Instructions

- 1. EXPLANATIONS ARE ALWAYS REQUIRED. SHOW ALL YOUR WORK. STATE ANY THEOREMS YOU ARE USING.
- 2. No aids of any kind are permitted.
- 3. Please write your solutions in the space provided. If you need more space, please use the back of a page. Clearly indicate where your solution continues.

Question	Mark	Question	Mark
1		5	
8 points		8 points	
2		6	
6 points		8 points	
3		7	
4 points		10 points	
4		8	
9 points		7 points	
		Total	
		60 points	

Question 1. Consider the following formal power series:

$$\Phi(x) = \frac{1}{1-x} \qquad \qquad \Psi(x) = \frac{x}{(1-x)(1+2x)}$$

$$\Lambda(x) = 1 + 10x + 100x^2 + \cdots \qquad \qquad \Upsilon(x) = x + 2x^2 + 3x^3 + \cdots$$

For each of the following, does the expression represent a well-defined formal power series? Be sure to justify your answers. Answers given without justification will receive a mark of zero.

(a)
$$\Phi(x) + \Psi(x)$$

(b)
$$A(x)$$
 satisfying $\Lambda(x)A(x) = \Upsilon(x)$

(c)
$$\Upsilon(x)^{-1}$$

(d) $\Phi(\Psi(x))$

Question 2. Let n be a positive integer. Give a combinatorial proof that

$$\binom{2n}{2} = 2\binom{n}{2} + n^2.$$

Question 3. Let A and B be sets, and let w be a weight function defined on $A \cup B$. Suppose $A \cap B \neq \emptyset$. Give an expression for the generating series $\Phi_{A \cup B}(x)$ with respect to w, in terms of generating series for smaller sets. Prove your expression is correct.

Question 4. Let k be a fixed positive integer. Let S denote the set of compositions into k parts, where each part is even and at least 6.			
(a) Express S as a Cartesian product of suitable sets.			
(b) Find the generating function for S, with respect to the usual weight function (the weight of a composition is the sum of its parts). Be sure to state all theorems you use. Express your solution as a rational function.			
(c) Let n be a positive integer. Find the number of compositions of n into k parts, where each part is even and at least 6. Express your solution as a closed-form expression in terms of n and k .			

Question 5. Let S be the set of all binary strings which start with a 1 and do not contain the substring 00111. Show that the generating series of S is equal to

$$\frac{x}{1 - 2x + x^5},$$

where the weight of a string is its length.

Question 6. Suppose the sequence $\{a_n\}_{n\geq 0}$ satisfies the homogeneous recurrence relation

$$a_n - 6a_{n-1} + 12a_{n-2} - 8a_{n-3} = 0 \quad (n \ge 3),$$

along with $a_0 = 3$, $a_1 = 10$, $a_2 = 52$. Solve this recurrence to find an explicit formula for a_n in terms of n, for all $n \ge 0$.

Question 7. Let n be a positive integer. Let T_n denote the set of all ternary strings of length n. Here a ternary string of length n is a string $\sigma = a_1 a_2 \cdots a_n$ where each $a_i \in \{0, 1, 2\}$. We define a graph H_n as follows. The vertex set of H_n is T_n . Two vertices σ and σ' are joined by an edge of H_n if and only if σ and σ' differ in exactly one position. (For example 012 is adjacent to 022 in H_3 but not to 121.)

(a) Find the number of vertices and the number of edges of H_n .

(b) Prove that H_2 is isomorphic to the graph shown below.

(c) Prove that H_n is connected for every n.

Quest of P .	stion 8. Let G be a graph, and let P be a path of maximum length in G . Let x be the first vertex
(a)	Prove that all neighbours of x are vertices of P .
(b)	Prove that if $k \geq 2$ and all vertices in a graph G have degree at least k , then G contains a cycle of length at least $k+1$.
(c)	For each $k\geq 2$, give an example of a graph in which all vertices have degree at least k and all

cycles have length at most k + 1.