GIST 58: REMOTE SENSING & DIGITAL IMAGE PROCESSING

Foothill College Course Outline of Record

Effective Term:	Summer 2022
Units:	3
Hours:	2 lecture, 3 laboratory per week (60 total per quarter)
Advisory:	This is an intermediate level course in GIST, and assumes the ability to use industry standard software; successful completion of GEOG 11 or GIST 11, and GEOG 12 or GIST 12 strongly recommended; not open to students with credit in GEOG 58.
Degree & Credit Status:	Degree-Applicable Credit Course
Foothill GE:	Non-GE
Transferable:	CSU
Grade Type:	Letter Grade (Request for Pass/No Pass)
Repeatability:	Not Repeatable

Student Learning Outcomes

- Define remote sensing.
- Discuss the applications of remote sensing with Geographic Information Systems (GIS)
- Discuss the physical basis for remote sensing in terms of the electromagnetic spectrum.

Description

Physical basis of remote sensing. Aerial photography and high resolution multi-band imaging.

Satellite multi-band optical remote sensing. Other forms of remote sensing (RADAR, SAR, LIDAR). Applications of remote sensing.

Course Objectives

The student will be able to:

- 1. define remote sensing.
- 2. discuss the applications of remotes sensing with Geographic Information Systems (GIS).
- 3. discuss the physical basis for remote sensing in terms of the electromagnetic spectrum.
- 4. evaluate three remote sensing platforms and discuss their applications.

Course Content

- 1. Remote sensing overview
 - a. Definition of remote sensing
 - b. Remote sensing assumptions
 - c. Advantages of using remote sensing
 - d. Correlating remotely sensed data with ground data
- 2. Physical basis for remote sensing
 - a. The electromagnetic spectrum
 - i. Overview
 - ii. Visible (short) wavelengths
 - iii. Near-infrared wavelenghs
 - iv. Mid-infrared wavelengths
 - v. Thermal wavelengths
 - vi. Microwave (long) wavelengths
 - vii. Spectral bands
 - b. Atmospheric effects
 - i. Overview of interaction between radiation and targets

- ii. Reflected, emitted and absorbed radiation
- iii. Description of energy path
- iv. Atmospheric scattering and absorption
- c. Reflectance of terrain materials, transmission of water (optical)
 - i. Spectral signatures across wavelengths
 - ii. Comparison of spectral patterns
 - iii. Changes of signatures over time and space
- d. Microwave remote sensing (SAR, RADAR and thermal)
 - i. RADAR geometry
 - ii. Backscatter
 - iii. Interpreting surface cover
 - iv. Advantages and disadvantages
- 3. Multi-band image interpretation
 - a. How multi-band image display works
 - i. Image bands vs. software/computer color guns
 - ii. Additive color
 - iii. Image pixel values and color
 - b. False color imagery
 - c. Histogram interpretation
 - i. Overview of histograms
 - ii. Relationship between image bands and histograms
 - iii. Relationship between image objects and histogram
 - d. Image classification
 - i. Land use vs. land cover
 - ii. Classification systems
 - iii. Classification criteria
 - iv. Informational vs. spectral classes
 - v. Unsupervised classification
 - i. Clustering
 - ii. Interpreting and editing clusters

- iii. Field verification
- vi. Supervised classification
 - i. Training areas
 - ii. Training signatures
- vii. Accuracy assessment
- 4. Aerial photography and high-resolution multi-band imaging
 - a. Methods of interpretation
 - i. Manual vs. digital
 - b. Aircraft scanner equipment
 - i. CCDs and digital cameras
 - ii. Spectral and spatial resolution
 - c. Orthorectification and georeferencing
 - i. Types of correction
 - ii. Effects of topographic relief displacement
 - iii. Digital image rectification process overview
 - iv. Ground control points
 - v. Transformation matrix and root mean square error
 - vi. Resampling
 - d. Interpretation techniques
 - i. Air photo manual interpretation and delineation
 - ii. Satellite imagery
- 5. Satellite remote sensing
 - a. Overview of remote sensing equipment
 - b. Remote sensing platforms and data acquisition
 - i. Satellite orbits (geostationary, near-polar)
 - ii. Passive vs. active systems
 - iii. Whisk broom vs. push broom systems
 - iv. Sensors from NOAA, NASA, SPOT, commercial satellites and aircraft
 - v. Data acquisition from NASA DAACs, USGS MRLC, websites with free data
 - c. Data applications

- i. Weather
- ii. Disaster assessment
- iii. Vegetation monitoring
- iv. Urban growth
- v. Ocean health
- vi. Public health
- d. Integration with GIS systems
 - i. Digital filters for imagery
 - ii. Converting raster layers to vector
- 6. Lab content
 - a. Introduction to Idrisi
 - i. Display imagery
 - ii. Pan, zoom
 - b. Histograms
 - i. Manual exercise
 - ii. Exercise using Idrisi
 - c. Exploring reflectance values and creating color composites
 - i. Spectral response of land cover types
 - ii. Creating spectral graphs
 - iii. Natural color and false color composites
 - d. Geometric correction
 - i. Image re-projection
 - ii. Acquire GPS points
 - iii. Assess transformation error
 - iv. Resample image
 - e. Image classification
 - i. Manual image interpretation
 - ii. Manual unsupervised classification
 - iii. Digital unsupervised classification
 - iv. Image interpretation

Lab Content

- 1. Introduction to remote sensing software
 - a. Display imagery
 - b. Pan, zoom
- 2. Histograms
 - a. Manual exercise
 - b. Exercise using remote sensing software
- 3. Exploring reflectance values and creating color composites
 - a. Spectral response of land cover types
 - b. Creating spectral graphs
 - c. Natural color and false color composites
- 4. Geometric correction
 - a. Image re-projection
 - b. Acquire GPS points
 - c. Assess transformation error
 - d. Resample image
- 5. Image classification
 - a. Manual image interpretation
 - b. Manual unsupervised classification
 - c. Digital unsupervised classification
 - d. Image interpretation

Special Facilities and/or Equipment

- 1. For practical exercises: PC computer facilities and industry standard remote sensing software. Computer laboratory will also need internet access.
- 2. When taught via Foothill Global Access, ongoing access to computer with email software and hardware; email address.

Method(s) of Evaluation

Methods of Evaluation may include but are not limited to the following:

Laboratory projects
Final exam or final project and oral presentation

Method(s) of Instruction

Methods of Instruction may include but are not limited to the following:

Lecture presentations
Classroom discussion
Demonstrations and hands-on exercises
Reading assignments

Representative Text(s) and Other Materials

Lillesand, Thomas M., Ralph Kiefer, and Jonathan Chipman. <u>Remote Sensing and Image</u> Interpretation, 7th ed.: 2015.

Although this text is older than the suggested "5 years or newer" standard, it remains a seminal text in this area of study.

Types and/or Examples of Required Reading, Writing, and Outside of Class Assignments

- Weekly reading assignments from text and outside sources ranging from 30-60 pages per week.
- 2. Weekly lecture covering subject matter from text assignment with extended topic information. Class discussion is encouraged.
- Hands-on exercises and demonstrations: Weekly computer exercises. Each exercise covers assigned reading and lecture topics.

Discipline(s)

				_		_
Cacaranhy	, or Drofting/CADI	or Environmental	Tachnalagiaa	or Forgothy	/NIatural	Dagauraga
Geodiadio	' 01 1)(a)(1)(0/(,A))() OL FIIVILOHIHEMIAL	rechnologies	OFFORESTIV	/ เงลเบเลเ	Resources
CCCgraping	or braining, or the	or Environment	recimionogico	0 0. 000. 7	, i tatai ai	