Q1)

a) i) Let $g(x_k) = x_k - f(x_k)/d$. For convergence, we need to find its derivative, so $g'(x_k) = 1 - f'(x_k)/d$. We'll use fixed point iteration method here where $x_{k+1} = g(x_k)$ as per equation. Let x^* be the fixed point.

Now for convergence, the condition for the derivative is

$$|g'(x^*)| = |1 - f'(x^*)/d| < 1$$
=>
$$-1 < 1 - f'(x^*)/d < 1$$
=>
$$0 < f'(x^*)/d < 2$$

- ii) Convergence rate will be linear with a constant $c = |1 f'(x^*)/d|$
- iii) For quadratic convergence, the condition is that $g'(x^*) = 0$ or $1 f'(x^*)/d = 0$. Therefore, $d = f'(x^*)$
- b) For part (i), the convergence rate \approx 2, so this equation has quadratic convergence. For part (ii), the convergence rate \approx 1, so this equation has linear convergence. For part (iii), the convergence rate \approx 2, so this equation has quadratic convergence.

Q2)

- c) When relative residual is small, relative error will only be small when the matrix is well conditioned. These three are bound by a simple relation:
- => (relative residual) \le (condition number)*(relative error)

In some cases however, we'll find divergence from this relation. This is due to dissimilar range in some cases.

Q3.	
(a)	Given + Fn(+) = cos(ncost(+))
	Chebysher 3 term recurrence ->
	F ₀ (+) = 1 -0
	$F_{+}(t)=t$ -2
	$F_{n+1}(t) = 2t F_n(t) - F_{n+1}(t) - 3$
_	Now, + D n=0
	$F_0(t) = \cos(0) = 1$
	(0) (0) - (0) (0) - 1
	So D is satisfied
-	Now 4 3
	$F_{1}(t) = \cos(\cos^{2}(t))$
	$= + + + \in [-1,1]$
	, O is satisfied.
→	Now # (3)
	$F_{n+1}(t) = (os((n+1)(cos^{+}(t)))$
	To solve this, we first consider let
	$y = cos^{-1}(t)$
	Now $(20)(n+1)(n) = (20)(n+4)$
	(os(n+1)y) = cos(ny+y) = $cos(ny) cos(y) - sin(ny) min(y)$
	Also
	(os(n-1)y) = (os(ny-y) $= (os(ny))(os(y) + sin(ny))sin(y)$
	= (os(ny) (os(y) + sin(ny) sin(y)
	Adding both
	Cos(n+1) y) + cos(n+) y) = 2 cos(ny) cos(y) Substituting in the form of Fn(t)
	Substituting in the form of the

3d) As we can see from the plot, there is negligible change in the condition number (remains same) as n increases in part (iv) (Chebyshev nodes with Chebyshev polynomial). Hence this combination performs best.

Keep on repeating this k-1 times, we'll get $f[x_0, -..., x_{k-2}, x_k] = a_{k+1} + a_k (x_k - x_{k-1})$ So, $f[x_0, -..., x_{k-2}, x_k] - a_{k+1} = a_k$ $x_k + x_{k+1}$ -., this approach gives the coefficient of the jth
bans function using Newton interpolation polynomial

If

c)
6 random points have been plotted and interpolation has been performed