

Introduction to Deep Learning Fall 2018

Convolutional Neural Networks

Feature Extraction in the Hidden Layers

- The goal of each layer of an ANNs is to represent features/patterns present in the previous layer
- These are the dimensions of that layer
- They are learned

Fully connected multi-layer network

Large number of parameters
Computationally expensive to train

Structure in images is (often) local and repeated

Fully connected network would have to learn each of these independently

Weight Sharing

Convolutional Neural Networks

Convolutions: Multiplication and Summation

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

1	0	-1	
1	0	-1	=
1	0	-1	

6

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1

= 6

http://setosa.io/ev/image-kernels/

Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	

Feature maps

Input

Image Size: 5 X 5 Padding Size: 1 Kernel Size: 3 X 3

Stride: 2

Image Size: 5 X 5 Padding Size: 1

Kernel Size: 3 X 3

Stride: 1

Feature Map: 5 X 5

Image Size: 2 X 2 Padding Size: 2 Kernel Size: 3 X 3

Stride: 2

Feature Map: 4X4

Convolution with horizontal and vertical strides = 1

0*0+0*-1+0*0

+0*-1+105*5+102*-1+0*0+103*-1+99*0=320 Output Matrix

Image Matrix

3d (RGB) Input ------- 1D output

Pooling to reduce dimensionality

max pool with 2x2 filters and stride 2

6	8
3	4

Convolutional Neural Networks

Typical-looking activations on the first CONV layer (left), and the 5th CONV layer (right) of a trained AlexNet looking at a picture of a cat. Every box shows an activation map corresponding to some filter. Notice that the activations are sparse (most values are zero, in this visualization shown in black) and mostly local.