$$F(\alpha)/F$$
, if α° , α^{1} , α^{2} ,..., α^{n} are linearly indp, then $\deg m_{k}>n$.

So if
$$\alpha = \sqrt{2} + \sqrt{3}$$
, $F = Q_1$

Then
$$w_{\alpha}(x) = x^4 - 10x^2 + 1$$

(In fact, in this case, it's enough to check
that
$$\alpha^{\circ}$$
, α^{1} , α^{2} are I.n. ndp. since $[\Box(52,53):Q]=4$
and deg me some field containing α . (Find out why)

$$[K:F] < \infty$$
 ack. Consider $\varphi: K \to K$, $\varphi(\beta) = \alpha \beta$.

$$\varphi \in End_{\mathcal{F}}k$$
 since $\varphi(\alpha_{\mathcal{B}}) = \alpha \varphi(\beta)$, $\varphi(\beta_1 + \beta_2) = \varphi(\beta_1) + \varphi(\beta_2)$

Claum: mp = ma.

if
$$f \in F(xJ)$$
, then $f(q)$ is multiplication by $f(\alpha)$.
 $f^{2}(\beta) = \alpha^{2}\beta$,

$$f(\varphi) = 0 \iff f(\alpha) \cdot \beta = 0 \quad \forall \beta \iff f(\alpha) = 0.$$

So ideals
$$\{f: f(\varphi) = 0\} = \{f: f(\alpha) = 0\} = (m_{\alpha}) = (m_{\varphi}).$$

$$A_{nn}(\varphi)$$

$$E \times ample : \alpha = \sqrt{2} + \sqrt{3}$$

$$\alpha.\sqrt{6} = 3/2 + 2\sqrt{3}$$

$$\begin{pmatrix}
0 & 2 & 3 & 0 \\
1 & 0 & 0 & 3 \\
1 & 0 & 0 & 2 \\
0 & 1 & 1 & 0
\end{pmatrix}$$

Clem Invariant factors of Gare allegral

to M_{α} , and $C_{\beta} = M_{\alpha}^{n/d}$ where $n = \{k : F\}$, $d = \deg_{F} \alpha$. $= \{F \omega : F\}.$

And $K = F(\alpha)$ iff $C_{\phi} = m_{\alpha}$.

Let $\{\beta_1, \dots, \beta_2\}$ be a basis of K over $F(\alpha)$.

Then $K = F(\alpha) \oplus F(\alpha) \cdot \beta_2 + \cdots + F(\alpha) \cdot \beta_2$.

 $\beta_i \longleftrightarrow 1$

 $\forall i, F(x) \cdot \beta_i \cong F(x) \text{ as } F(x) - \text{modules } (with x \cdot \gamma = \alpha \gamma)$.

Nutrix: (150 morphic F[x]-modules,

$$\alpha \in K$$
, $F(\alpha)/F$ - Simple extension

Then
$$F(x) \longrightarrow K$$
 has 0 Kernel $\chi \longmapsto \alpha$ $f(x) \longmapsto f(\alpha)$.

$$F(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in F(x), g \neq 0 \right\}$$

We have a homism
$$F(x) \longrightarrow K$$
,
$$\| \frac{f(x)}{g(x)} : f,g \in F[x], g \neq 0 \}$$

with 0 Kernel, so
$$F(x) \cong F(\alpha)$$
.

"a behaves like a variable"

eg
$$\mathbb{Q}(\pi) \cong \mathbb{Q}(x)$$

$$f(\pi) = f(x)$$

$$\alpha$$
 is algebraic \iff $[F(\alpha):F] < \infty$.

Otherwise,
$$F(\alpha) \cong F(\alpha)$$
, and $\left[F(\alpha) : F\right] = \infty$.

Let
$$K = F(\alpha_1, ..., \alpha_n) - K/F$$
 is finitely generated.

Then we have a tower
$$K_n = F(\alpha_1, ..., \alpha_n)$$

$$K_{n-1} = F(\alpha_1, ..., \alpha_{n-1})$$

$$\vdots$$

$$K_1 = F(\alpha_1)$$

$$K_1 = F(\alpha_1)$$

$$\forall i$$
, $K_i = K_{i-1}(\alpha_i)$.

So this is a tower of simple extensions.

Thus
$$[K:F] = [K=K_n:K_{n-1}] \cdot [K_{n-1}:K_{n-2}] \cdot \cdots \cdot [K_1:K_s=F]$$

$$= \deg_{K_{n-1}}^{\alpha_n} \cdot \cdots \cdot \deg_{F}^{\alpha_l}$$

$$\leq \deg_{F}^{\alpha_1} \cdot \cdots \cdot \deg_{F}^{\alpha_n}$$

So any finitely generated extension K/F
is a toner of simple extension

It's finite iff all the generators are algebraic over F. ([K:F] > [F(Ki):F])

And, in this case, [K: F] < M degrees of glierotors.

K/F extension, $\alpha_1,...,\alpha_n \in K$.

Then $F(\alpha_1,...,\alpha_n)$ is the rings generated by $\alpha_1,...,\alpha_n$. $F(\alpha_1,...,\alpha_n)$ is the field "

Theorem: if $\alpha_1,...,\alpha_n$ are algebraic over F, then $F(\alpha_1,...,\alpha_n) = F(\alpha_1,...,\alpha_n)$.

Post induction, use the tower.

Assume that K/F is an extension, Li/F, Lz/F one finite Sub-extensions.