Student Number

BAULKHAM HILLS HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

2008

MATHEMATICS EXTENSION 1

Time allowed: Two Hours (Plus 5 mins reading time)

GENERAL INSTRUCTIONS

- Attempt all questions
- There are seven questions start each question on a new page
- All necessary working should be shown
- Write, using black or blue pen
- Write your student number at the top of each page of the answer sheets
- At the end of the exam, staple your answers in order, behind the cover sheet.

Question 1

- A and C have co-ordinates (-1,2) and (6,10) respectively. 2 a) Find the point B which divides AC internally in the ratio 2:3.

Marks

- Find $\int \frac{4x}{2x+1} dx$ using the substitution u = 2x + 1. b) 3
- State the domain of the function $y = log_e\left(\frac{3x-1}{x+2}\right)$. C) 3
- Show that the curves $y = e^{x-1}$ and $y = e^{-x}$ intersect at $x = \frac{1}{2}$. d) i) 1
 - ir) Find the acute angle between the curves at this point. 3

Question 2 (start a new page)

- Find the constant term in the expansion $\left(3x^2 + \frac{5}{x^3}\right)^{10}$. a) 3
- Solve $\sin 4x = \cos 2x$ for $0^{\circ} \le x \le 360^{\circ}$ (b) 3
- Evaluate $\int_{-\sqrt{Q-4\pi^2}}^{\frac{3}{4}} \frac{dx}{\sqrt{Q-4\pi^2}}$. c) 3
- Taking x = 2 as the first approximation for the root of $\sin x \frac{x}{3} = 0$ 3 رd) find a closer approximation of the root using one application of Newton's method.

Question 3 (start a new page)

- Find the volume when the area between $y = 2\sin x$, the x and y axes and a) 4 $x = \frac{\pi}{A}$ is rotated about the x axis.
- State the domain and range of $y = 2\cos^{-1}(x-1)$ b) 2
 - ii) Hence sketch the curve 2
- If α , β and γ are the roots of the cubic $2x^3 5x^2 3x + 1 = 0$, find c)

i)
$$\alpha + \beta + \gamma$$

ii)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

iii)
$$\alpha^2 + \beta^2 + \gamma^2$$

Question 4 (start a new page)

a) The diagram shows a conical drinking cup of height 12cm and radius 4cm. The cup is filled with water at a rate of 3cm³ per second.

The height of water at time t seconds is h cm and the radius of the water's surface is r cm.

i) Show that $r = \frac{1}{3}h$.

1

Find the rate at which the height is increasing when the height of the water is 9cm. $(V = \frac{1}{3}\pi r^2 h)$ is the volume of a cone.)

3

b) x = 2at and $y = at^2$ are parametric equations for the parabola below.

Question 4 (cont.)

- Marks
- i) By finding the Cartesian equation of the parabola, find the equation of the tangent at the point A.
- 2

ii) The tangent cuts the x axis at T. Find the coordinates of T.

1

iii) Find the equation of the normal at A.

- 1
- iv) A line through T parallel to the axis of the parabola cuts the normal at R. Show that the coordinates of R are $(ap, ap^2 + a)$.

(v) Show that the locus of R is a parabola and state the equation of it's directrix.

3

Question 5 (start a new page)

a) ABCD is a cyclic quadrilateral. EF is a tangent to the circle and AC || EF.

3

Prove BD bisects $\angle ABC$.

b) The velocity of a particle as it moves along the X axis is given by

$$v^2 = -9x^2 + 18x + 27$$

i) Show that the particle undergoes Simple Harmonic Motion.

2

ii) What is the period of the motion?

1

iii) What is the amplitude of the motion?

2

Question 5 (cont.)

c) The position of two yachts, A and B out at sea subtend an angle of 60° at the base C of a cliff. The distance AC is 3 times the height of the cliff and the distance BC is 4 times the height of the cliff.

- i) Show that the angle of elevation α° of the cliff from Point A is 18°26' 1
- The distance AB is 300 metres greater than the height of the cliff.

 Find the height of the cliff.

Question 6 (start a new page)

a) Solve
$$|x^2 - 9| < 8$$

b) By integrating both sides of the expansion

$$(1+x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + \dots + {}^{n}C_{n}x^{n} \quad \text{prove}$$

$$1 - \frac{1}{2}{}^{n}C_{1} + \frac{1}{3}{}^{n}C_{2} + \dots + \frac{(-1)^{n}}{n+1}{}^{n}C_{n} = \frac{1}{n+1}$$

Question 6 (cont.)

c) A projectile is fired with velocity V m/s from a point 0 at an angle θ with the horizontal and hits the ground at a horizontal distance R from 0. Taking $g = 10 \text{m/s}^2$ you may assume the equations of motion for the projectile.

i.e.
$$\vec{x} = 0$$
 $\vec{y} = -10$
 $\vec{x} = V \cos \theta$ $\vec{y} = -10t + V \sin \theta$
 $\vec{x} = Vt \cos \theta$ $\vec{y} = -5t^2 + Vt \sin \theta$

i) Show that the range
$$R = \frac{V^2 \sin 2\theta}{10}$$
 and that the maximum range is given by $\frac{V^2}{10}$.

ii) The maximum range of a certain rifle is 2000 metres.

How much is the range increased when the rifle is mounted on a car travelling at 30 m/s towards the target, the angle of elevation being unaltered.

Question 7 (start a new page)

Marks

- a) i) Show that $\frac{d}{dx}(\tan^3 x) = 3\tan^2 x + 3\tan^4 x$
 - ii) Hence find $\int \tan^4 x \ dx$ 3
- b) Prove by Mathematical Induction that

$$3 \times 2^2 + 3^2 \times 2^3 + \dots + 3^n \times 2^{n+1} = \frac{12}{5} (6^n - 1)$$
 for all positive integers n .

c) If the 3rd and 4th terms of the binomial $(1 + ax)^n$ are $264x^2$ and $1760x^3$ and n > a, find the values of a and n.

Overtion2. Ten= 10 (3x2) (5x-3) (1) = 10 3 10-K 20-2K K 3K
CK 3 x 5 x = 10 3 10-K K 20-5K Constant tem 20-5k=0 (Constant tem is $\frac{1}{5} = \frac{10}{c_4} = \frac{3}{5} = \frac{1}{1}$ b) Sin 40c = cos 21c 28122x cos 2x = cos2x 25/22/2008/20 - COSZIC = 0 (052×1 (25=2×1-1) = 0 (1) cos2, 1=0 5, 2, 1= 1 21 = 90, 270, 450, 630°, 30°, 150°, 390°, 510 st = 45, 135, 225, 315, 15, 75, 195 25

$$2c) \int_{0}^{34} \frac{dx}{\sqrt{9-4x^{2}}}$$

$$= \int_{0}^{3} \frac{dx}{\sqrt{4(2-x^{2})}}$$

$$= \int_{0}^{3} \frac$$

Question 3.

a)
$$V = \pi \int_{0}^{\pi} 4\sin^{2}x \, dx$$

$$= 2\pi \int_{0}^{\pi} 4\left(\frac{1}{2} - \cos^{2}x\right) dx$$

$$= 2\pi \int_{0}^{\pi} 4\left(\frac{1}$$

$$\frac{4}{4} = \frac{4}{12} + \frac{1}{12} +$$

 $\frac{dL}{dt} = \frac{3}{97}$

= i cm/s. (1)

b)
$$x^{2} = 4\alpha y$$

(i) $y = \frac{x^{2}}{4\alpha}$
 $y' = \frac{2x}{4\alpha}$
 $at = 2ap$
 $y' = p' = p' = p' = p' = p' = p' = q^{2}$

Target $y - ap^{2} = p(x - 2ap)$
 $y = p^{2x} - ap^{2}$
 $y' = ap^{2x} - ap^{2x}$
 $y' = ap^{2x} - ap^{2x}$
 $y' = ap^{2x} - ap^{2x}$

(ii) at $y' = ap^{2x} - ap^{2x}$
 $y' = ap^{2x} - ap^{2x}$

y = = ta not essential to state its in the $x^2 = ay - a^2$ form y = ax + bx + c $x^2 = a(y-a)$

Vertex (0,a) focal length $\frac{a}{4}$: clines trix $y = \frac{3a}{4}$ let LCDF =x° _ LOBC = x° (Angle between targent + chord is equal to the angle in the alternate segment LACD = 2° (Alternate L's on 11 lines. 1 LABO = sio (Angles at circumference on the same are are equal) () - LABD=LOBC: Bobiseds

(i+x) =
$$\frac{1}{(1+x)^{2}} + \frac{1}{(1+x)^{2}} + \frac{$$

$$= \frac{V^{2} \sin 20}{10}$$
Max range when $0 = 45^{\circ}$

$$= \frac{V^{2} \sin 90}{10}$$

$$= \frac{V^{2}}{10}$$

$$= \frac{V^{2}}{10}$$

$$= \frac{V^{2} \sin 90}{10}$$

$$= \frac{V^{2}}{10}$$

$$= \frac{V^{2} \sin 90}{10}$$

$$= \frac{V^{2}}{10}$$

$$= \frac{V^{2} \sin 90}{10}$$

$$= \frac{V^{2} \sin 90}{10}$$

$$= \frac{V \cos 90}{10}$$
Currenthy $x = \frac{100 + 30}{100}$

$$= \frac{100}{100}$$
New $x = \frac{100 + 30}{100}$

$$= \frac{100}{100}$$
Currently $x = -10t + V \sin x$

$$= 0 + 1000$$
This doesn't change.
$$= \frac{V^{2} \sin 90}{100}$$

$$= \frac{100}{100}$$
This doesn't change.
$$= \frac{V^{2} \sin 90}{100}$$

$$= \frac{V^{2} \sin 90}{100}$$

$$= \frac{V \cos 90}{100}$$
This doesn't change.
$$= \frac{V^{2} \sin 90}{100}$$

$$= \frac{V \cos 90}{100}$$

-. New Range = V2 = 2690 m. . Increase in range = 690m Question 7. a) (i) d (tanx) = 3 (tanx) sec2x = 3 tan²x (1+tan²x) 0 = 3 tan²x + 3 tan²x) (11) ot (tanis) = 3 tanis + 3 tanis i ten 4 = 1 (d (hn3x) - 3 tan 3y - Stars = 1 de (tans)-3 tanse = = 1 (tarsi) -3 (sec2-1) $= \frac{1}{3} \left[\frac{1}{3} \tan^3 x - 3 \tan x + 3x \right] + c$ $= \frac{1}{3} \left[\frac{1}{3} \tan^3 x - \frac{1}{3} \tan x + x + c \right]$

b) Prove by M. I.

$$3 \times 2^{2} + 3^{2} \times 2^{3} + ... + 3^{n} \times 2^{n+1} = \frac{12}{5}(6^{n} - 1)$$

Prove true for $n = 1$

$$3 \times 3^{1} \cdot 2^{1} = \frac{12}{5}(6^{1} - 1)$$

$$3 \times 2^{2} = \frac{12}{5} \times 5$$

$$12 = 12$$

$$True for $n = 1$

Assume true for $n = k$

$$3 \times 2^{2} + ... + 3^{k} \times 2^{k+1} = \frac{12}{5}(6^{k} - 1)$$

Proved true for $n = k$

$$3 \times 2^{2} + ... + 3^{k} \times 2^{k+1} = \frac{12}{5}(6^{k} - 1)$$

Proved true for $n = k$

$$3 \times 2^{2} + ... + 3^{k} \times 2^{k+1} + 3^{k+1} \times 2^{k+2} = \frac{12}{5}(6^{k+1} - 1)$$

Proved true for $n = 1$

$$3 \times 2^{2} + ... + 3^{k} \times 2^{k+1} + 3^{k+1} \times 2^{k+2} = \frac{12}{5}(6^{k+1} - 1)$$

Proved true for $n = 1$ assumed true for $n = 1$ then f$$

$$\frac{2.6.6^{k}}{5} - \frac{12}{5} + 2.6.6^{k}$$

$$\frac{2}{5} \cdot 6^{k+1} - \frac{12}{5} + 2.6^{k+1}$$

$$= \frac{2}{5} \cdot 6^{k+1} - \frac{12}{5} + \frac{10.6^{k+1}}{5}$$

$$= \frac{12}{5} \cdot 6^{k+1} - \frac{12}{5} + \frac{10.6^{k+1}}{5}$$

$$= \frac{12}{5} \cdot 6^{k+1} - \frac{12}{5}$$

$$= \frac{12}{5} \cdot 6^{k+1$$

SchO into @ $264(n-2)\alpha = 1760$ 88(n-2)a = 1760(n-2)a = 20 $(n-2)=\frac{20}{3}(-1)$ now n'is a pos. integer i. a=1,2,4,5,10,20 p n=22,12,7,6,4,1. but noa : trial a=1, 2, 4, 5. sch a=1 n=22 into (A) $\frac{22(21)\cdot 1}{3} \neq 264$ a=2 n=12 12(11) 22 = 264 / -1, a = 2, n = 12, 1There are other nethods of doing this...