模拟集成电路设计实验——第一次实验

信息科学技术学院 胜名:胡睿 PB17061124

实验报告 评分:

<u>信院系 17</u>级 姓名 胡睿 日期 2021-01-04 NO.

【实验题目】MOS 管工艺参数获取

【实验目的】

- 1. 学习使用 Cadence IC6 版本全定制设计集成平台 virtuoso, 进行 Schematic 原理图编辑;
- 2. 学习 ADE(模拟设计环境) 的 Spectre 直流 DC 仿真方法,并获取 MOS 管工艺参数;
- 3. 学习将 CDB 格式工艺库转换为 IC6 使用的 OA 格式工艺库,使新的集成设计平台适用于先前老工艺。

【提取参数】

表 3.2:

器件标号	单元名	L/n	W/n	w/L(um)	betaeff/u	cgd/a	cgs/a	gm/u	id(uA)	Vth(mV)	µ∗Cox/u
NM0	n18	180	220	0.22/0.18	502.681	-244.547	-303.925	24.6409	11.5443	435.209	411.284455
PM0	p18	180	220	0.22/0.18	144.881	-105.083	-338.028	47.6861	-11.5443	-490.221	118.539
NM1	n18	180	1800	1.8/0.18	3573.16	-612.844	-2384	787.495	237.64	466.577	357.316
PM1	p18	180	1800	1.8/0.18	911.485	-684.842	-2200.16	282.093	-70.6879	-484.91	91.1485
NM2	n18	800	8000	8/0.8	3246.61	-2923.83	-39907.6	1134.09	315.474	418.445	324.661
PM2	P18	800	8000	8/0.8	670.221	-3357.37	-41843.5	241.425	-63.5047	-430.261	67.0221
NM3	nmvt18	800	8000	8/0.8	3410.02	-3407.45	-40862.2	1473.66	538.714	284.985	341.002
NM4	n18_ckt_rf	180	1800	1.8/0.18	7132.38	34.7455	-3509.11	1608.17	474.214	473.569	713.238
NM5	n18	180	1800	1.8/0.18	3622.63	-595.137	-2339.91	650.769	113.707	642.391	362.263

表 3.3:

m	os	A 处(垂	线 V1)	B 处(垂	线 V2)		Id(uA)Vd=0.9	λ保留 3 位
器件	W/L	ld1(uA)	Vd1	ld2(uA)	Vd2	roKΩ		
NM1	1.8/0.18	240.724	1V	234.229	0.8V	30.79291763	237.64	0.136656287
PM1	1.8/0.18	-69.391		-71.881		80.32128514	-70.688	0.176126075
NM2	8/0.8	316.558		314.151		83.09098463	315.474	0.038148944
PM2	8/0.8	-63.298		-63.691		508.9058524	-63.505	0.030942445

【思考题】

3. 回答提问:

A) nmvt18 和 n18 管的阈值电压大约相差多少?

NM2 为 n18, 沟道长度 800n 沟道宽度 8000n, 阈值电压 418.445mV;

实验报告 भी

<u>信院系 17 级 姓名 胡睿</u> 日期 2021-01-04 NO.

NM3 为 nmvt18, 沟道长度 800n 沟道宽度 8000n, 阈值电压 284.985mV;

418.445mV-284.985mV=133.46mV

B) 根据表 3.2, n18 的衬偏(体)效应使阈值电压增大了多少?

MOSFET 在出现沟道(反型层)以后,虽然沟道下面的耗尽层厚度达到了最大(这时,栅极电压即使再增大,耗尽层厚度也不会再增大);但是,衬偏电压是直接加在源-衬底之间的反向电压,它可以使场感应结的耗尽层厚度进一步展宽,并引起其中的空间电荷面密度增加,从而导致器件的阈值电压 VT 升高。

NM2 阈值电压 418.445mV, NM1 阈值电压 466.577mV, 衬偏效应是的阈值电压增大了 466.577mV-418.445mV=48.132mV。

- 4. 简要给出设置 spectre DC 仿真的主要软件使用步骤 (相关的菜单选择和参数设置) 流程。
- 1. setdt ic616 然后 setdt mmsim;
- 2. 接下来用 virtuoso&启动 virtuoso;
- 3. 如果要新建一个工程,那么在 Virtuoso 窗口中, File---New---Library…, 在弹出的 New Library 窗口中, Library Name 键入: icbaslab, 并在 Technology File 中选 Attach to an existing techfile;如果要打开已有的工程文件, 那么 Tools->Library Manager, 在 Library Manager 窗口中, 选 icbaslab 库—>MOStest 单元, 双击 schematic 视图(view)即可打开;
- 4. 选中 smic18mmrf 工艺库,作为 icbaslab 库设计单元的关联工艺库;
- 5. 在 Virtuoso 窗口, Tools -> Library Manager 窗口, 选中 icbaslab 库;
- 6. 在 Library Manager 窗口, File---New---Cell View…;

实验报告 评分:

<u>信院</u>系<u>17</u>级 姓名<u>胡睿</u> 日期<u>2021-01-04</u> NO.___

- 7. 在 Cell 栏中, 键入 单元名 MOStest;
- 8. 按下键盘 "i"来输入 schematic 电路图,在 smic18mmrf 工艺库可以找到所需要的管子模型,在 analogLib 中可以找到常用的 vdd,vdc,gnd 等模型;按下键盘 "w"对所有器件进行连线,"esc"可以退出,"delete"可以删除;
- 9. 之后进入 ADEL 仿真窗口: 在 Schematic L Editing 窗口, Launch ADEL。 弹出 Analog Design Environment 即 ADEL(1)-库名 单元名 schematic 窗口;
- 10. 设置用于扫描仿真的变量: 选右侧 Edit Variables 工具图标或菜单工具栏中 Variables->Edit···添加 DC 工作点 vd 和 vin;
- 11. 在 ADE L ()-库名 单元名 schematic 窗口中,选择 DC 仿真分析: 选 Choose Analyses 工具图标;
- 12. 在 Choosing Analyses 窗口中选中 dc 和 Save DC Operating Point 有效,并且选中 Design Variable 有效,设置变量 vd 或点击 Select Design Variable 选择,设置其扫描范围: 0~1.8 ;
- 13.在 ADEL()-库名 单元名 schematic 窗口菜单工具栏中设置输出(显示波形): 菜单 Outputs---Setup;
- 14. 在 Setup Outputs 窗口中,点击 From Schematic, 然后在电路图中点击选中 线网和端口;
- 15. 保存所设置的仿真条件,以便下次仿真能恢复设置进行重复仿真: 在 ADE L()窗口中 Section -> Save State…; 下载进行仿真时可以在 ADE L()窗口中 Section -> Load State… 即可打开前一次设置好的仿真条件,如果出现 No Lib 相关的报错则需要重新 setdt mmsim;

实验报告 评分:

<u>信院</u>系_17_级 姓名<u>胡睿</u> 日期__2021-01-04__NO.__

16. 进行仿真: ADE L()-库名 单元名 schematic 窗口中 Outputs 栏 Plot 应有效,Netlist and Run。仿真结束后出现 Virtuoso Visualization & Analysis XL 窗口显示波形图,可点击右上 Split Current Strip 工具图标(下图红圈),分开各个波形;点击左侧"眼睛",可隐藏和显示相应波形;使用 Marker-> Create Marker…或单击+A 等标点;

17. 在 ADE L Editing: 库名 单元名 Schematic 窗口, View---Annotations---DC Operating Points 进行标注。若要查看器件尺寸,则点击使 Component Parameters 有效;若要查看端口电压和先前 Setup Outputs 设置的端口电流),则点击使 DC Voltages, Currents 有效;

18. 在 ADE L()-库名 单元名 Schematic 窗口, Results Print DC Operating Points, 可以点击任意 MOS 管查看 MOS 管工艺参数,记录数据后可以结束并关闭仿真。

【实验收获】

- 1、学习使用 Cadence IC6 版本全定制设计集成平台 virtuoso, 进行 Schematic 原理图编辑;
- 2、学习 ADE (模拟设计环境) 的 Spectre 直流 DC 仿真方法, 获取 MOS 管工艺参数并进行相关的计算;
- 3、学习将 CDB 格式工艺库转换为 IC6 使用的 OA 格式工艺库,使新的集成设计平台适用于先前老工艺。