КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Кафедра обчислювальної математики

Лабораторна робота 3

На тему:

Вирішення задач теплопровідності

студента 4-го курсу бакалаврату Гаврилка Євгенія Дмитровича

Постанова задачі

Визначити температуру всередині і на повурхні цегляної колони діметром 0.5 м через одну годину, якщо раптово температура навколишнього середовища знизилась з +20 до - 20 С. Фізичні характеристики цегляної колони мають такі значення: $\lambda=0.77$ $W/(m\cdot K)$; c=0.83 $kJ/(kg\cdot K)$; $\rho=1600$ kg/m^3 ; $\gamma=7$ $W/(m^2\cdot K)$

1. Метод безпосередньої заміни похідних частковими

1.1. Теорія

Робимо заміну для обезрозміреного рівняння

$$\left. \frac{\partial v}{\partial x_1} \right|_{x_1 = 0} = 0 \tag{1}$$

$$v_0' = \frac{4v_1 - v_2 - 3v_0}{2h} + O(h^2) \tag{2}$$

$$-3v_0 + 4v_1 - v_2 = 0 (3)$$

$$\frac{\partial v}{\partial x_1} + \gamma_1 \cdot v \Big|_{x_1 = 1} = 0 \tag{4}$$

$$v_N' = \frac{v_N + 3v_{N-1} - 4v_{N-2}}{2h} + O(h^2)$$
 (5)

$$v_{N-2} - 4v_{N-1} + 3v_N = -2\gamma_1 \cdot h \cdot v \tag{6}$$

$$\frac{u_i^{j+1} - u_i^j}{\tau} = \left(\frac{1}{x} (x(\sigma \cdot u^{j+1} + (1 - \sigma) \cdot u^j)_{\bar{x}})_x\right)_i \tag{7}$$

$$x_{i}(u_{i}^{j+1} - u_{i}^{j}) = \frac{\tau}{h} (x_{i+0.5}(\sigma \cdot u^{j+1} + (1-\sigma) \cdot u^{j})_{\bar{x},i+1} - x_{i-0.5}(\sigma \cdot u^{j+1} + (1-\sigma) \cdot u^{j})_{\bar{x},i})$$
(8)

$$x_i(u_i^{j+1} - u_i^j) = \frac{\tau}{h^2} (x_{i+0.5}(\sigma \cdot (u_{i+1}^{j+1} - u_i^{j+1}) + (1 - \sigma) \cdot (u_{i+1}^j - u_i^j))$$
(9)

$$-x_{i-0.5}(\sigma \cdot (u_i^{j+1} - u_{i-1}^{j+1}) + (1 - \sigma) \cdot (u_i^j - u_{i-1}^j))$$
(10)

$$x_i \cdot u_i^{j+1} - \frac{\tau}{h^2} (x_{i+0.5} \cdot \sigma \cdot (u_{i+1}^{j+1} - u_i^{j+1}) - x_{i-0.5} \cdot \sigma \cdot (u_i^{j+1} - u_{i-1}^{j+1})) = (11)$$

$$x_i \cdot u_i^j - \frac{\tau}{h^2} (x_{i+0.5} \cdot (1-\sigma) \cdot (u_{i+1}^j - u_i^j) - x_{i-0.5} \cdot (1-\sigma) \cdot (u_i^j - u_{i-1}^j)) \quad (12)$$

$$x_i \cdot u_i^{j+1} - \frac{\tau}{h^2} (x_{i+0.5} \cdot \sigma \cdot (u_{i+1}^{j+1} - u_i^{j+1}) - x_{i-0.5} \cdot \sigma \cdot (u_i^{j+1} - u_{i-1}^{j+1})) = (13)$$

$$x_i \cdot u_i^j - \frac{\tau}{h^2} (x_{i+0.5} \cdot (1-\sigma) \cdot (u_{i+1}^j - u_i^j) - x_{i-0.5} \cdot (1-\sigma) \cdot (u_i^j - u_{i-1}^j)) \quad (14)$$

$$-\frac{\tau}{h^2} \cdot x_{i-0.5} \cdot \sigma \cdot u_{i-1} + \left(x_i + \frac{\tau}{h^2} \cdot \sigma \cdot (x_{i-0.5} + x_{i+0.5})\right) \cdot u_i - \frac{\tau}{h^2} \cdot x_{i+0.5} \cdot \sigma \cdot u_{i+1} = (15)$$

$$x_i \cdot u_i^j - \frac{\tau}{h^2} (x_{i+0.5} \cdot (1-\sigma) \cdot (u_{i+1}^j - u_i^j) - x_{i-0.5} \cdot (1-\sigma) \cdot (u_i^j - u_{i-1}^j))$$
 (16)

1.2. Алгоритм

Фізичні змінні:

$$u_1 = 20. + 273.15 (17)$$

$$u_0 = -20. + 273.15 \tag{18}$$

$$\lambda = 0.77 \tag{19}$$

$$c = 830.$$
 (20)

$$\rho = 1600. \tag{21}$$

$$\gamma = 7. \tag{22}$$

$$R = 0.5 \tag{23}$$

$$T = 3600 \tag{24}$$

Перехід до обезрозмірених змінних:

$$T_1 = \lambda/(c \cdot \rho \cdot R^2) \cdot T \tag{25}$$

$$\gamma_1 = R/\lambda \cdot \gamma \tag{26}$$

Параметри різнецевої схеми:

$$N = 20 \tag{27}$$

$$M = 20 (28)$$

$$\tau = T_1/M \tag{29}$$

$$h = 1/N \tag{30}$$

Різнецева схема:

$$A_{i,i-1} = -\sigma \cdot \tau / h^2 \cdot x_{i-0.5} \tag{31}$$

$$A_{i,i+1} = -\sigma \cdot \tau / h^2 \cdot x_{i+0.5} \tag{32}$$

$$A_{i,i} = x_i - A_{i,i-1} - A_{i,i+1} (33)$$

$$\varphi_i = x_i \cdot y_i + \tau \cdot (1 - \sigma)/h^2 \cdot (x_{i+0.5} \cdot (y_{i+1} - y_i) - x_{i-0.5} \cdot (y_i - y_{i-1})) \quad (34)$$

Ліві крайові умови:

$$A_{0,0} = -3 (35)$$

$$A_{0,1} = 4 (36)$$

$$A_{0,2} = -1 (37)$$

$$\varphi_0 = 0 \tag{38}$$

Праві крайові умови

$$A_{N,N} = 3 + 2 \cdot h \cdot \gamma_1 \tag{39}$$

$$A_{N,N-1} = -4 (40)$$

$$A_{N,N-2} = 1 (41)$$

$$\varphi_N = 0 \tag{42}$$

СЛАР:

$$A \cdot y = \varphi \tag{43}$$

Повторюємо кроки 15-27 M разів.

2. Інтего-інтерполяційним метод

2.1. Теорія

Розглядається задача Au=f з крайовими умовами. Головна ідея полягає в тому що б протабулювати значення функції на сітці. Крайові рівняння обирається так, щоб задовольняти крайовим умовам. Тобто

§ 16. Розв'язування одновимірного рівняння теплопровідності
Постановка задачі. В області
$$\overline{Q}_T = \{a \leq x \leq b, \ 0 \leq t \leq T\}$$
 внайти розв'язок одновимірного нестаціонарного рівняння теплопровідності
$$\frac{du}{dt} = \frac{1}{x^m} \frac{\partial}{\partial x} \left(x^m k(x, t) \frac{\partial u}{\partial x} \right) - q(x, t) u + f(x, t), \quad x \in (a, b), t > 0,$$
 (1) яке задовольняє початкові умови
$$u(x, 0) = u_0(x), \quad x \in [a, b]$$
 і крайові умови
$$\alpha_1 k(a, t) \frac{\partial u(a, t)}{\partial x} = \beta_1 u(a, t) - \mu_1(t);$$
 (3)
$$-\alpha_2 k(b, t) \frac{\partial u(b, t)}{\partial x} = \beta_2 u(b, t) - \mu_2(t),$$
 де $k(x, t), q(x, t), f(x, t), u_0(x), \mu_1(t), \mu_2(t)$ задані функції; $\alpha_k, \beta_k (k = 1, 2)$ — задані невід'ємні сталі, причому виконуються нерівності $= 1, 2$) — задані невід'ємні сталі, причому виконуються нерівності $= 1, 2$) — задані невід'ємні сталі, причому виконуються нерівності $= 1, 2$) — задані невід'ємні сталі, причому виконуються нерівності $= 1, 2$) — задані невід'ємні сталі, причому виконуються нерівності $= 1, 2$) — задані невід'ємні сталі, причому виконуються нерівності $= 1, 2$) — задані невід'ємні сталі, причому виконуються нерівності $= 1, 2$) — задані сталі, причому виконуються нерівності $= 1, 2$ 0 — $= 1, 2$ 1 $= 1, 2$ 2 $= 1, 2$ 3 $= 1, 2$ 4 $= 1, 2$ 4 $= 1, 2$ 4 $= 1, 2$ 5 $= 1, 2$ 5 $= 1, 2$ 6 $= 1, 2$ 6 $= 1, 2$ 6 $= 1, 2$ 6 $= 1, 2$ 6 $= 1, 2$ 6 $= 1, 2$ 7 $= 1, 2$ 8 $= 1, 2$ 8 $= 1, 2$ 8 $= 1, 2$ 9 $= 1, 2$

Рис. 1. Теорія

Методичні вказівки. Розглянемо різницеві методи розв'язування задачі (1) — (3). В області Q_T введемо сітку $\omega_{h,\tau} = \overline{\omega}_h \times \overline{\omega}_{\tau}$, де $\overline{\omega}_h =$ $=\{x_i=a+ih,\ h=(b-a)/N,\ i=0,\ 1,\ ...,\ N\};\ \overline{\omega}_{\mathfrak{r}}=\{t_j=j\mathfrak{r},\ t=T/M,\ j=0,\ 1,\ ...,\ M\}.$ Позначимо $y_{ij}=y_i(x_i,\ t_j)$. За допомогою інтегро-інтерполяційного методу апроксимуємо задачу (1) — (3) різницевою схемою з ваговими коефіцієнтами [22, $\bar{x}_{i}^{m}y_{i,i}^{l} = \sigma (\bar{p}y_{x}^{l+1})_{x,i} - \sigma \bar{x}_{i}^{m}\bar{q}_{i}y_{i}^{l+1} + (1-\sigma)(\bar{p}y_{x}^{l})_{x,i} - \sigma \bar{x}_{i}^{m}\bar{q}_{i}y_{i}^{l+1} + (1-\sigma$ $-(1-\sigma)\tilde{x}_{i}^{m}\tilde{q}_{i}u_{i}^{j}+\tilde{x}_{i}^{m}\tilde{f}_{i}$ (4) $i = 1, 2, \ldots, N-1, j = 1, 2, \ldots, M, y_i^0 = u_0(x_i),$ $i=0, 1, \ldots, N;$ $\sigma\alpha_1\tilde{p_1}y_{\overline{x}_1}^{l+1} + (1-\sigma)\alpha_1\tilde{p_1}y_{\overline{x}_2}^{l} = x_0^m\beta_1\sigma y_0^{l+1} + (1-\sigma)\beta_1x_0^my_0^{l} - x_0^m\overline{\mu_1} +$ $+\frac{h}{2}\alpha_{1}\tilde{x}_{0}^{m}y_{10}^{l}-\frac{h}{2}\alpha_{1}\tilde{x}_{0}^{m}(\tilde{f}_{0}-\sigma\tilde{q}_{0}y_{0}^{l+1}+(1-\sigma)\tilde{q}_{0}y_{0}^{l});$ (5) $-\sigma \alpha_{2} \tilde{p}_{N} y_{x,N}^{j+1} - (1-\sigma) \alpha_{2} \tilde{p}_{N} y_{x,N}^{j} = \sigma x_{N}^{m} \beta_{2} y_{N}^{j+1} + (1-\sigma) \beta_{2} x_{N}^{m} y_{N}^{j}$ $-x_{N}^{m}\bar{\mu}_{2}+\frac{h}{2}\alpha_{2}\bar{x}_{N}^{m}y_{t,N}^{i}-\frac{h}{2}\alpha_{2}\bar{x}_{N}^{m}(\tilde{f}_{N}-\sigma\bar{q}_{N}y_{N}^{i+1}-(1-\sigma)\bar{q}_{N}y_{N}^{i}),$ (6) де $\tilde{x}_0^m = h^{-1} \int_0^{x_1} x^m dx; \quad \tilde{x}_N^m = h^{-1} \int_0^{x_N} x^m dx;$ $\tilde{x}_{i}^{m} = (2h)^{-1} \int_{x_{i}}^{x_{i+1}} x^{m} dx, \quad i = 2, 3, \ldots, N-1;$ $\tilde{p}_i = x_{i-1/2}^m \bar{k}_{i-1/2}, \quad i = 1, 2, \ldots, N; \quad \tilde{S}_i = s_j^{i+\sigma} = s(x_i, t_j + \sigma \tau),$ i = 0, 1, ..., N; j = 0, 1, ..., M - 1.Покладаючи в (4) — (6) $\sigma = 0$, дістаємо явну схему; при $\sigma = 1$ схему з випередженням (повністю неявну схему); при $\sigma = 0.5 - \text{си-}$ метричну схему Кранка — Ніколсона, яка записується на шаблоні з шести вузлів. У разі досить гладких вихідних даних різницева схема (4)—(6)

У разі досить гладких вихідних даних різницева схема (4)—(6) стійка при $\sigma \ge 0,5$ і має місце рівномірна збіжність її зі швидкістю $O(h^2 + \tau^{m\sigma})$, де

 $m_{\sigma} = \begin{cases} 2 & \text{при } \sigma = 0.5; \\ 1 & \text{при } \sigma \neq 0.5. \end{cases}$

Рис. 2. Теорія

Різницева схема (4) — (6) при $\sigma \neq 0$ буде неявною, тому $g^{(+)}$ знаходиться як розв'язок СЛАР з тридіагональною матрицею, а саме: $c_1v_1+b_1v_2=\varphi_{ij}$ $d_i v_{i-1} + c_i v_i + b_i v_{i+1} = \varphi_i, \quad i = 2, 3, ..., N;$ (7) $d_{N+1}v_N + c_{N+1}v_{N+1} = \phi_{N+1}$ де $b_1 = \sigma \frac{\tau}{h^2} \alpha_1 p_1; \quad c_1 = -\sigma \frac{\tau}{h} \beta_1 x_0^m - \frac{\alpha_1}{2} x_0^m -\sigma - \frac{\tau}{2} \alpha_1 \tilde{x}_0^m q_0 - b_1;$ $\varphi_1 = (1 - \sigma) - \frac{\tau}{h} \beta_1 x_0^m y_0^l - \frac{\tau}{h} x_0^m \mu_2 - \frac{\alpha_1}{2} \bar{x}_0^m y_0^l - \frac{\tau}{2} \bar{x}_0^m y_0^l - \frac{\tau}{$ $= \frac{\tau}{2} \alpha_1 x_0^m \bar{f}_0 + (1-\sigma) \frac{\tau}{2} \alpha_1 x_0^m \bar{q}_0 y_0^l - (1-\sigma) \frac{\tau}{63} \alpha_1 \bar{p}_1 (y_0^l - y_0^l);$ $d_{i} = \frac{\sigma \tau}{h^{2}} \tilde{p}_{i}; \quad b_{i} = \frac{\sigma \tau}{h^{2}} \tilde{p}_{i+1}; \quad c_{i} = -\tilde{x}_{i}^{m} - \tau \sigma \tilde{x}_{i}^{m} \tilde{q}_{i} - (d_{i} + b_{i});$ (8) $\phi_{i} = -\frac{1}{x_{i}^{m}}y_{i}^{j} - \frac{\tau(1-\sigma)}{h^{2}}\left(\tilde{p}_{i+1}\left(y_{i+1}^{j} - y_{i}^{j}\right) - \tilde{p}_{i}\left(y_{i}^{j} - y_{i-1}^{j}\right)\right) +$ $+\tau(1-\sigma)\tilde{x}_{i}^{m}\tilde{q}_{i}y_{i}^{l}-\tau\tilde{f}_{i}\tilde{x}_{i}^{m}, \quad i=2, 3, \ldots, N;$ $d_{N+1} = \sigma \frac{\tau}{h^2} \alpha_2 p_N; \quad c_{N+1} = -\sigma \frac{\tau}{h} \beta_2 x_N^m - \frac{\alpha_2}{2} x_N^m - \sigma \frac{\tau}{2} \alpha_2 x_N^m q_N - d_{N+1};$ $\phi_{N+1} = (1-\sigma) \frac{\tau}{h} \beta_2 x_N y_N^i - \frac{\tau}{h} x_N^m \hat{\mu}_2 - \frac{\alpha_2}{2} \bar{x}_N^m y_N^i - \frac{\tau}{2} \bar{x}_N^m j_N +$ $+(1-\sigma)\frac{\tau}{2}\alpha_2x_N^mq_Ny_N^1+(1-\sigma)\frac{\tau}{h^2}\alpha_2p_N(y_N^1-y_{N-1}^1).$ Таким чином, розв'язавши СЛАР (7), знайдемо значення $y_i^{i+1} =$ $=v_{i+1}$ (i=0,1,...,N), якщо відомо розв'язок y_i^I на i-му ярусі (ва нульовому ярусі розв'язок задається виразом (5)).

Рис. 3. Теорія

2.2. Алгоритм

льовому ярусі розв'язок задається виразом (ді). Система лінійних алгебраїчних рівнянь (7) розв'язується методом прогонки. Обчислювальна схема цього методу зводиться до виконаєвя таких дій:
а) визначення коефіцієнтів
$$m_i$$
, w_i за формулами
$$m_2 = -b_1/c_1, \quad w_2 = \phi_1/c_1, \quad c_1 \neq 0;$$

$$m_{t+1} = -b_t/(c_t + d_t m_t), \quad w_{t+1} = (\phi_t - d_t w_t)/(c_t + d_t w_t),$$

$$i = 2, 3, \dots, N;$$
 171

Рис. 4. Алгоритм

б) обчислення
$$v_{N+1}$$
 за формулою
$$v_{N+1} = (\phi_{N+1} - d_{N+1}w_{N+1})/(c_{N+1} + d_{N+1}m_{N+1});$$
 в) визначення v_i за формулою
$$v_{i-1} = m_i v_i + w_i, \quad i = N+1, \ N, \ \dots, \ 2.$$

Рис. 5. Алгоритм

3. Практична частина

n = 10, m = 20, t = 24h20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 7.27 20.00 20.00 20.00 20.00 19.99 19.97 19.91 19.70 18.97 16.40 20.00 20.00 19.99 19.82 2.2719.98 19.94 19.48 18.56 16.19 10.82 19.98 19.99 19.96 19.90 19.75 19.38 18.52 16.67 13.09 7.40 -0.4319.94 19.92 19.85 19.70 19.35 18.61 17.18 14.63 10.58 4.84 -2.4118.72 19.78 19.64 17.61 15.71 19.83 19.33 12.73 8.44 2.82 -3.9319.61 19.53 19.29 18.80 17.93 16.48 14.23 10.98 6.61 1.16 -5.1615.29 17.0118.79 -0.2519.25 19.13 18.12 12.80 9.39 5.01 -6.19-1.4718.75 18.60 18.15 17.33 16.02 14.09 11.42 7.93 -7.073.60 17.94 12.90 17.41 -2.5418.12 16.45 14.98 10.11 6.592.34 -7.8417.3817.18 16.57 -3.49 15.50 13.91 11.72 8.87 5.35 1.20 -8.5216.55 16.33 15.66 14.5212.84 10.57 7.70 4.21 0.16-4.34-9.13 14.70 15.65 15.41 13.50 11.76 9.46 6.583.15 -0.79-5.11-9.68 14.69 14.45 13.71 12.47 10.70 8.38 5.52 2.15 -1.66-5.82-10.18-2.4813.71 13.45 12.70 11.44 9.654.521.22 -6.477.34 -10.6412.70 12.4411.68 10.41 8.62 6.33 3.55 0.34-3.23 -7.08-11.0711.68 11.42 10.66 7.625.36 -3.94-7.64 9.39 2.64 -0.49-11.46 10.66 10.41 9.65 8.39 6.641.76 -4.61-8.16 4.42 -1.27-11.83 9.65 9.40 8.65 7.40 5.68 3.51 0.93 -2.01-5.24-8.66 -12.178.65 8.40 7.66 4.762.64-2.72-5.83 -9.12 6.440.13-12.49 7.67 7.426.70 5.50 3.86 1.80 -0.64-3.40 -6.40 -9.56 -12.80

${ m n}=10,{ m m}=10,{ m t}=1{ m h}$											
20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	

20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.98	19.60	10.30
20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.92	18.84	9.53
20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.99	19.81	18.13	8.83
20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.97	19.66	17.47	8.19
20.00	20.00	20.00	20.00	20.00	20.00	19.99	19.93	19.47	16.84	7.60
20.00	20.00	20.00	20.00	20.00	20.00	19.99	19.89	19.27	16.25	7.05
20.00	20.00	20.00	20.00	20.00	20.00	19.98	19.84	19.04	15.69	6.53
20.00	20.00	20.00	20.00	20.00	20.00	19.96	19.77	18.80	15.16	6.05
20.00	20.00	20.00	20.00	20.00	19.99	19.95	19.69	18.55	14.66	5.60
20.00	20.00	20.00	20.00	20.00	19.99	19.93	19.61	18.29	14.18	5.18

Висновки

Процес проходить досить природньо для цегли. Методичка по інтегро- інтерполяційному методу - жах.