Simulating stock prices

Digital tools for Finance - 2020

Lucio Fernandez-Arjona

1 Simulation model

2 Results

Some definitions:

· Geometric Brownian Motion

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

Solution to SDE

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right)$$

where W_t is a Wiener process or Brownian motion, and μ (the percentage drift) and σ (the percentage volatility), arbitrary initial value S_0 are constants. For this presentation we use the following parameters:

	μ	σ
Tyrell Cyberdyne	0.02	0.2 0.25
Oyberdyne	0.00	0.20

- The empirical distribution follow the expected behaviour
- Cyberdyne, with a higher variance, shows higher probability of more extreme price movements.

Figure: Distribution of stock prices at t = 10