Most likely Order

For each order, a probability can be calculated, the path with highest likelihood is the most likely order (MLO)..

Every order can form a DAG

	1	2	3
1	0	2	2
2	3	0	1
3	7	4	0

$$P(2 \ spliced \ before \ 1) = \frac{3}{3+2} = 0.6$$
 $P(1 \ spliced \ before \ 2) = \frac{2}{3+2} = 0.4$
 $P(3 \ spliced \ before \ 1) = \frac{7}{7+2} = 0.78$
 $P(1 \ spliced \ before \ 3) = \frac{2}{7+2} = 0.22$
 $P(3 \ spliced \ before \ 2) = \frac{4}{4+1} = 0.8$
 $P(2 \ spliced \ before \ 3) = \frac{1}{4+1} = 0.2$

p-value of in order splicing Likelihood ratio test -2*log(0.0176 /0.374)~X, df=n*(n-1)/2

P-value=0.89

Most likely Order

Remove one <u>node doesn't change the order of the rest.</u>
Correspond to remove row I and column i <u>doesn't change the order when opti rest in matrix,</u>
Thus make iteration possible

Most likely Order

For each isoform got the frequency matrix D as above described.	1
Find potential most left intron using D, by which.max(rowsum) = q_1	2
Find 2nd, 3rr, 4th maximum rowsum row number: q_2,q_3,q_4 .	3
For i in vector (q_1, q_2, q_3, q_4)	4
Remove column i and row i in D and repeat step 1.	5
Stop if the number of orders calculated reach 5,000.	6
After got all the potential best orders, calculate probability for each order and return the best.	7

D				
	1	2	3	4
1	0	0.1	0.6	0
2	0.9	0	0.4	0.9
3	0.4	0.6	0	0
4	0	0.1	0	0

remove intron 2

	1	3	4
1		0.6	
3	0.4		
4			

Splicing unit

Some introns tends to spliced simultaneously.

Two introns are spliced together, if their spliced rate relative to other introns are similar.

i.e. column i and column j are correlated or row j and row i are correlated.

We used DBscan algorithm with pearson correlation as distance

measure to find unit.

row 2 and row 3 are similar, means their splicing rate are similar relative to others.

Thus they have higher probability tends to spliced together.

Diagonal filled with 0.5

	1	2	3	4
1	0.5	0.1	0.2	0.9
2	0.9	0.5	0.4	0.3
3	0.8	0.6	0.5	0.3
4	0.1	0.7	0.7	0.5

Intron 4&5