Markov Decision Processes: Discrete Stochastic Dynamic Programming

Peng Lingwei

August 8, 2019

Contents

4	Chapter4:		Finite-Horizon Markov Decision Processes	
	4.1	OPTI	MALITY CRITERIA	2
		4.1.1	Some Preliminaries	2
		4.1.2	The Expected Total Reward Criterion	2
		4.1.3	Optimal Policies	3
	4.2	FINITE-HORIZON POLICY EVALUATION		
	4.3	OPTIMALITY EQUATIONS AND THE PRINCIPLE OF OP-		
		TIMA	LITY	4
	4.4	OPTII	MALITY OF DETERMINISTIC MARKOV POLICIES	6
	4.5	BACK	WARD INDUCTION	7
	4.6	OPTI	MALITY OF MONOTONE POLICIES	7
		4.6.1	Structured Policies	7
		4.6.2	Superadditive Functions	7
	4.7	Optim	ality of Monotone Policies	7
5	Infinite-Horizon Models: Foundations			8
	5.1	THE V	VALUE OF A POLICY	8
	5.2			8
6	Discounted Markov Decision Problems			10
	6.1	POLE	CY EVALUATION (Stationary Policy)	10
	6.2		MALITY EQUATIONS	10
	6.3		E ITERATION AND ITS VARIANTS	13
			Rates of Convergence	13
			Value Iteration	14
	6.4		CY ITERATION	15

Chapter4: Finite-Horizon Markov Decision Pro-4 cesses

OPTIMALITY CRITERIA 4.1

4.1.1Some Preliminaries

About MDP:

- 1. $\pi = (d_1, d_2, \dots, d_{N-1}) \in \Pi^{HR}$;
- 2. $h_N = (s_1, a_1, s_2, \dots, s_N)$
- 3. Rewards sequence: $\{r_1(s_1, a_1), r_2(s_2, a_2), \dots, r_{N-1}(s_{N-1}, a_{N-1}), r_N(s_N)\}$
 - $\pi \in \Pi^{HD}$, $\{r_1(X_1, d_1(H_1)), \dots, r_{N-1}(X_{N-1}, d_{N-1}(H_{N-1})), r_N(X_N)\}$
 - $\pi \in \Pi^{MD}$, $\{r_1(X_1, d_1(X_1)), \dots, r_{N-1}(X_{N-1}, d_{N-1}(X_{N-1})), r_N(X_N)\}$
- 4. $R = (R_1, R_2, \dots, R_N)$, where $R_t = r_t(X_t, Y_t)$, and $|R_t| \le M < \infty$.
- 5. $\mathbb{P}_{R}^{\pi}(r_1, r_2, \dots, r_N) = \mathbb{P}^{\pi}\left[\left\{(s_1, a_1, \dots, s_N) : (r(s_1, a_1), \dots, r_N(s_N)) = (r_1, \dots, r_N)\right\}\right]$

Definition:

1. The random vairable U is stochastically greater than V:

$$\forall t \in \mathbb{R}, \quad P(V > t) \le P(U > t).$$

2. Probability distribution P_2 is stochastically greater than P_1 if:

$$\forall t \in \mathbb{R}, \quad \int_{t}^{\infty} p_1(t)dt \le \int_{t}^{\infty} p_2(t)dt.$$

3. The random vector $\vec{U} = (U_1, \dots, U_n)$ is stochastically greater than the random vector $\vec{V} = (V_1, \dots, V_n)$:

$$\forall f \in \{f : \mathbb{R}^n \to \mathbb{R} | \vec{v} \leq \vec{u} \Rightarrow f(\vec{v}) \leq f(\vec{u})\}, \quad \mathbb{E}[f(\vec{V})] \leq \mathbb{E}[f(\vec{U})]$$

4.1.2 The Expected Total Reward Criterion

The expected total reward criterion:

1.
$$\pi \in \Pi^{HR}$$
: $v_N^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) \right\}$.

2.
$$\pi \in \Pi^{HD}$$
: $v_N^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} r_t(X_t, d_t(H_t)) + r_N(X_N) \right\}$.

3. Discounted reward:
$$\pi \in \Pi^{HR}$$
,
$$v_{N,\lambda}^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} \lambda^{t-1} r_t(X_t, d_t(H_t)) + \lambda^{N-1} r_N(X_N) \right\}.$$

Taking the discount factor into account does not effect any theoretical results or algorithms in the finite-horizon case but might effect the decision maker's preference for policies.

4.1.3 Optimal Policies

Definition:

- 1. Optimal policy $\pi^* : \forall \pi \in \Pi^{HR}, v_N^{\pi^*} \succeq v_N^{\pi}$.
- 2. ϵ -optimal policy, $\pi^* : \forall \pi \in \Pi^{HR}, v_N^{\pi_{\epsilon}^*} + \epsilon \succeq v_N^{\pi}$.
- 3. Optimal value: $v_N^* = \sup_{\pi \in \Pi^{HR}} v_N^{\pi}$.
- 4. We can get $v_N^{\pi^*} = v_N^*$ and $v_N^{\pi_{\epsilon}^*} + \epsilon > v_N^*$.
- 5. Considering initial state distribution P_1 : $v_N^{\pi,P_1} = \sum_{s \in S} v_N^{\pi}(s) P_1\{X_1 = s\}$.

Markov decision problem = Markov decision process + Optimality criteria

4.2 FINITE-HORIZON POLICY EVALUATION

- 1. $\pi = (d_1, d_2, \dots, d_{N-1}) \in \Pi^{HR}$
- 2. Define: $u_t^{\pi}(h_t) = \mathbb{E}_{h_t}^{\pi} \left\{ \sum_{n=t}^{N-1} r_n(X_n, Y_n) + r_N(X_N) \right\}, (u_t^{\pi} : H_t \to \mathbb{R}).$ And we define $u_N^{\pi}(h_N) = r_N(s_N).$
- 3. Finite horizon-policy evaluation algorithm $(\pi \in \Pi^{HD})$:

$$\hat{u}_{t}^{\pi}(h_{t}) = r_{t}(s_{t}, d_{t}(h_{t})) + \sum_{s' \in S} p_{t}(s'|s_{t}, d_{t}(h_{t})) \hat{u}_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), s'). \quad ((h_{t}, d_{t}(h_{t}), s') \in H_{t+1})$$

$$= r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \hat{u}_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), X_{t+1}) \right\}$$

Proof. Part proof with backward induction hypothesis $(u^{\pi}_{h_{t+1}} = \hat{u}^{\pi}_{h_{t+1}})$:

$$\begin{split} \hat{u}_{t}^{\pi}(h_{t}) = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ u_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), X_{t+1}) \right\} \\ = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \mathbb{E}_{h_{t+1}}^{\pi} \left\{ \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} \right\} \\ = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} \\ = & \mathbb{E}_{h_{t}}^{\pi} \left\{ r_{t}(s_{t}, d_{t}(h_{t})) + \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} = u_{t}^{\pi}(h_{t}) \end{split}$$

4. Finite horizon-policy evaluation algorithm ($\pi \in \Pi^{HR}$):

$$\hat{u}_t^{\pi}(h_t) = \sum_{a \in A_{s_t}} q_{d_t(h_t)}(a) \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) \hat{u}_{t+1}^{\pi}(h_t, a, s'). \right\}$$

5. Finite horizon-policy evaluation algorithm $(\pi \in \Pi^{MD})$:

$$\hat{u}_t^{\pi}(s_t) = r_t(s_t, d_t(s_t)) + \sum_{s' \in S} p_t(s'|s_t, d_t(s_t)) \hat{u}_{t+1}^{\pi}(s').$$

- 6. The computation complexity. There are K states and L actions, then:
 - If $\pi \in \Pi^{HD}$, then requiring $K \sum_{i=0}^{N-1} (KL)^i$ multiplications.
 - If $\pi \in \Pi^{MD}$, then requiring $(N-1)K^2L$ multiplications.

4.3 OPTIMALITY EQUATIONS AND THE PRINCIPLE OF OPTIMALITY

Optimality equations (Bellman equations or functional equations).

We start study this equation:

$$u_t^*(h_t) = \sup_{\pi \in \Pi^{HR}} u_t^{\pi}(h_t)$$

When minimizing costs instead of maximizing rewards, we sometimes refer to u_t^* as a **cost-to-go** function.

Definition 1. (Optimality equations).

$$\hat{u}_t(h_t) = \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) \hat{u}_{t+1}(h_t, a, s') \right\}, \quad s.t. \ \hat{u}_N(h_N) = r_N(s_N).$$
(1)

If A_{s_t} is finite, it can be replaced by max. Then, $\forall h_t, \hat{u}_t(h_t) = u_t^*(h_t)$.

Proof. The proof is in two parts.

Let arbitrary $\pi' = (d'_1, d'_2, \dots, d'_{N-1}) \in \Pi^{HR}$.

Step1:

First, we have $u_N^{\pi'}(h_N) = \hat{u}_N(h_N) = u_N^*(h_N)$.

Then, because we take the operation sup, we reasonably have $\hat{u}_{N-1}(h_{N-1}) \ge u_{N-1}^*(h_{N-1})$.

Assuming that $\forall h_t \in H_t$, and t = n + 1, ..., N, we have $\hat{u}_t(h_t) \geq u_t^*(h_t)$.

$$\begin{split} \hat{u}_n(h_n) &= \sup_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(h_n, a, s') \right\} \\ &\geq \sup_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^*(s_n, a, s') \right\} \\ &\geq \sum_{a \in A_{s_n}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\} \\ &\geq u_n^{\pi'}(h_n) \end{split}$$

Which means that, $\forall \pi \in \Pi^{HR}, \hat{u}_n(h_n) \geq u_n^{\pi}(h_n)$.

Step2:

 $\forall \epsilon$, we can construct $\pi' \in \Pi^{HR}$ for which: $u_n^{\pi'}(h_n) + (N-n)\epsilon \geq \hat{u}_n(h_n)$. To do this, construct a policy $\pi' = (d'_1, d'_2, \dots, d'_{N-1}) \in \Pi^{HR}$ by choosing $d_n(h_n)$ to satisfy

$$\sum_{a \in A_{S_t}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(s_n, a, s') \right\} + \epsilon \ge \hat{u}_n(h_n).$$

First, we have $u_N^{\pi'}(h_N) = u_N(h_N)$. Then, we assume that $u_t^{\pi'}(h_t) + (N-t)\epsilon \ge u_t(h_t)$ for $t = n+1, \ldots, N$.

$$u_n^{\pi'}(h_n) = \sum_a q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\}$$

$$\geq \sum_a q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(s_n, a, s') \right\} - (N - n - 1)\epsilon$$

$$\geq \hat{u}_n(h_n) - (N - n)\epsilon$$

Step3: $u_n^*(h_n) + (N-n)\epsilon \ge u_n^{\pi'}(h_n) + (N-n)\epsilon \ge u_n(h_n) \ge u_n^*(h_n)$. The lefting question is

$$\int_{a \in A_{s_n}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\} da$$

Theorem 1. Suppose $u_t^*, t = 1, ..., N$ are solutions of the optimality equation (max version). Then we can construct a corresponding policy $\pi^* = (d_1^*, d_2^*, ..., d_{N-1}^*) \in \Pi^{HD}$ satisfies

$$d_t^*(h_t) \in \arg\max_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$

for $t = 1, \ldots, N - 1$. Then

1.
$$u_t^{\pi^*}(h_t) = u_t^*(h_t), \quad h_t \in H_t.$$

2.
$$v_N^{\pi^*}(s) = v_N^*(s), \quad s \in S.$$

Proof. Clearly, $u_N^{\pi^*}(h_n) = u_N^*(h_n), h_n \in H_n$. We assume that $u_{n+1}^{\pi^*}(h_{n+1}) = u_{n+1}^*(h_{n+1}),$

$$u_n^*(h_n) = \max_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^*(h_n, a, s') \right\}$$

$$= r_n(s_n, d_n^*(h_n)) + \sum_{s' \in S} p_n(s'|s_n, d_n^*(h_n)) u_{n+1}^*(h_n, d_n^*(h_n), s')$$

$$= r_n(s_n, d_n^*(h_n)) + \sum_{s' \in S} p_n(s'|s_n, d_n^*(h_n)) u_{n+1}^{\pi^*}(h_n, d_n^*(h_n), s')$$

$$= u_n^{\pi^*}(h_n)$$

Theorem 2. Let $\epsilon > 0$ be arbitrary and suppose $u_t^*, t = 1, \ldots, N$ are solutions of the optimality equation (sup version, a is continuous). Then we can construct a corresponding policy $\pi^{\epsilon} = (d_1^{\epsilon}, d_2^{\epsilon}, \ldots, d_{N-1}^{\epsilon}) \in \Pi^{HD}$ satisfies

$$\left\{ r_t(s_t, d_t^{\epsilon}) + \sum_{s' \in S} p_t(s'|s_t, d_t^{\epsilon}) u_{t+1}^*(h_t, d_t^{\epsilon}, s') \right\} + \frac{\epsilon}{N-1}$$

$$\geq \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$

for $t = 1, \dots, N - 1$. Then

1.
$$u_t^{\pi^{\epsilon}}(h_t) + (N-t)\frac{\epsilon}{N-1} \ge u_t^*(h_t), \quad h_t \in H_t.$$

2.
$$v_N^{\pi^{\epsilon}}(s) + \epsilon = v_N^*(s), \quad s \in S.$$

The proof is analogous.

4.4 OPTIMALITY OF DETERMINISTIC MARKOV POLICIES

Theorem 3. Let $u_t^*(h_t)$ is the solution of the optimality equations, then:

- 1. $\forall t = 1, ..., N, u_t^*(h_t)$ depends on h_t only through s_t .
- 2. $\forall \epsilon > 0$, there exists an ϵ optimal policy which is deterministic and Markov.
- 3. if a is reachable, then there exists an optimal policy which is deterministic Markov.

Proof. First, we have $\forall h_{N-1} \in H_{N-1}, a_{N-1} \in A_{S_{N-1}}, u_N^*(h_N) = u_N^*(s_N) = r_N(s_N)$. Then, we assume that $\forall n = t+1, \ldots, N, u_n^*(h_n) = u_n^*(s_n)$.

$$u_t^*(h_t) = \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s'=S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$
$$= \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s'=S} p_t(s'|s_t, a) u_{t+1}^*(s') \right\}$$
$$= u_t^*(s_t)$$

We have established that

$$v_N^*(s) = \sup_{\pi \in \Pi^{HR}} v_N^{\pi}(s) = \sup_{\pi \in \Pi^{MD}} v_N^{\pi}(s), \quad s \in S$$

Proposition 1. Assume S is finite or countable, and that

- 1. A_s is finite for each $s \in S$, or
- 2. As is compact; $p_t(s'|s,a), r_t(s,a)$ is continuous in a, and $|r_t(s,a)| \leq M < \infty$
- 3. A_s is compact; $r_t(s, a)$ is upper semicontinuous in a; and $|r_t(s, a)| \leq M < \infty$; $p_t(s'|s, a)$ is lower semi-continuous in a.

Then there exists a deterministic Markovian policy which is optimal. (Which means that sup is reachable.)

4.5 BACKWARD INDUCTION

The terms "backward induction" and "dynamic programming" are synonymous. Key assumption: optimal action is obtainable.

Definition 2. (The backward induction algorithm).

- 1. $\forall s \in S$, let $\hat{u}_N(s) = r_N(s)$.
- 2. t = N 1:1, we calculate that

$$\forall s \in S, \hat{u}_t(s) = \max_{a \in A_s} \left\{ r_t(s, a) + \sum_{s' \in S} p_t(s'|s, a) \hat{u}_{t+1}(s') \right\}$$

4.6 OPTIMALITY OF MONOTONE POLICIES

4.6.1 Structured Policies

4.6.2 Superadditive Functions

Definition 3. Let X and Y be partially ordered sets and $g: X \times Y \to \mathbb{R}$. We say g is **superadditive** if for $x^+ \geq x^-$ and $y^+ \geq y^-$, we have

$$g(x^+, y^+) + g(x^-, y^-) \ge g(x^+, y^-) + g(x^-, y^+)$$

If the reverse inequality above holds, g(x,y) is said to be **subadditive**. If superadditive function g is twice differentiable, we have $\frac{\partial^2 g(x,y)}{\partial x \partial y} \geq 0$.

Lemma 1. Let

$$f(x) = \max_{y} \left\{ y \in \arg \max_{y' \in Y} g(x, y') \right\}$$

If g is a superadditive function, then f(x) is monotone nondecreasing in x.

Proof. Let corresponding numbers: (x^+,y^+) and (x^-,y^-) , where $y^+=f(x^+)$ and $y^-=f(x^-)$. We assume that $x^+>x^-$, but $y^+\leq y^-$,then:

- 1. By the definition of f(x), we have $g(x^-, y^-) \ge g(x^-, y^+)$.
- 2. By the definition of supperadditive, we have $g(x^+, y^-) + g(x^-, y^+) \ge g(x^-, y^-) + g(x^+, y^+)$.
- 3. Then we have $g(x^+, y^-) \ge g(x^+, y^+)$, which contradicts with the definition of f.

4.7 Optimality of Monotone Policies

Leaving...

5 Infinite-Horizon Models: Foundations

- S is finite or countable.
- stationary policy: $d^{\infty} = (d, d, ...)$

5.1 THE VALUE OF A POLICY

1. Expected total reward of policy $\pi \in \Pi^{HR}$:

$$v^{\pi}(s) = \lim_{n \to \infty} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{N} r(X_{t}, Y_{t}) \right\} = \lim_{n \to \infty} v_{n+1}^{\pi}(s)$$
 (2)

If the limit exists and when interchanging the limits and expectation is valid, we have

$$v^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{\infty} r(X_t, Y_t) \right\}$$
 (3)

2. Expected total discounted reward of policy $\pi \in \Pi^{HR}$:

$$v_{\lambda}^{\pi}(s) = \lim_{n \to \infty} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{n} \lambda^{t-1} r(X_{t}, Y_{t}) \right\}$$
 (4)

For $0 \le \lambda \le 1$, the limits exists when $\sup_{s \in S} \sup_{a \in A_s} |r(s,a)| = M < \infty$. When the limit exists and interchaining the limit and expectation are valid, we have

$$v_{\lambda}^{\pi}(s) = \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{\infty} \lambda^{t-1} r(X_{t}, Y_{t}) \right\}$$
 (5)

3. Average reward or gain of policy $\pi \in \Pi^{HR}$:

$$g^{\pi}(s) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{n} r(X_{t}, Y_{t}) \right\} = \lim_{n \to \infty} \frac{1}{n} v_{n+1}^{\pi}(s)$$
 (6)

If the limit doesn't exist, we define:

$$g_-^\pi(s) = \liminf_{n \to \infty} \frac{1}{n} v_{n+1}^\pi(s), \quad g_+^\pi(s) = \limsup_{n \to \infty} \frac{1}{n} v_{n+1}^\pi(s).$$

5.2 MARKOV POLICIES

Theorem 4. $\forall \pi = (d_1, d_2, \ldots) \in \Pi^{HR}$. Then, for each $s_1 \in S_1$, $\exists \pi' = (d'_1, d'_2, \ldots) \in \Pi^{MR}$, satisfying

$$\forall t, \quad P^{\pi'} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\} = P^{\pi} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\}$$
 (7)

Proof. We construct the randomized Markov decision rule $d'_t \in \pi'$ by

$$q_{d'(s')}(a) = P^{\pi} \{ Y_t = a | X_t = s', X_1 = s_1 \}$$

Then,

$$P^{\pi'}\{Y_t = a | X_t = s'\} = P^{\pi'}\{Y_t = a | X_t = s', X_1 = s_1\} = P^{\pi}\{Y_t = a | X_t = s', X_1 = s_1\}$$

We use indunction method. Clearly the theorem holds with t=1. We assume that the theorem holds for $t=1,2,\ldots,n-1$. Then,

$$\begin{split} P^{\pi}\left\{X_{n} = s'|X_{1} = s_{1}\right\} &= \sum_{s \in S} \sum_{a \in A_{s}} P^{\pi}\left\{X_{n-1} = s, Y_{n-1} = a|X_{1} = s_{1}\right\} p(s'|s, a) \\ &= \sum_{s \in S} \sum_{a \in A_{s}} P^{\pi'}\left\{X_{n-1} = s, Y_{n-1} = a|X_{1} = s_{1}\right\} p(s'|s, a) \\ &= P^{\pi'}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ P^{\pi'}\left\{X_{n} = s', Y_{n} = a|X_{1} = s_{1}\right\} &= P^{\pi'}\left\{Y_{n} = a|X_{n} = s'\right\} P^{\pi'}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ &= P^{\pi}\left\{Y_{n} = a|X_{n} = s', X_{1} = s_{1}\right\} P^{\pi}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ &= P^{\pi}\left\{X_{n} = s', Y_{n} = a|X_{1} = s_{1}\right\} \end{split}$$

Note that, in the above theorem, π' depends on the initial state X_1 . When the state at decision epoch 1 is chosen according to a probability distribution, then π' is depended on the distribution intead of $X_1 = s_1$.

Corollary 1. $\forall \mathcal{D}_1 \sim X_1, \pi \in \Pi^{HR}, \exists \pi' \in \Pi^{MR} \text{ for which}$

$$P^{\pi'} \{ X_t = s', Y_t = a \} = P^{\pi} \{ X_t = s', Y_t = a \}$$

Noting that

$$v_N^{\pi}(s) = \sum_{t=1}^{N-1} \sum_{s' \in S} \sum_{a \in A_{s'}} r(s', a) P^{\pi} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\}$$

$$+ \sum_{s' \in S} \sum_{a \in A_{s'}} r_N(s') P^{\pi} \left\{ X_N = s', Y_N = a | X_1 = s_1 \right\}$$

$$v_{\lambda}^{\pi}(s) = \sum_{t=1}^{\infty} \sum_{s' \in S} \sum_{a \in A_{s'}} \lambda^{t-1} r(s', a) P^{\pi} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\}$$
(8)

6 Discounted Markov Decision Problems

Assumptions in this chapter:

- 1. Stationary rewards and transition probabilities; r(s, a) and p(s'|s, a) do not vary from decision epoch to decision epoch.
- 2. Bounded rewards; $|r(s, a)| \leq M < \infty$.
- 3. Discount factor λ .
- 4. Discrete state spaces.

6.1 POLECY EVALUATION (Stationary Policy)

$$v_{\lambda}^*(s) = \sup_{\pi \in \Pi^{HR}} v_{\lambda}^{\pi}(s) = \sup_{\pi \in \Pi^{MR}} v_{\lambda}^{\pi}(s)$$

Let $\pi = (d_1, d_2, \ldots) \in \Pi^{MR}$, then

$$v_{\lambda}^{\pi}(s_1) = \mathbb{E}_{s_1}^{\pi} \left\{ \sum_{t=1}^{\infty} \lambda^{t-1} r(X_t, Y_t) \right\} = r_{d_1} + \lambda P_{d_1} v_{\lambda}^{\pi' = \{d_2, d_3, \dots\}}$$

Let $d^{\infty} = (d, d, ...)$, then $v_{\lambda}^{d^{\infty}}(s_1) = r_d(s_1) + \lambda P_d v_{\lambda}^{d^{\infty}}$. Let $\forall v \in V, L_d v = r_d + \lambda P_d v$, then $v_{\lambda}^{d^{\infty}} = L_d v_{\lambda}^{d^{\infty}}$, which means $v_{\lambda}^{d^{\infty}}$ is a fixed point of L_d in V.

Theorem 5. Suppose $0 \le \lambda < 1$. Then $\forall d^{\infty}$ with $d \in D^{MR}$, $\vec{v}_{\lambda}^{d^{\infty}}$ is the unique solution in V of $\vec{v} = r_d + \lambda P_d \vec{v}$, and $\vec{v}_{\lambda}^{d^{\infty}} = (I - \lambda P_d)^{-1} r_d$.

Proof. Key theorem: $||P_d|| = 1$ and $\sigma(\lambda P_d) \le ||\lambda P_d|| = \lambda \le 1$, then $(I - \lambda P_d)^{-1}$ exists.

$$\vec{v} = (I - \lambda P_d)^{-1} r_d = \sum_{t=1}^{\infty} \lambda^{t-1} P_d^{t-1} r_d = \vec{v}_{\lambda}^{d^{\infty}}$$

Lemma 2. 1. $\vec{u} \succ \vec{0} \Rightarrow (I - \lambda P_d)^{-1} \vec{u} \succ \vec{u} \succ \vec{0}$

2.
$$\vec{u} \succeq \vec{v} \Rightarrow (I - \lambda P_d)^{-1} \vec{u} \succeq (I - \lambda P_d)^{-1} \vec{v}$$

3.
$$\vec{u} \succeq \vec{0} \Rightarrow \vec{u}^T (I - \lambda P_d)^{-1} \succeq \vec{u}^T$$

6.2 OPTIMALITY EQUATIONS

Optimality equations or Bellamn equations (in discounted MDP):

$$v(s) = \sup_{a \in A_s} \left\{ r(s, a) + \sum_{s' \in S} \lambda p(s'|s, a) v(s') \right\}$$

Lemma 3. $\forall v \in V, 0 \le \lambda < 1, \sup_{d \in D^{MD}} \{r_d + \lambda P_d v\} = \sup_{d \in D^{MR}} \{r_d + \lambda P_d v\}$

Proof. First, $D^{MD} \subset D^{MR}$, so $\sup_{d \in D^{MD}} \{r_d + \lambda P_d v\} \leq \sup_{d \in D^{MR}} \{r_d + \lambda P_d v\}$. Second, $\forall d^{MR} \in D^{MR}$,

$$\sum_{a \in A_s} q_{d^{MR}}(a) \left[r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a) v(s') \right] \leq \sup_{a \in A_s} \left\{ r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a) v(s') \right\}$$

which means,

$$r_{d^{MR}} + \lambda P_{d^{MR}}v \preceq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\} \Rightarrow \sup_{d \in D^{MR}} \left\{ r_d + \lambda P_d v \right\} \preceq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\}$$

Definition 4. (Bellman operator).

$$\forall v \in V, \mathcal{L}v = \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\} \tag{9}$$

If the supremum is attained for all $v \in V$, we define L by

$$\forall v \in V, Lv = \max_{d \in D^{MD}} \{ r_d + \lambda P_d v \}$$
 (10)

Theorem 6. Suppose there exists a $v \in V$ for which

1.
$$v \succeq \mathcal{L}v \Rightarrow v \succeq v_{\lambda}^*$$
;

2.
$$v \leq \mathcal{L}v \Rightarrow v \leq v_{\lambda}^*$$
;

3.
$$v = \mathcal{L}v \Rightarrow v$$
 is unique and $v = v_{\lambda}^*$.

Proof. First, we proof 1. $\forall \pi = (d_1, d_2, \ldots) \in \Pi^{MR}$.

$$v \succeq \sup_{d \in D^{MD}} \{r_d + \lambda P_d v\} = \sup_{d \in D^{MR}} \{r_d + \lambda P_d v\}$$
$$\succeq r_{d_1} + \lambda P_{d_1} v = \sum_{t=1}^n (\lambda P^{\pi})^{k-1} r_{d_t} + (\lambda P^{\pi})^n v$$
$$v - v_{\lambda}^{\pi} \succeq (\lambda P^{\pi})^n v - \sum_{t=n+1}^{\infty} (\lambda P^{\pi})^{t-1} r_{d_t}$$
$$\succeq -\lambda^n \|v\|_{\infty} \cdot \vec{e} - \lambda^n \cdot \frac{M}{1-\lambda} \cdot \vec{e}$$

Because r is bounded, so $\forall \epsilon, \exists N$, when $n \geq N$, we have

$$v \succeq v_{\lambda}^{\pi} - \epsilon \cdot \vec{e}$$

$$v \succeq \sup_{\pi \in \Pi^{MR}} v_{\lambda}^{\pi} = \sup_{\pi \in \Pi^{HR}} v_{\lambda}^{\pi} = v_{\lambda}^{*}$$

Second, we proof 2.

If $v \leq \mathcal{L}v$, by definition of sup, we have

$$\forall \epsilon, \exists d \in D^{MD}, v \leq r_d + \lambda P_d v + \epsilon \cdot \vec{e}$$

$$\Rightarrow v \leq (I - \lambda P_d)^{-1} (r_d + \epsilon \cdot \vec{e}) = v_\lambda^{d^\infty} + (1 - \lambda)^{-1} \epsilon \cdot \vec{e} \leq \sup_{\pi \in \Pi^{HR}} v_\lambda^{\pi} + (1 - \lambda)^{-1} \epsilon \cdot \vec{e}$$

The following norm is supremum norm.

Theorem 7. (Banach Fixed-Point Theorem). Suppose U is a Banach space and $T: U \to U$ is a contraction mappint with contraction parameter λ . Then

- 1. there exists a unique v^* in U such that $Tv^* = v^*$;
- 2. $\forall v^0 \in U, \lim_{n \to \infty} v^n = \lim_{n \to \infty} T^n v^0 = v^*.$

Proof.

$$\forall m \ge 1, \quad \|v^{n+m} - v^n\| \le \sum_{k=0}^{m-1} \|v^{n+k+1} - v^{n+k}\| = \sum_{k=0}^{m-1} \|T^{n+k}v^1 - T^{n+k}v^0\|$$
$$\le \sum_{k=0}^{m-1} \lambda^{n+k} \|v^1 - v^0\| = \frac{\lambda^n (1 - \lambda^m)}{(1 - \lambda)} \|v^1 - v^0\|$$

It follows that $\{v^n\}$ is a Cauchy sequence. From the completeness of U, it follows that $\{v^n\}$ has a limit $v^{\infty} \in U$.

$$\begin{split} 0 \leq & \|Tv^{\infty} - v^{\infty}\| \leq \|Tv^{\infty} - v^n\| + \|v^n - v^{\infty}\| \\ = & \|Tv^{\infty} - Tv^{n-1}\| + \|v^n - v^{\infty}\| \leq \lambda \|v^{\infty} - v^{n-1}\| + \|v^n - v^{\infty}\| \to 0 \end{split}$$

which means that v^{∞} is a fixed point of T. Let u^* and v^* are fixed points of T, then

$$||u^* - v^*|| = ||Tu^* - Tv^*|| \le \lambda ||u^* - v^*|| \Rightarrow u^* = v^*$$

Lemma 4. Suppose that $0 \le \lambda < 1$; then L and \mathcal{L} are contraction mappings on V.

Proof. Let $u, v \in V$, corresponding optimal actions are a_u, a_v , fix $s \in S$, without loss of generality, let $Lu(s) \geq Lv(s)$.

$$0 \le Lu(s) - Lv(s) = r(s, a_u) + \sum_{s' \in S} \lambda p(s'|s, a_u) u(s') - Lv(s)$$
$$\le \sum_{s' \in S} \lambda p(s'|s, a_u) (u(s') - v(s')) \le \lambda ||u - v||_{\infty}$$

 $\forall s \in S$, we have $|Lu(s) - Lv(s)| \le \lambda ||u - v||_{\infty}$ The proof of \mathcal{L} is analogue.

Theorem 8. Suppose $0 \le \lambda < 1$, S is finite or countable, and r(s,a) is bounded. If V is a complete normed linear space, there exists a unique $v^* \in V$ satisfying $Lv^* = v^*$, and $v^* = v^*_{\lambda}$.

Definition 5. For $v \in V$, call a decision rule $d_v \in D^{MD}$ v-improving if

$$d_v \in \arg\max_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\} \Leftrightarrow L_{d_v} v = L v$$

Clarify:

- 1. $v_{v}^{d_{v}^{\infty}}$ needs not be greater than or equal to v.
- 2. Even if $r_{d_v} + \lambda P_{d_v} v \succeq v$, $v_{\lambda}^{d_v^{\infty}}$ exceeds v in some component only if $r_{d_v}(s') + \lambda P_{d_v} v(s') > v(s')$.
- 3. d^* , v^*_{λ} -improving, is called conserving decision rule.

Theorem 9. If supremum is attained, then $\exists d \in D^{MD}, d^{\infty} \in \Pi^{MD}$, satisfies $v_{\lambda}^{d^{\infty}} = v_{\lambda}^{*}$. So we can calculate that $v_{\lambda}^{*} = \sup_{d \in D^{MD}} v_{\lambda}^{d^{\infty}}$.

Proof.

$$v_{\lambda}^* = L v_{\lambda}^* = L_{d_{v_{\lambda}^*}} v_{\lambda}^* \Rightarrow v_{\lambda}^* = v_{\lambda}^{d_{v_{\lambda}^*}^{\infty}}$$

Theorem 10. Assume S is discrete, and either

- 1. A_s is finite for each $s \in S$, or
- 2. A_s is compact, r(s,a) is continuous in a for each $s \in S$, and for each $s' \in S$ and $s \in S$, p(s'|s,a) is continuous in a, or
- 3. A_s is compact, r(s,a) is upper semicontinuous in a for each $s \in S$, and for each $s' \in S$ and $s \in S$, p(s'|s,a) is lower semicontinuous in a.

Then there exists an optimal deterministic stationary policy.

If the supremum is not attained in $\mathcal{L}v$, then optimal policies need not exist.

Theorem 11. Support S is finite or countable, then for all $\epsilon > 0$ there exists an ϵ – optimal deterministic stationary policy.

Proof. Take d_{ϵ} satisfying

$$r_{d_{\epsilon}} + \lambda P_{d_{\epsilon}} v_{\lambda}^* \succeq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v_{\lambda}^* \right\} - (1 - \lambda) \epsilon \vec{1} = v_{\lambda}^* - (1 - \lambda) \epsilon \vec{1}$$

$$v_{\lambda}^{d_{\epsilon}^{\infty}} = (I - \lambda P_{d_{\epsilon}})^{-1} r_{d_{\epsilon}} \succeq v_{\lambda}^{*} - (1 - \lambda) \epsilon (I - \lambda P_{d_{\epsilon}})^{-1} \vec{1} = v_{\lambda}^{*} - \epsilon \vec{1}$$

6.3VALUE ITERATION AND ITS VARIANTS

Rates of Convergence

Rate of Convergence

- 1. linear convergence or quadratic convergence: $||y_{n+1} y^*|| \le K||y_n y^*||^{\alpha}$;
- 2. superlinearly convergence: $\limsup_{n\to\infty} \frac{\|y_{n+1}-y^*\|}{\|y_n-y^*\|} = 0$;
- 3. asymptotic average rate of convergence $\limsup_{n\to\infty} \left\lceil \frac{\|y_n-y^*\|}{\|y_0-y^*\|} \right\rceil^{1/n}$

Algorithm 1 Value Iteration Algorithm

```
\begin{aligned} & \textbf{Require: } \epsilon > 0 \\ & \textbf{Ensure: } v^0 \in V \\ & \textbf{for } n = 1, 2, \dots \textbf{do} \\ & \forall s \in S, v^{n+1}(s) = \max_{a \in A_s} \left\{ r(s, a) + \sum_{s' \in S} \lambda p(s'|s, a) v^n(s') \right\} \\ & \textbf{if } \|v^{n+1} - v^n\| < \epsilon (1-\lambda)/(2\lambda) \textbf{ then} \\ & \text{break.} \\ & \textbf{end if.} \\ & \textbf{end for.} \\ & \textbf{return } d_{\epsilon}(s) \in \arg\max_{a \in A_s} \left\{ r(s, a) + \sum_{s' \in S} \lambda p(s'|s, a) v^{n+1}(s') \right\} \end{aligned}
```

6.3.2 Value Iteration

Theorem 12. $(d_{\epsilon})^{\infty}$ is ϵ – optimal.

Proof.

$$||v^{n+1} - v^n|| = ||Lv^n - Lv^{n-1}|| \le \lambda^{n-1}||v^1 - v^0||$$

so

$$\exists N, \forall n > N \ge 1 + \log\left(\frac{\epsilon(1-\lambda)}{\lambda^2 \|v^1 - v^0\|}\right), \|v^{n+1} - v^n\| < \epsilon(1-\lambda)/(2\lambda).$$

$$\begin{split} \|v^{d^{\infty}_{\epsilon}}-v^{n+1}\| = & \|L_{d_{\epsilon}}v^{d^{\infty}_{\epsilon}}-v^{n+1}\| \\ \leq & \|L_{d_{\epsilon}}v^{d^{\infty}_{\epsilon}}-L_{d_{\epsilon}}v^{n+1}\| + \|Lv^{n+1}-Lv^{n}\| \\ \leq & \lambda\|v^{d^{\infty}_{\epsilon}}-v^{n+1}\| + \lambda\|v^{n+1}-v^{n}\| \\ \|v^{d^{\infty}_{\epsilon}}-v^{n+1}\| \leq & \frac{\lambda}{1-\lambda}\|v^{n+1}-v^{n}\|. \\ & Analogously, \|v^{n+1}-v^{*}\| \leq & \frac{\lambda}{1-\lambda}\|v^{n+1}-v^{n}\|. \\ & \|v^{d^{\infty}_{\epsilon}}-v^{*}\| \leq & \|v^{d^{\infty}_{\epsilon}}-v^{n+1}\| + \|v^{n+1}-v^{*}\| \leq \epsilon \end{split}$$

Theorem 13. (monotone). If $u \succeq v$, then $Lu \succeq Lv$.

Proof.

$$\begin{split} Lu - Lv &= \max_{d \in D^{MD}} (r_d + \lambda P_d u) - \max_{d \in D^{MD}} (r_d + \lambda P_d v) \\ &= \max_{d \in D^{MD}} (r_d + \lambda P_d u) - (r_{d_v} + \lambda P_{d_v} v) \\ &\succeq (r_{d_v} + \lambda P_{d_v} u) - (r_{d_v} + \lambda P_{d_v} v) \\ &= \lambda P_{d_v} (u - v) \succeq \vec{0} \end{split}$$

Therefore, if $Lv^0 \succeq (\preceq)v^0$, then value iteration converges monotonically to v^* .

Theorem 14. (Convergence of value iteration).

1.
$$||v^{n+1} - v_{\lambda}^*|| = ||Lv^n - Lv_{\lambda}^*|| \le \lambda ||v^n - v_{\lambda}^*||$$

$$2. \ \frac{\|v^n-v_\lambda^*\|}{\|v^0-v_\lambda^*\|} \leq \lambda^n \Rightarrow \limsup_{n \to \infty} \left[\frac{\|v^n-v_\lambda^*\|}{\|v^0-v_\lambda^*\|}\right]^{1/n} \leq \lambda$$

3.
$$||v^n - v_{\lambda}^*|| \le \frac{\lambda^n}{1 - \lambda} ||\lambda^1 - \lambda^0||$$

If we want change inequality into equality, we need $v^0 \succeq (\preceq)v^*$ and $v^1 - v^* = \lambda(v^0 - v^*)$

6.4 POLICY ITERATION

Algorithm 2 Policy Iteration Algorithm

```
Select an arbitrary rule d_0 \in D^{MD}.

for n=1,2,\ldots do

Policy evaluation: v^n=(I-\lambda P_{d_n})^{-1}r_{d_n}
Policy improvement: d_{n+1} \in \arg\max_{d \in D^{MD}} \{r_d + \lambda P_d v^n\}
if d_{n+1} = d_n then
break.
end if.
```

Proposition 2. In policy iteration algorithm $v^{n+1} \geq v^n$.

Proof.

$$r_{d_{n+1}} + \lambda P_{d_{n+1}} v^n \ge r_{d_n} + \lambda P_{d_n} v^n = v^n$$
$$v^{n+1} = (I - \lambda P_{d_{n+1}})^{-1} r_{d_{n+1}} \ge v^n$$

If states and actions are finite, the algorithm can terminate in finite number of iterations.

Definition 6. Operator $B: V \to V$,

$$Bv = \max_{d \in D^{MD}} \left\{ r_d + (\lambda P_d - I)v \right\} = Lv - v.$$

Proposition 3. $\forall u, v \in V \text{ and } d_v \in D_v.$

$$Bu \ge Bv + (\lambda P_{d_v} - I)(u - v) \Rightarrow (\lambda P_{d_v} - I) \in \partial_v(Bv)$$

Proof.

$$Bu - Bv = \max_{d \in D^{MD}} \{ r_d + (\lambda P_d - I)u \} - \max_{d \in D^{MD}} \{ r_d + (\lambda P_d - I)v \}$$

$$\succeq \{ r_{d_v} + (\lambda P_{d_v} - I)u \} - \{ r_{d_v} + (\lambda P_{d_v} - I)v \}$$

$$\succeq (\lambda P_{d_v} - I)(u - v)$$

Proposition 4. Suppose the sequence $\{v^n\}$ is obtained from the policy iteration algorithm. Then, for any $d_{v^n} \in D_{v^n}$.

$$v^{n+1} = v^n - (\lambda P_{d_{v^n}} - I)^{-1} B v^n$$

Proof.

$$\begin{split} v^{n+1} = & (I - \lambda P_{d_{v^n}})^{-1} r_{d_{v^n}} - v^n + v^n \\ = & v^n - (\lambda P_{d_{v^n}} - I)^{-1} \left[r_{d_{v^n}} + (\lambda P_{d_{v^n}} - I) v^n \right] \\ = & v^n - (\lambda P_{d_{v^n}} - I)^{-1} B v^n \end{split}$$

Definition 7. $V_B = \{v \in V; Bv \ge 0\} \ (v \in V_B \Rightarrow v \le v^*).$

Definition 8. $Zv = v - (\lambda P_{d_v} - I)^{-1}Bv$.

Lemma 5. Let $v \in V_B, d_v \in D_v, v \succeq u$. Then $Zv \succeq Lu, Zv \in V_B, Zv \succeq v$.

Proof.

$$Zv = v - (\lambda P_{d_v} - I)^{-1} Bv \succeq v + Bv = Lv \succeq Lu$$
$$B(Zv) \succeq Bv + (\lambda P_{d_v} - I)(Zv - v) = \vec{0}$$
$$Zv = v + (I - \lambda P_{d_v})^{-1} Bv \succeq v$$

Theorem 15. (Policy iteration converges monotonically).

Proof. Let $u^k = L^k v^0$ and $v^k = Z^k v_0$. We inductively show that $v^k \in V_B$ and $u^k \le v^k \le v_\lambda^*$.

First, if k = 0, then $u^0 = v^0$ and

$$Bv^0 \succeq r_{d_0} + (\lambda P_{d_0} - I)v^0 = \vec{0},$$

therefore, $v^0 \in V_B$ and $v^0 \leq v_{\lambda}^*$. Above all, $k = 0, u^0 \leq v^0 \leq v_{\lambda}^*$.

Then, we assume $k \leq n$, $u^k \leq v^k \leq v^*_{\lambda}$ and $Bv^k \succeq \vec{0}$.

$$v^{n+1} = Zv^n \in V_B \Rightarrow v^{n+1} \leq v_{\lambda}^*.$$
$$v^k \succeq u^k, v^{n+1} = Zv^n \succeq Lu^n = u^{n+1}.$$

Theorem 16. (Convergence Rate). If policy iteration's sequence $\{v^n\}$ satisfies $||P_{d_{v^n}} - P_{d_{v^*_{\lambda}}}|| \le K||v^n - v^*_{\lambda}||$ (for some K), then

$$||v^{n+1} - v_{\lambda}^*|| \le \frac{K\lambda}{1-\lambda} ||v^n - v_{\lambda}^*||^2$$

Proof. Let $U_n = \lambda P_{d_{v^n}-I}$ and $U_* = \lambda P_{d_{v_*^*}} - I$.then

$$Bv^{n} \succeq Bv_{\lambda}^{*} + U_{*}(v^{n} - v_{\lambda}^{*}) = U_{*}(v^{n} - v_{\lambda}^{*}) \Rightarrow U_{n}^{-1}Bv^{n} \preceq U_{n}^{-1}U_{*}(v^{n} - v_{\lambda}^{*})$$

$$0 \preceq v_{\lambda}^{*} - v^{n+1} = v_{\lambda}^{*} - v^{n} + U_{n}^{-1}Bv^{n} \preceq U_{n}^{-1}(U_{n} - U_{*})(v_{\lambda}^{*} - v^{n})$$

$$\|v_{\lambda}^{*} - v^{n+1}\| \preceq \|U_{n}^{-1}\| \|U_{n} - U_{*}\| \|v_{\lambda}^{*} - v^{n}\| \preceq \frac{\lambda}{1 - \lambda} \|P_{d_{v^{n}}} - P_{d_{v_{\lambda}^{*}}}\| \|v_{\lambda}^{*} - v^{n}\|$$