МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

В.В. Беляев

ЗАДАЧИ по теории групп

москва МФТИ 2013

Репензент:

Кандидат физико-математических наук Чубаров И. А.

Беляев, В. В.

Задачи по теории групп. – М.: МФТИ, 2013. – 42 с. ISBN

Сборник задач по теории групп предназначен для студентов второго курса ФИВТ, направление 010400 «Прикладная математика и информатика», слушающих курс лекций «Теория групп». В него входят задачи, закрепляющие понимание основных понятий теории групп, а также некоторые комбинаторные задачи, требующие знания этой теории.

Сборник может использоваться студентами первого курса для формирования навыков работы с основными алгебраическими понятиями. С этой целью в сборник включен ряд дополнительных задач.

Кроме того, данное пособие дополнено программой курса «Теория групп» и экзаменационными вопросами.

Содержание

Введение	4
Часть I. Задачи по теории групп	6
$\S 1$. Подстановки	6
§2. Произведения подстановок, четные и нечетные	
подстановки	7
$\S 3$. Порождающие множества $\mathrm{Sym}(\Omega)$ и $\mathrm{Alt}(\Omega)$	8
$\S4$. Понятия группы и подгруппы	9
§5. Смежные классы и классы сопряженных элементов	10
§6. Нормальные подгруппы	11
\S 7. Факторгруппы, морфизмы, теоремы об изоморфизмах,	
прямые произведения	12
§8. Действие группы. Орбиты и стабилизаторы	14
§9. Раскрашивание групповых пространств	16
§ 10. Теоремы Силова	19
$\S 11$. Основная теорема о конечных абелевых группах	21
$\S12$. Инволютивное исчисление	21
$\S 13$. Функции длины	23
Часть II. Дополнительные задачи	25
§14. Семейства множеств	25
§15. Отношения	27
$\S 16$. Отображения	31
§17. Алгебраические структуры	33
Часть III. Приложение	37
§18. Программа по курсу «Теория групп»	37
§19. Экзаменационные вопросы	39
Литература	41

Введение

На сегодняшний день теория групп, а точнее, групповой язык, применяется практически во всех областях математики: геометрии и топологии, теории дифференциальных уравнений и функциональном анализе, дискретной математике и компьютерных науках и т.д. В каком объеме студент младших курсов должен знать теорию групп? Что может он усвоить за 15 лекций, которые предлагаются ему по учебному плану? Ответ на эти вопросы зависит от многих условий: от уровня математической культуры студентов, научных интересов преподавателей, читающих лекции и ведущих семинарские занятия, от специализации студента, от востребованности языка теории групп в других математических курсах лекций и еще от многих других причин.

Данный сборник задач по теории групп составлен из реальных задач, которые предлагались студентам второго курса ФИВТ в осеннем семестре 2011–2012 учебного года. Задачи составлялись сразу после чтения соответствующего теоретического материала и предназначались для закрепления на практике некоторых базисных понятий теории групп.

Должен сказать, что исходная программа курса, которая также помещена в это пособие, несколько раз корректировалась по ходу чтения лекций, так как некоторые понятия оказались слишком сложными для их усвоения в таком кратком курсе, и окончательный итог всех изменений программы в какой-то степени отражен в экзаменационных вопросах, также представленных в конце пособия. Говорю «в какой-то степени», так как мной было принято решение не выносить на экзамен некоторые сложные теоретические результаты из курса лекций. Таким образом, курс лекций и, следовательно, подбор задач к нему находятся в состоянии развития, и данное пособие отражает лишь его первоначальное состояние.

Какие же наиболее существенные изменения произошли в курсе лекций по сравнению с исходной программой? На лекциях не рассматривались последние два раздела программы:

примитивные групповые пространства и базисные идеи теории Галуа. Последние — основы теории Галуа — были удалены из курса по следующим причинам. Во-первых, их трудно изложить в кратком курсе теории групп, и, во-вторых, они не являются важным материалом для будущих специалистов в области дискретной математики и компьютерных наук. В моей программе курса теория Галуа появилась лишь по просьбе некоторых сильных студентов и планировалась для краткого изложения в случае свободного времени. Что касается темы примитивных групповых пространств, то ее сокращение, особенно понятие орбитала, в будущем нежелательно, так как в этом разделе закладываются основы связи между группами и симметрическими графами.

Вместо удаленных двух разделов были прочитаны лекции по раскрашиванию групповых пространств, доказаны теоремы Силова и основная теорема о строении конечной абелевой группы. Если тема раскрашиваний была выбрана в связи с общей комбинаторной направленностью курса лекций, то теоремы Силова излагались по просьбе преподавателей, ведущих семинары. Структурная теорема теории конечных абелевых групп оказалась удобным материалом как с лекционной точки зрения, так и с точки зрения ведения семинарских занятий. Основная идея доказательства этой теоремы знакома студентам с первого курса: они сталкиваются с ней при изучении действия нильпотентного оператора векторного пространства, а на семинарах эта теорема хорошо усваивается с помощью простых комбинаторных задач.

Кроме задач по теории групп, данное пособие включает в себя раздел дополнительных задач, которые предлагались студентам еще на первом курсе. Хотя большинство из этих задач и не имеет групповой формулировки, но знание и понимание данного дополнительного материала активно использовалось нами как на лекциях, так и на семинарах по теории групп. Поэтому считаю полезным включить в данное пособие некоторые задачи первого семестра.

В. В. Беляев

ЧАСТЬ І. Задачи по теории групп

§1. Подстановки

1.1. Для каких действительных a, b и c отображение $f: \mathbb{R} \to \mathbb{R}$, заданное многочленом

$$f(x) = x^3 + ax^2 + bx + c,$$

является подстановкой множества \mathbb{R} ?

1.2. Для каких целых a и b отображение $f\colon \mathbb{Z}_n \to \mathbb{Z}_n$, заданное как

$$f(x) = ax + b,$$

является подстановкой множества \mathbb{Z}_n ?

- **1.3.** Доказать, что число различных подстановок степени n равно n!.
- **1.4.** Подстановка g множества $\{1,2,\ldots,9\}$ определена равенством

$$g(i) = 10 - i.$$

Найти циклический тип подстановки и построить её граф.

- **1.5.** Найти число различных циклических типов подстановок степени n для $n=1,2,\ldots,10$.
- **1.6.** Найти циклические типы всех подстановок множеств \mathbb{Z}_6 , \mathbb{Z}_7 и \mathbb{Z}_{11} , заданных следующим образом:
 - a) f(x) = x + a,
 - f(x) = ax,

где a — целое число.

- 1.7. Найти число подстановок степени 6, имеющих циклический тип 2^3 , и выписать все эти подстановки.
- **1.8.** Найти число транспозиций степени n для произвольного n.
- **1.9.** Найти число 3-циклов степени n для произвольного n.
- **1.10.** Найти число подстановок степени n, имеющих циклический тип 2^2 .
- **1.11.** Найти число подстановок степени 2n, имеющих циклический тип 2^n .
- **1.12.** Для $1 \leqslant r \leqslant n$ показать, что существует точно $\frac{n!}{r \cdot (n-r)!}$ r-циклов степени n.

- **1.13.** Какие подстановки множества $\{x_1, x_2, x_3, x_4\}$ не изменяют многочлен $x_1 + x_2 x_3 x_4$?
- **1.14.** Найти многочлен $f(x_1, x_2, x_3, x_4) \in \mathbb{R}[x_1, \dots, x_4]$, который не изменяется под действием подстановок (x_1, x_2, x_3, x_4) и (x_2, x_4) , но не является симметрическим многочленом.
- **1.15.** Попытаться решить задачу Лагранжа для $n \leq 5$: сколько различных многочленов можно получить из многочлена от n переменных, переставляя переменные произвольным образом?

§ 2. Произведения подстановок, четные и нечетные подстановки

- **2.1.** Определите четность подстановки (т. е. знак подстановки) для подстановок из задач 1.4 и 1.6.
- **2.2.** Доказать, что число четных подстановок конечного множества мощности ≥ 2 равно числу нечетных подстановок.
- **2.3.** Будем говорить, что подстановки g и h не пересекаются, если $\operatorname{supp}(g) \cap \operatorname{supp}(h) = \varnothing$. Доказать:
 - а) любая нетождественная подстановка конечного множества представима в виде произведения непересекающихся циклов;
 - б) любой нетривиальный n-цикл представим в виде произведения (n-1)-й транспозиции;
 - в) подстановка конечного множества является нечетной \Leftrightarrow число её циклов четной длины нечетно.
- **2.4.** Доказать, что для любой подстановки g число циклов длины 2n её квадрата g^2 есть четное число для любого $n \in \mathbb{N}$.
- **2.5.** Пусть $\Omega = \{-n, \dots, -1, 0, 1, \dots, n\}$ и g подстановка Ω , удовлетворяющая условию

$$g(-i) = -g(i)$$

для любого $i\in\Omega$. Доказать, что g — четная подстановка \Leftrightarrow множество

$$\{i \in \Omega \mid i > 0 \& g(i) < 0\}$$

содержит четное число чисел.

2.6. Найти подстановку, обратную к

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 5 & 4 & 2 & 8 & 6 & 7 \end{pmatrix}.$$

- **2.7.** Как связаны между собой графы подстановок g и g^{-1} ? В частности, как связаны циклические типы этих подстановок?
- **2.8.** Пусть g и h подстановки, носители которых имеют лишь одну общую точку. Доказать, что $g^{-1}h^{-1}gh$ есть 3-цикл.
- **2.9.** Исследовать строение графа произведения двух подстановок, носители которых имеют точно одну общую точку.
- **2.10.** Доказать, что графы подстановок g и h изоморфны \Leftrightarrow найдется такая подстановка a, что $a^{-1}ga=h$.
- **2.11.** Доказать, что для любой подстановки g найдется такая подстановка a, что $(ga)^2=a^2$.
- **2.12.** Доказать, что подстановка g конечного множества является квадратом другой подстановки \Leftrightarrow для любого четного n число n-циклов подстановки g четно.
- **2.13.** Пусть g подстановка конечного множества, квадрат которой есть тождественная подстановка. Доказать:
 - g нечетная подстановка $\Leftrightarrow |\operatorname{supp}(g)| \equiv 2 \pmod{4}$.
- **2.14.** Пусть \mathbb{Q}^+ множество всех положительных рациональных чисел. Функция $f \colon \mathbb{Q}^+ \to \mathbb{Q}^+$ удовлетворяет тождеству

$$f(xf(y)) = \frac{f(x)}{y}$$

для любых $x,y\in\mathbb{Q}^+$. Доказать, что f — подстановка множества \mathbb{Q}^+ и $f(xy)=f(x)\cdot f(y)$ для любых $x,y\in\mathbb{Q}^+$. Какой циклический тип имеет подстановка f? Построить такую функцию.

(Эта задача является вариацией одной задачи из Международной математической олимпиады 1990 года.)

\S 3. Порождающие множества $\mathrm{Sym}(\Omega)$ и $\mathrm{Alt}(\Omega)$

3.1. Пусть T — некоторое множество транспозиций из S_n . По-казать, что $\langle T \rangle = S_n \Leftrightarrow$ граф T связен. Вывести отсюда, что

граф минимального порождающего множества транспозиций является деревом и, следовательно, имеет n-1 ребро.

3.2. Найти необходимые и достаточные условия на пары $i,\ j$ для того, чтобы

$$\langle (12\ldots n), (ij) \rangle = S_n.$$

3.3. Показать, что для всех i, 1 < i < n,

$$\langle (23\ldots n), (1i) \rangle = S_n.$$

- **3.4.** Показать, что множество всех 3-циклов порождает A_n для $n \geqslant 3$.
- **3.5.** Показать, что S_n порождается тремя инволюциями (n > 1).
- **3.6.** Пусть g и h циклы, причем:
 - 1) $|\operatorname{supp}(g) \cap \operatorname{supp}(h)| = 1;$
 - 2) $supp(g) \cup supp(h) = \Omega$.

Доказать:

- 1) если по крайней мере один из циклов g или h имеет четную длину, то $\langle g, h \rangle = \operatorname{Sym}(\Omega)$;
- 2) если длины циклов g и h нечетны, то $\langle g, h \rangle = \mathrm{Alt}(\Omega)$.

§ 4. Понятия группы и подгруппы

- **4.1.** Доказать, что пересечение любого семейства подгрупп есть подгруппа.
- **4.2.** В каком случае объединение двух подгрупп является подгруппой?
- **4.3.** Доказать: группа G содержит ровно две подгруппы \Leftrightarrow G циклическая группа простого порядка.
- **4.4.** Доказать, что любая подгруппа циклической группы является также циклической.
- **4.5.** Доказать, что любая конечнопорожденная подгруппа аддитивной группы $\mathbb Q$ является циклической.
- **4.6.** Найти все подгруппы в циклической группе порядка p^n , где p простое число. Найти число порождающих эту группу элементов.
- **4.7.** Элемент порядка 2 называется *инволюцией*. Найти все инволюции в S_n для $n \le 5$.

- **4.8.** Доказать, что конечная группа четного порядка содержит инволюцию.
- **4.9.** Доказать, что порядок любой подстановки конечного множества равен наименьшему общему кратному длин циклов подстановки.
- **4.10.** Найти порядки подстановок из S_n для $n \leq 5$.
- **4.11.** Найти порядки всех подгрупп из S_n для $n \leqslant 4$.
- **4.12**. Доказать:
 - а) S_n неабелева группа $\Leftrightarrow n \geqslant 3$;
 - б) A_n неабелева группа $\Leftrightarrow n \geqslant 4$.

Говорят, что подгруппы G_1, \ldots, G_n образуют расщепление группы G, если

$$igcup_{i=1}^n G_i = G$$
 и $G_i \cap G_j = 1$ для $i
eq j$.

Подгруппы G_i называются компонентами расщепления.

- **4.13.** Доказать, что порядок группы, обладающей расщеплением с n компонентами, не превосходит $(n-1)^2$.
- **4.14.** Описать расщепляемые группы с тремя компонентами расшепления.
- **4.15.** Пусть $x^2=1$ для любого $x\in G$. Доказать, что группа G абелева.

§ 5. Смежные классы и классы сопряженных элементов

- **5.1.** Найти $|S_n : A_n|$.
- **5.2.** Доказать, что пересечение подгрупп взаимно простых порядков тривиально.
- **5.3.** Показать, что для любого делителя m порядка конечной циклической группы G существует подгруппа порядка m.
- **5.4.** Пусть $|G:H_i|=n_i,\;i=1,2.$ Доказать, что

$$|G: H_1 \cap H_2| \leqslant n_1 n_2.$$

5.5. Пусть индексы подгрупп H_1 и H_2 в группе G являются взаимно простыми числами. Доказать, что $G = H_1H_2$, т. е.

$$G = \{ xy \mid x \in H_1, y \in H_2 \}.$$

- **5.6.** Найти мощности всех классов сопряженных элементов в S_5 .
- **5.7.** Найти число классов сопряженных элементов в S_6 .
- 5.8. Доказать, что группа порядка 15 абелева.
- **5.9.** Доказать, что в S_5 нет подгрупп порядка 15.
- **5.10.** Пусть $|G|=p^n$, где p простое и n>0. Доказать, что $Z(G)\neq 1$.
- **5.11.** Найти все решения в натуральных числах уравнения классов для m = 1, 2, 3:

$$\frac{1}{x_1} + \ldots + \frac{1}{x_m} = 1.$$

- **5.12.** Описать все конечные группы, имеющие не более трех классов сопряженных элементов.
- **5.13.** Пусть G объединение трех собственных подгрупп H_1 , H_2 и H_3 . Доказать:
 - a) $H_1 \cap H_2 = H_1 \cap H_3 = H_2 \cap H_3$;
 - 6) $|G:H_i|=2, \quad i=1,2,3.$

§ 6. Нормальные подгруппы

- **6.1.** Доказать, что пересечение нормальных подгрупп нормальная подгруппа.
- **6.2.** Доказать, что любой класс сопряженных элементов порождает нормальную подгруппу.
- **6.3.** Пусть H и K нормальные в G подгруппы. Доказать, что множество

$$HK = \{xy \mid x \in H, y \in K\}$$

является нормальной подгруппой в G.

- **6.4.** Доказать, что любая подгруппа индекса 2 является нормальной.
- **6.5.** Пусть G абелева группа. Доказать, что G простая группа $\Leftrightarrow |G|$ простое число.
- **6.6.** Доказать, что любая подгруппа из Z(G) является нормальной в G.
- **6.7.** Пусть $H \lhd S_n$ и $n \geqslant 5$. Доказать, что $H = 1, \ H = A_n$ или $H = S_n$.

- **6.8.** Найти все нормальные подгруппы в S_n для $n \leq 4$.
- **6.9.** Доказать, что $Z(S_n) = 1$ для $n \geqslant 3$.

§ 7. Факторгруппы, морфизмы, теоремы об изоморфизмах, прямые произведения

- **7.1.** Доказать, что мультипликативная группа положительных действительных чисел изоморфна аддитивной группе всех действительных чисел.
- 7.2. Доказать, что мультипликативная группа всех ненулевых действительных чисел изоморфна прямому произведению циклической группы порядка 2 и мультипликативной группе положительных действительных чисел. Вывести отсюда, что мультипликативная группа всех ненулевых действительных чисел неизоморфна мультипликативной группе всех положительных действительных чисел.
- **7.3.** Доказать, что мультипликативная группа всех положительных рациональных чисел изоморфна аддитивной группе всех целочисленных финитарных строк, т. е. строк с конечным числом ненулевых координат,

$$\{(x_1, x_2, \ldots) \mid x_i \in \mathbb{Z}\},\$$

с покоординатной операцией сложения.

7.4. Доказать, что мультипликативная группа комплексных чисел с модулем, равным 1,

$$T = \left\{z \in \mathbb{C} \mid |z| = 1\right\},\,$$

изоморфна факторгруппе \mathbb{R}/\mathbb{Z} , аддитивной группы \mathbb{R} по группе целых чисел \mathbb{Z} .

- **7.5.** Доказать, что группа вращений куба изоморфна S_4 , а группа всех симметрий куба изоморфна $\mathbb{Z}_2 \times S_4$.
- **7.6.** Доказать, что группа вращений правильного тетраэдра изоморфна A_4 , а группа всех симметрий тетраэдра изоморфна S_4 .
- **7.7.** Доказать, что группа симметрий куба изоморфна группе симметрий правильного октаэдра.

- **7.8.** Доказать, что циклическая группа порядка n изоморфна \mathbb{Z}_n , а бесконечная циклическая группа изоморфна \mathbb{Z} .
- **7.9.** Доказать, что прямое произведение конечного набора групп является циклической группой ⇔ все прямые сомножители являются циклическими группами взаимно простых порядков.
- 7.10. Доказать, что прямое произведение групп есть абелева группа ⇔ все прямые сомножители абелевы группы.
- **7.11.** Доказать, что центр прямого произведения групп совпадает с произведением центров координатных подгрупп.
- **7.12.** Пусть p простое число. Группа G называется элементарной абелевой p-группой, если она, во-первых, абелева, и, во-вторых, для любого $x \in G$ $x^p = 1$.

Доказать, что G есть конечная элементарная абелева p-группа $\Leftrightarrow G$ есть прямое произведение конечного числа циклических групп порядка p.

- **7.13.** Пусть $H \leqslant G$ и для любого $x \in G$ $x^2 \in H$. Доказать, что $H \lhd G$, и G/H элементарная абелева 2-группа.
- **7.14.** Классифицировать, с точностью до изоморфизма, все группы порядков ≤ 5 .
- **7.15.** Пусть $V = \langle (12)(34), (13)(24) \rangle$. Доказать, что
 - 1) $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$,
 - $2) V \triangleleft S_4,$
 - 3) $S_4/V \cong S_3$,
 - 4) $A_4/V \cong \mathbb{Z}_3$.
- **7.16.** Пусть $f \colon G \to H$ гомоморфизм. Доказать:
 - 1) образ любой подгруппы из G есть подгруппа в H;
 - 2) образ любой нормальной подгруппы из G есть нормальная подгруппа в f(G);
 - 3) полный прообраз любой подгруппы из f(G) есть подгруппа в G;
 - 4) полный прообраз любой нормальной подгруппы из f(G) есть нормальная подгруппа в G;
 - 5) образ любой циклической подгруппы из G есть циклическая группа;
 - 6) образ абелевой подгруппы из G есть абелева группа.

- **7.17.** Попытаться самостоятельно доказать вторую и третью теоремы об изоморфизмах.
- **7.18.** Пусть G абелева группа и $n \in \mathbb{Z}$. Доказать, что отображение $f \colon G \to G$, определенное по правилу

$$f(x) = x^n,$$

есть эндоморфизм группы G.

7.19. Пусть G — произвольная группа и $g \in G$. Доказать, что отображение $f \colon G \to G$, определенное по правилу

$$f(x) = g^{-1}xg,$$

есть автоморфизм группы G.

Замечание. Этот автоморфизм называется внутренним.

7.20. Пусть G — произвольная группа и $g \in G$. Допустим, что $gZ(G) \in Z(G/Z(G))$. Доказать, что отображение $f: G \to G$, определенное по правилу

$$f(x) = x^{-1}g^{-1}xg,$$

есть эндоморфизм группы G. Найти $\operatorname{Ker} f$.

§ 8. Действие группы. Орбиты и стабилизаторы

- **8.1.** Объяснить, почему мы не можем определить действие группы G на себе левым сдвигом, полагая $a^x = xa$. Показать, как можно определить действие G сдвигом на множестве левых смежных классов $\{aH \mid a \in G\}$ подгруппы G.
- **8.2.** Пусть группа G действует на $\Omega,\ x,y\in G$ и $\alpha,\beta\in\Omega.$ Доказать:
 - 1) орбиты α^G и β^G либо совпадают, либо не имеют общих точек;
 - 2) если $\beta = \alpha^x$, то $G_{\beta} = x^{-1}G_{\alpha}x$;
 - 3) $\alpha^x = \alpha^y \Leftrightarrow G_{\alpha}x = G_{\alpha}y$.
- **8.3.** Пусть группа G действует транзитивно на Ω . Доказать, что стабилизаторы G_{α} точек $\alpha \in \Omega$ образуют класс сопряженных в G подгрупп и $|G:G_{\alpha}|=|\Omega|$ для любого $\alpha \in \Omega$.

8.4. Hормализатором подмножества H в группе G называется множество

$$N_G(H) = \{x \in G \mid x^{-1}Hx = H\}.$$

Доказать, что $N_G(H)$ — подгруппа в G, причем, если H — подгруппа, то $H \leq N_G(H)$.

- **8.5.** Пусть $H \leqslant G$. Доказать, что число сопряженных с H подгрупп равно $|G:N_G(H)|$.
- **8.6.** Пусть $H \leqslant G, \ |G:H| = n$ и $K = \bigcap_{x \in G} H^x$. Доказать:
 - 1) K наибольшая нормальная в G подгруппа, содержащаяся в H;
 - 2) индекс |G:K| является делителем n!;
 - 3) K совпадает с ядром действия группы G сдвигом на правых смежных классах подгруппы H.
- **8.7.** Пусть p минимальное простое число, делящее порядок G. Доказать, что любая подгруппа индекса p из G является нормальной. В частности, если $|G|=p^n$, то любая подгруппа индекса p нормальна.
- **8.8.** Пусть H < G и $|G| = p^n, p$ простое. Доказать, что $H < N_G(H)$. В частности, каждая максимальная подгруппа из G является нормальной и её индекс равен p.
- **8.9.** Пусть $|G| = p^n$, p простое. Доказать, что для любого делителя m порядка G найдется подгруппа порядка m.
- **8.10.** *Централизатором* подмножества $\mathcal M$ из группы G называется множество

$$C_G(\mathcal{M}) = \{x \in G \mid xm = mx$$
 для любого $m \in \mathcal{M}\}$.

Доказать, что $C_G(\mathcal{M})$ — подгруппа в G и $C_G(\mathcal{M}) \leqslant N_G(\mathcal{M})$.

8.11. Пусть $a \in G$. Доказать:

$$C_G(a^G) = \bigcap_{x \in G} x^{-1} C_G(a) x.$$

- **8.12.** Доказать, что ядро действия сопряжением группы G на классе a^G сопряженных с a элементов совпадает с централизатором $C_G(a^G)$.
- **8.13.** Пусть Ω G-пространство и $g, h \in G$. Доказать:

- 1) Supp $(g^h) = (\text{Supp}(g))^h$; 2) Fix $(g^h) = (\text{Fix}(g))^h$.
- **8.14.** Доказать, что группа порядка 4n+2 имеет подгруппу индекса 2.
- **8.15.** Доказать, что S_6 не имеет подгрупп порядков 30 и 40.
- **8.16.** Доказать, что действие группы симметрий куба на множестве его шести граней транзитивно. Вывести отсюда, что группа симметрий куба имеет подгруппу индекса 6.
- **8.17.** Пусть G_A стабилизатор вершины A в группе симметрий куба. Найти все орбиты группы G_A на множестве ребер куба.
- **8.18.** Найти порядок группы симметрий правильного додекаэдра.
- **8.19.** Доказать, что число различных многочленов, которые можно получить из многочлена f перестановками переменных, равно индексу стабилизатора f в симметрической группе всех перестановок переменных. Вывести отсюда, что это число не может быть равно 8, 4 или 3, если f многочлен с 5 переменными.

§ 9. Раскрашивание групповых пространств

Групповая формулировка задачи. Для данного G-пространства Ω найти число орбит действия группы G на пространстве функций $\Phi = \operatorname{Fun}(\Omega,C)$.

Любой элемент множества C называется u ветом, а элементы из Φ , т. е. отображения множества Ω в множество цветов C, называется p ветов C. Две раскраски называются одинаковыми, если они лежат в одной орбите действия G на Φ .

Число различных раскрасок G-пространства Ω можно вычислить по следующей формуле.

Основная формула

$$n = \frac{\sum\limits_{x \in G} q^{\mathrm{cyc}(x)}}{|G|} \,,$$

где n — число различных раскрасок,

q — число цветов, т. е. мощность множества C,

 ${
m cyc}(x)$ — число циклов подстановки, индуцируемой действием x на $\Omega.$

Наряду с основной формулой используется упрощенная формула, вытекающая из основной.

Упрощенная формула

$$n = \sum_{i=1}^{m} \frac{q^{\operatorname{cyc}(x_i)}}{|C_G(x_i)|},$$

где x_1, \ldots, x_m — представители всех классов сопряженных элементов в группе G.

Кроме основной и упрощенной формул существует ещё несколько формул, уменьшающих объем вычислений. Все эти формулы получаются из основной формулы с помощью следующих соображений: если подстановки a и b множества Ω сопряжены в $\mathrm{Sym}(\Omega)$, то $\mathrm{cyc}(a)=\mathrm{cyc}(b)$. В частности, если элементы x и y из G сопряжены в G, то $\mathrm{cyc}(x)=\mathrm{cyc}(y)$, что и позволяет сократить вычисления в упрощенной формуле.

Замечание. В решении задач, приведенных ниже, разрешается использовать только основную и упрощенную формулы. Если студент применяет другую формулу, то он должен пояснить её.

- **9.1.** Данный круг разбит на m равных секторов для $m \in \{6,7,8,9,10,11,12\}$ (см. рис. 1). Найти число различных раскрасок секторов круга в два цвета, считая раскраски одинаковыми, если одну из них можно получить из другой с помощью вращений круга.
- **9.2.** Найти число различных ожерелий, сделанных из m бусинок двух цветов, для $m \in \{6,7,8,9\}$ (см. рис. 2).

Рис. 1

Рис. 2

Рис. 3

Замечание. Два ожерелья считаются одинаковыми, если из них одно можно получить из другого с помощью вращения и переворачивания.

- **9.3.** Подсчитать число различных 01-слов длины p^2 или pq, где p и q различные простые числа, считая два слова одинаковыми, если одно из них можно получить из другого с помощью циклического сдвига.
- **9.4.** Найти число различных раскрасок клеток квадрата 3×3 (см. рис. 3) в два цвета, считая две раскраски одинаковыми, если одну из них можно получить из другой с помощью
 - а) перестановки строк и столбцов квадрата,
 - б) поворотов квадрата на угол 90°,
 - в) транспонирования квадрата,
 - г) перестановки столбцов и строк квадрата, а также поворотов квадрата на 90° ,
 - д) перестановки строк и столбцов квадрата, а также его транспонирования,
 - е) перестановки строк квадрата,
 - ж) четных перестановок строк и столбцов квадрата.
- **9.5.** Найти число различных 01-матриц размеров 2×3 , 2×4 , 3×4 , считая две матрицы одинаковыми, если одну из них можно получить из другой с помощью перестановки строк и столбцов.

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
 — пример 01-матрицы размера 2×4 .

- 9.6. Подсчитать число различных раскрасок граней куба:
 - а) в два цвета,
 - б) точно в два цвета,
 - в) точно в три цвета,

считая две раскраски одинаковыми, если одну из них можно получить из другой с помощью вращений куба (в пространстве).

9.7. Найти число различных раскрасок граней правильного октаэдра в два цвета, считая две раскраски одинаковыми, если одну из них можно получить из другой с помощью вращений октаэдра (в пространстве).

9.8. Найти число различных раскрасок вершин графа в два цвета, считая две раскраски одинаковыми, если одну из них можно получить из другой с помощью автоморфизма графа:

9.9. Найти число различных раскрасок ребер графов из задачи 119 в два цвета.

§ 10. Теоремы Силова

- **10.1.** Доказать, что любая силовская p-подгруппа прямого произведения конечных групп A и B является произведением силовских p-подгрупп сомножителей A и B.
- **10.2.** Пусть G конечная группа, P силовская p-подгруппа группы G и $H \triangleleft G$. Доказать, что $H \cap P$ силовская p-подгруппа группы H и HP/H силовская p-подгруппа факторгруппы G/H.
- **10.3.** Доказать, что конечная группа G порождается своими силовскими p-подгруппами, взятыми по одному экземпляру для каждого простого делителя p порядка группы G.
- **10.4.** Доказать, что силовская p-подгруппа в конечной группе G единственна тогда и только тогда, когда она нормальная в группе G.
- **10.5.** Доказать, что силовская p-подгруппа единственна тогда и только тогда, когда произведение любых p-элементов в группе есть также p-элемент.

10.6. Доказать, что

- а) в конечной абелевой группе силовская p-подгруппа единственна для любого простого делителя p порядка группы,
- б) конечная абелева группа есть прямое произведение всех своих силовских подгрупп,

- в) если конечная группа G имеет единственную силовскую p-подгруппу для каждого простого делителя p порядка G, то G есть прямое произведение своих силовских подгрупп.
- **10.7.** Доказать, что число различных силовских 2-подгрупп в A_5 равно 5.
- **10.8.** Найти число силовских p-подгрупп в A_5 для p=3 и p=5.
- **10.9.** Найти все силовские p-подгруппы ($p=2,\,3$) в группах S_3 и A_4 .
- **10.10.** В скольких силовских 2-подгруппах группы S_4 содержатся подстановки
 - a) (1324), 6) (13), B) (12)(34)?
- **10.11.** Пусть $g=(1\,2\,3\,4\,5),\, P=\langle g\rangle\leqslant S_5,\, G=S_5$ и $N=N_G(P)$. Показать, что |N|=20 и $N=\langle g,\,a\rangle$, где $a=(2\,3\,5\,4)$.
- **10.12.** Доказать, что любая группа порядка 15, 35, 175, 185, 99, 255 является абелевой.
- **10.13.** Доказать, что любая силовская 2-подгруппа группы S_4 изоморфна группе диэдра D_8 (т. е. порождается двумя инволюциями и имеет порядок 8).
- **10.14.** Доказать, что силовская 2-подгруппа S_5 изоморфна D_8 .
- **10.15.** Доказать, что силовская 2-подгруппа S_6 изоморфна $D_8 \times \mathbb{Z}_2.$
- **10.16.** Доказать, что в S_n , $n\leqslant 7$, нет подгрупп порядка 15. Показать, что S_8 содержит подгруппу порядка 15.
- **10.17.** (Аргумент Фраттини.) Пусть H нормальная подгруппа конечной группы G и P силовская подгруппа конечной группы H. Доказать, что $G = H \cdot N_G(P)$.
- **10.18.** Пусть P силовская p-подгруппа конечной группы G и H подгруппа, содержащая $N_G(P)$. Доказать, что $H=N_G(H)$.
- **10.19.** Если Q нормальная p-подгруппа конечной группы G, то Q содержится в любой силовской p-подгруппе группы G. **10.20.** Пусть

$$P = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{Z}_p, \ p - \text{простое} \right\}.$$

§ 11. Основная теорема о конечных абелевых группах

- **11.1.** Доказать, что группы $\mathbb Z$ и $\mathbb Q$ не разлагаются в прямую сумму ненулевых подгрупп.
- **11.2.** Доказать, что конечная циклическая группа является прямой суммой примарных циклических подгрупп.
- **11.3.** Пользуясь основной теоремой о конечных абелевых группах, найти с точностью до изоморфизма все абелевы группы порядков:
 - a) 2; б) 6; в) 8; г) 12; д) 16; е) 24; ж) 36; 3) 48.
- **11.4.** Говорят, что абелева группа имеет тип (n_1, n_2, \ldots, n_k) , если она является прямой суммой циклических групп порядков n_1, n_2, \ldots, n_k .

Есть ли в абелевой группе типа (2, 16) подгруппы типа:

- a) (2, 8); 6) (4, 4); B) (2, 2, 2)?
- 11.5. Сколько подгрупп
 - а) порядков 2 и 6 в нециклической абелевой группе порядка 12?
 - б) порядков 3 и 6 в нециклической абелевой группе порядка 18?
 - в) порядков 5 и 15 в нециклической абелевой группе порядка 75?
- 11.6. Сколько элементов
 - а) порядка 2, 4 и 6 в группе $\mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3$;
 - б) порядка 2, 4, и 5 в группе $\mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5$?

§ 12. Инволютивное исчисление

- **12.1.** Доказать, что S_3 группа диэдра.
- **12.2.** D_{2n} абелева группа $\Leftrightarrow n=2$.
- **12.3**. Доказать:
 - а) центр бесконечной группы диэдра тривиален;
 - б) центр группы D_{2n} тривиален $\Leftrightarrow n \equiv 1 \pmod{2}$;

- в) центр группы D_{2n} имеет порядок $2 \Leftrightarrow n \neq 2$ и $n \equiv 0 \pmod{2}$.
- **12.4.** Группа D_{2n} содержит два перестановочных различных отражения $\Leftrightarrow n \equiv 0 \pmod{2}$.
- **12.5.** Группа D_{2n} содержит два перестановочных сопряженных отражения $\Leftrightarrow n \equiv 0 \pmod{4}$.
- **12.6.** Доказать, что если два отражения r_1 и r_2 сопряжены в группе диэдра, то для некоторого отражения r выполнено равенство $rr_1r=r_2$.
- **12.7.** Пусть (G, H) конечная пара Фробениуса с подгруппой H четного порядка. Показать, что ядро Фробениуса $K = \left(G \bigcup_{x \in G} H^x\right) \cup \{1\}$ является абелевой группой нечетного порядка.
- **12.8.** Пусть $G = \langle a, b, c \rangle$, причем $a^2 = b^2 = c^2 = (ab)^n = (ac)^m = (bc)^n = 1$. Доказать:
 - а) если (n, m, k) = (2, 3, 3), то $|G| \leqslant 24$;
 - б) если (n, m, k) = (2, 3, 4), то G конечна;
 - в) если (n, m, k) = (2, 3, 5), то G конечна;
 - г) если (n, m, k) = (2, 2, k), то $|G| \leq 4k$.
- **12.9.** Показать, что существует бесконечная группа G, для которой
 - a) |ab| = 2, |ac| = 3, |bc| = 6, |a| = |b| = |c| = 2;
 - 6) |ab| = |a| = |b| = |c|, |ac| = |bc| = 4.
- **12.10.** Пусть любой элемент, лежащий вне подгруппы H < G, является инволюцией. Доказать, что справедлив один из двух случаев:
 - 1) любой неединичный элемент из G является инволюцией. В частности, G абелева группа;
 - 2) H абелева подгруппа индекса 2 в G.
- **12.11.** Пусть $G = \langle a, b, c \rangle$, причем $a^2 = b^2 = c^2 = (abc)^2 = 1$. Доказать, что все произведения четного числа элементов a, b, c образуют абелеву подгруппу индекса 2 в группе G.

§ 13. Функции длины

Пусть ℓ_i — функция длины на группе G, Gr_i — функция роста G относительно $\ell_i,\ i=1,\ 2,\ \mathrm{r.}$ е.

$$\operatorname{Gr}_i(n) = |\{x \in G \mid \ell_i(x) \leqslant n\}|,$$

 $d_i = d(G, \ell_i)$ — диаметр G относительно ℓ_i .

Доказать следующие утверждения.

- **13.1.** $\ell_1 + \ell_2$ функция длины на G.
- **13.2.** $\lambda \ell_i$ функция длины на G для любого $\lambda > 0$.
- **13.3.** Если $\ell_1(x) \le \ell_2(x)$ для любого $x \in G$, то $\operatorname{Gr}_1(n) \geqslant \operatorname{Gr}_2(n)$ для любого $n \in \mathbb{N}$.
- **13.4.** Если $\ell_1(x) \leqslant \ell_2(x)$ для любого $x \in G$, то $d_1 \leqslant d_2$.
- **13.5.** Пусть ℓ_2 функция длины относительно порождающего множества $S \subseteq G$, причем $\ell_1(x) \leqslant \ell_2(x)$ для любого $x \in S$. Тогда $\ell_1(x) \leqslant \ell_2(x)$ для любого $x \in G$.
- **13.6.** Пусть ℓ_2 функция длины относительно конечного порождающего множества $S\subseteq G$ и ℓ_1 произвольная функция длины. Тогда найдется такое $\lambda>0$, что $\ell_1(x)\leqslant \lambda\ell_2(x)$ для любого $x\in G$.
- **13.7.** Пусть Ω метрическое пространство конечного диаметра с метрикой d и $G \leqslant \mathrm{Sym}(\Omega)$. Тогда $\ell(x) = \sup_{\alpha \in \Omega} d(\alpha, \alpha^x)$ является функцией длины на G.
- **13.8.** Найти диаметр группы \mathbb{Z}_{100} относительно порождающего множества S:
 - a) $S = \{1\},\$

6) $S = \{1, 5\},\$

B) $S = \{1, 10\},\$

- Γ) $S = \{1, 20\}.$
- **13.9.** Найти минимальный диаметр группы \mathbb{Z}_{100} относительно двухэлементных порождающих множеств.
- **13.10.** Вычислить функцию роста группы \mathbb{Z} относительно порождающих 3 и 5.
- **13.11.** Вычислить послойную функцию роста группы $G = \langle a \rangle \times \langle b \rangle$ относительно порождающего множества $\{a,b\}$, если |a|=5 и |b|=10.
- **13.12.** Найти диаметр группы S_n относительно порождающего множества T:

- а) Т множество всех транспозиций,
- б) T множество транспозиций, граф которых образует пепь длины n-1.
- **13.13.** Вычислить послойную функцию роста группы S_n , n = 3, 4, 5, относительно порождающего множества транспозиций, граф которых образует цепь.
- **13.14.** Построить граф Кэли группы диэдра $D = \langle a, b \rangle$ относительно порождающего множества S:
 - a) $S = \{a, b\},$ 6) $S = \{a, ab\}.$
- **13.15.** Построить граф Кэли группы S_4 относительно порождающего множества транспозиций $T = \{(12), (23), (34)\}.$
- **13.16.** Показать, что граф Кэли группы \mathbb{Z}_{11} относительно порождающего множества $S = \{3, 5\}$ является плоским.

ЧАСТЬ II. Дополнительные задачи

§ 14. Семейства множеств

Определение 14.1. Множество всех подмножеств множества M называется $\mathit{булеаном}$ и обозначается через 2^M . Любое подмножество булеана 2^M будем называть $\mathit{семейством}$ $\mathit{nodmhoheecm6}$ из M.

Определение 14.2. Через $\binom{M}{k}$, где $k \in \mathbb{N}$, будем обозначать множество всех k-элементных подмножеств из M.

Задачи

14.1. Доказать, что для любого конечного множества M справедливо равенство

$$|2^M| = 2^{|M|}.$$

14.2. Доказать, что для любого конечного множества M справедливо равенство

$$\left| \binom{M}{k} \right| = \binom{|M|}{k},$$

где $1 \leqslant k \leqslant M$.

Замечание. Через $\binom{m}{k}$ обозначается число $\frac{m!}{k!(m-k)!}$. Это число называется биномиальным коэффициентом. Наряду с обозначением $\binom{m}{k}$ часто используется обозначение C_m^k .

Определение 14.3. Семейство $\mathcal{L} \subset 2^M$ называется *покрытием* множества M, если любой элемент из M принадлежит хотя бы одному X из \mathcal{L} , т.е.

$$M = \bigcup_{x \in \mathcal{L}} X.$$

Покрытие \mathcal{L} называется разбиением множества M, если элементы покрытия \mathcal{L} попарно не пересекаются, т.е. для любых $X,Y\in\mathcal{L}$

$$X \cap Y \neq \emptyset \Rightarrow X = Y$$
.

Определение 14.4 (Пространства прямых). Пусть M — непустое множество, элементы которого мы будем в дальнейшем называть movkamu и \mathcal{L} — некоторое семейство подмножеств из M, которые мы будем называть npsmumu. Множество M вместе с семейством \mathcal{L} мы будем называть npsmumu. mpsmumu, если выполнены следующие условия.

- 1. Любые две точки лежат на единственной прямой.
- 2. Любая прямая содержит по крайней мере три точки.
- 3. Точки из M не коллинеарны, т.е. не лежат на одной прямой.

Задачи

- **14.3.** Доказать, что в любом пространстве прямых через любую точку проходят по крайней мере три прямые.
- **14.4.** Доказать, что в любом пространстве прямых найдутся 4 точки такие, что никакие три из них не лежат на одной прямой.
- **14.5.** Описать, с точностью до обозначения точек, все пространства прямых, содержащие не более 10 точек.

Определение 14.5. Пространство прямых будем называть *аффинной плоскостью*, если через любую точку, не лежащую на прямой, проходит единственная прямая, параллельная данной (т.е. не имеющая с ней общих точек).

Пространство прямых будем называть *проективной плос-костью*, если любые две прямые имеют хотя бы одну общую точку.

Задачи

- **14.6.** Доказать, что если некоторая прямая в аффинной плоскости состоит из n точек, то
 - а) любая другая прямая содержит ровно n точек;
 - б) аффинная плоскость содержит ровно n^2 точек.
- **14.7.** Доказать, что если некоторая прямая в проективной плоскости содержит n точек, то
 - а) любая другая прямая содержит ровно n точек;
 - б) проективная плоскость содержит ровно $n^2 n + 1$ точку.

§ 15. Отношения

Определение 15.1. Пусть A и B — два множества. Пря-мым произведением множеств A и B называется множество всех упорядоченных пар, в которых первый элемент принадлежит A, а второй — B:

$$A \times B = \{(a, b) \mid a \in A \& b \in B\}.$$

Cmenehbo множества A называется его прямое произведение самого на себя:

$$A^n = \underbrace{A \times A \times \ldots \times A}_{n} = \{(a_1, \ldots, a_n) \mid a_i \in A, i = 1, \ldots, n\}.$$

Задачи

- **15.1.** Доказать, что для любых конечных множеств A и B справедливо равенство $|A \times B| = |A| \cdot |B|$.
- **15.2.** Доказать, что для любого конечного множества A и произвольного натурального n справедливо равенство $|A^n| = |A|^n$.

Определение 15.2 (Отношения «между»). Пусть A и B — два непересекающихся множества. Любое подмножество $R \subset A \times B$ называется *отношением между* A и B. Любой элемент из R называется *инцидентностью*. Если $(a,b) \in R$, то мы будем говорить, что элементы a и b инцидентны.

Очевидно, любому семейству $\mathcal{L} \subset 2^M$ можно поставить в соответствие отношение R между M и \mathcal{L} , определив инцидентность следующим образом: для любых $m \in M$ и $L \in \mathcal{L}$

$$(m,L) \in R \iff m \in L.$$

Обратно, для любого отношения $R \subset A \times B$ можно построить семейство подмножеств $\mathcal L$ из A, определив их следующим образом:

$$(b) = \{a \in A \mid (a, b) \in R\}.$$

Если для любых $b_1, b_2 \in B$ выполнено условие

$$(b_1) = (b_2) \Rightarrow b_1 = b_2,$$

т.е. любой элемент из B однозначно определён множеством инцидентных с ним элементов из A, то данное отношение восстанавливается однозначно с точностью до обозначения элементов из B, по системе подмножеств $\mathcal{L} = \{(b) \mid b \in B\}$.

Аналогично можно построить семейство \mathcal{L}^* подмножеств из B, полагая

$$(a) = \{b \in B \mid (a, b) \in R\}.$$

Семейство $\mathcal{L}^* = \{(a) \mid a \in A\}$ будем называть двойственным к семейству $\mathcal{L}^* = \{(b) \mid b \in B\}.$

Таким образом, для любого семейства подмножеств \mathcal{L} из 2^M можно определить двойственное семейство подмножеств $\mathcal{L}^* \subset 2^{\mathcal{L}}$, в котором элементу $m \in M$ ставят в соответствие множество элементов из \mathcal{L} , содержащих m.

Задачи

- **15.3.** Доказать, что пространство прямых является проективной плоскостью тогда и только тогда, когда двойственная система подмножеств образует также пространство прямых.
- **15.4.** Пусть M множество, элементы которого будем называть точками, и \mathcal{L} семейство подмножеств из M, которые будем называть блоками. Предположим, что выполнены два условия:
 - а) любые два блока имеют ровно одну общую точку,
 - б) любая точка принадлежит ровно 2-м блокам.

Может ли M состоять из 10 точек? Какое число точек может быть в M?

Теорема (двойной подсчёт инцидентностей). Для любого отношения $R \subset A \times B$ справедливы равенства:

$$|R| = \sum_{a \in A} |(a)| = \sum_{b \in B} |(b)|.$$

Доказательство. Для каждых $a \in A$ и $b \in B$ положим

$$R_a = \{(a,b) \mid (a,b) \in R\}$$
 $u \cap R_b = \{(a,b) \mid (a,b) \in R\}.$

Понятно, что $|R_a| = |(a)|$ и $|R_b| = |(b)|$, причём каждое из двух семейств

$$\{R_a \mid a \in A\}$$
 и $\{R_b \mid b \in B\}$

образует разбиение R. Следовательно,

$$|R| = \sum_{a \in A} |R_a| = \sum_{b \in B} |R_b|,$$

откуда и следуют требуемые равенства.

Задачи

- **15.5.** Доказать, что число нечётных граней у любого многогранника чётно.
- **15.6.** Сколько вершин у многогранника, в каждой вершине которого сходятся две восьмиугольные и одна треугольная грани?

Определение 15.3 (Отношения «на»). Пусть M — произвольное множество. Любое подмножество $R \subset M \times M$ называется отношением на множестве M. В отличие от отношений между в случае отношений на реже используется термин инцидентность. Чаще используется интерпретация в виде ориентированных графов (орграфов). Элементы из M называются вершинами орграфа, упорядоченные пары $(a,b) \in R$ — рёбрами орграфа, a — началом и b — концом этого ребра.

Аналогом теоремы о двойном подсчёте инцидентностей в случае орграфов служит теорема о двойном подсчёте рёбер орграфа. Для формулировки этой теоремы нам потребуется понятие степени входа вершины и степени выхода.

Для любой вершины a в орграфе $\Gamma = \Gamma(M,R)$ через $\operatorname{indeg}(a)$ будем обозначать число рёбер графа Γ с концом в вершине a, а через $\operatorname{outdeg}(a)$ будем обозначать число рёбер графа Γ с началом в вершине a. Число $\operatorname{indeg}(a)$ будем называть степенью входа вершины a, число $\operatorname{outdeg}(a)$ — степенью выхода.

Теорема (о двойном подсчёте рёбер).

$$|R| = \sum_{a \in M} \text{indeg}(a) = \sum_{a \in M} \text{outdeg}(a).$$

Хотя язык орграфов и является очень наглядным, в некоторых случаях используется другое наглядное представление бинарного отношения R. Это касается случаев, когда рёбер в орграфе очень много. В дальнейшем часто будут возникать два таких отношения: отношение эквивалентности и отношение порядка на множестве. Для определения этих двух отношений нам потребуется ряд дополнительных терминов.

Определение 15.4 (Свойства отношений). Пусть $R \subset M \times M$. Тогда отношение R называется

- 1) рефлексивным, если $\forall a \in M \quad (a, a) \in R$,
- 2) симметричным, если $\forall a, b \in M \quad (a, b) \in R \Rightarrow (b, a) \in R$,
- 3) антисимметричным, если $\forall\,a,b\in M\ (a,b)\in R\ \&\ (b,a)\in R\Rightarrow a=b,$
- 4) транзитивным, если $\forall\,a,b,c\in M\quad (a,b)\in R\quad\&\quad (b,c)\in E$ $\in R\Rightarrow (a,c)\in R.$

Определение 15.5 (Эквивалентность). Рефлексивное симметричное транзитивное отношение называется *отношением эквивалентности*. Если R — отношение эквивалентности на множестве M, то обычно вместо $(a,b) \in R$ используется другое обозначение $a \equiv b$ или $a \approx b$ и говорят, что элементы a и b эквивалентни.

Множество всех элементов из M, эквивалентных элементу a, называется κ лассом эквивалентности, содержащим элемент a. Обозначение:

$$(a) = \{b \in M \mid (a, b) \in R\}.$$

Из свойств отношений эквивалентности следует

1) $a \in (a)$.

В частности, все классы эквивалентности образуют покрытие множества M;

 $(a) \cap (b) \neq \emptyset \Rightarrow (a) = (b).$

Таким образом, семейство всех классов — разбиение M. Обратно, если \mathcal{L} — некоторое разбиение множества M, то, полагая $(a,b) \in R \iff \exists L \in \mathcal{L} : a \in L \& b \in L$, мы получаем отношение эквивалентности R на M. Следовательно, понятие

эквивалентности можно рассматривать как некоторую формализацию понятия разбиения.

Множество всех классов эквивалентности R называют $\phi a \kappa$ -moрмножесством по эквивалентности R и обозначают через M/R.

Определение 15.6 (Порядок). Рефлексивное антисимметричное транзитивное отношение называется *отношением* (нестрогого) порядка. Отношение порядка R называется ли-нейным порядком, если выполнено условие сравнимости:

$$\forall a, b \in M \quad (a, b) \in R \lor (b, a) \in R.$$

Обычно отношение порядка обозначается через $a\leqslant b$ для $(a,b)\in R$ и наглядно представляется в виде более правого или более высокого расположения одного элемента относительно другого.

Задачи

15.7. Для произвольного натурального числа n определим отношение R на множестве целых чисел $\mathbb Z$ следующим образом:

$$(a,b) \in R \Leftrightarrow a-b$$
 делится на n .

- а) Доказать, что R отношение эквивалентности;
- б) Найти число классов этой эквивалентности.

3aмечание. Для R существует стандартное обозначение. Вместо $(a,b) \in R$ пишут $a \equiv b \pmod n$ и говорят: число a сравнимо по модулю n с числом b.

15.8. Сколькими способами можно линейно упорядочить множество из n элементов?

§16. Отображения

Определение 16.1. Пусть A и B — произвольные множества. С формальной точки зрения, отображение f из A в B есть такое подмножество $f \subset A \times B$, для которого справедливы условия

$$\begin{array}{lll} (\operatorname{Fun} 1) & (a,b) \in f & \& & (a,c) \in f \Rightarrow b=c & (\operatorname{odhoshayhocth}) \\ (\operatorname{Fun} 2) & \forall \, a \in A & \exists \, b \in B & (a,b) \in f & (\operatorname{тотальность}) \end{array}$$

Мы в дальнейшем чаше будем использовать другие, более привычные обозначения

$$f:\ a o B \Leftrightarrow f\subset A imes B$$
 и выполнены условия Fun1–2;
$$f(a)=b \Leftrightarrow (a,b)\in f.$$

При этом, если f(a) = b, то элемент b будем называть образом элемента a, элемент a будем называть npoofpasom элемента b. Множество $\{a \in A \mid f(a) = b\}$ будем называть *полным прооб*разом элемента b. Часто полный прообраз элемента b обозначают $f^{-1}(b)$.

Для любого $M\subset A$ множество $\{f(a)\mid a\in M\}$ называют образом M при отображении f и обозначают f(M). Часто используется другое обозначение $\operatorname{Im} f$ для f(A), которое читается как образ f.

Отображение $f: A \to B$ называется сюръекцией, если f(A) = B, инъекцией, если $f(x) = f(y) \Rightarrow x = y$,

Задачи

16.1. Найти число биективных отображений n-элементного множества на себя.

Замечание. Биективное отображение множества на себя обычно называется подстановкой множества.

16.2. Пусть отображение $f \colon \mathbb{R}^2 \to \mathbb{R}^2$ определено следующим образом:

$$f(x,y) = (ax + by, cx + dy),$$

где $a, b, c, d \in \mathbb{R}$. Доказать равносильность следующих условий:

- 2) f сюръекция; 4) $ad \neq bc$. 1) *f* — биекция:
- f инъекция;

Понятие «биекция», в частности, используется для формализации выражения «одинаковое строение, с точностью до обозначений», т.е. под биекцией понимается просто переобозначение элементов некоторой структуры. Например, два пространства прямых (M_1, \mathcal{L}_1) и (M_2, \mathcal{L}_2) называют изоморфными, если существует биекция $f \colon M_1 \to M_2$, для которой выполнено условие

$$\forall A \subset M_1 \quad f(A) \in L_2 \iff A \in L_1.$$

Таким образом, более точно задачу 14.5 можно переформулировать следующим образом: описать, с точностью до изоморфизма, все пространства прямых, содержащие не более 10 точек.

Пусть $f: A \to B$ и $g: B \to C$. С помощью этих двух отображений f и g можно определить новое отображение $h: A \to C$, которое называется npoussedehuem (или композицией) отображений. Это новое отображение h определяется следующим образом:

$$h(x) = g(f(x))$$

для произвольного $x \in A$.

§ 17. Алгебраические структуры

Определение 17.1 (Операция). Пусть M — произвольное множество. Отображение $f\colon M\times M\to M$ называется операцией на M, если вместо f(a,b) использовать обозначение $a\circ b$, где \circ — знак операции. Заметим, что переход от языка отображений к языку операций на практике означает подключение навыков работы со стандартными операциями сложения и умножения чисел. Конечно, эти навыки можно применять, если операция обладает свойствами, близкими к знакомым нам свойствам числовых операций. Например, операция \circ называется

- accoulumushoй, если $(a \circ b) \circ c = a \circ (b \circ c)$ для любых $a,b,c \in M$. Отсюда следует, что результат операции не зависит от расстановки скобок и, следовательно, скобки можно опустить;
- коммутативной, если $a \circ b = b \circ a$ для любых $a, b \in M$.

Определение 17.2 (Алгебраический зоопарк). В зависимости от того, какими свойствами обладает операция \circ , множество M с определённой на нём операцией \circ имеет своё название. Например, M называется магмой, если на операцию не наложено никаких ограничений; M называется nony-группой, если операция ассоциативна.

Далее нам потребуются понятия нейтрального и обратного элементов.

Пусть M — произвольная магма. Элемент $e \in M$ называется нейтральным элементом магмы, если для любого $x \in M$ $x \circ e = e \circ x = x$.

Задачи

17.1. Доказать, что любая магма содержит не более одного нейтрального элемента.

В магме $(\mathbb{R},+)$ нейтральным элементом является 0, а в магме (\mathbb{R},\cdot) нейтральным элементом является 1. В дальнейшем в любой магме, операция которой обозначена +, мы будем нейтральный элемент, если он, конечно, существует, обозначать через 0 и называть $\mathit{нулевым}$, а в магме с операцией умножения \cdot — нейтральный элемент обозначать 1 и называть $\mathit{единичным}$.

Полугруппа, содержащая нейтральный элемент, называется monoudom.

17.2. Описать, с точностью до изоморфизма, все 2-элементные магмы, полугруппы и моноиды.

Пусть (M, \circ) — произвольный моноид с нейтральным элементом e. Элемент $y \in M$ называется обратным к элементу $x \in M$, если

$$x \circ y = y \circ x = e$$
.

Элемент x, для которого существует обратный элемент, называется *обратимым*. Нетрудно показать, что обратный элемент, если он, конечно, существует, единственен. Действительно, пусть y_1 и y_2 — обратные элементы к элементу x. Тогда

$$y_1 = y_1 \circ e = y_1 \circ (x \circ y_2) = (y_1 \circ x) \circ y_1 = e \circ y_2 = y_2.$$

Для обратного к x элемента, в силу его единственности, существует стандартное обозначение x^{-1} . Правда, в моноидах с операцией сложения + для обратных элементов применяется другое обозначение и название. Обратный к x элемент называют npomusononomenum и обозначают -x.

Определение 17.3 (Морфизмы). С помощью понятия биекции нетрудно уточнить выражение «магмы имеют одинаковое строение, с точностью до обозначения элементов магмы». Действительно, пусть A и B — две магмы, в которых операция обозначена одним и тем же знаком \circ . Будем говорить, что магмы A и B изоморфны (и писать $A \simeq B$), если существует такая биекция $f \colon A \to B$, что

$$f(x \circ y) = f(x) \circ f(y) \tag{*}$$

для любых $x,y\in A$. Само отображение f в этом случае называется $usomop \phi usmom$.

Конечно, операции в магмах могут иметь и различные обозначения. Например, в магме B операция может быть обозначена через +. Тогда условие (*) перепишется в виде $f(x \circ y) = f(x) + f(y)$.

Кроме понятия изоморфизма, в алгебре часто используются ещё три вида отображений. Если роль изоморфизма ясна, то потребности в других отображениях пока не возникает. Несмотря на это обстоятельство, мы сразу дадим определения остальных трёх морфизмов, чтобы далее не возникало путаницы.

- **1.** Гомоморфизм. Пусть A и B произвольные магмы с операцией \circ . Отображение f: $A \to B$ называется гомоморфизмом, если $f(x \circ y) = f(x) \circ f(y)$. Таким образом, понятие гомоморфизма есть обобщение понятия изоморфизма.
- **2.** Эндоморфизм. Гомоморфизм $f: A \to A$ магмы A в себя называется эндоморфизмом A.
- **3. Автоморфизм.** Изоморфизм $f \colon A \to A$ магмы A на A называется $aemomop \phi us mom A$.

Определение 17.4 (Группы). Нетрудно привести примеры моноидов, в которых не каждый элемент обратим. Моноид, в котором обратим каждый элемент, называется группой.

Задачи

- **17.3.** Пусть (G,\cdot) произвольная группа. Доказать, что для любых $x,\,x_1,\,\,\ldots,\,x_n\in G$ справедливы равенства
- 1) $(x^{-1})^{-1} = x$;
- 2) $(x_1 \cdot \ldots \cdot x_n)^{-1} = x_n^{-1} \cdot \ldots \cdot x_1^{-1}$.
- **17.4.** Пусть (G,\cdot) произвольная группа и $a\in G$. Доказать, что отображения $l\colon G\to G$ и $r\colon G\to G$, определённые следующим образом:

$$l(x) = ax$$
 и $r(x) = xa$,

являются биекциями.

- **17.5.** Найти все, с точностью до изоморфизма, группы, содержащие не более 4-х элементов.
- **17.6.** Доказать, что множество всех подстановок множества M относительно операции их произведения образует группу.

3 aмечание. Эта группа обозначается $\mathrm{Sym}(M)$ и называется симметрической группой подстановок множества M.

ЧАСТЬ III. **ПРИЛОЖЕНИЕ**

§ 18. Программа по курсу «Теория групп»

1. Рождение теории групп.

От гармонии и порядка к понятиям симметрии и группы симметрий. Формализация понятий однородности и правильности. Группы в геометрии. Понятия группы подстановок, группового действия и группового пространства. От геометрии к группам и от групп к геометрии. Два языка, алгебраический и геометрический, и две системы образов в теории групп.

2. Базисные понятия.

Подстановки и их циклическая структура. Транспозиции. Симметрическая группа и группы подстановок. Подгруппы. Порождающие множества и конечнопорожденные группы. Циклические группы. Граф Кэли группы. Функция роста групп и гипотеза Милнора. Сортировка на неориентированных связных графах и диаметр графа Кэли симметрической группы, порожденной данным множеством транспозиций. (Распределение тем зачетных исследовательских работ студентов.)

3. Теорема Лагранжа.

Понятие смежного класса и индекса подгруппы. Группы простого порядка. Малая теорема Ферма. Теорема Лагранжа в групповых пространствах. Понятие групповой орбиты и стабилизатора точки. Связь между мощностью орбиты точки и мощностью ее стабилизатора. Применение в комбинаторике орбитно-стабилизаторного свойства.

4. Гомоморфизмы групп.

Понятие гомоморфизма алгебраических структур. Гомоморфизмы, конгруэнции и факторалгебры. Понятие нормальной подгруппы. Нормальные подгруппы и факторгруппы. Основная теорема о гомоморфизмах. Простые группы. Композиционные ряды и расширения групп.

Классификация конечных простых групп. Классические простые группы.

5. Знакопеременные группы.

Четные и нечетные подстановки. Разрезание и склеивание циклов. Теория декремента подстановок. Теория инверсий и пузырьковый метод сортировки. Понятие знакопеременной группы и ее простота.

6. Уравнение классов.

Понятие автоморфизма группы. Внутренние и внешние автоморфизмы группы. Действие группы сопряжением. Классы сопряженных элементов как орбиты действия. Понятие централизатора и нормализатора подмножества элементов в группе. Мощность класса сопряженных элементов. Уравнение классов и его решения. Группы с конечным числом классов сопряженных элементов. Центр группы. Нетривиальность центра конечной *p*-группы.

7. Лемма Бернсайда.

Орбиты и неподвижные точки в групповых пространствах. Двойной подсчет инцидентностей в бинарных отношениях. Формула для подсчета числа групповых орбит и ее применение в комбинаторике.

8. Примитивные групповые пространства.

Блоки и системы импримитивности в групповых пространствах. Импримитивные и примитивные групповые действия. Критерий примитивности в терминах стабилизатора точки. Орбиты стабилизатора и орбиталы. Примитивность группы и связность орбитала. Замыкания в топологии поточечной сходимости и группы автоморфизмов орбиталов.

9. Базисные идеи теории Галуа.

Расширения полей и расширения Галуа. Связь между решеткой подполей и решеткой подгрупп группы Галуа. Понятие разрешимой группы. Связь между разрешимостью в радикалах алгебраического уравнения и разрешимостью группы Галуа этого уравнения.

§ 19. Экзаменационные вопросы по курсу лекций «ТЕОРИЯ ГРУПП»,

3 семестр, 2011-12 учебный год

- 1. Теория инверсий. Понятие ориентации множества пар. Независимость числа инверсий подстановки от выбора ориентации. Правило нечетности. Четные и нечетные подстановки и их свойства. Инверсии линейного порядка. Связь между числом линейных инверсий и ее длиной.
- 2. Разрезание и склеивание циклов. Циклическое строение подстановки. Изменение циклической структуры подстановки при умножении ее на транспозицию. Декремент подстановки. Связь между декрементом подстановки и ее длиной.
- 3. Понятия группы и подгруппы. Симметрическая и знакопеременная группы. Порождающие множества. Циклические группы. Смежные классы подгрупп и теорема Лагранжа.
- 4. Классы сопряженных элементов. Центр группы. Понятие централизатора элемента. Теорема о мощности класса сопряженных элементов. Уравнение классов.
- 5. Сопряженные подгруппы. Понятие нормальной подгруппы. Конструкция факторгруппы. Понятия изоморфизма и гомоморфизма. Ядро и образ гомоморфизма, их свойства. Естественный гомоморфизм на факторгруппу. Первая теорема об изоморфизме.
- 6. Конструкция прямого произведения, его ассоциативность. Координатные подгруппы и их свойства. Теорема о разложении группы в прямое произведение двух подгрупп.
- 7. Понятие действия группы. Связь между действием группы и ее подстановочным представлением. Понятие точного действия. Примеры: действие сопряжением на элементах и подгруппах, действие на парах точек и на функциях. Понятия орбиты точки и тран-

- зитивного действия. Стабилизаторы точек и орбитностабилизаторное свойство группы.
- 8. Действие группы правыми и левыми сдвигами на элементах группы и смежных классах подгрупп. Теорема Кэли о регулярном подстановочном представлении группы. Обобщение теоремы Кэли для действия на смежных классах подгрупп и его следствия для подгрупп небольшого индекса в простых и симметрических группах.
- 9. Подсчет числа орбит группового пространства. Теорема Коши-Фробениуса (лемма Бернсайда) и ее следствия. Применение к подсчету числа различных раскрасок.
- 10. Теорема Коши о существовании в группе элемента простого порядка. Понятие силовской p-подгруппы и теорема о существовании силовской p-подгруппы.
- 11. Понятие *p*-группы и характеризация конечных *p*-групп с помощью теоремы Коши. Свойства конечных *p*-групп: нетривиальность центра, нормализаторное условие, индексы максимальных подгрупп, теоремы о порядках ее подгрупп и строении *p*-групп небольшого порядка.
- 12. Теоремы о сопряженности силовских p-подгрупп и об их числе.
- 13. Абелевы группы и примарное разложение конечных абелевых групп. Строение мультипликативной группы конечного поля.
- 14. Теорема о разложении абелевой примарной группы в прямую сумму циклических подгрупп. Основная теорема о строении конечных абелевых групп.
- Группа диэдра. Правило нечетности для двух инволюций. Вращения и отражения в группе диэдра. Свойства группы диэдра. Критерий сопряженности всех отражений.
- 16. Группы Кокстера. Достаточные условия конечности группы, порожденной тремя инволюциями. Теорема о существовании бесконечных групп, порожденных тремя инволюциями, на порядки произведений которых наложены некоторые ограничения.

- 17. Метрика и функция длины на группе. Связь между инвариантными метриками и функциями длины. Диаметр метрического пространства и группы относительно функции длины. Длина элемента и функция роста группы. Связь между функциями длины, функциями роста и диаметром группы относительно различных порождающих множеств. Понятия экспоненциального и полиномиального роста группы.
- 18. Действие группы на метрическом пространстве и понятие девиации подстановки. Верхняя оценка диаметра группы относительно интегральной девиации. Понятие графа Кэли группы и его свойства. Пример графа Кэли симметрической группы 4-й степени.

Литература

- 1. *Кострикин А.И.* Введение в алгебру. Ч. 1, 2. М.: Физматлит. 2000.
- 2. Винберг Э.Б. Курс алгебры. М.: Факториал-пресс, 2001.
- 3. Сборник задач по алгебре /под ред. А.И. Кострикина. М.: Физматлит, 2001.

Дополнительная литература

- 4. Dixon J., Mortimer B. Permutation Groups // Graduate Texts in Mathematics. V. 163. Berlin: Springer, 1996.
- 5. Rotman J. An Introduction to the Theory of Groups // Graduate Texts in Mathematics. V. 148. Berlin: Springer, 1995.

Беляев Виссарион Викторович

ЗАДАЧИ по теории групп