REPRESENTAÇÃO DE NÚMEROS E ARITMÉTICA COMPUTACIONAL

COMO O HARDWARE DO COMPUTADOR IMPLEMENTA A REPRESENTAÇÃO DE NÚMEROS INTERNAMENTE E COMO SÃO REALIZADAS AS OPERAÇÕES ARITMÉTICAS SOBRE OS MESMOS.

QUALQUER QUE SEJA A BASE, SABEMOS QUE O **i-ésimo** DÍGITO DE UM NÚMERO COM **N** DÍGITOS É DADO POR :

$$D * B ** i$$
, $COM i = 0, 1, ..., n-1$

E CRESCENDO DA DIREITA PARA A ESQUERDA.

POR EXEMPLO, O NUMERO 1011 NA BASE DOIS É DADO POR:

EM UMA PALAVRA DO COMPUTADOR COM N BITS, OS BITS SÃO NUMERADOS COM:

0, 1, 2, ..., N-1

DA DIREITA PARA A ESQUERDA.

DENTRO DE UMA PALAVRA DO MIPS, O NÚMERO 1011, FICARIA:

0000	0000	0000	0000	0000	0000	0000	1011
31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 1 13 12	11 10 98	7 6 5 4	3 2 1 0

UMA VEZ QUE UMA PALAVRA DO COMPUTADOR PODE SER DESENHADA TANTO HORIZONTALMENTE COMO VERTICALMENTE, AS FRASES:

"BIT MAIS A DIREITA", OU "BIT MAIS A ESQUERDA", NÃO SÃO CLARAS.

UTILIZA-SE, PORTANTO, AS FRASES:

"BIT MENOS SIGNIFICATIVO" PARA INDICAR O BIT 0 E

"BIT MAIS SIGNIFICATIVO" PARA INDICAR O BIT 31

SENDO A PALAVRA DO MIPS COMPOSTA POR (4 X 8) 32 BITS, ELA PODE REPRESENTAR 2**32 PADRÕES DIFERENTES DE 32 BITS CADA.

OU OS NÚMEROS DE 0>>> (2**32)-1

0 >>>> (4. 294. 967. 295) NA BASE 10

0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0001
0000	0000	0000	0000	0000	0000	0000	0010
0000	0000	0000	0000	0000	0000	0000	0011
0000	0000	0000	0000	0000	0000	0000	0100
0000	0000	0000	0000	0000	0000	0000	0101
4444	4444	4444	1111	4444	1111	1111	1100
1111	1111	1111	1111	1111	1111	1111	1100
1111	1111	1111	1111	1111	1111	1111	1101

4. 294. 967. 292 E 4. 294. 967. 293

1111	1111	1111	1111	1111	1111	1111	1110
1111	1111	1111	1111	1111	1111	1111	1111

4. 294 . 967 . 294 E 4. 294 . 967 . 295

COMO O HARDWARE É PROJETADO PARA SOMAR, SUBTRAIR MULTIPLICAR E DIVIDIR ESSES PADRÕES DE BIT BINÁRIO?

AS REPRESENTAÇÕES DE NÚMEROS NORMALMENTE SE APRESENTAM COMO UMA INFINIDADE DE DÍGITOS "0", COM EXCEÇÃO DOS **POUCOS DIGITOS MAIS** SIGNIFICATIVOS. NORMALMENTE NÃO SÃO MOSTRADOS OS "0s"

ENTRETANTO:

SE O NÚMERO QUE REPRESENTA O
RESULTADO CORRETO DE UMA OPERAÇÃO
ARITMÉTICA NÃO PUDER SER REPRESENTADO
PELO COMPUTADOR, DIZEMOS QUE OCORREU
UM OVERFLOW, FICANDO ENTÃO PARA O
SISTEMA OPERACIONAL E OU PROGRAMA
DECIDIREM COMO TRATAR ESSA
OCORRÊNCIA.

QUE MARAVILHA SE TODOS FOSSEM NÚMEROS NATURAIS, MAS, ISSO NÃO OCORRE.

O COMPUTADOR TEM QUE REPRESENTAR E OPERAR COM NÚMEROS POSITIVOS E NÚMEROS NEGATIVOS.

COMO FAZER ISSO?

SOLUÇÃO MAIS NATURAL: RESERVAR UM BIT PARA O SINAL:

SE ESSE BIT ESTIVER SETADO (=1) A REPRESENTAÇÃO CORRESPONDENTE É DE UM NÚMERO NEGATIVO, CASO CONTRÁRIO (=0) E DE UM NÚMERO POSITIVO.

ESSA REPRESENTÇÃO É CHAMADA DE:

SINAL E MAGNITUDE

FUI CHAMADA! ATUALMENTE NÃO É MAIS UTILIZADA.

POR QUE ?????????????????

ATUALMENTE TODOS OS
COMPUTADORES UTILIZAM A
REPRESENTAÇÃO CHAMADA DE
COMPLEMENTO DE DOIS PARA
REPRESENTAR SEUS NÚMEROS
BINÁRIOS POSITIVOS E NEGATIVOS.

ESSA ESCOLHA SE DEU EM FUNÇÃO DA SIMPLICIDADE DO HARDWARE QUE REALIZA AS OPERAÇÕES ARITMÉTICAS E TAMBÉM DA VELOCIDADE DAS MESMAS.

COMO FICAM OS NÚMEROS BINÁRIOS COM SINAIS REPRESENTADOS NO MIPS UTILIZANDO COMPLEMENTO DE DOIS?

0000	0000	0000	0000	0000	0000	0000	0000
0000	0000	0000	0000	0000	0000	0000	0001
0000	0000	0000	0000	0000	0000	0000	0010
	3333	3333	3333			3333	3323
0000	0000	0000	0000	0000	0000	0000	0011
0000	0000	0000	0000	0000	0000	0000	0100
0000	0000	0000	0000	0000	0000	0000	0101
0444							1100
0111	11111	1111	11111	1111	11111	1111	1100
0111	1111	1111	1111	1111	1111	1111	1101

2. 147.483.644 E 2. 147.483.645

0111	1111	1111	1111	1111	1111	1111	1110
0111	1111	1111	1111	1111	1111	1111	1111

2. 147.483.646 E 2. 147.483.647

1000	0000	0000	0000	0000	0000	0000	0000
1000	0000	0000	0000	0000	0000	0000	0001

- 2.147.483.648 E - 2.147.483.647

1000	0000	0000	0000	0000	0000	0000	0010
1000	0000	0000	0000	0000	0000	0000	0011

- 2. 147 . 483 . 646 E - 2. 147 . 483 . 645

A METADE POSITIVA DOS NÚMEROS UTILIZA A MESMA REPRESENTAÇÃO ANTERIOR, INDO DE 0 ATÉ 2.147.483.647 (2**31 – 1)

O MAIOR NÚMERO NEGATIVO É O 10000000000...000 - 2.147.483.648 (- 2**31)

PARA ESSE PARTICULAR NÚMERO NÃO EXISTE O CORRESPONTENTE POSITIVO (UM PROBLEMA DA REPRESENTAÇÃO COMPLENTO DE DOIS)

TODOS OS NÚMEROS NEGATIVOS NA REPRESENTAÇÃO COMPLEMENTO DE DOIS APRESENTAM O "1" COMO O BIT MAIS SIGNIFICATIVO (ALGUMA VANTAGEM?)

TODOS OS POSITIVOS APRESENTAM O "0" COMO O "BIT DE SINAL".

REGRA DO SINAL:

```
(X31*-2 **31)+(X30*2**30)+(X29*2**29) +...
(X1 * 2**1) + (X0 * 2**0)
```

COMO NOS, POBRES MORTAIS, TRABALHAMOS COM ESSA REPRESENTAÇÃO?

REGRA DO SINAL:

```
(X31*-2 **31)+(X30*2**30)+(X29*2**29) +...
(X1 * 2**1) + (X0 * 2**0)
```

QUAL É O VALOR, NA NOSSA BASE, DO NÚMERO BINÁRIO ABAIXO:

1111 1111 1111 1111 1111 1111 1111 1100

SUBSTITUINDO NA FÓRMULA ANTERIOR TEREMOS:

$$(1*-2**31) + (1*2**30) + (1*3**29) + ... +$$

 $(1*2**3) + (1*2**2) + (0*2**1) + (0*2**0) =$

$$-2**31 + 2**30 + 2**29 + ... + 2**3 + 2**2 + 0 + 0 =$$

-2.147.483.648 + 2.147.483.644 = -4

COMO O COMPLEMENTO DO
COMPLEMENTO DE UM NÚMERO N É O
PRÓPRIO N PODEREMOS TAMBÉM
FAZER:

1111 1111 1111 1111 1111 1111 1111 1100 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 0000 0001

1

100

PORTANTO N=4 E SEU COMPLEMENTO -4

COMO TRANSFORMAR UM NÚMERO BINÁRIO NORMAL NO SEU CORRESPONDENTE NA REPRESENTAÇÃO COMPLEMENTO DE DOIS?

FACIL, FACIL: TOMA-SE O COMPLEMENTO DE UM DO NÚMERO ORIGINAL E ADICIONA-SE 1 AO BIT MENOS SIGNIFICATIVO. COMO TRANSFORMAR UM NÚMERO BINÁRIO NORMAL NO SEU CORRESPONDENTE NA REPRESENTAÇÃO COMPLEMENTO DE UM?

O COMPLEMENTO DE UM DE UM NÚMERO É OBTIDO, SUBSTITUINDO TODOS OS SEUS 0 POR 1 E TODOS OS SEUS 1 POR 0.

EM OUTRAS PALAVRAS, SUBSTUI-SE TODOS OS BITS DO NÚMERO BINÁRIO ORIGINAL, PELO SEU COMPLEMENTO.

EXEMPLO:

NÚMERO ORIGINAL: 101101

SEU COMPLEMENTO: 010010

COMO REALIZAR AS OPERAÇÕES ARITMÉTICA SOMA E SOBTRAÇÃO EM BINÁRIO?

REGRAS DA SOMA:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1+0=1$$

$$1 + 1 = 10 = 0 + CARRY 1$$

$$1+1+1=11=1+CARRY1$$

REGRAS DA SUBTRAÇÃO

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$0-1=1$$
 PEDE EMPRESTADO 1

$$(10 - 1)$$

$$1 - 1 = 0$$

SUBTRAÇÃO BINÁRIA = SUBTRAÇÃO DECIMAL

MINUENDO 8 3 0 3

SUBTRAENDO - 5 4 8 6

DIFERENÇA

3555555555555555555

EMPRESTIMO:	7	12	9	13
MINUENDO:	8	3	0	3
SUBTRAENDO:	- 5	4	8	6
DIFERENÇA:	2	8	1	7

MINUENDO 8 3 0 3

MILHAR: 8 >>> 7

CENTENA: 3 >> 2 >> +10 = 12

DEZENA : 0 >>> 9

UNIDADE: 3 >>>> +10 = 13

MINUENDO 7 12 9 13

MILHAR: 7 0 0 0

CENTENA: 12 0 0

DEZENA: 9 0

UNIDADE: 13

8 3 0 3

1 8 0 0 3

- 8 9 0 9

1 7 9 9 13

- 8 9 0 9

1 7 0 9 4

0 17 0 9 4 8 9 0 Resultado: 9 0 9 4

BINÁRIO:

```
      1
      1
      0
      1
      1
      27

      -0
      1
      1
      0
      1
      -13
```

- 0 1 1 0 1

1 1 0

1 0 10 1 1 - 0 1 1 0 1

1 0

0 10 10 1 10 1 1 0 1

1 1 1 0 14

BINÁRIO:

```
      1
      0
      0
      0
      0
      16

      -0
      1
      0
      1
      1
      -11
```

0 1 1 1 10

- 0 1 0 1 1

0 1 0 1 5

MINUENDO: 1 1 0 0 0 1 0 0

SUBTRAENDO: 0 0 1 0 0 1 0 1

DIFERENÇA: ??????

0 1 10

MINUENDO: 1 1 0 0 0 1 0 0

SUBTRAENDO: 0 0 1 0 0 1 0 1

1 1

MINUENDO: 1 0 1 1 1 2 1 2 SUBTRAENDO: 0 0 1 0 0 1 0 1

1 0 0 1 1 1 1 1

FAIXAS DE REPRESENTAÇÃO

- •SINAL E MAGNITUDE
- •BASE 2
- •N DIGITOS

2^N representações, incluindo o bit do sinal.

VALORES REPRESENDADOS:

$$-(2^{N-1}-1) >>> +(2^{N-1}-1)$$

POR QUE?

EXEMPLO, N = 5

$$-(2^4-1) >>> + (2^4-1)$$

2⁵ Representações = 32

MAIOR INTEIRO POSITIVO: $15 = 2^4 - 1$

THE SHAPE	1	60000000000000000000000000000000000000		1
24	2 ³	22	21	20

MAIOR INTEIRO NEGATIVO:

$$-15 = -(2^4 - 1)$$

1	Ĺ	1	1	1
24	2 ³	22	21	20

0	0	0	0	0
24	2 ³	2 ²	21	20

1	0	0	0	0
24	2 ³	2 ²	21	2 ⁰

-0, -1 -2, -3, -4, -5, -6, ..., , -12, -13, -14, -15, +0, +1, +2, +3, ..., +12, +13, +14, +15

32 REPRESENTAÇÕES.

REPRESENTAÇÃO DE NÚMEROS EM COMPLEMENTO

COMPLEMENTO = DIFERENÇA ENTRE CADA ALGARISMO DO NÚMERO E O MAIOR ALGARISMO POSSÍVEL NA BASE CORRESPONDENTE (COMPLEMENTO A BASE – 1)

$$C = B - 1$$

$$C1 >>> B = 2 >> C1 = 1$$

$$C9 >>> B = 10 >> C9 = 9$$

VANTAGEM DA REPRESENTAÇÃO DE NÚMEROS EM COMPLEMENTO:

NÚMEROS POSITIVOS NÃO SE ALTERAM

SM: 011101 C: 011101

OPERAÇÃO SUBTRAÇÃO DE DOIS NÚMEROS É FEITA ATRAVÉS DA SOMA EM COMPLEMENTO.

REPRESENTAÇÃO DE NÚMEROS
NEGATIVOS EM COMPLEMENTO A
(BASE-1): SUBTRAÇÃO DA (BASE-1)
DE TODOS OS ALGARISMOS DO
NÚMERO. EXEMPLO: 297₁₀ >>>
COMPLEMENTO A 9

999

- 297

702

3 A 7 E_H >>> COMPLEMENTO A: 16-1 = 15 = F

111

- 3 A 7 E

C 5 8 1

CASO PARTICULA, REPRESENTAÇÃO DE NÚMEROS NEGATIVOS EM COMPLEMENTO NA BASE DOIS:

>>>> COMPLEMENTO A 1

CALCULAR C1 DE 0011₂

11111

- 0011

1100

BASTA INVERTER OS BITS. EXEMPLO PARA N= 4

DEC (+)	BIN (+)	DEC (-)	BIN (-)
0	0000	-0	1111
1	0001	-1	1110
2	0010	-2	1101
3	0011	-3	1100
4	0100	-4	1011
5	0101	-5	1010
6	0110	-6	1001
7	0111	-7	1000
8	1000	-8	0111

O QUE ACONTECEU COM O NÚMERO 8 ?

DEC	BIN	DEC	BIN
(+)	(+)	(-)	(-)
8	1000	-8	0111

NADA: APENAS SE VERIFICA QUE O ALGARISMO 8 ESTÁ FORA DA FAIXA DE REPRESENTAÇÃO

FAIXAS DE REPRESENTAÇÃO

- BASE 2 COMPLEMENTO A 1
- N DIGITOS
- IGUAL AO DO SINAL E MAGNETUDE (2 REPR. PARA O ZERO)
- 2^N representações, incluindo o bit do sinal.

VALORES REPRESENDADOS:

$$-(2^{N-1}-1) >>> +(2^{N-1}-1)$$

PARA
$$N = 4$$

$$-(2^3-1) >>> +(2^3-1)$$

ARITMÉTICA EM COMPLEMENTO A (BASE-1) VANTAGEM:

- SOMENTE EXISTE SOMA.
- UM NÚMERO NEGATIVO ESTARÁ SENDO REPRESENTADO PELO SEU COMPLEMENTO, EXEMPLO:

SOMAR (123)₁₀ COM (-418)₁₀

EM COMPLEMENTO A BASE - 1

123+(-418) = 9999 -418

581 123+581=704

999

- 295

7 0 4

PORTANTO: 7 0 4 É UM NÚMERO NEGATIVO.

É O COMPLEMENTO A NOVE DE - 295

MUITO EMBORA O ALGORITMO DA SOMA EM COMPLEMENTO A BASE-1 SEJA MAIS SIMPLES DO QUE O DE SINAL E MAGNITUDE,

+0,-0

CONTINUAM.

REPRESENTAÇÃO DE NÚMEROS NEGATIVOS

EM COMPLEMENTO

A BASE

COMO SE OBTEM ???

BASTA SUBTRAIR DA BASE CADA ALGARISMO DO NÚMERO!?

OU SUBTRAIR DA

(BASE-1) CADA ALGARISMO E ENTÃO SOMAR 1.

$$(B - N) =$$

$$((B - 1) - N) + 1$$
EXEMPLO: QUAL É O COMPLENTO
$$(297)_{10}?$$

$$999 - 297 = 702 + 1$$

$$= 703$$

1000 - 297 = 703

COMPLEMENTO DE

(3A7E)_H?

FFFF-3A7E=

C581+1=C582

CASO PARTICULAR

C2: COMPLEMENTO DE NÚMEROS NEGATIVOS NA BASE 2:

$$2 - N = (1-N) + 1$$

É POR ISSO QUE: CALCULAR O COMPLEMENTO DE UM NÚMERO A BASE 2 É INVERTER TODOS OS SEUS BITS (C1) E SOMAR 1.

EXEMPLO:

0011 >> 1100+1 >> 1101

FAIXA DE REPRESENTAÇÃO, N =4

DEC +	BIN +	DEC -	BIN C2
0	0000	-1	1111
1	0001	-2	1110
2	0010	-3	1100
3	0011	-4	1100
4	0100	-5	1011
5	0101	-6	1010
6	0110	-7	1001
7	0111	-8	1000

NA REPRESENTAÇÃO EM C2 NÃO HÁ +0 e-0, DESSA FORMA CRIA-SE UM LUGAR PARA MAIS UMA REPRESENTAÇÃO, NO EXEMPLO, N=4, O NÚMERO -8 PODE SER REPRESENTADO.

