Econométrie TP4

Patrick Waelbroeck

Prix hédonique

Test d'hétéros

Ensembles variables binaires

I ranst. Ic

Sous-

Econométrie TP4

Hétéroscédasticité

Patrick Waelbroeck

Telecom Paris

February 27, 2020

Prix hédoniques

Test d'hétéro

Ensemble variables binaires

Transf. lo

WLS

Sousgroup On utilise la base de données hprice3.raw.

df = pd.read_csv('hprice3.raw', delim_whitespace=True, header=None)

Exercice 1

Calculer la moyenne de price/100. Faire un histogramme de price/100. Faire ensuite la régression de y = price/100 en fonction de const, age, nbh, inst, rooms, area, land, baths, dist, y81. Interpéter le coefficient

associé à y81 en le comparant à l'augmentation du prix moyen de 1978 à 1981.

price=df[7]/100
plt.hist(price,'auto')

Test d'hétéros

Ensemble variables

Transf. log

WLS

WLS

```
s=np.shape(price)
const=np.ones(s)
age=df[1]
nbh=df[3]
inst=df[5]
rooms=df[8]
area=df[9]
land=df[10]
baths=df[11]
dist=df[12]
y81=df[15]
v=price
X=np.column_stack((const,age,nbh,inst,rooms,area,land,baths,dist,y81))
model=sm.OLS(v,X)
results = model.fit()
print(results.summary())
s=v81==0
p0=np.mean(price[s])
s=y81==1
p1=np.mean(price[s])
print(p1-p0)
```

Prix hédoniques

l est d'hétéro

Ensemble variables binaires

Transt. I

VVLS

group

Omnibus:

Kurtosis:

Skew:

Prob(Omnibus):

Dep. Vari	able:			7	R-sq	uared:		0.71
Model:				OLS	Adj.	R-squared:		0.70
Method:		Le	east Squ	iares	F-sta	atistic:		86.7
Date:		Thu,	27 Feb	2020	Prob	(F-statisti	c):	2.14e-7
Time:			00:5	52:37	Log-l	Likelihood:		-2201.
No. Obser	vations:			321	AIC:			4423
Df Residu	als:			311	BIC:			4461
Df Model:				9				
Covariano	e Type:		nonro	bust				
			std err			P> t	[0.025	0.975
const	-211.142	8 1	105.234		-2.006	0.046	-418.204	-4.08
x1	-2.288	8	0.491		-4.659	0.000	-3.255	-1.32
x2	-19.889	2	6.470		-3.074	0.002	-32.620	-7.15
x3	-0.005	4	0.004		-1.331	0.184	-0.013	0.00
x4	41.314	8	19.323		2.138	0.033	3.294	79.33
x5	0.217	4	0.028		7.863	0.000	0.163	0.27
x6	0.001	2	0.000		3.239	0.001	0.000	0.00
x7	130.025	5	28.530		4.557	0.000	73.889	186.16
x8	0.005	1	0.004		1.280	0.201	-0.003	0.01
x9	358.654	3	27.666		12.964	0.000	304.218	413.09

87.991

0.000

0.942

9.317

Le prix ajusté à la qualité augmente de 358.65 de 1978 à 1981. Le prix moyen augmente de 440.19.

Durbin-Watson:

Prob(JB):

Jarque-Bera (JB):

1.596

581.142

6.41e-127

Test d'hétérosc.

Ensemb variable binaires

Transf. le

WLS

Sousgroup

Exercice 2

Tester l'hypothèse d'homoscédasticité en utilisant la régression de u^2 en fonction des variables du modèles.

On doit tester la significativé globale de la régression suivante $u^2=\theta_0+\theta_1x_1+\ldots+\theta_kx_k$ Ceci revient à tester

 $H_0:\theta_1=...=\theta_k=0$

u=results.resid
u2=u**2
y=u2
model=sm.OLS(y,X)
results = model.fit()
print(results.summary())

F=13.53. On rejette l'hypothèse H_0 .

0.281

Dep. Variable:

Test d'hétérosc.

Model: Adj. R-squared: 0.261 DT.S Method: Least Squares F-statistic: 13.53 Date: Thu, 27 Feb 2020 Prob (F-statistic): 2.57e-18 01:37:25 Log-Likelihood: -4234.7 Time: 8489. No. Observations: 321 ATC: Df Residuals: 311 BTC: 8527. Df Model: Covariance Type: nonrobust. coef std err P>|t| [0.025 0.9751const 2.307e+04 5.93e+04 0.389 0.697 -9.35e+041.4e + 05x1 -615.5935 276.676 -2.225 0.027 -1159.986 -71.201 -3018.7279 3643.672 -0.828 -1.02e+04 4150.638 x2 0.408 x3 -3.0761 2.285 -1.346 0.179 -7.571 1.419 -7635.9441 1.09e+04 -0.702 0.483 -2.9e+041.38e+04 x5 89.8939 15.573 5.772 0.000 59.252 120.536 1.5736 0.212 7.426 0.000 1.157 1.991 x7 -2.721e+04 1.61e+04 -1.694 0.091 -5.88e+04 4401.122 **v**8 -2.07482,225 -0.932 0.352 -6.454 2.304 7940 4165 1 56e+04 0.510 0 611 -2 27e + 043 86e+04 Omnibus: 366.671 Durbin-Watson: 1.916 Prob(Omnibus): 0.000 Jarque-Bera (JB): 22235.419 Skew: 4.972 Prob(JB): 0.00 Kurtosis. 42 542 Cond No 4 940+05

R-squared:

Test d'hétérosc.

Ensemb variable binaires

Transf. le

Sous-

Exercice 3

Tester l'hypothèse $H_0: \theta_{\textit{area}} = \theta_{\textit{land}} = 0$

F=45.72. On rejette l'hypothèse $H_0(p < 0.01)$.

Test d'hétéro

Ensemble variables binaires

Transf. log

VVLS

group

Exercice 4

Donner la valeur minimale et maximale de *baths*. Transformer ensuite la variable *baths* en un ensemble de variables binaires. Refaire le test d'hétéroscédasticité de l'exercice 2.

Résultat pour la statistique de Fisher et la p-value :

F=10.87 3.93e-17

On rejette l'hypothèse $H_0(p < 0.01)$.

Test d'hétéro

Ensemble variables binaires

Transf. lo

Covariance Type:

WLS

group

Dep. Variable:	7	R-squared:	0.720
Model:	OLS	Adj. R-squared:	0.710
Method:	Least Squares	F-statistic:	72.22
Date:	Thu, 27 Feb 2020	Prob (F-statistic):	1.33e-78
Time:	02:24:55	Log-Likelihood:	-2198.8
No. Observations:	321	AIC:	4422.
Df Residuals:	309	BIC:	4467.
Df Model:	11		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-35.3626	113.493	-0.312	0.756	-258.679	187.953
x1	-2.1398	0.517	-4.142	0.000	-3.156	-1.123
x2	-18.7182	6.485	-2.887	0.004	-31.478	-5.959
x3	-0.0049	0.004	-1.213	0.226	-0.013	0.003
x4	40.2520	19.317	2.084	0.038	2.243	78.261
x5	0.2164	0.028	7.830	0.000	0.162	0.271
x6	0.0013	0.000	3.381	0.001	0.001	0.002
x7	56.5481	44.428	1.273	0.204	-30.871	143.967
x8	248.5475	58.807	4.226	0.000	132.834	364.261
x9	305.2797	141.172	2.162	0.031	27.500	583.059
x10	0.0042	0.004	1.057	0.291	-0.004	0.012
x11	351.9898	27.683	12.715	0.000	297.518	406.462

Omnibus:	84.992	Durbin-Watson:	1.574
Prob(Omnibus):	0.000	Jarque-Bera (JB):	559.720
Skew:	0.902	Prob(JB):	2.87e-122
Kurtosis:	9.212	Cond. No.	6.97e+05

Test

Ensemble variables binaires

Transf. log

Covariance Type:

У	R-squared:	0.281
OLS	Adj. R-squared:	0.255
Least Squares	F-statistic:	10.97
Thu, 27 Feb 2020	Prob (F-statistic):	3.93e-17
02:28:51	Log-Likelihood:	-4227.2
321	AIC:	8478.
309	BIC:	8524.
11		
	Least Squares Thu, 27 Feb 2020 02:28:51 321 309	Least Squares F-statistic: Thu, 27 Feb 2020 Prob (F-statistic): 02:28:51 Log-Likelihood: 321 AlC: 309 BIC:

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	7663.0126	6.3e+04	0.122	0.903	-1.16e+05	1.32e+05
x1	-436.3323	286.694	-1.522	0.129	-1000.452	127.787
x2	-3348.4394	3598.974	-0.930	0.353	-1.04e+04	3733.156
x3	-2.3966	2.248	-1.066	0.287	-6.821	2.027
x4	-8966.3938	1.07e+04	-0.836	0.404	-3.01e+04	1.21e+04
ж5	86.6915	15.338	5.652	0.000	56.511	116.872
x6	1.5282	0.208	7.344	0.000	1.119	1.938
x7	-3.527e+04	2.47e+04	-1.430	0.154	-8.38e+04	1.32e+04
x8	-4.041e+04	3.26e+04	-1.238	0.217	-1.05e+05	2.38e+04
x9	-1.733e+05	7.84e+04	-2.212	0.028	-3.27e+05	-1.91e+04
x10	-2.6414	2.199	-1.201	0.231	-6.969	1.686
x11	7164.9064	1.54e+04	0.466	0.641	-2.31e+04	3.74e+04
Omnibus:		356.	008 Durbin	-Watson:		1.891

Test d'hétéro

Ensemble

Transf. log

Sousgroupe

Exercice 5

En utilisant la spécification de l'exercice 4, refaire le test d'hétéroscédasticité en utilisant log(area) et log(land).

Résultats: F=5.419 On rejette l'hypothèse $H_0(p < 0.01)$.

Test d'hétéro

Ensemble variables

Transf. log

Sous-

Exercice 6

En utilisant la spécification de l'exercice 5, refaire le test d'hétéroscédasticité en utilisant y = log(price/100).

Résultats: F=1.905 On rejette l'hypothèse H_0 à 5% (p=0.0381).

Prix hédonique

Test d'hétéros

Ensemble variables binaires

Transf. log

Covariance Type:

\A // C

Sousgroupe

Dep. Variable: R-squared: 0.064 Model: OLS Adj. R-squared: 0.030 Method: Least Squares F-statistic: 1.905 Date: Thu, 27 Feb 2020 Prob (F-statistic): 0.0381 Time: 03:05:50 Log-Likelihood: 268.51 No. Observations: 321 AIC: -513.0 Df Residuals: 309 BTC: -467.8 Df Model: 11

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-0.4437	0.209	-2.128	0.034	-0.854	-0.033
x1	0.0003	0.000	1.293	0.197	-0.000	0.001
x2	-0.0006	0.003	-0.205	0.838	-0.007	0.005
x3	-2.004e-06	2.11e-06	-0.949	0.343	-6.16e-06	2.15e-06
x4	-0.0089	0.009	-1.001	0.318	-0.026	0.009
x5	0.0347	0.027	1.282	0.201	-0.019	0.088
x6	0.0320	0.013	2.454	0.015	0.006	0.058
x7	0.0052	0.021	0.245	0.806	-0.036	0.047
x8	0.0162	0.028	0.573	0.567	-0.039	0.072
x9	-0.0028	0.064	-0.044	0.965	-0.129	0.123
x10	-1.173e-06	1.83e-06	-0.641	0.522	-4.77e-06	2.42e-06
x11	-0.0153	0.013	-1.212	0.226	-0.040	0.010

Omnibus:	552.886	Durbin-Watson:	2.020
Prob(Omnibus):	0.000	Jarque-Bera (JB):	218514.258
Skew:	9.627	Prob(JB):	0.00
Kurtosis:	129.360	Cond. No.	1.03e+06

d'hétéros

Enseml variable binaires

Transf. I

WLS

Sousgroup

Exercice 7

Utiliser la variable lland pour pondérer les observations dans la spécification de l'exercice 6. Refaire le test d'hétéroscédasticité.

On utilise la commande WLS

```
h=np.sqrt(lland)
y=np.log(price)
X=np.column_stack((const,age,nbh,inst,rooms,larea,lland,bath2,bath3,bath4,d
model=sm.WLS(y,X,weight=1/h)
results = model.fit()
print(results.summary())
```

Prix

Test d'hétéros

Ensemble variables binaires

Transf. lo

.....

WLS

Sousgroupes

Dep. Variable:	7	R-squared:	0.785
Model:	WLS	Adj. R-squared:	0.777
Method:	Least Squares	F-statistic:	102.6
Date:	Thu, 27 Feb 2020	Prob (F-statistic):	3.52e-96
Time:	03:32:50	Log-Likelihood:	56.624
No. Observations:	321	AIC:	-89.25
Df Residuals:	309	BIC:	-43.99
Df Model:	11		
Covariance Type:	nonrobust		

D>1+1

LU U32

0 9751

	coei	std err	t	PZICI	[0.025	0.975]
const	2.3297	0.403	5.774	0.000	1.536	3.124
x1	-0.0026	0.000	-5.635	0.000	-0.003	-0.002
x2	-0.0099	0.006	-1.645	0.101	-0.022	0.002
x3	-8.603e-06	4.08e-06	-2.106	0.036	-1.66e-05	-5.66e-07
x4	0.0575	0.017	3.338	0.001	0.024	0.091
x5	0.3465	0.052	6.608	0.000	0.243	0.450
x6	0.1163	0.025	4.608	0.000	0.067	0.166
x7	0.0779	0.041	1.903	0.058	-0.003	0.158
x8	0.2517	0.055	4.605	0.000	0.144	0.359
x9	0.4268	0.124	3.452	0.001	0.184	0.670
x10	6.041e-06	3.54e-06	1.707	0.089	-9.21e-07	1.3e-05
x11	0.3722	0.024	15.238	0.000	0.324	0.420
Omnibus		70	271 Durhin	-Watson:		1 697

Omnibus:	70.271	Durbin-Watson:	1.697		
Prob(Omnibus):	0.000	Jarque-Bera (JB):	358.475		
Skew:	-0.787	Prob(JB):	1.44e-78		
Kurtosis:	7.932	Cond. No.	1.03e+06		

Test d'hétéros

Ensemble variables binaires

Transf. lo

WLS

Sousgroupes

Exercice 8

Faire le graphique en nuage de point entre log(price/100) et lland. Diviser l'échantillon en deux groupes en fonction de lland et refaire le test d'hétéroscédasticité pour les deux sous-groupes.

```
lprice=np.log(price)
plt.scatter(lland,lprice)
plt.xlabel("lland")
plt.ylabel("lprice")
plt.show()
```


Construction de deux groupes : $\textit{lland} \leq 10$ et lland > 10.

Pour le premier sous-groupe : F=0.3985, on ne rejette pas ${\it H}_{\rm 0}.$

Pour le deuxième sous-groupe : F=1.373, on ne rejette pas H_0 à 18.7%.