## CSP7040 : ML Ops

Lab Report



Name: PINAQ SHARMA

Roll Number: M23EET007
Program: M.Tech SIoT

#### Lab-1

1. Create at least two new interaction features between numerical variables (e.g., temp \* hum). Justify your choice of features and explain how they might improve the model's predictive performance.

The Two new features created are "work\_active" and "holiday\_clear",

- work\_active: This field is 1 if the 'workingday' column is 1 and 'hr' is between 9 and 17. This is to check if the duration in which the people are working in their jobs have an impact on the Bike Sharing statistics
- holiday\_clear: This filed is 1 if the 'holiday' and 'weathersit' are 1. This is to establish a co-relation between the day being an holiday and the weather being clear and assessing its impact on the Bike Sharing.

```
df['temp_hum'] = df['temp'] * df['hum']

# Creating a second variable which is the product of windspeed and temperature

df['wind_temp'] = df['windspeed'] * df['atemp']

df
```

Figure 1: Adding additional interations

2. Replace the OneHotEncoder with TargetEncoder for categorical variables. Evaluate how this change impacts the model's performance compared to one-hot encoding.

```
# Numerical features
   numerical_features = ['temp', 'atemp' , 'hum', 'windspeed', 'temp_hum', 'wind_temp'
  numerical_pipeline = Pipeline([
   ('imputer', SimpleImputer(strategy='mean')), # Impute missing values with mean ('scaler', MinMaxScaler()) # Normalize using MinMaxScaler
5
  ])
   # Transforming above
  X[numerical_features] = numerical_pipeline.fit_transform(X[numerical_features])
  # Categorical features
9
categorical_features = ['season', 'weathersit']
categorical_pipeline = Pipeline([
12 ('imputer', SimpleImputer(strategy='most_frequent')),
13 ('target_encoder', TargetEncoder())
14 ])
15 # Transforming above
  |X_encoded = categorical_pipeline.fit_transform(X[categorical_features], y)
16
   # Converting it to a dataframe
17
   X_encoded = pd.DataFrame(X_encoded,
18
   columns=categorical_pipeline.named_steps['target_encoder'].get_feature_names_out(

    categorical_features))
  # Encoded categorical features + Numerical features
20
21
22  X = pd.concat([X.drop(columns=categorical_features), X_encoded], axis=1)
  X.columns = X.columns.astype(str)
```

#### Comparison based on the use of OneHotEncoder and TargetEncoder

• Outputs from OneHotEncoder using Random Forest Regressor:-

```
# Predictions
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Output of Random Forest Regressor using OneHotEncoder")
print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

Output of Random Forest Regressor using OneHotEncoder
Mean Squared Error: 1785.3000294504798
R-squared: 0.9436198693116282
```

Figure 2: Output of Random Forest Regressor

• Outputs from OneHotEncoder using Linear Regression:-

```
y_pred_lr = model_lr.predict(X_test)
mse_lr = mean_squared_error(y_test, y_pred_lr)
r2_lr = r2_score(y_test, y_pred_lr)

print("Output of Linear Regression using OneHotEncoder")
print(f'Linear Regression - Mean Squared Error: {mse_lr}')
print(f'Linear Regression - R-squared: {r2_lr}')

Output of Linear Regression using OneHotEncoder
Linear Regression - Mean Squared Error: 18755.230065536085
Linear Regression - R-squared: 0.40770609715898465
```

Figure 3: Output of Linear Regression

• Outputs from OneHotEncoder using Linear Regression written from scratch:-

```
# Make predictions
y_pred_scratch = model_scratch.predict(X_test)

# Evaluate the model
mse_scratch = mean_squared_error(y_test, y_pred_scratch)
r2_scratch = r2_score(y_test, y_pred_scratch)

print("Output of Scratch Linear Regression using OneHotEncoder")
print(f'Scratch Linear Regression - Mean Squared Error: {mse_scratch}')
print(f'Scratch Linear Regression - R-squared: {r2_scratch}')

Output of Scratch Linear Regression using OneHotEncoder
Scratch Linear Regression - R-squared: 0.407706097158988
```

Figure 4: Output of Linear Regression written from scratch

• Outputs from TargetEncoder using Random Forest Regressor:-

```
[36] # Predictions
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("Output of Random Forest Regressor using TargetEncoder")
print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')

→ Output of Random Forest Regressor using TargetEncoder
Mean Squared Error: 1785.3000294504798
R-squared: 0.9436198693116282
```

Figure 5: Output of Random Forest Regressor

• Outputs from TargetEncoder using Linear Regression:-

```
y_pred_lr = model_lr.predict(X_test)

mse_lr = mean_squared_error(y_test, y_pred_lr)

r2_lr = r2_score(y_test, y_pred_lr)

print("Output of Linear Regression using TargetEncoder")

print(f'Linear Regression - Mean Squared Error: {mse_lr}')

print(f'Linear Regression - R-squared: {r2_lr}')

→

Output of Linear Regression using TargetEncoder

Linear Regression - Mean Squared Error: 19139.70080092009

Linear Regression - R-squared: 0.3955644347217322
```

Figure 6: Output of Linear Regression

• Outputs from TargetEncoder using Linear Regression written from scratch:-

```
print("Output of Scratch Linear Regression using TargetEncoder")
print(f'Scratch Linear Regression - Mean Squared Error: {mse_scratch}')
print(f'Scratch Linear Regression - R-squared: {r2_scratch}')

→ Output of Scratch Linear Regression using TargetEncoder
Scratch Linear Regression - Mean Squared Error: 19139.700800919163
Scratch Linear Regression - R-squared: 0.3955644347217614
```

Figure 7: Output of Linear Regression written from scratch

#### 3. Training using LinearRegressor:

1. Using the builtin package

```
# Using the Linear Regression Package

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

model_lr = LinearRegression()
model_lr.fit(X_train, y_train)

y_pred_lr = model_lr.predict(X_test)
mse_lr = mean_squared_error(y_test, y_pred_lr)
r2_lr = r2_score(y_test, y_pred_lr)

print("Output of Linear Regression using TargetEncoder")
print(f'Linear Regression - Mean Squared Error: {mse_lr}')
print(f'Linear Regression - R-squared: {r2_lr}')
```

2. Writing the LinearRegressor from scratch

```
import numpy as np
2 import pandas as pd
  from sklearn.metrics import mean_squared_error, r2_score
   class LinearRegressionScratch:
5
       def __init__(self):
6
           self.weights = None
           self.bias = None
           self.coef_ = None
9
       def fit(self, X, y):
           X = np.array(X)
12
           y = np.array(y)
            # Adding a column of ones for the bias term
           X_b = np.c_[np.ones((X.shape[0], 1)), X]
15
           \ensuremath{\text{\#}} Calculating weights using the normal equation
16
           self.weights = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
           self.bias = self.weights[0] # First element is the bias (intercept)
18
           self.coef_ = self.weights[1:] # Remaining elements are the feature
19

→ coefficients

20
       def predict(self, X):
21
           X = np.array(X)
22
           return X.dot(self.coef_) + self.bias
23
24
       def get_feature_importances(self):
           # Returns the coefficients as a measure of feature importance.
26
           return self.coef_
27
28
   # Initialize and train the scratch model
29
   model_scratch = LinearRegressionScratch()
30
   model_scratch.fit(X_train, y_train)
31
  # Make predictions
33
34 | y_pred_scratch = model_scratch.predict(X_test)
35
36 # Evaluate the model
37 | mse_scratch = mean_squared_error(y_test, y_pred_scratch)
38 | r2_scratch = r2_score(y_test, y_pred_scratch)
39
```

```
| print("Output of Scratch Linear Regression using TargetEncoder")
| print(f'Scratch Linear Regression - Mean Squared Error: {mse_scratch}')
| print(f'Scratch Linear Regression - R-squared: {r2_scratch}')
```

#### Performance Analysis

|                                           | Mean Squared Error | R-squared           |
|-------------------------------------------|--------------------|---------------------|
| Random Forest Regressor (OneHotEncoder)   | 1785.3000294504798 | 0.9436198693116282  |
| Linear Regression (OneHotEncoder)         | 18755.230065536085 | 0.40770609715898465 |
| Scratch Linear Regression (OneHotEncoder) | 18755.23006553598  | 0.407706097158988   |
| Random Forest Regressor (TargetEncoder)   | 1785.3000294504798 | 0.9436198693116282  |
| Linear Regression (TargetEncoder)         | 19139.70080092009  | 0.3955644347217322  |
| Scratch Linear Regression (TargetEncoder) | 19139.700800919163 | 0.3955644347217614  |

Table 1: Performance analysis

### 3. MLflow Pipelines for each training



Figure 8: Pipeline for Random Forest using OneHotEncoder

Figure 9: Pipeline for Linear Regressor using OneHotEncoder



Figure 10: Pipeline for Linear Regressor wirtten from scratch using OneHotEncoder



Figure 12: Pipeline for Linear Regressor using TargetEncoder



Figure 11: Pipeline for Random Forest using TargetEncoder



Figure 13: Pipeline for Linear Regressor wirtten from scratch using TargetEncoder

# 4. Analysis of the importance of various parameters in the dataset



Figure 14: Importance analysis of Random Forest Regressor using OneHotEncoder



Figure 15: Importance analysis of Linear Regressor using OneHotEncoder



Figure 16: Importance analysis of Linear Regressor written from scratch using OneHotEncoder



Figure 17: Importance analysis of Random Forest Regressor using TargetEncoder



Figure 18: Importance analysis of Linear Regressor using Target Encoder



Figure 19: Importance analysis of Linear Regressor written from scratch using TargetEncoder