Topics for today

- Boolean Logic
- Sets

Boolean Logic

- is a branch of mathematics
- results can be true or false
- 1 = T = true
- 0 = F = false

Truth Tables

Truth Tables - Practice

P AND (P		B		
Р	Q	!P	P-> Q	!P AND (P -> Q)
T	Т	F	7	F
T	F	F	F	F
F	T	Т	T	
F	F	+	Т	T

	,	XOR (P OF		
P	Q	P AND Q	P OR Q	(P AND Q) XOR (P OR Q)
T	Т	Т	T	F
T	F	F	1	T T
F	T	F		T
F	F	F	F	F

Truth tables. Practice!

M

Bitwise operations.

	00011101		00110110		00101010
OR	01101101	AND	00101010	XOR	01011010
	0111101		0010000	20 100 100 1	01110000

Bitwise operations.

19 AND 13

13 >> 2 9 << 3

110\(\frac{1}{3}\) 1001000 = 72

Sets

Sets

- A set is a well-defined collection of distinct objects
- Represented using capital letters (S, A, B, U)
- The objects are called elements/members
- No duplicates in sets
- Examples:
 - \circ $A = \{1, 10, 12, 15\}$
 - \circ **B** = {5, 99, 2, 67, 12} = {2, 5, 12, 67, 99}
 - C = {} or Φ (phi greek) or ∅ (miniscule Danish/Norwegian)

Sets (contd...)

Universal set "U" is a set which consists of all the elements of the relevant

sets.

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{3, 4, a, b, c\}$$

$$U = \{1, 2, 3, 4, 5, a, b, c\}$$

Sets. Union.

The union of sets refers to the combination of all elements from the sets

$$\underline{A \cup B} = \{\underline{x} : \underline{x \in A \text{ or } \underline{x \in B}}\}$$

example

$$x \sim 3$$

$$\bigcup$$
 \bigcup

$$A = \{1, 2, 3, 4\} \leftarrow$$

 $B = \{3, 4, 5, 6\} \leftarrow$

$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

Sets. Intersection.

example

The intersection of sets refers to the common elements between the given sets

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

$$A = \{1, 2, 3, 4\}$$

$$B = \{3, 4, 5, 6\}$$

$$A \cap B = \{3, 4\}$$

Sets. Relative complement.

The relative complement also referred to as set difference of a set with respect to another set

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$

example

$$A = \{1, 2, 3, 4\}$$

 $B = \{3, 4, 5, 6\}$

$$A - B = \{1, 2\}$$

Sets. Complement.

The complement of a set is the set of all elements in universal set U that is not in a given set.

$$A' = U - A = \{x : x \in U \text{ and } x \notin A\}$$

example

$$U = \{1, 2, 3, 4, 5, 6\}$$

 $A = \{3, 6\}$

$$A' = \{1, 2, 4, 5\}$$

Sets. Practice!

$$N = \{1,2,3,4,5,\dots\}$$

What are the elements of the set expressed as:

A = { x |
$$x \in N$$
, $x < 6$, x mod 2 == 1}
N = {1,2,3,4,5,6,...}

$$A = \{1, 3, 5\}$$

Sets. Practice!

$$A = \{x \mid x \in N, x < 4\}$$
 $A = \{1,2,3\}$

B =
$$\{x \mid x \in N, x > 11, x <= 15\}$$
 B = $\{12,13,14,15\}$

What is A U B?

A U B =
$$\{1,2,3,12,13,14,15\}$$

$$A - B = \{1,2,3\}$$

Sets. Practice!

What is A - B?

Let A = set of characters from "different"

Let B = set of characters from "effort"

$$A - B = \{d, i, n\}$$

$$A = \{d, i, f, r, e, n, t\}$$

$$B = \{e, f, o, r, t\}$$

THE END