EPITA / InfoS1		Novembre 2020
NOM :	Prénom :	Groupe :

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

<u>Exercice 1.</u> Questions de cours (3 points – pas de points négatifs pour le QCM)

Choisissez la bonne réponse :

_						,
1	I Ina mailla d'un	circuit correspond	l à line nortion i	do circuit cituóo	antra 2 naciide	consécutits
т.	One maine a an		a une portion	ac circuit situce	CHILL & HOCKES	CONSCIUNTS

a- VRAI

b- FAUX

2. Pour mesurer l'intensité du courant qui traverse un dipôle, on utilise un ampèremètre branché en série avec ce dipôle.

a- VRAI

b- FAUX

3. L'intensité du courant qui entre dans un dipôle récepteur est supérieure à l'intensité de celui qui en ressort.

a- VRAI

b- FAUX

4. Une différence de potentiels entre 2 points est aussi appelée :

a- Une intensité

c- Une puissance

b- Une tension

d- Une conductance

5. Si deux dipôles appartiennent à la même branche : on dit qu'ils sont :

a- En série

b- En parallèle

c- On ne peut rien dire

6. Soit le schéma suivant : Que vaut la tension U si l'interrupteur K est ouvert ?

a-
$$U = 0$$

b-
$$U = \frac{E}{2}$$

$$c-U=E$$

$$d- U = -E$$

EPITA / InfoS1 Novembre 2020

Exercice 2. Association de résistances (4,5 points)

Quelle est la résistance équivalente totale (détaillez votre raisonnement — On imagine que le courant « entre » par le point A et « ressort » en B)

Exercice 3. Généralités et Lois de Kirchhoff (6 points) u_1

Soit le schéma ci-contre. On donne :

- $\bullet \quad E = V_A V_B = 240V$
- $U_1 = V_F V_B = 184V$ $U_4 = V_C V_D = -110V$ $U_5 = U_{AD} = 46V$

1. Placer les points A, B, C, D et F sur la figure.

_							_	_
2	Calcular	lac valatire	des tensions	11_	11_	Π.	Δt /	<i>I</i> _
۷.	Calculci	ics vaicurs	ucs terisions	0,	O_{3}	06	CLU	7

3. Déterminer les intensités des courants I_1 , I_2 et I représentés sur le schéma. On prendra $R_1 = R_3 = 100\Omega.$

Exercice 4. Lois de Kirchoff / Ponts Diviseurs (6,5 points)

1. Soit le circuit ci-contre.

Déterminer les expressions des tensions U_1 et U_2 en fonction de E et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions !)

2. Soit le circuit ci-contre.

a. Exprimer I_1 et I_2 en fonction de I et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions !)

D.	Donner l'expression de I en fonction de E et des résistances. Vous exprimerez votre résultat avec une seule barre de fraction (pas de fractions de fractions!)
c.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V$, $r=1$ Ω $R_1=R_2=R_3=3k\Omega$.
c.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V$, $r=1$ Ω $R_1=R_2=R_3=3k\Omega$.
C.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V$, $r=1$ Ω $R_1=R_2=R_3=3k\Omega$.
C.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V$, $r=1$ Ω $R_1=R_2=R_3=3k\Omega$.
C.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V$, $r=1\Omega$ $R_1=R_2=R_3=3k\Omega$.
C.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V,r=1\Omega$, $R_1=R_2=R_3=3k\Omega$.
C.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V$, $r=1\Omega$, $R_1=R_2=R_3=3k\Omega$.
C.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V,r=1\Omega$ $R_1=R_2=R_3=3k\Omega.$
C.	Application Numérique : Calculer les 2 intensités I_1 et I_2 si $E=10V,r=1\Omega$ $R_1=R_2=R_3=3k\Omega.$