Contents

I	Basi	c Set Theory	L
	I.1	Club Sets	1
II	Ford	ing Notions	3
	II.1	Definition for the Forcing	3
		General Properties for a Forcing	
		Iterated Forcing	
H	Тур	e of Forcings)
	III.1	ccc Forcing)
	III.2	σ -centerd Forcing	1
	III.3	σ -closed Forcing	1
	III.4	Axiom A Forcing	2
		Proper Forcing	3
ΙV	List	of Forcing Notions 25	5
		Cohen Forcing	5
		Hechler Forcing	3
		Mathias Forcing	7
		Sacks Forcing (Perfect Set Forcing)	2
		Shooting A Club by Finite Conditions	5
\mathbf{V}	The	Concrete Forcing Examples 36	3
		Axiom of Choice	3
		Continuum Hypothsis	3
		Martin Axiom	3
		Borel Conjecture	

I Basic Set Theory

I.1 Club Sets

Definition I.1.1 ([Jec03]). For a regular cardinal κ and a subset $C \subset \kappa$, C is unbounded provided that $\cup C = \kappa$ and C is closed provided that for any limit $\gamma \in \kappa$ if $\cup (C \cap \gamma) = \gamma$ then $\gamma \in C$. A subset C is a club subset of κ provided that C is closed and unbounded subset of κ . A susbet $S \subset \kappa$ is a stationary subset of κ provided that S meets every club subset of κ .

Note that a subset C is closed is equivalent to that for any subset $S \subset \kappa$ we have $\cup S \in C$ when $S \subset C$ and the size of stationary subset is κ since for a strictly increasing convegence sequence $\langle \alpha_{\xi} \in \kappa ; \xi \in \kappa \rangle \nearrow \kappa$, $\langle \alpha_{\xi} ; \eta \in \xi \land \xi \in \kappa \rangle$ is club for any $\eta \in \kappa$.

Theorem I.1.2 ([Kun11]). For a regular uncountable cardinal κ , we have the following:

- 1. The intersection of less than κ club subsets of κ is club,
- 2. The diagonal intersection of a κ -sequence of club subsets of κ

$$\Delta \langle C_{\alpha}; \alpha \in \kappa \rangle = \{ \xi \in \kappa \setminus 1; \xi \in \cap \{ C_{\alpha}; \alpha \in \xi \} \}$$

is club.

Proof. 1. We shall prove the following by induction on $\beta_0 \in \kappa \setminus 1$:

For κ -club sets $\langle C_{\xi}; \xi \in \beta_0 \rangle$, the intersection $C = \cap \{C_{\xi}; \xi \in \beta_0\}$ is club.

The case of the leading stage and the successor stages are clear. Let β_0 be limit. Define $D_{\xi} = \cap \{C_{\eta} : \eta \in \xi\}$ for $\xi \in \beta_0$ and note that by induction hypothesis every D_{ξ} is club and we obtain that the decreasing club sets $\langle D_{\xi} : \xi \in \beta_0 \rangle$ such that the intersection, D, equals $\cap \{C_{\xi} : \xi \in \beta_0\}$. Note that manifestly D is closed. We shall show that D is unbounded in κ . Fix a $\gamma \in \kappa$ and define $\gamma_{\xi} \in D_{\xi}$, recursively such that:

- $\gamma_0 \in D_0$ such that $\gamma \in \gamma_0$,
- $\gamma_{\xi} \in D_{\xi}$ such that $\gamma_{\eta} \in \gamma_{\xi}$ for each $\eta \in \xi$.

Then we obtain an increasing sequence $x = \langle \gamma_{\xi}; \xi \in \beta_{0} \rangle$ in κ with limit $\beta \in \kappa$. Since for every $\xi \in \beta_{0}$ x is eventually in D_{ξ} so does β . Therefore, β witnesses that D is unbounded in κ .

2. To see that $\Delta \langle C_{\alpha} ; \alpha \in \kappa \rangle$ is closed. Let $\langle \beta_{\xi} ; \xi \in \beta_{0} \rangle \nearrow \beta$ be a sequence with limit point $\beta \in \kappa$. We shall show that $\forall \eta \in \beta \ (\beta \in C_{\eta})$. For any $\eta \in \beta$ there is a $\xi_{0} \in \beta_{0}$ such that $\eta \in \beta_{\xi}$ for any $\xi \ni \xi_{0}$. This shows that the sequence eventually contained in C_{η} so does the limit point β .

To see that $\Delta \langle C_{\alpha}; \alpha \in \kappa \rangle$ is unbounded. Fix $\delta_0 \in \kappa \setminus 1$ and define $\delta_n, n \in \omega$, recursively such that:

$$\delta_{n+1} \ni \delta_n$$
 and $\delta_{n+1} \in \cap \{C_\alpha ; \alpha \in \delta_n\}$ for any $n \in \omega$.

Then for the limit point δ , since we have $\delta \in \cap \{C_{\alpha} : \alpha \in \delta\}$, $\delta \in \Delta \langle C_{\alpha} : \alpha \in \kappa \rangle$. This shows that $\Delta \langle C_{\alpha} : \alpha \in \kappa \rangle$ is unbounded.

Definition I.1.3 ([Jec03]). For a set of ordinals A, a function $f: A \to A$ is a regressive function provided that $f(\alpha) \in \alpha$ for any $\alpha \in A$.

Theorem I.1.4 (Hodor Theorem, [Jec03]). Let f be a regressive function on a stationary set $S \subset \kappa$. Then there is a stationary set $T \subset S$ and $\gamma \in \kappa$ such that $f(\alpha) = \gamma$ for any $\alpha \in T$.

Proof. Assume that " $\{\alpha \in S; f(\alpha) = \gamma\}$ is not stationary." for all $\gamma \in \kappa$. For each $\gamma \in \kappa$ choose a club set C_{γ} which does not meet $\{\alpha \in S; f(\alpha) = \gamma\}$. Since $C = \Delta\{C_{\gamma}; \gamma \in \kappa\}$ is a club set, there is $\alpha \in S \cap C$ and for $\gamma \in \alpha$ we obtain that $\alpha \in C_{\gamma}$. This shows that $f(\alpha) \neq \gamma$ for any $\gamma \in \alpha$, this contrary to that $f(\alpha) \in \alpha$.

Theorem I.1.5 (**Delta System Lemma**, [Kun11]). Let λ and κ be regular cardinals with $\omega \leq \lambda < \kappa$ and assume that $\forall \theta \in \kappa \ (\theta^{<\lambda} < \kappa)$. Then for a κ size family \mathcal{A} with $|A| < \lambda$ for each $A \in \mathcal{A}$, there is a delta system $\mathcal{B} \in [\mathcal{A}]^{\kappa}$. Moreover,

Proof. III.6.15

II Forcing Notions

II.1 Definition for the Forcing

Definition II.1.1. A forcing notion $(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{1})$ is a poset $(\mathbb{P}, \leq_{\mathbb{P}})$ with the maximal element $\mathbb{1}$. For $p \in \mathbb{P}$ an extension of p is $q \in \mathbb{P}$ satisfing $q \leq_{\mathbb{P}} p$.

- 1. A set $D \subset \mathbb{P}$ is a *dense subset below* $p \in \mathbb{P}$ provided that for every extension $q \leq_{\mathbb{P}} p$ there is an extension for p in D and we simply said D is *dense* in \mathbb{P} if D is dense below $\mathbb{1}$.
- 2. A set $G \subset \mathbb{P}$ is a (V, \mathbb{P}) -generic filter provided that:
 - (a) $G \subset \mathbb{P}$, $G \in V$,
 - (b) $\forall p, q \in G \exists r \in G \ r \leq_{\mathbb{P}} p, q,$
 - (c) $\forall p \in G \forall q \in \mathbb{P} \ (p \leq_{\mathbb{P}} q \implies q \in G),$
 - (d) Every dense subset $D \subset \mathbb{P}$, D meets G if $D \in V$.

We will usually say that G is \mathbb{P} -generic and write \leq for the $\leq_{\mathbb{P}}$ when there is no danger of confusing.

Definition II.1.2. Let \mathbb{P} be a forcing notion and E be a subset of \mathbb{P} .

- 1. p and q are *compatible*, $p \not\perp q$, provided that there is a common extension $r \leq p, q$, for any conditions $p, q \in \mathbb{P}$,
- 2. p and q are incompatible, $p \perp q$, provided that $\neg (p \not\perp q)$,
- 3. E is predense provided that for every condition $p \in \mathbb{P}$ there is $q \in E$ such that $p \not\perp q$,
- 4. E is open provided that for $p \leq q$ if $p \in E$ then $q \in E$,
- 5. E is dense open provided that E is dense and open,
- 6. E is an antichain provided that there are no distinct $p, q \in E$ such that $p \not\perp q$,
- 7. E is a maximal antichain provided that E is an antichain and maximum among the subset relation,
- 8. For a condition $p \in \mathbb{P}$, $p \perp E$ is an abbreviation for $\forall q \in E \ p \perp q$.

Theorem II.1.3 ([Kun11]). III.3.60

Definition II.1.4. Let \mathbb{P} be a forcing notion.

- 1. For names τ, σ, θ in $V^{\mathbb{P}}$, define, recursively,:
 - (1-a) $p \Vdash \tau = \sigma$ provided that $\forall \theta \in \text{dom}(\tau) \cup \text{dom}(\sigma) \forall q$
 - (1-b) $p \Vdash \tau \in \sigma$ provided that $\{q \leq p \; ; \exists \langle \theta, r \rangle \in \sigma \; (q \leq r \land q \Vdash \tau = \theta)\}$ is dense below p.
- 2. For formulas $\varphi, \psi \in \mathcal{FL}_{\mathbb{P}}$,
 - (2-a) $p \Vdash \varphi \land \psi$ provided that $p \Vdash \varphi$ and $p \Vdash \psi$,
 - (2-b) $p \Vdash \neg \varphi$ provided that $\neg \exists q \leq p \ (q \Vdash \varphi)$,
 - (2-c) $p \Vdash \forall x \varphi(x)$ provided that $p \Vdash \varphi(\tau)$ for any $\tau \in V^{\mathbb{P}}$,
 - (2-d) $p \Vdash \exists x \varphi(x)$ provided that $\{q \leq p \; ; \exists \tau \in V^{\mathbb{P}} \; q \Vdash \varphi(\tau)\}$ is dense below p.

Definition II.1.5. Let \mathbb{P} be a forcing notion. A \mathbb{P} -name, τ , is a relation such that:

$$\forall \langle \sigma, p \rangle \in \tau \ (\text{``}\sigma \text{ is a } \mathbb{P}\text{-name.''} \land \ p \in \mathbb{P})$$

Let $V^{\mathbb{P}}$ be the class of all \mathbb{P} -names and for a transitive model M for ZF with $\mathbb{P} \in M$, define:

$$M^{\mathbb{P}} = M \cap V^{\mathbb{P}} = \{ \tau \in M ; M \models \text{``}\tau \text{ is }\mathbb{P}\text{-name.''} \}$$

Theorem II.1.6 ([Kun11]). For a transitive model M for ZF-P (resp. ZF,ZFC), \mathbb{P} a forcing notion with $\mathbb{P} \in M$ and G a generic, M[G] is a transitive model for ZF-P (resp. ZF,ZFC) with $M \subset M[G]$ and $G \in M[G]$. Conversely, if there is a transitive model N for ZF-P with $M \subset N$ and $G \in N$, we obtain that $M[G] \subset M$.

Proof. See IV2.15,2.19,2.26.

II.2 General Properties for a Forcing

Definition II.2.1. Let \mathbb{P} and \mathbb{Q} be forcing posets and $i : \mathbb{P} \to \mathbb{Q}$ a function. A function i is a *complete embedding* provided that

- 1. $i(1_{\mathbb{P}}) = 1_{\mathbb{Q}}$,
- 2. $q \leq_{\mathbb{P}} p$ implies $i(q) \leq_{\mathbb{Q}} i(q)$ for any $p, q \in \mathbb{P}$,
- 3. $p \not\perp_{\mathbb{P}} q$ iff $i(p) \not\perp_{\mathbb{O}} i(q)$ for any $p, q \in \mathbb{P}$, and
- 4. If A is a maximal antichain in \mathbb{P} , i(A) is a maximal antichain in \mathbb{Q} , for any subset $A \subset \mathbb{P}$.

And a funciton i is a $dense\ embedding$ provided that it is a complete embedding and

5. $i(\mathbb{P})$ is a dense subset of \mathbb{Q} .

Theorem II.2.2 ([Kun11]). Let M be a transitive model for ZFC, \mathbb{P} , \mathbb{Q} forcing notions and a function $i: \mathbb{P} \to \mathbb{Q}$ with $\mathbb{Q}, \mathbb{P}, i \in M$ and i is a dense embedding. Define:

• $i_*: M^{\mathbb{P}} \to M^{\mathbb{Q}}$ be the function which assign to τ the

$$i_*(\tau) = \{\langle i_*(\sigma), i(p) \rangle ; \langle \sigma, p \rangle \in \tau \}.$$

• $\tilde{i}(G) = \{q \in \mathbb{Q} : \exists p \in G \ i(p) \leq_{\mathbb{Q}} q \}$ for any subset G.

Then we have the followings:

- 1. For any \mathbb{P} -generic G, $\tilde{i}(G)$ is \mathbb{Q} -generic and $G = i^{-1}\tilde{i}(G)$, moreover we have $M[G] = M[\tilde{i}(G)]$,
- 2. For any Q-generic H, $i^{-1}(H)$ is P-generic and $H = \tilde{i}i^{-1}(H)$, moreover we have $M[H] = M[i^{-1}(H)]$,
- 3. For any formula $\varphi(x_1, \ldots, x_{n-1})$ of $\mathcal{L} = \{\in\}, p \in \mathbb{P} \text{ and } \tau_1, \ldots, \tau_{n-1} \in M^{\mathbb{P}},$ we have

$$p \Vdash_{\mathbb{P}} \varphi(\tau_1, \dots, \tau_{n-1}) \text{ iff } i(p) \Vdash_{\mathbb{Q}} \varphi(i_*(\tau_1), \dots, i_*(\tau_{n-1})).$$

Definition II.2.3 ([Jec03]). A foring poset \mathbb{P} is *separative* provided that for any conditions $p, q \in \mathbb{P}$ if $p \nleq q$ then there is $r \leq p$ such that $r \perp q$.

Theorem II.2.4 ([Jec03]). Let \mathbb{P} be a forcing poset.

- 1. If \mathbb{P} is separative, $p \leq q$ iff $p \Vdash q \in \mathring{G}$ for any $p, q \in \mathbb{P}$.
- 2. There is a separative forcing poset \mathbb{Q} and dense embedding $i: \mathbb{P} \to \mathbb{Q}$.

Proof. Let us show the first assertion.

Let us show the second assertion. Define an equivalent relation $\sim \subset \mathbb{P} \times \mathbb{P}$ such that for any $p, q \in \mathbb{P}$:

$$p \sim q \Leftrightarrow \forall z \in \mathbb{P} \ (z \not\perp x \leftrightarrow z \not\perp y)$$

Then we have the following property:

$$x_0 \sim x_1, y_0 \sim y_1$$
 and $\forall z \leq_{\mathbb{P}} x_0 \ (z \not\perp y_0)$ implies $\forall z \leq_{\mathbb{P}} x_1 \ (z \not\perp y_1)$.

Define a forcing poset $\mathbb{Q}=(\mathbb{P}/\sim,\leq_{\mathbb{Q}})$ where $[q]\leq_{\mathbb{Q}}[p]$ if and only if r is compatible with p for any extension $r\leq_{\mathbb{P}}q$. Then it is easy to see that \mathbb{Q} is separative and to see that i is dense embedding since i is surjective, it suffcies to see the followings:

- (a) $p \leq_{\mathbb{P}} q$ implies $i(p) \leq_{\mathbb{Q}} i(q)$ for any $p, q \in \mathbb{P}$,
- (b) $p \not\perp_{\mathbb{P}} q$ iff $i(p) \not\perp_{\mathbb{O}} i(q)$ for any $p, q \in \mathbb{P}$.

It is obvious that condition (a) and sufficient condition in (b). To see the necessary condition, let $r \in \mathbb{P}$ such that $[r] \leq_{\mathbb{Q}} [p], [q]$. $[r] \leq_{\mathbb{Q}} [p]$ asserts that there is a common extension $r' \leq_{\mathbb{P}} r, p$, and moreover $[r] \leq_{\mathbb{Q}} [q]$ asserts that there is a common extension $r'' \leq_{\mathbb{P}} r', q$. Therefore, r'' witnesses that $p \not\perp q$.

Definition II.2.5. Let \mathbb{P} be a forcing notion, θ be a cardinal and M be a ctm:

- 1. \mathbb{P} has θ -cc provided that the size of antichain in \mathbb{P} is less than θ ,
- 2. \mathbb{P} preserves cofinalities $\leq \theta$ provided that $M[G] \models \operatorname{cf}^M(\gamma) = \operatorname{cf}^M(\gamma)$ holds for every limit $\gamma \in o(M)$ with $\operatorname{cf}^M(\gamma) \geq \theta$,
- 3. \mathbb{P} preseves cardinals $\leq \theta$ provided that $M \models$ " β is a cardinal." iff $M[G] \models$ " β is a cardinal." for $\theta \leq \beta \in o(M)$.

Lemma II.2.6. Let $\mathbb{P} \in M$ be a forcing notion with $M \models$ " θ is a regular cardinal." then we have:

- 1. $\mathbb P$ preseves cofinalities $\geq \theta$ iff for arbitrary limit β with $\theta \leq \beta \in o(M)$ we have that $M \models$ " β is regular." implies $M[G] \models$ " β is regular.",
- 2. If \mathbb{P} preserves cofinalities $\leq \theta$, so does cardinals $\leq \theta$.

Theorem II.2.7. Let $\mathbb{P} \in M$ and assume that $M \models$ " θ is a regular cardinal and \mathbb{P} is θ -cc.". Then \mathbb{P} preserves cofinalities $\geq \theta$.

Proof. By the previous lemma, it suffice to show that suppose that there is $\theta \leq \beta \in o(M)$ such that $M \models$ " β is regular." and $M[G] \models$ " β is singular.", a contradiction.

Let β be such an ordinal. Let X be a set in M[G] and a function $f: \alpha \to X$ in M[G] with $\alpha \in \beta$ and $p \Vdash_{\mathbb{P}}$ " $\mathring{f}: (\alpha, \in) \approx (X, \in)$ and $\cup X = \beta$." for some condition p. Define $F: \alpha \to \mathcal{P}(\beta)$ which assgin the ξ the $\{\eta \in \beta : \exists q \leq p \ (q \Vdash_{\mathbb{P}} \mathring{f}(\xi) = \eta)\}$ then $F \in M$. Now we assrt that $f(\xi) \in F(\xi)$ and $|F(\xi)| < \theta$ for arbitrary $\xi \in \alpha$. The former is immediate. For the later, for $\eta \in F(\xi)$ choose $p_{\eta} \leq p$ such that $p_{\eta} \Vdash_{\mathbb{P}} \mathring{f}(\xi) = \eta$. Then note that $p_{\eta}, \eta \in F(\xi)$, is pairwise incompatible, thus we obtain that $|F(\xi)| < \theta$. To conclude the proof, let $Y = \cup \{F(\xi) : \xi \in \alpha\}$, then we obtain that $Y \subset \beta$ and $\cup Y = \beta$. However since $|F(\xi)| < \beta$, $\alpha < \theta$ and β is regular, we have $|Y| < \beta$. This contrary to that $\beta = \operatorname{type}(Y)$.

Definition II.2.8 ([Pal13]). A dominating real in a generic extension is a real $x \in {}^{\omega}\omega$ which eventually dominates all functions $f \in {}^{\omega}\omega$ in V. Similarly a unbounded real in a generic extension is a real $x \in {}^{\omega}\omega$ which does not eventually dominated by any function $f \in {}^{\omega}\omega$ in V.

II.3 Iterated Forcing

Definition II.3.1 ([Kun11]). Let \mathbb{P} be a forcing notion. The \mathbb{P} -name for a forcing notion is a triple pair of \mathbb{P} -names, $(\mathring{\mathbb{Q}}, \overset{\circ}{\leq}_{\mathbb{Q}}, \mathring{\mathbb{1}}_{\mathbb{Q}})$, such that $\mathring{\mathbb{1}}_{\mathbb{Q}} \in \text{dom}(\mathring{\mathbb{Q}})$ and for any conditions $p \in \mathbb{P}$ force:

- $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \mathring{\mathbb{1}_{\mathbb{Q}}} \in \mathring{\mathbb{Q}}$, and
- $\stackrel{\circ}{\leq}_{\mathbb{Q}}$ is a pre-order of \mathbb{Q} with the largest element $\mathring{\mathbb{1}}_{\mathbb{Q}}$.

We write $\mathring{\mathbb{Q}}$ for $(\mathring{\mathbb{Q}}, \overset{\circ}{\leq}_{\mathbb{Q}}, \mathring{\mathbb{1}_{\mathbb{Q}}}), \overset{\circ}{\leq}$ for $\overset{\circ}{\leq}_{\mathbb{Q}}$ and $\mathring{\mathbb{1}}$ for $\mathring{\mathbb{1}_{\mathbb{Q}}}$.

Definition II.3.2 ([Kun11]). Let \mathbb{P} be a forcing notion and $(\mathring{\mathbb{Q}}, \leq_{\mathbb{Q}}^{\circ}, \mathring{\mathbb{I}}_{\mathbb{Q}}^{\circ})$ be a \mathbb{P} -name for a forcing notion, define the *product* $\mathbb{P} * \mathring{\mathbb{Q}}$ is the triple pair $(\mathbb{R}, \leq, \mathbb{1})$ such that;

- 1. $\mathbb{R} = \{(p, \mathring{q}) \in \mathbb{P} \times \operatorname{dom} \mathring{\mathbb{Q}}; p \Vdash \mathring{q} \in \mathring{\mathbb{Q}}\},\$
- 2. $\leq = \{ \langle (p_0, \mathring{q_0}), (p_0, \mathring{q_0}) \rangle ; p_1 \leq_{\mathbb{P}} p_2 \land p_1 \Vdash (\mathring{q_1} \leq_{\mathring{\mathbb{Q}}} \mathring{q_2}) \},$
- 3. $1 = (1_{\mathbb{P}}, 1_{\mathbb{Q}}),$

We simply write $(p,\mathring{q}) \in \mathbb{P} * \mathring{\mathbb{Q}}$ for $(p,\mathring{q}) \in \mathbb{R}$ and define $i : \mathbb{P} \to \mathbb{P} * \mathring{\mathbb{Q}}$ which assgin the p the $(p,\mathring{\mathbb{1}}_{\mathbb{Q}})$.

Theorem II.3.3. Using the notion of Definition II.3.2, with $p_0, p_1 \in \mathbb{P}$ and $\mathring{q_0}, \mathring{q_1} \in \mathring{\mathbb{Q}}$. Then we have the following facts:

- 1. $\mathbb{P} * \mathring{\mathbb{Q}}$ is a forcing notion,
- 2. $p_0 \leq_{\mathbb{P}} p_1 \text{ iff } i(p_0) \leq_{\mathbb{P} * \mathring{\mathbb{Q}}} i(p_1),$
- $3. \ i(\mathbb{1}_{\mathbb{P}}) = \mathbb{1}_{\mathbb{P} * \mathring{\mathbb{Q}}},$
- $4. \ p_0 \perp_{\mathbb{P}} p_1 \text{ implies } (p_0,\mathring{q_0}) \perp_{\mathbb{P}*\mathring{\mathbb{Q}}} (p_1,\mathring{q_1}) \text{ if } (p_0,\mathring{q_0}), (p_1,\mathring{q_1}) \in \mathbb{P}*\mathbb{Q},$
- 5. $p_0 \perp_{\mathbb{P}} p_1$ iff $(p_0, \mathbb{1}_{\mathbb{P} * \mathring{\mathbb{Q}}}) \perp_{\mathbb{P} * \mathring{\mathbb{Q}}} (p_1, \mathring{q}_1)$ whenever $(p_1, \mathring{q}_1) \in \mathbb{P} * \mathring{\mathbb{Q}}$,
- 6. $p_0 \perp_{\mathbb{P}} p_1$ iff $i(p_0) \perp_{\mathbb{P} * \mathring{\mathbb{Q}}} i(p_1)$,
- 7. i is a complete embedding.

Definition II.3.4. Let G be \mathbb{P} -generic over M and H be subset of $\mathring{\mathbb{Q}}_G$. Then $G*H=\{(p,\mathring{q})\in\mathbb{P}*\mathring{\mathbb{Q}}:p\in G\wedge\mathring{q}_G\in H\}.$

Theorem II.3.5. Let K be a $\mathbb{P} * \mathbb{Q}$ -generic over M. Define $G = i^{-1}(K)$ and let $H = \{\mathring{q}_G : \exists p \in \mathbb{P} \ (p,\mathring{q}) \in K\}$. Then we have the following:

- 1. G is \mathbb{P} -generic over M,
- 2. H is $\mathring{\mathbb{Q}}_G$ -generic over M[G],
- 3. K = G * H,

4. M[K] = (M[G])[H].

Proof. For (1). To see that G is a filter. Let $p, q \in G$. Let $(r, r') \in K$ such that $(r, r') \leq_{\mathbb{P}*\mathring{\mathbb{Q}}} i^{-1}(p), i^{-1}(q)$. Thus we have $r \leq_{\mathbb{P}} p, q$ and $r \in G$. To see that meets every dense subset. Let D be a dense subset of \mathbb{P} in M. By letting $D' = \{(p, \mathring{q}); p \in D \land \mathring{q} \in \mathring{\mathbb{Q}}_G\}, D'$ is dense over $\mathbb{P} * \mathring{\mathbb{Q}}$. Therefore there is $(p, \mathring{q}) \in D' \cap K$, furthermore, $p \in D \cap G$.

For (2). To see that H is a filter. Let $(\mathring{q}_i)_G \in H$ with $p_i \in G$ such that $(p_i,\mathring{q}_i) \in K$ for $i \in 2$. Then there is a common extension $(r,\mathring{r}) \in K$. Then we have $r \Vdash_{\mathbb{P}}$ " $\mathring{r} \leq_{\mathring{\mathbb{Q}}} \mathring{q}_0$ and $\mathring{r} \leq_{\mathring{\mathbb{Q}}} \mathring{q}_1$." Moreover since $r \in G$, $M[G] \models$ " $\mathring{r}_G \leq_{\mathring{\mathbb{Q}}_G} (\mathring{q}_0)_G$ and $\mathring{r}_G \leq_{\mathring{\mathbb{Q}}_G} (\mathring{q}_1)_G$." To see that H meets every dense subset. Let D be dense subset of $\mathring{\mathbb{Q}}_G$ in M[G]. By letting $D' = \{(p,\mathring{q}) : p \in G \land \mathring{q}_G \in H\}$, then since D' is dense over $\mathbb{P} * \mathring{\mathbb{Q}}$, there is $(p,\mathring{q}) \in D' \cap K$. Thus we obtain that $\mathring{q}_G \in D \cap H$.

For (3). To see that (\subset). Let $(p,\mathring{q}) \in K$. By the definition we have $p \in G$ and $\mathring{q}_G \in H$ thus $(p,\mathring{q}_G) \in G * H$. To see that (\supset). Let $p \in G$ and $\mathring{q}_G \in H$ with $(p',\mathring{q}) \in K$ for some $p' \in \mathbb{P}$. Since $(p,\mathring{\mathbb{Q}}) \in K$, there is a common extension $(p'',\mathring{q''}) \leq (p,\mathring{\mathbb{Q}}), (p',\mathring{q})$. Then we obtain that $p'' \leq_{\mathbb{P}} p$ and $p'' \Vdash_{\mathbb{P}} \mathring{q''} \leq_{\mathbb{Q}} (p,\mathring{q})$. This shows that $(p,\mathring{q}) \in K$.

For (4). To see (\subset) , by the minimality of extension, it suffices to show that $G * H \in (M[G])[H]$. By letting $\Gamma_{\mathbb{P}*\hat{\mathbb{Q}}} = \{\langle (p,\mathring{q}),\mathring{q}_G \rangle ; \mathring{q}_G \in H\}$, we have $G * H = (\Gamma_{\mathbb{P}*\hat{\mathbb{Q}}})_K \in (M[G])[H]$. To see (\supset) , it suffices to show that $G \in M[K]$ and $H \in M[K]$. For the former, by letting $\Gamma_G = \{\langle p, (p, \mathring{\mathbb{Q}}) \rangle ; p \in G\}$, we have $G = (\Gamma_G)_K \in M[K]$. For the later, by letting $\Gamma_H = \{(\mathring{q}_G, \langle \mathbb{1}_{\mathbb{P}}, \mathring{q}_G \rangle) ; \mathring{q}_G \in H\}$, we have $H = (\Gamma_H)_K \in M[K]$.

Definition II.3.6. For ordinal α , an α -stage iterated forcing is a pair $(\langle (\mathbb{P}_{\xi}, \leq_{\xi}, \mathbb{1}_{\xi}); \xi \leq \alpha \rangle, \langle (\mathring{\mathbb{Q}}_{\xi}, \mathring{\mathbb{Q}}_{\xi}, \mathbb{1}_{\mathring{\mathbb{Q}}_{\xi}}); \xi < \alpha \rangle)$ with following properties:

- I-1 Every $(\mathbb{P}_{\xi}, \leq_{\xi}, \mathbb{1}_{\xi})$ is a forcing notion,
- I-2 Every $(\mathring{\mathbb{Q}}_{\xi}, \overset{\circ}{\leq}_{\xi}, \mathbb{1}_{\xi})$ is a $(\mathbb{P}_{\xi}, \leq_{\xi}, \mathbb{1}_{\xi})$ -name for a forcing notion,
- I-3 Every $p \in \mathbb{P}_{\xi}$ is a sequence of the form $\langle \mathring{q}_{\mu}; \mu < \xi \rangle$ where each $\mathring{q}_{\xi} \in \text{dom}(\mathring{\mathbb{Q}}_{\mu})$,
- I-4 $\xi < \eta$ and $p \in \mathbb{P}_{\eta}$ implies $p|_{\xi} \in \mathbb{P}_{\xi}$,
- I–5 Let $\xi < \eta, \ p \in \mathbb{P}_{\xi}$ and p' be an η -sequence such that $p'|_{\xi} = p$ and $(p')|_{\mu} = \mathring{\mathbb{I}}_{\mathring{\mathbb{Q}}}$, then $\xi \leq \mu < \eta$ implies $p' \in \mathbb{P}_{\eta}$ and we write $i_{\xi}^{\eta}(p)$ for p',
- I-6 $\mathbb{1}_{\xi}$ is the sequence $\langle \mathring{q}_{\mu}; \mu < \xi \rangle$, where each $\mathring{q}(\mu) = \mathring{\mathbb{1}}_{\mathring{\mathbb{O}}_{\mu}}$,
- I–7 For $p = \langle \mathring{q}_{\mu}; \mu < \xi \rangle \in \mathbb{P}_{\xi}$ and $p' = \langle \mathring{q}'_{\mu}; \mu < \xi \rangle \in \mathbb{P}_{\xi}$. $p \leq_{\xi} p'$ iff $p|_{\mu} \Vdash_{\mathbb{P}_{\mu}} \mathring{q}(\mu) \leq_{\mathring{\mathbb{Q}}_{\mu}} \mathring{q}'(\mu)$ for all $\mu < \xi$,
- $\text{I$-8$} \ \mathbb{P}_{\xi+1} = \{p^{\smallfrown} \langle \mathring{q} \rangle \, ; p \in \mathbb{P}_{\xi} \wedge \mathring{q} \in \text{dom}(\mathring{\mathbb{Q}}_{\xi}) \wedge p \Vdash_{\mathbb{P}_{\xi}} \mathring{q} \in \mathring{\mathbb{Q}}_{\xi}\} \text{ for every } \xi < \alpha.$

Definition II.3.7 ($<\kappa$ -support iteration). For a sequence p with length ξ , the support of p is

$$\operatorname{supt}(p) = \{ \mu < \xi ; (p)_{\mu} \neq \mathring{\mathbb{1}}_{\mathring{\mathbb{Q}}_{\mu}} \}.$$

For an infinite cardinal κ , the iteration is $< \kappa$ -support provided that for all limit $\eta(\le \alpha)$,

$$\mathbb{P}_{\eta} = \{p\,;\, ``p \text{ is a sequence of length } \eta" \, \wedge \, |\operatorname{supt}(p)| < \kappa \, \wedge \, \forall \xi < \eta \ (p|_{\xi} \in \mathbb{P}_{\xi})\}.$$

A finite support iteration is $< \aleph_0$ -support and a countable support iteration is $< \aleph_1$ -support iteration.

Definition II.3.8. For a limit ordinal α . \mathbb{P}_{α} is an *inverse limit* of $\langle \mathbb{P}_{\beta}; \beta \in \alpha \rangle$ provided that

$$\forall p (p \in \mathbb{P}_{\alpha} \leftrightarrow \forall \beta \in \alpha \ p|_{\beta} \in \mathbb{P}_{\beta}).$$

 \mathbb{P}_{α} is a direct limit provided that

$$\forall p(p \in \mathbb{P}_{\alpha} \leftrightarrow \exists \beta \in \alpha \ (p|_{\beta} \in \mathbb{P}_{\beta} \land \forall \xi \in [\beta, \alpha) \ p(\xi) = \mathbb{1}_{\mathring{\mathbb{O}}_{\beta}}).$$

Theorem II.3.9 ([Jec03]). Let \mathbb{P}_{α} be an iterated forcing and $\beta \in \alpha$ a limit ordinal. Then we have:

- 1. \mathbb{P}_{β} is a set of finite support iff
 - (1-a) \mathbb{P}_{β} is a direct limit.
- 2. \mathbb{P}_{β} is a set of countable support iff
 - (2-a) If $cf(\beta) = \omega$, \mathbb{P}_{β} is an inverse limit,
 - (2-b) If $cf(\beta) \ni \omega$, \mathbb{P}_{β} is a direct limit.

Proof. At the beginning of the proof, We write \mathbb{P}'_{γ} for an inverse limit or a direct limit.

To see the statement 1, note that $\mathbb{P}_{\gamma} \subset \mathbb{P}'_{\gamma}$ and $\mathbb{P}'_{\omega} \subset \mathbb{P}_{\omega}$ hold. To see that $\mathbb{P}'_{\gamma} \subset \mathbb{P}_{\gamma}$ for $\gamma \ni \omega$, let $p \in \mathbb{P}_{\gamma}$ and let $\beta \in \gamma$ such that $p(\xi) = \mathring{\mathbb{I}}_{\mathbb{Q}_{\xi}}$ for each $\xi \in [\beta, \gamma)$. Let δ be a limit ordinal and n a finite ordinal such that $\beta = \delta + n$. Then we obtain that $\sup(p) \subset \sup(p|_{\delta}) \cup [\delta, \delta + n)$ and this is a finite set by induction hypothesis.

To see the statement 2, we shall verify by the induction on γ and note that the case of $\gamma = \omega$ is obvious.

Case 2-a. $\omega \in \gamma$ with $\operatorname{cf}(\gamma) = \omega$. To see the $(\mathbb{P}_{\gamma} \subset \mathbb{P}'_{\gamma})$. Let $p \in \mathbb{P}_{\gamma}$. Since for arbitrary $\beta \in \gamma$ we have $\operatorname{supt}(p|_{\beta}) \subset \operatorname{supt}(p)$ is countable. Thus by induction hypothesis, we have that $p|_{\beta} \in \mathbb{P}'_{\beta} = \mathbb{P}_{\beta}$. To see the $(\mathbb{P}_{\gamma} \supset \mathbb{P}'_{\gamma})$. Let $p \in \mathbb{P}'_{\gamma}$ and $\langle \xi_j : j \in \omega \rangle$ with $\xi_j \nearrow \gamma$. Note that $i(p|_{\xi_j}) \to p$ where $i(p|_{\xi_j}) \in \mathbb{P}_{\gamma}$ which eventually assigns 1. Then we obtain that $\operatorname{supt}(p) = \bigcup \{ \operatorname{supt}(p_{\xi_j}) : j \in \omega \}$ and by induction hypothesis this is a countable set. Thus we have $p \in \mathbb{P}_{\gamma}$.

Case 2-b. γ with $\operatorname{cf}(\gamma) \ni \omega$. To see $(\mathbb{P}_{\gamma} \subset \mathbb{P}'_{\gamma})$. Let $\langle \xi_{\alpha} ; \alpha \in |\operatorname{cf}(\gamma)| \rangle$ with $\xi_{\alpha} \nearrow \gamma$. For $p \in \mathbb{P}_{\gamma}$ there is $\alpha \in |\operatorname{cf}(\gamma)|$ such that $\cup \operatorname{supt}(p) \in \xi_{\alpha}$ and this

 α witnesses that $p \in \mathbb{P}'_{\gamma}$. To see $(\mathbb{P}_{\gamma} \supset \mathbb{P}'_{\gamma})$. Let $p \in \mathbb{P}'_{\gamma}$ and $\beta \in \gamma$ such that $p|_{\beta} \in \mathbb{P}_{\beta}$ and $p(\xi) = \mathring{\mathbb{I}}_{\mathbb{Q}^{\xi}_{\xi}}$ for $\xi \in [\beta, \gamma)$. Then by induction hypothesis, we obtain that $\sup(p)$ is countable.

Definition II.3.10 (Intermidiate stage, [Bau83]). Let $p \in \mathbb{P}_{\alpha}$. We define the followings:

- 1. $p^{\beta} = p|_{\{\gamma \in \alpha; \beta < \gamma\}}$ for $\beta \in \alpha$,
- 2. For $\beta \in \alpha$, $\mathbb{P}_{\beta\alpha} = \{p^{\beta}; p \in \mathbb{P}_{\alpha}\},$
- 3. For \mathbb{P}_{β} -generic G_{β} , $f \leq g$ over $\mathbb{P}_{\beta\alpha}$ provided that there is $p \in G_{\beta}$ such that $p \cap f \leq_{\mathbb{P}_{\alpha}} p \cup g$.

 $\mathbb{P}_{\beta\alpha}$ is a forcing notion with order in 3.

III Type of Forcings

III.1 ccc Forcing

Definition III.1.1. For a cardinal κ , a forcing notion is $< \kappa$ -cc forcing provided that there are no antichains of size κ . A forcing notion is ccc provided that it is a \aleph_1 -cc.

Example III.1.2.

- 1. Cohen forcing is a ccc forcing. (see Theorem IV.1.2),
- 2. σ -centerd forcing is ccc forcing.

Theorem III.1.3 ([Kun11]). ccc forcing preseves cofinalities.

Theorem III.1.4 ([Jec03]). Let κ be an uncountale regular cardinal and \mathbb{P}_{α} be a finite support iteration. If \Vdash_{β} " \mathbb{Q}_{β} is $< \kappa$ -cc.", for each $\beta \in \alpha$, so does \mathbb{P}_{α} .

Proof. We shall show by induction on α .

Case I. $\alpha=\gamma+1$. Let $A=\{p_{\xi}^{\smallfrown}\langle\mathring{q}_{\xi}\rangle\,;\xi\in\kappa\}$ be a subset of \mathbb{P}_{α} of size κ such that $p_{\xi}\in\mathbb{P}_{\gamma}$ and $\mathring{q}_{\xi}\in\mathbb{Q}_{\gamma}^{\backprime}$, respectively for each $\xi\in\kappa$. Since κ is a regular and $\mathbb{P}_{\gamma}\models$ is $<\kappa$ -cc, there is $B\in[A]^{\kappa}$ such that for any $\xi,\eta\in B$ $p_{\xi}=p_{\eta}$. Thus we obtian a κ size subset $\{\mathring{q}_{\xi}\,;\xi\in B\}$ of \mathbb{Q} . Moreover, since \Vdash_{γ} " $\mathbb{Q}_{\gamma}^{\backprime}$ is $<\kappa$ -cc.", there are distinct ξ and η which is compatible. Let $\mathring{r}\in\mathbb{Q}_{\gamma}^{\backprime}$ be a common extension. Then we obtain a common $p_{\xi}^{\smallfrown}\langle\mathring{r}\rangle$ for $p_{\xi}^{\smallfrown}\langle\mathring{q}_{\xi}\rangle$ and $p_{\eta}^{\smallfrown}\langle\mathring{q}_{\eta}\rangle$. This shows that A is not an antichain, i.e., \mathbb{P}_{α} is $<\kappa$ -cc.

Case II–i. α is limit and $\operatorname{cf}(\alpha) \ni \kappa$. Let $A = \{p_{\xi} \in \mathbb{P}_{\alpha} ; \xi \in \kappa\}$ be a subset of size κ . Since \mathbb{P}_{α} is a finite support iteration, there is a $\beta \in \alpha$ such that

$$\forall \xi \in \kappa \forall \eta \in [\beta, \alpha) \ p_{\xi}(\eta) = \mathring{\mathbb{1}}_{\mathring{\mathbb{Q}}_{\eta}}$$

moreover, we obtain that

$$\forall \xi \in \kappa \forall \eta \in [\beta, \alpha) \ p_{\xi}(\eta) = \mathring{\mathbb{1}}_{\mathring{\mathbb{O}}_{n}}$$

for a limit ordinal $\beta \in \alpha$. Now by induction hypothesis, there are distinct $\xi, \xi' \in \kappa$ and $p \in \mathbb{P}_{\beta}$ such that $p \leq_{\beta} p_{\xi}|_{\beta}, p_{\xi'}|_{\beta}$. Furthermore, $p \wedge \langle \mathring{\mathbb{1}} \rangle \wedge \cdots \wedge \langle \mathring{\mathbb{1}} \rangle \leq_{\alpha} p_{\xi}, p_{\xi'}$. Therefore, A is not an antichain, i.e., \mathbb{P}_{α} is $< \kappa$ -cc.

Case II–ii. α is limit and $\operatorname{cf}(\alpha) = \kappa$. Let $A = \{p_{\xi}; \xi \in \kappa\}$ be a subset of size κ and $\langle \alpha_{\xi}; \xi \in \kappa \rangle$ be a sequence with following properties:

- $\cup \{\operatorname{supt}(p_{\eta}); \eta \in \xi\} \subset \alpha_{\xi} \text{ for all } \xi \in \kappa,$
- $\cup \{\alpha_{\xi} : \xi \in \kappa\} = \alpha$.

Then for each limit $\xi \in \kappa$, since $\operatorname{supt}(p_{\xi})$ is finite and $\cup \{\operatorname{supt}(p_{\eta}) : \eta \in \xi\} \subset \alpha_{\xi}$, there is $\gamma_{\xi} \in \xi$ such that $\operatorname{supt}(p_{\xi}) \cap \alpha_{\xi} \subset \alpha_{\gamma_{\xi}}$.

Since the set $\kappa \cap \text{Lim}$ is a stationary subset of κ , applying Theorem I.1.4, there is a stationary subset $S \subset C$ of size κ and $\gamma \in \kappa$ such that $\sup(p_{\xi}) \cap \alpha_{\xi} \subset \alpha_{\gamma}$ for any $\xi \in S$ and thus we obtain a subset $\{p_{\xi}|_{\gamma} ; \xi \in S\} \subset \mathbb{P}_{\gamma}$. Now induction hypothesis and κ is regular assert that there are ξ and η such that $\gamma \in \xi \in \eta$ and $p_{\xi}|_{\gamma}$ and $p_{\eta}|_{\gamma}$ possesses a common extension, named $p \in \mathbb{P}_{\gamma}$.

Define an r by:

$$r(\beta) = \begin{cases} p(\beta) & \beta \in \alpha_{\gamma} \\ p_{\xi}(\beta) & \beta \in [\alpha_{\gamma}, \alpha_{\eta}) \\ p_{\eta}(\beta) & \beta \in [\alpha_{\eta}, \alpha) \end{cases}$$

then ovbiously we have $r \in \mathbb{P}_{\alpha}$. To see that r is an extension for both p_{ξ} and p_{η} , the former is derived by the fact $\eta \in \xi$ and the later is derived by the fact $\eta \in S$. Therefore, A possesses a compatible pair, i.e., \mathbb{P}_{α} is $< \kappa$ -cc.

III.2 σ -centerd Forcing

Definition III.2.1. Let \mathbb{P} be a forcing notion and C a subset. C is centered provided that for any finite subset of C there is a common extension $p \in \mathbb{P}$. A forcing notion \mathbb{P} is σ -centered provided that there are countably many centered subsets $C_i \subset \mathbb{P}$, $i \in \omega$, whose union is \mathbb{P} .

Example III.2.2.

1. Hechler forcing is σ -centered forcing. (see Theorem IV.2.4)

III.3 σ -closed Forcing

Definition III.3.1. A forcing notion \mathbb{P} is a σ -closed forcing (or ω_1 -closed, countably closed) provided that for every decreasing sequence $\langle p_n \in \mathbb{P}; n \in \omega \rangle$ with $p_{n+1} \leq p_n$ there is a condition $p \in \mathbb{P}$ such that $p \leq p_n$ for each $n \in \omega$.

III.4 Axiom A Forcing

Definition III.4.1 ([Bau83]). For a forcing notion \mathbb{P} , \mathbb{P} satisfies Axiom A provided that there is an order sequence $\{\leq_n : n \in \omega\}$ with following properties:

- $A-1 \leq_{\mathbb{P}} = \leq_0$
- A-2 For every $n \in \omega$ and $p, q \in \mathbb{P}$, $q \leq_{n+1} q \implies p \leq_n q$,
- A-3 For every sequence $\langle p_n \in \mathbb{P} : n \in \omega \rangle$ with $p_{n+1} \leq_n p_n$ for each $n \in \omega$, there is $q \in \mathbb{P}$ such that $p \leq_n p_n$ for every $n \in \omega$. We call that the sequence is a fusion sequence and q is a fusion,
- A-4 Let I be an antichain over \mathbb{P} , $p \in \mathbb{P}$ and $n \in \omega$, there is $q \in \mathbb{P}$ such that $q \leq_n p$ and $\{r \in I : r \not\perp q\}$ is countable.

Example III.4.2.

- 1. A ccc forcing satisfies Axiom A.
- 2. A σ -closed forcing satisfies Axiom A.
- 3. A Sacks forcing satisfies Axiom A. (see Theorem IV.4.3)
- 4. A Mathias forcing satisfies Axiom A. (see Theorem IV.3.7)
- 5. A shooting a club by finite conditions forcing does not satisfy Axiom A. (see Theorem IV.5.4)

Theorem III.4.3. The following is equivalent to A-4:

A-4' Let \mathring{a} be a \mathbb{P} -name, $p \in \mathbb{P}$ and $n \in \omega$. If $p \Vdash_{\mathbb{P}} \mathring{a} \in V$, equivalently $\exists b \in V \ (p \Vdash_{\mathbb{P}} \mathring{a} \in \check{b})$, then there is $X \in V$ and $q \in \mathbb{P}$ such that X is countable, $q \leq_n p$ and $q \Vdash_{\mathbb{P}} \mathring{a} \in \check{X}$.

Proof. For $A-4 \Longrightarrow A-4$ '. Assume $p \Vdash_{\mathbb{P}} \mathring{a} \in V$ and let $n \in \omega$. Since $\{p \in \mathbb{P} ; \exists b \in V \ (p \Vdash \mathring{a} = \check{b})\}$ is not empty let I be a maximal antichain of it and for $r \in I$ let $a_r \in V$ be the unique element which satisfies $r \Vdash_{\mathbb{P}} \mathring{a} = \check{a}_r$. Applying A-4, there is $q \leq_n p$ such that $\{r \in I ; r \not \perp_{\mathbb{P}} q\}$ is countable. By letting $X = \{a_r ; r \in I \land r \not \perp_{\mathbb{P}} q\}$, X is countable. Finally we check $q \Vdash_{\mathbb{P}} \mathring{a} \in \check{X}$. For arbitrary $q_1 \leq_{\mathbb{P}} q$ there is $r \in I$ such that $r \not \perp_{\mathbb{P}} q_1$, moreover there is $q_2 \in \mathbb{P}$ such that $q_2 \leq_{\mathbb{P}} q_1, r$. Then we obtain $q_2 \Vdash_{\mathbb{P}} \mathring{a} = \check{a}_r$.

For $A-4' \Longrightarrow A-4$. Let I be an antichain, $p \in \mathbb{P}$ and $n \in \omega$ and let I' be a maximal antichain finer than I. By letting $\mathring{a} = \{(\check{r},r); r \in I'\}$, for any generic G we have $(\mathring{a})_G \in I'$, so we obtain $p \Vdash_{\mathbb{P}} \mathring{a} \in V$. By A-4' there is a coutable $X \in V$ and $q \in \mathbb{P}$ such that $q \leq_n p$ and $q \Vdash_{\mathbb{P}} \mathring{a} \in \check{X}$. Now we show that $\{r \in I'; r \not \perp_{\mathbb{P}} q\} \subset X$. Let $r \in I'$ with $r \perp_{\mathbb{P}} q$. By $q \Vdash_{\mathbb{P}} \mathring{a} \in \check{X}$ there is q' and $x \in X$ such that $q' \Vdash_{\mathbb{P}} \mathring{a} = \check{x}$. Then for any generic G with $q' \in G$, since $r \in G$, we obtain that $r = (\mathring{a})_G = (\check{x})_G = x$. Thus, we have the subset relation and we complete the proof.

Theorem III.4.4. Let \mathbb{P}_{α} is an α -stage iteration over M and $\beta \in \alpha$. Let $i \colon \mathbb{P}_{\alpha} \to \mathbb{P}_{\beta}$ which assign the p the $p \cap \langle \mathbb{1} \rangle \cap \ldots \cap \langle \mathbb{1} \rangle \in \mathbb{P}_{\alpha}$. For \mathbb{P}_{α} -generic K, define $G = i^{-1}(K)$ and $H = \{p^{\beta} : p \in K\}$. Then we have the followings:

- 1. G is \mathbb{P}_{β} -generic over M,
- 2. H is $\mathbb{P}_{\beta\alpha}$ -generic over M[G],
- $3. \ K=G^\smallfrown H=\{p^\smallfrown q\,; p\in G\land q\in H\},$
- 4. M[K] = (M[G])[H].

Theorem III.4.5. Let \mathbb{P}_{α} is an α -stage iteration with countable support which satisfies $\mathbb{1} \Vdash_{\mathbb{P}_{\beta}}$ " $\mathring{\mathbb{Q}}_{\beta}$ satisfies Axiom A." for all $\beta \in \alpha$. Then \mathbb{P}_{α} does not collapse ω_1 , i.e., preserves ω_1 . And moreover if we have $\alpha < \omega_2$, $V \models \mathrm{ZFC} + \mathrm{CH}$ and $\Vdash_{\mathbb{P}_{\beta}} |\mathring{\mathbb{Q}}_{\beta}| \leq \aleph_1$ for all $\beta \in \alpha$, then \mathbb{P}_{α} has an \aleph_2 -chain condition.

Before we show the theorem, we make some definition and lemmata. (See the proof.)

Definition III.4.6. For $\gamma \leq \alpha$, $F \in [\alpha]^{<\omega}$ and $n \in \omega$, we define the followings:

- (i) For $p, q \in \mathbb{P}$, $p \leq_{F,n} q$ provided that $\forall \beta \in F \ (p|_{\beta} \Vdash_{\mathbb{P}_{\beta}} p(\beta) \overset{\circ}{\leq}_{n}^{\beta} q(p))$.
- (ii) $D \subset \mathbb{P}_{\gamma}$ is (F, n)-dense provided that $\forall p \in \mathbb{P}_{\gamma} \exists q \in D \ (q \leq_{F, n} p)$.
- (iii) A sequence $\langle (p_n, F_n); n \in \omega \rangle$ is an (F, n)-fusion sequence of \mathbb{P}_{α} provided that
 - (iii–a) $p_n \in \mathbb{P}_{\alpha}$ and $F_n \in [\alpha]^{<\omega}$ for each $n \in \omega$,
 - (iii-b) $\forall n \in \omega \ (p_{n+1} \leq_{F_n,n} p_n),$
 - (iii–c) $\forall n \in \omega \ (F_n \subset F_{n+1}),$
 - (iii-d) $\cup \{F_n ; n \in \omega\} = \cup \{\operatorname{supt}(p_n) ; n \in \omega\}.$

Lemma III.4.7. Let $\langle (p_n, F_n); n \in \omega \rangle$ be an (F, n)-fusion sequence of \mathbb{P}_{α} . There is $p \in \mathbb{P}_{\alpha}$ such that $\forall n \in \omega \ (p \leq_{F_n, n} p_n)$. Moreover we may assume that $\sup(p) = \bigcup \{F_n; n \in \omega\}$.

Proof. First we see the "moreover" part. Suppose there is the desired $q \in \mathbb{P}_{\alpha}$. By letting

$$q' = \{(\eta, q(\eta)); \eta \notin \cup \{\operatorname{supt}(p_n); n \in \omega\}\} \cup \{(\eta, \mathring{\mathbb{1}}_{\mathring{\mathbb{Q}}_n}); \eta \in \cup \{\operatorname{supt}(p_n); n \in \omega\}\}$$

we obtain that $\operatorname{supt}(q) = \bigcup \{ \operatorname{supt}(p_n) ; n \in \omega \}.$

To see the first statement, we show the following by the induction on β .

$$\forall \beta \leq \alpha \forall \langle (p_n, F_n); n \in \omega \rangle \exists p \in \mathbb{P}_{\beta} \forall n \in \omega \ (p \leq_{F_n, n} p_n)$$

Where $\langle (p_n, F_n) ; n \in \omega \rangle$ is an (F, n)-fusion sequence of \mathbb{P}_{β} .

- (i) $\beta = 0$. For an (F, n)-fusion sequence $\langle (p_n, F_n) ; n \in \omega \rangle$ of \mathbb{P}_0 , by letting $p = \emptyset$, we have $p \in \mathbb{P}_0$ and for arbitrary $n \in \omega$, $p \leq_{0,n} p_n$ is trivial.
- (ii) $\beta = \gamma + 1$. Let $\langle (p_n, F_n); n \in \omega \rangle$ be an (F, n)-fusion sequence of $\mathbb{P}_{\gamma+1}$. By induction hypothesis, there is $p' \in \mathbb{P}_{\gamma}$ such that $\forall n \in \omega \ (p' \leq_{F_n, n} p_n)$ holds. We distinguish two cases, according to whether $\gamma \in \bigcup \{ \sup(p_n) : n \in \omega \}$. If $\gamma \notin \cup \{\operatorname{supt}(p_n); n \in \omega\}, \text{ by letting } p = p' \cup \{(\gamma, \mathbb{1}_{\mathbb{Q}_{\gamma}})\}, \text{ we have } p \in \mathbb{P}_{\gamma+1}$ and $\forall n \in \omega \ (p \leq_{F_n,n} p_n)$ holds. If $\gamma \in \cup \{\operatorname{supt}(p_n); n \in \omega\}$. Let n_0 be an \in -minimal such that $\gamma \in F_{n_0}$. For $m \in \omega$, define \mathring{q}_m for $p_{n_0}(\gamma)$ if $m \in n_0$ and $p_m(\gamma)$ if $m \notin n_0$. Then we note that $\mathbb{1} \Vdash_{\mathbb{P}_{\gamma}}$ " $\langle \mathring{q}_m ; m \in \omega \rangle$ is a sequence of $\mathring{\mathbb{Q}}_{\gamma}$." and we assert that $p' \Vdash_{\mathbb{P}_{\gamma}} \forall n \in \omega \ (\mathring{q}_{m+1} \stackrel{\circ}{\leq}_{m}^{\gamma} \mathring{q}_{m})$. To see the later, for $m \in \omega$, we distinguish two cases, according to whether $m \in n_0$. If $m \notin n_0$. Since we have $\gamma \in F_{n_0} \subset F_m$, $\mathring{q}_{m+1}(\gamma) = p_m(\gamma)$ and $\mathring{q}_{m+1}(\gamma) = p_{m+1}(\gamma)$, by the condition (a) in an (F, n)-fusion sequence, we obtain that $p_{m+1}|_{\gamma} \Vdash_{\mathbb{P}_{\gamma}} p_{m+1}(\gamma) \stackrel{\stackrel{\circ}{\leq}_{m}^{\gamma}}{p_{m}(\gamma)}$. Since $p' \leq_{F_{m+1},m+1} p_{m+1}|_{\gamma}$ and $\gamma \in F_{n_0} \subset F_{m+1}$ hold, we have $\forall \delta < \gamma \ (p' \Vdash_{\mathbb{P}_{\delta}} p'(\delta) \stackrel{\circ}{\leq}^{\delta} p_{m+1}(\delta))$, moreover, $p' \leq_{\mathbb{P}_{\gamma}} p_{m+1}|_{\gamma}$. Therefore we obtain that $p' \Vdash_{\mathbb{P}_{\gamma}} p_{m+1}(\gamma) \stackrel{\circ}{\leq}_{m}^{\gamma} p_{m}(\gamma)$. If $m \in n_{0}$. Since $\mathring{q}_{m}(\gamma) =$ $p_{n_0}(\gamma) = \mathring{q}_{m+1}(\gamma)$, we have $p' \Vdash_{\mathbb{P}_{\gamma}} p_{m+1}(\gamma) \stackrel{\circ}{\leq}_m^{\gamma} p_m(\gamma)$. Now since $p' \Vdash_{\mathbb{P}_{\gamma}}$ " \mathbb{Q}_{γ} " satisfies Axiom A.", by A-4, there is a $\mathring{q} \in V^{\mathbb{P}_{\gamma}}$ such that $p' \Vdash_{\mathbb{P}_{\gamma}} \mathring{q} \in \mathbb{Q}_{\gamma}$ and $\forall m \in \omega \ (\mathring{q} \overset{\circ}{\leq}_m^{\gamma} \mathring{q}_m)$ holds. Thus by letting $p = p' \mathring{q}$, we obtain that $p \in \mathbb{P}_{\beta}$ and $\forall n \in \omega \ (p \leq_{F_n, n} p_n).$
- (iii) β is limit. Let $\langle (p_n, F_n); n \in \omega \rangle$ be an (F, n)-fusion sequence of \mathbb{P}_{β} . By induction hypothesis for every $\xi \in \beta$, choose $p'_{\xi} \in \mathbb{P}_{\xi}$ such that $\forall n \in \omega$ $(p_{\xi} \leq_{F_n, n} p'_{\xi})$. We distinguish two cases, according to whether $\omega \in \operatorname{cf}(\beta)$. If $\omega \in \operatorname{cf}(\beta)$. Since every F_n is finite there is $\eta \in \beta$ such that $\cup \{F_n : n \in \omega\} \subset \eta$. Since we have $\forall n \in \omega$ $(p_{\eta} \leq_{F_n, n} p_{\eta})$, we obtain that $\forall n \in \omega$ $(p_{\eta} \leq_{F_n, n} p_n)$. If $\omega = \operatorname{cf}(\beta)$. Let $\xi_n \in \beta$ such that $\xi_n \nearrow \beta$ and $\cup \{F_m : m \leq n\} \subset \xi_n$. First, for an (F, n)-fusion sequence $\langle (p_n|_{\xi_0}, \cap \{F_n, \xi_0\}); n \in \omega \rangle$ of \mathbb{P}_{ξ_0} , there is $q_0 \in \mathbb{P}_{\xi_0}$ such that $q_0 \leq_{\cap \{F_n, \xi_0\}, n} p_n|_{\xi_0}$ for every $n \in \omega$. Secondly, for $n \in \omega$, define $p_n^1 = q_0 \cup f|_{[\xi_0, \xi_1)}$ then we obtain an (F, n)-fusion sequence $\langle (p_n^1, \cap \{F_n, \xi_1\}); i \in \omega \rangle$, there is $q_1 \in \mathbb{P}_{\xi_1}$ such that $q_1 \leq_{\cap \{F_n, \xi_n\}, n} p_n^1$ for every $n \in \omega$. And by letting $q'_1 = q|_{\xi_0} \cup q_1|_{[\xi_0, \xi_1)}$, we have $q_0 \subset q'_1$. Continuing this process, we obtain $q_m \in \mathbb{P}_{\xi_m}$, $m \in \omega$, with following properties:
 - 1. $q_0 \leq_{\bigcap \{F_n, \xi_0\}, n} p_n|_{\xi_0}$ holds for each $n \ni 1$,
 - 2. $q_m \leq_{\bigcap\{F_n,\xi_n\},i} p_n^m$ for every $n \in \omega$ holds for each $m \ni 0$, where $p_n^{m+1} = q_m \cup p_n|_{[\xi_m,\xi_{m+1})}$.

Let $q = \bigcup \{q_m; m \in \omega\}$. To conclude the proof we remain to show that $q \in \mathbb{P}_{\beta}$ and $q \leq_{F_n,n} p_n$ for every $n \in \omega$. The former is immediate by the fact \mathbb{P}_{α} is countable support and $q_m \subset q_{m+1}$ for every $m \in \omega$. To see the later statement. Let $n \in \omega$ and $\gamma \in F_n$. If $\gamma \in \xi_0$, we obtain $q \leq_{F_n,n} p_n$ immediately by $q_0 \subset q$. Thus we may assume that $\xi_0 \leq \gamma \in \beta$ and choose $m \in \omega$ such that $\gamma \in [\xi_{m-1}, \xi_m)$. Thus we obtain that $q_m|_{\gamma} \Vdash_{\mathbb{P}_{\gamma}} q_m(\gamma) \leq_{\gamma}^n p_n^m(\gamma)$, furthermore, by $q \supset q_m$ and $p_n^m(\gamma) = p_n(\gamma)$, we have that $q|_{\gamma} \Vdash_{\mathbb{P}_{\gamma}} q(\gamma) \leq_{\gamma}^n p_n(\gamma)$. Now we complete the proof of the limit case.

Lemma III.4.8. For $\beta \leq \alpha$ we have the followings:

(a) If $\Vdash_{\mathbb{P}_{\beta}} \mathring{a} \in V$, then the following set is (F, n)-dense for all finite $F \subset \beta$ and $n \in \omega$;

$$\{q \in \mathbb{P}_{\beta} : \exists X \ (\text{``} X \text{ is countable in } V.\text{''} \land q \Vdash_{\mathbb{P}_{\beta}} \mathring{a} \in \check{X})\},$$

(b) If $\Vdash_{\mathbb{P}_{\beta}}$ " \mathring{X} is a countable subset of V.", then the following set is (F, n)-dense for all finite $F \subset \beta$ and $n \in \omega$;

$$\{q \in \mathbb{P}_{\beta} ; \exists X \text{ ("} X \text{ is countable in } V." \land q \Vdash_{\mathbb{P}_{\beta}} \mathring{X} \subset \check{X})\},$$

(c) If $\beta \in \gamma \leq \alpha$ and $\Vdash_{\mathbb{P}_{\beta}} \mathring{f} \in \mathbb{P}_{\beta\gamma}$, then the following set is (F, n)-dense for all finite $F \subset \beta$ and $n \in \omega$;

$$\{q \in \mathbb{P}_{\beta} ; \exists f \in \mathbb{P}_{\beta\gamma} \ (q \Vdash_{\mathbb{P}_{\beta}} \mathring{f} = f)\}.$$

Proof. At the beginning of the proof, if $\beta \leq \alpha$ satisfies (a) (resp. (b), (c)), we say that (a) holds at a β -stage. To conclude the proof, thanks to induction, it suffices to show the followings:

- 1. (a) holds at a β -stage then so does (b),
- 2. (b) holds at a β -stage then so does (c),
- 3. (a) holds at the leading-stage, $\beta = 0$,
- 4. (b) holds at a β -stage then (a) holds at the $\beta + 1$ -stage,
- 5. For any limit $\delta \leq \alpha$, if (b) and (c) hold at a $\beta \in \delta$ then (a) holds at a δ -stage.

We shall show 1. Assume that $\Vdash_{\mathbb{P}_{\beta}}$ " \mathring{X} is countable in V." and $F \in [\beta]^{<\omega}$, $n \in \omega$ and $p \in \mathbb{P}_{\beta}$. Let \mathring{a}_{n} , $n \in \omega$, be \mathbb{P}_{β} -names such that $\Vdash_{\mathbb{P}_{\beta}} \mathring{X} = \{\mathring{a}_{n} : n \in \omega\}$. We define an (F, n)-fusion sequence $\langle (p_{k}, F_{k}) : k \in \omega \rangle$ of \mathbb{P}_{β} , recursively. Let $p_{0} = p \in \mathbb{P}_{\beta}$ and $F_{0} = F \cap \text{supt}(p_{0})$. Since \mathbb{P}_{α} is countable support, let α_{i}^{0} , $i \in \omega$, such that $\{\alpha_{i}^{0} : i \in \omega\} = \text{supt}(p_{0})$. Assume that $p_{k} \in \mathbb{P}_{\beta}$ and F_{k} are defined. Applying (a) at a β -stage, there are $p_{k+1} \in \mathbb{P}_{\beta}$ and countable X_{k} in V such that $p_{k+1} \leq_{F_{k},n+k} p_{k}$ and $p_{k+1} \Vdash_{\mathbb{P}_{\beta}} \mathring{a}_{k} \in \check{X}_{k}$ and let α_{i}^{k} , $i \in \omega$, be \mathbb{P}_{β} -names such that $\{\alpha_{i}^{k} : i \in \omega\} = \text{supt}(p_{k})$. Then by letting $F_{k+1} = \bigcup \{F_{k}, \{\alpha_{i}^{k} : i \in \omega\}\}$. Now by applying Lemma III.4.7, there is $q \in \mathbb{P}_{\beta}$ such that $q \leq_{F_{k},n+k} p_{k}$ for every $k \in \omega$. Moreover, we have $q \leq_{F_{0},n} p$. Thus we obtain that $q \leq_{F_{n},n+k} p_{k}$ for every $k \in \omega$. Moreover, we have $q \leq_{F_{0},n} p$. Thus we obtain that $q \leq_{F_{n},n} p$ and we obtain that $q \Vdash_{\mathbb{P}_{\beta}} \mathring{X} \subset \bigcup \{X_{k} : k \in \omega\}$.

We shall show 2. Let γ be $\beta \in \gamma \leq \alpha$, $\Vdash_{\mathbb{P}_{\beta}} \mathring{f} \in \mathbb{P}_{\beta\gamma}$, $F \in [\beta]^{<\omega}$, $n \in \omega$ and $p \in \mathbb{P}_{\beta}$. Since $\Vdash_{\mathbb{P}_{\beta}}$ "supt(p) is countable in V.", by applying (b) at a β -stage, there is $q \in \mathbb{P}_{\beta}$ and countable X in V such that $q \leq_{F,n} p$ and $q \Vdash_{\mathbb{P}_{\beta}} \operatorname{supt}(p) \subset \check{X}$. To conclude the proof, we shall construct a function $f \in \mathbb{P}_{\beta\gamma}$ as follows:

- $f(\xi) = \mathbb{1}_{\mathring{\mathbb{Q}}_{\xi}}$ for all $\xi \notin X$
- $f(\xi)$ be a P_{ξ} -name such that $q \cup f|_{\xi} \Vdash_{\mathbb{P}_{\xi}} f(\xi) = \mathring{f}(\xi)$ for all $\xi \in X$

Then since $\operatorname{supt}(f)$ is countable we obtain $f \in \mathbb{P}_{\beta\gamma}$. We remain to show that $q \Vdash_{\beta} \mathring{f} = f$ and it suffcies to verify that $q \Vdash_{\beta} \forall \xi \ (\beta \leq \xi \land \xi \in \gamma \Longrightarrow \mathring{f}(\xi) = f(\xi))$. (i) If $\xi = \beta$. Since $q \cup f|_{\xi} = q$, we obtain that $q \Vdash_{\mathbb{P}_{\beta}} f(\xi) = \mathring{f}(\xi)$. (ii) If ξ is successor or limit. We distinguish two cases, according to whether $\xi \in X$. If $\xi \not\in X$. By the construction, we obtain that $q \Vdash_{\mathbb{P}_{\beta}} f(\xi) = \mathring{f}(\xi)$. If $\xi \in X$. By induction hypothesis, for arbitrary η with $\beta \leq \eta \in \xi$, we obtain $q \Vdash_{\mathbb{P}_{\beta}} (f|_{\eta} \Vdash_{\mathbb{P}_{\eta}} f(\eta) = \mathring{f}(\eta))$ and $q \Vdash_{\mathbb{P}_{\beta}} (\mathring{f}|_{\eta} \Vdash_{\mathbb{P}_{\eta}} f(\eta) = \mathring{f}(\eta))$. Thus we obtain that $q \Vdash_{\mathbb{P}_{\beta}} f(\xi) \leq_{\mathbb{P}_{\xi}} \mathring{f}(\xi)$ and $q \Vdash_{\mathbb{P}_{\beta}} f(\xi) \geq_{\mathbb{P}_{\xi}} \mathring{f}(\xi)$, furthermore, $q \Vdash_{\mathbb{P}_{\beta}} f(\xi) = \mathring{f}(\xi)$.

We shall show 3. First we note that $\mathbb{P}_{\beta} = \{\emptyset\}$ and for any condition there are no extensions without it self. By letting $X = \{\mathring{a}\} \subset V$ we obtain that $\emptyset \Vdash_{\mathbb{P}_0} \mathring{a} \in \check{X}$. This shows (a) holds at the 0-stage.

We shall show 4. Assume $\Vdash_{\mathbb{P}_{\beta+1}} \mathring{a} \in V$ and let $F \in [\beta+1]^{<\omega}$, $n \in \omega$ and $p \in \mathbb{P}_{\beta+1}$. Since we have $\mathbb{P}_{\beta+1}$ embbends $\mathbb{P}_{\beta} * \mathring{\mathbb{Q}}_{\beta+1}$ and $\Vdash_{\mathbb{P}_{\beta}} \mathring{a} \in V$, we obtain that $\mathbb{1}_{\mathring{\mathbb{Q}}_{\beta+1}} \Vdash_{\mathbb{P}_{\beta+1}} (\mathbb{1}_{\mathring{\mathbb{Q}}_{\beta}} \Vdash_{\mathbb{P}_{\beta}} \mathring{a} \in V)$ furthermore, $\mathbb{1}_{\mathring{\mathbb{Q}}_{\beta+1}} \Vdash_{\mathbb{P}_{\beta+1}} (p(\beta)_{\mathring{\mathbb{Q}}_{\beta}} \Vdash_{\mathbb{P}_{\beta}} \mathring{a} \in V)$. Since, $\Vdash_{\mathbb{P}_{\beta}}$ " $\mathring{\mathbb{Q}}$ satisfies Axiom A.", $\mathbb{1}_{\mathbb{Q}_{\beta+1}^*}$ forces " $\exists q \leq_n^{\beta} p(\beta) \exists X$ ("X is countable." $\land q \Vdash_{\mathbb{P}_{\beta}} \mathring{a} \in \check{X}$).". Moreover, by letting $X' = X \cap V$, since $\Vdash_{\mathbb{P}_{\beta+1}} \mathring{a} \in V$, we can forces " $\exists q \leq_n^{\beta} p(\beta) \exists X'$ ("X' is countable in V." $\land q \Vdash_{\mathbb{P}_{\beta}} \mathring{a} \in \check{X}'$).". Now by applying (b), there is countable Y in V and $Y' = \mathbb{P}_{\beta} = \mathbb{P}$

We shall show 5. Let $\delta \leq \alpha$ be a limit. Assume that $\Vdash_{\mathbb{P}_{\gamma}} \mathring{a} \in V$ and let $F \in [\delta]^{<\omega}$, $n \in \omega$ and $p \in \mathbb{P}_{\delta}$ and let γ be an ordinal with $F \subset \gamma \in \delta$. Since \mathbb{P}_{δ} embbends $\mathbb{P}_{\gamma} * \mathbb{P}_{\gamma\delta}$ and $\Vdash_{\mathbb{P}_{\gamma}} \mathring{a} \in V$, we have $\mathbb{1}_{\mathbb{Q}_{\gamma}^{i}} \Vdash_{\mathbb{P}_{\gamma}} (\mathbb{1}_{\mathbb{P}_{\gamma\delta}} \mathring{a} \in V)$, moreover, $\mathbb{1}_{\mathbb{Q}_{\gamma}^{i}} \Vdash_{\mathbb{P}_{\gamma}} (p^{\gamma} \Vdash_{\mathbb{P}_{\gamma\delta}} \mathring{a} \in V)$. Then we obtain that $\mathbb{1}_{\mathbb{Q}_{\gamma}^{i}}$ forces:

there are
$$\mathbb{P}_{\gamma\delta}$$
-names $\mathring{f} \leq_n^{\gamma} p^{\gamma}$ and $b \in V$ such that $\mathring{f} \Vdash_{\mathbb{P}_{\gamma\delta}} \mathring{a} = \check{b}$ (*)

For (*), applying (c) at the γ -stage, there are $q \in \mathbb{P}_{\gamma}$ and $f \in \mathbb{P}_{\gamma\delta}$ such that $q \leq_{F,n} p|_{\gamma}$ and $q \Vdash_{\mathbb{P}_{\gamma}} \mathring{f} = f \cdots (*-\mathrm{i})$. And for (*), applying (a) at the γ -stage there are $q' \in \mathbb{P}_{\gamma}$ and countable X in V such that $q' \leq_{F,n} q$ and $q' \Vdash_{\mathbb{P}_{\gamma}} b \in \mathring{X} \cdots (*-\mathrm{ii})$. Therefore from (*), (*-i) and (*-ii), for $f \in \mathbb{P}_{\gamma\delta}$, $q' \in \mathbb{P}_{\gamma}$ and countable X, $q' \Vdash_{\mathbb{P}_{\gamma}} (f \leq_{F,n} p^{\gamma} \wedge f \Vdash_{\mathbb{P}_{\gamma\delta}} \mathring{a} \in \mathring{X})$. Recall that we have $q \leq_{F,n} p|_{\gamma}$, $f \leq_{\mathbb{P}_{\gamma\delta}} p^{\gamma}$ and $F \subset \gamma$, we obtain that $q \cup f \leq_{F,n} p|_{\gamma} \cup p^{\gamma} = p$.

Since we have already seen that the equivalent for A-4 and A-4, we have the following result:

Lemma III.4.9. The following is equivalent to (a) in Lemma III.4.8.

- (a') If I is an antichain in \mathbb{P}_{β} , then the following set is (F, n)-dense for all finite $F \subset \beta$ and $n \in \omega$;
 - $\{q \in \mathbb{P}_{\beta}; \text{ "} \{q \in I; p \not\perp q\} \text{ is countable in } V." \},$

Lemma III.4.10. Assume that CH and let $\alpha \in \omega_2$ with $\Vdash_{\mathbb{P}_\beta} |\mathring{\mathbb{Q}}_\beta| \leq \aleph_1$. Then there is $D_\alpha \subset \mathbb{P}_\alpha$ such that $|D_\alpha| \leq \aleph_1$ and D_α is (F, n)-dense for arbitrary $F \in [\alpha]^{<\omega}$ and $n \in \omega$.

Proof. We show by induction on α .

For $\alpha = 0$. By letting $D_{\alpha} = \{\emptyset\}$, we are done.

The case of $\alpha = \beta + 1$. Let $D_{\beta} \subset \mathbb{P}_{\beta}$ with $\Vdash_{\beta} |\mathring{\mathbb{Q}}| \leq \aleph_1$ and D_{β} is (F, n)-dense for all $F \in [\beta]^{<\omega}$ and $n \in \omega$. Let $\{\mathring{d}_{\xi}; \xi \in \omega_1\}$ be a set such that $\Vdash_{\beta} \mathring{\mathbb{Q}}_{\beta} = \{\mathring{d}_{\xi}; \xi \in \omega_1\}$. Fix a \mathbb{P}_{β} -generic G_{β} . For antichain $I \subset D_{\beta}$ which is countable in V and a function $f \in {}^{I}\omega_1$ in V, define a \mathbb{P}_{β} -name $\mathring{q}(f)$ is; $\mathring{d}_{f(p)}$ if $I \cap G_{\beta} = \{p\}$ and $\mathring{\mathbb{L}}_{\mathring{\mathbb{Q}}_{\beta}}$ if $I \cap G_{\beta} = \emptyset$. Since we have $V \models \mathrm{CH}$, the number of such a function f is at most \aleph_1 , so the cardinality of $T = \{\mathring{q}(f); f\}$ is $\leq \aleph_1$. Then by letting $D_{\alpha} = \{p \in \mathbb{P}_{\alpha}; p|_{\beta} \in D_{\beta} \land p(\beta) \in T\}$ we obtain that $|D_{\alpha}| \leq \aleph_1$. To see that D_{α} is (F, n)-dense for every $F \in [\alpha]^{<\omega}$ and $n \in \omega$. Let I be a maximal antichain of $\{d \in D_{\beta}; d \leq_{\mathbb{P}_{\beta}} p|_{\beta} \land \exists \xi \in \omega_1 \ (d \Vdash_{\beta} p(\beta) = \mathring{d}_{\xi})\}$. By Lemma III.4.9 and induction hypothesis, there is $d \in D_{\beta}$ such that $d \leq_{F,n} p$ and $J = \{q \in I; d \not \perp q\}$ is countable in V. Note that J is a dense antichain. So by letting $f: J \to \omega_1$ which assign the $q \in J$ the ξ if $q \Vdash_{\beta} p(\beta) = \mathring{d}_{\xi}$, the $\mathring{\mathbb{Q}}_{\mathbb{Q}}$ if otherwise. Note that since I is maximal, there is $d' \in J$ with $d \not \perp d'$ and $d' \Vdash_{\beta} p(\beta) = \mathring{d}'_{\xi}$ for some $\xi \in \omega_1$. Thus for a common extension d'' for d and d', we obtain that $d'' \Vdash_{\beta} p(\beta) = \mathring{q}(f)$. Then by letting $T = d'' \cap \langle \mathring{q}(f) \rangle \in D_{\alpha}$, since we have $d'' \leq_{F \cap \beta, n} p|_{\beta}$, we obtain that $T \leq_{F, n} p$.

The case of α is limit. For $\beta \in \alpha$ and $q \in D_{\beta}$, define $\overline{q} = q^{\wedge} \langle \mathring{\mathbb{1}} \rangle^{\wedge} \dots^{\wedge} \langle \mathring{\mathbb{1}} \rangle \in \mathbb{P}_{\alpha}$. Define $\overline{D}_{\alpha} = \{\overline{q} : \exists \beta \in \alpha \ q \in D_{\beta}\}$ and we shall find $D_{\alpha} \subset \mathbb{P}_{\alpha}$ with following conditions:

- i. $|D_{\alpha}| \leq \aleph_1$,
- ii. $\overline{D}_{\alpha} \subset D_{\alpha}$,
- iii. For an (F, n)-fusion sequence $\{\langle p_n, F_n \rangle ; n \in \omega\}$ in \mathbb{P}_{α} with $p_n \in D_{\alpha}$, there is a fusion p in D_{α} .

Fix $d \in D_{\alpha}$ and a fusion for (F, n)-fusion sequences in \mathbb{P}_{α} . For $D \subset \mathbb{P}_{\alpha}$ let $f : {}^{<\omega_1}D \to D$ be a fuction which assings to x the:

```
 \begin{cases} p & \text{if there is } F \colon \omega \to [\omega]^{<\omega} \text{ such that } \{\langle x(n), F(n) \rangle \, ; n \in \omega \} \text{ is an} \\ & (F,n)\text{-fusion sequence and } p \text{ is the fusion for } \{\langle x(n), F(n) \rangle \, ; n \in \omega \} \\ d & \text{if there is } n \in \omega \ x(n) \text{ is not a singleton or otherwise.} \end{cases}
```

Then there is a closure D_{α} such that $\overline{D}_{\alpha} \subset D_{\alpha}$ and D_{α} is closed under f and note that $|D_{\alpha}| \leq \omega_1^{<\omega} = \omega_1$ and triviality hold the conditions.

To see that D_{α} is (F, n)-dense, let $p \in \mathbb{P}_{\alpha}$ $F \in [\alpha]^{<\omega}$ and $n \in \omega$ and we distinguish two cases, according to whether $\operatorname{cf}(\alpha) = \omega$. If $\omega \in \operatorname{cf}(\alpha)$. Let $\beta \in \alpha$ with $\operatorname{supt}(p) \subset \beta$ and $F \subset \beta$. By induction hypothesis there is $q \in D_{\beta}$ such that $q \leq_{F,n} p|_{\beta}$ moreover, we obtain that $\overline{q} \leq_{F,n} p$. If $\operatorname{cf}(\alpha) = \omega$. Let $\xi_m \in \alpha$, $m \in \omega$, with $\xi_m \nearrow \alpha$ and $F \subset \xi_0$. Define $q_m \in D_{\xi_m}$, $m \geq n$, recursively, by induction hypothesis there is $q_n \in D_{\xi_0}$ such that $q_n \leq_{F \cap \beta, n} p|_{\xi_0}$ and for $q_m \in D_{\xi_m}$ there is $q_{m+1} \in D_{\xi_{m+1}}$ such that $q_{m+1} \leq_{F,n} q_m \cup p|_{[\xi_m, \xi_{m+1})}$ for $m \geq n$. Then we obtain an (F, n)-fusion sequence $\langle (p_m, F_m) ; m \in \omega \rangle$ of \mathbb{P}_{α} such that $p_m = \overline{q_m}$ and $F_m = F$. Then by Lemma III.4.7, there is $q \in D_{\alpha}$ such that $q \leq_{F,m} p_m$ for all $m \in \omega$. Therefore we obtain that $q \leq_{F,n} p$.

Proof of Theorem III.4.5. To see that $\mathbb{1} \Vdash \omega_1 = \omega_1^V$, we assume that if not, i.e., there is $p \in \mathbb{P}$ such that $p \Vdash (\exists f \colon \omega_1^V \to \omega$ " f is an injection."). Then we obtain that $p \Vdash \{f(n) \colon n \in \omega_1^V\} \subset \omega$. Now by applying (b) in Lemma III.4.8, we can show the general case in the similar way, there is an extension such that $q \in \mathbb{P}_{\alpha}$ and countable X in V such that $q \Vdash \{f(n) \colon n \in \omega_1^V\} \subset \check{X}$. This shows that $\omega_1 \subset X$ in V, a contradiction.

For the moreover part. We distinguish two cases, according whether $\alpha = \omega_2$. If $\alpha \in \omega_2$, Assume that there is an antichain $I \subset \mathbb{P}_{\alpha}$ of size $> \aleph_2$. We may assume that I is maximal. Lemma III.4.9 asserts that there is D_{α} such that for every $x \in I$, $F \in [\alpha]^{<\omega}$ and $n \in \omega$, there is $x_D \in D_\alpha$ so that $x_D \leq_{F,n} x$. Since $|D_{\alpha}| \leq \aleph_2$ and $|I| > \aleph_2$, Pigeonhole principle asserts that there is $\{x,y\} \in [I]^2$ such that $x_D = y_D$. Then for every $\eta \in \alpha$, for a finite set $\{\eta\}$ and $0 \in \omega$, we obtain that $x_D|_{\eta} \Vdash x_D(\eta) \leq_{\mathbb{P}_{\eta}} x(\eta), y(\eta)$. Thus we obtain that $x_D \leq_{\mathbb{P}_{\alpha}} x, y$. This contraly that $x \perp y$. If $\alpha = \omega_2$. Assume that there is an antichain I of size \aleph_2 . Let $\mathcal{A} = \{ \operatorname{supt}(r); r \in I \}$. We assert that there is an ordinal $\beta \in \alpha$ and $\mathcal{I} \in [I]^{\aleph_2}$ such that $\forall \{p,q\} \in [\mathcal{I}]^2$ supt $(p) \cap \text{supt}(q) \in \beta$. If this holds, since $p|_{\beta} \not\perp q|_{\beta}$ iff $p \not\perp q$ for $p, q \in \mathcal{I}$, a contradiction. To see there is an ordinal and a family, we distinguish two cases, according to whether $|\cup \mathcal{A}| = \aleph_2$. If $|\cup \mathcal{A}| \in \aleph_2$, Pigeonhole principle shows that there is $\mathcal{I} \in [I]^{\aleph_2}$ which elemets are the same support and there is an ordinal β greater than the support them all. If $|\cup \mathcal{A}| = \aleph_2$. Since we have CH, we obtain that $\forall \theta \in \aleph_1 \ (\theta^{<\aleph_1} \in \aleph_2)$ holds. Therefore, by Delta System Lemma, there is $\mathcal{I} \in [I]^{\aleph_2}$ and a root R such that $\forall \{p,q\} \in [\mathcal{I}]^2 \text{ supt}(p) \cap \text{supt}(q) = R \in \beta \text{ for some ordinal } \beta \in \alpha.$

III.5 Proper Forcing

In this section we assume that a forcing notion is separative.

Definition III.5.1 ([Kun11]). For a regular cardinal κ , the collection of sets of cardinality hereditarily $< \kappa$ is $H_{\kappa} = \{x ; |\operatorname{trcl}(x)| < \kappa\}$. Note that $H_{\kappa} \models \operatorname{ZFC} - P$ if κ is an uncountable regular cardinal.

Definition III.5.2 ([Abr10]). Let \mathbb{P} be a forcing notion, λ be an uncountable regular cardinal and $M \leq H_{\lambda}$ with $\mathbb{P} \in M$. $q \in \mathbb{P}$ is (M, \mathbb{P}) -generic provided that for any dense subset, D, of \mathbb{P} if $D \in M$ $D \cap M$ is predense below q.

Lemma III.5.3 ([Abr10]). For \mathbb{P} and M as per in previous definition, $q \in \mathbb{P}$ is (M, \mathbb{P}) -generic iff for every dense subset D of \mathbb{P} in M and (V, \mathbb{P}) -generic G with $p \in G$ there is $\mathring{p} \in V^{\mathbb{P}}$ such that $q \Vdash \mathring{p} \in M \cap D \cap \mathring{G}$.

Proof. It suffices to show that for $q \in \mathbb{P}$ and $E \subset \mathbb{P}$, E is predense below q iff $q \Vdash E \cap \mathring{G} \neq \emptyset$ for arbitrary (V, \mathbb{P}) -generic G with $p \in G$.

- (⇒) Let G be (V, \mathbb{P}) -generic with $q \in G$. Since $F = \{p \in \mathbb{P}; p \perp q \vee \exists r \in E \ p \leq r\}$ is dense subset of \mathbb{P} , there is $p \in G \cap F$. Since $p \perp q$, we have $r \in G$. This shows that $q \Vdash E \cap \mathring{G} \neq \emptyset$.
- (\Leftarrow) Let $p \in q$ and G a (V, \mathbb{P}) -generic with $p \in G$. Since $q \in G$ there is $r \in E \cap G$, which witnesses E is predense below q. □

Definition III.5.4 ([Abr10]). A forcing notion \mathbb{P} is *proper* provided that for an arbitrary uncountable regular cardinal $\lambda > 2^{|\mathbb{P}|}$, or simply says sufficiently large regular cardinal λ , and a contable elementary submodel $M \leq H_{\lambda}$ with $\mathbb{P} \in M$, we have:

 $\forall p \in \mathbb{P} \cap M \exists q \leq p \text{ "q is (M,\mathbb{P})-generic."}$

Example III.5.5 ([Abr10]).

- 1. A ccc forcing is proper.
- 2. A σ -closed forcing is proper.
- 3. An Axiom A forcing is proper.
- 4. A shooting a club by finite conditions forcing is proper. (see Theorem IV.5.2)
- Proof. 1. Let λ be an uncountable regular cardinal with $\lambda > 2^{|\mathbb{P}|}$, $M \leq H_{\lambda}$ with $\mathbb{P} \in M$ and $p \in \mathbb{P} \cap M$. We shall verify that p is (M, \mathbb{P}) -generic. For a dense subset $D \subset \mathbb{P}$ with $D \in M$, let $A \subset D$ be a maximal antichain and by elementarity we may choose as $A \in M$. Since \mathbb{P} is a ccc forcing, there is a surjection $f : \omega \to A$ in V. Furthermore, since $f \in H_{\lambda}$, we may assume that $f \in M$ and therefore, $A = f(\omega) \subset M$. Then A is predense below p and since $A \subset D \cap M$, so does D.
- 2. Let λ be an uncountable regular cardinal with $\lambda > 2^{|\mathbb{P}|}$, $M \preceq H_{\lambda}$ with $\mathbb{P} \in M$ and $p \in \mathbb{P} \cap M$. Let $\mathcal{D} = \{D \in M \; ; \; D \subset \mathbb{P} \text{ is dense.} \} \subset M$ and enumerate $\mathcal{D} = \{D_i \; ; i \in \omega\}$ in V. Note that, by elementarity, for each $q \in \mathbb{P} \cap M$ there is an extension $r \in D \cap M$ for any $D \in \mathcal{D}$. Thus we obtain a decreasing sequence $\langle p_n \in \mathbb{P} \cap M \; ; n \in \omega \rangle$ such that:
 - $\bullet \ p_0 = p,$
 - $p_{n+1} \le p_n$ such that $p_{n+1} \in D_n \cap M$.

and moreover since \mathbb{P} is σ -closed, there is $q \in \mathbb{P}$ such that $q \leq p_n$ for all $n \in \omega$. The statement that q is (M, \mathbb{P}) -generic is immediate by the construction, thus we conclude the proof.

 \Box

Theorem III.5.6 ([Jec03]). A forcing notion (\mathbb{P} , <) is proper iff for every uncountable cardinal λ every stationary subset of $[\lambda]^{\omega}$ remains stationary in the generic extension.

Before, we prove the theorem, we shall make some lemmata.

Lemma III.5.7. Let \mathbb{P} be a ccc forcing. Every club subset $C \subset [\lambda]^{\omega}$ in V[G] has a subset $D \in V$ which is club $D \in V$. Moreover, every stationary set $S \subset [\lambda]^{\omega}$ remains stationary in V[G].

Lemma III.5.8. Let \mathbb{P} be a σ -closed forcing. Every stationary set $S \subset [\lambda]^{\omega}$ remains stationary in V[G].

Lemma III.5.9.

Definition III.5.10 ([Jec03]). Let \mathbb{P} be a forcing notion and $p \in \mathbb{P}$. The *proper game* for \mathbb{P} , below p, is played as follows:

- I plays P-names $\mathring{\alpha_n}$ for ordinal numbers, and
- II plays ordinal numbers β_n .

Player II wins provided that there exists an extension $q \leq p$ which forces $\forall n \in \omega \exists k \in \omega \ \mathring{\alpha_n} = \beta_k$.

Theorem III.5.11 ([Jec03]). A forcing notion \mathbb{P} is proper iff II has a winning strategy for the proper game for any $p \in \mathbb{P}$.

Theorem III.5.12 ([Abr10]). A proper forcing preseves ω_1 .

Proof. Let \mathring{f} be a \mathbb{P} -name and p a condition such that $p \Vdash \mathring{f} \colon \omega \to \omega_1^V$. We shall show that $p \Vdash$ " \mathring{f} is not a surjection.". Fix an uncountable regular cardinal $\lambda > 2^{|\mathbb{P}|}$ such that $\mathring{f}, \mathbb{P}, \omega_1^V \in H_\lambda$ and let M be a countable elementary submodel of H_λ such that $\mathring{f}, \mathbb{P}, p, \omega_1^V \in M$. Since \mathbb{P} is proper, there is an extension $q \leq p$ which is (M, \mathbb{P}) -generic. Fix an $n \in \omega$. Define $D_n = \{r \in \mathbb{P} : (r \perp p) \lor (\exists \alpha \in \omega_1^V \ r \Vdash \mathring{f}(n) = \alpha)\}$ in H_λ . By elementary we obtain that $D_n \in M$, thus for an extension $q_1 \leq q$ there is $r \in D_n \cap M$ such that $q_1 \not\perp r$ and moreover since $q_1 \leq p$, there is $\alpha \in \omega_1$ such that $r \Vdash \mathring{f}(n) = \alpha$, furthermore, by elementary we may assume that $\alpha \in \omega_1^V \cap M$.

This shows that $q \Vdash \forall n \in \omega \ \mathring{f}(n) \in M$, i.e., $p \Vdash$ " \mathring{f} is not a surjective.". Therefore, $\Vdash \omega_1 = \omega_1^V$.

Hereafter, let λ be a sufficiently large regular cardinal such that $\lambda > 2^{|\mathbb{P}|}$.

Theorem III.5.13 ([Abr10]). Let \mathbb{P} be a forcing notion and $M \leq H_{\lambda}$ be countable with $\mathbb{P} \in M$ and suppose that $p \in \mathbb{P}$ is a (M, \mathbb{P}) -generic condition. For $x, y \in M \cap V^{\mathbb{P}}$, if we have $p \Vdash x = y$, then there is an extension $r \leq p$ and $(z,q) \in y \cap M$ such that $z \in \mathbb{P}$, $q \in V^{\mathbb{P}}$, $r \leq a$ and $r \Vdash x = z$.

Proof. Define $E = \{r \in \mathbb{P} ; \exists (z,q) \in x \ (r \leq q \land r \Vdash x = z)\}$ and $E' = \{r \in \mathbb{P} ; r \in E \lor r \bot E\}$. Then E' is a dense set in \mathbb{P} with $E' \in M$. Then there is $r \in M \cap E'$ which is compatible with p and there is $(z,q) \in x$ such that $r \leq q$ and $r \Vdash x = z$. Furthermore, since $M \preceq H_{\lambda}$, we may assume that $(z,q) \in M$, we are done. \square

Lemma III.5.14 ([Abr10]). Let \mathbb{P} be a forcing notion and $\Vdash_{\mathbb{P}}$ " \mathbb{Q} is a forcing notion.", $M \preceq H_{\lambda}$ countable with \mathbb{P} , $\mathring{\mathbb{Q}}_G \in M$ and $p \in \mathbb{P} \cap M$ and $\mathring{q} \in \mathring{\mathbb{Q}} \cap M$ where G is (V, \mathbb{P}) -generic. Then

$$(p, \mathring{q})$$
 is $(M, \mathbb{P} * \mathbb{Q})$ -generic iff

p is (M, \mathbb{P}) -generic and $p \Vdash$ " \mathring{q} is $(M[\mathring{G}], \mathring{\mathbb{Q}})$ -generic.".

Proof. (\Rightarrow). To see that p is (M, \mathbb{P}) -generic. Let $D \subset \mathbb{P}$ be a dense subset with $D \in M$. Then $D' = \{(d, \mathring{q}) ; d \in D\}$ be a dense subset of $\mathbb{P} * \mathring{\mathbb{Q}}$ with $D' \in M$. Therefore there is $(d, \mathring{q}) \in D' \cap M$ such that $(d, \mathring{q}') \leq_{\mathbb{P} * \mathring{\mathbb{Q}}} (p, \mathring{q})$. Moreover, by the elementary there is $d \in D \cap M$ such that $d \leq_{\mathbb{P}} p$.

To see that $p \Vdash_{\mathbb{P}}$ " \mathring{q} is $(M[\mathring{G}], \mathring{\mathbb{Q}})$ -generic.", it suffices show that for any dense open subset $\mathring{D} \in M[\mathring{G}]$ in $\mathring{\mathbb{Q}}$ and $\mathring{q'} \leq_{\mathring{\mathbb{Q}}} \mathring{q}$, p forces:

$$\exists \mathring{q''} \in \mathring{D} \cap M[\mathring{G}] \ \mathring{q''} \not\perp_{\mathring{\mathbb{D}}} \mathring{q}.$$

Let $p' \leq_{\mathbb{P}} p$. Define $E = \{(s,\mathring{t}) \in \mathbb{P} * \mathring{\mathbb{Q}}; s \Vdash \mathring{t} \in \mathring{D}\}$ and $F = \{(s,\mathring{t}) \in \mathbb{P} * \mathring{\mathbb{Q}}; (s,\mathring{t}) \in E \lor (s,\mathring{t}) \perp_{\mathbb{P} * \mathring{\mathbb{Q}}} E\}$. Then $F \in M$ and F is dense in $\mathbb{P} * \mathring{\mathbb{Q}}$. Then there is $(s,\mathring{t}) \in F \cap M$ which compatible with (p',\mathring{q}) and let (p_2,\mathring{q}_2) be a common extension and $\mathring{q}'' \in \mathring{D}$ with $\mathring{q}'' \leq_{\mathring{\mathbb{Q}}} \mathring{q}_2$. Then we obtain that $p_2 \Vdash \mathring{q}'' \leq_{\mathring{\mathbb{Q}}} \mathring{t}$. So, $(s,\mathring{t}) \in E$, moreover, $p_2 \Vdash \mathring{t} \in \mathring{D}$ and note that $\mathring{t} \in M$.

This argument shows that there is $(p_2, \mathring{t}) \in \mathbb{P} * \mathring{\mathbb{Q}}$ such that $p_2 \leq p'$, $p_2 \Vdash \mathring{q'} \not\perp_{\mathring{\mathbb{Q}}} \mathring{t} \wedge \mathring{t} \in \mathring{D} \wedge \mathring{t} \in M[\mathring{G}]$. Furthermore, since there is densely many extension, we have:

$$p \Vdash \exists \mathring{q''} \in \mathring{D} \cap M[\mathring{G}] \mathring{q} \not\perp_{\mathring{\mathbb{D}}} q''.$$

 (\Leftarrow) . Let $D \subset \mathbb{P} * \mathring{\mathbb{Q}}$ be a dense open set with $D \in M$ and let (p_1,q_1) be an extension for (p,q). We shall find a $(p',q') \in D \cap M$ such that $(p_1,q_1) \not\perp_{\mathbb{P} * \mathring{\mathbb{Q}}} (p',q')$. Let $\mathring{E} = \{\mathring{q} \in \mathring{\mathbb{Q}} \; ; \exists p' \in \mathring{G} \; (p',\mathring{q}) \in D\}$. To see that $\Vdash_{\mathbb{P}}$ " E is dense.", it suffices to verify that:

$$\forall (s,\mathring{t}) \in \mathbb{P} * \mathring{\mathbb{Q}} \exists s' \leq_{\mathbb{P}} s \ s' \Vdash_{\mathbb{P}} (\mathring{q} \in \mathring{E} \wedge \mathring{q} \leq_{\mathring{\mathbb{Q}}} \mathring{t}).$$

For (s, \mathring{t}) , since D is dense, there is an extension (s', \mathring{t}') and $s' \Vdash_{\mathbb{P}} (\mathring{t}' \leq_{\mathbb{Q}} \mathring{t} \wedge s \in \mathring{G})$ holds. Thus, $s \Vdash_{\mathbb{P}} \mathring{t} \in \mathring{E}$, and we obtain that $\Vdash_{\mathbb{P}}$ " \mathring{E} is dense." and note that $\Vdash_{\mathbb{P}} \mathring{E} \in M[\mathring{G}]$, so by assumption we have $p_1 \Vdash_{\mathbb{P}} \exists \mathring{r} \in \mathring{E} \cap M[\mathring{G}] \mathring{r} \not \perp_{\mathring{\mathbb{Q}}} \mathring{q}_1$, furthermore there is $\mathring{r} \in V^{\mathbb{P}} \cap M$ and $\mathring{t}' \in \mathring{\mathbb{Q}}$ such that $p_1 \Vdash_{\mathbb{P}} \mathring{r} \in \mathring{E} \wedge \mathring{t}' \leq_{\mathring{\mathbb{Q}}} \mathring{r}, \mathring{q}_1$.

furthermore there is $\mathring{r} \in V^{\mathbb{P}} \cap M$ and $\mathring{t}' \in \mathring{\mathbb{Q}}$ such that $p_1 \Vdash_{\mathbb{P}} \mathring{r} \in \mathring{E} \wedge \mathring{t}' \leq_{\mathring{\mathbb{Q}}} \mathring{r}, \mathring{q_1}$. Define $F = \{s \in \mathbb{P}; (s,\mathring{r}) \in D\}$ and $F' = \{s \in \mathbb{P}; s \in F \vee s \perp_{\mathbb{P}} F\}$ and note that F' is predense in \mathbb{P} and $F' \in M$. Then there is $s \in F' \cap M$ such that $s \not\perp_{\mathbb{P}} p_1$ and by letting s' be a common extension, we have $s' \Vdash_{\mathbb{P}} \mathring{r} \in \mathring{E}$. Hence,

there is a t such that $s' \Vdash_{\mathbb{P}} (t \in \mathring{G} \land (t, \mathring{r}) \in D)$ and note that we obtain $s' \leq_{\mathbb{P}} t$ and $t \in F$ witnesses $s \in F$.

Therefore,
$$(s, \mathring{r}) \in D \cap M$$
 and (s', \mathring{t}) witnesses $(s, \mathring{r}) \not\perp_{\mathbb{P} * \mathring{\mathbb{Q}}} (p_1, \mathring{q_1})$

Theorem III.5.15 ([Abr10]). Let \mathbb{P}_0 be a proper forcing notion, $\mathring{\mathbb{P}}_1 \in V^{\mathbb{P}_0}$ with $\Vdash_{\mathbb{P}_0}$ " $\mathring{\mathbb{P}}_1$ is proper.", $\mathbb{Q} = \mathbb{P}_0 * \mathring{\mathbb{P}}_1$ and $\pi \colon \mathbb{Q} \to \mathbb{P}_0 : (p, \mathring{q}) \mapsto p$. Then for a countable model $M \preceq H_{\lambda}$ with $\mathbb{Q} \in M$ and (M, \mathbb{P}_0) -generic $p_0 \in \mathbb{P}_0$ we have the following.

For any $\mathring{r} \in V^{\mathbb{P}_0} \cap M$ if $p_0 \Vdash_{\mathbb{P}_0} (\mathring{r} \in \mathbb{Q} \wedge \pi(\mathring{r}) \in \mathring{G}_0)$, then there is $\mathring{p_1} \in V^{\mathbb{P}_0}$ such that $(p_0,\mathring{p_1}) \in \mathbb{Q}$ is (M,\mathbb{Q}) -generic and $(p_0,\mathring{p_1}) \Vdash_{\mathbb{Q}} \mathring{r} \in \mathring{G}$. Where G_0 and G is \mathbb{P}_0 and \mathbb{Q} generic, respectively.

Moreover, \mathbb{Q} is proper.

Proof. Let $p_0 \in \mathbb{P}_0$ be (M, \mathbb{P}_0) -generic and $(r_0, \mathring{r_1}) \in R \cap M$ with $p_0 \Vdash_{\mathbb{P}_0} r_0 \in \mathring{G}_0$. Since $p_0 \Vdash_{\mathbb{P}_0}$ " $\mathring{\mathbb{P}}_1$ is proper." and $M[\mathring{G}] \preccurlyeq H_{\lambda}[\mathring{G}]$, there is $\mathring{p_1} \in V^{\mathbb{P}_0}$ such that $p_0 \Vdash_{\mathbb{P}_0} (\mathring{p_1} \Vdash_{\mathbb{P}_1} \mathring{r_1}) \wedge$ " $\mathring{p_1}$ is $(M[\mathring{G}], \mathring{\mathbb{P}}_1)$ -generic." and since $p_0 \leq_{\mathbb{P}_0} r_0$, we obtain that $(p_0, \mathring{p_1}) \leq_{\mathbb{Q}} (r_0, \mathring{r_1})$ and $p_0 \Vdash_{\mathbb{P}_0}$ " $\mathring{p_1}$ is $(M[\mathring{G}], \mathring{\mathbb{P}}_1)$ -generic.". Therefore, by the previous lemma, we obtain that $(p_0, \mathring{p_1})$ is (M, \mathbb{Q}) -generic and $(p_0, \mathring{p_1}) \Vdash_{\mathbb{Q}} (r_0, \mathring{r_1}) \in \mathring{G}$.

The moreover part is immediate by the first assertion. \Box

Lemma III.5.16 (The Properness Extension Lemma, [Abr10]). Let γ be a limit ordinal, $\mathbb{P}_{\gamma} = \langle \mathbb{P}_{\alpha}; \alpha \in \gamma \rangle$ a countable support iteration of proper forcing and $M \leq H_{\lambda}$ a countable submodel with sufficiently large cardinal λ with $\mathbb{P}_{\gamma}, \gamma \in M$.

For any $\gamma_0 \in \gamma \cap M$, $q_0 \in \mathbb{P}_{\gamma_0}$ and name $\mathring{p_0} \in V^{\mathbb{P}_{\gamma_0}}$.

If $q_0 \in \mathbb{P}_{\gamma_0}$ forces at \mathbb{P}_{γ_0} stage:

$$\mathring{p_0} \in \mathbb{P}_{\gamma} \cap M \text{ and } \mathring{p_0}|_{\gamma_0} \in \mathring{G_0}$$

then there is an (M, \mathbb{P}_{γ}) -generic condition q such that $q|_{\gamma_0} = q_0$ and $q \Vdash_{\mathbb{P}_{\gamma}} i_*(\mathring{p_0}) \in \mathring{G_{\gamma}}$

Proof. For $\gamma_0 \in \gamma \cap M$, $p_{\gamma_0}^{\circ} \in V^{\mathbb{P}_{\gamma_0}}$ and $(M, \mathbb{P}_{\gamma_0})$ -generic q_{γ_0} we assume that

$$q_{\gamma_0} \Vdash_{\mathbb{P}_{\gamma_0}} (p_{\gamma_0}^{\circ} \in \mathbb{P}_{\gamma} \cap M \land p_{\gamma_0}^{\circ}|_{\gamma_0} \in \mathring{G_{\gamma_0}})$$

We shall found the desired (M, \mathbb{P}_{γ}) -generic condition by induction on γ .

- (i) $\gamma = 0$. It is immediate that there are no any elements in $\gamma \cap M$.
- (ii) $\gamma = \gamma' + 1$. We have seen the case of $\gamma' = \gamma_0$ in Theorem III.5.15, so we may assume that $\gamma_0 \in \gamma'$.

Note that we have $\gamma', \mathbb{P}_{\gamma'} \in M$ and $\lambda > 2^{|\mathbb{P}_{\gamma'}|}$ and since q_{γ_0} forces

$$p_{\gamma_0}^{\circ}|_{\gamma'} \in \mathbb{P}_{\gamma'} \cap M \text{ and } (p_{\gamma_0}|_{\gamma'})|_{\gamma_0} \in \mathring{G}_{\gamma_0},$$

by indution hypothesis, there is an $(M, \mathbb{P}_{\gamma'})$ -generic $q_{\gamma'}$ such that

$$q_{\gamma'}|_{\gamma_0} = q_{\gamma_0} \text{ and } q_{\gamma'} \Vdash_{\mathbb{P}_{\gamma'}} i_*(p_{\gamma_0}^\circ)|_{\gamma'} = p_{\gamma_0}^\circ|_{\gamma'} \in \mathring{G_{\gamma'}}.$$

Theorem III.5.15 assets that there is (M, \mathbb{P}_{γ}) -generic $q \in \mathbb{P}_{\gamma}$ such that

$$q|_{\gamma'} = q_{\gamma'}$$
 and $q \Vdash_{\mathbb{P}_{\gamma}} i_*(p_{\gamma_0}) \in \mathring{G}_{\gamma}$

and moreover, we have $q|_{\gamma_0} = q_{\gamma_0}$.

(ii) γ is limit. Since $\gamma_0 \in \gamma \cap M$ and $\operatorname{cf}(\gamma \cap M) = \omega$, there is $\langle \gamma_n ; n \in \omega \rangle \nearrow \gamma \cap M$ and enumerate the dense sets in $\mathbb{P}_{\gamma} \cap M$, $\{D_n ; n \in \omega\}$. Now we define $q_n \in \mathbb{P}_{\gamma_n}$ and $p_n \in V^{\mathbb{P}_{\gamma_n}}$ recursively such as:

- 1. $q_0 = q_{\gamma_0}$,
- 2. q_n is $(M, \mathbb{P}_{\gamma_n})$ -generic such as $q_{n+1}|_{\gamma_n} = q_n$,
- 3. $p_0 = p_{\gamma_0}$,
- 4. q_{n+1} forces, over $\mathbb{P}_{\gamma_{n+1}}$, and
- $(4-a.) p_{n+1} \in \mathbb{P}_{\gamma} \cap M,$
- (4-b.) $p_{n+1}^{\circ}|_{\gamma_{n+1}} \in G_{\gamma_{n+1}}^{\circ}$,
- (4-c.) $p_{n+1} \leq_{\mathbb{P}_{\gamma_n}} i_*(p_n)$, and
- $(4-d.) p_{n+1} \in D_n.$

Suppose we have p_n and q_n , we shall found p_{n+1} and q_{n+1} .

Fix a $q' \leq_{\mathbb{P}_{\gamma_n}} q_n$. There is $q'' \leq_{\mathbb{P}_{\gamma_n}} q'$ and $p \in \mathbb{P}_{\gamma} \cap M$ such that $q' \Vdash p_n' = p$. By letting $E = \{r|_{\gamma_n} \in \mathbb{P}_{\gamma_n} ; r \in D_n \wedge r \leq_{\mathbb{P}_{\gamma_n}} p\}$, we have $E \in M$ and is dense below $p|_{\gamma_n}$. Since $q'' \Vdash_{\mathbb{P}_{\gamma_n}} p|_{\gamma_n} \in \mathring{G_{\gamma_n}}$ and q'' is $(M, \mathbb{P}_{\gamma_n})$ -generic, by Lemma III.5.3 there is $\mathring{r} \in V^{\mathbb{P}_{\gamma_n}}$ such that $q'' \Vdash_{\mathbb{P}_{\gamma_n}} \mathring{r} \in E \cap M \cap \mathring{G_{\gamma_n}}$ and moreover, there is $\mathring{p} \in V^{\mathbb{P}_{\gamma_n}}$ such that q'' forces on \mathbb{P}_{γ_n}

$$\mathring{p} \in D_n \cap M, \, \mathring{p}|_{\gamma_n} \in \mathring{G}_{\gamma_n} \text{ and } \mathring{p} \leq_{\mathbb{P}_{\gamma_n}} \mathring{p_n}.$$

Therefore we obtain that q_n forces on \mathbb{P}_{γ_n} :

$$\mathring{p}|_{\gamma+n+1} \in \mathbb{P}_{\gamma_{n+1}} \cap M \text{ and } (p|_{\gamma_{n+1}})|_{\gamma_n} \in \mathring{G}_{\gamma_n}$$

and hence applying induction hypothesis there is $(M, \mathbb{P}_{\gamma_{n+1}})$ -generic $q_{n+1} \in \mathbb{P}_{\gamma_{n+1}}$ such that

$$q_{n+1}|_{\gamma_n} = q_n \text{ and } q_{\gamma_{n+1}} \Vdash_{\mathbb{P}_{\gamma_{n+1}}} i_*(p|_{\gamma_{n+1}}) \in G_{\gamma_{n+1}}$$

By letting $p_{n+1} = i_* \mathring{p}$, we have that $q_{n+1} \leq_{\mathbb{P}_{\gamma_{n+1}}} i(q_n)$ and $i(q_n)$ forces on $\mathbb{P}_{\gamma_{n+1}}$

$$p_{n+1} \in \mathbb{P}_{\gamma} \cap M, \ p_{n+1} \leq_{\mathbb{P}_{\gamma_{n+1}}} i_*(p_n), \ p_{n+1} \mid_{\gamma_{n+1}} \in G_{\gamma+1}$$
 and $p_{n+1} \in D_n$.

Now we complete the construction of p_n and q_n for $n \in \omega$.

Before we conclude the proof, we shall show that for $q = \bigcup \{q_n \in \mathbb{P}_{\gamma_n} ; n \in \omega \} \in \mathbb{P}_{\gamma}$, we have

$$\forall n \in \omega \ q \Vdash_{\mathbb{P}_{\gamma}} i_*(p_n) \in \mathring{G}_{\gamma_n} \tag{*}$$

Fix an $n \in \omega$. For $m \ni n$, since we have $q_m \Vdash_{\mathbb{P}_{\gamma_m}} \mathring{p_m} \leq_{\mathbb{P}_{\gamma}} i_*(\mathring{p_n})$ and $q_m \Vdash_{\mathbb{P}_{\gamma_m}} \mathring{p_m}|_{\gamma_m} \in \mathring{G_{\gamma_m}}$, we have

$$q \Vdash_{\mathbb{P}_{\gamma}} i_*(\mathring{p_n}) = i_*(i_*(\mathring{p_n})|_{\gamma_m}) \in i_*(\mathring{G_{\gamma_m}})$$

For any extension $q' \leq_{\mathbb{P}_{\gamma}} q$ there is an extension $q'' \leq_{\mathbb{P}_{\gamma}} q'$ and $p \in \mathbb{P}_{\gamma} \cap M$ such that $q'' \Vdash_{\mathbb{P}_{\gamma}} i_*(\mathring{p_n}) = p$ and thus we have

$$q'' \Vdash_{\mathbb{P}_{\gamma}} p|_{\gamma_n} \in i_*(G_{\gamma_m})$$
, moreover $q''|_{\gamma_m} \leq_{\mathbb{P}_{\gamma_m}} p|_{\gamma_m}$.

Therefore we obtain $q'' \leq_{\mathbb{P}_{\gamma}} p$, i.e, $q'' \Vdash_{\mathbb{P}_{\gamma}} p \in \mathring{G}_{\gamma}$. Hence, we have $q'' \Vdash_{\mathbb{P}_{\gamma}} i_*(p_n) \in \mathring{G}_{\gamma}$ and (*) hold.

To see that q is (M, \mathbb{P}_{γ}) -generic thanks to Lemma III.5.3, we shall verify that

$$\forall n \in \omega \ q \Vdash_{\mathbb{P}_{\gamma}} i_*(p_{n+1}) \in D_n \cap M \cap \mathring{G}_{\gamma}.$$

For an $n \in \omega$, we have that $i(q_{n+1}) \Vdash_{\mathbb{P}_{\gamma}} i_*(p_{n+1}) \in D_n \cap M$ and $q \leq_{\mathbb{P}_{\gamma}} i_*(q_{n+1})$, we obtain that

$$q \Vdash_{\mathbb{P}_{\gamma}} i_*(p_{n+1}) \in D_n \cap M \in \mathring{G}_{\gamma}.$$

Thus, q is (M, \mathbb{P}_{γ}) -generic and since we have $q|_{\gamma_0} = q_{\gamma_0}$, (*) asserts that we have

$$q \Vdash_{\mathbb{P}_{\gamma}} i_*(p_{\gamma_0}) \in \mathring{G}_{\gamma}.$$

Theorem III.5.17 ([Abr10]). For a limit ordinal δ and a countable support iteration of proper forcings $\langle \mathbb{P}_{\alpha} ; \alpha \in \delta \rangle$, \mathbb{P}_{δ} is proper.

Proof. Let $\lambda > 2^{|\mathbb{P}_{\delta}|}$ be a regular uncountable cardinal and $M \preceq H_{\lambda}$ be an elementary substructure with $\mathbb{P}_{\delta} \in M$ and we may assume that $\mathbb{P}_{\delta} \cap M \neq \emptyset$.

Let $p \in \mathbb{P}_{\delta} \cap M$. Since \mathbb{P}_0 is proper, there is an (M, \mathbb{P}_0) -generic $q_0 \in \mathbb{P}_0$ with $q_0 \leq_{\mathbb{P}_0} p|_0$. Thus by applying The Properness Extension Lemma, there is an (M, \mathbb{P}_{δ}) -generic $q \in \mathbb{P}_{\delta}$ such that $q|_1 = q_0$ and $q \Vdash_{\mathbb{P}_{\delta}} p \in \mathring{G}_{\delta}$. Thus we obtain that $q \leq_{\mathbb{P}_{\delta}} p$.

Theorem III.5.18 ([Abr10]). Assume CH and δ be a limit ordinal. For a countable support iteration $\mathbb{P}_{\delta} = \langle \mathbb{P}_i ; i \in \delta \rangle$ with:

$$\Vdash_{\gamma}(\text{``Q}_{\gamma}\text{ is proper.''} \wedge |\mathring{\mathbb{Q}_{\gamma}}| = \aleph_1) \text{ for any } \gamma \in \delta.$$

Then, \mathbb{P}_{δ} satisfies an \aleph_2 -cc.

Proof. Fix $\{r_{\xi}; \xi \in \aleph_2\}$, regular $\lambda \geq \max\{2^{|\mathbb{P}_{\delta}|}, \aleph_3\}$ and well-order \triangleleft over H_{λ} . For each $\xi \in \aleph_2$ let $M_{\xi} = \langle M_{\xi}, \in |_{M_{\xi}}, \triangleleft |_{M_{\xi}}, \mathbb{P}_{\delta}, r_{\xi} \rangle$ be a countable submodel of H_{λ} .

First of all, we shall found an $I \in [\omega_2]^{\omega_2}$ and cuntable $C \in [\omega_2]^{\omega}$ such that:

1. $\forall \{\xi_0, \xi_1\} \in [I]^2 \exists f : (M_{\xi_0}, \in) \to (M_{\xi_1}, \in)$

f is order-isomorphism and $f(r_{\xi_0}) = r_{\xi_1}$,

- 2. $\forall \{\xi_0, \xi_1\} \in [I]^2 M_{\xi_0} \cap M_{\xi_1} \cap \omega_2 = C$,
- 3. $\forall \xi_0, \xi_1 \in I \ \xi_0 \in \xi_1 \implies (\cup C \in \mu_{\xi_0} \land \cup (M_{\xi_0} \cap \omega_2) \in \mu_{\xi_1}),$ where $\mu_{\xi} = \cap ((M_{\xi} \cap \omega_2) \setminus C).$
- 4. C is an initial segment of $M_{\xi} \cap \omega_1$ for any $\xi \in I$, that is:

$$\forall y \in C \forall x \in M_{\xi} \cap \omega_1 \ x \in y \implies x \in C.$$

To see the condition 4. Fix a distinct $\eta \in I$. Let $y \in C$ and $x \in y \cap M_3 \cap \omega_1$. We shall show that $x \in M_\eta$. $y \in M_\xi \cap \omega_2$ asserts that there is a function $f_\xi \in M_\xi$ such that $M_\xi \models ($ " $f_\xi \colon \omega_1 \to y$ is surjective." \wedge " f_ξ is \triangleleft -minimal."). So does over H_λ . Similarly we found a function $f_\eta \in M_\eta$. Since the minimality assert that $f_\xi = f_\eta$ in H_λ and an $\alpha \in M_\xi \cap \omega_1$ such that $f_\xi(\alpha) = x$ witnesses $f_\eta(\alpha) = x \in M_\eta$.

Let $\xi, \eta \in I$ such that $\mu := \mu(\xi) \leq \mu(\eta)$ and define $r_1 = r_{\xi}|_{\cup C}$ and $r_2 = r_{\eta}|_{\cup C}$. Note that $r_{\xi} = i(r_{\xi}|_{\cup C})$ for any $\xi \in I$. Since $r_1|_{\mu} \in M_{\xi} \cap \mathbb{P}_{\mu}$, there is an $(M_{\xi}, \mathbb{P}_{\mu})$ -generic extension $p \in \mathbb{P}_{\mu}$ and thanks to the result of the following lemma, we have:

If
$$p \leq_{\mathbb{P}_{\mu}} r_1|_{\mu}$$
 is $(M_{\xi}, \mathbb{P}_{\mu})$ -generic, then $i(p) \leq_{\mathbb{P}_{\mu_n}} r_2|_{\mu_n}$.

Therefore, we obtain a common extension $r' \in \mathbb{P}_{\mu}$ such that $r' \leq_{\mathbb{P} \cup C} r_1|_{\cup C}$ and $r' \leq_{\mathbb{P} \cup C} r_2|_{\cup C}$. Define a function r which assigns:

$$\alpha \mapsto \begin{cases} r'(\alpha) & \alpha \in \cup C \\ r_{\xi}(\alpha) & \alpha \in \operatorname{supt}(r_{\xi}) \setminus \cup C \\ r_{\eta}(\alpha) & \alpha \in \operatorname{supt}(r_{\eta}) \setminus \cup C \\ \mathring{\mathbb{1}}_{\mathbb{Q}^{\circ}_{\alpha}} & otherwise \end{cases}$$

We remain to see that $r \in \mathbb{P}_{\delta}$ and r is a common extension for r_{ξ} and r_{η} in \mathbb{P}_{δ} .

Lemma III.5.19. Let M_1 , M_2 be two isomorphic countable elementary submodels of H_{λ} . Let $h: M_1 \to M_2$ be an isomorphism and $\mu \in M_1 \cap \omega_2$ be such that $\mu \leq h(\mu)$ and identity on $\mu \cap M_1$. Then if $p \in \mathbb{P}_{\mu}$ is any (M_1, \mathbb{P}_{μ}) -generic condition then for any condition $r \in \mathbb{P}_{\mu} \cap M_1$, $p \leq_{\mathbb{P}_{\mu}} r$ implies $p \leq_{\mathbb{P}_{h(\mu)}} h(r)$.

IV List of Forcing Notions

IV.1 Cohen Forcing

Definition IV.1.1. Let $\operatorname{Fn}(I,J) = \bigcup \{{}^AJ \, ; A \in [I]^{<\omega} \}$ be a forcing notion with order $\leq_{\mathbb{P}} = \supset$.

Theorem IV.1.2. $\operatorname{Fn}(I,J)$ has ccc iff I is empty or J is countable.

Proof. (\Rightarrow). We shall verify that if I is not empty, J is countable. Fix an $n \in I$ then since $\{\{\langle n,j \rangle\}; j \in J\}$ is an antichain, we obtain that J is countable.

(\Leftarrow). Since the case of I is an empty set is clear, we may assume that $I \neq \emptyset$ and J is countable. Suppose that there is an uncountable anticahin A, the Delta system lemma asserts that there is $B \in [A]^{\aleph_1}$ such that $\forall \{f,g\} \in [B]^2$ $f \cap g = h$ for some $h \in {}^I J$. This shows that there are distinct $f, g \in B$ such that $f \not\perp g$, a contradiction. □

IV.2 Hechler Forcing

Definition IV.2.1 ([Bla10]). Let \mathbb{P} be a forcing notion such that:

- 1. $(s, f) \in \mathbb{P}$ provided that $s \in {}^{<\omega}\omega$ and $f \in {}^{\omega}\omega$,
- 2. $(s', f') \leq (s, f)$ provided that
 - (a) $s' \supset s$,
 - (b) $f' \geq f$,
 - (c) $\forall n \in \text{dom}(s') \setminus \text{dom}(s) \ s'(n) \ni f(n)$.

Theorem IV.2.2 ([Pal13]). Let G be a generic in \mathbb{P} , as par Definition IV.2.1, a Hechler real x is a function $x = \bigcup \{s \; ; \exists f \; (s,f) \in G\} \colon \omega \to \omega$. Then, G can be recovered form x.

Proof. First, we show that x is a function with domain ω . Since G is a filter, manifestly, x is a function and since $D_n = \{(s, f) \in \mathbb{P} : n \in |s| \land f \in {}^{\omega}\omega\}$ is dense for every $n \in \omega$, $dom(x) = \omega$.

Secondly, let $G' = \{(s,f) \in \mathbb{P}; s \subset x \land \forall n \in \omega \setminus \operatorname{dom}(s) \ f(n) \leq x(n)\}$ and we assert that G = G' holds. To see $G \subset G'$, let $(s,f) \in G$ and we show that $f(n) \leq x(n)$ for all $n \in \omega \setminus \operatorname{dom}(s)$. Since $\{(t,g) \in \mathbb{P}; n \in \operatorname{dom}(t)\}$ is dense, there is $(t,g) \in G$ with $n \in \operatorname{dom}(t)$ and let (u,h) be a common extension. Then we obtain that $f(n) \leq t(n) = x(n)$. To see $G \supset G'$, let $(s,f) \in G'$. Since $\{(t,g); t \supset s \land g \geq f\}$ is dense, there is $(t,g) \in G \cap D$. Then we have $(t,g) \leq (s,f)$, i.e., $(s,f) \in G$.

Theorem IV.2.3 ([Bla10]). A Hechler real x is a dominating real.

Proof. Let $f \in {}^{\omega}\omega \cap V$. Since $D = \{(s,g) \in \mathbb{P} : f \leq g\}$ is dense, there is $(s,g) \in G$ with $f \leq g$. Thanks to the previous theorem we have that $M[G] \models G = G'$, furthermore, $M[G] \models g \leq x$. Thus we obtain that $M[G] \models \forall f \in {}^{\omega}\omega \cap V$ $f \leq x$

Theorem IV.2.4 ([Bla10]). A Hechler forcing notion is σ -centered, in paticular ccc poset.

Proof. Manifestly, by letting
$$\mathbb{P} = \bigcup \{ \{(s, f) \in \mathbb{P}\} ; s \in {}^{<\omega}\omega \}.$$

Definition IV.2.5 ([Jec03]). Fix a non-empty family $\mathcal{G} \subset {}^{\omega}\omega$ in the ground model. Let \mathbb{P} be a forcing notion such that:

- 1. $(s, E) \in \mathbb{P}$ provided that $s \in {}^{<\omega}\omega$ and $F \in [\mathcal{G}]^{<\omega}$,
- 2. $(s', E') \leq (s, E)$ provided that
 - (a) $s' \supset s$,
 - (b) $E' \supset E$,
 - (c) $\forall n \in \text{dom}(s') \setminus \text{dom}(s) \forall h \in E \ h(n) \in s'(n)$.

Theorem IV.2.6. Let G be a generic in \mathbb{P} , as par Definition IV.2.5, a Hechler real x is a function $x = \bigcup \{s \; ; \exists E \; (s, E) \in G\} \colon \omega \to \omega$. Then, V can be recoverd form x.

Proof. At the beginning of the proof, we note that since G is a filter and $\{(s,E)\in\mathbb{P}\,;\exists n\ni m\ n\in\mathrm{dom}(s)\}$ is dense for every $n,\ x$ is a function with domain ω .

Let $G' = \{(s, E) \in \mathbb{P}; s \subset x \land \forall f \in E \forall n \in \omega \setminus \operatorname{dom}(s) \ (f(n) \leq x(n))\}$ and we verify that G = G'. To see $G \subset G'$. Let $(s, E) \in G$. We shall show that $h(n) \leq x(n)$ for any $h \in E$ and $n \in \omega \setminus \operatorname{dom}(s)$. Let $n \in \omega \setminus \operatorname{dom}(s)$. Since $D_n = \{(t, F) \in \mathbb{P}; t \supset s \land n \in \operatorname{dom}(t) \land F \supset E\}$ is dense, there is $(t, F) \in D \cap G$ and let (u, H) be a common extension in G. Then $(u, H) \leq (s, E)$ shows that $h(n) \leq u(n) = x(n)$ for any $h \in E$. To see $G' \subset G$. Let $(s, E) \in G'$. Since $\{(u, H) \in \mathbb{P} \supset u \supset t \land H \supset F\}$ is dense, there is $(u, H) \in G \cap D$. Then since for $n \in \operatorname{dom}(u) \setminus \operatorname{dom}(t)$ we have $u(n) = x(n) \geq h(n)$, we obtain that $(u, H) \leq (t, F)$, i.e., $(t, F) \in G$.

Similarly to Theorem IV.2.3, we have the following theorem:

Theorem IV.2.7 ([Jec03]). A Hechler real x is a dominating real.

Theorem IV.2.8. A Hechler forcing notion is σ -centered, in paticular ccc poset.

Proof. Manifestly, by letting
$$\mathbb{P} = \bigcup \{ \{(s, f) \in \mathbb{P}\} ; s \in {}^{<\omega}\omega \}.$$

IV.3 Mathias Forcing

Definition IV.3.1. Let \mathbb{P} be a forcing notion such that $(s,A) \in \mathbb{P}$ provided that $s \in [\omega]^{<\omega}$, $A \in [\omega]^{\omega}$ and $\cup s \in \cap A$ and the order $\leq_{\mathbb{P}}$ is given by $(s,A) \leq_{\mathbb{P}} (t,B)$ provided that $s \supset t$, $A \subset B$ and $s \setminus t \subset B$.

Theorem IV.3.2. For a generic G the Mathias real x is an infinite subset of ω defined by $\bigcup \{s \in [\omega]^{<\omega} ; \exists A \in [\omega]^{\omega} \ (s,A) \in G\}$. G can be recoverd from x.

Proof. At the beginning of the proof, since $D_n = \{(s, A) \in \mathbb{P}; \exists m \ni n \ m \subset s\}$ is dense for every $n \in \omega$, x is an infinite set.

We shall show that G = G' for $G' = \{(s,A) \in \mathbb{P} : s \subset x \land x \subset s \cup A\}$. To see $G \subset G'$. Let $(s,A) \in G$. It suffices to verify that $x \subset s \cup A$. For any $a \in x$, there is $(t,B) \in G$ such that $a \in t$ and there is a common extension (u,C). Since $a \in u$, we must have $a \in s$ or $a \in A$. Therefore, we have the subset relation. To see $G' \subset G$. Let $(s,A) \in G'$. Since a set

$$D_A = \{(t, B) \in \mathbb{P}; |A \cap B| < \aleph_0 \lor B \subset A\}$$

is dense, there is $(t, B) \in G \cap D$. Since $(t, B) \in G'$, elements in x are eventually contained in both A and B. This shows $B \subset A$. On the other hand, since a set

$$D_s = \{(t, B) \in \mathbb{P}; t \supset \forall s \not\subset \cup \{t, B\}\}$$

is dense, there is $(t', B') \in D_s \cap G$. Since we have $(t', B') \in G'$ we have $t' \supset s$. Let (u, C) be a common extension for (t, B) and (t', B') in G. To see that (u, C) is an extension of (s, A), we remain to verify that $u \setminus s \subset A$ but this is immediate from since $(u, c) \in G'$ and $(s, A) \in G'$ implies $u \subset x \subset s \cup A$.

Theorem IV.3.3. A Mathias real x is a dominating real, i.e., a function $x \colon n \mapsto x_n$ where $\operatorname{rank}_{\in x}(x_n) = n$ is a dominating real.

Proof. Let $f \in {}^{\omega}\omega$ in V. We may assume that f is a strictly increasing function, f(0) = 0 and identify f with an infinite set $\{f(i); i \in \omega\}$. Since a set, D_f ,

 $\{(t,B)\in\mathbb{P}; \text{ "every interval in }\Pi_B \text{ possesses more than two elements in } f.$ "

is a dense set, where Π_f is an iterval partition endowed with f, let $(t,B) \in G \cap D_f$. Thanks to the previous theorem, since we have $M[G] \models G = G'$, we obtain that $M[G] \models x \subset s \cup f$. This shows that, in M[G], by construction there is some $n \in \omega$ such that the n-th least element in x is grater than in f, i.e., $M[G] \models \forall^{\infty} n \in \omega f(n) \leq x(n)$.

Theorem IV.3.4. Let \mathbb{P}_{ω_2} a ω_2 -countable support iteration with

$$\Vdash_{\mathbb{P}_\alpha} \text{``}\mathbb{Q}_\alpha$$
 is a Mathias ordering."

Then we have $\Vdash_{\mathbb{P}_{\omega_2}} \mathfrak{c} = \aleph_2$.

Proof. To see (\geq). Since the iteration adjoining ω_2 many Mathias reals, dominating reals, we have $\Vdash_{\omega_2} \mathfrak{c} \geq \aleph_2$. To see (\leq). Note that by Theorem III.4.5 \mathbb{P}_{ω_2} preserves all cardinals.

Theorem IV.3.5 ([Bla10]). For the Mathias real X and a dense open family \mathcal{D} , there is $D \in \mathcal{D}$ such that $\Vdash X \subset \check{D}$.

Proof. Let G be generic, X the Mathias real and \mathcal{D} a dense open family. Let (s,A) be any condition. Since \mathcal{D} is dense, there is an extension $(s,A') \leq (s,A)$ with $A' \in \mathcal{D}$. We assert that $(s,A') \Vdash X \setminus s \subset A'$. Let $n \in \omega \setminus s$. If $n \in \mathring{X}$. There is $(\mathring{t},\mathring{B}) \in \mathring{G}$ such that $n \in \mathring{t}$ and $(\mathring{t},\mathring{B}) \leq (s,A')$, then we have $n \in \mathring{t} \setminus s \subset A'$. This shows that $\{(t,B) \in \mathbb{P}; (t,B) \Vdash (n \in X \Longrightarrow n \in A')\}$ is dense below (s,A'). Therefore we obtain that $(s,A') \Vdash (n \in \mathring{X} \Longrightarrow n \in A')$ for each $n \in \omega \setminus s$. Moreover, $(s,A') \Vdash \mathring{X} \subset \cup \{A',s\}$ and we have $\cup \{A',s\} \in \mathcal{D}$ since \mathcal{D} is dense open. Therefore, there is $D \in \mathcal{D}$ such that $\Vdash X \subset \mathring{D}$.

Theorem IV.3.6 ([Bla10]). Let \mathbb{P}_{ω_2} be a forcing notion as per Theorem IV.3.4. We have $\mathfrak{h} = \aleph_2 = \mathfrak{c}$. Moreover, $\mathfrak{b} = \mathfrak{g} = \mathfrak{s} = \mathfrak{r} = \mathfrak{d} = \mathfrak{u} = \mathfrak{i} = \mathbf{non}(\mathcal{B}) = \mathbf{cof}(\mathcal{B}) = \mathbf{non}(\mathcal{L}) = \mathbf{cof}(\mathcal{L}) = \mathfrak{c}$.

Proof. For the first statement, it suffices to show that $\Vdash_{\omega_2} \aleph_1 < \mathfrak{h}$. Let $\{\mathcal{D}_\xi; \xi \in \omega_1\}$ be a family of dense open sets. Let $\alpha \in \omega_2$ be an ordinal such that D_ξ in $V[G_\alpha]$ and let X be a Mathias real adjoined in $\alpha+1$ step. Previous theorem asserts that there is $D_\xi \in \mathcal{D}_\xi$ such that $X \subset D$ for each $\xi \in \omega_1$. Then we obtain that $\Vdash_{\alpha+1} \forall \xi \in \omega_1 \exists D \in \mathcal{D}_\xi \ X \subset D$, this shows that $\Vdash_{\alpha+1} \forall \xi \in \omega_1 \ X \in \mathcal{D}_\xi$. Therefore, $\Vdash_{\omega_2} \aleph_1 < \mathfrak{h}$ holds.

For the moreover part is immediate by the general consequence ($\mathfrak{h} \leq \mathfrak{s}, \mathfrak{b}, \mathfrak{g}$), ($\mathfrak{s} \leq \mathbf{non}(L)$), ($\mathfrak{b} \leq \mathfrak{a}$) and ($\mathfrak{b} \leq \mathfrak{r} \leq \mathfrak{u}$). (see 3.8, 5.19, 6.9, 6.27, 8.4 and 9.7 in [Bla10].)

Theorem IV.3.7. \mathbb{P} satisfies Axiom A.

Proof. Define \leq_n as

- 1. $<_0 = <_{\mathbb{P}}$
- 2. $(s, A) \leq_n (t, B)$ provided that
 - $(2-a) (s, A) \leq_{\mathbb{P}} (t, B),$
- (2-b) s = t,
- (2-c) $\{x \in B : \operatorname{rank}_{B,\in}(x) \in n\} \subset A \text{ for each } n \ni 0.$

For the conditions A-1, A-2 are clear. We remain to check the conditions A-3 and A-4.

For A-3. Let $\langle (s_i, A_i); i \in \omega \rangle$ be a fusion suquence. Define $s = s_0$ and $A = \cap \{A_i; i \in \omega\}$. To show $(s, A) \in \mathbb{P}$ and $\forall i \in \omega$ $((s, A) \leq_n (s_n, A_n))$, it remain to check that $A \in [\omega]^{\omega}$. For $n \in \omega$ there is $m \in A_{n+1}$ such that $\operatorname{rank}_{A_{n+1}, \in}(m) = n$. Then we have $n \in m$ and $\forall i \in \omega$ $(m \in A_i)$. Therefore we obtain that $\exists^{\infty} n \in \omega$ $(n \in A)$, i.e., $A \in [\omega]^{\omega}$.

For A-4. Let $(s,A) \in \mathbb{P}$ with $(s,A) \Vdash \mathring{a} \in V$ and let $n \in \omega$. Define $t = \{a \in A : \operatorname{rank}_{A,\in}(a) \in n\}$ and enumerate $\mathcal{P}(t)$ such that $\{t_i : i \in k\} = \mathcal{P}(t)$. By the following lemma, there are B_i , $i \in k$ and X_{i+1} , $i \in k-1$, recursively, satisfing:

1. $A \supset B_i \supset B_{i+1}$ for $i \in k-1$,

2. $(s \cup t_i, B_{i+1}) \Vdash \mathring{a} \in X_{i+1}$.

Define $B = t \cup B_k$ and $X = \cup \{X_{i+1}; i \in k-1\}$ and we verify that $(s, B) \leq_n (s, A)$ and $(s, B) \Vdash \mathring{a} \in \check{X}$. The former is clear by the definition of t. To see that $(s, B) \Vdash \mathring{a} \in \check{X}$. Let $(u, C) \leq_{\mathbb{P}} (s, B)$ since $u \setminus s \subset B$ there are $t_i \subset t$ and $u' \subset B_k \subset B$ such that $u \setminus s = t_i \cup u'$. We shall show that $(t, C \setminus t) \in \mathbb{P}$, $(u, c \setminus t) \leq (t, C)$ and $(u, C \setminus t) \Vdash \mathring{a} \in X$. The first two properties are immediate. To see the last property, we shall show $(u, C \setminus t) \leq (s \cup t_i, B_{i+1})$ and this is immediate by the properties $B = t \cup B_k$ and $B_k \subset B_{i+1}$.

Lemma IV.3.8. For $(s,A) \in \mathbb{P}$, suppose that $(s,A) \Vdash \mathring{a} \in V$. Then there are $B \subset A$ and countable set X in V such that $(s,B) \Vdash \mathring{a} \in \check{X}$. Moreover, B may be chosen such that if $(t,C) \leq_{\mathbb{P}} (s,B)$, $a \in V$ and $(t,C) \Vdash \mathring{a} = a$, then $(t,B \setminus (\cup t+1)) \Vdash \mathring{a} = a$.

Proof. First we construct $b_j \in A$ and $B_j \subset A$, recursively, which satisfies:

- 1. $B_0 \supset B_1 \supset \cdots$,
- 2. $\forall b \in B_{j+1} \ (b_j \in b)$.

For the leading stage, let $B_0 = A$. Suppose that b_j and B_j , $j \in n$, are defined. Enumerate the subsets of $\{b_j : j \in n\}$, $\{s_{n,0}, \ldots, s_{n,k-1}\} = \mathcal{P}(\{b_j : j \in n\})$. We construct a sequence $B_0^n \supset B_1^n \supset \cdots \supset B_k^n$ as $B_0^n = B_{n-1}$ and

$$B_{i+1}^n = \left\{ \begin{array}{ll} C \subset B_i^n & \text{such that } (s \cup s_{n,i}, C) \Vdash \mathring{a} \in V, \\ B_i^n & \text{"if such a C does not exist."} \end{array} \right.$$

Let $b_n = \cap B_k^n$, $B_{n+1} = B_k^n \setminus \{b_n\}$. Then by letting, $B = \{b_j ; j \in \omega\}$ and $X = \{a \in V ; \exists t \subset B \ (\cup \{s,t\}, B \setminus (\cup t+1)) \Vdash \mathring{a} = a\}$, we assert that X is countable and $(s,B) \Vdash \mathring{a} \in X$.

We assert that $(s \cup s_{n,i}, B_{i+1}^n) \Vdash \mathring{a} \in V$ for every $n \in \omega$ and $i \in k_n$. Let $(t,C) \leq (s,B)$. Since $t \setminus s \subset B \subset \{b_i ; i \in \omega\}$, there is $n \in \omega$ and $i \in k_n$ such that $t \setminus s = s_{n,i}$. Then we have $t = s \cup s_{n,i}$. Note that $(t,C) \leq (t,B_{i+1}^n)$ and $(t,B \setminus (\cup t+1)) \leq (t,B_{i+1}^n)$ (we check at the end of the proof). The first inequality asserts that there is an $a \in V$ such that $(t,C) \Vdash \mathring{a} = a$ and second inequality asserts that the a in X.

For the moreover part, by letting t as in above, let $a' \in V$ such that $(t, B_{n+1}^i) \Vdash \mathring{a} = a'$. The first inequality asserts that a = a' and the second inequality asserts that $a' \in X$.

Now we show the inequalities. To see $(t,C) \leq (t,B_{i+1}^n)$. Immediate by $t \subset \{b_i : i \in n\}$, $B^{n+1} \subset B_{i+1}^n$ and $B^{n+1} \subset B \setminus \{b_i \setminus i \in n\}$. To see $(t,B \setminus (\cup t+1)) \leq (t,B_{i+1}^n)$. Immediate by $B \setminus (\cup t+1) \subset B^{n+1}$.

Theorem IV.3.9 (Pre-decision property, [Bau84]). Let φ be a sentence of the language of forcing. For any $(s, A) \in P$ there is $B \subset A$ such that either $(s, B) \Vdash \varphi$ or $(s, B) \Vdash \neg \varphi$.

Proof. Let A_0 and A_1 be maximal antichains in $\{p \in \mathbb{P}; p \Vdash \varphi\}$ and $\{p \in \mathbb{P}; p \Vdash \neg \varphi\}$, respectively and let \mathring{a} be a nice name induced by antichain $\cup \{A_i; i \in 2\}$, then note that we have $(s, A) \Vdash \mathring{a} \in V$.

Lemma IV.3.8 asserts that there is countable $B' \subset A$ with follows:

- (a) For $(t,C) \leq (s,B')$, $(t,C) \Vdash \varphi$ implies $(t,B' \setminus (\cup t+1)) \Vdash \varphi$, and
- (b) for $(t, C) \leq (s, B')$, $(t, C) \Vdash \neg \varphi$ implies $(t, B' \setminus (\cup t + 1)) \Vdash \neg \varphi$.

Now, we define a sequence $\langle b_n \in B' ; n \in \omega \rangle$ and $\langle B_n \in [B']^{\omega} ; n \in \omega \rangle$, recursively, with following properties:

- $b_n \in b_{n+1}$ for each $n \in \omega$,
- $B_n \supset B_{n+1}$ for each $n \in \omega$.

Let $B_0 = B'$ and assume that $B_n \subset B'$ and b_n are defined for $n \in \omega$. We shall find an infinite B'_{n+1} such that for arbitrary $s' \subset \{b_i; i \in n\}$ we have the one of the following properties:

- (i) $\forall b \in B'_{n+1} \ (s \cup s' \cup \{b\}, B' \setminus (\cup \cup \{s', \{b\}\} + 1)) \Vdash \varphi$,
- (ii) $\forall b \in B'_{n+1} \ (s \cup s' \cup \{b\}, B' \setminus (\cup \cup \{s', \{b\}\} + 1)) \Vdash \neg \varphi$,
- (iii) both of (i) and (ii) does not hold.

Let $\{s_{n,i}; i \in k_n\} = \mathcal{P}(\{b_i; i \in n\})$ and define a decreasing sequence of infinite sets $B^n = B = B_0^n \supset B_1^n \supset \cdots \supset B_{k_n}^n$ such that B_{i+1}^n and $s_{n,i}$ satisfies one of the condition in (i), (ii), (iii) by following processes:

Assume B_i^n is defined, for $i \in k_n$, since the one of the following sets are infinite, let B_i^{n+1} be such an infinite set:

- $T = \{b \in B_i^n ; (\cup \{s, s_{n,i}, \{b\}\}, B' \setminus (\cup \cup \{s_{n,i}, \{b\}\} + 1)) \Vdash \varphi\},\$
- $F = \{b \in B_i^n ; (\cup \{s, s_{n,i}, \{b\}\}, B' \setminus (\cup \cup \{s_{n,i}, \{b\}\} + 1)) \Vdash \neg \varphi\},\$
- $B_i^n \setminus \cup \{T, F\}$.

And let $B'_{n+1} = B^n_{k_n}$ and $b_n = \cap B'_{n+1}$ and $B_n = B'_{n+1} \setminus \{b_n\}$. Define $B = \{b_n : n \in \omega\}$.

To conclude the proof, we shall show that (s,B) forces φ or its negation. Assume that it does not force $\neg \varphi$. Then there is an extension $(t,C) \leq (s,B)$ which forces φ and we may assume that t has the least cardinality among them. We distinguish two case, according to whether |s| = |t|. If |s| = |t|. Since we have s = t, (s,C) forces φ , so does (s,B), since $(t,B' \setminus (\cup t+1))$ is an extension of (t,B) and by (a). If $|s| \in |t|$. Since $t \setminus s \subset B$ there is an $n \in \omega$ such that $\cup (t \setminus s) = b_n$. Let $s' = t \setminus (s \cup \{b_n\})$. If we have $(s \cup s', B'_{n+1})$ forces φ , Since $(s \cup s', B'_{n+1}) \leq (s,B)$, the minimality for the cardinality asserts that $|t| \leq |s \cup s'| = |t| - 1$, a contradiction and we complete the proof.

Thus, we remain to show that $(s \cup s', B'_{n+1})$ forces φ . Since (t, C) forces φ , by (a), so does $(t, B' \setminus (\cup t + 1))$. Furthermore, $s' = t \setminus (s \cup \{b_n\})$ and $b_n \in B'_{n+1}$ witnesses that B'_{n+1} holds the condition (i). To see that $(s \cup s', B'_{n+1})$ forces φ , let (u, D) be an extension. We distinguish two cases, according to whether $u \setminus (s \cup s') = \emptyset$. Case I. $u \setminus \cup \{s, s'\} = \emptyset$. Let $b = \cap D$. Then we have $(u \cup \{b\}, D \setminus \{b\})$ is an extension for (u, D) and $(s \cup s' \cup \{d\}, B'_{n+1} \setminus (\cup (s' \cup \{d\} + 1))$. And the later condition forces φ , we obtain that $(\cup \{s, s'\}, B'_{n+1}) \Vdash \varphi$. Case II. $u \setminus (s \cup s') \neq \emptyset$. Let $b = u \setminus \cup \{s, s'\}$ and $d = u \setminus (s \cup s' \cup \{b\})$. Since $(s \cup s' \cup \{b\}, B' \setminus \cup (s \cup \{b\} + 1))$ forces φ , we shall show that this condition possesses an extension (u, D). To see that $D \subset B' \setminus (\cup (s' \cup \{b\} + 1)$, we note that $D \subset B'_{n+1} \subset B'$ and for arbitrary $c \in D$, $\cup u \in x$, $\cup s' \leq \cup u \in x$ and $b \leq \cup u \in x$ imply $x \notin \cup (s' \cup \{b\} + 1)$. To see that $u \setminus (s \cup s' \cup \{b\}) \subset B' \setminus (\cup (s' \cup \{b\} + 1))$. It suffies to see that $d \subset B' \setminus (\cup (s' \cup \{b\} + 1))$. For $x \in d$, $x \in u \setminus \{s, s'\}$ shows that $x \in B'_{n+1} \subset B'$ and $x \notin s' \cup \{b\}$ shows that $x \notin \cup (s' \cup \{b\} + 1)$.

Corollary IV.3.10. Let X be a finite set in V, $(s,A) \Vdash \mathring{a} \in X$ then there is $B \subset A$ and $a \in X$ such that $(s,B) \Vdash \mathring{a} = a$. Moreover, for $n \in \omega$ there is $(t,B) \leq_n (s,A)$ and $Y \subset X$ of size $\leq 2^n$ such that $(t,B) \Vdash \mathring{a} \in Y$.

Proof. Let $X = \{a_i ; i \in k\}$ in V and we define the squence $A \supset B_0 \supset B_1 \supset \cdots \supset B_k$, recursively, such that $(s, B_i) \Vdash \mathring{a} \in X \setminus \{a_j ; j \in i\}$ or $\exists j \leq i \ (s, B_i) \Vdash \mathring{a} = a_j$. For the leading stage. Theorem IV.3.9 asserts that there is finite $B_0 \subset A$ such that either

- (i) $(s, B_0) \Vdash \mathring{a} = a_0$, or
- (ii) $(s, B_0) \Vdash \mathring{a} \neq a_0$.

Note that $(s, B_0) \Vdash a \neq a_0$ implies $(s, B_0) \Vdash \mathring{a} \in X \setminus \{a_0\}$. For the successor stages. If B_i have the condition (i), let $B_{i+1} = B_i$. If B_i have condition (ii), by Theorem IV.3.9 there is $B_{i+1} \subset B_i$ such that either $(s, B_{i+1}) \Vdash \mathring{a} = a_{i+1}$ or $(s, B_{i+1}) \Vdash \mathring{a} \in \{a_j : j \in n+1\}$. Since we have $(s, B_n) \not\Vdash \mathring{a} \in \emptyset$. There is $j \leq k$ such that $(s, B_n) \Vdash \mathring{a} = a_j$. To see the moreover part, fix an n. For the leading stage, since $(s, A) \Vdash \mathring{a} \in X$ there is an extension (t, B) and $x \in X$ such that $(t, B) \Vdash \mathring{a} = x$. So by letting $Y = \{x\}$ we have the $|Y| \leq 2^0 = 1$ and $(s, B) \Vdash \mathring{a} \in Y$. For the successor stages. Let $U_n = \{a \in A : \operatorname{rank}_{\in, A}(a) \in n\}$ and enumerate $\{s_i^n : i \in 2^n\} = \mathcal{P}(U_n)$. Define B_0^n , $B_{i+1}^n \subset A$ and $a_i \in X$ for $i \in 2^n$, recursively:

- $\bullet \ B_0^n = A,$
- B_{i+1}^n and a_i be sets such that $(\cup \{s, s_i^n\}, B_{i+1}^n) \Vdash \mathring{a} = a_i$.

note that for the successor stage, since $(\cup \{s, s_i^n\}, B_i^n \setminus (\cup s_i^n + 1))$ is an extension for (s, A), the first statement asserts that there are desired sets B_{i+1}^n and a_i . Let $B = \cup \{B_{2^n}^n, U_n\}$ and $Y = \{a_i ; i \in 2^n\}$. To conclude the proof, we shall verify that $|Y| \leq 2^n$, $(s, B) \leq_n (s, A)$ and $(s, B) \Vdash \mathring{a} \in Y$. The first two statements are obvious, we see the last condition. Let (t, C) be an extension for (s, B).

By letting $W = (t \setminus s) \cap B_{2^n}^n$ and $s_j^n = (t \setminus s) \cap U_n$ for some $j \in 2^n$, we have $t \setminus s = \bigcup \{W, s_j^n\}$. To conclude the proof, we shall show that $(t, C \cap B_{j+1}^n)$ is an extension for (t, C) and $(\bigcup \{s, s_j^n\}, B_{j+1}^n)$. The former is immediate and the later is immediate by the fact that $W \subset B_{2^n}^n \subset B_{j+1}^n$. Then, since the later condition forces $\mathring{a} \in Y$, we obtain that $(s, B) \Vdash \mathring{a} \in Y$.

IV.4 Sacks Forcing (Perfect Set Forcing)

Definition IV.4.1. Let \mathbb{S} be a poset with order $\leq_{\mathbb{S}} = \mathbb{C}$ such that $p \in \mathbb{S}$ provided that

- (a) $\emptyset \neq p \subset \bigcup \{^n 2 ; n \in \omega \},$
- (b) $\forall s \in p \forall n \in \omega \ (s|_n \in p),$
- (c) $\forall q \in p \exists s, t \in p \ (q \subset s \land q \subset t \land \exists n \in \omega \ s(n) \neq t(n)).$

Note that the condition (c) asserts that every $p \in \mathbb{S}$ is a parfect set in $2^{<\omega}$. For $p \in \mathbb{S}$ and $s \in p$ define the degree of s in p, $\deg(s,p)$, by the cardinality of $\{n \in \omega; \exists t \in p \ t(n) \neq s(n)\}$. $s \in p$ is a splitting node of p provided that $s^{<}\langle 0 \rangle, s^{<}\langle 1 \rangle \in p$ in addition if we have $\deg(s,p) = n$ then s is an n-splitting node of p. $p|_s$ denote the codition $\{t \in p; t \subset s \lor s \subset t\}$.

Theorem IV.4.2 ([Jec03]). For generic G the Sacks real, or generic branch, is a function $f: \omega \to 2$ given by $f = \cap \{ \cup p : p \in G \}$. Then G can be recovered form x.

Proof. First, we assert that f is a function with $\omega \to 2$. Since G is a filter, for any $n \in \omega$ and for distinct $p, q \in G$ we obtain that $p \cap q \cap {}^{n}2 \neq \emptyset$. Moreover since ${}^{n}2$ is finite, we obtain that $S_{n} = (\cap G) \cap {}^{n}2 \neq \emptyset$. Furthermore, since $D_{n} = \{p \in \mathbb{S}; \ "\cup p \text{ does not possess either } \langle n-1,0\rangle \text{ or } \langle n-1,1\rangle." \}$ is dense in \mathbb{S} for $n \ni 0$, S_{n} must be a singleton. Therefore, $f : \omega \to 2$ is a function.

Second, we assert that M[f] = M[G]. Since $f \in M[G]$ manifestly holds, it suffices to verify that G = G' for $G' = \{p \in \mathbb{S} : f \subset \cup p\}$. The relation (\subset) is obvious. To see the (\supset) . Since $D = \{q \in G : q \subset p \lor \neg (\exists f \in (\cup p) \cap (\cup q) \ f \in {}^{\omega}2)\}$ is dense, there is $q \in G \cap D$. Since $q \in G'$, we have $f \in (\cup p) \cap (\cup q)$. Thus we obtain that $q \subset p$, i.e., $p \in G$.

Theorem IV.4.3.

- (i) For $p \in \mathbb{S}$, p possesses a binary subtree,
- (ii) Define \leq_n as $p \leq_n q$ provided that $p \leq_{\mathbb{S}} q$ and $\forall s \in q (\deg(s,q) \leq n \implies s \in p)$. Note that $\leq_0 = \leq_{\mathbb{S}}$ holds. Then,
 - S satisfies Axiom A. Moreover we can say that $|\{r \in I : r \not\perp q\}| \leq 2^n$ in the condition A-4.

Proof. For (i). Let $p \in \mathbb{S}$. Define a binary subtree $T_p = \bigcup \{T_p^n = {n \choose 2}p; n \in \omega\}$, recursively on a height $n \in \omega$,

- 1. For a leading stage. $T_p^0 = \{\emptyset\}$.
- 2. For a successor stages. For $s^{\smallfrown}\langle i \rangle \in {}^{(n+1)}2$, let $N = \min\{m \in \omega ; \exists t, u \in p \ (s \subset t_0, t_1 \land \mathrm{dom}(t_0) = \mathrm{dom}(t_1) = m + 1 \land t_0(m) = 0 \land t_1(m) = 1)\}$ and $t_0, t_1 \in p$ which endow N. Define $T_p^{n+1}(s^{\smallfrown}\langle i \rangle) = t_i$.

Then we obtain a subtree T_p . Note that the heigh of s in T_p and the degree of s in p are the same.

For (ii). The conditions A-1 and A-2 are manifestly. We check the conditions A-3 and A-4.

For condition A-3. Let $\langle p_n \in \mathbb{S} \, ; n \in \omega \rangle$ with $p_{n+1} \leq_n p_n$ for each $n \in \omega$. Let $q = \cap \{p_n \, ; n \in \omega\}$. First we check that $q \in \mathbb{S}$. Since the condition (a) and (b) are obvious, we remain to see the condition (c). Let $s \in q$ and $n = \deg(s, p_0)$. Since we have $\deg(s, p_{n+1}) \leq n$, $p_{n+1} \in \mathbb{S}$ and by the result of (i), there are $t, u \in p_{n+1}$ such that $\deg(t, p_{n+1}) = \deg(u, p_{n+1}) = n+1$. To see that $t, u \in q$, let $m \in \omega$ and we shall distinguish two cases, according to whether $m \leq n+1$. If $m \leq n+1$. Immediate by the fact $p_{n+1} \subset p_m$. If $n+1 \in m$. Note that for $s, t \in p_{n+1}$ with $\deg(s, p_{n+1}) \leq n+1$, $p_{n+2} \leq_{n+1} p_{n+1}$ implies $s, t \in p_{n+2}$. Thus, by inductively, we obtain that $s, t \in p_m$. Note that the conditions $q \subset s, t$, $s \not\subset t$ and $t \not\subset s$ are clear, thus $q \in \mathbb{S}$. To conclude the proof for condition A-3, we show that $q \subset p_n$, for every $n \in \omega$. This can prove by the mimik the proof of $t, u \in q$.

For condition A-4. Let I be an antichain over $\mathbb{S},\ p\in\mathbb{S}$ and $n\in\omega$. Let $\Gamma(p,n)=\{s\in p\,;\deg(s,p)=n\wedge s^\smallfrown\langle 0\rangle\in p\wedge s^\smallfrown\langle 1\rangle\in p\}$ and $p|_s=\{t\in p\,;t\subset s\vee s\subset t\}\in\mathbb{S}$. For $s\in\Gamma(p,n)$ since I is an antichain there is $q_s\leq_{\mathbb{S}}p|_s$ such that either $\exists r_s\in I\ (q_s\leq_{\mathbb{S}}r_s)$ or $\forall r\in I\ (q_s\perp_{\mathbb{S}}r)$. We choose q_s and r_s (if exists and note that uniquely exists) for each $s\in\Gamma(p,n)$ and define $q=\cup\{q_s\,;s\in\Gamma(p,n)\}$ and we check the q is the desired one. For $q\leq_n p$. Let $t\in p$ with $\deg(t,p)\leq n$, by the result of (i), there is $s\in\Gamma(p,n)$ such that $t\subset s$. Since we have $t\in p|_s$, $\deg(t,p|_s)\leq \deg(s,p|_s)=0$ and $q_s\leq_0 p|_s$, we obtain $t\in q_s\subset q$. Thus $q\leq_n p$. For $|\{r\in I\,;r\not\perp q\}|\leq 2^n$. First we note that $|\Gamma(p,n)|\leq 2^n$ since the number of nodes in a binary tree with height n is 2^n . If we obtain the equation $\{r\in I\,;r\not\perp_{\mathbb{S}}q\}=\{r\in I\,;\exists s\in\Gamma(p,n)\ (q_s\not\perp_{\mathbb{S}}r)\}$, we have $|\{r\in I\,;r\not\perp_{\mathbb{S}}q\}|\leq 2^n$.

Therefore we remain to show the equality. The relation, (\supset) , is immediate by $q_s \subset q$. Before we show the (\subset) , we assert that the following trivial facts.

- 1. For $\{s_0, s_1\} \in [\Gamma(p, n)]^2$, $q_{s_0} \perp_{\mathbb{S}} q_{s_1}$.
- 2. For $\mathcal{D}, \mathcal{F} \in [\Gamma(p, n)]^{<\omega}$, if $\mathcal{D} \cap \mathcal{F} = \emptyset$ then $\cup \{q_s : s \in \mathcal{D}\} \perp_{\mathbb{S}} \cup \{q_s : s \in \mathcal{F}\}$.

To see (\subset). Let $r \in I$ and let $q' \leq_{\mathbb{S}} p$ with $q' \leq_{\mathbb{S}} q, r$. Suppose that we have $\forall s \in \Gamma(p, n) \ (q_s \perp_{\mathbb{S}} q')$, inductively and by the above facts, we obtain that $\cup \{q_s \ ; s \in \Gamma(p, n)\} \perp_{\mathbb{S}} q'$, i.e., $q \perp_{\mathbb{S}} q'$, a contradiction. Thus for some $s \in \Gamma(p, n)$ we have $q_s \not \perp_{\mathbb{S}} q'$ moreover, $q_s \not \perp_{\mathbb{S}} r$.

Definition IV.4.4 ([Jec03]). A generic filter G is minimal over the groud model M provided that every set of ordinals in M[G], either $X \in M$ or $G \in M[X]$. Here M[X] is the least extension with $M \subset M[X]$ and $X \in M[X]$.

Theorem IV.4.5 ([Jec03]). A generic filter G of a Sacks forcing notion is minimal over the ground model.

Proof. Let $X \in V[G]$ be a set of ordinals and assume that $\not \vdash \mathring{X} \in V$ and let p be a condition which forces $\mathring{X} \notin V$.

Define a fusion sequence $\langle p_n ; n \in \omega \rangle$, and ordinals γ_s in V[G], recursively. Let $p_0 = p$. Let S_n be the set of an n-splitting nodes of p_{n-1} . For each $s \in S_n$ let γ_s be an ordinal which does not decide $\gamma_s \in \mathring{X}$ by $p_{n-1}|_s$. Then for $i \in 2$, since $p_{n-1}|_{s \cap \langle i \rangle}$ is an extension of $p_{n-1}|_s$, there is an extension q_s^i such that $q_s^0 \Vdash \gamma_s \notin \mathring{X}$ and $q_s^1 \Vdash \gamma_s \in \mathring{X}$. Then by letting p be the amalgamation $\{q_s^i ; s \in S_n \land i \in 2\}$ into p_{n-1} :

$$p_n = \bigcup \{ \{t \in p_{n-1} ; (t \subset s) \lor (s \subset t \land t \in q_s^i) \}; s \in S_n \land i \in 2\} \in \mathbb{P}$$

we have $p_n \leq_n p_{n-1}$ and $q_s^i \leq p_n$ for each $s \in S_n$ and $i \in 2$. And moreover, there is a fusion q such that $q \leq_n p_n$ for each $n \in \omega$.

Theorem IV.4.6 (Sacks property, [Bla10]). Let $s \in \mathbb{S}$ and $Y \in V$ satisfying $s \Vdash \mathring{f} : \omega \to \check{Y}$ there is $g : \omega \to X$ in V with $X \in V$ such that $f(n) \in g(n)$ and $|g(n)| \leq 2^n$ for each $n \in \omega$.

Proof. For every $n \in \omega$ we have $s \Vdash (\mathring{f})(n) \in \check{Y}$, so by applying A-4, there is q_n and $X_n \in V$ with $|X_n| \leq 2^n$ such that $q_n \leq_n s$ and $q_n \Vdash (\mathring{f})(n) \in \check{X}_n$. By letting the function g with assign the n the X_n , we obtain the desired one. \square

IV.5 Shooting A Club by Finite Conditions

Definition IV.5.1 ([Bau84]). Let \mathbb{P} be a forcing notion with an order $\leq_{\mathbb{P}}$ such that:

- 1. $p \in \mathbb{P}$ provided that p is a function $p: 2n \to \omega_1$ for $n \in \omega \setminus 1$ such that $p(2i+1) \in p(2i+2)$ for any $i \in n-1$, we simply write $p = \{\langle \xi_{2i}, \xi_{2i+1} \rangle ; i \in n\}$,
- 2. For $p, q \in \mathbb{P}$, $q \leq_{\mathbb{P}} p$ provided that $q \supset p$.

Theorem IV.5.2. \mathbb{P} is proper.

Proof. Let $\lambda > 2^{|\mathbb{P}|}$ be regular uncountable, $M \preccurlyeq H_{\lambda}$ with $\mathbb{P} \in M$ and $p \in M \cap \mathbb{P}$. We shall find an extension $q \leq p$ which is (M, \mathbb{P}) -generic. Fix a $\beta_0 \in \omega_1$ such that $\omega_1 \cap M \in \beta_0$ and let $p' = p \cup \{\langle \omega_1 \cap M, \beta_0 \rangle\}$. We assert that p' is a witness. Let $D \subset \mathbb{P}$ be a dense set with $D \in M$ and let $I \subset D$ be a maximal antichain. Let $q \leq p'$ be an extension. Since there is $r \in I$ such that $r \not \perp q$. Now we note that the following properties (we shall proved at the end of the proof):

- (a.) $s \cap M \in M$ for any condition $s \in \mathbb{P}$,
- (b.) $s \in M$ implies $\cup s \subset M$ for any condition $s \in \mathbb{P}$.

Thus, there is an $r' \in I \cap M$ such that $r \cap M = r' \cap M$ and $r' \subset M$. Then $r' \cup q = (r \cap M) \cup q \in \mathbb{P}$, i.e., $r' \not \perp q$.

To see that (a). For $s \in \mathbb{P}$. Since $s \cap M$ is finite, there is a bijection $f: |s \cap M| \to s \cap M$ and thus $s \cap M \in M$. To see that (b). For $s \in M \cap \mathbb{P}$, there is a surjection $f: \omega \to s$ in M. Thus we obtain that $\cup s \subset M$.

Theorem IV.5.3. For any generic G, $\mathbb{1} \Vdash_{\mathbb{P}}$ " $\mathring{C} = \{ \alpha \in \omega_1 ; \exists \beta \in \omega_1 \ \langle \alpha, \beta \rangle \in \cup \mathring{G} \}$ is club in ω_1 .".

Proof. To see \mathring{C} is unbounded. Let $\gamma \in \omega_1$. Since $D_{\gamma} = \{p \in \mathbb{P}; \exists \langle \alpha, \beta \rangle \in \cup p \ \gamma \in [\alpha, \beta] \}$ is dense in \mathbb{P} , there is $p \in \mathring{G}$ and $\langle \alpha, \beta \rangle \in p$ such that $\gamma \in [\alpha, \beta]$. And, similarly, for $\beta + 1$ there is $q \in \mathring{G}$ such that $\beta + 1 \in [\alpha', \beta']$ for some $\langle \alpha', \beta' \rangle \in q$. Then since $\beta + 1 \leq \alpha', \beta + 1$ witnesses that \mathring{C} possesses an element $\geq \gamma$. Thus $\models \cup \mathring{C} = \omega_1$.

To see that \mathring{C} is closed set, it suffices show that $\omega_1 \setminus \mathring{C} = \bigcup \{ [\alpha+1, \beta] ; \langle \alpha, \beta \rangle \in \bigcup \mathring{G} \}$ since $[\alpha, \beta]$ is an open interval $(\alpha, \beta+1)$. For (\subset) . Let $\gamma \in \omega_1 \setminus \mathring{C}$. By genericity there is $\langle \alpha, \beta \rangle \in \bigcup \mathring{G}$ such that $\gamma \in [\alpha, \beta]$, moreover since $\gamma \notin \mathring{C}$, $\gamma \in [\alpha+1, \beta]$. For (\supset) . Let $\gamma \in [\alpha+1, \beta]$ and $\langle \alpha, \beta \rangle \in p \in G$. If $\gamma \in \mathring{C}$, there is $\delta \in \omega_1$ such that $\langle \gamma, \delta \rangle \in q$ for some $q \in G$. However, this contradicts that $\alpha = \gamma$ since p and q are compatible.

Theorem IV.5.4. There are no sequence of order relations $\langle \leq_n ; n \in \omega \rangle$ which satisfies Axiom A.

Proof. Assume that there is a sequence of order relations $\langle \leq_n ; n \in \omega \rangle$ which satisfies Axiom A. At the beginning of the proof, we assert that for $p \in \mathbb{P}$ there is an uncountable antichain I_p such that every $q \in I_p$ is compatible with p. Since p is a finite set there is $\alpha \in \omega_1$ such that $\cup \cup p \in \alpha$. Then by letting $I_p = \{\cup\{p, \{\langle \alpha, \beta \rangle\}\}; \alpha \in \beta \in \omega_1\}$ we obtain the desired uncountable antichain.

To heve a contradiction, we define a fusion sequence p_n , $n \in \omega$ with $|p_n| \geq n$, recursively,

- 1. For a leading stage. Fix arbitrary $p_0 \in \mathbb{P}$,
- 2. For a successor stages. For p_n and I_{p_n} , by applying the condition A-4, we obtain a $q \in \mathbb{P}$ such that $q \leq_{n+1} p_n$ and $\{r \in I_{p_n} : r \perp_{\mathbb{P}} q\}$ is countable. If $|q| \leq n$, by $q \leq_{n+1} p_n$, $|p_n| \geq n$ and the condition A-2 shows that $q = p_n$. However this contrary to that $\{r \in I_{p_n} : r \perp p_n\}$ is countable. Thus we have $q \in \mathbb{P}$ such that $q \leq_{n+1} p_n$ and $|q| \geq n+1$.

Therefore, we obtain a specific fusion sequence. However the condition A-3 asserts that there is a fusion $p \in \mathbb{P}$ such that $q \leq_n p_n$ for every n, moreover $|q| \geq n$ for every n, a contradiction.

V The Concrete Forcing Examples

- V.1 Axiom of Choice
- V.2 Continum Hypothsis
- V.3 Martin Axiom
- V.4 Borel Conjecture

Definition V.4.1. A subset of reals A is strong measure zero provided that for each sequence of positive reals $\langle \varepsilon_n ; n \in \omega \rangle$ there is a sequence of intervals $\langle I_n \subset \mathbb{R} ; n \in \omega \rangle$ such that $|I_n| \leq \varepsilon_n$ for each $n \in \omega$ and $A \subset \bigcup \{I_n ; n \in \omega\}$.

Theorem V.4.2. X is strongly measure zero over ${}^{\omega}2$ iff $\forall f \in {}^{\omega}\omega \exists \langle g_n \colon f(n) \to 2 ; n \in \omega \rangle$ ($\forall h \in X \exists n \in \omega \ g_n \subset h$).

Lemma V.4.3 ([JSW90]). $\mathfrak{b} = \aleph_1$ implies there is an uncountable strongly measure zero set.

Proof. At the beginning of the proof, we shall define a set $X \subset \mathbb{R}$ is concentrated on \mathbb{Q} provided that for arbitrary open set \mathcal{U} with $\mathcal{U} \supset \mathbb{Q}$ we have $X \setminus \mathcal{U}$ is countable and we assert that X is concentrated on \mathbb{Q} implies that X is a strongly measure zero set.

Emumerate $\mathbb{Q} = \{q_i : i \in \omega\}$ and let $\langle \varepsilon_i : i \in \omega \rangle$ be a sequence of positive reals. Since $\mathcal{U} = \bigcup \{(q_i - \varepsilon_i, q_i + \varepsilon_i) \subset \mathbb{R} : i \in \omega\}$ is an open set with $\mathcal{U} \supset \mathbb{Q}$, $X \setminus \mathcal{U}$ is countable. Moreover since X have the form of the union of \mathcal{U} and countable $X \setminus \mathcal{U}$, so X can covered by countable intervals.

To conclude the proof, let \mathcal{F} be an unbounded family of size ω_1 and assume that $f_i <^* f_j$ holds for $i \in j \in \omega$. Identify ${}^\omega \omega$ with $P = [0,1] \setminus Q$. To see that \mathcal{F} is councentrated on \mathbb{Q} , let \mathcal{U} be an open set with $\mathcal{U} \supset \mathbb{Q}$. Since $K = [0,1] \setminus \mathcal{U}$ is compact and K is covered by $\bigcup \{ f \in {}^\omega \omega; f < g \}; g \in {}^\omega \omega \}$, there is $g \in {}^\omega \omega$ such that K is covered by $\{ f \in {}^\omega \omega; f <^* g \}$ for some $g \in {}^\omega \omega$. Furthermore, we have $\mathcal{F} \setminus \mathcal{U} \subset \{ f \in \mathcal{F}; f <^* g \}$. Therefore, since \mathcal{F} is unbounded family, $\mathcal{F} \setminus \mathcal{U}$ is countable of size \aleph_1 , \mathcal{F} is an uncountable strongly measure zero set.

Hereafter, let \mathbb{P}_{α} be an α -stage iteration with countable support such that $\beta \in \alpha$:

$$\mathbb{1}\Vdash_{\mathbb{P}_\beta} ``\mathring{\mathbb{Q}_\beta}'$$
 is the Mathias ordering."

Lemma V.4.4. Let X be finite in V and $p \Vdash_{\alpha} \mathring{a} \in X$. For any finite $F \subset \alpha$ and $n \in \omega$ there is $q \leq_{F,n} p$ and $Y \subset X$ such that $|Y| \leq 2^{2 \cdot |F|}$ and $q \Vdash_{\alpha} \mathring{a} \in Y$.

Proof. We prove by induction on α . The leading stage is immediate by Theorem IV.3.10. For the successor stages, $\alpha = \beta + 1$. We distinguish two cases, according to whether $\beta \not\in F$. If $\beta \not\in F$, note that we have $F \subset \beta$. Since we have $p \Vdash_{\alpha} \mathring{a} \in X$, there is $\mathring{f}, \mathring{b} \in V^{\mathbb{P}_{\beta}}$ such that $p|_{\beta}$ forces, at the β -stage,

$$\mathring{f} \stackrel{\circ}{\leq}_{\mathring{\mathbb{Q}_{\beta}}} p(\beta), \mathring{b} \in X \text{ and } \mathring{f} \Vdash_{\mathring{\mathbb{Q}_{\beta}}} \mathring{a} = \mathring{b}.$$

Then, by induction hypothesis, there is an extension $q' \leq_{F,n} p|_{\beta}$ and $Y \subset X$ such that $|Y| \leq 2^{2 \cdot |F|}$ and q' forces, at the β -stage,

$$\mathring{f} \leq_{\mathring{\mathbb{O}}_a} p(\beta)$$
 and $\exists \mathring{b} \in Y \ \mathring{f} \Vdash_{\mathring{\mathbb{O}}_a} \mathring{a} = \mathring{b}$.

letting $q = \bigcup \{q', \langle \beta, \mathring{f} \rangle\} \in \mathbb{P}_{\alpha}$, we have $q \leq_{F,n} p$ and $q \Vdash \mathring{a} \in Y$. If $\beta \in F$. Applying Theorem IV.3.10 to $p|_{\beta} \Vdash_{\mathbb{P}_{\beta}} (p(\beta) \Vdash_{\mathring{\mathbb{Q}}_{\beta}} \mathring{a} \in X)$, there is $\mathring{q}, \mathring{f}, \mathring{Y} \in V^{\mathbb{P}_{\beta}}$ such that $p|_{\beta}$ forces, at β -stage,

$$\mathring{q} \leq_n^\beta p(\beta), \ \mathring{Y} \subset X, \ \exists \mathring{f} \colon \mathring{Y} \to 2^n \ (\text{``}\mathring{f} \text{ is injective" and } \mathring{q} \Vdash_{\mathring{\mathbb{Q}}_\beta} \mathring{a} \in \mathring{Y}).$$

Since for each $i \in k_n$ we have $p|_{\beta} \Vdash_{\mathbb{P}_{\beta}} \mathring{f}(i) \in X$ by induction hypothesis we obtain the sequence q_i and Y_i with

- $p|_{\beta} = q_0 \geq_{F \cap \beta, n} q_1 \geq_{F \cap \beta, n} q_2 \geq_{F \cap \beta, n} \cdots \geq_{F \cap \beta, n} q_{k_n}$
- $\bullet |Y_i| \le 2^{n \cdot (|F|-1)}.$
- $q_{i+1} \Vdash_{\mathbb{P}_{\beta}} \mathring{f}(\beta) \in Y_{i+1}$.

Then we have $q_{k_n} \geq_{F \cap \beta, n} p|_{\beta}$ and $q_{k_n} \Vdash_{\mathbb{P}_{\beta}} \mathring{f}(i) \in Y_{i+1}$ for each $i \in k_n$. Then by letting $Y = \cup \{Y_{i+1}; i \in 2^n\}$ and $q = \cup \{q_{k_n}, \langle \beta, \mathring{q} \rangle\}$, we obtain that $q \in \mathbb{P}_{\alpha}$, $q \geq_{F \cap \beta, n} p$ and $|Y| \leq 2^{n \cdot (|F| - 1)} \cdot 2^n = 2^{n \cdot |F|}$. For the limit stages. Since there is β such that $F \subset \beta \subset \alpha$. We can prove by mimik the case of $\beta \notin F$ in the successor stages.

Lemma V.4.5. Let $\langle X_n ; n \in \omega \rangle$ be a sequence of finite sets and assume that $p \Vdash_{\alpha} \forall n \in \omega \ f(n) \in X_n$. Then there is $q \leq p$ and a sequence $\langle Y_n ; n \in \omega \rangle$ in V such that $Y_n \subset X_n$ and $|Y_n| \leq 2^{(n^2)}$ for each $n \in \omega$ and $q \Vdash_{\alpha} \forall n \in \omega \ \mathring{f}(n) \in Y_n$.

Proof. We shall define a sequence of sets $\langle Y_n \in n \in \omega \rangle$ and an (F, n)-fusion sequence, $\langle (p_n, F_n) ; n \in \omega \rangle$ such that $|F_n| \leq n$ and $p_{n+1} \Vdash_{\mathbb{P}_q} \mathring{f}(n) \in Y_n$.

Let $p_0 = p$ and $F_0 = \emptyset$. Suppose we have p_n and F_n , we shall find a p_{n+1} and F_{n+1} . Since $p_n \Vdash \mathring{f}(n) \in X_n$ by Lemma V.4.4 there is $p_{n+1} \leq_{F_n,n} p_n$ and $Y_n \subset X_n$ such that $|Y_n| \leq 2^{n \cdot |F_n|}$ and $p_{n+1} \Vdash \mathring{f}(n) \in Y_n$. Fix functions h_1 and h_2 which assigns to $\Sigma\{j; j \in n\} + i$ to n and to j, respectively, for $i \in n$ and enumerate $\sup(p_m) = \{\xi_i^m : i \in \omega\}$. $Y_{n+1} = \bigcup\{F_n, \{\xi_{h_2(n)}^{h_1(n)}\}\}$. Then we obtain that $\bigcup\{F_n : n \in \omega\} = \bigcup\{\sup(p_n) : n \in \omega\}$. Thus we obtain the (F, n)-fusion sequence $\langle (p_n, F_n) : n \in \omega \rangle$.

Lemma III.4.7 asserts that there is a fusion $q \in \mathbb{P}_{\alpha}$. Then we have $q \Vdash_{\mathbb{P}_{\alpha}} \forall n \in \omega$ $\mathring{f}(n) \in Y_n$ and moreover we have $q \leq_{\mathbb{P}_{\alpha}} p$, $Y_n \subset X_n$ and $|Y_n| \leq 2^{(n^2)}$ for any $n \in \omega$.

Theorem V.4.6. Assume that CH. \Vdash_{ω_2} "Borel conjecture." $+ \mathfrak{c} = \aleph_2$.

Proof. We have seen that $\Vdash_{\omega_2} \mathfrak{c} = \aleph_2$ in Theorem IV.3.4.

At the beginning of the proof, we show that there is a $\beta \in \omega_2$ such that $X \in [G_\beta]$. To see this statement, enumerate $X = \{x_\alpha : \alpha \in \omega\}$ in $V[G_{\omega_2}]$. For arbitrary α and $n \in \omega$, since $\{p \in \mathbb{P}_{\omega_2} : \exists i \in 2 \ p \Vdash_{\omega_2} x_\alpha(n) = i\}$ is dense in \mathbb{P}_{ω_2} , let A_n^α be a maximal antichain in it dense set and $f_n^\alpha : A_n^\alpha \to 2$ a function in V which assgin to condition p the witness $i \in 2$. Then we obtain that $p \Vdash_{\omega_2} \mathring{x_\alpha}(n) = f_\alpha^n(p)$. Note that since \mathbb{P}_{ω_1} has an \aleph_2 -cc, there is a $\beta \in \omega_2$ such that

$$\bigcup_{\alpha \in \omega_1} \bigcup_{n \in \omega} \bigcup_{p \in A_n^{\alpha}} \operatorname{supt}(p) \in \beta.$$

Therefore, for a name $\mathring{Y} = \{\{\langle n, \check{f}^n_\alpha(p)\rangle; p \in A_n \land n \in \omega\}; \alpha \in \omega\}$, we obtain that $Y \in V[G_\beta]$ and $\Vdash_{\omega_2} \mathring{Y} = X$.

\mathbf{Index}

Symbols	inverse limit 8
<i>¥</i> 3	iterated forcing 8
⊥ 3	К
Α	< κ-support 8
amalgamation 32	$< \kappa$ -cc forcing
antichain 3	NA.
C	M (M, \mathbb{P}) -generic
cardinality hereditarily 18	(M, \mathbb{F}) -generic
ccc 9	maximal antichain
centered <u>11</u>	minimal (extension) 32
closed 1	,
club set	0
compatible 3	ω_1 -closed
complete embedding	open 3
countably closed	P
countably closed	P-name 4
D	Pre-decision property 28
degree 30	predense 3
Delta System Lemma 3	preseve cardinal 5
dense embedding 5	preseve cofinality 5
dense open 3	product 6
dense set	proper 18
diagonal intersection 2	proper game 19
direct limit 8	
dominating real 6	<u>R</u>
E	regressive 2
Extension Lemma (proper forcing) 21	<u>S</u>
F	Sacks property
$\overline{(F,n)}$ -dense	Sacks real 30 separative 5
(F, n)-fusion sequence	separative
forcing notion	σ -centered
fusion <u>11</u>	splitting node
fusion sequence 11	stationary set
Н	strong measure zero set 34
H Hechler real	support 8
Hodor Theorem	-
•	$\frac{T}{\theta\text{-cc}}$
incompatible 3	0-cc 5
INCOMPALINE 3	

U	_
unbounded	1
unbounded real	6
V	
(V ℙ)-generic filter	3

References

- [Abr10] Uri Abraham. Proper forcing. In *Handbook of set theory. Vols. 1, 2,* 3, pages 333–394. Springer, Dordrecht, 2010.
- [Bau83] James E. Baumgartner. Iterated forcing. In Surveys in set theory, volume 87 of London Math. Soc. Lecture Note Ser., pages 1–59. Cambridge Univ. Press, Cambridge, 1983.
- [Bau84] James E. Baumgartner. Applications of the proper forcing axiom. In *Handbook of set-theoretic topology*, pages 913–959. North-Holland, Amsterdam, 1984.
- [Bla10] Andreas Blass. Combinatorial cardinal characteristics of the continuum. In *Handbook of set theory. Vols. 1, 2, 3*, pages 395–489. Springer, Dordrecht, 2010.
- [Jec03] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, millennium edition, 2003.
- [JSW90] Haim Judah, Saharon Shelah, and W. H. Woodin. The Borel conjecture. *Ann. Pure Appl. Logic*, 50(3):255–269, 1990.
- [Kun11] Kenneth Kunen. Set theory, volume 34 of Studies in Logic (London). College Publications, London, 2011.
- [Pal13] Justin Thomas Palumbo. Hechler forcing and its relatives. ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)—University of California, Los Angeles.