Devoir surveillé n°3

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$. En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$.

II. Une équation différentielle.

On considère l'équation différentielle

$$y'' + \frac{2y'}{\operatorname{th}(x)} + y = 0. \tag{\mathscr{E}}$$

- 1) Question préliminaire. Justifier que $\frac{\operatorname{sh}(x)}{x} \xrightarrow[x \to 0]{} 1$.
- 2) Sur quel ensemble E peut-on chercher à résoudre (\mathscr{E}) ? Écrire cet ensemble comme une union d'intervalles ouverts.
- 3) Soit $y: E \to \mathbb{R}$ une solution de l'équation (\mathscr{E}). On pose alors

$$z: E \rightarrow \mathbb{R}$$
 . $x \mapsto y'(x) + \frac{y(x)}{\operatorname{th}(x)}$.

a) Montrer que z est solution de l'équation différentielle linéaire :

$$z' + \frac{z}{\operatorname{th}(x)} = 0. \tag{\mathscr{F}}$$

- b) Résoudre l'équation (\mathscr{F}) sur \mathbb{R}_+^* .
- c) Résoudre l'équation (\mathscr{F}) sur \mathbb{R}_{-}^{*} .

 Indication : on essaiera de chercher un argument rigoureux évitant de dupliquer les arguments donnés pour résoudre la question précédente.
- d) En déduire qu'il existe $a, b, a', b' \in \mathbb{R}$ tel que, pour tout $x \in E$,

$$y(x) = \begin{cases} \frac{ax+b}{\sinh(x)} & \text{si} \quad x > 0\\ \frac{a'x+b'}{\sinh(x)} & \text{si} \quad x < 0 \end{cases}.$$

- e) Réciproquement, montrer que toutes les fonctions de cette forme sont bien solution de (\mathscr{E}) .
- 4) Parmi les solutions de (\mathcal{E}) , lesquelles admettent-elles une limite finie en 0? Le cas échéant, laquelle?

III. Une équation imaginaire.

1) Résultats préliminaires :

a) Soit Z, un complexe non nul. Prouver l'équivalence

$$\left(Z + \frac{1}{Z} \text{ est un réel }\right) \Leftrightarrow \left(Z \text{ est un réel ou } |Z| = 1\right).$$

b) On considère la fonction (réelle) f définie par $f: x \mapsto x + \frac{1}{x}$. Préciser son domaine de définition et y étudier ses variations. En conclure que la quantité $\left|x + \frac{1}{x}\right|$ possède, pour $x \in \mathbb{R}^*$, un minimum que l'on calculera.

Dans la suite de l'exercice, a et b désignent deux nombres complexes non nuls et (E) désigne l'équation

$$z^2 - 2az + b = 0.$$

On note z_1 et z_2 les racines complexes (éventuellement égales) de (E).

2) Une condition nécessaire et suffisante pour que $|z_1| = |z_2|$:

- a) Rappeler et démontrer les liens existants entre les quantités $z_1 + z_2$ et z_1z_2 , et les coefficients a et b.
- b) On suppose que $|z_1| = |z_2|$. Écrire z_1 et z_2 sous forme exponentielle puis en déduire la forme exponentielle de $\frac{a^2}{b}$.
- c) Conclure que, si $|z_1| = |z_2|$, alors la quantité $\frac{a^2}{b}$ est réelle et appartient à l'intervalle [0,1].
- **d)** Montrer que, si la quantité $\frac{a^2}{b}$ est réelle, alors avec $Z = \frac{z_1}{z_2}$, la quantité $Z + \frac{1}{Z}$ existe et est réelle.
- e) En conclure que, si $\frac{a^2}{h} \in]0,1]$, alors $|z_1| = |z_2|$.

3) Une condition nécessaire et suffisante pour que $arg(z_1) = arg(z_2)$ [2π]:

a) Démontrer l'inégalité suivante, appelée inégalité arithmético-géométrique

$$\forall x, y \in \mathbb{R}_+^*, \ \sqrt{xy} \leqslant \frac{x+y}{2}.$$

- b) On suppose que $\arg(z_1) = \arg(z_2) \ [2\pi]$. Écrire z_1 et z_2 sous forme exponentielle puis en déduire la forme exponentielle de $\frac{b}{a^2}$.
- c) Montrer que, si $\arg(z_1) = \arg(z_2)$ [2 π], alors la quantité $\frac{b}{a^2}$ est réelle et appartient à l'intervalle]0, 1].
- d) Montrer réciproquement que si $\frac{b}{a^2} \in]0,1]$, alors $\arg(z_1) = \arg(z_2) [2\pi]$.