

Introduction to R and Rstudio Session 2

Shane Galvin

Download Materials and extract files to your project folder

- Create New Folder in Desktop
- 2. Name it R_Projects
- 3. Open Rstudio
 File > New project
- 4. Name it R_SoAP >
 Browse > set in R_Projects
- 5. Extract Session docs from Github in to R_SoAP Project

What is R

Packages

Functions

Arguments

Comments

Read files

Summarise data

T-test and correlations

T-test:

- F-test
- Shapiro-Wilks
- One-sample
- Independent Samples
- Paired Samples
- Effect sizes (Cohen's D)
- Post-Hoc Power

Correlation:

- Covariance
- Covariance matrices
- Correlation matrices
- With and without p-values
- Spearman, Kendall, Tau, Phi

T test Workflow

Procedure	Function	Arguments
Import Data	read.csv()	data.csv
Summarise	dfSummary(), describeBy()	Dataframe, factor
Plot Data	hist(), boxplot()	variable
Normality	shapiro.test()	variable
Equal Variances	var.test()	variable
Perform t test	t.test()	Y~X, alpha, H ₁ , CI
Interpret output	T-value, C.I.'s, p-value	
Calculate Effect size		

Groups \rightarrow A, B

Long Format

ID	Group	Value
1	А	4
2	А	5
3	A	4
4	A	8
5	A	5
6	В	3
7	В	5
8	В	4
9	В	3
10	В	4

Wide Format

Row	А	В
1	4	3
2	5	5
3	4	4
4	8	3
5	5	4

Histogram : All Response

Boxplot: Condition x Response

Histogram: Male Response

Histogram: Female Response

border = "white". breaks = 14 # Histogram of Female Responses hist(df.long\$Response[df.long\$Condition=="F"]. main="Histogram : Female Response". xlab="Response Variable", col="chocolate". border="white". breaks = 14

hist(df.long\$Response[df.long\$Condition=="M"],

main="Histogram : Male Response",

Histogram of Male responses

col = "darkmagenta",

xlab="Response Variable",

Select variable

Set main title

Set x axis title

This returns the image parameters to normal # This closes the graphics device for saving

The t.test() function can perform repeated measures, independent samples or one sample procedures

Arguments (Inputs)

data= MyData

Group names

It outputs means, mean differences

P-values, confidence intervals and t-values

For Long format Data

 $t.test(Y \sim X, data=MyData)$

For Wide Format Data

t.test(A, B, data = MyData)

Correlation Workflow

Procedure	Function	Arguments
Import Data	read.csv()	data.csv
Summarise	dfSummary(), describeBy()	Dataframe, factor
Plot Data	hist(), plot()#scatterplot	df\$Xvariable, df\$Y
Normality	shapiro.test()	variable
Equal Variances	var.test()	variable
Perform Correlation	cor.test()	Y∼X, alpha, H ₁ , CI
Interpret output	r and p-value	
Calculate Effect size	R ²	r^2

Number of Nicholas Cage Films Released in Each Year

Coffee Break

Session 2 Practicals

Data
The Sound of Intellect: Speech
Reveals a Thoughtful Mind,
Increasing a Job Candidate's Appeal
Juliana Schroeder and Nicholas
Epley
Psychological Science
Vol 26, Issue 6, pp. 877 - 891
First Published April 29, 2015
https://doi.org/10.1177/0956797615572906
Exercise from OpenStatsLab:

Part I:

Reproduce the t-test reported in the article

PAIRED SAMPLES T-TEST

Part II:

Reproduce the correlation

Paired Sample T-test:

- 1. Read in the data file
 - "dataTtest.csv"
- 2. Summarise data
- 3. Plot data
- 4. Check Assumptions
- 5. Perform t-test
- 6. Calculate Effect size
- 7. Calculate Power
- 8. Export summary to File

Correlation:

- 1. Read in the data file
- 2. Summarise data
- 3. Plot data
- 4. Check Assumptions
- 5. Perform Correlation
- 6. Calculate Effect size
- 7. Calculate Power
- 8. Export summary to File

Review

