

SCIENCE

AZ

ADENINE

ZYGOTE

Course Index

THE SCIENCE FOUNDATION COURSE TEAM

Steve Best (Illustrator)
 Geoff Brown (Earth Sciences)
 Jim Burge (BBC)
 Neil Chalmers (Biology)
 Bob Cordell (Biology, General Editor)
 Pauline Corfield (Assessment Group and Summer School Group)
 Debbie Crouch (Designer)
 Dee Edwards (Earth Sciences; S101 Evaluation)
 Graham Farmelo (Chairman)
 John Greenwood (Librarian)
 Mike Gunton (BBC)
 Charles Harding (Chemistry)
 Robin Harding (Biology)
 Nigel Harris (Earth Sciences, General Editor)
 Linda Hodgkinson (Course Coordinator)
 David Jackson (BBC)
 David Johnson (Chemistry, General Editor)
 Tony Jolly (BBC, Series Producer)
 Ken Kirby (BBC)
 Perry Morley (Editor)
 Peter Morrod (Chemistry)
 Pam Owen (Illustrator)
 Rissa de la Paz (BBC)
 Julian Powell (Editor)
 David Roberts (Chemistry)
 David Robinson (Biology)
 Shelagh Ross (Physics, General Editor)
 Dick Sharp (Editor)

Ted Smith (BBC)
 Margaret Swithenby (Editor)
 Nick Watson (BBC)
 Dave Williams (Earth Sciences)
 Geoff Yarwood (Earth Sciences)

Consultants:
 Keith Hodgkinson (Physics)
 Judith Metcalfe (Biology)
 Pat Murphy (Biology)
 Irene Ridge (Biology)
 Jonathan Silvertown (Biology)

External assessor: F. J. Vine FRS

Others whose S101 contribution has been of considerable value in the preparation of S102:

Stuart Freake (Physics)
 Anna Furth (Biology)
 Stephen Hurry (Biology)
 Jane Nelson (Chemistry)
 Mike Pentz (Chairman and General Editor, S101)
 Milo Shott (Physics)
 Russell Stannard (Physics)
 Steve Swithenby (Physics)
 Peggy Varley (Biology)
 Kiki Warr (Chemistry)
 Chris Wilson (Earth Sciences)

The Open University, Walton Hall, Milton Keynes, MK7 6AA.

First published 1989; reprinted 1992.

Copyright © 1989, 1992 The Open University.

All rights reserved. No part of this work may be reproduced, stored in a retrieval system or transmitted, in any form or by any other means, without permission in writing from the publisher.

Designed by the Graphic Design Group of the Open University.

Filmset by Santype International Limited, Salisbury, Wiltshire, printed in the United Kingdom by Tranby Printers Limited, Willerby, Kingston-upon-Hull.

Further information on Open University Courses may be obtained from the Admissions Office, The Open University, P.O. Box 48, Walton Hall, Milton Keynes, MK7 6AB

NOTES

1 This index refers to all the material contained in the texts of Units 1 to 32 of S102. The supplementary material (Summer School Laboratory Notebooks, CALCHEM Notes, etc.) is not indexed.

2 For each entry, the page references for each Unit in which the entry appears follow the Unit number, which is printed in **bold**.

3 Flagged terms are printed in **bold**. Numbers of Units in which these terms are flagged are denoted by an asterisk. For example, the entry **polar solvents**, 13–14*, 68; 17–18, 23 tells you that the term polar solvents is flagged in Units 13–14 on page 68, and that it also occurs on page 23 of Units 17–18.

A

A see adenine

abbreviated structural formulae, 17–18*, 9, 38, 39

abnormalities, genetic, 20, 20–1
abrasion, 27, 37

absolute dating method, 28–29*, 24, 35
absolute zero, 9, 24, 28

absorption of photon see
photoelectric effect

absorption spectra, 11–12*, 26, 27, 32, 36, 48, 70–1; 31, 3

absorption spectrophotometry, 15, 38

abstract of a report, 4, 29

abyssal plain, 7–8*, 10

acceleration, 3*, 6, 7; 9, 13, 14, 17
due to gravity on Earth, 3, 18, 19, 21, 24–31, 33–6; 5–6, 10

measuring, 3, 24–6

stroboscopic determination of, 3, 26–31

force and, 3, 9–10, 11, 14–15, 20

mass and, 3, 12–13, 23

orbital, 3, 32, 33–4

accelerators, particle, 30, 5; 32, 5, 8–10, 18, 32

linear, 32, 8, 10

circular (synchrotron), 32, 8–9, 40

accretion, planetary, 28–29, 45–50, 57

accuracy and precision, 4, 17–20

accurate measurement, 4*, 18, 19

Acetabularia, 24, 21–2

acetaldehyde, 17–18, 40, 72; 22, 31, 57

acetamide, 17–18, 70

acetate, 17–18, 68, 70, 81

anion, 15, 19, 21, 37

acetic acid (ethanoic acid), 15, 5–6; 17–18, 39; 22, 16, 46, 48, 50, 51, 54

chemical reactions, 17–18, 63, 64, 67–8, 81

equilibrium in, 15, 21–3

formation from ethanol, 17–18, 71–2

pH of, 15, 30, 37
smell of 15, 20
weak electrolyte, 15, 19, 25

Acetobacter bacteria, 17–18, 71
acetone, 17–18, 39, 40, 42, 43, 72, 96
acetyl chloride, 17–18, 64
acetyl coenzyme A (acetyl CoA), 22*, 45, 46, 50, 61

see also acetic acid

acetylene, 17–18, 37–8, 39, 67

achondrites, 28–29*, 45, 47, 50, 51, 80

achromatic time, 22*, 33, 37, Plate 3

acid, 15*, 4, 5–6, 9

defined, 15, 7

ionic theory and, 15, 6–7

strong, 15, 18, 23, 26

weak, 15, 18, 19, 20, 24

see also carboxylic acids; nucleic acids

acid chlorides, 17–18, 64, 67, 69, 70, 74, 76

acid dissociation constant, 15*, 23

acid rain, 15*, 30–1, 32, 33; 25, 30–1, 32

acid strength, 15*, 19

acquired characteristics, 19*, 12, 15

acrylic, 17–18, 78, 86, Plate 9a

actinides, 13–14*, 39, 41

activated complex, 16*, 23

activation energy, 16*, 21, 22–5, 26, 27, 28, 29; 26, 10, 18

and enzyme catalysis, 22, 26

activation of enzymes, 22, 58

active site, 22*, 26, 27, 36; 26, 10, 17, 18

active transport, 22*, 9, 10

adaptation, 19*, 13, 14, 15, 36–7; 22, 20, 29; 26, 6

relationship between structure and function, 19, 13–14; 22, 20

survival and, 19, 15–20

addition polymers/polymerization,

17–18*, 78, 79–81, 90, 96

addition reactions, 17–18*, 73, 74

adenine (A), 17–18, 89; 24*, 10, 11–12

adenosine diphosphate (ADP), 22*, 11, 12; 23, 4; 24, 29

adenosine triphosphate (ATP), 22*, 11, 12, 13, 62; 23, 4; 24, 29, 34

production in catabolism of carbohydrates, 22, 42, 43, 44,

48, 49, 51, 52, 53, 54, 55, 57

production in photosynthesis, 22, 63, 64

in regulation of catabolism, 22, 59

ADP *see* adenosine diphosphate

adrenal cortex, 23*, 36

adrenal glands, 23*, 36, 37

adrenalin, 23*, 27, 28, 31, 32, 36, 37; 26, 18

advantage, 19, 37

aerobic catabolism, 22, 47

balancing equation for glucose catabolism, 22, 48–54

aerobic respiration, 22*, 10

aerosols, 17–18, 15, 16, 78

Africa, 7–8, 10

crustal plate, 7–8, 54, 55, 60, 61

rifts, 7–8, 29

sediments, 7–8, 29

fossils, 7–8, 20, 29

aftershocks, 5–6*, 19

age of Earth, 28–29, 4, 35–7

fossils used to determine, 28–29, 8, 11, 13, 24

varves used to determine, 28–29, 8, 13

see also dating; time

age of rocks *see* rocks

age of Universe, 32, 44–5

agriculture and production ecology, 25, 10–11, 18

Agrostis tenuis (common bent grass): copper tolerance, 21, 9, 10

AIDS, 19, 3, 9

air

gases of

discovered, 13–14, 74

liquefaction of, 13–14, 75

oxygen in, 23, 4, 8, 10

temperature and density, sound waves and, 10, 4–6

see also atmosphere

alanine (Ala), 17–18, 60, 92, 93; 22, 15, 21, 45; 24, 36

alarm pheromones, 17–18, 48, 49, 51, 52

albedo, 28–29, 78

alcohols, 17–18*, 9, 21, 22, 23, 25, 63, 70

chemical reactions, 17–18, 63, 64, 67–8, 71–2, 74, 81, 82

formation, 17–18, 73, 75

homologous series, 17–18, 19–22

physical properties, 17–18, 10–11, 13, 22–4

alcohol dehydrogenase, 22*, 31, 57

aldehydes, 17–18*, 39, 40, 70

chemical reactions, 17–18, 72–3

isomerism with ketones, 17–18, 42

Aldrin, 17–18, 47

Alexandria

scientific school at, 2, 14

in size of Earth measurement, 2, 15–16, 18–20

algae

excessive growth of, 25, 27, 33

alginic acid, 22, 17

alkali metals, 13–14*, 25, 30, 59, 60, 72–3, 75

discovery of, 13–14, 74

alkalinity, 26, 11, 18

alkanals *see* aldehydes

alkanamines *see* alkylamines

alkanes, 17–18*, 19

bonding and molecular structure, 17–18, 7–8, 27

homologous series, 17–18, 18–19, 22

physical properties, 17–18, 10–11, 22–3

alkanols *see* alcohols

alkanones *see* ketones

alkenes, 17–18*, 38, 39

bonding and molecular structure, 17–18, 37

chemical reactions, 17–18, 38, 73, 74

geometric isomerism, 17–18, 43–5

unsaturation, 17–18, 37–9

alkylamines, 17–18*, 21, 22, 69, 70

alkyl group, 17–18*, 21

alkynes, 17–18*, 38, 39

bonding and molecular structure, 17–18, 38

chemical reactions, 17–18, 73

unsaturation, 17–18, 37–9

alleles, 20*, 25, 50, 52; 22, 5, 6, 23; 26, 5, 6, 16

alleles (*continued*)
 dominant and recessive, 20, 27, 30, 38, 41
 independent assortment of, 20, 35–6, 38, 44
 multiple 20, 52
see also genes; genetic variability

alloy, 13–14*, 69; 28–29*, 43, 44
see also nickel-iron

α -decay, 11–12*, 19; 31*, 28, 29, 32–3, 36, 37

α -1,4 glycosidic bonds, 22, 18; 26, 18

α -oxoglutaric acid, 22, 45

α -particle, 11–12*, 13, 14–15, 18, 23; 31, 34, 38
 scattering, 11–12, 13–18; 32, 6, 24

aluminium
 in alloy, 13–14, 69
 chemical bonding, 13–14, 65, 69
 in oceans, 28–29, 59
 in rocks, 27, 6, 9, 11, 15, 20, 22–3; 28–29, 46

alveoli, 23*, 9, 10, 11, 13, 14, 24

amber, 28–29, 6

American song sparrow, races of, 21, 25

amethyst, 27, Plate 5

amides, 17–18*, 69, 70
 formation of, 17–18, 74, 81, 97
see also polyamides

amines
 bonding and molecular structure, 17–18, 9
 chemical reactions of, 17–18, 74, 76, 81, 90
see also alkylamines

amino acids, 17–18*, 60, 61, 69; 19, 8, 10; 22, 7, 15, 21, 43, 64; 24, 9, 12, 32–3; 26, 8, 9, 10, 17, 18
 as building blocks of proteins, 17–18, 60, 69, 88–9; 22, 21
 catabolism of, 22, 61; 23, 23
 formation on primitive Earth, 17–18, 92–4; 28–29, 62, 69
 genetic code and, 24, 35–7
 ionization of, 22, 21, 23, 67
 mutation and, 24, 40, 41
 polymerization, 17–18, 88–9; 22, 20
 protein synthesis and, 24, 23, 27–9, 31, 34, 38
 transport of, 23, 11

amino acid residues, 17–18*, 88; 22, 21–23

amino acid-tRNA complex, 24*, 31, 32

amino group, 17–18*, 20

6-aminohexanoic acid, 17–18, 82

2-aminopropane, 17–18, 70

ammonia, 13–14, 56, 60; 15, 5; 22, 26, 61, 67
 dissolved, as base, 15, 9, 10
 excretion of, 23, 23
 in nitrogen cycle, 25, 25–6, 27–9, 31
 pH of, 15, 30
 in primordial atmosphere, 17–18, 91–2; 28–29, 57, 60, 62
 as refrigerant, 17–18, 14
 synthesis of, 16, 30–2

ammonites, 28–29*, 9, 10, 17, 68

ammonium ions, 22, 61, 67; 25, 25–6, 27–9, 31

amoebae, 19, 6, 9

amoebic dysentery, 19, 6

amount of substance, 13–14*, 17, 18

ampere (amp), 9*, 34, 35

Ampère, André-Marie, 9, 34

amphibians, 28–29, 11–12, 67, 70

amphiboles, 27, 9, 10, 15, 16, 32

amplitude of a wave, 5–6*, 24, 25; 10*, 11, 16, 20, 22–3, 24

amylase, 22*, 18; 26, 9, 10, 18
 salivary, properties of, 22, 33–5, 37

amylopectin, 22*, 17, 18–19

amylose, 22*, 17, 18–19, 33, 35; 26, 10, 18

anabolism, 22*, 9, 10, 64
see also biosynthesis; metabolism

anaemia, sickle-cell, 21, 16–19; 22, 6, 23; 24, 40

anaerobic catabolism, 22, 57

anaerobic organisms, 28–29, 63–4

anaerobic respiration, 22*, 57

anaesthetics, 17–18, 4, 35, 78

anaphase in meiosis, 20, 13, 15, 16, 20, 21; 26, 5, 15
 compared with mitosis, 20, 47, 48, 49

Andean-type margin *see* ocean/continent

Anderson, Carl, 32, 14

andesites, 7–8*, 72, 79; 27, 26, Plate 11
 composition of, 27, 9, 26
 formation of, 27, 20, 24–9, 52–3

angle, epicentral, 5–6, 61, 62, 63, 64–5, 68–9, 74

angle of incidence, 5–6*, 33, 34–5
 critical, 5–6, 35, 72

angle of reflection, 5–6*, 34

angle of refraction, 5–6*, 33, 34
 critical, 5–6, 72–3

angles
 measurement of, 2, 18, 19, 20, 22–3, 27
 of triangle, 2, 27, 32

angular measure, 2, 18

angular size, 2*, 22, 23–4, 28–9

aniline, 17–18, 41

animals, 19, 4–5
 adaptation by, 19, 13, 14
 cells of, 19, 5–8; 22, 38, 39; 26, 4, 15
 classification, 21, 27, 29–32
 genetic variability, 21, 13, 14, 15
 speciation, 21, 22–6
see also carnivores; herbivores; heterotrophs; individual animal names

anions, 13–14*, 46–7, 48, 49–50, 57, 72; 22, 14
see also bicarbonates; nitrates; phosphates; sulphates

anomalies *see* gravity anomalies; magnetic anomalies

Anopheles mosquito, malaria transmitted by, 21, 18

antagonistic action of nervous systems, 23, 34

Antarctic ozone hole, 17–18, 16, Plate 5

antibaryons, 32, 22, 26

anticodon, 24*, 31, 33

antileptons, 32, 14–16, 34–5

antimatter *see* antiparticles

antimony, 13–14, 69; 28–29, 46

antineutrino, 31, 30, 36; 32, 14–16, 28–9, 35, 41

antiparticles, 32*, 12, 14
 of gauge bosons, 32, 39
 of hadrons, 32, 22, 26
 of leptons, 32, 14–16, 28–9, 34–5

antiquarks, 32, 25–9, 33

anus, 26, 10

aorta, 23*, 14, Plate 9

apes, 21, 31

aphids, 17–18, 49

apparent polar wandering, 5–6*, 84–6; 7–8, 27, 58

apparent size of Sun and Moon, 1, 17, 22, 24

aquatic ecosystems
 communities in freshwater pond, 25, 4–5
 energy flow in, 25, 16–17
 polluted, 25, 29, 30, 32
see also oceans

aquatic food chain and web, 25, 12, 16–17; 26, 12, 18–19

aqueous solution, 13–14*, 43

arc of circle, 2, 18, 19–20, 22–3, 30

Archimedes' principle, 7–8*, 30, 31; 27, 12

Arduino, Giovanni, 28–29, 14–15

arginine (Arg), 22, 21; 24, 36

argon, 11–12, 5
 in atmosphere, 28–29, 52, 55, 56, 57, 60
 chemical inertness, 13–14, 58, 65
 electronic configuration, 11–12, 60
 first ionization energy, 11–12, 64
 isotopes, 28–29, 30, 31
 photoelectron spectrum, 11–12, 52, 59

Aristarchus, 2, 26, 27, 31, 46

Aristotle, 2, 14

Arrhenius, Svante, 15, 7

Arrhenius definitions, 15*, 6, 9–10

arteries, 23*, 12, 13, 14, 33
 chemoreceptors in, 23, 33
 pulmonary artery, 23, 13

arterioles, 23*, 12, 14, 19–20, 33, 35

arthropods, 21, 29–30, 32; 28–29, 65

artificial elements discovered, 13–14, 75

ash, volcanic, 27, 20; 28–29, 55

asparagine (Asn), 24, 36, 40, 41

aspartic acid (Asp), 17–18, 92; 22, 21, 23, 30; 24, 36

assay, enzyme, 22, 32, 33–5, 37

assimilation, 22*, 8; 25*, 7, 13, 14, 18; 26, 12

asteroids, 28–29*, 39, 41, 48

asthenosphere, 7–8*, 33, 76, 78, 79

Atlantic Ocean, 7–8, 10, 12, 29, 49, 54, 58

continental drift theory and, 7–8, 17, 18, 20, 28–9

formation, 7–8, 38

fracture zones, 7–8, 54

'proto-', 7–8, 57

ridges, 7–8, 29, 54, 58
see also Mid-Atlantic Ridge

spreading rate, 7–8, 46–7

atmosphere
 biogeochemical cycles and 25, 20–29
 energy flow in, 28–29, 71, 72
 origin of, 28–29, 52–8, 60–1
 early, 28–29, 62–3, 69
 evolution of, 28–29, 57–8, 61

atmosphere (*continued*)
 volcanic gases in, 28–29, 55–6,
 61
see also air and under oxygen

atoms, 11–12*, 3, 5–12
 constituents of *see* fundamental particles
 Heisenberg's uncertainty principle applied to, 30, 29–31
 and internal energy, 9, 27–9, 30
 random motion of, 9, 27–9, 30
 size of, 11–12, 6–7, 11
 time (after Big Bang) when formed, 32, 44–45
see also atomic energy; atomic nucleus

atomic bombs, 9, 5; 11–12, 23; 13–14, 41
 energy from, 9, 12

atomic energy levels, 31, 3–4, 11–17, 21–2
 advanced atomic models, 31, 15–16
 hydrogen atom model, 31, 4, 11–14
see also atomic nucleus; energy

atomic mass *see* relative atomic mass

atomic nucleus/nuclei, 11–12, 14, 15, 16, 18; 31, 3–4, 17–28
 binding energies, 31, 23, 25, 27, 29, 37
 contents of, 31, 17–19, 27
 energy levels, 31, 21–2, 27
 excited, 31, 31, 32, 36
 and fundamental particles, 32, 29, 42, 44
 masses and Einstein's equation, 31, 24, 26–7
 strong interaction of constituents, 31, 19–20, 27
 time (after Big Bang) when formed, 32, 44–5
see also nuclear fission; nuclear fusion; radioactive decays of nuclei

atomic number, Z, 11–12*, 16, 17, 18, 24, 42, 72; 13–14, 29, 58, 65, 76, 79; 31*, 17, 18, 19
 first ionization energy, 11–12, 62, 63–6

atomic spectra, 11–12*, 24, 25–37, 70–1
 interpretation of, 11–12, 47–51
 line spectra, 11–12, 24, 26, 27–9, 30, 70–1
 Lyman series, 11–12, 30–3, 35, 47

atomic spectroscopy, 13–14, 75

atomic structure of minerals, 27, 7–9, 11, 16, 32, 44

ATP *see* adenosine triphosphate

atria, 23*, 12, 13, 14, 34, Plate 9

autoclave, 17–18, 97

autotrophs, 22*, 8, 9, 10–11, 12, 38, 39, 61, 65; 23, 4; 26, 12, 18; 28–29, 63, 64
 biogeochemical cycles and, 25, 22, 25–6, 28, 31
 production ecology and, 25, 6–10, 11–12, 18
 average, calculating an, 4, 19, 26
average bond energies, 16*, 12, 13, 18

Avogadro's constant (N_A), 13–14*, 16

Avogadro's hypothesis, 16, 31

Avogadro's law, 13–14*, 18, 19

axes of a graph, 2*, 37, 38, 39; 4, 11,

13–15, 24
 axial dipole, 5–6, 47, 48, 55
axial modulus, 5–6*, 30, 31, 32, 60, 81
axial rift, 7–8*, 11, 15, 29, 40, 64
axially geocentric dipole, 5–6*, 47, 48, 55
axis of rotation of an object, 1*, 24; of the Earth, 1, 25, 30–1, 40–1, 43; 5–6, 48, 70, 83–4
 geometric variations in, 28–29, 70
axis of spin of an object, 1*, 24

B

Bacon, Francis, 7–8, 17
bacteria, 19, 9, 11
 biogeochemical cycles and, 25, 26, 28, 29, 31, 32
blue-green, 21, 29; 28–29, 54, 55, 58, 61, 63, 65, 69
 as factories for human proteins, 24, 45–9
 food chains and food webs and, 25, 11, 13
 transformation, 24, 5
 viral infection of, 24, 6–7, 8

Bakelite, 17–18, 84
 balance in the environment, 26, 14
 balanced carbon cycle, 25, 23
balanced (chemical) equations, 11–12*, 8; 13–14, 19–21; 22, 48–54
balanced forces, 3*, 10
balanced polymorphism, 21*, 16–18, 19, 22
Balanus balanoides (barnacle), 25, 57, 58
 Baldwin, Ernest, 22, 40
 Balmer series, 11–12, 28–9, 47
 bananas (*Musa esculenta*), 25, 34–5, 59
banded ironstone formations (BIF), 28–29*, 53, 59, 60, 63–4, 65, 78
 bar magnets,
 magnetic forces, 5–6, 42–3
 poles and field, 5–6, 45–6
 Bardeen, John, 30, 34
 barnacles, 25, 57–8
baryons, 32*, 22, 26–7
baryon number, 32*, 20
 conservation, 32, 20–1
 of gauge bosons, 32, 21, 39
 of hadrons, 32, 20, 21–2, 23–4, 27, 32
 of leptons, 32, 21
 of quarks, 32, 26, 36
Baryonyx walkeri (carnivorous dinosaur), 28–29, 81
basalt/basaltic rock, 5–6*, 8, 77, 79, Plates 11 and 12; 27*, 11, Plate 3; 28–29, 4, 42, 47, 55
 composition of, 27, 9, 11, 18, 21–3
 formation of, 27, 19–21, 24, 25, 29
 plate margins and, 7–8, 63, 64, 72, 73, 78
 dykes, 7–8, 63, 64, 65, 68, 78; 28–9, 32, 33
 pillow lavas, 7–8, 63, 65, 78
bases (chemistry), 15*, 4, 5–6, 9
 defined, 15, 7
 ionic theory and, 15, 6–7
 strong, 15, 18
bases (biology), 24*, 10, 11–13, 21, 24; 26, 8, 18
 complementary, 24, 11, 12, 25
 genetic code and, 24, 35–7, 38
 mutation and, 24, 40–1; 26, 8, 17
 non-coding, 24, 45, 47
 protein synthesis and, 24, 22, 24–7, 31, 32, 33
see also adenine; cytosine; guanine; uracil; paired bases; thymine

base-pairing rules, 24*, 11, 25

Bateson, William, 20, 30–1

batholith, 7–8*, 70, 72

BCF (bromochlorodifluoromethane), 17–18, 15, Plate 4

beaches, 27, 33, 36, 37, 38

beauty *see* bottomness

BEBC (Big European Bubble Chamber), 32, 11

bed, 28–29*, 16, 24

bedding, graded, 28–29, 8, 14
 dune, fossil, 7–8, Plate 5

bedding planes, 28–29*, 24, 32
 inclined, 27, 38–9, Plate 1

bedload, 27*, 35, 36, 45

bees, 19, 12

beetles, 19, 4, 5

behavioural isolation, 21*, 25, 26

belemnite, 28–29, 17

Benioff, Hugo, 7–8, 35–6, 56, 81

Benioff zone *see* Wadati–Benioff zone

1,4-benzenedicarboxylic acid (terephthalic acid), 17–18, 82, 87

benzene hexachloride (BHC), 17–18, 47

Bernard, Claude, 23, 38, Plate 11

beryllium, 13–14, 26–8, 31–2, 35–9

beta-blockers, 17–18, 63, 95; 23, 34

β -decay, 11–12*, 18, 19; 32, 4, 28–9, 42

β^- -decay, 31*, 29, 30, 32–3, 36; 32, 15, 28–9

β^+ -decay, 31*, 30, 31, 32, 36; 32, 13, 14

β -farnesene, 17–18, 50, 51

β -glycosidic bonds, 22, 18

β -oxidation pathway, 22*, 45, 61, 62; 23, 26

β -particle, 11–12*, 18, 19, 23, 66

B-group vitamins, 22, 31–2

BHC (benzene hexachloride), 17–18, 47

bicarbonates
 anions, 13–14, 49; 15, 9, 10; 22, 14, 26; 25, 23; 26, 11, 18
 formed during catabolism, 23, 21–2, 24
 in oceans, 28–29, 59, 60, 61

Big Bang, 32*, 44, 45

Big European Bubble Chamber (BEBC), 32, 11

bilharzia, 19, 5

binary compounds, 13–14, 70
 valency of, 13–14, 22

binding of substrate, 22, 26–7; 26, 10, 18

binding energy of a nucleus, 31*, 23, 25, 27, 29, 37

biochemistry, 22*, 3–4; 26, 9–12
 chemical constitution of organisms, 22, 14–24

biochemistry (*continued*)
 synthesis of chemical compounds, 22, 62–4
 techniques, 22, 40–2
see also catabolism; enzymes; metabolism
 biogenic precipitation, 28–29, 63
 biogeochemical cycles, 25*, 21, 22–32
 acid rain and, 25, 30–1, 32
 biological control of pests, 25*, 34–5, 53, 54, 55, 60–1
biology, 19*, 3
boluminescence, 22*, 9
biomass, 25*, 10
 increase in food chains and webs, 25, 12–14
biopolymers, 17–18*, 78; 22, 12, 17
biostratigraphic column, 28–29*, 24
biosynthesis, 22*, 3, 9, 24, 39, 64
see also anabolism
 biotic community *see* communities
biotic factors, 25*, 3
 birds, 26, 6–7, 14; 28–29, 12, 68, 70
 adaptation by, 19, 14
 body temperature, 23, 24
 excretion, 23, 23
 food chains and food webs and, 25, 11–12, 14–15
 mortality factors and *k*-value analysis, 25, 39–43
 mortality rates of holly leaf miners and, 25, 45–6, 47, 50, 51
 oxygen supply, 23, 8–9, 10, 12
 population fluctuations, 25, 34–9
 as predators *see* peppered moth
 uric acid, excretion by, 22, 61; 23, 23
 birth rates *see* natality
Biston betularia *see* peppered moth
bivalves, 28–29*, 9, 10, 68, 70
 bladder, 23, 23
 Blake, William, 1, 9–10
 bleak (fish, *Alburnus*), 25, 17
 blood,
 cells, 19, 6, 7; 23, 18–20, Plate 10
see also haemoglobin; red blood cells
 groups, 20, 52; 21, 11–12; 26, 16
 pH of, 15, 29, 30
 rhesus factor, 21, 11–12
 system, 23, 8, 10, 20, 24; 26, 9, 11
 exercise and, 23, 15–18, 20, 32, 33
 heart and, 23, 12–14
 oxygen transport in, 23, 11–12, 32–3, 37
 pressure, 23, 35
see also glucose levels
 bloodstream, 26, 9, 11
 blue tits, 25, 46, 50
blue-green bacteria, 21, 29; 28–29*, 54, 55, 58, 61, 63, 65, 69
 body cells *see* somatic cells
 body waves, 5–6, 90
 Bohr, Niels, 13–14, 40; 30, 29; 31, 3
 boiling *see* temperature
 bomb calorimetry techniques, 25, 13
bond dissociation energy (bond energies), 16*, 8, 9, 33
 average, 16, 12, 13, 18
 use of, 16, 9–13
 limitations on, 16, 13–14
bond-breaking, 16, 8–10, 14, 15–16

bonding and structure of organic compounds, 17–18, 7–10, 37–8
 bond-making, 16, 10, 14, 15–16
 bone, 19, 5
 Bonner, William, 17–18, 93
 boron, 13–14, 26–8, 31–2, 35–9, 69
 bosons *see* gauge bosons
bottomness, 32*, 36, 37, 39
 bottoms, naked, 32, 37
boulder clay, 7–8*, 56; 28–29, 74, 79, Plates 1 and 2
bound state of an electron, 11–12*, 40
 box notation of electronic configuration, 11–12, 59–62
brachiopods, 28–29*, 9, 10, 67, 68, 70, Plate 23
bracken (*Pteridium aquilinum*), 25, 4, Plate 3a
 Brahe, Tycho: planetary tables, 2, 33, 35, 36
 brain
 control systems in, 23, 31, 32–4
 glucose needed for, 23, 24, 26
 bramble (*Rubus* species), 25, 61
 breathing, 23, 8–9, 10, 21–2
 control mechanisms of, 23, 32–3, 34, 37
see also respiration
 Britain
 fossils, 7–8, 57
 igneous rocks, 7–8, 66, 72
 magnetic anomalies, 7–8, 41
 mountains, 7–8, 22, 24–5
brittle deformation of rocks, 27*, 46, 47, 54
 broad bean: chromosomes, 20, 11
 bromine, 13–14, 19, 42–3, 65, 73, 74
 in atmosphere, 28–29, 55
 chemical reactions, 17–18, 38, 74
 in compounds, 13–14, 54
 carbon, 17–18, 9, 10, 15
 as molecular covalent substance, 13–14, 53, 54, 56
 in oceans, 28–29, 59, 60, 61
 physical properties, 17–18, 11–12, 13
 preparation of, 13–14, 54
 bromochlorodifluoromethane (BCF), 17–18, 15, Plate 4
 1-bromo-2-chloroethane, 17–18, 55
 bronchi and bronchioles, 23, 9–10
 Brookhaven accelerator, 32, 32
 brown algae (*Dinobryon divergens*), 25, 33
bubble chamber, 30*, 10, 14; 32, 11, 20
 bubonic plague, 25, 34
 buffering by oceans, 25, 23, 24, 25, 31
 Bullard, Professor Sir Edward, 7–8, 27, 29, 37, 80, 81
 bunsen burner, 13–14, 74
 Burt, Sir Cyril, 1, 6
 butanal, 17–18, 42
 butan-1-amine, 17–18, 21
 butane, 17–18, 14, 18–19, 22
 butan-1-ol, 17–18, 20, 23, 34, 68, 73
 butan-2-ol, 17–18, 34, 59, 62–3, 73
 but-1-ene, 17–18, 38, 41–2
 but-2-ene, 17–18, 38, 41–2, 44–5, 57
 butterfly, meadow-brown, 26, 13–14
 butyl acetate, 17–18, 68
 butyne, 17–18, 38–9
 butyric acid, 17–18, 64, 67

C

C *see* cytosine
cactus, 19, 15, 16
caesium
 clock, 2, 8–9
 isotopes, 28–29, 27
caesium chloride, 24, 20
Cainozoic Era, 28–29, 4, 8, 14–15
 fossils in, 28–29, 12, 66, 68
 in Stratigraphic Column, 28–29, 20–1, 23
see also Tertiary; Quaternary
calcite, 27*, 5, 40, 41, Plate 8
 in marine organisms, 28–29, 67
calcium, 13–14, 28, 29, 31–2, 36–9, 74
 and life, 28–29, 62
 in oceans, 28–29, 59–60, 61
 in rocks, 27, 6, 9, 10, 11, 17, 20, 22–3, 41; 28–29, 53
calcium carbonate, 13–14, 53; 15, 4, 7, 10; 25, 24; 28–29, 58
 deposition of, 27, 40, 41
 neutralizing acid rain, 15, 32
calcium chloride, 28–29, 60
calcium fluoride, 13–14, 53
calcium hydroxide, 15, 5
 solution of, 15, 9, 27
 as conductor, 15, 7
caldera, 7–8*, 68, 69
‘calendar, stone’ (Stonehenge), 2, 4–5
calibration, 3, 25; 4*, 19
 points, igneous rocks as, 28–29, 32–3, 35
caloric, 9, 4
calories, 9, 12, 14
Calvin cycle, 22*, 64
Camarhynchus (tree finch), 26, 6
Cambrian Period
 fossils in, 28–29, 64, 67
 in Stratigraphic Column, 28–29, 20–1, 23
camouflage, 19, 13
cancer, radioactivity as cause of, 31, 34, 35
capillaries, 22, 48; 23*, 12, 21
 network, 26, 12
carbohydrates, 22*, 17, 24; 26, 15
 catabolism of, 22, 42–59
 digestion of, 23, 25
 synthesis *see* photosynthesis
see also glucose; monosaccharides; disaccharides; polysaccharides
carbon, 11–12, 5, 10, 11, 12
 chemical bonding, 13–14, 60, 61, 62, 63–4, 69–70
 combustion of, 16, 2, 15
compounds
 characteristics of, 17–18, 7–18
 number of, 17–18, 6
 uses of, 17–18, 4–5, 9, 13–16, 40, 87
see also Lewis structures
 first ionization energy, 11–12, 64
 isotopes, 11–12, 19, 20, 22; 22, 41; 28–29, 26
 atomic mass of, 13–14, 16, 25
 and life, 28–29, 57, 58, 60, 62, 65, 68
 in meteorites, 28–29, 45, 46, 49, 80
 in oceans, 28–29, 59, 60, 61
 in rocks 27, 6, 11

carbon (*continued*)
 in sediments *see* Carboniferous Period
 sources of, in living organisms, 22, 8–9
carbon cycle, 25*, 21, 22, 23–5, 31
carbon dating, 11–12*, 21, 22, 23; 28–29, 26; 31, 28
carbon dioxide, 13–14, 20–1, 56; 22, 12; 26, 11, 12, 15, 18
 in atmosphere, 28–29, 52, 55–6, 57, 58, 60, 61, 68, 72, 78
 climate and, 28–29, 78, 79
carbon cycle and, 25, 22, 23–5, 31
 chemical bonding, 13–14, 64
 in greenhouse effect, 25, 25, 31; 28–29, 72, 78
 Lewis structure, 17–18, 37
 as molecular covalent substance, 13–14, 60, 61
 in oceans, 25, 24; 28–29, 58, 61
 production of, 15, 4
 by oxidative catabolism, 22, 10, 12
 by yeast, 22, 57
 in production ecology, 25, 13
 reaction with water, 22, 26
 reduction in photosynthesis, 22, 39, 62–3
 removal of, 23, 21–2, 24
 in rocks, 28–29, 60
 solution as acid, 15, 9, 10, 30–1
 transported in blood, 23, 11, 13, 18, 32–3, 35
carbon monoxide in atmosphere, 28–29, 55, 56
carbon tetrachloride, 13–14, 60, 61
carbonaceous chondrites, 28–29*, 45, 46
carbonate ions, 13–14, 49; 25, 23
carbonic anhydrase, 22*, 26; 23*, 21; 26, 18
Carboniferous Period, 28–29, 4, 58, 59, 67–8
 Coal Measures, 7–8, Plate 2; 28–29, 20–1, 24
 fossils in, 28–29, 12, 67
 ice age in, 28–29, 72
 in Stratigraphic Column, 28–29, 20–1, 23
carbonyl group, 17–18*, 39, 86
carboxyl group, 17–18*, 39, 40
 chemical reactions, 17–18, 67–8, 69, 70, 74, 82
 in polymerization, 17–18, 81, 82
carboxylic acids, 17–18*, 39, 40, 70; 22, 15–16
 chemical reactions, 17–18, 63, 64, 67–8, 69, 74
 formation, 17–18, 72
 unsaturation, 17–18, 39
see also fatty acids; tricarboxylic acid cycle
cardiac output, 23*, 12, 20
 and control mechanisms, 23, 32, 33, 34–5, 36, 37
 measuring, 23, 15–18
see also heart
Carey, Professor Warren S., 7–8, 80
Carlsberg Ridge, 7–8, 43, 44, 46
carnivores, 25, 62; 26, 12
 biogeochemical cycles and, 25, 22, 26, 28
 first, second and higher, 25, 11, 12, 14, 18, 22
 food chains and food webs and, 25, 10, 11–14, 18
Carothers, Wallace, 17–18, 81, 96
Carroll, Lewis, 17–18, 62, 79
cartilage, 22, 17
carvone, 17–18, 58–9, 62, Plates 7–8
cassiterite, 27, 37
catabolism, 22*, 10, 38, 40, 61, 64; 23, 4, 9, 11; 26, 9
 aerobic, 22, 47
 of amino acids, 22, 61; 23, 23
 anaerobic, 22, 57
 of carbohydrates, 22, 42–59
 of fatty acids, 22, 61
 of fats, 22, 60–1; 23, 26, 27
 of glucose, 22, 15, 27, 41–54, 58–9,
 61
 of glycerol, 22, 60
 of other fuels, 22, 60–1
 products of, removing, 23, 11, 22–4
 regulation of, 22, 58–9
catalysis
 by enzymes, 22, 25, 26–7, 33; 23, 36
 in red cells, 23, 20, 24
see also enzymes
catalysts, 16*, 25, 26–7
 in reactions of carbon compounds, 17–18, 64, 67, 73, 75, 78, 88, 96
see also enzymes
catastrophic event theory of origin of Solar System, 28–29*, 37, 41, 48
catastrophic theories of continental drift, 7–8, 17–18
catastrophism, 28–29*, 16, 19, 26, 50, 51
 extinctions, 28–29, 68
catenation, 17–18*, 18, 19, 78
caterpillars and food chains and webs, 25, 11–12, 13–15
cations, 13–14*, 46–7, 48, 49–50, 57, 59, 72, 73; 22, 14
 in rocks, 27, 7, 9, 32, 33, 40, 41
Cavendish, Henry, gravitational constant and, 3, 37
cells, 19*, 5, 6–8, 9, 10, 11; 26, 3
 animal, 19, 5–8; 22, 38–9; 26, 4, 15
 blood, 19, 6–7; 23, 18–20, Plate 10;
see also red cells; white cells
cell cycle, 24, 14–15, 17
division,
 see eukaryote; inheritance;
 meiosis; mitosis; prokaryote
 growth and differentiation, 24, 15–16
 membrane, 26, 4, 16
 metabolism in, 22, 38–9; 26, 9
 non-reproductive *see* somatic cells
 nucleus, 19, 8, 9, 10, 11; 26, 4, 16
 DNA contents of, 24, 7–8
 plant, 19, 5–8; 22, 63–64; 24, 46; 26, 4, 15
 plant and animal compared, 22, 38–9
 reproductive *see* gametes
 structure of (cytology), 20, 7
 wall, 26, 4
see also DNA; eukaryotes;
 multicellular; organelles;
 prokaryotes; protein synthesis; single-celled
cell-free system, 24*, 36, 37, 38
cellobiose, 22, 20
cellulase, 22*, 18, 19
cellulose, 19, 8; 22*, 17, 18, 19
Celsius, Anders, 9, 23
Celsius temperature scale, 9, 23–4, 29
cement, 5–6*, 8
Cenozoic *see* Cainozoic Era
central core (of the Sun), 31, 39
central heating system, control of, 23, 28–9
central pathways, 22*, 60, 67
central rift *see* axial rift
centrifuge/centrifugation, 22*, 40, 41, 45
 density-gradient, 24, 20, 21
centromere, 20*, 13, 14, 19, 29, 33, 46, 48, 49; 26, 16
cerebellum, 23, 32
cerebral cortex, 23*, 33
cerebrospinal fluid, 23*, 33
CERN, 32, 8, 10, 11, 28, 40, 41
Certhidia (warbler finch), 26, 6
chain polymerization, 17–18, 80
chain reactions, nuclear, 31, 38, 39, 40
chalk, 28–29, 16, 19, 20–1, 23–4
 areas, 25, 23, 61, Plates 11–14
change of state and internal energy, 9, 27–30
characters *see* heritable character; inheritance
characteristics *see* acquired characteristics
charge, 9*, 4, 30, 31–4; 32, 13, 15, 19, 25
 in atoms, 31, 11–12, 15, 18
 of atoms, 11–12, 5, 7–9, 12–16, 18, 19, 66–9
 atomic spectra and, 11–12, 28, 36
 conservation, 32, 19–20, 24
 of electron, 9, 30–1, 32, 33; 30, 10, 14
 of gauge bosons, 32, 39–43
 of leptons, 32, 13, 15, 31, 42–3
 meaning of, 32, 19
 moving, electrical energy and, 9, 32–3
 of quarks, 32, 26–8, 31, 36, 42–3
 shells and subshells and, 11–12, 37, 38, 39
 stationary, electrostatic force and, 9, 31–2
charm, 32*, 31–6
 naked, 32, 34
Chase, Martha, 24, 7
checking calculations, 4, 25
chemical bonding, elementary
 theories of, 13–14, 57–72, 76; 17–18*, 8
electronegativity, 13–14, 65–8, 70–3; 17–18, 12
extended covalent substances, 13–14, 63–4
ionic bonding, 13–14, 59–60, 65, 70
metallic bonding, 13–14, 68–9, 70
metallic and non-metallic elements, boundary between, 13–14, 69–70
molecular covalent substances, 13–14, 53–5, 57, 60–1, 73
see also covalent bonding; noble gases; valency; weak bonds
chemical composition, 13–14*, 14
 of minerals, 27, 6–11, 19, 32, 50
chemical compounds, 13–14*, 5, 76
 binary, 13–14, 22, 70
 determining formulae of, 13–14, 11–14

chemical compounds (*continued*)
 numbers of, 17–18, 6
 chemical constitution of organisms, 22, 7–8, 14–24

chemical element, 11–12*, 16
see also elements

chemical energetics *see* chemical reactions

chemical energy, 9*, 3, 4, 5

chemical equations, 11–12, 8; 13–14*, 19, 21, 76

chemical equilibrium, 15*, 3, 12, 13, 14–21

Le Chatelier's principle, 15*, 16, 17, 18, 22, 37; 16, 29–31

saturated solution, 15, 12–13, 20

chemical evolution, 17–18*, 91, 92

chemical formulae, 13–14*, 4, 25

chemical fuels, 16, 14, 15–18

chemical nature of life, 19, 8–9, 11

chemical precipitation, direct, 27, 41, 45

chemical reactions, 13–14*, 6–8, 9, 25
 chemical fuels, 16, 14, 15–18
 conditions for, 16, 28–30
 energy and rockets, 16, 33–5
 Haber–Bosch process, 16, 2, 30–2
 rates of, 16, 2, 18–28, 29

chemical structure, 13–14*, 8

chemical symbol, 11–12*, 5, 11

chemical weathering, 27*, 31, 32
 products of, 27, 33–4, 44

chemistry, 11–12*, 3

chemoreceptors, 23*, 33, 35, 37

Chernobyl accident, 31, 33

chert, 28–29*, 63, 64–5

chiasma (pl. *chiasmata*), 20*, 19; 26, 16

chilled margin, 27*, 22, 50

chimpanzee, 19, 5

china clay, 27, 33–4

chiral centre, 17–18*, 55, 60, 64

chirality, 17–18*, 52, 53–66
 detection of, 17–18, 57–9
 occurrence of, 17–18, 60–2
 and origin of life, 17–18, 92–3
 synthesis of chiral compounds, 17–18, 62–5

chironomids, 25, 17

chitin, 22, 17

chloride, excreted, 23, 26
see also acid chlorides

chlorine, 13–14, 22, 25, 42–3, 73
 in atmosphere, 28–29, 55, 56
 chemical bonding, 13–14, 60, 61, 65, 66–7
 in compounds, 13–14, 21, 27, 40, 41, 57, 63, 72
 carbon, 17–18, 9, 10, 15

gas, 13–14, 50, 52
 as molecular covalent substance, 13–14, 53, 56

in oceans, 28–29, 59, 60, 61
 physical properties, 17–18, 11–12

in rocks, 27, 6, 41

1-chlorobutane, 17–18, 70

chloroethene (vinyl chloride), 17–18, 79

chloroform, 13–14, 56

chloromethane, 17–18, 14

chlorophyll, 22, 38, 63

chloroplasts, 19, 8; 22*, 38, 63–4, Plates 6 and 7; 24, 38; 25, 7, 8; 26, 15

chondrites, 28–29*, 44, 45, 46, 47, 49, 51

chondritic Earth model, 28–29*, 47, 49, 57

chondroitin sulphate, 22, 17

chondrules, 28–29*, 44, 45, 51

Chordata, 21, 31, 32

chromatids, 20*, 13, 14, 19–20, 22, 24, 27–8, 29, 46, 48, 49; 24, 4, 7; 26, 5, 15, 16
 inheritance of characters and, 20, 24, 27–9
see also meiosis; mitosis

chromatin, 20*, 10; 26, 4
 packing, 20, 10, 18, 50
see also chromosomes

chromatography, gas, 17–18, 19, 49

chromium, 11–12, 61–2
 in rocks, 27, 23, 37; 28–29, 46

chromodynamics, quantum, 32, 29, 33, 41–2

chromosomes, 19*, 9, 11; 20*, 8, 9; 22, 6; 24, 4, 8, 14, 42; 26, 3, 5, 6, 13, 15, 16
 banding patterns, 20, 18, 50, 51
 damaged by ionizing radiation, 24, 40; 31, 34, 35
 DNA and, 20, 8–10; 24, 7
 gametes production and, 20, 11–17
 genetic abnormalities, 20, 20–1
 human, 20, 9, 18, 20–1
 independent assortment and, 20, 33–40
 numbers of (haploid and diploid), 20, 11, 12, 17, 22, 24, 25–6, 48
see also chromatids; chromatin; DNA; genes; genetic; homologous pairs; inheritance; meiosis; mitosis

Chthamalus stellatus (barnacle), 25, 57, 58

cilia, 23, 11

circular,
 accelerator *see* synchrotron motion, 1, 23, 24–6, 40, 41
 wave, 10, 25, 30, 33

circulatory systems, 23, 10–21, 34
see also blood system

circumference of a circle, 2, 17–18, 30

cis isomer, 17–18*, 44, 48, 49, 50, 51, 73

citric acid, 22*, 45, 50, 54, 58

citric acid cycle *see* tricarboxylic acid cycle

class (biology), 21*, 29, 32, 33; 26, 3, 15

class of (organic) compounds, 17–18*, 68

classical mechanics, 3*, 40
see also Newtonian mechanics

classification and evolution, 21, 27–34
 evolutionary trees, 21, 28, 33
 taxonomic hierarchy, 21, 27, 29–32

clay, 28–29, 19, 20–1, 74
 boulder, 7–8, 56; 28–29, 74, 79
 deposits, interglacial, 28–29, 74
 varves, 28–29, 7–8, 13

clay minerals, 27*, 15, 33, 49

Clean Air Act (1958), 19, 29

cleavage in minerals, 27*, 6, 7, Plates 7, 8

cleavage in rocks, 27*, 49, 54

climate
 changes, 28–29, 22, 68, 70–9
 and speciation, 21, 22–4
 climatic belts, 7–8, Plate 4; 28–29, 70–2
 recent, 28–29, 72–4

past, 7–8, 18–19, 20–1, 26, 56–7
 evidence of, 7–8, Plates 1, 2, 3, 5
see also ice ages

climax community, 25*, 60, 62

cling film, 17–18, 85

Clostridium tetani (tetanus microbe), 22, 57

clotting mechanism, 23, 18, 20

coal, deposition of, 7–8, 21, 56–7

Coal Measures *see* Carboniferous Period

coal tits, 25, 46, 50

coastal areas *see* shores

cobalt in rocks, 28–29, 47

cockles, 28–29, Plates 24a, 24b

coding DNA, 24*, 45
see also genetic code

codons, 24*, 27, 28, 29, 31; 26, 9, 17, 18
 genetic code and, 24, 35–7, 38
 mutation and, 24, 41
 stop, 24, 29, 34, 37, 38, 39; 26, 17

coenzymes, 22*, 30, 31–2, 46, 51, 55, 64

coenzyme A, 22, 31, 46

colliding-beam experiments, 32*, 9, 10, 32, 34, 41

collisions, analysis of, 9, 20–2

collisions of particles
 α -particles, 11–12, 13, 14; 32, 24–5
 electrons, 11–12, 7–8
 frequency, 16, 20
 at high energies, 32, 5, 6–7, 9, 10–11, 12

collision model of a chemical reaction, 16*, 20, 21–2, 27, 28, 29

collision, plate, 7–8, 72, 74

colonization, 26, 8, 17

colorimeter, 23*, 17

colour
 forms of moths, experiments with, 19, 16–19, 20, 27–9, 30–1
 of light, 10, 35–7
 of minerals, 27, 7, 9, 11, 16
 'colour' of quarks and gluons, 32, 29, 41

combustion reaction, 16*, 2, 3
 chemical fuels, 16, 15–18
see also fossil fuels

common logarithm, 15, 27

communities, biotic, 25*, 3, 4–5, 6, 57–62

rabbits and vegetation, 25, 60–2

compact disc, 10, 41
 rotation of, 1, 19

comparison
 of adaptive forms, 19, 16
 of fecundity and viability, 19, 22–5

compass, 5–6, 40, 41, 44, 45–6, 47–8

competition, 19*, 32; 26, 8, 14, 17

complementary bases, 24*, 11, 12, 25

components of momentum, 30*, 25, 26–9, 31, 32

components of position, 30*, 25, 26–9, 31, 32

components of velocity, 30*, 25, 26–9

composite cones, 27*, 20

compounds *see* chemical compounds; unsaturated compounds

compression, structures formed under, 27, 46–7, 48–9
compression pulse, 5–6*, 26, 29–30
compressional wave motion, 5–6*, 25, 26, 27, 90
see also P-waves
 Compton, Arthur, 30, 9
Compton effect, 10*, 3, 48, 49, 50; 30*, 8, 9, 13, 14
 computers and continental fit, 7–8, 27, 58
 concentration
 molecular interpretation of effects of, 16, 20–1
 of reactants in chemical reactions, 16, 19, 20, 21, 27, 28, 29
concentration gradient, 22*, 9, 56; 23*, 6, 10, 22; 26, 18
concentration of a solution, 15*, 11, 12, 19, 20
condensation polymers/
 polymerization, 17–18*, 78, 81–3, 89; 19, 10; 22, 17, 24; 24, 24
condensation reactions, 17–18*, 74, 97
 conditions for chemical reactions, 16, 28–30
 conductivity, electrical, 13–14, 43–8, 69, 72
 conductor, electrical, 5–6, 69, 70–1, 76
 configuration, 17–18*, 60
 confined particles and quantum mechanics, 31, 4–10
 in one dimension, 31, 5–8, 10
 in three dimensions, 31, 8–10, 11–14, 21–2
conformations, 17–18*, 27
 conglomerates, 28–29, 53, 60
 conical surface, 1, 13
 Connell, J.H., 25, 57, 59
 conservation
 of baryon number, 32, 20–1
 of bottomness, 32, 36
 of charge, 32, 19–20
 of charm, 32, 34
 of strangeness, 32, 22–3
 of topness, 32, 36
conservation of elements, 13–14*, 8, 9
conservation of energy, 9, 5–9; 30, 9, 16
 law of, 9*, 6–7, 9, 13, 20–2, 35–6; 11–12, 39; 16, 11, 24; 22, 66; 25, 7, 15, 18; 31, 29, 32
 and photoelectric effect, 10, 46
see also production ecology
conservation of mass, 13–14*, 15
conservation of momentum, law of, 3*, 16; 9, 20–2, 36; 16, 34; 30, 9, 16, 24; 32, 7, 9
conservative plate margin, 7–8*, 59, 60–2, 73–5, 79
conserved quantity, 3*, 16
 conspicuousness *see* peppered moth; stick insect
constant of proportionality, 2*, 40, 41
constellations, 1*, 18, 22
constructive plate margin, 7–8*, 59, 60–2, 63–9, 77, 78
 and metamorphism, 27, 51
 and origin of basalts, 27, 20–1, 25, 26, 29
constructive superposition/constructive interference, 10*, 20, 21, 24, 29, 31, 32–4, 35, 36, 53
consumers/consumption, 25*, 11, 12–14, 18; 26, 12
contact metamorphism, 27*, 50, 54; 28–29*, 32, 33
 continents, origin of, 27, 26–7, 28–9
continental crust, 5–6*, 78, 79
continental drift, 1, 8; 5–6*, 86
 and ice ages, 28–29, 77, 79
 time when occurred, 32, 45
continental drift theories, 7–8*, 17
 catastrophic, 7–8, 17–18
 Holmes', 7–8, 25–6
 plate tectonics and, 7–8, 27, 28, 56–9
 stabilists', 7–8, 23–4
 Wegener's
 evidence for, 7–8, 18–23, 26
 mechanisms for, 7–8, 23
 reactions to, 7–8, 23–6
continental fit
 computers and, 7–8, 27, 58
 continental drift theories and, 7–8, 18–19, 20, 24, 26, 58
 plate tectonics and, 7–8, 27–9
continental rise, 7–8*, 10
continental shelf, 7–8*, 10
continental slope, 7–8*, 10
continent/continent collision, 7–8, 71, 72; 28–29, 80–1
continent/continent destructive plate margin, 7–8, 71, 72
continuous refraction, 5–6*, 36
continuous spectrum, 11–12*, 25
continuum, 11–12*, 33
continuum level, 11–12*, 33
contractile proteins, 22, 20
control *see* control genes; control mechanisms; regulation
control genes, 24*, 16
control group, 4*, 16
control mechanisms, 23, 28–38
 of blood glucose level, 23, 31–2
 of breathing, 23, 32–3, 34, 37
 of heart beat
 hormonal, 23, 35–7
 nervous 23, 33–5, 37
 of temperature, 23, 23–4, 30–31
controlled nuclear chain reaction, 31, 40
convection currents
 continental drift theories and, 7–8, 25–6
 in mantle, 27, 18
 plate margins and, 7–8, 76–8, 79
 plate tectonics and, 7–8, 35, 37, 38–9, 43, 44
convergence, 19*, 14, 15
conversion of energy *see* energy conversion
convex lens, 10*, 30, 31, 32, 34
cooling Earth theory, 7–8, 17, 18
Cooper, Leon, 30, 34
co-ordination, 23, 4
Copernicus, Nicolas: theory of planetary orbits, 2, 30–3; 28–29, 37
Copernican model, 1, 32
copolymers, 17–18*, 78
copper, 11–12, 5, 10, 17, 63, 81; 13–14, 30, 76; 28–29, 21, 46, 52
 in alloy, 13–14, 69, 74
 compounds, reactions of, 13–14, 6–8, 9
 formation of, 13–14, 9, 46, 48
 metal, 13–14, 5, 6–9, 17–21
 in rocks, 27, 6
 tolerance of grass to, 21, 9, 10
 valency of, investigating, 13–14, 23
 wire, stretching of, 4, 9–12
copper chloride, 13–14, 9, 42–3
 as ionic substance, 13–14, 45, 46–8, 51, 56
 valency, 13–14, 21, 24
copper oxide, 13–14, 9, 19–20, 26, 28, 63
 empirical formula, 13–14, 10
 molecular formula, 13–14, 18
 oxidation of, 17–18, 70–1
 reactions, 13–14, 21
 valency and, 13–14, 23–4
coral, 28–29*, 9, 10, 67, Plates 26, 30
core,
 of Earth, 5–6*, 12, 60, 68–76, 81; 28–29, 41–2, 49, 50
 composition of, 5–6, 69, 72, 75–6
 inner, 5–6, 74, 75, 81; 28–29, 42, 49
 as source of Earth's magnetic field, 5–6, 69–72
 structure of, 5–6, 72–5
 of planets, 28–29, 45, 49, 50, 51
 of Sun, 31, 39
coronary blood vessels, 23, 13, 14
correlation, 28–29*, 8
corroboration of scientific theory, 1, 7, 43
cortex
 adrenal, 23, 36
 cerebral, 23, 33
cosine (cos), 2*, 32
cosmic rays, 31, 35; 32*, 5, 13, 14, 42, 43
cotton, 17–18, 86
cottony cushion scale insect (*Icerya purchasi*), 25, 54, Plate 10
coulomb, 9*, 31, 34
Coulomb, Charles de, 9, 31
Coulomb's law, 9*, 31, 32, 35; 31, 11, 20; 32, 16
 and atomic structure, 11–12, 15, 28, 38
covalent bonding, 13–14*, 61, 62–3, 65, 70; 16, 7, 9, 14; 17–18, 8
 in DNA, 24, 11, 17, 24, 31
covalent molecules, forces between
 see intermolecular forces
covalent substances, 13–14, 68, 70, 76
 extended, 13–14, 63–4
Cox, K., 7–8, 81
cratons, 7–8*, 12, 15, 16, 28, 29
creep in rocks, 27*, 47
crest of a wave, 10*, 11
Cretaceous Period, 26, 14; 28–29, 17
 fossils in, 28–29, 12, 68
 in Stratigraphic Column, 28–29, 20–1, 23
Crick, Francis, 24, 3, 10, 12, 37
crinoids, 28–29*, 9, 10, 68, 70, Plate 30
critical angle of incidence, 5–6*, 35, 39, 72
critical angle of refraction, 5–6, 72–3
cross-bedding in rocks, 27, 38–9, 45, Plates 12, 13
cross-bedding in sand-dunes, 7–8, 57
cross-fertilization (crossing), 20*, 3, 4, 5, 6

cross-fertilization (*continued*)
see also inheritance; linkage
 crossbills, 25, 36
 crossed polarizers, 17–18, 58–9
 crosses, genetic, 20, 4; 26, 6, 16
see also first filial generation; parental generation; second filial generation
crossing over, 20*, 13, 14, 19–20, 24, 27, 35, 42, 43, 44, 50; 26, 5, 16
crust, Earth's/crustal, 5–6*, 11, 22, 60, 76–9, 80, 81; 7–8, 5–16, 33–4; 28–29, 45–6, 50
 blocks *see* plate tectonics
 continental drift theories and, 7–8, 18–19, 26
 continents formed, 7–8, 5–7, 70
 Earth patterns, 7–8, 11–12, 13
 lithosphere, 7–8, 33–4, 35, 38
 plates, names of, 7–8, 55, 61
 structure, 5–6, 77–9
see also geology; plate margins; rocks and under continental crust; ocean crust
 crustaceans, 28–29, 67, 68, 70
crystalline texture, 5–6*, 8, Plate 15
crystallites, 17–18*, 84, 85, 91
 crystallization, 27, 41
 fractional, 27, 22–4, 29
 from melt, 27, 5, 15, 16, 20–3, 25, 28, 29
 of silicate minerals, 27, 9–11
 temperature, 27, 10–11, 16
 crystallography, X-ray, 17–18, 84
C-terminal amino acid residue, 22*, 21; 24*, 28, 29
culmination point, 1*, 15, 16
cumulates, 27*, 23, 24
 cumulative area, 7–8, 8
 cumulative frequency curve, 7–8, 9
Curie temperature, 5–6*, 57, 83
 current, electric *see* electric current
current loops, 5–6*, 70
 currents, water, transport and deposition of sediments by, 27, 36
 curved surfaces, 1, 13
 Cuvier, Georges, 28–29, 11, 15–16
Cyanea (jellyfish): oxygen supply, 23, 7–8
 cyanide compounds, 22, 56
cyclical regeneration, 25*, 60, 62
 cylindrical surfaces, 1, 13
 cysteine (Cys), 22, 21, 22, 45, 64; 24, 36
cytochromes, 22*, 45, 52, 55, 56
cytology, 20*, 7
cytoplasm, 24*, 21–2, 23, 29
 cytosine (C), 17–18, 89; 24*, 10, 11–12
cytosol, 19*, 8; 22, 3, 6, 9, 38, 40, 44, 46; 24, 21, 23

D

Dacron, 17–18, 82
 Dalton, John, 11–12, 3
dark stage of photosynthesis, 22*, 63, 64
Darwin, Charles, 17–18, 91; 19*, 11, 12, 15, 29, 32, 34, 36, 37; 20, 31; 26, 6; 28–29, 11, 64
Origin of Species, 19, 32, 36

theory of evolution by natural selection, 19*, 11
see also evolution
 data, experimental, 1, 20
 handling, 4, 9–23
 quoting experimental results, 4, 21
 standard deviation, 4, 25–7
 tabulating, 4, 8, 9
see also graphs; practical work; uncertainties
 dating methods
 absolute, 28–29, 24, 35
 radiometric, 28–29, 24, 26–9, 32–5, 36–7
 minerals and, 28–29, 30–1
 relative, 28–29, 12, 32–3, 35
see also age of Earth; carbon dating; geological; radioactivity; rocks; time
daughter double helices, 24*, 18, 19
daughter isotope, 28–29*, 27, 28–9, 30, 31, 36
 Davison, Clinton, 30, 11, 12
 Davy, Sir Humphry, 13–14, 74
 day and night, 1, 15–16, 22, 24
 cause of, 1, 26–8, 41
 day, solar, 1, 16, 22
 D configuration, 17–18, 60–1, 93; 22, 18
DDT, 17–18, 5, 47; 25, 54
deamination, 22*, 61; 23, 23
 death
 caused by ionizing radiation, 31, 34–5
 rates *see* mortality
 de Broglie, Prince Louis, 30, 10, 11, 12
de Broglie's formula and wave model, 30*, 10, 11–12, 13, 14, 27, 33–4; 31, 5, 6; 32, 6, 24
 Debye, Peter, 10, 48
 decan-1-amine, 17–18, 21
 decane, 17–18, 19, 40
 decanoic acid, 17–18, 40
 decay
 chain, nuclear, 31, 32, 33
 channel, nuclear, 31, 32, 37, 38
 radioactive *see* radioactive decay
 types of, 32, 18–19
 deciphering the genetic code, 24, 36–8
 declination, magnetic, 5–6, 49, 52, 82
decomposers, 25*, 11, 12–14, 16–17, 18; 26, 18
 biogeochemical cycles and, 25, 22, 26, 28, 31
 deduction, 1, 7, 8
 defence mechanisms, 19, 13
degeneracy, 11–12*, 55–8; 31*, 9
degenerate code, 24*, 37
 dehydration, 23, 26
 dehydrogenases, 22, 31, 45, 57, 58–9
dehydrogenation, 22*, 31, 57
 deletion (of a base), 24, 41; 26, 8, 17
 Deltamethrin, 17–18, 47
 deluge *see* flood
 denaturation (of an enzyme), 22, 28–30; 26, 18
denitrification, 25*, 27, 28, 29
 thermal, 22, 28, 29
density, 3*, 37, 40
 of air and reflection of sound waves, 10, 4–6
 of atomic nucleus, 31, 17
 of crustal material, 7–8, 5, 9
see also gravity anomalies
 of diamond and graphite, 5–6, 66
 of Earth, 3, 36–8
 interior, 5–6, 10, 11, 63–5, 75, 81
 of Moon, 3, 38–9
 of planets, 28–29, 39, 41, 47–8
 of rocks, 5–6, 10–11, 12, 60, 63–5, 81
 wave speeds and, 5–6, 29, 30–1, 32–3, 63–5
 of silicate minerals, 27, 11–15, 16, 28
 investigation, 27, 12–14
density-gradient centrifugation, 24*, 20, 21
density-dependent mortality rates, 25*, 36
 density-dependent natality rates, 25, 36, 41, 42
density-independent mortality rates, 25*, 36–7, 42
denudation, 27*, 34
deoxyribonucleic acid *see* DNA
deoxyribonucleotides, 24*, 10
see also nucleotides
deoxyribose, 17–18, 89; 22, 15; 24*, 10, 11, 12
dependent variable, 4*, 11, 24
 deposition of sediments, 27, 35–6, 38–41, 45, 53
 deposits *see* sediments
 Descartes, René: invention of graph, 2, 37
 deserts, 25, 9, 18
 seed-eating rodents in, 25, 58–9
 designing experiments, 4, 4–6
destructive plate margin, 7–8*, 59, 60–2, 69–73, 77–8, 79; 28–29, 33, 50
 and metamorphism, 27, 51, 52–3
 and origin of andesites, 27, 24–9, 52–3
destructive superposition/destructive interference, 10*, 21, 24, 29, 30, 31, 32–3, 53
 DESY, 32, 10, 35
 detectors (particle), 32, 10–12, 33, 35, 37, 41
detrital grains, 28–29*, 53, 59
detritivores, 25*, 11, 12–14, 16–17, 18; 26, 18
 biogeochemical cycles and, 25, 26, 28
detritus, 25*, 11, 16–17, 18
 biogeochemical cycles and, 25, 26, 31
 Devonian Period, 28–29, 57–8
 fossils in, 28–29, 12, 67
 in Stratigraphic Column, 28–29, 20–1, 23
 dextrins, 22, 33; 26, 18
D-glucose *see* glucose
diabetes, 23*, 26, 27; 24, 46
 diamond, 13–14, 63–4, 69
 density of, 5–6, 66
 structure of, 17–18, 25
 diaphragm, 23, 10
diapirs, 27*, 25, 28
 diatoms, 25, 16–17
 diatomic ions, 13–14, 73
 diatomic molecules, 13–14, 19
 bond energies for, 16, 8–12, 14
 dibromoalkane, 17–18, 74

dichlorides, 13–14, 66
 dichlorofluoromethane, 17–18, 14–15
 Dieldrin, 17–18, 47
 Dietz, Robert S., 7–8, 40, 81
 differentiation, 24*, 15, 16, 17
 diffraction, 10*, 6, 7–10, 25–38, 53,
 54; 30, 6–7, 13
 Fraunhofer, 10, 30–1
 Huygen's construction, 10, 25–30
 of matter, 30, 11, 12, 13, 14–17,
 26–7, 32
 macroscopic, 30, 3, 33–4, 35
 observing, 10, 7–10
 pattern, 10, 35; 30, 14–15
 and colour, 10, 35–6
 at infinity, 10, 30–1
 by single-slit, 10, 6, 7, 8–9, 26–8;
 30, 14–17, 26–8, 33–4
 see also double-slit diffraction
 diffraction equation, 10*, 33, 34
 diffraction grating, 10*, 9, 10, 33–6;
 30, 6, 7, 11
 diffraction order, 10*, 34, 36
 diffusion of oxygen, 23*, 6
 see also oxygen supply
 digestion, 22, 38, 48; 26, 9–12
 of carbohydrates, 23, 25
 dihydroxyacetone phosphate, 22, 45,
 60–1
 dilatation (rarefaction), 5–6, 26, 90
 dilute solutions, 15, 20
 dimensions, 2*, 12, 13
 of energy, 9, 13
 dimensional analysis, 2, 13, 41
 dinosaurs, 26, 14; 28–29*, 9, 17, 68,
 81, Plate 31
 time when roamed, 28–29, 12, 32,
 45
 diorite, 27, 26
 dipeptides, 24, 29, 33
 diploid number of chromosomes, 20*,
 11, 12, 17, 22, 24, 25–6, 45; 26,
 15
 see also mitosis; somatic cells
Dipodomys species (seed-eating
 rodent), 25, 58
 dipolar magnetic field, 5–6, 47, 51,
 70, 72
 dipole
 electric, 17–18, 11
 magnetic, 5–6, 47, 52, 55, 56, 58
 dipole-dipole forces, 17–18*, 11, 12,
 13, 23, 87
 dipole wobble, 5–6*, 55, 70, 83
 dip poles, magnetic, 5–6, 52, 55
 Dirac, Paul, 32, 14
 disaccharides, 22, 17
 discontinuous variation, 20*, 4
 diseases
 heritable, 19, 31
 human, 21, 12, 14, 16–19; 23, 26,
 29; 24, 40, 46; 25, 34
 parasites and, 19, 5, 6
 population size and, 19, 22, 23; 25,
 34
 viruses and, 19, 3, 9
 displacive forces, 7–8, 23
 dissociation,
 constant, of acids, 15, 23
 photochemical, of water, 28–29, 55,
 57, 60
 see also bond dissociation energy
 distribution of silicate minerals, 27,
 15–16

disulphide bridges, 22*, 22; 24, 46
 di-tertiary-butyl peroxide, 17–18, 96
 diversity of life, 19, 4–5; 26, 3–4, 6, 14
 divisions I and II of meiosis, 20*, 13,
 14–16, 27–8, 29, 34, 36–7
 DNA (deoxyribonucleic acid),
 17–18*, 89; 19, 8, 9, 10, 11; 20,
 2, 23; 22, 5–7, 23, 38, 64; 24*,
 4, 5–13, 17–21, 50; 26, 8, 16,
 17, 18
 chromosomes and, 20, 8–10
 contemporary views, 24, 44–9
 content in nuclei, 24, 7–8
 damaged by ionizing radiation, 24,
 41, 43; 31, 34, 35
 evidence from viruses, 24, 6–7
 as genetic substance of organisms,
 24, 7–8
 investigating structure of, 24, 9–12;
 32, 6
 makes RNA, 24, 23, 24–6
 molecular structure of, 17–18, 90;
 24, 9–13
 mRNA, protein and, 24, 22, 24, 27,
 44–5
 mutations and, 24, 40, 41, 50
 non-coding, 24, 45, 47
 non-ionizing radiation and
 changes in DNA, 24, 41, 43
 replication, 24, 17–21, 50
 evidence for semi-conservative
 replication, 24, 19–20
 theoretical scheme for, 24, 17–19
 see also chromatin; genes;
 inheritance; transcription
 DNA repair mechanisms, 24*, 41, 43
 Dobson units, 17–18, 16, Plate 5
 dogfish, adaptation by, 19, 13, 14
 dogwhelk (*Nucella lapillus*), 25, 58
 dominant allele and character, 20*,
 27, 30, 33, 41; 21, 4, 6–8, 10,
 17; 26, 5, 6, 16
 molecular explanation of, 24, 42–3
 double bond, 13–14*, 61, 62; 17–18,
 37
 see also unsaturated compounds
 double circulation, 23*, 13, 20
 double helix, 24*, 9, 10, 11, 12, 17–19,
 21, 24, 25, 50
 daughter, 24, 18, 19
 double-slit diffraction, 10*, 6, 7, 9,
 28–30, 31–3
 and Huygen's construction, 10, 25,
 28–30
 down (d) quarks, 32, 26–30, 31, 35,
 36, 37, 43
 Down's syndrome, 20, 20–1
 drift chamber, 32*, 10, 11, 41
 drilling, deep-sea, 7–8, 47–50, 63
Drosophila (fruit-fly), 20, Plate 12; 21,
 13, 14, 15, 21, 26, 30
 chromosomes, 20, 50, 51
 eye colour, 24, 42, 43
 linkage in, 20, 40–4
 drugs *see* pharmaceuticals
 dry-cleaning solvents, 13–14, 55, 57;
 17–18, 23
 duality, wave-particle, of
 electromagnetic radiation *see*
 wave-particle duality
 ductile material, 7–8, 32–3, 34, 76
 duodenum, 26, 10, 11, 18
 Du Toit, Alexander, 7–8, 25, 26, 35,

dykes, 7–8*, 63, 64, 65, 68, 78; 28–29,
 32, 33
 dynamic balance, state of, 15, 13–15
 dynamo, self-exciting, 5–6, 71, 87

E

e[−] *see* electron
 Earth, 1, 4
 age of, 28–29, 4, 35–7
 fossils used to determine, 28–29,
 8, 11, 13, 24, 34
 varves used to determine, 28–29,
 8, 13
 see also dating; geological; time
 as centre of planetary orbits, 2, 33
 chondritic model, 28–29, 47, 49, 57
 circular motion, 1, 24–6
 climate and vegetation belts,
 28–29, 71
 see also climate changes; ice
 ages
 core of, 5–6, 12, 60, 68–76, 81;
 28–29, 41–2, 49, 50
 composition of, 5–6, 69, 72, 75–6
 inner, 5–6, 74, 75, 81; 28–29, 42,
 49
 as source of Earth's magnetic
 field, 5–6, 69–72
 structure of, 5–6, 72–5
 crust of, 5–6, 11, 22, 60, 76–9, 80,
 81; 7–8, 5–16, 33–4; 28–29,
 45–6, 50
 distance to Moon, 2, 22–6, 29
 distance to Sun, 2, 26–8, 29
 internal temperature, 27, 4, 18–19,
 29; 28–29, 26, 57
 interior
 density, 5–6, 10, 11, 63–5, 75, 81
 modelling, 5–6, 6, 11–12, 60–79
 seismic model, simple, 5–6,
 61–6
 see also core; crust; mantle;
 temperature
 magnetism, 5–6, 40–59
 mantle, 5–6, 12, 60, 77; 28–29, 42,
 49, 50, 51
 composition of *see* peridotite
 properties of, 5–6, 68, 81
 structure of, 5–6, 66–8; 7–8,
 33–4
 mass and density of, 3, 36–8; 5–6,
 10, 11, 63–5, 75, 81
 Moon and: forces of attraction
 between, 3, 22
 movements *see* tectonic processes
 orbit and rotation, 1, 28–29, 30, 31,
 32–3, 35–7; 2, 30, 32, 35, 36,
 38, 40
 geometric variations in, 28–29,
 70
 origin of Solar System and, 28–29,
 38–9, 41
 periodicity, 1, 18–22
 photograph of, 1, 5; 5–6, Plate 1
 planets as observed from, 1, 18, 22,
 32–3, 45
 radius of, 2, 15–20, 21–2, 29, 44–6;
 5–6, 6, 7
 ‘reflectiveness’ of (albedo), 28–29, 78
 size and shape of, 1, 11–15, 43;
 5–6, 7

Earth (continued)

- spin, 1, 25–8
- stars and, 1, 11, 13, 18, 40–1
- Sun and Moon as observed from, 1, 12, 17–18, 34–8, 41–3, 44, 45
- temperature, 5–6, 7–8, 56, 57, 67
- see also* density; earthquakes; life; magnetism; rocks; seismic
- earthquakes, 5–6, 4–5, 12, 13–38
- damage due to, 5–6, 4, 5, 22
- detecting and recording, 5–6, 17–21, 22, 24, 26, 37–8, 89–90, Plate 21b
- destructive power, 5–6, 20
- distribution of, 5–6, 16, 22
- energy from, 9, 12
- epicentre of, 5–6, 14, 16, 61–2, 90
- focus of, 5–6, 14, 22, 38, 89
- intensity of, 5–6, 14, 20, 37
- magnitude of, 5–6, 19, 20, 21, 22, 89
- prediction, 5–6, 91–3
- reasons for, 5–6, 14–15
- see also* seismic; seismic waves

Earth sciences, 5–6*, 4, 5–23

- origins of, 5–6, 4–5
- scope and methods, 5–6, 5–7
- see also* Earth; earthquakes; magnetism; seismic

East Indies

- gravity anomalies, 7–8, 34–5
- volcanic and seismic activity, 7–8, 25

East Pacific Ridge, 7–8, 11, 37, 73, 81

echinoid, 28–29*, 9, 10

eclipse, 1*, 35

- lunar, 1, 35, 37–8, 42, 43; 2, 20–1, 45–6
- solar, 1, 37–8; 2, 28–9

eclipsing the Moon (experiment), 2, 22–6, 45–6

ecliptic plane, 28–29*, 70

ecology, 22, 38; 25*, 5, 6, 63; 26, 12–14

- of past, 28–29, 11, 13
- see also* biogeochemical cycles; communities; ecosystems; population; production ecology

ecosystems, 25*, 5, 6; 26, 13–14

- production ecology and, 25, 6–20
- aquatic, energy flow in, 25, 16–17
- food chains and food webs, 25, 11–15, 18
- primary producers, 25, 7–11, 18, 24–5
- see also* aquatic ecosystems

Ediacaran fauna, 28–29*, 65

effectors, 23*, 28, 31, 33, 37; 26, 11, 18

effusive rocks, 5–6*, 8, 77

effusive volcanic activity, 7–8, 15, 16

eggs, 20*, 3, 4, 6, 8, 17

- production of, 20, 20
- sizes of, 20, 9
- see also* gametes; meiosis

Einstein, Albert, 9, 35; 10, 3, 42, 44–5; 30, 7

- on common sense, 30, 5
- Nobel Prize, 30, 7
- particle theory of light, 10, 44–8, 49, 50
- on science and thought, 1, 4, 8

- on speed of light, 2, 8
- theory of relativity 3, 15; 10, 45, 48
- see also* relativity
- on uncertainty principle, 30, 29

Einstein's equation, 31*, 4, 24, 26, 27, 29, 30, 32, 42; 32, 6, 7

Einstein's photoelectric equation, 10*, 46, 47–8

- elastic and inelastic collisions, 9, 20–2; 10, 48
- elasticity, 5–6***, 25, 26, 30–3
- elastic material, 5–6, 29–30; 7–8, 32–3
- elastic modulus, 5–6***, 29, 30, 31, 32, 60, 63–4, 67
- elder (*Sambucus nigra*), 25, 61
- electric charge *see* charge
- electric current, 5–6***, 69, 70–2, 87; 9*, 8, 30, 34, 35; 11–12, 66, 69; 13–14, 69
- electric dipole, 17–18***, 11
- electric field, 10, 39; 11–12, 5–6
- electrical conductivity, 13–14, 43–8, 69–70, 72
- electrical conductor, 5–6***, 69, 70–1
- electrical energy, 9***, 4, 5, 6–7, 23, 30–5
- electricity produced from nuclear power, 31, 39–41
- electrodes, 13–14***, 46, 47–50
- oxygen, 22, 42
- electrodynamics, quantum, 10, 52; 30, 13, 17
- electrolysis, 9, 8; 13–14***, 45, 46, 47–8, 50, 54, 74
- electrolyte, 13–14***, 46, 50, 51; 15, 7

 - strong, 15, 18, 19, 20
 - weak, 15, 19

- electromagnetic interaction, 32, 4

 - gauge bosons, 32, 38, 39, 40
 - hadrons, 32, 18–19
 - leptons, 32, 16, 35
 - quarks, 32, 28, 29, 31

- electromagnetic radiation, 10***, 39, 40, 41, 42, 51; 11–12, 20, 28; 30, 5–9, 14, 17; 31, 3, 8

 - models of, 30, 6–9, 13, 14
 - particle, 30, 7–9, 14
 - wave, 30, 6–7, 14

- electromagnetic spectrum, 10***, 40, 41, 45; 11–12, 30; 30, 6
- electromagnetic waves, 10***, 3, 39, 40, 41, 51

 - light modelled as, 17–18, 57

- electromagnetism, 5–6, 69–71**

 - Maxwell's theory of, 10, 39
 - see also* electromagnetic waves

- electron, 5–6, 69; 9, 4; 11–12, 66–9; 32***, 13, 14–15, 16, 43

 - atoms and, 11–12, 66–9; 30, 29–31
 - charge of, 9, 30–1, 32, 33; 30, 10, 14
 - and Compton effect, 10, 48, 49, 50
 - diffraction of *see* diffraction of matter

 - discovered, 30, 10
 - energy levels, 11–12, 29, 41–2, 43; 30, 4; 31, 11–17
 - flow of, 9, 30
 - gain in reduction, 17–18, 71
 - loss in oxidation, 17–18, 71
 - in photosynthesis, 22, 63–64
 - interactions, 30, 10; 32, 15–16
 - irradiation of leucine, 17–18, 93
 - mass of, 30, 10, 14; 32, 13, 15, 43

 - in metallic crystals, 30, 11
 - paired, 11–12, 55; 13–14, 59, 61
 - electron-pair bonds, 13–14, 61, 62
 - and photoelectric effect, 10, 42, 43–8, 50, 53; 30, 7–8
 - scattering of, 32, 24–5
 - unbound, 11–12, 40
 - unpaired, 11–12, 55, 60
 - see also* matter

electron antineutrino *see* antineutrinos

electron energy levels, 11–12*, 29, 41–2, 43; 30, 4

 - shells and subshells, 11–12, 37–46

electron energy-level diagram, 11–12*, 29, 30, 31, 35, 36, 38, 43, 70

 - and shells and subshells, 11–12, 38, 40, 42, 44, 47, 49, 51, 52

electron micrographs, 19, 6; 22, Plates 4, 5, 6; 23, Plate 10; 24, 30

electron microscopy, scanning, 17–18, 86; 19, 6

electron neutrino *see* neutrinos

electron pair bonds, 13–14, 61, 62

electron sharing, 13–14, 59, 61

electron shells and subshells, 11–12*, 37–41, 42, 43–6; 13–14, 34–5

 - degeneracy, 11–12, 55–8
 - electronic configuration, 11–12, 58–63

electron spin, 11–12*, 52–3, 54, 55–7, 59–60

 - magnetic spin quantum number, 11–12, 53–5, 58
 - uniform and non-uniform magnetic fields, 11–12, 53, 54

electron subshells *see* electron shells

electronegativity, 13–14*, 65, 66–8, 70–1, 72, 73

 - in carbon compounds, 17–18, 12

electronic configuration, 11–12*, 45, 46, 58–63, 73–4; 13–14, 33, 34–5, 58–60, 62, 63, 70, 72, 73, 76

 - Hund's rule, 11–12, 60–2
 - of a noble gas, 13–14*, 58, 59, 73, 76
 - periodicity in, 13–14, 35–8
 - rules for writing, 11–12, 59, 62

electronic structure, 11–12*, 24

 - and Periodic Table, 13–14, 33–42

electron transfer, 13–14, 59

electron transport chain (ETC), 22*, 44–5, 46, 47, 52, 54, 55, 56

electronvolt, 9*, 11, 13, 33; 10, 45, 46; 11–12, 41

electrostatic force/interaction, 9*, 31, 32, 33, 34, 35; 11–12, 14, 15, 28; 31, 12, 19–20

 - and stationary electric charges, 9, 31–2

elements, 11–12, 4–5, 11, 12; 13–14, 5

 - conservation of, 13–14, 8–9
 - discovery of, 13–14, 74–5
 - necessary for life, 25, 20–1
 - prediction of undiscovered, 13–14, 30–3
 - rare earth, 13–14, 30, 33
 - transition, 13–14, 37, 39–40, 41
 - typical, 13–14, 36

ellipse, 2*, 35, 36

ellipsoidal surface, 1, 13

emigration, 25, 34, 36, 37, 43, 55

emission spectra, 11–12*, 25, 28, 30, 32, 36, 45, 47, 50, 56, 70–1; 31, 3, 14
empirical formulae, 13–14*, 10–15, 16, 17–19, 21, 24
 determination of, 13–14, 11–14
Encarsia formosa (wasp), 25, 54
endemic species, 26, 7, 8, 17
endoplasmic reticulum, 22*, 38, 39, Plates 4, 5; 26, 15
endothermic reactions, 16*, 4, 5–6, 10, 22, 23
energy, 9, 1–5; 23, 14
 atomic, 31, 3–5, 11–17, 21–2
 in heavy atoms, 31, 15–16
 in hydrogen atom, 31, 3–4, 11–14, 15–16, 21, 22
 barrier, 16, 23, 27
 changes and atomic spectra, 11–12, 27, 28–9, 31–2, 36
 chemical, 9, 3, 4, 5
 continuum, 11–12, 33
 dimensions of, 9, 10, 13
 electrical, 9, 4, 5, 6–7, 23, 30–5
 electromagnetic radiation of, 10, 42–9, 51, 53
 from Sun, 10, 4, 53
 of the environment, 27, 35, 36; 28–29, 66
 flow
 in aquatic ecosystems, 25, 16–17; 26, 12
 in atmosphere, 28–29, 71, 72
 diagrams, 25, 13, 14, 16–17
 light, 9, 4, 5–7, 12
 in living organisms
 processes requiring, 22, 9–10
 supply, 22, 10–11
 transmission, 22, 11–12
 see also adenosine triphosphate; glucose
 mass and, 31, 24, 27; 32, 6
 nuclear binding, 31, 23, 25, 27, 29, 37
 nuclear levels, 31, 21–2
 in particle physics, 32, 6–7, 9
 scale of, 32, 7
 units of, 32, 7
 of photons, 11–12, 39–40; 30, 7, 8, 13
 potential, 9, 2; 31, 7
 released by earthquakes and explosions, 5–6, 20, 89–90; 9, 12
 released in nuclear reactions, 31, 29, 30–2, 37–41; see also nuclear power
 sound, 9, 3, 5
 strain, 9, 3, 5; 23, 14
 transfer of, 9, 4, 8, 9–10, 35
 units of, 9, 11, 12
 see also activation energy; atomic nucleus; bond dissociation energy; conservation of energy; electron energy; energy conversion; energy levels; flow diagrams; glucose; gravitational energy; internal energy; ionization energy; kinetic energy; nuclear energy; production ecology; Sun
energy conversion, 9*, 2, 14, 15, 16, 18–19, 23, 32, 34, 35

energy of the environment, 27*, 35, 36; 28–29, 66
energy levels, 30, 4; 31*, 7
 diagram, 11–12, 29–35, 47, 51
 see also atomic energy levels; electron energy levels; nuclear energy levels
energy transducer/transduction: role of ATP, 22*, 11–12
environment
 changes in, 21, 5, 9, 10
 speciation, 21, 22–4
 and colour forms of moths, 19, 16–19, 20, 27–9, 30
 and fitness, 19, 23, 24
 human differences, 21, 11
 issues, 25, 22–5, 27, 29, 30, 31, 32, 63
 polluted, 15, 31–3; 21, 5, 9, 10
 halocarbons and ozone layer, 17–18, 15–16
 see also ecology; ecosystems; habitat
enthalpy of reaction (ΔH) (enthalpy changes), 16*, 4, 5, 6, 7–15, 22, 23–5, 29
enzymes, 17–18*, 64, 75, 88; 19, 9; 22*, 6, 24, 25, 26–37; 24, 9; 26, 8, 9–10, 11, 17, 18
 in DNA repair, 24, 41
 protein role in protein synthesis, 24, 31
 nature of, 22, 20, 25
 in red cells, 23, 20, 24
 salivary amylase, properties of, 22, 33–5, 37, Plate 3
 temperature and pH, 22, 28–30
enzyme activity, 22*, 28; 26, 17, 18
 temperature and pH effects, 22, 28–30
enzyme assay, 22*, 32
 plasma, 22, 32, 35
 salivary amylase, 22, 33–5, 37, Plate 3
enzyme catalysis, 22*, 25, 26, 33; 23, 36
enzyme specificity, 22*, 25, 27
enzyme–substrate complex, 22*, 26–7, 30
 Eocene Period, 28–29, 20–1, 23
epicentral angle, 5–6*, 61, 62–3, 64–5, 68–9, 74
epicentre of an earthquake, 5–6*, 14, 16, 61–2, 90
 epidermis of leaf, 22, 64, Plate 8
 equality, proportionality converted into, 2, 41
 equilibrium see chemical equilibrium
equilibrium constant, 15*, 21, 22–4, 25, 36, 38; 16, 18–19, 28, 29
 generalized form of, 15, 34–6
 size of, 15, 22–4
 temperature and, 15, 12, 39
 ‘equilibrium game’, 15, 37
equilibrium system
 trying to beat, 15, 15–16
 water as, 15, 25–7
equilibrium yield, effect of temperature and pressure on, 16, 31–2
equinox, 1, 16
Eras, geological, 28–29*, 4, 25
 see also Cainozoic; Mesozoic; Palaeozoic; Precambrian
Erastosthenes: measurement of Earth radius, 2, 14–16, 17–19, 20, 44–5
erosion, 5–6*, 8, 79; 7–8, 5–6, 7; 27*, 5, 20, 34, 37, 52–3, Plate 2; 28–29, 19, 22
 by ice, 27, 39–40, 44, 45; 28–29, 74
 by wind, 27, 39–40, 44, 45
 see also transportation; weathering
error bars, 3*, 29; 4*, 22, 23, 24
errors, systematic, 3, 25, 26; 4, 18–19
 see also uncertainties
Escherichia coli, 22, 8, 13; 24, 6, 30
 insulin manufacture and, 24, 48
 virus infection, 24, 6
esters, 17–18*, 63, 64, 69, 70; 22, 15–16
 hydrolysis, 17–18, 64, 75
 polymerization, 17–18, 82
 synthesis, 17–18, 68, 74
ester group, 17–18, 63, 69, 70
estimating uncertainties, 4, 19–20
ETC see electron transport chain
ethanamine see ethylamine
ethane, 17–18, 18–19
 comparison with ethylene and acetylene, 17–18, 37
 structure, 17–18, 27
ethane-1,2-diol, 17–18, 82
ethanoic acid see acetic acid
ethanol (alcohol), 13–14, 57; 17–18, 9; 22, 15–16, 31, 57
 chemical reactions, 17–18, 63, 67–8, 71–2
 molecular model of, 17–18, 25
 as motor fuel, 25, 11
 physical characteristics, 17–18, 22–3
ethene see ethylene
‘ether’ see ethoxyethane
ethers, 17–18*, 4, 32
 chemical reactions, 17–18, 69, 70
 structural isomerism, 17–18, 32, 34–5
ethoxyethane (‘ether’), 17–18, 35
ethyl acetate, 17–18, 63, 67–8; 22, 15–16
ethyl alcohol see ethanol
ethylamine, 17–18, 21
ethylene, 17–18, 37, 38, 39, 43
 polymerization of see addition polymers
ethyl methyl ether, 17–18, 32
ethyne see acetylene
Eucalyptus, 25, 4
eukaryotes, 19*, 9, 11; 20, 8; 21, 29; 24, 44, 45
 time when appeared, 28–29*, 59, 64, 70; 32, 45
Europe
 climate changes, 7–8, 21
 igneous rocks, 7–8, 65
 mountains, 7–8, 22, 24–5
 rift valley, 7–8, 29
 see also Britain; Iceland
European Organization for Nuclear Research see CERN
eustatic changes, 28–29*, 76, 79
eutrophication, 25*, 27, 29, 33
evaporites, 27*, 41, 45
evolution by natural selection, 1, 8; 17–18, 91; 19*, 11, 12–14, 15, 29, 30–7; 20, 31; 21, 6–8, 10, 12, 13, 21, 23; 23, 14, 21; 24, 4,

evolution (continued)
9; 26, 6–8, 13, 14, 17; 28–29,
8–12, 13
adaptation: relation between
structure and function, 19,
13–14, 15; 22, 20, 29
and classification, 21, 27–34
evolutionary trees, 21, 28, 33
and genetics, 21, 4–10
case studies of, 21, 9–10
Mendelian, 21, 3
phenotypic and genotypic
changes during, 21, 4–6
recessiveness and dominance, 21,
4, 6–8, 10, 17
see also genetic variability
implications of theory, 19, 36–7
modelling, 19, 32–6, 37
speciation, 21, 22–7; 28–9, 72
taxonomic hierarchy, 21, 27, 29–32
see also mutation
evolution of atmosphere, 28–29,
57–8, 61
evolution of Universe, 32, 44–5
evolutionary tree, 21*, 28, 33
exchange of alleles *see* crossing over
exchange particle *see* gauge bosons
excited nucleus, 31*, 31, 32, 36; 32, 27
excited state of an atom, 11–12*, 32
excited states of hadron, 32, 27
exercise and blood system, 23, 15–18,
20, 32, 33
exons, 24*, 44, 45, 47
exothermic reactions, 16*, 3, 4–6, 9,
16, 17, 18, 24, 29, 32, 33
experimental data, 1*, 20
experiments, doing *see* practical
work
explosions, 5–6, 89–90
explosive rocks, 5–6, 77
explosive volcanic activity, 7–8, 15,
16; 27, Plate 10
exponential decay, 11–12*, 21, 23;
28–29, 27
exponential growth, 19*, 21
extended covalent substances, 13–14*,
63–4
extinction of species, 28–29, 68, 72, 81
extracellular fluid, 23*, 6
extrapolation, 2*, 39; 4, 11
extraterrestrial factors and ice ages,
28–29, 5, 77, 78
extrusive (volcanic) rocks, 5–6*, 8, 77;
27, 19–20, 52–3, Plates 2, 3
see also igneous rocks
eye, lens of human, 10, 30–1

F

FAD (flavin adenine dinucleotide),
22*, 31, 32, 36, 46, 51, 52, 53,
54, 55, 57
faecal matter, 25, 13, 14, 18
Fahrenheit temperature scale, 9, 23–4
falsifiability criterion, 1*, 7, 8, 43;
7–8, 80
family, 21*, 29, 31, 33; 26, 3, 15
Faraday, Michael, 13–14, 46
fat hen (weed, *Chenopodium album*),
25, 36
fats, 22*, 7, 15, 16
catabolism of, 22, 60, 61; 23, 26, 27
transport of, 23, 11

fatty acids, 22*, 7, 15, 16, 32, 43, 60,
61, 64
faults, 5–6*, 14, 15, 22, 27, 90, 92–3;
7–8, 43, 73–4; 27*, 48, 54
see also transform faults
faunal succession, principle of, 28–29,
15–19, 25
Fawcett, E. W., 17–18, 79
fecundity, 19*, 21, 23, 24, 32
reduced in control of pests, 25, 55
see also reproduction
feedback loop, 23, 29; 26, 11, 18
feldspars
in rocks, 27*, 6, 9–11, 14–16, 23,
29, Plate 6
in meteorites, 28–29, 51
transport and deposition of, 27, 36
weathering, 27, 32, 33
fermentation, 22*, 57
Fermi, Enrico, 31, 39
Fermilab, 32, 10, 36
ferns, time when appeared, 32, 45
ferromagnesian minerals, 27*, 9,
10–11, 15–16, 18
weathering of, 27, 32, 33
see also iron in rocks; magnesium
in rocks
fertilization *see* cross-fertilization;
gametes
fertilizers and biogeochemical cycles,
25, 28, 29, 30, 32
Feynman, Richard, 10, 52; 32, 25
fibres, synthetic, 17–18, 4, 40, 78, 82,
86, 87, Plates 3, 9 and 10
fibrous proteins, 17–18*, 88; 22, 23
field
dipole, 5–6, 70
lines, 5–6, 43, 45–6, 47, 48
strength, geomagnetic, 5–6, 49–51,
54, 55–6
field notes, 4, 7, 8
field of force, 5–6*, 43
filial generations *see* first filial;
second filial
finches in Galápagos Islands, 26, 6–8,
14, 17
fins and flippers as an adaptation, 19,
13
fire extinguishers, 17–18, 15, 16, Plate
4
fire fountains, 27, 19, Plate 10
first carnivores, 25*, 11, 12, 14, 18
first filial generation (F_1), 20*, 4, 6,
23, 27–8, 33, 37, 38, 40, 41, 42,
44
first ionization energy, (I_1) 11–12*,
62, 63–6
fish, 25, 16–17; 26, 12, 13, 19
adaptation by, 19, 13–14
excretion, 23, 23
fecundity of, 19, 21
oxygen supply, 23, 8–9, 10
time when appeared, 28–29, 12; 32,
45
water pollution and, 25, 27, 30, 32
Fisher, Reverend Ormond, 7–8, 17
fission reaction, 9, 4
see also nuclear fission
fissure eruption, 27, Plate 10
fitness, 19*, 19, 20, 32–6, 37; 21, 8, 10,
12; 26, 6, 8, 13
actual and potential, 19, 22
differences in, 21, 6
fecundity and viability, 19, 21–4
mutation and, 19, 31
neutral, 21, 15
see also evolution by natural
selection
fixation, 21*, 8, 10, 11; 26, 17
fixed relationships, graph
representing, 2, 37, 41
fixed-target experiments, 32*, 9, 10
flame spectroscopy, 13–14, 74, 75
flatworm: oxygen supply, 23, 6–7, 10
flavin adenine dinucleotide *see* FAD
flavoprotein, 22, 45, 52, 55
flea
myxomatosis spread by, 25, 61
oxygen supply, 23, 8
Flemming, Walther, 20, 8
flies, fruit- *see* *Drosophila*
flints, 28–29, 20–1
flood explanation of fossil sequences,
28–29, 16
flow diagrams
energy, 25, 13, 14, 16–17
of heating system, 23, 28, 29
flowering plant, life cycle, 22, 4
fluorides, 13–14, 53, 59
fluorine, 11–12, 22, 24, 64, 72, 73;
13–14, 25, 58, 73
in atmosphere, 28–29, 56
in carbon compounds, 17–18, 8, 9,
10, 13, 15, 20
chemical bonding, 13–14, 59–60,
65
as molecular covalent substance,
13–14, 56
physical properties, 17–18, 11–12
fluoroalkanes
bonding and molecular structure,
17–18, 8
homologous series, 17–18, 19, 20
physical properties, 17–18, 10–11,
13, 14–15
structural isomerism, 17–18, 28
1-fluorobutane, 17–18, 19
fluoroethane, 17–18, 19, 28
1-fluorohexane, 17–18, 19
fluoromethane
bonding and molecular structure,
17–18, 8, 9, 28
physical properties, 17–18, 10–11,
13
as refrigerant, 17–18, 14–15
1-fluoropentane, 17–18, 19
1-fluoropropane, 17–18, 19, 28–9
2-fluoropropane, 17–18, 28–9
foam-blowing agents, 17–18, 15, 16
focus of an earthquake, 5–6*, 14, 36,
38, 89
folding/folds of rocks, 5–6*, 12; 7–8,
22, 70; 27*, 49, 54
food
and glucose level in blood, 23, 25,
26
production, 19, 4
as source of energy, 9, 3, 12
food chain, 25*, 11, 12, 18; 26, 12
foodstores, 22, 12
in animals, 22, 16, 17
in plants, 22, 16, 17, Plate 6
food web, 25*, 12, 13–15, 16–17, 18
aquatic, 25, 16; 26, 12, 18–19
fool's gold *see* pyrite
forces
acceleration and, 3*, 9–10, 11,
14–15, 20

forces (*continued*)
 balanced, 3, 10
 constant, energy transferred by, 9, 9–10
 driving
 for continental drift, 7–8, 23, 24, 25–6
 for plate motion, 7–8, 76–8
 of gravitational attraction, 3, 22
 magnitude of, 3, 22, 23
 between molecules *see*
 intermolecular forces
see also convention currents
foreshocks, 5–6*, 18
forests and woodland
 acid rain and, 25, 30, 32
 and carbon dioxide, 28–29, 58, 78
 cleared, biogeochemical cycles and, 25, 23–4, 27, 31
 communities, 25, 59–60
 ecosystems, 25, 3, 5, 9, 18
form *see* morphology
formaldehyde, 17–18, 39, 40, 92, 93
formic acid (methanoic acid), 17–18, 39, 40
formulae *see* chemical formulae;
 empirical formulae; molecular formulae
fossil fuels *see* fuels
fossils, 5–6*, 4; 28–29*, 6, 8–12, 13; 7–8, Plate 3
 climatic changes and, 28–29, 74
 and dating rocks, 28–29, 8, 11, 13, 24, 34
 evidence for landbridges and
 continental drift, 7–8, 18, 19, 20, 24, 28, 57–8
 microfossils, 27, 40, 41
 recent discovery, 28–29, 81
 and source of atmospheric oxygen, 28–29, 54–5, 64–70
 in Stratigraphic Column, 28–29, 11, 12, 13, 14, 18, 24, 25
see also faunal succession
Foucault, Leon, 1, 42
Foucault pendulum experiment, 1*, 27, 28, 32, 42
foxes, 25, 62
 in food chains and food webs, 25, 11–12, 14–15
fractional crystallization, 27*, 22, 23, 24, 29
 fracture zones, 7–8, 54, 64
fragmental texture, 5–6*, 8
Fraunhofer diffraction, 10*, 30, 31
Fraunhofer, Joseph, 11–12, 26
Fraunhofer lines, 11–12*, 26, 27, 70
 free-fall experiments, 3, 19, 24, 39
free particle (quantum), 30*, 10, 21, 22, 23
 and diffraction, 30, 10–11, 14
 and infinite sine wavefunctions, 30, 22, 23
 propagation of *see* de Broglie's formula; wavefunctions
Freons, 17–18, 9, 15
frequencies
 and atomic spectra, 11–12, 26, 29, 36
 of electromagnetic radiation, 10, 39, 40
 threshold, 10, 43, 44, 47
frequency of a wave, 10*, 13, 16, 23
frog hearts, 23, 35–6

frontiers of geology, 28–29, 80–1
 frost shattering, 27, 31–2, 34, 44
 fructose, 22, 43; 23, 25
fruit-fly *see* *Drosophila*
Fucus vesiculosus (seaweed), 25, 57
fuels
 chemical, 16, 14, 15–16
 ethanol from sugar cane, 25, 11
 fossil, 25, 10, 23
 combustion of, 16, 2, 3, 15, 16; 25, 22–4, 30, 31, 32; 28–29, 56, 68
 metabolic, 22, 43, 60
 rocket, 16, 33–5
see also power
 fumaric acid, 22, 45
 function and structure, relationship between, 19, 13–14; 23, 14, 21
functional groups, 17–18*, 10, 22, 31–3, 38, 39, 42, 70, 97
 chemical reactions, 17–18, 67–77
functional isomers, 17–18*, 31, 32
functional proteins, 24*, 38
fundamental interactions, 32*, 4
 mediation of *see* gauge bosons
 range, 32, 16, 29
see also electromagnetic; gravitational; strong (between quarks); weak
fundamental niche, 25*, 59, 62
fundamental particles, 32*, 3, 15, 43
 time (after Big Bang) when formed, 32, 44–5
see also gauge bosons;
 lepton–quark symmetry;
 leptons; quarks
fungi, 21, 29
 food chains and food webs and, 25, 11, 13–14
 as heterotrophs, 22, 8, 38
 nitrogen cycle and, 25, 26
fusion *see* fertilization; nuclear fusion

G
G *see* guanine
G (gravitational constant), 3, 34
gabbro, 5–6*, 60, 76, 79, Plate 14; 7–8, 5, 9; 27*, 17, 24; 28–29, 4
density, 27, 37
 and metamorphism, 27, 51
 and plate margins, 7–8, 63, 64, 65, 66, 72, 73, 78
Galápagos Islands, 26, 6–8, 14
Galileo, Galilei, 2, 5, 35, 42–3, 44; 3, 4, 8–9; 7–8, 32
 inclined planes experiments, 3, 8–9
gall bladder, 26, 10
gall wasp (*Andricus quercus-calicis*), 25, 59
gametes, 19*, 10; 20*, 8–9, 11, 17; 21, 4, 14, 20–1; 24, 4, 7; 26, 15, 16, 17
DNA content of, 24, 8
fusion of *see* fertilization
human, 20, 8, 9, 11
 and mutation, 24, 40, 43
 production of, *see* meiosis
 radiation damage to, 31, 34
see also egg; ovule; ovum; pollen; sperm
γ-decay, 11–12*, 18, 20, 23; 31*, 31, 32, 34, 36
γ rays (*γ* radiation), 10, 40; 30, 6
 scattering of, 30, 8
garnets, 27, 15, 16
gas chromatography, 17–18, 19, 49
gases, 11–12, 7, 9–10, 13; 13–14, 25, 26–8
atomic spectra, 11–12, 28–36
chemical bonding, 13–14, 58–64, 67
 and chemical reactions, 16, 7–8, 13, 14
combustion, 16, 2, 15, 16, 17
 rates of reaction, 16, 18, 20, 22–5, 26–7
internal energy of, 9, 28, 29, 30
reactions of, 13–14, 18–19
ionization, 11–12, 7, 38, 39, 64
isotopes, 11–12, 11, 12, 15–17, 20, 22
magnetic properties, 11–12, 53, 54, 55
see also air; atmosphere
gastric juices, 26, 10
gastropods, 28–29, 67, 68, 70, Plates 21 and 30
gauge bosons, 32*, 4, 5, 38, 43, 44
 as mediators of fundamental interactions, 32, 38–9
 properties of, 32, 21, 22, 39
 types of, 32, 39–42
see also gluons; graviton;
 intermediate vector bosons; photon
Gay-Lussac's law, 13–14*, 18, 19
Gell-Mann, Murray, 32, 22, 26, 28, 29, 31, 41
genes, 19*, 9, 11; 20*, 23–30, 33–40, 45–51; 21, 14, 19–21, 22; 22, 4–5, 6, 20, 23, 24; 24*, 4, 7, 16, 42–4, 46–7; 26, 3, 5, 8, 13, 15, 16
control, 24, 16
damaged by ionizing radiation, 24, 40; 31, 34, 35
independent assortment and, 20, 33–40
linkage of, 20, 40–4
mitosis and, 20, 45–51
model of inheritance and, 20, 23–30
split, 20, 50; 24, 44, 46–7
structural, 24, 42
see also chromosomes; DNA;
 genetic variability; heritable character; inheritance; recombination
gene pool, 21*, 4, 5–6, 8–9, 10, 21, 26; 26, 17
general theory of relativity, 32, 15
generations
 length of, 22, 5
see also filial generations
genetic code, 24*, 26, 35–9, 45
 deciphering, 24, 36–8
 non-overlapping, 24, 38
 table, 24, 36; 26, 9
 triplet nature of, 24, 29, 35–8
 universal, 24, 38, 46, 49
genetic drift, 21*, 15, 22
genetic engineering, 24*, 45, 46–9
genetic fingerprinting, 24*, 45
genetic variability within populations, 21, 11–22

genetic variability (*continued*)
 animal, 21, 13–15
 balanced polymorphism, 21, 16–19
 human, 21, 11–15
 neutral mutations, 21, 15–16
 recombination, 21, 19–21, 22
 genetics *see* gene pool; genes;
 genetic; mutation and under
 evolution
genome, 20*, 24
genotypes, 20*, 25, 28–9; 21, 4–6; 24,
 4; 26, 5, 6, 17
genus (*plural genera*), 21*, 29, 30, 33;
 26, 3, 15
 geocentric dipole, 5–6, 47, 48, 55
geocentric model of the Universe, 1*,
 14, 44
 geocentric system, 2, 33
 geographic poles, 5–6, 44, 49, 55–6
geographical isolation, 21*, 23, 24,
 26–7; 26, 8, 13
 geological cycles, 27, 4–5; 28–29, 22
 geological map, 28–29, 18–19
 geological section, 28–29, 18–19,
 20–1
 geological time *see* time
geology, 5–6, 4, 5
 frontiers of, 28–29, 80–1
see also Earth sciences; rocks
geomagnetic field strength, 5–6,
 49–51, 54, 55–6
geomagnetic poles, 5–6*, 41, 44, 47,
 48, 49, 50, 51, 55, 83–4
geometric isomers/isomerism, 17–18*,
 42, 43, 44, 45
 applications, 17–18, 46–51
 geometric variations in Earth's
 orbital and axial rotations,
 28–29, 70
 geometry, spherical, 7–8, 55
 geopolity, 7–8, 38–40
Geospiza (ground finch), 26, 6–8
G. conirostris, 26, 7–8, 17
G. difficilis, 26, 7–8, 17
G. magnirostris, 26, 7–8, 17
 geothermal power, 7–8, 69
 germanium, 13–14, 28, 37–8, 69
germ cells *see* gametes
 Germer, Lester, 30, 11
 giant molecules, 17–18, 77–91; 19, 10
 addition polymerization and,
 17–18, 78–81
 biological macromolecules, 17–18,
 88–90
 condensation polymerization and,
 17–18, 81–3, 89
 physical properties of, 17–18, 84–7
 structures of, 17–18, 78
 synthesis of, 28–29, 62, 63
Gibbs Fracture Zone, 7–8, 51
Gibson, R. O., 17–18, 79
gigaelectronvolt (GeV), 32, 7, 12
 gills, 23, 8–9, 10
 glaciation *see* ice ages
 glacier, 27, Plate 14
 glands, 23, 31, 32, 36
see also hormones
 Glashow, Sheldon Lee, 32, 31, 34, 40
glassy texture, 5–6*, 8
globin, 23*, 19
globular proteins, 17–18*, 88, 89; 22,
 23–4, 25; 26, 10, 18
see also enzymes
glucagon, 23*, 27, 28, 31, 32; 26, 18
gluconeogenesis, 23*, 26, 27

glucose, 17–18, 62, 89; 22*, 15, 17;
 26, 9, 12, 15, 18
 catabolism, 22, 15, 27, 41, 43,
 44–54, 58–9, 61
 combustion of, 16, 15
 levels in blood, 23, 11, 14, 24–8; 26,
 12, 18
 control of, 23, 31–2
 low and high, 23, 26, 28
 regulation of, 23, 25, 27
 polymers of, 22, 17–18, 19
glucose residues, 22*, 18, 19
gluons, 32*, 39, 41, 42, 43, 44
 glutamic acid (Glu), 17–18, 62; 22,
 21, 30, 45; 24, 36, 40
 glutamine (Gln), 22, 21; 24, 36
glycerol, 22*, 7, 15, 16, 43, 45, 60; 23,
 26
glycidol, 17–18, 64, 67
glycidyl butyrate, 17–18, 63, 64, 65,
 67, 95
glycine (Gly), 17–18, 60, 92; 22, 21,
 45; 24, 36; 26, 9, 18
glycogen, 22*, 15, 17, 18, 19, 24, 43,
 45; 23, 24, 25, 38; 26, 18
 breakdown to glucose, 23, 26, 27,
 28
glycogenolysis, 23*, 26, 27, 28
glycolysis/glycolytic pathway, 22*,
 44, 45, 47, 49–50, 54, 57, 60
glycosidic bonds, 22*, 18, 19, 20
gneiss, 27*, 49, 51, 52, 53; 28–29, 4,
 18, 20–1
gold, 11–12, 5, 13–14; 13–14, 30, 76;
 27, 6; 28–29, 53
gold foil experiment, 11–12, 13–18,
 32, 24
Gondwanaland, 7–8, 21, 25; 28–29,
 80
Gorda Ridge, 7–8, 42, 73
GPP *see* gross primary production
graded bedding, 28–29*, 8, 14
 gradient, physical, on shore, 25, 57,
 68
gradient of a straight-line graph, 3*,
 30
 grain size of rocks
 igneous
 coarse, 27, 22–4, 29
 fine, 27, 19–20, 29
 metamorphic, 27, 49
 transport and deposition, 27, 35–6,
 38, 43, 45; 28–29, 14
granite/granitic rocks, 5–6*, 8, 60, 77,
 79, 81, Plates 9 and 10; 7–8, 5,
 9, 73; 27*, 28–9; 28–29, 4,
 20–1, 42, 47
 composition of, 27, 9, 11, 17, 18,
 29, Plates 4 and 6
 formation of, 27, 24, 28–9, 52–3
 metamorphism and, 27, 51, 52, 53,
 54
 and origin of continents, 27, 28–9,
 52–3
 radiometric dating and, 28–29, 33,
 34, 35
 weathering of, 27, 33
graphite, 13–14, 64, 69–70; 27, 11
 density of, 5–6, 66
graphs, 2*, 36, 37–9, 41; 4, 9–15, 22–4
 axes of, 2, 37, 38, 39
 exponential, 11–12, 20; 19, 21–22;
 28–29, 27
 gradient, 3, 30
 logarithmic, 28–29, 28–29

plotting, 4, 9–15, 24
 representation of uncertainties, 4,
 22–3
 scale, choosing a, 4, 13, 14–15, 24
 grass,
 copper tolerance of, 21, 9, 10
 effect of rabbits on, 25, 61, Plates
 11 and 12
grasshopper chromosomes, 20, 18,
 19–20
grating, diffraction, 10, 9, 10, 33–6;
 30, 6, 7, 11
gravitation, Newton's law of, 2, 36; 3,
 35–7; 9, 32
gravitational constant, G, 3*, 34
gravitational energy, 9*, 2, 5, 13–15,
 22
 conversions to and from, 9, 2, 14,
 15, 16, 18–19, 23, 32
 formula for, 9, 13
gravitational force, 9, 32
 of attraction, 3, 22
gravitational interaction, 31, 11,
 19–20; 32, 4; *see also*
 gravitational force
 gauge bosons, 32, 15, 38, 39, 42
 hadrons, 32, 18–19
 leptons, 32, 15–16, 35
 quarks, 32, 28, 29
graviton, 32*, 39, 42, 43
gravity, 3*, 18
 acceleration due to, 3, 18, 19, 21,
 24–31, 33–6; 5–6, 10
 force of, 3, 18, 20
 free fall under, 3, 19, 24, 39
 mass and, 3, 18–22
 as mechanism for plate motion,
 7–8, 78
 weight and, 3, 20–1, 23
gravity anomalies, 7–8*, 22, 32, 34–5,
 36, 58, 69, 77
 and isostatic equilibrium, 7–8,
 31–2
 and earthquakes, 7–8, 34–6
 and plate margins, 7–8, 69–70, 77
grazing *see* herbivores
great tit (*Parus major*) populations,
 25, 34, 35–6
greenhouse effect, 25*, 25, 31; 28–29*,
 72, 78
gross primary production (GPP), 25*,
 8, 9, 13, 15, 18; 26, 12
 in aquatic ecosystems, 25, 16–17
ground state of an atom, 11–12*, 32
Groups in the Periodic Table,
 13–14*, 27, 36
group transfer molecule *see*
 coenzymes
growth, 22, 5–12; 26, 4
see also energy; survival
guanine (G), 17–18, 89; 24*, 10, 11–12
 guard cells, 19, 6–7; 22, 63
 Gurdon, John, 24, 15–16, 50
 gypsum, 27, 41, 45; 28–29, 20–1

H

Haber, Fritz, 16, 30
 Haber–Bosch process, 16, 2, 30–2;
 22, 26; 25, 28–9
habitat; 25*, 3, 5, 6, 59
hadrons, 32*, 18, 19–25, 31–4
 baryon number, 32, 20, 21–2, 23–4,
 32

hadrons (*continued*)
 charge, 32, 19–20, 22, 24, 25
 charmed, 32, 34
 constituents of *see* quarks and
 antiquarks
 distinct from leptons, 32, 18
 families of, 32, 18–19
 not fundamental particles, 32, 24–5
 strangeness, 32, 22, 23–4, 32
 table of, 32, 22
 time (after Big Bang) when formed, 32, 44–5

haem, 22*, 24, 25, Plates 1 and 2; 23, 19

haematite, 28–29*, 63

haemocyanin, 23*, 12

haemoglobin, 21, 16–19, 22; 22*, 20, 24, 25, Plate 2; 23*, 11, 18–22; 24, 9
 mutation and, 21, 16, 19; 24, 40
haemoglobin A, 21, 16, 19

haemoglobin S, 21, 16, 19
see also sickle-cell anaemia

haemophilia, 19, 31

Hahn, Otto, 1, 5; 11–12, 22–3

Haldane, J. B. S., 17–18, 91, 92

half-life of protein, 22, 5

half-life in radioactive decay, 11–12*, 20, 21, 22, 23; 28–29*, 26–31

halides, 13–14, 60, 72, 73

halite, 27, 41, 45

haloalkanes, 17–18, 70

halocarbons, 17–18*, 13, 14–16

halogens, 13–14*, 25, 59, 60, 72, 73
 in carbon compounds, 17–18, 8, 9, 10, 13, 15, 20
 discovery of, 13–14, 75
 inertness of, 13–14, 58
 physical properties, 17–18, 11–12
handedness *see* chirality

hand lens, use of, 5–6, 8

haploid number of chromosomes, 20*, 11, 12, 17, 24, 25–6; 26, 15

'hard' water, 27, 40

hares, 25, 62

Hawaii, 7–8, 68, 77

heart, 23, 12–14, 20; 26, 12
 beat, control of
hormonal, 23, 35–7
nervous, 23, 33–5, 37
 blood system and, 23, 12–14
 effect of exercise on, 23, 15–18, 20
 frog's, 23, 35–6
 pig's, 23, 12, Plate 9
see also cardiac output

heat, 9*, 3, 6, 35
 accretional, 28–29, 48–9
 and chemical reactions, 16, 3–7, 20
 in living organisms, 22, 10, 11, 65; 23, 11, 23–4
 from respiration, 22, 10, 12; 25, 7, 8, 9, 14–15, 17
 specific, 9, 25, 26, 29
 transfer, 9, 24, 25–9, 35
 in body, 23, 11, 23–4
see also heat-flow; temperature

heat flow, 28–29, 26
 generated at plate margins, 7–8, 66, 72, 79
 oceanic, 7–8, 36–7, 58

heating of planets, 28–29, 47–50

heavy atoms, energy levels of, 31, 15–16

Heisenberg, Werner, 30, 28, 29

Heisenberg's uncertainty principle, 30*, 4, 23, 26–8, 29–31, 32, 34; 31, 6
 applied to atoms, 30, 29–31
 applied to macroscopic objects, 30, 32
 applied to quanta, 30, 26–9, 31

heliocentric model, 1*, 32, 44, 45

helium, 11–12, 5, 13
 in atmosphere, 28–29, 52, 55, 57
 discovery of, 13–14, 75
 electronic configuration, 11–12, 46
 first ionization energy, 11–12, 64
 inertness of, 13–14, 58
 nucleus
 binding energy of, 31, 23
 formed by nuclear fusion, 31, 39, 40
 orbital, 11–12, 59–60
 photoelectron spectrum, 11–12, 41

hepatic portal vein, 23*, 25

heptane, 17–18, 19
 solubility of alcohols in, 17–18, 23, 24

heptan-2-one, 17–18, 48

herbivores, 22, 18; 25*, 11, 33; 26, 18
 biogeochemical cycles and, 25, 22, 26, 28
 food chains and food webs and, 25, 11–14, 18
 killed by insecticides, 25, 53
 population density, 25, 34–5
 rabbits, control of, 25, 60–2

heredity *see* heritable character;
 inheritance
 'Hering-Breuer reflex', 23, 33

heritable character, 19*, 27, 29, 30, 37
 and population changes, 19, 25–9
see also inheritance

Herodotus, 28–29, 8

Hershey, Alfred, 24, 7

Hertz, Heinrich, 10, 13, 39

hertz, Hz, 10*, 13, 23

Hess, Professor Harry, 7–8, 26, 38–40, 43, 44, 46, 47, 81

Hess, W. G., 16, 11

Hess's law, 16*, 11, 14

heteropolymers, 17–18*, 78, 89; 22, 17, 20–1

heterotrophs, 22*, 8, 9, 10, 11, 13, 38, 39, 61, 64, 65; 23, 4; 26, 12, 18
 biogeochemical cycles and, 25, 22, 25
 production ecology, 25, 7, 9, 10, 11–15

heterozygosity, 21*, 3, 4, 10, 13; 24, 42–3
 balanced polymorphism, 21, 17, 19
 genetic variability, 21, 12, 13–14, 15
 recessiveness and dominance, 21, 6–7, 8
 recombination and, 21, 20–2

heterozygous, 20*, 27, 32, 41; 26, 5, 16

hexan-1-amine, 17–18, 21, 22

hexane, 17–18, 19

hexane-1,6-diamine, 17–18, 82, 96

hexanedioic acid, 17–18, 82, 96

hexanoic acid, 17–18, 70, 96

hexan-1-ol, 17–18, 20, 23, 24

hex-2-enal, 17–18, 48–9

hierarchy, taxonomic, 21, 27, 29–32

high-density (low pressure) polymer, 17–18, 85, 91

high-energy physics, 32*, 4

high-grade metamorphism, 27, 51, 54

higher carnivores, 25*, 11, 12, 14, 18, 22

higher-order structure of proteins, 22*, 22, 23–4, 29; 26, 10, 17, 18

Himalayan margin *see* continent/continent collision

histidine (His), 22, 21; 24, 36

histogram, 7–8, 9

histones, 20*, 9, 10, 21
see also chromatin

history of science, 7–8, 79–81

holly leaf miner: mortality factors and *k*-value analysis, 25, 45–53, Plates 5–9

Holmes, Arthur, 5–6, 84; 7–8, 25–6, 35, 81

Holocene Period, 28–29, 23

homeostasis, 23*, 28, 29, 31–2, 35, 37, 38; 26, 11, 12, 14, 18
 in carbon cycle: oceans as buffers, 25, 23, 24, 25

hominids (Hominidae), 21, 31; 28–29*, 7, 12, 17

Hominoidea, 21, 31, 32

Homo sapiens, 28–29, 72
 time when appeared, 21, 31; 32, 45
see also humans

homogenate, 22*, 40, 41

homologous pairs of chromosomes, 20*, 13, 14, 18–20, 24–6; 26, 15, 16
 crossing over in, 20, 24
 inheritance of more than one character, 20, 33–6
 pairing mechanism, 20, 19

homologous series, 17–18*, 18, 19–22, 38; 22, 16
 chemical properties, 17–18, 67–8, 76

homopolymers, 17–18*, 78, 89; 22, 17

homozygous, 20*, 27, 28, 41; 24, 42–3; 26, 5, 16

Hooke, Robert, 19, 6

horizontal
 rock movements, 7–8, 24–5, 43, 73, 74
 strata, 28–29, 24

hormone proteins, 22, 20

hormones, 23*, 26; 24, 9, 46; 26, 12, 18
 and blood glucose level, 23, 27, 28, 31–2
 circulation of, 23, 11
 and control of heart beat, 23, 35–7
see also insulin

hornfelses, 27, 50

humans, 19, 5–6, 11
 activity, 26, 14
 chromosomes, 20, 9, 18, 20–1
 diseases, 20, 20–1; 21, 12, 14, 16–19; 23, 26, 27; 24, 46; 25, 34
 gametes, 20, 8, 9, 11
 genetic variability, 21, 11–15
 genus *Homo*, 21, 31; 28–29, 72; 32, 45

life cycle, 22, 4
 population growth, 25, 34
 recombination and, 21, 20, 21
 survival of, 19, 21
 time when appeared, 32, 45

Hund's rule, 11–12*, 60, 61–2
Hutton, James, 27, 4, 5; 28–29, 19, 22
Huygens, Christiaan, 10, 3
Huygens' construction, 10*, 25, 26, 27, 28–30
hyaloclastics, 7–8, 69
hybrids, 21, 25
 sterility of, 21, 26
hydrides, 13–14, 26–7, 28
hydrocarbons, 17–18*, 7
 combustion of, 16, 2, 15, 16, 17
 physical properties, 17–18, 22–4
 saturated, 17–18, 18–19, 22–3
 unsaturated, 17–18, 37–9, 41–5
hydrocarbon group, 17–18*, 10
hydrochloric acid, 15, 6, 9, 26; 26, 11
 dissociated equilibrium in, 15, 23
electrolyte, 15, 7, 18–19

pH of, 15, 27, 30

production of, 15, 6

hydrogen, 11–12, 5; 13–14, 18, 19, 39, 73, 76; 28–29, 62
 absorption spectrum, 11–12, 38, 48
 in atmosphere, 28–29, 52, 55, 57
atom
 energy levels of, 31, 3–4, 11–14, 15–16, 21, 22
 model of, 31, 4, 11–14
 and nuclear fusion, 31, 39, 40–1
 visible emission spectrum, 31, 3
atomic spectra, 11–12, 28–9, 30–2, 35, 36
 ionization energy, 11–12, 33, 34–5, 64
binary compounds, 13–14, 21–2
bomb, 11–12, 23; 31, 39
 bonding in molecules, 13–14, 60, 61, 67
 charge of nucleus, 11–12, 16
 combustion of, 16, 15, 17
 emission spectrum, 11–12, 47
 energy-level diagram, 11–12, 38, 43, 47, 59, 70; 31, 3–4, 11–14
 first ionization energy, 11–12, 64
ions, 23, 22
 in acids, 15, 7, 9, 18
 pH of, 15, 27–8, 29, 30, 33, 38–9
 in water, 15, 8, 13, 19, 24–6, 33
isotopes, 11–12, 22
 lost from Earth, 28–29, 55
 magnetic properties, 11–12, 53, 54, 55
 mass of atoms, 11–12, 9
 orbital, 11–12, 15
 planetary model of, 11–12, 15
 in primordial atmosphere, 17–18, 91–2
 production of, 13–14, 50
 rates of reaction, 16, 28
 with bromine, 16, 20, 22–5, 26–7
 with chlorine, 16, 18–19
 as reducing agent, 17–18, 71, 73
 sources of, in living organisms, 22, 8–9
 in Sun, 28–29, 46
 water formed from, 13–14, 20
hydrogen bonds, 17–18*, 11, 13, 24, 90; 22, 23; 24*, 11, 13, 17, 18, 25, 31
 in alcohols, 17–18, 23
 in DNA, 17–18, 90; 24, 11
 in nylon, 17–18, 86–7

hydrogen chloride, 13–14, 19, 56, 76
 chemical bonding, 13–14, 61, 66–7
 dipole–dipole forces in, 17–18, 12
 gas, 15, 6, 8
 valency, 13–14, 21–2
hydrogen cyanide, 17–18, 92, 93; *see also* cyanide compounds
hydrogen iodide, 15, 3, 34
hydrological cycle, 25, 21; 27*, 4, 53
hydrolysis, 17–18*, 75, 88; 26, 11, 18
 of fats, 22, 16, 32, 60
 of glycosidic bonds, 22, 18, 19
 of nucleic acids, 22, 17
hydrophones, 5–6, 88
hydrosphere, 28–29*, 58
hydrostatic equilibrium, 15, 12, 14, 16
hydroxides, 13–14, 49, 63; 28–29, 52–3
hydroxide ions
 as bases, 15, 7, 9, 10
 in glucose, 22, 18
 in glycerol, 22, 15
 in water, 15, 8, 24–6, 33
hydroxyl group, 17–18*, 20
 chemical reactions, 17–18, 67, 69, 70
 see also alcohols
hyperglycaemia, 23*, 26, 27, 32; 24, 46
hypoglycaemia, 23*, 25
 hormone *see* insulin
hypothalamus, 23*, 31
hypotheneuse, 2*, 32
hypothesis, 1, 8

|

ICDH *see* isocitrate dehydrogenase
ice ages, 28–29*, 72, 75–9
 ages of, 28–29, 31
 as calibration points, 28–29, 32–3, 35
 causes of, 28–29, 77–9
 Quaternary, 28–29, 72, 74, 75–6, 77, 78, 79
 sea-level changes, 28–29, 75–7, 79
 see also climate changes
ice: erosion, transport and deposition by, 27, 39–40, 44, 45; 28–29, 74
 ice cap, south polar, effect of, 7–8, 21, 24
 see also isostasy
icefish, Antarctic, 22, 29
Iceland
 omitted from continental fit, 7–8, 28
 volcanic activity, 7–8, 66–9
ICRP *see* International Commission on Radiological Protection
 identifying uncertainties, 4, 16–17
igneous rocks and processes, 5–6*, 9, 54–5, 76–7, 79, 83; 7–8, 39; 27, 5, 17, 18–30, 52–3
 constructive plate margins and origin of basalts, 27, 20–1, 25, 26, 29
 destructive plate margins and origin of andesites, 27, 24–7, 28, 29, 52–3
 granite and origin of continents, 27, 28–9, 52–3
 layered, 7–8, 64, 66, 78
mantle, 27, 17, 18–19, 29
minerals *in see* silicate minerals and plate margins, 7–8, 63–5, 66, 72, 73, 78; *see also* constructive plate margins and destructive plate margins
volcanoes and volcanic rocks, 27, 19–20, 25, 27–9, 52–3
weathering of, 27, 33–4
see also andesites; basalt; extrusive rocks; granite; igneous rocks; plutonic rocks; volcanic activity
Iliopoulos, John, 32, 31, 34
imbalance in the environment, 26, 14
immigration, 25, 34, 42, 55; 26, 14
immunoglobulins, 19, 9
immunoproteins, 22, 20
incidence *see* angle of incidence
incident waves, 5–6, 33–5
inclination, magnetic, 5–6, 48, 49, 82, 83
incompletely dominant alleles, 21, 17
independent assortment, 20*, 33–5, 36, 37–40, 43; 26, 5
independent variable, 4*, 11, 24
Indian Ocean, 7–8, 11, 43, 49
indicators, 15*, 4
indium, 28–29, 46
induced nuclear fission, 31*, 38
induction, 1, 7, 8
infection, protection against, 23, 18
infinite sine waves, 30, 18, 23
 as wavefunctions, 30, 19, 21, 22, 33
influenza, 19, 9
infrared radiation, 10, 40; *see also* greenhouse effect
inheritance of characters, 20, 2, 23–32; 26, 5–6
 dominant and recessive, 20, 26–7, 30, 38, 41–2
Mendel's experiments, 20, 6–7, 30–1, 33, Plate 11
model of, 1, 9; 20, 23–30
more than one pair of contrasting, 20, 33–45
 independent assortment, 20, 33–40
 linkage and, 20, 40–4
 one pair of contrasting, 20, 3–8
 see also heritable character; meiosis; mitosis
inherited character *see* heritable character; inheritance
inhibition of enzymes *see* negative feedback
initiator, 17–18*, 79, 80, 96
initiator codon, 24*, 38
inner core of Earth *see under* core
inorganic phosphate (P_i), 22*, 11, 44, 48, 49, 51, 52, 53, 54, 55, 56, 57, 63; 24, 29
insecticides, 17–18, 5, 17, 47, 49, 95; 25, 34–5, 53–4, 59
insects, 19, 4, 5, 11; 25, 59; 28–29, 68, 70
 adaptation, 19, 13
 biological control of pests and, 25, 54–5
 butterfly, 26, 13–14
 chitin and, 22, 17
 damaged by ionizing radiation, 31, 34
 larvae, 25, 44; 26, 12, 13, 19

insects (*continued*)
 oxygen supply, 23, 8, 10, 12
 population density, 25, 34–5
see also Drosophila; holly leaf miner; peppered moth; stick insect
 insertion (of a base), 26, 8, 17
instantaneous speed, 3*, 5
 instrumental limitations in experiments, 4, 17
insulin, 19, 9; 22*, 20, 22; 23*, 27, 28, 31, 32, 26, 12, 18
 biosynthesis of, 24, 38, 45–9
intelligence testing, 1, 6
intensity of an earthquake, 5–6*, 14, 20, 22, 37
intensity of radiation, 10*, 43
interactions, 30, 7, 10
 of particles *see fundamental interactions*
 quantum behaves as particle in, 30, 12, 13, 17
intercept, 4*, 12, 13
interference *see superposition*
interferon, 24, 46
interglacial deposits, 28–29*, 74
intermediates, metabolic, 22*, 14, 27, 64
see also metabolites
intermediate vector bosons, 32*, 39, 40–1, 42, 43
intermolecular forces, 17–18*, 11, 12–13, 23, 86–7
internal body temperature, 23, 23–4
internal energy, 9*, 3, 4, 5, 6–7, 23–30, 35
 heat and, 9, 3, 23–5
 transfer, 9, 24, 25–7, 35
 temperature and, 9, 23–5, 27–9
internal temperature of Earth *see temperature*
 International Commission on Radiological Protection, 31, 35
 International Union of Pure and Applied Chemistry (IUPAC), 17–18, 3
interpolation, 4*, 11
interstellar dust, 28–29, 78
intestines, 23, 25
introns, 24*, 44, 45, 47
intrusive (plutonic) rocks, 5–6*, 8, 77, 79
 in Stratigraphic Column, 28–29, 32–3, 35, 37
see also igneous rocks
invertebrates, 21, 31–2
 genetic variability, 21, 13, 14
in vitro, 22*, 25
in vivo, 22*, 27, 44, 61
iodine, 13–14, 18, 19, 25, 42–3, 73, 74
 in carbon compounds, 17–18, 9, 10
 combination with tin, determining formula, 13–14, 10, 11–14
 as molecular covalent substance, 13–14, 53, 54, 55, 56
physical properties, 17–18, 11–12, 13, 84
 preparation of, 13–14, 54
iodine monochloride, 17–18, 13
ions, 11–12*, 5, 8–9, 11, 36, 69; 22, 14; 23, 22
diatomic, 13–14, 73
excreted, 23, 26
monatomic, 13–14, 49, 56, 57
polyatomic, 13–14, 49, 56, 57, 62
see also anions; cations
ion microprobe, 28–29, 36
ion product of water, 15*, 25, 26, 27, 33
ionic bonding, 13–14*, 59, 60, 65, 70
ionic compounds, solubility of, 17–18, 23
ionic interactions, 22*, 23, 29
ionic substances, 13–14*, 51, 52, 53, 70, 72, 76
 and aqueous solutions, 13–14, 43–51, 56, 57
ionic theory, 15, 6–7
ionization energy, 11–12*, 33, 34–5, 37–40, 46; 13–14, 58, 65–6
 first, 11–12, 62, 63–6
 successive, 11–12, 37, 38
ionizing radiation, 31*, 34, 35, 36
 and changes in DNA, 24, 41, 43; 26, 5, 6; 31, 34, 35
iron, 13–14, 5, 37–9
 alloys
 in cytochromes, 22, 56
 in Earth's core, 28–29, 49
 in meteorites, 28–29, 43, 51
 in Earth's core, 5–6, 72, 75–6, 80; 28–29, 42
 in haemoglobin, 23, 19, 20
 in meteorites, 28–29, 43–4, 45, 50–1
 in oceans, 28–29, 59, 69
 oxidation, 17–18, 70
 oxides, 28–29, 48, 49, 52–3, 57, 60, 63–4, 69
 in planets, 28–29, 39, 47–8, 49, 50
 prospecting for, 5–6, 88
 proteins containing, 22, 24, 56
 reduction of oxide, 17–18, 71
 in rocks, 27, 6, 7–8, 9, 10, 11, 15, 16; 28–29, 53, 59, 60, 63–4, 65, 78
 igneous, 27, 18, 22–3
 sedimentary, 27, 37, 40, 41, 44, 45
 weathering of, 27, 32, 33
see also ferromagnesian minerals
iron meteorites, 5–6*, 75; 28–29*, 43, 45, 47
ironstone *see banded ironstone formations*
iron sulphide
 in Earth's core, 28–29, 42, 49
 in meteorites, 28–29, 44, 45
irruptions, 25, 36
Isacks, Brian, 7–8, 56, 81
island arcs, 7–8*, 10, 15, 69–70, 72, 73; 27, 24–5, 26–9, 52
islands and evolutionary theory, 26, 6–8, 13–14, 17
isocitrate dehydrogenase (ICDH), 22, 45, 58–9
isocitric acid, 22, 45
isolation, reproductive, 21, 23, 24, 25–7; 26, 8
isoleucine (Ileu), 22, 21; 24, 36
isomaltose, 22, 20
isomers/isomerism, 17–18, 37, 53
see also geometric isomers; optical isomers; stereoisomers; structural isomers
isostasy/isostatic equilibrium, 7–8*, 19, 21, 26, 32–3, 76
 and gravity anomalies, 7–8, 30–6
isostatic readjustment, 7–8, 21–2, 26; 28–29, 76, 79, 80
isotopes, 11–12*, 8, 10–11, 12, 16–17, 69; 17–18, 93; 28–29, 80; 31*, 18, 19, 25, 27, 36
 of carbon, relative atomic mass of, 13–14, 16, 25
daughter, 28–29, 27, 28–9, 30, 31, 36
decay rates, 28–29, 50, 57
 and dating of rocks, 28–29, 26–31, 35, 36–7
half-lives of, 13–14, 41; 28–29, 26–31
of neon, 13–14, 29
parent, 28–29, 27, 28, 30, 31
in replication experiment, 24, 19, 20
in rocks, 27, 18, 19, 29
stable, 31, 18–19, 25, 27
 in study of production ecology, 25, 12
isotopic labelling, 22*, 41, 63; 25, 12

J

Japan Trench, 7–8, 36, 37
Jeans, James, 28–29, 40–1
Jeffreys, Harold, 7–8, 24; 28–29, 40–1
jellyfish (*Cyanea*), oxygen supply, 23, 7–8
joints (in rocks), 27*, 47, 54, Plates 3 and 4
joule, 9*, 11, 12, 13, 25, 33
Joule, James, 9, 8, 26
 heat transfer experiment, 9, 25, 26–7, 35
Joyce, James, 32, 26
J/ψ particle, 32, 31–4, 36
Juan de Fuca Ridge, 7–8, 42, 43, 45
jumping genes, 20, 50
Jupiter, 28–29, 38–9, 41
 moons of, 2, 42–3, 44
 orbit of, 2, 36, 38, 40
Jurassic Period, 28–29, 24, Plate 31
 fossils in, 28–29, 12
 in Stratigraphic Column, 28–29, 20–1, 23

K

karyotype, 20*, 20, 21
Kelvin, Lord, 9, 23; 28–29, 26
kelvin scale, 9*, 23, 24, 25, 29
 absolute zero, 9, 24, 28
Kepler, Johann, 1, 44; 28–29, 37
 and planetary motion, 2, 5, 34–6, 39–40
first law, 2*, 35
second law, 2*, 36
third law, 2*, 39, 40, 42, 44
Kermadoc–Tonga Trench, 7–8, 13, 52
ketones, 17–18*, 39–40, 42, 70
 chemical reduction of, 17–18, 73
 formation from secondary alcohols, 17–18, 72

Kettlewell, H. B. D.: experiments with moths, 19, 16–20
key mortality factors, 25*, 42, 55
 kidneys
 active transport in, 22, 9
 and elimination of wastes, 23, 23, 24, 26
 glucose reabsorbed in, 23, 25
kilogram, 2*, 9
kilowatt-hours, 9, 12
kinetic energy, 9*, 2, 5, 16–19; 23, 14
 of atoms, 9, 28–9
 and chemical reactions, 16, 20–1, 33–4
 conservation and
 non-conservation of, 9, 20–2
 conversions to and from, 9, 2, 14, 15, 16, 18–19, 23
 formula for, 9, 16–18
 of photoelectrons, 10, 42–7
 and ions, 11–12, 9, 27, 39–40, 41
 kinetochore fibres, 20, 20, 49
kingdoms, 21*, 29, 32, 33; 26, 3, 15
 Knoppe gall, 25, 59
 koala bear, 25, 4
 Krebs cycle *see* tricarboxylic acid cycle
 krypton, 11–12, 22; 13–14, 28, 31, 37–8, 58
 in atmosphere, 28–29, 52, 57
 energy-level diagrams, 11–12, 42, 44
 first ionization energy, 11–12, 64
 light, wavelength of, 2, 7, 8
 photoelectron spectrum, 11–12, 41–2, 44, 59
 Kuhn, Thomas, 7–8, 79–80
 Kuril–Kamchatka Trench, 7–8, 13
k-value, 25*, 39
k-value analysis, 25*, 39, 40–4, 45–53, 55

L

lactate *see* lactic acid
lactate dehydrogenase, 22*, 58
lactic acid (lactate), 17–18, 59; 22*, 58
 synthesis of, 22, 58; 23, 26, 27
lactose, 17–18, 62
ladybird beetle (*Rodolia cardinalis*), 25, 54
lakes, 7–8, 68–9
 Lamarck, Jean Baptiste, 19, 12, 15
Laminaria (seaweed), 25, 57
 laminated sediments, 27, 38
 lampshells, 28–29, Plate 23
 land, emergence of life onto, 28–29, 58, 59, 61, 67, 69–70
 land-bridge theory, 7–8, 18, 19, 20, 24
 Landsat image, 28–29, Plate 32
lanthanides, 13–14*, 38, 39–41
 discovery of, 13–14, 75
 lanthanum, 13–14, 38, 39
 Laplace, Marquis de, 28–29, 40
 Laputians in *Gulliver's Travels*, 1, 9–10
 Lapworth, Charles, 28–29, 23
 Large Electron–Positron storage ring (LEP), 32, 8
 large-scale objects *see* macroscopic objects
larvae, 25*, 44; 26, 12
 holly leaf miners, mortality of, 25, 45, 46, 47, 50, 51

midge, 25, 17
 parasitic, 25, 35
 latitude, 5–6, 48–53
 Laurasia, 7–8, 25
lava, 5–6*, 8; 7–8, 64, 69, 71; 27, 19–20, 26, Plate 3; 28–29, 35, 55
 pillow, 7–8, 63, 65, 68–9, 78; 28–29, 22
 in Stratigraphic Column, calibrating, 28–29, 32, 33
lava flow, 5–6*, 8, Plates 11 and 12
law (scientific), 1, 8
lawrencium, 13–14, 39, 41
 layering of planets, 28–29, 47–50, 57
L configuration, 17–18, 60–1, 93
 Le Chatelier, Henri, 15, 17
Le Chatelier's principle, 15*, 16, 17, 18, 22, 37; 16, 29, 31
 Le Pichon, Xavier, 7–8, 55, 56, 81
 leaching of soil, 25, 27, 32
 lead
 isotopes, 28–29, 30, 36, 37, 42
 in rocks, 27, 6; 28–29, 21
 Lederman, Leon, 32, 36
 leeches, 25, 17
 'left-handed' forms *see* chirality
 length, measurement and standards of, 2, 5, 6–8
 lens, convex, 10, 30, 31, 32
 LEP (Large Electron–Positron storage ring), 32, 8
lepton–quark symmetry, 32*, 30, 31–7
 charm discovered, 32, 31–4
 new lepton discovered, 32, 34–7
 see also leptons; quarks
leptons, 32*, 4, 12, 13–16, 42–3, 44
 baryon number, 32, 21
 interactions of, 32, 15–16
 strangeness, 32, 22
 symbols for, 32, 13
 see also lepton–quark symmetry
 leucine (Leu), 17–18, 93; 22, 21; 24, 36, 37
 Lewis, Gilbert, 13–14, 61; 17–18, 37
Lewis structures, 13–14*, 61, 62, 63, 64, 65, 67, 70; 17–18, 8, 9, 37, 38
 lichens, 19, 16
 life, 19, 4–11; 26, 3, 15
 cellular nature of, 19, 5–8, 11
 chemical nature of, 19, 8–9, 11; 22, 14–15
 diversity of, 19, 4–5
 investigation of, 19, 9–10
 origin of, 17–18, 91–4; 28–29, 62–71
 see also fossils
 early atmosphere, 28–29, 62–3, 69
 evolution of early life, 28–29, 63–4, 69
 Mesozoic seas, 28–29, 68, 70
 Palaeozoic, 28–29, 67–8, 70
 Precambrian, 28–29, 64–6
 Tertiary, 28–29, 68, 70
 see also fossils
 processes of, 19, 10–11
 see also animals; plants *and under* oceans; water
 life cycles, 22, 4; 25, 37, 45
life table, 25*, 38, 55
 see also k-value analysis
 light, 9, 4, 5–7, 12
 energy

conversion into, 22, 9
 from *see* photosynthesis
 plane-polarized, 17–18, 57–9, 62–3,
 Plates 6–8
 speed in vacuum, 2, 8; 31, 24, 27;
 32, 4, 6, 7
 waves, 10, 3, 25–41, 51, 53–4
 electromagnetic, 10, 3, 39–41, 51–2
 speed of light, 10, 38–9
 wavelength of, 2, 7
light energy, 9*, 4, 5–7, 12
 lightning, 17–18, 91, 92
 energy of, 9, 12
light stage of photosynthesis, 22*, 63
limestone, 5–6*, 8, Plate 8a; 27*, 40, 41, 45; 28–29, 4, 14, 20–1, 24
 formation of, 28–29, 58, 59, 60, 61, 68
 fossils in, 28–29, 18
 joints in, 27, 47
 limpets (*Patella species*), 25, 4, 57
linear accelerator, 32*, 8, 10
linear magnetic anomaly, 7–8*, 40
 lines of force, 5–6, 43
line spectrum of an atom, 11–12*, 24, 26, 27–9, 30, 70–1
linkage group, 20*, 40–2, 43
link reaction, 22*, 44, 45, 46, 47, 49–50, 54
 Linnaeus, Carolus (Carl von Linné), 21, 29–30; 26, 3
 Linnean Society: paper by Darwin and Wallace, 19, 32
lipase, 17–18, 64; 22*, 16, 27, 32
 liquefaction of air, 13–14, 75
 liquids
 and chemical reactions, 16, 13, 14, 19
 internal energy of, 9, 23–5, 27–9, 30
 and oxygenation *see* blood; water
 lithium, 13–14, 72; 28–29, 46
 chemical bonding, 13–14, 58, 59, 65
 lithium fluoride, 13–14, 59
 lithium oxide, 13–14, 26, 72
lithosphere, 7–8*, 33, 34, 35, 58
 litmus, 15, 4, 5–6
 litter *see* detritus
 'Little Ice Age', 28–29, 72
 liver, 26, 9, 10, 12, 18
 alcohol dehydrogenase in, 22, 31, 57
 biosynthesis in, 22, 55
 blood supply to, 23, 25
 cells in, 22, Plate 4
 glucose converted and stored in, 22, 43, 48; 23, 24, 26, 27, 38
 living world *see* life
lock and key model of enzyme action, 22*, 27, 32, 69
locus, gene, 20*, 24, 25; 26, 5, 13, 16
lodestone, 5–6*, 40
logarithmic scale, 5–6*, 19
logarithm to the base ten, 15*, 27, 28; 25, 40
 logical process, deduction as, 1, 7
London forces, 17–18*, 11, 12, 13, 23, 87
 London, Fritz, 17–18*, 11
 long form of Periodic Table, 13–14, 30–3, 35, 39, 41, 76
 longitude, lines of, 2, 15
long Periods in the Periodic Table, 13–14*, 30, 31–3

low-density (high-pressure) polymer, 17–18, 85
lower mantle, 5–6*, 66, 68, 80–81
 low-grade metamorphism, 27, 51
low-speed layer, 5–6*, 67, 81; 7–8, 34, 76
 Lullington Heath, 25, 61, Plates 11a and b
 lunar eclipse *see* Moon
 lunar month, 1, 22
lunar phases, 1*, 17, 22, 35, 41, 42, 47
 lungs, 23, 8–9, 10, 11, 13, 21, 22, 24, 32, 33
lustre, 27*, 7
 L-waves (Love waves), 5–6, 28, 90
 Lyell, Sir Charles, 28–29, 23, 25–6
 Lyman series, 11–12, 30–3, 35, 47
 lysine (Lys), 22, 21, 23, 30, 45; 24, 36

M

McKenzie, Dan, 7–8, 52, 76, 77, 81
macromolecules, 17–18*, 74, 78
 biological, 17–18, 88–90
 synthetic, 17–18, 84–7, 95–6
 macronutrients; necessary for life, 25, 21, 29
 macroscopic objects
 motion of, Heisenberg's
 uncertainty principle applied to, 30, 32
 and quantum mechanics, 30, 32–3
 diffraction of, 30, 33–4, 35
 macroscopic properties, 9, 28
magma, 5–6*, 7; 7–8, 63, 64, 66, 69; 27, 10, 11, 19–24, 29; 28–29, 55
 and metamorphism, 27, 52–3, 54
 in Stratigraphic Column, calibrating, 28–29, 32
magnesium, 11–12, 5; 13–14, 50, 52
 in alloy, 13–14, 69
 chemical bonding, 13–14, 60, 65, 66, 69
 electronic configuration, 11–12, 60
 emission spectrum, 11–12, 56
 first ionization energy, 11–12, 64
 mass spectrum, 11–12, 10
 in meteorites, 28–29, 44
 in oceans, 28–29, 59–60, 61
 photoelectron spectrum, 11–12, 52
 Zeeman effect in, 11–12, 56
 in rocks, 27, 6, 7–8, 11, 15, 16, 18, 22–3, 40; 28–29, 46, 49
 transport and deposition of, 27, 32, 33, 41
 see also ferromagnesian minerals
magnesium chloride, 13–14, 42–3, 45, 48, 49–50, 51, 52, 66
 in solution, 15, 11–12, 15–16, 18
magnesium hydroxide
 as precipitate, 15, 16
 in solution, 15, 7, 9, 13–14, 15–18
 as electrolyte, 15, 18, 19
magnesium nitrate, 13–14, 60
magnesium oxide, 13–14, 60
magnetic anomalies, 7–8*, 27, 40, 41–7, 52, 58
magnetic declination, 5–6*, 49, 52, 82
magnetic dipole, 5–6*, 47, 52, 55, 56, 58
magnetic dip poles, 5–6*, 52, 55

magnetic field, 5–6*, 43; 10, 39;
 11–12, 53, 68
 of bar magnets, 5–6, 41–6, 51, 70, 71, 82
 degeneracy and, 11–12, 55–8
 of Earth, 5–6, 41, 47–53, 57–8, 69–72
 changes in, 5–6, 52, 54–6
 and paleomagnetism, 5–6, 82–7
 reversal, 5–6, 56, 86–7, Plates 22 and 23
 source of, 5–6, 69–72
 strength of, 5–6, 49–51
 electron spin and, 11–12, 53–4
magnetic inclination, 5–6*, 48, 49, 82, 83
magnetic interaction, 31, 19, 20
magnetic polarity
 reversals, 7–8, 44–5
 time-scale, 7–8, 11
magnetic poles *see* geomagnetic poles; polar wandering; poles
magnetic prospecting, 5–6*, 88
magnetic quantum number, m_i , 11–12*, 55, 57, 58, 59
magnetic spin quantum number, m_s , 11–12*, 53–4, 55, 58
magnetism
 Earth, 5–6, 40–59
 rock, 5–6, 82–8
 temperature and, 5–6, 57
magnetite, 27, 37
magnetometer, 5–6*, 82–3, 88; 7–8, 27, 40–7
magnetron, 10, 40
magnitude of an earthquake, 5–6*, 19, 20, 21, 89
magnitude of a quantity, 3*, 6
 Maiani, Luciano, 32, 31, 34
main group elements, 13–14*, 36
maintenance, 22*, 5
maize
 inheritance, 20, 3–6, 33–40
 life cycle, 20, 3
malaria, 21, 16–19
malic acid, 22, 45
maltose, 22, 20
mammals, 19, 11, 13–14; 21, 31–2
 blood supply, 23, 37
 body temperature, 23, 24
 damaged by ionizing radiation, 31, 34–5
 heart, 23, 34
 oxygen supply, 23, 8–9, 10, 12
 time when appeared, 28–29, 11–12, 68; 32, 45
manganese nodules, 7–8, 63, 64
Maniola jurtina (meadow-brown butterfly), 26, 13–14
manipulating statistics, 4, 13
mantle, Earth's, 5–6*, 12, 60, 77; 28–29, 42, 49, 50, 51
 composition of *see* peridotite and igneous processes, 27, 17, 18–19, 21–4, 29, 52–4
 properties of, 5–6, 68, 81
 structure of, 5–6, 66–8; 7–8, 33–4
mantle plumes, 7–8*, 78
map, geological, 28–29, 18–19
marble, 28–29, 20–1
marine *see* oceans
marker horizon, 28–29*, 8, 13, 34
marl, 28–29, 20–1
Mars, 28–29, 38–9, 41, 47, 48, 80
orbit of, 1, 32–3, 45; 2, 31, 35–6, 38, 40
mass, 3*, 12, 13
 acceleration and, 3, 12–13, 23
 of α -particles, 11–12, 14
 of atom, 11–12, 7–11, 17, 72–4
 conservation of, 13–14, 15
 of Earth, 3, 36–8
 of electron, 11–12, 14, 66–9, 77; 30, 10, 14
 and energy, 31, 24, 27
 gravity and, 3, 18–22
 molar, 13–14, 17; 16, 33–4, 35
 molecular, relative, 17–18, 11
 of Moon, 3, 38–9
 of particles
 energy and, 32, 6
 units of, 32, 7
 rest, 31, 24, 26–7
 standards of, 2, 9
 weight and, 3, 20, 21, 23
 see also kilogram; relative atomic mass and under Earth
mass number, (A), 11–12, 11, 17, 18, 19; 31*, 17, 18, 27
mass spectrometer, 11–12*, 8, 9–10, 11, 37, 40; 17–18, 50
mass spectrum, 11–12*, 9, 10, 11, 24, 69
mathematical models, 1, 9
mathematical symbols, meaning of some, 2, 12
matrix, mitochondrial, 22, 46, 47, 56, 58, 61
matter
 descriptions of behaviour *see* quantum mechanics
 diffraction of, 30, 11, 12, 13, 14–17, 26–7, 32
 macroscopic, 30, 33–4, 35
 interaction of light with, *see* particles
 models of, 30, 9–12, 13, 14, 17
 type of wave associated with, 30, 14–22
 see also quantum; quantum mechanics
 Matthaei, Heinrich, 24, 36, 37
 Matthews, Drummond, 7–8, 43, 44, 46, 52, 58, 81
maximum valencies, 13–14*, 27
 Maxwell, James Clerk, 10, 3, 39
mean *see* average
measurement
 of energy, 9, 7, 8, 9–13
 transferred by constant force, 9, 9–10
 units, 9, 11–12, 13
 in practical work, 4, 4, 17–20
 standards
 primary, 2, 6, 9
 secondary, 2, 6, 9
mechanical energy *see* gravitational energy; kinetic energy; strain energy
mechanical equilibrium, 15, 12
mechanics, Newtonian, 3, 40
 see also Newtonian mechanics
medulla (of brain), 23*, 32, 33, 34, 36
 Meinesz, Vening, 7–8, 34–5
meiosis, 20*, 8–10, 11, 12–21; 24, 4, 7; 26, 4–5, 15
 chromosomes and gamete production, 20, 11–17

meiosis (continued)

- DNA and chromosomes, **20**, 8–10
- mitosis compared with, **20**, 46–8
- recombination during, **21**, 19–21
- see also* inheritance of characters

mélange, **7**–**8**, 74

melanin, **22**, 6

melt, crystallization from, **27**, 5, 15, 16, 20–3, 25, 28, 29

melting, partial, of peridotite, **27**, 21–4, 29, 52, 54

see also temperature

membranes, **22**, 16, 20, 38–9, Plates 4 and 5; **26**, 4, 16

proteins, **22**, 20

see also chloroplasts; mitochondria; ribosomes

Mendel, Gregor, **19**, 29; **24**, 42; **26**, 5, 6

Mendelian genetics and evolution, **21**, 3

inheritance experiments, **20**, 6–7, 30–1, 33, Plate 11

Mendeleev, Dmitri, **1**, 8; **13**–**14**, 4, 26

short Periodic Table, **13**–**14**, 26–9, 33, 40, 41, 76

critique of, **13**–**14**, 29–30

Mendocino Fracture Zone, **7**–**8**, 41

menstrual cycle, **20**, 20

Mercalli scale, **5**–**6***, 14, 20

Mercury, **28**–**29**, 38–9, 41, 47

- orbit of, **2**, 31, 36, 38, 40
- mercury, **11**–**12**, 5, 72, 74
- in rocks, **27**, 6
- vapour spectrum, **11**–**12**, 25

Meselson, Matthew, **24**, 19, 20, 50

Meselson and Stahl experiment, **24***, 19, 20, 50

mesons, **32***, 22, 26, 27, 32–4

mesophyll cells, **22**, 63, Plate 7

Mesozoic Era, **28**–**29**, 4, 15, 17

- climate of, **28**–**29**, 72, 78
- fossils in, **28**–**29**, 12, 66, 68
- life in, **28**–**29**, 68, 70
- in Stratigraphic Column, **28**–**29**, 20–1, 23
- see also* Cretaceous; Jurassic; Triassic

messenger RNA (mRNA), **24***, 22, 42, 45; **26**, 8, 17

codons, **24**, 27, 28, 29, 31; **26**, 9, 17, 18

genetic code and, **24**, 35–7, 39

mutation and, **24**, 40, 41

proteins and, **24**, 23, 24–5, 27–31, 44–5, 46–7

- translation and, **24**, 31–2, 33, 34

metabolic pathways, **22***, 7, 14, 27, 43, 45

metabolism, **22***, 7, 14, 25, 43, 57, 60; **26**, 9

- experimental techniques, **22**, 40–2
- removing products of, **23**, 21–4

 - carbon dioxide, **23**, 21–2
 - heat transfer, **23**, 23–4
 - water and nitrogen compounds, **23**, 22–3

- see also* adenosine triphosphate; anabolism; biosynthesis; catabolism; enzymes

metabolites, **22***, 14, 38

- see also* intermediates

metallic bonding, **13**–**14***, 68, 69, 70

metals/metalllic substances, **11**–**12**, 25, 66; **13**–**14***, 25, 26–8, 30–1, 68, 69, 70, 74, 76

- acceleration and, **3**, 12–13, 23
- α -particles experiment with, **11**–**12**, 13–14, 18; **32**, 2, 6, 24
- atomic mass and number, **11**–**12**, 24
- atomic spectra, **11**–**12**, 36
- boundary with non-metals, **13**–**14**, 69–70
- chemical bonding, **13**–**14**, 58, 59, 60, 65, 66, 68–9, 70
- of Earth, **3**, 36–8
- electronic configuration, **11**–**12**, 60–2
- electron shells, **11**–**12**, 44
- electron spin, **11**–**12**, 57
- emission spectra, **11**–**12**, 45, 50, 56
- energy-level diagrams, **11**–**12**, 45, 49
- gravity and, **3**, 18–22
- as ionic substances, **13**–**14**, 46, 48, 50, 52, 57
- conductivity, **13**–**14**, 43–4
- ionization energies, **11**–**12**, 37–8, 39, 64
- isotopes, **11**–**12**, 17, 22
- mass spectra, **11**–**12**, 10
- of Moon, **3**, 38–9
- photoelectron spectra, **11**–**12**, 48
- smelting, **13**–**14**, 74
- solution of oxides as bases, **15**, 30–1
- standards of, **2**, 9
- tolerance of grass to, **21**, 9, 10
- tungsten atoms, **11**–**12**, 4, 5, 6
- weight and, **3**, 20, 21, 23
- work functions of, **10**, 46–7, 53
- see also* alkali metals

metamorphic grade, **27***, 49, 51

metamorphism/metamorphic rocks, **5**–**6**, 79; **7**–**8**, 39, 71, 72; **27***, 5, 16, 46, 49–53; **28**–**29**, 65

- age of, **28**–**29**, 31, 35
- contact, **28**–**29**, 32, 33
- and meteorites, **28**–**29**, 45, 51
- minerals in, **27**, 15–16
- metaphase in meiosis, **20**, 13, 14, 16, 21, 29, 37; **26**, 15
- compared with mitosis, **20**, 46–7, 48

Metazoa, **28**–**29***, 39, 59, 64, 65, 70

meteoric water, **28**–**29***, 55

meteorites, **28**–**29***, 39, 41, 42–7, 50–1, 80

- ages of, **28**–**29**, 36–7
- chondrites, **28**–**29**, 44, 45, 46, 47, 49, 51
- chondrules in, **28**–**29**, 44, 45, 51
- iron, **5**–**6**, 75; **28**–**29**, 43, 45, 47
- stony, **28**–**29**, 44, 51
- stony-iron, **28**–**29**, 44, 45, 51

methanal *see* formaldehyde

methanamine, **17**–**18**, 21

methane, **13**–**14**, 20, 56, 60, 62; **28**–**29**, 57, 60, 62

- bonding and molecular structure, **17**–**18**, 7–8, 27
- combustion of, **16**, 2, 15, 18
- North Sea gas, **17**–**18**, 7
- physical properties, **17**–**18**, 10–11
- in primordial atmosphere, **17**–**18**, 91–2

methanoic acid *see* formic acid

methanol

- bonding and molecular structure, **17**–**18**, 9
- physical properties, **17**–**18**, 11, 13, 22–3, 24
- reaction with acetic acid, **17**–**18**, 81

methionine (Met), **24**, 36, 37, 38

- see also* initiator codon

methoxyethane, **17**–**18**, 32, 70

1-methoxypropane, **17**–**18**, 35

2-methoxypropane, **17**–**18**, 35

methyl acetate, **17**–**18**, 81, 94

methylamine

- bonding and molecular structure, **17**–**18**, 9
- physical properties, **17**–**18**, 11, 13
- reaction with acetic acid, **17**–**18**, 81

methylated spirits, **17**–**18**, 9

methyl group, **17**–**18***, 9

- 4-methylheptan-3-one, **17**–**18**, 48
- 3-methylhexane, **17**–**18**, 59
- 2-methylpropan-1-ol, **17**–**18**, 34, 73
- 2-methylpropan-2-ol, **17**–**18**, 34, 73
- 2-methylpropene, **17**–**18**, 41–2
- methyl radicals, **17**–**18**, 96

metre, **2***, 6, 7, 8

metric system, **2**, 6–8, 9, 11

micas in rocks, **27***, 6, 9, 10, 11, 15, 16, 32, 49, Plates 6 and 7

- transport and deposition of, **27**, 36
- weathering of, **27**, 33, 34

micrometer, **4**, 5

micronutrients ('trace elements'):

- necessary for life, **25**, 21

microfossils, **27**, 40, 41; **28**–**29**, 64–5

micro-organisms

- primitive, **28**–**29**, 59, 63–5, 69–70, 74–5
- and source of atmospheric oxygen, **28**–**29**, 54–5, 57, 58, 61
- in soil, **25**, 11
- see also* *Clostridium tetani*; *Escherichia coli*

micro-plates, **7**–**8**, 74

microprocessor, **17**–**18**, 5

microwaves, **10**, 40

Mid-Atlantic Ridge, **7**–**8**, 13, 29, 38

- central rift *see* axial rift
- crustal plates and, **7**–**8**, 60
- deep-sea drilling and, **7**–**8**, 49
- fracture zones and, **7**–**8**, 51, 54, 58

midge larvae, **25**, 17

Midgeley, Thomas, **17**–**18**, 14

Milankovitch, M., **28**–**29**, 78

Miller, Stanley, **17**–**18**, 92–3; **28**–**29**, 62, 69

milligal, **7**–**8***, 32

Millikan, Robert, **10**, 48; **11**–**12**, 66–7, 68–9

minerals, **27***, 5, 6–9

- dating, **28**–**29**, 27–31
- investigating structure of, **32**, 6
- iron-bearing, **28**–**29**, 52
- and metamorphism, **27**, 50, 54
- in oceans, **28**–**29**, 56, 58–60
- residual, **27**, 33
- see also* ferromagnesian minerals; silicate minerals

mineral cycles, **25***, 21, 22, 29, 31

minor plates, **7**–**8**, 55, 74, 78

Miocene Period, **28**–**29**, 23

mirror image *see* chirality; optical isomerism

Mitchell's theory, 22, 56–7
mitochondria, 19, 18; 22*, 3, 38, 39, 40, 41, 44, 46, 47, 50, 55–7, 58, 61, Plates 4 and 5; 23, 26; 24, 22, 38; 25, 8; 26, 15
 oxygen supply, 23, 4, 5, 6
mitosis, 20*, 17, 45, 46–9; 24, 4–5, 7, 14–15; 26, 4, 5, 15, 16; 31, 34
 comparison with meiosis, 20, 46–8
mixtures, 13–14, 5
model, 1*, 9, 10, 44; 31, 11
 of behaviour of light, 10, 3, 51
 of Earth's shape, 1, 11–15, 43
 of Earth, Sun and Moon, 1, 23–41, 43
 of electromagnetic radiation, 30, 6–9, 13, 14
 particle model, 30, 7–9, 14
 wave model, 30, 6–7
 of evolution by natural selection, 19, 30–6, 37
 of hydrogen atom, 31, 4, 11–14
 mathematical, 1, 9
 of matter, 30, 9–12, 13, 17
 de Broglie's wave model, 30, 10–12, 13, 14
 particle model, 30, 10, 13, 14
 molecular, 17–18, 25–7, 43, 60–1
 of typical nucleus, 31, 21–2
see also nuclear model and waves
 'Mohole' project, 7–8, 47
Mohorovičić discontinuity (Moho), 5–6*, 78–9, 81; 7–8, 47, 66, 79
molar mass (M), 13–14*, 17; 16, 33–4, 35
moles, 13–14*, 16, 17, 18–19, 25
 per litre, concentration expressed as, 15, 11, 12
 molecular biology, 26, 8–9, 14
molecular covalent substances, 13–14*, 53–5, 57, 60–1, 73
molecular formulae, 13–14*, 18, 19; 17–18*, 7, 8, 9, 47
 molecular interpretation of effect of concentration and temperature on chemical reactions, 16, 20–1
 molecular mass, relative, 17–18, 11
 molecular models, 17–18, 25–7, 43, 60–1
 molecular speed, 16, 20, 21
molecules, 9, 27; 13–14*, 9
 diatomic, 13–14, 19; 16, 8–12, 14
 monatomic, 13–14, 56, 57
 polyatomic, 13–14, 49, 56, 57, 62
see also giant molecules; macromolecules
 Molina, Mario, 17–18, 15
molluscs, 25, 4, 17, 57
momentum, 3*, 15, 16–17; 30, 24
 components of, 30, 24, 25, 26–9, 31, 32
 conservation of, 9, 20–2, 36
 of photons, 10, 42, 48–50; 30, 8–9, 13, 14
 monatomic ions, 13–14, 49, 56, 57
monitors, 23*, 28, 31, 34; 26, 11, 18
 monochromatic radiation, 11–12, 39–40
 monocytes, 23, Plate 10
 monolayer experiment, 11–12, 6–7, 11
monomers, 17–18*, 78, 79–80, 89; 22, 17, 20; 24, 10, 24

monosaccharides, 22*, 7, 15, 17, 43; 26, 11, 18
monosodium glutamate, 17–18, 62
 month, lunar, 1, 22
Moon, 7–8, 7, 17
 age of rocks on, 28–29, 36–7
 and Earth: force of attraction between, 3, 21–2
 apparent size of, 1, 17, 22
 eclipse of, 1, 35, 37–8, 42, 43; 2, 20–1, 44–6
 formation of, 28–29, 42
 mass and density of, 3, 38–9
 measuring
 distance to, 2, 22–6, 29
 eclipse of, 2, 20–1, 44–6
 radius of, 2, 20–2, 29
 motion of, 3, 32–6
 observation of, 1, 11, 12, 14, 17, 22
 orbit of, 1, 34–8, 41, 43
 phases of, 1, 17, 22, 35, 41, 42, 47
 spin, 1, 38–9
moraine, 27, Plate 14
Morgan, W. Jason, 7–8, 52, 54, 55, 59, 81
Morley, L. W., 7–8, 44, 46, 81
morphology, 19*, 14, 32
mortality factors, 25*, 37, 55
 key, 25, 42, 55
 and *k*-value analysis, 25, 39–44, 45–53
 regulating, 25, 42
mortality rate, 25*, 34–5, 36, 37, 55
 density-dependent, 25, 36, 42, 45
 density-independent, 25, 36–7, 42
 total generation pre-reproductive (k_{total}), 25, 40, 41, 55
mosquitoes, 21, 18, 25
moth *see* peppered moth
motion, 1, 23–4
 circular, 1, 23, 24–6, 40, 41
 and Heisenberg's uncertainty principle
 macroscopic objects, 30, 31
 quanta, 30, 26–9, 31
 laws of, *see* Newton
see also orbits
motor nerves, 23*, 34
mountain belt, 7–8*, 11, 12, 15, 21, 70
mountains
 chains, roots of, 27, 51, 52
 volcanic islands as, 27, 20
 mouse, house (*Mus musculus*), 25, 4; 26, 8
mouth, 26, 10
mRNA *see* messenger RNA
 μ lepton, 32, 13–15, 16, 31, 41, 43
 mud and mudrock, 27, 51, 54
mudstone (mudrock), 5–6*, 8
multicellular organisms, 19*, 6, 11
 evolution of, 28–29, 39, 64–5
 oxygen supply in
 large, 23, 8–10
 small, 23, 6–8
multiple bonds, 16, 9
 'multiple-slit' *see* diffraction grating
muon *see* μ lepton
Murchison, Robert, 28–29, 22–3
muscles, 19, 5; 23, 27
 anaerobic respiration in, 22, 57–8
 and breathing, 23, 10
see also heart
 glucose conversion in, 23, 24, 26
 'muscular' energy, 9, 3; *see also*

muscular work
muscular work, 22*, 9
mussels, 25, 16, 17, 57
mutant, 19*, 30
mutation, 19*, 30, 31–2, 37; 20, 31; 21, 4–5, 9, 10; 22, 23; 24*, 4, 40, 41, 43, 50; 26, 5, 6, 13, 16, 17

neutral, 21, 15–16
see also dominant allele and character; evolution by natural selection; recessive allele and character
mutation rates, 21*, 14, 15
myoglobin, 22*, 24, Plate 1
myxomatosis, 25, 60–1, 62

N

N (newton), 3, 14, 21
NAD (nicotinamide adenine dinucleotide), 22*, 31, 46, 47, 49–53, 54, 55–6, 57–9
NADP (nicotinamide adenine dinucleotide phosphate), 22*, 31, 63–4
naked bottoms, 32*, 37
naked charm, 32*, 34
 naming organisms, 21, 30–1
natality rate, 25*, 34–5, 36, 37, 55
 density-dependent, 25, 36, 42
Natta, Giulio, 17–18, 80, 85, 96
natural classification, 21*, 32
 natural gas, 17–18, 7, 19
natural selection, theory, 19*, 12, 32
see also balanced polymorphism; evolution
nautilus, 28–29, Plate 25
Nazca crustal plate, 7–8, 55, 60
nebula, 28–29*, 37
nebular theory of origin of Solar System, 28–29*, 37, 40, 41, 48
negative charge, 9, 30–1, 33
 of atoms, 11–12, 15, 19
 atomic spectra and, 11–12, 28, 36
negative feedback, 22*, 58; 23*, 29, 31, 33, 37; 26, 11, 18
nematodes, 19, 4
 and food chains and food webs, 25, 11
neon, 11–12, 5, 7, 9–10; 13–14, 25
 in atmosphere, 28–29, 52
 atomic mass and number, 11–12, 24, 72
 chemical inertness, 13–14, 58, 59
 electron shells, 11–12, 42
 energy-level diagram, 11–12, 43
 isotopes of, 11–12, 11, 12, 16–17
 mass spectrum, 11–12, 69
 and Periodic Tables, 13–14, 26–8, 29, 31–2, 35–8
 photoelectron spectrum, 11–12, 41–2, 59
Neptune, 28–29, 38–9, 41
 orbit of, 1, 45; 2, 34, 40
nerves, active transport in, 22, 9
nervous system, 26, 11
 and control of heartbeat, 23, 33–5, 37

nervous system (*continued*)
control mechanisms and, 23, 33,
34–5, 37
glucose needed for, 23, 26

net primary production (NPP), 25*, 8,
9, 10, 11, 14, 18

neuron, 23*, 34

neutral mutations, 21, 15–16, 22

neutral solution, 15*, 5, 27

‘neutralists’, 21, 16

neutralization, 15*, 6, 8–9, 10, 32
reaction, 15, 27

neutrino, 31, 30, 31, 36; 32*, 13,
14–16, 31, 35, 43, 44
rest mass of, 32, 13–14

neutrons, 11–12*, 17, 18, 23; 31, 3–4,
17–18, 19, 27
decay of, 32, 29
and nuclear fission, 31, 38
quarks in, 32, 25, 27, 28, 29, 42, 43
and radioactive β-decay, 31, 30, 36
released by nuclear fission, 31, 37,
38, 40, 41
stability, 32, 18, 28
see also atomic nucleus

New Hebrides Trench, 7–8, 52

new species *see* speciation

Newfoundland: proposed terranes,
7–8, 74

Newton, Isaac, 1, 44; 3*, 4, 8, 12, 40;
28–29, 37

Blake’s portrayal of, 1, 9–10
his *Principia*, 3, 4, 40

first law of motion, 3*, 9, 10

second law of motion, 3*, 14, 15,
20; 9, 17

third law of motion, 3*, 23

law of gravitation, 2, 36; 3*, 35, 36,
37; 9, 32; 31, 20; 32, 16

theory of mechanics *see*
Newtonian mechanics
Treatise on Opticks, 10, 3

newton, (N), 3*, 14, 21

Newtonian mechanics, 3*, 40; 30, 4,
24, 31, 34, 35
compared with quantum
mechanics, 30, 4, 23, 31, 34, 35

niacin, 22, 31–2

niches, 25*, 57–8, 59, 62; 26, 8, 14, 17

nickel
in Earth’s core, 5–6, 75, 76; 28–29,
42, 47
in rocks, 27, 6; 28–29, 44, 46

nickel–iron alloys
in Earth’s core, 28–29, 49
in meteorites, 28–29, 43, 51

nicotinamide adenine dinucleotide
see NAD

nicotinamide adenine dinucleotide
phosphate *see* NADP

night *see* day and night

Nirenberg, Marshall, 24, 36, 37

Nishijima, Kazuhiko, 32, 22

nitrates, 13–14, 49
active transport, 22, 9–10
and nitrogen cycle, 25, 25–7, 29,
31
as nutrients, 22, 14, 39, 64

nitric acid, 15, 6, 7, 8, 9
dissociated equilibrium in, 15, 23
in rain, 15, 31, 33

nitric oxide as pollutant, 15, 31–3

nitrification, 25*, 26, 27, 31

nitrites, 25, 26, 27

nitrogen, 11–12, 5, 20, 64; 13–14, 21,
74; 17–18, 10
in atmosphere, 28–29, 52, 55–6, 57,
58, 60
chemical bonding in molecules,
13–14, 60, 62
compounds eliminated, 23, 22–3,
24
excessive, 26, 14
fixing/fixation, 16, 2, 30–2; 19, 9;
22, 26; 25, 28, 29, 32
in meteorites, 28–29, 80
as molecular covalent substance,
13–14, 56
in organic compounds, 17–18, 8–9
in rocks, 27, 6
sources of, in living organisms, 22,
8–9, 14, 64, 67

nitrogenase, 22*, 26

nitrogen cycle, 25*, 25, 26–9, 31–2

nitrogen fixation, 25*, 28, 29, 32; *see*
also nitrogen

nitrogen trichloride, 13–14, 56, 60, 76

N-methylacetamide, 17–18, 81

noble gases, 11–12, 41; 13–14*, 25,
58–9, 75
absorption spectra, 11–12, 38, 48–9
in atmosphere, 28–29, 52, 55, 56,
57, 60
and chemical bonding, 13–14,
58–9, 61, 62, 63, 65, 70
discovery of, 13–14, 75
electron shells, 11–12, 42
electronic configuration of, 11–12,
46, 60; 13–14, 58, 59, 73, 76
energy-level diagrams, 11–12, 42–4
isotopes, 28–29, 30, 31
mass spectra, 11–12, 69
orbitals, 11–12, 59–60
photoelectron spectra, 11–12, 41–2,
44, 51, 52, 59
stability of, 13–14, 58

nonane, 17–18, 19

nonan-2-one, 17–18, 48

non-bonding electron pairs, 17–18*, 8

non-coding DNA, 24*, 45, 47

**non-dipole component of Earth’s
magnetic field, 5–6***, 51, 52,
53, 54, 56, 58

non-electrolytes, 13–14*, 46

non-ionizing radiation and changes
in DNA, 24, 41, 43

non-metals, 13–14*, 30–1, 69, 70, 76
boundary with metallic elements,
13–14, 69–70
chemical bonding, 13–14, 69, 70
solution of oxides as acids, 15, 30

non-overlapping (genetic) code, 24*,
38

non-polar solvents, 13–14*, 68; 17–18,
23

non-reproductive cells *see* somatic
cells

non-resistant phenotypes, 19, 26

non-stick pans, 17–18, 79

non-uniform magnetic field, 11–12,
53, 54

normal, 5–6*, 33

normal faults, 27*, 48

normal oxides, 13–14*, 26

North America; races of American
song sparrow, 21, 25

Northern Hemisphere, 1, 16, 30,
35–6, 42

seasons in, 1, 16, 31, 32

north pole of a magnet, 5–6*, 44

North Sea gas, 17–18, 7

Norway spruce (*Picea abies*), 25, 59

November Revolution, 32, 31–4

NPP see net primary production

N-terminal amino acid, 24*, 28, 38

N-terminal amino acid residue, 22*,
21, 22; 24, 28, 29, 38

nuclear binding energy graph, 31*, 23,
25, 29, 37

nuclear bombs, 31, 33, 38, 39

nuclear chain reactions, 31*, 38, 39, 40

nuclear decay chain, 31*, 32, 33

nuclear decay channel, 31*, 32, 37, 38

nuclear energy, 9*, 5, 6, 7; 31, 37,
39–41
levels, 31, 21–2
see also nuclear power

nuclear envelope of cell, 20, 13, 14,
15, 16, 19, 24, 29, 34, 46, 47,
48; 26, 16

nuclear explosions,
detecting and monitoring, 5–6,
89–90
and seismology, 7–8, 34

nuclear fission, 1, 5; 11–12*, 22, 23;
31*, 37, 38, 41
induced, 31, 38
in nuclear power stations, 31,
39–40
spontaneous, 31, 32, 37

nuclear fusion, 11–12*, 22, 23, 71;
31*, 37, 39, 41

nuclear (Rutherford) model of atomic
structure, 11–12, 12–14, 15,
16–18

α-particle experiment, 11–12,
13–18; 32, 24

nuclear power stations and reactors,
31, 33, 35, 39–40, 42

nuclear reaction, 11–12*, 18, 19–23;
13–14, 15, 75

nuclear transfer experiments, 24*, 15,
16, 50

nucleic acids, 17–18*, 89; 19, 8, 11;
22, 7; 24, 5, 9, 17, 24, 35, 40,
44
production of, 28–29, 62, 69
see also DNA; polynucleotides;
RNA

nucleolus, 24, 32; 26, 4

nucleotides, 17–18*, 89, 90; 22, 7;
24*, 10, 11, 17, 21

nucleus (atomic) 11–12*, 15, 16, 18;
see also atomic nucleus; *see also*
nuclear fission; nuclear
fusion; radioactive decay of
nuclei

nucleus (cell) *see* cell nucleus

nylon, 17–18, 4, 74, 78, 82, 86, 87, 91,
95, 96–7, Plates 3 and 10

nylon salt, 17–18, 96

O

oaks, 25, 59

obduction, 7–8*, 66, 71

observation, 4, 4

oceania/oceanic, 7–8, 10–11; 25, 10,
12, 21, 22–5, 31

biogenic precipitation from, 28–29,
63

oceans (continued)
 buffering by, 25, 23, 24, 25, 31
 composition of, 28–29, 59, 60, 61
 /continental boundaries of, 7–8, 11, 12, 15
 continent destructive plate margin, 7–8, 69–71, 72, 73
see also island arc
crust, 5–6*, 78, 79; 7–8, 5, 8–13, 19, 33, 38; 28–29, 47, 50
 gravity anomalies, 7–8, 34–6
 magnetic anomalies, 7–8, 40–7
 plate margins, 7–8, 63, 64, 70, 71–2
 plate tectonics, 7–8, 52–5
 spreading, 7–8, 38–40, 44–7, 49–50
 curved surface of, 1, 12–13
 deep circulation in, 28–29, 77
 deposition in, 28–29, 63, 74–5, 79
 depths, 7–8, 8–9, 19, 56, 58
 continental fit and, 7–8, 27–9
 heat-flow measurement, 7–8, 36–7, 58
 /ocean destructive plate margin, 7–8, 69–70, 72, 73
see also island arc
life in, 19, 5, 13–14; 28–29, 54–5, 57, 58, 61, 66, 74–5
 and source of atmospheric oxygen, 28–29, 54–5, 57, 58, 61
Mesozoic seas, 28–29, 68, 70
 minerals in, 28–29, 56, 58–60
 origin of, 28–29, 59–61
 oxygen in, 28–29, 59, 64, 66
ridges, 7–8*, 10, 11, 12, 15, 16, 42, 43, 45, 51, 55
 plate margins, 7–8, 63, 64, 66, 73, 77, 78
 plate tectonics, 7–8, 29, 33, 38, 42
 symmetry of, 7–8, 11, 12
see also Iceland; Mid-Atlantic; Pacific
 sea-level changes, 28–29, 75–7, 79
 surface heights, 7–8, 77
 temperature of surface waters, 28–29, 75
 Tethys in Holmes' theory, 7–8, 25
trenches, 7–8*, 10, 11, 13, 15, 25, 51, 69; 27, 25
 and gravity anomalies, 7–8, 34–6
see also Atlantic; Pacific; shores
octane, 17–18, 19
 combustion of, 16, 15, 16
octan-1-ol, 17–18, 21
oesophagus, 26, 10
oil-drop experiment, 11–12, 66–8
oil pollution, 26, 14
Old Winchester Hill, 25, 61, Plates 12a and b
Oligocene Period, 28–29, 23
Oliver, Jack, 7–8, 56, 81
olivine
 in meteorites 28–29, 44, 51
 in planets, 28–29, 49
 in rocks, 27*, 8, 9, 10, 11, 15, 16, 18, 20, 22, 23, 29
 weathering, 27, 32, 33, 44
oncogenes, 31, 34
one-dimensional motion, 30*, 24
Onnes, Kamerlingh, 30, 34
oocytes, 20, 11, 20
ooliths, 27, 41
oozes, 27*, 40
 calcareous, 7–8, 64
Oparin, Alexander, 17–18, 91, 92
 operating theatres, 17–18, 4, 5
ophiolite sequence, 7–8*, 66, 71
optical activity, 17–18*, 59
 origin of, 17–18, 92–3
optical isomers/isomerism, 17–18*, 52, 53–6, 62–5
 and origin of life, 17–18, 93
orbital, atomic, 11–12*, 15, 56, 57, 59–60; 31, 15
orbital acceleration, 3*, 32, 33–4
orbital circular motion, 1*, 23, 24–5
orbits
 circular, 1, 23, 24–6
 of Earth, 1, 28–9, 30, 31, 32–3, 35–7, 41; 2, 30–1, 32, 34–6; 28–29, 70
 of Moon, 1, 34–8, 41, 43
 of planets, 1, 32–3, 45; 2, 30–1, 32, 34–6
 period of, 2, 36–40
 radius of, 2, 30–2, 34, 36–40
orchid (*Ophrys insectifera*), 19, 5
order (biology), 21*, 29, 32, 33; 26, 3, 15
 order of diffraction, 10, 34, 36
order of magnitude, 2*, 11, 12
 ordering geological events *see* time Ordovician Period
 fossils in, 28–29, 12
 ice age in, 28–29, 72
 in Stratigraphic Column, 28–29, 20–1, 23
organelles, 19*, 6, 10, 11; 22, 40–1; 26, 3, 15
see also chloroplasts; eukaryote; mitochondria; nuclei; prokaryote; ribosomes
organic chemistry, 17–18*, 6; 19, 8–9
 importance of, 17–18, 3–6
see also carbon compounds
organism *see* life
organochlorine insecticides, 17–18, 47
organs, 19*, 5; 26, 3, 15
Orlon, 17–18, 87
outcrop, 28–29*, 18
outer core of Earth, 5–6*, 75, 81; 28–29, 42, 49
ovalbumin, 24, 45
ovule, 20*, 8, 28
see also eggs
ovum, 20*, 8
 production of, 20, 11, 20–1
see also eggs, gametes
 owls in Wytham Wood, 25, 36–43
oxaloacetic acid, 22*, 45, 50
oxidation, 17–18*, 70, 71–2; 23, 4, 26
 of organic fuels, 22, 3, 10, 41
see also catabolism; oxygen supply
oxidative phosphorylation, 22*, 52, 53, 54, 55, 56–7
see also Mitchell's theory; mitochondria
oxides, 13–14, 14, 15, 26, 27, 30, 33, 37, 40; 28–29, 52–3, 55–6, 57, 58
 in planets, 28–29, 48, 49
 of sulphur and nitrogen; emission into atmosphere, 25, 30
oxygen, 11–12, 5, 64; 13–14, 5, 18, 20–1, 74; 25, 6–7, 13, 21; 26, 15
 in atmosphere, 28–29, 57, 60, 62
 early, 28–29, 63–4, 65, 66, 67–8, 69
 levels, evidence for, 28–29, 52–3, 60–1
 source of, 28–29, 54–5, 58, 61
 binding to haem, 22, 25
 in carbon compounds, 17–18, 8–9, 10, 39–40
 chemical bonding, 13–14, 60–3, 67
 cycle, 25, 21
 in electron transport chain, 22, 25
 indicators, 28–29, 53
 as initiator of polymerization, 17–18, 79, 96
 isotopic labelling, 22, 63
 measurement of concentration, 22, 42
 in meteorites, 28–29, 80
 as molecular covalent substance, 13–14, 56
 molecules of, 13–14, 9
 in oceans, 28–29, 59, 64, 66
 production of, 13–14, 50
 in rocks, 27, 6, 11
 and weathering, 27, 32
 supply in organisms, 23, 4–10
 diffusion of, 23, 4–6, 7, 8, 9, 10, 24, 35
 transport in blood system, 23, 11–12, 32–3, 37
 in large multi-cellular, 23, 8–10
 in small multi-cellular, 23, 6–8
 toxic to early life, 28–29, 63
 water formed from, 13–14, 20, 21
see also aerobic respiration; electron transport chain; mitochondria; oxidation
oxygen debt, 22*, 58
oxygen electrode, 22*, 42
ozone hole, 17–18, 16, Plate 5
ozone layer, 17–18*, 15, 16, 17, Plate 5; 28–29*, 54, 55

P

Pacific Ocean
 borders of
 mountains, 7–8, 11, 12
 volcanism and seismicity, 7–8, 14, 25, 81
 crustal plate, 7–8, 55, 61, 70, 73
 destructive plate margins, 7–8, 70
 gravity anomalies, 7–8, 34–6
 magnetic anomalies, 7–8, 41–2
 Moon's birth from, 7–8, 17
 ridges, 7–8, 29, 42, 43, 45
 sea surface variation, 7–8, 77
 spreading rate, 7–8, 46–7, 52
 transform faults, 7–8, 52
 paints, 17–18, 4
 paired bases, 24, 11–12, 13, 17, 21
 and genetic code, 24, 35–7
 and protein synthesis, 24, 25, 31, 32
pairing of electrons, 11–12*, 55; 13–14, 59, 61
pairing of homologous chromosomes, 20, 13–14, 18–20; 26, 16

Palaeocene Period, **28–29**, 23
 palaeoclimatic *see* climates, past
palaeoecology, **28–29***, 11, 13
palaeomagnetic *see* magnetic anomalies
palaeomagnetic poles, **5–6***, 55, 83–7
palaeomagnetism, **5–6***, 54–6, 58, 82–3
palaeontology, **19***, 12
see also fossils
 Palaeozoic Era, **28–29**, 4, 15, 22, 23, 57–8, 67–8, 70
 dating, **28–29**, 36
 fossils in, **28–29**, 12, 64, 66–8
 life in, **28–29**, 67–8, 70
 in Stratigraphic Column, **28–29**, 20–1, 23
see also Cambrian; Ordovician; Silurian; Devonian; Carboniferous; Permian
 palladium, **13–14**, 38–9
palmitic acid, **22***, 15, 16, 61
 pancake model of Earth, **1**, 11–12
pancreas, **23***, 32; **26**, 10, 11, 18
 pancreatic juice, **26**, 10
 paranormal phenomena, **1**, 6
 parallax errors, **4**, 17
 parallel plates and standing wavefunctions, **30**, 19–22, 23; 31, 5–8
 parasites
 and diseases, **19**, 5, 6
 used for biological control of pests, **25**, 53, 54
see also viruses
 parasitic wasps
 biological control of pests and, **25**, 54
 mortality of holly leaf miners and, **25**, 45, 46, 50, 51
 parasitoids, **25***, 34, 35, 55
parasympathetic nervous system, **23***, 34, 35, 37; **26**, 11
parental generation (P), **20***, 4, 23, 25, 26, 33, 35, 41, 42
 parent–daughter ratio, **28–29**, 27, 28–9
parent isotope, **28–29***, 27, 28, 30, 31
 parent planets, **28–29**, 44, 51
 Parker, R. L., **7–8**, 52, 81
partial melting (of mantle peridotite), **27***, 21, 22–4, 29, 52–3, 54
 particles
 accelerators, **30**, 5, 11
 light as, **10**, 3, 42–54
 Compton effect, **10**, 3, 48–50, 51
 photoelectric effect, **10**, 3, 42–8, 50, 53
 mass of, **32**, 6, 7
 meaning in high-energy physics, **32**, 3
 models
 of electromagnetic radiation, **30**, 7–9, 14
 of matter, **30**, 9–12, 13, 14, 17
 quanta behaving as, **30**, 12, 13, 17
see also collisions; fundamental particles; quantum; quantum mechanics; wavefunctions
 particle accelerators *see* accelerators
 particle-in-a-box model, **31**, 8–10, 11–14, 15, 21–2, 27
particle physics, **31**, 42; **32***, 4
see also fundamental particles

Parus major (great tit) populations, **25**, 34, 35–6
Paschen series, **11–12**, 32, 47
passive continental margin, **7–8***, 60
 Pasteur, Louis, **28–29**, 64
 Pauli, Wolfgang, **32**, 13
 Pauling, Linus, **13–14**, 66
 peas, garden: inheritance of characters, **20**, 6–7, 23, 24, 27, 30–1; **24**, 42–3; **26**, 5
 peat, **25**, 10, 15
 pendulum, **1**, 20, 32
 periods of, **1**, 18, 19–21, 42
 swing of, **1**, 20–1, 24, 26–8
 penguins, adaptation by, **19**, 13–14
 penta-1,3-diene, **17–18**, 50
 pentan-1-amine, **17–18**, 21
 pentane, **17–18**, 19
 pentan-1-ol, **17–18**, 20
 pentan-2-one, **17–18**, 40, 41
 pentan-3-one, **17–18**, 40, 41
 peppered moth (*Biston betularia*), **21**, 3; **24**, 9
 and evolution, **21**, 4–6, 10, 22
 experiments with, **19**, 16–20, 27–9, 30
 mutation of, **19**, 31
pepsin, **22***, 30; **26**, 11
peptide, **22**, 11; **26**, 11
peptide bond, **17–18***, 69; **22**, 21–2, 24; **24**, 27, 29, 33; **26**, 11
 perch, adaptation by, **19**, 13–14
peridotite, **5–6**, 8, 60, 66, 67–8, 75, 81, Plate 13; **7–8**, 34; **27***, 10, 17, 21; **28–29**, 4, 42, 47–50
 composition of, **27**, 9, 14, 15, 18
 formation of, **27**, 20–1, 22, 24, 29
 in meteorites, **28–29**, 44, 45
 and plate margins, **7–8**, 63, 64, 66, 78
see also partial melting
Period (chemistry), **13–14***, 27, 75–6
Periods (geological), **28–29***, 4, 25
 names of, **28–29**, 22–3
see also Cambrian; Ordovician; Silurian; Devonian; Carboniferous; Permian; Triassic; Jurassic; Cretaceous; Tertiary; Quaternary
period (physics), **1***, 18
 orbital, **2**, 36–40, 42–4
 of pendulum, **1**, 18, 19–21, 42
 periodic disturbances, **5–6**, 25
 periodicity, **1**, 18–22, 24
Periodic Law, **1**; **13–14***, 27
periodic process, **1***, 18, 22
Periodic Table, **13–14***, 4, 25–6, 27, 28–42, 75–6
 and electronegativity, **13–14**, 65–8, 70–1, 72, 73
 and electronic configuration, **13–14**, 58, 59, 62, 63, 70
 long form of, **13–14**, 30–3, 35, 39, 41, 76
 Mendeléev's short, **13–14**, 26–9, 33, 40, 41, 76
 critique of, **13–14**, 29–30
 relative atomic masses, problem raised by, **13–14**, 29
period of a wave, **10***, 13, 16, 23
 periwinkle, **28–29**, Plate 21
 Perl, Martin, **32**, 34
 Permethrin, **17–18**, 47, 49
 Permian Period
 fossils in, **28–29**, 12

ice age in, **28–29**, 72
 in Stratigraphic Column, **28–29**, 20–1, 22, 23
Perognathus species (seed-eating rodent), **25**, 58
 peroxides, **17–18**, 79–80, 96
 Perspex (Plexiglass), **17–18**, 103
 pesticides *see* insecticides
 pests
 biological control of, **25**, 34–5, 53, 54, 55, 60–1
 chemical control of (insecticides), **17–18**, 47–51; **25**, 34–5, 53–4, 59
PET *see* polyethylene terephthalate
 petroleum, **17–18**, 4, 19
 pH
 in blood, **15**, 29–30
 in human digestive system, **26**, 9, 10, 11, 18
 of rain, **15**, 30
see also pH optimum; pH scale
 pharmaceuticals, **17–18**, 5, 63, 95
 phase of a substance, **13–14***, 19
phase (waves), **10***, 20
phase changes (phase transitions), **5–6**, 66; **9**, 27–30, **16***, 5, 6, 16
 phenol, **17–18**, 41
phenotype, **19***, 19, 20; **21**, 4–6; **22**, 6, 23; **24**, 4–5, 9; **26**, 5, 6, 17
 evolved *see* evolution
 fecundity and viability, **19**, 23–4
 fitness, **19**, 25–7, 29–30
 genes and, **24**, 40, 43
 new (mutated), **19**, 30, 31–6, 37
 phenotypic characters *see* heritable character; inheritance
 phenylalanine (Phe), **17–18**, 60, 62; **22**, 21, 45; **24**, 27, 36
 phenylethene *see* styrene
phenyl group, **17–18***, 40, 41
 phenylthiocarbonate (PTC), ability to taste, **21**, 11
pheromones, **17–18***, 47, 48, 49–51, 52
 and pest control, **25**, 53
 phoenix, **24**, 17
pH optimum of enzymes, **22***, 29, 30, 36; **26**, 18
 phosphate groups, **17–18**, 89; **22**, 11, 16
 phosphates, **13–14**, 57; **22**, 14, 64
 in DNA, **24**, 10, 11, 12
 in RNA, **24**, 24
see also inorganic phosphate
phospholipids, **22***, 16, 25, 64
 phosphorus, **11–12**, 22, 61, 64; **13–14**, 27–8, 31–2, 36–8, 65; **22**, 16; **28–29**, 62
 cycle, **25**, 29, 32
phosphorylation, **22**, 54
 oxidative, **22**, 52, 53, 54, 55, 56–7
 substrate level, **22**, 49, 53, 54
 photochemical dissociation of water, **28–29**, 55, 57, 60
 photochemical reactions and origin of life, **17–18**, 91–2
 photochemistry, **10**, 49
photoelectric effect, **10***, 3, 42, 43–8, 50, 53, **11–12**, 39; **30***, 7, 8, 13, 14
 Einstein's photoelectric equation, **10**, 45–8, 50
 wave model, failure of, **10**, 44
photoelectrons, **10***, 42, 43–8, 53

photoelectron spectroscopy and spectra, 11–12*, 39, 40–2, 46, 48, 52, 55, 59, 60
photoionization, 11–12, 39
photomultiplier, 10, 54
photon, 10*, 42, 49, 50, 51–2, 53, 54; 11–12, 36; 13–14, 61; 30*, 7; 31, 3, 7, 8, 14, 31–2, 36; 32*, 39, 43, 44
 absorption see photoelectric effect
 energy of, 10, 45; 11–12, 39–40, 30, 7, 8, 13
 momentum of, 10, 48; 30, 8–9, 13, 14
 scattering see Compton effect
see also electromagnetic radiation
photophosphorylation, 22*, 63, 65
photosynthesis, 9, 5; 10, 4; 22*, 8, 12, 38, 39, 62–3; 23, 4; 25, 6–11, 15, 16, 22–25; 26, 12, 15; 28–29, 63, 64, 66
 ADP produced in, 22, 63, 64
 in aquatic environment, 25, 17
 carbon cycle and, 25, 22, 23, 24, 31
 production ecology and, 25, 6–9, 13, 15
 and source of atmospheric oxygen, 28–29, 54–5, 58, 61
pH scale, 15*, 27–8, 29, 30, 38–9
phyllite, 27*, 49, 51, 52, 54; 28–29, 4
phylum, 21*, 29, 31, 32, 33; 26, 3, 15
 physical states, changes in, 16, 5, 6
 physical system, 9, 6
physical weathering, 27*, 16, 31, 32, 44
physico-chemical factors, 25*, 3
physics, 3*, 4
physiology, 22*, 3–4, 64; 23, 4; 26, 9–12
see also circulatory systems; control mechanisms; glucose levels; metabolism; oxygen supply
Phytomyza illicis *see* holly leaf miner
phytoplankton, 25*, 5, 6, 12, 16–17, 30; 26, 12, 13, 18
see also plankton
P_i *see* inorganic phosphate
π, definition of, 2*, 17
 Pickett, John, 17–18, 49
pig
 heart, 23, 12, Plate 9
 insulin from, 24, 46
pigmentation, 26, 8
pillow lavas, 5–6*, 76, Plate 16; 28–29, 22
pituitary, 23, 32
 Placet, P., 7–8, 17
plagioclase feldspar, 27*, 9, 10, 11, 15, 29, 32
 Planck, Max, 10, 45
Planck's constant, 10*, 45, 46–7, 50; 30, 7, 10, 21, 27–8; 31, 6, 12, 13, 16
 and Heisenberg's uncertainty principle, 30, 28
planes, inclined, Galileo's experiments with, 3, 8–9
plane of lunar orbit, 1, 35–8, 43
plane-polarized light, 17–18*, 57, 58–9, 62–3, Plates 6–8
planets, 1*, 18, 45; 2, 30–41; 28–29, 80
 Copernican system, 2, 30–2
 cores of, 28–29, 45, 49, 50, 51
 density of, 28–29, 39, 41, 47–8
 formation, 28–29, 42–51
 accretion, heating and layering, 28–29, 47–50, 57
Jupiter, moons of, 2, 42–3
 meteorites, evidence from, 28–29, 42–7, 50
 paths/orbits of, 1, 18, 22, 32–3, 45; 2, 30–1, 32, 34–6
 time (after Big Bang) when formed, 32, 45
Tycho Brahe's tables, 2, 33, 35, 36
Uranus, Neptune and Pluto, 2, 34, 40
see also Kepler
planetary model of the atom, 11–12, 15
plane wave, 10*, 25, 26, 30
plankton, 28–29, 75; *see also* phytoplankton; zooplankton
 planning experiments, 4, 6–7, 28
plants, 19, 4–5; 28–29, 67, 68, 70
 adaptation, 19, 15–16
 animals eating *see* herbivores
 carbon dioxide and, 28–29, 58, 78
cells, 19, 5–8; 22, 38, 39; 26, 4, 15
 genetic engineering of, 24, 46
 classification, 21, 27, 29
 copper tolerance, 21, 9, 10
 evolution by natural selection, 19, 32–6
 fecundity and viability, 19, 22–4
 fitness, 19, 22–3, 32–6
 flowering, 19, 11; 22, 4
 genetic variability, 21, 14
 mutation of, 19, 31
 rabbits and, 25, 60–2
 recombination, 21, 20
 speciation, 21, 22, 25–6
 vegetation belts, 7–8, Plate 4; 28–29, 71
see also autotrophs; individual plant names; photosynthesis
plant respiration (R), 25*, 8, 18
see also respiration
plasma, blood, 23*, 11, 18, 19, 20, 22, 24, 33; 26, 11
 enzyme assay, 22, 32
 pH, 22, 29
plasmids, 24*, 47, 48
Plasmodium falciparum (malarial parasite), 21, 18; 25, 4
plastic deformation of rocks, 27*, 47, 54
plasticizers, 17–18*, 85
plastics, 17–18, 4, 78
see also giant molecules; macromolecules
plate margins, 7–8, 52, 55, 72; 28–29, 80
 and metamorphism, 27, 51
 and origin of andesites, 27, 24–7, 28, 29
 and origin of basalts, 27, 20–1, 25, 26, 29
see also conservative; constructive; destructive
plate tectonic theory, 7–8*, 59; 31, 28
 before revolution, 7–8, 17–26
see also continental drift
 revolution, 7–8, 26–59, 79–82
 apparent polar wandering, 7–8, 27
 chronology, 7–8, 81
 collision, 7–8, 72, 74
 and continental drift, 7–8, 56–9
 deep-sea drilling, 7–8, 47–50
 geopolitics, 7–8, 38–40
 global tectonics, 7–8, 52–6
 heat-flow measurement, 7–8, 36–7
 magnetic anomalies measured, 7–8, 40–7
 ocean depths and continental fits, 7–8, 27–9
 transform faults, 7–8, 51–2
platelets, 23*, 18, 20, Plate 10
platinum-iridium standards
 of length, 2, 6
 of mass, 2, 9
Pleistocene Period, 28–29, 23
Pliocene Period, 28–29, 23
 ploughing and biogeochemical cycles, 25, 23–4, 27, 31
Pluto, 28–29, 37, 38–9, 41
 orbit of, 1, 45; 2, 34, 40
pluton, 27*, 22, 50
plutonic rocks, 5–6*, 8, 76, 77, 79; 27*, 22, 23–4, 29
see also intrusive rocks
plutonium, 13–14, 39, 41, 75
Pohlflicht (flight from poles), 7–8, 23
 point-like particles, 32, 3, 25
see also fundamental particles
polar front, 28–29*, 74, 75
Polaris, 1*, 18, 22, 40–1
polarity
 magnetic, 7–8, 11, 44–5
 time scale, 5–6, 86–7
polarized light, 17–18, 57–9, 62–3, 66, Plates 6–8
polarizer, 17–18, 57–8, Plates 6–8
Polaroid material, 17–18, 57, 58
polar solvents, 13–14*, 68; 17–18, 23
polar wandering, apparent, 5–6, 84–6; 7–8, 27, 58
poles
 geographic, 5–6, 44, 49, 55
 palaeomagnetic, 5–6, 55, 83, 84, 87
 of a bar magnet, 5–6, 44, 45, 51
see also geomagnetic poles
pole of rotation, 7–8, 52–4, 58
pollen, 20*, 3, 4, 5, 8, 17, 23, 28, 30
pollination, 19, 4–5; 20, 3
pollution of environment, 15, 31–3, 25, 27, 29, 30–1, 32
 and colour of moths *see* peppered moth
 and mutation, 21, 5
 oil, 26, 14
 resistance to, 21, 9, 10
polyamides, 17–18*, 82, 88
polyatomic ions, 13–14*, 49, 56, 57, 62
polyatomic molecules, bond energies for, 16, 12, 14
polydeoxyribonucleotides, 17–18, 90; 24*, 10
polyester, 17–18*, 4, 78, 82, 86, 87, 90, Plates 3, 9 and 10
polyethylene *see* polythene
polyethylene terephthalate (PET), 17–18, 87
polymers, 17–18*, 4–5, 78
 strands in DNA, 24, 10, 12
 synthetic RNA, 24, 36, 37, 38
see also addition polymers; biopolymers; condensation

polymers (*continued*)
 polymers; giant molecules;
 polymerization

polymerization, 17–18*, 78, 95
 addition, 17–18, 78–81, 90, 96
 condensation, 17–18, 81–2, 89

polymorphism, 21*, 16–18, 19, 22

polynucleotides, 17–18*, 89, 90; 19, 10

polypeptides, 17–18*, 88; 22*, 21–2,
 24; 26, 8, 17, 18
 chain synthesis, 24, 29, 34, 37–8

polypropylene, 17–18, 79, 85, 86, 87,
 95, Plate 10

polyribonucleotides, 24*, 24
 synthetic, 24, 37

polysaccharides, 17–18*, 89; 22, 7, 15,
 17–20, 64; 26, 10, 11, 18

polysomes, 24*, 29, 30; 26, 15

polystyrene, 17–18, 79

polythene (polyethylene), 17–18, 79,
 85, 95, 96

poly(U), 24, 36

poly(vinyl chloride), (PVC), 17–18,
 79, 85, 104

pond *see* aquatic ecosystems

Pongidae, 21, 31

pons, 23*, 33

Popper, Sir Karl, 1, 6; 7–8, 80

population, 19*, 22; 25*, 5; 26, 6, 8,
 13, 14, 17, 19
 defined, 21, 4
 ecology of, 25, 33–56
 density changes, 25, 33–9
 evolution proceeds by, 21, 28
 growth, 19, 4, 22, 24
 mortality factors and *k*-value
 analysis, 25, 39–44
 holly leaf miner, 25, 45–53
 see also animals; biological
 control, genetic variability;
 humans; plants; speciation

population density, 25*, 33, 34–5
 see also biological control

porpoises, adaptation by, 19, 13–14

position, components of, 30, 24, 25,
 26–9, 31, 32

position isomers, 17–18*, 30, 31, 32–5,
 53

positive charge, 9, 30–1, 33
 of ions, 11–12, 5, 7–8, 9, 12, 13,
 14–16, 18, 37, 66, 69
 and atomic spectra, 11–12, 28,
 35, 36

positive feedback, 23*, 29; 26, 11

positron, 31, 30, 31, 36; 32, 14–17

post-transcriptional modification, 24*,
 44, 46–7

post-translational modification, 24*,
 38, 46–7

potassium, 13–14, 42
 chemical bonding, 13–14, 58, 65
 in oceans, 28–29, 59–60, 61
 in rocks, 27, 6, 8, 20, 21, 22–3, 40;
 28–29, 44, 46, 53
 feldspars, 27, 9, 10, 11, 20, 42
 isotopes, 27, 18, 19; 28–29, 27,
 30, 31, 50
 transport and deposition of, 27,
 41

potassium carbonate, 13–14, 49

potassium chloride, 13–14, 72

potassium dichromate, 17–18, 71

potassium iodide, 13–14, 42–3, 51, 56

potential difference, 9*, 33

potential energy, 9, 2; 31, 7

power, 9*, 34, 35
 geothermal, 7–8, 69
 stations, 9, 4–5
 see also fuel; nuclear energy

powers-of-ten (scientific) notation, 2*,
 10

practical work and experiments
 designing, 4, 4–6
 measurement, 4, 4, 17–20
 observation, 4, 4
 planning, 4, 6–7, 28
 records of, 4, 7–10
 rehearsing, 4, 7
 reports, writing, 4, 27–34
 see also data

prebiotic chemistry, 17–18, 91–5
 carbon compounds, 17–18, 91–2
 optical activity, origin of, 17–18,
 92–3

Precambrian Era, 28–29, 4, 57, 64–6
 dating, 28–29, 35
 fossils in, 28–29, 25, 54, 64–6
 ice age in, 28–29, 72
 life in, 28–29, 63, 64–7
 in Stratigraphic Column, 28–29,
 20–1
 see also banded ironstone
 formations

precipitate, 15*, 16

precipitation (climatic) *see* rain

precipitation, direct chemical, 27, 41,
 45

precise measurement, 4*, 17, 18, 20

precision, standard of, 2, 6

precursors, 22*, 7, 9, 62, 64

precursor molecules, 24, 46–7

predators, 19, 13, 15, 22, 24; 25, 5, 11,
 12
 for biological control, 25, 53, 55
 birds as, 19, 17–19
 on shore community, 25, 58

prediction
 of earthquake, 5–6, 91–3
 of undiscovered elements, 13–14,
 30, 33

pre-pro-insulin, 24, 46–7

pre-reproductive mortality, total
 generation, 25, 40, 41, 55

pressure, 5–6*, 10, 60, 75
 blood, 23, 35
 constant in endothermic and
 exothermic reactions, 16, 4
 equilibrium yield and, 16, 31, 32
 water, solubility of oxygen and, 23,
 5

prey *see* predators

primary alcohols, 17–18*, 72, 76

primary atmosphere, 28–29, 57

primary producers, 25*, 7, 8–11, 18;
 26, 12
 seasonal changes and, 25, 24–5
 see also gross primary production;
 net primary production

primary structure of proteins, 22*, 21,
 22–4; 26, 10, 17, 18

primary waves *see* P-waves

primates, 19, 5

primordial atmosphere, 17–18, 91–2

primordial heat, 27, 19, 29

principal quantum number, *n*, 11–12*,
 32, 43, 46, 58; 13–14, 34

principle of faunal succession, 28–29*,
 15–17, 18, 19, 25

principle of superposition (waves),
 10*, 17, 18–24, 25
 see also superposition

**principle of superposition (Earth
 sciences)**, 28–29*, 14, 25

principle of uniformitarianism,
 28–29*, 19, 22, 25, 66
 theories of origin of Solar System,
 28–29, 37

principles of regulation *see* control
 mechanisms

probabilistic interpretation
 of diffraction pattern, 30, 14–17,
 27, 33
 of wavefunction, 30, 19–21

processes of life, 19, 10–11

producer *see* primary producer

products, 13–14*, 9, 25; 26, 10

production ecology, 25*, 6–18
 see also primary producers and
 ecosystems

pro-insulin, 24, 46–7

prokaryotes, 19*, 9, 11; 21, 29; 24,
 45–6
 time when appeared, 28–29*, 59,
 63, 64–5, 69; 32, 45
 see also bacteria

proline (Pro), 22, 21; 24, 36

propagation, 30, 10
 of free matter *see* de Broglie's
 formula; wavefunctions
 quantum behaves as wave in, 30,
 12, 13, 17

propanal, 17–18, 42

propan-1-amine, 17–18, 21

propane, 17–18, 18–19, 27

propanoic acid, 17–18, 72, 94

propan-1-ol, 17–18, 20, 23, 31–2, 57,
 68, 70, 72

propan-2-ol, 17–18, 31, 57, 72

propanone *see* acetone

propanoyl chloride, 17–18, 70

propene *see* propylene

prophase in meiosis, 20, 13, 14, 16,
 20, 21, 29, 34, 46, 48; 26, 5, 15,
 16
 compared with mitosis, 20, 46, 48

proportionality, 2*, 40, 41

propyl acetate, 17–18, 68, 70

propylene, 17–18, 38, 39, 43, 45, 79,
 96

propyne, 17–18, 38

prospecting, magnetic and seismic
 techniques in, 5–6, 88–9

prosthetic groups, 22*, 25

proteins, 17–18*, 60, 69, 74, 88–9; 19,
 8–9, 11; 22, 5, 20, 21–4, 25; 26,
 8, 9, 11
 carbon cycle and, 25, 26
 elements necessary for, 25, 21, 25,
 29
 fibrous, 17–18, 88; 22, 23
 functional, 24, 38
 functions, 22, 20, 24
 globular, 17–18, 88, 89; 22, 23–4,
 25; 26, 10, 18
 histones, 20, 9, 10
 meiosis and, 20, 19–20
 structure, 22, 20–4, 29, Plates 1
 and 2; 26, 10, 17, 18
 synthesis, 22, 6, 7, 38, 40; 24, 9,
 21–35, 44–5
 bacteria as 'factories' for, 24,
 45–9

proteins (*continued*)
see also enzymes; messenger RNA; translation; transcription

protein half-life, 22*, 5

proteolytic (protein-destroying) enzymes, 23, 27

'proto-Atlantic Ocean', 7–8, 57

proton, 11–12*, 16, 17, 18, 19, 20; 31, 3–4, 11–12, 17–18, 21, 27

baryon number, 32, 20

quarks in, 32, 26

rest mass of, 32, 7

stability, 32, 18

structure of, 32, 24–5, 42

see also atomic nucleus; strong interaction

ψ *see* J/ ψ

PTFE, 17–18, 79

Ptolemy, 1, 14

P–S–P core waves, 5–6, 75

Puerto Rico Trench, 7–8, 13

pulmonary artery, 23, 13, Plate 19

pulmonary circulation, 23*, 13, 20

pulmonary vein, 23, 13, Plate 19

pumice, 5–6*, 76, Plate 17

pupae of holly leaf miners, mortality of, 25*, 45, 46, 47, 50, 51

pure-breeding plants and animals, 20*, 4, 24–6, 33, 34, 35, 41

inheritance experiments *see Drosophila*; maize; peas

purine bases, 24*, 11, 12

PVC, 17–18, 79, 85, 104

P-wave shadow zone, 5–6*, 63, 73

P-waves, 5–6*, 26, 28, 33, 38, 78, 90

speed of, 5–6, 29–32, 61–7, 72, 73–5, 81

pyloric sphincter, 26, 10, 11, 18

pyrethroid insecticides, 17–18, 47

pyrimidine bases, 24*, 11, 12, 24

pyrite ('fool's gold'), 5–6, 76; 27, 7, 13, 14, 37, Plate 9; 28–29*, 53, 59

pyroclastic rocks, 27*, 19, 20

pyroxene

- in meteorites, 28–29*, 44, 51
- in planets, 28–29, 49
- in rocks, 27*, 6, 9, 10, 11, 15, 16, 20, 23, 29
- weathering of, 27, 32

pyruvate decarboxylase, 22*, 57

pyruvic acid, 22*, 14, 15, 45, 46, 47, 48–50, 54, 57–8, 59, 61; 26, 15

Pythagoras: on spherical Earth, 1, 14

theorem of, 3*, 5

Q

Q, coenzyme, 22, 31, 52, 55

qualitative work, 4, 4

quanta of electromagnetic radiation, 10, 45–50; *see* photon

quantitative result, 4, 4

quantization, 10*, 45, 47, 50; 31*, 7

of energy, 11–12*, 27

- of an atom, 31, 3–4, 11–16
- nuclear, 31, 21–2

of wavelengths of wavefunction, 31, 5–7, 9–10

quantum, 30*, 12, 13

- motion of, Heisenberg's uncertainty principle applied to, 30, 26–9, 31
- theory, 30, 13

see also electromagnetic radiation; models of matter

quantum chromodynamics (QCD), 32*, 29, 33, 41–2

quantum electrodynamics, 10*, 52; 30, 13, 17

quantum mechanics, 11–12, 12, 15; 30*, 4, 13, 14–23, 26–35; 32, 14, 38

and confined particles, 31, 3–10, 11–17, 42

and macroscopic objects, 30, 32–5

as theory of behaviour, 30, 35

compared with classical (Newtonian) mechanics, 30, 4, 23, 31, 34, 35

see also matter; wavefunctions

quantum number, 11–12, 32, 43, 45–6, 53–5, 57–8, 59, 62; 13–14, 34; 31*, 5, 6–10, 15–16

and shells and subshells, 11–12, 42–3, 46

see also magnetic quantum number; second quantum number

quarks, 32*, 4, 25, 26, 27–9, 42–3

- antiparticles of, 32, 26–8
- interactions of, 32, 28–9
- and gauge bosons, 32, 41–2
- model, simple, 32, 25, 26, 27, 30

quartz, 5–6*, 8, Plate 9; 13–14, 64; 27*, 5, 6, 9, 10, 11, 14, 15, 16, Plates 5 and 6

resistance to weathering, 27, 32, 33, 44

transport and deposition of, 27, 34, 36

quasi-planetary system, 2, 44

Jupiter and moons as, 2, 42–3

Quaternary Period

- Ice Age, 28–29, 72, 74, 75–6, 77, 78
- in Stratigraphic Column, 28–29, 23
- varves of, 28–29, 8

quoting results, 4, 21

R

rabbits (*Oryctolagus cuniculus*) and vegetation, 25, 60–2

racemic mixture, 17–18*, 62–3, 93

races (subspecies), 21*, 24, 25–7, 29, 31, 33

radian, 2*, 18, 20, 22, 30, 48

radiation *see* electromagnetic radiation; ionizing radiation

radiation-induced changes in DNA, 24, 40, 41, 43, 50; 26, 5, 16; 31, 34, 35

radicals, 17–18*, 79–80, 85, 96

radioactive dating of rocks *see* radioactivity

radioactive decay, 11–12*, 18–22; 31*, 18, 27, 28, 29–33, 37

decay chains, 31, 32–3

and fundamental particles, 32, 13, 14, 15, 28–9

half-life, 11–12, 20, 21, 22, 23; 28–29, 26–31

hazards of radioactivity, 31, 33–5

new types of, 31, 32

see also α -decay; β^+ -decay; β^- -decay; γ -decay; radioactivity; spontaneous nuclear fission

radioactivity, 11–12*, 18, 19–20; 15, 14; 17–18, 93

- hazards of, 31, 33–5
- in production ecology, 25, 12
- in rocks, 27, 18, 19, 29
- dating, 7–8, 18, 24, 25, 29
- see also* radiometric clocks

see also isotopes; radioactive decay

radio-astronomy, 17–18, 93

radiometric 'clocks', 28–29, 24, 26–9, 32–5, 36–7

- minerals as, 28–29, 30–1
- radio waves, 10, 40
- radius, 2, 17, 18, 30
- of Earth, 2, 15–19, 21–2, 29, 45–6; 5–6, 7
- of Moon, 2, 20–2, 29
- of orbits of Earth and planets, 2, 30–2, 34, 36–40, 42–3
- of Sun, 2, 28–9

radon, 13–14, 28, 31, 39, 58; 31, 35

Raff, Arthur, 7–8, 41

ragwort (*Senecio jacobaea*), 25, 61, Plate 13f

rain, 15, 24

- acid, 15, 30–3; 25, 30–1, 32
- leaching by, 25, 27, 32
- pH of, 15, 30
- and weathering, 27, 31, 32, 34, 40, 44, 53

random uncertainties, 3*, 25; 4, 18, 19–20

range of fundamental interactions, 32, 16, 29

rare earth elements, 13–14*, 30, 33

rarefaction pulse (dilatation), 5–6*, 26, 90

rates of chemical reactions, 16, 2, 18–28, 29

- activation energy, 16, 21–5
- catalysts, 16, 25–7
- influences on, 16, 19
- molecular interpretation of effect and concentration and temperature, 16, 20–1

rats: resistance to Warfarin, 21, 9, 10

reactants, 13–14*, 9, 20, 25

reaction *see* chemical reactions; condensation reactions; endothermic reactions; enthalpy; exothermic reactions; nuclear reactions

reaction-coordinate diagrams, 16*, 23, 24

reaction mechanism, 16*, 19

reading frame, 24, 41; 26, 17

reagents, 17–18, 71, 73

realized niche, 25*, 59, 62

receptors, 23*, 28, 31, 33, 34, 37

- pH-sensitive, 26, 18
- stretch, 23, 34, 35; 26, 18

receptor sites, chiral and non-chiral, 17–18, 62

recessive allele and character, 20*, 27, 30, 38, 41; 21, 4, 6–8, 10, 11, 17; 26, 5, 6, 16

- molecular explanation of, 24, 42–3

reciprocal, 2, 10

recombination of genes, 20*, 44; 21, 19–21, 22; 26, 5, 15

see also crossing over; genetic variability; independent assortment

records, 4, 7–8

redbeds, 28–29*, 53, 57
red blood cells, 19, 6, 7; 21*, 16, 18; 23*, 11, 18, 19, 20, 21, 22, 24; Plate 10; 26, 11
 and glucose, need for, 23, 26
red fescue grass (*Festuca rubra*), 25, 61
reduction, 17–18*, 70, 71, 72–3, 76
reed, common (*Phragmites australis*), 25, 4, Plate 3b
reference levels, 23*, 28, 31; 26, 11, 18
reflection
 angle of, 5–6, 34
 seismic, 5–6, 34–7, 64, 79, 88–9
reflection of a wave, 10*, 4, 5
reflection profile, 5–6*, 88–9
refraction
 angle of, 5–6, 33, 34
 critical, 5–6, 72–3
 seismic, 5–6, 33–7, 64–5, 72–5, 78
refraction of a wave, 10*, 4, 6
refrigerants, 17–18, 9, 13–15, 16
regeneration, cyclical, 25, 60, 62
regional metamorphism, 27*, 50, 51, 52, 54
regular solids, five, 2, 34
regulating mortality factor, 25*, 42
regulation, 23, 4
 of glucose catabolism, 22, 58–9
 principles of *see control*
 mechanisms
regulatory effect of
 density-dependent mortality and natality rates, 25, 37
regulatory enzymes, 22*, 58
rehearsal for experiment, 4, 7
relationship, evolutionary *see classification*
relative abundances, 11–12*, 10
relative atomic mass, A_r , 11–12*, 10, 72; 13–14*, 14, 16, 29, 79
relative dating method, 28–29*, 12, 32–3, 35
relative molecular mass, 17–18*, 11
relativistic quantum mechanics, 30, 32
relativity
 general theory, 32, 15
 special theory, 3, 15; 10, 44–5, 48; 30, 5, 9, 32; 31, 15, 24, 27, 42; 32, 6, 7, 14, 38
relief of the Earth, 5–6*, 6
remote sensing, 5–6*, 6, 68, 90; 28–29*, 80, Plate 32
replication, 19*, 10, 11, 37
 DNA, 24, 14, 17–21, 50
 semi-conservative, evidence for, 24, 19–20
 theoretical scheme for, 24, 17–19
reports, 4, 27–34
representations of a wave, 10*, 14, 16, 23–4
reproduction, 19*, 10, 11, 21, 32, 37; 26, 4
 by cell division, 28–29, 63, 64
 potential, 19, 22–3
see also fecundity; meiosis; mitosis
reproductive isolation, 21*, 23, 24–6; 26, 8
reptiles, 28–29, 11–12, 67, 70
 excretion, 23, 23
repulsion of charged atoms, 9, 31–2, 33, 34; 11–12, 5, 14, 15
repulsive electrostatic force, 9, 31–2, 33, 34
residual minerals, 27*, 33
resistance
 to insecticides, 17–18, 47
 to malaria, 21, 18–19
 of minerals to weathering, 27, 32, 33, 44
phenotypes, 19, 26
 to pollution, 21, 9, 10
 of rats to Warfarin, 21, 9, 10
respiration (cell), 22*, 3, 10, 12, 39, 62
 aerobic, 22, 10
 anaerobic, 22, 57
 beginning of, 28–29, 55, 65
 carbon cycle and, 25, 22, 23, 24, 31
 measuring, 22, 41–2
 photosynthesis and, 22, 62
 production ecology and, 25, 8, 13, 18
 heat from, 25, 7, 8, 9, 14–15, 17
see also catabolism
respiration (gaseous exchange), 23, 8–9, 10, 21–2
 control mechanisms of, 23, 32–3, 34, 37
see also oxygen supply
rest mass, 31*, 24, 26–7
 of gauge bosons, 32, 39, 40, 41, 42–3
 of hadrons, 32, 7, 18, 22, 32, 33–4, 36
 of leptons, 32, 13–14, 15, 34–5, 42–3
 of quarks, 32, 26, 31, 34, 43
results
 quoting, 4, 21
 reporting, 4, 27–34
retrograde loops, 1*, 18, 22, 32–3
reversals of magnetic polarity, 5–6, 56, 86–7
reverse faults, 27*, 48, 49, 54
revolutions, scientific, 7–8, 79–80
see also plate tectonic theory
R group of amino acids, 22*, 21, 22, 23
rhesus factor in blood, 21, 11–12
rhyolite, 5–6*, 76, Plate 19; 7–8, 73; 27, 28, 29
riboflavin, 22, 32
ribonucleic acid *see RNA*
ribonucleotides, 24*, 24, 25
ribose, 24*, 24
ribosomal RNA (rRNA), 24*, 32, 42, 45; 26, 8
 structure of, 24, 24
ribosomes, 22*, 6, 38, 39, 40, 41, Plate 5; 24*, 22; 26, 8, 15
 and protein synthesis, 24, 22–3, 29, 32, 33, 34
Richter, Burton, 32, 33, 34
Richter scale, 5–6*, 19, 20, 21
ridge-push force, 7–8*, 78, 79
ridges *see* Atlantic; oceans; Pacific
rifts, 7–8, 68
see also axial rift
right-angled triangle, 2, 32
'right-handed' forms *see chirality*
rigidity modulus, 5–6*, 31–2, 60, 65
Rio Grande Fracture Zone, 7–8, 51
ripples, 27, Plate 13
see also water waves
risks of ionizing radiation, 31, 34–5
river, ecosystem, 25, 16–17
RNA, 17–18*, 89; 19, 9, 10; 22, 6, 64; 24*, 22, 24–35, 50
DNA makes, 24, 4, 23, 24–6
makes protein, 24, 4, 22
polymers, synthetic, 24, 36, 37, 38
see also messenger RNA; ribosomal RNA; transfer RNA
roach (*Rutilus*), 25, 17, Plate 4
rocks, 5–6, 5, 8; 27*, 5
 age, 7–8, 12, 16, 20, 28, 29
 dating from deep-sea drilling, 7–8, 49–50
see also radioactivity
catastrophism and, 28–29, 16, 19, 26, 50, 51
chemical composition of, 27, 18–20
climates, past, evidence in, 7–8, 18–19, 20–1, 26, 56–7
density, 5–6, 10–11, 12, 60, 63–5, 81
folding, 5–6, 12; 7–8, 22, 70
horizontal/lateral movements, 7–8, 24–5, 43, 73, 74
igneous *see* igneous rocks
investigating structure of, 32, 6
ionizing radiation from, 31, 35
magnetism, 5–6, 82–8
metamorphic, 5–6, 79
paleomagnetism, 5–6, 54–5, 58
 and soil, ionizing radiation from, 31, 35
time when formed, 32, 45
weathering of, 25, 21, 23–4; 28–29, 60, 61
see also crust; density; geology; igneous; metamorphism; minerals; rock texture; sedimentary; silicate minerals;
rock cycle, 27*, 4, 53–4
rockets and energy, 16, 33–5
rock-stratigraphic column, 28–29*, 24
see also Stratigraphic Column
rock texture, 5–6, 8–9; 27, 49
rodents
 density of population, 25, 43
 resistance to Warfarin, 21, 9, 10
 seed-eating, 25, 58–9
Romanche Fracture Zone, 7–8, 51, 58
Rookhope borehole, 28–29, Plate 29
roots
 hairs, 22, 10
 tip, 22, 14
rotation
 of compact disc, 1, 19
 pole of, 7–8, 52–4, 58
 specific, 17–18, 59
see also axis of rotation; Earth
rotational motion, 9, 17
Rothamsted Experimental Station, 17–18, 49
Rowland, F. Sherwood, 17–18, 15
rRNA *see* ribosomal RNA
Rubbia, Carlo, 32, 40–1
Runcorn, Professor Keith, 7–8, 80, 81
rust/rusting, 13–14, 5; 17–18, 70
Rutherford, Ernest, 11–12, 12–14; 32, 24
 on nuclear power, 31, 39
Rutherford atomic model, 11–12*, 15

S

Salam, Abdus, 32, 40, 41
 saliva, 22, 33; 26, 9, 10, 18
 salivary amylase, properties of, 22, 33–5, 37, Plate 3
salt, 15*, 9, 10
 as electrolyte, 15, 18
 in solution, 23, 5, 18
sampling, 4, 4–6, 16
San Andreas Fault System (SAFS), 5–6, 15, 92–3, Plates 2a and 2b; 7–8, 73–4
sand, 27, 36, 37; 28–29, 7
 dune, 27, Plate 13
 interglacial, 28–29, 74
sandstone, 5–6*, Plates 5 and 6; 7–8, Plate 5; 27, 9; 28–29, 4, 14, 20–1, 22, 23, 53, 60
 fossils in, 28–29, 18, 65
satellites and Earth sciences, 5–6, 6
 remote sensing, 7–8, 76, 77
saturated compounds, 17–18*, 38
saturated solution, 15*, 12, 13, 20
Saturn, 28–29, 38–9, 41
 orbit of, 1, 45; 2, 31, 36, 38, 40
scale of graph, choosing, 4, 13, 14–15, 24
Scandinavia: isostatic readjustment, 7–8, 32, 33
scandium, 13–14, 28, 29, 31–2, 36–9
scanning electron microscopy, 17–18, 86; 19, 6
scattering of photons *see Compton effect*
Scilly Isles, 26, 13–14
Schimper, William, 28–29, 23
schist, 27*, 49, 51, 52, 53, 54; 28–29, 4, 18
Schistosoma (parasitic worm), 19, 5
schistosomiasis, 19, 5
Schleiden, Jacob Mathias, 19, 6
Schröffer, John, 30, 34
Schrödinger, Erwin, 30, 22
Schrödinger equation, 30*, 22; 31, 4, 15, 17
Schwann, Theodor Ambrose Hubert, 19, 6
Schwinger, Julian, 10, 52
science as social activity, 1, 5–6, 10
scientific method, 1, 6–8
scientific (powers-of-ten) notation, 2*, 10
scientists as social group, 1, 6
seas *see oceans*
Seaborg, Glenn, 13–14, 41
sea-floor spreading, 5–6, 87; 7–8*, 38, 39, 40, 44–7, 49–50
see also ocean; crust
seamount, 7–8*, 10
seashore *see shores*
seasons, 1, 16, 22, 24
 cause of, 1, 28–32, 41
sea urchin, 28–29, Plates 22a and 22b
seawater, pH of, 15, 30
seaweeds, 25, 57
second, 2*, 8, 11
second carnivores, 25, 12, 14
second filial generation (F₂), 20*, 5, 6–7, 23, 28, 30, 33, 37–40, 41–4
second quantum number, *l*, 11–12*, 43, 46, 58; 13–14, 34; 31, 15
secondary alcohols, 17–18*, 72

secondary waves *see S-waves*
section, geological, 28–29, 18–19, 20–1
secular variations of Earth's magnetic field, 5–6*, 53
Sedgwick, Adam, 28–29, 22, 23
sedimentary rocks/sediments, 5–6*, 9, 12, 79, 83; 27, 5, 11, 15–16, 31–45, 52–3, Plate 1; 28–29, 53
bed forms and structures, 7–8, Plate 5, 27, 38–9, Plate 1; 28–29, 8, 14, 24, 32
deposition of, 7–8, 6, 21; 27, 35–6, 38–41, 45, 53
 similar sequences of, 7–8, 28, 29
coal, 7–8, 21, 56–7
erosion of, 7–8, 7
evidence of latitudinal drift in, 7–8, 56–7
on ocean floor, 28–29, 74–5, 79
plate margins and, 7–8, 63, 64, 72
sunspot activity indicated by, 28–29, 77
and tectonic process, 27, 46–8
transport and deposition of, 28–29, 5, 19, 22, 60, 61
varves, 28–29, 7–8
see also erosion; deposition; fossils; Stratigraphic Column; transportation; weathering
seed-eating rodents, 25, 58–9
segregation (separation) of alleles in meiosis, 20, 28
seismic activity, 7–8, 12, 16
 on borders of Pacific, 7–8, 14, 25, 34–6
gravity anomalies and, 7–8, 33–4, 35–6, 38
plate margins and, 7–8, 55–6, 66, 67, 71, 73–4, 76, 79
transform faults, 7–8, 51–2
see also earthquakes; volcanic activity
seismic discontinuity, 5–6*, 65, 78, 81
see also Mohorovičić discontinuity
seismic energy, 5–6*, 25, 89
seismic evidence of planet formation, 28–29, 42, 47
seismic model of the Earth, 5–6, 61–5
seismic reflection, 5–6, 34–7, 64, 79, 88–9
seismic refraction, 5–6*, 33, 34–7, 64–5, 72–5, 78
seismic trace, 5–6*, 18, 19
seismic waves, 5–6, 24–38; 10, 4
 speeds of, 5–6, 29–32, 33, 35, 36, 37, 38, 60–8, 81
types of, *see P-waves; S-waves*
wave motion, 5–6, 23–4
see also earthquakes; reflection, seismic; refraction, seismic
seismic zones, 5–6*, 16
seismogram, 5–6, 18, 28, 38
seismology, 5–6*, 17, 37–8
seismometer, 5–6*, 17, 18, 24, 26, 37, 88, 89
selection for and selection against, 19, 32
see also natural selection
'selectionists', 21, 16
selectively neutral, 21*, 15, 22
self-conjugate fundamental particles, 32, 39
self-exciting dynamo model, 5–6*, 71, 87
SEM *see scanning electron microscopy*
semiconductors, 13–14*, 69
semi-conservative replication, 24*, 19–20, 21
semi-metals, 13–14*, 30–1, 69, 76
sensory nerves, 23*, 34
serine (Ser), 17–18, 60; 22, 21; 24, 36
sewage
 effluent and algae growth, 25, 27
 works and phosphorus cycle, 25, 29, 30, 32
sex-attractant pheromones, 17–18, 48–9
shadows, 10, 6, 7
'shake' waves *see S-waves*
Shap area, 28–29, Plates 27 and 28
Shatsky Rise, 7–8, 37
shearing motion, 5–6, 27, 28
see also S-waves
shear strain, 5–6*, 31
shear stress, 5–6*, 31
sheep in Tasmania, 25, 33
shells *see electron shells*
shield volcano, 7–8*, 68, 27, 19, 29
shores/coastal areas, 26, 14
 communities, 25, 4, 57–8
 rocks in, 27, 33, 36–7, 39
sickle-cell anaemia, 21, 16–19; 22, 6, 23; 24, 40
signals, 23*, 28, 31, 32, 33
significant figures, 4*, 21
silica, 13–14, 64; 27*, 6, 8, 11, 22–3, 40
silicate minerals, 27*, 6, 7–9, 18, 20, 24, 28; 28–29, 52–3
 crystallization of, 27, 9–11
 densities of, 27, 11–15, 16, 28
 investigation, 27, 12–14
 distribution in crustal rocks, 27, 15–16
 in meteorites, 28–29, 50, 51
 oxidized, 28–29, 52–3, 55–6, 57, 58
 in planets, 28–29, 39, 44–6, 47–8, 49, 50
 transport and deposition of, 27, 36–7
 weathering of, 27, 32–44
silicon, 28–29, 46
 chemical bonding, 13–14, 64, 65, 69
chips, 17–18, 5
 in oceans, 28–29, 59
 in rocks, 27, 6, 8, 11, 22–3, 40
silicon dioxide, 13–14, 64
silk, 17–18, 86
sill, 28–29*, 32, 33
silt, 28–29, 7–8, 13
Silurian Period
 fossils in, 28–29, 12, 67
 in Stratigraphic Column, 28–29, 20–1, 23
silver, 13–14, 30, 69
 in rocks, 27, 6
simple quark model, 32*, 25, 26, 27, 30
sine (sin), 2*, 32
sine waves *see infinite sine waves*
single bonds, 13–14*, 61, 62
see also catenation
single-celled organisms, 19, 6, 9, 11; 21, 29; 23, 5–7, 10; 24, 45–6; 28–29, 59, 63, 64–5, 69

single-slit diffraction, **10**, 6, 7, 8–9, 26–8; **30**, 14–17, 26–8, 33–4
singular statements, **1**, 7
sinker effect, 7–8*, 78, 79
SI units, **2***, 6, 7, 9, 11
size of atoms, **11**–**12**, 6–7, 11
skeletal isomers, **17**–**18***, 31, 33, 34, 35, 53
SLAC (Stanford Linear Accelerator Centre), **32**, 8, 10, 24–5, 28, 32–5
slate, **27***, 49, 51, 52, 54; **28**–**29**, 18, 20–1
small-angle approximation, **2***, 19
smelting ore, **13**–**14**, 74
Smith, William, **28**–**29**, 11, 16, 17–19, 21, 25, 34
snails, marine, **19**, 5
SNC meteorites, **28**–**29**, 80
Snell's law, **5**–**6***, 33, 34, 35
Snider, Antonio, **7**–**8**, 17
snooker game, **9**, 20–2
social activity, science as, **1**, 5–6, 10
social group, scientists as, **1**, 6
sodium, **11**–**12**, 5; **13**–**14**, 25, 42, 50, 52, 58, 72, 73, 76
atom, energy levels of, **11**–**12**, 45, 49; **31**, 16
atomic mass and number, **11**–**12**, 24
atomic spectrum, **11**–**12**, 36; **17**–**18**, 59
chemical bonding, **13**–**14**, 58, 59, 65, 68–9
electron shells, **11**–**12**, 44
electron spin, **11**–**12**, 57
emission spectrum, **11**–**12**, 45, 50
energy-level diagram, **11**–**12**, 45, 49; **31**, 16
ionization energies, **11**–**12**, 37–8, 64
ions, excreted, **23**, 26
isotopes, **11**–**12**, 22; **28**–**29**, 27
light, **2**, **7**; **17**–**18**, 58–9
mass spectrum, **11**–**12**, 10
in oceans, **28**–**29**, 59–60, 61
photoelectron spectrum, **11**–**12**, 48
in rocks, **27**, 6, 8, 10, 11, 17, 20, 21, 22–3, 40; **28**–**29**, 53
transport and deposition of, **27**, 41
salts, **17**–**18**, 23, 62
sodium borohydride, **17**–**18**, 73
sodium bromide, **13**–**14**, 42–3, 51, 56
sodium carbonate, aqueous solution, **15**, 9
sodium chloride, **13**–**14**, 42–3, 72, 76
in solution as electrolyte, **15**, 18
chemical bonding, **13**–**14**, 57, 65, 66–8
crystal, **13**–**14**, 52
as ionic substance, **13**–**14**, 45, 48, 49–50, 51, 52, 54, 55, 56
production of, **15**, 9, 10
in solution, **15**, 5, 27
electrolyte, **15**, 18
saturated, **15**, 12–13
solubility of, **17**–**18**, 23
sodium hydroxide, **13**–**14**, 49, 63; **15**, 5, 8
in solution, **15**, 6, 15–16, 20
as electrolyte, **15**, 7, 18
pH of, **15**, 27, 30
sodium sulphate, **13**–**14**, 42
as ionic substance, **13**–**14**, 45, 48, 49–50, 51, 56

soil, **25**, 10
biogeochemical cycles and, **25**, 20, 23, 25, 27, 28
energy stored in, **25**, 15, 18
ionizing radiation from, **31**, 35
leached, **25**, 27, 32
micro-organisms in, **25**, 11
solar *see* Sun
solar day, **1***, 16, 22
mean, **2**, 8
solar cells, **10**, 53
solar eclipse
annular, **2**, 28
total, **2**, 28
solar energy flux, **25**, 7–8
solar neutrinos, **32**, 14, 16, 43, 44
solar radiation, **25**, 7–8, 20
aquatic environment and, **25**, 16–17
carbon cycle and, **25**, 25
production cycle and, **25**, 7–8, 9, 15, 18
solar spectrum, **11**–**12***, 26, 27, 70–1
Solar System, **1***, 41, 44, 45
origin of, **28**–**29**, 37–41
characteristics of, **28**–**29**, 37–40
nebular and catastrophic theories, **28**–**29**, 37, 40–1, 48
see also planets
measuring
Earth, **2**, 14–20, 29, 44–6
Jupiter's moons, **2**, 42–4
Moon, **2**, 20–6, 29
planets, **2**, 30–41
Sun, **2**, 26–8, 29
solar year, **1**, 22
solenoid, **5**–**6***, 70, 71
solids
and chemical reactions, **16**, 2, 3, 14, 15
elasticity and ductility of, **7**–**8**, 32–3, 34, 76
internal energy of, **9**, 27–9, 30
solstice, **1**, 16
solubility, **15***, 12; **17**–**18**, 23, 24
soluble products of weathering, transport and deposition of, **27**, 40–1
solute, **13**–**14***, 43
solution, **13**–**14***, 43; **15**, 18–20; **23**, 18
neutral, **15**, 5, 27
oxygen in, **23**, 5, 7, 8, 9, 10, 35
saturated, **15**, 12, 13, 20
solvents, **13**–**14***, 43, 51, 53, 57; **15**, 24–33; **17**–**18**, 23–4
ion product of water, **15**, 25–7
pH scale, **15**, 27–30
polar and non-polar, **13**–**14**, 68
somatic cells, **20***, 11, 17; **21**, 14–15; **24**, 7–8; **26**, 15
mutation and, **24**, 40
number of chromosomes *see* diploid
see also mitosis
sorting, of sedimentary material, **27***, 36, 45
sound energy, **9***, 3, 5
sound waves, **10**, 4, 5, 6
South America, **7**–**8**, 10, 57
crustal plate, **7**–**8**, 54, 55, 60, 61
formation of, **7**–**8**, 38
sediments in, **7**–**8**, 20, 29
Southern, H. N., **25**, 37, 42–3
Southern Hemisphere, **1**, 16
seasons in, **1**, 31
south pole of a magnet, **5**–**6***, 44
South Sandwich Trench, **7**–**8**, 13
space, molecules in, **17**–**18**, 93–4
sparrow, American song, races of, **21**, 25
s-p-d-f notation, **11**–**12***, 45, 46
special theory of relativity, **3**, 15; **10**, 44–5, 48; **30**, 5, 9, 32; **31***, 15, 24, 27, 42; **32**, 6, 7, 14, 38
speciation, **21***, 22, 23, 24–7; **26**, 8
species, **21***, 23; **26**, 3, 6, 8, 15
abundance of, **19**, 4, 5, 11; **21**, 27
classification, **21**, 27–34
new *see* speciation
specific heat (capacity), **9***, 25, 26, 29
specific rotation, **17**–**18***, 59
specificity, enzyme, **22**, 25, 27
spectrometer, mass *see* mass spectrometer
spectrophotometry, absorption, **15**, 38
spectroscopy, **11**–**12**, 47–51, 70–1; **13**–**14**, 74, 75
spectrum *see* absorption spectra; atomic spectra; continuous spectrum; electromagnetic spectrum; emission spectra; line spectra; mass spectrum; solar spectrum
speed, **3***, 5, 10
instantaneous, **3**, 5
and kinetic energy, **9**, 2, 16, 17–18, 19; **17**–**18**, 19
molecular, **16**, 20, 21
of orbiting planets, **2**, 36
of waves, **5**–**6**, 29–32, 33, 35, 36, 37, 38, 60–8, 81; **10**, 14, 16
velocity and, **3**, 5–6
speed of light in a vacuum, **2**, 8; **10***, 38, 39; **31**, 24, 27; **32**, 4, 6, 7
spermatocytes, **20**, 11, 12
sperm cell *see* gametes
spерms, **20***, 8, 17, 20, 28
production of, **20**, 11–12, 14–16, 17, 25–6
see also gametes
spherical avocado pear model, **5**–**6***, 12, 60, 76
spherical geometry, **7**–**8**, 55
spherical model of Earth, **1**, 9, 12–15
spherical surface, **1**, 13
spin of an object, **1***, 24
axis of, **1**, 24
of Earth, **1**, 27–8
of Moon, **1**, 38–9
spin of subatomic particles, **31**, 12, 21; **32**, 13; *see also* electron spin
spinal cord, **23**, 32, 33
spindle, **20***, 20, 49
spiracles, **23***, 8
split genes, **20**, 50; **24***, 44, 46–7
spontaneous nuclear fission, **31***, 32, 37
SPS (Super Proton Synchrotron), **30**, 5; **32**, 8, 40–1
stable isotopes, **31**, 18–19, 25, 27
stability of noble gases, **13**–**14**, 58
Stahl, Franklin W., **24**, 19, 20, 50
standard deviation, **4***, 25, 26–7
standards of measurement, **2**, 5–11
of length, **2**, 6–8
of mass, **2**, 9
of time, **2**, 8–9

standing waves, 30*, 18, 23
as wavefunctions, 30, 19–22

Stanford Linear Accelerator Centre
see SLAC

stars, 1*, 11, 13, 18, 40–1
nuclear fusion in, 31, 41
spectra of, 11–12, 71
temperature of, 11–12, 71
see also Sun

starch, 22, 3, 17, 33–5, 37, Plate 6; 26, 10, 18
see also amylopectin; amylose

starling (*Sturnus vulgaris*), 25, 4

statements, falsifiability of, 1, 7, 8, 10, 43

statistical significance tests, 4, 17

statistics, manipulation of, 4, 13

stearic acid, 22*, 15, 16, 61

steel, spectroscopic analysis of, 11–12, 70

Steno, Nicolaus, 28–29, 14

step polymerization, 17–18, 82

stereoisomers/stereoisomerism, 17–18*, 42, 44, 45, 53–6, 95
see also geometric isomerism; optical isomerism

sterility of hybrids, 21, 26

sterilization by radiation of screw-worm fly, 25, 55

stick insect, 19, 13, 15, 16

sting, 19, 13

stomach, 26, 10, 11, 18

stomata, 22*, 64, Plate 8

Stonehenge, 2, 4–5

stony-iron meteorite, 28–29*, 44, 45, 51

stony meteorite, 28–29*, 44, 51

stop codons, 24*, 29, 34, 37, 38, 39; 26, 17

stored energy, 23, 14

strain, 5–6*, 29, 30
and tectonic process, 27, 46

strain energy, 9*, 3, 5; 23, 14

strangeness, 32*, 22
conservation, 32, 22–3
of gauge bosons, 32, 22, 39
of hadrons, 32, 22, 23–4, 25
of leptons, 32, 22
non-conservation, 32, 24, 31, 36
of quarks, 32, 26, 31, 36

Strassmann, Fritz, 1, 5; 11–12, 22–3

strata, 28–29*, 11
horizontal, 28–29, 24

Stratigraphic Column, 28–29*, 4
calibrating, 28–29, 32–5
dating granite, 28–29, 34, 35
igneous rocks as calibration points, 28–29, 32–3, 35
subdividing Column, 28–29, 34–5
development of, 28–29, 14–25
examples, 28–29, 20–1
faunal succession, 28–29, 15–19, 25
first attempt at, 28–29, 14–15
fossils in, 28–29, 11, 12, 13, 14, 18, 24, 25
and geological time estimates, 28–29, 25–6, 31
names of Periods, 28–29, 22–3
superposition, 28–29, 14, 25
uniformitarianism, 28–29, 19, 22, 25, 55

stratigraphic sequence, 28–29*, 11, 13

stratosphere: halocarbons and ozone layer, 17–18, 15–16

stratum *see* strata

streamlining as adaptation, 19, 13

strength
of an electrolyte, 15, 19
relative, of interactions, 32, 16, 29

stress, 5–6*, 29, 30
adrenalin release produced by, 23, 36

stress and tectonic process, 27, 46–7

stretch receptors, 23*, 34, 35; 26, 18

striations, 27, Plate 9

string theories, 32, 44

stroboscopic determination of g_E , 3, 26–31

stroke volume of heart, 23*, 16, 20, 33, 36, 37

stromatolites, 28–29*, 54, 58

strong acid, 15*, 18, 23, 26

strong base, 15*, 18

strong electrolyte, 15*, 18, 19, 20

strong interaction between hadrons, protons and neutrons in atomic nuclei, 31*, 19–20, 27

hadrons in general, 32, 4, 18
see also hadrons

strong interaction between quarks, 32*, 4, 29, 30, 31

strontium
isotopes, 28–29, 30, 36
in oceans, 28–29, 59–60

structural formulae, 17–18*, 8, 9, 10
and isomerism, 17–18, 25–35

structural genes, 24*, 42

structural isomers/isomerism, 17–18*, 25, 28, 29, 30–5, 53, 57
see also functional isomers; position isomers; skeletal isomers

structural proteins, 22, 20

structure
chemical, 13–14, 8
of DNA, 24, 9–13
and function, relationship between, 19, 13–14; 22, 20, 29; 23, 14, 21

styrene, 17–18, 41, 79

subclass, 21, 32

sub-cycles, ecological, 25, 21

subduction, 7–8*, 56, 69–70, 72, 78, 79
zones, 27, 24–7, 29, 52–3

sub-Groups A and B in the Periodic Table, 13–14*, 30, 33, 40

subkingdom, 21, 29, 32

sublimation, 16, 5

suborder, 21, 32

subphylum, 21, 31–2

subshells *see* electron shells

subspecies, 21*, 29, 33
see also races

substitution (of a base) *see* mutation under bases

substrates, 22*, 25, 26–7, 30, 31; 26, 10

substrate level phosphorylation, 22*, 49, 53, 54

succession, 25*, 60, 62

successive ionization energies, 11–12*, 37, 38

succinic acid, 22, 45

sucrose, 22, 17, 43

sugar cane used for ethanol production, 25, 11

sugars, 17–18, 93; 22*, 7, 17, 64; 26, 15, 18
in blood, level of, *see* diabetes
in DNA *see* deoxyribose
in RNA *see* ribose
in seeds, 24, 42
see also carbohydrates;
disaccharides; glucose;
monosaccharides; sucrose

sulphates, 22, 9, 14, 64; 28–29, 60, 61

sulphides
in Earth's core, 28–29, 42, 49
in meteorites, 28–29, 44–45

sulphur, 11–12, 5, 22, 64; 28–29, 57
chemical bonding, 13–14, 65, 66
cycle, 25, 31–2
in Earth's core, 5–6, 75–6, 80, 81; 28–29, 49
in meteorites, 28–29, 43, 45
in oceans, 28–29, 59, 60, 61
in rocks, 27, 6
sources of, in living organisms, 22, 8–9, 14, 64

sulphur dioxide
in atmosphere, 25, 31, 32; 28–29, 52, 55, 56, 57, 58, 60
as pollutant, 15, 31–3
as refrigerant, 17–18, 14

sulphur trioxide, 15, 31

sulphuric acid, 17–18, 71
in acid rain, 25, 30

Sun
apparent size of, 1, 17, 22, 24
composition of, 28–29, 45–6, 48
core of, 31, 39
Earth and, 1, 17, 34, 37, 38, 43, 45
eclipse of, 1, 37–8; 2, 28–9
energy from, 9, 5–6, 12; 10, 4, 53; 22, 38; 25, 7–8; 26, 18; 28–29, 64, 70, 71, 72
sunspot cycles, 28–29, 77–8
as focus of planetary orbits, 2, 30–1, 36

measuring
distance to, 2, 26–8, 29
radius of, 2, 28–9

neutrinos, 32, 14, 16, 43, 44

nuclear fusion in, 31, 39

observation of, 1, 7, 8, 11–12, 14, 17, 25

and origin of Solar System, 28–29, 37–41

particles emitted, 32, 14, 16, 44

radiation, 25, 7–8, 20; 26, 12
aquatic environment and, 25, 16–17
carbon cycle and, 25, 25
production ecology and, 25, 7–8, 9, 15, 18

ultraviolet radiation, 28–29, 54, 55, 62–3, 65, 67, 70
see also solar

sunspot cycles, 28–29*, 77, 78

Super Proton Synchrotron *see* SPS

superconductivity, 13–14, 40; 30, 34

superfamily, 21, 31, 32

superposition, principle of (Earth sciences), 28–29, 14, 25

superposition of waves, 10*, 17, 18–24, 26, 28–35, 37

different amplitude, 10, 22–3

principle of, 10, 17, 18–24, 25
see also constructive; destructive

surface features of Earth, 7–8, 8–11, 15

surface waves, 5–6, 90
 survival, 19, 32; 22, 3–5, 12–13
 adaptation and, 19, 15–20
 fecundity and viability, 19, 20,
 21–3
 of proteins, 22, 6, 7, 38, 40
 and turnover of all compounds, 22,
 5
 value, 19, 33–4
 see also biosynthesis; fitness;
 growth
 survivorship curve, 25*, 38, 55
 suspended load, 27*, 35, 36–7, 44–5
 S-waves, 5–6*, 28, 33, 38, 75, 78,
 90
 speed of, 5–6, 31–2, 61–4, 65, 67,
 68, 81
 S-wave shadow zone, 5–6*, 63, 65
 Swift, Jonathan, 1, 9–10; 5–6, 40
 swingboat, energy conversions in, 9,
 14, 15, 18–19, 23
 Syene (Aswan), in size of Earth
 measurement, 2, 15–16, 18–20
 Sykes, Lynn, 7–8, 56, 81
 symbolizing particles, 32, 13, 18
 symbols, mathematical, meaning of,
 2, 12
 sympathetic nervous system, 23*, 34,
 37; 26, 11
 synchrotrons, 32*, 8, 9, 40–1
 synthesis of cellular compounds, 19*,
 10, 11; 22, 5, 62–4
 see also biosynthesis; protein
 synthesis
 synthetic RNA polymers, 24, 36, 37,
 38
 synthetics, 17–18, 4
 see also fibres; giant molecules;
 polymerization
 systematic errors, 3*, 25, 26; 4, 18–19
 Système Internationale d'Unités *see*
 SI units
 systemic circulation, 23*, 13, 14, 20,
 34

T

T *see* tesla; thymine
 T₂ virus, 24, 5–6
 tables of data, compiling, 4, 8, 9
 tailoring and splicing, 24*, 44, 45
 tangent (tan), 2*, 32
 tangent to a circle, 2*, 31
 tape-worm; oxygen supply, 23, 6
 target tissue, 23*, 26, 28
 tasters and non-tasters, 21, 11
 tau, τ , *see* half-life under radioactive
 decay
 τ lepton, 32, 34–5, 37, 43
 taxonomic hierarchy, 21*, 27, 29–32
 taxonomy, 21*, 27
 TCA cycle *see* tricarboxylic acid
 cycle
 tectonics, 7–8*, 4
 processes, 27, 4, 5, 46–9
 see also compression; tension
 see also plate tectonic theory
 Teflon, 17–18, 79
 teleological statements, 23*, 14, 21
 telophase in meiosis, 20, 13, 15, 16,
 21, 29, 34, 37; 26, 15
 compared with mitosis, 20, 47, 48

temperature, 9, 23–5, 26, 27–9; 26, 10,
 18
 boiling, 17–18, 11, 22, 57, 62
 ionic substances and, 13–14, 51,
 57, 69, 72
 climatic, 28–29, 70, 72–3, 75, 77, 79
 see also ice ages
 constant in endothermic and
 exothermic reactions, 16, 4, 6
 control of
 internal, 23, 23–4, 30–1
 in central heating systems, 23,
 28–9
 enzymes and, 22, 28–9
 equilibrium yield of ammonia and,
 16, 31–2
 global, rise in, 25, 25, 31
 growing seasons and, 25, 9–10
 of interior of Earth, 5–6, 7–8, 22,
 67; 27, 4, 18–19, 29; 28–29, 26,
 57
 and magnetism, 5–6, 56, 57–8
 in living organisms, 22, 10, 11, 65
 melting, 17–18, 11, 84; 27, 19, 24;
 28–29, 49, 50
 ionic substances and, 13–14, 51,
 57, 69, 72
 molecular interpretation of effect,
 16, 20–1
 of ocean surface water, 28–29, 75
 rate of chemical reactions and, 16,
 18, 19, 21, 27, 28, 29
 rocks and
 crystallization, 27, 10–11, 16
 frost-shattering, 27, 31–2, 34, 44
 increases with depth, 27, 51–2
 melting, 27, 19, 24
 at plate margins, 27, 25
 primordial heat, 27, 19, 29
 and tectonic process, 27, 46–7,
 51–2, 54
 and solubility of oxygen in water,
 23, 5
 see also heat
 template, 24, 17
 tension, structures produced under,
 27, 46, 47–8
 termites, 19, 5
 terrane, 7–8*, 74, 75
 tertiary alcohols, 17–18*, 72
 Tertiary Period, 28–29, 14–15, 23, 68,
 70
 fossils in, 28–29, 12, 68, 70
 ocean current in, 28–29, 77
 Terylene, 17–18, 82, 87
 tesla, T, 5–6*, 49, 51
 testing statements, 1, 7, 8, 10
 tetanus, 22, 57
 Tethys Ocean, 7–8, 25
 tetrafluoroethylene, 17–18, 79
 tetrahedron
 carbon atom as, 17–18, 25, 52–3
 silicate unit as, 27, 7–8, 16
 textiles *see* fibres
 texture of a rock, 5–6*, 8, 9; 27*, 48
 Thalidomide, 17–18, 5
 Thames, River, ecosystem in, 25,
 16–17
 theory, 1, 8
 therm, 9, 12
 thermal denaturation, 22*, 28, 29
 thermal gradient, 27*, 51
 thermometers, 9, 23–4
 thermonuclear weapons, 9, 5
 thermophilic bacteria, 22, 29
 thermoplastic polymers, 17–18, 84
 thermoregulatory systems *see*
 temperature control
 thermosetting polymers, 17–18, 84
 thionyl chloride, 17–18, 64, 67, 74
 Thomson, G. P., 30, 11, 12
 Thomson, J. J., 11–12, 66, 68–9; 30,
 10, 11, 12; 32, 13
 thorium isotopes, 28–29, 50
 thought experiment, 1*, 19
 three-dimensional motion, 30*, 25
 threonine (Thr), 22, 21; 24, 36
 threshold frequency (for photoelectric
 effect), 10*, 43, 44, 47
 thrust, 27*, 48, 54
 thymine (T), 17–18, 89; 24*, 10, 11–12
 tidal friction, 7–8, 23
 'tidal waves' (tsunamis), 5–6, 13
 tides, 1, 12
 till, glacial, 7–8*, 56; 28–29, 74, 79,
 Plates 1 and 2
 time
 achromatic, 22, 33, 37
 geological, absolute measurement
 of, 28–29, 25–31
 early estimates, 28–29, 25–6
 radiometric 'clocks', 28–29,
 26–31
 ordering events in, 28–29, 5–13
 fossils and evolution, 28–29,
 12, 63–70
 varves, 28–29, 7–8
 standards of, 2, 8–9
 see also age of Earth; dating
 tin, 13–14, 69
 in alloy, 13–14, 69, 74
 combination with iodine,
 determining formula, 13–14,
 10, 11–14
 in rocks, 27, 6, 37
 Ting, Samuel, 32, 32, 34
 tissues, 19*, 5; 23, 19, 22, 24, 26, 28
 titanium, 13–14, 28, 29, 31–2, 37–9
 in oceans, 28–29, 59
 in rocks, 27, 21, 22–3; 28–29, 46
 toad, nuclear transfer experiments
 with, 24, 15–16, 50
 Tomonaga, Sin-Itiro, 10, 52
 topness, 32*, 36
 total generation pre-reproductive
 mortality, k_{total} , 25*, 40, 41, 55
 total reflection, 5–6*, 35
 'trace elements', 25, 21
 trachea, 23, 9, 10
 tracheal system, 23*, 8, 10
 transcription, 24*, 24, 25–6, 42
 manufacture of protein and, 24, 44,
 46–7
 transducer, energy, 22, 11–12
 see also ADP; ATP
 Transeau, Edgar, 25, 8–9
 transfer
 of heat *see under* heat
 nuclear, 24, 15, 16, 50
 transfer RNA (tRNA), 24*, 23, 42,
 45; 26, 8, 17
 anticodons, 24, 31, 32, 33
 genetic code and, 24, 35, 37, 38
 role of, 24, 31–2, 33
 transform faults, 7–8*, 51, 52, 54, 56,
 58, 59
 plate margins and, 7–8, 64, 73–4,
 79

transformation, bacterial, 24, 5
trans isomer, 17–18*, 44, 45, 48, 49, 51, 73
 transition
 atomic, 31, 3–4, 13–14
 γ -decay as nuclear, 31, 31
 transitions, phase, 16, 5, 6, 16
transition elements, 13–14*, 37, 39–40, 41
transition zone, 5–6*, 66, 68, 81
translation, 24*, 27, 28–32, 33, 34
 manufacture of protein and, 24, 44, 45, 46–7
 mRNA makes protein, 24, 27–31
 tRNA, role of in, 24, 31–2, 33
 translational motion of objects, etc., 9, 17
 transport proteins, 22, 20
 transportation of eroded and weathered material, 27, 34–7, 39–41, 44–5, 53, Plate 14; 28–29, 5, 19, 22, 60, 61
 transposable elements, 20, 50
transverse wave motion, 5–6*, 27, 28; 10, 10–16
see also S-waves
 travel times *see* seismic waves, speeds
 trenches *see* oceans
 triangles, angles of, 2, 27, 32
Triassic Period
 fossils in, 28–29, 12
 in Stratigraphic Column, 28–29, 20–1, 23
tricarboxylic acid cycle (TCA cycle), 22*, 44, 45, 46, 47, 49–51, 54, 61
 trichlorides, 13–14, 57, 60, 76
 1,1,1-trichloroethane, 17–18, 23
triglycerides, 22*, 16
see also fats; fatty acids; glycerol
 trigonometry, 2, 32
 trilobites, 28–29*, 9, 10, 67, 68, 70, Plate 30
triple bonds, 13–14*, 61, 62; 17–18*, 38
see also unsaturated compounds
triplet code, 24*, 29, 35, 36, 37–8
tRNA *see* transfer RNA
tRNA anticodon, 24*, 31, 32, 33
 trisaccharides, 22, 17
 trolley and spring experiment, 3, 12–13
trophic levels, 25*, 11, 12, 13, 14, 15, 18
trough of a wave, 10*, 11
 truth *see* topness
 truthfulness of scientists, 1, 6, 10
 tryptophan (Trp), 22, 21; 24, 36, 37
tsunamis, 5–6*, 13
 tubulin (protein), 20, 20
 tungsten, 11–12, 4, 5, 6
turnover, 22*, 5
 turntable, rotation of, 1, 18–19, 23
two-dimensional motion, 30*, 24, 25
 two-slit diffraction, *see* double-slit
typical elements, 13–14*, 36
 tyrosine (Tyr), 22, 21; 24, 36

U

U *see* uracil
 ultraviolet radiation, 10, 40, 53; 28–29, 54, 55, 62–3, 65, 67, 70

ozone layer as shield against, 17–18, 15; 28–29, 54, 55
unbound electron, 11–12*, 40
uncertainties, 2*, 20; 3, 26, 31; 4, 18
 estimating, 4, 19–20
 graphical representation of, 4, 22–3
 identifying, 4, 16–17
 limits, 4, 22, 23
 quoting, 4, 21
 random, 3, 25; 4, 18, 19–20
see also systematic error
uncertainty in a quantum mechanical measurement, 30*, 26, 27, 30
uncertainty principle *see* Heisenberg's uncertainty principle
unconformity, 28–29*, 16, 17, 18, 34, Plates 28 and 29
 uncontrolled nuclear chain reaction, 31, 40
 undissociated acid, 15, 22
unicellular organisms *see* single-celled
 unified theory of electromagnetic and weak interactions, 32, 40–1
 uniform magnetic field, 11–12, 53
 uniformitarianism, principle of, 27, 53–4; 28–29, 19, 22, 25, 66
 units
 of energy, 9, 11–12, 13
 and mass, 32, 7, 12
 of measurement
 natural, 2, 7, 8
 prefixes to, 2, 11
 SI, 2, 6, 7–9, 11
universal constant, 3*, 35
 universal nature of genetic code, 24, 38, 46, 49
Universe, 1*, 14
 evolution of, 32, 44–5
 geocentric model of, 1, 14
 origins of, 9, 6; *see also* Big Bang
 regularity in, 1, 18
unpaired electrons, 11–12*, 55, 60
 unpolarized light, 17–18, 57
unsaturated compounds/unsaturation (double and triple bonds), 17–18*, 37, 38, 39–52, 78
 geometric isomerism, 17–18, 46–51
 structure of, 17–18, 37–41
 unstable isotopes, 31, 18, 25, 27, 36
 created by nuclear fission, 31, 38
see also radioactive decay
 Updike, John, 32, 17, 47
upper and lower limits, 2*, 20
upper mantle, 5–6*, 66, 68, 81
 up (u) quarks, 32, 26–30, 36, 43
 Υ particle, 32, 36–7
uracil (U), 24*, 24
uraninite, 28–29*, 53, 59
 uranium, 11–12, 5, 13, 18–19, 22, 23; 13–14, 39, 41
 isotopes, 28–29, 27, 30, 31, 36, 37, 42, 50
 nucleus
 and nuclear fission, 31, 37–8
 radioactive decay of, 31, 28–9, 32–3, 36
 used in nuclear power stations, 31, 40
 in rocks, 27, 6; 28–29, 53, 60
 Uranus, 28–29, 38–9, 41
 orbit of, 2, 34, 40
urea, 22, 61; 23*, 23, 26
 uric acid, 22, 61; 23, 23
 urine, 23, 23, 24, 25, 26

V

vacuum
 acceleration due to gravity in, 3, 19, 39
 electromagnetic waves in, 10, 39–40, 41
 speed of light in, 2, 8; 10, 38–9; 31, 24, 27
valency, 13–14*, 21, 22, 23–5, 76
 of elements in carbon compounds, 17–18, 9, 10
 maximum, 13–14, 27
 and molecular covalent substances, 13–14, 60–1
valine (Val), 22, 21; 24, 36, 37, 40, 41; 26, 9, 18
vanadium, 13–14, 37–9
van der Meer, Simon, 32, 41
 variables, independent and dependent, 4, 11, 24
 variation
 discontinuous, 20, 4
see also genetic variability; speciation
varves, 28–29*, 7, 8, 13
 vegetation *see* plants
vein, 23*, 12, 13, 14, 19–20
 hepatic portal, 23, 25
 pulmonary, 23, 13, Plate 9
velocity, 3*, 5, 6, 7
 components of, 30, 24, 25, 26
 constant, 3, 9
 momentum and, 3, 15–17
 rate of change of, 3, 6–7
 speed and, 3, 5–6
 velocity of seismic waves, 5–6, 30, 64
Vema Fracture Zone, 7–8, 51
vena cava, 23*, 13, Plate 9
ventricles, 23*, 12, 13, 14, 34, Plate 9
Venus, 28–29, 38–9, 41, 47, 48
 orbit of, 2, 30–2, 36, 38, 40
Vernier scale, 4, 5
 vertebrates, 21, 31–2; 28–29, 11–12, 67, 68
 genetic variability, 21, 13, 14, 15
vesicular (frothy) basalt, 5–6*, 8
viability, 19*, 21, 23, 24, 32
Vine, Professor Fred, 7–8, 43–4, 45, 46, 52, 58, 80, 81
vinegar, 15, 5, 6, 31
see also acetic acid
Vine–Matthews hypothesis, 7–8*, 44, 46, 52, 58, 81
vinyl chloride, 17–18, 79
viruses, 19, 9, 10, 11
 diseases and, 19, 3, 9
 evidence for role of DNA from, 24, 5, 6–7
T₂ virus, structure of, 24, 6
viscosity, 23*, 20, 21, 27, 19
visible light, 10*, 39, 40–1, 48
 visualizations of atom, 30, 30–1
vitamins, 17–18, 21; 22*, 31, 32
volcanic activity, 7–8, 12, 15, 16, 39
 carbon cycle and, 25, 23, 24
 gases in atmosphere, 28–29, 55–6, 61
 plate margins and, 7–8, 63, 64, 65, 66–71, 74, 78, 79

volcanic activity (*continued*)
see also igneous; seismic
 volcanic rocks *see* extrusive rocks
 volcanoes, 5–6, 7, 8, 67, 68, 77, Plates
 20a, 20b; 27, 19–20, 52–3,
 Plate 11; 28–29, 50
 cone, 27, 20, 28
 eruptions, 27, 19, 20, 25, 26, 27,
 Plate 10; 28–29, 22, 60, 61
 atmospheric gases from, 28–29,
 55–6, 57, 58, 60, 61
 dust and climate, 28–29, 78
 and island arcs, 27, 25, 27, 28
 shield, 27, 19, 29
volt, 9*, 33, 35
voltage difference, 9*, 33, 35
 volumes, measuring, 4, 6
 voluntary control of breathing, 23, 33
 Von Humboldt, Karl, 7–8, 17
Voyager missions, 5–6, 6

W

Wadati-Benioff zone, 7–8*, 35, 36, 56,
 58, 69, 70, 81
Wallace, Alfred Russel, 19, 12, 15, 32,
 37; 20, 31
 wander paths, apparent polar, 7–8,
 27
 Warfarin (rat poison), rats' resistance
 to, 21, 9, 10
 wasps, 19, 5, 12
see also gall wasp; parasitic wasps
 water, 13–14, 42–3, 60
 biogeochemical cycles and, 25, 25,
 30, 32
 chemical bonding, 13–14, 57, 60,
 61
 cycle, 25, 31
 deposition in, 27, 35, 36, 38
 electronegativity, 13–14, 67, 68
 hydrological cycle, 25, 21; 27, 4, 53
 ion product of, 15, 25–7, 33
 life in, 28–29, 54–5, 57, 58, 61, 66,
 69
 loss, 23, 26
 meteoric, 28–29, 55
 as molecular covalent substance,
 13–14, 53, 56
 oxygen diffused in, 23, 5, 7, 8, 9, 10,
 35
 pH of, 15, 29, 30
 phases of, 13–14, 19
 photochemical dissociation of,
 28–29, 55, 57, 60
 polluted, 25, 27, 29, 30–1, 32
 as product of metabolism,
 removing, 23, 22–3, 24
 sediments transported by, 28–29,
 60, 61
 transport by, 27, 34–7, 44–5
 vapour in atmosphere, 28–29, 55,
 56, 57
 and vegetation types, 25, 10
 waves, 5–6, 23–4; 10, 4–7, 11, 12,
 25–6, 40, 41
 weathering by, 27, 31, 32, 34, 40, 44
see also aquatic; aqueous;
 hydrological cycle; oceans
 water fleas (*Daphnia*), 25, 16
 Watson, James, 24, 3, 10, 12
 Watt, James, 9, 34
watt, 9*, 34, 35

wave, 5–6, 23–4; 10, 4–7, 11, 12, 25–6,
 40, 41
 action, 27, 36
 amplitude of, 5–6, 23; 10, 11, 16,
 20, 22–3, 24
 circular, 10, 25, 30, 33
 crest of, 10, 11
 diffraction of, 10, 6–7, 25–6
 frequency of, 10, 13, 16, 23
 models
 of electromagnetic radiation, 10,
 3, 4–7, 10–16, 44; 30, 6–7
 of matter, 30, 10–12, 13, 14,
 15–17
 see also diffraction
 motion
 compressional, 5–6, 25
 transverse, 5–6, 27–8
 period of, 10, 13, 16, 23
 plane, 10, 25–6, 30, 33
 quanta behaving as, 30, 12, 13, 17
 reflection of, 10, 4, 5
 refraction of, 10, 4, 6
 representations of, 10, 14, 16, 23–4
 speed of, 10, 14, 16
 standing, 30, 18–23
 surface, 5–6, 90
 transportation of sediments, 27,
 36–7
 trough of, 10, 11
see also electromagnetic waves;
 seismic waves; superposition;
 wavefront; wavelength;
 wave-particle and under speed
wavefront, 10*, 25
wavefunctions, 30*, 17–22, 23, 32; 31,
 5–7, 9
 infinite sine waves as, 30, 19, 21, 22
 interpreting, 30, 19
 of atomic electron, 30, 31
 standing waves as, 30, 19–22
 types of, 30, 19
wavelengths, 5–6*, 24; 10*, 11, 16, 23
 of electromagnetic radiation, 10,
 35–6, 39–41; 30, 6–7
 of light, 2, 7
 of matter, 30, 10–11, 21
 quantization of, 31, 5–7, 9–10
see also de Broglie's formula
wave-particle duality
 of electromagnetic radiation, 10*,
 3, 51–2, 53, 54; 30, 6–9, 12
 of matter, 30*, 12
weak acid, 15*, 19, 20, 24
 chemical equilibrium in, 15, 18–20
weak bonds, 22*, 23, 29
weak electrolyte, 15*, 19
weak interaction, 32*, 4, 16
 mediated by gauge bosons, 32, 38,
 39, 40–1
 hadrons, 32, 18–19
 leptons, 32, 16, 35
 quarks, 32, 28, 29
weathering, 25, 23; 27*, 31, 53, Plate
 14
 chemical, 27, 31–4, 44
 physical, 27, 16, 31–2, 44
 products of, 28–29, 60, 61
 resistance of minerals to, 27, 32,
 33, 44
see also erosion; transportation
Wegener, Alfred, 7–8, 17, 27, 57, 80,
 81
 continental drift theory

evidence for, 7–8, 18–23, 26
 mechanism for, 7–8, 23
 reaction to, 7–8, 23–6
weight, 3*, 20, 21, 23
Weinberg, Steven, 32, 40, 41, 42, 45
Weinberg-Salam theory, 32*, 30, 40,
 41, 42
Werner, Alfred, 13–14, 33, 40
white blood cells, 23*, 18, 20, Plate
 10
white light, 10*, 36
 spectrum, 11–12, 25, 26
whitefly (*Trialeurodes vaporariorum*),
 25, 54
Widmanstätten patterns, 28–29*, 43,
 51
Wien, Wilhelm, 30, 28
Wilkins, Maurice, 24, 10
Wilson, Tuzo, 7–8, 44, 51–2, 58, 81
 wind, erosion, transport and
 deposition by, 27, 39–40, 44,
 45
wobble hypothesis, 24*, 37, 38
woodlands *see* forests
work function, 10*, 46, 47
W particles, 32, 40–1
 written reports and records, 1, 6; 4,
 7–8, 27–34
Wytham Wood, owls in, 25, 36–43

X

xenon, 13–14, 28, 31, 38–9, 58
 in atmosphere, 28–29, 52, 57
 photoelectron spectrum, 11–12, 41
Xenopus *see* toad
X-rays, 10, 40, 49; 30, 6; 31, 16, 34;
 32, 16
 crystallography, 17–18, 84, 87
 diffraction of, 30, 12

Y

year, solar, 1, 22
yeast, 24, 14
 anaerobic catabolism in, 22, 57, 58

Z

Zeeman effect, 11–12*, 56, 57
zero, absolute, 9, 24, 28
Ziegler, Karl, 17–18, 80, 85, 96
zinc, 13–14, 37–9
 in rocks, 27, 6
zinc chloride, 13–14, 21
zinc oxide, 13–14, 14–15
zircon, 28–29, 31, 36, 37
zonation, 25*, 57, 58, 62
zones, 28–29*, 24
zooplankton, 25*, 5, 16–17; 26, 12, 13,
 18, 19
see also plankton
Z particle, 32, 40–1
Zweig, George, 32, 26, 28, 31
zygote, 20*, 11, 17, 45, 49; 21, 14; 22,
 3, 4, 7; 24, 4–5, 8, 15
see also heterozygosity;
 homozygous

USEFUL INFORMATION FOR S102

THE GREEK ALPHABET

alpha	<i>A</i>	α	iota	<i>I</i>	ι	rho	<i>P</i>	ρ
beta	<i>B</i>	β	kappa	<i>K</i>	κ	sigma	Σ	σ
gamma	<i>G</i>	γ	lambda	<i>L</i>	λ	tau	<i>T</i>	τ
delta	<i>D</i>	δ	mu	<i>M</i>	μ	upsilon	<i>Y</i>	ν
epsilon	<i>E</i>	ε	nu	<i>N</i>	ν	phi	Φ	ϕ
zeta	<i>Z</i>	ζ	xi	<i>X</i>	ξ	chi	<i>X</i>	χ
eta	<i>H</i>	η	omicron	<i>O</i>	\circ	psi	Ψ	ψ
theta	Θ	θ	pi	Π	π	omega	Ω	ω

SI UNITS USED IN S102

Physical quantity	Name of unit	Symbol	Physical quantity	Name of unit	Symbol
length	metre	m	electric current	ampere	A
mass	kilogram	kg	temperature	kelvin	K
time	second	s	amount of substance	mole	mol

PREFIXES FOR MULTIPLES OF UNITS

Mult. factor	Prefix	Symbol	Mult. factor	Prefix	Symbol
10^{-1}	deci	d	10^1	deca	da
10^{-2}	centi	c	10^2	hecto	h
10^{-3}	milli	m	10^3	kilo	k
10^{-6}	micro	μ	10^6	mega	M
10^{-9}	nano	n	10^9	giga	G
10^{-12}	pico	p	10^{12}	tera	T
10^{-15}	femto	f	10^{15}	peta	P

DERIVED SI UNITS USED IN S102

Physical quantity	Name of derived unit	Symbol	Derived unit (in SI)
force	newton	N	$\text{kg m s}^{-2} = \text{J m}^{-1}$
energy	joule	J	$\text{kg m}^2 \text{s}^{-2} = \text{N m}$
power	watt	W	J s^{-1}
electric charge	coulomb	C	A s
electric potential difference	volt	V	$\text{J A}^{-1} \text{s}^{-1}$
magnetic field strength	tesla	T	$\text{N m}^{-1} \text{A}^{-1}$
frequency	hertz	Hz	s^{-1}

S102 UNITS

1	Science and the planet Earth	19	Life and evolution
2	Measuring the Solar System	20	Inheritance and cell division
3	Motion under gravity	21	Genes and evolution
4	Practical work in science	22	Biochemistry
5–6	Into the Earth: earthquakes, seismology and the Earth's magnetism	23	Physiology
7–8	Plate tectonics: a revolution in the Earth sciences	24	DNA: molecular aspects of genetics
9	Energy	25	Ecology
10	Modelling the behaviour of light	26	Biology reviewed
11–12	Atomic structure	27	Earth materials and processes
13–14	Chemical reactions and the Periodic Table	28–29	Geological time and Earth history
15	Chemical equilibrium	30	Quantum mechanics: an introduction
16	Chemical energetics	31	Quantum mechanics: atoms and nuclei
17–18	The chemistry of carbon compounds	32	The search for fundamental particles