hypothesis test for a proportion

Dr. Mine Çetinkaya-Rundel Duke University

Hypothesis testing for a single proportion:

$$H_0: p = null\ value$$

- I. Set the hypotheses: $egin{aligned} H_0: p = null \ value \ H_A: p < \ or \ > \ or \
 eq \ null \ value \end{aligned}$
- 2. Calculate the point estimate: \hat{p}
- Check conditions:
 - 1. Independence: Sampled observations must be independent (random sample/assignment & if sampling without replacement, n < 10% of population)
 - 2. Sample size/skew: $np \ge 10$ and $n(1-p) \ge 10$
- $Z = \frac{\hat{p} p}{SE}, \quad SE = \sqrt{\frac{p(1-p)}{n}}$ 4. Draw sampling distribution, shade p-value, calculate test statistic
- 5. Make a decision, and interpret it in context of the research question:
 - If p-value $< \alpha$, reject H_0 ; the data provide convincing evidence for H_A .
 - If p-value $> \alpha$, fail to reject H₀ the data do not provide convincing evidence for H_A.

$$\hat{p}$$
 vs. p

	confidence interval	hypothesis test
success-failure condition	$n\hat{p} \ge 10$ $n(1 - \hat{p}) \ge 10$	$np \ge 10$ $n(1-p) \ge 10$
standard error	$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$SE = \sqrt{\frac{p(1-p)}{n}}$

A 2013 Pew Research poll found that 60% of 1,983 randomly sampled American adults believe in evolution. Does this provide convincing evidence that majority of Americans believe in evolution?

$$n = 1983$$

Whether one American in the sample believes in evolution is independent of another.

5-F condition met -> nearly normal sampling distribution

$$\mathcal{H}_{0}: p = 0.5$$
 $\hat{p} = 0.6$
 $\mathcal{H}_{A}: p > 0.5$ $n = 1983$

$$\hat{p} \sim N(mean = 0.5, SE = \frac{0.5 \times 0.5}{1983} \approx 0.0112)$$

$$Z = \frac{0.6 - 0.5}{0.0112} \approx 8.92$$

$$p-value = P(Z > 8.92)$$

$$= almost 0 \rightarrow reject $\forall 0$$$