Quantum-Enhanced Motif Detection in Calcium Imaging Data using Variational Quantum Classifiers

Team: Q-Connectome

Team Lead: Natalie Hawkins, nhawkins_seattle@yahoo.com Quantum Algorithm Lead: Vysakh S, svysakh1109@gmail.com

1. Neural Problem Framing

We analyze calcium imaging data from Bowen et al., a microscopy technique that records fluorescent intensity reflecting neuronal activity across large populations (~1000+ neurons). The dataset includes 20 sessions of 1-second auditory stimuli with interleaved silent periods (6–10 seconds).

Target Phenomena:

- **Motif-level co-activation patterns**: Spatial and temporal patterns of neural activity evoked during each 1s auditory stimulus.
- **Community structure**: Functionally related clusters of neurons with shared activation profiles, potentially tied to spatial proximity.

Goal: Identify and characterize recurring motifs and neuronal subnetworks that emerge during and across stimulus events. These insights help elucidate how distributed cortical circuits encode auditory input over repeated trials.

2. Quantum Modelling Strategy and Theoretical Basis

We implement a Variational Quantum Classifier (VQC) in a hybrid quantum-classical framework to model short temporal segments of calcium imaging data. Our model aims to distinguish and learn recurring patterns of neural activation across repeated stimulus sessions.

Model Architecture:

- **Input**: PCA-reduced vectors from 1s-long windows aligned with auditory stimuli (or silence periods for control).
- Quantum Embedding: Neural features mapped into quantum states via Ry angle encoding.
- Variational Circuit: Alternating Ry layers and CNOT/CZ entangling gates form a trainable circuit.
- Output: Pauli-Z expectation values, passed into a classical decision function for motif classification or clustering.
- Loss Function: Supervised (cross-entropy) or unsupervised (contrastive loss), depending on availability of motif labels.

Theoretical Basis:

VQCs exploit quantum entanglement and high-dimensional feature spaces to efficiently capture complex temporal-spatial dependencies. This enables detection of nonlinear co-activation patterns not easily accessible through classical methods.

3. Classical vs. Quantum Comparison Plan

We compare our VQC against:

- LSTM (Long Short-Term Memory) networks: Designed for sequential modelling of temporal dependencies.
- Autoencoder + k-means: For feature compression and unsupervised motif clustering.
- Support Vector Machine (SVM): Standard classification model for flattened time windows.

Evaluation Metrics:

- Adjusted Rand Index (ARI): Comparison to clustering based on known SC (structural cell-type) labels.
- Silhouette Score: Measures cluster quality.
- Classification Accuracy: Used where motif labels are known or synthetically introduced.
- **Motif Recurrence Consistency**: Evaluates temporal stability of discovered motifs across sessions.

4. Data Preprocessing and Quantum Encoding Pipeline

Preprocessing Steps:

- 1. **Normalization**: $\Delta F/F$ for each neuron's trace. Optional Gaussian smoothing may be used to enhance signal clarity (though it was not part of the original Bowen pipeline).
- 2. **Time Windowing**: 1-second windows aligned with each auditory stimulus event.
- 3. **Dimensionality Reduction**: PCA to extract 10–15 dominant components.
- 4. **Scaling**: Normalize PCA outputs into $[0, \pi]$ for Ry embedding.

Quantum Encoding:

- **Qubit Mapping**: One qubit per PCA feature (10–15 qubits per instance).
- **Encoding**: $Ry(\theta)$ rotations apply for each feature.
- Entanglement Strategy: Linearly connected or fully connected topology, depending on expected feature coupling.

5. Resource Requirements, Execution Plan, and Phase 3 Plan

Cloud Hardware and Software Platforms:

- Quantum Devices: IBM Heron r2, IonQ Aria-1.
- **Simulators**: Amazon Braket SV1/DM1.
- **Development Tools**: PennyLane with Lightning.qubit, Qiskit Runtime, and qBraid SDK.

Clarification on Results and Interpretation: The VQC does not directly indicate which specific neurons are active during a given 1-second window. Instead, it assigns each window to a "motif" class, a label representing the overall pattern of neural co-activation. When multiple such motif classes are discovered, we interpret them as corresponding to distinct clusters or types of activation. To understand the neuron-level contributors to each motif, one can review the PCA loadings or aggregate the raw

calcium activity traces for windows assigned to the same motif. This enables a follow-up spatial analysis, using known x, y, z coordinates, to examine whether neurons participating in each motif are anatomically close or spatially dispersed.

Resource Estimates:

Feature	Estimate
Qubits Needed	10–15
Circuit Depth	15–25 layers
Runtime (Simulation)	< 10 seconds
Runtime (Cloud)	~1–2 minutes
Optimization Iterations	50–100

Phase 3 Plan:

- Apply the VQC to each stimulus-aligned window and track motif evolution across 20 sessions.
- Test robustness through synthetic noise injection.
- Extend to additional cortical layers or validate generalization across animals.

This framework offers a viable quantum-enhanced strategy for uncovering latent neural motifs and comparing their recurrence and structure to classical models.

References

- Bowen Z., Shilling-Scrivo K., Losert W., Kanold P. (2024). Fractured columnar small-world functional network organization in volumes of L2/3 of mouse auditory cortex.
- Schuld, M., Killoran, N. (2019). Quantum Machine Learning. Nature Physics.
- Benedetti, M. et al. (2019). Parameterized quantum circuits as machine learning models. *Quantum Science and Technology*.