

Information Retrieval

Vector Space Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

The ranking problem

Given

Some evidence of the user's need

Produce

- A list of matching information items
- In decreasing order of relevance

The ranking problem

Given

Some evidence of the user's need query

Produce

- A list of matching information items documents
- In decreasing order of relevance

The ranking problem

Why rank?

Couldn't **f(q,d)** be just an indicator function?

Document selection vs. ranking

Why not select?

The classifier is unlikely accurate

- Over-constrained: no relevants returned
- Under-constrained: too many relevants returned
- Hard to find an appropriate threshold

Not all relevant documents are equally relevant!

Prioritization is needed

Probability Ranking Principle (PRP)

Ranking documents by decreasing probability of relevance results in optimal effectiveness, provided that probabilities are estimated (1) with certainty and (2) independently.

Robertson, 1977

Ranking effectiveness

Effectiveness is about doing the right thing; it's about finding documents that are relevant to the user

Relevance is influenced by many factors

- Topical relevance vs. user relevance
- Task, context, novelty, style

Ranking models define *a view of* relevance

Ranking models

Provide a mathematical framework for ranking

- Each model builds upon different assumptions
- Progress in ranking models has corresponded with improvements in effectiveness
- An effective model should score relevant documents higher than non-relevant documents

Fundamental elements

```
f(q="presidential campaign news", | d | )
                                                        "Bag of Words"
                                                  g("news", d
g("presidential", d)
                         g("campaign", d)
          How many times does "presidential" occur in d?
               Term Frequency (TF): c("presidential", d)
                           Document length:
           How long is d?
        How often do we see "presidential" in the entire collection?
            Document Frequency: df("presidential")
            P("presidential" | collection)
```

Many classical models

Similarity-based models: f(q, d) = sim(q, d)

Vector space models

Probabilistic models: f(d,q) = p(R = 1|d,q)

- Classic probabilistic models
- Language models
- Information-theoretic models

Many extended models

Structural models

Beyond bags-of-words

Semantic models

Beyond lexical matching

Contextual models

Beyond queries

Vector Space Model (VSM)

VSM is a framework

Queries and documents as term vectors

- Term as the basic concept (e.g., word or phrase)
- A vocabulary V defines a |V|-dimensional space
- Vector components as real-valued term weights

Relevance estimated as f(q, d) = sim(q, d)

$$q = (x_1, ..., x_{|V|}) \text{ and } d = (y_1, ..., y_{|V|})$$

What VSM doesn't say

How to define vector dimensions

Concepts are assumed to be orthogonal

How to place vectors in the space

- Term weight in query indicates importance of term
- Term weight in document indicates topicality

How to define the similarity measure

What VSM doesn't say

Dimensions as a bag of words (BOW)

Vectors placed as bit vectors

$$x_i, y_i \in \{0,1\}$$

1: word w_i is present

0: word w_i is absent

Similarity as dot product

$$sim(q, d)$$

$$= q \cdot d$$

$$= x_1 y_1 + \dots + x_{|V|} y_{|V|}$$

$$= \sum_{i=1}^{|V|} x_i y_i$$

Simplest VSM = BOW + bit vectors + dot

$$q = (x_1, ..., x_{|V|})$$
 $sim(q, d)$
 $d = (y_1, ..., y_{|V|})$ $= q \cdot d$
 $= x_1 y_1 + ... + x_{|V|} y_{|V|}$
 $x_i, y_i \in \{0, 1\}$
1: word w_i is present $= \sum_{i=1}^{|V|} x_i y_i$

0: word w_i is absent

What does this ranking function intuitively capture? Is this a good ranking function?

How would you rank these documents?

q = [news about presidential campaign]

ideal

 d_1 ... news about ...

 $d_4 +$

 d_2 ... **news about** organic food **campaign**...

 $d_3 +$

 d_3 ... news of presidential campaign ...

 d_1 –

 d_4 ... news of presidential campaign presidential candidate ...

 d_2 –

 d_5 ... news of organic food campaign... campaign...campaign...campaign...

 d_5 –

Ranking using the simplest VSM

q = [news about presidential campaign]

```
d_1 ... news about ...
```

 $\lfloor d_3 \rfloor$... news of presidential campaign ...

```
V = \{ \text{ news, about, presidential, campaign, food, ...} \}
q = (1, 1, 1, 1, 0, ...)
d_1 = (1, 1, 0, 0, 0, ...) \quad \sin(q, d_1) = 2
d_3 = (1, 0, 1, 1, 0, ...) \quad \sin(q, d_3) = 3
```

Is it effective?

q = [news about presidential campaign $]$	f(q,d)	ranking	ideal
d_1 news about	2	d_2	d_4 +
d_2 news about organic food campaign	3	d_3	d_3 +
d_3 news of presidential campaign	3	d_4	d_1 –
d_4 news of presidential campaign presidential candidate	3	d_1	d_2 –
d_5 news of organic food campaign campaigncampaign	2	d_5	d_5 –

What's wrong with it?

times deserves more credit!

ranking f(q,d)q = [news about presidential campaign]ideal $d_4 + \blacktriangleleft$... news of presidential campaign news of presidential campaign ... d_1 ... presidential candidate ... Matching "presidential" more

Vectors placed as tf vectors

Ranking using VSM with tf vectors

q = [news about presidential campaign]

```
d_3 ... news of presidential campaign ...
```

 d_4 ... news of presidential campaign presidential candidate ...

V = { news, about, presidential, campaign, food, ... } q = (1, 1, 1, 1, 0, ...)

$$d_4 = (1, 0, 2, 1, 0, ...)$$
 $sim(q, d_4) = 4$

 $d_3 = (1, 0, 1, 1, 0, ...)$ $sim(q, d_3) = 3$

What's wrong with it?

important than matching "about"!

ranking f(q,d)q = [news about presidential campaign]ideal d_4 + d_2 ... news about organic food campaign... ... news of presidential campaign ... d_1 Matching "presidential" is more

Vectors placed as tf-idf vectors

Inverse document frequency (idf)

$$idf_{w} = \log \frac{n+1}{n_{w}}$$

- n: number of documents in the corpus
- $\circ n_w$: number of documents where w appears

Why a log-based penalization?

Ranking using VSM with tf-idf vectors

q = [news about presidential campaign]

```
d_2 ... news about organic food campaign...
```

 $oxedsymbol{d_3}$... news of presidential campaign ...

```
V = \{ \text{ news, about, presidential, campaign, food, ...} \}

\text{idf} = (1.5, 1.0, 2.5, 3.1, 1.8, ...)

q = (1, 1, 1, 1, 0, ...)

d_2 = (1 * 1.5, 1 * 1.0, 0, 1 * 3.1, 0, ...) \sin(q, d_2) = 5.6

d_3 = (1 * 1.5, 0, 1 * 2.5, 1 * 3.1, 0, ...) \sin(q, d_3) = 7.1
```

Is it effective?

q = [news about presidential campaign $]$	<i>f</i> (<i>q</i> , <i>d</i>)	ranking	ideal
d_1 news about	2.5	d_5	d_4 +
d_2 news about organic food campaign	5.6	d_4	d_3 +
d_3 news of presidential campaign	7.1	d_3	d_1 –
d_4 news of presidential campaign presidential candidate	9.6	d_2	d_2 –
d_5 news of organic food campaign campaigncampaign	13.9	d_1	d_5 –

Is it effective?

q = [news about presidential campaign]	f(q,d)	ranking	ideal
	2.5	<i>d</i> ₅ ◀	$d_4 + \blacktriangleleft$
	5.6	d_4	d_3 +
	7.1	d_3	d_1 –
d_4 news of presidential campaign presidential candidate	9.6	d_2	d_2 –
d_5 news of organic food campaign campaigncampaign	13.9	d_1	d_5 –

Ranking using VSM with tf-idf vectors

q = [news about presidential campaign]

```
d_4 ... news of presidential campaign ... ... presidential candidate ...
```

... news of organic food campaign... campaign...campaign...campaign...

```
V = { news, about, presidential, campaign, food, ... } idf = (1.5, 1.0, 2.5, 3.1, 1.8, ...) q = (1, 1, 1, 1, 0, ...) d_4 = (1 * 1.5, 0, 2 * 2.5, 1 * 3.1, 0, ...) \quad \sin(q, d_4) = 9.6 d_5 = (1 * 1.5, 0, 0, 4 * 3.1, 1 * 1.8, ...) \quad \sin(q, d_5) = 13.9
```

Transforming tf

What about document length?

q = [news about presidential campaign]

d_4	news of presidential campaign presidential candidate	100 words	$f(q, d_6) > f(q, d_4)$?
d_6	campaign campaign	5000 words	
	news	••••	
	news.		
	presidentialpresidential		

Document length normalization

Penalize long documents

- Avoid matching by chance
- Must also avoid over-penalization

A document is long because

- ∘ It uses more words → more penalization
- It has more content → less penalization

Pivoted length normalization (pln)

$$pln_d = (1 - b) + b \frac{|d|}{avdl}$$

- \circ |d|: document length in tokens
- avdl: average document length in the corpus
- $b \in [0,1]$: parameter

Pivoted length normalization (pln)

State-of-the-art VSM ranking

Pivoted length normalization VSM [Singhal et al. 1996]

$$\circ f(q,d) = \sum_{w \in q} c(w,q) \frac{\ln(1+\ln(1+c(w,d)))}{(1-b)+b\frac{|d|}{avdl}} \log \frac{n+1}{n_w}$$

Okapi/BM25 [Robertson and Walker, 1994]

$$\circ f(q,d) = \sum_{w \in q} c(w,q) \frac{(k_1+1)c(w,d)}{c(w,d)+k_1\left((1-b)+b\frac{|d|}{avdl}\right)} \log \frac{n+1}{n_w}$$

Summary

Fundamental ranking components

- Term and document frequency
- Document length

VSM is a framework

- Components as term and document weights
- Relevance as query-document similarity

Summary

Lack of theoretical justification

- Axiomatic approaches, probabilistic approaches
- Room for further improvement
- Structure, semantics, feedback, context
- Feature-based models

References

Text Data Management: A Practical Introduction to Information Retrieval and Text Mining, Ch. 6
Zhai and Massung, 2016

<u>Search Engines: Information Retrieval in Practice</u>, Ch. 7 Croft et al., 2009

References

Pivoted document length normalization

Singhal et al., SIGIR 1996

Some simple effective approximations to the 2-Poisson

model for probabilistic weighted retrieval

Robertson and Walker, SIGIR 1994

The probability ranking principle in IR

Robertson, J. Doc. 1977

Coming next...

Language Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br