Latvijas Universitāte

Karina Pilusonoka

September 2018

Contents

1	Datoru tikli I			
2	Varbutiskie algoritmi 2.1 Piemērs varbutiskajam algoritmam			
3	Atru algoritmu konstruēšana			
4	Skaitlu teorija 4.0.1 Abstraktā algebra	5 5		
5	Data processing	6		

1 Datoru tikli I

Guntars Bārzdińš guntis@latnet.lv 331 kab.

Starpprocexxoru attalums	Location type	Network type
0.1m	Board	
1m	System	LAN
$10 \mathrm{m}$	Room	LAN
$100 \mathrm{m}$	Building	LAN (Local Area Network)
$1000 { m m}$	Campus	MAN
$10 \mathrm{km}$	City	MAN (Metropolitan Area Netpwork)
$100 \mathrm{km}$	Country	WAN (Wide Area Netpwork)
$1000 \mathrm{km}$	Continent	WAN
10000 km	Planet	WAN

LAN – Local Area Network. Atrumi: (1Gbps, 10Gbps, 100Gbps). Attalums: vitais paris - 200m, optiskais – 40-70km.

MAN – Metropolitan Area Netpwork. Galvena atškirība no LAN: ātrums, kam pieder, izmaksas.

 $\overline{\ \ }$ Datoru tikls sastāv no: dators un marsrutezators (router) + sakaru kanāli. Sakaru kanālu tipi:

- 1. point-to-point
- 2. broadcast

Tīklu topologijas. (Klasiskas ir zvaignze un rinkins)

ISO - International Standarts Organisation

 OSI - Open System Interconnection

Application	Lietojuma līmenis
Presentation	Datu reprezentācijas līmenis (kura formata jpeg/mp3/txt etc
Session	Sessijas līmenis
Transport	Transporta līmenis – nočeko ka visas paketas kuram vajadzeja nosutities atnaca. Un parbaud
Network	Tīkla līmenis (point-to-point) uzradas adresācija. Kam un ko atsutit. Vienīgais liīmenis kur i
DataLink	Kanala līmenis (griež datus paketos), ar check summam
Physical	Fiziskais līmenis (biti)
-	

SAP – Service Access Point, sanem datu paketes un suta talak vai pieprasa datus velreiz. Nodrosina sakaru starp layeriem.

2 Varbutiskie algoritmi

Andris Ambainis Raina Bulvaris 19, 319 kab. konsultācija piektdiena 14:30 – 16:30

grāmatas:

- 1. M.Mitzenmacher, E.Upfal Probability and Computing
- 2. piezīmes e-stūdijās

Atzīme: 40% eksāmens +60% mājas darbi

2.1 Piemērs varbutiskajam algoritmam

2.1.1 Polinomu vienādiibas pārbaude

Dots: 2 polinomi f(x) un g(x) ar pakāpi $\leq n$

$$f(x) = (x^2 + 3)(x - 4) + 7$$

$$g(x) = (x+2)(x-3)(x+4)$$

1. Pirmais veids: atrisināt polinomus vienkaršakus formus

$$f(x) = x^3 - 4x^2 + 3x - 5$$

$$g(x) = x^3 + 3x^2 - 10x - 24$$

- 2. Varbutiskai algoritms
 - izvelas $x \in \{1, ...10n\}$
 - izrekina f(x), g(x)
 - ja $f(x) \neq g(x) \rightarrow$ seicina ka $f \neq g$
 - $\bullet\,$ ja $f(x)=g(x)\to$ secina kaf=g

Algoritms var izdot atbildi ka f = g arī tad, ja $f(x) \neq g(x)$. Jautājums – cik bieži tas notiek?

3 Atru algoritmu konstruēšana

Viksna

Problemas piemēri: Eulera tilti, Hamiltona cycles Atzīme: 2 majas dārbi (3gab.) + Programming assignment + Exam40% Datu struktūras

- Dinamiska vārdnīca (hsent / find / delete)
- $\bullet \,$ Prioritāšu rinda

4 Skaitlu teorija

Smotrovs Jurijs

4.0.1 Abstraktā algebra

Algebraiska struktura – kopa ar tajā definētām darbībam (piem. $\langle K, +, * \rangle$). Darbības apraksts – ir aksiomas . Tas ko var izvest no aksiomam – ir teorēmas .

 $\langle K, \circ \rangle$

- G1) $\forall x, y \in K \ \exists !/z \in K(x \circ y = z)$
- G2) $\forall x, y, z \in K(x \circ (y \circ z) = (x \circ y) \circ z)$ associācija
- Ja izpildas G1 un G2 tadu kopu sauc par pusgrupu
- G3) $\exists n \in K \forall x \in K (n \circ x = x \circ n = x)$ neitrālais elements
- ja izpildas G1, G2, G3 to sauc par monoīdu
- G4) $\forall x \in K \ \exists d_x \in K (x \circ d_x = d_x \circ x = n)$
- Ja izpildas G1, G2, G3 un G4 to sauc par grupu
- G5) $\forall x, y \in K \ (x \circ y = y \circ x)$ komutatīvitāte
- Ja izpildas G1 G5 to sauc par Ābela grupu , vai komutatīvu grupu.

4.0.2 Gredzens

Gredzens – ir struktura $\langle G, +, * \rangle$ kur izpildas sekojošas īpašības:

- 1. $\langle G, + \rangle$ ir Ābela grupa
- 2. $\langle G, * \rangle$ ir pusgruppa
- 3. $\forall x, y, z \in G \ (x * (y + z) = x * y + x * z)$
- 4. $\forall x, y, z \in G ((y+z) * x = y * x + z * x)$

$$\underbrace{1+1+1+\ldots+1=0}_{m}$$

m– gredzena raksturojums (harakteristika)

nulles dalītāji: tādi a un b, ka $a \neq 0, b \neq 0$ un a*b = 0

apgriežams elements: tāds a, kuram $\exists d_a : a * d_a = d_a * a = 1$

apgriežamo elementu kopa: U(G)

Teorēma: $\langle U(G), * \rangle$ ir grupa.

5 Data processing