

Department of Physics and Astronomy, National Institute of Technology Rourkela End-semester Examination, Autumn 2023-2024

PH5006: Analog and Digital Electronics

Time: 3 hours Total marks: 50

Note: Answer all questions

1. (A) Derive an expression for the voltage gain of the non-inverting amplifier. [3]

(B) Explain the virtual ground of an operational amplifier. [2]

(C) For the following circuit, calculate the input voltage, V_1 for $V_0 = 12$ V, $R_1 = 100$ k Ω , Rf = 500 k Ω . [2]

(D) For the following differentiator circuit, calculate $v_o(t)$ for $v_1(t) = 5Sin(\omega t)$, R = 500 $k\Omega$ and C = 10μF. [2]

(E) Draw a circuit diagram for a voltage buffer amplifier.

[1]

- 2. (A) Show the connection of three op-amp stages using an LM348 IC to provide outputs that are 10, 20, and 50 times larger than the input, use a feedback resistor of $R_f = 500$ $k\Omega$ in all stages. [3]
 - (B) Define the cut-off frequency of an active filter. Draw the circuit diagram and derive an expression for the cut-off frequency of low pass and high pass filter. [1+4]

(C) Calculate the cutoff frequencies of the band pass filter circuit as shown below with R_1 = 10 k Ω , R_2 = 15 k Ω , C_1 = 0.1 μ F, and C_2 = 0.002 μ F. [2]

- 3. (A) Discuss the differences between the ordinary amplifier and the power amplifier. [2]
 - **(B)** Derive an expression for the efficiency of the transformer coupled class A power amplifier. How does it different from the direct coupled class A amplifier and the push-pull class B amplifier. **[4+2]**
 - **(C)** A transformer coupled class A amplifier supplies 3-Watt power to the speaker. If the supply voltage is 30 V and I_{CQ} is 200 mA, then find the efficiency of this amplifier. [2]
- **4. (A)** How does the closed loop gain depend on the temperature of negative feedback amplifier. [2]
 - **(B)** For a negative feedback amplifier, if the gain of the amplifier is 500 and transfer function of feedback network is 0.6, then calculate the amount of feedback. [2]
 - **(C)** For negative feedback amplifier, the following parameters are given: open loop gain = 100, minimum and maximum frequency are 80 Hz and 60kHz respectively. If 2% of the output is returned to the input in opposition, then find the modified value of gain and the cut-off frequency. [2]
 - (D) Derive an expression of the closed loop gain of a series-shunt feedback amplifier. [2]
 - **(E)** What are the Barkhausen criteria for the oscillator? Draw the circuit diagram of a RC phase shift oscillator using BJT. [2]
- **5. (A)** Convert the followings to the Octal and decimal number system

$$(14.3)_{10}$$
 and $(13AB.D)_{16}$ [2+2]

- (B) What is a truth table for NOR gates? Show a switching circuit using NOR gate. [2]
- (C) Design the Ex-OR and Ex-NOR gates using NAND gate. [2]
- (D) What are the differences between half adder and full adder? [2]