Experimento 06a - Calorímetria

Giovani Garuffi RA: 155559João Baraldi RA: 158044Lauro Cruz RA: 156175Lucas Schanner RA: 156412Pedro Stringhini RA: 156983

17 de novembro de 2014

1 Resumo

2 Objetivos

Este experimento pode ser divido em três partes, cada uma com seus objetivos, que são: traçar um gráfico de calibração de um termopar, calcular a constante de tempo de um calorímetro, e calcular sua capacidade térmica.

3 Procedimento Experimental e Coleta de Dados

3.1 Procedimento

3.1.1 Curva de calibração de um termopar

djng

Figura 1: Calorímetro.

Figura 2: Montagem experimental para a calibração do termopar.

3.1.2 Constante de tempo de um calorímetro

szkjdgb

3.1.3 Capacidade térmica de um calorímetro

siough

3.2 Dados Obtidos

A Tabela 2 apresenta as medições Da tensão medida no termopar, em função da temperatura.

Tabela 1: Dados obtidos no experimento

Tensão (mV)	Temperatura (C)
4.62	89
4.40	87
4.19	84
3.96	80
3.82	78
3.04	65
2.89	62
2.44	54
2.31	51
2.03	47
1.94	45
1.80	42
1.69	40
1.44	37

O erro na temperatura é de 0.5C, e na tensão de 0.01mV

Tabela 2: Dados obtidos no experimento

Tempo (s)	temperatura (C)
0	89
700	78
860	76
1500	71
1610	70

O erro na temperatura é de 0.5C, e no tempo de 0.5s

4 Análise dos Resultados e Discussões

4.1 Curva de Calibração do Termopar

Para comparar os dados obtidos no experimento e os dados conhecidos de tensão em função da temperatura, foi construído o gráfico na Figura 3.

Verifica-se que houve algum tipo de erro experimental na realização, uma vez que os resultados obtidos são internamente consistentes (A relação é linear, assim como esperado), mas uma diferença significativa das medidas esperadas.

Figura 3: Curva de calibração do termopar. As medidas Azuis são as obtidas experimentalmente e as vermelhas são as esperadas

4.2 Constante de tempo do calorímetro

A queda de temperatura da agua no calorímetro pode ser descrita pela equação

$$T = T_0 e^{-t/\tau} + T_a$$

que pode ser reescrita como

$$\ln \Delta T = -t/\tau + \ln T_0$$

Vemos então que deve haver uma relação linear entre $ln\Delta T$ e t. Para verificar essa relação foi construido a tabela 3 e o gráfico da figura 4.

Fazendo a regressão linear sobre os dados da tabela 3, obtemos os coeficientes

$$a = -0.000232 \pm 0.000007$$

$$b = 4.125 \pm 0.007$$

Tabela 3: Dados relacionando $ln\Delta T$ à tTemperatura (C) $\Delta T(C)$ $\ln \Delta T (\ln C)$ tempo (s) 89 ± 0.5 62.5 ± 0.7 4.135 ± 0.008 0 78 ± 0.5 51.5 ± 0.7 3.941 ± 0.009 700 76 ± 0.5 49.5 ± 0.7 3.90 ± 0.01 860 71 ± 0.5 44.5 ± 0.7 3.79 ± 0.01 1500 70 ± 0.5 43.5 ± 0.7 3.77 ± 0.01 1610

 ΔT for calculado a partir de uma temperatura ambiente de 26.5C

Figura 4: Gráfico de regressão linear de $\ln \Delta T$ por t.

- 5 Conclusões
- 6 Bibliografia