MATH 135 HOMEWORK 7

A. HENING

Do problems 20, 21, 22, 23, 24 (only parts a), b) and c)), from Rudin Chapter 3 and the following problems.

1. Fix $\alpha > 0$ and let $x_1 > \sqrt{\alpha}$. Let

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right), \ n \in \mathbb{N}$$

- a) Show that $x_n > \sqrt{\alpha}$ for all $n \in \mathbb{N}$.
- b) Conclude that the sequence is monotonically decreasing.
- c) Show that $(x_n)_{n\in\mathbb{N}}$ converges to $\sqrt{\alpha}$.
- 2. For any $\alpha \in \mathbb{R}$ we define

$$\lfloor \alpha \rfloor = \max_{n \in \mathbb{Z}} \{ n \mid n \le \alpha \}$$

and

$$\alpha \mod 1 = \alpha - \lfloor \alpha \rfloor.$$

1

Let $\alpha \in \mathbb{R}$ be irrational.

- (a) Given $n \in \mathbb{N}$, show that $\{k\alpha \mod 1 \mid k \in \mathbb{N}\} \cap [0, \frac{1}{n}] \neq \emptyset$.
- (b) Prove that $\{n\alpha \mod 1 \mid n \in \mathbb{N}\}\$ is dense in [0,1].