PHIMECA

... solutions for robust engineering

Bayesian updating for degradation prediction 20 Juin 2014

Rodrigue DECATOIRE

Phimeca Engineering

- Introduction
- Bayesian updating with Open TURNS
 - Methodology
 - Markov Chain Monte Carlo
- Illustration
- Pros and Cons

Introduction

Civil engineering background

- A lot of structures and infrastructures in reinforced concrete built in the post-war years;
- Victims of important pathologies, such as carbonation (penetration of carbon dioxide);
- Costly maintenance and repair actions.

Objectives

- Identify parameters of degradation models based on the results of an inspection
- Updating those parameters at the next inspection in order to improve the predictions made with the models
- In order to reduce the operating costs of the concerned structures and infrastructures

Bayesian updating with Open TURNS

Methodology

 Let discrepancy between the measures of the model outputs and the model predictions be modelled by a centered gaussian distribution

$$\mathbf{E} = \{e(z_p, t_q), p = (1, \dots, P); (q = 1 \dots, Q)\}$$

 We can explain the measures as a combination of the model predictions and of the model/measurement errors:

$$y(z_p, t_q) = M(X, t) + e(z_p, t_q)$$

- The inputs vector *X* is composed of:
 - The vector X^{nobs} of the inputs which are not measured
 - The vector X^{obs} of the inputs which are measured, with their own measurement error modelled by a centered normal distribution such as:

$$X^{obs} \sim \{N(x^{obs}(z_p, t_q), \sigma^{obs}), p = (1, \dots, P); (q = 1 \dots, Q)\}$$

Under those assumptions, the likelihood of the observations writes:

$$L\left(\sigma_{e}, Y^{obs}\right) = \prod_{p=1}^{P} \prod_{q=1}^{Q} \varphi\left(\frac{M\left[x^{obs}(z_{p}, t_{q}), x^{nobs}, t_{q}\right] - y(z_{p}, t_{q})}{\sigma_{e}}\right)$$

• Finally, the posterior distribution for the inputs which are not observed follows:

$$\left[f_{\boldsymbol{X^{nobs}},\sigma}(\boldsymbol{x},\sigma) = \frac{1}{c}p_{\boldsymbol{X^{nobs}}}(\boldsymbol{x^{nobs}})p_{\sigma}(\sigma)L\left(\sigma_{e},\boldsymbol{Y^{obs}}\right)\right]$$

Bayesian updating with Open TURNS

Markov Chain Monte Carlo (MCMC)

- In practice, the computation of the constant c can be cumbersome;
- With the MCMC algorithm, sample of the posterior distribution are computed without computing this constant.

- 1. $x = x_{t-1}$ candidate \tilde{x} generated by an instrumental distribution $q(\tilde{x}|x_t)$
- 2. Evaluation of $\alpha = min\left(1, \frac{f_{\boldsymbol{X^{nobs}}, \sigma}(\tilde{x}, \sigma)q(x_t|\tilde{x})}{f_{\boldsymbol{X^{nobs}}, \sigma}(\tilde{x}, \sigma)q(\tilde{x}|x_t)}\right)$
- 3. $x_t = \tilde{x}$ with a probability of acceptance α and $x_t = x_{t-1}$ a probability of rejection $1 - \alpha$

Metropolis-Hastings

A simple degradation model

Carbonation depth

$$\begin{cases} d(t) = A(t-t_0)^n & \text{for } t > t0; \\ d(t) = 0 & \text{otherwise.} \end{cases}$$

Variables

$$\begin{cases} A \sim U(1 \times 10^{-9}, 1 \times 10^{-3}) \\ n \sim U(0.5, 1) \\ \sigma_e \sim U(1 \times 10^{-12}, 1) \\ t_0 = 1 \text{ year} \end{cases}$$

- Observations: 150 observations available at 4 different dates, simulated by a finite element model
- Bayesian updating with
 - Open TURNS
 - PyMC (Python Monte Carlo) module dedicated to bayesian analysis

Markov Chain

500,000 simulations, (50,000 for the Burn In period, thinning is equal to
5)

Proposal distributions

Gaussian distributions with standard deviation

$$\begin{cases} \sigma_A^{proposal^{(i)}} &= 2.5 * \sigma_A * c_A^{(i)} \\ \sigma_{t_0}^{proposal^{(i)}} &= 2.5 * \sigma_{t_0} * c_{t_0}^{(i)} \\ \sigma_n^{proposal^{(i)}} &= 2.5 * \sigma_n * c_n^{(i)} \\ \sigma_{\sigma_e}^{proposal^{(i)}} &= 1 \times 10^{-3} * \sigma_{\sigma_e} * c_{\sigma_e}^{(i)} \end{cases}$$

- At the (i)-th tuning step of the distributions
- Tuning of the distributions

$$\begin{cases} c_{\bullet}^{(0)} = 1 \\ c_{\bullet}^{(i)} = c_{\bullet}^{(i-1)} & \text{if } 0.15 < a_{r_{\bullet}}^{(i)} < 0.2 \\ c_{\bullet}^{(i)} = 0.1 * c_{\bullet}^{(i-1)} & \text{if } a_{r_{\bullet}}^{(i)} < 0.15 \\ c_{\bullet}^{(i)} = 10 * c_{\bullet}^{(i-1)} & \text{if } a_{r_{\bullet}}^{(i)} > 0.2 \end{cases}$$

- With $a_{r_{\bullet}}^{(i)}$ the acceptance rate of the random variable
- The proposal distributions are tuned every 10,000 simulations

© Phimeca Engineering

Results

- The prediction quality is increased
- •Despite the difference in the posterior, the updated predictions are equivalent

Pros and Cons

Behind the scene...

- Open TURNS beneficiates from its large application field, this is appreciable
- The possibility to tune the proposal density differently following range of the acceptance rate (as PyMC does it) is missing
- As well as the capacity to stop and resume the simulations
- However the choice of the proposal density appears to be much easier (only two distributions are available for that in PyMC)
- Yet, the computational time of PyMC is faster in this case(4h30 minutes against 5h20 for Open TURNS)
 - Coming from the use of multiple OpenTURNS Python functions?

OT Users Day