PURE MATHEMATICS 319 L01 WINTER 2016 Practice Problems for Quiz 3

- **2**. Recall that \mathcal{I} if the group of all isometries of \mathbb{R}^2 . Determine whether the following statements are true or false.
- (a) If a subgroup of $\mathcal I$ contains a non-identity translation then it must contain at least two reflections.
- (b) If a subgroup of \mathcal{I} contains at least two reflections then it must contain a non-identity translation.
- (c) The product of two halfturns with different centres is always a translation.
- (d) The product of two rotations with different centres is always a rotation.
- (e) The product of a rotation and a translation is always a rotation.
- (f) The set of all translations in \mathcal{I} is a subgroup of \mathcal{I} .
- (g) The set of all halfturns in \mathcal{I} is a subgroup of \mathcal{I} .
- (h) The set of all rotations in \mathcal{I} is a subgroup of \mathcal{I} .
- 2. Determine whether the following statements are true or false, and briefly explain why.
- (a) \mathcal{F}_2 can be generated by a translation and a halfturn.
- (b) \mathcal{F}_2 can be generated by two a halfturns.
- (c) \mathcal{F}_2^1 can be generated by a halfturn and a reflection.
- (d) \mathcal{F}_2^2 can be generated by a halfturn and a reflection.
- (e) \mathcal{F}_1^2 can be generated by two reflections.
- (f) Among all frieze group, only \mathcal{F}_1^1 , \mathcal{F}_1^3 and \mathcal{F}_2^1 have glide-reflections.
- (g) $\mathcal{F}_1 \subseteq \mathcal{F}_1^2 \subseteq \mathcal{F}_2^2$.
- (h) $\mathcal{F}_1 \subseteq \mathcal{F}_1^1 \subseteq \mathcal{F}_2^1$.
- (i) $\mathcal{F}_1^3 \subseteq \mathcal{F}_1^1$
- (j) If a frieze group contains a reflection then it must contain infinitely many reflections.
- (k) If a frieze group has a glide reflection then it must have infinitely many glide reflections.