Exame Final 16/12/2016 10:00 –12:00h

Matrícula:	Nome:

Marque com um X sua turma **TEÓRICA**:

Turma	Dia da Semana	Horário	Professor
1	Quinta-feira	10:00	Marcos H.
2	Sexta-feira	10:00	Lucas
3	Sexta-feira	08:00	Mauro
4	Sexta-feira	14:00	Levi
5	Quinta-feira	14:00	Marcos H.

OBSERVAÇÕES:

- As questões podem ser resolvidas a lápis.
- Entende-se por <u>algoritmo refinado completo</u> um algoritmo contendo a representação do código em português, de forma clara, não ambígua, de modo que cada instrução do algoritmo possa ser traduzida em uma instrução da linguagem de programação.
- Para a leitura de dados, basta usar instruções em formato algorítmico como "Leia n",
 "Leia A, B, C" etc. Não precisa se preocupar com as mensagens escritas antes dessas leituras.

A tabela abaixo apresenta a ordem de prioridade dos operadores e comandos Python mais comuns. Essa informação pode ser útil para você na resolução das questões da prova.

Prioridade	Operador(es) e comando =	Exemplo
1	**	x ** 3
2	- (unário)	-x
3	* / // %	x / y
4	+ -	x - y
5	<	x < y
6	not	not x > 0
7	and	x < y and $x > 0$
8	or	x < y or x == 0
9	=	x = 2

Questão 1 (20%)

Considere o seguinte programa em Python:

```
def funcao( lim ):
    i = 1
    x = 2
    while x - i < lim:
        y = i**2 + x
        print( y )
        i = i * 2
        x = x ** 2
    return x - i

x = funcao( 20 )
print( x )</pre>
```

Escreva abaixo qual será a saída exata fornecida pelo programa:

A companhia elétrica da cidade de Inficentilândia divulgou esta semana sua nova política de tarifação para os usuários domésticos. A cobrança segue as seguintes regras:

- Todo cliente pagará uma taxa fixa de R\$20,00 de franquia pela manutenção da rede elétrica.
- Serão cobrados R\$0,40 para cada kW gasto até o valor de 99 kW.
- Para os kilowatts gastos acima desta faixa, serão cobrados R\$0,50 / kW até um limite de 149 kW.
- Para os kilowatts gastos a partir do consumo de 150 kW, será cobrada a tarifa de R\$0,60 / kW.
- Para simplificação da cobrança, não serão considerados valores de consumo fracionados, isto é, a cobrança só será feita de 1 em 1 kilowatt.

As questões 2 e 3 a seguir estão relacionadas entre si e com a informação dada acima.

Questão 2 (30%)

Escreva uma função **getValoresConsumo()** em Python que recebe como parâmetro um valor de consumo de energia em kW, e retorna três valores, a saber:

- O valor cobrado para o consumo de até 99 kW,
- 0 valor cobrado para o consumo entre 100 e 149 kW,
- O valor cobrado para o consumo acima de 149 kW.

Vamos chamar esses valores de *consumo baixo, consumo médio* e *consumo alto,* respectivamente. Segue um exemplo de uso dessa função:

```
vBaixo, vMedio, vAlto = getValoresConsumo( 76 )
print( vBaixo, vMedio, vAlto )
vBaixo, vMedio, vAlto = getValoresConsumo( 210 )
print( vBaixo, vMedio, vAlto )
```

A saída em tela do código acima, considerando a correta implementação da função **getValoresConsumo()**, é dada abaixo:

```
30.4 0 0
39.6 25.0 36.6
```

Repare que, para um consumo de 76 kW, o *consumo baixo* será de $76 \times 0,40 = 30,4$. Tanto o *consumo médio* como o *consumo alto* serão iguais a zero.

Para um consumo de 210 kW, o *consumo baixo* será de $99 \times 0,40 = 39,6$. Já o *consumo médio* será de $50 \times 0,50 = 25,0$, e o *consumo alto* será de $61 \times 0,60 = 36,6$.

Obs.: lembre-se que podemos retornar quantos valores quisermos dentro de uma função em Python. Basta separar os valores por vírgula depois do comando **return**, assim:

```
return r1, r2, r3...
```

SOLUÇÃO:

Questão 3 (50%)

Escreva agora o programa de computador que irá calcular o valor a ser cobrado de um usuário ao longo de um período de *n* meses. Em termos gerais, o programa deverá:

- 1. Ler a quantidade *n* de meses, e a seguir, todos os *n* valores de kW gastos em cada mês.
- 2. Calcular e escrever na tela a média de gastos dos *n* meses.
- 3. Para cada um dos *n* meses, informar o valor de kW gastos, informar se esse valor está acima da média, e depois informar o detalhamento do cálculo para aquele mês, conforme as regras explicadas acima.

Essa saída deve ser em forma de tabela, como mostrado no exemplo abaixo. Não precisa se preocupar com a formatação da saída, apenas a ordem em que as informações serão impressas.

```
Informe o número de meses: 6
kW gastos no mês 1: 76
kW gastos no mês 2: 115
kW gastos no mês 3: 135
kW gastos no mês 4: 189
kW gastos no mês 5: 120
kW gastos no mês 6: 210
Consumo médio: 140.8 kW
Mês Gasto (kW) > Média? Franquia Até 99kW 100 a 149kW >= 150kW
                                                                       TOTAL
1
        76
                              20.00
                                        30.40
                                                      0.00 0.00 50.40
        115
                              20.00
                                        39.60
                                                     8.00
                                                                0.00
 2
                                                                      67.60
                                        39.60
39.60
                              20.00
                                                     18.00
                                                                0.00
 3
        135
                                                                      77.60
                              20.00
                                                     25.00
                                                               24.00 108.60
 4
        189
 5
        120
                              20.00
                                        39.60
                                                     10.50
                                                                0.00
                                                                      70.10
 6
        210
                              20.00
                                        39.60
                                                     25.00
                                                               36.60 121.20
```

O significado das duas primeiras colunas da tabela é óbvio. Segue abaixo o significado das demais colunas:

Coluna	Significado	
> Média?	Deve ser colocado um "x" se o valor do Gasto (consumo) for superior ao consumo médio daquele período.	
Franquia	Valor da taxa fixa de franquia.	
Até 99kW	Valor obtido pela taxa de R\$0,40 para cada kW gasto até o valor de 99 kW.	
100kW a 149kW	Valor obtido pela taxa de R\$0,50 para cada kW gasto entre 100 e 149 kW.	
>= 150kW	Valor obtido pela taxa de R\$0,60 para cada kW gasto acima de 149 kW.	
TOTAL	Valor total (soma da franquia com o consumo das três faixas descritas acima).	

Obs.: dentro do seu código você poderá usar a função implementada na Questão 2, o que simplificará bem o programa. Você pode escrever o programa em Python ou um algoritmo refinado completo, o que preferir.

SOLUÇÃO: