Prova sem consulta. Duração: 2h.

2ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [3,0] Considere a curva, C, intersecção das superfícies $x^2 + y^2 + z^2 = 2$ e z = 1, percorrida no sentido direto. Calcule $\int_C -xzdx + ydy + ydz$.
- **2.** [4,5] Considere o campo vetorial $\vec{f}(x, y) = (2y^3 + \beta yx^2 + 2, \alpha xy^2 + x^3 + 1)$, em que α e β são constantes reais. Seja a curva, C, fronteira da região limitada por y = 1, $y = x^3$ e $0 \le x \le 1$, percorrida no sentido direto.
 - a) Seja $\alpha = \beta = 0$. Esboce a curva, C, e calcule $\int_C \vec{f} \cdot d\vec{r}$ usando, se possível, o teorema de Green.
 - **b**) Determine os valores de α e β de modo que o campo $\vec{f}(x, y)$ seja gradiente.
 - **c**) Para os valores de α e β obtidos em **b**), obtenha o campo escalar, $\varphi(x, y)$, tal que $\vec{f} = \nabla \varphi$ e calcule $\int_C \vec{f} \cdot d\vec{r}$ entre os pontos O = (0,0) e P = (1,1).
- **3.** [3,0] Seja a superfície $z = \sqrt{x^2 + y^2}$, $1 \le z \le 4$. Faça o seu esboço e calcule a sua área.

GRUPO II

- **4.** [3,0] Considere o campo vetorial $\vec{f}(x, y, z) = (y, x, z)$ e a superfície z = xy, definida em $D: x^2 + y^2 \le 1$.
 - a) Obtenha uma parametrização, $\vec{r}(u,v)$, para a superfície e indique um versor, $\vec{n}(u,v)$, do vetor fundamental.
 - **b**) Determine $\iint_S (\vec{f} \cdot \vec{n}) dS$.

.....(continua no verso

Prova sem consulta. Duração: 2h.

2ª Prova de Avaliação

- **5.** [4,5] Considere o integral triplo $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{x^2+y^2-4}^{4-x^2-y^2} dz dy dx$.
 - a) Esboce o domínio de integração.
 - b) Calcule o valor do integral usando uma mudança de coordenadas apropriada.
 - c) Reescreva-o de modo que a primeira integração se faça em ordem a y.
- **6.** [2,0] Seja $\vec{r}(u,v)$ uma representação paramétrica regular de uma superfície, S, em \mathbb{R}^3 . Mostre que o vetor fundamental associado a essa representação é, em qualquer ponto de S, um vetor normal à superfície.