1 Grundlagen

- geht um ZVs die eine einfache Form von stochastischer Abhängigkeit haben
- ullet und zwar ist die Zufallsvariable n+1 nur abhängig von der ZV n
- bei diesen ZVs interessieren wir uns für das Langzeitkonvergenzverhalten (Markov-Ketten)

2 Stochastische Matrizen und Markov-Ketten

2.1 Definition: Stochastische Matrizen

Sei $V \neq \emptyset$ und $\prod = (\prod (x,y))_{x,y \in V}$ eine reellwertige Matrix.

- ∏ heißt zeilenstochastisch, wenn in jeder Zeile der Matrix ∏ eine W-Funktion auf V steht. Das heißt:
 - alle Einträge von ∏ liegen im Intervall $[0:1]: ∏ ∈ [0:1]^{V \times V}$
 - für alle $x \in V$ ist $\sum_{y \in V} \prod (x, y) = 1$
- Wir betrachten den Zufallsprozess in V bei der jedem Schritt die Wahrscheinlichkeit $\prod(x,y)$ vom Zustand x zum Zustand y springt. Symbolisch mit: $x \stackrel{\prod(x,y)}{\to} y$

2.2 Definition: Markov Kette

- Eine Folge von X_0, X_1, \ldots von ZVs auf dem W-Raum (Ω, \mathcal{A}, P) mit Werten in V, d.h. $X_i: (\Omega, \mathcal{A}) \to (V, 2^V)$ heißt **Markov-Kette mit Zustandsraum V und Übergangmatrix** \prod , wenn für alle $n \geq 0$ und für alle $x_0, \ldots, x_{n+1} \in V$ folgende Markov Eigenschaft gilt: $P(X_{n+1} = x_{n+1} | X_0 = x_0, \ldots, X_n = x_n) = P(X_{n+1} = x_{n+1} | X_n = x_n)$ sofern $P(X_0 = x_0, \ldots, X_n = x_n) > 0$ ist
- Die Verteilung $\alpha := P \circ X_0^{-1}$ von X_0 heißt **Startverteilung der Markov-Kette**

2.3 Satz: Matrixpotenzen

Die n-te Potenz \prod^n der zeilenstochastischen Matrix \prod enthält an der Position (x, y) die Wahrscheinlichkeit, in genau n Schritten vom Zustand x in den Zustand y zu gelangen:

•
$$P^x(X_n = y) = \prod^n (x, y)$$

2.4 Ergodensatz:

Es sei $\prod = \pi_{i,j} \in [0:1]^{n \times n}$ zeilenstochastisch. Ferner gebe es ein $L \geq 1$, sodass alle Einträge in \prod^L positiv sind. Dann gibt es eine W-Funktion $p = (p_1, \dots, p_N)$ die sog. Grenzverteilung mit folgenden Eigenschaften:

- $\lim_{m\to\infty}\prod^m=:\prod^\infty$ existiert und in jeder Zeile von \prod^∞ steht die Grenzverteilung.
- Die Matrixfolge $(\prod^m)_{m>1}$ konvergiert exponentiell schnell gegen \prod^{∞}
- Die Grenzverteilung p ist die eindeutig bestimme W-Funktion mit $p \prod p$