Instituto Tecnológico de Cancún

Fundamentos de Telecomunicaciones

IPv4, Subneteo y Calculo de Redes.

Prof. Ismael Jiménez Sánchez

Alumno(a). Laury del Rosario Mex Martin

Ciclo 2020-B

IPv4

Una dirección IP está compuesta de 32 bits y estos se dividen en 8 octetos

Una dirección IP se conformada de porción de red y de porción de host

También se conforma de una máscara de subred que a continuación se muestran las validas

Máscaras de subred válidas

Valor de subred	Valor de bit							
	128	64	32	16	8	4	2	1
255	1	1	1	1	1	1	1	1
254	1	1	1	1	1	1	1	0
252	1	1	1	1	1	1	0	0
248	1	1	1	1	1	0	0	0
240	1	1	1	1	0	0	0	0
224	1	1	1	0	0	0	0	0
192	1	1	0	0	0	0	0	0
128	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Direcciones de red, host y broadcast

			Dirección de red	10.1.1.0/26	10.1.1.00000000	
Decimal punteada		Bits importantes mostrados en sistema binario	Primera dirección de host	10.1.1.1	10.1.1.00000001	
Dirección de red	10 1 1 0/21		Última dirección de host	10.1.1.62	10.1.1.00111110	
Primera dirección de host	10.1.1.0/24	10.1.1.00000000	Dirección de broadcast	10.1.1.63	10.1.1.00111111	
Primera dirección de nosc	10.1.1.1	10.1.1.00000001	Cantidad de host: 2^6 – 2 = 62 host			
Última dirección de host	10.1.1.254	10.1.1.11111110	Dirección de red	10.1.1.0/27	10.1.1.00000000	
Dirección de broadcast	10.1.1.255	10.1.1.11111111	Primera dirección de host	10.1.1.1	10.1.1.00000001	
Cantidad de host: 2 ⁸ – 2 = 254 host			Última dirección de host	10.1.1.30	10.1.1.00011110	
			Dirección de broadcast	10.1.1.31	10.1.1.00011111	
Dirección de red	10.1.1.0/25	10.1.1.00000000	Cantidad de host: 2^5 – 2 = 30 host			
Primera dirección de host	10.1.1.1	10.1.1.00000001	Dirección de red	10.1.1.0/28	10.1.1.00000000	
Última dirección de host	10.1.1.126	10.1.1.01111110	Primera dirección de host	10.1.1.1	10.1.1.00000001	
Dirección de broadcast	10 1 1 127	10.1.1.01111111	Última dirección de host	10.1.1.14	10.1.1.00001110	
Direction de bloudeast	Dirección de broadcast 10.1.1.127 10		Dirección de broadcast	10.1.1.15	10.1.1.00001111	
Cantidad de host: 2^7 – 2 = 126 host		Cantidad de host: 2^4 – 2 = 14 host				

Una dirección IP dada y su subred

Se usa la operación AND determinar a qué subred pertenece la dirección, por ejemplo: 192.168.10.10/24

Transmisión de unidifusión

La comunicación unicast se usa para la comunicación normal de host a host, tanto en redes cliente/servidor como en redes punto a punto.

Transmisión de broadcast

Broadcast limitado

Se usa para la comunicación que está limitada a los hosts en la red local. Estos paquetes siempre utilizan la dirección IPv4 de destino 255.255.255.255.

Broadcast dirigido

Se envía a todos los hosts de una red específica. Es útil para enviar un broadcast a todos los hosts de una red local.

Transmisión de multicast

Algunos ejemplos de transmisión de multicast son:

- Transmisiones de video y de audio
- Intercambio de información de enrutamiento por medio de protocolos de enrutamiento
- Distribución de software
- Juegos remotos

El rango de direcciones va de 224.0.0.0 a 239.255.255.255.

Direcciones privadas

• 10.0.0.0 a 10.255.255.255 (10.0.0.0/8)

- 172.16.0.0 a 172.31.255.255 (172.16.0.0/12)
- 192.168.0.0 a 192.168.255.255 (192.168.0.0/16)

Las direcciones privadas se definen en RFC 1918.

Direcciones IPv4 de uso especial

- Direcciones de red y de broadcast
- Loopback: los hosts utilizan para dirigir el tráfico hacia ellos mismos. Se usa la dirección única 127.0.0.1, se reservan las direcciones 127.0.0.0 a 127.255.255.255.
- Direcciones link-local: El bloque de direcciones va de 169.254.0.0 a 169.254.255.255 (169.254.0.0/16).
- Direcciones TEST-NET: va de 192.0.2.0 a 192.0.2.255 (192.0.2.0/24); se reserva para fines de enseñanza y aprendizaje; pueden usarse en ejemplos de documentación y redes; las direcciones dentro de este bloque no deben aparecer en Internet.
- Direcciones experimentales: va de 240.0.0.0 a 255.255.255.254; estas direcciones solo se pueden utilizar para fines de investigación o experimentación.

Direccionamiento con clase antigua

Clase de dirección Rango del 1er octeto (decimal)		Bits del primer octeto (los bits verdes no cambian)	Red (%) y Host (H) partes de la dirección	Máscara de subred predeterminada (decimal y binaria)	
A	1-127**	0000000-01111111	N.H.H.H	255.0.0.0	
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	
С	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	
D	224-239	11100000-11101111	No disponible (multicast)		
E	240-255	11110000-11111111	No disponible (experimental)		

División básica en subredes

Cantidad de subredes:

Usa esta fórmula para calcular la cantidad de subredes:

2ⁿ (donde "n" representa la cantidad de bitsque se toman prestados)

Como se muestra en la imagen, para el ejemplo 192.168.1.0/25, el cálculo es el siguiente:

 $2^1 = 2$ subredes

Cálculo de host:

Utiliza la siguiente fórmula para calcular la cantidad de hosts por red:

2ⁿ (donde "n" representa la cantidad de bits restantes en el campo de host)

Como se muestra en la imagen, para el ejemplo 192.168.1.0/25, el cálculo es el siguiente:

 $2^7 = 128$

Creación de 4 subredes

Máscaras de subred de longitud variable (VLSM)

Con VLSM, la red primero se divide en subredes y, a continuación, las subredes se vuelven a dividir en subredes. Este proceso se puede repetir varias veces para crear subredes de diversos tamaños.

Red 192.168.20.0/24

Subredes VLSM: red 192.168.20.0/24

Cálculo de una ruta sumarizada

- Proceso para crear la ruta sumarizada 172.16.0.0/22, como se muestra en la imagen:
- 1. Escribe en binario las redes que deseas resumir.
- 2. Para encontrar la máscara de subred para la sumarización, comienza con el primer bit que se encuentra a la izquierda.
- 3. Continúa hacia la derecha y busca todos los bits que coincidan consecutivamente.
- 4. Cuando encuentres una columna de bits que no coincida, detente. Encontraste el límite de sumarización.

- 5. Ahora, cuenta la cantidad de bits coincidentes comenzando por la izquierda, que en el ejemplo es 22. Este número es la máscara de subred para la ruta sumarizada, /22 ó 255.255.252.0.
- 6. Para encontrar la dirección de red para la sumarización, copia los 22 bits que coinciden y agrega 0 a los demás bits hasta el final para obtener 32 bits.