A2B32DAT Datové sítě

Ing. Pavel Bezpalec, Ph.D.

Katedra telekomunikační techniky FEL ČVUT v Praze

Bezpalec@fel.cvut.cz

Ethernet - historie

- ü Havaii radiová síť ALOHA na propojení ostrovů
 - ½ 70. Let
- ü PARC (Palo Alto Research Center) Ethernet
 - 2,94 Mbit/s XEROX (patentováno 1976)
 - 10 Mbit/s DEC, Intel, XEROX (DIX Ethernet, 1980)
- **ü** Standardizace
 - 1985 IEEE 802.3 CSMA/CD, ISO 8803.2

Standardy IEEE pro LAN

IEEE 802.1 - celková definice standardů LLC IEEE 802.2 LLC - logické řízení propojení MAC 802.4 802.5 802.3 802.6 802.11 802.12 802.14 ANSIX3T9 100VGAnyLAN **FDDI** CSMA/CD Token bus Token ring **DQDB WLAN HFC PHY** IEEE 802.7 - širokopásmové sítě IEEE 802.8 - optická vlákna IEEE 802.9 – integrace přenosu hlasu a videa IEEE 802.10 - bezpečnost LAN

CSMA/CD

- ü CS Carrier Sense
 - Hovoří někdo ?
- **ü** MA Multiple Access
 - Slyším, co ostatní
- ü CD Collision Detection
 - Hovoří nás více !
 - Chvilku počkám a pak to zkusim znovu

ü CSMA používáme při normálním telefonním hovoru

Formát rámce Ethernetu

ü preambule: 10101010...101011

ü cílová, zdrojová adresa: adresy příjemce a odesilatele

ü délka: délka nesených dat (pro IEEE 802.3)

typ: druh přepravovaných dat (pro Ethernet 2)

ü data: nesená informace, případně doplněna vatou

ü CRC: kontrolní součet

Little endian × big endian

Typy rámců

ü 48 bitů dlouhá

zápis: xx:xx:xx:xx:xx

XX-XX-XX-XX

XXXX.XXXX.XXXX

- ü nehierarchická struktura
- ü povinné označení
 - zdrojová stanice
 - cílová stanice

MAC adresa

- **ü** I/G Individual / Group address
 - adresa stanice
 - skupinová adresa
 - multicast
 - broadcast
 - FF:FF:FF:FF:FF
- ü U/L Universal / Local admin.
 - globální správa MAC
 - lokální správa MAC
- ü OUI Organizational Unique Id
 - označení výrobce
- ü VSI Vendor Specific Id
 - sériové číslo, výrobní číslo ...

Architektura Ethernetu, IEEE 802

- AUI Attachement Unit Interface (původní rozhraní připojení 10Mbit/s, 10Base2, 10Base5, 10Base-T)
- PLS Physical Layer Signaling (rozhraní signalizace fyzické vrstvy)
- MAU Medium Attachement Unit (transceiver, vnější jednotka ethernet sítě)
- PMA Physical Media Attachement (blok specifický pro daný typ přenosového média)
- PMD Physical Medium Dependant (rozhraní specifické podle přenosového média)
- MDI Medium Dependant Interface (specifické rozhrani daného přenosového média)
- MII Medium Independant Interface (rozhraní nezávislé na typu média, tj. universální) pro 10 nebo 100 Mbit/s
- GMII Gibabit Medium Independant Interface (rozhrani nezávislé na typu média, tj. universální) pro 1000 Mbit/s
- XGMII DesetiGibabit (x)Medium Independant Interface (rozhraní nezávislé na typu média, tj. universální) pro 10 Gbit/s

Technologie ... 10 Mbit/s

ü 10BASE-5

- Přenos v základním pásmu bez předmodulace
- Max. délka segmentu 500m, 1024 stanic
- Medium: tlustý koaxiální kabel
- Topologie: sběrnice

ü 10BASE-2

- Přenos v základním pásmu bez předmodulace
- Max. délka segmentu 185m
- Medium: tenký koaxiální kabel
- Topologie: sběrnice

ü 10BASE-T

- Přenos v základním pásmu bez předmodulace
- Max. délka segmentu 100m
- Medium: UTP Cat 3, 4, 5; používá 2 páry
- Topologie: strom

10 BASE-T, NLP – Normal Link Pulse

- ü zajištění integrity spojeníü nevysílají-li se data
 - 100 ns puls
 - každých 16 ± 8 ms

Technologie ... 100 Mbit/s

- ü FastEthernet IEEE 802.3u,y
- ü Změny oproti 10 Mbit/s Ethernetu
 - 10× zkrácení bitového intervalu
 - efektivnější kódování
 - 10 Mbit: Manchester
 - 100 Mbit: 4B/5B a NRZI/MLT3
 - · mechanismus detekce rychlosti a řízení toku
 - délka segmentu max. 100m
 - · topologie: strom
 - 10× zmenšení IFG
 - 9,6 μs à 0,96 μs
 - rozdělelní fyzické vrstvy
 - PHY, MII

ü 100BASE-Tx

- přenos v základním pásmu bez předmodulace
- kódování 4B5B, scrambling MLT-3
- médium: UTP Cat 5 a STP
 - s využitím dvou párů

ü 100BASE-T2

- modulace PAM-5
- kódování 4B5B, scrambling MLT-3
- médium: UTP Cat 3, 4, 5
 - s využitím dvou párů

ü 100BASE-T4

- modulace PAM-3
- kódování 8B5T, scrambling MLT-3
- médium: UTP Cat 3, 4, 5
 - s využitím čtyř párů

ü 100BASE-Fx

- délka segmentu max. 200m
- médium: multimodové optické vlákno
- max. délka opt. vlákna
 - Full duplex 2000m
 - Half duplex 412m

10/100 BASE-x – překódování bitů

Technologie ... 1000 Mbit/s

- 1996 založena GF aliance
- Změny oproti 100 Mbit/s Ethernetu
 - plný duplex
 - bezkolizní prostředí
 - neplatí omezení na max. vzdálenost
 - polovičního duplexu
 - prodloužení "slot time"
 - 64B à 512 B
 - nelze použít hub, pouze switch

1000BASF-T/CX

IFFF802.3ab

- kódování 4B5B
- modulace PAM5 (4 dimenze, 5 úrovní)
- max. délka segmentu 100m
- médium: UTP Cat 5+
 - s využitím čtyř párů
- full duplex
- topologie: strom
- 1000BASE-SX/LX

IFFF802.37

- kódování 8B10B
- max. délka vlákna 5000m
- médium: optické vlákno
 - krátkovlnný laser (SX), dlouhovlnný laser (LX)
 - singlemod (LX), multimod (LX i SX)
- full duplex
- topologie: strom

Standard 1000BASE-T

ü definuje IEEE 802.3ab

ü vlastnosti

- plný duplex
- dosah do 100 metrů
- 4 páry UTP Cat 5+
 - · všechny páry používají pro současné vysílání i příjem
- způsob kódování
- datový tok se rozloží do 4 párů vodičů
 - 250 Mbit/s na
- frekvence signálu
 - 31,25 MHz

ü autodetekce rychlosti přenosu

- zpětná kompatibilita s 100BaseT a 10BaseT
- řeší se pomoc se pomocí pulsů NIP a FLP
- není řešena v rámci optických variant

ü negotiation

- domluva parametrů
 - half/full duplex
 - flow control
- existuje u všech verzí GE
 - ne pulsy FLP, ale speciální rámce

1000 BASE-T

Auto-Negotiation

- AUI—Attachment unit interface
 AutoNeg—Auto-negotiation
 MAU—Media attachment unit
 MDI—Medium dependent interface
 MII—Medium independent interface
 PCS—Physical coding sublayer
- PHY— Physical layer device
 PLS—Physical layer signaling
 PMA—Physical medium attachment
 PMD— Physical medium dependent
 RS— Reconciliation sublayer

- ü část standardu Ethernetu
 - volitelná
 - 10 BASE-T, 100 BASE-T
 - povinná
 - 1000 BASE-T
- ü umožňuje docílit nejlepší možný přenosový režim
 - přenosová rychlost
 - 10, 100, 1000 Mbit/s
 - mód přenosu
 - HDX, FDX
- ü pomocí FLP (Fast Link Pulse)
 - založeno na NLP

FLP – Fast Link Pulse

ü FLP dávka burst

- 17-33 pulsů
- šířka pulsu 100 ns
- perioda stejná jako NLP
 - $16 \pm 8 \text{ ms}$
- pulsy na liché pozici
 - synchronizace FLP
- sudé pozice
 - datové slovo LCW

LCW - Link Code Word

kódování LCW

Do D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 So S1 S2 S3 S4 A0 A1 A2 A3 A4 A5 A6 A7 RF Ack NP Selector field Technology ability field 802.3=00001 10BaseT Other fields 802.9=00010 10BaseT-FD Remote fault 100BaseTX Ack Acknowledge 100BaseTX-FD NP Next Page 100BaseT4 PAUSE Asymmetric PAUSE operation for fullduplex links Reserved

BasePage LCW

ü kódování LCW

- sudé pozice FLP
- existence pulsu à log. 1
- neexistence pulsu à log. 0

ü rozlišení typu LCW

- ü dle bit D15, NP
 - 0 à Base Page FLP
 - 1 à Next Page FLP

Postup Auto-Negotiation

BasePage FLP

- ü dohodnutí parametrů spojení podle priority
- ü vyšší se vždy přizpůsobí

Next page FLP

- ü je pro 1000 BASE-T
- ü nastavení dalších parametrů
 - **ü** přenosová rychlost
 - ü mód přenosu
 - ü režim Master-Slave

Priority	Technology
1 (highest)	1000BaseT — Full duplex
2	1000BaseT — Half duplex
3	100BaseT2 — Full duplex
4	100BaseTX — Full duplex
5	100BaseT2 – Half duplex
6	100BaseT4
7	100BaseTX – Half duplex
8	10BaseT – Full duplex
9 (lowest)	10BaseT – Half duplex

Auto-Negotiation – příklady

Technologie ... 10GE

- **ü** 1999 10GE aliance
- ü 2003 standard IEEE802.3ae
- ü Změny oproti 1 GE
 - pouze plný duplex
 - optické vlákno
 - dosah až 40km
 - "plné" vlákno
 - mnohovid
 - jednovid
 - "barvy" získané DWDM
 - metalika
 - CAT 6 dosah max 56m
 - CAT 7 dosah max 100m
 - LAN PMD
 - 10 Gbit/s
 - WAN PMD
 - SONET STS-192-c, SDH VC-4-64c

Power over Ethernet

- ü 1999 první myšlenka
 - mnoho "malých" Eth. zařízení má malý příkon … proč je nenapájet po datovém kabelu
- ü 2003 standard IEEE802.3af
- PSE (Power Sourcing Equipment)

 PD (Powered Device)

- ü Použití: UTP CAT 5+
 - varianta 1
 - 2 páry pro data piny 12, 36
 - 1 pár pro napájení piny 78
 - varianta 2
 - 2 páry pro data i napájení
 - fantomní provoz
- ü Max. příkon
 - 15W, 48V
 - transformace na nižší napájení
- ü Postup
 - 1. PSE malým napětím zkouší, zda PD podporuje PoE
 - 2. přechod na "plný" výkon

Ethernet in the First Mile

- ü snaha eliminovat režii v přístupových systémech
 - ADSL, ATM, SDH, SONET ...
- ü EFMC
 - dvoubodové spoje po metalických vedeních
 - symetrická přenosová rychlost
 - 10Mbit/s na 750m
 - 2 Mbit/s na 2700m
- ü EFMF
 - dvoubodové spoje po jednovidových optických vláknech
 - 100/1000 Mbit/s až na 10 km
- ü EFMP
 - vícebodové spoje po optických vláknech s pasivním rozbočením
 - symetrická přenosová rychlost
 - 1 Gbit/s až na 20km

Dotazy

© 2010 České vysoké učení technické v Praze, Fakulta elektrotechnická

Právní doložka (licence) k tomuto Dílu (elektronický materiál)

České vysoké učení technické v Praze (dále jen ČVUT) je ve smyslu autorského zákona vykonavatelem majetkových práv k Dílu či držitelem licence k užití Díla. Užívat Dílo smí pouze student nebo zaměstnanec ČVUT (dále jen Uživatel), a to za podmínek dále uvedených.

ČVUT poskytuje podle autorského zákona, v platném znění, oprávnění k užití tohoto Díla pouze Uživateli a pouze ke studijním nebo pedagogickým účelům na ČVUT. Toto Dílo ani jeho část nesmí být dále šířena (elektronicky, tiskově, vizuálně, audiem a jiným způsobem), rozmnožována (elektronicky, tiskově, vizuálně, audiem a jiným způsobem), využívána na školení, a to ani jako doplňkový materiál. Dílo nebo jeho část nesmí být bez souhlasu ČVUT využívána ke komerčním účelům. Uživateli je povoleno ponechat si Dílo i po skončení studia či pedagogické činnosti na ČVUT, výhradně pro vlastní osobní potřebu. Tím není dotčeno právo zákazu výše zmíněného užití Díla bez souhlasu ČVUT. Současně není dovoleno jakýmkoliv způsobem manipulovat s obsahem materiálu, zejména měnit jeho obsah včetně elektronických popisných dat, odstraňovat nebo měnit zabezpečení včetně vodoznaku a odstraňovat nebo měnit tyto licenční podmínky.

V případě, že Uživatel nebo jiná osoba, která drží toto Dílo (Držitel díla), nesouhlasí s touto licencí, nebo je touto licencí vyloučena z užití Díla, je jeho povinností zdržet se užívání Díla a je povinen toto Dílo trvale odstranit včetně veškerých kopií (elektronické, tiskové, vizuální, audio a zhotovených jiným způsobem) z elektronického zařízení a všech záznamových zařízení, na které jej Držitel díla umístil.