



# **Competitor's Guide: Prizes and Rules**

# Contents

| The Pr      | izes                             | 2 |
|-------------|----------------------------------|---|
|             | Three Major Prizes               |   |
|             | Student Prize                    |   |
|             | Full Reproducibility Prize       |   |
|             | Prediction Intervals Prize       |   |
| Foreca      | asting Horizons                  | 5 |
| The dataset |                                  |   |
| The Be      | enchmarks                        | 6 |
| Factor      | s Affecting Forecasting Accuracy | e |







### The Prizes

There will be six Prizes awarded to the winners of the M4 Competition. The exact cash amounts to be granted (at present standing at 20,000€ generously provided by the University of Nicosia) will depend on securing additional sponsors and will be announced later. Proportionally, the total amount granted will be distributed as follows:

| Prize                      | Description                                     | Percentage (%) |
|----------------------------|-------------------------------------------------|----------------|
| 1 <sup>st</sup> Prize      | Best performing method according to OWA         | 40             |
| 2 <sup>nd</sup> Prize      | Second-best performing method according to OWA  | 20             |
| 3 <sup>rd</sup> Prize      | Third-best performing method according to OWA   | 10             |
| Student Prize              | Best performing method among student            | 5              |
|                            | competitors according to OWA                    |                |
| Full Reproducibility Prize | Best fully reproducible method according to OWA | 5              |
| Prediction Intervals Prize | Best performing method according to MSIS        | 20             |

There are no restrictions in collecting more than one prize.

### 1. Three Major Prizes

There will be three major Prizes for the First, Second and Third winner of the competition who will be selected based on the performance of the participating methods according to the *Overall Weighted Average (OWA)* of two accuracy measures: the Mean Absolut Scaled Error (*MASE*<sup>1</sup>) and the symmetric Mean Absolut Percentage Error (*sMAPE*<sup>2</sup>). The individual measures are calculated as follows:

$$sMAPE = \frac{1}{h} \sum_{t=1}^{h} \frac{2|Y_t - \widehat{Y}_t|}{|Y_t| + |\widehat{Y}_t|}$$

$$MASE = \frac{1}{h} \frac{\sum_{t=1}^{h} |Y_t - \widehat{Y}_t|}{\frac{1}{n-m} \sum_{t=m+1}^{n} |Y_t - Y_{t-m}|}$$

Where  $Y_t$  is the post sample value of the time series at point t,  $\hat{Y_t}$  the estimated forecast, h the forecasting horizon and m the frequency of the data (i.e., 12 for monthly series).

An example for computing the OWA is presented below using the MASE and sMAPE of the M3 Competition methods:

- Divide all Errors by that of Naïve 2 to obtain the Relative MASE and the Relative sMAPE
- Compute the OWA by averaging the Relative MASE and the Relative sMAPE as it is shown in the table below

<sup>&</sup>lt;sup>2</sup> S. Makridakis, M. Hibon (2000). The M3-Competition: results, conclusions and implications. International Journal of Forecasting, 16 (4), 451-476





<sup>&</sup>lt;sup>1</sup> R. J. Hyndman, A. B. Koehler (2006). Another look at measures of forecast accuracy. International Journal of Forecasting 22(4), 679-688



| Forecasting<br>Method | MASE  | Rank<br>(MASE) | Relative<br>MASE | sMAPE  | Rank<br>(sMAPE) | Relative<br>sMAPE | OWA   | Rank<br>(OWA) |
|-----------------------|-------|----------------|------------------|--------|-----------------|-------------------|-------|---------------|
| THETA                 | 1.395 | 1              | 0.827            | 12.762 | 1               | 0.840             | 0.834 | 1             |
| ForecastPro           | 1.422 | 2              | 0.844            | 13.088 | 3               | 0.861             | 0.852 | 2             |
| ForcX                 | 1.441 | 3              | 0.855            | 13.130 | 13.130 4        | 0.864             | 0.859 | 3             |
| Comb S-H-D            | 1.467 | 6              | 0.870            | 13.056 | 2               | 0.859             | 0.865 | 4             |
| DAMPEN                | 1.466 | 5              | 0.870            | 13.279 | 5               | 0.874             | 0.872 | 5             |
| AutoBox2              | 1.484 | 7              | 0.881            | 13.284 | 6               | 0.874             | 0.877 | 6             |
| PP-Autocast           | 1.523 | 10             | 0.904            | 13.600 | 7               | 0.895             | 0.899 | 7             |
| HOLT                  | 1.507 | 8              | 0.894            | 13.777 | 9               | 0.906             | 0.900 | 8             |
| B-J auto              | 1.512 | 9              | 0.897            | 13.819 | 10              | 0.909             | 0.903 | 9             |
| WINTER                | 1.544 | 15             | 0.916            | 13.719 | 8               | 0.903             | 0.909 | 10            |
| Auto-ANN              | 1.530 | 11             | 0.908            | 13.921 | 12              | 0.916             | 0.912 | 11            |
| ARARMA                | 1.531 | 12             | 0.909            | 13.981 | 14              | 0.920             | 0.914 | 12            |
| Flors-Pearc1          | 1.549 | 16             | 0.919            | 13.963 | 13              | 0.919             | 0.919 | 13            |
| ROBUST-<br>Trend      | 1.537 | 13             | 0.912            | 14.098 | 15              | 0.927             | 0.920 | 14            |
| SMARTFCS              | 1.457 | 4              | 0.864            | 15.390 | 21              | 1.012             | 0.938 | 15            |
| AutoBox3              | 1.633 | 19             | 0.969            | 13.913 | 11              | 0.915             | 0.942 | 16            |
| THETAsm               | 1.594 | 18             | 0.946            | 14.286 | 16              | 0.940             | 0.943 | 17            |
| AutoBox1              | 1.540 | 14             | 0.914            | 14.843 | 18              | 0.976             | 0.945 | 18            |
| RBF                   | 1.574 | 17             | 0.934            | 15.464 | 22              | 1.017             | 0.976 | 19            |
| Flors-Pearc2          | 1.665 | 21             | 0.988            | 14.742 | 17              | 0.970             | 0.979 | 20            |
| Single                | 1.659 | 20             | 0.985            | 14.881 | 19              | 0.979             | 0.982 | 21            |
| Naïve 2               | 1.685 | 22             | 1.000            | 15.201 | 20              | 1.000             | 1.000 | 22            |
| Naïve 1               | 1.787 | 23             | 1.060            | 15.701 | 23              | 1.033             | 1.047 | 23            |

Note that MASE and sMAPE are first estimated per series by averaging the error estimated per forecasting horizon and then averaged again across the 3003 time series to compute their value for the whole dataset. On the other hand, OWA is computed only once at the end for the whole sample, as shown in the Table above.

In the above example, the most accurate method with the smallest OWA, that would have won the first prize, is Theta; the second most accurate one is ForecastPro, that would have won the second prize, while the third most accurate one is ForcX, that would have won the third prize.

The code for computing the OWA will be available on GitHub.

#### 2. Student Prize

A prize will be awarded to the student of the best performing method according to OWA.







### 3. Full Reproducibility Prize

The prerequisite for the Full Reproducibility Prize will be that the code used for generating the forecasts, with the exception of companies providing forecasting services and those claiming proprietary software, will be put on GitHub, not later than 10 days after the end of the competition (i.e., the 10<sup>th</sup> of June, 2018). In addition, there must be instructions on how to exactly reproduce the M4 submitted forecasts. In this regard, individuals and companies will be able to use the code and the instructions provided, crediting the person/group that has developed them, to improve their organizational forecasts.

Companies providing forecasting services and those claiming proprietary software will have to provide the organizers with a detailed description of how their forecasts were made and a source, or execution file for reproducing their forecasts for 100 randomly selected series. Given the critical importance of objectivity and replicability, such description and file will be mandatory for participating in the Competition. An execution file can be submitted in case that the source program needs to be kept confidential, or, alternatively, a source program with a termination date for running it.

The code for reproducing the results of the 4Theta method, submitted by the Forecasting & Strategy Unit, will be put on GitHub before 27-12-2017. This method will not be considered for any of the Prizes.

#### 4. Prediction Intervals Prize

The M4 Competition adopts a 95% Prediction Interval (PI) for estimating the uncertainty around the point forecasts. The performance of the generated PI will be evaluated using the Mean Scaled Interval Score (MSIS³) as follows:

$$\mathbf{MSIS} = \frac{1}{h} \frac{\sum_{t=1}^{h} (U_t - L_t) + \frac{2}{a} (L_t - Y_t) \mathbf{1} \{Y_t < L_t\} + \frac{2}{a} (Y_t - U_t) \mathbf{1} \{Y_t > U_t\}}{\frac{1}{n-m} \sum_{t=m+1}^{n} |Y_t - Y_{t-m}|}$$

Where L and U are the Lower and Upper bounds of the prediction intervals, Y are the future observations of the series,  $\alpha$  is the significance level and  $\mathbf{1}$  is the indicator function (being 1 if Y is within the postulated interval and 0 otherwise). Given that forecasters will be asked to generate 95% prediction intervals,  $\alpha$  is set to 0.05.

An example for computing the MSIS is presented below using the prediction intervals generated by two different methods for 18-step-ahead forecasts:

- > A penalty is calculated for each method at the points where the future values are outside the specified bounds
- The width of the prediction interval adds up to the penalty, if any, to get the IS.
- ➤ The IS estimated at the individual points are averaged to get the MIS value.
- MIS is scaled by dividing its value with the mean absolute seasonal difference of the series (*here 200*).
- After estimating MSIS for all the M4 Competition series, its average value is computed to evaluate the total performance of the method.

<sup>&</sup>lt;sup>3</sup> T. Gneiting, A. E. Raftery (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association, 102 (477), 359-378.







| Forecasting | L <sub>1</sub> | U <sub>1</sub> | L <sub>2</sub> | U <sub>2</sub> | Υ   | Penalty <sub>1</sub> | Penalty <sub>2</sub> | IS <sub>1</sub> | IS <sub>2</sub> |
|-------------|----------------|----------------|----------------|----------------|-----|----------------------|----------------------|-----------------|-----------------|
| Horizon     |                |                |                |                |     |                      |                      |                 |                 |
| 1           | 289            | 938            | 297            | 865            | 654 | 0                    | 0                    | 649             | 568             |
| 2           | 266            | 923            | 304            | 873            | 492 | 0                    | 0                    | 657             | 569             |
| 3           | 313            | 992            | 312            | 880            | 171 | 5680                 | 5640                 | 6359            | 6208            |
| 4           | 238            | 949            | 319            | 888            | 342 | 0                    | 0                    | 711             | 569             |
| 5           | 224            | 1008           | 327            | 895            | 591 | 0                    | 0                    | 784             | 568             |
| 6           | 209            | 1014           | 334            | 903            | 672 | 0                    | 0                    | 805             | 569             |
| 7           | 206            | 1040           | 342            | 910            | 465 | 0                    | 0                    | 834             | 568             |
| 8           | 175            | 1041           | 349            | 918            | 255 | 0                    | 3760                 | 866             | 4329            |
| 9           | 164            | 1067           | 357            | 926            | 864 | 0                    | 0                    | 903             | 569             |
| 10          | 150            | 1078           | 364            | 933            | 768 | 0                    | 0                    | 928             | 569             |
| 11          | 138            | 1094           | 372            | 941            | 672 | 0                    | 0                    | 956             | 569             |
| 12          | 120            | 1104           | 379            | 948            | 519 | 0                    | 0                    | 984             | 569             |
| 13          | 109            | 1121           | 387            | 956            | 519 | 0                    | 0                    | 1012            | 569             |
| 14          | 96             | 1133           | 395            | 963            | 591 | 0                    | 0                    | 1037            | 568             |
| 15          | 83             | 1146           | 402            | 971            | 480 | 0                    | 0                    | 1063            | 569             |
| 16          | 70             | 1157           | 410            | 978            | 564 | 0                    | 0                    | 1087            | 568             |
| 17          | 58             | 1170           | 417            | 986            | 579 | 0                    | 0                    | 1112            | 569             |
| 18          | 46             | 1182           | 425            | 993            | 423 | 0                    | 80                   | 1136            | 648             |
|             |                |                |                |                |     |                      | MIS                  | 1216            | 1095            |
|             |                |                |                |                |     |                      | MSIS                 | 6.08            | 5.48            |

# **Forecasting Horizons**

The number of forecasts required by each method is 6 for yearly data, 8 for quarterly, 18 for monthly, 13 for weekly, 14 for daily and 48 for hourly. The accuracy measures are computed for each horizon separately and then combined to cover, in a weighted fashion, all horizons together for each of the two accuracy measures (MASE and sMAPE).

## The dataset

The 100,000 series will be selected randomly from a database of 900,000 ones on December 28, 2017. Professor Makridakis will select the seed number for generating the random sample that would select the 100,000 series of the M4 Competition. Some pre-defined filters will be applied beforehand to achieve some desired characteristics, such as the length of the series, the percentage of yearly, quarterly, monthly, weekly, daily, and hourly data as well as their type (micro, macro, finance, industry, demographic, other).







# The Benchmarks

There will be ten benchmark methods, eight used in the M3 Competition and two extra ones based on ML concepts. As these methods are well known, readily available and straightforward to apply, the accuracy of the new ones proposed in the M4 Competition must provide superior accuracy in order to be adopted and used in practice (taking also into account the computational time it would be required to utilize a more accurate method versus the benchmarks whose computational requirements are minimal).

- 1. **Naïve 1**  $F_{t+1} = Y_t i = 1, 2, 3, ..., m$
- 2. Seasonal Naïve Forecasts are equal to the last known observation of the same period.
- 3. **Naïve 2** like *Naïve 1* but the data is seasonally adjusted, if needed, by applying classical multiplicative decomposition (R stats package). A 90% autocorrelation test is performed, when using the R package, to decide whether the data is seasonal.
- 4. *Simple Exponential Smoothing (S)* (ses() function from v8.2 of the forecast package for R ). Seasonality is considered like in Naïve 2.
- 5. *Holt's Exponential Smoothing (H)* (holt() function from v8.2 of the forecast package for R ). Seasonality is considered like in Naïve 2.
- 6. **Dampen Exponential Smoothing (D)** (holt() function from v8.2 of the forecast package for R ). Seasonality is considered like in Naïve 2.
- 7. **Combining S-H-D** The arithmetic average of methods 4, 5 and 6.
- 8. **Theta** As applied to the M3 competition data. ( $\theta$ =2, seasonal adjustments like in Naïve 2, and SES applied using the ses() function from v8.2 of the forecast package for R).
- 9. **MLP** A perceptron of a very basic architecture and parameterization (developed in Python using the Scikit library v0.19.1 available on GitHub)
- 10. **RNN** A recurrent network of a very basic architecture and parameterization (developed in Python using the Keras v2.0.9 and TensorFlow v1.4.0 libraries available on GitHub)

The code for generating the forecasts of the benchmarks mentioned above will be available on GitHub.

Note that the benchmarks are not eligible for a prize, meaning that the total amount of prizes will be distributed among the competing participants even if some benchmark could perform better than the forecasts submitted by the participants.

# **Factors Affecting Forecasting Accuracy**

The M4 would provide a unique opportunity to identify the factors affecting forecasting accuracy. Having 100,000 series, with an average of 12 forecasts for each, more than 100 forecasting methods and 2 accuracy measures would result in about a quarter of a billion data points. Data analytics will be applied to discover patterns and relationships, exploiting the findings to enrich our understanding of forecasting accuracy and the factors that affect it.



