الدورة الإستثنائية للعام 2010	امتحانات الشهادة الثانوية العامة الفرع: علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
ىىم: قم:	المدة ساعتان	

Cette épreuve est formée de trois exercices répartis sur trois pages numérotées de 1 à 3. L'usage d'une calculatrice non programmable est autorisé.

Premier exercice: (7 points) Étude d'un circuit série RLC

On considère le circuit (fig. 1) comportant en série une bobine (L, r), un conducteur ohmique de résistance $R=50\,\Omega,$ un condensateur de capacité $C=64~\mu F$ et un générateur G maintenant entre ses bornes, A et D, une tension alternative sinusoïdale de fréquence f réglable et de valeur efficace U constante. Le circuit est alors parcouru par un courant alternatif sinusoïdal d'intensité i dont l'expression en fonction du temps est :

 $i = I_m \sin(2 \pi f t)$ (i en A, t en s).

Un oscilloscope, branché convenablement, permet de visualiser la tension u_{BM} aux bornes de la bobine sur la voie Y_1 et la tension u_{MD} aux bornes du conducteur ohmique sur la voie Y_2 . On obtient les oscillogrammes (a) et (b) représentés sur la figure 2.

La sensibilité verticale pour les deux voies est 2V/div.

La sensionne verticale pour les deux voies est 2 v

La sensibilité horizontale est 5 ms/div.

Prendre : $0.32\pi = 1$.

- 1) Le bouton « INV » de la voie Y₂ est enfoncé. Pourquoi ?
- 2) Lequel des oscillogrammes représente la tension u_{BM}? Pourquoi ?
- 3) En se référant à la figure 2,
 - a) calculer f;
 - **b)** i) calculer le déphasage entre les tensions u_{BM} et
 - ii) déduire que la bobine n'a pas de résistance ;
 - c) calculer la tension maximale $U_{BM(max)}$ aux bornes de la bobine ;
 - d) calculer la tension maximale $U_{\text{MD(max)}}$ aux bornes du conducteur ohmique.
- 4) Montrer que l'expression de la tension u_{MD} s'écrit sous la forme : $u_{MD} = 7 \sin (100 \pi t)$ (u_{MD} en V, t en s).
- 5) Déterminer l'expression, en fonction du temps, de :
 - a) l'intensité i ;
 - **b**) la tension u_{BM} ;
 - c) la tension u_{AB} aux bornes du condensateur.
- **6) a)** En appliquant la loi d'additivité des tensions, déterminer l'expression, en fonction du temps, de la tension u_{AD} aux bornes du générateur.
 - b) i) En déduire que la puissance moyenne électrique P consommée dans le circuit est maximale.
 ii) Calculer P.

Fig.2

<u>Deuxième exercice</u>: (6 points) L'effet photoélectrique

Une plaque métallique recouverte d'une couche de césium est éclairée par un faisceau lumineux monochromatique de longueur d'onde dans le vide $\lambda=0.45\times 10^{-6}\,$ m. Le travail d'extraction du césium est $W_S=1.88\,$ eV.

Un dispositif approprié (D) est utilisé pour détecter des électrons émis par la plaque éclairée.

On donne : constante de Planck $h=6.6\times10^{-34} J.s; 1 \text{ eV} = 1.6\times10^{-19} J;$ charge élémentaire $e=1.6\times10^{-19} C$; célérité de la lumière dans le vide $c=3\times10^8 \text{ m/s}.$

- 1) Quel aspect de la lumière le phénomène de l'effet photoélectrique met-il en évidence ?
- 2) Définir le "travail d'extraction" d'un métal.
- 3) Le faisceau lumineux qui éclaire la plaque métallique est constitué de photons.
 - a) i) Écrire l'expression de l'énergie E d'un photon en fonction de h, c et λ .
 - ii) Calculer, en eV, l'énergie d'un photon incident.
 - **b)** (D) détecte des électrons émis par la plaque. Pourquoi y a-t-il une émission d'électrons par la plaque ?
 - c) Calculer, en eV, l'énergie cinétique maximale d'un électron émis.
- 4) La puissance lumineuse P reçue par la plaque est de 10^{-3} W, et les électrons émis constituent un courant électrique d'intensité $I = 5 \mu A$.
 - a) Calculer le nombre n de photons reçus par la plaque en une seconde.
 - **b**) Sachant que l'intensité I du courant est liée au nombre N d'électrons émis par seconde et à la charge élémentaire e par la relation $I = N \times e$, calculer N.
 - c) i) Calculer le rendement quantique $r = \frac{N}{n}$.
 - ii) Déduire que le nombre des photons efficaces par seconde est relativement petit.
 - d) On augmente la puissance lumineuse P reçue par la plaque, sans changer la longueur d'onde λ . L'intensité du courant électrique augmente-t-elle ou diminue-t-elle ? Pourquoi ?

Troisième exercice: (7 points) Force résistante sur une voiture

Une voiture de masse M=1500 kg se déplace sur une route rectiligne horizontale, son centre d'inertie G décrivant l'axe (O; \vec{i}). La voiture est soumise à l'action des forces :

- son poids,
- la réaction normale de la route,
- une force motrice constante $\vec{F}_{m} = F_{m} \; \vec{i} \;$ où $F_{m} = 3500 \; N,$
- une force résistante $\vec{F}_f = -F_f \vec{i}$.

Pour déterminer F_f , on mesure la valeur V de la vitesse de la voiture à différentes dates, séparées par le même intervalle de temps $\tau=1$ s .

A – Valeur de \vec{F}_f entre les dates $t_0 = 0$ et $t_5 = 5$ s

L'enregistrement obtenu a permis de dresser le tableau suivant

Instant	$t_0 = 0$	$t_1 = \tau$	$t_2 = 2 \tau$	$t_3 = 3 \tau$	$t_4 = 4 \tau$	$t_5 = 5\tau$
Position	O	G_1	G_2	G_3	G_4	G_5
V(m/s)	0	2	4	6	8	10

- 1) En utilisant l'échelle ci-dessous, tracer la courbe représentant les variations de la valeur V de la vitesse en fonction du temps.
 - 1 cm en abscisses représente 1 s ;
 - 1 cm en ordonnées représente 1 m/s.
- 2) Montrer que la relation liant la vitesse $\vec{V} = V\vec{i}$ au temps t est de la forme $\vec{V} = bt\vec{i}$ où b est une constante.
- 3) a) La constante b est une grandeur caractéristique du mouvement. Nommer cette grandeur.
- b) Calculer la valeur de b.
 4) En appliquant la 2^{ème} loi de Newton,
 - a) montrer qu'entre $t_0 = 0$ et $t_5 = 5$ s, F_f est constante ;
 - **b**) calculer la valeur F_f de \vec{F}_f .

B – Variation de F_f entre les dates $t_5 = 5$ s et t = 140 s

En réalité, la mesure de V entre les dates $t_0 = 0$ et t = 140 s a permis de tracer le graphique de la figure ci-contre.

- 1) Montrer que la partie de ce graphique comprise entre les dates $t_0 = 0$ et $t_5 = 5$ s est en accord avec le graphique de la partie A.
- 2) On a tracé la tangente MN à la courbe au point P à la date t_P où $V_P = 45$ m/s.
 - **a)** Déterminer la valeur de l'accélération à la date t_P.
 - **b**) En déduire la valeur de F_f à la date t_P .
- 3) À partir de la date 100 s, V atteint une valeur limite $V_\ell=50$ m/s . Calculer alors la valeur de F_f .
- 4) Indiquer l'intervalle de temps au cours duquel $F_{\rm f}$ augmente.

