Assignment #2 (Group Assignment)

Solve a prediction problem using an unsupervised learning method. Work in groups of 4-5. Have ONE person from your group submit the following: problem statement, approach, summary of findings/recommendation, data, visualizations, model/code, output. Make sure to include the group name and names of all group members. You can source the data from here (the link will open in new window):

https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning

You are expected to submit at the due date. Sunday, 3 November 2019, 11:55 PM

- 1) R Markdown
- 2) Deployed Shiny app link
- 3) Shiny app code + data used

Assignment Rubric: https://learn.continue.yorku.ca/pluginfile.php/282419/mod_page/content/4/Rubric%20for%20Assignments.pdf

Rubric for Assignments # 1 and # 2

ML 1000

Assessment Criteria	Not Good Enough (0≤ score <2)	Good (3≤ score <4)	Very Good (score 5)
Interpretation of Data (qualitative)	Little or no attempt to interpret data; or there are significant errors; or some data are over- or under-interpreted.	Interpret most data correctly; part of conclusions may be suspect; suggestions on future implementation are sound.	Data are completely and appropriately interpreted; there is no over- or under-interpretation; draw convincing conclusions.
Analysis (quantitative)	Methods are completely misapplied or applied but with significant errors or omissions. Choose inappropriate methods and make wrong predictions.	Most statistical methods are correctly applied but more could have been done with the data. Predictions are sensible but may deviate from the true results in a large range.	Statistical methods are fully and correctly applied; demonstrate superior data analysis skills; deeply mine the data and obtain useful insights for decision making.
Critical evaluation of findings;	Blindly accept defective results; or recognize defective results but does not know how to fix them.	Recognize defective results and figure out the causes; understand the main sources of errors.	Show deep understanding for the sources of errors; recognize defective results and eliminates the causes.
Ability to draw proper conclusions and make effective suggestions	No drawn conclusions; draw incorrect conclusions; suggestions are not acceptable.	Draw correct conclusion; suggestions may have potential impact on the future business.	Demonstrate substantial understanding of the problem; conduct deep data analytics using correct methods; draw correct conclusions with sufficient explanation and elaboration.
Writing	Report is inadequately written and poorly organized. Analysis is insufficient. Conclusions are unconvincing.	Report is concise and clearly written. Analyze problems following scientific strategies; provide useful suggestions with detailed explanation.	Report is well organized and insightfully written, includes thorough and thoughtful details. Conclusions are convincing.

CRoss Industry Standardized Procedure for Data Mining:

Phases

Determine Business ObjectivesBackground
Business Objectives
Business Success Criteria (Log and Report Process)

Assess Situation Inventory of Resources, Requirements, Assumptions, and Constraints Risks and Contingencies Terminology Costs and Benefits (Log and Report Process)

Determine Data Mining

Goals
Data Mining Goals
Data Mining Success Criteria
(Log and Report Process)

Produce Project Plan

Project Plan Initial Assessment of Tools and Techniques (Log and Report Process)

Collect Initial Data

Initial Data Collection Report (Log and Report Process)

Describe Data Data Description Report (Log and Report Process)

Explore Data
Data Exploration Report
(Log and Report Process)

Verify Data Quality Data Quality Report (Log and Report Process)

Data Set Description (Log and Report Process)

Select Data Rationale for Inclusion/ Exclusion (Log and Report Process)

Clean Data

Data Cleaning Report (Log and Report Process)

Derived Attributes

Generated Records (Log and Report Process)

Integrate Data

(Log and Report Process)

Format Data Reformatted Data (Log and Report Process)

Select Modeling

Technique Modeling Technique Modeling Assumptions (Log and Report Process)

Generate Test Design Test Design (Log and Report Process)

Build Model Parameter Settings
Models
Model Description
(Log and Report Process)

Assess Model

Model Assessment Revised Parameter (Log and Report Process)

Evaluate Results

Align Assessment of Data Mining Results with Business Success Criteria (Log and Report Process)

Approved Models Review Process Review of Process (Log and Report Process)

Determine Next Steps List of Possible Actions Decision (Log and Report Process)

Plan Deployment

Deployment Plan (Log and Report Process)

Monitoring and Maintenance Plan (Log and Report Process)

Produce Final Report

Final Report
Final Presentation
(Log and Report Process)

Review Project

(Log and Report Process)

Generic Tasks

Specialized Tasks (Process Instances)

a visual guide to CRISP-DM methodology

SOURCE CRISP-DM 1.0

http://www.crisp-dm.org/download.htm

Nicole Leaper DESIGN

http://www.nicoleleaper.com

