

Lógica Matemática Aula 05

Prof.^a Msc. Cassiana Fagundes da Silva E-mail: cassiana.silva@sistemafiep.org.bi

Objetivo da Aula

- Construir tabelas-verdade através de proposições compostas.
- Entender o valor lógico de uma proposição composta.
- Compreender os princípios da tautologia, contradição e contingências.

Relembrando ... Tabelas-verdade

 Uma tabela mediante a qual são analisados os valores lógicos de proposições compostas.

Nº linhas da Tabela-Verdade = 2nº de proposições

- Exemplo:
 - P(p, q)=~(p v ~q)

Ordem de **precedência** para os conectivos:

- 1. "negação": ~, 1
- 2. "e", "ou": ^, V
- 3. "implicação": →
- 4. "se e somente se": \leftrightarrow

Relembrando Como construir Tabelas-verdade

P(p, q)=~(p v ~q)

Ordem de **precedência** para os conectivos:

- 1. "negação": ~, 1
- 2. "e" , "ou": ^ , V
- 3. "implicação": →
- 4. "se e somente se": \leftrightarrow

p	q	~q	p v ~q
V	V	F	V
V	F	V	V
F	V	F	F
F	F	V	V

p	q	~q	p v ∼q	~(p v ~q)
V	V	F	V	F
V	F	V	V	F
F	V	F	F	V
F	F	V	V	F

Como construir Tabelas-verdade

•
$$P(p, q, r) = (p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$$

- Proposições simples: p, q, r
- Proposição composta: (p → q)
- Proposição composta: (q → r)
- Proposição composta: (p → r)
- Proposição composta: (p → q) ^ (q → r)
- Proposição composta: $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$

р	q	r	(p -> q)	(q -> r)	(p -> q) ^ (q -> r)	(p -> r)	(p -> q) ^ (q -> r) -> (p -> r)
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	F	V	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

Como construir Tabelas-verdade

• $P(p, q, r) = (p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$

р	q	r	(p -> q)	(q -> r)	$(p -> q) \land (q -> r)$	(p -> r)	(p -> q) ^ (q -> r) -> (p -> r)
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	F	V	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

• Simbolicamente, pode ser apresentado como:

$$P(V,V,V) = V,$$
 $P(V,V,F) = V,$ $P(V,F,V) = V,$ $P(V,F,F) = V$
 $P(F,V,V) = V,$ $P(F,V,F) = V,$ $P(F,F,V) = V,$ $P(F,F,F) = V$

Como construir Tabelas-verdade

• $P(p, q, r) = (p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$

р	q	r	(p -> q)	(q -> r)	(p -> q) ^ (q -> r)	(p -> r)	(p -> q) ^ (q -> r) -> (p -> r)
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	F	V	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	V	V	V

• Simbolicamente, pode ser apresentado como:

$$P(V,V,V) = V$$
, $P(V,V,F) = V$, $P(V,F,V) = V$, $P(V,F,F) = V$
 $P(F,V,V) = V$, $P(F,V,F) = V$, $P(F,F,V) = V$, $P(F,F,F) = V$

Abreviadamente:

Valor lógico de uma proposição composta

- Dado uma proposição composta P(p, q, r, ...)
 - Valor lógico → Verdadeiro ou Falso(V ou F)
 - Dados seus respectivos valores lógicos
- Exemplo 1:
 - $x = 0 e x = y \rightarrow verdadeiras$
 - $y = z \rightarrow falsa$

Determine valor lógico da proposição: $x \neq 0 \ v \ x \neq y \rightarrow y \neq z$ $F \lor F \rightarrow V$ $F \rightarrow V$

Valor lógico de uma proposição composta

• Exemplo 2:

•
$$P(p,q) = ^(p \vee q) \longleftrightarrow ^p ^q$$

Onde:
$$p = V e q = F$$

Qual valor lógico de P?

$$V(P) = {}^{\sim}(V \vee F) \longleftrightarrow {}^{\sim}V \wedge {}^{\sim}F$$

$$V(P) = {}^{\sim}V \longleftrightarrow F \wedge V$$

$$V(P) = F \longleftrightarrow F$$

$$V(P) = V$$

Vamos exercitar

• $P(p, q, r) = (q \leftrightarrow (r \rightarrow p)) \vee ((p \rightarrow p) \leftrightarrow r)$

onde:

$$V(p) = V$$

$$V(q) = F$$

$$V(r) = F$$

$$V(P) = (q \leftrightarrow (r \rightarrow p)) \vee ((p \rightarrow p) \leftrightarrow r)$$

$$V(P) = (F \leftrightarrow (F \rightarrow ^{\sim}V)) \vee ((^{\sim}F \rightarrow V) \leftrightarrow F)$$

$$V(P) = (F \longleftrightarrow (F \to F)) \lor ((V \to V) \longleftrightarrow F)$$

$$V(P) = (F \longleftrightarrow V) \lor (V \longleftrightarrow F)$$

$$V(P) = F \vee F$$

$$V(P) = V$$

Tautologia

• Se a última coluna da tabela-verdade só apresentar verdadeiro (e nenhum falso), então estaremos diante de uma Tautologia.

Tautologia

• Se a última coluna da tabela-verdade só apresentar verdadeiro (e nenhum falso), então estaremos diante de uma Tautologia.

• Exemplo:

• $(p \land q) \rightarrow (p \lor q)$

p	q	p∧q	pvq	$(p \land q) \rightarrow (pVq)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

Contradição

 Construindo a tabela-verdade de uma proposição composta, se todos os resultados da última coluna forem FALSOS, então estaremos diante de uma contradição.

• Exemplo:

р	~p	p ↔ ~ p
V	F	F
F	V	F

Contingência

 Uma proposição composta será dita uma contingência sempre que não for uma tautologia ou uma contradição.

• Exemplo:

•
$$p \leftrightarrow (p \land q)$$

p	q	$\mathbf{p} \wedge \mathbf{q}$	$p \leftrightarrow (p \land q)$
V	V	V	V
V	F	F	F
F	V	F	V
F	F	F	V

- 1) Construa a tabela verdade para cada uma das seguintes proposições:
- a) ~p ^ q
- b) $(p \land q) \rightarrow (p \lor q)$
- c) $\sim (p \land q) \lor \sim (q \leftrightarrow p)$
- d) $(p \rightarrow q) v \sim (p \leftrightarrow \sim q)$
- e) $[p \rightarrow (\sim q \vee r)] \wedge \sim [q \vee (p \leftrightarrow \sim r)]$
- f) $[p \rightarrow (\sim q \vee r)] \wedge \sim [q \vee (p \leftrightarrow \sim r)]$
- g) \sim (p \wedge q) \vee \sim (q \leftrightarrow p)
- h) $(p \land q \rightarrow r) \lor (^p \leftrightarrow q \lor ^r)$

2) Sabendo-se que os valores lógicos das proposições p, q e r são respectivamente V, F e F, determinar o valor lógico (V ou F) de cada uma das seguintes proposições:

- a) $(p \leftrightarrow p \rightarrow q) \vee (p \rightarrow r)$
- b) $(p \rightarrow ^{\sim}q) \leftarrow \rightarrow ((p \vee r) ^{\sim}q)$
- c) $(p \land q \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$

- 3) Determinar P(VV, VF, FV, FF) em cada um dos seguintes casos:
- a) $P(p, q) = ^(p \leftarrow \rightarrow q)$
- b) $P(p, q) = p \vee q \rightarrow p$
- c) $P(p, q) = (p \vee q) ^ \sim (p ^ q)$

4) Determinar quais das seguintes proposições são tautológicas, contraválidas (contradição), ou contingentes:

- a) $p \rightarrow (\sim p \rightarrow q)$
- b) $\sim p \vee q \rightarrow (p \rightarrow q)$
- c) $p \rightarrow (q \rightarrow (q \rightarrow p))$
- d) $((p \rightarrow q) \leftrightarrow q) \rightarrow p$
- e) $p \vee q \rightarrow (p \rightarrow q)$
- f) $p \vee q \rightarrow p \wedge q$
- g) $p \vee q \rightarrow p \wedge q$
- h) $(q \rightarrow p) \rightarrow (p \rightarrow q)$
- i) $(q \rightarrow p) \rightarrow (p \rightarrow q)$

Sistema FIEP SESI FIEP SENAI

nosso i é de indústria.

01/04/2020