4 Signalverarbeitung

- Grundbegriffe (
- Frequenzspektren, Fourier-Transformation
- Abtasttheorem: Eine zweite Sicht 4.3
- Filter 4.4

Weiterführende Literatur (z.B.):

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson 2004

Richard C. Lyons: Understanding Digital Signal Processing, 2nd ed., Prentice-Hall 2004

Frequenz und Periode

- Viele zeitveränderliche Signale sind periodisch oder enthalten periodische Anteile
- Periodisch: Signalverlauf wiederholt sich regelmäßig
- Periodenlänge T: Dauer (in s bei zeitabhängigen Signalen) bis zum Beginn der nächsten Wiederholung
- Frequenz f: Anzahl der Wiederholungen pro Sekunde (Hz)

Beispiele periodischer Signale

Gradmaß und Bogenmaß

• Die Größe eines Winkels kann in Grad oder als Teil des Umfangs eines Einheitskreises (2π) angegeben werden.

Gradmaß	Bogenmaß
90°	π/2
180°	π
270°	3/2 · π
360°	2 · π

Kreisfrequenz

 Die Kreisfrequenz ω gibt den pro Sekunde von einem drehenden Zeiger überstrichenen Winkel im Bogenmaß an (rad/s).

$$\omega = 2\pi \cdot f = \frac{2\pi}{T}$$

Beispiel: Zeigerdarstellung (Phasor) einer Sinusschwingung:

Schwingungen und komplexe Zahlen

Eulersche Formel:

$$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$$

Gleichwertige Darstellungen einer (Co-)Sinus-Schwingung:

$$x(t) = a \cdot \cos(\omega t + \theta)$$

$$x(t) = \operatorname{Re}\left(a \cdot e^{i\omega t + \theta}\right)$$

- a Amplitude
- ω Frequenz
- θ Phasenverschiebung

Summieren von Schwingungen

- Die Summation zweier periodischer Schwingungen ergibt wieder eine periodische Schwingung.
- Beispiel:
 - Überlagerung von Sinus/Cosinusfunktionen
 - "Phasor"-Darstellung (d.h. drehende Zeiger)
 - Summation =
 Anfang/Drehpunkt zweiter Drehzeiger am Ende des ersten Zeigers

Siehe: http://www.jhu.edu/~signals/phasorlecture2/indexphasorlect2.htm

Summe harmonischer Schwingungen

• Eine Menge von Schwingungen heißt *harmonisch*, wenn die Frequenzen der beteiligten Schwingungen ganzzahlige Vielfache einer Grundfrequenz sind.

- Beispiel:
$$x_1(t) = 4 \cos(3t), x_2(t) = 2 \cos(6t + \pi/4)$$

Überlagerung von fünf harmonischen Schwingungen:

4 Signalverarbeitung

- Grundbegriffe
- Frequenzspektren, Fourier-Transformation

- 4.3 Abtasttheorem: Eine zweite Sicht
- 4.4 Filter

Jean Baptiste Joseph Fourier (1768–1830)

Fourier-Reihen

 Jede periodische Schwingung kann durch eine Summe harmonischer Cosinus-Schwingungen angenähert werden.

$$x(t) = \sum_{k=0}^{\infty} a_k \cdot \cos(k\omega_0 t + \theta_k)$$

$$a_0 \cdot \cos(\theta_0)$$
 Gleichanteil
$$a_1 \cdot \cos(\omega_0 t + \theta_1)$$
 Grundfrequenz
$$a_k \cdot \cos(k\omega_0 t + \theta_k) \quad k \ge 2 \quad k\text{-te harmonische Schwingung}$$

- Jede periodische Schwingung kann durch eine (endliche) Summe von Cosinus-Schwingungen angenähert werden.
 - Die "richtigen" Koeffizienten a_k lassen sich mathematisch bestimmen.
 - Die Genauigkeit der Approximation hängt davon ab, wann die Summe abgebrochen wird.

Fourier-Transformation

- Fourierreihen-Approximation funktioniert für periodische Funktionen
 - mit bestimmten (in der Praxis meist erfüllten) Eigenschaften
- Übertragung auf nicht-periodische Funktionen
 - Auswahl eines Teilabschnitts (in der Zeit)
 - Periodische "Fortsetzung" des Teilabschnitts
- Fourier-Transformation
 - Übersetzt eine Funktion in den "Frequenzraum" (Spektrum)
 - Algorithmisch relativ einfach, z.B. als "Fast Fourier Transformation" (FFT) in Hard- oder Software realisiert
 - Transformation umkehrbar

Frequenzspektrum

- Jedes Signal setzt sich aus einer Überlagerung verschiedener (Co) sinusschwingungen zusammen.
- Statt über das Signal zu reden, können wir auch über die Frequenzzusammensetzung des Signals reden (das Frequenzspektrum).
- Eine Funktion im *Frequenzraum* gibt an, welchen Anteil eine bestimmte Frequenz am Signal hat.

Hinweis: Ebenso einsetzbar bei ortsabhängigen statt zeitabhängigen Signalen!

Beispiel: Frequenzspektrums eines Klangs

Sinusschwingung (349 Hz):

Oboenton (349 Hz):

Beispiel: Sägezahnfunktion

Sägezahnfunktion als Überlagerung von Sinusfunktionen

-0.2

Ludwig-Maximilians-Universität München, Medieninformatik, Prof. Butz

Negative Frequenzen?

- Positive Frequenz: Drehung des Phasors in mathematisch positiver Richtung (gegen den Uhrzeigersinn)
- Negative Frequenz: Drehung des Phasors in mathematisch negativer Richtung (im Uhrzeigersinn)

Frequenzraum bei Bilddaten

- Prinzipiell gelten die gleichen Zusammenhänge für (ortsabhängige) Bilddaten wie für (zeitabhängige) Audiodaten
- Beispiel links:
 - Wertverlauf eines Bildes entlang einer Linie
 - Frequenzspektrum
- Details siehe später...

4 Signalverarbeitung

- 4.1 Grundbegriffe
- 4.2 Frequenzspektren, Fourier-Transformation
- 4.3 Abtasttheorem: Eine zweite Sicht

4.4 Filter

Bandbreitenbegrenzung

- Die meisten Signale haben eine obere und untere Grenzfrequenz, d.h. niedrigere oder höhere Frequenzen kommen nicht vor oder sind nicht relevant.
- Beispiel: Audio-Signale interessieren nur im menschlichen Hörbereich
 ca. 20 Hz bis 20 kHz

Frequenzabhängige Signaldarstellung

Abtastung mathematisch betrachtet

- Annahme: Abtastung einer Sinusschwingung mit f_0 Hz.
 - $-x(t) = \sin(\omega t), \quad \omega = 2\pi f_0$
- Annahme: Abtastrate ist f_s , Abtastabstand ist $t_s = 1/f_s$.
- Erste *n* Samples:
 - 0-tes Sample: $x(0) = \sin(2\pi f_0 0 t_s)$
 - = 1-tes Sample: $x(1) = \sin(2\pi f_0 1 t_s)$
 - = 2-tes Sample: $x(2) = \sin(2\pi f_0 2 t_s)$
 - **–** ...
- $x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi f_0 n t_s + 2\pi m)$ (für beliebiges ganzes m)
 - Annahme: m = k n
 - $x(n) = \sin(2\pi(f_0 n t_s + m)) = \sin(2\pi(f_0 + m / (n t_s)) n t_s)$ $= \sin(2\pi(f_0 + k / t_s) n t_s) = \sin(2\pi(f_0 + k f_s) n t_s)$
 - Also: $x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s)$
- Man kann nicht zwischen den Abtastwerten eines Sinussignals von f₀ Hz und f₀+k·f_s Hz unterscheiden!

Abtastung im Frequenzraum

- Effekt der Abtastung im Frequenzraum:
 - Originalspektrum wiederholt sich im Abstand der Abtastfrequenz
 - Originalspektrum ist symmetrisch um den Ursprung, wird auch in den Wiederholungen gespiegelt.
- Andere (meist zitierte) mathematische Erklärung:
 - "Kamm-Funktion" zur Modellierung der Abtastung
 - "Faltung" zwischen Original und Kamm führt zur Replikation des Originalspektrums

Aliasing

 Wenn sich die wiederholten Frequenzspektren überlappen, kommt es zur Bildung nicht vorhandener (Alias-) Frequenzen im rekonstruierten Signal.

Aliasing wird vermieden, wenn $2*f_g < f_S$

4 Signalverarbeitung

- 4.1 Grundbegriffe
- 4.2 Frequenzspektren, Fourier-Transformation
- 4.3 Abtasttheorem: Eine zweite Sicht
- 4.4 Filter

Frequenzfilter

- Filter sind Operationen oder Baugruppen, die selektiv bestimmte Frequenzbereiche des Signals beeinflussen.
 - Ideale Filter: Blenden bestimmte Frequenzen vollständig aus, lassen andere Frequenzen vollständig unverändert
 - Praktische Filter: Übergangseffekte an den Rändern
- Filter werden an verschiedenen Stellen der Signalverarbeitung verwendet
- Beispiele:
 - Tonhöhenregelung beim Klang ("Equalizer")
 - Frequenzweichen in Lautsprechersystemen
 - Farbabstimmung bei Bildern ("Farbfilter")
 - Vorfilterung von Signalen vor Digitalisierung (um Abtasttheorem einzuhalten)
 - Rekonstruktionsfilter in Digital-Analog-Wandlern
 - » Nur Frequenzen des Original-Frequenzbandes relevant

Filter-Terminologie

- Hochpass:
 - Lässt hohe Frequenzen passieren, blendet tiefe Frequenzen aus
- Tiefpass:
 - Lässt tiefe Frequenzen passieren, blendet hohe Frequenzen aus
- Bandpass:
 - Lässt Frequenzen in einem bestimmten Intervall passieren, blendet höhere oder niedrigere Frequenzen aus
- Filter sind genauer durch Grenzfrequenzen beschrieben

Rekonstruktions-Filter

- Wie funktioniert die Rekonstruktion eines analogen Signals aus einem digitalen Signal?
 - Digitales Signal verstanden als Impulsfolge (impulse train), also als zeitabhängiges Signal
 - Signalspektrum enthält viele hohe Frequenzen
 - Es genügt, das Frequenzspektrum auf die im Original zulässigen Frequenzen zu begrenzen (Tiefpass mit oberer Grenzfrequenz des Originalsignals)
- "Idealer Tiefpass"
 - Mathematische Konstruktion ("sinc"-Funktion, sin(x)/x)
 - In idealer Form nicht praktisch realisierbar
 - Liefert mathematisch gesehen das analoge Originalsignal