Máster Universitario en Nuevas Tecnologías en Informática

Asignatura "Visión Artificial"

Geometría Proyectiva I

Formación de imágenes Modelo lineal de cámara Calibración extrínseca/intrínseca Rectificación de planos

> Facultad de Informática Universidad de Murcia Curso 2018/19

Introducción a la geometría proyectiva

Objetivos principales:

- Extracción de "estructura espacial del mundo" a partir de una (monocular reconstruction) o múltiples imágenes (SfM, Structure From Motion).
- También, subsidiariamente, la posición de la cámara respecto a la escena.
- Operar en ambientes progresivamente más difíciles (sin landmarks, parcialmente no estructurados, etc.)
- En algún sentido, problema inverso a los gráficos 3D por computador.
- "Biblia" de la geometría proyectiva: [Hartley & Zisserman 2003].

Reconstrucción 3D

• Ejemplo de reconstrucción monocular:

Imagen original

Extracción y clasificación de *features* (segmentos, con segmentos de separación de planos resaltados)

Reconstrucción tridimensional

Reconstrucción estéreo

• Ejemplo de reconstrucción a partir de dos vistas:

Imagen izquierda

Imagen derecha

Reconstrucción "sparse" (sólo features)

Ejemplo de reconstrucción densa (mapa de profundidad)

Posición (pose) de las cámaras

Estéreo activo

- Ejemplos de reconstrucción con luz estructurada:
 - Idea subyacente en la Kinect de XBOX, sólo que con luz infraroja (no visible).

Secuencias de vídeo

 Ejemplo de reconstrucción a partir de secuencias de vídeo:

Secuencia de vídeo

El matching de features entre imágenes es más sencillo, al conocerse la secuencia temporal de las mismas (se puede hacer tracking continuo)

Múltiples vistas

 Ejemplo de reconstrucción a partir de múltiples vistas:

Colección de fotos "desestructurada"

Reconstrucción tridimensional y *poses* de las cámaras

Realidad aumentada

- Ejemplo de realidad aumentada utilizando patrones (landmarks):
 - Implica cálculo de pose cámara escena

Formación de las imágenes

- Modelo de cámara tipo pinhole:
 - Cada punto 3D de la escena genera un rayo a través del centro óptico de la cámara, que intersecta al plano de imagen en un punto 2D proyectado.

Rayos a través de agujero muy pequeño

Lente (idéntico efecto, pero consigue más luz)

Surgen temas de enfoque, profundidad de campo, etc.

Transformación perspectiva

- Una cámara queda determinada por las posiciones de su centro óptico C y su plano de imagen π .
- El plano π está a una distancia (focal) f de C.

 La cámara mira en la dirección perpendicular desde C hasta π, y dicha dirección corta a π en el llamado punto principal.

Ecuaciones de perspectiva (I)

 Si C estuviese en el origen (0,0,0), y la cámara apuntase simplemente en la dirección del eje Z:

 Como un escalado de coordenadas, pero con factor inversamente proporcional a la distancia perpendicular al

Coordenadas 3D

plano de imagen:

Ecuaciones de perspectiva (II)

- A pesar de la no linealidad de la división por Z, la mayor parte de las técnicas que usaremos estarán basadas simplemente en el álgebra lineal.
- Truco: coordenadas homogéneas:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Coordenadas de imagen homogéneas

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

$$(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Coordenadas de escena homogéneas

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Ecuaciones de perspectiva (III)

 El truco de expresar los puntos 2D y 3D con coordenadas homogéneas permite expresar las traslaciones y transformaciones de perspectiva de forma lineal (las rotaciones y escalados ya lo son):

Simple multiplicación matriz-vector

$$T = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad R = \begin{bmatrix} R_{3 \times 3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad S = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Traslación

Rotación

Escalado

Proyección 3D → 2D

Ejemplo de proyección con focal
$$f$$
:
$$\begin{bmatrix}
f & x \\
f & y \\
z
\end{bmatrix} = \begin{bmatrix}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}$$
Transformación homogénea
$$\begin{bmatrix}
f & \frac{X}{z} \\
z \\
f & \frac{Y}{z}
\end{bmatrix}$$

$$\begin{array}{c|c}
f \frac{x}{z} \\
f \frac{y}{z}
\end{array}$$

Modelo lineal de cámara (I)

Parámetros extrínsecos:

- La posición $C=(C_x, C_y, C_z)$ del centro de la cámara.
- La rotación tridimensional R (matriz ortogonal 3x3, e.d., siempre cumple que $R \cdot R^T = I$) entre sistema de coordenadas de la cámara y el de la escena.
- Éste último es en cierto sentido arbitrario (ej. sistema mundo vs. sistema robot):

 $C \rightarrow 3$ grados de libertad

R → 3 grados de libertad (aunque hay 9 elementos en R, sólo 3 ángulos -pan,tilt,roll- la determinan completamente)

⇒ 6 gdl en total para posición de la cámara (parám. extrínsecos)

Modelo lineal de cámara (II)

- Parámetros intrínsecos:
 - Dependen únicamente de la cámara (no de su posición)
 - Modelan la transformación rayos del mundo ↔ píxeles de imagen

Coordenadas de plano de imagen

$$K = \begin{bmatrix} f & s & o_x \\ 0 & fr & o_y \\ 0 & 0 & 1 \end{bmatrix}$$

Modelo lineal de cámara (III)

Parámetros intrínsecos (cont.):

Matriz (triangular superior) de parámetros intrínsecos

Focal efectiva (distancia de C a π , en unidades de píxel)

 $K = \begin{bmatrix} f & s & o_x \\ 0 & fr & o_y \\ 0 & 0 & 1 \end{bmatrix}$

Aspect ratio (admite posibilidad de píxel rectangular)

Sesgo, o *skew* (admite posibilidad de píxeles no rectangulares)

Punto principal

5 gdl en total para parámetros Intrínsecos de la cámara.

Normalmente se asume s=0, r=1 e incluso $o_x = o_y = 0$, con lo que pueden Quedar reducidos a un sólo gdl(f).

Modelo lineal de cámara (IV)

- Parámetros intrínsecos (cont.):
 - Simplificación progresiva de modelos de cámara:

Cámara como medidor de ángulos

Usando la inversa de la matriz K:

 Esto permite hacernos una idea del valor aproximado de f midiendo el tamaño en píxeles para un objeto de un tamaño angular conocido (p.e. la Luna = 0.54° vista desde la Tierra). 18

Matriz de cámara

 Se obtiene combinando los parámetros extrínsecos dados por R y C (6 gdl) y los intrínsecos dados por K (5 gdl):

$$\underbrace{M = KR[I| - C]}_{3\text{x4}} = K[R|t]^{3\text{x1}} = -RC \\ = K[R|t]^{3\text{x3}} = K[R|t]^{$$

- Las coordenadas homogéneas permiten expresar M como un simple producto de matrices.
- M tiene un total de 6+5=11 gdl (3x4=12, al que le quitamos 1 por la homogeneidad de la propia M).
- El *espacio nulo* de *M* coincide con el centro óptico:

$$MC = 0$$
 $C = (C,1) 4x1$ (centro óptico homogéneo)

Propiedades de la proyección

- Los puntos se proyectan a puntos, las líneas a líneas.
- NO se preservan los ángulos.
- Las líneas paralelas se cortan en sus *puntos de fuga*.
- La matriz de proyección P(3x4) tiene 11 gdl (no 12) → es una magnitud ² homogénea (escalarla globalmente NO afecta a su comportamiento).

Distorsión radial

 Afecta a la aproximación anterior (las rectas ya no se proyectan como tales):

Especialmente apreciable en objetivos gran angular (ej. *fisheye*)

• Se deshace matemáticamente de forma previa:

Calibración (I)

Problema:

- Dadas coordenadas de puntos 3D conocidos, y sus correspondientes proyecciones 2D, estimar la matriz M.
- A partir de M se puede:
 - Realizar realidad aumentada
 - Estimar la posición (pose) de la cámara
 - Estimar los parám. intrínsecos de la cámara (calib. intrínseca)

Calibración (II)

- Cada correspondencia 3D→2D genera 2 ecuaciones:
 - Puesto que hay 11 gdl en M → necesarios un mínimo de 5½ (normalmente se usan 6).
 - Se pueden usar más y resolver por mínimos cuadrados.
- Ejemplo:

Coords 3D Coords 2D (unids. = 4x53 mm) (unids. píxel)

$$\begin{pmatrix} x & y & z \\ 0 & 2 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} p & q \\ -123 & 2 \\ -107 & -47 \\ -87 & -117 \\ -81 & 89 \\ -57 & 51 \\ -23 & -5 \\ 58 \\ 40 & 18 \\ 91 & -40 \end{pmatrix}$$

Calibración (III)

- Cada correspondencia (x,y,z) ↔ (p,q) impone la restricción $M(x,y,z,1) = \lambda(p,q,1)$ (λ , desconocida, viene de la igualdad homogénea).
- Eso implica que $(p,q,1) \times M(x,y,z,1) = \mathbf{0}$ (puesto que ambos vectores han de ser paralelos). Así se elimina λ .
- La igualdad vectorial anterior genera en realidad tres igualdades (de las que en realidad sólo 2 son linealmente independientes, pero suelen usarse las 3 por estabilidad numérica).
- Los coeficientes resultantes para el sistema de ecuaciones lineales homogéneo resultante en $M_{11}...M_{34} = m_{1}...m_{12}$ son:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & -x & -y & -z & -1 & qx & qy & qz & q \\ x & y & z & 1 & 0 & 0 & 0 & 0 & -px & -py & -pz & -p \\ -qx & -qy & -qz & -q & px & py & pz & p & 0 & 0 & 0 \end{bmatrix}$$

Calibración (IV)

- Para nuestro ejemplo, la matriz de coeficientes (A) del sistema homogéneo completo (usando las 9 correspondencias disponibles) sería:
 - (Se muestran sólo las líneas correspondientes a las correspondencias 1, 2 y 9):

Donde los m_i son los 12 coeficientes de la M buscada.

Calibración (V)

- En este caso, el procedimiento de mínimos cuadrados para resolver Ax=b habitual que usa la pseudoinversa de la matriz de coeficientes $(x=A+b=(A^TA)-1A^Tb)$ no funcionaría, puesto que b=0 produciría la solución trivial x=0.
- En su lugar, se usa como solución el vector propio correspondiente al menor valor propio de la matriz (A^TA), que es simétrica y definida positiva ...
- ...o, alternativamente, el <u>vector fila derecho</u> <u>correspondiente al menor valor singular</u> de la SVD de la matriz A.
- Ambas soluciones son naturalmente equivalentes.

Calibración (VI)

• En nuestro caso, se obtiene un vector $(m_1,...,m_{12})$ que, convenientemente reescalado para que m_{12} valga 1 (eliminando factor de homogeneidad):

$$M = \begin{pmatrix} 123.088 & -46.516 & 72.955 & -23.079 \\ -39.263 & 66.110 & 124.601 & -4.405 \\ 0.097 & 0.217 & -0.107 & 1 \end{pmatrix}$$

 Con dicha M ya podemos reproyectar objetos virtuales con las coordenadas 3D que se deseen (realidad aumentada):

Identificación de parámetros

- Una vez tenemos la matriz de cámara M, podemos factorizarla adecuadamente para obtener su posición (dada por R y C) y su matriz de intrínsecos K.
- Para ello, se usa la descomposición RQ, que descompone una matriz cuadrada 3x3 en forma de un producto de una matriz triangular superior R por una rotación Q (¡OJO con la notación cambiada aquí para R!).
- La factorización resultante para la submatriz 3x3 izquierda del ejemplo anterior resulta en las dos matrices K y R siguientes:

$$K = \begin{bmatrix} 569.96 & 24.83 & -86.78 \\ 0 & 560.13 & -40.18 \\ 0 & 0 & 1.00 \end{bmatrix} \quad R = \begin{bmatrix} -0.90 & 0.21 & -0.39 \\ 0.24 & -0.51 & -0.82 \\ -0.37 & -0.83 & 0.41 \end{bmatrix}$$

 Finalmente, C puede obtenerse como el espacio nulo de M (último vector singular derecho de su SVD):

Último vector singular (espacio nulo): Transformación homogénea:

Detalles de implementación

- Lo anterior es el esquema básico del procedimiento...
- ... pero hay una serie de <u>detalles importantes</u> que han de tratarse para obtener un algoritmo robusto:
 - Normalización de puntos 2D/3D de entrada
 - Para evitar problemas numéricos derivados de la presencia de valores de magnitudes muy diferentes en la matriz de coeficientes A.
 - Detalles de la descomposición RQ
 - La descomposición no es única (puede haber cambios de signo) → compensar.
 - Hay que forzar a que K (R en descomposición RQ) sea de diagonal positiva y con 1 en K₃₃.
 - Finalmente, si la rotación Q queda con determinante -1 cambiamos de signo para que sea una rotación sin "reflexión".

Normalización (I)

 Se pretransforman tanto los puntos de entrada 2D como los 3D con las siguientes matrices:

$$T_{2D} = \begin{pmatrix} 1/scale_{2D} & 0 & 0 \\ 0 & 1/scale_{2D} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -mean_x \\ 0 & 1 & -mean_y \\ 0 & 0 & 1 \end{pmatrix}$$
 Centroide de los puntos 2D/3D
$$T_{3D} = \begin{pmatrix} 1/scale_{3D} & 0 & 0 & 0 \\ 0 & 1/scale_{3D} & 0 & 0 \\ 0 & 0 & 1/scale_{3D} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & -mean_x \\ 0 & 1 & 0 & -mean_x \\ 0 & 1 & 0 & -mean_x \\ 0 & 0 & 1 & -mean_x \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 Con esto conseguimos centrarlos en torno al origen, y darles distancias a éste en torno a la unidad.

Normalización (II)

• En nuestro caso, quedan las siguientes matrices y puntos 2D/3D transformados:

$$T_{2D} = \begin{pmatrix} 0.0119839 & 0. & 0.455389 \\ 0. & 0.0119839 & -0.0119839 \\ 0. & 0. & 1. \end{pmatrix} \quad \underbrace{\text{Puntos 2D}}_{-10} \quad \underbrace{\text{Puntos 2D}}_{-10} \quad \underbrace{\text{Puntos 3D}}_{-10} \quad \underbrace{\text{Puntos 3D}$$

Normalización (III)

- Usando las coordenadas normalizadas resultantes, la matriz A resultante tiene (por construcción) valores en torno a la unidad en valor absoluto → mejor condicionamiento numérico.
- La nueva matriz M' estimada, de todos modos, obviamente será distinta, puesto que mapea de coordenadas 3D a 2D normalizadas:

$$M' = \begin{pmatrix} 0.53875 & -0.162184 & 0.293538 & -0.0170632 \\ -0.164671 & 0.281249 & 0.529741 & 0.0242336 \\ 0.0359944 & 0.0773735 & -0.0395086 & 0.448012 \end{pmatrix}$$

Normalización (IV)

Por ello, es necesaria una "denormalización" final:

$$M = T_{2D}^{-1} \cdot M \cdot T_{3D}$$

$$= \begin{pmatrix} 83.4452 & 0. & -38. \\ 0. & 83.4452 & 1. \\ 0. & 0. & 1. \end{pmatrix} \cdot \begin{pmatrix} 0.53875 & -0.162184 & 0.293538 & -0.0170632 \\ -0.164671 & 0.281249 & 0.529741 & 0.0242336 \\ 0.0359944 & 0.0773735 & -0.0395086 & 0.448012 \end{pmatrix} \cdot \begin{pmatrix} 0.98231 & 0. & 0. & -0.327437 \\ 0. & 0.98231 & 0. & -0.98231 \\ 0. & 0. & 0.98231 & 0.327437 \\ 0. & 0. & 0.98231 & 0.327437 \\ 0. & 0. & 0. & 1. \end{pmatrix}$$
 Igualdad homogénea
$$\begin{pmatrix} 123.291 & -46.5966 & 73.53 & -23.1121 \\ -38.7652 & 66.6017 & 124.922 & -4.92633 \\ 0.101812 & 0.218854 & -0.111752 & 1. \end{pmatrix}$$

 La M resultante es lógicamente similar a la anterior, pero está calculada de forma mucho más segura (robusta numéricamente).

Descomposición RQ (I)

- Ojo, no es lo mismo QR (más habitual) que RQ (la que aquí necesitamos):
 - Si RQ no disponible, puede calcularse así:

```
function [R,Q] = rq(M)
  [Q,R] = qr(flipud(fliplr(M))');
  R = fliplr(flipud(R'));
  Q = fliplr(flipud(Q'));
end
```

Descomposición RQ (II)

- Para obtener las matrices de intrísecos K y de rotación R hay que (en detalle):
 - 1. Obtener la descomposición RQ de la submatriz 3x3 izquierda de *M*.
 - 2. Reescalar K (= R de la RQ, triangular superior) para que el elemento (3,3) sea 1.
 - 3. Si obtenemos valores negativos en la diagonal de K tenemos que cambiar de signo la columna de K y la fila de Q (= la otra R en nuestro caso, e.d., la rotación de la cámara).
 - 4. Finalmente, si Q quedaba con determinante -1 cambiamos de signo todos sus elementos (para obtener una rotación sin "reflexión").

Comprobación de resultados (I)

 Primero, podemos comprobar que los valores obtenidos para K, R y C de la descomposición de M la reconstruyen perfectamente:

$$R = \left(\begin{smallmatrix} -0.894165 & 0.215593 & -0.392415 \\ 0.232296 & -0.525871 & -0.818229 \\ -0.382764 & -0.822788 & 0.420134 \end{smallmatrix} \right) \qquad C = \left(\begin{smallmatrix} -1.71813 \\ -3.16143 \\ 1.19177 \end{smallmatrix} \right)$$

$$K = \left(\begin{smallmatrix} 560.706 & 26.3934 & -82.8601 \\ 0. & 549.807 & -47.0804 \\ 0. & 0. & 1. \end{smallmatrix} \right)$$
 Igualdad homogénea
$$M = KR[I|-C] = K[R|t] \approx \left(\begin{smallmatrix} 123.291 & -46.5966 & 73.53 & -23.1121 \\ -38.7652 & 66.6017 & 124.922 & -4.92633 \\ 0.101812 & 0.218854 & -0.111752 & 1. \end{smallmatrix} \right)$$

- El hecho de que K₁₁≃K₂₂, y K₁₂≃0 (en proporción) nos dice que el píxel es aproximadamente cuadrado → "buena señal"
- El centro óptico puede salir más o menos desplazado del centro (es más inestable), pero en principio no debería "salirse" de la imagen.

Comprobación de resultados (II)

- Del valor de C podemos comprobar, más o menos "a ojo", que se corresponde con la posición de la cámara (en el mismo sistema de coordenadas que los puntos 3D).
- Finalmente, debemos comprobar que la M así obtenida proyecta correctamente cada punto 3D a su proyección 2D asociada.
 - Por ejemplo, para la correspondencia 3D ↔ 2D primera, es decir (0,2,-1) ↔ (-123,2):

$$\begin{pmatrix} 123.291 & -46.5966 & 73.53 & -23.1121 \\ -38.7652 & 66.6017 & 124.922 & -4.92633 \\ 0.101812 & 0.218854 & -0.111752 & 1. \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -189.835 \\ 3.35477 \\ 1.54946 \end{pmatrix} \approx \begin{pmatrix} -122.517 \\ 2.16512 \\ 1 \end{pmatrix} \simeq \begin{pmatrix} -123 \\ 2 \\ 1 \end{pmatrix}$$
 Igualdad homogénea

Aproximadamente igual (error de reproyección inferior a un píxel)

Rectificación de planos (I)

- La transformación 3D ↔ 2D (proyección escena → cámara) es no invertible:
 - No podemos extraer la "profundidad" de un punto 3D proyectado cualquiera.
- Sin embargo, la correspondencia entre planos es biyectiva (uno a uno):
 - → Podemos "deshacer" la transformación perspectiva de un plano (decimos que lo rectificamos).

Rectificación de planos (II)

 La transformación se modela con una matriz H 3x3, denominada "homografía planar".

- Si conocemos la K, y la C y la R respecto al sistema de coordenadas del mundo, podemos obtener la H a partir de M (p.e., simplemente eliminando la tercera columna de M, si el plano coincide con el plano XY del espacio)...
- ... pero, al tratarse de una homografía (matriz 3x3 → 8 gdl), con sólo 4 correspondencias de puntos (cada una impone dos restricciones linealmente independientes sobre H) se puede computar la misma.

Estimación de la matriz H (I)

- Se hace a partir de 4 puntos, de forma completamente análoga a como reseccionábamos la cámara:

$$\begin{bmatrix} 0 & 0 & 0 & -x & -y & -1 & qx & qy & q \\ x & y & 1 & 0 & 0 & 0 & -px & -py & -p \\ -qx & -qy & -q & px & py & p & 0 & 0 & 0 \end{bmatrix}$$

- Por tanto, con 4 de estas correspondencias "atamos" los 8 gdl de una matriz H de 3x3=9 elementos.
- Se podría hacer también de forma análoga usando 4 rectas en lugar de 4 puntos (también en coordenadas homogéneas).

Estimación de la matriz H (II)

- Todo lo aplicado a la resección de cámaras es también válido aquí:
 - 1. Puede estimarse H con más de 4 correspondencias, usando mínimos cuadrados.
 - Se resuelve mediante el <u>vector de menor valor propio</u> de la matriz (A^TA), o, alternativamente, el <u>vector fila derecho</u> <u>correspondiente al menor valor singular</u> de la SVD de la matriz A.
 - 3. Es <u>conveniente prenormalizar</u> las entradas para evitar problemas numéricos (→ luego hay que pre- y postmultiplicar la *H* estimada por las correspondientes matrices de transformación):

$$H = T_{2D}^{\prime -1} \cdot H_{norm} \cdot T_{2D}^{\prime\prime}$$

Ejemplo de estimación de H

Rectificación frontoparalela de un tablero de ajedrez:

• Se muestran las coordenadas originales, las deseadas, y la H correspondiente obtenida (naturalmente, H-1 lleva de la imagen rectificada de nuevo a la original):

$$\begin{pmatrix} x & y \\ -171 & 109 \\ -120 & 31 \\ 117 & 53 \\ 11 & 115 \end{pmatrix} \leftarrow \begin{pmatrix} x' & y' \\ -100 & 100 \\ -100 & -100 \\ 100 & 100 \end{pmatrix} \qquad H = \begin{bmatrix} 0.63868 & 0.77290 & -39.73059 \\ -0.11082 & 1.94177 & -165.90578 \\ -0.00034 & -0.00378 & 1 \end{bmatrix}$$

Ejercicio → intentar deducir (p.e. con Numpy/Matlab) cómo se ha obtenido H

Homografía de un plano 3D

- Una matriz de camara M = K[R|t] "contiene" las homografías entre cualquier plano del mundo y la imagen.
- Por ejemplo, dado el plano Z=0, la homografía inducida tiene la expresión:

$$H = K[\hat{R}|t] = K[r_1|r_2|t]$$

- donde K es la matriz de intrínsecos, y \hat{R} es una matriz de rotación sin <u>la tercera columna</u> (que <u>se hace "invisible"</u> porque todos los puntos del plano tienen la coordenada Z=0), mientras que t=-RC es un vector arbitrario.
- \hat{R} consiste en dos vectores columna perpendiculares y de longitud unidad (r_1 y r_2).

Homografía de una rotación pura (I)

- Dos imágenes tomadas desde el mismo lugar (centro de proyección común, el resto de parámetros pueden variar) están relacionadas mediante una homografía plana.
- Supongamos que estamos en el origen y tenemos dos cámaras $M_1 = K[I|0]$ y $M_2 = K[R|0]$.
- Un punto del mundo $X = (X, Y, Z, W)^T$ se ve respectivamente como $x = K(X, Y, Z)^T$ y $x' = KR(X, Y, Z)^T$.
- Por tanto, $x' = KRK^{-1}x$, con lo que ambas vistas estan relacionadas por una homografía con la estructura $H = KRK^{-1}$.

Homografía de una rotación pura (II)

Mosaicos de imágenes:

- Lo anterior permite la fabricación sencilla de mosaicos, transformando varias vistas de una escena tomadas desde el mismo punto (pueden variar la orientación, zoom, etc.) a un sistema de referencia común:
- Ejemplo de panorámica con tres imágenes del campus, los puntos marcados (4 comunes a cada par) se usaron en la estimación de las H de transferencia de las imágenes laterales al marco común central):

Homografías interimagen

La visión desde dos puntos distintos de un mismo plano
 3D induce una llamada <u>homografía interimagen</u>:

$$H = H_{2\pi} H_{1\pi}^{-1}$$
$$x' = H_{2\pi} H_{1\pi}^{-1} x = Hx$$

Tratamiento de rectas en la imagen (I)

 Al igual que los puntos 2D, las rectas 2D serán tratadas como vectores homogéneos:

Tratamiento de rectas en la imagen (II)

- Las propiedades más interesantes de esta representación son la facilidad para determinar:
 - El punto **x** de intersección de dos rectas $\mathbf{I_1}$ y $\mathbf{I_2}$: $\mathbf{x} = \mathbf{l_1} imes \mathbf{l_2}$
 - La recta **l** que pasa por dos puntos $\mathbf{x_1}$ y $\mathbf{x_2}$: $\mathbf{l} = \mathbf{x_1} imes \mathbf{x_2}$

Tratamiento de rectas en la imagen (III)

• Recordar que el producto vectorial se computa así:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} = \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} \cdot \mathbf{i} - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} \cdot \mathbf{j} + \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} \cdot \mathbf{k}$$

es decir,

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} \times \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{bmatrix}$$

 Aunque a menudo se expresa como un producto matriz vector, así:

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} \mathbf{a} \end{bmatrix}_{\times} \mathbf{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Notación muy empleada: / matriz "cross product"

Tratamiento de rectas en la imagen (IV)

- Otra ventaja de esta representación es que no se necesita ningún tratamiento especial para los puntos y las líneas en el infinito:
 - Los puntos en el infinito tienen la forma x = (x,y,0).
 - La línea del infinito tiene la forma I = (0,0,1).
 - Las líneas paralelas se cortan en un punto en el infinito.
 - La línea que pasa por un punto en una dirección dada es la que une dicho punto con el punto en el infinito que hay en dicha dirección.
 - Etc...

Tratamiento de rectas en la imagen (V)

 Finalmente, dada una homografía H que transfiere puntos x = (x,y,1) según la ecuación:

$$\mathbf{x}' = \mathbf{H}\mathbf{x}$$
 \longrightarrow $\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

 Transfiere también líneas según la siguiente ecuación (es fácil razonar el porqué, algebraicamente):

$$\mathbf{l}' = \mathbf{H^{-T}}\mathbf{l}$$

Calibración intrínseca

- Con todo lo anterior se pueden proponer un par de métodos de calibración intrínseca de la cámara:
 - Un método basado en la localización de dos puntos de fuga que en el mundo real formen un ángulo recto.
 - 2. Otro método basado en la peculiar forma algebraica de la **homografía plano 3D-imagen**.
- Nota: se trata de dos métodos sencillos para ilustrar la autocalibración, pero por supuesto no son los únicos, ni siquiera los más recomendables.

Calibración mediante puntos de fuga de un ángulo recto

 Supongamos que podemos identificar la línea del horizonte (I_m) de un plano:

 Si entonces identificamos un ángulo recto en el plano, y K=diag(f,f,1), se cumple la siguiente fórmula, que se puede emplear para calibrar:

Calibración basada en homografía plano 3D – imagen (I)

 Sabemos que la homografía del plano Z=0 tiene esta forma (transp. 43):

$$H = K[\hat{R}|t] = K[r_1|r_2|t]$$

• Entonces, si definimos $W=K^{-T}\cdot K^{-1}$, y por la propiedad de las matrices ortogonales, $R\cdot R^{T}=I$, se cumplirá que:

$$W := K^{-T}K^{-1} \Rightarrow \mathbf{H^T} \cdot W \cdot \mathbf{H} = \begin{bmatrix} r_1 \\ r_2 \\ t \end{bmatrix} K^TK^{-T}K^{-1}K \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} =$$

$$\begin{bmatrix} r_1 \\ r_2 \\ t \end{bmatrix} \begin{bmatrix} r_1 & r_2 & t \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdot \\ 0 & 1 & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \approx \begin{bmatrix} a & 0 & b \\ 0 & a & c \\ b & c & d \end{bmatrix}$$

Calibración basada en homografía plano 3D – imagen (II)

- Lo anterior fuerza dos condiciones sobre la matriz H^T·W·H:
 - 1. Que los elementos (1,1) y (2,2) de la misma han de ser iguales.
 - 2. Que el elemento (1,2) ha de ser nulo –y, como es simétrica, también lo cumplirá el elemento (2,1)–.
- Si suponemos K=diag(f,f,1), entonces W=diag(g,g,1) =diag(1/f²,1/f²,1), y por tanto podemos generar sendas ecuaciones con una sóla incógnita (g) partiendo de los elementos de H → dos alternativas válidas para calibrar.
- Conocida g, es ya inmediato obtener la focal f, y por tanto calibrar la cámara a partir de cualquier H (homografía plano 3D – imagen).

Bibliografía básica

• "Multiple view geometry" (2nd ed.), R. Hartley, A. Zisserman (2003), Cambridge University Press.

 "Apuntes de Sistemas de Percepción y Visión por Computador":

(http://dis.um.es/profesores/alberto/material/percep.pdf)

Documentación SciPy / NumPy:

(http://docs.scipy.org/doc/)