Homework 2

PSTAT 131/231

Contents

Linear Regression

For this lab, we will be working with a data set from the UCI (University of California, Irvine) Machine Learning repository (see website here). The full data set consists of 4,177 observations of abalone in Tasmania. (Fun fact: Tasmania supplies about 25% of the yearly world abalone harvest.)

The age of an abalone is typically determined by cutting the shell open and counting the number of rings with a microscope. The purpose of this data set is to determine whether abalone age (**number of rings** + **1.5**) can be accurately predicted using other, easier-to-obtain information about the abalone.

The full abalone data set is located in the \data subdirectory. Read it into R using read_csv(). Take a moment to read through the codebook (abalone_codebook.txt) and familiarize yourself with the variable definitions.

Make sure you load the tidyverse and tidymodels!

```
library(ggplot2)
library(tidyverse)
library(tidymodels)
library(corrplot)
library(ggthemes)
tidymodels_prefer()
tidymodels_packages()
```

```
[1] "broom"
                         "cli"
                                         "conflicted"
                                                         "dials"
                                                                          "dplyr"
                                         "infer"
    [6] "ggplot2"
                         "hardhat"
                                                         "modeldata"
                                                                          "parsnip"
## [11] "purrr"
                         "recipes"
                                         "rlang"
                                                         "rsample"
                                                                          "rstudioapi"
## [16] "tibble"
                         "tidyr"
                                         "tune"
                                                         "workflows"
                                                                          "workflowsets"
## [21] "yardstick"
                         "tidymodels"
```

```
abalone <- read.csv("abalone.csv")
head(abalone)</pre>
```

```
##
     type longest_shell diameter height whole_weight shucked_weight viscera_weight
## 1
                                               0.5140
                  0.455
                            0.365 0.095
                                                               0.2245
                                                                               0.1010
## 2
        М
                  0.350
                            0.265 0.090
                                               0.2255
                                                               0.0995
                                                                               0.0485
## 3
        F
                  0.530
                            0.420 0.135
                                               0.6770
                                                               0.2565
                                                                               0.1415
## 4
        М
                  0.440
                            0.365
                                  0.125
                                               0.5160
                                                               0.2155
                                                                               0.1140
## 5
                  0.330
                            0.255 0.080
                                               0.2050
                                                               0.0895
                                                                               0.0395
        Τ
```

##	6	I	0.425	0.300	0.095	0.3515	0.1410	0.0775
##		shell_weight	rings					
##	1	0.150	15					
##	2	0.070	7					
##	3	0.210	9					
##	4	0.155	10					
##	5	0.055	7					
##	6	0.120	8					

Question 1

Your goal is to predict abalone age, which is calculated as the number of rings plus 1.5. Notice there currently is no age variable in the data set. Add age to the data set.

Assess and describe the distribution of age.

```
abalone_new <- abalone %>%
  mutate(age= rings+1.5)

head(abalone_new)
```

```
##
     type longest_shell diameter height whole_weight shucked_weight viscera_weight
## 1
                   0.455
                            0.365
                                   0.095
                                                0.5140
                                                                0.2245
                                                                                0.1010
## 2
        М
                   0.350
                            0.265 0.090
                                                0.2255
                                                                0.0995
                                                                                0.0485
        F
## 3
                   0.530
                            0.420
                                   0.135
                                                0.6770
                                                                0.2565
                                                                                0.1415
## 4
        Μ
                   0.440
                            0.365
                                   0.125
                                                0.5160
                                                                0.2155
                                                                                0.1140
## 5
        Ι
                   0.330
                            0.255
                                   0.080
                                                0.2050
                                                                0.0895
                                                                                0.0395
## 6
        Ι
                   0.425
                            0.300 0.095
                                                0.3515
                                                                0.1410
                                                                                0.0775
##
     shell_weight rings
                          age
## 1
            0.150
                      15 16.5
## 2
                          8.5
            0.070
                       7
## 3
            0.210
                       9 10.5
## 4
            0.155
                      10 11.5
                       7
                          8.5
## 5
            0.055
## 6
            0.120
                       8
                          9.5
```

```
hist(abalone_new$age, xlab = "age",breaks =20, main = "Histogram of abalone's age")
```

Histogram of abalone's age

From the histogram we can see that the age of abalone is uneven distribute and the overall shape of the distribution is skewed to the left with a clear mode around age 11, most abalone's age is between 8-13 and there has outlier around 30.

Question 2

Split the abalone data into a training set and a testing set. Use stratified sampling. You should decide on appropriate percentages for splitting the data.

Remember that you'll need to set a seed at the beginning of the document to reproduce your results.

```
set.seed(2022)
abalone_split <- initial_split(abalone_new, prop = 0.80, strata = age)
abalone_train <- training(abalone_split)
abalone_test <- testing(abalone_split)
head(abalone_train)</pre>
```

```
##
      type longest_shell diameter height whole_weight shucked_weight
## 2
         М
                    0.350
                              0.265
                                     0.090
                                                  0.2255
                                                                   0.0995
## 5
         Ι
                    0.330
                              0.255
                                     0.080
                                                  0.2050
                                                                   0.0895
## 6
         Ι
                    0.425
                              0.300
                                     0.095
                                                  0.3515
                                                                   0.1410
## 19
         М
                    0.365
                              0.295
                                     0.080
                                                  0.2555
                                                                   0.0970
## 36
         М
                    0.465
                              0.355
                                     0.105
                                                  0.4795
                                                                   0.2270
## 38
         F
                    0.450
                              0.355
                                     0.105
                                                  0.5225
                                                                   0.2370
##
      viscera_weight shell_weight rings age
## 2
               0.0485
                              0.070
                                         7 8.5
               0.0395
                              0.055
                                        7 8.5
## 5
                                         8 9.5
## 6
               0.0775
                              0.120
               0.0430
                              0.100
                                         7 8.5
## 19
```

```
## 36 0.1240 0.125 8 9.5
## 38 0.1165 0.145 8 9.5
```

head(abalone_test)

```
##
      type longest_shell diameter height whole_weight shucked_weight
## 12
                   0.430
                              0.35 0.110
                                                 0.4060
                              0.28 0.085
## 17
         Ι
                    0.355
                                                 0.2905
                                                                 0.0950
         F
                   0.440
                              0.34 0.100
                                                 0.4510
                                                                 0.1880
## 18
         F
## 23
                   0.565
                              0.44 0.155
                                                                 0.4275
                                                 0.9395
## 35
         F
                    0.705
                              0.55 0.200
                                                 1.7095
                                                                 0.6330
## 40
                    0.355
                              0.29 0.090
                                                 0.3275
                                                                 0.1340
         М
##
      viscera_weight shell_weight rings age
                             0.135
## 12
              0.0810
                                       10 11.5
## 17
              0.0395
                             0.115
                                       7 8.5
## 18
              0.0870
                             0.130
                                       10 11.5
                             0.270
## 23
              0.2140
                                       12 13.5
## 35
              0.4115
                             0.490
                                       13 14.5
                                       9 10.5
## 40
              0.0860
                             0.090
```

Question 3

Using the **training** data, create a recipe predicting the outcome variable, **age**, with all other predictor variables. Note that you should not include **rings** to predict **age**. Explain why you shouldn't use **rings** to predict **age**.

Steps for your recipe:

- 1. dummy code any categorical predictors
- 2. create interactions between
 - type and shucked_weight,
 - longest_shell and diameter,
 - shucked_weight and shell_weight
- 3. center all predictors, and
- 4. scale all predictors.

You'll need to investigate the tidymodels documentation to find the appropriate step functions to use.

Since we calculate the age by using rings plus 1.5 which means the variable age and variable rings are dependent, and the purpose of this data set is to determine whether abalone age (number of rings + 1.5) can be accurately predicted using other, easier-to-obtain information about the abalone. So we want to use independent variable to do the prediction.

Question 4

Create and store a linear regression object using the "lm" engine.

```
lm_model <- linear_reg() %>%
set_engine("lm")
```

Question 5

Now:

- 1. set up an empty workflow,
- 2. add the model you created in Question 4, and
- 3. add the recipe that you created in Question 3.

```
lm_wflow <- workflow() %>%
  add_model(lm_model) %>%
  add_recipe(abalone_recipe)
```

Question 6

Use your fit() object to predict the age of a hypothetical female abalone with longest_shell = 0.50, diameter = 0.10, height = 0.30, whole_weight = 4, shucked_weight = 1, viscera_weight = 2, shell_weight = 1.

```
# fit the linear model to the training set
lm_fit <- fit(lm_wflow, abalone_train)</pre>
```

```
## # A tibble: 1 x 1
## .pred
## <dbl>
## 1 26.4
```

Question 7

Now you want to assess your model's performance. To do this, use the yardstick package:

1. Create a metric set that includes \mathbb{R}^2 , RMSE (root mean squared error), and MAE (mean absolute error).

```
abalone_metrics <- metric_set(rmse, rsq, mae)
```

2. Use predict() and bind_cols() to create a tibble of your model's predicted values from the training data along with the actual observed ages (these are needed to assess your model's performance).

```
# generates predicted values for age for each observation in the training set:
abalone_train_res <- predict(lm_fit, new_data = abalone_train %>% select(-age))

# attach a column with the actual observed age observations:
abalone_train_res <- bind_cols(abalone_train_res, abalone_train %>% select(age))
abalone_train_res %>%
head()
```

```
## # A tibble: 6 x 2
##
     .pred
             age
##
     <dbl> <dbl>
## 1 9.57
             8.5
## 2
     8.09
             8.5
## 3 9.32
             9.5
## 4 10.5
             8.5
## 5 10.1
             9.5
## 6 10.9
             9.5
```

3. Finally, apply your metric set to the tibble, report the results, and interpret the R^2 value.

rmse: The root mean squared error is equal to 2.1412871. Since we are predicting the age of the abalone, the value 2.14 kind is 'big' to us.

mae: The magnitude of difference between the prediction of an observation and the true value of that observation is 1.5567.

 R^2 : The R^2 represent how well the regression model fits the observed data. Since the rsq=0.5567, we cannot say the regression model fits well.