Proof of the Singular Value Decomposition (SVD)

Zakk Heile

December 2024

Introduction 1

The Singular Value Decomposition (SVD) is a fundamental theorem in linear algebra with numerous applications in areas such as statistics, signal processing, and machine learning. This document provides a detailed proof of the SVD, demonstrating that any $m \times n$ matrix A can be decomposed into the product of three matrices: $A = U\Sigma V^{\top}$, where U and V are orthogonal matrices, and Σ is a diagonal matrix containing the singular values of A.

$\mathbf{2}$ Preliminaries

Let A be an $m \times n$ matrix. Consider the Gram matrices AA^{\top} and $A^{\top}A$. Both of these matrices are symmetric and positive semi-definite (PSD), implying that their eigenvalues are non-negative.

2.1 Positive Semi-Definiteness of Gram Matrices

Proof of Non-Negative Eigenvalues. A Gram matrix $G = M^{T}M$ is always positive semi-definite. For any vector $x \in \mathbb{R}^n$, we have:

$$x^{\top}Gx = x^{\top}M^{\top}Mx = (Mx)^{\top}(Mx) = ||Mx||^2 \ge 0.$$

Here, $||Mx||^2$ represents the squared Euclidean norm of the vector Mx, which is always non-negative.

Eigenvalues of $A^{\top}A$ and AA^{\top}

Both $A^{\top}A$ and AA^{\top} are symmetric and PSD matrices, hence they have real, non-negative eigenvalues. Let us denote the eigenvalues of $A^{\top}A$ by σ_i^2 and those of AA^{\top} by the same σ_i^2 . The non-zero eigenvalues of these two Gram matrices are identical, and the remaining eigenvalues are zero.

Equivalence of Non-Zero Eigenvalues 3.1

Direction 1: From $A^{\top}A$ **to** AA^{\top}

Assume $A^{\top}Ax = \lambda x$ with $\lambda \neq 0$ and $x \neq 0$.

$$AA^{\top}(Ax) = A(A^{\top}Ax) = A(\lambda x) = \lambda(Ax).$$

Define y = Ax. Then:

$$AA^{\top}y = \lambda y$$
.

Since $\lambda \neq 0$ and $x \neq 0$, $y \neq 0$. Thus, y is an eigenvector of AA^{\top} corresponding to the eigenvalue λ . Direction 2: From AA^{\dagger} to $A^{\top}A$

Assume $AA^{\top}y = \mu y$ with $\mu \neq 0$ and $y \neq 0$.

$$A^{\top}A(A^{\top}y) = A^{\top}(AA^{\top}y) = A^{\top}(\mu y) = \mu(A^{\top}y).$$

Define $x = A^{\top}y$. Then:

$$A^{\top}Ax = \mu x.$$

Since $\mu \neq 0$ and $y \neq 0$, $x \neq 0$. Thus, x is an eigenvector of $A^{\top}A$ corresponding to the eigenvalue μ .

3.2 Multiplicity of Zero Eigenvalues

The eigenvalue 0 corresponds to the nullspace of A and A^{\top} . The multiplicity of the eigenvalue 0 in $A^{\top}A$ is equal to the dimension of the nullspace of A, and similarly for AA^{\top} .

4 Constructing the SVD

Consider an eigenvector-eigenvalue pair of $A^{\top}A$:

$$A^{\top}Av_i = \sigma_i^2 v_i.$$

Define $u_i = \frac{Av_i}{\sigma_i}$. We claim that u_i is a unit eigenvector of AA^{\top} . Note that we are assuming the singular value is not 0.

Proof that u_i is an Eigenvector of AA^{\top} .

$$AA^{\top}u_i = AA^{\top}\left(\frac{Av_i}{\sigma_i}\right) = \frac{AA^{\top}Av_i}{\sigma_i} = \frac{A\sigma_i^2v_i}{\sigma_i} = \sigma_iAv_i = \sigma_i^2u_i.$$

Thus, u_i satisfies $AA^{\top}u_i = \sigma_i^2 u_i$, making it an eigenvector of AA^{\top} with eigenvalue σ_i^2 .

Proof that u_i is a Unit Vector.

$$u_i^\top u_i = \left(\frac{Av_i}{\sigma_i}\right)^\top \left(\frac{Av_i}{\sigma_i}\right) = \frac{v_i^\top A^\top Av_i}{\sigma_i^2} = \frac{v_i^\top (\sigma_i^2 v_i)}{\sigma_i^2} = v_i^\top v_i = 1.$$

Thus, u_i is a unit vector.

4.1 Forming the Orthogonal Matrices

From the above constructions, we have:

$$U = AV\Sigma^{-1}$$
.

where V is the matrix whose columns are the eigenvectors v_i of $A^{\top}A$, and Σ is the diagonal matrix with entries σ_i . Since U consists of orthonormal vectors u_i , it is an orthogonal matrix.

Similarly, V is orthogonal by construction.

4.2 A Note on Rank

How do we know that the matrices are orthogonal and sufficient rank, namely that V has an inverse? Additionally, we are still assuming no singular values are 0 so Σ has an inverse.

If A is injective then $v_i \mapsto u_i$ is an injective map.

Formally, suppose for the sake of contradiction:

$$A^{\top}Av_1 = \sigma_1^2 v_1$$

$$A^{\top}Av_2 = \sigma_2^2 v_2$$

$$Av_1 = Av_2$$

Then, $Av_1 - Av_2 = 0$ and as they are equal, both of them must be 0, meaning both v_1 and v_2 are in the null space of A. This means they are 0-eigenvalue eigenvectors of A, meaning they are $\sigma_i^2 = 0^2 = 0$ eigenvalue eigenvectors of their Gram matrices.

Thus, we only have to worry about this if the diagonal matrix has non-trivial null space.

If Σ has a non-trivial null space, we extend U and V to full orthogonal matrices by adding orthonormal vectors that span the nullspaces of A^{\top} and A, respectively. These additional vectors correspond to singular values of zero, ensuring that U and V remain orthogonal regardless of the rank of A.

5 Conclusion: The SVD

Putting everything together, we obtain the Singular Value Decomposition of A:

$$A = U\Sigma V^{\top}$$
,

where:

- U is an $m \times m$ orthogonal matrix whose columns are the eigenvectors of AA^{\top} ,
- Σ is an $m \times n$ diagonal matrix with non-negative real numbers σ_i on the diagonal,
- V is an $n \times n$ orthogonal matrix whose columns are the eigenvectors of $A^{\top}A$.

This decomposition reveals the intrinsic geometric structure of the matrix A, facilitating various applications in numerical analysis, data compression, and beyond.

6 Rank Considerations

Understanding the rank of a matrix and its Gram matrices is crucial, especially when dealing with matrices that are not full rank. The following section elucidates the relationship between the ranks of A, $A^{T}A$, and AA^{T} .

6.1 Equivalence of Ranks

If we can show that $\operatorname{rank}(A) = \operatorname{rank}(A^{\top}A)$, then because $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$, it follows that:

$$\operatorname{rank}(A) = \operatorname{rank}(A^{\top}) = \operatorname{rank}(AA^{\top}).$$

Proof that $rank(A) = rank(A^{\top}A)$

We need to show that the solution sets of Ax = 0 and $A^{\top}Ax = 0$ are identical, i.e., $Ax = 0 \iff A^{\top}Ax = 0$.

Proof. Forward Direction: Assume Ax = 0. Then:

$$A^{\top}(Ax) = A^{\top}0 = 0,$$

which shows $A^{\top}Ax = 0$.

Conversely: Assume $A^{\top}Ax = 0$. Then:

$$x^{\top}(A^{\top}Ax) = 0.$$

Expanding this, we have:

$$(Ax)^{\top}(Ax) = ||Ax||^2 = 0.$$

By the definition of the inner product, for any vector v, $v^{\top}v = 0 \iff v = 0$. Thus, Ax = 0. Therefore, $Ax = 0 \iff A^{\top}Ax = 0$, which implies that:

$$\operatorname{null}(A) = \operatorname{null}(A^{\top}A).$$

Since the nullspaces are identical, their dimensions are equal. Consequently, the ranks satisfy:

$$rank(A) = rank(A^{\top}A).$$

Similarly, by considering A^{\top} , we can show that:

$$rank(A) = rank(AA^{\top}) = rank(AA^{\top}).$$

7 Singular Values and Rank

Given that rank(A) = r, where $r \leq min(m, n)$, the SVD of A can be expressed as:

$$A = U\Sigma V^{\top},$$

where:

- U is an $m \times m$ orthogonal matrix whose first r columns are the eigenvectors of AA^{\top} corresponding to the non-zero singular values, and the remaining m-r columns span the nullspace of A^{\top} .
- Σ is an $m \times n$ diagonal matrix with the first r diagonal entries being the positive singular values $\sigma_1, \sigma_2, \ldots, \sigma_r$ and the remaining entries being zero.
- V is an $n \times n$ orthogonal matrix whose first r columns are the eigenvectors of $A^{\top}A$ corresponding to the non-zero singular values, and the remaining n-r columns span the nullspace of A.