

MÉTODOS NUMÉRICOS

$$\int T(x) \cdot \frac{\partial}{\partial \theta} f(x,\theta) dx = M \left[T(\xi) \cdot \frac{\partial}{\partial \theta} \ln L(\xi,\theta) \right] \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \int_{\mathbb{R}^{N}} \frac{\partial}{\partial \theta} \ln L(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \int_{\mathbb{R}^{N}} \frac{\partial}{\partial \theta} \ln L(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \int_{\mathbb{R}^{N}} \frac{\partial}{\partial \theta} \ln L(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \int_{\mathbb{R}^{N}} \frac{\partial}{\partial \theta} \ln L(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \int_{\mathbb{R}^{N}} \frac{\partial}{\partial \theta} \ln L(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \int_{\mathbb{R}^{N}} \frac{\partial}{\partial \theta} \ln L(x,\theta) dx = \int_{\mathbb{R}^{N}} T(x) \cdot \int_{\mathbb{R}^{N}} \frac{\partial}{\partial \theta} \ln L(x,\theta) dx = \int_{\mathbb{R}$$

PROFESOR: MAT. MIGUEL ANDRES ZAMBRANO GARCES

VALERY I. NARANJO Z.

2021

ACTIVIDAD N°4

1. Resuelva de forma gráfica y utilizando el Simplex el siguiente problema

maximizar
$$z = 3x_1 + 2x_2$$

sujeto a $2x_1 + x_2 \le 16$
 $2x_1 + 3x_2 \le 40$
 $3x_1 + x_2 \le 20$
 $x_1, x_2 \le 0$

MÉTODO SIMPLEX

MATRIZ INICIAL

TABLA1	C_j	3	2	0	0	0	
C_b	BASE	X_1	X_2	S_1	S_2	S_3	R
0	S_1	2	1	1	0	0	16
0	S_2	2	3	0	1	0	40
0	S_3	3	1	0	0	1	20
	Z	-3	-2	0	0	0	0

PRIMERA ITERACIÓN

TABLA2	C_j	3	2	0	0	0	
C_b	BASE	X_1	X_2	S_1	S_2	S_3	R
0	S_1	0	1/3	1	0	-2/3	8/3
0	S_2	0	7/3	0	1	-2/3	80/3
3	S_3	1	1/3	0	0	1/3	20/3
	Z	0	-1	0	0	1	20

SEGUNDA ITERACIÓN

TABLA3	C_{j}	3	2	0	0	0	
C_b	BASE	X_1	X_2	S_1	S_2	S_3	R
2	S_1	0	1	3	0	-2	8
0	S_2	0	0	-7	1	4	8
3	S_3	1	0	-1	0	1	4
	Z	0	0	3	0	-1	28

TERCERA ITERACIÓN

TABLA4	C_j	3	2	0	0	0	
C_b	BASE	X_1	X_2	S_1	S_2	S_3	R
2	S_1	0	1	-1/2	1/2	0	12
0	S_2	0	0	-7/4	1/4	1	2
3	S_3	1	0	3/4	-1/4	0	2
	Z	0	0	5/4	1/4	0	30

SOLUCIÓN

La solución óptima es Z = 30,
$$X_1$$
 = 2, X_2 = 12, S_1 = 0, S_2 = 0, S_3 = 2

MÉTODO GRÁFICO

RESTRICCIONES POR SEPARADO

RESTRICCIONES JUNTAS

REGIÓN FACTIBLE

Procedemos a evaluar la función objetivo, en los puntos encontrados

VÉRTICE	X_1	X_1	$Z = 3X_1 + 2X_2$
A	0	13,33	26,66
В	2	12	30
С	4	8	28
D	6,67	0	20,01
E	0	0	0

La solución óptima es Z=30

2. Escriba el problema dual de los siguientes problemas primales

PRIMER PROBLEMA PRIMAL

maximizar
$$z = -5X_1 + 2X_2$$

sujeto a $-X_1 + X_2 \le -26$
 $2X_1 + 3X_2 \le 5$
 $X_1, X_2 \le 0$

PROBLEMA DUAL

$$\begin{aligned} & minimiz ar & & w = -2Y_1 + 5Y_2 \\ & sujeto & a & & -Y_1 + 2Y_2 \leq -2 \\ & & & Y_1 + 3Y_2 \leq 5 \\ & & & & Y_1, Y_{12} \leq 0 \end{aligned}$$

SEGUNDO PROBLEMA PRIMAL

$$minimiz ar$$
 $z = 6X_1 + 3X_2$ $sujeto$ a $6X_1 - 3X_2 + X_3 \le 2$ $3X_1 + 4X_2 + X_3 \le 5$ $X_1, X_2, X_3 \le 0$

PROBLEMA DUAL

$$\begin{array}{ll} maximiz ar & w = 2Y_1 + 5Y_2 \\ sujeto & a & 6Y_1 + 3Y_2 \le 6 \\ & -3Y_1 + 4Y_2 \le 3 \\ & Y_1 + Y_2 \le 0 \\ & Y_1, Y_2 \le 0 \end{array}$$

- 3. Una compañía fabrica dos productos, A y B. Los ingresos unitarios son 2 y 3, respectivamente. Las disponibilidades diarias de dos materias primas, M1 y M2, utilizadas en la fabricación de los dos productos son de 8 y 18 unidades, respectivamente. Una unidad de A utiliza 2 unidades de M1 y 2 unidades de M2, y una unidad de B utiliza 3 unidades de M1 y 6 unidades de M2.
 - (a) Determine los precios duales de M1 y M2 y sus intervalos de factibilidad.
 - (b) Suponga que pueden adquirirse 4 unidades más de M1 al costo de 30 centavos por unidad. ¿Recomendaría la compra adicional?
 - (c) ¿Cuánto es lo máximo que la compañía debe pagar por unidad de M2?
 - (d) Si la disponibilidad de M2 se incrementa en 5 unidades, determine el ingreso óptimo asociado.

PLANTEAMIENTO DEL PROBLEMA

Producto A (M1+M2):

Costo A: 2

Producto B (M1+M2):

Costo B: 3

PARA A: $\frac{M1}{2} = \frac{M2}{2}$ M2 = M1PARA B: $\frac{M1}{3} = \frac{M2}{6}$ M2 = 2M1

M1 Y M2 SON LINEALMENTE DEPENDIENTES, ENTONCES VAMOS A ESCOGER A M1 COMO INDEPENDIENTE.

FUNCION OBJETIVO:

$$BENEFICIO = 2A + 3B$$

 $maximizar \quad z = 2A + 3B$

$$z = 2(M1_A + M2_A) + 3((M1_B + M2_B))$$

 $z = 4(M1_A) + 9((M1_B))$

SUJETO A:

$$M1 = M1_A + M1_B$$

$$M2 = M2_A + M2_B$$

$$M1 \le 8$$

$$M2 \le 18$$

Variable de decisión:

 $M1_A$, $M1_B$ ($M2_A$, $M2_B$)

SOLUCIÓN DEL PROBLEMA

VALOR ÓPTIMO				
	X1	X1	Z	
z	0	1,33	4	
2	2	0	4	
ZB	0	2,67	8	
ZB	4	0	8	
M1	0	2,67		
IVII	4	0		
M2	0	3		
IVIZ	9	0		
PRECIO DUAL M1				
Dsiponibilidad Mínima	0,2	8		
Disponibilidad Máxima	9	18		
PRECIO DUAL M2				
	ON LINEALMENTE DEP			
ENTONCES VAMOS	S A ESCOGER A M1 CON	MO INDEPENDIENTE.		

b) Suponga que pueden adquirirse 4 unidades más de M1 al costo de 30 centavos por unidad. ¿Recomendaría la compra adicional?

Si, ya que al agregar 4 unidades más, la utilidad sería de \$14,4\$ porque el precio de \$M1\$ es de \$1.

c)¿Cuánto es lo máximo que la compañía debe pagar por unidad de M2?

Dado que el precio dual es 0 y además es una restricción redundante, no se debe agregar nada.

d) Si la disponibilidad de M2 se incrementa en 5 unidades, determine el ingreso óptimo asociado El ingreso óptimo sería 8, ya que es una restricción redundante.

4. Plantee el siguiente problema y resuélvalo utilizando un software de programación lineal.

Una refinería fabrica dos tipos de combustible para avión, F1 y F2, mezclando cuatro tipos de gasolina, A, B, C y D. El combustible F1 incluye las gasolinas A, B, C y D en la proporción 1:1:2:4, y el combustible F2 incluye la proporción 2:2:1:3. Los límites de abasto de A, B, C y D son 1 000, 1 200, 900 y 1 500 barriles/día, respectivamente. Los costos por barril de las gasolinas A, B, C y D son 120, 90, 100y 150, respectivamente. Las combustibles F1 y F2 se venden a 200y 250 por barril, respectivamente. La demanda mínima de F1 y F2 es de 200 y 400 barriles/día, respectivamente.

DESCOMPOSICIÓN DEL PROBLEMA

Sean la cantidad o número de barriles de tipos de gasolina A, B, C y D.

Se tienen las siguientes proporciones para los combustibles:

Combustible F1:

$$\frac{A}{1} = \frac{B}{1} = \frac{C}{2} = \frac{D}{4}$$

Combustible F2:

$$\frac{A}{2} = \frac{B}{2} = \frac{C}{1} = \frac{D}{3}$$

Con base en las proporciones mencionadas en el ejercicio, se tiene que las cantidades de barriles A, B, C y D son linealmente dependientes, es decir, dada por ejemplo la cantidad de barriles de A, se puede determinar automáticamente la cantidad de barriles de los tipos B, C y D. Esto implica que se puede considerar para cada combustible una sola variable como independiente y a la vez como variable de decisión con fines de simplificación. Entonces, se escoge para el combustible F1 el número de barriles del tipo A como variable independiente y para el combustible F2 se escoge el número C:

En este sentido, se tienen las siguientes relaciones:

Combustible F1 (A es variable independiente o variable de decisión):

$$B = A$$

$$C = 2A$$

$$D = 4A$$

Combustible F2 (C es variable independiente o variable de decisión):

$$A = 2C$$

$$B = 2C$$

$$D = 3C$$

El número de barriles ocupados para el combustible F1 es:

$$N_{F1} = A_{F1} + B_{F1} + C_{F1} + D_{F1}$$

El número de barriles ocupados para el combustible F2 es:

$$N_{F2} = A_{F2} + B_{F2} + C_{F2} + D_{F2}$$

Considerando el costo de cada combustible, se tiene el siguiente costo de venta o beneficio:

$$Beneficio = 200N_{F1} + 250N_{F2}$$

El costo de compra del combustible (inversión) es:

$$Costo = 120(A_{F1} + A_{F2}) + 90(B_{F1} + B_{F2}) + 100(C_{F1} + C_{F2}) + 150(D_{F1} + D_{F2})$$

La ganancia de la refinería es:

$$Ganancia = Beneficio - Costo$$

El problema de optimización se define de la siguiente manera:

Si se desea optimizar las ganancias para obtener el máximo provecho, se tiene:

$$maximizar$$
 $z = Beneficio - Costo$

En donde:

$$z = 200N_{F1} + 250N_{F2} - (120(A_{F1} + A_{F2}) + 90(B_{F1} + B_{F2}) + 100(C_{F1} + C_{F2}) + 150(D_{F1} + D_{F2}))$$

$$z = 200(A_{F1} + B_{F1} + C_{F1} + D_{F1}) + 250(A_{F2} + B_{F2} + C_{F2} + D_{F2}) - (120(A_{F1} + A_{F2}) + 90(B_{F1} + B_{F2}) + 100(C_{F1} + C_{F2}) + 150(D_{F1} + D_{F2}))$$

Sujeto a:

Combustible F1:

$$\frac{A}{1} = \frac{B}{1} = \frac{C}{2} = \frac{D}{4}$$

Combustible F2:

$$\frac{A}{2} = \frac{B}{2} = \frac{C}{1} = \frac{D}{3}$$

$$A \le 1000$$

$$B \le 1200$$

$$C \le 900$$

$$D \le 1500$$

$$N_{F1} \ge 200$$

$$N_{F2} \ge 400$$

RESOLUCIÓN DEL PROBLEMA MEDIANTE LA FUNCIÓN SOLVER DE EXCEL

	Combustible F1	Combustible F2	No. Barriles comprados	No. Barriles máximos (límites de abasto)	Costo por barril	Costo total	
A	25	932	957	1000	120	114840	
В	25	932	957	1200	90	86130	
С	50	466	516	900	100	51600	
D	100	1398	1498	1500	150	224700	
Número de barriles de combustible	200	3728			Costo compra (INVERSION)	477270	
Barriles mínimos	200	400					
Costo individual	200	250					
Costo venta (Beneficio)	40000	932000	972000				
Ganancia (costo venta-costo compra)	494730						