MA2102: LINEAR ALGEBRA

Lecture 22: Similar Matrices

9th October 2020

Recall that $A \in M_n(\mathbb{R})$ is *similar* to $B \in M_n(\mathbb{R})$ if there exists an invertible matrix $Q \in M_n(\mathbb{R})$ such that $B = QAQ^{-1}$. Note that given two similar matrices A and B, Q is not unique as

$$(\lambda Q)A(\lambda Q)^{-1} = B$$

for any non-zero scalar λ . Similarity is an equivalence relation.

Examples (1) [Change of basis] If $T: V \to V$ is a linear map and β, γ are two ordered bases of V, then $[T]_{\beta}$ and $[T]_{\gamma}$ are similar via the change of basis matrix.

(2) [Cross product] Choose a unit vector $\mathbf{a} \in \mathbb{R}^3$. Consider the map $X_a : \mathbb{R}^3 \to \mathbb{R}^3, \ \mathbf{v} \mapsto \mathbf{a} \times \mathbf{v}.$

Show that this is a linear map.

It maps a to zero and maps a^{\perp} to itself.

The map $X_{\mathbf{a}}: \mathbf{a}^{\perp} \to \mathbf{a}^{\perp}$ is a rotation by an angle of $\pi/2$.

Remark The notion of clockwise or counterclockwise does not make sense as a^{\perp} can be identified with \mathbb{R}^2 in many ways.

On a formal note, we know that

$$\mathbf{a} \cdot X_{\mathbf{a}}(\mathbf{v}) = \mathbf{a} \cdot (\mathbf{a} \times \mathbf{v}) = \mathbf{v}(\mathbf{a} \times \mathbf{a}) = 0.$$

Thus, $R(X_a) \subset \mathbf{a}^{\perp}$. Recall that if θ is the angle between \mathbf{a} and \mathbf{v} , then

$$||\mathbf{a} \times \mathbf{v}|| = ||\mathbf{a}|| ||\mathbf{v}|| \sin \theta = ||\mathbf{v}|| \sin \theta.$$

If $\mathbf{v} \in \mathbf{a}^{\perp}$, then $||X_{\mathbf{a}}(\mathbf{v})|| = ||\mathbf{v}||$. Moreover, the vector triple product identity implies that

$$X_a^2(\mathbf{v}) = \mathbf{a} \times (\mathbf{a} \times \mathbf{v}) = \mathbf{a}(\mathbf{a} \cdot \mathbf{v}) - \mathbf{v}(\mathbf{a} \cdot \mathbf{a}) = -\mathbf{v}.$$

Thus, $R(X_a) = \mathbf{a}^{\perp}$. We also know that $N(X_a) = \mathbb{R}\mathbf{a}$. If $\mathbf{v} \in \mathbb{R}^3$, then

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{a})\mathbf{a} + (\mathbf{v} - (\mathbf{v} \cdot \mathbf{a})\mathbf{a}) \in N(X_{\mathbf{a}}) \oplus R(X_{\mathbf{a}})$$

implies that $\mathbb{R}^3 = N(X_a) \oplus R(X_a)$.

Choose **b** of length 1 such that $\mathbf{a} \cdot \mathbf{b} = 0$. Show that $\gamma = \{\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}\}$ is a basis of \mathbb{R}^3 . If $\beta = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is the standard basis of \mathbb{R}^3 , then

$$[X_{\mathbf{a}}]_{\gamma} = \left(\begin{array}{ccc} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -1 \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \end{array} \right)$$

On the other hand, if $\mathbf{a} = (x_1, x_2, x_3)$, then

$$X_{\mathbf{a}}(\mathbf{e}_1) = (0, x_3, -x_2) = 0\mathbf{e}_1 + x_3\mathbf{e}_2 - x_2\mathbf{e}_3$$

 $X_{\mathbf{a}}(\mathbf{e}_2) = (-x_3, 0, x_2) = -x_3\mathbf{e}_1 + 0\mathbf{e}_2 + x_2\mathbf{e}_3$
 $X_{\mathbf{a}}(\mathbf{e}_3) = (x_2, -x_1, 0) = x_2\mathbf{e}_1 - x_1\mathbf{e}_2 + 0\mathbf{e}_3$

$$[X_{\mathbf{a}}]_{\beta} = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}$$

Note that both matrices have trace zero and determinant zero. The change of basis matrix is given by

$$Q = [I_{\mathbb{R}^3}]_{\gamma}^{\beta} = \begin{pmatrix} | & | & | \\ \mathbf{a} & \mathbf{b} & \mathbf{a} \times \mathbf{b} \\ | & | & | \end{pmatrix}$$

Show that $Q[X_a]_{\gamma} Q^{-1} = [X_a]_{\beta}$.

To compute the map X_2^2 and associated matrices, we check that

$$[X_{\mathbf{a}}^2]_{\gamma} = [X_{\mathbf{a}}]_{\gamma} [X_{\mathbf{a}}]_{\gamma} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

This is expected, however, as $X_{\bf a}^2$ on ${\bf a}^{\perp}$ is rotation by π or acts as $-I_{{\bf a}^{\perp}}$.

The matrix $[X_a^2]_{\beta}$ can be computed in one of two ways:

$$[X_{\mathbf{a}}^2]_{\beta} = [X_{\mathbf{a}}]_{\beta} [X_{\mathbf{a}}]_{\beta}$$

•
$$[X_a^2]_\beta = Q[X_a^2]_\nu Q^{-1}$$

A computation shows that

$$[X_{\mathbf{a}}^2]_{\beta} = \begin{pmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -x_2^2 - x_3^2 & x_1 x_2 & 0 x_1 x_3 \\ x_1 x_2 & -x_1^2 - x_3^2 & x_2 x_3 \\ x_1 x_3 & x_2 x_3 & -x_1^2 - x_2^2 \end{pmatrix}$$

The trace is -2 as $||\mathbf{a}||^2 = 1$. This equals the trace of $[X_{\mathbf{a}}^2]_{\gamma}$.

(3)
$$[2 \times 2 \text{ matrices}]$$
 Let $Q \in M_2(\mathbb{R})$ be an invertible matrix, i.e., there exists another matrix $P \in M_2(\mathbb{R})$ such that $PO = OP = I_2$.

i.e., there exists another matrix $P \in M_2(\mathbb{R})$ such that $PQ = QP = I_2$. We can explicitly compute P from Q.

we can explicitly compute P from Q.

If the matrix Q is given by

$$Q = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

then invertibility of Q implies that $\alpha \delta - \beta \gamma \neq 0$. The matrix

$$P = \frac{1}{\alpha \delta - \beta \gamma} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$$

is the inverse to Q. If $A \in M_2(\mathbb{R})$, then QAQ^{-1} is given by

$$\frac{1}{\alpha \delta - \beta \gamma} \left(\begin{array}{cc} a\alpha \delta - b\alpha \gamma + c\beta \delta - d\beta \gamma & -a\alpha \beta + b\alpha^2 - c\beta^2 + d\alpha \beta \\ a\gamma \delta - b\gamma^2 + c\delta^2 - d\gamma \delta & -a\beta \gamma + b\alpha \gamma - c\beta \delta + d\alpha \delta \end{array} \right).$$

This implies that

$$\operatorname{trace}(A) = \operatorname{trace}(QAQ^{-1}) = a + d.$$