

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS DE CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

ANDREI DANELLI E LUIZ PAULO RECHE

RELATÓRIO TRABALHO APRENDIZADO NÃO SUPERVISIONADO

GitHub: https://github.com/andreidanelli/Machine-Learning.

CHAPECÓ 2023

O trabalho a seguir, desenvolvido pelos integrantes Andrei Danelli e Luiz Paulo, consiste em apresentar resultados obtidos aplicando o método de aprendizado não supervisionado utilizando a aplicação do algoritmo K-means (K-média). Para a definição do tema, foi pensado em algo que poderia nos proporcionar uma vasta fonte de dados, para selecionarmos alguns dos mais interessantes e realizar a aplicação do método de aprendizado não supervisionado, chegando a conclusão do tema "Sete Maravilhas do Mundo Moderno". Segue abaixo os resultados obtidos após a aplicação do algoritmo K-means nas imagens selecionadas das Setes Maravilhas do Mundo.

Coliseu de Roma ou Anfiteatro Flaviano:

Qtd: Cores

250

Qtd: Cores

500

1000

Otd: Cores

252654

Otd: Cores

A Muralha da China ou Grande Muralha:

K = 6 K = 15 K = 50 K = 100

Dimensões	2160×3840	Dimensões	2160x3840	Dimensões	2160×3840	Dimensões	2160x3840
Altura	2160 Pixels						
Largura	3840 Pixels						
Tamanho	1633 Kb	Tamanho	4154 Kb	Tamanho	5747 Kb	Tamanho	6512 Kb
Qtd. Cores	6	Qtd. Cores	15	Qtd: Cores	50	Qtd. Cores	100

K = 250 K = 500 K = 1000 Original

Dimensões	2160x3840	Dimensões	2160x3840	Dimensões	2160x3840	Dimensões	2160x3840
Altura	2160 Pixels						
Largura	3840 Pixels						
Tamanho	7603 Kb	Tamanho	7961 Kb	Tamanho	8275 Kb	Tamanho	8887 Kb
Qtd. Cores	250	Qtd. Cores	500	Qtd. Cores	1000	Qtd. Cores	250905

Cristo Redentor:

K = 6 K = 15 K = 50 K = 100

Dimensões	1600 x 2560						
Altura	1600 Pixels						
Largura	2560 Pixels						
Tamanho	913 kb	Tamanho	2152 kb	Tamanho	3419 kb	Tamanho	4388 kb
Qtd. Cores	6	Qtd. Cores	15	Qtd. Cores	50	Qtd. Cores	100

K = 250 K = 500 K = 1000 Original

Dimensões	1600 x 2560						
Altura	1600 Pixels						
Largura	2560 Pixels						
Tamanho	5409 kb	Tamanho	5702 kb	Tamanho	6380 kb	Tamanho	6729 kb
Qtd. Cores	250	Qtd. Cores	500	Qtd. Cores	1000	Qtd. Cores	254369

Chichen Itza:

Machu Picchu:

Dimensões	1200 x 1920						
Altura	1200 Pixels						
Largura	1920 Pixels						
Tamanho	3337 kb	Tamanho	3541 kb	Tamanho	3696 kb	Tamanho	4287 kb
Qtd. Cores	250	Qtd. Cores	482	Qtd. Cores	615	Qtd. Cores	376456

Petra:

Dimensões	1440 x 2560						
Altura	1440 Pixels						
Largura	2560 Pixels						
Tamanho	1260 kb	Tamanho	2823 kb	Tamanho	3887 kb	Tamanho	4341 kb
Qtd. Cores	6	Qtd. Cores	15	Qtd. Cores	50	Qtd. Cores	100

Dimensões	1440 x 2560						
Altura	1440 Pixels						
Largura	2560 Pixels						
Tamanho	4830 kb	Tamanho	5160	Tamanho	3696 kb	Tamanho	5354 kb
Qtd. Cores	250	Qtd. Cores	500	Qtd. Cores	615	Qtd. Cores	108367

Taj Mahal:

Dimensões	1920 x 2160						
Altura	1920 Pixels						
Largura	2160 Pixels						
Tamanho	590 kb	Tamanho	1261 kb	Tamanho	2416 kb	Tamanho	3127 kb
Qtd. Cores	6	Qtd. Cores	15	Qtd. Cores	50	Qtd. Cores	100

K = 500

Dimensões	1920 x 2160						
Altura	1920 Pixels						
Largura	2160 Pixels						
Tamanho	3669 kb	Tamanho	3979 kb	Tamanho	4072 kb	Tamanho	4726 kb
Qtd. Cores	248	Qtd. Cores	476	Qtd. Cores	795	Qtd. Cores	237548

Conclusão

Após realizado os experimentos utilizando o algoritmo K-means, percebemos que em todas as imagens com diferentes valores atribuídos a variável K, as mesmas podem ter alterações significativas sobre a relação entre a redução de tamanho da imagem, a perda de informação e também a redução de cores únicas. Ao aplicar o algoritmo para reduzir o tamanho da imagem, há uma diminuição perceptível na quantidade de cores presentes nas imagens utilizadas, sendo então, o algoritmo trabalha agrupando os pixels semelhantes, reduzindo a variedade de tonalidades na imagem resultante.

No final da execução do algoritmo, percebemos nas imagens que o mesmo gerou, que escolhendo um valor ideal para a variável K o algoritmo ele reduz o tamanho da imagem com uma perda "inteligente" de informação, mantendo alguns elementos essenciais e minimizando o impacto perceptível. Temos o exemplo nas imagens a qual foram aplicadas o valor **500** para a variável **K** o qual podemos ver que as imagens não tiveram tanta perda de informação, reduzindo o tamanho das mesmas e mantendo a sua percepção.

Concluímos então que, o algoritmo pode ser sim utilizado de maneira eficaz para reduzir o tamanho das imagens, proporcionando uma perda de informação, sem causar prejuízo visual considerável, ou seja, não deixa a imagem imperceptível. No entanto, deve ser ajustado o parâmetro do algoritmo de forma adequada para garantir que a perda de informação seja realizada de maneira inteligente, preservando então a qualidade visual da imagem.