Modelling of the environmental impact on professional cyclists and people in buildings

Jimmy Mousel

Supervisors : Zohra Djatouti, Christophe Prud'homme

M1 CSMI - University of Strasbourg

24 August 2021

Table of Contents

- Introduction
- Project Management
- 3 Pulse Parameters Description
- Model Set Up
- Groupama
- **6** IBAT

Table of Contents

- Introduction
- Project Management
- Pulse Parameters Description
- 4 Model Set Up
- Groupama
- IBAT

General Context

Environment

- all that surround us
 - \rightarrow climatic conditions
- constantly exposed to environmental impact: either indoors or outdoors
 - \rightarrow influences our comfort & sports performance
- wide range of possibilities to make measurements
- processing the data obtained using the Pulse software

 $\begin{tabular}{ll} \textbf{Source:} \\ \textbf{weeklyvoice.com/canada-is-warming-faster-than-the-rest-of-the-world/} \\ \end{tabular}$

Groupama-FDJ

Source: groupama.com

- Project follow-up
- Study environmental impact on cyclists
- More accurate simulations

CEMOSIS

- IBAT project [1]
- \rightarrow energy performance of the building
- \rightarrow quality of life of its occupants
 - Analyse environmental effect on people in working offices

Source: cemosis.fr/

Table of Contents

- Introduction
- Project Management
- Pulse Parameters Description
- 4 Model Set Up
- Groupama
- 6 IBAT

Road Map

• Issues: subdivide work into tasks

Road Map

Issues: subdivide work into tasks

- Milestones: sub-objectives
 - ightarrow End of internship (EOI)
 - \rightarrow Final defense (FD)

Road Map

 Issues: subdivide work into tasks

- Milestones: sub-objectives
 - → End of internship (EOI)
 - → Final defense (FD)

• Project:
Pulse
Environment

Gantt Chart

Table of Contents

- Introduction
- Project Management
- Opening Pulse Parameters Description
- 4 Model Set Up
- Groupama
- IBAT

Definition & Description

Atmospheric pressure is the force applied on a surface by the air above it as gravity pulls it to the earth. [...]

With increasing altitude, the atmospheric pressure decreases. This leads to a reduction in the amount of oxygen available. [...] [3]

Definition & Description

Atmospheric pressure is the force applied on a surface by the air above it as gravity pulls it to the earth. [...]

With increasing altitude, the atmospheric pressure decreases. This leads to a reduction in the amount of oxygen available. [...] [3]

Formula (if there is any)

$$P = 760 \cdot \exp(-0.00012 \cdot h)$$
 [4]

where P: atmospheric pressure (mmHg) and h: height over sea level (m)

Implementation

```
"AtmosphericPressure": {
    "ScalarPressure": {
    "Value": 760.0,
    "Unit": "mmHg"
}
```

Listing 1: Atmospheric pressure in Pulse JSON file

Implementation

```
"AtmosphericPressure": {
    "ScalarPressure": {
    "Value": 760.0,
    "Unit": "mmHg"
}
```

Listing 2: Atmospheric pressure in Pulse JSON file

Reference values

Value	Description		
Measured at 15°C and 0% humidity [5]			
760 mmHg	Standard sea-level pressure		
675 mmHg	1000m altitude		
600 mmHg	2000m altitude		

Table: Reference Values example for Pulse Parameters

List of parameters

Parameter	Unit
Air Velocity	m/s
Ambient Temperature	°C
Clothing Resistance	clo
Emissivity	/
Mean Radiant Temperature	°C
Relative Humidity	/
Respiration Ambient Temperature	°C
Ambient Gas	/

Table: Pulse Environment Parameters

Table of Contents

- Introduction
- Project Management
- Pulse Parameters Description
- Model Set Up
- Groupama
- 6 IBAT

Patient File

```
"Name": "StandardFemale".
      "Sex": "Female",
      "Age": {
         "ScalarTime": {
           "Value": 44.0,
           "Unit": "yr"
       "Weight": {
         "ScalarMass": {
11
           "Value": 130.0.
12
           "Unit": "1b"
13
        } ...
14
15
```

Listing 3: Beginning of StandardFemale.json

- describes the patient's physical characteristics
- standard female/male (IBAT) + high performance cyclist (Groupama)

Patient File

```
"Name": "StandardFemale".
      "Sex": "Female",
      "Age": {
         "ScalarTime": {
           "Value": 44.0,
           "Unit": "yr"
       "Weight": {
         "ScalarMass": {
11
           "Value": 130.0.
           "Unit": "1b"
13
        } ...
14
15
```

Listing 4: Beginning of StandardFemale.json

- describes the patient's physical characteristics
- standard female/male (IBAT) + high performance cyclist (Groupama)

Parameters				
Age	DiastolicArterialPressureBaseline			
Weight	HeartRateBaseline			
Height	RespirationRateBaseline			
BodyFatFraction	SystolicArterialPressureBaseline			

Table: Patient File Parameters

Environment & Scenario File

Environment File

- contains previously described parameters
- different files provided by Pulse with same structure

Environment & Scenario File

Environment File

- contains previously described parameters
- different files provided by Pulse with same structure

Scenario File

- contains the patient's instructions over time
- possibility to include files as environment, nutrition, ...

Outputs

Parameter	Unit	Parameter	Unit
Blood Volume	L	Respiration Rate	1/min
Carbon Dioxide Production Rate	L/min	Respiratory Exchange Ration	/
Core Temperature	°C	Sweat Rate	mg/min
Fatigue Level	/	Skin Temperature	°C
Heart Rate	1/min	Total Lung Volume	L
Oxygen Consumption Rate	L/min	Total Metabolic Rate	kcal/day
Oxygen Saturation	/		

Table: Output Parameters [6]

Table of Contents

- Introduction
- Project Management
- Pulse Parameters Description
- 4 Model Set Up
- Groupama
- 6 IBAT

Data Selection

Parameter	Useful Data	Value
Air Velocity	speed	dataset values
Ambient Temperature	temperature	dataset values
Atmospheric Pressure	altitude	dataset values
Clothing Resistance [7][8][9]	/	0.513 <i>clo</i>
Emissivity [10]	/	0.90
Mean Radiant Temperature	temperature	dataset values
Relative Humidity	temperature	reference values
Respiration Ambient Temperature	temperature	dataset values
Ambient Gas [11]	/	Nitrogen: 0.7901
		Oxygen: 0.2095
		Carbon Dioxide: $4 imes 10^{-4}$

Table: Pulse Parameters Implementation

Modelling & Simulations - Mean Squared Error (MSE)

Formula:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Numerical value of the differences obtained between the different graphs
- compare our Pulse predictions with or without environmental impact during the simulations
 - ightarrow higher MSE indicates a greater impact of the environment on this parameter

Modelling & Simulations - Real data and predictions

Heart Rate and Exercise Intensity according to time

Modelling & Simulations - Environmental impact on different parameters

 $MSE = 6.663 \times 10^{-3}$

 $MSE = 5.202 \times 10^{-3}$

Modelling & Simulations - Environmental impact on different parameters

 $MSE = 1.487 \times 10^3$

 $MSE = 8.475 \times 10^3$

Table of Contents

- Introduction
- 2 Project Management
- Pulse Parameters Description
- 4 Model Set Up
- Groupama
- **6** IBAT

Sensor Distribution

- total of 200 sensors
- type: zigduino and 4fastsim
- measured are: temperature, relative humidity, noise, presence and light intensity at a frequency of 1 measure per second
- Elasticsearch database [12]

Data Selection

Parameter	Useful Data	Value
Air Velocity [13]	/	0.1m/s
Ambient Temperature	temperature	dataset values
Atmospheric Pressure	/	746.53 <i>mmHg</i>
Clothing Resistance [14]	/	Cold: 0.61 <i>clo</i>
		Normal: 0.57 <i>clo</i>
		Warm: 0.36 <i>clo</i>
Emissivity [10]	/	0.90
Mean Radiant Temperature	temperature	dataset values
Relative Humidity	humidity	dataset values
Respiration Ambient Temperature	temperature	dataset values
Ambient Gas [11]	/	same as for Groupama

Table: Pulse Parameters Implementation

Modelling & Simulations - Normal (23.04.2021)

Note: low humidity values

Modelling & Simulations - Normal (23.04.2021)

Note: 1 simulation took about 1h25min

Modelling & Simulations - Normal (23.04.2021)

Note: Generally - woman: 2000kcal/day and man: 2500kcal/day

References I

- iCUBE (2021, July 27). *IBat*. Retrieved from inetlab.icube.unistra.fr/index.php/IBat.
- TeamGantt (2021, April 2). Free Gantt Chart Excel Template. Retrieved from teamgantt.com/free-gantt-chart-excel-template.
- National Geographic (2021, June 21). *Atmospheric Pressure*. Retrieved from nationalgeographic.org/encyclopedia/atmospheric-pressure/.
- Math24 (2021, June 16). Barometric Formula. Retrieved from math24.net/barometric-formula.
- Wikipedia (2021, July 2). Atmospheric pressure. Retrieved from en.wikipedia.org/wiki/Atmospheric_pressure.
- Pulse (2021, June 22). ExerciseStagesResults.csv.

References II

- Wikipedia (2021, June 24). *Clothing insulation*. Retrieved from en.wikipedia.org/wiki/Clothing_insulation.
- ResearchGate (2021, June 24). Assessment of thermal comfort of nanosilver-treated functional sportswear fabrics using a dynamic thermal model with human/clothing/environmental factors. Retrieved from researchgate.net.
- ResearchGate (2021, June 24). Biophysics of Heat Exchange and Clothing: Applications to Sports Physiology. Retrieved from researchgate.net.
- Wikipedia (2021, June 25). *Emissivity*. Retrieved from wikipedia.org/wiki/Emissivity.

References III

- University Corporation for Atmospheric Research (2021, June 28). What's In the Air?. Retrieved from scied.ucar.edu/learning-zone/air-quality/whats-in-the-air.
- Bat cases (2021, July 27). *University building*. Retrieved from cases.ibat.cemosis.fr/ibat.cases/0.1.0/cases/public_buildings/apiB.html.
- Designing Buildings Wiki (2021, July 13). *Indoor air velocity*. Retrieved from designingbuildings.co.uk/wiki/Indoor_air_velocity.
- Pulse (2021, July 13). *Environment Methodology*. Retrieved from pulse.kitware.com/_environment_methodology.html.