Different Approaches to Manga Colorization

Yuxuan Bao, Xiyuan Chen, Chenkai Sun, Kai Xiong, Xinghao Yu

Goal: Manga Colorization

Motivation: The work of animators is heavy. Could it be possible for computer to generate colored manga images out of black-and-white versions?

Data

Data: Kimetsu no Yaiba

Size: 174

Source: Crawling

Data: Aligned facial images

Size: 13233

Source: Labelled Faces in the Wild dataset (LFW)

Method 1 VAE + MDN Colorization

The training process:

- 1. We train a variational autoencoder on colored images, and generates their feature embeddings in low dimensions.
- 2. We use a Mixture Density Network to model the conditional distribution of lower-dimensional embeddings over original grayscale images as a mixture of Gaussian distributions. Thus, sampling from the MDN network can generate different feature embeddings out of the same grayscale image.

The testing process:

Sampling from the conditional model and then going through the decoder to general several plausible colorization outputs from one grayscale input.

Method 2 cGAN-based Colorization

The training process

- 1. The cGAN model is conditioned on the gray scale image.
- 2. The generator is a conv-deconv neural network, aiming to generate a vivid RGB image indistinguishable from the real one.
- 3. The discriminator contains conv layers, aiming to distinguish between the real and generated RGB image.

The testing process:

Use the generator to produce RGB images from the grayscale inputs.

Generator

Discriminator:

VAE+MDN result:

Original -

cGAN result:

Results

For loss, we use 0.8*quantitative loss (L2) + 0.2*qualitative loss (0-10 human scored)

cGAN loss	VAE+MDN loss
386	4606

In conclusion, we compared two methods, VAE+MDN and cGAN, for colorizing mangas images. We found cGAN produced ones to be more promising. In the future, we hope to find a way to modify the cGAN approach so that it will turn the manga images into into different style (e.g.vibrant, gloomy, etc.).