

ABSTRAKTION VERTEILTER PRODUKTIONSMASCHINEN IN CPPS

Diplomarbeit - aktueller Stand

Peter Heisig

30. August 2016

ROADMAP

Einleitung

Anforderungen

Forschungsstand

Konzeption

Implementation

Status & Vorgehen

EINLEITUNG

MOTIVATION

- Industrie 4.0 drängt CPS in die Produktion ⇒ CPPS
- viele Maschinen ohne Infrastrukturanbindung
 - fehlende Netzwerk- und Programmierschnittstellen
 - geschlossene Architekturen
 - ungenügende Sicherheitskonzepte

⇒ Retrofitting

AUFGABEN

- ermitteln der Anforderungen für die Integration
- Recherchen zu bestehenden Arbeiten
- Konzeption von
 - virtueller Maschinenrepräsentation
 - erweiterbarem Framework

AUFGABEN

- ermöglichen von Steuerung/Überwachung in CPPS
 - Transfer und Ausführung von Maschinencode
 - Erfassen von Produktionsdaten durch Sensoren
 - Verwendung von Einplatinencomputern für die Implementierung
- prototypische Implementierung belegt Machbarkeit
- Aufbau einer adäquaten Test-Infrastruktur

ERWARTUNGEN

FORSCHUNGSKONTEXT

- unterbrechungsfreie M2M-Kommunikation und Produktionskette
- Hierarchisierung von Steuerung/Überwachung
- modellgetriebene Komponenten- und Funktionsstrukturabbildung
- dezentrale Informationsarchitektur erhöht
 - Produktionsstabilität
 - Automatisierungsgrad

ERWARTUNGEN

PRAXIS

- minimieren manueller Tätigkeiten
 - z.B. Übertragen eines Programms
- Diagnosen nicht nur vor Ort
 - z.B. zentrale Auswertung der Betriebsdaten
- Beschleunigung des Produktionsablaufs durch höheren Automatisierungsgrad
- Vereinfachung von Prozessplanung und Durchführung
- bessere Kontrolle von Wartungszyklen und Störfällen

ANFORDERUNGEN

FRAGESTELLUNG

Welchen softwaretechnologischen Konzepten muss die Modernisierung und der infrastrukturelle Kontext einer Altmaschine unterliegen, um eine ganzheitliche Integration in CPPS gewährleisten zu können?

TEILFRAGEN

- 1. Welche System- und Softwarearchitektur ist für die Steuerung und Überwachung veralteter CNC-Maschinen im Kontext von CPPS geeignet?
- 2. Wie und wo werden Informationen zur Maschine erfasst, verarbeitet, persistiert und Fremdsystemen zur Verfügung gestellt?
- 3. Welche standardisierten Protokolle und Datenstrukturen eignen sich für M2M-Kommunikation in einem CPPS?

REQ1 - ÜBERWACHUNG

Die Überwachung von Betriebs- und Prozessdaten der Altmaschine und ihrer automatisierten Maschinen- und Werkzeugkomponenten ist ortsunabhängig, so dass Zustandserfassung und Störfalldiagnose durch Subsysteme des CPPS erfolgen kann.

REQ2 - STEUERUNG

Die Steuerung der Altmaschine und ihrer automatisierten Maschinen- und Werkzeugkomponenten ist ortsunabhängig, so dass Übertragung, Ausführung und Abbruch von NC-Programmen, beziehungsweise produktionsbedingter Steuerbefehle, durch Subsysteme des CPPS erfolgen kann.

REQ3 - STANDARDISIERUNG

Standardisierte Informationsprotokolle und -modelle werden für die Integration heterogener Altmaschinen eingesetzt, so dass Datenaggregation und M2M-Kommunikation gesamtheitlich gewährleistet werden kann.

REQ4 - LOKALITÄT

Die Erfassung und Persistierung anfallender Betriebsund Prozessdaten, sowie die Interpretation von Maschinenbefehlen geschieht geografisch nahe der Anlage, wodurch zeitliche Latenzen, Kommunikationsaufwände und -fehler minimiert werden.

FORSCHUNGSSTAND

RETROFIT LEGACY TOASTER [1]

BESTEHENDE ARBEITEN

Steuerung & Überwachung

Intelligent control software for industrial CNC machines [2]

Remote real-time CNC machining for web-based manufacturing [3]

Standards für Protokolle & Modelle

Prototype OPC UA Server for Remote Control of Machine Tools [4]

A systematic approach to OPC UA information model design [5]

flexible Architekturkonzepte

Information Architecture for Reconfigurable production systems [6]

Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) [7]

FORSCHUNGSPROJEKTE

- OPC4Factory[8]
 - generische OPC UA Informationsmodelle
- piCASSO[9]

Cloud-basierte Industriesteuerung mit CPS

• RetroNet[10]

Integration bestehender Hardware in die intelligente Steuerung einer Fabrik

KONZEPTION

ARCHITEKTUR

- OPC UA als Informations- und Kommunikationsmodell
- Metamodell zu Altmaschine mit Komponenten für
 - Numerische Kontrolle
 - Türen, Einspannvorrichtungen, etc.
- Modell synchron mit Realität ⇒ Laufzeitmodell
- Framework mit Schichtenarch. im Client/Server-Stil
- Microkernel: OPC UA Typen, Sensoren und Aktuatoren
- Verhalten der Physik via MAPE-K verifizierbar

REPRÄSENTATION DER MASCHINE

- Einplatinencomputer ⇒ CPS-Komponente
- Hardware CNC-Interpreter festverdrahtet
- direkte Anbindung von Sensoren und Aktuatoren
- Datenerfassung und Verarbeitung an der Maschine
- Schritte zur Altmaschinenintegration
 - 1. Modellierung mit OPC UA Informationsmodell
 - 2. Deployment des Modells auf CPS-Komponente
 - 3. Initialisieren des Laufzeitmodells
 - 4. autonomes Registrieren im CPPS

IMPLEMENTATION

BAUSTEINE

Konzept	Implementation
CPS-Komponente	Raspberry Pi 3
CNC-Interpreter	Smoothieboard 4XC
Peripherie	GrovePi
OPC UA Stack	node-opcua

STATUS & VORGEHEN

"Ok, now that we all agree, let's all go back to our desks and discuss why this won't work."

OPC UNIFIED ARCHITECTURE

WISE-SHOPFLOOR [3]

FFZ AM IFT [4]

LAUFZEITMODELL [4]

PIM 2 PSM [5]

REKONFIGURIERBARE PRODUKTION [6]

LITERATUR

- [1] R. Ramakers, F. Anderson, T. Grossman, und G. Fitzmaurice, "RetroFab: A Design Tool for Retrofitting Physical Interfaces Using Actuators, Sensors and 3D Printing", *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*, S. 409–419, 2016.
- [2] A. Ferrolho, M. Crisostomo, und M. Lima, "Intelligent control software for industrial CNC machines", in 2005 IEEE International Conference on Intelligent Engineering Systems, 2005. INES '05., 2005, S. 267–272.
- [3] L. Wang, P. Orban, A. Cunningham, und S. Lang, "Remote real-time CNC machining for web-based manufacturing", *Robotics and Computer-Integrated Manufacturing*, Bd. 20, Nr. 6, S. 563–571, 2004.
- [4] I. Ayatollahi, B. Kittl, F. Pauker, und M. Hackhofer, "Prototype OPC UA Server for Remote Control of Machine Tools", in *International Conference on Innovative Technologies*, 2013, Bd. 1009, S. 73–76.
- [5] F. Pauker, T. Frühwirth, und B. Kittl, "A systematic approach to OPC UA information model design", in 49th CIRP Conference on Manufacturing Systems, 2016.
- [6] F. Pauker, T. Weiler, I. Ayatollahi, und B. Kittl, "Information Architecture for Reconfigurable production

LITERATUR

CIKP Conjerence on Manujacturing Systems, 2016.

- [6] F. Pauker, T. Weiler, I. Ayatollahi, und B. Kittl, "Information Architecture for Reconfigurable production systems", *DAAAM International Scientific Book 2013*, Nr. January, S. 873–886, 2013.
- [7] P. Adolphs und U. Epple, "Statusreport: Referenzarchitekturmodell Industrie 4.0 (RAMI4.0)", April, 2015.
- [8] IFT TU Wien, "OPC4Factory". [Online]. Verfügbar unter: https://www.ift.at/forschung/foschungsprojekte/opc4factory/. [Zugegriffen: 28-Aug-2016]
- [9] ISW Universität Stuttgart, "piCASSO". [Online]. Verfügbar unter: http://www.projekt-picasso.de/. [Zugegriffen: 27-Aug-2016]
- [10] Fraunhofer IPK, "RetroNet Praxisnahe Brücke in die Industrie 4.0", *FUTUR*, S. 8, 2016 [Online]. Verfügbar unter: https://issuu.com/claudiaengel/docs/futur_1_2016
- [11] G. L. Geerts, "A design science research methodology and its application to accounting information systems research", *International Journal of Accounting Information Systems*, Bd. 12, Nr. 2, S. 142–151, Juni 2011.