

ΕΡΓΑΣΤΗΡΙΟ ΡΟΜΠΟΤΙΚΗΣ

Άσκηση 2. Έλεγχος Pendubot

Στόχοι Εργαστηρίου

- Εξοικείωση με την πειραματική ρύθμιση ενός ελεγκτή PD.
- Κατανόηση της επίδρασης συγκεκριμένων χαρακτηριστικών του δυναμικού ρομποτικού μοντέλου στον ελεγκτή PD.
- Υλοποίηση ενός ελεγκτή ο οποίος θα συμπεριλαμβάνει μη γραμμικούς όρους βασισμένους στο δυναμικό ρομποτικό μοντέλο.
- Πειραματισμός με τη λειτουργία ενός πλήρους μη γραμμικού ελεγκτή (δύο φάσεων).

Πειραματική Διάταξη/1

• Ανάστροφο Εκκρεμές (pendubot)

Πειραματική Διάταξη/2

• Ανάστροφο Εκκρεμές (pendubot)

PD Έλεγχος

• Η συνάρτηση ελέγχου δίνεται από την σχέση:

$$u(t) = K_p e(t) + K_d \frac{de(t)}{dt}$$

•
$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

• $e(t) = (q_1^d - q_1)$
• $\frac{de(t)}{dt} = (q_1'^d - q_1')$

•
$$e(t) = (q_1^d - q_1)$$

$$\bullet \quad \frac{de(t)}{dt} = (q_1'^d - q_1')$$

Χαρακτηριστικά Απόκρισης

- Μεταβατική
 - Μέγιστη Υπερύψωση (overshoot) : $\frac{q_1^{max}-q_1^a}{q_1^d}$ %
 - Χρόνος Ανύψωσης (rise time) : 10%-->90% της τελικής τιμής
- Μόνιμη
 - Σφάλμα μόνιμης κατάστασης : $e_{SS}(t) = \lim_{t \to \infty} e(t) = \frac{A}{1+k_p}$

Πειραματική Ρύθμιση Ελεγκτή PD

Στόχος: $q_{1d}(t)=30^\circ$, $t\geq 0$

K_p	K_d	$e_{\scriptscriptstyle SS}$	t_{rise} (s)	Overshoot (rad)
1	0			
	0.15			

Κρίσιμη απόσβεση (ζ)

Η τυπική συνάρτηση μεταφοράς ενός συστήματος δεύτερης τάξης:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\omega_n s + \omega_n^2}$$

 Οι ρίζες του χαρακτηριστικής εξίσωσης (πόλοι) ορίζουν την ευστάθεια:

Συντελεστής απόσβεσης	Ρίζες χαρακτηρ. εξίσωσης	Φαινόμενο
0< \(\zeta < 1 \)	$s_{1,2} = -\zeta \omega_n \pm j \omega_n (1 - \zeta^2)^{1/2}$	Υποαπόσβεση
ζ=1	$s_{1,2} = -\omega_n$	Κρίσιμη απόσβεση
ζ>1	$s_{1,2} = -\zeta \omega_n \pm \omega_n (\zeta^2 - 1)^{q^2}$	Υ περαποσμεση
$\zeta = 0$	$s_{1,2} = \pm j\omega_n$	Συντηρούμενη ταλάντωση
ζ<0	$s_{1,2} = -\zeta \omega_n \pm j\omega_n (1 - \zeta^2)^{1/2}$	Αρνητική απόσβεση

Underdamped vs Overdamped

Κρίσιμη απόσβεση (ζ)

Η τυπική συνάρτηση μεταφοράς ενός συστήματος δεύτερης τάξης:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\omega_n s + \omega_n^2}$$

• Οι ρίζες του χαρακτηριστικής εξίσωσης (πόλοι) ορίζουν την

ευστάθεια:

Quiz #1

Quiz #2

Magic Force???

Αντιστάθμιση Βαρύτητας

• Από το δυναμικό μοντέλο Lagrange[1] προκύπτει ότι η ροπή εξαρτάται από:

$$\tau = D(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q)$$

• Για τον έλεγχο θέσης αρκεί να συμπεριλάβουμε στον PD έλεγχο τον όρο g(q):

$$u(t) = K_p e(t) + K_d \frac{de(t)}{dt} + \tau_{g(q)}$$

[1] Block, D. J., & Spong, M. W. (1995). Mechanical design and control of the pendubot. SAE transactions, 36-43.

Αξιολόγηση Αντιστάθμισης

Μη γραμμικός ελεγκτής 2 φάσεων

• Φάση 1: ταλάντωση:

$$\dot{x} = Ax + bu + d$$

• Φάση 2: Εξισορρόπηση:

$$V_l(x,t) = \ln(1+x^T P x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x^T P x)^n =$$

$$= x^T P x - \frac{1}{2} (x^T P x)^2 + \frac{1}{3} (x^T P x)^3 - \cdots$$

Μη γραμμικός ελεγκτής 2 φάσεων

Αναφορά

- Περιγραφή πειράματος και θεωρίας ελέγχου
- 6 Αντιπροσωπευτικά Διαγράμματα μετρήσεων
- 3 διαγράμματα χαρακτηριστικών (K_p =1)
- Γιατί $K_p \to \infty$;
- Τι είναι η αντιστάθμιση και γιατι την κάνουμε;
- Γιατί έχουμε συγκλίνει παραπάνω;
- Περιγραφή μη γραμμικού ελεγκτή 2 φάσεων
- 1 διάγραμμα για τα ζευγάρια (k_p, k_d) που παρουσιάζουν κρίσιμη απόσβεση, σύγκριση με ιδανική καμπύλη.