MATH 143 Homework 1

Aniruddh V.

August 2023

1 Problem 1

Solution

a. $deg(x^5 + 15x^3y^3 + 8y^2x) = 6$ **b.** $deg(x^2yz^4 + z^9 + 10xy) = 9$

2 Problem 2

Solution Let $f \in k[x,y]$ be a polynomial of degree d, and $C = V(f) \subset \mathbb{A}^{\nvDash}$. Let L be a line such that $L \not\subset C$ and L = V(y - (ax + b)). Then the set $L \cap C$ contains the points $(x,y) \in \mathbb{A}^2$ such that f(x,y) = 0 and y = ax + b, or alternatively the set of points $x \in \mathbb{A}^1$ such that f(x,ax+b) = 0. f(x,ax+b) is a polynomial of degree d in k[x], and so it has at most d distinct roots. Since the map $x \to ax + b$ is injective, each root of x of f(x,ax+b) corresponds to exactly one point (x,y) in $L \cap C$, so the set $L \cap C$ is finite with at most d points. \square

3 Problem 3

Solution a. Let $S = \{(t, \sin(t)) | t \in \mathbb{R}\} \subset \mathbb{A}^2$. Since $\sin(x) = \sin(x + 2n\pi)$, the intersection of the line y = 0 given by $L = \{(x, 0) | x \in \mathbb{R}\}$ with S gives $L \cap S = \{(0, n\pi) | n \in \mathbb{Z}\}$. L is an algebraic set, and if S were an algebraic set, then the intersection $L \cap S$ would have to be an algebraic set as well. But $L \cap S$ is an infinite set of points, and is not algebraic, so $S = \{(t, \sin(t))\}$ is **not algebraic**

- **b.** Let $S = \{(x,y) \in \mathbb{A}^2_{\mathbb{C}} | x = 0, y \neq 0\}$. Suppose $f \in k[x,y]$ vanishes on S. Then $f(0,y) \in k[y]$ vanishes on $\{y \in \mathbb{A}^1_{\mathbb{C}} | y \neq 0\}$. But this is a proper infinite subset of A^1 , and thus is not algebraic, thus $S = \{(x,y) \in \mathbb{A}^2_{\mathbb{C}} | x = 0, y \neq 0\}$ is **not algebraic**.
- **c.** Let $S=\{(x,y)\in\mathbb{A}^2_\mathbb{R}:y=|x|\}$. Taking the intersection of this set with the algebraic set A=V(y-x) gives $A\cap S=\{(x,y)\in\mathbb{A}^2_\mathbb{R}:y=x,x\geq 0\}=\{(x,x)\in\mathbb{A}^2_\mathbb{R}:y=x,x\geq 0\}$ which is not an algebraic set since it is a proper

infinite subset of A^1 , and thus $\{(x,y)\in\mathbb{A}^2_{\mathbb{R}}:y=|x|\}$ is **not algebraic**. **d.** Let $S=\{(t,t^2,t^3)\in\mathbb{A}^3_k|t\in k\}$. This set is generated by the zeroes of the polynomials $f(x,y,z)=y-x^2$ and $g(x,y,z)=z-x^3$. Thus S is **algebraic**.