Machine Intelligence and Learning

Indian Institute of Technology Delhi

COURSE ASSIGNMENT 2

Mayank Mishra 2016EE30506

Chahat Chawla 2016MT10492

Medical Dataset

Visualizations

Fig. 2: Visualizing Hyperplanes learnt by Perceptron[(a) Medication (b) Healthy (c) Surgery]

Fig. 3: Visualizing Hyperplanes learnt by Perceptron with PCA [(a) Medication (b) Healthy (c) Surgery]

Fig. 4: One vs All Classification using FLDA [(a) Medication (b) Healthy (c) Surgery]

Algorithm	Accuracy	
Logistic Regression (Without	89.33%	
Regularization)		
Logistic Regression (With	88.93%	
Regularization)		
Softmax Classifier	89.57%	
Perceptron	59.23%	
Perceptron (after PCA)	80.08%	
SVM (Not Linearly Separable)		
FLDA (multiclass: healthy, surgery,	77.56%,	
medication)	81.67%,	
	80.77 %	

Table 1: Accuracy with different algorithms

Railway Dataset

Algorithm	Accuracy
Logistic Regression (Without	21.37%
Regularization)	
Logistic Regression (With	21.37%
Regularization)	
Softmax Classifier	21.37%
Perceptron	59.93%
SVM (Linearly Separable	59.93%
Assumption)	
SVM (Not Linearly Separable)	77.67%
FLDA	50.00%

Table 2: Accuracy with different algorithms

Data Visualization

Fig. 5: Class Conditional Distribution of Features

Fashion MNIST Dataset

Algorithm	Accuracy
Logistic Regression (Without Regularization)	80.08%
Perceptron	63.15%

River Dataset

Data Visualization

Fig.6: Original Data (in blue) and the predicted Curve (in Red)

Due to the nature of the problem, we apply Regression.

Learnings from the Assignment

- Gauging the performance of the algorithms designed for the linearly separable datasets on non-linearly separable datasets was one interesting aspect of the assignment.
- We apply transformation onto higher dimensional space to "improve linear separability" and thence aiding the learning of "better" separating hyperplanes.
- We learnt to make the optimal bias-variance tradeoff, by dividing the dataset into the Train/CV/Test Sets and tuning hyperparameters.
- Being a medical application, trading the different types of metrics (type-I, type-II errors) with medical dataset could be very much different.

- (An insight into the actual deployment of the Machine Learning models)
- We learnt to deal with Multiclass Classification tasks, via the One vs All and other approaches.
- Realized the significance of choosing the right Kernel for SVM. Specifically, we experimented with Polynomial, Gaussian, Sigmoidal, Laplace Kernels.
- We employed both the batch and stochastic versions of Perceptron and saw the difference while learning (due to Stochastic nature of the former) but to ultimate convergence.
- We employed 4-dimensional tensor to boost the performance of softmax classifier.

Implementation Details

- Local Optimums are attained with Softmax on Medical Dataset on different runs.
- Regularization did not help us in our case.
- We verified in working that Cross-Entropy Loss converges faster than Squared Error Loss.