

## TD3 – Calculs d'intégrales

Exercice 1. Rappeler (ou rechercher) l'ensemble de définition et de dérivabilité des fonctions suivantes, ainsi que l'expression de leur dérivée :

1. arcsin

2. arctan

**3.** argsh

4. argch

Exercice 2. Déterminer les primitives des fonctions suivantes, en précisant leur ensemble de définition :

1.  $f_1(x) := \frac{x^2}{1+x^3}$  3.  $f_3(x) := \frac{1}{\tan x}$  5.  $f_5(x) := \frac{x}{x+1}$  7.  $f_7(x) := \exp(e^x + x)$ 

**2.**  $f_2(x) := \frac{1}{\sqrt[3]{1+x}}$  **4.**  $f_4(x) := \frac{1}{x \ln x}$  **6.**  $f_6(x) := \frac{1}{x+\sqrt{x}}$  **8.**  $f_8(x) := \frac{1}{2x^2+3}$ 

Exercice 3. À l'aide d'une intégration par partie, déterminer les primitives des fonctions suivantes :

1.  $f_1(x) := x \cos(2x)$ 

**2.**  $f_2(x) := \ln(x)$ 

**3.**  $f_3(x) := \arctan(x)$ 

**4.**  $f_4(x) := \frac{x}{\cos^2 x}$ 

Exercice 4. Calculer les intégrales suivantes à l'aide du changement de variable indiqué.

1.  $I_1 := \int_1^e \frac{1}{2r \ln r + r} dx$  avec  $x = e^u$ 

3.  $I_3 := \int_0^1 \frac{x^2}{\sqrt{4-x^2}} dx$  avec  $x = 2 \sin u$ 

**2.**  $I_2 := \int_1^2 \frac{x}{\sqrt{1+x}} dx$  avec  $x = u^2 - 1$ 

**4.**  $I_4 := \int_0^1 \frac{1}{(1+x^2)^2} dx$  avec  $x = \tan u$ 

**Exercice 5.** Soit  $f: [-a, a] \to \mathbb{R}$  une fonction continue.

**1.** Si f est impaire, que vaut  $\int_{-a}^{a} f(x) dx$ ?

**2.** Que peut-on dire si f est paire?

Exercice 6. Calculer les intégrales suivantes :

1.  $I_1 := \int_0^{\frac{\pi}{2}} (\cos x)^{2025} \sin x \, dx$ . 4.  $I_4 := \int_{-\pi/2}^{\pi/2} e^x \cos x \, dx$ . 7.  $I_7 := \int_{-\ln 2}^{\ln 2} \frac{1}{\cosh x} \, dx$ 

 $J_{-\pi/2} = \int_{0}^{1} x \arctan x \, dx.$   $J_{-\ln 2} \operatorname{ch} x$   $J_{-\ln 2} \operatorname{ch} x$   $J_{-\ln 2} \operatorname{ch} x$   $\mathbf{5.} \ I_{5} \coloneqq \int_{0}^{\pi/2} \cos^{4}(x) \, dx$   $\mathbf{8.} \ I_{8} \coloneqq \int_{-\pi/3}^{\pi/3} \sin(x^{5} + x^{3}) \, dx$ 

**3.**  $I_3 := \int_1^4 \frac{1}{1+\sqrt{x}} \, \mathrm{d}x$ . **6.**  $I_6 := \int_0^1 \frac{\mathrm{e}^x}{\sqrt{x^2+1}} \, \mathrm{d}x$  **9.**  $I_9 := \int_0^3 \frac{1}{\sqrt{4x-x^2}} \, \mathrm{d}x$ 

**Exercice 7.** Soit  $f: [a, b] \to \mathbb{R}$  une fonction continue.

**1.** Montrer que  $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ . **2.** Calculer  $I := \int_{0}^{\pi/2} \frac{\sin^{n} x}{\cos^{n} x + \sin^{n} x} dx$ .

**Exercice 8** (intégrales de Wallis). Soit  $W_n = \int_0^{\pi/2} \sin^n(x) dx$ .

**1.** Calculer  $W_0$  et  $W_1$ .

**2.** Établir une relation de récurrence entre  $W_{n+2}$  et  $W_n$ .

**3.** En déduire que pour tout  $p \in \mathbb{N}$  :

$$W_{2p} = \frac{(2p)!}{(2^p p!)^2} \frac{\pi}{2}, \quad W_{2p+1} = \frac{2^{2p} (p!)^2}{(2p+1)!}$$

**4.** Montrer que la suite  $(W_n)_{n \in \mathbb{N}}$  est décroissante et strictement positive.

**5.** En déduire que  $W_{n+1} \sim W_n$  lorsque  $n \to +\infty$ .

**6.** Montrer que pour tout  $n \in \mathbb{N}$ ,  $(n+1)W_nW_{n+1} = \frac{\pi}{2}$ .

7. En déduire que  $W_n \sim \sqrt{\frac{\pi}{2n}}$  puis que  $\binom{2n}{n} \sim \frac{2^{2n}}{\sqrt{\pi n}}$  lorsque  $n \to +\infty$ .