Converting policy iteration to be model-free

Two expressions of action value:

Expression 1 requires the model

$$q_{\pi_k}(s,a) = \sum_r p(r|s,a)r + \gamma \sum_{s'} p(s'|s,a)v_{\pi_k}(s')$$

Expression 2 does not requires the model

$$q_{\pi_k}(s,a) = \mathbb{E}[G_t|S_t = s, A_t = a]$$

Idea to achieve model-free RL: Use expression 2 to calculate $q_{\pi_k}(s,a)$ based on data.

Procedure of Monte Carlo (MC) estimation of action values:

- Starting from (s, a), following policy π_k , generate an episode.
- The return of episode is g(s, a).
- g(s, a) is a sample of G_t .
- Then

$$q_{\pi_k}(s,a) = \mathbb{E}[G_t|S_t=s,A_t=a] pprox rac{1}{N}\sum_{i=1}^n g^{(i)}(s,a)$$

Pseudocode: MC Basic algorithm

Initialization: Initial guess π_0 . Goal: Search for an optimal policy. For the kth iteration $(k=0,1,2,\dots)$, do For every state $s\in\mathcal{S}$, do For every action $a\in\mathcal{A}(s)$, do Collect sufficiently many episodes starting from (s,a) by following π_k Policy evaluation: $q_{\pi_k}(s,a)\approx q_k(s,a)=$ the average return of all the episodes starting from (s,a) Policy improvement: $a_k^*(s)=\arg\max_a q_k(s,a)$ $\pi_{k+1}(a|s)=1$ if $a=a_k^*$, and $\pi_{k+1}(a|s)=0$ otherwise

- MC Basic reveals the core idea of MC-based model-free RL, but not practical due to **low efficiency**.
- MC Basic is a variant of the policy iteration algorithm.

MC Exploring Starts

Utilizing samples more efficiently

Visit: every time a state-action appears in the episode, it is called a visit of that state-action pair.

e.g.

$$s_1 \stackrel{a_2}{\longrightarrow} s_2 o \dots$$

 (s_1, a_2) is a pair.

Consider a episode, starting from (s_1, a_1) :

$$s_1 \stackrel{a_1}{\longrightarrow} s_2 \stackrel{a_2}{\longrightarrow} s_3 \stackrel{a_3}{\longrightarrow} \dots$$

The subepisode be viewed as a new episode. Like

$$egin{aligned} s_2 & \xrightarrow{a_2} s_3 & \xrightarrow{a_3} \dots \end{aligned} [ext{subepisode starting from}(s_2,a_2)] \\ s_3 & \xrightarrow{a_3} \dots \end{aligned} [ext{subepisode starting from}(s_3,a_3)]$$

These new episodes can be used to estimate more action values.

Updating policies more efficiently

The strategy is to use the return of a single episode to approximate the corresponding action value.

Pseudocode:

Initialization: Initial policy $\pi_0(a|s)$ and initial value q(s,a) for all (s,a). Returns(s,a)=0 and $\operatorname{Num}(s,a)=0$ for all (s,a).

Goal: Search for an optimal policy.

For each episode, do

Episode generation: Select a starting state-action pair (s_0,a_0) and ensure that all pairs can be possibly selected (this is the exploring-starts condition). Following the current policy, generate an episode of length T: $s_0,a_0,r_1,\ldots,s_{T-1},a_{T-1},r_T$.

Initialization for each episode: $g \leftarrow 0$

For each step of the episode, $t = T - 1, T - 2, \dots, 0$, do

$$g \leftarrow \gamma g + r_{t+1}$$

 $\mathsf{Returns}(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) + g$

 $\mathsf{Num}(s_t, a_t) \leftarrow \mathsf{Num}(s_t, a_t) + 1$

Policy evaluation:

 $q(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) / \mathsf{Num}(s_t, a_t)$

Policy improvement:

 $\pi(a|s_t) = 1$ if $a = \arg\max_a q(s_t, a)$ and $\pi(a|s_t) = 0$ otherwise

MC ϵ -Greedy: Learning without exploring starts

An ϵ -greedy policy is a stochastic policy that has a higher chance of choosing the greedy action and the same nonzero probability of taking any other action.

$$\pi(a|s) = \begin{cases} 1 - \frac{\epsilon}{|\mathcal{A}(s)|}(|\mathcal{A}(s)| - 1), & \text{ for the greedy action,} \\ \frac{\epsilon}{|\mathcal{A}(s)|}, & \text{ for the other } |\mathcal{A}(s)| - 1 \text{ actions,} \end{cases}$$

where |A(s)| denotes the number of actions associated with s.

Pseudocode:

Initialization: Initial policy $\pi_0(a|s)$ and initial value q(s,a) for all (s,a). Returns(s,a)=0 and $\operatorname{Num}(s,a)=0$ for all (s,a). $\epsilon\in(0,1]$

Goal: Search for an optimal policy.

For each episode, do

Episode generation: Select a starting state-action pair (s_0, a_0) (the exploring starts condition is not required). Following the current policy, generate an episode of length

$$T: s_0, a_0, r_1, \ldots, s_{T-1}, a_{T-1}, r_T.$$

Initialization for each episode: $g \leftarrow 0$

For each step of the episode, $t = T - 1, T - 2, \dots, 0$, do

$$g \leftarrow \gamma g + r_{t+1}$$

 $\mathsf{Returns}(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) + g$

 $\mathsf{Num}(s_t, a_t) \leftarrow \mathsf{Num}(s_t, a_t) + 1$

Policy evaluation:

 $q(s_t, a_t) \leftarrow \mathsf{Returns}(s_t, a_t) / \mathsf{Num}(s_t, a_t)$

Policy improvement:

Let $a^* = \arg \max_a q(s_t, a)$ and

$$\pi(a|s_t) = \begin{cases} 1 - \frac{|\mathcal{A}(s_t)| - 1}{|\mathcal{A}(s_t)|} \epsilon, & a = a^* \\ \frac{1}{|\mathcal{A}(s_t)|} \epsilon, & a \neq a^* \end{cases}$$