Manifolds **Exercise Sheet 5.**

Department of Mathematics

Brice Loustau Philipp Käse Summer term 2020 19.06.2020

Groupwork

Exercise G1 (True or false?)

True or false? Justify your answers.

- a) Any smooth function on S^1 is not injective.
- b) Any smooth vector field on S^1 has a zero.
- c) Let M and N be smooth manifolds of the same dimension. For any vector fields X on M and Y on N, locally there always exist diffeomorphisms $\varphi \colon U \subseteq M \to V \subseteq N$ such that $\varphi_*X = Y$.
- d) The flow φ_t of a vector field is well-defined for t > 0 sufficiently small.
- e) For any $\alpha, \beta \in \Lambda(V^*)$, $\alpha \wedge \beta = -\beta \wedge \alpha$.

Exercise G2 (Vector fields: computations in local coordinates)

- a) Let $M=\{(x,y)\in\mathbb{R}^2\mid x>0 \text{ and } y>0\}$. Show that F(x,y)=(xy,y/x) defines a diffeomorphism of M. Compute F_*X where $X=x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}$.
- b) Let *M* be and *X* be as above. Compute *X* in polar coordinates.
- c) Let $M = \mathbb{R}^3$. Compute the Lie bracket [X,Y], where $X = y \frac{\partial}{\partial z} 2xy^2 \frac{\partial}{\partial y}$ and $Y = \frac{\partial}{\partial y}$.
- d) Let $M=\mathbb{R}^2$. Compute the flow of $X=y\frac{\partial}{\partial x}+\frac{\partial}{\partial y}$ and $Y=x\frac{\partial}{\partial x}+2y\frac{\partial}{\partial y}$.

Exercise G3 (Tensor products and dimension)

Let V be a vector space with a basis (e_1, \ldots, e_n) . Let $k \in \mathbb{N}$.

You may start by doing the whole exercise for the case k = 2, and if you succeed, do the general case.

- a) Find a basis of $T^k(V)$. What is the dimension of $T^k(V)$?
- b) Same question for $\Lambda^k(V)$.
- c) Same question for $S^k(V)$.
- d) Is it true that $T^k(V) = S^k(V) \oplus \Lambda^k(V)$?

Homework

Hand in your work by 30.06.2020.

Exercise H1 (True or False?)

8 points

True or False? Carefully prove each answer.

- a) Let M be a smooth manifold. Locally, one can always find vector fields X_1, \ldots, X_m which form a basis of the tangent space at every point.
- b) For any Lie algebra L and any $X \in L$, we have [X, X] = 0.
- c) For any vector space V of dimension n, we have $\dim \Lambda^n V^* = 1$.
- d) If α is a symmetric tensor, then $\mathrm{Alt}(\alpha)=0$.

Exercise H2 (Vector fields: computations in local coordinates)

8 points

- a) Let $M=\{(x,y)\in\mathbb{R}^2\mid x>0 \text{ and } y>0\}$ and F(x,y)=(xy,y/x) a diffeomorphism of M. Compute F_*X where $X=y\frac{\partial}{\partial x}.$
- b) Let M be as above. Compute $X=x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}$ and also $X=(x^2+y^2)\frac{\partial}{\partial x}$ in polar coordinates.
- c) Let $M = \mathbb{R}^3$. Compute the Lie bracket [X,Y], where $X = x \frac{\partial}{\partial y} y \frac{\partial}{\partial x}$ and $Y = y \frac{\partial}{\partial z} z \frac{\partial}{\partial y}$.
- d) Let $M=\mathbb{R}^2$. Compute the flow of $X=x\frac{\partial}{\partial x}-y\frac{\partial}{\partial y}$ and $Y=x\frac{\partial}{\partial y}+y\frac{\partial}{\partial x}$.

Exercise H3 (Lie groups and Lie algebras)

10 points

Let G be a Lie group. Denote $e \in G$ the neutral element.

- a) Show that for any $g \in G$, the map $L_q : h \mapsto gh$ is a smooth diffeomorphism of G.
- b) Let $L = \{X \in \Gamma(TM) \mid \forall g \in G \ (L_g)_*X = X\}$. Show that L is a Lie subalgebra of $\Gamma(TM)$, that is a vector subspace stable under the Lie bracket.
- c) Show that $X \mapsto X_{|e}$ is a linear isomorphism $L \to T_e G$. Derive that $T_e G$ can be equipped with the structure of a finite-dimensional Lie algebra. *This Lie algebra is called the Lie algebra of G*.
- d) Let $G = GL(n, \mathbb{R})$. Show that the Lie algebra of G is $M(n, \mathbb{R})$, with [A, B] = AB BA.

Further Exercises

Exercise F1 (Hessian)

Let $f: M \to \mathbb{R}$ be a smooth function. Show that it is not possible to give a sensible definition of the Hessian of f at an arbitrary point $p \in M$. Show that however, the Hessian of f is well-defined at a critical point.

Exercise F2 (Compact manifolds admitting non-vanishing vector fields)

Let M be a smooth compact manifold that admits a nowhere vanishing vector field. Show that there exists a smooth map $F \colon M \to M$ that is homotopic to the identity and has no fixed points.

By definition, F is homotopic to the identity if there exists a smooth map $H: [0,1] \times M \to M$ such that $H(0,\cdot) = \mathrm{id}_M$ and $H(1,\cdot) = F$.

Exercise F3 (Commuting flows)

Let X and Y be two vector fields on a smooth manifold M. For comfort, let us assume X and Y are complete. Show that the following are equivalent:

- (i) X and Y commute, that is: [X, Y] = 0.
- (ii) X is invariant under the flow of Y: $(\varphi_t^Y)_*X = X$ for all $t \in \mathbb{R}$.
- (iii) *Y* is invariant under the flow of $X: (\varphi_t^X)_*Y = Y$ for all $t \in \mathbb{R}$.
- (iv) X and Y have commuting flows: $\varphi_t^X \circ \varphi_s^Y = \varphi_s^Y \circ \varphi_t^X$ for all $s, t \in \mathbb{R}$.

Exercise F4 (Classical Lie algebras)

Describe the Lie algebras of all the Lie groups you can think of.