数学模型(20计算机)第5周作业

姓名	陈鹏宇	王星然	赵家乐
学号	20204227	20204256	20204241
序号	73	86	78

题目1:

增加生产、发展经济所依靠的主要因素有增加投资、增加劳动力以及技术革新等,在研究国民经济产值与这些因素的数量关系时,由于技术水平不像资金、劳动力那样容易定量化,作为初步的模型,可认为技术水平不变,只讨论产值和资金、劳动力之间的关系。在科学技术发展不快时,如资本主义经济发展的前期,这种模型是有意义的。

用 Q, K, L 分别表示产值、资金、劳动力,要寻求的数量关系 Q(K,L)。经过简化假设与分析,在经济学中,推导出一个著名的 Cobb-Douglas 生产函数:

$$Q(K,L) = aK^{\alpha}L^{\beta}, \quad 0 < \alpha, \beta < 1$$
 (*)

式中 α , β , a 要由经济统计数据确定。现有美国马萨诸塞州 1900—1926 年上述三个经济指数的统计数据,如下表,试用数据拟合的方法,求出式(*)中的参数 α , β , a 。

表 1								
t	Q	K	L	t	Q	K	L	
1900	1.05	1.04	1.05	1914	2.01	3. 24	1.65	
1901	1. 18	1.06	1.08	1915	2.00	3. 24	1.62	
1902	1. 29	1.16	1.18	1916	2.09	3.61	1.86	
1903	1.30	1.22	1.22	1917	1.96	4.10	1.93	
1904	1.30	1. 27	1. 17	1918	2.20	4.36	1.96	
1905	1.42	1. 37	1.30	1919	2.12	4.77	1.95	
1906	1.50	1.44	1.39	1920	2. 16	4.75	1.90	
1907	1.52	1.53	1.47	1921	2.08	4. 54	1.58	
1908	1.46	1.57	1.31	1922	2.24	4.54	1.67	
1909	1.60	2.05	1.43	1923	2.56	4. 58	1.82	
1910	1.69	2.51	1.58	1924	2.34	4.58	1.60	
1911	1.81	2.63	1.59	1925	2.45	4. 58	1.61	
1912	1.93	2.74	1.66	1926	2.58	4. 54	1.64	
1913	1. 95	2.82	1.68					

模型建立

线性化

Cobb-Douglas 生产函数是一个产值与资金、劳动力之间的非线性函数关系。这里,我们对其进行线性处理,即两边同时取对数得

$$ln(Q) = ln a + \alpha ln K + \beta ln L$$

令
$$\frac{\ln(Q) = y}{\ln a = \gamma}$$
 得关于参数 α, β, γ 的线性拟合公式

$$y = \alpha \ln K + \beta \ln L + \gamma$$

下面我们最小二乘法的原理编写程序计算出 α, β, γ 的值,进而求得参数 a, α, β 的值

程序

- Ldata=[1.05 1.08 1.18 1.22 1.17 1.30 1.39 1.47 1.31 1.43 1.58 1.59 1.66 1.68 1.65 1.62 1.86 1.93 1.
 96 1.95 1.90 1.58 1.67 1.82 1.60 1.61 1.64]';
- 2. Kdata=[1.04 1.06 1.16 1.22 1.27 1.37 1.44 1.53 1.57 2.05 2.51 2.63 2.74 2.82 3.24 3.24 3.61 4.10 4. 36 4.77 4.75 4.54 4.58 4.58 4.58 4.54]';
- 3. Qdata=[1.05 1.18 1.29 1.30 1.30 1.42 1.50 1.52 1.46 1.60 1.69 1.81 1.93 1.95 2.01 2.00 2.09 1.96 2.
 20 2.12 2.16 2.08 2.24 2.56 2.34 2.45 2.58]';
- L=log(Ldata);
- 5. K=log(Kdata);
- Q=log(Qdata);
- 7. $X = [ones(27,1) \ K \ L];$
- 8. [B BINT] = regress(Q,X)
- 9.
- $10. \quad \mathsf{grid} \ \mathsf{on}$
- 11. plot3(K,L,Q,'*');
- 12. t1=-1:0.1:2;
- 13. t2=t1;
- 14. [X,Y] = meshgrid(t1,t2);
- 15. Z=B(1)+B(2).*X+B(3).*Y;
- 16. $\operatorname{mesh}(X,Y,Z);$

结果

$$\alpha = 0.4153$$

$$\beta = 0.0619$$

$$\gamma = 0.1629$$

数据点及拟合后的图像如下

分析

$$lpha=0.4153$$
 $lpha=0.4153$ 由 $eta=0.0619$ 解得 $eta=0.0619$,故最终拟合得到生产函数为 $\gamma=0.1629$ $a=1.1769$

$$Q(K,L) = 1.1769K^{0.4153}L^{0.0619}$$

题目2 收集重庆市的人口数据,采用数据拟合预测2025年重庆市的人口数。

数据收集:

我们从数据网站(https://www.phb123.com/city/renkou/city_243.html)中搜集到重庆 1970 年至 2020 年数据如下表:

Year	1970	1975	1980	1985	1990	1995	2000	2005	2010	2015	2020
Population($\times 10^3$)	2,237	2,545	2,961	3,446	4,011	5,615	7,863	9,454	11,244	13,332	15,233

模型假设:

- 1、把人口增长看做是一个二次多项式函数
- 2、人口增长没有限制,可以一直增长

通过假设1我们能建立人口拟合模型如下:

$$y = a_1 x^2 + a_2 x + a_3$$

其中 y 表示当年重庆人口总数, x 表示实际年份(Year - 1970)/5

程序:

```
1.
      clc; clear all;
2. year = 0:1:10; %我们记 1970 年为 0, 每增加五年增加一
3.
      population = [2237, 2545, 2961, 3446, 4011, 5615, 7863, 9454, 11244, 13332, 15233];
4. n = 2; %2 阶多项式拟合
5.
      a= polyfit(year,population,n); %多项式系数
6.
7.
     %拟合阶段%
8. figure(1)
9.
      hold on;
10. xlabel('year');
11. ylabel('population');
12. title('1970-2020 重庆人口增长曲线');
13.
     grid on
14. \quad {\tt plot(year,population,'r*',year,polyval(a,year))}
15. legend('人口数量','拟合曲线')
16.
17. %预测阶段%
18. population_2025=polyval(a,11);
19. x=['2025年重庆人口预测为',num2str(population_2025)];
20. disp(X);
```

结果:

```
1. a = 2. 3. 119.68648018648 156.271561771563 2115.16083916084 4. 5. 2025 年重庆人口预测为 18316.2121
```

$$\begin{cases} a_1 &= 119.7 \ a_2 &= 156.3 \ a_3 &= 2115.2 \end{cases}$$
 $y = 119.7x^2 + 156.3x + 2115.2$ 2025 年重庆人口预测为 18316212 人

1970年至2020年重庆人口拟合曲线如下图:

分析:

由于多项式拟合的缺陷,虽然建模速度快,不需要很复杂的计算,但是预测的人口数量在未来会超出人口限制,且增长速度变快。