UFRGS

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Departamento de Matemática Pura e Aplicada

MAT01168 - Turma D - 2024/1

Prova da área I

1	2	3	4	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

I - I	$(x,y,z) \in G = G(x,y,z)$ sao funções vetoriais.
1.	$\vec{\nabla} \left(f + g \right) = \vec{\nabla} f + \vec{\nabla} g$
2.	$\vec{ abla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{ abla} \cdot \vec{F} + \vec{ abla} \cdot \vec{G}$
3.	$\vec{\nabla} imes \left(\vec{F} + \vec{G} \right) = \vec{\nabla} imes \vec{F} + \vec{\nabla} imes \vec{G}$
4.	$\vec{\nabla} \left(fg \right) = f \vec{\nabla} g + g \vec{\nabla} f$
5.	$ec{ abla} \cdot \left(f ec{F} ight) = \left(ec{ abla} f ight) \cdot ec{F} + f \left(ec{ abla} \cdot ec{F} ight)$
6.	$\vec{\nabla} \times \left(f \vec{F} \right) = \vec{\nabla} f \times \vec{F} + f \vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F} \right) - \vec{\nabla}^2 \vec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$ec{ abla}arphi(r)=arphi'(r)\hat{r}$

Curvatura, torção e aceleração:					
Nome	Fórmula				
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$				
Vetor binormal	$\vec{B} = \frac{\vec{r}'(t) \times \vec{r}''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ }$				
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\left\ \frac{d\vec{T}}{dt} \right\ }{\left\ \frac{d\vec{r}}{dt} \right\ } = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$				
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$				
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{dt} ight\ = \left\ rac{dec{B}}{dt} ight\ $				
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$				
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$				

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+ au ec{B}$
$\frac{d\vec{B}}{ds}$	=		$- au ec{N}$	

 \bullet Questão 1 (3.0 pontos) Considere a curva produzida pelas equações paramétricas

$$x(t) = 3\operatorname{sen}(4t) - 4\operatorname{cos}(t), \qquad y(t) = 2\operatorname{cos}(3t) + 4\operatorname{sen}(t),$$

 $0 \le t \le 2\pi$. Sabrina se deparou com uma formiga andando sobre a mesa e, ao atacá-la com uma pano de prato, a formiga desesperadamente fugiu descrevendo a trajetória acima. A formiga percorreu toda a trajetória com velocidade constante igual a 5cm/s.

- a) (1.0 ponto) Calcule os vetores $\vec{T},\,\vec{N}$ e \vec{B} em t=0.
- b) (0.25 ponto) Esboce no gráfico ao lado os vetores
 \vec{T} e \vec{N} em t=0.
- c) (0.25 ponto) Marque no gráfico ao lado os cinco pontos onde a função curvatura atinge os cinco maiores máximos locais.
- d) (1.0 ponto) Calcule a curvatura em t = 0.
- e) (0.5 ponto) Calcule a aceleração normal e a aceleração tangencial da formiga em $t=0.\,$

Solução

a) A posição da formiga é dada por

$$\vec{r}(t) = (3\sin(4t) - 4\cos(t))\vec{i} + (2\cos(3t) + 4\sin(t))\vec{j}.$$

Em t=0, a posição é $\vec{r}(0)=-4\vec{i}+2\vec{j}$. Temos:

$$\vec{r}'(t) = (12\cos(4t) + 4\sin(t))\vec{i} + (-6\sin(3t) + 4\cos(t))\vec{j}.$$

Logo,

$$\vec{r}'(0) = 12\vec{i} + 4\vec{j}.$$

e

$$\vec{T}(t) = \frac{\vec{r}'(0)}{\|\vec{r}'(0)\|} = \frac{12\vec{i} + 4\vec{j}}{\sqrt{144 + 16}} = \frac{12\vec{i} + 4\vec{j}}{\sqrt{160}} = \frac{3\vec{i} + \vec{j}}{\sqrt{10}}$$

Use a regra da mão direita na figura para concluir que em $t=0,\, \vec{B}=-\vec{k}.$ Assim,

$$\vec{N}=\vec{B}\times\vec{T}=(-\vec{k})\times\left(\frac{3}{\sqrt{10}}\vec{i}+\frac{1}{\sqrt{10}}\vec{j}\right)=\frac{1}{\sqrt{10}}\vec{i}-\frac{3}{\sqrt{10}}\vec{j}$$

d) Calculamos:

$$\vec{r}'(t) = (12\cos(4t) + 4\sin(t))\vec{i} + (-6\sin(3t) + 4\cos(t))\vec{j}$$

$$\vec{r}'(t) = (-48\sin(4t) + 4\cos(t))\vec{i} + (-18\cos(3t) - 4\sin(t))\vec{j}$$

Em t = 0, temos:

$$\vec{r}'(0) = 12\vec{i} + 4\vec{j},$$

$$\vec{r}''(0) = 4\vec{i} - 18\vec{j}$$

$$\|\vec{r}'(0)\| = \sqrt{144 + 16} = 4\sqrt{10}$$

$$\vec{r}'(0) \times \vec{r}''(0) = (12\vec{i} + 4\vec{j}) \times (4\vec{i} - 18\vec{j}) = (-216 - 16)\vec{k} = -232\vec{k}$$

$$\|\vec{r}'(0) \times \vec{r}''(0)\| = 232$$

$$\kappa(0) = \frac{\|\vec{r}'(0) \times \vec{r}''(0)\|}{\|\vec{r}'(0)\|^3} = \frac{232}{(4\sqrt{10})^3} = \frac{29}{80\sqrt{10}}$$

e) Sabemos que $a_T = v'$ e $a_N = \kappa v^2$. Como a velocidade é constante igual a 5cm/s, $a_T = 0$ e $a_N = 25\kappa$. Também, pelo item d), temos que $\kappa(0) = \frac{29}{80\sqrt{10}}$. Logo,

$$a_T = 25 \frac{29}{80\sqrt{10}} = \frac{145}{16\sqrt{10}}$$

• Questão 2 (1.5 pontos) Considere a seguinte curva:

$$\vec{r} = \cos(t)\vec{i} + 3\sin(t)\vec{j} + c\sin(2t)\vec{k},$$

 $0\leq t\leq 2\pi,\,c>0.$

- a) (0.5 ponto) Calcule o valor de c sabendo que $v(0) = ||\vec{r}'(0)|| = 5$.
- b) (1.0 ponto) Calcule a torção em t=0.

Solução:

a) Calculamos:

$$\vec{r}'(t) = -\sin(t)\vec{i} + 3\cos(t)\vec{j} + 2c\cos(2t)\vec{k},$$

Em t = 0, temos:

$$\vec{r}'(0) = 3\vec{j} + 2c\vec{k},$$

Assim,

$$\|\vec{r}'(0)\| = \sqrt{9 + 4c^2} = 5,$$

Temos

$$9 + 4c^2 = 25 \Rightarrow 4c^2 = 16 \Rightarrow c = 2.$$

b) Calculamos:

$$\vec{r}'(t) = -\sin(t)\vec{i} + 3\cos(t)\vec{j} + 4\cos(2t)\vec{k}$$

$$\vec{r}''(t) = -\cos(t)\vec{i} - 3\sin(t)\vec{j} - 8\sin(2t)\vec{k}$$

$$\vec{r}'''(t) = \sin(t)\vec{i} - 3\cos(t)\vec{j} - 16\cos(2t)\vec{k}$$

Em t = 0, temos:

$$\vec{r}'(0) = 3\vec{j} + 4\vec{k}$$

 $\vec{r}''(0) = -\vec{i}$
 $\vec{r}'''(0) = -3\vec{j} - 16\vec{k}$

Assim,

$$\vec{r}'(0) \times \vec{r}''(0) = -4\vec{j} + 3\vec{k}$$

$$\vec{r}'(0) \times \vec{r}''(0) \cdot \vec{r}'''(0) = 12 - 48 = -36$$

$$||\vec{r}'(0) \times \vec{r}''(0)||^2 = 25$$

Logo,

$$\tau = \frac{\vec{r}''(0) \times \vec{r}'''(0) \cdot \vec{r}'''(0)}{\|\vec{r}''(0) \times \vec{r}''(0)\|^2} = -\frac{36}{25}$$

• Questão 3 (2.5 pontos) Considere os campos vetoriais

$$\vec{F} = (y^2 + e^x)\vec{i} + (2xy + e^y)\vec{i}$$

е

$$\vec{G} = (-y^2 + e^x)\vec{i} + (2xy + e^y)\vec{i}$$

e as curvas

$$C_1: \vec{r} = \cos(t)\vec{i} + \sin(t)\vec{j}, \quad 0 \le t \le \frac{\pi}{2},$$

 C_2 o segmento de reta que liga o pontos $P_0=(0,1)$ até o ponto $P_1(0,0)$ no sentido $P_0\to P_1$, C_3 o segmento de reta que liga o ponto $P_1=(0,0)$ até o ponto $P_1(1,0)$ no sentido $P_1\to P_2$ e $C_4=C_1\cup C_2\cup C_3$.

- a) (0.5 ponto) Verifique se \vec{F} é conservativo.
- b) (0.5 ponto) Verifique se \vec{G} é conservativo.
- c) (0.75 ponto) Calcule $\int_{C_1} \vec{F} \cdot d\vec{r}$.
- d) (0.75 ponto) Calcule $\int_{C_4} \vec{G} \cdot d\vec{r}$.

Solução:

a)

$$\vec{\nabla} \times \vec{F} = \left| \begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (y^2 + e^x) & (2xy + e^y) & 0 \end{array} \right| = (2y - 2y)\vec{k} = \vec{0}.$$

Portanto, \vec{F} é conservativo.

b) Verifique se \vec{G} é conservativo.

$$\vec{\nabla} \times \vec{G} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (-y^2 + e^x) & (2xy + e^y) & 0 \end{vmatrix} = (2y - (-2y))\vec{k} = 4y\vec{k}.$$

Portanto, \vec{F} não é conservativo.

c) O potencial do campo \vec{F} pode ser calculado comparando:

$$\frac{\partial \phi(x,y)}{\partial x} = (y^2 + e^x) \qquad \text{e} \qquad \frac{\partial \phi(x,y)}{\partial y} = (2xy + e^y).$$

Integramos o primeiro termos para obter $\phi(x,y)=xy^2+e^x+C(y)$. Agora, derivamos a última expressão para calcular o valor de C(y), isto é, $\frac{\partial \phi(x,y)}{\partial y}=2xy+\frac{\partial C(y)}{\partial y}=2xy+e^y$. Assim, temos $\frac{\partial C(y)}{\partial y}=e^y$ e, finalmente $C(y)=e^y+K$, onde K é uma constante.

Pelo Teorema Fundamental para Integral de Linhas, temos que

$$\int_{C_1} \vec{F} \cdot d\vec{r} = \phi(0,1) - \phi(1,0) = (1+e^1) - (1+e^1) = 0.$$

d) Pelo teorema de Stokes

$$\int_{C_4} \vec{G} \cdot d\vec{r} = \iint_S \vec{\nabla} \times \vec{G} \cdot \vec{n} dS,$$

onde S é o plano z=0 limitado pela curva fechada C_4 com vetor normal $\vec{n}=\vec{k}$. Assim,

$$\begin{split} \int_{C_4} \vec{G} \cdot d\vec{r} &= \iint_S \vec{\nabla} \times \vec{G} \cdot \vec{n} dS \\ &= \iint_S 4y \vec{k} \cdot \vec{k} dA \\ &= \iint_S 4y dA \\ &= \int_0^{\frac{\pi}{2}} \int_0^1 4r \cos(\theta) r dr d\theta \\ &= \int_0^{\frac{\pi}{2}} \int_0^1 4r^2 \cos(\theta) dr d\theta \\ &= \int_0^{\frac{\pi}{2}} \left[\frac{4r^3}{3} \cos(\theta) \right]_0^1 d\theta \\ &= \frac{4}{3} \int_0^{\frac{\pi}{2}} \cos(\theta) d\theta \\ &= \frac{4}{3} \left[\sin(\theta) \right]_0^{\frac{\pi}{2}} \\ &= \frac{4}{3} . \end{split}$$

- Questão 4 (3.0 pontos) Seja S a superfície orientada para fora que limita o hemisfério de raio unitário centrado na origem $(x^2+y^2+z^2=1, z\geq 0)$ e a porção de plano z=0 tal que $x^2+y^2\leq 1$ e \vec{F} o campo vetorial dado por $\vec{F}=(x^3+z^2+y)\vec{i}+(y^3+x^2+z)\vec{j}+(z^3+x)\vec{k}$.
 - a) (0.5 ponto) Calcule $\vec{\nabla} \cdot \vec{F}$.
 - b) (1.0 ponto) Calcule $\iint_S \vec{F} \cdot \vec{n} dS$ usando o Teorema da Divergência.
 - c) (0.75 ponto) Calcule $\iint_D \vec{F} \cdot \vec{n} dS$, onde D é o disco no plano z=0 limitado por $x^2+y^2 \leq 1$, orientado conforme enunciado.
 - d) (0.75 ponto) Use o resultado dos itens b) e c) para calcular $\iint_H \vec{F} \cdot \vec{n} dS$, onde H é a superfície aberta $x^2 + y^2 + z^2 = 1$, $z \ge 0$, orientado conforme enunciado. Observe que $S = H \cup D$.

Solução:

a) $\vec{\nabla} \cdot \vec{F} = 3(x^2 + y^2 + z^2)$.

b)

c) A superfície z=0 está orientada com vetor normal $\vec{n}=-\vec{k}$. Também, em z=0, o campo é dado por

$$\vec{F} = (x^3 + y)\vec{i} + (y^3 + x^2)\vec{j} + x\vec{k}$$

$$\begin{split} \iint_D \vec{F} \cdot \vec{n} dS &= \iint_D ((x^3 + y)\vec{i} + (y^3 + x^2)\vec{j} + x\vec{k}) \cdot (-\vec{k}) dA \\ &= -\iint_D x dA \\ &= -\int_0^{2\pi} \int_0^1 r \cos(\theta) r dr d\theta \\ &= -\int_0^{2\pi} \int_0^1 r^2 \cos(\theta) dr d\theta \\ &= -\frac{1}{3} \int_0^{2\pi} \cos(\theta) d\theta \\ &= -\frac{1}{3} \left[\sin(\theta) \right]_0^{2\pi} \\ &= 0. \end{split}$$

d) Como

pelo itens anteriores, temos:

$$\iint_{H} \vec{F} \cdot \vec{n} dS = \iint_{S} \vec{F} \cdot \vec{n} dS - \iint_{D} \vec{F} \cdot \vec{n} dS = \frac{6\pi}{5} - 0 = \frac{6\pi}{5}.$$