Assignment 0x03

Frank Kaiser – 1742945, Jan Martin – 1796943

December 17, 2017

Contents

1	Task 1: Number Theory and Algebra				
	1.1	Explain why the integers Z form a ring, and the rationals Q form			
		a field	2		
	1.2	Find the inverses of all elements in \mathbb{Z}_7^* . Why do all numbers			
		between 1 and 6 have an inverse?	2		
	1.3	As an exercise, calculate the inverse of 331 in Z_{1234} using the			
		extended euclidean algorithm	2		
	1.4	Find all generators of Z_{11}	3		
	1.5	Calculate 42^{497} in Z_{1361} using fast exponentiation and a handheld			
		calculator (not the one running on your computer or a program-			
		ming language). Document a, e and n for each step	3		
2	Tas	k 2: The RSA cryptosystem	6		
	2.1	Using that private key, decrypt c	6		
	2.2	Did Donald choose reasonable parameters? Explain!	6		
	2.3	Find a value of e for which RSA encryption is the identity function	6		

1 Task 1: Number Theory and Algebra

1.1 Explain why the integers Z form a ring, and the rationals Q form a field.

A ring is a set R with two operations "+" and "*". (R,+) is an abelian group, that means it is associative, commutative and has a neutral and inverse element. (R,*) is a monoid, that means it is associative and has a neutral element. Lastly multiplication is distributive with respect to addition. If all axioms hold, a set is a ring. And they hold for Z.

A field is a ring but with the special case that (R

 $\{0\}$, *) is an abelian group. Meaning that associativity and commutativity hold for all elements except 0 and that there also exists a neutral and inverse element for every element of the field.

1.2 Find the inverses of all elements in \mathbb{Z}_7^* . Why do all numbers between 1 and 6 have an inverse?

```
Z_7^*=1,2,3,4,5,6
A number is an inverse, if number mod inverse = 1 (the neutral element)
Number: 1 2 3 4 5 6
Inverse: 1 4 5 2 3 6
```

If n is a prime, then all numbers between 1 and n-1 have an inverse with the modulo-Operation. This is due to n not being a multiple of any of the elements in the set.

1.3 As an exercise, calculate the inverse of 331 in Z_{1234} using the extended euclidean algorithm.

```
GCD = 1, if Rest is 0 in the end

1234 == 3 * 331 + 241

331 == 1 * 241 + 90

241 == 2 * 90 + 61

90 == 1 * 61 + 29

61 == 2 * 29 + 3

29 == 9 * 3 + 2

3 == 1 * 2 + 1

2 == 2 * 1 + 0
```

Applying the algorithm:

```
Tappying the algorithm:

1 == 3 - 1 * 2
1 == 3 - (29 - 9 * 3)
1 == 10 * 3 - 1 * 29
1 == 10 * (61 - 2 * 29) - 1 * 29
1 == 10 * 61 - 21 * 29
1 == 10 * 61 - 21 * (90 - 1 * 61)
```

```
\begin{split} 1 &== 31*61 - 21*90 \\ 1 &== 31*(241 - 2*90) - 21*90 \\ 1 &== 31*241 - 83*90 \\ 1 &== 31*241 - 83*(331 - 241*1) \\ 1 &== 114*241 - 83*331 \\ 1 &== 114*(1234 - 3*331) - 83*331 \\ 1 &== 114*1234 - 425*331 \end{split} Inverse of 331 is -425. Since it is not in Z we add 1234 to it until it is: -425 + 1234 = 809 => 809 is the inverse of 331 in canonical form. Test: 331*809 = 267779
```

1.4 Find all generators of Z_{11}

So the calculations are correct.

	1	2	3	4	5	6	7	8	9	10	
1	1	1	1	1	1	1	1	1	1	1	
2	2	4	8	5	10	9	7	3	6	1	TRUE
3	3	9	5	4	1	3	9	5	4	1	FALSE
4	4	5	9	3	1	4	5	9	3	1	FALSE
5	5	3	4	9	1	5	3	4	9	1	FALSE
6	6	3	7	9	10	5	8	4	2	1	TRUE
7	7	5	2	3	10	4	6	9	8	1	TRUE
8	8	9	6	4	10	3	2	5	7	1	TRUE
9	9	4	3	5	1	9	4	3	5	1	FALSE
10	10	1	10	1	10	1	10	1	10	1	TRUE

ExcelFormula = MOD((linke Spalte Obere Zeile);11) The marked lines (2, 6, 7, 8) are generators.

1.5 Calculate 42^{497} in Z_{1361} using fast exponentiation and a handheld calculator (not the one running on your computer or a programming language). Document a, e and n for each step.

```
Fastexp(a=42, n=497)
1st Iteration:
e = 1
n is odd:
e = (42 * 1) \mod 1361 = 42
a = 42 \mod 1361 = 1764 \mod 1361 = 403
n = 497 / 2 = 248
2):
e = 42
n is even:
```

```
a = 403 \mod 1361 = 450
n = n/2 = 124
   3)
   e = 42
n is even:
a = 450 \mod 1361 = 1072
n = 124 / 2 = 62
   4)
   e = 42
n is even:
a = 1072 \mod 1361 = 500
n = 62 \ / 2 = 31
   5)
   e = 42
n is odd:
e = (500 * 42) \mod 1361 = 585
a = 500 \mod 1361 = 937
n = 31 / 2 = 15
   6)
   e = 1072
n is odd:
e = (937 * 585) \mod 1361 = 1023
a = 937 \mod 1361 = 124
n = 15 / 2 = 7
   7)
   e = 46
n is odd:
e = (124 * 1023) \mod 1361 = 279
a = 124 \mod 1361 = 405
n = 7 / 2 = 3
   8)
   e = 260
n is odd:
e = (405*279) \mod 1361 = 32
a = 405 \mod 1361 = 705
```

$$n=3\ /\ 2=1$$

9)

$$e = 503$$

n is odd:

 $e = (705*32) \mod 1361 = 784$

 $a = 705 \mod 1361 = 260$

n = 1 / 2 = 0

10)

n = 0 = > return e = 784

 $=>42497 \mod 1361=784$

2 Task 2: The RSA cryptosystem

2.1 Using that private key, decrypt c

$$PHI(n) = (p-1)(q-1) = (17-1) * (23-1) = 16 * 22 = 352$$

$$e = 17; Z_{352}^*$$

(e * d) mod $352 = 1$

Using Excel we found the inverse using the formula above: d = 145

$$\mathbf{m} = c^d \text{ mod } \mathbf{n} = 282^{145} \text{ mod } 391 = 197$$

2.2 Did Donald choose reasonable parameters? Explain!

When e = 1, the message itself is encrypted just by applying the modulo with the public Key part N. Resulting in $c = m \mod N$, which means that if m is smaller than N, the encrypted message is just the plain message => c = m

2.3 Find a value of e for which RSA encryption is the identity function