Sistemas Embarcados

Nesta leitura exploraremos a diversidade de sistemas embarcados.

Se você parar alguns minutos para olhar ao redor da sala em que está, sem dúvida reconhecerá a proliferação de hardware embarcado em nosso mundo. Os sistemas embarcados estão cada vez mais onipresentes porque servem para completar tarefas computacionais específicas em seu ambiente, permitindo-nos não apenas coletar todos os tipos de dados de sensores distribuídos, mas também processar localmente as informações resultantes e agir de acordo. O fato de podermos realizar isso *in loco*, ou dentro do ambiente em que esse hardware está incorporado, por uma fração do custo e da escala física da maioria dos hardwares de computação de uso geral, abre a porta para muitos avanços na automação e, em geral, para a criação de sistemas inteligentes e coisas conectadas.

Embora as especificações e capacidades de um determinado sistema embarcado devam ser adaptadas para sua aplicação, em geral podemos olhar para a construção comum de um sistema embarcado que liga a detecção ao processamento e posterior atuação através do processo de transdução, a conversão de uma forma de energia para outro, para linhas gerais. Ao detectar, convertemos a energia de um fenômeno físico em um sinal elétrico que podemos digitalizar e calcular. Na atuação, o inverso. Neste curso, focaremos predominantemente no elemento central dessa construção: o hardware de computação, e revisaremos especificações e considerações técnicas que variam entre implementações de sistemas embarcados.

<Alt-text: Uma imagem do Arduino Nano 33 BLE Sense observando a localização da IMU, porta USB, microfone, sensores de temperatura + umidade e processador + módulo bluetooth .>

TinyML Development Board Comparison

□officially TFLM supported □ unofficially compatible boards

Board	MCU	CPU	Clock	Memory	Ю	Sensor(s)	Radio
Arduino Nano 33 BLE Sense	Nordic nRF52840	32-bit ARM Cortex-M4F	64 MHz	1 MB flash 256 kB RAM	x8 12-bit ADCs x14 DIO UART, I2C, SPI	Mic, IMU, temp, humidity, gesture, pressure, proximity, brightness, color	BLE
Espressif ESP32- DevKitC	ESP32 D0WDQ6	32-bit, 2-core Xtensa LX6	240 MHz	4 MB flash 520 kB RAM	x18 12-bit ADCs x34 DIO** UART, I2C, SPI	Hall effect, capacitive touch***	WiFi, BLE
Espressif EYE	ESP32 D0WD	32-bit, 2-core Xtensa LX6	240 MHz	4 MB flash* 520 kB RAM	SPI via surface pads	Mic, camera	WiFi, BLE
Teensy 4.0	NXP iMXRT1062	32-bit ARM Cortex-M7	600 MHz	2 MB flash 1 MB RAM	x14 10-bit ADCs x40 DIO** UART, I2C, SPI	Internal temperature, capacitive touch	None
MAX32630FTHR	Maxim MAX32620	32-bit ARM Cortex-M4F	96 MHz	2 MB flash 512 kB RAM	x4 10-bit ADCs x16 DIO UART, I2C, SPI	Accelerometer, gyroscope	BLE

^{*}this board also features 4 MB flash and 8 MB of PSRAM external to the MCU, **shared programmable functions, ***with external touch pads

Board	ASIC	DSP	Clock	Memory	Ю	Sensor(s)	Radio
Himax WiseEye WE-I Plus EVB	HX6537-A	32-bit ARC EM9D DSP	400 MHz	2 MB flash 2 MB RAM	x3 DIO I2C	Mic, accelerometer, camera	None

Incluímos o Himax WiseEye como um exemplo com suporte oficial de otimização de hardware para TensorFlow Lite que chama um circuito integrado específico de aplicativo (ASIC).