CLAIMS

What is claimed is:

A compound of Formula (I), (II), (IV), (V), (VI), (VII), (VIII), (IX), (X), (XI), (XII), (XIV), (XV) (XVI), or a pharmaceutically acceptable salt thereof; wherein the compound of Formula (I) is:

$$\begin{array}{c}
R^1 \\
 & C \\
 &$$

T

wherein:

15

20

25

5

when side b is a double bond, and sides a and c are single bonds, $-X^1-Y^1-Z^1$ is:

- (a) $-CR^4(R^5)-CR^5(R^{5})-CR^4(R^5)-$;
- (b) $-C(O)-CR^4(R^{4})-CR^5(R^{5})-$;
- (c) $-CR^4(R^4)-CR^5(R^5)-C(O)$ -;
- (d) $-(CR^5(R^{5_1}))_k$ -O-C(O)-;
- (e) -C(O)-O-($CR^5(R^{5})$)_k-;
- (f) $CR^4(R^{4})$ - NR^3 - $CR^5(R^{5})$ -;
- (g) $-CR^5(R^{5})-NR^3-C(O)$ -;
- (h) $-CR^4 = CR^4 S$ -;
- (i) -S-CR⁴=CR⁴'-;
- (j) $-S-N=CR^4$ -;
- $(k) CR^4 = N S -;$
- (l) -N=CR⁴-O-;
- (m) $-O-CR^4=N-$;
- (n) $-NR^3-CR^4=N-$;
- (o) -N=CR⁴-S-;
- (p) $-S-CR^4=N-$;
- (q) $-C(O)-NR^3-CR^{5}(R^{5})-$;

```
(r) - R^3 N - CR^5 = C R^5 -;
```

(s)
$$-CR^4 = CR^5 - NR^3 -$$
;

$$(t) -O-N=CR^{4}-;$$

(u)
$$-CR^4 = N-O-$$
;

$$(v) -N=N-S-;$$

$$(w) - S - N = N -;$$

$$(x) - R^3 N - CR^4 = N -;$$

(y)
$$-N=CR^4-NR^3-$$
;

$$(z) - R^3 N - N = N -;$$

(aa) $-N=N-NR^3-$;

(bb)
$$-CR^4(R^{4'})-O-CR^5(R^{5'})-$$
;

(cc)
$$-CR^4(R^{4'})-S-CR^5(R^{5'})-$$
;

(dd)
$$-CR^4(R^4)-C(O)-CR^5(R^5)-$$
;

(ee)
$$-CR^4(R^{4'})-CR^5(R^{5'})-C(S)-$$
;

$$(ff) - (CR^5(R^{5}))_k - O - C(S) -;$$

(gg) -C(S)-O-(
$$CR^5(R^{5_1})$$
)_k-;

(hh)
$$-(CR^5(R^{5i}))_k-NR^3-C(S)-;$$

$$(jj)$$
 – $(CR^{5}(R^{5}))_{k}$ -S-C(O)-;

(kk) -C(O)-S-(
$$CR^5(R^5)$$
)_k-;

(ll)
$$-O-CR^4=CR^5-$$
;

$$(mm) - CR^4 = CR^5 - O -;$$

$$(nn) - C(O) - NR^3 - S -;$$

$$(qq)$$
 $-O-NR^3-C(O)-$;

$$(rr) -NR^3 -CR^4 = CR^5 -;$$

(ss)
$$-CR^4 = N - NR^3 -$$
;

$$(tt) -NR^3 -N = CR^4 -;$$

(uu)
$$-C(O)-NR^3-NR^3-$$
;

$$(vv) -NR^{3}-NR^{3}-C(O)-;$$

```
(ww) -C(O)-O-NR^3-;
                           (xx) - NR^3 - O - C(O) -;
                           (yy) -CR^4R^{4'}-CR^5R^{5'};
                           (zz) -C(O)-CR^{4}R^{4'}-
                           (aaa) -CR^4R^{4'}-C(O)-;
 5
                           (bbb) -C(S)-CR^4R^4'-;
                           (ccc) -CR^4R^4-C(S)-;
                           (ddd) - C(=NR^3) - CR^4R^4 -;
                           (eee) -CR^4R^{4'}-C(=NR^3)-;
                           (fff) -O-CR^4R^4-C(S)-; or
10
                           (ggg) -O-CR<sup>4</sup>R<sup>4</sup>'-C(O)-;
                  when sides a and c are double bonds and side b is a single bond, -X^1-Y^1-Z^1 is:
                           (a) =CR^4-O-CR^5=;
                           (b) =CR^4-NR^3-CR^5=;
                           (c) =N-S-CR^4=;
15
                           (d) = CR^4 - S - N =;
                           (e) =N-O-CR^4=;
                           (f) = CR^4 - O - N =;
                          (g) = N - S - N =;
                           (h) =N-O-N=;
20
                          (i) =N-NR^3-CR^4=;
                           (j) = CR^4 - NR^3 - N = ;
                           (k) = N - NR^3 - N = ;
                           (l) =CR^4-S-CR^5=; or
                           (m) = CR^4 - CR^4(R^4) - CR^5 = ;
25
                  R<sup>1</sup> is:
                           (a) -S(O)<sub>2</sub>-CH<sub>3</sub>;
                           (b) -S(O)_2-NR^8(D^1);
                           (c) -S(O)_2-N(D^1)-C(O)-CF_3;
                           (d) -S(O)-(NH)-NH(D^1);
30
                           (e) -S(O)-(NH)-N(D^1)-C(O)-CF_3;
```

```
(f) -P(O)(CH_3)NH(D^1);
                           (g) -P(O)(CH_3)_2;
                           (h) -C(S)-NH(D^1);
                           (i) -S(O)(NH)CH<sub>3</sub>;
                           (j) -P(O)(CH_3)OD^1; or
 5
                           (k) -P(O)(CH_3)NH(D^1);
                  R<sup>1</sup> at each occurrence is independently:
                           (a) hydrogen;
                           (b) halogen;
10
                           (c) methyl; or
                           (d) CH<sub>2</sub>OH;
                  R<sup>2</sup> is:
                           (a) lower alkyl;
                           (b) cycloalkyl;
                           (c) mono-, di- or tri-substituted phenyl or naphthyl, wherein the substituents are
15
          each independently:
                                    (1) hydrogen;
                                    (2) halo;
                                    (3) alkoxy;
                                   (4) alkylthio;
20
                                    (5) CN;
                                   (6) haloalkyl, preferably CF<sub>3</sub>;
                                   (7) lower alkyl;
                                   (8) N_3;
                                   (9) - CO_2D^1;
25
                                   (10) -CO<sub>2</sub>-lower alkyl;
                                   (11) - (C(R^5)(R^6))_z - OD^1;
                                   (12) - (C(R^5)(R^6))_z-O-lower alkyl;
                                   (13) lower alkyl-CO<sub>2</sub>-R<sup>5</sup>;
                                   (14) - OD^1;
30
                                   (15) haloalkoxy;
```

	(17) nitro;
	(18) alkylsulfinyl; or
	(19) heteroaryl;
5	(d) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a
	monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and,
•	optionally, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms, said
	ring having one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms; wherein
	the substituents are each independently:
10	(1) hydrogen;
	(2) halo;
	(3) lower alkyl;
	(4) alkoxy;
	(5) alkylthio;
15	(6) CN;
	(7) haloalkyl, preferably CF ₃ ;
• .	(8) N_3 ;
*	$(9) - C(R^5)(R^6) - OD^1;$
	(10) -C(R ⁵)(R ⁶)-O-lower alkyl; or
20	(11) alkylsulfinyl;
	(e) benzoheteroaryl which includes the benzo fused analogs of (d);
	$(f) - NR^{10} R^{11};$
	$(g) - SR^{11};$
	(h) -OR ¹¹ ;
25	(i) $-R^{11}$;
	(j) alkenyl;
	(k) alkynyl;
	(l) unsubstituted, mono-, di-, tri- or tetra-substituted cycloalkenyl, wherein the
	substituents are each independently:
30	(1) halo;
	(2) alkoxy;

(16) amino;

	* * *	(3) alkylthio;	
		(4) CN;	
		(5) haloalkyl, preferably CF ₃ ;	
	4	(6) lower alkyl;	
5		$(7) N_3;$	
		$(8) - CO_2D^1;$	
		(9) -CO ₂ -lower alkyl;	
		$(10) - C(R^{12})(R^{13}) - OD^1;$	
		(11) -C(R ¹²)(R ¹³)-O-lower alkyl;	
10 .		(12) lower alkyl- CO_2 - R^{12} ;	
		(13) benzyloxy;	
		(14) -O-(lower alkyl)- CO_2R^{12} ;	
	*	(15) -O-(lower alkyl)-NR 12 R 13 ; or	
		(16) alkylsulfinyl;	
15	(m)	mono-, di-, tri- or tetra-substituted heterocycloalkyl group of 5, 6 or 7	
	members, or a ben	oheterocycle, wherein said heterocycloalkyl or benzoheterocycle contain	s 1
	or 2 heteroatoms s	lected from O, S, or N and, optionally, contains a carbonyl group or a	
	sulfonyl group, and	wherein said substituents are each independently:	
,	; e ·	(1) halo;	
20	00	(2) lower alkyl;	-
		(3) alkoxy;	
		(4) alkylthio;	
		(5) CN;	
· ·		(6) haloalkyl, preferably CF ₃ ;	
25		(7) N_3 ;	
		$(8) - C(R^{12})(R^{13}) - OD^{1};$	
,		(9) $-C(R^{12})(R^{13})$ -O-lower alkyl; or	
		(10) alkylsulfinyl;	
	(n)	tyryl, mono or di-substituted styryl, wherein the substituent are each	
30	independently:		
		(1) halo;	

		(2) alkoxy;			
		(3) alkylthio;			
		(4) CN;			
	*	(5) haloalkyl, preferably CF ₃ ;			
5		(6) lower alkyl;			4
		$(7) N_3;$			
		(8) $-CO_2D^1$;			
		(9) -CO ₂ -lower alkyl;			
		$(10) - C(R^{12})(R^{13}) - OD^1;$			
10	(E)	(11) $-C(R^{12})(R^{13})$ -O-lower alkyl;			
		(12) lower alkyl-CO ₂ -R ¹² ;			
		(13) benzyloxy;			
		(14) -O-(lower alkyl)- CO_2R^{12} ; or			
		(15) -O-(lower alkyl)- $NR^{12}R^{13}$;	•		
15	(o) ph	enylacetylene, mono- or di-substituted pho	enylacetylene	e, where	in the
	substituents are each	n independently:			
		(1) halo;			
		(2) alkoxy;	•		
		(3) alkylthio;			
20	*	(4) CN;			
		(5) haloalkyl, preferably CF ₃ ;		•	
		(6) lower alkyl;			
٠.	y -	$(7) N_3;$	•		
		(8) $-CO_2D^1$;		•	
25		(9) -CO ₂ -lower alkyl;			
,		$(10) - C(R^{12})(R^{13}) - OD^1;$			
		(11) $-C(R^{12})(R^{13})$ -O-lower alkyl;			
		(12) lower alkyl- CO_2 - R^{12} ;			
•		(13) benzyloxy;			
3Ō		(14) -O-(lower alkyl)- CO_2R^{12} ; or			
		(15) O (lower alkyl) ND 12D 13.			

(p)	fluo	roal	ken	ιvl	:
\r'				1.7	7

- (q) mono- or di-substituted bicyclic heteroaryl of 8, 9 or 10 members, containing 2, 3, 4 or 5 heteroatoms, wherein at least one heteroatom resides on each ring of said bicyclic heteroaryl, said heteroatoms are each independently O, S and N and said substituents are each independently:
 - (1) hydrogen;
 - (2) halo;
 - (3) lower alkyl;
 - (4) alkoxy;
 - (5) alkylthio;
 - (6) CN;
 - (7) haloalkyl, preferably CF₃;
 - $(8) N_3;$
 - $(9) C(R^5)(R^6) OD^1$; or
 - (10) -C(R^5)(R^6)-O-lower alkyl;
 - (r) K;
 - (s) aryl;
 - (t) arylalkyl;
 - (u) cycloalkylalkyl;
 - $(v) C(O)R^{11};$
 - (u) hydrogen;
 - (v) arylalkenyl;
 - (w) arylalkoxy;
 - (x) alkoxy;
 - (y) aryloxy;
 - (z) cycloalkoxy;
 - (aa) arylthio;
 - (bb) alkylthio;
 - (cc) arylalkylthio; or
 - (dd) cycloalkylthio;

R³ is:

10

5

15

20

25

		(a) hydrogen;	•			i.
		(b) haloalkyl, preferably CF ₃	·			
		(c) CN;			* . **	
		(d) lower alkyl;	*			
5		(e) $-(C(R_e)(R_f))_p$ -U-V;				
	· ·	(f) K;	• •			
		(g) unsubstituted or substitute	ed:		,	
		(1) lower alkyl-Q;				
		(2) lower alkyl-O- lov	wer alkyl-Q;			
10		(3) lower alkyl-S-low	er alkyl-Q;		9	
	()	(4) lower alkyl-O-Q;		*		
		(5) lower alkyl-S-Q;	*	~		
		(6) lower alkyl-O-V;				
	9	(7) lower alkyl-S-V;				
15		(8) lower alkyl-O-K;	or			
		(9) lower alkyl-S-K;		. * -		
	where	ein the substituent(s) reside on t	he lower alkyl gro	up;		
		(h) Q;				
1		(i) alkylcarbonyl;				
20		(j) arylcarbonyl;		-		
		(k) alkylarylcarbonyl;				
	. 1	(l) arylalkylcarbonyl;	*			
		(m) carboxylic ester;	•			
	, *•	(n) carboxamido;				
25		(o) cycloalkyl;				
		(p) mono-, di- or tri-substitu	ted phenyl or napl	nthyl, wherein the	substituents ar	e
	each indepen	idently:				
	۹ ,	(1) hydrogen;		**		
7	•	(2) halo;				
80		(3) alkoxy;				
		(4) alkylthio;				

```
(6) haloalkyl, preferably CF<sub>3</sub>;
                                        (7) lower alkyl;
                                        (8) N_3;
                                        (9) - CO_2D^1;
 5
                                        (10) -CO<sub>2</sub>-lower alkyl;
                                        (11) - (C(R^5)(R^6))_z - OD^1;
                                        (12) –(C(R<sup>5</sup>)(R<sup>6</sup>))<sub>z</sub>-O-lower alkyl;
                                        (13) lower alkyl-CO<sub>2</sub>-R<sup>5</sup>;
                                        (14) - OD^1;
10
                                        (15) haloalkoxy;
                                        (16) amino;
                                        (17) nitro; or
                                        (18) alkylsulfinyl;
                              (q) alkenyl;
15
                              (r) alkynyl;
                              (s) arylalkyl;
                              (t) lower alkyl-OD<sup>1</sup>;
                              (u) alkoxyalkyl;
                              (v) aminoalkyl;
20
                              (w) lower alkyl-CO<sub>2</sub>R<sup>10</sup>;
                              (x) lower alkyl-C(O)NR^{10}(R^{10'});
                              (y) heterocyclicalkyl; or
                              (z) heterocyclic ring-C(O)-;
               R<sup>4</sup>, R<sup>4</sup>, R<sup>5</sup> and R<sup>5</sup> are each independently:
25
                              (a) hydrogen;
                              (b) amino;
                              (c) CN;
                              (d) lower alkyl;
                              (e) haloalkyl;
30
                              (f) alkoxy;
```

(5) CN;

		(g) alkylthio;	
	-	(h) Q;	
		(i) -O-Q;	
		(j) -S-Q;	
5		(k) K;	
		(l) cycloalkoxy;	
	. Ac	(m) cycloalkylthio;	
		(n) unsubstituted, mono-, or di-substituted phe	enyl or unsubstituted, mono-, or di-
	substituted ben	zyl, wherein the substituents are each independ	ently:
10		(1) halo;	
		(2) lower alkyl;	
		(3) alkoxy;	
÷	a (8)	(4) alkylthio;	
•		(5) CN;	0.
15		(6) haloalkyl, preferably CF ₃ ;	
		$(7) N_3;$	*
		(8) Q;	
	•	(9) nitro; or	
÷		(10) amino;	
20.		(o) unsubstituted, mono-, or di-substituted he	eteroaryl or unsubstituted, mono-, or
	di-substituted	heteroarylmethyl, wherein the heteroaryl is a n	nonocyclic aromatic ring of 5 atoms,
	said ring havi	ng one heteroatom which is S, O, or N, and,	optionally, 1, 2, or 3 additional N
	atoms; or the	heteroaryl is a monocyclic ring of 6 atoms, said	d ring having one heteroatom which
	is N, and, opti	onally, 1, 2, 3, or 4 additional N atoms; said su	bstituents are each independently:
25	*	(1) halo;	
		(2) lower alkyl;	•
		(3) alkoxy;	. *
		(4) alkylthio;	
		(5) CN;	* *
30	*	(6) haloalkyl, preferably CF ₃ ;	
		$(7) N_3;$	

```
(9) -C(\mathbb{R}^6)(\mathbb{R}^7)-O-lower alkyl; or
                                 (10) alkylsulfinyl
                         (p) -CON(R^8)(R^8);
                         (q) -CH<sub>2</sub>OR<sup>8</sup>;
 5
                         (r) -CH<sub>2</sub>OCN;
                          (s) unsubstituted or substituted:
                                  (1) lower alkyl-Q;
                                  (2) -O-lower alkyl-Q;
                                  (3) -S-lower alkyl-Q;
10
                                  (4) lower alkyl-O-lower alkyl-Q;
                                  (5) lower alkyl-S-lower alkyl-Q;
                                  (6) lower alkyl-O-Q;
                                  (7) lower alkyl-S-Q;
                                 (8) lower alkyl-O-K;
15
                                  (9) lower alkyl-S-K;
                                  (10) lower alkyl-O-V; or
                                 (11) lower alkyl-S-V;
                wherein the substituent(s) resides on the lower alkyl;
                         (t) cycloalkyl;
20
                         (u) aryl;
                         (v) arylalkyl;
                         (w) cycloalkylalkyl;
                         (x) aryloxy;
                         (y) arylalkoxy;
25
                         (z) arylalkylthio;
                         (aa) cycloalkylalkoxy;
                         (bb) heterocycloalkyl;
                         (cc) alkylsulfonyloxy;
                         (dd) alkylsulfonyl;
30
```

(ee) arylsulfonyl;

 $(8) - C(R^6)(R^7) - OD^1;$

		$(gg) - C(O)R^{10};$				
	. 3	(hh) nitro;				
		(ii) amino;				. •
5		(jj) aminoalkyl;				
		(kk) -C(O)-alkyl-heterocyclic ring;				
	•	(ll) halo;		•		
-	•	(mm) heterocyclic ring;				
		(nn) - CO_2D^1 ;	* '*			
10		(oo) carboxyl;				
	* *	(pp) amidyl; or			- 00	
-	* *	(qq) alkoxyalkyl;				
	altern	natively, R ⁴ and R ⁵ together with the carbons to w	hich they ar	e attached	are:	
		(a) cycloalkyl;				
15		(b) aryl; or		•		
	*	(c) heterocyclic ring;	•	. *		
	alterna	atively, R^4 and R^4 or R^5 and R^5 taken together with	th the carbo	n to which	they are	
	attached are:					
	•	(a) cycloalkyl; or				
20	· · · · · · · · · · · · · · · · · · ·	(b) heterocyclic ring;			. *	
H.	alterna	atively, R^4 and R^5 , R^4 and R^5 , R^4 and R^5 , or R^4 an	d R ⁵ when	substituent	s on adjac	ent
	carbon atoms	s taken together with the carbons to which they ar	e attached a	ıre:		
	*	(a) cycloalkyl;	•			
	• •	(b) heterocyclic ring; or	•			
25	. •	(c) aryl;			٠.	
	R ⁶ and	IR ⁷ are each independently:				
		(a) hydrogen;				
	•	(b) unsubstituted, mono- or di-substituted ph	enyl; unsul	bstituted, r	nono- or	di-
	substituted b	enzyl; unsubstituted, mono- or di-substituted h	eteroaryl; 1	nono- or c	li-substitı	ıted
30	heteroarylme	thyl, wherein said substituents are each independent	ently:	,		
		(1) halo;				

(ff) arylsulfonyloxy;

		(2) lower alkyl;			e e e
		(3) alkoxy;		* 35 ·	
•		(4) alkylthio;			
		(5) CN;			
5		(6) haloalkyl, pr	referably CF ₃ ;		
	•	(7) N_3 ;			
		$(8) - C(R^{14})(R^{15})$	-OD ¹ ; or		
		(9) -C(R ¹⁴)(R ¹⁵)			
		(c) lower alkyl;		* .	
10		(d) -CH ₂ OR ⁸ ;			1)(0)
		(e) CN;			
		(f) -CH ₂ CN;			
		(g) haloalkyl, preferabl	y fluoroalkyl;		
		(h) $-CON(R^8)(R^8)$;			
15	• •	(i) halo; or	•		
		(j) -OR ⁸ ;			. * .
	R ⁸ is:		•		*
		(a) hydrogen;			
		(b) K; or			
20		(c) R ⁹ ;			
	alterna	atively, R ⁵ and R ⁵ , R ⁶ and	d R ⁷ or R ⁷ and R	8 together with the c	earbon to which they
•	are attached fe	orm a saturated monocyc	clic ring of 3, 4, 5	5, 6 or 7 atoms; opti	onally containing up to
	two heteroato	ms selected from oxygen	$S(O)_{o}$ or NR_{i} ;	· X·	*
	R ⁹ is:				
25		(a) lower alkyl;			
		(b) lower alkyl-CO ₂ D ¹ ;			
		(c) lower alkyl-NHD ¹ ;	•		
		(d) phenyl or mono-, di	- or tri-substitute	ed phenyl, wherein t	he substituents are
	each indepen	idently:			
30		(1) halo;			
		(2) lower alkyl;			

		(3) alkoxy;			
		(4) alkylthio;			
		(5) lower alkyl-CO ₂ D ¹ ;	•		٠.
* .	y	(6) lower alkyl-NHD ¹ ;		· ·	ę * <u>*</u>
5		(7) CN;			
		(8) CO_2D^1 ; or	· ·		
))	(9) haloalkyl, preferabl	y fluoroalkyl;		
•	(e) b	enzyl, mono-, di- or tri-sul	bstituted benzyl, v	wherein the su	bstituents are eac
	independently:		•	,	
10		(1) halo;	(4)		
	, , , , , , , , , , , , , , , , , , ,	(2) lower alkyl;	*-	•	* *
	,	(3) alkoxy;			
		(4) alkylthio;			
		(5) lower alkyl-CO ₂ D ¹ ;			
15		(6) lower alkyl-NHD ¹ ;			
٠.		(7) CN;			
		(8) $-CO_2D^1$; or	*		· ,
÷		(9) haloalkyl, preferabl	y CF ₃ ;		
	(f) c	ycloalkyl;			* *
20	(g) K	; or	*	**	
	(h) b	enzoyl, mono-, di-, or trist	ubstituted benzoyl	l, wherein the	substituents are
. •	each independently:			*	
1		(1) halo;			
	: :	(2) lower alkyl;			
25		(3) alkoxy;	•		
		(4) alkylthio;			
	·X	(5) lower alkyl-CO ₂ D ¹ ;	,		
		(6) lower alkyl-NHD ¹ ;	•		
		(7) CN;			
30		(8) $-CO_2D^1$; or	,	(f)	
	4.0	(9) haloalkyl, preferabl	y CF ₃ ;		

(a) hydrogen; or (b) R^{11} ; R¹¹ is: (a) lower alkyl; 5 (b) cycloalkyl; (c) unsubstituted, mono-, di- or tri-substituted phenyl or naphthyl, wherein the substituents are each independently: (1) halo; 10 (2) alkoxy; (3) alkylthio; (4) CN; (5) haloalkyl, preferably CF₃; (6) lower alkyl; 15 $(7) N_3;$ (8) $-CO_2D^1$; (9) -CO₂-lower alkyl; $(10) - C(R^{12})(R^{13}) - OD^1;$ (11) -C(R¹²)(R¹³)-O-lower alkyl; (12) lower alkyl-CO₂D¹; 20 (13) lower alkyl- CO_2R^{12} ; (14) benzyloxy; (15) -O-(lower alkyl)- CO_2D^1 ; (16) -O-(lower alkyl)-CO₂R¹²; or (17) -O-(lower alkyl)-NR¹²R¹³; 25 (d) unsubstituted, mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or said heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally 1, 2, or 3 additional N atoms, and wherein said substituents are each independently: 30

R¹⁰ and R¹⁰, are each independently:

(1) halo;

		(3) alkoxy;	
		(4) alkylthio;	
		(5) CN;	
5		(6) haloalkyl, preferably CF ₃ ;	
		(7) N_3 ;	
		(8) $-C(R^{12})(R^{13})-OD^1$; or	
		(9) $-C(R^{12})(R^{13})$ -O-lower alkyl;	
	(e)	unsubstituted, mono- or di-substituted benzoheterocycle, wherein the	
10	benzoheterocycle i	s a 5, 6, or 7-membered ring which contains 1 or 2 heteroatoms independent	tly
	selected from O, S	or N, and, optionally, a carbonyl group or a sulfonyl group, wherein said	
	substituents are each	ch independently:	
		(1) halo;	
		(2) lower alkyl;	
5		(3) alkoxy;	
		(4) alkylthio;	. ,
	· · · · · · · · · · · · · · · · · · ·	(5) CN;	
		(6) haloalkyl, preferably CF ₃ ;	
<i>v</i> .		$(7) N_3;$	
20	0	(8) $-C(R^{12})(R^{13})-OD^1$; or	
		(9) $-C(R^{12})(R^{13})$ -O-lower alkyl;	
	(f)	unsubstituted, mono- or di-substituted benzocarbocycle, wherein to	the
	carbocycle is a 5,	6, or 7-membered ring which optionally contains a carbonyl group, where	ein
	said substituents ar	e each independently:	
5		(1) halo;	
		(2) lower alkyl;	
		(3) alkoxy;	
	. *	(4) alkylthio;	
		(5) CN;	
0 .		(6) haloalkyl, preferably CF ₃ ;	
		(7) N_3 ;	,

(2) lower alkyl;

```
(8) -C(R^{12})(R^{13})-OD^1; or
(9) -C(R^{12})(R^{13})-O-lower alkyl;
```

- (g) hydrogen; or
- (h) K

R¹² and R¹³ are each independently:

- (a) hydrogen;
- (b) lower alkyl; or
- (c) aryl; or

R¹² and R¹³ together with the atom to which they are attached form a saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms;

R¹⁴ and R¹⁵ are each independently a hydrogen or a lower alkyl group; or

R¹⁴ and R¹⁵ together with the atom to which they are attached form a carbonyl, a thial, or a saturated monocyclic ring of 3, 4, 5, 6 or 7 atoms;

Q is:

15

20

25

30

10

5

- (a) $-C(O)-U-D^1$;
- (b) -CO₂-lower alkyl;
- (c) tetrazolyl-5-yl;
- (d) $-C(R^7)(R^8)(S-D^1)$;
- (e) $-C(R^7)(R^8)(O-D^1)$; or
- (f) $-C(R^7)(R^8)$ (O-lower alkyl);

D¹ is hydrogen or D;

D is V or K;

U is oxygen, sulfur or $-N(R_a)(R_i)$ -;

V is -NO, -NO₂, or a hydrogen;

K is $-W_{aa}-E_b-(C(R_e)(R_f))_p-E_c-(C(R_e)(R_f))_x-W_d-(C(R_e)(R_f))_y-W_i-E_j-W_g-(C(R_e)(R_f))_z-U-V;$ wherein aa, b, c, d, g, i and j are each independently an integer from 0 to 3;

p, x, y and z are each independently an integer from 0 to 10;

W at each occurrence is independently:

- (a) -C(O)-;
- (b) -C(S)-;
- (c) -T-;

- (d) $-(C(R_e)(R_f))_{h}$ -;
- (e) alkyl;
- (f) aryl;

5

10

15

20

25

30

- (g) heterocyclic ring;
- (h) arylheterocyclic ring, or
- (i) $-(CH_2CH_2O)_q$ -;

E at each occurrence is independently ia -T-, an alkyl group, an aryl group, a heterocyclic ring, $-(C(R_e)(R_f))_{h^-}$, an arylheterocyclic ring or $-(CH_2CH_2O)_{q^-}$;

h is an integer form 1 to 10;

q is an integer from 1 to 5;

 R_e and R_f are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring. a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a dialkylamino, an arylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cyano, an aminoalkyl, an aminoaryl, an aryl, an arylalkyl, a carboxamido, a alkylcarboxamido, an arylcarboxamido, an amidyl, a carboxyl, a carbamoyl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an alkylcarboxylic ester, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an alkylsulfonyl, an alkylsulfonyloxy, a urea, a nitro, -T-Q'-, or -($C(R_g)(R_h)$)_k-T-Q' or R_e and R_f taken together are an oxo, a thial, a heterocyclic ring, a cycloalkyl group, an oxime, a hydrazone or a bridged cycloalkyl group;

Q' is -NO or -NO₂;

k is an integer from 1 to 3;

T is independently a covalent bond, a carbonyl, an oxygen, $-S(O)_o$ - or $-N(R_a)R_i$ -, o is an integer from 0 to 2,

R_a is a lone pair of electrons, a hydrogen or an alkyl group;

R_i is a hydrogen, an alkyl, an aryl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an arylcarboxylic ester, an alkylcarboxamido, an arylcarboxamido, an alkylsulfinyl, an alkylsulfonyl, an alkylsulfonyloxy, an arylsulfinyl, a sulfonamido, a carboxamido, a carboxylic ester, an aminoalkyl, an aminoaryl, -

 CH_2 - $C(T-Q')(R_g)(R_h)$, or $-(N_2O_2-)^{\bullet}M^{\dagger}$, wherein M^{\dagger} is an organic or inorganic cation; with the proviso that when R_i is $-CH_2$ - $C(T-Q')(R_g)(R_h)$ or $-(N_2O_2-)^{\bullet}M^{\dagger}$; then "-T-Q'" can be a hydrogen, an alkyl group, an alkoxyalkyl group, an aminoalkyl group, a hydroxy group or an aryl group;

 R_{g} and R_{h} at each occurrence are independently $R_{\text{e};}$

with the proviso that the compound of Formula (I) must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (II) is:

$$R^1$$
 $(R^1)_{1-4}$
 R^2
 R^2

10

15

20

25

5

wherein:

A-B is:

(a) N-C;

(b) C-N; or

(c) N-N;

when sides d and f are double bonds, and sides e and g are single bonds, $-X^2-Y^2-Z^2$ is:

(a)
$$=CR^4-CR^4=CR^5$$
;

(b) = $N-CR^4=CR^{4}$;

(c) = $N-CR^4=N-$;

(d) = CR^4 -N= CR^4 -;

(e) = CR^4 -N=N-;

 $(f) = N - N = CR^4 -;$

(g) = N-N=N-;

(h) = CR^4 - CR^5 =N-; or

(i) = $CR^{2'}$ - CR^{5} =N-;

R² and R², as defined herein taken together are:

(a)

(b)

5

10

15

20

or R² and R⁵, as defined herein, taken together with the carbon atoms to which they are attached are a cycloalkyl group or a heterocyclic ring;

R⁹⁷ is:

- (a) hydrogen;
- (b) alkylthio;
- (c) alkylsulfinyl;
- (d) alkylsulfonyl;
- (e) cyano;
- (f) carboxyl;
- (g) amino;
- (h) lower alkyl;
- (i) haloalkyl;
- (j) hydroxy;
- (k) alkoxy;
- (l) haloalkoxy;
- (m) alkylarylalkylamino;
- (n) aminoalkyl;
- (o) aminoaryl;
- (p) sulfonamido;

- (q) alkylsulfonamido;
- (r) arylsulfonamido;
- (s) heterocyclic ring;
- (t) hydroxyalkyl; or
- (u) nitro;

5

10

15

20

25

a is an integer from 1 to 3;

when sides e and g are double bonds, and sides d and f are single bonds, $-X^2-Y^2-Z^2$ is:

(a)
$$-CR^4 = N - N =$$
;

(b) $-N=N-CR^4=$;

(c)
$$-CR^4 = N - CR^{4} =$$
;

(d)
$$-N=CR^4-N=$$
;

(e)
$$-CR^4 = CR^4 - N =$$
;

(f)
$$-N=CR^4-CR^5=$$
;

(g)
$$-CR^4 = CR^5 - CR^{5'} =$$
; or

(h)
$$-N=N-N=$$
;

when side g is a double bond, and sides d, e and f are single bonds, $-X^2-Y^2-Z^2$ - is:

(a)
$$-C(O)-O-CR^4=$$
;

(b)
$$-C(O)-NR^3-CR^4=$$
;

(c)
$$-C(O)-S-CR^4=$$
; or

(d)
$$-C(H)R^4-C(OH)R^5-N=$$
;

when sides d is a double bond, and sides e, f and g are single bonds,

$$-X^2-Y^2-Z^2$$
 is:

(a) $=CR^4-O-C(O)-;$

(b) =
$$CR^4$$
- NR^3 - $C(O)$ -;

(c) =
$$CR^4$$
-S-C(O)-; or

(d) =
$$N-C(OH)R^4-C(H)R^5-$$
;

when sides f is a double bond, and sides d, e and g are single bonds,

30
$$-X^2-Y^2-Z^2$$
 is:

(a) $-CH(R^4)-CR^5=N-$; or

(b)
$$-C(O)-CR^4=CR^5-$$
;

when sides e is a double bond, and sides d, f and g are single bonds,

$$-X^2-Y^2-Z^2$$
 is:

(a)
$$-N=CR^4-CH(R^5)$$
-; or

(b)
$$-CR^4 = CR^5 - C(O)$$
-;

when sides d, e, f and g are single bonds,

$$-X^2-Y^2-Z^2$$
 is:

 R^1 , R^1 , R^2 , R^3 , R^4 , R^4 , R^5 and R^5 are as defined herein;

with the proviso that the compound of Formula (II) must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (III) is:

Ш

15

20

. 5

10

wherein:

 X^3 is:

(a) $-C(O)-U-D^1$;

(b) -CH₂-U-D¹;

(c) -CH₂-C(O)-CH₃;

(d) $-CH_2-CH_2-C(O)-U-D^1$;

(e) $-CH_2-O-D^1$; or

(f) -C(O)H

25 Y^3 is:

(a) $-(CR^5(R^5))_k-U-D^1$;

(b) -CH₃;

(c) -CH₂OC(O)R⁶; or

```
(d) - C(O)H;
                     alternatively, X<sup>3</sup> and Y<sup>3</sup> taken together are -CR<sup>82</sup>(R<sup>83</sup>)-CR<sup>82</sup>(R<sup>83</sup>)-;
                    R^{82}, R^{82}, R^{83} and R^{83} are each independently:
                               (a) hydrogen;
                               (b) hydroxy;
 5
                              (c) alkyl;
                              (d) alkoxy;
                              (e) lower alkyl-OD<sup>1</sup>;
                              (f) alkylthio;
                              (g) CN;
10
                              (h) -C(O)R^{84}; or
                              (i) -OC(O)R<sup>85</sup>;
                    R<sup>84</sup> is:
                              (a) hydrogen;
                              (b) lower alkyl; or
15
                              (c) alkoxy;
                    R<sup>85</sup> is:
                              (a) lower alkyl;
                              (b) alkoxy
                              (c) unsubstituted, mono-, di- or tri-substituted phenyl or pyridyl, wherein the
20
           substituents are each independently:
                                        (1) halo;
                                        (2) alkoxy;
                                        (3) haloalkyl;
                                        (4) CN;
25
                                        (5) - C(O)R^{84};
                                        (6) lower alkyl;
                                        (7) -S(O)<sub>o</sub>-lower alkyl; or
                                       (8) - OD^1;
                    alternatively, R<sup>82</sup> and R<sup>83</sup> or R<sup>82</sup> and R<sup>83</sup> taken together are:
30
                              (a) oxo;
```

(b) thial; (c) = $CR^{86}R^{87}$; or $(d) = NR^{88};$ R⁸⁶ and R⁸⁷ are each independently: (a) hydrogen; 5 (b) lower alkyl; (c) lower alkyl-OD¹; (d) CN; or (e)- $C(O)R^{84}$; R⁸⁸ is: 10 (a) QD^1 ; (b) alkoxy; (c) lower alkyl; or (d) unsubstituted, mono-, di- or tri-substituted phenyl or pyridyl, wherein the substituents are each independently: 15 (1) halo; (2) alkoxy; (3) haloalkyl; (4) CN; $(5) - C(O)R^{84};$ 20 (6) lower alkyl; (7) -S(O)₀-lower alkyl; or $(8) - OD^1;$ R¹, R¹, R², R⁵, R⁵, R⁶, U, D¹, o and k are as defined herein; and 25 with the proviso that the compound of Formula (III) must contain at least one oxime

wherein the compound of Formula (IV) is:

group or hydrazone group;

ΙV

wherein:

5

10

15

20

25

 X^4 and Z^4 are each independently:

- (a) N; or
- (b) CR^{21} ;

R²⁰ is:

- (a) -S(O)₂-CH₃;
- (b) $-S(O)_2-NR^8(D^1)$; or
- (c) $-S(O)_2-N(D^1)-C(O)-CF_3$;

R²¹ and R²¹ are each independently:

- (a) hydrogen;
- (b) lower alkyl;
- (c) alkoxy;
- (d) alkylthio;
- (e) haloalkyl, preferably fluoroalkyl;
- (f) haloalkoxy, preferably fluoroalkoxy;
- (g) CN;
- (h) $-CO_2D^1$;
- (i) $-CO_2R^{14}$;
- (j) lower alkyl-O-D¹;
- (k) lower alkyl-CO₂D¹;
- (l) lower alkyl-CO₂R¹⁴;
- (m) halo;
- $(n) O D^1;$
- (o) $-N_3$;
- (p) -NO₂;

```
(q) - NR^{14}D^1;
                            (r) - N(D^1)C(O)R^{14};
                            (s) -NHK;
                            (t) aryl;
                            (u) arylalkylthio;
                            (v) arylalkoxy;
                            (w) alkylamino;
                            (x) aryloxy;
                            (y) alkylarylalkylamino;
                            (z) cycloalkylalkylamino; or
10
                            (aa) cycloalkylalkoxy;
                  R<sup>22</sup> is:
                            (a) mono-, di- or tri-substituted phenyl or pyridinyl (or the N-oxide thereof),
           wherein the substituent are each independently:
15
                                     (1) hydrogen;
                                    (2) halo;
                                     (3) alkoxy;
                                     (4) alkylthio;
                                     (5) CN;
                                     (6) lower alkyl;
20
                                     (7) haloalkyl, preferably fluoroalkyl;
                                     (8) N_3;
                                     (9) -CO_2D^1;
                                     (10) -CO<sub>2</sub>-lower alkyl;
                                     (11) -C(R^{14})(R^{15})-OD<sup>1</sup>;
25
                                     (12) - OD^{1};
                                     (13) lower alkyl-CO<sub>2</sub>-R<sup>14</sup>; or
                                     (14) lower alkyl-CO<sub>2</sub>-D<sup>1</sup>;
                            (b) -T-C(R^{23})(R^{24})-(C(R^{25})(R^{26}))_{o}-C(R^{27})(R^{28})-U-D^{1};
```

(c)

- (d) arylalkyl; or
- (e) cycloalkylalkyl;

wherein:

5

10

15

20

25

R¹⁴ and R¹⁵ are each independently:

- (a) hydrogen; or
- (b) lower alkyl;

 R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} are each independently:

- (a) hydrogen; or
- (b) lower alkyl; or

R²³ and R²⁷, or R²⁷ and R²⁸ together with the atoms to which they are attached form a carbocyclic ring of 3, 4, 5, 6 or 7 atoms, or R²³ and R²⁵ are joined to form a covalent bond;

Y⁵ is:

(a) $CR^{29}R^{30}$;

(b) oxygen; or

(c) sulfur;

 R^{29} and R^{30} are each independently:

- (a) hydrogen;
- (b) lower alkyl;
- (c) $(CH_2)_{o}$ - OD^1 ;
- (d) halo; or

R²⁹ and R³⁰ taken together are an oxo group;

s is an integer from 2 to 4;

R¹, R⁸, D¹, T, U, K and o are as defined herein and

with the proviso that the compound of Formula (IV) must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (V) is:

wherein:

5

X⁵ is:

- (a) oxygen; or
 - (b) sulfur;

R³¹ is:

(a) alkoxy;

10

- (b) haloalkoxy preferably -OCH₂F, -OCHF₂, or -OCHF₂;
- (c) alkylthio;
- (d) haloalkyl, preferably CF₃;
- (e) halo; or
- (f) lower alkyl;

15

 $R^{32},\,R^{33},\,R^{34},\,R^{35},\,R^{36}$ and R^{37} are each independently :

- (a) hydrogen;
- (b) halo, preferably F or Cl;
- (c) lower alkyl;
- (d) cycloalkyl;

	(e) haloalkyl, preferably CF ₃ , CF ₂ H or CFH ₂ ;	
	$(f) - OD^1;$	
	(g) $-OR^{43}$;	
	(h) -SD ¹ ;	
5	(i) $-SR^{43}$;	
	$(j) - S(O)R^{43};$	
	$(k) -S(O)_2R^{43};$	
	(1) unsubstituted, mono- or di-substituted benzyl, wherein the substituents are	
	each independently:	
.10	(1) haloalkyl, preferably CF ₃ ;	
	(2) CN;	
	(3) halo;	
	(4) lower alkyl;	
	$(5) - OR^{43};$	
15	(6) $-SR^{43}$;	
	$(7) - S(O)R^{43}$; or	
	$(8) - S(O)_2 R^{41};$	
	(m) phenyl or mono- or di-substituted phenyl, wherein the substituents are each	h
	independently:	
20	(1) haloalkyl, preferably CF ₃ ;	
	(2) CN;	
	(3) halo;	
	(4) lower alkyl;	
	$(5) - OR^{43};$	
25	(6) $-SR^{43}$;	
	$(7) - S(O)R^{43}$; or	
	$(8) - S(O)_2 R^{41}$; or	
	R ³² together with R ³³ form an oxo group; or	
	R ³⁴ together with R ³⁵ form an oxo group; or	
30	R ³⁶ together with R ³⁷ form an oxo group; or	
	R ³² and R ³³ are joined so that, together with the carbon atom to which they are attache	d,

they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and, optionally, contain one heteroatom which is preferably oxygen; or

R³³ and R³⁴ are joined so that, together with the carbon atoms to which they are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7 members; or

R³³ and R³⁶ are joined so that, together with the carbon atoms to which they are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7 members; or

R³⁴ and R³⁵ are joined so that, together with the carbon atom to which they are attached, they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and optionally, contain one heteroatom which is preferably oxygen; or

R³⁴ and R³⁶ are joined so that, together with the carbon atoms to which they are attached, they form a saturated or aromatic monocyclic ring of 3, 4, 5, 6 or 7 members; or

R³⁶ and R³⁷ are joined so that, together with the carbon atom to which they are attached, they form a saturated monocyclic ring of 3, 4, 5, 6 or 7 members, and, optionally, contain one heteroatom which is preferably oxygen;

 R^{38} and R^{39} are hydrogen or R^{38} and R^{39} when taken together are oxo; R^{40} , R^{41} and R^{42} are each independently:

- (c) hydrogen;
- (d) halo;
- (c) lower alkyl;
- (d) alkoxy;
- (e) alkylthio;
- (f) -S(O)-lower alkyl;
- (g) haloalkyl, preferably CF₃;
- (h) CN;
- (i) $-N_3$;
- (i) $-NO_2$;
- (k) $-SCF_3$; or
- (l) -OCF₃;

R⁴³ is:

5

10

15

20

25

30

(a) lower alkyl; or

(b) benzyl, optionally mono- or di-substituted, wherein the substituents are each

independently:

5

10

- (1) haloalkyl, preferably CF₃;
- (2) CN;
- (3) halo; or ...
- (4) lower alkyl;

alternatively, X⁵ and U taken together with the carbon atom to which they are attached form a 5-, 6-, or 7-membered heterocyclic ring;

n at each occurrence is an integer from 0 to 1; and

D¹, U and K are as defined herein;

with the proviso that the compound of Formula V must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (VI) is:

VI

wherein:

 X^6 is:

- (a) oxygen;
- (b) sulfur;
- (c) CH₂;
- (d) $-S(O)_{o}$;
- (e) -NH; or
- (f) -C(O);

 Z^6 is:

*	(a) K;			•		
	(b) -C	$C(O)CH_3$; or				
	(c) hy	drogen;	NA	*		
	R ⁴⁵ is:					
5	(a) low	er alkyl; or	• . *			. 17
	(b) mo	no-, di-, tri-, tetra- or pe	er-substituted l	ower alkyl,	wherein th	e substituent is
	halo, preferably fluo	ro;			· ×	
	R ⁴⁶ is:			5		
	(a) me	ono or disubstituted aro	matic ring of 5	atoms con	taining one	O, S or N atom
10	and, optionally, 1, 2	or 3 additional N atoms	, wherein the s	ubstituents	are each in	dependently:
		(1) hydrogen;				
	e *	(2) lower alkyl;				
	į.	(3) halo;		•		:
		(4) -O-lower alkyl;	*			*
15		(5) -S-lower alkyl;				. ,
		(6) haloalkyl, preferal	oly CF ₃ ;			
		(7) -COCH ₃ ; or				Y ,
		(8) -S(O) ₂ -lower alky	l;			
	(b) m	ono or disubstituted aro	matic ring of 6	atoms con	taining 0, 1	, 2, 3 or 4
20	nitrogen atoms, when	ein the substituents are	each independ	lently:		
		(1) hydrogen;				
		(2) lower alkyl;				
		(3) halo;	•		· :	
		(4) -O-lower alkyl;	*			
25		(5) -S-lower alkyl;				
		(4) -O-haloalkyl;	•			
		(5) -S-haloalkyl;				
		(6) haloalkyl, prefera	bly CF ₃ ;			•
		(7) CN;	-02			
30		$(8) -N_3;$				
	·	(9) -COCH ₃ ;				

		(10) -S(O) ₂ -lower alkyl;		
		(11) alkenyl; or		
		(12) alkynyl;		
		(c) cycloalkylalkyl;		
, 5		(d) unsubstituted, mono-, di-, tri-, or te	tra substituted pheny	or naphthyl, wherein
	the substitue	nts are each independently:		
		(1) halo;		
		(2) CN;		-50
		(3) haloalkyl, preferably CF ₃ ;		
10	, ,	(4) $-N_3$;	•	•
	•	(5) vinyl;		
	٠,	(6) acetylenyl;		
		(7) lower alkyl;		
		(8) alkoxy;	20.7	***
15		(9) haloalkoxy;	•	•
		(10) alkylthio; or		
		(11) haloalkylthio;	,	·
		(e) unsubstituted, mono-, di-, tri-, or to	etra substituted benze	oheteroaryl, wherein
	the substitue	nts are each independently:		
20		(1) halo;		
	•	(2) CN; or	•	
		(3) haloalkyl, preferably CF ₃ ;		*
		(f) substituted lower alkyl;	**	
		(g) substituted alkenyl;		
25		(h) cycloalkyl; or		
		(i) lower alkyl-O-lower alkyl;		
	R^{47} i	is:	•	
		(a) -C(O)-lower alkyl;		•
		(b) -CN;		• *
30	.•	(c) $-CO_2D^1$;		
		(d) -CO ₂ -lower alkyl ester;		

- (e) $-C(O)-NHD^1$;
- (f) -S(O)-lower alkyl;
- (g) -S(O)₂-lower alkyl;
- (h) -NO₂;
- (i) haloalkyl, preferably CF₃;
- (j) halo;
- (k) K;
- (1) $-S(O)_0NR^{10}R^{11}$; or
- $(m) S(O)_o NR^{12}R^{13}$;

 R^{48} is:

5

- (a) hydrogen; or
- (b) lower alkyl; or

R⁴⁷ and R⁴⁸ taken together with the atoms to which they are attached form a 5, 6, or 7-membered unsubstituted, mono-, di-, or trisubstituted saturated or unsaturated cyclic ring optionally containing a –S(O)₂-group, wherein the substituents are each independently:

- (a) oxo;
- (b) lower alkyl;
- (c) OD¹; or
- (d) $=N-OD^1$;

 R^{10} , R^{11} , R^{12} , R^{13} , K, D^{1} and o are as defined herein;

with the proviso that the compound of Formula VI must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (VII) is:

25

20

VII

wherein:

 X^7 is:

5

- (a) oxygen;
- (b) sulfur;
- $(c) -NR^{51};$
- (d) -N-O- R^{52} ; or
- (e) $-N-NR^{52}R^{53}$;

10

15

20

Y⁷ at each occurrence is independently:

- (a) hydrogen;
- (b) halo;
- (c) lower alkyl;
- (d) alkenyl; or
- (e) alkynyl;

 Z^7 is:

- (a) -C(O)-;
- (b) oxygen;
- (c) $-S(O)_0$ -;

(d) $-NR^{93}$ -; or

(e) covalent bond;

R⁴⁹ is:

- (a) R³; or
- (b) R^4 ;

25

R⁵⁰ and R⁵⁰ are each independently:

		(b) halo;
		(c) lower alkyl;
		(d) aryl;
5		(e) arylalkyl;
		(f) cycloalkyl;
		(g) cycloalkylalkyl;
		(h) -OD ¹ ;
	**	(i) lower alkyl-OD ¹ ;
10		(j) carboxamido;
	÷	(k) amidyl; or
	<i>x</i> .	(l) K;
,	R^{51} is:	. ,
		(a) lower alkyl;
15		(b) alkenyl;
	÷	(c) cycloalkyl;
		(d) cycloalkylalkyl;
	- X	(e) aryl;
		(f) arylalkyl;
20		(g) heterocyclic ring; or
		(h) lower alkyl-heterocyclic ring;
	R ⁵² and	d R ⁵³ are each independently:
	27	(a) lower alkyl;
		(b) cycloalkyl;
25	. •	(c) cycloalkylalkyl;
	÷	(d) aryl;
		(e) arylalkyl;
		(f) heterocyclic ring; or
	* *	(g) heterocyclicalkyl;
30	R^{93} is:	•
		(a) hydrogen; or

(a) hydrogen;

(b) lower alkyl;

 R^1 , R^3 , R^4 , K, D^1 and o are as defined herein;

with the proviso that the compound of Formula VII must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (VIII) is:

$$(R_g)_a \xrightarrow{A_1^2} A^1$$

$$X^8 \qquad R^{54}$$

$$VIII$$

wherein:

X⁸ is:

10

15

20

5

- (a) oxygen;
- (b) sulfur;
- (c) NR_i; or
- (d) $-CR^{58}R^{59}$;

 A^1 , A^2 , A^3 , and A^4 are each independently carbon or nitrogen, with the proviso that at least two of A^1 , A^2 , A^3 , and A^4 are carbon atoms;

R⁵⁴ is:

- (a) haloalkylalkyl, preferably fluoroalkylalkyl;
- (b) halo;
- (c) alkylthio;
- (d) alkoxy;
- (e) -NO₂;
- (f) CN;
- (g) lower alkyl-CN;
- (h) heterocyclic ring;
- (i) lower alkyl;
- (j) arylalkyl;
- (k) cycloalkyl; or

,		(l) phenyl or mono- or di-substituted phenyl, wherein the substituents are each
	independently	
		(1) alkylthio;
		(2) nitro; or
5	,	(3) alkylsulfonyl;
	R ⁵⁵ is:	
	•	(a) $-CO_2D^1$;
		(b) $-C(O)-N(R^8)(R^8)$;
		(c) -CO ₂ -lower alkyl;
10		(d) $-C(O)-N(D^1)-S(O)_2-(C(R_e)(R_f))_p-U-V$; or
	*	(e) -CO ₂ -lower alkyl-U-V;
	R ⁵⁶ is:	
		(a) hydrogen;
	*	(b) phenyl;
15	* *	(c) thienyl;
	,	(d) alkynyl;
	*	(e) alkenyl; or
-		(f) alkyl;
-	R _g is:	
20		(a) hydrogen;
		(b) lower alkyl;
		(c) arylalkyl;
		(d) alkoxy;
	a *	(e) aryloxy;
25		(f) arylalkoxy;
		(g) haloalkyl;
_		(h) haloalkoxy;
٠		(i) alkylamino;
		(j) arylamino;
30		(k) arylalkylamino;
	·	(l) nitro;

		(n) carboxamido;				
·		(o) aryl;				· · · · · ·
	1 2	(p) -C(O)-aryl; or				
5		(q) -C(O)-alkyl;				
	alternat	ively, R _g and the monoc	yelic ring radio	cal of which	A^{1}, A^{2}, A^{3}, ar	nd A ⁴ comprise
	four of the six	atoms are:				
		(a) naphthyl;				
	0.0	(b) quinolyl;				
10	,	(c) isoquinolyl;		· •		
		(d) quinolizinyl;			•	
		(e) quinoxalinyl; or				
	•	(f) dibenzofuryl;				
	R^{58} and	R ⁵⁹ are each independen	ntly:			
15		(a) hydrogen;			,	
	*	(b) lower alkyl;				
		(c) lower alkyl-phenyl;				
	*	(d) haloalkyl, preferably	fluoroalkyl;			
	*	(e) halo;		:		*
20		(f) -NO ₂ ;				
	•	(g) CN;				
		(h) lower alkyl-CN;		· .	•	
		(i) alkoxy;			E.	. 0
	•	(j) alkylthio; or				
25		(k) alkenyl;		•		
	alternat	ively, R ⁵⁸ and R ⁵⁹ taken	together along	with the ato	oms to which t	hey are attache
	are cycloalkyl;				• .	
	R^8 , R_i , I	R_e , R_f , D^1 , U , V , a and p	are as defined	herein;		
	with the	e proviso that the compo	und of Formula	a VIII must	contain at leas	st one oxime
30	group or hydra:	zone group;				

(m) sulfonamido;

wherein the compound of Formula (IX) is:

$$R^1$$
 $(R^1)_{1-4}$
 Y^9
 R^2
 X^9

IX

5 wherein:

10

15

20

 X^9 is -C(O)-U-D¹ and Y^9 is -CH₂-CR⁵(R⁵')-U-D¹; or X^9 is -CH₂-CR⁵(R⁵')-U-D¹ and Y^9 is -C(O)-U-D¹; or

X⁹ and Y⁹ taken together are:

(b)
$$-(CR^4(R^{4'}))_k-CR^5(R^{5'})-CR^5(R^{5'})$$
-;

(c)
$$-C(O)-(CR^4(R^4))_k-CR^5(R^5)-$$
;

(d)
$$-(CR^4(R^4))_k$$
- $CR^5(R^5)$ - $C(O)$ -; or

(e)
$$-C(O)-CR^4(R^4)-CR^5(R^5)-$$
;

wherein X⁹ is the first carbon atom of a, b, c, d and e;

 R^1 , R^1 , R^2 , R^4 , R^4 , R^5 , R^5 , R^5 , U, D^1 and k are as defined herein;

with the proviso that the compound of Formula IX must contain at least one oxide group or hydrazone group;

wherein the compound of Formula (X) is:

$$R^{1}$$
 $(R^{1})_{1-4}$
 j
 Z^{10}
 i
 k
 R^{2}
 h
 X^{10}

X

wherein:

when side h, k, and j are single bonds, and side i and l are a double bond, $-X^{10}-Y^{10}-Z^{10}$ is:

(a)

$$\begin{array}{c|c}
 & & & \\
h & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

(b)

A¹⁰ B¹⁰

when sides i, k and l are single bonds, and sides h and j are double bonds, $-X^{10}-Y^{10}-Z^{10}-$

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

is:

5

when side h and j are single bonds, and side k and i is a single or a double bond, $-X^{10}-Y^{10}-Z^{10}$ is:

(a)

$$A^{10}$$

$$A^{10}$$

$$D^{10}$$
or

.15

(b)

$$\int_{h}^{h} \int_{N}^{R^{61}} \int_{R^{60}}^{R^{61}}$$

P¹⁰ is:

- (a) -N=;
- (b) $-NR^3$ -;
- (c) -O-; or
- (d) -S-;

Q¹⁰ and Q¹⁰ are each independently:

- (a) CR^{60} ; or
- (b) nitrogen;

 A^{10} - B^{10} - C^{10} - D^{10} - is:

- (a) $-CR^4 = CR^4 CR^5 = CR^5 -$;
- (b) -CR⁴(R⁴)-CR⁵(R⁵)-CR⁴(R⁴)-C(O)-;
- (c) $-CR^4(R^4)-CR^5(R^5)-C(O)-CR^4(R^4)-$;
- (d) $-CR^4(R^4)-C(O)-CR^4(R^4)-CR^5(R^5)$ -;
- (e) -C(O)-CR⁴(R⁴)-CR⁵(R⁵)-CR⁴(R⁴)-;
- (f) $-CR^4(R^{4'})-CR^5(R^{5'})-C(O)$ -;
- (g) -CR⁴(R⁴)-C(O)-CR⁵(R⁵)-;
- (h) $-C(O)-CR^4(R^4)-CR^5(R^5)$ -;
- (i) -CR⁴(R⁴)-CR⁵(R⁵)-O-C(O)-;
- (j) $-CR^4(R^{4'})-O-C(O)-CR^5(R^{5'})$ -;
- (k) $-O-C(O)-CR^4(R^{4'})-CR^5(R^{5'})$ -;
- (i) $-CR^4(R^{4'})-CR^5(R^{5'})-C(O)-O-$;
- (m) -CR⁴(R⁴)-C(O)-O-CR⁵(R⁵)-;
- (n) $-C(O)-O-CR^4(R^{4'})-CR^5(R^{5'})-$;
- (o) -CR¹²(R¹³)-O-C(O)-;
- (p) $-C(O)-O-CR^{12}(R^{13})-$;

25

10

15

```
(q) -O-C(Q)-CR^{12}(R^{13})-;
```

$$(r) - CR^{12}(R^{13}) - C(O) - O -;$$

(s)
$$-N=CR^4-CR^{4'}=CR^5-$$
;

(t)
$$-CR^4 = N-CR^4 = CR^5$$
-;

(u)
$$-CR^4 = CR^4 - N = CR^5$$
-;

$$(v) - CR^4 = CR^5 - CR^5 = N -;$$

$$(w) - N = CR^4 - CR^4 = N -;$$

$$(x) -N=CR^4-N=CR^{4'}-;$$

$$(y) - CR^4 = N - CR^4 = N -;$$

 $(z) - S - CR^4 = N_{-};$

(aa)
$$-S-N=CR^4$$
-;

(bb)
$$-N=N-NR^3$$

$$(cc)$$
 -CR⁴=N-S-;

$$(dd) -N=CR^4-S-;$$

(ee)
$$-O-CR^4=N-$$
;

(ff)
$$-O-N=CR^4$$
-; or

$$(gg)$$
 -N= CR^4 -O-;

$A^{10'}-B^{10'}-D^{10'}$ is:

(a)
$$-CR^4 = CR^5 - CR^5' =$$

(c) -C(O)-
$$CR^4(R^{4'})$$
- $CR^5(R^{5'})$ -;

(d)
$$-CR^4(R^{4'})-CR^5(R^{5'})-C(O)$$
-;

(e)
$$-N=CR^4-CR^5=$$
;

(g)
$$-N=N-CR^4=$$
;

(h)
$$-N=N-NR^3-$$
;

(j)
$$-N=CR^4-NR^3-$$
;

$$(k) - N = CR^4 - N = ;$$

(1)
$$-CR^4 = N - NR^3 -$$
;

(m)
$$-CR^4 = N - N = ;$$

(n)
$$-CR^4 = N - CR^5 =$$
;

```
(o) -CR^4 = CR^5 - NR^3 -;
```

(p)
$$-CR^4 = CR^5 - N =$$
;

$$(q) -S-CR^4=CR^5-;$$

(r)
$$-O-CR^4=CR^5$$
;

(s)
$$-CR^4 = CR^5 - O$$
-;

(t)
$$-CR^4 = CR^5 - S -$$
;

(u)
$$-CR^4 = N-S-$$
;

$$(v) - CR^4 = N - O -;$$

(w)
$$-N=CR^4-S-$$
;

 $(x) - N = CR^4 - O -;$

$$(y) -S-CR^4 = N-;$$

$$(z) - O - CR^4 = N -;$$

(ee)
$$-CR^4 = CR^5 - S$$
;

(hh)
$$-S-CR^4(R^{4'})-CR^5(R^{5'})$$
-; or

 R^{60} and R^{61} are each independently:

- (a) lower alkyl;
- (b) haloalkyl, preferably fluoroalkyl;
- (c) alkoxy;
- (d) alkylthio;
- (e) lower alkyl-OD¹;
- (f) -C(O)H;
- (h) $-(CH_2)_q$ - CO_2 -lower alkyl;
- (i) $-(CH_2)_q-CO_2D^1$;
- (j) $-O-(CH_2)_q$ -S-lower alkyl;

30

5

10

15

20

- (k) - $(CH_2)_q$ -S-lower alkyl;
- (l) -S(O)₂-lower alkyl;
- (m) $-(CH_2)_q NR^{12}R^{13}$; or
- (n) $-C(O)N(R^8)(R^8)$;

 R^{1} , $R^{1'}$, R^{2} , R^{3} , R^{4} , $R^{4'}$, R^{5} , $R^{5'}$, R^{8} , R^{12} , R^{13} , R^{13} , R^{10} and R^{10} are as defined herein;

with the proviso that the compound of Formula X must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (XI) is:

ΧI

10

5

wherein:

X¹¹ is:

- (a) oxygen; or
- (b) CH₂;

Y¹¹ is:

- (a) oxygen;
- (b) $-H_2$;
- $(c) N OD^1;$
- (d) -N-O-lower alkyl;
- (e) -N-O-aryl;
- (f) -N-C(O)-O-lower alkyl;
- (g) $-N-N(R^8)(R^8)$; or
- (h) $-N-N(R^8)-S(O)_2$ -lower alkyl;

20

```
(m) hydrogen;
                           (n) lower alkyl;
                           (o) alkoxy;
                           (p) halo;
 5
                           (q) CN;
                           (r) OD^1;
                           (s) aryloxy;
                           (t) -NR^{12}R^{13};
                           (u) -CF<sub>3</sub>;
10
                           (v) -NO<sub>2</sub>;
                           (w) alkylthio;
                           (x) -S(O)_0-lower alkyl;
                           (m) - C(O)N(R^8)(R^8);
                           (n) -CO_2D^1
15
                           (o) -CO<sub>2</sub>-lower alkyl; or
                           (p) -NR<sup>8</sup>-C(O)-lower alkyl;
                  R<sup>66</sup> is:
                           (c) hydrogen;
                           (b) lower alkyl;
20
                           (c) alkenyl;
                          (d) alkoxyalkyl; or
                          (e) cycloalkylalkyl;
                  R<sup>8</sup>, R<sup>12</sup>, R<sup>13</sup>, o, K and D<sup>1</sup> are as defined herein;
                  with the proviso that the compound of Formula XI must contain at least one oxime group
25
         or hydrazone group;
                  wherein the compound of Formula (XII) is:
```

 R^{62} , R^{63} , R^{64} and R^{65} are each independently:

$$(R^{68})_a$$
 Z^{12}

XII

wherein:

X¹² is:

(a)

(b)

5

(c) NR⁷¹;

Y¹² is:

(a)

(b)

$$--(CH_2)_m-O$$
 R^{72}

(d)

(e) $-NR^{73}(R^{74})$;

(f) hydrogen; or

(g) K;

Z¹² is:

(a)

10

5

$$R^1$$

(b) R⁶⁷;

R⁶⁷ is:

15

- (a) hydrogen;
- (b) lower alkyl;
- (c) lower alkyl-OD¹;
- (d) -OD¹;
- (e) haloalkyl; or

or

(f)

R⁶⁸ is:

- (a) lower alkyl;
- (b) halo;
- (c) alkoxy
- (d) haloalkyl;
- (e) alkylthio;
- (f) haloalkylthio;
- (g) -OCH₂-

(h) unsubstituted, mono-, or di-substituted heteroaryl, wherein the heteroaryl is a monocyclic aromatic ring of 5 atoms, said ring having one heteroatom which is S, O, or N, and, optionally, 1, 2, or 3 additional N atoms; or said heteroaryl is a monocyclic ring of 6 atoms, said ring having one heteroatom which is N, and, optionally 1, 2, or 3 additional N atoms, and wherein said substituents are each independently:

- (1) halo; or
- (2) lower alkyl
- (i) -S(O)_o-lower alkyl;
- (j) -S(O)₀-lower haloalkyl;
- (k) amino;
- (l) alkylamino;
- (m) dialkylamino;
- (n) $-N(H)SO_2$ -lower alkyl;
- (o) N(H)SO₂-lower haloalkyl;
- (p) nitro;
- (q) cyano;
- (r) $-CO_2D^1$;

25

5

10

15

		(t) lower alkyl-OD ¹ ;						
		(q) carboxamide; or			•			
		$(r) - C(O)N(R^{12})D^1;$					*	· ·
5 .	R ⁶⁹ is:							
	¥	(a) lower alkyl;	8				*	
		(b) hydrogen;	:					
		(c) alkoxy						
	y 0	(d) mono-, di-, tri, tetra	or penta-sub	stituted pl	nenyl, w	herein the	substitu	ient are
10	each independ	dently:	* .			•		•
	* .	(1) hydrogen;				(*)		
		(2) halo;		*	· ·		•	
2	•	(3) alkoxy;				e*		
		(4) alkylthio;						
15		(5) -S(O) _o -lower	alkyl;	•				
		(6) lower alkyl;					<u>.</u>	
		(7) haloalkyl;				•		
		$(8) - CO_2D^1;$						
		(9) -lower alkyl-C	CO_2D^1 ;			•		
20		$(10) - OD^1;$.* 	•	· *	•	
		(11) -lower alkyl-	OD ¹ ; or					
		(12) haloalkoxy;					,	
		(e) mono-, di-, or tri-subs	stituted hetero	aryl, wher	ein the h	eteroaryl	is a	
	monocyclic ar	romatic ring of 5 atoms, sa	id ring having	g one heter	oatom w	hich is S,	O, or N	, and,
25	optionally, 1,	2, or 3 additional N atoms	; or the hetero	aryl is a m	nonocycl	ic ring of	6 atoms	, said
	ring having or	ne heteroatom which is N,	and, optionall	y, 1, 2, 3,	or 4 add	itional N	atoms; w	vherein
	the substituen	ts are each independently:						
		(1) hydrogen;	-			• • ()		,
	1	(2) halo;	· ·					
30	-	(3) lower alkyl;						
		(4) alkoxy;					٠.	
		Va/						

(s) carboxylic ester;

		(5) aikyitnio;				
		(6) aryloxy;			Aer	
		(7) arylthio;				
	9	$(8) - CO_2D^1;$				
5		$(9) - C(O)NH(D^1)$				
	- 4-	(10) haloalkyl; or				
	. H	$(11) - OD^1;$				
	R ⁷⁰ is:	*				
	(a)	lower alkyl;				
10	(b)	hydrogen; or			·	
	(c) r	nono- or di-substituted pho	enyl, wherein the	substitue	ent are each	
	independently:	*			,	
		(1) hydrogen;				
	*	(2) halo;				•
15		(3) alkoxy;	•			•
		(4) haloalkyl; or				•
		(5) lower alkyl;				
	R ⁷¹ is:					
	(a) b	enzoyl, or mono-, or disul	bstituted benzoyl	, wherein	the substituen	ts are each
20	independently:				•	
		(1) halo;				:
		(2) lower alkyl; or				
		(3) alkoxy;				
	(b) t	enzyl, mono- or disubstitu	ated benzyl, when	ein the s	ubstituents are	each
25	independently:					
	·	(1) halo;				
	:	(2) lower alkyl; or				
		(3) alkoxy;		,		
	(c) le	ower alkyl-pyridinyl, or u	nsubstituted, mon	o-, or dis	substituted pyri	dinyl,
30	wherein the substitu	ients are each independent	tly:			-
		(1) halo;	*			

		(2) lower alk	yl; or						
		(3) alkoxy;							
		(d) -C(O)-pyridinyl,	or mono-,	or disubsti	ituted –C((O)-pyrio	linyl wh	nerein th	ne
	substituents a	re each independently							
5		· (3) halo;		• •					
		(4) lower alk	yl; or						
		(3) alkoxy;							
,		(e) hydrogen;							
	- <u>V</u>	(f) aryl;			• .	•	•		
10	- 1	(g) cycloalkyl;	•						
	,	(h) cycloalkylalkyl;							
	R ⁷² is:								
	*	(a) lower alkenyl-Co	O_2D^1 ; or			•			
		(d) K;				e e	*. *		
15	R ⁷³ is	unsubstituted or mono	substitute	d lower al	kyl, wher	ein the s	ubstitue	nts are	each
	independently	/:							
		(a) hydroxy;				•		9 *	
		(b) alkoxy;							
		(c) nitro;						· 3	
20		(c) -NH ₂ ;							
		(d) alkylamino;	* 5			•			
	· (X)	(e) dialkylamino;	* a.						
	. *	(f) carboxyl;				· · · · · · ·			
	•	(g) carboxylic ester;	or					•	
25	•	(h) carboxamide;	12	. •					
	R ⁷⁴ is:			•			•	,	
		(a) hydrogen;						. •	
	-1-	(b) lower alkyl; or				•			
		(c) $-C(O)R^{76}$;						:	
30	R ⁷⁵ is:			· · · · · · · · · · · · · · · · · · ·					
		(a) lower alkyl;							

		(c) substituted lower alkyl;
	•	(d) cycloalkyl;
	• . •	(e) unsubstituted, mono-, di- or tri-substituted phenyl or naphthyl, wherein the
5	substituents ar	re each independently:
		(1) halo;
	0	(2) alkoxy;
		(3) -S(O) _o -lower alkyl;
		(4) hydroxy;
10		(5) -S(O) _o -haloalkyl;
		(6) lower alkyl;
		(7) haloalkyl;
		$(8) - CO_2D^1;$
		(9) -CO ₂ -lower alkyl;
1 5		$(10) -S(O)_2NR^8(D^1);$
		(11) -lower alkyl-O-lower alkyl;
•	***	(12) -CN;
	*	(13) lower alkyl-OD ¹ ;
		(14) arylalkoxy;
20	() ()	(15) $-C(O)NR^8(D^1)$; or
		(16) aryl;
		(f) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a monocyclic
	aromatic ring	of 5 atoms, said ring having one heteroatom which is selected from S, O, or N,
	and, optionally	y, 1, 2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 atoms,
25	said ring havir	ng one heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atoms;
•	wherein the su	obstituents are each independently:
		(1) halo;
		(2) alkoxy;
		(3) -S(O) _o -lower alkyl;
30		(4) hydroxy;
	÷	(5) -S(O) _o -haloalkyl;

(b) haloalkyl

```
(6) lower alkyl;
                                        (7) haloalkyl;
                                        (8) - CO_2D^1;
                                        (9) -CO<sub>2</sub>-lower alkyl;
                                        (10) -S(O)_2NR^8(D^1);
 5
                                        (11) -lower alkyl-O-lower alkyl;
                                        (12) -N(D<sup>1</sup>)S(O)<sub>2</sub>-lower alkyl;
                                        (13) lower alkyl-OD<sup>1</sup>;
                                        (14) -N(D<sup>1</sup>)S(O)<sub>2</sub>-haloalkyl;
                                        (15) -C(O)NR<sup>8</sup>(D<sup>1</sup>); or
10
                                        (16) aryl;
                    R<sup>76</sup> is:
                              (a) alkyl;
                              (b) substituted alkyl;
                              (c) alkyl-N(D<sup>1</sup>)S(O)<sub>2</sub>-aryl;
15
                              (d) substituted alkyl-cycloalkyl;
                              (e) substituted alkyl-heterocyclic ring; or
                              (f) arylalkoxy;
                    R<sup>77</sup> is:
                              (a) -OD^{1};
20
                              (b) alkoxy; or
                              (c) -NR^{78}R^{79};
                    R<sup>78</sup> and R<sup>79</sup> are each independently:
                              (a) hydrogen;
25
                              (b) hydroxy;
                              (c) alkoxy;
                              (d) lower alkyl; or
                              (e) substituted lower alkyl; or
                    R<sup>78</sup> and R<sup>79</sup> taken together with the nitrogen to which they are attached form a
          heterocyclic ring;
30
                    R<sup>80</sup> and R<sup>81</sup> are each independently:
```

- (a) hydrogen;
- (b) lower alkyl; or
- (c) halo;

R⁸⁹ and R⁸⁹ are each independently:

- (a) hydrogen; or
- (b) lower alkyl; or

 R^{89} and $R^{89'}$ taken together with the carbon to which they are attached form a cycloalkyl ring;

m is an integer from 0 to 6;

D¹, R¹, R⁸, R¹², K, X⁵, a, p and o are as defined herein; and

with the proviso that the compound of Formula XII must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (XIII) is:

15

5

10

$$R^{1}$$
 Y^{13}
 R^{90}
 R^{91}

XIII

wherein:

 X^{13} and Y^{13} are each independently:

- (a) =C(H)-; or
- (b) =N-;

R⁹⁰ is:

- (a) lower alkyl;
- (b) lower alkyl-OD¹;
- (c) alkenyl;
- (d) lower alkyl-CN;

•	•	(e) lower alkyl-CO ₂ D ¹ ;	
		(f) aryl;	
		(g) heterocyclic ring; or	-
	•	(i) heterocyclicalkyl;	
5	R^{91} is:		
	independently	(a) mono-, di- or tri-substituted phenyl, wherein the substituents are each y:	h
	•	(1) hydrogen;	
	*	(2) halo;	
10		(3) alkoxy;	*.
		(4) alkylthio;	
	*	(5) CN;	
	3-6	(6) haloalkyl;	
1	*	(7) lower alkyl;	
15		$(8) - CO_2D^1;$	
		(9) -CO ₂ -lower alkyl;	
6		(10) lower alkyl-OD ¹ ;	
	v.	(11) lower alkyl- $NR^{12}R^{13}$;	
		(12) lower alkyl- CO_2D^1 ; or	
20	: :	$(13) - OD^1;$	
		(b) mono-, di- or tri-substituted heteroaryl, wherein the heteroaryl is a	
	monocyclic a	romatic ring of 5 atoms, said ring having one heteroatom which is S, O, o	r N, and,
	-	2, or 3 additional N atoms; or the heteroaryl is a monocyclic ring of 6 ato	
		ne heteroatom which is N, and, optionally, 1, 2, 3, or 4 additional N atom	
25		nts are each independently:	
		(1) hydrogen;	
		(2) halo;	
		(3) alkoxy;	
		(4) alkylthio;	
30		(5) CN;	
		(6) haloalkyl;	
		(7) lower alkyl:	

- $(8) CO_2D^1;$
- (9) -CO₂-lower alkyl;
- (10) lower alkyl-OD¹;
- (11) lower alkyl-NR¹²R¹³;
- (12) lower alkyl-CO₂D¹; or
- $(13) OD^1$;

D¹, R¹, R¹, R¹², and R¹³, are as defined herein; and

with the proviso that the compound of Formula XIII must contain least one oxime group or hydrazone group;

wherein the compound of Formula (XIV) is:

$$R^{1}$$
 $(R^{1})_{1.4}$
 Y^{14}
 B^{14}
 A^{14}

XIV

wherein:

5

10

20

25

X¹⁴ is:

- (a) -C(O)-; or
- (b) -C(S)-;

Y¹⁴ is:

(a) -O-; or

(b) -S-;

 $A^{14}-B^{14}-D^{14}$ is:

- (a) $-CR^4 = CR^4 CR^5 = CR^{5'} -$;
- (b) $-CR^4(R^{4'})-CR^5(R^{5'})-C(O)$ -;
- (c) $-CR^4(R^{4'})-C(O)-CR^5(R^{5'})-$;
- (d) $-C(O)-CR^4(R^4)-CR^5(R^5)$ -;
- (e) -CR⁴(R⁵)-O-C(O)-;
- (f) -C(O)-O-CR⁴(R⁵)--;

- (g) $-O-C(O)-CR^4(R^5)$ -;
- (h) $-S-N=CR^4-$;
- (i) $-O-N=CR^4-$;
- (j) $-CR^4(R^5)-NR^3-C(O)$ -;
- (k) $-C(O)-NR^3-CR^4(R^5)--$;
- (I) $-NR^3-C(O)-CR^4(R^5)-$;
- (m) $-CR^4(R^5)-S-C(O)-$;
- $(n) C(O) S CR^4(R^5) -;$
- (o) $-S-C(O)-CR^4(R^5)-$;
- (p) $-CR^4 = CR^4 C(O)$ -;
- (q) $-C(O)-CR^4=CR^{4'}-$;
- $(r) O CR^4 = CR^{4'} -;$
- (s) $-S-CR^4=CR^{4'}-$;
- (t) $-NR^3-CR^4=CR^5-$;
- (u) $-S-NR^3-C(O)-$;
- (v) -O-NR³-C(O)-; or
- (w) $-NR^3-N=CR^4$ -;

 R^1 , R^1 , R^2 , R^3 , R^4 , R^4 , R^5 and R^5 are as defined herein; and

with the proviso that the compound of Formula XIV must contain at least one oxime group or hydrazone group;

wherein the compound of Formula (XV) is:

XV

wherein:

10

15

20

25

X¹⁵ is:

(a) -C(O)-;

```
(b) -CH<sub>2</sub>-;
                            (c) -CH(OD<sup>1</sup>)-;
                            (d) -C=N-O-lower alkyl-;
                            (e) -O-;
                            (f) -S(O)_{o}-;
 5
                            (g) -NR<sup>92</sup>; or
                            (g) covalent bond;
                   Y<sup>15</sup> is:
                            (a) aryl; or
                            (b) cycloalkyl;
10
                   Z<sup>15</sup> is:
                            (a) hydrogen;
                            (b) alkyl;
                            (c) haloalkyl;
                            (d) cycloalkyl;
15
                            (e) alkoxy;
                            (f) alkylthio;
                            (g) cycloalkylalkylthio;
                            (h) cycloalkylalkoxy;
                            (i) - OD^1;
20
                            (j) halo;
                            (k) cyano;
                            (1) - C(O)OD^1;
                            (m) -C(O)-lower alkyl;
                  R<sup>92</sup> is:
25
                            (a) hydrogen;
                            (b) lower alkyl;
                            (c) -C(O)-lower alkyl; or
                            (d) K;
                  R<sup>1</sup>, R<sup>1</sup>, D<sup>1</sup>, K and o are as defined herein; and
30
                  with the proviso that the compound of Formula XV must contain at least one oxime
```

group or hydrazone group;

wherein the compound of Formula (XVI) is:

XVI

5

wherein:

X¹⁶ is:

(a) .·

10

(b)

Y¹⁶ is:

- (a) hydrogen;
- (b) halogen;
- (c) methyl; or
- (d) ethyl;

Z¹⁶ is: (a) hydrogen; or (b) methyl; R⁹³ is: (a) chloro; or 5 (b) fluoro; R⁹⁴ and R⁹⁴ are each independently: (a) hydrogen; or (b) fluoro; R⁹⁵ is: 10 (a) chloro; (b) fluoro; (c) hydrogen; (d) methyl; (e) ethyl; 15 (f) methoxy; (g) ethoxy; or (i) hydroxy; R⁹⁶ is: (a) chloro; 20 (b) fluoro; (c) trifluoromethyl; or (d) methyl; R⁹⁸ is: (a) lower alkyl; 25 (b) lower alkenyl; (c) alkoxy; or (d) alkylthio; K and X¹³ are as defined herein; and with the proviso that the compound of Formula XVI must contain at least one oxime 30 group or hydrazone group.

2. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier.

5

10

15

20

25

- 3. A method for treating or reducing inflammation, pain or fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
- 4. A method for treating a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
- 5. The method of claim 4, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia
- 6. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
 - 7. The method of claim 6, wherein the wound is an ulcer.
- 8. A method for treating or reversing renal and/or respiratory toxicity in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
- 9. A method for treating a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
- 10. The method of claim 9, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, a skin-related condition, neoplasia, an inflammatory process in a disease, an ophthalmic disorder, pulmonary inflammation, a central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, a microbial infection, a cardiovascular disorder, a urinary disorder, a urological disorder, endothelial dysfunction, organ deterioration, tissue deterioration, or activation, adhesion and infiltration of neutrophils at the site of inflammation.

11. The method of claim 10, wherein the neoplasia is a brain cancer, a bone cancer, an epithelial cell-derived neoplasia (epithelial carcinoma), a basal cell carcinoma, an adenocarcinoma, a gastrointestinal cancer, a lip cancer, a mouth cancer, an esophageal cancer, a small bowel cancer, a stomach cancer, a colon cancer, a liver cancer, a bladder cancer, a pancreas cancer, an ovary cancer, a cervical cancer, a lung cancer, a breast cancer, a skin cancer, a squamus cell cancer, a basal cell cancer, a prostate cancer, a renal cell carcinoma, a cancerous tumor, a growth, a polyp, an adenomatous polyp, a familial adenomatous polyposis or a fibrosis resulting from radiation therapy.

5

10

15

20

25

- 12. The method of claim 10, wherein the central nervous system disorder is cortical dementia, Alzheimer's disease, vascular dementia, multi-infarct dementia, pre-senile dementia, alcoholic dementia, senile dementia, or central nervous system damage resulting from stroke, ischemia or trauma.
- 13. A method for inhibiting platelet aggregation in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 2.
 - 14. The composition of claim 2, further comprising at least one therapeutic agent.
- 15. The composition of claim 14, wherein the therapeutic agent is a steroid, a nonsteroidal antiinflammatory compound, a 5-lipoxygenase (5-LO) inhibitor, a leukotriene B₄ receptor antagonist, a leukotriene A₄ hydrolase inhibitor, a 5-HT agonist, a 3-hydroxy-3-methylglutaryl coenzyme A inhibitor, a H₂ antagonist, an antineoplastic agent, an antiplatelet agent, a thrombin inhibitor, a thromboxane inhibitor, a decongestant, a diuretic, a sedating or non-sedating anti-histamine, an inducible nitric oxide synthase inhibitor, an opioid, an analgesic, a *Helicobacter pylori* inhibitor, a proton pump inhibitor, an isoprostane inhibitor, or a mixture of two or more thereof.
- 16. The composition of claim 15, wherein the nonsteroidal antiinflammatory compound is acetaminophen, aspirin, diclofenac, ibuprofen, ketoprofen or naproxen.
- 17. A method for treating or reducing inflammation, pain or fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
- 18. A method for treating a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the

patient a therapeutically effective amount of the composition of claim 14.

5

10

15

20

25

- 19. The method of claim 18, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia.
- 20. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
 - 21. The method of claim 20, wherein the wound is an ulcer.
- 22. A method for treating or reversing renal and/or respiratory toxicity in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
- 23. A method for treating a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
- 24. The method of claim 23, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, a skin-related condition, neoplasia, an inflammatory process in a disease, an ophthalmic disorder, pulmonary inflammation, a central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, a microbial infection, a cardiovascular disorder, a urinary disorder, a urological disorder, endothelial dysfunction, organ deterioration, tissue deterioration, or activation, adhesion and infiltration of neutrophils at the site of inflammation.
- 25. The method of claim 24, wherein the neoplasia is a brain cancer, a bone cancer, an epithelial cell-derived neoplasia (epithelial carcinoma), a basal cell carcinoma, an adenocarcinoma, a gastrointestinal cancer, a lip cancer, a mouth cancer, an esophageal cancer, a small bowel cancer, a stomach cancer, a colon cancer, a liver cancer, a bladder cancer, a pancreas cancer, an ovary cancer, a cervical cancer, a lung cancer, a breast cancer, a skin cancer, a squamus cell cancer, a basal cell cancer, a prostate cancer, a renal cell carcinoma, a cancerous tumor, a growth, a polyp, an adenomatous polyp, a familial adenomatous polyposis or a fibrosis

resulting from radiation therapy.

5

10

15

20

25

- 26. The method of claim 24, wherein the central nervous system disorder is cortical dementia, Alzheimer's disease, vascular dementia, multi-infarct dementia, pre-senile dementia, alcoholic dementia, senile dementia, or central nervous system damage resulting from stroke, ischemia or trauma.
- 27. A method for inhibiting platelet aggregation in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 14.
- 28. A composition comprising at least one compound of claim 1 and at least one compound that donates, transfers or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase.
- 29. The composition of claim 28, further comprising a pharmaceutically acceptable carrier.
- 30. The composition of claim 28, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor or is a substrate for nitric oxide synthase is an S-nitrosothiol.
- 31. The composition of claim 30, wherein the S-nitrosothiol is S-nitroso-N-acetylcysteine, S-nitroso-captopril, S-nitroso-N-acetylpenicillamine, S-nitroso-homocysteine, S-nitroso-cysteine, S-nitroso-cysteine, S-nitroso-cysteinyl-glycine.
 - 32. The composition of claim 30, wherein the S-nitrosothiol is:
 - (i) $HS(C(R_e)(R_f))_mSNO$;
 - (ii) $ONS(C(R_e)(R_f))_mR_e$; or
- (iii) H₂N-CH(CO₂H)-(CH₂)_m-C(O)NH-CH(CH₂SNO)-C(O)NH-CH₂-CO₂H; wherein m is an integer from 2 to 20; R_e and R_f are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring. a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cyano, an aminoalkyl, an aminoaryl, an aryl, an arylalkyl, a carboxamido, a alkylcarboxamido, an arylcarboxamido, an amidyl, a carboxyl, a carbamoyl, an

alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarbonyl, an arylcarbonyl, an ester, a carboxylic ester, an alkylcarboxylic ester, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an arylsulfonamido, an alkylsulfonyl, an alkylsulfonyloxy, an arylsulfonyl, an arylsulfonyloxy, a urea, a nitro, -T-Q'-, or $-(C(R_g)(R_h))_k$ -T-Q' or R_e and R_f taken together are an oxo, a methanthial, a heterocyclic ring, a cycloalkyl group, an oxime, a hydrazone or a bridged cycloalkyl group; Q' is -NO or -NO₂; and T is independently a covalent bond, a carbonyl, an oxygen, -S(O)₀- or -N(R_a)R_i-, wherein o is an integer from 0 to 2, R_a is a lone pair of electrons, a hydrogen or an alkyl group; R_i is a hydrogen, an alkyl, an aryl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an arylcarboxylic ester, an alkylcarboxamido, an arylcarboxamido, an alkylsulfinyl, an alkylsulfonyl, an alkylsulfonyloxy, an arylsulfinyl, an arylsulfonyloxy, an arylsulfonyl, a sulfonamido, a carboxamido, a carboxylic ester, an aminoalkyl, an aminoaryl, $-CH_2-C(T-Q')(R_g)(R_h)$, or $-(N_2O_2-) \cdot M^+$, wherein M^+ is an organic or inorganic cation; with the proviso that when R_i is -CH₂-C(T-Q')(R_g)(R_h) or $-(N_2O_2-)\bullet M^+$; then "-T-Q'" can be a hydrogen, an alkyl group, an alkoxyalkyl group, an aminoalkyl group, a hydroxy group or an aryl group; and R_g and R_h at each occurrence are independently Re.

5

-10

15

20

25

- 33. The composition of claim 28, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase is L-arginine, L-homoarginine, N-hydroxy-L-arginine, nitrosated L-arginine, nitrosated L-arginine, nitrosated N-hydroxy-L-arginine, nitrosated L-homoarginine, nitrosylated L-homoarginine, nitrosylated L-homoarginine), citrulline, ornithine, glutamine, lysine, an arginase inhibitor or a nitric oxide mediator.
- 34. The composition of claim 28, wherein the compound that donates, transfers, or releases nitric oxide, or induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase is:
 - (i) a compound that comprises at least one ON-O- or ON-N- group;
- (ii) a compound that comprises at least one O_2N -O-, O_2N -N- or O_2N -S- or group;
- (iii) a N-oxo-N-nitrosoamine having the formula: $R^{1"}R^{2"}N-N(O-M^+)-NO$, wherein $R^{1"}$ and $R^{2"}$ are each independently a polypeptide, an amino acid, a sugar, an oligonucleotide, a

straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbon, or a heterocyclic group, and M⁺ is an organic or inorganic cation.

35. The composition of claim 34, wherein the compound comprising at least one ON-O- or ON-N- group is an ON-O-polypeptide, an ON-N-polypeptide, an ON-O-amino acid, an ON-O-sugar, an ON-N-sugar, an ON-O-oligonucleotide, an ON-N-oligonucleotide, a straight or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic ON-O-hydrocarbon, a straight or branched, saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic ON-N-hydrocarbon, an ON-O-heterocyclic compound or an ON-N-heterocyclic compound.

5

10

15

20

25

- 36. The composition of claim 34, wherein compound comprising at least one O₂N-O-, O₂N-N- or O₂N-S- group is an O₂N-O-polypeptide, an Q₂N-N-polypeptide, an O₂N-S- polypeptide, an O₂N-O-amino acid, O₂N-N-amino acid, O₂N-S-amino acid, an O₂N-O-sugar, an O₂N-N-sugar, O₂N-S-sugar, an O₂N-O-oligonucleotide, an O₂N-N-oligonucleotide, an O₂N-S-oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-O-hydrocarbon, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-N-hydrocarbon, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted O₂N-S-hydrocarbon, an O₂N-O-heterocyclic compound, an O₂N-N-heterocyclic compound or an O₂N-S-heterocyclic compound.
 - 37. The composition of claim 28, further comprising at least one therapeutic agent.
- 38. The composition of claim 37, wherein the therapeutic agent is a steroid, a nonsteroidal antiinflammatory compound, a 5-lipoxygenase (5-LO) inhibitor, a leukotriene B₄ receptor antagonist, a leukotriene A₄ hydrolase inhibitor, a 5-HT agonist, a HMG CoA inhibitor, a H₂ antagonist, an antineoplastic agent, an antiplatelet agent, a thrombin inhibitor, a thromboxane inhibitor, a decongestant, a diuretic, a sedating or non-sedating anti-histamine, an inducible nitric oxide synthase inhibitor, an opioid, an analgesic, a *Helicobacter pylori* inhibitor, a proton pump inhibitor, an isoprostane inhibitor, or a mixture of two or more thereof.
- 39. The composition of claim 38, wherein the nonsteroidal antiinflammatory compound is acetaminophen, aspirin, diclofenac, ibuprofen, ketoprofen or naproxen.
- 40. A method for treating or reducing inflammation, pain or fever in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the

composition of claim 29 or 37.

10

15

20

25

- 41. A method for treating a gastrointestinal disorder, or improving the gastrointestinal properties of a COX-2 inhibitor in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
- 42. The method of claim 41, wherein the gastrointestinal disorder is an inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome, ulcerative colitis, a peptic ulcer, a stress ulcer, a bleeding ulcer, gastric hyperacidity, dyspepsia, gastroparesis, Zollinger-Ellison syndrome, gastroesophageal reflux disease, a bacterial infection, short-bowel (anastomosis) syndrome, or a hypersecretory state associated with systemic mastocytosis or basophilic leukemia and hyperhistaminemia.
- 43. A method for facilitating wound healing in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
 - 44. The method of claim 43, wherein the wound is an ulcer.
- 45. A method for treating or reversing renal and/or respiratory toxicity in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
- 46. A method for treating a disorder resulting from elevated levels of COX-2 in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
- 47. The method of claim 46, wherein the disorder resulting from elevated levels of COX-2 is angiogenesis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis, a skin-related condition, neoplasia, an inflammatory process in a disease, an ophthalmic disorder, pulmonary inflammation, a central nervous system disorder, allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis, a microbial infection, a cardiovascular disorder, a urinary disorder, a urological disorder, endothelial dysfunction, organ deterioration, tissue deterioration, or activation, adhesion and infiltration of neutrophils at the site of inflammation.
- 48. The method of claim 47, wherein the neoplasia is a brain cancer, a bone cancer, an epithelial cell-derived neoplasia (epithelial carcinoma), a basal cell carcinoma, an adenocarcinoma, a gastrointestinal cancer, a lip cancer, a mouth cancer, an esophageal cancer, a

small bowel cancer, a stomach cancer, a colon cancer, a liver cancer, a bladder cancer, a pancreas cancer, an ovary cancer, a cervical cancer, a lung cancer, a breast cancer, a skin cancer, a squamus cell cancer, a basal cell cancer, a prostate cancer, a renal cell carcinoma, a cancerous tumor, a growth, a polyp, an adenomatous polyp, a familial adenomatous polyposis or a fibrosis resulting from radiation therapy.

- 49. The method of claim 47, wherein the central nervous system disorder is cortical dementia, Alzheimer's disease, vascular dementia, multi-infarct dementia, pre-senile dementia, alcoholic dementia, senile dementia, or central nervous system damage resulting from stroke, ischemia or trauma.
- 50. A method for inhibiting platelet aggregation in a patient in need thereof comprising administering to the patient a therapeutically effective amount of the composition of claim 29 or 37.
 - 51. A kit comprising at least one compound of claim 1.

5

10

15

20

25

- 52. The kit of claim 51, further comprising (i) at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase; (ii) at least one therapeutic agent; or (iii) at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase and at least one therapeutic agent.
- 53. The kit of claim 52, wherein the at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase; the at least one therapeutic agent; or the at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase and at least one therapeutic agent; are in the form of separate components in the kit
 - 54. A kit comprising the composition of claim 14, 29 or 37.
- 55. A compound selected from the group consisting of: 1-(3-(1-(hydroxyimino)-4-(nitrooxy)butyl)-1- phenylpyrazol-5-yl-4-(methylsulfonyl)benzene; 1-(1-cyclohexyl-3-(1-(hydroxyimino)- 4-(nitroxy)butyl)pyrazol-5-yl)-4-(methylsulfonyl) benzene;

- 1-(3-(2-aza-2-methoxy-1-(3-(nitrooxy)propyl)vinyl- 1-cyclohexylpyrazol -5-yl)-4-(methylsulfonyl)benzene;
- 4-(3-(1-(hydroxyimino)-5-(nitrooxy)butyl)-4- (4-(methylsulfonyl)phenyl)-pyrazolyl)
- 5 benzenecarbonitrile;

10

- 1-(1-cyclohexyl-3-(1-(hydroximino)- 6-(nitrooxy)hexyl)-pyrazol-5-yl)-4-(methylsulfonyl) benzene;
- *tert*-butyl 2-((1E)-2-{1-cyclohexyl-5-[4-(methylsulfonyl)phenyl]pyrazol-3-yl}-5-(nitrooxy)-1-azapent-1-enyloxy)acetate; or a pharmaceutically acceptable salt thereof.
- 56. A composition comprising at least one compound of claim 55 and a pharmaceutically acceptable carrier.
- 57. The composition of claim 56, further comprising (i) at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase; (ii) at least one therapeutic agent; or (iii) at least one compound that donates, transfers or releases nitric oxide, induces the production of endogenous nitric oxide or endothelium-derived relaxing factor, or is a substrate for nitric oxide synthase and at least one therapeutic agent.
 - 58. A kit comprising at least one compound of claim 55.