- Very Low Power Consumption
- Typical Supply Current . . . 200 μA (Per Amplifier)
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Common-Mode Input Voltage Range Includes V_{CC+}
- Output Short-Circuit Protection
- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation
- Latch-Up-Free Operation
- High Slew Rate . . . 3.5 V/μs Typ

description

The JFET-input operational amplifiers of the TL06_series are designed as low-power versions of the TL08_series amplifiers. They feature high input impedance, wide bandwidth, high slew rate, and low input offset and input bias currents. The TL06_series feature the same terminal assignments as the TL07_ and TL08_series. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 85°C, and the M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.

TL061 ... U PACKAGE

TL062, TL062A, TL062B

TL062...U PACKAGE

TL064 . . . D, J, N, PW, OR W PACKAGE TL064A, TL064B . . . D OR N PACKAGE

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLOS078F - NOVEMBER 1978 - REVISED JANUARY 1999

NC - No internal connection

AVAILABLE OPTIONS

			P/	CKAGED DEVICE	S		
TA	V _{IO} MAX AT 25°C	SMALL OUTLINE (D008)†	SMALL OUTLINE (D014)†	PLASTIC DIP (N)	PLASTIC DIP (P)	TSSOP (PW)	CHIP FORM (Y)
	15 mV 6 mV 3 mV	TL061CD TL061ACD TL061BCD			TL061CP TL061ACP TL061BCP	TL061CPW	TL061Y
0°C to 70°C	15 mV 6 mV 3 mV	TL062CD TL062ACD TL062BCD			TL062CP TL062ACP TL062BCP	TL062CPW	TL062Y
	15 mV 6 mV 3 mV		TL064CD TL064ACD TL064BCD	TL064CN TL064ACN TL064BCN		TL064CPW	TL064Y

			PACKAGE										
TA	V _{IO} MAX AT 25°C	SMALL OUTLINE (D008) [†]	SMALL OUTLINE (D014) [†]	CHIP CARRIER (FK)	CERAMIC DIP (J)	CERAMIC DIP (JG)	PLASTIC DIP (N)	PLASTIC DIP (P)	FLAT PACK (U)	FLAT PACK (W)			
-40°C to 85°C	6 mV	TL061ID TL062ID	TL064ID				TL064IN	TL061IP TL062IP					
–55°C to 125°C	6 mV 6 mV 9 mV			TL061MFK TL062MFK TL064MFK	TL064MJ	TL061MJG TL062MJG			TL061MU TL062MU	TL064MW			

[†] The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL061CDR).

symbol (each amplifier)

schematic (each amplifier)

C1 = 10 pF on TL061, TL062, and TL064 Component values shown are nominal.

SLOS078F - NOVEMBER 1978 - REVISED JANUARY 1999

TL061Y chip information

This chip, when properly assembled, has characteristics similar to the TL061. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. The chips can be mounted with conductive epoxy or a gold-silicon preform.

TL062Y chip information

This chip, when properly assembled, has characteristics similar to the TL062. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. The chips can be mounted with conductive epoxy or a gold-silicon preform.

SLOS078F - NOVEMBER 1978 - REVISED JANUARY 1999

TL064Y chip information

This chip, when properly assembled, has characteristics similar to the TL064. Thermal compression or ultrasonic bonding can be used on the doped-aluminum bonding pads. The chips can be mounted with conductive epoxy or a gold-silicon preform.

SLOS078F - NOVEMBER 1978 - REVISED JANUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		TL06_C TL06_AC TL06_BC	TL06_I	TL06_M	UNIT	
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V	
Supply voltage, V _{CC} – (see Note 1)		-18	-18	-18	V	
Differential input voltage, V _{ID} (see Note 2)		±30	±30	±30	V	
Input voltage, V _I (see Notes 1 and 3)		±15	±15	±15	V	
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited		
Continuous total dissipation		See Dissipation Rating Table				
Storage temperature range, T _{Stg}		-65 to 150	-65 to 150	-65 to 150	°C	
Case temperature for 60 seconds	FK package			260	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J, JG, U, or W package			300	°C	
Lead temperature 1,6 mm (1/6 inch) from case for 10 seconds	D, N, P, or PW package	260	260		°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values except differential voltages are with respect to the midpoint between V_{CC+} and V_{CC-}
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
 - 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D (8 pin)	680 mW	5.8 mW/°C	33°C	465 mW	378 mW	N/A
D (14 pin)	680 mW	7.6 mW/°C	60°C	604 mW	490 mW	N/A
FK	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
J	680 mW	11.0 mW/°C	88°C	680 mW	680 mW	273 mW
JG	680 mW	8.4 mW/°C	69°C	672 mW	546 mW	210 mW
N	680 mW	9.2 mW/°C	76°C	680 mW	597 mW	N/A
Р	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	N/A
PW (8 pin)	525 mW	4.2 mW/°C	25°C	336 mW	N/A	N/A
PW (14 pin)	700 mW	5.6 mW/°C	25°C	448 mW	N/A	N/A
U	675 mW	5.4 mW/°C	25°C	432 mW	351 mW	135 mW
W	680 mW	8.0 mW/°C	65°C	640 mW	520 mW	200 mW

SLOS078F - NOVEMBER 1978 - REVISED JANUARY 1999

electrical characteristics, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

	PARAMETER	TEST CO	ONDITIONS†		TL061C TL062C TL064C		т	L061AC L062AC L064AC		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	$V_{O} = 0$,	T _A = 25°C		3	15		3	6	mV
۷۱٥	input onset voltage	$R_S = 50 \Omega$	T _A = Full range			20			7.5	IIIV
ανιο	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = 9$ $T_A = Full range$			10			10		μV/°C
lio	Input offset current	V _O = 0	T _A = 25°C		5	200		5	100	pА
liO	input onset current	vO = 0	T _A = Full range			5			3	nA
lin	Innut bigg gurrant [†]	V _O = 0	T _A = 25°C		30	400		30	200	pА
IB	Input bias current‡	vO = 0	T _A = Full range			10			7	nA
VICR	Common-mode input voltage range	T _A = 25°C		±11	–12 to 15		±11	-12 to 15		٧
\/a	Maximum peak output	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C	±10	±13.5		±10	±13.5		V
VOM	voltage swing	$R_L \ge 10 \text{ k}\Omega$,	T _A = Full range	±10			±10			V
AVD	Large-signal differential	$V_0 = \pm 10 \text{ V},$	T _A = 25°C	3	6		4	6		V/mV
AVD	voltage amplification	$R_L \ge 10 \text{ k}\Omega$	T _A = Full range	3			4			V/IIIV
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C		1			1		MHz
rį	Input resistance	T _A = 25°C			10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}^{min}$ $R_S = 50 \Omega, T_A$		70	86		80	86		dB
ksvr	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 9 \text{ V to}$ $V_{O} = 0, R_{S} = 9$ $T_{A} = 25^{\circ}\text{C}$		70	95		80	95		dB
PD	Total power dissipation (each amplifier)	V _O = 0, No load	T _A = 25°C,		6	7.5		6	7.5	mW
Icc	Supply current (each amplifier)	V _O = 0, No load	T _A = 25°C,		200	250		200	250	μА
V _{O1} /V _{O2}	Crosstalk attenuation	$A_{VD} = 100,$	T _A = 25°C		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is 0°C to 70°C for TL06_C, TL06_AC, and TL06_BC and -40°C to 85°C for TL06_I.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

electrical characteristics, $V_{\text{CC}\pm}$ = ± 15 V (unless otherwise noted)

	PARAMETER		ONDITIONS†	т	L061BC L062BC L064BC	;		TL061I TL062I TL064I		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	$V_0 = 0$,	T _A = 25°C		2	3		3	6	mV
VIO	input onset voltage	$R_S = 50 \Omega$	T _A = Full range			5			9	IIIV
αΝΙΟ	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = 0$ $T_A = Full range$			10			10		μV/°C
lio	Input offset current	V _O = 0	T _A = 25°C		5	100		5	100	pА
10	input onset current	VO = 0	T _A = Full range			3			10	nA
I _{IB}	Input bias current [‡]	V _O = 0	T _A = 25°C		30	200		30	200	рА
IB	Input bias current*	v0-0	T _A = Full range			7			20	nA
VICR	Common-mode input voltage range	T _A = 25°C		±11	-12 to 15		±11	–12 to 15		V
.,	Maximum peak output	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C	±10	±13.5		±10	±13.5		.,
VOM	voltage swing	$R_L \ge 10 \text{ k}\Omega$,	T _A = Full range	±10			±10			V
۸	Large-signal differential	$V_0 = \pm 10 \text{ V},$	T _A = 25°C	4	6		4	6		V/mV
AVD	voltage amplification	R _L ≥ 10 kΩ	T _A = Full range	4			4			V/IIIV
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C		1			1		MHz
rį	Input resistance	T _A = 25°C			1012			1012		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}mi$ $R_S = 50 \Omega, T_A$		80	86		80	86		dB
ksvr	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 9 \text{ V to}$ $V_{O} = 0, R_{S} = 5$ $T_{A} = 25^{\circ}C$		80	95		80	95		dB
PD	Total power dissipation (each amplifier)	V _O = 0, No load	T _A = 25°C,		6	7.5		6	7.5	mW
ICC	Supply current (each amplifier)	V _O = 0, No load	T _A = 25°C,		200	250		200	250	μΑ
V _{O1} /V _{O2}	Crosstalk attenuation	$A_{VD} = 100,$	T _A = 25°C		120			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for

T_A is 0°C to 70°C for TL06_C, TL06_AC, and TL06_BC and -40°C to 85°C for TL06_I.

‡ Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

SLOS078F - NOVEMBER 1978 - REVISED JANUARY 1999

electrical characteristics, $V_{CC\pm}$ = ± 15 V (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS†		TL061M TL062M			ΓL064M		UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	
Via	Input offset voltage	V _O = 0,	T _A = 25°C		3	6		3	9	mV
VIO	input onset voltage	$R_S = 50 \Omega$	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			9			15	IIIV
ανιο	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = 0$ $T_A = -55$ °C to			10			10		μV/°C
			T _A = 25°C		5	100		5	100	pА
lιO	Input offset current	VO = 0	T _A = -55°C			20*			20*	nA
			T _A = 125°C			20			20	ПА
			T _A = 25°C		30	200		30	200	pА
I _{IB}	Input bias current‡	VO = 0	$T_A = -55^{\circ}C$			50*			50*	nA
			T _A = 125°C			50			50	ПА
VICR	Common-mode input voltage range	T _A = 25°C		±11.5	–12 to 15		±11.5	-12 to 15		V
.,	Maximum peak output	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C	±10	±13.5		±10	±13.5		V
Vом	voltage swing	$R_L \ge 10 \text{ k}\Omega$,	$T_A = -55^{\circ}C$ to $125^{\circ}C$	±10			±10			V
Δ	Large-signal differential	$V_{O} = \pm 10 \text{ V},$	T _A = 25°C	4	6		4	6		V/mV
AVD	voltage amplification	R _L ≥ 10 kΩ	$T_A = -55^{\circ}C$ to $125^{\circ}C$	4			4			v/mv
B ₁	Unity-gain bandwidth	$R_L = 10 \text{ k}\Omega$,	T _A = 25°C							MHz
rį	Input resistance	T _A = 25°C			1012			1012		Ω
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} mir R _S = 50 Ω, T _A		80	86		80	86		dB
ksvr	Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{CC} = \pm 9 \text{ V to}$ $R_S = 50 \Omega, T_A$	$\pm 15 \text{ V, V}_{O} = 0,$ = 25°C	80	95		80	95		dB
PD	Total power dissipation (each amplifier)	V _O = 0, No load	T _A = 25°C,		6	7.5		6	7.5	mW
Icc	Supply current (each amplifier)	V _O = 0, No load	$T_A = 25^{\circ}C$,		200	250		200	250	μΑ
V _{O1} /V _{O2}	Crosstalk attenuation	$A_{VD} = 100,$	T _A = 25°C		120			120		dB

^{*} This parameter is not production tested.

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain (see Note 5)	V _I = 10 V, C _L = 100 pF,	R_L = 10 kΩ, See Figure 1	2	3.5		V/µs
t _r	Rise time	V _I = 20 V,	R _L = 10 kΩ,		0.2		
	Overshoot factor	$C_L = 100 pF$,	See Figure 1		10%		μs
Vn	Equivalent input noise voltage	$R_S = 20 \Omega$,	f = 1 kHz		42		nV/√ Hz

NOTE 5: Slew rate at -55° C to 125° C is $0.7 \text{ V/}\mu\text{s}$ min.

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

electrical characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDI	тіонѕ†	-	TL061Y TL062Y TL064Y		UNIT
				MIN	TYP	MAX	
VIO	Input offset voltage	$V_{O} = 0,$	$R_S = 50 \Omega$		3	15	mV
ανιο	Temperature coefficient of input offset voltage	$V_{O} = 0,$	$R_S = 50 \Omega$		10		μV/°C
I _{IO}	Input offset current	V _O = 0			5	200	pА
I _{IB}	Input bias current [‡]	V _O = 0			30	400	pА
VICR	Common-mode input voltage range			±11	-12 to 15		V
Vом	Maximum peak output voltage swing	R _L = 10 kΩ		±10	±13.5		V
AVD	Large-signal differential voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L \ge 2 k\Omega$	3	6		V/mV
B ₁	Unity-gain bandwidth	R _L = 10 kΩ			1		MHz
rį	Input resistance				1012		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min, RS = 50 Ω	V _O = 0,	70	86		dB
ksvr	Supply voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V},$ $R_S = 50 \Omega$	V _O = 0,	70	95	·	dB
PD	Total power dissipation (each amplifier)	$V_{O} = 0$,	No load		6	7.5	mW
Icc	Supply current (per amplifier)	$V_{O} = 0$,	No load		200	250	μΑ
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100			120		dB

[†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$

PARAMETER		TEST C	1 1	UNIT			
				MIN	TYP	MAX	
SR	Slew rate at unity gain	V _I = 10 mV, C _L = 100 pF,	R _L = 10 kΩ, See Figure 1	1.5	3.5		V/μs
t _r	Rise time	V _I = 20 V,	R _L = 10 kΩ,		0.2		μs
	Overshoot factor	$C_L = 100 pF$,	See Figure 1		10%		
٧n	Equivalent input noise voltage	Rs = 20Ω ,	f = 1 kHz		42		nV/√Hz

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 15. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

PARAMETER MEASUREMENT INFORMATION

Figure 1. Unity-Gain Amplifier

Figure 2. Gain-of-10 Inverting Amplifier

Figure 3. Input Offset-Voltage Null Circuit

TYPICAL CHARACTERISTICS

Table of Graphs

	FIGURE
Maximum peak output voltage vs Supply voltage	4
Maximum peak output voltage vs Free-air temperature	5
Maximum peak output voltage vs Load resistance	6
Maximum peak output voltage vs Frequency	7
Differential voltage amplification vs Free-air temperature	8
Large-signal differential voltage amplification vs Frequency	9
Phase shift vs Frequency	9
Supply current vs Supply voltage	10
Supply current vs Free-air temperature	11
Total power dissipation vs Free-air temperature	12
Common-mode rejection ratio vs Free-air temperature	13
Normalized unity-gain bandwidth vs Free-air temperature	14
Normalized slew rate vs Free-air temperature	14
Normalized phase shift vs Free-air temperature	14
Input bias current vs Free-air temperature	15
Voltage-follower large-signal pulse response vs Time	16
Output voltage vs Elapsed time	17
Equivalent input noise voltage vs Frequency	18

TYPICAL CHARACTERISTICS[†]

Figure 6

Figure 7

[†] Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

DIFFERENTIAL VOLTAGE AMPLIFICATION vs

FREE-AIR TEMPERATURE 10 $V_{CC\pm} = \pm 15 \text{ V}$ $R_L = 10 \text{ k}\Omega$ 7 $R_L = 10 \text{ k}\Omega$ 1 $R_L = 10 \text{ k}\Omega$

Figure 8

T_A - Free-Air Temperature - °C

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

Figure 9

† Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

TOTAL POWER DISSIPATION FREE-AIR TEMPERATURE 30 PD - Total Power Dissipation - mW 25 **TL064** $V_{CC\pm} = \pm 15 V$ No Signal 20 No Load 15 TL062 10 **TL061** 5 **-75** -50 -25 25 50 75 100 125 TA - Free-Air Temperature - °C Figure 12

ALL EXCEPT TL06_C **COMMON-MODE REJECTION RATIO** VS FREE-AIR TEMPERATURE

[†] Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

NORMALIZED UNITY-GAIN BANDWIDTH, SLEW RATE, AND PHASE SHIFT

Figure 14

INPUT BIAS CURRENT vs FREE-AIR TEMPERATURE 100 $V_{CC\pm} = \pm 15 \text{ V}$ 40 IB - Input Bias Current - nA 10 1 0.4 0.1 0.04 0.01 25 50 75 100 -50 -25 T_A – Free-Air Temperature – $^{\circ}C$ Figure 15

TYPICAL CHARACTERISTICS

 $V_{CC\pm} = \pm 15 \text{ V}$

 $R_S = 20 \Omega$

T_A = 25°C

4 k 10 k

40 k 100 k

APPLICATION INFORMATION

Table of Application Diagrams

APPLICATION DIAGRAM	PART NUMBER	FIGURE
Instrumentation amplifier	TL064	19
0.5-Hz square-wave oscillator	TL061	20
High-Q notch filter	TL061	21
Audio-distribution amplifier	TL064	22
Low-level light detector preamplifier	TL061	23
AC amplifier	TL061	24
Microphone preamplifier with tone control	TL061	25
Instrumentation amplifier	TL062	26
IC preamplifier	TL062	27

Figure 19. Instrumentation Amplifier

Figure 20. 0.5-Hz Square-Wave Oscillator

Figure 21. High-Q Notch Filter

APPLICATION INFORMATION

Figure 22. Audio-Distribution Amplifier

Figure 23. Low-Level Light Detector Preamplifier

APPLICATION INFORMATION

Figure 24. AC Amplifier

Figure 25. Microphone Preamplifier With Tone Control

Figure 26. Instrumentation Amplifier

APPLICATION INFORMATION

IC PREAMPLIFIER RESPONSE CHARACTERISTICS

Figure 27. IC Preamplifier

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated