# Algoritmos de Agrupamento - Aprendizado Não Supervisionado

Fabrício Jailson Barth

Pós Graduação - BandTec

### Sumário

- Introdução e Definições
- Aplicações
- Algoritmos de Agrupamento
  - \* Agrupamento Plano
  - \* Agrupamento Hierárquico
- Considerações Finais

# Introdução

# Introdução e Definições

- Os algoritmos de agrupamento particionam um conjunto de objetos em agrupamentos.
- Normalmente, objetos são descritos e agrupados usando um conjunto de atributos e valores.
- Não existe nenhuma informação sobre a classe ou categoria dos objetos.

- Os algoritmos de agrupamento manipulam um conjunto de objetos. Este conjunto de objetos é chamado de bags.
- As bags permitem o aparecimento de múltiplos objetos com a mesma representação.
- O objetivo dos algoritmos de agrupamento é colocar os objetos similares em um mesmo grupo e objetos não similares em grupos diferentes.

# Exemplo de dataset

|   | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|---|--------------|-------------|--------------|-------------|
| 1 | 5.10         | 3.50        | 1.40         | 0.20        |
| 2 | 4.90         | 3.00        | 1.40         | 0.20        |
| 3 | 4.70         | 3.20        | 1.30         | 0.20        |
| 4 | 4.60         | 3.10        | 1.50         | 0.20        |
| 5 | 5.00         | 3.60        | 1.40         | 0.20        |
| 6 | 5.40         | 3.90        | 1.70         | 0.40        |

# **Aplicações**

- Agrupamento de objetos similares, onde "objetos" podem ser:
  - ★ agrupamento de documentos (textos) similares
  - \* identificação de grupos em redes sociais
  - ★ segmentação de clientes
  - \* pessoas sistemas de recomendação
  - \* palavras processamento de linguagem natural
  - \* identificação de plantas com características comuns
  - \* entre outras coisas · · ·

# ALGORITMOS

# Algoritmos de Agrupamento

Existem dois tipos de estruturas produzidas por algoritmos de agrupamento:

- não hierárquicos ou planos
- agrupamentos hierárquicos

# Agrupamento Plano

- Agrupamentos planos simplesmente contêm um certo número de agrupamentos e a relação entre os agrupamentos e geralmente não-determinada.
- A maioria dos algoritmos que produzem agrupamentos planos são iterativos.
- Eles iniciam com um conjunto inicial de agrupamentos e realocam os objetos em cada agrupamento de maneira iterativa.
- Até uma determinada condição de parada.

# Agrupamentos soft e hard

Além da divisão entre os algoritmos hierárquicos e planos, tem-se a divisão entre os algoritmos soft e hard.

- Na abordagem hard cada objeto é inserido em um e somente um agrupamento.
- Na abordagem soft um objeto pode ser inserido em vários agrupamentos com diferentes níveis de pertinência.

Em agrupamentos hierárquicos, geralmente a abordagem é hard. Em agrupamentos planos, ambos os tipos de abordagens são comuns.

# Agrupamento Plano hard (Exemplo)



# Agrupamento Hierárquico

- Um agrupamento hierárquico é representado por uma árvore.
- Os nós folhas são os objetos.
- Cada nó intermediário representa o agrupamento que contêm todos os objetos de seus descendentes.

# Agrupamento Hierárquico (Exemplo)

### **Cluster Dendrogram**



dist(iris) hclust (\*, "complete")

# Agrupamento Hierárquico (Exemplo)

|     | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|-----|--------------|-------------|--------------|-------------|
| 108 | 7.30         | 2.90        | 6.30         | 1.80        |
| 131 | 7.40         | 2.80        | 6.10         | 1.90        |
| 42  | 4.50         | 2.30        | 1.30         | 0.30        |

# ALGORITMOS PARA AGRUPAMENTO PLANO

# Algoritmos para agrupamento plano

- Utiliza diversas iterações para realocar os objetos nos melhores agrupamentos.
- Critério de parada é baseado na qualidade dos agrupamentos (similaridade média e cálculo para informação comum entre agrupamentos).
- É necessário determinar o número de agrupamentos:
  - \* usando conhecimento à priori
  - $\star$  k, k-1 aumento significativo da qualidade, k+1 aumento reduzido da qualidade. Procurar por um k com este comportamento.

### K-means

- Algoritmo de agrupamento hard
- Define o agrupamento pelo centro de massa dos seus membros.
- É necessário um conjunto inicial de agrupamentos.
- Seqüência de ações iterativas.
- Usualmente, diversas iterações são necessárias para o algoritmo convergir.

# Iteração do algoritmo K-means







(2) Definição do centro do agrupamento



# Algoritmo K-means

entrada: um conjunto  $X = \{\overrightarrow{x_1}, \cdots, \overrightarrow{x_n}\} \subset \Re^m$  {conjunto inicial de agrupamentos} uma medida de distância:  $d \colon \Re^m \times \Re^m \to \Re$  uma função para computar o ponto central:  $\mu \colon P(\Re) \to \Re^m$  selecionar k centros iniciais  $\overrightarrow{f_1}, \cdots, \overrightarrow{f_k}$ 

while o critério de parada não for verdadeiro do for todos os agrupamentos  $c_j$  do  $c_j = \{\overrightarrow{x_i} \mid \forall \overrightarrow{f_l} d(\overrightarrow{x_i}, \overrightarrow{f_j}) \leq d(\overrightarrow{x_i}, \overrightarrow{f_l})\}$  {os agrupamentos  $c_j$  recebem objetos levando-se em consideração o seu centro  $f_j$ } end for for todos os pontos centrais  $\overrightarrow{f_j}$  do

 $\overrightarrow{f_j} = \mu(c_j)$ 

end for

end while

# Algoritmo K-means

• A medida de distância pode ser a distância Euclidiana:

$$|\overrightarrow{x} - \overrightarrow{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (1)

• a função para computar o ponto central pode ser:

$$\overrightarrow{\mu} = \frac{1}{M} \sum_{\overrightarrow{x} \in C} \overrightarrow{x} \tag{2}$$

onde M é igual ao número de pontos no agrupamento C.

# Problema...

### Iris Problem



- Considere uma base de dados sobre flores do gênero Iris.
- Esta base de dados possui informações sobre o comprimento e largura das sépalas e das pétalas das flores.

Problema... — Iris Problem 25

# Blue Flag Iris - Dados

|   | Sepal.Length | Sepal.Width | Petal.Length | Petal.Width |
|---|--------------|-------------|--------------|-------------|
| 1 | 5.10         | 3.50        | 1.40         | 0.20        |
| 2 | 4.90         | 3.00        | 1.40         | 0.20        |
| 3 | 4.70         | 3.20        | 1.30         | 0.20        |
| 4 | 4.60         | 3.10        | 1.50         | 0.20        |
| 5 | 5.00         | 3.60        | 1.40         | 0.20        |
| 6 | 5.40         | 3.90        | 1.70         | 0.40        |

Todas as medidas são em cm.

# Pergunta

Será que as plantas deste gênero podem ser dividas em espécies?

Problema... — Pergunta

# Aplicando o algoritmo K-means

```
> model <- kmeans(iris, centers = 3)</pre>
> model
K-means clustering with 3 clusters of sizes 50, 62, 38
Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
     5.006000
                 3.428000
                              1.462000
                                         0.246000
     5.901613 2.748387 4.393548
                                         1.433871
3
     6.850000 3.073684 5.742105
                                         2.071053
> model$withinss
[1] 15.15100 39.82097 23.87947
```







## Dúvida...

Qual é o melhor número de clusters (k)?

Problema... — Dúvida...



Problema... — Dúvida... 33

# Como determinar o melhor k?



A medida de distribuição dos pontos normalmente empregada é sum of squared errors.

### Exercícios

- Usando o dataset survey da biblioteca UsingR, identifique clusters de pessoas com base apenas nos atributos Wr. Hnd e NW. Hnd.
- Fazendo uso dos dados coletados em <sup>a</sup>, agrupe os abalos sísmicos levando-se em consideração a magnitude e profundidade do abalo.

Problema... — Exercícios 35

 $<sup>^{\</sup>tt a} {\rm http://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/all\_month.csv}$ 

### Clusters com dados em escalas diferentes

### Cluster de abalos sísmicos



### Cluster de abalos sísmicos



# Rescaling data

### Feature scaling:

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}} \tag{3}$$

### Standardization:

$$x_{new} = \frac{x - mean(x)}{x_{max} - x_{min}} \tag{4}$$

$$x_{new} = \frac{x - \mu}{\sigma} = \frac{x - mean(x)}{sd(x)} \tag{5}$$

### Cluster com dados normalizados

```
standardization <- function(x){</pre>
  return ((x - mean(x)) / sd(x))
filtrados$depthR <- standardization(filtrados$depth)
filtrados$magR <- standardization(filtrados$mag)</pre>
elbow(filtrados[,c('depthR', 'magR')])
model <- kmeans(filtrados[,c('depthR', 'magR')], centers = 6)</pre>
plot(filtrados$depthR, filtrados$magR,
     col=model$cluster,
     pch=11, main="Cluster de abalos sísmicos",
     xlab="Profundidade (rescaled)", ylab="Magnitude (rescaled)")
points(model$centers, col = "yellow", pch=19,cex=2,lwd=3)
```

### Cluster com dados normalizados

#### Cluster de abalos sísmicos



# Diagnóstico

- Os clusters estão bem separados uns dos outros?
- Os centroides dos clusters estão bem separados uns dos outros?
- Existe algum cluster com poucos pontos?
- Os pontos de cada cluster estão bem agrupados?

# Diagnóstico

#### Exemplo de clusters distintos



### Exemplo não tão claro de clusters



# Trabalhando com dados qualitativos

- O algoritmo k-means trabalha apenas com dados numéricos, pois utiliza a distância euclidiana como função para calcular a distância entre objetos.
- Para trabalhar com dados qualitativos é necessário fazer uso de outra função de distância, por exemplo a distância de Hamming.

# Distância de Hamming

$$d(x_i, x_j) = \sum_{q=1}^d \alpha(x_i^q, x_j^q) \tag{6}$$

$$\alpha(x_i^q, x_j^q) = \begin{cases} 1 & \text{if } x_i^q \neq x_j^q \\ 0 & \text{otherwise} \end{cases}$$
 (7)

# Cluster de valores categóricos no R

- Função kmodes do pacote klaR
- Exemplo na conta https://github.com/fbarth, projeto posGraducao, código ExemplosClustering/script/clusteringValoresCategoricos.R

# Alguns cuidados

- Que atributos devem ser incluídos na análise?
- Que unidades de medida (por exemplo, milhas, kilômetros, metros) devem ser utilizados em cada atributo?
- Os atributos precisam ser normalizados?
- Que outras considerações devem ser aplicadas?

# Considerações adicionais

- O algoritmo k-means é sensível com relação aos pontos iniciais escolhidos para os centroides.
- Por isso, é importante executar várias vezes o algoritmo k-means para o mesmo K e escolher o resultado de cluster com menor WSS (Within sum of squares).
- No R isto é feito com o parâmetro nstart da função k-means.

# ALGORITMOS PARA AGRUPAMENTO HIERÁRQUICO

# Algoritmos para agrupamento hierárquico

Os algoritmos que utilizam a abordagem de agrupamento hierárquico podem implementar abordagens:

- bottom-up (agglomerative clustering)
- top-down (divisive clustering)

# Agrupamento hierárquico bottom-up

```
Entrada: um conjunto x=\{x_1,\cdots,x_n\} de objetos e uma função sim\colon P(X)\times P(X)\to\Re for i:=1 até n do c_i:=\{x_i\} {Inicia com um agrupamento para cada objeto} end for
```

```
i := n + 1
while |C| > 1 do
   (c_{n1}, c_{n2}) := \operatorname{arg} \max_{c_u, c_v \in C \times C} sim(c_u, c_v) \{ \mathsf{Em} \}
   cada passo, os dois agrupamentos mais similares são
   determinados}
   c_i := c_{n1} \cup c_{n2} \{ \text{Unidos em um novo agrupamento} \}
   C := C \setminus \{c_{n1}, c_{n2}\} \cup \{c_i\} {Elimina-se os dois
   agrupamentos mais similares e adiciona-se o novo
   agrupamento ao conjunto de agrupamentos}
   j := j + 1
end while
```

# Agrupamento hierárquico **bottom-up** - Função de similaridade

 A função de similaridade pode ser a distância Euclidiana:

$$|\overrightarrow{x} - \overrightarrow{y}| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (8)

# Funcionamento do algoritmo



|    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|----|------|------|------|------|------|------|------|------|------|------|
| 1  | 0.00 | 0.31 | 0.46 | 0.25 | 1.85 | 1.72 | 1.50 | 1.45 | 2.13 | 2.14 |
| 2  | 0.31 | 0.00 | 0.17 | 0.57 | 1.73 | 1.57 | 1.38 | 1.32 | 1.83 | 1.89 |
| 3  | 0.46 | 0.17 | 0.00 | 0.71 | 1.60 | 1.44 | 1.25 | 1.18 | 1.67 | 1.73 |
| 4  | 0.25 | 0.57 | 0.71 | 0.00 | 1.95 | 1.84 | 1.62 | 1.58 | 2.36 | 2.34 |
| 5  | 1.85 | 1.73 | 1.60 | 1.95 | 0.00 | 0.21 | 0.36 | 0.42 | 1.58 | 1.02 |
| 6  | 1.72 | 1.57 | 1.44 | 1.84 | 0.21 | 0.00 | 0.23 | 0.26 | 1.39 | 0.87 |
| 7  | 1.50 | 1.38 | 1.25 | 1.62 | 0.36 | 0.23 | 0.00 | 0.08 | 1.46 | 1.02 |
| 8  | 1.45 | 1.32 | 1.18 | 1.58 | 0.42 | 0.26 | 0.08 | 0.00 | 1.40 | 0.99 |
| 9  | 2.13 | 1.83 | 1.67 | 2.36 | 1.58 | 1.39 | 1.46 | 1.40 | 0.00 | 0.65 |
| 10 | 2.14 | 1.89 | 1.73 | 2.34 | 1.02 | 0.87 | 1.02 | 0.99 | 0.65 | 0.00 |



distxy hclust (\*, "complete")

# Tipos de funções de similaridade

- ligação simples (single link): a similaridade entre dois agrupamentos é o melhor resultado retornado da similaridade entre os seus membros mais similares.
- ligação completa (complete link): a similaridade entre dois agrupamentos é o melhor resultado retornado da similaridade entre os seus membros menos similares.
- média do grupo (group-average): a similaridade entre dois agrupamentos é a média da similaridade entre os membros dos agrupamentos.

# Exemplos

 Vamos utilizar um dataset sobre carros com medidas de velocidades e distância de parada. Este dataset foi gerado em 1920. As velocidades foram medidas em mph e a distância em ft.





m hclust (\*, "complete")



m hclust (\*, "single")



m hclust (\*, "average")

# Agrupamento hierárquico top-down

```
Entrada: um conjunto x = \{x_1, \dots, x_n\} de objetos,
uma funcao de coesao coh : P(X) \to \Re
e uma funcao de divisao split \colon P(X) \to P(X) \times P(X)
C := \{X\} (= \{c_1\}) {Inicia com um agrupamento com todos os
objetos}
j := 1
while \{\exists c_i \in C \mid |c_i| > 1\} do
   c_u := \arg\min_{c_v \in C} coh(c_v) {Determina que agrupamento eh o
   menos coerente}
   (c_{i+1}, c_{i+2}) := split(c_u) {Divide o agrupamento}
   C := C \setminus \{c_u\} \cup \{c_{i+1}, c_{i+2}\}
   i := i + 2
end while
```

# Restrição sobre os agrupamentos hierárquicos

Agrupamento hierárquico só faz sentido se a função de similaridade é monotônica decrescente das folhas para a raiz da árvore:

$$\forall c, c', c'' \subseteq S : \min(sim(c, c'), sim(c, c'')) \ge sim(c, c' \cup c'')$$
(9)

# Considerações Finais

# Algumas considerações sobre agrupamentos

- Um agrupamento é um grupo de objetos centrados em torno de um ponto central.
- Os agrupamentos mais compactos são os preferidos.

# Sumário dos atributos dos algoritmos

### Agrupamento hierárquico:

- É a melhor abordagem para análise exploratória de dados.
- Fornece mais informação que agrupamento plano.
- Menos eficiente que agrupamento plano (tempo e memória gastos).

# Sumário dos atributos dos algoritmos

### Agrupamento plano:

- É preferível se a eficiência é um atributo importante e se o conjunto de dados é muito grande.
- O algoritmo K-means é o método mais simples e deve ser usado sobre novos conjuntos de dados porque os resultados são geralmente suficientes.
- K-means assume um espaço de representação
   Euclidiano, e não pode ser usado para muitos
   conjuntos de dados, por exemplo, dados nominais.

### Referências

- Capítulo 4 do livro EMC Education Services, editor.
   Data Science and Big Data Analytics: Discovering,
   Analysing, Visualizing and Presenting Data. John
   Wiley & Sons, 2015.
- Capítulo 10 do livro Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning with Applications in R.
   Springer, 4th edition, 2014.