

ASR Lab Results

Ilya Sklyar, Konstantin Kromberg, Miguel Graça

Presentation January 9, 2017

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Overview

- **▶** Testing Environment
- Gaussian Mixture Model (GMM) Tuning
 - ▷ Expectation-Maximization (EM) Parameters
 - ▶ Alignment Parameters
- Neural Network (NN) Tuning
 - ▶ Write stuff here

Testing Environment

Hardware:

- ▶ Intel i5-4690K @ 3.5GHz, Quad Core, SSE2 registers
- ► 16GB DDR3 1333MHz RAM

Parallelization with OpenMP:

- ► In search
- ► In neural network operations

GMM Tuning: EM Parameters

Basic setup:

- ► Lexicon consists of 106 states
- Exact computation of the linear segmentation
- ► 6 EM steps
- ▶ 4 density splits

Tunable properties:

- Minimum observations per density
- Pooling type
- Maximum approximation vs. sum approach

Tuning is based on the likelihood of the training data

Log-likelihood of GMM models with expectation-maximization

GMM Tuning: EM Parameters

Pooling:

- ▶ No pooling results in better model fitting than using pooling
- Global and mixture-level pooling perform similarly

Splitting criterion:

- ► Minimum number of observations per density has a small influence
- Sufficient data points per density in a mixture due to:
 - **▶ At most 5 densities per mixture**
 - ▶ Each density has, in average, 7K data points.

Mixture approximation:

▶ Better results when using the maximum approximation

Last week

Last week

Thank you for your attention

Ilya Sklyar, Konstantin Kromberg, Miguel Graça

