Solutions to Jech's Set Theory, The Third Millenium Edition, Revised and Expanded

Steve Sabean

April 15, 2021

Contents

Ι	Basic Set Theory	1
1	Axioms of Set Theory	3
2	Ordinal Numbers	11

iv CONTENTS

Part I Basic Set Theory

Chapter 1

Axioms of Set Theory

1.1 Exercise 1

Verify (1.1).

Solution. If a = c and b = d, then (a, b) = (c, d) as a consequence of an axiom of first-order logic with equality, namely, that equals may be substituted for equals in a formula.

Conversely, suppose that (a, b) = (c, d). Then

$$\{\{a\},\{a,b\}\} = \{\{c\},\{c,d\}\}.$$

If a = b, then

$$\{\{a\},\{a,b\}\} = \{\{a\},\{a,a\}\} = \{\{a\}\}.$$

Therefore $\{a\} = \{c\}$ and $\{a\} = \{c,d\}$. Hence, a = c = d, from which it follows that a = c and b = d. If $a \neq b$, then $\{a\} = \{c\}$ and $\{a,b\} = \{c,d\}$. Therefore a = c, and from this it follows that $\{a,b\} = \{a,d\}$. Hence b = d.

1.2 Exercise 2

There is no set X such that $P(X) \subset X$.

Solution. Suppose there exists a set X such that $P(X) \subset X$. Let $Y = \{x : x \in X \text{ and } x \notin x\}$. Clearly, $Y \subset X$, hence $Y \in P(X)$ and therefore $Y \in X$. However $Y \in Y$ if and only if $Y \notin Y$. We have therefore reached a contradiction and conclude that no such set X exists.

Let

$$N = \bigcap \{X : X \text{ is inductive}\}.$$

N is the smallest inductive set. Let us use the following notation:

$$0 = \emptyset$$
, $1 = \{0\}$, $2 = \{0, 1\}$, $3 = \{0, 1, 2\}$,

If $n \in \mathbb{N}$, let $n+1 = n \cup \{n\}$. Let us define < (on \mathbb{N}) by n < m if and only if $n \in m$.

A set T is transitive if $x \in T$ implies $x \subset T$.

1.3 Exercise 3

If X is inductive, then the set $\{x \in X : x \subset X\}$ is inductive. Hence **N** is transitive, and for each $n, n = \{m \in \mathbf{N} : m < n\}$.

Solution. Let X be inductive. Let $Y = \{x \in X : x \subset X\}$. Since X is inductive, $\emptyset \in X$. Since $\emptyset \subset X$, $\emptyset \in Y$. Let $x \in Y$, then $x \in X$ and $x \subset X$. Since X is inductive, $x \cup \{x\} \in X$. If $y \in x \cup \{x\}$, then $y \in x$ or y = x. If $y \in x$, then since $x \subset X$, we have $y \in X$. If y = x, then clearly $y \in X$. Hence $x \cup \{x\} \subset X$. Thus, it follows that $x \cup \{x\} \in Y$ and therefore Y is inductive.

Since N is inductive, the set $M = \{n \in \mathbb{N} : n \subset \mathbb{N}\}$ is inductive. Clearly, $M \subset \mathbb{N}$, and since M is inductive, $\mathbb{N} \subset M$, and therefore $M = \mathbb{N}$. From this it follows that for every $n \in \mathbb{N}$, $n \subset \mathbb{N}$. Hence, \mathbb{N} is transitive. If $n \in \mathbb{N}$, then $n \subset \mathbb{N}$. Hence if $m \in n$, then $m \in \mathbb{N}$, and by definition, m < n. Therefore $n \subset \{m \in \mathbb{N} : m < n\}$. Conversely, if $k \in \{m \in \mathbb{N} : m < n\}$, then k < n and consequently $k \in n$. It follows that $\{m \in \mathbb{N} : m < n\} \subset n$ and therefore that $n = \{m \in \mathbb{N} : m < n\}$.

1.4 Exercise 4

If X is inductive, then the set $\{x \in X : x \text{ is transitive}\}$ is inductive. Hence every $n \in \mathbb{N}$ is transitive.

Solution. Let X be inductive. Let $Y = \{x \in X : x \text{ is transitive}\}$. Since X is inductive, $\emptyset \in X$. Since \emptyset is transitive (vacuously), $\emptyset \in Y$. Let $x \in Y$, then $x \in X$ and x is transitive. Since X is inductive, $x \cup \{x\} \in X$. If $y \in x \cup \{x\}$,

1.5. EXERCISE 5

then $y \in x$ or y = x. If $y \in x$, then since x is transitive, $y \subset x$ and therefore $y \subset x \cup \{x\}$. If y = x, then clearly $y \subset x \cup \{x\}$. Hence $x \cup \{x\}$ is transitive, from which it follows that $x \cup \{x\} \in Y$. Therefore Y is inductive.

Since N is inductive, the set $M = \{n \in \mathbb{N} : n \text{ is transitive}\}$ is inductive. Clearly, $M \subset \mathbb{N}$, and since M is inductive, $\mathbb{N} \subset M$, and therefore $M = \mathbb{N}$. From this it follows that for every $n \in \mathbb{N}$, n is transitive.

1.5 Exercise 5

If X is inductive, then the set $\{x \in X : x \text{ is transitive and } x \notin x\}$ is inductive. Hence $n \notin n$ and $n \neq n+1$ for each $n \in \mathbb{N}$.

Solution. Let X be inductive. Let $Y = \{x \in X : x \text{ is transitive and } x \notin x\}$. Since X is inductive, $\emptyset \in X$. Since \emptyset is transitive and $\emptyset \notin \emptyset$, $\emptyset \in Y$. Let $x \in Y$, then $x \in X$, x is transitive, and $x \notin x$. Since X is inductive, $x \cup \{x\} \in X$. If $y \in x \cup \{x\}$, then $y \in x$ or y = x. If $y \in x$, then since x is transitive, $y \subset x$ and therefore $y \subset x \cup \{x\}$. If y = x, then clearly $y \subset x \cup \{x\}$. Hence $x \cup \{x\}$ is transitive. Suppose that $x \cup \{x\} \in x \cup \{x\}$. Then $x \cup \{x\} \in x$ or $x \cup \{x\} = x$. If $x \cup \{x\} \in x$, then since x is transitive, we have $x \cup \{x\} \subset x$. Therefore, since $x \in x \cup \{x\}$, we have $x \in x$, which is a contradiction. If $x \cup \{x\} = x$, then since $x \in x \cup \{x\}$, we again have $x \in x$. Thus in either case we have reached a contradiction, and conclude that $x \cup \{x\} \notin x \cup \{x\}$. Therefore $x \cup \{x\} \in Y$. Hence Y is inductive.

Since N is inductive, the set $M = \{n \in \mathbb{N} : n \text{ is transitive and } n \notin n\}$ is inductive. Clearly, $M \subset \mathbb{N}$, and since M is inductive, $\mathbb{N} \subset M$, and therefore $M = \mathbb{N}$. Therefore $n \notin n$ for every $n \in \mathbb{N}$. Since $n \in n \cup \{n\}$, but $n \notin n$, it follows that $n \neq n + 1$.

1.6 Exercise 6

If X is inductive, then the set $\{x \in X : x \text{ is transitive and every nonempty } z \subset x \text{ has an } \in \text{-minimal element}\}$ is inductive (t is $\in \text{-minimal in } z$ if there is no $s \in z$ such that $s \in t$).

Solution. Let X be inductive. Let $Y = \{x \in X : x \text{ is transitive and every nonempty } z \subset x \text{ has an } \in \text{-minimal element}\}$. Since X is inductive, $\emptyset \in X$. Since \emptyset is transitive and since \emptyset has no nonempty subsets, $\emptyset \in Y$. Let $x \in Y$,

then $x \in X$, x is transitive, and every nonempty subset of x has an \in -minimal element. Since X is inductive, $x \cup \{x\} \in X$. If $y \in x \cup \{x\}$, then $y \in x$ or y = x. If $y \in x$, then since x is transitive, $y \subset x$ and therefore $y \subset x \cup \{x\}$. If y = x, then clearly $y \subset x \cup \{x\}$. Hence $x \cup \{x\}$ is transitive. Let z be a nonempty subset of $x \cup \{x\}$. If $z - \{x\}$ is empty, then clearly $z = \{x\}$, hence z has an \in -minimal element, namely, x. If $z - \{x\}$ is nonempty, then since $z - \{x\} \subset x$, it follows that $z - \{x\}$ has an \in -minimal element. Let t be an \in -minimal element of $z - \{x\}$. Then t is also an \in -minimal element of z. To see this, suppose that $x \in t$. Since x is transitive, $t \in x$ implies $t \subset x$. Hence, $x \in t$ implies $x \in x$. This means that x has no \in -minimal element, which is a contradiction. Therefore, $x \cup \{x\} \in Y$. Hence Y is inductive. \square

1.7 Exercise 7

Every nonempty $X \subset \mathbb{N}$ has an \in -minimal element. [Pick $n \in X$ and look at $X \cap n$.]

Solution. Let $X \subset \mathbb{N}$ be nonempty. Since X is nonempty, let $n \in X$. If $n \cap X = \emptyset$, then $m \in n$ implies $m \notin X$. Hence n is an \in -minimal element of X. If $n \cap X$ is nonempty, then since $n \cap X$ is a nonempty subset of n, by Exercise 1.6, $n \cap X$ has an \in -minimal element. Let t be an \in -minimal element of $n \cap X$. Suppose that $s \in X$ such that $s \in t$. Since, n is transitive, $t \in n$ implies $t \subset n$, and therefore $s \in n$. This contradicts the minimality of t. Therefore, no such s exists and we conclude that t is an \in -minimal element of X.

1.8 Exercise 8

If X is inductive then so is $\{x \in X : x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$. Hence each $n \neq 0$ is m+1 for some m.

Solution. Let X be inductive. Let $Y = \{x \in X : x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$. Clearly, $\emptyset \in Y$. Let $x \in Y$, then $x \in X$. Since X is inductive, $x \cup \{x\} \in X$, and it follows that $x \cup \{x\} \in Y$.

Hence $\mathbf{N} \subset Y$. Therefore, either $n = \emptyset = 0$ or $n = m \cup \{m\}$ for some m. If the latter, then $m \in n$ and therefore $m \in \mathbf{N}$. Hence n = m + 1.

1.9. EXERCISE 9 7

1.9 Exercise 9

Induction. Let A be a subset of N such that $0 \in A$, and if $n \in A$ then $n + 1 \in A$. Then A = N.

Solution. Suppose that $A \neq N$. Then N-A is a nonempty subset of N. Therefore, by Exercise 1.7, N-A has an \in -minimal element. Let t be an \in -minimal element of N-A. Since $0 \in A$, we have $t \neq 0$. Therefore, by Exercise 1.8, t = s + 1 for some $s \in N$. Suppose that $s \notin A$. Then $s \in N-A$. However, since $s \in t$, this contradicts the minimality of t in N-A. Hence $s \in A$, from which it follows that $t = s + 1 \in A$. But this is another contradiction, and we conclude that A = N.

1.10 Exercise 10

Each $n \in \mathbf{N}$ is T-finite.

Solution. Let $A = \{n \in \mathbb{N} : n \text{ is T-finite}\}$. Clearly 0 is T-finite, since if X is a nonempty subset of $P(0) = \{0\}$, then $X = \{0\}$, where obviously 0 is \subset -maximal in X. Let $n \in A$ and X a nonempty subset of P(n+1). Consider the set $Y = \{y : y = x - \{n\} \text{ for some } x \in X\}$. Clearly $Y \subset P(n)$ and Y is nonempty because X is. Therefore let u be a \subset -maximal element of Y. If $u \cup \{n\} \notin X$, then u is a \subset -maximal element of X. To see this, suppose that $v \in X$ with $u \subset v$. Then $v - \{n\} \in Y$, and since $n \notin u$, we have $u \subset v - \{n\}$, which contradicts the maximality of u. On the other hand, if $u \cup \{n\} \in X$, then $u \cup \{n\}$ is a \subset -maximal element of X. In this case, we suppose that $v \in X$ with $u \cup \{n\} \subset v$. Then $u = (u \cup \{n\}) - \{n\} \subset v - \{n\}$. Since $v - \{n\} \in Y$, this contradicts the maximality of u. Hence X has a \subset -maximal element. Therefore $v \in X$ is T-finite. \square

1.11 Exercise 11

N is T-infinite; the set $N \subset P(N)$ has no \subset -maximal element.

Solution. Suppose that N has a \subset -maximal element k. Since $k+1=k\cup\{k\}\in N$ and since $k\subset k+1$, we have reached a contradiction. Hence N has no \subset -maximal element.

1.12 Exercise 12

Every finite set is T-finite.

Solution. Let X be a finite set. Then there exists an $n \in \mathbb{N}$ such that there exists a one-to-one mapping, f, of X onto n, i.e., $f: X \to n$. Let $A \subset P(X)$ be nonempty. Thus, for each $x \in A$, we have $f(x) \subset n$. Let $M = \{y : y = f(x) \text{ for some } x \in A\}$. Then M is a nonempty collection of subsets of n, and since n is T-finite, M has a \subset -maximal element k. The claim is that $u = f_{-1}(k)$ is \subset -maximal in X. Indeed, let $v \in A$ with $u \subset v$. Since f is one-to-one, we therefore have $f(u) \subset f(v)$. However, this contradicts the maximality of f(u). Hence every nonempty collection of subsets of X has a \subset -maximal element, and hence X is T-finite. \square

1.13 Exercise 13

Every infinite set is T-infinite. [If S is infinite, consider $X = \{u \subset S : u \text{ is finite}\}.$]

Solution. Let S be infinite and $X = \{u \subset S : u \text{ is finite}\}$. Since $\emptyset \subset S$ and \emptyset is finite, we have $\emptyset \in X$ and hence X is nonempty. Suppose that X has a \subset -maximal element, v. Then S-v is nonempty, hence, let $x \in S-v$. It follows that $v \subset v \cup \{x\}$. However, $v \cup \{x\}$ is finite since v is finite. Therefore, we have reached a contradiction and conclude that X has no \subset -maximal element, i.e., X is T-infinite.

1.14 Exercise 14

The Separation Axioms follow from the Replacement Schema. [Given ϕ , let $F = \{(x, x) : \phi(x)\}$. Then $\{x \in X : \phi(x)\} = F(X)$ for every X.]

Solution. Let p and X be sets and let $\phi(u, p)$ be a formula. Let $F = \{(x, x) : \phi(x, p)\}$. Clearly, $\{x \in X : \phi(x, p)\} = F(X)$. Therefore, by Replacement, $\{x \in X : \phi(x, p)\}$ is a set.

9

Exercise 15 1.15

Instead of Union, Power Set, and Replacement Axioms consider the following weaker versions:

$$\forall X \exists Y \bigcup X \subset Y, \qquad \text{i.e., } \forall X \exists Y \ (\forall x \in X)(\forall u \in x)u \in Y, \qquad (1.8)$$

$$\forall X \exists Y \ P(X) \subset Y, \qquad \text{i.e., } \forall X \exists Y \ \forall u(u \subset X \to u \subset Y), \qquad (1.9)$$

$$\forall X \exists Y \ P(X) \subset Y$$
, i.e., $\forall X \exists Y \ \forall u (u \subset X \to u \subset Y)$, (1.9)

If a class
$$F$$
 is a function, then $\forall X \exists Y \ F(X) \subset Y$. (1.10)

Then axioms 1.4, 1.5, and 1.7 can be proved from (1.8), (1.9), and (1.10), using the Separation Schema (1.3).

Solution. Using (1.8), let X and Y be such that $(\forall x \in X)(\forall u \in x) \ u \in Y$. Let $Z = \{u \in Y : (\exists x \in X) \ u \in x\}$. Then by the Separation Schema, Z is a set, and $Z = \bigcup X$.

Similarly, using (1.9), consider $Z = \{u \in Y : u \subset X\}$ And using (1.10), consider $Z = \{u \in Y : (\exists x \in X) \ \phi(x, u, p)\}.$

Chapter 2

Ordinal Numbers

2.1 Exercise 1

The relation "(P, <) is isomorphic to (Q, <)" is an equivalence relation (on the class of all partially ordered sets).

Solution. Let (P, <) be a partially ordered set. Let $\mathrm{id}_P : P \to P$ be the identity function, i.e., $\mathrm{id}_P(p) = p$ for every $p \in P$. Clearly, id_P is a one-to-one function of P onto itself. Also, id_P is obviously order-preserving, and since $\mathrm{id}_P = \mathrm{id}_P^{-1}$, it follows that id_P^{-1} is order-preserving. Therefore, id_P is an automorphism of (P, >). Hence, (P, >) is isomorphic to itself.

Let P(,<) be isomorphic to Q(,<) and let $f:P\to Q$ be an isomorphism. Then $f^{-1}:Q\to P$ is one-to-one, onto, and order-preserving. f^{-1} is therefore an isomorphism, and hence, (Q,<) is isomorphic to (P,<).

Let (P,<) be isomorphic to (Q,<) and (Q,<) be isomorphic to (R,<). Then there exist isomorphisms $f:P\to Q$ and $g:Q\to R$. Therefore the composition $g\circ f$ is one-to-one and onto since f and g are. Furthermore, $g\circ f$ is order-preserving, since x>y implies f(x)>f(y) which further implies g(f(x))>g(f(y)). The inverse composition, $f^{-1}\circ g^{-1}$ is also order-preserving. Hence $g\circ f$ is an isomorphism and thus (P,<) is isomorphic to (R,<).