

Sujets Abordés:

- Introduction au design RF
- Comment Visualiser les Champs EM sur un PCB
- Comprendre l'**Effets des Materiaux** sur les champs EM
- Faire un layout pour des frequences jusqu'a 300GHz
- Quantifier l'impact des Effets Parasites
- Utilisation d'outil Open-Source pour la simulation RF
- Comprendre les Sources de Signaux EM

[Fin premiere Partie] Comment fonctionne un crystal

- Oscillateur utilisant l'effet piézoélectrique
- Déformation mécanique d'une matrice cristalline
- Génère un champ électrique
- Effet inverse possible!
- Fréquence de résonance
- Q factor beaucoup plus élevé que circuit RLC équivalent

[Fin premiere Partie] Comment résonne un crystal

[Fin premiere Partie] Condensateur de charge

- Les circuits de lecture CMOS d'oscillateur rajoutent une phase de 180°
- Phase doit être compensée pour atteindre 360°
- Condensateurs viennent compléter le modèle RLCC du crystal
- Crystaux calibrés pour des valeurs de condensateurs C_I

$$egin{aligned} C_1 &= C_2 = 2 \cdot \left(\mathit{C}_L - \mathit{C}_{\mathit{stray}}
ight) \ C_L &= rac{\mathit{C}_1 \cdot \mathit{C}_2}{\mathit{C}_1 + \mathit{C}_2} + \mathit{C}_{\mathit{stray}} \ C_{\mathit{stray}} \sim 5 \, \mathrm{pF} \end{aligned}$$

ESC-16-20S-4X

Frequency	16 MHz
Frequency Tolerance	$\pm 30~$ ppm
Frequency Stability	$\pm 50~$ ppm
Shunt Capacitance	7 pF
Load Capacitance	20 pF
Operating Temperature	-10° Cà 70° C
Storage Temperature	−55 °Cà125 °C
ESR Max	40 Ω

$$egin{aligned} C_1 &= C_2 = 2 \cdot (C_L - C_{stray}) \ C_L &= rac{C_1 \cdot C_2}{C_1 + C_2} + C_{stray} \ C_{stray} \sim 5 \, ext{pF} \end{aligned}$$

[Fin premiere Partie] Condensateur de charge

ESC-16-20S-4X

Frequency	16 MHz	
Frequency Tolerance	$\pm 30~$ ppm	
Frequency Stability	± 50 ppm	
Shunt Capacitance	7 pF	
Load Capacitance	20 pF	
Operating Temperature	−10 °Cà70 °C	
Storage Temperature	−55 °Cà125 °C	
ESR Max	40 Ω	
	•	

$$C_1 = C_2 = 2 \cdot (C_L - C_{stray})$$
 $C_L = \frac{C_1 \cdot C_2}{C_1 + C_2} + C_{stray}$
 $C_{stray} \sim 5 \text{ pF}$
 $C_1 = C_2 = 2 \cdot (20 \text{ pF} - 10 \text{ pF})$

 $C_1 = C_2 = 20 \,\mathrm{pF}$

[Fin premiere Partie] Types d'oscillateurs

XO	VCXO	TCXO	OCXO
Crystal Oscillator	V oltage- C ontrolled	$m{T}$ emperature- $m{C}$ ontrolled	Oven-Controlled

Prochain PPPPP

Bonnes pratiques de design

- Comment choisir ses composantes et optimiser son BOM?
- Comment bien conçevoir un symbole et un footprint?
- Bonnes pratiques de schémas
 - Bonnes pratiques de layout
- Communication avec fabricants, assembleurs et programmeurs

E.L & M. G-C Fin premiere Partie 2025-08-15

[Fin premiere Partie] Références

