Eine Woche, ein Beispiel 2.16 lines passing a point

Ref:

[Huy23]: Huybrechts, Daniel. The Geometry of Cubic Hypersurfaces. [Kr16, cubic threefold]: Krämer, Thomas. Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map. Manuscripta Mathematica 149,

These are perhaps too well-known. But I should record it.

Typical question:

In a hypersurface $X \subset \mathbb{P}^n$, how many lines $l \cong \mathbb{P}'$ pass a given point $p \in X$?

Affine version:

In a (conical) hypersurface $X \subset \mathbb{C}^{n+1}$, how many planes $1 \cong \mathbb{C}^2$ contain a given line $p \cong \mathbb{C} \subseteq X$?

- 1. Method
- 2. Lines on cubic threefold
- 3. Lines on quadrics

1. Method

Slogan. Write down the coordinates explicitly.

w.l.o.g. let
$$p = [1:0:\dots:0]$$
 and $X = \{f = 0\}$, where
$$f(z_0,\dots,z_n) = \sum_{i=0}^d g_{d-i}(z_1,\dots,z_n) \ z_0^i$$

$$g_{d-i}(z_1,\dots,z_n) \in \mathbb{C}[z_1,\dots,z_n] \quad \text{are homo of degree } d-i,$$
 and $g_0(z_1,\dots,z_n) = 0$.

Suppose that
$$(= \langle (1,0,...,0), (0,x_1,...,x_n) \rangle_{C-v.s.}$$
, then $(\subseteq X)$
 $\Leftrightarrow f(t,x_1,...,x_n) \equiv 0$ $\forall t \in \mathbb{C}$
 $\Leftrightarrow g_i(x_1,...,x_n) \equiv 0$ $\forall i \in \{1,...,d\}$

Therefore,
$$\begin{cases}
l \cong \mathbb{C}^{2} \subseteq \mathbb{C}^{n+1} \mid p \in l \subseteq X \end{cases}$$

$$\cong \int [x_{1}, \dots, x_{n}] \in \mathbb{ClP}^{n-1} \mid g_{d+1}(x_{1}, \dots, x_{n}) = 0 \quad \forall i \end{cases}$$

$$\cong \int [x_{1}, \dots, x_{n}] \in \mathbb{ClP}^{n-1} \mid \frac{\partial^{2} f}{\partial z_{0}^{2}}(o, x_{1}, \dots, x_{n}) = 0 \quad \forall i \end{cases}$$
Here, $\mathbb{ClP}^{n-1} = \mathbb{C}_{r}(p^{\perp}, 1)$.

When X is Sm at p,
$$(\nabla f)(p) \neq 0$$
.
who.g. let $(\nabla f)(p) = (0, ..., 1)$, then
$$\int T_{B} X = \{z_{n} = 0\} \cong \mathbb{C}^{n}$$

$$\begin{cases} T_p X = \{z_n = 0\} \cong \mathbb{C}^n \\ g_1(z_1, ..., z_n) = z_n \end{cases}$$

In ptc, $p \in l \subseteq X \Rightarrow l \subseteq T_p X$.

2. Lines on cubic threefold

https://math.stackexchange.com/questions/3605767/number-of-lines-passing-a-point-on-a-cubic-threefold

Prop. Generically, there are 6 lines in a cubic threefold passing a given pt.

Proof. w.l.o.g. suppose
$$p = [1:0:0:0:0]$$
, $T_pX = \{z_4 = 0\}$, then
$$\{l \mid p \in l \leq X \}$$

has generically 6 pts.

Rmk Generically, passing a given pt, there are 24 lines in a quartic fourfold, 5! lines in a quintic fivefold,

n! lines in a degree n n-fold

Thes will a degree in its join.								
dim dim d	1	2	3	4	5	6	٠	
0	•		· •					
1	IP'	twistor IP'	9=1	9=6	9=10	g=15	9=	$\frac{d(d-1)}{2}$
2	ΙΡ°	conical of ≥ p'×1P'	cubic Surface					
3	IP³	Conical	cubic threefold					
4	IP*	conical						general type
<u> </u>	1Ps	;						
							1	- 11 1/

univuled by IP' unimited by conics

3. Lines on quadrics.

In this case,

$$\begin{cases} \left[\left| p \in \left(\subseteq X \right) \right| \\ \cong \left[\left[x_{1} : \dots : x_{n-1} \right] \in \mathbb{C}[p^{n-1}] \right] \\ \times_{n} = g_{2}(x_{1}, \dots, x_{n}) = 0 \end{cases}$$

$$\stackrel{\mathcal{C}}{\cong} \begin{cases} \left[\left[x_{1} : \dots : x_{n-1} \right] \in \mathbb{C}[p^{n-2}] \\ g_{2}(x_{1}, \dots, x_{n}) = 0 \end{cases}$$

is again a quadric of dim n-3. (generically) $n \ge 3$

F,(X) = [L = X lines]

Cor. For n=3,

$$d_{im} F_{i}(X) = n-3 + n-1 - 1 = 2n-5$$

= $2(n-1)-3$

dim dim d	1	2	3	4	5	6	
0							
1	° IP'	twistor IP'	9=1	9=6	9=10	g=15	$g = \frac{d(d-1)}{2}$
2	2 IP2	2onical ≥ 1p' × 1p'	Cubic Surface				
3	4 IP3	Conical	2 cubic threefold				
4	6 IP4	conical	·	3			general type
5	8 1bz	7 :			4		
						Fano=	Calabi-Yau

unitaled by IP' unitaled by conics

In general, one can compute r-planes ($\cong \mathbb{P}^r$) on X passing P.

 \Rightarrow when $F_{r-1}(X') \neq \emptyset$ generically,

$$dim \ F_{r}(X) = dim \ F_{r-1}(X') + dim^{proj}X - r$$

$$= dim \ F_{r-1}(X') + (n-1) - r$$

$$= dim \ F_{r-1}(X') + n-r-1$$

$$= n-r-1 + ((n-2) - (r-1)-1) + ((n-2(r-1)) - (r-(r-1))-1) + dim \ F_{o}(X'^{(r)})$$

$$= n-r-1 + (n-r-2) + \cdots + (n-2r) + dim^{proj}X^{(r)}$$

$$= \frac{1}{2}(2n-3r-1) r + n-2r-1$$

$$= \frac{1}{2}(2n-3r-2)(r+1)$$

dim dim d	1	2	3	4	5	6	
0			· .				
1	× IP'	twistor P'	9=1	9=6	9=10	g=15	g = d(d-1)
2	o IP²	Conical ? ≈ 1p'×1p' ?	oubic Surface				
3		PConical	cubic threefold				
4	6 IP4	3 conical	·	ø			general type
5	9 1Ps	6 ;			Ø		
						- /-	Colohi - You

3((n-1)-3)

univuled by IP' univuled by conics