CS353 ML Lab 7

Name: K V Sumanth Reddy

Roll No: 181CO225

Batch: Section 2

Date: 23/03/2021

Q: Write a program in python to implement and demostrate **logistic regression** for a sample training dataset. Compute the accuracy of the classifier.

Dataset Used: Breast Cancer Dataset

Importing Libraries and Dataset

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler

from sklearn.metrics import plot_confusion_matrix,precision_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import accuracy_score, classification_report
```

▼ Data Preprocessing

```
dataset = load_breast_cancer()
data = pd.DataFrame(dataset.data, columns=[dataset.feature_names])
data['Target'] = pd.Series(data=dataset.target, index=data.index)

x,y = load_breast_cancer(return_X_y=True)
data.sample(5)
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mear conc poir
54	15.10	22.02	97.26	712.8	0.09056	0.07081	0.05253	0.0
190	14.22	23.12	94.37	609.9	0.10750	0.24130	0.19810	0.0
481	13.90	19.24	88.73	602.9	0.07991	0.05326	0.02995	0.0
485	12.45	16.41	82.85	476.7	0.09514	0.15110	0.15440	0.0
402	12.96	18.29	84.18	525.2	0.07351	0.07899	0.04057	0.0

```
print("Label: ", dataset.target names)
    Label: ['malignant' 'benign']
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size
print('Training dataset size:\nx_train -', len(x_train), '\ny_train
print('Testing dataset size:\nx_test -', len(x_test), '\ny_test -',
    Training dataset size:
    x_train - 398
    y_train - 398
    Testing dataset size:
    x test - 171
    y test - 171
sc = StandardScaler()
x train = sc.fit transform(x train)
x test = sc.transform(x test)
model = LogisticRegression()
model.fit(x train,y train)
y pred = model.predict(x test)
```

Results

```
print('-----')
print('Accuracy: {:f}'.format(accuracy_score(y_test,
print('Precision: {:f}'.format(precision_score(y_test,
print('Mean Squared Error: {:f}'.format(mean_squared_error(y_te
print('-----')
```

Accuracy: 96.491228 Precision: 94.444444 Mean Squared Error: 3.508772

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0 1	1.00 0.94	0.91 1.00	0.95 0.97	69 102
accuracy macro avg weighted avg	0.97 0.97	0.96 0.96	0.96 0.96 0.96	171 171 171

plot_confusion_matrix(model, x_test, y_test, display_labels=dataset.
plt.show()

✓ 0s completed at 15:47

×