The group G is isomorphic to the group PSL(2,8): C3. Ordinary character table of $G \cong PSL(2,8)$: C3:

	1a	2a	3a	7a	9a	3b	3c	6a	6b	9b	9c
χ_1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$
χ_3	1	1	1	1	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)
χ_4	7	-1	-2	0	1	1	1	-1	-1	1	1
χ_5	7	-1	-2	0	1	E(3)	$E(3)^{2}$	-E(3)	$-E(3)^2$	E(3)	$E(3)^{2}$
χ_6	7	-1	-2	0	1	$E(3)^{2}$	E(3)	$-E(3)^2$	-E(3)	$E(3)^{2}$	E(3)
χ_7	21	-3	3	0	0	0	0	0	0	0	0
χ_8	8	0	-1	1	-1	2	2	0	0	-1	-1
χ_9	8	0	-1	1	-1	2 * E(3)	$2 * E(3)^2$	0	0	-E(3)	$-E(3)^2$
χ_{10}	8	0	-1	1	-1	$2 * E(3)^2$	2 * E(3)	0	0	$-E(3)^2$	-E(3)
χ_{11}	27	3	0	-1	0	0	0	0	0	0	0

Trivial source character table of $G \cong PSL(2,8)$: C3 at p = 3:

In this source character table of $\alpha = 1$ $\mathrm{SL}(2,0)$. So at $p = 0$.														
Normalisers N_i			N_1		N_2		N_3		N_4		N_5 N_6		N_7	
p-subgroups of G up to conjugacy in G				P_2		P_3		P_4		P_5 P_6		6	P_7	
Representatives $n_j \in N_i$	1a	2a	7a	1a	2a	1a	2a	1a	2a	1a	1a	2a	1a	2a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$	27	3	6	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 3 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$	108	-12	3	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11}$	27	3	-1	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	36	-4	1	3	-1	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	9	1	2	3	1	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 3 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$	90	-6	6	0	0	9	3	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 3 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	63	-9	0	0	0	9	-3	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	57	-7	1	3	-1	3	-1	3	-1	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	30	-2	2	3	1	3	1	3	1	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 3 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$	87	-9	3	0	0	6	0	0	0	3	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	3	3	3	0	0	3	3	0	0	0	3	3	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 3 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	84	-12	0	0	0	3	-3	0	0	0	3	-3	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	28	-4	0	1	-1	1	-1	1	-1	1	1	-1	1	-1

```
P_1 = Group([()]) \cong 1
```

```
N_1 = Group([(1,2)(3,5)(4,6)(7,9),(2,3,4)(6,7,8)]) \cong PSL(2,8) : C3
```

 $P_2 = Group([(1, 5, 9)(6, 7, 8)]) \cong C3$

 $P_3 = Group([(1,9,5)(2,4,3)(6,7,8)]) \cong C3$

 $P_4 = Group([(1,5,9)(2,4,3),(1,5,9)(6,7,8)]) \cong C3 \times C3$

 $P_5 = Group([(1,7,4,5,6,2,9,8,3),(1,5,9)(2,3,4)(6,8,7)]) \cong C9$

 $P_6 = Group([(1,8,3,5,7,4,9,6,2),(1,5,9)(2,3,4)(6,8,7)]) \cong C9$

 $P_7 = Group([(1,5,9)(2,4,3),(1,5,9)(6,7,8),(1,7,4,5,6,2,9,8,3)]) \cong C9 : C3$

 $N_2 = Group([(1,5,9)(6,7,8),(2,3,4)(6,7,8),(1,6)(3,4)(5,7)(8,9)]) \cong C3 \times S3$

 $N_3 = Group([(1,9,5)(2,4,3)(6,7,8),(2,3,4)(6,7,8),(2,8)(3,6)(4,7)(5,9),(1,2,6,9,4,7,5,3,8)]) \cong \mathbf{C9}: \mathbf{C6}$

 $N_4 = Group([(2,3,4)(6,7,8),(1,5,9)(2,4,3),(2,8)(3,6)(4,7)(5,9),(1,2,6,9,4,7,5,3,8)]) \cong \mathbf{C9}: \mathbf{C6}$

 $N_5 = Group([(1,7,4,5,6,2,9,8,3),(1,5,9)(2,3,4)(6,8,7),(2,4,3)(6,8,7)]) \cong C9 : C3$

 $N_6 = Group([(1,8,3,5,7,4,9,6,2),(1,5,9)(2,3,4)(6,8,7),(2,3,4)(6,7,8),(2,6,4,8,3,7)(5,9)]) \cong C9 : C6$

 $N_7 = Group([(1, 8, 2, 5, 7, 3, 9, 6, 4), (2, 4, 3)(6, 8, 7), (1, 5, 9)(2, 4, 3), (2, 8)(3, 6)(4, 7)(5, 9)]) \cong C9 : C6$