Math 321 Fall 2011

Homework 3

Due: September 16, 2011

You are welcome to work together but everyone needs to write up **distinct** solutions. If you use any books outside of our textbook or other people, please make sure to give them credit. Make sure your solutions are complete. If your handwriting is atrocious, I am happy to give you a basic introduction to LATEX.

- 1. Given any $\alpha \in S_n$ with $\alpha \neq e$, prove that there is some $\beta \in S_n$ so that $\alpha \beta \neq \beta \alpha$.
- 2. (a) Let α be the 12-cycle (1 2 3 4 5 6 7 8 9 10 11 12). For which positive integers i is α^i also a 12-cycle?
 - (b) Let β be the 8-cycle (1 2 3 4 5 6 7 8). For which positive integers is β^i also an 8-cycle?
- 3. Let $\alpha \in S_n$ with $\alpha = \alpha_1 \alpha_2 \cdots \alpha_r$ where the α_i are disjoint cycles. Prove that

$$o(\alpha) = \text{lcm}(o(\alpha_1), o(\alpha_2), \dots, o(\alpha_r)).$$

- 4. Find all numbers n such that S_5 contains an element of order n.
- 5. If a permutation α is odd, prove that α^{-1} is odd.
- 6. Prove that for all $n \geq 3$, A_n is generated by the set of 3-cycles.
- 7. (a) Write out a complete Cayley table for D_3 .
 - (b) Is D_3 abelian?
- 8. For each D_n , prove that $r^i s = s r^{-i}$ for all $i \in \mathbb{Z}^+$.

Challenge

1. We showed in class that D_n is not abelian for $n \geq 3$. What elements in D_n commute with every other element in D_n ? Prove your assertion for all $n \geq 3$.