

Universidade Federal do Pará – UFPA

Campus Universitário de Tucuruí – CAMTUC

Faculdade de Engenharia Elétrica

Laboratório de Eletrônica Analógica I

Experimento: Filtro Passa Baixa e Filtro Passa Alta

1. Objetivo

Mostrar ao discente o real funcionamento de um filtro passa baixa e um filtro passa alta. Muito utilizado na área de comunicações, um filtro pode ser usado para limitar o espectro de frequências de um sinal para alguma faixa de frequência especificada e em receptores de rádio e TV, para possibilitar que selecionemos um sinal desejado de uma elevada gama de sinais presentes no ambiente.

2. Introdução Teórica

Os amp-ops também são comumente empregados na construção de filtros ativos. Um circuito de filtro pode ser construído utilizando-se componentes passivos: resistores e capacitores. Um filtro ativo usa adicionalmente um amplificador para produzir amplificação de tensão ou isolação do sinal. Um filtro que apresente uma resposta constante de CC até uma frequência de corte f_L e impeça que qualquer sinal passe além dessa frequência é chamado de filtro passa-baixas ideal (figura 01). Um filtro que permite a passagem somente de sinais de frequência acima de uma frequência de corte f_H é um filtro passa-altas (figura 02).

Universidade Federal do Pará – UFPA

Campus Universitário de Tucuruí - CAMTUC

Faculdade de Engenharia Elétrica

Laboratório de Eletrônica Analógica I

Figura 01: Filtro ativo passa-baixas de primeira ordem. Figura 02: Filtro ativo passa-altas de primeira ordem

A figura 01 apresenta um filtro passa-baixas. Para esse filtro a função de transferência é

$$T(\omega) = \frac{V_0}{V_i} = -\frac{Z_f}{Z_i}$$

$$T(\omega) = -\frac{R_f/R_i}{1+j\omega C_f R_f}$$

Ganho de frequências baixas ($\omega \to 0$) ou ganho CC igual a $-\frac{R_f}{R_i}$. Da mesma forma, a frequência de corte é

$$f_L = \frac{1}{2\pi R_f C_f}$$

A figura 02 apresenta um filtro passa alta. Para esse filtro a função de transferência é

$$T(\omega) = \frac{V_0}{V_i} = -\frac{Z_f}{Z_i} = -\frac{j\omega C_i R_f}{1 + j\omega C_i R_f}$$

Para frequências muito elevadas $(\omega \to \infty)$ o ganho tende a $-\frac{R_f}{R_i}$. Da mesma forma, a frequência de corte é

$$f_H = \frac{1}{2\pi R_i C_i}$$

Universidade Federal do Pará – UFPA Campus Universitário de Tucuruí – CAMTUC Faculdade de Engenharia Elétrica

Laboratório de Eletrônica Analógica I

3. Material Necessário

- 1 Resistor de 1kΩ;
- 1 Resistor de 10kΩ;
- 2 Resistores com valores a serem definidos;
- 2 Capacitores com valores a serem definidos;
- 1 Amp Op CI 741;
- 1 Protoboard;
- 1 Osciloscópio;
- 1 Gerador de Funções;
- 2 Fontes de Alimentação DC;

Experimento 3 - PARTE A: Filtro Passa-Baixas

4. Procedimentos de Projeto Para o Filtro Passa-Baixas

4.1 Projete o circuito da figura 01 determinando os valores de R_f e C_f de forma a obter uma resistência de entrada R_i de $1k\Omega$, um ganho cc de 20 dB e uma frequência f_L de 4kHz.

5. Procedimentos Experimentais Para o Filtro Passa-Baixas

- **5.1** Monte o circuito da figura 01.
- **5.2** Configure no gerador de funções a amplitude do sinal de entrada v_i com frequência de 1kHz, para se obter o máximo sinal de saída v_0 sem distorção. Calcule o ganho de tensão $\frac{v_o}{v_i}$.
- **5.3** Manter a amplitude de entrada constante e aumentar a frequência até que $v'_{o} = 0.7v_{o} =$ _____.(O v_{o} a ser utilizado nesse produto é o encontrado no item **5.2**) $f_{L} =$ ____.
- **5.4** Deseja-se ajustar apenas uma nova frequência de corte $f_L = 3kHz$ para o filtro passa baixas. Qual componente deverá ser alterado? E qual é o seu novo valor?

Universidade Federal do Pará – UFPA

Campus Universitário de Tucuruí – CAMTUC

Faculdade de Engenharia Elétrica

Laboratório de Eletrônica Analógica I

Experimento 3 - PARTE B: Filtro Passa-Altas

6. Procedimentos de Projeto Para o Filtro Passa-Altas

6.1 Projete o circuito da figura 02 determinando os valores de R_f e C_i de forma a obter uma resistência de entrada R_i de $10k\Omega$, um ganho para altas frequências de 40 dB e uma frequência de corte f_H de 1kHz.

7. Procedimentos Experimentais Para o Filtro Passa-Altas

- **7.1** Monte o circuito da figura 02.
- **7.2** Configure no gerador de funções a amplitude do sinal de entrada v_i com frequência de 4kHz, para se obter o máximo sinal de saída v_0 sem distorção. Calcule o ganho de tensão $\frac{v_0}{v_i}$.
- **7.3** Manter a amplitude de entrada constante e diminuir a frequência até que $v'_o=0.7v_o$ = _____.(O v_o a ser utilizado nesse produto é o encontrado no item **7.2**)

$$f_H =$$
_____.

7.4 Deseja-se ajustar apenas uma nova frequência de corte $f_H = 2kHz$ para o filtro passa altas. Qual componente deverá ser alterado? E qual é o seu novo valor?

Universidade Federal do Pará – UFPA

Campus Universitário de Tucuruí – CAMTUC

Faculdade de Engenharia Elétrica

Laboratório de Eletrônica Analógica I

8. Informações Adicionais

- Verificar as conexões do Cl 741, conforme mostrado nas figuras 03 e 04 antes de alimentar a protoboard. (para evitar queimar o Cl).
- Quando montar a fonte simétrica, deixar sempre o botão de corrente das fontes de tensão DC no mínimo (você usará baixas corrente).

Figura 03: Conexão da fonte simétrica para o CI741.

Figura 04: Amp Op Comum.

 Evitar mexer desnecessariamente nos botões que não serão usados do osciloscópio.

