

⑱特許公報(B2)

昭63-36324

⑲Int.Cl.⁴
C 08 F 295/00
4/60
6/10

識別記号
MRK
厅内整理番号
6681-4J

⑳公告 昭和63年(1988)7月20日
発明の数 1 (全9頁)

㉑発明の名称 補強ポリブタジエンゴムの製造方法

㉒特願 昭56-208108

㉓公開 昭58-109513

㉔出願 昭56(1981)12月24日

㉕昭58(1983)6月29日

㉖発明者 前原 信則 千葉県市原市五井南海岸8番の1 宇部興産株式会社千葉石油化学工場内
 ㉗発明者 宇多田 紀文 千葉県市原市五井南海岸8番の1 宇部興産株式会社千葉石油化学工場内
 ㉘発明者 小田 泰史 千葉県市原市五井南海岸8番の1 宇部興産株式会社千葉石油化学工場内
 ㉙発明者 芦高 秀知 千葉県市原市五井南海岸8番の1 宇部興産株式会社高分子研究所内
 ㉚発明者 石川 英雄 東京都千代田区霞が関3丁目7番2号 宇部興産株式会社東京本社内
 ㉛出願人 宇部興産株式会社 山口県宇部市西本町1丁目12番32号
 ㉜審査官 柿沢 紀世雄

1

2

㉖特許請求の範囲

1 1, 3-ブタジエンをシス-1, 4重合し、ついで1, 2-重合する方法において、

(a) 1, 3-ブタジエンと不活性有機溶媒とを混合し、

(b) 得られた1, 3-ブタジエンの不活性有機溶媒溶液中の水分の濃度を調節し、

(c) 得られた溶液にシス-1, 4重合触媒の一成分である一般式AIR₂X(ただし、Rは炭素数1

～6のアルキル基、フェニル基またはシクロアルキル基であり、Xはハロゲン原子である。)で表わされるハロゲン含有の有機アルミニウム化合物を添加し、得られた混合液をコバルト化合物の不存在下に1分間以上熟成した後、

(d) シス-1, 4重合触媒の他の一成分であるコバルト化合物を添加し、得られた溶液を攪拌混合し1, 3-ブタジエンを重合してシス-1, 4ポリブタジエンを生成させ、

(e) 得られた重合反応混合液中に、コバルト化合物と一般式AIR₃(ただし、Rは前記と同じである。)で表わ

される有機アルミニウム化合物と、二硫化炭素とから得られる1, 2重合触媒を存在させて、1, 3ブタジエンを重合し、沸騰n-ヘキサン不溶分5～30重量%と沸騰n-ヘキサン可溶分95～70重量%とからなる最終ポリブタジエンゴムを生成させ、

(f) 得られた重合反応混合物に重合停止剤を添加した後、固形分であるポリブタジエンゴムを分離取得し、

(g) 残部の未反応の1, 3-ブタジエン、不活性有機溶媒および二硫化炭素を含有する混合物から、蒸留によって1, 3-ブタジエンと不活性有機溶媒とを留分として取得するとともに、二硫化炭素を分離除去し、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒とを前記の(a)工程に循環させる、ことを特徴とする補強ポリブタジエンゴムの製造方法。

㉗発明の詳細な説明

20 この発明は、沸騰n-ヘキサン不溶分5～30重量%と沸騰n-ヘキサン可溶分95～70重量%とか

らなる補強ポリブタジエンゴムの製造方法に関するものである。

1, 3-ブタジエンをシス-1, 4重合触媒の存在下に重合して得られるシス-1, 4構造含有率の高いシス-1, 4ポリブタジエンは、タイヤその他のゴム製品の原料として大量に製造、販売されている。シス-1, 4ポリブタジエンから得られたゴム製品の物理的性質が、特に反発弾性の良いこと、発熱量の小さいこと、耐摩耗性の優れていることなどの点で天然ゴムからのゴム製品よりも優れていることが、シス-1, 4ポリブタジエンの大量に使用されている理由の一つである。しかしながら、シス-1, 4ポリブタジエンは、これから得られたゴム製品の引裂強度が小さく、耐屈曲亀裂成長特性が小さいという欠点を有している。

このシス-1, 4ポリブタジエンの有する欠点を改良したポリブタジエンゴムとして、1, 3-ブタジエンをシス-1, 4重合触媒の存在下に重合してシス-1, 4ポリブタジエンを生成させ、続いて1, 2重合触媒の存在下に1, 3-ブタジエンを重合することによって得られる新規なポリブタジエンが提案された（特公昭49-17666号）。

上記公報には、加硫すると引裂強度が大きく耐屈曲亀裂成長性が優れたポリブタジエンの製造実験例が記載されている。

しかし、上記公報に記載されているポリブタジエンの製造法は、1, 2重合触媒の一成分として二硫化炭素を用い、この二硫化炭素を1, 2重合槽に添加する方法であり、二硫化炭素は重合反応終了後1, 3-ブタジエンや不活性有機溶媒と、特に1, 3-ブタジエンと、蒸留によつては完全に分離することが困難であり、二硫化炭素の取り扱いがむつかしく、そのため前記ポリブタジエンの製造を実用化することが困難であつた。

そこで、この発明者らは、上記の優れた物性を有するポリブタジエンゴムの連続的な製造方法を提供することを目的として鋭意研究した結果、蒸留と二硫化炭素の吸着分離処理あるいは二硫化炭素付加物分離処理などの処理とを組み合せて、二硫化炭素と1, 3-ブタジエンおよび不活性有機溶媒とを分離することによって、この目的が達成されることを見出し、この発明を完成した。

すなわち、この発明は、1, 3-ブタジエンを

シス-1, 4重合し、ついでシンジオ-1, 2重合する方法において、

(a) 1, 3-ブタジエンと不活性有機溶媒とを混合し、

5 (b) 得られた1, 3-ブタジエンの不活性有機溶媒溶液中の水分の濃度を調節し、

(c) 得られた溶液に、シス-1, 4重合触媒の一成分である一般式AIR₂（ただし、Rは炭素数1～6のアルキル基、フェニル基またはシクロアルキル基であり、Xはハロゲン原子である。）で表わされるハロゲン含有の有機アルミニウム化合物を添加し、得られた混合液をコバルト化合物の不存在下に1分間以上熟成した後、

10 (d) シス-1, 4重合触媒の他の一成分であるコバルト化合物を添加し、得られた溶液を攪拌混合し1, 3-ブタジエンを重合してシス-1, 4ポリブタジエンを生成させ、

(e) 得られた重合反応混合液中に、コバルト化合物と一般式AIR₃（ただし、Rは前記と同じである。）で表わされる有機アルミニウム化合物と、二硫化炭素とから得られる1, 2重合触媒を存在させて、1, 3-ブタジエンを重合し、沸騰n-ヘキサン不溶分5～30重量%と沸騰n-ヘキサン可溶分95～70重量%とからなる最終ポリブタジエンゴムを生成させ、

15 (f) 得られた重合反応混合物に重合停止剤を添加した後、固形分であるポリブタジエンゴムを分離取得し、

(g) 残部の未反応の1, 3-ブタジエン、不活性有機溶媒および二硫化炭素を含有する混合物から、蒸留によつて1, 3-ブタジエンと不活性有機溶媒とを留分として取得するとともに、二硫化炭素を分離除去し、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒とを前記の(a)工程に循環させる、

ことを特徴とする補強ポリブタジエンゴムの製造方法に関するものである。

この発明の方法においては、最初の(a)工程において、1, 3-ブタジエンと不活性有機溶媒とを、好ましくは1, 3-ブタジエンと不活性有機溶媒とに合計量に対する1, 3-ブタジエンの割合が3重量%以上、特に3～40重量%の範囲となるように混合する。

ついで(b)工程において、前述のようにして得ら

れた1, 3-ブタジエンの不活性有機溶媒溶液中の水分の濃度を調節する。この発明の方法において、溶液中に既に所定量の水が存在する場合には、次の(c)工程に移ることができる。水分は、前記の溶液1ℓ中に0.5~5ミリモルの濃度で含有されることが好ましい。水分の濃度を調節するにはそれ自体公知の方法が採用できる。

この発明の方法においては、溶液中の水分の濃度を調節した後、(c)工程において、得られた溶液にシスー1, 4重合触媒の一成分である一般式 AlR_2X で表わされるハロゲン含有の有機アルミニウム化合物を添加し、得られた混合液をコバルト化合物の不存在下に1分間以上熟成する。この発明において、前記の方法によつてハロゲン含有の有機アルミニウム化合物を添加した混合液を、コバルト化合物の不存在下に熟成することが必要であり、これによつて、シスー1, 4重合触媒の活性が向上し、シス重合時のゲルの生成を抑制することができ、シス重合槽内へのポリマー（ゲルを含む）の付着を抑制することができ、このためシス重合だけでなく、1, 2重合も含めた全体の連続重合時間をのばすことができる。前記の熟成効果は、熟成後の溶液中に水分を入れないようにすると顕著である。1, 3-ブタジエンを含有しない混合液を熟成しても、あるいはハロゲン含有の有機アルミニウム化合物のかわりにコバルト化合物を添加した混合液を熟成しても熟成の効果は小さく、シス重合槽内へのポリマーの付着を抑制することはできない。

ハロゲン含有の有機アルミニウム化合物を添加した混合液を熟成する時間は、1分間以上、好ましくは2分~2時間であり、熟成する温度は10~80°C、特に10~50°Cが好ましい。熟成する時間が1分間より少ないと、熟成の効果が小さくなる。

前記の不活性有機溶媒としては、形成されるシスー1, 4ポリブタジエンを溶解しうる有機溶媒であれば特に制限はないが、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、n-ヘプタン、n-ヘキサンなどの脂質族炭化水素、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素などの炭化水素溶媒、およびそれらのハロゲン化物、例えば塩化メチレン、クロルベンゼンなどが挙げられ、特に炭化水素溶媒が好適に使用できる。

シスー1, 4重合触媒のアルミニウム成分である前記の一般式 AlR_2X で表わされるハロゲン含有の有機アルミニウム化合物としては、ジエチルアルミニウムモノクロライド、ジエチルアルミニウムモノブロマイド、ジイソブチルアルミニウムモノクロライドなどを挙げることができる。前記のハロゲン含有の有機アルミニウム化合物の使用量は、1, 3-ブタジエン1モルに対して0.1ミリモル以上、特に0.5~50ミリモルが好ましい。

1, 3-ブタジエンおよび水分を含有する不活性有機溶媒溶液にハロゲン含有の有機アルミニウム化合物を添加した混合液を熟成した後、好ましくは得られた熟成溶液を10°C以下に冷却した後、(d)工程において、シスー1, 4重合触媒の他の一成分であるコバルト化合物を添加し、得られた溶液を攪拌混合し、1, 3-ブタジエンを重合してシスー1, 4ポリブタジエンを生成させる。

シスー1, 4重合触媒の一成分であるコバルト化合物は、使用的不活性有機溶媒に可溶なものであればどのようなものでもよい。例えば、このようなコバルト化合物としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナートなどのコバルトのβ-ジケトン錯体、コバルトアセト酢酸エチルエステル錯体のようなコバルトのβ-ケト酸エチル錯体、コバルトオクトエート、コバルトナフテネート、コバルトベンゾエートなどの炭素数6以上の有機カルボン酸のコバルト塩、塩化コバルトピリジン錯体、塩化コバルトエチルアルコール錯体などのハロゲン化コバルト錯体などを挙げることができる。

コバルト化合物の使用量は、1, 3-ブタジエン1モルに対して0.001ミリモル以上、特に0.005ミリモル以上であることが好ましい。

また、コバルト化合物に対するハロゲン含有の有機アルミニウム化合物のモル比(Al/Co)は5以上、特に15以上であることが好ましい。

この発明の方法においてシス重合の重合温度は、-20~80°C、特に5~50°Cが好ましく、重合圧力は常圧または加圧のいずれでもよく、重合時間（重合槽内での平均滞留時間）は10分~10時間の範囲が好ましい。また、シス重合はシス重合反応槽にて溶液を攪拌混合して行なう。シス重合に用いる重合反応槽としては、高粘度液攪拌装置付きの重合反応槽、例えば、特公昭40-2645号公報

に記載されている装置を用いることができる。前記のシス重合は、シス-1, 4構造含有率90%以上、特に95%以上で、トルエン30°Cの固有粘度^[η]トルエン1.5~8、特に1.5~5であるシス-1, 4ポリブタジエンが生成するように行なうのが好ましい。^[η]トルエンを適当な値とするために、公知の分子量調節剤、例えば、シクロオクタジエン、アレンなどの非共役ジエン類、またはエチレン、プロピレン、ブテン-1などのα-オレフィンを使用することができる。また、シス重合時のゲルの生成をさらに抑えるために公知のゲル防止剤を使用することもできる。

この発明の方法においては、(e)工程において、前記の(d)工程：シス重合工程で得られた重合反応混合液中に、コバルト化合物と一般式AIR₃で表わされる有機アルミニウム化合物と、二硫化炭素とから得られる1, 2重合触媒を存在させて、1, 3-ブタジエンを重合し、沸騰n-ヘキサン不溶分5~30重量%と沸騰n-ヘキサン可溶分95~70重量%とからなる最終ポリブタジエンゴムを生成させる。

1, 2重合触媒のアルミニウム成分である前記の一般式AIR₃で表わされる有機アルミニウム化合物としては、トリエチルアルミニウム、トリメチルアルミニウム、トリイソブチルアルミニウム、トリフェニルアルミニウムなどを挙げることができる。

1, 2重合触媒の一成分である二硫化炭素は特に限定されないが水分を含まないものであることが好ましい。

1, 2重合触媒のコバルト成分としては、前記のシス重合触媒の一成分であるコバルト化合物として挙げられたものと同じものが挙げられる。

1, 2重合触媒の使用量は、触媒各成分の種類および組合せ、並びに重合条件によって相違するが、1, 3-ブタジエン1モル当たり、コバルト化合物が0.005ミリモル以上、特に0.01~5ミリモル、有機アルミニウム化合物が0.1ミリモル以上、特に0.5~50ミリモル、二硫化炭素が0.001ミリモル以上、特に0.01~10ミリモルであることが好ましい。

この発明の方法において、シス重合触媒のコバルト化合物と1, 2重合触媒のコバルト化合物とが同一である場合には、シス重合時に、1, 2重

合にも必要な量のコバルト化合物を合わせて添加し、1, 2重合時には有機アルミニウム化合物と二硫化炭素とを添加するだけにする条件を選ぶこともできる。

この発明の方法において1, 2重合の重合温度は、-20~80°C、特に5~50°Cが好ましく、重合圧力は常圧または加圧のいずれでもよく、重合時間は10分~10時間の範囲が好ましい。また、1, 2重合は1, 2重合槽にて、溶液を攪拌混合して行なう。1, 2重合に用いる重合槽としては、1, 2重合中に重合反応混合物がさらに高粘度となり、ポリマーが重合槽内に付着しやすいので、特公昭40-2645号公報に記載されているような掻取り部材を備えた重合槽を用いることが好ましい。

1, 2重合の際、重合系における1, 3-ブタジエンの濃度は3~35重量%であることが好ましい。

この発明の方法においては、(f)工程において、前記の(e)工程：1, 2重合工程で得られたポリブタジエンゴム、未反応の1, 3-ブタジエン、二硫化炭素、コバルト化合物、有機アルミニウム化合物および不活性有機溶媒を含有する重合反応混合物を、好ましくは重合停止槽に供給し、この重合反応混合物に、重合停止剤を添加して重合を停止した後、固体分であるポリブタジエンゴムを分離取得する。

前記の重合停止剤としては、前述の一般式AIR₂Xで表わされるハロゲン含有の有機アルミニウム化合物および一般式AIR₃で表わされる有機アルミニウム化合物と反応する化合物であればよく、例えば、メタノール、エタノールなどのアルコール、水、塩酸、硫酸などの無機酸、酢酸、安息香酸などの有機酸、モノエタノールアミンやアンモニア、あるいは塩化水素ガスなどが挙げられる。これらは、単味で重合反応混合物に添加してもよく、水、アルコールに混合して添加してもよい。

1, 3-ブタジエンの重合を停止した後、重合反応混合物にメタノールなどの沈殿剤を加えるか、あるいはフラツシユ（水蒸気を吹きこむかあるいは吹きこまずして揮発分を蒸発除去する。）し固体分である重合体を析出させ、分離乾燥してポリブタジエンゴムを得ることができる。このボ

リブタジエンゴムには、1, 3-ブタジエンの重合を停止した後の重合反応混合物あるいはポリリブタジエンゴムのスラリーなどに老化防止剤を添加する方法などによって、老化防止剤を配合することが好ましい。

この発明の方法によつて得られるポリリブタジエンゴムは、沸騰n-ヘキサン不溶分が5~30重量%であり、沸騰n-ヘキサン可溶分95~70重量%であり、沸騰n-ヘキサン不溶分の融点が180~215°Cである。

この発明の方法においては、(g)工程において、重合反応混合物から固形分であるポリリブタジエンゴムを分離取得した残部の、未反応の1, 3-ブタジエン、不活性有機溶媒および二硫化炭素を含有する混合物(通常回収溶剤といわれる)から、蒸留によつて1, 3-ブタジエンと不活性有機溶媒とを留分として取得し、一方二硫化炭素の吸着分離処理あるいは二硫化炭素付加物分離処理などの処理によつて、二硫化炭素を分離除去し、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒とを回収する。

前記の3成分を含有する混合物から、アミノ基含有イオン交換樹脂のような塩基性陰イオン交換樹脂を用いる吸着分離処理によつて二硫化炭素を分離除去するか、あるいは、二硫化炭素と反応して、不活性有機溶媒に不溶な付加物、水溶性の付加物、あるいは1, 3-ブタジエンおよび不活性有機溶媒よりも明らかに高い沸点を有する付加物を形成する窒素含有化合物を二硫化炭素と反応させ、生成した付加物を溶液からそれ自体公知の方法で分離する二硫化炭素付加物分離処理によつて二硫化炭素を分離除去した後、蒸留によつて、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒とを留分として回収することができる。

また、前記の3成分を含有する混合物から、蒸留によつて、前記の3成分を留分として回収し、この留分から、前述の吸着分離あるいは二硫化炭素付加物分離処理によつて二硫化炭素を分離除去することによつても、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒とを回収することができる。

または、前記の3成分を含有する混合物から、蒸留によつて、二硫化炭素を含有する1, 3-ブ

タジエンを留分として、二硫化炭素を実質的に含有しない不活性有機溶媒を釜残として取得し、前記の留分から、前述の吸着分離あるいは二硫化炭素付加物分離処理によつて二硫化炭素を分離除去し、一方、前記の釜残から蒸留によつて不活性有機溶媒を留分として取得することによつても、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒とを回収することができる。

前記の塩基性陰イオン交換樹脂を用いる二硫化炭素の吸着分離処理は、バッチ法で行なつてもよく、あるいは流通法で行なつてもよく、5~60°Cで1~60分間(滞留時間)行なうことが好ましい。前記の塩基性陰イオン交換樹脂としては、一般に市販されているアンバーライトIR-45、ダイヤイオンWA-21、ダウエックス3、デューライトA-7などの弱塩基性陰イオン交換樹脂を用いることができる。バッチ法で処理する場合には、塩基性陰イオン交換樹脂の量は処理する溶液100容量部当り0.1~10容量部が好ましい。また、流通法で処理する場合には、空間速度(Space Velocity)[1時間当たりの通流量(m³/hr)を充填剤の体積(m³)で除した値で通常単位を付さないで示される]は2~15が好ましい。塩基性陰イオン交換樹脂は処理前に不活性有機溶媒で膨潤させるのが好ましい。また、弱塩基性陰イオン交換樹脂を用いて二硫化炭素を除去する際に、微量のH₂Sが副生るので、弱塩基性陰イオン交換樹脂で処理した液をさらに水洗するか、あるいはダイヤイオンPA-316のような強塩基性陰イオン交換樹脂を用いてH₂Sを除くのが好ましい。

また、前記の二硫化炭素付加物分離処理は、処理する溶液中に、該溶液中に含有される二硫化炭素1モルに対して1~20モルの窒素含有化合物を添加し、5~60°Cで5~120分間攪拌混合して二硫化炭素と窒素含有化合物とを反応させた後、反応生成物を溶液から分離して行なうことが好ましい。前記の反応生成物を含む溶液を水洗、蒸留、沪過あるいは遠心分離などして、溶液から二硫化炭素と窒素含有化合物との反応生成物を分離すればよい。前記の窒素含有化合物としては、メラミン、グアニジン、エチレンジアミン、1, 6-ヘキサメチレンジアミン、1, 12-ドデカメチレンジアミン、ジエチレントリアミン、ジエチルアミン、n-オクチルアミン、n-ラウロアミン、ジ

—n—ブチルアミンなどの脂肪族アミン：アニリン、2, 4-ジアミノフェノール、2, 4-ジアミノトルエン、2, 6-ジアミノトルエン、2, 2'-ジアミノジフェニルメタン、2, 4'-ジアミノジフェニルメタン、4, 4'-ジアミノジフェニルメタン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、3, 5-ジアミノ安息香酸、p-ジアミノアゾベンゼン、4, 4-ジアミノジフェニルアミン、ベンジンジン、3, 3-ジアミノベンジン、1, 2, 10, 4, 5-テトラアミノベンゼン、p,p'-ジアミノジフェニルオキサイド、ビペリジン、ベンジルアミンなどの芳香族アミン、シクロヘキシリルアミン、シクロベンチルアミンなどの脂環族アミンなどが挙げられる。

前記した方法により回収された二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒は、前記の(a)工程に循環することができる。

上記のようにして循環された二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒とは、補充の新しい1, 3-ブタジエンと混合して使用される。

また、二硫化炭素を吸着した塩基性陰イオン交換樹脂は酸洗浄、ついでアルカリ洗浄によって二硫化炭素の回収と塩基性陰イオン交換樹脂の再生をすることができ、回収した二硫化炭素は精製した後、前記の(e)工程に循環することができる。

以下、この発明の方法を実施するさいに不活性有機溶媒としてベンゼンのような1, 3-ブタジエンの沸点より高い沸点を有する不活性有機溶媒を用いた一態様を示す第1図のフローシートを用いて、この発明をさらに説明する。ただし、この発明の範囲は以下の記載に限定されるものではない。

第1図において、フレッシュ1, 3-ブタジエンタンク1から導管20により送入された1, 3-ブタジエンと、精製された回収溶剤タンク2から導管21により送入された精製された回収溶剤(1, 3-ブタジエンと不活性有機溶媒との混合物)とが混合機3にて混合される。得られた1, 3-ブタジエンのベンゼン溶液は導管22を経て混合機4に導かれる。1, 3-ブタジエンのベンゼン溶液には、導管23から適量の水が供給さ

れる。混合機4において、1, 3-ブタジエンのベンゼン溶液と水とは均一に混合された後、導管24を経て熟成槽5に導かれる。水分の濃度を調節した1, 3-ブタジエンのベンゼン溶液には、導管25からハロゲン含有の有機アルミニウムが供給される。熟成槽5では、ハロゲン含有の有機アルミニウム化合物を添加した混合液が、コバルト化合物の不存在下に1分間以上熟成される。熟成槽5にて熟成された混合液は、導管26を経てシスー1, 4重合反応槽6に供給される。また、前記シスー1, 4重合反応槽6には、導管27からシクロオクタジエンのような分子量調節剤が、導管28からTPLのようなゲル防止剤が、導管29からコバルト化合物がそれぞれ供給される。

シスー1, 4重合反応槽6では、溶液を攪拌混合してシスー1, 4ポリブタジエンを生成させる。

シスー1, 4重合反応槽6で得られた重合反応混合液は、導管30を経て1, 2重合反応槽7に供給される。また、前記1, 2重合反応槽7には、導管31からコバルト化合物が、導管32から一般式AIR_nで表わされる有機アルミニウム化合物が、導管33から二硫化炭素がそれぞれ供給される(図面には示していないが、一般式AIR_nで表わされる有機アルミニウム化合物およびあるいは二硫化炭素は導管30中に供給してもよい)。これらコバルト化合物と一般式AIR_nで表わされる有機アルミニウム化合物と二硫化炭素とから得られる1, 2重合触媒の存在下に、混合物を攪拌して1, 3-ブタジエンを重合し、沸騰n-ヘキサン不溶分5~30重量%と沸騰n-ヘキサン可溶分95~70重量%とからなる最終ポリブタジエンゴムを生成させる。1, 2重合反応槽7中で1, 3-ブタジエンを重合するさいに、不活性有機溶媒に不溶なポリマーが析出してき、かつ重合反応混合物が高粘度となるため、1, 2重合反応槽としては擣取り部材を備えた攪拌機付きの重合反応槽が好適に使用される。

1, 2重合反応槽7で得られた重合反応混合物は、導管34を経て重合停止槽40に供給される。一方、前記の重合反応混合物には重合停止槽40において導管35から重合停止剤を供給して1, 3-ブタジエンの重合を停止する。重合を停止された混合物は導管36を経て補強ポリブタジエンゴム分離装置8に供給され、重合反応混合物

から、固体分である補強ポリブタジエンゴム9と、未反応の1, 3-ブタジエン、不活性有機溶媒および二硫化炭素を含有する液体の混合物とが分離される。

補強ポリブタジエンゴム分離装置8によつて固体分である補強ポリブタジエンゴムを分離した残部の前記の液体の混合物は、導管37を経て二硫化炭素の吸着分離処理あるいは二硫化炭素付加物分離処理の処理器10に供給される。前記の処理器10によつて、前記の液体の混合物から、二硫化炭素11が分離除去される。

二硫化炭素の吸着分離処理あるいは二硫化炭素付加物分離処理などの処理器10によつて二硫化炭素を除去された1, 3-ブタジエンおよび不活性有機溶媒を含有する液体の混合物は、導管38を経て蒸留装置12(1つの蒸留塔でもよく、2つの蒸留塔でもよい)に供給される。蒸留装置12によつて、二硫化炭素を実質的に含有しない1, 3-ブタジエンと不活性有機溶媒とが分離され、これらは導管39を経て、精製された回収溶剤タンク2に供給される。また、蒸留装置12から高沸点物13が分離除去される。

この発明の方法によると、コバルト化合物の使用量が少なくなるため補強ポリブタジエンゴムに含まれる灰分量が減少し、最終ゴム製品にしたときに優れた物性を示す補強ポリブタジエンゴムを連続的に製造することができる。

次に実施例を示す。実施例の記載において、補強ポリブタジエンゴムの沸騰n-ヘキサン不溶分は、2gの補強ポリブタジエンゴムを200mlのn-ヘキサンに室温で大部分を溶解させた後、不溶分を4時間ソクスレー抽出器によつて抽出し、抽出残分を真空乾燥し、その重量を精秤して求めたものである。また、沸騰n-ヘキサン可溶分は、上記のようにして得られたn-ヘキサン溶解分およびソクスレー抽出器による抽出分からn-ヘキサンを蒸発除去した後、真空乾燥し、その重量を精秤して求めたものである。また、補強ポリブタジエンゴムのn-ヘキサン可溶分およびシスー1, 4重合後のポリブタジエンのシスー1, 4構造含有率は赤外吸収スペクトル(IR)により測定し、n-ヘキサン不溶分の1, 2-構造含有率は核磁気共鳴スペクトル(NMR)により測定し、n-ヘキサン不溶分の融点は自記差動熱量計

(DSC)による吸熱曲線のピーク温度により決定した。

また、補強ポリブタジエンゴムのn-ヘキサン可溶分およびシスー1, 4重合後のポリブタジエンの極限粘度[η]については30°C、トルエン中で測定した値であり、補強ポリブタジエンゴムのn-ヘキサン不溶分の還元粘度 η_{sp}/C については、135°C、テトラリン中で測定した値である。

また、溶液中の二硫化炭素の含有量は、株式会社日立製作所の炎光光度検出器を持つガスクロマトグラフを使用し、充填剤としてクロモソルブ102を用いて測定し、算出した。

実施例

1, 3-ブタジエンを23.7重量%含有する1, 3-ブタジエンのベンゼン溶液から脱水塔により水分を除き、得られた溶液に水を40mg(2.2ミリモル)/lの割合で添加後、攪拌翼付の混合槽で混合し溶解させた。この溶液を内容積20lの攪拌翼付熟成槽に毎時50lの割合で供給し、ジエチルアルミニウムモノクロライドを毎時25.0g(208ミリモル)混入し、混合液を30°Cで24分間(平均滞留時間)熟成した。得られた熟成液を、-3°Cに冷却後、内容積20lのリボン型攪拌翼付のステンレス製オートクレーブで外筒に温度調節用のジャケットを備え、-10°CのCaCl₂水溶液を該ジャケットに循環させたシスー1, 4重合槽に毎時50lの割合で供給し、コバルトオクトエートを毎時264mg(0.77ミリモル)、1, 5-シクロオクタジエンを毎時60.0g(0.556モル)、TPL(ジラウリル-3, 3'-チオジプロピオネット)を毎時7.0g(13.6ミリモル)供給し、重合温度40°C、平均滞留時間24分間にシスー1, 4重合した。このシスー1, 4重合による1時間当りのポリブタジエン生成量は35.2kgであり、このポリブタジエンは、シスー1, 4構造含有率が98%以上であり、[η]が1.9であり、200メッシュの金網を用いて測定したゲル分が0.01%以下であった。

シスー1, 4重合槽で得られた重合反応混合液を、シスー1, 4重合槽と同じ型の重合槽(1, 2重合槽)に毎時50lの割合で連続的に供給し、トリエチルアルミニウムを毎時27.5g(241ミリモル)、コバルトオクトエートを毎時840mg(2.36ミリモル)、二硫化炭素を毎時750mg(9.87ミリモル)供給し、重合温度40°C、平均滞留時間24分間

にて1, 2重合した。得られた重合反応混合物を攪拌翼付混合槽に連続的に供給し、これに2, 6一級第3ブチル-4-メチルフェノールをゴムに対して1PHR加え、さらに少量のメタノールを混入して重合を停止した。この混合物を、攪拌翼付の溶剤蒸発槽（スチームストリッパー）に毎時120ℓで供給し、熱水および4kg/cm²Gの飽和水蒸気を供給し、混合物を熱水中に分散させ、溶剤を蒸発させた。

蒸発槽からスラリーを抜き出し、水と分散ポリブタジエンの屑（クラム）とを分離した後、クラムを常温で真空乾燥して補強ポリブタジエンゴムを得た。

16時間連続的に重合して、重合時間1時間当たり平均4.00kgの補強ポリブタジエンゴムが得られた。この補強ポリブタジエンゴムは、沸騰n-ヘキサン不溶分が12.0%であり、沸騰n-ヘキサン不溶分は融点が205°Cであり、 η_{sp}/C が2.1(dL/g)であり、1, 2構造含有率が93.1%であり、沸騰n-ヘキサン可溶分はシースー1, 4構造含有率が96.9%であり、[η]が1.8であつた。

重合反応終了後、1, 3-ブタジエンのベンゼン溶液を毎時50ℓの割合で30分間流した後、重合槽内の攪拌翼および内壁に付着しているポリマーをかき落とし、真空乾燥して付着ポリマーを得た。付着ポリマー量は、シースー1, 4重合槽では12g（うちゲル分が2g）であり、1, 2重合槽では98gであつた。

一方、蒸発槽から蒸発した溶剤は冷却凝縮して水相と溶剤相とに分離後、得られた溶剤（回収溶剤という）から、以下のようにして1, 3-ブタジエンとベンゼンとを回収した。

1, 3-ブタジエンを15.6重量%、二硫化炭素を12mg/ℓの割合でそれぞれ含有する回収溶剤700ℓを、塩基性陰イオン交換樹脂（アンバーライトIR-45：アミノ基5.5meq/g）を充填した充填塔（充填高さ70cm、充填塔内径10cm）について強塩基性の陰イオン交換樹脂（ダイヤイオンPA-316）を充填した充填塔（充填高さ30cm、充填塔内径10cm）に15~20°Cで毎時50ℓの割合で流通させて二硫化炭素を除去した後、蒸留によって高沸点物を除き、重合溶剤とし、重合溶剤を再使用した。陰イオン交換樹脂の再生は、通常のHI洗浄およびNaOH洗浄により行なつた。前記処理により、回収溶剤中の二硫化炭素は98%以上が除去され、二硫化炭素を実質的に含有しない1, 3-ブタジエンとベンゼンとを回収された。

図面の簡単な説明

第1図は、この発明の方法を実施するさいに不活性有機溶媒としてベンゼンのような1, 3-ブタジエンの沸点よりも高い沸点を有する不活性有機溶媒を用いた一態様を示すフローシートの概略図である。

1：フレッシュ1, 3-ブタジエンタンク、
2：精製された回収溶剤タンク、3, 4：混合機、5：熟成槽、6：シースー1, 4重合反応槽、
7：1, 2重合反応槽、8：補強ポリブタジエンゴム分離装置、9：補強ポリブタジエンゴム、10：二硫化炭素の吸着分離処理あるいは二硫化炭素付加物分離処理などの処理器、11：二硫化炭素、12：蒸留装置、13：高沸点物、20~39：導管、40：重合停止槽。

第 1 図

