MATH 3110 - Spring 2023, Learning Activity 25

Group member: Bode Hookey

Group member:

Table number:

Team Leader needs to scan and upload it on Gradescope "Learning Activity 25" and add all group members to the submission (due 4/03).

1. (4 points) Let \vec{u} , \vec{v} and \vec{w} be vectors in \mathbb{R}^n . For each of the following expressions, determine if it is a scalar, a vector, or not defined (cannot be preformed). Mark by X the right answer.

with the state of La WALLEST STORY WAS thirt our way to a result Zwy w dofination J. 7 708 2500 TIMES a recention is just a vector.

	a scalar	a vector	not defined	£.\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$\frac{\vec{u}\cdot\vec{v}}{\vec{u}\cdot\vec{w}}\vec{w}$				evaluem to
$\frac{\vec{v}}{\vec{u}\cdot\vec{w}}$		X		Ciation in the contract of contractions of the contract of the
$(\vec{u} + \vec{w}) \cdot \vec{v} + \vec{w}$			X	Contracto in to State Part Contractor in the Contract Contractor in the Contractor in the Contract Contractor in the Contractor in
$\frac{\vec{v}}{\vec{u}\cdot\vec{w}}\cdot\frac{\vec{u}\cdot\vec{u}}{\vec{w}\cdot\vec{v}}\vec{u}$	1			Salv J. Save 2. C. Which
				berro evoluno de a

2. Let
$$\vec{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$ be vectors in \mathbb{R}^3 .

(a) (3 points) Compute the distance between \vec{w} and \vec{v} .

Computation:

$$dist(\vec{w}, \vec{v}) = \sqrt{74}$$

(b) (3 points) Find a unit vector
$$\vec{u}$$
 in the direction of \vec{v} .

Computation:

$$\vec{u} = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 7 & 1 \\ 3 & 7 & 1 \end{pmatrix}$$

3. (5 points) Let
$$\vec{c_1} = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$$
, $\vec{c_2} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix}$ and $\vec{z} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$ be vectors in \mathbb{R}^3 . Let $W = \operatorname{Span}(\vec{c_1}, \vec{c_2})$. Show that \vec{z} is orthogonal to W (i.e. \vec{z} is in W^{\perp}).

Your answer:

$$\begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ -16 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ -16 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ -16 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\$$

$$\begin{bmatrix} 2 & 5 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} = (2)(-1) + (0) + (2)(1) = -2 + 2 = 0$$

4. (3 points) Let \vec{b}_1, \vec{b}_2 and \vec{z} be vectors in \mathbb{R}^n such that \vec{b}_1 and \vec{z} are orthogonal and \vec{b}_2 and \vec{z} are also orthogonal. Show that $\vec{w} = 2\vec{b}_1 - \vec{b}_2$ and \vec{z} are orthogonal.

Your answer: