$10_{24} (K10a_{71})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{27} + u^{26} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 27 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{27} + u^{26} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{7} - 2u^{5} + 2u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{14} + 5u^{12} + 8u^{10} + u^{8} - 8u^{6} - 4u^{4} + 2u^{2} + 1 \\ u^{14} + 6u^{12} + 13u^{10} + 10u^{8} - 2u^{6} - 4u^{4} + u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{21} - 8u^{19} - 25u^{17} - 34u^{15} - 6u^{13} + 34u^{11} + 27u^{9} - 8u^{7} - 13u^{5} + 3u \\ -u^{21} - 9u^{19} + \dots - u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{8} - 3u^{6} - 3u^{4} + 1 \\ u^{10} + 4u^{8} + 5u^{6} - 3u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{25} 4u^{24} 44u^{23} 40u^{22} 208u^{21} 168u^{20} 536u^{19} 372u^{18} 772u^{17} 432u^{16} 508u^{15} 184u^{14} + 100u^{13} + 92u^{12} + 340u^{11} + 72u^{10} + 68u^{9} 48u^{8} 144u^{7} 28u^{6} 76u^{5} + 12u^{4} + 16u^{3} + 20u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_{10}	$u^{27} - u^{26} + \dots + 2u + 1$
c_2, c_4, c_5	$u^{27} + 7u^{26} + \dots - 2u - 1$
c_3, c_8	$u^{27} + u^{26} + \dots + u^2 + 1$
c_{6}, c_{9}	$u^{27} + u^{26} + \dots + 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_{10}	$y^{27} + 23y^{26} + \dots - 2y - 1$
c_2, c_4, c_5	$y^{27} + 27y^{26} + \dots + 14y - 1$
c_3, c_8	$y^{27} + 7y^{26} + \dots - 2y - 1$
c_{6}, c_{9}	$y^{27} - 13y^{26} + \dots - 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.278071 + 0.956556I	4.70022 - 3.05015I	-2.91169 + 1.99178I
u = -0.278071 - 0.956556I	4.70022 + 3.05015I	-2.91169 - 1.99178I
u = 0.260338 + 0.833668I	4.87925 - 2.83072I	-2.20196 + 3.74350I
u = 0.260338 - 0.833668I	4.87925 + 2.83072I	-2.20196 - 3.74350I
u = -0.768863 + 0.186622I	2.29246 + 7.02686I	-6.18454 - 6.08794I
u = -0.768863 - 0.186622I	2.29246 - 7.02686I	-6.18454 + 6.08794I
u = 0.738973 + 0.201195I	2.75404 - 0.96140I	-5.27084 + 1.18503I
u = 0.738973 - 0.201195I	2.75404 + 0.96140I	-5.27084 - 1.18503I
u = -0.291604 + 1.207020I	-0.823094 + 0.986974I	-8.82659 + 0.25321I
u = -0.291604 - 1.207020I	-0.823094 - 0.986974I	-8.82659 - 0.25321I
u = -0.750412 + 0.064416I	-4.29886 + 2.79673I	-12.25981 - 4.61920I
u = -0.750412 - 0.064416I	-4.29886 - 2.79673I	-12.25981 + 4.61920I
u = 0.082485 + 1.285040I	4.34194 - 2.01066I	0.08108 + 3.90758I
u = 0.082485 - 1.285040I	4.34194 + 2.01066I	0.08108 - 3.90758I
u = 0.257867 + 1.292320I	2.54425 - 3.27708I	-0.72206 + 2.87566I
u = 0.257867 - 1.292320I	2.54425 + 3.27708I	-0.72206 - 2.87566I
u = -0.317436 + 1.304880I	-0.01754 + 6.65682I	-6.80212 - 7.22011I
u = -0.317436 - 1.304880I	-0.01754 - 6.65682I	-6.80212 + 7.22011I
u = 0.649647	-1.51171	-6.25830
u = 0.307012 + 1.374630I	7.73615 - 4.75862I	-0.67410 + 2.41055I
u = 0.307012 - 1.374630I	7.73615 + 4.75862I	-0.67410 - 2.41055I
u = -0.322115 + 1.372980I	7.22305 + 10.97750I	-1.68833 - 7.27184I
u = -0.322115 - 1.372980I	7.22305 - 10.97750I	-1.68833 + 7.27184I
u = 0.01000 + 1.42794I	11.72200 - 3.15301I	1.82291 + 2.60032I
u = 0.01000 - 1.42794I	11.72200 + 3.15301I	1.82291 - 2.60032I
u = 0.247000 + 0.300914I	-0.352229 - 0.953640I	-6.23281 + 7.10310I
u = 0.247000 - 0.300914I	-0.352229 + 0.953640I	-6.23281 - 7.10310I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7, c_{10}	$u^{27} - u^{26} + \dots + 2u + 1$
c_2, c_4, c_5	$u^{27} + 7u^{26} + \dots - 2u - 1$
c_3, c_8	$u^{27} + u^{26} + \dots + u^2 + 1$
c_6, c_9	$u^{27} + u^{26} + \dots + 4u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_{10}	$y^{27} + 23y^{26} + \dots - 2y - 1$
c_2, c_4, c_5	$y^{27} + 27y^{26} + \dots + 14y - 1$
c_3, c_8	$y^{27} + 7y^{26} + \dots - 2y - 1$
c_{6}, c_{9}	$y^{27} - 13y^{26} + \dots - 2y - 1$