CSE 105: Data Structures and Algorithms-I (Part 2)

Instructor
Dr Md Monirul Islam

Graphs and Trees: Representation and Search

```
struct BTnode {
   int data;
   struct BTnode *left, *right;
}
```


- Same class/structure for all leaves and internal nodes.
 - Using the same class for both will simplify the implementation,

• but might be an inefficient use of space.

- Some applications require data values only for the leaves.
- Other applications require one type of value for the leaves and another for the internal nodes.

• Some applications require data Also, it seems wasteful to store child pointers in the leaf nodes.

NO child pointer in leaves

Polich

$$4x (2x + a) - c$$

 $4 * x * (2 * x + a) - c$

- Internal nodes store operators
 - could store a small code identifying the operator (a single byte for the operator's symbol)
- the leaves store operands
 - i.e., variable names or numbers, (considerably larger in order to handle the wider range of possible values)
 - No child pointers though

- Every node has two pointers to its children
- total space = n(2P + D) for a tree of n nodes
 - P: space required by a pointer
 - D: amount of space required by a data value
- So, total overhead: 2Pn
- Overhead fraction: 2P/(2P+D)
- $P = D \Rightarrow 2/3^{rd}$ of its total space is overhead

- $P = D \Rightarrow 2/3^{rd}$ of its total space is overhead
- From the Full Binary Tree Theorem: Half of the pointers are **null**.
 - half of the pointers are "wasted" **NULL values that serve only to indicate tree** structure, but which do not provide access to new data.

- A common implementation is not to store any actual data in a node
 - but rather a pointer to the data record.

A ... B: all are pointers to data record

- A common implementation is not to store any actual data in a node
 - but rather a pointer to the data record.

A ... B: all are pointers to data record

Address	Data Records
A	Data record 1
В	Data record 2
С	Data record 3
D	Data record 4
Е	Data record 5
F	Data record 6

- In this case, each node will typically store three pointers all of which are overhead:
 - overhead fraction of 3nP/(3nP + nD) = 3P/(3P + D)
 - $P = D \Rightarrow 3/4^{\text{th}}$ of its total space is overhead

• If only leaves store data values, then the fraction of total space devoted to overhead depends on whether the tree is full.

- If the tree is NOT full, then conceivably there might only be one leaf node at the end of a series of internal nodes.
 - Thus, the overhead can be an arbitrarily high percentage

- The overhead fraction drops as the tree becomes closer to full, being lowest when the tree is truly full.
 - In this case, about one half of the nodes are internal.

Highest Overhead

Moderate Overhead

Eliminate pointers from the leaf nodes:

$$\frac{n/2(2P)}{n/2(2P)+Dn} = \frac{P}{P+D}$$

This is 1/2 if P = D.

n/2 IN has 2P
 0 P in L
 n/2 IN has D
 ~n/2 L has D

If data only at leaves with pointers eliminated

$$(2Pn/2)/(2Pn/2 + Dn/2) = (2P)/(2P + D)$$

 \Rightarrow 2/3 overhead (Assuming P=D).

n/2 IN has 2P $\sim n/2$ L has D

A better implementation:

- internal nodes: two pointers and no data field
- leaf nodes : only a pointer to the data field

Overhead =
$$(3Pn/2)/(3Pn/2 + Dn/2)$$

= $(3P)/(3P + D)$
=> $^{3}/_{4}$ when D = P.

n/2 IN has 2P $\sim n/2$ L has 1P $\sim n/2$ separate data records X D

A better implementation:

- internal nodes: two pointers and no data field
- leaf nodes : only a pointer to the data field

Overhead =
$$(3Pn/2)/(3Pn/2 + Dn/2)$$

= $(3P)/(3P + D)$
=> $^{3}/_{4}$ when D = P.

n/2 IN has 2P $\sim n/2$ L has 1P $\sim n/2$ separate data records X D

Complete Binary Tree

Complete Binary Tree

parent(i) = floor(i/2);

Node Position	1	2	3	4	5	6	7	8	9	10	11	12
Parent		1	1	2	2	3	3	4	4	5	5	6
Left Child	2	4	6	8	10	12						

parent(
$$i$$
) = floor (i /2);
left(i) = 2* i ;

)	Node Position	1	2	3	4	5	6	7	8	9	10	11	12
	Parent		1	1	2	2	3	3	4	4	5	5	6
	Left Child	2	4	6	8	10	12						
	Right Child	3	5	7	9	11							

parent(i) = floor (i/2); left(i) = 2*i; right(i) = 2*i+1;

ŀ	Node Position	1	2	3	4	5	6	7	8	9	10	11	12
	Parent		1	1	2	2	3	3	4	4	5	5	6
	Left Child	2	4	6	8	10	12						
	Right Child	3	5	7	9	11							
	Left Sibling			2		4		6		8		10	

parent(i) = floor(i/2);

left(i) = 2*i;

right(i) = 2*i +1;

leftSibling(i) = i-1, if i is odd;

	Position Position	1	2	3	4	5	6	7	8	9	10	11	12
	Parent		1	1	2	2	3	3	4	4	5	5	6
)	Left Child	2	4	6	8	10	12						
	Right Child	3	5	7	9	11							
	Left Sibling			2		4		6		8		10	
	Right Sibling		3		5		7		9		11		

parent(i) = floor(i/2);

left(i) = 2*i;

right(i) = 2*i +1;

leftSibling(i) = i-1, if i is odd;

rightSibling(i) = i+1, if i is even;

- A Binary tree
- Three pointers in each node: left, right, parent
- Maintains a special property for each node Binary Search Tree property

BST property

All elements stored in the left subtree of a node with value K have values $\leq K$. All elements stored in the right subtree of a node with value K have values K.

BST property

Let *x* be a node in a binary search tree.

If y is a node in the left subtree of x, then $y.key \le x.key$

If y is a node in the right subtree of x, then $y.key \ge x.key$.

Inorder traversal of a BST

Traversal Outcome:?

Inorder traversal of a BST

Traversal Outcome: 255678

Inorder traversal of a BST

Traversal Outcome: 255678

Same list of keys but different BST shape.

Another Example

Traversal Outcome: 2, 7, 24, 32, 37, 40, 42, 42, 120

BST Operations

- Search for a key
- Minimum
- Maximum
- Successor
- Predecessor
- Insert
- Delete

```
TREE_SEARCH (x, k)
1 if x == \text{NULL or } k == x->key
2 return x
3 if k < x->key
4 return TREE_SEARCH(x->left, k)
5 else return TREE_SEARCH(x->right, k)
```



```
TREE_SEARCH (x, k)
```

1 if x == NULL or k == x->key

2 return *x*

3 **if** k < x-> key

4 return TREE_SEARCH(x->left, k)

5 else return TREE_SEARCH(x->right, k)

Search for 13

```
TREE_SEARCH (x, k)
```

1 if
$$x == NULL$$
 or $k == x->key$

2 return x

3 **if** k < x-> key

4 return TREE_SEARCH(x->left, k)

5 else return TREE_SEARCH(x->right, k)

Search for 14

```
TREE_SEARCH (x, k)
```

1 if x == NULL or k == x->key

2 return x

3 **if** k < x-> key

4 **return** TREE_SEARCH(*x*->*left*, *k*)

5 else return TREE_SEARCH(x->right, k)

Complexity: O(h)

