Population-based Assignment of the Project Examples

<u>Goal of Week 8</u>: To do another KKT example, and then learn some increasingly-common algorithms that use multiple points in each iteration

Recap: How to optimize

Formulate the problem

- a) Define system boundaries
- b) Develop analytical models
- c) Explores is the project from Examt Helpect to $\mathbf{g}(\mathbf{x},\mathbf{p}) \leq 0$
- d) Formalize optimization problem https://powcoder.com

minimize $f(\mathbf{x}, \mathbf{p})$

(Weeks 1-2, 4, 9-12)

 $\mathbf{g}(\mathbf{x}, \mathbf{p}) \le 0$ $\mathbf{h}(\mathbf{x}, \mathbf{p}) = 0$

🗙 2. Solve the problem

TODAY

a) Choose the right approach all cho

(Weeks 3, 5-8, 12)

- b) Solve (by hand, code, or software)
- c) Interpret the results

d) Iterate if needed

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_0)$$

Recap: Gradient-based methods

Unconstrained

- FONC and SOSC (when math is simple enough for algebra)
- Gradient descent (algorithm with linear convergence)
- Newton Aresthead (adgotri Phroje th Expandir Heal ponvergence)

Constrained

- https://powcoder.com
 Reduced gradient (with known active constraints)
- Generalized Reduted Gatiant algorithms was active constr)
- Active set strategy (algorithm w updating set of active constr)
- Lagrangian (equality or active inequality constr)
- KKT conditions (with any inequality and equality constr)
- Quasi-Newton methods (2nd-derivative-free)
- SQP (efficiently handles constraints)

Recap: Quasi-Newton and SQP

Quasi-Newton methods approximate H^{-1} to simplify math

```
    Begin with x<sub>0</sub> and some assumed H<sub>0</sub><sup>-1</sup>.
    For iteration k, set x<sub>k+1</sub> = x<sub>k</sub> - α<sub>k</sub>H<sub>k</sub><sup>-1</sup>∇f(x<sub>k</sub>).
    Compute Assignment Projecto Example Lelp
        [∇f(x<sub>k+1</sub>) - ∇f(x<sub>k</sub>)], [x<sub>k+1</sub> - x<sub>k</sub>], and H<sub>k</sub><sup>-1</sup>.
    Update inverse Hessian approximation: H<sub>k+1</sub><sup>-1</sup> = H<sub>k</sub><sup>-1</sup> + Ĥ<sub>k</sub><sup>-1</sup>.
```

Sequential Quadratic Programming (SQP) let gorithm solves a subproblem for the step size and direction \mathbf{s}_k , then moves as $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$

minimize
$$q(\mathbf{s}_k) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{s}_k + \frac{1}{2} \mathbf{s}_k^T \nabla_{xx}^2 \mathcal{L}(\mathbf{x}_k, \lambda_k, \mu_k) \mathbf{s}_k$$
 where $\mathcal{L}(\mathbf{x}_k, \lambda_k, \mu_k) = f(\mathbf{x}_k) - \lambda^T \mathbf{h}(\mathbf{x}_k) - \mu^T \mathbf{g}(\mathbf{x}_k)$ subject to $\mathbf{g}(\mathbf{x}_k) + \nabla \mathbf{g}(\mathbf{x}_k)^T \mathbf{s}_k \leq \mathbf{0}$ $\mathbf{h}(\mathbf{x}_k) + \nabla \mathbf{h}(\mathbf{x}_k)^T \mathbf{s}_k = \mathbf{0}$

min
$$f(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 + 40x_1 + 20x_2 - 3000$$

s.t. $g_1(\mathbf{x}) = x_1 - 50 \ge 0$
 $g_2(\mathbf{x}) = x_1 + x_2 - 100 \ge 0$
 $g_3(\mathbf{x}) \triangleq \mathbf{x}_1 = \mathbf{x}_2$ Frojeso \mathbf{x}_3 where \mathbf{x}_3 is the project of \mathbf{x}_3 and \mathbf{x}_3 is the project of \mathbf{x}_3 is the project of \mathbf{x}_3 is the project of \mathbf{x}_3 and \mathbf{x}_3 is the project of \mathbf{x}_3 is the p

Recall the KKT conditions:

1.
$$\nabla_{\mathbf{x}} \mathcal{L} = \nabla f(\mathbf{x}^*) d\mathbf{x} \nabla \mathbf{n} \mathbf{x} + \mathbf{p} \mathbf{n} \nabla \mathbf{x} \mathbf{n} \mathbf{x} = \mathbf{0}^T$$

2.
$$h(x^*) = 0, g(x^*) \le 0$$

3.
$$\lambda \neq 0$$
, $\mu \geq 0$

4.
$$\mu^T \mathbf{g}(\mathbf{x}^*) = \mathbf{0}^T$$

min
$$f(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 + 40x_1 + 20x_2 - 3000$$

s.t. $g_1(\mathbf{x}) = x_1 - 50 \ge 0$
 $g_2(\mathbf{x}) = x_1 + x_2 - 100 \ge 0$
 $g_3(\mathbf{x}) \triangleq \mathbf{x}_1 = \mathbf{x}_2 + \mathbf{x}_3 + 40x_1 + 20x_2 - 3000$
The constraints all need to be multiplied by -1 to g₃(\mathbf{x}) $\triangleq \mathbf{x}_1 = \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_3 + \mathbf{x}_4 = \mathbf{x}_3 + \mathbf{x}_4 = \mathbf{x}_3 + \mathbf{x}_4 = \mathbf{x}_4 = \mathbf{x}_4 + \mathbf{x}_4 = \mathbf{x$

 $\nabla_{\mathbf{x}} \mathcal{L} = \nabla f(\mathbf{x}^*) + \mathbf{h}^{\mathsf{T}} \nabla_{\mathbf{x}} \nabla_{\mathbf$

$$\nabla f(\mathbf{x}^*) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \mathbf{WeChat pow} \\ \frac{\partial f}{\partial x_2} & \mathbf{\nabla g}(\mathbf{x}^*) = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \frac{\partial g_1}{\partial x_3} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \frac{\partial g_2}{\partial x_3} \\ \frac{\partial g_3}{\partial x_1} & \frac{\partial g_3}{\partial x_2} & \frac{\partial g_3}{\partial x_2} & \frac{\partial g_3}{\partial x_3} \end{bmatrix}$$

$$\nabla_{\mathbf{x}} \mathcal{L} = \begin{bmatrix} 2x_1 + 40 \\ 2x_2 + 20 \\ 2x_3 \end{bmatrix} + \mathbf{0}^{\mathsf{T}} + \begin{bmatrix} \mu_1 & \mu_2 & \mu_3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix} = \mathbf{0}^{\mathsf{T}}$$

$$\nabla_{\mathbf{x}} \mathcal{L} = \begin{bmatrix} 2x_1 + 40 \\ 2x_2 + 20 \\ 2x_3 \end{bmatrix} + \mathbf{0}^{\mathsf{T}} + \begin{bmatrix} \mu_1 & \mu_2 & \mu_3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ -1 & -1 & -1 \end{bmatrix} = \mathbf{0}^{\mathsf{T}}$$

Assignment Project Exam Herpall the KKT conditions: $2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$
 $2x_2 + 20 - \mu_2 - \frac{\text{https 0/powcoder.com}}{6 \text{ unknowns}}$
 $2x_3 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$
1. $\nabla_x \mathcal{L} = \mathbf{0}^T$
2. $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}, \mathbf{g}(\mathbf{x}^*) \leq \mathbf{0}$
3. $\lambda \neq \mathbf{0}, \mu \geq \mathbf{0}$

Add WeChat powcoder $\begin{vmatrix} 3 & \lambda \neq 0, \mu \geq 0 \\ & - \end{vmatrix}$

$$\mathbf{r}_{\mathbf{x}} \mathbf{L} = \mathbf{0}^{T}$$

2.
$$h(x^*) = 0, g(x^*) \le 0$$

3.
$$\lambda \neq 0, \mu \geq 0$$

4.
$$\mu^{T}g(x^{*}) = 0^{T}$$

$$\mu^T g(x^*) = \mathbf{0}^T$$

$$[\mu_1 \quad \mu_2 \quad \mu_3] \begin{bmatrix} -x_1 + 50 \\ -x_1 - x_2 + 100 \\ -x_1 - x_2 - x_3 + 150 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 3 more equations!

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$

 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$
 $\mu_1(-x_1 + 50) = 0$
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$
6 equations, 6 unknowns Help

Add we come so we oder

From the lower 3 equations, there are multiple possibilities in each: Either $\mu_i = 0$, or the expression in parentheses = 0.

So, we will have to examine 8 different scenarios for this system of equations, and check each solution against the remaining KKT conditions: $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}$, $\mathbf{g}(\mathbf{x}^*) \leq \mathbf{0}$, $\lambda \times \mathbf{0}$, $\mu \geq \mathbf{0}$.

Scenario 1: $\mu_1 = 0$, $\mu_2 = 0$, $\mu_3 = 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$

 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$ Exam Help
 $\mu_1(-x_1 + 50) = 0$
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$ Exam Help

$$2x_1 + 40 = 0$$
 $x_1 = -20$
 $2x_2 + 20 = 0$ $x_2 = -10$
 $2x_3 = 0$ $\mu_1 = 0$
 $0 = 0$ $\mu_2 = 0$
 $0 = 0$ $\mu_3 = 0$

Check: $g(x^*) \leq 0$, $\mu \geq 0$

$$g_1 = 20 + 50 \le 0$$

Since g_1 is violated, this is not a KKT point.

Scenario 2: $\mu_1 \neq 0$, $\mu_2 = 0$, $\mu_3 = 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$

 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$ Exam Help
 $\mu_1(-x_1 + 50) = 0$
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$ Exam Help

$$2x_{1} + 40 - \mu_{1} = 0$$

$$2x_{2} + 20 = 0$$

$$2x_{3} = 0$$

$$-x_{1} + 50 = 0$$

$$0 = 0$$

$$\mu_{1} = 140$$

$$\mu_{2} = 0$$

$$\mu_{3} = 0$$

Since g_2 is violated, this is not a KKT point.

Scenario 3: $\mu_1 = 0$, $\mu_2 \neq 0$, $\mu_3 = 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$

 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$ Exam Help
 $\mu_1(-x_1 + 50) = 0$
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$ Exam Help

$$2x_{1} + 40 - \mu_{2} = 0$$

$$2x_{2} + 20 - \mu_{2} = 0$$

$$2x_{3} = 0$$

$$0 = 0$$

$$-x_{1} - x_{2} + 100 = 0$$

$$\mu_{1} = 0$$

$$\mu_{2} = 130$$

$$\mu_{3} = 0$$

Check: $g(x^*) \leq 0$, $\mu \geq 0$

$$g_1 = -45 + 50 \le 0$$

Since g_1 is violated, this is not a KKT point.

Scenario 4: $\mu_1 = 0$, $\mu_2 = 0$, $\mu_3 \neq 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$

 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$ Exam Help
 $\mu_1(-x_1 + 50) = 0$
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$ Exam Help

$$2x_{1} + 40 - \mu_{3} = 0$$

$$2x_{2} + 20 - \mu_{3} = 0$$

$$2x_{3} - \mu_{3} = 0$$

$$0 = 0$$

$$0 = 0$$

$$-x_{1} - x_{2} - x_{3} + 150 = 0$$

$$x_{1} = 40$$

$$x_{2} = 50$$

$$x_{3} = 60$$

$$\mu_{1} = 0$$

$$\mu_{2} = 0$$

$$\mu_{3} = 120$$

$$x_1 = 40$$
 $x_2 = 50$
 $x_3 = 60$
 $\mu_1 = 0$
 $\mu_2 = 0$

Check:
$$g(x^*) \leq 0$$
, $\mu \geq 0$

$$g_1 = -40 + 50 \le 0$$

Since g_1 is violated, this is not a KKT point.

Scenario 5: $\mu_1 \neq 0$, $\mu_2 \neq 0$, $\mu_3 = 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$

 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$ Exam Help
 $\mu_1(-x_1 + 50) = 0$ Exam Help
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$ Exam Help

$$2x_{1} + 40 - \mu_{1} - \mu_{2} = 0$$

$$2x_{2} + 20 - \mu_{2} = 0$$

$$2x_{3} = 0$$

$$-x_{1} + 50 = 0$$

$$-x_{1} - x_{2} + 100 = 0$$

$$0 = 0$$

$$x_{1} = 50$$

$$x_{2} = 50$$

$$\mu_{1} = 20$$

$$\mu_{2} = 120$$

$$\mu_{3} = 0$$

Check: $g(x^*) \leq 0$, $\mu \geq 0$

$$g_3 = -50 - 50 - 0 + 150 \le 0$$

Since g_3 is violated, this is not a KKT point.

Scenario 6: $\mu_1 \neq 0$, $\mu_2 = 0$, $\mu_3 \neq 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$

 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$ Exam Help
 $\mu_1(-x_1 + 50) = 0$
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$ Exam Help

$$2x_{1} + 40 - \mu_{1} - \mu_{3} = 0$$

$$2x_{2} + 20 - \mu_{3} = 0$$

$$2x_{3} - \mu_{3} = 0$$

$$-x_{1} + 50 = 0$$

$$0 = 0$$

$$-x_{1} - x_{2} - x_{3} + 150 = 0$$

$$x_{1} = 50$$

$$x_{2} = 45$$

$$\mu_{1} = 30$$

$$\mu_{2} = 0$$

$$\mu_{3} = 110$$

$$x_1 = 50$$

$$x_2 = 45$$

$$x_3 = 55$$

$$\mu_1 = 30$$

$$\mu_2 = 0$$

Since g_2 is violated, this is not a KKT point.

Check:
$$g(x^*) \leq 0$$
 , $\mu \geq 0$

$$g_2 = -50 - 45 + 100 \le 0$$

Scenario 7: $\mu_1 = 0$, $\mu_2 \neq 0$, $\mu_3 \neq 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$

 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$ Exam Help
 $\mu_1(-x_1 + 50) = 0$
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$ Exam Help

$$2x_{1} + 40 - \mu_{2} - \mu_{3} = 0$$

$$2x_{2} + 20 - \mu_{2} - \mu_{3} = 0$$

$$2x_{3} - \mu_{3} = 0$$

$$0 = 0$$

$$-x_{1} - x_{2} + 100 = 0$$

$$-x_{1} - x_{2} - x_{3} + 150 = 0$$

$$x_{1} = 45$$

$$x_{2} = 55$$

$$x_{3} = 50$$

$$\mu_{1} = 0$$

$$\mu_{2} = 30$$

$$\mu_{3} = 100$$

Check: $g(x^*) \leq 0$, $\mu \geq 0$

$$g_1 = -45 + 50 \le 0$$

Since g_1 is violated, this is not a KKT point.

Scenario 8: $\mu_1 \neq 0$, $\mu_2 \neq 0$, $\mu_3 \neq 0$

$$2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 = 0$$
 $2x_2 + 20 - \mu_2 - \mu_3 = 0$
 $2x_3 - \mu_3 = 0$
Exam Help
 $\mu_1(-x_1 + 50) = 0$
 $\mu_2(-x_1 - x_2 + 100) = 0$
 $\mu_3(-x_1 - x_2 - x_3) = 0$
Exam Help

$$2x_{1} + 40 - \mu_{1} - \mu_{2} - \mu_{3} = 0 \qquad x_{1} = 50$$

$$2x_{2} + 20 - \mu_{2} - \mu_{3} = 0 \qquad x_{2} = 50$$

$$2x_{3} - \mu_{3} = 0 \qquad x_{3} = 50$$

$$-x_{1} + 50 = 0 \qquad \mu_{1} = 20$$

$$-x_{1} - x_{2} + 100 = 0 \qquad \mu_{2} = 20$$

$$-x_{1} - x_{2} - x_{3} + 150 = 0 \qquad \mu_{3} = 100$$

Check: $g(x^*) \leq 0$, $\mu \geq 0$

All of these conditions hold, so $(50, 50, 50)^T$ is a KKT point!

min
$$f(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 + 40x_1 + 20x_2 - 3000$$

s.t. $g_1(\mathbf{x}) = x_1 - 50 \ge 0$
 $g_2(\mathbf{x}) = x_1 + x_2 - 100 \ge 0$
 $g_3(\mathbf{x}) \triangleq \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5 + \mathbf{x}_5 = \mathbf{x}_5 = \mathbf{x}_5 + \mathbf{x}_5 = \mathbf{x$

Across the 8 scenarios, the poly of the scenarios of f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f are f are f and f are f are f are f and f are Now we can test the SOSC:

 $\nabla_{\mathbf{x}} \mathcal{L} = \begin{bmatrix} 2x_1 + 40 - \mu_1 - \mu_2 - \mu_3 \\ 2x_2 + 20 - \mu_2 - \mu_3 \\ 2x_3 - \mu_3 \end{bmatrix}$ approach to solving constrained problems

constrained problems. We also have algorithmic approaches like SQP

$$\mathcal{L}_{xx} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \leftarrow \text{This is pos. def. everywhere!}$$

Therefore, \mathbf{x}^* is a global minimizer.

Summary: Gradient-based algorithms

- Gradient descent
- Newton method
- · Generalized Reduced Product Carcinete
- Active set strategy https://powcoder.com
- Quasi-Newton methods
- Sequential Quadratic Programming (SQP)

Gradient-free approaches

V€

- Approximation models
- Pattern search (e.g., Hooke-Jeeves, Nelder-Meade)
- Space-fillingsseaffiehere of the Exam Help
- Random search (e.g., Simulated Annealing) https://powcoder.com
- Linear Programming (e.g., Simplex)
- Genetic/evolutionary algorithms
- Particle swarm
- Ant colony

We covered some of these in Week 3

These are population-based algorithms

Approximation models

Use gradient-based methods even though your functions are not differentiable

- 1. Approximate derivatives with finite differences $f'(x) \approx \frac{\text{Assignment}}{h} \text{Project Exam Help}$ for some small h
- 2. Metamodel strample ponder & The a function

Figures from:

Population-based Assignment of the Project Examples

https://powcoder.com
Add WeChat
ME 564/SYS 564
Wed Oct 17, 2018
Steven Hoffenson

<u>Goal of Week 8</u>: To learn some increasingly-common algorithms that use multiple points in each iteration, and practice using them

Genetic algorithms – overview

- A.k.a., evolutionary algorithms
- Mimic gene selection and "survival of the fittest"

Genetic algorithms – steps

- 1. Start with a random population (set) of inputs
- 2. Select the best among population to be "parents"
- 3. Use parants to spann a parants of the crossovers and mutations
- 4. Repeat 2-3 with more "generations" until satisfied

Genetic algorithms – parent selection

There are different ways to select parents from a population:

• Elitism: pick only the absolute best points Assignment Project Exam Hewerse

• Roulette wheelthettepdesignehaven a better chance of being chosen (pictured) Add WeChat powcoder

 Tournament: segment the population randomly, and choose the best in each segment

Different algorithms use different strategies.

Genetic algorithms – spawning

Spawning new generations may be done using a combination of:

- 1. Survivors: the best simply join the new generation
- 2. Crossovers: combinations of traits from 2 parents create a childhttps://powcoder.com
- 3. Mutations: traits from a parent randomly change Add WeChat powcoder

Example: Interactive Genetic Algorithm

Which bottle shape do you prefer?

The interactive part means that humans do the "parent selection" portion in each iteration of the GA. In this case, it usually converged to a Coca-Cola bottle shape.

MATLAB – ga

There is a genetic algorithm function 'ga' that can handle objectives and constraints in a similar way to fmincon

[xopt, fopt] = asignment Project, Exam Helpub, NONLCON)

https://powcoder.com

Note the difference: Add We hal powcoder imincon needs a start point

ga just needs the # of variables

Note: This function requires the "Global optimization toolbox" to be installed.

MATLAB – optimtool

MATLAB currently has an interactive tool 'optimtool' that can guide Assi you through optimizing with different options

Note: This may disappear in future MATLAB releases 🖰

Particle swarm optimization

- 1. Start with some random set of points (particles) with directions/velocities within the input space
- 2. At each iteration, update each particle's position and velocity based on the particle's best previous position and the best positions of its near neighbors

Add WeChat powcoder

Particle swarm optimization

Ant colony optimization

Adjustments depend on a combination of randomness and pheromones (which tell what has been tried and true), which evaporate over time

Non-continuous/discrete variables

What to do when we have **non-continuous** variables?

Examples:

- Number of rotors on a drone (must be integer) Assignment Project Exam Help
- Number of cylinders in an engine (must be integer)
- Material choice https://peyfew.options.with different specific properties). Add WeChat powcoder

Strategies:

- 1. Treat them as continuous, and then pick nearby point
- 2. Parametric optimization
- 3. Integer programming

Treat discrete variables as continuous

The **easiest** way to handle non-continuous variables (material properties, countable things) is to treat them as continuous:

- 1. Optimize pretending that they are continuous
- 2. Choose the discrete value deset to the optimizer (or evaluate all surrounding points and pick the best) https://powcoder.com

Add WeChat powcoder

This often does not work well with non-convex functions!

Parametric optimization

When the number of discrete choices is small, you can do *parametric optimization*:

- List out all discrete variable combinations Assignment Project Exam Help
 Optimize to find the best solution under each of
- 2. Optimize to find the best solution under each of the scenarious the scenarious (1/powcoder.com)
- 3. Choose the hest trongal the solutions in (2)

This works well when there is a small number of discrete choices and the functions are quick to evaluate

Discrete/integer programming

When you have a large number of non-continuous variables...

Branch-and-bound algorithm

1. Branch: Split the space of candidate solutions Project Exam Help

- 2. <u>Bound</u>: Compute upper and lower bounds on each subspace (i.e., figure out the highest and lowest possible objective function values for each group)
- 3. If the lower bound for one group is higher than the upper bound for another, eliminate it
- 4. Repeat 1-3 until a single solution

Recap: Gradient-free algorithms

- Approximation models
- Pattern search (e.g., Hooke-Jeeves)
- Space-filliassignment Project Exam Help
- Random search (e.g., Simulated Annealing) https://powcoder.com
- Linear Programming (e.g., Simplex)
- Genetic/evolutionary algorithms
- Particle swarm
- Ant colony

Week 3

When to use gradient-free methods

Cons of gradient-free methods

- Usually slower to converge
 - These require many more function evaluations
 - The search directions are not always efficient
- No optimalstygungentteroject Exam Help
 - There is no analogy to FONC (grad = 0) and SOSC (Hessian is posterior definite) der.com
- Convergence must be measured by changes to f and x Add WeChat powcoder
 Many parameters to tune
- Constraint handling is imperfect
 - Cannot use Lagrangian
 - Must use penalty or barrier
- Stochastic methods are not repeatable

A note on global optimization

Most algorithms seek local optima

To find global solutions, try:

- 1. Performing optimization with multiple start points
- Using global algorithms (e.g., genetic algorithms & particle swarm)

Recap: How to optimize

1. Formulate the problem

- a) Define system boundaries
- b) Develop analytical models
- c) Explores is the problem space. Helpect to $\mathbf{g}(\mathbf{x},\mathbf{p}) \leq 0$
- d) Formalize optimization problem nttps://powcoder.com

minimize $f(\mathbf{x}, \mathbf{p})$

(Weeks 1-2, 4, 9-12)

 $\mathbf{h}(\mathbf{x},\mathbf{p}) = 0$

🗙 2. Solve the problem

TODAY

a) Choose the right approach algorithm

(Weeks 3, 5-8, 12)

- b) Solve (by hand, code, or software)
- c) Interpret the results

d) Iterate if needed

$$\mathbf{x}_{k+1} = \mathbf{x}_k - [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_0)$$

Summary of optimization approaches

- Mathematical/analytical
 - Elimination of constraints using monotonicity analysis
 - Finding stationary points and their nature with optimality conditions
- Linear programming: Simplex
- Nonlinear gradient-based methods
 Gradient descend methods
 Gradient descend methods

 - Newton method
 - Generalized Reducted Strate WGRG er. com
 - Active set strategies
 - Quasi-Newton method WeChat powcoder
 Sequential quadratic programming (SQP)
- Nonlinear gradient-free methods
 - Approximation
 - Pattern search
 - Space-filling search
 - Random search
 - Genetic/evolutionary algorithms (GAs/EAs)
 - Particle swarm & Ant colony
- Integer programming: Branch-and-bound

When to use what?

- If the math is simple enough, try solving by hand (monotonicity analysis, optimality conditions: FONC/SOSC or KKT)
- If you have a linear problem, Simplex LP is efficient
- · If the functions are wanten slow to evaluate affection meta-model
- If you have a **convex and differentiable** problem, you can't beat the efficiency and acculatory a problem (e.g., SQP, GRG)
- If you have a **convex, non-differentiable** problem, pattern-search or random search algorithms we shall problem.
- If you have **non-continuous variables**, you should either:
 - Solve parametrically (i.e., solve separately for each discrete value)
 - Use branch-and-bound techniques
- With tricky problems (non-linear, non-convex) with fast functions, try:
 - Convex search methods with multiple start points
 - Gradient-free algorithms like GA's and other bio-inspired searches

Acknowledgements

- Some of this material came from Chapter 7 of the textbook, *Principles of Optimal Design*
- Some of these slides and examples came from Dr. John Whitefoot, Dr. Alex Burnap, Dr. Yi Ken, and Dr. Michael Kokkolaras/at-the-University of Michigan

Add WeChat powcoder

Announcements

- HW4 is posted, due in 13 days, Tuesday at noon
- Project progress reports are due a week from Sunday
- Assignment Project Exam Help

 Please do the mid-semester survey! It's totally anonymous and point prove the course

https://gaqialxtorms/hp3fN3HepFUtJOKU2