Demographic Transition and Engel's Law Across the Development Spectrum

Davide Marco Difino

Goethe University Frankfurt & GSEFM

May 29, 2025

Motivation

- Economic growth is correlated with two key patterns:
 - Demographic Transition Shift from high mortality and fertility to low rates, leading to an aging population. Evidence
 - <u>Structural Transformation</u> Decline in the food share of total expenditures as incomes rise (Engel's Law).
 Evidence
- This work documents that individual's age drives food spending:
 - \Rightarrow Demographic Transition affects structural transformation.
- Research question: how does the demographic transition influence the decline in the food share of total expenditures?

Preview of the Results

Empirical Work:

- 1. Key result: As household members' age increases, their share of food expenditures also rises.
- 2. There is a large heterogeneity in the age elasticity of food expenditure shares across the development spectrum.
- 3. Heterogeneity declines when controlling for detailed household composition.

Structural Model:

- 1. Objective: Construct a link between individual household member preferences and aggregate expenditures.
- 2. Counterfactual exercise The demographic transition significantly <u>slows down</u> structural transformation out of food expenditures.
- 3. This result is opposite to, but not in conflict with, existing literature. Contribution

Mechanism

Cross-country evidence - Engel's Law

Food as share of total expenditure and GDP per capita

Cross-country evidence - Demographic Transition

Age groups shares of total population

Household-Level Evidence - Data

- Luxembourg Income Survey (LIS).
 - ► Harmonized, cross-section microdata from different national surveys such as NIDS (South Africa), ENIGH (Mexico), CHIP (China)...
 - Large set of socio-economic variables.
 - lacktriangle 23 countries across the development spectrum (Mali ightarrow Switzerland)
 - ightharpoonup Covers \sim 55% of the world population.
 - Expenditure data by use (COICOP 2018). Food expenditure = food purchased for home consumption

Household-Level Evidence - Baseline Model

- Objective: Uncover the relationship between age and food expenditure shares.
- ► The baseline model is:

$$\log(\omega_h^f) = \beta_0 \log e_h + \boldsymbol{\beta} \cdot \boldsymbol{\Gamma}_h + \boldsymbol{X}_h + \delta_t + \epsilon_h.$$

- $\delta_{c,t}$: Region-time FE (controls for prices).
- $ightharpoonup Γ_h$: Vector of household age groups, either:
 - 1. Head Age (Cravino et al., 2022, Aguiar and Hurst, 2013),
 - 2. Average Age (Mao and Xu, 2014).
- ➤ X_h: Socio-demographic controls (number of members and earners, household type, rural).
- Expenditure instrumented with income (Aguiar and Bils, 2015).

Household-Level Evidence - Head's Age

Estimated value of $exp(D_h^{Head Age})$ grouped by income By Country

Household-Level Evidence - Average Age

Estimated value of $exp(D_h^{Average Age})$ grouped by income $exp(D_h^{Average Age})$

Household-Level Evidence - Single-Member Households

Estimated value of $\exp(D_h^{\text{Average Age}})$ grouped by income, for single-member households.

Household-Level Evidence - Individual Demand Decomposition details

Estimated values of dummy regression by income group

Structural Model - Highlights

▶ Household preferences take a PIGL (Boppart, 2014) indirect form:

$$\mathcal{V}^h(\mathbf{P}, E_{h,t}) = \frac{1}{\epsilon} \left[\frac{E_t^h}{P_t^n} \right]^{\epsilon} - \frac{\nu_t^h}{\gamma} \left[\frac{P_t^f}{P_t^n} \right]^{\gamma} - \frac{1}{\epsilon} + \frac{\nu_t^h}{\gamma},$$

where

- $ightharpoonup \epsilon$: income elasticity-ruling parameter.
- $ightharpoonup \gamma$: parameter governing price elasticity.
- ▶ The household-level taste shifter is the geometric average of individual shifters:

$$u_t^h \equiv \left(\prod_{j}^{N_h}
u_t^j(a) \right)^{rac{1}{N_h}}$$

where $\nu_t^i(a)$ is a parameter driving the food preferences of an individual aged a.

Model - Estimated values for δ^a by income group

Counterfactual exercise - Table

Country	Interval	$\Delta\Omega_f$	$\Delta\Omega_f$ (CAGR)	$\Delta\Omega_f$ (counterfactual)	$\Delta\Omega_f$ (counterfactual, CAGR)	Δ	Δ (yearly)
Mali	2011-2019	10.45	2.21	9.28	1.98	1.17	0.23
India	2004-2011	-4.54	-1.53	-5.69	-1.95	1.15	0.42
Ivory Coast	2002-2015	-1.71	-0.30	-1.25	-0.22	-0.46	-0.08
Vietnam	2005-2013	0.37	0.12	-0.53	-0.17	0.90	0.29
Egypt	1999-2017	-2.85	-0.39	-4.24	-0.59	1.39	0.20
Jordan	2002-2013	-2.16	-0.52	-3.38	-0.83	1.22	0.31
Georgia	2009-2019	-0.75	-0.21	-1.26	-0.36	0.51	0.15
Iraq	2007-2012	-6.90	-3.24	-6.21	-2.90	-0.69	-0.34
South Africa	2008-2017	3.70	1.80	2.90	1.43	0.80	0.37
Serbia	2006-2019	-4.66	-0.98	-5.64	-1.20	0.98	0.22
Peru	2004-2019	-3.77	-0.77	-4.23	-0.87	0.46	0.10
China	2002-2018	-4.22	-0.86	-5.56	-1.17	1.34	0.31
Russia	2000-2010	-1.27	-0.37	-1.98	-0.59	0.71	0.22
Mexico	1996-2018	-20.10	-2.58	-21.53	-2.83	1.43	0.25
Hungary	1999-2015	2.04	0.36	1.71	0.30	0.33	0.06
Poland	1999-2019	-7.43	-1.24	-7.93	-1.34	0.50	0.10
Italy	1998-2016	-0.49	-0.08	-1.55	-0.25	1.06	0.17
Israel	2001-2019	-0.47	-0.14	-2.87	-0.94	2.40	0.80
United Kingdom	1990-1993	-1.30	-2.13	-1.30	-2.13	0.00	0.00
Australia	2004-2016	-1.25	-0.77	-1.82	-1.15	0.57	0.38

Conclusion

► This work:

- 1. Documents how aging increases household food expenditures.
- 2. Highlights how household composition differences drive heterogeneity across development levels.
- 3. Estimates a quantitative, structural model that takes into consideration exact household composition.
- 4. The model suggests the demographic transition has a slowing effect on structural transformation away from food expenditures.

Thank you!

Motivation - Engel's Law

Food as share of total expenditure and GDP per capita return

Motivation - Demographic Transition

Age groups shares of total population return

Literature

- Role of demographic characteristics (age) upon food expenditures: Aguiar and Hurst [2013], Foster [2015], Mao and Xu [2014]...
 - 1. Expands the analysis to multiple countries across the development spectrum
 - 2. Documents large heterogeneity across development levels
 - 3. Suggests differences in household composition explain the differences
- Aging and structural transformation Brembilla [2018], Cravino et al. [2022]...
 - 1. Expands the analysis to multiple countries and to a complementary setting
 - 2. Uses a household model that accounts for exact household composition.
 - 3. Presents a opposite but non-conflictual evidence (aging hinders structural change)

Cross-country evidence

Dependent Variable:	Food Share of Household Expenditures						
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Variables							
Median age	-0.0082***	0.0023**	0.0021*	0.0021**	0.0018*	0.0021**	0.0016**
	(0.0014)	(0.0010)	(0.0012)	(0.0008)	(0.0010)	(0.0009)	(0.0006)
log(GDP per capita)		-0.1368***	-0.1720			-0.1108***	
log(GDP per capita) ²		(0.0153)	(0.1227) 0.0019			(0.0177)	
log(GDF per capita)			(0.0019				
log(Total Exp. per capita)			(0.0071)	-0.1392***	-0.2176		-0.1101***
				(0.0191)	(0.1737)		(0.0199)
log(Total Exp. per capita) ²					0.0045		
					(0.0099)		
Relative prices						0.0448***	0.0435***
						(0.0093)	(0.0121)
Fixed-effects							
Country	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fit statistics							
Observations	1,244	1,166	1,166	1,241	1,241	1,098	1,174
R^2	0.83972	0.93026	0.93039	0.91975	0.92027	0.96884	0.95522
Within R ²	0.49376	0.78131	0.78171	0.74794	0.74957	0.87960	0.82633

Clustered (Country) standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Data

- ► <u>Household-levelc data</u>: Luxembourg Income Survey (LIS).
 - ► Harmonized, cross-section microdata from different national surveys such as NIDS (South Africa), ENIGH (Mexico), CHIP (China)...
 - Large set of socio-economic variables.
 - ightharpoonup 23 countries across the development spectrum (Mali ightarrow Switzerland)
 - ightharpoonup Covers $\sim 55\%$ of the world population.
 - Expenditure data by use (COICOP 2018). Food expenditure = food purchased for home consumption
- Aggregate data: OECD private expenditure by COICOP and UN's WPP.
- ▶ Prices: IMF's and OECD's CPI by COICOP 2018, Reserve Bank of India.

Household-level evidence - Head's age

Estimated value of $exp(D_h^{Head Age})$ by country return

Household-level evidence - Head's age

Estimated value of $exp(D_h^{Head Age})$ by country return

Household-level evidence - Average age

Estimated value of $\exp(D_h^{\text{Avr.}})$ by country return

Household-level evidence - Average age

Estimated value of $\exp(D_h^{\text{Avr.}})$ by country return

Household-level evidence - Individual demand decomposition

► Household level food expenditures are defined as the sum of the food expenditures for each member *i*:

$$E_h^f \equiv \sum_i E_i^f$$
.

Assuming that individuals of the same age are symmetric:

$$\omega_h^f \equiv \frac{E_h^f}{E_h} = \sum_{a} \phi_{h,a} \cdot \omega_{h,a}^f \cdot N_{a,h}.$$

 $\phi_{h,a}$ is the share of total household expenditures that are imputed to each member aged a:

$$\phi_{h,a} \equiv \frac{E_{h,a}}{E_h}, \qquad 0 \le \phi_{h,a} \le 1$$

Household-Level Evidence - Individual Demand Decomposition

- \blacktriangleright The expenditure allocations $\phi_{h,a}$ are unobservable given the data available.
- ▶ However, we can estimate $\phi_{h,a} \cdot \omega_{h,a}^f$ via OLS.
- ► Model:

$$\omega_h^f = \sum_{a} \beta_a \cdot N_{a,h},\tag{1}$$

where $N_{a,h}$ is the number of household members aged a in household h.

• $\hat{\beta}_a$ can be interpreted as the bargaining-power adjusted <u>average</u> food expenditure share by individuals aged a.

Driver decomposition

The aggregated food share of total consumption can be written as

$$\Omega_{\rm f} \equiv \frac{\sum_{h}^{H} E_{h}^{f}}{\sum_{h} E_{h}} = \left(\frac{P_{t}^{n}}{\bar{E}_{t}}\right)^{\epsilon} \left(\frac{P_{t}^{f}}{P_{t}^{n}}\right)^{\gamma} \bar{\delta}_{t} \cdot \theta_{t} \cdot \nu_{t},$$

where

$$\bar{E}_t \equiv \frac{1}{N_t} \sum_h N_{h,t} \cdot E_{h,t} \qquad \qquad \text{(Average expenditures per capita)}$$

$$\bar{\delta}_t \equiv \frac{1}{H_t} \sum_h^H \frac{E_{h,t}}{\bar{E}_t} \cdot \delta_t^h \qquad \qquad \text{(Weighted average of HH demographic shifters)}$$

$$\theta_t \equiv \frac{1}{H_t} \sum_h^H \frac{\delta_t^h}{\bar{\delta}_t} \cdot \left[\frac{E_{h,t}}{\bar{E}_t} \right]^{1-\epsilon} \qquad \qquad \text{(Preference-weighted expenditure inequality)}$$

Driver decomposition 2

As in Boppart [2014], taking a log change of aggregated share of food consumption from a reference period τ allows us to decompose the different drivers of a change in aggregate food consumption:

$$\hat{\Omega}_{t}^{f} = \underbrace{\epsilon(\hat{\mathbf{P}}_{t} - \hat{\mathcal{E}}_{t})}_{\text{Income}} + \underbrace{(\gamma - \epsilon\Omega_{t}^{f})(\hat{P}_{t}^{f} - \hat{P}_{t}^{n})}_{\text{Substitution}} + \underbrace{\hat{\delta}_{t}}_{\text{Demography}} + \underbrace{\hat{\theta}_{t} + \hat{\nu}_{t}}_{\text{Residual}}, \tag{2}$$

where

$$\hat{x}_t \equiv \ln x_t - \ln x_\tau \quad \forall x$$
 (cumulative log change)
 $\hat{\mathbf{P}}_t \equiv (1 - \Omega_t^f) \hat{P}_t^n + \Omega_t^f \hat{P}_t^f$ (log change in the aggregate price index)

return

Counterfactual exercise - Table

Country	Interval	$\Delta\Omega_f$	$\Delta\Omega_f$ (CAGR)	$\Delta\Omega_f$ (counterfactual)	$\Delta\Omega_f$ (counterfactual, CAGR)	Δ	Δ (yearly)
Mali	2011-2019	10.45	2.21	9.28	1.98	1.17	0.23
India	2004-2011	-4.54	-1.53	-5.69	-1.95	1.15	0.42
Ivory Coast	2002-2015	-1.71	-0.30	-1.25	-0.22	-0.46	-0.08
Vietnam	2005-2013	0.37	0.12	-0.53	-0.17	0.90	0.29
Egypt	1999-2017	-2.85	-0.39	-4.24	-0.59	1.39	0.20
Jordan	2002-2013	-2.16	-0.52	-3.38	-0.83	1.22	0.31
Georgia	2009-2019	-0.75	-0.21	-1.26	-0.36	0.51	0.15
Iraq	2007-2012	-6.90	-3.24	-6.21	-2.90	-0.69	-0.34
South Africa	2008-2017	3.70	1.80	2.90	1.43	0.80	0.37
Serbia	2006-2019	-4.66	-0.98	-5.64	-1.20	0.98	0.22
Peru	2004-2019	-3.77	-0.77	-4.23	-0.87	0.46	0.10
China	2002-2018	-4.22	-0.86	-5.56	-1.17	1.34	0.31
Russia	2000-2010	-1.27	-0.37	-1.98	-0.59	0.71	0.22
Mexico	1996-2018	-20.10	-2.58	-21.53	-2.83	1.43	0.25
Hungary	1999-2015	2.04	0.36	1.71	0.30	0.33	0.06
Poland	1999-2019	-7.43	-1.24	-7.93	-1.34	0.50	0.10
Italy	1998-2016	-0.49	-0.08	-1.55	-0.25	1.06	0.17
Israel	2001-2019	-0.47	-0.14	-2.87	-0.94	2.40	0.80
United Kingdom	1990-1993	-1.30	-2.13	-1.30	-2.13	0.00	0.00
Australia	2004-2016	-1.25	-0.77	-1.82	-1.15	0.57	0.38

return

Model - Counterfactual exercise (table)

- Mark Aguiar and Mark Bils. Has consumption inequality mirrored income inequality? *American Economic Review*, 105(9):2725–56, 2015.
- Mark Aguiar and Erik Hurst. Deconstructing life cycle expenditure. *Journal of Political Economy*, 121(3):437–492, 2013.
- Timo Boppart. Structural change and the kaldor facts in a growth model with relative price effects and non-gorman preferences. *Econometrica*, 82(6):2167–2196, 2014.
- Laurent Brembilla. The demographics of structural change. In *24th Conference of the Society of Computational Economics and Finance*, 2018.
- Javier Cravino, Andrei A Levchenko, and Marco Rojas. Population aging and structural transformation. Technical report, National Bureau of Economic Research, 2022.
- AC Foster. Consumer expenditures vary by age. beyond the numbers: Prices and spending, 4 (14). us bureau of labor statistics, 2015. URL https://www.bls.gov/opub/btn/volume-4/consumer-expenditures-vary-by-age.htm.
- Rui Mao and Jianwei Xu. Population aging, consumption budget allocation and sectoral growth. *China Economic Review*, 30:44–65, 2014.