Corn Trait Introgression

Prospects and Opportunities

Trait Introgression program mission

Deliver high <u>quality</u>
 conversions & enable the trait
 pipeline... <u>timely</u> & <u>efficiently</u>

Key Accountabilities

- Hand off events & traits to testing
- Hand off commercial conversions to manufacturing

Right products, right place, right time

Product Concept

What & Why

Trait Value
Breeding germplasm
Market Need

Conversion Process When, Where, How

Trait Strategy
Conversion Strategy

On time Hand-off & Testing

What, When, How much

Pipeline integration

Define the key Trait Strategy

What & When

Commercial launch alignment

Conversion strategy — Where & How

Successful product delivery requires tight coordination

	Key Decisions
KD1	Trait Strategy
KD2	Donor Selection
KD3	Keep List
KD4	Keep List
KD5	Increase List
KD6	Equivalency Testing List
KD7	Pre-Foundation Handoff
KD8	Primary Version Selection/Naming

Operational Integration to drive key decisions

Operation workflow

Key Decision workflow

Case study

- 3 trait stack -> SmartStax female
 - 2T -> 1 Lab (Ins) & 1 Field (RR-Ins) selection
 - 1T -> Field selection (LL-Ins)

- Panel of 60 markers for background in R2
- Starts in December -> 3 generations per year
- Breeding keep list of 50% every year
- Hand off 2 versions-> 1 per family
- Quality conversion: >95% RP recovery (equivalent to BC4 in conventional BC)
- Germination: 85%
- Selection intensity: ~10%

Non-Marker Generations

- Ensure conversions start clean
 - QC= assay panel for adventitious presence traits on both RP and D
- Fingerprint previous generation to MABC
- Watch for cytoplasm and donor-RP planting split
- Relatively less expensive (~15 to 25% of conversion costs)

	SREs				Lab Data Points						
	2Т	1T	Total (\$)	HT-2T	HT-1T	PT-2T	PT-1T	Total (\$)			
NS	200	200	\$6,400			2,938*	2,938*	\$2,350			
F1	200	200	\$6,400	9,600*	4,800*			\$2,160			
BC1	300	200	\$8,000	4,800	1,600			\$10,960			

FP

Marker Generations

- The efficiency of marker-assisted backcrossing depends on the population size of each generation, distance of markers from the target locus, and number of background markers.
 - As a reference to obtain a response to selection of $\sim 10\%$ with 60 markers, a population size of 180 is required in maize, corresponding to ~ 5400 marker data points
- Resource intensive (~55 to 75% of conversion costs)
 - watch footprint of NRP after selection for best individuals
- Highly dependent on lab performance
 - Particularly turnaround time dictating time of discard -> impact on planting footprint and plant performance

	SREs			Lab Data Points							
	2Т	1T	Total (\$)	HT-2T	HT-1T	PT-2T	PT-1T	Total (\$)			
BC2	900	600	\$31,500	335,800	294,800			\$94,590			
BC3 (S)	600	450	\$22,050	335,800	294,800			\$94,590			
BC3F1	1200		\$25,200	354,200				\$53,130			

HT - high throughput lab, PT - proficiency tested, FP - Fingerprint

Zigocity workflow

- The goal is to fix the traits (Homo)
- Relatively less resource intense (~10 % of conversion costs)
- Highly dependent on lab performance
 - Turnaround time -> plant performance
 - Lab concordance -> can increase cost up to 30% (re-sampling)
 - Missing data

F2

F3

SR	Es	Lab Data Points				
3Т	Total (\$)	НТ-ЗТ	PT-3T	Total (\$)		
400	\$7,600	28,688	4,200	\$5,983		
200	\$3,800	22,950	1,800	\$4,163		

2 families and 2 versions/family are advanced to increase

Increase and Hybrid Make-Up

- Final conversion quality check
 - Adventitious presence in all plots
 - Fingerprint by version
 - Event of interest all plants (verify HOMO state)
- Targets driven by testing plans
- Potentially increase could be integrated with zygocity to skip one cycle
- Less intense but larger volumes (<10% of a conversion cost)

SR	Es	Lab Data Points					
3Т	Total (\$)	НТ-3Т	PT-3T	Total (\$)			
200	\$3,600		9,100	\$8,140			
400	\$7,200						

F4

HMU

FP

Cost Summary

Year	Gen	Trait	Nursery	Start Date	End Date	Ear Target	Cycle	Lines	SRE/conv	DTP	SF	E cost	La	b cost	То	tal cost	Туре
1	NS	MON88-MON89	16-NS-2T	12/5/2015	4/3/2016	1	120	100	2	2,938	\$	3,200	\$	1,175	\$	4,375	NS
1	NS	HXCB	16-NS-1T	12/5/2015	4/3/2016	1	120	100	2	2,938	\$	3,200	\$	1,175	\$	4,375	NS
1	F1	MON88-MON89	16-F1-2T	4/3/2016	8/1/2016	2	120	100	2	9,600	\$	3,200	\$	1,440	\$	4,640	MAS
1	F1	HXCB	16-F1-1T	4/3/2016	8/1/2016	2	120	100	2	4,800	\$	3,200	\$	720	\$	3,920	MAS
1	BC1	MON88-MON89	16-BC1-2T	8/1/2016	11/29/2016	6	120	100	3	4,800	\$	4,800	\$	9,720	\$	14,520	MAS
1	BC1	HXCB	16-BC1-1T	8/1/2016	11/29/2016	4	120	100	2	1,600	\$	3,200	\$	9,240	\$	12,440	MAS
2	BC2	MON88-MON89	16-BC2-2T	11/29/2016	3/29/2017	6	120	50	18	335,800	\$	18,900	\$	50,370	\$	69,270	MABC
2	BC2	HXCB	16-BC2-1T	11/29/2016	3/29/2017	4	120	50	12	294,800	\$	12,600	\$	44,220	\$	56,820	MABC
2	BC3	MON88-MON89	16-BC3-2T	3/29/2017	7/27/2017	5	120	50	12	335,800	\$	12,600	\$	50,370	\$	62,970	MABC
2	BC3	HXCB	16-BC3-1T	3/29/2017	7/27/2017	5	120	50	9	294,800	\$	9,450	\$	44,220	\$	53,670	MABC
3	F1	SS	16-F1S-3T	7/27/2017	11/24/2017	4	120	50	24	354,200	\$	25,200	\$	53,130	\$	78,330	MABC
3	F2	SS	16-F2S-3T	11/24/2017	3/24/2018	100pp	120	25	16	32,888	\$	7,600	\$	5,983	\$	13,583	ZYG
3	F3	SS	16-F3S-3T	3/24/2018	7/22/2018	100pp	120	25	8	24,750	\$	3,800	\$	4,163	\$	7,963	ZYG2
3	F4	SS	16-F4S-3T	7/22/2018	11/19/2018	20-25	120	25	8	9,100	\$	3,600	\$	8,140	\$	11,740	INC
3	HMU	SS	HMU	11/19/2018	3/19/2019	20-25	120	25	16		\$	7,200	\$	-	\$	7,200	INC
3	F5S	SS	Hand-off	3/19/2019	Apr-19						\$:	121,750	\$	284,066	\$	405,816	
												31%		69%	\$	901,813	

Nursery Type	Cost	Percent of Total
NM	\$ 44,270	11%
MK	\$ 321,060	79%
ZY	\$ 21,546	5%
IN	\$ 18,940	5%
Cost of conversion	\$ 4,055	

Factors that impact the cost of conversion

Opportunities in conversion

Thank you

Questions?