FUSELAGE PARAMETERS INITIALIZATION

Hidden Area --> Import of Excel INPUT Fuselage Data

Hidden Area --> Preliminary Mapping of imported Data

Import and preliminary mapping of OTHER Excel Data

INPUT FUSELAGE PARAMETERS LIST

INPUT Parameters

 $d_{B\ W} = 3.261\ m$ $d_{B} = 2.786\ m$

 $l_B = 28.164 \text{ m}$ $S_{B_side} = 86.479 \text{ m}^2$

 $Z_1 = 3.688 \; m$ $Z_2 = 3.383 \; m$ $Z_{MAX} = 3.261 \; m$

 $N_{B_0}\!=\!15 \hspace{1.5cm} N_{B_1}\!=\!5 \hspace{1.5cm} N_{B_2}\!=\!6 \hspace{1.5cm} N_{B_W}\!=\!3$

OTHER Parameters

 $M_1 = 0.696$

 $b_W = 27.249 \; \mathbf{m}$ $i_W = 0.0349$ $c_{W \; r} = 5.243 \; \mathbf{m}$ $S_W = 87.62 \; \mathbf{m}^2$

 $MAC_{W} = 3.642 \; \emph{m}$ $\qquad \qquad \alpha_{0L_{_W}} = -0.033 \qquad \qquad C_{L\alpha_{_W}} = 6.227 \qquad \qquad \lambda_{W} = 0.227$

 $AR_W = 8.474$

 $X_{MAC_LE_W} = 2.861 \; \textit{m}$ $Y_{MAC_W} = 5.381 \; \textit{m}$ $X_{ac_W} = 3.928 \; \textit{m}$ $\Gamma_{W_eqv} = 0.038$

 $\Lambda_{W_c4_eqv} = 0.429$ $\xi_{ac_W} = 0.293$

 $c_{H_{_r}} = 3.322 \; \textbf{m}$ $c_{H_t} = 1.219 \; \textbf{m}$

$$\Delta X_W_{LE}_Nose = 11.13 \ \emph{m}$$

$$\Delta X_{HT_{LE}}Nose = 27.86 \text{ m}$$

$$\Delta X_{LE}Nose = 22.296 \ m$$

$$\Delta Z_W_{LE}_Nose = -0.94$$
 m

$$\Delta Z_HT_{LE}_Nose = 6.1 \ \emph{m}$$

$$\Delta X'$$
_ HT_{MAC4} _ W_{MAC4} = 14.98 m

$$K_{AR\ W} = 0.092$$

$$K_{\lambda W} = 1.331$$

$$K_{MAC4\ WH} = 0.707$$

$$\varepsilon_{\alpha_@M0_W}\!=\!0.229$$

$$\varepsilon_{\alpha_W} = 0.164$$

$$\varepsilon_{0_W}\!=\!0.011$$

FUSELAGE PARAMETERS CALCULATIONS

Fuselage parameters

$$FFR \coloneqq \frac{l_B}{d_B}$$

$$FFR = 10.109$$

Miscellaneous Fuselage parameters

$$\Delta X_W_{TE}_Nose \coloneqq \Delta X_W_{LE}_Nose + c_{W\ r}$$

$$\Delta X_W_{TE}_Nose = 16.373 \ \emph{m}$$

$$\Delta X_HT_{LE}_W_{TE} \coloneqq \Delta X_HT_{LE}_Nose - \Delta X_W_{TE}_Nose = 11.487$$
 m

$$\Delta X_{\perp}HT_{LE}W_{TE} = 11.487 \ m$$

Some Horizontal Tail Calculations Needed at This Step

$$\lambda_H = 0.367$$

$$S_H = 25.47 \ m^2$$

$$AR_H = 4.94$$

$$X_{MAC_LE_H} = 1.66 \ \boldsymbol{m}$$

$$MAC_{H} = 2.433 \ m$$

$$\xi_{ac_H}\!=\!0.264$$

$$X_{ac\ H} = 2.302\ m$$

$$\Delta X_HT_{ac}_W_{LE} \coloneqq \Delta X_HT_{LE}_W_{TE} + \left(X_{MAC_LE_H} + MAC_H \cdot \xi_{ac_H}\right) = 13.789 \ \textit{m}$$

POINTS NEEDED TO PLOT THE FUSELAGE

Import from file

$$_{m}XY_{TOP} \coloneqq_{f}get_points("A", "B")$$

$$_{m}XY_{BOTTOM} := _{f}get_points("D", "E")$$

$$_{m}\!X\!Y_{T\!V}\!\coloneqq_{\mathrm{f}}\!\mathrm{get_points}\left(\mathrm{``G''}\,,\mathrm{``H''}\right)$$

• SIDE VIEW (SV)

• TOP VIEW (TV)

FUSELAGE AERODYNAMICS

@Aerodynamic Database ---> (C_m0_b)_k2_minus_k1_vs_FFR

 $k_{B_Munch}\!=\!0.93$

@Aerodynamic Database ---> (C_m_alpha_b)_upwash_vs_x_i_over_root_chord

@Aerodynamic Database ---> (C_m_alpha_b)_upwash_(NTWLE)_vs_x_i_over_root_chord

 $_{\mathrm{f}}\mathrm{y}_{\mathrm{TOP}}(x)$

 $_{\rm f}{
m y}_{
m BOTTOM}(x)$

 $_{
m f}{
m y}_{
m TV}(x)$

 $_{\mathrm{f}}\mathrm{y}_{\mathrm{xi_cr_vs_\varepsilon u}}(x)$

 $_{\mathrm{f}}\mathrm{y}_{\mathrm{xNTWLE_cr_vs_}\varepsilon\mathrm{u}}(x)$

DOWNWASH

DATCOM Method

 $\Delta Z'' \coloneqq 0$

 $K'_{AR\ W} \coloneqq K_{AR\ W}$

 $K'_{\lambda_W} \coloneqq K_{\lambda_W}$

 $K'_{MAC4_WH} := \frac{1 - \frac{\Delta Z}{2}}{\left(\frac{2 \cdot \Delta X'_HT_{MAC4_W}}{h}\right)^{\frac{1}{3}}} = 0.969$

 $\varepsilon_{\alpha_Multhopp} \coloneqq 4.44 \cdot \left(K'_{AR_W} \cdot K'_{\lambda_W} \cdot K'_{MAC4_WH} \cdot \sqrt{\cos\left(\varLambda_{W_c4_eqv} \right)} \right)^{1.19} = 0.333$

 $\varepsilon_{\alpha_@M0_B}\!\coloneqq\!\varepsilon_{\alpha_Multhopp}\!=\!0.333$

 ${}_{\mathbf{f}} \varepsilon_{\alpha _{\mathrm{Multhopp}}}(Mach) \coloneqq \sqrt{1 - Mach^{2}} \cdot \varepsilon_{\alpha _{\mathrm{Multhopp}}}$

 $\varepsilon_{\alpha_B} \coloneqq {}_{\mathbf{f}} \varepsilon_{\alpha_\text{Multhopp}} \langle M_1 \rangle = 0.239$

C M 0 FUSELAGE PARAMETERS CALCULATIONS

Fuselage Mesh

 $_{v}extremities\ X\ mesh$

 $_{v}extremities_Z_{TOP}_mesh$

 $_{v}extremities_Z_{BOTTOM}_mesh$

 $_{v}extremities_Y_{TV}_mesh$

 $_v midpoints_X_mesh$

 $_v midpoints_Z_mesh$

 $_{v}midpoints_Y_mesh$

 $_vW_f$

Camber Line Angles

$$C_{M0_B} \coloneqq \frac{\boldsymbol{\pi} \cdot k_{B_Munch}}{2 \cdot S_W \cdot MAC_W} \cdot \sum_{i=0}^{N_{B_0}-2} \left({_vW_{f_i}}^2 \cdot \left(-i_W + \alpha_{0L_W} + {_vi_{cl_i}} \right) \right) \cdot dx = -0.101$$

• Fuselage Pitch Moment Coefficient @ α B=0

C_M_Alpha FUSELAGE PARAMETERS CALCULATIONS

First Fuselage Segment - From Nose to Wing Leading Edge

 $_{v}extremities_X_mesh_{1}$

 $_{v}extremities_Z_{TOP}_mesh_{1}$

 $_vextremities_Z_{BOTTOM}_mesh_1$

 $_vextremities_Y_{TV}_mesh_1$

 $_{v}midpoints_X_mesh_{1}$

 $_{v}midpoints_Y_mesh_{1}$

 $_{v}midpoints_Z_mesh_{1}$

 $_vW_{f_1}$

 $\textbf{FuselageSectionsNose_to_W_LE} \coloneqq \textbf{Round}\left(\frac{N_{B_1}}{5},1\right) = 1$

Second Fuselage Segment - From Wing Leading Edge to Wing Trailing Edge

Third Fuselage Segment - From Wing Trailing Edge To Tail

$_vextremities_X_mesh_2$	$_{v}extremities_Z_{TOP_}mesh_{2}$	$_{v} extremities_Z_{BOTTOM}_mesh_{2}$	$_{v}extremities_Y_{TV_}mesh_{2}$
$_v midpoints_X_mesh_2$	$_v midpoints_Y_mesh_2$	$_v midpoints_Z_mesh_2$	$_vW_{f_2}$

$$C_{M\alpha_B} \coloneqq \frac{\pi}{2 \; S_W \cdot MAC_W} \cdot \left(\sum_{i=0}^{N_{B_{\perp}1}-2} \left(_vW_{f_{\perp}1_i}^{2} \cdot \left(_v\varepsilon u_{\alpha 1_i} + 1 \right) \right) \cdot dx_1 + \sum_{i=0}^{N_{B_{\perp}2}-2} \left(_vW_{f_{\perp}2_i}^{2} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot (1 - \varepsilon_{\alpha_W}) \right) \right) \cdot dx_2 \right) = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{1}{2} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \right) \cdot dx_2 \right) = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \right) \cdot dx_2 \right) = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 \right) = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 \right) = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 \right) = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{1}{\textit{rad}} \cdot \left(\frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot dx_2 = 1.156 \; \frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot dx_2 = 1.156 \; \frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \right) \cdot dx_2 = 1.156 \; \frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot dx_2 = 1.156 \; \frac{_vmidpoints_X1_mesh_2}{\Delta X_HT_{ac_}W_{LE}} \cdot dx_2 = 1.156 \;$$

$$C_{M\alpha_BMulthopp} \coloneqq \frac{\pi}{2 \; S_W \cdot MAC_W} \cdot \left(\sum_{i=0}^{N_{B_-1} - 2} \left({}_vW_{f_-1_i}^{}^2 \cdot \left({}_v\varepsilon u_{\alpha 1_i} + 1 \right) \right) \cdot dx_1 + \sum_{i=0}^{N_{B_-2} - 2} \left({}_vW_{f_-2_i}^{}^2 \cdot \left(\frac{{}_vmidpoints_X1_mesh_{2_i}}{\Delta X_HT_{ac_}W_{LE}} \cdot \left(1 - \varepsilon_{\alpha_Multhopp} \right) \right) \right) \cdot dx_2 \right) = 1.133 \; \frac{1}{\textit{rad}}$$

$$C_{M\alpha_B} = 1.156 \frac{1}{rad}$$

$$C_{M\alpha_B} = 0.02 \frac{1}{\textit{deg}}$$

$$C_{M\alpha_BMulthopp} = 1.133 \ \frac{1}{\textit{rad}}$$
 $C_{M\alpha_BMulthopp} = 0.02 \ \frac{1}{\textit{deg}}$

$$C_{M\alpha_BMulthopp} = 0.02 \frac{1}{deg}$$

$$\Delta \xi_{ac_WB} \coloneqq -\frac{C_{M\alpha_B}}{C_{L\alpha_W}} \! = \! -0.186$$

$$\Delta \xi_{ac\ WB} = -0.186$$

$$\xi_{ac_WB}\!:=\!\xi_{ac_W}\!+\!\Delta\xi_{ac_WB}\!=\!0.107$$

$$\xi_{ac_WB} = 0.107$$

$$\Delta \xi_{ac_WB_Multhopp} \coloneqq -\frac{C_{M\alpha_BMulthopp}}{C_{L\alpha~W}} = -0.182$$

$$\Delta \xi_{ac_WB_Multhopp}\!=\!-0.182$$

$$\xi_{ac_WB_Multhopp} \coloneqq \xi_{ac_W} + \Delta \xi_{ac_WB_Multhopp} = 0.111$$

$$\xi_{ac_WB_Multhopp} = 0.111$$

Aerodynamic Center Configuration

$$X_{ac_WB} := X_{MAC_LE_W} + \xi_{ac_WB_Multhopp} \cdot MAC_W = 3.265 \ m$$

$$_{v}X_{ac_WB}\coloneqq \begin{bmatrix} X_{ac_WB} & X_{ac_WB} \end{bmatrix}^{\mathrm{T}}$$

$$_{v}Y_{ac_WB} \coloneqq \begin{bmatrix} 0 & Y_{MAC_W} \end{bmatrix}^{\mathrm{T}}$$

WING-BODY PLANFORM 1.5 3 7.5 13.5 15 -6 -15-21-24-27-30-

CSV TABS WRITING

k2 minus k1 vs FFR

 $_{m}CSV_{K2_minus_K1_vs_FFR} \coloneqq \operatorname{augment} \left(_{v_tab}FFR_{K2_minus_K1}, _{m_tab}Data_{K2_minus_K1} \right)$

 $CSV_Output_{B_1} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_k2_minus_k1_vs_FFR.csv''}, {}_{m}CSV_{K2_minus_K1_vs_FFR}\right)$

$${}_{m}\!CSV_{K2_minus_k1_vs_FFR_res}\!\coloneqq\!\operatorname{augment}\left(\left[FFR\ FFR\ 0\right]^{^{\mathrm{T}}},\left[\begin{array}{cc}0\ k_{B_Munch}\ k_{B_Munch}\end{array}\right]^{^{\mathrm{T}}}\right)$$

 $CSV_Output_{B_2} \coloneqq \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_k2_minus_k1_vs_FFR_res.csv''}, \\ \\ _mCSV_{K2_minus_K1_vs_FFR})$

Fuselage Points and Other Values

$$_{m}CSV_{XZ_TOP} := \operatorname{augment}\left(_{m}XY_{TOP} \cdot \frac{1}{m},_{m}XY_{TOP} \cdot \frac{1}{ft}\right)$$

 $CSV_Output_{B\ 3} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_TOP.csv''}, {}_{m}CSV_{XZ\ TOP}\right)$

$$_{m}CSV_{XZ_BOTTOM} := \operatorname{augment} \left(_{m}XY_{BOTTOM} \cdot \frac{1}{m}, _{m}XY_{BOTTOM} \cdot \frac{1}{ft} \right)$$

 $CSV_Output_{B_4} \coloneqq \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_BOTTOM.csv''}, \\ {}_{m}CSV_{XZ_BOTTOM})$

$$_{m}CSV_{XY_TV} \coloneqq \operatorname{augment}\left(_{m}XY_{TV} \cdot \frac{1}{m},_{m}XY_{TV} \cdot \frac{1}{ft}\right)$$

 $CSV_Output_{B\ 5} \coloneqq \text{WRITECSV}\ (\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_TOPVIEW.csv''}, {}_{m}CSV_{XY\ TV})$

$${}_{m}CSV_{mesh} \coloneqq \text{augment} \left({}_{v}extremities _X_{mesh} \cdot \frac{1}{\pmb{m}}, {}_{v}extremities _Z_{TOP_{mesh}} \cdot \frac{1}{\pmb{m}}, {}_{v}extremities _Z_{BOTTOM_{mesh}} \cdot \frac{1}{\pmb{m}}, {}_{v}extremities _Z_{HOP_{mesh}} \cdot \frac{1}{\pmb{t}}, {}_{v}extremities _Z_{TOP_{mesh}} \cdot \frac{1}{\pmb{t}}, {}_{v}extremities _Z_{TOP_{mesh}} \cdot \frac{1}{\pmb{t}}, {}_{v}extremities _Z_{TOP_{mesh}} \cdot \frac{1}{\pmb{t}}, {}_{v}extremities _Z_{HOP_{mesh}} \cdot \frac{1}{\pmb{t}}$$

 $CSV_Output_{B~6} := \text{WRITECSV} (\text{``.}\setminus \text{Output}\setminus \text{FUSELAGE_data_XZ_MESH.csv''}, {}_{m}CSV_{mesh})$

$${}_{m}CSV_{mesh_Y} \coloneqq \text{augment} \left({}_{v}extremities_X_mesh \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}extremities_Y_{TV_}mesh \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}extremities_X_mesh \cdot \frac{1}{\textit{\textbf{ft}}}, {}_{v}extremities_Y_{TV_}mesh \cdot \frac{1}{\textit{\textbf{ft}}} \right)$$

 $CSV_Output_{B_7} \coloneqq \text{WRITECSV} \; (\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_MESH.csv''}, \\ {}_{m}CSV_{mesh_Y})$

$${_{m}CSV}_{mp_values_I} \coloneqq \operatorname{augment}\left({_{v}midpoints_X_mesh} \cdot \frac{1}{\textit{\textbf{m}}}, {_{v}midpoints_Z_mesh} \cdot \frac{1}{\textit{\textbf{m}}}, {_{v}W}_{f} \cdot \frac{1}{\textit{\textbf{m}}}, {_{v}i_{cl}} \cdot \frac{1}{\textit{\textbf{deg}}}\right)$$

$${_{m}CSV}_{mp_values_II} \coloneqq \operatorname{augment} \left({_{v}midpoints_X_mesh} \cdot \frac{1}{\textit{ft}}, {_{v}midpoints_Z_mesh} \cdot \frac{1}{\textit{ft}}, {_{v}W}_{f} \cdot \frac{1}{\textit{ft}}, {_{v}i_{cl}} \cdot \frac{1}{\textit{rad}} \right)$$

$${}_{m}CSV_{mp_values} \coloneqq \text{augment} \left({}_{m}CSV_{mp_values_I}, {}_{m}CSV_{mp_values_II} \right)$$

 $CSV_Output_{B_8} \coloneqq \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES.csv''}, \\ {}_{m}CSV_{mp_values})$

Fuselage First Segment - From Nose to Wing Leading Edge

$${}_{m}CSV_{mesh1} \coloneqq \text{augment} \left({}_{v}extremities_X_mesh_1 \cdot \frac{1}{\textbf{\textit{m}}}, \ {}_{v}extremities_Z_{TOP_mesh_1} \cdot \frac{1}{\textbf{\textit{m}}}, \ {}_{v}extremities_Z_{BOTTOM_mesh_1} \cdot \frac{1}{\textbf{\textit{m}}}, \ {}_{v}extremities_Z_{TOP_mesh_1} \cdot \frac{1}{\textbf{\textit{ft}}}, \ {}$$

$$CSV_Output_{B_9} \coloneqq \text{WRITECSV} \left(\text{``.} \backslash \text{Output} \backslash \text{FUSELAGE_data_XZ_MESH_Nose_Wing_LE.csv''}, {}_{m}CSV_{mesh1}\right)$$

$${}_{m}CSV_{mesh_Y_1} \coloneqq \operatorname{augment} \left({}_{v}extremities_X_mesh_1 \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}extremities_Y_{TV_}mesh_1 \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}extremities_X_mesh_1 \cdot \frac{1}{\textit{\textbf{ft}}}, {}_{v}extremities_Y_{TV_}mesh_1 \cdot \frac{1}{\textit{\textbf{ft}}}, {}_{v}extremities_Y$$

$$CSV_Output_{B_10} \coloneqq \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_MESH_Nose_Wing_LE.csv''}, \\ {}_{m}CSV_{mesh_Y_1})$$

$$_{i}CSV_{mp_values_I_1} \coloneqq \operatorname{augment}\left(vmidpoints_X_mesh_{1} \cdot \frac{1}{m}, _{v}midpoints_Z_mesh_{1} \cdot \frac{1}{m}, _{v}W_{f_1} \cdot \frac{1}{m}\right)$$

 $CSV_Output_{B_11} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES_Nose_Wing_LE.csv''}, {}_{m}CSV_{mp_values_1}\right)$

Fuselage Second Segment - From Wing Leading Edge to Wing Trailing Edge

 ${}_{m}CSV_{meshW} \coloneqq \text{augment} \left({}_{v}extremities_X_mesh_W \cdot \frac{1}{\textit{\textbf{m}}}}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}{\textit{\textbf{m}}}}, {}_{v}extremities_Z_{BOTTOM_mesh_W} \cdot \frac{1}{\textit{\textbf{m}}}}, {}_{v}extremities_X_mesh_W \cdot \frac{1}{\textit{\textbf{ft}}}}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}{\textit{\textbf{ft}}}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}{\textit{\textbf{ft}}}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}{\textit{\textbf{ft}}}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}{\textit{\textbf{ft}}}, {}_{v}extremities_Z_{TOP_mesh_W} \cdot \frac{1}{\textit{\textbf{ft}}},$

 $CSV_Output_{B_{12}} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_MESH_Wing_LE_TE.csv''}, {}_{m}CSV_{meshW}\right)$

 ${_{m}CSV}_{mesh_Y_W} \coloneqq \operatorname{augment} \left({_{v}extremities_X_mesh_W} \cdot \frac{1}{\textit{\textbf{m}}}, {_{v}extremities_Y_{TV_mesh_W}} \cdot \frac{1}{\textit{\textbf{m}}}, {_{v}extremities_X_mesh_W} \cdot \frac{1}{\textit{\textbf{ft}}}, {_{v}extremities_Y_{TV_mesh_W}} \cdot \frac{1}{\textit{\textbf{ft}}} \right)$

 $CSV_Output_{B_13} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_MESH_Wing_LE_TE.csv''}, {}_{m}CSV_{mesh_Y_W}\right)$

$${_{m}CSV}_{mp_values_I_W} \coloneqq \operatorname{augment}\left({_{v}midpoints_X_mesh_W} \cdot \frac{1}{\textit{\textbf{m}}}, {_{v}midpoints_Z_mesh_W} \cdot \frac{1}{\textit{\textbf{m}}}, {_{v}W}_{f_W} \cdot \frac{1}{\textit{\textbf{m}}}\right)$$

 ${}_{m}CSV_{mp_values_II_W} \coloneqq \operatorname{augment} \left({}_{v}midpoints_X_mesh_W \cdot \frac{1}{\textit{ft}}, {}_{v}midpoints_Z_mesh_W \cdot \frac{1}{\textit{ft}}, {}_{v}W_{f_W} \cdot \frac{1}{\textit{ft}} \right)$

 ${}_{m}CSV_{mp_values_W} \coloneqq \operatorname{augment} \left({}_{m}CSV_{mp_values_I_W}, {}_{m}CSV_{mp_values_II_W} \right)$

 $CSV_Output_{B_14} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES_Wing_LE_TE.csv''}, {}_{m}CSV_{mp_values_W} \right)$

Fuselage Third Segment - From Wing Trailing Edge To Tail

 ${}_{m}CSV_{mesh2} \coloneqq \text{augment} \left({}_{v}extremities_X_mesh_2 \cdot \frac{1}{\textit{\textbf{m}}}}, {}_{v}extremities_Z_{TOP_mesh_2} \cdot \frac{1}{\textit{\textbf{m}}}}, {}_{v}extremities_Z_{BOTTOM_mesh_2} \cdot \frac{1}{\textit{\textbf{m}}}}, {}_{v}extremities_X_mesh_2 \cdot \frac{1}{\textit{\textbf{ft}}}}, {}_{v}extremities_Z_{TOP_mesh_2} \cdot \frac{1}{\textit{\textbf{ft}}}}, {}_{v}extremities_Z_{BOTTOM_mesh_2} \cdot \frac{1}{\textit{\textbf{ft}}}} \right)$

 $CSV_Output_{B_15} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XZ_MESH_Wing_TE_Tail.csv''}, {}_{m}CSV_{mesh2}\right)$

 ${}_{m}CSV_{mesh_Y_2} \coloneqq \operatorname{augment}\left({}_{v}extremities_X_mesh_2 \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}extremities_Y_{TV_}mesh_2 \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}extremities_X_mesh_2 \cdot \frac{1}{\textit{\textbf{ft}}}, {}_{v}extremities_Y_{TV_}mesh_2 \cdot \frac{1}{\textit{\textbf{ft}}}\right)$

 $CSV_Output_{B_16} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_XY_MESH_Wing_TE_Tail.csv''}, {}_{m}CSV_{mesh_Y_2}\right)$

$${}_{m}CSV_{mp_values_I_2} \coloneqq \operatorname{augment} \left({}_{v}midpoints_X_mesh_2 \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}midpoints_Z_mesh_2 \cdot \frac{1}{\textit{\textbf{m}}}, {}_{v}W_{f_2} \cdot \frac{1}{\textit{\textbf{m}}} \right)$$

 ${_{m}CSV}_{mp_values_II_2} \coloneqq \operatorname{augment}\left({_{v}midpoints_X_mesh_2} \cdot \frac{1}{\textit{ft}}, {_{v}midpoints_Z_mesh_2} \cdot \frac{1}{\textit{ft}}, {_{v}W}_{f_2} \cdot \frac{1}{\textit{ft}}\right)$

 $_{m}CSV_{mp_values_2} \coloneqq \operatorname{augment} \left(_{m}CSV_{mp_values_I_2}, _{m}CSV_{mp_values_II_2} \right)$

 $CSV_Output_{B_17} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES_Wing_TE_Tail.csv''}, {}_{m}CSV_{mp_values_2}\right)$

All Fuselage Segments

$$\begin{array}{c} {}_{m}CSV_{mp_ALL} \coloneqq \left\| k \leftarrow -1 \right\| & \text{for } i \in 0 \dots N_{B_1} - 2 \\ & \left\| k \leftarrow k + 1 \right\| \\ & \left\| k \leftarrow k + 1 \right\| \\ & \left\| k \leftarrow k + 1 \right\| \\ & \left\| mtemporary_{k,0} \leftarrow k + 1 \right\| \\ & \left\| mtemporary_{k,1} \leftarrow {}_{v}midpoints_X_mesh_{1_{i}} \cdot \frac{1}{m} \right\| \\ & \left\| mtemporary_{k,2} \leftarrow dx_{1} \cdot \frac{1}{m} \right\| \\ & \left\| mtemporary_{k,3} \leftarrow {}_{v}W_{f_1_{i}} \cdot \frac{1}{m} \right\| \\ & \left\| mtemporary_{k,3} \leftarrow {}_{v}Eu_{a1_{i}} \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{v}\varepsilon u_{a1_{i}} \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{v}\varepsilon u_{a1_{i}} \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{v}\varepsilon u_{a1_{i}} \right\| \\ & \left\| mtemporary_{k,7} \leftarrow {}_{v}W_{f_1_{i}}^{2} \cdot \frac{1}{m^{2}} \cdot \left(1 + {}_{v}\varepsilon u_{a1_{i}}\right) \cdot dx_{1} \cdot \frac{1}{m} \right\| \\ & \left\| k \leftarrow k + 1 \right\| \\ & \left\| mtemporary_{k,0} \leftarrow k + 1 + N_{B_W} - 1 \right\| \\ & \left\| mtemporary_{k,0} \leftarrow k + 1 + N_{B_W} - 1 \right\| \\ & \left\| mtemporary_{k,0} \leftarrow k + 1 + N_{B_W} - 1 \right\| \\ & \left\| mtemporary_{k,3} \leftarrow {}_{v}W_{f_2_{i}} \cdot \frac{1}{m} \right\| \\ & \left\| mtemporary_{k,3} \leftarrow {}_{v}W_{f_2_{i}} \cdot \frac{1}{m} \right\| \\ & \left\| mtemporary_{k,3} \leftarrow {}_{v}W_{f_2_{i}} \cdot \frac{1}{m} \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d2_{i,1}} - 1 \right\| \\ & \left\| mtemporary_{k,5} \leftarrow {}_{m}\varepsilon u_{d$$

 $CSV_Output_{B_18} \coloneqq \text{WRITECSV} \ (\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_data_MIDPOINT_VALUES_All_Fuselage.csv''}, \\ {}_{m}CSV_{mp_AL} \cap \text{CSV}_{mp_AL} \cap \text{CSV}_{m$

1_minus_deps/dalpha in afterbody midpoints

$${_{m}CSV}_{edW} \coloneqq \operatorname{augment}\left({_{m}\varepsilon u_{dW}}^{\langle 0 \rangle} \boldsymbol{\cdot} \frac{1}{\boldsymbol{m}}, {_{m}\varepsilon u_{dW}}^{\langle 0 \rangle} \boldsymbol{\cdot} \frac{1}{c_{W_r}}, \left({_{m}\varepsilon u_{dW}}^{\langle 0 \rangle} - c_{W_r}\right) \boldsymbol{\cdot} \frac{1}{\Delta X_{HT}_{ac_W}}, {_{m}\varepsilon u_{dW}}^{\langle 1 \rangle}\right) \\ CSV_{Output}_{B_19} \coloneqq \operatorname{WRITECSV}\left(\text{``.} \operatorname{Output} \operatorname{VSELAGE_xw_cr_vs_edw.csv''}, {_{m}CSV}_{edW}\right)$$

$${}_{m}\!CSV_{ed2}\!\coloneqq\!\operatorname{augment}\left({}_{m}\!\varepsilon u_{d2}{}^{\langle 0\rangle}\!\cdot\!\frac{1}{\pmb{m}},{}_{m}\!\varepsilon u_{d2}{}^{\langle 0\rangle}\!\cdot\!\frac{1}{\Delta X_\!HT_{ac}\!\!-\!\!W_{LE}},{}_{m}\!\varepsilon u_{d2}{}^{\langle 1\rangle}\!\right)$$

 $CSV_Output_{B_20} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{FUSELAGE_x2_cr_vs_ed2.csv''}, {}_{m}CSV_{ed2}\right)$

MAPPING AND OUTPUT CREATION

Includi << ../Default_Map_Fuselage.mcdx

 $First_Row_{B-1} := 4$

 $Block_{B_1} \coloneqq {}_{\mathsf{f}} \mathsf{map_matrix_transform} \left({}_{m} Fuselage_Data_Map_{imported} \right)$

 $Excel_Output_{B-1} := \text{fwrite_full_output} (sOutput_Excel_File, Block_{B-1}, n_{sheet}, First_Row_{B-1})$

 $First_Row_{B}_{2} := First_Row_{B}_{1} + rows \langle Block_{B}_{1} \rangle + 2 = 63$

 $Block_{B_2} := {}_{\mathrm{f}} \text{map_matrix_transform} \left({}_{m} Fuselage_Data_Map_{input} \right)$

 $Excel_Output_{B_2} \coloneqq_{\text{f}} \text{write_full_output} \left({}_{s}Output_Excel_File \;, Block_{B_2}, n_{sheet} \;, First_Row_{B_2} \right)$

 $First_Row_{B_3} \coloneqq First_Row_{B_2} + \operatorname{rows}\left(Block_{B_2}\right) + 2 = 89$

 $Block_{B_3} := {}_{\mathbf{f}} \mathbf{map_matrix_transform} \left({}_{m}Fuselage_Data_Map \right)$

 $Excel_Output_{B_3} := {}_{\text{f}} write_full_output ({}_{s}Output_Excel_File , Block_{B_3}, n_{sheet}, First_Row_{B_3})$

 $First_Row_{B_4} := First_Row_{B_3} + rows (Block_{B_3}) + 2 = 118$

 $Block_{B\ 4} := {}_{f}map_matrix_transform ({}_{m}Fuselage_Data_Map_{Misc})$

 $Excel_Output_{B\ 4} := {}_{\mathrm{f}}write_\mathrm{full_output} \left({}_{s}Output_Excel_File\ , Block_{B\ 4}\ , n_{sheet}\ , First_Row_{B\ 4} \right)$

TeX Macro writing on .tex