Paulo Bruno de Sousa Serafim - 388149 Aprendizagem Automática - Trabalho 2

Questão 1.

Parte 1:

Parte 2: alfa = 0.01 épocas = 1000

Gráfico: eixo x = valores épocas, eixo y = EQM:

Valores dos coeficientes: 4.61063973, 6.13326794, 5.73653844

Porcentagem de acertos: 96.67 %

Através do gráfico "épocas x Erro" é possível verificar que o algoritmo está "aprendendo"?

Sim. Podemos observar que o EQM está diminuindo, portanto o algoritmo está "aprendendo", pois isso indica que os coeficientes estão se ajustando cada vez melhor.

Parte 3:

alfa = 0.01 épocas = 1000

K = 3

Valores médios dos coeficientes: [4.90511773 6.20567371 6.12686405] Porcentagem média de acerto: 89.90 %

K = 5

Valores médios dos coeficientes: [$5.02855022 \ 6.32889233 \ 6.23233372$] Porcentagem média de acerto: $89.00 \ \%$

K = 8

Valores médios dos coeficientes: [5.04223479 6.44415798 6.23247969] Porcentagem média de acerto: 88.54 %

k = 10

Valores dos coeficientes: [5.08099789 6.406495 6.26406182] Porcentagem média de acerto: 87.00 %

k = 100 (leave one out)

Questão 2.

Parte 1:

É possível desenvolver uma regressão logística para classificar corretamente os dados apresentados?

Visualmente podemos ver claramente uma aproximação para a classificação desses dados: um "anel" mais interno e outro mais externo. Entretanto, essa divisão visual não é parte da entrada da regressão logística, assim, somente com as duas dimensões não é possível classificar, mas com um maior número de dimensões é possível.

Parte 2:

(a)

 $\lambda = 0$

Porcentagem de sucesso: 68.09%

Comentários:

Visualmente parece um bom resultado, entretanto foi o que apresentou menor taxa de acerto. É um fato esperado, visto que um λ = 0 implica na utilização "crua" dos dados, ocorrendo possivelmente um underfitting.

(b)

 $\lambda = 0.01$

Porcentagem de sucesso: 77.08%

Comentários:

Esse resultado foi o melhor dentre os três λ 's avaliados, porém por muito pouco em relação à avaliação seguinte, λ = 0.25. O bom resultado pode indicar que o valor do λ ideal possivelmente esteja próximo de 0.01.

 $\lambda = 0.25$

Porcentagem de sucesso: 75.00%

A G P R ? [0.04378, 0.3205]

Comentários:

Apesar da taxa de acerto ter sido bem próxima do melhor, visualmente o resultado foi claramente ruim. A explicação para esse fato se deve possivelmente a um *overfitting* dos dados.

Bias vs. Variância

Bias: diferença entre o valor esperado e o valor real.

Variância: variabilidade das previsões.

Os problemas abaixo decorrem justamente destes fatores:

Undefitting: ocorre quando o modelo tem alto bias

Overfitting: ocorre quando o modelo tem alta variância

Nas três avaliações realizadas, o primeiro modelo parece sofrer de underfitting e o último de overfitting. Portanto, ajustar os parâmetros deve gerar um solução melhor, que é o que ocorre na avaliação com λ = 0.01.