Como o Whatsapp chega no seu celular?

Curso Técnico – Rede de Computadores

Prof^o Lucas Jorge Prof^o Rodrigo Cirqueira

Meios de Transporte

- ☐ Qual dos três meios de transporte é o mais rápido?
- Qual o tem o melhor custo-benefício barato?

Meios de transmissão

- Os dados também precisam de meios físicos para ser transmitida
- ☐ Eles são divididas entre:
 - Cabeado
 - Wireless (Sem fio)

Cabeado

- O tipos de conexões cabeadas mais utilizadas são:
 - Metálico
 - Óptico

Cabeado - Metálicos

- ☐ Transmissão efetuada via pulsos elétricos
- □Utilizada desde o início das redes de computadores
- ■O tipos mais utilizados são:
 - Coaxial
 - Par-Trançado

SÃO PAULO

Cabeado - Metálicos

- □Velocidades de até 10 Gbps (baixa um arquivo de 1 GB em menos de 1 segundo)
- Melhor custo-benefício
- Utilizado para conectar a maioria dos computadores no dia-adia

Cabeado - Ópticos

- Os dados trafegam na forma de pulsos de luz
- □Livre de interferências eletromagnética
- ■Custo elevado
- ☐ Maior velocidade entre os meios de transmissão via cabo
- ■Extremamente frágil

Cabeado - Ópticos

- □Velocidade de até 100 Gbps (baixa um arquivo de 12 GB em menos de 1 segundo)
- □Utilizada para conectar os países via cabos submarinos

Cabeado - Ópticos

https://www.submarinecablemap.com

Wireless

- ☐ Transporta sinais eletromagnéticos que representam os dígitos binários das comunicações de dados usando frequências de rádio ou de micro-ondas
- ☐ Fornece mais opções de mobilidade do que qualquer outro meio

Wireless - Bluetooth

- □Padrão de Rede Pessoal sem Fio (WPAN)
- □ Distâncias de 1 à 10 m
- □Bandwidth: 3 Mbps (baixa um arquivo de 10 MB em 26 segundos)
- □Nome em homenagem ao rei Harald Bluetooth

Wireless – Wi-Fi

- □Padrão de Rede Local sem Fio (WLAN)
- Distâncias de 20m (em áreas fechadas)
- □Bandwidth: 11 Gbps (baixa um arquivo de 1 GB em menos de 1 segundo)
- □Controlada pela WiFi Alliance

Na próxima aula!

- □Na próxima aula vamos responder a pergunta: como o computador lê e interpreta as informações que passamos para ele?
- □Como conseguimos "traduzir" as informações enviadas para o computador?

Qual o idioma do Computador?

Curso Técnico – Rede de Computadores

Prof^o Lucas Jorge Prof^o Rodrigo Cirqueira

O idioma do computador

Bine ați venit la cursul tehnic în rețelele de calculatoare!

Компьютерийн сүлжээн дэх техникийн курсэд тавтай морилно уу!

Fàilte don chùrsa teicnigeach air lìonraidhean coimpiutair!

به دوره فنی شبکه های رایانه ای خوش آمدید!

コンピュータネットワークのテクニカルコースへようこそ。

Welcome to the technical course on computer networks!

Bem vindo ao Curso Técnico de Redes de Computadores!

Sistema Binário

O **sistema binário** ou de base 2 é um **sistema** de numeração posicional em que todas as quantidades se representam com base em dois números, ou seja, zero e um (0 e 1).

ASCII TABLE

Decima	l Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	`
1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	C
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	е
6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	ĥ
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	i .
10	Α	1010	12	[LINE FEED]	58	3A	111010	72	:	106	6A	1101010	152	j
11	В	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101011	153	k
12	С	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100	154	1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101	155	m
14	E	1110	16	[SHIFT OUT]	62	3E	111110	76	>	110	6E	1101110	156	n
15	F	1111	17	[SHIFT IN]	63	3F	111111	77	?	111	6F	1101111	157	0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000	100	@	112	70	1110000	160	р
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001	101	Α	113	71	1110001	161	q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010	102	В	114	72	1110010	162	r
19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011	103	C	115	73	1110011	163	S
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100	104	D	116	74	1110100	164	t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101	105	E	117	75	1110101	165	u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110	106	F	118	76	1110110	166	v
23	17	10111	27	[ENG OF TRANS. BLOCK]	71	47	1000111	107	G	119	77	1110111	167	w
24	18	11000	30	[CANCEL]	72	48	1001000	110	н	120	78	1111000	170	X
25	19	11001	31	[END OF MEDIUM]	73	49	1001001	111	1	121	79	1111001	171	У
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010	112	J	122	7A	1111010	172	Z
27	1B	11011	33	[ESCAPE]	75	4B	1001011	113	K	123	7B	1111011	173	{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100	114	L	124	7C	1111100	174	1
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101	115	M	125	7D	1111101	175	}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110	116	N	126	7E	1111110	176	~
31	1F	11111	37	[UNIT SEPARATOR]	79	4F	1001111	117	0	127	7F	1111111	177	[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	120	P					
33	21	100001	41	1	81	51	1010001	121	Q					
34	22	100010	42	"	82	52	1010010	122	R					
35	23	100011	. 43	#	83	53	1010011	123	S					
36	24	100100	44	\$	84	54	1010100	124	T					
37	25	100101	. 45	%	85	55	1010101	125	U					
38	26	100110	46	&	86	56	1010110	126	V					
39	27	100111	47	1	87	57	1010111	127	W					
40	28	101000	50	(88	58	1011000	130	X					
41	29	101001	. 51)	89	59	1011001	131	Υ					
42	2A	101010	52	*	90	5A	1011010	132	Z					
43	2B	101011	. 53	+	91	5B	1011011	133	[
44	2C	101100	54	,	92	5C	1011100	134	\					
45	2D	101101	. 55	-	93	5D	1011101	135	1					
46	2E	101110	56		94	5E	1011110	136	^					
47	2F	101111	. 57	1	95	5F	1011111	137	_					

Tabela ASCII

Utilizando a tabela ASCII, converta o seu nome (apenas o primeiro nome) para binário e poste na atividade do Classroom.

https://www.ascii-code.com/

Sistema Binário

Cada arquivo dentro de um computador ocupa um espaço do armazenamento interno. Existem arquivo grandes e pesados, o tamanho do arquivo depende do seu tipo: imagem, texto ou vídeo.

Como ver o tamanho de um arquivo no Windows?

Para ver o tamanho de um arquivo no Windows, você deve seguir os seguintes passo:

- Clicar com o botão direito do mouse em cima do arquivo
- Clicar na opção "Propriedades"

Como ver o tamanho de um arquivo no Windows?

Binário

Representando Em números em binário

Os números binários podem ser representados em número decimais que nós conhecemos, podemos fazer isso utilizando a TABELA MÁGICA!

	A TABELA MÁGICA											
128	64	32	16	8	4	2	1					

Digamos que você queria representar o número 10 de forma que o computador entenda, ou seja, em binário.

Para isso basta você pegar a tabela mágica e colocar número "1" no quadrados abaixo dos valores que **SOMADOS** resultem no valor 10. Quais seriam esses valores?

A TABELA MÁGICA											
128	64	32	16	8	4	2	1				
				1		1					

Como bem sabemos: **8 + 2 = 10**

Para terminar, basta preencher os outros quadrados com o número "0"

A TABELA MÁGICA										
128	64	32	16	8	4	2	1			
0	0	0	0	1	0	1	0			

Dessa forma descobrimos que o número

10 em binário se escreve: **00001010**

A TABELA MÁGICA										
128	64	32	16	8	4	2	1			
0	0	0	0	1	0	1	0			

Vamos mais uma? Como eu representaria o número 22 utilizando a tabela mágica?

A TABELA MÁGICA											
128	128 64 32 16 8 4 2 1										

Por que é importante?

- Entender como o computador entende e processa as informações é importante pois, como um profissional de redes, você tem que conseguir analisar e filtrar TUDO o que trafega na rede.
- □ As informações que passam pelos meios de comunicação (você se lembra deles, vimos isso na aula passada) estão todas em código binário, então sabendo o que aqueles 0 e 1 representam, te ajudar a resolver os problemas mais rapidamente.

Por que é importante?

- Na próxima aula, veremos que os computadores tem uma identificação, a qual serve para identificar um computador do outro
- Essa identificação utiliza o sistema binário e sem essa identificação, nós não poderíamos se comunicar através da rede, isso mostra a importância de você, um profissional de rede entender o sistema binário!

A minha identificação na rede é: 11000000.10101000.00000000.000000010

