# **SBML Model Report**

# Model name: "Sivakumar2011 - EGF Receptor Signaling Pathway"



May 6, 2016

#### 1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Vijayalakshmi Chelliah<sup>1</sup> and KC Sivakumar<sup>2</sup> at November second 2011 at 2:44 p. m. and last time modified at April eighth 2016 at 5:15 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 2        |
| species types     | 0        | species              | 23       |
| events            | 0        | constraints          | 0        |
| reactions         | 10       | function definitions | 0        |
| global parameters | 38       | unit definitions     | 0        |
| rules             | 0        | initial assignments  | 0        |

# **Model Notes**

Sivakumar2011 - EGF Receptor Signaling Pathway

EGFR belongs to the human epidermal receptor (HER) family of receptor tyrosine kinases, which consists of four closely related receptors (EGFR (HER1, erbB1), HER2 (neu, erbB2), HER3 (erbB3), and HER4 (erbB4)) that mediate cellular signaling pathways involved in growth

<sup>&</sup>lt;sup>1</sup>EMBL-EBI, viji@ebi.ac.uk

<sup>&</sup>lt;sup>2</sup>Rajiv Gandhi Centre for Biotechnology, sivakumar.kc@gmail.com

and proliferation in response to the binding of a variety of growth factor ligands. There are currently six known endogenous ligands for EGFR: EGF, transforming growth factor- (TGF-), amphiregulin, betacellulin, heparin-binding EGF (HB-EGF), and epiregulin. Upon ligand binding, the EGFR forms homo- or heterodimeric complexes (usually with HER2), which leads to activation of the receptor tyrosine kinase, via autophosphorylation.

#### References:

- The EGF receptor family–multiple roles in proliferation, differentiation, and neoplasia with an emphasis on HER4.
- An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors.
- EGF receptor signaling: putting a new spin on eye development.
- Epidermal growth factor receptor: a promising target in solid tumours.

This model is described in the article: A systems biology approach to model neural stem cell regulation by notch, shh, wnt, and EGF signaling pathways. Sivakumar KC, Dhanesh SB, Shobana S, James J, Mundayoor S.Omics: a Journal of Integrative Biology. 2011; 15(10):729-737

#### Abstract:

The Notch, Sonic Hedgehog (Shh), Wnt, and EGF pathways have long been known to influence cell fate specification in the developing nervous system. Here we attempted to evaluate the contemporary knowledge about neural stem cell differentiation promoted by various drugbased regulations through a systems biology approach. Our model showed the phenomenon of DAPT-mediated antagonism of Enhancer of split [E(spl)] genes and enhancement of Shh target genes by a SAG agonist that were effectively demonstrated computationally and were consistent with experimental studies. However, in the case of model simulation of Wnt and EGF pathways, the model network did not supply any concurrent results with experimental data despite the fact that drugs were added at the appropriate positions. This paves insight into the potential of crosstalks between pathways considered in our study. Therefore, we manually developed a map of signaling crosstalk, which included the species connected by representatives from Notch, Shh, Wnt, and EGF pathways and highlighted the regulation of a single target gene, Hes-1, based on drug-induced simulations. These simulations provided results that matched with experimental studies. Therefore, these signaling crosstalk models complement as a tool toward the discovery of novel regulatory processes involved in neural stem cell maintenance, proliferation, and differentiation during mammalian central nervous system development. To our knowledge, this is the first report of a simple crosstalk map that highlights the differential regulation of neural stem cell differentiation and underscores the flow of positive and negative regulatory signals modulated by drugs.

This model is hosted on BioModels Database and identified by: BIOMD0000000394.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

# 2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

#### 2.1 Unit substance

**Notes** Mole is the predefined SBML unit for substance.

**Definition** mol

#### 2.2 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition**  $m^2$ 

#### 2.4 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

#### 2.5 Unit time

**Notes** Second is the predefined SBML unit for time.

**Definition** s

# 3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

| Id      | Name    | SBO | Spatial Dimensions | Size | Unit  | Constant                    | Outside |
|---------|---------|-----|--------------------|------|-------|-----------------------------|---------|
| default |         |     | 3                  | 1    | litre |                             |         |
| c2      | Cytosol |     | 3                  | 1    | litre | $   \overline{\mathbf{Z}} $ | default |

# 3.1 Compartment default

This is a three dimensional compartment with a constant size of one litre.

# **3.2 Compartment** c2

This is a three dimensional compartment with a constant size of one litre, which is surrounded by default.

Name Cytosol

# 4 Species

This model contains 23 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id   | Name                           | Compartment | Derived Unit                                     | Constant | Boundary<br>Condi-<br>tion |
|------|--------------------------------|-------------|--------------------------------------------------|----------|----------------------------|
| s21  | Akt                            | c2          | $\operatorname{mol} \cdot \operatorname{l}^{-1}$ |          |                            |
| s22  | Akt                            | c2          | $\operatorname{mol} \cdot 1^{-1}$                |          |                            |
| s25  | MEK1_minus_2                   | c2          | $\operatorname{mol} \cdot 1^{-1}$                |          |                            |
| s26  | MEK1_minus_2                   | c2          | $\text{mol} \cdot 1^{-1}$                        |          |                            |
| s27  | ERK1_minus_2                   | c2          | $\text{mol} \cdot l^{-1}$                        |          |                            |
| s28  | ERK1_minus_2                   | c2          | $\text{mol} \cdot l^{-1}$                        |          |                            |
| s29  | RKIP                           | c2          | $\operatorname{mol} \cdot l^{-1}$                |          | $\Box$                     |
| s30  | RKIP                           | c2          | $\mathrm{mol}\cdot\mathrm{l}^{-1}$               |          | $\Box$                     |
| s31  | PP2A                           | c2          | $\mathrm{mol}\cdot \mathrm{l}^{-1}$              |          | $\Box$                     |
| s33  | 14_minus_3_minus_3             | c2          | $\operatorname{mol} \cdot l^{-1}$                |          | $\Box$                     |
| s34  | Mitogenesis_br_Differentiation | c2          | $\text{mol} \cdot l^{-1}$                        |          | $\Box$                     |
| s23  | Raf_minus_1                    | c2          | $\text{mol} \cdot l^{-1}$                        |          | $\Box$                     |
| s24  | Raf_minus_1                    | c2          | $\operatorname{mol} \cdot 1^{-1}$                |          | $\Box$                     |
| s3   | EGF                            | default     | $\mathrm{mol}\cdot \mathrm{l}^{-1}$              |          |                            |
| s123 | EGFR                           | c2          | $\mathrm{mol}\cdot \mathrm{l}^{-1}$              |          | $\Box$                     |
| s124 | Ras                            | c2          | $\mathrm{mol}\cdot\mathrm{l}^{-1}$               |          | $\Box$                     |
| s125 | GDP                            | c2          | $\operatorname{mol} \cdot 1^{-1}$                |          | $\Box$                     |
| s126 | GTP                            | c2          | $\text{mol} \cdot l^{-1}$                        |          | $\Box$                     |
| s127 | PKC                            | c2          | $\text{mol} \cdot l^{-1}$                        |          | $\Box$                     |
| s129 | EGFR                           | c2          | $\operatorname{mol} \cdot 1^{-1}$                |          | $\Box$                     |
| s142 | erlotinib                      | default     | $\operatorname{mol} \cdot 1^{-1}$                |          | $\Box$                     |
| s144 | Complex_br_(EGFR//_br_GAP)     | c2          | $\text{mol} \cdot l^{-1}$                        |          |                            |

| -          |
|------------|
| 7          |
| 7          |
| 0          |
| Q          |
| U          |
| $\bar{c}$  |
| Ö          |
| 0          |
|            |
| 0          |
| Ÿ          |
|            |
| $\Omega$   |
| w          |
|            |
| $\geq$     |
| _          |
| 7 <u>0</u> |
|            |
| _          |
| ш          |
|            |
|            |
|            |
|            |

| Id   | Name               | Compartment | Derived Unit              | Constant | Boundary<br>Condi-<br>tion |
|------|--------------------|-------------|---------------------------|----------|----------------------------|
| s147 | Complex(Grb2//PLC) | c2          | $\text{mol} \cdot l^{-1}$ | $\Box$   |                            |

# **5 Parameters**

This model contains 38 global parameters.

Table 4: Properties of each parameter.

| Id             | Name | SBO Value | Unit | Constant  |
|----------------|------|-----------|------|-----------|
| kcatp_r8-      |      | 0.511     |      | Ø         |
| _s124          |      |           |      | _         |
| kM_r8_s124-    |      | 0.470     |      | Ø         |
| _s23           |      |           |      |           |
| kcatn_r8-      |      | 1.083     |      |           |
| _s124          |      |           |      |           |
| kM_r8_s124-    |      | 0.786     |      |           |
| _s24           |      |           |      |           |
| kcatp_r8_s31   |      | 0.727     |      |           |
| kM_r8_s31_s23  |      | 0.614     |      |           |
| kcatn_r8_s31   |      | 0.636     |      |           |
| kM_r8_s31_s24  |      | 1.367     |      |           |
| kI_r8_s22      |      | 0.583     |      |           |
| kI_r8_s29      |      | 1.219     |      |           |
| kI_r8_s33      |      | 0.293     |      |           |
| kcatp_r9       |      | 2.000     |      |           |
| kM_r9_s25      |      | 0.626     |      |           |
| kcatn_r9       |      | 0.693     |      |           |
| kM_r9_s26      |      | 0.463     |      | $\square$ |
| kcatp_r11      |      | 0.787     |      |           |
| $kM_r11_s29$   |      | 1.459     |      | $\square$ |
| kcatn_r11      |      | 0.566     |      |           |
| kM_r11_s30     |      | 1.021     |      |           |
| kcatp_r14      |      | 0.558     |      |           |
| $kM_r14_s27$   |      | 0.038     |      |           |
| $kcatn_r14$    |      | 0.725     |      |           |
| $kM_r14_s28$   |      | 1.650     |      |           |
| kass_r15       |      | 2.000     |      |           |
| kdiss_r15      |      | 0.074     |      |           |
| kass_r17_s3    |      | 0.730     |      |           |
| kdiss_r17_s3   |      | 1.130     |      |           |
| $kI_re11_s142$ |      | 1.000     |      |           |
| $kass_r6_s144$ |      | 1.000     |      |           |
| kdiss_r6-      |      | 1.000     |      |           |
| _s144          |      |           |      |           |
| kass_r7_s144   |      | 1.000     |      |           |

| Id                                                      | Name | SBO | Value                            | Unit | Constant                |
|---------------------------------------------------------|------|-----|----------------------------------|------|-------------------------|
| kdiss_r7-                                               |      |     | 1.000                            |      | $\square$               |
| kass_r4_s144<br>kdiss_r4-                               |      |     | 1.000<br>1.000                   |      | <b>✓</b>                |
| Vp_re11<br>kM_re11_s129<br>kM_re11_s147<br>ki_re11_s129 |      |     | 1.000<br>1.000<br>1.000<br>1.000 |      | <b>I</b><br>I<br>I<br>I |

# **6 Reactions**

This model contains ten reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| N₀ | Id   | Name | Reaction Equation                                                         | SBO |
|----|------|------|---------------------------------------------------------------------------|-----|
| 1  | r8   |      | s23 <u>\$22, \$29, \$124, \$33, \$31</u> s24                              |     |
| 2  | r9   |      | $s25 \rightleftharpoons s26$                                              |     |
| 3  | r11  |      | $s29 \stackrel{\underline{s127}}{=\!=\!=\!=} s30$                         |     |
| 4  | r14  |      | $s27 \stackrel{\underline{s26}}{\Longrightarrow} s28$                     |     |
| 5  | r15  |      | s28 <u>⇒</u> s34                                                          |     |
| 6  | r17  |      | $2 \text{ s} 123 \stackrel{\text{s} 3}{\rightleftharpoons} \text{ s} 129$ |     |
| 7  | r6   |      | $s127 \rightleftharpoons s127$                                            |     |
| 8  | r7   |      | $s21 \stackrel{\underline{\mathbf{s}144}}{\longleftarrow} s22$            |     |
| 9  | r4   |      | $s124 + s125 \stackrel{s144}{\Longrightarrow} s124 + s126$                |     |
| 10 | re11 |      | $s129 + s147 \xrightarrow{s142} s144$                                     |     |

#### 6.1 Reaction r8

This is a reversible reaction of one reactant forming one product influenced by five modifiers.

**Notes** kinetics of unireactant enzymes

# **Reaction equation**

$$s23 \stackrel{\underline{s22, s29, s124, s33, s31}}{\rightleftharpoons} s24$$
 (1)

#### Reactant

Table 6: Properties of each reactant.

| Id  | Name        | SBO |
|-----|-------------|-----|
| s23 | Raf_minus_1 |     |

#### **Modifiers**

Table 7: Properties of each modifier.

|      | THE TO THE PETERS OF THE INCUMENT |     |  |  |  |
|------|-----------------------------------|-----|--|--|--|
| Id   | Name                              | SBO |  |  |  |
| s22  | Akt                               |     |  |  |  |
| s29  | RKIP                              |     |  |  |  |
| s124 | Ras                               |     |  |  |  |
| s33  | 14_minus_3_minus_3                |     |  |  |  |
| s31  | PP2A                              |     |  |  |  |

#### **Product**

Table 8: Properties of each product.

| Id  | Name        | SBO |
|-----|-------------|-----|
| s24 | Raf_minus_1 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{1} = \frac{\text{kI} \text{r8} \cdot \text{s22}}{\text{kI} \text{r8} \cdot \text{s22} + [\text{s22}]} \cdot \frac{\text{kI} \text{r8} \cdot \text{s29}}{\text{kI} \text{r8} \cdot \text{s29} + [\text{s29}]} \cdot \frac{\text{kI} \text{r8} \cdot \text{s33}}{\text{kI} \cdot \text{r8} \cdot \text{s33} + [\text{s33}]}$$

$$\cdot \left( [\text{s124}] \cdot \frac{\frac{\text{kcatp} \cdot \text{r8} \cdot \text{s124}}{\text{kM} \cdot \text{r8} \cdot \text{s124} \cdot \text{s23}} \cdot [\text{s23}] - \frac{\text{kcatn} \cdot \text{r8} \cdot \text{s124}}{\text{kM} \cdot \text{r8} \cdot \text{s124} \cdot \text{s24}} \cdot [\text{s24}]}{1 + \frac{[\text{s23}]}{\text{kM} \cdot \text{r8} \cdot \text{s124} \cdot \text{s23}} + \frac{[\text{s24}]}{\text{kM} \cdot \text{r8} \cdot \text{s124} \cdot \text{s24}}} + [\text{s31}]} \cdot \frac{\text{kcatp} \cdot \text{r8} \cdot \text{s31}}{\text{kM} \cdot \text{r8} \cdot \text{s31} \cdot \text{s24}} \cdot [\text{s24}]}{1 + \frac{[\text{s23}]}{\text{kM} \cdot \text{r8} \cdot \text{s31} \cdot \text{s23}} + \frac{[\text{s24}]}{\text{kM} \cdot \text{r8} \cdot \text{s31} \cdot \text{s24}}} \right)$$

#### 6.2 Reaction r9

This is a reversible reaction of one reactant forming one product influenced by one modifier.

**Notes** kinetics of non-modulated unireactant enzymes

#### **Reaction equation**

$$s25 \rightleftharpoons s26$$
 (3)

#### Reactant

Table 9: Properties of each reactant.

| Id  | Name         | SBO |
|-----|--------------|-----|
| s25 | MEK1_minus_2 | _   |

## **Modifier**

Table 10: Properties of each modifier.

| Id  | Name        | SBO |
|-----|-------------|-----|
| s24 | Raf_minus_1 |     |

#### **Product**

Table 11: Properties of each product.

| Id  | Name         | SBO |
|-----|--------------|-----|
| s26 | MEK1_minus_2 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{2} = [s24] \cdot \frac{\frac{kcatp\_r^{9}}{kM\_r^{9}\_s25} \cdot [s25] - \frac{kcatn\_r^{9}}{kM\_r^{9}\_s26} \cdot [s26]}{1 + \frac{[s25]}{kM\_r^{9}\_s25} + \frac{[s26]}{kM\_r^{9}\_s26}}$$

$$(4)$$

#### 6.3 Reaction r11

This is a reversible reaction of one reactant forming one product influenced by one modifier.

**Notes** kinetics of non-modulated unireactant enzymes

#### **Reaction equation**

$$s29 = \frac{s127}{s30} s30 \tag{5}$$

#### Reactant

Table 12: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| s29 | RKIP |     |

#### **Modifier**

Table 13: Properties of each modifier.

| Id   | Name | SBO |
|------|------|-----|
| s127 | PKC  |     |

#### **Product**

Table 14: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| s30 | RKIP |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{3} = [s127] \cdot \frac{\frac{k \text{catp\_r11}}{k \text{M\_r11\_s29}} \cdot [s29] - \frac{k \text{catn\_r11}}{k \text{M\_r11\_s30}} \cdot [s30]}{1 + \frac{[s29]}{k \text{M\_r11\_s29}} + \frac{[s30]}{k \text{M\_r11\_s30}}}$$
(6)

#### 6.4 Reaction r14

This is a reversible reaction of one reactant forming one product influenced by one modifier.

**Notes** kinetics of non-modulated unireactant enzymes

#### **Reaction equation**

$$s27 \rightleftharpoons s28 \tag{7}$$

#### Reactant

Table 15: Properties of each reactant.

| Id  | Name         | SBO |
|-----|--------------|-----|
| s27 | ERK1_minus_2 |     |

#### **Modifier**

Table 16: Properties of each modifier.

| Id  | Name         | SBO |
|-----|--------------|-----|
| s26 | MEK1_minus_2 |     |

#### **Product**

Table 17: Properties of each product.

| Id  | Name         | SBO |
|-----|--------------|-----|
| s28 | ERK1_minus_2 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{4} = [s26] \cdot \frac{\frac{\text{kcatp\_r14}}{\text{kM\_r14\_s27}} \cdot [s27] - \frac{\text{kcatn\_r14}}{\text{kM\_r14\_s28}} \cdot [s28]}{1 + \frac{[s27]}{\text{kM\_r14\_s27}} + \frac{[s28]}{\text{kM\_r14\_s28}}}$$
(8)

#### 6.5 Reaction r15

This is a reversible reaction of one reactant forming one product.

**Notes** mass action rate law for first order forward, first order reverse, reversible reactions, continuous scheme

# **Reaction equation**

$$s28 \rightleftharpoons s34$$
 (9)

#### Reactant

Table 18: Properties of each reactant.

| Id  | Name         | SBO |
|-----|--------------|-----|
| s28 | ERK1_minus_2 |     |

#### **Product**

Table 19: Properties of each product.

| Id  | Name                           | SBO |
|-----|--------------------------------|-----|
| s34 | Mitogenesis_br_Differentiation |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_5 = \text{kass\_r15} \cdot [\text{s28}] - \text{kdiss\_r15} \cdot [\text{s34}] \tag{10}$$

#### 6.6 Reaction r17

This is a reversible reaction of one reactant forming one product influenced by one modifier.

**Notes** reversible rapid-equilibrium random order ternary-complex mechanism with one product

#### **Reaction equation**

$$2\,\mathrm{s}123 \stackrel{\mathrm{s}3}{\rightleftharpoons} \mathrm{s}129 \tag{11}$$

#### Reactant

Table 20: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| s123 | EGFR |     |

#### **Modifier**

Table 21: Properties of each modifier.

| Id | Name | SBO |
|----|------|-----|
| s3 | EGF  | ·   |

# **Product**

Table 22: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| s129 | EGFR |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_6 = [s3] \cdot (kass\_r17\_s3 \cdot [s123]^2 - kdiss\_r17\_s3 \cdot [s129])$$
 (12)

#### 6.7 Reaction r6

This is a reversible reaction of one reactant forming one product influenced by one modifier.

**Notes** kinetics of non-modulated unireactant enzymes

# **Reaction equation**

$$s127 \stackrel{\underline{s144}}{=\!=\!=} s127 \tag{13}$$

#### Reactant

Table 23: Properties of each reactant.

| Id | 1   | Name | SBO |
|----|-----|------|-----|
| s  | 127 | PKC  |     |

#### Modifier

Table 24: Properties of each modifier.

|      | Name                       | SBO |
|------|----------------------------|-----|
| s144 | Complex_br_(EGFR//_br_GAP) |     |

#### **Product**

Table 25: Properties of each product.

| Id   | Name | SBO |
|------|------|-----|
| s127 | PKC  |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_7 = [s144] \cdot (kass\_r6\_s144 \cdot [s127] - kdiss\_r6\_s144 \cdot [s127])$$
 (14)

# 6.8 Reaction r7

This is a reversible reaction of one reactant forming one product influenced by one modifier.

**Notes** kinetics of non-modulated unireactant enzymes

# **Reaction equation**

$$s21 \stackrel{\underline{s144}}{\rightleftharpoons} s22 \tag{15}$$

#### Reactant

Table 26: Properties of each reactant.

| Id  | Name | SBO |
|-----|------|-----|
| s21 | Akt  |     |

#### **Modifier**

Table 27: Properties of each modifier.

| Id   | Name                       | SBO |
|------|----------------------------|-----|
| s144 | Complex_br_(EGFR//_br_GAP) |     |

#### **Product**

Table 28: Properties of each product.

| Id  | Name | SBO |
|-----|------|-----|
| s22 | Akt  |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_8 = [s144] \cdot (kass\_r7\_s144 \cdot [s21] - kdiss\_r7\_s144 \cdot [s22])$$
 (16)

#### 6.9 Reaction r4

This is a reversible reaction of two reactants forming two products influenced by one modifier.

**Notes** reversible rapid-equilibrium random order ternary-complex mechanism with two products

# **Reaction equation**

$$s124 + s125 \rightleftharpoons s124 + s126$$
 (17)

#### **Reactants**

Table 29: Properties of each reactant.

| Id   | Name | SBO |
|------|------|-----|
| s124 |      |     |
| s125 | GDP  |     |

## **Modifier**

Table 30: Properties of each modifier.

| Id   | Name                       | SBO |
|------|----------------------------|-----|
| s144 | Complex_br_(EGFR//_br_GAP) |     |

#### **Products**

Table 31: Properties of each product.

| Id           | Name | SBO |
|--------------|------|-----|
| s124<br>s126 | 1100 |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_9 = [s144] \cdot (kass\_r4\_s144 \cdot [s124] \cdot [s125] - kdiss\_r4\_s144 \cdot [s124] \cdot [s126])$$
 (18)

# 6.10 Reaction re11

This is an irreversible reaction of two reactants forming one product influenced by one modifier.

**Notes** mass action rate law for second order irreversible reactions, two reactants, continuous scheme

# **Reaction equation**

$$s129 + s147 \xrightarrow{s142} s144$$
 (19)

#### **Reactants**

Table 32: Properties of each reactant.

| Id   | Name               | SBO |
|------|--------------------|-----|
| s129 | EGFR               |     |
| s147 | Complex(Grb2//PLC) |     |

#### **Modifier**

Table 33: Properties of each modifier.

| Id   | Name      | SBO |
|------|-----------|-----|
| s142 | erlotinib |     |

#### **Product**

Table 34: Properties of each product

| Id   | Name                       | SBO |
|------|----------------------------|-----|
| s144 | Complex_br_(EGFR//_br_GAP) |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{10} = \frac{\text{kI\_re11\_s142}}{\text{kI\_re11\_s142} + [\text{s142}]}$$

$$\cdot \frac{\text{Vp\_re11} \cdot [\text{s129}] \cdot [\text{s147}]}{\text{ki\_re11\_s129} \cdot \text{kM\_re11\_s147} + \text{kM\_re11\_s147} \cdot [\text{s129}] + \text{kM\_re11\_s129} \cdot [\text{s147}] + [\text{s129}] \cdot [\text{s147}]}$$

# 7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

#### **7.1 Species** s21

Name Akt

**Notes** Long Name: Thymoma viral proto-oncogeneSynonym: PKB,RAC protein kinase,protein kinase BAccession: P00551

**Initial amount** 5 mol

Charge 0

This species takes part in one reaction (as a reactant in r7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}21 = -v_8\tag{21}$$

#### **7.2 Species** s22

Name Akt

**Notes** Long Name: Thymoma viral proto-oncogeneSynonym: PKB,RAC protein kinase,protein kinase BAccession: P00551

Initial amount 0 mol

#### Charge 0

This species takes part in two reactions (as a product in r7 and as a modifier in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}22 = v_8 \tag{22}$$

#### **7.3 Species** s25

Name MEK1\_minus\_2

**Notes** Long Name: MAP/ERK kinaseSynonym: Dual specificity mitogen-activated protein kinase kinaseAccession: P00559

Initial amount 5 mol

# Charge 0

This species takes part in one reaction (as a reactant in r9).

$$\frac{\mathrm{d}}{\mathrm{d}t}s25 = -v_2 \tag{23}$$

#### 7.4 Species s26

Name MEK1\_minus\_2

**Notes** Long Name: MAP/ERK kinaseSynonym: Dual specificity mitogen-activated protein kinase kinaseAccession: P00559

Initial amount 0 mol

#### Charge 0

This species takes part in two reactions (as a product in r9 and as a modifier in r14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}26 = v_2 \tag{24}$$

#### **7.5 Species** s27

Name ERK1\_minus\_2

**Notes** Long Name: Extracellular signal-regulated kinaseSynonym: MAPK,Mitogen-activated protein kinase,pp42/44Accession: P00543

Initial amount 5 mol

#### Charge 0

This species takes part in one reaction (as a reactant in r14).

$$\frac{\mathrm{d}}{\mathrm{d}t}s27 = -v_4 \tag{25}$$

#### 7.6 Species s28

Name ERK1\_minus\_2

**Notes** Long Name: Extracellular signal-regulated kinaseSynonym: MAPK,Mitogen-activated protein kinase,pp42/44Accession: P00543

Initial amount 0 mol

#### Charge 0

This species takes part in two reactions (as a reactant in r15 and as a product in r14).

$$\frac{\mathrm{d}}{\mathrm{d}t}s28 = v_4 - v_5 \tag{26}$$

# **7.7 Species** s29

Name RKIP

**Notes** Long Name: Raf-1 kinase inhibitor proteinSynonym: Hippocampal cholinergic stimulatory peptide precursor,PEBP,Phosphatidylethanolamine-binding protein,Terminal flower 1,neuropolypeptide h3,prostastic binding proteinAccession: P00548

Initial amount 5 mol

#### Charge 0

This species takes part in two reactions (as a reactant in r11 and as a modifier in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}s29 = -v_3\tag{27}$$

#### **7.8 Species** s30

Name RKIP

**Notes** Long Name: Raf-1 kinase inhibitor proteinSynonym: Hippocampal cholinergic stimulatory peptide precursor,PEBP,Phosphatidylethanolamine-binding protein,Terminal flower 1,neuropolypeptide h3,prostastic binding proteinAccession: P00548

Initial amount 0 mol

#### Charge 0

This species takes part in one reaction (as a product in r11).

$$\frac{\mathrm{d}}{\mathrm{d}t}s30 = v_3 \tag{28}$$

# **7.9 Species** s31

Name PP2A

**Notes** Long Name: protein phosphatase 2ASynonym: Serine/threonine protein phosphatase 2AAccession: P00547

**Initial amount** 5 mol

#### Charge 0

This species takes part in one reaction (as a modifier in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}31 = 0\tag{29}$$

# **7.10 Species** s33

Name 14\_minus\_3\_minus\_3

**Notes** Long Name: 14-3-3Synonym: PAR-5,Stratifin,protein kinase C inhibitor protein-1 (KCIP-1)Accession: P00539

**Initial amount** 5 mol

#### Charge 0

This species takes part in one reaction (as a modifier in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s}33 = 0\tag{30}$$

#### **7.11 Species** s34

Name Mitogenesis\_br\_Differentiation

**Notes** Long Name: Mitogenesis DifferentiationSynonym: Synonym not specifiedAccession: U02228

**Initial amount** 1 mol

#### Charge 0

This species takes part in one reaction (as a product in r15).

$$\frac{\mathrm{d}}{\mathrm{d}t}s34 = v_5 \tag{31}$$

# **7.12 Species** s23

Name Raf\_minus\_1

**Notes** Long Name: RAF proto-oncogene serine/threonine-protein kinaseSynonym: C-Raf,MAP kinase kinase kinase,Raf-1Accession: P00560

Initial amount 5 mol

#### Charge 0

This species takes part in one reaction (as a reactant in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}s23 = -v_1\tag{32}$$

# **7.13 Species** s24

Name Raf\_minus\_1

**Notes** Long Name: RAF proto-oncogene serine/threonine-protein kinaseSynonym: C-Raf,MAP kinase kinase kinase.Raf-1Accession: P00560

Initial amount 0 mol

#### Charge 0

This species takes part in two reactions (as a product in r8 and as a modifier in r9).

$$\frac{\mathrm{d}}{\mathrm{d}t}s24 = v_1 \tag{33}$$

# **7.14 Species** s3

Name EGF

**Notes** Long Name: Epidermal growth factorSynonym: gurken,transforming growth factor alphaAccession: P00549

Initial amount 5 mol

#### Charge 0

This species takes part in one reaction (as a modifier in r17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}3 = 0\tag{34}$$

# **7.15 Species** s123

Name EGFR

**Notes** Long Name: EGFRSynonym: Gurken receptor, Erb, Neu, neuregulinAccession: P00542

**Initial amount** 5 mol

#### Charge 0

This species takes part in one reaction (as a reactant in r17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}123 = -2\ v_6\tag{35}$$

#### **7.16 Species** s124

Name Ras

Notes Long Name: RasSynonym: Synonym not specifiedAccession: P00552

**Initial amount** 5 mol

# Charge 0

This species takes part in three reactions (as a reactant in r4 and as a product in r4 and as a modifier in r8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}124 = |v_9| - |v_9| \tag{36}$$

# **7.17 Species** s125

Name GDP

Notes Long Name: GDPSynonym: Synonym not specifiedAccession: S01652

Initial amount 0.5 mol

#### Charge 0

This species takes part in one reaction (as a reactant in r4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}125 = -v_9\tag{37}$$

# **7.18 Species** s126

Name GTP

Notes Long Name: GTPSynonym: Synonym not specifiedAccession: S01653

**Initial amount** 0 mol

# Charge 0

This species takes part in one reaction (as a product in r4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}126 = v_9 \tag{38}$$

#### **7.19 Species** s127

Name PKC

Notes Long Name: PKCSynonym: Synonym not specifiedAccession: P00565

Initial amount 2 mol

# Charge 0

This species takes part in three reactions (as a reactant in r6 and as a product in r6 and as a modifier in r11).

$$\frac{d}{dt}s127 = |v_7| - |v_7| \tag{39}$$

# **7.20 Species** s129

Name EGFR

Notes Long Name: EGFRSynonym: Gurken receptor, Erb, Neu, neuregulinAccession: P00542

**Initial amount** 0 mol

#### Charge 0

This species takes part in two reactions (as a reactant in rel1 and as a product in r17).

$$\frac{d}{dt}s129 = v_6 - v_{10} \tag{40}$$

# **7.21 Species** s142

Name erlotinib

Initial amount 0.5 mol

#### Charge 0

This species takes part in one reaction (as a modifier in re11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}142 = 0\tag{41}$$

# **7.22 Species** s144

Name Complex\_br\_(EGFR/../\_br\_GAP)

**Initial amount** 0 mol

#### Charge 0

This species takes part in four reactions (as a product in rel1 and as a modifier in r6, r7, r4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{s}144 = |v_{10}|\tag{42}$$

#### **7.23 Species** s147

Name Complex(Grb2/../PLC)

Initial amount 5 mol

# 

This species takes part in one reaction (as a reactant in re11).

$$\frac{d}{dt}s147 = -v_{10} \tag{43}$$

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany