



# KS091201 MATEMATIKA DISKRIT (DISCRETE MATHEMATICS)

#### Discrete Basic Structure: Sequences and Summations

Discrete Math Team

#### **Outline**

- Definition of Sequence
- Sequence Examples
- Arithmetic Vs Geometric Sequences
- Fibonacci Sequence
- Determining Sequence Formula
- Useful Sequences
- Summations
- Evaluating Sequences
- Summation of A Geometric Series
- Double Summation
- Cardinality



#### **Definitions of Sequence**

- Sequence: an ordered list of elements
  - Like a set, but:
    - Elements can be duplicated
    - Elements are ordered
- A sequence is a function from a subset of Z
   to a set S
  - Usually from the positive or non-negative ints
  - $\circ$   $a_n$  is the image of n
- $\circ$   $a_n$  is a term in the sequence
- $\circ$  { $a_n$ } means the entire sequence
  - The same notation as sets!

#### Sequence examples

- $oa_n = 3n$ 
  - The terms in the sequence are  $a_1, a_2, a_3, ...$
  - The sequence  $\{a_n\}$  is  $\{3, 6, 9, 12, ...\}$
- $b_n = 2^n$ 
  - The terms in the sequence are  $b_1, b_2, b_3, ...$
  - The sequence  $\{b_n\}$  is  $\{2, 4, 8, 16, 32, ...\}$
- Note that generally sequences are indexed from 1

# Arithmetic vs. Geometric Sequences

- Arithmetic sequences increase by a constant amount
  - $a_n = 3n$
  - The sequence  $\{a_n\}$  is  $\{3, 6, 9, 12, ...\}$
- Arithmetic Progression
  - a, a+d, a+2d, ..., a+nd, ...
  - $\circ$   $a_n = a + (n-1) d$
  - Discrete analogue of linear function f(x) = dx + a
- Geometric sequences increase by a constant factor
  - $b_n = 2^n$
  - The sequence  $\{b_n\}$  is  $\{2, 4, 8, 16, 32, ...\}$
- Geometric Progression
  - a, ar, ar<sup>2</sup>, ar<sup>3</sup>, ..., ar<sup>n-1</sup>, ...
  - $a_n = ar^{n-1}$
  - Discrete analogue of exponential function  $f(x) = ar^x$

#### Fibonacci Sequence

- Sequences can be neither geometric nor arithmetic
  - $F_n = F_{n-1} + F_{n-2}$ , where the first two terms are 1 • Alternative, F(n) = F(n-1) + F(n-2)
  - Each term is the sum of the previous two terms
  - Sequence: { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... }
  - This is the Fibonacci sequence

• Full formula: 
$$F(n) = \frac{\left(1 + \sqrt{5}\right)^n - \left(1 - \sqrt{5}\right)^n}{\sqrt{5} \cdot 2^n}$$

#### Fibonacci Sequence in Nature



#### Fibonacci Sequence Example



 Fibonacci references from http://en.wikipedia.org/wiki/Fibonacci\_sequence

# Determining the Sequence Formula

- Given values in a sequence, how do you determine the formula?
- Steps to consider:
  - Is it an arithmetic progression (each term a constant amount from the last)?
  - Is it a geometric progression (each term a factor of the previous term)?
  - Does the sequence is repeat (or cycle)?
  - Does the sequence combine previous terms?
  - Are there runs of the same value?

# Determining the Sequence Formula

- **o** 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, ...
  - The sequence alternates 1's and 0's, increasing the number of 1's and 0's each time
- 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, ...
  - This sequence increases by one, but repeats all even numbers once
- 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, ...
  - Each term is twice the cube of *n*. The non-0 numbers are a geometric sequence (2<sup>n</sup>) interspersed with zeros
- 3, 6, 12, 24, 48, 96, 192, ...
  - Each term is twice the previous: geometric progression
  - $o a_n = 3*2^{n-1}$

# Determining the sequence formula

- 15, 8, 1, -6, -13, -20, -27, ...
  - Each term is 7 less than the previous term
  - $oa_n = 22 7n$
- 3, 5, 8, 12, 17, 23, 30, 38, 47, ...
  - The difference between successive terms increases by one each time
  - $oa_1 = 3, a_n = a_{n-1} + n$
  - $o_n = n(n+1)/2 + 2$
- 2, 16, 54, 128, 250, 432, 686, ...
  - Each term is twice the cube of n
  - $a_n = 2*n^3$
- 2, 3, 7, 25, 121, 721, 5041, 40321
  - Each successive term is about n times the previous
  - $o_n = n! + 1$
  - Alternatively:  $a_n = a_{n-1} * n n + 1$

#### **Useful Sequences**

- $\circ$   $n^2 = 1, 4, 9, 16, 25, 36, ...$
- $\circ$  n<sup>3</sup> = 1, 8, 27, 64, 125, 216, ...
- $\circ$  n<sup>4</sup> = 1, 16, 81, 256, 625, 1296, ...
- $\circ$  2<sup>n</sup> = 2, 4, 8, 16, 32, 64, ...
- $\circ$  3<sup>n</sup> = 3, 9, 27, 81, 243, 729, ...
- o n! = 1, 2, 6, 24, 120, 720, ...

#### **Summations**



#### **Evaluating Sequences**

$$\Sigma_{k=1}^{5} (k+1)$$
= 2 + 3 + 4 + 5 + 6 = 20

 Note that each term (except the first and last) is cancelled by another term

#### **Evaluating Sequences**

- What is  $\Sigma_{j \in S} j$ • 1 + 3 + 5 + 7 = 16
- What is  $\Sigma_{j \in S} j^2$ •  $1^2 + 3^2 + 5^2 + 7^2 = 84$
- What is  $\Sigma_{j \in S} (1/j)$ • 1/1 + 1/3 + 1/5 + 1/7 = 176/105
- What is  $\Sigma_{j \in S} 1$ • 1 + 1 + 1 + 1 = 4

#### **Summation of A Geometric Series**

• Sum of a geometric series:

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r - 1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$$

• Example:

$$\sum_{i=0}^{10} 2^{i} = \frac{2^{10+1} - 1}{2 - 1} = \frac{2048 - 1}{1} = 2047$$

#### **Proof**

• If r = 1, then the sum is:

$$S = \sum_{j=0}^{n} a = (n+1)a$$

$$S = \sum_{j=0}^{n} ar^{j}$$

$$rS = r \sum_{j=0}^{n} ar^{j} = \sum_{j=0}^{n} ar^{j+1}$$

$$= \sum_{k=1}^{n+1} ar^{k} \quad \text{Shifting the index wih } k = j+1$$

$$= \sum_{k=0}^{n} ar^{k} + \left(ar^{n+1} - a\right)$$

$$rS = S + \left(ar^{n+1} - a\right)$$

$$rS - S = \left(ar^{n+1} - a\right)$$

$$S(r-1) = \left(ar^{n+1} - a\right)$$

$$S = \frac{\left(ar^{n+1} - a\right)}{r-1}$$

#### **Double Summations**

Like a nested for loop

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij$$

• Is equivalent to:

```
int sum = 0;
for ( int i = 1; i <= 4; i++ )
    for ( int j = 1; j <= 3; j++ )
        sum += i*j;</pre>
```

#### Cardinality

- For finite sets (only), cardinality is the number of elements in the set
- For finite and infinite sets, two sets A and B have the same cardinality if there is a oneto-one correspondence from A to B

#### Cardinality

- Example on finite sets:
  - Let  $S = \{1, 2, 3, 4, 5\}$
  - Let  $T = \{ a, b, c, d, e \}$
  - There is a one-to-one correspondence between the sets
- Example on infinite sets:
  - Let S = Z +
  - Let  $T = \{ x \mid x = 2k \text{ and } k \in \mathbb{Z} + \}$
  - One-to-one correspondence:

$$1 \leftrightarrow 2$$

$$1 \leftrightarrow 2$$
  $2 \leftrightarrow 4$   $3 \leftrightarrow 6$   $4 \leftrightarrow 2$ 

$$3 \leftrightarrow 6$$

$$4 \leftrightarrow 2$$

$$5 \leftrightarrow 10$$
  $6 \leftrightarrow 12$   $7 \leftrightarrow 14$   $8 \leftrightarrow 16$ 

Ftc.

 Note that here the '↔' symbol means that there is a correspondence between them, not the biconditional

#### **More Definitions**

- A set that is either finite or has the same cardinality as the set of Z<sup>+</sup> is called countable.
- A set that is not countable is called uncountable.
- Countably infinite: elements can be listed
  - Anything that has the same cardinality as the positive integer
  - Example: rational numbers, odd integers, all integers
- Uncountably infinite: elements cannot be listed
  - Example: real numbers
- When an infinite set S is countable, we denote the cardinality of S by  $\kappa_0$  (aleph null) --  $|S| = \kappa_0$

#### Showing a Set is Countably Infinite

- Done by showing there is a one-to-one correspondence between the set and the positive integers
- Examples
  - Even numbers
    - Shown two slides ago
  - Rational numbers
    - Shown next two slides
  - Ordered pairs of integers
    - Shown next slide

#### Ordered Pairs of Integers: Countably Infinite

A one-to-one correspondence



### Show that the rational numbers are countably infinite

- First, let's show the positive rationals are countable
- See diagram:
- Can easily add 0 (add one column to the left)
- Can add negative rationals as well

