Package 'RTransferEntropy'

February 1, 2023

Type Package

Title Measuring Information Flow Between Time Series with Shannon and Renyi Transfer Entropy

Version 0.2.21

Description Measuring information flow between time series with Shannon and Rényi transfer entropy. See also Dimpfl and Peter (2013) <doi:10.1515/snde-2012-0044> and Dimpfl and Peter (2014) <doi:10.1016/j.intfin.2014.03.004> for theory and applications to financial time series. Additional references can be found in the theory part of the vignette.

License GPL-3

URL https://github.com/BZPaper/RTransferEntropy

BugReports https://github.com/BZPaper/RTransferEntropy/issues

Encoding UTF-8

Depends R (>= 3.1.2)

Imports future (>= 1.19.0), future.apply, Rcpp

LazyData true

RoxygenNote 7.2.0

LinkingTo Rcpp

Suggests data.table, ggplot2, gridExtra, knitr, quantmod, rmarkdown, testthat, vars, xts, zoo

VignetteBuilder knitr

NeedsCompilation yes

Author David Zimmermann [aut, cre],

Simon Behrendt [aut],

Thomas Dimpfl [aut],

Franziska Peter [aut]

Maintainer David Zimmermann <david_j_zimmermann@hotmail.com>

Repository CRAN

Date/Publication 2023-02-01 17:30:05 UTC

2 calc_ete

R topics documented:

lc_ete	2
lc_te	. 4
ef.transfer_entropy	. <i>•</i>
transfer_entropy	
int.transfer_entropy	7
t_quiet	. 9
ocks	. 10
mmary.transfer_entropy	. 10
nsfer_entropy	. 11

Index 14

calc_ete

Calculates the Effective Transfer Entropy for two time series

Description

Calculates the Effective Transfer Entropy for two time series

Usage

```
calc_ete(
  х,
  у,
  1x = 1,
 1y = 1,
  q = 0.1,
  entropy = "Shannon",
  shuffles = 100,
  type = "quantiles",
  quantiles = c(5, 95),
  bins = NULL,
  limits = NULL,
  burn = 50,
  seed = NULL,
  na.rm = TRUE
)
```

Arguments

```
x a vector of numeric values, ordered by time. Also allowed are xts, zoo, or ts objects.
```

y a vector of numeric values, ordered by time. Also allowed are xts, zoo, or ts objects.

1x Markov order of x, i.e. the number of lagged values affecting the current value of x. Default is 1x = 1.

calc_ete 3

ly	Markov order of y, i.e. the number of lagged values affecting the current value of y. Default is $1y = 1$.
q	a weighting parameter used to estimate Renyi transfer entropy, parameter is between 0 and 1. For $q=1$, Renyi transfer entropy converges to Shannon transfer entropy. Default is $q=0.1$.
entropy	specifies the transfer entropy measure that is estimated, either 'Shannon' or 'Renyi'. The first character can be used to specify the type of transfer entropy as well. Default is entropy = 'Shannon'.
shuffles	the number of shuffles used to calculate the effective transfer entropy. Default is shuffles = 100.
type	specifies the type of discretization applied to the observed time series:'quantiles', 'bins' or 'limits'. Default is type = 'quantiles'.
quantiles	specifies the quantiles of the empirical distribution of the respective time series used for discretization. Default is quantiles = $c(5,95)$.
bins	specifies the number of bins with equal width used for discretization. Default is bins = NULL.
limits	specifies the limits on values used for discretization. Default is limits = NULL.
burn	the number of observations that are dropped from the beginning of the bootstrapped Markov chain. Default is burn = 50.
seed	a seed that seeds the PRNG (will internally just call set.seed), default is seed = NULL.
na.rm	if missing values should be removed (will remove the values at the same point in the other series as well). Default is TRUE.

Value

a single numerical value for the effective transfer entropy

See Also

```
calc_te andtransfer_entropy
```

```
# construct two time-series
set.seed(1234567890)
n <- 1000
x <- rep(0, n + 1)
y <- rep(0, n + 1)

for (i in seq(n)) {
   x[i + 1] <- 0.2 * x[i] + rnorm(1, 0, 2)
   y[i + 1] <- x[i] + rnorm(1, 0, 2)
}

x <- x[-1]
y <- y[-1]</pre>
```

4 calc_te

```
# calculate the X->Y transfer entropy value
calc_ete(x, y)

# calculate the Y->X transfer entropy value
calc_ete(y, x)

# Compare the results
# even with the same seed, transfer_entropy might return slightly different
# results from calc_ete
calc_ete(x, y, seed = 123)
calc_ete(y, x, seed = 123)
transfer_entropy(x, y, nboot = 0, seed = 123)
```

calc_te

Calculates the Transfer Entropy for two time series

Description

Calculates the Transfer Entropy for two time series

Usage

```
calc_te(
  х,
  у,
  1x = 1,
 ly = 1,
  q = 0.1,
  entropy = "Shannon",
  shuffles = 100,
  type = "quantiles",
  quantiles = c(5, 95),
  bins = NULL,
  limits = NULL,
  burn = 50,
  seed = NULL,
  na.rm = TRUE
)
```

Arguments

x a vector of numeric values, ordered by time. Also allowed are xts, zoo, or ts objects.

y a vector of numeric values, ordered by time. Also allowed are xts, zoo, or ts objects.

calc_te 5

lx	Markov order of x, i.e. the number of lagged values affecting the current value of x. Default is $1x = 1$.
ly	Markov order of y, i.e. the number of lagged values affecting the current value of y. Default is $1y = 1$.
q	a weighting parameter used to estimate Renyi transfer entropy, parameter is between 0 and 1. For $q=1$, Renyi transfer entropy converges to Shannon transfer entropy. Default is $q=0.1$.
entropy	specifies the transfer entropy measure that is estimated, either 'Shannon' or 'Renyi'. The first character can be used to specify the type of transfer entropy as well. Default is entropy = 'Shannon'.
shuffles	the number of shuffles used to calculate the effective transfer entropy. Default is $shuffles = 100$.
type	specifies the type of discretization applied to the observed time series: 'quantiles', 'bins' or 'limits'. Default is type = 'quantiles'.
quantiles	specifies the quantiles of the empirical distribution of the respective time series used for discretization. Default is quantiles = $c(5,95)$.
bins	specifies the number of bins with equal width used for discretization. Default is bins = NULL.
limits	specifies the limits on values used for discretization. Default is limits = NULL.
burn	the number of observations that are dropped from the beginning of the bootstrapped Markov chain. Default is burn = 50.
seed	a seed that seeds the PRNG (will internally just call set.seed), default is seed = $NULL$.
na.rm	if missing values should be removed (will remove the values at the same point in the other series as well). Default is TRUE.

Value

a single numerical value for the transfer entropy

See Also

```
calc_ete andtransfer_entropy
```

```
# construct two time-series
set.seed(1234567890)
n <- 1000
x <- rep(0, n + 1)
y <- rep(0, n + 1)

for (i in seq(n)) {
   x[i + 1] <- 0.2 * x[i] + rnorm(1, 0, 2)
   y[i + 1] <- x[i] + rnorm(1, 0, 2)
}</pre>
```

coef.transfer_entropy

```
x <- x[-1]
y <- y[-1]

# calculate the X->Y transfer entropy value
calc_te(x, y)

# calculate the Y->X transfer entropy value
calc_te(y, x)

# Compare the results
calc_te(x, y, seed = 123)
calc_te(y, x, seed = 123)
transfer_entropy(x, y, nboot = 0, seed = 123)
```

Description

Extract the Coefficient Matrix from a transfer_entropy

Usage

```
## S3 method for class 'transfer_entropy'
coef(object, ...)
```

Arguments

```
object a transfer_entropy
... additional arguments, currently not in use
```

Value

a Matrix containing the coefficients

```
set.seed(1234567890)
n <- 500
x <- rep(0, n + 1)
y <- rep(0, n + 1)

for (i in seq(n)) {
    x[i + 1] <- 0.2 * x[i] + rnorm(1, 0, 2)
    y[i + 1] <- x[i] + rnorm(1, 0, 2)
}</pre>
```

is.transfer_entropy 7

```
x <- x[-1]
y <- y[-1]

te_result <- transfer_entropy(x, y, nboot = 100)
coef(te_result)</pre>
```

Description

Checks if an object is a transfer_entropy

Usage

```
is.transfer\_entropy(x)
```

Arguments

x an object

Value

a boolean value if x is a transfer_entropy

Examples

```
# see ?transfer_entropy
```

print.transfer_entropy

Prints a transfer-entropy result

Description

Prints a transfer-entropy result

Usage

```
## S3 method for class 'transfer_entropy'
print(
    x,
    digits = 4,
    boot = TRUE,
    probs = c(0, 0.25, 0.5, 0.75, 1),
    tex = FALSE,
    ref = NA,
    file = NA,
    table = TRUE,
    ...
)
```

Arguments

х	a transfer_entropy
digits	the number of digits to display, defaults to 4
boot	if the bootstrapped results should be printed, defaults to TRUE
probs	numeric vector of quantiles for the bootstraps
tex	if the data should be outputted as a TeX-string
ref	the reference string of the LaTeX table (label) applies only if table = TRUE and $tex = TRUE$, defaults to FALSE
file	a file where the results are printed to
table	if the table environment should be printed as well (only applies if tex = TRUE), defaults to TRUE
	additional arguments, currently not in use

Value

invisible the text

```
# construct two time-series
set.seed(1234567890)
n <- 500
x <- rep(0, n + 1)
y <- rep(0, n + 1)

for (i in seq(n)) {
    x[i + 1] <- 0.2 * x[i] + rnorm(1, 0, 2)
    y[i + 1] <- x[i] + rnorm(1, 0, 2)
}

x <- x[-1]
y <- y[-1]</pre>
```

set_quiet 9

```
# Calculate Shannon's Transfer Entropy
te_result <- transfer_entropy(x, y, nboot = 100)
print(te_result)
# change the number of digits
print(te_result, digits = 10)
# disable boot-print
print(te_result, boot = FALSE)
# specify the quantiles of the bootstraps
print(te_result, probs = c(0, 0.1, 0.4, 0.5, 0.6, 0.9, 1))
# get LaTeX output:
print(te_result, tex = TRUE)
# set the reference label for LaTeX table
print(te_result, tex = TRUE, ref = "tab:te_result")
## Not run:
# file output
print(te_result, file = "te_result_file.txt")
print(te_result, tex = TRUE, file = "te_result_file.tex")
## End(Not run)
```

set_quiet

 $Set \ the \ quiet-parameter for \ all \ RT ransfer Entropy \ Calls$

Description

Set the quiet-parameter for all RTransferEntropy Calls

Usage

```
set_quiet(quiet)
```

Arguments

quiet

if FALSE, the functions will give feedback on the progress

Value

nothing

```
# see ?transfer_entropy
```

stocks

Daily stock data for 10 stocks from 2000-2017

Description

A dataset containing the daily stock returns for 10 stocks and the S&P 500 market returns for the time-period 2000-01-04 until 2017-12-29

Usage

stocks

Format

A data frame (or data.table if loaded) with 46940 rows and 4 variables:

```
date date of the observation
ticker ticker of the stock
ret Return of the stock
sp500 Return of the S&P 500 stock market index
```

Source

yahoo finance using getSymbols

```
summary.transfer_entropy
```

Prints a summary of a transfer-entropy result

Description

Prints a summary of a transfer-entropy result

Usage

```
## S3 method for class 'transfer_entropy'
summary(object, digits = 4, probs = c(0, 0.25, 0.5, 0.75, 1), ...)
```

Arguments

```
object a transfer_entropy
digits the number of digits to display, defaults to 4
probs numeric vector of quantiles for the bootstraps
additional arguments, passed to printCoefmat
```

transfer_entropy 11

Value

invisible the object

Examples

```
# construct two time-series
set.seed(1234567890)
n <- 500
x <- rep(0, n + 1)
y <- rep(0, n + 1)

for (i in seq(n)) {
    x[i + 1] <- 0.2 * x[i] + rnorm(1, 0, 2)
    y[i + 1] <- x[i] + rnorm(1, 0, 2)
}

x <- x[-1]
y <- y[-1]

# Calculate Shannon's Transfer Entropy
te_result <- transfer_entropy(x, y, nboot = 100)
summary(te_result)</pre>
```

transfer_entropy

Function to estimate Shannon and Renyi transfer entropy between two time series x and y.

Description

Function to estimate Shannon and Renyi transfer entropy between two time series x and y.

Usage

```
transfer_entropy(
    x,
    y,
    lx = 1,
    ly = 1,
    q = 0.1,
    entropy = "Shannon",
    shuffles = 100,
    type = "quantiles",
    quantiles = c(5, 95),
    bins = NULL,
    limits = NULL,
    nboot = 300,
    burn = 50,
```

12 transfer_entropy

```
quiet = NULL,
seed = NULL,
na.rm = TRUE
)
```

Arguments

x	a vector of numeric values, ordered by time. Also allowed are xts, zoo, or ts objects.
У	a vector of numeric values, ordered by time. Also allowed are xts, zoo, or ts objects.
1x	Markov order of x, i.e. the number of lagged values affecting the current value of x. Default is $1x = 1$.
ly	Markov order of y, i.e. the number of lagged values affecting the current value of y. Default is $1y = 1$.
q	a weighting parameter used to estimate Renyi transfer entropy, parameter is between 0 and 1. For $q = 1$, Renyi transfer entropy converges to Shannon transfer entropy. Default is $q = 0.1$.
entropy	specifies the transfer entropy measure that is estimated, either 'Shannon' or 'Renyi'. The first character can be used to specify the type of transfer entropy as well. Default is entropy = 'Shannon'.
shuffles	the number of shuffles used to calculate the effective transfer entropy. Default is shuffles = 100.
type	specifies the type of discretization applied to the observed time series:'quantiles', 'bins' or 'limits'. Default is type = 'quantiles'.
quantiles	specifies the quantiles of the empirical distribution of the respective time series used for discretization. Default is quantiles = $c(5,95)$.
bins	specifies the number of bins with equal width used for discretization. Default is bins = NULL.
limits	specifies the limits on values used for discretization. Default is limits = NULL.
nboot	the number of bootstrap replications for each direction of the estimated transfer entropy. Default is nboot = 300.
burn	the number of observations that are dropped from the beginning of the bootstrapped Markov chain. Default is burn = 50.
quiet	if FALSE (default), the function gives feedback.
seed	a seed that seeds the PRNG (will internally just call set.seed), default is seed = NULL.
na.rm	if missing values should be removed (will remove the values at the same point in the other series as well). Default is TRUE.

Value

an object of class transfer_entropy, containing the transfer entropy estimates in both directions, the effective transfer entropy estimates in both directions, standard errors and p-values based on bootstrap replications of the Markov chains under the null hypothesis of statistical independence, an indication of statistical significance, and quantiles of the bootstrap samples (if nboot > 0).

transfer_entropy 13

See Also

```
coef, print.transfer_entropy
```

```
# construct two time-series
set.seed(1234567890)
n <- 500
x < - rep(0, n + 1)
y < - rep(0, n + 1)
for (i in seq(n)) {
  x[i + 1] \leftarrow 0.2 * x[i] + rnorm(1, 0, 2)
  y[i + 1] <- x[i] + rnorm(1, 0, 2)
x < -x[-1]
y < - y[-1]
# Calculate Shannon's Transfer Entropy
te_result <- transfer_entropy(x, y, nboot = 100)
te_result
summary(te_result)
  # Parallel Processing using the future-package
  library(future)
  plan(multisession)
  te_result2 <- transfer_entropy(x, y, nboot = 100)</pre>
  te_result2
  # revert back to sequential execution
  plan(sequential)
  te_result2 <- transfer_entropy(x, y, nboot = 100)</pre>
  te_result2
  # General set of quiet
  set_quiet(TRUE)
  a <- transfer_entropy(x, y, nboot = 0)</pre>
  set_quiet(FALSE)
  a <- transfer_entropy(x, y, nboot = 0)</pre>
  # close multisession, see also ?plan
  plan(sequential)
```

Index

```
\ast datasets
     stocks, 10
{\tt calc\_ete}, {\tt 2}, {\tt 5}
calc_te, 3, 4
coef, 13
coef.transfer\_entropy, 6
{\tt getSymbols}, \textcolor{red}{\textit{10}}
is.transfer\_entropy, 7
print.transfer_entropy, 7, 13
printCoefmat, 10
set_quiet, 9
stocks, 10
\verb|summary.transfer_entropy|, 10
transfer_entropy, 3, 5, 11
ts, 2, 4, 12
xts, 2, 4, 12
zoo, 2, 4, 12
```