Advanced Topics in Astrodynamics and Trajectory Design

Circular Restricted Three Body Problem

Dr Joan Pau Sánchez

MSc in Astronautics and Space Engineering

www.cranfield.ac.uk

Bibliography

Some good books ordered by increasing depth and breath:

- Orbital Mechanics, V.A Chobotov, AIAA Education Series
- Analytical Mechanics of Space Systems, H.Shcaub, J.L.Junkins, AIAA Education Series
- An Introduction to the Mathematics and Methods of Astrodynamics,
 R.H.Battin, AIAA Educationan Series
- Fundamentals of Astrodynamics and Applications, D.A. Vallado, Space Technology Library

Circular Restricted Three Body Problem (CR3BP)

- "Three-body" refers to a problem that considers the motion of 3 bodies. Generally, 2 celestial bodies + spacecraft; Earth+Moon+S/C, Sun+Jupiter+asteroid.
- "Restricted" refers to the consideration that two of these bodies have masses that far outweigh the mass of the third.
- "Circular" refers to the fact that these two large bodies move in circular orbits around their common centre of mass.

CR3BP: General Description

Figure 9.1: Illustration of Three-Body Problem Courtesy (Shcaub & Junkins, 2002)

$$M\ddot{\mathbf{r}}_C = \mathbf{F}_{external} \approx 0$$

 $M = m_1 + m_2 + m_3$

$$\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i$$
 where $i = 1, 2, 3$

$$m_1 \ddot{\mathbf{r}}_1 = G \sum_{j=1}^3 \frac{m_1 m_j}{r_{1j}^3} \mathbf{r}_{1j}$$

$$m_2 \ddot{\mathbf{r}}_2 = G \sum_{j=1}^3 \frac{m_2 m_j}{r_{2j}^3} \mathbf{r}_{2j}$$

$$m_3\ddot{\mathbf{r}}_3 = G\sum_{j=1}^3 \frac{m_3 m_j}{r_{3j}^3} \mathbf{r}_{3j}$$

CR3BP: General Description

• "Restricted" refers to the consideration that two of these bodies have masses that far outweigh the mass of the third.

$$\sqrt{m_3} \sim 0$$

- "Circular" refers to the fact that these two large bodies move in circular orbits around their common centre of mass.
 - \checkmark Constant angular velocity vector ω

$$n = \frac{2\pi}{\tau} = \sqrt{\frac{GM}{a^3}} \qquad \Longrightarrow \quad \omega = \sqrt{\frac{G(m_1 + m_2)}{r_{12}^3}}$$

CR3BP: Synodic or rotating reference frame

• A reference frame F centred at the barycentre and rotating with an angular velocity $\mathbf{\omega} = \omega \hat{\mathbf{k}}$

Figure 9.8: Illustration of Circular Restricted Three-Body Problem

Courtesy (Shcaub & Junkins, 2002)

CR3BP: Synodic or rotating reference frame

Inertial orbit in inertial RF

Inertial orbit in non-inertial RF

CR3BP: Synodic or rotating reference frame

Non-inertial orbit in non-inertial RF

Exercise 1

DemoEx1_CR3BP_Session4.m

- 1. Open file "DemoEx1_CR3BP_Session4.m"
- 2. Run each section in order one time.

- 1. Change the orbit by choosing a different apoapsis and periapis distance.
- 1. Attempt the following example:

$$r_p = 0.4u$$
; $r_a = 0.86u$

2. Attempt the following example:

$$r_p = 0.2u$$
; $r_a = 0.7615u$

What is happening in these strange orbits?

CR3BP: Equations of motion – Vector form

• Express \mathbf{r} in $F: \{\hat{\mathbf{e}}_r, \hat{\mathbf{e}}_\theta, \hat{\mathbf{e}}_z\}$

$$\omega = \sqrt{\frac{G(m_1 + m_2)}{r_{12}^3}}$$

$$\mathbf{r} = r_x \hat{\mathbf{e}}_r + r_y \hat{\mathbf{e}}_\theta + r_z \hat{\mathbf{e}}_z$$

$$\ddot{\mathbf{r}} + 2\mathbf{\omega} \times \dot{\mathbf{r}} + \mathbf{\omega} \times \mathbf{\omega} \times \mathbf{r} = \frac{\mathbf{F}_1}{m} + \frac{\mathbf{F}_2}{m}$$

Coriolis Centripetal

$$\mathbf{F}_1 = -\frac{GmM_1}{\xi_1^3} \, \boldsymbol{\xi}_1$$

$$\mathbf{F}_2 = -\frac{GmM_2}{\xi_2^3} \, \boldsymbol{\xi}_2$$

$$\xi_i = \sqrt{(r_x - r_i)^2 + r_y^2 + r_z^2}$$

CR3BP: Equations of motion – scalar form

$$\ddot{r}_{x} - 2\omega\dot{r}_{y} - \omega^{2}r_{x} = -G\left(\frac{m_{1}}{\xi_{1}^{3}}(r_{x} - r_{1}) + \frac{m_{2}}{\xi_{2}^{3}}(r_{x} - r_{2})\right)$$

$$\ddot{r}_{y} + 2\omega\dot{r}_{x} - \omega^{2}r_{y} = -G\left(\frac{m_{1}}{\xi_{1}^{3}} + \frac{m_{2}}{\xi_{2}^{3}}\right)r_{y}$$

$$\ddot{r}_{z} = -G\left(\frac{m_{1}}{\xi_{1}^{3}} + \frac{m_{2}}{\xi_{2}^{3}}\right)r_{z}$$

$$\mathbf{a} = -\frac{Gm}{r^2} \left(\frac{\mathbf{r}}{r}\right)$$

Figure 9.8: Illustration of Circular Restricted Three-Body Problem

CR3BP: Equations of motion – Potential function

$$U(r_x, r_y, r_z) = \frac{\omega^2}{2} (r_x^2 + r_y^2) + \frac{Gm_1}{\xi_1} + \frac{Gm_2}{\xi_2}$$

$$\ddot{\mathbf{r}} + 2\mathbf{\omega} \times \dot{\mathbf{r}} = \frac{\partial U}{\partial \mathbf{r}}$$

Figure 9.8: Illustration of Circular Restricted Three-Body Problem

CR3BP: Jacobi Integral

$$\ddot{\mathbf{r}} + 2\mathbf{\omega} \times \dot{\mathbf{r}} = \frac{\partial U}{\partial \mathbf{r}}$$

$$(\ddot{\mathbf{r}} + 2\mathbf{\omega} \times \dot{\mathbf{r}}) \cdot \dot{\mathbf{r}} = \frac{\partial U}{\partial \mathbf{r}} \cdot \dot{\mathbf{r}}$$

$$\ddot{\mathbf{r}} \cdot \dot{\mathbf{r}} + 2\mathbf{\omega} \times \dot{\mathbf{r}} \cdot \dot{\mathbf{r}} = \frac{\partial U}{\partial \mathbf{r}} \cdot \frac{d\mathbf{r}}{dt}$$

$$\ddot{\mathbf{r}} \cdot \dot{\mathbf{r}} = \frac{dU}{dt}$$

$$\frac{1}{2}\frac{d}{dt}(\dot{\mathbf{r}}\cdot\dot{\mathbf{r}}) = \frac{dU}{dt}$$

$$v^2 = 2U - C$$

$$C = 2U - v^2$$

Jacobi integral/constant = C

CR3BP: Jacobi Integral

$$C = \omega^{2} \left(r_{x}^{2} + r_{y}^{2} \right) + \frac{2Gm_{1}}{\xi_{1}} + \frac{2Gm_{2}}{\xi_{2}} - v^{2}$$

- Basically, C is the classical energy integral expressed in rotating reference frame.
- Jacobi integral has two important uses:
 - ✓ Verifying accuracy of numerical integration.
 - ✓ Indicating regions of feasible motion.

CR3BP: Non-dimensional nomenclature

- The problem can be made non-dimensional by choosing the following units:
 - $\checkmark m_1 + m_2$ as the unit of mass
 - $\checkmark r_{12}$ as the unit of length
 - \checkmark P/(2 π) as the unit of time

$$\mu = \frac{m_2}{m_1 + m_2}$$

$$x_2 - x_1 = 1$$

$$x_1 = -\mu$$

$$x_2 = 1 - \mu$$

Figure 9.8: Illustration of Circular Restricted Three-Body Problem

CR3BP: Non-dimensional nomenclature

System	μ	L	V	T
Sun-Jupiter	9.537×10^{-4}	7.784×10^{8}	13.102	3.733×10^{8}
Sun-(Earth+Moon)	3.036×10^{-6}	1.496×10^{8}	29.784	3.147×10^{7}
Earth-Moon	1.215×10^{-2}	3.850×10^{5}	1.025	2.361×10^{6}
Mars-Phobos	1.667×10^{-8}	9.380×10^{3}	2.144	2.749×10^{4}
Jupiter-Io	4.704×10^{-5}	4.218×10^{5}	17.390	1.524×10^{5}
Jupiter-Europa	2.528×10^{-5}	6.711×10^{5}	13.780	3.060×10^{5}
Jupiter-Ganymede	7.804×10^{-5}	1.070×10^{6}	10.909	6.165×10^{5}
Jupiter-Callisto	5.667×10^{-5}	1.883×10^{6}	8.226	1.438×10^{6}
Saturn-Mimas	6.723×10^{-8}	1.856×10^{5}	14.367	8.117×10^{4}
Saturn-Titan	2.366×10^{-4}	1.222×10^{6}	5.588	1.374×10^{6}
Neptune-Triton	2.089×10^{-4}	3.548×10^{5}	4.402	5.064×10^{5}
Pluto-Charon	1.097×10^{-1}	1.941×10^4	0.222	5.503×10^{5}

TABLE 2.2.1. Table of m_1 - m_2 systems in the solar system. Source: The first three are the values used in Koon, Lo, Marsden, and Ross [2000, 2001b]. The others are from the Jet Propulsion Laboratory's solar system dynamics website: http://ssd.jpl.nasa.gov/.

CR3BP: Non-dimensional dynamics

$$\ddot{x} - 2\dot{y} - x = -\frac{1 - \mu}{\rho_1^3} \left(x - x_1 \right) - \frac{-\mu}{\rho_2^3} \left(x - x_2 \right)$$

$$\ddot{y} + 2\dot{x} - y = -\left(\frac{1 - \mu}{\rho_1^3} + \frac{-\mu}{\rho_2^3} \right) y$$

$$\ddot{z} = -\left(\frac{1 - \mu}{\rho_1^3} + \frac{-\mu}{\rho_2^3} \right) z$$

$$\rho_i = \sqrt{(x - x_i)^2 + y^2 + z^2}$$

$$U(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1 - \mu}{\rho_1} + \frac{\mu}{\rho_2}$$

$$v^{2} = x^{2} + y^{2} + \frac{2(1-\mu)}{\rho_{1}} + \frac{2\mu}{\rho_{2}} - C$$

Let say we have a trajectory with a state vector such as:

$$(\mathbf{x}, \dot{\mathbf{x}}) = (x, y, z, 0, 0, 0)$$

$$\ddot{x} = 2\dot{y} + x - \frac{1-\mu}{\rho_1^3} \left(x - x_1\right) - \frac{\mu}{\rho_2^3} \left(x - x_2\right)$$

$$\ddot{y} = -2\dot{x} + y - \left(\frac{1-\mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}\right) y$$

$$\ddot{z} = -\left(\frac{1-\mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}\right) z$$

Let say we have a trajectory with a state vector such as:

$$(\mathbf{x}, \dot{\mathbf{x}}) = (x, y, z, 0, 0, 0)$$
$$\ddot{x} = 0$$
$$\ddot{y} = 0$$
$$\ddot{z} = 0$$

We then have an equilibrium point. (or stationary point).

• Let's look for: $(\mathbf{x}, \dot{\mathbf{x}}, \ddot{\mathbf{x}}) = (x, y, z, 0, 0, 0, 0, 0, 0)$

$$\ddot{x} = 2\dot{y} + x - \frac{1-\mu}{\rho_1^3} (x - x_1) - \frac{\mu}{\rho_2^3} (x - x_2)$$

$$\ddot{y} = -2\dot{x} + y - \left(\frac{1-\mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}\right) y$$

$$\ddot{z} = -\left(\frac{1-\mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}\right) z \qquad \Rightarrow \quad \ddot{z} = 0 \Rightarrow z = 0$$

• All stationary points must lie in the orbital plane of $m_1 \& m_2$

• Let's look for: $(\mathbf{x}, \dot{\mathbf{x}}, \ddot{\mathbf{x}}) = (x, y, 0, 0, 0, 0, 0, 0, 0)$

$$\ddot{x} = 2\dot{y} + x - \frac{1 - \mu}{\rho_1^3} (x - x_1) - \frac{\mu}{\rho_2^3} (x - x_2)$$

$$\ddot{y} = -2\dot{x} + y - \left(\frac{1 - \mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}\right) y$$

$$y = 0 \qquad \text{Collinear points}$$

$$y - \left(\frac{1 - \mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}\right) y = 0$$

$$\left(\frac{1 - \mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}\right) = 1; \ \rho_1 = \rho_2 \qquad \text{Equilateral points}$$

CR3BP: Equilibrium Positions (Collinear Solutions)

• Let's look for: $(\mathbf{x}, \dot{\mathbf{x}}, \ddot{\mathbf{x}}) = (x, 0, 0, 0, 0, 0, 0, 0, 0, 0)$

$$\rho_1 = \sqrt{(x - x_1)^2}$$
 $x_1 = -\mu$

$$\rho_2 = \sqrt{(x - x_2)^2}$$
 $x_2 = 1 - \mu$

$$\ddot{x} = 2\dot{y} + x - \frac{1-\mu}{\rho_1^3} (x - x_1) - \frac{\mu}{\rho_2^3} (x - x_2)$$

$$x - \frac{1 - \mu}{|x - x_1|^3} (x - x_1) - \frac{\mu}{|x - x_2|^3} (x - x_2) = 0$$

L3:
$$x - x_1 < 0 \& x - x_2 < 0$$

$$x + \frac{1 - \mu}{\left(x - x_1\right)^2} + \frac{\mu}{\left(x - x_2\right)^2} = 0$$

L1:
$$x - x_1 > 0$$
 & $x - x_2 < 0$

$$x - \frac{1 - \mu}{\left(x - x_1\right)^2} + \frac{\mu}{\left(x - x_2\right)^2} = 0$$

L2:
$$x - x_1 > 0 \& x - x_2 > 0$$

$$x - \frac{1 - \mu}{\left(x - x_1\right)^2} - \frac{\mu}{\left(x - x_2\right)^2} = 0$$

Exercise 2A

Part A in:

DemoEx2_CR3BP_Session4.m

 For the Earth-Moon system, find the three collinear equilibrium points.

Hint: Use *fzero* function (i.e. Matlab) to solve the equations below.

L3:
$$x - x_1 < 0$$
 & $x - x_2 < 0$ $x + \frac{1 - \mu}{(x - x_1)^2} + \frac{\mu}{(x - x_2)^2} = 0$

L1:
$$x - x_1 > 0$$
 & $x - x_2 < 0$ $x - \frac{1 - \mu}{(x - x_1)^2} + \frac{\mu}{(x - x_2)^2} = 0$

L2:
$$x-x_1 > 0$$
 & $x-x_2 > 0$ $x - \frac{1-\mu}{(x-x_1)^2} - \frac{\mu}{(x-x_2)^2} = 0$

Constants:

$$m_{\text{Earth}}$$
=5.9737x10²⁴kg
 m_{Moon} =7.3476x10²²kg

Exercise 2B

Part B in:

DemoEx2_CR3BP_Session4.m

For each equilibrium solution, propagate its initial condition and plot the results, both in rotating reference frame and inertial reference frame.

- Can you explain what you see?

CR3BP: Five Fixed Points (Lagrange or Libration Points)

CR3BP: Zero velocity curves

$$\ddot{x} - 2\dot{y} - x = -\frac{1 - \mu}{\rho_1^3} \left(x - x_1 \right) - \frac{-\mu}{\rho_2^3} \left(x - x_2 \right)$$

$$\ddot{y} + 2\dot{x} - y = -\left(\frac{1 - \mu}{\rho_1^3} + \frac{-\mu}{\rho_2^3} \right) y$$

$$\ddot{z} = -\left(\frac{1 - \mu}{\rho_1^3} + \frac{-\mu}{\rho_2^3} \right) z$$

$$\rho_i = \sqrt{(x - x_i)^2 + y^2 + z^2}$$

$$U(x, y, z) = \frac{1}{2}(x^2 + y^2) + \frac{1 - \mu}{\rho_1} + \frac{\mu}{\rho_2}$$

$$v^{2} = x^{2} + y^{2} + \frac{2(1-\mu)}{\rho_{1}} + \frac{2\mu}{\rho_{2}} - C$$

CR3BP: Zero velocity curves

$$v(x, y, z)^{2} = x^{2} + y^{2} + \frac{2(1-\mu)}{\rho(x, y, z)_{1}} + \frac{2\mu}{\rho(x, y, z)_{2}} - C$$

• If C>2U then $v^2 < 0 \longrightarrow v \equiv \text{Does not exist}$

Potential Energy

Exercise 3

DemoEx3_CR3BP_Session4.m

 Compute the zero velocity curves for a trajectory with Jacobi Constant C=L₁.

CR3BP: Zero velocity curves at C₁=L₁

- 1. Compute (x,y,z) for the L1 point in the Earth-Moon System.
- 2. Create a grid in 3D and analyse the values of the following equation:

$$v^{2} = x^{2} + y^{2} + \frac{2(1-\mu)}{\rho(x, y, z)_{1}} + \frac{2\mu}{\rho(x, y, z)_{2}} - C_{1}$$

3. Plot the isosurface for $v^2=0$

CR3BP: Zero velocity curves

Figure 9.9: Zero Relative Velocity Surface Contours of the Earth-Moon System in the x-y Plane Courtesy (Shcaub & Junkins, 2002)

Figure 9.10: Critical Zero Relative Velocity Surface Contours of the Earth-Moon System Touching the Lagrange Stationary Points

Courtesy (Shcaub & Junkins, 2002)

www.cranfield.ac.uk

T: +44 (0)1234 750111

@cranfielduni

@cranfielduni

/cranfielduni

Advanced Topics in Astrodynamics and Trajectory Design

Libration Point Orbits (LPOs)

Dr Joan Pau Sánchez

MSc in Astronautics and Space Engineering

www.cranfield.ac.uk

CR3BP: Five Fixed Points (Lagrange or Libration Points)

Motion of a spacecraft in an equilibrium point

What happens when we place a spacecraft at the L1 equilibrium point?

Motion of a spacecraft in an equilibrium point

What happens when we place a spacecraft at the L1 equilibrium point?

 What happens when we place a spacecraft at the L1 equilibrium point, but with 1 cm/s error in its velocity?

 What happens when we place a spacecraft at the L1 equilibrium point, but with 1 cm/s error in its velocity?

What happens when we place a spacecraft at the L5 equilibrium point?

What happens when we place a spacecraft at the L5 equilibrium point?

.

 What happens when we place a spacecraft at the L5 equilibrium point, but with 1 cm/s error in its velocity?

 What happens when we place a spacecraft at the L5 equilibrium point, but with 1 cm/s error in its velocity?

.

- Would you say then that L5 is more stable than L1 point?
- Is L1 stable or unstable?
- Is L5 stable?

Fixed points or Equilibrium points have an important "organizing role" of

a system phase space.

• In particular, if we linearize the system in a neighbourhood of the fixed points:

$$\delta \dot{\mathbf{y}} = \mathbf{M} \delta \mathbf{y}$$

The eigenvalues of the matrix M determine the stability of the fixed point

- Consider our dynamical model: $\ddot{\mathbf{r}} = f\left(\mathbf{r},\dot{\mathbf{r}}
 ight)$
- Now, let us consider the motion near an equilibrium point ${\bf r}_0$: $\ddot{\bf r}({\bf r}_0,{\bf 0})={\bf 0}$

$$\ddot{\mathbf{r}}(\mathbf{r}_0 + \delta \mathbf{r}, \mathbf{0} + \delta \mathbf{v}) = \mathbf{0} + \mathbf{M} \begin{pmatrix} \delta \mathbf{r} \\ \delta \mathbf{v} \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} \frac{\partial \dot{x}}{\partial x} & \frac{\partial \dot{x}}{\partial y} & \frac{\partial \dot{x}}{\partial z} & \frac{\partial \dot{x}}{\partial \dot{x}} & \frac{\partial \dot{x}}{\partial \dot{y}} & \frac{\partial \dot{x}}{\partial \dot{z}} \\ \frac{\partial \dot{y}}{\partial x} & \dots & & & & \\ \vdots & & & & & & \\ \frac{\partial \ddot{z}}{\partial x} & \frac{\partial \ddot{z}}{\partial y} & \frac{\partial \ddot{z}}{\partial z} & \frac{\partial \ddot{z}}{\partial z} & \frac{\partial \ddot{z}}{\partial \dot{x}} & \frac{\partial \ddot{z}}{\partial \dot{y}} & \frac{\partial \ddot{z}}{\partial \dot{z}} \end{pmatrix}$$

- Consider or dynamical model: $\ddot{\mathbf{r}} = f\left(\mathbf{r},\dot{\mathbf{r}}
 ight)$
- Now, let us consider the motion near an equilibrium point ${\bf r}_0$: $\ddot{{\bf r}}({\bf r}_0,{\bf 0})={\bf 0}$

$$\ddot{\mathbf{r}}(\mathbf{r}_0 + \delta \mathbf{r}, \mathbf{0} + \delta \mathbf{v}) = \mathbf{0} + \mathbf{M} \begin{pmatrix} \delta \mathbf{r} \\ \delta \mathbf{v} \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \hline \frac{\partial \ddot{x}}{\partial x} & \frac{\partial \ddot{x}}{\partial y} & \frac{\partial \ddot{x}}{\partial z} & 0 & 2 & 0 \\ \hline \frac{\partial \ddot{y}}{\partial x} & \frac{\partial \ddot{y}}{\partial y} & \frac{\partial \ddot{y}}{\partial z} & -2 & 0 & 0 \\ \hline \frac{\partial \ddot{z}}{\partial x} & \frac{\partial \ddot{z}}{\partial y} & \frac{\partial \ddot{z}}{\partial z} & 0 & 0 & 0 \end{pmatrix}$$

$$\dot{x} = v_{x}
\dot{y} = v_{y}
\dot{z} = v_{z}
\ddot{x} = x + 2\dot{y} - \frac{1 - \mu}{\rho_{1}^{3}} (x - x_{1}) - \frac{\mu}{\rho_{2}^{3}} (x - x_{2})
\ddot{y} = y - 2\dot{x} - \left(\frac{1 - \mu}{\rho_{1}^{3}} + \frac{\mu}{\rho_{2}^{3}}\right) y
\ddot{z} = -\left(\frac{1 - \mu}{\rho_{1}^{3}} + \frac{\mu}{\rho_{2}^{3}}\right) z$$

$$\rho_i = \sqrt{(x - x_i)^2 + y^2 + z^2}$$

$$x_{1} = -\mu$$

$$x_{2} = 1 - \mu$$

$$\rho_{i} = \sqrt{(x - x_{i})^{2} + y^{2} + z^{2}}$$

$$\begin{aligned}
x_1 &= -\mu \\
x_2 &= 1 - \mu \\
\rho_i &= \sqrt{\left(x - x_i\right)^2 + y^2 + z^2}
\end{aligned}
\quad
\mathbf{M} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\mathbf{Q} & -2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{aligned}
\quad
\mathbf{Q} = \begin{bmatrix}
\frac{\partial \ddot{x}}{\partial x} & \frac{\partial \ddot{x}}{\partial y} & \frac{\partial \ddot{x}}{\partial z} \\
\frac{\partial \ddot{y}}{\partial x} & \frac{\partial \ddot{y}}{\partial y} & \frac{\partial \ddot{y}}{\partial z} \\
\frac{\partial \ddot{z}}{\partial x} & \frac{\partial \ddot{z}}{\partial y} & \frac{\partial \ddot{z}}{\partial z}
\end{aligned}$$

$$\mathbf{Q} = \begin{pmatrix} \frac{\partial \ddot{x}}{\partial x} & \frac{\partial \ddot{x}}{\partial y} & \frac{\partial \ddot{x}}{\partial z} \\ \frac{\partial \ddot{y}}{\partial x} & \frac{\partial \ddot{y}}{\partial y} & \frac{\partial \ddot{y}}{\partial z} \\ \frac{\partial \ddot{z}}{\partial x} & \frac{\partial \ddot{z}}{\partial y} & \frac{\partial \ddot{z}}{\partial z} \end{pmatrix}$$

$$\frac{\partial \ddot{x}}{\partial x} = 1 - \frac{1 - \mu}{\rho_1^3} \left(1 - \frac{3}{\rho_1^2} (x - x_1)^2 \right) - \frac{\mu}{\rho_2^3} \left(1 - \frac{3}{\rho_2^2} (x - x_2)^2 \right) \qquad \frac{\partial \ddot{y}}{\partial y} = 1 + \frac{1 - \mu}{\rho_1^3} \left(\frac{3y^2}{\rho_1^2} - 1 \right) + \frac{\mu}{\rho_2^3} \left(\frac{3y^2}{\rho_2^2} - 1 \right)$$

$$\frac{\partial \dot{y}}{\partial y} = 1 + \frac{1 - \mu}{\rho_1^3} \left(\frac{3y^2}{\rho_1^2} - 1 \right) + \frac{\mu}{\rho_2^3} \left(\frac{3y^2}{\rho_2^2} - 1 \right)$$

$$\frac{\partial \ddot{x}}{\partial y} = \frac{\partial \ddot{y}}{\partial x} = 3 \left(\frac{1 - \mu}{\rho_1^5} (x - x_1) + \frac{\mu}{\rho_2^5} (x - x_2) \right) y$$

$$\frac{\partial \ddot{y}}{\partial z} = \frac{\partial \ddot{z}}{\partial y} = 3 \frac{1 - \mu}{\rho_1^5} yz + 3 \frac{\mu}{\rho_2^5} yz$$

$$\frac{\partial \ddot{x}}{\partial z} = \frac{\partial \ddot{z}}{\partial x} = 3 \frac{1 - \mu}{\rho_1^5} (x - x_1) z + 3 \frac{\mu}{\rho_2^5} (x - x_2) z$$

$$\frac{\partial \ddot{z}}{\partial z} = \frac{1 - \mu}{\rho_1^3} \left(\frac{3z^2}{\rho_1^2} - 1 \right) + \frac{\mu}{\rho_2^3} \left(\frac{3z^2}{\rho_2^2} - 1 \right)$$

$$\begin{pmatrix} \delta \dot{\mathbf{r}} \\ \delta \dot{\mathbf{v}} \end{pmatrix} = \mathbf{M} \begin{pmatrix} \delta \mathbf{r} \\ \delta \mathbf{v} \end{pmatrix}$$

 Recall, an eigenvector of a matrix M is any vector that when multiplied to M, it only gets scaled.

 $\mathbf{Md} = \lambda \mathbf{d} \qquad \det \left| \mathbf{M} - \lambda \mathbf{I} \right| = 0$

 A linear ordinary differential equation such as this can then be solved as:

$$\delta \mathbf{x} = \sum_{i} c_{i} \mathbf{d}_{i} e^{\lambda_{i} t}$$

• Thus, only if λ are pure imaginary numbers the displacement will just rotate about the associated equilibrium point.

Classification of Fixed Points

• Let us prove the existence of periodic motion near the L1/L2 points.

$$(\mathbf{x}_{Li}, \dot{\mathbf{x}}_{Li}) = (x_{Li}, 0, 0, 0, 0, 0)$$

$$x_{1} = -\mu$$

$$x_{2} = 1 - \mu$$

$$\rho_{i} = \sqrt{\left(x - x_{i}\right)^{2}}$$

$$\Omega = +\frac{1 - \mu}{\rho_{1}^{3}} + \frac{\mu}{\rho_{2}^{3}}$$

$$\begin{aligned}
x_1 &= -\mu \\
x_2 &= 1 - \mu \\
\rho_i &= \sqrt{\left(x - x_i\right)^2} \\
\Omega &= + \frac{1 - \mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}
\end{aligned}
\mathbf{M} = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 - \Omega & 0 & 0 & 2 & 0 \\
0 & 0 & -\Omega & 0 & 0 & 0
\end{bmatrix}$$

$$\begin{vmatrix}
\dot{x}' \\
\dot{y}' \\
\dot{z}' \\
\dot{x}' \\
\dot{y}' \\
\dot{z}' \\
\dot{z}'
\end{vmatrix} = \mathbf{M} \begin{bmatrix}
x' \\
y' \\
\frac{z'}{\dot{x}'} \\
\dot{y}' \\
\dot{z}' \\
\dot{z}'
\end{aligned}$$

$$\begin{pmatrix} \dot{x}' \\ \dot{y}' \\ \frac{\dot{z}'}{\ddot{x}'} \end{pmatrix} = \mathbf{M} \begin{pmatrix} x' \\ y' \\ \frac{z'}{\dot{x}'} \\ \dot{y}' \\ \dot{z}' \end{pmatrix}$$

$$\ddot{x}' - 2\dot{y}' - (1+2\Omega)x' = 0$$
$$\ddot{y}' + 2\dot{x}' + (\Omega+1)y' = 0$$
$$\ddot{z}' + \Omega z' = 0$$

Let us prove the existence of periodic motion near the L1/L2 points

$$\ddot{x}' - 2\dot{y}' - (1+2\Omega)x' = 0$$
$$\ddot{y}' + 2\dot{x}' + (\Omega+1)y' = 0$$
$$\ddot{z}' + \Omega z' = 0$$

 In the linearized approximation, the out-of-plane component has no influence on the in-plane motion.

$$\ddot{z}' + \Omega z' = 0 \longrightarrow z' = A_z \sin\left(\sqrt{\Omega}t + \varphi\right)$$

 While in the X-Y plane, arbitrarily chosen initial conditions will give rise to unbounded motion. However, periodic motion is also possible if starting conditions are chosen suitably.

Let us prove the existence of periodic motion near the L1/L2 points

$$\ddot{x}' - 2\dot{y}' - (1 + 2\Omega)x' = 0$$
$$\ddot{y}' + 2\dot{x}' + (\Omega + 1)y' = 0$$

$$x' = -A_x \cos(\omega_p t + \phi) \qquad k = \frac{\omega_p^2 + 1 + 2\Omega}{2\omega_p}$$
$$y' = kA_x \sin(\omega_p t + \phi) \qquad \omega_p^2 = \frac{2 - \Omega + \sqrt{9\Omega^2 - 8\Omega}}{2}$$

$$\ddot{x}' - 2\dot{y}' - (1 + 2\Omega)x' = 0$$

$$\ddot{y}' + 2\dot{x}' + (\Omega + 1)y' = 0$$

$$x' = -A_x \cos(\omega_p t + \phi) \qquad \dot{x}' = A_x \omega_p \sin(\omega_p t + \phi) \qquad \ddot{x}' = A_x \omega_p^2 \cos(\omega_p t + \phi)$$

$$y' = kA_x \sin(\omega_p t + \phi) \qquad \dot{y}' = k\omega_p A_x \cos(\omega_p t + \phi) \qquad \ddot{y}' = -k\omega_p^2 A_x \sin(\omega_p t + \phi)$$

$$A_x \omega_p^2 \cos(\omega_p t + \phi) = (2k\omega_p - 2\Omega - 1)A_x \cos(\omega_p t + \phi)$$

$$\omega_p^2 = 2k\omega_p - 2\Omega - 1$$

$$k = \frac{\omega_p^2 + 1 + 2\Omega}{2\omega_p}$$

$$\ddot{x}' - 2\dot{y}' - (1+2\Omega)x' = 0$$

$$\ddot{y}' + 2\dot{x}' + (\Omega+1)y' = 0$$

$$x' = -A_x \cos(\omega_p t + \phi) \qquad \dot{x}' = A_x \omega_p \sin(\omega_p t + \phi) \qquad \ddot{x}' = A_x \omega_p^2 \cos(\omega_p t + \phi)$$

$$y' = kA_x \sin(\omega_p t + \phi) \qquad \dot{y}' = k\omega_p A_x \cos(\omega_p t + \phi) \qquad \ddot{y}' = -k\omega_p^2 A_x \sin(\omega_p t + \phi)$$

$$-k\omega_p^2 A_x \sin(\omega_p t + \phi) = -(2\omega_p + (\Omega+1)k)A_x \sin(\omega_p t + \phi)$$

$$-k\omega_p^2 = -2\omega_p - (\Omega+1)k \qquad k = \frac{\omega_p^2 + 1 + 2\Omega}{2\omega_p}$$

$$\omega_p^2 = \frac{2 - \Omega + \sqrt{9\Omega^2 - 8\Omega}}{2}$$

$$x' = -A_x \cos(\omega_p t + \phi)$$
$$y' = kA_x \sin(\omega_p t + \phi)$$
$$z' = A_z \sin(\sqrt{\Omega}t + \phi)$$

Exercise 2

Compute a planar Lyapunov Orbit for the Earth-Moon L1 point with an A_x of 1000km.

 Let us start computing a Lyapunov orbit by propagating the initial conditions as given by equations:

$$t = 0$$

$$x' = -A_x \cos(\omega_p t + \phi) \quad \dot{x}' = A_x \omega_p \sin(\omega_p t + \phi) \quad \phi = 0$$

$$y' = kA_x \sin(\omega_p t + \phi) \quad \dot{y}' = k\omega_p A_x \cos(\omega_p t + \phi) \quad \omega_p = \sqrt{\frac{2 - \Omega + \sqrt{9\Omega^2 - 8\Omega}}{2}}$$

$$\mathbf{x}_0 = (-A_x \quad 0 \quad 0 \quad k\omega_p A_x \quad 0)$$

$$\mathbf{x}_0 = \left(-\frac{\mu}{2}\right) + \frac{\mu}{\rho_1^3} + \frac{\mu}{\rho_2^3}$$

 Let us start computing a Lyapunov orbit by propagating the initial conditions.

Transition Matrix:

$$\delta \mathbf{x} = \mathbf{\Phi} \left(\frac{T}{2}, 0 \right) \delta \mathbf{x}_0$$

$$\dot{\mathbf{\Phi}}(t,t_0) = \mathbf{M}(t)\mathbf{\Phi}(t,t_0)$$

$$\mathbf{\Phi}(t_0,t_0) = \mathbf{I}$$

$$\mathbf{\Phi}(t_{0}, t_{0}) = \mathbf{I}$$

$$\begin{bmatrix} \Delta x_{f} \\ \Delta y_{f} \\ \Delta z_{f} \\ \Delta v_{xf} \\ \Delta v_{yf} \\ \Delta v_{zf} \end{bmatrix} = \mathbf{\Phi}_{6 \times 6} \left(\frac{T}{2}, 0 \right) \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \Delta v_{y0} \\ 0 \end{bmatrix}$$

$$\Delta v_{xf} = \Phi_{(4\ 5)} \Delta v_{y0} \longrightarrow \Phi_{(4\ 5)} \Delta v_{y0} = -v_{xf} \longrightarrow \Phi_{(4\ 5)} \Delta v_{y0} = \frac{-v_{xf}}{\Phi_{(4\ 5)}}$$

ISEE-3 / ICE

Solar-Rotating Coordinates, Ecliptic Plane Projection

Mission: Investigate Solar-Terrestrial relationships, Solar Wind, Magnetosphere,

and Cosmic Rays

Launch: Sept., 1978, Comet Encounter Sept., 1985

Lissajous Orbit: L1 Libration Halo Orbit, Ax=~175,000km, Ay = 660,000km, Az~

120,000km, Class I

Spacecraft: Mass=480Kg, Spin stabilized,

Notable: First Ever Libration Orbiter, First Ever Comet Encounter

ISEE-3 / ICE

WIND

Mission: Investigate Solar-Terrestrial relationships, Solar Wind, Magnetosphere

Launch: Nov., 1994, Multiple Lunar Gravity Assist

Lissajous Orbit: Originally an L1 Lissajous Constrained Orbit, Ax~10,000km, Ay ~

350,000km, Az~ 250,000km, Class I

Spacecraft: Mass=1254Kg, Spin stabilized,

Notable: First Ever Multiple Gravity Assist towards L1

ACE

Mission: Investigate low-energy solar and high-energy galactic particles and Solar

Wind

Launch: August, 1997, Direct Transfer

Lissajous Orbit: L1 Lissajous Constrained Orbit, Ay~ <264,000, Ax~tbd km, Az~157,000km,

Class I

Spacecraft: Mass=757Kg, Three Axis Stabilized, 'Solar' Pointing

Notable: First Constrained Transfer Orbit

James Webb Space Telescope

Mission: JWST Is Part of Origins Program. Designed to Be the Successor to the

Hubble Space Telescope. NGST Observations in the Infrared Part of the Spectrum.

Launch: ~2011, Direct Transfer

Lissajous Orbit: L2 large lissajous, Ay~ 294,000km, Ax~800,000km, Az~ 131,000km, Class I or II

Spacecraft: Mass~6000kg, Three Axis Stabilized, 'Star' Pointing

Notable: Observations in the Infrared Part of the Spectrum. Important That the

Telescope Be Kept at Low Temperatures, ~3°K. Large Solar Shade/Solar Sail

- International Sun Earth Explorer 3 (1978)
- SOHO (1995)
 Wind (1994)
- Wind (1994)
- Advanced Composition Explorer (1997)
- Genesis (2001)
- Deep Space Climate Observatory (2015)
- LISA Pathfinder (2015)

Previous and planned missions to L1 and L2

- Wilkinson Microwave Anisotropy Probe (2001)
- Herschel (2009)
- Planck (2009)
- Gaia (2013)
- James Webb Space Telescope (2019)
- Euclid (2020)

www.cranfield.ac.uk

T: +44 (0)1234 750111

@cranfielduni

@cranfielduni

/cranfielduni