Линейная алгерба 1 из 4

Определение. $U:X \to X$, такой что:

1.
$$\forall x, y \quad \langle Ux, Uy \rangle = \langle x, y \rangle$$

2.
$$\forall x \ ||Ux|| = ||x||$$

3.
$$U^* = U^{-1} \Leftrightarrow U^*U = UU^* = I$$

называется унитарным оператором

Теорема 1. Свойства 1,2 и 3 эквивалентны.

Доказательство. • $1 \Rightarrow 2$

$$\forall x, y \quad \langle Ux, Uy \rangle = \langle x, y \rangle \stackrel{?}{\Rightarrow} ||Ux|| = ||x||$$
$$||Ux||^2 = \langle Ux, Uy \rangle = \langle x, y \rangle = ||x||^2$$

•
$$2 \Rightarrow 3$$

$$||Ux|| = ||x|| \stackrel{?}{\Rightarrow} U^*U = I$$
$$||Ux||^2 = \langle Ux, Ux \rangle = \langle U^*Ux, x \rangle = \langle x, x \rangle$$
$$U^*U = I$$

•
$$3 \Rightarrow 1$$

$$U^* = U^{-1} \stackrel{?}{\Rightarrow} \langle Ux, Uy \rangle = \langle x, y \rangle$$
$$\langle Ux, Uy \rangle = \langle U^*Ux, y \rangle = \langle x, y \rangle$$

Лемма 1. $|\det U| = 1$

Доказательство.

$$1=\det I=\det(U^*U)=\det U^*\det U\stackrel{def}{=}\det \overline{U}^T\det U=\det \overline{U}\det U=\overline{\det U}\det U=|\det U|^2$$

Пемма 2. Матрица унитарного преобразования обладает свойством ортогональности по строкам и столбцам.

Доказательство. Здесь \mathcal{U} - оператор, U - его матрица:

$$\mathcal{U} \leftrightarrow U = ||U_{ij}||$$

 $\mathcal{U}^*\mathcal{U} = I \Rightarrow U^+U = E$

М3137у2019 Лекция 13

Линейная алгерба 2 из 4

В следующей строке подразумевается $\forall i, k$

$$\sum_{j=1}^{n} \overline{U}_{ji} U_{jk} = \sum_{j=1}^{n} (\overline{U}^{T})_{ij} U_{jk} = \delta ik$$

Пример. Матрица поворота - ортогональное преобразование.

Пемма 3. *Множество унитарных операторов образует мультипликативную группу* U(n):

- 1. $U_1, U_2 \in U(n) \Rightarrow U_1 \cdot U_2 \in U(n)$
- 2. $\exists I : I^* = I$
- 3. $\forall U \ \exists U^{-1} = U^*$
- 4. $U_1(U_2U_3) = (U_1U_2)U_3 = U_1U_2U_3$

Доказательство. 1. U_1U_2 - унитарный?

$$\langle U_1 U_2 x, U_1 U_2 y \rangle = \langle U_1^* U_1 U_2 x, U_2 y \rangle = \langle U_2 x, U_2 y \rangle = \langle x, y \rangle$$

Остальное очевидно.

U(n) называется унитарной группой операторов над унитарным пространством X, $\dim X = n$

$$\triangleleft SU(n) \stackrel{def}{=} \{U \in U(n) : \det U = 1\}$$

Лемма 4. SU(n) — подгруппа U(n)

Пемма 5. Все собственные значения унитарного оператора по модулю равны единице.

$$\lambda \in \sigma_U \Rightarrow |\lambda| = 1 \Leftrightarrow \lambda = e^{i\varphi}$$

Доказательство. $]Ux = \lambda x$

$$||x|| = ||Ux|| = ||\lambda x|| = \lambda ||x||$$

Пемма 6. Собственные вектора U, отвечающие различным собственным значениям, являются ортогональными.

Доказательство.

M3137y2019 Лекция 13 Линейная алгерба 3 из 4

Пемма 7. Любое инвариантное подпространство U является приводящим.

$$X = L + L^{\perp} \quad y \in L^{\perp} \Rightarrow Uy \in L^{+}$$

Доказательство.

$$\forall y \in L^{\perp} : 0\langle x, y \rangle = \langle Ux, Uy \rangle = 0$$

Теорема 2. Из собственных векторов унитарного оператора можно построить ортонормированный базис.

Доказательство. Очевидно от противного, как с эрмитовым оператором.

Примечание. Унитарный оператор имеет скалярный тип, ортогональный оператор (унитарный, но над \mathbb{C}) может не иметь.

Теорема 3. Спектральная теорема для унитарного оператора:

$$U = \sum_{j=1}^{n} \lambda_j \mathcal{P}_j = \sum_{j=1}^{n} e^{i\varphi_j} \langle e^j, \cdot \rangle e_j$$

Теорема 4. Эрмитова матрица может быть приведена к диагональной формме унитарным преобразованием:

$$\varphi^* = \varphi \Rightarrow \exists \mathcal{U} \in \mathcal{U}(n) : A_{\varphi}^d = U^+ A_{\varphi} U$$

Доказательство.

$$A_{\varphi}^d = T^{-1} A_{\varphi} T$$

T — состоит из собственных векторов φ , но $\varphi^*=\varphi\Rightarrow$ столбцы T ортогональны $\Rightarrow T=U\leftrightarrow \mathcal{U}\in \mathcal{U}(n)$

Примечание. φ — эрмитовский оператор $\Rightarrow e^{i\varphi}$ — унитарный оператор.

Доказательство.

$$(e^{i\varphi})^* = e^{-i\varphi^*} = e^{-i\varphi}$$
$$(e^{i\varphi})^* e^{i\varphi} = I$$

M3137y2019 Лекция 13

Линейная алгерба 4 из 4

Квадратичные формы

X — линейное пространство

Определение. Отображение $b: X \times X \to K$ — билинейная форма, если выполняется следующее:

1.
$$K = \mathbb{R} : b(x,y) = b(y,x) \ b(\alpha x + y, z) = \alpha b(x,z) + b(y,z)$$

2.
$$K = \mathbb{C} : b(x,y) = \overline{b(y,x)} \ b(\alpha x + y, z) = \overline{\alpha}b(x,z) + b(y,z)$$

 Π римечание. $b\in\Omega_0^2$ — тензор типа (2,0)

$$]\{e_j\}_{j=1}^n$$
 — базис X

$$\forall x,y \in X \quad x = \sum_{j=1}^n \xi^j e_j \quad y = \sum_{k=1}^n \eta^k e_k$$

$$b(x,y) = b(\sum_{j=1}^n \xi^j e_j, \sum_{k=1}^n \eta^k e_k) = \sum_{k,j=1}^n \overline{\xi}^j \eta^k \cdot \underbrace{b(e_j,e_k)}_{\text{элемент тензора } b} = \sum_{k,j=1}^n \overline{\xi}^j \eta^k b_{jk}$$

Примечание. В матричной форме $b(x,y)=\xi^+B\eta$

Определение. **Квадратичной формой**, соответствующей билиненой форме b, называется отображение q:

$$q(x) = b(x, x)$$

Лемма 8. $\{e_j\}_{j=1}^n \xrightarrow{T} \{\tilde{e}_k\}_{k=1}^n \Rightarrow \tilde{Q} = T^TQT$

Доказательство. Очевидно.

Скипнуто до конца лекции.

М3137у2019 Лекция 13