Computational statistics

Week 1

Léa Bresson

List of exercises:

- Exercise 1.22
- Exercise 2.2
- Exercise 2.7
- Exercise 2.19

1 Exercise **1.22**

- **1.1** Suppose that $X \sim f(x|\theta)$, with prior distribution $\pi(\theta)$, an interest is in the estimation of the parameter $h(\theta)$.
- a) Using the loss function $L(\delta, h(\theta))$, show that the estimator that minimizes the Bayes risk $\int \int L(\delta, h(\theta)) f(x|\theta) \pi(\theta) dx d\theta$, is given by the estimator θ that minimizes (for each x)

$$\int L(\delta, h(\theta)) \pi(\theta|x) d\theta.$$

Solution:

The Bayes risk can be written:

$$R_{\pi} = \int_{\Theta} \int_{\mathcal{X}} L(\delta, h(\theta)) f(x|\theta) \pi(\theta) dx d\theta$$

with $x \in \chi$ and $\theta \in \Theta$.

Suppose χ and Θ are σ -finite measure spaces. By definition, $L(\delta, h(\theta)) \geq 0$ so $L(\delta, h(\theta)) f(x|\theta) \pi(\theta)$ is measurable and non-negative. In this context, we can use the Tonelli's theorem to invert the ordering of the two integrals.

$$R_{\pi} = \int_{\mathcal{X}} \int_{\Theta} L(\delta, h(\theta)) f(x|\theta) \pi(\theta) d\theta dx$$

The Bayes theorem (see slide 16 or page 12 of the book) states that:

$$f(x|\theta)\pi(\theta) = Z(x)\pi(\theta|x)$$

with $Z(x)=\int f(x|\theta)\pi(\theta)d\theta$ is the marginal density of X (or Bayesian evidence). Hence,

$$R_{\pi} = \int_{\mathcal{X}} \int_{\Theta} L(\delta, h(\theta)) Z(x) \pi(\theta|x) d\theta dx$$
$$= \int_{\mathcal{X}} \phi(\pi\theta|x) Z(x) dx$$

with $\phi(\pi\theta|x) = \mathbb{E}\left[L(\delta,h(\theta)|x]\right] = \int_{\Theta}L(\delta,h(\theta))\pi(\theta|x)d\theta$, the posterior loss.

We can see that minimizing the Bayes risk for each x is equivalent to minimizing the posterior $\log \phi(\pi\theta|x) = \int_{\Theta} L(\delta, h(\theta))\pi(\theta|x)d\theta$.

To conclude the estimator that minimizes the Bayes risk is given by the estimator θ that minimizes (for each x)

$$\int_{\Theta} L(\delta, h(\theta)) \pi(\theta|x) d\theta.$$

b) For $L(\delta,\theta) = \|h(\theta) - \delta\|^2$, show that the Bayes estimator of $h(\theta)$ is $\delta^* = \mathbb{E}^* \Big[h(\theta) |x \Big]$.

Solution:

The Bayes estimator minimizes, for each x, $\phi(\pi\theta|x)$.

$$\begin{split} \phi(\pi\theta|x) &= \int_{\Theta} L(\delta,h(\theta))\pi(\theta|x)d\theta \\ &= \mathbb{E}\left[L(\delta,h(\theta)|x)\right] \\ &= \mathbb{E}\left[\left\|h(\theta) - \delta\right\|^2|x\right] \\ &= \mathbb{E}\left[\left\|h(\theta)\right\|^2 + \left\|\delta\right\|^2 - 2 < \delta, h(\theta > |x]\right] \\ &= \mathbb{E}\left[\left\|h(\theta)\right\|^2 + \delta^2 - 2 < \delta, h(\theta) > |x\right] \\ &= \mathbb{E}\left[\left\|h(\theta)\right\|^2|x\right] + \delta^2 - 2 < \delta, \mathbb{E}\left[h(\theta)|x\right] > \end{split}$$

The minimum is such that:

$$\phi^{*'}(\pi\theta|x) = 2\delta^* - 2\mathbb{E}^* \Big[h(\theta)|x \Big] = 0$$
$$\Rightarrow \delta^* = \mathbb{E}^* \Big[h(\theta)|x \Big].$$

It is a minimum since $\phi^{*''}(\pi\theta|x) > 0$.

c) For $L(\delta, \theta) = |h(\theta) - \delta|$, show that the Bayes estimator of $h(\theta)$ is the median of the posterior distribution.

Solution:

The Bayes estimator minimizes, for each x, $\phi(\pi\theta|x)$.

$$\begin{split} \phi(\pi\theta|x) &= \int_{\Theta} L(\delta,h(\theta))\pi(\theta|x)d\theta \\ &= \int_{\Theta} |h(\theta) - \delta|\pi(\theta|x)d\theta \\ &= \int_{-\infty}^{\delta} (\delta - h(\theta))\pi(\theta|x)d\theta + \int_{\delta}^{+\infty} (h(\theta) - \delta)\pi(\theta|x)d\theta \\ &= \delta \int_{-\infty}^{\delta} \pi(\theta|x)d\theta - \int_{-\infty}^{\delta} h(\theta)\pi(\theta|x)d\theta + \int_{\delta}^{+\infty} (h(\theta)\pi(\theta|x)d\theta - \delta \int_{\delta}^{+\infty} \pi(\theta|x)d\theta. \end{split}$$

$$\Rightarrow \phi'(\pi\theta|x) = \int_{-\infty}^{\delta} \pi(\theta|x)d\theta + h(\delta)\pi(\delta|x) - h(\delta)\pi(\delta|x) - h(\delta)\pi(\delta|x) - \int_{\delta}^{\infty} \pi(\theta|x)d\theta + h(\delta)\pi(\delta|x)$$

$$= \int_{-\infty}^{\delta} \pi(\theta|x)d\theta - \int_{\delta}^{\infty} \pi(\theta|x)d\theta$$

$$= \mathbb{P}(h(\theta) \le \delta|x) - \mathbb{P}(h(\theta) > \delta|x)$$

$$= 2\mathbb{P}(h(\theta) \le \delta|x) - 1$$

Hence, $\phi^{*'}(\pi\theta|x) = 0$ if $\mathbb{P}(h(\theta) \le \delta^*|x) = \frac{1}{2}$.

To conclude the Bayes estimator of $h(\theta)$ is such that $\mathbb{P}(h(\theta) \leq \delta^*|x) = \frac{1}{2}$, i.e., δ^* is the conditional median of $h(\theta)$ given x.

It is a minimum since $\phi^{*''}(\pi\theta|x) = 2\pi(\delta^*|x) \ge 0$.

2 Exercice 2.7

2.1 Establish the properties of the Box–Muller algorithm of Example 2.8. If U_1 and U_2 are iid $\mathcal{U}[0,1]$, show that:

a) The transforms $X_1=\sqrt{-2log(U_1)}\cos(2\pi U_2)$, $X_2=\sqrt{-2log(U_1)}\sin(2\pi U_2)$, are iid $\mathcal{N}(0,1)$.

Solution:

First of all, we can rewrite U_1 and U_2 as :

$$X_1^2 + X_2^2 = -2log(U_1) \Rightarrow U_1 = \exp\left[-\frac{1}{2}(X_1^2 + X_2^2)\right]$$

and,

$$\frac{X_1}{X_2} = \tan(2\pi U_2) \Rightarrow U_2 = \frac{\arctan(\frac{X_1}{X_2})}{2\pi}.$$

Let us define $h:(U_1,U_2)\mapsto (X_1,X_2)$, an homeomorphism between $[0,1]^2$ and \mathcal{R}^2 . We have $h^{-1}:(X_1,X_2)\mapsto (U_1,U_2)$ with $:h^{-1}:(X_1,X_2)=\Big\{\exp[-\frac{1}{2}(X_1^2+X_2^2)],\frac{\arctan(\frac{X_1}{X_2})}{2\pi}\Big\}$.

In this context, the joint density of (X_1, X_2) can be expressed in terms of the Jacobian of h^{-1} :

$$\begin{split} f_{X_1,X_2} &= |J_{h^{-1}}(X_1,X_2)| \\ &= \begin{vmatrix} \frac{\partial h_1^{-1}}{\partial x_1} & \frac{\partial h_2^{-1}}{\partial x_2} \\ \frac{\partial h_2^{-1}}{\partial x_1} & \frac{\partial h_2^{-1}}{\partial x_2} \end{vmatrix} \\ &= \begin{vmatrix} x_1 \exp\left[-\frac{X_1^2 + X_2^2}{2}\right] & -x_2 \exp\left[-\frac{X_1^2 + X_2^2}{2}\right] \\ \frac{1}{2\pi} \frac{-X_2}{X_1^2 + X_2^2} & \frac{1}{2\pi} \frac{X_1}{X_1^2 + X_2^2} \end{vmatrix} \\ &= \frac{1}{2\pi} \exp\left[-\frac{(X_1^2 + X_2^2)}{2}\right] \end{split}$$

Hence, we have:

$$f_{X_1,X_2} = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x_1^2}{2}\right] \times \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x_2^2}{2}\right]$$

$$= f_{X_1} \times f_{X_2}$$
(1)

We can clearly see that X_1 et X_2 are iid $\mathcal{N}(0,1)$.

b) The polar coordinates are distributed as:

i):
$$r^2 = (X_1^2 + X_2^2) \sim \chi_2^2$$

i):
$$r^2 = (X_1^2 + X_2^2) \sim \chi_2^2$$
,
ii): $\theta = \arctan \frac{X_2}{X_1} \sim \mathcal{U}[0, 2\pi]$.

Solution:

i): The distribution of the sum of the squares of 2 independent standard normal random variables is a chi-square with 2 degree of freedom.

In our case, X_1^2 and X_2^2 are independent since X_1 and X_2 are iid (question a). Therefore, r^2 is distributed as a chi-square random variable with 2 degree of freedom:

$$r^2 \sim \chi_2^2$$

Proof:

1. Let's prove that the square of a standard normal random variable is a chi-square random variable with 1 degree of freedom.

Let X be a standard normal random variable with a probability density function $f_X(x)$. We define Z such that $Z = X^2$.

- For z < 0, the distribution function of Z, $P(Z \le z) = 0$ since Z is a square. Therefore, $f_Z(z) = 0$

- For $z \ge 0$, the distribution function of Z is :

$$P(Z \le z) = P(X^{2} \le z)$$

$$= P(-z^{\frac{1}{2}} \le X \le z^{\frac{1}{2}})$$

$$= \int_{-z^{\frac{1}{2}}}^{z^{\frac{1}{2}}} f_{X}(x) dx$$
(2)

Therefore, for $z \ge 0$, the density of Z is:

$$f_{Z}(z) = \frac{dP(Z \le z)}{dz}$$

$$= \frac{\int_{-z^{\frac{1}{2}}}^{z^{\frac{1}{2}}} f_{X}(x) dx}{dz}$$

$$= f_{X}(z^{\frac{1}{2}}) \frac{dz^{\frac{1}{2}}}{dz} - f_{X}(-z^{\frac{1}{2}}) \frac{d^{-}z^{\frac{1}{2}}}{dz}$$

$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(z^{\frac{1}{2}})^{2}\right] \times \frac{1}{2}z^{\frac{-1}{2}} - \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(-z^{\frac{1}{2}})^{2}\right] \times \frac{-1}{2}z^{\frac{-1}{2}}$$

$$= \frac{1}{\sqrt{2\pi}} z^{\frac{1}{2}} \exp\left[-\frac{1}{2}z\right]$$

$$= \frac{1}{2^{\frac{-1}{2}}\Gamma(\frac{1}{2})} z^{\frac{1}{2}-1} \exp\left[-\frac{1}{2}z\right] \text{ because } \Gamma(\frac{1}{2}) = \sqrt{\pi}.$$
(3)

We recognize the density function of a chi-square random variable with 1 degree of freedom.

2. Let's prove that the sum of independent chi-square random variables is a chi-square random variable.

Let $Z = \sum_{i=1}^{k} Z_i$ and $M_Z(t)$ its moment generating function. Suppose that the random variable Z_i is a chi-square random variable with n_i degrees of freedom and all the random variables are independent, thus:

$$M_{Z}(t) = \prod_{i=1}^{k} M_{Z_{i}}(t)$$

$$= \prod_{i=1}^{k} (1 - 2t)^{\frac{-n_{i}}{2}}$$

$$= (1 - 2t)^{-\sum_{i=1}^{k} \frac{n_{i}}{2}}$$

$$= (1 - 2t)^{\frac{-n}{2}}$$
(4)

We can see that the moment generating function of Z is the moment generating function of a chi-square random variable with $n = \sum_{i=1}^{k} n_i$ degree of freedom.

- 3. Combining the two facts above, we obtain that the sum of squares of 2 independent standard normal random variables is a chi-square random variable with 2 degree of freedom.
- ii): From question a, we know that $U_2 = \frac{\arctan(\frac{X_1}{X_2})}{2\pi} = \frac{\theta}{2\pi} \Rightarrow \theta = 2\pi U_2$. Since $U_2 \sim \mathcal{U}[0,1]$, we have:

$$\theta \sim \mathcal{U}[0,2\pi]$$

c) Establish that $\exp(-\frac{r^2}{2}) \sim \mathcal{U}[0,1]$, and so r^2 and θ can be simulated directly.

Solution:

From a), we know that: $X_1^2 + X_2^2 = -2log(U_1)$. From b), we have that: $r^2 = X_1^2 + X_2^2$.

Hence, $r^2 = -2log(U_1) \Rightarrow \exp(-\frac{r^2}{2}) = U_1$ and consequently, $\exp(-\frac{r^2}{2}) \sim \mathcal{U}[0,1]$.

To conclude, we can simulate r^2 and θ directly from the uniform distribution on [0,1] since:

-
$$r^2 = -2log(U_1)$$
 and $\theta = 2\pi U_2$, and

- U_1 and U_2 are iid $\mathcal{U}[0,1]$.

Example of a simulation using R:

3 Exercice 2.2

3.1 a) Generate a binomial Bin(n, p) random variable with n = 25 and p = .2. Make a histogram and compare it to the binomial mass function, and to the R binomial generator.

Comment: We have seen in lecture 1 that if $U \sim U_{[0,1]}$, then the random variable $F^{-1}(U)$ has the distribution F (Probability Integral Transform). It is the starting point of the inverse transform method that I am going to use: to generate a random variable $x \sim F$, I generate a random variable $u \sim U_{[0,1]}$ and then I use the transform $x = F^{-1}(u)$.

```
In [2]: n = 25
        p = 0.2
        N = 1000 \# number of simulations
        # 1) I use the inverse transform method for generating binomial random variables
        Binomial = function(N,n,p){
            proba = pbinom(0:n,n,p)
            X = rep(0,N)
            for (i in 1:N){
                u = runif(1)
                X[i] = 0 + sum(proba < u)
            return(X)
        }
        # 2) I use the R binomial generator for generating binomial random variables
        rbino = rbinom(N, n, p)
In [3]: # Histogram : binomial (inverse transform method) v.s. binomial mass function
        X = Binomial(N,n,p)
        hist(X, col="violet", freq=F, main="Binomial v.s. binomial mass functon")
        # Mass function
        lines(1:n, dbinom(1:n,n,p), lwd = 2, col="cyan")
```

Binomial v.s. binomial mass function

Comment: The histograms are very similar. The transform method gives satisfactory results.

3.2 b) Generate 5,000 logarithmic series random variables. Make a histogram and plot the mass function.

In [5]: # I use the inverse transform method:

```
logarithmic = function(N,p){
    x = seq(1,35,1)
    mass = (-(1-p)^x)/(x*log(p))
    mass_f = cumsum(mass)
    X = rep(0,N)
```

```
for (i in 1:N){
        unif = runif(1)
        X[i] = x[1] + sum(mass_f < unif)
    }
    return (X)
}

In [6]: N = 5000
    p = 0.2
    X = logarithmic(N,p)
    hist(X, freq=F, col = "violet", main="Logarithmic series random variables")
    X = seq(min(X), max(X), 1)
    lines((-(1-p)^X)/(X*log(p)), lwd = 1.5, col="cyan")</pre>
```

Logarithmic series random variables

Conclusion: To conclude, the inverse transform method gives satisfactory method with the binomial or logarithmic series random variables.

4 Exercice 2.19

4.1 For $\alpha \in [0,1]$, show that the algorithm A.13 produces a simulation from $U([0,\alpha])$. Compare it with the transform αU , $U \sim U(0,1)$ for values of α close to 0 and close to 1.

1. Comparison between the algorithm A.13 and simulations from $U([0, \alpha])$:

The graphs are very similar.

We are now going to compare the histogram given by the algorithm A.13 with the probability density function of a random variable following a uniform distribution on $[0, \alpha]$.

```
In [9]: N = 10^4 # We increase the number of simulations in order to have a better view
    X = Generateur1(N, alpha)
    u = seq(min(X), max(X), length.out = N)
    hist(X, freq=F, col = "violet", main="Uniform")
    lines(u, dunif(u,0,alpha), lwd = 4, col="cyan")
```


Comment: To conclude, the algorithm A.13 produces a simulation from $U([0,\alpha])$. In fact, the algorithm picks the random variables with uniform distribution on [0,1] in the range of $[0,\alpha]$ where they are still uniformly distributed.

Note that results are the same using αU , $U \sim U(0,1)$ (i.e. alpha=runif(1) in the code above) instead of alpha = 0.01 (arbitrary value).

2) Comparison of the algorithm A.13 with the transform αU , $U\sim U(0,1)$ for values of α close to 0 and close to 1

Case 1: α close to 0

```
In [10]: alpha = 0.0001
    X = Generateur1(N, alpha)
    U_trsf = runif(N) * alpha # Transform
    Y = seq(min(U_trsf), max(U_trsf), length.out = 1000)

    par(mfrow=c(1,2))
    hist(X, freq=F, col = "violet", main="Algorithm A.13")
    hist(U_trsf, freq=F, col= "cyan", main="Transformation")
```

Algorithm A.13 **Transformation** 10000 8000 8000 0009 0009 Density 4000 4000 4e-05 4e-05 0e+00 8e-05 0e+00 8e-05 Χ U_trsf

Case 2: α close to 1

```
In [11]: alpha = 0.99
    X = Generateur1(N, alpha)
```

```
U_trsf = runif(N) * alpha # Transform
Y = seq(min(U_trsf), max(U_trsf), length.out = 1000)

par(mfrow=c(1,2))
hist(X, freq=F, col = "violet", main="Algorithm A.13")
hist(U_trsf, freq=F, col= "cyan", main="Transformation")
```


Comment: For both cases (α close to 0 or 1), the histograms from the algorithm A.13 and from the transformation are very similar. It shows that the transform αU with $U \sim U(0,1)$ produces a simulation from $U(0,\alpha)$.

Link with the accept-reject algorithm : The simulation of the target density f is done using an instrumental density g. In our case f is the U(0,1) and g is the $U(0,\alpha)$. We have $\frac{f(X)}{Mg(X)} = \alpha$ if

M = 1. It means that all the points in $[0, \alpha]$ are accepted.