2021/12/10

Homework #8 Due: Dec. 24, 2021 (Friday)

 $h[0] \\ \psi \\ 1. \text{ The impulse response of a FIR filter is, } h[n] = \{-4,\ 1,\ -1,\ -2,\ 5,\ 6,\ 6,\ 5,\ -2,\ -1,\ 1,\ -4\},$

$$H(z) = \sum_{n=0}^{N-1} h[n] \cdot z^{-n} = \text{z-transform of } h[n], \text{ also known as "system function" of the FIR}$$

 $H(z) = \sum_{n=0}^{N-1} h[n] \cdot z^{-n} = \text{z-transform of } h[n], \text{ also known as "system function" of the FIR}$ filter. $H(e^{j\omega}) = H(z)\big|_{z=e^{j\omega}} = \sum_{n=0}^{N-1} h[n] \cdot e^{-j\omega n} = \text{DTFT of } h[n], \text{ also known as "frequency}$ response function" of the FIR filter.

- (a). calculate and plot the magnitude and phase of the frequency response function, $H(e^{j\omega})$,
- (b). calculate and plot the amplitude function, $A(\omega)$, and phase function, $\theta(\omega)$, of $H(e^{j\omega})$,
- (c). determine and plot the pole-zero location of H(z)
- (d). let $A_k = A(\omega_k = k \cdot \frac{2\pi}{N})$, k = 0, 1, 2,..., N-1 (what is N in this case ?), derive the relationship between h[n] and A_k which allows direct calculation of h[n] from A_k . Verify this relation by substituting the numbers obtained in (b).

Frequency Sampling Design Method

- 2. Please design a type I linear-phase FIR filter with the frequency sampling method. The $H_d(e^{i\omega})$ is shown below,
 - (a). N = 41, no transition point
 - (b). N = 41, with one transition point
 - (c). N = 41, with two transition points

List h[n] and plot A_k and $H(e^{j\omega})$. Make comparison and comments on your results.

Window Function Design Method

- 3. Please design a type II linear-phase FIR filter with the window function method. The $H_d(e^{j\omega})$ is shown below,
 - (a). N = 40, with Rectangular window
 - (b). N = 40, with Hanning window function

(c). N = 40, with Blackman window function

List h[n] and plot A_k , and $H(e^{j\omega})$. Make comparison and comments on your results.

