Aufgabe 1

a)

Sei $f = \sum_{k=0}^N a_k X^k \in \mathbb{C}[X]$ mit $a_k \in \mathbb{R}$ für $k \leq N \in \mathbb{N}$ und $\lambda \in \mathbb{C}$ eine Nullstelle von f, so ist die komplex konjugierte Zahl $\overline{\lambda} \in \mathbb{C}$ ebenfalls eine Nullstelle

Beweis. Gelte $\tilde{f}(\lambda) = 0$. Wir nutzen im Folgenden, dass für $z \in \mathbb{C}, a \in \mathbb{R}$ gilt

$$a \cdot \overline{z} = \overline{a \cdot z}, \qquad \overline{z} + \overline{z} = \overline{z + z}, \qquad \overline{z} \cdot \overline{z} = \overline{z \cdot z}.$$

Also ist $\overline{\lambda} \in \mathbb{C}$ eine Nullstelle von f, denn:

$$\tilde{f}(\overline{\lambda}) = \sum_{k=0}^{N} a_k \overline{\lambda}^k = \overline{\sum_{k=0}^{N} a_k \lambda^k} = \overline{\tilde{f}(\lambda)} = \overline{0} = 0.$$

b)

Wir betrachten die reelle 3×3 -Matrix

$$A := \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & -4 \\ 0 & 4 & -1 \end{pmatrix} \quad \text{sowie} \quad A - X \cdot \mathbb{1}_3 := \begin{pmatrix} 1 - X & -2 & 0 \\ -2 & 5 - X & -4 \\ 0 & 4 & -1 - X \end{pmatrix}.$$

Wir berechnen

$$f_A = \det(A - X \cdot \mathbb{1}_3)$$

= $(-X + 1)(-X + 5)(-X - 1) - 4(-4)(-X + 1) - (-X - 1)(-2)(-2)$
= $-X^3 + 5X^2 - 11X + 15$

Dieses Polynom $f_A \in \mathbb{R}[X] \subset \mathbb{C}[X]$ hat eine Nullstelle $\lambda_1 \in \mathbb{R}$.

Beweis. Das Polynom f_A hat den Grad $\deg(f_A) = 3$ und zerfällt somit in 3 Linearfaktoren:

$$f_A = a(X - \lambda_1)(X - \lambda_2)(X - \lambda_3)$$
 für geeignete $a, \lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$,

wobei $\lambda_1, \lambda_2, \lambda_3$ alle Nullstellen von f_A sind. Da alle Koeffizienten von f_A reell sind, gibt es wie in a) gezeigt zu jedem λ_n eine zweite Nullstelle $\overline{\lambda_n}$. Da f_A eine ungerade Anzahl an Nullstellen hat, muss für mindestens ein λ_n gelten $\lambda_n = \overline{\lambda_n}$. Dies is äquivalent zu $\lambda_n \in \mathbb{R}$.