

Preserving Hidden Hierarchical Structure: Poincaré Distance for Enhanced Genomic Sequence Analysis

Sarwan Ali, Haris Mansoor, Prakash Chourasia, Imdadullah Khan, Murray Patterson

Georgia State University December 9, 2024

Table of Contents

- Motivation
- Real World Application
- Challenges
- Proposed Model
- Datasets
- 6 Data Visualization
- Results
- Conclusion

Motivation

- Studies of alterations in the protein sequence to classify and predict amino acid changes in SARS-CoV-2 are crucial in
 - Understanding the immune evasion and host-to-host transmission properties of SARS-CoV-2 and its variants
 - Identifying transmission patterns of each variant may help policymakers to prevent the rapid spread
 - Knowledge of mutations and variants will help identify transmission patterns
 - This will also help in vaccine design and efficacy
- Insights into the evolutionary relationships between organisms, helping us understand the origins and diversity of life on Earth.

Real World Application

- Genomic surveillance: Tracking the spread of pathogens in terms of genomic content
- Real time identification of new and rapidly emerging coronavirus variants
- Track the spread of known coronavirus variants in new municipalities, regions, countries and continents

Challenges

- Mutations happen at different rates in different regions of the genome
- Since new variants (for coronavirus) are emerging, not much information is available about these variants
- The size of the data (millions of sequences) pose bottlenecks for traditional (e.g., phylogenetic) approaches
- Generating fixed-length feature vectors from variable-length sequences
- High dimensionality of generated embeddings (e.g., OHE)
- Challenges:
 - Preserving Hidden Hierarchical Structure from Sequences
 - Predictive Performance

Feature Vector Representation

- To convert the sequences into fixed-length numerical representations, we use a recently proposed method called Spike2Vec [1].
- Spike2Vec generates a fixed-length numerical representation using the concept of k-mers (also called n-gram) for a sequence.
- It uses the idea of the sliding window to generate substrings (called mers) of length k (size of the window).
- From a set of k-mers from a sequence, a feature vector of length $|\Sigma|^k$ (Σ is the set of alphabets amino acid or nucleotide), is generated using the frequency/count of each k-mer.

Distance Computation (Poincaré distance)

$$d(x,y) = arcosh\left(1 + 2\frac{\|x - y\|^2}{(1 - \|x\|^2)(1 - \|y\|^2)}\right) \tag{1}$$

where

- \bullet $\|\cdot\|$ denotes the Euclidean norm
- arcosh(z) is the inverse hyperbolic cosine (cosh) function

Distance Computation (Modified-Poincaré distance)

- We propose a distance function (a modified form of Poincaré distance) that combines elements of Euclidean norms and dot products.
- Our distance function calculates the distance between two vectors x and y. This distance is a measure of dissimilarity and is defined as:

$$d'(x,y) = arcosh\left(\frac{1 + \frac{2||x-y||^2}{(1-||x||^2)(1-||y||^2)}}{1 - \frac{(x\cdot y)^2}{||x||^2||y||^2}}\right)$$
(2)

• where d'(x, y) represents the modified Poincaré distance between vectors x and y, and $x \cdot y$ represents the dot product of vectors x and y.

Algorithm Poincaré Kernel Matrix

```
Input: Set of molecular sequences S
Output: Poincaré kernel matrix K
```

2:
$$K \leftarrow np.zeros(|S|, |S|)$$

6: if
$$i \leq j$$
 then

Set
$$\sigma_{\rm val} = 1$$

8:
$$dist \leftarrow PoincareDist(embed[i], embed[i])$$

9:
$$kVal = np.exp(-\frac{power(dist,2)}{2 \times power(\sigma_{val},2)})$$

10: Set
$$K[i,j] = kVal$$

12: Set
$$K[j, i] = K[i, j]$$

$$\triangleright$$
 for all embeddings j

Dataset Statistics

Name	Seq.	Classes	Sequence Statistics			Reference	Description	
. vaiiie	ocq.	0.03505	Max	Min	Mean	- North Circle	Description.	
Spike7k	7000	22	1274	1274	1274.00	[3]	The spike protein sequences of the SARS-CoV-2 virus having the information about the coronavirus Lineages of each sequence.	
Human DNA	4380	7	18921	5	1263.59	[4]	Unaligned nucleotide sequences to classify gene family to which humans belong	
Coronavirus Host	5558	21	1584	9	1272.36	ViPR [5], GISAID [3]	The spike protein sequences belonging to various clades of the Coronaviridae family accompanied by the infected host label e.g. Humans, Bats, Chickens, etc.	

Table: Dataset Statistics for all three datasets that are used in performing the evaluation.

Baselines

Method	Category	Detail	Source
PWM2Vec	Feature Engineering	Take molecular sequence as input and design fixed-length numerical embeddings	[6]
String Kernel	Kernel Matrix	Designs $n \times n$ kernel matrix that can be used with kernel classifiers or with kernel PCA to get feature vector based on principal components	[7, 8]
WDGRL	Neural Network	Take one-hot representation of molecular sequence as input and design NN-based	[9]
AutoEncoder SeqVec	(NN) Pretrained Language	embedding method by minimizing loss Takes molecular sequences as input and fine-tunes the weights based on a pre-trained model to get	[10]
ProteinBERT	Model Pretrained Transformer	final embedding A pre-trained protein sequence model to classify the given molecular sequence using Transformer/BERT	[12]

Table: Different baselines and SOTA methods description.

Figure: t-SNE plots for the proposed Poincaré and M-Poincaré kernels for the **Spike7k** dataset. These plots are generated after applying kernel PCA-based embeddings computed from both kernel methods. The legends show the lineages (target labels) for the Spike7k dataset.

Figure: t-SNE plots for the proposed Poincaré and M-Poincaré kernels for the **Human DNA** dataset. The legends show the gene family (target labels) for the Human DNA dataset.

Figure: t-SNE plots for the proposed Poincaré and M-Poincaré kernels for the **Coronavirus Host** dataset. The legends show the host names (target labels) for the Coronavirus Host dataset.

Classification Results - Spike7k Dataset

Embeddings	Algo.	Acc. †	Prec. ↑	Recall †	F1 (Weig.)	F1 (Macro)	ROC AUC ↑	Train Time
					†	†		(sec.) ↓
	SVM	0.818	0.820	0.818	0.810	0.606	0.807	22.710
	NB	0.610	0.667	0.610	0.607	0.218	0.631	1.456
	MLP	0.812	0.792	0.812	0.794	0.530	0.770	35.197
PWM2Vec	KNN RF	0.767	0.790	0.767	0.760	0.565	0.773	1.033
		0.824	0.843	0.824	0.813	0.616	0.803	8.290
	LR DT	0.822	0.813	0.822	0.811	0.605	0.802	471.659 4.100
	SVM	0.845	0.833	0.846	0.821	0.631	0.812	7.350
	NB	0.753	0.821	0.755	0.774	0.602	0.825	0.178
String	MLP	0.831	0.829	0.838	0.823	0.624	0.818	12.652
Kernel	KNN	0.829	0.822	0.827	0.827	0.623	0.791	0.326
	RF LR	0.847	0.844	0.841	0.835	0.666	0.824	1.464
	DT	0.845	0.843	0.843	0.826	0.628	0.812	0.243
	SVM	0.792	0.769	0.792	0.772	0.455	0.735	0.335
	NB	0.724	0.755	0.724	0.726	0.434	0.727	0.018
	MLP	0.799	0.779	0.799	0.784	0.505	0.755	7.348
WDGRL	RF	0.800	0.799	0.800	0.792	0.546	0.766	0.094
	LR	0.796	0.693	0.752	0.716	0.560	0.648	0.091
	DT	0.790	0.799	0.790	0.788	0.557	0.768	0.009
	SVM NB	0.699	0.720	0.699	0.678	0.243	0.627	4018.028
	MLP	0.490	0.533	0.490	0.481	0.123	0.620	24.6372 87.4913
Auto-	KNN	0.663	0.033	0.003	0.032	0.161	0.589	24.5597
Encoder	RF	0.782	0.803	0.782	0.776	0.535	0.761	46.583
	LR	0.761	0.755	0.761	0.735	0.408	0.705	11769.02
	DT	0.803	0.792	0.803	0.792	0.546	0.779	102.185
	SVM	0.796	0.768	0.795	0.770	0.479	0.747	1.0995
	NB	0.686	0.703	0.685	0.686	0.351	0.694	0.0146
	MLP	0.796	0.771	0.795	0.771	0.510	0.762	13.172
SeqVec	KNN	0.790	0.787	0.790	0.786	0.561	0.768	0.6463
	RF	0.793	0.788	0.793	0.786	0.557	0.769	1.8241
	LR	0.785	0.763	0.785	0.761	0.459	0.740	1.7535
	DT	0.757	0.756	0.757	0.755	0.521	0.760	0.1308
Protein Rert		0.836	0.828	0.836	0.814	0.570	0.792	14163.52
Bert	SVM	0.484	0.235	0.484	0.316	0.030	0.500	5.789
	NB	0.215	0.663	0.215	0.213	0.357	0.703	0.149
Poincaré	MLP	0.740	0.734	0.740	0.731	0.526	0.760	18.037
(ours)	RF	0.808	0.812	0.808	0.805	0.630	0.803	0.512
	RF LR	0.798	0.794	0.798	0.780	0.629	0.789	10.054 3.828
	DT	0.804	0.235	0.484	0.799	0.623	0.833	1.581
	SVM			0.605			0.532	7.592
	SVM NR	0.605	0.457		0.490	0.090	0.532	7.592
м.	MLP	0.187	0.442	0.187	0.225	0.223	0.645	0.440 5.155
M- Poincaré	KNN	0.713	0.724	0.713	0.707	0.478	0.738	0.225
(ours)	RF	0.851	0.849	0.851	0.840	0.669	0.796	5.622
(ours)	LR	0.476	0.248	0.476	0.326	0.009	0.498	3.647

Classification Results - Human DNA Dataset

Embeddings	Algo.	Acc. ↑	Prec. †	Recall †	F1 (Weig.) †	F1 (Macro) †	ROC AUC ↑	Train Time (sec.) ↓
	SVM NB MLP	0.302 0.084 0.310	0.241 0.442 0.350	0.302 0.084 0.310	0.165 0.063 0.175	0.091 0.066 0.107	0.505 0.511 0.510	10011.3 4.565 320.555
PWM2Vec	KNN RF	0.121	0.337	0.121 0.309	0.093	0.077	0.509 0.510	2.193 65.250
	LR DT	0.304 0.306	0.257 0.284	0.304 0.306	0.167 0.181	0.094 0.111	0.505 0.509	23.651 1.861
	SVM NB MLP	0.618 0.338 0.597	0.617 0.452 0.595	0.618 0.338 0.597	0.613 0.347 0.593	0.588 0.333 0.549	0.753 0.617 0.737	39.791 0.276 331.068
String Kernel	KNN RF LR	0.645 0.731 0.571	0.657 0.776 0.570	0.645 0.731 0.571	0.646 0.729 0.558	0.612 0.723 0.532	0.774 0.808 0.716	1.274 12.673 2.995
	DT	0.630	0.631	0.630	0.630	0.598	0.767	2.682
	SVM NB MLP	0.318 0.232 0.326	0.101 0.214 0.286	0.318 0.232 0.326	0.154 0.196 0.263	0.069 0.138 0.186	0.500 0.517 0.535	0.751 0.004 8.613
WDGRL	RF LR	0.317 0.453 0.323	0.317 0.501 0.279	0.317 0.453 0.323	0.315 0.430 0.177	0.266 0.389 0.095	0.574 0.625 0.507	0.092 1.124 0.041
	SVM NB	0.368 0.621 0.260	0.372 0.638 0.426	0.368 0.621 0.260	0.369 0.624 0.247	0.328 0.593 0.268	0.610 0.769 0.583	0.047 22.230 0.287
Auto- Encoder	MLP	0.621	0.624	0.621	0.620	0.578	0.756	111.809 1.208
	RF LR DT	0.689 0.692 0.543	0.738 0.700 0.546	0.689 0.692 0.543	0.683 0.693 0.543	0.668 0.672 0.515	0.774 0.799 0.718	20.131 58.369 10.616
	SVM NB MLP	0.656 0.324 0.657	0.661 0.445 0.633	0.656 0.312 0.653	0.652 0.295 0.646	0.611 0.282 0.616	0.791 0.624 0.783	0.891 0.036 12.432
SeqVec	KNN RF	0.592	0.606	0.592 0.701	0.591 0.702	0.552	0.717 0.752	0.571 2.164
	LR DT	0.725 0.586	0.715 0.553	0.726 0.585	0.725 0.577	0.685 0.557	0.784 0.735	1.209 0.24
Protein Rert		0.542	0.580	0.542	0.514	0.447	0.675	58681.57
Poincaré	SVM NB MLP	0.307 0.149 0.660	0.094 0.345 0.660	0.307 0.149 0.660	0.144 0.114 0.659	0.067 0.114 0.616	0.500 0.522 0.779	10.709 0.086 28.152
(ours)	KNN RF LR	0.647 0.764 0.307	0.660 0.792 0.094	0.647 0.764 0.307	0.650 0.762 0.144	0.611 0.756 0.067	0.774 0.832 0.500	0.540 12.927 2.009
	DT	0.608	0.617	0.608	0.611	0.574	0.758	4.373
M- Poincaré	NB MLP	0.353 0.309 0.677	0.434	0.353 0.309 0.677	0.306 0.678	0.136 0.295 0.656	0.596 0.804	0.131 22.044
Kernel (ours)	KNN RF LR	0.714 0.743 0.374	0.728 0.817 0.482	0.714 0.743 0.374	0.716 0.745 0.272	0.685 0.747 0.186	0.827 0.812 0.541	0.515 20.750 3.366
	DT	0.585	0.590	0.585	0.586	0.558	0.746	9.763

Classification Results - Coronavirus Host Dataset

Embedding	pAlgo.	Acc.	Prec.	Recall	F1 (Weig.)	F1 (Macro)	ROC AUC	Train Time (Sec.)
	SVM	0.799	0.805	0.799	0.801	0.648	0.859	44.793
	NB	0.381	0.584	0.381	0.358	0.400	0.683	2.494
	MLP	0.782	0.792	0.782	0.778	0.693	0.848	21.191
PWM2Vec		0.786	0.782	0.786	0.779	0.679	0.838	12.933
	RF	0.836	0.839	0.836	0.828	0.739	0.862	7.690
	LR	0.809	0.815	0.809	0.800	0.728	0.852	274.917
	DT	0.801	0.802	0.801	0.797	0.633	0.829	4.537
	SVM	0.601	0.673	0.601	0.602	0.325	0.624	5.198
	NB	0.230	0.665	0.230	0.295	0.162	0.625	0.131
en en	MLP	0.647	0.695	0.647	0.641	0.302	0.628	42.322
String	KNN	0.613	0.623	0.613	0.612	0.310	0.629	0.434
Pulling	RF	0.668	0.692	0.668	0.663	0.360	0.658	4.541
	LR	0.554	0.724	0.554	0.505	0.193	0.568	5.096
	DT	0.646	0.674	0.646	0.643	0.345	0.653	1.561
	SVM	0.329	0.108	0.329	0.163	0.029	0.500	2.859
	NB	0.004	0.095	0.004	0.007	0.002	0.496	0.008
	MLP	0.328	0.136	0.328	0.170	0.032	0.499	5.905
WDGRL	KNN	0.235	0.198	0.235	0.211	0.058	0.499	0.081
	RF	0.261	0.195	0.261	0.216	0.051	0.499	1.288
	LR	0.332	0.149	0.332	0.177	0.034	0.500	0.365
	DT	0.237	0.202	0.237	0.211	0.054	0.498	0.026
	SVM	0.602	0.588	0.602	0.590	0.519	0.759	2575.955
	NB	0.261	0.520	0.261	0.303	0.294	0.673	21.7474
Auto-	MLP	0.486	0.459	0.486	0.458	0.216	0.594	29.93393
Encoder	KNN	0.763	0.764	0.763	0.755	0.547	0.784	18.51143
Encoder	RF	0.800	0.796	0.800	0.791	0.648	0.815	57.90582
	LR	0.717	0.750	0.717	0.702	0.564	0.812	11072.67
	DT	0.772	0.767	0.772	0.765	0.571	0.808	121.3628
	SVM	0.711	0.745	0.711	0.698	0.497	0.747	0.751
	NB	0.503	0.636	0.503	0.554	0.413	0.648	0.012
	MLP	0.718	0.748	0.718	0.708	0.407	0.706	10.191
SeqVec	KNN	0.815	0.806	0.815	0.809	0.588	0.800	0.418
	RF	0.833	0.824	0.833	0.828	0.678	0.839	1.753
	LR	0.673	0.683	0.673	0.654	0.332	0.660	1.177
	DT	0.778	0.786	0.778	0.781	0.618	0.825	0.160
Protein		0.799	0.806	0.799	0.789	0.715	0.841	15742.95
Bert	SVM	0.334	0.115	0.334	0.169	0.056	0.510	35.848
	NB	0.594	0.694	0.594	0.579	0.461	0.749	0.729
Poincaré	MLP	0.752	0.750	0.752	0.744	0.463	0.733	62.323
	KNN	0.793	0.789	0.793	0.789	0.645	0.815	1.543
(ours)	RF	0.844	0.847	0.844	0.836	0.687	0.868	35.333
	LR	0.333	0.111	0.333	0.167	0.028	0.500	18.710
	DT	0.795	0.794	0.795	0.791	0.546	0.786	10.869
	SVM	0.332	0.195	0.332	0.175	0.032	0.501	25.668
	NR	0.450	0.524	0.450	0.424	0.296	0.642	0.351
M.	MLP	0.607	0.599	0.607	0.598	0.268	0.627	40.005
		0.678	0.710	0.678	0.684	0.353	0.686	0.912
Poincaré (ours)	KNN RF	0.788	0.792	0.788	0.778	0.480	0.714	19.283
Poincaré					0.778	0.480	0.714	19.283 10.930

Table: Classification results (averaged over 5 runs) for different evaluation metrics for Coronavirus

Heatmap Results

Figure: Heatmap for classes in Human DNA dataset.

Heatmap Results

Figure: Heatmap for classes in **Spike7K** dataset.

Heatmap Results

Figure: Heatmap for classes in Coronavirus Host dataset.

Conclusion and Future Work

Conclusion

- we have addressed the limitations of traditional Euclidean-based distance measurements and discussed the concept of hyperbolic geometry, and proposed the use of Poincaré distance as a more effective and meaningful measure.
- By leveraging the unique properties of hyperbolic space, the Poincaré distance preserves the hierarchical structures present in molecular sequences.
- Furthermore, we introduced a modified version of the Poincaré distance, known as M-Poincaré, which combines Euclidean norms and the dot product between sequence representations.

Future Work

• Future research can explore the application of these methods in other domains along with interpretability studies.

Thank You

References

- S. Ali and M. Patterson, "Spike2vec: An efficient and scalable embedding approach for covid-19 spike sequences," in *IEEE International Conference on Big Data* (*Big Data*), 2021, pp. 1533–1540.
- S. Ali, B. Sahoo, N. Ullah, A. Zelikovskiy, M. Patterson, and I. Khan, "A k-mer based approach for SARS-CoV-2 variant identification," in *International Symposium on Bioinformatics Research and Applications*, 2021, pp. 153–164.
- GISAID Website, https://www.gisaid.org/, 2022, [Online; accessed 17-December-2022].
- Human DNA, in https://www.kaggle.com/code/nageshsingh/demystify-dna-sequencing-with-machine-learning/data, 2022, [Online; accessed 10-October-2022].
- B. E. Pickett, E. L. Sadat, Y. Zhang, J. M. Noronha, R. B. Squires, V. Hunt, M. Liu, S. Kumar, S. Zaremba, Z. Gu *et al.*, "Vipr: an open bioinformatics database and analysis resource for virology research," *Nucleic acids research*, vol. 40, no. D1, pp. D593-D598,