第六章 函数逼近与函数插值 编程实验

孔瑞阳 计科91 2019010175

第六章上机题3:

对物理实验中所得下列数据

t_i	1	1.5	2	2.5	3	3.5	4	
y_i	33.40	79.50	122.65	159.05	189.15	214.15	238.65	
t_i	4.5	5	5.5	6	6.5	7	7.5	8
y_i	252.2	267.55	280.50	296.65	301.65	310.40	318.15	325.15

- (1) 用公式 $y = a + bt + ct^2$ 做曲线拟合.
- (2) 用指数函数 $y = ae^{bt}$ 做曲线拟合.
- (3) 比较上述两条拟合曲线, 哪条更好?

思路:

使用 Python 实现书中算法6.2来拟合曲线。

对于 $y=ae^{bt}$,取 \ln 变为 $\ln a+bt$,拟合出 $\ln a$ 和 b 的值。

使用均方根误差 $\sqrt{rac{1}{m}\sum_{i=1}^m(y(t_i)-y_i)^2}$ 来评估误差。

并将拟合出的曲线和原数据绘制在图中比较拟合的情况。

由于 Cholesky 算法解线性方程组已经在实验三中实现过,所以在此实验中直接调用了 numpy.linalg.cholesky 和 numpy.linalg.solve。

实验结果:

- (1) 拟合结果 $y = -45.2942 + 94.1943t 6.1268t^2$,均方误差 5.6839 .
- (2) 拟合结果 $67.3938e^{0.2390t}$, 均方误差 56.5222.

从误差和图中都可以观察出,使用 $y=a+bt+ct^2$ 来拟合更好。

可能是因为原数据本身就对应着一条抛物线。

第六章上机题8:

已知直升飞机旋转机翼外形曲线的采样点坐标如下:

x	0.520	3.1	8.0	17.95	28.65	36.92	50.65	78	104.6	156.6
y	5.288	9.4	13.84	20.20	24.90	28.44	31.10	35	36.9	36.6
x	208.6	260.7	312.50	364.4	416.3	468	494	507	520	
y	34.6	31.0	26.34	20.9	14.8	7.8	3.7	1.5	0.2	

以及两端点的 1 阶导数值 $y_{0}^{'}=1.865$ 48 和 $y_{n}^{'}=-0.046$ 115.

利用第一种边界条件的三次样条插值函数计算翼型曲线在 x=2,30,130,350,515 各点上的函数值及 1 阶导数、2 阶导数的近似值.

思路:

用 Python 实现 P236 的算法 6.5。

分别实现构造矩阵、用追赶法求解 $M_0 \sim M_n$,寻找对应点的函数段,求解函数值。

实验结果:

x	f(x)	f'(x)	f''(x)
2	7.8252	1.5568	-0.2213
30	25.3862	0.3549	-0.0078
130	37.2138	-0.0104	-0.0014
350	22.4751	-0.1078	-0.0002
515	0.5427	-0.0899	0.0081

结果分析:

由图中可以看出,三次样条插值曲线的光滑性比较优秀,适合用来拟合这组数据。