1 Lista de exercícios: Integração numérica

1.1 Fórmulas de Newton-Coutes

1. Aplicar a regra do trapézio para calcular:

$$\int_{1.0}^{1.3} \sqrt{x} dx \tag{1}$$

utilizando os dados da tabela a seguir:

						1.25	
\sqrt{x}	1.0000	1.0247	1.0488	1.0723	1.0954	1.1180	1.1401

2. Calcular:

$$\int_0^{0.8} \cos x dx \tag{2}$$

pela regra do trapézio, com h = 0.4, 0.2 e 0.1, sabendo que:

\overline{x}	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
$\cos x$	1	0.995	0.980	0.955	0.921	0.877	0.825	0.764	0.696

3. Usando a regra do trapézio sobre cinco pontos, calcular:

$$\int_{1.2}^{1.6} \sin x dx \tag{3}$$

Sabe-se que:

х	1.2	1.3	1.4	1.5	1.6
sin x	0.93204	0.96356	0.98545	0.99749	0.99957

4. Dada a tabela: calcular:

pela regra do trapézio usando todos os pontos.

5. A velocidade v de um foguete lançado do chão verticalmente (para cima, é claro) foi tabelada como se segue: usando a regra $\frac{1}{3}$ de Simpson, calcular a altura do foguete após

t (s)	0	5	10	15	20
v (pés/s)	0	60.6	180.1	341.6	528.4

20 segundos.

6. Usando a regra $\frac{1}{3}$ de Simpson, calcular:

$$\int_{1.0}^{1.6} \ln x dx. \tag{5}$$

Sabendo-se que:

χ	1.0	1.1	1.2	1.3	1.4	1.5	1.6
$\ln x$	0	0.095	0.182	0.262	0.336	0.405	0.470

7. Calcular:

$$\int_0^{0.6} \cos x dx,\tag{6}$$

pela regra $\frac{3}{8}$ de Simpson, com h=0.1. Use a tabela do exercício 2.

8. Usando a regra $\frac{3}{8}$ de Simpson e h=0.4 e h=0.2, calcular:

$$\int_0^{1.2} e^{-x} \sin x dx. (7)$$

Sabe-se que:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.2				1.0	1.2
e^{-x}	1.000	0.819	0.670	0.548	0.449	0.367	0.301
$\sin x$	0	0.198	0.398	0.565	0.717	0.841	0.932

9. Determine h de modo que a regra do trapézio forneça o valor de:

$$I = \int_0^1 e^{-x^2} dx, (8)$$

com erro inferior a 0.5×10^{-6} .

10. Achar o número mínimo de intervalos que se pode usar para, utilizando a regra $\frac{1}{3}$ de Simpson, obter:

$$\int_0^{\frac{\pi}{2}} e^{-x} \cos x dx,\tag{9}$$

com quatro casas decimais corretas.

11. Determine h de modo que a regra $\frac{3}{8}$ de Simpson forneça o valor de:

$$\int_{0.2}^{0.8} \sin x dx,\tag{10}$$

com erro inferior a 0.5×10^{-3} .