ORF526 - Problem Set 8

Bachir EL KHADIR

December 2, 2015

Question 1

 X_n is a martingale because

- It is adapted to \mathcal{F}_n , and L_1 by definition of conditional expectation.
- $E[X_{n+1}|\mathcal{F}_n] = E[E[X|\mathcal{F}_{n+1}]|\mathcal{F}_n] = E[X|F_n] = X_n$ because $F_n \subseteq F_{n+1}$

 X_n are ui because:

- By Jensen inequality: $E[|X_n|] = E[|E[X|\mathcal{F}_n]|] \le E[E[|X||\mathcal{F}_n]] \le E[|X|] < \infty$
- For $\epsilon > 0$, Since $X \in L_1$, there exist $\delta > 0$ st $\forall A \in \mathcal{F}, P(A) < \delta \Rightarrow E[|X|1_A] < \epsilon$. Let c be large enough so that $\frac{E[|X|]}{c} \leq \delta$.

$$E[|X_n|1_{|X_n|>c}] \leq E[E[|X||F_n]1_{|X_n|>c}]$$

$$\leq E[E[E[|X|1_{|X_n|>c}]|F_n]] \qquad \text{because } 1_{|X_n|>c} \text{ is } F_n \text{ measurable}$$

$$\leq E[|X|1_{|X_n|>c}]$$

$$\leq \epsilon \qquad \text{because } P(|X_n|>c) \leq \frac{E[|X_n|]}{c} \leq \frac{E[|X|]}{c} \leq \delta$$

Question 2

 F_{τ} is a σ -algebra because: (n denotes a natural number)

- $\{\tau = n\} \cap \emptyset = \emptyset \in F_n \text{ so } \emptyset \in F_\tau, \text{ and } F_\tau \neq \emptyset$
- Let $(A_i)_{i\in\mathbb{N}} \in F_{\tau}^{\mathbb{N}}$, $(\cup_{i\in\mathbb{N}}A_i) \cap \{\tau=n\} = \bigcup_{i\in\mathbb{N}} (A_i \cap \{\tau=n\}) \in F_n$, so $\cup_{i\in\mathbb{N}}A_i \in F_{\tau}$
- Let $A \in F_{\tau}$, then $(A^c \cap \{\tau = n\})^c = A \cup \{\tau \neq n\} = (A \cap \{\tau = n\}) \cup \{\tau \neq n\} \in \mathcal{F}_n$, so $A^c \cap \{\tau = n\} \in \mathcal{F}_n$ so $A^c \in F_{\tau}$

Question 3

Lemma 1. if τ a stopping time adapted to (F_n) , then for $k \leq n$, $\{\tau = k\} \in F_n$ and $\{\tau \leq n\} \in F_n$.

proof: F_n is increasing and $\{\tau \leq n\} = \bigcup_{k=0..n} \overbrace{\{\tau = k\}}^{\in F_n} \in F_n$

Lemma 2. if $A \cap \{\tau \leq n\} \in F_n \forall n \text{ then } A \in F_{\tau}$

proof: $A \cap \{\tau = n\} = A \cap \{\tau \leq n\} \cap \{\tau \leq n - 1\}^c \in F_n$ for all n, so $A \in F_\tau$ n is an arbitrary natural number:

a)
$$\{\tau + \sigma = n\} = \bigcup_{k=0..n} (\overbrace{\{\tau = k\}}^{\in F_n} \cap \overbrace{\{\sigma = n - k\}}^{\in F_n}) \in F_n$$
, so $\tau + \sigma$ is a stopping time.

- b) $\{\tau \vee \sigma \leq n\} = \{\tau \leq n\} \cup \{\sigma \leq n\} \in F_n$, by lemma $2 \tau \vee \sigma$ is a stopping time.
- c) $\{\tau > k\} \in F_k$ because $\{\tau > k\} = \{\tau \le k\}^c \in F_k$. Same for $\{\sigma > k\}$ $\{\tau \wedge \sigma > k\} = \{\tau > k\} \cap \{\sigma > k\} \in F_k$ But $\{\tau \wedge \sigma \le n\} = \{\tau \wedge \sigma > n\}^c \in F_n$, so by lemma $2 \tau \wedge \sigma$ is a stopping time.
- d) \Rightarrow Let $A \in F_{\tau} \cap F_{\sigma}$, then $A \cap \{\tau \leq n\}$ and $A \cap \{\sigma \leq n\}$ are in F_n , so is their intersection $A \cap \{\tau \wedge \sigma \leq n\}$. c/c: $F_{\tau} \cap F_{\sigma} \subset F_{\tau \wedge \sigma}$
 - \Leftarrow Let $A \in F_{\tau \wedge \sigma}$, then $A \cap \{\tau \wedge \sigma = n\} \in F_n$

$$A \cap \{\tau = n\} = (\bigcup_{k \le n} A \cap \{\tau = n, \sigma = k\}) \bigcup (\bigcup_{k > n} A \cap \{\tau = n, \sigma = k\})$$

$$= (\bigcup_{k \le n} A \cap \{\tau = n, \tau \wedge \sigma = k\}) \bigcup (\bigcup_{k > n} A \cap \{\sigma = k, \tau \wedge \sigma = n\})$$

$$= \left(\overbrace{A \cap \{\tau = n\}}^{\in F_n} \cap \overbrace{\{\tau \wedge \sigma \le n\}}^{\in F_n}\right) \bigcup \left(\overbrace{A \cap \{\tau \wedge \sigma = n\}}^{\in F_n} \cap \overbrace{\{\sigma \le n\}^c}^{\in F_n}\right)$$

$$\in F_n$$

$$c/c$$
: $F_{\tau \wedge \sigma} \subset F_{\tau} \cap F_{\sigma}$

As a conclusion $F_{\tau \wedge \sigma} = F_{\tau} \cap F_{\sigma}$

Question 4

Let M_n be such a martingale, then

- $\forall n, M_n \in L_1$ and is G_n adapated trivially.
- Since $E[M_{n+1}|F_n] = M_n$, we have that $E[E[M_{n+1}|F_n]|G_n] = E[M_n|G_n] = M_n$, so that $E[M_{n+1}|G_n] = M_n$ because $G_n \subset F_n$.

Question 5

a) Let $N \in mathbb{N}^*$, we have that

$$\bigcup_{n=1..N} \{ Y_{(A+B)n+k} = 1, k = 1..(A+B) \} \subset \{ \tau < \infty \}$$

$$P(\tau < \infty) \ge P(\cup_{n=1..N} \{Y_{(A+B)n+k} = 1, k = 1..(A+B)\})$$

$$= 1 - P(\cap_n \{Y_{(A+B)n+k} = 1, k = 1..(A+B)\})^c)$$

$$= 1 - \prod_{n=1..N} P(\{Y_{(A+B)n+k} = 1, k = 1..(A+B)\})^c)$$
 independence
$$= 1 - \prod_{n=1..N} (1 - P(\{Y_{(A+B)n+k} = 1, k = 1..(A+B)\}))$$
 independence
$$= 1 - \prod_{n=1..N} (1 - p^{A+B})$$

$$= 1 - (1 - p^{A+B})^N \to 0$$
 because 0

so $\tau < \infty$ a.s.

b)
$$E[X_N|G_{N-1}] - X_{N-1} = X_N - X_{N-1} = Y_N \neq 0$$

So (X_n) is not martingale with respect to (G_n) .