

Sequential circuits

➤ MEMORY – remember past values

➤ CLOCK signal — Periodic logic-1 pulses

Asynchronous sequential circuits

Racing condition

Sequential circuits – Flip flops

Basic building block of sequential circuits — FLIP FLOP (FF)

It is single bit storage device

- \succ Two stable operating states possible in a flip flop, \longrightarrow 1 bit of information (0,1) can be stored
- \triangleright Different types based on how the clock and input signals control the state (o/p) of the FF.

Simplest FF – using inverters

- **❖** O/p of top inverter HIGH, o/p of bottom inverter LOW.
- \clubsuit Hence labeled as \overline{Q}
- **❖** O/p of top inverter LOW, o/p of bottom inverter HIGH.
- **❖** Any of these states possible and then can remain in this state indefinitely

How to control its state?

SR FLIP FLOP

SET (S) RESET (R) flipflop

- \clubsuit When S is HIGH and R is LOW, \overline{Q} is forced to LOW and Q to HIGH (1)
- ***** When S returns to LOW, Q stays HIGH: FF remains in SET state
- ❖Now, S is LOW and if R becomes HIGH, Q is forced to LOW
- ❖ When R returns LOW, Q stays LOW: FF remains in the RESET state
- ***** Both R and S not allowed to remain HIGH at the same time
- With both R and S LOW, FF remembers PREVIOUS STATE
- Inverter replaced by NOR gate
- Latch: Unclocked flip-flop

SR flipflop implementation

Α	В	C= <i>A+B</i>	$\frac{C=}{A+B}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Truth table of NOR gate:

* When any of the i/p is 1, o/p is 0

Truth table of SR flipflop

SR flipflop - Application

Eliminate effects of a switch bounce

Q) The waveforms present at the input terminals of a SR flip flop are shown. Sketch the waveforms for Q versus time

R	S	Q_n
0	0	Q_{n-1}
0	1	1
1	0	0
1	1	Not allowed

Edge-triggered FLIP FLOPs

Clocked SR flipflop – Latch :

Level triggered - High clock level enables the inputs & low clock level disables it

- > Edge triggered circuits Respond to the inputs only on the transition of the clock signal
- > If clock signal is steady, i.e. either a HIGH or a LOW, inputs are disabled.
- > At the clock transition, the flip-flop responds to just prior to the transition

Edge-triggered circuits

Positive Edge triggered:

Respond on *leading* edge- when clock goes from *LOW to HIGH*

Negative Edge triggered:

Respond on *trailing* edge- when clock goes from *HIGH to LOW*

D FLIP FLOP

D flip flop or Delay flip flop:

Circuit symbol

Logical Circuit implementation

Truth table of D flip flop

➤ Output takes the value of input that was present just prior to the triggering clock transition

➤ Up arrow in truth table – indicates – positive edge of the clock signal

D FLIP FLOP - Operation

JK FLIP FLOP

JK flip flop: Most widely used!

Negative edge triggered symbol

Logical Circuit implementation

Truth table of JK flip flop

- ➤ Operation similar to an SR flipflop except that when both inputs J & K are HIGH, state changes on the next negative going clock pulse
- ➤ When both J & K are HIGH, output of JK flipflop toggles on each cycle of clock Low to High on one —ve edge transition and again High to Low on the next.

JK FLIP FLOP – Application - COUNTER

Counters – used to count the pulses of the input signal – IMP part of the ALU

RIPPLE COUNTER: Cascade of J-K flip flops

- When both inputs are HIGH, Q output toggles, in a J-K flip flop (FF)
- Input pulses to be counted are connected to input of the 1st JK FF and output of the 1st JK FF is connected to the input of the 2nd JK FF Cascading

RIPPLE COUNTER Waveforms

- ■Assume all FF's in the Reset state (Q=0)
- When the falling edge of the 1st i/p pulse occurs, Q₀ changes to o/p 1
- **■**On the falling edge of the 2nd i/p pulse, Q₀ toggles back to **0**
- Falling input to 2nd stage, makesQ₁ go HIGH (1)
- After 7 pulses, the counter is in 111 state & on the 8th pulse, counter returns to **0**.

Acknowledgements

- 1. Allan R. Hambley, 'Electrical Engineering Principles & Applications, Pearson Education, First Impression, 6/e, 2013
- 2. https://www.electronics-tutorials.ws/sequential/seq 4.html