Amplicaión de Cañales y Cistomas

Universidad Rey Juan Carlos	Examen fir	nal: Parte I	
Apellidos			
Nombre			
Fitulación (marque con un c Tecnologías -	rírculo lo que corresponda): Telemática - Sistemas -	Doble Sistemas+ADE -	Doble Teleco+Aero
	los sin faltas de ortografía (inclu nde sobre el enunciado. Si es est		
E jercicio 1 [1.50 puntos]			
de ellos (SLI-A) tiene un y el segundo de ellos (SL	a $x[n]=2\cos(\pi n/2)$ y considered respuesta al impulso es $h_A[n]=I-B$) tiene una respuesta al impulso es $h_A[n]=I-B$	= $(1/2)^n \cdot u[n]$, donde u[n] es pulso h _B [n]= $\delta[n]$ + $\delta[n-1]$ +	el escalón unitario discreto,
(a) Calcule cuál es la sali	ida del SLI-A cuando la entra	da es x[n]. [0.50 puntos]	
(b) Calcule cuál es la sali	da del SLI-B cuando la entra	da es x[n]. [0.50 puntos]	
	sistemas se conectan en casca lida tras aplicar ambos sistem		
	1		

Ejercicio 2 [2.0 puntos]

(a) Indique, sin utilizar la fórmula del DSF inverso si se puede decir si la señal x[n] es par	. Justifique de la
forma más concisa su respuesta. [0.25 puntos]	

Sí / No

(b) Indique, sin utilizar la fórmula del DSF inverso para calcular primero x[n], si puede saber el valor de la señal x[n] en n=10. Justifique su respuesta y, si se puede, indique cuál es ese valor. [0.50 puntos]

Sí / No

(c) Calcule la energía y la potencia de la señal x[n]. [0.75 puntos]

 $E_{xx} =$

 $P_{xx}=$

(d) Calcule la energía y la potencia de la señal y[n], que se define como y[n]=x[n]+2. [0.50 puntos]

 $E_{yy} =$

 $P_{yy}=$

Ejercicio 3 [1.50 puntos]

Suponga que x(t) es una señal cuya TF es $X(j\omega) = u(\omega + 2\pi 10^3) - u(\omega - 2\pi 10^3)$, donde $u(\omega)$ es el escalón unitario continuo. A partir de la señal x(t) se definen las siguientes señales discretas: $x[n] = x(T \cdot n) - v[n] = x[n] \cdot x[n]$

(a) Dibuje el espectro de la señal x[n]. Indique el valor del espectro en 1.75π rads si T= $0.25 \cdot 10^{-3}$. [0.75 puntos]

(b) Dibuje el espectro de la señal x[n]. Indique qué condición tiene que cumplir T para que la señal v[n] sea una versión muestreada de la señal $v(t) = x(t) \cdot x(t)$. No se preocupe si existe un factor de atenuación o ampliación en la amplitud, el objetivo es que v[n] preserve la forma de v(t). [0.75 puntos]

Ampliación de Señales y Sistemas Examen final: Parte II

Apellidos	
•	
Nombre	
Nombre	

Titulación (marque con un círculo lo que corresponda):

Tecnologías - Telemática - Sistemas - Doble Sistemas+ADE - Doble Teleco+Aero

Ejercicio 4 [2.0 puntos]

Considere x(t) una señal de voz de 0.5 segundos de duración. x(t) se muestrea a 1 KHz y se obtiene una señal discreta x[n]. La siguiente gráfica muestra las primeras 256 muestras de la señal x[n].

Para estudiar la aparente periodicidad que se aprecia nos llevamos la señal al dominio de la frecuencia vía DFT. Calculamos la DFT de 256 puntos de x[n] y obtenemos una señal X[k] cuyo módulo se representa a continuación para k = 0,1, ..., 255:

(a) Determine la(s) frecuencia(s) en Hz correspondientes a los valores de máxima amplitud de |X[k]|. (Nota: en la gráfica se resalta el valor de |X[k]| en k=141 con el único propósito de ayudar a identificar mejor los valores de k). [1.0 punto]

⁻Esta parte del examen no se responde sobre el enunciado, sino que se responde en un cuadernillo separado. No obstante, deberá entregar tanto el enunciado <u>con su nombre</u> como el cuadernillo.

⁻Si para responder a la Parte I utiliza un cuadernillo, asegúrese de que usa un cuadernillo diferente para responder a la Parte II. Cuando entregue el examen, entregue por un lado la Parte I y por otro la Parte II (no las mezcle).

⁻Escriba su nombre y apellidos sin faltas de ortografía (incluidos acentos), no hacerlo supondrá suspender el examen.

- Examen: 27/01/2021
- (b) Observe |X[k]|. Sin hacer ningún cálculo, ¿qué información nos está dando sobre la señal x[n]? [0.25 puntos]
- (c) La |X[k]| mostrada representa una estimación no muy buena del espectro de la señal de voz x(t) original.
 - (**c.1**) ¿Por qué? [0.50 puntos].
 - (c.2) ¿Qué haría para mejorar la estimación? No es necesario que lo haga, sólo que lo indique. [0.25 puntos]

Ejercicio 5 [2.0 puntos]

Un sistema LTI discreto causal está caracterizado por la siguiente función de transferencia:

$$H(z) = \frac{2(z - e^{j\pi/4})(z - e^{-j\pi/4})}{z(z - Ae^{j\pi/4})(z - Ae^{-j\pi/4})}$$

- (a) Represente el diagrama de ceros y polos considerando A un valor real y mayor que 0. [0.50 puntos]
- (b) Obtenga H(z) como un cociente de polinomios en z^{-1} . [0.50 puntos]
- (c) Determine para qué valores de A el sistema es estable. ¿Tiene representación en forma de Transformada de Fourier? Justifique su respuesta. [0.50 puntos]
- (d) Obtenga en función de A la ecuación en diferencias que caracteriza al sistema con función de transferencia H(z). [0.50 puntos]

Ejercicio 6 [1.0 punto]

Considere un sistema con la siguiente función de transferencia: $H(z)=1-z^{-1}$

Indique y justifique:

- (a) Si el sistema es un filtro FIR o de un filtro IIR. [0.25 puntos]
- **(b)** Si el sistema es causal o no-causal. [0.25 puntos]
- (c) Si el sistema es estable o inestable. [0.25 puntos]
- (d) Si el sistema es de fase lineal o de fase no lineal. [0.25 puntos]