Compact Lie Groups

Tao Huang me@tau.ovh

Pre-knowledge

Definition 1. Let B be connected space with base point $b_0 \in B$. The continuous map $\pi : E \to B$ is a fiber bundle (locally trivial fibration) with fiber F if it satisfies the following properties:

- 1. $\pi^{-1}(b_0) = F$.
- 2. π is surjective.
- 3. For every point $x \in B$ there is an open neighborhood $U_x \subset B$ and a "fiber preserving homeomorphism" $\Psi_{U_x} : \pi^{-1}(U_x) \to U_x \times F$, that is a homeomorphism making the following diagram commute:

Definition 2. A covering space is a fiber bundle s.t. the bundle projection π is a local homeomorphism. It follows that the fiber is a discrete space. If the fiber has exactly two elements, it's a double cover.

Definition 3. A local section of a fiber bundle is a continuous map $\sigma: U \to E$ where U is an open subset of B and

$$\pi(\sigma(x)) = x \quad \forall x \in U.$$

Definition 4. For a space X, define n-th homotopy group $\pi_n(X)$ to be the group of homotopy classes of maps $g:[0,1]^n \to X$ from the n-cube to X that take the boundary of the n-cube to b.

Basic Notions

Definition 5. A Lie group G is a group and a manifold so that

- 1. the multiplication map $\mu: G \times G \to G$ given by $\mu(g,g') = gg'$ is smooth and
- 2. the inverse map $\iota: G \to G$ by $\iota(g) = g^{-1}$ is smooth.

Definition 6. Let G be a matrix Lie group. The *Lie algebra* of G, denoted \mathfrak{g} , is the set of all matrices X such that e^{tX} is in G for all real numbers t.

Definition 7. A Lie subgroup H of a Lie group G is the image in G of a Lie group H' under an injective immersive homomorphism $\varphi: H' \to G$ together with the Lie group structure on H making $\varphi: H' \to H$ a diffeomorphism.

Theorem 8. Let G be a Lie group and $H \subseteq G$ a subgroup (with no manifold assumption). Then H is a **regular** Lie subgroup if and only if H is **closed**.

Theorem 9. Let H be a closed subgroup of a Lie group G. Then there is a unique manifold structure on the quotient space G/H so the projection map $\pi: G \to G/H$ is smooth, and so there exist local smooth sections of G/H into G.

Definition 10. A *homomorphism* of Lie groups is a smooth homomorphism between two Lie groups.

Theorem 11. If G and G' are Lie groups and $\varphi: G \to G'$ is a homomorphism of Lie groups, then φ has constant rank and ker φ is a (closed) regular Lie subgroup of G of dimension $\dim G - \operatorname{rk} \varphi$ where $\operatorname{rk} \varphi$ is the rank of the differential of φ .

Proposition 12. The compact symplectic group

$$Sp(n) = \{ g \in GL(n, \mathbb{H}) \mid g^*g = I \}$$

is isomorphic to

$$Sp(n;\mathbb{C}) \cap U(2n)$$
,

where $Sp(n;\mathbb{C}) = \{g \in GL(2n;\mathbb{C}) \mid g^t\Omega g = \Omega\}$ is the symplectic group and

$$\Omega = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}.$$

Remark. Consider C-linear isomorphism

$$\vartheta: \mathbb{H}^n \to \mathbb{C}^{2n}$$

 $a+jb \mapsto (a,b),$

which induces a C-linear isomorphism

$$\tilde{\vartheta}: M_n(\mathbb{H}) \to M_{2n}(\mathbb{C}),$$

s.t.

$$\tilde{\vartheta}X = \vartheta \circ X \circ \vartheta^{-1} \quad (\forall X \in M_n(\mathbb{H})).$$

In fact,

$$\tilde{\vartheta}(A+jB) = \begin{pmatrix} A & -\bar{B} \\ B & \bar{A} \end{pmatrix}.$$

Topology

Definition 13. If G is a Lie group, write G^0 for the connected component of G containing e.

Lemma 14. Let G be a Lie group. The connected component G^0 is a regular Lie subgroup of G. If G^1 is any connected component of G with $g_1 \in G^1$, then $G^1 = g_1 G^0$.

Lie Algebra	$\mathfrak{so}(n) = \{ X \in \mathfrak{o}(n) \mid X^t + X = 0, \operatorname{tr} X = 0 \}$	$\mathfrak{so}(n)$	$\mathfrak{u}(n) = \{ X \in M_n(\mathbb{C}) \mid X^* + X = 0 \}$	$\mathfrak{su}(n) = \{X \in \mathfrak{u}(n) \mid \operatorname{tr} X = 0\}$	$\mathfrak{sp}(n) = \{X \in M_n(\mathbb{H}) \mid X^\star + X = 0\}$	$\mathfrak{so}(n)$
SC		$\mathbb{Z} (n=2)$ $\mathbb{Z}_2 (n>2)$		Y	Y	$Y(n > 1) \mid Y(n > 2)$
C	\mathbb{Z}_2	Y	Y	Y	Y	Y (n > 1)
Definition	$\{g \in GL(n,\mathbb{R}) \mid g^t g = I\}$	$\{g\in O(n)\mid \det g=1\}$	$\{g \in GL(n,\mathbb{C}) \mid g^*g = I\}$	$\{g \in U(n) \mid \det g = 1\}$	$\{g \in GL(n,\mathbb{H}) \mid g^*g = I\}$	
Name	orthogonal group	special orthogonal group	unitary group	special unitary group	(compact) symplectic group	spin group
Lie Group	O(n)	SO(n)	U(n)	SU(n)	Sp(n)	Spin(n)

Table 1: Table of Compact Classical Lie Groups [1]

Theorem 15. If G is a Lie group and H a connected Lie subgroup so that G/H is also connected, then G is connected.

Definition 16. Let be G a Lie group and M a manifold.

- 1. An action of G on M is a smooth map from $G \times M \to M$, denoted by $(g, m) \to g \cdot m$ for $g \in G$ and $m \in M$, so that:
 - (a). $e \cdot m = m$, all $m \in M$ and
 - (b). $g_1 \cdot (g_2 \cdot m) = (g_1 g_2) \cdot m$ for all $g_1, g_2 \in G$ and $m \in M$.
- 2. The action is called *transitive* if for each $m, n \in M$, there is a $g \in G$, so $g \cdot m = n$.
- 3. The stabilizer of $m \in M$ is $G^m = \{g \in G \mid g \cdot m = m\}$.

Theorem 17. The compact classical groups, SO(n), SU(n), and Sp(n), are connected. Remark.

$$\{1\} \to SO(n-1) \to SO(n) \to S^{n-1} \to \{1\},$$

$$\{1\} \to SU(n-1) \to SU(n) \to S^{2n-1} \to \{1\}$$

$$\{1\} \to Sp(n-1) \to Sp(n) \to S^{4n-1} \to \{1\}$$

Definition 18. The Lie group G is called *simply connected* if it's fundamental group $\pi_1(G)$ is trivial.

Lemma 19. If H is a discrete normal subgroup of a connected Lie group G, then H is contained in the center of G.

Theorem 20. Let G be a connected Lie group.

- 1. The connected simply connected cover \widetilde{G} is a Lie group.
- 2. If π is the covering map and $\widetilde{Z} = \ker \pi$, then \widetilde{Z} is a discrete central subgroup of \widetilde{G}
- 3. π induces a diffeomorphic isomorphism $G \cong \widetilde{G}/\widetilde{Z}$.
- 4. $\pi_1(G) \cong \widetilde{Z}$.

Lemma 21. Sp(1) and SU(2) are simply connected and isomorphic to each other. Either group is the simply connected cover of SO(3), i.e., SO(3) is isomorphic to $Sp(1)/\{\pm 1\}$ or $SU(2)/\{\pm I\}$

Remark. Consider the 3-dimensional vector space

$$V = \left\{ \begin{pmatrix} x_1 & x_2 + ix_3 \\ x_2 - ix_2 & x_1 \end{pmatrix} \mid x_1, x_2, x_3 \in \mathbb{R} \right\} = \mathfrak{su}(\mathbf{2}),$$

with inner product

$$\langle X_1, X_2 \rangle = \frac{1}{2} \operatorname{trace}(X_1 X_2) = x_1 x_1' + x_2 x_2' + x_2 x_2'.$$

As vector space $V \cong \mathbb{R}^3$. Let $\Phi : SU(2) \to \operatorname{End}(V) \cong GL(3;\mathbb{R})$ by setting

$$\Phi_U(X) = UXU^{-1} \quad (\forall U \in SU(2)).$$

Since $\langle \Phi_U(X_1), \Phi_U(X_2) \rangle = \langle X_1, X_2 \rangle, \Phi_U \in SO(3)$.

Theorem 22. 1. $\pi_1(SO(2)) \cong \mathbb{Z}$ and $\pi_1(SO(n)) \cong \mathbb{Z}/2\mathbb{Z}$ for $n \geq 3$.

- 2. SU(n) is simply connected for $n \geq 2$.
- 3. $\operatorname{Sp}(n)$ is simply connected for $n \geq 1$.

Remark. Use the long exact sequence of higher homotopy groups.

Clifford Algebras

Definition 23. The Clifford algebra is

$$\mathcal{C}(\mathbb{R}^n, Q) = \mathcal{T}_n(\mathbb{R})/\mathcal{I}$$

where $\mathcal{T}_n(\mathbb{R}) = \bigoplus_{k=0}^{\infty} \bigotimes^k \mathbb{R}^n$ and \mathcal{I} is the ideal of $\mathcal{T}_n(\mathbb{R})$ generated by

$$\{(x \otimes x - Q(x)1) \mid x \in \mathbb{R}^n\},\,$$

and $Q: \mathbb{R}^n \to \mathbb{R}$ is a quadratic form over \mathbb{R}^n .

Remark. To remove multiple copies of basis for \mathbb{R}^n ,

$$x \otimes y + y \otimes x = (x+y) \otimes (x+y) - x \otimes x - y \otimes y$$
$$= Q(x+y) - Q(x) - Q(y).$$

Remark. Let $Q(v) = -|v|^2$ $(\forall v \in \mathbb{R}^n)$, then $x \otimes y + y \otimes x = -2(x,y)$. For $\mathcal{C}_n(\mathbb{R}) := \mathcal{C}(\mathbb{R}^n, -|\cdot|^2)$

$$\mathcal{C}_0(\mathbb{R}) = \mathbb{R}, \quad \mathcal{C}_1(\mathbb{R}) = \mathbb{C}, \quad \mathcal{C}_2(\mathbb{R}) = \mathbb{H}.$$

Remark. If Q = 0 then the Clifford algebra is just the exterior algebra $\bigwedge \mathbb{R}^n$.

Proposition 24. There is a linear isomorphism $\Psi: \mathcal{C}_n(\mathbb{R}) \to \bigwedge \mathbb{R}^n$.

Remark.

$$\epsilon(x)(y) = x \wedge y,$$

$$\iota(x)(y_1 \wedge \dots y_k) = \sum_{i=1}^k (-1)^{i+1} (x, y_i) \ y_1 \wedge \dots \wedge \hat{y_i} \wedge \dots \wedge y_k,$$

where \hat{y}_i means to omit the term.

Let $L_x = \epsilon(x) + \iota(x)$, $\Phi : \mathcal{T}_n(\mathbb{R}) \to \operatorname{End}(\mathbb{R}^n)$ by setting $\Phi(x) = L_x$, which induces $\Phi : \mathcal{C}_n(\mathbb{R}) \to \operatorname{End}(\mathbb{R}^n)$ since $\Phi(\mathcal{I}) = 0$. Let

$$\Psi(v) = \Phi(v)(1),$$

then

$$\Psi(x_1 \cdots x_k) = x_1 \wedge \cdots \wedge x_k + \text{ terms in } \bigoplus_{i \ge 1} \bigwedge^{k-2i} \mathbb{R}^n.$$

Remark. A basis of $C_n(\mathbb{R})$ is then

$$\{1\} \cup \{e_{i_1}e_{i_2}\cdots e_{i_k} \mid 1 \le i_1 < i_2 < \cdots < i_k \le n\},\$$

where $\{e_1, e_2, \cdots, e_n\}$ is the standard basis of \mathbb{R}^n .

$\operatorname{Spin}_n(\mathbb{R})$

Definition 25. 1. Let $\mathcal{C}_n^+(\mathbb{R})$ be the subalgebra of $\mathcal{C}_n(\mathbb{R})$ spanned by all products of an even number of elements of \mathbb{R}^n .

- 2. Let $\mathcal{C}_n^-(\mathbb{R})$ be the subspace of $\mathcal{C}_n(\mathbb{R})$ spanned by all products of an odd number of elements of \mathbb{R}^n so $\mathcal{C}_n(\mathbb{R}) = \mathcal{C}_n^+(\mathbb{R}) \oplus \mathcal{C}_n^-(\mathbb{R})$ as a vector space.
- 3. Let the automorphism α , called the *main involution*, of $\mathcal{C}_n(\mathbb{R})$ act as multiplication by ± 1 on $\mathcal{C}_n^{\pm}(\mathbb{R})$
- 4. Conjugation, an anti-involution on $\mathcal{C}_n(\mathbb{R})$, is defined by

$$(x_1x_2\cdots x_k)^* = (-1)^k x_k\cdots x_2x_1$$

for $x_i \in \mathbb{R}^n$.

Definition 26. 1. Let $\operatorname{Spin}_n(\mathbb{R}) = \{ g \in \mathcal{C}_n^+(\mathbb{R}) \mid gg^* = 1 \text{ and } gxg^* \in \mathbb{R}^n \text{ for all } x \in \mathbb{R}^n \}.$

- 2. Let $\operatorname{Pin}_n(\mathbb{R}) = \{g \in \mathcal{C}_n(\mathbb{R}) \mid gg^* = 1 \text{ and } \alpha(g)xg^* \in \mathbb{R}^n \text{ for all } x \in \mathbb{R}^n\}$. Note $\operatorname{Spin}_n(\mathbb{R}) \subseteq \operatorname{Pin}_n(\mathbb{R})$.
- 3. For $g \in \operatorname{Pin}_n(\mathbb{R})$ and $x \in \mathbb{R}^n$, define the homomorphism $\mathcal{A} : \operatorname{Pin}_n(\mathbb{R}) \to GL(n, \mathbb{R})$ by $(\mathcal{A})x = \alpha(g)xg^*$. Note $(\mathcal{A}g)x = gxg^*$ when $g \in \operatorname{Spin}_n(\mathbb{R})$.

Lemma 27. \mathcal{A} is a covering map of $\operatorname{Pin}_n(\mathbb{R})$ onto O(n) with $\ker \mathcal{A} = \{\pm 1\}$, so there is an exact sequence

$$\{1\} \to \{\pm 1\} \to \operatorname{Pin}_n(\mathbb{R}) \stackrel{\mathcal{A}}{\to} O(n) \to \{I\}$$

Remark. Outline of proof:

- 1. $Ag \in O(n)$.
- 2. \mathcal{A} maps Pin_n onto O(n).
- 3. $\ker A = \{\pm 1\}.$
- 4. \mathcal{A} is a covering map. (by theorem 11).

Lemma 28. $\operatorname{Pin}_n(\mathbb{R})$ and $\operatorname{Spin}_n(\mathbb{R})$ are compact Lie groups with

$$\operatorname{Pin}_{n}(\mathbb{R}) = \left\{ x_{1} \cdots x_{k} \mid x_{i} \in S^{n-1} \text{ for } 1 \leq k \leq 2n \right\}$$

$$\operatorname{Spin}_{n}(\mathbb{R}) = \left\{ x_{1} x_{2} \cdots x_{2k} \mid x_{i} \in S^{n-1} \text{ for } 2 \leq 2k \leq 2n \right\}$$

and $\mathrm{Spin}_n(\mathbb{R}) = \mathcal{A}^{-1}(SO(n)).$

Theorem 29. 1. $\operatorname{Pin}_n(\mathbb{R})$ has two connected $(n \geq 2)$ components with $\operatorname{Spin}_n(\mathbb{R}) = \operatorname{Pin}_n(\mathbb{R})^0$.

2. $\operatorname{Spin}_n(\mathbb{R})$ is the connected $(n \geq 2)$ simply connected $(n \geq 3)$ two-fold cover of SO(n). The covering homomorphism is given by \mathcal{A} with $\ker \mathcal{A} = \{\pm 1\}$, i.e., there is an exact sequence

$$\{1\} \to \{\pm 1\} \to \operatorname{Spin}_n(\mathbb{R}) \xrightarrow{\mathcal{A}} SO(n) \to \{I\}$$

Proposition 30. One can define the Lie algebra of $Spin_n(\mathbb{R})$ in terms of quadratic elements of the Clifford algebra, which is isomorphic to $\mathfrak{so}(n)$. [4]

Remark. $\mathfrak{so}(n)$ has a basis given by $L_{ij} = E_{ij} - E_{ji}$ ($\forall i < j$). $\exp(tL_{ij})$ generates rotations in the i - j plane.

$$[L_{ij}, L_{kl}] = \delta_{il}L_{kj} - \delta_{ik}L_{lj} + \delta_{jl}L_{ik} - \delta_{jk}L_{il}.$$

The generators of e_i of the Clifford algebra C(n) satisfy the relations

$$\left[\frac{1}{2}e_{i}e_{j}, \frac{1}{2}e_{k}e_{l}\right] = \delta_{il}\left(\frac{1}{2}e_{k}e_{j}\right) - \delta_{ik}\left(\frac{1}{2}e_{l}e_{j}\right) + \delta_{jl}\left(\frac{1}{2}e_{i}e_{k}\right) - \delta_{jk}\left(\frac{1}{2}e_{i}e_{l}\right)$$

This shows that the vector space spanned by quadratic elements of C(n) of the form $\frac{1}{2}e_ie_j$ (i < j), together with the operation of taking commutators, is isomorphic to the Lie algebra $\mathfrak{so}(n)$.

Since $\left(\frac{1}{2}e_ie_j\right)^2 = -\frac{1}{4}$, the exponentials

$$e^{t(\frac{1}{2}e_ie_j)} = \cos\left(\frac{t}{2}\right) + e_ie_j\sin\left(\frac{t}{2}\right)$$

 $\mathcal{A}e^{t\left(\frac{1}{2}e_ie_j\right)}$ also generates rotations in the i-j plane.

As we go around this circle in $Spin_n(\mathbb{R})$ once, we go around the circle of SO(n) rotations in the i-j plane twice. This is a reflection of the fact that $Spin_n(\mathbb{R})$ is a double-covering of the group SO(n).

References

- [1] Table of lie groups wikipedia. https://en.wikipedia.org/wiki/Table_of_Lie_groups.
- [2] Ralph Cohen. The topology of fiber bundles lecture notes. 1998.
- [3] Mark R. Sepanski. Compact Lie Groups. Springer New York, 2007.
- [4] Peter Woit. Clifford algebras and spin groups. http://www.math.columbia.edu/~woit/LieGroups-2012/cliffalgsandspingroups.pdf, 2012.