An Optimization Layer for Distributed Matrix Computations

Jonah Brown Cohen, Tselil Schramm, and Ben Weitz

Motivation

- ▶ Big data companies like Facebook, Netlix, or Google perform large-scale distributed matrix computations
- Computations experience trade-offs in accuracy vs. time or money.

- Human operators manually tweak parameters and partitioning
 Humans are prone to error and costly to hire!
- ► Solution: Build an optimization layer to automatically tweak and manage these computations
- Learn to adjust parameters from past computations
 Incoming jobs come with budgets of time or accuracy that must be met

Objective

Create an optimizer that automatically picks algorithm parameters and the degree of data partitioning to meet budget specifications

Framework

- Optimizer built on Python
- ▶ Interfaces with matrix algorithms implemented in SparkR or MLBase
- Optimizer interfaces directly with algorithms, all parameters hidden from user

Optimizer Design

- Architecture-independent
- Chooses parameters based on statistics from prior jobs ▶ sdflksad
- Adaptive
- Stores statistics from previous jobs on instances with similar distribution, and improves predictions with time.
- Local-optimum Avoiding
- ▶ In "explore mode" we choose the instance parameters randomly, according to a distribution specified by the
- ▶ sdf

Implementation

- ► The words chosen by the adversary are hard,
- But once you know theyre difficult it's easy to adjust.
- ► Top 12 words (probability of losing in 6 turns):

Evaluation

Can the Al determine the correct memory of a player?

- Generated data for players with restricted memory.
- Extremely large number of samples required for AIC.
 Can only implement model with memory parameters 1 through 3.
- Computed (corrected) AIC and BIC values
- AIC consistently overestimates.
- BIC consistently underestimates.
- Failure of AIC due to information available to player not captured by the model.

Future Work

Achievements:

- Can learn a player's strategy assuming restricted memory.
- Can choose words that are hard for that player.
- Compiled a list of hard words for a dictionary-using frequency player. Also hard for regular humans.

Future Work:

- Online Learning.
- Foiling an Adaptive Player.
- Can we learn an adaptive strategy quickly and counter it?
- ▶ Is there a Nash Equilibrium to the responses?

Acknowledgements

We would like to thank:

- Anthony.
- ▶ UC Berkeley and the NSF for providing funds and resources.