Gaussov algoritem za računanje datuma velike noči

Marjetka Zupan
Fakulteta za matematiko in fiziko
Oddelek za matematiko
13. marec 2023

- cilj: poiskati način za določanje datuma brez dodatnih pripomočkov, zgolj z uporabo enostavnih računskih operacij

• "prva nedelja po prvi spomladanski polni luni"

$$n_a = (A \bmod 19) + 1$$

- "prva nedelja po prvi spomladanski polni luni" ni povsem natančna in ni enolična
- do 325 določil papež, leta 325 na podlagi opazovanj določijo postopek za določanje prve spomladanske polne lune in veliko noč praznujejo na prvo nedeljo po njej
- potopek ni povsem natančen, datumi se ne ujemajo nujno, za določanje datuma velike noči pa so pomembni le datumi iz napovedi -> pashalna polna luna (PPL)
- lunin mesec = čas med zaporednima polnima lunama
- leta 325 julijanski koledar (kaj je to)
- metonski cikel 19 let = 235 luninih mesecev -> datumi pashalnih polnih lun se vsakih 19 let ponovijo
- zlato število = položaj v ciklu

zlato število	pashalna polna luna	zlato število	pashalna polna luna	zlato število	pashalna polna luna
1	5. april	8	18. april	15	1. april
2	25. marec	9	7. april	16	21. marec
3	13. april	10	27. marec	17	9. april
4	2. april	11	15. april	18	29. marec
5	22. marec	12	4. april	19	17. april
6	10. april	13	24. marec		
7	30. marec	14	12. april		

- datum PPL iz tabele, velika noč prva nedelja po njem

• "prva nedelja po prvi spomladanski polni luni"

$$n_a = (A \mod 19) + 1$$

$$e_j = (11 \cdot (n_a - 1)) \mod 30$$

$$S = \left\lfloor \frac{3 \cdot C}{4} \right\rfloor \qquad L = \left\lfloor \frac{8 \cdot C + 5}{25} \right\rfloor$$

$$e_g = (e_j - S + L + 8) \mod 30$$

- 1582 uvedejo gregorijanski koledar (kaj je to) zmanjša neskladje med dolžino Zemljinega obhoda okoli sonca in leta v koledarju
- poleg koledarja spremenijo tudi postopek določanja velike noči
- uvedejo epakto = mera za starost lune na določen dan; kaj je epakta leta
- epakto računamo s pomočjo zlatega števila:
 - v julijanskem 19 možnih epakt \$e' = (11 \cdot (a 1)) \bmod 30\$
 - v gregorijanskem uvedemo popravke pri računanju epakte

Epakto v gregorijanskem koledarju določimo po naslednjem postopku, pri čemer so vsa deljenja celoštevilska:

- Uporabimo formulo za julijanski koledar \$e_j = (11 \cdot (a 1)) \bmod 30\$
- Uvedemo solarno enačbo \$S = \frac{3 \cdot C}{4}\$

Ta odraža razliko med julijanskim in gregorijanskim koledarjem in se vsako leto, ki je prestopno v julijanskem, ne pa tudi v gregorijanskem koledarju, poveča za 1.

- 3. Uvedemo lunarno enačbo $L = \frac{8 \cdot C}{25}$
 - Ta odraža napako pri uporabi metonskega cikla v gregorijanskem koledarju in se vsakih 2500 let osemkrat poveča za 1.
- 4. Izračunamo \$e g' = e j S + L + 8\$.
- 5. Podamo gregorijansko epakto \$e_g' \bmod 30\$, pri čemer ponovno namesto 0 vzamemo 30.

epakta	pashalna polna luna	epakta	pashalna polna luna	epakta	pashalna polna luna
1	12. april	11	2. april	21	23. marec
2	11. april	12	1. april	22	22. marec
	•		•		
3	10. april	13	31. marec	23	21. marec
4	9. april	14	30. marec	24	18. april
5	8. april	15	29. marec	25	18. ali 17. april
6	7. april	16	28. marec	26	17. april
7	6. april	17	27. marec	27	16. april
8	5. april	18	26. marec	28	15. april
9	4. april	19	25. marec	29	14. april
10	3. april	20	24. marec	30	13. april

- datum PPL iz tabele glede na epakto, velika noč na nedeljo, ki sledi
- dva datuma pri epakti 25 -> kdaj izberemo katerega, oba načina ekvivalentna (dokaz v članku)

• "prva nedelja po prvi spomladanski polni luni"

$$n_a = (A \mod 19) + 1$$

$$e_j = (11 \cdot (n_a - 1)) \mod 30$$

$$S = \left\lfloor \frac{3 \cdot C}{4} \right\rfloor \qquad L = \left\lfloor \frac{8 \cdot C + 5}{25} \right\rfloor$$

$$e_g = \left(e_j - S + L + 8 \right) \mod 30$$

Primer: velika noč letos

epakta	pashalna polna luna	epakta	pashalna polna luna	epakta	pashalna polna luna
		-	•	-	•
1	12. april	11	2. april	21	23. marec
2	11. april	12	1. april	22	22. marec
3	10. april	13	31. marec	23	21. marec
4	9. april	14	30. marec	24	18. april
5	8. april	15	29. marec	25	18. ali 17. april
6	7. april	16	28. marec	26	17. april
7	6. april	17	27. marec	27	16. april
8	5. april	18	26. marec	28	15. april
9	4. april	19	25. marec	29	14. april
10	3. april	20	24. marec	30	13. april

Primer: velika noč letos

Gaussov algoritem – julijanski koledar

$$a = A \mod 19$$

$$b = A \mod 4$$

$$c = A \mod 7$$

$$d = (19 \cdot a + M) \mod 30$$

$$e = (2 \cdot b + 4 \cdot c + 6 \cdot d + N) \mod 7$$

$$M = 15$$

$$N = 6$$

$$p = \left\lfloor \frac{8k+13}{25} \right\rfloor \quad q = \left\lfloor \frac{k}{4} \right\rfloor$$

$$M = (15 + k - p - q) \mod 30$$

$$N = (4 + k - q) \mod 7$$

$$22 + d + e \cdot \text{marec}$$

$$d + e - 9 \cdot \text{april}$$

Gauss v svojem delu podaja enostavnejši algoritem za izračun datuma velike noči tako po julijanskem kot tudi po gregorijanskem koledarju. Najprej vpelje nekatere oznake: \$a\$, \$b\$, \$c\$, \$d\$, \$e\$, pri čemer sta M in N za računanje datuma v julijanskem koledarju konstanti, za računanje datuma v gregorijanskem koledarju pa ju v splošnem lahko izračunamo iz stoletja na naslednji način: ... (k je za leta 100k do 100k + 99, pred uveljavitvijo pa 16 (za 1582 -)).

Pri tem imamo v gregorijanskem koledarju ti dve izjemi:

- 1. Če za datum velike noči dobimo 26. april, namesto tega vedno vzamemo 19. april.
- 2. Če dobimo d = 28 in e = 6 ter število 11M+11 pri deljenju s 30 da ostanek, manjši od 19, namesto 25. aprila vzamemo 18.

zgled – letošnja velika noč

Razmislimo, da podan algoritem velja. Začnimo pri julijanskem koledarju. Prvi korak algoritma je deljenje po modulu 19, ki ga najdemo tudi v prej opisanem postopku. Z njim namreč določimo zlato število leta.

• "prva nedelja po prvi spomladanski polni luni"

$$n_a = (A \bmod 19) + 1$$

datum PPL iz tabele

zlato število	pashalna polna luna	zlato število	pashalna polna luna	zlato število	pashalna polna luna
1	5. april	8	18. april	15	1. april
2	25. marec	9	7. april	16	21. marec
3	13. april	10	27. marec	17	9. april
4	2. april	11	15. april	18	29. marec
5	22. marec	12	4. april	19	17. april
6	10. april	13	24. marec		
7	30. marec	14	12. april		

namesto datuma PPL število dni od 21. marca do nje

zlato število	pashalna polna luna	zlato število	pashalna polna luna	zlato število	pashalna polna luna
1	15	8	28	15	11
2	4	9	17	16	0
3	23	10	6	17	19
4	12	11	25	18	8
5	1	12	14	19	27
6	20	13	3		
7	9	14	22		

- alternirajoče prištevanje 19 in odštevanje 11 = prištevanje 19 in deljenje mod 30
- ničla pri n_a = 16

Sledi: $d = 19 \cdot (n_a - 16) \cdot 30 = 19 \cdot (a - 15) \cdot 30 = (19 \cdot a - 19 \cdot 40 \cdot 15) \cdot 30 = (19 \cdot a + 15) \cdot 30 = (19 \cdot$

PPL v julijanskem je 21. + d. marec oz. ustrezno april

Gaussov algoritem – julijanski koledar

$$a = A \mod 19 \checkmark$$

$$b = A \mod 4$$

$$c = A \mod 7$$

$$d = (19 \cdot a + M) \mod 30 \checkmark$$

$$e = (2 \cdot b + 4 \cdot c + 6 \cdot d + N) \mod 7$$

$$M = 15 \checkmark$$

$$N = 6$$

$$22 + d + e$$
. marec $d + e - 9$. april

- hočemo datum nedelje po PPL, ne datuma PPL
- Gaussov \$e\$

$$22 + d + e. \operatorname{marec A}$$

$$19. \operatorname{april } 1500$$

$$d + e - 28 + i + 365(A - 1500)$$

$$i = \left| \frac{A - 1500}{4} \right| = \frac{A - 1500 - (A \operatorname{mod } 4)}{4}$$

$$d + ed - 28 + \frac{A - 1500 + 500 - b}{4} + \frac{A - 1500 + 5000}{4} = 0$$

$$e = (2b + 4c + 6d + N) \operatorname{mod } 7, N = 6$$

- izpeljimo \$e\$; izhajamo iz datuma, za katerega vemo, da je nedelja = 19. april 1500
- Med 19. aprilom 1500 in \$22 + d + e\$. marcem leta \$A\$ je \$d + e 28 + i + 365(A 1500)\$ dni;
 i za prestopna
- Velja: $\$i = (A 1500) // 4 = (A 1500 (A \setminus 4)) / 4\$$

Dobimo:

Gaussov algoritem – julijanski koledar

$$a = A \mod 19$$

$$b = A \mod 4$$

$$c = A \mod 7$$

$$d = (19 \cdot a + M) \mod 30$$

$$e = (2 \cdot b + 4 \cdot c + 6 \cdot d + N) \mod 7$$

$$M = 15$$

$$N = 6$$

$$22 + d + e$$
. marec $d + e - 9$. april

Gaussov algoritem – gregorijanski koledar

$$a = A \mod 19$$

$$b = A \mod 4$$

$$c = A \mod 7$$

$$d = (19 \cdot a + M) \mod 30$$

$$e = (2 \cdot b + 4 \cdot c + 6 \cdot d + N) \mod 7$$

$$p = \left\lfloor \frac{8k+13}{25} \right\rfloor \qquad q = \left\lfloor \frac{k}{4} \right\rfloor$$

$$M = (15 + k - p - q) \mod 30$$

$$N = (4 + k - q) \mod 7$$

$$22 + d + e$$
. marec $d + e - 9$. april

Pokažimo, da algoritem velja tudi za gregorijanski koledar.

• "prva nedelja po prvi spomladanski polni luni"

$$n_a = (A \mod 19) + 1$$

$$e_j = (11 \cdot (n_a - 1)) \mod 30$$

$$S = \left\lfloor \frac{3 \cdot C}{4} \right\rfloor \qquad L = \left\lfloor \frac{8 \cdot C + 5}{25} \right\rfloor$$

$$e_g = \left(e_j - S + L + 8 \right) \mod 30$$

Ponovno začnemo z določanjem zlatega števila. Kot prej opazimo:

```
n_a = a + 1

a_b = (11 \cdot 1 \cdot 1)

a_b = (11 \cdot 1 \cdot 1)

a_b = (11a - 1)
```

epakta	pashalna polna luna	epakta	pashalna polna luna	epakta	pashalna polna luna
1	12. april	11	2. april	21	23. marec
2	11. april	12	1. april	22	22. marec
3	10. april	13	31. marec	23	21. marec
4	9. april	14	30. marec	24	18. april
5	8. april	15	29. marec	25	18. ali 17. april
6	7. april	16	28. marec	26	17. april
7	6. april	17	27. marec	27	16. april
8	5. april	18	26. marec	28	15. april
9	4. april	19	25. marec	29	14. april
10	3. april	20	24. marec	30	13. april

epakta	pashalna polna luna	epakta	pashalna polna luna	epakta	pashalna polna luna
1	22	11	12	21	2
2	21	12	11	22	1
3	20	13	10	23	0
4	19	14	9	24	28
5	18	15	8	25	28 ali 27
6	17	16	7	26	27
7	16	17	6	27	26
8	15	18	5	28	25
9	14	19	4	29	24
10	13	20	3	30	23

```
21 + ((23 - e_g) \mod 30), marec *razen za e_g = 25 in 24
```

$$21 + (23 - (11a - k + k/4 + (8 (k + 1) + 5)/25 + 8) \mod 30) \mod 30$$

 $^{21 + (15 - 11}a + k - p - q) \mod 30$

^{\$21 + (11}a + M) \bmod 30\$

^{\$21 +} d\$

Gaussov algoritem – gregorijanski koledar

```
a = A \mod 19 \quad \checkmark
b = A \mod 4
c = A \mod 7
d = (19 \cdot a + M) \mod 30 \quad \checkmark
e = (2 \cdot b + 4 \cdot c + 6 \cdot d + N) \mod 7
p = \left\lfloor \frac{8k+13}{25} \right\rfloor \checkmark \quad q = \left\lfloor \frac{k}{4} \right\rfloor \checkmark
M = (15 + k - p - q) \mod 30 \quad \checkmark
N = (4 + k - q) \mod 7
```

22 + d + e. marec d + e - 9. april

$$22 + d + e. \operatorname{marec } A$$

$$21. \operatorname{marec } 1700$$

$$d + e + 1 + i + 365 (A - 1700)$$

$$i = \left| \frac{A - 1700}{4} \right| - \left| \frac{A - 1700}{100} \right| + \left| \frac{A - 1700}{400} \right|$$

$$i = \frac{A - 1700 - (A \operatorname{mod } 4)}{4} - C + 18 + \frac{C - 17 - ((C - 1) \operatorname{mod } 4)}{4}$$

$$d + e + 1 + i + 365 (A - 1700) \operatorname{mod } 7 = 0$$

$$e = (2b + 4c + 6d + N) \operatorname{mod } 7, N = (4 + k - q) \operatorname{mod } 7$$

\$e\$ pravi (kot prej) -> nedelja 21. marec 1700.

Dobimo:

 $d + e + 1 + (A - 1700 - (A \b d 4))/4 - C + 18 + ()/4$ \$... - podobno kot za julijanski koledar; izpeljavo opustimo

Izjemi

- 1. Če za datum velike noči dobimo 26. april, namesto tega vedno vzamemo 19. april.
- 2. Če dobimo d=28 in e=6 ter število $11\cdot M+11$ pri deljenju s 30 da ostanek, manjši od 19, namesto 25. aprila vzamemo 18.

⁻ izjeme pri Gaussu = izjeme v tabeli (dokaz, da v obeh primerih velja ekvivalenca (? – odvisno od časa))

Gaussov algoritem – gregorijanski koledar

$$a = A \mod 19$$

$$b = A \mod 4$$

$$c = A \mod 7$$

$$d = (19 \cdot a + M) \mod 30$$

$$e = (2 \cdot b + 4 \cdot c + 6 \cdot d + N) \mod 7$$

$$p = \left\lfloor \frac{8k+13}{25} \right\rfloor \quad q = \left\lfloor \frac{k}{4} \right\rfloor$$

$$M = (15 + k - p - q) \mod 30$$

$$N = (4 + k - q) \mod 7$$

$$22 + d + e$$
. marec $d + e - 9$. april

zgled: Gaussov rojstni dan