Нижегородский государственный университет им. Н.И.Лобачевского

Факультет Вычислительной математики и кибернетики

Параллельные численные методы

Решение дифференциальных уравнений в частных производных

При поддержке компании Intel

Баркалов К.А., Кафедра математического обеспечения ЭВМ

Содержание

- □ Введение
 - Типовые уравнения в частных производных
 - Метод конечных разностей
- □ Уравнение колебаний
 - Явная разностная схема
- □ Уравнение теплопроводности
 - Явная разностная схема
 - Схема Кранка-Николсона
- □ Уравнение Пуассона
 - Построение разностной схемы
 - Применение метода верхней релаксации
 - Волновая схема вычислений
- □ Результаты экспериментов

Основные понятия

□ Дифференциальное уравнение в частных производных (ДУЧП)

$$F\left(x_{1},...,x_{n},u,\frac{\partial u}{\partial x_{1}},...,\frac{\partial u}{\partial x_{n}},...,\frac{\partial^{k}u}{\partial x_{1}^{k_{1}}...\partial x_{n}^{k_{n}}}\right)=0$$

- \square Решение $u(x_1,...,x_n)$, обращающая уравнение в тождество
- Порядок уравнения порядок старшей производной

$$\square$$
 Линейное ДУЧП второго порядка $A(x,y) \frac{\partial^2 u}{\partial x^2} + B(x,y) \frac{\partial^2 u}{\partial x \partial y} + C(x,y) \frac{\partial^2 u}{\partial y^2} + D(x,y) \frac{\partial u}{\partial x} + E(x,y) \frac{\partial u}{\partial y} + G(x,y) u = f(x,y)$

- ДУЧП второго порядка мат. модели процессов в
 - механике (колебания пластин, мембран)
 - физике (электромагнитные колебания, диффузия)
 - гидро- и газодинамике (различные виды течений)

Типовые уравнения

□ Уравнение колебаний

$$\rho \frac{\partial^2 u}{\partial t^2} = \sum_{i=1}^n \frac{\partial}{\partial x_i} \left(p \frac{\partial u}{\partial x_i} \right) - qu + F(x, t)$$

 ρ , p, q — определяются средой, F(x,t) — внешним воздействием

 \square Уравнение колебаний струны: $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} + f(x,t)$

 \Box Уравнение колебаний мембраны: $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + f(x, y, t)$

□ Распространение звука в однородной среде

$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + f(x, y, z, t)$$

Типовые уравнения

□ Уравнение диффузии частиц (или распространения тепла)

$$\rho \frac{\partial u}{\partial t} = \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(p \frac{\partial u}{\partial x_{i}} \right) - qu + F(x, t)$$

 ρ , p, q — определяются средой, F(x,t) — внешним воздействием

□ Если среда – однородная, уравнение записывается как

$$\frac{\partial u}{\partial t} = \alpha^2 \Delta u + f(x, t)$$

где $\alpha^2 > 0$ зависит от свойств среды;

 Δ – оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x_1^2} + \dots + \frac{\partial^2 u}{\partial x_n^2}$$

Типовые уравнения

 \square Для стационарных процессов (u(x,t)=u(x) и F(x,t)=F(x))

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(p \frac{\partial u}{\partial x_{i}} \right) - qu = -F(x)$$

 \square При p=const, q=0 – уравнение Пуассона

$$\Delta u = -f(x)$$

□ При f(x)=0 – уравнение Лапласа

$$\Delta u = 0$$

□ Пример: безвихревое стационарное течение несжимаемой жидкости описывается уравнением Лапласа, где скорость

$$\vec{v} = \operatorname{grad}(u)$$

 □ Для однозначности решения ДУЧП необходимы дополнительные условия.

Начальные и граничные условия

- \square *Начальные условия* определяют значения искомой функции (и ее производных) в начальный момент времени, т.е. при t=0.
 - Волновое уравнение значение функции и ее первой производной (положение струны в начальный момент и скорость движения ее точек)
- □ *Граничные условия* определяют значения искомой функции (и ее производных) на границе пространственной области.
 - Волновое уравнение значение функции на границах (положение струны в граничных точках)
- □ Три типа граничных условий
 - значения функции на границе (*задача Дирихле*);
 - значения производной функции по нормали к границе (задача Неймана);
 - линейная комбинация значений функции и ее производной по нормали к границе (задача Робена).

Метод конечных разностей

- □ метод конечных разностей: решение дифференциального уравнения сводится к решению разностных уравнений
 - заменить область непрерывного изменения аргументов дискретным множеством точек (*сеткой*);
 - заменить (аппроксимировать на сетке) дифференциальное уравнение разностным уравнением.

$$u'(x_i) = \frac{u(x_{i+1}) - u(x_i)}{h} + O(h) \qquad u'(x_i) = \frac{u(x_{i+1}) - u(x_{i-1})}{2h} + O(h^2)$$

$$u''(x_i) = \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{h^2} + O(h^2)$$

Уравнение колебаний

□ Малые колебания однородной струны

$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad 0 < x < 1, \quad 0 < t \le T,$$

$$u(x,0) = u_0(x), \quad u'_t(x,0) = \overline{u}_0(x), \quad 0 \le x \le 1,$$

$$u(0,t) = \mu_1(t), \quad u(1,t) = \mu_2(t), \quad 0 \le t \le T.$$

Введем в рассмотрение сетку

$$\omega_{h\tau} = \{(x_i, t_j): x_i = ih, 0 \le i \le n, h = 1/n, t_j = j\tau, 0 \le j \le m, \tau = T/m\}$$

□ Используем аппроксимацию производных 2-го порядка

$$\left(\frac{\partial^2 u}{\partial t^2}\right)_{ij} \approx \frac{u_i^{j+1} - 2u_i^{j} + u_i^{j-1}}{\tau^2} \qquad \left(\frac{\partial^2 u}{\partial x^2}\right)_{ij} \approx \frac{u_{i+1}^{j} - 2u_i^{j} + u_{i-1}^{j}}{h^2}$$

Разностная схема

$$\frac{v_i^{j+1} - 2v_i^j + v_i^{j-1}}{\tau^2} = \alpha^2 \frac{v_{i+1}^j - 2v_i^j + v_{i-1}^j}{h^2} + f_i^j$$

$$\Gamma.y: v_0^j = \mu_1(t_j), v_N^j = \mu_2(t_j), 0 \le j \le L.$$

H.Y.:
$$v_i^0 = u_0(x_i)$$
, $1 \le i \le n-1$.

аппроксимация 1-го порядка

$$\left(v_i^1 - v_i^0\right) / \tau = \overline{u}_0(x_i)$$

аппроксимация 2-го порядка

$$\frac{v_i^1 - v_i^0}{\tau} = \overline{u}_0(x_i) + \frac{\tau}{2} \left(\alpha^2 \frac{v_{i+1}^0 - 2v_i^0 + v_{i-1}^0}{h^2} + f_i^0 \right)$$

Разностная схема

 Построенная схема является явной: решение находился по слоям, в явной форме.

$$-$$
 0-й слой: $v_i^0 = u_0(x_i)$

– О-И СЛОИ:
$$v_i^1 = u_0(x_i)$$

– 1-Й СЛОЙ: $v_i^1 = v_i^0 + \tau \overline{u}_0(x_i) + \frac{\tau^2}{2} \left(\frac{v_{i+1}^0 - 2v_i^0 + v_{i-1}^0}{h^2} + f_i^0 \right)$

— ј-й слой:
$$v_i^{j+1}=2v_i^j-v_i^{j-1}+\left(\frac{\alpha\tau}{h}\right)^2\left(v_{i+1}^j-2v_i^j+v_{i-1}^j\right)+ au^2f_i^j$$

□ Погрешность численного решения:

$$\max_{i,j} \left| u_i^j - v_i^j \right| \le M \left(h^2 + \tau^2 \right)$$

 $lue{}$ Условие устойчивости (условие Куранта): lpha au < h

Схема параллельных вычислений

- Решение находится по слоям
- Распараллелить можно вычисление слоя

 □ В отличие от распределенной памяти нет проблемы пересылки узлов на границах полос разделения

□ Рассмотрим тестовую задачу

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, x \in [0,1], t \in [0,2]$$

$$u(0,t) = u(1,t) = 0 \qquad u(x,0) = 0.1\sin(\pi x), \frac{\partial u}{\partial x}(x,0) = 0$$

□ Точное решение

$$u(x,t) = 0.1\sin(\pi x)\cos(\pi t)$$

□ Для выполнения условия Куранта было выбрано фиксированное число разбиений *m*=25000 по переменной *t*, число разбиений *n* по переменной *x* варьировалось от 2500 до 10000.

□ Зависимость ускорения от числа потоков

□ Влияние накладных расходов?

□ Рассмотрим тестовую задачу №2

$$\frac{\partial^2 u}{\partial t^2} = \frac{\exp(\cos(x))}{10} \frac{\partial^2 u}{\partial x^2}, x \in [0,1], t \in [0,2]$$
$$u(0,t) = u(1,t) = 0 \qquad u(x,0) = 0.1\sin(\pi x), \frac{\partial u}{\partial x}(x,0) = 0$$

- □ Точное решение ???
- □ Для выполнения условия Куранта было выбрано фиксированное число разбиений *m*=25000 по переменной *t*, число разбиений *n* по переменной *x* варьировалось от 2500 до 10000.

□ Зависимость ускорения от числа потоков

Уравнение теплопроводности

□ Распространение тепла в одномерном однородном стержне

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x,t), \ 0 < x < 1, \ 0 < t \le T,$$

$$u(x,0) = u_0(x), \ 0 \le x \le 1, \ u(0,t) = u_1(t), \ u(1,t) = u_2(t), \ 0 \le t \le T$$

□ В области поиска решения *D* введем сетку

$$\omega_{h\tau} = \{(x_i, t_j): x_i = ih, 0 \le i \le n, h = 1/n, t_j = j\tau, 0 \le j \le m, \tau = T/m\}$$

- □ Используем аппроксимацию производных
 - 1-го порядка по τ : $\left(\frac{\partial u}{\partial t}\right)_{ij} \approx \frac{u_i^{j+1} u_i^{j}}{\tau}$
 - 2-го порядка по h: $\left(\frac{\partial^2 u}{\partial x^2}\right)_{ij} \approx \frac{u_{i+1}^j 2u_i^j + u_{i-1}^j}{h^2}$

Явная разностная схема

$$\frac{v_i^{j+1} - v_i^j}{\tau} = \frac{v_{i+1}^j - 2v_i^j + v_{i-1}^j}{h^2} + \varphi_i^j$$

$$v_i^0 = u_0(x_i), 0 \le i \le n,$$

$$v_0^j = u_1(t_j), v_n^j = u_2(t_j), 0 \le j \le m.$$

- □ Схема явная:
 - 0-й слой: $v_i^0 = u_0(x_i)$,
 - ј-й слой:

$$v_i^{j+1} = \left(1 - \frac{2\tau}{h^2}\right) v_i^j + \frac{\tau}{h^2} \left(v_{i+1}^j + v_{i-1}^j\right) + \tau \varphi_i^j$$

- \square Погрешность: $\max_{i,j} \left| u_i^j v_i^j \right| \le M \left(h^2 + \tau \right)$
- □ Условие устойчивости: $\tau \le h^2/2$!!!

Распараллеливание явной схемы

- □ Схема явная
- Решение находится по слоям
- Распараллелить можно вычисление слоя

 □ В отличие от распределенной памяти нет проблемы пересылки узлов на границах полос разделения

Неявная разностная схема

$$\frac{v_i^{j+1} - v_i^j}{\tau} = \frac{v_{i+1}^{j+1} - 2v_i^{j+1} + v_{i-1}^{j+1}}{h^2} + f_i^{j+1}$$

$$v_i^0 = u_0(x_i), 0 \le i \le n,$$

$$v_0^j = u_1(t_j), v_n^j = u_2(t_j), 0 \le j \le m.$$

- □ Схема неявная:
 - 0-й слой: $v_i^0 = u_0(x_i)$,
 - (j+1)-й слой:

$$v_0^{j+1} = u_1(t_{j+1}), v_n^{j+1} = u_2(t_{j+1}).$$

$$\frac{\tau}{h^2} v_{i-1}^{j+1} - \left(1 + \frac{2\tau}{h^2}\right) v_i^{j+1} + \frac{\tau}{h^2} v_{i+1}^{j+1} = v_i^j + \tau f_i^{j+1}, 0 < i < n$$

 $lue{}$ Схема абсолютно устойчива при любых au и h

Схема Кранка-Николсона (схема с весом 1/2)

□ Cxema c весом $(0 \le \sigma \le 1)$:

$$\frac{v_i^{j+1} - v_i^j}{\tau} = \sigma \frac{v_{i+1}^{j+1} - 2v_i^{j+1} + v_{i-1}^{j+1}}{h^2} + (1 - \sigma) \frac{v_{i+1}^j - 2v_i^j + v_{i-1}^j}{h^2} + \varphi_i^j$$

$$v_i^0 = u_0(x_i), 0 \le i \le n,$$

$$v_0^j = u_1(t_j), v_n^j = u_2(t_j), 0 \le j \le m.$$

- \square При $\sigma=\frac{1}{2}$ схема Кранка-Николсона: $\varphi_i^j = f_i^{j+1/2} = f(ih,(j+0.5)\tau)$
- Схема абсолютно устойчива при $0 \le \sigma \le \frac{1}{2}$ при любых τ и h
- \Box Погрешность при $\sigma \neq \frac{1}{2}$: $O(h^2 + \tau)$ \Box Погрешность при $\sigma = \frac{1}{2}$: $O(h^2 + \tau^2)$!!!

Схема Кранка-Николсона (схема с весом 1/2)

- □ Схема неявная:
 - 0-й слой: $v_i^0 = u_0(x_i)$,
 - (j+1)-й слой: $v_0^{j+1} = u_1(t_{j+1}), v_n^{j+1} = u_2(t_{j+1}).$

$$\frac{\tau}{2h^2}v_{i-1}^{j+1} - \left(1 + \frac{\tau}{h^2}\right)v_i^{j+1} + \frac{\tau}{2h^2}v_{i+1}^{j+1} = \left(1 - \frac{\tau}{h^2}\right)v_i^j + \frac{\tau}{2h^2}\left(v_{i-1}^j + v_{i+1}^j\right) + \mathcal{T}_i^{j+1/2}$$

- □ Выполнено условие диагонального преобладания можно применять методы решения трехдиагональных систем
 - Метод прогонки;
 - Метод редукции.
- \square Трудоемкость вычисления одного слоя O(n).

Распараллеливание схемы Кранка-Николсона

- Решение находится по слоям
- Распараллелить можно вычисление слоя
- □ Параллельные методы решения трехдиагональных систем
 - метод прогонки;
 - метод редукции.

- □ Задача вычисления цены конвертируемой облигации сводится к ДУЧП (лабораторная работа)
- □ Схема Кранка-Николсона
- □ Прогонка и встречная прогонка

		Встречная прогонка	
	Последов.	в 2 потока	
n	прогонка, с	Время, с	Ускор
256	0,08	0,08	1,00
512	0,14	0,16	0,90
1024	0,28	0,16	1,79
2048	0,51	0,36	1,44
4096	1,03	0,56	1,83
8192	2,03	1,72	1,18
16384	4,07	2,20	1,85
32768	8,16	5,63	1,45

Задача Дирихле для уравнения Пуассона

□ Постановка задачи

$$\Delta u(x,y) = -f(x,y), (x,y) \in D$$

$$u(x,y) = \psi(x,y), (x,y) \in \Gamma(D)$$

- □ Физический смысл изгиб упругой пластины
- □ Построение разностной схемы для уравнения Пуассона
 - Сетка D_h ={ $(x_i,y_j): x_i$ = ih, y_j = $jk, 0 \le i \le n, 0 \le j \le m, h=1/n, k=1/m$ }
 - $-v_{ij}$ значение сеточной функции в узле (x_i,y_j)
 - Аппроксимация производных второго порядка

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i-1,j} - 2u_{ij} + u_{i+1,j}}{h^2} \qquad \frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i,j-1} - 2u_{ij} + u_{i,j+1}}{h^2}$$

Задача Дирихле для уравнения Пуассона

□ Разностная схема

$$\begin{cases} \frac{v_{i-1,j} - 2v_{ij} + v_{i+1,j}}{h^2} + \frac{v_{i,j-1} - 2v_{ij} + v_{i,j+1}}{k^2} = -f_{ij}, \\ v_{ij} = \psi(x_i, y_j), (x_i, y_j) \in \Gamma(D) \end{cases}$$

$$v = (v_{11}, \dots, v_{n-1,1}, v_{11}, \dots, v_{n-1,2}, \dots, v_{1,m-1}, v_{2,m-1}, \dots, v_{n-1,m-1})$$

□ Погрешность численного решения

$$\max_{i,j} \left| u_{ij} - v_{ij} \right| \le M \left(h^2 + k^2 \right)$$

Матрица системы уравнений

$$A = \begin{bmatrix} W & V & 0 & \cdots & 0 \\ V & W & V & & \vdots \\ 0 & V & \ddots & \ddots & 0 \\ \vdots & & \ddots & W & V \\ 0 & \cdots & 0 & V & W \end{bmatrix}$$

$$W = \begin{bmatrix} D & 1/h^2 & 0 & \cdots & 0 \\ 1/h^2 & D & 1/h^2 & & \vdots \\ 0 & 1/h^2 & \ddots & \ddots & 0 \\ \vdots & & \ddots & D & 1/h^2 \\ 0 & \cdots & 0 & 1/h^2 & D \end{bmatrix} V = \begin{bmatrix} 1/k^2 & 0 & \cdots & 0 \\ 0 & 1/k^2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & 1/k^2 \end{bmatrix}$$

- □ Матрица будет: симметричной; блочно-диагональной; разреженной; отрицательно определенной.
- □Для задачи –Ax=–b можно применять итерационные методы
- □В силу специфики матрицы ее можно не хранить, а вычислять коэффициенты в зависимости от позиции
- □Хранить можно лишь значения функции в узлах сетки на очередной итерации.

Пример системы уравнений в матричном виде

Матрица для сетки n=5, m=5

Применение метода верхней релаксации

□ Метод релаксации для задачи *Ах=b*

$$a_{ii}x_i^{(s+1)} = -\omega \sum_{j=1}^{i-1} a_{ij}x_j^{(s+1)} + (1-\omega)a_{ii}x_i^{(s)} - \omega \sum_{j=i+1}^n a_{ij}x_j^{(s)} + \omega b_i$$

□ Уравнение системы:

$$2\left(\frac{1}{h^2} + \frac{1}{k^2}\right)v_{ij} = \frac{1}{h^2}v_{i-1,j} + \frac{1}{h^2}v_{i+1,j} + \frac{1}{k^2}v_{i,j-1} + \frac{1}{k^2}v_{i,j+1} + f_{ij}$$

□ Метод релаксации для разностной схемы:

$$Dv_{ij}^{(s+1)} = \frac{\omega}{h^2} v_{i-1,j}^{(s+1)} + \frac{\omega}{k^2} v_{i,j-1}^{(s+1)} + \frac{\omega}{h^2} v_{i+1,j}^{(s)} + \frac{\omega}{k^2} v_{i,j+1}^{(s)} + (1-\omega)Dv_{ij}^{(s)} + \omega f_{ij}$$
 где
$$D = 2\left(1/h^2 + 1/k^2\right)$$

Обусловленность системы и параметры метода

 \Box Собственные числа матрицы: $\lambda_{ij} = \frac{4}{h^2} \sin^2 \frac{\pi i}{2n} + \frac{4}{k^2} \sin^2 \frac{\pi j}{2m}$

$$\lambda_{\min} = \frac{4}{h^2} \sin^2 \frac{\pi}{2n} + \frac{4}{k^2} \sin^2 \frac{\pi}{2m} \qquad \lambda_{\max} = \frac{4}{h^2} \cos^2 \frac{\pi}{2n} + \frac{4}{k^2} \cos^2 \frac{\pi}{2m}$$

- \square Число обусловленности: $\mu_A = \frac{\lambda_{\max}}{\lambda_{\min}} \to \infty$ при $n,m \to \infty$
- Оптимальный параметр метода релаксации:

$$\omega_{opt} = \frac{2}{1 + 2\sin(\pi h/2)}$$

 \square Оценка числа итераций: O(1/h) на равномерной сетке

Варианты параллельного алгоритма

- Распараллеливание по области данных:
 - Результат не совпадает с работой последовательного алгоритма;
 - Возможна неоднозначность вычислений (гонка данных).
- □ Для устранения неоднозначности можно использовать значения предыдущей итерации:

$$a_{ii}x_i^{(s+1)} = -\omega \sum_{j \neq i} a_{ij}x_j^{(s)} + (1-\omega)a_{ii}x_i^{(s)} + \omega b_i$$

- Требуется дополнительная память (хранить две сетки);
- Медленная скорость сходимости.

Волновая схема параллельных вычислений

- Рассмотрим параллельные алгоритмы обладающие следующими свойствами:
 - Однозначность вычислений;
 - Не требуется дополнительной памяти;
 - Результаты работы последовательного и параллельного алгоритмов – одинаковые (высокая скорость сходимости);
 - Полученное решение совпадало бы с решением исходной вычислительной задачи.
- □ Метод волновой обработки данных
 - Идея состоит в выполнении итераций метода релаксации с другим правилом обхода области, порождающем волну вычислений, которая может быть распараллелена.

Волновая схема параллельных вычислений

 На s-м шаге к вычислениям окажутся подготовлены узлы s-й вспомогательной диагонали

Затухание волны

Нарастание волны

граничные значения

значения текущей итерации

Пик волны

значения предшествующей

итерации

узлы, в которых могут быть пересчитаны значения

□ Рассмотрим тестовую задачу

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 4, x \in [1,2], y \in [2,3]$$

$$u(1, y) = 1 + y^2 \quad u(2, y) = 4 + y^2$$

$$u(x,2) = x^2 + 4 \quad u(x,3) = x^2 + 9$$

- \Box Точное решение: $u(x, y) = x^2 + y^2$
- □ Численное решение: методом релаксации, $\omega = \omega_{\rm opt}$, $\epsilon = 10^{-6}$, число узлов сетки от 250 до 1500.

□ Недостаточная вычислительная нагрузка на поток?

□ Рассмотрим тестовую задачу №2

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \exp(\sin(x) + \cos(x)) \cdot \ln(|\sin(x) + \cos(x)|), x \in [1, 2], y \in [2, 3]$$

$$u(1, y) = 1 + y^2 \quad u(2, y) = 4 + y^2$$

$$u(x, 2) = x^2 + 4 \quad u(x, 3) = x^2 + 9$$

- □ Точное решение: ???
- □ Численное решение: методом релаксации, $\omega = \omega_{\rm opt}$, $\epsilon = 10^{-6}$, число узлов сетки от 250 до 1500.

□ Влияние накладных расходов при малых размерах сетки.

Блочная волновая схема

- □ Низкая эффективность использования кэш-памяти
- □ Для повышения быстродействия за счет эффективного использования кэша необходимо, чтобы:
 - выполняемые вычисления использовали одни и те же данные многократно(локальность обработки данных),
 - выполняемые вычисления осуществляли доступ к элементам памяти с последовательно возрастающими адресами (последовательность доступа)
- □ Для эффективного использования кэша в качестве распределяемых между потоками действий процедуру обработки некоторой прямоугольной подобласти (блока) сетки области расчетов

Блочная волновая схема

Заключение

- □ Рассмотрены типовые уравнения в частных производных
 - Уравнение колебаний
 - Явная разностная схема
 - Уравнение теплопроводности
 - Явная разностная схема
 - Схема Кранка-Николсона
 - Уравнение Пуассона
 - Построение разностной схемы
 - Применение метода верхней релаксации
 - Волновая схема вычислений
- Результаты экспериментов
 - Оценка масштабируемости

Литература

- 1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977.
- 2. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
- 3. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 4. Самарский А.А. Введение численные методы. СПб.: Лань, 2005.

Ресурсы сети Интернет

5. Интернет-университет суперкомпьютерных технологий. [http://www.hpcu.ru].

Авторский коллектив

- □ Баркалов Константин Александрович, к.ф.-м.н., старший преподаватель кафедры Математического обеспечения ЭВМ факультета ВМК ННГУ. barkalov@fup.unn.ru
- □ Коды учебных программ разработаны Маловой Анной и Сафоновой Яной

