Results for fine-tuned model against base model

```
WER for generated_text vs text: 0.12 WER for finetuned_text vs text: 0.09
```

Observations and Proposed Steps for Accuracy

- 1. The WER did decrease after fine tuning was conducted on the wav2vec2-large-960h model, with the Common Voice dataset. A 3% decrease was observed.
- 2. This was to be expected as (a) the cv-valid-dev mp3 dataset was a subset of the Common Voice dataset, and (b) both base and fine-tuning models were trained mainly on US/UK(EN) data. Minor artefacts observed were of plain errors (Fig. 1)

Ground Truth

be careful with your prognostications said the stranger

the boy had met the alconist

Fine Tuned model transcript

be careful whit your prognostications said the stranger

the boy had met the alkenists

Figure 1. Examples of WER errors

- 3. With the relatively low WER% achieved by both base and fine tuned model, there could be steps to be taken to perhaps reduce or keep the WER% below 10%:
 - Utilise other datasets to augment the vocabulary model, as well as using the spoken
 portion of the datasets to further fine-tune the ASR model. These may include:
 GigaSpeech, IMDA National Speech Corpus (Part 1, 2; non-codeswitched), LJSpeech
 - b. Adjust the hyperparameters: those that could potentially impact WER include
 - i. Mixed precision (affects precision for memory allocation)
 - ii. Optimiser method (Adam was used, but AdamW?)
 - iii. Warmup steps
 - c. Use better memory: this indirectly impacts how large of a batch size can be used to feed into the fine tuning process, and reduces the need for accumulated gradient calculations.