# Image Super Resolution

ADS-project3-group3
Yuting He, Seungwook Han, Shengwei
Huang, Mengran Xia, Hongye Jiang

## Goal

Our goal is to use machine learning method to create predictive models to enhance the blurry and low-resolution images so that we can get high resolution images.

## Outline

- I. Feature Extraction
- II. Performance Measure
- III. Baseline Model
- IV. Advanced Model
- V. Outcome Comparison

### I. Feature Extraction



Extract eight neighbors of every pixel as its features.

```
pixeldim <- function(imgLR,d){</pre>
   rr = nrow(imgLR)
   cc = ncol(imgLR)
   #add two row
   imgLR1 \leftarrow abind(array(0,c(1,ncol(imgLR),3)), imgLR, array(0,c(1,ncol(imgLR),3)), along = 1)
   #add two col
   imgLR2 \leftarrow abind(array(0,c(nrow(imgLR1),1,3)), imgLR1, array(0,c(nrow(imgLR1),1,3)), along = 2)
   central \leftarrow as.numeric(imgLR2[2:(rr+1), 2:(cc+1),d])
   p11 <- as.numeric(imgLR2[1:rr, 1:cc,d]) - central
   p21 \leftarrow as.numeric(imgLR2[2:(rr+1), 1:cc,d]) - central
   p31 <- as.numeric(imgLR2[3:(rr+2), 1:cc,d]) - central
                                                                                                               x = \text{vectorize}(I_{LR}) - \text{center pixel}(I_{LR})
   p12 <- as.numeric(imgLR2\lceil 1:rr, 2:(cc+1),d \rceil) - central
   p32 \leftarrow as.numeric(imgLR2[3:(rr+2), 2:(cc+1),d]) - central
   p13 <- as.numeric(imgLR2[1:rr, 3:(cc+2),d]) - central
   p23 \leftarrow as.numeric(imgLR2[2:(rr+1), 3:(cc+2),d]) - central
   p33 \leftarrow as.numeric(imgLR2[3:(rr+2), 3:(cc+2),d]) - central
   pexelmattemp <- cbind(p11,p21,p31,p12,p32,p13,p23,p33)</pre>
   return(pexelmattemp)
     featMat[,,1] <- pixeldim(imgLR,1)
     featMat[,,2] <- pixeldim(imgLR,2)</pre>
     featMat[,,3] <- pixeldim(imgLR,3)
```

- PADDING ZEROS
- Extract neighbors
- Centralization

### II. Performance Measure

$$MSE = \frac{1}{3mn} \sum_{c=1}^{3} \sum_{i=1}^{m} \sum_{j=1}^{n} [I(i,j,c) - K(i,j,c)]^{2}$$

$$PSNR = 20 \cdot \log_{10}(MAX_I) - 10 \cdot \log_{10}(MSE)$$

## III. Baseline Model



## Cross validation



## Baseline Performance

Depth = 11

| Mean MSE    | Mean PSNR |
|-------------|-----------|
| 0.002511598 | 27.05948  |

## IV. Advanced Model——XGBoost

#### Different booster comparison

|          | Mean MSE    | Mean PSNR |  |
|----------|-------------|-----------|--|
| GBTREE   | 0.002593127 | 27.03771  |  |
| GBLINEAR | 0.002511576 | 27.05951  |  |
| DART     | 0.011715    | 19.42583  |  |

### IV. Advanced Model——XGBoost

Cross validation for alpha

Alpha = 3

L1 regularization term on weights. Increasing this value will make model more conservative. Normalised to number of training examples.



### IV. Advanced Model——XGBoost

Cross validation for lambda

Lambda = 0

L2 regularization term on weights. Increasing this value will make model more conservative.

Normalised to number of training examples.



## V. Outcome Comparison

|              | Baseline<br>Model | XGBoost     |                 | Baseline<br>Model | XGBoost  |
|--------------|-------------------|-------------|-----------------|-------------------|----------|
| Mean<br>MSE  | 0.002511598       | 0.002511576 | Training time   | > 5 h             | 47.453 s |
| Mean<br>PSNR | 27.05948          | 27.05951    | Testing<br>time | 102.248 s         | 11.602 s |

## V. Outcome Comparison



Low resolution Baseline model XGBoost model High resolution

## Why XGBoost fast and accurate?

#### Speed:

- XGBoost utilizes OpenMP which can parallel the code on a multithreaded CPU automatically.
- XGBoost has defined a data structure DMatrix to store the data matrix. This data structure will perform some preprocessing work on the data so that the latter iteration is faster.

#### Accuracy:

 The main reason for the improvement of the accuracy is because the newly-defined regularization term and the pruning approach which makes the learned model more stable.

# Thanks!