Experiment 1

February 14, 2018

Simulation Details

Considered K = 3, T = 5005. Report statistics at t = 1000, 3000, 5000The Bandit priors that were considered:

- Uniform: Draw the mean rewards for the arms from [0.25, 0.75]
- "HeavyTail": We took the mean rewards to be randomly drawn from Beta($\alpha = 0.6, \beta = 0.6$). With this distribution it was likely to have arms that were at the extremes (close to 1 and close to 0) but also some of the arms with intermediate value means.
- Needle-in-haystack
 - 1. Medium 9 arms with mean 0.50, 1 arm with mean 0.55 (+ 0.05)
 - 2. High 9 arms with mean 0.50, 1 arm with mean 0.70 (+0.20)

Algorithms considered:

- 1. ThompsonSampling with priors of Beta(1,1) for every arm.
- 2. DynamicGreedy with priors of Beta(1,1) for every arm
- 3. Bayesian Dynamic ϵ -greedy with priors of Beta(1,1) for every arm and $\epsilon = 0.05$

Agent Algorithms considered:

- 1. HardMax
- 2. HardMaxWithRandom
- 3. SoftMax

Memory Sizes

- 1. 10
- 2. 25
- 3. 100

Simulation Procedure

```
1: for Each prior p do
      for Each agent algorithm agent_alg do
          for Each principal algorithm pair principal_alg1, principal_alg2 do
3:
4:
             for Each simulation i do
                 Generate true distribution from p (except for needle-in- haystack, just use p itself)
5:
                 Run simulation for T periods
6:
             end for
7:
          end for
8:
       end for
10: end for
```

Results

One thing which is ambiguous to define is the regret value to use when a principal never gets chosen in a given simulation. When calculating any of the aggregate regret statistics we drop these simulations, but we do record how many rounds have an undefined regret.

First, we'll restrict focus to t = 5000 and look at the performance of ThompsonSampling. Note that the y axis here represents the market share that the ThompsonSampling principal gets. Per-

formance of ThompsonSampling vs DynamicGreedy and DynamicEpsilonGreedy across all agent models, memory sizes, and priors:

Now, looking across different memory sizes for each agent model (still using each prior):

excludes outside values

We'll now look fix memory size to be 100 and look at the performance across priors.

HardMax

Heavy Tail Needle In Haystackletighe In Haystack Medium Uniform

excludes outside values

