

第一章

行列式是线性代数中的重要工具, 在以后学习求解线性方程组、求逆矩 阵、判断向量组的线性相关性、求矩 阵的特征值、判断二次型的正定性等 方面都要用到。

* 主要内容:

- §1 二、三阶行列式
- § 2 排列及其逆序数
- § 3 n 阶行列式的定义
- § 4 行列式的性质
- § 5 行列式按行(列)展开
- § 6 克拉默法则

§ 1.1 二、三阶行列式

、二阶行列式的引入

用消元法解二元线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, & (1) \\ a_{21}x_1 + a_{22}x_2 = b_2. & (2) \end{cases}$$

(1)
$$\times a_{22}$$
: $a_{11}a_{22}x_1 + a_{12}a_{22}x_2 = b_1a_{22}$,

$$(2) \times a_{12}: \quad a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = b_2a_{12},$$

两式相减消去 x_2 ,得

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

$$(a_{11}a_{22}-a_{12}a_{21}) x_1=b_1a_{22}-a_{12}b_2;$$

类似地,消去 x_1 ,得

$$(a_{11}a_{22}-a_{12}a_{21}) x_2=a_{11}b_2-b_1a_{21},$$

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时,方程组的解为

$$x_{1} = \frac{b_{1}a_{22} - a_{12}b_{2}}{a_{11}a_{22} - a_{12}a_{21}}, \quad x_{2} = \frac{a_{11}b_{2} - b_{1}a_{21}}{a_{11}a_{22} - a_{12}a_{21}}.$$
 (3)

由方程组的四个系数确定.

把方程组 $\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$ 的四个系数按原顺序

组成一个两行两列(横排称行、竖排称列)的数表

$$a_{11} a_{12}$$

$$a_{21} a_{22}$$

把这个数表两边加上两条竖线,并令它表示一个数,即

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

定义 由四个数排成二行二列(横排称行、竖排 称列)的数表

$$a_{11} a_{12} a_{21} a_{22}$$
 (4)

表达式 $a_{11}a_{22} - a_{12}a_{21}$ 称为数表(4)所确定的二阶

行列式,并记作
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
 (5)

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

注意: 二阶行列式是一个数。

二阶行列式的计算——对角线法则

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = ?$$

二阶行列式的计算——对角线法则

对于二元线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$
若记
$$D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, a_{22}$$

若记

系数行列式

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \\ D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \end{cases}$$

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

$$D_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}.$$

则二元线性方程组的解为

$$x_1 = \frac{D_1}{D} = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \qquad x_2 = \frac{D_2}{D} = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}.$$

注意 分母都为原方程组的系数行列式.

$x_1 = \frac{D_1}{D}, x_2 = \frac{D_2}{D}$

例1 求解二元线性方程组

$$\begin{cases} 3x_1 - 2x_2 = 12, \\ 2x_1 + x_2 = 1. \end{cases}$$

$$|\mathbf{M}| D = \begin{vmatrix} 3 & -2 \\ 2 & 1 \end{vmatrix} = 3 - (-4) = 7 \neq 0,$$

$$D_1 = \begin{vmatrix} 12 & -2 \\ 1 & 1 \end{vmatrix} = 14, \quad D_2 = \begin{vmatrix} 3 & 12 \\ 2 & 1 \end{vmatrix} = -21,$$

$$\therefore x_1 = \frac{D_1}{D} = \frac{14}{7} = 2, \quad x_2 = \frac{D_2}{D} = \frac{-21}{7} = -3.$$

二、三阶行列式

定义 设有9个数排成3行3列的数表

(6) 式称为数表(5) 所确定的三阶行列式.

三阶行列式的计算

(2) 对角线法则

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$-a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

注意 红线上三元素的乘积冠以正号,蓝线上三元素的乘积冠以负号.

利用三阶行列式求解三元线性方程组

如果三元线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

的系数行列式
$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \neq 0,$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

若记

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \quad D = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} \quad a_{12} \quad a_{13} \\ a_{22} \quad a_{23} \\ a_{33}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

记

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

得
$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

得
$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases} \Rightarrow D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \quad D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix},$$

$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \end{vmatrix}, \quad D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{vmatrix}.$$

 $\begin{vmatrix} a_{31} & b_3 & a_{33} \end{vmatrix} \qquad \begin{vmatrix} a_{31} & a_{32} & b_3 \end{vmatrix}$

则三元线性方程组的解为:

$$x_1 = \frac{D_1}{D}, \qquad x_2 = \frac{D_2}{D}, \qquad x_3 = \frac{D_3}{D}.$$

例2 解线性方程组

$$\begin{cases} x_1 - 2x_2 + x_3 = -2, \\ 2x_1 + x_2 - 3x_3 = 1, \\ -x_1 + x_2 - x_3 = 0. \end{cases}$$

解 由于方程组的系数行列式

$$D = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & -3 \\ -1 & 1 \end{vmatrix} = 1 \times 1 \times (-1) + (-2) \times (-3) \times (-1)$$

$$+1 \times 2 \times 1 - 1 \times 1 \times (-1) - (-2) \times 2 \times (-1) - 1 \times (-3) \times 1$$

$$= -5 \neq 0,$$

同理可得

$$\begin{cases} x_1 - 2x_2 + x_3 = -2, \\ 2x_1 + x_2 - 3x_3 = 1, \\ -x_1 + x_2 - x_3 = 0. \end{cases}$$

$$D_1 = \begin{vmatrix} -2 & -2 & 1 \\ 1 & 1 & -3 \\ 0 & 1 & -1 \end{vmatrix} = -5, D_2 = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & -3 \\ -1 & 0 & -1 \end{vmatrix} = -10,$$

$$D_3 = \begin{vmatrix} 1 & -2 & -2 \\ 2 & 1 & 1 \\ -1 & 1 & 0 \end{vmatrix} = -5,$$

故方程组的解为:

$$x_1 = \frac{D_1}{D} = 1$$
, $x_2 = \frac{D_2}{D} = 2$, $x_3 = \frac{D_3}{D} = 1$.

例3 求解方程
$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & x \\ 4 & 9 & x^2 \end{vmatrix} = 0.$$

解 方程左端

$$D = 3x^{2} + 4x + 18 - 9x - 2x^{2} - 12$$
$$= x^{2} - 5x + 6,$$

由
$$x^2 - 5x + 6 = 0$$
 解得

$$x = 2 \text{ ig } x = 3.$$

二阶行列式

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

三阶行列式

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ a_{31} & a_{32} & a_{33} & -a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} \end{vmatrix}$$