Rikka with Maximum Subsegment Sum

Input file: standard input
Output file: standard output

Time limit: 2 seconds
Memory limit: 512 megabytes

Maximum Subsegment Sum is a classical problem. When Rikka first saw this problem, she was still an outsider of competitive programming, and now, she has become a problem setter of this grand event.

Therefore, Rikka decides to set a problem about Maximum Subsegment Sum. Given an array x of length m, its maximum subsegment sum mss(A) is defined as:

$$\operatorname{mss}(A) = \max_{1 \le i \le j \le m} \left(\sum_{k=i}^{j} x_k \right).$$

Now, given an integer array A of length n, Rikka wants you to calculate the sum of the maximum subsegment sums of all subsegments of A, i.e.

$$\sum_{1 \le i \le j \le n} \operatorname{mss}([A_i, \dots, A_j]).$$

Input

The first line contains a single integer n $(1 \le n \le 10^5)$.

The second line contains n integers A_i ($-10^9 \le A_i \le 10^9$).

Output

Output a single line with a single integer, the answer. The answer can be very large, therefore, you are only required to output the answer modulo 2^{64} .

More formally, suppose the answer is x, you are required to find the smallest non-negative integer y satisfying $y = x + k \times 2^{64}$ for some integer k.

Examples

standard input	standard output
5	11
1 -1 1 -1 1	
5	39
1 -2 3 -4 5	
10	555
1 -3 -5 7 -9 10 8 -6 -4 2	
4	18446744073709551596
-1 -2 -3 -4	