Enterprise Resource Planning – ERP Grundlagen

TGM 4xHITS LE 06

Folienskriptum Wintersemester 2011/2012

Dr. Helmut Vana

ERP Grundlagen

5.LE: Wiederholung

- Die wichtigsten <u>Konzepte</u> der letzten Lehreinheit
- Feedback zu Practice Assignment

Inhalt / Lernziele

- Überblick auf Hauptgeschäftsprozesse in Industrieunternehmen
- Einsatz von Anwendungssystemen entlang der Hauptgeschäftsprozesse
- Führungsebenen in Unternehmen
- Automatisierungswerkzeuge
- Erzeugnisstrukturen
- ERP und PPS-Systeme

Computerintegrierte Fertigung / Computer Integrated Manufacturing (CIM)

CIM - Computer-Integrated Manufacturing

Zusammenfassung aller

- fertigungstechnischenArbeitsabläufe:produktbezogen
- betriebswirtschaftlichorganisatorischen
 Dispositions- und
 Steuerungsaufgaben:
 auftragsbezogen

in einem geschlossenen Gesamtsystem

vgl. Stahlknecht, Hasenkamp, 1999

Ziele

- technisch
 - rationelle Fertigung
 - hohe Produkt- und Prozessqualität
- organisatorisch
 - kurze Durchlaufzeiten der Aufträge
 - Termintreue gegenüber Kunden (Einhaltung der Liefertermine)
- betriebswirtschaftlich
 - wirtschaftliche Fertigung (hohe Kapazitätsauslastung gleichmäßiger Beschäftigungsgrad)
 - minimale Kapitalbindung in den Lagern
 - hohe Flexibiltät am Markt durch Variantenvielfalt
 - schnellere Reaktion auf Kundenwünsche
 - ständige Lieferbereitschaft

Bestandteile des CIM-Konzepts

- Betriebswirtschaftlich-organisatorischen Dispositions- und Steuerungsaufgaben: auftragsbezogen, d.h. organisatorisch
 - Auftragsannahme, Bedarfsplanung, Terminplanung, Kapazitätsabgleich,
 Werkstattsteuerung, Auftragsüberwachung
 - > PPS: Produktionsplanung und -steuerung
- Fertigungstechnischen Arbeitsabläufe: produktbezogen, d.h. fertigungstechnisch
 - Entwurf, Konstruktion, Arbeitsplanung, Fertigungssteuerung,
 Betriebsdatenerfassung,
 - > CAD, CAP, CAM, CAQ

vgl. Stahlknecht, Hasenkamp, 1999 © Dr. Helmut Vana

Integrationsbedarf

Datenflussverbindungen zwischen PPS und CAx

CIM integriert PPS und technische Komponenten (CAx)

- CAD kann Stücklisten übernehmen, die in PPS bereits vorkommen
- Für Produktvarianten erstellt CAD neue Konstruktionsdaten, die in die Stücklisten von PPS eingehen
- technische Ablaufpläne aus CAP werden von PPS für Grobterminierung benötigt
- Mit der Auftragsfreigabe übergibt PPS an CAM Daten zur Steuerung der Maschinen
- Bei Störungen in der Fertigung meldet CAM Daten an PPS zur Anpassung der Kapazitätsplanung

Datenintegration im CIM-Konzept

Zwischenfrage?

Was ist der Unterschied zwischen CAM und Fertigungssteuerung?

- CAM ist Programmierung für einzelne Maschine zur Herstellung eines Produkts
- Fertigungssteuerung ist das "Aufrufen" der Programme

Zusammenfassung: Y - Modell nach Scheer

13.12.2011

Computer Integrated manufacturing (CIM) Synergiekonzept nach Gronau

Abschlussfragen

- Warum hat die Integration von IT-Systemen eine so hohe Bedeutung
 - Durchgehende, medienbruchfreie Kommunikation optimiert Prozesse und verbessert die Informationsversorgung in der Planung
- Wo liegen die Schwierigkeiten
 - Anzahl und Vielfältigkeit der Schnittstellen und ständige Weiterentwicklung
- Warum hat die Vision des CIM immer noch Probleme in der Durchsetzung
 - Integrationsproblematik nicht ausreichend gelöst
 - Mangelnde Flexibilität

Leitstände Inhalte / Ziele

- Einsatz und Bedeutung von Leitständen
- Einordnung in der <u>CAM-Systemstruktur</u>
- Leitstandorganisation
- Funktionen eines Leitstandes
- Integration PPS, BDE und Maschinensteuerung
- Beispielhafte Funktionen
- Merkmale guter Leitstandsoftware

Leitstand im Einsatz

Zweistufige Leitstandorganisation

© Dr. Heimut vana 15.12.2011

Einsatzszenario

Funktionen eines Leitstandes

- Übernahme von Daten aus vorgelagerten Systemen
- Einplanung der Betriebsmittel
- Verfügbarkeitsprüfung
- Steuerungsfunktion
- Durchführung von Simulationen
- Datenerfassung und –verwaltung
- Auswertung, Analyse und Information der Leitung
- Übergabe von Daten an vorgelagerte Systeme

- Planung, welches Werkstück als nächstes bearbeitet wird
- Versorgt die Maschinen mit Programmen
- Start der jeweiligen Bearbeitungseinheiten
- Status über aktuelle Maschinenbelegung
- Status über aktuelle Werkzeugplanung
- Status über Materialdisposition
- Sammelt Messdaten und leitet daraus Korrekturen für Produktion ab

Leitstanddaten	Steuerung durch den Leitstand	Planung im Controlling (PPS)
Maschinenlaufzeiten und -stillstände	Kontrolle von LaufzeitenUmplanung von Aufträgen	 Investitionsplanung Kapazitätsplanung Plan-Ist-Vergleich Wirtschaftlichkeitskontrolle Fehlersuche Ermittlung von Planvorgaben Nachkalkulation
Personalzeiten 13.12.2011	 Kontrolle der Anwesenheit Neuplanung des Einsatzes © Dr. Helmut Vana 	Plan-Ist-VergleichBelastungsanalyseErmittlung der PlanvorgabenNachkalkulation

Leitstand: Bindeglied zwischen Planung und Steuerung

Einordnung

Graphische Plantafel

Leitstand

Auftragsliste

Hallenübersicht

Detaillierung

Übersicht: Aufträge / Arbeitsplätze

Ressourcenplanung

Materialprobleme rechtzeitig erkennen

Bedarfsverursacher Verfolgung

Planungssimulation / Strategie /

Simulationsbasierter Leitstand

Simulation der Feinplanung

Auswertungen

Excel Export

Kontrollfragen

- 1. Welche Vor-/Nachteile hat eine IT gestützte BDE/MDE?
- 2. Was ist der Zweck eines Fertigungsleitstandes (FLS)?
- 3. Welche Hauptdaten werden für einen FLS benötigt?
- 4. Welche Aspekte müssen bei der Einführung eines MES Systems berücksichtigt werden?

Assignment

 Practice Assignment: Recherchieren Sie die Funktionalität der wichtigsten MES Systeme am Markt und vergleichen Sie diese miteinander.