Attorney Docket No.: N1085-90102 TSMC 2003-0186

Amendments to the Claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

1. 1 (Amended) A method of forming an opening in a stack of insulator layers, 2 comprising the steps of: 3 providing a conductive structure; 4 forming said stack of insulator layer on said conductive structure, with said stack 5 of insulator layers comprised of an a first liner layer, an overlying first insulator layer, a 6 second liner layer, an overlying second insulator layer, an anti-reflective coating (ARC), 7 layer; and a capping, third insulator layer; 8 forming a via opening in a first portion of said stack of insulator layer, with said 9 via opening terminating in said first liner layer; 10 forming a photoresist shape including a trench-defining shape and a photoresist 11 plug that completely fills said via opening; 12 forming a trench opening in a second portion of said stack of insulator layers 13 using a said photoresist trench-defining shape as an etch mask, with said trench 14 opening terminating on top surface of said second liner layer, and forming a photoresist 15 plug in said via hole, located on said first liner layer; 16 removing portion of said second liner layer exposed in said trench opening; 17 removing said photoresist shape and including said photoresist plus; and 18

removing portion of said first liner layer exposed in said via opening, exposing a

19

portion of a top surface of said conductive structure.

Attorney Docket No.: N1085-90102

TSMC 2003-0186

- 1 2. (Original) The method of claim 1, wherein said conductive structure is comprise of copper.
- 1 3. (Original) The method of claim 1, wherein said first liner is a silicon nitride
- 2 layer, obtained via plasma enhanced chemical vapor deposition (PECVD) procedures at
- 3 a thickness between about 400 to 600 Angstroms.
- 1 4. (Original) The method of claim 1, wherein said first insulator layer is a
- 2 fluorinated silica glass (FSG) layer, obtained via PECVD procedures at a thickness
- 3 between about 500 to 1000 Angstroms.
- 1 5. (Original) The method of claim 1, wherein said second liner layer is a
- 2 silicon nitride layer, obtained via PECVD procedures at a thickness between about 200
- 3 to 400 Angstroms.
- (Original) The method of claim 1, wherein said second insulator layer is a
- 2 silicon oxide layer, obtained via PECVD procedures at a thickness between about 500
- 3 to 1000 Angstroms.
- 7. (Original) The method of claim 1, wherein said ARC layer is a silicon
 - oxynitride layer, obtained via PRCVD procedures to a thickness between about 500 to
- 3 700 Angstroms.

2

- 1 8. (Original) The method of claim 1, wherein said capping, third insulator
- 2 layer is a silicon oxide layer, obtained via PECVD procedures at a thickness between
- 3 about 500 to 700 Angstroms.
- 1 9. (Original) The method of claim 1, wherein said via opening is defined in
- 2 said capping, third insulator layer, in said ARC layer, in said second insulator layer, in

Attorney Docket No.: N1085-90102 TSMC 2003-0186

- 3 said second liner layer, and in said first insulator layer, via an anisotropic reactive ion
- 4 etching (RIE) procedure, using CHF₃ as an etchant for said capping, third insulator
- 5 layer, for said second insulator layer, for said ARC layer and for said first insulator layer,
- 6 while CH_xF_y or CF₄ is used as an etchant for said second liner layer.
- 1 10. (Original) The method of claim 1, wherein the diameter of said via 2 opening is between about 0.25 to 2.5 um.
- 1 11. (Original) The method of claim 1, wherein said trench opening is defined
 In said capping, third insulator layer, in said ARC layer, and in second insulator layer via
 an anisotropic RIE procedure using CHF₃ as an etchant.
- 1 12. (Original) The method of claim 1, wherein portion of said second liner
 2 layer exposed in said trench opening, is removed via a selective RIE procedure using
 3 CF₄ or CH_xF_y as an etchant.
 - 13. (Amended) The method of claim 1, wherein said photoresist shape and said photoresist plug are is removed using plasma oxygen ashing procedures.
- 1 14. (Original) The method of claim 1, wherein portion of said first liner layer
 2 exposed in said via opening, is removed via a selective RIE procedure using CF₄ or
 3 CH_xF_y as an etchant.
- 1 15. (Original) The method of claim 1, wherein the etch rate ratio of silicon
 2 nitride of said first liner layer, to silicon oxide, during the selective RIE procedure used
 3 to remove portion of said first liner layer exposed in said via opening, is between about
 4 5 to 1, to 10 to 1 using CF₄ or CH_xF_y as an etchant.

1

2

Attorney Docket No.: N1085-90102 TSMC 2003-0186

1	(Amended) A method of forming a dual damascene opening in a stack of
2	insulator layers featuring a two step stop layer removal procedure, comprising the steps
3	of:
4	providing a copper structure;
5	forming said stack of insulator layers on said copper structure, with said stack of
6	insulator layers comprised of an underlying first silicon nitride stop layer, an overlying
7	first dielectric layer, a second silicon nitride stop layer, a second dielectric layer, an anti-
8	reflective coating (ARC) layer, and a capping silicon oxide layer;
9	forming a via opening in a first portion of said stack of insulator layer, with said
10	via opening terminating in said first silicon nitride stop layer;
11	forming a photoresist shape including a trench-defining shape and a photoresist
12	plug that completely fills said via opening and overlies a portion of a surface of said first
13	silicon nitride layer;
14	forming a trench opening in a second portion of said stack of insulator layers
15	using a said photoresist trench-defining shape as an etch mask, with said trench
16	opening terminating on top said surface of said second silicon nitride stop layer, and
17	forming a photoresist plug in said via hole, everlying a portion of top surface of said first
18	cilicon nitride stop-layer ;
19	performing a first step of said two step stop layer removal procedure to
20	selectively remove portion of said second silicon nitride stop layer exposed in said
21	trench opening;
22	removing said photoresist shape and including said photoresist plug; and

Attorney Docket No.: N1085-90102 TSMC 2003-0186

- performing a second step of said two step stop layer removal procedure to remove portion of said first silicon nitride stop layer exposed in said via opening, exposing a portion of a top surface of said copper structure.
- 1 17. (Original) The method of claim 16, wherein said first silicon nitride stop
 2 layer is obtained via plasma enhanced chemical vapor deposition (PECVD) procedures
 3 at a thickness between about 400 to 600 Angstroms.
- 1 18. (Original) The method of claim 16, wherein said first dielectric layer is an FSG layer, obtained via PECVD procedures at a thickness between about 500 to 1000 Angstroms.
- 1 19. (Original) The method of claim 16, wherein said second silicon nitride 2 stop layer is obtained via PECVD procedures at a thickness between about 200 to 400 3 Angstroms.
- 20. (Original) The method of claim 16, wherein said second dielectric layer is a silicon oxide layer, obtained via PECVD procedures at a thickness between about 500 to 1000 Angstroms.
- 21. (Original) The method of claim 16, wherein said ARC layer is a silicon oxynitride layer, obtained via PECVD procedures to a thickness between about 500 to 700 Angstroms.
- 1 22. (Original) The method of claim 16, wherein said capping, silicon oxide 2 layer is obtained via PECVD procedures at a thickness between about 500 to 700 3 Angstroms.
- 1 23. (Original) The method of claim 16, wherein said via opening is defined in 2 sald capping silicon oxide layer, in said ARC layer, in said second dielectric layer, in

Page 6 of 11

Attorney Docket No.: N1085-90102 TSMC 2003-0186

- 3 said second silicon nitride stop layer, and in said first dielectric layer via an anisotropic
- 4 reactive ion etching (RIE) procedure, using CHF₃ as an etchant for said capping silicon
- 5 oxide layer, for said ARC layer and for said second dielectric layer and for said first
- 6 dielectric layer, while CF₄ or CH_xF_y is used as an etchant for said second silicon nitride
- 7 stop layer.
- 1 24. (Original) The method of claim 16, wherein the diameter of said via 2 opening is between about 0.25 to 2.5 um.
- 1 25. (Original) The method of claim 16, wherein said trench opening is defined 2 in said capping silicon oxide layer, in said ARC layer, and in said second dielectric layer,
- 3 via an anisotropic RIE procedure using CHF₃ as an etchant.
- 1 26. (Original) The method of claim 16, wherein said first step of said two step
- 2 stop layer removal procedure, used to selectively remove portion of said second silicon
- 3 nitride stop layer exposed in said trench opening, is performed via a selective RIE
- 4 procedure using CF₄ or CH_xF_y as an etchant.
- 1 27. (Amended) The method of claim 16, wherein said photoresist shape and 2 said photoresist plug are is removed using plasma oxygen ashing procedures.
- 1 28. (Original) The method of claim 16, wherein said second step of said two
- 2 step stop layer removal procedure, used to selectively remove portion of said first silicon
- 3 nitride stop layer exposed in said via opening, is performed via a selective RIE
- 4 procedure using CF₄ or CH_xF_y as an etchant.
- 1 29. (Original) The method of claim 16, wherein the etch ratio of silicon nitride
- 2 to silicon oxide, during said second step of said two step stop layer removal procedure
- 3 performed via a selective the selective RIE procedure used to remove portion of said

Attorney Docket No.: N1085-90102 TSMC 2003-0186

- 4 first silicon nitride stop layer exposed in said via opening, is between about 5 to 1, to 10
- 5 to 1 using CF₄ or CH_xF_y as an etchant.