

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Анализ алгоритмов"

Гема <u>Алгоритм Копперсмита-Винограда</u>	
Студент Пересторонин П.Г.	
Группа <u>ИУ7-53Б</u>	
Преподаватели Волкова Л.Л., Строганов Ю.В.	

Оглавление

\mathbf{B}	веде	ние		2
1	Ана	алитич	неская часть	3
	1.1	Описа	ание алгоритмов	3
		1.1.1	Стандартный алгоритм	3
		1.1.2	Алгоритм Копперсмита — Винограда	3
2	Koı	нструк	кторская часть	5
	2.1	Разра	ботка алгоритмов	5
	2.2	Модел	ль вычислений	10
	2.3	Трудо	ремкость алгоритмов	11
		2.3.1	Стандартный алгоритм умножения матриц	11
		2.3.2	Алгоритм Копперсмита — Винограда	12
		2.3.3	Оптимизированный алгоритм Копперсмита — Вино-	
			града	13
3	Tex	НОЛОГ	ическая часть	15
	3.1	Требо	ования к ПО	15
	3.2	Средо	ства реализации	15
	3.3	Листи	инг кода	15
	3.4	Тести	рование функций	19
4	Исс	следов	ательская часть	20
	4.1	Техни	ические характеристики	20
	4.2	Время	я выполнения алгоритмов	20
38	аклю	чение	;	23

Введение

Алгоритм Копперсмита — Винограда — алгоритм умножения квадратных матриц, предложенный в 1987 году Д. Копперсмитом и Ш. Виноградом [?]. В исходной версии асимптотическая сложность алгоритма составляла $O(n^{2,3755})$, где n — размер стороны матрицы. Алгоритм Копперсмита — Винограда, с учетом серии улучшений и доработок в последующие годы, обладает лучшей асимптотикой среди известных алгоритмов умножения матриц [?].

На практике алгоритм Копперсмита — Винограда не используется, так как он имеет очень большую константу пропорциональности и начинает выигрывать в быстродействии у других известных алгоритмов только для матриц, размер которых превышает память современных компьютеров [?]. Поэтому пользуются алгоритмом Штрассена по причинам простоты реализации и меньшей константе в оценке трудоемкости.

Алгоритм Штрассена [?] предназначен для быстрого умножения матриц. Он был разработан Фолькером Штрассеном в 1969 году и является обобщением метода умножения Карацубы на матрицы.

В отличие от традиционного алгоритма умножения матриц, алгоритм Штрассена умножает матрицы за время $\Theta(n^{\log_2 7}) = O(n^{2.81})$, что даёт выигрыш на больших плотных матрицах начиная, примерно, от 64×64 .

Несмотря на то, что алгоритм Штрассена является асимптотически не самым быстрым из существующих алгоритмов быстрого умножения матриц, он проще программируется и эффективнее при умножении матриц относительно малого размера.

Задачи лабораторной работы:

- 1. изучение и реализация 3 алгоритмов перемножения матриц: обычный, Копперсмита-Винограда, улучшенный Копперсмита-Винограда;
- 2. сравнительный анализ алгоритмов на основе теоретических расчетов трудоемкости в выбранной модели вычислений;
- 3. сравнительный анализ алгоритмов на основе экспериментальных данных;
- 4. подготовка отчета по лабораторной работе.

1 Аналитическая часть

1.1 Описание алгоритмов

1.1.1 Стандартный алгоритм

Пусть даны две прямоугольные матрицы

$$A_{lm} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \dots & a_{lm} \end{pmatrix}, \quad B_{mn} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}, \quad (1.1)$$

тогда матрица C

$$C_{ln} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{l1} & c_{l2} & \dots & c_{ln} \end{pmatrix}, \tag{1.2}$$

где

$$c_{ij} = \sum_{r=1}^{m} a_{ir} b_{rj} \quad (i = \overline{1,l}; j = \overline{1,n})$$
 (1.3)

будет называться произведением матриц A и B. Стандартный алгоритм реализует данную формулу.

1.1.2 Алгоритм Копперсмита — Винограда

Если посмотреть на результат умножения двух матриц, то видно, что каждый элемент в нем представляет собой скалярное произведение соответствующих строки и столбца исходных матриц. Можно заметить также, что такое умножение допускает предварительную обработку, позволяющую часть работы выполнить заранее.

Рассмотрим два вектора $V=(v_1,v_2,v_3,v_4)$ и $W=(w_1,w_2,w_3,w_4)$. Их

скалярное произведение равно: $V \cdot W = v_1 w_1 + v_2 w_2 + v_3 w_3 + v_4 w_4$, что эквивалентно (1.4):

$$V \cdot W = (v_1 + w_2)(v_2 + w_1) + (v_3 + w_4)(v_4 + w_3) - v_1 v_2 - v_3 v_4 - w_1 w_2 - w_3 w_4.$$
 (1.4)

Несмотря на то, что второе выражение требует вычисления большего количества операций, чем стандартный алгоритм: вместо четырех умножений - шесть, а вместо трех сложений - десять, выражение в правой части последнего равенства допускает предварительную обработку: его части можно вычислить заранее и запомнить для каждой строки первой матрицы и для каждого столбца второй, что позволит для каждого элемента выполнять лишь два умножения и пять сложений, складывая затем только лишь с 2 предварительно посчитанными суммами соседних элементов текущих строк и столбцов. Из-за того, что операция сложения быстрее операции умножения в ЭВМ, на практике алгоритм должен работать быстрее стандартного [?].

Вывод

Были рассмотрены алгоритмы классического умножения матриц и алгоритм Винограда, основное отличие которых — наличие предварительной обработки, а также количество операций умножения.

2 Конструкторская часть

2.1 Разработка алгоритмов

На рисунке 2.1 приведена схема стандартного алгоритма умножения матриц.

На рисунках 2.2 и 2.3 представлена схема алгоритма Копперсмита — Винограда и ее подфункций заполения сумм строк и столбцов.

На рисунках 2.4 и 2.5 представлена схема улучшенного алгоритма Копперсмита — Винограда и ее подфункций заполения сумм строк и столбцов.

Рис. 2.1: Стандартный алгоритм заполнения матриц

На схеме видно, что для стандартного алгоритма не существует лучшего и худшего случаев, как таковых ввиду отсутствия ветвлений.

Рис. 2.2: Схема алгоритма Копперсмита — Винограда

Рис. 2.3: Схемы подфункций алгоритма Копперсмита — Винограда

Пусть в дальнейшем K - общий размер при умножении матриц размеров $M \times K$ и $K \times N.$

Видно, что для алгоритма Виноградова худшим случаем являются матрицы с нечётным общим размером, а лучшим - с чётным, т.к. отпадает необходимость в последнем цикле.

В качестве оптимизаций можно:

- заменить операции деления на 2 побитовым сдвигом на 1 вправо;
- заменить выражения вида a = a + ... на a += ...;

• в циклах по k сделать шаг 2, избавившись тем самым от двух операций умножения на каждую итерацию.

Рис. 2.4: Схема алгоритма улучшенного Копперсмита — Винограда

Рис. 2.5: Схемы подфункций алгоритма улучшенного Копперсмита — Винограда

2.2 Модель вычислений

Для последующего вычисления трудоемкости необходимо ввести модель вычислений:

1. операции из списка (2.1) имеют трудоемкость 1;

$$+, -, /, \%, ==, !=, <, >, <=, >=, [], ++, --$$
 (2.1)

2. трудоемкость оператора выбора if условие then A else B рассчитывается, как (2.2);

$$f_{if} = f_{\text{условия}} + \begin{cases} f_A, & \text{если условие выполняется,} \\ f_B, & \text{иначе.} \end{cases}$$
 (2.2)

3. трудоемкость цикла рассчитывается, как (2.3);

$$f_{for} = f_{\text{инициализации}} + f_{\text{сравнения}} + N(f_{\text{тела}} + f_{\text{инициализации}} + f_{\text{сравнения}})$$
(2.3)

4. трудоемкость вызова функции равна 0.

2.3 Трудоемкость алгоритмов

2.3.1 Стандартный алгоритм умножения матриц

Во всех последующих алгоритмах не будем учитывать инициализацию матрицу, в которую записывается результат, потому что данное действие есть во всех алгоритмах и при этом не является самым трудоёмким.

Трудоёмкость стандартного алгоритма умножения матриц состоит из:

- внешнего цикла по $i \in [1..M]$, трудоёмкость которого: $f = 2 + M \cdot (2 + f_{body})$;
- цикла по $j \in [1..N]$, трудоёмкость которого: $f = 2 + N \cdot (2 + f_{body})$;
- цикла по $k \in [1..K]$, трудоёмкость которого: f = 2 + 10K;

Учитывая, что трудоёмкость стандартного алгоритма равна трудоёмкости внешнего цикла, можно вычислить ее, подставив циклы тела (2.4):

$$f_{standard} = 2 + M \cdot (4 + N \cdot (4 + 10K)) = 2 + 4M + 4MN + 10MNK \approx 10MNK$$
 (2.4)

2.3.2 Алгоритм Копперсмита — Винограда

Трудоёмкость алгоритма Копперсмита — Винограда состоит из:

1. создания и инициализации массивов МН и MV, трудоёмкость которого (2.5):

$$f_{init} = M + N; (2.5)$$

2. заполнения массива МН, трудоёмкость которого (2.6):

$$f_{MH} = 3 + \frac{K}{2} \cdot (5 + 12M);$$
 (2.6)

3. заполнения массива MV, трудоёмкость которого (2.7):

$$f_{MV} = 3 + \frac{K}{2} \cdot (5 + 12N);$$
 (2.7)

4. цикла заполнения для чётных размеров, трудоёмкость которого (2.8):

$$f_{cycle} = 2 + M \cdot (4 + N \cdot (11 + \frac{25}{2} \cdot K));$$
 (2.8)

5. цикла, для дополнения умножения суммой последних нечётных строки и столбца, если общий размер нечётный, трудоемкость которого (2.9):

$$f_{last} = \begin{cases} 2, & \text{чётная,} \\ 4 + M \cdot (4 + 14N), & \text{иначе.} \end{cases}$$
 (2.9)

Итого, для худшего случая (нечётный общий размер матриц) имеем (2.10):

$$f = M + N + 12 + 8M + 5K + 6MK + 6NK + 25MN + \frac{25}{2}MNK \approx 12.5 \cdot MNK$$
(2.10)

Для лучшего случая (чётный общий размер матриц) имеем (2.11):

$$f = M + N + 10 + 4M + 5K + 6MK + 6NK + 11MN + \frac{25}{2}MNK \approx 12.5 \cdot MNK \tag{2.11}$$

2.3.3 Оптимизированный алгоритм Копперсмита — Винограда

Трудоёмкость улучшенного алгоритма Копперсмита — Винограда состоит из:

1. создания и инициализации массивов МН и MV, трудоёмкость которого (2.12):

$$f_{init} = M + N; (2.12)$$

2. заполнения массива МН, трудоёмкость которого (2.13):

$$f_{MH} = 2 + \frac{K}{2} \cdot (4 + 8M);$$
 (2.13)

3. заполнения массива MV, трудоёмкость которого (2.14):

$$f_{MV} = 2 + \frac{K}{2} \cdot (4 + 8N);$$
 (2.14)

4. цикла заполнения для чётных размеров, трудоёмкость которого (2.15):

$$f_{cycle} = 2 + M \cdot (4 + N \cdot (8 + 9K))$$
 (2.15)

5. цикла, для дополнения умножения суммой последних нечётных строки и столбца, если общий размер нечётный, трудоемкость которого (2.16):

$$f_{last} = \begin{cases} 2, & \text{чётная,} \\ 4 + M \cdot (4 + 12N), & \text{иначе.} \end{cases}$$
 (2.16)

Итого, для худшего случая (нечётный общий размер матриц) имеем (2.17):

$$f = M + N + 10 + 4K + 4KN + 4KM + 8M + 20MN + 9MNK \approx 9MNK$$
(2.17)

Для лучшего случая (чётный общий размер матриц) имеем (2.18):

$$f = M + N + 8 + 4K + 4KN + 4KM + 4M + 8MN + 9MNK \approx 9MNK$$
 (2.18)

Вывод

На основе теоретических данных, полученных из аналитического раздела, были построены схемы обоих алгоритмов умножения матриц. Оценены лучшие и худшие случаи их работы.

3 Технологическая часть

В данном разделе приведены средства реализации и листинг кода.

3.1 Требования к ПО

К программе предъявляется ряд требований:

- на вход подаются размеры 2 матриц, а также их элементы;
- на выходе матрица, которая является результатом умножения входных матриц.

3.2 Средства реализации

В качестве языка программирования для реализации данной лабораторной работы был выбран современный компилируемый ЯП Rust [?]. Данный выбор обусловлен моим желанием расширить свои знания в области применения данного языка.

3.3 Листинг кода

В листингах 3.1–3.5 приведены реализации алгоритмов умножения матриц, в листингах 3.6–3.8.

Листинг 3.1: Стандартный алгоритм умножения матриц

```
pub fn simple_mult(m1: &[Vec<MatInner>], m2: &[Vec<MatInner>]) -> Vec<Vec<MatInner>> {
    let mut matrix = get_result_matrix(m1, m2);

    for i in 0..m1.len() {
        for j in 0..m2[0].len() {
            for k in 0..m2.len() {
                matrix[i][j] += m1[i][k] * m2[k][j];
            }
        }
    }
}
```

```
12 matrix
13 }
```

Листинг 3.2: Алгоритм Копперсмита — Винограда

```
pub fn vinograd_mult(m1: &[Vec<MatInner>], m2: &[Vec<MatInner>]) -> Vec<Vec<MatInner>> {
      let mut matrix = get_result_matrix(m1, m2);
      let precomputed = precompute_values(m1, m2);
      for i in 0..matrix.len() {
          for j in 0..matrix[0].len() {
              matrix[i][j] = precomputed.0[i] + precomputed.1[j];
              for k in 0..(m2.len() / 2) {
                  matrix[i][j] += (m1[i][k * 2] + m2[k * 2 + 1][j]) * (m1[i][k * 2 + 1] + m2[k * 2 + 1][j])
10
                      m2[k * 2][j]);
              }
11
          }
12
      }
13
14
      if m2.len() % 2 != 0 {
15
          for i in 0..matrix.len() {
16
              for j in 0..matrix[0].len() {
17
                  matrix[i][j] += m1[i][m2.len() - 1] * m2[m2.len() - 1][j];
18
19
          }
20
21
22
      matrix
24
25 }
```

Листинг 3.3: Функции алгоритма Копперсмита — Винограда

```
fn precompute_rows(matrix: &[Vec<MatInner>]) -> Vec<MatInner> {
    let mut res = vec![0; matrix.len()];

    for i in 0..matrix.len() {
        for j in 0..((matrix[0].len() - 1) / 2) {
            res[i] = res[i] - matrix[i][j * 2] * matrix[i][j * 2 + 1];
        }
    }

    res
}

fn precompute_cols(matrix: &[Vec<MatInner>]) -> Vec<MatInner> {
    let mut res = vec![0; matrix[0].len()];
}
```

```
for i in 0..((matrix.len() - 1) / 2) {
    for j in 0..matrix[0].len() {
        res[j] = res[j] - matrix[i * 2][j] * matrix[i * 2 + 1][j];
    }
}

res
res
res
res
res
res
```

Листинг 3.4: Оптимизированный алгоритм Копперсмита — Винограда

```
pub fn vinograd_improved(m1: &[Vec<MatInner>], m2: &[Vec<MatInner>]) ->
      Vec<Vec<MatInner>> {
      let mut matrix = get_result_matrix(m1, m2);
      let precomputed = precompute_values_fast(m1, m2);
      let m = matrix.len();
      let n = matrix[0].len();
      let k_iteration = m2.len();
      for i in 0..m {
          for j in 0..n {
10
11
             matrix[i][j] = precomputed.0[i] + precomputed.1[j];
12
             for k in (0..(k_iteration - 1)).step_by(2) {
                 matrix[i][j] += (m1[i][k] + m2[k + 1][j]) * (m1[i][k + 1] + m2[k][j]);
14
             }
15
         }
17
18
      if m2.len() & 1 != 0 {
20
         let max_k = m2.len() - 1;
21
          for i in 0..matrix.len() {
23
             for j in 0..matrix[0].len() {
24
                 matrix[i][j] += m1[i][max_k] * m2[max_k][j];
25
26
          }
27
28
      }
29
      matrix
30
31 }
```

Листинг 3.5: Функции оптимизированного алгоритма Копперсмита — Винограда

```
fn precompute_rows_fast(matrix: &[Vec<MatInner>]) -> Vec<MatInner> {
   let mut res = vec![0; matrix.len()];
```

```
for i in 0..matrix.len() {
          for j in (0..(matrix[0].len() - 1)).step_by(2) {
              res[i] -= matrix[i][j] * matrix[i][j + 1];
          }
      }
      res
10
11 }
12
  fn precompute_cols_fast(matrix: &[Vec<MatInner>]) -> Vec<MatInner> {
13
      let mut res = vec![0; matrix[0].len()];
14
15
      for i in (0..(matrix.len() - 1)).step_by(2) {
16
          for j in 0..matrix[0].len() {
17
              res[j] -= matrix[i][j] * matrix[i + 1][j];
18
19
20
      }
21
      res
22
23 }
```

Листинг 3.6: Пример написания теста для алгоритмов

```
#[test]
fn check_random() {
    let matrices = [generate_matrix(S1, S2), generate_matrix(S2, S3)];
    run_check(&matrices);
}
```

Листинг 3.7: Функция run check

```
fn run_check(matrices: &[Vec<Vec<MatInner>>]) {
   let mut results = Vec::new();
   for i in 0..MULTS_ARRAY.len() {
      results.push(MULTS_ARRAY[i](&matrices[0], &matrices[1]));
   }
}

for i in 1..MULTS_ARRAY.len() {
   assert_eq!(results[i], results[0]);
   }
}
```

Листинг 3.8: Пример написания бенчмарка для алгоритма

```
#[bench]
fn check_simple1(b: &mut Bencher) {
    let matrices = [generate_matrix(T1, T1), generate_matrix(T1, T1)];
    b.iter(|| simple_mult(&matrices[0], &matrices[1]));
```

3.4 Тестирование функций

В таблице 3.1 приведены тесты для функций, реализующих стандартный алгоритм умножения матриц, алгоритм Винограда и оптимизированный алгоритм Винограда. Тесты пройдены успешно.

Матрица 1	Матрица 2	Ожидаемый результат
$ \begin{array}{c cccc} & 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} $	$ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} $	$\begin{pmatrix} 6 & 12 & 18 \\ 6 & 12 & 18 \\ 6 & 12 & 18 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 6 & 12 & 18 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 5 & 10 \\ 5 & 10 \end{pmatrix}$
(2)	(2)	(4)
$\begin{pmatrix} 1 & -2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} -1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 0 & 4 & 6 \\ 4 & 12 & 18 \\ 4 & 12 & 18 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	Не могут быть перемножены

Таблица 3.1: Тестирование функций

Вывод

Правильный выбор инструментов разработки позволил эффективно реализовать алгоритмы, настроить модульное тестирование и выполнить исследовательский раздел лабораторной работы.

4 Исследовательская часть

4.1 Технические характеристики

• Операционная система: Manjaro [?] Linux [?] x86_64.

• Память: 8 GiB.

• Προцессор: Intel® Core™ i7-8550U[?].

Тестирование проводилось на ноутбуке, включенном в сеть электропитания. Во время тестирования ноутбук был нагружен только встроенными приложениями окружения, окружением, а также непосредственно системой тестирования.

4.2 Время выполнения алгоритмов

Результаты замеров приведены в таблицах 4.1 и 4.2. На рисунках 4.1 и 4.2 приведены графики зависимостей времени работы алгоритмов от размеров матриц. Здесь и далее: С — стандартный алгоритм, КВ — алгоритм Копперсмита — Винограда, УКВ — улучшенный алгоритм Копперсмита — Винограда.

	Время, мс		
Размер матрицы	C	KB	УКВ
100	2.169144	2.424132	1.811016
200	17.680401	22.032658	15.485909
300	65.838464	76.854395	55.530661
400	210.892129	207.347115	162.146803
500	364.922866	350.837776	327.348293
600	666.673788	655.599427	631.239232
700	1369.979155	1332.273841	1207.834761
800	3205.123980	3108.582931	2921.219674

Таблица 4.1: Время работы алгоритмов при чётных размерах матриц

	Время, мс		
Размер матрицы	\mathbf{C}	KB	УКВ
101	2.259672	2.796926	2.018691
201	20.071583	21.688038	18.481951
301	74.128394	77.705821	61.183913
401	221.489215	218.382194	158.158291
501	371.283268	372.238416	361.183214
601	672.286913	671.599427	648.239232
701	1382.138491	1384.273841	1324.143862
801	3291.482918	3389.582931	3217.248194

Таблица 4.2: Время работы алгоритмов при нечётных размерах матриц

Рис. 4.1: Зависимость времени работы алгоритма от размера квадратной матрицы (чётного)

Рис. 4.2: Зависимость времени работы алгоритма от размера квадратной матрицы (нечётного)

Вывод

Время работы алгоритма Винограда незначительно меньше стандартного алгоритма умножения, однако оптимизированная реализации имеет заметный прирост в скорости работы, на матрицах размером 1000×1000 уже около 18%.

Заключение

В рамках лабораторной работы были рассмотрены и реализованы стандартный алгоритм умножения матриц и алгоритм Винограда. Была рассчитана их трудоемкость и произведены замеры времени работы реализованных алгоритмов. На основании этого произведено сравнение их эффективности. Оптимизированный алгоритм Винограда имеет заметный выигрыш в эффективности работы по сравнению с остальными алгоритмами: уже на матрицах размером 1000×1000 улучшенный алгоритм Копперсмита — Винограда работает примерно на 18% быстрее двух остальных рассмотренных алгоритмов.