Bottom up parsing

- Construct a parse tree for an input string beginning at leaves and going towards root OR
- Reduce a string w of input to start symbol of grammar
 Consider a grammar

```
S \rightarrow aABe
A \rightarrow Abc \mid b
B \rightarrow d
```

And reduction of a string

```
a <u>b</u> b c d e
a <u>A b c</u> d e
a A <u>d</u> e
<u>a A B e</u>
```

The sentential forms happen to be a *right most derivation in the reverse order.*

Shift reduce parsing

- Split string being parsed into two parts
 - Two parts are separated by a special character "."
 - Left part is a string of terminals and non terminals
 - Right part is a string of terminals

Initially the input is .w

Shift reduce parsing ...

- Bottom up parsing has two actions
- Shift: move terminal symbol from right string to left string
 if string before shift is α.pqr
 then string after shift is αp.qr

Shift reduce parsing ...

 Reduce: immediately on the left of "." identify a string same as RHS of a production and replace it by LHS

if string before reduce action is $\alpha\beta$.pqr and $A \rightarrow \beta$ is a production then string after reduction is αA .pqr

Example

Assume grammar is $E \rightarrow E+E \mid E*E \mid id$

Parse id*id+id

Assume an oracle tells you when to shift / when to reduce

String	action (by oracle)
.id*id+id	shift
id.*id+id	reduce E→id
E.*id+id	shift
E*.id+id	shift
E*id.+id	reduce E→id
E*E.+id	reduce E→E*E
E.+id	shift
E+.id	shift
E+id.	Reduce E→id
E+E.	Reduce E→E+E
E.	ACCEPT

Shift reduce parsing ...

- Symbols on the left of "." are kept on a stack
 - Top of the stack is at "."
 - Shift pushes a terminal on the stack
 - Reduce pops symbols (rhs of production) and pushes a non terminal (lhs of production) onto the stack
- The most important issue: when to shift and when to reduce
- Reduce action should be taken only if the result can be reduced to the start symbol

Issues in bottom up parsing

- How do we know which action to take
 - -whether to shift or reduce
 - Which production to use for reduction?
- Sometimes parser can reduce but it should not:
 - X→€ can always be used for reduction!

Issues in bottom up parsing

- Sometimes parser can reduce in different ways!
- Given stack δ and input symbol a, should the parser
 - -Shift a onto stack (making it δa)
 - -Reduce by some production $A \rightarrow \beta$ assuming that stack has form $\alpha\beta$ (making it αA)
 - -Stack can have many combinations of $\alpha\beta$
 - -How to keep track of length of β ?

Handles

- The basic steps of a bottom-up parser are
 - to identify a *substring* within a *rightmost* sentential form which matches the RHS of a rule.
 - when this substring is replaced by the LHS of the matching rule, it must produce the previous rightmost-sentential form.
- Such a substring is called a handle

Handle

- A handle of a right sentential form γ is
 - a production rule $A \rightarrow \beta$, and
 - an occurrence of a sub-string β in γ

such that

• when the occurrence of β is replaced by A in γ , we get the previous right sentential form in a rightmost derivation of γ .

Handle

Formally, if

$$S \rightarrow rm^* \alpha Aw \rightarrow rm \alpha \beta w$$

then

- β in the position following α ,
- and the corresponding production $A \rightarrow \beta$ is a handle of $\alpha\beta w$.
- The string w consists of only terminal symbols

Handle

 We only want to reduce handle and not any RHS

Handle pruning: If β is a handle and A → β is a production then replace β by A

 A right most derivation in reverse can be obtained by handle pruning.

Handle: Observation

- Only terminal symbols can appear to the right of a handle in a rightmost sentential form.
- Why?

Handle: Observation

Is this scenario possible:

- $\alpha\beta\gamma$ is the content of the stack
- $A \rightarrow \gamma$ is a handle
- The stack content reduces to $\alpha \beta A$
- Now $B \to \beta$ is the handle

In other words, handle is not on top, but buried *inside* stack

Not Possible! Why?

Handles ...

 Consider two cases of right most derivation to understand the fact that handle appears on the top of the stack

$$S \rightarrow \alpha Az \rightarrow \alpha \beta Byz \rightarrow \alpha \beta \gamma yz$$

 $S \rightarrow \alpha BxAz \rightarrow \alpha Bxyz \rightarrow \alpha \gamma xyz$

Handle always appears on the top

Case I: $S \rightarrow \alpha Az \rightarrow \alpha \beta Byz \rightarrow \alpha \beta \gamma yz$

stack	input	action
αβγ	yz	reduce by B \rightarrow γ
αβΒ	yz	shift y
αβΒγ	Z	reduce by A→ βBy
αΑ	Z	

Case II: $S \rightarrow \alpha B x A z \rightarrow \alpha B x y z \rightarrow \alpha \gamma x y z$

stack	input	action	
αγ	XYZ	reduce by B→γ	
αΒ	xyz	shift x	
αΒχ	yz	shift y	
αΒχγ	Z	reduce A→y	
α BxA	Z		16

Shift Reduce Parsers

- The general shift-reduce technique is:
 - if there is no handle on the stack then shift
 - If there is a handle then reduce
- Bottom up parsing is essentially the process of detecting handles and reducing them.
- Different bottom-up parsers differ in the way they detect handles.

Conflicts

- What happens when there is a choice
 - What action to take in case both shift and reduce are valid?
 - shift-reduce conflict
 - Which rule to use for reduction if reduction is possible by more than one rule?
 - reduce-reduce conflict

Conflicts

 Conflicts come either because of ambiguous grammars or parsing method is not powerful enough

Shift reduce conflict

Consider the grammar $E \rightarrow E+E \mid E*E \mid id$ and the input id+id*id

stack	input	action
E+E	*id	reduce by E→E+E
E	*id	shift
E*	id	shift
E*id		reduce by E→id
E*E		reduce byE→E*E
E		

stack	input	action
E+E	*id	shift
E+E*	id	shift
E+E*id		reduce by E→id
E+E*E		reduce by E→E*E
E+E		reduce by E→E+E
E		

Reduce reduce conflict

Consider the grammar $M \rightarrow R+R \mid R+c \mid R$

 $R \rightarrow c$

and the input

C+C

Stack	input	action
	C+C	shift
С	+c	reduce by $R \rightarrow c$
R	+c	shift
R+	С	shift
R+c		reduce by R \rightarrow c
R+R		reduce by $M \rightarrow R+R$
M		

Stack	input	action
	C+C	shift
С	+c	reduce by $R \rightarrow c$
R	+c	shift
R+	С	shift
R+c		reduce by $M \rightarrow R+c$
M		

LR parsing

- Input buffer contains the input string.
- Stack contains a string of the form S₀X₁S₁X₂.....X_nS_n where each X_i is a grammar symbol and each S_i is a state.
- <u>Table</u> contains action and goto parts.
- <u>action</u> table is indexed by state and terminal symbols.
- goto table is indexed by state and non terminal symbols.

Example

Consider a grammar and its parse table

$E \rightarrow E + T$	ΙΤ
$T \rightarrow T * F$	F
$F \rightarrow (E)$	id

State	id	+	*	()	\$	Е	Т	F	
0	s 5			s4			1	2	3	
1		s6				acc				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s 5			s4			8	2	3	
5		r6	r6		r6	r6				
6	s 5			s4				9	3	
7	s 5			s4					10	action
8		s6			s11					
9		r1	s 7		r1	r1				
10		r3	r3		r3	r3 *				goto
11		r5	r5		r5	r5			*	23

Actions in an LR (shift reduce) parser

Assume S_i is top of stack and a_i is current input symbol

- Action [S_i,a_i] can have four values
 - 1. sj: shift a_i to the stack, goto state S_j
 - 2. rk: reduce by rule number k
 - 3. acc: Accept
 - 4. err: Error (empty cells in the table)

Driving the LR parser

Stack: $S_0X_1S_1X_2...X_mS_m$ Input: $a_ia_{i+1}...a_n$ \$

- If action[S_m,a_i] = shift S
 Then the configuration becomes
 Stack: S₀X₁S₁.....X_mS_ma_iS
 Input: a_{i+1}...a_n\$
- If action[S_m, a_i] = reduce $A \rightarrow \beta$ Then the configuration becomes Stack: $S_0 X_1 S_1 ... X_{m-r} S_{m-r} AS$ Input: $a_i a_{i+1} ... a_n \beta$ Where $r = |\beta|$ and $S = goto[S_{m-r}, A]$

Driving the LR parser

Stack: $S_0X_1S_1X_2...X_mS_m$ Input: $a_ia_{i+1}...a_n$ \$

- If action[S_m,a_i] = accept
 Then parsing is completed. HALT
- If $action[S_m,a_i] = error$ (or empty cell) Then invoke error recovery routine.

Parse id + id * id

Stack		Input		Action
0		id+id*id	\$	shift 5
0 id 5		+id*id\$		reduce by F→id
0 F 3		+id*id\$		reduce by T→F
0 T 2		+id*id\$		reduce by E \rightarrow T
0 E 1		+id*id\$		shift 6
0 E 1 + 6	id*id\$		shift 5	
0 E 1 + 6 id 5		*id\$		reduce by F→id
0 E 1 + 6 F 3		*id\$		reduce by T→F
0 E 1 + 6 T 9		*id\$		shift 7
0 E 1 + 6 T 9 * 7	id\$		shift 5	
0 E 1 + 6 T 9 * 7 id	l 5	\$		reduce by F→id
0 E 1 + 6 T 9 * 7 F	10	\$		reduce by T→T*F
0 E 1 + 6 T 9		\$		reduce by $E \rightarrow E+T$
0 E 1		\$		ACCEPT

Configuration of a LR parser

- The tuple
 - <Stack Contents, Remaining Input>
 defines a configuration of a LR parser
- Initially the configuration is

$$, $a_0a_1...a_n$ $ >$$

 Typical final configuration on a successful parse is

$$< S_0 X_1 S_i, $>$$

LR parsing Algorithm

Initial state: Stack: S₀ Input: w\$

```
while (1) {
  if (action[S,a] = shift S') {
     push(a); push(S'); ip++
  } else if (action[S,a] = reduce A \rightarrow \beta) {
     pop (2*|\beta|) symbols;
     push(A); push (goto[S",A])
     (S" is the state at stack top after popping symbols)
   } else if (action[S,a] = accept) {
      exit
  } else { error }
```

Constructing parse table

Augment the grammar

- G is a grammar with start symbol S
- The augmented grammar G' for G has a new start symbol S' and an additional production S' → S
- When the parser reduces by this rule it will stop with accept

Production to Use for Reduction

- How do we know which production to apply in a given configuration
- We can guess!
 - May require backtracking
- Keep track of "ALL" possible rules that can apply at a given point in the input string
 - But in general, there is no upper bound on the length of the input string
 - Is there a bound on number of applicable rules?

Some hands on!

- \bullet $E' \rightarrow E$
- \bullet $E \rightarrow E + T$
- $E \rightarrow T$
- \bullet $T \rightarrow T * F$
- \bullet $T \to F$
- \bullet $F \rightarrow (E)$
- $F \rightarrow id$

Strings to Parse

- id + id + id + id
- id * id * id * id
- id * id + id * id
- id * (id + id) * id

Parser states

- Goal is to know the valid reductions at any given point
- Summarize all possible stack prefixes α as a parser state
- Parser state is defined by a DFA state that reads in the stack α
- Accept states of DFA are unique reductions

Viable prefixes

- \bullet α is a viable prefix of the grammar if
 - ∃w such that αw is a right sentential form
 - $-<\alpha,w>$ is a configuration of the parser
- As long as the parser has viable prefixes on the stack no parser error has been seen
- The set of viable prefixes is a regular language
- We can construct an automaton that accepts viable prefixes

LR(0) items

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Thus production A→XYZ gives four LR(0) items

 $A \rightarrow .XYZ$

 $A \rightarrow X.YZ$

 $A \rightarrow XY.Z$

 $A \rightarrow XYZ$.

LR(0) items

- An item indicates how much of a production has been seen at a point in the process of parsing
 - Symbols on the left of "." are already on the stacks
 - Symbols on the right of "." are expected in the input

Start state

- Start state of DFA is an empty stack corresponding to S'→.S item
- This means no input has been seen
- The parser expects to see a string derived from S

Closure of a state

- Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after
 - Set of possible productions to be reduced next
 - Added items have "." located at the beginning
 - No symbol of these items is on the stack as yet

Closure operation

- Let I be a set of items for a grammar G
- closure(I) is a set constructed as follows:
 - Every item in I is in closure (I)
 - If A \rightarrow α.Bβ is in closure(I) and B \rightarrow γ is a production then B \rightarrow .γ is in closure(I)
- Intuitively A $\rightarrow \alpha$.B β indicates that we expect a string derivable from B β in input
- If B \rightarrow γ is a production then we might see a string derivable from γ at this point

Example

For the grammar

$$E' \rightarrow E$$
 $E \rightarrow E + T \mid T$
 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

If I is $\{ E' \rightarrow E \}$ then closure(I) is

$$E' \rightarrow .E$$

 $E \rightarrow .E + T$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .id$
 $F \rightarrow .(E)$

Goto operation

- Goto(I,X), where I is a set of items and X is a grammar symbol,
 - −is closure of set of item A $\rightarrow \alpha X.\beta$
 - -such that A $\rightarrow \alpha$.X β is in I

 Intuitively if I is a set of items for some valid prefix α then goto(I,X) is set of valid items for prefix αX

Goto operation

If I is $\{E' \rightarrow E, E \rightarrow E, +T\}$ then goto(I,+) is

$$E \rightarrow E + .T$$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$
 $F \rightarrow .id$

Sets of items

```
C: Collection of sets of LR(0) items for
  grammar G'
C = \{ closure ( \{ S' \rightarrow .S \} ) \}
repeat
  for each set of items I in C
    for each grammar symbol X
       if goto (I,X) is not empty and not in C
         ADD goto(I,X) to C
until no more additions to C
```

Example

```
Grammar:
```

$$E' \rightarrow E$$

 $E \rightarrow E+T \mid T$
 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid id$

$$I_0$$
: closure(E' \rightarrow .E)

$$E' \rightarrow .E$$

 $E \rightarrow .E + T$

$$E \rightarrow .T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_1$$
: goto(I_0 , E)
 $E' \rightarrow E$.
 $E \rightarrow E$. + T

$$I_2$$
: goto(I_0 ,T)
 $E \rightarrow T$.
 $T \rightarrow T$. *F

$$I_3$$
: goto(I_0 , F)
T \rightarrow F.

$$I_4$$
: goto(I_0 ,()

$$F \rightarrow (.E)$$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_5$$
: goto(I_0 ,id)
 $F \rightarrow id$.

I_6 : goto(I_1 ,+) $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
I_7 : goto(I_2 ,*) $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
I ₈ : goto(I ₄ ,E) F → (E.) E → E. + T
goto/L This L

goto(
$$I_2$$
,*)
T → T * .F
F → .(E)
F → .id
goto(I_4 ,E)
F → (E.)
E → E. + T

$$goto(I_4,T) \text{ is } I_2$$

$$goto(I_4,F) \text{ is } I_3$$

$$goto(I_4,()) \text{ is } I_4$$

$$goto(I_4,id) \text{ is } I_5$$

$$I_{9}: goto(I_{6},T)$$

$$E \rightarrow E + T.$$

$$T \rightarrow T. * F$$

$$goto(I_{6},F) \text{ is } I_{3}$$

$$goto(I_{6},()) \text{ is } I_{4}$$

$$goto(I_{6},id) \text{ is } I_{5}$$

$$I_{10}: goto(I_{7},F)$$

$$T \rightarrow T * F.$$

$$goto(I_{7},()) \text{ is } I_{4}$$

$$goto(I_{7},id) \text{ is } I_{5}$$

$$I_{11}: goto(I_{8},))$$

$$F \rightarrow (E).$$

goto(
$$I_8$$
,+) is I_6 goto(I_9 ,*) is I_7

LR(0) (?) Parse Table

 The information is still not sufficient to help us resolve shift-reduce conflict.
 For example the state:

$$I_1: E' \rightarrow E.$$

 $E \rightarrow E. + T$

 We need some more information to make decisions.

Constructing parse table

- First(α) for a string of terminals and non terminals α is
 - Set of symbols that might begin the fully expanded (made of only tokens) version of α
- Follow(X) for a non terminal X is
 - set of symbols that might follow the derivation of X in the input stream

Compute first sets

- If X is a terminal symbol then first(X) = {X}
- If $X \rightarrow E$ is a production then E is in first(X)
- If X is a non terminal and X → Y₁Y₂ ... Y_k is a production, then

```
if for some i, a is in first(Y<sub>i</sub>)
and ∈ is in all of first(Y<sub>j</sub>) (such that j<i)
then a is in first(X)
```

- If ∈ is in first (Y₁) ... first(Y_k) then ∈ is in first(X)
- Now generalize to a string α of terminals and non-terminals

Example

For the expression grammar

$$E \rightarrow T E' \qquad E' \rightarrow +T E' \mid E$$

$$T \rightarrow F T' \qquad T' \rightarrow * F T' \mid E$$

$$F \rightarrow (E) \mid id$$

$$First(E) = First(T) = First(F)$$

$$= \{ (, id \} \}$$

$$First(E')$$

$$= \{ +, E \}$$

$$First(T')$$

$$= \{ *, E \}$$

Compute follow sets

- 1. Place \$ in follow(\$) // \$ is the start symbol
- 2. If there is a production $A \rightarrow \alpha B\beta$ then everything in first(β) (except ϵ) is in follow(B)
- 3. If there is a production $A \rightarrow \alpha B\beta$ and first(β) contains ϵ then everything in follow(A) is in follow(B)
- 4. If there is a production $A \rightarrow \alpha B$ then everything in follow(A) is in follow(B) Last two steps have to be repeated until the follow sets converge.

Example

For the expression grammar

```
E \rightarrow T E'
E' \rightarrow + T E' \mid E
T \rightarrow F T'
T' \rightarrow * F T' \mid E
F \rightarrow (E) \mid id
```

```
follow(E) = follow(E') = { $, ) }
follow(T) = follow(T') = { $, ), + }
follow(F) = { $, ), +, *}
```

Construct SLR parse table

- Construct C={I₀, ..., I_n} the collection of sets of LR(0) items
- If $A \rightarrow \alpha$.a β is in I_i and goto($I_{i,a}$) = I_j then action[i,a] = shift j
- If $A \rightarrow \alpha$. is in I_i then action[i,a] = reduce $A \rightarrow \alpha$ for all a in follow(A)
- If $S' \rightarrow S$. is in I_i then action[i,\$] = accept
- If goto(I_i,A) = I_j
 then goto[i,A]=j for all non terminals A
- All entries not defined are errors

Notes

- This method of parsing is called SLR (Simple LR)
- LR parsers accept LR(k) languages
 - L stands for left to right scan of input
 - R stands for rightmost derivation
 - k stands for number of lookahead token
- SLR is the simplest of the LR parsing methods.
 SLR is too weak to handle most languages!
- If an SLR parse table for a grammar does not have multiple entries in any cell then the grammar is unambiguous
- All SLR grammars are unambiguous
- Are all unambiguous grammars in SLR?

Practice Assignment

Construct SLR parse table for following grammar

$$E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid (E) \mid digit$$

Show steps in parsing of string 9*5+(2+3*7)

- Steps to be followed
 - Augment the grammar
 - Construct set of LR(0) items
 - Construct the parse table
 - Show states of parser as the given string is parsed

Example

Consider following grammar and its SLR parse table:

$$S' \rightarrow S$$

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

$$I_0: S' \rightarrow .S$$

$$S \rightarrow .L=R$$

$$S \rightarrow .R$$

$$L \rightarrow .*R$$

$$L \rightarrow .id$$

$$R \rightarrow .L$$

$$I_1$$
: goto(I_0 , S)
S' \rightarrow S.

$$I_2$$
: goto(I_0 , L)

$$S \rightarrow L.=R$$

$$R \rightarrow L$$
.

Assignment (not to be submitted): Construct rest of the items and the parse table.

SLR parse table for the grammar

	=	*	id	\$	S	L	R
0		s4	s 5		1	2	3
1				acc			
2	s6,r6			r6			
3				r3			
4		s 4	s 5			8	7
5	r5			r5			
6		s4	s 5			8	9
7	r4			r4			
8	r6			r6			
9				r2			

- There is both a shift and a reduce entry in action[2,=]. Therefore state 2 has a shiftreduce conflict on symbol "=", However, the grammar is not ambiguous.
- Parse id=id assuming reduce action is taken in [2,=]

Stack	input	action
0	id=id	shift 5
0 id 5	=id	reduce by $L \rightarrow id$
0 L 2	=id	reduce by R→L
0 R 3	=id	error

• if shift action is taken in [2,=]

Stack	input	action
0	id=id\$	shift 5
0 id 5	=id\$	reduce by L→id
0 L 2	=id\$	shift 6
0 L 2 = 6	id\$	shift 5
0 L 2 = 6 id 5	\$	reduce by L→id
0L2 = 6L8	\$	reduce by R→L
0L2 = 6R9	\$	reduce by $S \rightarrow L=R$
0 S 1	\$	ACCEPT

Problems in SLR parsing

- No sentential form of this grammar can start with R=...
- However, the reduce action in action[2,=] generates a sentential form starting with R=
- Therefore, the reduce action is incorrect
- In SLR parsing method state i calls for reduction on symbol "a", by rule A→α if I_i contains [A→α.] and "a" is in follow(A)
- However, when state I appears on the top of the stack, the viable prefix $\beta\alpha$ on the stack may be such that $\beta\Lambda$ can not be followed by symbol "a" in any right sentential form
- Thus, the reduction by the rule $A \rightarrow \alpha$ on symbol "a" is invalid
- SLR parsers cannot remember the left context

Canonical LR Parsing

- Carry extra information in the state so that wrong reductions by A \rightarrow α will be ruled out
- Redefine LR items to include a terminal symbol as a second component (look ahead symbol)
- The general form of the item becomes [A \rightarrow $\alpha.\beta$, a] which is called LR(1) item.
- Item $[A \rightarrow \alpha., a]$ calls for reduction only if next input is a. The set of symbols "a"s will be a subset of Follow(A).

Closure(I)

```
repeat
for each item [A \rightarrow \alpha.B\beta, a] in I
for each production B \rightarrow \gamma in G'
and for each terminal b in First(\beta a)
add item [B \rightarrow .\gamma, b] to I
until no more additions to I
```

Example

Consider the following grammar

```
S' \rightarrow S

S \rightarrow CC

C \rightarrow cC \mid d
```

Compute closure(I) where $I=\{[S' \rightarrow .S, \$]\}$

```
S' \rightarrow .S,

S \rightarrow .CC,

C \rightarrow .cC,

C \rightarrow .cC,

C \rightarrow .d,

C \rightarrow .d,
```

Example

Construct sets of LR(1) items for the grammar on previous slide

$$I_1$$
: goto(I_0 ,S)
S' \rightarrow S.,

$$I_2$$
: goto(I_0 ,C)
 $S \rightarrow C.C$,
 $C \rightarrow .cC$,
 $C \rightarrow .d$,

$$I_3$$
: goto(I_0 ,c)
 $C \rightarrow c.C$,
 $C \rightarrow .cC$,
 $C \rightarrow .d$,

$$I_4$$
: goto(I_0 ,d)
C \rightarrow d.,

$$I_5$$
: goto(I_2 ,C)
S \rightarrow CC.,

$$I_6$$
: goto(I_2 ,c)
 $C \rightarrow c.C$,
 $C \rightarrow .cC$,

 $C \rightarrow .d$

$$I_7$$
: goto(I_2 ,d)
C \rightarrow d.,

$$I_8$$
: goto(I_3 ,C)
C \rightarrow cC.,

$$I_9$$
: goto(I_6 ,C)
C \rightarrow cC.,

Construction of Canonical LR parse table

- Construct $C=\{I_{0,...,}I_{n}\}$ the sets of LR(1) items.
- If $[A \rightarrow \alpha.a\beta, b]$ is in I_i and $goto(I_i, a)=I_j$ then action[i,a]=shift j
- If [A → α., a] is in I_i
 then action[i,a] reduce A → α
- If [S' → S., \$] is in I_i
 then action[i,\$] = accept
- If goto(I_i, A) = I_i then goto[i,A] = j for all non terminals A

Parse table

State	С	d	\$	S	С
0	s3	s 4		1	2
1			acc		
2	s 6	s 7			5
3	s 3	s 4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		_

Notes on Canonical LR Parser

- Consider the grammar discussed in the previous two slides. The language specified by the grammar is c*dc*d.
- When reading input cc...dcc...d the parser shifts cs into stack and then goes into state 4 after reading d. It then calls for reduction by C→d if following symbol is c or d.
- IF \$ follows the first d then input string is c*d which is not in the language; parser declares an error
- On an error canonical LR parser never makes a wrong shift/reduce move. It immediately declares an error
- Problem: Canonical LR parse table has a large number of states

LALR Parse table

- Look Ahead LR parsers
- Consider a pair of similar looking states (same kernel and different lookaheads) in the set of LR(1) items
 I₄: C → d., c/d
 I₇: C → d., \$
- Replace I_4 and I_7 by a new state I_{47} consisting of $(C \rightarrow d., c/d/\$)$
- Similarly I₃ & I₆ and I₈ & I₉ form pairs
- Merge LR(1) items having the same core

Construct LALR parse table

- Construct C={I₀,...,I_n} set of LR(1) items
- For each core present in LR(1) items find all sets having the same core and replace these sets by their union
- Let $C' = \{J_0, \ldots, J_m\}$ be the resulting set of items
- Construct action table as was done earlier
- Let $J = I_1 \cup I_2 \cup \dots \cup I_k$

since I_1 , I_2, I_k have same core, goto(J,X) will have he same core

Let $K=goto(I_1,X) \cup goto(I_2,X).....goto(I_k,X)$ the goto(J,X)=K

LALR parse table ...

State	С	d	\$	S	С
0	s36	s47		1	2
1			acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

Notes on LALR parse table

- Modified parser behaves as original except that it will reduce C→d on inputs like ccd. The error will eventually be caught before any more symbols are shifted.
- In general core is a set of LR(0) items and LR(1) grammar may produce more than one set of items with the same core.
- Merging items never produces shift/reduce conflicts but may produce reduce/reduce conflicts.
- SLR and LALR parse tables have same number of states.

Notes on LALR parse table...

- Merging items may result into conflicts in LALR parsers which did not exist in LR parsers
- New conflicts can not be of shift reduce kind:
 - Assume there is a shift reduce conflict in some state of LALR parser with items
 {[X→α.,a],[Y→γ.aβ,b]}
 - Then there must have been a state in the LR parser with the same core
 - Contradiction; because LR parser did not have conflicts
- LALR parser can have new reduce-reduce conflicts
 - Assume states $\{[X \rightarrow \alpha., a], [Y \rightarrow \beta., b]\}$ and $\{[X \rightarrow \alpha., b], [Y \rightarrow \beta., a]\}$
 - Merging the two states produces
 {[X→α., a/b], [Y→β., a/b]}

Notes on LALR parse table...

- LALR parsers are not built by first making canonical LR parse tables
- There are direct, complicated but efficient algorithms to develop LALR parsers
- Relative power of various classes
 - $SLR(1) \le LALR(1) \le LR(1)$
 - SLR(k) \leq LALR(k) \leq LR(k)
 - LL(k) \leq LR(k)

Error Recovery

- An error is detected when an entry in the action table is found to be empty.
- Panic mode error recovery can be implemented as follows:
 - scan down the stack until a state S with a goto on a particular nonterminal A is found.
 - discard zero or more input symbols until a symbol a is found that can legitimately follow A.
 - stack the state goto[S,A] and resume parsing.
- Choice of A: Normally these are non terminals representing major program pieces such as an expression, statement or a block. For example if A is the nonterminal stmt, a might be semicolon or end.

Parser Generator

Some common parser generators

YACC: Yet Another Compiler Compiler

Bison: GNU Software

ANTLR: ANother Tool for Language Recognition

Yacc/Bison source program specification (accept LALR grammars)

declaration

%%

translation rules

%%

supporting C routines

Yacc and Lex schema

Refer to YACC Manual

Bottom up parsing ...

- A more powerful parsing technique
- LR grammars more expensive than LL
- Can handle left recursive grammars
- Can handle virtually all the programming languages
- Natural expression of programming language syntax
- Automatic generation of parsers (Yacc, Bison etc.)
- Detects errors as soon as possible
- Allows better error recovery