14_keras_mnist

November 30, 2020

0.1 2,3,5 hidden layer architecture on MNIST dataset

```
In [1]: import tensorflow as tf
       from tensorflow.keras import utils
       from tensorflow.keras.datasets import mnist
       import seaborn as sns
       from tensorflow.keras.initializers import he_normal
In [2]: # the data, shuffled and split between train and test sets
       (X_train, y_train), (X_test, y_test) = mnist.load_data()
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
In [3]: print("Number of X_train points :", X_train.shape)
       print("Number of y_train points :", y_train.shape)
       print("Number of X_test points :", X_test.shape)
       print("Number of y_test points :", y_test.shape)
Number of X_train points: (60000, 28, 28)
Number of y_train points : (60000,)
Number of X_test points: (10000, 28, 28)
Number of y_test points : (10000,)
In [4]: # if you observe the input shape its 2 dimensional vector
       # for each image we have a (28*28) vector
       # we will convert the (28*28) vector into single dimensional vector of 1*784
       X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2])
       X_test = X_test.reshape(X_test.shape[0], X_test.shape[1]*X_test.shape[2])
In [5]: # after converting the input images from 3d to 2d vectors
       print("Number of training examples :", X_train.shape[0], "and each image is of shape (
       print("Number of training examples : ", X_test.shape[0], "and each image is of shape (%
Number of training examples: 60000 and each image is of shape (784)
Number of training examples: 10000 and each image is of shape (784)
```

In [6]: # An example data point
 print(X_train[0])

	_	_						_	_		_	_	_		_	_	
[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	3	18	18	18	126	136	175	26	166	
247	127	0	0	0	0	0	0	0	0	0	0	0	0	30	36	94	
170	253	253	253	253	253	225	172		242	195	64	0	0	0	0	0	0
0	0	0	0	0	49			253			253	253	253	253	251	93	82
82	56	39	0	0	0	0	0	0	0	0	0	0	0	0		219	
253	253	253	253	198	182	247		0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	80	156	107	253	253	205	11	0	43	154
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	14	1	154	253	90	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	139	253	190	2	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	11	190	253	70	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		241
225	160	108	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	81	240	253	253	119	25	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	45	186	253	253	150	27	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	16	93	252	253	187
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	249	253	249	64	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	46	130	183	253
253	207	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	39	148	229	253	253	253	250	182	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0				253		
253	201	78	0	0											0		
0	0	23			253									0	0	0	0
0	0	0	0	0	0	0	0	0	0						253		
80	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
55		226			253				11	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0			253					132	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0]	l							

In [7]: # if we observe the above matrix each cell is having a value between 0-255 # before we move to apply machine learning algorithms lets try to normalize the data # $X \Rightarrow (X - Xmin)/(Xmax-Xmin) = X/255$

X_train = X_train/255
X_test = X_test/255

In [8]: # example data point after normlizing
 print(X_train[0])

[0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.	0.01176471	0.07058824		
	0.53333333		0.10196078		1.
	0.49803922		0.	0.	0.
0.	0.	0.	0.	0.	0.
0.	0.		0.14117647		
			0.99215686		
0.88235294			0.94901961		
0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.19215686
			0.99215686		
			0.98431373		
	0.21960784			0.	0.
0.	0.	0.	0.	0.	0.

```
0.
                       0.
                                   0.07058824 0.85882353 0.99215686
0.99215686 0.99215686 0.99215686 0.99215686 0.77647059 0.71372549
0.96862745 0.94509804 0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
                       0.
0.
            0.
                                   0.
                                               0.
                                                           0.
            0.
                       0.31372549 0.61176471 0.41960784 0.99215686
0.99215686 0.80392157 0.04313725 0.
                                               0.16862745 0.60392157
            0.
                       0.
                                               0.
0.
                                   0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                                               0.
                                                           0.
                       0.
                                   0.
            0.05490196 0.00392157 0.60392157 0.99215686 0.35294118
0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
                                               0.
0.
            0.
                       0.
                                   0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
            0.54509804 0.99215686 0.74509804 0.00784314 0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
                                               0.
            0.
                       0.
                                   0.
                                                           0.04313725
0.74509804 0.99215686 0.2745098
                                               0.
                                                           0.
                                   0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
                       0.
                                   0.
                                               0.
0.
            0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
                                                           0.94509804
            0.
                       0.
                                   0.
                                               0.1372549
0.88235294 0.62745098 0.42352941 0.00392157 0.
                                                           0.
           0.
                       0.
                                   0.
                                                           0.
                                               0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
            0.
                       0.
                                   0.
                                               0.
0.
                                                           0.
                       0.
                                   0.31764706 0.94117647 0.99215686
0.99215686 0.46666667 0.09803922 0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
            0.
                       0.17647059 0.72941176 0.99215686 0.99215686
0.58823529 0.10588235 0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
                       0.
                                   0.
                                               0.
0.
            0.0627451
                       0.36470588 0.98823529 0.99215686 0.73333333
                       0.
                                               0.
0.
            0.
                                   0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
                       0.
                                   0.
                                               0.
0.
            0.97647059 0.99215686 0.97647059 0.25098039 0.
                                               0.
0.
            0.
                       0.
                                   0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
            0.
                       0.
                                   0.
                                               0.
                                                           0.
```

```
0.18039216 0.50980392 0.71764706 0.99215686
0.99215686 0.81176471 0.00784314 0.
                                               0.
                                                           0.
                       0.
                                               0.
0.
           0.
                                   0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
           0.
                       0.
                                   0.
                                               0.15294118 0.58039216
0.89803922 0.99215686 0.99215686 0.99215686 0.98039216 0.71372549
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
           0.
                       0.
                                   0.
                                               0.
0.09411765 0.44705882 0.86666667 0.99215686 0.99215686 0.99215686
0.99215686 0.78823529 0.30588235 0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
           0.
                       0.09019608 0.25882353 0.83529412 0.99215686
0.99215686 0.99215686 0.99215686 0.77647059 0.31764706 0.00784314
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.07058824 0.67058824
0.85882353 0.99215686 0.99215686 0.99215686 0.99215686 0.76470588
0.31372549 0.03529412 0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.21568627 0.6745098 0.88627451 0.99215686 0.99215686 0.99215686
0.99215686 0.95686275 0.52156863 0.04313725 0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
                       0.
0.
           0.
                                   0.
                                               0.
                                                           0.
           0.
                                   0.
                                               0.53333333 0.99215686
0.
                       0.
0.99215686 0.99215686 0.83137255 0.52941176 0.51764706 0.0627451
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
           0.
0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                                               0.
                       0.
                                   0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
0.
           0.
                       0.
                                   0.
                                               0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                               0.
                                   0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                                               0.
                       0.
                                   0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
0.
           0.
                       0.
                                   0.
                                               0.
                                                           0.
           0.
                       0.
                                   0.
0.
```

In [9]: # here we are having a class number for each image

```
print("Class label of first image :", y_train[0])
        # lets convert this into a 10 dimensional vector
        # ex: consider an image is 5 convert it into 5 => [0, 0, 0, 0, 0, 1, 0, 0, 0]
        # this conversion needed for MLPs
        Y_train = utils.to_categorical(y_train, 10)
       Y_test = utils.to_categorical(y_test, 10)
       print("After converting the output into a vector : ",Y_train[0])
Class label of first image: 5
After converting the output into a vector: [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
In [10]: # some model parameters
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense, Activation
         output_dim = 10
         input_dim = X_train.shape[1]
         batch_size = 128
         nb_epoch = 20
0.2 Two hidden layer
0.2.1 MLP + ReLU + ADAM + BN + w/o Dropout +2Layer
In [11]: from tensorflow.keras.layers import BatchNormalization
         initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.066, seed=None)
         model_21bn = Sequential() #21bn=2 layer batch normalization
         model_2lbn.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initial
         model_21bn.add(BatchNormalization())
         model_2lbn.add(Dense(128, activation='relu', kernel_initializer=initializer) )
         model_21bn.add(BatchNormalization())
         model_2lbn.add(Dense(output_dim, activation='softmax'))
         model_21bn.summary()
Model: "sequential"
                       Output Shape
Layer (type)
                                                      Param #
```

dense (Dense)	(None,	512)	401920
batch_normalization (BatchNo	(None,	512)	2048
dense_1 (Dense)	(None,	128)	65664
batch_normalization_1 (Batch	(None,	128)	512
dense_2 (Dense)	(None,	10)	1290 ======
Total params: 471,434			
Trainable params: 470,154			
Non-trainable params: 1,280			

. . .

In [12]: model_2lbn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accur-

history = model_2lbn.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, ver

.

```
Epoch 1/20
Epoch 2/20
Epoch 3/20
Epoch 4/20
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
```

Epoch 14/20

```
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
In [13]: #plotting function
     %matplotlib notebook
     import matplotlib.pyplot as plt
     %matplotlib inline
     import numpy as np
     def plt_dynamic(x, vy, ty, ax, colors=['b']):
       ax.plot(x, vy, 'b', label="Validation Loss")
       ax.plot(x, ty, 'r', label="Train Loss")
       plt.legend()
       plt.grid()
       fig.canvas.draw()
In [14]: score = model_2lbn.evaluate(X_test, Y_test, verbose=0)
     print('Test score:', score[0])
     print('Test accuracy:', score[1])
     fig,ax = plt.subplots(1,1)
     ax.set_title('EpochsVS Loss')
     ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
     # list of epoch numbers
     x = list(range(1,nb_epoch+1))
     vy = history.history['val_loss']
     ty = history.history['loss']
     plt_dynamic(x, vy, ty, ax)
Test score: 0.08280453830957413
Test accuracy: 0.9803000092506409
```


0.2.2 MLP + ReLU + ADAM + BN + with Dropout + 2Layer

```
In [15]: from tensorflow.keras.layers import Dropout
         from tensorflow.keras.layers import BatchNormalization
         initializer = tf.keras.initializers.he_normal(seed=None)
         model_21bnd = Sequential() #model_21bnd=2 layer batch normalization dropout
         model_2lbnd.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initial
         model_21bnd.add(BatchNormalization())
         model_21bnd.add(Dropout(0.5))
         model_21bnd.add(Dense(128, activation='relu', kernel_initializer=initializer) )
         model_21bnd.add(BatchNormalization())
         model_21bnd.add(Dropout(0.5))
         model_21bnd.add(Dense(output_dim, activation='softmax'))
         model_21bnd.summary()
Model: "sequential_1"
Layer (type)
                             Output Shape
                                                       Param #
```

dense_3 (Dense)	(None, 512)	401920
batch_normalization_2 (Batch	(None, 512)	2048
dropout (Dropout)	(None, 512)	0
dense_4 (Dense)	(None, 128)	65664
batch_normalization_3 (Batch	(None, 128)	512
dropout_1 (Dropout)	(None, 128)	0
dense_5 (Dense)	(None, 10)	1290
Total params: 471,434 Trainable params: 470,154 Non-trainable params: 1,280		

In [16]: model_2lbnd.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accustomatheration of the compile of

history = model_2lbnd.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, ve

Epoch 1/20 Epoch 2/20 Epoch 3/20 Epoch 4/20 Epoch 5/20 Epoch 6/20 Epoch 7/20 Epoch 8/20 Epoch 9/20

Epoch 10/20

Epoch 11/20

Epoch 12/20

```
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
In [17]: score = model_2lbnd.evaluate(X_test, Y_test, verbose=0)
   print('Test score:', score[0])
   print('Test accuracy:', score[1])
   fig,ax = plt.subplots(1,1)
   ax.set_title('EpochsVS Loss')
   ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
   # list of epoch numbers
   x = list(range(1,nb_epoch+1))
   vy = history.history['val_loss']
   ty = history.history['loss']
   plt_dynamic(x, vy, ty, ax)
Test score: 0.05603070184588432
```

Test accuracy: 0.9840999841690063

0.3 Three hidden layer

0.3.1 MLP + ReLU + ADAM + w/o Dropout + BN + 3Layer

```
In [ ]: initializer = tf.keras.initializers.he_normal(seed=None)
        model_31bn = Sequential()
       model_3lbn.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initialis
        model_3lbn.add(BatchNormalization())
        model_3lbn.add(Dense(128, activation='relu', kernel_initializer=initializer)) #layer
        model_31bn.add(BatchNormalization())
        model_3lbn.add(Dense(100, activation='relu', kernel_initializer=initializer) ) #layer
       model_31bn.add(BatchNormalization())
       model_31bn.add(Dense(output_dim, activation='softmax'))
       model_31bn.summary()
Model: "sequential_6"
```

Layer (type)	Output Shape	Param #
dense_14 (Dense)	(None, 512)	401920
batch_normalization_9 (Batch	(None, 512)	2048
dense_15 (Dense)	(None, 128)	65664
batch_normalization_10 (Batc	(None, 128)	512
dense_16 (Dense)	(None, 100)	12900
batch_normalization_11 (Batc	(None, 100)	400
dense_17 (Dense)	(None, 10)	1010
Total params: 484,454 Trainable params: 482,974 Non-trainable params: 1,480		

In []: model_3lbn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']

```
history = model_3lbn.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, ver
Epoch 1/20
Epoch 2/20
Epoch 3/20
Epoch 4/20
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
```

```
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
In [ ]: score = model_3lbn.evaluate(X_test, Y_test, verbose=0)
   print('Test score:', score[0])
   print('Test accuracy:', score[1])
   fig,ax = plt.subplots(1,1)
   ax.set_title('EpochsVS Loss')
   ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
   # list of epoch numbers
   x = list(range(1,nb_epoch+1))
   vy = history.history['val_loss']
   ty = history.history['loss']
   plt_dynamic(x, vy, ty, ax)
Test score: 0.105586476624012
Test accuracy: 0.9764000177383423
```


0.3.2 MLP + ReLU + ADAM + with Dropout + BN + 3Layer

```
In []: initializer = tf.keras.initializers.he_normal(seed=None)
    model_3lbnd = Sequential()

    model_3lbnd.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initial model_3lbnd.add(BatchNormalization())
    model_3lbnd.add(Dropout(0.5))

    model_3lbnd.add(Dense(128, activation='relu', kernel_initializer=initializer)) #laye model_3lbnd.add(BatchNormalization())
    model_3lbnd.add(Dropout(0.5))

    model_3lbnd.add(Dense(100, activation='relu', kernel_initializer=initializer)) #layer model_3lbnd.add(BatchNormalization())
    model_3lbnd.add(Dropout(0.5))

    model_3lbnd.add(Dense(output_dim, activation='softmax'))

    model_3lbnd.add(Dense(output_dim, activation='softmax'))

Model: "sequential_7"
```

Layer (type)	•	F	Param #
dense_18 (Dense)	(None,		401920
batch_normalization_12 (Batc	(None,	512)	2048
dropout_2 (Dropout)	(None,	512)	0
dense_19 (Dense)	(None,	128)	65664
batch_normalization_13 (Batc	(None,	128)	512
dropout_3 (Dropout)	(None,	128)	0
dense_20 (Dense)	(None,	100)	12900
batch_normalization_14 (Batc	(None,	100)	400
dropout_4 (Dropout)	(None,	100)	0
dense_21 (Dense)			1010
Total params: 484,454 Trainable params: 482,974			

Non-trainable params: 1,480

```
In [ ]: model_3lbnd.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accurate the compile optimizer of the compile optimi
                  history = model_3lbnd.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, ver
Epoch 1/20
Epoch 2/20
Epoch 3/20
Epoch 4/20
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
```

```
Epoch 9/20
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
In [ ]: score = model_3lbnd.evaluate(X_test, Y_test, verbose=0)
  print('Test score:', score[0])
  print('Test accuracy:', score[1])
  fig,ax = plt.subplots(1,1)
  ax.set_title('EpochsVS Loss')
  ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
  # list of epoch numbers
  x = list(range(1,nb_epoch+1))
  vy = history.history['val_loss']
  ty = history.history['loss']
  plt_dynamic(x, vy, ty, ax)
Test score: 0.06718681752681732
Test accuracy: 0.9817000031471252
```


0.4 Five hidden layer

0.4.1 MLP + ReLU + ADAM + w/o Dropout + BN + 5Layer

```
In []: initializer = tf.keras.initializers.he_normal(seed=None)
    model_5lbn = Sequential()

model_5lbn.add(Dense(612, activation='relu', input_shape=(input_dim,), kernel_initializer
model_5lbn.add(BatchNormalization())

model_5lbn.add(Dense(512, activation='relu', kernel_initializer=initializer)) #layer
model_5lbn.add(BatchNormalization())

model_5lbn.add(Dense(312, activation='relu', kernel_initializer=initializer)) #layer
model_5lbn.add(BatchNormalization())

model_5lbn.add(Dense(212, activation='relu', kernel_initializer=initializer)) #layer
model_5lbn.add(BatchNormalization())

model_5lbn.add(Dense(15, activation='relu', kernel_initializer=initializer)) #layer 3
model_5lbn.add(Dense(15, activation='relu', kernel_initializer=initializer)) #layer 3
model_5lbn.add(Dense(output_dim, activation='softmax'))
```

model_5lbn.summary()

Model: "sequential_10"

Layer (type)	Output	 Shape	 Param #
dense_34 (Dense)	(None,	612)	480420
batch_normalization_25 (Batc (None,	612)	2448
dense_35 (Dense)	(None,	512)	313856
batch_normalization_26 ((Batc (None,	512)	2048
dense_36 (Dense)	(None,	312)	160056
batch_normalization_27 ((Batc (None,	312)	1248
dense_37 (Dense)	(None,	212)	66356
batch_normalization_28 ((Batc (None,	212)	848
dense_38 (Dense)	(None,	15)	3195
batch_normalization_29 ((Batc (None,	15)	60
dense_39 (Dense)	(None,	10)	160
Total params: 1,030,695			

Total params: 1,030,695 Trainable params: 1,027,369 Non-trainable params: 3,326

Epoch 4/20

```
Epoch 5/20
Epoch 6/20
Epoch 7/20
Epoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 15/20
Epoch 16/20
Epoch 17/20
Epoch 18/20
Epoch 19/20
Epoch 20/20
In [ ]: score = model_5lbn.evaluate(X_test, Y_test, verbose=0)
  print('Test score:', score[0])
  print('Test accuracy:', score[1])
  fig,ax = plt.subplots(1,1)
  ax.set_title('EpochsVS Loss')
  ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
  # list of epoch numbers
  x = list(range(1,nb_epoch+1))
  vy = history.history['val_loss']
```

```
ty = history.history['loss']
plt_dynamic(x, vy, ty, ax)
```

Test score: 0.0679909959435463 Test accuracy: 0.9822999835014343

0.4.2 MLP + ReLU + ADAM + BN + with Dropout + 5Layer

```
In []: initializer = tf.keras.initializers.he_normal(seed=None)

model_5lbnd = Sequential()

model_5lbnd.add(Dense(612, activation='relu', input_shape=(input_dim,), kernel_initial
model_5lbnd.add(BatchNormalization())
model_5lbnd.add(Dropout(0.5))

model_5lbnd.add(Dense(512, activation='relu', kernel_initializer=initializer)) #laye
model_5lbnd.add(BatchNormalization())
model_5lbnd.add(Dense(312, activation='relu', kernel_initializer=initializer)) #layer
model_5lbnd.add(Dense(312, activation='relu', kernel_initializer=initializer)) #layer
model_5lbnd.add(BatchNormalization())
model_5lbnd.add(Dropout(0.5))
```

```
model_51bnd.add(Dense(212, activation='relu', kernel_initializer=initializer) ) #layer
model_51bnd.add(BatchNormalization())
model_51bnd.add(Dropout(0.5))

model_51bnd.add(Dense(15, activation='relu', kernel_initializer=initializer) ) #layer
model_51bnd.add(BatchNormalization())
model_51bnd.add(Dropout(0.5))

model_51bnd.add(Dense(output_dim, activation='softmax'))
```

model_51bnd.summary()

Model: "sequential_9"

Layer (type)		Output	Snape 	Param #
dense_28 (Dense)		(None,	612)	480420
batch_normalization_20	(Batc	(None,	612)	2448
dropout_5 (Dropout)		(None,	612)	0
dense_29 (Dense)		(None,	512)	313856
batch_normalization_21	(Batc	(None,	512)	2048
dropout_6 (Dropout)		(None,	512)	0
dense_30 (Dense)		(None,	312)	160056
batch_normalization_22	(Batc	(None,	312)	1248
dropout_7 (Dropout)		(None,	312)	0
dense_31 (Dense)		(None,	212)	66356
batch_normalization_23	(Batc	(None,	212)	848
dropout_8 (Dropout)		(None,	212)	0
dense_32 (Dense)		(None,	15)	3195
batch_normalization_24	(Batc	(None,	15)	60
dropout_9 (Dropout)		(None,	15)	0

```
dense_33 (Dense) (None, 10) 160
```

Total params: 1,030,695 Trainable params: 1,027,369 Non-trainable params: 3,326

In []: model_5lbnd.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accurate

history = model_5lbnd.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, ver Epoch 1/20 Epoch 2/20 Epoch 3/20 Epoch 4/20 Epoch 5/20 Epoch 6/20 Epoch 7/20 Epoch 8/20 Epoch 9/20 Epoch 10/20 Epoch 11/20 Epoch 12/20 Epoch 13/20 Epoch 14/20 Epoch 15/20 Epoch 16/20 Epoch 17/20 Epoch 18/20

```
Epoch 19/20
Epoch 20/20
469/469 [=====
                          ======] - 14s 29ms/step - loss: 0.1494 - accuracy: 0.9589 - v
In [ ]: score = model_5lbnd.evaluate(X_test, Y_test, verbose=0)
      print('Test score:', score[0])
      print('Test accuracy:', score[1])
      fig,ax = plt.subplots(1,1)
      ax.set_title('EpochsVS Loss')
      ax.set_xlabel('epoch') ; ax.set_ylabel('Categorical Crossentropy Loss')
      # list of epoch numbers
      x = list(range(1,nb_epoch+1))
      vy = history.history['val_loss']
      ty = history.history['loss']
      plt_dynamic(x, vy, ty, ax)
```

Test score: 0.08210139721632004 Test accuracy: 0.9828000068664551

0.5 Conclusion

```
In [1]: from prettytable import PrettyTable
       x = PrettyTable()
       x.field_names = ["No. of layer", "Dropout", "Accuracy %"]
       x.add_row(["2","NO","98.03"])
       x.add_row(["2","YES","98.40"])
       x.add_row(["3","NO","97.76"])
       x.add_row(["3","YES","98.17"])
       x.add_row(["5","NO","98.22"])
       x.add_row(["5","YES","98.28"])
       print(x)
+----+
| No. of layer | Dropout | Accuracy % |
      2
                  NO
                          98.03
      2
                          98.40
                 YES
      3
             NO
                          97.76
      3
                 YES
                          98.17
      5
             NO
                          98.22
                                   Ι
      5
             YES
                          98.28
```

- 1. Observed that using dropouts there is slight increasein the accuracy
- 2. 5 hidden layer model has given 98% accuracy and no much increment with/without dropout as dataset is small