Cross-linguistic Analysis of the Mermaid Constructions in LFG

Chihiro Taguchi

University of Notre Dame https://ctaguchi.github.io

October 29, 2022 33rd South of England LFG Meeting

Outline

Introduction

Descriptive Analysis

LFG Analysis

Cross-linguistic Analysis

Conclusion

In this talk...

Objective

To analyze the Mermaid Constructions across languages with LFG

Background (from LFG 2022 at Groningen)

- "Mermaid Constructions in LFG"
- Takeaways: Mermaid Constructions are control and raising with a nominal predicate
- Evidence was mainly data from Japanese

What's new in this talk?

• Provide a cross-linguistic account

Mermaid Constructions

Coined by Tsunoda (2011¹, 2012², 2020³)

Structure (by Tsunoda 2020)

 $[N_{SUBJ} ... V]_{Clause} + N_{MC} + (Copula)^4$

- Tsunoda's analysis: V and N_{MC} compose a compound predicate
- thus MC is monoclausal: N_{SUBJ} ... [V + N + (Copula)]_{CompPred}

Examples

(1) Japanese (< Japonic; SOV)

```
Hanako=ga [Igirisu=ni ik-u] yotei=da
Hanako=NOM UK=DAT go-NPST.ADN plan(N)=COP
```

'Hanako is going to go to the UK. (*lit.* Hanako is the plan that goes to the UK)'

ADN: adnominal, COP: copula, NPST: non-past

¹ Tsunoda Tasaku. "Ningyo koubun: nihongogaku kara ippan gengogaku he no kouken". In: NINJAL Research Papers 1 (2011), pp. 53–75.

²Tasaku Tsunoda. "Ningyo koubun to meisi no bunpouka". In: NINJAL Project Review 7 (2012), pp. 3–11.

³Tasaku Tsunoda. Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020.

⁴The actual order is subject to language-specific word order.

Examples (contd.)

- (2) Mitsukaido (< Japanese < Japonic; SOV)⁵

 oraNte [gaNzizu=dage udoN ku-u] eNŋi=da

 my:family.Nom New_Year's_Day=only udon eat-NPST.ADN origin=COP.NPST

 'My family customarily eat udon only on New Year's Day.'
- (3) Irabu (< Miyako < Ryukyuan < Japonic; SOV)⁶

 kai=ga=du [sac=n idi-r] kutu

 3SG=NOM=FOC first=DAT go_out-NPST.ADN thing

 'S(he) should go first'
- (4) Korean (< Koreanic; SOV)⁷

 chinkwu=ka [ilpon=ey ka-l] yeyceng=i-ta
 friend=NOM Japan=DAT go-PROS.ADN plan=COP-DECL
 '(My) friend is going to Japan'

DECL: declarative, NMLZ: nominalizer, PROS: prospective

⁵ Kan Sasaki. "Mitsukaido dialect of Japanese". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda. Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 125–166.

⁶ Michinori Shimoji. "Irabu Ryukyuan". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda. Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 781–816.

⁷ Joungmin Kim. "Korean". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda.

Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 781–816.

⟨ □ ⟩ ⟨ □ ⟩ ⟨ ⟨ □ ⟩ ⟨ ⟨ □ ⟩ ⟨ ⟨ □ ⟩ ⟨ ⟨ □ ⟩ ⟨ □ ⟩ ⟨ ⟨ □ ⟩ ⟨ □ ⟩ ⟨ ⟨ □ ⟩

Examples (contd.)

- (5) Amdo Tibetan (< Tibeto-Burman < Sino-Tibetan; SOV)⁸

 arja=kə [nor ptsoŋ-ju] nteharzə re
 father=ERG yak sell.IPFV-NMLZ.GEN plan COP.B

 '(My) father plans to sell yaks'
- (6) nDrapa (Zhaba) (< Qiangic < Sino-Tibetan; SOV)⁹

 noro1 [kaoton1 lo=ci2 fidi=ti3] nkheil re

 3sg high_school learn=wish think=IPFV appearance COP

 'He seems to want to go to high school'

Introduction

в — pattern B (see Ebihara 2020), EMP — emphasis, KO — $k \partial / g \partial$ (see Kato 2020)

⁸ Shiho Ebihara. "Amdo Tibetan". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda. Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 419–464.

⁹Satoko Shirai. "nDrapa". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda. Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 465–509.

¹⁰ Atsuhiko Kato. "Burmese". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda. Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 781–816.

Examples (contd.)

Kurukh (< Northern Dravidian < Dravidian; SOV)¹¹ (8) aːs-hiː [tamba-s-in ilc-kaː] caddeː rahc-aː 3SG.M-GEN own.father-M-ACC fear.PS-PST.VADJ necessity COP.PS-PST.3SG.NM 'It was because he was afraid of his father'

Sidaama (< Cushitic < Afro-Asiatic; SOV)¹² (9) íse [faraššó guluf-f-annó] gara-a=ti 3SG.F.NOM horse.ACCOBL ride-3SG.F-IPFV.3 manner-LV=NPC.PRED.MOD 'She seems to ride a horse (habitually)'

(10) Bengali (< Indo-Iranian < Indo-European; SOV)¹³ [tokio=te jawar] kɔtha 3SG.GEN Tokyo=LOC go.NMLZ.GEN word

'It is planned that he s/he is going to Tokyo'

predicative, PS - past stem, VADJ - verbal adjective

Introduction 00000000000

ACCOBL — Accusative-Oblique, LV — lengthened vowel, MOD — modified, NM — non-masculine, NPC — nominalized predicate clitic, PRED —

¹³ Keisuke Huziwara, "A contrastive study of external adnominal clauses in Japanese and Bangla". In: Bangabidya: International Journal of Bengal **4亩 ▶ 4周 ▶ 4m ▶ 4m ▶ ̄m り**Q@ Studies 10 (2018), pp. 358-367.

¹¹ Masato Kobayashi and Tasaku Tsunoda. "Kurux". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda. Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 781-816.

¹² Kazuhiro Kawachi. "Sidaama". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda, Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 781-816.

Examples: different case-marking in Tagalog

- (11) Tagalog < Malayo-Polynesian < Austronesian; VSO)¹⁴

 plano ni=Noy [na b<um>isita sa=Davao bukas]

 plan GEN=Noy LK visit<AF:INF> OBL=Davao tomorrow

 'Noy plans to go to Davao tomorrow'
- (12) Tagalog < Malayo-Polynesian < Austronesian; VSO)

 plano[=ng b<um>isita ni=Noy sa=Davao bukas]

 plan=LK visit<AF:INF> GEN=Noy OBL=Davao tomorrow

 'Noy plans to go to Davao tomorrow'
- (13) Tagalog < Malayo-Polynesian < Austronesian; VSO)

 mukha[=ng bi-bisita si=Noy sa=Davao bukas]
 face=LK AF:CONT-visit NOM=Noy OBL=Davao tomorrow

 'It seems that Noy will go to Davao tomorrow'

Genitive vs. Nominative Position of *ni=Noy*

CONT - contemplative (prospective) aspect

Examples: Different case-marking in Tatar

```
(14) Tatar (< Kipchak < Turkic; SOV)<sup>15</sup>

siŋa [joqla-rya] röxsät

2sg.DAT sleep-INF permission

'You are allowed to sleep.'
```

```
(15) Tatar (< Kipchak < Turkic; SOV)<sup>16</sup>

Marat-niŋ [joqla-rya] isäb-e

Marat-GEN sleep-INF thought-POSS.3

'Marat is going to sleep.'
```

Dative vs. Genitive (+ possessive agreement)

¹⁶ Chihiro Taguchi. "Mermaid Construction in Tatar". In: Proceedings of the 162nd Conference of the Linguistic Society of Japan. 2024. 😑 🕨

¹⁵ Chihiro Taguchi. "Mermaid Construction in Tatar". In: Proceedings of the 162nd Conference of the Linguistic Society of Japan. 2021.

Examples: Copy raising in Egyptian Arabic

(16) Egyptian Arabic (< Arabic < Semitic < Afroasiatic; SVO)¹⁷

**Sakl el-welād [kānu biyitderbo]

shape DET-boy.PL be.PV.3PL beat.BI.IPFV.PASS.3PL

'The boys seem to have been beaten (*lit.* the boys' shape, they were beaten)'

(17) Egyptian Arabic (< Arabic < Semitic < Afroasiatic; SVO)

**Sakl-uhum [waħašū-k]

**Shape-POSS.3PL lack.PV.3PL-2SG.M

'It seems like you missed them! (lit. their shape, you missed them)'

The syntactic subject of the embedded finite clause is copied to the matrix clause

Examples against the compound predicate analysis

Tsunoda (2020) says adjacent V and N become a compound predicate, but...

```
(18) Russian (< Slavic < Indo-European; SVO)

pora nam [uxodit']

time 1PL.DAT PF:leave:INF

'It is time for us to leave'
```

- (19) Welsh (< Celtic < Indo-European; VSO)

 Rhaid i fi [godi'n gynnar]

 rhaid i fi [godi yn gynnar]

 necessity to 1sG wake_up.INF in early

 'I need to wake up early'
 - N_{MC} and V are not adjacent to each other in these languages
 - How can they form a compound predicate? (they don't)

Typology of Mermaid Constructions

Case-marking of subject/agent

Case	Languages
NOM/ERG	Japanese, Mitsukaido, Irabu, Korean, Amdo-Tibetan, nDrapa, Burmese, Sidaama, Tagalog
GEN/POSS	Kurukh, Bengali, Tagalog, Tatar, Egyptian Arabic
DAT/to	Tatar, Russian, Welsh

Form of the embedded predicate

Function	Form	Languages
Adnominal	ADN NMLZ.GEN VADJ	Japanese, Mitsukaido, Irabu, Korean, nDrapa, Burmese, Sidaama Amdo-Tibetan, Bengali Kurukh
Infinitive		Tagalog, Tatar, Russian, Welsh
Finite		Tagalog, Egyptian Arabic

... Quite diverse

Proposal

Proposal (from LFG22)

- MC is anaphoric/functional control with a nominal predicate
- MC does not involve a compound predicate
- Therefore, MC is biclausal
- MC can be analyzed in LFG just like other anaphoric/functional control

Proposal (new)

- Typological diversity of MCs can be captured in f-structure
- different case-marking: subcategorization of predicates
- different verb forms:

Subject is in the matrix clause: Evidence 1

The following slides demonstrate that an MC subject is in the matrix clause.

- A comparison with the similar non-MC (21)
- In (21), Hanako(=ga) is inside the modifier clause, so an additional subject argument can be added in the matrix clause (otherwise *pro*).
- (20), in contrast, doesn't allow it
- the matrix subject is already occupied
- (20) Japanese (MC)

(*kore=ga) Hanako=ga sakana=o yak-u votei=dathis=NOM Hanako=NOM fish=OBJ grill-NPST.ADN plan(N)=COP 'Hanako is going to grill the fish.'

(21) Japanese (non-MC)

(kore=ga) [Hanako=ga sakana=o yak-u] nioi=dathis=NOM Hanako=NOM fish=ACC grill-PRS.ADN smell(N)=COP '(This is) the smell that [comes from where] Hanako grills the fish.'

Subject is in the matrix clause: Evidence 2

- NOM-GEN alternation of a subject in relative clauses (in Japanese)
 - RC (23): NOM-GEN alternation √
 - MC (22): NOM-GEN alternation ×
- In MC, the subject is in the matrix clause
- (22) Japanese (MC)

```
Hanako = \{ga/*no\} sakana = o yak - u yotei = da Hanako = NOM/*GEN fish = ACC grill - NPST. ADN plan(N) = COP 'Hanako is going to grill the fish.'
```

(23) Japanese (non-MC)

```
[Hanako={ga/no} sakana=o yak-u] nioi=da

Hanako=NOM/GEN fish=ACC grill-NPST.ADN smell(N)=COP

'(It is) the smell that [comes from where] Hanako grills the fish.'
```

Subject is in the matrix clause: Evidence 3

- Honorifics¹⁸ in Japanese: the referent is its subject (Matsumoto 1996)¹⁹
 - In (25) Hanako can agree with yotei: matrix subject
 - In (26) Hanako cannot agree with nioi: embedded subject
- MC's subject is in the matrix clause (agreeing with Tsunoda (2020))
- (24) Japanese (Hanako is honorified by the speaker) Hanako=sama=ga sakana=o oyakininar-u Hanako=HON=NOM fish=ACC grill:HON-NPST.DECL 'Hanako grills the fish.'
- (25) Japanese (Hanako is honorified by the speaker) Hanako=sama=ga sakana=o vak-u go-votei=da Hanako=HON=NOM grill-NPST.ADN HON-plan(N)=COP fish=ACC 'Hanako is going to grill the fish.'
- (26) Japanese (Hanako is honorified by the speaker)
 - Hanako=sama=ga sakana=o yak-u o-nioi=daHanako=HON=NOM fish=ACC grill-NPST.ADN HON-plan(N)=COP

'(It is) the smell that [comes from where] Hanako grills the fish.'

¹⁹Yo Matsumoto. "Complex Predicates in Japanese: A Syntactic and Semantic Study of the Notion 'Word'". In: Studies in Japanese Linguistics series 《日》《周》《日》《日》、唐。

¹⁸I thank Chen Xie (Oxford) for suggesting this diagnostic.

Anaphoric/functional control analysis of MC

- **Observation**: Subject of MC is in the matrix clause
- Point: Some MCs are anaphoric control like (27), others are functional control like (28)
- **Intuition**: MCs function as modals, evidentials, aspects, and attitudes, just like verbs and adjectives of anaphoric/functional control
- In this section, syntactic diagnostics for anaphoric/functional control are applied to MCs
 - Passivization
 - Idiom chunks
- (27) Japanese (anaphoric control)

 $Hanako=ga_i$ [PRO_i Taroo=o tatak-u] ki=daHanako=NOM PRO Taro=ACC hit-NPST.ADN feeling(N)=COP

'Hanako intends to hit Taro.'

(28) Japanese (functional control)

 $Hanako=ga_i$ [t_i Taroo=o tatak-u] yotei=da Hanako=NOM Taro=ACC hit-NPST.ADN plan(N)=COP

'Hanako is going to hit Taro.'

Syntactic tests: Passivization

- Functional control (29), (30): passivization does not change thematic relation
- Anaphoric control (31), (32): passivization does change thematic relation
- (29) a. Tom seems to hit Jerry. seem(hit(Tom, Jerry))
 b. Jerry seems to be hit by Tom. seem(hit(Tom, Jerry))
- (30) a. Japanese (functional control) $Hanako=ga_i$ [t_i Taroo=o tatak-u] yotei=da Hanako=NOM Taro=ACC hit-NPST.ADN plan(N)=COP'Hanako is going to hit Taro: planned(hit(h, t))'

 - yotei shares a characteristic of a functional control predicate

Syntactic tests: Passivization

- Functional control (29), (30): passivization does not change thematic relation
- Anaphoric control (31), (32): passivization does change thematic relation
- (32) a. Japanese (anaphoric control) $Hanako = ga_i$ [PRO_i taroo = o tatak - u] ki = da Hanako = NOM PRO Taro = ACC hit - NPST. ADN feeling(N) = COP'Hanako intends to hit Taro: intend(h, hit(h, t))'
 - b. Japanese (anaphoric control, passivized) $Taroo = ga_i \quad [PRO_i \quad Hanako = ni \quad tatak are ru] \quad ki = da$ $Taro = NOM \quad PRO \quad Hanako = DAT \quad hit PASS NPST. ADN \quad feeling(N) = COP$ 'Taro intends to be hit by Hanako: intend(t, hit(h, t))'
 - ki shares a characteristic of an anaphoric control predicate

Syntactic tests: Idiom chunks

- Functional control (33 b), (34 b) keeps idiomatic meaning
- Anaphoric control only allows for literal meaning
- (33) a. The cat is out of the bag. (i.e., the secret is revealed)
 - b. The cat seems to be out of the bag.
- (34) a. Japanese

```
asi=ga boo=ni nar-u
leg=NOM stick=DAT become-NPST

'The legs become sticks (i.e., exhausted)'
```

b. Japanese

```
asi=ga boo=ni nar-u yotei=da
leg=NOM stick=DAT become-NPST.ADN plan(N)=COP
'The legs are going to be sticks (i.e., exhausted)'
```

• yotei shares a characteristic of a functional control predicate

Syntactic tests: Idiom chunks

- Functional control keeps idiomatic meaning
- Anaphoric control (35 b), (36 b) only allows for literal meaning
- (35) a. The cat is out of the bag.
 - b. # The cat tries to be out of the bag.
- (36) a. Japanese

```
asi=ga boo=ni nar-u
leg=NOM stick=DAT become-NPST
```

'The legs become sticks (i.e., exhausted)'

b. Japanese

```
# asi=ga boo=ni nar-u ki=da
leg=NOM stick=DAT become-NPST.ADN plan(N)=COP
```

'The legs intend to become sticks'

• ki shares a characteristic of an anaphoric control predicate

(Hopefully theory-neutral) Interim summary

Tsunoda (2020)'s Analysis of MC

- V and N_{MC} compose a compound predicate
- MC is monoclausal

We have seen:

- MC can be treated as anaphoric/functional control
 - but with a noun predicate
- It follows that MC is biclausal

Next:

• Analyze MC in LFG

Motivation for an LFG analysis

- PRED readily allows for a nominal predicate
- Therefore, lexical entries of MC nouns (N_{MC}) have a similar form to anaphoric/functional control
 - Anaphoric control MC:
 - (\uparrow PRED) = 'N_{MC} ((SUBJIOBL_{θ}), COMP)²⁰
 - (↑ COMP SUBJ PRED) = 'PRO'
 - Functional control MC:
 - (↑ PRED) = 'N_{MC}⟨XCOMP⟩SUBJ
 - $(\uparrow SUBJ) = (\uparrow XCOMP SUBJ)$
- COMP/XCOMP can readily handle the cross-linguistic variation of non-finite forms
 - Infinitive: Tagalog, Tatar, Russian, Welsh
 - Adnominal/verbal adjective: Japanese, Burmese, Kurukh, Sidaama, etc.
 - · Verbal noun: Amdo Tibetan, Bengali
- Severing syntax, function, and semantics (c/f/s-structure)
 - Disentangling MC's mystery: 'Syntactically nominal, functionally predicative, and semantically abstract (modal, etc.)?'

c-structure of functional control with N_{MC}

(37) Japanese (< Japonic)

Hanako=ga Igirisu=ni ik-u yotei=da

Hanako=NOM UK=DAT go-NPST.ADN plan(N)=COP

'Hanako is going to go to the UK.'

(38)S VΡ NP Hanako=ga $N_{MC}P$ =daΙĖ N_{MC} yotei NP Igirisu=ni ik-u

c-structure of anaphoric control with N_{MC}

(39) Japanese (< Japonic)

**Hanako=ga Igirisu=ni ik-u ki=da

**Hanako=NOM UK=DAT go-NPST.ADN feeling(N)=COP

'Hanako intends to go to the UK.'

(40)S NP VP Hanako=ga $N_{MC}P$ =daIΡ N_{MC} kiNP Igirisu=ni ik-u

• c-structural form is the same in raising and equi (language-specific)

f-structure of functional control with N_{MC}

f-structure of anaphoric control with N_{MC}

• Raising and equi MCs have a different f-structure (lexical entries)

- The meaning of MCs can also be constructed in the same manner as functional/anaphoric control
- Following the semantic representation of raising and equi verbs by Dalrymple et al. (2019)²¹:
 - David seemed to yawn: *seem(yawn(David))*
 - David tried to yawn: *try(David, yawn(David))*
- We expect the same representation for MCs too:
 - Hanako=ga Nagoya=ni ik-u yotei=da: planned(go(Hanako, UK))
 - Hanako=ga Nagoya=ni ik-u ki=da: feeling(Hanako, go(Hanako, UK))
- Meaning constructors for N_{MC} :
 - raising: $\lambda P.yotei(P)$: $(\uparrow XCOMP)_{\sigma} \multimap \uparrow_{\sigma}$
 - equi: $\lambda P \lambda x.ki(x, P(x))$:

```
((\uparrow COMP SUBJ)_{\sigma} \multimap (\uparrow COMP PRED)_{\sigma}) \multimap ((\uparrow SUBJ)_{\sigma} \multimap \uparrow_{\sigma})
```

Predicting scope ambiguity of functional control

- ullet Functional control analysis can correctly predict the scope of N_{MC}
- (45) Japanese

 dareka=ga ik-u yotei=da

 someone=NOM go-NPST.ADN plan(N)=COP

'Someone is going to go. (wide: $\exists > \text{plan}$, or narrow: $\text{plan} > \exists$)'

[yotei] $\lambda P.planned(P)$: $g_{\sigma} \multimap p_{\sigma}$ (47) [dareka] $\lambda S.exist(x, person(x), S(x))$: $\forall H.(s_{\sigma} \multimap H) \multimap H$ [iku] $\lambda x. go(x)$: $s_{\sigma} \multimap g_{\sigma}$

(48) Narrow: $\begin{bmatrix} \mathbf{dareka-iku} \end{bmatrix} \qquad exist(x, person(x), go(x)) \qquad : \qquad g_{\sigma} \\ \mathbf{dareka-iku-yotei} \end{bmatrix} \qquad planned(exist(x, person(x), go(x))) \qquad : \qquad p_{\sigma}$

Predicting the scope of anaphoric control

Anaphoric control analysis correctly restricts the scope

```
(50) Japanese dareka=ga ik-u ki=da someone=NOM go-NPST.ADN feeling(N)=COP 'Someone intends to go. (wide: \exists > intend; *narrow: intend > \exists)'
```

```
(51) \begin{bmatrix} PRED & 'intend \langle SUBJ, COMP \rangle' \\ SUBJ & PRED & 'someone' \\ CASE & NOM \end{bmatrix} \\ COMP & PRED & 'go \langle SUBJ \rangle' \\ SUBJ & PRO' \end{bmatrix}
```

```
[ki] \lambda P \lambda x.intend(x, P) : (s_{\sigma} \multimap g_{\sigma}) \multimap (s_{\sigma} \multimap i_{\sigma}) (52) [dareka] \lambda S.exist(x, person(x), S(x)) : \forall H.(s_{\sigma} \multimap H) \multimap H [iku] \lambda x. go(x) : s_{\sigma} \multimap g_{\sigma}
```

Narrow scope is underivable

Interim Summary

- MCs can be analyzed as raising/equi in LFG.
- Parallelism with conventional verbal/adjectival raising/equi in terms of:
 - c-structure
 - f-structure
 - semantics (Glue)
- These structures disentangle the core mystery of MC:
 - 'Syntactically nominal, functionally predicative, and semantically abstract'

	Verbal	Adjectival	Nominal
Control Raising	English <i>try</i> English <i>seem</i>	English <i>eager</i> English <i>likely</i>	Japanese <i>yotei</i> Japanese <i>ki</i>
			↑ MC

Cross-linguistic analysis

We have seen mainly from Japanese data:

- Mermaid Constructions as raising/equi
- Anaphoric control MC:
 - (\uparrow PRED) = 'N_{MC} ((SUBJIOBL_{θ}), COMP)²⁴
 - (\(\gamma\) COMP SUBJ PRED) = 'PRO'
- Functional control MC:
 - (\uparrow PRED) = 'N_{MC}(XCOMP)SUBJ
 - $(\uparrow SUBJ) = (\uparrow XCOMP SUBJ)$

How general are these formulations? Are they valid in other languages? Arguments from here are ongoing work with sloppy points; comments are much appreciated.

Dative case-marking in Tatar

Hypothesis 1: Control by OBL_{θ}

- $r\ddot{o}xs\ddot{a}t$ subcategorizes for $\langle OBL_{\theta}, COMP \rangle$
- OBJ $_{\theta}$ controls (\uparrow COMP SUBJ)
- (54) Tatar (< Kipchak < Turkic; SOV)²⁵

 Marat-qa [joqla-rya] röxsät

 Marat-DAT sleep-INF permission

 'Marat is allowed to sleep.'

```
(55) \begin{bmatrix} PRED & 'permission \langle OBL_{\theta}, COMP \rangle' \\ OBL_{\theta} & \begin{bmatrix} PRED & 'Marat_{i}' \\ CASE & DAT \end{bmatrix} \end{bmatrix}
\begin{bmatrix} COMP & \begin{bmatrix} PRED & 'sleep \langle SUBJ \rangle' \\ SUBJ & [PRED & 'PRO_{i}'] \end{bmatrix} \end{bmatrix}
```

²⁵ Chihiro Taguchi. "Mermaid Construction in Tatar". In: Proceedings of the 162nd Conference of the Linguistic Society of Japan. 2021. 📑 >

Dative case-marking in Russian

Seemingly working similarly

```
(56) Russian (< Slavic < Indo-European; SVO)

pora nam [uxodit']

time 1PL.DAT PF:leave:INF

'It is time for us to leave'
```

```
\begin{bmatrix} \mathsf{PRED} & '\mathit{time} \langle \mathsf{OBL}_{\theta}, \mathsf{COMP} \rangle \\ \mathsf{OBL}_{\theta} & \begin{bmatrix} \mathsf{PRED} & '\mathsf{PRO}_{i}' \\ \mathsf{PERS} & 1 \\ \mathsf{NUM} & \mathsf{PL} \\ \mathsf{CASE} & \mathsf{DAT} \end{bmatrix} \\ \mathsf{COMP} & \begin{bmatrix} \mathsf{PRED} & '\mathsf{LEAVE} \langle \mathsf{SUBJ} \rangle' \\ \mathsf{SUBJ} & \begin{bmatrix} \mathsf{PRED} & '\mathsf{PRO}_{i}' \end{bmatrix} \end{bmatrix}
```

Prepositional phrase as OBL_{θ} in Welsh

In Welsh, the oblique argument is expressed by a prepositional phrase i

```
(57) Welsh (< Celtic < Indo-European; VSO)

Rhaid i fi [godi'n gynnar]

rhaid i fi [godi yn gynnar]

necessity to 1sG wake_up.INF in early
```

'I need to wake up early'

```
\begin{bmatrix} \mathsf{PRED} & `necessity \langle \mathsf{OBL}_{\theta}, \mathsf{COMP} \rangle ` \\ & & \begin{bmatrix} \mathsf{PRED} & `to \langle \mathsf{OBJ} \rangle ` \\ & & \\ \mathsf{OBJ} & \begin{bmatrix} \mathsf{PRED} & `\mathsf{PRO}_{i} ' \\ \mathsf{PERS} & 1 \\ \mathsf{NUM} & \mathsf{SG} \end{bmatrix} \end{bmatrix} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &
```

Genitive case-marking in Tatar

Hypothesis 2: Control by genitive SUBJ

- *isäp* subcategorizes for (SUBJ, COMP)
- The possessive suffix on the MC noun is encoded as the value of PERS

```
(58) Tatar (< Kipchak < Turkic; SOV)<sup>26</sup>

Marat-nin [joqla-rya] isäb-e

Marat-GEN sleep-INF thought-POSS.3

'Marat is going to sleep.'
```

```
(59) \[ \begin{align*} \text{PRED 'thought} \subj, \text{COMP}' \\ \subj \begin{align*} \text{PRED 'Marati'} \\ \text{CASE GEN} \end{align*} \] \\ \text{COMP } \begin{align*} \text{PRED 'sleep} \langle \text{SUBJ}' \\ \text{SUBJ } \begin{align*} \text{PRED 'PROi'} \end{align*} \] \\ \text{PERS 3} \end{align*}
```


Genitive case-marking in Tagalog

Tagalog MC noun *plano* would work similarly:

```
(60) Tagalog < Malayo-Polynesian < Austronesian; VSO)<sup>27</sup>

plano ni=Noy [na b<um>isita sa=Davao bukas]

plan GEN=Noy LK visit<aF:INF> OBL=Davao tomorrow

'Noy plans to go to Davao tomorrow'
```

```
\begin{bmatrix} \text{PRED} & 'plan \langle \text{SUBJ, COMP} \rangle' \\ \text{SUBJ} & \begin{bmatrix} \text{PRED} & 'Noy_i' \\ \text{CASE} & \text{GEN} \end{bmatrix} \end{bmatrix}
\begin{bmatrix} \text{PRED} & 'visit \langle \text{SUBJ} \rangle' \\ \text{SUBJ} & '\text{PRO}_i' \end{pmatrix}
\begin{bmatrix} \text{COMP} & \begin{bmatrix} \text{PRED} & 'Davao' \\ \text{CASE} & \text{OBL} \end{bmatrix} \end{bmatrix}
```

²⁷ Masumi Katagiri. "Tagalog". In: Mermaid Construction: A Compound-Predicate Construction With Biclausal Appearance. Ed. by Tasaku Tsunoda.

Comparative Handbooks of Linguistics. Mouton de Gruyter, 2020, pp. 781–816.

Genitive in embedded infinitival clause in Tagalog

How about this?

```
(61) plano[=ng b<um>isita ni=Noy sa=Davao bukas]
plan=LK visit<AF:INF> GEN=Noy OBL=Davao tomorrow
'Noy plans to go to Davao tomorrow'
```

Hypothesis 3: Optional backward control raising in Tagalog

 Anaphoric controller in the matrix clause can be functionally controlled by the embedding SUBJ (backward control raising²⁸)

²⁸ Susi Wurmbrand. "On forward and backward raising". In: Proceedings of the 32nd West Coast Conference on Formal Linguistics. Somerville, MA, 2015.

Finite COMP in Tagalog

mukha 'face' in Tagalog employs a finite COMP

(62) mukha[=ng bi-bisita si=Noy sa=Davao bukas]
face=LK AF:CONT-visit NOM=Noy OBL=Davao tomorrow
'It seems that Noy will go to Davao tomorrow'

Hypothesis 4: Obligatory backward raising in Tagalog

• mukha 'face' obligatorily triggers backward raising²⁹

29 Susi Wurmbrand. "On forward and backward raising". In: Proceedings of the 32nd West Coast Conference on Formal Linguistics. Somerville, MA, 015.

Copy raising in Egyptian Arabic

Egyptian Arabic MC (in a way) "repeats" the subject

```
(63) <u>šakl-uhum</u> [waħašū-k] shape-POSS.3PL lack.PV.3PL-2SG.M
```

'It seems like you missed them! (lit. their shape, you missed them)'

Hypothesis 5: Copy raising in Egyptian Arabic

• *šakl* in Egyptian Arabic causes copy raising³⁰

Conclusion

This presentation has shown (from LFG22):

- Descriptive (theory-neutral) evidence for biclausal analysis of MC
- Syntactic evidence for anaphoric/functional control analysis
- LFG's merits to analyze MCs:
 - LFG readily allows for nominal predicates
 - COMP/XCOMP covering cross-linguistically diverse non-finite forms
 - Treating each module separately (syntax (interface) semantics)

New:

- Possible analyses for peculiar cases of MCs across languages
- Anaphoric/functional control analysis seems to hold
- Language-specific scrutiny is still much needed

Thank you!

Contact: ctaguchi@nd.edu

Website: https://ctaguchi.github.io