Switching

Figure 8.1 Switched network

Figure 8.2 Taxonomy of switched networks

8-1 CIRCUIT-SWITCHED NETWORKS

A circuit-switched network consists of a set of switches connected by physical links. A connection between two stations is a dedicated path made of one or more links. However, each connection uses only one dedicated channel on each link. Each link is normally divided into n channels by using FDM or TDM.

Topics discussed in this section:

Three Phases

Efficiency

Delay

Circuit-Switched Technology in Telephone Networks

A circuit-switched network is made of a set of switches connected by physical links, in which each link is divided into *n* channels.

Figure 8.3 A trivial circuit-switched network

In circuit switching, the resources need to be reserved during the setup phase; the resources remain dedicated for the entire duration of data transfer until the teardown phase.

Figure 8.6 Delay in a circuit-switched network

Switching at the physical layer in the traditional telephone network uses the circuit-switching approach.

8-2 DATAGRAM NETWORKS

In data communications, we need to send messages from one end system to another. If the message is going to pass through a packet-switched network, it needs to be divided into packets of fixed or variable size. The size of the packet is determined by the network and the governing protocol.

Topics discussed in this section:

Routing Table

Efficiency

Delay

Datagram Networks in the Internet

In a packet-switched network, there is no resource reservation; resources are allocated on demand.

Figure 8.7 A datagram network with four switches (routers)

Figure 8.8 Routing table in a datagram network

Destination		Output
address		port
	1232	1
4150		2
:		:
9130		3
		4

A switch in a datagram network uses a routing table that is based on the destination address.

The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet.

Figure 8.9 Delay in a datagram network

Switching in the Internet is done by using the datagram approach to packet switching at the network layer.

8-3 VIRTUAL-CIRCUIT NETWORKS

A virtual-circuit network is a cross between a circuitswitched network and a datagram network. It has some characteristics of both.

Topics discussed in this section:

Addressing
Three Phases
Efficiency
Delay

Circuit-Switched Technology in WANs

Figure 8.10 Virtual-circuit network

Figure 8.11 Virtual-circuit identifier

Figure 8.12 Switch and tables in a virtual-circuit network

Figure 8.13 Source-to-destination data transfer in a virtual-circuit network

Figure 8.14 Setup request in a virtual-circuit network

Figure 8.15 Setup acknowledgment in a virtual-circuit network

In virtual-circuit switching, all packets belonging to the same source and destination travel the same path; but the packets may arrive at the destination with different delays if resource allocation is on demand.

Figure 8.16 Delay in a virtual-circuit network

