Лекция 4, 14.10.11

Предложение 1. Пусть S – подполугруппа в T_X и $\alpha, \beta \in S$. Тогда:

- (1) Если $\alpha \leq_{\mathscr{R}} \beta$, то $\operatorname{Ker} \alpha \supseteq \operatorname{Ker} \beta$ и если $\alpha \mathscr{R} \beta$, то $\operatorname{Ker} \alpha = \operatorname{Ker} \beta$.
- (2) Если $\alpha \leq_{\mathscr{L}} \beta$, то $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$ и если $\alpha \mathscr{L} \beta$, то $\operatorname{Im} \alpha = \operatorname{Im} \beta$.
- (3) $Ecnu \ \alpha \leq_{\mathscr{I}} \beta$, $mo \ |\operatorname{Im} \alpha| \leq |\operatorname{Im} \beta| \ u \ ecnu \ \alpha \mathscr{J} \beta$, $mo \ |\operatorname{Im} \alpha| = |\operatorname{Im} \beta|$.

Это предложение является простым следствием описания отношений Грина в T_X . Отметим, что обратные импликации в общем случае (т. е. для произвольной подполугруппы S) неверны, хотя они верны для T_X .

Пусть Y – подмножество множества X, а π – разбиение X. Говорят, что Y – mpanceprolamb разбиения π , если каждый π -класс содержит ровно один элемент из Y.

Предложение 2. Пусть X — конечное множество u S — подполугруппа в T_X . Элемент $\alpha \in S$ принадлежит некоторой подгруппе в S тогда u только тогда, когда $\operatorname{Im} \alpha$ есть трансверсаль разбиения $\operatorname{Ker} \alpha$.

Доказательство. Необходимость. Пусть $\alpha \in S$ лежит в некоторой подгруппе, тогда $\alpha^n = \alpha$ для некоторого n. Поэтому $\alpha|_{\text{Im }\alpha}$ – биекция (перестановка).

Пусть K — произвольный класс разбиения $\operatorname{Ker} \alpha$. Если $|K \cap \operatorname{Im} \alpha| \geq 2$, то по крайней мере два элемента из $\operatorname{Im} \alpha$ склеиваются под действием α , что невозможно, поскольку α — биекция. Значит, $|K \cap \operatorname{Im} \alpha| \leq 1$ для любого K. Если предположить, что для некоторого K выполняется $K \cap \operatorname{Im} \alpha = \emptyset$, то

$$|\operatorname{Im} \alpha| = \sum_{K \in \operatorname{Ker} \alpha} |K \cap \operatorname{Im} \alpha| < |\operatorname{Ker} \alpha|,$$

что также невозможно, поскольку $|\operatorname{Im} \alpha| = |\operatorname{Ker} \alpha|$.

Достаточность. Если $\operatorname{Im} \alpha$ — трансверсаль в $\operatorname{Ker} \alpha$, то $\alpha|_{\operatorname{Im} \alpha}$ — перестановка, тогда существует n такое, что $\alpha^n = \alpha$. Отсюда следует, в частности, что $\alpha^2 \mathscr{H} \alpha$, а значит, \mathscr{H} -класс элемента α является подгруппой, поскольку содержит идемпотент.

Алгоритм построения регулярных \mathscr{D} -классов конечной полугруппы преобразований.

- 0. Находим групповой элемент $x \in S$.
- 1. Вычисляем образы ${\rm Im}\,xr$ для всех $r\in S^1$ такие, что $|{\rm Im}\,xr|=|{\rm Im}\,x|$. Для каждого такого образа I сохраним такое r, что $I={\rm Im}\,xr$.
- 2. Параллельно вычисляем все такие преобразования xr $(r \in S^1)$, что $\operatorname{Im} xr = \operatorname{Im} x$. Из этих преобразований состоит \mathscr{H} -класс H_x .

- 3. Вычисляем все разбиения вида $\operatorname{Ker} sx\ (s \in S^1)$, такие, что $|\operatorname{Ker} sx| = |\operatorname{Ker} x|$. Для каждого такого разбиения сохраняем значение s, при котором оно получается.
- 4. Среди образов, построенных на шаге 1, сохраняем только те, которые служат трансверсалями для каких-то из разбиений, построенных на шаге 3, а среди разбиений, построенных на шаге 3, сохраняем только те, для которых хотя бы одно из множеств, построенных на шаге 1, является трансверсалью. Получим набор множеств $I_1(=\operatorname{Im} x),\ldots,I_k$ с соответствующими элементами $r_1(=1),\ldots r_k\in S^1$ и набор разбиений $\pi_1(=\operatorname{Ker} x),\ldots,\pi_\ell$ с соответствующими элементами $s_1(=1),\ldots s_\ell\in S^1$. Тогда \mathscr{D} -класс элемента x состоит в точности из элементов вида s_ihr_i , где h пробегает h_x .

	$\operatorname{Im} x$	 $\operatorname{Im} xr_j$	 $\operatorname{Im} x r_k$
$\operatorname{Ker} x$	H_x		
$\operatorname{Ker} s_i x$		H_{ij}	
$\operatorname{Ker} s_{\ell} x$			

Для обоснования алгоритма нужна следующая лемма. В ее формулировке участвуют отношения Грина \mathscr{R} и \mathscr{L} в полугруппе T и ее подполугруппе S. Будем с помощью верхних индексов T или S указывать, в какой полугруппе рассматривается соответствующее отношение. Аналогичное соглашение используется для классов отношений Грина.

Лемма 1 (о четвертом угле). Пусть S – подполугруппа конечной полугруппы T, $x \in S$, $a, b \in S^1$, $e = e^2 \in T$. Если

$$e \, \mathscr{R}^T \, bx \, \mathscr{L}^T \, x \, \mathscr{R}^T \, xa \, \mathscr{L}^T \, e,$$

 $mo \ e \in S \ u$

$$e \mathcal{R}^S bx \mathcal{L}^S x \mathcal{R}^S xa \mathcal{L}^S e.$$

Доказательство. Пересечение $L_{xa}^T \cap R_{bx}^T$ содержит идемпотент (а именно, e). По теореме Миллера-Клиффорда имеем

$$xabx \in L_{bx}^T \cap R_{xa}^T = H_x^T,$$

следовательно, по лемме Грина $\rho_{abx}|_{H^T_x}$ — биекция, а значит, существует k такое, что ρ^k_{abx} — тождественная перестановка. Отсюда $x(abx)^k = x$, а потому $xa\,\mathscr{R}^S\,x\,\mathscr{L}^S\,bx$. Так как $xabx\in L^S_{bx}\cap R^S_{xa}$, пересечение $L^S_{xa}\cap R^S_{bx}$ содержит идемпотент по теореме Миллера-Клиффорда. Ясно, что $L^S_{xa}\cap R^S_{bx}\subseteq L^T_{xa}\cap R^T_{bx}$, а e — единственный идемпотент в $L^T_{xa}\cap R^T_{bx}$. Итак, $e\in L^S_{xa}\cap R^S_{bx}$.

Займемся обоснованием алгоритма, т.е. докажем утверждения, сформулированные в его описании (они выделены курсивом).

Пусть h — произвольный элемент из H_x . Рассмотрим элемент hr такой, что $\operatorname{Im} hr \in \{I_1(=\operatorname{Im} x), \ldots, I_k\}$. Тогда среди разбиений $\pi_1(=\operatorname{Ker} x), \ldots, \pi_\ell$ найдется такое разбиение $\pi = \operatorname{Ker} sh$, для которого $\operatorname{Im} hr$ является трансверсалью. Рассмотрим преобразование $e \in T_X$, которое переводит каждый класс K разбиения $\pi = \operatorname{Ker} sh$ в единственный элемент множества $K \cap \operatorname{Im} hr$. Тогда e — идемпотент в $T = T_X$ такой, что $\operatorname{Ker} e = \operatorname{Ker} sh$ и $\operatorname{Im} e = \operatorname{Im} hr$, откуда $e \mathscr{R}^T hr$ и $e \mathscr{L}^T sh$. Тогда по лемме о четвертом угле $e \in S$ и

$$e\,\mathcal{R}^S\,sh\,\mathcal{L}^S\,h\,\mathcal{R}^S\,hr\,\mathcal{L}^S\,e.\tag{1}$$

Возьмем сначала в качестве h исходный элемент x и пусть $r \in S^1$ таково, что $\operatorname{Im} xr = \operatorname{Im} x$. Тогда в роли s можно взять 1, а идемпотент e — это не то иное как единица подгруппы H_x . Из (1) заключаем, что $xr \in H_x$. Так как очевидно, что любой элемент из H_x можно представить в виде xr для некоторого $r \in S^1$ такого, что $\operatorname{Im} xr = \operatorname{Im} x$, мы доказали утверждение, сформулированное на шаге 2 алгоритма.

Теперь снова возьмем произвольный элемент $h \in H_x$ и рассмотрим произвольный элемент вида $s_i h r_j$. По построению, существуют такое p, что $\operatorname{Im} h r_j$ является трансверсалью для $\operatorname{Ker} s_p h$, и такое q, что $\operatorname{Im} h r_q$ является трансверсалью для $\operatorname{Ker} s_i h$. Применяя (1) с $r = r_j$ и $s = s_p$ заключаем, что $h \mathscr{R}^S h r_j$, а тот же аргумент, примененный к $r = r_p$ и $s = s_i$, дает $h \mathscr{L}^S s_i h$, откуда $h r_j \mathscr{L}^S s_i h r_j$ (напомним, что отношение \mathscr{L} стабильно справа). Итак, $h \mathscr{R}^S h r_j \mathscr{L}^S s_i h r_j$, т.е. $s_i h r_j$ принадлежит \mathscr{D} -классу элемента x. Обратно, очевидно, что любой элемент из этого \mathscr{D} -класса можно представить в виде $s_i h r_j$ для подходящего $h \in H_x$. Мы доказали утверждение, сформулированное на шаге 4 алгоритма.

	$\operatorname{Im} x$	 $\operatorname{Im} xr_j$	 $\operatorname{Im} xr_q$
$\operatorname{Ker} x$	h	hr_j	
$\operatorname{Ker} s_i x$	$s_i h$	$s_i h r_j$	*
$\operatorname{Ker} s_p x$		*	