

SMOTE

- Synthetic Minority Over-sampling Technique.
- Creates samples by interpolation
- Interpolation is a type of estimation, where we create new data points within the range of known data points

SMOTE

The minority class is "over-sampled" by creating "synthetic examples" instead of extracting data at random.

It <u>prevents duplication</u>. New observations from minority class will not be identical to original ones.

Looks only at the observations from the minority class.

Finds its k nearest neighbours

Typically k is 5

Looks only at the observations from the minority class.

Finds its k nearest neighbours

Typically k is 5

Determines the **distance**between the neighbours and
the sample we want to
generate a new observation
from

Determines the **distance**between the neighbours and
the sample we want to
generate a new observation
from

Multiplies that distance by a random number and adds it to the original sample to place the new observation in the dataset

New sample = original sample - factor * (original sample - neighbour)

SMOTE: numerical example

 $New\ sample = original\ sample\ - factor\ * (original\ sample\ - neighbour)$

$$x_{ori} = (4,7)$$

 $X_{neig} = (6, 8)$

SMOTE: numerical example

 $New\ sample = original\ sample\ - factor\ * (original\ sample\ - neighbour)$

$$X_{\text{ori}} = (4,7)$$

 $X_{\text{neig}} = (6, 8)$

New sample =
$$(4,7) - 0.8 * ((4,7) - (6,8))$$

New sample =
$$(4,7) - 0.8 * ((-2,-1))$$

New sample =
$$(4,7) - ((-1.6, -0.8))$$

New sample =
$$(5.6, 7.8)$$

SMOTE: numerical example

 $New\ sample = original\ sample\ - factor\ * (original\ sample\ - neighbour)$

$$X_{\text{ori}} = (4,7)$$

 $X_{\text{neig}} = (6, 8)$

New sample =
$$(4,7) - 0.8 * ((4,7) - (6,8))$$

New sample =
$$(4,7) - 0.8 * ((-2,-1))$$

New sample =
$$(4,7) - ((-1.6, -0.8))$$

New sample =
$$(5.6, 7.8)$$

SMOTE: Python implementation

- 1. Isolates minority class samples
- 2. Trains KNN and finds K nearest neighbours to each sample of minority class
- 3. Determines how many new samples need to be generated
- 4. Selects from which samples a new sample will be generated (random)
- 5. Selects the neighbour that will be used to extrapolate the sample (random)
- 6. Finds a random factor
- 7. Creates the new sample

Imbalanced-learn: SMOTE

Imbalanced-learn: SMOTE

THANK YOU

www.trainindata.com