# Nivelul Retea

Lenuta Alboaie adria@info.uaic.ro

# Cuprins

- Nivelul Retea
  - Protocolul IPv4
    - Problematica
    - Caracterizare
    - Subretele
  - Retele Private
  - ICMP
  - Rezolutia adreselor
  - IPv6 imagine generala
    - Detalii -> Curs Viitor

# Preliminarii

#### • Situatia initiala

- Inainte de Internet doar nodurile din aceeasi retea puteau comunica intre ele



Figura: Retele individuale

# Preliminarii

#### Probleme

— Cum se pot transporta pachete intr-un mediu eterogen?

#### Eterogenitate

- La nivelurile inferioare: cum se poate face interconectarea unui numar mare de retele independente?
- La nivelurile superioare: cum se poate oferi suport pentru o mare varietate de aplicatii?



• **Scalare**: cum s-ar putea suporta un numar mare de noduri si aplicatii intr-un astfel de sistem de retele interconectate?

# Solutia

IP – Internet Protocol



## Nivelul retea

• Protocolul IP este utilizat de sisteme autonome (AS – Autonomous Systems) in vederea interconectarii



Figura: Internetul colectie de retele interconectate

> [Computer Networks, 2003 Andrew S. Tanenbaum]



## Nivelul Retea

- Rol: ofera servicii neorientate-conexiune pentru a transporta datagrame de la sursa la destinatie; sursa si destinatia pot fi in retele diferite
- Fiecare datagrama este independenta de celelalte
- Nu se garanteaza trimiterea corecta a datagramelor (pierdere, multiplicare,...)
- +...Curs viitor

#### Datagrama IPv4



[Computer Networks, 2003 Andrew S. Tanenbaum]

#### Datagrama IPv4

- Valorile uzuale ale campului Version sunt:
  - 4 protocolul IP (RFC 791)

(6 pentru protocolul IPv6 (RFC 1883))



#### Datagrama IPv4

 Campul Type of service permite gazdei sa comunice subretelei (e.g. routere) ce tip de serviciu doreste







#### Datagrama IPv4

- Campul Identification
   permite gazdei
   destinatie sa identifice
   apartenenta la o
   datagrama a noului
   fragment primit
- Flagurile:
  - DF (Don't Fragment) indica ruterelor sa nu fragmenteze datagrama
  - MF (More Fragments) semnalizeaza ca pachetul este un fragment, urmat de altele; ultimul fragment are acest bit 0
- Campul Fragment offset locul fragmentului in datagrama



#### Datagrama IP

- Fragmentarea datagramelor:
  - Fiecare fragment (pachet) are aceeasi structura ca datagrama IP
  - Reasamblarea datagramelor se face la destinatar
  - Daca un fragment al unei datagrame e pierdut, acea datagrama e distrusa (se trimite la expeditor un mesaj ICMP – Internet Control Message Protocol)
  - Mecanismul de fragmentare a fost folosit pentru unele atacuri – firewall piercing (un fragment "special" e considerat ca fiind parte a unei conexiuni deja stabilite, astfel incat ii va fi permis accesul via firewall)



#### Datagrama IP

- Filtrarea datagramelor:
  - Se realizeaza de un *firewall:* ofera accesul din exterior in reteaua interna, conform unor politici de acces, doar pentru anumite tipuri de pachete (utilizate de anumite protocoale/servicii)
    - Preintimpina o serie de atacuri vizind securitatea
    - Firewall-ul poate fi software sau hardware
    - Firewall-ul poate juca rol de proxy sau de gateway

#### Rolul si arhitectura unui proxy:

- Acces indirect la alte retele (Internet) pentru gazdele dintr-o retea locala via proxy
- Proxy-ul poate fi software sau hardware
- Rol de poarta (gateway), de firewall sau de server de cache
- Proxy-ul ofera partajarea unei conexiuni Internet
- Utilizat la imbunatatirea performantei (e.g., caching, controlul fluxului), filtrarea cererilor, asigurarea anonimitatii

#### Datagrama IPv4

 Campul TTL (Time to Live) specifica durata de viata a pachetului; numarul este decrementat de fiecare router prin care trece pachetul



Figura: Datagrama IPv4

#### Datagrama IPv4

Campul *Protocol* specifica protocolul
 (de nivel superior)
 caruia ii este destinata
 informatia inclusa in
 datagrama:



- 1 ICMP (Internet Control Message Protocol)
- 2 IGMP (Internet Group Message Protocol)
- 6 TCP (Transmission Control Protocol)
- 17 UDP (User Datagram Protocol)
- ... etc.(RFC 1700)

#### Datagrama IPv4

 Campul Header checksum folosit pentru detectarea erorilor; daca apare o eroare datagrama este distrusa



Figura: Datagrama IPv4

Datagrama IPv4

Campul Options



| Optiune                                                            | Descriere                                                    |
|--------------------------------------------------------------------|--------------------------------------------------------------|
| Securitate                                                         | Mentioneaza cat de secreta este datagrama                    |
| Dirijare stricta pe baza sursei (engl. strict source routing)      | Indica calea completa de parcurs                             |
| Dirijarea aproximativa pe baza sursei (engl. Loose source routing) | Indica o lista a ruterelor care nu trebuie sarite            |
| Intregistreaza calea (engl. record route)                          | Face fiecare ruter sa-si adauge adresa IP                    |
| Amprenta de timp (engl. timestamp)                                 | Face fiecare ruter sa-si adauge adresa si o amprenta de timp |

#### Datagrama IPv4

Campul Source
 adress si
 Destination adress
 indica adresa
 sursei si destinatiei



Figura: Datagrama IPv4

#### Adrese IPv4

- Fiecare adresa IP include un identificator de retea (NetID) si un identificator de gazda (HostID)
- Fiecare interfata de retea are o adresa IPv4 unica
- O adresa IPv4 are lungimea de 32 biti
- Initial (RFC 791) exista impartirea in clase de adrese: A,B,C,D,E



#### Adrese IPv4



[Computer Networks, 2003 Andrew S. Tanenbaum]

#### Adrese IPv4

- Clasa A: 128 retele posibile, 2<sup>24</sup> gazde/retea
- Clasa B: 2<sup>14</sup> retele posibile, 2<sup>16</sup> gazde/retea
- Clasa C: peste 2 milioane de retele, 255 gazde/retea
- Identificatorul de retea (NetID) este asignat de o autoritate centrala (NIC – Network Information Center)
- Identificatorul de gazda (HostID) este asignat local de administratorul retelei
- Exemplu: 85.122.23.145 Clasa A (conventie de notatie in zecimal)
  - 0101 0101 0111 1010 0001 0111 1001 0001
- Pentru IPv6 se recomanda reprezentarea hexadecimal



#### Adrese IPv4

- O interfata (placa) de retea are asignata o unica adresa IP
- O gazda poate avea mai multe placi de retea, deci mai multe adrese IP
- Gazdele unei aceleiasi retele vor avea acelasi identificator de retea (acelasi NetID)
- Adresele de broadcast au HostID cu toti bitii 1
- Adresa IP care are HostID cu toti bitii 0 se numeste adresa retelei – refera intreaga retea
  - Exemplu: adresa 85.122.23.0 (adresa *network* a masinilor 85.122.23.145 si 85.122.23.1
- 127.0.0.1 adresa de *loopback* (*localhost*)

3



#### Adrese IPv4

- Din spatiul de adrese ce pot fi alocate efectiv sunt rezervate urmatoarele (RFC 1918):
  - 0.0.0.0 0.255.255.255
  - 10.0.0.0 10.255.255.255 (adrese private)
  - 127.0.0.0 127.255.255.255 (pentru *loopback*)
  - 172.16.0.0 172.31.255.255 (adrese private)
  - 192.168.0.0 192.168.255.255 (adrese private)
- Adrese private: adrese care nu sunt accesibile spre exterior (Internetul "real"), ci doar in intranetul organizatiei

# Retele private

- Aspecte:
  - Cresterea exponentiala a numarului de gazde
  - Nu toate masinile gazda ofera resurse accesibile de pe Internet
- Solutia: NAT (Network Address Translation) RFC 3022, 4008
  - Se reutilizeaza adresele private (RFC 1918)
  - Se bazeaza pe inlocuirea adresei private cu adresa IP neprivata (IP masquerading)

# Retele private

#### • Functionalitate:



Figura: Functionare NAT

- Ruterele in mod normal ignora datagramele continind adrese private => pot fi folosite adrese IP private in cadrul intranet-ului organizatiei
- Accesul spre exterior (Internetul "real") se realizeaza via o poarta (mediating gateway) ce rescrie adresele IP sursa/destinatie

[Computer Networks, 2003 Andrew S. Tanenbaum]

#### Subretele folosind masti de retea

- A aparut ca solutie pentru problema epuizarii spatiului de adrese IP
- Simplifica rutarea
- Subretelele nu pot fi detectate ca subretele din exterior



Figura: Reteaua unui campus

#### Subretele folosind masti de retea

- Divizarea in subretele se va face via masca de retea (netmask): bitii
   NetID sunt 1, bitii HostID sunt 0
- Identificatorul subretelei (SubnetID) este utilizat in general sa grupeze calculatoarele pe baza topologiei fizice



Figura. O cale de a crea o subretea dintr-o retea de clasa B

- Subretele folosind masti de retea
  - Exemplu:
    - Fie adresa IP: 160.0.6.7
    - 10100000 00000000 00000110 00000111
    - Masca de retea: 255.255.252.0
    - 11111111 11111111 111111100 00000000



Adresa de retea: 160.0.4.0

10100000 00000000 00000100 00000000

Adresa retelei = masca de retea AND adresa IP

- Masti de subretea implicite:
  - 255.0.0.0 Clasa A
  - 255.255.0.0 Clasa B
  - 255.255.255.0 Clasa C

- Conventii de notare: x.x.x.x/m inseamna ca se aplica o masca de m biti adresei IP precizata de x.x.x.x
- Exemplu:
  - 10.0.0.0/12 se aplica o masca de 12 biti adresei 10.0.0.0, selectindu-se valorile posibile in ultimii 20 de biti (=32-12) de adresa
  - 85.122.16.0/20 se aplica o masca de 20 biti adresei 85.122.16.0

## **Nivelul Retea**

- Protocoale
  - ICMP (RFC 792)
  - ARP (RFC 826)
  - RARP (RFC 903)
  - BOOTP (RFC 951,1048,1084)
  - DHCP
- De la IPv4 la IPv6

#### ICMP – Internet Control Message Protocol

- Utilizat pentru schimbul de mesaje de control
- Foloseste IP
- Mesajele ICMP sunt procesate de software-ul IP, nu de procesele utilizatorului
- Tipuri de mesaje :

| Tipul mesajului           | Descriere                                       |
|---------------------------|-------------------------------------------------|
| 8 Echo Request            | Intreaba o masina daca este activa              |
| 0 Echo Replay             | "Da, sunt activa"                               |
| 3 Destination Unreachable | Pachetul nu poate fi livrat (e.g. DF setat)     |
| 5 Redirect                | Schimbarea rutei                                |
| 11 Time Exceeded          | A expirat timpul                                |
| etc (RFC 792)             | http://www.iana.org/assignments/icmp-parameters |

#### Utilizat de:

- comanda ping (Packet Internet Gropher)
- comanda traceroute
  - Se trimite un pachet cu TTL=1 (1 hop)
  - Primul router ignora pachetul si trimite inapoi un mesaj
     ICMP de tip "time-to-live exceeded"
  - Se trimite un pachet cu TTL=2 (2 hop-uri)
  - Al doilea router ignora pachetul si trimite inapoi un mesaj "time-to-live exceeded"
  - Se repeta pina cind se primeste raspuns de la destinatie sau s-a ajuns la numarul maxim de hop-uri

# Rezolutia adreselor

#### Adrese IP <-> adrese hardware (fizice)

- Procesul de a gasi adresa hardware a unei gazde stiind adresa IP se numeste rezolutia adresei (address resolution) – protocolul ARP (RFC 826)
  - ARP protocol de tip broadcast (fiecare masina primeste cererea de trimitere a adresei fizice, raspunde doar cea in cauza)
- Procesul de a gasi adresa IP pe baza adresei hardware se numeste rezolutia inversa a adresei (reverse address resolution) – protocolul RARP (RFC 903)
  - Utilizat la boot-are de statiile de lucru fara disc
  - BOOTP (RFC 951,1048,1084)
  - DHCP (Dynamic Host Configuration Protocol) RFC 2131,2132



- Context:
  - Probleme de adresabilitate via IPv4 clasic:
    - Cresterea exponentiala a numarului de gazde
    - Aparitia unor tabele de rutare de mari dimensiuni
    - Configuratii tot mai complexe, utilizatori tot mai multi
    - Imposibilitatea asigurarii calitatii serviciilor (QoS)
  - Presiuni din partea operatorilor de telefonie mobila

- Obiective pentru un nou protocol:
  - Suport pentru miliarde de gazde
  - Reducerea tabelelor de rutare
  - Simplificarea protocolului
  - Suport pentru gazde mobile
  - Compatibilitatea cu vechiul IP
  - Suport pentru evolutiile viitoare ale Internet-ului
- RFC 2460, 2553



• 6 Iunie 2012

#### Aspecte:

- Adresele IPv6 au lungime de 16 octeti 2<sup>128</sup> adrese
- Notatie: 16 numere hexa, fiecare de 2 cifre, delimitate de ":"
  - Exemplu: 2001:0db8:0000:0000:0000:0000:1428:57ab
  - Daca unul sau mai multe din grupurile de 4 cifre este 0000, zerourile pot fi omise si inlocuite (o singura data) cu "::"
    - Exemplu: 2001:0db8::1428:57ab
- Pentru pastrarea compatibilitatii: adresele IP publice sunt considerate un subset al spatiului de adrese IPv6
- Adresele IPv4 in IPv6 pot fi scrise astfel:
- 10.0.0.1 -> ::10.0.0.1 sau 0:0:0:0:0:0:0:A00:1

#### ICMPv6

- Ofera functiile ICMP (raportarea transmiterii datelor, erorilor, etc.) plus:
  - Descoperirea vecinilor (Neighbor Discovery Protocol NDP) - Inlocuieste ARP
  - Descoperirea ascultatorilor multicast (Multicast Listener Discovery) – inlocuieste IGMP (Internet Group Management Protocol)
- Detalii in RFC 4443

• ...continuare -> Curs viitor

#### Rezumat

- Nivelul Retea
  - Protocolul IPv4
    - Problematica
    - Caracterizare
    - Subretele
  - Retele Private
  - ICMP
  - Rezolutia adreselor
  - IPv6 imagine generala



# Intrebari?