CUTTING FLUIDS

CUTTING FLUIDS

- Essential in metal-cutting operations to reduce heat and friction
- Centuries ago, water used on grindstones
- 100 years ago, tallow used (did not cool)
- Lard oils came later but turned rancid
- Early 20th century saw soap added to water
- Soluble oils came in 1936
- Chemical cutting fluids introduced in 1944

ECONOMIC ADVANTAGES TO USING CUTTING FLUIDS

- Reduction of tool costs
 - Reduce tool wear, tools last longer
- Increased speed of production
 - Reduce heat and friction so higher cutting speeds
- Reduction of labor costs
 - Tools last longer and require less regrinding, less downtime, reducing cost per part
- Reduction of power costs
 - Friction reduced so less power required by machining

HEAT GENERATED DURING MACHINING

CHARACTERISTICS OF A GOOD CUTTING FLUID

- Good cooling capacity 6. Rust resistance
- Good lubricating qualities
- Resistance to rancidity
- Relatively low viscosity
- Stability (long life)

- 7. Nontoxic
- Transparent
- Nonflammable

TYPES OF CUTTING FLUIDS

- Most commonly used cutting fluids
 - Either aqueous based solutions or cutting oils
- Fall into three categories
 - Cutting oils
 - Emulsifiable oils
 - Chemical (synthetic) cutting fluids

CUTTING OILS

- Two classifications
 - Active
 - Inactive
- Terms relate to oil's chemical activity or ability to react with metal surface
 - Elevated temperatures
 - Improve cutting action
 - Protect surface

ACTIVE CUTTING OILS

- Those that will darken copper strip immersed for 3 hours at temperature of 212°F
- Dark or transparent
- Better for heavy-duty jobs
- Three categories
 - Sulfurized mineral oils
 - Sulfochlorinated mineral oils
 - Sulfochlorinated fatty oil blends

INACTIVE CUTTING OILS

- Oils will not darken copper strip immersed in them for 3 hours at 212°F
- Contained sulfur is natural
 - Termed inactive because sulfur so firmly attached to oil very little released
- Four general categories
 - Straight mineral oils, fatty oils, fatty and mineral oil blends, sulfurized fatty-mineral oil blend

EMULSIFIABLE (WATER SOLUBLE) OILS

- Mineral oils containing soaplike material that makes them soluble in water and causes them to adhere to workpiece
- Emulsifiers break oil into minute particles and keep them separated in water
 - Supplied in concentrated form (1-5 /100 water)
- Good cooling and lubricating qualities
- Used at high cutting speeds, low cutting pressures

CHEMICAL CUTTING FLUIDS

- Also called synthetic fluids
- Introduced about 1945
- Stable, preformed emulsions
 - Contain very little oil and mix easily with water
- Extreme-pressure (EP) lubricants added
 - React with freshly machined metal under heat and pressure of a cut to form solid lubricant
- Reduce heat of friction and heat caused by plastic deformation of metal

ADVANTAGES OF SYNTHETIC FLUIDS

- I. Good rust control
- 2. Resistance to rancidity for long periods of time
- 3. Reduction of amount of heat generated during cutting
- 4. Excellent cooling qualities

FUNCTIONS OF A CUTTING FLUID

- Prime functions
 - Provide cooling
 - Provide lubrication
- Other functions
 - Prolong cutting-tool life
 - Provide rust control
 - Resist rancidity

CUTTING FLUID'S EFFECT ON CUTTING TOOL ACTION

- Lowers heat created by plastic deformation of metal
- 2. Friction at chip-tool interface decreased
- 3. Less power is required for machining because of reduced friction
- 4. Prevents built-up edge from forming
- 5. Surface finish of work greatly improved

APPLICATION OF CUTTING FLUIDS

- Cutting-tool life and machining operations influenced by way cutting fluid applied
- Copious stream under low pressure so work and tool well covered
 - Inside diameter of supply nozzle ¾ width of cutting tool
 - Applied to where chip being formed