بسمه تعالى

درس اصول الکترونیک و آزمایشکاه

استاد : دکتر کاوه وش

دانشكده مهندسي برق

گزارش فاز ۱ پروژه امیرحسین صفری ۹۷۱۰۱۹۹۴

شمای کلی مدار طراحی شده :

توضيح کلی مدار طراحی شه :

ری صفحہ اس برای ساخت سے مرا کے است مرا کے است کا کہ کہ میں برای ساخت سنع حریا ک المور ہے اس کے المح کے المح

لزمزلای لین طبخه ی تولا به مولد در را کاره کرد : ا) اروی بال : ورای مدر جریال کناس و (دوسر به خودی دارد شه و در زات در ای $\frac{1}{V_{id}} = \frac{2 \times 9_{m} \frac{V_{id}}{2} \times R_{out}}{V_{id}} = \frac{9_{m} R_{o$ ۲) تمادیت غروجی بال : (سقاده از بارفال و آسیم یال که هردوبه مورد کی باکند سب لین می شود که مقاورت خروجی بالای دارنته ما شم Sur June Vier CAR (June) + Vincs (CMR) Succession (June) CMR (June) $= -1.6 < v_{ic} < 2.8$ = 0.2 = 0.2 = 0.2 = 0.2 R_3 ، R_3 $I_{R_2,R_3} = 20 \times 5^{MA} = 0.1^{mA} \longrightarrow R_2 + R_3 = \frac{2.5^V}{1.1^mA} = 25^{V} = 25^{V}$ $V_B = 1.6^{\circ} \longrightarrow R_2 = 9^{\circ}$, $R_3 = 16^{\circ}$

- (٧٥) خوجي ٥٠٥ تاريخي) : با توجه بداند بروی کمی ولیار در مول کهی سیار زیادی باک زیرا کره خروجی اصطلاعای استان الم بوده دلذالی تغیر حزی دوردی باعث تغیر میارزاد کره خوجی شده و گره خروجی بدله کی ودوری منفی به ع۲+ رسیسه و بدارای ورودی شر به عی ۱ - رسیسه و ادا بالات شوه مقداد بیارزیادی از ترانزیتورها ارتباع می شوند. طل برای طولری از این اتفاق از ب مدار RC به صورت $E_3 = V_0$ العاده می تود مرب مدار OC Feedback می مورث است. است و العاده می تود مراس المان می تواند کرد می میدورث المنتاب مود می میدورث المنتاب مود می میدورث المنتاب می تواند می میدورث المنتاب می تواند می میدورث المنتاب می تواند م ر الماست و آن کری (البونوان ورودی علاوه بر ورودی کالاه کروردی کالاه کروردی کالاه کروردی کالاه کروردی کالوه کروردی کالودی کروردی کروردی کالودی کروردی کالودی کروردی کالودی کالودی کروردی کا منى في اكر و فيول منفى دردانع في دهم. لذا درهوری د کا بی کا عیا - بیسید حال عدر حالت DC برابر با کا سده ولین ولاراژ ٥٠ بروودي س على رفته و با بروي منفي به خروجي في آمد و آل خروجي حسره بري يا يي ٧٠٠ به وتناثر هفر می دود، لذ نسختاً ولنار ۵۰ خردی برابر با که تسب می شود. . را النفاب وي المنام . OCF , Rx = 1 MSZ . OCF , Tours

توصف عزی مدار طراحی شده و محاسبی پاراد زجا ،

هواره بایس ترانز استورها: باتوجه هادیر عربای که دوعمت های آمل برای مدار در تقل دوستم و همچنس معا را برمدار و استفاده از خابع حرفال آمنهای ، تقادیم بامایس ترایز لیتورها به شرح زیم بی باک.

$$I_{c_1} = I_{c_2} = I_{c_3} = I_{c_4} = 0.5$$

$$I_{c_5} = I_{c_6} = 0.25$$

$$I_{c_7} = I_{c_8} = I_{c_9} = I_{c_{10}} = I_{c_{12}} = 0.25$$

$$I_{c_{13}} = I_{c_{14}} = I_{c_{15}} = I_{c_{16}} = I_{c_{17}} = I_{c_{18}} = I_{c_{19}} = 0.5$$

$$I_{c_{20}} = I_{c_{21}} = I_{c_{22}} = I_{c_{23}} = I_{c_{24}} = 0.5$$

$$I_{c_{25}} = I_{c_{26}} = I_{c_{27}} = 1^{mA}$$

: CMR L Common mode range to

مقدار ولنارٌ حالت عمر دوودی ها نطور نه به مور ایکا در توصف سربوط به معتدادل

تقدار میشنه سوسل غروجی : الوحد برسل رصلي و كامل تمايي سوار ، و الزياس عاتواند ما وكامل تمايي سوار ، و الزياس عاتواند ما وكامل تمايي ماس وقعة واز بالانز تاوليار المحال المحال علامين ولايد هم من لوي المسترز دری سورد که وجود مدار OCF دخرجی به علت بیار مادبود م تفاوست ۶۸ هیچ تاثیری درلس تفاویر داکندویا به عبارتی دیگر هید عربای دا درداری کند جمعیس جو که به وسدی OCF و آن ۵ خوجی دی که کاست شوه است لذا و آناژ خودجی از کار - تا کا 2.3+ مونیک شفار کا داشته و دادی :

عامبى مېروى ولناژ دىنر اندى :

 $R_{out_1} = Y_{\pi_{25}} = \beta_p \times \frac{25^{mV}}{MA} = 50 \times 25 = 1.25^{kSL}$ Rout_2 = 1/1 24 + Bp (1020 - 11 Rout_1) = 2.5 + 50 (100 11 1.25) = 65 $R_{\text{out}_3} = \beta_p r_{0g} = 50 \times \frac{50}{0.25^m A} = 10^{MSL}, R_{\text{out}_4} = \frac{\beta_n r_{010}}{2} = 200 \times \frac{100}{2 \times 0.25^m} = 40^{MSL}$ توحه : جريال المن المن المن المراجع و الاربر وخروى ظاهرى تود . $Av_2 = \frac{V_{0_2}}{V_{0_1}} = \frac{R_{E_{24}}}{R_{E_{24}} + \frac{r_{\pi_{24}}}{2}} = \frac{1.25 \text{ k}}{1.25 \text{ k} + 50} = 0.96$ $A_{V_3} = -9_{m_{25}} \times r_0^{V_0} = -\frac{V_{An}}{V_t} = -4000 \implies A_{v_{total}} = \frac{V_{o_3}}{V_{id}} = +2.496 \times 1.600$

عجامبدی کبرہ ولی*ا ژخال*۔ تعرک

م تنها طبقه اول را درناه گاریم و? ت -برک محاسبری ایرو حالت ممترد حالت در برگ

بتوصیه سطی بال بالتفاده کز آینهای جریال ، جریال Gms Vic کار تومط ترانزیتورها کی سره و جریال از بربا بالا و هم و هم مین جریال مین و مین از در اد طلتور ۵۵ می ادر در الله و می می ادر در الله و می الدر در الله و می الله و لمي شره وجريال 2 أ براير با عن الم 6 سور حال عن الم 6 سور عال عن الله ولذا ٥=٥ عي شود و بدتع جي توال سند مروت كه ٧٥ برابر باهغري شود و وو نظر از از بروى ما رطبقات مروی دار ده وی شود.

AVCm = 0

راماً همانمور نه انتازیم داری ، فسعناً درصالت شد سای به خاطر نرابط واقعی برای بادا نترهای مدار دیم چین کی نشک هددرهد همریال معابیره ی حالت مترب در طبعته اول مخالت هفر بوده و به علی بروی زیاد طبعہ سوم ، میروی کل حالت شرک صی بزرگ مراز ۱۱ کر که در نفس میروی شید مازی

شماتیک مدار را که در آن گره ها ی مورد استفاده در شبیه سازی استفاده شده است ، به صورت زیر می باشد :

شبیه سازی مربوط به این فاز از پروژه در دو فایل phase1_97101994_differential mode.sp و فایل phase1_97101994_common mode.sp آمده است ؛ که در اولی نقاط کار و بهره ی ولتاژ دیفرانسیلی به همراه حداکثر سوینگ خروجی را به دست آورده و در فایل دومی بهره ی ولتاژ حالت مشترک و CMR را به دست می آوریم.

مشخصات بایاس مدار:

مشخصات بایاس ترانزیستورها به شرح زیر می باشد .

subckt	0.02	0.01	0.05	0.06	07	00
element	0:q3	0:q4	0:q5		0:q7	0:q8
model		. –	. –	0:npn_tran		
ib	2.4461u	2.4461u	1.1695u	1.2326u	-3.6366u	-3.5324u
ic	489.2147u	494.1929u	239.4376u	252.3532u	-191.6068u	-178.9427u
vbe	750.6811m	750.6811m	731.7231m	733.0734m	-725.2530m	-724.5062m
vce	750.6811m	1.7683	3.0983	3.0975	-3.4140	-1.3821
vbc	0.	-1.0176	-2.3665	-2.3644	2.6887	657.5942m
VS	1.7493	731.7231m	-2.3665	-2.3658	-1.6413	-1.6413
power	369.0804u	875.7062u	742.6981u	782.5732u	656.7791u	249.8759u
betad	200.0000	202.0352	204.7331	204.7289	52.6887	50.6576
gm	19.0367m	19.2305m	9.3173m	9.8198m	7.4542m	6.9614m
rpi	10.5033k	10.5033k	21.9680k	20.8433k	7.0648k	7.2732k
rx	0.	0.	0.	0.	0.	0.
ro	204.4092k	204.4092k	427.5290k	405.6397k	274.9837k	283.0940k
cpi	0.	0.	0.	0.	0.	0.
cmu	0.	0.	0.	0.	0.	0.
cbx	0.	0.	0.	0.	0.	0.
CCS	0.	0.	0.	0.	0.	0.
betaac	199.9486	201.9838	204.6817	204.6775	52.6630	50.6319
ft	3.029e+12	3.060e+12	1.482e+12	1.562e+12	1.186e+12	1.107e+12

subckt						
element	0:q9	0:q10	0:q11	0:q12	0:q13	0:q14
model	0:npn_tran	0:npn_tran	0:npn_tran	0:npn_tran	0:pnp_tran	0:pnp_tran
ib	948.6869n	920.6937n	943.9905n	943.9905n	-11.3702u	-11.2995u
ic	189.7374u	187.8788u	188.7981u	188.7995u	-434.6810u	-434.8282u
vbe	726.3468m	725.5773m	726.2193m	726.2193m	-748.2509m	-748.2509m
vce	726.3468m	2.7567	726.2193m	726.9888m	-133.4537m	-134.2005m
vbc	0.	-2.0311	0.	-769.5069u	-614.7971m	-614.0503m
VS	1.0474	-983.6991m	1.7738	1.7730	-1.7517	-1.7517
power	138.5042u	518.5956u	137.7944u	137.9407u	66.5176u	66.8090u
betad	200.0000	204.0623	200.0000	200.0015	38.2298	38.4821
gm	7.3832m	7.3109m	7.3467m	7.3467m	17.0063m	17.0092m
rpi	27.0815k	27.9049k	27.2162k	27.2162k	2.8863k	2.8863k
rx	0.	0.	0.	0.	0.	0.
ro	527.0443k	543.0688k	529.6664k	529.6664k	9.6367k	9.8957k
cpi	0.	0.	0.	0.	0.	0.
cmu	0.	0.	0.	0.	0.	0.
cbx	0.	0.	0.	0.	0.	0.
ccs	0.	0.	0.	0.	0.	0.
betaac	199.9486	204.0109	199.9486	199.9502	49.0857	49.0943
ft	1.175e+12	1.163e+12	1.169e+12	1.169e+12	2.691e+12	2.692e+12

subckt						
element	0:q15	0:q16	0:q17	0:q18	0:q19	0:q20
model	0:pnp_tran	0:npn_tran	0:npn_tran	0:npn_tran	0:npn_tran	0:pnp_tran
ib	-8.9012u	2.3193u	2.4066u	2.3947u	2.3947u	-9.3509u
ic	-445.0611u	476.6320u	481.3296u	478.9513u	478.9468u	-467.7159u
vbe	-748.2509m	749.3143m	750.2636m	750.1361m	750.1361m	-749.5170m
vce	-748.2509m	3.5007	750.2636m	751.0854m	750.1361m	-767.9492m
vbc	0.	-2.7513	0.	-949.2986u	0.	18.4322m
VS	-1.7517	-1.7517	999.6003m	1.7489	1.7499	-1.7505
power	339.6777u	1.6703m	362.9297u	361.5297u	361.0716u	366.1907u
betad	50.0000	205.5027	200.0000	200.0019	200.0000	50.0184
gm	17.3141m	18.5472m	18.7299m	18.6374m	18.6372m	18.1955m
rpi	2.8863k	11.0772k	10.6754k	10.7285k	10.7285k	2.7475k
rx	0.	0.	0.	0.	0.	0.
ro	112.3441k	215.5780k	207.7578k	208.7915k	208.7915k	106.9419k
cpi	0.	0.	0.	0.	0.	0.
cmu	0.	0.	0.	0.	0.	0.
cbx	0.	0.	0.	0.	0.	0.
ccs	0.	0.	0.	0.	0.	0.
betaac	49.9743	205.4513	199.9486	199.9505	199.9486	49.9927
ft	2.755e+12	2.951e+12	2.981e+12	2.966e+12	2.966e+12	2.895e+12

subckt					
element	0:q21	0:q24	0:q25	0:q26	0:q27
model	0:pnp_tran	0:pnp_tran	0:pnp_tran	0:npn_tran	0:npn_tran
ib	-9.3509u	-8.9362u	-19.1615u	4.8718u	4.8718u
ic	-467.5435u	-477.9412u	-991.2389u	974.3537u	991.2389u
vbe	-749.5170m	-748.3517m	-767.9492m	768.3821m	768.3821m
vce	-749.5170m	-4.2321	-2.4986	768.3821m	2.5014
vbc	0.	3.4837	1.7307	0.	-1.7330
VS	-1.7505	-983.6991m	-1.7321	1.7316	-1.3503m
power	357.4405u	2.0294m	2.4915m	752.4193u	2.4832m
betad	50.0000	53.4837	51.7307	200.0000	203.4659
gm	18.1888m	18.5939m	38.5627m	37.9149m	38.5721m
rpi	2.7475k	2.8750k	1.3408k	5.2736k	5.2736k
rx	0.	0.	0.	0.	0.
ro	106.9419k	111.9043k	52.1879k	102.6321k	102.6321k
cpi	0.	0.	0.	0.	0.
cmu	0.	0.	0.	0.	0.
cbx	0.	0.	0.	0.	0.
ccs	0.	0.	0.	0.	0.
betaac	49.9743	53.4580	51.7050	199.9486	203.4146
ft	2.894e+12	2.959e+12	6.137e+12	6.034e+12	6.138e+12

محاسبه ي بهره ولتاژ ديفرانسيلي:

ولتاژ ورودی دیفرانسیل را یک ولتاژ سینوسی با دامنه ی $1^{\mu V}$ و فرکانس ۱۰۰ کیلوهرتز در نظر گرفته و با استفاده از دستور tran ، ولتاژ خروجی(گره tran) را مشاهده می کنیم که هر دو نمودار در زیر آمده است :

نمودار ولتاژ دیفرانسیلی ورودی (سبز زنگ) و نمودار ولتاژ خروجی (زرد رنگ)

با توجه به نمودار فوق بهره ولتاژ ديفرانسيلي به دست مي آيد:

$$A_{vd} = \frac{v_{out,p-p}}{v_{d,p-p}} = \frac{1.7^v}{2^{\mu v}} = -0.85 * 10^6$$

محاسبه ی حداکثر سوینگ خروجی:

دامنه ی ولتاژ ورودی را آن قدر زیاد کرده تا نمودار ولتاژ خروجی به مرز اشباع نزدیک شود ، با انجام این فرآیند تقربیا به این نتیجه می رسیم که به ازای دامنه ی ولتاژ ورودی برابر با $2.8^{\mu v}$ ، ولتاژ خروجی به مرز اشباع می رسد که در ادامه نمودار ولتاژ ورودی و خروجی آمده است :

نمودار ولتاژ خروجی (بنفش رنگ) و نمودار ولتاژ ورودی (آبی رنگ)

در نتیجه با توجه به شکل فوق داریم:

Maximum swing of $V_{out} = V_{out,p-p} = 4.56 V$

محاسبه ی بهره ولتاژ حالت مشترک:

در فایل phase1_97101994_common mode.sp مقدار دامنه ی ولتاژ مشترک را برابر با 1^{mV} قرار داده و ولتاژ خروجی را مشاهده می کنیم :

ولتاژ ورودی حالت مشترک (گره ۷ ، نمودار سبزرنگ) و ولتاژ خروجی (نمودار زرد رنگ)

حال طبق نمودار فوق داريم:

$$A_{V,cm} = \frac{V_{out,p-p}}{V_{cm,p-p}} = \frac{30^{mV}}{2^{mV}} = 15$$

همانطور که دیده می شود ، بهره حالت مشترک بزرگ می باشد که به دلیل بسیار بزرگ بودن بهره ی طبقه سوم می باشد .

محاسبه ی CMRR:

$$CMRR = \frac{A_{vd}}{A_{vcm}} = \frac{0.85*10^6}{15} = 56666.6$$

محاسبه ی CMR:

برای محاسبه ی CMR ، با استفاده از دستور 3.5v 0.001v ولتاژ حالت مشترک را بین ولتاژ 8- ولت و 8- ولت و 8- ولت و 8- ولت تغییر می دهیم و ولتاژ خروجی را به صورت زیر مشاهده می کنیم و CMR را به دست می آوریم .

$$======> CMR = 3.12 - (-1.73) = 4.85^{V}$$

مقایسه ی جریان های بایاس:

شبیه سازی(uA)	دستی (mA)	ترانزيستور
489.2147	0.5	Q3
494.1929	0.5	Q4
298.4376	0.25	Q5
252.3532	0.25	Q6
191.6068	0.25	Q7
178.9427	0.25	Q8
189.7374	0.25	Q9
187.8788	0.25	Q10
188.7981	0.25	Q11
188.7995	0.25	Q12
434.6810	0.5	Q13
434.8282	0.5	Q14
445.0611	0.5	Q15
476.6320	0.5	Q16
481.3296	0.5	Q17
478.9513	0.5	Q18
478.9468	0.5	Q19
467.7159	0.5	Q20
467.5435	0.5	Q21
477.9421	0.5	Q24
991.2389	1	Q25
974.3537	1	Q26
991.2389	1	Q27

با توجه به نمودار روبرو ملاحظه می شود که مقادیر به دست آمده در حالت دستی با مقادیر شبیه سازی تقریبا برابرند.

شبیه سازی	دستی	
4.۸۵	4.4	CMR
56666.6	∞	CMRR
$-0.85 * 10^6$	-2.496*10 ⁶	بهره تفاضلی
15	0	بهره مشترک
4.56	4.6	حداکثر سوینگ خروجی