Project Title: Adversarial AI Attack Generator Against Machine-Learning Firewalls

Core Idea:

 Build a system where AI models generate adversarial network traffic designed specifically to trick and bypass ML-based firewalls or anomaly detection systems.

Component	Role
Firewall Behavior Profiler	Models how ML-based firewalls classify traffic
Adversarial Traffic Generator	Crafts minimal changes that evade ML detection
Reinforcement Learning Trainer Evolves better evasion strategies over time	
Traffic Emitter/Tester	Sends crafted traffic and observes firewall reactions
Success Scorer Module	Measures how stealthy/adversarial samples perform

Component Details:

- 1. Firewall Behavior Profiler:
 - o Passive/active techniques:
 - Probe small changes and measure responses (accept/reject/alert).
 - o Builds approximate ML decision boundary models.
- 2. Adversarial Traffic Generator:
 - o Crafting techniques:
 - Feature Space Perturbations:
 - Alter statistical features (packet sizes, flow durations, etc) without breaking protocol compliance.
 - Gradient Attack Simulation:
 - Estimate firewall's decision gradient to create evasive samples.
 - Etc
- 3. Reinforcement Learning Trainer:
 - Reinforces traffic mutations that:
 - Pass detection,
 - Appear benign.
- 4. Traffic Emitter/Tester:
 - o Sends adversarial samples.
 - o Measures firewall verdicts.
- 5. Success Scorer Module:
 - Tracks:
 - Stealth success rate.
 - Volume of successful bypasses over time.

Overall System Flow:

• Input: ML firewall target

• Output: Evolving adversarial traffic able to bypass it

• Focus: Adversarial machine learning applied to network traffic evasion

Internal Functioning of Each Module:

1. Firewall Behavior Profiler

- Probing:
 - Send carefully mutated benign-looking traffic.
 - o Measure:
 - Accept rates,
 - Drop rates,
 - Latency changes.
- Model firewall's decision boundary:
 - o Use binary classification modeling:
 - "Accept" = Class 0,
 - "Reject" = Class 1.

2. Adversarial Traffic Generator

- Generation strategies:
 - o Feature perturbation:
 - Slightly modify packet size distributions, flow timing, etc.
 - Decision boundary attacks:
 - Apply gradient descent-inspired methods:
 - Small changes that "flip" classification.

3. Reinforcement Learning (RL) Trainer

- RL setup:
 - o States: Traffic features.
 - o Actions: Mutation operations.
 - o Rewards:
 - +1 if traffic passes undetected,
 - -1 if blocked.
- Exploration vs exploitation:
 - o Epsilon-greedy exploration for novel evasion tactics.

4. Traffic Emitter/Tester

- Test cycle:
 - o Send modified traffic,
 - o Monitor firewall verdicts,
 - o Feed results back into RL agent.

5. Success Scorer Module

- Metrics:
 - o Stealth rate (percent undetected),
 - o Transfer rates,
 - o Learning curve slope.

Component Diagram

Explanation:

1. Components:

- Firewall Behavior Profiler: Probes the target firewall to model its ML decision boundaries (e.g., using surrogate models like SVM/Random Forest, etc).
- Adversarial Traffic Generator: Crafts evasive traffic via feature perturbations
 (e.g., packet size tweaks, etc) or gradient-based attacks (e.g., FGSM, etc).
- Traffic Emitter/Tester: Sends adversarial traffic to the firewall and logs responses (blocks/passes).
- o **Success Scorer Module**: Evaluates stealth rate and transferability of attacks.
- Reinforcement Learning Trainer: Uses feedback (rewards/penalties) to refine evasion strategies (e.g., via PPO or Q-learning).

2. Workflow:

- Profiling: The Firewall Profiler sends probing traffic to infer the firewall's ML model.
- Traffic Generation: The Adversarial Generator crafts traffic to bypass learned decision boundaries.
- Testing: The Emitter sends traffic to the firewall and records outcomes.
- Feedback Loop: The Success Scorer sends metrics to the RL Trainer, which updates strategies for the Generator.

3. Key Features:

- o **Adaptive Evasion**: RL-driven iterative improvement of adversarial samples.
- Black-Box Attacks: Surrogate models mimic target firewall behavior for gradient estimation.
- Protocol Compliance: Validates traffic functionality (e.g., valid TCP handshakes, etc).

Sequence Diagram

Explanation:

1. Firewall Profiling:

- The User starts the Firewall Behavior Profiler, which sends benign and mutated traffic to the target firewall.
- The firewall's responses (accept/block) are used to train a surrogate model that approximates its decision boundaries.

2. Adversarial Traffic Generation:

 The Adversarial Traffic Generator crafts samples using feature perturbations (e.g., altering packet sizes, etc) or gradient-based attacks (e.g., FGSM, etc).

3. Testing & Feedback Loop:

- The **Traffic Emitter** sends adversarial traffic to the firewall and logs responses.
- The Success Scorer evaluates evasion effectiveness (i.e. stealth rate) and feeds results to the Reinforcement Learning Trainer.
- The RL Trainer updates strategies (e.g., PPO policies, etc) and refines the Adversarial Generator's tactics.

4. Iteration:

ıll

Detailed Project Description: Adversarial AI Attack Generator Against ML Firewalls

This system generates adversarial network traffic to bypass machine learning (ML)-based firewalls. By probing firewall behavior, crafting evasive samples using reinforcement learning (RL), and iteratively refining attacks, this system identifies vulnerabilities in ML-driven security systems.

1. Core Components & Implementation Details

1.1 Firewall Behavior Profiler

- Role: Model the target firewall's decision boundaries.
- Implementation (e.g.):
 - o Active Probing:
 - Send benign and slightly perturbed traffic (e.g., altered packet sizes, flow durations) using Scapy.
 - Record firewall responses (accept/block) to infer classification thresholds.

Decision Boundary Modeling:

- Train a surrogate model (e.g., Random Forest, SVM, etc) to mimic the firewall's behavior using probed data.
- Tools (e.g.): Scapy, Scikit-learn, Wireshark (traffic analysis), etc.

1.2 Adversarial Traffic Generator

- Role: Craft traffic that evades detection.
- Implementation (e.g.):
 - o Feature Perturbation:
 - Modify statistical features (packet size variance, flow duration) while maintaining protocol compliance.
 - o Gradient-Based Attacks:

 Use adversarial ML libraries (e.g., ART, etc) to apply FGSM or PGD on traffic features.

o Functional Validity:

- Validate traffic with protocol conformance tests (e.g., TCP handshake completion, etc).
- Tools (e.g.): ART (Adversarial Robustness Toolbox), Scapy, Netcat, etc.

1.3 Reinforcement Learning Trainer

- Role: Optimize adversarial strategies through trial and error.
- Implementation (e.g.):
 - o RL Environment:
 - **States**: Feature vectors (packet size, flow duration, etc.).
 - **Actions**: Perturbation operations (e.g., ±10% packet size).
 - **Rewards**: +1 for evasion, -1 for detection.

o Agent Training:

- Use Proximal Policy Optimization (PPO) or Q-learning with epsilongreedy exploration.
- **Tools (e.g.)**: OpenAl Gym (custom environment), Stable Baselines3 (RL algorithms), etc.

1.4 Traffic Emitter/Tester

- **Role**: Test adversarial samples against the firewall.
- Implementation (e.g.):
 - Packet Injection: Send crafted traffic using Scapy or NFQUEUE.
 - Response Monitoring: Detect blocks via TCP RST, ICMP errors, or timeouts.
 - Feedback Loop: Log results (success/failure) for RL training.
- **Tools (e.g.)**: Scapy, Python threading (parallel testing), etc.

1.5 Success Scorer Module

- Role: Quantify evasion effectiveness.
- Implementation (e.g.):
 - Metrics:

- Stealth Rate: Percentage of undetected adversarial samples.
- Transferability: Success rate against updated firewall models.
- o **Visualization**: Plot learning curves and feature distributions.
- Tools (e.g.): Matplotlib, TensorBoard, Pandas, etc.

2. System Workflow

- 1. **Probe Firewall**: Profile decision boundaries by sending test traffic.
- 2. **Train Surrogate Model**: Approximate the firewall's ML model.
- 3. **Generate Adversarial Traffic**: Perturb features or apply gradient attacks.
- 4. **Test & Score**: Send traffic, log results, and calculate stealth metrics.
- 5. **RL Training**: Update agent policies based on rewards/penalties.
- 6. **Iterate**: Repeat until evasion success stabilizes.

3. Evaluation Metrics

- **Evasion Success Rate**: % of adversarial samples bypassing the firewall.
- Feature Drift: KL divergence between adversarial and legitimate traffic.
- **Convergence Time**: Iterations needed to achieve 90% stealth rate.

4. Tools & Frameworks (e.g.)

- **Traffic Crafting**: Scapy, NetfilterQueue, etc.
- Adversarial ML: ART, CleverHans, etc.
- **Reinforcement Learning**: Stable Baselines3, OpenAl Gym, etc.
- Analysis: Wireshark, Scikit-learn, Matplotlib, etc.

5. Suggested Implementation Steps (e.g.)

1. **Setup Environment**:

- Deploy an ML-based firewall (e.g., using Snort with ML plugins).
- o Install Python dependencies (Scapy, ART, Stable Baselines3, etc).

2. **Profile Firewall**:

- Send benign/malicious traffic to train a surrogate model.
- o Identify critical features (e.g., packet size, flow duration, etc).

3. Build Adversarial Generator:

- o Implement feature perturbations and gradient-based attacks.
- o Validate traffic with protocol checks (e.g., valid HTTP headers).

4. Integrate RL Training:

- o Define custom Gym environment for traffic mutation.
- Train RL agent with PPO, using evasion success as reward.

5. **Test & Optimize**:

- \circ Run iterative cycles: generate \rightarrow test \rightarrow score \rightarrow refine.
- o Tune RL hyperparameters (learning rate, exploration rate, etc).

6. Challenges & Mitigations (optional)

- Black-Box Firewall: Use transfer learning to adapt surrogate models.
- **Traffic Validity**: Integrate protocol validators (e.g., PyShark).
- **Dynamic Firewalls**: Periodically retrain surrogate models.