

ATIVIDADES EXTENSIONISTAS

Trabalho Final

			_
		re	n
$\mathbf{\mathbf{\mathcal{U}}}$	u		v

() Bacharelado em Engenharia da Computação
() Bacharelado em Engenharia de Software
() Bacharelado em Ciência da Computação
() Bacharelado em Sistemas de Informação
()	X) CST em Análise e Desenvolvimento de Sistemas
() CST em Banco de Dados
() CST em Ciência de Dados
() CST em Desenvolvimento Mobile
() CST em Gestão da Tecnologia da Informação
() CST em Jogos Digitais
() CST em Redes de Computadores
D	isciplina
()	X) Atividade Extensionista I: Tecnologia Aplicada à Inclusão Digital – Levantamento
() Atividade Extensionista II: Tecnologia Aplicada à Inclusão Digital - Projeto
() Atividade Extensionista III: Tecnologia Aplicada à Inclusão Digital - Análise
() Atividade Extensionista IV: Tecnologia Aplicada à Inclusão Digital - Implementação
E	tapa
()	X) Validação da proposta
() Trabalho final

Aluno(s) e RU(s)

Aluno	RU
Lindomar José Batistão	4427651

Título

Gerenciar e Melhorar o Seu Bem-Estar

Setor de Aplicação

Esse projeto deverá ser aplicado em hospitais para auxiliar pacientes a manterem controle sobre suas medicações e consultas, melhorando a adesão ao tratamento e a comunicação com profissionais de saúde.

Objetivos de Desenvolvimento Sustentável (ODS)
() 01. Erradicação da pobreza
() 02. Fome zero e agricultura sustentável
(X) 03. Saúde e bem-estar
() 04. Educação de qualidade
() 05. Igualdade de gênero
() 06. Água potável e saneamento
() 07. Energia limpa e acessível
() 08. Trabalho decente e crescimento econômico
() 09. Indústria, inovação e infraestrutura
() 10. Redução das desigualdades
() 11. Cidades e comunidades sustentáveis
() 12. Consumo e produção responsáveis
() 13. Ação contra a mudança global do clima
() 14. Vida na água
() 15. Vida terrestre
() 16. Paz, justiça e instituições eficazes
() 17 Parcerias e meios de implementação

Objetivos

 Promover a adesão ao tratamento médico através de lembretes de medicação e consultas.

- Facilitar o monitoramento de saúde pessoal, fornecendo ferramentas para registrar e acompanhar indicadores de saúde, como pressão arterial, níveis de glicose e frequência cardíaca.
- Fornecer dicas e recursos de bem-estar personalizados, ajudando os usuários a adotarem hábitos saudáveis e a melhorarem sua qualidade de vida.

Metodologia

Resultados Esperados/Obtidos

1. Metodologia

A metodologia adotada para o desenvolvimento do sistema foi baseada no **processo incremental**, onde as etapas de análise, modelagem, implementação e testes foram realizadas de forma iterativa.

Para a **modelagem de requisitos**, utilizou-se a UML (Unified Modeling Language), a fim de representar as principais funcionalidades do sistema através de **diagramas de caso de uso**.

A modelagem do banco de dados foi realizada através de um Diagrama Entidade-Relacionamento (DER), que define as tabelas, atributos e relacionamentos necessários para o armazenamento de informações.

1.1 Diagrama de Caso de Uso

O diagrama da figura 1 representa as interações do **usuário autenticado** com os principais módulos do sistema:

- Cadastro de usuário,
- Registro e consulta de indicadores de saúde (pressão arterial, glicemia e colesterol),
- Gerenciamento de calendário de medicamentos.

Figura 1 - Diagrama de Caso de Uso

1.2 Modelagem de Dados - DER

O **Diagrama Entidade-Relacionamento** (figura 2) representa as entidades do sistema e seus relacionamentos. Cada usuário pode possuir vários registros de pressão arterial, glicemia, colesterol e datas e horários para tomar medicamentos.

Figura 2 - – Diagrama Entidade-Relacionamento (DER)

Desenvolvimento do Front-end

O front-end do sistema foi desenvolvido utilizando **React Native**, com o objetivo de fornecer uma interface mobile responsiva e intuitiva. A escolha dessa tecnologia permite a criação de aplicações móveis multiplataforma (Android e iOS) com base em **JavaScript e JSX**, garantindo performance e uma boa experiência do usuário.

O projeto está estruturado em **componentes funcionais**, que utilizam o **React Hooks** (useState) para gerenciamento de estado local. A comunicação com o backend é realizada por meio da biblioteca **Axios**, que facilita o consumo de APIs REST. Além disso, o **AsyncStorage** é utilizado para o armazenamento local do **token JWT**, garantindo que as requisições autenticadas ao servidor sejam feitas de forma segura.

Principais Telas do Aplicativo

Tela de Boas-Vindas (Home)

Esta é a primeira tela exibida ao abrir o app. Ela serve como uma introdução amigável ao propósito do aplicativo e fornece acesso às telas de autenticação (Login e Cadastro).

Objetivo da Tela

A tela Home tem como função principal:

- Apresentar o nome e identidade visual do aplicativo.
- Informar de forma simples o que o app oferece.
- Permitir que o usuário entre ou crie uma conta.

Funcionalidades e estrutura

- 1. Cabeçalho: Título do app
 - Exibe o nome do aplicativo em destaque, promovendo o propósito de monitoramento da saúde.
- 2. Imagem ilustrativa
 - Mostra uma imagem localizada em assets/saude.png, que simboliza saúde e bem-estar.
 - Torna a tela mais visual e acolhedora.
- 3. Lista de funcionalidades disponíveis
 - Explica de forma simples e com ícones quais funcionalidades estarão disponíveis após o login.
 - Serve como um "preview" das capacidades do app.
- 4. Ações de autenticação
 - Dois botões direcionam o usuário:
 - Para a tela de login existente (Login)
 - Para o cadastro de uma nova conta (SignUp)
 - Usam o React Navigation para navegação entre as rotas.
- 5. Rodapé motivacional
 - Frase final que reforça o foco do app em autocuidado e qualidade de vida.

Figura 3 - Home

Tela de Cadastro de Usuário

A tela SignUp permite que um novo usuário crie uma conta preenchendo nome de usuário, e-mail e senha. Esse formulário envia os dados para o backend via uma requisição POST, que retorna um token JWT. Esse token é armazenado localmente usando AsyncStorage.

Os estados username, email e password armazenam os dados inseridos pelo usuário nos campos do formulário.

Uma função (handleSignUp) executa a requisição HTTP POST para o endpoint de cadastro. Em caso de sucesso, o token retornado (response.data.access) é salvo no dispositivo com AsyncStorage, e o usuário é redirecionado para a tela inicial.

A interface é composta por três campos de texto e um botão. Cada campo é controlado via estado, e o botão dispara o processo de cadastro quando pressionado.

Resumo

- O usuário insere nome, e-mail e senha;
- O app envia esses dados para o backend via axios;
- O backend responde com um token;
- O token é armazenado com AsyncStorage;
- O app redireciona para a tela inicial.

Figura 4 - Cadastro de Usuário

Tela de Login

Essa tela permite que o usuário acesse o aplicativo informando suas credenciais. Ao submeter os dados, o app envia uma requisição para a API de autenticação do backend. Se os dados estiverem corretos, um token JWT é salvo no AsyncStorage para autenticação futura.

O campo de e-mail está presente, mas não é utilizado no processo de login — apenas username e password são enviados à API. O campo de e-mail pode ser removido para evitar confusão, ou ser usado no futuro.

Figura 5 - Login

Tela Inicial

Esta tela é a central de navegação do app. Ela dá acesso a todas as principais funcionalidades de monitoramento da saúde do usuário.

Funcionalidades principais:

1. Visual e apresentação

- A tela exibe o título Monitor de Saúde com um subtítulo "Acompanhe seus indicadores de saúde", reforçando a proposta do aplicativo.
- Logo abaixo, é apresentada uma grade com quatro ícones interativos, cada um levando a uma funcionalidade específica do app.

2. Navegação entre telas

Cada botão da grade possui um ícone e uma legenda, e quando pressionado leva o usuário para outra seção:

✓ HeartPulse Pressão arterial Registrar e visualizar medições de pressão arterial

✓ BloodGlucose Glicemia Registrar os níveis de glicose no sangue

✓ Cholesterol Colesterol Registrar o colesterol

✓ Medications Medicamentos Agendamento e controle de medicamentos

Todos esses botões usam navigation.navigate() para mover o usuário entre as rotas do React Navigation.

3. Logout (voltar à tela de login)

- Um botão "Voltar" com o ícone de login invertido é exibido ao final da tela.
- Ao ser pressionado, o app executa o logout:
 - Remove o token de autenticação do AsyncStorage;
 - Redireciona o usuário de volta para a tela "Home" (presumivelmente a tela de login ou boas-vindas).

4. Frase motivacional

Abaixo dos ícones há um texto de incentivo: Gerenciar e Melhorar o Seu Bem-Estar, promovendo a proposta de autocuidado do app.

Figura 6 - Inicial

Tela de Pressão Arterial

Esta tela tem como objetivo permitir que o usuário registre manualmente suas medições de pressão arterial. Ela funciona da seguinte forma:

Funcionalidades principais:

1. Entrada de dados

O usuário pode preencher:

- A data da medição (no formato dd/mm/aaaa);
- O horário da medição (no formato hh:mm);
- o O valor da pressão arterial sistólica (pressão "alta", ex: 120);
- O valor da pressão arterial diastólica (pressão "baixa", ex: 80).

2. Validação dos campos

O app valida se:

- A data e hora estão em formatos válidos;
- Os valores de pressão são numéricos.

3. Envio dos dados para o backend (API)

Ao clicar em "Registrar", os dados são:

- Convertidos para o formato apropriado (ex: data → aaaa-mm-dd);
- Enviados para o servidor via uma requisição HTTP POST;
- A requisição inclui um cabeçalho Authorization com um token JWT, que é recuperado do AsyncStorage (ou seja, o envio é autenticado).

4. Resposta da API e feedback

- Se o servidor responder com sucesso, o app exibe uma mensagem de confirmação ("Pressão registrada com sucesso!");
- Em caso de erro (problemas na API ou nos dados), uma mensagem de alerta é exibida ao usuário.

5. Visualização futura dos dados

Embora o gráfico ainda não esteja implementado, a tela já reserva um espaço com o texto "[Gráfico será exibido aqui]", indicando que será possível futuramente visualizar a evolução da pressão ao longo do tempo.

Figura 7 - Pressão Arterial

Tela de Glicemia

Essa tela permite ao usuário registrar sua taxa de glicemia em uma data e horário específicos. Os dados são validados e enviados via requisição POST para a API, com autenticação por token JWT.

Essa tela:

- Valida data, hora e valor da glicemia;
- Envia os dados de forma segura à API;
- Usa token armazenado no AsyncStorage;
- · Limpa os campos após o envio;
- É uma interface intuitiva para o usuário registrar suas medições.

Figura 8 - Glicemia

Tela de Colesterol:

Essa tela permite ao usuário registrar os níveis de colesterol LDL e HDL com data e hora. O código está estruturado para fazer validações antes de exibir uma confirmação.

As entradas de data e hora são automaticamente formatadas conforme o usuário digita.

Atualmente, o botão "Registrar" apenas faz as validações e exibe os dados no console como forma de simulação.

A tela de Colesterol:

- Permite digitar e validar data, hora e valores de colesterol;
- Mostra mensagem de sucesso após validação;
- Pode ser facilmente conectada à API com um POST;
- Está pronta para ser estendida com gráficos e histórico.

Figura 9 - Colesterol

Tela de Medicamentos

Esta tela permite que o usuário registre e atualize a rotina de medicamentos, incluindo:

- · Nome do medicamento
- Dias da semana em que será tomado
- Até 5 horários diferentes

Ela é integrada com a API via métodos POST e PUT, utilizando autenticação por token JWT.

1. Estado inicial e carregamento de dados

Ao abrir a tela, é feita uma requisição GET para buscar um calendário já existente.

2. Seleção dos dias da semana

Cada dia pode ser marcado/desmarcado tocando no botão correspondente, isso afeta visualmente a interface e também o payload enviado.

3. Cadastro ou atualização de rotina

O botão "Registrar" ou "Atualizar" envia os dados para o backend. Se já existe um ID salvo (via useEffect), é feito um PUT, caso contrário, um POST.

4. Formatação dos horários

Cada campo de hora usa um manipulador que formata automaticamente para o formato HH:MM

5. Interface do usuário

Exibe:

- Campo para nome do remédio
- Seleção visual dos dias
- Campos de entrada para horários
- Botões de ação

6. Navegação

O botão com ícone "home" retorna à tela inicia

A tela de medicamentos:

- Salva e atualiza uma rotina com nome, dias e horários;
- Carrega dados do backend e atualiza se já existir;
- Utiliza token JWT para autenticação;
- Tem interface intuitiva e limpa;
- Está pronta para ser usada e expandida (como com alarmes ou lembretes).

Figura 10 - Medicamento

Considerações

O desenvolvimento do aplicativo "Monitor Saúde: Gerenciar e Melhorar o Seu Bem-Estar" representa um passo significativo no uso da tecnologia para promover a saúde e o bem-estar pessoal, alinhando-se aos Objetivos de Desenvolvimento Sustentável (ODS) da ONU, especialmente o ODS 3. Este projeto visa oferecer uma ferramenta acessível, eficiente e inclusiva para a gestão de saúde, com funcionalidades que atendem tanto a necessidades individuais quanto coletivas.

Inovação e Impacto

Este aplicativo não só inovará na maneira como as pessoas gerenciam sua saúde, mas também terá um impacto positivo em diversas áreas:

- **Pessoal**: Melhor adesão ao tratamento, maior conscientização sobre saúde e bemestar, e uma rotina mais saudável.
- **Profissional**: Melhoria na comunicação entre pacientes e profissionais de saúde, proporcionando um acompanhamento mais preciso e personalizado.
- Coletivo: Contribuição significativa para programas de saúde pública, empresas e organizações que visam promover o bem-estar de suas comunidades.

Metodologia e Desenvolvimento

A metodologia adotada assegura um desenvolvimento estruturado e focado no usuário. Desde a definição clara de objetivos até a coleta de feedback para melhorias contínuas, cada etapa foi projetada para garantir a criação de um aplicativo robusto, eficaz e fácil de usar.

Desenho Universal

A aplicação dos sete princípios do Desenho Universal no desenvolvimento do aplicativo garante acessibilidade para todos os usuários, incluindo aqueles com deficiências. Isso promove a inclusão digital e assegura que o aplicativo possa ser utilizado por um público diverso.

Sustentabilidade e Futuro

O projeto não termina com a implementação inicial do aplicativo. A coleta contínua de feedback e a análise de dados de uso permitirão que o aplicativo evolua constantemente, adaptando-se às novas necessidades e incorporando avanços tecnológicos e médicos. Isso garante que o aplicativo permaneça relevante e eficaz a longo prazo.

Repositório

Ao acessar o repositório (https://github.com/lindomarbatistao/bemestar.git) leia os README, pois terá um passo a passo de como baixar, instalar e executar o projeto.

Endereço do repositório GitHub

https://github.com/lindomarbatistao/bemestar.git

Conclusão

Considerando que este projeto é um protótipo, desenvolvi inicialmente apenas o backend utilizando Django Rest Framework e o front-end com React Native. Para a próxima entrega, pretendo criar também uma versão Web da aplicação em React, permitindo que qualquer pessoa possa acessá-la e realizar o download no celular.

Como o objetivo do projeto não envolve fins comerciais ou monetários, a aplicação ainda não foi publicada na Play Store nem o back-end hospedado.

Apesar de não ter concluído todas essas etapas nesta fase, tenho pleno domínio técnico para finalizá-las quando necessário.

Para próxima entrega pretendo:

- Elaborar página web
- Hospedar back end desde que o servidor gratuito suporte
- Hospedar front end
- Elaborar vídeo explicando todo o projeto