Механизм внимания и трансформер

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- 1 Модель seq2seq с вниманием

Модель seq2seq с вниманием

• Проблемы с кодировкой длинной последовательности вектором фикс. размерности.

Модель seq2seq с вниманием¹

- seq2seq со вниманием (attention): в каждый момент состояние учитывает всю входную последовательность.
 - в переводе опр. слова: важно соответствующее слово входа и контекст, а не эмбеддинг предложения.

¹https://arxiv.org/pdf/1409.0473.pdf

Внимание между словами

- Внимание важно для корректного перевода предложений
 - "она ела зеленое яблоко"
 - "она ела зеленые яблоки"
 - "она ела зеленую капусту"

Внимание (attention)

Внимание (attention)

Внимание (attention)

seq2seq с вниманием²

Кодировщик - двунапр. RNN

• состояния конкатенируются

• Степень соответствия:

$$e_{tj} = \operatorname{score}\left(s_{t-1}, h_j\right)$$

• Веса учета состояний:

$$lpha_{ti} = \operatorname{align}(s_{t-1}, h_s)$$

$$= \exp(e_{ti}) / \sum_{i} \exp(e_{tj})$$

• Контекстный вектор:

$$c_t = \sum_j \alpha_{tj} h_j$$

• Пересчёт состояний:

$$s_t = f(s_{t-1}, y_{t-1}, c_t)$$

²https://arxiv.org/pdf/1409.0473.pdf

Результаты работы

- RNNenc-X seq2seq
- RNNsearch-X seq2seq со вниманием
- Обучение: машинный перевод предложений длины до X слов.

Визуализация весов $lpha_{tj}$

Визуализация весов α_{tj} (перевод английский->французский):

- Матрица близка к диагональной => сеть выучилась.
 - можно явно добавить диагонолизирующий регуляризатор

Визуализация внимания в других задачах³

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

³Источник иллюстрации.

Варианты функции соответствия

Варианты соответствия $e_{tj} = \mathsf{score}\left(s_{t-1}, h_{j}\right), \ s_{t-1}, h_{j} \in \mathbb{R}^{d}$

basic dot-product	s ^T h
scaled dot-product	$s^T h/\sqrt{d}$
content-based attention	$s^T h/(\ s\ \ h\)$
additive attention	$w^T \tanh(W_1s + W_2h)$
multiplicative attention	s ^T Wh

Локальное внимание⁴

- Обычное внимание усредняет по всем состояниям входа.
 - долго работает (например-перевод целого абзаца)

⁴https://arxiv.org/pdf/1508.04025.pdf

Локальное внимание⁴

- Обычное внимание усредняет по всем состояниям входа.
 - долго работает (например-перевод целого абзаца)
- Локальное внимание (local attention):
 - $oldsymbol{\circ}$ контекст c_t зависит только от $[p_t-D,\; p_t+D]$, веса $lpha_t \in \mathbb{R}^{2D+1}$
 - $\alpha_{tj} = \operatorname{align}(s_{t-1}, h_s) \exp\left(-\frac{(s_{t-1} p_t)^2}{2\sigma^2}\right), \ \sigma = \frac{D}{2}.$

⁴https://arxiv.org/pdf/1508.04025.pdf

Локальное внимание⁴

- Обычное внимание усредняет по всем состояниям входа.
 - долго работает (например-перевод целого абзаца)
- Локальное внимание (local attention):
 - $oldsymbol{\circ}$ контекст c_t зависит только от $[p_t-D,\; p_t+D]$, веса $lpha_t \in \mathbb{R}^{2D+1}$
 - $\alpha_{tj} = \operatorname{align}(s_{t-1}, h_s) \exp\left(-\frac{(s_{t-1} p_t)^2}{2\sigma^2}\right), \ \sigma = \frac{D}{2}.$
- ullet Варианты генерации p_t :
 - $p_t = t$ (предполагаем входная и выходная посл-ти выровнены)
 - $p_t = S\sigma\left(v^{T} \tanh\left(Ws_{t-1}\right)\right)$

⁴https://arxiv.org/pdf/1508.04025.pdf

Содержание

- 1 Модель seq2seq с вниманием
- 2 Трансформер

Модель seq2seq с вниманием

- seq2seq+attention:
 - не нужно представлять вектором входную последовательность
 - но всё еще нужно информацию об уже сгенерированной последовательности (state)
- Хотим помнить всю входную и выходную последовательность (к текущему моменту).
- Используем трансформер (Attention Is All You Need⁵)

⁵https://arxiv.org/pdf/1706.03762.pdf

- Transformer SOTA для машинного перевода и др. задач на последовательностях.
 - вход: эмбеддинги слов, выход: распределения слов.
- Проблема: слова в контексте приобретают другой смысл.
- Решение: модуль self-attention-преобразует s входов в s выходов
 - размерность входов и выходов: D
 - зависимость: каждый от каждого

Модуль самовнимания (self-attention)⁶

- $X_{s \times D}$ s входов размерности D.
- Генерируем для каждого входа соответствующие
 - ullet ключи (keys): $K_{s imes d} = X_{s imes D} W_{D imes d}^K$
 - ullet значения (values): $V_{s imesar{d}}=X_{s imes D}W^V_{D imesar{d}}$
 - запросы (queries): $Q_{s \times d} = X_{s \times D} W_{D \times d}^Q$

⁶Иллюстрации работы трансформера.

Выход для одного входа:

$$y_{1 \times \bar{d}} = \operatorname{softmax} \left(\frac{1}{\sqrt{d}} q_{1 \times d} \left(K^T \right)_{d \times s} \right)_{1 \times s} V_{s \times \bar{d}}$$

В матричной форме:

$$Y_{s \times \bar{d}} = \operatorname{softmax} \left(\frac{1}{\sqrt{d}} Q_{s \times d} \left(K^T \right)_{d \times s} \right)_{s \times s} V_{s \times \bar{d}}$$

$$\operatorname{softmax} \left(\begin{array}{c|c} \mathbf{Q} & \mathbf{K}^\mathsf{T} & \mathbf{V} \\ \hline & \times & \hline & \\ \hline & \sqrt{d_k} & \end{array} \right) \begin{array}{c} \mathbf{Z} \\ \hline \end{array}$$

Получили выход одной головки модуля самовнимания:

head
$$\left(X|W^K,W^V,W^Q\right)_{s\times\bar{d}} = \operatorname{softmax}\left(\frac{1}{\sqrt{d}}Q_{s\times d}\left(K^T\right)_{d\times s}\right)_{s\times s}V_{s\times\bar{d}}$$

$$=\operatorname{softmax}\left(\frac{1}{\sqrt{d}}\left(\underbrace{XW^Q}_{Q}\right)\left(\underbrace{XW^K}_{K}\right)^T\right)\underbrace{XW^V}_{V}$$

Используется 8 головок (каждая - со своими W^Q, W^K, W^V).

Итоговый выход $\in \mathbb{R}^{D \times s}$ - конкатенация выходов+линейное преобразование:

$$\mathsf{concat}_{s \times 8\bar{d}} \left[\mathsf{head} \left(X | W_n^K, W_n^V, W_n^Q \right) \right]_{n=1}^8 W_{8\bar{d} \times D}^Q$$

1) Concatenate all the attention heads

 Multiply with a weight matrix W⁰ that was trained jointly with the model

Х

Mo

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Z

Пример: на что смотрят блоки самовнимания

Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top: Full attentions for head 5. Bottom: Isolated attentions from just the word 'its' for attention heads 5 and 6. Note that the attentions are very sharp for this word.

Пример: на что смотрят блоки самовнимания

Figure 3: An example of the attention mechanism following long-distance dependencies in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of the verb 'making', completing the phrase 'making...more difficult'. Attentions here shown only for the word 'making'. Different colors represent different heads. Best viewed in color.

- <pad> на входе для выравнивания посл-тей минибатча.
- Внимание маскировалось, чтобы не смотреть на <pad>.

Трансформер: вся модель

 Feed Forward: сеть с одинаковыми весами, применяемая к каждому элементу

$$out = ReLU(xW_1 + b_1)W_2 + b_2$$

- Эмбеддинги позиций прибавляются к эмбеддингам слов.
- Блоки повторяются N = 6 раз.
- Add&Norm:

$$LayerNorm(x + SubLayer(x))$$

- Кодировщик работает сразу.
- Декодировщик-в авторегрессионном режиме много раз до <EOS>.

Визуализация первого блока кодировщика

Детали

• Нормализация слоя (LayerNorm) [$x_1, ... x_D$]:

$$x := \alpha \frac{x - \mu}{\sigma} + \beta, \quad \mu = \frac{1}{D} \sum_{i=1}^{D} x_i, \quad \sigma = \sqrt{\frac{1}{D} \sum_{i=1}^{D} (x_i - \mu)^2}$$

- ullet α, eta выучиваемые параметры
- работает независимо для каждого объекта (здесь-токена)
- обучение и применения не различаются

Детали

• Нормализация слоя (LayerNorm) [$x_1,...x_D$]:

$$x := \alpha \frac{x - \mu}{\sigma} + \beta, \quad \mu = \frac{1}{D} \sum_{i=1}^{D} x_i, \quad \sigma = \sqrt{\frac{1}{D} \sum_{i=1}^{D} (x_i - \mu)^2}$$

- α, β выучиваемые параметры
- работает независимо для каждого объекта (здесь-токена)
- обучение и применения не различаются
- Positional embedding: кодирует расположение слов.
 - pos позиция слова, i индекс D-мерного эмбеддинга

$$PE_{(pos,2i)} = \sin\left(pos/10000^{2i/D}\right)$$

$$PE_{(pos,2i+1)} = \cos\left(pos/10000^{2i/D}\right)$$

Позиционное кодирование

Позиционный эмбеддинг $\in \mathbb{R}^{32}$:

Полосы - sin/cos.

Аналогия:

$$0 \rightarrow (0,0,0)$$

 $1 \rightarrow (1,0,0)$
 $2 \rightarrow (0,1,0)$
 $3 \rightarrow (1,1,0)$
 $4 \rightarrow (0,0,1)$
 $5 \rightarrow (1,0,1)$
 $6 \rightarrow (0,1,1)$
 $7 \rightarrow (1,1,1)$

Схема двухуровневого трансформера

Виды внимания

Encoder Self-Attention:		
Masked Decoder Self-Attention:		
Encoder-Decoder Attention:		

Виды внимания

Блоки multi-head attention:

- в кодировщике Q,K,V считаются:
 - в первом блоке: по эмбеддингам слов+позиций
 - в последующих блоках: по выходам кодировщика пред. слоя
- в первом блоке декодировщика:
 - masked multi-head attention: по эмбеддингам предсказанных слов+позиций (маскированным)
 - multi-head attention: Q-по выходам декодировщика, K,V по финальным выходам кодировщика
- в последующих блоках декодировщика:
 - masked multi-head attention: по выходам декодировщика (маскированным)
 - multi-head attention: Q-по выходам декодировщика, K,V по финальным выходам кодировщика

Маскирование⁷

- Masked multi-head attention декодировщика: элемент i не должен смотреть на i+1, i+2, ... (их еще нет).
- Прибавляем $-\infty$ к соотв. аргументам SoftMax:

⁷Источник иллюстрации.

Особенности настройки

- Использовался dropout:
 - в residual-блоках:

$$LayerNorm(x + DropOut \odot SubLayer(x))$$

- Также применялся dropout к начальным входам кодировщика и декодировщика.
- Сглаживались метки классов (слов).
- Пример кода на PyTorch с комментариями.

Заключение

- seq2seq RNN представляют вектором
 - входную последовательность (исправляет seq2seq RNN+attention)
 - выходную посл-ть (к текущему моменту)
- Трансформер помнит
 - как всю входную последовательность
 - так и всю выходную посл-ть (к текущему моменту)
- Трансформер SOTA на многих задачах обработки последовательностей
 - машинный перевод, языковое моделирование, ответы на вопросы, выделение именованных сущностей, суммаризация и т.д.