Coefficient perturbations in diffusion equations Internship project

Armand WAYOFF¹

Supervised by Barbara VERFÜRTH² and based on discussions with Axel MåLQVIST³

 1 ENSTA Paris, Institut Polytechnique de Paris 2 Institut für Numerische Simulation, Universität Bonn 3 Chalmers UT and University of Gothenburg

Bonn, 09/01/2025

Motivation & Goal

- Manufactured composite materials are often intended to be periodic
- Manufacturing process ⇒ Random defects ⇒ Non-periodic result
- How such defects affect the mechanical integrity of the material ?

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem

Notations

Construction of randomly perturbed coefficient *A*

Single defect

Random defects

Comparison of strategies in 1D

Motivation & Goal

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem

Notations

Construction of randomly perturbed coefficient A

Single defect

Random defects

Comparison of strategies in 1D

Conclusion

- Manufactured composite materials are often intended to be periodic
- Manufacturing process ⇒ Random defects ⇒ Non-periodic result
- How such defects affect the mechanical integrity of the material ?

Goal of the talk -

- We propose and analyze a numerical approach to efficiently solve elliptic PDEs with periodic coefficient that has random defects, in 1D and 2D
- The methodology uses pre-computation of certain configurations in an offline phase allowing rapid solution of the problem in the online phase

Problem formulation

■ Diffusion equation in $\Omega = [0;1]^d$

Perfect coefficient

$$(\mathscr{P}_{\varepsilon}) \begin{vmatrix} Find \ u_{\varepsilon} \colon \Omega \to \mathbf{R} \ s.t. \\ -\operatorname{div}(\mathbf{A}_{\varepsilon} \nabla u_{\varepsilon}) = f & \text{in } \Omega \\ u_{\varepsilon} = 0 & \text{on } \partial \Omega \end{vmatrix}$$

(
$$\mathscr{P}$$
) Find $u: \Omega \to \mathbf{R}$ s.t.

$$-\operatorname{div}(\mathbf{A}\nabla u) = f \text{ in } \Omega$$

$$u = 0 \text{ on } \partial\Omega$$

Setting

$$A(x) \in \{\alpha, \beta\}$$

$$f \in L^2(\Omega)$$
 $A(x) \in \{\alpha, \beta\}$ $\|A_{\varepsilon} - A\|_{L^{\infty}(\Omega)} \approx 1$ $\sup(A_{\varepsilon} - A) \ll |\Omega|$

Motivation & Goal Problem formulation

Notations Construction of randomly perturbed coefficient A

Single defect

Coefficient perturbations

A. WAYOFF

Introduction

Random defects

Comparison of strategies in 1D

Conclusion

Example

A, perturbed coefficient

3/16

Notations

$$(\mathscr{P}) \iff \begin{vmatrix} \text{Find } u \in V := H_0^1(\Omega) \text{ s.t.} \\ \mathfrak{a}(u, w) := (A\nabla u, \nabla w) = (f, w), \quad \forall w \in V \end{vmatrix}$$

- Fine mesh \mathcal{T}_h and V_h the corresponding \mathbb{P}_1 -FEM space
- Let $u_h \in V_h$ solve $\mathfrak{a}(u_h, w) = (f, w)$, $\forall w \in V_h$.
- Coarse space $V_H \subset V_h$ with $h < \varepsilon < H$

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem formulation

Notations

Construction of randomly perturbed coefficient A

Single defect

Random defects

Comparison of strategies in 1D

Randomly perturbed coefficient

$$A(x, \omega) = A_{\varepsilon}(x) + b_{p,\varepsilon}(x, \omega)B_{\varepsilon}(x),$$

$$A_{\varepsilon}(x) = A_{\mathrm{per}}(x/\varepsilon)$$
 with A_{per} 1-periodic and elliptic and $\varepsilon = 1/n$, B_{ε} similar

■ Example : Sponge

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem formulation Notations

Construction of randomly perturbed coefficient A

Single defect

Random defects

Comparison of strategies in 1D

■ Randomly perturbed coefficient

$$A(x, \omega) = A_{\varepsilon}(x) + b_{p,\varepsilon}(x, \omega)B_{\varepsilon}(x),$$

$$A_{\varepsilon}(x) = A_{\rm per}(x/\varepsilon)$$
 with $A_{\rm per}$ 1-periodic and elliptic and $\varepsilon = 1/n$, B_{ε} similar

■ Example : Sponge

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem formulation Notations

Construction of randomly perturbed coefficient A

Single defect

Random defects

Conclusion

Comparison of strategies in 1D

5/16

Randomly perturbed coefficient

$$A(x, \omega) = A_{\varepsilon}(x) + b_{p,\varepsilon}(x, \omega)B_{\varepsilon}(x),$$

 $A_{\varepsilon}(x) = A_{\rm per}(x/\varepsilon)$ with $A_{\rm per}$ 1-periodic and elliptic and $\varepsilon = 1/n$, B_{ε} similar

Random character

$$b_{p,\varepsilon}(x,\omega) = \sum_{j\in I_0} \chi_{\varepsilon(j+Q)}(x) \widehat{b}_p^j(\omega)$$
 where $\widehat{b}_p^j(\omega) \sim \mathscr{B}\mathrm{er}(p)$ i.i.d.

■ Example : Sponge

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem formulation Notations

Construction of randomly perturbed coefficient A

Single defect

Random defects

Comparison of strategies in 1D

Randomly perturbed coefficient

$$A(x, \omega) = A_{\varepsilon}(x) + b_{p,\varepsilon}(x, \omega)B_{\varepsilon}(x),$$

$$A_{\varepsilon}(x) = A_{\rm per}(x/\varepsilon)$$
 with $A_{\rm per}$ 1-periodic and elliptic and $\varepsilon = 1/n$, B_{ε} similar

Random character

$$b_{p,\varepsilon}(x,\omega) = \sum_{j\in I_0} \chi_{\varepsilon(j+Q)}(x) \widehat{b}_p^j(\omega)$$
 where $\widehat{b}_p^j(\omega) \sim \mathscr{B}er(p)$ i.i.d.

■ Example : Sponge

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem formulation Notations

Construction of randomly perturbed coefficient A

Single defect

Random defects

Comparison of strategies in 1D

Randomly perturbed coefficient

$$A(x, \omega) = A_{\varepsilon}(x) + b_{p,\varepsilon}(x, \omega)B_{\varepsilon}(x),$$

$$A_{\varepsilon}(x) = A_{\rm per}(x/\varepsilon)$$
 with $A_{\rm per}$ 1-periodic and elliptic and $\varepsilon = 1/n$, B_{ε} similar

Random character

$$b_{p,\varepsilon}(x,\omega) = \sum_{i \in I_0} \chi_{\varepsilon(j+Q)}(x) \widehat{b}_p^j(\omega)$$
 where $\widehat{b}_p^j(\omega) \sim \mathscr{B}er(p)$ i.i.d.

■ Example : Checkerboard

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem formulation Notations

Construction of randomly perturbed coefficient A

Single defect

Random defects

Comparison of strategies in 1D

Randomly perturbed coefficient

$$A(x, \omega) = A_{\varepsilon}(x) + b_{p,\varepsilon}(x, \omega)B_{\varepsilon}(x),$$

 $A_{\varepsilon}(x) = A_{\rm per}(x/\varepsilon)$ with $A_{\rm per}$ 1-periodic and elliptic and $\varepsilon = 1/n$, B_{ε} similar

Random character

$$b_{p,\varepsilon}(x,\omega) = \sum_{i \in I_0} \chi_{\varepsilon(j+Q)}(x) \widehat{b}_p^j(\omega)$$
 where $\widehat{b}_p^j(\omega) \sim \mathscr{B}er(p)$ i.i.d.

■ Example : Checkerboard

Coefficient perturbations

A. WAYOFF

Introduction

Motivation & Goal

Problem formulation Notations

Construction of randomly perturbed coefficient A

Single defect

Random defects

Comparison of strategies in 1D

Examples of RHS configurations

RHS **far away** from the defect block Global RHS

Questions

Perturbed coefficient

(sponge)

- \exists RHS s.t. $\|\nabla(u_{\varepsilon}-u)\|_{L^{2}(\Omega)}$ is big ?
- Global RHS \implies small solution differences ?
- Dependence diameter/number of defects, contrast and FEM mesh size

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

configurations
A single
non-random defect

Random defects

Comparison of strategies in 1D

A single non-random defect (\mathbb{P}_1 FEM)

 $\alpha=1$, $\beta=10$, FEM mesh size : 243

Observations

- \blacksquare f exactly in : the worst error, as expected
- lacksquare $f\equiv 1$: in-between the two other configurations
- lacktriangledown **f** exactly in & f far away : errors for **checkerboard** > errors for **sponge**

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Examples of RHS configurations

A single non-random defect (P₁ FEM)

Random defects

Comparison of strategies in 1D

Random defects

Goal

Efficient computation of solution for many different realizations A

 \bigwedge \mathbb{P}_1 FEM, no multiscale method

- 1 Multipoint inversion formula
- 2 Subspace decomposition preconditioner & Convergence analysis
- **3** Offline-online strategy

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Multipoint inversion formula [Dusson, Garrigue & Stamm, 2023]

■ Idea : Assuming that we know the inverses $(A_i^{-1})_{i=1}$ N and that

$$A = \sum_{i=1}^{N} \alpha_i A_i,$$

under which conditions is the same linear combination of inverses

$$\widetilde{A} := \sum_{i=1}^{N} \alpha_i A_i^{-1}$$

a good approximation for A^{-1} ?

Coefficient perturbations

A. WAYOFF

Introduction
Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner Offline-online

Strategy

Comparison of

strategies in 1D

Multipoint inversion formula [Dusson, Garrigue & Stamm, 2023]

■ Idea : Assuming that we know the inverses $(A_i^{-1})_{i=1}$ N and that

$$A = \sum_{i=1}^{N} \alpha_i A_i,$$

under which conditions is the same linear combination of inverses

$$\widetilde{A} := \sum_{i=1}^{N} \alpha_i A_i^{-1}$$

a good approximation for A^{-1} ? \Longrightarrow Multipoint perturbation formula

Coefficient perturbations

A. WAYOFF

Introduction
Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner Offline-online

Comparison of strategies in 1D

Conclusion

strategy

Multipoint inversion formula [Dusson, Garrigue & Stamm, 2023]

■ Idea : Assuming that we know the inverses $(A_i^{-1})_{i=1,...,N}$ and that

$$A = \sum_{i=1}^{N} \alpha_i A_i,$$

under which conditions is the same linear combination of inverses

$$\widetilde{A} := \sum_{i=1}^{N} \alpha_i A_i^{-1}$$

a good approximation for A^{-1} ? \Longrightarrow Multipoint perturbation formula

Numerical experiments

Find
$$u^{(i)}: \Omega \to \mathbf{R}$$
 such that
$$\begin{cases} -\operatorname{div}(\mathbf{A}_i \nabla u^{(i)}) = f & \text{in } \Omega \\ u^{(i)} = 0 & \text{on } \partial \Omega \end{cases}$$
$$\frac{\|\nabla (u - \widetilde{u})\|_{L^2(\Omega)}}{\|\nabla u\|_{L^2(\Omega)}} \quad \text{where} \quad \widetilde{u} := \sum_{i=0}^N \underline{\alpha}_i u^{(i)}.$$

A. WAYOFF

Introduction
Single defect

Coefficient perturbations

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner Offline-online

Comparison of strategies in 1D

Conclusi

strategy

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner Offline-online

Offline-online strategy

Comparison of strategies in 1D

Conclusion

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled \& local}}$$

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Conclusion

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled \& local}}$$

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner Offline-online

strategy

Comparison of strategies in 1D

Conclusion

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled & local}}$$

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner Offline-online

strategy

Comparison of strategies in 1D

Conclusion

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled \& local}}$$

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner

strategy

Comparison of strategies in 1D

Conclusion

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled \& local}}$$

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner Offline-online

Offline-onlin strategy

Comparison of strategies in 1D

Conclusion

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled \& local}}$$

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Conclusion

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled \& local}}$$

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Conclusion

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled \& local}}$$

[Kornhuber & Yserentant, 2016]

■ Decomposition $V = V_0 + V_1 + \cdots + V_n$

$$\underbrace{V_0 = V_H}_{\text{coarse space}}$$
, $\underbrace{V_i = \left\{ v \in V \mid \text{supp}(v) \subset \omega_i \right\}}_{\text{local spaces}}$.

■ Projections $P_i: V \rightarrow V_i$, such that

$$(A\nabla P_i v, \nabla w) = (A\nabla v, \nabla w) \quad w \in V_i$$

Coefficient perturbations

A. WAYOFF

Introduction

Single defect Random

defects

Multipoint inversion

formula
Subspace
decomposition
preconditioner
Offline-online

strategy

Comparison of strategies in 1D

Conclusion

- Preconditioner

$$P = \underbrace{P_0}_{\text{coarse}} + \underbrace{P_1 + \dots + P_n}_{\text{decoupled \& local}}$$

Preconditioned conjugate gradient method (PCG method)

Convergence analysis [Kornhuber & Yserentant, 2016]

■ Any function $v \in V$ can be decomposed into $v = v_0 + v_1 + \cdots + v_n$, where $v_i \in V_i$ so that

$$\sum_{i=0}^{n} \|v_i\|_A^2 \leqslant K_1 \|v\|_A^2.$$

Achieved with $v_0 = \mathcal{I}_H v$ and $v_j = \varphi_j(v - \mathcal{I}_H v)$ where $\mathcal{I}_H \colon H^1_0(\Omega) \to V_H$ is an interpolation operator and $\sum_{i=1}^n \varphi_i = 1$.

■ For any decomposition $v = v_0 + v_1 + \cdots + v_n$:

$$\|v\|_A^2 \leqslant K_2 \sum_{i=0}^n \|v_i\|_A^2.$$

 K_1 and K_2 are independent of h and H and only depend on the contrast β/α .

Bound for the error of the PCG algorithm after i iterations

$$||u_h - u_h^{(i)}||_A \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^i ||u_h - u_h^{(0)}||_A,$$

where $\kappa = K_1 K_2$

Coefficient perturbations

A. WAYOFF

Introduction
Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner

Comparison of strategies in 1D

Conclusion

strategy


```
Input: Problem data A_{\varepsilon}, B_{\varepsilon}, Q, f
```

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_{\ell}\}_{\ell=0}^{N}$

for $\ell = 0, \ldots, N$ do

Precompute $P_k^{(\ell)}: V \to V_k$ defined by $(A_\ell \nabla P_k^{(\ell)} v, \nabla w) = (A_\ell \nabla v, \nabla w) \quad \forall w \in V_k$ end

for all sample coefficients A **do**

for $i = 1, \ldots, n$ do

Compute $\{\mu_{\ell}\}_{\ell=0}^{N}$ such that $A|_{\omega_{i}} = \sum_{\ell=0}^{N} \mu_{\ell} A_{\ell}$

Assemble $\widetilde{P}_i := \sum_{\ell=0}^{N} \mu_{\ell} P_{\ell}^{(\ell)}$

end

end

 $\widetilde{ ilde{P}} := \widetilde{P_0} + \sum_{i=1}^n \widetilde{P_i}$ and Solve PCG system

A. WAYOFF

Single defect Random

Introduction

defects Multipoint inversion

Coefficient perturbations

formula Subspace decomposition

preconditioner Offline-online strategy

Comparison of strategies in 1D

Conclusion

12 / 16


```
Input : Problem data A_{\varepsilon}, B_{\varepsilon}, Q, f
```

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_{\ell}\}_{\ell=0}^{N}$

for $\ell = 0, \ldots, N$ do

end

Precompute $P_k^{(\ell)}: V \to V_k$ defined by $(A_\ell \nabla P_k^{(\ell)} v, \nabla w) = (A_\ell \nabla v, \nabla w) \quad \forall w \in V_k$ end

for all sample coefficients A **do** for $i = 1, \ldots, n$ do Compute $\{\mu_{\ell}\}_{\ell=0}^N$ such that $A|_{\omega_i} = \sum_{\ell=0}^N \mu_{\ell} A_{\ell}$ Assemble $\widetilde{P}_i := \sum_{\ell=0}^{N} \mu_{\ell} P_{\ell}^{(\ell)}$ end $\widetilde{P} := \widetilde{P_0} + \sum_{i=1}^n \widetilde{P_i}$ and Solve PCG system

perturbations A. WAYOFF

Introduction

Coefficient

Single defect

Random defects

Multipoint inversion Subspace decomposition

preconditioner Offline-online strategy

Offline phase

Comparison of strategies in 1D

Input: Problem data A_{ε} , B_{ε} , Q, f

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_{\ell}\}_{\ell=0}^{N}$

for $\ell = 0, \ldots, N$ do

Precompute $P_k^{(\ell)}: V \to V_k$ defined by $(A_\ell \nabla P_k^{(\ell)} v, \nabla w) = (A_\ell \nabla v, \nabla w) \quad \forall w \in V_k$

end

for all sample coefficients A do

```
for i = 1, \ldots, n do
               Compute \{\mu_{\ell}\}_{\ell=0}^{N} such that A|_{\omega_{\ell}} = \sum_{\ell=0}^{N} \mu_{\ell} A_{\ell}
               Assemble \widetilde{P}_i := \sum_{\ell=0}^{N} \mu_{\ell} P_{\ell}^{(\ell)}
       end
      \widetilde{P}:=\widetilde{P_0}+\sum_{i=1}^n\widetilde{P_i} and Solve PCG system
end
```

Coefficient perturbations

A. WAYOFF

Introduction Single defect

Random defects

Multipoint inversion

Subspace decomposition preconditioner

Offline-online strategy

Offline phase

Comparison of strategies in 1D

Input: Problem data A_{ε} , B_{ε} , Q, f

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_{\ell}\}_{\ell=0}^{N}$

for $\ell = 0, \ldots, N$ do

Precompute $P_k^{(\ell)}: V \to V_k$ defined by $(A_\ell \nabla P_k^{(\ell)} v, \nabla w) = (A_\ell \nabla v, \nabla w) \quad \forall w \in V_k$

end

for all sample coefficients A **do**

Online phase

Offline phase

for $i = 1, \ldots, n$ do

Compute $\{\mu_{\ell}\}_{\ell=0}^{N}$ such that $A|_{\omega_{i}} = \sum_{\ell=0}^{N} \mu_{\ell} A_{\ell}$

Assemble $\widetilde{P}_i := \sum_{\ell=0}^N \mu_{\ell} P_{\ell}^{(\ell)}$

end

 $\widetilde{P}:=\widetilde{P_0}+\sum_{i=1}^n\widetilde{P_i}$ and Solve PCG system

end

Coefficient perturbations

A. WAYOFF

Introduction

Single defect Random

defects Multipoint inversion

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Input: Problem data A_{ε} , B_{ε} , Q, f

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_{\ell}\}_{\ell=0}^{N}$

for $\ell = 0, \ldots, N$ do

Precompute $P_k^{(\ell)}: V \to V_k$ defined by $(A_\ell \nabla P_k^{(\ell)} v, \nabla w) = (A_\ell \nabla v, \nabla w) \quad \forall w \in V_k$

end

for all sample coefficients A **do**

Online phase

Offline phase

for $i = 1, \ldots, n$ do

Compute $\{\mu_{\ell}\}_{\ell=0}^{N}$ such that $A|_{\omega_{i}} = \sum_{\ell=0}^{N} \mu_{\ell} A_{\ell}$

Assemble $\widetilde{P}_i := \sum_{\ell=0}^N \mu_{\ell} P_{\ell}^{(\ell)}$ end

 $\widetilde{P}:=\widetilde{P_0}+\sum_{i=1}^n\widetilde{P_i}$ and Solve PCG system

end

Coefficient perturbations

A. WAYOFF

Introduction Single defect

Random defects

Multipoint inversion

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Input : Problem data A_{ε} , B_{ε} , Q, f

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_{\ell}\}_{\ell=0}^{N}$

Offline phase

for $\ell = 0, \ldots, N$ do

Precompute $P_k^{(\ell)}: V \to V_k$ defined by $(A_\ell \nabla P_k^{(\ell)} v, \nabla w) = (A_\ell \nabla v, \nabla w) \quad \forall w \in V_k$

end

for all sample coefficients A **do**

Online phase

for $i = 1, \ldots, n$ do

Compute $\{\mu_{\ell}\}_{\ell=0}^{N}$ such that $A|_{\omega_{i}} = \sum_{\ell=0}^{N} \mu_{\ell} A_{\ell}$

Assemble $\widetilde{P}_i := \sum_{\ell=0}^N \mu_{\ell} P_{\ell}^{(\ell)}$

end

 $\widetilde{P}:=\widetilde{P_0}+\sum_{i=1}^n\widetilde{P_i}$ and Solve PCG system

end

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Input : Problem data A_{ε} , B_{ε} , Q, f

Offline coefficients A

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_k\}_{k=0}^N$

ts $\{A_{\ell}\}_{\ell=0}^{N}$ Offline phase

for $\ell = 0, ..., N$ do

Precompute $P_k^{(\ell)} \colon V \to V_k$ defined by $(\mathbf{A}_{\ell} \nabla P_k^{(\ell)} v, \nabla w) = (\mathbf{A}_{\ell} \nabla v, \nabla w) \quad \forall w \in V_k$

end

for all sample coefficients A do

Online phase

for $i = 1, \ldots, n$ do

Compute $\{\mu_{\ell}\}_{\ell=0}^{N}$ such that $A|_{\omega_{i}} = \sum_{\ell=0}^{N} \mu_{\ell} A_{\ell}^{\ell}$ Assemble $\widetilde{P}_{i} := \sum_{\ell=0}^{N} \mu_{\ell} P_{\iota}^{(\ell)}$

end

 $\widetilde{P} := \widetilde{P_0} + \sum_{i=1}^n \widetilde{P_i}$ and Solve PCG system

end

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Input : Problem data A_{ε} , B_{ε} , Q, f

Offline coefficients A

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_k\}_{k=0}^N$

 $\{A_{\ell}\}_{\ell=0}^{N}$ Offline phase

for $\ell = 0, \ldots, N$ do

Precompute $P_k^{(\ell)}: V \to V_k$ defined by $(A_{\ell} \nabla P_k^{(\ell)} v, \nabla w) = (A_{\ell} \nabla v, \nabla w) \quad \forall w \in V_k$

end

for all sample coefficients A do

Online phase

for $i = 1, \ldots, n$ do

Compute $\{\mu_{\ell}\}_{\ell=0}^{N}$ such that $A|_{\omega_{i}} = \sum_{\ell=0}^{N} \mu_{\ell} A_{\ell}$

Assemble $\widetilde{P}_i := \sum_{\ell=0}^N \mu_\ell P_k^{(\ell)}$

end

 $\widetilde{P}:=\widetilde{P_0}+\sum_{i=1}^n\widetilde{P_i}$ and Solve PCG system

end

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion formula

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

Input : Problem data A_{ε} , B_{ε} , Q, f

Fix $k \in \{1, ..., n\}$, Precompute and save offline coefficients $\{A_{\ell}\}_{\ell=0}^{N}$

for $\ell = 0, \ldots, N$ do

Precompute $P_k^{(\ell)}: V \to V_k$ defined by $(A_\ell \nabla P_k^{(\ell)} v, \nabla w) = (A_\ell \nabla v, \nabla w) \quad \forall w \in V_k$

end

for all sample coefficients A **do**

Online phase

Rapid assembly

Offline phase

for $i = 1, \ldots, n$ do

Compute $\{\mu_{\ell}\}_{\ell=0}^{N}$ such that $A|_{\omega_{i}} = \sum_{\ell=0}^{N} \mu_{\ell} A_{\ell}$

Assemble $\widetilde{P}_i := \sum_{\ell=0}^N \mu_{\ell} P_{\ell}^{(\ell)}$

end

 $\widetilde{P}:=\widetilde{P_0}+\sum_{i=1}^n\widetilde{P_i}$ and Solve PCG system

end

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Multipoint inversion

Subspace decomposition preconditioner

Offline-online strategy

Comparison of strategies in 1D

- X Solving directly with $A(x, \omega)$ defined on a ε -scale
- ✓ Piecewise constant coefficient defined on a coarse mesh $H \gg \varepsilon$
- \blacksquare Standard FEM on \mathcal{T}_H

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Comparison of strategies in 1D

Three strategies

Monte-Carlo simulations

- X Solving directly with $A(x, \omega)$ defined on a ε -scale
- ✓ Piecewise constant coefficient defined on a coarse mesh $H \gg \epsilon$
- \blacksquare Standard FEM on \mathcal{T}_H

Offline-online	$A^{\circ} _{\mathcal{T}}(\omega):=\mu_0\; ar{A}_{per}\; + \sum_{i=1}^N \mu_i ar{A}_i \; with \; ar{A}_i \; offline \; coefficients$
Expansion [Anantharaman & Le Bris, 2010]	$A^* := \overline{A}_{per} + p A^e$, with $A^e = \overline{A}_{per} - \frac{\overline{A}_{per}^2}{\overline{A}}$
1D LOD	$\widehat{A} _{\mathcal{T}}(\omega) := \ \overline{A}_{per} \ \int_{\mathcal{T}} rac{A(x,\omega)}{A_{per}(x)} dx$

where \overline{C} is the harmonic mean of C

Coefficient perturbations

A. WAYOFF

Introduction

Single defect Random

defects

Comparison of strategies in 1D

Three strategies

Monte-Carlo

- X Solving directly with $A(x, \omega)$ defined on a ε -scale
- ✓ Piecewise constant coefficient defined on a coarse mesh $H \gg \varepsilon$
- lacktriangle Standard FEM on \mathcal{T}_H

Offline-online
$$A^{\circ}|_{\mathcal{T}}(\omega) := \mu_0 \overline{A}_{\mathrm{per}} + \sum_{i=1}^{N} \mu_i \overline{A}_i$$
 with \overline{A}_i offline coefficients

Expansion
[Anantharaman & Le Bris, 2010]

 $A^* := \overline{A}_{\mathrm{per}} + p A^{\mathrm{e}}$, with $A^{\mathrm{e}} = \overline{A}_{\mathrm{per}} - \frac{\overline{A}_{\mathrm{per}}^2}{\overline{A}}$

1D LOD

 $\widehat{A}|_{\mathcal{T}}(\omega) := \overline{A}_{\mathrm{per}} \int_{\mathcal{T}} \frac{A(x,\omega)}{A_{\mathrm{per}}(x)} \, \mathrm{d}x$

where \overline{C} is the harmonic mean of CRemark: $N_{def} = 0 \implies$ standard periodic homogenization

A. WAYOFF

Coefficient

Introduction
Single defect

Random defects

Comparison of strategies in 1D

Three strategies

Monte-Carlo simulations

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Comparison of strategies in 1D

Three strategies

Monte-Carlo simulations

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Comparison of strategies in 1D

Three strategies

Monte-Carlo simulations

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Comparison of strategies in 1D

Three strategies

Monte-Carlo simulations

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Comparison of strategies in 1D

Three strategies

Monte-Carlo

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Comparison of strategies in 1D

Three strategies

Monte-Carlo

Monte-Carlo simulations

Coefficient perturbations

A. WAYOFF

Introduction

Single defect Random

defects

Comparison of

strategies in 1D
Three strategies

Monte-Carlo simulations

Conclusion

What we did

- 1 Implementation of 1D and 2D experiments
- 2 Adaptation of the offline-online alg. to a subspace correction method
- 3 Comparison of strategies in 1D

- Future work -

- Estimate the error $\|P \tilde{P}\| \iff$ Inexact PCG method
- Clarify link with the Multipoint inversion formula
- Implement the offline-online algorithm

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Comparison of strategies in 1D

Conclusion

What we did

- 1 Implementation of 1D and 2D experiments
- 2 Adaptation of the offline-online alg. to a subspace correction method
- 3 Comparison of strategies in 1D

- Future work -

- Estimate the error $\|P \tilde{P}\| \iff$ Inexact PCG method
- Clarify link with the Multipoint inversion formula
- Implement the offline-online algorithm

Thank you for your attention!

Coefficient perturbations

A. WAYOFF

Introduction

Single defect

Random defects

Comparison of strategies in 1D