Sistema de Aquecimento de Ambientes com Controle de Taxa de Aquecimento Usando Arduino

Alunos: Clovijan Bispo Rocha, Jadson Tavares Santos, Vitor Oliveira Santos

UNIVERSIDADE FEDERAL DE SERGIPE

INTEGRANTES

Clovijan Bispo Rocha

Jadson Tavares Santos

Vitor Oliveira Santos

Conteúdos

11	Introdução	OI
	Objetivo Geral e Específicos	02
11.	Referencial Teórico – Limites Térmicos	03
	Tecnologia Utilizada	04
	Trabalhos Relacionados	07
	Diagrama de Montagem	80
	Fluxo	09
	Conclusão	10

Problema Central

O monitoramento de temperatura crítica em laboratório enfrenta limitações por falta de ferramentas acessíveis e customizáveis. Os métodos tradicionais são inadequados, prejudicando a coleta precisa dos dados de temperatura que os lagartos suportam

Solução Proposta:

Desenvolvimento de um equipamento de baixo custo, controlado via Arduino, que ajusta automaticamente a temperatura de uma câmara fechada e coleta dados precisos para definir os limites de sobrevivência dos lagartos em condições simuladas

Objetivo Geral

Construir um sistema automatizado para auxiliar na coleta de dados de temperatura crítica de lagartos em ambiente controlado, viabilizando experimentos mais precisos e seguros.

Objetivos Específicos

Construção da Câmara

Utilizar uma
estrutura de vidro
com uma resistência
elétrica (como a de
um chuveiro),
sensores, e um
sistema de controle
de temperatura
integrado ao Arduino
MEGA.

Programação do Arduino

Criar um código em
C++ que permita o
controle da taxa de
aquecimento e
manutenção da
temperatura. O Arduino
deverá atuar de forma a
monitorar a
temperatura e acionar o
aquecimento conforme
necessário.

Testes e Validação

Realizar experimentos em laboratório para testar o equipamento e avaliar sua precisão ao definir temperaturas críticas (CTmax e CTmin) para lagartos.

Referencial Teórico – Limites Térmicos

Temperatura Crítica Máxima (CTmax) e Mínima (CTmin):

Conceitos fundamentais que representam os pontos onde a função motora dos lagartos é comprometida, potencialmente resultando em incapacidade ou morte. A CTmax e CTmin são parâmetros essenciais em estudos de fisiologia térmica para compreender a adaptação e sobrevivência dos lagartos.

Importância para a Pesquisa

Estudos, como os de Huey & Kingsolver (1989), exploram como espécies ectotérmicas, incluindo lagartos, respondem a variações térmicas. Esses limites são vitais para prever impactos das mudanças climáticas e auxiliar em estratégias de conservação

Tecnologia Utilizada

Arduino MEGA 2560

Arduino MEGA é ideal para integrar sensores e sistemas de controle de temperatura, garantindo maior flexibilidade para o projeto

Sensor de Temperatura LM35

Sensor de alta precisão com sensibilidade de 10mV por grau Celsius

Módulo Relé 5V e Resistência de Chuveiro

"O relé não fornece calor diretamente; ele apenas controla o fluxo de corrente que passa para a resistência do chuveiro, permitindo o aquecimento com segurança e precisão.

Trabalhos Relacionados

Diferencial do Projeto

A proposta de equipamento é específica para definir as temperaturas críticas em répteis, proporcionando controle de temperatura preciso e coleta de dados críticos.

Metodologia

Planejamento e Levantamento de Materiais Montagem do Equipamento Programação do Arduino Testes
Experimentais
E
Análise e
Validação dos
Dados

Diagrama de Montagem do Equipamento

Representação do Sistema

Diagrama do sistema, destacando o Arduino, sensor LM35, relé, resistência e display LCD. O diagrama mostrará a integração dos componentes e os pontos de controle, como a interface de monitoramento de temperatura.

Explicação do Circuito

Como cada componente está interligado e seu papel no funcionamento geral. O Arduino controla o relé, que aciona a resistência conforme necessário, enquanto o sensor LM35 monitora a temperatura

Fluxo de Funcionamento do Sistema

Leitura da Temperatura Controle de Aquecimento Manutenção da Temperatura

Cronograma de Atividades

Organização Temporal do Projeto

Revisão bibliográfica, aquisição de materiais, montagem do equipamento, programação, testes e validação, distribuídos ao longo de cinco meses. Cada etapa é interdependente e essencial para a conclusão do projeto.

Atividade	Outubro	Novembro	Dezembro	Janeiro	Fevereiro
Revisão bibliográfica	X	X			
Levantamento e aquisição de materiais		X			
Montagem do equipamento			X	X	
Programação do Arduino				X	
Testes e Validação				X	X

Conclusão

Expectativas de Resultado:

•Espera-se que o equipamento forneça dados precisos sobre a temperatura crítica de lagartos, contribuindo para estudos sobre tolerância térmica e adaptação a mudanças climáticas.

Aplicações Futuras:

•O sistema pode ser adaptado para outros estudos com espécies ectotérmicas, como peixes e anfíbios, ampliando o escopo de aplicação da tecnologia.

Melhorias e Expansões:

•Adicionar controle de outras variáveis ambientais, como umidade e ventilação, para simular condições mais próximas de habitats naturais.

OBRIGADO PELA ATENÇÃO