Week 8 Exercise: Unsupervised Learning

Note: An indicative mark is in front of each question. The total mark is 10. You may mark your own work when we release the solutions.

- 1. We have a 24-bit colour image of size 100 × 100. How many possible images of this size and bit depth?
 2. An alternative to derive PCA is to minimize the reconstruction error (Slide 26) for all N data samples x⁽ⁱ⁾, i = 1, · · · , N, assuming that the mean μ = ∑_i x⁽ⁱ⁾ is zero. Take this approach to derive the first principal component (as the first eigenvector of the data matrix).
 3. In k-means clustering, how could we determine k if it is not given?
 4. For the graph on Slide 39, compute the normalised cut Ncut(A, B).
- $\boxed{3}$ 5. In spectral clustering, show that the smallest eigenvalue for the formulated generalized eigenvalue problem on Slide 41 is 0 with the corresponding generalized eigenvector $\mathbf{y} = \mathbf{1}$, hence the same "representation/embedding" for all nodes.