Électronique Théorèmes généraux de l'électricité

Andres Arciniegas

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Théorèmes associés aux réseaux linéaires

- Éléments passifs
- Éléments actifs
- Générateurs de tensions
- Générateurs de courants

Plan du cours

- Théorème de superposition
 - Définitions
 - Théorème
 - Exercice
- Théorème de Thévenin
 - Principe
 - Exercice
- Théorème de Norton
 - Principe
 - Exercice

Source indépendante

Une source est **indépendante** lorsque la grandeur générée n'est pas liée à une autre valeur dans le circuit.

Source indépendante

Une source est **indépendante** lorsque la grandeur générée n'est pas liée à une autre valeur dans le circuit.

Exemples:

- générateur standard
- batteries ou piles

Source indépendante

Une source est **indépendante** lorsque la grandeur générée n'est pas liée à une autre valeur dans le circuit.

Exemples:

- générateur standard
- batteries ou piles

Source dépendante

Une source **dépendante** (liée, commandée, contrôlée) est une source de tension (ou de courant) dont la valeur de sortie est fonction de la grandeur d'entrée (tension ou courant).

Source indépendante

Une source est **indépendante** lorsque la grandeur générée n'est pas liée à une autre valeur dans le circuit.

Exemples:

- générateur standard
- batteries ou piles

Source dépendante

Une source **dépendante** (liée, commandée, contrôlée) est une source de tension (ou de courant) dont la valeur de sortie est fonction de la grandeur d'entrée (tension ou courant).

Exemples (modèles électriques) :

- transistors
- de façon générale, les amplificateurs

Source indépendante

Une source est **indépendante** lorsque la grandeur générée n'est pas liée à une autre valeur dans le circuit.

Exemples:

- générateur standard
- batteries ou piles

Source dépendante

Une source **dépendante** (liée, commandée, contrôlée) est une source de tension (ou de courant) dont la valeur de sortie est fonction de la grandeur d'entrée (tension ou courant).

Exemples (modèles électriques) :

- transistors
- de façon générale, les amplificateurs

Remarque: Ces sources dépendantes transforment l'énergie électrique, mais ne sauraient en fournir spontanément.

Passivation ou annulation des sources

Passiver une source = annuler la valeur générée. Il est interdit de passiver les sources liées.

Passivation ou annulation des sources

Passiver une source = annuler la valeur générée. Il est interdit de passiver les sources liées.

Source de tension: passiver = remplacer par un court-circuit

Passivation ou annulation des sources

Passiver une source = annuler la valeur générée. Il est interdit de passiver les sources liées.

Source de tension: passiver = remplacer par un court-circuit

Source de courant : passiver = remplacer par un circuit-ouvert

Circuits linéaires

Un circuit linéaire est un circuit uniquement composé de dipôles linéaires :

Circuits linéaires

Un circuit linéaire est un circuit uniquement composé de dipôles linéaires :

• résistances, condensateurs, bobines, ou

Circuits linéaires

Un circuit linéaire est un circuit uniquement composé de dipôles linéaires :

- résistances, condensateurs, bobines, ou
- tout dipôle dont la relation courant/tension est une équation affine ou toute source liée linéairement (« y = Ax + B ») : loi d'Ohm, amplificateur linéaire...

Circuits linéaires

Un circuit linéaire est un circuit uniquement composé de dipôles linéaires :

- résistances, condensateurs, bobines, ou
- tout dipôle dont la relation courant/tension est une équation affine ou toute source liée linéairement (« y = Ax + B ») : loi d'Ohm, amplificateur linéaire...

Remarque: Dans un circuit linéaire, chaque grandeur dans les dipôles, tension ou courant, est la combinaison linéaire des sources indépendantes.

Applications: circuits linéaires à plusieurs sources.

Objectif: exprimer une grandeur du circuit en fonction de toutes les sources.

Utilisation: remplacer un calcul compliqué par une somme de calculs élémentaires.

Applications : circuits linéaires à plusieurs sources.

Objectif: exprimer une grandeur du circuit en fonction de toutes les sources.

Utilisation: remplacer un calcul compliqué par une somme de calculs élémentaires.

Généralités

Il découle directement des propriétés de linéarité. Ce théorème s'applique donc aux réseaux qui comportent plusieurs générateurs.

Si les générateurs dans le circuit sont indépendants :

- la ddp aux bornes d'une branche est une combinaison linéaire des sources.
- l'intensité dans cette branche est une combinaison linéaire des sources.

Applications : circuits linéaires à plusieurs sources.

Objectif: exprimer une grandeur du circuit en fonction de toutes les sources.

Utilisation: remplacer un calcul compliqué par une somme de calculs élémentaires.

Généralités

Il découle directement des propriétés de linéarité. Ce théorème s'applique donc aux réseaux qui comportent plusieurs générateurs.

Si les générateurs dans le circuit sont indépendants :

- la ddp aux bornes d'une branche est une combinaison linéaire des sources.
- l'intensité dans cette branche est une combinaison linéaire des sources.

Principe de résolution

Pour une branche qui nous intéresse ;

- On annule tous les générateurs du circuit sauf un et on calcule la ddp aux bornes de la branche ou son intensité.
- On recommence le calcul avec un autre générateur jusqu'à passer en revu tous les générateurs.
- Le résultat est la somme de tous les résultats préliminaires.

Exercice

Un client souhaite connaître les performances du montage suivant :

avec $E_1 = 5 \text{ V}$, $E_2 = 10 \text{ V}$, $R_1 = R_3 = 1 \text{ k}\Omega$ et $R_2 = 2 \text{ k}\Omega$.

On ne dispose que d'un voltmètre de précision pour convaincre le client.

- \bigcirc Calculer la tension à vide U_{AB} .
- 2 Lorsque l'alimentation E_1 est défectueuse et E_2 en marche, quelle est la tension à vide U_{AB} ?
- ${ exttt{0}}$ Lorsque l'alimentation $exttt{E}_2$ est défectueuse et $exttt{E}_1$ en marche, quelle est la tension à vide $exttt{U}_{AB}$?
- Si le circuit est branchée à une charge (boîte noire), et un court-circuit se produit entre A et B, quelle information peut-on en tirer?
- 5 Lorsque l'alimentation E₁ est défectueuse et E₂ en marche, quelle est la puissance maximale délivrée vers la charge?
- O Lorsque l'alimentation E_2 est défectueuse et E_1 en marche, quelle est la puissance maximale délivrée vers la charge?
- Que peut-on proposer comme montage de remplacement (générateur de tension réel) ? Quelle est la puissance maximale délivrée vers la charge dans les meilleures conditions de fonctionnement ?
- Onclure.

Théorème de Thévenin

Principe

- Application : circuits linéaires
- Objectif : remplacer n'importe quel circuit linéaire par un générateur de tension équivalent

Principe

- Application : circuits linéaires
- Objectif: remplacer n'importe quel circuit linéaire par un générateur de tension équivalent

On cherche le couple (U, I) aux bornes d'un élément précis d'un circuit :

Détermination de U_{TH} : Tension de circuit ouvert mesurée entre A et B.

Si la charge $R_{\rm C}=\infty \to I=0$, $U=U_{AB0}$

Détermination de U_{TH} : Tension de circuit ouvert mesurée entre A et B.

Si la charge
$$R_{\rm C}=\infty \rightarrow I=0, U=U_{AB0}$$

Si la charge
$$R_C = \infty \rightarrow I = 0$$
, $U = U_{TH}$

Ainsi: $U_{TH} = U_{AB0}$

Détermination de R_{TH} : Résistance de sortie mesurée entre A et B. Deux méthodes :

- Générale : court-circuit
- **Simplifiée**, si les sources sont indépendantes : passivation total et calcul/mesure de la résistance équivalente.

Détermination de R_{TH} : Résistance de sortie mesurée entre A et B. Deux méthodes :

- Générale : court-circuit
- **Simplifiée**, si les sources sont indépendantes : passivation total et calcul/mesure de la résistance équivalente.

Méthode aénérale

Si la charge $R_{c}=0 \rightarrow R_{TH}=U_{TH}/I$

Détermination de R_{TH} : Résistance de sortie mesurée entre A et B. Deux méthodes :

- Générale : court-circuit
- **Simplifiée**, si les sources sont indépendantes : passivation total et calcul/mesure de la résistance équivalente.

Méthode générale

Si la charge $R_c = 0 \rightarrow R_{TH} = U_{TH}/I$

Méthode simplifiée

L'ohmmètre est chargé par le circuit (R_{eq}).

Détermination de R_{TH} : Résistance de sortie mesurée entre A et B. Deux méthodes :

- Générale : court-circuit
- **Simplifiée**, si les sources sont indépendantes : passivation total et calcul/mesure de la résistance équivalente.

Méthode aénérale

Si la charge $R_C = 0 \rightarrow R_{TH} = U_{TH}/I$

Méthode simplifiée

L'ohmmètre est chargé par le circuit (R_{eq}).

La résistance de Thévenin R_{7h} est la résistance équivalente R_{eq} du circuit compliqué vue par la charge lorsque tous les générateurs sont annulés.

Théorème de Norton

Principe

- Application : circuits linéaires
- Objectif: remplacer n'importe quel circuit linéaire par un générateur de courant équivalent

Principe

- Application : circuits linéaires
- Objectif: remplacer n'importe quel circuit linéaire par un générateur de courant équivalent

On cherche le couple (U, I) aux bornes d'un élément précis d'un circuit :

Détermination du modèle équivalent de Norton

Détermination de I_N : Courant de court-circuit mesuré entre A et B.

Si la charge
$$R_{c}=0 \rightarrow I=I_{CC}$$
, $U=0$

Détermination du modèle équivalent de Norton

Détermination de I_N : Courant de court-circuit mesuré entre A et B.

Si la charge
$$R_{c}=0 \rightarrow I=I_{CC}$$
, $U=0$

Si la charge
$$R_c = 0 \rightarrow I = I_N$$
, $U = 0$

Ainsi : $I_N = I_{CC}$

Détermination du modèle équivalent de Norton

Détermination de I_N : Courant de court-circuit mesuré entre A et B.

Si la charge
$$R_c = 0 \rightarrow I = I_{CC}$$
, $U = 0$

Si la charge
$$R_{\text{c}}=0 \rightarrow I=I_{N},\,U=0$$

Ainsi : $I_N = I_{CC}$

Détermination de R_N : Mêmes méthodes que pour le modèle équivalent de Thévenin $R_N = R_{TH}$

Équivalence de générateurs

Équivalences

$$R_N = R_{TH}$$

$$R_{N} = R_{TH}$$

$$I_{N} = \frac{U_{TH}}{R_{TH}}$$

avec
$$E_1 = 5$$
 V, $E_2 = 10$ V, $R_1 = R_3 = 1$ k Ω , $R_2 = 2$ k Ω et $R_C = 1$ k Ω

- Déterminer le modèle équivalent de Thévenin du circuit vu par la charge.
- Déterminer le modèle équivalent de Norton du circuit vu par la charge.

Utiliser éventuellement les transformations Thévenin/Norton pour simplifier le schéma.