第2章 线性规划

2.3 单纯形算法

单纯形算法

- 单纯形法(simplex method)是G.B. Dantzig于1947年提出
- 基本思想: 在基本可行解中搜寻最优解
- 涉及到的问题
 - 如何得到一个基本可行解(两阶段法)
 - 如何判别是否是最优解,以及如何迭代(从一个基本可行解 得到另一个基本可行解)

单纯形算法

- 理论方法
- 算法步骤
- 单纯形表
- 算例

min $c^{\mathrm{T}}x$

观察标准型的 LP s.t. $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$.

假设 $B = (A_{B(1)}, A_{B(2)}, ..., A_{B(m)})$ 是一个约束矩阵 A 的一个基 (满秩矩阵)。不失一般性,可假设 B 正好由 A 的前 m 个列向量 组成, 即 B(i) = i, $\forall i$ 。

将向量 x 按照 B 分块为 $\begin{pmatrix} x_B \\ x_N \end{pmatrix}$ 。在等式约束 Ax = b 两端左乘

 B^{-1} , 则等式约束变为: $x_B + B^{-1}Nx_N = B^{-1}b$ (典式), 即

$$x_B = B^{-1}b - B^{-1}Nx_N$$

基本可行解
$$\overline{x} = \begin{pmatrix} \overline{b} = B^{-1}b \\ 0 \end{pmatrix}$$

检验数向量ζ

●于是,目标函数可写为

$$c^{\mathsf{T}}x = c_{B}^{\mathsf{T}}x_{B} + c_{N}^{\mathsf{T}}x_{N} = c_{B}^{\mathsf{T}}(B^{-1}b - B^{-1}Nx_{N}) + c_{N}^{\mathsf{T}}x_{N}$$
$$= c_{B}^{\mathsf{T}}B^{-1}b - (c_{B}^{\mathsf{T}}B^{-1}N - c_{N}^{\mathsf{T}})x_{N} \bullet$$

• 记
$$\zeta_N^{\mathrm{T}} = c_B^{\mathrm{T}} B^{-1} N - c_N^{\mathrm{T}}$$
, $\diamondsuit \zeta_B^{\mathrm{T}} = 0$, 即
$$\zeta^{\mathrm{T}} = \begin{pmatrix} \zeta_B^{\mathrm{T}} & \zeta_N^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} 0 & c_B^{\mathrm{T}} B^{-1} N - c_N^{\mathrm{T}} \end{pmatrix},$$

称为检验数向量。

●于是,目标函数可进一步写为

$$c^{\mathrm{T}}x = c_{B}^{\mathrm{T}}B^{-1}b - (c_{B}^{\mathrm{T}}B^{-1}N - c_{N}^{\mathrm{T}})x_{N} = c_{B}^{\mathrm{T}}B^{-1}b - \zeta^{\mathrm{T}}x_{0}$$

LP相对于基B的等价形式

$$\min \ z = c^{\mathrm{T}} x$$

●于是原规划 s.t. $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$ 等价于 s.t. $\begin{cases} x_B + B^{-1}Nx_N = B^{-1}b \\ x \ge 0 \end{cases}$, 这是

min
$$z = c_B^{\mathsf{T}} B^{-1} b - \zeta^{\mathsf{T}} x$$

$$= \text{s.t.} \begin{cases} x_B + B^{-1} N x_N = B^{-1} b \\ x \ge 0 \end{cases}, \quad$$
这是

在单纯形算法中使用的形式。

● 检验数向量的计算:
$$\zeta^{T} = (\zeta_{B}^{T} \quad \zeta_{N}^{T}) = (0 \quad c_{B}^{T}B^{-1}N - c_{N}^{T})$$

$$= (c_{B}^{T}B^{-1}B - c_{B}^{T} \quad c_{B}^{T}B^{-1}N - c_{N}^{T})$$

$$= (c_{B}^{T}B^{-1}B \quad c_{B}^{T}B^{-1}N) - (c_{B}^{T} \quad c_{N}^{T})$$

$$= c_{B}^{T}B^{-1}(B \quad N) - c^{T}$$

$$= c_{B}^{T}B^{-1}A - c^{T}$$
•

理论方法

设 \bar{x} 为 LP 的一个 bfs。特别地,取上面推导中的基 B 为 \bar{x} 的基,则有如下定理成立。

定理 2.3.1 (最优性准则) 如果检验数向量 $\zeta \leq 0$,则基本可行解 \bar{x} 为原问题的最优解。

定理 2.3.2 如果检验数向量 ζ 的第 k 个分量 $\zeta_k > 0$,而 和 ζ_k 对应的列向量 $\overline{A}_k = B^{-1}A_k \le 0$,则原问题无界。

定理 2.3.3 对于非退化的基本可行解 \bar{x} ,若检验数向量 ζ 的第 k 个分量 $\zeta_k > 0$,而向量 $B^{-1}A_k$ 至少有一个正分量, 则可以找到一个新的基本可行解 \hat{x} 使得 $c^T\hat{x} < c^T\bar{x}$ 。

基本思路

定理 2.3.3 对于非退化的基本可行解 \bar{x} ,若检验数向量 ζ 的第 k 个分量 $\zeta_k > 0$,而向量 $B^{-1}A_k$ 至少有一个正分量, 则可以找到一个新的基本可行解 \hat{x} 使得 $c^T\hat{x} < c^T\bar{x}$ 。

如果在现有的基和基本可行解基础上,定理2.3.3成立,选择一个基变量变成非基变量,同时选择一个非基变量(满足 $\zeta_k > 0$)变成基变量,得到新的可行解,直到定理2.3.1和定理2.3.2中的判定条件出现

单纯形算法 - Simplex

- 1 找一个初始可行基B。
- 2 求出典式和检验数向量ζ。
- 3 $\Leftrightarrow k = \arg\max\{\zeta_j | j = 1, 2, ..., n\}$
- 4 如果 $\zeta_k \leq 0$ 则当前基可行解就是最优解,停止。
- 5 如果 $\overline{A_k} \leq 0$,则问题无界,停止。

$$\overline{b} = B^{-1}b$$

6
$$\Rightarrow$$
 $r = \arg\min\left\{\frac{\overline{b_i}}{\overline{a_{ik}}} \mid \overline{a_{ik}} > 0, i = 1, 2, ..., m\right\}$.

7 以 A_k 替代 B 中的第 r 列(即, $B(r) \leftarrow k$),得到一个新的基 B,转第 2 步。

(基本的) 单纯形表

假设当前的基 $B = (A_1, A_2, \dots, A_m)$,则对应的单纯形表为:

						x_{m+1}					
x_1	1	•••	0	•••	0	$\overline{a}_{1,m+1}$	•••	\overline{a}_{1k}	•••	\overline{a}_{1n}	$\overline{b}_1 \ dots$
:	i		:		:	:		:		:	÷
x_r	0	•••	1	•••	0	$\overline{a}_{r,m+1}$		\overline{a}_{rk}	•••	\overline{a}_{rn}	\overline{b}_r
:	÷		÷		÷	:		÷		÷	$egin{array}{c} \overline{b}_r \ dots \end{array}$
	0	•••	0	•••	1	$\overline{a}_{m,m+1}$		\overline{a}_{mk}		\overline{a}_{mn}	\overline{b}_m

完整的单纯形表

把目标函数值 z 看成变量,则 $z = c_B^T B^{-1} b - \zeta^T x$ 等价于 $z + \zeta^T x = c_B^T B^{-1} b$ 。在单纯形表中加上 z 对应的行,同时加上一行描述方程 $z + \zeta^T x = c_B^T B^{-1} b$,则得到新的单纯形表:

_	\boldsymbol{z}	x_1	•••	x_r	•••	x_m	x_{m+1}		x_k		x_n	
Z	1	0	•••	0	•••	0	ζ_{m+1}	•••	ζ_k	•••	ζ_n	$c_{\scriptscriptstyle B}^{\scriptscriptstyle { m T}} \overline{b}$
x_1	0	1	•••	0	•••	0	$\overline{a}_{1,m+1}$		\overline{a}_{1k}	•••	\overline{a}_{1n}	\overline{b}_1
:	•	•		:		:	:		:		:	:
x_r	0	0		1		0	$\overline{a}_{r,m+1}$		\overline{a}_{rk}		\overline{a}_{rn}	\overline{b}_r
÷	:	•		•		:	•		•		: :	:
x_m	0	0	•••	0	•••	1	$\overline{a}_{1,m+1}$ \vdots $\overline{a}_{r,m+1}$ \vdots $\overline{a}_{m,m+1}$	•••	\overline{a}_{mk}	•••	\overline{a}_{mn}	\overline{b}_m

目标函数值

•给定基B, $\zeta^{\mathrm{T}}x = \begin{pmatrix} 0 & \zeta_N^{\mathrm{T}} \begin{pmatrix} x_B^{\mathrm{T}} \\ 0 \end{pmatrix} = 0$,

因此 $z = c_B^T B^{-1} b - \zeta^T x = c_B^T B^{-1} b$ 。即,单纯形表右上角的 $c_B^T B^{-1} b$ 就是当前解x的目标函数值。

实际使用的单纯形表

● 在对单纯形表进行行初等变换时,变量 z 所对应的列各元素 不会改变,因此可将表格中变量 z 的行去掉,得到新的单纯 形表:

	x_1	•••	x_r	•••	\mathcal{X}_{m}	x_{m+1}	•••	x_k	•••	x_n	
	0	•••	0	•••	0	ζ_{m+1}	•••	ζ_k	•••	ζ_n	$c_{\scriptscriptstyle B}^{\scriptscriptstyle { m T}} \overline{b}$
x_1	1		0		0	$\overline{a}_{1,m+1}$:		\overline{a}_{1k}		\overline{a}_{1n}	\overline{b}_1
:	:		•		:	:		:		:	÷
x_r	0	•••	1	• • •	0	$\overline{a}_{r,m+1}$		\overline{a}_{rk}		\overline{a}_{rn}	b_r
:	•		•		:	:		:		:	:
x_m	0		0	•••	1	$\overline{a}_{m,m+1}$		\overline{a}_{mk}		\overline{a}_{mn}	\overline{b}_m

总结: 获得初始单纯形表

- (1)将 LP 转为标准型。
- (2) 构造表格:

(3) 选取 *A* 中的若干列为基,用初等行变换将这些列变为单位阵,检验数行一同参与变换。得到初始单纯形表:

旋转操作 - x_k 进基, x_r 出基

- ●通过矩阵行初等变换,将 \overline{a}_{rk} 变为 1,将第k列其余各元素变为 0。
- ●换基时,对典式进行的行初等变换也适用于第 0 行。这样可以在单纯形表上用统一的格式计算出对应于新基 \hat{B} 的各元素 \hat{a}_{ij} 、检验数 $\hat{\zeta}_{j}$ 和目标函数值 \hat{z}_{0} 。

	x_1	•••	x_r	•••	x_m	x_{m+1}	•••	x_k	•••	x_n	
	0		0	•••	0	ζ_{m+1}		ζ_k	•••	ζ_n	$c_{\scriptscriptstyle B}^{\scriptscriptstyle { m T}} \overline{b}$
x_1	1	•••	0	•••	0	$\overline{a}_{1,m+1}$	•••	\overline{a}_{1k}	•••	\overline{a}_{1n}	\overline{b}_1
÷	÷		÷		÷	:		÷		÷	:
x_r	0		1		0	$\overline{a}_{r,m+1}$		\overline{a}_{rk}		\overline{a}_{rn}	\overline{b}_r
:	÷		÷		÷	:		÷		:	:
\mathcal{X}_{m}	0	•••	0	•••	1	$\overline{a}_{m,m+1}$		\overline{a}_{mk}	•••	\overline{a}_{mn}	\overline{b}_m

2020/6/17

旋转操作之后

	x_1	•••	x_r	•••	x_m	x_{m+1}		x_k		x_n	
	0		$\hat{\zeta}_r$		0	$\hat{\zeta}_{m+1}$	•••	0		$\hat{\zeta}_n$	$c_{\scriptscriptstyle B}^{\scriptscriptstyle { m T}} \hat{b}$
x_1	1		$\hat{a}_{_{1r}}$		0	$\hat{a}_{1,m+1}$	•••	0	•••	$\hat{a}_{\scriptscriptstyle 1n}$	$\hat{b_{_{1}}}$
i	i		÷		÷	:		i		÷	:
\boldsymbol{x}_k	0	•••	\hat{a}_{rr}		0	$\hat{a}_{r,m+1}$		1		\hat{a}_{rn}	$\hat{b_r}$
i	i		÷		÷	:		i		÷	:
x_m	0	•••	$\hat{a}_{\scriptscriptstyle mr}$	•••	0	$\hat{a}_{m,m+1}$		0	•••	$\hat{a}_{\scriptscriptstyle mn}$	$\hat{b}_{\scriptscriptstyle m}$

旋转操作之后单纯形表上各元素的值

(1)第
$$r$$
行元素都除以了 \overline{a}_{rk} : $\hat{a}_{rj} = \frac{\overline{a}_{rj}}{\overline{a}_{rk}}$, $\hat{b}_r = \frac{b_r}{\overline{a}_{rk}}$.

(2) 其余各行受变换的影响,各元素的值均发生了变化。

新的第 $i(i \neq r)$ 行 = 原第i 行 + 第r 行 × $(-\overline{a}_{ik})$ 。

(2.1) 第 0 行:
$$\hat{\zeta}_j = \zeta_j + \frac{\overline{a}_{rj}}{\overline{a}_{rk}} (-\zeta_k)$$
, $c_B^T \hat{b} = c_B^T \overline{b} + \frac{\overline{b}_r}{\overline{a}_{rk}} (-\zeta_k)$.

(2.2)除第0行和第r行外的其余各行($i \neq 0, r$):

$$\hat{a}_{ij} = \overline{a}_{ij} + \frac{\overline{a}_{rj}}{\overline{a}_{rk}} \left(-\overline{a}_{ik} \right) \quad \hat{b}_i = \overline{b}_i + \frac{\overline{b}_r}{\overline{a}_{rk}} \left(-\overline{a}_{ik} \right) \quad \bullet$$

例2.2.1

min
$$x_1 - x_2$$

s.t. $2x_1 - x_2 - x_3 = -2$
 $x_1 - 2x_2 + x_4 = 2$
 $x_1 + x_2 + x_5 = 5$
 $\forall 1 \le i \le 5, x_i \ge 0$
 $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5$
 $-1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0$
 $x_3 \quad 2 \quad -1 \quad -1 \quad 0 \quad 0 \quad -2$
 $x_4 \quad 1 \quad -2 \quad 0 \quad 1 \quad 0 \quad 2$
 $x_5 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 5$

得到初始单纯形表

将第1行乘以-1,即得到初始的单纯形表。

	x_1	x_2	x_3	x_4	x_5	
	-1	1	0	0	0	0
x_3	-2	1	1	0	0	2
x_4	1	-2	0	1	0	2
x_5	1	1	0	0	1	5

验证

$$c^{T} = (1 - 1 \ 0 \ 0), \quad B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} -2 \\ 2 \\ 5 \end{pmatrix}.$$

$$x_{\rm B} = (x_3 x_4 x_5)^{\rm T} = B^{-1}b = (2 \ 2 \ 5)^{\rm T}, \ x_{\rm N} = (x_1 x_2)^{\rm T} = (0 \ 0)^{\rm T}$$

检验数
$$\zeta^{\mathrm{T}} = c_B^{\mathrm{T}} B^{-1} A - c^{\mathrm{T}} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} B^{-1} A - c^{\mathrm{T}} = -c^{\mathrm{T}}$$
。

目标函数值
$$z = c_B^T B^{-1} b = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix} = 0$$
。

$$B^{-1}A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & -1 & 0 & 0 \\ 1 & -2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ 1 & -2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}^{\circ}$$

迭代1

由于 $\zeta_2 = 1 > 0$,所以该基可行解不是最优解,同时系数矩阵该列有大于 0 的元素,所以取 x_2 为入基变量。

计算 $r = argmin\{2/1, 5/1\} = 1$,所以取第 1 个约束对应的基变量 x_3 为出基变量。

在上表中把 x₂ 对应的列变成单位向量,系数矩阵第 1 行对 应的元素为 1,则可以得到新的基可行解的单纯形表:

	x_1	x_2	x_3	x_4	x_5	
	1	0	-1	0	0	-2
x_2	-2	1	1	0	0	2
x_4	-3	0	2	1	0	6
x_5	3	0	-1	0	1	3

迭代2

由于 $\zeta_1 = 1 > 0$,所以该基可行解不是最优解,同时系数矩阵 第 k = 1 列有大于 0 的元素,所以取 x_1 为进基变量。

计算 $r = \operatorname{argmin}\{3/3\} = 3$,所以取第 3 个约束对应的基变量 x_5 为出基变量。

在上表中把系数矩阵第 3 行第 1 列对应的元素为 $1, x_1$ 对应的第 1 列变成单位向量,则得到新的单纯形表:

	x_1	x_2	x_3	x_4	x_5	
	0	0	-2/3	0	-1/3	-3
x_2	0	1	1/3	0	2/3	4
x_4	0	0	1	1	1	9
x_1	1	0	-1/3	0	1/3	1

结束

由于检验数都小于等于 0,所以该基可行解是最优解,对应的最优解为 $(1,4,0,9,0)^{T}$,最优值为-3。

例2.3.1

求解问题

min
$$z = -x_2 + 2x_3$$

$$\begin{cases} x_1 - 2x_2 + x_3 = 2\\ x_2 - 3x_3 + x_4 = 1\\ x_2 - x_3 + x_5 = 2\\ x_j \ge 0; \quad j = 1, 2, \dots, 5 \end{cases}$$

初始单纯形表

以 x_1 、 x_4 和 x_5 为基变量就可以得到初始基可行解 $(2,0,0,1,2)^T$,其对应的单纯形表为:

·	x_1	x_2	x_3	x_4	x_5	
	0	1	-2	0	0	0
x_1	1	-2	1	0	0	2
x_4	0	1	-3	1	0	1
x_5	0	1	-1	0	1	2

迭代1

由于 $\zeta_2 = 1 > 0$,所以该基可行解不是最优解,同时系数矩阵该列有大于0的元素,所以取 x_2 为入基变量。

计算 $\theta = \min\{\frac{1}{1}, \frac{2}{1}\} = 1$,所以取第 2 个约束对应的基变量 x_4 为出基变量,就可以得到一个新的基可行解。

在上表中把 x₂ 对应的列变成单位向量,系数矩阵第 2 行 对应的元素为 1,则可以得到该基可行解的单纯形表:

	x_1	x_2	x_3	x_4	x_5	
	0	0	1	-1	0	-1
x_1	1	0	-5	2	0	2
x_2	0	1	-3	1	0	1
x_5	0	0	2	-1	1	2

迭代2

由于 $\zeta_3 = 1 > 0$,所以该基可行解不是最优解,同时系数 矩阵该列有大于 0 的元素,所以取 x_3 为入基变量。

计算 θ = 1/2,所以取第 3 个约束对应的基变量 x_5 为出基变量,就可以得到一个新的基可行解。

在上表中把 x₃ 对应的列变成单位向量,系数矩阵第 3 行对应的元素为 1,则可以得到该基可行解的单纯形表:

	x_1	x_2	x_3	x_4	x_5	
	0	0	0	-1/2	-1/2	-3/2
x_1	1	0	0	-1/2	5/2	13/2
x_2	0	1	0	-1/2	3/2	5/2
x_5	0	0	1	-1/2	1/2	1/2

结束

由于检验数都小于等于 0, 所以该基可行解就是最优解,

对应的最优解为
$$\left(\frac{13}{2}, \frac{5}{2}, \frac{1}{2}, 0, 0\right)$$
, 最优值为 $-\frac{3}{2}$ 。

注:

- 1. 单纯形算法在实际应用中非常有效,被广泛采用,但 其运行时间在最坏情况下不是多项式的。
- 2. 现在还有待解决的问题是如何选择初始基,以及出现 退化的时候如何处理。

例2.3.2

min
$$z = -x_2 - 2x_3$$

s.t. x_1 $-\frac{1}{2}x_4 + \frac{5}{2}x_5 = \frac{13}{2}$
 x_2 $-\frac{1}{2}x_4 + \frac{3}{2}x_5 = \frac{5}{2}$
 $x_3 - \frac{1}{2}x_4 + \frac{1}{2}x_5 = \frac{1}{2}$
 $x_i \ge 0 \quad \forall 1 \le i \le 5$
 x_1 x_2 x_3 x_4 x_5
0 1 2 0 0 0
 x_1 1 0 0 -1/2 5/2 13/2
 x_2 0 1 0 -1/2 3/2 5/2
 x_3 0 0 1 -1/2 1/2 1/2

例2.3.2

●选择约束矩阵 A 的前 3 列为基,使用行初等变换得到初始单纯形表。

	x_1	x_2	<i>X</i> 3	<i>X</i> 4	X 5	
	0	0	0	3/2	-5/2	-7/2
x_1	1	0	0	-1/2	5/2	13/2
<i>x</i> ₂	0	1	0	-1/2	3/2	5/2
<i>x</i> ₃	0	0	1	-1/2	1/2	1/2

●由于 $\zeta_4 > 0$, $\overline{A_4} \le 0$,因此原 LP 无界。

理论方法

设 \bar{x} 为 LP 的一个 bfs。特别地,取上面推导中的基 B 为 \bar{x} 的基,则有如下定理成立。

定理 2.3.1 (最优性准则) 如果检验数向量 $\zeta \leq 0$,则基可行解 \bar{x} 为原问题的最优解。

定理 2.3.2 如果检验数向量 ζ 的第 k 个分量 $\zeta_k > 0$,而 和 ζ_k 对应的列向量 $\overline{A}_k = B^{-1}A_k \le 0$,则原问题无界。

定理 2.3.3 对于非退化的基本可行解 \bar{x} ,若检验数向量 ζ 的第 k 个分量 $\zeta_k > 0$,而向量 $B^{-1}A_k$ 至少有一个正分量, 则可以找到一个新的基本可行解 \hat{x} 使得 $c^{\mathrm{T}}\hat{x} < c^{\mathrm{T}}\bar{x}$ 。

定理2.3.1 - 判定当前bfs为最优

定理 2.3.1 若检验数向量 $\zeta \leq 0$,则对应的 bfs \bar{x} 为最优解。证明:

- 由 bfs 的定义, $\bar{x} = \begin{pmatrix} \bar{x}_B \\ \bar{x}_N \end{pmatrix}$ 。
- \bar{x} 的目标函数值 (使用 LP 相对于满秩矩阵 B 的等价形式)

为
$$c^{\mathrm{T}}\bar{x} = c_B^{\mathrm{T}}B^{-1}b - \zeta^{\mathrm{T}}\bar{x} = c_B^{\mathrm{T}}B^{-1}b - \left(\zeta_B^{\mathrm{T}} \quad \zeta_N^{\mathrm{T}}\right)\left(\frac{\bar{x}_B}{\bar{x}_N}\right) = c_B^{\mathrm{T}}B^{-1}b$$
,因为 $\zeta_B^{\mathrm{T}} = 0$, $\bar{x}_N = 0$ 。

●而任给一个可行解 x,其目标函数值为 $c_B^T B^{-1} b - \zeta^T x \ge c_B^T B^{-1} b$,因为 $\zeta^T \le 0$, $x \ge 0$ 。

定理2.3.2 - 判定LP无界

定理 2.3.2 如果向量 ζ 的第 k 个分量 $\zeta_k > 0$,而向量 $\overline{A}_k = B^{-1} A_k \le 0$,则原问题无界。

证明:

- ●不失一般性,假设基B由A的前m列组成。
- \bullet 由于 $\zeta_B^T = 0$,故 $m+1 \le k \le n$ 。
- •令 $d = \begin{pmatrix} -\overline{A}_k \\ 0 \end{pmatrix} + e_k$,在此 e_k 为第k个分量为1,其余分量都为
 - 0的 n 维向量。则 $d \ge 0$ 且

$$Ad = (B \ N) \begin{pmatrix} -B^{-1}A_k \\ 0 \end{pmatrix} + (B \ N)e_k = -A_k + A_k = 0$$

证明

- 设 $\theta > 0$ 为任一正数。考察向量 $\bar{x} + \theta d$ 。
- ●由于 $A(\bar{x} + \theta d) = A\bar{x} + \theta Ad = b$ 以及 $\bar{x} + \theta d \ge 0$,因此 $\bar{x} + \theta d$ 是一个可行解。

•
$$c^{\mathrm{T}}(\bar{x} + \theta d) = c^{\mathrm{T}}\bar{x} + \theta(c_{B}^{\mathrm{T}} c_{N}^{\mathrm{T}})\begin{bmatrix} -B^{-1}A_{k} \\ 0 \end{bmatrix} + e_{k}$$

$$= c^{\mathrm{T}}\bar{x} + \theta(-c_{B}^{\mathrm{T}}B^{-1}A_{k} + c_{k})$$

$$= c^{\mathrm{T}}\bar{x} - \theta\zeta_{k} \qquad (因为\zeta = c_{B}^{\mathrm{T}}B^{-1}A - c^{\mathrm{T}})$$

●因为 $\zeta_k > 0$, 当 $\theta \to \infty$ 时, $c^{\mathrm{T}}(\bar{x} + \theta d) \to -\infty$ 。□

● 对于例 2.3.2 的单纯形表,有 k = 4,

$$\bar{x} = \begin{pmatrix} 13/2 \\ 5/2 \\ 1/2 \\ 0 \\ 0 \end{pmatrix}, \quad d = \begin{pmatrix} -\overline{A}_k \\ 0 \end{pmatrix} + e_k = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1 \\ 0 \end{pmatrix}.$$

$$\overline{x} + \theta d = \begin{pmatrix} 13/2 + \theta/2 \\ 5/2 + \theta/2 \\ 1/2 + \theta/2 \\ \theta \\ 0 \end{pmatrix}.$$

$$c^{\mathrm{T}}(\bar{x} + \theta d) = \begin{pmatrix} 0 & -1 & -2 & 0 & 0 \end{pmatrix} \begin{pmatrix} 13/2 + \theta/2 \\ 5/2 + \theta/2 \\ 1/2 + \theta/2 \\ \theta \\ 0 \end{pmatrix}$$

 $=-\frac{5}{2}-\frac{1}{2}\theta-1-\theta=-\frac{7}{2}-\frac{3}{2}\theta$

定理2.3.3 – 找下一个更好的bfs

定理 2.3.3 对于非退化的基本可行解 \bar{x} ,若向量 ζ 的第 k 个分量 $\zeta_k > 0$,而向量 \bar{A}_k 至少有一个正分量,则可以找到一个新的基本可行解 \hat{x} 使得 $c^{\mathrm{T}}\hat{x} < c^{\mathrm{T}}\bar{x}$ 。

证明:

- 只需要将 x̂ 找出来。
- ●不失一般性,假设 B 由 A 的前 m 列组成,而 $m+1 \le k \le n$ 。
- •令 $^{d=\begin{pmatrix} -\overline{A}_k \\ 0 \end{pmatrix} + e_k}$ 。 e_k 为第 k 个分量为 1,其余分量全为 0 的向

量。则有:
$$Ad = (B \ N) \begin{pmatrix} -B^{-1}A_k \\ 0 \end{pmatrix} + (B \ N)e_k = -A_k + A_k = 0$$
。

定理2.3.3证明

 $\bullet \diamondsuit \hat{x} = \overline{x} + \theta d$. $\text{MI} A\hat{x} = A\overline{x} + \theta A d = b$.

• 由定义,
$$\hat{x} = \overline{x} + \theta d = \begin{pmatrix} \overline{b} \\ 0 \end{pmatrix} + \theta \begin{pmatrix} -\overline{A}_k \\ 0 \end{pmatrix} + \theta e_k = \begin{pmatrix} \overline{b} - \theta \overline{A}_k \\ 0 \end{pmatrix} + \theta e_k$$
。

 \bullet (1) \forall 1 \leq i \leq m, 若 $\overline{a}_{ik} \leq$ 0, 则 $\hat{x}_i = \overline{b}_i - \theta \overline{a}_{ik} > 0$ 。

• (2)
$$\forall 1 \leq i \leq m$$
,若 $\overline{a}_{ik} > 0$,则 $\hat{x}_i = \overline{b}_i - \frac{\overline{b}_r}{\overline{a}_{rk}} \overline{a}_{ik} \geq \overline{b}_i - \frac{\overline{b}_i}{\overline{a}_{ik}} \overline{a}_{ik} = 0$ 。且,

$$\hat{x}_r = \overline{b}_r - \frac{b_r}{\overline{a}_{rk}} \overline{a}_{rk} = 0$$

									I			
	x_1	•••	x_r		x_m	x_{m+1}	•••	x_k		x_n		
	ζ_1		0	•••	ζ_m	ζ_{m+1}	•••	ζ_k		ζ_n	z	
\overline{x}_1		•••	0			•••	•••				\overline{b}_1	
÷	:	÷	÷	÷	:	:	÷	÷	:	:	:	
$\overline{\mathcal{X}}_r$			1					\overline{a}_{rk}			\overline{b}_r	
:	:	:	÷	÷	:	•	:	÷	:	•	÷	
$\overline{\mathcal{X}}_m$		•••	0		•••		•••			•••	\overline{b}_m	
	x_1	•••	x_r		x_m	x_{m+1}	•••	x_k		x_n		
	ζ_1		ζ_r		ζ_m	ζ_{m+1}		0		ζ_n	$z - \frac{\overline{b}_r}{\overline{a}_{rk}} \cdot \zeta_k$	
$\hat{x}_{_{1}}$		•••	•••	•••	•••		•••	0	•••	•••	$\overline{b_i} - \frac{\overline{b_r}}{\overline{a_{rk}}} \cdot \overline{a_{ik}}$	
:	:	:	:	:	:	:	:	÷	:	:	:	
\hat{x}_k		•••	$\frac{1}{\overline{a}_{rk}}$	•••			•••	1	•••	•••	$rac{\overline{b}_r}{\overline{a}_{rk}}$	
:	:	:	:	:	:	:	:	÷	:	:	÷	
\hat{x}_m 2020/6/17		•••		•••			•••	0			$ec{b}_m - rac{\overline{b}_r}{\overline{a}_{rk}} \cdot \overline{a}_{mk}$	39

定理2.3.3证明

- (3) $\forall m+1 \leq i \leq n$, $i \neq k$, $\hat{x}_i = 0$.
- $\bullet (4) \quad \hat{x}_k = \theta > 0 .$
- ●(1), (2), (3), (4) ⇒ $\hat{x} \ge 0$, 因此 \hat{x} 是一个可行解。
- ●下面证 \hat{x} 是基本可行解。由定理 2.2.3,只需证 \hat{x} 的正分量 所对应的 A 中的列向量线性无关。
- ●由上述分析, \hat{x} 的正分量只可能出现在 \hat{x}_1 , ..., \hat{x}_{r-1} , \hat{x}_k , \hat{x}_{r+1} , ..., \hat{x}_m 中。因此,若能证明列向量 A_1 , ..., A_{r-1} , A_k , A_{r+1} , ..., A_m 线性无关,则 \hat{x} 为 bfs。
- 反证。假设它们线性相关。由于 $A_1, A_2, ..., A_m$ 本来是线性 无关的(它们是 \bar{x} 的基),这表明 A_k 可由 $A_1, ..., A_{r-1}, A_{r+1}, ..., A_m$ 线性表出。

定理2.3.3证明

● 则存在 m-1 个数 y_i , i=1,...,m, $i \neq r$, 使得 $A_k = \sum_{1 \leq i \leq m, i \neq r} y_i A_i$.

- 又由 $\overline{A}_k = B^{-1}A_k$,可知 $A_k = B\overline{A}_k = \left(A_1, \cdots, A_m\right) \begin{pmatrix} \overline{a}_{1k} \\ \vdots \\ \overline{a}_{2k} \end{pmatrix} = \sum_{i=1}^m \overline{a}_{ik}A_i$ 。
- ●上述两式后式减前式,得: $\bar{a}_{rk}A_r + \sum_{1 \leq i \leq m, i \neq r} (\bar{a}_{ik} y_i)A_i = 0$ 。由于 $\bar{a}_{rk} \neq 0$,因此 $A_1, ..., A_m$ 线性相关,与它们是 \bar{x} 的基矛盾。
- 由定理 2.3.2 之证明, $c^{\mathrm{T}}\hat{x} = c^{\mathrm{T}}\bar{x} \theta\zeta_k$ 。由于 $\theta > 0$, $\zeta_k > 0$,目标函数值 $c^{\mathrm{T}}\hat{x} < c^{\mathrm{T}}\bar{x}$ 。□

例1

● 对于例 2.2.1 的第 1 张单纯形表, $\bar{x} = \begin{pmatrix} 0 & 0 & 2 & 2 & 5 \end{pmatrix}^T$, k = 2, $\theta = 2$ 。

$$d = -\overline{A}_2 + e_2 = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 2 \\ -1 \end{pmatrix},$$

$$\hat{x} = \bar{x} + \theta d = \begin{pmatrix} 0 \\ 0 \\ 2 \\ 2 \\ 5 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ -2 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 6 \\ 3 \end{pmatrix}.$$

例2

●对于例 2.2.1 的第 2 张单纯形表, $\bar{x} = \begin{pmatrix} 0 & 2 & 0 & 6 & 3 \end{pmatrix}^T$, k = 2, $\theta = 2$ 。

$$d = -\overline{A}_2 + e_2 = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 3 \\ -3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 3 \\ -3 \end{pmatrix},$$

$$\hat{x} = \bar{x} + \theta d = \begin{pmatrix} 0 \\ 2 \\ 0 \\ + \begin{pmatrix} 1 \\ 2 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 0 \\ 9 \\ 0 \end{pmatrix}.$$

2020/6/17 44