Algorithmic Human-Robot Interaction

Trajectory Optimization

&

Project Ideas

Today: Trajectory Optimization & Project Brainstorming

Making Robots Move (how we want them to)

Optimizing motion plans

Research Projects

- Broad overview of open HRI problems not covered last time
- Rapid-fire Project Discussions

Last Time...

Cell Decomposition

Not necessarily complete

(Complete: If a solution exists, it will eventually be found)

How Does It Work?

Sample random locations!

Remove points in forbidden areas Link each point to its K nearest neighbors

Rapidly-exploring Random Trees

```
Algorithm BuildRRT Input: Initial configuration q_{init}, number of vertices in RRT K, incremental distance \Delta q) Output: RRT graph G

G.init(q_{init})
for k = 1 to K
q_{rand} \leftarrow RAND\_CONF()
q_{near} \leftarrow NEAREST\_VERTEX(q_{rand}, G)
q_{new} \leftarrow NEW\_CONF(q_{near}, q_{rand}, \Delta q)
G.add\_vertex(q_{new})
G.add\_edge(q_{near}, q_{new})
return G
```

RRT: Limitations

- RRT fails to converge to optimal solutions
 - Early solutions end up constraining the search
- RRT* guarantees asymptotic optimality (convergence to optimal solutions)
- RRT and RRT* require the same (asymptotic) computational resources

RRT

RRT^*

RRT*

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Sample

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Connect cheapest path

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Re-wire Graph

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Re-wire Graph

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Re-wire Graph

https://www.youtube.com/watch?v=JM7kmWE8Gtc

Today

Optimal Control

Optimal Control: Finding the best control policy for a desired goal

Closed-Loop Solutions

u=u(x)"Global Method": Gives action at all states
Very expensive to compute

Open-Loop Solution

u=u(t) "Local Method": Gives action at relevant states Usable in high dimensions

Trajectory Optimization:

Problem Statement

• Trajectory ξ : $t \in [0,T] \to C$

Maps time to configurations

• Objective Functional $U:\Xi\to\mathbb{R}^+$

Maps trajectories to scalars

- The objective U encodes traits we want our path to have
 - Path length
 - Efficiency
 - Obstacle avoidance
 - Legibility
 - Uncertainty reduction
 - Human comfort

Set of possible trajectories

Goal: Leverage the benefits of randomized sampling with asymptotic optimality

Problem Specification: Spaces

Space (set of points)

Configuration Space

Trajectory through **Configuration Space** (set of points)

Single point in **Trajectory Space**

Problem Specification: Optimization

Trajectory Optimization seeks to find an optimal trajectory ξ^* :

$$\xi^* = argmin_{\{\xi \in \Xi\}}U[\xi]$$

s.t.
$$\xi(0) = q_s$$

 $\xi(T) = q_g$
...(any other constraints we want)

Problem Specification: Optimization

Want to optimize ξ to a global minimum of our objective **U** => Usually too hard!

Instead, optimize ξ to a local minimum of our objective U => If the solution is bad, resample ξ and try again

Problem Specification: Optimization

Gradient Descent is a popular technique for finding local minima

$$\xi_{t+1} = \xi_t - \frac{1}{\alpha} \nabla_{\xi} U(\xi_t)$$

Points in the direction of greatest ascent for ξ

Functional Gradient Descent

To compute the derivatives of a functional, some trickery is required:

Ξ is a Hilbert space with Euclidean inner product

$$U[\xi] = \int_0^T F(t, \xi(t), \xi'(t)) dt$$

$$\nabla_{\xi} U(t) = \frac{\delta F}{\delta \xi(t)}(t) - \frac{d}{dt} \frac{\delta F}{\delta \xi'(t)}(t)$$

$$\nabla_{\xi} U(t) \in \Xi$$

Functional Gradient Descent

Example: Cost function to minimize magnitude of velocity

Given
$$U[\xi] = \frac{1}{2} \int_0^T ||\xi'(t)||^2 dt$$

An optimal trajectory will have the following properties:

Shape: Linear. (Traveling less distance will require less velocity over the time interval.)

Timing: Constant velocity

Making Trajectory Optimization Useful

Need to provide a good choice for $U[\xi]$.

CHOMP: Covariant Hamiltonian Optimization for Motion Planning

Uses a cost function
$$U[\xi] = U_{smooth}[\xi] + \lambda U_{obs}[\xi]$$

Smoothness cost:
$$U_{smooth}[\xi] = \frac{1}{2} \int_0^T ||\xi'(t)||^2 dt$$

Obstacle cost:
$$U_{obs}[\xi] = \int_t \int_{u} c\left(\phi_u(\xi(t))\right) * \left\|\frac{d}{dt}\phi_u(\xi(t))\right\| dudt$$

Cost function that computes distance to closest obstacle

Forward Kinematics function that computes location of robot body point u at time t in ξ

Norm of the velocity for body point u at time t in ξ

Making Trajectory Optimization Useful

CHOMP: Covariant Hamiltonian Optimization for Motion Planning

Uses a cost function
$$U[\xi] = U_{smooth}[\xi] + \lambda U_{obs}[\xi]$$

A-HRI: More Open Problems

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Robots Asking for Help

Asking for Help Using Inverse Semantics

Stefanie Tellex, Ross A. Knepper Adrian Li, Thomas M. Howard, Daniela Rus, Nicholas Roy

Supported in part by the Boeing Company, and in part by the U.S Army Research Laboratory under the Robotics Collaborative Technology Alliance.

Learning by Demonstration

Learning Robot Objectives from Physical Human Interaction

Andrea Bajcsy*, Dylan P. Losey*, Marcia K. O'Malley, and Anca D. Dragan

Parsing Natural Language Instruction

Reviewing Papers

Re-Express

You should attempt to re-express your target's position so clearly, vividly, and fairly that your target says,

"Thanks, I wish I'd thought of putting it that way."

-Daniel Dennett

Summary

- Re-express target's position clearly, vividly, and fairly
- List any points of agreements
- Mention anything you have learned from the target
- Professionally introduce rebuttal or critique

Presenting Papers

- Identify key insights
- Identify corner cases
- Identify scaling issues
- Identify unrealistic application constraints
- Avoid being procedural

Presenting a Paper

- 1. Bigger picture
- 2. Motivation
- Problem Statement
- 4. Why is this hard
- 5. Key insight
- 6. Details
- 7. Results
- 8. Broader picture
- 9. Restate the key insight that addressed the problem

Papers for Thursday 1/31:

Need 1 PRO (10m) and 1 CON (5m) speaker each E-mail <u>Bradley.Hayes@Colorado.edu</u> to sign up

Trajectories and Keyframes for Kinesthetic Teaching: A Human-Robot Interaction Perspective Baris Akgun et al.

Planning human-aware motions using a sampling-based costmap planner
Jim Mainprice et al.

Project Brainstorming!

Platforms

Project Brainstorming

Form small groups

A few minutes per topic:

Discuss a capability or system and application scenario that would address the topic

Write down your ideas (brief summaries please)

Project Brainstorming

Projects can involve either

building an autonomous system

or

testing some aspect of a hypothetical autonomous system

					3		1	3		2
		Ν	3	3	3	7	4	3	6	2
	3									
	2									
	6									
ķ	3									
F	1									
	7									
ļ	3									
	3									
	3									
	2									

Topic: Personalized Robot Tutoring

- Language Learning
- Training for Manufacturing (IKEA)
- Nonograms / Games
- Etc.

Topic: Safe Human-Aware Motion Planning

Safety systems for mixed humanrobot environments

Visualizations for communicating intent

Motion planning cost functions incorporating human activity

Topic: Reducing Human's Uncertainty During Collaboration

Modeling which objects in scene the human is likely to (not) know the locations of Communicating the robot's plan through pantomime or speech

