Esame di Laurea in Informatica

Implementazione di modelli di programmazione matematica per problemi di bin packing

Daniel Rossi 18 Dicembre 2018

Introduzione

STATISTICHE NAZIONALI TRASPORTI

Logistica

7% del PIL italiano

Costi

11% maggiore rispetto partner europei

Introduzione

Tool aziendale

Euristica che dispone le merci nel container del camion

Proposta di stage

Scopo

Lo scopo dello stage è quello di realizzare dei modelli di programmazione lineare per la risoluzione dello **Strip Packing Problem** da usare per valutare l'euristica aziendale

Proposta di stage

Obiettivi:

Realizzazione modelli:

- **2D**: versione 2D;
- 2DR: versione 2D con rotazione;
- 2DRS: versione 2D con rotazione e sequenza di scarico;
- **3D**: versione 3D con rotazione e sovrapposizione.

Valutazione euristica:

Confronto delle soluzioni.

Modelli matematici

$$\max z = f(x)$$
 (oppure $\min z = f(x)$)

s.t.

$$g_i(x) = \begin{cases} \leq b_i \\ = b_i, & i = 1, \dots, m \\ \geq b_i \end{cases}$$

$$x = (x_1, \ldots, x_n) \in X \subseteq \mathbb{R}^n$$

Bin Packing Problem

Insieme I

Si consideri un insieme $I = \{1, \dots, n\}$ di oggetti aventi dimensioni w_i , d_i e h_i con $i \in I$

insieme J

Si consideri un insieme $J = \{1, \dots, m\}$ di contenitori di uguale dimensione W, D e H.

Diamo per ipotesi $w_i \leq W$, $d_i \leq D$ e $h_i \leq H$.

Obiettivo

Minimizzare il numero di contenitori J che riescano a contenere tutti gli oggetti dell'insieme I.

Strip Packing Problem

Differenze dal precedente problema:

- Numero di contenitori: singolo contenitore;
- Dimensioni: profondità infinita;

Obiettivo

Minimizzare i metri lineari occupati rispetto la profondità del contenitore.