j0.90	17.0 – j10.7					
352	8.90 + j2.30	13.8 – j0.60					
450	7.60 + j4.80	16.9 + j9.50					
512	7.20 + j6.00	23.7 + j13.5					

$$\begin{split} Z_{source} = & \text{ Test circuit impedance as measured from} \\ & \text{gate to gate, balanced configuration.} \end{split}$$

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

Figure 21. Broadband Series Equivalent Source and Load Impedance — 30-512 MHz

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO): 98ASA10793D	REV: 0	
NI 780-4	CASE NUMBER: 465M-01 27 MAR				
	STANDARD: NON-JEDEC				

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION H IS MEASURED . 030 (0.762) AWAY FROM PACKAGE BODY.

STYLE 1:

PIN 1. DRAIN

2. DRAIN 3. GATE

4. GATE

5. SOURCE

	INCH MILLIMETER				INCH	MILLIMETER				
DIM	MIN	MAX	MIN	MAX	DIM	MIN MAX		MIN	I MAX	
Α	1.335	1.345	33.91	34.16	R	.365	.375	9.2	7 9.53	
В	.380	.390	9.65	9.91	S	.365	.375	9.2	7 9.52	
C	.125	.170	3.18	4.32	U		.040		1.02	
Е	.035	.045	0.89	1.14	Z		.030		0.76	
F	.003	.006	0.08	0.15	AB	. 145	. 155	3. 68	8 3. 94	
G	1. 100	1. 100 BSC 27. 94 BSC								
Н	.057	.067	1.45	1.7	aaa	a .005			0.127	
J	. 175	BSC	4.	44 BSC	bbb	b .010			0.254	
K	.170	.210	4.32	5.33	ccc		.015	0.381		
M	.774	.786	19.61	20.02						
N	.772	.788	19.61	20.02						
Q	ø.118	ø.138	ø3	ø3.51						
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA				L OUT	LINE	PRINT VERS	SION NO	OT TO SCALE		
TITLE:					DOCUMENT NO: 98ASA10793D REV			REV: 0		
	NI 780-4				CASE NUMBER: 465M-01 27 MAR 20				27 MAR 2007	
					STAN	DARD: NO	N-JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE:	DOCUMENT NO	REV: A			
NI 780S-4	CASE NUMBER: 465H-02 27 MAR 2				
	STANDARD: NON-JEDEC				

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DELETED
- 4. DIMENSION H IS MEASURED . 030 (0.762) AWAY FROM PACKAGE BODY.

STYLE 1:

PIN 1. DRAIN

2. DRAIN

3. GATE

4. GATE

5. SOURCE

	INCH MILLIMETER		LIMETER			INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	1	MAX
Α	.805	.815	20.45	20.7	U		.040			1.02
В	.380	.390	9.65	9.91	Z		.030			0.76
С	.125	.170	3.18	4.32	AB	. 145	. 155	3. 6	8 –	3. 94
E	.035	.045	0.89	1.14						
F	.003	.006	0.08	0.15	aaa		.005		0.12	:7
Н	.057	.067	1.45	1.7	bbb	.010		0.254		54
J	. 175	BSC	4.	44 BSC	ccc		.015		0.38	31
K	.170	.210	4.32	5.33						
M	.774	.786	19.61	20.02						
N	.772	.788	19.61	20.02						
R	.365	.375	9.27	9.53						
S	.365	.375	9.27	9.52						
© F	© FREESCALE SEMICONDUCTOR, INC. MECHANICA			L OUT	LINE	PRINT VERS	SION NO	от то	SCALE	
TITL	TITLE:				DOCU	MENT NO): 98ASA10718	BD	REV:	Α
NI 780S-4					CASE NUMBER: 465H-02 27 MAR 2007				AR 2007	
						STANDARD: NON-JEDEC				

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following documents, software and tools to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

· Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to the Software & Tools tab on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	May 2012	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert, QorlQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorlQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

 $\ensuremath{\texttt{©}}$ 2012 Freescale Semiconductor, Inc.

Document Number: MRFE6VP100H

Rev. 0, 5/2012

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP:

MRFE6VP100HR5 MRFE6VP100HSR5