20250211 MATH 3301 NOTE 10[1]

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: $+852\ 5693\ 2134;\ +86\ 19921823546;$

Contents

1	Group Action		3
	1.1	Category Axioms	3
	1.2	Orbit Space and Burnside's Lemma	4
	1.3	Class Equation and Sylow's Theorems	6

1 Group Action

1.1 Category Axioms

Definition 1.1. (Group Action)

Let G be a group, X be a set, and $*: G \times X \to X$ be a map. If:

$$\forall x \in X, e * x = x$$

$$\forall g, h \in G \text{ and } x \in X, (gh) * x = g * (h * x)$$

Then G acts on X via *.

Proposition 1.2. Let G be a group, X be a set, and $*: G \times X \to X$ be a map. G acts on X via * iff $\sigma: G \to \operatorname{Perm}(X), g \mapsto \ell_g$ is a group homomorphism.

Proof. We may divide our proof into two parts.

"if" direction: Assume that $\sigma: G \mapsto \operatorname{Perm}(X), g \mapsto \ell_g$ is a group homomorphism.

$$\forall x \in X, e * X = \ell_e(x) = x$$

$$\forall g, h \in G \text{ and } x \in X, (gh) * x = \ell_{gh}(x) = \ell_g(\ell_h(x)) = g * (h * x)$$

"only if" direction: Assume that G acts on X via *.

$$\forall g \in G, \ell_q^{-1} = \ell_{q^{-1}} \implies \ell_q \in \text{Perm}(X)$$

$$\forall g, h \in G \text{ and } x \in X, \ell_{ah}(x) = (gh) * x = g * (h * x) = \ell_a(\ell_h(x)) \implies \ell_{ah} = \ell_a\ell_h$$

Quod. Erat. Demonstrandum.

Definition 1.3. (Group Action Homomorphism)

Let G be a group acting on X, X' via *, *', and $\sigma: X \to X'$ be a map. If:

$$\forall g \in G \text{ and } x \in X, \sigma(g * x) = g *' \sigma(x)$$

Then σ is a group action homomorphism.

Proposition 1.4. Let G be a group acting on X, X' via *, *'.

If $\sigma: X \to X'$ is a group action homomorphism, then:

- (1) If *' can be restricted to $Y' \subseteq X'$, then * can be restricted to $\sigma^{-1}(Y') \subseteq X$.
- (2) If * can be restricted to $Y \subseteq X$, then *' can be restricted to $\sigma(Y) \subseteq X'$.

Proof. We may divide our proof into two parts.

Part 1: Assume that *' can be restricted to $Y' \subseteq X'$.

$$\sigma(G*\sigma^{-1}(Y')) = G*'\sigma(\sigma^{-1}(Y')) \subseteq G*'Y' \subseteq Y' \implies G*\sigma^{-1}(Y') \subseteq \sigma^{-1}(Y')$$

Part 2: Assume that * can be restricted to $Y \subseteq X$.

$$G * Y \subseteq Y \implies G *' \sigma(Y) = \sigma(G * Y) \subseteq \sigma(Y)$$

Quod. Erat. Demonstrandum.

Proposition 1.5. Let G be a group acting on X, X' via *, *'. If $\sigma: X \to X'$ is a bijective group action homomorphism, then so is σ^{-1} .

Proof. As σ is bijective, so is σ^{-1} . In addition, for all $g \in G$ and $x' \in X'$:

$$\sigma^{-1}(g*'x') = \sigma^{-1}(g*'\sigma(\sigma^{-1}(x'))) = \sigma^{-1}(\sigma(g*\sigma^{-1}(x'))) = g*\sigma^{-1}(x')$$

Quod. Erat. Demonstrandum.

1.2 Orbit Space and Burnside's Lemma

Definition 1.6. (Orbit Space)

Let G be a group acting on X via *. For all $x \in X$, define the orbit of x as G * x. Define the orbit space X/G of X as the collection of all orbits.

Example 1.7. \mathbb{Z} acts on \mathbb{Z} transitively by translation, and \mathbb{Z} trivially acts on $\{i\}$ by fixing it. If we union them, then the orbits $\mathbb{Z}, \{i\}$ have distinct cardinalities.

Proposition 1.8. Let G be a group acting on X via *. X/G partitions G.

Proof. It suffices to prove that $x \sim q * x$ is an equivalence relation on X.

Part 1: $x \sim e * x = x$.

Part 2: $x \sim g * x \implies g * x \sim g^{-1} * (g * x) = (g^{-1}g) * x = e * x = x.$

Part 3: $x \sim h * x$ and $h * x \sim g * (h * x) \implies x \sim (gh) * x = g * (h * x)$.

Quod. Erat. Demonstrandum.

Example 1.9. Let G be a group acting on X via * such that X/G is finite.

$$|X/G| = \sum_{\text{Orb} \in X/G} 1 = \sum_{\text{Orb} \in X/G} \frac{\sum_{x \in \text{Orb}} 1}{\sum_{x \in \text{Orb}} 1} = \sum_{\text{Orb} \in X/G} \sum_{x \in \text{Orb}} \frac{1}{|G * x|} = \sum_{x \in X} \frac{1}{|G * x|}$$

Definition 1.10. (Stabilizer)

Let G be a group acting on X via *. For all $x \in X$, define the stabilizer of x as:

$$G_x = \{g \in G : g * x = x\}$$

Proposition 1.11. Let G be a group acting on X via *.

$$\forall x \in X, G_x \leq G$$

Proof. For all $x \in X$:

Part 1: $e * x = x \implies e \in G_x$.

Part 2: $g, h \in G_x \implies (gh) * x = g * (h * x) = g * x = x \implies gh \in G_x$.

Part 3: $g \in G_x \implies g^{-1} * x = g^{-1} * (g * x) = (g^{-1}g) * x = e * x = x \implies g^{-1} \in G_x$.

Quod. Erat. Demonstrandum.

Example 1.12. $G = A_5$ act on $X = \{1, 2, 3, 4, 5\}$ via evaluation.

As A_5 is simple, $G_1 \cong A_4$ is not normal in G, so G/G_1 is not a group.

Proposition 1.13. Let G be a group acting on X via *.

For all $x \in X$, the following map is a bijection:

$$\sigma: G/G_x \to G*x, gG_x \mapsto g*x$$

Proof. σ is clearly surjective. We show that σ a well-defined injection:

$$qG_x = hG_x \iff q \in hG_x \iff q * x = h * x$$

Quod. Erat. Demonstrandum.

Definition 1.14. (Fixed Set)

Let G be a group acting on X via *. For all $g \in G$, define the fixed set of g as:

$$X_q = \{x \in X : g * x = x\}$$

Example 1.15. (Burnside's Lemma)

Let G be a group acting on X via *.

If $\mathbf{Fix} = \{(g, x) \in G \times X : g * x = x\}$ is finite, then:

$$\sum_{g \in G} |X_g| = |\mathbf{Fix}| = \sum_{x \in X} |G_x| = |G| \sum_{x \in X} \frac{1}{|G/G_x|} = |G| \sum_{x \in X} \frac{1}{|G*x|} = |G||X/G|$$

Example 1.16. Assume that $G = D_p$ is the dihedral group of a regular p-gon, where $p \geq 3$ is a prime number, X be the collection of all m-color edge coloring approaches of a regular p-gon, and * be the evaluation action of G on X.

$$|X/G| = \frac{m^p + \sum_{g \in \mathbb{Z}_p^\times} m + \sum_{g \in \sigma \mathbb{Z}_p} m^{\frac{p+1}{2}}}{1 + (p-1) + p} = \frac{m^p + (p-1)m + pm^{\frac{p+1}{2}}}{2p}$$

1.3 Class Equation and Sylow's Theorems

Proposition 1.17. Let G be a group acting on X via *.

$$\forall x, y \in X, G * x = G * y \implies G_x, G_y$$
 are conjugate

Proof. For all $x, y \in X$:

$$(gG_xg^{-1}) * y = (gG_xg^{-1}) * (g * x) = g * x = y \implies gG_xg^{-1} \subseteq G_y$$
$$(g^{-1}G_yg) * x = (g^{-1}G_yg) * (g^{-1} * y) = g^{-1} * y = x \implies g^{-1}G_yg \subseteq G_x$$

Quod. Erat. Demonstrandum.

Example 1.18. (Orbit Decomposition)

Let G be a group acting on X via *. If X is finite, then:

$$|X| = \sum_{G*x \in X/G} |G*x| = |X_G| + \sum_{|G*x| > 1} |G*x|$$
$$= |X_G| + \sum_{|G/G_x| > 1} |G/G_x| = |X_G| + \sum_{G_x \le G} \frac{|G|}{|G_x|}$$

Here, $X_G = \bigcap_{g \in G} X_g$.

Example 1.19. (Class Equation)

Let G be a group, and N be a normal subgroup of G. G acts on N by conjugation with $N_G = N \cap Z_G$, so:

$$|N|=|N\cap Z_G|+\sum_{|G*n|>1}|G*n|$$

Definition 1.20. (p-group)

Let G be a group, and p be a prime number.

If for some $n \geq 0$, $|G| = p^n$, then G is a p-group.

Proposition 1.21. Let G be a group, and p be a prime number.

If G is a nontrivial p-group, then $|Z_G|$ is a nontrivial multiple of p.

Proof. Take the normal subgroup G of G, and consider the class equation:

$$|G| = |Z_G| + \sum_{|G*n| > 1} |G*n|$$

As G is a nontrivial p-group, for some $n \ge 1$, $|G| = p^n$.

Hence, all nontrivial factors of G are divisible by p, which implies:

$$p \text{ divides } |G| - \sum_{|G*n|>1} |G*n| = |Z_G|$$

As $Z_G \ni e$ is nonempty, $|Z_G|$ is a nontrivial multiple of p. Quod. Erat. Demonstrandum.

Definition 1.22. (p-Sylow Subgroup)

Let G be a finite group, p be a prime number, and P be a subgroup of G. If P is a p-group with maximal p-multiplicity, then P is p-Sylow.

Example 1.23. Every prime number p induces a strict total order $<_p$ on \mathbb{N} :

- (1) If the p-multiplicity of l is less than that of l', then $l <_p l'$.
- (2) If the p-multiplicity of l is equal to that of l' and l < l', then $l <_p l'$.

Theorem 1.24. (Sylow's First Theorem)

Let G be a finite group, and p be a prime number.

The set \mathbf{P}_G of all p-Sylow subgroups of G is nonempty.

Proof. We apply the strong form of mathematical induction.

Part 1: When $|G| <_p p$, $\mathbf{P}_G = \{\{e\}\}$ is nonempty.

Part 2: When for some $n \ge 0$, $|G| = p^n$, $\mathbf{P}_G = \{G\}$ is nonempty.

Part 3: For all $n \geq 1$, we wish to show the following implication:

The theorem holds when $|G| <_p p^n \implies$ The theorem holds when $|G| <_p p^{n+1}$

As the theorem is true when $|G| \leq_p p^n$, it suffices to consider the case $p^n <_p |G| <_p p^{n+1}$.

Case 3.1: If some proper stabilizer subgroup G_x of G has order $|G_x| \geq_p p^n$, then:

- (1) Replace G by G_x and repeat the algorithm, until no such G_x is found.
- (2) If |G| is reduced to a power of p, then go to Part 2.
- (3) If |G| is not reduced to a power of p, then go to Case 3.2.

Case 3.2: If no proper stabilizer subgroup G_x of G has order $|G_x| \geq_p p^n$, then:

- (1) From class equation and Cauchy's theorem, Z_G contains an element ξ of order p.
- (2) ξ generates a normal subgroup $\langle \xi \rangle$ of G, and $|G/\langle \xi \rangle| = |G|/p <_p p^{n+1}/p = p^n$.
- (3) From inductive hypothesis, $\mathbf{P}_{\widetilde{G}}$ is nonempty, where $\widetilde{G} = G/\langle \xi \rangle$.
- (4) From the first isomorphism theorem, $\mathbf{P}_G \supseteq \pi^{-1}(\mathbf{P}_{\widetilde{G}})$ is nonempty, where $\pi : g \mapsto \widetilde{g}$. Quod. Erat. Demonstrandum.

Theorem 1.25. (General Cauchy's Theorem)

Let G be a finite group, and p be a prime number.

If p divides |G|, then G has an element ξ of order p.

Proof.

$$p$$
 divides $|G| \implies G$ has a nontrivial p -Sylow subgroup P

$$\implies |Z_P| \text{ is a nontrivial multiple of } p$$

$$\implies Z_P \text{ has an element } \xi \text{ of order } p$$

Quod. Erat. Demonstrandum.

Lemma 1.26. Let G be a nontrivial p-group acting on a finite set X, whose cardinality |X| is not divisible by p. $X_G \neq \emptyset$.

Proof. According to orbit decomposition formula:

$$|X| - |X_G| \equiv \sum_{G_x \le G} \frac{|G|}{|G_x|} \equiv \sum_{G_x \le G} \text{Nontrivial Factor of } p^n \equiv 0 \pmod{p}$$

As |X| is not divisible by p, so does $|X_G|$, which implies $X_G \neq \emptyset$. Quod. Erat. Demonstrandum.

Lemma 1.27. Let G be a group, and H,Q be subgroups of G.

If H acts on Q by conjugation, then:

- (1) HQ is a subgroup of G.
- (1) Q is normal in HQ.
- (2) $H \cap Q$ is normal in H.
- (3) $H/(H \cap Q)$, (HQ)/Q are isomorphic.

Proof. We may divide our proof into four parts.

Part 1: $HQ = QH \implies HQ \le G$.

Part 2: $(h'q')q(h'q')^{-1} = h'(q'qq'^{-1})h'^{-1} \in Q \implies Q$ is normal in HQ.

Part 3: $hqh^{-1} \in H \cap Q \implies H \cap Q$ is normal in H.

Part 4: From the second isomorphism theorem, $H/(H \cap Q)$, (HQ)/Q are isomorphic.

Quod. Erat. Demonstrandum.

Theorem 1.28. (Sylow's Second Theorem)

Let G be a finite group, p be a prime number, and P be a p-Sylow subgroup of G. The G-conjugates of P cover all p-subgroup H of G.

Proof. We may divide our proof into two steps.

Step 1: We construct a special conjugate Q of P.

- (1) As $H \leq G$, the p-group H acts on all G-conjugates G * P of P by conjugation.
- (2) As P is p-Sylow, $|G * P| = |G|/|G_P| = \frac{|G|/|P|}{|G_P|/|P|}$, so |G * P| is not divisible by p.
- (3) Hence, some G-conjugate Q of P is fixed under H-conjugation.

Step 2: We prove that H is contained in this conjugate Q of P.

- (1) As H acts on Q by conjugation, $H/(H \cap Q)$, (HQ)/Q are isomorphic.
- (2) As Q is p-Sylow, HQ = Q, so $H = H \cap Q$, which implies $H \subseteq Q$.

Quod. Erat. Demonstrandum.

Example 1.29. Let G be a finite group, and p be a prime number. G acts on \mathbf{P}_G transitively by conjugation *, so $|\mathbf{P}_G| = |G * P|$ divides |G|.

Theorem 1.30. (Sylow's Third Theorem)

Let G be a finite group, and p be a prime number.

If we restrict * to a p-Sylow subgroup Q of G, then $(\mathbf{P}_G)_Q = \{Q\}$.

Proof. It is clear that $\{Q\} \subseteq (\mathbf{P}_G)_Q$.

For all $H \in (\mathbf{P}_G)_Q$, $H/(H \cap Q)$, (HQ)/Q are isomorphic.

As H, Q are p-Sylow, HQ = Q, so $H = H \cap Q = Q \in \{Q\}$.

Quod. Erat. Demonstrandum.

References

 $[1]\,$ H. Ren, "Template for math notes," 2021.