Course No : EEE G626,

Course Title : Hardware Software Co-design

Instructors/in-charge : Ashish Mishra

Lab-2

Given the task graph in figure and it's corresponding area and delay values on components. Calculate the best mapping which satisfies time constraint of 275 units with minimizing overall area.

Note:

- (i) A cutline partitions the graph into two parts (HW & SW) and cuts minimum **three edges**.
- (ii) Communication delay is **zero**.
- (iii) All the task run **sequentially** on time line(CPU and ASIC)
- (iv)There can be only two components in the system.
- (v) Start from all software implementation and move to hardware implementation.

	Time		Time		Area			
	CPU1	CPU2	ASIC1	ASIC2	CPU1	CPU2	ASIC1	ASIC2
Α	60	30	20	10	40	60	25	45
В	90	50	30	15	40	60	30	35
С	81	54	27	15	40	60	15	20
D	60	40	20	10	40	60	10	15
E	90	44	30	15	40	60	10	10
F	87	30	27	20	40	60	10	25
G	90	50	40	15	40	60	15	35
Н	99	56	33	20	40	60	15	15

(a) Which task is mapped to which component?

[02]

(b) What is the latency and area for the mapping?

[02]

(c) Suppose the parallel execution is possible on ASIC now what is the latency for the solution obtained? Draw the schedule. [02]

Manual Solution

Cuttine	(Hw - SW)	CIA	6100		
-dges	1 (HW - 347)				CZAZ Best
1 - 10	8 C D E F (-1 +1 50 50 54 40 15 20 50 56	TA		TA	
30 A	1 S S S H H S S	×	×	8	295 X
178 8 8	145 S S H H S S EFFI - SW BC 95 - HW CDG - SW AEFH - HW	×	×	×	259,175
	HHSSSSS	×	X	×	X
134	SHSSSSSS	×	X	×	X
1 - 3	15 15 10 44 30 50 56 HHHS S S S S	X	×	8	250,130
	HHS S S HS	X	×	X	245,150
2795		X	X	X	X
2 785	50 54 40 15 20 50 20	X	X	8	279,X
10	15 15 40 44 20 50 56	Y	X	8	260,160
2 4 8 4	1 H H S S S S S S S S S S S S S S S S S		×	X	225, 195
30	30 54 10 15 20 30 30	×	X	(8)	285
30	15 54 40 15 30 50 56			(%)	270, ×
3 4 5 7	H S S H S S S 11520 (3.40 54 56) 18 EF - HW CDGH - SW DGH - HW ARREF - RW	Y		×	260,175
		V	y	×	X
	SHHSSHS		1	(1)	X
5785	5 3 3 5 H 5 H	X	X	(X)	-
4 5 6	ARCE-HW 30 SEH-SW	X	X	X	242,150
30	50 54 40 44 20 15 20	×	X	X	273,X
5 6 7 5	18 15 10 50 54 54 56 18 15 10 50 54 54 56			×	264,165
357 8	S S S S H H H 181610 CG F4-5W G FN-AW ARED-SW	X	X		248,155
* 3 - 1					

Use Genetic Algorithm to solve the problem

Kindly contact me for any further details Ashish Mishra, Lecturer, Department of Electrical and Electronics Engineering,