Automatic Model Selection

Roberta De Vito

Shrinkage Methods

ightharpoonup Subset selection methods ightarrow least squares to fit a model with subset of the predictors

Shrinkage Methods

- ightharpoonup Subset selection methods ightharpoonup least squares to fit a model with subset of the predictors
- ► Alternatively → techniques that constrain or regularize coefficient estimates
- Shrinking coefficient estimates can significantly reduce their variance

Ridge Regression

- Ordinary Least Squares (OLS) estimates β 's by minimizing RSS
- Ridge regression minimizes RSS penalized by the size of the regression coefficients,

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2.$$

 λ is a *tuning parameter* controlling the size of the penalty (usually selected using cross-validation).

Question on Prismia

Shrinkage

- 1. Fit data with the RSS
- 2. Tuning parameter λ control amount of shrinkage
- 3. $\lambda \sum_{j=1}^{p} \beta_{j}^{2} \rightarrow \text{shrinkage penalty}$
- 4. Shrinkage does not involve intercept
- 5. No shrinkage in the intercept
- 6. Standardize the covariates $\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{1/n(x_{ij} \bar{x}_j)^2}}$

Shrinkage

- ▶ Selecting a good value for λ is critical: cross-validation
- Because penalty term involves sizes of coefficients, it depends on scale of variables
- Need to standardize variables by dividing each by their standard deviation

The Credit Data

	Coefficient	Std.error	p-value
Intercept	-173.4	43.8	< 0.0001
Income	-299.2	54.2	< 0.0001
Limit	432.3	75.6	< 0.0001
Rating	176.3	42.6	< 0.0001
Student	112.2	33.2	< 0.0001

Bias Variance Trade-off I

As λ increases do you think that the variance of the ridge regression fit will

- increase
- decrease

Bias Variance Trade-off I

As λ increases do you think that the bias of the ridge regression fit will

- increase
- decrease

Bias Variance Trade-off II

Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set.

Why Does Ridge Regression Improve Over Least Squares?

Why Does Ridge Regression Improve Over Least Squares?

- ▶ Works when p > n.
- Reduces variance by introducing bias into the model

Lasso

- Penalty term for ridge regression: coefficients not exactly 0
- Lasso: force coefficients to be zero

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

▶ Penalty is ℓ_1 rather than ℓ_2

Lasso

- Lasso shrinks coefficient estimates towards zero
- ho ℓ_1 penalty force some of coefficient estimates to be exactly equal to zero
- Sparsity and interpretation
- As in ridge regression, selecting a good value of λ for lasso is critical: cross-validation

Example of Lasso Shrinkage

Another Formulation of Minimization for Ridge and Lasso

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} s.t. \sum_{j=1}^{p} \beta_j^2 \le s$$

and

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} s.t. \sum_{j=1}^{p} |\beta_j| \le s$$

- \triangleright s and λ are constraints
- ▶ s imposes budget on how large coefficients can be

Variable Selection Property of Lasso

Contours of RSS (red)
Constraint regions (blue) for lasso (left) and ridge (right)

Choosing Shrinkage Method

- ► In general, lasso will tend to perform better when response is a function of only a relatively small number of predictors
- But number of predictors related to response is never known a priori for real data sets
- ► A technique such as cross-validation can be used to determine which approach is better on a particular data set

A better Intuition

Bayesian Interpretation for Ridge Regression and the Lasso

Left: Ridge regression as a Gaussian prior. Right: The lasso as a double-exponential prior.

Selecting Tuning Parameter by Cross-Validation

- Ridge regression and Lasso: methods to determine which model is best
- ▶ Method selecting value for tuning parameter λ
- ► How can we do that?

Selecting Tuning Parameter by Cross-Validation

- Ridge regression and Lasso: methods to determine which model is best
- Method selecting value for tuning parameter λ
- How can we do that?
- ▶ Cross-validation \rightarrow grid of λ values, and compute cross-validation error rate for each value of λ
- \triangleright Select λ for which cross-validation error is smallest
- Re-fit model using all available observations

Example: The Hitters data set

AtBat Number of times at bat in 1986

Hits Number of hits in 1986

HmRun Number of home runs in 1986

Runs Number of runs in 1986

RBI Number of runs batted in in 1986

Walks Number of walks in 1986

Years Number of years in the major leagues
CatBat Number of times at bat during his career

CHits Number of hits during his career

CHmRun Number of home runs during his career

CRuns Number of runs during his career

CRBI Number of runs batted in during his career

CWalks Number of walks during his career

League A and N player's league at the end of 1986
Division E and W player's division at the end of 1986

PutOuts Number of put outs in 1986
Assists Number of assists in 1986
Errors Number of errors in 1986

Salary 1987 annual salary in thousands of dollars

NewLeague A and N levels player's league at the beginning of 1987

First look to the data

	•											
<pre>> head(Hitters)</pre>												
	AtBat	Hits	HmRun	Runs	RBI			CAtBat		CHmRun	CRuns	CRBI
-Alan Ashby	315	81	7	24	38	39	14	3449	835	69	321	414
-Alvin Davis	479	130	18	66	72	76	3	1624	457	63	224	266
-Andre Dawson	496	141	20	65	78	37	11	5628	1575	225	828	838
-Andres Galarraga	321	87	10	39	42	30	2	396	101	12	48	46
-Alfredo Griffin	594	169	4	74	51	35	11	4408	1133	19	501	336
-Al Newman	185	37	1	23	8	21	. 2	214	42	1	30	9
	CWalks	Lead	ue Di	visior	ı Pu	t0uts	Assists	Errors	Salar	y NewL	eague	
-Alan Ashby	375	,	N	V	٧	632	43	3 10	475.	0	N	
-Alvin Davis	263		Α	V	٧	880	82	2 14	480.	0	Α	
-Andre Dawson	354		N	E		200	11	1 3	500.	0	N	
-Andres Galarraga	33		N	E		805	40) 4	91.	5	N	
-Alfredo Griffin	194		Α	V	٧	282	421	25	750.	0	Α	
-Al Newman	24		N	E		76	127	7	70.	0	Α	

Linear Regression

Coefficients:						
	Estimate					
(Intercept)	163.10359					
xAtBat	-1.97987					
xHits	7.50077					
xHmRun	4.33088					
xRuns	-2.37621					
xRBI	-1.04496					
xWalks	6.23129					
xYears	-3.48905					
xCAtBat	-0.17134					
xCHits	0.13399					
xCHmRun	-0.17286					
xCRuns	1.45430					
xCRBI	0.80771					
xCWalks	-0.81157					
xLeagueN	62.59942					
xDivisionW	-116.84925					
xPutOuts	0.28189					
xAssists	0.37107					
xErrors	-3.36076					
xNewLeagueN	-24.76233					

Ridge Regression Coefficients

CV to choose the best lambda: Ridge

```
> cv.out = cv.glmnet(x_train, y_train, alpha = 0)
> 
> ## Select lamda that minimizes training MSE
> bestlam = cv.out$lambda.min
> 
> bestlam
[1] 154.9432
```

The Ridge Regression

```
type = "coefficients", s = bestlam)[1:20,]
 (Intercept)
                     AtBat
                                     Hits
                                                                                  RBI
                                                   HmRun
                                                                  Runs
11.755707029
              -0.017512197
                              1.143281649
                                            -0.222569347
                                                           1.140681463
                                                                          0.864182262
       Walks
                     Years
                                   CAtBat
                                                   CHits
                                                                CHmRun
                                                                                CRuns
 1.949383621
              -0.996062806
                              0.010741238
                                            0.071535200
                                                           0.488390858
                                                                          0.141673578
        CRBI
                    CWalks
                                               DivisionW
                                  LeagueN
                                                               Put0uts
                                                                              Assists
 0.150961984
               0.004148626
                             31.056657299 -99.569019782
                                                           0.207911521
                                                                          0.055049779
                NewLeagueN
      Errors
-2.154842352
               4.759677438
```

Lasso Coefficients

CV to choose the best lambda: Lasso

```
> cv.out = cv.glmnet(x_train, y_train, alpha = 1)
> # Select lambda that minimizes training MSE
> bestlam = cv.out$lambda.min
> bestlam
[1] 7.711561
```

The Lasso

<pre>> lasso_coef</pre>					
(Intercept)	AtBat	Hits	HmRun	Runs	RBI
9.74475651	-0.20002473	2.58693812	0.00000000	0.00000000	0.00000000
Walks	Years	CAtBat	CHits	CHmRun	CRuns
2.45127305	-1.32830861	0.00000000	0.00000000	0.06412011	0.24615220
CRBI	CWalks	LeagueN	DivisionW	PutOuts	Assists
0.41526531	-0.02681053	23.92281284	-117.94934641	0.24176933	0.00000000
Errors	NewLeagueN				
-0.94879450	0.00000000				