ROB2004 Robotic Manipulation and Locomotion

Laboratory III: Analytic Inverse Kinematics

The goal of the laboratory is to build a complete controller capable of reaching target objects in the environment

The robot and its kinematics

The foot orientation
$$R_{SF} = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}$$

The foot position is
$$p_{SF} = \begin{pmatrix} l_2 \sin(\theta_1 + \theta_2) + l_1 \sin \theta_1 + l_0 \\ -l_2 \cos \theta_1 + \theta_2) - l_1 \cos \theta_1 \end{pmatrix}$$

Frame $\{s\}$ is our fixed frame, i.e. the spatial frame The hip frame $\{H\}$ is translated by l_0 and rotated by θ_0 with respect to frame $\{s\}$ The knee frame $\{K\}$ is translated by l_1 and rotated by θ_1 with respect to frame $\{H\}$ The foot frame $\{F\}$ is translated by l_2 with respect to frame $\{K\}$

