Bonus Lecture: Nonlinear Optimization

Chris Conlon

September 10, 2020

Grad IO

Basic Setup

Often we are interested in solving a problem like this:

Root Finding f(x) = 0

Optimization $\arg \min_{x} f(x)$.

These problems are related because we find the minimum by setting: $f^{\prime}(x)=0$

Nonlinear Optimization

Newton-Raphson for Minimization

We can re-write optimization as root finding;

- We want to know $\hat{\theta} = \arg \max_{\theta} \ell(\theta)$.
- Construct the FOCs $\frac{\partial \ell}{\partial \theta} = 0 \rightarrow$ and find the zeros.
- \bullet How? using Newton's method! Set $f(\theta) = \frac{\partial \ell}{\partial \theta}$

$$\theta_{k+1} = \theta_k - \left[\frac{\partial^2 \ell}{\partial \theta^2}(\theta_k)\right]^{-1} \cdot \frac{\partial \ell}{\partial \theta}(\theta_k)$$

The SOC is that $\frac{\partial^2 \ell}{\partial \theta^2} > 0$. Ideally at all θ_k .

This is all for a single variable but the multivariate version is basically the same.

Newton's Method: Multivariate

Start with the objective $Q(\theta) = -l(\theta)$:

- Approximate $Q(\theta)$ around some initial guess θ_0 with a quadratic function
- Minimize the quadratic function (because that is easy) call that θ_1
- Update the approximation and repeat.

$$\theta_{k+1} = \theta_k - \left[\frac{\partial^2 Q}{\partial \theta \partial \theta'}\right]^{-1} \frac{\partial Q}{\partial \theta}(\theta_k)$$

- The equivalent SOC is that the Hessian Matrix is positive semi-definite (ideally at all θ).
- In that case the problem is globally convex and has a unique maximum that is easy to find.

Newton's Method

We can generalize to Quasi-Newton methods:

$$\theta_{k+1} = \theta_k - \lambda_k \underbrace{\left[\frac{\partial^2 Q}{\partial \theta \partial \theta'}\right]^{-1}}_{A_k} \underbrace{\frac{\partial Q}{\partial \theta}(\theta_k)}$$

Two Choices:

- Step length λ_k
- Step direction $d_k = A_k \frac{\partial Q}{\partial \theta}(\theta_k)$
- ullet Often rescale the direction to be unit length $rac{d_k}{\|d_k\|}.$
- ullet If we use A_k as the true Hessian and $\lambda_k=1$ this is a full Newton step.

Newton's Method: Alternatives

Choices for A_k

- $A_k = I_k$ (Identity) is known as gradient descent or steepest descent
- BHHH. Specific to MLE. Exploits the Fisher Information.

$$A_{k} = \left[\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ln f}{\partial \theta} (\theta_{k}) \frac{\partial \ln f}{\partial \theta'} (\theta_{k}) \right]^{-1}$$
$$= -\mathbb{E} \left[\frac{\partial^{2} \ln f}{\partial \theta \partial \theta'} (Z, \theta^{*}) \right] = \mathbb{E} \left[\frac{\partial \ln f}{\partial \theta} (Z, \theta^{*}) \frac{\partial \ln f}{\partial \theta'} (Z, \theta^{*}) \right]$$

- Alternatives SR1 and DFP rely on an initial estimate of the Hessian matrix and then approximate an update to A_k .
- Usually updating the Hessian is the costly step.
- Non invertible Hessians are bad news.