Metropolis algoritam

Petar Stipanović

pero@pmfst.hr

2021/22

- 🚺 Metropolis algoritam
 - Srednje vrijednosti
 - Dijagram toka
 - Postupak računanja
 - Optimizacija koraka
 - Blokiranje
 - Vodikov atom
 - Numerički rezultati za r
 - Grafički prikaz ponašanja
 - Z6

Metropolis algoritam, integrali i srednje vrijednosti

- poseban slučaj postupka značajnog odabira u kojem se neki mogući pokušaji uzorkovanja odbacuju
- koristimo često pri računanju srednjih vrijednosti danih integralom

$$\langle f \rangle = \frac{\int f(x)p(x)dx}{\int p(x)dx} \tag{1}$$

- koristimo značajni odabir kako bismo generirali slučajne položaje x prema gustoći vjerojatnosti p(x)
- Metropolis algoritam stvara slučajni hod točaka određivanjem vjerojatnosti prijelaza $T(x_i \to x_j)$ od jedne točke x_i do druge točke x_j tako da raspodjela točaka x_0, x_1, x_2, \cdots konvergira prema p(x)
- oznaka x u integralu (1) može biti i točka iz \mathbb{R}^n , brzina, točka iz bilo kojeg prostora u kojem provodimo integraciju
- radi boljeg uzorkovanja prostor integracije prelazimo većim brojem neovisnih šetača

Dijagram toka Metropolis algoritma

• u svakom koraku ik (index koraka) za svakog šetača iw (index walker-a) na položaju $x[iw] \equiv x_{iw}$ biramo probni položaj x_p te prijelaz prihvaćamo s vjerojatnošću $T(x_{iw} \to x_p)$

Postupak računanja

- u početku:
 - šetače rasporedimo nasumično u položaje x_{iw} gdje je vjerojatnost nalaženja $p(x_{iw})$ značajna
 - ▶ odaberemo maksimalnu duljinu koraka *d*
- u svakom koraku za svakog šetača:
 - lacktriangle biramo korak nasumične duljine $\Delta x \in [-d,+d]$
 - određujemo probni položaj šetača $x_p = x_{iw} + \Delta x$ te prema Metropolis algoritmu određujemo hoće li biti prihvaćen $x_{iw} = x_p$ ili će šetač ostati u starom položaju $x_{iw} = x_{iw}$
 - provjeravamo nalazi li se unutar područja integracije
 - ▶ ako je, akumuliramo vrijednosti funkcije $f(x_{iw})$ što je najbolje početi tek nakon nekoliko prvih koraka kako bi se sutav počeo ponašati prema raspodjeli p(x)
- usrednjimo akumulirane vrijednosti po šetačima, koracima, ...

Prihvaćanje i optimizacija koraka

- u početku simulacije biramo maksimalne duljine koraka (maksimalne promjene koordinata) d
- d nisu nužno iste, ovise o tome kako izgleda p(x)
- postotak prihvaćenih koraka ovisi o maksimalnoj duljini koraka
- maksimalne duljine koraka podešavamo kako bi bilo prihvaćeno oko 50% probnih položaja
- ako je d prevelik, samo će mali broj probnih koraka biti prihvaćen pa će uzorkovanje od p(x) biti neefikasno
- ako je d premalen, velik postotak probnih koraka bit će prihvaćen pa će uzorkovanje od p(x) opet biti neefikasno
- jedno od jednostavnijih rješenja:
 - u početku odaberemo d
 - računamo prihvaćenost tijekom simulacije i provjeravamo ju nakon nekoliko koraka
 - ▶ ako je veća od 50% povećamo maksimalnu duljinu koraka za npr. 5%
 - ako je manja od 50% smanjimo maksimalu duljinu koraka za npr. 5%
- na kraju provjerimo i ukupan postotak prihvaćenih koraka

Blokiranje

- novi položaj određujemo uvijek na osnovu prethodnog pa su dobiveni podaci u nekoj mjeri korelirani
- kako bismo izbjegli utjecaj korelacija na proračun standardne devijacije

$$\sigma_f = \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{n - 1}} \tag{2}$$

i sličnih veličina, podatke ćemo blokirati

- blokiranje provodimo dijeleći cjelokupnu simulaciju na blokove gdje svaki blok sadrži nekoliko (100, 1000, 5000, ...) koraka
- nakon svakog bloka pohranjujemo:
 - ▶ indeks bloka *ib*
 - ▶ ⟨f⟩ usrednju vrijednost veličine f koju smo akumulirali od početka cijele simulacije

Vodikov atom

- valne funkcije: http://employees.csbsju.edu/hjakubowski/ classes/ch123/Quantum/EquationsOribtalsH.htm
- srednja udaljenost elektrona od jezgre u stanju |nlm>

$$\langle \hat{r} \rangle = \langle nlm | \hat{r} | nlm \rangle = \int_{\mathbb{R}^3} \Psi_{nlm}^*(\vec{r}) \hat{r} \Psi_{nlm}(\vec{r}) d\vec{r}$$

$$\langle \hat{r} \rangle_{nlm} = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} dz \Psi_{nlm}^{*}(x, y, z) \sqrt{x^{2} + y^{2} + z^{2}} \Psi_{nlm}(x, y, z)$$

$$+\infty \qquad \pi \qquad 2\pi$$

$$\langle \hat{r} \rangle_{nlm} = \int_{0}^{+\infty} r R_{nl}^{2}(r) r^{2} dr \int_{0}^{\pi} \sin \vartheta d\vartheta \int_{0}^{2\pi} |Y_{lm}(\vartheta, \varphi)|^{2} d\varphi$$

Srednja udaljenost - numerički podaci

• računamo srednju udaljenost elektrona od jezgre u stanju |n=2, l=1, m=0>

$$\Psi_{210}(x,y,z) = ze^{-\frac{r(x,y,z)}{2}}$$
 ; $r(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ (3)

- kod: "metropolis H xyz.c"
- rezultati proračuna za početnu razdiobu Nw šetača unutar $[-7,7]^3$; odbačeno $N_b^- = 50$ prvih blokova; uzeto Nb blokova, svaki Nk koraka:

Nb	Nk	Nw	$ar{r}/a_0$	prihvacanje
20	100	10	$\textbf{4.94} \pm \textbf{0.05}$	50%
200	100	100	4.987 ± 0.008	50%
200	1000	10	5.01 ± 0.02	50%
2000	1000	10	4.995 ± 0.007	50%
200	1000	100	4.996 ± 0.005	50%

Srednja udaljenost - grafički prikaz

• srednje udaljenosti dobivene u pojedinom bloku $\langle r \rangle_b$ osciliraju oko ukupne srednje vrijednosti $\langle r \rangle$ koja konvergira prema analitički dobivenoj vrijednosti $5a_0$

Srednja udaljenost - grafički prikaz

• srednje udaljenosti dobivene u pojedinom bloku $\langle r \rangle_b$ osciliraju oko ukupne srednje vrijednosti $\langle r \rangle$ koja konvergira prema analitički dobivenoj vrijednosti $5a_0$

Z6

- Dovršite priloženi kod.
- Provjerite njegovu ispravnost producirajući prethodna rješenja.
- Uzorkujte položaje elektrona u vodikovom stanju $|n = 3, l = 0, m = 0\rangle$:
 - provjerite ispravnost uzorkovanja crtanjem položaja elektrona;
 - procijenite $\langle r \rangle$.
- Priložite kodove, skripte i grafove.