Практикум 2.10

Вычисление кратных интегралов

Цель работы – научиться вычислять кратные интегралы, используя средства Anaconda.

Продолжительность работы – 4 часа.

Оборудование, приборы, инструментарий – работа выполняется в компьютерном классе с использованием Anaconda.

Порядок выполнения

- 1. Работа начинается с выполнения общих упражнений. Их наличие в отчете является допуском к сдаче индивидуального зачетного задания по практикуму.
- 2. После выполнения общих упражнений выполняются индивидуальные задания; результаты заносятся в отчет.
- 3. Подготовить отчёт, в который включить упражнения из раздела «Краткие теоретические сведения и практические упражнения» и упражнения для самостоятельной работы. Отчёт представить в виде документа Microsoft Word, имя файла (пример): mp_10_Ivanov_P_01_s_1 (факультет_группа_Фамилия студента_Инициал_номер лабораторной, семестр). Отчет должен содержать по каждому выполненному упражнению: № упражнения, текст упражнения; команды, скопированные из командного окна, с комментариями к ним и результаты их выполнения, включая построенные графики; тексты defфункций; выводы.

Краткие теоретические сведения

и практические упражнения

1. Вычисление двойного интеграла. Двойной интеграл можно вычислить с помощью повторного интеграла. Если множество G задано неравенствами $a \le x \le b, \ y_1(x) \le y \le y_2(x),$ где $y_1(x)$ и $y_2(x)$ - непрерывные на отрезке [a,b] функции, то двойной интеграл сводится к повторному

$$\iint_G f(x, y) dx dy = \int_a^b dx \int_{y_1(x)}^{y_2(x)} f(x, y) dy,$$

в котором интеграл по dy будем называть внутренним, а по dx - внешним интегралом. Если множество G задано неравенствами $c \le y \le d$, $x_1(y) \le x \le x_2(y)$, где $x_1(y)$ и $x_2(y)$ - непрерывные на отрезке [c,d] функции, то двойной интеграл сводится к повторному

$$\iint_G f(x, y) dx dy = \int_c^d de \int_{x_1(y)}^{x_2(y)} f(x, y) dx,$$

в котором интеграл по dx называется внутренним, а по dy - внешним интегралом.

Двойные интегралы вычисляются в python повторным применением функции *integrate* библиотеки *sympy*.

Пример 1. Вычислим интеграл $\iint_G xydxdy$, $G: 1 \le x \le 2$, $x \le y \le 2x$.

```
import sympy as sp
from sympy.abc import x, y

f = x * y
c, d = (x, 2*x)
a, b = (1, 2)
Iy = sp.integrate(f, (y, c, d))
Ix = sp.integrate(Iy, (x, a, b))
print(f'I = {Ix}')
```

I = 45/8

Упражнение 1. Изобразить область интегрирования. Вычислить интеграл, расставив пределы интегрирования двумя способами:

$$\iint_G (x+y^2)dxdy$$
, где G ограничена кривыми $y=2x$ и $y=x^2$.

Упражнение 2. Изобразить область интегрирования. Вычислить тройной интеграл $\iiint_V z dx dy dz$, где V ограничена координатными плоскостями x=0, y=0, z=0 и плоскостью z+y+z=1.

2. Замена переменных в кратном интеграле.

Упражнение 3. Изобразить область интегрирования. Вычислить интеграл двумя способами.

Индивидуальное задание

$N_{\Omega} \cap \Pi$	Интеграл	Область S
1	$\iint_{S} x\sqrt{1-y} dxdy$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$
2	$\iint_{S} \cos x \sqrt{2 - 2y} dx dy$	$S = \begin{cases} 0 \le x \le \pi/2 \\ 0 \le y \le \sin x \end{cases}$
3	$\iint_{S} \frac{\sqrt{3y+1}}{x} dx dy$	$S = \begin{cases} 1 \le x \le e \\ 0 \le y \le \ln x \end{cases}$
4	$\iint_{S} \sin x \sqrt{2y + 3} dx dy$	$S = \begin{cases} 0 \le x \le \frac{\pi}{2} \\ 0 \le y \le \cos x \end{cases}$
5	$\iint_{S} \frac{e^{x} dx dy}{\sqrt{1+2y}}$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le e^x \end{cases}$
6	$\iint_{S} \frac{xdxdy}{\sqrt{3y+1}}$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$
7	$\iint_{S} \frac{\cos x dx dy}{\sqrt{3y+1}}$	$S = \begin{cases} 0 \le x \le \pi/2 \\ 0 \le y \le \sin x \end{cases}$
8	$\iint_{S} \frac{\sqrt{4-3y}}{x} dx dy$	$S = \begin{cases} 1 \le x \le e \\ \ln x \le y \le 1 \end{cases}$
9	$\iint_{S} \frac{\sin x dx dy}{\sqrt{2y+3}}$	$S = \begin{cases} 0 \le x \le \frac{\pi}{2} \\ 0 \le y \le \cos x \end{cases}$

10	$\iint_{S} \frac{(1-x)dxdy}{(y+1)^2}$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$
11	S ·	,
11	$\iiint_{c} x\sqrt{1-y} dxdy$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$
12	S CC	
12	$\iint_{S} \cos x \sqrt{2 - 2y} dx dy$	$S = \begin{cases} 0 \le x \le \pi/2 \\ 0 \le y \le \sin x \end{cases}$
13	<u> </u>	`
	$\iint_{S} \frac{\sqrt{3y+1}}{x} dx dy$	$S = \begin{cases} 1 \le x \le e \\ 0 \le y \le \ln x \end{cases}$
14	$\iint_{S} \sin x \sqrt{2y + 3} dx dy$	$S = \begin{cases} 0 \le x \le \frac{\pi}{2} \end{cases}$
		$S = \begin{cases} 0 \le x \le \frac{\pi}{2} \\ 0 \le y \le \cos x \end{cases}$
15	$\int \int e^x dxdy$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le e^x \end{cases}$
	$\iint_{S} \frac{e^{x} dxdy}{\sqrt{1+2y}}$	$0 \le y \le e^x$
16	$\iint_{S} \frac{xdxdy}{\sqrt{3y+1}}$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$
1.5		
16	$\iint_{S} \frac{\cos x dx dy}{\sqrt{3y+1}}$	$S = \begin{cases} 0 \le x \le \pi/2 \\ 0 \le y \le \sin x \end{cases}$
17	5 4 -	
17	$\iint_{S} \frac{\sqrt{4-3y}}{x} dxdy$	$S = \begin{cases} 1 \le x \le e \\ \ln x \le y \le 1 \end{cases}$
19	$\iint_{S} \frac{\sin x dx dy}{\sqrt{2y+3}}$	$S = \begin{cases} 0 \le x \le \frac{\pi}{2} \end{cases}$
	$\int_{S}^{S} \sqrt{2y+3}$	
20	cc(1-x)dxdy	$\begin{cases} 0 \le y \le \cos x \\ 0 \le x \le 1 \end{cases}$
	$\iint_{S} \frac{(1-x)dxdy}{(y+1)^2}$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$
21	$\iint x\sqrt{1-y}dxdy$	`
	S	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$
22	$\iint \cos x \sqrt{2 - 2y} dx dy$	$S = \begin{cases} 0 \le x \le \pi/2 \\ 0 \le y \le \sin x \end{cases}$
	S	$\int_{0}^{\infty} \left(0 \le y \le \sin x \right)$
23	$\iint \frac{\sqrt{3y+1}}{\sqrt{3y+1}} dx dy$	$S = \begin{cases} 1 \le x \le e \\ 0 \le y \le \ln x \end{cases}$
24	$\iint_{S} \frac{\sqrt{3y+1}}{x} dxdy$ $\iint_{S} \sin x \sqrt{2y+3} dxdy$	$0 \le y \le \ln x$
24	$\iint_{S} \sin x \sqrt{2y + 3dxdy}$	$\left \begin{array}{c} x = 0 \\ x = 0 \end{array} \right 0 \le x \le \frac{\pi}{2}$
		$S = \begin{cases} 0 \le x \le \frac{\pi}{2} \\ 0 \le y \le \cos x \end{cases}$
<u> </u>		(,

25	$\iint_{S} \frac{e^{x} dx dy}{\sqrt{1+2y}}$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le e^x \end{cases}$
26	$\iint_{S} \frac{x dx dy}{\sqrt{3y+1}}$	$S = \begin{cases} 0 \le x \le 1 \\ 0 \le y \le x^2 \end{cases}$
27	$\iint_{S} \frac{\cos x dx dy}{\sqrt{3y+1}}$	$S = \begin{cases} 0 \le x \le \pi/2 \\ 0 \le y \le \sin x \end{cases}$
28	$\iint\limits_{S} \frac{\sqrt{4-3y}}{x} dx dy$	$S = \begin{cases} 1 \le x \le e \\ \ln x \le y \le 1 \end{cases}$

Задания для самостоятельной работы

- **1.** Выполнить упражнения из раздела «Краткие теоретические сведения и практические упражнения», которые не успели сделать в аудитории.
- 2. Самостоятельно выполнить упражнения.

Упражнение 1С. Изобразить область интегрирования. Вычислить интеграл, расставив пределы интегрирования двумя способами:

$$\iint_G \sin(xy) dx dy$$
, где G ограничена кривыми $y = 1 - 2x^2$ и $y + x = 0$.

Упражнение 2. Изобразить область интегрирования. Вычислить тройной интеграл $\iiint_V xyz dx dy dz$, где V ограничена поверхностями $x=y^2$, $y=x^2$, z=xy и координатной плоскостью z=0.

Упражнение 3. Изобразить область интегрирования. Вычислить интеграл двумя способами (без помощи и с помощью замены переменных):

$$\iiint\limits_V \sqrt{x^2+y^2+z^2} dx dy dz \;, \; \text{где область интегрирования} \;\; V \;\; \text{ определяется неравенством} \;\; x^2+y^2+z^2 \leq z \;.$$

- 3. Ответить на контрольные вопросы:
- 1) Какие функции среды Anaconda используются для вычисления двойного интеграла?
- 2) Какие функции среды Anaconda используются для вычисления тройного интеграла?

Список рекомендуемой литературы

- 1. Официальная документация по языку программирования Python https://docs.python.org/3/
- 2. Официальная документация к библиотеке numpy https://numpy.org/doc/stable/index.html
- **3.** Официальная документация к библиотеке scipy https://docs.scipy.org/doc/scipy/index.html
- **4.** Сборник задач по математике для втузов под ред. А.В.Ефимова и А.С.Поспелова, часть 2, М.2002, 5.5.