Question 1. [7 MARKS]

Solution:

$$P(n) : 3^n < n!$$

For a contradiction, assume that there is some $j \in \mathbb{N}, j \geq 7$, such that P(j) does not hold.

Let S be the set of all natural numbers greater than or equal to 7, for which the predicate does not hold. By our assumption S is not empty. By definition, S is a subset of \mathbb{N} . By PWO, S contains a least element a.

a must be strictly greater than 7 since $3^7 = 2187 < 5040 = 7!$ meaning that P(7) holds. So a - 1 is greater than or equal to 7.

Moreover, since a is the min elements of S, a-1 is not in S, and so P(a-1) holds.

Since $a-1 \ge 7$, we have $3^{(a-1)} < (a-1)!$. Then we have

$$3^{a} = 3 \times 3^{(a-1)}$$
 $< 3 \times (a-1)!$
 $< a \times (a-1)!$
 $= a!$
since $3^{(a-1)} < (a-1)!$
since $a \ge 7 > 3$

That is, P(a) holds!

This, however, contradicts our assumption that a is an element of S because by definition elements of S do not satisfy the predicate. Thus we conclude that our initial assumption is false. That is, for all $n \in \mathbb{N}, n \geq 7, P(n)$ holds.

Question 2. [11 MARKS]

Solution:

Here are the state invariants

$$\delta^*(q_0,x) = \begin{cases} q_0 \text{ iff } x = \epsilon \text{ or } x = 1 \text{ or } (010 \text{ is not a substring of } x \text{ and } x \text{ ends with } 11); \\ q_1 \text{ iff } 010 \text{ is not a substring of } x \text{ and } x \text{ ends with } 0; \\ q_2 \text{ iff } 010 \text{ is not a substring of } x \text{ and } x \text{ ends with } 01; \\ q_3 \text{ iff } 010 \text{ is a substring of } x; \end{cases}$$

Question 3. [12 MARKS]

Solution:

P(f): There exists g such that $g \in L$ and g and f are logically equivalent.

Base Case: For f = x, where x is a propositional variable.

Then $c_{not}(f) = 0 = c_{and}(f)$. Therefore P(f) holds.

Induction Step: Assume $f_1, f_2 \in G$. Suppose $P(f_1)$ and $P(f_2)$. [IH]

That is, there exist g_1, g_2 such that $g_1, g_2 \in L$ and g_1 is logically equivalent to f_1 , and g_2 is logically equivalent to f_2 .

Case (A): Let $f = \neg f_1$, and $g = \neg (g_1 \land g_1)$.

Then $c_{not}(g) = 1 + 2 \times c_{not}(g_1)$ and $c_{and}(g) = 1 + 2 \times c_{and}(g_1)$.

By IH, $c_{not}(g_1) = c_{and}(g_1)$.

So, $c_{not}(g) = c_{and}(g)$.

By the IH, $\neg(g_1 \land g_1)$ is logically equivalent to $\neg(f_1 \land f_1)$, which is logically equivalent to $\neg f_1$, which by assumption is f.

Therefore g and f are logically equivalent, and so P(f).

Case (B): Let $f = (f_1 \wedge f_2)$, and $g = (\neg \neg g_1 \wedge (g_2 \wedge g_2))$.

Then $c_{not}(g) = 2 + c_{not}(g_1) + 2 \times c_{not}(g_2)$ and $c_{and}(g) = 2 + c_{and}(g_1) + 2 \times c_{and}(g_2)$.

By IH, $c_{not}(g_1) = c_{and}(g_1)$ and $c_{not}(g_2) = c_{and}(g_2)$.

So, $c_{not}(g) = c_{and}(g)$.

By the IH, $(\neg \neg g_1 \land (g_2 \land g_2))$ is logically equivalent to $(\neg \neg f_1 \land (f_2 \land f_2))$, which is logically equivalent to $(f_1 \land f_2)$, which by assumption is f.

Therefore g and f are logically equivalent, and so P(f).

Question 4. [10 MARKS]

Solution:

P(n): for all $x \in \mathbb{R}$, if n is even, then $T(x,n) = x(2^{n+2} - 1)$

We prove that for all $n \in \mathbb{N}$, P(n) holds.

Let $x \in \mathbb{R}$ be arbitrary.

Base Case: Let k = 0. Then $T(x, 0) = 3x = x(2^2 - 1) = x(2^{0+2} - 1)$. So P(0) holds.

Induction Step: Suppose $k \in \mathbb{N}$, $k \geq 2$. Assume for all $j \in \mathbb{N}$, $0 \leq j < k$, P(j) holds. [IH]

Suppose k is even (otherwise P(k) is vacuously true).

Then, by the induction hypothesis,

So for all $x \in \mathbb{R}$, $T(x,k) = x(2^{k+2} - 1)$, i.e. P(k). By induction, for all $n \in \mathbb{N}$, P(n).