MAT. Matrices

QCOP MAT. 1

- **3. b)** Prendre A, B, C des matrices élémentaires de $M_2(\mathbb{R})$.
 - c) Résultat. Tr(B) = Tr(A).

QCOP MAT.2

- **1.** a) Résultat. $(M^{T}M)_{i,j} = \sum_{k=1}^{n} M_{k,i} M_{k,j}$.
 - **b)** Montrer que $Tr(M^TM)$ est une somme de termes positifs.
- 2. La matrice $\begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$ fournit un contre-exemple.
- 3. En notant $\overline{M} \coloneqq (\overline{M_{i,j}})_{i,j}$, on pourrait montrer que

$$\operatorname{Tr}(M^{\top}\overline{M}) = 0 \iff M = 0_n.$$

QCOP MAT.3

- 3. a) Résultat. $M = \frac{M + M^{\top}}{2} + \frac{M M^{\top}}{2}$.
 - **b)** Une matrice symétrique et antisymétrique vérifie $M^{\top}=M=-M$ donc $2M=0_n$. Lorsque le formalisme des espaces vectoriels aura été vu, on pourra dire que l'on a montré que $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont en somme directe dans $M_n(\mathbb{K})$.

QCOP MAT.4

- 3. a) Prendre deux matrices qui ne commutent pas.
 - **b)** Résultat. $AB \in S_n(\mathbb{K}) \iff AB = BA$.

QCOP MAT.5

- **2.** On a $A^{-1}A = AA^{-1} = I_n$, $I_n^{\top} = I_n$ et $MN^{\top} = N^{\top}M^{\top}$.
- **3.** Conséquence directe de la question précédente. Il s'agit de montrer que $\left(A^{-1}\right)^{\top}=A^{-1}$.

QCOP MAT.7

- 2. a) Résultat. $a_0 \neq 0$.
 - **b)** Résultat. $A^{-1} = -\frac{1}{a_0} (a_1 I_n + a_2 A + \cdots + a_p A^{p-1}).$