TALLER DE MEJORAMIENTO POO Y ARCHIVOS

- 1. Realizar un escrito con sus propias palabras a mano sobre los siguientes temas:
 - a. Bytecodes.
 - b. Objeto. (POO).
 - c. Clase. (POO).
 - d. Programación Orientada a Objetos
 - a. Herencia
 - b. Polimorfismo
 - c. Encapsulamiento
 - d. Abstracción
 - e. Historia y Versiones de Java
 - f. Tipos de datos en Java
 - g. Estructuras de Control en Java
 - h. Métodos y parámetros
 - i. Constructores
 - j. Modificadores de Acceso en atributos y clases
- 2. Realice dos ejemplos de Herencia, Composición, Agregación, Encapsulamiento, métodos con parámetros y constructores en Java.
- 3. Generar la aplicación funcional correspondiente al siguiente caso planteado, haciendo uso del lenguaje JAVA con uso de interfaz gráfica y manejo de archivos:

Desarrollar una aplicación de escritorio basada en formularios que permita a los desarrolladores definir las fases de un proyecto y registrar los defectos encontrados en ellas con el fin de generar información que permita evaluar la calidad de su proceso de desarrollo, teniendo en cuenta los siguientes requerimientos:

- 1. El sistema debe tener implementada seguridad de acceso mediante usuario y contraseña. Teniendo en cuenta que un usuario invitado no necesitará de clave de acceso para consultar información.
- 2. El sistema debe permitir crear, actualizar y eliminar proyectos, especificando para cada uno, el código, nombre, descripción, ambiente de ejecución (1-consola, 2-escritorio, 3-web, 4-móviles), fecha de inicio y el número de fases.
- 3. El sistema debe permitir crear fases, especificando en cada una, su código y nombre, para ser asignadas a nuevos proyectos cuando estas fases no existan previamente.
- 4. El sistema debe permitir asignar las fases de acuerdo al número de fases establecidas en el proyecto, mostrando para su selección las diferentes fases que hayan sido registradas.
- 5. El sistema debe permitir registrar los defectos encontrados durante el desarrollo de un proyecto en una determinada fase, almacenando, una identificación, descripción y tiempo empleado para corregir el defecto encontrado (en minutos).
- 6. El sistema debe permitir seleccionar un proyecto mostrando la información general, presentando, el nombre y la descripción del proyecto, los nombres de cada fase con su respectiva cantidad de defectos encontrados y tiempo total en corrección de defectos de la fase, la cantidad total de defectos encontrados en el proyecto y el tiempo total dedicado a la corrección de defectos en el proyecto.
- 7. El sistema debe mostrar la información detallada de una determinada fase en un proyecto, presentando, el nombre de la fase y cada uno de los defectos registrados en esa fase con su respectivo identificador, descripción y tiempo requerido para la corrección del defecto.

8. El sistema debe calcular y mostrar la tasa de corrección de defectos por cada fase, la cual debe estar expresada en número de defectos corregidos por hora de corrección e indicar cuál es la fase más eficiente.

Ejemplo de Cómo mostrar la información:

a. Ver la información pertinente en la siguiente tabla

PROYECTO	FASE	DEFECTO	Tiempo /minutos
KUMMA	Análisis	Defecto 1	20
SENASORD	Análisis	Defecto 2	40
KUMMA	Diseño	Defecto 1	10
SENASORD	Diseño	Defecto 2	30
KUMMA	Desarrollo	Defecto 1	20
SENASORD	Desarrollo	Defecto 2	30

Fase	Total Defectos	Total tiempo/min.	Errores corregidos por hora
Análisis	2	60	2
Diseño	2	40	3
Desarrollo	2	50	2,4

La fase de diseño es la más eficiente con 3 errores corregidos por hora