Федеральное государственное автономное учреждение высшего образования

Московский физико-технический институт (национальный исследовательский университет)

МЕРА И ИНТЕГРАЛ ЛЕБЕГА

IV CEMECTP

Физтех-школа: $\Phi\Pi M M$ Направления: $\Pi M \Phi$

Лектор: Гусев Николай Анатольевич

Автор: Максим Иванов

Содержание

1	Лен	Лекция 1: Различные системы множеств.				
2	Лекция 2: Сигма-алгебры.					
	2.1	Разбор задач с лекции 1	7			
	2.2	Теорема о структуре кольца, порожденного полукольцом	8			
	2.3	Сигма-алгебра	9			

Лекция 1: Различные системы множеств.

В этом курсе имеется дело с функциями, аргументами которых являются множества.

Определение 1.1. Мерой на множестве X называется функция $\mu: \mathcal{F} \to [0, \infty]$, где \mathcal{F} — семейство подмножеств X.

На \mathcal{F} нужно наложить некоторые ограничения, потому как если, к примеру, определена мера для двух множеств, то логично было бы, чтобы была определена мера и на их сумме, пересечении, объеденении. Отсюда вытекают такие понятия как:

Определение 1.2. Семейство \mathcal{F} подмножеств множества X (далее используется обозначение $\mathcal{F} \subset \mathcal{P}(X) \equiv 2^X$, где $\mathcal{P}(X)$ — множество всех подмножеств множества X) называется σ -алгеброй, если

1°. $\varnothing \in \mathcal{F}$.

2°. $\forall A, B \in \mathcal{F} : A \cap B \in \mathcal{F}, A \cup B \in \mathcal{F}, A \setminus B \equiv A \cap B^C \in \mathcal{F},$ где $B^C = X \setminus B$.

 3° . $X \in \mathcal{F}$.

4°. $\forall \{A_n\}_{n\in\mathbb{N}}\subset\mathcal{F}$ выполнено, что $\bigcup_{n=1}^{\infty}A_n\in\mathcal{F},\bigcap_{n=1}^{\infty}A_n\in\mathcal{F}.$

Определение 1.3. \mathcal{F} — кольцо если выполняются условия 1° и 2°.

Определение 1.4. \mathcal{F} — алгебра если выполняются условия 1°, 2° и $\overline{3}$ °.

Замечание. Пусть $\mathcal{F}-\sigma$ -алгебра, тогда $\forall A\in\mathcal{F}:\ A^C=X\setminus A\in\mathcal{F}.$ Тогда

$$\bigcup_{n=1}^{\infty} A_n = \left(\bigcup_{n=1}^{\infty} A_n\right)^{CC} = \left(\bigcap_{n=1}^{\infty} A_n^C\right)^{C}.$$

Поэтому можно сказать, что вторая часть в условии 4° избыточна. Абсолютно аналогично и в обратную сторону, то есть эти два требования равносильны.

Замечание. Пусть $\mathcal{F}-$ кольцо, тогда $A\cap B=A\cap \left(B^{CC}\right)=A\setminus B^{C}=A\setminus (X\setminus B)=A\setminus (A\setminus B)$. То есть требование замкнутости по пересечению в свойстве 2° избыточно.

Пример 1.5. Пусть \mathcal{F} — семейство всех ограниченных подмножеств множества \mathbb{R} . Тогда \mathcal{F} — кольцо, но не алгебра.

Определение 1.6. Кольцо ${\cal F}$ называется

- а) σ -кольцом, если $\forall \{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$ выполнено, что $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.
- b) δ-кольцом, если $\forall \{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$ выполнено, что $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.

Замечание. Любое σ -кольцо является δ -кольцом, но обратное неверно.

Определение 1.7. Множество $I \subset \mathbb{R}$ называется промежутком, если $\forall a, b \in I$: $[a, b] \subset I$. Промежуток I называется конечным, если он ограничен. Например, [a, b], (a, b), [a, b), (a, b) — промежутки.

Пусть K_1 — семейство всех конечных промежутков на прямой. Легко заметить, что это не кольцо (объединение промежутков — не всегда промежуток). Отсюда вытекает новая структура:

Определение 1.8. Семейство $\mathcal{F} \subset \mathcal{P}(X)$ называется полукольцом, если

- 1°. $\varnothing \in \mathcal{F}$.
- 2°. $\forall A, B \in \mathcal{F}: A \cap B \in \mathcal{F}$, а $A \setminus B$ представимо в виде конечного дизъюнктного объединения элементов \mathcal{F} , то есть

$$\exists n \in \mathbb{N} : \exists A_1, A_2, \dots, A_n \in \mathcal{F} : A \setminus B = \bigcup_{i=1}^n A_i, A_i \cap A_j = \emptyset, \forall i, j : i \neq j.$$

Если множества попарно не пересекаются, то вводиться обозначение:

$$A_1 \cup A_2 \cup \ldots \cup A_n = A_1 \sqcup A_2 \sqcup \ldots \sqcup A_n$$
.

Замечание. Для любого семейства множеств \mathcal{F} под $FDU(\mathcal{F})$ будем понимать семейство всех конечных дизъюнктных объединений элементов \mathcal{F} (FDU — finite disjoint union).

Утверждение 1.9. K_1 — полукольцо.

Определение 1.10. $K_d = \{I_1 \times I_2 \times ... \times I_d, \text{ где } I_l \in K_1 \quad \forall l = \overline{1..d}\}, \ d \in \mathbb{N}$ — семейство клеток в \mathbb{R}^d .

Утверждение 1.11. K_d — полукольцо.

Определение 1.12. Пусть $\mathcal{F}-$ семейство подмножеств множества X. Введем обозначение:

$$\mathcal{R}(\mathcal{F}) := \bigcap \{\mathcal{G}: \ \mathcal{G} - \text{кольцо}, \ \mathcal{F} \in \mathcal{G}\} := \bigcap M.$$

 $\mathcal{R}(\mathcal{F})$ называется кольцом порожденным \mathcal{F} .

Теорема 1.13. $\mathcal{R}(\mathcal{F})$ является кольцом и $\mathcal{F} \subset \mathcal{R}(\mathcal{F})$. При этом $\mathcal{R}(\mathcal{F})$ — наименьшее по вложению кольцо \mathcal{S} , такое что $\mathcal{F} \subset \mathcal{S}$.

Начало доказательства

Шаг 1. \mathcal{R} — кольцо, так как

- 1. $\varnothing \in \mathcal{R}$: $\forall \mathcal{G}$ выполнено $\varnothing \in \mathcal{G}$.
- 2. $\forall A, B$ верно, что $A, B \in \mathcal{G}$, но \mathcal{G} кольцо, поэтому $A \cup B \in \mathcal{G}$ и $A \setminus B \in \mathcal{G}$. Таким образом и пересечению данные множества принадлежат.

IIIaz 2. Ecnu S — кольцо и $F \subset S$, то $R \subset S$, так как $S \in M \Rightarrow \bigcap M \subset S$.

----- Конец доказательства 🗅

Замечание. Доказательство основано на том факте, что если \mathcal{F} и \mathcal{G} — кольца, то $\mathcal{F} \cap \mathcal{G}$ — тоже кольцо.

Опишем структуру кольца, порожденного полукольцом.

Теорема 1.14. Пусть S — полукольцо. Тогда

$$\mathcal{R}(\mathcal{S}) = \left\{ \bigsqcup_{l=1}^{n} A_{l} : n \in \mathbb{N}, A_{1}, \dots, A_{n} \in \mathcal{S}, A_{i} \cap A_{j} = \emptyset : i \neq j \right\} = \mathrm{FDU}(\mathcal{S}).$$

Лемма 1.15. Ослабим условие теоремы выше. Тогда все равно:

$$\mathcal{R}(\mathcal{S}) = \left\{ \bigcup_{l=1}^{n} A_{l} : n \in \mathbb{N}, A_{i} \in \mathcal{S} : \forall i = \overline{1..n} \right\} \cup \{\emptyset\}.$$

Начало доказательства −-−

Пусть $R = \{\bigcup_{l=1}^n A_l : n \in \mathbb{N}, A_i \in \mathcal{S} : \forall i = \overline{1..n}\}$. Ясно, что $R \subset \mathcal{R}(\mathcal{S})$. Докажем в обратную сторону. Для этого достаточно доказать, что R — кольцо, тогда сразу выполнится $\mathcal{R}(\mathcal{S}) \subset R$.

Пустое множество очевидно лежит в $R \cup \{\emptyset\}$.

Пусть
$$P = \bigcup_{k=1}^n A_k, A_k \in \mathcal{S} \ u \ Q = \bigcup_{l=1}^m B_l, B_l \in \mathcal{S}.$$
 Тогда, во-первых,

$$P \cup Q = A_1 \cup A_2 \cup \ldots \cup A_n \cup B_1 \cup B_2 \cup \ldots \cup B_m \in R.$$

Во-вторых,

$$P \setminus Q = \bigcup_{k=1}^{n} \left(A_k \setminus \bigcup_{l=1}^{m} B_l \right) = \bigcup_{k=1}^{n} \left(A_k \cap \left(\bigcup_{l=1}^{m} B_l \right)^C \right) =$$

$$= \bigcup_{k=1}^{n} \left(A_k \cap \left(\bigcap_{l=1}^{m} B_l^C \right) \right) = \bigcup_{k=1}^{n} \bigcap_{l=1}^{m} A_k \cap B_l^C = \bigcup_{k=1}^{n} \bigcap_{l=1}^{m} A_k \setminus B_l.$$

Далее имеем
$$A_k$$
, $B_l \in \mathcal{S} \Rightarrow A_k \setminus B_l \in \mathrm{FDU}(\mathcal{S}) \Rightarrow A_k \setminus B_l = \bigsqcup_{i=1}^{N_{k,l}} S_i \Rightarrow \bigcap_{l=1}^m A_k \setminus B_l \in \mathrm{FDU}(\mathcal{S}).$

— - - - - - Конец доказательства ⊳

Лекция 2: Сигма-алгебры.

2.1	Разбор	задач	\mathbf{c}	лекции	1	•
-----	--------	-------	--------------	--------	---	---

Начало доказательства

⇒ Выразим счетное объеденение через счетное пересечение:

$$\bigcap_{i=1}^{\infty} A_i = A_1 \setminus \bigcup_{i=1}^{\infty} (A_1 \setminus A_i)$$

 \Leftarrow <u>Контрпример</u>: Множество всех ограниченных подмножеств прямой или более формально: $\mathcal{F} = \{A \subset \mathbb{R} : A - \text{ограничено}\}.$

------ Конец доказательства 🗁

Замечание. Можно заметить, что δ -алгебра является σ -алгеброй. Доказательство по существу такое же, как выше, но вместо A_1 фигурирует единица кольца.

2. Пусть $\mathcal{F} \subset \mathcal{P}(X)$, $\forall A, B \in \mathcal{F} : A \cap B \in \mathcal{F}$ и $A \cup B \in \mathcal{F}$. Верно ли что \mathcal{F} — полукольцо?

—----- Конец доказательства *>*

3. Пусть $\mathcal{F} \subset \mathcal{P}(X)$ — кольцо, $E \subset X$, $E \notin \mathcal{F}$. Найти (описать) кольцо, порожденное семейством $\mathcal{F} \cup E$.

$$\mathcal{R}(\mathcal{F} \cup E) = \{ A \setminus E, E \setminus A, A \cap E, A \cup E \mid A \in \mathcal{F} \cup E \} \cup \mathcal{F}. \tag{1}$$

Обозначим множество, простроенное в формуле (1) \mathcal{G} . \mathcal{G} является кольцом, так как:

- 1. $\emptyset \in \mathcal{F} \Rightarrow \emptyset \in \mathcal{G}$;
- 2. Замкнутость для любых $A, B \in \mathcal{F}$ очевидна. Замкнутость для любого $A \in \mathcal{F}$ и E выполняется благодаря левой части.

_____ Конец доказательства ▷

2.2 Теорема о структуре кольца, порожденного полукольцом.

Замечание. $Ecnu \mathcal{F} \subset \mathcal{G}, mo \mathcal{R}(\mathcal{F}) \subset \mathcal{R}(\mathcal{G}).$

Данное замечание можно использовать для упрощения доказательства леммы 1.15.

Лемма 2.1. Пусть $\mathcal{S} \subset \mathcal{P}(X)$ — полукольцо и $A, A_1, \ldots, A_n \in \mathcal{S}$. Тогда имеем $A \setminus \bigcup_{i=1}^n A_i \in$

$$\mathrm{FDU}(\mathcal{S})$$
. Другими словами $\exists B_1, \ldots, B_m \in \mathcal{S} : B_i \cap B_j = \emptyset$ при $i \neq j$ и $A \setminus \bigcup_{i=1}^n A_i = \bigsqcup_{j=1}^m B_j$.

Начало доказательства −-----

Докажем по индукции по п.

 $\Pi pu \ n=1$ утверждение следует из определения полукольца.

Допустим утверждение выполнение для n, а именно, что $\exists B_1, \ldots, B_k \in \mathcal{S} : B_i \cap B_j = \emptyset$ при $i \neq j$ и $A \setminus \bigcup_{i=1}^n A_i = \bigcup_{j=1}^k B_j$. Докажем для n+1.

$$A \setminus \bigcup_{i=1}^{n+1} A_i = \left(A \setminus \bigcup_{i=1}^n A_i \right) \setminus A_{n+1} = \bigsqcup_{i=1}^k \left(B_i \setminus A_{n+1} \right).$$

Далее по определению полукольца имеем: $B_i \setminus A_{n+1} = \bigcup_{l=1}^{N_i} C_{il}$, где $C_{il} \in \mathcal{S}$ и $B_i \cap B_j = \varnothing$, $i \neq j \Rightarrow C_{il} \cap C_{js} = \varnothing$ если $(i, l) \neq (j, s)$. Значит можно продолжить

$$\bigsqcup_{i=1}^{k} (B_i \setminus A_{n+1}) = \bigsqcup_{i=1}^{k} \bigsqcup_{l=1}^{N_i} C_{il}.$$

Проще говоря, множество $B_i \setminus A_{n+1}$ можно дизъюнктно разбить на некоторые множества C_{il} . И такие можества не будут пересекаться, а значит их дизъюнктное объеденение и даст требуемое.

—------ Конец доказательства ⊳

Лемма 2.2. Пусть $\mathcal{S} \subset \mathcal{P}(X)$ — полукольцо. Если $A_1, \ldots, A_n \in \mathcal{S}$, то $\bigcup_{i=1}^n A_i \in \mathrm{FDU}(\mathcal{S})$.

Начало доказательства −-----

Введем обозначения:

$$B_1 = A_1 \in \mathcal{S}$$

 $B_2 = A_2 \setminus A_1 \in \mathrm{FDU}(\mathcal{S})$ (по определению полукольца)

. . .

$$B_{k+1}=A_{k+1}\setminus \bigcup_{i=1}^k A_i\in \mathrm{FDU}(\mathcal{S})$$
 (по лемме 2.1)

По построению $B_i \cap B_j = \emptyset$, $i \neq j$, поэтому $\bigsqcup_{i=1}^n B_i \in \mathrm{FDU}(\mathcal{S})$.

−--- Конец доказательства ⊳

Замечание. Если $\mathcal{F} \subset \mathcal{P}(X)$, то $\forall B_1, \ldots, B_n \in \mathrm{FDU}(\mathcal{F})$ таких, что $B_i \cap B_j = \emptyset$, $i \neq j$ выполнено $\bigsqcup_{i=1}^n B_i \in \mathrm{FDU}(\mathcal{F})$.

Следствие. Теорема 1.14.

 \triangleleft Начало доказательства — — — — — — — — — По лемме 1.15 $A \in \mathcal{R}(\mathcal{S}) \Leftrightarrow \exists A_1, \ldots, A_n \in \mathcal{S}: A = \bigcup_{i=1}^n A_i$. И по лемме 2.2 \exists попарно не пересекающиеся $B_1, \ldots, B_m \in \mathcal{S}: \bigcup_{i=1}^n A_i = \bigcup_{j=1}^m B_j$.

— - — - — - Конец доказательства 🗁

2.3 Сигма-алгебра.

Напомним основное понятие:

Определение 2.3. σ -кольцо $\mathcal{F} \subset \mathcal{P}(X)$ называется σ -алгеброй, если $X \in \mathcal{F}$.

Утверждение 2.4 (Критерий σ -алгебры). Семейство $\mathcal{F} \subset \mathcal{P}(X)$ является σ -алгеброй тогда и только тогда, когда выполнены следующие свойства:

- 1°. $\varnothing \in \mathcal{F}$;
- $2^{\circ}. \ \forall A \in \mathcal{F} \ A^C = X \setminus A \in \mathcal{F};$
- 3° . $\forall A, B \in \mathcal{F}$ $A \cap B \in \mathcal{F}$;
- 4°. \forall дизъюнктного $\{A_k\}_{k=1}^{\infty} \subset \mathcal{F}$ (то есть $A_k \in \mathcal{F}, \forall k$ и $A_i \cap A_j = \varnothing, \forall i, j, i \neq j$) выполнено $\bigsqcup_{k=1}^{\infty} A_k \in \mathcal{F}$.
- (\Rightarrow) Очевидно из определения σ -алгебры.
- (\Leftarrow) Докажем, что из пунктов 1°, 2°, 3° следует, что ${\mathcal F}$ алгебра.
 - $\varnothing \in \mathcal{F} \ u \ X = \varnothing^C \Rightarrow X \in \mathcal{F};$
 - $A \setminus B = A \cap B^C \in \mathcal{F}$ (пункты 1° и 2°).

Замечание. Доказывать замкнутость по объединению не нужно в силу замечания об эквивалентности условий (1).

Осталось доказать, что при условии 4°, то $\mathcal{F} - \sigma$ -алгебра. Пусть $\{A_n\}_{n\in\mathbb{N}}\subset \mathcal{F}$. Докажем, что $\bigcup_{n=1}^{\infty}\in \mathcal{F}$. Рассмотрим:

$$B_1 = A_1 \in \mathcal{S}$$

$$B_2 = A_2 \setminus A_1$$

. . .

$$B_{k+1} = A_{k+1} \setminus \bigcup_{i=1}^{k} A_i$$

Так как было уже доказано, что \mathcal{F} — алгебра, то все $B_i \in \mathcal{F}$. По построению $B_i \cap B_j = \varnothing$ при $i \neq j \Rightarrow$ по пункту 4° имеем $\bigsqcup_{n=1}^{\infty} B_n \in \mathcal{F}$, с другой стороны $\bigsqcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} A_n$.

---- Конец доказательства ⊳

Определение 2.5. Пусть $\mathcal{F} \subset \mathcal{P}(X)$. Сигма-алгеброй, порожденной семейством \mathcal{F} , называется семейство

$$\sigma(\mathcal{F}) = \bigcap \{ \mathcal{G} \mid \mathcal{G} \subset \mathcal{P}(X) - \sigma$$
-алгебра такая, что $\mathcal{F} \subset \mathcal{G} \}$

Замечание. Доказательство того, что построенное множество является σ -алгеброй по существу аналогично доказательству теоремы 1.13. Причем $\sigma(\mathcal{F})$ — минимальная по вложению σ -алгебра \mathcal{G} такая, что $\mathcal{F} \subset \mathcal{G}$.

Определение 2.6. Пусть $\tau = \{U \subset \mathbb{R}^d : U - \text{открыто}\}$ (то есть $\tau - \text{евклидова}$ топология).

Множество называется открытым если вместе с любой своей точкой содержит некоторый шарик радиуса r, где под расстоянием понимается евклидова метрика:

$$\rho_2(x, y) = \sqrt{\sum_{i=1}^d |x_i - y_i|^2}.$$

Определение 2.7. $\sigma(\tau)$ называется борелевской σ -алгеброй. Обозначение $\mathfrak{B}(\mathbb{R}^d)$.

Замечание. Аналогичное определение можно ввести для любого метрического пространства.

Утверждение 2.8. Если K_d — семейство всех клеток в \mathbb{R}^d , то $\mathfrak{B}(\mathbb{R}^d) = \sigma(K_d)$.