Chapitre 8 : Fonction exponentielle Cours 1 : Etude de la fonction exponentielle

R. KHODJAOUI

Lycée J.J. HENNER - Première D

mars 2019 - semaine 12

1/5

Sommaire

Propriété et théorème

2 Etude de la fonction exponentielle

Théorème

 \mathbb{Z} Il existe une **unique** fonction dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.

Théorème

 \mathbb{Z}_{0} Il existe une **unique** fonction dérivable sur \mathbb{R} telle que f'=f et f(0)=1.

Définition et notation

L'unique fonction f vérifiant f'=f et f(0)=1 est notée \exp

 $exp : \mathbb{R} \to \mathbb{R}$ exp est appelée fonction exponentielle $x \mapsto exp(x)$

Théorème

 \mathbb{Z}_{0} Il existe une **unique** fonction dérivable sur \mathbb{R} telle que f'=f et f(0)=1.

Définition et notation

L'unique fonction f vérifiant f' = f et f(0) = 1 est notée exp

 $exp : \mathbb{R} \to \mathbb{R}$ exp est appelée fonction exponentielle $x \mapsto exp(x)$

Propriétés:

- Pour tout $x \in \mathbb{R}$, exp'(x) = exp(x) (cf définition de exp)
- \triangle Pour tout $x \in \mathbb{R}$, $exp(x) \neq 0$ (admise)

Théorème

 \mathbb{Z} Il existe une **unique** fonction dérivable sur \mathbb{R} telle que f'=f et f(0)=1.

Définition et notation

L'unique fonction f vérifiant f' = f et f(0) = 1 est notée exp

 $exp : \mathbb{R} \to \mathbb{R}$ exp est appelée fonction exponentielle $x \mapsto exp(x)$

Ressources vidéo

- ➤ https://youtu.be/sCcy4IQKits?t=49
 Attention: visionner jusqu'à 2 minutes 57
- https://www.youtube.com/watch?v=kercx5a_--U
 A visionner dans sa totalité

Théorème

$$\exp(x+y) = \exp(x) \times \exp(y)$$

Théorème

$$exp(x+y) = exp(x) \times exp(y)$$

Exemple illustrant cette propriété

- ➤ $exp(1) \approx 2,71828$.
- ➤ $exp(2) \approx 7,38906$.
- ► $exp(3) \approx 20,08554$
- ▶ Or $20,08554 \approx 2,71828 \times 7,38906$ ce qui confirme la formule ci-dessus.
- ➤ Nous verrons par la suite comment obtenir ces résultats à la calculatrice.

Théorème

$$exp(x+y) = exp(x) \times exp(y)$$

Eléments de preuve :

Soit $y \in \mathbb{R}$, considérons la fonction f définie sur \mathbb{R} par $f(x) = \frac{exp(x+y)}{exp(x)}$

On peut caculer la dérivée de f et montrer que f'=0 (exercice)

Or une fonction dont la dérivée est nulle est constante donc f est une fonction constante.

$$f(0) = \frac{exp(0+y)}{exp(0)} = \frac{exp(y)}{1} = exp(y).$$

Comme f(0) = exp(y) et que f est constante, pour tout réel x, f(x) = exp(y) d'où le résultat attendu.

Propriété admise

Pour tout réel x:

Propriété admise

Pour tout réel x:

${\bf Propri\acute{e}t\acute{e}:}$

La fonction exponentielle est strictement croissante sur \mathbb{R}

Propriété admise

Pour tout réel x:

Propriété:

La fonction exponentielle est strictement croissante sur $\mathbb R$

Preuve:

exp' = exp par définition de exp.

Or la propriété admise nous dit que la dérivée est strictement positive sur \mathbb{R} donc f exp est strictement croissante sur \mathbb{R} .

Tableau de variations et représentation graphique

x	$-\infty$	$+\infty$
exp'(x)	+	
exp(x)		

FIN

Revenir au début

