Intro

Til dette indfører vi en ny differens operator, $\delta_h f(x_0)$, som istedet for at være afhængig af f(x)værdier tæt på $f(x_0)$ kan denne istedet afhænge af en finit mængde punkter $(x_0 + a_k h)$ som
bruges differens operatoren

$$\delta_h f(x_0) = \sum_{j=0}^n c_j f(x_0 + a_j h)$$

Taylor series method

Approximationen kan gives ved følgende

$$DF(x_0) = \delta_h f(x_0) + O(h^q)$$

Større q er bedre approximation. Mindre n er billigere computation. Når vi skal finde vores vægte c_j som gør vores q højest mulig, laver vi først taylor expansion for $f(z_j)$, hvor z_j er punktet på formen $x_0 + a_j h, x_0 - a_j h$ eller en mix, så

$$\delta_{+,-,+}f(x_0) = \sum_{j=0}^n c_j f(z_j) = \sum_{j=0}^n c_j \left[\sum_{k=0}^\infty \frac{1}{k!} f^{(k)}(x_0) (z_j - x_0)^k\right]$$

Hvor $z_j - x_0$ kan udtrykkes ved h^k .

Herefter vælges c_j værdier så de gør ordenen af q størst.

Lore

n er pre selected og alt efter n om det er $\delta+,-,0$ kaldes det n-punkts forward,backward eller central differens operator.

Punkterne er også pre selected.