Analysis II HS21

by plaffranchi

2 ODE (ordinary differential equation)

Theorem 2.1.6

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be differentiable. Let $x_0 \in \mathbb{R}$ and $y_0 \in \mathbb{R}^2$. Then the ODE y' = F(x, y) has a **unique solution** f defined on a "largest" open interval I containing x_0 such that $f(x_0) = y_0$.

Definition 2.2.1

Let $I \subset \mathbb{R}$ be an open interval and $k \in \mathbb{N}_0$. An **homogeneous linear ODE of order** k on I is of the form $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = 0$ where the coefficients a_0, \ldots, a_{k-1} are complex-valued functions on I, and the unknown is a function $I \to \mathbb{C}$ that is k-times differentiable on I. An equation of the form $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = b$, where $b: I \to \mathbb{C}$ is another function, is called an **inhomogeneous linear ODE**.

Recognize an ODE

- 1. no coefficients before the highest derivative
- 2. all coefficients are continuous
- 3. no products of y or their derivatives
- 4. no powers of y or their derivatives
- 5. no functions depending on y or their derivatives

Proposition 2.3.1

Any solution of y' + ay = 0 is of the form $f(x) = z \exp(-A(x))$ where A is a primitive of a. The unique solution with $f(x_0) = y_0$ is $f(x) = y_0 \exp(A(x_0) - A(x))$.

Solving inhomogeneous equations

Case 1: Make a guess. For example $y' = y + x^2$ guess $f(x) = ax^2 + bx + c$, and solve the equation.

Case 2: Use the variation of the constant. Assume $f_p = z(x) \exp(-A(x))$ for $z: I \to \mathbb{C}$. Then $z'(x) = b(x) \exp(A(x)) \Longrightarrow k(x) = \int b(x) \exp(A(x)) dx$.

Definition Linear differential equations with constant coefficients

Let $k \in \mathbb{N}_0$, $a_0, ..., a_{k-1} \in \mathbb{C}$ fixed and b a general continuous function, then $y^{(k)} + a_{k-1}y^{(k-1)} + \cdots + a_1y' + a_0y = b$ is such equation.

Solution of hom. diff. eq. with constant coefficients

Look for solutions of the form $f(x) = e^{\alpha x}$ for $\alpha \in \mathbb{C}$. Then we have $f^{(j)}(x) = \alpha^j e^{\alpha x}$ for all $j \ge 0$ and for all x, which means that

$$f^{(k)}(x) + a_{k-1}f^{(k-1)}(x) + \dots + a_1f'(x) + a_0f(x)$$

= $e^{\alpha x} \left(\alpha^k + a_{k-1}\alpha^{k-1} + \dots + a_1\alpha + a_0 \right)$.

This translates into finding the zeros of the characteristic polynomial:

$$P(X) = X^{k} + a_{k-1}X^{k} + \dots + a_{1}X + a_{0}$$

= $(X - \alpha_{1}) \cdots (X - \alpha_{k}) = 0$

Imaginary roots

If a root is not real i.e. $\alpha = \beta + i\gamma$, the solution $f(x) = e^{\alpha x}$ does not take real values, but $\overline{\alpha} = \beta - i\gamma$ is also a root, hence we can write $\widetilde{f}_1(x) = e^{\beta x} \cos(\gamma x)$, $\widetilde{f}_2(x) = e^{\beta x} \sin(\gamma x)$ instead of $f_1(x) = e^{\alpha x}$, $f_2(x) = e^{\overline{\alpha}x}$

Multiple roots

Case 1: no multiple roots. Any solution of the equation is of the form $f(x) = z_1 e^{a_1 x} + \cdots + z_k e^{a_k x}$.

Case 2: multiple roots. Suppose that α is a multiple root of order j with $2 \leq j \leq k$. Then the k functions $f_{\alpha,0}(x) = e^{\alpha x}$, $f_{\alpha,1}(x) = xe^{\alpha x}$, \cdots , $f_{\alpha,j-1}(x) = x^{j-1}e^{\alpha x}$ are linearly independent solutions. Taking the union of the functions $f_{\alpha,j}$ for all roots of P, each with its multiplicity, gives a basis of the space of solutions.

$oxed{3}$ Differential calculus in \mathbb{R}^n

Definition 3.2.1.

Let $(x_k)_{k\in\mathbb{N}}$ where $x_k \in \mathbb{R}^n$. Write $x_k = (x_{k,1}, \ldots, x_{k,n})$. Let $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. The sequence (x_k) converges to (\to) y as $k \to +\infty$ if $\forall \varepsilon > 0$, if $\exists N \ge 1$ such that $\forall n \ge N$, we have $||x_k - y|| < \varepsilon$.

Lemma 3.2.2.

 $(x_k) \to y$ as $k \to +\infty$ \iff either: $(1) \ \forall i, 1 \leqslant i \leqslant n$, the sequence of real numbers $(x_{k,i}) \to y_i$. (2) The sequence of real numbers $||x_k - y|| \to 0$ as $k \to +\infty$.

Definition 3.2.3.

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. (1) Let $x_0 \in X$. f is **continuous at** x_0 if $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ \|x - x_0\| < \delta \implies \|f(x) - f(x_0)\| < \varepsilon, \ \forall x \in X$. (2) f is **continuous** on X if it is continuous at $x_0 \ \forall x_0 \in X$.

Proposition 3.2.4.

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. Let $x_0 \in X$. The function f is continuous at $x_0 \iff \forall (x_k)_k \geqslant 1$ in X s.t. $x_k \to x_0$ as $k \to +\infty$, the sequence $(f(x_k))_k \geqslant 1$ in \mathbb{R}^m converges to f(x).

Definition 3.2.5.

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. Let $x_0 \in X$ and $y \in \mathbb{R}^m$. We say that f has the **limit** y as $x \to x_0$ with $x \neq x_0$ if for every $\varepsilon > 0$, there exists $\delta > 0$, s.t. $\forall x \in X, x \neq x_0$, s.t. $||x - x_0|| < \delta$, we have $||f(x) - y|| < \varepsilon$. We then write $\lim_{x \to x_0 \atop x \neq x_0} f(x) = y$.

Proposition 3.2.7

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^m$. Let $x_0 \in X$ and $y \in \mathbb{R}^m$. We have $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = y \iff \forall (x_k) \in X \text{ s.t. } x_k \to x \text{ as } k \to +\infty$, and $x_k \neq x_0$, the sequence $(f(x_k))$ in \mathbb{R}^m converges to y.

Proposition 3.2.9

Let $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ and $p \geqslant 1$ an integer. Let $f: X \to Y$ and $g: Y \to \mathbb{R}^p$ be continuous functions. Then the composite $g \circ f$ is continuous.

Definition 3.2.11.

(1) A subset $X \subset \mathbb{R}^n$ is **bounded** if the set of ||x|| for $x \in X$ is bounded in \mathbb{R} . (2) A subset $X \subset \mathbb{R}^n$ is **closed** if for every sequence (x_k) in X that converges in \mathbb{R}^n to some vector $y \in \mathbb{R}^n$, we have $y \in X$. (3) A subset $X \subset \mathbb{R}^n$ is **compact** if it is bounded and closed.

Proposition 3.2.13.

Let $g: \mathbb{R}^n \to \mathbb{R}^m$ be a continuous map. For any closed set $Y \subset \mathbb{R}^m$, $f^{-1}(Y) = x \in \mathbb{R}^n : f(x) \in Y \subset \mathbb{R}^n$ is closed.

Theorem 3.2.15.

Let $X \subset \mathbb{R}^n$ be a non-empty compact set and $f: X \to \mathbb{R}$ a continuous function. Then f is bounded and achieves its max and min. I.e. $\exists x_+, x_- \in X \text{ s.t. } f(x_+) = \sup_{x \in X} f(x), f(x_-) = \inf_{x \in X} f(x).$

Definition 3.3.1.

A subset $X \subset \mathbb{R}^n$ is **open** if, for any $x = (x_1, \dots, x_n) \in X$, there exists $\delta > 0$ such that the set

$$\{y = (y_1, \dots, y_n) \in \mathbb{R}^n : |x_i - y_i| < \delta \text{ for all } i\}$$

is contained in X. In other words: any point of \mathbb{R}^n obtained by changing any coordinate of x by at most δ is still in X.

Proposition 3.3.2

A set $X \subset \mathbb{R}^n$ is open if and only if the complement $Y = \{x \in \mathbb{R}^n : x \notin X\}$ is closed.

Corollary 3.3.3

If $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $Y \subset \mathbb{R}^m$ is open, then $f^{-1}(Y)$ is open in \mathbb{R}^n .

Definition 3.3.5

Let $X \subset \mathbb{R}^n$ be an open set. Let $f: X \to \mathbb{R}^m$ be a function. Let $1 \leq i \leq n$. We say that f has a **partial derivative** on X with respect to the i-th variable, or coordinate, if for all $x_0 = (x_{0,1}, \ldots, x_{0,n}) \in X$, the function defined by

$$g(t) = f(x_{0,1}, \dots, x_{0,i-1}, t, x_{0,i+1}, \dots, x_{0,n})$$

on the set $I = \{t \in \mathbb{R} : (x_{0,1}, \dots, x_{0,i-1}, t, x_{0,i+1}, \dots, x_{0,n}) \in X\}$ is differentiable at $t = x_{0,i}$. Its **derivative** $g'(x_{0,i})$ at $x_{0,i}$ is denoted

$$\frac{\partial f}{\partial x_i}(x_0), \quad \partial_{x_i} f(x_0), \quad \partial_i f(x_0)$$

Proposition 3.3.7.

Consider $X \subset \mathbb{R}^n$ open and f, g functions from X to \mathbb{R}^m . Let $1 \leq i \leq n$. (1) If f and g have partial derivatives with respect to the i-th coordinate on X, then f + g also does, and

$$\partial_{x_i}(f+g) = \partial_{x_i}(f) + \partial_{x_i}(g).$$

(2) If m = 1, and if f and g have partial derivatives with respect to the i-th coordinate on X, then fg also does and

$$\partial_{x_i}(fg) = \partial_{x_i}(f)g + f\partial_{x_i}(g).$$

Furthermore, if $g(x) \neq 0$ for all $x \in X$, then f/g has a partial derivative with respect to the *i*-th coordinate on X, with

$$\partial_{x_i}(f/g) = \left(\partial_{x_i}(f)g - f\partial_{x_i}(g)\right)/g^2.$$

Definition 3.3.9. (Jacobi matrix)

Let $X \subset \mathbb{R}^n$ open and $f: X \to \mathbb{R}^m$ a function with partial derivatives on X. Write

$$f(x) = (f_1(x), \dots, f_m(x)).$$

For any $x \in X$, the matrix

$$J_f(x) = \left(\partial_{x_j} f_i(x)\right)_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$$

with m rows and n columns is called the **Jacobi matrix** of f at x.

Definition 3.3.11 (Gradient, Divergence)

Let $X \subset \mathbb{R}^n$ be open. (1) Let $f: X \to \mathbb{R}$ be a function. If all partial derivatives of f exist at $x_0 \in X$, then the column vector

$$\left(\begin{array}{c} \partial_{x_1} f(x_0) \\ \cdots \\ \partial_{x_n} f(x_0) \end{array}\right)$$

is called the **gradient** at x_0 , and is denoted $\nabla f(x_0)$. (2) Let $f = (f_1, \ldots, f_n) : X \to \mathbb{R}^n$ be a function with values in \mathbb{R}^n such that all partial derivatives of all coordinates f_i of f exist at $x_0 \in X$. Then the real number

$$\operatorname{Tr}\left(J_{f}\left(x_{0}\right)\right) = \sum_{i=1}^{n} \partial_{x_{i}} f_{i}\left(x_{0}\right),$$

the trace of the Jacobi matrix, is called the **divergence** of f at x_0 , and is denoted $\operatorname{div}(f)(x_0)$.

Definition 3.4.2.

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}^m$ be a function. Let u be a linear map $\mathbb{R}^n \to \mathbb{R}^m$ and $x_0 \in X$. We say that f is differentiable at x_0 with differential u if

$$\lim_{x \to x_0} \frac{1}{\|x - x_0\|} \left(f(x) - f(x_0) - u(x - x_0) \right) = 0$$

where the limit is in \mathbb{R}^m . We then denote $df(x_0) = u$. If f is differentiable at every $x_0 \in X$, then we say that f is differentiable on X.

Proposition 3.4.4

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}^m$ be a function that is differentiable on X. (1) The function f is continuous on X. (2) The function f admits partial derivatives on X with respect to each variable. (3) Assume that m = 1. Let $x_0 \in X$, and let $u(x_1, \ldots, x_n) = a_1 x_1 + \cdots + a_n x_n$ be the differential of f at x_0 . We then have $\partial_{x_i} f(x_0) = a_i$ for $1 \leq i \leq n$.

Proposition 3.4.6.

Let $X \subset \mathbb{R}^n$ be open, $f: X \to \mathbb{R}^m$ and $g: X \to \mathbb{R}^m$ differentiable functions on X. (1) The function f+g is differentiable with differential d(f+g) = df + dg, and if m = 1, then fg is differentiable. (2) If m = 1 and if $g(x) \neq 0$ for all $x \in X$, then f/g is differentiable.

Proposition 3.4.7.

Let $X \subset \mathbb{R}^n$ be open, $f: X \to \mathbb{R}^m$ a function on X. If f has all partial derivatives on X, and if the partial derivatives of f are continuous on X, then f is differentiable on X, with differential determined by its partial derivatives, in the sense that the matrix of the differential $df(x_0)$, with respect to the canonical basis of \mathbb{R}^n and \mathbb{R}^m , is the Jacobi matrix of f at x_0 .

Proposition 3.4.9 (Chain rule)

Let $X \subset \mathbb{R}^n$ be open, $Y \subset \mathbb{R}^m$ be open, and let $f: X \to Y$ and $g: Y \to \mathbb{R}^p$ be differentiable functions. Then $g \circ f: X \to \mathbb{R}^p$ is differentiable on X, and for any $x \in X$, its differential is given by the composition

$$d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0).$$

In particular, the Jacobi matrix satisfies

$$J_{g \circ f}(x_0) = J_g(f(x_0)) J_f(x_0)$$

where the right-hand side is a matrix product.

Definition 3.4.11.

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}^m$ a function that is differentiable. Let $x_0 \in X$ and $u = df(x_0)$ be the differential of f at x_0 . The graph of the affine linear approximation

$$g(x) = f(x_0) + u(x - x_0)$$

from \mathbb{R}^n to \mathbb{R}^m , or in other words the set

$$\{(x,y)\in\mathbb{R}^n\times\mathbb{R}^m:y=f(x_0)+u(x-x_0)\}$$

is called the **tangent space** at x_0 to the graph of f.

Definition 3.4.13.

Let $X \subset \mathbb{R}^n$ be an open set and let $f: X \to \mathbb{R}^m$ be a function. Let $v \in \mathbb{R}^n$ be a non-zero vector and $x_0 \in X$. We say that f has **directional** derivative $w \in \mathbb{R}^m$ in the direction v, if the function g defined on the set

$$I = \{ t \in \mathbb{R} : x_0 + tv \in X \}$$

by

$$g(t) = f\left(x_0 + tv\right)$$

has a derivative at t = 0, and this is equal to w. In other words, this means that the limit $T_k f(y; x_0) = f(x_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_0) y_i + \cdots$

$$\lim_{\substack{t \to 0 \\ t \neq 0}} \frac{f\left(x_0 + tv\right) - f\left(x_0\right)}{t}$$

exists and is equal to w.

Proposition 3.4.15

Let $X \subset \mathbb{R}^n$ be an open set and let $f: X \to \mathbb{R}^m$ be a differentiable function. Then for any $x \in X$ and non-zero $v \in \mathbb{R}^n$, the function f has a directional derivative at x_0 in the direction v, equal to df $(x_0)(v)$.

Definition 3.5.1.

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}^m$. We say that f is of class C^1 if f is differentiable on X and all its partial derivatives are continuous. The set of functions of class C^1 from X to \mathbb{R}^m is denoted $C^1(X; \mathbb{R}^m)$. Let $k \ge 2$. We say, by induction, that f is of class C^k if it is differentiable and each partial derivative $\partial_{x_i} f: X \to \mathbb{R}^m$ is of class C^{k-1} . The set of functions of class C^k from X to \mathbb{R}^m is denoted $C^k(X; \mathbb{R}^m)$.

If $f \in C^k(X; \mathbb{R}^m)$ for all $k \ge 1$, then we say that f is of class C^{∞} . The set of such functions is denoted $C^{\infty}(X; \mathbb{R}^m)$.

Proposition 3.5.4 (Mixed derivatives commute)

 $k \geqslant 2$. Let $X \subset \mathbb{R}^n$ be open and let $f: X \to \mathbb{R}^m$ be a function of class C^k . Then the partial derivatives of order k are independent of the order in which the partial derivatives are taken: for any variables x and y, we have $\partial_{x,y} f = \partial_{y,x} f$ and for any variables x, y, z, we have

$$\partial_{x,y,z}f = \partial_{x,z,y}f = \partial_{y,z,x}f = \partial_{z,x,y}f = \cdots$$

Definition 3.5.9 (Hessian).

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}$ a C^2 function. For $x \in X$, the **Hessian matrix** of f at x is the symmetric square matrix

$$\operatorname{Hess}_f(x) = (\partial_{x_i, x_j} f)_{1 \leqslant i, j \leqslant n}.$$

We also sometimes write simply $H_f(x)$.

Definition 3.7.1 (Taylor polynomials).

Let $k \ge 1$ be an integer. Let $f: X \to \mathbb{R}$ be a function of class C^k on X, and fix $x_0 \in X$. The k-th Taylor polynomial of f at the point x_0 is the

polynomial in n variables of degree $\leq k$ given by

$$T_{k}f(y;x_{0}) = f(x_{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x_{0}) y_{i} + \cdots + \sum_{m_{1} + \dots + m_{n} = k} \frac{1}{m_{1}! \cdots m_{n}!} \frac{\partial^{k} f}{\partial x_{1}^{m_{1}} \cdots \partial x_{n}^{m_{n}}}(x_{0}) y_{1}^{m_{1}} \cdots y_{n}^{m_{n}}$$

where the last sum ranges over the tuples of n non-negative integers such that the sum is k.

Proposition 3.7.3 (Taylor approximation)

Let $k \ge 1$ be an integer. Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}$ be a function of class C^k . For x_0 in X, if we define $E_k f(x; x_0)$ by

$$f(x) = T_k f(x - x_0; x_0) + E_k f(x; x_0)$$

then we have

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{E_k f(x; x_0)}{\|x - x_0\|^k} = 0$$

Proposition 3.8.1.

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}$ a differentiable function. If $x_0 \in X$ is such that $f(y) \leqslant f(x_0)$ for all y close enough to x_0 (local maximum at x_0) or $f(y) \geqslant f(x_0)$ for all y close enough to x_0 (local minimum at x_0). Then we have $df(x_0) = 0$, or in other words $\nabla f(x_0) = 0$, or equivalently $\frac{\partial f}{\partial x_i}(x_0) = 0$ for $1 \leqslant i \leqslant n$.

Definition 3.8.2 (Critical point)

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}$ a differentiable function. A point $x_0 \in X$ such that $\nabla f(x_0) = 0$ is called a **critical point** of the function f.

Definition 3.8.6 (Non-degenerate critical point)

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}^n$ a function of class C^2 . A critical point $x_0 \in X$ of f is called **non-degenerate** if the Hessian matrix has non-zero determinant.

Corollary 3.8

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}$ a function of class C^2 . Let x_0 be a non-degenerate critical point of f. Let p and q be the number of positive and negative eigenvalues of Hess $f(x_0)$. (1) If p = n, equivalently if q = 0, the function f has a local minimum at x_0 . (2) If q = n, equivalently if p = 0, the function f has a local maximum at x_0 . (3) Otherwise, equivalently if $pq \neq 0$, the function f does not have a local

extremum at x_0 . One then says that f has a saddle point at x_0 .

Proposition 3.9.2

Let $X \subset \mathbb{R}^n$ be open and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be functions of class C^1 . If $x_0 \in X$ is a local extremum of the function f restricted to the set $Y = \{x \in X : g(x) = 0\}$ then either $\nabla g(x_0) = 0$, or there exists $\lambda_0 \in \mathbb{R}$ such that

$$\begin{cases} \nabla f(x_0) = \lambda \nabla g(x_0) \\ g(x_0) = 0 \end{cases}$$

or in other words, there exists λ such that (x_0, λ) is a critical point of the differentiable function $h: X \times \mathbb{R} \to \mathbb{R}$ defined by $h(x, \lambda) = f(x) - \lambda g(x)$. Such a value λ is called a Lagrange multiplier at x_0 .

Definition 3.10.1 (Change of variable)

Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}^n$ be differentiable. Let $x_0 \in X$. We say that f is a **change of variable** around x_0 if there is a radius r > 0 such that the restriction of f to the ball

$$B = \{ x \in \mathbb{R}^n : ||x - x_0|| < r \}$$

of radius r around x_0 has the property that the image Y = f(B) is open in \mathbb{R}^n , and if there is a differentiable map $g: Y \to B$ such that $f \circ g = \operatorname{Id}_Y$ and $g \circ f = \operatorname{Id}_B$.

Theorem 3.10.2 (Inverse funtion theorem)

(Inverse function theorem). Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}^n$ differentiable. If $x_0 \in X$ is such that $\det(J_f(x_0)) \neq 0$, i.e., such that the Jacobian trix of f at x_0 is invertible, then f is a change of variable around x_0 . Moreover, the Jacobian of g at x_0 is determined by

$$J_g(f(x_0)) = J_f(x_0)^{-1}$$

In addition, if f is of class C^k , then g is of class C^k .

Theorem 3.10.4 (Implicit Function Theorem).

Let $X \subset \mathbb{R}^{n+1}$ be open and let $g: X \to \mathbb{R}$ be of class C^k with $k \geqslant 1$ Let $(x_0, y_0) \in \mathbb{R}^n \times \mathbb{R}$ be such that $g(x_0, y_0) = 0$. Assume that

$$\partial_y g\left(x_0, y_0\right) \neq 0$$

Then there exists an open set $U \subset \mathbb{R}^n$ containing x_0 , an open interval $I \subset \mathbb{R}$ containing y_0 , and a function $f: U \to \mathbb{R}$ of class C^k such that the system of equations

$$\begin{cases} g(x,y) = 0 \\ x \in U, \quad y \in I \end{cases}$$

is equivalent with y = f(x). In particular, $f(x_0) = y_0$. Moreover, the gradient of f at x_0 is given by

$$\nabla f(x_0) = -\frac{1}{(\partial_u g)(x_0, y_0)} \nabla_x g(x_0, y_0)$$

where $\nabla_x g = (\partial_{x_1} g, \dots, \partial_{x_n} g)$

4 Integration in \mathbb{R}^n

Definition 4.1.1. (parameterized curve, line integral)

(1) Let I = [a, b] be a closed and bounded interval in \mathbb{R} . Let $f(t) = (f_1(t), \ldots, f_n(t))$ be a continuous function from I to \mathbb{R}^n , i.e., f_i is continuous for $1 \le i \le n$. Then we define

$$\int_a^b f(t)dt = \left(\int_a^b f_1(t), \dots, \int_a^b f_n(t)dt\right) \in \mathbb{R}^n.$$

(2) A **parameterized curve** in \mathbb{R}^n is a continuous map $\gamma : [a, b] \to \mathbb{R}^n$ that is piecewise C^1 , i.e., there exists $k \ge 1$ and a partition

$$a = t_0 < t_1 < \dots < t_{k-1} < t_k = b$$

such that the restriction of f to $]t_{j-1},t_j[$ is C^1 for $1 \leq j \leq k$. We say that γ is a parameterized curve, or a path x, between $\gamma(a)$ and $\gamma(b)$. (3) Let $\gamma:[a,b] \to \mathbb{R}^n$ be a parameterized curve. Let $X \subset \mathbb{R}^n$ be a subset containing the image of γ , and let $f:X \to \mathbb{R}^n$ be a continuous function. The integral

$$\int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt \in \mathbb{R}$$

is called the **line integral of** f **along** γ . It is denoted

$$\int_{\gamma} f(s) \cdot ds$$
, or $\int_{\gamma} f(s) \cdot d\vec{s}$.

Definition 4.1.4

Let $\gamma:[a,b]\to\mathbb{R}^n$ be a parameterized curve. An **oriented reparameterization** of γ is a parameterized curve $\sigma:[c,d]\to\mathbb{R}^n$ such that $\sigma=\gamma\circ\varphi$, where $\varphi:[c,d]\to[a,b]$ is a continuous map, differentiable on [a,b[, that is strictly increasing and satisfies $\varphi(a)=c$ and $\varphi(b)=d$.

Proposition 4.1.5.

Let γ be a parameterized curve in \mathbb{R}^n and σ an oriented reparameterization of γ . Let X be a set containing the image of γ , or equivalently the image of σ , and $f: X \to \mathbb{R}^n$ a continuous function. Then we have

$$\int_{\gamma} f(s) \cdot d\vec{s} = \int_{\sigma} f(s) \cdot d\vec{s}.$$

Definition 4.1.8

Let $X \subset \mathbb{R}^n$ and $f: X \to \mathbb{R}^n$ a continuous vector field. If, for any x_1, x_2 in X, the line integral $\int_{\gamma} f(s) \cdot d\vec{s}$ is independent of the choice of a parameterized curve γ in X from x_1 to x_2 , then we say that the vector field is conservative.

Theorem 4.1.10

Let X be an open set and f a conservative vector field. Then there exists a C^1 function q on X such that $f = \nabla q$.

If any two points of X can be joined by a parameterized curve, then g is unique up to addition of a constant: if $\nabla g_1 = f$, then $g - g_1$ is constant on X.

Proposition 4.1.13

Let $X \subset \mathbb{R}^n$ be an open set and $f: X \to \mathbb{R}^n$ a vector field of class C^1 . Write $f(x) = (f_1(x), \dots, f_n(x))$. If f is conservative, then we have

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$$

for any integers with $1 \leq i \neq j \leq n$.

Definition 4.1.15 (star shaped)

A subset $X \subset \mathbb{R}^n$ is **star shaped** if there exists $x_0 \in X$ such that, for alla $x \in X$, the line segment joining x_0 to x is contained in X. We then also say that X is **star-shaped around** x_0

Theorem 4.1.17

Let X be a star-shaped open subset of \mathbb{R}^n . Let f be a C^1 vector field s.t. $\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$ on X for all $i \neq j$ between 1 and n. Then the vector field

f is conservative.

Definition 4.1.20 (curl)

Definition 4.1.20. Let $X \subset \mathbb{R}^3$ be an open set and $f: X \to \mathbb{R}^3$ a C^1 vector field. Then the curl of f, denoted $\operatorname{curl}(f)$, is the continuous vector field on X defined by

$$\operatorname{curl}(f) = \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$$

where $f(x, y, z) = (f_1(x, y, z), f_2(x, y, z), f_3(x, y, z)).$

Definition Integral on a rectangle

Let $R = [a,b] \times [c,d]$ a compact rectangle in \mathbb{R}^2 . Let $f: R \to \mathbb{R}$ be restricted, s.t. $\exists M \geqslant 0, \forall (x,y) \in \mathbb{R}, |f(x,y)| \leqslant M$. For each partition P_x with $x_0 = a < x_1 < \cdots < x_n = b$ of [a,b] and P_y with $y_0 = c < y_1 < \cdots < y_n = d$ of [c,d], we can subdivide R into rectangles $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$ with area $\mu(R_{ij}) = (x_i - x_{i-1})(y_j - y_{j-1})$. Let

$$f_{ij} = \inf_{I_{ij}} f(x, y), \ F_{ij} = \sup_{I_{ij}} f(x, y)$$

. We can then define an upper and a lower sum, respectively:

$$s(P_x \times P_y) = \sum_{i=1}^{n} \sum_{j=1}^{m} f_{ij} \mu(I_{ij})$$

$$S(P_x \times P_y) = \sum_{i=1}^{n} \sum_{j=1}^{m} F_{ij} \mu(I_{ij})$$

Definition Riemann integrable in \mathbb{R}^2

Let $f: R \to \mathbb{R}$ restricted. Then is f integrable on R if

$$\sup_{(P_x, P_y)} s(P_x \times P_y) = \inf_{(P_x, P_y)} S(P_x \times P_y).$$

This value is defined as

$$\int_{R} f(x,y)d(x,y) \text{ or } \int \int_{R} f(x,y)d(x,y).$$

Definition Riemann integrable and characteristical function

f is on A integrable if $f \cdot \mathcal{X}_{\mathcal{A}}$ is integrable on R, where $\mathcal{X}_{\mathcal{A}}$ is the characteristical polynomial of f. We then write $\int_{A} f(x,y)d(x,y)$ for $\int_{R} f(x,y)\mathcal{X}_{A}(x,y)d(x,y)$.

Riemann integral's properties

- (1) Linearity
- (2) **Positivity** Let $f, g: A \to \mathbb{R}$ integrable with $f \leq g$. Then it follows

$$\int_A f(x,y)d(x,y) \leqslant \int_A g(x,y)d(x,y).$$

Furthermore, if $f \ge 0$, $B \subset A$ and f on B integrable:

$$\int_{B} f(x,y)d(x,y) \leqslant \int_{A} f(x,y)d(x,y).$$

(3) **Triangular inequality** Let $f: A \to \mathbb{R}$ integrable (in particular, restricted), then is |f| integrable and

$$\left| \int_{A} f(x,y) d(x,y) \right| \leqslant \int_{A} |f(x,y)| \, d(x,y)$$

- (4) Volume Let $R = [a, b] \times [c, d]$, then $\int_R d(x, y) = (b a)(d c)$.
- (5) **(O. Stolz 1886)** Let $f: R \to \mathbb{R}$ on $R = [a, b] \times [c, d]$ integrable. We assume that $y \mapsto f(x, y) \ \forall x \in [a, b]$ is integrable on [c, d]. This emplies that

$$x \mapsto \int_{c}^{d} f(x, y) dy$$

is integrable on [a, b], and

$$\int_{R} f(x,y)d(x,y) = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx$$

Proposition 3.30 (lecture)

Let $R = [a,b] \times [c,d]$ be a compact rectangle and $f: R \to \mathbb{R}$ continuous. Then is f on R integrable.

Proposition 3.31 (lecture

Let $K \subset \mathbb{R}^2$ a compact subset and $f: K \to \mathbb{R}$ continuous. Then is f uniformly continuous.

Definition 3.32 (null set, lecture)

Let $X \subset R \subset \mathbb{R}^2$. Then X is a null set (in \mathbb{R}^2) if $\forall \epsilon > 0$ there are finite many rectangles $R_k = [a_k, b_k] \times [c_k, d_k]$ with $1 \leq k \leq n$, s.t.

$$Y \subset \bigcup_{k=1}^{n} R_k, \quad \sum_{k=1}^{n} \mu(R_k) < \epsilon$$

Lemma 3.33 (lecture)

Let $\varphi:[0,1]\to\mathbb{R}^2$ a Lipschitz curve, so that

$$\|\varphi(s) - \varphi(t)\| \le M \cdot |s - t| \quad \forall s, t \in [0, 1]$$

Then is the image $\varphi([0,1]) \subset \mathbb{R}^2$ a null set.

Proposition 3.35 (lecture

Let $f: R \to \mathbb{R}$ limited. Let

$$X = \{(x, y) \in \mathbb{R} : f \text{ is in } (x, y) \text{ not continuous}\}$$

If X is a null set, then f is not integrable on R.

Proposition 3.36 (lecture)

Let $\varphi_1, \varphi_2 : [a, b] \to \mathbb{R}$ continuous with $\varphi_1 \leqslant \varphi_2 \ \forall x \in [a, b]$. Let $A = \{(x, y) : a \leqslant x \leqslant b, \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}$. Let $f : A \to \mathbb{R}$ continuous. Then is f on A integrable and it holds:

$$\int_A f(x,y)d(x,y) = \int_a^b dx \int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y)dy.$$

Lemma 3.37 (lecture)

Let $\varphi:[a,b]\to\mathbb{R}$ continuous. Then is the $graph(\varphi)=\{(x,\varphi(x),x\in[a,b]\}\subset\mathbb{R}^2 \text{ a null set.}$

Definition Border (Rand)

Let $A \in \mathbb{R}^2$ the **border** (Rand in German) is defined as

$$\partial A = \left\{ (x, y) \in \mathbb{R}^2 : \forall \delta > 0 \ C_{\delta}(x, y) \cap A \neq \emptyset \land C_{\delta}(x, y) \cap (\mathbb{R}^2 \setminus A) \neq \emptyset \right\}$$

where $C_{\delta}(x,y) =]x - \delta, x + \delta[\times]y - \delta, y + \delta[.$

Theorem 4.4.2 (Change of variable formula).

Let $U \subset \mathbb{R}^2$ be compact subsets. Let $\varphi : U \to \mathbb{R}^2$ be a continuous map in C^1 and $f : A \subset \mathbb{R}^2 \to \mathbb{R}$ a continuous function. Furthermore $B \subset U$. We assume

- (1) $\varphi(B) = A$; A, B compact; $\partial A, \partial B$ null sets.
- (2) $\varphi: B \setminus N \to A$ is injective, where $N \subset B$ is a null set.

Then it follows:

$$\int_A f(x,y)d(x,y) = \int_B f(\varphi(u,v)) |\det (J_{\varphi}(u,v))| d(u,v).$$