CIE5308

Breakwater Rehabilitation Romano Port

J. Gundlach - C. Rozas - L. Lange

Group 3

CIE5308

Breakwater Rehabilitation Romano Port

by

J. Gundlach – C. Rozas – L. Lange

Student numbers: 4450426 - 4519388 - 4512022 Project duration: March 18, 2016 - April 1, 2016

Contents

1	Introduction 1.1 General Task	1			
2	Design Criteria	2			
3	Boundary Conditions	3			
	3.1 Location				
	3.2 Subsoil				
	3.3 Reference levels				
	3.4 Bathymetry				
	3.5 Waves	3			
4	Design Calculations	4			
5	Drawing	5			
6	Construction Method and Planning				
7	Further Research and Validation	8			
Α	Function GumbelUnc.mat	9			
Bi	bliography	10			

1

Introduction

1.1. General Task

By Group 3 the breakwater in the South is looked at:

- adjacent to roundhead, axis 315°
- rubble mound single layer cubes
- · rehabilitation
- 100 years design life
- · quay wall in future

[1] \leftarrow this can be deleted as soon, as there is any other citation we can place, so to prevent error messages due to "no citations found"

Parameter	Value	Comment
Design life	100 years	
Annual downtime	3%	
Quay level	AL+2.0m	
Current rock armour (seaward)	3 to 5 tons	
Current rock armour (landward)	0.5 to 3 tons	
Current core material	0 to 1000 kg	quarry run material

Table 1.1: Parameters given by exercise

Design Criteria

- Earth quakes: slope not steeper than 1:1.5, p. 4 of 5 Memo
- Maintenance road

Requirement	Return period	Verification method(s)	Design value	Calculated value
this is supposed to be a verly long text to check whether it will automatically insert a line break	this is supposed to be a verly long text to check whether it will auto- matically insert a line break	this is supposed to be a verly long text to check whether it will automatically insert a line break	this is supposed to be a verly long text to check whether it will auto- matically insert a line break	this is supposed to be a verly long text to check whether it will auto- matically insert a line break
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×
×	×	×	×	×

Table 2.1: List of requirements

Boundary Conditions

see exercise 3.2

- 3.1. Location
- 3.2. Subsoil
- 3.3. Reference levels
- 3.4. Bathymetry
- **3.5. Waves**

The design storm with less than 20% probability of failure of the breakwater within a lifetime of 100 years returns every 500 years. The available 22 years of (modelled) wave data¹ close to the site is analysed in a Peak over Threshold analysis using a threshold of $H_s = 1.5m$, a storm duration of nine hours and a Weibull distribution to extrapolate the data. This yields a significant wave height of $H_{ss} = 7.91m$ for a 500 year storm, which is chosen to be the deep water design wave height: $H_{ss,d} = 7.91m$.

¹ARGOSS XX

4

Design Calculations

Drawing

6 5. Drawing

This is one single page, where we can add the folded A3 of our drawing after printing. Included to not interrupt counting of pages.

Construction Method and Planning

 $\overline{\hspace{1cm}}$

Further Research and Validation

Function GumbelUnc.mat

Whatever XX

Bibliography

[1] A. K. Geim and H. A. M. S. ter Tisha. Detection of earth rotation with a diamagnetically levitating gyroscope. *Physica B: Condensed Matter*, 294–295:736–739, 2001. doi: 10.1016/S0921-4526(00)00753-5.