

[2,0]

[2,0]

1º Teste de Mecânica e Relatividade MEFT 23 de Novembro de 2019

Duração do Teste: 1h45m Só serão cotadas as respostas em que há trabalho mostrado

1. Um automóvel encontra-se sobre uma grande plataforma giratória que roda com velocidade angular constante ω=2 rad/s no sentido horário. Em t = 0, parte do centro da plataforma e segue ao longo de uma linha pintada radialmente para fora na plataforma com velocidade contante v=0.5 m/s. O peso do automóvel é P=10⁴ N e o coeficiente de atrito entre o carro e a plataforma é μ=0.45.

- [2,0] **1.a)** Determine em coordenadas polares a aceleração do carro em função do tempo.
 - **1.b)** Calcule o instante t imediatamente antes do automóvel começar a derrapar.
 - **1.c)** Represente num diagrama, a posição do automóvel nesse instante assim como a força de atrito que atua sobre o automóvel (direção e sentido).
 - 2. Duas partículas de massa m=0,5 kg cada estão constrangidas a moverem-se, sem atrito, ao longo de dois carris que se encontram no plano vertical e que fazem um ângulo 2θ =60° um com outro como mostra a figura.

As massas estão ligadas por uma mola de constante de elasticidade k=25 N/m e comprimento natural $\ell_0=1$ m. Sabe-se que a mola se

mantém sempre na horizontal, e que no instante inicial tem o comprimento de 1 m.

- [2,0] **2.a)** Determine a energia potencial total do sistema em função de x. Nota: x é a distância entre a massa m do lado direito da figura e o vértice do triângulo que marca o ponto de união dos carris.
- [2,0] **2.b)** Qual a posição de equilíbrio do sistema, x_{eq} ?
- [2,0] **2.c)** Escreva a(s) equação(ões) de movimento do sistema.
- [2,0] **2.d)** Determine a frequência angular w₀ de oscilação do sistema.
 - **3.** Uma barra de massa m=0,2 kg e comprimento $\ell=30$ cm encontra-se em repouso sobre uma mesa de ar horizontal. Um disco de massa m=0,2 kg desloca-se sobre a mesa de ar com velocidade v_0 =5 ms⁻¹ numa direção que faz 45° com barra, como mostra a figura. Após a colisão com o extremo da barra, disco e barra ficam ligados. Despreze a dimensão do disco. O momento de inércia da barra em torno de um eixo perpendicular que passa pelo seu centro é $I_{Barra} = \frac{1}{12} \text{m} \ell^2$.

- [2,0] **3.a)** Determine a velocidade do centro de massa do sistema antes de depois da colisão.
- [2,0]
 3.b) Calcule o momento angular do sistema antes e depois da colisão em relação ao ponto que coincide com o centro de massa do sistema no momento da colisão.
- [2,0] **3.c)** Calcule a energia cinética do sistema antes e depois da colisão

Aceleração da gravidade (Terra)	g=9,8 m/s ²
Constantes de Gravitação	G=6,67260x10 ⁻¹¹ Nm ² kg ⁻²
Massa da Terra	M⊤=5,98×10 ²⁴ kg
Raio médio da Terra	R⊤=6,378×10 ⁶ m
$ ho_{_{\!H_2O}}$	1000 kg / m ³