Eine Formalisierung des zweiten Satzes von Sylow aus der Gruppentheorie in Naproche im Vergleich zu einer Implementierung in Lean

Moritz Hartlieb, Jonas Lippert

1. März 2020

1 Einleitung

Der zweite Satz von Sylow lautet wie folgt:

Satz. Sei p eine Primzahl und G eine endliche Gruppe mit $|G| = p^r * m$, sodass $p \nmid m$. Sei $U \leq G$ eine p-Untergruppe, und sei $P \leq G$ eine p-Sylowgruppe. Dann gilt:

(i) Es gibt ein $q \in G$ mit

$$gUg^{-1} \subseteq P$$
.

(ii) Je zwei *p*-Sylowgruppen sind konjugiert.

Die Beweisidee ist, die Untergruppe U auf den Linksnebenklassen von P operieren zu lassen. Bezüglich dieser Gruppenoperation existieren Fixpunkte, weil deren Anzahl nach Bahnenformel kongruent zur Anzahl der Nebenklassen von $P \pmod{p}$ ist. Da $P \in \operatorname{Syl}_p(G)$, gilt nach Definition p + |G/P|.

Ein solcher Fixpunkt gP mit $g \in G$ liefert dann $gUg^{-1} \subseteq P$.

Es werden also zunächst Grundbegriffe der Gruppentheorie, endliche Mengen sowie natürliche Zahlen, Primzahlen und Modulo-Rechnung benötigt. Hierzu bieten sich unterschiedliche Herangehensweisen an. Es stellt sich heraus, dass Naproche für kleine Theorien gut geeignet ist, deren Grundlagen axiomatisch eingeführt werden, die ihrerseits in einer eigenen Theorie entwickelt werden (können). Die Implementierung in Lean baut hingegen auf bereits formalisierte Grundlagen auf und ist somit Teil einer einzigen großen Theorie der Mathematik.

Interessant ist die Formalisierung von Nebenklassen. Um unnötige Begriffsbildung im Sinne einer kleinen Theorie zu vermeiden, bietet sich in Naproche eine direkte Konstruktion an:

$$Coset(g, H, G) := \{g *^G h \mid h << H\}.$$

Anschließend ist zu zeigen, dass G disjunkte Vereinigung von Nebenklassen bzgl. einer beliebigen Untergruppe H ist. In Lean wird dagegen bzgl. einer Untergruppe S von G folgende Äquivalenzrelation auf G eingeführt:

$$x \sim_S y :\Leftrightarrow x^{-1} * y \in S$$
.

Lean erlaubt uns, den Quotient G/\sim_S zu betrachten. Es wird verwendet, dass $x\sim_S y$ genau dann, wenn xS und yS die selbe Nebenklasse repräsentieren.

Im Folgenden werden zunächst die jeweiligen Formalisierungen im Detail dargestellt...

2 Formalisierung in Naproche

3 Formalisierung in Lean

3.1 Quotienten in Lean

Endliche Mengen und Nebenklassen sind in Lean als Quotient formalisiert. In der core-Library von Lean sind folgende Konstanten definiert:

```
constant quot : \Pi {\alpha : Sort u}, (\alpha \rightarrow \alpha \rightarrow \text{Prop}) \rightarrow \text{Sort u} constant quot.mk : \Pi {\alpha : Sort u} (r : \alpha \rightarrow \alpha \rightarrow \text{Prop}), \alpha \rightarrow \text{quot r} axiom quot.ind : \forall {\alpha : Sort u} {r : \alpha \rightarrow \alpha \rightarrow \text{Prop}} {\beta : quot r \rightarrow \text{Prop}}, (\forall a, \beta (quot.mk r a)) \rightarrow \forall (q : quot r), \beta q axiom quot.sound : \forall {\alpha : Type u} {r : \alpha \rightarrow \alpha \rightarrow \text{Prop}} {a b : \alpha}, r a b \rightarrow quot.mk r a = quot.mk r b constant quot.lift : \Pi {\alpha : Sort u} {r : \alpha \rightarrow \alpha \rightarrow \text{Prop}} {\beta : Sort u} (r : \alpha \rightarrow \beta)), (\forall a b, r a b \rightarrow f a = f b) \rightarrow quot r \rightarrow \beta
```

Die Klasse von a in quot r wird durch quot.mk r a erzeugt. Das Induktionsaxiom stellt sicher, dass alle Elemente von quot r von der Form quot.mk r a sind. Die Lifting-Eigenschaft erlaubt es, geeignete Funktionen auf quot r zu liften.

Ein setoid α ist ein Typ α zusammen mit einer Äquivalenzrelation:

```
class setoid (\alpha : Sort u) := (r : \alpha \rightarrow \alpha \rightarrow \text{Prop}) (iseqv : equivalence r)
```

Der quotient s auf einem s : setoid α ist dann der Quotient bzgl. einer Äquivalenzrelation:

```
\begin{array}{l} \operatorname{def} \ \operatorname{quotient} \ \{\alpha \ : \ \operatorname{Sort} \ \operatorname{u} \} \ \ (\operatorname{s} \ : \ \operatorname{setoid} \ \alpha) \ := \\ \operatorname{\operatorname{\mathbb{Q}quot}} \ \alpha \ \operatorname{setoid.r} \end{array}
```

Die obigen Eigenschaften von quot werden anschließend auf quotient übertragen.

3.2 Endliche Mengen in Lean

Endliche Mengen werden auf Basis von Listen definiert. Zunächst erhält man Multimengen als Quotienten, indem Permutationen mit Hilfe der Äquivalenzrelation perm miteinander identifiziert werden:

```
inductive perm : list \alpha \to \text{list } \alpha \to \text{Prop} | nil : perm [] [] | skip : \Pi (x : \alpha) {l<sub>1</sub> l<sub>2</sub> : list \alpha}, perm l<sub>1</sub> l<sub>2</sub> \to perm (x::l<sub>1</sub>) (x::l<sub>2</sub>) | swap : \Pi (x y : \alpha) (l : list \alpha), perm (y::x::l) (x::y::l) | trans : \Pi {l<sub>1</sub> l<sub>2</sub> l<sub>3</sub> : list \alpha}, perm l<sub>1</sub> l<sub>2</sub> \to perm l<sub>2</sub> l<sub>3</sub> \to perm l<sub>1</sub> l<sub>3</sub>
```

Unter Verwendung des Beweises perm. eqv, dass perm eine Äquivalenzrelation ist, wird eine Instanz von setoid list α eingeführt, welche dann in der Definition der Multimenge Verwendung findet:

```
instance is_setoid (\alpha) : setoid (list \alpha) := setoid.mk (@perm \alpha) (perm.eqv \alpha)

def {u} multiset (\alpha : \text{Type u}) : \text{Type u} := \text{quotient (list.is_setoid } \alpha)
```

Eine Multimenge wird zur endlichen Menge, wenn sie keine Duplikate beinhaltet:

```
structure finset (\alpha : Type*) := (val : multiset \alpha) (nodup : nodup val)
```

Die Definition von nodup für Multimengen basiert auf nodup für Listen.

```
def nodup : list \alpha \rightarrow \text{Prop} := \text{pairwise} (\neq)
```

Hierbei prüft pairwise, ob die Relation ≠ paarweise gilt.

```
variables (R : \alpha \rightarrow \alpha \rightarrow \text{Prop})
inductive pairwise : list \alpha \rightarrow \text{Prop}
| nil {} : pairwise []
| cons : \forall {a : \alpha} {l : list \alpha}, (\forall a' \in l, R a a') \rightarrow pairwise l \rightarrow pairwise (a::l)
```

Jetzt wird nodup für Listen auf Multimengen geliftet. Dazu werden quot.lift_on folgende Parameter übergeben: der Quotient s, die zu liftende Funktion nodup und ein Beweis, dass Permutation keine Duplikate erzeugt: Aus den zwei Listen s t und dem Beweis p, dass diese

in Relation bzgl. perm zueinander stehen, erzeugt perm_nodup die Äquivalenz nodup s ⇔ nodup t. Dann wird das Lean-interne Axiom propext verwendet, nach dem äquivalente Propositionen gleich sind. (Die Rechtsklammerung bei der Funktionseinsetzung wird hier durch \$ gewährleistet.)

```
def nodup (s : multiset \alpha) : Prop := quot.lift_on s nodup (\lambda s t p, propext $ perm_nodup p) def quot.lift_on {\alpha : Sort u} {\beta : Sort v} {r : \alpha \to \alpha \to Prop} (q : quot r) (f : \alpha \to \beta) (c : \forall a b, r a b \to f a = f b) : \beta theorem perm_nodup {l_1 l_2 : list \alpha} : l_1 \sim l_2 \to (nodup l_1 \leftrightarrow nodup l_2)
```

Der Beweis von perm_nodup kann in perm.lean nachgelesen werden. In der Regel wird nicht finset direkt verwendet, sondern die Typenklasse fintype, sodass der Typ α selber endlich ist.

```
class fintype (\alpha : Type*) := (elems : finset \alpha) (complete : \forall x : \alpha, x \in elems)
```

3.3 MOD in Lean

Die Definition von $x \pmod{y}$ auf den natürlichen Zahlen basiert auf der Wohlfundiertheit der $\langle -\text{Relation auf } \mathbb{N} \rangle$:

```
inductive acc \{\alpha: \text{Sort } u\} (r: \alpha \to \alpha \to \text{Prop}): \alpha \to \text{Prop} | \text{ intro } (x:\alpha) (h: \forall y, r y x \to \text{acc } y): \text{acc } x parameters \{\alpha: \text{Sort } u\} \{r: \alpha \to \alpha \to \text{Prop}\} | \text{local infix } '<':50 := r | \text{inductive well_founded } \{\alpha: \text{Sort } u\} (r: \alpha \to \alpha \to \text{Prop}): \text{Prop} | \text{ intro } (h: \forall a, \text{ acc } ra): \text{well_founded} | \text{class has_well_founded}| | \text{class has_well_foun
```

Ein Element x: α kann nur die Eigenschaft acc haben, falls ein "kleinstes" Element bzgl. der Relation R existiert. Entsprechend wird ein Rekursions- und Induktionsprinzip für wohlfundierte Relationen eingeführt, auf die hier nicht näher eingegangen werden soll. Wichtig ist

der Spezialfall, dass sich über wohlfundierte Relationen Funktionen definieren lassen (siehe def fix weiter unten):

```
parameter hwf : well_founded r variable {C : \alpha \rightarrow \text{Sort } v} variable F : \Pi x, (\Pi y, y < x \rightarrow C y) \rightarrow C x def fix_F (x : \alpha) (a : acc r x) : C x := acc.rec_on a (\lambda x<sub>1</sub> ac<sub>1</sub> ih, F x<sub>1</sub> ih)
```

Die Konstruktion des Fixpunktes nimmt gemäß acc.rec_on einen Beweis a für acc r x und liefert C x, falls folgender Sachverhalt gegeben ist:

```
(\Pi (x_1 : \alpha), (\forall (y : \alpha), r y x_1 \rightarrow acc r y) \rightarrow (\Pi (y : \alpha), r y x_1 \rightarrow C y) \rightarrow C x_1)
```

Durch acc.rec_on erhalten wir über den Konstruktor intro:

```
x_1: \alpha ac_1: \forall (y: \alpha), r y x_1 \rightarrow acc r y h: \Pi (y: \alpha), r y x_1 \rightarrow C y
```

F liefert das Gewünschte. Wir können die Fixpunkteigenschaft nun auf wohldefinierte Relationen übertragen:

```
variables {\alpha : Sort u} {C : \alpha \rightarrow Sort v} {r : \alpha \rightarrow \alpha \rightarrow Prop} def fix (hwf : well_founded r) (F : \Pi x, (\Pi y, r y x \rightarrow C y) \rightarrow C x) ( x : \alpha) : C x := fix_F F x (apply hwf x)
```

Ist eine Funktion F gegeben, welche die Werte C x für bekannte Werte C y der "kleineren" Elemente y < x liefert, so ist nach fix die Funktion C für alle $x : \alpha$ definiert. Für F setzen wir

```
private def mod.F (x : nat) (f : \Pi x<sub>1</sub>, x<sub>1</sub> < x \rightarrow nat \rightarrow nat) (y : nat) : nat := if h : \emptyset < y \land y \le x then f (x - y) (div_rec_lemma h) y else x
```

und damit C auf $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$. Hier wurde folgendes Lemma verwendet:

```
div_rec_lemma \{x \ y : nat\} : 0 < y \land y \le x \rightarrow x - y < x.
```

Weiter können wir mod und damit eine Instanz der Typenklasse class has_mod definieren, die bereits in core.lean vordefiniert ist. Sie besitzt einzig den Konstruktor has_mod.mod: $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$.

```
protected def mod := fix lt_wf mod.F
instance : has_mod nat :=
⟨nat.mod⟩
```

```
def modeq (n a b : \mathbb{N}) := a % n = b % n
notation a ' \equiv ':50 b ' [MOD ':50 n ']':0 := modeq n a b
```

3.4 Gruppen in Lean

Gruppen werden sukzessive durch Erweiterungen von type calsses definiert:

```
class has_mul (\alpha : Type u) := (mul : \alpha \to \alpha \to \alpha)

infix * := has_mul.mul

class semigroup (\alpha : Type u) extends has_mul \alpha := (mul_assoc : \forall a b c : \alpha, a * b * c = a * (b * c))

class monoid (\alpha : Type u) extends semigroup \alpha, has_one \alpha := (one_mul : \forall a : \alpha, 1 * a = a) (mul_one : \forall a : \alpha, a * 1 = a)

class group (\alpha : Type u) extends monoid \alpha, has_inv \alpha := (mul_left_inv : \forall a : \alpha, a<sup>-1</sup> * a = 1)
```

Entsprechendes gilt für Untergruppen

```
variables \{\alpha : \text{Type*}\}\ [\text{monoid }\alpha]\ \{s : \text{set }\alpha\}

class is_submonoid (s : set \alpha) : Prop :=

(one_mem : (1:\alpha) \in s)

(mul_mem \{a \ b\} : a \in s \to b \in s \to a * b \in s)

class is_subgroup (s : set \alpha) extends is_submonoid s : Prop :=

(inv_mem \{a\} : a \in s \to a^{-1} \in s)
```

und Gruppenaktionen:

by simpa using this, assume x y z hxy hyz,

by simpa [mul_assoc] using this)

```
class has_scalar (\alpha : Type u) (\gamma : Type v) :=
 (smul : \alpha \rightarrow \gamma \rightarrow \gamma)
 infixr ' · ':73 := has_scalar.smul
 class mul_action (\alpha : Type u) (\beta : Type v) [monoid \alpha] extends
    has_scalar \alpha \beta :=
 (one_smul : \forall b : \beta, (1 : \alpha) · b = b)
 (\text{mul\_smul} : \forall (x y : \alpha) (b : \beta), (x * y) \cdot b = x \cdot y \cdot b)
Es folgen die üblichen Definitionen bzgl. Gruppenaktionen.
 variables (\alpha) [monoid \alpha] [mul_action \alpha \beta]
 def orbit (b : \beta) := set.range (\lambda x : \alpha, x · b)
 variables (\alpha) (\beta)
 def stabilizer (b : \beta) : set \alpha :=
 \{x : \alpha \mid x \cdot b = b\}
 def fixed_points : set \beta := \{b : \beta \mid \forall x, x \in \text{stabilizer } \alpha b\}
Von zentraler Bedeutung für den Beweis des 2. Sylow-Satzes ist das folgende Lemma.
 lemma card_modeq_card_fixed_points [fintype \alpha] [fintype G]
 [fintype (fixed_points G \alpha)]
 \{p \ n : \mathbb{N}\}\ (hp : nat.prime p) (h : card G = p ^ n) :
 card \alpha \equiv \text{card (fixed\_points G } \alpha) \text{ [MOD p]}
Später wird G durch eine p-Untergruppe H von G, und \alpha durch die Nebenklassen einer p-
Sylowgruppe K ersetzt. Nebenklassen werden als Quotient bzgl. der Relation left_rel defi-
niert:
 def left_rel [group \alpha] (s : set \alpha) [is_subgroup s] : setoid \alpha :=
 \langle \lambda \times y, x^{-1} \times y \in s,
 assume x, by simp [is_submonoid.one_mem],
 assume x y hxy,
 have (x^{-1} * y)^{-1} \in s, from is_subgroup.inv_mem hxy,
```

have $x^{-1} * y * (y^{-1} * z) \in s$, from is_submonoid.mul_mem hxy hyz,

```
def left_cosets [group \alpha] (s : set \alpha) [is_subgroup s] : Type* := quotient (left_rel s)
```

Für eine Untergruppe H von G ist dann left_rel H ein setoid G mit entsprechender Relation und dem zugehörigen Beweis, dass es sich um eine Äquivalenzrelation handelt. Mithilfe dieser Definition wird eine Instanz von fintype bzgl. left_costes H erstellt:

```
noncomputable instance [fintype G] (H : set G) [is_subgroup H] :
   fintype (left_cosets H) :=
quotient.fintype (left_rel H)
```

Der Grund dafür, dass die Instanz als noncomputable markiert werden muss, ist die Verwendung von decidable.eq in quotient.fintype. Das geht auf den Umstand zurück, dass das Bild einer Funktion auf einem endlichen Typ wieder ein endlicher Typ β ist. Hierbei wird das Bild zunächst als Multimenge betrachtet. Anschließend werden eventuelle Duplikate durch den Operator to_finset entfernt, was die Entscheidbarkeit der Gleichheitsrelation auf β voraussetzt. Um den 2. Sylowsatz in Lean zu formulieren, fehlen noch die Definitionen des conjugate_set und der p-Sylowgruppen:

```
def conjugate_set (x : G) (H : set G) : set G :=
  (λ n, x<sup>-1</sup> * n * x) <sup>-1</sup> ' H

class is_sylow [fintype G] (H : set G) {p : N} (hp : prime p) extends
  is_subgroup H : Prop :=
  (card_eq : card H = p ^ dlogn p (card G))

lemma sylow_2 [fintype G] {p : N} (hp : nat.prime p)
  (H K : set G) [is_sylow H hp] [is_sylow K hp] :
  ∃ g : G, H = conjugate_set g K
```

dlogn p (card G) ist die Vielfachheit von p in card G.

#print axioms sylow.sylow_2 zeigt, dass propext, quot.sound und calssical.choice
 verwendet wird.

quot.sound wird benötigt, um zu beweisen, dass das kanonische Operieren einer Untergruppe H auf den Nebenklassen einer Untergruppe K eine Gruppenaktion ist:

```
def mul_left_cosets (L_1 L_2 : set G) [is_subgroup L_2] [is_subgroup L_1] (x : L_2) (y : left_cosets L_1) : left_cosets L_1 := quotient.lift_on y (\lambda y, [(x : G) * y]) (\lambda a b (hab : _ \in L_1), quotient.sound (show _ \in L_1, by rwa [mul_inv_rev, \in mul_assoc, mul_assoc (a^{-1}), inv_mul_self, mul_one]))
```

Dafür soll die Funktion (λ y, [(x : G) * y]) auf Nebenklassen geliftet werden. Für zwei Elemente a und b, die bzgl. left_rel äquivalent sind, ist also zu zeigen, dass

$$[(x : G) * a] = [(x : G) * b].$$

Mit quot_sound genügt dann ein Beweis dafür, dass die erzeugenden Elemente äquivalent sind. Die nötigen Umformungen erledigt simp.

Im Beweis von Sylow 2 werden zunächst die vorangegangenen Resultate verwendet, um herzuleiten, dass die Anzahl der Fixpunkte bzgl. obiger Aktion ungleich Null ist. An dieser Stelle liefert classical.choice einen solchen Fixpunkt, ohne den die Konstruktion eines geeigneten conjugate_set nicht möglich wäre.

3.5 Sylow 2 in Lean

Wir wollen nun auf einige Details im Beweis des Satzes eingehen. Die ersten drei Hilfslemma

```
lemma sylow_2 [fintype G] \{p : \mathbb{N}\}\ (hp : nat.prime p)
(H K : set G) [is_sylow H hp] [is_sylow K hp] :
∃ g : G, H = conjugate_set g K :=
have hs : card (left_cosets K) = card G / (p ^ dlogn p (card G)) :=
(nat.mul_right_inj (pos_pow_of_pos (dlogn p (card G)) hp.pos)).1
$ by rw ←[ card_sylow K hp, ← card_eq_card_cosets_mul_card_subgroup,
  card_sylow K hp,
nat.div_mul_cancel (dlogn_dvd _ hp.1)],
have hmodeq : card G / (p ^ dlogn p (card G)) ≡ card (fixed_points H (
  left_cosets K)) [MOD p] :=
eq.subst hs (mul_action.card_modeq_card_fixed_points hp (card_sylow H
  hp)),
have hfixed: 0 < card (fixed_points H (left_cosets K)) := nat.
  pos_of_ne_zero
(\lambda h, (not_dvd_div_dlogn (fintype.card_pos_iff.2 \langle (1 : G) \rangle) hp.1)
(by rwa [h, nat.modeq.modeq_zero_iff] at hmodeq)),
let \langle \langle x, hx \rangle \rangle := fintype.card_pos_iff.1 hfixed in
begin
revert hx,
refine quotient.induction_on x
(\lambda \text{ g hg}, \langle \text{g}, \text{ set.eq_of_card_eq_of_subset } \_ \ )),
rw [conjugate_set_eq_image, set.card_image_of_injective _
  conj_inj_left,
card_sylow K hp, card_sylow H hp] },
{
assume y hy,
have : (y^{-1} * g)^{-1} * g \in K :=
quotient.exact ((mem_fixed_points' (left_cosets K)).1 hg [y^{-1} * g]
\langle \langle y^{-1}, \text{ inv\_mem hy} \rangle, \text{ rfl} \rangle,
simp [conjugate_set_eq_preimage],
simp only [*, mul_assoc, mul_inv_rev] at *,
simp [*, inv_inv] at *}
end
```

- 4 Vergleich
- 5 Diskussion
- 6 Bibliographie