UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MAT1100 - Kalkulus. Eksamensdag: Fredag 9.10.2009. Tid for eksamen: 15.00-17.00. Vedlegg: Formelsamling.

TILLATTE HJELPEMIDLER: INGEN. OPPGAVESETTET ER PÅ 4 SIDER.

ΚA	NDIDATNR.	

Eksamen består av 20 spørsmål. De 10 første teller 2 poeng hver, de 10 siste teller 3 poeng hver. Det er bare ett riktig alternativ på hvert spørsmål. Dersom du svarer feil eller lar være å svare på et spørsmål, får du 0 poeng. Du blir altså ikke "straffet" for å gjette. Krysser du av mer enn ett alternativ på et spørsmål, får du 0 poeng.

på et spørsmål, får du 0 poeng.
1. (2 poeng) Det komplekse tallet z har polarkoordinater $r=8,\theta=\frac{4\pi}{3}.$ Da er z lik:
2. (2 poeng) Det komplekse tallet $z=-3+3i$ har polarkoordinater: $\begin{array}{ccc} & r=3\sqrt{2}, \theta=\frac{2\pi}{3}\\ & r=3\sqrt{2}, \theta=\frac{3\pi}{4}\\ & & r=3\sqrt{3}, \theta=\frac{3\pi}{4}\\ & & & r=3\sqrt{3}, \theta=\frac{\pi}{4}\\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & $
3. (2 poeng) Dersom $z = \overline{(2+i)(3-i)}$, så er: $\begin{array}{c} z = 5 - i \\ z = 7 - i \\ z = 7 + 5i \\ z = 7 + i \\ z = 12 - 3i \end{array}$
4. (2 poeng) Den deriverte til $f(x) = \cos \sqrt{1 - x^2}$ er: $\frac{-2x}{\sqrt{1 - x^2}} \sin \sqrt{1 - x^2}$ $\frac{2x}{\sqrt{1 - x^2}} \sin \sqrt{1 - x^2}$ $2x \sin \sqrt{1 - x^2}$ $\frac{x}{\sqrt{1 - x^2}} \sin \sqrt{1 - x^2}$ $\frac{x}{\sqrt{1 - x^2}} \sin x$

- 5. (2 poeng) Den deriverte til $f(x) = 2\sqrt{x} \ln(1+\sqrt{x})$ er:
- $\frac{\sqrt{x}}{\ln(1+\sqrt{x})} + \frac{2}{1+\sqrt{x}}$ $\frac{\ln(1+\sqrt{x})}{\sqrt{x}} + \frac{1}{1+\sqrt{x}}$ $\frac{\ln(1+\sqrt{x})}{2\sqrt{x}} + \frac{2}{1+\sqrt{x}}$

- 6. (2 poeng) Grenseverdien $\lim_{x\to 0}\frac{6x^4-3x^6+7x^7}{7x^4+3x^6+6x^7}$ er lik:
- $\begin{array}{ccc}
 & \frac{6}{7} \\
 & 1
 \end{array}$
- \Box 0
- $\begin{array}{cc} \square & -\infty \\ \square & \frac{7}{6} \end{array}$
- 7. (2 poeng) Grenseverdien $\lim_{x\to 0}\frac{\sqrt{1+\tan x}-1}{x}$ er lik:
- $\qquad \qquad \square \qquad \frac{1}{2}$
- \square ∞
- \Box 0
- \Box 1
- 8. (2 poeng) Grenseverdien $\lim_{x\to 0^+} \frac{\sqrt{x}}{\sin x}$ er lik:
- \Box 0
- $\begin{array}{cc} \square & \frac{1}{2} \\ \square & 2 \end{array}$
- \Box 1
- 9. (2 poeng) Den omvendte funksjonen til $f(x) = \frac{\ln(x-2)}{5}, x>2$ er: $\square \quad g(x) = e^{-5x+2}$
- ☐ Det finnes ingen omvendt funksjon
- $g(x) = e^{5x-2}$
- $\square \quad g(x) = e^{5x} + 2$
- 10. (2 poeng) Funksjonen $f(x) = x^2 2x$ er injektiv på intervallet:
- \square $(-\infty,1]$
- \Box $[-1,\infty)$
- \square hele $\mathbb R$ $[0,\infty)$
- \square [0, 2]

	(3 poeng) Den deriverte til $x^{\sin x}$ er lik:
	$x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x}\right)$ $\cos(x) x^{\sin x - 1}$
	$x^{\sin x} \left(-\frac{\ln x}{\sqrt{1-x^2}} + \frac{\sin x}{x} \right)$
	$-x^{\sin x} \frac{1}{\sqrt{1-x^2}}$
	$-x^{\sin x} \frac{1}{\sqrt{1-x^2}}$ $x^{\sin x} \ln(\sin x)$
z =	(3 poeng) Det reelle tredjegradspolynomet $P(z)=z^3+z^2-4z+6$ har $1+i$ som rot. De andre røttene er: $1-i$ og 3 $1-i$ og i $1-i$ og 2 $1-i$ og -3 Har ikke nok informasjon til å finne dem
La	(3 poeng) Anta at f er en deriverbar funksjon med $f(x) > 0$. $h(x) = f(x) \ln f(x)$. Da er den deriverte, $h'(x)$ lik: $f'(x) \ln f(x)$ $\frac{\ln f(x)}{f(x)} f'(x)$ $\ln f(x) + f'(x)$ $f'(x) (\ln f(x) + 1)$ $\frac{\ln f(x)}{f(x)} f'(x)$
	(3 poeng) Løsningene til annengradsligningen $z^2-4z+6=0$ er: $1\pm i\sqrt{2}$ $2\pm i\sqrt{2}$ $2\pm i$ Ligningen har ingen komplekse løsninger
	(3 poeng) Når $x\to\infty$, har funksjonen $f(x)=\sqrt{4x^2+2x}$ asymptoten: $y=2x+\frac{1}{2}$ Den har ingen asymptote $y=x+\frac{1}{2}$ $y=2x+1$ $y=x+2$
	(3 poeng) Funksjonen f er definert for $x \ge 0$ ved $f(x) = \sqrt{x} + \frac{2}{\sqrt{x}}$. Aksjonen er konkav på mengden: $ [\frac{1}{6}, \infty) $ Ingen steder $ [0, \infty) $ $ [0, 6] $ $ [6, \infty) $
	$[0,\infty)$

18. (3 poeng) Du skal bruke definisjonen av grenseverdi til å vise at følgen $x_n = \frac{3n-5}{2n}$ har grenseverdi $\frac{3}{2}$. Gitt en vilkårlig $\epsilon > 0$, hvor stor må du velge N for at $|x_n - \frac{3}{2}| < \epsilon$ når $n \ge N$? \square større enn $\min\{\frac{\epsilon}{4}, 1\}$ \square større enn $\max\{\epsilon^2, 1\}$

større enn $\max \{ \epsilon \}$ større enn $\frac{5}{2\epsilon}$ større enn $\frac{5}{5\sqrt{\epsilon}}$

19. (3 poeng) En eske skal ha kvadratisk bunn, men ingen topp. Volumet til boksen skal være 4 dm³. Hvor høy må boksen være for at overflatearealet (bunn+sidevegger) skal bli minst mulig?

(bulli+sidevegger) skal bli minst mung:

□ $\sqrt[3]{4}$ dm

□ $\frac{3}{2}$ dm

□ 1 dm

□ $\frac{3}{4}$ dm

□ Vi kan få arealet så lite vi måtte ønske

20. (3 poeng) En jente sitter på en karusell som bruker 4 sekunder på hver omdreining. Stedet hun sitter er 4 m fra karusellens akse. Faren står 8 m fra aksen for å ta et bilde av jenta. Figuren viser situasjonen sett ovenfra. Hvor raskt avtar avstanden mellom de to i det øyeblikket vinkelen θ er $\frac{\pi}{3}$?

$\frac{15}{8}\pi \text{ m/s}$
$2\sqrt{2}\pi \text{ m/s}$
$2\pi \text{ m/s}$
$2\sqrt{3}\pi \text{ m/s}$
$\sqrt{3}\pi \text{ m/s}$

SLUTT