Advanced Classification for StreamingTime series and Data Streams

Presented by: Nguyen Hai Long

Supervisor: Assoc. Prof. Ng Wee Keong

Co-supervisor: Dr. David Woon

Massive Sequential Data

Many applications can produce very big, massive data.

 Hospital data: A large hospital with thousands of patients can easily generate terabytes of physiological data per day.

IP Network Traffic: Each router receives up to 1 billion packets per hour.

 Telecommunication data: There are 3 billion telephone calls in US daily.

→ We need to analyze this massive data to extract useful knowledge.

Sequential Data

The two most popular types of sequential data:

- ✓ Streaming time series: is a string of massive chronological observations, which can be found in biomedicine, sensor networks and stock markets.
- ✓ Data streams: are massive amount of continuous multivariate data, which are often generated by real-time surveillance industry, online transactions and scientific experiments.

They both share some unique characteristics: huge volume, time-ordered and dynamically changing.

Normal ECG							
3							
2	A .						
1	<u>~~~~~~</u>						
0							
-1	1 11 12 14 15 1 61 71 81 91 1						
-2							
-3	<u> </u>						

Tid	SrcIP	Start time	Dest IP	Dest Port	Number of bytes	Attack
1	206.135.38.95	11:07:20	160.94.179.223	139	192	No
2	206.163.37.95	11:13:56	160.94.179.219	139	195	No
3	206.163.37.95	11:14:29	160.94.179.217	139	180	No
4	206.163.37.95	11:14:30	160.94.179.255	139	199	No
5	206.163.37.95	11:14:32	160.94.179.254	139	19	Yes
6	206.163.37.95	11:14:35	160.94.179.253	139	177	No
7	206.163.37.95	11:14:36	160.94.179.252	139	172	No
8	206.163.37.95	11:14:38	160.94.179.251	139	285	Yes
9	206.163.37.95	11:14:41	160.94.179.250	139	195	No
10	206.163.37.95	11:14:44	160.94.179.249	139	163	Yes

AbnormalECG **Streaming time series** (univariate domain)

Streaming Data Mining

Constraints:

	Traditional Data Mining	Streaming Data Mining
Number of passes	multiple	single
Time	unlimited	real-time
Memory	unlimited	bounded
Number of concepts	one	multiple
Result	accurate	approximate

Concept Drift:

Example of a gradual change from a data source S1 to a data source S2. Class y1 is depicted with grey dots, and class y2 with black dots

A General Mining Model

Time Windows

Starting time

W current time

Data Streams

(a) Landmark window

(b) Sliding window

(c) Fading window ($\lambda = 0.99$)

(d) Tilted-time window

Computational Approaches

Traditional Classification

Time-series Classification

Whole-series classification

- Distance measures play an important role in whole-series classification
 - ✓ Euclidean distance

✓ Dynamic Time Warping

✓ Longest Common Subsequence

Time-series Classification

- Motif-based Classification
 - Motif Discovery:

Time-series Classification

Whole-series classification

Global features: mean, min, max, trend HMM + Bayesian network

Evolutionary computation for feature extraction

1NN with Euclidean distance, DTW, instance selection

Data transformations

Traditional classification

DT PCT [117], Shapelet [2], Logical-Shapelet [9]

BC

NN

MCSC [110], BC+GSC-motifs [120]

SVM MEX [119], SVM+GSC-motifs [120]

kNN ΣE

Motif discovery

Motif-based classification

Data Stream Classification

Algorithm	Bounded Memory	Single-pass	Real-time Response	Concept-drift Adaptation	Concept-drift Classification	High-dimensional Data
VFDT [10] CVFDT [11]	\ \ \	√ √	√ √	1/		$\left \sqrt{} \right $
Bayes tree [12]	√ √	$\sqrt{}$	V	$\sqrt{}$		
MC-tree [13]	V					
eGNN [83]						
CVM [14]	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		
StreamSVM [15]	√,		١,	\\		
On-Demand [81]	√,	$\sqrt{}$	√			
Lazy-Tree [16]	√,	√,	√ ,			
Online Bagging & Boosting [17]	√,	\v	√ ,	,		١, ١
AWE [18]	\\		\v/,	\v/,		V,
OVA [21]	\\	$\sqrt{}$		$\sqrt{}$		
Aggregated Ensemble [20]	\\	\\	\(\sigma_{\pi}\)	\(\sigma_{\pi}\)		,
Ensemble-tree [22]						

Capabilities of data stream classification algorithms.

Traditional Classification

Data Stream Classification

Limitations

Time series classification:

- Most of the time series classifiers do not work in a streaming manner.
- Many time series classifiers are based on finding motifs with predefined length.

Closed Motifs for Streaming Time Series Classification – Chapter 3

Data stream classification:

- Many data stream classifiers do not work well with high dimensional data.
- Most data stream classifiers do not adapt well to different types of concept drifts.
- Most data stream algorithms focus on a single, stand-alone mining task.
- Most data stream classifiers do not work well with very sparsely labeled datasets.

Ensemble Learning of Feature Drifts – **Chapter 4**

Concurrent
Semi-supervised
Learning –
Chapter 5

Closed Motifs for Streaming Time Series Classification

- Closed motif is a frequent subsequence with no parentsequence having the same number of occurrences.
 - Closed motifs can be considered as representatives for each class in time-series classification

Closed Motifs for Streaming Time Series Classification

- Suffix Tree Construction
 - A variant of SAX with sliding window
 - Single pass + count updating with a probabilistic model
- Closed motifs discovery
 - Depth-first traverse the tree
- ARC-VIEW:
 - A visualization toolkit with color coding
 - Highlight closed motifs
- Closed Motifs for Classification
 - Rank closed motifs based on distinctive power (purity + coverage)
 - 1-NN classifier with subsequence distance Best matching location

Suffix Tree Construction

Corollary: If a subsequence S is a motif, all subsequences of S are also motifs.

 \rightarrow we only need to index a word $(a_1a_2 \dots a_{k-1} a_k)$, if two of its subsequence $(a_1a_2 \dots a_{k-1})$, $(a_2 \dots a_{k-1} a_k)$ are motifs.

ARC-VIEW: a visualization toolkit

Experimental Results

Dataset	#Classes	Size of	Size of	Time series	1-NN	Logical-	1-NN
		training set	testing set	$_{ m length}$	ED	Shapelet	closedMotif
Gun-Point	2	50	150	150	91.30%	93.30%	94.00%
MoteStrain	2	20	1252	84	87.90%	83.23%	89.54%
ArrhythmiaECG	2	100	113	285	85.50%	76.11%	85.50%
CBF	3	30	900	128	85.00%	88.56%	99.67%
TwoLeadECG	2	23	1139	82	74.70%	85.60%	89.03%
DiatomSizeReduction	4	16	306	345	93.5%5	75.16%	$\boldsymbol{96.41\%}$
FaceFour	4	24	88	350	78.40%	90.91%	95.45%
Trace	4	100	100	275	76.00%	100.00%	88.00%

Limitations

Time series classification:

- Most of the time series classifiers do not work in a streaming manner.
- Many time series classifiers are based on finding motifs with predefined length.

Closed Motifs for Streaming Time Series Classification – Chapter 3

Data stream classification:

- Many data stream classifiers do not work well with high dimensional data.
- Most data stream classifiers do not adapt well to different types of concept drifts.
- Most data stream algorithms focus on a single, stand-alone mining task.
- Most data stream classifiers do not work well with very sparsely labeled datasets.

Ensemble Learning of Feature Drifts – **Chapter 4**

Concurrent
Semi-supervised
Learning –
Chapter 5

Feature Drifts in Data Streams

- Given a feature space F, at time point t, we can always select the most discriminative feature subset $F_t \subseteq F$. If for any two time points i and j, $F_i \neq F_j$, we say that there is a feature drift.
- For example:
 - Personalized news filtering: the users' interests might change over time. Therefore, the set of discriminate words change over time, too.
- Feature drifts occur at a slower rate than concept drifts.

Ensemble Learning of Feature Drifts

Ensemble Learning of Feature Drifts

Sliding window version of FCBF

$$SU(X,Y) = 2\left[\frac{H(X) - H(X|Y)}{H(X) + H(Y)}\right] = 2\left[\frac{I(X,Y)}{H(X) + H(Y)}\right]$$

- When feature subsets of two consecutive windows are different, we state that a feature drift has occurred.
- Optimal weighting method

$$w_k = (E_{add}^k + \alpha)^{-1} \left[\sum_{m=1}^N (E_{add}^m + \alpha)^{-1} \right], \alpha \approx 0.001$$

Experimental Results

HEFT-Stream:

- Classifier members are CVFDT & Online Naive Bayes
- HEFT-Stream-noFS: without feature selection
- Competitors: AWE(NB), AWE(C4.5), Bagging(OnlineNB), and Bagging(CVFDT)

Dataset	AWI	E(NB)	AWE	(C4.5)	Bagging	(OnlineNB)	Bagging(C	CVFDT)	HEFT	-Stream-noFS	HEFT-	Stream
Dataset	Acc	Time	Acc	Time	Acc	Time	Acc	Time	Acc	Time	Acc	Time
SEA	88.08	6.61	88.12	26.08	87.91	2.9	89.12	21.47	88.95	21.46	89.28	22.65
HYP	87.94	19.42	72.72	27.40	86.92	8.07	88.90	40.41	86.95	39.04	89.18	12.42
LED	73.91	74.33	72.13	40.34	73.93	26.21	73.79	83.00	73.74	72.04	74.07	28.02
KDD'99	95.09	280.33	94.68	281.33	92.95	230.3	97.75	209.6	96.89	246.47	96.37	142.0
MNIST	9.87	2054.0	78.49	1246.7	9.87	1286.00	21.13	1456.00	19.65	1727	79.36	439.00
CRYST	53.70	40.38	83.30	147.00	54.28	57.63	76.18	101.33	53.97	10.11	83.52	37.10
Average	68.10	412.51	81.57	294.80	67.64	268.53	74.48	318.65	70.03	317.69	85.30	113.53

Limitations

Time series classification:

- Most of the time series classifiers do not work in a streaming manner.
- Many time series classifiers are based on finding motifs with predefined length.

Closed Motifs for Streaming Time Series Classification – Chapter 3

Data stream classification:

- Many data stream classifiers do not work well with high dimensional data.
- Most data stream classifiers do not adapt well to different types of concept drifts.
- Most data stream algorithms focus on a single, stand-alone mining task.
- Most data stream classifiers do not work well with very sparsely labeled datasets.

Ensemble Learning of Feature Drifts – **Chapter 4**

Concurrent
Semi-supervised
Learning –
Chapter 5

Concurrent Semi-supervised Learning

• Why do we need concurrent mining?

- To better exploit the data streams and maximize the system 's throughput
- The knowledge gained by one mining task may also be useful to other mining tasks.

• Examples:

- Web click streams: we want to cluster web-pages into similar topics & classify different kinds of users.
- Health monitoring data: we want to group patients
 and predict diseases.

20

Concurrent Semi-supervised Learning

Bounded	Single-	Real-	Concept	
Memory	pass	time	-drift	
$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	

Dynamic Tree Structure

- Tree nodes store statistical summary of its belonging instances:
 - weight, sum of coordinates, sum of squared coordinates, and class profile vector.
- Pruning and merging processes: to remove redundant tree nodes.

The synopsis tree for the 2-dimensional data stream with tree height = 2

Concurrent Semi-supervised Learning

Density-based clustering:

- The node's weight is used as density. There are three types of nodes: dense nodes, sparse nodes, and transitional nodes.
- Neighbor dense nodes are considered to put in the same cluster.

Semi-supervised clustering:

• Each cluster is labeled with the dominant class label.

 Two clusters are merged if they have the same label.

Concurrent Semi-supervised Learning

- Semi-supervised classification: exploits the clustering 's results
 - Find the closest cluster
 - If it is in the acceptable range of the cluster, assign the cluster's label to the testing instance.

distance
$$(x, \mu) \le \theta \varepsilon$$
,

where θ is a statistical range, mean $\mu = sum/w$, variance $\epsilon = \sqrt{sumsq/w - \mu^2}$

- Positive point
- Negative point
- Unlabeled point

Experimental Settings

Datasets:

Name	#Instances	#Attributes	#Classes
RBF	100,000	10	5
HYP	100,000	10	2
LED	100,000	24	3
SHUTTLE	580,000	9	7
KDD'99	494,022	34	5
COVERTYPE	494,022	54	7

Clustering:

- Compare to D-Stream¹ and Alone-Clustering (CSL-Stream class labels)
- Quality measure: B-Cubed
- Classification:
 - Compare to SmSCluster² and Alone-Classification (CSL-Stream clustering)
 - Quality measure: Accuracy

^{1.} Chen, Y. and L. Tu (2007). Density-based clustering for real-time stream data. ACM SIGKDD.

^{2.} Masud, M. M., G. Jing, et al. (2008). A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. ICDM.

Experimental Results

Clustering comparisons

	CSL-S	Stream	Alone-C	lustering	D-Stream		
	Time	B-Cubed	Time	B-Cubed	Time	B-Cubed	
RBF(10,0.001)	$10.64_{\pm 1.56}$	$37.67_{\pm 4.93}$	$17.22_{\pm 1.72}$	$36.27_{\pm 2.32}$	$17.37_{\pm 1.36}$	$17.39_{\pm 2.41}$	
HYP(10,0.001)	$13.37_{\pm 1.23}$	$65.24_{\pm 10.66}$	$23.67_{\pm 1.66}$	$57.14_{\pm 4.01}$	$33.37_{\pm 1.46}$	$55.54_{\pm 4.66}$	
LED	$53.9_{\pm 1.68}$	$68.38_{\pm 11.74}$	$205.61_{\pm 2.34}$	$19.1_{\pm 0.58}$	$203.8_{\pm 2.94}$	$19.3_{\pm 0.63}$	
SHUTTLE	$1.37_{\pm 0.16}$	$93.46_{\pm 1.04}$	$1.37_{\pm 0.16}$	$89.07_{\pm 1.83}$	$1.45_{\pm 0.17}$	$88.1_{\pm 0.93}$	
KDD'99	$39.78_{\pm 0.62}$	$76.89_{\pm 27.83}$	$38.68_{\pm0.84}$	$76.88_{\pm 27.83}$	$53.79_{\pm 1.06}$	$73.5_{\pm 31.24}$	
COVERTYPE	$130.24_{\pm 1.87}$	$26.54_{\pm 9.68}$	$212.07_{\pm 2.45}$	$35.11_{\pm 10.79}$	$152.46_{\pm 2.67}$	$12.55_{\pm 5.8}$	

Classification comparisons

_	CSL-S	Stream	Alone-Clas	ssification	SmSCluster		
	Time	Accuracy	Time	Accuracy	Time	Accuracy	
RBF(10,0.001)	$49.29_{\pm 2.35}$	$71.57_{\pm 6.37}$	$53.32_{\pm 3.24}$	$44.57_{\pm 7.18}$	$41.45_{\pm 3.35}$	$30.1_{\pm 12.38}$	
HYP(10,0.001)	$15.78_{\pm 1.68}$	$87.88_{\pm 1.88}$	$16.17_{\pm 2.03}$	$70.66_{\pm 2.09}$	$40.18_{\pm 2.65}$	$76.05_{\pm 2.61}$	
LED	$34.17_{\pm 2.16}$	$72.73_{\pm 1.82}$	$98.85_{\pm 3.12}$	$10.24_{\pm 1}$	$85.69_{\pm 3.87}$	$54.70_{\pm 3.45}$	
SHUTTLE	$2.56_{\pm 0.35}$	$98.3_{\pm0.3}$	$2.64_{\pm 0.91}$	$98.28_{\pm0.31}$	$20.35_{\pm 2.61}$	$97.50_{\pm0.49}$	
KDD'99	$83.06_{\pm 2.47}$	$98.06_{\pm 8.29}$	$87.57_{\pm 2.13}$	$98.25_{\pm 8.24}$	$565.02_{\pm 3.87}$	$85.33_{\pm 33.39}$	
COVERTYPE	$183.75_{\pm 3.05}$	$81.63_{\pm 10.43}$	$194.41_{\pm 3.46}$	$78.96_{\pm 9.39}$	$320.65_{\pm 3.02}$	$49.23_{\pm 15.42}$	

Future work

Cloud Computing

- Cloud computing aims to provide computation power, data access, software, and storage services that are available anywhere, anytime, and on demand.
- We plan to migrate our algorithms to cloud computing platforms.

Mining Social networks

- Social networks generate a large amount of different type data streams, such as, text data, multimedia data, and interactions.
- Several research issues has been arisen, e.g., event detection, community detection, evolution analysis.

Privacy-Preserving Data Mining

 For streaming data, the privacy-preservation problem has not been effectively addressed as it is difficult to perform expensive privacy transformations, such as encryption or randomization.

Q&A

