Appunti belli di Algoritmi e Strutture dati

Floppy Loppy

Feb 28, 2022

Contents

1	introduzione															3																
	1.1	Ricorsione																														3

Todo list

1 introduzione

1.1 Ricorsione

Utilizziamo il **principio di induzione** per mostrare il funzionamento della ricorsione

Esempio 1.1.

$$S_n = \sum_{k=1}^n k = \frac{n * (n+1)}{2}$$

Caso base:

$$S_0 = \sum_{k=0}^{0} k = \frac{0 * (0+1)}{2} = 0$$

Assumo che \mathcal{P} valga per n vado a dimostrare che vale per n+1 assunzione:

$$S_n = \sum_{k=0}^{n} k = \frac{n * (n+1)}{2}$$

devo dimostrare che

$$S_n = \sum_{j=0}^{n+1} j = \frac{n+1*(n+2)}{2} \tag{1}$$

Quindi:

$$S_n = \sum_{k=0}^{n+1} j = \left(\sum_{k=0}^n k\right) + (n+1) = (n+1)\left(\frac{n+2}{2}\right)$$

Cosi facendo ho dimostrato 1

Altro esempio può essere fatto con i logaritmi, in particolare con:

$$\log_b x$$
 $b, x > 0$ $b \neq 1$

Dove $\log_b x$ è quel numero che devo assegnare come esponente a b per ottenere x.

$$b^y = x$$