МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Функциональный анализ

Лабораторная работа №5

(Измеримые функции)

Студентки 3 курса 3 группы

Домановой Татьяны Алексеевны

Работа сдана 06.12.2013 г.		
Зачтена _		2013 г.

Преподаватель

Дайняк Виктор Владимирович

Доцент кафедры МФ

канд. физ.-мат. наук

Задание 1

Постановка задачи

Пусть $f: \mathbb{R} \to \overline{\mathbb{R}}$. Является ли f измеримой?

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n + x^2}$$

Решение

Функция $f_n(x) = \frac{(-1)^n}{n+x^2}$ – непрерывна, а значит измерима. Тогда, если ряд $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+x^2}$ сходится, то f(x) непрерывна, а значит измерима.

$$\forall n, x: f_n(x) = \frac{(-1)^n}{n+x^2} \le \frac{(-1)^n}{n}$$

Значит искомый ряд ограничен сходящимся (по теореме Лейбница).

Задание 2

Постановка задачи

Пусть $f: \mathbb{R}^2 \to \overline{\mathbb{R}}$. Является ли f измеримой?

$$f(x,y) = \sum_{n=1}^{\infty} \frac{\sin(n(x^2 + y^2))}{\sqrt{n^4[x^2 + y^2]}}$$

Решение

 $\sin(n(x^2+y^2))$ – непрерывна, а значит измерима. $[x^2+y^2]$ – простая, так как принимает счетное число значений. А значит $\sqrt{n^4[x^2+y^2]}$ – тоже простая. Следовательно, $f_n=\frac{\sin(n(x^2+y^2))}{\sqrt{n^4[x^2+y^2]}}$ – измерима. А значит f - измерима, так как функциональный ряд сходится, так как

$$|f_n(x)| \le \frac{1}{n^2}$$

А значит f_n ограничена сходящимся числовым рядом.

Задание 3

Постановка задачи

Пусть X, \sum , μ — пространство с мерой, f_1 , f_2 , f_3 , f_4 : $X \to \overline{\mathbb{R}}$ — измеримые функции. Выяснить, является ли измеримой функция:

$$f(x) = \frac{f_1(x)}{\ln(2 + |f_2(x)|)}$$

Решение

|x| — непрерывная на $\mathbb R$ функция, а значит $|f_2(x)|$ — измерима, как композиция измеримых функций. Тогда, так как $\ln(x)$ — непрерывна на $\mathbb R^+$, то она измерима, а значит $\ln(2+|f_2(x)|)$ — тоже измерима. А так как $\ln(2+|f_2(x)|)$ никогда не обращается в 0, то f(x) — композиция измеримых функций, а з начит измерима.

Задание 4

Постановка задачи

Сходится ли последовательность $f_n(x)=\sin^n(x)$, $x\in\mathbb{R}$ по мере и почти всюду.

Решение

$$f(x) = 0$$

Последовательность $f_n(x)$ сходится к f(x) почти всюду, если $\mu(A_n(\varepsilon) = \{x: |f_n(x) - f(x)| > \varepsilon\}) \to_{n \to \infty} 0.$

Для $\forall x, \sin(x) < 1, f_n(x) \to_{n \to \infty} 0$. Если $\sin(x) = 1$, то $f_n(x) \to_{n \to \infty} 1$. Но $A = \{x : \sin(x) = 1\} = \{x : x = \frac{\pi}{2} + \pi k\} \sim \mathbb{Z}$. А значит $\mu(A) = \mu(\mathbb{Z}) = 0$. То есть последовательность $f_n(x)$ сходится к f(x) почти всюду. А из сходимости почти всюду следует сходимость по мере.