A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 1EN

Bookmark

Show all steps: ON

Problem

Let G be a finite group, and K a p-Sylow subgroup of G. Let X be the set of all the conjugates of K. See Exercise M2. If C_1 , $C_2 \in X$, let $C_1 \sim C_2$ iff $C_1 = aC_2a^{-1}$ for some $\alpha \in K$

Prove that \sim is an equivalence relation on X.

Thus, \sim partitions X into equivalence classes. If $C \in X$ let the equivalence class of C be denoted by

K is the only member of its class

Step-by-step solution

Step 1 of 4

Assume that G is a finite group and K a p-Sylow subgroup of G. Consider the set X as the set of all the conjugates of K. Define a relation as:

If $C_1, C_2 \in X$, let $C_1 \approx C_2$ if and only if $C_1 = aC_2a^{-1}$ for some $a \in K$.

Objective is to prove that \approx is an equivalence relation on X. That is, show that \approx is a reflexive, symmetric and transitive relation.

Comment

P	Reflexive: since K is a subgroup, so identity will belong to K and identity is the conjugate of K . Also,				
	$eC_1e^{-1}=C_1$				
T	This shows that $C_1 \approx C_1$. And thus relation is reflexive.				
	Symmetric: let $C_1 \approx C_2$. Then				
	$C_1 = aC_2a^{-1}$				
	$C_1 a = a C_2 a^{-1} a$				
	$a^{-1}C_1 a = a^{-1}aC_2 e$				
	$a^{-1}C_1a = C_2.$				
F	Also the last equation can be rewrite as:				
	$a^{-1}C_1(a^{-1})^{-1}=C_2$				
	This implies that relation is symmetric.				
C	Comment				
	Step 3 of 4				
1	<u>Transitive:</u> Let $C_1 \approx C_2$ and $C_2 \approx C_3$. Then				
	$C_1 = aC_2a^{-1}, C_2 = bC_3b^{-1}$				
ξ	Substitute the value of C_2 here and get,				
	$C_1 = a(bC_3b^{-1})a^{-1}$				
	$C_1 = abC_3b^{-1}a^{-1}$				
	$C_1 = (ab)C_3(ab)^{-1}$.				
	That is, $C_1 \approx C_3$, a transitive relation.				
	Comment				
	Step 4 of 4				
Hence, \approx is an equivalence relation on X .					
(Comment				