Trabajo Practico N.º 4:

1. Obtener los NFA-e que representan las siguientes expresiones regulares

NOTA: EL TP ES UNA COPIA DEL TP4 DEL GRUPO 4 AÑO 2019,

NOTA: EL TP ES UNA COPIA DEL TP4 DEL GRUPO 4 AÑO 2019, MARTÍNEZ, MAINERI, GREGORUTTI **b.**
$$((00)^*(11)) \cup 01)^*$$
c. \emptyset

d \triangle . $(ab \cup aab \cup aba)^*$

e. $(a \cup b)^*$ aabab

Α.

Inicia en {q1}

Finaliza en {q6,q8,q10,q15,q17,q19}

 $Q = \{q1,q2,q3,q4,q5,q6,q7,q8,q9,q10,q11,q12,q13,q14,q15,q16,q17,q18,q19\}$

 $\varepsilon = \{0, 1, \varepsilon\}$

 $A = \{Q, \delta, q0, F, \Sigma\}$

La letra "e" representa al signo "épsilon"

No es necesario plantear dos veces el camino 000, puede ser el mismo luego de la clausura

В.

Inicia en {q1}

Finaliza en {q1,q4,q9}

 $Q = \{q1,q2,q3,q4,q5,q6,q7,q8,q9\}$

 $\varepsilon = \{0,1 \ \varepsilon \ \}$

 $A = \{Q, \, \delta, \, q0, \, F, \, \Sigma\}$

C.

Inicia en {q1}

Finaliza en {q2}

 $Q = \{q1,q2\}$

 $\varepsilon = \{ \varepsilon \}$

 $A = \{Q, \delta, q0, F, \Sigma\}$

No representa a la ER propuesta, no está la clausura ni el vacío. lo que se representó es la er epsilon

D.

Inicia en {q1}

Finaliza en {q1, q5, q9, q12}

Q = {q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12}

 ε = {0,1, ε }

 $A = \{Q, \delta, q0, F, \Sigma\}$

E.

Inicia en {q1}

Finaliza en {q9}

 $Q = \{q1, q2, q3, q4, q5, q6, q7, q8, q9\}$

$$\epsilon$$
 = {0, 1, ϵ }

$$A = \{Q, \delta, q0, F, \Sigma\}$$

2. Utilizando el procedimiento visto en clase, convertir los siguientes autómatas en expresiones regulares.

RTA:

[(a*b U (a* U ba*b)*)]^+ Genera cadenas no reconocidas por el AF, ej a, aa, bab, etc.

[(aUb)a*b((ba*b)Ua))]* No permite generar cadenas reconocidas como ab

RTA:

[(a U b) (b (a U b) U a (a Ub))]^+no permite generar cadenas válidas como a o b. Está mal puesta la clausura.

RTA:

[(a* U b) (b* U a) (a U b*aa)]*

 $[0 ((11*00*1*) U (00*11*0*)) U (100*11*0*)]^+$ Falta una clausura

RTA:

 $[((0*1*)(0100*U 100*)) U (100*)]^+$ Mismo error ejercicio anterior

RTA:

[a*c ((a (((a*c)*c) U b)) U c) (b U c) ((bb)* U (ccc)*)]^+ No genera cadenas válidas como bb

[(ab*a)*a U (bb*a (b(ab*a)*a Ua) U bb*a)]

3. Dados los siguientes autómatas A(izquierda) y B (derecha)

a. Diseñar el autómata que representa A U B, A.B y A*

La letra "e" representa al signo "épsilon"

A U B

Inicia en {q1}

Finaliza en {q4, q5, q8}

 $Q = \{q1, q2, q3, q4, q5, q6, q7, q8\}$

 $\varepsilon = \{ \varepsilon, a, b, c \}$

 $A = \{Q, \delta, q0, F, \Sigma\}$

A.B

Inicia en {q1}

Finaliza en {q8}

 $Q = \{q1, q2, q3, q4, q5, q6, q7, q8\}$

 $\varepsilon = \{ \varepsilon, a, b, c \}$

 $A = \{Q, \, \delta, \, q0, \, F, \, \Sigma\}$

A*

Inicia en {q1}

Finaliza en {q1,q7}

 $Q = \{q1, q2, q3, q4, q5, q6, q7\}$

4 Δ. Dadas las siguientes Grillas, imagine un robot que se encuentra inicialmente en la posición S de alguna de ellas (no se conoce a priori en cuál), y que tiene como objetivo llegar a cualquiera de las posiciones G, efectuando una serie de movimientos MOVS={arriba, abajo, izquierda, derecha}. Teniendo en cuenta que:

- Estando en una cierta posición, el robot puede realizar sólo un movimiento a la vez, tomado el mismo de MOVS, y que el efecto de cada movimiento, según el elegido, es el cambio a otra posición adyacente dentro de la grilla.
- El robot NO PUEDE traspasar paredes (Celdas negras). Si el movimiento seleccionado lo lleva a chocar con una pared, el efecto de la acción es que permanece en la posición en la que se encuentra.
- Existen celdas especiales (B,D y C), que producen el efecto de que al encontrarse en B/D/C, el robot produce una réplica de sí mismo en las celdas etiquetadas con B1/D1/C1. El robot original no desaparece de la grilla, por lo cual podría haber varios robots en una grilla dada, incluso en la misma celda.
- a) Plantee UN Autómata Finito que permita determinar si, para una secuencia general de acciones llevada a cabo en alguna de las grillas, algún robot llegará a cumplir su objetivo, sin importar en cual Grilla haya iniciado su camino y en cuál lo haya completado. Se debe tener en cuenta que por ejemplo podrían existir trayectorias que sean exitosas en ambas grillas, o sólo en una de ellas, o en ninguna de las dos. Su autómata debe ser lo suficientemente genérico para contemplar dichas situaciones.
- b) ¿Qué "lenguaje" reconoce el autómata planteado?

Reconoce G1 U G2

- *5. Diseñe un AF de dos estados que reconozca el lenguaje representado por a*b*
- a) Dibuje su diagrama de transiciones.
- b) Defínalo formalmente: (5-upla y tabla de transiciones)

RTA:

Inicia en {q1}

Finaliza en {q2, q3}

 $Q = \{a, b, \epsilon\}$

 $\varepsilon = \{a, b, \varepsilon\}$

 $A = \{Q, \, \delta, \, q0, \, F, \, \Sigma\}$

δ está descripta como

	а	b	е
q2	q2	Ø	q3
q3	Ø	q3	Ø

 $6.\ \Delta$ Dado el siguiente autómata, construya el lenguaje que este acepte y la expresión regular que lo genera.

RTA:

$$[x [(xyx) + (y (x U(xx) + x U xy))] U [((xUy) ((yx (xUy)) +)y(y U ((xx) +y) U xx U(xxx) +x))]]*$$

{w/w comienza con X (permitiendo repeticiones de XYX O XXY) y a continuación una Y y termina con X o XY permitiendo repeticiones de X; o comienza con X (permitiendo repeticiones de XYX O XXY) y luego una X o Y, y a continuación una Y y termina Y permitiendo repeticiones pares de X o termina en par de X}