

DATABASE FOUNDATIONS

ORACLE ACADEMY

6 DE MAYO DE 2025

UNIVERSIDAD POLITECNICA DE AGUASCALIENTES
Juan Carlos Herrera Hernández

Contenido

1.	Intro	oduction	2
1.	1.	Introduction	3
1.	.2.	Introduction to Databases	4
1.	.3.	Types of Database Models	5
1.	4.	Business Requirements	6
2.	Data	abases and Data Modeling	7
2.	1.	Relational Databases	
2.	.2.	Conceptual and Physical Data Models	9
2.	.3.	Entities and Attributes	10
2.	.4.	Unique Identifiers	11
2.	.5.	Relationships	
2.	.6.	Entity Relationship Modeling (ERDs)	
3.	Refir	ning the Data Model	17
3.	1.	More with Relationships	
3.	.2.	Tracking Data Changes	17
3.	.3.	Normalization and Business Rules	17
3.	4.	Data Modeling Terminology and Mapping	
4.	Orac	cle SQL Developer Data Modeler	18
4.	1.	Oracle SQL Developer Data Modeler	18
4.	.2.	Convert a Logical Model to a Relational Model	18
5.	Мар	pping to the Physical Model	19
5.	1.	Mapping Entities and Attributes	19
5.	.2.	Mapping Primary and Foreign Keys	19
6.	Intro	oduction to SQL	20
6.	1.	Introduction to Oracle Application Express	20
6.	.2.	Structured Query Language (SQL)	20
6.	.3.	Data Definition Language (DDL)	20
6.	.4.	Data Manipulation Language (DML)	20
6.	.5.	Transaction Control Language (TCL)	20
6.	.6.	Retrieving Data Using SELECT	20
6.	.7.	Restricting Data Using WHERE	20
6.	.8.	Sorting Data Using ORDER BY	20
6	9	Inining Tables Using IOIN	20

1. Introduction

DFo Foundations Página 2 de 21

1.1. Introduction

Technological Requirements:

Oracle SQL Developer or Oralce APEX application Oracle Data Modeler

 \rightarrow

DFo Foundations Página 3 de 21

1.2. Introduction to Databases

Data vs Information.

- A relational database stores information in tables with rows and columns
- A table is a collection of records
- A row is called a record (or instance)
- A column is referred to as a field (or attribute)

DFo Foundations Página **4** de **21**

1.3. Types of Database Models

DFo Foundations Página **5** de **21**

1.4. Business Requirements

Case Scen		ssible [Databa	ase Solution	
ID	FIRST_NAME	LAST_NAME		Flat file was split	
ST0001	Sean	Smith]	into three tables	
Sport Details	Table NAME	PRICE	_	eliminating issues related to:	
TN001	Tennis	\$100	 	Redundancy	
Participant D	etails Table			• Data entry	
STUDENT_ID	SPORT_ID	SEMESTER_ DETAILS		anomaliesInconsistency	
ST0001	TN001	Fall2017		meonsistency	

Importance of Business Rules

It is important to identify and document business rules when designing a database

Business rules:

- Allow the developer/architect to understand the relationship and constraints of the participating entities
- Help you understand the standardization procedure that an organization follows when handling huge data
- Should be simple and easy to understand
- Must be kept up-to-date

Example:

Note	Business Rule	Assumption	Problem
To ensure that new book arrivals happen on the 21st of every month.			
Librarian cannot easily identify DVDs that are seriously overdue (more than two weeks late).			
Our current system probably uses Oracle Database 10g and is on UNIX.			

→

DFo Foundations Página 6 de 21

2. Databases and Data Modeling

2.1. Relational Databases

DFo Foundations Página **7** de **21**

Rules for Relational Database Tables

- Each table has a distinct name
- Each table may contain multiple rows
- Each table has a value to uniquely identify the rows
- Each column in a table has a unique name
- Entries in columns are single values
- Entries in columns are of the same kind
- Order of rows and columns is insignificant

Key Terms

Table –A basic storage structure

Column—attribute that describes the information in the table

Primary Key –the unique identifier for each row

Foreign Key –a column that refers to a primary key column in another table

Row—data for one table instance

Field –the one value found at the intersection of a row and column

Modeling Performed:

Entities -> Tables

Attributes -> Columns

Relationships -> Foreign keys

 \rightarrow

DFo Foundations Página 8 de 21

2.2. Conceptual and Physical Data Models

Conceptual Model

Logical Model

DFo Foundations Página **9** de **21**

2.3. Entities and Attributes

Identify mandatory(*), optional(o), volatile(age), and nonvolatile(birthDate) attributes

Entity Types

An entity can be classified as one of the following types:

Name	Description	Example	
Prime	Exists independently	CUSTOMER, INSTRUCTOR	
Characteristic	Exists because of another (prime) entity	ORDER, CLASS OFFERING	
Intersection	Exists because of two or more entities	ORDER ITEM, CLASS ENROLLMENT	(0)

DFo Foundations Página **10** de **21**

2.4. Unique Identifiers

2.5. Relationships

DFo Foundations Página **11** de **21**

DFo Foundations Página 12 de 21

2.6. Entity Relationship Modeling (ERDs)

Components of ERDish

- EACH
- Entity A
- OPTIONALITY (must be/may be)
- RELATIONSHIP NAME
- CARDINALITY (one and only one/ one or more)
- Entity B

DFo Foundations Página **13** de **21**

 \rightarrow

DFo Foundations Página **14** de **21**

DFo Foundations Página **15** de **21**

DFo Foundations Página **16** de **21**

3. Refining the Data Model

- 3.1. More with Relationships
- 3.2. Tracking Data Changes
- 3.3. Normalization and Business Rules
- 3.4. Data Modeling Terminology and Mapping

 \rightarrow

DFo Foundations Página 17 de 21

- 4. Oracle SQL Developer Data Modeler
 - 4.1. Oracle SQL Developer Data Modeler
 - 4.2. Convert a Logical Model to a Relational Model

 \rightarrow

DFo Foundations Página **18** de **21**

5. Mapping to the Physical Model

5.1. Mapping Entities and Attributes

5.2. Mapping Primary and Foreign Keys

 \rightarrow

DFo Foundations Página **19** de **21**

6. Introduction to SQL

- 6.1. Introduction to Oracle Application Express
- 6.2. Structured Query Language (SQL)
- 6.3. Data Definition Language (DDL)
- 6.4. Data Manipulation Language (DML)
- 6.5. Transaction Control Language (TCL)
- 6.6. Retrieving Data Using SELECT
- 6.7. Restricting Data Using WHERE
- 6.8. Sorting Data Using ORDER BY
- 6.9. Joining Tables Using JOIN

 \rightarrow

DFo Foundations Página **20** de **21**

DFo Foundations Página **21** de **21**