Harnessing Multilingual Models for Ancient Language Processing

Gabriel Stanovsky

Disclaimer: I'm not an Historian / Epigraph / Philologist

- I'm an NLP researcher interested in real-world applications
 - Medicine
 - Law
 - Archeology and ancient languages
- What challenges do they raise?
 - Low resource, extinct languages
- What computational and linguistic observations can we draw?
 - Multilingual and few or zero shot transfer

Large Language Models (LLMs)

- Trained to to predict the next word in naturally occurring texts
 - News reports
 - Blogs
 - Medical texts
- Form the foundation for most NLP models for high-resource languages
 - Text classification, named entity recognition, sentiment analysis, author attribution, dating ...
- These tasks are relevant for ancient language processing

LLMs for Ancient Language Processing?

- LLMs require large scale data, yet ancient language data is limited
- How can we still leverage LLMs?

Agenda: Harnessing Multilingual Signal

- State-of-the-art language modelling in Akkadian (EMNLP 2021)
 - By adding signal from 100 different languages
- Selective language combinations improves performance (NAACL 2022)
 - Mapping the linguistic blood bank
- Speculative recipe for future work
 - Train multilingual LLM with a downstream objective in mind

Agenda: Harnessing Multilingual Signal

- State-of-the-art language modelling in Akkadian
 - By adding signal from 100 different languages
- Selective language combinations improves performance (NAACL 2022)
 - Mapping the linguistic blood bank
- Speculative recipe for future work
 - Train multilingual LLM with a downstream objective in mind

When transcribing ancient tablets found in archeological sites we need to fill in gaps formed in the clay due to erosion over 1000s of years

and how do you know how to fill in those missing parts?

Prof. Nathan Wasserman

The Institute of Archaeology, Hebrew University

Well, we look at the symbols we recognize in the surrounding context, and try to guess the most probable sequence

That sounds awfully familiar...

Data Size: Low-Resource Setting

	# Texts	# Words	# Signs
Akkadian Train	8K	950K	1.8M
Akkadian Test	2K	250K	500K
English Train	7K	950K	_
English Test	2K	250K	

Data Size: Low-Resource Setting (ORACC corpus)

	# Texts	# Words	# Signs
Akkadian Train	8K	950K	1.8M
Akkadian Test	2K	250K	500K
English Train	7K	950K	_
English Test	2K	250K	

PHILBERTA trained on 185M tokens
BERT-base on 3.3B words
ChatGPT on 300B

Digitization

Task Definition

• Input:

```
ša ina É.GAL áš-pur-an-ni nu-uk ÍD-MEŠ lu^{-1}x^{-1} [x]-ru^{*-1}
```

Task Definition

• Input:

ša ina É.GAL áš-pur-an-ni nu-uk ÍD-MEŠ
$$lu^{-1}x^{-1}$$
 [x]- ru^{*-1}

• Assumption: Number of missing signs is estimated by a human editor

Task Definition

• Input:

ša ina É.GAL áš-pur-an-ni nu-uk ÍD-MEŠ
$$lu^{-1}x^{-1}$$
 [x^{-1}]- ru^{*-1}

- Assumption: Number of missing signs is estimated by a human editor
- Output:

LLM Results on Akkadian

Genre	LSTM (Fetaya et al, 2020)	Akkadian Transformer
Royal Inscription	52%	57%
Royal or Monumental	51%	61%
Astrological Report	53%	55%
Lexical	10%	69%
Decree	49%	39%
Overall	52%	50%

LLM Results on Akkadian

Genre	LSTM (Fetaya et al, 2020)	Akkadian Transformer	
Royal Inscription	52%	57%	
Royal or Monumental	51%	61%	
Astrological Report	53%	55%	
Lexical	10%	69%	
Decree	49%	39%	
Overall	52%	50%	

Similar results between transformers and LSTM

Adding Multilingual Signal with Multilingual BERT

Finetune Akkadian together with 100 popular languages from Wikipedia

Genre	LSTM (Fetaya et al, 2020)	Akkadian Transformer	Multilingual Akkadian Transformer
Royal Inscription	52%	57%	83%
Royal or Monumental	51%	61%	84%
Astrological Report	53%	55%	81%
Lexical	10%	69%	69%
Decree	49%	39%	71%
Overall	52%	50%	83%

A Quick Aside: Human Evaluation

Scheme for Manual Evaluation: Desiderata

- Allow for multiple correct predictions
- Account for inherent noise in estimation
- Account for the annotators being non-native Akkadian

Manual Evaluation Scheme

To Inana, spouse **XXX** temple administrator, I dedicated this.

Manual Evaluation Scheme: Behind the Scenes

, your father of Enlil 's of the former of the previous of the first

To Inana, spouse **XXX** temple administrator, I dedicated this.

Manual Evaluation Scheme: Behind the Scenes

To Inana, spouse **XXX** temple administrator, I dedicated this.

Manual Evaluation Results

Manual Evaluation Results

Adding Multilingual Signal with Multilingual BERT

	LSTM (Fetaya et al, 2020)	Akkadian Transformer	Multilingual Akkadian Transformer
Overall	52%	50%	83%

- Adding modern languages to training vastly improves results
 - Producing an Akkadian LLM which can benefit various downstream tasks
- Why is this happening?
 - Perhaps due to related languages in Wikipedia? (Hebrew, Arabic, etc.)
- Can selective language choice further improve results?

Agenda: Harnessing Multilingual Signal

- State-of-the-art language modelling in Akkadian
 - By adding signal from 100 different languages
- Selective language combinations improves performance (NAACL 2022)
 - Mapping the linguistic blood bank
- Speculative recipe for future work
 - Train multilingual LLM with a downstream objective in mind

Zero-Shot Pretraining Language Graph

• We define a *directed* bilingual MLM finetune score:

Performance of a model on t after pretraining on s, t

$$\mathcal{F}(s o t) := rac{arepsilon(M^{s,t},t) - arepsilon(M^t,t)}{arepsilon(M^t,t)}$$

Performance of a monolingual model on t

Zero-Shot Pretraining Language Graph

• We define a *directed* bilingual MLM finetune score:

Performance of a model on t after pretraining on s, t

$$\mathcal{F}(s
ightarrow t) := rac{arepsilon(M^{s,t},t) - arepsilon(M^t,t)}{arepsilon(M^t,t)}$$

Performance of a monolingual model on t

In other words, F measures how much t gains from s

$$\mathcal{F}(\mathsf{fr} o \mathsf{ar}) := rac{arepsilon(23.4\ t) - arepsilon(32.1\ t)}{arepsilon(32.1\ t)}$$

$$\mathcal{F}(\mathrm{fr} o \mathrm{ar}) := rac{arepsilon(1\,23.4\ ,t) - arepsilon(1\,32.1\ t)}{arepsilon(1\,32.1\ t)}$$

$$\mathcal{F}(ext{fr} o ext{cy}) := rac{arepsilon(1 ext{39.9} \ , t) - arepsilon(ext{39.89} \ t)}{arepsilon(ext{39.89} \ t)}$$

$$\mathcal{F}(\mathsf{fr} o \! \mathsf{de}) := rac{arepsilon(M^{\mathsf{fr},t},t) - arepsilon(M^t,t)}{arepsilon(M^t,t)}$$

$$\mathcal{F}(ext{fr} o$$
el $) := rac{arepsilon(M^{ ext{fr},t},t) - arepsilon(M^t,t)}{arepsilon(M^t,t)}$

$$\mathcal{F}(ext{fr} o ext{en}) := rac{arepsilon(M^{ ext{fr},t},t) - arepsilon(M^t,t)}{arepsilon(M^t,t)}$$

$$\mathcal{F}(ext{fr} o$$
fi $) := rac{arepsilon(M^{ ext{fr},t},t) - arepsilon(M^t,t)}{arepsilon(M^t,t)}$

$$\mathcal{F}(\mathsf{fr} o t) := rac{arepsilon(M^{\mathsf{fr},t},t) - arepsilon(M^t,t)}{arepsilon(M^t,t)}$$

$$\mathcal{D}(\mathsf{fr}) := \sum_{\substack{t \in P \ t
eq \mathsf{fr}}} \mathcal{F}(\mathsf{fr} o t)$$

$$\mathcal{D}(l) := \sum_{\substack{t \in P \\ t \neq l}} \mathcal{F}(l \to t)$$

Donation Score

$$\mathcal{F}(\mathsf{fr}\! o t)$$

$$\mathcal{F}(s\,{ o}\mathsf{fr}\,)$$

44

		-1 10	2 \	^	. [,,	٦
		ර [්] හි			0 -2	
8						
8		0 42			2 28	
8			-28		25 -4	
8		12 4			4 -5	
8			-31		7 -5	
(-28	0 5			0 -2	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-27	0 3	0		1 0	15 22 48 1 25 2 7 -4 2 3 16 11 -2 7 12 166 Donation Score
8		-0 6			4 -4	
1/6	Territory.	10 38		30 -		
<i>h</i>			-31		25 15	
ni			-28		25 -2	
M			-15		10 14	
⟨◊⟩		14 48			2 32	
40		12 43			22 28	
kn kn		4 24			22 -4	
100		2 18			16 7	
pins		-0 43			25 29	
(%)			-31		2 -5	
63/		10 4			6 -4	
*		12 6			4 28	
*		9 4			5 27	
\vec{v}	-1	15 50	0 -0	41	1 32	
					201	Recipience Score

	at a	Ю	96	8	e/s	4	К	90	he	γi	hn	ky	1/4	40	km	ne	pms	N	57	10	ve	N		
ø	0	12	6	-3	38	0	-2	1	26	66	44	35	6	11	-3	4	4	-18	11	-16	11	-0		
69	-5	0	42	-5	37	-2	28	17	25	50	39	28	6	9	36	66	3	4	18	2	9	10		
80	-28	-0	0	-28	-4	-25	-4	-1	7	-7	0	-7	1	7	-2	1	1	-17	12	-4	-1	-0		
8	-5	12	41	0	38	-4	-5	20	4	-7	0	-7	13	8	-0	78	-1	3	13	-0	-1	0		
er.	-28	0	0	-31	0	-7	-5	12	1	-7	6	18	0	1	-3	47	0	-8	11	-11	-1	-0		
4	-28	0	51	-7	-2	0	-2	-1	29	60	0	33	6	8	41	71	4	-17	-0	2	10	12		
*	-27	0	31	0	-3	-1	0	15	22	48	1	25	2	7	-4	2	3	16	11	-2	7	12	166	Donation Score
ogo.	-29	-0	6	-28	-2	-4	-4	0	7	-7	43	-18	4	8	35	3	-0	3	16	0	8	10		
46	-5	10	38	-6	30	-25	-2	16	0	51	37	27	5	10	-3	62	3	-18	14	-16	-1	9		
ri	-28	-0	-1	-31	-4	-25	15	-1	1	0	26	-7	-2	2	-3	1	0	-18	-0	-16	5	-0		
m	-12	0	39	-28	-2	-25	-2	13	19	39	0	15	-0	6	-3	1	-1	-2	-0	-15	5	10		
m	-29	-4	-1	-15	-2	-10	14	9	1	-7	29	0	4	2	-1	1	1	-8	6	-8	-2	11		
1/4	2	14	48	1	40	2	32	23	29	70	48	40	0	16	43	83	5	7	20	6	11	13		
40	-29	12	43	-3	34	-22	28	19	25	67	0	34	-1	0	-3	76	4	7	17	-11	-1	-0	2.	
km	-28	4	24	-16	-2	-22	-4	-1	14	37	27	-7	2	1	0	2	1	-4	7	-9	2	5		
46	-22	2	18	-23	14	-16	7	7	9	27	17	-3	1	1	-3	0	0	-13	6	-12	4	-0		
pms	-28	-0	43	-4	33	-25	29	19	1	-7	1	27	0	0	-3	63	0	3		-15	9	1		
4)	-2	0	-1	-31	36	-2	-5	1	7	61	6	37	6	14	42	75	4	0	-3	3	11	11		
84	-16	10	41	-28	33	-6	-4	1	25	30	35	8	0	6	-3	36	6	-7	0	-8	3	6		
10	-3	12	6	-5	-2	-4		19	26	-7		-18		11	37	3	2	4	-3	0	11	10		
16	-29	9	41	-5	36	-5		17	25	51	36	-7	5	12	33	56	2	2	14	1	0	9		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-1	15	50	-0	41	1	32	22	37	67	47	-18	8	15	-3	84	8	-17	17	4	12	0		
							201		Recip	oienc	e Sco	re												

	d	B	9e	8)	el,	41	44	90	he	hi	hn	ky	·\b	40	km	ne	pms	, 47	87	10	10	N	Don.			
8	0	12	6	-3	38	0	-2	1	26	66	44	35	6	11	-3	4	4	-18	11	-16	11	-0	233			
Ю	-5	0	42	-5	37	-2	28	17	25	50	39	28	6	9	36	66	3	4	18	2	9	10	417			
98	-28	-0	0	-28	-4	-25	-4	-1	7	-7	0	-7	1	7	-2	1	1	-17	12	-4	-1	-0	-100			
8	-5	12	41	0	38	-4	-5	20	4	-7	0	-7	13	8	-0	78	-1	3	13	-0	-1	0	199			
®r.	-28	0	0	-31	0	-7	-5	12	1	-7	6	18	0	1	-3	47	0	-8	11	-11	-1	-0	-5			
*	-28	0	51	-7	-2	0	-2	-1	29	60	0	33	6	8	41	71	4	-17	-0	2	10	12	272			
*	-27	7 0	31	0	-3	-1	0	15	22	48	1	25	2	7	-4	2	3	16	11	-2	7	12	166	Donation Sco	re	
8	-29	-0	6	-28	-2	-4	-4	0	7	-7	43	-18	4	8	35	3	-0	3	16	0	8	10	50			
48	-5	10	38	-6	30	-25	-2	16	0	51	37	27	5	10	-3	62	3	-18	14	-16	-1	9	234			
riv /riv	-28	-0	-1	-31	-4	-25	15	-1	1	0	26	-7	-2	2	-3	1	0	-18	-0	-16	5	-0	-86			
KI	-12	2 0	39	-28	-2	-25	-2	13	19	39	0	15	-0	6	-3	1	-1	-2	-0	-15	5	10	57			
M	-29	-4	-1	-15	-2	-10	14	9	1	-7	29	0	4	2	-1	1	1	-8	6	-8	-2	11	-9			
'∳	2	14	48	1	40	2	32	23	29	70	48	40	0	16	43	83	5	7	20	6	11	13	555			
1/0	-29	12		-3		-22	28	19	25	67	0	34	-1	0	-3	76	4	7	17	-11	-1	-0	295			
ku)	-28			-16		-22	-4	-1	14	37	27	-7	2	1	0	2	1	-4	7	-9	2	5	34			
46	-22			-23		-16		7	9	27	17	-3	1	1	-3	0	0	-13		-12	4	-0	19			
pms			43	-4		-25		19	1	-7	1	27	0	0	-3	63	0	3	16	-15	9	1	165			
47	-2		-1	-31	36	-2	- 5	1	7	61	6	37	6	14		75	4	0	-3	3	11	11	271			
81	-16		41	-28		-6	-4	1	25	30	35	8	0	6	-3	36	6	-7	0	-8	3	6	168			
*	-3			-5	-2	-4		19	26	-7	40	-18 -		11	37	3	2	4	-3	0	11	10	171			
10	-29		41	-5	36	-5		17	25	51	36	-7	5	12		56	2	2	14	1	0	9	331			
LT.	-1	15	50	-0	41	1	32	22	37	67	47	-18	8	15	-3	84	8	-17	17	4	12	0	421			
Recipience Score	-38	1 110	566	-296	388	-225	201	227	338	679	482	233	67	154	231	816	50	-100	201	-125	110	130				

		d	Ю	96	8	er.	4	*	go.	he	ri	hn	m	10	40	km	ne	pms	N	67	10	10	N	Don.	
	at	0	12	6	-3	38	0	-2	1	26	66	44	35	6	11	-3	4	4	-18	11	-16	11	-0	233	
	Ko	-5	0	42	-5	37	-2		17	25	50	39	28	6	9	36	66	3	4	18	2	9	10	417	
	96	-28	-0	0	-28	-4	-25	-4	-1	7	-7	0	-7	1	7	-2	1	1	-17	12	-4	-1	-0	-100	\
	8	-5	12		0	38	-4	-5	20	4	-7	0	-7	13	8	-0	78	-1	3	13	-0	-1	0	199	How much a
	eu.	-28	0	0	-31	0	-7	-5	12	1	-7	6	18	0	1	-3	47	0	-8	11	-11	-1	-0	-5	
	4	-28	0	51	-7	-2	0	-2	-1	29	60	0	33	6	8	41	71	4	-17	-0	2	10	12	272	language overall donates to other
	*	-27	0	31	0	-3	-1	0	15	22	48	1	25	2	7	-4	2	3	16	11	-2	7	12	166	
	do	-29	-0	6	-28	-2	-4	-4	0	7	-7	43	-18	4	8	35	3	-0	3	16	0	8	10	50	languages
	1/6	-5	10		-6		-25		16	0	51	37	27	5	10	-3	62	3	-18	14	-16	-1	9	234	
	ri	-28	-0		-31		-25		-1	1	0	26	-7		2	-3	1	0	-18	-0	-16	5	-0	-86	
	hin	-12	0	39	-28		-25	-2	13	19	39	0	15	-0	6	-3	1	-1	-2	-0	-15	5	10	57	
	m	-29	-4	-1	-15	-2	-10	14	9	1	-7	29	0	4	2	-1	1	1	-8	6	-8	-2	11	-9	
	1/4	2	14	48	1	40	2	32	23	29	70	48	40	0	16	43	83	5	7	20	6	11	13	555	
How much a	40	-29	12	43	-3		-22		19	25	67	0	34	-1	0	-3	76	4	7	17	-11	-1	-0	295	
language overall	km	-28		24	-16	-2	-22	-4	-1	14	37	27	-7	2	1	0	2	1	-4	7	-9	2	5	34	
receives from other	V6	-22		18	-23		-16	7	7	9	27	17	-3	1	1	-3	0	0	-13		-12	4	-0	19	
	PMS	-28	-0	43		33	-25	29	19	1	-7	1	27	0	0	-3	63	0	3	16	-15	9	1	165	
languages	47	-2	0		-31	36	-2	-5	1	7	61	6	37	6	14	42	75	4	0	-3	3	11	11	271	
\uparrow	84	-16	10		-28		-6	-4	1	25	30	35	8	0	6	-3	36	6	-7	0	-8	3	6	168	
	10	-3	12		-5	-2	-4		19	26	-7	40	-18		11	37	3	2	4	-3	0	11	10	171	
	10	-29		41	-5	36	-5		17	25		36	-7	5	12		56	2	2	14	1	0	9	331	
	N	-1	15	50	-0	41	1	32	22	37	67	47	-18	8	15	-3	84	8	-17	17	4	12	0	421	
	Recp	38	110	566	-296	388	-225	201	227	338	679	482	233	67	154	231	816	50	-100	201	-125	110	130		

A Linguistic Blood Bank

Pretrain Language Graph

- Interpret this matrix as a weighted adjacency matrix
- Forms a complete, directed, weighted graph

How Language Properties Transfer?

- Shared script leads to overall better transfer
- Shared language family didn't have visible effect

Similar Trends in Downstream Zero-Shot

Recipient languages perform better in NER and POS tagging

	NER [%	$[6F_1]$	POS [%.	$\overline{F_1}$
	Avg. Monolingual	Avg. Zeroshot	Avg. Monolingual	Avg. Zeroshot
Most Recipient (R_h)	50.3 ±.6	18.4 ±.6	64.1 ±.3	28.7±.7
Least Recipient (R_l)	$47.9 \pm .4$	$12.4 \pm .4$	$58.6 \pm .4$	$26.0 \pm .7$

Agenda: Harnessing Multilingual Signal

- State-of-the-art language modelling in Akkadian (EMNLP 2021)
 - By adding signal from 100 different languages
- Selective language combinations improves performance (NAACL 2022)
 - Mapping the linguistic blood bank
- Conclusion and Disucssion: Speculative recipe for future work
 - Train multilingual LLM with a downstream objective in mind

Discussion: When Does Multilingual Signal Help?

- Low resource settings
 - Not enough signal to train monolingual LLM
- Specialized pretraining after massive multilingual pretraining
 - Maybe helps with the curse of multilinguality?
- Careful language selection for downstream tasks?

Conclusion: Recipe for Downstream Applications

- 1. Build a pretraining graph for your target corpus and application
- 2. Augment ancient training data with most donating languages
- 3. Finetune multilingual LLMs on downstream tasks

Conclusion: Recipe for Downstream Applications

- 1. Build a pretraining graph for your target corpus and application
- 2. Augment ancient training data with most donating languages
- 3. Finetune multilingual LLMs on downstream tasks

Thank you!

Metrics

$$Hit@k = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{[rank_i \le k]} \qquad MRR = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{rank_i}$$

I ate [MASK] for lunch.

Chance MRR is 0.0001

$$Hit@1 = 0$$

 $Hit@2 = 1$

MRR=1/**2**

Confound: Unbalanced Corpus Size

mBERT is composed of 104 languages, but is far from balanced

Confound: Unbalanced Corpus Size

mBERT is composed of 104 languages, but is far from balanced

Confound: Unbalanced Corpus Size

mBERT is composed of 104 languages, but is far from balanced

Let's **balance** the pretraining data to get closer to saying something about *language-inherent* properties

A Balanced Pretraining Corpus?

Subsample 10M characters from each language (in consecutive sentences)

A diverse set of 22 languages

Language	Code	Family	Size [M Wiki	chars] Sample
Piedmontese	pms	Indoeuropean	14	10
Irish	ga	Indoeuropean	38	10
Nepali	ne	Indoeuropean	78	10
Welsh	cy	Indoeuropean	85	10
Finnish	fi	Uralic	131	10
Armenian	hy	Indoeuropean	174	10
Burmese	my	Sino-Tibetian	229	10
Hindi	hi	Indoeuropean	473	10
Telugu	te	Dravidian	533	10
Tamil	ta	Dravidian	573	10
Korean	ko	Korean	756	10
Greek	el	Indoeuropean	906	10
Hungarian	hu	Uralic	962	10
Hebrew	he	Afroasiatic	1,261	10
Chinese	zh	Sino-Tibetian	1,546	10
Arabic	ar	Afroasiatic	1,695	10
Slovak	sv	Indoeuropean	1,744	10
Japanese	ja	Japonese	3,288	10
French	fr	Indoeuropean	4,958	10
German	de	Indoeuropean	6,141	10
Russian	ru	Indoeuropean	6,467	10
English	en	Indoeuropean	14,433	10

Caveat: Is the number of characters a good measure?

- Chinese (or Hebrew) may pack more information in a character than English
 - Thus balancing by the number of characters may again skew the results
- Ideally, we would like to balance the data by the information it conveys

Caveat: Is the number of characters a good measure?

- Chinese (or Hebrew) may pack more information in a character than English
 - Thus balancing by the number of characters may again skew the results
- Ideally, we would like to balance the data by the information it conveys.
- Proposal: estimate information by | |tokens| | |unique tokens|

Estimating the Amount of Information

- **Proposal**: estimate information by $\frac{|\text{tokens}|}{|unique \text{ tokens}|}$
 - \circ Our corpus is correlated with this measure (r = 0.73)

We use a single word-piece tokenizer over the entire balanced corpus