Principles of Machine Learning: Exercise 2

Alina Pollehn (3197257), Julian Litz (3362592), Manuel Hinz (3334548) Felix Göhde (3336445), Felix Lehmann (3177181), Caspar Wiswesser (3221493) Adrian Köring (3347785), Greta Günther (3326765), Linus Mallwitz (3327653) Niklas Mueller-Goldingen (3363219), Jennifer Kroppen (2783393)

Task 2.1.1-2 :: Loading

Instead of removing the outliers, its easier to keep the inliers:

```
inliers = w > 0
X = np.stack([h[inliers], w[inliers]])
# X.shape = [2, 37] = [F, N]
```

Maximum Likelihood Estimation of a Gaussian via empirical mean and covariance:

Task 2.1.3 :: Predictions

Conditional Probability of a Gaussian:

```
for h in np.arange(140, 220, step=10):

\mu w = \mu[1] + S[1, 0] * S[0, 0]**(-1) * (h - \mu[0])
Sw = S[1, 1] - S[1, 0] * S[0, 0]**(-1) * S[0, 1]
```

		Height	Weight	Covariance
	0	140	43.490072	132.081358
	1	150	51.991338	132.081358
	2	160	60.492604	132.081358
	3	170	68.993869	132.081358
	4	180	77.495135	132.081358
	5	190	85.996401	132.081358
	6	200	94.497666	132.081358
	7	210	102.998932	132.081358

Figure: Estimated PDF and given data

Task 2.1.3 :: Pondering

- + Results seem plausible can mostly judge are around mean though
- Fixed variance doesnt match expectations
 - $\bullet \ \ \mathsf{maybe} \ \mathsf{taller} \ \mathsf{people} \to \mathsf{more} \ \mathsf{variance} ?$
 - ullet there are more average sized people o maybe more variance?
- Cube-Square-Law / BMI suggests a non-linear / quadratic relationship?
- Plausibility? Test-Set and more 'human-readable' metrics!

Task 2.2.1 :: Loading

Task 2.2.1 :: ManuDiff Newton

Task 2.3 :: Scipy CurveFit

```
def weibull(t, A, alpha, beta):
   ab, tb = alpha / beta, t / beta
   return A * ab * tb**(alpha - 1) * np.exp(-tb**alpha)
(A, alpha, beta), _ = curve_fit(weibull, t, h, p0=[1000, 1.0, 1.0])
```

- mostly works just like that
- could have also scaled the data (see 2.5) instead of adding the amplitude parameter

Task 2.4

Task 2.5 :: Scipy Minimize

```
def KL(f, q): return np.sum(f * np.log(f / q))

def objective(x):
    return KL(weibull(t, alpha=x[0], beta=x[1]), q)
result = minimize(objective, x0=[1.0, 100.], bounds=[(0, 10), (0, 500)])
```

- Bounds are important, but also not: $[-\infty, \infty]$ works, too
- ullet Feels odd anyway, because a gradient method optimizing 1
 ightarrow 2.8 shouldn't come near 0 anyway
- ⇒ Adding bounds just change the algorithm underneath
- Without bounds 'BFGS' is choosen and doesnt quite work
- 'L-BFGS-B' or 'SLSQP' without bounds works equally well

