Ronald Weasley

1. (10 points) Arrange the functions

$$3^{n}, 2^{n}, n2^{n}, n^{30}, (\log n)^{3}, \sqrt{n} \log^{2} n, n \log n, \sqrt{n!}, n^{29} + n^{28}, n^{\sqrt{n}}$$

into increasing order of growth rates.

- 2. (10 points) To solve a particular problem you have access to two algorithms. The execution time of the first algorithm can be given as a function of the input size n as $f(n) = n^{1.5} \log^2 n$. The execution time of the second algorithm is similarly: $g(n) = n^2$. Which algorithm is faster asymptotically? Is this algorithm faster for small n? Find the minimum problem size n needed so that the fastest asymptotic algorithm becomes faster than the other one. Hint: limit your search in powers of 2. You may use calculators to help you but the answer must self contained.
- 3. (10 points) What is the largest problem size n that we can solve in no more than **one hour** using an algorithm that requires f(n) operations, where each operation takes 10^{-9} seconds (this is close to a today's computer), with the following f(n)?
 - (a) $\log_2 n$
 - (b) $\log_2^5 n$
 - (c) 4n
 - (d) $2n\log_2 n$
 - (e) $\frac{n}{2} \log_2^2 n$
 - (f) n^2
 - (g) $(n/2)^3$
 - (h) 2^n
 - (i) n!
 - (i) n^n
- 4. (10 points) Use pseudocode to describe an algorithm that determines whether a given function from a finite set to another finite set is one-to-one.

Hint: You may assume that the domain is $A = \{a_1, \ldots, a_m\}$ and the co-domain is $B = \{b_1, \ldots, b_n\}$. The function $f : A \to B$ is given as a set of pairs $\{(a_i, f(a_i)) | \forall a_i \in A\}$.