

HilVS

API 参考

文档版本 03

发布日期 2017-04-10

版权所有 © 深圳市海思半导体有限公司 2017。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何 形式传播。

商标声明

(上) HISILICON 、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做 任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指 导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com

前言

i

概述

本文档为使用海思媒体处理芯片的 IVS 进行智能分析方案开发的程序员而写,目的是供您在开发过程中查阅 IVS 支持的各种参考信息,包括 API、头文件、错误码等。

□ 说明

本文以 Hi3518EV200 为基础,如未有特殊说明,Hi3518EV201、Hi3516CV200、Hi3521A、Hi3520DV300、Hi3531A 、Hi3536C 和 Hi3518EV200 完全一致。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi3518E	V200
Hi3518E	V201
Hi3516C	V200
Hi3521A	V100
Hi3520D	V300
Hi3531A	V100
Hi3519	V100
Hi3519	V101
Hi3516A	V200
Hi3516C	V300
Hi3559A	V100ES
Hi3536C	V100

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
危险	表示有高度潜在危险,如果不能避免,会导致人员死亡或严重伤害。
警告	表示有中度或低度潜在危险,如果不能避免,可能导致人员轻微或中等伤害。
注意	表示有潜在风险,如果忽视这些文本,可能导致设备损坏、数据丢失、设备性能降低或不可预知的结果。
◎— 跨门	表示能帮助您解决某个问题或节省您的时间。
□ 说明	表示是正文的附加信息,是对正文的强调和补充。

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

日期	版本	修改描述	
2017-04-10	03	新增 Hi3536C 相关内容。	
2017-02-28	02	新增 Hi3559AV100ES 相关内容。	
2017-02-15	01	MD_ATTR_S 的【成员】涉及修改	
2016-05-10	00B06	第六次临时版本发布,添加 Hi3519V101、Hi3516CV300 相 关内容。	
2015-12-15	00B05	第 2 章 HI_IVS_MD_Process 有修改; 第 3 章 MD_ATTR_S 涉及修改; 表 4-1 有修改; 5.2 小节涉及修改。	

日期	版本	修改描述
2015-09-20	00B04	第四次临时版本发布。
		第3章 修改 MD_ATTR_S 中【成员】信息;
		新增第5章内容。
2015-08-20	00B03	第三次临时版本发布,添加 Hi3519V100 相关内容。
2015-07-29	00B02	第二次临时版本发布,添加 Hi3531A 的相关内容。
2015-04-10	00B01	第一次临时版本发布。

目 录

1 概述	1
1.1 概述	
1.2 功能描述	
1.2.1 移动侦测	
2 MD API 参考	3
3 MD 数据类型	12
4 错误码	16
4.1 错误码	16
5 Proc 调试信息	18
5.1 概述	18
5.2 MD Proc 信息说明	18

1 概述

1.1 概述

IVS(Intelligent Video Surveillance)是海思媒体处理芯片解决方案中比 IVE(Intelligent Video Engine,智能加速引擎)更高层次的智能视频监控应用 API。用户基于 IVS 可以快速开发出相关智能应用。当前 IVS 支持的智能应用有:MD(Motion Detection,移动侦测)。

1.2 功能描述

1.2.1 移动侦测

移动侦测通过检测视频的亮度变化,侦测视频的运动状态,得出视频侦测分析结果。

基本概念

● MD 算法

MD 算法包含帧差法(MD_ALG_MODE_REF)和背景法(MD_ALG_MODE_BG)两种。

- 帧差法(MD_ALG_MODE_REF) 直接以用户指定的图像为参考帧,得出视频侦测分析结果的算法,称为帧差法。
- 背景法(MD_ALG_MODE_BG) 在 MD 处理的过程中,将产生当前视频的背景图像。然后以背景图像为参考帧, 得出视频侦测分析结果的算法,称为背景法。
- 背景更新权重

当 MD 算法选择为背景法时,每次 MD 处理都会产生静止部分图像,这部分图像和背景会作一次像素值叠加,新背景 = (静止部分图像的叠加权重 u0q16X×静止部分图像 + 动态部分图像的叠加权重 u0q16Y× 旧背景) >> 16。

注意

对于 Hi3559AV100ES, 如果是使用 64 位操作系统, 需要使用到的 MMZ 地址必须是在一个 4GB 空间内, 否则会出现异常。

2 MD API 参考

MD API 提供了初始化、退出、获取句柄、释放句柄、获取背景和侦测处理基本接口。 该功能模块提供以下 API:

- HI_IVS_MD_Init: 初始化。
- HI_IVS_MD_Exit: 退出。
- HI_IVS_MD_CreateChn: 创建 MD 通道。
- HI_IVS_MD_DestroyChn: 销毁 MD 通道。
- HI IVS MD SetChnAttr: 设置 MD 通道属性。
- HI IVS MD GetChnAttr: 获取 MD 通道属性。
- HI_IVS_MD_GetBg: 获取背景。
- HI_IVS_MD_Process: 侦测处理。

HI_IVS_MD_Init

【描述】

移动侦测初始化。

【语法】

HI_S32 HI_IVS_MD_Init(HI_VOID);

【参数】

无。

【返回值】

返回值	描述
0	成功。
非0	失败,参见错误码。

【需求】

- 头文件: hi_comm_ive.h、hi_md.h、ivs_md.h
- 库文件: libmd.a (PC 上模拟用 ivs_md.lib)

【注意】

- 调用 MD 其他接口前必须先调用此接口进行初始化,而且只需调用一次即可,否则返回错误。
- 该接口必须和 HI IVS MD Exit 配套使用。

【举例】

无。

【相关主题】

HI_IVS MD_Exit

HI_IVS_MD_Exit

【描述】

移动侦测退出。

【语法】

HI_S32 HI_IVS_MD_Exit(HI_VOID);

【参数】

无。

【返回值】

返回值	描述	
0	成功。	
非0	失败, 参见错误码。	

【需求】

- 头文件: hi_comm_ive.h、hi_md.h、ivs_md.h
- 库文件: libmd.a (PC 上模拟用 ivs_md.lib)

【注意】

必须先调用 HI_IVS MD Init 初始化才能调用此接口退出,否则返回错误。

【举例】

无。

【相关主题】

HI_IVS_MD_Init

HI_IVS_MD_CreateChn

【描述】

创建 MD 通道。

【语法】

HI S32 HI IVS MD CreateChn(MD CHN MdChn, MD ATTR S *pstMdAttr);

【参数】

参数名称	描述	输入/输出
MdChn	通道号,有效范围: [0,63]	输入
pstMdAttr	通道信息指针。 不能为空	输入

【返回值】

返回值	描述
0	成功。
非 0	失败, 参见错误码。

【需求】

- 头文件: hi_comm_ive.h、hi_md.h、ivs_md.h
- 库文件: libmd.a (PC 上模拟用 ivs_md.lib)

【注意】

必须先调用 HI IVS MD Init 初始化, 否则返回错误。

【举例】

无。

【相关主题】

- HI_IVS_MD_DestroyChn
- HI_IVS_MD_SetChnAttr
- HI IVS MD GetChnAttr
- HI_IVS_MD_GetBg
- HI_IVS_MD_Process

HI_IVS_MD_DestroyChn

【描述】

销毁 MD 通道。

【语法】

HI_S32 HI_IVS_MD_DestroyChn(MD_CHN MdChn);

【参数】

参数名称	描述	输入/输出
MdChn	通道号,有效范围: [0,63]	输入

【返回值】

返回值	描述
0	成功。
非 0	失败, 参见错误码。

【需求】

- 头文件: hi_comm_ive.h、hi_md.h、ivs_md.h
- 库文件: libmd.a (PC 上模拟用 ivs_md.lib)

【注意】

- 必须先调用 HI IVS MD Init 初始化, 否则返回错误。
- MdChn 必须为 HI IVS MD_CreateChn 已创建的通道号,否则返回错误。

【举例】

无。

【相关主题】

- HI_IVS_MD_CreateChn
- HI IVS MD SetChnAttr
- HI_IVS_MD_GetChnAttr
- HI_IVS_MD_GetBg
- HI_IVS_MD_Process

HI_IVS_MD_SetChnAttr

【描述】

设置 MD 通道属性。

【语法】

HI_S32 HI_IVS_MD_SetChnAttr(MD_CHN MdChn, MD_ATTR_S *pstMdAttr);

【参数】

参数名称	描述	输入/输出
MdChn	通道号,有效范围: [0,63]	输入
pstMdAttr	通道信息指针。 不能为空	输入

【返回值】

返回值	描述
0	成功。
非0	失败, 参见错误码。

【需求】

- 头文件: hi_comm_ive.h、hi_md.h、ivs_md.h
- 库文件: libmd.a (PC 上模拟用 ivs_md.lib)

【注意】

- 必须先调用 HI_IVS_MD_Init 初始化,否则返回错误。
- MdChn 必须为 HI_IVS_MD_CreateChn 已创建的通道号,否则返回错误。
- 通道静态属性(enAlgMode、enSadMode、u16Width、u16Height)不能更改,必须与 创建通道时相等,否则返回错误。

【举例】

无。

【相关主题】

- HI IVS MD CreateChn
- HI IVS MD DestroyChn
- HI IVS MD GetChnAttr
- HI IVS MD GetBg
- HI IVS MD Process

HI_IVS_MD_GetChnAttr

【描述】

获取 MD 通道属性。

【语法】

HI_S32 HI_IVS_MD_GetChnAttr(MD_CHN MdChn, MD_ATTR_S *pstMdAttr);

【参数】

参数名称	描述	输入/输出
MdChn	通道号,有效范围: [0,63]	输入
pstMdAttr	通道信息指针 不能为空	输出

【返回值】

返回值	描述
0	成功。
非0	失败, 参见错误码。

【需求】

- 头文件: hi_comm_ive.h、hi_md.h、ivs_md.h
- 库文件: libmd.a (PC 上模拟用 ivs_md.lib)

【注意】

- 必须先调用 HI_IVS_MD_Init 初始化,否则返回错误。
- MdChn 必须为 HI_IVS_MD_CreateChn 已创建的通道号,否则返回错误。

【举例】

无。

【相关主题】

- HI IVS MD CreateChn
- HI_IVS_MD_DestroyChn
- HI_IVS_MD_SetChnAttr
- HI_IVS_MD_GetBg
- HI IVS MD Process

HI_IVS_MD_GetBg

【描述】

获取移动侦测背景。

【语法】

HI_S32 HI_IVS_MD_GetBg(MD_HANDLE MdHandle, IVE_DST_IMAGE_S *pstBg);

【参数】

参数名称	描述	输入/输出
MdChn	通道号,有效范围: [0,63]	输入
pstBg	背景图像指针。 不能为空	输出

参数名称	支持图像类型	地址对齐	分辨率
pstBg	U8C1	16 byte	64x64~1920x1080

【返回值】

返回值	描述
0	成功。
非0	失败,参见错误码。

【需求】

- 头文件: hi_comm_ive.h、hi_md.h、ivs_md.h
- 库文件: libmd.a (PC 上模拟用 ivs_md.lib)

【注意】

- 必须先调用 HI_IVS_MD_Init 初始化,否则返回错误。
- MdChn 必须为 HI_IVS_MD_CreateChn 已创建的通道号,否则返回错误。
- 只有背景法时,才能获取背景数据,否则返回错误。

【举例】

无。

【相关主题】

- HI IVS MD CreateChn
- HI IVS MD DestroyChn
- HI_IVS_MD_SetChnAttr
- HI IVS MD GetBg
- HI_IVS_MD_Process

HI_IVS_MD_Process

【描述】

移动侦测处理。

【语法】

HI_S32 HI_IVS_MD_Process(MD_CHN MdChn, IVE_SRC_IMAGE_S *pstCur,
IVE_SRC_IMAGE_S *pstRef, IVE_DST_IMAGE_S *pstSad, IVE_DST_MEM_INFO_S
*pstBlob);

【参数】

参数名称	描述	输入/输出
MdChn	通道号,有效范围: [0,63]	输入
pstCur	当前帧图像指针。 不能为空	输入
pstRef	参考帧图像指针。 不能为空	输入
pstSad	Sad 指针。 根据 pstMdAttr-> enSadOutCtrl,若需要输出则不能为空。	输出
pstBlob	区域信息指针。 不能为空。	输出

参数名称	支持图像类型	地址对齐	分辨率
pstCur	U8C1	16 byte	64x64~1920x1080
pstRef	U8C1	16 byte	64x64~1920x1080
pstSad	U8C1/U16C1	16byte	根据 pstMdAttr→enSadMode,对应 4x4、 8x8、16x16 分块模式,高、宽分别为 pstCur 的 1/4、1/8、1/16。
pstBlob	_	16 byte	_

【返回值】

返回值	描述
0	成功。
非0	失败,参见错误码。

【需求】

- 头文件: hi_comm_ive.h、hi_md.h、ivs_md.h
- 库文件: libmd.a (PC 上模拟用 ivs md.lib)

【注意】

- 必须先调用 HI_IVS_MD_Init 初始化, 否则返回错误。
- MdChn 必须为 HI IVS MD CreateChn 已创建的通道号,否则返回错误。
- 最多输出区域信息个数为 254,区域信息请参见"HiIVE API 参考第 3 章节数据类型中的 IVE_CCBLOB_S"。IVE_CCBLOB_S 的成员 u16CurAreaThr 是分块后的面积阈值信息。在这里输出的连通区域信息是连续储存。

【举例】

无。

【相关主题】

- HI_IVS_MD_CreateChn
- HI_IVS_MD_DestroyChn
- HI IVS MD SetChnAttr
- HI_IVS_MD_GetBg
- HI_IVS_MD_Process

3 MD 数据类型

MD_ALG_MODE_E

【说明】

定义 MD 算法模式。

【定义】

```
typedef enum hiMD_ALG_MODE_E
{
    MD_ALG_MODE_BG = 0x0,/*Base on background image*/
    MD_ALG_MODE_REF = 0x1,/*Base on reference image*/
    MD_ALG_MODE_BUTT
}MD_ALG_MODE_E;
```

【成员】

成员名称	描述
MD_ALG_MODE_BG	背景法。
MD_ALG_MODE_REF	帧差法。

【注意事项】

无。

【相关数据类型及接口】

无。

MD_ATTR_S

【说明】

定义 MD 通道属性。

【定义】


```
typedef struct hiMD ATTR S
   MD ALG MODE E
                  enAlgMode; /*Md algorithm mode*/
                                  /*Sad mode*/
   IVE_SAD_MODE_E
                    enSadMode;
   IVE SAD OUT CTRL E enSadOutCtrl; /*Sad output ctrl*/
   HI U16
                     u16Width;
                                 /*Image width*/
   HI U16
                                  /*Image height*/
                    u16Height;
                                   /*Sad thresh*/
   HI U16
                     u16SadThr;
                                  /*Ccl ctrl*/
   IVE_CCL_CTRL_S
                   stCclCtrl;
                                   /*Add ctrl*/
   IVE ADD CTRL S
                   stAddCtrl;
}MD_ATTR_S
对于 Hi3559AV100ES:
typedef struct hiMD ATTR S
   MD_ALG_MODE_E
                   enAlgMode; /*Md algorithm mode*/
   IVE SAD MODE E
                   enSadMode; /*Sad mode*/
   IVE_SAD_OUT_CTRL_E enSadOutCtrl; /*Sad output ctrl*/
                     u32Width; /*Image width*/
   HI_U32
   HI U32
                     u32Height; /*Image height*/
   HI U16
                     u16SadThr; /*Sad thresh*/
                   stCclCtrl; /*Ccl ctrl*/
   IVE_CCL_CTRL_S
                   stAddCtrl; /*Add ctrl*/
   IVE ADD CTRL S
}MD_ATTR_S;
```

【成员】

成员名称	描述
enAlgMode	算法模式,请参见 MD_ALG_MODE_E。
enSadMode	Sad 模式,请参见"HiIVE API 参考第3章节数据类型中的 IVE_SAD_MODE_E"。
enSadOutCtrl	Sad 输出控制,请参见"HiIVE API 参考第 3 章节数据类型中的 IVE_SAD_OUT_CTRL_E"。只支持IVE_SAD_OUT_CTRL_16BIT_BOTH、IVE_SAD_OUT_CTRL_8BIT_BOTH、IVE_SAD_OUT_CTRL_THRESH 输出控制。
u16Width	图像宽,必须为宏块宽的整数倍,范围: [64,1920]
u16Height	图像高,必须为宏块高的整数倍,范围: [64,1080]

成员名称	描述
u16SadThr	Sad 阈值。 取值依赖 enSadOutCtrl: 1、IVE_SAD_OUT_CTRL_8BIT_BOTH,取值[0, 255] 2、IVE_SAD_OUT_CTRL_16BIT_BOTH和 IVE_SAD_OUT_CTRL_THRESH,取值[0, 65535]
stCclCtrl	Ccl 控制参数,请参见"HiIVE API 参考第 3 章数据类型中的 IVE_CCL_CTRL_S"。Ccl 控制参数成员信息都是针对分块后的图。
stAddCtrl	Add 控制参数,请参见"HiIVE API 参考第 3 章数据类型中的 IVE_ADD_CTRL_S"。

对于 Hi3559AV100ES:

成员名称	描述	
enAlgMode	算法模式,请参见 MD_ALG_MODE_E。	
enSadMode	Sad 模式,请参见"HiIVE API 参考第 3 章节数据类型中的 IVE_SAD_MODE_E"。	
enSadOutCtrl	Sad 输出控制,请参见"HiIVE API 参考第 3 章节数据类型中的 IVE_SAD_OUT_CTRL_E"。只支持IVE_SAD_OUT_CTRL_16BIT_BOTH、IVE_SAD_OUT_CTRL_8BIT_BOTH、IVE_SAD_OUT_CTRL_THRESH输出控制。	
u32Width	图像宽,必须为宏块宽的整数倍,范围: [64,1920]	
u32Height	图像高,必须为宏块高的整数倍,范围: [64,1080]	
u16SadThr	Sad 阈值。 取值依赖 enSadOutCtrl: 1、IVE_SAD_OUT_CTRL_8BIT_BOTH,取值[0, 255] 2、IVE_SAD_OUT_CTRL_16BIT_BOTH 和 IVE_SAD_OUT_CTRL_THRESH,取值[0, 65535]	
stCclCtrl	Ccl 控制参数,请参见"HiIVE API 参考第 3 章数据类型中的 IVE_CCL_CTRL_S"。Ccl 控制参数成员信息都是针对分块后的图。	
stAddCtrl	Add 控制参数,请参见"HiIVE API 参考第 3 章数据类型中的 IVE_ADD_CTRL_S"。	

【注意事项】

无。

【相关数据类型及接口】

无。

4 错误码

4.1 错误码

IVS 的错误码与 IVE 的错误码大部分共用,表 4-1 所示中前面部分与《HiIVE API 参考》中相同,其他特殊的列在表后面。

表4-1 IVS 错误码

错误代码	宏定义	描述	
0xA01D8001	HI_ERR_IVE_INVALID_DEVID	设备 ID 超出合法范围	
0xA01D8002	HI_ERR_IVE_INVALID_CHNID	通道组号错误或无效区域句柄	
0xA01D8003	HI_ERR_IVE_ILLEGAL_PARAM	参数超出合法范围	
0xA01D8004	HI_ERR_IVE_EXIST 重复创建已存在的设备、通道资源		
0xA01D8005	HI_ERR_IVE_UNEXIST	试图使用或者销毁不存在的设 备、通道或者资源	
0xA01D8006	HI_ERR_IVE_NULL_PTR	函数参数中有空指针	
0xA01D8007	HI_ERR_IVE_NOT_CONFIG	模块没有配置	
0xA01D8008	HI_ERR_IVE_NOT_SUPPORT	不支持的参数或者功能	
0xA01D8009	HI_ERR_IVE_NOT_PERM	该操作不允许,如试图修改静态 配置参数	
0xA01D800C	HI_ERR_IVE_NOMEM	分配内存失败, 如系统内存不足	
0xA01D800D	HI_ERR_IVE_NOBUF	分配缓存失败,如申请的图像缓 冲区太大	
0xA01D800E	HI_ERR_IVE_BUF_EMPTY	缓冲区中无图像	
0xA01D800F	HI_ERR_IVE_BUF_FULL	缓冲区中图像满	

错误代码	宏定义	描述	
0xA01D8010	HI_ERR_IVE_NOTREADY	系统没有初始化或没有加载相应 模块	
0xA01D8011	HI_ERR_IVE_BADADDR	地址非法	
0xA01D8012	HI_ERR_IVE_BUSY	系统忙	
0xA01D8040	HI_ERR_IVE_SYS_TIMEOUT	IVE 系统超时	
0xA01D8041	HI_ERR_IVE_QUERY_TIMEOUT	Query 查询超时	
0xA01D8042	HI_ERR_IVE_OPEN_FILE	打开文件失败	
0xA01D8043	HI_ERR_IVE_READ_FILE	读文件失败	
0xA01D8044	HI_ERR_IVE_WRITE_FILE	写文件失败	
0xA0308002	HI_ERR_ODT_INVALID_CHNID	ODT 通道组号错误或无效区域 句柄	
0xA0308004	HI_ERR_ODT_EXIST	重复创建已存在的设备、通道或 资源	
0xA0308005	HI_ERR_ODT_UNEXIST	试图使用或者销毁不存在的设 备、通道或者资源	
0xA0308009	HI_ERR_ODT_NOT_PERM	该操作不允许,如试图修改静态 配置参数	
0xA0308010	HI_ERR_ODT_NOTREADY	ODT 没有初始化	
0xA0308012	HI_ERR_ODT_BUSY	ODT 系统忙	

5 Proc 调试信息

5.1 概述

调试信息采用了 Linux 下的 proc 文件系统,可实时反映当前系统的运行状态,所记录的信息可供问题定位及分析时使用。

【文件目录】

/proc/umap

【信息查看方法】

- 在控制台上可以使用 cat 命令查看信息, cat /proc/umap/md 可以查看 MD 的 proc 信息; 也可以使用其他常用的文件操作命令,例如 cp /proc/umap/md ./,将文件拷贝到当前目录。
- 在应用程序中可以将上述文件当作普通只读文件进行读操作,例如 fopen、fread 等。

□ 说明

参数在描述时有以下2种情况需要注意:

- 取值为{0,1}的参数,如未列出具体取值和含义的对应关系,则参数为1时表示肯定,为0时表示否定。
- 取值为{aaa, bbb, ccc}的参数,未列出具体取值和含义的对应关系,但可直接根据取值 aaa、bbb 或 ccc 判断参数含义。

5.2 MD Proc 信息说明

【调试信息】

~ # cat /proc/umap/md

[MD] Version: [Hi3518EV200_MPP_V1.0.0.0 B010 Release], Build Time[Nov 27
2015, 17:05:44]

-----MD CHN ATTR-----

No. W H Alg SadMode SadOutCtrl SadT CclMode CclInitT CclStep 0 720 576 0 0 0 200 1 16 4 XWt YWt FrmRate CostTmPerFrm

32768 32768 19

【调试信息分析】

记录 MD 的工作状态信息。

【参数说明】

参数		描述
MD CHN ATTR 通道属性	NO.	通道号。
	W	通道宽度(单位:像素)。
	Н	通道高度(单位:像素)。
	Alg	工作算法。 0: 背景法; 1: 帧差法。
	SadMode	Sad 模式。 0: 4x4 宏块; 1: 8x8 宏块; 2: 16x16 宏块。
	SadOutCtrl	Sad 输出控制。 0: IVE_SAD_OUT_CTRL_16BIT_BOTH; 1: IVE_SAD_OUT_CTRL_8BIT_BOTH; 4: IVE_SAD_OUT_CTRL_THRESH。
	SadT	Sad 阈值。
	CclMode	Ccl 模式。 0: 4连通; 1: 8连通。
	CclInitT	Ccl 初始阈值。
	CclStep	Cel 步长。
	XWt	背景法更新 X 权重。
	YWt	背景法更新 Y 权重。
	FrmRate	帧率。
	CostTmPerFrm	每帧耗时(单位 us)。

72990

【注意】

● 部分芯片不支持更改 CclMode, 具体参考《HiIVE API 参考.pdf》文档。

• 帧率及每帧耗时,每10s统计一次。