Automaten und Berechenbarkeit - Übung 04

Felix Tischler, Martrikelnummer: 191498

Aufgabe 1

Untersuchen Sie, ob die folgenden Sprachen regulär sind oder nicht:

- (a) $A = \{ w \mid w \in \{a, b\}^*, \#_a(w) = 2\#_b(w) \}$
- **(b)** $B = \{0^n 10^m \mid n > m\}$
- (c) $C = \{x\$y \mid x, y \in \{a, b\}^*, \#_a(x) = \#_b(y)\}$
- (d) $D = \{xy \mid x, y \in \{a, b\}^*, \#_a(x) = \#_b(y)\}$
- (e) $E = \{ w \mid w \in \{a, b\}^*, \#_a(w) \#_b(w) \equiv 0 \mod 3 \}$
- (f) $F = \{0^{2^n} \mid n \in \mathbb{N}\}$ als Sprache über dem Alphabet $\{0\}$
- (g) Die Menge aller Wörter w über $\{0,1\}$, die als Binärzahl betrachtet durch 3 teilbar sind.
- (h) $H = \{w \mid w \in \{a, b\}^*, w = w^R\}$ (Menge aller Palindorome über $\{a, b\}$)

Aufgabe 2

Geben Sie für die Sprache $A = \{0^i 1^j \mid i, j \geq 0\}$. Alle Äquivalenzklassen bezüglich der Relation R_A an und beweisen Sie ihre Behauptung.