Lie Groups PSET 6

Nilay Kumar

Last updated: December 12, 2013

Problem 1

Let $\mathfrak{h} \subset \mathfrak{g} = \mathfrak{so}_4\mathbb{C}$ be the subalgebra consisting of matrices of the form $\begin{pmatrix} aJ \\ bJ \end{pmatrix}$ for $J = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $a,b \in \mathbb{C}$. We wish to show that \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} . We first show that the centralizer of \mathfrak{h} in \mathfrak{g} is \mathfrak{h} . Recall first that $\mathfrak{so}_4\mathbb{C}$ consists of antisymmetric matrices. The centralizer of \mathfrak{h} in \mathfrak{g} is the maximal subalgebra $C(\mathfrak{h})$ that commutes with \mathfrak{h} . Let us solve for the centralizer. Let $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ be an element of $C(\mathfrak{h})$. Then

$$0 = \begin{pmatrix} aJ \\ bJ \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} - \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} aJ \\ bJ \end{pmatrix}$$
$$= \begin{pmatrix} a[J,A] & aJB - bBJ \\ bJC - aCJ & b[J,D] \end{pmatrix}.$$

But A and D must be multiples of J as the whole matrix must be in \mathfrak{g} , and hence the diagonal vanishes. By antisymmetry, it now suffices to solve aJB - bBJ = 0 for B. This requires that

$$\begin{pmatrix} ab_3 + bb_2 & ab_4 - bb_1 \\ -ab_1 + bb_4 & -ab_2 - bb_3 \end{pmatrix} = 0,$$

which forces B = 0 if this it hold for all $a, b \in \mathbb{C}$. Hence we see that $C(\mathfrak{h}) = \mathfrak{h}$. It now suffices to show that every element of \mathfrak{h} is semisimple, i.e. that we can obtain a root space decomposition.

Let
$$H_j = \begin{pmatrix} 0 & -h_j \\ h_j \end{pmatrix}$$
 and $H_{jk} = \begin{pmatrix} H_j \\ H_k \end{pmatrix}$. Define $M = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}, N = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}, P = \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}, Q = \begin{pmatrix} -1 & i \\ i & 1 \end{pmatrix}$. Finally, take $X = \begin{pmatrix} M \\ -M^{\mathsf{T}} \end{pmatrix}$, $Y = \begin{pmatrix} N \\ -N^{\mathsf{T}} \end{pmatrix}$, $Z = \begin{pmatrix} P \\ -P^{\mathsf{T}} \end{pmatrix}$, and $W = \begin{pmatrix} Q \\ -Q^{\mathsf{T}} \end{pmatrix}$. Then,

$$[H_{jk}, X] = i(h_j - h_k)X$$

$$[H_{jk}, Y] = i(h_j + h_k)Y$$

$$[H_{jk}, Z] = i(h_k - h_j)X$$

$$[H_{jk}, W] = -i(h_j + h_k)Y,$$

and we obtain a root space decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{g}_X\oplus\mathfrak{g}_Y\oplus\mathfrak{g}_Z\oplus\mathfrak{g}_W.$$

Problem 2

(a) Recall that for $\alpha, \beta \in R$ we took

$$(\beta, \alpha) = \langle \beta, H_{\alpha} \rangle = (H_{\beta}, H_{\alpha}).$$

We define the coroot α^{\vee} such that

$$\alpha^{\vee} = \frac{2H_{\alpha}}{(\alpha, \alpha)}$$

and hence we find that

$$(\alpha^{\vee}, \beta^{\vee}) = \frac{4}{(\alpha, \alpha)(\beta, \beta)}(\alpha, \beta)$$

and that

$$\langle \alpha^{\vee}, \beta \rangle = \frac{2(\beta, \alpha)}{(\alpha, \alpha)}.$$

Note that the inner product induced on the coroots is simply a positive multiple of the original inner product and hence it's clear that the coroots span E^* . Furthermore, $n_{\alpha^{\vee}\beta^{\vee}}$ is integral:

$$\begin{split} n_{\alpha^{\vee}\beta^{\vee}} &= \frac{2(\alpha^{\vee},\beta^{\vee})}{(\beta^{\vee},\beta^{\vee})} \\ &= \frac{2}{(\beta,\beta)} \frac{4(\alpha,\beta)}{(\alpha,\alpha)} \frac{(\beta,\beta)}{4} \\ &= \frac{2(\alpha,\beta)}{(\alpha,\alpha)}, \end{split}$$

which is integral as α , β are roots. Next we check that the coroots are closed under reflection. We define the reflection to act as

$$s_{\alpha^{\vee}}(\beta^{\vee}) = \beta^{\vee} - \frac{2(\alpha^{\vee}\beta^{\vee})}{(\alpha^{\vee}, \alpha^{\vee})}\alpha^{\vee},$$

and wish to show that $s_{\alpha^{\vee}}(\beta^{\vee}) \in R^{\vee}$. To do this, we use the definition of the coroot, i.e. we check for arbitrary $\gamma \in R$ (skipping a few steps):

$$\langle \gamma, s_{\alpha^{\vee}}(\beta^{\vee}) \rangle = \frac{2(\gamma, \beta)}{(\beta, \beta)} - \frac{4(\alpha, \beta)(\alpha, \gamma)}{(\alpha, \alpha)(\beta, \beta)}.$$

We claim that this is simply $\langle \gamma, (s_{\alpha}(\beta))^{\vee} \rangle$, which will show that the coroots are indeed closed under reflection:

$$\langle \gamma, (s_{\alpha}(\beta))^{\vee} \rangle = \frac{2(\gamma, s_{\alpha}(\beta))}{(s_{\alpha}(\beta), s_{\alpha}(\beta))}$$
$$= \frac{2(\beta, \gamma)(\alpha, \alpha) - 4(\alpha, \beta)(\alpha, \gamma)}{(\alpha, \alpha)(\beta, \beta)}$$

which is precisely what we had above. Hence we see that the coroots in fact form a root system.

(b) Now let $\Pi = \{\alpha_1, \dots, \alpha_r\} \subset R$ be the set of simple roots. We wish to show that the set $\Pi^{\vee} = \{\alpha_1^{\vee}, \dots, \alpha_r^{\vee}\} \subset R^{\vee}$ is the set of simple roots of R^{\vee} . First note that given a $t \in E$ with $(t, \alpha) \neq 0$ for all $\alpha \in R$ we obtain the set of positive roots λ : $(\lambda, t) > 0$. We claim that t^{\vee}

yields a choice of positive coroots. This is simply because $(t^{\vee}, \alpha^{\vee}) > 0$ if (t, α) is (by the inner product defined above). Now note that

$$C_{+} = \left\{ \lambda^{\vee} \in E^{*} \mid (\lambda^{\vee}, \alpha^{\vee}) > 0 \,\forall \alpha^{\vee} \in R_{+}^{\vee} \right\}$$

$$= \left\{ \lambda^{\vee} \in E^{*} \mid \frac{4}{(\alpha, \alpha)(\lambda, \lambda)}(\alpha, \lambda) > 0 \right\}$$

$$= \left\{ \lambda^{\vee} \in E^{*} \mid (\lambda, \alpha) > 0 \,\forall \alpha \in R_{+} \right\}$$

$$= \left\{ \lambda^{\vee} \in E^{*} \mid (\lambda, \alpha) > 0 \,\forall \alpha \in \Pi \right\}$$

$$= \left\{ \lambda^{\vee} \in E^{*} \mid (\lambda^{\vee}, \alpha^{\vee}) > 0 \,\forall \alpha \in \Pi \right\}$$

and since there are r such coroots (by dimensionality) we obtain a set of simple coroots Π^{\vee} .

Problem 3

- (a) Let R be a reduced root system of rank 2, with simple roots α_1, α_2 . By Kirillov Lemma 7.39, we know that the longest element of the Weyl group is the $w_0 \in W$ such that $w_0(C_+) = -C_+$. This is also geometrically rather obvious for the rank 2 case. Of course, since we know that reflections via simple roots moves a Weyl chamber to one adjacent to it, it will take precisely m reflections to move C_+ to $-C_+$, where each angle is π/m . And of course, the reflection must be a product of $s_1s_2s_1\ldots$ as $s_1^2=s_2^2=1$. This proves the result for the rank 2 systems.
- (b) The first Coxeter relation $s_i^2 = 1$ is obvious simply be the properties of transpositions. We now wish to show that $(s_i s_j)^{m_{ij}} = 1$ where m_{ij} is determined by the angle between α_i, α_j in the same way as the previous part.

Problem 4

- (a) Consider a complex semisimple Lie algebra \mathfrak{g} with a root space decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ where $\mathfrak{n}_{\pm} = \oplus_{\alpha \in R_{\pm}} \mathfrak{g}_{\alpha}$. It is obvious that \mathfrak{n}_{\pm} are nilpotent, as the commutator $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$ and hence, in the \mathfrak{n}_+ case, successive commutators will keep increasing the root, but since the root system is finite, there is an upper bound, and hence we must obtain zero. The same argument holds for \mathfrak{n}_- but with a lower bound.
- (b) If we instead consider $\mathfrak{b} = \mathfrak{n}_+ \oplus \mathfrak{h}$, we find that \mathfrak{b} is in fact solvable. To see this, note that any two elements of \mathfrak{b} can be written $b_1 = e_1 + h_1, b_2 = e_2 + h_2$, and hence

$$[b_1, b_2] = [e_1, e_1] + [h_1, e_2] + [e_1, h_2]$$
$$= [e_1, e_2] + a_{12}e_2 - a_{21}e_1,$$

but now further applications of commutators with elements of \mathfrak{b} will simply yield commutators of e_i with e_j and hence by part (a) above, we are done.

Problem 5

Let G be a connected complex Lie group such that \mathfrak{g} is semisimple. Fix a root decomposition of \mathfrak{g} .

(a) Choose $\alpha \in R$ and let $i_{\alpha} : \mathfrak{sl}_2\mathbb{C} \to \mathfrak{g}$ be the embedding constructed in Kirillov Lemma 6.42. By Kirillov Theorem 3.41, this embedding can be lifted to a morphism $i_{\alpha} : SL(2,\mathbb{C}) \to G$. Let

$$S_{\alpha} = i_{\alpha} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \exp\left(\frac{\pi}{2}(f_{\alpha} - e_{\alpha})\right) \in G.$$

Then Ad $S_{\alpha}(h_{\alpha}) = -h_{\alpha}$ because

$$\operatorname{Ad} S_{\alpha}(h_{\alpha}) = \frac{d}{dt} \Big|_{t=0} \left(i_{\alpha} \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{ti_{\alpha} \begin{pmatrix} 1 \\ -1 \end{pmatrix}} i_{\alpha} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$$

$$= \frac{d}{dt} \Big|_{t=0} \left(i_{\alpha} \begin{pmatrix} 1 \\ 1 \end{pmatrix} i_{\alpha} \begin{pmatrix} e^{t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right) i_{\alpha} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$$

$$= \frac{d}{dt} \Big|_{t=0} i_{\alpha} \begin{pmatrix} e^{-t} \\ e^{t} \end{pmatrix}$$

$$= i_{\alpha} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = h_{\alpha}$$

Note also that if $h \in \mathfrak{h}$ with $\langle h, \alpha \rangle = 0$, then, by the Serre relations, since

$$[h_i, e_j] = a_{ij}e_j$$
 and $[h_i, f_j] = -a_{ij}f_j$

where $a_{ij} = n_{\alpha_j,\alpha_i} = \langle \alpha_i^{\vee}, \alpha_j \rangle$, which is zero in our case, and hence h commutes with $S_{\alpha} = \exp(\pi/2(f_{\alpha} - e_{\alpha}))$ and thus we find that the adjoint action simply yields

$$\operatorname{Ad} S_{\alpha}(h) = \frac{d}{dt} \Big|_{t=0} \left(S_{\alpha} e^{th} S_{\alpha}^{-1} \right)$$
$$= \frac{d}{dt} \Big|_{t=0} e^{th} = h,$$

as desired. This naturally induces the action on the dual, and hence we see that the action of S_{α} on \mathfrak{g}^* preserves \mathfrak{h}^* and that the restriction of $\operatorname{Ad} S_{\alpha}$ to \mathfrak{h}^* coincides with the reflection s_{α} .

(b) An element of the Weyl group can, in general, be written as a product of s_{α_i} where the α_i are simple roots. By part (a) above we know that the action of $\operatorname{Ad} S_{\alpha}$ (when restricted to \mathfrak{h}^*) coincides with the reflection s_{α} , and hence if w is written as a product of simple reflections, we may simply compose multiple adjoint actions:

$$\operatorname{Ad} S_{\alpha} \circ \operatorname{Ad} S_{\beta} = s_{\alpha} \circ s_{\beta}$$
$$\operatorname{Ad} (S_{\alpha} S_{\beta}) = s_{\alpha} \circ s_{\beta}$$

where we have used the homomorphism property of the Adjoint representation. Hence, for cases higher than 2, i.e. when w is written as a product of n simple reflections, we can simply use the homorphism property to find the element in G that acts as w.