When it's all just too much: Outsourcing MPC Pre-processing

Peter Scholl, Nigel P. Smart and Tim Wood

University of Bristol

12 December 2017

Outline

MPC

Overview

Pre-processing Model

SPDZ Family of MPC

Linear Secret-sharing

Opening secrets

Multiplication of secrets

Generating Pre-processed Data

Protocol

Outline

MPC

Overview

Pre-processing Model

SPDZ Family of MPC
Linear Secret-sharing
Opening secrets
Multiplication of secrets

Generating Pre-processed Data

Protoco

A set of parties computing a function

on their secret input

so that all parties learn the output

and nothing else about other parties' input that can't be deduced from the output alone.

Real World

Real World

Possible guarantees:
Privacy/Secrecy
Correctness
Fairness
(etc.)

 P_5 Real World

Corruption models: Active/Passive Access structure (etc.)

П_{МРС}

- ▶ Offline phase: computed whenever, uses public-key crypto
- ▶ Online phase: only uses information-theoretic primitives

- ▶ Offline phase: computed whenever, uses public-key crypto
- ▶ Online phase: only uses information-theoretic primitives

- ▶ Offline phase: computed whenever, uses public-key crypto
- ▶ Online phase: only uses information-theoretic primitives

- ▶ Offline phase: computed whenever, uses public-key crypto
- ▶ Online phase: only uses information-theoretic primitives

Goal

Take SPDZ, find simple method to outsource Π_{Prep} to different set of parties.

Outline

MPC

Overview Pre-processing Model

SPDZ Family of MPC Linear Secret-sharing Opening secrets Multiplication of secrets

Generating Pre-processed Data

Protoco

Secret x is shared via $\sum_{i=1}^{n} x_i = x$, where P_i holds x_i . Want to compute an arithmetic circuit.

Secret x is shared via $\sum_{i=1}^{n} x_i = x$, where P_i holds x_i . Want to compute an arithmetic circuit.

Parties can locally:

Add secrets

 x_1, y_1

 P_1

$$\begin{array}{ccc}
 & P_2 \\
 & X_2, y_2 \\
 & X_3, y_3
\end{array}$$

Secret x is shared via $\sum_{i=1}^{n} x_i = x$, where P_i holds x_i . Want to compute an arithmetic circuit.

Parties can locally:

Add secrets

$$\hat{x}_1 := x_1 + y_1$$

$$\boxed{P_1}$$

$$\boxed{\sum_{i=1}^3 \hat{x}_i = x + y}$$

$$\begin{array}{ccc}
\hline
P_2 & & P_3 \\
\hat{x}_2 := x_2 + y_2 & & \hat{x}_3 := x_3 + y_3
\end{array}$$

Secret x is shared via $\sum_{i=1}^{n} x_i = x$, where P_i holds x_i . Want to compute an arithmetic circuit.

Parties can locally:

Multiply a secret by a public constant

$$k, x_1$$
 P_1

$$\begin{bmatrix} P_2 \end{bmatrix}$$
 $\begin{bmatrix} P_3 \end{bmatrix}$ k, x_3

Secret x is shared via $\sum_{i=1}^{n} x_i = x$, where P_i holds x_i . Want to compute an arithmetic circuit.

Parties can locally:

Multiply a secret by a public constant

$$\hat{x}_1 := k \cdot x_1$$

$$P_1$$

$$\sum_{i=1}^3 \hat{x}_i = k \cdot x$$

$$\begin{array}{ccc}
\hline
P_2 & & & P_3 \\
\hat{x}_1 &= k \cdot x_2 & & \hat{x}_3 := k \cdot x_3
\end{array}$$

Secret x is shared via $\sum_{i=1}^{n} x_i = x$, where P_i holds x_i . Want to compute an arithmetic circuit.

Parties can locally:

Add a public constant to a secret

$$k, x_1$$
 P_1

$$\begin{array}{ccc}
\hline
P_2 & & P_3 \\
k, x_2 & & k, x_3
\end{array}$$

Secret x is shared via $\sum_{i=1}^{n} x_i = x$, where P_i holds x_i . Want to compute an arithmetic circuit.

Parties can locally:

Add a public constant to a secret

$$\hat{x}_1 := x_1 + k$$

$$\boxed{P_1}$$

$$\boxed{\sum_{i=1}^3 \hat{x}_i = x + k}$$

$$\begin{array}{ccc}
\hline
P_2 & & \hline
P_3 \\
\hat{x}_2 = x_2 & & \hat{x}_3 = x_2
\end{array}$$

Opening a secret

To reveal or *open* a secret, the parties broadcast their share:

$$\begin{bmatrix} P_2 \end{bmatrix}$$
 $\begin{bmatrix} P_3 \end{bmatrix}$ $\begin{bmatrix} x_3 \end{bmatrix}$

Opening a secret

To reveal or *open* a secret, the parties broadcast their share:

Opening a secret

To reveal or *open* a secret, the parties broadcast their share:

$$x_1, x_2, x_3$$
 P_1

$$x = x_1 + x_2 + x_3$$

$$P_2$$
 x_2, x_3, x_1
 x_3, x_1, x_2

Want
$$(z_i)_{i=1}^3$$
 s.t. $\sum_{i=1}^3 z_i = xy$.

Want $(z_i)_{i=1}^3$ s.t. $\sum_{i=1}^3 z_i = xy$. Observe that:

$$xy = (x-a+a)(y-b+b)$$

= $(x-a)(y-b)+(x-a)b+a(y-b)+ab$

Want $(z_i)_{i=1}^3$ s.t. $\sum_{i=1}^3 z_i = xy$. Observe that:

$$xy = (x-a+a)(y-b+b)$$

= $(x-a)(y-b)+(x-a)b+a(y-b)+ab$

so if the parties already have

shares of two random secrets, $a = \sum_{i=1}^{3} a_i$ and $b = \sum_{i=1}^{3} b_i$...

...and a share of their product $ab = \sum_{i=1}^{3} c_i$,

then define

$$z_1 := (x - a)(y - b) + (x - a)b_1 + a_1(y - b) + c_1$$

 $z_2 := (x - a)b_2 + a_2(y - b) + c_2$
 $z_3 := (x - a)b_3 + a_3(y - b) + c_3$

Key points:

- ▶ Need a triple: shared random independent a and b and sharing of ab.
- ▶ Triple (a, b, c) is independent of x and y
- ► Requires 2 openings
- ▶ None of the secrets x, y, or xy are revealed

Outline

MPC

Overview
Pre-processing Model

SPDZ Family of MPC
Linear Secret-sharing
Opening secrets
Multiplication of secrets

Generating Pre-processed Data

Protoco

Need to generate Beaver Triples.

Need to generate Beaver Triples. Generated via:

► SHE

$$a_1, b_1 \leftarrow \mathbb{F}$$

$$P_1$$

$$egin{aligned} egin{aligned} P_2 \ a_2, b_2 \leftarrow \mathbb{F} \end{aligned} & egin{aligned} P_3 \ a_3, b_3 \leftarrow \mathbb{F} \end{aligned}$$

Need to generate Beaver Triples.

Generated via:

Need to generate Beaver Triples.

Generated via:

Need to generate Beaver Triples.

Generated via:

$$e_{x} := e_{x_{1}} + e_{x_{2}} + e_{x_{3}}$$

$$P_{1}$$

$$(x \in \{a,b\})$$

Need to generate Beaver Triples.

Generated via:

$$e_c := e_a \times e_b$$

$$P_1$$

$$egin{array}{ccc} \hline P_2 & & & \hline P_3 \ e_c := e_a imes e_b & & e_c := e_a imes e_b \end{array}$$

Need to generate Beaver Triples.

Generated via:

► SHE (+ ZKPs)

Need to generate Beaver Triples. Generated via:

► SHE (+ ZKPs)

$$a_1, b_1, c_1$$
 P_1

$$egin{aligned} egin{aligned} P_2 \ a_2, b_2, c_2 \ \end{array} & \begin{bmatrix} P_3 \ a_3, b_3, c_3 \end{bmatrix}$$

Need to generate Beaver Triples.

Generated via:

- ► SHE (+ ZKPs), or
- ► OT

Need to generate Beaver Triples.

Generated via:

- ► SHE (+ ZKPs), or
- ► OT

$$a_1, b_1, c_1$$

$$P_1$$

$$\begin{array}{c|c}
\hline
P_2\\
a_2, b_2, c_2\\
\hline
a_3, b_3, c_3\\
\end{array}$$

Need to generate Beaver Triples.

Generated via:

- ► SHE (+ ZKPs), or
- ► OT

Idea

Problem: in pre-processing,

- lots of random data is required;
- public-key crypto is used a lot.

Idea

Problem: in pre-processing,

- ▶ lots of random data is required;
- public-key crypto is used a lot.

Goal

Take SPDZ, find simple method to outsource Π_{Prep} to different set of parties.

Idea

Problem: in pre-processing,

- lots of random data is required;
- public-key crypto is used a lot.

Goal

Take SPDZ, find simple method to outsource Π_{Prep} to different set of parties.

Solution:

- Outsource to some set of parties R.
- ► Make *R* do all pre-processing.
- \triangleright When computing parties Q need pre-processed data, request from parties in R.

Outline

MPC

Overview
Pre-processing Model

SPDZ Family of MPC
Linear Secret-sharing
Opening secrets
Multiplication of secrets

Generating Pre-processed Data

Protocol

1. Pre-processing

1. Pre-processing

1. Pre-processing

 Π_{Feed}

 R_1 R_3 R_4 R_5

 Π_{Feed}

$$a_1 = a_1^1 + a_1^2$$
 R_1

.

 R_4

 R_3

 Q_5

 R_5

 Q_6

 Q_7

 Π_{Feed}

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$R_1$$

$$R_2$$

$$R_3$$

$$R_4$$

$$R_5$$

 a_1^1

$$Q_2$$
 a_1^2

$$Q_4$$

$$Q_5$$

$$Q_6$$

$$Q_7$$

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$R_3$$

$$R_4$$

$$R_5$$

$$Q_1$$
 a_1^1

$$Q_2$$
 a_1^2

$$Q_3$$

$$Q_4$$

$$Q_5$$

$$Q_6$$

$$Q_7$$

 Π_{Feed}

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$R_3$$

$$R_4$$

$$R_5$$

$$Q_1$$
 a_1^1

$$Q_2$$
 a_1^2

$$Q_3$$

$$Q_4$$
 a_2

$$Q_5$$

$$Q_6$$

$$Q_7$$
 a

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$a_3 = a_3^2 + a_3^3$$
 R_3

$$R_4$$

$$R_5$$

$$Q_1$$
 a_1^1

$$Q_2$$
 a_1^2

$$Q_3$$

$$Q_4$$
 a_2^2

$$Q_5$$

$$Q_6$$

$$Q_7$$
 a_2

$$\Pi_{\text{Feed}}$$

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$a_3 = a_3^2 + a_3^3$$
 R_3

$$R_4$$

$$R_5$$

$$Q_1$$
 a_1^1

$$Q_2$$
 a_1^2, a_3^2

$$Q_3 = a_3^3$$

$$Q_4$$
 a_2^4

$$Q_5$$

$$Q_6$$

$$Q_7$$
 a

$$\Pi_{\text{Feed}}$$

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$a_3 = a_3^2 + a_3^3$$
 R_3

$$a_4 = a_4^5 + a_4^7$$
 R_4

$$R_5$$

$$Q_1$$
 a_1^1

$$Q_2$$
 a_1^2, a_3^2

$$Q_3$$
 a_3

$$Q_4$$
 a_2^4

$$Q_5$$

$$Q_6$$

$$Q_7$$
 a_2

 Π_{Feed}

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$a_3 = a_3^2 + a_3^3$$
 R_3

$$a_4 = a_4^5 + a_4^7$$
 R_4

$$R_5$$

$$Q_1$$
 a_1^1

$$Q_2$$
 a_1^2, a_3^2

$$Q_3$$
 a_3

$$Q_4$$
 a_2^4

$$Q_5$$
 a_4^5

$$Q_6$$

$$Q_7$$
 a_2^7, a_2^7

 Π_{Feed}

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$a_3 = a_3^2 + a_3^3$$
 R_3

$$a_4 = a_4^5 + a_4^7$$
 R_4

$$a_5 = a_5^1 + a_5^6$$
 R_5

$$Q_1$$
 a_1^1

$$Q_2$$
 a_1^2, a_3^2

$$Q_3$$
 a_3^3

$$Q_4$$
 a_2^4

$$Q_5$$
 a_4^5

$$Q_6$$

$$Q_7$$
 a_2^7, a_2^7

 Π_{Feed}

$$\Pi_{\mathsf{Feed}}$$

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$a_3 = a_3^2 + a_3^3$$
 R_3

$$a_4 = a_4^5 + a_4^7$$
 R_4

$$a_5 = a_5^1 + a_5^6$$
 R_5

$$Q_1$$
 a_1^1, a_5^1

$$Q_2$$
 a_1^2, a_3^2

$$Q_3$$
 a_3^3

$$Q_4 = a_2^4$$

$$Q_5$$
 a_4^5

$$Q_6 a_5^6$$

$$Q_7$$
 a_2^7, a_2^7

 Π_{Feed}

$$\sum_{i=1}^5 a_i = \sum_{j=1}^7 a^j$$

$$a_1 = a_1^1 + a_1^2$$
 R_1

$$a_2 = a_2^4 + a_2^7$$
 R_2

$$a_3 = a_3^2 + a_3^3$$
 R_3

$$a_4 = a_4^5 + a_4^7$$
 R_4

$$a_5 = a_5^1 + a_5^6$$
 R_5

$$Q_1$$
 a_1^1, a_5^1 $a_5^1 := a_1^1 + a_5^1$

$$Q_2$$
 a_1^2, a_3^2 $a^2 := a_1^2 + a_3^2$

$$Q_3 \qquad a_3^3 \qquad a^3 := a_3^3$$

$$Q_4$$
 a_2^4 $a^4:=a_2^4$

$$Q_5$$
 a_4^5 $a^5 := a_4^5$

$$Q_6$$
 a_5^6 $a^6 := a_5^6$

$$Q_7$$
 a_2^7, a_4^7 $a^7 := a_2^7 + a_4^7$

3. Online

3. Online

Correctness and Privacy

Correctness

Must ensure all parties receive at least one share.

Privacy

1

Q: When does \mathcal{A} not learn the secret? Π_{Feed}

A: Secure Cover

Ensuring a secure cover

Guaranteed...

- ...statistically?
 - ▶ if cover assigned probabilistically; possible only for large numbers of parties
- ...perfectly?
 - ▶ if $R \subset Q$ (but then a different access structure why use SPDZ?); or
 - ▶ if each party in *R* reshares to *all* parties in *Q*

Active Security?

SPDZ uses linear MACS:

$$MAC_{\alpha}(a) = \alpha \cdot a$$

Theorem

If adversary corrupts at most all but one party in each of R and Q, and the cover is secure, then the MAC can be forged with probability at most $1/|\mathbb{F}|$.

N.B. in SPDZ, $|\mathbb{F}|$ is $O(2^{\lambda})$.

Potential use-cases

- Client-server system of delivering pre-processing
 - ▶ a few servers compute pre-processing and deliver to a set of 'weaker' clients
- ightharpoonup Dynamically adjusting pre-processing during Π_{Online} if other parties want to join a computation
 - requires randomness!

Thanks!

Questions?