Física Básica

Um resumo de Física Baseada baseado no programa do EUF.

Ugo de Lima Pozo

Sumário

kesu	Kesumo							
I. M	I. Mecânica Clássica							
1	Leis de Newton							
2	Movimento unidimensional							
3	Oscilações lineares							
	Movimento em duas e três dimensões							
4								
5	Gravitação newtoniana							
6	Cálculo variacional							
7	Equações de Lagrange e de Hamilton							
8	Forças centrais							
9	Sistemas de partículas							
10								
11	Dinâmica de corpos rígidos							
12	Oscilações acopladas							
	etromagnetismo							
l	Campos eletrostáticos no vácuo e nos materiais dielétricos							
2	Resolução das equações de Poisson e Laplace							
3	Campos magnéticos, correntes estacionárias e materiais não magnéticos							
4	Força eletromotriz induzida e energia magnética							
5	Materiais magnéticos							
6	Equações de Maxwell							
7	Propagação de ondas eletromagnéticas							
8	Reflexão e Refração							
9	Radiação							
10								
III.Fí	sica Moderna							
1	Fundamentos da relatividade restrita							
2	Mecânica relativística das partículas							
3	Propagação da luz e a relatividade newtoniana							
4	Experimento de Michelson e Morley							
5	Postulados da teoria da relatividade restrita							
6	As transformações de Lorentz							
7	Causalidade e simultaneidade							
8	Energia e momento relativísticos							
9	Radiação térmica, o problema do corpo negro e o postulado de Planck							
10								
11	O modelo de Rutherford e o problema da estabilidade dos átomos							
12	<u>•</u>							
13								
14	· · · · · · · · · · · · · · · · · · ·							
IV.M	ecânica Quântica							
1	Introdução às ideias fundamentais da teoria quântica							
2	O aparato matemático da mecânica quântica de Schrödinger							
3	Formalização da Mecânica Quântica. Postulados. Descrição de Heisenberg							
4	O oscilador harmônico unidimensional							
5	Potenciais Unidimensionais							
6	A equação de Schrödinger em três dimensões. Momento angular							
7	Forças centrais e o átomo de Hidrogênio							
8	Spinores na teoria quântica não-relativística							
9	Adição de momentos angulares							
10								
10	Partículas idênticas							
11	i alticulas iucliticas							

V.	Teri	modinâmica e Física Estatística	11				
	1	Sistemas termodinâmicos	11				
	2	Variáveis e equações de estado, diagramas PVT	11				
	3	Trabalho e primeira lei da termodinâmica	11				
	4	Equivalente mecânico do calor	11				
	5	Energia interna, entalpia, ciclo de Carnot	11				
	6	Mudanças de fase	11				
	7	Segunda lei da termodinâmica e entropia	11				
	8	Funções termodinâmicas	11				
	9	Aplicações práticas de termodinâmica	11				
		Teoria cinética dos gases	11				
	11	Descrição Estatística de um Sistema Físico	11				
	12	Ensemble Microcanônico	11				
	13	Ensemble Canônico	11				
	14	Gás Clássico no Formalismo Canônico	11				
	15	Ensemble Grande Canônico	11				
	16	Gás Ideal Quântico	11				
	17	Gás Ideal de Fermi	11				
	18	Condensação de Bose-Einstein	11				
Re	Referências 13						

Resumo

Esta apostila tem como objetivo servir como guia de estudos para o EUF. Ela não tem como objetivo ensinar o conteúdo de que trata, e sim servir como revisão e referência para consulta durante estudos para o EUF.

I. Mecânica Clássica

- 1. Leis de Newton
- 2. Movimento unidimensional
- 3. Oscilações lineares
- 4. Movimento em duas e três dimensões
- 5. Gravitação newtoniana
- 6. Cálculo variacional

Seja $\mathcal{F}(q_1(t),\ldots,q_n(t),\dot{q}_1(t),\ldots,\dot{q}_n(t)):=\int_{t_0}^{t_1}\mathrm{d}t\ f(t,q_1(t),\ldots,q_n(t),\dot{q}_1(t),\ldots,\dot{q}_n(t))$ um funcional que possua mínimos locais nas funções $\mathcal{Q}:=\left\{\chi_1(t),\ldots,\chi_n(t)\right\}$. Então, $\forall i\in\{1,\ldots,n\},\ \mathcal{Q}$ é a solução do sistema de equações diferenciais:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial f}{\partial \dot{q}_i} \right) = \frac{\partial f}{\partial q_i} \tag{1}$$

Exemplo 6.1 (Princípio de Fermat). O princípio de Fermat diz que a luz andando num meio percorre o caminho que minimiza o **tempo** de percurso. Isto é, dado um meio bidimensional cujo índice de refração depende da posição (n = n(x, y)), temos:

$$T = \int_{t_0}^{t_1} dt =$$

$$= \frac{1}{c} \int_{t_0}^{t_1} dt \, \frac{c}{v} \, \frac{ds}{dt} =$$

$$= \frac{1}{c} \int_{A}^{B} ds \, n(x, y) =$$

$$= \frac{1}{c} \int_{A}^{B} \sqrt{dx^2 + dy^2} \, n(x, y) =$$

$$= \frac{1}{c} \int_{x_0}^{x_1} dx \sqrt{1 + \dot{y}^2} \, n(x, y)$$
(2)

Onde $\dot{y}:=rac{\mathrm{d}y}{\mathrm{d}x}$. Desse modo, se definirmos o funcional $\mathcal{T}(y,\dot{y}):=\int_{x_0}^{x_1}\mathrm{d}x\sqrt{1+\dot{y}^2}\;n(x,y)$, sabemos que o caminho y(x) é solução da Equação 1 para $f(x,y,\dot{y})=\sqrt{1+\dot{y}^2}\;n(x,y)$.

Exemplo 6.2 (Catenária). A catenária é a curva que minimiza a energia potencial gravitacional de uma corda inelástica presa pelas suas duas extremidades, e cujo corpo é livre e não encosta no chão.

A energia potencial gravitacional de uma partícula puntiforme é dada por $E_g = mgy$, e, considerando uma corda com densidade linear de massa ρ , podemos fazer:

$$E_{g} = \int_{M} dm \, gy =$$

$$= \int_{A}^{B} ds \, \rho gy =$$

$$= \rho g \int_{A}^{B} \sqrt{dx^{2} + dy^{2}} \, y =$$

$$= \rho g \int_{x_{0}}^{x_{1}} dx \, y \sqrt{1 + \dot{y}^{2}}$$
(3)

Novamente, $\dot{y}:=\frac{\mathrm{d}y}{\mathrm{d}x}$. Também de forma análoga ao Exemplo 6.1, definindo o funcional $\mathcal{E}(y,\dot{y}):=\int_{x_0}^{x_1}\mathrm{d}x\ y\sqrt{1+\dot{y}^2}$, teremos que a curva y(x) será a catenária, e será solução da Equação 1 para $f(y,\dot{y})=y\sqrt{1+\dot{y}^2}$.

Entre outros exemplos úteis, temos:

Nome	Definição	Equação
Braquistócrona	Superfície que minimiza o tempo que uma partí- cula demora para cair diagonalmente sob influên- cia de um campo gravitacional	$f(y, \dot{y}) = y^{\frac{1}{2}} \sqrt{1 + \dot{y}^2}$
Geodésica hiperbólica	1 0	$f(y, \dot{y}) = y^{-1} \sqrt{1 + \dot{y}^2}$

Tabela 1: Resultados comuns de cálculos variacionais

Essas equações podem ser derivadas de maneira extremamente similar à do Exemplo 6.1 e do Exemplo 6.2.

De maneira geral, se um funcional tem um lagrangiano (i.e. $\mathcal{F} = \int dt \ L$) independente do tempo (no caso, a variável de integração), pode-se usar a Identidade de Beltrami para encontrar grandezas constantes que auxiliam a resolução das equações de Euler-Lagrange:

Equação 4 - Identidade de Beltrami. $\forall i \in \{1,\dots,n\} \exists C_i = L - \dot{q}_i \; \frac{\partial L}{\partial \dot{q}_i} \; \text{t.q.} \; \frac{\mathrm{d}C_i}{\mathrm{d}t} = 0, \; \text{i.e.} :$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(L - \dot{q}_i \frac{\partial L}{\partial \dot{q}_i} \right) = 0, \forall i \in \{1, \dots, n\}$$

6. a) Multiplicadores de Lagrange

No caso de haver **restrições** ao movimento da(s) partícula(s), como uma partícula que anda sobre uma canaleta, ou presa a fios etc., que a impeça de se movimentar livremente e portanto relacione diferentes coordenadas, pode-se utilizar os multiplicadores de Lagrange para obter uma lagrangiana que cuja aplicação nas equações de Euler-Lagrange fornece imediatamente a trajetória da partícula.

Exemplo 6.3. Considerando a situação da Figura 1, temos dois blocos com algumas restrições de movimento: definindo a origem sobre a polia, e o tamanho do fio (inextensível) como l, temos que o bloco 1 fica sempre sobre a mesa (i.e., $y_1 = 0$) e que a soma das coordenadas x_1 e y_2 , em módulo, deve corresponder ao tamanho do fio (i.e., $|x_1| + |y_2| = l \Rightarrow x_1 + y_2 = -l$). Para simplificar, podemos impor que o bloco 2 também não se mexe horizontalmente, i.e., $x_2 = 0$.

Figura 1: Blocos 1 e 2, unidos por um fio ideal

Considerando ainda que L=T-V, como será visto na Subseção 7, temos os termos para a lagrangiana tal como especificados na Tabela 2, resultando na lagrangiana da Equação 5.

Origem	Coordenadas	Restrição	Termo da lagrangiana
Bloco 1	x_1, y_1	-	$rac{m_1}{2} \left(\dot{x}_1^2 + \dot{y}_1^2 ight) - mgy_1 \ rac{m_2}{2} \left(\dot{x}_2^2 + \dot{y}_2^2 ight) - mgy_2$
Bloco 2	x_2, y_2	_	$\frac{m_2}{2} \left(\dot{x}_2^2 + \dot{y}_2^2 \right) - mgy_2$
Mesa	λ_1	$y_1 = 0$	$\lambda_1 (y_1 - 0)$
Fio	λ_2	$x_1 + y_2 = -l$	$\lambda_{2}\left(x_{1}+y_{2}+l\right)$
∄ movimento horizontal	λ_3	$x_2 = 0$	$\lambda_3 \left(x_2 - 0 ight)$

Tabela 2: Coordenadas e restrições dos multiplicadores de Lagrange

$$L = \frac{m_1}{2} \left(\dot{x}_1^2 + \dot{y}_1^2 \right) - m_1 g y_1 + \frac{m_2}{2} \left(\dot{x}_2^2 + \dot{y}_2^2 \right) - m_2 g y_2 + \lambda_1 y_1 + \lambda_2 \left(x_1 + y_2 + l \right) + \lambda_3 x_2$$
 (5)

Em resumo, uma restrição de coordenadas pode ser representada como $g(q_1,\ldots,q_n,\dot{q}_1,\ldots,\dot{q}_n)=0$. Se houver $k\in\mathbb{N}$ restrições em vigor em um determinado sistema, a lagrangiana modificada L' que incorpora essas restrições será dada por:

$$L' = L + \sum_{i=1}^{k} \lambda_i \ g_i(q_1, \dots, q_n, \dot{q}_1, \dots, \dot{q}_n)$$
 (6)

Onde L é a lagrangiana original do sistema, e λ_i são as coordenadas extras que deverão ser levadas em consideração na resolução das equações de Euler-Lagrange.

- 7. Equações de Lagrange e de Hamilton
- 8. Forças centrais
- 9. Sistemas de partículas
- 10. Referenciais não inerciais
- 11. Dinâmica de corpos rígidos
- 12. Oscilações acopladas

II. Eletromagnetismo

- 1. Campos eletrostáticos no vácuo e nos materiais dielétricos
- 2. Resolução das equações de Poisson e Laplace
- 3. Campos magnéticos, correntes estacionárias e materiais não magnéticos
- 4. Força eletromotriz induzida e energia magnética
- 5. Materiais magnéticos
- 6. Equações de Maxwell
- 7. Propagação de ondas eletromagnéticas
- 8. Reflexão e Refração
- 9. Radiação
- 10. Eletromagnetismo e Relatividade

III. Física Moderna

- 1. Fundamentos da relatividade restrita
- 2. Mecânica relativística das partículas
- 3. Propagação da luz e a relatividade newtoniana
- 4. Experimento de Michelson e Morley
- 5. Postulados da teoria da relatividade restrita
- 6. As transformações de Lorentz
- 7. Causalidade e simultaneidade
- 8. Energia e momento relativísticos
- 9. Radiação térmica, o problema do corpo negro e o postulado de Planck
- 10. Fótons e as propriedades corpusculares da radiação
- 11. O modelo de Rutherford e o problema da estabilidade dos átomos
- 12. O modelo de Bohr
- 13. Distribuição de Boltzmann da energia
- 14. Átomos, Moléculas e Sólidos

IV. Mecânica Quântica

- 1. Introdução às ideias fundamentais da teoria quântica
- 2. O aparato matemático da mecânica quântica de Schrödinger
- 3. Formalização da Mecânica Quântica. Postulados. Descrição de Heisenberg
- 4. O oscilador harmônico unidimensional
- 5. Potenciais Unidimensionais
- 6. A equação de Schrödinger em três dimensões. Momento angular
- 7. Forças centrais e o átomo de Hidrogênio
- 8. Spinores na teoria quântica não-relativística
- 9. Adição de momentos angulares
- 10. Teoria de perturbação independente do tempo
- 11. Partículas idênticas

V. Termodinâmica e Física Estatística

- 1. Sistemas termodinâmicos
- 2. Variáveis e equações de estado, diagramas PVT
- 3. Trabalho e primeira lei da termodinâmica
- 4. Equivalente mecânico do calor
- 5. Energia interna, entalpia, ciclo de Carnot
- 6. Mudanças de fase
- 7. Segunda lei da termodinâmica e entropia
- 8. Funções termodinâmicas
- 9. Aplicações práticas de termodinâmica
- 10. Teoria cinética dos gases
- 11. Descrição Estatística de um Sistema Físico
- 12. Ensemble Microcanônico
- 13. Ensemble Canônico
- 14. Gás Clássico no Formalismo Canônico
- 15. Ensemble Grande Canônico
- 16. Gás Ideal Quântico
- 17. Gás Ideal de Fermi
- 18. Condensação de Bose-Einstein

Referências

INSTITUTO DE FÍSICA - USP, INSTITUTO DE FÍSICA DE SÃO CARLOS - USP, INSTITUTO DE FÍSICA "GLEB WATAGHIN" - UNICAMP, INSTITUTO DE FÍSICA TEÓRICA - UNESP, UFABC, UFSCAR, UFRGS, UFMG, UFPE, UFRN. **Edital**: Exame Unificado de Pós-Graduações em Física - EUF 2018-2. São Paulo: [s.n.], 2018. Disponível em:

<http://143.54.179.227/Eventos/Temp/edital_euf_2018-25058724.pdf>. Acesso em: 2 abr.
2018.