

Escuela Superior de Ingeniería y Tecnología Sección de Ingeniería Informática

Trabajo de Fin de Máster Sistemas y Tecnologías Web Aplicadas (SyTWA)

Shell para corrección automática de repositorios de GitHub

 $CLI\ tool\ for\ automatic\ correction\ of\ GitHub$'s repositories .

Juan José Labrador González

D. Casiano Rodríguez León, con DNI número 42.020.072-S profesor Titular de Universidad adscrito al Departamento de Ingeniería Informática y de Sistemas de la Universidad de La Laguna, como tutor

CERTIFICA

Que la presente memoria titulada:

"Sistemas y Tecnologías Web Aplicadas. Shell para corrección automática de repositorios de GitHub."

ha sido realizada bajo su dirección por D. **Juan José Labrador González**, con DNI número 78.729.778-L.

Y para que así conste, en cumplimiento de la legislación vigente y a los efectos oportunos firman la presente en La Laguna a 2 de julio de 2017

Agradecimientos

La realización de esta asignatura de Trabajo de Fin de Máster no hubiera sido posible sin la ayuda de la Sección de Ingeniería Informática de la Escuela Superior de Ingeniería y Tecnología, que ha llevado a cabo todos los trámites necesarios.

Mención especial para mi familia, pareja y amigos, quienes me han alentado para no rendirme y lograr mis objetivos pese a las dificultades y contratiempos encontrados durante la realización de este Trabajo de Fin de Máster.

Y por último, especialmente agradecer a Casiano Rodríguez León su labor como tutor del Trabajo de Fin de Máster. Además de aprender muchísimo junto a él, me ha aconsejado, animado y resuelto mis dudas de manera incansable en la realización de este trabajo. Estoy seguro de que la experiencia y conocimientos adquiridos gracias a él, me ayudarán en mis próximos retos profesionales y personales.

Licencia

© Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.

Resumen

El objetivo de este Trabajo de Fin de Máster ha sido integrar los conocimientos adquiridos durante los estudios del Máster y, en especial, del itinerario de Tecnologías de la Información, aproximando al alumno a la resolución de problemas de aplicaciones Web y favoreciendo el desarrollo de destrezas propias de la Ingeniería Web: se centra en el aprendizaje y puesta en práctica de metodologías, aproximaciones, técnicas y herramientas para abordar la creciente complejidad de este tipo de aplicaciones en el marco de las metodologías ágiles. Cada vez ésta cobra más importancia, siendo constante el aumento del número de aplicaciones de escritorio, smartphones y tablets.

En este Trabajo de Fin de Máster se propone el desarrollo de un paquete Node.js (NPM) que facilite la descarga y corrección de repositorios GitHub de alumnos. Existe un buen número de herramientas de Control de Versiones que permiten alojar proyectos software y agruparlos en organizaciones lógicas, pero carecen de mecanismos para automatizar funciones de uso cotidiano como la descarga de los mismos, la preparación del entorno de cada proyecto o la ejecución de pruebas.

En nuestra propuesta, se ha realizado una primera aproximación a la automatización de descargas y correcciones de repositorios, recopilando todos los datos inherentes de estas acciones y generando los informes correspondientes en formato PDF y HTML. Todo ello mediante un sencillo uso y sentando las bases para proporcionar más funcionalidades a la herramienta en un futuro próximo.

Palabras clave: Consola, CLI, Shell, Terminal, Node.js, GitHub, Corrección, Automatización

Abstract

Insert here an abstract in an EU language (preferably English)

Keywords: Console, CLI, Shell, Terminal, Node.js, GitHub, Correction, Automation

Índice general

1.	Intr	coducción	1
	1.1.	Antecedentes	1
	1.2.	Estado actual del arte	1
	1.3.	Objetivos y actividades a realizar	2
	1.4.	Tecnología usada	3
2.	Des	arrollo	4
	2.1.	Metodología usada	4
		2.1.1. GitHub	4
		2.1.2. Travis-CI	7
		2.1.3. Experiencia de usuario	7
3.	Res	ultados	9
	3.1.	Funcionalidades requeridas	9
		3.1.1. Autenticación con GitHub	9
		3.1.2. Listar organizaciones, asignaciones y repositorios de Git-	
		Hub del usuario	12
		3.1.3. Automatizar la descarga de repositorios	13
		3.1.4. Automatizar la ejecución de scripts en los repositorios	14
		3.1.5. Recopilar la información obtenida de la automatización	
		de tareas	15
	3.2.	Funcionalidades extra	17
	3.3.	Problemas encontrados y soluciones	19
		3.3.1. Asincronía	19
		3.3.2. Autocompletado de comandos	20
	3.4.	Perfil del usuario de ghshell	20
4.	Con	nclusiones y líneas futuras	21
5.	Sun	nmary and Conclusions	23
	5.1.	First Section	23
6.	Pre	supuesto	24
	6.1.	Introducción y coste por hora	24

She	ell pa	ra corre	ección automática de repositorios de GitHub	I
	6.3.	Funcio	onalidades requeridas	
Α.	Glos	sario		27
В.	Guía	a de us	so	32
	B.1.	Instala	ación	32
		B.1.1.	Requisitos	32
			Dependencias	32
			Instalación	
	B.2.		ción	33
			Primeros pasos	33
			Iniciar/Cerrar sesión	33
			Contexto principal	
			Contexto de organización	42
			Contexto de repositorio	47
Íno	dice	alfabét	tico	50

51

Bibliografía

Índice de Figuras

2.1.	Captura del repositorio del paquete NPM en GitHub
2.2.	Ramas del repositorio
2.3.	Apartado de issues
2.4.	Herramienta de integración continua
3.1.	Página del gestor de paquetes NPM
3.2.	Login de usuario
3.3.	Usuario autenticado
3.4.	Token personal en GitHub
3.5.	Login automático una vez generado el token
3.6.	Logout de usuario
3.7.	Lista de organizaciones del usuario
3.8.	Lista de repositorios de una organización
3.9.	Asignaciones dentro de otra organización
3.10.	Acceso a un repositorio de una organización
	Clonado del repositorio donde nos encontramos
	Clonado de asignaciones que coinciden con una expresión regular
	Resultado del clonado
	Ejecución del script 'install.sh' en el repositorio actual
	Ejecución del script 'install.sh' en asignaciones que coinciden con
	una expresión regular
3.16.	Resultado de la ejecución del script 'install.sh'
	Creación del Gitbook en el repositorio actual
	Creación del Gitbook en asignaciones que coinciden con una ex-
	presión regular
3.19.	Resultado de la creación del Gitbook
	Autocompletado de comandos
	Autocompletado de organizaciones
	Autocompletado de repositorios
	Ayuda global
	Ayuda en el contexto de organización
	Directorio actual de trabajo
	Propietario del repositorio
	Contribuyentes del repositorio
	<i>√</i>

B.1. Login de usuario	3
B.2. Usuario autenticado	4
B.3. Token personal en GitHub	4
B.4. Login automático una vez generado el token	5
B.5. Logout de usuario	5
B.6. Ayuda global	6
B.7. Directorio actual de trabajo	6
B.8. Acceso a una organización	7
B.9. Lista de organizaciones del usuario	7
B.10.Acceso a un repositorio	7
B.11.Listado de repositorios del usuario	8
B.12.Listado de repositorios del usuario que coinciden con el argumen-	
to pasado	8
B.13. Acceso a un repositorio dentro de una organización	8
B.14.Listado de repositorios de una organización	9
B.15.Listado de repositorios de una organización que coinciden con el	
argumento pasado	9
B.16. Clonado de repositorios que coinciden con el string pasado 3	9
B.17. Clonado de repositorios que coinciden con la regexp pasada 3	9
B.18. Resultado del clonado de repositorios	0
B.19. Ayuda en el contexto de organización	2
B.20. Regreso al contexto principal desde una organización	3
B.21.Regreso al contexto principal desde un repositorio	3
B.22. Ejecución de script en repositorios que coinciden con la regexp	
pasada	3
B.23. Fichero de log generado resultante de la ejecución del script 4	4
B.24. Creación del Gitbook en repositorios que coinciden con la regexp	
pasada	4
B.25.Directorios y ficheros generados del Gitbook	5
B.26. Assignments que coinciden con la expresión regular	5
B.27. Clonado de asignaciones que coinciden con la expresión regular . 4	6
B.28. Ejecución de script en assignments que coinciden con la expresión	
regular	6
B.29.Creación del Gitbook en los assignments que coinciden con la	
expresión regular	6
B.30.Directorios y ficheros generados	7
B.31. Ayuda en el contexto de un repositorio	7
B.32. Clonado de un repositorio dentro de una organización 4	8
B.33. Ejecución de un script en un repositorio dentro de una organización 4	8
B.34. Creación del Gitbook en un repositorio dentro de una organización 4	8
B.35.Propietario del repositorio	9
B.36.Contribuyentes del repositorio	9
•	

Índice de Tablas

6.1.	Tabla de actividades, duración y precios de las funcionalidades	
	requeridas	25
6.2.	Tabla de actividades, duración y precios de las funcionalidades	
	extra	25
6.3.	Precio y duración total	26

Capítulo 1

Introducción

1.1. Antecedentes

La World Wide Web está sujeta a un cambio continuo. La llegada de HTML5, la creciente importancia de AJAX y de la programación en el lado del cliente, las nuevas fronteras de la Web Semántica, y la explosión de las redes sociales son ejemplos de esta tendencia general.

Las aplicaciones web parecen evolucionar hacia entornos cada vez más ricos y flexibles en los que los usuarios pueden acceder con facilidad a los documentos, publicar contenido, escuchar música, ver vídeos, realizar dibujos e incluso jugar usando un navegador. Esta nueva clase de software ubicuo no cesa de ganar momentum y promueve nuevas formas de interacción y cooperación.

Ante la rápida evolución del software, los sistemas de control de versiones han adquirido una mayor importancia dentro de la metodología del desarrollo del software: la gestión de las versiones del propio software se ha convertido en una actividad crítica. Estos sistemas han evolucionado a la par que el software, proporcionando nuevas funcionalidades y orientándose hacia la colaboración.

1.2. Estado actual del arte

Actualmente, hay numerosos sistemas de control de versiones. Todos ellos proporcionan mecanismos de almacenamiento del código, de modificación y de consulta histórica del mismo, a la vez que proporcionan un entorno colaborativo en el que los usuarios pueden colaborar e interactuar entre sí.

En el caso particular de GitHub, además de proporcionar lo mencionado anteriormente, observando el creciente número de estudiantes que utiliza la plataforma, ha creado herramientas específicas para facilitar sus desarrollos (ej: Student Developer Pack) y provee a profesores de herramientas para gestionar dichos desarrollos (ej: GitHub Classrooms).

Sin embargo, estas herramientas de gestión de desarrollos requieren una administración interactiva por parte del profesor. No cuentan aún con funcionalidades de automatización de tareas.

1.3. Objetivos y actividades a realizar

En este proyecto se persigue integrar los conocimientos adquiridos durante los estudios del Máster y, en especial, del itinerario de Tecnologías de la Información para solucionar problemas actuales de aplicaciones y servicios Web.

Los objetivos propuestos para alcanzar en este Trabajo de Fin de Máster ha sido los siguientes:

- Conocer, dominar y practicar con lenguajes y herramientas de desarrollo de aplicaciones Web en el servidor.
- Conocer, dominar y practicar con diferentes lenguajes y librerías en el cliente.
- Conocer, practicar y dominar de herramientas de Desarrollo Dirigido por Pruebas en entornos web.
- Conocer, practicar y dominar diferentes lenguajes de marcas y de estilo.
- Conocer, practicar y dominar diferentes mecanismos de despliegue.
- Conocer, practicar y familiarizarse con diferentes mecanismos de seguridad, autentificación y autorización.
- Conocer, practicar y dominar diferentes herramientas colaborativas y de control de versiones.
- Conocer, practicar y dominar Metodologías Ágiles de desarrollo de software.

Y las actividades a realizar en el mismo son las que se describen a continuación:

- Revisión bibliográfica y estado del arte.
- Desarrollar una herramienta de línea de comandos escrita en Node.js que permita automatizar tareas relacionadas con repositorios de GitHub:
 - Autenticación con GitHub.
 - Listar organizaciones, asignaciones y repositorios de GitHub del usuario.

- Automatizar la descarga de repositorios.
- Automatizar la ejecución de scripts en los repositorios (TDD, creación de entorno, evaluación de código...).
- Recopilar la información obtenida de la automatización de tareas y presentarla al usuario (PDF, HTML...).
- Redacción de la memoria.
- Preparación de la presentación oral.

1.4. Tecnología usada

Para llevar a cabo el desarrollo de esta herramienta se planteó realizar el desarrollo en **Node.js**, creando una librería modular que se pudiese instalar mediante el gestor de paquetes de Node.js (NPM).

Además, se ha hecho uso de otras tecnologías enumeradas a continuación:

■ GitBook

■ Travis-CI

Capítulo 2

Desarrollo

En el capítulo anterior se ha descrito el estado del arte actual y se ha definido el Trabajo de Fin de Máster, especificado los objetivos, actividades a desarrollar y las tecnologías empleadas para su desarrollo. A continuación, se describirá la metodología de trabajo seguida.

2.1. Metodología usada

Se ha llevado a cabo una metodología de trabajo ágil, común en el campo de la Ingeniería Informática, con reuniones quincenales en las que se definían una serie de tareas u objetivos (iteración) y que se presentaban la siguiente quincena. De este modo, con la entrega de prototipos funcionales de la aplicación, se han ido testeando, corrigiendo y mejorando las funcionalidades, al mismo tiempo que detectando problemas no contemplados en las fases previas de diseño.

Esta metodología, además, ha propiciado la generación de ideas que se han traducido en nuevas características.

2.1.1. GitHub

Para llevar a cabo esta metodología, se ha usado GitHub como herramienta de Control de Versiones (CVS). Todo el código implementado se alojaba en dicha herramienta, permitiendo así su cómoda modificación y actualización.

Figura 2.1: Captura del repositorio del paquete NPM en GitHub

El trabajo se dividía en ramas, de modo que la versión estable de la aplicación (rama master) quedara aislada de la versión en desarrollo (rama develop) y de la rama experimental (rama test).

Figura 2.2: Ramas del repositorio

La documentación adicional para llevar a cabo los desarrollos de cada iteración, así como los problemas detectados, se anotaban en el apartado de issues con el fin de que quedara constancia de ello y se reflejara el estado en el que se encontraba cada uno.

Figura 2.3: Apartado de issues

2.1.2. Travis-CI

Como herramienta de integración continua, se ha utilizado Travis-CI, con el fin de asegurarnos el despliegue de la aplicación era satisfactorio tras cada cambio subido a la herramienta de control de versiones (GitHub).

Figura 2.4: Herramienta de integración continua

2.1.3. Experiencia de usuario

Por otra parte, el tutor del Trabajo de Fin de Máster ha hecho pruebas reales con el resultado de cada iteración. De este modo, se comprobaba el funcionamiento de la aplicación en un entorno real y se recibía un valioso feedback para corregir problemas o hacer mejoras en las siguientes iteraciones.

Capítulo 3

Resultados

Finalizada la etapa de desarrollo del Trabajo de Fin de Máster, se procede a describir la herramienta implementada.

La herramienta se ha denominado ghhell, abreviatura de 'GitHub Shell'. Se ha publicado en NPM[?] para su fácil distribución e instalación:

Figura 3.1: Página del gestor de paquetes NPM

Las funcionalidades implementadas en ghshell, se describen a continuación.

3.1. Funcionalidades requeridas

3.1.1. Autenticación con GitHub

Una vez que el usuario se autentifica con GitHub, se genera un token personal, que se usa posteriormente para acceder a la API de Github. Este token se almacena cifrado en el equipo del usuario, por lo que las siguientes ocasiones que utilice la herramienta no hará falta que vuelva a iniciar sesión:

Figura 3.2: Login de usuario

Figura 3.3: Usuario autenticado

Figura 3.4: Token personal en GitHub

Figura 3.5: Login automático una vez generado el token

Si el usuario cierra sesión en la herramienta, se eliminará el token en GitHub y en el equipo:

```
ghshell > logout
Local credentials cleared

ghshell > login
Enter your GitHub credentials:
User:
```

Figura 3.6: Logout de usuario

3.1.2. Listar organizaciones, asignaciones y repositorios de GitHub del usuario

Con el comando 'orgs -l', se puede listar las organizaciones del usuario y usando 'repos -l', se listarán los repositorios del usuario. También se puede acceder 'virtualmente' a las organizaciones y listar los repositorios que contiene, así como las asignaciones.

NOTA: se puede consultar toda la información referente a los comandos del programa en el Apéndice 2.

```
ghshell > orgs -l
DSI-ETSII-ULL ULL-ESIT-GRADOII-TFG ULL-ESIT-TFM-test-evaluation-shell
ghshell > ■
```

Figura 3.7: Lista de organizaciones del usuario

```
ghshell > orgs
Select organization (left empty for cancel the action): ULL-ESIT-GRADOII-TFG

ghshell (ULL-ESIT-GRADOII-TFG) > repos -l
teachers_pet plugin-exercises ruql ghedsh gitbook-plugin-jazer rege
xp-gbp tott-gulpjs rudolf-cicko-17 Memoria-TFG-Cicko TFG-Eleazar-17
TFG-Memoria-Eleazar-17 ghshell
ghshell (ULL-ESIT-GRADOII-TFG) > ■
```

Figura 3.8: Lista de repositorios de una organización

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > assignments /evaluar/
evaluar-rutas-jjlabrador
evaluar-rutas-crguezl
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura 3.9: Asignaciones dentro de otra organización

También es posible acceder 'virtualmente' a los repositorios y realizar acciones sobre ellos:

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > repos
Select repository (left empty for cancel the action): evaluar-rutas-jjlabrador
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura 3.10: Acceso a un repositorio de una organización

3.1.3. Automatizar la descarga de repositorios

En función del contexto dónde nos encontremos dentro de la herramienta, podremos:

- Clonar el repositorio en el que nos encontremos.
- Clonar un repositorio determinado.
- Clonar todos los repositorios que coincidan con una determinada expresión regular.
- Clonar todos los repositorios de una asignación que coincidan con una determinada expresión

El clonado se realiza de manera asíncrona, por lo que podemos seguir trabajando mientras se clona(n) el/los repositorio(s). Se puede observar el estado de la clonación revisando el fichero de log que se genera: <nombre-repositorio >-clone.log.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) > clone
Cloning evaluar-rutas-jjlabrador... (see evaluar-rutas-jjlabrador-clone.log for more information)
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura 3.11: Clonado del repositorio donde nos encontramos

Si clonamos repositorios que pertenece a una organización, se creará una carpeta con el nombre de la organización y en su interior se guardarán los repositorios clonados.

Además, si clonamos repositorios que pertenecen a una asignación, también se creará una carpeta con el nombre de la asignación que los contendrá.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > assignments /evaluar/ clone
cloning evaluar-rutas-jjlabrador... (see evaluar-rutas-jjlabrador-clone.log for more information)
cloning evaluar-rutas-crguezl... (see evaluar-rutas-crguezl-clone.log for more information)
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura 3.12: Clonado de asignaciones que coinciden con una expresión regular

```
juanjose@Sobremesa:/tmp/TFM$ tree -L 3

install.sh

ULL-ESIT-TFM-test-evaluation-shell

evaluar-rutas

evaluar-rutas-crguezl

evaluar-rutas-crguezl-clone.log

evaluar-rutas-jjlabrador

evaluar-rutas-jjlabrador

directories, 3 files
juanjose@Sobremesa:/tmp/TFM$
```

Figura 3.13: Resultado del clonado

3.1.4. Automatizar la ejecución de scripts en los repositorios

En función del contexto donde nos encontremos dentro de la herramienta, podremos:

- Ejecutar un script en el repositorio en el que nos encontremos.
- Ejecutar un script en un determinado repositorio.
- Ejecutar un script en todos los repositorios que coincidan con una determinada expresión regular.
- Ejecutar un script en todos los repositorios de una asignación coincidan con una determinada expresión regular.

La ruta del fichero del script puede ser absoluta o relativa. Estos scripts puede ser de cualquier tipo: TDD, creación de entorno, evaluación de código...

La ejecución de cada script se ejecuta en un proceso hijo independiente pero, a diferencia del clonado, el script se ejecuta línea a línea de manera síncrona. Se puede observar el estado de la ejecución del script y los resultados revisando el fichero de log que se genera: <nombre-repositorio >- <nombre-script >.log

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) > script install.sh

Execution of install.sh in evaluar-rutas-jjlabrador has finished

ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura 3.14: Ejecución del script 'install.sh' en el repositorio actual

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > assignments /evaluar/ script install.sh
Execution of install.sh in evaluar-rutas-jjlabrador has finished
Execution of install.sh in evaluar-rutas-crguezl has finished
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura 3.15: Ejecución del script 'install.sh' en asignaciones que coinciden con una expresión regular

Figura 3.16: Resultado de la ejecución del script 'install.sh'

3.1.5. Recopilar la información obtenida de la automatización de tareas

Una vez ejecutados los scripts necesarios para evaluar un determinado repositorio, es posible generar un GitBook con el resultado de la ejecución de los mismos. Este libro se genera en formato PDF y en HTML.

En función del contexto dónde nos encontremos dentro de la herramienta, podremos:

- Crear un GitBook en el repositorio en el que nos encontremos.
- Crear un GitBook en un determinado repositorio.
- Crear un GitBook en todos los repositorios que coincidan con una determinada expresión regular.
- Crear un GitBook en todos los repositorios de una asignación coincidan con una determinada expresión regular.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) > book
Book evaluar-rutas-jjlabrador created successfully!
Book evaluar-rutas-jjlabrador exported to PDF successfully!
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura 3.17: Creación del Gitbook en el repositorio actual

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > assignments /evaluar/ book
Book evaluar-rutas-jjlabrador created successfully!
Book evaluar-rutas-jjlabrador exported to PDF successfully!
Book evaluar-rutas-crguezl created successfully!
Book evaluar-rutas-crguezl exported to PDF successfully!
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura 3.18: Creación del Gitbook en asignaciones que coinciden con una expresión regular

```
juanjose@Sobremesa:/tmp/TFM$ tree -L 3
    install.sh
    ULL-ESIT-TFM-test-evaluation-shell
        evaluar-rutas
            evaluar-rutas-crguezl
            evaluar-rutas-crquezl-clone.log
           evaluar-rutas-crguezl_gitbook
            evaluar-rutas-crguezl-gitbook_build.out
            evaluar-rutas-crguezl-gitbook_pdf.out
            evaluar-rutas-crguezl-install.sh.log
          - evaluar-rutas-crguezl.pdf
           - evaluar-rutas-jjlabrador
           evaluar-rutas-jjlabrador-clone.log
           evaluar-rutas-jjlabrador_gitbook
           evaluar-rutas-jjlabrador-gitbook build.out
            evaluar-rutas-jjlabrador-gitbook_pdf.out
            evaluar-rutas-jjlabrador-install.sh.log
            evaluar-rutas-jjlabrador.pdf
6 directories, 11 files
juanjose@Sobremesa:/tmp/TFM$
```

Figura 3.19: Resultado de la creación del Gitbook

[Imagen HTML] [Imagen PDF]

3.2. Funcionalidades extra

Además de las funcionales solicitadas en este Trabajo de Fin de Máster, se han añadido una serie de funcionalidades extra que, a pesar de no ser requeridas, brindan al usuario de una mejor experiencia de uso del programa:

• Autocompletado de los comandos disponibles, pulsando tabulador, en función del contexto donde nos encontremos (nivel principal, organización o repositorio:

```
ghshell >
back clone exit help login logout orgs pwd repos
ghshell > log
login logout
```

Figura 3.20: Autocompletado de comandos

Además, también es posible autocompletar los nombres de las organizaciones y repositorios, haciendo mucho más fácil su escritura:

Figura 3.21: Autocompletado de organizaciones

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > repos
Select repository (left empty for cancel the action):
evaluar-rutas-crguezl evaluar-rutas-jjlabrador repo1
tarea1-jjlabrador tarea1-tutu test-repo

Select repository (left empty for cancel the action): evaluar-rutas-
evaluar-rutas-crguezl evaluar-rutas-jjlabrador

Select repository (left empty for cancel the action): evaluar-rutas-
```

Figura 3.22: Autocompletado de repositorios

 Opción de ayuda que muestra la descripción de los comandos y cómo se utilizan. Esta ayuda varía dependiendo del contexto donde nos encontremos:

```
hshell > help
COMMAND
                     DESCRIPTION
                                                                                                                       USAGE
                     return from a repository or organization to the main level clone current repository (if we're inside) clone repositories that match with string/regexp
back
clone
                                                                                                                                 string | /regexp/
exit
help
login
logout
orgs
                                                                                                                               -l
pwd
repos
                                                                                                                                 string | /regexp/
```

Figura 3.23: Ayuda global

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > help

COMMAND

assignments

List the assignments that match with string/regexp
clone the assignments that match with string/regexp
exec a script on assignments that match with string/regexp
NOTE: file's path can be absolute or relative

back
return from a repository or organization to the main level
book
create a Gitbook for the current repository (if we're inside)
create a Gitbook for the repositories that match with string/regexp
clone clone current repository (if we're inside)
clone repositories that match with string/regexp
exit
cause normal ghshell termination
help
pwd
show the ghshell's current working path
repos
select a repository
list all the repositories
list the repositories that match with string/regexp
exec a script on current repository (if we're inside)
exec a script on repositories that match with regexp
NOTE: file's path can be absolute or relative

ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura 3.24: Ayuda en el contexto de organización

 Opción de visualizar el directorio de trabajo donde se ha ejecutado el programa. Útil para determinar rutas relativas de los scripts que se desean ejecutar.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > pwd
/tmp/TFM
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura 3.25: Directorio actual de trabajo

 Opción para conocer el propietario de cada repositorio. En el caso de que el repositorio pertenezca a una organización, mostrará los contribuyentes de ese repositorio.

```
ghshell (TFM-SyTWA) > owner
Owner: jjlabrador
ghshell (TFM-SyTWA) >
```

Figura 3.26: Propietario del repositorio

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) > owner
Owner: ULL-ESIT-TFM-test-evaluation-shell
Contributors: jjlabrador
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura 3.27: Contribuyentes del repositorio

NOTA: se puede consultar toda la información referente a los comandos del programa en el Apéndice 2.

3.3. Problemas encontrados y soluciones

A continuación se detallan los problemas encontrados durante la implementación de la herramienta y las soluciones encontradas para los mismos:

3.3.1. Asincronía

Una de las características más importantes del lenguaje Node.js es la asincronía. Usa un modelo de operaciones de entrada/salida sin bloqueo y orientado a eventos, que lo hace ligero y eficiente. Sin embargo, algunas acciones que debía realizar esta herramienta debían de ser síncronas. Ej: login del usuario y ejecución de scripts.

Solución

La solución a este comportamiento pasó por realizar un amplio estudio de la documentación para usar mecanismos que permitieran bloquear la ejecución de la herramienta en las partes que deseábamos. Los mecanismos usados han sido:

• Funciones síncronas del propio lenguaje.

- Promesas
- Métodos async/await
- Librerías con métodos implementados de manera síncrona.

3.3.2. Autocompletado de comandos

Para el manejo de los flujos de lectura y escritura estándar de la herramienta, se ha utilizado la interfaz nativa de Node.js (Readline). Esta interfaz provee de una función de autocompletado para el texto que escribe el usuario.

Sin embargo, sólo funciona con la primera palabra (comando) que escribe. Tras investigar al respecto y buscar posibles librerías alternativas, no existía ninguna solución que corrigiera este comportamiento.

Solución

Realizando numerosas pruebas, se halló una manera propia de conseguir completar más de un comando en la misma línea. Cuando realice los test de aceptación pertinentes requeridos por la comunidad de Node, solicitaré un Pull Request a su repositorio con esta mejora.

3.4. Perfil del usuario de ghshell

El uso de ghshell está especialmente dirigido a un determinado grupo de profesores: nos referimos al perfil de un profesor, principalmente docente en alguna rama de Ingeniería, con conocimientos avanzados en programación y en herramientas de control de versiones.

No obstante, ya que la curva de aprendizaje de ghshell no es excesiva y dado que el uso de las herramientas de control de versiones no se limita exclusivamente a repositorios de código fuente, se puede extender su uso para el resto de profesorado y usuarios con otros roles. Basta con tener claras unas nociones básicas de informática, junto con la lectura y asimilación previa de la documentación de la herramienta.

Capítulo 4

Conclusiones y líneas futuras

Desde hace unos años hasta ahora, ha tenido lugar un enorme crecimiento de las herramientas de control de versiones. Se han convertido en una herramienta imprescindible en la metodologías de desarrollo del software y las instituciones de enseñanza saben que incorporarlas a sus sistemas educativos es clave para ofrecer un servicio puntero y de calidad.

Ésto es lo que se pretende con la herramienta obtenida tras la realización de este Trabajo de Fin de Máster: que sea posible su implantación dentro del marco académico de la Universidad de La Laguna, partiendo de la premisa de que, actualmente, el desarrollo de un proyecto software sin tener detrás un sistema de control de versiones, no es viable.

La automatización de las tareas de clonado y ejecución de pruebas facilitaría al profesor, en primera instancia, la corrección de las prácticas y proyectos de los alumnos. El ahorro de tiempo de ejecutar estas tareas manualmente es considerable, teniendo en cuenta el número de prácticas que realiza cada alumno por asignatura. Esta enorme carga de trabajo del profesor puede ser aprovechada en otros ámbitos docentes.

Por otra parte, esta herramienta sienta las bases a posibles desarrollos futuros, ampliando las funcionalidades de la misma. Se ha desarrollado pensando en su posible escalabilidad y ya que cuenta con toda la estructura base creada (autentificación de usuarios, clonado, ejecución y reporte de resultados), se pueden añadir funcionalidades sin demasiado esfuerzo. Para concluir, podemos afirmar que los objetivos marcados al comienzo de este Trabajo de Fin de Máster han sido cumplidos y las principales líneas de desarrollo a continuar podrían ser las enumeradas a continuación:

- Dotar de más funcionalidad de GitHub a la herramienta:
 - Subir cambios a los repositorios (git push).
 - Crear issues.
 - Gestionar Pull Requests.
 - Buscar repositorios.
 - Gestión de permisos de usuarios a repositorios y organizaciones.
 - Gestionar Classrooms.
- Enriquecer el formato de la documentación generada.
- Realizar despliegues locales de aplicaciones web (como procesos hijos de la herramienta).

Capítulo 5

Summary and Conclusions

This chapter is compulsory. The memory should include an extended summary and conclusions in english.

5.1. First Section

Capítulo 6

Presupuesto

En este capítulo se especifica un presupuesto que indica cuánto costaría realizar este Trabajo de Fin de Máster si se tratase de un trabajo encargado por un cliente.

6.1. Introducción y coste por hora

Se definirá una tabla con la lista de actividades realizadas en este Trabajo de Fin de Máster. Otra columna indicará la duración en horas que se han empleado para dicha actividad junto con el precio por hora calculado.

El precio por hora que se considerará en este presupuesto es de 30€/hora.

6.2. Funcionalidades requeridas

Actividad	Duración	Precio
Autenticación con GitHub	40 horas	1200 €
Listar organizaciones, asignaciones y	35 horas	1050 €
repositorios		
Automatizar la descarga de reposito-	25 horas	750 €
rios		
Automatizar la ejecución de scripts	60 horas	1800 €
en los repositorios		
Exportar la información obtenida de	16 horas	480 €
la automatización de tareas		
Subtotal	176 horas	5280 €

Cuadro 6.1: Tabla de actividades, duración y precios de las funcionalidades requeridas

6.3. Funcionalidades extra

Actividad	Duración	Precio
Autocompletado de comandos según	35 horas	1050 €
contexto		
Opción de ayuda según contexto	20 horas	600 €
Visualización del directorio de traba-	1 horas	30 €
jo actual		
Opción para conocer propietarios del	1 horas	30 €
repositorio		
Subtotal	57 horas	1710 €

Cuadro 6.2: Tabla de actividades, duración y precios de las funcionalidades extra

6.4. Coste y duración total

Actividad	Duración	Precio
Funcionalidades requeridas	176 horas	5280 €
Funcionalidades extra	57 horas	1710 €
Total	233 horas	6990 €

Cuadro 6.3: Precio y duración total

Apéndice A

Glosario

A

AJAX : acrónimo de Asynchronous JavaScript And XML (JavaScript asíncrono y XML). Es una técnica de desarrollo web para crear aplicaciones interactivas o RIA (Rich Internet Applications). Estas aplicaciones se ejecutan en el cliente, es decir, en el navegador de los usuarios mientras se mantiene la comunicación asíncrona con el servidor en segundo plano. De esta forma es posible realizar cambios sobre las páginas sin necesidad de recargarlas, mejorando la interactividad, velocidad y usabilidad en las aplicaciones.

API : (Application Programming Interface o Interfaz de Programación de Aplicaciones). Conjunto de funciones y procedimientos o métodos que ofrece cierta librería para ser utilizados por otro software como una capa de abstracción.

Asíncrono (método) : comportamiento de una función de un lenguaje de programación que ejecuta instrucciones sin causar bloqueos. No espera que finalice la ejecución de la primera instrucción para continuar con la siguiente.

Asignación: funcionalidad que provee GitHub Classroom, que se configura usando un repositorio como plantilla y genera copias del mismo a todo aquel que acepte esa asignación. Las asignaciones se comparten mediante enlaces.

Async/Await : funcionalidad de Node.js introducida a partir de la versión 7.6 que evita la anidación de callbacks o secuencias de operaciones asíncronas. Permite serializar el código como una secuencia de operaciones síncronas.

C

<u>Callback</u>: función que se usa como argumento de otra y que se ejecuta cuando se invoca ésta última.

CVS: (Control Versioning System o Sistema de Control de Versiones). Aplicación informática que implementa un sistema de control de versiones: mantiene el registro de todo el trabajo y los cambios en los ficheros (código fuente principalmente) que forman un proyecto y permite la colaboración entre distintos desarrolladores.

G

GitBook: herramienta que permite elaborar documentación de manera rápida usando Markdown como lenguaje de marcado. Esta documentación se puede publicar de manera online como página web o generar Ebooks (en formato ePub, Mobi o PDF). Además, se integra fácilmente con el sistema de control de versiones de GitHub. Para más información, visitar https://www.gitbook.com.

<u>GitHub</u>: forja para alojar proyectos utilizando el Sistema de Control de Versiones **Git**. Para más información, visitar https://github.com.

GitHub Classroom: herramienta de GitHub que automatiza la creación de repositorios y el control de acceso a ellos, distribuyendo el código inicial de manera sencilla y mostrando las asignaciones que se han creado. Para más información, visitar https://classroom.github.com/.

${f H}$

HTML5 : (HyperText Markup Language). Lenguaje de marcado para la elaboración de páginas web. Es un estándar que sirve de referencia para la elaboración de páginas web definiendo una estructura básica y un código para la definición del contenido de la misma.

J

<u>JavaScript</u>: lenguaje de programación interpretado. Se define como orientado a objetos, basado en prototipos, imperativo, débilmente tipado y dinámico. Se utiliza principalmente en su forma del lado del cliente (*client-side*), implementado como parte de un navegador web permitiendo mejoras en la interfaz de usuario y páginas web dinámicas, aunque actualmente está en auge su utilización en lado del servidor.

\mathbf{M}

Metodologias ágiles : conjunto de métodos de ingeniería del software basados en el desarrollo iterativo e incremental, donde los requisitos y soluciones evolucionan mediante la colaboración de grupos auto organizados y multidisciplinarios. Se caracterizan además por la minimización de riesgos desarrollando software en iteraciones cortas de tiempo.

$\mathbf N$

Node.js: entorno de ejecución para JavaScript construido con el motor de JavaScript V8 de Chrome. Node.js usa un modelo de operaciones E/S sin bloqueo y orientado a eventos, que lo hace ligero y eficiente. Para más información, visitar https://nodejs.org.

<u>NPM</u>: gestor de paquetes de Node.js, que cuenta con el mayor ecosistema de librerías JavaScript de código abierto. Para más información, visitar https://www.npmjs.com/.

Organización : conjunto de cuentas de GitHub que comparten proyectos y pueden colaborar entre sí.

P

<u>Promesa</u>: característica que da otra solución para evitar las callback. Las promesas representan el resultado de una operación asíncrona y que, cuando finaliza esa ejecución, continúan ejecutando el resto del código.

${ m R}$

Repositorio: carpeta contenedora de un proyecto que, además de contener los ficheros, almacena el control de versiones de los mismos.

S

<u>Student Developer Pack</u>: pack de herramientas de desarrollo y mantenimiento del software gratuito para estudiantes. Para más información, visitar https://education.github.com/pack.

<u>Síncrono</u>: comportamiento de una función de un lenguaje de programación que ejecuta instrucciones de código una a una, esperando que se devuelva el resultado de la primera para continuar con ejecución de la siguiente.

${ m T}$

<u>Travis-CI</u>: herramienta de integración continua que realiza la compilación y despliegue de aplicaciones, así como la ejecución de pruebas automáticas, para asegurar la calidad del código y detectar errores con rapidez. Para más información, visitar https://travis-ci.org/

<u>TDD</u>: (*Test-Driven Development* o Desarrollo Dirigido por Pruebas). Práctica de programación que involucra otras dos prácticas: escribir las pruebas primero (*Test First Development*) y Refactorización de código (*Refactoring*).

<u>Token</u> : objecto usado por un cliente para autentificarse a sí mismo, en lugar de utilizar usuario y contraseña. El token define los privilegios que tiene el cliente.

Web semántica: idea de añadir metadatos semánticos y ontológicos a la World Wide Web. Esas informaciones adicionales, que describen el contenido, el significado y la relación de los datos, se deben proporcionar de manera formal, para que sea posible evaluarlas automáticamente por máquinas de procesamiento. El objetivo es mejorar Internet ampliando la interoperabilidad entre los sistemas informáticos usando agentes inteligentes, es decir, programas en las ordenadores que buscan información sin necesidad de interacción humana.

World Wide Web: (WWW). Sistema de distribución de documentos de hipertexto o hipermedios interconectados y accesibles vía Internet. Con un navegador web, un usuario visualiza sitios web compuestos de páginas web que pueden contener texto, imágenes, vídeos u otros contenidos multimedia, y navega a través de esas páginas usando hiperenlaces.

Apéndice B

Guía de uso

El objetivo de esta guía de usuario es proporcionar a los usuarios un ejemplo para la puesta a punto y ejecución de las funcionalidades implementadas en el paquete NPM ghshell durante el Trabajo de Fin de Máster.

B.1. Instalación

B.1.1. Requisitos

Node.js versión >= 8:
 Descargable desde la página oficial de Node.js (https://nodejs.org/en/download/current/).

B.1.2. Dependencias

Para poder generar los libros usando Gitbook, son necesarias las siguientes dependencias:

■ Paquete de Gitbook (https://www.npmjs.com/package/gitbook-cli):

Para instalarlo, basta con ejecutar el siguiente comando:

[~]\$ npm install -g gitbook-cli

Aplicación Calibre (https://calibre-ebook.com/download)
 Para instalarla, basta con ejecutar el siguiente comando:

[~]\$ sudo aptitude install calibre

NOTA: en algunas distribuciones GNU/Linux, node es instalado como nodejs, por lo que es necesario crear un enlace simbólico:

[~]\$ sudo ln -s /usr/bin/nodejs /usr/bin/node

B.1.3. Instalación

Para instalar el paquete ghshell, basta con ejecutar el siguiente comando:

[~]\$ npm install -g ghshell

B.2. Ejecución

B.2.1. Primeros pasos

Para ejecutar el programa, basta con ejecutar el siguiente comando en la consola:

[~]\$ ghshell

B.2.2. Iniciar/Cerrar sesión

Iniciar o cerrar sesión. Comandos 'login' y 'logout'.

ghshell > login
ghshell > logout

La primera vez que se ejecuta el programa, pedirá directamente el usuario y contraseña de GitHub:

Figura B.1: Login de usuario

Figura B.2: Usuario autenticado

Una vez que el usuario se autentifica con GitHub, se genera un token personal, que se usa posteriormente para acceder a la API de Github. Este token se almacena cifrado en el equipo del usuario, por lo que las siguientes ocasiones que utilice la herramienta no hará falta que vuelva a iniciar sesión:

Figura B.3: Token personal en GitHub

Figura B.4: Login automático una vez generado el token

Si el usuario cierra sesión en la herramienta, se eliminará el token en GitHub y en el equipo:

```
ghshell > logout
Local credentials cleared

ghshell > login
Enter your GitHub credentials:
User:
```

Figura B.5: Logout de usuario

B.2.3. Contexto principal

Una vez autentificados, en el menú principal podremos hacer las siguientes acciones:

■ Mostrar la ayuda. Comando 'help'.

```
ghshell > help
```

En función del contexto donde nos encontremos, se mostrarán diferentes opciones en la ayuda.

```
COMMAND
                                                                                                    USAGE
                  DESCRIPTION
                  return from a repository or organization to the main level clone current repository (if we're inside)
back
clone
                                                                                                            string | /regexp/
exit
help
login
logout
orgs
                                                                                                           -l
pwd
repos
                                                                                                            string | /regexp/
```

Figura B.6: Ayuda global

■ Mostrar el directorio de trabajo actual. Comando 'pwd'.

```
ghshell > pwd
```

Visualiza el directorio de trabajo donde se ha ejecutado el programa:

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > pwd
/tmp/TFM
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura B.7: Directorio actual de trabajo

NOTA: este comando tiene el mismo comportamiento si nos encontramos dentro de una organización o dentro de un repositorio de una organización.

■ Listar y acceder a organizaciones. Comando 'orgs'.

```
ghshell > orgs [-1]
```

Si se ejecuta el comando sin argumentos, pregunta al usuario a qué organización quiere acceder. Se puede usar la tecla tabulador para ver las organizaciones disponibles.

Figura B.8: Acceso a una organización

El prompt de la consola cambiará para indicarnos que nos encontramos dentro de la organización.

Si se ejecuta el comando con la opción '-l', simplemente lista las organizaciones a las que pertenece el usuario.

```
ghshell > orgs -l
DSI-ETSII-ULL  ULL-ESIT-GRADOII-TFG  ULL-ESIT-TFM-test-evaluation-shell
ghshell > ■
```

Figura B.9: Lista de organizaciones del usuario

Listar y acceder a repositorios. Comando 'repos'.

```
ghshell > repos [-1] [string | /regexp/]
```

Si se ejecuta el comando sin argumentos, pregunta al usuario a qué repositorio quiere acceder. Se puede usar la tecla tabulador para ver los repositorios disponibles.

```
ghshell > repos
Select repository (left empty for cancel the action): TF
TFG-SyTW    TFM-SyTWA
Select repository (left empty for cancel the action): TFM-SyTWA
ghshell (TFM-SyTWA) >
```

Figura B.10: Acceso a un repositorio

El prompt de la consola cambiará para indicarnos que nos encontramos dentro de un repositorio.

Si se ejecuta el comando con la opción '-l', simplemente se listan los repositorios que pertenecen al usuario.

```
ghshell > repos -l
ghshell > a-sip-of-coffee antire_book Awesome-Hacking awesome-python awesome-sysadmin cakephp-
20-draw-curso cakephp-draw-curso-avanzado capybara CodeMirror concercita concercita2 datamap
per_example developer-roadmap django-bootstrap-toolkit dont_panic ETSII-git Font-Awesome fre
e-for-dev free-programming-books front-end-handbook-2017 game-of-life GDGInvento git-prompt
gitbook gitflow google-drive-ruby Hadoop-MapReduce haml haml_kate jornadasdeinnovacion2014
jQuery-contextMenu librojquery material-projs Modbus MyFirstApp MyFirstBook NfcReader nod
e nodeTube oh-my-zsh ParadisEO_example Presentacion-TFG-SyTW quizcas ruql sass Sense S
inatra-base-example sinatra-book sinatra-recipes sinatra-rest-api-example sinatra-up-and-running
    system-design-primer TFG-SyTW TFM-SyTWA tips TouristFriend utils web-starter-kit
```

Figura B.11: Listado de repositorios del usuario

Si se especifica como argumento un string o expresión regular, se mostrarán los repositorios que coincidan con ese argumento:

```
ghshell > repos /^TF/
TFG-SyTW TFM-SyTWA
ghshell >
```

Figura B.12: Listado de repositorios del usuario que coinciden con el argumento pasado

NOTA: este comando tiene el mismo comportamiento si nos encontramos dentro de una organización.

Figura B.13: Acceso a un repositorio dentro de una organización

```
ghshell (ULL-ESIT-GRADOII-TFG) > repos -l
teachers_pet plugin-exercises ruql ghedsh gitbook-plugin-jazer regexp-gbp tott-gulpjs rudo
lf-cicko-17 Memoria-TFG-Cicko TFG-Eleazar-17 TFG-Memoria-Eleazar-17 ghshell TFM-SyTWA
ghshell (ULL-ESIT-GRADOII-TFG) >
```

Figura B.14: Listado de repositorios de una organización

```
ghshell (ULL-ESIT-GRADOII-TFG) > repos /^g/
ghedsh gitbook-plugin-jazer ghshell
ghshell (ULL-ESIT-GRADOII-TFG) >
```

Figura B.15: Listado de repositorios de una organización que coinciden con el argumento pasado

• Clonar repositorios. Comando 'clone'.

```
ghshell > clone string | /regexp/
```

Al especificar el argumento como un string o expresión regular, se clonarán todos los repositorios que coincidan con ese argumento.

```
ghshell > clone TFM-SyTWA

Cloning TFM-SyTWA... (see <a href="mailto:TFM-SyTWA-clone.log">TFM-SyTWA...</a> for more information)

ghshell >
```

Figura B.16: Clonado de repositorios que coinciden con el string pasado

```
ghshell > clone /^TF/
Cloning TFG-SyTW... (see <u>TFG-SyTW-clone.log</u> for more information)
Cloning TFM-SyTWA... (see <u>TFM-SyTWA-clone.log</u> for more information)
ghshell >
```

Figura B.17: Clonado de repositorios que coinciden con la regexp pasada

El clonado se realiza de manera asíncrona, por lo que podemos seguir trabajando mientras se clona(n) el/los repositorio(s). Se puede observar el

estado de la clonación revisando el fichero de log que se genera: <nombre-repositorio>-clone.log.:

```
juanjose@Sobremesa:/tmp/TFM$ tree -L 1

TFG-SyTW
TFG-SyTW-clone.log
TFM-SyTWA
TFM-SyTWA-clone.log

2 directories, 2 files
juanjose@Sobremesa:/tmp/TFM$
```

Figura B.18: Resultado del clonado de repositorios

Los fichero de log muestran la información del clonado. Se ha añadido una huella de tiempo para tener un control más exacto sobre cuándo ocurre cada evento:

```
[2017/07/02-01:20:47] Clonar en «TFM-SyTWA»...
[2017/07/02-01:20:48] remote: Counting objects: 92, done.
[2017/07/02-01:20:48] remote: Compressing objects:
                                                      1% (1/65)
remote: Compressing objects:
                                3% (2/65)
remote: Compressing objects:
                                4% (3/65)
remote: Compressing objects:
                                6% (4/65)
remote: Compressing objects:
                                7% (5/65)
remote: Compressing objects:
                                9% (6/65)
remote: Compressing objects:
                               10% (7/65)
remote: Compressing objects:
                               12% (8/65)
remote: Compressing objects:
                               13% (9/65)
remote: Compressing objects:
                               15% (10/65)
                               16% (11/65)
remote: Compressing objects:
remote: Compressing objects:
                               18% (12/65)
[2017/07/02-01:20:48] remote: Compressing objects:
                                                     20% (13/65)
                               21% (14/65)
remote: Compressing objects:
remote: Compressing objects:
                              23% (15/65)
remote: Compressing objects:
                               24% (16/65)
remote: Compressing objects:
                              26% (17/65)
remote: Compressing objects:
                              27% (18/65)
remote: Compressing objects:
                               29% (19/65)
```

```
30% (20/65)
remote: Compressing objects:
remote: Compressing objects:
                               32% (21/65)
remote: Compressing objects:
                               33% (22/65)
remote: Compressing objects:
                               35% (23/65)
                               36% (24/65)
remote: Compressing objects:
remote: Compressing objects:
                               38% (25/65)
                               40% (26/65)
remote: Compressing objects:
                               41% (27/65)
remote: Compressing objects:
remote: Compressing objects:
                               43% (28/65)
remote: Compressing objects:
                               44% (29/65)
                               46% (30/65)
remote: Compressing objects:
                               47% (31/65)
remote: Compressing objects:
                               49% (32/65)
remote: Compressing objects:
                               50% (33/65)
remote: Compressing objects:
                               52% (34/65)
remote: Compressing objects:
                               53% (35/65)
remote: Compressing objects:
                               55% (36/65)
remote: Compressing objects:
remote: Compressing objects:
                               56% (37/65)
remote: Compressing objects:
                               58% (38/65)
                               60% (39/65)
remote: Compressing objects:
remote: Compressing objects:
                               61% (40/65)
                               63% (41/65)
remote: Compressing objects:
remote: Compressing objects:
                               64% (42/65)
                               66% (43/65)
remote: Compressing objects:
remote: Compressing objects:
                               67% (44/65)
remote: Compressing objects:
                               69% (45/65)
remote: Compressing objects:
                               70% (46/65)
remote: Compressing objects:
                               72% (47/65)
remote: Compressing objects:
                               73% (48/65)
                               75% (49/65)
remote: Compressing objects:
remote: Compressing objects:
                               76% (50/65)
                               78% (51/65)
remote: Compressing objects:
remote: Compressing objects:
                               80% (52/65)
                               81% (53/65)
remote: Compressing objects:
                               83% (54/65)
remote: Compressing objects:
                               84% (55/65)
remote: Compressing objects:
remote: Compressing objects:
                               86% (56/65)
                               87% (57/65)
remote: Compressing objects:
remote: Compressing objects:
                               89% (58/65)
                               90% (59/65)
remote: Compressing objects:
                               92% (60/65)
remote: Compressing objects:
                               93% (61/65)
remote: Compressing objects:
                               95% (62/65)
remote: Compressing objects:
```

```
remote: Compressing objects: 96% (63/65)
remote: Compressing objects: 98% (64/65)
remote: Compressing objects: 100% (65/65)
remote: Compressing objects: 100% (65/65), done.

[2017/07/02-01:20:49] remote: Total 92 (delta 25), reused 92 (delta 25)
[2017/07/02-01:20:49] Comprobando la conectividad...
```

■ Salir del programa. Comando 'exit'.

[2017/07/02-01:20:49] hecho.

Causa el cierre ordenado del programa.

NOTA: este comando tiene el mismo comportamiento si nos encontramos dentro de una organización o dentro de un repositorio de una organización.

B.2.4. Contexto de organización

Los comandos 'pwd', 'repos', 'clone' y 'exit' tienen el mismo comportamiento que en el contexto principal. Además, en el caso del comando 'clone', se creará una carpeta con el nombre de la organización en la que nos encontremos y en ella se guardarán todos los repositorios clonados.

• Mostrar la ayuda. Comando 'help'.

```
ghshell > help
```

En función del contexto donde nos encontremos, se mostrarán diferentes opciones en la ayuda.

```
| Section | Command | Comm
```

Figura B.19: Ayuda en el contexto de organización

Salir del contexto actual. Comando 'back'.

```
ghshell > back
```

Si nos encontramos en un repositorio propio o en una organización, regresamos al contexto principal. Si nos encontramos dentro de un repositorio de una organización, regresamos al contexto de la organización.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > back
ghshell >
```

Figura B.20: Regreso al contexto principal desde una organización

```
ghshell > repos
Select repository (left empty for cancel the action): TFM-SyTWA
ghshell (TFM-SyTWA) > back
ghshell >
```

Figura B.21: Regreso al contexto principal desde un repositorio

• Ejecutar un script determinado. Comando 'script'.

```
ghshell > script <file> /regexp/
```

Este comando sirve para ejecutar un script. La ruta del fichero del script puede ser absoluta o relativa.

Al especificar una expresión regular, se ejecutará el script en todos los repositorios que coincidan con la expresión regular indicada.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > script install.sh /test/
Execution of install.sh in test-repo has finished
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura B.22: Ejecución de script en repositorios que coinciden con la regexp pasada

La ejecución de cada script se ejecuta en un proceso hijo independiente pero, a diferencia del clonado, el script se ejecuta línea a línea de manera síncrona. Se puede observar el estado de la ejecución del script y los resultados revisando el fichero de log que se genera: <nombre-repositorio >- <nombre-script >.log

```
juanjose@Sobremesa:/tmp/TFM$ tree -L 2
install.sh
ULL-ESIT-TFM-test-evaluation-shell
test-repo
test-repo-clone.log
test-repo-install.sh.log
2 directories, 3 files
juanjose@Sobremesa:/tmp/TFM$
```

Figura B.23: Fichero de log generado resultante de la ejecución del script

• Exportar resultados. Comando 'book'.

```
ghshell > book string | /regexp/
```

Este comando genera un Gitbook con los resultados de todos los scripts ejecutados sobre los repositorios. Este libro se genera en formato PDF y en HTML.

Al especificar un string o expresión regular, se creará el libro por cada repositorios que coincida con la expresión regular indicada.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > book /test/
Book test-repo created successfully!
Book test-repo exported to PDF successfully!
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura B.24: Creación del Gitbook en repositorios que coinciden con la regexp pasada

La creación del libro se realiza de manera asíncrona, por lo que se puede seguir trabajando mientras se genera. Se puede observar el estado de la creación del libro y su exportación a PDF revisando los ficheros de logs que se generan: <nombre-repositorio >-gitbook_build.out y <nombre-repositorio >-gitbook_build.out.

La carpeta que contiene el libro en HTML se llamará <nombre-repositorio>_gitbook El fichero PDF se llamará <nombre-repositorio>.pdf.

```
juanjose@Sobremesa:/tmp/TFM$ tree -L 2
install.sh

ULL-ESIT-TFM-test-evaluation-shell

test-repo
test-repo-clone.log
test-repo_gitbook
test-repo-gitbook_build.out
test-repo-gitbook_pdf.out
test-repo-install.sh.log
test-repo.pdf
3 directories, 6 files
juanjose@Sobremesa:/tmp/TFM$
```

Figura B.25: Directorios y ficheros generados del Gitbook

• Seleccionar assignments. Comando 'assignments'.

```
ghshell > assignments string | /regexp/ [clone|book|script <file>]
```

Los assignments son tratados como un caso especial de repositorios dentro de una organización.

Si sólo se pasa como argumento un string o una expresión regular, listará los assignments que coincidan con dicho argumento.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > assignments /evaluar/
evaluar-rutas-jjlabrador
evaluar-rutas-crguezl
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura B.26: Assignments que coinciden con la expresión regular

En el caso de que además se pase alguno de los parámetros: 'clone', 'script <file>' o 'book'; se clonará, se ejecutará un script o se creará un libro respectivamente en los repositorios que coincidan con el string o la expresión regular. Además, en el caso del comando 'clone', se creará una carpeta con

el nombre de la asignación que contendrá todas las asignaciones clonadas.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > assignments /evaluar/ clone
Cloning evaluar-rutas-jjlabrador... (see evaluar-rutas-jjlabrador-clone.log for more information)
Cloning evaluar-rutas-crguezl... (see evaluar-rutas-crguezl-clone.log for more information)
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura B.27: Clonado de asignaciones que coinciden con la expresión regular

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > assignments /evaluar/ script install.sh
Execution of install.sh in evaluar-rutas-jjlabrador has finished
Execution of install.sh in evaluar-rutas-crguezl has finished
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura B.28: Ejecución de script en assignments que coinciden con la expresión regular

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell) > assignments /evaluar/ book
Book evaluar-rutas-jjlabrador created successfully!
Book evaluar-rutas-jjlabrador exported to PDF successfully!
Book evaluar-rutas-crguezl created successfully!
Book evaluar-rutas-crguezl exported to PDF successfully!
ghshell (ULL-ESIT-TFM-test-evaluation-shell) >
```

Figura B.29: Creación del Gitbook en los assignments que coinciden con la expresión regular

```
juanjose@Sobremesa:/tmp/TFM$ tree -L 3
    install.sh
    ULL-ESIT-TFM-test-evaluation-shell
         evaluar-rutas
              evaluar-rutas-crguezl
              evaluar-rutas-crguezl-clone.log
              evaluar-rutas-crguezl_gitbook
              evaluar-rutas-crguezl-gitbook_build.out
              evaluar-rutas-crguezl-gitbook_pdf.out
              evaluar-rutas-crguezl-install.sh.log
              evaluar-rutas-crguezl.pdf
              evaluar-rutas-jjlabrador
evaluar-rutas-jjlabrador-clone.log
              evaluar-rutas-jjlabrador-gitbook_build.out
evaluar-rutas-jjlabrador-gitbook_pdf.out
evaluar-rutas-jjlabrador-install.sh.log
              evaluar-rutas-jjlabrador.pdf
6 directories, 11 files
juanjose@Sobremesa:/tmp/TFM$
```

Figura B.30: Directorios y ficheros generados

B.2.5. Contexto de repositorio

Los comandos 'pwd' y 'exit' tienen el mismo comportamiento que en el contexto principal. El comando 'back' tienen el mismo comportamiento que en el contexto de organizaciones.

Mostrar la ayuda. Comando 'help'.

```
ghshell > help
```

En función del contexto donde nos encontremos, se mostrarán diferentes opciones en la ayuda.

Figura B.31: Ayuda en el contexto de un repositorio

• Clonar repositorios. Comando 'clone'.

```
ghshell > clone
```

Tiene el mismo funcionamiento que en el resto de contextos. Se ejecuta sin argumentos y clona el repositorio donde nos encontremos.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) > clone
Cloning evaluar-rutas-jjlabrador... (see evaluar-rutas-jjlabrador-clone.log for more information)
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura B.32: Clonado de un repositorio dentro de una organización

Ejecutar un script determinado. Comando 'script'

```
ghshell > script <file>
```

Tiene el mismo funcionamiento que en el contexto de organizaciones. Se ejecuta sin argumentos y ejecuta el script indicado sobre el repositorio donde nos encontremos.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) > script install.sh
Execution of install.sh in evaluar-rutas-jjlabrador has finished
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura B.33: Ejecución de un script en un repositorio dentro de una organización

• Exportar resultados. Comando 'book'.

```
ghshell > book
```

Tiene el mismo funcionamiento que en el contexto de organizaciones. Se ejecuta sin argumentos y crea un Gitbook con los resultados de todos los scripts ejecutados sobre el repositorio donde nos encontremos.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) > book
Book evaluar-rutas-jjlabrador created successfully!
Book evaluar-rutas-jjlabrador exported to PDF successfully!
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura B.34: Creación del Gitbook en un repositorio dentro de una organización

• Obtener el propietario del repositorio. Comando 'owner'.

```
ghshell > owner
```

```
ghshell (TFM-SyTWA) > owner
Owner: jjlabrador
ghshell (TFM-SyTWA) >
```

Figura B.35: Propietario del repositorio

Además, si nos encontramos en un repositorio que pertenece a una organización, muestra también los contribuyentes.

```
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) > owner
Owner: ULL-ESIT-TFM-test-evaluation-shell
Contributors: jjlabrador
ghshell (ULL-ESIT-TFM-test-evaluation-shell ~> evaluar-rutas-jjlabrador) >
```

Figura B.36: Contribuyentes del repositorio

Índice alfabético

Node.js, 3

Bibliografía

- [1] NPM. https://www.npmjs.com/.
- [2] FACOM OS IV SSL II USER'S GUIDE, 99SP0050E5. Technical report, 1990.
- [3] D. H. Bailey and P. Swarztrauber. The fractional Fourier transform and applications. SIAM Rev., 33(3):389–404, 1991.
- [4] A. Bayliss, C. I. Goldstein, and E. Turkel. An iterative method for the Helmholtz equation. *J. Comp. Phys.*, 49:443–457, 1983.
- [5] C. Darwin. The Origin Of Species. November 1859.
- [6] C. Goldstein. Multigrid methods for elliptic problems in unbounded domains. SIAM J. Numer. Anal., 30:159–183, 1993.
- [7] P. Swarztrauber. Vectorizing the FFTs. Academic Press, New York, 1982.
- [8] S. Taásan. Multigrid Methods for Highly Oscillatory Problems. PhD thesis, Weizmann Institute of Science, Rehovot, Israel, 1984.