Data Processing Basics

Shusen Wang

Processing Categorical Features

Age	Gender	Nationality
35	Male	US
31	Male	China
29	Female	India
27	Male	US

Age	Gender	Nationality
35	Male	US
31	Male	China
29	Female	India
27	Male	US

- Age is a numeric feature because it is ordered.
- 35-year-old is older than 31-year-old.

Age	Gender	Nationality
35	Male	US
31	Male	China
29	Female	India
27	Male	US

- Gender is a binary feature: female or male. (In most people's opinion.)
- Represent ``female'' by 0.
- Represent "male" by 1.

Age	Gender	Nationality
35	1	US
31	1	China
29	0	India
27	1	US

- Gender is a binary feature: female or male. (In most people's opinion.)
- Represent ``female'' by 0.
- Represent "male" by 1.

Age	Gender	Nationality
35	1	US
31	1	China
29	0	India
27	1	US

- Nationality is a categorical feature.
- There are 197 countries (arguably.)
- We need to represent countries by numeric vectors.

Age	Gender	Nationality
35	1	US
31	1	China
29	0	India
27	1	US

- First, build a dictionary that maps countries to indices.
- E.g., US \rightarrow 1, China \rightarrow 2, India \rightarrow 3, Japan \rightarrow 4, Germany \rightarrow 5, ...
- Count from "1" (instead of "0").

Age	Gender	Nationality
35	1	1
31	1	2
29	0	3
27	1	1

- First, build a dictionary that maps countries to indices.
- E.g., US \rightarrow 1, China \rightarrow 2, India \rightarrow 3, Japan \rightarrow 4, Germany \rightarrow 5, ...
- Count from "1" (instead of "0").

Age	Gender	Nationality
35	1	1
31	1	2
29	0	3
27	1	1

- Second, apply one-hot encoding. (Count from "1".)
- US \rightarrow 1 \rightarrow [1, 0, 0, 0, ..., 0].
- China \rightarrow 2 \rightarrow [0, 1, 0, 0, ..., 0].
- •

Age	Gender	Nationality
35	1	$[1, 0, 0, 0, \cdots, 0]$
31	1	$[0, 1, 0, 0, \cdots, 0]$
29	0	$[0, 0, 1, 0, \cdots, 0]$
27	1	$[1, 0, 0, 0, \cdots, 0]$

- Second, apply one-hot encoding. (Count from "1".)
- US \rightarrow 1 \rightarrow [1, 0, 0, 0, ..., 0].
- China \rightarrow 2 \rightarrow [0, 1, 0, 0, ..., 0].
- •

Age	Gender	Nationality
35	1	$[1, 0, 0, 0, \cdots, 0]$
31	1	$[0, 1, 0, 0, \cdots, 0]$
29	0	$[0, 0, 1, 0, \cdots, 0]$
27	1	$[1, 0, 0, 0, \cdots, 0]$

- Why the indices start from "1" (the US) rather than "0"?
- Reserve "0" (whose one-hot encode is $[0, 0, \cdots, 0]$) for unknown or missing nationalities.

Data Processing

- Represent a person's feature (age, gender, nationality) using a 199dim numeric vector.
- For example, convert (28, Female, China) to vector

$$[28, 0, 0, 1, 0, 0, \dots, 0].$$

a 197-dim vector for nationality.

Data Processing

- Represent a person's feature (age, gender, nationality) using a 199dim numeric vector.
- For example, convert (28, Female, China) to vector

$$[28, 0, 0, 1, 0, 0, \dots, 0].$$

a 197-dim vector for nationality.

• For example, convert (36, Male, unknown) to vector [36, 1, 0, 0, 0, 0, 0, ..., 0].

Processing Text Data

Step 1: Tokenization (Text to Words)

- We are given a corpus (training data).
 - Corpus is a collection of documents.
 - E.g., all of Shakespeare's plays.

```
• C[0] = "... to be or not to be that is...",
```

```
• C[1] = "... thus with a kiss i die...",
```

•

Step 1: Tokenization (Text to Words)

- We are given a corpus (training data).
 - Corpus is a collection of documents.
 - E.g., all of Shakespeare's plays.
 - C[0] ="... to be or not to be that is...",
 - C[1] ="... thus with a kiss i die...",
 - •
- Break a piece of text (string) into a list of words, e.g.,
 - L[0] = [to, be, or, not, to, be, that, is, ...],
 - L[1] = [thus, with, a, kiss, i, die, ...],
 - •

- Build a dictionary (e.g., hash table) to count words' frequencies.
- Initially, the dictionary is empty.

Key (word)	Value (frequency)

- Update the dictionary in this way:
 - If word w is **not** in the dictionary, add (w, 1) to the dictionary.
 - If word w is in the dictionary, increase its frequency counter.

Key	Value
(word)	(frequency)
a	219
to	398
hamlet	5
be	131
not	499
prince	12
kill	31

- Update the dictionary in this way:
 - If word w is **not** in the dictionary, add (w, 1) to the dictionary.
 - If word w is in the dictionary, increase its frequency counter.

• Example:

Key	Value
(word)	(frequency)
a	219
to	398
hamlet	5
be	131
not	499
prince	12
kill	31

- Update the dictionary in this way:
 - If word w is **not** in the dictionary, add (w, 1) to the dictionary.
 - If word w is in the dictionary, increase its frequency counter.

• Example:

to be or not to be

Word "to" is in the dictionary.

Key (word)	Value (frequency)
a	219
to	398
hamlet	5
be	131
not	499
prince	12
kill	31

- Update the dictionary in this way:
 - If word w is **not** in the dictionary, add (w, 1) to the dictionary.
 - If word w is in the dictionary, increase its frequency counter.

• Example:

be or not to be	• • •	to	be	or	not	to	be	
-----------------	-------	----	----	----	-----	----	----	--

- Word "to" is in the dictionary.
- Increase its counter.

Key	Value
(word)	(frequency)
a	219
to	399
hamlet	5
be	131
not	499
prince	12
kill	31

- Update the dictionary in this way:
 - If word w is **not** in the dictionary, add (w, 1) to the dictionary.
 - If word w is in the dictionary, increase its frequency counter.

• Example:

to be or not to be	• •		be	to	not	or	be	to	• • •
--------------------	-----	--	----	----	-----	----	----	----	-------

Word "be" is in the dictionary.

Key	Value
(word)	(frequency)
a	219
to	399
hamlet	5
be	131
not	499
prince	12
kill	31

- Update the dictionary in this way:
 - If word w is **not** in the dictionary, add (w, 1) to the dictionary.
 - If word w is in the dictionary, increase its frequency counter.

• Example:

• • •	to	be	or	not	to	be	
-------	----	----	----	-----	----	----	--

- Word "be" is in the dictionary.
- Increase its counter.

Key	Value
(word)	(frequency)
a	219
to	399
hamlet	5
be	132
not	499
prince	12
kill	31

- Update the dictionary in this way:
 - If word w is **not** in the dictionary, add (w, 1) to the dictionary.
 - If word w is in the dictionary, increase its frequency counter.

• Example:

Word "or" is not in the dictionary.

Key	Value
(word)	(frequency)
a	219
to	399
hamlet	5
be	132
not	499
prince	12
kill	31

- Update the dictionary in this way:
 - If word w is **not** in the dictionary, add (w, 1) to the dictionary.
 - If word w is in the dictionary, increase its frequency counter.

• Example:

to be or	not to	be	
----------	--------	----	--

- Word "or" is not in the dictionary.
- Add ("or", 1) to the dictionary.

Key	Value
(word)	(frequency)
a	219
to	399
hamlet	5
or	1
be	132
not	499
prince	12
kill	31

• Sort the table so that the frequency is in the descending order.

Key	Value
(word)	(frequency)
a	219
to	399
hamlet	5
or	1
be	132
not	499
prince	12
kill	31

• Sort the table so that the frequency is in the descending order.

Key	Value
(word)	(frequency)
not	499
to	399
a	219
be	132
kill	31
prince	12
hamlet	5
or	1

- Sort the table so that the frequency is in the descending order.
- Replace "frequency" by "index" (starting from 1.)

Key (word)	Value (frequency)
not	499
to	399
a	219
be	131
kill	31
prince	12
hamlet	5
or	1

- Sort the table so that the frequency is in the descending order.
- Replace "frequency" by "index" (starting from 1.)
- The number of unique words is called "vocabulary".

Key (word)	Value (index)
not	1
to	2
a	3
be	4
kill	5
prince	6
hamlet	7
or	8

- Map every word to its index.
- For example,

```
Words: [to, be, or, not, to, be]
```



```
Indices: [2, 4, 8, 1, 2, 4]
```

Key (word)	Value (index)
not	1
to	2
a	3
be	4
kill	5
prince	6
hamlet	7
or	8

- Map every word to its index.
- For example,

```
Words: [to, be, or, not, to, be]
```

```
Indices: [2, 4, 8, 1, 2, 4]
```

- If necessary, convert every index to a one-hot vector.
 - The vectors' dimension is the vocabulary.
 - Vocabulary means # of unique words in the dictionary.

Key (word)	Value (index)
not	1
to	2
a	3
be	4
kill	5
prince	6
hamlet	7
or	8

- If the vocabulary is too big, e.g., greater than 10K, then keep only the 10K most frequent words.
- Why removing infrequent words?

Key	Value
(word)	(index)
not	1
to	2
a	3
be	4
kill	5
prince	6
hamlet	7
or	8

- If the vocabulary is too big, e.g., greater than 10K, then keep only the 10K most frequent words.
- Why removing infrequent words?
- 1. Infrequent words are usually meaningless, e.g.,
 - Name entities, e.g., "Shusen".
 - Typos, e.g., "prinse" and "hemlat".
- 2. Bigger vocabulary → higher-dim one-hot vectors.
 - Slower computation.
 - More parameters in word-embedding layer.

Key	Value
(word)	(index)
not	1
to	2
a	3
be	4
kill	5
prince	6
hamlet	7
or	8

- If the vocabulary is too big, e.g., greater than 10K, then keep only the 10K most frequent words.
- If a word cannot be found in the dictionary, then simply ignore it.
- Example:

```
Words: [to, bi, or]

Indices: [2, 8]
```

Key (word)	Value (index)
not	1
to	2
a	3
be	4
kill	5
prince	6
hamlet	7
or	8

Thank you!