Universidade de Campinas IMECC Geometria dos Números

Provas alternativas para os Teoremas de Pick e de Ehrhart e Semigrupos Numéricos

por

Matheus Bernardini de Souza 143790

Campinas 2014

1 Teorema de Pick

Nesta primeira seção, falaremos sobre um resultado de Pick que foi publicado em 1899. O Teorema de Pick relaciona a área de um polígono convexo com a quantidade de pontos inteiros dentro desse polígono. Primeiramente, vamos definir alguns números relacionados com um polígono e logo depois enunciar o teorema.

Definição 1. Seja P um polígono. Definimos os números

- $A_{\mathcal{P}} := \acute{a}rea \ de \ \mathcal{P};$
- $I_{\mathcal{P}} := \#\{pontos\ inteiros\ no\ interior\ de\ \mathcal{P}\};$
- $F_{\mathcal{P}} := \#\{pontos \ inteiros \ na \ fronteira \ de \ \mathcal{P}\}.$

Teorema de Pick. Seja \mathcal{P} um polígono convexo de vértices inteiros. Então

$$A_{\mathcal{P}} = I_{\mathcal{P}} + \frac{F_{\mathcal{P}}}{2} - 1.$$

Nessas notas, vamos usar as ideias usadas em [3] para demonstrar esse Teorema. Murty e Thain usaram o Teorema de Minkowski para provar o Teorema de Pick e essa não é a demonstração original.

Demonstração: Faremos a prova deste teorema em 4 passos.

Passo 1. Se $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$, \mathcal{P}_1 e \mathcal{P}_2 são polígonos convexos que satisfazem o teorema e $\mathcal{P}_1 \cap \mathcal{P}_2$ é um segmento de reta, então \mathcal{P} satisfaz o teorema.

Prova: Suponha que $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$, \mathcal{P}_1 e \mathcal{P}_2 são polígonos que satisfazem o teorema, isto é,

$$A_{\mathcal{P}_1} = I_{\mathcal{P}_1} + \frac{F_{\mathcal{P}_1}}{2} - 1$$

$$A_{\mathcal{P}_2} = I_{\mathcal{P}_2} + \frac{F_{\mathcal{P}_2}}{2} - 1$$

e $\mathcal{P}_1 \cap \mathcal{P}_2$ é uma aresta. Geometricamente,

Figura 1: $\mathcal{P} = \mathcal{P}_1 \cup \mathcal{P}_2$

Seja $D = \#(\mathcal{P}_1 \cap \mathcal{P}_2)$. Note que

$$A_{\mathcal{P}} = A_{\mathcal{P}_1} + A_{\mathcal{P}_2} \Rightarrow A_{\mathcal{P}} = (I_{\mathcal{P}_1} + I_{\mathcal{P}_2}) + \frac{(F_{\mathcal{P}_1} + F_{\mathcal{P}_2})}{2} - 2,$$

$$I_{\mathcal{P}} = I_{\mathcal{P}_1} + I_{\mathcal{P}_2} + D - 2,$$

$$F_{\mathcal{P}} = (F_{\mathcal{P}_1} - D + 2) + (F_{\mathcal{P}_2} - D) = F_{\mathcal{P}_1} + F_{\mathcal{P}_2} - 2D + 2.$$

Assim,

$$I_{\mathcal{P}} + \frac{F_{\mathcal{P}}}{2} - 1 = (I_{\mathcal{P}_1} + I_{\mathcal{P}_2} + D - 2) + \frac{(F_{\mathcal{P}_1} + F_{\mathcal{P}_2} - 2D + 2)}{2} - 1$$

$$= I_{\mathcal{P}_1} + I_{\mathcal{P}_2} + \frac{F_{\mathcal{P}_1} + F_{\mathcal{P}_2}}{2} + D - 2 - D + 1 - 1$$

$$= I_{\mathcal{P}_1} + I_{\mathcal{P}_2} + \frac{F_{\mathcal{P}_1} + F_{\mathcal{P}_2}}{2} - 2 = A_{\mathcal{P}},$$

donde concluímos que \mathcal{P} satisfaz o teorema. Observe que podemos generalizar esse resultado se \mathcal{P} puder ser escrito como uma união de um quantidade finita de polígonos (via indução).

Passo 2. Todo polígono convexo \mathcal{P} pode ser escrito como $\mathcal{P} = \Delta_1 \cup \cdots \cup \Delta_n$, em que cada Δ_i é um triângulo e existe um vértice V de \mathcal{P} que pertencem a todos os Δ_i 's.

Prova: Seja V um dos vértices de \mathcal{P} . Ligando V a todos os demais vértices de \mathcal{P} , conseguimos decompor o polígono em triângulos. Observe que a quantidade de triângulos é igual à quantidade de lados do polígono menos 2.

Figura 2: $\mathcal{P} = \Delta_1 \cup \cdots \cup \Delta_n$, com Δ_i triângulo

Passo 3. Cada Δ_i pode ser escrito como $\Delta_i = \Delta_{i1} \cup \cdots \cup \Delta_{ik}$, em que Δ_{in} é um triângulo elementar (triângulo cujos pontos inteiros são apenas os vértices).

Prova: Dado um ponto inteiro no interior de algum Δ_i , é possível ligá-lo por segmentos de reta aos 3 vértices de Δ_i . Fazendo esse procedimento indutivamente (o processo

para, pois existe uma quantidade finita de pontos inteiros dentro de um triângulo), conseguimos decompor cada triângulo em triângulos elementares.

Figura 3: $\Delta_1 = \Delta_{11} \cup \cdots \cup \Delta_{1k}$, com Δ_{1i} triângulo elementar

Passo 4. A área de cada triângulo elementar é $\frac{1}{2}$.

Para demonstrar esse fato, vamos usar o seguinte resultado:

Lema (Teorema de Minkowski). Seja C uma região convexa, simétrica e limitada em \mathbb{R}^n com volume maior que 2^n . Então C contém pelo menos um ponto inteiro não nulo.

Prova: (do Passo 4.) Vamos usar a Figura 4 para nos auxiliar. Seja ΔABC um triângulo elementar. Primeiramente, rotacione o triângulo ΔABC por cada um de seus vértices, obtendo os triângulos azul, verde e vermelho. Depois translade cada um desses triângulos para obter metade de um paralelepípedo e complete o paralelepípedo. Observe que existe um único ponto inteiro no interior do paralelepípedo. Transadando a figura de tal forma que esse ponto coincida com a origem, obtemos uma região convexa, limitada e simétrica. Como não existem inteiros não nulos no interior do paralelepípedo, segue do Teorema de Minkowski que a área desse paralelepípedo é menor que ou igual a 4. Como a área é invariante por rotações e translações, temos que a área do paralelepípedo é igual a 8 vezes a área do ΔABC . Daí, $A_{\Delta ABC} \leq \frac{1}{2}$. Por outro lado, é possível calcular a área do ΔABC da seguinte forma: $A_{\Delta ABC} = \frac{1}{2} |\det M|$, em que

$$M = \begin{pmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{pmatrix},$$

 $A=(x_A,y_A), B=(x_B,y_B)$ e $C=(x_C,y_C)$. Como as coordenadas de A,B e C são

inteiras e o triângulo é não degenerado, segue que $|\det(M)| \in \mathbb{N}$, isto é, $A_{\Delta ABC} \geq \frac{1}{2}$. Portanto, $A_{\Delta ABC} = \frac{1}{2}$.

Figura 4: Ilustração da prova do Passo 4

Para concluir a demosn
tração, basta verificar que cada triângulo elementar Δ satisfaz o teorema. De fato,

$$A_{\Delta} = \frac{1}{2} = 0 + \frac{3}{2} - 1 = I_{\Delta} + \frac{F_{\Delta}}{2} - 1.$$

4

2 Teorema de Ehrhart

Antes de ir para o teorema desta seção, vamos dar algumas definições. Um politopo \mathcal{P} em \mathbb{R}^n é o fecho convexo de uma quantidade finita de pontos, isto é, dados $v_0, \ldots, v_k \in \mathbb{R}^n$, definimos o fecho convexo desses pontos por

ConvHull
$$(v_0, ..., v_k) = \left\{ \sum_{i=0}^k a_i v_i : a_i \ge 0 \text{ e } \sum_{i=0}^d a_i = 1 \right\}.$$

Em alguns casos, um politopo pode ser definido como sendo $\{x \in \mathbb{R}^n : Ax \leq b\}$, em que $A \in \mathcal{M}_{m \times n}$ e $b \in \mathcal{M}_{m \times 1}$. A dimensão de um politopo é definida como a dimensão do espaço afim gerados pelas combinações convexas de elementos de \mathcal{P} , isto é, a dimensão de

$$\{x + ty : x, y \in \mathcal{P} \in t \in \mathbb{R}\}.$$

Denotamos a dimensão de \mathcal{P} por dim \mathcal{P} . Se um politopo \mathcal{P} tiver dimensão $d \in \mathbb{N}$, diremos que \mathcal{P} é um d-politopo. Temos que um d-politopo convexo tem pelo menos d+1 vértices. No caso em que a quantidade de vértices for precisamente d+1, diremos que o politopo é um d-simplexo. Por exemplo, todo triângulo é um 2-simplexo.

Para finalizar as definições, chamamos um politopo de inteiro (racional) quando os vértices tem coordenadas inteiras (racionais).

[1] é uma boa referência para essas definições e alguns resultados sobre esse tema. Estamos prontos para ir para a teoria.

Teorema de Ehrhart. Se $\mathcal{P} \subset \mathbb{R}^n$ é um d-politopo inteiro convexo, então a função $\ell_{\mathcal{P}}(t) := \#(t\mathcal{P} \cap \mathbb{Z}^n)$ coincide com um polinômio de grau $d, \forall t \in \mathbb{N}_0$. Esse polinômio é denotado por $L_{\mathcal{P}}(t)$ e é chamado de polinômio de Ehrhart.

Esse teorema foi demonstrado em 1962 por Ehrhart. Na demonstração original, ele usou a equivalência (i)-(iii) da seguinte Proposição.

Proposição 1. Sejam $f: \mathbb{N}_0 \to \mathbb{C}$ uma função e $d \in \mathbb{N}_0$. São equivalentes:

(i) Existe $P(z) \in \mathbb{C}[z]$ com $\partial P \leq d$ tal que

$$\sum_{t>0} f(t)z^t = \frac{P(z)}{(1-z)^{d+1}}.$$

(ii) $\forall t \in \mathbb{N}_0$,

$$\sum_{k=0}^{d+1} (-1)^{d+1-k} \binom{d+1}{k} f(t+k) = 0.$$

(iii) Existe um polinômio de grau $\leq d$ que coincide com $f(t), \forall t \in \mathbb{N}_0$.

Em 2009, Sam [4] deu uma nova demonstração para o Teorema de Ehrhart em que ele usou a equivalência (ii)-(iii). Neste trabalho, vamos refazer as ideias usadas por ele, então vamos demonstrar apenas a equivalência (ii)-(iii) da Proposição 1.

Demonstração: (ii) ⇔ (iii)

Suponha f não identicamente nula. Vamos por indução em d.

Caso base (d = 0):

(ii)
$$0 = \sum_{k=0}^{1} (-1)^{1-k} {1 \choose k} f(t+k) = f(t+1) - f(t), \forall t \in \mathbb{N}_0$$

(iii) f(t) coincide com um polinômio de grau $\leq 0, \forall t \in \mathbb{N}_0$.

Note que (iii) $\Leftrightarrow f(t) = \text{constante}, \forall t \in \mathbb{N}_0 \Leftrightarrow f(t+1) = f(t), \forall t \in \mathbb{N}_0 \Leftrightarrow \text{(ii)}.$

Suponha que (ii) \Leftrightarrow (iii) para algum $d-1 \in \mathbb{N}$. Vamos mostrar a equivalência para d.

(iii) \Rightarrow (ii): Por hipótese de indução, se p(t) coincide com um polinômio de grau $\leq d-1, \forall t \in \mathbb{N}_0$, então $\sum_{k=0}^d (-1)^{d-k} \binom{d}{k} p(t+k) = 0$. Seja $\tilde{f}(t)$ um polinômio de grau $\leq d$. Então $g(t) := \tilde{f}(t+1) - \tilde{f}(t)$ é um polinômio de grau $\leq d-1$. Dado $t \in \mathbb{N}_0$, temos que $\tilde{f}(t) = f(t)$, daí:

$$0 = \sum_{k=0}^{d} (-1)^{d-k} \binom{d}{k} \underbrace{f(\underbrace{t+1+k}) - f(\underbrace{t+k})}_{\in \mathbb{N}_{0}} = \sum_{k=0}^{d} (-1)^{d-k} \binom{d}{k} f(t+1+k) - \sum_{k=0}^{d} (-1)^{d-k} \binom{d}{k} f(t+k)$$

$$= \sum_{k=1}^{d+1} (-1)^{d+1-k} \binom{d}{k-1} f(t+k) - \sum_{k=0}^{d} (-1)^{d-k} \binom{d}{k} f(t+k)$$

$$= f(t+d+1) + (-1)^{d+1} f(t) + \sum_{k=1}^{d} (-1)^{d-k+1} \left[\binom{d}{k-1} + \binom{d}{k} \right] f(t+k)$$

$$= \sum_{k=0}^{d+1} (-1)^{d-k+1} \binom{d+1}{k} f(t+k),$$

em que usamos a relação de Stifel na última passagem.

(ii) \Rightarrow (iii) Seja f tal que $\sum_{k=0}^{d+1} (-1)^{d-k+1} {d+1 \choose k} f(t+k) = 0$. Pela construção anterior, temos que g(t) := f(t+1) - f(t) satisfaz $\sum_{k=0}^{d} (-1)^{d-k} {d \choose k} g(t+k) = 0$. Por hipótese de indução, g(t) coincide com um polinômio de grau $\leq d-1, \forall t \in \mathbb{N}_0$. Note que

$$f(t+1) = g(t) + f(t) = g(t) + g(t-1) + f(t-1) = \dots = \sum_{k=0}^{t} g(k) + f(0) := S + f(0).$$

Suponha que $g(t) = g_0 + \dots + g_{d-1}t^{d-1}, \forall t \in \mathbb{N}_0$. Daí,

$$S = \sum_{k=0}^{t} (g_0 + \dots + g_{d-1}k^{d-1}) = g_0 \sum_{k=0}^{t} 1 + g_1 \sum_{k=0}^{t} k + \dots + \sum_{k=0}^{t} k^{d-1}.$$

Como para cada $r \in \{0, \ldots, d-1\}$, $\sum_{k=0}^{t} k^r$ é um polinômio em t de grau r+1, segue que S coincide com um polinômio em t de grau $\leq (d-1)+1=d, \forall t \in \mathbb{N}_0 (\leq,$ pois pode ocorrer $g_{d-1}=0$). Como f(0) é uma constante, segue que f coincide com um polinômio em t de grau $\leq d, \forall t \in \mathbb{N}_0$.

Definição 2. Uma triangulação de um d-politopo convexo é uma coleção finita de d-simplexos $\mathcal{T} = \{\Delta_i\}$ tal que

- 1. $\bigcup \Delta_i = \mathcal{P}$;
- 2. Se Δ_i e $\Delta_j \in \mathcal{T}$, então $\Delta_i \cap \Delta_j$ é uma face comum de Δ_i e Δ_j .

Lema 1. Para todo politopo convexo \mathcal{P} , existe uma triangulação em simplexos $\{\Delta_i\}$ tal que o conjunto de vértice dos Δ_i 's coincide com o conjunto de vértices de \mathcal{P} .

Agora estamos prontos para demonstrar o Teorema de Ehrhart.

Demonstração: Pela Proposição 1, é suficiente mostrar que

$$\sum_{k=0}^{d+1} (-1)^{d+1-k} \binom{d+1}{k} \ell_{\mathcal{P}}(t+k) = 0, \forall t \in \mathbb{N}_0,$$

isto é,

$$\ell_{\mathcal{P}}(t+d+1) = \sum_{k=0}^{d} (-1)^{d-k} \binom{d+1}{k} \ell_{\mathcal{P}}(t+k), \forall t \in \mathbb{N}_0.$$

Pelo Lema 1, basta mostrar essa propriedade para \mathcal{P} simplexo. Antes de formalizar, vamos verificar um exemplo geometricamente. Considere \mathcal{P} o triângulo com vértices em (0,0),(4,0) e (4,4) (d=2 e t=0). Geometricamente, temos

Figura 5: $\ell_{\mathcal{P}}(3) = 3\ell_{\mathcal{P}}(2) - 3\ell_{\mathcal{P}}(1) + 1$

É usado o princípio da inclusão-exclusão para contar a quantidade de pontos inteiros em $3\mathcal{P}$ nesse exemplo e essa é a ideia para o caso geral.

Considere o simplexo \mathcal{P} de vértices $\{v_0, \ldots, v_d\}$ e $t \in \mathbb{N}_0$. Para cada $i \in \{0, \ldots, d\}$, considere $Q_i := (t+d)\mathcal{P} + v_i$ e defina $Q = \bigcup Q_i$. Intuitivamente, cada Q_i é uma cópia de um múltiplo de \mathcal{P} tranladado pelo vértice v_i e $Q = (t+d+1)\mathcal{P}$.

Vamos usar o princípio da inclusão-exclusão para determinar $\#(Q \cap \mathbb{Z}^n)$:

$$\#(Q \cap \mathbb{Z}^n) = \#\left(\bigcup_{i=0}^d Q_i \cap \mathbb{Z}^n\right) = \#\left(\bigcup_{i=0}^d (Q_i \cap \mathbb{Z}^n)\right)$$
$$= \sum_{i=0}^d \#R_i - \sum_{0 \le i \le j \le d} \#R_i \cap R_j + \dots + (-1)^d \#\left(\bigcap_{i=0}^d R_i\right)$$

Para isso, precisaremos calcular a cardinalidade de todas as possíveis interseções dos Q_i 's (pois $\bigcap R_i = \bigcap Q_i \cap \mathbb{Z}^n$).

Observe que, dado $j \in \{0, \dots, d\}$, temos

$$Q_{j} = \{v_{j} + (t+d)p : p \in \mathcal{P}\}\$$

$$= \left\{v_{j} + (t+d)\sum_{i=0}^{d} c_{i}v_{i} : c_{i} \geq 0 \text{ e } \sum_{i=0}^{d} c_{i} = 1\right\}$$

$$= \left\{\sum_{i \neq j} \underbrace{(t+d)c_{i}}_{a_{i}} v_{i} + \underbrace{[(t+d)c_{j}+1]}_{a_{j}} v_{j} : c_{i} \geq 0 \text{ e } \sum_{i=0}^{d} c_{i} = 1\right\}$$

$$= \left\{\sum_{i=0}^{d} a_{i}v_{i} : a_{i} \geq 0, i \neq j, a_{j} \geq 1 \text{ e } \sum_{i=0}^{d} a_{i} = t+d+1\right\}.$$

Para cada $I \subseteq \{0, \ldots, d\}$, temos:

$$\bigcap_{i \in I} Q_i = \left\{ \sum_{i=0}^d a_i v_i : a_i \ge 0, \forall i \notin I, a_j \ge 1, \forall j \in I \text{ e } \sum_{i=0}^d a_i = t + d + 1 \right\};$$

Seja $R_I = (t+d+1-\#I)\mathcal{P} + \sum_{i \in I} v_i$. Então

$$R_{I} = \left\{ \sum_{i=0}^{d} (t+d+1-\#I)c_{i}v_{i} + \sum_{i\in I} v_{i} : c_{i} \geq 0, \sum_{i=0}^{d} c_{i} = 1 \right\}$$

$$= \left\{ \sum_{i\notin I} \underbrace{(t+d+1-\#I)c_{i}}_{a_{i},i\notin I} v_{i} + \sum_{i\in I} \underbrace{[(t+d+1-\#I)c_{i}+1]}_{a_{i},i\in I} v_{i} : c_{i} \geq 0, \sum_{i=0}^{d} c_{i} = 1 \right\}$$

$$= \left\{ \sum_{i=0}^{d} a_{i}v_{i} : a_{i} \geq 0, i \notin I, a_{i} \geq 1, i \in I \text{ e } \sum_{i=0}^{d} a_{i} = t+d+1 \right\}. \tag{1}$$

Vamos explicar um pouco melhor como chegamos à igualdade envolvendo o somatório em (1). Temos que

$$\#I \le d+1 \Rightarrow t+d+1-\#I \ge t \ge 0 \text{ e } c_i \ge 0.$$

Daí, se $i \notin I$, então $a_i \ge 0$ e se $i \in I$, então $a_i \ge 1$. Também,

$$\sum_{i=0}^{d} a_{i} = \sum_{i \notin I} (t+d+1-\#I)c_{i} + \sum_{i \in I} [(t+d+1-\#I)c_{i}+1]$$

$$= (t+d+1-\#I) \sum_{i \notin I} c_{i} + (t+d+1-\#I) \sum_{i \in I} c_{i} + \sum_{i \in I} 1$$

$$= (t+d+1-\#I) \sum_{i=0}^{d} c_{i} + \#I$$

$$= t+d+1$$

Portanto, concluímos que

$$\bigcap_{i \in I} Q_i = (t + d + 1 - \#I)\mathcal{P} + \sum_{i \in I} v_i.$$

Da igualdade anterior e usando o fato que cada v_i é inteiro, temos que, dado I tal que #I = k em que $k \in \{1, \ldots, d+1\}$,

$$\# \left(\bigcap_{i \in I} Q_i \cap \mathbb{Z}^n \right) = \# \left(\left((t+d+1-k)\mathcal{P} + \sum_{i \in I} v_i \right) \cap \mathbb{Z}^n \right) \\
= \# ((t+d+1-k)\mathcal{P} \cap \mathbb{Z}^n) = \ell_{\mathcal{P}}(t+d+1-k)$$

Pelo princípio da inclusão-exclusão (visto acima) e usando o fato que há $\binom{d+1}{k} = \binom{d+1}{d+1-k}$ subconjuntos de cardinalidade k, temos que

$$\#(Q \cap \mathbb{Z}^n) = \sum_{i=0}^d \#R_i - \sum_{0 \le i \le j \le d} \#R_i \cap R_j + \dots + (-1)^d \# \left(\bigcap_{i=0}^d R_i\right) \\
= \binom{d+1}{1} \ell_{\mathcal{P}}(t+d+1-1) - \binom{d+1}{2} \ell_{\mathcal{P}}(t+d+1-2) + \\
+ \dots + (-1)^d \binom{d+1}{d+1} \ell_{\mathcal{P}}(t+d+1-(d+1)) \\
= \sum_{k=1}^{d+1} (-1)^{k-1} \binom{d+1}{k} \ell_{\mathcal{P}}(t+d+1-k) \\
= \sum_{m=0}^d (-1)^{d-m} \binom{d+1}{m} \ell_{\mathcal{P}}(t+m),$$

em que m = d+1-k. Para finalizar essa parte, devemos verificar que $Q = (t+d+1)\mathcal{P}$ (daí, $\#(Q \cap \mathbb{Z}^n) = \ell_{\mathcal{P}}(t+d+1)$).

(\subseteq) Seja $q \in Q$. Então $q \in Q_j$, para algum $j \in \{0, \ldots, d\}$. Daí $q = \sum_{i=0}^d a_i v_i$, com $a_i \geq 0$, para $i \neq j$, $a_j \geq 1$ e $\sum_{i=0}^d a_i = t + d + 1$. Logo $\sum_{i=0}^d \frac{a_i}{t + d + 1} = 1$ e $q = \sum_{i=0}^d (t + d + 1)c_i v_i$, em que $c_i = \frac{a_i}{t + d + 1} \geq 0$, $\forall i$. Portanto, $q \in (t + d + 1)\mathcal{P}$. (\supseteq) Seja $q \in (t + d + 1)\mathcal{P}$. Então $q = \sum_{i=0}^d (t + d + 1)c_i v_i$, $c_i \geq 0$ e $\sum_{i=0}^d c_i = 1$. Logo

(\supseteq) Seja $q \in (t+d+1)\mathcal{P}$. Então $q = \sum_{i=0}^{d} (t+d+1)c_i v_i$, $c_i \ge 0$ e $\sum_{i=0}^{d} c_i = 1$. Logo $\sum_{i=0}^{d} (t+d+1)c_i = t+d+1$ e $a_i := (t+d+1)c_i \ge 0$, $\forall i$. Resta mostrar que existe $j \in \{0,\ldots,d\}$ tal que $a_j \ge 1$. Suponha que $0 \le a_i < 1$, $\forall i$. Então $t+d+1 = \sum_{i=0}^{d} a_i < \sum_{i=0}^{d} 1 = d+1 \le t+d+1$, o que é um absurdo. Portanto, $q \in Q_j$, para algum j, donde concluímos que $q \in Q$. Portanto, concluímos que

$$\ell_{\mathcal{P}}(t+d+1) = \sum_{k=0}^{d} (-1)^{d-k} \binom{d+1}{k} \ell_{\mathcal{P}}(t+k)$$

e pela Proposição 1, existe um polinômio $L_{\mathcal{P}}(t)$ de grau $\leq d$ tal que $\ell_{\mathcal{P}}(t) = L_{\mathcal{P}}(t), \forall t \in \mathbb{N}_0$. Para concluir a demonstração, devemos mostrar que o grau desse polinômio é exatamente d.

Transladado \mathcal{P} de forma que v_0 coincida com a origem (se necessário), temos que v_1, \ldots, v_d são vetores L.I., pois \mathcal{P} é d-dimensional. Dados inteiros positivos $k_1, \ldots, k_d, \tilde{k}_1, \ldots, \tilde{k}_d \leq t$, temos que $k_1v_1 + \cdots + k_dv_d = \tilde{k}_1v_1 + \cdots + \tilde{k}_dv_d \Leftrightarrow k_i = \tilde{k}_i, \forall i$. Assim a quantidade de vetores distintos $v = k_1v_1 + \cdots + k_dv_d$ é exatamente t^d . Note que todos os v escritos dessa maneira pertencem a $(dt\mathcal{P} \cap \mathbb{Z}^n)$, pois

- $v = \sum_{i=0}^{d} k_i v_i$, com $k_0 = 0$ e $\sum_{i=0}^{d} k_i \le \sum_{i=1}^{d} t = td$.
- $v \in \mathbb{Z}^n$, pois $v_i \in \mathbb{Z}^n$ e $k_i \in \mathbb{Z}, \forall i$.

Assim, $\#(dt\mathcal{P}\cap\mathbb{Z}^n)=L_{\mathcal{P}}(dt)\geq t^d$. Isso implica que $\partial L_{\mathcal{P}}\geq d$, pois caso contrário, $t^d\leq L_{\mathcal{P}}(dt)=a_0+\cdots+a_{d-1}d^{d-1}t^{d-1}, \forall t\in\mathbb{N}_0$, o que é um absurdo. Portanto, $\partial L_{\mathcal{P}}=d$.

Teorema de Ehrhart (Racional). Se $\mathcal{P} \subset \mathbb{R}^n$ é um d-politopo racional convexo, então a função $\ell_{\mathcal{P}}(t) := \#(t\mathcal{P} \cap \mathbb{Z}^n)$ coincide com um quasi-polinômio de grau $d, \forall t \in \mathbb{N}_0$.

Observação. Um quasi-polinômio de grau d é uma função $f: \mathbb{N} \to \mathbb{C}$ da forma

$$f(t) = c_d(t)t^d + \cdots + c_0(t),$$

em que cada c_i é uma função periódica de período inteiro e $c_d \neq 0$.

Demonstração: A ideia é bem parecida com a demonstração do Teorema de Ehrhart. Vamos fazer uma pequena alteração ao tomarmos os conjuntos Q_i e R_I . Como o politopo é racional, existe $s \in \mathbb{N}$ tal que $s\mathcal{P}$ é um politopo inteiro. Dessa forma, dado $k \in \{0, \ldots, s-1\}$, considere $Q_i := (t+k+sd)\mathcal{P} + sv_i$, para cada $i \in \{0, \ldots, d\}$, e dado $I \subseteq \{0, \ldots, d\}$, considere $R_I := (t+k+s(d+1-\#I))\mathcal{P} + \sum_{i \in I} sv_i$. Verificamos que

$$Q_{j} = \left\{ \sum_{i=0}^{d} a_{i}v_{i} : a_{i} \geq 0, i \neq j; a_{j} \geq s \text{ e } \sum_{i=0}^{d} a_{i} = t + k + s(d+1) \right\}$$

$$\bigcap_{i \in I} Q_{i} = \left\{ \sum_{i=0}^{d} a_{i}v_{i} : a_{i} \geq 0, i \notin I; a_{i} \geq s, i \in I \text{ e } \sum_{i=0}^{d} a_{i} = t + k + s(d+1) \right\}$$

$$R_{I} = \left\{ \sum_{i=0}^{d} a_{i}v_{i} : a_{i} \geq 0, i \notin I; a_{i} \geq s, i \in I \text{ e } \sum_{i=0}^{d} a_{i} = t + k + s(d+1) \right\},$$

donde concluímos que

$$\bigcap_{i \in I} Q_i = (t + k + s(d + 1 - \#I))\mathcal{P} + \sum_{i \in I} sv_i.$$

Verificamos também que

$$Q := \bigcup_{i=0}^{d} Q_i = (t + k + s(d+1))\mathcal{P}.$$

Usando o princípio da inclusão-exclusão, temos que

$$\#(Q \cap \mathbb{Z}^n) = \#\left(\bigcup_{i=0}^d (Q_i \cap \mathbb{Z}^n)\right)$$
$$\ell_{\mathcal{P}}(t+k+s(d+1)) = \sum_{m=0}^d (-1)^{d-m} \binom{d+1}{m} \ell_{\mathcal{P}}(t+k+sm)$$

Suponha que $t+k \equiv 0 \pmod{s}$. Daí, para cada $m \in \{0, \ldots, d+1\}$, $\ell_{\mathcal{P}}(t+k+sm) = \ell_{\mathcal{P}}(s\frac{t+k}{s}+m) = \ell_{s\mathcal{P}}(\frac{t+k}{s}+m)$, pois $\ell_{\mathcal{P}}(st) = \#(st\mathcal{P} \cap \mathbb{Z}^n) = \#(t(s\mathcal{P}) \cap \mathbb{Z}^n) = \ell_{s\mathcal{P}}(t)$. Portanto,

$$\ell_{s\mathcal{P}}\left(\frac{t+k}{s}+d+1\right) = \sum_{m=0}^{d} (-1)^{d-m} \binom{d+1}{m} \ell_{s\mathcal{P}}\left(\frac{t+k}{s}+m\right)$$

e pela Proposição 1, existe um polinômio $L_{s\mathcal{P}}^k(t)$ de grau $\leq d$ tal que $\ell_{\mathcal{P}}(t) = L_{s\mathcal{P}}^k(t)$, $\forall t \in \mathbb{N}_0$, com $t \equiv -k \pmod{s}$. A passagem para mostrar que o grau é exatamente d é análoga à do caso anterior.

Fazendo esse procedimento para cada $k \in \{0, ..., s-1\}$, obtemos s polinômios $L_{s\mathcal{P}}^k(t)$ (a princípio distintos) de tal forma que $\ell_{\mathcal{P}}(t)$ coincide com algum $L_{s\mathcal{P}}^k(t)$, dependendo da classe de congruência de t módulo s.

3 Semigrupos Numéricos

Definição 3. Dizemos que $H \subseteq \mathbb{N}_0 = \{0, 1, 2, \ldots\}$ é um semigrupo numérico se:

- $0 \in H$;
- $a, b \in H \Rightarrow a + b \in H$;
- $\mathbb{N}_0 \setminus H$ é um conjunto finito.

Denotamos o conjunto das lacunas do semigrupo numérico H por $G(H) := \mathbb{N}_0 \setminus H$, o qual é um conjunto finito. Para não ficar artificial, vamos exemplificar essa definição.

Exemplo 1. Considere o conjunto $H = \{0, 2, 4, 6, 8, \rightarrow\}$, em que \rightarrow significa que todo inteiro positivo após o último número escrito (no exemplo o número é 8) aparece em H. Como $0 \in H$ e $G(H) = \mathbb{N}_0 \setminus H = \{1, 3, 5, 7\}$, basta verificar a propriedade do fechamento. Se a e $b \in H$, com $a, b \leq 8$, então a e b são pares. Logo a + b também é par, donde concluímos que $a + b \in H$. Se $a, b \in H$, com a, b > 8, então a + b é um inteiro maior que 8. Como todo inteiro maior que 8 pertence a H, temos que $a + b \in H$. Portanto, H é um semigrupo numérico.

Considere $H_{p,q} := \langle p, q \rangle = \{ap + bq : a, b \in \mathbb{N}_0\}$, em que $1 e <math>\mathrm{mdc}(p,q) = 1$. É possível mostrar que, sob essas condições, $H_{p,q}$ é um semigrupo numérico. Seja $G_{p,q} := G(H_{p,q})$ o conjunto das lacunas de $H_{p,q}$.

Problema. Dados $p \ e \ q \in \mathbb{N}$ com 1 , defina

$$\mathcal{H}_{p,q} := \{ H \text{ semigrupo num\'erico} : H \supseteq H_{p,q} \} \ e$$

$$n(p,q) = \#\mathcal{H}_{p,q}$$
.

Existe uma fórmula explícita para o número n(p,q)? Essa fórmula depende apenas de p e q?

Observe que para resolver esse problema, devemos estudar o conjunto $G_{p,q}$ e determinar quais dos subconjuntos S de $G_{p,q}$ fazem com que $H_{p,q} \cup S$ seja ainda um semigrupo numérico.

Exemplo 2. Considere o semigrupo numérico $H_{2,5}$. Temos que $G_{2,5} = \{1,3\}$. Os subconjuntos S de $G_{2,5}$ que fazem com que $H_{2,5} \cup S$ seja ainda um semigrupo numérico são $S_0 = \emptyset$, $S_1 = \{3\}$ e $S_2 = \{1,3\}$. Assim, n(2,5) = 3.

Existe uma forma de enxergar o conjunto $G_{p,q}$ que torna o problema mais "tratável".

Proposição 2. Seja $k \in G_{p,q}$. Então existe um único $(a,b) \in \mathbb{N}_0^2$ tal que

$$k = c - 1 - (ap + bq) = pq - (a + 1)p - (b + 1)q.$$

Dado $k \in G_{p,q}$, temos que k > 0. Da Proposição anterior, (a,b) satisfaz (a+1)p + (b+1)q < pq. Definindo $\Delta_0 := \{(a,b) \in \mathbb{N}_0^2 : (a+1)p + (b+1)q < pq\}$, conseguimos a bijeção

$$\gamma: \Delta_0 \longrightarrow G_{p,q}$$

$$(a,b) \longmapsto c-1-(ap+bq)$$

Observe que o conjunto Δ_0 corresponde aos pontos de \mathbb{N}_0^2 abaixo da reta

$$r: p(X+1) + q(Y+1) = pq.$$

Exemplo 3. Considere o semigrupo numérico $H_{5,13}$. As lacunas são representadas por

Figura 6: $G_{5,13}$ através da bijeção γ

Através dessa forma de enxergar o conjunto das lacunas e usando um pouco da teoria de caminhos reticulados, Hellus e Waldi [2] conseguiram encontrar uma bijeção entre $\mathcal{H}_{p,q}$ e $(\mathcal{A}_p \cap \{x_p = q\}) \cap \mathbb{N}_0^p$, em que $\mathcal{A}_p := \{x = (x_1, \dots, x_p) \in \mathbb{R}_+^p : x \text{ satisfaz (2)}\}$ e

$$x_i + x_j \le \begin{cases} x_{i+j}, \text{ se } i+j \le p \\ x_p + x_{i+j-p}, \text{ se } i+j > p \end{cases}$$
 (2)

Observe que $\mathcal{P} = \mathcal{A}_p \cap \{x_p = 1\}$ é um (p-1)-polítopo racional. De fato,

- o sistema de inequações que define \mathcal{A}_p tem coeficientes inteiros (logo racionais), logo \mathcal{A}_p é um politopo racional;
- \mathcal{A}_p tem dimensão p e quando intersectado com o hiperplano $x_p = 1$, a dimensão cai em uma unidade, logo dim $\mathcal{A}_p = p 1$.

Pelo Teorema de Ehrhart (Racional), temos que $\#(q\mathcal{P}\cap\mathbb{Z}^n)$ é um quasi-polinômio em q de grau p-1. Usando outros métodos, é possível demonstrar que esse quasi-polinômio tem coeficiente líder constante. Assim, temos o seguinte resultado:

Teorema 1. O número n(p,q) coincide com um quasi-polinômio em q de grau p-1 e coeficiente líder constante.

Exemplo 4.

$$n(2,q) = \frac{1}{2}q + \frac{1}{2}.$$

Exemplo 5.

$$n(3,q) = \left\lfloor \frac{q^2}{12} + \frac{q}{2} \right\rfloor + 1 = \begin{cases} \frac{1}{12}q^2 + \frac{1}{2}q + \frac{2}{3}, & se \ q \equiv 0 \pmod{2} \\ \frac{1}{12}q^2 + \frac{1}{2}q + \frac{5}{12}, & se \ q \equiv 1 \pmod{2} \end{cases}$$

Exemplo 6.

$$n(4,q) = \begin{cases} \frac{1}{72}q^3 + \frac{1}{6}q^2 + \frac{13}{24}q + \frac{5}{8}, & se \ q \equiv 1 \pmod{6} \\ \frac{1}{72}q^3 + \frac{1}{6}q^2 + \frac{13}{24}q + \frac{1}{2}, & se \ q \equiv 3 \pmod{6} \\ \frac{1}{72}q^3 + \frac{1}{6}q^2 + \frac{13}{24}q + \frac{7}{18}, & se \ q \equiv 5 \pmod{6} \end{cases}$$

Referências

- [1] Beck, M. and Robins, S., Computing the Continuous Discretely, Undergraduate Texts in Mathematics, Springer, 2007.
- [2] Hellus, M. and Waldi, R., On the number of numerical semigroups containing two coprime integers p and q (preprint).
- [3] Murty, M.R. and Thain, N., *Pick's Theorem via Minkowski's Theorem*. Amer. Math. Monthly **114** (2007) no. 8, 732-736.
- [4] Sam, S., A bijective proof for a theorem of Ehrhart. Amer. Math. Monthly 116 (2009) no. 8, 688-701.