Osteoarthritis and Cartilage

Review

Sleep interventions for osteoarthritis and spinal pain: a systematic review and meta-analysis of randomized controlled trials

K.K.N. Ho \dagger^* , P.H. Ferreira \dagger , M.B. Pinheiro \dagger , D. Aquino Silva \ddagger , C.B. Miller \S , R. Grunstein \S , M. Simic \dagger

- † The University of Sydney, Musculoskeletal Research Group, Faculty of Health Sciences, 75 East St, Lidcombe, Sydney, 2141 NSW, Australia † Universidade Federal de Minas Gerais, Departamento de Fisioterapia, Av. Pres. Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG, Brazil
- § CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney and Sydney Health Partners, 431 Glebe Point Road, Sydney, 2037 NSW, Australia

ARTICLE INFO

Article history: Received 13 February 2018 Accepted 24 September 2018

Keywords:
Osteoarthritis
Spinal
Sleep
Pain
Systematic review

SUMMARY

Objectives: To determine if sleep interventions improve pain and sleep in people with osteoarthritis (OA) and/or spinal pain compared to control/placebo.

Design: Medline, Embase, AMED, PsycINFO, CENTRAL, CINAHL and PEDro were searched from their inception date to July 2017. Keywords relating to "sleep", "OA", "spinal pain", and "randomized controlled trial (RCT)" were combined. Included RCTs investigated the use of sleep interventions for people with OA and/or spinal pain, and measured at least one sleep and health related outcome. Meta-analyses were performed to pool mean differences for pain and sleep quality. PROSPERO: CRD42016036315.

Results: Of 1445 unique records, 24 studies were included. Sixteen studies included participants with spinal pain, seven with OA, and one included a mixed population. Sleep interventions included established sleep interventions (ESI) [cognitive behavioural therapy (CBT) and pharmacological interventions], and a range of others. Intervention periods ranged from 4 to 10 weeks. Thirteen studies were of moderate to high quality (PEDro $\geq 6/10$). Due to high heterogeneity between studies we also performed sub-group and sensitivity analyses. ESI decreased Insomnia Severity Index (ISI) for people with low back pain (LBP) (pooled mean difference: -6.78/28, 95% confidence interval (95% CI): [-9.47, -4.09], $I^2 = 40\%$) and OA (-2.41, [-4.19, -0.63], 0%). However ESI decreased pain for people with LBP (pooled mean difference: visual analogue scale (VAS) -12.77/100, 95% CI: [-17.57, -7.97], $I^2 = 0\%$), but not OA (-2.32, [-7.18, 2.54], 27%)

Conclusion: ESI appeared to improve sleep and pain for people with LBP, and sleep for people with OA. However more vigorous studies need to be conducted.

Crown Copyright © 2018 Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. All rights reserved.

Introduction

Osteoarthritis (OA), low back pain (LBP), and neck pain (collectively as "spinal pain") are the highest contributors to global disability, with LBP ranking first, neck pain fourth, and OA thirteenth¹.

These conditions share pain mechanisms such as central sensitization^{2,3} and abnormal endogenous pain modulation which contribute to their chronicity and co-occurrence⁴. There is evidence of central sensitization in the form of cortical changes in the thalamus for people with OA⁵, and in the primary somatosensory cortex for people with LBP^{6,7}. People with OA and people with LBP also have widespread hyperalgesia, demonstrated by quantitative sensory tests such as pain pressure thresholds and temporal summation^{6,8}. Leading international clinical guidelines for OA and LBP recommend diagnoses based on clinical presentation and a multimodal management approach to address comorbidities which may contribute to pain^{9–11}. Insomnia is an important comorbidity to address, being associated with increased frequency of pain over eleven years in

^{*} Address correspondence and reprint requests to: K.K.N. Ho, The University of Sydney, Musculoskeletal Research Group, Faculty of Health Sciences, 75 East St, Lidcombe, Sydney, 2141 NSW, Australia. Tel: 61-2-9351-9010.

E-mail addresses: kevin.ho@sydney.edu.au (K.K.N. Ho), paulo.ferreira@sydney.edu.au (P.H. Ferreira), marina.pinheiro@sydney.edu.au (M.B. Pinheiro), danielle_aquino_silva@hotmail.com (D. Aquino Silva), chris.miller@bighealth.com (C.B. Miller), ron.grunstein@gmail.com (R. Grunstein), milena.simic@sydney.edu.au (M. Simic).

people with spinal pain¹², and greater intensity of pain in people with OA¹³. Insomnia symptoms are highly prevalent in these conditions, with 71% of people with OA¹⁴, 59% of LBP¹⁵, and 41% of neck pain¹⁶ either diagnosed with insomnia or reporting significant insomnia symptoms. These symptoms include poor sleep quality, non-restorative sleep, early awakenings, and difficulty initiating and maintaining sleep¹⁷. Yet insomnia is a modifiable comorbidity, and its management may improve health outcomes of these patients.

Insomnia disorder 18 is no longer viewed as a consequence of pain or depression but as a parallel condition which requires specific management 18,19. Many people experience temporary insomnia symptoms due to instances such as major life events, work commitments, or pain 19. For people with chronic OA or spinal pain, these persistent symptoms of poor sleep habits, irregular sleep scheduling, and fear of not sleeping, can develop into chronic insomnia which does not necessarily resolve from the reduction of pain alone¹⁹. Chronic insomnia further complicates management for people with OA and spinal pain, being associated with more severe pain presentation^{15,20}, presence of depression^{21,22}, and poorer physical function^{23,24}. This is likely due to the bidirectional relationship between sleep and pain²⁵, meaning that poorer sleep may lead to worse pain, and worse pain may lead to poorer sleep. The sleep—pain relationship is presumed to be multifactorial²⁶, with basal inflammation and altered central pain modulation proposed as mechanistic factors between insomnia and OA pain 13,27,28. Physical function and mood may also mediate this sleep—pain relationship ¹³. While the processes behind this relationship are not fully understood, it is likely that health outcomes can improve for people with OA and spinal pain through the management of insomnia symptoms.

Insomnia can be effectively treated with established sleep interventions (ESI), namely cognitive behavioural therapy (CBT) and pharmacological interventions²⁹. CBT is the first line intervention for insomnia²⁹, but if unsuccessful may be combined with short term use of pharmacological interventions^{29,30}, as prolonged use of pharmacological interventions might result in tolerance and dependence issues³¹. There have been a few randomized controlled trials (RCTs) evaluating the use of CBT for sleep quality in people with chronic pain. These reported significant improvements in sleep quality, but varied results for pain and physical function 27,32–37. Two systematic reviews have examined the use of sleep interventions for people with chronic pain, reporting moderate improvements in sleep quality and small reductions in pain. However these reviews were limited to non-pharmacological sleep interventions, included participants with widespread pain conditions (e.g., cancer and fibromyalgia) which differ to the localized nature of OA and spinal pain, nor focused on OA or spinal pain. Therefore, the efficacy of sleep interventions OA and spinal pain, the most prevalent conditions which share common pain mechanisms, treatment approaches and insomnia comorbidity, have not been summarized. Furthermore, several RCTs examining sleep interventions for OA and spinal pain have recently been published^{32,40–45}, warranting a more current and specific review.

The aim of this systematic review and meta-analyses was to determine the efficacy of sleep interventions in improving pain and sleep for people with OA and/or spinal pain, compared to control/placebo. The secondary aim was to determine the efficacy of sleep interventions on other health related outcomes, including physical function, and health related quality of life.

Methods

Data sources and searches

We searched the following electronic databases: Medline, Embase, AMED, PsycINFO, CENTRAL, CINAHL and PEDro. Searches

were from their inception date to April 2016 and an updated search was performed in July 2017. The search strategy comprised of the key terms such as: "sleep", "OA", "spinal pain", and "RCT" and limited to human studies (Appendix 1). Citation tracking was performed for included studies and relevant reviews. This review was registered with the International Prospective Register of Systematic Reviews (CRD42016036315) and written in accordance to the 2015 PRISMA Statement⁴⁶.

Inclusion and exclusion criteria

Eligible studies were RCTs published in peer reviewed journals which investigated the use of sleep interventions for participants with OA or spinal pain, by evaluating at least one other health related outcome and one sleep outcome. To be comprehensive for which types of sleep interventions were effective or non-effective for people with OA, LBP or neck pain, we used a broad definition for sleep interventions and planned for subgroup analyses. We excluded other publication types (e.g., guidelines, reviews, and conference abstracts). There were no restrictions on participant age, gender, race, or ethnicity. There were no restrictions of language or geographic location of studies. Non-English studies were translated (German, Korean and Russian).

Population

We defined OA as a chronic disease of a whole joint associated with symptoms of pain. Likewise we defined spinal pain as nonspecific cervical, thoracic, lumbar pain, or a combination of these. We also accepted the study's definition of OA and spinal pain. We included participants with spinal pain in acute, sub-acute, and chronic stages or OA in any joint. Studies investigating both OA and spinal pain were included. Studies investigating general musculoskeletal pain were included if data for OA or spinal pain were reported separately. We excluded studies investigating the following conditions: serious spinal pathologies (e.g., fracture, spinal cord injury, spinal stenosis, and nerve root compromise), cancer, systematic inflammatory conditions (e.g., rheumatoid arthritis), any spinal surgery, joint replacement surgery, other joint surgery within the past 6 months (e.g., arthroscopies), and fibromyalgia. Insomnia diagnosis was not required for inclusion, however we excluded studies investigating people with sleep movement or breathing disorders (e.g., sleep apnea and restless leg syndrome) as these present differently to insomnia.

Sleep and comparison interventions

Sleep interventions were defined as interventions which aim to directly improve sleep related outcomes. We only included studies that had this definition within the article title, abstract, or methods. Both non-pharmacological and pharmacological interventions were included. Studies with multimodal sleep interventions or sleep interventions as an adjunct were also included. No restrictions were placed on the comparison group and could include control (no intervention, waiting list), placebo, or any intervention.

Outcomes

Included studies had to evaluate at least one health related outcome and one sleep related outcome. Health related outcomes included but were not limited to: pain, physical function, and health related quality of life. Sleep outcomes included any measure of sleep efficiency, quality, or insomnia such as: % sleep efficiency ([total sleep duration]/[total time spent in bed])⁴⁷, Insomnia Severity Index (ISI)⁴⁸, and Pittsburgh Sleep Quality Index (PSQI)⁴⁹.

Study inclusion and data extraction

Titles and abstracts of potentially eligible articles from the search yield were screened independently by two reviewers (KH and DAS), whom then screened the full text of potentially eligible articles. Any disagreements were resolved with a third reviewer (MS). Data from included studies were extracted into spreadsheets independently by two reviewers (KH and DAS) and scrutinized for errors. Reviewers piloted study screening (n = 20) and extraction (n = 5) protocols and refined it accordingly. The following data was extracted: recruitment methodology and criteria, participant demographics, sample size and follow-up rates, sleep outcomes, pain outcomes, other heath related outcomes, adherence and credibility outcomes, statistical methodology and adverse events. For participant outcomes, mean estimates were extracted in the following hierarchy: final values, change scores, mean differences. Baseline, post-intervention, and follow-up data were extracted where possible. We contacted nine authors for further information regarding participant demographics, where four authors provided data.

Methodological quality assessment

Methodological quality of eligible studies was evaluated using the PEDro scale⁵⁰. Quality scores of studies available from the PEDro database were extracted. For all other studies PEDro scores were independently evaluated by two reviewers (KH and DAS), with any disagreements resolved with a third reviewer (MS).

Data synthesis and analysis

A narrative synthesis of the findings from included studies was performed, structured around population characteristics, intervention content, and outcomes. We performed meta-analyses on non-standardized mean differences to determine the effect of the sleep interventions on pain, sleep, physical function, and health related quality of life outcomes. The scores from different instruments were converted to a scale of 0-100 and nonstandardized mean differences were calculated. Heterogeneity was assessed using Chi-squared Tests and I-squared statistics. If substantial heterogeneity was found ($I^2 > 50\%$), we performed a random-effects meta-analysis and calculated 95% confidence intervals (95% CIs) and two-sided P values for each outcome. Our main analyses were the comparisons between sleep interventions vs control/placebo. We planned to conduct sensitivity analyses based on study quality (PEDro score ≥ 6)⁵⁰, comparator intervention, and where possible, subgroup analyses by the following order: sleep intervention type (e.g., ESI), condition, stage of condition and joint(s) affected. If studies had more than one comparison group, the choice of comparison group followed the hierarchy: placebo. control, and others. Analyses were conducted with Review Manager Version 5.3.5.

Results

Included studies

The search strategy identified 1445 unique articles (Fig. 1). After screening, 24 RCTs were included with 23 RCTs being included in the meta-analyses. Meta-analyses included 1551 participants (1123 female) with mean age of 53 years (range = 33–73). Overall characteristics of included studies 27,32–37,40–45,51–61 were detailed in Table I, and additional study characteristics were listed in Appendix 2. Eight studies collected follow-up data, ranging from 1 to 18 months post-intervention. Within our included studies there were

two cases of duplicated studies reporting results on the same cohort, with the latest publication reporting longitudinal data on their respective $RCTs^{33,55}$. Data values from the most recent publication were analysed.

Participants

Studies included participants with chronic non-specific LBP^{41,42,51,53,54,56} (n=6), chronic non-specific neck pain ^{44,52,55,58–60} (n=6), any spinal pain ^{34–36,61} (n=4), knee OA^{32,40,43,57} (n=4), general OA^{27,33,45} (n=3), and a combination of people with spinal pain and/or OA³⁷ (n=1). All studies classified chronic LBP as pain lasting longer than at least 3–6 months. Neck pain diagnosis criteria included assessment of neck range of motion and muscle tenderness^{52,55,59} (n=3). Diagnosis of OA was based on radiographic criteria^{27,32,43,57} (n=4), or clinical criteria^{33,37,40,45} (n=4). Eleven studies^{27,32–37,41,45,57,60} reported inclusion criteria for sleep symptoms. These included the Diagnostic and Statistical Manual of mental disorders Fifth Edition¹⁹ (DSM-5) definition of insomnia^{27,32,33,35–37,41,45} (n=8); any sleep complaints³⁴ (n=1), PSQI >5⁵⁷ (n=1), and delayed melatonin onset⁶⁰ (n=1).

Sleep and comparison interventions

Sleep interventions and intervention protocols varied across included studies. ESI included CBT^{27,32-37,45} (n=8), melatonin^{42,60} (n = 2), and eszopiclone⁴¹ (n = 1). Other sleep interventions included pillows^{43,52,55,58,59} (n = 5), exercise^{40,44,53} (n = 3), massage^{54,56} (n=2), singing bowls⁶¹ (n=1), acupuncture⁵⁷ (n=1), and mattresses⁵¹ (n = 1). Nine studies combined a sleep intervention in addition to a pain intervention: CBT for insomnia with CBT for $pain^{33,35,37,45}$ (n=4), a sleep pharmacological intervention with a pain pharmacological intervention^{41,42} (n = 2), pillow with physiotherapy intervention 52,55 (n=2), and acupuncture for sleep with acupuncture for pain⁵⁷ (n = 1). All interventions except pillows, mattresses and pharmacological interventions were delivered faceto-face in individual or group settings. Intervention periods ranged from 2 to 12 weeks, and most face-to-face interventions occurred weekly. All CBT for insomnia was face-to-face and had some variations in content, but all focused on at least two of the recommended components: sleep restriction, stimulus control, and cognitive restructuring⁶². There was no sleep intervention specifically tailored to certain age groups.

Comparison groups and adverse events

There were a variety of comparators: sham/behavioural placebo 32,41,42,57,60,61 (n=6), education/wait list control $^{27,33-37,40,43,45,52,54-56}$ (n=13), or pain interventions $^{33,35,44,45,51,53,57-59}$ (n=9). Investigations into adverse events were reported in seven studies 32,40,41,53,57,60 . There were no reports of adverse events associated with CBT 32 (n=1) or exercise 40,44,53 (n=3), while headaches were associated with eszopiclone 41 (0.06% intervention, 0.04% placebo), melatonin 60 (0.03% intervention), and increased pain was reported in one study of acupuncture $(0.04\%)^{57}$.

Risk of bias within studies

Study quality was moderate with a mean PEDro score of 6.3/10 (range 3–9) (Table II). Thirteen studies were of moderate to high study quality (PEDro \geq 6/10). All studies had randomization, but only ten had concealed allocation. Given that most sleep interventions were face-to-face, only 13 studies included blinding either in the form of subjects (n = 10), therapists (n = 2), and

Fig. 1. Selection process for RCTs.

assessors (n=10). Average follow-up rate was 91.2% at post-intervention. One study did not report quantitative data between groups for pain outcomes⁶⁰ and one for sleep outcomes⁴².

Synthesis of results

All overall pooled post-intervention results including all sleep interventions, pain conditions and comparator groups demonstrated high heterogeneity, hence subgroup and sensitivity analyses were performed (Table III, Figs. 2 and 3). Studies ^{33,35,45,57} with three or more comparison arms had data included from their respective comparison groups for sensitivity analyses. Studies involving participants with more than one condition ^{34–37} were classified as one subgroup if it had majority (>60%). Post-hoc, we stratified analyses based on ESI²⁹ and performed sensitivity analyses of studies which had adequate sleep problems at baseline, as this was uncertain in many non-ESI studies. Studies with confirmed

sleep problems at baseline either had the DSM insomnia as inclusion criteria, or sample majority within the PSQI/ISI thresholds^{48,49} (within 2 standard deviations).

These subgroup analyses achieved satisfactory homogeneity for most outcomes and consistent findings when compared to the pooling of all sleep interventions (Table III, Appendix 4). Follow-up data were analysed in accordance of two groupings (1–9 months, and 10–18 months) due to high variability in reported time points, using the longest follow-up value available. Inspection of funnel plots revealed no evidence of publication bias (Appendix 3). Only one study⁴⁵ reported 10–18 months follow-up of an ESI.

Question 1 Do sleep interventions improve pain compared to control/placebo?

The visual analogue scale (VAS) at rest was the most common pain outcome $^{32,33,36,37,41,42,44,45,51-56,58,59,61}$ (n=17, Appendix 2). For people with LBP, ESI improved pain at post-intervention

Table ICharacteristics of 24 studies investigating sleep and pain

Author, Year	Condition	Condition criteria	Sleep criteria	No. (% Female)	Age (SD)	Intervention arms	Treatment content	Treatment dosage/Duration
Bergholdt, 2008	Chronic LBP	Age: 18–60 years Duration: >6 months	No	141 (65)	42.0 (7.2)	Waterbed mattress Body contour foam	Water mattress with 4 horizontal layers of fibres. Mattress with temperature sensitive	nightly, for 4 weeks
						mattress Firm Mattress	pressure relieving material that moulds to the person. Foam core mattress surrounded by 3	
						Titili Wattiess	layers of cotton.	
Eadie, 2013	Chronic LBP	Age: 18–70 Duration >3 month or >3 episodes in 12	No	60 (62)	45 (13.4)	Walking program	Graded activity approached based on American College of Sports Medicine guidelines. Weekly review with CBT	Individual sessions $1 \times /$ week for 8 weeks.
		months. European Guidelines for the management of chronic non-specific LBP 2006				Supervised exercise class	trained physiotherapist. "Back to Fitness" program endorsed by UK National Institute of Health and Clinical Excellence guidelines, with CBT trained physiotherapist.	Group classes $1\times$ /week for 8 weeks.
		ы 2000				Usual physiotherapy (control)	Individualized education/advice, exercise therapy, and manipulative therapy at the discretion of the treating CBT trained physiotherapist based on	Sessions as determined by physiotherapist, for 8 weeks.
Field, 2007	Chronic LBP	Duration >6 months	No	30 (47)	41 (NR)	Massage therapy	usual practice. Massage to the back, legs, neck and abdomen.	30 min sessions, 2×/week, for 5 weeks.
						Relaxation therapy (Control)	Progressive relaxation home exercises including tensing and relaxing large muscle groups starting with the feet and progressing to the calves, thighs,	Initial session then follow up calls $1\times$ /week, for 5 weeks.
Goforth, 2014	Chronic LBP	Age: 24/64 VAS >40/100	DSM-IV-TR for Insomnia†	58 (63)	42.5 (11.9)	Eszopiclone and Naproxen	hands, arms, back and face. 3 mg Eszopiclone + 500 mg Naproxen, taken 30 min before sleep.	2 tablets nightly, for 4 weeks
		Duration >3/12	ISI >14			Placebo and Naproxen	Placebo + 500 mg Naproxen, taken 30 min before sleep.	2 tablets nightly, for 4 weeks.
Hernandez, 2009	Chronic LBP	Duration >6 months	No	24 (54)	39.6 (15.2)	Massage therapy	Massage to the back, legs, neck and abdomen.	30 min sessions, $2 \times /$ week, for 5 weeks.
						Relaxation therapy (Control)	Progressive relaxation home exercises including tensing and relaxing large muscle groups starting with the feet and progressing to the calves, thighs,	Initial session then follow up calls 1×/week, for 5 weeks.
Kurganova, 2015	Chronic LBP	VAS >3/10 Duration >12 weeks	No	60 (77)	53 (6.6)	Melaxin + APTPA APTPA only	hands, arms, back and face. Melaxen 1 tablet (3 mg of melatonin), 30–40 min before sleep. APTPA 1 tablet (500 mg of glucosamine hydrochloride and 500 mg of	then 1 tablet $1 \times /day$ for 2
Bernateck, 2007	Chronic cervicobrachialgia	International Classification of	No	149 (82)	51.4 (6.7)	Physiotherapy	chondroitin sulphate) Thermal modalities massage and active exercise.	months. 35 min, $\geq 1/\text{day}$, for 4 weeks.
	cervicobracinalgia	Diseases 10				Physiotherapy + Pillow	Physiotherapy as above. $50 \times 32 \times 15$ cm polyurethane pillow, used daily. Participants educated by a	As above and pillows nightly.
Gutenbrunner, 1999	Chronic cervicobrachialgia	International Classification of	No	149 (82)	51.4 (6.7)	Physiotherapy	physiotherapist on use. Thermal modalities massage and active exercise.	35 min, ≥1/day, for 4 weeks.
	cervicobiacinaigia	Diseases 10				Physiotherapy + Pillow	Physiotherapy as above. $50 \times 32 \times 15$ cm polyurethane pillow, used daily. Participants educated by a physiotherapist on use.	As above and pillows nightly.

Jochem, 1997	Neck pain	Age: 40—70 years Sleep duration >6 h (For pillow use)	No	20 (55)	51.9 (8.6)	"The pillow"	Polyester cushion with soft upper layer and hard lower layer. Curved slot for head.	Pillows used nightly for 2 weeks
		(ror pinow use)				Standard pillow (Control)	Smooth rectangular pillow with feather or synthetic filling.	
Lavin, 1997	Neck pain	Mechanical neck pain confirmed by physical	No	41 (51)	48 (NR)	Water pillow	Soft polyester fibre over 3.8 cm water base.	Pillows used nightly, for 2 weeks
		examination				Roll pillow	Polyester fibre filled roll pillow, 43 cm × 17.8 cm.	
						Standard pillow	Client's current pillow, usually standard down or foam pillow.	
Lee, 2016	Neck pain	VAS >4/10	No	50 (24)	47 (13.3)	Functional pillow	Combination of cotton, polyester and memory foam layers.	Pillows used nightly, up to 4 weeks or discharge
						Standard pillow	65 cm \times 35 cm \times 18 cm Cotton pillow. 40 cm \times 60 cm \times 15 cm	
Van Wieringen, 2001	Chronic whiplash associated disorder	Age >18 Involved in rear-end car	Delayed dim- light melatonin	81 (73)	33.4 (10.7)	Melatonin	Oral exogenous melatonin 5 mg, mixed with crystalline cellulose in a tablet	1 Tablet, nightly, 5 h before Dim Light Melatonin Onset,
		collision >6 months ago.	onset.			Placebo	Identical looking tablet	for 4 weeks
Currie, 2000	Chronic pain: LBP 72%	Age: <60	Any sleep complaint	60 (55)	45 (8.0)	CBT insomnia	Sleep diary review, education, behaviour therapy, relaxation training,	2 h group sessions, $1 \times l$ week for 7 weeks.
	Neck pain 20% Lower limbs 5%						cognitive component thoughts and attitudes and sleep hygiene.	
	Pelvic 3%					Wait list control	Sleep diary review only.	10 min individual phone calls, $1 \times /$ week for 7 weeks.
Jungquist, 2010	Spinal pain 64% LBP	Age: > 25 Duration >6 months	Similar to DSM- 5 criteria, but	28 (78)	48.7 (10.7)	CBTI	CBT insomnia: Sleep restriction therapy, stimulus control instructions,	Both interventions were individualised 45–90 min
	32% Neck pain 4% Thoracic pain		duration >6 months*			Control	sleep hygiene instructions, and one session of cognitive therapy.	sessions, 1×/week for 8 weeks
Diagon 2012	Curinal Dain	Non-malianant main	Cimilanta DCM	21 (22)	507 (93)	Control	Sleep/Pain Diary weekly review. Interrogative rather than therapeutic.	Individual assisms 1
Pigeon, 2012	Spinal Pain	Non-malignant pain originating in the spine,	Similar to DSM- 5 criteria, but duration >6	21 (33)	50.7 (8.3)	CBT insomnia and pain CBT insomnia	Combination of the two CBT therapies below	Individual sessions $1 \times l$ week, for 10 weeks.
		shoulders, hips or limbs. Duration >6 months	months*			CB1 IIISOIIIIIII	Sleep education, sleep restriction therapy, stimulus control therapy, sleep hygiene, sleep-specific cognitive	
		Duration >0 months					therapy, relaxation training, and relapse prevention.	
						CBT pain	Pain psychophysiology education, relaxation training, pacing, pain-	
							specific cognitive therapy, activity planning, problem-solving,	
							communication skills, flare-up planning and relapse prevention. Daily Sleep	
						Wait List Control:	Diaries. Daily Sleep Diaries only	
Tang, 2012	85% Spinal pain, 35% OA, 30% Both	Age: 18–65 Brief Pain Inventory-	DSM-IV-TR for insomnia†	20 (90)	48.5 (8.6)	CBT pain and insomnia	Insomnia treatment included sleep psychoeducation, stimulus control	Individual 2 h sessions 1×/ week, for 4 weeks
		Present Pain Intensity>	ISI >15/28				therapy, sleep restriction therapy, cognitive therapy. Pain treatment	
		Duration >6 months					included individual formulation, goal setting and behavioural activation,	
							reducing pain catastrophising and safety-seeking behaviour, reversing	
						Symptom monitoring	mental defeat. Reviewed pain and sleep diary	
								(continued on next page)

Author, Year	Condition	Condition criteria	Sleep criteria	No. (% Female)	Age (SD)	Intervention arms	Treatment content	Treatment dosage/Duration
Wepner, 2008	Spinal pain	Age: 20–60 years Pain from back or neck >3 months.	No	84 (63)	47.06 (9.3)	Singing bowls	Crystal singing bowels were struck to produce harmonic vibrations and sound and moved around the proximity patient's pain.	6 sessions over 4 weeks
						Placebo	As above, but the bowls were not struck.	
Cheung, 2014	Knee OA	Age: 65–90 Duration >6 months American College of Rheumatology classification criteria for knee OA.	No	36 (100)	72 (5.2)	Yoga	Hatha yoga designed specifically for knee OA, with components of poses, breathing and meditation. Instructed to do 30 min home exercise program to be done 4×/week. Performed by certified yoga teachers with >10 years of experience.	60 min/session, 1×/week, for 8 weeks
				0.4 (177)		Wait-list control	Instructed to carry on usual care.	8 weeks.
Huang, 2010	Knee OA	Age >55 Kellgren and Lawrence Grade 2—4 Self-report knee pain >50% of the time	PSQI >5	24 (NR)	NR	TSsP TPsS TSTP sSsP	True sleep acupuncture + Sham pain acupuncture True pain acupuncture + sham sleep acupuncture True sleep acupuncture + True pain acupuncture Sham sleep acupuncture + Sham pain acupuncture	30 min sessions, 2×/week for 4 weeks, then 1×/week for 4 weeks, (8 weeks total)
							Acupuncture needles selection based on Traditional Chinese Medicine theory	
Lu, 2017	Knee OA	Age: 60–70 American College of Rheumatology classification criteria for knee OA. Kellgren/Lawrence Grade ≥1	No	46 (100)	64.5 (3.4)	Tai Ji Quan	Training protocol followed an easy-to- difficult progression, with standing exercises focussing on posture, balance, weight bearing, and closed chain knee flexion and extension exercises. Exercises were integrated with rhythmic breathing and classes were	60 min/session, 3×/week, for 24 weeks
						Control	knee OA and performed by multidisciplinary staff. Monitored by 10	60 min/session, 2×/week, for 24 weeks
McCurry, 2014	OA	Age >60 Grade II to IV pain on the Graded Chronic	DSM-IV-TR for insomnia†	367 (78)	73 (8.2)	CBT pain and insomnia		All interventions were 90 min group sessions 1×/ week, for 6 weeks,
		Pain Scale				CBT pain	daily sleep monitoring). Pain education, physical activation, goal setting, relaxation, activity pacing, guided imagery, cognitive restructuring.	
						Education only control	Educational content related to pain and sleep management. Classes facilitated in nondirective, self-help format.	
Smith, 2015	Knee OA	American College of Rheumatology criteria for classification of knee OA	DSM-IV-TR for Insomnia†	100 (79)	59.4 (9.5)	CBT insomnia: Behavioural	Sleep restriction therapy, stimulus control therapy, cognitive therapy for insomnia, sleep hygiene education. Presented as a means of eliminating the	Individual 45 min sessions $1\times$ /week, for 8 weeks,
Vitalla 2000	04	Kellgren/Lawrence Grade ≥1	Similar to DSM	E1 (00)	67.95 (9.3)	desensitization (Placebo)	conditioned arousal through imagery.	2 h group sossions 1
Vitello, 2009	OA	Age: >55 OA: Physician- diagnosed	Similar to DSM- 5 criteria, but duration >6	. 31 (88)	07.80 (8.3)	CBT insomnia	Stimulus control, sleep restriction, cognitive restructuring, relaxation training, sleep-hygiene education	2 h group sessions 1×/ week, for 8 weeks
		osteoarthritis confirmed by a radiograph or magnetic	months*			Stress management and wellbeing	Designed as an attention control but did have several components that had modest effect on chronic pain.	

		resonance imaging study				
tello, 2013	OA	Age >60	DSM-IV-TR for 367 (78)	73 (8.2) CBT pain and insomnia	Pain CBT as below, and standard CBT for All interventions were	
		Grade II to IV pain on	insomnia†		insomnia (sleep hygiene education, $90 \text{ min group sessions } 1 \times /$	
		the Graded Chronic			stimulus control, sleep restriction, and week, for 6 weeks.	
		Pain Scale			daily sleep monitoring).	
				CBT pain	Pain education, physical activation, goal	
					setting, relaxation, activity pacing,	
					guided imagery, cognitive	
					restructuring.	
				Education only control	Educational content related to pain and	
					sleep management. Classes facilitated	
					in nondirective. self-help format.	

Satisfies DSM-5 criteria: difficulty falling asleep for at least 3 nights each week for 3 months or more. Diagnosis is based on exclusion of other sleep disorders (e.g., restless leg syndrome and sleep apnea) as well as any other CBT = Cognitive Behavioural Therapy; DSM-V = Diagnostic and Statistical Manual of mental disorders Fifth Edition; DSM-IV-TR = Diagnostic and Statistical Manual of mental disorders Fourth Edition Text Revision; LBP = Low major psychological disorders (e.g., severe depression).
† DSM-IV-TR differs from DSM-5 with symptom during duration being only 1 month or more. Back Pain; OA = Osteoarthritis; VAS = Visual Analogue Scale.

(-12.77/100, 95% CI: [-17.57, -7.97], $I^2 = 0\%$, n = 200, 4 studies^{34,36,41,42}), and one study³⁴ reported follow-up data which showed improvement at 3 months. For people with OA, ESI did not improve pain at post-intervention (-2.32 [-7.18, 2.54], 27%, n = 377, 3 studies^{27,32,33}), or at 1–9 months follow-up (-0.27, [-6.59, 6.05], 0%, n = 297, 2 studies^{32,33}). For people with neck pain there were no RCTs evaluating an ESI. Exercise^{40,43,53} did not improve pain at post-intervention.

Question 2 Do sleep interventions improve sleep compared to control/placebo?

The most prevalent sleep outcomes were diary reported sleep efficiency $^{27,32-37,41,43,45}$ (n=10, mean = 74.9, range = 0–100%, higher scores better), $ISI^{32,33,35-37,41,45,53}$ (n=8, mean = 16.4, range = 0–28, lower scores better), $PSQI^{34,40,42-44,53,57}$ (n=7, mean = 10.2, range = 0–21, lower scores better), and sleep disturbance scale 63 . Meta-analyses of sleep outcomes are presented in Table III.

Sleep efficiency. For people with LBP, ESI improved diary reported sleep efficiency at post-intervention (12.78/100, 95% CI: [8.32, 17.42], $I^2 = 15\%$, n = 140, 3 studies^{34,36,41}), and one study³⁴ reported follow-up data which showed improvement at 3 months. For people with OA, ESI (only CBT identified) improved sleep efficiency post-intervention (3.92, [1.27, 6.56], 33%, n = 362, 3 studies^{27,32,33}), but not at 1–9 months follow-up (2.84, [-0.04, 5.72], 0%, n = 297, 2 studies^{32,33}).

Insomnia Severity Index. For people with LBP, ESI improved ISI at post-intervention (-6.78/28, 95% CI: [-9.47, -4.09], $I^2=40\%$, n=86, 2 studies^{36,41}), but no studies had follow-up data. For people with OA, ESI (only CBT identified) improved sleep efficiency for people with OA at post-intervention (-2.41, [-4.19, -0.63], 0%, n=336, 2 studies^{32,33}). There was one study which reported 1–9 month follow-up³³ and one which reported 10–18 month follow-up⁴⁵, and both showed no change in ISI.

Pittsburgh Sleep Quality Index. When all sleep interventions and conditions were pooled, PSQI significantly improved at post-intervention by -2.13/21 (95% CI: [-3.75, -0.51], $I^2 = 56\%$, n = 154, 4 studies 34,40,43,57). There was one RCT 34 which used an ESI and in the overall pooling (Fig. 2), this was the only study which demonstrated a significant effect for PSQI. Exercise did not improve PSQI at post-intervention for people with OA or LBP.

Question 3 Do sleep interventions improve other health related outcomes compared to control/placebo?

For people with LBP, ESI improved depression at post-intervention (-4.93/100, 95% CI: [-7.89, -1.98], $I^2 = 10\%$, n = 140, 3 studies^{34,36,41}), however one study³⁴ reported follow-up data and showed no improvement. ESI did not improve physical function for people with either OA or LBP. For the outcomes of mental quality of life^{40,43,53,61}, physical quality of life^{40,43,53,61} and anxiety^{37,53,54,56} the overall pooling of sleep interventions and conditions revealed no significant change and the pooling of ESI could not be performed. Hence these analyses are represented in Appendix 4.

Other subgroup analyses

Sensitivity analyses where the comparison group only included interventions not aimed at sleep (i.e., pain interventions), identified that ESI were not better at improving any outcome compared to pain interventions alone when pain conditions were pooled together (Table III). Pillows^{44,52,58,59} did not improve pain at post-intervention when compared to another pain intervention/pillow.

Table IIPEDro criteria for included studies

	Bergholdt, 2008	Bernateck, 2007*	Cheung, 2014*	Currie, 2000*	Eadie, 2013*	Field, 2007*	Goforth, 2014	Gutenbrunner, 1999	Hernandez-reif, 2009*	Huang, 2010	Jochem, 1997*	Jungquist, 2010	Kurganova, 2015	Lavin, 1997*	Lee, 2016	Lu, 2017*	McCurry, 2014	Pigeon, 2012	Smith, 2015	Tang, 2012*	Van Wieringen, 2001	Vitiello, 2009*	Vitiello, 2013	Wepner, 2008
Eligibility criteria (not scored)	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Randomized allocation	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Concealed Allocation	1	0	1	0	1	0	1	0	1	0	0	1	0	0	0	0	0	0	1	0	1	1	0	1
Comparable at baseline	1	1	1	1	1	1	1	1	0	0	1	1	1	0	1	1	1	0	1	1	1	1	1	0
Blinded subjects	0	0	0	0	0	0	1	0	1	1	0	1	0	0	0	0	1	0	1	0	1	1	1	1
Blinded therapists	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Blinded assessors	1	0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0																						
Adequate follow- up	0																							
Intention to treat analysis	1																							
Between group comparisons	1																							
Point estimates and variability	1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1																							
Total Score (0-10)	-10) 7 4 8 5 7 <mark>3 </mark> 9 4 5 6 5 8 6 <mark>3 </mark> 7 7 7 5 9 5 9 7 8 7																							
	ore: Red = Poor quality, Yellow = Moderate Quality, Green = High Quality Score provided from the PEDro database.																							

Sensitivity analyses of studies which had confirmed baseline sleep problems did not significantly change the results. Subgroup analyses stratified by condition and including all sleep interventions yielded inconsistent and heterogeneous results for all outcomes (Appendix 4).

Discussion

Overall summary of findings

Overall pooling of all sleep interventions and pain conditions led to inconsistent findings due to high variability in the efficacy of sleep interventions and inclusion of people without insomnia symptoms. Our main findings were therefore based on subgroup analyses of a few studies. For people with LBP, ESI improved pain, sleep efficiency, ISI, PSQI and depression. For people with OA, CBT improved sleep efficiency and ISI, however no effects on pain were identified. For people with neck pain, there were no RCTs which evaluated ESI.

Did pain and sleep improve with an intervention for sleep?

For people with OA or LBP, sleep interventions can moderately improve multiple dimensions of sleep. To determine whether these effects are clinically worthwhile, we considered the minimal clinical important difference (MCID). For people with chronic LBP, the MCID for pain is 15/100 for physiotherapy treatment, and 20/100 for nonsteroidal anti-inflammatory drugs⁶⁴. The largest improvement in pain for people with LBP were the subgroups CBT (8.49) and pharmacological interventions (15.22), which fall short of the

MCIDs determined by their non-pharmacological or pharmacological counterparts. For people with insomnia, the MCID for ISI is 6–7 points^{48,65} and 10% for sleep efficiency⁶⁶ for ESI. MCIDs for ISI were met with ESI for people with LBP (6.78), and CBT for people with OA (6.35). MCIDs for sleep efficiency were met with ESI for people with LBP (12.87), but not with CBT for people with OA (3.92). Improvements in ISI (2.46) and sleep efficiency (5.50) were maintained up to 9 months with ESI for people with LBP or OA, and though these are below the MCIDs, it is still considerable as most interventions occurred for 6–8 weeks, and OA pain worsens over time⁶⁷.

Study strengths and limitations

Overall quality of the studies were of moderate to high quality. however some studies had poor blinding and small sample sizes. Most sleep intervention methodologies were clearly reported and interventions of the same type (e.g., CBT) had similar protocols. Inclusion criteria for people with OA and spinal pain were fairly robust, however only nine studies (39%) had confirmed sleep problems, and these evaluated an ESI. This created uncertainty regarding the efficacy of other interventions such as pillows and exercise, as participants may not have had adequate baseline levels of insomnia symptoms amendable to change. Our stratified analyses by ESI had the most certainty, as most of these RCTs had confirmed sleep problems and reported similar sleep outcomes. However in some of these higher quality RCTs, validity was still compromised particularly for the knee OA studies due to 1) the control having effective behavioral components for pain²⁷, or 2) inadequate time for the insomnia component due to combination

Table IIIMeta-analyses: Pain, sleep and other health outcomes

		No of studies (Ref)	Intervention	Comparison (Control/	Overall effect (95% CI)	ľ ²	Sensitivity analyses (Mea number of RCTs)	n difference, 95% CI, <i>I</i> squar	ed, participants per group,
				Placebo)			Comparator: Pain interventions	Adequate baseline sleep problems	Comparator: Control/ Placebo/Any pain
Pain† (0–100)									
Overall (All interventions and conditions)	Post	16 ^(27,32–37,40–43,52,54,56,57,61)	477	463	-6.92 [-11.87, -1.98]*	72%	-5.58 [-9.09, -2.07]*, 0%, 238 vs 250, 8 ^(33,35,44,51,53,57-59)	-3.75 [-11.44, 3.95], 75%, 278 vs 269, 8 ^{(27,32} -37,41)	-6.22 [-10.24, -2.21]*, 67%, 590 vs 585, 21 ^{(27,32} -37,40-44,51-54,56-59,61)
,	1-9 Mth	5 ^(32–34,52,57)	254	264	-6.42 [-9.62, -3.23]*	24%,	-0.89 [-8.32, 6.55], 0%, 130 vs 134, 3 ^(33,53,57)	-4.00 [-9.03, 1.03], 46%, 172 vs 185, 3 ⁽³²	-6.00 [-9.16, -2.84]*, 37%, 270 vs 281, 6 ⁽³² -34,52,53,57)
	10-18 Mth	2 ^(45,52)	177	178	-8.59 [-12.00, -5.18]*	0%	n/a (None)	n/a (One RCT) ⁽⁴⁵⁾	n/a (Same)
ESI (All conditions)	Post	g(27,32-37,41,42)	309	298	-5.07 [-12.24, 2.09]	77%	-1.94 [-8.79, 4.92], 0%, 119 vs 122, 2 ^(33,35)	-3.75 [-11.44, 3.95], 75%, 278 vs 269, 8 ^{(27,32} -37,41)	n/a (Same)
	1-9 Mth (CBT only)	3 ^(32–34)	172	185	-4.00 [-9.03, 1.03]	46%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
ESI (LBP)	Post	4 ^(34,36,41,42)	114	86	-12.77 [-17.57, -7.97]*	0%	n/a (None)	-12.14 [-18.71, -5.57]*, 21%, 83 vs 57, 3 ^(34,36,41)	n/a (Same)
ESI (OA) (Only CBT)	Post	3 ^(32–34)	179	198	-2.32 [-7.18, 2.54]	27%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
	1-9 Mth	2 ^(32,33)	140	157	-0.27 [-6.59, 6.05]	0%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
CBT	Post	7 ^(27,32–37)	246	249	-1.26 [-8.49, 5.97]	68%	-1.94 [-8.79, 4.91], 0%, 119 vs 122, 2 ^(33,35)	n/a (Same)	n/a (Same)
CBT (LBP)	Post	2 ^(34,36)	51	37	-8.49 [-16.46, -0.53]*	0%	n/a (None)	n/a (Same)	n/a (Same)
Pharmacological interventions (LBP)	Post	2 ^(41,42)	63	49	-15.22 [-21.23, -9.20]*	0%	n/a (None)	n/a (One RCT) ⁽⁴¹⁾	n/a (Same)
Massage (LBP)	Post	$2^{(54,56)}$	27	27	-12.66 [-24.55, -0.77]*	0%	n/a (None)	n/a (None)	n/a (Same)
Pillows (Neck)	Post	n/a	n/a	n/a	n/a	n/a	-1.48 [-4.41, 1.45], 0%, 132 vs 127, 4 ^(44,52,58,59)	n/a (None)	n/a (None)
Exercise (OA and LBP)	Post	2 ^(40,43)	41	41	-24.96 [-53.68, 3.77]	79%	n/a (One RCT) ⁽⁵³⁾	n/a (None)	-12.77 [-37.19, 11.66], 83%, 57 vs 58, 3 ^(40,43,53)
Exercise (OA) ISI† (0-28)	Post	2 ^(40,43)	41	41	-24.96 [-53.68, 3.77]	79%	n/a (None)	n/a (None)	n/a (Same)
Overall	Post	6(32,33,35-37,41)	235	217	-6.12 [-9.23, -3.01]*	80%	-3.04 [-8.46, 2.37], 89%, 135 vs 138, 3 ^(33,35,53)	- n/a (Same)	-5.09 [-8.22, -1.96]*, 82%, 251 vs 234, 7 ^(32,33,35-37,41,53)
	1-9 Mth	2 ^(32,33)	142	160	-2.46 [-4.19, -0.72]*	0%	-0.63 [-3.25, 2.00], 53%, 123 vs 124, 2 ^(33,53)	n/a (Same)	-1.48 [-3.70, 0.75], 58%, 157 vs 173, 3 ^(32,33,53)
ESI (All conditions)	Post	6(24,25,27,28,33,54)	235	217	-6.12 [-9.23, -3.01]*	80%	-5.17 [-11.41, 1.07], 91%, 119 vs 121, 2[ref]	n/a (Same)	n/a (Same)
	1-9 Mth	2 ^(32,33)	142	160	-2.46 [-4.19, -0.72]*	0%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
ESI (LBP)	Post	2(36,41)	52	34	-6.78 [-9.47, -4.09]*	40%	n/a (None)	n/a (Same)	n/a (Same)
ESI (OA) (Only CBT)	Post	2 ^(32,33)	167	169	-2.41 [-4.19, -0.63]*	0%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
CBT	Post	5 ^(32,33,35–37)	202	192	-6.35 [-10.17, -2.53]*	84%	-5.17 [-11.41, 1.07], 91%, 119 vs 121, 2 ^(33,35)	n/a (Same)	n/a (Same)
Pharmacological interventions	Post	1 ⁽⁴¹⁾	33	35	-5.37 [-8.81, -1.93]*	n/a	n/a (Same)	n/a (Same)	n/a (Same)
Exercise PSQI† (0–21)	Post	1 ⁽⁵³⁾	16	17	1.68 [-2.41, 5.77]	n/a	n/a (Same)	n/a (None)	n/a (Same)
Overall	Post	4 ^(34,40,43,57)	79	75	-2.13 [-3.75, -0.51]*	56%	-0.09 [-0.50, 0.33], 0%, 45 vs 44, 3 ^(44,53,57)	n/a (One RCT) ⁽³⁴⁾	-1.53 [-2.85, -0.20]*, 52%, 181 vs 113, 6(34,40,43,44,53,57)
	1-9 Mth	n/a (One RCT) ⁽³⁴⁾	n/a	n/a	n/a	n/a	n/a (One RCT) ⁽⁵³⁾	n/a (One RCT) ⁽³⁴⁾	-3.49 [-7.90, 0.92], 85%, 47 vs 41, 2 ^(34,53)

		No of studies (Ref)	Intervention	Comparison (Control/	Overall effect (95% CI)	I^2	Sensitivity analyses (Meanumber of RCTs)	n difference, 95% CI, <i>I</i> square	ed, participants per group,
				Placebo)			Comparator: Pain interventions	Adequate baseline sleep problems	Comparator: Control/ Placebo/Any pain
ESI (LBP) (Only CBT)	Post	1 ⁽³⁴⁾	32	28	-3.90 [-5.65, -2.15]*	n/a	n/a (Same)	n/a (Same)	n/a (Same)
Exercise (OA and LBP)	Post	2 ^(40,43)	41	41	-1.08 [-2.32, 0.17]	0%	n/a (One RCT) ⁽⁵³⁾	n/a (None)	-0.80 [-1.92, 0.33], 0%, 57 vs 56, 3 ^(40,43,53)
Exercise (OA) Sleep efficiency: (0–100)	Post	2 ^(40,43)	41	41	-1.08 [-2.32, 0.17]	0%	n/a (None)	n/a (None)	n/a (Same)
Overall	Post	9 ^(27,32–37,41,43)	291	287	9.55 [5.41, 13.69]*	70%	2.45 [-4.59, 9.50], 52%, 102 vs 106, 2 ^(33,35)	9.78 [5.16, 14.39]*, 75%, 266 vs 264. 8 ^(27,32-37,41)	n/a (Same)
	1-9 Mth	3 ^(32–34)	161	173	5.50 [0.20, 10.80]*	72%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
ESI (OA and LBP)	Post	8(27,32-37,41)	268	264	9.78 [5.16, 14.39]*	74%	2.45 [-4.59, 9.50], 52%, 102 vs 106. 2 ^(33,35)	n/a (Same)	n/a (Same)
	1-9 Mth	3 ^(32–34)	161	173	5.50 [0.20, 10.80]*	72%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
ESI (LBP)	Post	3(34,36,41)	83	57	12.87 [8.32, 17.42]*	15%	n/a (None)	n/a (Same)	n/a (Same)
ESI (OA) (Only CBT)	Post	3 ^(27,32,33)	169	193	3.92 [1.27, 6.56]*	33%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
, , , , ,	1-9 Mth	2 ^(32,33)	129	145	2.84 [-0.04, 5.72]	0%	n/a (One RCT)(33)	n/a (Same)	n/a (Same)
CBT (OA and LBP)	Post	7(27,32–37)	236	244	10.03 [4.74, 15.32]*	77%	2.45 [-4.59, 9.50], 52%, 102 vs 106. 2 ⁽³³⁻³⁵⁾	n/a (Same)	n/a (Same)
Pharmacological interventions (LBP)	Post	1 ⁽⁴¹⁾	32	20	9.20 [2.52, 15.88]*	n/a	n/a (Same)	n/a (Same)	n/a (Same)
Exercise Sleep disturbance scale:	Post (0 — 100)	1 ⁽⁴³⁾	23	23	8.68 [1.07, 16.29]*	n/a	n/a (Same)	n/a (None)	n/a (Same)
Massage (LBP) Physical function: (0–10	Post	2 ^(54,56)	27	27	-2.81 [-13.30, 7.68]	0%	n/a (None)	n/a (None)	n/a (Same)
Overall	Post	5(33,40,41,43,61)	203	201	7.71 [4.50, 10.92]*	28%	0.71 [-5.04, 6.42], 0%, 192 vs 2016, 4 ^(33,44,51,53)	2.83 [-4.33, 10.00], 0%, 144 vs 142, 2 ^(33,41)	6.33 [3.42, 9.30]*, 42%, 283 vs 290, 8(33,40,41,43,44,51,53,61)
	1-9 Mth	n/a (One RCT) ⁽³³⁾	n/a	n/a	n/a	n/a	2.79 [-4.75, 10.33], 0%, 123 vs 128. 2 ^(33,53)	n/a (One RCT) ⁽³³⁾	2.38 [-4.50, 9.25], 0%, 123 vs 137, 2 ^(33,53)
ESI (All conditions)	Post	2 ^(33,41)	144	142	2.83 [-4.33, 10.00]	0%	n/a (One RCT) ⁽³³⁾	n/a (Same)	n/a (Same)
Exercise (All conditions)	Post	2 ^(40,43)	41	41	9.83 [6.08, 13.54]*	0%	n/a (One RCT) ⁽⁵³⁾	n/a (None)	5.13 [-3.58, 13.83], 76%, 57 vs 58, 3 ^(40,43,53)
Pillows (Neck)	Post	n/a	n/a	n/a	n/a	n/a	1.27 [-1.21, 3.74], 0%, 64 vs 72. 2 ^(44,51)	n/a (None)	1.27 [-1.21, 3.74], 0%, 64 vs 72. 2 ^(44,51)
Depression† (0-100)							- ,		•
Overall (All interventions, LBP and Neck)	Post	7 ^(34–37,41,54,56)	126	98	-7.82 [-17.16, 1.52]	94%	-2.25 [-16.25, 11.74], 72%, 22 vs 22, 2 ^(35,53)	-10.75 [-21.88, 0.38], 95%, 99 vs 71, 5 ^(34-37,41)	-6.32 [-15.23, 2.58], 94%, 142 vs 115, 8 ⁽³⁴ -37,41,53,54,56)
ESI (Overall)	Post	5 ^(34–37,41)	99	71	-10.75 [-21.88, 0.38]	95%	n/a (One RCT)(35)	n/a (Same)	n/a (Same)
ESI (LBP)	Post	3(34,36,41)	83	57	-4.93 [-7.89, -1.98]*	10%	n/a (None)	n/a (Same)	n/a (Same)
CBT (OA and LBP)	Post	4 (34–37)	67	51	-11.70 [-25.86, 2.46]	96%	n/a (One RCT) ⁽³⁵⁾	n/a (Same)	n/a (Same)
Pharmacological	Post	1 ⁽⁴¹⁾	32	20	-7.18 [-12.07, -2.29]	n/a	n/a (Same)	n/a (Same)	n/a (Same)
interventions (LBP)		2(54,56)				,	, , ,	, , ,	, , ,
Massage (LBP)	Post	Δ'/	27	27	-0.57 [-6.67, 5.53]	0%	n/a (None)	n/a (None)	n/a (Same)

 $ESI = Established \ Sleep \ Interventions, \ CBT = Cognitive \ Behavioural \ Therapy, \ LBP = Low \ Back \ Pain, \ OA = Osteoarthritis, \ Mth: \ Months, \ CI = Confidence \ Interval.$

n/a (Same) = Same included studies and result.

n/a (None) = Meta-analysis could not be performed due to no RCTs satisfying the criteria.

n/a (One RCT) = Meta-analysis could not be performed due to only one RCT.

^{*} Denotes statistical significance.

[†] Lower scores are better.

[‡] Higher scores are better.

A. Forest plot: Established Sleep Interventions for Pain at Post-Intervention. Scale: 0-100, lower better.

	Ехр	erimen	tal	(ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Currie, 2000	48.57	16.67	32	57.14	17.14	28	12.8%	-8.57 [-17.15, 0.01]	-
Goforth, 2014	31.69	17.92	32	51.6	22.44	20	11.1%	-19.91 [-31.54, -8.28]	
Jungquist, 2010	38	29	19	46	26	9	6.5%	-8.00 [-29.41, 13.41]	
Kuraganova, 2015	9	11.2	31	22.5	16	29	13.6%	-13.50 [-20.53, -6.47]	
Pigeon, 2012	52.38	10.95	6	35.71	4.76	4	12.0%	16.67 [6.74, 26.60]	
Smith, 2015	39.81	21.46	43	40.32	19.07	48	12.9%	-0.51 [-8.89, 7.87]	-
Tang 2012	60	19	10	59	25	10	7.3%	1.00 [-18.46, 20.46]	
Vitiello, 2009	33.9	24.3	23	46.9	25	28	10.0%	-13.00 [-26.58, 0.58]	
Vitiello, 2013	39.9	28.97	113	40.8	22.32	122	13.8%	-0.90 [-7.55, 5.75]	+
Total (95% CI)			309			298	100.0%	-5.07 [-12.24, 2.09]	•
Heterogeneity: Tau ² =	85.27; 0	Chi² = 35	5.23, df	= 8 (P ·	< 0.000	1); ² = '	77%		100 100
Test for overall effect:				,					-100 -50 0 50 100 Favours [experimental] Favours [control]

B. Forest plot: Established Sleep Interventions for Sleep Efficiency at Post-Intervention. Scale: 0-100, higher better.

	Exp	erimen	tal	С	ontrol			Mean Difference		M	ean Differenc	е	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	l	IV,	Random, 95%	CI	
Currie, 2000	85	11	32	70	18	28	12.2%	15.00 [7.32, 22.68]					
Goforth, 2014	88.41	6.68	32	79.21	14.3	20	13.3%	9.20 [2.52, 15.88]					
Jungquist, 2010	94	3	19	76	16	9	9.4%	18.00 [7.46, 28.54]				-	
Pigeon, 2012	91.5	4.65	6	84.5	8.8	4	10.4%	7.00 [-2.39, 16.39]			+-		
Smith, 2015	86	12	50	83	10	50	15.8%	3.00 [-1.33, 7.33]			 - -		
Tang 2012	92.1	8.1	10	67.3	16.2	10	8.8%	24.80 [13.57, 36.03]					
Vitiello, 2009	84	8.1	23	75.2	14	28	13.9%	8.80 [2.65, 14.95]					
Vitiello, 2013	83.66	17.87	96	81.02	9.68	115	16.2%	2.64 [-1.35, 6.63]			 -		
Total (95% CI)			268			264	100.0%	9.78 [5.16, 14.39]			•		
Heterogeneity: Tau ² =	30.12; C	chi² = 26	6.62, df	= 7 (P	= 0.00	04); l² =	74%		-100	-50			100
Test for overall effect:	Z = 4.15	(P < 0.	.0001)						-100		ontrol] Favou		

C. Forest plot: Established Sleep Interventions for Insomnia Severity Index at Post-Intervention. Scale: 0-28, lower better.

	Expe	erimen	ıtal	C	Control			Mean Difference		Mean Di	ifference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C		IV, Rando	om, 95% CI	
Goforth, 2014	8.38	6.42	33	13.75	6.78	25	17.1%	-5.37 [-8.81, -1.93]		+		
Jungquist, 2010	4	4	19	13	6	9	15.3%	-9.00 [-13.31, -4.69]		-		
Pigeon, 2012	6	4.65	6	13	3.4	4	13.9%	-7.00 [-11.99, -2.01]		-		
Smith, 2015	8.87	5.54	45	11.68	6.92	47	18.9%	-2.81 [-5.37, -0.25]		•	r	
Tang 2012	5.9	6.3	10	18.2	2	10	15.7%	-12.30 [-16.40, -8.20]		-		
Vitiello, 2013	8.5	9.6	122	10.53	10.21	122	19.0%	-2.03 [-4.52, 0.46]		•	•	
Total (95% CI)			235			217	100.0%	-6.12 [-9.23, -3.01]		•		
Heterogeneity: Tau ² =	11.62; C	chi² = 2	24.44, c	lf = 5 (P	= 0.000)2); I² =	80%		-100	-50	0 50	100
Test for overall effect:	Z = 3.86	(P = 0)	0.0001)							rs [experimental]	Favours [control]	100

D . Forest plot: All Sleep Interventions for Pittsburgh Sleep Quality Index at Post-Intervention. Scale: 0-21, lower better.

Fig. 2. Forest plot: sleep interventions for pain and sleep at post-intervention.

A. Forest plot: Established Sleep Interventions for Pain at 1-9 Months. Scale 0-100, lower better

B. Forest plot: Established Sleep Interventions for Sleep Efficiency at 1-9 Months. Scale 0-100, higher better

	Ехр	erimen	tal	(Control			Mean Difference		Mean Diff	ference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Randor	n, 95% CI		
Currie, 2000	84	13	32	71	14	28	26.3%	13.00 [6.13, 19.87]			-		
Smith, 2015	85	8	35	82	9	38	37.6%	3.00 [-0.90, 6.90]		•	·		
Vitiello, 2013	83.49	18.31	94	80.85	11.22	107	36.1%	2.64 [-1.63, 6.91]		•	r		
Total (95% CI)			161			173	100.0%	5.50 [0.20, 10.80]		•	•		
Heterogeneity: Tau ² = Test for overall effect:				= 2 (P =	0.03); I	² = 72%	ò		-100 -50 Favours [exp	0 perimental]	Favours [co	50 ontrol]	100

C. Forest plot: Established Sleep Interventions for Insomnia Severity Index at 1-9 Months. Scale 0-28, lower better.

Fig. 3. Forest plot: sleep interventions for pain and sleep at 1-9 months.

insomnia and pain treatment³³, or 3) interventionist bias³². These may be possible reasons why ESI did not improve pain for people with OA, and why CBT for insomnia was not superior to pain interventions (i.e., CBT for pain) in the sensitivity analyses.

Strengths of our review include the comprehensive conduct of subgroup analyses for evaluated conditions and interventions, the inclusion of all available sleep interventions, and evaluation of secondary health outcomes. We evaluated multiple dimensions of sleep (sleep efficiency, ISI and PSQI). While VAS pain at rest was the most commonly report outcome and analysed, it is not the most robust assessment as it may miss aspects of in pain in regards to activity or severity. It is possible that participants may had similar levels of pain intensity but improved in physical activity or self-efficacy. Although our review evaluated other health outcomes besides pain and sleep, our search strategy was not specific for these outcomes. Therefore studies which may have measured these outcomes but not sleep outcomes would have been excluded from this review. Furthermore,

our sensitivity and subgroup analyses resulted with small numbers of studies and sample sizes and should be interpreted with caution. It is also worth noting that some of the analyses used a random effects model due to high heterogeneity (pooling of OA and LBP) which represents an average effect of interventions⁶⁸. Lastly, due to the scarcity of available data, our review does not analyse whether sleep interventions improve pain as a consequence of improving sleep, or vice versa and does not fall in the scope of the review. However, some secondary analysis studies^{69,70} of identified RCTs from our review^{32,33} suggest that a minimum of 30% improvement in sleep is needed with CBT for significant improvements in pain among people with knee OA at follow-up.

Clinical implications and future directions

Given the prevalence of comorbid insomnia with OA and LBP, and amenability to treatment, clinicians managing people with

OA or LBP should screen for insomnia symptoms and refer for management 11,17. Various guidelines for OA^{71,72} or LBP⁷³ highly recommend primary health professionals to screen for comorbidities, but are less clear on follow-up actions once identified. Our results suggest that ESI may be used to provide worthwhile insomnia improvements if not also worthwhile pain improvements (LBP). With the widespread problem of insomnia overwhelming numbers of sleep specialists, the most feasible course may be to refer to primary care professions (general practitioners, pharmacists) experienced in insomnia management or e-Health. The use of effective online CBT programs for insomnia⁷⁴ for people with comorbid insomnia and OA or spinal pain has not been evaluated. Furthermore health service delivery trials would need to be undertaken to evaluate the effectiveness of such referrals.

Due to the bidirectional relationship between pain and insomnia, the ESI alone for people with OA or LBP may prove to be limited in improving pain symptoms. In our review, the efficacy of combining first line treatments for insomnia with first line treatment for OA or LBP is not known as this has not been evaluated in any trial. We propose that the combination of ESI with guideline endorsed musculoskeletal pain interventions may compound their beneficial effects on sleep and pain. Further research evaluating this combination for people with comorbid insomnia and OA or spinal pain is required to determine their efficacy over usual management.

Author contributions

Kevin Ho: Conception and design; Acquisition of data; Analysis and interpretation of the data; Drafting of the article; Final approval of the article.

Paulo Ferreira: Conception and design; Analysis and interpretation of the data; Drafting of the article; Final approval of the article.

Marina Pinheiro: Conception and design; Analysis and interpretation of the data; Drafting of the article; Final approval of the article.

Danielle Aquino Silva: Acquisition of data; Drafting of the article; Final approval of the article.

Christopher Miller: Analysis and interpretation of the data; revising it critically for important intellectual content; Final approval of the article.

Ron Grunstein: Analysis and interpretation of the data; revising it critically for important intellectual content; Final approval of the article

Milena Simic: Conception and design; Analysis and interpretation of the data; Drafting of the article; Final approval of the article.

Competing interest statement

All authors have no competing interests to declare.

Role of the funding source

This review has received no specific grant from any funding agency, commercial or not-for-profit sectors.

Appendix 1. Search strategy for MEDLINE

	Search strategy for MEDLINE
Sleep	1. exp Sleep/
	2. exp Sleep Wake Disorders/
	3. (sleep or insomnia).mp.
	4. 1 or 2 or 3
Osteoarthritis or spinal pain	5. exp Osteoarthritis/
	6. (osteoarth* or arthrosis).mp.
	7. exp Back Pain/
	8. exp Neck Pain/
	9. (cervical or thoracic or lumbar or back or neck or spine or spinal or vertebra*).mp
	10. Pain.mp.
	11. 9 AND 10
	12. 5 or 6 or 7 or 8 or 11
Randomized control trials	13. Randomized controlled trial.pt
	14. exp randomized controlled trial/
	15. "Randomized controlled trial".mp.
	16. Exp random allocation/
	17. Placebo.mp
	18. exp placebos
	19. exp placebo effect/
	20. "controlled clinical trial".mp
	21. exp controlled clinical trial
	22. Random*.ab,ti.
	23. Trial.ab.ti
	24. 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23
	25. 4 AND 12 AND 24
Limits	26. Limit 25 to humans

Appendix 2. Other characteristics of included studies

Author, Year	Counti	ry Recruitment	Baseline outcomes	Post baseline	Outcomes					
				assessments	Pain	Sleep	Activity Limitation	HRQoL	Anxiety	Depression
Bergholdt, 2008	DEN	Patients and community	VAS pain 5.2/10 Duration of pain: 3 years Sleep duration: 6.3 h BMI: 25.5	Post-intervention	COBRA scale (VAS)	Sleep duration	ADL	COBRA scale	*	*
Bernateck, 2007	GER	Patients and community	Pain intensity: 2.72/5 Pain radiation: 89% Has sleep disturbance (71%) BMI: 27.8	Post-intervention 3/12 6/12 9/12 12/12	Pain intensity	Sleep disturbance	*	*	*	*
Cheung, 2014	USA	Patients	WOMAC Total: 44.35/98 WOMAC pain: 8.5/20 PSQI: 6.1/21 BMI: 29 SF-MCS: 52.2/100 SF-PCS: 36.7/100	Post-intervention	WOMAC pain	PSQI	SPPB	SF-MCS SF-PCS	*	*
Currie, 2000	CAN	Patients and community	MPI: 12.3/21 Sleep efficiency: 71% PSQI: 15.4/21 BDI: 12.7/63	Post-intervention	MPI	Sleep efficiency PSQI	*	*	*	Beck Depression Inventory
adie, 2013	IRE	Community	NRS: 5.67/10 ISI: 12.9/28 PSQI: 10.7/21 SF-MCS: 37.8/100 SF-PCS: 40.8/100 HADS-A: 9.7/21 HADS-D: 7.35/21 BMI: 29.3	Post-intervention 3/12 6/12	NRS (VAS)	ISI PSQI	ODI	SF-MCS SF-PCS	HADS-A	HADS-D
ield, 2007	USA	Community	VITAS: 4.75/10 Sleep disturbance scale: 36.15/100 STAI: 36.3/80 POMS: 8.6/60	Post-intervention	VITAS (VAS)	Sleep disturbance scale	*	*	STAI	POMS
Goforth, 2014	USA	Community	VAS: 51.2/100 Sleep efficiency: 73.26% ISI: 19.6/28 Sleep duration: 5.8 h Hamilton depression: 6.7/50	Post-intervention	VAS	Sleep efficiency ISI	RMDQ	*	*	Hamilton depression
Gutenbrunner, 1999	GER	Patients	Pain intensity: 2.72/5 Pain radiation: 89% Has sleep disturbance (71%) BMI: 27.8	Post-intervention 3/12 6/12 9/12	Pain intensity	Sleep disturbance	*	*	*	*
Iernandez, 2009	USA	Community	VITAS: 5.05/10 Sleep disturbance scale: 33.35/100 STAI: 35.05/80 POMS: 10.85/60	Post-intervention	VITAS (VAS)	Sleep disturbance scale	*	*	STAI	POMS
Iuang, 2010	USA	Patients	WOMAC pain: 227/500 PSQI: 10.5/21	Post-intervention 1/12	WOMAC pain	PSQI	*	*	*	*
ochem, 1997	NL	Community	VAS: 29.47/100 BMI: 27.2	Post-intervention	VAS	Times awoken (NR) *	*	*	*
ungquist, 2010	USA	Community	VAS: 4.8/10 Sleep efficiency 80%	Post-intervention	VAS	Sleep efficiency ISI	*	MFI	*	Beck Depression Inventory

Kurganova, 2015	RUS	Patients	ISI: 17.4/28 BDI: 12.5/63 VAS: 4.52/10 ISI: 10.1/28 PSQI: 7.06/21	Post-intervention 3/12	VAS	PSQI (NR)	*	*	*	Beck Depression
Lavin, 1997	USA	Community	VAS: 4.4/10	Post-intervention	VAS	Sleep compared to previous night	*	*	*	Inventory *
Lee, 2016	KOR	Patients	VAS: 58/100 PSQI: 11.15/21 BMI:22.2	Post-Intervention	VAS	PSQI	NDI	EuroQOL	*	*
Lu, 2017	CHI	Patients	WOMAC: 9.1/10 Sleep efficiency: 84.6% PSQI: 7.2/21 SF-MCS: 51.00/100 SF-PCS: 46.64/100 BMI: 25.1	Post-intervention	WOMAC	Sleep efficiency PSQI	SPPB	SF-MCS SF-PCS	*	*
McCurry, 2014	USA	Patients	VAS: 4.8/10 Sleep efficiency: 82.6% ISI: 11.5/28 Sleep duration: 7 h GDS: 6.7/30	Post-intervention 9/12 18/12	VAS	Sleep efficiency ISI	AIMS	*	*	GDS
Pigeon, 2012	USA	Community	MPI 9.3/21 Sleep efficiency: 76.2% ISI: 16.4/28 CESD-R: 14.7/60	Post-Intervention	MPI	Sleep Efficiency ISI	*	MFI	*	CESD-R
Smith, 2015	USA	Patients	K/L Score: 2.3 VAS: 47/100 WOMAC pain: 4.81/10 Knee pain duration: 7.3 years Sleep efficiency: 68% ISI: 17/28 BMI: 31.5	Post-intervention 3/12 6/12	VAS	Sleep efficiency ISI	*	*	*	*
Tang, 2012	UK	Patients	BPI-present pain intensity: 5.95/10 Pain duration: 8.5 years Sleep efficiency: 68% ISI: 20.3/28 HADS-A: 9.65/21 HADS-D 9.6/21 BMI: 28.75	Post-intervention	BPI BPI-PPI	Sleep efficiency ISI	*	MFI	HADS-A	HADS-D
Van Wieringen, 2001	l NL	Patients	Symptom duration: 2.1 years Dim light melatonin onset 11:12 pm	Post-intervention	Hours of pain, Pain intensity (NR)	DLMO	*	SF-36 (NR)	*	*
Vitello, 2009	USA	Community, Paid volunteers	SF-pain score: 53.35/100 Insomnia duration: 4.15 years Sleep duration: 5.8 h Sleep efficiency: 70.6% GDS: 5.45/30	Post-intervention	SF-pain score	Sleep efficiency ISI	*	SF-36	*	GDS
Vitello, 2013	USA	Patients	VAS: 4.8/10 ISI: 11.5/28 Sleep efficiency: 82.6% Sleep duration: 7 h GDS: 6.7/30	Post-intervention 9/12	VAS	Sleep efficiency ISI	AIMS	*	*	GDS
Wepner, 2008 * Not Reported.	GER	Patients	VAS: 47.5/100 SF-MCS: 46/100 SF-PCS:35/100	Post-intervention	VAS	Sleep duration Sleep latency	RMDQ	SF-36	*	*

^{*} Not Reported.

Appendix 3. Funnel Plots

Funnel Plot 1. ESI for pain at post-intervention.

Funnel Plot 3. ESI for Insomnia Severity Index at post-intervention.

Funnel Plot 2. ESI for sleep efficiency at post-intervention.

 $\textbf{Funnel Plot 4.} \ \ \text{All sleep interventions for Pittsburgh Sleep Quality Index at post-intervention.}$

Appendix 4.

Table IOther meta-analyses: subgroup analyses by conditions for pain and sleep, and analyses for other health outcomes

		No of studies (Ref)	Intervention Comparison O		Overall effect (95% CI)		Sensitivity analyses (Mean difference, 95% CI, <i>I</i> squared, participants per group, number of RCTs)		
							Comparator: Placebo/ Control	Comparator: Pain interventions	
Pain† (0-100)									
OA	Post	6 ^(27,32,33,40,43,57)	226	245	-8.72 [-17.07, -0.38]*	66%	n/a (Same)	-1.93 [-8.76, 4.91], 0%, 119 vs 123, 2 ^(33,57)	
Spinal	Post	15 ^(34–37,41,42,44,51–54,56,58,59,61)	364	340	-5.41 [-10.26, -0.55]*	69%	-6.00 [-12.73, 0.72], 76%, 251 vs 218, 10 ⁽³⁴ -37,41,42,52,54,55,61)	-6.89 [-10.98, -2.79]*, 3%, 119 vs 127, 6(35,44,51,53,58,59)	
LBP	Post	8(34,36,41,42,51,53,54,56)	198	181	-10.41 [-13.68, -7.15]*	26%	-12.76 [-17.21, -8.31]*, 0%, 141 vs 113, 6 ^(34,36,41,42,54,56)	-0.23 [-21.18, 20.72], 78%, 57 vs 68, 2 ^(51,53)	
Neck ISI † (0–28)	Post	4 ^(44,52,58,59)	132	127	-1.48 [-4.41, 1.45]	0%	n/a (None)	n/a (Same)	
OA	Post	2 ^(32,33)	167	169	-2.41 [-4.19, -0.63]*	0%	n/a (Same)	n/a (One RCT)(33)	
Spinal	Post	5 ^(35–37,41,53)	84	65	-6.37 [-10.97, -1.76]*	84%	-8.36 [-11.50, -5.23]*, 56%, 68 vs 48, 4 ^(35-37,41)		
LBP	Post	3 ^(36,41,53)	68	51	-4.22 [-10.05, 1.61]	85%	-6.78 [-9.47, -4.09]*, 40%, 52 vs 34, 2 ^(36,41)	n/a (One RCT) ⁽⁵³⁾	
PSQI † (0–21) Spinal	Post	3(34,44,53)	71	66	-1.53 [-4.24, 1.18]	78%	n/a (One RCT) ⁽³⁴⁾	-0.23 [-1.96, 1.49], 0%, 39 vs 38, 2 ^(44,53)	
OA (Knee) Sleep efficienc	Post y ‡ (0 – 100)	3 ^(40,43,57)	47	47	-1.02 [-2.17, 0.13]	0%	n/a (Same)	n/a (One RCT) ⁽⁵⁷⁾	

Table I (continued)

		No of studies (Ref)	Intervention	Comparison	Overall effect (95% CI)	I^2	Sensitivity analyses (Me squared, participants pe	an difference, 95% CI, <i>I</i> r group, number of RCTs)
							Comparator: Placebo/ Control	Comparator: Pain interventions
OA	Post	4 ^(27,32,33,43)	192	216	4.43 [1.93, 6.93]*	31%	3.92 [1.27, 6.56]*, 33%, 169 vs 193, 3 ^(27,32,33)	n/a (One RCT) ⁽⁴³⁾
Spinal	Post	5 ^(34–37,41)	99	71	14.01 [8.36, 19.67]*	51%	n/a (Same)	n/a (One RCT) ⁽³⁵⁾
LBP	Post	3 ^(34,36,41)	83	57	12.87 [8.32, 17.42]*	15%	n/a (Same)	n/a (None)
Physical function	n‡ (0–100						, , ,	, , ,
OA	Post	3(33,40,43)	153	163	8.46 [5.08, 11.83]*	35%	n/a (Same)	n/a (One RCT)(33)
Spinal	Post	5(41,44,51,53,61)	130	127	0.13 [-5.67, 5.96]	0%	3.13 [-4.04, 10.29] 0%, 114 vs 110, 4 ^(41,44,51,61)	n/a (One RCT) ⁽⁵³⁾
LBP	Post	4 ^(41,51,53,61)	107	106	-1.08 [-7.33, 5.17]	0%	1.17 [-8.79, 11.08], 0%, 50 vs 38, 2 ^(41,61)	-2.54 [-10.58, 5.50] 10%, 57 vs 68, 2 ^(51,53)
Mental quality	of life‡ (0-							
Overall	Post	4 ^(40,43,53,61)	75	76	-0.89 [-3.43, 1.66]	0%	-0.69 [-3.41, 2.03], 4%, 59 vs 59, 3 ^(40,43,61)	n/a (One RCT) ⁽⁵³⁾
Exercise	Post	3 ^(40,43,53)	57	58	-1.10 [-3.83, 1.62]	2%	-0.91 [-3.86, 2.04], 48%, 41 vs 41, 2 ^(40,43)	n/a (One RCT) ⁽⁵³⁾
Physical quality	of life† (0) -100)					,, -	
Overall	Post	4 ^(40,43,53,61)	75	76	-0.53 [-2.62, 1.57]	0%	-0.11 [-2.39, 2.17], 0%, 59 vs 59, 3 ^(40,43,61)	n/a (One RCT) ⁽⁵³⁾
Exercise	Post	3 ^(40,43,53)	57	58	-0.77 [-3.01, 1.46]	0%	-0.33 [-2.80, 2.13], 0%, 41 vs 41, 2 ^(40,43)	n/a (One RCT) ⁽⁵³⁾
Anxiety† (0-100	0)							
Overall (Spinal)	•	4 ^(37,53,54,56)	53	54	-1.77 [-10.59, 7.05]	66%	-4.04 [-15.78, 7.71], 74%, 37 vs 37, 3 ^(37,54,56)	n/a (One RCT) ⁽⁵³⁾
LBP	Post	3(53,54,56)	43	44	2.70 [-2.79, 8.19]	0%	2.08 [-4.37, 8.52], 0%, 27 vs 27, 2 ^(54,56)	n/a (One RCT) ⁽⁵³⁾
Massage Depression† (0-	Post - 100)	2 ^(54,56)	27	27	2.08 [-4.37, 8.52]	0%	n/a (Same)	n/a (None)
LBP	Post	6 ^(34,36,41,53,54,56)	126	101	-3.50 [-6.06, -0.93]*	30%	-4.10 [-6.76, -1.45]*, 6%, 110 vs 84, 5 ^(34,36,41,54,56)	n/a (One RCT) ⁽⁵³⁾
	1-9 Mth	2 ^(34,53)	48	45	-2.16 [-6.59 , 2.27]	5%	n/a (One RCT) ⁽³⁴⁾	n/a (One RCT) ⁽⁵³⁾

LBP = Low Back Pain, OA = Osteoarthritis, Spinal = Low Back Pain and Neck Pain, Mth: Months, CI = Confidence Interval. Detailed pain and sleep analyses have pooled all sleep interventions.

Other health outcomes have pooled analyses of all sleep interventions and subgroup analyses by type of sleep intervention.

 $^{^{\}ddagger}$ Higher scores are better.

	Experimental Control						Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	I	IV, Random, 95% CI
Bergholdt, 2008	-5	14.8	41	4	7.4	51	8.2%	-9.00 [-13.96, -4.04]		
Bernateck, 2007	35	13.13	76	36	4.29	73	8.9%	-1.00 [-4.11, 2.11]		+
Cheung, 2014	29	14.213	18	41.5	14.21	18	6.2%	-12.50 [-21.78, -3.22]		
Currie, 2000	48.57	16.67	32	57.14	17.14	28	6.6%	-8.57 [-17.15, 0.01]		
Eadie, 2013	-6.8	26.65	16	-19.6	30.54	17	2.9%	12.80 [-6.73, 32.33]		+
Field, 2007	14	16	15	27	24	15	4.2%	-13.00 [-27.60, 1.60]		
Goforth, 2014	31.69	17.92	32	51.6	22.44	20	5.2%	-19.91 [-31.54, -8.28]		
Hernandez-reif, 2009	17	23	12	29	28	12	2.7%	-12.00 [-32.50, 8.50]		
Huang, 2010	43.2	18.6	6	45.8	30.2	6	1.6%	-2.60 [-30.98, 25.78]		
Jochem 1997	24.19	30.63	10	36.88	46.7	10	1.2%	-12.69 [-47.30, 21.92]		
Jungquist, 2010	38	29	19	46	26	9	2.6%	-8.00 [-29.41, 13.41]		
Kuraganova, 2015	9	11.2	31	22.5	16	29	7.3%	-13.50 [-20.53, -6.47]		-
Lavin 1997	-3.86	21.1	23	0	21.1	23	5.0%	-3.86 [-16.05, 8.33]		
Lee, 2017	34.83	20.06	23	40.43	24.02	21	4.7%	-5.60 [-18.74, 7.54]		
Lu, 2017	51.5	32.4	23	93.7	52.3	23	2.0%	-42.20 [-67.34, -17.06]		
Pigeon, 2012	52.38	10.95	6	35.71	4.76	4	6.0%	16.67 [6.74, 26.60]		
Smith, 2015	39.81	21.46	43	40.32	19.07	48	6.7%	-0.51 [-8.89, 7.87]		-
Tang 2012	60	19	10	59	25	10	2.9%	1.00 [-18.46, 20.46]		
Vitiello, 2009	33.9	24.3	23	46.9	25	28	4.5%	-13.00 [-26.58, 0.58]		
Vitiello, 2013	39.9	28.97	113	40.8	22.32	122	7.5%	-0.90 [-7.55, 5.75]		+
Wepner, 2008	42.28	26.14	18	47.5	31.024	18	3.1%	-5.22 [-23.96, 13.52]		
Total (95% CI)			590			585	100.0%	-6.22 [-10.24, -2.21]		•
Heterogeneity: Tau ² = 4	14.60; CI	hi² = 59.8	88, df =	20 (P <	0.00001); I ² = 6	7%		100	-50 0 50 100
Test for overall effect: Z									-100	-50 0 50 100 Favours [experimental] Favours [control/other]

Fig. 2A. Forest plot overall pain post. Scores converted to 0–100 scale, lower better.

Denotes statistical significance.

[†] Lower scores are better.

Fig. 2B. Forest plot: overall sleep efficiency post. 0-100 scale, higher better.

Fig. 2C. Forest plot: overall Insomnia Severity Index post. 0–28 scale, lower better.

	Experimental Control						Mean Difference		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C		IV, Random, 95	5% CI	
Cheung, 2014	5	2.21	18	6.1	2.21	18	24.0%	-1.10 [-2.54, 0.34]		•		
Currie, 2000	8.8	3.5	32	12.7	3.4	28	21.2%	-3.90 [-5.65, -2.15]		-		
Eadie, 2013	-1.06	3.73	16	-1.54	4.06	17	14.3%	0.48 [-2.18, 3.14]		+		
Huang, 2010	7.3	2.8	6	10	4.2	6	8.1%	-2.70 [-6.74, 1.34]		-		
Lee, 2017	9.91	3.52	23	10.67	4.13	21	16.8%	-0.76 [-3.04, 1.52]		+		
Lu, 2017	-1.48	1.83	23	-0.47	5.74	23	15.5%	-1.01 [-3.47, 1.45]		†		
Total (95% CI)			118			113	100.0%	-1.53 [-2.85, -0.20]		•		
Heterogeneity: Tau ² = 1.35; Chi ² = 10.49, df = 5 (P = 0.06); I^2 = 52% Test for overall effect: Z = 2.26 (P = 0.02)									100 -50 Favours [expe	0 erimental] Favo	50 ours [control/other]	100

Fig. 2D. Forest plot: overall Pittsburgh Sleep Quality Index post. 0–28 scale, lower better.

Fig. 3A. Forest plot: overall pain 1-9 months. Scores converted to 0-100 scale, lower better.

Fig. 3B. Forest plot: overall sleep efficiency 1–9 months. 0–100 scale, higher better.

	Experimental			Control			Mean Difference			Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% CI		
Eadie, 2013	-0.2	3.4129	15	-0.85	3.1442	13	33.9%	0.65 [-1.78, 3.08]		•		
Smith, 2015	8.9	5.99	34	12.3	6.54	40	29.4%	-3.40 [-6.26, -0.54]		=		
Vitiello, 2013	8.28	9.6983	108	10.18	6.7494	120	36.7%	-1.90 [-4.09, 0.29]		•		
Total (95% CI)			157			173	100.0%	-1.48 [-3.70, 0.75]				
Heterogeneity: $Tau^2 = 2.25$; $Chi^2 = 4.82$, $df = 2$ (P = 0.09); $I^2 = 58\%$ Test for overall effect: Z = 1.30 (P = 0.19)										-50 0 50 Favours [experimental] Favours [control/other]	100	
										i avours [experimental] Tavours [control/other]		

Fig. 3C. Forest plot: overall Insomnia Severity Index 1–9 months. 0–28 scale, lower better.

	Experimental			Control			Mean Difference			Mean Diff		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Randon	n, 95% CI	
Currie, 2000	7.9	3.7	32	13.5	3.6	28	53.2%	-5.60 [-7.45, -3.75]				
Eadie, 2013	-1.4	3.4129	15	-0.31	4.2694	13	46.8%	-1.09 [-3.98, 1.80]		•		
Total (95% CI)			47			41	100.0%	-3.49 [-7.90, 0.92]		. •		
Heterogeneity: Tau ² = Test for overall effect:				(P = 0.	01); l² = 8		-100	-50 0 Favours [experimental]	50 Favours [control	100 /other]		

Fig. 3D. Forest plot: overall Pittsburgh Sleep Quality Index 1—9 months. 0—21 scale, lower better.

Appendix. Funnel Plots

Pain Overall Post.

ISI Overall Post.

Sleep Efficiency Overall Post.

PSQI Overall Post.

References

- 1. Collaborators* GBoDS. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990—2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England) 2015;386(9995):743—800.
- 2. O'Neill S, Manniche C, Graven-Nielsen T, Arendt-Nielsen L. Generalized deep-tissue hyperalgesia in patients with chronic low-back pain. Eur J Pain 2007;11(4):415–20.
- **3.** Gwilym SE, Keltner JR, Warnaby CE, Carr AJ, Chizh B, Chessell I, *et al.* Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum 2009;61(9):1226–34.
- **4.** Staud R. Evidence for shared pain mechanisms in osteoarthritis, low back pain, and fibromyalgia. Curr Rheumatol Rep 2011;13(6):513–20.
- 5. Gwilym SE, Filippini N, Douaud G, Carr AJ, Tracey I. Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after arthroplasty: a longitudinal voxel-based morphometric study. Arthritis Rheum 2010;62(10):2930—40.
- **6.** Giesecke T, Gracely RH, Grant MA, Nachemson A, Petzke F, Williams DA, *et al.* Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum 2004;50(2):613–23.
- 7. Flor H, Braun C, Elbert T, Birbaumer N. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci Lett 1997;224(1):5–8.
- **8.** Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, *et al.* Sensitization in patients with painful knee osteoarthritis. Pain 2010;149(3):573–81.
- **9.** Blanpied PR, Gross AR, Elliott JM, Devaney LL, Clewley D, Walton DM, *et al.* Neck pain: revision 2017. J Orthop Sports Phys Ther 2017;47(7):A1—A83.
- **10.** Bernstein IA, Malik Q, Carville S, Ward S. Low back pain and sciatica: summary of NICE guidance. BMJ 2017;356.
- National Clinical Guideline C. National Institute for Health and Clinical Excellence: Guidance. Osteoarthritis: Care and Management in Adults. London: National Institute for Health and Care Excellence (UK) Copyright (c) National Clinical Guideline Centre: 2014.
- 12. Mork PJ, Vik KL, Moe B, Lier R, Bardal EM, Nilsen TI. Sleep problems, exercise and obesity and risk of chronic musculoskeletal pain: the Norwegian HUNT study. Eur J Public Health 2014;24(6):924–9.
- Smith MT, Quartana PJ, Okonkwo RM, Nasir A. Mechanisms by which sleep disturbance contributes to osteoarthritis pain: a conceptual model. Curr Pain Headache Rep 2009;13(6): 447–54.
- **14.** Allen KD, Renner JB, Devellis B, Helmick CG, Jordan JM. Osteoarthritis and sleep: the Johnston County Osteoarthritis Project. J Rheumatol 2008;35(6):1102–7.
- Alsaadi SM, McAuley JH, Hush JM, Maher CG. Prevalence of sleep disturbance in patients with low back pain. Eur Spine J 2011;20(5):737–43.
- **16.** Artner J, Cakir B, Spiekermann J-A, Kurz S, Leucht F, Reichel H, *et al.* Prevalence of sleep deprivation in patients with chronic neck and back pain: a retrospective evaluation of 1016 patients. J Pain Res 2013;6:1–6.
- **17.** Morin CM, Benca R. Chronic insomnia. Lancet (London, England) 2012;379(9821):1129–41.
- **18.** Asih S, Neblett R, Mayer TG, Brede E, Gatchel RJ. Insomnia in a chronic musculoskeletal pain with disability population is independent of pain and depression. Spine J 2014;14(9):2000—7.

- American Psychiatric Association DSMTF, American Psychiatric
 Diagnostic and Statistical Manual of Mental Disorders: DSM Washington, D.C.: American Psychiatric Association; 2013.
- **20.** Marin R, Cyhan T, Miklos W. Sleep disturbance in patients with chronic low back pain. Am J Phys Med Rehabil 2006;85(5): 430–5.
- 21. Tsuji T, Matsudaira K, Sato H, Vietri J. The impact of depression among chronic low back pain patients in Japan. BMC Muscoskelet Disord 2016;17(1):447.
- 22. Wilson KG, Eriksson MY, D'Eon JL, Mikail SF, Emery PC. Major depression and insomnia in chronic pain. Clin J Pain 2002;18(2):77–83.
- 23. Sezgin M, Hasanefendioglu EZ, Sungur MA, Incel NA, Cimen OB, Kanik A, *et al.* Sleep quality in patients with chronic low back pain: a cross-sectional study assessing its relations with pain, functional status and quality of life. J Back Musculoskelet Rehabil 2015;28(3):433–41.
- 24. Parmelee PA, Tighe CA, Dautovich ND. Sleep disturbance in osteoarthritis: linkages with pain, disability and depressive symptoms. Arthritis Care Res 2015;67(3):358–65.
- **25.** Alsaadi SM, McAuley JH, Hush JM, Lo S, Bartlett DJ, Grunstein RR, *et al.* The bidirectional relationship between pain intensity and sleep disturbance/quality in patients with low back pain. Clin J Pain 2014;30(9):755–65.
- 26. Kelly GA, Blake C, Power CK, O'Keeffe D, Fullen BM. The association between chronic low back pain and sleep: a systematic review. Clin J Pain 2011;27(2):169–81.
- 27. Vitiello MV, Rybarczyk B, Von Korff M, Stepanski EJ. Cognitive behavioral therapy for insomnia improves sleep and decreases pain in older adults with co-morbid insomnia and osteoarthritis. J Clin Sleep Med 2009;5(4):355—62.
- **28.** Von Korff M, Vitiello MV, McCurry SM, Balderson BH, Moore AL, Baker LD, *et al.* Group interventions for co-morbid insomnia and osteoarthritis pain in primary care: the lifestyles cluster randomized trial design. Contemp Clin Trials 2012;33(4):759–68.
- 29. Qaseem A, Kansagara D, Forciea MA, Cooke M, Denberg TD. Management of chronic insomnia disorder in adults: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2016;165(2):125–33.
- **30.** Morin CM, Vallieres A, Guay B, Ivers H, Savard J, Merette C, *et al.* Cognitive behavioral therapy, singly and combined with medication, for persistent insomnia: a randomized controlled trial. Jama 2009;301(19):2005–15.
- **31.** Wilt TJ, MacDonald R, Brasure M, Olson CM, Carlyle M, Fuchs E, *et al.* Pharmacologic treatment of insomnia disorder: an evidence report for a clinical practice guideline by the American College of Physicians. Ann Intern Med 2016;165(2):103–12.
- **32.** Smith MT, Finan PH, Buenaver LF, Robinson M, Haque U, Quain A, *et al.* Cognitive-behavioral therapy for insomnia in knee osteoarthritis: a randomized, double-blind, active placebo-controlled clinical trial. Arthritis Rheumatol 2015;67(5):1221–33.
- **33.** Vitiello MV, McCurry SM, Shortreed SM, Balderson BH, Baker LD, Keefe FJ, *et al.* Cognitive-behavioral treatment for comorbid insomnia and osteoarthritis pain in primary care: the lifestyles randomized controlled trial. J Am Geriatr Soc 2013;61(6):947–56.
- **34.** Currie SR, Wilson KG, Pontefract AJ, deLaplante L. Cognitive-behavioral treatment of insomnia secondary to chronic pain. J Consult Clin Psychol 2000;68(3):407–16.
- **35.** Pigeon WR, Moynihan J, Matteson-Rusby S, Jungquist CR, Xia Y, Tu X, *et al.* Comparative effectiveness of CBT interventions for co-morbid chronic pain & insomnia: a pilot study. Behav Res Ther 2012;50(11):685–9.

- **36.** Jungquist CR, O'Brien C, Matteson-Rusby S, Smith MT, Pigeon WR, Xia Y, *et al.* The efficacy of cognitive-behavioral therapy for insomnia in patients with chronic pain. Sleep Med 2010;11(3):302–9.
- **37.** Tang NK, Goodchild CE, Salkovskis PM. Hybrid cognitive-behaviour therapy for individuals with insomnia and chronic pain: a pilot randomised controlled trial. Behav Res Ther 2012:50(12):814–21.
- **38.** Bohra MH, Espie CA. Is cognitive behavioural therapy for insomnia effective in treating insomnia and pain in individuals with chronic non-malignant pain? Br J Pain 2013;7(3):138–51.
- **39.** Tang NKY, Lereya ST, Boulton H, Miller MA, Wolke D, Cappuccio FP. Nonpharmacological treatments of insomnia for long-term painful conditions: a systematic review and meta-analysis of patient-reported outcomes in randomized controlled trials. Sleep 2015;38(11). 1751-64E.
- **40.** Cheung C, Wyman JF, Resnick B, Savik K. Yoga for managing knee osteoarthritis in older women: a pilot randomized controlled trial. BMC Altern Med 2014;14:160.
- **41.** Goforth HW, Preud'homme XA, Krystal AD. A randomized, double-blind, placebo-controlled trial of eszopiclone for the treatment of insomnia in patients with chronic low back pain. Sleep 2014;37(6):1053–60.
- **42.** Kurganova YM, Danilov AB. A role of melatonin in the treatment of low back pain (Russian). Zh Nevrol Psikhiatr Im S S Korsakova 2015;115(4):30–5.
- **43.** Lu J, Huang L, Wu X, Fu W, Liu Y. Effect of Tai Ji Quan training on self-reported sleep quality in elderly Chinese women with knee osteoarthritis: a randomized controlled trail. Sleep Med 2017:33:70–5.
- 44. Lee JH, Shin JS, Yoo HK, Lee J, Lee YJ, Kim MR, *et al.* Short-term effects of a functional cervical pillow on inpatients with neck discomfort: a randomized controlled trial. Int J Clin Exp Med 2016;9(6):11397—408.
- **45.** McCurry SM, Shortreed SM, Von Korff M, Balderson BH, Baker LD, Rybarczyk BD, *et al.* Who benefits from CBT for insomnia in primary care? Important patient selection and trial design lessons from longitudinal results of the Lifestyles trial. Sleep 2014;37(2):299–308.
- **46.** Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, *et al.* Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4(1):1.
- **47.** Monk TH, Reynolds CF, Kupfer DJ, Buysse DJ, Coble PA, Hayes AJ, *et al.* The Pittsburgh sleep diary. J Sleep Res 1994;3(2):111–20.
- **48.** Morin CM, Belleville G, Bélanger L, Ivers H. The Insomnia Severity Index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 2011;34(5):601–8.
- **49.** Buysse DJ, Reynolds 3rd CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatr Res 1989;28(2):193–213.
- **50.** Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 2003;83(8):713–21.
- 51. Bergholdt K, Fabricius RN, Bendix T. Better backs by better beds? Spine 2008;33(7):703–8.
- 52. Bernateck M, Karst M, Merkesdal S, Fischer MJ, Gutenbrunner C. Sustained effects of comprehensive inpatient rehabilitative treatment and sleeping neck support in patients with chronic cervicobrachialgia: a prospective and randomized clinical trial. Int J Rehabil Res 2008;31(4):342–6.
- 53. Eadie J, van de Water AT, Lonsdale C, Tully MA, van Mechelen W, Boreham CA, *et al.* Physiotherapy for sleep disturbance in people with chronic low back pain: results of a

- feasibility randomized controlled trial. Arch Phys Med Rehabil 2013;94(11);2083—92.
- **54.** Field T, Hernandez-Reif M, Diego M, Fraser M. Lower back pain and sleep disturbance are reduced following massage therapy. J Bodyw Mov Ther 2007;11(2):141–5.
- 55. Gutenbrunner C, Gundermann G, Hager G, Hager V, Gehrke A. Prospektive studie uber die langseitwirksamkeit stationarer heilverfahren bei patienten mit chronischen zervikobrachialsyndromen und zum effeckt einer zusatzlichen verordnung spezieller funktionskopfkissen. [Prospective study of the long-term effectiveness of inpatient rehabilitation of patients with chronic cervicobrachial syndromes and the effect of prescribing special functional pillows] (German). Rehabilitation 1999;38(3): 170—6
- 56. Hernandez-Reif M, Field T, Krasnegor J, Theakston H. Lower back pain is reduced and range of motion increased after massage therapy. Int J Neurosci 2001;106(3–4):131–45.
- 57. Huang W, Bliwise DL, Carnevale CV, Kutner NG. Acupuncture for pain and sleep in knee osteoarthritis. J Am Geriatr Soc 2010;58(5):1218–20 (Seems good. Pilot, may not have enough power. Short paper since no discussion/intro.).
- 58. Jochems O, Vortman B, Derde M. Gerandomiseerd onderzoek naar het effect van The Pillow op de nachtrust, pijn en voorkeur van patienten met klachten van de nek- en schouderregio (Dutch). Ned Tijdschr Fysiother [Dutch J Phys Ther] 1997;107: 159–63.
- **59.** Lavin RA, Pappagallo M, Kuhlemeier KV. Cervical pain: a comparison of three pillows. Arch Phys Med Rehabil 1997;78(2):193–8.
- **60.** Van Wieringen S, Jansen T, Smits MG, Nagtegaal JE, Coenen AML. Melatonin for chronic whiplash syndrome with delayed melatonin onset: randomised, placebo-controlled trial. Clin Drug Investig 2001;21(12):813–20.
- **61.** Wepner F, Hahne J, Teichmann A, Berka-Schmid G, Hordinger A, Friedrich M. Treatment with crystal singing bowls for chronic, spinal pain and chronobiologic activities a randomized controlled trial (German). Forsch Komplementärmed 2008;15(3):130—7.
- **62.** Wilson SJ, Nutt DJ, Alford C, Argyropoulos SV, Baldwin DS, Bateson AN, *et al.* British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias and circadian rhythm disorders. J Psychopharmacol (Oxford, England) 2010;24(11):1577–601.
- **63.** Snyder-Halpern R, Verran JA. Instrumentation to describe subjective sleep characteristics in healthy subjects. Res Nurs Health 1987;10(3):155–63.
- **64.** Ferreira ML, Herbert RD, Ferreira PH, Latimer J, Ostelo RW, Grotle M, *et al.* The smallest worthwhile effect of nonsteroidal anti-inflammatory drugs and physiotherapy for chronic low back pain: a benefit-harm trade-off study. J Clin Epidemiol 2013;66(12):1397–404.
- **65.** Yang M, Morin CM, Schaefer K, Wallenstein GV. Interpreting score differences in the Insomnia Severity Index: using health-related outcomes to define the minimally important difference. Curr Med Res Opin 2009;25(10):2487–94.
- 66. Kyle SD, Miller CB, Rogers Z, Siriwardena AN, Macmahon KM, Espie CA. Sleep restriction therapy for insomnia is associated with reduced objective total sleep time, increased daytime somnolence, and objectively impaired vigilance: implications for the clinical management of insomnia disorder. Sleep 2014;37(2):229–37.
- **67.** Bastick AN, Runhaar J, Belo JN, Bierma-Zeinstra SM. Prognostic factors for progression of clinical osteoarthritis of the knee: a systematic review of observational studies. Arthritis Res Ther 2015;17:152.

- **68.** Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011:342.
- 69. Salwen JK, Smith MT, Finan PH. Mid-treatment sleep duration predicts clinically significant knee osteoarthritis pain reduction at 6 months: effects from A behavioral sleep medicine clinical trial. Sleep 2017 Feb 1;40(2), https://doi.org/10.1093/sleep/zsw064.
- **70.** Vitiello MV, McCurry SM, Shortreed SM, Baker LD, Rybarczyk BD, Keefe FJ, *et al.* Short-term improvement in insomnia symptoms predicts long-term improvements in sleep, pain, and fatigue in older adults with Co-morbid osteoarthritis and insomnia. Pain 2014;155(8):1547–54.
- 71. Murphy SL, Robinson-Lane SG, Niemiec SLS. Knee and hip osteoarthritis management: a review of current and emerging

- non-pharmacological approaches. Curr Treatm Opt Rheumatol 2016;2(4):296—311.
- 72. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, *et al.* OARSI recommendations for the management of hip and knee osteoarthritis, part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis Cartilage 2008;16(2):137–62.
- **73.** Bardin LD, King P, Maher CG. Diagnostic triage for low back pain: a practical approach for primary care. Med J Aust 2017;206(6): 268–73
- 74. Zachariae R, Lyby MS, Ritterband LM, O'Toole MS. Efficacy of internet-delivered cognitive-behavioral therapy for insomnia a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev 2016;30:1—10.