Лабораторная работа 7

Модель М|М|1|

Извекова Мария Петровна

Содержание

Цель работы	Ę
Задание	6
Выполнение лабораторной работы	7
Вывод	16

Список иллюстраций

1	Фиксируем параметр лямбда	7
2	Фиксируем параметр мю	7
3	Фиксируем параметр z	8
4	Суперблок для поступления заявок	9
5	Вывод суперблока	10
6	Суперблок для обработки заявок	11
7	Вывод второго суперблока	12
8	Готовая модель	13
9	Измененные параметры суммы	13
10	Изменения параметра блока регистрирующая очередь	14
11	Изменения параметра блока регистрирующая события	14
12	Размер очереди	15
13	Поступление заявок	15

Список таблиц

Цель работы

Рассмотреть пример моделирования в хсо
s системы массового обслуживания типа $M|M|1|\infty$.

Задание

- 1. Реализовать модель системы массового обслуживания типа $M|M|1|\infty$.
- 2. Построить график поступления и обработки заявок;
- 3. Построить график динамики размера очереди.

Выполнение лабораторной работы

Зафиксируем начальные данные: λ =0.3; μ =0.35;z0=6. В меню Моделирование, Установить контекст зададим значения коэффициентов (рис. [-@fig:001] - [-@fig:003]). Так как я создавала супер блоки уже в организованном суперблоке, то установку контекста я делала 3 раза

Рис. 1: Фиксируем параметр лямбда

Рис. 2: Фиксируем параметр мю

Рис. 3: Фиксируем параметр z

Суперблок, моделирующий поступление заявок, представлен на рис. [-@fig:004]. Тут у нас заявки поступают в систему по пуассоновскому закону. Поступает заявка в суперблок, идет в синхронизатор входных и выходных сигналов, происходит равномерное распределение на интервале 0;1, далее идет преобразование в экспоненциальное распределение с параметром λ , далее заявка опять попадает в обработчик событий и выходит из суперблока.

Рис. 4: Суперблок для поступления заявок

Рис. 5: Вывод суперблока

Суперблок, моделирующий процесс обработки заявок, представлен на рис. [- @fig:006]. Тут происходит обработка заявок в очереди по экспоненциальному закону.

Рис. 6: Суперблок для обработки заявок

Рис. 7: Вывод второго суперблока

Готовая модель $M|M|1|\infty$ представлена на рис. [-@fig:008]. Тут есть селектор, два суперблока, построенных ранее, первоначальное событие на вход в суперблок, суммирование, оператор задержки (имитация очереди), также есть регистрирующие блоки: регистратор размера очереди и регистратор событий.

Рис. 8: Готовая модель

Рис. 9: Измененные параметры суммы

Curve style: Color>0 mark<0 Output window number (-1 for automatic) Output window position Output window sizes Ymin Ymax Refresh period Размер буфера	1 3 5 7 9 11 13 15 -1 [600;400]
Output window position Output window sizes Ymin Ymax Refresh period	[600;400]
Output window sizes Ymin Ymax Refresh period	[600;400]
Ymin Ymax Refresh period	
Ymax Refresh period	0
Refresh period	
	15
Размер буфера	30
газпер буфера	20
Accept herited events 0/1	1
Name of Scope (label&Id)	

Рис. 10: Изменения параметра блока регистрирующая очередь

Number of event inputs	2
Curves styles: Colors>0 marks<0	13
Output window number (-1 for automatic)	-1
Output window position	
Output window sizes	[600;400]
Refresh period	30

Рис. 11: Изменения параметра блока регистрирующая события

Результат моделирования представлен на рис. [-@fig:012] и [-@fig:013]. График

динамики размера очереди и поступление заявок.

Рис. 12: Размер очереди

Рис. 13: Поступление заявок

Вывод

В процессе выполнения данной лабораторной работы я рассмотрела пример моделирования в хсоз системы массового обслуживания типа $M|M|1|\infty$.