FASTER R-CNN MASK R-CNN

Michał Tyrolski

Collaboration and Research Group Meeting 17.12.2020 Machine Learning Society @ University of Warsaw

Presentation

- TARGETS
- FASTER R-CNN
- MASK R-CNN
- EXTRA USE-CASES

Presentation

- TARGETS
- FASTER R-CNN
- MASK R-CNN
- EXTRA USE-CASES

Target: Object Image Segmentation

TIMELINE

SEGMENTATION

MASK R-CNN (2017)

Presentation

- TARGETS
- FASTER R-CNN
- MASK R-CNN
- EXTRA USE-CASES

FASTER R-CNN HIGH LEVEL VIEW

Faster R-CNN

FASTER R-CNN HIGH LEVEL VIEW

Faster R-CNN

INPUT

Image with shape (h,w,3)

Image size must be divisible by 2 at least 6 times to avoid fractions when downscaling and upscaling.

256, 320, 384, 448, 512, ...

FASTER R-CNN HIGH LEVEL VIEW

Conv 1-1 Conv 1-2 Pooing Conv 2-1
Conv 2-2
Pooing

Conv 3-1 Conv 3-2 Conv 3-3 Conv 4-1 Conv 4-2 Conv 4-3 Pooing

Conv 5-1 Conv 5-2 Conv 5-3 Pooing Dense Dense Dense

VGG-16

FASTER R-CNN HIGH LEVEL VIEW

Faster R-CNN

RPN - REGION PROPOSAL NETWORK

RPN - REGION PROPOSAL NETWORK

- Small network.
- Slide the network over the convolutional feature map output.
- At each sliding-window location, we simultaneously predict multiple region proposals.
- Each sliding window is mapped to a lower-dimensional feature (512-d for VGG)

ANCHOR BOXES

- From the previous slide...
 At each sliding-window location, we
 simultaneously predict multiple region
 proposals.
- An anchor is centered at the sliding window.
- 3 scales and 3 ratios => k==9
- Result of RPN is 4k boxes and 2k objectness scores (can be also just k).
- Feature map W x H resulting with WHk anchors in total (~2400k)

RPN - Training #1 Vocabulary

- Anchor is positive if...
 - has highest IoU overlap with a ground-truth box or
 - IoU > 0.7 (do the job for most positive cases)
- Anchor is negative if...
 - IoU < 0.3 for all ground-truth boxes

RPN - Training #2 Minibatch Loss

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

RPN - Training #2 Minibatch Loss

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

- p_i* ground-truth label for anchor type
 - o (1 positive, 0 negative)
- L_{cls} Log loss (cross entropy) over 2 classes
 - o objects vs not object
- L_{reg} (t_i, t_i*) = R(t_i t_i*)
 - o R Smooth L1

$$L_{1;smooth} = \begin{cases} |x| & \text{if } |x| > \alpha; \\ \frac{1}{|\alpha|} x^2 & \text{if } |x| \le \alpha \end{cases}$$

- N_{cls} mini-batch size (~256)
- N_{reg} number of anchors (~2.4k)
- \lambda magic 10 (~ N_reg / N_cls)
- t_i, t_i*

$$\begin{split} t_{\rm x} &= (x-x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y-y_{\rm a})/h_{\rm a}, \\ t_{\rm w} &= \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}), \\ t_{\rm x}^* &= (x^*-x_{\rm a})/w_{\rm a}, \quad t_{\rm y}^* = (y^*-y_{\rm a})/h_{\rm a}, \\ t_{\rm w}^* &= \log(w^*/w_{\rm a}), \quad t_{\rm h}^* = \log(h^*/h_{\rm a}), \end{split}$$

RPN - Training #2 Minibatch Loss

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*).$$

only for positive

Both RPN and Fast R-CNN trained independently?

Both RPN and Fast R-CNN trained independently?

Alternating training

- Iter:
 - Train RPN
 - Train Fast R-CNN

FASTER R-CNN HIGH LEVEL VIEW

Presentation

- TARGETS
- FASTER R-CNN
- MASK R-CNN
- EXTRA USE-CASES

MASK R-CNN

MASK R-CNN

MASK R-CNN

 Faster R-CNN has two outputs for each candidate object, a class label and a bounding-box offset

Mask R-CNN = Faster R-CNN + MASK BRANCH

Mask branch #1

- For each Rol Mask R-CNN also outputs a binary mask.
- Multitask Loss for each Rol:

$$L = L_{cls} + L_{reg} + L_{mask}$$

Mask branch #2

- Output of mask branch: Km²
- K classes
- $m \times m$ mask resolution The $m \times m$ floating-number mask output is then resized to the RoI size, and binarized at a threshold of 0.5.
- K'th class RoI L_{mask} only defined for k'th mask (other masks don't contribute to the loss).
- Loss: average binary cross-entropy loss.
- There is no competition among classes.

Mask branch #3

- Spatial structure of masks can be addressed naturally by the pixel-to-pixel correspondence provided by convolutions.
- Masks are produced in use of FCNs: J. Long, E. Shelhamer, and T.
 Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.

RESULTS

TASK	DATASET	MODEL	METRIC NAME	METRIC VALUE	GLOBAL RANK	RESULT	BENCHMARK
Object Detection	PASCAL VOC 2007	Faster R-CNN	MAP	73.2%	# 23	Ð	Compare
Real-Time Object Detection	PASCAL VOC 2007	Faster R-CNN	MAP	73.2%	# 4	Ð	Compare
			FPS	7	# 5	Ð	Compare

TASK	DATASET	MODEL	METRIC NAME	METRIC VALUE	GLOBAL RANK	RESULT	BENCHMARK
Nuclear Segmentation	Cell17	Mask R-CNN	F1-score	0.8004	#3	Ð	Compare
			Dice	0.707	#3	- Ð	Compare
			Hausdorff	12.6723	#3	Ð	Compare
Panoptic Segmentation	Cityscapes val	Mask R-CNN+COCO	PQth	54.0	# 12	Ð	Compare
Keypoint Detection	coco	Mask R-CNN	Validation AP	69.2	# 7	Ð	Compare
			Test AP	63.1	#9	Ð	Compare

Presentation

- TARGETS
- FASTER R-CNN
- MASK R-CNN
- EXTRA USE-CASES

EXTRA USE CASES

EXTRA USE CASES

Presentation

- TARGETS
- FASTER R-CNN
- MASK R-CNN
- EXTRA USE-CASES

THANK YOU!

BIBLIOGRAPHY

- https://arxiv.org/abs/1411.4038
- https://arxiv.org/abs/1703.06870
- https://arxiv.org/abs/1506.01497
- https://towardsdatascience.com/computer-vision-instance-segmentation-with-mask-r-c nn-7983502fcad1
- https://towardsdatascience.com/faster-rcnn-object-detection-f865e5ed7fc4
- https://towardsdatascience.com/computer-vision-a-journey-from-cnn-to-mask-r-cnn-and-yolo-1d141eba6e04