```
# Install required libraries
!pip install pandas numpy matplotlib seaborn scikit-learn imbalanced-learn
    Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.2.2)
     Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.26.4)
     Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.8.0)
     Requirement already satisfied: seaborn in /usr/local/lib/python3.10/dist-packages (0.13.2)
     Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.5.2)
     Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.10/dist-packages (0.12.4)
     Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)
     Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)
     Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.2)
     Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.3.1)
     Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)
     Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.55.0)
     Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.7)
     Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (24.2)
     Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (11.0.0)
     Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.2.0)
     Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.13.1)
     Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)
     Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)
     Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
from imblearn.over_sampling import SMOTE
# Step 3: Load the Dataset from GitHub Repository
url = "https://raw.githubusercontent.com/IndulekhaKP/credit-card-fraud-detection/main/data/creditcard.csv"
data = pd.read csv(url)
print(f"Dataset shape: {data.shape}")
data.head(100)
→ Dataset shape: (284807, 31)
         Time
                                          ٧3
                                                    ۷4
                                                              ۷5
                                                                         ۷6
                                                                                   ۷7
                                                                                             V8
                                                                                                       ۷9
                                                                                                                      V21
                                                                                                                                V22
                                                                                                                                          V23
                                                       -0.338321
           0.0 -1.359807 -0.072781 2.536347
                                              1.378155
                                                                   0.462388
                                                                             0.239599
                                                                                       0.098698
                                                                                                 0.363787
                                                                                                                -0.018307
                                                                                                                           0.277838 -0.110474
      1
           0.0
                1.191857
                          0.266151 0.166480
                                              0.448154
                                                        0.060018
                                                                  -0.082361
                                                                             -0.078803
                                                                                       0.085102
                                                                                                 -0.255425
                                                                                                                 -0.225775
                                                                                                                           -0.638672
                                                                                                                                      0.101288
      2
           1.0 -1.358354
                         -1.340163 1.773209
                                              0.379780
                                                        -0.503198
                                                                   1.800499
                                                                             0.791461
                                                                                                 -1.514654
                                                                                                                 0.247998
                                                                                                                           0.771679
                                                                                                                                      0.909412
                                                                                       0.247676
      3
               -0.966272
                          -0.185226
                                    1.792993
                                              -0.863291
                                                        -0.010309
                                                                   1.247203
                                                                             0.237609
                                                                                       0.377436
                                                                                                 -1.387024
                                                                                                                 -0.108300
                                                                                                                           0.005274
                                                                                                                                     -0.190321
           1.0
      4
           2.0
               -1.158233
                          0.877737 1.548718
                                              0.403034
                                                        -0.407193
                                                                   0.095921
                                                                             0.592941
                                                                                       -0.270533
                                                                                                 0.817739
                                                                                                                 -0.009431
                                                                                                                           0.798278
                                                                                                                                     -0.137458
      ...
      95
          64.0
               -0.658305
                          0.406791 2.037461 -0.291298
                                                        0.147910
                                                                  -0.350857
                                                                             0.945373
                                                                                      -0.172560
                                                                                                 0.025133
                                                                                                                -0.156096
                                                                                                                          -0.238805
                                                                                                                                     0.089877
                          0.370711 0.888613
                                              2.343244
      96
          64.0
                0.959602
                                                        0.352491
                                                                   1.365515 -0.277771
                                                                                       0.516053
                                                                                                 -0.700929
                                                                                                                -0.155547
                                                                                                                          -0.403239
                                                                                                                                     0.356504
      97
          67.0 -0.653445
                          0.160225 1.592256
                                              1.296832
                                                        0.997175
                                                                 -0.343000
                                                                             0.469937 -0.132470
                                                                                                -0.197794
                                                                                                                 0.038363
                                                                                                                           0.336449
                                                                                                                                    -0.014883
                                                                                                                                     0.332720
          67.0 -1.494668
                          0.837241 2.628211
                                              3.145414
                                                       -0.609098
                                                                   0.258495
                                                                            -0.012189
                                                                                                 -0 286164
                                                                                                                -0.140047
                                                                                                                           0.355044
      98
                                                                                       0.102136
               1.232996
                          0.189454 0.491040
                                              0.633673 -0.511574 -0.990609
                                                                             0.066240 -0.196940
                                                                                                                -0.251566 -0.770139
                                                                                                                                     0.125998
          68.0
                                                                                                 0.075921
      99
     100 rows × 31 columns
# Count the number of instances for each class
print(data['Class'].value_counts())
→
    Class
     0
          284315
     1
             492
     Name: count, dtype: int64
# Filter the rows where Class is 1
fraudulent transactions = data[data['Class'] == 1]
```

Display the fraudulent transactions
fraudulent_transactions

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9		V21	V22	
541	406.0	-2.312227	1.951992	-1.609851	3.997906	-0.522188	-1.426545	-2.537387	1.391657	-2.770089		0.517232	-0.035049	-0.
623	472.0	-3.043541	-3.157307	1.088463	2.288644	1.359805	-1.064823	0.325574	-0.067794	-0.270953		0.661696	0.435477	1.3
4920	4462.0	-2.303350	1.759247	-0.359745	2.330243	-0.821628	-0.075788	0.562320	-0.399147	-0.238253		-0.294166	-0.932391	0.
6108	6986.0	-4.397974	1.358367	-2.592844	2.679787	-1.128131	-1.706536	-3.496197	-0.248778	-0.247768		0.573574	0.176968	0
6329	7519.0	1.234235	3.019740	-4.304597	4.732795	3.624201	-1.357746	1.713445	-0.496358	-1.282858		-0.379068	-0.704181	-0.6
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945		0.778584	-0.319189	0.6
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396		0.370612	0.028234	-0.
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250		0.751826	0.834108	0.1
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333		0.583276	-0.269209	-0.4
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829		-0.164350	-0.295135	-0.0
492 rows × 31 columns														
1														

data.info()
data.describe()

```
→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 284807 entries, 0 to 284806
    Data columns (total 31 columns):
         Column Non-Null Count
                                   Dtype
     0
                  284807 non-null
         Time
                                    float64
                  284807 non-null
     1
         V1
                                    float64
     2
         V2
                  284807 non-null
                                    float64
     3
         ٧3
                  284807 non-null
                                    float64
     4
                  284807 non-null
         V4
                                    float64
     5
         V5
                  284807 non-null
                                    float64
                  284807 non-null
     6
         ۷6
                                    float64
     7
         ٧7
                  284807 non-null
                                    float64
     8
         V۶
                  284807 non-null
                                    float64
     9
         V9
                  284807 non-null
                                    float64
                  284807 non-null
     10
         V10
                                    float64
     11
         V11
                  284807 non-null
                                    float64
     12
         V12
                  284807 non-null
                                    float64
         V13
                  284807 non-null
     13
                                    float64
     14
         V14
                  284807 non-null
                                    float64
                  284807 non-null
     15
         V15
                                    float64
         V16
                  284807 non-null
     16
                                    float64
     17
         V17
                  284807 non-null
                                    float64
                  284807 non-null
         V18
     18
                                    float64
     19
         V19
                  284807 non-null
                                    float64
     20
         V20
                  284807 non-null
                                    float64
     21
         V21
                  284807 non-null
                                    float64
     22
         V22
                  284807 non-null
                                   float64
     23
         V23
                  284807 non-null
                                    float64
     24
         V24
                  284807 non-null
                                    float64
     25
         V25
                  284807 non-null
                                    float64
     26
         V26
                  284807 non-null
                                    float64
     27
         V27
                  284807 non-null
                                    float64
                  284807 non-null
     28
         V28
                                    float64
                  284807 non-null
     29
         Amount
                                    float64
     30 Class
                  284807 non-null
                                    int64
    dtypes: float64(30), int64(1)
    memory usage: 67.4 MB
                                                                                                                                              ٧8
                     Time
                                      ٧1
     count 284807.000000
                            2.848070e+05
                                           2.848070e+05
                                                         2.848070e+05
                                                                        2.848070e+05
                                                                                       2.848070e+05
                                                                                                      2.848070e+05
                                                                                                                     2.848070e+05
                                                                                                                                    2.848070e+05
             94813.859575
                            1.759061e-12
                                           -8.251130e-13
                                                         -9.654937e-13
                                                                         8.321385e-13
                                                                                        1.649999e-13
                                                                                                       4.248366e-13
                                                                                                                     -3.054600e-13
                                                                                                                                    8.777971e-14
     mean
                                                                                                                                    1.194353e+00
      std
             47488.145955
                            1.958696e+00
                                           1.651309e+00
                                                          1.516255e+00
                                                                         1.415869e+00
                                                                                        1.380247e+00
                                                                                                      1.332271e+00
                                                                                                                     1.237094e+00
                           -5.640751e+01
                                                                        -5.683171e+00
      min
                 0.000000
                                          -7.271573e+01
                                                         -4.832559e+01
                                                                                       -1.137433e+02
                                                                                                     -2.616051e+01
                                                                                                                    -4.355724e+01
                                                                                                                                   -7.321672e+01
      25%
             54201.500000
                            -9.203734e-01
                                           -5.985499e-01
                                                         -8.903648e-01
                                                                        -8.486401e-01
                                                                                       -6.915971e-01
                                                                                                      -7.682956e-01
                                                                                                                     -5.540759e-01
                                                                                                                                    -2.086297e-01
      50%
             84692.000000
                            1.810880e-02
                                           6.548556e-02
                                                          1.798463e-01
                                                                        -1.984653e-02
                                                                                       -5.433583e-02
                                                                                                      -2.741871e-01
                                                                                                                      4.010308e-02
                                                                                                                                    2.235804e-02
      75%
            139320.500000
                            1.315642e+00
                                           8.037239e-01
                                                          1.027196e+00
                                                                         7.433413e-01
                                                                                        6.119264e-01
                                                                                                       3.985649e-01
                                                                                                                      5.704361e-01
                                                                                                                                    3.273459e-01
      max
            172792.000000
                            2.454930e+00
                                           2.205773e+01
                                                          9.382558e+00
                                                                         1.687534e+01
                                                                                       3.480167e+01
                                                                                                      7.330163e+01
                                                                                                                     1.205895e+02
                                                                                                                                    2.000721e+01
    8 rows × 31 columns
```

```
sns.countplot(x='Class', data=data) plt.title("Distribution of Fraud (1) and Non-Fraud (0)") plt.show()
```



```
sns.countplot(x='Class', data=data)
plt.yscale('log') # Apply logarithmic scale to the y-axis
plt.title("Distribution of Fraud (1) and Non-Fraud (0)")
plt.xlabel("Class")
plt.ylabel("Count (log scale)")
plt.show()
```



```
Class
0 284315
1 492
Name: count, dtype: int64

plt.figure(figsize=(12, 10))
correlation_matrix = data.corr()
sns.heatmap(correlation_matrix, cmap="coolwarm")
plt.title("Feature Correlations")
plt.show()
```

print(data['Class'].value_counts())


```
X = data.drop(columns=['Class'])
```

Check for missing values in the features (X) and target (y)
print("Missing values in features (X):\n", X.isnull().sum())
print("Missing values in target (y):\n", y.isnull().sum())

```
Missing values in features (X):
 Time
           0
V1
           0
V2
           0
V3
           0
V4
           0
V5
           0
۷6
٧7
           0
٧8
           0
V9
V10
           0
V11
           0
V12
           0
V13
           0
V14
           0
V15
           0
V16
           0
V17
```

y = data['Class']

```
12/1/24, 4:21 PM
                                                                 CreditCardFraudDetection_Randomforest - Colab
         V19
                    0
         V20
                    0
         V21
         V22
                    0
         V23
                    0
         V24
         V25
                    0
         V26
                    0
         V27
         V28
                    0
         Amount
                    0
         dtype: int64
         Missing values in target (y):
    \mbox{\tt\#} Drop rows with NaN values in either X or \mbox{\tt y}
    X = X.dropna()
    y = y[X.index] # Ensures X and y are aligned after dropping NaNs
    # Resample the data using SMOTE
    smote = SMOTE(random_state=42)
    X_resampled, y_resampled = smote.fit_resample(X, y)
     \textbf{X\_train, X\_test, y\_train, y\_test = train\_test\_split(X\_resampled, y\_resampled, test\_size=0.2, random\_state=42) } 
    model = RandomForestClassifier(random_state=42)
    model.fit(X_train, y_train)
                  RandomForestClassifier
          RandomForestClassifier(random_state=42)
    y_pred = model.predict(X_test)
    print("Classification Report:\n", classification_report(y_test, y_pred))
     → Classification Report:
                                       recall f1-score
                         precision
                                                          support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                            56750
                     1
                                                            56976
                             1.00
                                       1.00
                                                  1.00
             accuracy
                                                  1.00
                                                           113726
                             1.00
            macro avg
                                        1.00
                                                  1.00
                                                           113726
                                                           113726
         weighted avg
                             1.00
                                        1.00
                                                  1.00
    sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d", cmap="Blues")
    plt.title("Confusion Matrix")
    plt.show()
```


from sklearn.metrics import classification_report, accuracy_score

print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))

-	Accuracy:	0.999903276295658								
_		precision		recall	f1-score	support				
		0	1.00	1.00	1.00	56750				
		1	1.00	1.00	1.00	56976				
	accura	су			1.00	113726				
	macro a	vg	1.00	1.00	1.00	113726				
	weighted a	vg	1.00	1.00	1.00	113726				

```
# Plot Precision-Recall Curve for Random Forest
from sklearn.metrics import precision_recall_curve
```

```
y_pred_rf = model.predict(X_test) # Predictions for test data
precision_rf, recall_rf, _ = precision_recall_curve(y_test, y_pred_rf)

plt.figure(figsize=(8, 6))
plt.plot(recall_rf, precision_rf, marker='.', label='Random Forest')
plt.title("Precision-Recall Curve - Random Forest")
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.legend()
plt.grid()
plt.show()
```


Precision-Recall Curve - Random Forest

Plot ROC Curve for Random Forest
from sklearn.metrics import roc_curve, auc

y_pred_prob_rf = model.predict_proba(X_test)[:, 1] # Get probabilities for class 1
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_prob_rf)
roc_auc_rf = auc(fpr_rf, tpr_rf)

