

微分オペレータ

• 空間フィルタで微分を実現

(教科書p.49)

・ 微分フィルタ (横方向)

$$f'(x) = f(x+1) - f(x)$$
 $\Delta x = 1$

$$\Delta x = 1$$

または
$$f'(x) = f(x) - f(x-1)$$

0	0	0
0	-1]
0	O	O

0	0	O
-1]	O
0	0	0

問題点:注目画素に対して対称でない

微分オペレータ

• そこで対称な微分フィルタとして

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$
 $\Delta x = 2$

0	0	0
0	-1	1
0	0	0

0	0	0
-1	1	0
0	0	0

注目画素に対して対称でない

0	0	O
-1	0	1
0	0	0

これをよく使う (正確には1/2倍)

微分フィルタ (横) の例

入力画像

出力画像

・ 微分フィルタ (縦方向)

(教科書p.50)

$$f'(y) = f(y+1) - f(y)$$

0	0	0
0	-1	0
0	1	0

0	-]	0
0]	0
0	0	0

O	-]	0
O	0	0
0	1	0

注目画素に対して対称でない

これをよく使う