STATS300A - Lecture 14

Dominik Rothenhaeusler Scribed by Michael Howes

11/08/21

Contents

1	Recap	1
2	Collapsing the null	2
3	Examples	3
	3.1 Testing the variance	3
	3.2 Non-parametric quantile test	4

1 Recap

We have been doing hypothesis testing of $H_0: \theta \in \Omega_0$ against $H_1: \theta \in \Omega_1$ where $\Omega_0 \cap \Omega_1 = \emptyset$ and $\Omega_0 \cup \Omega_1 = \Omega$. Our goal has been to find uniformly most powerful (UMP) tests that have level α . That is we wise to find tests ϕ that maximize

$$\beta(\theta) = \mathbb{E}_{\theta} \phi$$
, for all $\theta \in \Omega_1$,

subject to

$$\mathbb{E}_{\theta} \phi \leq \alpha$$
, for all $\theta \in \Omega_0$.

We have seen several stratergies for certain special cases such as

- (a) For simple against simple we can use Neyman Pearson to construct most powerful (MP) tests via likelihood ratios.
- (b) For a simple null against a composite alternative we have the stratergy:
 - Fix a $\theta_1 \in \Omega_1$ and use Neyman Pearson to construct a MP test.
 - If this MP test does not depend on θ_1 , then it is a UMP test.
- (c) For the null $H_0: \theta \leq \theta_0$ against the alternative $H_1: \theta > \theta_0$ we have a result for the special cases of one-dimensional exponential families and monotone likelihood ratio families.

There are several things that we would like to test that we haven't yet. Our "to-do" list is

- (a) Two sided tests $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$.
- (b) Testing with nuisance parameters: $H_0: \theta \leq \theta_0$ against $H_1: \theta > \theta_0$ where there are additional unknown parameters such as the variance σ^2 .

Today we will use the following stratergy for testing a composite null against a composite alternative:

- Fix a simple alternative within the full alternative.
- Put a prior on Ω_1 to collapse the null to a simple hypothesis.
- Use Neyman Pearson to find an MP test.
- Argue that the NP test is optimal for the full null and full alternative.

2 Collapsing the null

Consider testing a composite null against a simple alternative. That is, we are testing

$$H_0: X \sim f_\theta, \theta \in \Omega_1$$
 against $H_1: X \sim g_0$

If we let Λ be a probability distribution on Ω_0 and then we can consider the collapsed null of testing the marginal of Λ against g. That is, we introduce a new null

$$H_{\Lambda}: X \sim f_{\Lambda} = \int_{\Omega_0} f_{\theta}(x) d\Lambda(\theta).$$

Testing H_{Λ} against H_1 is a simple null against a simple alternative.

Definition 1. Let β_{Λ} be the power of a MP test at level α of H_{Λ} against H_1 .

Definition 2. A probability distribution Λ is called *least favourable* if β_{Λ} is minimized. That is, for all other probability distributions Λ' , $\beta_{\Lambda} \leq \beta_{\Lambda'}$.

Theorem 1 (TSH 3.8.1). Suppose ϕ_{Λ} is a MP level α test for testing H_{Λ} against H_{1} . If ϕ_{Λ} is level α for the original null hypothesis H_{0} , then

- (a) The test ϕ_{Λ} is MP for H_0 against H_1 .
- (b) The distribution Λ is least favourable.

Proof. Both statements can be proved using

$$\mathbb{E}_{\Lambda'}[\phi] \le \sup_{\theta \in \Omega_0} \mathbb{E}_{\theta}[\phi],$$

where Λ is any probability distribution on Ω_0 and ϕ is any test function. This holds because

$$\mathbb{E}_{\Lambda'}[\phi] = \int_{\Omega_0} \mathbb{E}_{\theta}[\phi] d\Lambda'(\theta)$$
$$\leq \sup_{\theta \in \Omega_0} \mathbb{E}_{\theta}[\phi].$$

We will now show that ϕ_{Λ} is most powerful. Let ϕ^* be a level α test of H_0 against H_1 . Then

$$\mathbb{E}_{\Lambda}[\phi] \le \sup_{\alpha \in \Omega_0} \mathbb{E}_{\theta}[\phi] \le \alpha.$$

So ϕ^* is a level α test of H_{Λ} against H_1 . Thus

$$\mathbb{E}_1[\phi^*] \leq \mathbb{E}_1[\phi_{\Lambda}],$$

since ϕ_{Λ} is MP for H_{Λ} against H_1 . Thus we have proved (a). To see that (b) also holds suppose that Λ' is a probability distribution on Ω_0 . Then

$$\mathbb{E}_{\Lambda'}[\phi_{\Lambda}] \leq \sup_{\theta \in \Omega_0} \mathbb{E}_{\theta}[\phi_{\Lambda}] \leq \alpha.$$

Thus ϕ_{Λ} is a level α test of $H_{\Lambda'}$ against H_1 . It follows that

$$\beta_{\Lambda} = \mathbb{E}_1[\phi_{\Lambda}] \leq \beta_{\Lambda'},$$

showing that Λ is least favourable.

Remark 1. Note that the fact that Λ is least favourable is a consequence of the above theorem not an assumption. Thus when testing H_0 against H_1 we know that we are going to have to have a least favourable probability distribution to use the above theorem. This helps us narrow our search space. Inuitively we want a distribution Λ such that the distribution uder H_{Λ} is as close as possible to the distribution under H_1 .

3 Examples

3.1 Testing the variance

Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\theta, \sigma^2)$ where both θ and σ are unknown. We wish to test $H_0: \sigma \leq \sigma_0$ against $H_1: \sigma > \sigma_0$. Thus we are testing a composite test against a composite test and the parameter θ is nuisance parameter. Our goal is to find the UMP level α test. To start, fix a simple alternative (θ_1, σ_1) where $\sigma_1 > \sigma_0$. Our parameter space looks like this:

We have the idea that testing is hard when $\sigma = \sigma_0$ since the σ is as close as possible to σ_1 . Thus we guess that our probability distribution Λ should be supported on

$$\{(\theta, \sigma_0) : \theta \in \mathbb{R}\}.$$

We can further simplify things by working with sufficient statistics. This is because if we are given a test function ϕ and a sufficient statistic T, then we can define a test function η given by

$$\eta(t) = \mathbb{E}[\phi(X)|T=t].$$

The test function η has power and level equal to that of ϕ and η is a function of only the sufficient statistic T. Furthermore η is well-defined by sufficiency.

In our example, a sufficient statistic is

$$(Y,U) = \left(\bar{X}, \sum_{i=1}^{n} (X_i - \bar{X})^2\right).$$

By Basu's theorem we know that Y and U are independent under any choice of (θ, σ) . We also know that $Y \sim \mathcal{N}(\theta, \sigma^2/n)$ and $U/\sigma^2 \sim \chi^2_{n-1}$. For a fixed simple null (θ, σ_0) we know that the joint distribution of (U, Y) is given by

$$f(u, y; \theta, \sigma_0) \propto u^{\frac{n-3}{2}} \exp\left\{-\frac{u}{2\sigma_0^2}\right\} \exp\left\{-\frac{n}{2\sigma_0^2}(y-\theta)^2\right\}.$$

Thus if we have a distribution Λ on $\{(\theta, \sigma_0) : \theta \in \mathbb{R}\}$, then the joint distribution of (Y, U) under H_{Λ} is

$$f(u, y; \theta, \Lambda) \propto u^{\frac{n-3}{2}} \exp\left\{-\frac{u}{2\sigma_0^2}\right\} \int_{-\infty}^{\infty} \exp\left\{-\frac{n}{2\sigma_0^2}(y-\theta)^2\right\} d\Lambda(\theta).$$

Under the simple alternative (θ_1, σ_1) , (U, Y) has joint density

$$f(u, y; \theta_1, \sigma_1) \propto u^{\frac{n-3}{2}} \exp\left\{-\frac{u}{2\sigma_1^2}\right\} \exp\left\{-\frac{n}{2\sigma_1^2}(y - \theta_1)^2\right\}.$$

We wish to choose a distribution Λ so that the above distributions are as close as possible. Under the alternative $(\theta, \sigma) = (\theta_1, \sigma_1)$, we have $Y \sim \mathcal{N}(\theta, \sigma_1^2/n)$. Under H_{Λ} , Y has distribution $Z + \Theta$ where Z and Θ are independent, $\Theta \sim \Lambda$ and $Z \sim \mathcal{N}(0, \sigma_0^2/n)$. This last claim can be seen by observing that the distribution of Y under H_{Λ} is given by a convolution. If we let $\Lambda = \mathcal{N}(\theta_1, \sigma_1^2/n - \sigma_0^2/n)$, then $Y \sim \mathcal{N}(\theta_1, \sigma_1^2/n)$ under H_{Λ} . The likelihood ratio thus simplifies to

$$\frac{\exp\left\{-\frac{u}{2\sigma_1^2}\right\}}{\exp\left\{-\frac{u}{2\sigma_0^2}\right\}} = \exp\left\{u\left(\frac{1}{2\sigma_0^2} - \frac{1}{2\sigma_1^2}\right)\right\},\,$$

which is an increasing function of u. Thus the MP test is one which rejects when U is large. Under H_{Λ} , $U/\sigma_0^2 \sim \chi_{n-1}^2$. Thus the MP level α test is given by

$$\phi(x) = \begin{cases} 1 & \text{if } \frac{1}{\sigma_0^2} \sum_{i=1}^n (x_i - \bar{x})^2 > k, \\ 0 & \text{else.} \end{cases}$$

where k is the $1-\alpha$ quartile of χ^2_{n-1} . We know have to ask if ϕ is MP for H_0 against $(\theta, \sigma) = (\theta_1, \sigma_1)$. To do this we have to show that ϕ has level α at (θ, σ) for all $\sigma \leq \sigma_0$. This is true since if X_i has variance $\sigma^2 < \sigma_0^2$, then

$$\frac{1}{\sigma_0^2} \sum_{i=1}^n (x_i - \bar{x})^2 \le \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2 \sim \chi_{n-1}^2.$$

Thus the probability of rejection decreases as σ decreases. Thus ϕ is MP for H_0 against the simple alternative $(\theta, \sigma) = (\theta_1, \sigma_1)$. Since ϕ does not depend on (θ_1, σ_1) we can conclude that θ is in fact UMP for $H_0: \sigma \leq \sigma_0$ against $H_1: \sigma > \sigma_0$.

Remark 2. One can ask: Why doesn't taking $(\theta, \sigma) = (\theta_1, \sigma_0)$ work? One could argue intuitively that this is the distribution "closest" to (θ_1, σ_1) . This fails because the MP test of $(\theta, \sigma) = (\theta_1, \sigma_0)$ against $(\theta, \sigma) = (\theta_1, \sigma_1)$ is given by

$$\phi_{\theta_1}(x) = \begin{cases} 1 & \text{if } \sum_{i=1}^n (x_i - \theta)^2 > k, \\ 0 & \text{else.} \end{cases}$$

This test is problematic since it depends on θ_1 but also it is not level α for the null $H_0: \sigma \leq \sigma_0$. If we let $\theta_1 \to \infty$, the level approaches 1.

3.2 Non-parametric quantile test

Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathbb{P} \in \mathcal{P}$ where \mathcal{P} is the set of all distributions on \mathbb{R} . For fixed $\mu \in \mathbb{R}$ and $p_0 \in [0,1]$ we wish to test

$$H_0: \mathbb{P}(X \leq \mu) \geq p_0 \text{ against } H_1: \mathbb{P}(X \leq \mu) < p_0.$$

Inuitively, a test which counts the number of i's such that $X_i \leq \mu$ might be UMP. To check this consider the following reparametrization:

$$\mathbb{P} \longleftrightarrow (\mathbb{P}^-, \mathbb{P}^+, p),$$

where

 \mathbb{P}^+ = the conditional distribution of $X \mid X \leq \mu$, \mathbb{P}^- = the conditional distribution of $X \mid X > \mu$, $p = \mathbb{P}(X \leq \mu)$.

There is a correspondence between the triples $(\mathbb{P}^+, \mathbb{P}^-, p)$ and the distributions \mathbb{P} . Let p_- and p_+ be the densities for \mathbb{P}^- and \mathbb{P}^+ , the density of \mathbb{P} is thus

$$p(x) = p \cdot p_{-}(x) \mathbf{1}_{x \le \mu} + (1-p) \cdot p_{+}(x) \mathbf{1}_{x > \mu}.$$

If we sort X_1, \ldots, X_n such that

$$X_{i_1}, \ldots, X_{i_m} \leq \mu \text{ and } X_{j_1}, \ldots, X_{j_{n-m}} \geq \mu,$$

then under a simple alternative $(\mathbb{P}^-, \mathbb{P}^+, p_1)$ where $p_1 < p_0$, the joint density of (X_1, \dots, X_n) is

$$p(x) = p_1^m \prod_{k=1}^m p_-(x_{i_k})(1 - p_1)^{n-m} \prod_{k=1}^{n-m} p_+(x_{j+k}).$$

If we wish to pick distribution which gives us a null which is close to the above distribution we should take $(\mathbb{P}_-, \mathbb{P}_+, p_0)$. This formalizes the idea that there is "no information" in the tails of \mathbb{P} and that "all information" is contained in $\mathbb{P}(X \leq \mu)$ which is the quantity we are interested in. When testing the simple null $(\mathbb{P}_-, \mathbb{P}_+, p_0)$ against the simple alternative $(\mathbb{P}_-, \mathbb{P}_+, p_1)$, the likelihood ratio is

$$\frac{p_1^m(1-p_1)^{n-m}}{p_0^m(1-p_0)^{n-m}},$$

since $p_1 < p_0$ we reject when the quantity

$$m = |\{i : X_i < \mu\}|,$$

is small. Under our simple null, m has a binomial (n, p_0) distribution thus the MP test is

$$\phi = \begin{cases} 1 & \text{if } m < k, \\ \gamma & \text{if } m = k, \\ 0 & \text{if } m > k. \end{cases}$$

where k and γ are determined by $\mathbb{E}_{p_0}\phi = \alpha$.

Note that this test is level α for the original composite H_0 . This is because the power function $\beta(\theta)$ depends on $(\mathbb{P}^-, \mathbb{P}^+, p)$ only through p and the power function is a decreasing funcion of p. Thus we can conclude that ϕ is MP for the oringal H_0 . Furthermore ϕ does not depend on $(\mathbb{P}^-, \mathbb{P}^+, p_1)$ and thus ϕ is UMP for

$$H_0: \mathbb{P}(X \leq \mu) \geq p_0 \text{ against } H_1: \mathbb{P}(X \leq \mu) > p_0.$$