1

4. juni 2005

Oppgave 1

- a) Skriv reaksjonsligning for reaksjonen mellom natriummetall og vann.
 - Natriuminnholdet i natriumamalgam (en legering av natrium og kvikksølv) reagerer med vann mens kvikksølvet forblir ureagert. En prøve på 2,00 g natriumamalgam reagerte med vann og det ble dannet 57,3 mL hydrogen, målt som tørr gass ved 1 atm og 23 °C. Beregn vektprosent natrium i prøven.
- b) Konsentrasjon i løsninger angis oftest som molaritet, molalitet, molbrøk (molprosent) eller vektprosent.
 - Definer hver av disse begreper.
 - Beregn molbrøken av natrium i prøven i pkt. a.

Oppgave 2

- a) Angi hva som er karakteristisk for en bufferløsning.
 - Beregn pH i en løsning som er laget ved å blande 750 mL 1,00 M NH₄Cl og 250 mL 1,00 M NaOH. (Det forutsettes at blandingens volum er 1,00 liter.)
- b) Gi Brønsteds syre/base-definisjon.
 - Vil en vannløsning av aluminiumtriklorid reagere surt, nøytralt eller basisk?
 - Foreslå en reaksjonsligning som viser hvorledes Al³⁺ reagerer med vann.

Oppgave 3

- a) Beregn ΔS^{o} for følgende kjemiske reaksjoner ved 298 K:
 - Ca (s) + $\frac{1}{2}$ O₂ (g) = CaO (s)
 - -CaCO₃(s) = CaO(s) + CO₂(g)
 - $N_2(g) + O_2(g) = 2 NO(g)$
 - Diskuter fortegn og størrelsesorden på den beregnede ΔS^{o} for hver reaksjon.
 - Angi de reaksjoner (av de ovenstående) hvor entropiendringen favoriserer dannelse av produkter.
- b) Skriv reaksjonsligning for spalting av sølvoksidet $Ag_2O(s)$ til grunnstoffene, og finn entalpiendringen ΔH^o og entropiendringen ΔS^o for denne reaksjonen ved 298 K.
 - Verdiene for ΔH° og for ΔS° for denne reaksjonen kan anses tilnærmet uavhengige av temperaturen (innenfor et ganske vidt temperaturområde). Gi en forklaring på hvorfor denne antagelse er gyldig.
 - Bruk denne antagelsen, og finn den temperatur der sølvoksidet vil være i likevekt med metallisk sølv i luft. (Oksygeninnholdet i luft er 21 mol%.)

Oppgave 4

- a) Angi, med reaksjonsligning, hva som skjer når glødende magnesium bringes i kontakt med nitrogen-gass.
 - Angi hva som skjer når reaksjonsproduktet bringes i kontakt med vann. Gi reaksjonsligning.
- b) I den industrielle ammoniakksyntese fremstilles ammoniakk fra grunnstoffene.
 - Skriv opp reaksjonsligning med angivelse av aggregattilstand.
 - Bestem ΔG° og ΔH° for reaksjonen ved 25 °C.
 - Er reaksjonen endoterm eller eksoterm?
 - I hvilken retning forskyves likevekten ved økende temperatur?
 - I hvilken retning forskyves likevekten ved økende totaltrykk?

Oppgave 5

- a) Kompletter og balanser nedenstående ligninger for reaksjoner i vannløsning, og angi endringer i oksidasjonstall for hver reaksjon.
 - H_2S (aq) + $Cr_2O_7^{2-} \rightarrow S(s) + Cr^{3+}$
 - $\text{CuS} + \text{NO}_3^- \rightarrow \text{Cu}^{2+} + \text{SO}_4^{2-} + \text{NO (g)}$
- b) I en oppløsning som inneholder en ukjent mengde Fe²⁺-ioner kan mengden jernioner bestemmes ved titrering med kaliumdikromat-løsning, K₂Cr₂O₇. Titreringen utføres i sur løsning.
 - Sett opp halvreaksjonene for de to red/oks-reaksjonene.
 - Sett også opp balansert netto reaksjonsligning for titrerreaksjonen.
 - Beregn likevektskonstanten for titrerreaksjonen. (Standard cellepotensial er gitt i "SI Chemical Data", Tabell 21.)

Oppgave 6

- a) Den ene halvcellen i en galvanisk celle består av en blyelektrode, dyppet ned i en 1 M Pb(NO₃)₂ -løsning. Den andre elektroden består av en blyelektrode dyppet i en 0,01 M Pb(NO₃)₂ -løsning. De to halvcellene er forbundet med en saltbro med NH₄NO₃ (aq). Elektrodene er koblet sammen gjennom et galvanometer.
 - Skisser cellen. Vis på skissen hvilken elektrode som er positiv pol.
 - Hva kalles en slik celle?
 - Beregn cellepotensialet.
- b) Skriv opp reduksjonspotensialet for Sn²⁺ til Sn, Ni²⁺ til Ni, og Pb²⁺ til Pb. ("SI Chemical Data".)
 - Skriv halvreaksjonene.
 - Hvilket av metallene er edlest, og hvilket er minst edelt?
 - Kombiner halvreaksjonen for det edleste og det minst edle, og skriv totalreaksjonen.
 - Bestem E^o for totalreaksjonen.

t

Oppgave 7

- a) Ved oppvarming spaltes acetaldehyd etter ligningen $CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$
 - Hastigheten for denne reaksjonen kan studeres ved å måle gasstrykk, idet en kan anta ideell gass slik at trykk er proporsjonalt med konsentrasjon. Eksperimentelt er det funnet at reaksjonen er av 2. orden.
 - Anta at trykket av acetaldehyd er P_A etter reaksjonstiden t, og gi ligningen for reaksjonshastigheten $-dP_A/dt$ (den differensielle hastighetsligning).
 - Vis hvordan ligningen kan integreres idet en antar at starttrykket var P_A^o for tiden = 0
- b) Et forsøk ble utført i en gasstett beholder med konstant temperatur 520 °C. Ved start inneholdt beholderen rent acetaldehyd med trykk 0,478 atm. Etter 480 sekunder var totaltrykket i beholderen økt til 0,733 atm. Beregn hastighetskonstanten. (Husk også å gi dimensjonen for *k*.)

Oppgave 8

- a) Slå opp smeltepunkt og kokepunkt (i "SI Chemical Data") for hydrogenforbindelsene av grunnstoffene i gruppe 6A i periodesystemet, og vis dem i en tabell.
 - Betrakt hvorledes disse data varierer ned gjennom gruppen, og gi en kvalitativ forklaring på variasjonen.
 - Foreta en tilsvarende sammenligning av hydrogenforbindelsene i gruppe 7A i periodesystemet. Vil du vente et lignende mønster her som for gruppe 6A? (Begrunn svaret.)
- b) Hva er elektronegativitet?
 - Hvordan endres elektronegativiteten over periodesystemet?
 - Hvorledes kan verdiene for elektronegativitet benyttes til å forutsi bindingens natur i en forbindelse?

Oppgave 9

- a) En metode som har vist seg nyttig når det gjelder å forutsi molekylstrukturer, er modellen med frastøtning mellom valensskallelektronpar. (Engelsk forkortelse: VSEPR.)
 - Benytt metoden til å forutsi molekylstruktur og bindingsvinkler for følgende molekyler: PCl₃, SiF₄, ClF₃.
 - Benytt VSEPR-modellen til å gi en forklaring på det faktum at bindingsvinkelen i NH_3 ikke er lik tetraedervinkelen, 109,5°. (Jf. "SI Chemical Data", tabell 8.)
- b) Tegn lewisstruktur for følgende forbindelser: HOCN, CO₂, H₂CO
 - Hvilke forbindelser er polare?

Oppgave 10

a) - Gi navn (IUPAC-navn og eventuelt trivialnavn) til følgende organiske forbindelser:

-
$$H_3C - C - CH_3$$

O
- $CH_2 - CH - CH_2$
| | | |
OH OH OH
 $H_3C - CH_2 - CH = CH_2$
 $H_2C - CH_2$
| |
 $H_2C - CH_2$

- b) Hva menes i organisk kjemi med en addisjonsreaksjon?
 - Skriv formelen til 1-buten.
 - Hvilke(t) reaksjonsprodukt kan man få ved addisjon av hydrogenbromid til 1-buten?