

EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR

Programozási nyelvek és Fordítóprogramok Tanszék

JVM bytecode interpreter Javában

Témavezető:

Kozsik Tamás Dr.

egyetemi docens

Szerző:

Balázs Zoltán

programtervező informatikus BSc

EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR

SZAKDOLGOZAT TÉMABEJELENTŐ

Hallgató adatai:

Név: Balázs Zoltán Neptun kód: HV56L5

Képzési adatok:

Szak: programtervező informatikus, alapképzés (BA/BSc/BProf)

Tagozat : Nappali

Belső témavezetővel rendelkezem

Témavezető neve: Kozsik Tamás Dr.

munkahelyének neve, tanszéke: ELTE IK, Programozási nyelvek és Fordítóprogramok Tanszék

munkahelyének címe: 1117, Budapest, Pázmány Péter sétány 1/C.

beosztás és iskolai végzettsége: egyetemi docens, programtervező matematikus

A szakdolgozat címe: Java bytecode interpreter Javában

A szakdolgozat témája:

(A témavezetővel konzultálva adja meg 1/2 - 1 oldal terjedelemben szakdolgozat témájának leírását)

A Java nyelvben írt programok fordításuk során nem közvetlenül gépi kódra fordulnak, hanem egy hardver-független nyelvre, amit bytecode-nak neveznek.

Ezt a bytecode-ot az esetek többségében a JVM (Java Virtual Machine) interpreter-e hajtva végre, vagy futási időben fordul le a fordító gép hardverének gépi kódjára.

A szakdolgozat célja egy olyan Java bytecode interpreter fejlesztése, amely képes már előre, valamilyen Java fordító által, elkészített bytecode-ot interpreter-álni, ezt sikeresen (és helyesen) lefuttatni.

A fejlesztett interpreter-nek képesnek kell lennie az ELTE Programtervező Informatikus BSc szakán, különböző, Java-t használó tárgyakon (Programozási nyelvek, Konkurens programozás) elkészített beadandók és házi feladatok generált bytecode-ját interpreter-álni, ezeket helyesen futtatni.

Budapest, 2022. 11. 24.

Tartalomjegyzék

1.	Bev	ezetés	3					
2.	Felh	nasználói dokumentáció	4					
	2.1.	Kikötések	4					
	2.2.	Fordítástól futásig	5					
		2.2.1. Minimum követelmények	5					
		2.2.2. Fordítás	5					
		2.2.3. Futtattás	6					
		2.2.4. Önfuttatás	6					
	2.3.	Felmerülő problémák	6					
3.	Fejl	esztői dokumentáció	7					
	3.1.	Class fájl felépítése	7					
		3.1.1. Class fájltól a benne levő metódus futtatásáig	7					
		3.1.2. Pár minta class fájl felépítése	10					
		3.1.3. Adatszerkezetek	12					
		3.1.4. Interpretálás algoritmusa	13					
	3.2.	Erőforrás igények	14					
	3.3. Továbbfejlesztési lehetőségek							
		3.3.1. Invokedynamic utasítás	15					
		3.3.2. Java 7 előtti verziók támogatása	15					
		3.3.3. Erőforrás igény	15					
		3.3.4. További tesztelés	16					
	3.4.	Érdekességek a JVM specifikációból	16					
4.	Öss	zegzés	17					
Κċ	iször	nyetnyilvánítás	18					

TARTALOMJEGYZÉK

Irodalomjegyzék	18
Ábrajegyzék	19
Táblázatjegyzék	20
Algoritmusjegyzék	21
Forráskódjegyzék	22

1. fejezet

Bevezetés

A Java nyelvben írt programok fordításukat követően nem egy közletlen futtatható állományra (gépi kódra) fordulnak (a fordítást általában a beépített javac program végzi el), hanem egy köztes nyelvre, bytecode-ra, amelyet aztán különböző programokkal az adott architektúrán interpretáljuk. Legtöbb esetben az interpretálást a JVM (Java Virtual Machine) interpretere hajtja végre (ez a beépített java program).

A szakdolgozat célja egy kiegészítő program (fantázianevén Jabyinja - Java bytecode interpreter in <math>Java) írása, amely ugyan hagyatkozik a javac és java programokra (az előbbire a fordítás, az utóbbira a futtatás miatt), de a tényleges futtatást a különböző bytecode instrukciók implementálásval végzi el.

A program nincsen Java kód interpretálásához kötve, a Java bytecode a neve ellenére más programozási nyelveknek is az alapja (ezek közül az ismertebbek: Kotlin, Clojure), viszont a tesztelés csak Java kódból generált bytecodera tér ki, ugyanis a szakdolgozat céljaként az ELTE Programtervező Informatikus BSc szakán elkészített Java programok fordításának interpretálását tűztem ki.

A programnak szükséges értelmeznie kell egy adott Classfájlt (többet is ha egy külön fájlra is hivatkozunk), helyesen beolvasnia a benne lévő adatokat, majd a belépési (main) metódust lefuttatnia. A program erősen alapszik a Java nyelvbe beépített reflekcióra, ezen felül saját stack implementálása is szükséges. Mivel a Java nyelvre épül a program, ezért saját heap megírására nincsen szükség, ez automatikusan kezelve lesz.

2. fejezet

Felhasználói dokumentáció

A program elsődleges felhasználói fejlesztők, alapszintű tudás szükséges a Java nyelvről (vagy bármilyen olyan nyelvről amely JVM Bytecode-ra fordul), a class fájlokról, illetve Java programok fordításáról.

Mivel az elkészített program csak interpretálni tud, a fordítást egy már elérhető Java fordítóprogrammal szükséges megtenni. Mivel a Java programok class fájlokra fordulnak, ezek futtatásához szükséges egy interpretáló program.

Alapvető esetben ez a fordítóprogrammal együtt telepítésre kerül. A szakdolgozat esetében a lefordított class fájl futtatásával képesek lehetünk más, már lefordított Java programot futtatni.

A mellékelt fájlok között elérhető egy jar fájl is, ennek a futtatásához ugyanúgy szükségünk van egy beépített interpretáló programra, amely képes Java programokat futtatni és nem a szakdolgozat maga.

2.1. Kikötések

A program csak Java 7-nél újabb fordítóprogrammal fordított Java programokat képes interpretálni, számos Bytecode instrukciót a Java 7-es verziójában elavulttá tettek (ezek: ret, jsr, jsr_w), nem fordulnak elő class fájlokban. A szakdolgozat ezeket az instrukciókat nem implementálta.

Ezen felül egy másik instrukció is implementálatlan maradt (invokedynamic), tehát nem minden program futtatható. Ha a class fájlok egyike tartalmazza ezt az instrukciót, akkor a program jelez a felhasználó számára. Akaratlanul is része lehet

a programunknak ez az instrukció, amikor egy változót szöveggel együtt próbálunk kiírni:

```
String world = "world";
System.out.println("Hello " + world);
```

akkor a legtöbb fordítóprogram egy invokedynamic utasítást is elhelyez a programunkban.

Ez viszont elkerülhető, ha megfelelő flagekkel fordítjuk le a programunkat, mégpedig a -XDstringConcat=inline flag használatával az invokedynamic nem fog szerepelni a string konkatenációnál.

2.2. Fordítástól futásig

2.2.1. Minimum követelmények

A program fordításához legalább a Java 17-es verziója szükséges. Ez alatt a program fordulni sem képes, mivel pár olyan funkciót használ, amely csak a 17-es verzióban lett bevezetve.

A könnyebb fordítás (illetve egyszerűbb jar fájl készítés) érdekében a Maven fordítás automatizálási program telepítése ajánlott, ezen belül is a 3.9.0-ás verzió.

2.2.2. Fordítás

Ha nem akarunk Maven-t használni, akkor a fordítás menete a következő:

- Menjünk a src/main/java mappába: cd src/main/java/
- Fordítsuk le a com/zoltanbalazs/Main.java fájlt: javac com/zoltanbalazs/Main.java
- Az elkészült class fájl a src/main/java/com/zoltanbalazs mappában lesz
 Maven-t használva ez a procedúra egyszerűbb:
- Futtassuk le a csomagoló parancsot: mvn package
- Az elkészült class fájl a target/classes/com/zoltanbalazs mappában lesz, ezen felül a target mappában lesz egy futtatható jar fájl is

2.2.3. Futtattás

Ha a generált class fájl-lal akarjuk futtatni a programot, futtassuk le a java com. zoltanbalazs. Main parancsot a src/main/java mappában. (ha Maven-nel fordítottunk akkor a target/classes mappában futtassuk le az előző fenti parancsot)

A maven által készített jar fájl-lal való futtatáshoz, futtassuk le a java -jar target/jabyinja-1.0.0.jar parancsot a főmappában.

Mindkét esetben egy opcionális argumentumot (argumentum sorozatot ha a futtatandó programunk vár parancssori argumentumot) meg tudunk adni, ez a main metódust tartalmazó class fájl elérési útvonala. Alapvető esetben a program a futási mappában próbál meg egy Main.class fájlt futtatni.

Futásra egy példa: java -jar target/jabyinja-1.0.0.jar target/test-classes/com/zoltanbalazs/PTI/_01/Greet.class World

2.2.4. Önfuttatás

Az elkészült interpreter képes saját magát is futtatni, ehhez a futtatáshoz hasonlóan meg kell adni a programnak a saját class fájlának elérési útját, majd opcionálisan a többi paramétert.

Ez jar fájl esetén így néz ki, a főkönyvtárból futtatva: java -jar target/jabyinja -1.0.0.jar target/classes/com/zoltanbalazs/Main.class target/test-classes/com/zoltanbalazs/PTI/_01/Greet.class World

2.3. Felmerülő problémák

A futtatandó program futása során nem merül fel probléma (hacsak nincsen invokedynamic a generált class fájlban) amelyet a program okoz. Ha a futtatandó programunk hibát dob, akkor ezt az interpretáló program is ugyanúgy megteszi; viszont a hiba kiírása során nem biztos hogy ugyanazt a kimentet kapjuk mint a beépített interpreter-rel.

Tehát ha a hibánk nem egy try, catch blokk-ban szerepel, akkor a kiírt üzenet nem biztos hogy ugyanaz lesz mint a beépített interpreter-rel, az összes többi kiírt üzenet viszont ugyanaz kell hogy legyen.

3. fejezet

Fejlesztői dokumentáció

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis nibh leo, dapibus in elementum nec, aliquet id sem. Suspendisse potenti. Nullam sit amet consectetur nibh. Donec scelerisque varius turpis at tincidunt.

3.1. Class fájl felépítése

3.1.1. Class fájltól a benne levő metódus futtatásáig

A fő osztály a ClassFile, ez felel számos dologért, többek között egy class fájl beolvasáért, a megfelelő adattagok beállításával. A ClassFile osztálynak egy konstruktora van, mégpedig:

```
public ClassFile(String fileName, String[] mainArgs)
```

Tehát az első paraméter a beolvasandó class fájl neve, a második pedig a main metódusnak adott argumentumok.

Az implementáció alapján nem kötött a main metódus használata belépési pontként, tehát a 2. argumentum lehet null is.

A konstruktor meghívása egyidejüleg meghívja a readClassFile függvényt is:

```
public void readClassFile(String fileName)
```

Ez a függvény egy adott fájlnévre beolvassa a class fájlban tárolt adatokat megfelelő változókba. (Ezen felül egy VALID_CLASS_FILE változót is beállít; feltétellezük hogy ha a mágikus szám (CA FE BA BE) megtalálható a fájl elején, akkor az adott fájl egy

valid class fájl, ellenkező esetben egy InvalidClassFileException-t dob a beolvasó függvény.)

A beolvasás után (tehát az objektum létrehozása után) érdemes a belépési függvényt (általában main) megkeresni a findMethodsByName metódussal:

```
public Method_Info findMethodsByName(String methodName)
```

Ez egy adott függvénynévre a megfelelő nevü metódust visszaadja a beolvasott fájlból (ha nem talál ilyet akkor null-t ad vissza). Egy példa a használatára:

```
ClassFile CLASS_FILE = new ClassFile("Main.class", null);

Method_Info method = CLASS_FILE.findMethodsByName("main");
```

A függvény megtalálása után ajánlott a Code attribútumot megtalálni, ebben, többek között, található a futtatandó bytecode is. A segédfüggvény erre a findAttributesByName:

Mivel egy attribútumból több is lehet, egy listát kapunk vissza (a Code-ból csak egy lesz), bemeneti paraméterként az attribútumnév mellett a megfelelü függvény attribútumait is át kell adnuk, például:

```
List<Attribute_Info> attributes =

CLASS_FILE.findAttributesByName(method.attributes, "Code");
```

(Ha nem talál ilyen nevezetű attribútumot akkor üres listát ad vissza.)

A megfelelüen beolvasott attribútum után, a megtalált attribútumok között ajanlott végigmenni, a List implementálja az Iterable-t, így egy for ciklussal elegánsan megtehetjük ezt:

```
for (Attribute_Info attribute : attributes)
```

Mivel Code attribútumokról beszélünk, ezért a következő ajánlott dolog hogy ebből az attribútumból olvassuk be az adatokat. Ehhez a Code_Attribute_Helper osztály readCodeAttributes metódusa megfelelő:

```
public static Code_Attribute readCodeAttributes(Attribute_Info

→ attribute) throws IOException
```

A függvény egy attribútumot vár (például az előbbi kódrészlet attribute változóját), majd pedig beolvassa a specifikációnak megfelelően a Code_Attribute-ot, és visszaadja azt, ha valamiért nem sikerült a beolvasás akkor IOException-t dob a függvény.

```
Code_Attribute codeAttribute =

→ Code_Attribute_Helper.readCodeAttributes(attribute);
```

Ezt a beolvasott attribútumot a ClassFile osztály fel tudja használni az executeCode metódusával, mely egy byte[] változót vár bemeneti paraméterként, ami a Code_Attribute része:

```
public Pair Class ?>, Object > executeCode(byte[] code)

throws IOException, ClassNotFoundException, NoSuchFieldException,

IllegalAccessException,

NoSuchMethodException, SecurityException, InstantiationException,

IllegalArgumentException,

InvocationTargetException, Throwable
```

A reflekció miatt számos hibát dob vissza a függvény, ha nem helyes a kód formátuma akkor IOException-t dob a függvény, a Throwable az ATHROW bytecode instrukció miatt szükséges (ekkor egy hibát dob vissza a metódusunk). Visszatérési értéke Pair<Class<?>, Object>, a számos RETURN utasítás miatt (ezeket a stack-en szükséges elhelyezünk) Példa a használatára:

```
CLASS_FILE.executeCode(codeAttribute.code);
```

Ezzel el is jutottunk egy class fájl beolvasásától, az abban lévő adott függvény bytecodejának futtatásáig, több teendőnk nincsen, a program az adott függvényben levő külön függvényhívásokat automatikusan elvégzi.

A teljes példakód:

```
ClassFile CLASS_FILE = new ClassFile("Main.class", null);

Method_Info method = CLASS_FILE.findMethodsByName("main");

List<Attribute_Info> attributes =

CLASS_FILE.findAttributesByName(method.attributes, "Code");

for (Attribute_Info attribute : attributes) {

Code_Attribute codeAttribute =

Code_Attribute_Helper.readCodeAttributes(attribute);

CLASS_FILE.executeCode(codeAttribute.code);

}
```

3.1.2. Pár minta class fájl felépítése

A legegyszerűbb class fájl ami értelmes, viszont nem futattható:

Java kódban ennek megfelelője az üres fájl:

Class fájl formátumának magyarázata:

- CA FE BA BE: Mágikus szám, amely minden Class fájl elején megtalálható
- 00 00 00 00: Class fájl Minor és Major verziószáma, egy táblázatnak megfelelően a fordítóprogram verziója
- 00 00: A Constant Pool mérete (+1, mivel 1-től indexelt, itt nem számít)
- 00 00: Hozzáférési zászlók ()
- 00 00: This osztály indexe a Constant Pool-ban
- 00 00: Super osztály indexe a Constant Pool-ban
- 00 00: Interfészek száma
- 00 00: Adattagok száma
- 00 00: Függvények száma
- 00 00: Osztály attribútumainak száma

A legegyszerűbb class fájl amit a *Jabyinja* program le tud futtatni (a beépített java program nem képes ezt lefuttatni, mivel nincsenek benne osztályok, a JVM specifikáció alapján az osztályok elhanyagolhatóak):

```
FE
          BA
                BE
                     00
                          00
                               00
                                   00
                                                           04
                                                                    6F
CA
                                        00
                                             04
                                                  01
                                                      00
                                                               43
64
                                                           28
     65
          01
                00
                     04
                          6D
                               61
                                   69
                                        6E
                                             01
                                                  00
                                                      03
                                                                29
                                                                    56
00
     21
          00
                     00
                          00
                                   00
                                        00
                                             00
                                                  00
                                                      01
                                                                    00
                00
                               00
                                                           00
                                                               09
02
     00
          03
                     01
                          00
                               01
                                   00
                                        00
                                             00
                                                 0D
                                                      00
                                                           00
                                                               00
                                                                    00
                00
00
                                   00
     00
           00
                01
                     В1
                          00
                               00
                                        00
```

Java kód megfelelője:

```
public static void main() {
    return;
}
```

Class fájl formátumának magyarázata:

- CA FE BA BE: Mágikus szám, amely minden class fájl elején megtalálható
- 00 00 00 00: Class fájl Minor és Major verziószáma, egy táblázatnak megfelelően a javac fordítóprogram verziója
- 00 04: A Constant Pool mérete (+1, mivel 1-től indexelt)
- 01 00 04 43 6F 64 65 01 00 04 6D 61 69 6E 01 00 03 28 29 56: Constant Pool

```
- 01 00 04 43 6F 64 65
```

01: Constant Pool Info érték (CONSTANT_Utf8)

00 04: 4 hosszú

43 6F 64 65: A CONSTANT_Utf8 értéke: Code

- 01 00 04 6D 61 69 6E

01: Constant Pool Info érték (CONSTANT_Utf8)

00 04: 4 hosszú

6D 61 69 6E: A CONSTANT_Utf8 értéke: main

 $-01\ 00\ 03\ 28\ 29\ 56$

01: Constant Pool Info érték (CONSTANT_Utf8)

00 03: 3 hosszú

28 29 56: A CONSTANT_Utf8 értéke: ()V

- 00 21: Hozzáférési zászlók (Public, Super) elhanyagolhatóak ebben az esetben
- 00 00: This osztály indexe a Constant Pool-ban
- 00 00: Super osztály indexe a Constant Pool-ban
- 00 00: Interfészek száma

```
• 00 00: Adattagok száma
 00 01: Függvények száma
 00 09 00 02 00 03 00 01 00 01 00 00 0D 00 00 00 00 00 00 00 01 B1 00 00
  00 00: Függvények
    - 00 09 00 02 00 03 00 01 00 01 00 00 0D 00 00 00 00 00 00 01 B1 00
      00 00 00
      00 09: Hozzáférési zászlók (Public, Static)
      00 02: Constant Poolban lévő indexe a függvénynek: main
      00 03: Függvény leírása (bemeneti paraméterek, visszatérési érték): ()V
      00 01: Függvény attribútumainak száma
      00 01 00 00 00 0D 00 00 00 00 00 00 01 B1 00 00 00 00: Attribútumok
         • 00 01 00 00 00 0D 00 00 00 00 00 00 01 B1 00 00 00 00
          00 01: Constant Pool-ban lévő indexe az attribútumnak: Code
          00 \ 00 \ 00 \ 0D: Attribútum hossza (od = 13 bájt)
          00 00 00 00 00 00 00 01 B1 00 00 00 00: Attribútum
            - 00 00 00 00 00 00 00 01 B1 00 00 00 00
              00 00: Stack mérete
              00 00: Lokális változók száma
              00 00 00 01: Kód hossza
              B1: Kód (B1 = return)
              00 00: Kivételek száma
              00 00: Attribútum attribútumainak száma
• 00 00: Osztály attribútumainak száma
```

3.1.3. Adatszerkezetek

A class fájlnak megfelelően a két legfontosabb adattag a stack és a local (lokális) változók. A különböző instrukciók az ezeken lévő adatokkal dolgoznak, erre/ebbe helyeznek el megfelelő adatokat.

Az egyszerűség kedvéért a stack reprezentációjában az osztály típusát is elmentjük, a két adattag Java reprezentációja a ClassFile osztályban:

```
public List<Pair<Class<?>, Object>> stack = new ArrayList<>();
public Object[] local = new Object[65535];
```

(A Pair egy egyedi osztály, mely két adattagot tud eltárolni, más nyelvekben tupleként is ismeretes.)

A lokális változók maximális mennyiségét előre tudjuk, ez nem lehet több mint egy 16-bites előjel nélküli szám ($2^{16} = 65536$), alapból ennek az értéke egy 8-bites előjel nélküli szám ($2^8 = 256$) lenne, mivel a store és load utasításokat csak egy 8-bites előjel nélküli szám (az index) követi, viszont a wide utasítással a store és load utasítások módosíthatóak, hogy 2 db 8-bites előjel nélküli számot olvassanak be, tehát lényegében egy 16-bites előjel nélküli számot.

Gyakorlatban ez a szám csökkenthető lenne, tudhatjuk hogy futási időben mennyi lokális változója (illetve a stack nagyságát is tudhatjuk, tehát tömbként is reprezentálhatnánk) van egy metódusnak. Ez bővebben le van írva a továbbfejlesztési lehetőségekben.

Kényelmi szempontból létezik a CodeIndex osztály, amely lényegében egy int szám absztrakciója:

```
class CodeIndex {
   private int index = 0;
   ...
}
```

Az absztrakció oka hogy függvényeknek átadva lehessen módosítani ezt a számot; a szám a jelenlegi index a kódot reprezentáló byte tömbben, megmondja hogy a tömbben lévő melyik indexen levő instrukciót kell végrehajtani.

Az absztrakció különösen észrevehető amikor az if és goto utasításokat hajtjuk végre, a ClassFile objektumunk lokális változója módosítható az Instructions osztály metódusain keresztül. Mivel a Java érték szerint adja át a paramétereket, ez egy sima int számmal nem lehetne megoldani.

3.1.4. Interpretálás algoritmusa

Az 1. algoritmus egy általános elágazás és korlátozás algoritmust (*Branch and Bound algorithm*) mutat be. A 3. lépésben egy megfelelő kiválasztási szabályt kell alkalmazni. Példa forrása: Acta Cybernetica (ez egy hiperlink).

1. algoritmus A general interval B&B algorithm

```
Funct IBB(S, f)
 1: Set the working list \mathcal{L}_W := \{S\} and the final list \mathcal{L}_Q := \{\}
 2: while (\mathcal{L}_W \neq \emptyset) do
         Select an interval X from \mathcal{L}_W
 3:
                                                                                   ▷ Selection rule
         Compute lbf(X)
                                                                                  ▶ Bounding rule
 4:
                                                                                \triangleright Elimination rule
 5:
        if X cannot be eliminated then
             Divide X into X^j, j = 1, \ldots, p, subintervals
                                                                                    ▷ Division rule
 6:
             for j = 1, \dots, p do
 7:
                 if X^j satisfies the termination criterion then
                                                                               ▶ Termination rule
 8:
                     Store X^j in \mathcal{L}_W
 9:
                 else
10:
                     Store X^j in \mathcal{L}_W
11:
                 end if
12:
             end for
13:
         end if
14:
15: end while
16: return \mathcal{L}_{O}
```

3.2. Erőforrás igények

A Linux operációs rendszeren beépített time programot (illetve a hyperfine programot) használva az erőforrás igények a tesztfájlokra az alábbiak (a tesztelt számítógép releváns specifikációi: Intel Core i7-8700k processzor 4.7 GHz-en, 16 GB DDR4 memória 2133 MT/s sebességgel):

Tesztfájl	/usr/b	oin/java	Jabyinja							
Tesztiaji	Memória	Futási idő	Memória	Futási idő						
Own/Arithmetic.class	37,1 MB	21,4 ms	47,6 MB	92,8 ms						
Own/Arrayclass.class	34,9 MB	20,9 ms	54,6 MB	130,8 ms						
Own/Arraylist.class	37,2 MB	21,4 ms	49,6 MB	87,1 ms						
Own/Athrow.class	34,6 MB	$20,4~\mathrm{ms}$	46,9 MB	61,7 ms						
Own/Dup2.class	36,3 MB	20,3 ms	39,2 MB	45,6 ms						
Own/Inheritence.class	34,8 MB	20.7 ms	51,9 MB	98,1 ms						
Own/Instanceof.class	38,8 MB	20,2 ms	43,1 MB	64,2 ms						
Own/Multianewarray.class	34,4 MB	$20,6~\mathrm{ms}$	47,7 MB	62,9 ms						
Own/Nested.class	39,3 MB	22,1 ms	47,2 MB	80,5 ms						
Own/Ownclass.class	37,5 MB	20,2 ms	61,9 MB	135,5 ms						
Own/SwitchAthrow.class	36,8 MB	20,5 ms	40,5 MB	43,9 ms						
Own/Template.class	39,2 MB	21,2 ms	51,9 MB	86,5 ms						

3.1. táblázat. A beépített java és az interpreter közötti erőforrás különbségek

3.3. Továbbfejlesztési lehetőségek

3.3.1. Invokedynamic utasítás

Az egyik legszembetűnőbb hiány a szakdolgozatban az egyik nem implementált utasítás, az invokedynamic, hiánya. Ez az utasítás számos helyen előfordul Java programokban, leginkább a lambda kifejezésekben (ezen belül is a Konkurens programozás tárgyon megismert Executor osztály paramétereként), illetve a kiírás során szöveg(ek) és változó(k) konkatenációjánál is ez használt.

Az utóbbi egyszerűen kiküszöbölhető a -XDstringConcat=inline flag-gel való fordítás során az invokedynamic utasítás lecserélődik StringBuilder-en keresztül lévő invokevirtual és invokespecial hívásokra.

Az előző viszont sajnos jelen állapotban nem megoldott, és nem is oldható meg egyszerűen. Ahhoz hogy lambda függvények működjenek, az invokedynamic-ot implementálni kell. Ehhez már az alapvető előkészület megvan, a class fájlban lévő bootstrap metódosuk egy külön adattag elemeiként el vannak helyezve. A továbbfejlesztés során csak a megfelelő CallSite helyet, illetve a class fájlban lévő constant pool általi index-eken levő metódusokkal (illetve paraméterekkel) kell meghívni az éppen leírt függvényt.

3.3.2. Java 7 előtti verziók támogatása

Viszonylag egyszerűen továbbfejleszthető a program hogy Java 7 előtti verzióval fordított class fájlokat is támogasson.

A hiányzó utasítások a ret, jsr, jsr_w, ezek mindegyikéhez csak az szükséges, hogy a megfelelő index-re ugorjunk, a jsr és jsr_w utasítások során a visszatérési címet pedig a stack-re helyezzük.

Természetesen mindegyik utasítás során a megfelelő index-et is be kell olvasnunk a class fájlból, amely a lokális változó megfelelő indexére (ret), vagy egy adott számot (jsr, jsr_w) határoz meg, amely a visszatérési cím, illetve az ugrási cím.

3.3.3. Erőforrás igény

A futási idő táblázata alapján látható hogy a program exponenciálisan lassabb, mint a beépített java interpretáló program. A program több memóriát is igényel mint szükséges lenne. Ezeknek számos oka is van, ezek közül pár:

- A nem beépített osztályok megfelelő konstruktorait minden egyes alkalommal a program egyesével keresi ki a program. Ez a limitáció nagyon szembetűnő ha sok saját osztállyal dolgozunk. Ilyenkor a futási idő mégjobban lassul
- A stack-nek maximális értéket (65536) foglal a program minden nem beépített függvény meghívása során, viszont a class fájlban ennek a maximális értéke le van írva a megfelelő függvény attribútumaként.
- A különböző class fájlok beolvasásának eredménye nincs elmentve, ha egy fájlt be kell olvasnunk, akkor azt minden egyes alkalommal külön-külön megteszünk, ha az eredményt elmentenénk akkor drasztikusan lehetne a sebességen gyorsítani.

3.3.4. További tesztelés

A szakdolgozat írása során megpróbáltam az alapos tesztelésre figyelni, ezért is vannak az alapvető instrukciót egyesével tesztelve (minden tesztfájl-ban külön-külön instrukciók szerepelnek). Viszont a tökéletes program nem létezik, elképzelhető hogy valahol nincs megfelelően a stack törölve, vagy valamely instrukció mégsem helyes. Tehát a programban elképzelhető a probléma. Ezt a még alaposabb teszteléssel minél inkább meg lehetne cáfolni.

Ehhez egy példa még több tesztfájl mellékelése. A tesztelő környezetbe (Python szkript) viszonylag egyszerűen be lehet helyezni új teszt fájlokat, amely leellenőrzi hogy megfelelő-e a program futása. Továbbfejlesztésként lehet Java programokat írni, majd ezeket a tesztelő környezethez hozzáadni, és ellenőrizni hogy jól fut-e le a program.

3.4. Érdekességek a JVM specifikációból

4. fejezet

Összegzés

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In eu egestas mauris. Quisque nisl elit, varius in erat eu, dictum commodo lorem. Sed commodo libero et sem laoreet consectetur. Fusce ligula arcu, vestibulum et sodales vel, venenatis at velit. Aliquam erat volutpat. Proin condimentum accumsan velit id hendrerit. Cras egestas arcu quis felis placerat, ut sodales velit malesuada. Maecenas et turpis eu turpis placerat euismod. Maecenas a urna viverra, scelerisque nibh ut, malesuada ex.

Aliquam suscipit dignissim tempor. Praesent tortor libero, feugiat et tellus porttitor, malesuada eleifend felis. Orci varius natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Nullam eleifend imperdiet lorem, sit amet imperdiet
metus pellentesque vitae. Donec nec ligula urna. Aliquam bibendum tempor diam,
sed lacinia eros dapibus id. Donec sed vehicula turpis. Aliquam hendrerit sed nulla vitae convallis. Etiam libero quam, pharetra ac est nec, sodales placerat augue.
Praesent eu consequat purus.

Köszönyetnyilvánítás

Petes Márton (ELTE IK PTI BSc): Az elekadásaim során elképesztően sok segítséget nyújtott, nélküle nem tudom hogy meglett volna-e a szakdolgozat

Ábrák jegyzéke

Táblázatok jegyzéke

3.1.	Erőforrás	különbségek																								1	4
J. I.	- CICII COD	Traio Trobo Scir	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	_	

Algoritmusjegyzék

1	A general interval	B&B algorithm											14
L.	A general interval	D&D algorithm				•		 		•			14

Forráskódjegyzék