Лабораторная работа 2.1.3. Определение $\frac{C_p}{C_v}$ через измерение скорости звука

Калинин Даниил, Б01-110

26 февраля 2022 г.

Цель работы: измеренить частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; определенить показатель адиабаты с помощью уравнения состояния идеального газа.

В работе используются: звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; теплоизолированная труба, обогреваемая водой из термостата.

Теоритическая справка:

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . Один из наиболее точных методов определения показателя адиабаты основан на измерении скорости звука.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{1}$$

где R – газовая постоянная, T – температура газа, а μ – его молярная масса. Преобразуя эту формулу, найдем

$$\gamma = \frac{c^2 \mu}{RT} \tag{2}$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\frac{\lambda}{2}$$

где λ — длина волны звука в трубе, а n — любое целое число. Если это условие выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. При этом мплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения. Узлы смещения повторяются по всей длине трубы через $\frac{\lambda}{2}$. Между узлами находятся максимумы смещения.

Скорость звука с связана с его частотой ν и длиной волны λ соотношением

$$c = \lambda \nu \tag{3}$$

Будем плавно изменять частоту колебаний ν звукового генератора, пока не заметим резкое увеличение амплитуды (резонанс) на осциллографе. Тогда, для последовательных резонансов, получим:

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (4)

Таким образом, из (3) и (4) имеем:

$$\nu_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = \nu_1 + \frac{c}{2L}k \tag{5}$$

То есть величина $\frac{c}{2L}$, определяется по угловому коэффициенту графика зависимости частоты ν от номера резонанса k.

Экспериментальная установка:

В работе используется установка (рис. 1). Данная установка содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре омывающей трубу воды.

Звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Рис. 1. Установка, на которой проводился эксперимент

Ход работы:

- 1. Снимем комнатную температуру и длину трубы. Результат занесем в таблицу 1.
- 2. Запустим ЭО и ГЗ, проводим начальную настройку осциллографа, выбираем нужный режим (синусоидальный) на ГЗ.

Величина	Значение
Длина трубы, L	700 ± 1 мм.
Комнатная температра, T_{κ}	$22.6^{\circ}C$

Таблица 1. Данные измерения комнатной температуры и длины трубы

- 3. Подбирем частоту на ГЗ таким образом, чтобы амплитуда резонансных колебаний на ЭО была достаточно велика.
- 4. Медленно увеличиваем частоту колебаний на ГЗ, записываем резонансные частоты. Повторяем эксперимент для различных температур от комнатной ($T_{\kappa}=22.6^{\circ}C$, до $T=50^{\circ}C$). Данные заносим в таблицу 2.

Номер резонанса (k)	Температура, $^{\circ}C$						
	$22.6^{\circ}C$	$30^{\circ}C$	$35.4^{\circ}C$	$45^{\circ}C$	$47.5^{\circ}C$	$50^{\circ}C$	
1	497	500	506	520	525	528	
2	750	742	754	770	780	780	
3	992	1000	1010	1030	1031	1032	
4	1230	1250	1257	1270	1280	1283	
5	1478	1490	1520	1520	1535	1542	
6	1720	1740	1756	1780	1785	1800	

Таблица 2. Резонансные частоты, в зависимости от температуры газа, Гц.

- 5. Отметим результаты на графике следующим образом: по оси абцисс будем откладывать номер резонанса k, а по оси ординат разность ν_{k+1} и ν_1 -й частот. График изображен на рисунке ??.
- 6. Посчитаем коэффициенты построенных прямых и погрешности их вычисления, результаты приведем в таблице 3.

Температура, °С	22.6	30.0	35.4	45.0	47.5	50.0
$c/(2L), c^{-1}$	242.60 ± 0.40	248.60 ± 0.84	251.40 ± 1.06	251.00 ± 0.94	251.40 ± 0.24	255.00 ± 0.52

Таблица 3. Коэффициенты построенных прямых и погрешности их вычисления

- 7. По формуле 2 вычислим показатели адиабаты для каждой температуры (принимая $\mu_{\text{воздуха}} = 28.98 \; (\frac{\text{грамм}}{\text{моль}}), R = 8.31 \; (\frac{\text{Дэс}}{K \cdot \text{моль}}))$. Результаты занесем в таблицу 4
 - 8. Усредняя вычисленные значения, получим:

$$\gamma = 1.3710 \pm 0.0056$$
 $\varepsilon = 4.1 \cdot 10^{-3} \approx 0.4\%$

Заключение:

В ходе данной работы был с высокой точностью измерен показатель адиабаты γ . Кроме того, была проверена зависимость скорости звука в воздухе от температуры. Полученные результаты можно улучшить, увеличив точность измерения резонансных частот. Тем не менее, относительная ошибка в 0.4% это неплохой результат.

Температура, $^{\circ}C$	22.6	30.0	35.4	45.0	47.5	50.0
Показатель адиабаты γ ,	1.3596	1.3928	1.3994	1.3529	1.3466	1.3747
Погрешность,	± 0.0042	± 0.0067	± 0.0079	± 0.0070	± 0.0032	± 0.0047

Таблица 4. Коэффициенты построенных прямых и погрешности их вычисления

Рис. 2. График зависимости ν_{k+1} и ν_1 частот от номера резонанса k