Introduction to Computer Systems

This new course links together different ideas that you have encountered but not covered deeply in other courses. We'll learn about tools used in programming and how they work. The goal of this course is to help you understand how your computer and programming environment work so that you can debug and learn independently more confident.

Quick Facts

- Course time: Spring 2022, TuTh 12:30PM 1:45PM
- · Credits: 4

To request a permission number complete this google form you must be signed into your URI google account to access the form

Why Take this course

- 1. use and understand git/ GitHub
- 2. make sense of cryptic compiler messages
- 3. understand how file organization impacts programming
- 4. fulfill your 300 level CSC elective requirement
- 5. preview ideas that will be explored in depth in 411 & 412

Topics covered

this is a partial list

- · git and other version control
- · bash and other shell scripting
- · filesystems
- basics of hardware
- · what happens when you compile code
- · what are the different types of software on your computer

Catalog Description

How the history and context of computing impacts the practice of computing today. Tools used in programming and computational problem solving. How programming works from high level languages to hardware. Survey of computer hardware and representation of information. Pre: CSC110, any 200 level CSC course, or equivalent.

Learning Outcomes

By the end of the semester, students will be able to:

- 1. Differentiate the different classes of tools used in computer science in terms of their features, roles, and how they interact and justify positions and preferences among popular tools
- 2. Identify the computational pipeline from hardware to high level programming language
- 3. Discuss implications of choices across levels of abstraction
- Describe the context under which essential components of computing systems were developed and explain the impact of that context on the systems.

FAQ

References

These resources are available to students. Level 1 is a basic scratch the surface explanation of the topic. Level 2 is an intermediate level of explanation. Level 3 is an in-depth explanation of the topic.

History of Computers

Tools of the Craft

Survey of Hardware Components

Software Infrastructure

Operating Systems: Crash Course	1		Very basic introduction to
		Video	operating systems and the
			history of how they began.
Files and File Systems	1		Crash Course video that gives a
		Video	very basic introduction to files and
			file systems.
Abstraction Layers Explained	1	Video	Video that gives the basics of how
		Video	abstraction layers are organized.
The Linux File System Explained	1	Video	Video that explains the Linux file
		Video	system. Explains by showing.
Programs, Processes, and Threads	1		Article that explains the differences
			between programs, processes, and
		Article	threads. Has helpful diagrams that
			show the differences and how each
			one works.
Cache Memory in Computer Organization	1		Explains how cache memory works
		Article	and how it is accessed by the CPU.
			Also talks about cache mapping,
			types of cache, and cache
			performance.

Representing Numbers and Letters with Binary	1	Video	Basic intro to how numbers and letters are represented using binary.
Binary, Octal, and Hexadecimal	1	Text	Explains the three different types of number representations used in computer memory. Explains which ones are more efficient for storing information.
Numeral Systems	1	Text w/ chart	BRIEFLY explains how each numeral system works (binary, octal, decimal, and hex). Shows examples of each numeral system would work. Has a conversion table at the bottom of the page.

Machine Representation of Data

What is a Bitwise Operator and How to Use Them	2	Video	Presentation that explains what bitwise operators are and how they work. The presentor gives examples of their use and shows them in action.
Why Your Storage or RAM Size Doesn't Add Up	1	Article	Talks about the difference between
			base-10 and base-2 storage
			options. Table that visualizes the
			differences between the two
			number systems.
Integer and Floating-Point Number Representation	2	Text	3.0-3.10 for information on integer
			representation and 1's and 2's
			complement. 4.0-4.4 for information
			and exercises on Floating-Point
			Numbers.
What are Overflow and Underflow?	1	Article	Explains what overflow and
			underflow are. Each is explained
			using an example.

By Sarah M Brown

[©] Copyright 2021.