Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science

End Sem (Even) Examination May-2022 CH5CO08 Group Theory & Spectroscopy -II

Programme: M.Sc. Branch/Specialisation: Chemistry

Maximum Marks: 60 Duration: 3 Hrs.

	-	estions are compulsory. International should be written in full instead		•	s of
Q.1	i.	TMS, used in NMR as a refer (a) Trimethyl Silane (c) Typical magnetic strength	(b) Tetramethy	yl silane	1
	ii.	Number of signals observed in (a) Electronic environment (b) Different types of protons (c) Number of equivalent prot (d) Intensities of protons	1	indicate:	1
	iii.	Nuclear quadrupole moment i (a) e Q (b) e / Q	is: (c) Q / e	(d) I	1
	iv.	Nuclear quadrupole moment i (a) Magnetic moment	` / ~	oy: oment	1
	v.	Bohr magneton (β) for electrons (a) m _e h/4πe (b) e/4πm _e	on is: (c) h/4лm _e	(d) eh/4лm _e	1
	vi.	Selection rules for HFS of ES (a) $\Delta m_s = \pm 1$, $\Delta m_I = 1$. ,	$\Delta m_I = 0$	1
	vii.	Systematic study of X-ray wa (a) Mosley (c) Bohr	s first made by (b) Rutherford (d) Bragg		1
	viii.	In X-ray diffraction the integrated energy (E), total incangular velocity (\square) as: (a) $R = E \square / I$ (b) $R = I / E \square$	ident radiation	per c.c. (I) and uniform	1
				ъ. т.	\sim

P.T.O.

	1X.	To be used in diffraction methods the wavelength of the particle has to be of the order:			
		(a) 100Å (b) 10Å (c) 1Å (d) 1000Å			
	х.	The most suitable neutron for neutron diffraction analysis is:	1		
		(a) Cold neutron (b) Slow neutron			
		(c) High energy neutron (d) Thermal neutron			
Q.2	i.	Discuss briefly about coupling constant 'J'.	2		
	ii.	Discuss spin-spin interactions with suitable examples.	3		
	iii.	Write a note on chemical shift and factors affecting chemical shift.	5		
OR	iv.	Describe briefly about instrumentation of NMR spectrometer with suitable diagram.	5		
Q.3	i.	Define quadrupole moment.	2		
	ii.	Outline the principle of NQR spectroscopy. Show the splitting of	8		
		quadrupole energy levels by diagram for a nucleus having nuclear spin 3/2 under spherical and axial symmetric field.			
OR	iii.	Describe the applications of NQR spectroscopy in any two of	8		
		followings with suitable examples:			
		(a) Nature of Chemical bond			
		(b) Structural information			
		(c) Study of Charge transfer spectra			
Q.4	i.	Discuss principle of ESR spectroscopy.	3		
	ii.	Discuss zero field splitting and Kramer's degeneracy? Explain	7		
		hyperfine splitting pattern and multiplate spectra for 1,4-			
		benzosemiquinone radical anion or methyl free radical.			
OR	iii.	ε	7		
		frequency of an unpaired electron in a magnetic field of 0.33 Tesla.			
		For free electron, $g = 2.0023$ and Bohr magneton, $\beta = 9.273 * 10^{-24}$ J/Tesla.			
~ ~			_		
Q.5	i. 	Write Bragg's equation. Discuss Bragg's condition for diffraction.	4		
	ii.	Describe Debye Scherrer method of X-ray structural analysis of	6		
		Crystals.			

[3]

- OR iii. (a) How X-ray intensities, structure factor and its relation to **6** intensity and electron density?
 - (b) Describe the procedure for an X-ray structure analysis, absolute configuration of molecules.
- Q.6 Attempt any two:
 - What is electron diffraction method? How is it superior to x-ray and neutron diffraction method?
 - ii. Discuss instrumentation for electron diffraction. Also describe any 5 one important application of it.
 - iii. Discuss about neutron diffraction in brief. Discuss any one 5 application of it.

Scheme of Marking

Faculty of Science

End Sem (Even) Examination May-2020 Group Theory & Spectroscopy-II CH5CO08

Programme: M.Sc.

Branch/Specialisation: Chemistry

Note: The Paper Setter should provide the answer wise splitting of the marks in the scheme below.

cheme	below		
Q.1	i.	TMS, used in NMR as a reference compound is:	1
		(b) Tetramethyl silane	
	ii.	Number of signals observed in NMR spectra indicate:	1
		(b) Different types of protons	
	iii.	Nuclear quadrupole moment is:	1
		(a) e Q	
	iv.	Nuclear quadrupole moment is represented by:	1
	.9	(b) Electric moment	
	v.	Bohr magneton (β) for electron is:	1
	vi	(d) eh/4nme Selection rules for HFS of ESR spectra are:	1
	VI	(b) $\Delta ms = \pm 1$, $\Delta mI = 0$	1
	vii.	Systematic study of X-ray was first made by:	1
	VII.	(a) Mosley	•
	viii.	In X-ray diffraction the integrated reflection (R) is related with total	1
		reflected energy (E), total incident radiation per c.c. (I) and uniform	
		angular velocity (ω) as:	
		(a) $R = E\omega/I$	
	ix.	To be used in diffraction methods the wave length of the particle	1
		has to be of the order:	
		(c) 1Å	
	Х.	The most suitable neutron for neutron diffraction analysis is:	1
		(d) Thermal neutron	
02	i.	Discuss briefly about coupling constant 'J'2 marks	2
Q.2		,	
	ii.	Discuss spin-spin interactions with suitable examples 3 marks	3
	iii.	Write a note on Chemical shift -3 marks	5
		and factors affecting chemical shift2 marks	
OR	iv	Describe briefly about instrumentation of NMR spectrometer	5
OIL	10	-3.5 marks	2
		SON REGORDA	

		with suitable diagram.	-1.5 marks	
Q.3	i.	Define quadrupole moment.	- 2 marks	2
	ii.	Outline the principle of NQR spectroscopy. Show the splitting of quadrupole energy levels by nucleus having nuclear spin 3/2 under spheric symmetric field.	- 6 marks diagram for a	8
OR	iii.	Describe the applications of NQR spectroscopy i followings with suitable examples:	n any two of ral information	8
		(c) study of charge transfer spectra	-4 14 marks	
Q.4	i.	Discuss principle of ESR spectroscopy.	- 3 marks	3
	ii.	Discuss zero field splitting and Kramer's degeneracy Explain hyperfine splitting pattern and multiplate splenzosemiquinone radical anion or methyl free radical	pectra for 1,4-	7
OR	iii.	Write brief account on g- factor and g-value? the ESR frequency of an unpaired electron in a ma 0.33 Tesla. For free electron g = 2.0023, Bohr magnet x 10-24 J/Tesla	-4 marks gnetic field of	7
Q.5	i.	Write Bragg's equation. Discuss Braggs condition for diffraction.	-1 mark -3 marks	4
	ii.	Describe Debye Scherrer method of X-ray structural Crystals.	analysis of	6
OR	iii.	(a) How X-ray intensities, structure factor and intensity and electron density?(b) Describe the procedure for an X-ray structure and configuration of molecules.	its relation to -2 marks	6
Q.6		Attempt any two:		
	i.	What is electron diffraction method? How is it superior to x-ray and neutron diffraction n	-1.5 marks nethod? -3.5 marks	5
	ii.	Discuss instrumentation for electron diffraction.	-3 marks	5
	iii.	And describe any one important application of it. Discuss about neutron diffraction in brief?	-2 marks	E
	111.	Discuss any one application of it.	-3 marks -2 marks	5
