

IBM Machine Learning Professional Certificate Online Course Recommendation Model Shankesh Raju MS

Outline

- Introduction
- Exploratory Data Analysis
- Word cloud
- Content based Recommendation using user profile and genre
- Content based Recommendation using clusters
- KNN based collaborative filtering
- NMF based collaborative filtering
- Neural Network embedding based on collaborative filtering
- Performance Comparison
- Conclusion

Introduction

About

- Recommendation system for online courses
- Model recommends new courses based on different criterias
- Recommendations are generated based on user interest, course similarity in same group

Implementation

- using unsupervised learning
- using supervised learning

Exploratory Data Analysis

Course Enrollment and Genre Distribution

Word Cloud Titles

Content-based Recommender System User Profile and Genre

Real-Time Implementation

- Creation of simple user rating Data Frame
- Generation of user profiles
- Generation of recommended scores
- Top 5 Recommendations

Then, the average recommended courses per user is: (2+2+3)/3 = 2.33. The top-2 recommended courses are: course3: 2 times, and course4: 2 times.

	USER	COURSE_ID	SCORE
0	37465	RP0105EN	27.0
1	37465	GPXX06RFEN	12.0
2	37465	CC0271EN	15.0
3	37465	BD0145EN	24.0
4	37465	DE0205EN	15.0

	Title	Python	Database	MachineLearning
0	Python 101	1	0	0
1	Database 101	0	1	0
2	Machine Learning with R	0	0	1

Content-based Recommender System Course Similarity

Evaluation

- Score Threshold = 0.73
- ❖ On average, 12 new/unseen courses are recommended per user

- 1)'BD0101EN'
- 2)'DS0101EN'
- 3)'DS0110EN'
- 4)'excourse04'
- 5)'excourse23'
- 6) 'excourse32'
- 7)'excourse33'
- 8) 'excourse36'
- 9)'excourse63'
- 10)'excourse67'
- 11)'excourse68'
- 12)'excourse72'

Content-based Recommender System User Profile Clustering

Applying PCA on user profile to reduce dimensionality

user	PC0	PC1	PC2	PC3	PC4
2	17.772494	0.200681	1.730609	2.567359	-3.825814
4	7.145199	-2.847481	2.358636	-0.576654	0.398803
5	11.363270	1.873619	-1.522077	1.076144	-1.711688
7	-1.834033	-0.277462	0.564905	0.053470	-0.064440
8	-1.049125	-0.684767	1.072765	0.006371	-0.005695

2102054	0.633824	0.108815	-0.388871	-0.122665	-0.098364
2102356	-2.095339	0.135058	0.244727	-0.088185	0.025081
2102680	0.625943	-0.547167	-1.692824	-0.630589	0.166632
2102983	-2.036832	-0.153534	0.162852	0.082651	-0.126419
2103039	-2.036832	-0.153534	0.162852	0.082651	-0.126419

Evaluation

- Average recommended courses per user is 2.33
- The top-2 recommended courses are
 - Course 3 Twice
 - Course 4 Twice

	user	item	cluster
0	1502801	RP0105EN	9
1	1502801	BD0131EN	9
2	1502801	BD0212EN	9
3	1502801	BD0115EN	9
4	1502801	BD0211EN	9
9397	630511	BD0121EN	0
9398	630511	SC0101EN	0
9399	630511	BD0111EN	0
9400	630511	BD0115EN	0
9401	630511	PY0101EN	0

KNN-Based Collaborative Filtering

Implementation

- Collaborative filtering is probably the most commonly used recommendation algorithm, there are two main types of methods
 - User-based collaborative filtering is based on the user similarity or neighborhood

$$\hat{r} * ui = \frac{\sum v \in N_i^k(u) \text{similarity}(u, v) \cdot r_{-}vi}{\sum v \in N_i^k(u) \text{similarity}(u, v)}$$

Item-based collaborative filtering is based on similarity among items

$$\hat{r}*ui = rac{\sum *j \in N_u^k(i) ext{similarity}(i,j) \cdot r_u j}{\sum _j \in N_u^k(i) ext{similarity}(i,j)}$$

NMF-Based Collaborative Filtering

Neural Network Embedding - Based Collaborative Filtering

Implementation

- With explicit features vectors, we can perform machine learning tasks such as calculating the similarities among users or items, finding nearest neighbors, and using dot-product to estimate a rating value.
- The main advantage of using these explicit features is they are highly interpretable and yield very good performance as well. The main disadvantage is we need to spend quite some effort to build and store them
- Non-negative Matrix Factorization decomposes the user-item interaction matrix into user matrix and item matrix, which contain the latent features of users and items and you can simply dot-product them to get an estimated rating

Rating Implementation

Algorithm Evaluation

Appendixes

- https://github.com/sabhashanki
- https://www.codechef.com/users/androshanki