2 Combinaison d'événements

Soit une expérience aléatoire d'univers Ω , et deux événements A et B.

Définition 4. • La réunion de A et de B, notée $A \cup B$, est l'événement contenant toutes les issues de A ainsi que celles de B.

• L'intersection de A et B, notée $A \cap B$, est l'événement contenant les issues présentes à la fois dans A et dans B

Définition 5. Le complémentaire de A, noté \overline{A} , est l'ensemble des élément de Ω qui ne sont pas des éléments de A.

Exemple. On lance un dé à 6 faces et on observe le résultat. Compléter le tableau ci-après.

A	В	$A \cup B$	$A \cap B$	\overline{A}
On obtient un nombre pair	On obtient un nombre supérieur ou égal à 4	$\{2;4;5;6\}$	$\{4;6\}$	$\{1; 3; 5\}$
On obtient un multiple de 3	On obtient un nombre inférieur à 2			
On obtient un 4	On obtient un 3			

Remarque. • En français, $A \cup B$ représente « l'événement A OU l'événement B s'est réalisé. »

- En français, $A \cap B$ représente « l'événement A ET l'événement B se sont réalisés. »
- En français, \overline{A} représente « l'événement A ne s'est pas réalisé. »

3 Probabilités sur un univers fini

3.1 Loi de probabilité

Définition 6. Soit une expérience aléatoire dont l'univers est fini : il est de la forme

$$\Omega = \{e_1; e_2; \dots; e_n\}, \text{ avec } n \geq 1.$$

Une loi de probabilité sur Ω est l'association de chaque issue e_i à un nombre p_i compris entre 0 et 1 inclus. De plus, la somme de tous ces nombres doit être égale à 1.

Exemple. On lance un dé équilibré et on observe le résultat. Les deux associations ci-dessous sont des lois de probabilité.

Ω	1	2	3	4	5	6
Probabilités	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$

$$car \ 0 + 0 + 0 + 0 + \frac{1}{2} + \frac{1}{2} = 1.$$

Ω	1	2	3	4	5	6
Probabilité	1	1	1	1	1	1
Probabilité	$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$	$\overline{6}$

$$car \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1.$$

Exercice. Compléter le tableau suivant afin de définir une loi de probabilité sur Ω . Cette loi de probabilité devra avantager les nombres impairs.

Ω	1	2	3	4	5	6
Probabilité						

Définition 7. On dit qu'une expérience aléatoire est en situation d'équiprobabilité si toutes les issues ont la même probabilité.

Exemple. Les expériences aléatoires suivantes sont en situation d'équiprobabilité :

- Le lancer d'un dé équilibré.
- Le lancer d'une pièce équilibrée.
- Le tirage d'une carte dans un jeu de 52 cartes mélangé.
- Le tirage d'un jeton parmi des jetons indiscernables au toucher dans une urne opaque.

Définition 8. Soit A un événement. La probabilité de A, notée P(A), est la somme des probabilités des issues contenues par A.

Exemple. Pour la loi de probabilité donnée par l'exercice précédent, quelle est la probabilité de l'événement A« Obtenir un nombre pair »?

Remarque.

$$P(\emptyset) = 0$$

$$P(\Omega) = 1$$