▼ Solution

а.

Dérivée : f'(x) = 2x - 4.

Pour f'(x) > 0, x > 2. Pour f'(x) < 0, x < 2.

La fonction f(x) est croissante sur $]2,+\infty[$ et décroissante sur $]-\infty,2[$.

b.

Dérivée : $f'(x) = 6x^2 - 12x$.

Pour f'(x)>0, x<0 ou x>2. Pour f'(x)<0, 0< x<2.

La fonction f(x) est croissante sur $]-\infty,0[$ et $]2,+\infty[$, et décroissante sur]0,2[.

c.

Dérivée : $f'(x) = rac{2x(x+1)-(x^2-4)}{(x+1)^2} = rac{x^2+2x+4}{(x+1)^2}$.

Pour f'(x) > 0, $x \in \{-1\}$.

La fonction f(x) est croissante sur $]-\infty,-1[$ et $]-1,+\infty[$.

d.

Dérivée : $f'(x)=rac{x+2}{\sqrt{x^2+4x+4}}$

Pour f'(x) > 0, x > -2. Pour f'(x) < 0, x < -2.

La fonction f(x) est croissante sur $]-2,+\infty[$ et décroissante sur $]-\infty,-2[$.

e.

Dérivée : $f'(x) = x^2 - 4x + 3$.

Pour f'(x)>0, x<1 ou x>3. Pour f'(x)<0, 1< x<3.

La fonction f(x) est croissante sur $]-\infty,1[$ et $]3,+\infty[$, et décroissante sur]1,3[.

f.

Dérivée : $f'(x)=rac{(x^2-4x+4)(x-2)-(x^2-4x+4)}{(x-2)^2}=rac{4}{(x-2)^2}$.

Pour f'(x) > 0, $x \in \{2\}$.

La fonction f(x) est croissante sur $]-\infty,2[$ et $]2,+\infty[$.

g.

Dérivée : $f'(x) = -rac{2(x+1)}{(x^2+2x+1)^2}$.

Pour f'(x) > 0, x < -1. Pour f'(x) < 0, x > -1.

La fonction f(x) est croissante sur $]-\infty,-1[$ et décroissante sur $]-1,+\infty[$.

h.

Dérivée : $f'(x) = rac{3x^2 + 3x + 1}{2\sqrt{x^3 + 3x^2 + 3x + 1}}$.

Pour f'(x)>0, $x>-rac{1}{3}$. Pour f'(x)<0, $x<-rac{1}{3}$.

La fonction f(x) est croissante sur $]-\frac{1}{3},+\infty[$ et décroissante sur $]-\infty,-\frac{1}{3}[$.

i.

Dérivée : $f'(x) = x^3 - 3x^2 + 2x - 1$.

Pour f'(x) > 0, x > 1. Pour f'(x) < 0, x < 1.

La fonction f(x) est croissante sur $]1,+\infty[$ et décroissante sur $]-\infty,1[$.

١j،

Dérivée : $f'(x)=rac{(x^3-3x^2+2x-6)(x^2+x+1)-(x^3-3x^2+2x-6)}{(x^2+x+1)^2}$.

Pour f'(x)>0, $x\in$.

La fonction f(x) est croissante sur

k.

Dérivée : $f'(x)=rac{4x^3+4x}{\sqrt{x^4+4x^2+4}}$.

Pour f'(x) > 0, x > 0. Pour f'(x) < 0, x < 0.

La fonction f(x) est croissante sur $]0,+\infty[$ et décroissante sur $]-\infty,0[$.

1

Dérivée : $f'(x) = x^4 - 8x^3 + 12x^2 - 8x + 5$.

Pour f'(x)>0, x>1. Pour f'(x)<0, x<1.

La fonction f(x) est croissante sur $]1,+\infty[$ et décroissante sur $]-\infty,1[$.