

Onion^{Core}

Social anonymous Filesharing

Tim Hinkes | Information Systems Engineering | Presentation Bachelor Thesis

- Motivation
- State of the Art
- Basics
 - Tor
 - BitTorrent
 - DHT
 - Asymmetric Cryptography
- Goals

- Onion^{Core}
 - PeerGroups
- Experiments
 - Transfer Rates Tor ↔ Plain
 - Hybrid Filesharing
- Conclusion

Motivation

- Sharing files playes major role in todays Internet
- Files often contain "unpleasant" data
 - Wikileaks
 - Critical speech
- Centralized Server-Client structure
 - Unpleasant data is easy to block

- P2P Client-Client structure
 - Hard to censor
 - Clients give out identity to everyone

Motivation

- Sharing files playes major role in todays Internet
- Files often contains "unpleasant" data
 - Wikileaks
 - Critical speech
- Centralized Service of the Control of

- P2P Client-Client structure
 - Hard to censor
 - Clients give out identity to everyone

Motivation

- Sharing files playes major role in todays Internet
- Files often contains "unpleasant" data
 - Wikileaks
 - Critical speech

Page 5

State of the Art

Transport-Layer anonymity

- Tor (The onion router)
- I2P (Invisible internet Project)
- ..

Torrent over Transport-Layer anonymity

- very slow for all peers
- Easy to set up

State of the Art

Transport-Layer anonymity

- Tor (The onion router)
- I2P (Invisible internet Project)
- ...

Torrent over Transport-Layer anonymity

- very slow for all peers
- Easy to set up

Projects providing anonymous filesharing infrastructure

- BitBlender
 - Tor-Style Routing over BitTorrent
- Freenet
 - Closed virtual Network
 - "persistent" storage on P2P architecture

Basics

Page 8

Basics

Page 9

Goals

Page 10

Goals

Hybrid sharing

- Plain connection within PeerGroup
 - Very fast
- Anonymous connection to everyone else
 - Slow

Ease of use

Reduces human error in crypto/trust

Onion^{Core}

Page 12

PeerGroupMember

- Authenticated by Public-Key
- Addressed by Tor-HiddenAddress
- Authorization by known Public-Key

PeerGroupMember

- Authenticated by Public-Key
- Addressed by Tor-HiddenAddress
- Authorization by known Public-Key

PeerGroup

- Identified by UUID
- Contains list of trusted Public-Keys

PeerGroupMember

- Authenticated by Public-Key
- Addressed by Tor-HiddenAddress
- Authorization by known Public-Key

PeerGroup

- Identified by UUID
- Contains list of trusted Public-Keys

PeerGroup Features

- No hierarchy between Members
- No removal of Members
- Full trust once accepted into Group

PeerGroupMember

- Authenticated by Public-Key
- Addressed by Tor-HiddenAddress
- Authorization by known Public-Key

PeerGroup

- Identified by UUID
- Contains list of trusted Public-Keys

PeerGroup Features

- No hierarchy between Members
- No removal of Members
- Full trust once accepted into Group

PeerGroup Invitation

- Member must initiate a invitation.
- Minimal User interaction
 - User needs to communicate nonce

Experiments

Setup

- Amazon EC2 instances
 - Distributed across regions
- Test over different times of the day
 - Compensating for fluctuation
- At least X runs per experiment
 - Consistent Data

Results Transfer Rates Tor ↔ Plain

Plain transfer rates ~ uplink speed

Tor rates VERY inconsistent

- Slow links 16kb/s
- Fast links 80/kbs
- Rates are varying

Results Transfer Rates Tor ↔ Plain (Geodistribution)

Interregion transfer Rates EU-1->US-west-2

What changes in transfer rates when Peers are geodistributed

- AWS EU-1
- AWS US-west-2

No change visible in Tor traffic

- Traffic is routed around the globe anyways
- Plain rates went down

Results hybrid sharing

No data available

- Instabilities in underlying Libraries
- Worked once during testing

Practical Test of sharing a file with trusted and untrusted

Peers

- 1 trusted Peers
- 2 untrusted Peers

Hybrid sharing can work

Viable approach if no trusted peer in own region

Conclusion

With different anonymity layer the System could be used to circumvent censorship (BitBlender)

Transfer rates of Tor connections are not highly related to location of the endpoints

Distributed Systems are a lot of work

- > 8.000 lines of code

Reliance in not well known libraries can lead to problems

- Silvertunnel (tor library) seems not very stable
- Torrent library had design issues
 - Only using Object and instanceof in return types and handling

¿Questions?

Thank you

Appendix SeqDiagram PeerGroupApplication

