

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	$\frac{1}{k^2 r_3}$	0	0	0
$\tau_1^{\#1}_{+\alpha\beta}$	$-\frac{i\sqrt{2}}{kr_3+k^3r_3}$	$\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	$\frac{3k^2r_3+2t_2}{(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{3k^2r_3+2t_2}{(k+k^3)^2r_3t_2}$	$-\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_3}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{i\sqrt{2}}{kr_3+k^3r_3}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_3$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	k ² t ₂	0	0	0	0
$\omega_1^{\#2}_+{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	2 7	$-\frac{1}{3}$ \bar{l} k t_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_3 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\vec{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1+}^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

Source constraints

SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\sigma_{2^{-}}^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\#1\alpha\beta}==0$	5
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5
Total #:	29

$\omega_{2}^{\#1}_{+}$ $f_{2}^{\#1}_{+}$ $\omega_{2}^{\#1}_{2}$ $a_{eta\chi}$	0	0	0
$f_{2}^{\#1}$	0	0	0
$\omega_2^{\#1}_{+\alpha\beta}$	0	0	0
·	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{*1} +^{lphaeta\chi}$

 $f_{0}^{\#1}$ †

 $6 k^2 r_3$

 $f_{0}^{#2} \uparrow \omega_{0}^{#1} \uparrow$

 $\omega_{0^{\text{-}}}^{\#1}$

 $f_0^{\#2}$

 $f_{0}^{\#1}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\sharp 1} \dagger^{\alpha \beta}$	0	0	0
$\tau_{2^+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

	$\overline{}$
	Z
	O
	_
	⊣
	nassless
	ĭ
	Š
	_
	ענ
	77
	parti
	מ
	4
	<u>∺</u> .
	<u>C</u>
	les
	S
	$\overline{}$