Thermodynamik schwarzer Löcher

eine Seminararbeit von Tamara Szecsey

19. Januar 2016

Inhaltsverzeichnis

1.	Einleitung	3
2.	Informationsentropie im Allgemeinen	3
3.	Die thermodynamischen Hauptsätze in Analogie zu schwarzen Löchern 3.1. Nullter Hauptsatz der Thermodynamik 3.2. Erster Hauptsatz der Thermodynamik 3.3. Zweiter Hauptsatz der Thermodynamik 3.4. Thermodynamik 3.5. Thermodynamik 3.6. Thermodynamik 3.7. Thermodynamik 3.8. Thermodynamik 3.9. Thermodynamik 3.9. Thermodynamik 3.9. Thermodynamik 3.9. Thermodynamik	
4.	Evaporation/Verdampfung	8
5 .	Weitere Betrachtungen 5.1. Wirkungsintegrale	9 9
6.	Schlusswort	10
Α.	Zustände in der Thermodynamik	10
В.	Verschränkung	10
C.	Quantum bounce	11
D.	Oberflächen-Volumen Verhälnis	11
E.	Wirkung	11

1. Einleitung

Noch immer bilden die sogenannten schwarzen Sterne oder schwarzen Löcher ein Geheimnis. Vor ein paar Jahren sind einige Menschen in Panik geraten, weil sie dachten, im Teilchenbeschleuniger CERN könnten schwarze Löcher entstehen und die Erde verschlucken.

Was hat es mit diesen astronomischen Gebilden auf sich? Wo sollen die Physiker überhaupt anfangen so eines zu betrachten. Noch nie konnte ein Mensch oder eine von ihm gebauten Maschine ein solches Loch aus der nähe betrachten.

Eine Herangehensweise ist, Analogien zu bereits bekannten physikalischen Theorien zu bilden. Hierbei stoßen wir natürlich immer noch auf das Problem, dass die Quantentheorie und die Gravitationstheorie nicht vereinbar sind.

Die thermodynamische Betrachtungsweise bietet die Möglichkeit, durch nur wenige Parameter wie die Masse, der Drehimpuls oder die elektrische Ladung, Aussagen über ein schwarzes Loch zu treffen und Fragen zu formulieren. Was passiert zum Beispiel mit der Information, die dort hineinfliegt?

Diese Seminararbeit soll einen kleinen Einblick geben, allerdings sind Sie von mir herzlich eingeladen, nein, ich fordere Sie sogar auf die Links im Anhang zu nutzen und sich weiter zu belesen oder sich den Vortrag von Sean Carroll [1] anzusehen.

2. Informationsentropie im Allgemeinen

Zunächst ein kurzer Einblick, um welche Art von Entropie es sich hier handeln wird. Ludwig Boltzmann hatte festgestellt, dass eine Proportionalität zwischen der Entropie S und $\log W$ herrscht, wobei W die Wahrscheinlichkeit, dass ein bestimmtes Ereignis stattfindet, darstellt. Der zugehörige Proportionalitätsfaktor k ist die Boltzmann-Konstante.

$$S = k \log W \tag{1}$$

Dies ist eine wichtige Verbindung zwischen Statistik und Thermodynamik. Die Verallgemeinerte Boltzmannsche Beziehung bring dann die sogenannte Informationsentropie hervor, die in diesen Gestalten geschrieben werden kann:

$$S = \begin{cases} -k \langle \ln \rho \rangle \\ -k Sp(\rho \ln \rho) \\ -k \sum_{n} \rho_n \ln \rho_n \end{cases}$$
 (2)

wobei ρ die Wahrscheinlichkeit ist, die Energie E_n im mikrokanonischen Ensemble anzutreffen. (Wir wollen hier nicht weiter auf die thermodynamische Definition der Entropie eingehen, für Fragen zu den Grundlagen siehe [3])

Wie wir jetzt aber zu Information kommen, soll ein Beispiel zeigen. Dabei geht es um eine quantitativen Betrachtung der selben. Wir betrachten nun eine Reihe von Ereignissen $E_n(n=1,2,\ldots,N)$, die mit bestimmten Wahrscheinlichkeiten ρ_n auftreten, wobei

$$\sum_{n=1}^{N} \rho_n = 1 \tag{3}$$

Nun sehen wir das Eintreten bestimmter Ereignisse E_n , dabei hat jede unserer Feststellungen einen Informationswert I_n . Nach häufiger Wiederholung kann man einen mittleren Informationsgehalt aufstellen:

$$I = \sum_{n=1}^{N} \rho_n I_n \tag{4}$$

Hier legen wir wie in der Informationstheorie fest

$$I = -\sum \rho_n \mathrm{ld}(\rho_n) \tag{5}$$

wobei ld(x) der dyadische Logarithmus von x ist, also gilt $2^{ld(x)} = x$. Wir haben (5) so festgelegt, dass ein Ereignis allein durch eine Ja oder Nein Frage (oder durch 0 und 1) vollständig charakterisierbar ist.

Wir machen nun zwei Zahlenbeispiele zur Veranschaulichung:

1. Beispiel: Sei N=2, $\rho_1=\rho_2=\frac{1}{2}$ was z.B. heißten könnte, ein Teilchen hält sich mit gleicher Wahrscheinlichkeit in der linken oder rechten Hälfe eines Kastens auf, oder eine Münze landet mit gleicher Wahrscheinlichkeit mit der Zahl oder dem Wappen nach oben gerichten auf dem Boden. Es benötigt genau eine Ja-Nein-Frage, um herauszufinden, wo das Teilchen liegt oder wie herum die Münze gefallen ist.

$$I = \operatorname{ld}(2) = 1 \operatorname{bit}$$

Ein Bit ist die Einheit für Information.

2. Beispiel: Sei $N=6, \rho_n=\frac{1}{6}$, wobei die Ereignisse E_n die Seiten eines Würfels sein könnten, der Informationsgehalt ist dann

$$I = ld(6) = 2,58 bit$$

(siehe auch [3])

3. Die thermodynamischen Hauptsätze in Analogie zu schwarzen Löchern

Ich möchte zuvor noch kurz erklären, wie wir auf die später verwendete Hawkingtemperatur kommen. Diese wird hergeleitet aus der Unruh-Temperatur, welche aus dem Unruh-Effekt resultiert. Dieser besagt, dass ein beschleunigter Körper einer Schwarzkörperstrahlung ausgesetzt ist, welche proportional zu Beschleunigung ist. Genauer gesagt gilt

$$T_{\text{Hawking}} = \frac{T_{\text{Unruh}}}{2} = \frac{1}{4\pi r_s}.$$
 (6)

(siehe auch [7])

3.1. Nullter Hauptsatz der Thermodynamik

Wir beginnen mit der Erklärung der Hawkingstrahlung. Diese fand Steven Hawking [11], als er den gekrümmten Raum in euklidische Koordinaten transformierte (z.B. Minkowski-Raum). Hierbei entstanden im Grundzustand Entartungen, die störungstheoretisch entwickelt werden müssen.

Anschaulich bedeutet dies, dass zwei verschränkte Teilchen (siehe Appendix B), die durch Vakuumfluktuation am Horizont des schwarzen Lochs entstehen so getrennt werden, dass das mit negativer Energie in das schwarze Loch hinein fällt, und das, welches eine positive Energie besitzt ins Unendliche im Raum verschwindet. Genau letzteres sorgt für eine Hawkingstrahlung und die Hawkingtemperatur wie später in Kap 4 Gleichung (10) zu sehen.

Der Grund für diese physikalische Interpretation ist, dass das schwarze Loch mit dem Rest unseres Universums im thermischen Gleichgewicht stehen müsste. Da aber das Universum nicht einfach aus nichts besteht, sondern wir Hintergrundstrahlung messen können, muss das schwarze Loch auch strahlen.

Die mechanische Analogie zu diesem Gesetz besagt außerdem, dass wir eine Beschleunignung an der Oberfläche zum Mittelpunkt des schwarzen Lochs haben, da, wie wir später sehen werden, alle Entropie am Horizont sitzt.

Mit anderen Worten, das Gravitationsfeld muss homogen sein, genau wie bei der Erde kann nicht im gleichen Abstand an der einen Stelle ein riesiges Gravitationsfeld sein, und an der Anderen gar keins.

3.2. Erster Hauptsatz der Thermodynamik

Der erste Hauptsatz der Thermodynamik besagt, dass die Änderung der inneren Energie gleich der Summe aus der Änderung der Wärme und der Änderung der Arbeit ist, vorausgesetzt, es handle sich um ein geschlossenes System. Er steht somit für Energierhaltung.

$$\Delta U = \Delta Q + \Delta W \tag{7}$$

In unserem Fall wäre es nützlich, dies in der Form

$$dE = TdS + dW (8)$$

zu schreiben.

Tatsächlich findet man eine analoge Gleichung für schwarze Löcher. Hierzu verwenden wir die Oberfläche des schwarzen Lochs mit dem Schwarzschildradius, welche, wie wir später abermals sehen werden, proportional zur Entropie ist (siehe Kap. 3.3). Allerdings berücksichtigen wir die Rotation, wodurch die Kugel mit dem Schwarzschildradius zusammengedrückt wird. Für die Beschreibung benutzt man die Kerr-Neumann Metrik und geschickt gewählten Koordinaten namens Boyer-Lindquist Koordinaten.

Da eine ausführliche, mathematische Darstellung den Rahmen von dieser Seminararbeit sprengen würde, möchte ich für Berechnung auf [2] oder [6] verweisen. Das Endergebnis ist von der Gestalt

$$d(Mc^2) = \frac{\kappa}{8\pi G} dA + \Omega dJ - \Phi dq \tag{9}$$

Hierbei wurde $E=Mc^2$ benutzt und die Proportionalität zwischen Entropie und Oberfläche des schwarzen Lochs, welche aus dem zweiten Hauptsatz folgt (sieh Kap. 3.3). Die Beiden letzten Summanden sind der Drehimpuls und die elektrische Feldstärke. κ ist auf dem Schwarzschildradius eine Konstante und wird allgemein als Oberflächen-Schwerebeschleunigung bezeichnet. (siehe [6])

Dies bedeutet nun, dass die Änderung der Masse proportional zur Summe der Änderung der Fläche und der Änderung von Drehimpuls und elektrischem Feld ist.

3.3. Zweiter Hauptsatz der Thermodynamik

Bei der obigen Gleichung 9 haben wir verwendet, dass Masse, elektrische Ladung und Drehmoment immer proportional zur Oberfläche des schwarzen Lochs sind. Außerdem haben sowohl Hawking [11] also auch Misner, Thorne und Wheeler [8] gezeigt, dass der Ereignishorizont eines schwarzen Lochs nicht kleiner werden kann, sondern gleich bleibt oder sogar größer wird.

Diese Oberfläche verhält sich sozusagen wie die thermodynamische Entropie in geschlossenen Systemen.

Durch die Hawkingtemperatur und der Definition von Temperatur in der Thermodynamik

$$\frac{\mathrm{d}S}{\mathrm{d}E} = \frac{1}{T}, \qquad T_{\mathrm{Hawking}} = \frac{\hbar c^3}{8\pi GM} \tag{10}$$

und durch ersetzen von $E = Mc^2$, erhalten wir

$$S_{BH} = \frac{c^3 A}{4G\hbar} = \frac{A}{4\ell_P^2} \tag{11}$$

Der Ereignishorizont ist die Fläche A, welche eine Kugeloberfläche um das schwarze Loch mit dem Schwarzschildradius bildet:

$$r_s = \frac{2GM}{c^2}, \qquad A = 4\pi r_s^2 \tag{12}$$

Die Entropie in (11) wird auch Bekenstein-Hawking Entropie genannt. Die Plancklänge beträgt $\ell_p = \sqrt{\frac{G\hbar}{c^3}} \approx 10^{-32}\,\mathrm{m}$.

Ein sonnen-schweres schwarzes Loch hätte eine Horizontfläche $\frac{1}{5}$ -mal so groß wie die Erdoberfläche und ihre Entropie wäre von der Ordnung 10^{77} . Dies ist über zehn Größenordnungen höher, als die Entropie der jetzigen Sonne.

Es scheint als ob die Entropie des schwarzen Lochs sich nicht mit der hineingefallenen Entropie während seiner Entstehung gleicht.

Was man hier benützt hat, ist das sogenannte holographische Prinzip.

Das holographische Prinzip

In einem flachen Raum, wie z.B. in der String Theorie verwendet, nehmen wir eine Region Γ an, z.B. das Volumen eines schwarzen Lochs mit Radius gleich dem Schwarzschildradius. Die maximale Entropie, also auch die maximale Information, welche in *Gamma* hineinpasst ist proportional zur Fläche des Randes $\partial\Gamma$, in unserem Fall der Fläche A aus Gleichung (12). Dabei steckt ein Bit Information, welche durch die Entropie dargestellt werden kann, auf diesem Rand $\partial\Gamma$ in vier Planckflächen. Eine anschauliche Darstellung sehen Sie in Abb. 1.

Abbildung 1: Zweidimensionale Oberfläche des Horizonts aufgeteilt in Planck Einheiten. Die Entropie hat allerdings eine Einheit von 4 solchen Planckflächen für ein Bit. Siehe (11). (aus [2])

Nun könnte man in einem Gedankenexperiment alle Energie und Information des Universums zusammenpacken, in ein solches Volumen und dann dieses soweit ausdehnen bis der Rand dieses Volumens der Rand des für uns sichtbaren Universums bildet. Alle Information, die es in unserem Universum gibt, wäre dann *allein* in diesem Rand gespeichert!

Auf Grund des Oberflächen-Volumen Verhältnis (siehe Appendix D) ergibt sich, dass die Oberflächen zwei einzelner schwarzer Löcher immer kleiner ist, als die Oberfläche des schwarzen Lochs nachdem eben diese Beiden sich zu einem vereint haben. Da wir inzwischen wissen, dass die Oberfläche proportional zur Entropie und diese wiederum proportional zur Masse des schwarzen Lochs ist, gilt

$$M_3 > M_2 + M_1 \tag{13}$$

wobei M_3 das verschmolzene schwarze Loch ist, welches ursprünglich mal aus M_2 und M_1 bestand.

4. Evaporation/Verdampfung

Wie wir bereits wissen, besitzt ein großes schwarzes Loch für einen Beobachter in großer Ferne eine Temperatur (siehe Gleichung (10)) besitzt. Dies hat eine Wärmestrahlung zur Folge also ein Energieverlust.

Dank Einstein wissen wir, dass Masse und Energie gleich sind, wenn man c=1 setzt. Jedes schwarze Loch verliert also im Lauf der Zeit an Masse, bis es verschwindet. Dieser Vorgang wird als Evaporation bezeichnet.

Man stellt fest, dass

$$\frac{\mathrm{d}E}{\mathrm{d}t} \approx \frac{C}{r_s^2} \tag{14}$$

gilt, wobei ${\cal C}$ eine analytisch nicht berechenbare Konstante ist.

Hierbei fällt die Analogie zum Stefan-Boltzmann Gesetz $\frac{\mathrm{d}E}{\mathrm{d}A\mathrm{d}t}=\sigma T^4$ auf. Durch ersetzen des Schwarzschildradius und der Energie durch die Masse erhalten wir eine Differentialgleichung für die Masse des schwarzen Lochs

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{C}{(GM)^2} \tag{15}$$

und so kommen wir auf die Zeit, die es brauchen würde, bis es vollkommen verdampft ist:

$$t_{\rm evap} \sim G^2 M^3 \tag{16}$$

Ein sonnenschweres schwarzes Loch würde nach etwa 10^{66} Jahren verdampft sein (zum Vergleich, das alter unseres Universums wird auf $13,8\cdot 10^9$ Jahre geschätzt). Mit anderen Worten, wenn wir eine Verdampfung beobachten wollen, dann müssten wir ein sehr kleines schwarzes Loch finden, um vielleicht eine Chance zu haben, länger als $t_{\rm evap}$ zu leben.

Aber was passiert mit der Entropie? Hawking [10] legte dar, dass die Vorstellung, die Entropie würde die Anzahl der Möglichkeiten zählen, wie ein schwarzes Loch entstehen könne, gegen die Quantenmechanik verstößt. Außerdem wird das schwarze Loch beim verdampfen bevor es komplett verschwindet erst Plancksche Größen annehmen, in der unsere bekannten physikalischen Gesetze vermutlich nicht mehr gelten.

Eine von den zwei folgenden Ereignissen muss passieren:

- (1) Die Verdampfung stoppt und das schwarze Loch in Planckgröße bleibt weiter unverändert im Raum. Dieses Überbleibsel hat eine sehr hohe Verschränkungsentropie weil es mindestens die gesamte Entropie des schwarzen Lochs vor dem Beginn der Verdampfung beinhalten muss.
- (2) Die Verdampfung wird zu Ende geführt. Die Energieerhaltung verhindert, dass mit dem letzten Ausstoß von Photonen genug Verschränkungsentropie mitgetragen werden kann, damit diese Zustände zusammen mit denen der zuvor ausgestrahlten Strahlung wieder einen reinen Zustand bilden können. Dies verletzt die Quantenmechanik, das Endresultat ist ein Mischzustand mit Entropie in der Größenordnung des Horizonts in Planckgrößen ganz am Anfang.

Punkt (1) ist zwar möglich, aber wenn ein schwarzes Loch aus Photonen und Gravitonen entsteht, dann muss es sich auch komplett wieder in diese auflösen können (es wäre also Inkonsistent mit der CPT(charge, parity, time = Ladung, Parität, Zeit)).

Unter Anderem Hawking plädieren für Punkt (2). Er meint, dass die Entstehung und Verdampfung eines schwarzen Lochs nicht mit einer unitären S-Matrix beschrieben werden kann, also dass schwarze Löcher quantenmechanische und klassische Information zerstören kann.

Wem das nicht gefällt, der würde eher für einen dritten Punkt stimmen, der mit dem zweiten Punkt zwar übereinstimmt, aber noch etwas weiter geführt wird:

(3) Die Hawkingstrahlung kommt genau genommen nicht in einem Mischzustand. Die Information wird in den Verbindungen zwischen Hawkingphotonen hinausgetragen. Am Ende der Verdampfung haben wir wieder einen reinen Zustand des Strahlungsfeldes. Nur kleine Untersysteme sehen so aus, als wären sie thermisch, deshalb funktioniert diese Betrachtungsweise nur, wenn wir nicht auf zu viele Photonen zugleich schauen.

Mit anderen Worten es macht nun einen Unterschied, ob wir als Beobachter weit weg sind, von wo aus wir kaum Strahlung bemerken würden, oder ob wir sehr nahe am Horizont sitzen, wo die Strahlung sehr hoch wäre.

(Bei weiterem Interesse, bitte siehe Jerusalem Lectures [7])

5. Weitere Betrachtungen

5.1. Wirkungsintegrale

Zur Berechnung der thermodynamischen Potentiale benötigt man in der Thermodynamik eine sogenannte Zustandssumme. Diese kann mit einem euklidischen Pfadintegral berechnet werden, welche alle möglichen Wege, die ein Teilchen einschlagen kann, unterschiedlich stark berücksichtigt. Deshalb ergibt sich aus der Summe aller gewichteten Pfade zwischen zwei Orten eine Gesamtwahrscheinlichkeit des Ortsübergangs.

Die gesuchte Zustandssumme ist von der Gestalt

$$Z = \int d[\Phi] \exp\left(-\frac{I_E}{\hbar}\right) \simeq \exp\left(-\frac{I_{E,B}}{\hbar}\right)$$
 (17)

ist. Wobei I_E die euklidische Wirkung ist, $\Phi(x,t)$ ist das Feld, welches wir betrachten. (für weiteres Verständnis siehe [6] und [5])

In Termen der höheren Ordnung entstehen Korrekturterme, welche die Fluktuationen der Felder und der Metrik mit berücksichtigen.

5.2. Loop Quantum Gravity (LQG)

Die Loop-Quantengravitation (Loop = Schleifen) ist eine Konkurrenztheorie der Stringtheorie und nimmt keine Singularität in der Mitte des schwarzen Lochs an, sondern beinhaltet die Theorie, dass es weiße Löcher gibt, die sich wie schwarze Löcher mit rückwärts laufender Zeit verhalten.

Ein einlaufendes Wellenpaket würde dann, während es einem *Quantum bounce* (siehe Appendix C) durchmacht, durch das schwarze Loch in ein weißes Loch hineintunneln. Eine Metrik dazu haben Rovelli und Haggard [4] aufgestellt. Die Folge für die Entropie des schwarzen Lochs sind am Ende 'nur' Korrekturterme.

6. Schlusswort

Ich hoffe, ich habe einen verständlichen Einblick in die Physik von schwarzen Löchern gegeben. Falls Sie noch weiter lesen möchten, das Buch von Sean Carroll [9] und die Jerusalems Lectures [7] sind für eine*n Physiker*in verständlich geschrieben. Sean Carroll hat auch für Nichtphysiker Vorträge gehalten und Bücher geschrieben, z.B. können Sie sich diesen Vortrag mal anhören: [1]

In diesem Gebiet gibt es noch viel zu holen. Wir haben immer noch keine Quantengravitationstheorie gefunden! Wir wissen immer noch nicht, was direkt während des Urknalls passiert ist, überall scheint unsere bekannte Physik zu versagen.

Es ist an der jüngeren Generation Physikern und Physikerinnen oder Quereinsteigern die Lösung dieser Probleme zu finden! Also, worauf wartet ihr noch?!

A. Zustände in der Thermodynamik

Mikrozustand

Ein Mikrozustand ist im klassischen Fall ein Punkt im Phasenraum. Damit ist Ort und Impuls für jedes Teilchen gegeben.

Makrozustand

Viele Mikrozustände bilden einen Makrozustand, der durch Parameter dargestellt ist, die nicht mehr direkt mit Ort oder Impuls einzelner Teilchen zu tun hat.

B. Verschränkung

Durch die Quantenfluktuation im Vakuum, die durch die Heisenbergsche Unschärferelation auch erlaubt ist, können Teilen und Antiteilchen für kurze Zeit sozusagen aus dem Nichts entstehen und wieder verschwinden. Dabei sind genau diese Teilen verschränkt.

Was Verschränkung genau bedeutet erkläre ich nun Anhand eines einfacheren Beispiels: Sagen wir, wir besitzen zwei Kugeln, welche die Farben blau oder rot haben können. Sie können allerdings nicht die gleiche Farbe haben. Zu Beginn wissen wir nicht, welche Kugel welche Farbe hat, sie stecken z.B. in zwei separaten Kisten. Wir nennen die Kugeln K_1 und K_2 und entfernen Sie voneinander, sodass wir nur noch K_1 in einer Kiste vor uns haben.

Wenn wir nun die Kiste öffnen, wissen wir nicht nur, welche Farbe K_1 hat, sondern auch, dass die Kugel K_2 , die wir im Moment nicht sehen können, genau die andere Farbe hat! Solange wir aber die Kisten nicht öffnen, befinden sich die Kugeln in einem verschränkten Zustand, in dem zwar beide Farben möglich sind, aber die Farben voneinander abhängen.

Das bedeutet allerdings nicht, dass so Information übertragen werden kann. Entfernen wir z.B. die zweite Kugel bis zum anderen Ende der Milchstraße, so wissen wir beim Öffnen unserer Kiste welche Farbe die Kugel auf am anderen Ende hat, aber die Person, die dort steht wird das erst erfahren, wenn sie selbst die Kiste öffnet oder wir ein Signal dort hingeschickt haben.

C. Quantum bounce

Wenn es z.B. um die Urknalltheorie geht, dann besagt der *Quantum bounce*, dass unser Universum erst ausgedehnt war wie es jetzt ist, dann sich der Raum sehr hoch verdichtet hat, und dann wieder in die jetzige Größe 'gebounct' ist. Das bedeutet im Falle der LQG, dass das schwarze Loch sich irgendwann zusammenzieht, und dann als weißes Loch wieder 'zurückbounct' und sozusagen alles, was es aufgesaugt hat, wieder ausspuckt. Da aber für einen entfernten Beobachter Gegenstände, die Nahe am Horizont sind und gerade hineinfallen, unglaublich langsam erscheinen, wird es sehr lange dauern, so einen 'Quantum bounce' bei einem schwarzen Loch zu sehen.

D. Oberflächen-Volumen Verhälnis

Das Volumen einer Kugel steigt im Verhälnis zu ihrer Oberfläche nur zu einem Drittel. Das kann man so berechnen

$$\begin{aligned} &A = 4\pi r^2 \\ &V = \frac{4}{3}\pi r^3 \end{aligned} \Rightarrow \frac{A}{V} = \frac{4\pi r^2}{\frac{4}{3}\pi r^3} = \frac{3}{r}$$
 setzte $r = 1 \Rightarrow V = \frac{1}{3}A$

Ein ähnliches Verhältnis gilt für alle Körper. In der Biologie versucht man so zu erklären, warum die Menschen in kalten Regionen im Durchschnitt größer sind als in warmen.

E. Wirkung

Lösung der Schrödingergleichung kann geschrieben werden als

$$\psi \propto A e^{\frac{i}{\hbar} \vec{p} \vec{x}}$$

Dabei ist $\vec{p}\vec{x}$ eine Wirkung, h übrigens auch. Mit anderen Worten für die Lösung einer quantenmechanischen Wellengleichung braucht man immer zwei Wirkungen, die sich aufheben können (für $\vec{p}=i\hbar\frac{\partial}{\partial x}$ und $\vec{x}=x)$

Literatur

- [1] URL: https://www.youtube.com/watch?v=_8bhtEgB8Mo.
- [2] J. D. Bekenstein. "Bekenstein-Hawking entropy". In: Scholarpedia 3.10 (2008). revision #135543, S. 7375. URL: http://www.scholarpedia.org/article/Bekenstein-Hawking_entropy.
- [3] Wilhelm Brenig. Statistische Theorie der Wärme, Gleichgewichtsphänomene. 3. Aufl. Springer-Verlag, 1992.
- [4] Hal M. Haggard und Carlo Rovelli. "Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling". In: (2014). URL: http://arxiv.org/abs/1407.0989.
- [5] Andreas Dullweber. "Pfadintegralmethoden". In: Diplomarbeit (1995).
- [6] Wolfgang Gebhardt. "Thermodynamik schwarzer Löcher. Holographisches Prinzip". In: (2006).
- [7] Daniel Harlow. "Jerusalem Lectures on Black Holes and Quantum Information". In: (2014). URL: http://arxiv.org/abs/1409.1231.
- [8] C. W. Misner, K. S. Thorne und J. A. Wheeler. In: *Gravitation, San Francisco, Freeman* (1973).
- [9] SeanCarroll. spacetime and geometry. 2004.
- [10] S.W.Hawking. "Breakdown of Predictability in Gravitational Collapse". In: *Phys Rev. D* 14 (1976), S. 2460–2473.
- [11] S.W.Hawking. "Particle Creation by Black Holes". In: Commun. math. Phys. 43 (1975), S. 199–220.