Guiding Question

• What does "Markov" mean in "Markov Decision Process"?

• A stochastic process is a collection of R.V.s indexed by time.

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0=0 \hspace{1cm} x_{t+1}=x_t+v_t$$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

Example: In a stationary stochastic process (all in this class), this relationship does not change with time $x_0=0$ $x_{t+1}=x_t+v_t$ Shorthand: $v_t\sim \mathcal{U}(\{0,1\})$ (i.i.d.) x'=x+v

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

Example: In a stationary stochastic process (all in this class), this relationship does not change with time $x_0=0$ $x_{t+1}=x_t+v_t$ Shorthand: $v_t\sim \mathcal{U}(\{0,1\})$ (i.i.d.) x'=x+v

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$ (shorthand for $\{x_1,x_2,x_3,\ldots\}$)

Example: In a stationary stochastic process (all in this class), this relationship does not change with time $x_0=0$ $x_{t+1}=x_t+v_t$ Shorthand: $v_t\sim \mathcal{U}(\{0,1\})$ (i.i.d.) x'=x+v

Joint

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_t\}_{t=1}^{\infty}$ or just $\{x_t\}$ (shorthand for $\{x_1, x_2, x_3, \ldots\}$)

Example:

$$x_0 = 0$$

Shorthand:

$$v_t \sim \mathcal{U}(\{0,1\})$$
 (i.i.d.) $x' = x + v$

$$x' = x + v$$

In a *stationary* stochastic process (all in this class), this

relationship does not change with time

Joint

x0	x1	x2	P(x1, x2, x3)
0	0	0	0.25
0	0	1	0.25
0	1	1	0.25
0	1	2	0.25

Simulating a Stochastic Process

030-Stochastic-Processes.ipynb

Markov Process

Markov Process

ullet A stochastic process $\{s_t\}$ is *Markov* if $P(s_{t+1} \mid s_t, s_{t-1}, \dots, s_0) = P(s_{t+1} \mid s_t)$

Markov Process

- ullet A stochastic process $\{s_t\}$ is *Markov* if $P(s_{t+1} \mid s_t, s_{t-1}, \dots, s_0) = P(s_{t+1} \mid s_t)$
- ullet s_t is called the "state" of the process

Break

Break

• Suppose you want to create a Markov model that describes how many new COVID cases will be detected on a particular day. What information should be in the state of the model?

Hidden Markov Model

(Often you can't measure the whole state)

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

• Nodes: R.V.s

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

Nodes: R.V.s

• Edges: Direct probabilistic relationships

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

• Nodes: R.V.s

• Edges: Direct probabilistic relationships

Concretely:

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

Hidden Markov Model

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

Hidden Markov Model

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

Dynamic Bayesian Network

A Bayesian Network is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

Dynamic Bayesian Network

(One step)

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

Hidden Markov Model

Dynamic Bayesian Network

(One step)

A *Bayesian Network* is a directed acyclic graph (DAG) that encodes probabilistic relationships between R.V.s

- Nodes: R.V.s
- Edges: Direct probabilistic relationships

Concretely:
$$P(x_{1:n}) = \prod_i P(x_i \mid pa(x_i))$$

 $= P(A)P(B \mid A)P(C \mid A)$

Markov Process

Hidden Markov Model

Dynamic Bayesian Network

(One step)

Decision Network

Decision Network

Decision Network

Chance node

Decision Network

Chance node

Decision Network

Chance node

Decision node

Decision Network

Chance node

Decision node

Decision Network

Chance node

Decision node

Utility node

Decision Network

MDP Dynamic Decision Network

Chance node

Decision node

Utility node

Decision Network

MDP Dynamic Decision Network

Chance node

Decision node

Utility node

Decision Network

Decision node

MDP Dynamic Decision Network

Decision Network

Decision node

MDP Dynamic Decision Network

Decision Network

MDP Dynamic Decision Network

Decision Network

Decision node

Utility node

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=1}^{\infty} r_t
ight]$$

Decision Network

Decision node

MDP Dynamic Decision Network

$$ext{maximize} \quad \mathrm{E}\left[\sum_{t=1}^{\infty} r_t
ight] \qquad \mathsf{Not well formulated!}$$

Decision Network

Decision node

Utility node

MDP Dynamic Decision Network

1. Finite time

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

discount $\gamma \in [0,1)$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} \mathsf{discount} \ \gamma \in [0,1) \ \mathsf{typically} \ \mathsf{0.9,0.95,0.99} \end{aligned}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} \mathsf{discount} \ \gamma \in [0,1) \ \mathsf{typically} \ \mathsf{0.9,} \ \mathsf{0.95,} \ \mathsf{0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} \mathsf{discount} \ \gamma \in [0,1) \ \mathsf{typically} \ \mathsf{0.9,0.95,0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

$$rac{r}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

$$rac{r}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

Infinite time, but a terminal state (no reward, no leaving) is always reached with probability 1.

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

Guiding Question

What does "Markov" mean in "Markov Decision Process"?