Tiebreaking Strategies for A* Search: How to Explore the Final Frontier

Classical Planning in a Deep Latent Space

(WIP project idea)

1 Classical Planning

Scalable, Highly-optimized solver for complex combinatorial problems

Guided by **domain-independent** heuristics

Requires an explicit encoding of the real world, written by human

2 Reinforcement Learning

Policy function $\pi(s)$: $S \to A$ — returns action a for state s

Optimal Policy $\pi^*(s)$

Goal: Find the best approximation of π^*

3 Reinforcement Learning in Latent Space

4 Deep Reinforcement Learning

5 Comparison

Classical Planning
Scalable, Highlyoptimized solver for
complex combinatorial
problems

Guided by domainindependent heuristics
Requires an explicit
encoding of the real
world, written by human

FLUID

Deep Reinforcement Learning

Works on the **implicit encoding** of the real
world

Reasoning is limited to the **1-step future** of the current state guided by **instance-**

specific learned knowledge (specific object, situation, goal)

Deep Reinforcement Learning

Works on the **implicit encoding** of the real
world

Reasoning is limited to the **1-step future** of the current state

guided by **instance- specific learned knowledge** (specific object, situation, goal)

#+END_{RO}