Eine Woche, ein Beispiel 8.15 indecomposable representation of Dynkin quiver

AR-quiver is a powerful tool considering about the indecomposable modules and relations among them. Using the AR-quiver, one can find(not totally serious):

- all the indecomposable modules;
- all the morphisms between these indecomposable modules;
- all the irreducible morphisms and AR-sequences;

However, it's not easy to see the coker and ker of some morphisms given by the AR-quiver.

The following AR-quiver pictures are now useless, since everyone can get better pictures at https://www.math.uni-bielefeld.de/~jgeuenich/string-applet/ or https://www.math.uni-bielefeld.de/~wcrawley/#knitting.

Unfortunately, the knitting process can not draw some AR-quivers even in the case where "there are finite iso class of indec modules of quiver"

e.g.

$$A = K[T]/(T^{2}) \cong KQ/(a^{2})$$

$$Q : 15a$$

$$A = KQ/(ab)$$

$$Q: a > \frac{2}{3}b$$

$$1 \stackrel{c}{\longrightarrow} 3$$

$$A = \frac{kQ}{(ab)}$$

$$Q: | Q: | S(1) = 0$$

$$S(1) = 0$$

$$P(1) = 0$$

$$I(1)$$

$$A = KQ/(ab)$$

$$Q: a > 2$$

$$1 < 3$$

$$P(3) = \frac{1}{2} = I(2)$$

$$P(3) = \frac{1}{2} = I(1)$$

$$P(1) = \frac{1}{2} = I(3)$$

from different component of the AR-quiver of KQ.

For the description of AR quiver of type A and D by a triangulated (puctured) polygon, see [Quiver Representations by Ralf Schiffler, 3.1.3+3.3.3].

Even for bounded quiver algebra with Dynkin quiver, it is not very clear how the AR-quiver is related with the AR-quiver of path algebra.

$$A_{3} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$

$$P(0) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\$$

Bonus: subspace case (projective space version)

These shapes should be as general as possible, otherwise it may be not indecomposable:

e.g. " 2" = $\frac{1}{12210} \oplus_{0|1211}$ " 2" = " 1" \oplus_{00011}

It's not easy to read the informations of them, but AR-quivers can.

---- P(2)

— P(3)

— P(4)