

8GB - 288-Pin 2Rx8 Unbuffered Non-ECC DDR4 DIMM

Features

288-pin JEDEC-compliant DIMM, 133.35 mm wide by 31.25 mm high

Operating Voltage: VDD/VDDQ = 1.2V (1.14V to 1.26V)

VPP = 2.5V (2.375V to 2.75V)

VDDSPD = 2.25V to 2.75V

I/O Type: 1.2 V signaling

On-board I²C temperature sensor with integrated Serial

Presence-Detect (SPD) EEPROM

Data Transfer Rate: 17.0 Gigabytes/sec

Data Bursts: 8 and burst chop 4 mode

ZQ Calibration for Output Driver and On-Die Termination (ODT)

Programmable ODT / Dynamic ODT during Writes

Programmable CAS Latency: 9, 10, 11, 12, 13, 14, 15 and 16

Bi-directional Differential Data Strobe signals

Per DRAM Addressability is supported

Write CRC is supported at all speed grades

DBI (Data Bus Inversion) is supported(x8 only)

CA parity (Command/Address Parity) mode is supported

Supports ECC error correction and detection

16 internal banks

SDRAM Addressing (Row/Col/BG/BA): 15/10/2/2

Fully RoHS Compliant

Identification

DTM68104A 1Gx64 8G 2Rx8 PC4-2133P-UB0-10

Performance range

Clock / Module Speed / CL-t_{RCD} -t_{RP}

1067 MHz / PC4-2133 / 16-16-16

1067 MHz / PC4-2133 / 15-15-15

933 MHz / PC4-1866 / 14-14-14

933 MHz / PC4-1866 / 13-13-13

800 MHz / PC4-1600 / 12-12-12

800 MHz / PC4-1600 / 11-11-11

667 MHz / PC4-1600 / 10-10-10

667 MHz / PC4-1600 / 9-9-9

Description

DTM68104A is an unbuffered 1Gx64 memory module, which conforms to JEDEC's DDR4-2133, PC4-2133 standard. The assembly is Dual-Rank. Each rank is comprised of eight Samsung 512Mx8 DDR4-2133 SDRAMs. One 4K-bit EEPROM is used for Serial Presence Detect.

Both output driver strength and input termination impedance are programmable to maintain signal integrity on the I/O signals in a Fly-by topology. A thermal sensor accurately monitors the DIMM module and can prevent exceeding the maximum operating temperature of 95C.

8GB - 288-Pin 2Rx8 Unbuffered Non-ECC DDR4 DIMM

Speed Bin Table

Speed Bin				DDR4-2	2133P	DDR4-	2133R		NOTE	
CL-nRCD-nRP				15-15	5-15	16-1	6-16	Unit	NOTE	
Parameter			Symbol	min	max	min	max			
Internal rea	d command	to first data	tAA	14.06 ¹⁴ (13.50) ^{5,12}	18.00	15.00	18.00	ns		
Internal read command to first data with read DBI enabled			tAA_DBI	TBD	TBD	TBD	TBD	ns		
ACT to internal read or write delay time			tRCD	14.06 (13.50) ^{5,12}	-	15.00 -		ns		
PRE command period			tRP	14.06 (13.50) ^{5,12}		15.00 -		ns		
ACT to PRE	command p	eriod	tRAS	33	9 x tREFI	33	9 x tREFI	ns		
ACT to ACT or REF command period		tRC	47.06 (46.50) ^{5,12}	-	48.00	-	ns			
	Normal	Read DBI					•			
CWL = 9	CL = 9	CL = 11 (Optional) ⁵	tCK(AVG)	1.5 (Optional) ^{5,12}		Reserved		ns	1,2,3,4 ,11,14	
			tCK(AVG)							
	CL = 10	CL = 12	tCK(AVG)	Rese	rved	1.5	1.6	ns	1,2,3,1 1	
	CL = 11	CL = 13	tCK(AVG)	1.25 <1.5						
CWL = 9,11			tCK(AVG)	(Option	al)5,12	Rese	erved	ns	1,2,3,4 ,7	
	CL = 12	CL = 14	tCK(AVG)	1.25	<1.5	1.25	<1.5	ns	1,2,3,7	
CWL = 10,12	CL = 13	CL = 15	tCK(AVG)	1.071	<1.25	Reserved		ns	12247	
			tCK(AVG)	(Optio	nal) ^{5,12}	Kese	ervea	ns	1,2,3,4 ,7	
	CL = 14	CL = 16	tCK(AVG)	1.071	<1.25	1.071	<1.25	ns	1,2,3,7	
	CL = 14	CL = TBD	tCK(AVG)	Rese	rved	Reserved		ns	1,2,3,4	
CWL = 11,14	CL = 15	CL = TBD	tCK(AVG)	0.938	<1.071	Reserved		ns	1,2,3,4	
	CL = 16	CL = TBD	tCK(AVG)	0.938	<1.071	0.938	<1.071	ns	1,2,3	
Supported CL Settings				(9),(11),12,(1	13),14,15, 16	10,12	,14,16	nCK	13,14	
Supported CL Settings with read DBI				TB	BD	Т	3D	nCK		
Supported CWL Settings				9,10,11	1,12,14	9,10,1	1,12,14	nCK		

8GB - 288-Pin 2Rx8 Unbuffered Non-ECC DDR4 DIMM

Speed Bin Table Notes:

Absolute Specification

- -VDDQ = VDD = 1.20V + / -0.06 V
- VPP = 2.5V +0.25/-0.125 V
- The values defined with above-mentioned table are DLL ON case.
- DDR4-1600, 1866, 2133 and 2400 Speed Bin Tables are valid only when Geardown Mode is disabled.
- 1. The CL setting and CWL setting result in tCK(avg).MIN and tCK(avg).MAX requirements. When making a selection of tCK(avg), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
- 2. tCK(avg).MIN limits: Since CAS Latency is not purely analog data and strobe output are synchronized by the DLL all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(avg) value (1.5, 1.25, 1.071, 0.938 or 0.833 ns) when calculating CL [nCK] = tAA [ns] / tCK(avg) [ns], rounding up to the next 'Supported CL', where tAA = 12.5ns and tCK(avg) = 1.3 ns should only be used for CL = 10 calculation.
- 3. tCK(avg).MAX limits: Calculate tCK(avg) = tAA.MAX / CL SELECTED and round the resulting tCK(avg) down to the next valid speed bin (i.e. 1.5ns or 1.25ns or 1.071 ns or 0.938 ns or 0.833 ns). This result is tCK(avg). MAX corresponding to CL SELECTED.
- 4. 'Reserved' settings are not allowed. User must program a different value.
- 5. 'Optional' settings allow certain devices in the industry to support this setting however it is not a mandatory feature. Refer to supplier's data sheet and/or the DIMM SPD information if and how this setting is supported.
- 6. Any DDR4-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- 7. Any DDR4-2133 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- 8. Any DDR4-2400 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization.
- 9. Reserved for DDR4-2666 speed bin.
- 10. Reserved for DDR4-3200 speed bin.
- 11. DDR4-1600 AC timing apply if DRAM operates at lower than 1600 MT/s data rate.
- 12 .For devices supporting optional down binning to CL=9, CL=11 and CL=13, tAA/tRCD/tRPmin must be 13.5ns or lower. SPD settings must be programmed to match. For example, DDR4-1600K devices supporting down binning to 1333MT/s should program 13.5ns in SPD bytes for tAAmin(Byte 24), tRCDmin (Byte 25), and tRPmin (Byte 26). DDR4-1866M devices supporting down binning to 1333MT/s or DDR4-1600K should program 13.5ns in SPD bytes for tAAmin (Byte 24), tRCDmin (Byte 25), and tRPmin (Byte 26).DDR4-2133P devices supporting down binning to 1333MT/s or DDR4-1600K or DDR4-1866M should program 13.5ns in SPD bytes for tAAmin (Byte 24), tRCDmin (Byte 25), and tRPmin (Byte 26).tRCmin (Byte 27, 29) also should be programmed accordingly. For example, 48.5ns (tRASmin + tRPmin = 35ns+13.5ns) is set to supporting optional down binning CL=9 and CL=11.
- 13. CL number in parentheses, it means that these numbers are optional.
- 14. DDR4 SDRAM supports CL=9 as long as a system meets tAA(min).

8GB - 288-Pin 2Rx8 Unbuffered Non-ECC DDR4 DIMM

Pin Configuration

Front Side					Back Side										
1	12V,NC	37	V _{SS}	73	V_{DD}	109	V _{SS}	145	12V,NC	181	DQ29	217	V_{DD}	253	DQ41
2	V _{SS}	38	DQ24	74	CK0 t	110	DM5_n, DBI5_n	146	V _{REECA}	182	V _{SS}	218	CK1 t	254	V _{SS}
3	DQ4	39	V _{SS}	75	CK0 c	111	NC	147	V _{SS}	183	DQ25	219	CK1 c	255	DQS5 c
4	V _{SS}	40	DM3_n, DBI3_n	76	V _{DD}	112	V _{SS}	148	DQ5	184	V _{SS}	220	V _{DD}	256	DQS5 t
5	DQ0	41	NC	77	V _{TT}	113	DQ46	149	V _{SS}	185	DQS3 c	221	V _{TT}	257	V _{SS}
6	V _{SS}	42	V _{SS}	78	EVENT n	114	V _{SS}	150	DQ1	186	DQS3 t	222	PARITY	258	DQ47
7	DM0_n, DBI0_n	43	DQ30	79	A0	115	DQ42	151	V _{SS}	187	V _{SS}	223	V_{DD}	259	V _{SS}
8	NC	44	V _{SS}	80	V_{DD}	116	V _{SS}	152	DQS0_t	188	DQ31	224	BA1	260	DQ43
9	V _{SS}	45	DQ26	81	BA0	117	DQ52	153	DQS0_c	189	V _{SS}	225	A10 / AP	261	V _{SS}
10	DQ6	46	V _{SS}	82	RAS_n / A16	118	V _{SS}	154	V _{SS}	190	DQ27	226	V_{DD}	262	DQ53
11	V _{SS}	47	CB4,NC	83	V_{DD}	119	DQ48	155	DQ7	191	V _{SS}	227	RFU	263	V _{SS}
12	DQ2	48	V _{SS}	84	CS0_n	120	V _{SS}	156	V _{SS}	192	CB5,NC	228	WE_n / A14	264	DQ49
13	V_{SS}	49	CB0,NC	85	V_{DD}	121	DM6_n, DBI6_n	157	DQ3	193	V _{SS}	229	V_{DD}	265	V_{SS}
14	DQ12	50	V _{SS}	86	CAS_n / A15	122	NC	158	V _{SS}	194	CB1,NC	230	SAVE_n,NC	266	DQS6_c
15	V_{SS}	51	NC	87	ODT0	123	V _{SS}	159	DQ13	195	V _{SS}	231	V_{DD}	267	DQS6_t
16	DQ8	52	NC	88	V_{DD}	124	DQ54	160	V _{SS}	196	DQS8_c	232	A13	268	V_{SS}
17	V_{SS}	53	V _{SS}	89	CS1_n	125	V _{SS}	161	DQ9	197	DQS8_t	233	V _{DD}	269	DQ55
18	DM1_n, DBI1_n	54	CB6,NC	90	V_{DD}	126	DQ50	162	V _{SS}	198	V _{SS}	234	A17, NC	270	V_{SS}
19	NC	55	V _{SS}	91	ODT1	127	V _{SS}	163	DQS1_c	199	CB7,NC	235	C2,NC	271	DQ51
20	V_{SS}	56	CB2,NC	92	V _{DD}	128	DQ60	164	DQS1_t	200	V _{SS}	236	V _{DD}	272	V _{SS}
21	DQ14	57	V _{SS}	93	CS2_n,C0,NC	129	V _{SS}	165	V _{SS}	201	CB3,NC	237	CS3_n,C1,NC	273	DQ61
22	V _{SS}	58	RESET_n	94	V _{SS}	130	DQ56	166	DQ15	202	V _{SS}	238	SA2	274	V _{SS}
23	DQ10	59	V_{DD}	95	DQ36	131	V _{SS}	167	V _{SS}	203	CKE1	239	V _{SS}	275	DQ57
24	V _{SS}	60	CKE0	96	V _{SS}	132	DM7_n, DBI7_n	168	DQ11	204	V _{DD}	240	DQ37	276	V_{SS}
25	DQ20	61	V_{DD}	97	DQ32	133	NC	169	V _{SS}	205	RFU	241	V _{SS}	277	DQS7_c
26	V_{SS}	62	ACT_n	98	V _{SS}	134	V _{SS}	170	DQ21	206	V_{DD}	242	DQ33	278	DQS7_t
27	DQ16	63	BG0	99	DM4_n, DBI4_n	135	DQ62	171	V _{SS}	207	BG1	243	V _{SS}	279	V_{SS}
28	V _{SS}	64	V_{DD}	100	NC	136	V _{SS}	172	DQ17	208	ALERT_n	244	DQS4_c	280	DQ63
29	DM2_n, DBI2_n	65	A12 / BC_n	101	V _{SS}	137	DQ58	173	V _{SS}	209	V _{DD}	245	DQS4_t	281	V_{SS}
30	NC	66	A9	102	DQ38	138	V _{SS}	174	DQS2_c	210	A11	246	V _{SS}	282	DQ59
31	V_{SS}	67	V_{DD}	103	V _{SS}	139	SA0	175	DQS2_t	211	A7	247	DQ39	283	V _{SS}
32	DQ22	68	A8	104	DQ34	140	SA1	176	V _{SS}	212	V_{DD}	248	V _{SS}	284	V_{DDSPD}
33	V_{SS}	69	A6	105	V _{SS}	141	SCL	177	DQ23	213	A5	249	DQ35	285	SDA
34	DQ18	70	V _{DD}	106	DQ44	142	V_{PP}	178	V _{SS}	214	A4	250	V _{SS}	286	V_{PP}
35	V _{SS}	71	A3	107	V _{SS}	143	V _{PP}	179	DQ19	215	V _{DD}	251	DQ45	287	V_{PP}
36	DQ28	72	A1	108	DQ40	144	RFU	180	V _{SS}	216	A2	252	V_{SS}	288	V_{PP}

8GB - 288-Pin 2Rx8 Unbuffered Non-ECC DDR4 DIMM

PIN DESCRIPTION

Name	Function							
CB[7:0] *	Data Check Bits							
DQ[63:0]	Data Bits							
DM[7:0]_n, DBI[7:0]_n	Input Data Mask and Data Bus Inversion							
DQS[7:0]_t, DQS[7:0]_c	Differential Data Strobes							
CK_t[1:0], CK_c[1:0]	Differential Clock Inputs							
CKE[1:0]	Clock Enables							
CAS_n / A15	Multiplexed: Column Address Strobe or Address 15							
RAS_n / A16	Multiplexed: Row Address Strobe or Address 16							
CS[1:0]_n, CS[3:2]_n*	Chip Selects							
ACT_n	Activate Command Input							
WE_n / A14	Multiplexed: Write Enable or Address 14							
C[2:0]*	Chip ID Inputs							
A[17:0]	Address Inputs							
BA[1:0]	Bank Address select Inputs							
BG[1:0]	Bank Group select Inputs							
ODT[1:0]	On Die Termination Inputs							
SA[2:0]	SPD Address							
SCL	SPD Clock Input							
SDA	SPD Data Input/Output							
EVENT_n	Temperature Sensing							
RESET_n	Reset for register and DRAMs							
PARITY	Parity bit input for Addr/Ctrl							
ALERT_n	CRC Error Flag or CMD/Addr Parity Flag Output							
A12 / BC_n	Combination Input: Address12/Burst Chop							
A10 / AP	Combination Input: Addr10/Auto-precharge							
12V*	Optional Power Supply*							
V_{PP}	Charge Pump Power							
V_{SS}	Ground							
V_{DD}	Power							
V_{DDSPD}	SPD EEPROM Power							
V _{REFCA}	Reference Voltage for CA							
V _{TT}	Termination Voltage							
NC	No Connection							
RFU	Reserved for Future Use							

^{*} Not used

8GB - 288-Pin 2Rx8 Unbuffered Non-ECC DDR4 DIMM

Notes:

- 1. Tolerances on all dimensions except where otherwise indicated are \pm .13. Reference JEDEC standard MO-309C.
- 2. All dimensions are expressed: millimeters [inches]

Functional Diagram (Rank 0)

Notes:

- 1: Unless otherwise noted, resistor values are $15\Omega \pm 5\%$.
- 2: ZQ resistors are $240\Omega \pm 1\%$. For all other resistor values refer to the appropriate wiring diagram.

8GB - 288-Pin 2Rx8 Unbuffered Non-ECC DDR4 DIMM

Functional Diagram (Rank 1)

Notes:

- 1: Unless otherwise noted, resistor values are $15\Omega \pm 5\%$.
- 2: ZQ resistors are $240\Omega \pm 1\%$. For all other resistor values refer to the appropriate wiring diagram.
- 3: For Rank 1 the DQ resistors are shown for simplicity but are the same physical components as shown on Rank 0.
- 4: EVENT_n is wired on this design. A standalone SPD may be used as well. No wiring changes are required.

8GB - 288-Pin 2Rx8 Unbuffered Non-ECC DDR4 DIMM

DATARAM CORPORATION, USA Corporate Headquarters, P.O. Box 7528, Princeton, NJ 08543-7528; Voice: 609-799-0071, Fax: 609-799-6734; www.dataram.com

All rights reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Dataram assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Dataram.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Dataram.