- R^2 is a straight-chained alkyl moiety selected from the group consisting of -(CH₂)₃CH₃, (CH₂)₇CH₃ and -(CH₂)₉CH₃, or an alkenyl group or alkynyl group having from 1 to 23 carbon atoms in the aliphatic chain;
- Z² is a phosphorylcholine attachment-inhibiting group selected/from the group consisting of -X¹, -OX¹, -X²X³ and -OX²X³;
- X¹ is selected from the group consisting of -C(O)H, -CO₂H, CH₃, C(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, Si(CH₃)₃, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain, an alkyl chain having from 1 to 6 carbons, an amino group, a fluorine, a chlorine, and a group having the formula C(R³R⁴)OH;

 X^2 is selected from the group consisting of CH₂-, ϕ (CH₃)₂-, Si(PO₄)₂-, Si(PO₄)₂-, Si(CH₃)₂-,

 X^3 is selected from the group consisting of -C(O)H, $-CO_2H$, $-CH_3$, $-C(CH_3)_3$, $-Si(CH_3)_3$, $-Si(CH_3)_3$, $-Si(CCH_3)_3$, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain, an alkyl chain having from 1 to 6 carbons, an amino moiety, a chlorine, a fluorine, or a group having the formula $C(R^3R^4)OH$, wherein each of R^3 and R^4 is independently an alkyl chain having from 1 to 6 carbons, a phenyl group or an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain;

wherein when Z^2 is an amino group, R^2 is an aliphatic chain having from 1 to 9 or from 19 to 23 carbon atoms in the aliphatic chain;

and wherein the compound comprises at least about 5 mole percent of the lipid.

July 2

16. A compound having the formula $R^1-Y^1-CHZ^1-CH(NY^2Y^3)-CH_2-Z^2$, wherein:

R¹ is a straight-chained alkyl, alkenyl or alkynyl group having from 5 to 19 carbon atoms in the aliphatic chain;

Y¹ is -CH=CH-, -C≡C- or -CH(OH)CH(OH)-;

 Z^1 is OH or a phosphorylcholine attachment-inhibiting group selected from the group consisting of -X¹, -OX¹, -X²X³ and - $\sqrt[3]{2}X^3$;

Y² is H, a phenyl group, an alkyl-substituted phenyl group having from 1 to about 6 carbons in the alkyl chain, or an alkyl chain having from 1 to 10 carbons;

 Y^3 is H or a group having the formula $-(O)R^2$ or $-S(O)_2R^2$;

2 ()2

- R² is a straight-chained alkyl moiety selected from the group consisting of -(CH₂)₃CH₃, (CH₂)₅CH₃, -(CH₂)₇CH₃ and -(CH₂)₉CH₃, an alkenyl group group having from 1 to 23 carbon atoms in the aliphatic chain;
- Z² is OH or a phosphorylcholine attachment-inhibiting group selected from the group consisting of -X¹, -OX¹, -X²X³ and -OX²X³;
- X¹ is selected from the group consisting of -C(O)H, -CO₂H, <u>CH₃, C(CH₃)₃, Si(CH₃)₃</u>, <u>Si</u>CH₃(C(CH₃)₃)₂, Si(C(CH₃)₃)₃, Si(PO₄)₂C(CH₃)₃, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain, an alkyl chain having from 1 to 6 carbons, an amino group, a fluorine, a chlorine, and a group having the formula C(R³R⁴)OH;

 X^2 is selected from the group consisting of CH₂-/ C(CH₃)₂-, Si(PO₄)₂-, Si(PO₄)₂-, Si(CH₃)₂-, Si(PO₄)₂-, Si(PO₄)₂

X³ is selected from the group consisting of -C(O)H -CO₂H, -CH₃, -C(CH₃)₃, -Si(CH₃)₃, -Si(C(CH₃)₃)₂, -Si(C(CH₃)₃)₃, -Si(PO₄)₂C(CH₃)₃, a phenyl group, an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain, an alkyl chain having from 1 to 6 carbons, an amino moiety, a chlorine, a fluorine, or a group having the formula C(R³R⁴/OH, wherein each of R³ and R⁴ is independently an alkyl chain having from 1 to 6 carbons, a phenyl group or an alkyl-substituted phenyl group having from 1 to 6 carbons in the alkyl chain;

wherein when Z^2 is an amino group, R^2 is an aliphatic chain having from 1 to 9 or from 19 to 23 carbon atoms in the aliphatic chain.

The compound of claim 16 having the formula CH₃(CH₂)₁₂-CH=CH-CH_[2]Z¹-CH(NHY³)-CH₂-Z².

...