TRIGONOMETRY VOLUME IV

FEEDBACK

1. Indique el cuadrante al que pertenece el ángulo β , si se cumple que: $\sec 323^{\circ} \cdot \sec \beta > 0$ y $\cot 162^{\circ} \cdot \cos \beta > 0$

2. Si $\cot \theta = -\frac{2}{3}$, donde $\theta \in IVC$ efectúe $R = \sqrt{13}(\sin \theta + \cos \theta)$.

RESOLUCIÓN

$$\cot \theta = -\frac{2}{3} = \frac{x}{y}$$
 Como $\theta \in IVC$
se tiene que:
 $x > 0$; $y < 0$

Como $\theta \in IVC$

Entonces: x = 2; y = -3

Radio vector: $r = \sqrt{x^2 + y^2}$

$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{(2)^2 + (-3)^2}$$

$$r = \sqrt{13}$$

Calculamos $R = \sqrt{13}(sen\theta + cos\theta)$

$$R = -3 + 2$$

$$\therefore \mathbf{R} = -\mathbf{1}$$

3. Siendo α y β ángulos cuadrantales positivos y menores a una vuelta; además, $\sec \alpha + \sec \beta = 0$. Calcule $E = \tan \left(\frac{\alpha}{4}\right) + \sec^2 \left(\frac{\beta}{3}\right)$.

RESOLUCIÓN

> Del dato:

$$0^{\circ} < \alpha$$
; $\beta < 360^{\circ}$

> Además:

$$\underline{\sec\alpha} + \underline{\sec\beta} = 0$$

$$\alpha = 180^{\circ}$$
 $\beta = 90^{\circ}$

Calculamos

$$E = \tan\left(\frac{180^{\circ}}{4}\right) + \sec^{2}\left(\frac{90^{\circ}}{3}\right)$$

R.T	0°; 360°	90°	180°	270°
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
COT	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

4. Simplifique $P = \sqrt{3}sec(-30^{\circ}) - 5cot(-53^{\circ}) \cdot cos(-37^{\circ})$.

RESOLUCIÓN

$$P = \sqrt{3}\operatorname{sec}(-30^{\circ}) - 5\cot(-53^{\circ}) \cdot \cos(-37^{\circ})$$

$$P = \sqrt{3} (\sec 30^{\circ}) - 5 (-\cot 53^{\circ}) (\cos 37^{\circ})$$

$$P = \sqrt{3} \left(\frac{2}{\sqrt{3}} \right) - 5 \left(-\frac{3}{4} \right) \left(\frac{3}{5} \right)$$

$$P = 2 - (-3)$$

$$P = 2 + 3$$

sen(-x) = -senx	csc(-x) = -cscx		
$\cos(-x) = \cos x$	sec(-x) = secx		
tan(-x) = -tanx	cot(-x) = -cotx		

5. Reduzca L =
$$\frac{3sen(180^{\circ}-x)}{cos(270^{\circ}+x)} + \frac{2sec(90^{\circ}-x)}{csc(180^{\circ}+x)}$$
.

RESOLUCIÓN

$$L = \frac{3sen (180^{\circ} - x)}{cos(270^{\circ} + x)} + \frac{2sec(90^{\circ} - x)}{csc(180^{\circ} + x)}$$

$$IIC = \frac{3sen (180^{\circ} - x)}{180^{\circ} - x} \times \frac{1}{180^{\circ} - x} \times \frac{1}{360^{\circ} - x} \times \frac{1}{360^{\circ}}$$

$$IIIC = \frac{180^{\circ} + x}{270^{\circ} - x} \times \frac{1}{360^{\circ} - x} \times \frac{1}{100^{\circ}}$$

IIIC

$$L = \frac{3(+\text{senx})}{(+\text{senx})} + \frac{2(+\text{csex})}{(-\text{csex})}$$

$$L = 3 + (-2)$$
 : $L = 1$

6. Si
$$\alpha - \beta = 90^{\circ}$$
, reduzca $E = \frac{tan\alpha}{cot\beta} + sec\alpha \cdot sec\beta$.

RESOLUCIÓN

Dato:

$$\alpha - \beta = 90^{\circ}$$

$$\alpha = 90^{\circ} + \beta$$

Piden:

$$E = \frac{\tan(90^{\circ} + \beta)}{\cot\beta} + \sin(90^{\circ} + \beta) \cdot \sec\beta$$

IIC

$$E = \frac{-\cot\beta}{\cot\beta} + \frac{(\cos\beta)(\sec\beta)}{1}$$

IIC

$$\therefore \mathbf{E} = \mathbf{0}$$

Recordar:

7. Efectúe $E = tan2115^{\circ} + sec1320^{\circ}$.

RESOLUCIÓN

$$E = tan315^{\circ} + sec240^{\circ}$$

$$E = \tan(360^{\circ} - 45^{\circ}) + sec(180^{\circ} + 60^{\circ})$$

IVC

IIIC

$$E = (-tan45^{\circ}) + (-sec60^{\circ})$$

$$E = (-1) + (-2)$$

$$\therefore \mathbf{E} = -3$$

8. Si
$$x + y = 51\pi$$
, reduzca $M = \frac{senx}{seny} + \frac{cscx}{cscy}$.

RESOLUCIÓN

Dato:

$$x + y = 51\pi$$

IMPAR

$$x + y = \pi$$

$$y = \pi - x$$

Calculamos
$$M = \frac{senx}{seny} + \frac{cscx}{cscy}$$

$$M = \frac{senx}{sen(\pi - x)} + \frac{cscx}{csc(\pi - x)}$$
IIC

$$M = \frac{senx}{senx} + \frac{cscx}{cscx}$$

$$\pi \, rad = 180^{\circ}$$

9. Simplifique

$$L = \frac{\tan{(31\frac{\pi}{2} - x)}}{\cot{(18\pi + x)}} + \sec{60^{\circ}}$$

RESOLUCIÓN

IIIC

$$\cot(18\pi + x) = \cot x$$

PAR

Calculamos:

$$L = \frac{\tan (31\frac{\pi}{2} - x)}{\cot (18\pi + x)} + \sec 60^{\circ}$$

RECORDAR

ШС

IIC

$$L = \frac{\cot x}{\cot x} + 2$$

$$L = 1 + 2$$

Todas las RT

son (+)

IVC

10. La empresa "MIL OFICIOS" desea invertir en un proyecto donde pueda producir la mayor utilidad posible. El ingeniero a cargo deberá elegir entre 2 proyectos. Se sabe que la empresa esta dispuesta a desembolsar "A" soles, y cada proyecto ofrece una utilidad de B% y C% de la cantidad invertida. ¿Qué proyecto generará mayor utilidad? ¿Cuánta utilidad generará?

$$A = 5000 \cdot \csc 1230^{\circ}$$

 $B = 12 sen 90^{\circ} + sec 180^{\circ}$
 $C = 7 cos 360^{\circ} - 5 csc 270^{\circ}$

RESOLUCIÓN

A =
$$5000 \cdot \csc 1230^{\circ} = 5000 \cdot \csc 150^{\circ}$$

A = $12800 \cdot 360(180^{\circ} - 30^{\circ})$
A = $\frac{1080}{150^{\circ}} \cdot \csc 30^{\circ} = 5000(2)$
A = 10000

• B =
$$12 \text{sen} 90^\circ + \text{sec} 180^\circ$$

B = $12(1) + (-1)$

B = 11%

• C = $7 \cos 360^\circ - 5 \csc 270^\circ$

C = $7(1) - 5(-1)$

C = 12%

Mayor utilidad

Calculamos la utilidad del proyecto:

 $0 = 12\%$

Utotal SA * C = $100000 * 12\% - 1$

Utotal SC N 1 N.D -1

