Fundamentals of Artificial Intelligence Exercise 3: Constraint Satisfaction Problems

Sebastian Mair

Technical University of Munich

November 17th, 2023

Recap: Constraint Satisfaction Problems (CSP)

CSP tuple (X, D, C)

- $X = \{X_1, \dots, X_n\}$ is a set of variables
- $D = \{D_1, \dots, D_n\}$ is a set of domains, where each domain D_i is the set of allowable values $\{v_1, \dots, v_k\}$ for variable X_i
- $C = \{C_1, \dots, C_m\}$ is a set of constraints (can be unary, binary or higher-order (n-ary))

Goal: Assign a value to each variable such that all constraints are satisfied

Recap: Backtracking Search

```
function Recursive-Backtracking (assignment, csp) returns sol./failure
if assignment is complete then return assignment
var \leftarrow Select-Unassigned-Variable(csp)
for each value in Order-Domain-Values(var, assignment, csp) do
   if value is consistent with assignment given Constraints[csp] then
       add \{var = value\} to assignment
       inferences \leftarrow Inference(csp.var.value)
       if inferences \neq failure then
           add inferences to assignment
           result \leftarrow Recursive-Backtracking(assignment.csp)
           if result \neq failure then return result
           remove inferences from assignment
       remove \{var = value\} from assignment
return failure
```

Important heuristics:

- Variable Selection
- Value Selection
- Inference

Recap: Variable Selection and Value Selection Heuristics

Variable Selection

- Minium Remaining Values (MRV): choose variable with the fewest possible values first
- **Degree heuristics**: choose variable that is involved in the largest number of constraints on other unassigned variables (highest degree)

Value Selection

• Least Constraining Value: choose value that rules out the fewest choices for neighboring values in the constraint graph

Recap: Inference in CSP

Inference techniques

- Forward checking (after each assignment): inconsistent values of neighboring variables are removed.
- Arc consistency algorithm (after each assignment or as pre-processing): inconsistent values of all variables are removed.

Arc consistency of a variable

 X_i is arc-consistent with X_j , if for every value in the domain D_i there exists a value in D_j satisfying the binary constraint of the arc (X_i, X_j) .

Example: Constraint: $Y = X^2$, Domains $D_X = \{0, 1, 2, 3\}$ and $D_Y = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 \rightarrow Question: (X, Y_i) and/or (Y, X) arc-consistent?

Tweedback code: znnk (twbk.de/znnk)

Arc Consistency Algorithm

```
function AC-3 (csp, queue) returns failure or the reduced csp otherwise
inputs: csp: a binary CSP, queue: a queue of arcs (X_i, X_i)
while queue is not empty do
   (X_i, X_i) \leftarrow \text{Remove-First}(queue)
   if Remove-Inconsistent-Values(X_i, X_i) then
       if size of Domain(X_i) = 0 then return failure
       for each X_k in Neighbors [X_i] \setminus \{X_i\} do
          add (X_k, X_i) to queue
return csp
```

function Remove-Inconsistent-Values (X_i, X_i) **returns** true iff succeeds

```
removed ← false
for each x in Domain [X_i] do
   if no value y in Domain[X_i] allows (x,y) to satisfy the constraint of (X_i,X_i)
       then delete x from Domain[X_i]; removed \leftarrow true
return removed
```

Problem 3.1: Turning n-ary constraints into binary constraints

Suppose that we have
$$CSP = (X, D, E^1)$$
 with
$$X = \{A, B, C\},$$

$$D = \{\mathsf{dom}(A), \mathsf{dom}(B), \mathsf{dom}(C)\},$$

 $E = \{\langle (A, B, C), A + B = C \rangle\},\$

where each domain can be $\{0, 1, \dots, 9\}$ for example.

¹the symbol E is taken from German word Einschränkung.

Draw the constraint hypergraph for the CSP. Based on the number of variables involved, what is the type of the constraint?

$$X = \{A, B, C\},\$$

$$D = \{dom(A), dom(B), dom(C)\},\$$

$$E = \{\langle (A, B, C), A + B = C \rangle\},\$$

We can eliminate the higher-order constraint in E by replacing the constraint node \square with a new variable node Z. What is the domain for variable Z? What is the new constraint set E' after introducing the new variable Z?

$$X = \{A, B, C\},$$

$$D = \{dom(A), dom(B), dom(C)\},$$

$$E = \{\langle (A, B, C), A + B = C \rangle\},$$

$$dom(\xi) = \langle \xi_1, \xi_2, \xi_3 \rangle \quad Z_1 = dom(A) \quad (A) \quad (B) \quad (B) \quad (B) \quad (C) = dom(C)$$

$$E = \langle (\xi_1, K), \xi_1 = K \rangle \quad (C_{22}, B), \quad (C_{23}, C), \quad (C_{23}, C), \quad (C_{23}, C) \quad (C_{23}, C), \quad (C_{23}, C), \quad (C_{23}, C) \quad (C_{23}, C), \quad (C_{23}$$

 $X = \{A, B, C\},\$

Modify CSP' such that it only contains binary constraints and formally express the new CSP'' = (X'', D'', E'').

$$CSP'' = (X'', D'', E'').$$

$$X = \{A, B, C\},$$

$$D = \{dom(A), dom(B), dom(C)\},$$

$$E = \{((A, B, C), A + B = C)\},$$

$$CSP'' = (X'', D'', E'').$$

$$CSP'' = (X'', D'',$$

Taking inspiration from previous solutions, how can you generally turn a *n*-ary constraint into binary constraints?

11 / 23

Consider the constraint satisfaction problem in the figure below.

 \rightarrow only binary constraints.

Problem 3.2.1: Sort variables by domain size and by degree

Problem 3.2.2: Perform Backtracking Search by Hand

Variable selection:

Variable to expand next: apply minimum-remaining-values (MRV) heuristic; if there is a tie, use degree heuristics; if there is a tie again, choose the variable with the lower index.

Value selection:

Value to assign next: use least-constraining-value heuristics; if there is a tie, choose number 3; if this is not possible choose the lowest value.

Inference:

After each assignment: perform forward checking as inference. Backtrack if you find an inconsistency.

Problem 3.2.2: Perform Backtracking Search by Hand

			degree					backtrack to				
step	assign	v_1	V 2	V 3	<i>V</i> ₄	<i>V</i> ₅	v_1	V 2	V 3	<i>V</i> 4	V 5	
2	/	234	234	234	234	234	3	2	4	2	3	_
1	V3 /2	xe 3 24	24		24	24	2	1	_	(2	
2	(V) :"	dex /	Ø					•		_		2
5	V1=4	/	ϕ									
(1037=	2 34	34	/	34	34	2	ι	_	ı	۷	
2	√ ‡ =	3 /	4		34	4	_	0	_	ر {2, 3, 4		$\gamma_1 \neq \nu_5$
3	V5= tie	4 /	4	/	>		_	- <i>O</i> _{v2}	$= v_1 +$	0		$\neq v_3$ $v_3 \neq v_5$ $v_4 \neq v_5$
		ightarrow Degree $-$		4	1/2 = 4						\	
Value: least constr. value $\rightarrow 3 \rightarrow$ lowest value Inference: forward checking												
		_		্	5 V4 = 3					4} ^{v2}	≠ v ₃ ∫	$\{2,3,4\}$ $v_3 \neq v_4$ $\{2,3,4\}$
I weedba	ack code	e: znnk (twł	ok.de/znnkj)					12, 3,	41	ι	2,5,7,

Problem 3.2.3: Perform Backtracking Search by Hand

Variable selection:

Variable to expand next: apply minimum-remaining-values (MRV) heuristic; if there is a tie, use degree heuristics; if there is a tie again, choose the variable with the lower index.

Value selection:

Value to assign next: use least-constraining-value heuristics; if there is a tie, choose number 3; if this is not possible choose the lowest value.

Inference:

After each assignment: perform arc consistency algorithm. Backtrack if you find an inconsistency.

Problem 3.2.3: Perform Backtracking Search by Hand

		curre	nt domains	;			d	egree	<u>:</u>		backtrack to
step assign	v_1	V 2	V 3	V4	V 5	v_1	v ₂	<i>V</i> ₃	<i>V</i> 4	<i>V</i> ₅	
0 /	234	234	234	234	2341	}	2	4	2	3	
1 /3=3	24	24	/	24	2 4	2	ι	_	1	2	
1 N3=5	3	4	/	3	4	2	1	_		1 2	(
2 V,->	/	4		3	4	-	D	_		1 1	
3 V4=3		4			4	_	- 0			- 0	
4 Vz=4					$ \leftarrow $	_		_	_	- ō) L ≠ v ₅
5 VT=4				,			_	<u> </u>	[2, 3, <u>4</u>		
							<i>v</i> ₂ :	= v ₁ +	1	\r_ ≠	$v_3 \neq v_5$ $v_4 \neq v_5$
Variable: MRV	ightarrow Degree $ ightarrow$	lower index							<	_ '	

Value: least constr. value \rightarrow 3 \rightarrow lowest value

Inference: arc consistency algorithm

{2, 3, 4}

Problem 3.2.3: Perform Backtracking Search by Hand (AC-3)

Problem 3.2.3: Perform Backtracking Search by Hand (AC-3)

Problem 3.2.3: Perform Backtracking Search by Hand (AC-3)

Consider the constraint satisfaction problem at its initial state. Is the CSP arc consistent? Is this a convenient initial condition if we plan to apply backtracking search? Describe the domains after the arc consistency algorithm has been applied to the CSP as a preprocessing step.

Tweedback code: znnk (twbk.de/znnk)

New, arc-consistent CSP:

Problem 3.2.5: Backtracking Search after Preprocessing

Variable selection:

Variable to expand next: apply minimum-remaining-values (MRV) heuristic; if there is a tie, use degree heuristics; if there is a tie again, choose on randomly.

Value selection:

Value to assign next: use least-constraining-value heuristics; if there is a tie, choose choose one randomly.

Inference:

After each assignment: perform arc consistency algorithm. Backtrack if you find an inconsistency.

Assume the data structure of the queue is a set, i.e., if we add an element to the queue which is already in the queue, the element will not be added a second time (each element is unique).

Problem 3.2.5: Backtracking Search after Preprocessing

			1	(degree	backtrack to						
step	assign	v_1	V 2	<i>V</i> ₃	<i>V</i> 4	<i>V</i> ₅	v_1	V 2	V 3	<i>V</i> 4	V 5	
0	\	23	34	234	234	234	3	2	4	2	3	

Variable: MRV → Degree → randomly Value: least constr. value → randomly Inference: arc consistency algorithm Tweedback code: znnk (twbk.de/znnk)

 $v_{2} = v_{1} + 1$ $v_{1} \neq v_{3}$ $v_{3} \neq v_{5}$ $v_{3} \neq v_{5}$ $v_{4} \neq v_{5}$ $v_{3} \neq v_{5}$ $v_{4} \neq v_{5}$ $v_{3} \neq v_{4}$ $v_{4} \neq v_{5}$ $v_{2} \neq v_{3}$ $v_{3} \neq v_{4}$ $v_{3} \neq v_{4}$ $v_{4} \neq v_{5}$ $v_{5} \neq v_{5}$

Problem 3.2.5: Backtracking Search after Preprocessing (AC-3)

Arc Queue Domain Change	
(N21N1) (N3/N2) (N3/N3) (N4/N3) (N4/N3) N3=34	
$(V_L)^{(l)}$	
$\begin{pmatrix} \Lambda^{2} & \Lambda^{1} \\ (\Lambda^{2} & \Lambda_{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{4} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda_{1} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} & \Lambda^{2} \end{pmatrix} = \begin{pmatrix} \Lambda^{3} & \Lambda^{2} \\ (\Lambda^{2} &$	
(V), (V2) (V4, (V3)) V3=4	
(1242)	
(64, 61/	
$\{2,3\}$ $v_1 \neq v_5$ $v_2 \neq v_3$	{2, 3, 4}
$v_2 = v_1 + 1$ v_3 $v_3 \neq v_3$ $v_3 \neq v_4$	V5
To continue to control (both) do (control	

Tweedback code: znnk (twbk.de/znnk)

For each of the previous performances of backtracking search with a different inference compare the number of iterations and the number of times you needed to backtrack.

Forward checking (3.2.2):

Arc Consistency Algorithm (3.2.3):

Arc Consistency Algorithm after preprocessing (3.2.5):