FUNCTIONAL DEPENDENCIES WITH PREDICATES: WHAT MAKES THE 93-ERROR EASY TO COMPUTE?

```
Simon Vilmin

Pierre Faure -- Giovagnoli

Jean-Marc Petit

Vasile-Marian Scuturici

2
```

1 LIS, Aix-Marseille Université 2 LIRIS, INSA Lyon 3 Compagnie Nationale du Rhône

Data vs. Domain Knowledge

	F	E	P	_	
	2.5	10.1	22.9		
	2.7	10.4	23.2	•	
	2.6	10.3	23.0	X	
	2.5	10.2	23.3		
	2.6	10.1	23.1		
	2.6	10.3	22.9	yd	
(Unique) counterexample					

```
Data from a hydropower turbine:

incoming flow F (m³. s^1)

elevation E of the waterfall (m)

power P produced (MW)

Domain knowledge:

P is determined by E and F,

i.e. P= f(E, F)
```

Question: is knowledge supported by data?

Some Database Terminology

relation rover R, set of tuples over R

Domain Knowledge and Functional Dependencies

Question: is knowledge supported by data?

1

P determined by E and F

V

Function f(E,F) = P

Functional Dependency (FD) EF→P

Question: does the FD hold in the relation?

Functional Dependencies

Syntax

DEF: a Functional Dependency (FD) over R is an expression $X \to A$ where $X \in R$ and $A \in R$.

mantic

DEF: given rand $X \to A$ over R, $X \to A$ holds in r, $r \models X \to A$, if $\forall t_1, t_2 \in r$, $t_1(x) = t_2(x)$ entails $t_1(A) = t_2(A)$

4	B	С	A	D	,
t	0	0	1	٨	
ts t2			2		
t3	0	1	1	c	(1, 12)
5	¥	BC	$C \rightarrow$	A	Counterexample

	<u>[2</u>	В	C	A	D
	4	0	1	1	a
	12	0	1	1	Ь
	13	1	2	3	C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

FDs vs. Real Life

$$\forall t_1, t_2 \in \Gamma$$
, $t_1[X] = t_2[X]$ entails $t_1[A] = t_2[A]$

Compare values with mathematical equality

-> imprecisions? Other comparison criteria?

Predicates to relax equality

binary predicate ϕ_A for $A \in \mathbb{R}$: predicate to compare values in dom(A)

distance
$$\phi_A$$
: $dom(A) \times dom(A) \rightarrow \{0, 1\}$

similarity see [Carrucio et al., 2015, Song et al., 2020]

Relation scheme with predicates $(R, \overline{\Phi})$: $\overline{\Psi}$ set of predicates, one for each $A \in R$

DEF: given r and $X \to A$ over $(R, \overline{\Phi})$, $X \to A$ holds in r wrt $\overline{\Phi}$, written $r \models_{\overline{\Phi}} X \to A$, if $\forall t_1, t_2 \in r$,

$$\bigwedge_{B \in X} \Phi_B(t_1[B], t_2[B]) = 1$$
 implies $\Phi_A(t_1[A], t_2[A]) = 1$

The 93-error with Predicates

93-error: coverage measure for FDs with equality [kivinen, Mannila, 1995]

minimum proportion of tuples to remove from Γ to satisfy $X \rightarrow A$

adapted to predicates [Foure-Giovagnoli et al., 2022]

DEF: Let $(R, \overline{\Phi})$ be a relation scheme with predicates and let $r, X \to A$ be a relation and a FD over $(R, \overline{\Phi})$. The g_3 -error of $r, X \to A$ wit $\overline{\Phi}$ is:

$$9_{3}^{\cancel{\Phi}}(\Gamma, X \rightarrow A) = 1 - \frac{\max(\{|s|: s \in \Gamma, s \neq \cancel{\Phi}(X \rightarrow A\})\}}{|\Gamma|}$$

size of the largest subrelation satisfying $X \rightarrow A$

Back to the Example

$$\phi_{P} = \phi_{E} = \phi_{F} \qquad \phi_{P}(x,y) = 1 \iff |x-y| \leqslant 0.1$$

$$\Phi = \{\phi_{P}, \phi_{E}, \phi_{F}\}$$

Back to our Problem

Question: is knowledge supported by data?

↓ function ↔ FDs

Question: does the FD hold in the relation?

J 9₃ + ₱

PROB: Error Validation Problem with Predicates (EVPP)

In: a relation scheme with predicates $(R, \overline{\Phi})$, Γ and

 $X \to A$ over (R, Φ) , $K \in \mathbb{R}$

Out: YES if $9^{\frac{1}{2}}(\Gamma, X \rightarrow A) \leq k$, No otherwise

The complexity of EVPP

Question: what makes EVPP tractable or not?

Idea: study predicate properties $(ref) \ \phi_A(x,x) = 1 \quad (sym) \ \phi_A(x,y) = 1 \Rightarrow \phi_A(y,x) = 1$ $(tra) \ \phi_A(x,y) = \phi_A(y,z) = 1 \Rightarrow \phi_A(x,z) = 1$ $(asym) \ \phi_A(x,y) = \phi_A(y,z) = 1 \Rightarrow x = y$

Conflict-graphs

	F	E	Р	_
7	2.5	10.1	22.9	K
1-2	2.7	10.4	23.2	
13	2.6	10.3	23.0	K
4	2.5	10.2	23.3	
F ₅	2.6	10.1	23.1	
5	2.6	10.3	22.9	

s F EF → P ⇔ s independent set of CG (r, EF → P)

EVPP and Maximum Independent Sets

Question: what makes EVPP tractable or not?

J CG₹

PROB: Maximum Independent Set (MIS)

In: a graph G=(V,E), KEN

Out: YES if there exists an ind. set I=V

of G s.t. | III7, k, NO otherwise

1

Answer: The structure of Cop imposed by \$\overline{4}\$

Overview of our Results

tra and sym

٢	F	E	Р	_ -
		10.1		Chords > Py not
		10.4		to the second se
l 3	2.6	10.3	23.0	4000
4	2.5	10.2	23.3	4
		10.1		Path on 4
5	2.6	10.3	22.9	4 tuples (P4)

$$\phi_{F}(x,y) = 1 \iff 2.5 \leqslant x, y \leqslant 2.6$$

$$\phi_{E}(x,y) = 1 \iff 10.1 \leqslant x, y \leqslant 10.3$$

$$\phi_{P}(x,y) = 1 \iff 23.0 \leqslant x, y \leqslant 23.2$$

tra and sym, Ideas

 P_4 in $CG_{\underline{\Phi}}(r, X \rightarrow A)$

t,..., ty agree on X

Py is not induced

ti, to agree on X but not on A

t, to OR t, ty disagree on A

Co-graph, MIS poly

tra, sym: CG is Pq-free

→ EVPP poly

ref, sym: CG can be any graph -> EVPP hard

4 MIS hard

	F	E	Р
4	2.5	10.1	22.9
1-2	2.7	10.4	23.2
13	2.6	10.3	23.0
4	2.5	10.2	23.3
l ₅	2.6	10.1	23.1
5	2.6	10.3	22.9

$$\phi_P = \phi_E = \phi_F$$
 $\phi_P(x,y) = 1 \iff |x-y| \leqslant 0.1$

tra, ref and asym

tra, ref, asym: CG can be any 2-subdivision graph -> EVPP hard

	F	E	P
4	2.5	10.1	22.9
F ₂	2.7	10.4	23.2
13	2.6	10.3	23.0
4	2.5	10.2	23.3
F ₅	2.6	10.1	23.1
4	2.6	10.3	22.9

MIS hard

$$\phi_P = \phi_E = \phi_F$$
 $\phi_P(x,y) = 1 \iff x \leqslant y$

Conclusion

EVPP: estimate the 93-error of a functional dependency with predicates

- can be used to confront experts Knowledge against data [Faure -- Giovagnoli, 2022]
- Complexity depends on the properties of predicates and the underlying conflict-graph [Bertossi, 2011]

Main results [Vilmin et al., 2023]

- having sym and tra > EVPP poly
- dropping sym or tra > EVPP NP-complete

Further research:

- Practical algorithms for special cases?
- Connections with repairs of sets of FDs? [Livshits et al., 2020]

References

L. Bertossi

[Bertossi, 2011]

Database repairing and consistent query answering Synthesis Lectures on Data Management, 2011

L. Caruccio, V. Deufemia, G. Giuseppe

[Caruccio et al., 2015]

Relaxed Functional Dependencies—a survey of approaches

IEEE Transactions on Knowledge and Data Engineering, 2015

P. Faure -- Giovagnoli, J.-M. Petit, V.-M. Scuturici [Faure -- Giovagnoli et al., 2022] Assessing the Existence of a Function in a Dataset with the g3 indicator IEEE International Conference on Data Engineering, 2022

Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen (Huhtala et al., 1999)

TANE: An efficient algorithm for discovering functional and approximate dependencies The Computer Journal, 1999

J. Kivinen, H. Mannila

[Kivinen, Mannila, 1995]

Approximate inference of functional dependencies from relations Theoretical Computer Science, 1995

References

E. Livshits, B. Kimelfeld, R. Sudeepa Computing optimal repairs for functional dependencies ACM Transactions on Database Systems, 2020

[Song et al., 2013]

[Livshits et al., 2020]

S. Song, L. Chen, P. Yu Comparable dependencies over heterogeneous data The VLDB journal, 2013

S. Song, F. Goo, R. Huang, C. Wang Data Dependencies over Big Data: A Family Tree IEEE Transactions on Knowledge and Data Engineering, 2020

S. Vilmin, P. Faure -- Giovagnoli, J.-M. Petit, V.-M. Scuturici

[Vilmin et al., 2023] Functional Dependencies with Predicates: What Makes the g.-error easy to compute?

[Song et al., 2020]

LNCS, ICCS, 2023