Gradient Descent Optimization

Nipun Batra

IIT Gandhinagar

July 30, 2025

Outline

- 1. Mathematical Foundation
- 2. Gradient Descent Variants
- 3. Computational Complexity Analysis
- 4. Key Takeaways

Gradient denotes the direction of steepest ascent

- Gradient denotes the direction of steepest ascent
- Direction in which there is maximum *increase* in f(x, y)

- Gradient denotes the direction of steepest ascent
- Direction in which there is maximum *increase* in f(x, y)
- For descent, we move in the opposite direction: $-\nabla f$

- Gradient denotes the direction of steepest ascent
- Direction in which there is maximum *increase* in f(x, y)
- For descent, we move in the opposite direction: $-\nabla f$

- · Gradient denotes the direction of steepest ascent
- Direction in which there is maximum increase in f(x, y)
- For descent, we move in the opposite direction: $-\nabla f$

Example:
$$f(x, y) = x^2 + y^2$$

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

Pop Quiz: Gradient Direction

Quick Quiz 1

If we want to minimize a function, which direction should we move?

a) Direction of the gradient ∇f

Answer: b) Opposite to gradient $-\nabla f$ for steepest descent!

Pop Quiz: Gradient Direction

Quick Quiz 1

If we want to minimize a function, which direction should we move?

- a) Direction of the gradient ∇f
- b) Opposite to the gradient $-\nabla f$

Answer: b) Opposite to gradient $-\nabla f$ for steepest descent!

Pop Quiz: Gradient Direction

Quick Quiz 1

If we want to minimize a function, which direction should we move?

- a) Direction of the gradient ∇f
- b) Opposite to the gradient $-\nabla f$
- c) Perpendicular to the gradient

Answer: b) Opposite to gradient $-\nabla f$ for steepest descent!

Batch Gradient Descent

• Use all training data

- Use all training data
- Smooth convergence

- Use all training data
- Smooth convergence
- Slower per iteration

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

Batch Gradient Descent

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

Batch Gradient Descent

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

Stochastic Gradient Descent

• Use one data point

Batch Gradient Descent

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

- Use one data point
- Noisier convergence path

Batch Gradient Descent

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

- Use one data point
- Noisier convergence path
- Faster per iteration

Batch Gradient Descent

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

- Use one data point
- Noisier convergence path
- Faster per iteration
- Less memory required

Batch Gradient Descent

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

- Use one data point
- Noisier convergence path
- Faster per iteration
- Less memory required

Batch Gradient Descent

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

Stochastic Gradient Descent

- Use one data point
- Noisier convergence path
- Faster per iteration
- Less memory required

SGD: Update parameters after seeing each point

Batch Gradient Descent

- Use all training data
- Smooth convergence
- Slower per iteration
- More memory required

- Use one data point
- Noisier convergence path
- Faster per iteration
- Less memory required

- SGD: Update parameters after seeing each point
- Key benefit: Computes gradient over one example → less time per update

Pop Quiz: SGD vs Batch GD

Quick Quiz 2

For a dataset with 1 million samples, which converges faster per iteration?

a) Batch Gradient Descent (uses all 1M samples)

Answer: b) SGD is much faster per iteration, but needs more iterations!

Pop Quiz: SGD vs Batch GD

Quick Quiz 2

For a dataset with 1 million samples, which converges faster per iteration?

- a) Batch Gradient Descent (uses all 1M samples)
- b) Stochastic Gradient Descent (uses 1 sample)

Answer: b) SGD is much faster per iteration, but needs more iterations!

Pop Quiz: SGD vs Batch GD

Quick Quiz 2

For a dataset with 1 million samples, which converges faster per iteration?

- a) Batch Gradient Descent (uses all 1M samples)
- b) Stochastic Gradient Descent (uses 1 sample)
- c) They're the same speed

Answer: b) SGD is much faster per iteration, but needs more iterations!

Standard Form

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Standard Form

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Standard Form

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Optimized Form

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta} + \alpha \mathbf{X}^{\top} \mathbf{y}$$

Standard Form

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Optimized Form

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\theta} + \alpha \mathbf{X}^{\top} \mathbf{y}$$

Standard Form

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \mathbf{X}^{\top} (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

Optimized Form

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \alpha \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} + \alpha \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Key insight: $X^{T}X$ and $X^{T}y$ can be *precomputed once!*

Precomputation Costs

One-time computations:

• Computing $\mathbf{X}^{\mathsf{T}}\mathbf{y}$: $\mathcal{O}(dn)$

Precomputation Costs

One-time computations:

• Computing $\mathbf{X}^{\mathsf{T}}\mathbf{y}$: $\mathcal{O}(dn)$

- Computing $\mathbf{X}^{\top}\mathbf{y}$: $\mathcal{O}(dn)$
- Computing $\mathbf{X}^{\top}\mathbf{X}$: $\mathcal{O}(\mathbf{d}^2\mathbf{n})$

- Computing $\mathbf{X}^{\top}\mathbf{y}$: $\mathcal{O}(dn)$
- Computing $\mathbf{X}^{\top}\mathbf{X}$: $\mathcal{O}(\mathbf{d}^2\mathbf{n})$

- Computing $\mathbf{X}^{\top}\mathbf{y}$: $\mathcal{O}(dn)$
- Computing $\mathbf{X}^{\top}\mathbf{X}$: $\mathcal{O}(\mathbf{d}^2\mathbf{n})$
- Scaling by α : $\mathcal{O}(\mathbf{d}^2)$ for $\alpha \mathbf{X}^{\top} \mathbf{X}$

- Computing $\mathbf{X}^{\top}\mathbf{y}$: $\mathcal{O}(dn)$
- Computing $\mathbf{X}^{\top}\mathbf{X}$: $\mathcal{O}(\mathbf{d}^2\mathbf{n})$
- Scaling by α : $\mathcal{O}(\mathbf{d}^2)$ for $\alpha \mathbf{X}^{\top} \mathbf{X}$

One-time computations:

- Computing $\mathbf{X}^{\top}\mathbf{y}$: $\mathcal{O}(dn)$
- Computing $\mathbf{X}^{\top}\mathbf{X}$: $\mathcal{O}(d^2n)$
- Scaling by α : $\mathcal{O}(\mathbf{d}^2)$ for $\alpha \mathbf{X}^{\top} \mathbf{X}$

Total Precomputation Cost

$$\mathcal{O}(d^2n) + \mathcal{O}(dn) + \mathcal{O}(d^2) = \mathcal{O}(d^2n)$$

For each of t iterations:

• Matrix-vector multiplication: $\alpha \mathbf{X}^{\mathsf{T}} \mathbf{X} \cdot \boldsymbol{\theta}$

- Matrix-vector multiplication: $\alpha \mathbf{X}^{\mathsf{T}} \mathbf{X} \cdot \boldsymbol{\theta}$
 - $(d \times d) \text{ matrix} \times (d \times 1) \text{ vector} = \mathcal{O}(d^2)$

- Matrix-vector multiplication: $\alpha \mathbf{X}^{\mathsf{T}} \mathbf{X} \cdot \boldsymbol{\theta}$
 - $(d \times d) \text{ matrix} \times (d \times 1) \text{ vector} = \mathcal{O}(d^2)$

- Matrix-vector multiplication: $\alpha \mathbf{X}^{\top} \mathbf{X} \cdot \boldsymbol{\theta}$
 - $(\mathbf{d} \times \mathbf{d}) \text{ matrix} \times (\mathbf{d} \times 1) \text{ vector} = \mathcal{O}(\mathbf{d}^2)$
- Vector operations: Addition/subtraction in $\mathcal{O}(d)$

- Matrix-vector multiplication: $\alpha \mathbf{X}^{\top} \mathbf{X} \cdot \boldsymbol{\theta}$
 - $(\mathbf{d} \times \mathbf{d}) \text{ matrix} \times (\mathbf{d} \times 1) \text{ vector} = \mathcal{O}(\mathbf{d}^2)$
- Vector operations: Addition/subtraction in $\mathcal{O}(d)$

For each of t iterations:

- Matrix-vector multiplication: $\alpha \mathbf{X}^{\top} \mathbf{X} \cdot \boldsymbol{\theta}$ • $(\mathbf{d} \times \mathbf{d})$ matrix $\times (\mathbf{d} \times 1)$ vector = $\mathcal{O}(\mathbf{d}^2)$
- Vector operations: Addition/subtraction in $\mathcal{O}(d)$

Total Complexity (Optimized)

Precomputation + *t* iterations:

$$\mathcal{O}(d^2n) + \mathcal{O}(td^2) = \mathcal{O}((n+t)d^2)$$

Without precomputation: $\theta = \theta - \alpha \mathbf{X}^{\top} (\mathbf{X} \theta - \mathbf{y})$ Per iteration costs:

• Computing $X\theta$: $\mathcal{O}(nd)$

- Computing $X\theta$: $\mathcal{O}(nd)$
- Computing $X\theta y$: $\mathcal{O}(n)$

- Computing $X\theta$: $\mathcal{O}(nd)$
- Computing $X\theta y$: $\mathcal{O}(n)$

- Computing $X\theta$: $\mathcal{O}(nd)$
- Computing $X\theta y$: $\mathcal{O}(n)$
- Computing $\mathbf{X}^{\top}(\mathbf{X}\boldsymbol{\theta} \mathbf{y})$: $\mathcal{O}(nd)$

- Computing $X\theta$: $\mathcal{O}(nd)$
- Computing $X\theta y$: $\mathcal{O}(n)$
- Computing $\mathbf{X}^{\top}(\mathbf{X}\boldsymbol{\theta} \mathbf{y})$: $\mathcal{O}(\mathbf{nd})$
- Final update: $\mathcal{O}(d)$

- Computing $X\theta$: $\mathcal{O}(nd)$
- Computing $X\theta y$: $\mathcal{O}(n)$
- Computing $\mathbf{X}^{\top}(\mathbf{X}\boldsymbol{\theta} \mathbf{y})$: $\mathcal{O}(\mathbf{nd})$
- Final update: $\mathcal{O}(d)$

Without precomputation: $\theta = \theta - \alpha \mathbf{X}^{\top} (\mathbf{X} \theta - \mathbf{y})$ Per iteration costs:

- Computing $X\theta$: $\mathcal{O}(nd)$
- Computing $X\theta y$: $\mathcal{O}(n)$
- Computing $\mathbf{X}^{\top}(\mathbf{X}\boldsymbol{\theta} \mathbf{y})$: $\mathcal{O}(\mathbf{n}\mathbf{d})$
- Final update: $\mathcal{O}(d)$

Total Complexity (Naive)

$$t \times \mathcal{O}(nd) = \mathcal{O}(ndt)$$

Pop Quiz: Complexity Comparison

Quick Quiz 3

For d = 100, n = 10000, t = 1000, which implementation is more efficient?

a) Optimized: $\mathcal{O}((n+t)d^2)$ approach

Answer: a) Optimized has better asymptotic complexity when n + t < nd!

Pop Quiz: Complexity Comparison

Quick Quiz 3

For d = 100, n = 10000, t = 1000, which implementation is more efficient?

a) Optimized: $\mathcal{O}((n+t)d^2)$ approach

b) Naive: O(ndt) approach

Answer: a) Optimized has better asymptotic complexity when n + t < nd!

Pop Quiz: Complexity Comparison

Quick Quiz 3

For d = 100, n = 10000, t = 1000, which implementation is more efficient?

- a) Optimized: $\mathcal{O}((n+t)d^2)$ approach
- b) Naive: O(ndt) approach
- c) They're equivalent

Answer: a) Optimized has better asymptotic complexity when n + t < nd!

Mathematical Foundation:

- Mathematical Foundation:
 - Gradient ∇f points toward steepest *ascent*

Mathematical Foundation:

- Gradient ∇f points toward steepest ascent
- $_{\circ}$ For minimization, move in direction abla f

Mathematical Foundation:

- Gradient ∇f points toward steepest ascent
- $_{\circ}$ For minimization, move in direction abla f

- Mathematical Foundation:
 - Gradient ∇f points toward steepest ascent
 - \circ For minimization, move in direction $-\nabla f$
- Algorithm Variants:

- Mathematical Foundation:
 - Gradient ∇f points toward steepest ascent
 - \circ For minimization, move in direction $-\nabla f$
- Algorithm Variants:
 - Batch GD: Uses all data, smooth convergence

Mathematical Foundation:

- Gradient ∇f points toward steepest ascent
- \circ For minimization, move in direction $-\nabla f$

Algorithm Variants:

- Batch GD: Uses all data, smooth convergence
- Stochastic GD: Uses one sample, faster per iteration

Mathematical Foundation:

- Gradient ∇f points toward steepest ascent
- \circ For minimization, move in direction $-\nabla f$

Algorithm Variants:

- Batch GD: Uses all data, smooth convergence
- Stochastic GD: Uses one sample, faster per iteration

- Mathematical Foundation:
 - Gradient ∇f points toward steepest *ascent*
 - \circ For minimization, move in direction $-\nabla f$
- Algorithm Variants:
 - Batch GD: Uses all data, smooth convergence
 - Stochastic GD: Uses one sample, faster per iteration
- Implementation Matters:

Mathematical Foundation:

- Gradient ∇f points toward steepest ascent
- \circ For minimization, move in direction $-\nabla f$

Algorithm Variants:

- Batch GD: Uses all data, smooth convergence
- Stochastic GD: Uses one sample, faster per iteration

Implementation Matters:

Smart precomputation: $\mathcal{O}((n+t)d^2)$

Mathematical Foundation:

- Gradient ∇f points toward steepest ascent
- \circ For minimization, move in direction $-\nabla f$

Algorithm Variants:

- Batch GD: Uses all data, smooth convergence
- Stochastic GD: Uses one sample, faster per iteration

Implementation Matters:

- Smart precomputation: $\mathcal{O}((n+t)d^2)$
- Naive approach: O(ndt)

Mathematical Foundation:

- Gradient ∇f points toward steepest ascent
- \circ For minimization, move in direction $-\nabla f$

Algorithm Variants:

- Batch GD: Uses all data, smooth convergence
- Stochastic GD: Uses one sample, faster per iteration

Implementation Matters:

- Smart precomputation: $\mathcal{O}((n+t)d^2)$
- Naive approach: O(ndt)
- Can be 10× speed difference!