1/10

SEQUENCE LISTING

		SEQU	JENCE LISTII	NG (MAK 1 4 200	<i>₹</i>
<110>	JULIUS, M FILIPP, D			\	FIFM & THADE	
<120>		TION OF ANT 4-PROTEIN	IBIOTIC PRO	TEINS AND F	PEPTIDES BY	
<130>	47841/000	63				
<140>	US 09/721 2000-11-2					RECEIVED
<141>	2000-11-2	,				
<150> <151>	PCT/CA99/ 1999-05-2					MAR 1 8 2003
.1.50-	US 60/086	001				
<150> <151>	1998-05-2				TE	CH CENTER 1600/2900
<160>	11					
<170>	Wordperfe	ct 9.0		·		
<210>	1					
<211>	1122					
<212> <213>	DNA bovine					
(213)	DOVING					
<400>	1				L	- 60
atggtgtgcg	tgccctacct	gctgctgctg	ctgctgccgt	cactgetgeg	tgtgtetgeg	g 60
gacacaacag	aaccctgcga	gctggacgac	gacgatttcc	gttgtgtctg	caacttcac	120
gatccgaagc	ctgactggtc	tagcgccgtt	cagtgtatgg	ttgccgtcga	ggtggagato	180
agtgccggcg	gccgcagcct	ggaacagttt	ctcaagggag	ccgacaccaa	cccgaagcag	240
tatgctgaca	caatcaaggc	tctgcgcgtt	cggcgactca	agctgggcgc	tgcacaggtt	300
cctgctcagc	ttctggtcgc	cgttctgcgc	gcgctcgggt	actctcgtct	caaggaactg	360
acgcttgagg	acctggaggt	aaccggccca	acgcccccga	cgcctctgga	agccgctggg	420
cctgcgctca	ccaccctcag	tctgcgtaac	gtatcgtgga	caacaggagg	tgcctggct	480
ggcgaactgc	agcagtggct	caagcctggg	ctcagggtgc	tgaacattgc	ccaagcacad	540
tcgcttgcct	ttccgtgcgc	agggctctcc	accttcgagg	cgctcaccac	cctagacct	600
tctgacaatc	ccagtctcgg	cgacacgggg	ctgatggcag	ctctctgtcc	gaacaagtt	660
ccggccctcc	aatatctagc	gctacgcaac	gcggggatgg	agacgccgag	cggcgtgtg	720
gcggcgctgg	cggcagcgag	ggtgcagccc	caaagcctgg	acctcagcca	caactcgct	780
cgcgtcaccg	ccccgggtgc	tacccgatgt	gtctggccca	gtgcactaag	gtctctcaa	840
ttgtcgttcg	ctgggctgga	gcaagtgcct	aagggactgc	cccctaagct	cagcgtgct	900
gatctcagct	gcaacaagct	aagcagggag	ccgcggcgag	acgagctgcc	cgaggtaaa	960
gacctgactc	tggacggaaa	tccctttctg	gaccctggag	ccctccagca	ccaaaatga	2 1020

ccgatgatct ccggcgtg	gt cccagcctgt	gcgcgttctg	ccttgaccat	gggggtgtca	1080
ggagccctgg cgctgctt	ca aggagecega	ggcttcgcgt	aa		1122
<210> 2 <211> 1128 <212> DNA <213> human					
<400> 2 atggagcgcg cgtcctgc	t gttgctgctg	ctgctgccgc	tggtgcacgt	ctctgcgacc	60
acgccagaac cttgtgag	ct ggacgatgaa	gatttccgct	gcgtctgcaa	cttctccgaa	120
cctcagcccg actggtcc	ga agcettecag	tgtgtgtctg	cagtagaggt	ggagatccat	180
gccggcggtc tcaaccta	ga gccgtttcta	aagcgcgtcg	atgeggaege	cgacccgcgg	240
cagtatgctg acacggtc	a ggctctccgc	gtgcggcggc	tcacagtggg	agccgcacag	300
gttcctgctc agctactg	gt aggcgccctg	cgtgtgctag	cgtactcccg	cctcaaggaa	360
ctgacgctcg aggaccta	aa gataaccggc	accatgcctc	cgctgcctct	ggaagccaca	420
ggaettgcac tttccagc	t gcgcctacgc	aacgtgtcgt	gggcgacagg	gcgttcttgg	480
ctcgccgagc tgcagcag	g gctcaagcca	ggcctcaagg	tactgagcat	tgcccaagca	540
cactegeetg cettttee	g cgaacaggtt	cgcgccttcc	cggcccttac	cagcctagac	600
ctgtctgaca atcctgga	t gggcgaacgc	ggactgatgg	cggctctctg	tccccacaag	660
ttcccggcca tccagaat	t agcgctgcgc	aacacaggaa	tggagacgcc	cacaggcgtg	720
tgcgccgcac tggcggcg	gc aggtgtgcag	ccccacagcc	tagacctcag	ccacaactcg	780
ctgcgcgcca ccgtaaac	c tagegeteeg	agatgcatgt	ggtccagcgc	cctgaactcc	840
ctcaatctgt cgttcgct	gg gctggaacag	gtgcctaaag	gactgccagc	caagctcaga	900
gtgctcgatc tcagctgc	a cagactgaac	agggcgccgc	agcctgacga	gctgcccgag	960
gtggataacc tgacactg	ga cgggaatccc	ttcctggtcc	ctggaactgc	cctccccac	1020
gagggctcaa tgaactcc	g cgtggtccca	gcctgtgcac	gttcgaccct	gtcggtgggg	1080
gtgtcgggaa ccctggtg	t gctccaaggg	gcccggggct	ttgcctaa		1128
<210> 3 <211> 1101 <212> DNA <213> murine					
<400> 3 ATGGAGCGTG TGCTTGGC	T GTTGCTGTTG	CTTCTGGTGC	ACGCCTCTCC	CGCCCCACCA	60
GAGCCCTGCG AGCTAGAC	BA GGAAAGTTGT	TCCTGCAACT	TCTCAGATCC	GAAGCCAGAT	120
TGGTCCAGCG CTTTCAAT	G TTTGGGGGCG	GCAGATGTGG	AATTGTACGG	CGGCGGCCGC	180
AGCCTGGAAT ACCTTCTA	A GCGTGTGGAC	ACGGAAGCAG	ATCTGGGGCA	GTTCACTGAT	240

ATTATCAAGT	CTCTGTCCTT	AAAGCGGCTT	ACGGTGCGGG	CCGCGCGGAT	TCCTAGTCGG	300
ATTCTATTCG	GAGCCCTGCG	TGTGCTCGGG	ATTTCCGGCC	TCCAGGAACT	GACTCTTGAA	360
AATCTCGAGG	TAACCGGCAC	CGCGCCGCCA	CCGCTTCTGG	AAGCCACCGG	ACCCGATCTC	420
AACATCTTGA	ACCTCCGCAA	CGTGTCGTGG	GCAACAAGGG	ATGCCTGGCT	CGCAGAACTG	480
CAGCAGTGGC	TAAAGCCTGG	ACTCAAGGTA	CTGAGTATTG	CCCAAGCACA	CTCACTCAAC	540
TTTTCCTGCG	AACAGGTCCG	CGTCTTCCCT	GCCCTCTCCA	CCTTAGACCT	GTCTGACAAT	600
CCTGAATTGG	GCGAGAGAGG	ACTGATCTCA	GCCCTCTGTC	CCCTCAAGTT	CCCGACCCTC	660
CAAGTTTTAG	CGCTGCGTAA	CGCGGGGATG	GAGACGCCCA	GCGGCGTGTG	CTCTGCGCTG	720
GCCGCAGCAA	GGGTACAGCT	GCAAGGACTA	GACCTTAGTC	ACAATTCACT	GCGGGATGCT	780
GCAGGCGCTC	CGAGTTGTGA	CTGGCCCAGT	CAGCTAAACT	CGCTCAATCT	GTCTTTCACT	840
GGGCTGAAGC	AGGTACCTAA	AGGGCTGCCA	GCCAAGCTCA	GCGTGCTGGA	TCTCAGTTAC	900
AACAGGCTGG	ATAGGAACCC	TAGCCCAGAT	GAGCTGCCCC	AAGTGGGGAA	CCTGTCACTT	960
AAAGGAAATC	CCTTTTTGGA	CTCTGAATCC	CACTCGGAGA	AGTTTAACTC	TGGCGTAGTC	1020
ACCGCCGGAG	CTCCATCATC	CCAAGCAGTG	GCCTTGTCAG	GAACTCTGGC	TTTGCTCCTA	1080
GGAGATCGCC	TCTTTGTTTA	A				1101

<210> 4
<211> 373
<212> PRT
<213> bovine

<400> 4

Met Val Cys Val Pro Tyr Leu Leu Leu Leu Leu Leu Pro Ser Leu Leu 1 5 10 15

Arg Val Ser Ala Asp Thr Thr Glu Pro Cys Glu Leu Asp Asp Asp Asp 20 25 30

Phe Arg Cys Val Cys Asn Phe Thr Asp Pro Lys Pro Asp Trp Ser Ser 35 40 45

Ala Val Gln Cys Met Val Ala Val Glu Val Glu Ile Ser Ala Gly Gly 50 55 60

Arg Ser Leu Glu Gln Phe Leu Lys Gly Ala Asp Thr Asn Pro Lys Gln 65 70 75 80

Tyr Ala Asp Thr Ile Lys Ala Leu Arg Val Arg Arg Leu Lys Leu Gly 85 90 95

Ala Ala Gl
n Val Pro Ala Gl
n Leu Leu Val Ala Val Leu Arg Ala Leu 100 105 110

Gly Tyr Ser Arg Leu Lys Glu Leu Thr Leu Glu Asp Leu Glu Val Thr 115 120 125 .

Gly Pro Thr Pro Pro Thr Pro Leu Glu Ala Ala Gly Pro Ala Leu Thr 130 135 140 Thr Leu Ser Leu Arg Asn Val Ser Trp Thr Thr Gly Gly Ala Trp Leu 150 155 Gly Glu Leu Gln Gln Trp Leu Lys Pro Gly Leu Arg Val Leu Asn Ile Ala Gln Ala His Ser Leu Ala Phe Pro Cys Ala Gly Leu Ser Thr Phe Glu Ala Leu Thr Thr Leu Asp Leu Ser Asp Asn Pro Ser Leu Gly Asp 200 Thr Gly Leu Met Ala Ala Leu Cys Pro Asn Lys Phe Pro Ala Leu Gln Tyr Leu Ala Leu Arg Asn Ala Gly Met Glu Thr Pro Ser Gly Val Cys Ala Ala Leu Ala Ala Arg Val Gln Pro Gln Ser Leu Asp Leu Ser 245 250 His Asn Ser Leu Arg Val Thr Ala Pro Gly Ala Thr Arg Cys Val Trp Pro Ser Ala Leu Arg Ser Leu Asn Leu Ser Phe Ala Gly Leu Glu Gln Val Pro Lys Gly Leu Pro Pro Lys Leu Ser Val Leu Asp Leu Ser Cys 295 Asn Lys Leu Ser Arg Glu Pro Arg Arg Asp Glu Leu Pro Glu Val Asn Asp Leu Thr Leu Asp Gly Asn Pro Phe Leu Asp Pro Gly Ala Leu Gln 325 330 His Gln Asn Asp Pro Met Ile Ser Gly Val Val Pro Ala Cys Ala Arg 345 Ser Ala Leu Thr Met Gly Val Ser Gly Ala Leu Ala Leu Leu Gln Gly Ala Arg Gly Phe Ala 370 <210> 375 <211> <212> PRT <213> human Met Glu Arg Ala Ser Cys Leu Leu Leu Leu Leu Pro Leu Val His Val Ser Ala Thr Thr Pro Glu Pro Cys Glu Leu Asp Asp Glu Asp Phe 25 Arg Cys Val Cys Asn Phe Ser Glu Pro Gln Pro Asp Trp Ser Glu Ala

Phe Gln Cys Val Ser Ala Val Glu Val Glu Ile His Ala Gly Gly Leu

Asn 65	Leu	Glu	Pro	Pne	ьеи 70	гàг	Arg	vaı	Asp	75	Asp	Ala	Asp	PIO	80
Gln	Tyr	Ala	Asp	Thr 85	Val	Lys	Ala	Leu	Arg 90	Val	Arg	Arg	Leu	Thr 95	Val
Gly	Ala	Ala	Gln 100	Val	Pro	Ala	Gln	Leu 105	Leu	Val	Gly	Ala	Leu 110	Arg	Val
Leu	Ala	Tyr 115	Ser	Arg	Leu	Lys	Glu 120	Leu	Thr	Leu	Glu	Asp 125	Leu	Lys	Ile
Thr	Gly 130	Thr	Met	Pro	Pro	Leu 135	Pro	Leu	Glu	Ala	Thr 140	Gly	Leu	Ala	Leu
Ser 145	Ser	Leu	Arg	Leu	Arg 150	Asn	Val	Ser	Trp	Ala 155	Thr	Gly	Arg	Ser	Trp 160
Leu	Ala	Glu	Leu	Gln 165	Gln	Trp	Leu	Lys	Pro 170	Gly	Leu	Lys	Val	Leu 175	Ser
Ile	Ala	Gln	Ala 180	His	Ser	Pro	Ala	Phe 185	Ser	Tyr	Glu	Gln	Val 190	Arg	Ala
Phe	Pro	Ala 195	Leu	Thr	Ser	Leu	Asp 200	Leu	Ser	Asp	Asn	Pro 205	Gly	Leu	Gly
Glu	Arg 210	Gly	Leu	Met	Ala	Ala 215	Leu	Cys	Pro	His	Lys 220	Phe	Pro	Ala	Ile
Gln 225	Asn	Leu	Ala	Leu	Arg 230	Asn	Thr	Gly	Met	Glu 235	Thr	Pro	Thr	Gly	Val 240
Cys	Ala	Ala	Leu	Ala 245	Ala	Ala	Gly	Val	Gln 250	Pro	His	Ser	Leu	Asp 255	Leu
Ser	His	Asn	Ser 260	Leu	Arg	Ala	Thr	Val 265	Asn	Pro	Ser	Ala	Pro 270	Arg	Cys
Met	Trp	Ser 275	Ser	Ala	Leu	Asn	Ser 280	Leu	Asn	Leu	Ser	Phe 285	Ala	Gly	Leu
Glu	Gln 290	Val	Pro	Lys	Gly	Leu 295	Pro	Ala	Lys	Leu	Arg 300	Val	Leu	Asp	Leu
Ser 305	Cys	Asn	Arg	Leu	Asn 310	Arg	Ala	Pro	Gln	Pro 315	Asp	Glu	Leu	Pro	Glu 320
Val	Asp	Asn	Leu	Thr 325	Leu	Asp	Gly	Asn	Pro 330	Phe	Leu	Val	Pro	Gly 335	Thr
Ala	Leu	Pro	His 340	Glu	Gly	Ser	Met	Asn 345	Ser	Gly	Val	Val	Pro 350	Ala	Cys
Ala	Arg	Ser 355		Leu	Ser	Val	Gly 360	Val	Ser	Gly	Thr	Leu 365	Val	Leu	Leu
Gln	Gly 370	Ala	Arg	Gly	Phe	Ala 375									

<210 <211 <212 <213	.1> 366 .2> PRT														
<400 Met 1		Arg	6 Val	Leu 5	Gly	Leu	Leu	Leu	Leu 10	Leu	Leu	Val	His	Ala 15	Ser
Pro	Ala	Pro	Pro 20	Glu	Pro	Cys	Glu	Leu 25	Asp	Glu	Glu	Ser	Cys 30	Ser	Cys
Asn	Phe	Ser 35	Asp	Pro	Lys	Pro	Asp 40	Trp	Ser	Ser	Ala	Phe 45	Asn	Cys	Leu
Gly	Ala 50	Ala	Asp	Val	Glu	Leu 55	Tyr	Gly	Gly	Gly	Arg 60	Ser	Leu	Glu	Tyr
Leu 65	Leu	Lys	Arg	Val	Asp 70	Thr	Glu	Ala	Asp	Leu 75	Gly	Gln	Phe	Thr	Asp 80
Ile	Ile	Lys	Ser	Leu 85	Ser	Leu	Lys	Arg	Leu 90	Thr	Val	Arg	Ala	Ala 95	Arg
Ile	Pro	Ser	Arg 100	Ile	Leu	Phe	Gly	Ala 105	Leu	Arg	Val	Leu	Gly 110	Ile	Ser
Gly	Leu	Gln 115	Glu	Leu	Thr	Leu	Glu 120	Asn	Leu	Glu	Val	Thr 125	Gly	Thr	Ala
Pro	Pro 130	Pro	Leu	Leu	Glu	Ala 135	Thr	Gly	Pro	Asp	Leu 140	Asn	Ile	Leu	Asn
Leu 145	Arg	Asn	Val	Ser	Trp 150	Ala	Thr	Arg	Asp	Ala 155	Trp	Leu	Ala	Glu	Leu 160
Gln	Gln	Trp	Leu	Lys 165	Pro	Gly	Leu	Lys	Val 170	Leu	Ser	Ile	Ala	Gln 175	Ala
His	Ser	Leu	Asn 180	Phe	Ser	Cys	Glu	Gln 185	Val	Arg	Val	Phe	Pro 190	Ala	Leu
Ser	Thr	Leu 195	Asp	Leu	Ser	Asp	Asn 200	Pro	Glu	Leu	Gly	Glu 205	Arg	Gly	Leu
Ile	Ser 210	Ala	Leu	Cys	Pro	Leu 215	Lys	Phe	Pro	Thr	Leu 220	Gln	Val	Leu	Ala
Leu 225	Arg	Asn	Ala	Gly	Met 230	Glu	Thr	Pro	Ser	Gly 235	Val	Cys	Ser	Ala	Leu 240
Ala	Ala	Ala	Arg	Val 245	Gln	Leu	Gln	Gly	Leu 250	Asp	Leu	Ser	His	Asn 255	Ser
Leu	Arg	Asp	Ala 260	Ala	Gly	Ala	Pro	Ser 265	Cys	Asp	Trp	Pro	Ser 270	Gln	Leu
Asn	Ser	Leu 275	Asn	Leu	Ser	Phe	Thr 280	Gly	Leu	Lys	Gln	Val 285	Pro	Lys	Gly
Leu	Pro 290	Ala	Lys	Leu	Ser	Val 295	Leu	Asp	Leu	Ser	Tyr 300	Asn	Arg	Leu	Asp

Arg Asn Pro Ser Pro Asp Glu Leu Pro Gln Val Gly Asn Leu Ser Leu 310 315 Lys Gly Asn Pro Phe Leu Asp Ser Glu Ser His Ser Glu Lys Phe Asn 330 Ser Gly Val Val Thr Ala Gly Ala Pro Ser Ser Gln Ala Val Ala Leu Ser Gly Thr Leu Ala Leu Leu Gly Asp Arg Leu Phe Val 360 <210> 7 377 <211> <212> PRT <213> rabbit <220> <221> unsure <222> (14)<223> Xaa = unknown <220> <221> unsure <222> (265)...(267) <223> Xaa = unknown<220> <221> unsure <222> (269) <223> Xaa = unknown<400> Met Glu Pro Val Pro Cys Leu Leu Leu Leu Leu Pro Xaa Leu Leu Arg Ala Ser Thr Asp Thr Pro Glu Pro Cys Glu Leu Asp Asp Asp Asp Ile Arg Cys Val Cys Asn Phe Ser Asp Pro Gln Pro Asp Trp Ser Ser 40 Ala Leu Gln Cys Met Pro Ala Val Gln Val Glu Met Trp Gly Gly His Ser Leu Glu Gln Phe Leu Arg Gln Ala Asp Leu Tyr Thr Asp Gln Arg Arg Tyr Ala Asp Val Val Lys Ala Leu Arg Val Arg Arg Leu Thr Val Gly Ala Val Gln Val Pro Ala Pro Leu Leu Gly Val Leu Arg Val Leu Gly Tyr Ser Arg Leu Lys Glu Leu Ala Leu Glu Asp Ile Glu 120 Val Thr Gly Thr Ala Pro Pro Pro Pro Leu Glu Ala Thr Gly Pro 135 Ala Leu Ser Thr Leu Ser Leu Arg Asn Val Ser Trp Pro Lys Gly Gly 155

Ala	Trp	Leu	Ser	GIu 165	Leu	Gin	Gln	Trp	Leu 170	Lys	Pro	Gly	Leu	Gln 175	Val	
Leu	Asn	Ile	Ala 180	Gln	Ala	His	Thr	Leu 185	Ala	Phe	Ser	Cys	Glu 190	Gln	Val	
Arg	Thr	Phe 195	Ser	Ala	Leu	Thr	Thr 200	Leu	Asp	Leu	Ser	Glu 205	Asn	Pro	Gly	
Leu	Gly 210	Glu	Arg	Gly	Leu	Val 215	Ala	Ala	Leu	Cys	Pro 220	His	Lys	Glu	Pro	
Ala 225	Leu	Gln	Asp	Leu	Ala 230	Leu	Arg	Asn	Ala	Gly 235	Met	Lys	Ile	Leu	Gln 240	
Gly	Val	Cys	Ala	Ala 245	Leu	Ala	Glu	Ala	Gly 250	Val	Gln	Pro	His	His 255	Leu	
Asp	Leu	Ser	His 260	Asn	Ser	Leu	Arg	Xaa 265	Xaa	Xaa	Ala	Xaa	Asp 270	Thr	Gln	
Arg	Cys	Ile 275	Trp	Pro	Ser	Ala	Leu 280	Asn	Ser	Leu	Asn	Leu 285	Ser	Phe	Thr	
Gly	Leu 290	Gln	Gln	Val	Pro	Lys 295	Gly	Leu	Pro	Ala	Lys 300	Leu	Asn	Val	Leu	
Asp 305	Leu	Ser	Cys	Asn	Lys 310	Leu	Asn	Arg	Ala	Pro 315	Gln	Pro	Gly	Glu	Leu 320	
Pro	Lys	Val	Val	Asn 325	Leu	Ser	Leu	Asp	Gly 330	Asn	Pro	Phe	Leu	Val 335	Pro	
Gly	Ala	Ser	Lys 340	Leu	Gln	Glu	Asp	Leu 345	Thr	Asn	Ser	Gly	Val 350	Phe	Pro	
Ala	Cys	Pro 355	Pro	Ser	Pro	Leu	Ala 360	Met	Gly	Met	Ser	Gly 365	Thr	Leu	Ala	
Leu	Leu 370	Gln	Gly	Ala	Arg	Gly 375	Phe	Ile								
<210 <211 <212 <213	. > ? >		8 140 DNA bov													
<400 gcgt		gca d	8 ctgta	aagg	ja aa	ıgaat	ccac	agt	ccaç	jccc	gaca	acca	ıga g	gagag	jaggca	60
cago	gctct	ga g	gaato	tact	gad	ctatg	ttct	tgg	ggcc	gaa	gcgt	gggc	ta t	ttgg	ggact	120
tagg	jaaca	igg d	ettgg	gccg	lc co	ctgac	ctcc	gct	gtcg	ggc	cago	tgtg	rcg t	gccc	tacct	180
gctg	atgo	tg o	ctgct	gccg	jt ca	ctgc	tgcg	ı tgt	gtct	gcg	gaca	caac	ag a	acco	tgcga	240
gcto	gacg	jac o	cacga	tttc	c gt	tgtg	rtctg	caa	cttc	acg	gato	cgaa	ige c	tgac	tggtc	300
tago	gccg	jtt d	cagto	rtato	ıg tt	gccg	tcga	ggt	ggag	jatc	agtg	ccgg	ıcg g	ccgc	agcct	360
ggaa	cagt	tt c	ctcaa	ggga	g co	gaca	.ccaa	ccc	gaag	cag	tatg	ctga	ca c	aato	aaggc	420

totgegegtt eggegactea agetgggege tgeacaggtt eetgeteage ttetggtege 480 cgttctgcgc gcgctcgggt actctcgtct caaggaactg acgcttgagg acctggaggt 540 aaccggccca acgcccccga cgcctctgga agccgctggg cctgcgctca ccaccctcaq 600 totgogtaac gtatogtgga caacaggagg tgcctggctc ggcgaactgc agcagtgcct 660 caagectggg ctcagggtgc tgaacattgc ccaagcacac tcgcttgcct ttccgtgcgc 720 agggetetec accttegagg egeteaceae cetagaeetg tetgaeaate eeagtetegg 780 cgacagcggg ctgatggcag ctctctgtcc gaacaagttc ccggccctcc aatatctagc 840 gctacgcaac gcggggatgg agacgccgag cggcgttgtgc gcggcgctgg cggcagcgag 900 ggtgcagccc caaagcctgg acctcagcca caactcgctg cgcgtcaccg ccccgggtgc 960 tacccgatgt gtctggccca gtgcactaag gtctctcaat ttgtcgttcg ctgggctgga 1020 gcaagtgcct aagggactgc cccctaagct cagcgtgctt gatctcaqct gcaacaaqct 1080 aagcagggag ccgcggcgag acgagctgcc cgaggtaaat gacctgactc tggacggaaa 1140 tecetttetg gaeeetggag eeeteeagea eeaaaatgae eegatgatet eeggegtggt 1200 cccagcctgt gcgcgttctg ccttgaccat gggggtgtca ggagccctgg cgctgcttca 1260 aggagecega ggettegegt aaggeeaggg gaagagaggg aagaggaatg aattggetea 1320 gattgccctg gctccgggag accctcgcca ggacatctca accaaccagc cttctgcccc 1380 atccttatta aaatcttaaa cagca 1405 <210> 9 <211> 8

```
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Chemically
     synthesized polypeptide
<400> 9
Leu Leu Leu Leu Pro Ser
               5
<210> 10
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Chemically
     synthesized polypeptide
<400> 10
Leu Leu Leu Leu Leu Pro Leu
```

```
<210> 11
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Chemically synthesized polypeptide
<400> 11
Leu Leu Leu Leu Leu Val His
```