Компьютерное моделирование идеального газа, распределение Максвелла, флуктуации.

Н. В. Павличенко, А. С. Подкидышев

Московский физико-технический институт pavlichenko.nv@phystech.edu podkidishev.as@phystech.edu

7 февраля 2020 г.

Ссылка на Github

Аннотация

В данной статье рассматривается компьютерная модель идеального газа, проверяются некоторые основные законы термодинамики: уравнение Менделеева-Клайперона, распределение Максвелла, закон Бойля-Мариотта, нормальность флуктуаций. Особенности данной работы в том, что используется трехмерная модель газа, что уже редкость среди существуствующих проектов, а так же в том, что используются реальные параметры газов: масса молекулы и скорость.

I. Введение

Идеальным газом называют такой газ, у которого взаимодействием молекул между собой можно пренебречь. Иначе говоря, это газ, средняя кинетическая энергия которого много больше энергии их взаимодействия. Например, разряженный газ нейтральных частиц можно считать идеальным. В курсе общей физики основные законы были рассмотрены со статистической стороны, то есть не затрагивали конкретные микросостояния системы, а использовали различные усреднения и интуитивные предположения. С другой стороны интересно посмотреть действительно ли это верно, честно просимулировав все состояния системы с помощью классической механики.

II. Цель работы

- 1. Связь макро- и микропараметров.
- 2. Проверить выполнение уравнения состояния идеального газа.
- 3. Проверить зависимость распределения скоростей от времени (сравнить с распределением Максвелла).
- 4. Оценить флуктуацию давления. Сравнить с теоретическими предположениями.
- Просимулировать цикл тепловой машины. Проверить уравниения адиабаты и изотермы.

III. Описание построенной модели

Будем считать молекулы твердыми шариками, которые упруго сталкиваются

друг с другом и с теплонепроводящими стенками кубического сосуда $1 \times 1 \times 1$ м. В начале эксперимента будем запускать частицы с одинаковой скоростью и равномерно распределенными направлениями. После этого молекулы будут соударяться друг с другом и со стенками сосуда. Будем параллельно строить распределение модулей их скоростей, давление и температуру. Расчеты проводим на

Рис. 1: Результат симуляции

движке, написанном на C++, визуализируем с помощью анимации на Python.

i. Соударение молекул друг с другом

Критически важной выглядит задача обработки соударений частиц, так как именно от точности этого алгоритма будет зависеть установление распределений скоростей, энергий, и других параметров системы. Для этого воспользуемся задачей об угле рассеивания при налете одного шара на другой.

Сначала перейдем в систему отсчета второй молекулы (до удара). Тогда в ней вторая частица будет неподвижна и мы сможем свести задачу к обозначенной выше. Теперь перейдем к системе отсчета центра масс. Итоговый вектор перехода равен

$$\vec{W} = \vec{v_2} + \frac{1}{2}\vec{v_1}.\tag{1}$$

Скорость первой молекулы в новой системе координат тогда \vec{v} . Теперь построим ортонормированный базис в плоскости соударения. Пусть $\vec{x}=\frac{\vec{v}}{|v|},\ \vec{z}=$

Здесь стоит сказать, что скорости молекул слишком велики и мы не можем знать о промежуточных столкновения частиц за время шага симуляции dt. Мы сталкиваем частицы только постфактум, зная их конечные положения.

Соударение молекул о стенки сосуда

Рассмотрим задачу о вычислении давления идеального газа на стенку сосуда. Средняя суммарная сила будет задаваться формулой

$$\overline{f} = \frac{1}{\tau} \int_0^{\tau} dt \sum_{i=1}^n f_i(t) =$$

$$= \sum_{i=1}^n \frac{1}{\tau} \int_0^{\tau} dt f_i(t).$$

После соударения молекулы со стенкой её импульс (p) меняется:

$$p(\tau) - p(0) = \int_0^{\tau} f_i(t)dt$$

Поскольку $M_{\text{стенки}}\gg m_{\text{молекулы}}$:

$$\Delta p = 2mv$$

где v - проекция на скорости перпендикулярная соответствующей стенки Итого:

$$\overline{f} = \frac{1}{\tau} \sum_{i=1}^{n} 2m_i v_i \tag{2}$$

Мы можем найти число столкновений, зная характерный размер сосуда. В нашем случае это его высота L_z

$$\overline{f} = \sum_{j=1}^{N} \frac{m_j v_j^2}{L_z}.$$

Так как объем сосуда $V = L_x \cdot L_y \cdot L_z$,

$$P = \frac{\overline{f}}{L_x L_y} = \frac{1}{V} \sum_{j=1}^{N} m_j v_j^2$$

С помощью полученной формулы найдем P и сравним его с уравнением Клапейрона-Менделеева:

$$PV = \nu RT$$

ііі. Распределение Максвелла

Одной из самых важных частей работы было проверить установление распределения Максвелла модуля скоростей молекул. Для этого начальными параметрами симуляции были выбраны 30000 молекул одноатомного газа с массой молекулы $4.82 \cdot 10^{-26}$ кг, в сосуде, имеющим форму куба со стороной 1v, которым были даны изначально одинаковые по модулю скорости, равные 800 м/c. Через, приблизительно, минуту установилось максвелловское распределение по модулям скоростей молекул, которое изображено на графике.

	1111			
T, K	$V, \frac{m}{s}$	N	$P, 10^{-17}$	$P, 10^{-17}$
104.69	1	$7 \cdot 10^3$	1.01	1.01
186.95	1	10^{4}	2.58	2.58
291.25	1	10^{4}	4.02	4.02
418.00	1	10^{4}	5.79	5.77
570.43	1	10^{4}	7.88	7.88
104.62	1	10^{4}	1.44	1.44
104.63	0.729	10^{4}	1.98	1.98
104.63	0.512	10^{4}	2.82	2.82
104.63	0.343	10^{4}	4.2	4.21
104.63	0.216	10^{4}	6.7	6.69
104.63	0.125	10^{4}	11.5	11.56
104.95	1	$2 \cdot 10^4$	2.9	2.90

Таблица 1: Сравнение давления полученного из уравнения Менделеева-Клапейрона и с помощью нашей модели

iv. Графики полученные на основе вычислений.

Рис. 2: Конечные положения частиц. Более красные частицы обладают большей скоростью, более синие — меньшей.

Рис. 3: Распределение доли молекул $\left(\frac{dn}{n}(v)\right)$ по скоростям. Пунктиром обозначено теоретическое распределение.

Теоретически распределение должно иметь такую зависимость:

$$p(v) = 4\pi v^2 \left(\frac{m}{2\pi kT}\right)^{3/2} \cdot e^{-\frac{mv^2}{2kT}}$$
 (3)

iv.1 Проверка гипотез. Q-Q plot

Проверим, действительно ли полученная выборка из абсолютных скоростей молекул является выборкой из распределения Максвелла. Для начала воспользуемся критерием согласия, а именно критерием Колмогорова, критическое множество которого:

$$\sqrt{n} \cdot \sup_{x \in R} |\hat{F}_n(x) - F_0(x)| > K_{1-\alpha}.$$

Будем проверять гипотезу, что полученное распределение является распределением Максвелла с параметрами, полученными методом максимального правдоподобия. *p — value* получившегося критерия практически равен нулю, то есть модель все таки имеет погрешность и нельзя сказать, что полученное распределение в точности совпадает с распределением Максвелла. Получили статистически значимый результат, но что можно сказать о его практической значимости?

То, что критерий Колмогорова отверг нашу гипотезу справедливо, мы видим различие наших распределений на графиках, а с учетом размера выборки, мощность критерия практически равна единице. Однако кажется, что распределение все равно очень близко к максвелловскому, то есть различие практически не значимо. Чтобы в этом убедиться построим часто использующийся в статистике график Q-Q plot. Чем больше он похож на прямую, тем больше похожи друг на друга выборочное и теоретическое распределения.

Рис. 4: Q-Q plot

Вывод:

По графику наблюдаем, что он очень похож на прямую. Есть небольшое смещение в районе нуля, то есть по сути распределение имеет определенно максвелловский вид, незначительно завышенный в нуле. Таким образом, с помощью Q-Q plot мы убедились, что распределение очень близко к Максвеллу.

v. Флуктуации давления

Из курса общей физики известно, что флуктуации параметров термодинамической системы имеют вид нормального распределения. Зачастую рассматриваются флуктуации, например, объема или температуры. Флуктуации же давления рассматривают редко, так как на

практике их практически невозможно измерить. При увеличении концентрации молекул дисперсия распределения давления в течение времени, согласно центральной предельной теореме, имеет корневую скорость сходимости к среднему. То есть на реально получаемых концентрациях флуктуации давления ничтожно малы. У нас же есть уникальный шанс рассмотреть эти флуктуации, так как мы просто знаем давление, а не пытаемся его измерить каким-либо прибором. По графику можно заметить,

Рис. 5: Распределение давления газа на стенки сосуда в течение времени

что распределение точно имеет нормальный вид. Оценка по методу максимального правдоподобия дает среднее значение $\mu=3.0848\cdot 10^{-16}$ Па, дисперсия $\sigma=9.1215\cdot 10^{-20}$ Па. Проверим гипотезу о том, что полученная выборка действительно из этого распределения. Воспользуемся рассмотренным ранее критерием Колмогорова с уровнем значимости 0.05. Получаем $p-value=0.5074>\alpha=0.05$, то есть гипотеза о том, что распределение давления является нормальным распределением с параметрами μ и σ^2 не отвергалась.

vi. Распределение по энергиям в поле силы тяжести

Дополнительно рассмотрим распределение энергий в поле потенциальных сил. Для примера рассмотрим систему, в которой установилось максвелловское распределение по скоростям, состоящую из 30000 частиц в кубе $1 \times 1 \times 1$ м при температуре 744.7 K, в поле силы тяжести.

На рисунке изображена гистограмма, распределения по энергиям после 30 секунд симуляционного времени. Как можно заметить, зависимость доли частиц от энергии является экспоненциальной, и можно предположить, что она представляет из себя распределение Больцмана, что является подвидом экспоненциального. Проверим гипотезу о том, что полученные энергии имеют экспоненциальное распределение. Вычисплим параметры этого распределения по методу максимального правдоподобия. Действительно, используя тест Андерсона — Дарлинга, получаем что с вероятностью 0.985 энергия распределена экспоненциально.

Рис. 6: Распределение доли молекул $\left(\frac{dn}{n}(v)\right)$ по энергиям, полученное через большой промежуток времени

vii. Цикл тепловой машины

Теперь, чтобы проверить выполнимость законов, описывающих изопроцессы, смоделируем следующий цикл тепловой машины: адиабатическое сжатие (изоэнтропийный процесс), изохорное охлаждение, изотермическое расширение и изохорное нагревание.

Уравнение адиабаты для идеального газа:

$$PV^{\gamma} = const.$$

Тогда зная начальную точку P_0 , V_0 не трудно построить график P(V):

$$P = \frac{P_0 V_0^{\gamma}}{V^{\gamma}}.$$

T.к мы моделируем одноатомный газ, то $\gamma=\frac{5}{3}.$

Уравнение изотермы легко получается из равенства

$$PV = const \Rightarrow P = \frac{P_1 V_1}{V}.$$

Таким образом получили практически идеальное соответствие экспериментального и теоретического результатов, несмотря на то, что каждый процесс был проведен в течение 10 секунд.

Вывод: Наша модель с высокой точностью описывает одноатомный идеальный газ. Она позволяет проводить над ним процессы и симулировать тепловую машину.

IV. Заключение

Получили состоятельную модель идеального газа с помощью которой проверили основные законы термодинамики. Построили гипотезу о том, что скорости молекул распределены по Максвеллу. Подтвердили нормальность флуктуаций давления. Просимулировали цикл тепловой

Рис. 7: Экспериментальный и теоретический графики цикла тепловой машины в PV координатах.

машины. Подводя итог, можно сказать, что действительно, симуляцией микросостояний были получены все законы, описывающие макросостояния идеального газа.

і. Планы

• Неидеальный газ. Используя потенциал потенциал Леннард-Джонса $U(z) = 4\varepsilon \left\{ \left(\frac{\sigma}{z}\right)^{12} - \left(\frac{\sigma}{z}\right)^6 \right\}, \text{ попро-}$

- бовали рассчитывать силу $F = \frac{dU}{dz}$.
- Увеличение числа молекул за счет обработки столкновений только близких молекул. Оптимизация алгоритма для достижения временной сложности меньше $O(n^2)$.
- Симуляция более сложных сосудов, смешивание газов. Отслеживание изменения энтропии.
- Весомые поршни для проведения изобарных процессов.

Список литературы

- [1] Термодинамика и статистическая физика Н.А.Кириченко, МФТИ
- [2] Термодинамика и Молекулярная физика Д.В Сивухин, МФТИ
- [3] Компьютерное моделирование и визуализация задач механики и геометрии. Авторы В.Л. Голо, Д.О. Синицын. http://dfgm.math.msu.su/files/golo/modelling.pdf
- [4] Механика Д.В Сивухин., МФТИ
- [5] Механика Н.А.Кириченко, МФТИ
- [6] В.П. Корявов и Н.А.Кириченко. Механика Ссылка на выдержку