西安交通大学 软件学院

操作系统原理

Operating System Principle

田丽华

8-4 分页

paging

- 01 还有别的办法能解决外碎片吗?
 - 02 动态分区产生外碎片的原因是什么?

- > 这是因为这种分配要求把作业必须安置在一连续存储区内的缘故。
- > 如果允许物理地址空间非连续,是否可以解决?
- 分页存储管理是解决存储碎片的一种方法,要避开连续性要求,允许进程的物理地址空间不连续。

01

physical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available. (进程的物理地址空间可以是不连续的,如果有可用的物理内存,它将分给进程。)

 $\left(02\right)$

Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 8192 bytes).

(把物理内存分成大小固定的块。)

 $\left(03\right)$

Divide logical memory into blocks of same size called pages. (把逻辑内存也分为固定大小的块,叫做页。)

paging

06

04) Keep track of all free frames. (保留所有空闲帧的记录。)

To run a program of size n pages, need to find *n* free frames and load program. (运行一个有N页大小的程序,需要找到N个空的页框读入程序。)

Set up a page table to translate logical to physical addresses. (建立一个页表,把逻辑地址转换为物理地址。)

07 Internal fragmentation. (内碎片。)

Paging Example

Address Translation Scheme

Address Translation Scheme

Address generated by CPU is divided into (CPU产生的地址被分为):

- 1. Page number (p) (页号)—used as an index into a page table which contains base address of each page in physical memory. (它包含每个页在物理内存中的基址,用来作为页表的索引。)
- 2. Page offset (d) (偏移) combined with base address to define the physical memory address that is sent to the memory unit. (同基址相结合,用来确定送入内存设备的物理内存地址。)

Address Translation Scheme

Address Translation Scheme

Address generated by CPU is divided into (CPU产生的地址被分为):

3. For given logical address space (2^m) and page size (2^n)

page number	page offset
p	d
m-n	$\binom{n}{}$

Address Translation Architecture

纯分页的特点

特点

没有外碎片,每个内碎片不超过页大小。

特点 1

> 特点 2

一个程序不必连续存放。

程序全部装入内存。

特点 3