Übungsblatt 2

Aufgabe 1 (Digitale Datenspeicher)

- 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet.
- 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher.
- 3. Nennen Sie zwei nichtrotierende magnetische digitale Datenspeicher.
- 4. Nennen Sie vier Vorteile von Datenspeicher ohne bewegliche Teile gegenüber Datenspeichern mit beweglichen Teilen.
- 5. Beschreiben Sie was wahlfreier Zugriff ist.
- 6. Nennen Sie einen nicht-persistenten Datenspeicher.
- 7. Der Speicher eines Computersystems wird in die Kategorien Primärspeicher, Sekundärspeicher und Tertiärspeicher unterschieden. Auf welche Kategorie(n) kann der Prozessor direkt zugreifen?
- 8. Nennen Sie die Kategorie(n) aus Teilaufgabe 7, auf die der Prozessor nur über einen Controller zugreifen kann.
- 9. Nennen Sie für jede Kategorie aus Teilaufgabe 7 zwei Beispiele.

Aufgabe 2 (Cache-Schreibstrategien)

- 1. Nennen Sie die beiden grundsätzlichen Cache-Schreibstrategien.
- 2. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der es zu Inkonsistenzen kommen kann.
- 3. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der die System-Geschwindigkeit geringer ist.
- 4. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der sogenannte "Dirty Bits" zum Einsatz kommen.
- 5. Beschreiben Sie die Aufgabe der "Dirty Bits".

Inhalt: Themen aus Foliensatz 2 Seite 1 von 8

Prof. Dr. Christian Baun	FB 2: In	nformatik und Ingenieurwissenschafter
Betriebssysteme und Rechnernetze	(SS2022)	Frankfurt Univ. of Appl. Sciences

Aufgabe 3 (Speicherverwaltung)

1.	tierung?	onzepten der Spei	icnerpartitionie	rung entstent interne Fragmen-
	☐ Statische Pa ☐ Dynamische ☐ Buddy-Algor	Partitionierung		
2.	Bei welchen Ko tierung?	nzepten der Spei	cherpartitionie	rung entsteht externe Fragmen-
	☐ Statische Pa ☐ Dynamische ☐ Buddy-Algor	Partitionierung		
3.	Beschreiben Sie	e wie externe Fra	agmentierung be	ehoben werden kann.
4.	Welches Konzepasst?	pt zur Speicherve	erwaltung sucht	den freien Block, der am besten
	☐ First Fit	\square Next Fit	\square Best fit	\square Random
5.		pt zur Speicherv ssenden freien B	_	nt ab dem Anfang des Adress-
	\square First Fit	☐ Next Fit	\square Best fit	\square Random
6.		pt zur Speicherv eicher am Ende d	_	tückelt schnell den großen Bes?
	☐ First Fit	□ Next Fit	\square Best fit	☐ Random
7.	Welches Konze senden Block?	pt zur Speicherv	erwaltung wähl	t zufällig einen freien und pas-
	\square First Fit	☐ Next Fit	\square Best fit	\square Random
8.		pt zur Speicherve n passenden freie	_	ab der Stelle der letzten Block-
	\square First Fit	☐ Next Fit	\square Best fit	\square Random
9.	Welches Konze		erwaltung prod	uziert viele Minifragmente und
	☐ First Fit	□ Next Fit	\square Best fit	☐ Random

Inhalt: Themen aus Foliensatz 2

Aufgabe 4 (Buddy-Verfahren)

Das Buddy-Verfahren zur Zuweisung von Speicher an Prozesse soll für einen 1024 kB großen Speicher verwendet werden. Führen Sie die angegeben Aktionen durch und geben Sie den Belegungszustand des Speichers nach jeder Anforderung oder Freigabe an.

	0	128	256	384	512	640	768	896	1024
Anfangszustand					1024 KB				
65 KB Anforderung => A									
30 KB Anforderung => B									
90 KB Anforderung => C									
34 KB Anforderung => D									
130 KB Anforderung => E									
Freigabe C									
Freigabe B									
275 KB Anforderung => F									
145 KB Anforderung => G									
Freigabe D									
Freigabe A									
Freigabe G									
Freigabe E									

Aufgabe 5 (Real Mode und Protected Mode)

- 1. Beschreiben Sie wie der Real Mode arbeitet.
- 2. Beschreiben Sie warum der Real Mode für Mehrprogrammbetrieb (Multitasking) ungeeignet ist.
- 3. Beschreiben Sie wie der Protected Mode arbeitet.
- 4. Beschreiben Sie was virtueller Speicher ist.
- 5. Erklären Sie, warum mit virtuellem Speicher der Hauptspeicher besser ausgenutzt wird.
- 6. Beschreiben Sie was Mapping ist.
- 7. Beschreiben Sie was Swapping ist.
- 8. Nennen Sie die Komponente der CPU, die virtuellen Speicher ermöglicht.
- 9. Beschreiben Sie die Aufgabe der Komponente aus Teilaufgabe 8.
- 10. Beschreiben Sie das Konzept des virtuellen Speichers mit dem Namen Paging.

Inhalt: Themen aus Foliensatz 2 Seite 3 von 8

Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2022) Frankfurt Univ. of Appl. Sciences

- 11. Beschreiben Sie wo beim Paging interne Fragmentierung entsteht.
- 12. Beschreiben Sie wie eine Page Fault Ausnahme (Exception) entsteht.
- 13. Beschreiben Sie wie das Betriebssystem auf eine Page Fault Ausnahme (Exception) reagiert.
- 14. Beschreiben Sie wie eine Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception) entsteht.
- 15. Beschreiben Sie die Auswirkung einer Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception).

Aufgabe 6 (Speicherverwaltung)

Kreuzen Sie bei jeder Aussage zur Speicherverwaltung an, ob die Aussage wahr oder falsch ist.

1.	Real Mode ist	für Multitasking-Systeme geeignet.
	\square Wahr	\square Falsch
2.		d Mode läuft jeder Prozess in seiner eigenen, von anderen Pro- otteten Kopie des physischen Adressraums.
	\square Wahr	\square Falsch
3.	Bei statischer l	Partitionierung entsteht interne Fragmentierung.
	\square Wahr	☐ Falsch
4.	Bei dynamisch	er Partitionierung ist externe Fragmentierung unmöglich.
	\square Wahr	\square Falsch
5.	Beim Paging h	aben alle Seiten die gleiche Länge.
	\square Wahr	\square Falsch
6.	Ein Vorteil lan	ger Seiten beim Paging ist geringe interne Fragmentierung.
	\square Wahr	\square Falsch
7.	Ein Nachteil k werden kann.	eurzer Seiten beim Paging ist, dass die Seitentabelle sehr groß
	\square Wahr	☐ Falsch
8.	Die MMU über belle in physiso	rsetzt beim Paging logische Speicheradressen mit der Seitentache Adressen.

Inhalt: Themen aus Foliensatz 2

Seite 4 von 8

	Dr. Christia				ner	net	ze				nfo				nd urt	_	_								
	□ Wahr			Fa	lsc	h																		-	
9.	Moderne B den Paging		ebs	sys	ten	ne	(füi	r x	86)	arl	beit	en	im	. Pı	ote	ecte	ed l	Mo	de	uno	d vo	erw	en-		
	☐ Wahr			Fa	lscl	h																			
Au	fgabe 7		(S	Sei	it€	en	- E	\rs	sei	\mathbf{tz}	ur	ıg	SS	${ m tr}$	\mathbf{at}	eg	gi€	en)						
1.	Begründen tiert werder				n d	ie o	opt	ima	ale	Ers	setz	zun	gss	tra	teg	ie (ΟP'	Τn	nich	ıt iı	npl	lem	en-		
2.	Führen Sie LRU, LFU 4 Seiten un die Missrat	uno d e	l F	IF(nal) e mi	inn t 5	nal Se	mi itei	t e	ine	m I	Dat	ene	cac	he :	mit	ei	ner	K	apa	zit	ät	von	L	
	Optimale E	Erset	zu	ngs	str	ate	gie	(C	РΊ	7):															
	Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
	Seite 1:																								
	Seite 2:																								
	Seite 3:																								
	Seite 4:																								
		Hit Mis			:																				
	Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
	Seite 1:																								
	Seite 2:																								
	Seite 3:																								
	Seite 4:																								
	Seite 5:																								
		Hit Mis			:																				

Inhalt: Themen aus Foliensatz 2 Seite 5 von 8

Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2022) Frankfurt Univ. of Appl. Sciences

Ersetzungsstrategie Least Recently Used (LRU):

Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
Seite 1:																								
Seite 2:																								
Seite 3:																								
Seite 4:																								
Queue:																								
		rat ssr		::																				
Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
Seite 1:																								
Seite 2:																								
Seite 3:																								
Seite 4:																								
Seite 5:																								
Queue:																								
		rat ssr		::																				

Ersetzungsstrategie Least Frequently Used (LFU):

Hitrate: Missrate:

Hitrate: Missrate:

Ersetzungsstrategie FIFO:

Hitrate: Missrate:

Hitrate: Missrate:

- 3. Beschreiben Sie die Kernaussage der Anomalie von Laszlo Belady.
- 4. Zeigen Sie Belady's Anomalie, indem sie die gegebene Zugriffsfolge mit der Ersetzungsstrategie FIFO einmal mit einem Datencache mit einer Kapazität

Inhalt: Themen aus Foliensatz 2 Seite 7 von 8

Prof. Dr. Christian Baun FB 2: Informatik und Ingenieurwissenschaften Betriebssysteme und Rechnernetze (SS2022) Frankfurt Univ. of Appl. Sciences

von 3 Seiten und einmal mit 4 Seiten durchführen. Berechnen Sie auch die Hitrate und die Missrate für beide Szenarien.

Anfragen:	3	2	1	0	3	2	4	3	2	1	0	4
Seite 1:												
Seite 2:												
Seite 3:												
		rat ssr	e: ate	:								
Anfragen:	3	2	1	0	3	2	4	3	2	1	0	4
Anfragen: Seite 1:	3	2	1	0	3	2	4	3	2	1	0	4
•	3	2	1	0	3	2	4	3	2	1	0	4
Seite 1:	3	2	1	0	3	2	4	3	2	1	0	4
Seite 1: Seite 2:	3	2	1	0	3	2	4	3	2	1	0	4

Hitrate:

Missrate: