

planetmath.org

Math for the people, by the people.

general linear group

Canonical name GeneralLinearGroup
Date of creation 2013-03-22 12:25:36
Last modified on 2013-03-22 12:25:36

Owner djao (24) Last modified by djao (24)

Numerical id 8

Author djao (24) Entry type Definition Classification msc 20G15 Related topic Group

Related topic Representation Related topic SpecialLinearGroup Given a vector space V, the general linear group GL(V) is defined to be the group of invertible linear transformations from V to V. The group operation is defined by composition: given $T:V\longrightarrow V$ and $T':V\longrightarrow V$ in GL(V), the product TT' is just the composition of the maps T and T'.

If $V = \mathbb{F}^n$ for some field \mathbb{F} , then the group GL(V) is often denoted $GL(n,\mathbb{F})$ or $GL_n(\mathbb{F})$. In this case, if one identifies each linear transformation $T:V\longrightarrow V$ with its matrix with respect to the standard basis, the group $GL(n,\mathbb{F})$ becomes the group of invertible $n\times n$ matrices with entries in \mathbb{F} , under the group operation of matrix multiplication.

One also discusses the general linear group on a module M over some ring R. There it is the set of automorphisms of M as an R-module. For example, one might take $\mathrm{GL}(\mathbb{Z} \oplus \mathbb{Z})$; this is isomorphic to the group of two-by-two matrices with integer entries having determinant ± 1 . If M is a general R-module, there need not be a natural interpretation of $\mathrm{GL}(M)$ as a matrix group.

The general linear group is an example of a group scheme; viewing it in this way ties together the properties of GL(V) for different vector spaces V and different fields F. The general linear group is an algebraic group, and it is a Lie group if V is a real or complex vector space.

When V is a finite-dimensional Banach space, $\operatorname{GL}(V)$ has a natural topology coming from the operator norm; this is isomorphic to the topology coming from its embedding into the ring of matrices. When V is an infinite-dimensional vector space, some elements of $\operatorname{GL}(V)$ may not be continuous and one generally looks instead at the set of bounded operators.