Visión por computador

000

Evaluación

Ciencias de la computación

https://drive.google.com/file/d/0B7tfp8D6uLBZenEyZU14aFpCeXM/view?usp=sharing

DSP

- Transformación
- Análisis
- Transmisión

Visión artificial

El sentido de la vista nos permite interactuar con el mundo, conocerlo y nos facilita su entendimiento. Gracias a la vista podemos enterarnos de los objetos que nos rodean aún sin estar en contacto con ellos, podemos interpretar sus formas y además compararlos con otros modelos que ya hemos observado antes. Debido a la importancia de la vista, el hombre ha intentado imitarla artificialmente y basándose en esta idea, ha creado el concepto de la visión artificial.

DSP

- Transformación: restauración de imágenes, recuperación de imágenes en movimiento, filtros y otras aplicaciones para entretenimiento
- Análisis: detección de movimiento para encendido de alarmas, automatización de decisiones en la industria
- Transmisión: compresión de datos para transmisión, recuperación de datos perdidos

Soluciones Medicas

Mejora de la calidad de las imágenes medicas.

Automatización de procesos que anteriormente requerían de grandes cantidades de esfuerzo y de tiempo

Ejemplo: Conteo y revisión manual de las muestras de sangre

1, 2, 3... 210

Soluciones Víales

Medición del flujo vehicular y detección automatizada de matriculas

Vehiculos con sistemas de prevención de accidentes y asistencia o automatización para el parqueo

Solcuiones Indsutriales

Clasificación de alimentos por tipo, tamaño o estado

Detección de productos defectuosos en lineas de producción

Entretenimiento

Videojuegos que interactuan con el jugador a tráves de sus movimientos

Efectos especiales y animación de personajes a través de sistema de captura de movimiento

Aplicaciones moviles para la mejora de las fotos o efectos adicionales

¿Por qué? Física detrás de los colores

¿Por qué?

Conos y bastones

Conos y bastones

Conos: células ubicadas en la capa fotorreceptora sensibles a la luz roja, azul y verde.

Representación: La luz que rebota de un objeto llega a la retina y se envía un impulso eléctrico al cerebro, de este impulso un 60% viene de los conos que detectan el rojo y un 40% viene de los conos que detectan el verde, como resultado el cerebro interpretara esta información como lo que percibimos como naranja.

lmagen digital

_	_	_	_	_	_	_	_	_	_	_	_	_	_
255	255	255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255						255	255	255	255	255
255	255	255	100									255	255
255	255	255	50	50	50	200	200	50	200	255	255	255	255
255	255	50	200	50	200	200	200	50	200	200	200	255	255
255	255	50	200	50	50	200	200	200	50	200	200	200	255
255	255	50	50	200	200	200	200	50	50	50	50	255	255
255	255	255	255	200	200	200	200	200	200	200	255	255	255
255	255	255	50	50	100	50	50	100	50	50	255	255	255
255	255	50	50	50		50.	50		50	50	50	255	255
255	50	50	50	50					50	50	50	50	255
255	200	200	50		75			75		50	200	200	255
255	200	200	200							200	200	200	255
255	200	200	100								200	200	255
255	255	255	100		100	255	255				255	255	255
255	255	50	50	50	255	255	255	255	50	50	50	255	255
255	50	50	50	50	255	255	255	255	50	50	50	50	255
255	255	255	255	255	255	255	255	255	255	255	255	255	255

255	255	255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255					100	255	255	255	255	255
255	255	255			100	100	100	100	100	100	100	255	255
255	255	255	50		50	200	200	50	200	255	255	255	255
255	255		200		200	200	200	50	200	200	200	255	255
255	255		200	50	50	200	200	200	50	200	200	200	255
255	255	50	50	200	200	200	200	50	50	50	50	255	255
255	255	255	255	200	200	200	200	200	200	200	255	255	255
255	255	255								50	255	255	255
255	255					50						255	255
255	50	50									50	50	255
255	200	200	50							50	200	200	255
255	200	200	200							200	200	200	255
255	200	200				100	100				200	200	255
255	255	255	100	100	100	255	255	100	100	100	255	255	255
255	255			50	255	255	255	255				255	255
255	50	50	50	50	255	255	255	255	50	50	50	50	255
255	255	255	255	255	255	255	255	255	255	255	255	255	255

R	0	В	Х	0,95	2	R	0	В
255	205	148				242	195	141

R	6	В	Х	0,5	+	Ř	6	В	х	0,5	=	R	6	В
255	205	148				213	166	189				234	186	169

OT.	8	В	+	8	0	В	=	R	6	В
75	200	50						255	225	75

Función matemática

Primer transformación (Resta)

https://docs.google.com/spreadsheets/d/1F4DfZZEwkjLxlEKYsRzwUvzlfR3VdJhLfq1QJGqE3l0/edit?usp=sharing

Desafios

Instalar

https://docs.google.com/document/d/liy2KThHwISqsQFPjCP1_GeX-RKvqc96Owbpq7UE0k_E/edit?usp=sharing