Aula 16 Sistemas Operacionais I

Gerenciamento de E/S – Parte 1

Prof. Julio Cezar Estrella jcezar@icmc.usp.br *Material adaptado de Sarita Mazzini Bruschi*

baseados no livro Sistemas Operacionais Modernos de A. Tanenbaum

- SO pode atuar de duas maneiras diferentes:
 - Como <u>máquina estendida</u> (*top-down*) tornar uma tarefa de baixo nível mais fácil de ser realizada pelo usuário;
 - Como gerenciador de recursos (bottom-up) gerenciar os dispositivos que compõem o computador;

- Funções específicas:
 - Enviar sinais para os dispositivos;
 - Atender interrupções;
 - Gerenciar comandos aceitos e funcionalidades (serviços prestados);
 - Tratar possíveis erros;
 - Prover interface entre os dispositivos e o sistema;
- Princípios:
 - Hardware;
 - Software;

Visão de camadas do Tanenbaum

• Visão de camadas

- Podem ser divididos em duas categorias:
 - <u>Dispositivos baseados em bloco</u>: informação é armazenada em blocos de tamanho fixo, cada um com um endereço próprio;
 - Tamanho varia entre 512 bytes e 32.768 bytes;
 - Permitem leitura e escrita independentemente de outros dispositivos;
 - Permitem operações de busca;
 - Ex.: discos rígidos;

- <u>Dispositivos baseados em caracter</u>: aceita uma seqüência de caracteres, sem se importar com a estrutura de blocos; informação não é endereçável e não possuem operações de busca;
 - Ex.: impressoras, interfaces de rede (placas de rede); placas de som;

- Classificação não é perfeita, pois alguns dispositivos não se encaixam em nenhuma das duas categorias:
 - Clocks: provocam interrupções em intervalos definidos;
- Classificação auxilia na obtenção de independência ao dispositivo;
 - Parte dependente está a cargo dos drivers → software que controla o acionamento dos dispositivos;

 Os dispositivos de E/S podem apresentar uma grande variedade de velocidade

Device	Data rate
Keyboard	10 bytes/sec
Mouse	100 bytes/sec
56K modem	7 KB/sec
Scanner	400 KB/sec
Digital camcorder	3.5 MB/sec
802.11g Wireless	6.75 MB/sec
52x CD-ROM	7.8 MB/sec
Fast Ethernet	12.5 MB/sec
Compact flash card	40 MB/sec
FireWire (IEEE 1394)	50 MB/sec
USB 2.0	60 MB/sec
SONET OC-12 network	78 MB/sec
SCSI Ultra 2 disk	80 MB/sec
Gigabit Ethernet	125 MB/sec
SATA disk drive	300 MB/sec
Ultrium tape	320 MB/sec
PCI bus	528 MB/sec

- Dispositivos de E/S possuem basicamente dois componentes:
 - Mecânico → o dispositivo propriamente dito;
 - Eletrônico → controladores ou adaptadores (placas);
- O dispositivo (periférico) e a controladora se comunicam por meio de uma interface:
 - Serial ou paralela;
 - Barramentos: IDE, ISA, SCSI, AGP, USB, PCI, etc.

- Cada controladora possui um conjunto de registradores de controle, que são utilizados na comunicação com a CPU;
- Além dos registradores, alguns dispositivos possuem um buffer de dados:
 - Ex.: placa de vídeo; algumas impressoras;
- O SO, utilizando os <u>drivers</u>, gerencia os dispositivos de E/S escrevendo/lendo nos/dos registradores/buffers,;
 - Comunicação em baixo nível instruções em Assembler;
 - Enviar comandos para os dispositivos;
 - Saber o estado dos dispositivos;

- Como a CPU se comunica com esses registradores de controle?
 - <u>Porta</u>: cada registrador de controle possui um número de porta (ou porto) de E/S de 8 ou 16 bits;
 - Instrução em *Assembler* para acessar os registradores;
 - Espaço de endereçamento diferente para a memória e para os dispositivos de E/S;
 - Mainframes IBM utilizavam esse método;
 - SOs atuais fazem uso dessa estratégia para a maioria dos dispositivos;

- Comunicação com os registradores de controle:
 - <u>Memory-mapped (mapeada na memória)</u>: mapear os registradores de controle em espaços de memória:
 - Cada registrador possui um único endereço de memória;
 - Em geral, os endereços estão no topo da memória protegidos em endereços não utilizados por processos;
 - Uso de linguagem de alto nível, já que registradores são apenas variáveis na memória;
 - SOs utilizam essa estratégia para os dispositivos de vídeo;

- Comunicação com os registradores de controle:
 - Estratégia híbrida:
 - Registradores → Porta;
 - Buffers → Mapeado na memória;
 - Exemplo: Pentium endereços de 640k a 1M para os *buffers* e as portas de E/S de 0 a 64k para registradores;

- Como funciona a comunicação da CPU com os dispositivos?
 - Quando a CPU deseja ler uma palavra, ela coloca o endereço que ela está desejando no barramento de endereço e manda um comando READ no barramento de controle;
 - Essa comunicação pode ser controlada pela própria CPU ou pela DMA;

- E/S programada;
 - Mais usada em sistemas embarcados/embutidos;
- E/S orientada à interrupção;
- E/S com uso da DMA;

• E/S programada: passos para impressão de uma cadeia de caracteres (laço até que toda a cadeia tenha sido impressa);

- E/S programada:
 - Desvantagem:
 - CPU é ocupada o tempo todo até que a E/S seja feita;
 - CPU continuamente verifica se o dispositivo está pronto para aceitar outro caracter →
 espera ocupada;

- E/S orientada à interrupção:
 - No caso da impressão, a impressora não armazena os caracteres;
 - Quando a impressora está pronta para receber outros caracteres, gera uma interrupção;
 - Processo é bloqueado;

- E/S com uso da DMA:
 - DMA executa E/S programada → controladora de DMA faz todo o trabalho ao invés da CPU;
 - Redução do número de interrupções;
 - Desvantagem:
 - DMA é mais lenta que a CPU;

- DMA (*Direct Access Memory*) \rightarrow acesso direto à memória:
 - Presente principalmente em dispositivos baseados em bloco \rightarrow discos;
 - Controladora integrada à controladora dos discos;
 - Pode estar na placa-mãe e servir vários dispositivos → controladora de DMA independente do dispositivo;
 - DMA tem acesso ao barramento do sistema independemente da CPU;

- DMA contém vários registradores que podem ser lidos e escritos pela CPU:
 - Registrador de endereço de memória;
 - Registrador contador de bytes;
 - Registrador (es) de controle;
 - Porta de E/S em uso;
 - Tipo da transferência (leitura ou escrita);
 - Unidade de transferência (byte ou palavra);
 - Número de bytes a ser transferido;

- Sem DMA: Leitura de um bloco de dados em um disco:
 - Controladora do dispositivo lê bloco (bit a bit) a partir do endereço fornecido pela CPU;
 - Dados são armazenados no buffer da controladora do dispositivo;
 - Controladora do dispositivo checa consistência dos dados;
 - Controladora do dispositivo gera interrupção;
 - SO lê (em um loop) os dados do buffer da controladora do dispositivo e armazena no endereço de memória fornecido pela CPU;

- Com DMA: Leitura de um bloco de dados em um disco: CPU controla
 - 1. Além do endereço a ser lido, a CPU fornece à controladora de DMA duas outras informações: endereço na RAM para onde transferir os dados e o número de bytes a ser transferido;
 - 2. Controladora de DMA envia dados para a controladora do dispositivo;
 - Controladora do dispositivo lê o bloco de dados e o armazena em seu *buffer,* verificando consistência;
 - 3. Controladora do dispositivo copia os dados para RAM no endereço especificado na DMA (modo direto);

- 4. Após confirmação de leitura, a controladora de DMA incrementa o endereço de memória na DMA e decrementa o contador da DMA com o número de bytes transferidos;
- Repete os passos de 2 a 4 até o contador da DMA chegar em 0. Assim que o contador chegar em zero (0), a controladora de DMA gera uma interrupção avisando a CPU;
- Quando o SO inicia o atendimento à interrupção, o bloco de dados já está na RAM;

- A DMA pode tratar múltiplas transferências simultaneamente:
 - Possuir vários conjuntos de registradores;
 - Decidir quais requisições devem ser atendidas → escalonamento (Round-Robin ou prioridades, por exemplo);

- Por que a controladora de DMA precisa de um buffer interno? Por que não escreve diretamente na RAM?
 - Permite realizar consistência dos dados antes de iniciar alguma transferência;
 - Dados (bits) são transferidos do disco a uma taxa constante, independentemente da controladora estar pronta ou não;
 - Acesso à memória depende de acesso ao barramento, que pode estar ocupado com outra tarefa;
 - Com o buffer, o barramento é usado apenas quando a DMA opera;