

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТЕРМОМЕТР ВЕТЕРИНАРНЫЙ МАКСИМАЛЬНЫЙ СТЕКЛЯННЫЙ

FOCT 2888-68

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

ТЕРМОМЕТР ВЕТЕРИНАРНЫЙ МАКСИМАЛЬНЫЙ СТЕКЛЯННЫЙ

ГОСТ 2888—68

Veterinary maximum glass thermometer

Взамен ГОСТ 2888---45

Утвержден Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 4/III 1968 г. Срок введения установлен с 1/I 1970 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на ветеринарный максимальный стеклянный термометр палочного типа, предназначенный для измерения температуры тела животных и птиц.

1. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

- 1.1. Предел измерения термометра должен быть от 35°C до 43°C. По согласованию с заказчиком допускается выпускать термометры с началом шкалы от 35,5°C.
 - 1.2. Цена деления шкалы должна быть равна 0,1°С.
- 1.3. Форма и основные размеры термометра должны соответствовать указанным на чертеже.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Ветеринарный термометр должен изготовляться в соответствии с требованиями настоящего стандарта по технической документации, утвержденной в установленном порядке.

2.2. Термометр должен иметь специальное устройство, препятствующее спаданию ртутного столбика при охлаждении.

2.3. Термометр должен изготовляться из стекла по ГОСТ 1224—71.

- 2.4. Ампула термометра перед наполнением ртутью должна быть подвергнута отжигу и искусственному старению.
- 2.5. Термометр должен наполняться ртутью по ГОСТ 4658—73, которая перед наполнением должна быть специально очищена и просушена.
- 2.6. При движении в капилляре ртуть не должна разрываться на несоединяемые части и оставлять следов на стенках капилляра.
- 2.7. Для улучшения видимости ртутного столбика капиллярная трубка должна иметь форму, обеспечивающую ширину видимого столбика ртути не менее 0,8 мм. Вдоль капилляра должна быть вплавлена цветная эмалевая полоска.
- 2.8. Расстояние от верхнего штриха шкалы до конца канала капилляра должно быть не менее 3 мм.

2.9. На внутренней поверхности капиллярной трубки не допускаются утолщения, загрязнения и другие дефекты, препятствующие движению ртути в канале капилляра и затрудняющие отсчет по мениску или влияющие на точность показания термометра. Ртутный столбик в капилляре должен быть отчетливо вилен всем протяжении шкалы.

2.10. На резервуаре и внешней поверхности капиллярной трубки не допускаются царапины, камни, пузыри, свили и другие дефекты, которые влияют на прочность термометров или затрудняют

отсчет температуры по шкале.

2.11. Термометр должен быть градуирован в градусах Международной практической температурной шкалы (ГОСТ 8.157—75). сокращенно обозначаемой буквой «С».

2.12. Градуировка термометра должна производиться при погружении его в температурную ванну до линии спайки капилляра. 2.13. Штрихи и цифровые обозначения должны быть нанесе-

ны на капиллярной трубке в соответствии с чертежом.

- 2.14. Длина штрихов, соответствующих значениям 0,1°C, должна быть не менее 1,5 мм. Штрихи, соответствующие значениям 0,5°C, должны быть длиннее штрихов, обозначающих 0,1°C не менее чем на 0,5 мм. Штрихи, соответствующие значениям целых градусов, должны быть длиннее не менее чем на 0.5 мм штрихов. обозначающих 0.5°С.
- 2.15. Отметки шкалы наносятся в виде штрихов, перпендикулярных к оси капилляра. Ширина штрихов должна быть не более 0,2 мм. Штрихи должны быть прямыми, ровными, без заметпых на глаз перерывов и утолщений, влияющих на точность отсче-Ta.
- 2.16. Расстояние между штрихами шкалы каждого градуса должно быть не менее 7 мм.
- 2.17. Штрихи, цифровые обозначения и другие надписи должны быть окрашены темной краской, устойчивой к воздействию дезинфицирующих средств.
- 2.18. Головка термометра должна быть отожжена. Разность хода двух лучей при поверке на полярископе не должна шать 100 Нм на 1 см светового пути.
- 2.19. Погрешность показаний термометра не должна превышать +0.1°C.
- 2.20. Ртутный столбик термометра, охлажденного до температуры $20\pm10^{\circ}\mathrm{C}$, должен сбрасываться с отметки $41^{\circ}\mathrm{C}$ до первой нижней оцифрованной отметки при радиальном ускорении, ном $320 \pm 50 \text{ m/c}^2$.
- 2.21. Готовые термометры должны быть приняты техническим контролем предприятия-изготовителя. Изготовитель должен га-

рантировать соответствие всех выпускаемых термометров требованиям настоящего стандарта.

2.22. Термометры до выпуска их в обращение должны быть подвергнуты поверке и клеймению органами Государственного комитета СССР по стандартам. Клеймо должно указывать год и квартал его наложения.

2.23. Изготовитель обязан в течение 12 месяцев со дня отгрузки потребителю безвозмездно заменять вышедшие из строя термометры при условии соблюдения потребителем правил хранения

и эксплуатации.

3. МЕТОДЫ ИСПЫТАНИЙ

3.1. Для контрольной проверки потребителем качества термометров на соответствие требованиям настоящего стандарта должны применяться методы испытаний, указанные ниже.

3.2. Качество отжига стекла проверяют по ГОСТ 7329-74.

- 3.3. Устойчивость окраски термометра определяют следующим образом: от партии берут не менее 1% термометров, выдерживают их в 2%-ном растворе хлорамина в течение 8 ч, после чего краска не должна обесцвечиваться и стираться.
- 3.4. Термометры должны поверяться на соответствие требованиям настоящего стандарта по методике, утвержденной в установленном порядке.

4. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 4.1. На обратной стороне термометра должны быть нанесены:
- а) товарный знак предприятия-изготовителя;
- б) условное обозначение «Макс. 1/10°С»;
- в) номер настоящего стандарта;
- г) цена.
- 4.2. Каждый термометр должен быть уложен в пластмассовый футляр с мягкой или амортизирующей прокладкой. По согласованию с заказчиком допускается упаковка термометров в картонные футляры с мягкой или амортизирующей прокладкой.
- 4.3. Термометры в футлярах должны быть упакованы в картонные коробки. Коробки укладывают в деревянные ящики по ГОСТ 8872—63* или другую тару, обеспечивающую сохранность термометров при транспортировании.
 - 4.4. Масса (брутто) тары не должна превышать 50 кг.
- 4.5. На поверхности упаковочной тары должны быть нанесены несмываемой краской надписи: «Осторожно стекло!», «Не бросать!».

Маркировка тары должна быть устойчивой к воздействию атмосферных осадков, не стираться и не выцветать. Цвет маркировки должен резко отличаться от цвета тары.

4.6. Термометры должны выдерживать транспортирование во

всех видах крытого транспорта.

4.7. Каждая поставляемая партия термометров должна сопровождаться документом, в котором указывают:

а) номер настоящего стандарта;

- б) наименование и количество термометров.
- 4.8. Термометры должны храниться в помещениях, защищенных от атмосферных осадков, при температуре не ниже минус 35°C и не выше плюс 43°C.

Редактор С. Г. Вилькина Технический редактор Ф. И. Шрайбштейн Корректор М. Г. Байрашевская

Сдано в наб. 10.09.80 Подп. в печ. 05.02.81 0,5 п. л. 0,33 уч.-изд. л. Тир. 2000 Цена 3 коп.

Ордена «Знак Почета» Издательство стандартов, Москва, Д.557, Новопресненский пер., д. 3. Вильнюсская типография Издательства стандартов, ул. Миндауго, 12/14. Зак. 5066

основные гдиницы си

Величина	Единяна			
	Наименование	Обозна чение		
		русское	междуна родноэ	
длина	метр	.: м	m	
MACCA	килограмм	Кr	k g	
время	секунда	c	S	
СИЛА ЭЛЕКТРИЧЕСКОГО ТОКА	ампер	A i	\mathbf{A}	
ТЕРМОДИНАМИЧЕСКАЯ	•			
ТЕМПЕРАТУРА	кельвин	ĸ	\mathbf{K}_{\perp}	
количество вещества	моль	моль	mol	
СИЛА СВЕТА	кандела	′ кд	cd	
допол	нительные і	единицы си		
Плоский угол	радиан	, рад	rad	
Телесный угол	стерадиан	еp	sr	

производные единицы си,имеющие собственные наименования

Величина	Единица		Выражение производной единицы	
	наименование	обозначение	через другие единицы СИ	через основные единицы СИ
Частота .	герц	Τц	_	c-1
Сила	ньютон	н	- .	M·KI·C ⁻²
Давление	паскаль	Па	H/m²	M 1 - KI - C-2
Энергия, работа, количество теплоты	джоуль	Дж	H·m	M2.Kr.c-2
Мощность, поток энергии	Batt	Br	Дж/с	M2.KT.C-3
Количество электричества,				
электрический заряд	кулон	Кл	A⋅c	c·A
Электрическое напражение,				
электрический потенциал	вольт	В	Br/A	M ² ·KΓ·C ⁻³ ·A ⁻¹
Электрическая ежкость -	фарад	Φ	•Кл/В	M ⁻² ·Kr ⁻¹ ·C⁴·A²
Электрическое сопротивление	OM	Ом	B/A	M ² ·KT·C → 3·A→2
Электрическая проводимость	сименс	См	A/B	M-2·Kr-1·C3·A2
Поток магнитной индукции	вебер	Вб	B⋅c	M ² ·Kr·c ⁻² ·A ⁻¹
Магнитная видукция	тесла	Тл	Вб/м²	Kr·c ⁻² ·A ⁻¹
Индуктивность	генри	Гн	B6/A	M ² ·Kr·c ⁻² ·A ⁻²
Световой поток	люмен	. лм		кд∙ср }*
Освещенность	люке	лк		м-² ∙кд ср
Активиость нукляда	беккерель	Бк		e–₁
Доза излучения	грэй	Гр	_	M2 ⋅ C-2

^{*} В эти два выражения входит, наравне с основными единицами СИ, дополнительная единица---стерадиам.