Sur les carquois liés

Yassine Ait Mohamed

November 12, 2024

Plan de l'exposé

- Notation et terminologie
- 2 L'équivalence catégorique entre $Rep_K(Q)$ et KQ-Mod
- 3 Idéal admissible et algèbre quotient
- 4 Le carquois d'une algèbre de dimension finie

• K un corps algébriquement clos.

- K un corps algébriquement clos.
- $Q = (Q_0, Q_1, s, t)$ un carquois.

- K un corps algébriquement clos.
- $Q = (Q_0, Q_1, s, t)$ un carquois.
- KQ l'algèbre de chemins de Q.

- K un corps algébriquement clos.
- $Q = (Q_0, Q_1, s, t)$ un carquois.
- KQ l'algèbre de chemins de Q.

- K un corps algébriquement clos.
- $Q = (Q_0, Q_1, s, t)$ un carquois.
- KQ l'algèbre de chemins de Q.

•
$$Rep_K(Q) := \begin{cases} \text{Objets} : \text{Représentations de } Q \\ \text{Morphismes} : \text{Morphismes de représentations} \end{cases}$$
(la catégorie de représentations de Q).

• KQ-Mod := $\begin{cases} \text{Objets} : KQ\text{-modules} \\ \text{Morphismes} : \text{Morphismes de } KQ\text{-modules} \end{cases}$ (la catégorie de KQ-Modules).

- K un corps algébriquement clos.
- $Q = (Q_0, Q_1, s, t)$ un carquois.
- KQ l'algèbre de chemins de Q.

- Si $V=(V_a,V_\alpha)_{(a,\alpha)\in Q_0\times Q_1}$ une représentation de Q et $c=(a|\alpha_1,\ldots,\alpha_r|b)$ un chemin non trivial dans Q. Alors l'évaluation de V en c est l'application linéaire définie par:

$$ev_c := V_{\alpha_r} \circ \cdots \circ V_{\alpha_r} : V_a \longrightarrow V_b$$

Soit Q un carquois fini.

Théorème

La catégorie des représentations de carquois Q est équivalente à la catégorie de KQ-modules.

La démonstration se faisait en trois étapes :

1^{er} étape: La construction de foncteur $\mathcal{F}: Rep_K(Q) \longrightarrow KQ$ -Mod: Soit $V = (V_a, V_\alpha)_{(a,\alpha) \in Q_0 \times Q_1}$ une représentation de Q.

• $\mathcal{F}(V) := \bigoplus_{a \in O_0} V_a$ (K-espace vectoriel).

La démonstration se faisait en trois étapes :

1^{er} étape: La construction de foncteur $\mathcal{F}: Rep_K(Q) \longrightarrow KQ$ -Mod: Soit $V = (V_a, V_\alpha)_{(a,\alpha) \in Q_0 \times Q_1}$ une représentation de Q.

- $\mathcal{F}(V) := \bigoplus_{a \in Q_0} V_a$ (K-espace vectoriel).
- Pour tout $a \in Q_0$:

$$j_a: V_a \hookrightarrow \mathcal{F}(V)$$
 (l'injection canonique).
 $\pi_a: \mathcal{F}(V) \twoheadrightarrow V_a$ (la projection canonique).

• $\mathcal{F}(V)$ est un KQ-module via la modulation suivante: Soit $c=(a|\alpha_1,\alpha_2,\cdots,\alpha_n|b)$ un chemin dans KQ et $m=(m_d)_{d\in Q_0}\in \mathcal{F}(V)$. Alors:

$$c \cdot m := j_b \circ ev_c \circ \pi_a(m) \in \mathcal{F}(V).$$

• $\mathcal{F}(V)$ est un KQ-module via la modulation suivante: Soit $c=(a|\alpha_1,\alpha_2,\cdots,\alpha_n|b)$ un chemin dans KQ et $m=(m_d)_{d\in Q_0}\in \mathcal{F}(V)$. Alors:

$$c \cdot m := j_b \circ ev_c \circ \pi_a(m) \in \mathcal{F}(V).$$

• Soit $W=(W_a,W_\alpha)_{(a,\alpha)\in Q_0\times Q_1}$ une représentation de Q et $\phi=(f_a)_{a\in Q_0}:V\longrightarrow W$ un morphisme de représentation. Alors ϕ induit un morphisme $\mathcal{F}(\phi):\mathcal{F}(V)\longrightarrow \mathcal{F}(W)$ définie par:

$$\mathcal{F}(\phi) := \bigoplus_{\mathsf{a} \in Q_0} f_\mathsf{a}$$

$$\mathcal{F}(\phi): \mathcal{F}(V) \longrightarrow \mathcal{F}(W)$$
 est:

• une application additive car les (f_a) sont additives.

$$\mathcal{F}(\phi): \mathcal{F}(V) \longrightarrow \mathcal{F}(W)$$
 est:

- une application additive car les (f_a) sont additives.
- compatible avec la modulation i.e, pour tout $c=(x|\alpha_1,\alpha_2,\cdots,\alpha_n|y)\in KQ$ et $m=(m_d)_{d\in Q_0}\in \mathcal{F}(V)$ on a

$$\mathcal{F}(\phi)(c \cdot m) = c \cdot \mathcal{F}(\phi)(m),$$

ceci découle directement de la commutativité deux diagrammes suivant:

Soient $f: V \longrightarrow W$ et $g: W \longrightarrow T$ deux morphismes de représentation. Alors $\mathcal{F}(g \circ f) = \mathcal{F}(g) \circ \mathcal{F}(f)$. Ceci découle de fait que

$$\bigoplus_{a\in Q_0}(g_a\circ f_a)=\bigoplus_{a\in Q_0}g_a\circ\bigoplus_{a\in Q_0}f_a.$$

2ème étape: La construction de foncteur $\mathcal{G}: KQ\operatorname{-Mod} \longrightarrow Rep_K(Q)$: Soit M un $KQ\operatorname{-module}$. Pour $a,b\in Q_0$ et $\alpha\in Q_1$ telle que $s(\alpha)=a$ et $t(\alpha)=b$ on définit:

• $\mathcal{G}(M)_a := e_a M$ (K-espace vectoriel).

2ème étape: La construction de foncteur $\mathcal{G}: KQ\operatorname{-Mod} \longrightarrow Rep_K(Q)$: Soit M un $KQ\operatorname{-module}$. Pour $a,b\in Q_0$ et $\alpha\in Q_1$ telle que $s(\alpha)=a$ et $t(\alpha)=b$ on définit:

- $G(M)_a := e_a M$ (K-espace vectoriel).
- $\mathcal{G}(M)_{\alpha}(e_a m) := e_b(\alpha \cdot m)$, pour tout $m \in M$ (une application K-linéaire).

$$egin{array}{cccc} a & & \stackrel{lpha}{-----} & b & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

Donc $\mathcal{G}(M):=(\mathcal{G}(M)_a,\mathcal{G}(M)_\alpha)_{(a,\alpha)\in Q_0\times Q_1}$ est une représentation de Q.

Soit N un KQ-module et $\psi: M \longrightarrow N$ un morphisme de KQ-modules. Alors ψ induit un morphisme de représentation: $\mathcal{G}(\psi): \mathcal{G}(M) \longrightarrow \mathcal{G}(N)$. Pour tout $a \in Q_0$, on a:

$$\mathcal{G}(\psi)_a: e_a M \longrightarrow e_a N$$

 $e_a m \longmapsto e_a \psi(m)$

 $\mathcal{G}(\psi)_a$ est une application K-linéaire.

Pour tout $a, b \in Q_0$ et $\alpha \in Q_1$ telle que $s(\alpha) = a$ et $t(\alpha) = b$. Le diagramme suivant est commutatif:

$$\begin{array}{ccc} e_{a}M & \xrightarrow{\mathcal{G}(M)_{\alpha}} & e_{b}M \\ & & \downarrow^{\mathcal{G}(\psi)_{a}} & & \downarrow^{\mathcal{G}(\psi)_{b}} \\ e_{a}N & \xrightarrow{\mathcal{G}(N)_{\alpha}} & e_{b}N \end{array}$$

Soient $\psi: M \longrightarrow N$ et $\varphi: N \longrightarrow N'$ deux morphismes de KQ-modules. Alors $\mathcal{G}(\varphi \circ \psi) = \mathcal{G}(\varphi) \circ \mathcal{G}(\psi)$.

 $3^{\mathsf{ème}}$ étape: On vérifie facilement que $\mathcal{FG}\cong 1_{\mathsf{KQ-Mod}}$ et $\mathcal{GF}\cong 1_{\mathsf{Rep}_{\mathsf{K}}(Q)}$.

Exemple

$$Rep_K(Q) \simeq K[X]$$
-Mod

En effet:

$$KQ = \{\lambda_1 e_1 + \lambda_2 \alpha + \ldots + \lambda_n \alpha^n | \lambda_i \in K \text{ et } n \in \mathbb{N}\} = K[\alpha] \simeq k[X]$$

Soit Q un carquois fini et KQ son algèbre de chemins.

On note par $R_Q := l'idéal$ engendré par toutes les flèches dans Q.

Pour $m \ge 2$, R_Q^m est l'idéal engendré par tous les chemins de longueur m.

Remarque

Comme K-espace vectoriel R_Q et R_Q^m peuvent être vue comme:

• $R_Q = \bigoplus_{s \ge 1} KQ_s$ avec KQ_s est le sous espace vectoriel de KQ de base $B_s = \{\text{Chemins de longueur s}\}$

Soit Q un carquois fini et KQ son algèbre de chemins.

On note par $R_Q := l'idéal$ engendré par toutes les flèches dans Q.

Pour $m \ge 2$, R_Q^m est l'idéal engendré par tous les chemins de longueur m.

Remarque

Comme K-espace vectoriel R_Q et R_Q^m peuvent être vue comme:

- $R_Q = \bigoplus_{s \ge 1} KQ_s$ avec KQ_s est le sous espace vectoriel de KQ de base $B_s = \{\text{Chemins de longueur s}\}$
- $R_Q^m = \bigoplus_{r \geq m} KQ_r$ et base de KQ_r est consiste à tous les chemins de longueur supérieure ou égale à m

Soit \mathcal{I} un idéal bilatère de KQ.

Définition

 \mathcal{I} est dit un idéal admissible si et seulement s'il existe $m \geq 2$ tel que:

$$R_Q^m \subseteq \mathcal{I} \subseteq R_Q^2$$

Exemples

• Pour tout $m \ge 2$, R_Q^m est un idéal admissible.

Exemples

- Pour tout $m \ge 2$, R_Q^m est un idéal admissible.
- Si Q un carquois acyclique. Alors tout idéal $\mathcal I$ contenu dans R_Q^2 est un idéal admissible.

Exemples

- Pour tout $m \ge 2$, R_Q^m est un idéal admissible.
- Si Q un carquois acyclique. Alors tout idéal $\mathcal I$ contenu dans R_Q^2 est un idéal admissible.
- Q:

Alors $\mathcal{I} := <\alpha\beta, \beta^3>$ est un idéal admissible. En effet:

$$R_Q^3 \subseteq \mathcal{I} \subseteq R_Q^2$$
.

• Q:

Alors $\mathcal{I}:=<\alpha\beta,\alpha\beta\lambda,\lambda^2>$ est un idéal admissible de KQ. En effet:

$$R_Q^3 \subseteq \mathcal{I} \subseteq R_Q^2$$
.

• Q:

Alors $\mathcal{I}:=<\alpha\beta,\alpha\beta\lambda,\lambda^2>$ est un idéal admissible de KQ. En effet:

$$R_Q^3 \subseteq \mathcal{I} \subseteq R_Q^2$$
.

• Q:

$$1 \stackrel{\beta}{\longleftarrow} 2 \stackrel{\alpha}{\longleftarrow} 3$$

Alors $\mathcal{I} := <\alpha\beta>$ est un idéal admissible. En effet: Q est acyclique et $\mathcal{I}\subseteq R_Q^2$. Soit \mathcal{I} un idéal admissible de KQ.

Définition

• Le pair (Q, \mathcal{I}) est appelé un carquois lié. Le quotient KQ/\mathcal{I} est appelé l'algèbre de carquois lié.

Soit \mathcal{I} un idéal admissible de KQ.

Définition

- Le pair (Q, \mathcal{I}) est appelé un carquois lié. Le quotient KQ/\mathcal{I} est appelé l'algèbre de carquois lié.
- Une relation ρ dans Q est un élément de KQ tel que

$$\rho = \sum_{i=1}^{m} \lambda_i \omega_i,$$

où les ω_i sont des chemins dans Q de longueur au moins 2 tels que, si $i \neq j$, alors la source (resp. le but) de ω_i coïncide avec celle de ω_j .

• Si m=1 alors ρ est appelée zéro relation.

- Si m=1 alors ρ est appelée zéro relation.
- Si $\rho = \omega_1 \omega_2$ alors ρ est appelée une relation de commutativité.

- Si m=1 alors ρ est appelée zéro relation.
- Si $\rho = \omega_1 \omega_2$ alors ρ est appelée une relation de commutativité.
- Si $< \rho_j \mid j \in J >$ est idéal admissible de KQ. On dit que Q est un carquois lié par les relations $(e_j)_{j \in J}$ ou par les relations $\rho_j = 0$ pour tout $j \in J$.

Exemple

On considère le carquois Q:

- Les zéros relations: $\alpha\beta$, $\theta\delta$, $\lambda\gamma$
- les relations de commutativité: $\alpha\beta \theta\delta$, $\theta\delta \lambda\gamma$, $\alpha\beta \lambda\gamma$

Proposition

Soit Q est un carquois fini. Tout idéal admissible $\mathcal I$ de KQ est de type fini.

Le résultat découle de fait que la suite suivante:

$$0 \longrightarrow R_Q^m \longrightarrow \mathcal{I} \longrightarrow \mathcal{I}/R_Q^m \longrightarrow 0$$

est exacte.

Corollaire

Soit Q un carquois fini et \mathcal{I} un idéal admissible de KQ. Il existe un ensemble fini de relations $\{\rho_1, \ldots, \rho_m\}$ tel que $\mathcal{I} = \langle \rho_1, \ldots, \rho_m \rangle$.

Théorème

Soit Q un carquois fini connexe et \mathcal{I} un idéal admissible de KQ. Alors $A=KQ/\mathcal{I}$ est une algèbre basique connexe de dimension finie ayant $E=\{e_a:=\epsilon_a+\mathcal{I}/a\in Q_0\}$ comme ensemble complet d'idempotents primitifs orthogonaux. De plus, $\operatorname{rad}(A)=R_Q/\mathcal{I}$.

Exemples

• Soit Q:

L'idéal $\mathcal{I} := <\alpha\beta - \beta\alpha, \beta^2, \alpha^2 > \text{ est un idéal admissible de } KQ$. Alors KQ/\mathcal{I} est une K-algèbre de dimension 4 de base $B = \{\bar{e}_1, \bar{\alpha}, \bar{\beta}, \bar{\alpha}\bar{\beta}\}.$

L'idéal $\mathcal{I}:=<\alpha\beta-\gamma\delta>$ est un idéal admissible de KQ et KQ/\mathcal{I} est une K-algèbre de dimension 9 de base $\mathcal{B}=\{\bar{e}_1,\bar{e}_2,\bar{e}_3,\bar{e}_4,\bar{\alpha},\bar{\beta},\bar{\gamma},\bar{\delta},\bar{\alpha}\bar{\beta}\}.$

Q:

Alors $\mathcal{I}:=<\theta\alpha,\lambda\gamma\beta>$ est un idéal admissible de $\mathit{KQ}.\ \mathit{kQ}/\mathcal{I}$ est une K -algèbre de dimension 11 de base $\mathit{B}=\{\bar{e}_1,\bar{e}_2,\bar{e}_3,\bar{e}_4,\bar{\theta},\bar{\alpha},\bar{\lambda},\bar{\gamma},\bar{\beta},\bar{\lambda}\gamma,\bar{\gamma}\beta\}.$

Remarque

Si $\mathcal I$ est un idéal non admissible, l'algèbre $KQ/\mathcal I$ n'est généralement pas de dimension finie.

On considère le carquois suivant:

L'idéal $\mathcal{I}=<0>$ est un idéal non admissible et $KQ/\mathcal{I}\simeq KQ\simeq K[X]$ qui de dimension infinie.

Exemple

On considère le même carquois précédent et on pose $\mathcal{I}:=<\alpha^2-\alpha>$. \mathcal{I} est un idéal non admissible dont l'algèbre quotient est de dimension finie. En effet: $KQ/\mathcal{I}=\{\lambda_1\bar{e}_1+\lambda_2\bar{\alpha}/\lambda_1,\lambda_2\in K\}\simeq K^2$.

Remarque

Si \mathcal{I}_1 et \mathcal{I}_2 deux idéaux admissibles de KQ. En général KQ/\mathcal{I}_1 et KQ/\mathcal{I}_2 ne sont pas isomorphe.

On considère le carquois Q:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

 $\mathcal{I}_1 := <\alpha\beta>$ et $\mathcal{I}_2 = <0>$ sont deux idéaux admissibles distincts. On a:

$$\left(\text{dim}(\textit{KQ}/\mathcal{I}_1) = 5 \text{ et } \text{dim}(\textit{KQ}/\mathcal{I}_2) = 6\right) \implies \textit{KQ}/\mathcal{I}_1 \nsim \textit{KQ}/\mathcal{I}_2.$$

Soit A une K-algèbre connexe de dimension finie et $\{e_1, \ldots, e_n\}$ un ensemble complet d'éléments idempotents primitifs orthogonaux de A.

Définition

Le carquois associée à A est noté par Q_A , définit comme:

• $(Q_A)_0 := \{1, 2, \dots, n\}$ tel que pour tout $1 \le j \le n$, j correspond à e_j .

Le carquois Q_A est fini.

Soit A une K-algèbre connexe de dimension finie et $\{e_1,\ldots,e_n\}$ un ensemble complet d'éléments idempotents primitifs orthogonaux de A.

Définition

Le carquois associée à A est noté par Q_A , définit comme:

- ullet $(Q_A)_0:=\{1,2,\ldots,n\}$ tel que pour tout $1\leq j\leq n,\, j$ correspond à $e_j.$
- Pour tout $a, b \in (Q_A)_0$, les flèches $a \xrightarrow{\alpha} b$ sont en bijection avec les éléments de base de e_a (rad $A/\operatorname{rad}^2 A$) e_b .

Le carquois Q_A est fini.

Proposition (Lem 3.2, [ASS])

Soit A une K-algèbre basique connexe de dimension finie.

• Le carquois Q_A ne dépend pas de choix de l'ensemble complet d'éléments primitifs idempotents orthogonaux.

Proposition (Lem 3.2, [ASS])

Soit A une K-algèbre basique connexe de dimension finie.

- Le carquois Q_A ne dépend pas de choix de l'ensemble complet d'éléments primitifs idempotents orthogonaux.
- Q_A est connexe.

Proposition

Soit Q un carquois connexe fini et \mathcal{I} un idéal admissible de KQ. Alors $Q_A=Q$ avec $A:=KQ/\mathcal{I}$.

Corollaire

Si \mathcal{I}_1 et \mathcal{I}_2 deux idéaux admissibles distincts de KQ. Alors $Q_A = Q_B$ où $A := KQ/\mathcal{I}_1$ et $B := KQ/\mathcal{I}_2$.

Proposition (Th 3.7, [ASS])

Soit A une algèbre basique connexe de dimension finie. Alors il existe un idéal admissible $\mathcal I$ de KQ_A telle que $A\simeq KQ_A/\mathcal I$.

L'isomorphisme $A \simeq KQ_A/\mathcal{I}$ est appelé une représentation de A.

Soit Q un carquois fini et $V=(V_a,V_\alpha)_{(a,\alpha)\in Q_0\times Q_1}$ une représentation de Q et $\rho=\sum_{i=1}^r\lambda_i\omega_i$ une relation dans Q. Alors $ev_\rho:=\sum_{i=1}^r\lambda_iev_{\omega_i}$.

Définition

Soit \mathcal{I} est un idéal admissible de KQ. Alors une représentation $V = (V_a, V_\alpha)_{(a,\alpha) \in Q_0 \times Q_1}$ est dite liée à \mathcal{I} si $ev_\rho = 0$ pour tout $\rho \in \mathcal{I}$.

Remarque

Puisque tout idéal admissible est de type finie. Alors V est lié à $\mathcal I$ si $ev_{\rho_i}=0$ pour tout $\leq i \leq s$ avec $\mathcal I=<\rho_1,\ldots,\rho_s>$.

Théorème (**Th 1.6**, [ASS])

Soit $A := KQ/\mathcal{I}$ où Q est un carquois fini connexe et \mathcal{I} est un idéal admissible de KQ. Alors les catégories A-Mod et $Rep_K(Q,\mathcal{I})$ sont équivalentes.

En particulier, A-mod et $rep_K(Q, \mathcal{I})$ sont équivalentes.

On peut utiliser la mème construction précédente.

Merci pour votre attention!