Mikrosenzory a mikromechanické systém			Jméno Y Jakub Charvot		ID 240844
Ústav mikroelektroniky			Ročník	Obor	Skupina
FEKT VUT v Brně			3.	MET	MET/2
Spolupracoval	Měřeno dne	Odevzdáno dne		Hodnocení	
Radek Kučera	26.03. 2024	(2024		
Název zadání Měření polohy					

1 Měření a jeho vyhodnocení

Maximální absolutní chyba použitého senzoru je $\pm 0,22^{\circ}$, což je údaj platný jak pro měření rotace, tak i náklonu – jedná se o stále stejný typ měření, pouze využívá jinou osu senzoru.

Tabulka 1: Nastavené a měřené hodnoty (ADXL345).

$\theta_{rot-nast}$ [°]	$\theta_{rot-mer}$ [°]	$\Delta\theta_{rot}$ [°]	$\theta_{nak-nast}$ [°]	$\theta_{nak-mer}$ [°]
90,000	87,138	2,047	90,000	87,953
80,000	77,793	1,171	80,000	78,829
70,000	67,770	0,715	70,000	$69,\!285$
60,000	57,801	0,563	60,000	59,437
50,000	48,346	0,184	50,000	49,816
40,000	38,345	0,037	40,000	39,963
30,000	28,879	-0,346	30,000	30,346
20,000	18,929	0,019	20,000	19,981
10,000	9,645	-1,123	10,000	11,123
0,000	-0,448	-1,560	0,000	1,560
-10,000	-11,354	-0,831	-10,000	-9,169
-20,000	-21,389	-0,575	-20,000	-19,425
-30,000	-30,961	-0,509	-30,000	-29,491
-40,000	-39,973	-1,043	-40,000	-38,957
-50,000	-50,243	-0,828	-50,000	-49,172
-60,000	-59,785	-1,243	-60,000	-58,757
-70,000	-70,255	-1,390	-70,000	-68,610
-80,000	-79,226	-1,078	-80,000	-78,922
-90,000	-88,276	-1,904	-90,000	-88,096

1.1 Příklad výpočtu

$$\Delta \theta_{rot} = \theta_{rot-nast} - \theta_{rot-mer} \Delta \theta_{nak} = \theta_{nak-nast} - \theta_{nak-mer}$$

Obr. 1: Kalibrační křivka měření náklonu.

Obr. 2: Korekční křivka měření náklonu.

Obr. 3: Kalibrační křivka měření rotace.

Obr. 4: Korekční křivka měření rotace.

1.2 Zdrojový kód

```
1 import smbus
2 import math
3 import kADXL345 as ad
5 def main():
      bus = smbus.SMBus(1)
      ad. Inicializace345 (bus, 0x1E, 0x20)
      print("deg\trot\tnak")
10
      deg=0
      # vlozeni breakpointu na zacatek cyklu umozni jednoduche
     krokovani pri nastaveni uhlu
      while True:
12
          x = ad.Precteni(bus, 0x32, 0x33)
13
          y = ad.Precteni(bus, 0x34, 0x35)
14
          z = ad.Precteni(bus, 0x36, 0x37)
15
          if (x == 0) and (z == 0) or (y == 0) and (z == 0):
              pass
          else:
              rot = 0
19
              nak = 0
20
              for deg in range(0, 10):
21
                   rot += math.atan(y/math.sqrt(math.pow(x, 2) +
     math.pow(z, 2))) * 180/math.pi
                  nak += math.atan(-1 * x/math.sqrt(math.pow(y, 2)
23
     + math.pow(z, 2))) * 180/math.pi
              rot = format(rot, '.4f')
24
              nak = format(nak, '.4f')
              print(str(deg) + '\t' + str(rot) + '\t' + str(nak) +
     '\n')
              deg += 10
27
28
29 if __name__ == "__main__":
      main()
```

Listing 1: Použitý kód v jazyce Python

Závěr

Sračka :(