1

AI1103: Assignment 3

Prashanth Sriram S - CS20BTECH11039

Download all python codes from

https://github.com/prashanthsriram-s/AI1103/tree/main/Assignment3/codes/

and latex codes from

https://github.com/prashanthsriram-s/AI1103/tree/main/Assignment3/Assignment3.tex

PROBLEM STATEMENT

(AS3)=UGC / MATH (mathA June 2017), Q.118 Suppose the random varible X has the following probability density function

$$f(x) = \begin{cases} \alpha(x - \mu)^{\alpha - 1} e^{-(x - \mu)^{\alpha}} & x > \mu \\ 0 & x \le \mu, \end{cases}$$
 (0.0.1)

Where $\alpha > 0$, $-\infty < \mu < \infty$. Which of the following statements are correct? The Hazard function of X is

- a) an increasing function for all $\alpha > 0$
- b) a decreasing function for all $\alpha > 0$
- c) an increasing function for some $\alpha > 0$
- d) a decreasing function for some $\alpha > 0$

Solution

The Hazard function of X,

$$\lambda(X) = \frac{f(x)}{S(x)} \tag{0.0.2}$$

where S(x) is the survival function given by,

$$S(x) = P(X \ge x) = 1 - F(x) = \int_{x}^{\infty} f(t)dt \quad (0.0.3)$$

Lemma 0.1.

$$S(x) = \begin{cases} e^{-(x-\mu)^{\alpha}} & x > \mu \\ 1 & x \le \mu \end{cases}$$
 (0.0.4)

Proof.

$$\int f(t)dt = \int \alpha (t - \mu)^{\alpha - 1} e^{-(t - \mu)^{\alpha}} dt \qquad (0.0.5)$$

$$= -e^{-(t-\mu)^u} + C \qquad (0.0.6)$$

If $x > \mu$,

$$S(x) = \int_{x}^{\infty} \alpha (t - \mu)^{\alpha - 1} e^{-(t - \mu)^{\alpha}} dt \qquad (0.0.7)$$

$$= -e^{-(t-\mu)^{\alpha}} \Big]_{r}^{\infty} \qquad (0.0.8)$$

$$= e^{-(x-\mu)^{\alpha}} \tag{0.0.9}$$

If $x \leq \mu$,

$$S(x) = \int_{x}^{\mu} f(t)dt + \int_{u}^{\infty} f(t)dt$$
 (0.0.10)

$$= 0 + e^{-(\mu - \mu)^{\alpha}} \tag{0.0.11}$$

$$= 1$$
 (0.0.12)

From (0.0.9) and (0.0.12), we get S(x) as,

$$S(x) = \begin{cases} e^{-(x-\mu)^{\alpha}} & x > \mu \\ 1 & x \le \mu \end{cases}$$
 (0.0.13)

From (0.0.2) and (0.0.13), we get

$$\lambda(x) = \begin{cases} \alpha(x - \mu)^{\alpha - 1} & x > \mu \\ 0 & x \le \mu \end{cases}$$
 (0.0.14)

So,

if $\alpha > 1$, $\lambda(x)$ is an increasing function and

Fig. 4: $\alpha = 2$ for red. $\alpha = 1$ for green, $\mu = 1$ for both

if $0 < \alpha < 1$, $\lambda(x)$ is a decreasing function and

Fig. 4: $\alpha = 0.5$ for blue. $\alpha = 1$ for green, $\mu = 1$ for both

for $\alpha = 1$, $\lambda(x) = 1$, a constant function. So, for some values of α , it is increasing, for some it is decreasing function

Therefore, answer is (C) and (D)