Markov Decision Processes in Artificial Intelligence

MDPs, Beyond MDPs and Applications

Edited by Olivier Sigaud Olivier Buffet

Markov Decision Processes in Artificial Intelligence

MDPs, Beyond MDPs and Applications

Edited by Olivier Sigaud Olivier Buffet

First published 2008 in France by Hermes Science/Lavoisier in two volumes entitled: *Processus décisionnels de Markov en intelligence artificielle* © LAVOISIER 2008
First published 2010 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

John Wiley & Sons, Inc.

111 River Street

ISTE Ltd 27-37 St George's Road London SW19 4EU

4EU Hoboken, NJ 07030 USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2010

The rights of Olivier Sigaud and Olivier Buffet to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Markov decision processes in artificial intelligence : MDPs, beyond MDPs and applications / edited by Olivier Sigaud, Olivier Buffet.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-84821-167-4

1. Artificial intelligence--Mathematics. 2. Artificial intelligence--Statistical methods. 3. Markov processes. 4. Statistical decision. I. Sigaud, Olivier. II. Buffet, Olivier.

Q335.M374 2010 006.301'509233--dc22

2009048651

British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-84821-167-4

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne

www.fsc.org © 1996 Forest Stewardship Council

Table of Contents

rreface	XVII
List of Authors	xix
PART 1. MDPs: MODELS AND METHODS	1
Chapter 1. Markov Decision Processes	3
1.1. Introduction	3
1.2. Markov decision problems	4
1.2.1. Markov decision processes	4
1.2.2. Action policies	7
1.2.3. Performance criterion	8
1.3. Value functions	9
1.3.1. The finite criterion	10
1.3.2. The γ -discounted criterion	10
1.3.3. The total reward criterion	11
1.3.4. The average reward criterion	11
1.4. Markov policies	12
1.4.1. Equivalence of history-dependent and Markov policies	12
1.4.2. Markov policies and valued Markov chains	13
1.5. Characterization of optimal policies	14
1.5.1. The finite criterion	14
1.5.1.1. Optimality equations	14
1.5.1.2. Evaluation of a deterministic Markov policy	15
1.5.2. The discounted criterion	16
1.5.2.1. Evaluation of a stationary Markov policy	16
1.5.2.2. Optimality equations	17
1.5.3 The total reward criterion	22

1.5.4. The average reward criterion
1.5.4.1. Evaluation of a stationary Markov policy
1.5.4.2. Optimality equations
1.6. Optimization algorithms for MDPs
1.6.1. The finite criterion
1.6.2. The discounted criterion
1.6.2.1. Linear programming
1.6.2.2. The value iteration algorithm
1.6.2.3. The policy iteration algorithm
1.6.3. The total reward criterion
1.6.3.1. Positive MDPs
1.6.3.2. Negative MDPs
1.6.4. The average criterion
1.6.4.1. Relative value iteration algorithm
1.6.4.2. Modified policy iteration algorithm
1.7. Conclusion and outlook
1.8. Bibliography
Chapter 2. Reinforcement Learning
Olivier SIGAUD and Frédérick GARCIA
2.1. Introduction
2.1.1. Historical overview
2.2. Reinforcement learning: a global view
2.2.1. Reinforcement learning as approximate dynamic programming
2.2.2. Temporal, non-supervised and trial-and-error based learning
2.2.3. Exploration versus exploitation
2.2.4. General preliminaries on estimation methods
2.3. Monte Carlo methods
2.4. From Monte Carlo to temporal difference methods
2.5. Temporal difference methods
2.5.1. The $TD(0)$ algorithm
2.5.2. The SARSA algorithm
2.5.3. The Q-learning algorithm
2.5.4. The $TD(\lambda)$, $SARSA(\lambda)$ and $Q(\lambda)$ algorithms
2.5.5. Eligibility traces and $TD(\lambda)$
2.5.6. From $TD(\lambda)$ to $SARSA(\lambda)$
$2.5.7. \mathrm{Q}(\lambda) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $
2.5.8. The R-learning algorithm
2.6. Model-based methods: learning a model
2.6.1. Dyna architectures
2.6.2. The E^3 algorithm
2.6.3. The $R_{\rm max}$ algorithm

	Contents	vii
2.7. Conclusion		63
2.8. Bibliography		63
Chapter 3. Approximate Dynamic Programming		67
		60
3.1. Introduction		68
3.2. Approximate value iteration (AVI)		70
3.2.1. Sample-based implementation and supervised learning .		71
3.2.2. Analysis of the AVI algorithm		73
3.2.3. Numerical illustration		74
3.3. Approximate policy iteration (API)		77
3.3.1. Analysis in L^{∞} -norm of the API algorithm		77
3.3.2. Approximate policy evaluation		79
3.3.3. Linear approximation and least-squares methods		80
$3.3.3.1. \mathrm{TD}(\lambda) \dots \dots$		81
3.3.3.2. Least-squares methods		82
3.3.3.3. Linear approximation of the state-action value function		85
3.4. Direct minimization of the Bellman residual		87
3.5. Towards an analysis of dynamic programming in L^p -norm		88
3.5.1. Intuition of an L^p analysis in dynamic programming		89
3.5.2. PAC bounds for RL algorithms		91
3.6. Conclusions		93
3.7. Bibliography		93
Chapter 4. Factored Markov Decision Processes		99
Thomas DEGRIS and Olivier SIGAUD		
4.1. Introduction		99
4.2. Modeling a problem with an FMDP		100
4.2.1. Representing the state space		100
4.2.2. The <i>Coffee Robot</i> example		100
4.2.3. Decomposition and function-specific independence		101
4.2.3.1. Transition function decomposition		102
4.2.3.2. Dynamic Bayesian networks in FMDPs		103
4.2.3.3. Factored model of the transition function in an FMD	Р	104
4.2.3.4. Factored model of the reward function		105
4.2.4. Context-specific independence		107
4.3. Planning with FMDPs		108
4.3.1. Structured policy iteration and structured value iteration.		108
4.3.1.1. Decision trees		108
4.3.1.2. Representation of the transition function		108
4.3.1.3. Representation of the reward function		110
4.3.1.4. Representation of a policy		110
4.3.1.5. Representation of the value function		111
4.3.1.6. Algorithms		112

4.3.2. SPUDD: stochastic planning using decision diagrams	112
4.3.2.1. Representing the functions of an FMDP with ADDs	113
4.3.2.2. Algorithm	114
4.3.3. Approximate linear programming in FMDPs	115
4.3.3.1. Representations	116
4.3.3.2. Representation of the transition function	116
4.3.3.3. Representation of the reward function	117
4.3.3.4. Policy representation	118
4.3.3.5. Representation of the value function	119
4.3.3.6. Algorithms	122
4.4. Perspectives and conclusion	122
4.5. Bibliography	123
Chapter 5. Policy-Gradient Algorithms	127
5.1. Reminder about the notion of gradient	128
5.1.1. Gradient of a function	128
5.1.2. Gradient descent	129
5.2. Optimizing a parameterized policy with a gradient algorithm	130
5.2.1. Application to MDPs: overview	130
5.2.1.1. First attempt to define a parameterized policy	131
5.2.1.2. Example of definition of a parameterized policy	131
5.2.2. Finite difference method	132
5.2.3. Gradient estimation of f in an MDP, case of the finite	
time horizon	133
5.2.3.1. Time horizon 1	133
5.2.3.2. Time horizon T	134
5.2.4. Extension to the infinite time horizon: discounted criterion,	
average criterion	137
5.2.4.1. Case of a regenerative process	138
5.2.4.2. Using a moving window	138
5.2.4.3. Using a discount factor	139
5.2.5. Partially observable case	139
5.2.6. Continuous action spaces	141
5.3. Actor-critic methods	143
5.3.1. A gradient estimator using the <i>Q</i> -values	143
5.3.2. Compatibility with an approximate value function	144
5.3.2.1. Approximating Q^{θ}	144
5.3.2.2. Compatibility of the approximators	145
5.3.3. An actor-critic algorithm	146
5.4. Complements	147
5.5. Conclusion	150
5.6. Bibliography	150

Chapter 6. Online Resolution Techniques	153
6.1. Introduction	153
6.1.1. Exploiting time online	153
6.1.2. Online search by simulation	154
6.2. Online algorithms for solving an MDP	155
6.2.1. Offline algorithms, online algorithms	155
6.2.2. Problem formalization	155
6.2.2.1. Forward search over a reasoning horizon	156
6.2.2.2. Tree or graph?	157
6.2.2.3. Complexity and efficiency of the forward search	157
6.2.3. Online heuristic search algorithms for MDPs	158
6.2.3.1. General principles	158
6.2.3.2. The RTDP algorithm	159
6.2.3.3. The LAO^* algorithm	160
6.2.4. Kearns, Mansour and Ng's simulation-based algorithm	163
6.2.4.1. Complexity and convergence of Kearns et al.'s algorithm	165
6.2.4.2. Efficiency and practical considerations	165
6.2.5. Tesauro and Galperin's rollout algorithm	165
6.2.5.1. Complexity and convergence of the rollout algorithm	166
6.2.5.2. Efficiency of the rollout algorithm	166
6.3. Controlling the search	167
6.3.1. Error bounds and pathology of the forward search	168
6.3.1.1. Pathology of the simulation-based forward search	168
6.3.1.2. Searching for a good compromise between depth	
and width	170
6.3.2. Iterative allocation of simulations	170
6.3.2.1. Multi-armed bandits and exploration in MDPs	171
6.3.3. Focused reinforcement learning	173
6.3.3.1. Global sampling error estimation	174
6.3.3.2. Organizing the search in successive trajectories	175
6.3.3.3. Convergence and practical considerations	176
6.3.4. Controlled rollout	178
6.3.4.1. Choice of the horizon	178
6.3.4.2. Iterative allocation of simulations	179
6.4. Conclusion	180
6.5. Bibliography	180
PART 2. BEYOND MDPs	185
	105
Chapter 7. Partially Observable Markov Decision Processes	187
Alain DUTECH and Bruno SCHERRER	
7.1. Formal definitions for POMDPS	188
7.1.1. Definition of a POMDP	188

x Markov Decision Processes in AI

7.1.2. Performance criteria	189
7.1.3. Information state	190
7.1.3.1. Definition	190
7.1.3.2. Complete information state	191
7.1.3.3. Sufficient statistics	191
7.1.3.4. Belief states	191
7.1.4. Policy	193
7.1.5. Value function	195
7.2. Non-Markovian problems: incomplete information	196
7.2.1. Adapted policies	196
7.2.2. Discounted reward	197
7.2.2.1. Adapted stochastic policies	197
7.2.2.2. Adapted value function	198
7.2.2.3. Convergence of adapted algorithms	199
7.2.3. Adapted algorithms and adapted average reward criterion	201
7.3. Computation of an exact policy on information states	202
7.3.1. The general case	202
7.3.1.1. Finite horizon	202
7.3.1.2. Infinite horizon	203
7.3.2. Belief states and piecewise linear value function	203
7.3.2.1. Choice of the θ vectors	206
7.3.2.2. Infinite horizon	207
7.4. Exact value iteration algorithms	207
7.4.1. Steps for the dynamic programming operator	207
7.4.2. A parsimonious representation of V	210
7.4.2.1. Region	210
7.4.2.2. Parsimonious representation	212
7.4.2.3. Pruning of dominated vectors	213
7.4.2.4. Pruning	213
7.4.2.5. Choice of a vector for a belief state	215
7.4.3. The WITNESS algorithm	216
7.4.3.1. Neighborhood of a vector	216
7.4.3.2. The algorithm	218
7.4.4. Iterative pruning	219
7.4.4.1. Complete enumeration	219
7.4.4.2. Incremental enumeration	220
7.5. Policy iteration algorithms	222
7.6. Conclusion and perspectives	223
7.7. Bibliography	225
Chapter 8. Stochastic Games	229
Andriy BURKOV, Laëtitia MATIGNON and Brahim CHAIB-DRAA	_ _ _
8.1. Introduction	229

8.2. Background on game theory	230
8.2.1. Some basic definitions	230
8.2.1.1. Criteria distinguishing different forms of games	230
8.2.2. Static games of complete information	232
8.2.2.1. Games in strategic form, pure strategy, mixed strategy	232
8.2.2.2. Zero-sum game and minimax	234
8.2.2.3. Equilibrium in dominating strategies	236
8.2.2.4. Nash equilibrium	238
8.2.3. Dynamic games of complete information	240
8.2.3.1. Games in extensive form with perfect information	241
8.2.3.2. Repeated games	243
8.3. Stochastic games	245
8.3.1. Definition and equilibrium of a stochastic game	246
8.3.2. Solving stochastic games	248
8.3.2.1. Game model available	249
8.3.2.2. Game model unavailable, A_{-i} observed, equilibrium	
learners	252
8.3.2.3. Game model unavailable, A_{-i} observed, opponent	
modeling	254
8.3.2.4. Game model unavailable, \mathbf{A}_{-i} not observed	256
8.3.3. Complexity and scalability of multi-agent learning algorithms	262
8.3.4. Beyond the search for an equilibrium	264
8.3.4.1. Efficient play	264
8.3.4.2. Regret minimization	265
8.3.4.3. Metastrategies	267
8.3.5. Discussion	267
8.4. Conclusion and outlook	269
8.5. Bibliography	270
Chapter 9. DEC-MDP/POMDP	277
Aurélie Beynier, François Charpillet, Daniel Szer and	
Abdel-Illah MOUADDIB	
9.1. Introduction	277
9.2. Preliminaries	278
9.3. Multiagent Markov decision processes	279
9.4. Decentralized control and local observability	280
9.4.1. Decentralized Markov decision processes	281
9.4.2. Multiagent team decision problems	283
9.4.3. Complexity	285
9.5. Sub-classes of DEC-POMDPs	285
9.5.1. Transition and observation independence	285
9.5.2. Goal oriented DEC-POMDPs	287
9.5.3. DEC-MDPs with constraints	288
,	

9.5.3.1. Event-driven DEC-MDPs	289
9.5.3.2. Opportunity-cost DEC-MDPs	289
9.5.3.3. Problem statement	289
9.5.3.4. The OC-DEC-MDP model	290
9.5.4. Communication and DEC-POMDPs	292
9.5.4.1. DEC-POMDPs with communication	293
9.5.4.2. Complexity results	294
9.5.4.3. Discussion	294
9.6. Algorithms for solving DEC-POMDPs	295
9.6.1. Optimal algorithms	296
9.6.1.1. Dynamic programming for DEC-POMDPs	296
9.6.1.2. Heuristic search for DEC-POMDPs	299
9.6.1.3. Optimal algorithms for sub-classes of DEC-POMDPs	303
9.6.2. Approximate algorithms	303
9.6.2.1. Heuristics and approximate dynamic programming	304
9.6.2.2. Bounded memory	305
9.6.2.3. Co-evolutive algorithms	305
9.6.2.4. Gradient descent for policy search	307
9.6.2.5. Bayesian games	307
9.6.2.6. Heuristics for communicating agents	308
9.6.2.7. Approximate solutions for OC-DEC-MDPs	308
9.7. Applicative scenario: multirobot exploration	310
9.8. Conclusion and outlook	312
9.9. Bibliography	313
Chapter 10. Non-Standard Criteria	319
Matthieu BOUSSARD, Maroua BOUZID, Abdel-Illah MOUADDIB,	
Régis Sabbadin and Paul Weng	
10.1. Introduction	319
10.2. Multicriteria approaches	320
10.2.1. Multicriteria decision-making	321
10.2.2. Multicriteria MDPs	322
10.2.2.1. Operators for multicriteria decision-making	323
10.3. Robustness in MDPs	327
10.4. Possibilistic MDPs	329
10.4.1. Possibilistic counterpart of expected utility	330
10.4.2. Possibilistic dynamic programming	333
10.4.2.1. Finite horizon	333
10.4.2.2. Value iteration	334
10.4.2.3. Policy iteration	338
10.4.3. Extensions of possibilistic MDPs	338
10.4.3.1. Possibilistic reinforcement learning	339
10.4.3.2. Possibilistic partially observable MDPs	340
10.4.3.3. Possibilistic influence diagrams (PID)	342

Contents	X111
10.5. Algebraic MDPs	342
10.5.1. Background	343
10.5.1.1. Semirings	343
10.5.1.2. Plausibility measures	344
10.5.1.3. Generalized expected utility	345
10.5.2. Definition of an algebraic MDP	345
10.5.3. Value function of a policy	347
10.5.4. Conditions	348
10.5.5. Examples of AMDPs	349
10.5.5.1. Probabilistic multicriteria AMDP	349
10.5.5.2. Possibilistic multicriteria AMDPs	350
10.5.5.3. AMDPs whose rewards are non-decreasing functions	351
10.6. Conclusion	354
10.7. Bibliography	355
PART 3. APPLICATIONS	361
Chapter 11. Online Learning for Micro-Object Manipulation	363
11.1. Introduction	363
11.2. Manipulation device	364
11.2.1. Micro-positioning by pushing	364
11.2.2. Manipulation device	365
11.2.3. Control loop	366
11.2.4. Representation of the manipulation task as an MDP	366
11.2.4.1. Definition of the state space	366
11.2.4.2. Definition of the action space	367
11.2.4.3. Definition of the reward function	367
11.2.4.4. Definition of an episode	367
11.3. Choice of the reinforcement learning algorithm	367
11.3.1. Characteristics of the MDP	367
11.3.2. A suitable algorithm: <i>STM-Q</i>	368
11.4. Experimental results	370
11.4.1. Experimental setup	370
11.4.2. Results	370
11.5. Conclusion	373
11.6. Bibliography	373
Chapter 12. Conservation of Biodiversity	375
12.1. Introduction	375
12.2. When to protect, survey or surrender cryptic endangered species	376
12.2.1. Surveying and managing the Sumatran tiger	376

12.2.2. The model	377
12.2.3. Results	377
12.2.4. Extension to more than one population	379
12.3. Can sea otters and abalone co-exist?	381
12.3.1. Abalone and sea otters: two endangered species	381
12.3.2. The models	382
12.3.2.1. Population dynamics of abalone	382
12.3.2.2. Sea otter population model	383
12.3.2.3. States	384
12.3.2.4. Decisions	385
12.3.2.5. Interaction between sea otters and abalone	386
12.3.2.6. Multicriteria objective and reward function	386
12.3.3. Methods	387
12.3.4. Results	387
12.3.4.1. Scenario 1: sea otter reintroduction and anti-poaching	
enforcement	387
12.3.4.2. Scenario 2: control of sea otters	389
12.3.4.3. Scenario 3: combined action of sea otter control and	
anti-poaching	389
12.3.5. Conclusion	389
12.4. Other applications in conservation biology and discussions	391
12.5. Bibliography	392
Chapter 13. Autonomous Helicopter Searching for a Landing Area	
in an Uncertain Environment	395
Patrick FABIANI and Florent TEICHTEIL-KÖNIGSBUCH	
13.1. Introduction	395
13.2. Exploration scenario	397
13.2.1. Planning problem	398
13.2.2. States and actions	399
13.2.3. Uncertainties	400
	400
13.2.5. Formalization of the decision problem	401
	401
13.3.1. Global view	401
	403
13.3.2.1. Policy optimization	403
13.3.2.2. Dialogue with the supervisor	404
	404
13.4.1. Obtaining the initial safe policy quickly	405
13.4.2. Generating the sub-space of reachable states	405
13.4.3. Local policy optimization	406
13.4.4. Launching local replanning processes	407
13.1.1. Daunoming rocal replaning processes	TO /

13.5. Flight tests and return on experience	407
13.6. Conclusion	410
13.7. Bibliography	410
Chapter 14. Resource Consumption Control for an Autonomous Robot	413
Simon LE GLOANNEC and Abdel-Illah MOUADDIB	
14.1 The rever's mission	414
14.1. The rover's mission	415
14.3. MDP/PRU model	416
	416
14.3.1. States	417
14.3.2. Actions	
14.3.3. Transition function	418
14.3.4. Reward function	418
14.4. Policy calculation	418
14.4.1. Value function	419
14.4.2. Propagation algorithm	419
14.5. How to model a real mission	419
14.6. Extensions	422
14.7. Conclusion	423
14.8. Bibliography	423
Chapter 15. Operations Planning	425
Sylvie THIÉBAUX and Olivier BUFFET	
15.1. Operations planning	425
15.1.1. Intuition	425
15.1.1.1. Problem features	426
15.1.1.2. Plans	427
15.1.2. Formal definitions	428
15.1.2.1. Planning problem, operations	429
15.1.2.2. Execution	431
15.1.2.3. Decision epochs, states, plans	432
15.1.2.4. Objective	432
15.2. MDP value function approaches	433
15.2.1. Formalizations, CoMDP	433
15.2.1.1 States, actions, transitions	433
	434
15.2.1.2. Rewards, costs	
15.2.2. Algorithms	435
15.2.2.1. (L)RTDP	435
15.2.2.2. Memory management	435
15.2.2.3. Reduction of the number of updates	436
15.2.2.4. Hybrid algorithms	436
15.2.2.5. Algorithms with upper bounds	437

xvi Markov Decision Processes in AI

15.2.3. Heuristics	438
15.2.3.1. Basic heuristics	438
15.2.3.2. Heuristics obtained by relaxation of the CoMDP	439
15.2.3.3. Planning graph heuristics	440
15.3. Reinforcement learning: FPG	442
15.3.1. Employing approximate methods	442
15.3.2. Parameterized policy	443
15.3.2.1. Inputs	443
15.3.2.2. Outputs	443
15.3.2.3. Function approximator	444
15.3.3. Gradient methods	445
15.3.3.1. Terminating an execution	445
15.3.3.2. Choice of Olpomdp	445
15.3.3.3. Optimized criterion	445
15.3.4. Improving FPG	446
15.4. Experiments	446
15.5. Conclusion and outlook	448
15.6. Bibliography	450
Index	453

Preface

The present book discusses sequential decision-making under uncertainty and reinforcement learning, two classes of problems in artificial intelligence which can be formalized in the framework of Markov decision processes. It has been written for students, engineers and researchers likely to be interested in these fields and models.

The book is organized as follows:

- Part 1 provides an introduction to this domain and to efficient resolution techniques (Markov decision processes, reinforcement learning, approximate representations, factored representations, policy gradients and online resolution).
- Part 2 presents important extensions of Markov decision processes that make it possible to solve more complex sequential decision-making problems (partially observable Markov decision processes, Markov games, multi-agent approaches and non-classical criteria).
- Part 3 completes the book with example applications showing how Markov decision processes can be employed for various problems (micro-object manipulation, biodiversity preservation, high-level control of a helicopter, control of an exploration mission and operations planning).

It was not possible for this book to cover all research directions in this very active field. We give here some references to point the reader to some uncovered aspects. For example, we have decided not to cover continuous time reinforcement learning [MUN 01], relational reinforcement learning [DZE 01], hierarchical reinforcement learning [BAR 03], learning classifier systems [SIG 07] or predictive state representations [LIT 02].

In addition, we endeavor in each chapter to provide the reader with references to related work.

Additional information related to this book (e.g. *errata*) can be found at the following website: http://www.loria.fr/projets/PDMIA/Book/.

Bibliography

- [BAR 03] BARTO A. and MAHADEVAN S., "Recent advances in hierarchical reinforcement learning", *Discrete Event Dynamic Systems*, vol. 13, no. 4, pp. 341–379, 2003.
- [DZE 01] DZEROSKI S., DE RAEDT L. and DRIESSENS K., "Relational reinforcement learning", *Machine Learning*, vol. 43, no. 1-2, pp. 7–53, 2001.
- [LIT 02] LITTMAN M., SUTTON R. and SINGH S., "Predictive representations of state", *Advances in Neural Information Processing Systems 14 (NIPS'01)*, MIT Press, Cambridge, MA, pp. 1555–1561, 2002.
- [MUN 01] MUNOS R. and MOORE A., "Variable resolution discretization in optimal control", *Machine Learning*, vol. 49, pp. 291–323, 2001.
- [SIG 07] SIGAUD O. and WILSON S. W., "Learning classifier systems: a survey", *Soft Computing*, vol. 11, no. 11, pp. 1065–1078, 2007.

List of Authors

Aurélie Beynier

Aurélie Beynier is currently an associate professor of computer science at the LIP6 Laboratory. Her PhD thesis has been defended in November 2006 at the University of Caen.

Matthieu Boussard

Matthieu Boussard holds a PhD in computer science from the University of Caen. He is a member of the MAD Group of the GREYC Laboratory.

Maroua Bouzid

Maroua Bouzid is an associate professor at the University of Caen. She is a member of the MAD Group of the GREYC Laboratory.

Olivier Buffet

Olivier Buffet is an INRIA junior research scientist. He is member of the Autonomous Intelligent Machines (MAIA) Team of the LORIA Laboratory.

Andriy Burkov

Andriy Burkov is a PhD student working under supervision of Professor Brahim Chaib-Draa at Laval University, Canada. His main research interests include multiagent learning and game theory.

Iadine Chadès

Iadine Chadès is currently a research fellow at CSIRO Sustainable Ecosystems, Australia, on leave from the French National Institute for Agricultural Research (INRA).

Brahim Chaib-Draa

Professor Brahim Chaib-Draa is the leader of the DAMAS Research Group on Agents and Multiagent Systems at the Computer Science and Software Engineering Department of Laval University, Canada.

François Charpillet

François Charpillet is an INRIA senior research scientist. He is the head of the Autonomous Intelligent Machines (MAIA) Team of the LORIA Laboratory.

Thomas Degris

Thomas Degris holds a PhD in computer science. After working in the video game industry, he is now a postdoctoral fellow at the University of Alberta.

Alain Dutech

Alain Dutech is an INRIA experienced research scientist. He is a member of the Autonomous Intelligent Machines (MAIA) Team of the LORIA Laboratory.

Patrick Fabiani

Patrick Fabiani is the director of the Systems Control and Flight Dynamics Department at ONERA. His research interests include models, methods and algorithms for sequential decision making and planning under uncertainty, applied to autonomous aerial robots in the ReSSAC project at ONERA.

Frédérick Garcia

Frédérick Garcia is a researcher in artificial intelligence at the Department of Applied Mathematics and Informatics at INRA (the French National Institute for Agricultural Research).

Guillaume Laurent

Guillaume Laurent is an associate professor at the ENSMM Graduate School at Besançon. He is a member of the Automatic Control and Micro-Mechatronic Systems Department of the FEMTO-ST Research Institute.

Simon Le Gloannec

Simon Le Gloannec holds a PhD from the University of Caen. He has worked with both the MAIA Team (LORIA laboratory) and the MAD Group (GREYC Laboratory). He currently holds a postdoctoral position at GREYC.

Laëtitia Matignon

Laëtitia Matignon holds a PhD from the University of Franche-Comté at Besançon. She is now a postdoctoral fellow of the Cooperative Decision-Theoretic Autonomous Agent System Group (MAD) of the GREYC Laboratory in Caen.

Abdel-Illah Mouaddib

Abdel-Illah Mouaddib is a full professor at the University of Caen. He is the head of the Cooperative Decision-Theoretic Autonomous Agent System Group (MAD) of the GREYC Laboratory.

Rémi Munos

Rémi Munos is senior researcher at INRIA Lille, France. He works in the fields of reinforcement learning, optimal control and decision theory.

Laurent Péret

Laurent Péret holds a PhD in artificial intelligence, focused on search methods for MDPs. Since 2005, he has been involved in various space programs as a flight dynamics engineer.

Emmanuel Rachelson

Emmanuel Rachelson is a postdoctoral fellow at the University of Liège, Belgium, working on reinforcement and statistical learning. He also works with Pr. Lagoudakis in Greece and with the Electricité de France (EDF) Research Center in Paris.

Régis Sabbadin

Régis Sabbadin has been a research scientist at INRA-Toulouse since 1999. His research focuses on planning under uncertainty, applied to natural resources management and agriculture.

Bruno Scherrer

Bruno Scherrer is an INRIA experienced research scientist. He is member of the Autonomous Intelligent Machines (MAIA) Team of the LORIA Laboratory.

Olivier Sigaud

Olivier Sigaud is a professor of computer science at the UPMC-Paris 6 University. He is the head of the "Motion" Group at the Institute of Intelligent Systems and Robotics (ISIR).

Daniel Szer

Daniel Szer obtained a Master's degree in computer science from UMass Dartmouth and a PhD in artificial intelligence from Henri-Poincaré University, Nancy. He works as an IT analyst in Paris.

Florent Teichteil-Königsbuch

Florent Teichteil-Königsbuch is a researcher in probabilistic sequential decision-making at ONERA. He got a PhD in artificial intelligence from SUPAERO in 2005.

Sylvie Thiébaux

Sylvie Thiébaux is an associate professor at the Australian National University and principal researcher at the National ICT Australia, specializing in automated planning in artificial intelligence.

Paul Weng

Paul Weng has been an associate professor at Paris 6 University since September 2007. Before his PhD obtained in 2006, he worked in finance in London.

Part 1

MDPs: Models and Methods

Chapter 1

Markov Decision Processes

1.1. Introduction

This book presents a decision problem type commonly called *sequential decision problems under uncertainty*. The first feature of such problems resides in the relation between the current decision and future decisions. Indeed, these problems do not consist of one, but several decision problems, presented in a sequence. At each step of this sequence, the *agent* (actor or decision-maker) needs to decide on the current action by taking into account its effect on the solution of future problems. This sequential feature is also typical of *planning* problems in artificial intelligence and is often linked with shortest path methods in graph theory. The second characteristic of the problems discussed in these pages is the uncertainty in the consequences of all available decisions (actions). Knowledge of its decision's effects is not available in advance to the agent in a deterministic form. As such, this problem deals with the various theories of decision under uncertainty which suggest different formalization and resolution approaches. Among these approaches, we need to mention specifically the standard theory of expected utility maximization.

Consequently, problems of sequential decision under uncertainty couple the two problematics of sequential decision and decision under uncertainty. *Markov decision problems* (MDPs) are a general mathematical formalism for representing shortest path problems in stochastic environments. This formalism is based on the theory of *Markov decision processes* (also written as MDPs). A Markov decision process relies on the notions of *state*, describing the current situation of the agent, *action* (or decision), affecting the dynamics of the process, and *reward*, observed for each

Chapter written by Frédérick GARCIA and Emmanuel RACHELSON.

transition between states. Such a process describes the probability of triggering a transition to state s' and receiving a certain reward r when taking decision a in state s. Hence, an MDP can be described as a controlled Markov chain, where the control is given at each step by the chosen action. The process then visits a sequence of states and can be evaluated through the observed rewards. Solving an MDP consists of controlling the agent in order to reach an optimal behavior, i.e. to maximize its overall revenue. Because action effects are stochastic and, thus, can result in different possible states at the next stage of the decision process, the optimal control strategy cannot necessarily be represented as a single sequence of actions. Consequently, solutions of an MDP are usually given as universal plans or policies (strategies or decision rules) specifying which action to undertake at each step of the decision process and for every possible state reached by the agent. Due to the uncertainty in actions' results, applying a given policy can result in different sequences of states/actions.

EXAMPLE 1.1. Let us illustrate these concepts with a simple car maintenance example. According to the current state of the car (breakdown, wear, age, etc.), an agent wishes to decide which is its best strategy (do nothing, replace parts preventively, repair, change car, etc.) in order to minimize the maintenance cost in the long run. Assuming the agent knows the consequences and the cost of each separate action in every possible state (e.g. we know the failure probability of an engine if the oil leak is not fixed), we can model this problem as an MDP. Solving this MDP will provide the agent with a policy indicating which is the optimal action to undertake in every state of the problem. This way, the sequence of actions performed as the car's state changes will allow the agent to always minimize the expected maintenance cost.

The theory of Markov decision processes and its generalizations will be developed in the next chapters. These models have become the most popular framework for representing and solving problems of sequential decision under uncertainty. This chapter presents the basics of MDP theory and optimization, in the case of an agent having a perfect knowledge of the decision process and of its state at every time step, when the agent's goal is to maximize its global revenue over time.

1.2. Markov decision problems

1.2.1. Markov decision processes

Markov decision processes are defined as *controlled stochastic processes* satisfying the Markov property and assigning reward values to state transitions [BER 87, PUT 94]. Formally, they are described by the 5-tuple (S, A, T, p, r) where:

^{1.} Contrary to the deterministic approaches of classical planning.

- -S is the state space in which the process' evolution takes place;
- A is the set of all possible actions which control the state dynamics;
- -T is the set of time steps where decisions need to be made;
- -p() denotes the state transition probability function;
- -r() provides the reward function defined on state transitions.

Figure 1.1 represents an MDP, drawn as an influence diagram. At every time step t in T, action a_t is applied in the current state s_t , affecting the process in its transition to the next state s_{t+1} . Reward r_t is then obtained for this transition.

Figure 1.1. Markov decision process

The set T of decision epochs is a discrete set, subset of \mathbb{N} , which can either be finite or infinite (then we talk, respectively, about finite horizon or infinite horizon). A third case corresponds to the existence of a set of terminal states (or goal states). In this case, the process stops as soon as one of these states is encountered. Then, the horizon is then said to be indefinite. These problems are often related to stochastic shortest path problems. This case, however, can be seen as a specific case of infinite horizon MDPs with absorbing states and will not be presented in detail in this chapter (see Chapter 6, section 6.2.3 and Chapter 15).

In the most general case, the S and A sets are supposed finite, even though many results can be extended to countable or even continuous sets (see [BER 95] for an introduction to the continuous case). Generally, the set A of applicable actions can also depend on the current state: we define a subset A_s of applicable actions in state s. Similarly, S and A can change based on the time step t (S_t and S_t). However, in this chapter, for clarity of presentation, we will restrict ourselves to the standard case where S_t and S_t are constant throughout the process.

The transition probabilities p() characterize the state dynamics of the system, i.e. indicate which states are likely to appear after the current state. For a given action $a, p(s' \mid s, a)$ represents the probability for the system to transit to state s' after undertaking action a in state s. Because the p() values are probabilities, we classically have $\forall s, a, \sum_{s'} p(s' \mid s, a) = 1$. This p() function is usually represented in matrix form, where we write P_a the $|S| \times |S|$ matrix containing elements $\forall s, s'$ $P_{a,s,s'} = p(s' \mid s,a)$. Consequently, the probability transitions of the decision process are given as |A| matrices P_a . Since each line of these matrices sums to one, the P_a are said to be stochastic matrices.

The p() probability distributions over the next state s' follow the fundamental property which gives their name to Markov decision processes. If we write $h_t = (s_0, a_0, \ldots, s_{t-1}, a_{t-1}, s_t)$ the history of states and actions until time step t, then the probability of reaching state s_{t+1} consecutively to action a_t is only a function of a_t and s_t , and not of the entire history h_t . Let us write $P(x \mid y)$ the conditional probability of event x, provided that y is true, then we have

$$\forall h_t, a_t, s_{t+1} \quad P(s_{t+1} \mid h_t, a_t) = P(s_{t+1} \mid s_t, a_t) = p(s_{t+1} \mid s_t, a_t).$$

We should note here that the previous condition does not necessarily imply that the resulting stochastic process $(s_t)_{t \in T}$ itself respects the Markov property: this also depends on the action choice policy for a_t .

As a result of choosing action a, in state s, at time t, the deciding agent receives a reward $r_t = r(s,a) \in \mathbb{R}$. We can consider positive values of r_t as gains and negative values as costs. We also sometimes use a cost function c() instead of the reward function r(). This reward can be received instantaneously at time t or accumulated between t and t+1. The important feature is that this reward only depends on the simple input of the current state s and the current action s. A vector representation of the r(s,a) reward function consists of r(s) vectors r(s) of length r(s).

A common extension consists of considering random rewards. In this case, we will use their average value for the reward function $r(s,a) = \bar{r}(s,a)$. In particular, the reward obtained at time step t can depend on the final state s' of the transition. We then have a reward specified as r(s,a,s'). The value used for the reward vectors is $\bar{r}(s,a) = \sum_{s'} p(s' \mid s,a) r(s,a,s')$. In all cases, r_t is supposed bounded.

Finally, as for S and A, the transition and reward functions can vary across time. In this case they are written, respectively, as p_t and r_t . When these functions do not change from one step to the other, the process is said to be *stationary*: $\forall t \in T$, $p_t() = p()$, $r_t() = r()$. In the rest of this chapter, we will keep this stationarity hypothesis in the study of infinite horizon MDPs.