# Machine Learning (CE 40477) Fall 2024

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

October 13, 2024



- 1 Unsupervised Learning Overview
- 2 K-Means
- **3** Clustering
- **4** Conclusion

- Unsupervised Learning Overview
- 2 K-Means
- 3 Clustering
- 4 Conclusion

# Unsupervised Learning

**Unsupervised Learning** involves working with **unlabeled data**, where the goal is to **infer the natural structure** present within a set of data points.

- Learning from unlabeled data.
- Two of the most common tasks:
  - **Clustering**: Grouping data points into clusters based on similarity towards user need.
  - **Dimensionality Reduction**: Reducing the number of features under consideration and keeping (perhaps approximately) the most informative features.

## Music Recommendation Systems

- When you like a song you probably like other "similar" songs.
- Fun little exercise to build a simple system, after finishing this chapter.



Figure adapted from machinelearninggeek.com



# Music Recommendation Systems

- When you like a song you probably like other "similar" songs.
- Fun little exercise to build a simple system, after finishing this chapter.



## Organizing Photos on Smartphones

- All pictures with that one friend
- All pictures where you looked "cool"



- Unsupervised Learning Overview
- 2 K-Means
- Clustering
- 4 Conclusion

#### K-Means overview

- A popular **clustering** algorithm
- Similar data in the same cluster.
- K-Means suggests an **iterative** process to find these centers.



K-Means

Figure From mlbhanuyerra.github.io.

#### **Problem Intuition**

- One of the most straightforward tasks we can perform on a data set without labels.
- finding groups of data in our dataset which are "similar" to one another **-clusters**.
- How many cluster? Can we cluster new unseen data? What is similar data?

#### Problem definition

- Formally: We have  $X_{\text{train}} = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\} \subseteq \mathbb{R}^d$
- Assume we know there are *K* clusters, or we want *K* clusters.
- We are learning:
  - **1** a function or mapping  $f: \mathbb{R}^d \to \{1, 2, ..., K\}$  that assigns a cluster to each data point.
  - 2 a set of *K* prototypes  $\mu = \{\mu_1, \mu_2, ..., \mu_K\} \subseteq \mathbb{R}^d$  as the **cluster representatives**.
- data assigned to the same  $i \in \{1, 2, ..., K\}$  are in the same cluster i.

## **Objective Function**

- Create objective function like the loss we had before.
- We want data in the same cluster to be closer and data from different clusters to be further, more on this later.
- in K-Means, this is expressed as:

$$\sum_{\mathbf{x} \in X_{\text{train}}} ||x - \mu_{f(x)}||^2$$

# Objective Function (cont.)

• We can express f by defining  $r_k(\mathbf{x}) = 1$  if  $f(\mathbf{x}) = k$  and 0 otherwise, we can write this objective as below:

$$J = \sum_{\mathbf{x} \in X_{\text{train}}} \sum_{k=1}^{K} r_k(x) ||x - \mu_k||^2$$

- called distortion measure.
- chose f and  $\mu$  to minimize this.
- Its NP-hard. what does K-Means suggest?

#### Observation

• If we fix the set of **centroids** or representatives  $\mu$ , we could minimize each term by **assigning**:

$$f(x) := argmin_k ||x - \mu_k||^2$$

.

#### Observation (cont.)

If we fix the assignments f we can optimize for  $\mu$  by taking the derivative as:

$$\frac{\partial J}{\partial \mu_k} = 0 \implies 2 \sum_{i=1}^{N} r_k(x_i) \left( x_i - \mu_k \right) = 0$$

and **updating**  $\mu$  as:

$$\mu_k = \frac{\sum_{i=1}^{N} r_k(x_i) x_i}{\sum_{i=1}^{N} r_k(x_i)}$$

#### **K-Means Process**

• K-Means uses an iterative process that:

K-Means

- **1) Assigns** each point to the **nearest** centroid. Optimizing for *f*.
- **Updates** each centroid as the **mean** of the points in its cluster. Optimizing for  $\mu$ .

#### K-Means in action

## original blobs



#### K-Means in action

#### random initialization





## K-Means in action (cont.)



#### K-Means in action (cont.)



#### K-Means in action (cont.)



# K-Means Algorithm

# K-Means Algorithm (cont.)

K-Means

# Algorithm Overview



Figure 1: picture from datasciencebook.ca

## Convergence

• How do we know K-Means will converge in a finite number of steps?

## Convergence (cont.)

- In Assignment step:
  - we optimize *J* with respect to  $r_k(x)$ .
  - In this step I is a linear combination of  $r_k(x)$ .

K-Means

- We need each x to be at least in some cluster and terms involving different xs are independent.
- So for each x we chose one of the the K distance expressions that is the minimum, i.e.

$$r_k(x) = \begin{cases} 1 & k = \operatorname{argmin}_j ||x - \mu_j||_2^2 \\ 0 & O.W \end{cases}$$

• This will definitely not decrease *J*.

## Convergence (cont.)

• Now with  $r_k$ s fixed, J is a quadratic function of  $\mu_k$  (like SSE) and by taking derivative we can minimize as:

$$\frac{\partial J}{\partial \mu_k} = 0 \implies 2\sum_{i=1}^N r_k(x_i) \left( x_i - \mu_k \right) = 0$$

then we set:

$$\mu_k = \frac{\sum_{i=1}^{N} r_k(x_i) x_i}{\sum_{i=1}^{N} r_k(x_i)}$$

• This will also definitley not increase *J*.

#### Convergence (cont.)

- We know each step will not increase the *J* objective from its current value.
- Also and J is non-negative, and there are a finite number of partitions so there is a minimum.
- Therefore we must converge at some point, where the *J* does not decrease anymore.
- The convergence properties of the K-means algorithm were studied by MacQueen (1967).

# K-Means convergence (cont.)



## **Optional Adventure**

Each Assignment and Updating step in K-Means corresponds respectively to the E (expectation) and M (maximization) steps of the EM algorithm.

One can prove that k-means is equivalent to running EM on a particular Naive Bayes Model.

### Strengths

• Simple: easy to understand and to implement.

K-Means

- Efficient: Time complexity: *O*(*tkn*), where
  - *n* is the number of data points,
  - k is the number of clusters, and
  - *t* is the number of iterations.

#### Some Issues

- k-Means always converges. What could go wrong?
- K-means algorithm is a **heuristic**
- It requires initial centroids, and the choice is important. It could affect the *t* in O(tkn).

K-Means

- The algorithm finds a local Minimum but it does not guarantee global minimum.
- This is highly affected by the initialization.
- Whats the solution? some suggestions are:
  - variance-based split / merge
  - Random centers from the data points with Multiple runs and select the best ones.
  - initialization heuristics (k-means++, Furthest Traversal)
  - Initializing with the suggested results of another method

# Local optimum



# Local optimum (cont.)



Optimal clustering

Possible clustering

#### **Defined Mean**

• In the begging we assumed  $x_i \in \mathbb{R}^d$ , which is not always the case. K-Means requires a space where sample **mean** is defined.

• A simple case is when we have categorical data.

K-Means

• A suggested solution: k-mode - the centroid is represented by most frequent values.

### How many clusters?



Figure adapted from slides of Dr. Soleymani, Modern Information Retrieval Course, Sharif University of technology.

### How many clusters? (cont.)

- Number of clusters is usually given in advance in the problem of clustering. However; finding the **right** number of clusters is also a problem.
- Elbow Method and Silhouette Score can help.
- There is a trade-off between having better focus within each cluster or having too many clusters.
- Don't want one-element clusters.
- Optimization problem: penalize having too many clusters

$$K^* = arg min_k J(k) + \lambda k$$

#### **Outliers**

- The algorithm is sensitive to outliers
- Outliers are data points that are very far away from other data points.

- Outliers could be errors in the data recording or some special data points with very different values.
- K-medoids and DBSCAN are more robust to outliers.

K-Means

#### **Definition Issue**

- Perhaps the most important problems is how k-means defines clusters.
- K-means assumes clusters are spherical and separated by equal variance, which limits its effectiveness on non-spherical or complex-shaped clusters.
- So lets take a closer look at clustering.



- 1 Unsupervised Learning Overview
- 2 K-Means
- **3** Clustering
- 4 Conclusion

#### Clustering

- Assume we have a set of unlabeled data points  $\{\mathbf{x}^{(i)}\}_{i=1}^{N}$ .
- We intend to organize data into **groups** of **similar** objects.
  - group and similar should be with respect to our need.
  - For example all data points having most similar number of buys in a market.
- A cluster is a collection of data items which are similar between them, and dissimilar to data items in other clusters.
- Clustering could also help to compress and reduce data. (???)

#### Clustering (cont.)

From another point of view, clusters are regions of high density that are separated from one another with regions of low density.



Figure adap

# Historic application of clustering

- John Snow, a London physician, plotted the location of cholera deaths on a map during an outbreak in the 1850s.
- The locations indicated that cases were clustered around certain intersections where there were polluted wells thus exposing both the problem and the solution.

## Modern applications of clustering

- · Clustering is the origin of many unsupervised learning applications.
- Customer Segmentation (Marketing)
- Image Segmentation and Object Detection (Computer Vision)
- Anomaly Detection (Cybersecurity, Finance)
- Genomics and Bioinformatics
- Social Network Analysis and Community Detection
- Vector Quantization
- ...

### Analysing the task

- first lets define a way to measure and show similarity. Two general ways would be:
  - a similarity function  $s(x_i, x_i)$  that is larger when  $x_i$  and  $x_i$  are more similar
  - a dissimilarity or distance function  $d(x_i, x_j)$  that is smaller the more similar to points are.
- a criterion to evaluate (and use to determine) a clustering. notion of "good" and "bad" clustering.
- Algorithm to use the above and compute clustering.
- Extra Note: Most algorithms require a distance function to be a **proper metric** and the similarity measure to create a **PSD matrix** for all pairs of a finite number of data points.

### Common similarity and distance measures

- Assume p and q are two data points from  $\mathbb{R}^D$ . most common similarity and distance measures in the problem of clustering are as follows:
  - Euclidean distance: Most common measure of distance between two vectors:

$$d(p,q) = \sqrt{\sum_{i=1}^{D} (p_i - q_i)^2}$$

it is translation invariant.

 Manhattan distance: Most common measure of distance when dimensions are not equally important

$$d(p,q) = \sqrt{\sum_{i=1}^{D} |p_i - q_i|}$$

• Cosine similarity: Most common measure of similarity when the magnitude of vectors does not change the similarity

$$s(p,q) = \frac{p^T q}{||p|| \cdot ||q||}$$



### Hard clustering vs Soft clustering

- **Hard Clustering:** Each data point belongs to exactly one cluster
  - more common and easier to do
- Soft Clustering



Figure adap

## Hard clustering vs Soft clustering (cont.)

- Hard Clustering
- **Soft Clustering:** Each data point can belong to multiple clusters.
  - data point belongs to each cluster with a probability
- From now on, we will focus on problem of hard clustering



Figure adap

#### **Cluster Evaluation**

- Intra-cluster cohesion (compactness)
  - Cohesion measures how near the data points in a cluster are to the cluster centroid.
  - Sum of squared error (SSE) is a commonly used measure.
- Inter-cluster separation (isolation):
  - Separation means that different cluster centroids should be far away from one another.
  - Sum of squared error (SSE) is a commonly used measure.

# **Clustering Algorithms**

- The Traditional algorithms for clustering are usually categorized as:
  - Hierarchical algorithms find successive clusters using previously established clusters. These algorithms can be either agglomerative ("bottom-up") or divisive ("top-down"):
    - Agglomerative algorithms begin with each element as a separate cluster and merge them into successively larger clusters;
    - Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.
  - **Partitional** algorithms typically determine all clusters at once, but can also be used as divisive algorithms in the hierarchical clustering.
  - **Bayesian** algorithms try to generate a posteriori distribution over the collection of all partitions of the data.

## Clustering Algorithms (cont.)

- But modern approaches leverage advances in deep learning, self-supervised learning, and representation learning.
- As it is a common idea in ML, these methods transform data vectors, so the traditional clustering concepts can be applied.
- For example, with the same "curse of dimensionality" we had in supervised learning, for high dimensional vectors, using raw distance metrics will lose most of its functionality. So a Neural Network learns to transform data into a low dimensional space where our distance measure is more effective.
- Or when the data clusters are not centeric, they can be transformed into a space where the clusters are separated with respect to distance and in a centeric manner.

- Unsupervised Learning Overview
- 2 K-Means
- 3 Clustering
- **4** Conclusion

# Unsupervised Learning Review

- **Objective**: To find hidden structures or underlying distributions in the data.
- **Input**: A dataset  $X = \{x_1, x_2, ..., x_n\} \subseteq \mathbb{R}^d$ , where the data points  $x_i \in \mathbb{R}^d$  are unlabeled.
- **Goal**: Learn a mapping  $f: \mathbb{R}^d \to \mathbb{R}^m$  to describe underlying structure, in a way that is useful for a downstream task.
- Common tasks:
  - Clustering: The mapping f(X) = Z where  $Z \in \{1, 2, ..., K\}$  represents the cluster assignments.
  - Dimensionality Reduction: The mapping f(X) = Z, where  $Z \in \mathbb{R}^k$  represents a lower-dimensional representation with k < d.
  - Density Estimation: Estimate the probability distribution P(X).
  - Anomaly detection
  - Generative modeling



#### References

- [1]
- [2]
- [3]
- [4]

#### Contributions

• This slide has been prepared thanks to:

- [1] C. M., *Pattern Recognition and Machine Learning*. Information Science and Statistics, New York, NY: Springer, 1 ed., Aug. 2006.
- [2] M. OpenCourseWare, "Class 13: Machine learning and cognitive neuroscience." http://www.mit.edu/~9.54/fall14/slides/Class13.pdf, 2014. Accessed: 2024-10-09.
- [3] D. Sontag, "Lecture 14: Structured prediction." https: //people.csail.mit.edu/dsontag/courses/ml12/slides/lecture14.pdf, 2012.

Accessed: 2024-10-09.

- [4] M. Soleymani Baghshah, "Machine learning." Lecture slides.
- [5] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics).Springer, 1 ed., 2007.
- [6] A. Ng and T. Ma, CS229 Lecture Notes.



- [7] T. Mitchell, Machine Learning. McGraw-Hill series in computer science, New York, NY: McGraw-Hill Professional, Mar. 1997.
- [8] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, *Learning From Data: A Short Course*.
  - New York, NY: AMLBook, 2012.
- [9] S. Goel, H. Bansal, S. Bhatia, R. A. Rossi, V. Vinay, and A. Grover, "CyCLIP: Cyclic Contrastive Language-Image Pretraining," *ArXiv*, vol. abs/2205.14459, May 2022.