Reti di Calcolatori

Introduzione, Architetture e Protocolli (OSI, TCP/IP, IP, ARP, DNS, TCP/UDP)

Corso: Sistemi di Calcolo 2 Docente: Riccardo Lazzeretti

Fonti principali: W.R. Stevens *Unix Network Programming*; Peterson–Davie *Computer Networks: A*. S. Tanenbaum, D. Wetherall *Computer Networks*; W. Stallings *Operating Systems*, c.

Indice

1	Introduzione e ionti	2
2	Applicazioni di rete e modelli di servizio 2.1 Applicazioni business (client-server)	2 2 2
3	Classificazione delle reti per scala	2
	3.1 Internet Service Provider e POP	2
	3.2 Rete geografica e backbone	3
	3.3 Esempio: Global IP Backbone (caso Google)	3
4	Architettura di Internet e last/first mile	3
	4.1 Architettura a tre livelli	3
5	Gerarchie di protocollo	3
	5.1 Metafora filosofo-traduttore-segretario	3
	5.2 Strati, protocolli e interfacce	3
6	Il modello di riferimento OSI	3
Ü	6.1 Principi dei sette livelli	3
	6.2 Profilo utente: commutazione di pacchetto e di circuito	3
	6.3 Critiche al modello/protocolli OSI	3
7	Struttura a tre livelli di una rete di calcolatori	4
	7.1 Aree funzionali	4
	7.2 Problemi comuni: indirizzamento	4
8	Interoperabilità di trasporto: Internet vs OSI	4
9	Architettura TCP/IP e Internet	4
	9.1 Stack TCP/IP	4
	9.2 Esempi di <i>protocol stack</i>	4
10) Basi di TCP/IP: il protocollo IP	4
	10.1 Ruolo e proprietà di IP	4
	10.2 Incapsulamento dati	4
	10.3 Funzionamento IP: trasmissione e ricezione	5
	10.4 Indirizzamento IP	5
	10.5 Header IP	5

ARP: Address Resolution Protocol
11.1 Funzione
11.2 Operativa (descrizione delle figure)
Inoltro (forwarding) IP
12.1 Forwarding diretto (stessa subnet)
12.2 Forwarding indiretto (gateway di default)
Strato di Trasporto
13.1 Porte e 5-tuple
13.2 Segmento TCP e header
13.3 UDP
Domain Name System (DNS)
Domain Traine System (D115)

1 Introduzione e fonti

Queste note riorganizzano e traducono le slide del modulo *Rete*. I materiali originali citano come riferimenti: Stevens, Peterson–Davie, Tanenbaum & Wetherall, Stallings. Le figure e i diagrammi presenti nelle slide sono qui sostituiti da descrizioni testuali essenziali per mantenere il contenuto informativo.

2 Applicazioni di rete e modelli di servizio

2.1 Applicazioni business (client-server)

Descrizione delle figure: (1) rete con due client ed un server; (2) modello client–server con richieste e risposte che attraversano la rete. Il client invia una request su un canale di trasporto verso il server; il server elabora e invia una reply.

2.2 Applicazioni home (peer-to-peer)

Descrizione della figura: in un sistema peer-to-peer non ci sono ruoli fissi di client e server; i nodi possono fungere da entrambi a seconda del contesto (p.es. condivisione file tra pari).

3 Classificazione delle reti per scala

- PAN (Personal Area Network): es. Bluetooth; *figura*: topologia PAN con dispositivi personali connessi a corto raggio.
- LAN (Local Area Network): sia via cavo (Ethernet commutata) sia wireless (802.11). Figure: (a) 802.11; (b) Ethernet commutata. 802.11 note: multipath fading (propagazione multi-percorso) e copertura limitata del singolo radio, mitigata da AP multipli/mesh.
- MAN (Metropolitan Area Network): figura: rete basata su infrastruttura via cavo TV.
- WAN (Wide Area Network): *figure*: (1) collegamento tra sedi geografiche; (2) uso della rete di un ISP; (3) uso di VPN per interconnettere sedi tramite Internet pubblica.

3.1 Internet Service Provider e POP

Descrizione: architettura ISP con punti di presenza (POP), dorsali in fibra/xDSL per l'accesso; la "Big Internet" interconnette ISP multipli tramite NAP/peering.

3.2 Rete geografica e backbone

Descrizione: area di utente, area di accesso, rete locale, backbone con nodi di comunicazione; legende con unità di accesso, terminali d'utente e nodi del sottosistema di comunicazione.

3.3 Esempio: Global IP Backbone (caso Google)

Sintesi dal testo delle slide: l'azienda (Google) gestisce essenzialmente due grandi reti: una che connette gli utenti ai servizi (Search, Gmail, YouTube, ...) e una interna che interconnette i data center. Il traffico interno, spesso bursty, deve essere ingegnerizzato (traffic engineering) e può richiedere lo spostamento di molti petabyte (indici web, backup di Gmail) da una sede all'altra.

4 Architettura di Internet e last/first mile

4.1 Architettura a tre livelli

Figura: architettura con first mile, backbone, last mile; le tre zone sono potenziali colli di bottiglia.

Mitigazioni hardware: aumentare la banda di accesso (first/last mile); miglioramenti infrastrutturali del backbone (a carico degli ISP).

Mitigazioni software: Content Delivery Networks e caching near-user (es. Akamai), analogia con le gerarchie di cache nelle CPU.

5 Gerarchie di protocollo

5.1 Metafora filosofo-traduttore-segretario

Descrizione: catena di trasformazioni a livelli, ciascuno con interfacce e protocolli ben definiti.

5.2 Strati, protocolli e interfacce

Figura: flusso d'informazione che supporta comunicazione virtuale a livello 5 (sessione/applicazione), con incapsulamento/decapsulamento tra livelli adiacenti.

6 Il modello di riferimento OSI

6.1 Principi dei sette livelli

- Strati creati per astrazioni diverse.
- Ogni strato ha una funzione ben definita, standardizzabile.
- Minimizzare il flusso informativo tra confini (interfacce strette).
- Numero di strati ritenuto ottimo per coprire le funzioni necessarie.

6.2 Profilo utente: commutazione di pacchetto e di circuito

Descrizione: esempi di profili di protocollo per il piano utente con commutazione di pacchetto o di circuito; ripetizione di blocchi OSI tra terminali e nodi di rete.

6.3 Critiche al modello/protocolli OSI

Elenco dalle slide: Bad timing, bad technology, bad implementations, bad politics (ragioni storiche e di adozione).

7 Struttura a tre livelli di una rete di calcolatori

7.1 Aree funzionali

Area Applicativa; Interoperabilità del trasporto dell'informazione; Infrastruttura di trasporto dell'informazione.

Figure: versioni che mappano i livelli OSI/Internet sui tre strati, nonché esempi (Token-Ring, ATM, Ethernet) e astrazioni host-to-host e process-to-process.

7.2 Problemi comuni: indirizzamento

Figura: esempi di indirizzamento a vari livelli: DNS (es. www.uniroma1.it), IP (es. 151.100.16.1), MAC (es. ABC123578ABB).

8 Interoperabilità di trasporto: Internet vs OSI

Figura: tabella di corrispondenza tra livelli Internet (applicazione, trasporto, internetwork IP, interfaccia di rete) e livelli OSI.

9 Architettura TCP/IP e Internet

9.1 Stack TCP/IP

Figura: pila con application, transport (TCP/UDP), IP, network interface; interconnessione di reti eterogenee (rete 1, 2, 3).

9.2 Esempi di protocol stack

Esempi: http, smtp, rpc sopra tcp/udp, sopra ip, sopra tecnologie di collegamento (eth, 802.11, X.25, Frame Relay, ATM); bridge/switch 802.1 per interconnessioni LAN.

10 Basi di TCP/IP: il protocollo IP

10.1 Ruolo e proprietà di IP

IP "copre" le disomogeneità della rete sottostante fornendo:

- Indirizzamento di rete omogeneo.
- Instradamento dei pacchetti (routing).

Proprietà: senza connessione (datagrammi), best effort. Possibili perdite, riordinamenti, duplicazioni, ritardi arbitrari.

Compatibilità con hardware sottostante: frammentazione/riassemblaggio; risoluzione degli indirizzi dei livelli inferiori (ARP).

10.2 Incapsulamento dati

Figure: sequenza $app \to \text{segmenti TCP/UDP} \to \text{datagrammi IP} \to \text{frame Ethernet; definizione}$ di TCP segment, IP datagram, Ethernet frame.

10.3 Funzionamento IP: trasmissione e ricezione

Trasmissione: riceve dal trasporto, aggiunge header, applica il routing e inoltra verso l'interfaccia appropriata.

Ricezione: verifica datagram, controlla l'indirizzo di destinazione, consegna al protocollo di trasporto individuato rimuovendo l'intestazione.

10.4 Indirizzamento IP

Schema Net-id | Host-id a 32 bit. Figura: classi storiche A/B/C/D/E (con range e bit di prefisso) come da tabella delle slide.

10.5 Header IP

Layout: versione, IHL, tipo di servizio (ToS/DS), lunghezza totale; identificativo, flag, offset frammento; TTL, protocollo, checksum intestazione; indirizzi IP sorgente/destinazione; opzioni e padding.

11 ARP: Address Resolution Protocol

11.1 Funzione

Risoluzione $IP \rightarrow MAC$ sulla stessa rete di livello 2.

11.2 Operativa (descrizione delle figure)

- Richiesta ARP: host A invia broadcast (Who has IP-X?) sulla LAN; gli altri host ricevono.
- Risposta ARP: il possessore dell'IP risponde unicast (IP-X is at MAC-Y) ad A.

12 Inoltro (forwarding) IP

12.1 Forwarding directo (stessa subnet)

Esempio delle slide: subnet 192.168.10.0/24. Sorgente 192.168.10.10 invia a 192.168.10.35; gli indirizzi MAC di sorgente/destinazione sono quelli degli host finali (MAC-S, MAC-D).

12.2 Forwarding indiretto (gateway di default)

Esempio delle slide: sorgente 192.168.10.10 invia a 192.168.11.90 attraverso il default gateway.

Passi: (1) frame L2 da host sorgente al gateway locale (MAC-S \rightarrow MAC-GW); (2) router inoltra verso la rete di destinazione con nuovo frame L2 (MAC-Router \rightarrow MAC-Destinazione), mantenendo IP sorgente/destinazione inalterati.

13 Strato di Trasporto

13.1 Porte e 5-tuple

Figura: coppie (IP client, porta client) – (IP server, porta server); multiplex/demultiplex dei flussi a cura del trasporto.

13.2 Segmento TCP e header

Figure: struttura del segmento TCP (header + dati) incapsulato in IP.

Caratteristiche TCP: orientato alla connessione, byte-stream, duplex completo, controllo di flusso (evita overflow del ricevente), controllo di congestione (evita saturazione della rete).

13.3 UDP

Protocollo minimale, connectionless; nessuna garanzia su consegna/ordine/duplicazione; utile per applicazioni transazionali e multicast.

14 Domain Name System (DNS)

Richiamo finale: sistema gerarchico di nomi di dominio che mappa nomi simbolici (es. www.uniroma1.it) in indirizzi IP.