QUESTION 1: DYNAMIC BRANCH PREDICTION

Consider the MIPS processor with 5-stage pipeline (IF, ID, EX, MEM, WB) with early branch resolution in the **ID-stage** and a dynamic **branch prediction unit (BPU)** in the **IF-stage** composed of:

- 1-entry 1-bit Branch History Table
- 1-entry Branch Target Buffer
- Disabling the BPU, each branch costs 1 cycle penalty to fetch the correct instruction.
- Enabling the BPU, there are 4 cases for each conditional branch with the related branch penalty cycles:

Branch Outcome Prediction	Branch Outcome	Branch Penalty Cycles
Predicted Not Taken	Not Taken	0
Predicted Not Taken	Taken	1 (misprediction)
Predicted Taken	Not Taken	1 (misprediction)
Predicted Taken	Taken	0 with BTB hit
		1 with BTB miss

Let's consider the following assembly loop:

INIT: ADDUI \$R1, \$R0, 0 ADDUI \$R2, \$R0, 40

LOOP: LD \$F0, 0 (\$R1)

FADD \$F4, \$F0, \$F2 SD \$F4, 0 (\$R1) ADDUI \$R1, \$R1, 4 BNE \$R1, \$R2, LOOP

1. How many loop iterations?

10 iterations	

2. Please complete the following table:

	Explain the branch behavior in the loop.	How many branch penalty cycles are needed to execute the loop?	Calculate the branch misprediction rate to execute the loop
Assuming the BPU is enabled with BHT initialized as Not Taken.	In this case, at the first iteration we have a misprediction with PNT/T with 1 cycle penalty to update the BTB. Then there are 8 iterations predicted correctly as PT/T with 0 cycle penalty (BTB hit). The last iteration is mispredicted as PT/NT with 1 cycle penalty.	There are $(1+0+1)=2$ branch penalty cycles.	There are 2 mispredictions out of 10 predictions => 20% misprediction rate.
Assuming the BPU is enabled with BHT initialized as Taken and BTB hit.	In this case, we have 9 iterations correctly predicted as PT/T with 0 cycle penalty (BTB hit). The last iteration is mispredicted as PT/NT with 1 cycle penalty.	There are: $(0 + 1) = 1$ branch penalty cycle.	There is 1 misprediction out of 10 predictions => 10% misprediction rate.
Assuming the BPU is disabled.	At each iteration, each branch costs 1 cycle penalty to fetch the correct instruction.	There are 10 branch penalty cycles to execute the loop.	

QUESTION 2: DYNAMIC BRANCH PREDICTION (5 points) from 22/01/2024

Assume a pipelined processor with a dynamic branch prediction unit in the **IF-stage** composed of:

- 1-entry 1-bit Branch History Table
- 1-entry Branch Target Buffer

Disabling the branch prediction unit, each branch costs 2 cycles penalty to fetch the correct instruction.

Enabling the branch prediction unit, there are 4 cases for each conditional branch with the related **branch penalty cycles:**

Branch Outcome Prediction	Branch Outcome	Branch Penalty Cycles
Predicted Not Taken	Not Taken	0
Predicted Not Taken	Taken	2 (misprediction)
Predicted Taken	Not Taken	2 (misprediction)
Predicted Taken	Taken	1 with BTB hit
		2 with BTB miss

Let's consider the following assembly loop:

INIT: ADDUI \$R1, \$R0, 0 ADDUI \$R2, \$R0, 40

LOOP: LD \$F0, 0 (\$R1)
FADD \$F4, \$F0, \$F2
SD \$F4, 0 (\$R1)
ADDUI \$R1, \$R1, 4
BNE \$R1, \$R2, LOOP

3. How many loop iterations?

10 iterations	

4. Please complete the following table:

	Explain the branch behavior in the loop.	How many branch penalty cycles are needed to execute the loop?	Calculate the branch misprediction rate to execute the loop
Assuming the BPU is enabled with BHT initialized as Not Taken	In this case, we have a first misprediction with PNT/T with 2 cycles penalty to update the BTB. Then there are 8 iterations predicted correctly as PT/T with 1 cycle penalty (BTB hit). The last iteration is mispredicted as PT/NT with 2 cycles penalty.	There are: $(2+8+2) = 12$ branch penalty cycles.	There are 2 mispredictions out of 10 predictions => 20% misprediction rate;
Assuming the BPU is enabled with BHT initialized as Taken and BTB hit.	In this case, we have 9 iterations correctly predicted as PT/T with 1 cycle penalty (BTB hit). The last iteration is mispredicted as PT/NT with 2 cycles penalty.	There are: $(9 + 2) = 11$ branch penalty cycles.	There is 1 misprediction out of 10 predictions => 10% misprediction rate.
Assuming the BPU is disabled.	At each iteration, each branch costs 2 cycles penalty to fetch the correct instruction.	There are 20 branch penalty cycles to execute the loop.	

QUESTION 3: DYNAMIC BRANCH PREDICTION (5 points)

Assume a pipelined processor with a dynamic branch prediction unit in the IF-stage composed of:

- 1-entry 1-bit Branch History Table
- 2-entries Branch Target Buffer

Disabling the branch prediction unit, each branch costs 2 cycle penalty to fetch the correct instruction.

Enabling the branch prediction unit, there are 4 cases for each conditional branch with the related **branch penalty cycles:**

Branch Outcome Prediction	Branch Outcome	Branch Penalty Cycles
Predicted Not Taken	Not Taken	0
Predicted Not Taken	Taken	2 (misprediction)
Predicted Taken	Not Taken	2 (misprediction)
Predicted Taken	Taken	1 with BTB hit
		2 with BTB miss

Let's consider the following assembly code:

INIT: ADDUI \$R1, \$R0, 0

ADDUI \$R2, \$R0, 40 ADDUI \$R4, \$R0, 20

LOOP1: LD \$F0, 0 (\$R1)

FADD \$F4, \$F0, \$F2 SD \$F4, 0 (\$R1)

ADDUI \$R3, \$R0, 0

LOOP2: LD \$F6, 0(\$R3)

FADD \$F8, \$F6, \$F2

SD \$F8, 0(\$R3)

ADDUI \$R3, \$R3, 4 BNE \$R3, \$R4, LOOP2

ADDUI \$R1, \$R1, 4

BNE \$R1, \$R2, LOOP1

5. How many iterations for the outer loop **LOOP1?**

The outer loop LOOP1 is executed 10 times.

6. How many iterations for the inner loop LOOP2?_

The inner loop LOOP2 is executed 5 times for each iteration of LOOP1.

- => Globally LOOP2 is executed 50 times.
- 7. How many branch predictions are in the code?

There are 50 for BNE-LOOP2 and 10 for BNE-LOOP1

=> Globally there are 60 branch predictions.

8. Please complete the following table

	Explain the branch behavior considering the inner LOOP2 in isolation.	How many branch penalty cycles are needed to execute the LOOP2 in isolation?	Calculate the branch misprediction rate to execute the LOOP 2 in isolation?
Assuming the BPU is enabled with BHT initialized as Taken and BTB hit.	Being the predictor initialized as PT, we have a misprediction only at the last iteration (exit) of the inner LOOP2 and the prediction bit is turned to PNT.	There are: (4 + 2) = 6 branch penalty cycles.	So, for LOOP 2 in isolation, we have 1 misprediction out of 5 branch predictions => misprediction rate 20% for LOOP2.

	Explain the branch behavior considering both loops.	How many branch penalty cycles are needed to execute the both loops?	Calculate the global branch misprediction rate to execute both loops?
Assuming the BPU is enabled with BHT initialized as Taken and BTB hit for both entries. Being 1-entry 1-BHT, notice that the 2 branch instructions collide. There are 2 entries in the BTB assigned to each branch instructions, so they do not collide.	Being the predictor initialized as PT, we have a misprediction only at the last iteration (exit) of the inner LOOP2 and the predictor is turned to PNT. Exiting from the inner LOOP2 with the PNT, this generates a misprediction on the BNE-LOOP1 for 9 iterations (except for the last iteration where we have PNT/NT with no cycle penalty). When re-entering in LOOP1, the prediction bit was turned to PT when re-entering in the inner LOOP2 as before.	There are: $(4 + 2) = 6 \text{ BP cycles}$ to execute LOOP2 for $10 \text{ iterations of the}$ outer LOOP1 => 60 BP cycles. For the outer LOOP1, we have 9 mispredictions PNT/T for BNE-LOOP1 (except for the last iteration): (18 +0) = 18 BP cycles to execute LOOP1. Globally there are 78 BP cycles.	We have 1 misprediction for the BNE-LOOP2 only at the exit of LOOP2 times 10 iterations of the outer LOOP1 => globally 10 mispredictions. For the outer LOOP1, we have 9 mispredictions for BNE-LOOP1 (except for the last iteration). Globally (10 + 9) = 19 mispredictions, while there are 60 predictions (50 for BNE-LOOP2 and 10 for BNE-LOOP1) => 19 mispredictions out of 60 predictions => 31.67% misprediction rate.
Assuming the BPU is disabled.	At each branch instruction, we must pay 2 cycles penalty to fetch the correct instruction.	Globally we have executed 60 branch instructions (50 for BNE-LOOP2 and 10 for BNE-LOOP1) causing 2 cycles penalty => globally there are (60 x 2) = 120 BP cycles to execute the code.	