Day 3, Lecture 2

Longitudinal TMLE (LTMLE)

Overview

- 1. Targeting algorithm
 - Practical 2 (Task 1)
- 2. ltmle software package
 - Practical 2 (Task 2)
- 3. A note on right-censoring

Longitudinal data structure

Longitudinal data structure:

- $\bullet \ \ O = (X_0, A_0, X_1, A_1, \dots, X_K, A_K, Y = X_{K+1}) \in (\mathbb{R}^d \times \{0,1\})^K \times \{0,1\}$
- Covariates $X = (X_0, X_1, \dots, X_K)$ change over time
- ▶ Treatment decisions $A = (A_0, A_1, ..., A_K)$ are updated over time
- Covariates and treatment decisions interact in complex ways

Longitudinal targeting

(For the representation in terms of iterated conditional expectations)

Recall —

TMLE is a two-step procedure:

- Step 1 Construct initial estimator \hat{P}_n for P.
- Step 2 Update the estimator $\hat{P}_n \mapsto \hat{P}_n^*$ such that \hat{P}_n^* solves the efficient influence curve equation.

```
Step 1 = "initial estimation step"
Step 2 = "targeting step"
```

Recall — for the ATE:

TMLE is a two-step procedure:

- Step 1 Construct initial estimators \hat{f}_n , $\hat{\pi}_n$ for f, π .
- Step 2 Update the estimator $\hat{f}_n \mapsto \hat{f}_n^*$ for f such that \hat{f}_n^* for the fixed $\hat{\pi}_n$ solves the efficient influence curve equation.

```
Step 1 = "initial estimation step"
```

Step 2 = "targeting step"

The relevant part of P needed to evaluate our target parameter:

$$\mathbb{E}_{P}[Y^{A_0=a_0^*,A_1=a_1^*,\ldots,A_K=a_K^*}]=\tilde{\Psi}(\bar{Q}),$$

with $\bar{Q} = (\bar{Q}_k)_{1 \le k \le K+1}$.

Starting backwards from the last time-point:

$$\bar{Q}_{K+1}(\bar{x}_K, \bar{a}_K) = \mathbb{E}_P[Y \mid \bar{X}_K = \bar{x}_K, \bar{A}_K = \bar{a}_K]$$

and iteratively for k = K, K - 1, ..., 1,

$$\bar{Q}_k(\bar{x}_{k-1},\bar{a}_{k-1}) = \mathbb{E}_P\big[\bar{Q}_{k+1}(\bar{X}_k,a_k^*,\bar{A}_{k-1}) \mid \bar{X}_{k-1} = \bar{x}_{k-1},\bar{A}_{k-1} = \bar{a}_{k-1}\big]$$

so that

$$\mathbb{E}_{P}\big[\,Y^{A_{0}=a_{0}^{*},A_{1}=a_{1}^{*},\ldots,A_{K}=a_{K}^{*}}\,\big]=\mathbb{E}_{P}\big[\,\bar{Q}_{1}\big(X_{0},a_{0}^{*}\big)\big]=\tilde{\Psi}\big(\,\bar{Q}\big).$$

We need the efficient influence function:

- ▶ Tells us what we need to estimate (to construct TMLE)
- Guides the construction of the targeting step

Construction of the targeting step for a given target parameter $\Psi: \mathcal{M} \to \mathbb{R}$ with efficient influence function $\phi^*(P)$ involves:

- (i) A parametric submodel $\{ar{Q}_{arepsilon}: arepsilon \in \mathbb{R}\} \subset \mathcal{M}$
- (ii) A loss function $(O, \bar{Q}) \mapsto \mathcal{L}(\bar{Q})(O)$

such that: (1)
$$\bar{Q}_{\varepsilon=0} = \bar{Q}$$
, and, (2) $\frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \mathcal{L}(\bar{Q}_{\varepsilon})(O) = \phi^*(P)(O)$

The efficient influence function is given by:

$$\begin{split} \phi^*(P)(O) &= \tilde{\phi}^*(\bar{Q},\pi)(O) \\ &= \sum_{k=1}^{K+1} \bigg(\prod_{l=0}^{k-1} \frac{1\{A_l = a_l^*\}}{\pi_{A_l}(a_l^* \mid \bar{x}_l, \bar{a}_{l-1}^*)} \bigg) \Big\{ \bar{Q}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1}) - \bar{Q}_k(\bar{X}_{k-1}, \bar{A}_{k-1}) \Big\} \\ &\quad + \bar{Q}_1(X_0, a_0^*) - \Psi(P) \end{split}$$
 (with $\bar{Q}_{K+2} \coloneqq Y$)

The efficient influence function is given by:

$$\begin{split} \phi^*(P)(O) &= \tilde{\phi}^*(\bar{Q},\pi)(O) \\ &= \sum_{k=1}^{K+1} \Biggl(\prod_{l=0}^{k-1} \frac{1\{A_l = a_l^*\}}{\pi_{A_l}(a_l^* \mid \bar{x}_l, \bar{a}_{l-1}^*)} \Biggr) \Bigl\{ \bar{Q}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1}) - \bar{Q}_k(\bar{X}_{k-1}, \bar{A}_{k-1}) \Bigr\} \\ &+ \bar{Q}_1(X_0, a_0^*) - \Psi(P) \end{split}$$
 (with $\bar{Q}_{K+2} \coloneqq Y$)

▶ Need initial estimators for: $\pi = (\pi_{A_k})_{0 \le k \le K}$, $\bar{Q} = (\bar{Q}_k)_{1 \le k \le K+1}$

The efficient influence function is given by:

$$\begin{split} \phi^*(P)(O) &= \tilde{\phi}^*(\bar{Q},\pi)(O) \\ &= \sum_{k=1}^{K+1} \bigg(\prod_{l=0}^{k-1} \frac{1\{A_l = a_l^*\}}{\pi_{A_l}(a_l^* \mid \bar{x}_l, \bar{a}_{l-1}^*)} \bigg) \Big\{ \bar{Q}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1}) - \bar{Q}_k(\bar{X}_{k-1}, \bar{A}_{k-1}) \Big\} \\ &+ \bar{Q}_1(X_0, a_0^*) - \Psi(P) \end{split}$$
 (with $\bar{Q}_{K+2} \coloneqq Y$)

- ▶ Need initial estimators for: $\pi = (\pi_{A_k})_{0 \le k \le K}$, $\bar{Q} = (\bar{Q}_k)_{1 \le k \le K+1}$
- ▶ Submodel and loss function for each \bar{Q}_k in turn to solve the k-specific part of the efficient influence curve equation,

$$\tilde{\phi}_k^*(\bar{Q},\pi)(O) = \left(\prod_{l=0}^{k-1} \frac{1\{A_l = a_l^*\}}{\pi_{A_l}(a_l^* \mid \bar{X}_l, \bar{a}_{l-1}^*)}\right) \left\{\bar{Q}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1}) - \bar{Q}_k(\bar{X}_{k-1}, \bar{A}_{k-1})\right\}$$

We construct a submodel $\bar{Q}_{k,\varepsilon}$ through a given \bar{Q}_k and a loss function $(O,\bar{Q}_k)\mapsto \mathcal{L}_{\bar{Q}_{k+1}}(\bar{Q}_k)(O)$ such that

(1)
$$|\bar{Q}_{k,\varepsilon=0}| = |\bar{Q}_k|$$
 and, (2) $|\frac{d}{d\varepsilon}|_{\varepsilon=0} \mathscr{L}_{\bar{Q}_{k+1}}(\bar{Q}_{k,\varepsilon})(O) = \phi_k^*(\bar{Q},\pi)(O)$

Note that the loss function is indexed by \bar{Q}_{k+1} .

We construct a submodel $\bar{Q}_{k,\varepsilon}$ through a given \bar{Q}_k and a loss function $(O,\bar{Q}_k)\mapsto \mathscr{L}_{\bar{Q}_{k+1}}(\bar{Q}_k)(O)$ such that

(1)
$$\bar{Q}_{k,\varepsilon=0} = \bar{Q}_k$$
, and, (2) $\frac{d}{d\varepsilon} \Big|_{\bar{Q}_{k+1}} \mathscr{L}_{\bar{Q}_{k+1}}(\bar{Q}_{k,\varepsilon})(O) = \phi_k^*(\bar{Q},\pi)(O)$

Note that the loss function is indexed by \bar{Q}_{k+1} .

We define:

$$\mathcal{L}_{\bar{Q}_{k+1}}(\bar{Q}_k) = -(\bar{Q}_{k+1}\log(\bar{Q}_k) + (1 - \bar{Q}_{k+1})\log(1 - \bar{Q}_k))$$

and,

$$\bar{Q}_{k,\varepsilon}(O) = \mathrm{expit} \big(\mathrm{logit} \big(\bar{Q}_k \big(\bar{X}_{k-1}, \bar{A}_{k-1} \big) \big) + \varepsilon H_k(\pi)(O) \big)$$

with the "clever covariate": $H_k(\pi)(O) := \prod_{l=0}^{k-1} \frac{1\{A_l = a_l^*\}}{\pi_{A_l}(a_l^* \mid \bar{x}_l, \bar{a}_{l-1}^*)}$

Another valid choice of loss function and submodel would be:

We define:

$$\mathcal{L}_{\bar{Q}_{k+1}}(\bar{Q}_k) = -H_k(\pi)(O) \big(\bar{Q}_{k+1} \log(\bar{Q}_k) + (1 - \bar{Q}_{k+1}) \log(1 - \bar{Q}_k)\big)$$

and,

$$\begin{split} \bar{Q}_{k,\varepsilon}(O) &= \mathrm{expit} \big(\mathrm{logit} \big(\bar{Q}_k \big(\bar{X}_{k-1}, \bar{A}_{k-1} \big) \big) + \varepsilon \big) \\ \text{using the "clever covariate"} \ H_k(\pi)(O) &\coloneqq \prod_{l=0}^{k-1} \frac{1\{A_l = a_l^*\}}{\pi_A(a_l^* \mid \bar{X}_l, \bar{a}_l^*)} \end{split}$$

as a weight.

The targeting step becomes a targeting algorithm that proceeds iteratively along the sequence of iterated conditional expectations, *starting from the last time-point*.

• We start by targeting an estimator $\hat{ar{Q}}_{K+1}$

- lacktriangle We start by targeting an estimator $\hat{ar{Q}}_{K+1}$
- We set $\hat{\bar{Q}}_{K+2} := Y$

- We start by targeting an estimator $\hat{ar{Q}}_{K+1}$
- We set $\hat{\bar{Q}}_{K+2} := Y$
- Regress Y on \bar{X}_K, \bar{A}_K and obtain the predictions $\hat{\bar{Q}}_{K+1}(\bar{X}_k, \bar{A}_k)$

- We start by targeting an estimator $\hat{ar{Q}}_{K+1}$
- We set $\hat{\bar{Q}}_{K+2} := Y$
- Regress Y on \bar{X}_K, \bar{A}_K and obtain the predictions $\hat{\bar{Q}}_{K+1}(\bar{X}_k, \bar{A}_k)$
- Logistic regression of $\hat{\bar{Q}}_{K+2}$ on the clever covariate $H_{K+1}(\hat{\pi})(O)$ and offset $\text{logit}\{\hat{\bar{Q}}_{K+1}(\bar{X}_K,\bar{A}_K)\}$ to obtain estimate $\hat{\varepsilon}_n$ for ε

- lacktriangle We start by targeting an estimator $\hat{ar{Q}}_{K+1}$
- We set $\hat{\bar{Q}}_{K+2} := Y$
- Regress Y on \bar{X}_K, \bar{A}_K and obtain the predictions $\hat{\bar{Q}}_{K+1}(\bar{X}_k, \bar{A}_k)$
- Logistic regression of $\hat{\bar{Q}}_{K+2}$ on the clever covariate $H_{K+1}(\hat{\pi})(O)$ and offset $\text{logit}\{\hat{\bar{Q}}_{K+1}(\bar{X}_K,\bar{A}_K)\}$ to obtain estimate $\hat{\varepsilon}_n$ for ε
- ▶ Update according to the submodel: $\hat{\bar{Q}}_{K+1}^*(\bar{X}_k, a_k^*, \bar{A}_{k-1}) := \exp it \left(\operatorname{logit}\{\hat{\bar{Q}}_{K+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})\} + \hat{\varepsilon}_n H_{K+1}(\hat{\pi})(O) \right)$

The targeting step becomes a targeting algorithm that proceeds iteratively along the sequence of iterated conditional expectations, starting from the last time-point.

- We start by targeting an estimator $\hat{ar{Q}}_{K+1}$
- We set $\hat{\bar{Q}}_{K+2} := Y$
- Regress Y on \bar{X}_K, \bar{A}_K and obtain the predictions $\hat{\bar{Q}}_{K+1}(\bar{X}_k, \bar{A}_k)$
- Logistic regression of $\hat{\bar{Q}}_{K+2}$ on the clever covariate $H_{K+1}(\hat{\pi})(O)$ and offset $\text{logit}\{\hat{\bar{Q}}_{K+1}(\bar{X}_K,\bar{A}_K)\}$ to obtain estimate $\hat{\varepsilon}_n$ for ε
- ▶ Update according to the submodel: $\hat{\bar{Q}}_{K+1}^*(\bar{X}_k, a_k^*, \bar{A}_{k-1}) := \exp it \left(\operatorname{logit}\{\hat{\bar{Q}}_{K+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})\} + \hat{\varepsilon}_n H_{K+1}(\hat{\pi})(O) \right)$

We then solve:

$$\frac{1}{n} \sum_{i=1}^{n} H_{K+1}(\hat{\pi})(O_i) \left\{ \hat{\bar{Q}}_{K+2}^* - \hat{\bar{Q}}_{K+1}^* (\bar{X}_{K,i}, \bar{A}_{K,i}) \right\} = 0$$

The targeting step becomes a targeting algorithm that proceeds iteratively along the sequence of iterated conditional expectations, starting from the last time-point.

- We start by targeting an estimator $\hat{ar{Q}}_{K+1}$
- We set $\hat{\bar{Q}}_{K+2} := Y$
- Regress Y on \bar{X}_K, \bar{A}_K and obtain the predictions $\hat{\bar{Q}}_{K+1}(\bar{X}_k, \bar{A}_k)$
- Logistic regression of $\hat{\bar{Q}}_{K+2}$ on the clever covariate $H_{K+1}(\hat{\pi})(O)$ and offset $\text{logit}\{\hat{\bar{Q}}_{K+1}(\bar{X}_K,\bar{A}_K)\}$ to obtain estimate $\hat{\varepsilon}_n$ for ε
- ▶ Update according to the submodel: $\hat{\bar{Q}}_{K+1}^*(\bar{X}_k, a_k^*, \bar{A}_{k-1}) := \exp it \left(\operatorname{logit}\{\hat{\bar{Q}}_{K+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})\} + \hat{\varepsilon}_n H_{K+1}(\hat{\pi})(O) \right)$

We then solve:

$$\frac{1}{n} \sum_{i=1}^{n} H_{K+1}(\hat{\pi})(O_i) \left\{ \hat{\bar{Q}}_{K+2}^* - \hat{\bar{Q}}_{K+1}^* (\bar{X}_{K,i}, \bar{A}_{K,i}) \right\} = 0$$

The targeting step becomes a targeting algorithm that proceeds iteratively along the sequence of iterated conditional expectations, *starting from the last time-point*.

▶ Proceed iteratively from k + 1 to k

- ▶ Proceed iteratively from k + 1 to k
- From the (k+1)th step, we have targeted estimator $\hat{Q}_{k+1}^*(\bar{X}_k,\bar{A}_k)$

- ▶ Proceed iteratively from k + 1 to k
- From the (k+1)th step, we have targeted estimator $\hat{\bar{Q}}_{k+1}^*(\bar{X}_k,\bar{A}_k)$
- Regress $\hat{\bar{Q}}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})$ on $\bar{X}_{k-1}, \bar{A}_{k-1}$ and denote the prediction by $\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1})$

- ▶ Proceed iteratively from k + 1 to k
- From the (k+1)th step, we have targeted estimator $\hat{Q}_{k+1}^*(\bar{X}_k,\bar{A}_k)$
- Regress $\hat{\bar{Q}}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})$ on $\bar{X}_{k-1}, \bar{A}_{k-1}$ and denote the prediction by $\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1})$
- Logistic regression of $\hat{\bar{Q}}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})$ on the clever covariate $H_k(\hat{\pi})(O)$ and offset $\operatorname{logit}(\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1}))$ to obtain estimate $\hat{\varepsilon}_n$ for ε

- ▶ Proceed iteratively from k + 1 to k
- From the (k+1)th step, we have targeted estimator $\hat{\bar{Q}}_{k+1}^*(\bar{X}_k,\bar{A}_k)$
- Regress $\hat{\bar{Q}}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})$ on $\bar{X}_{k-1}, \bar{A}_{k-1}$ and denote the prediction by $\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1})$
- Logistic regression of $\hat{\bar{Q}}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})$ on the clever covariate $H_k(\hat{\pi})(O)$ and offset $\operatorname{logit}(\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1}))$ to obtain estimate $\hat{\varepsilon}_n$ for ε
- ▶ Update according to the submodel: $\hat{\bar{Q}}_k^* := \expit(\operatorname{logit}(\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1})) + \hat{\varepsilon}_n H_k(\hat{\pi})(O))$

The targeting step becomes a targeting algorithm that proceeds iteratively along the sequence of iterated conditional expectations, starting from the last time-point.

- ▶ Proceed iteratively from k + 1 to k
- From the (k+1)th step, we have targeted estimator $\hat{Q}_{k+1}^*(\bar{X}_k,\bar{A}_k)$
- ▶ Regress $\hat{\bar{Q}}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})$ on $\bar{X}_{k-1}, \bar{A}_{k-1}$ and denote the prediction by $\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1})$
- Logistic regression of $\hat{\bar{Q}}_{k+1}(\bar{X}_k, a_k^*, \bar{A}_{k-1})$ on the clever covariate $H_k(\hat{\pi})(O)$ and offset $\operatorname{logit}(\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1}))$ to obtain estimate $\hat{\varepsilon}_n$ for ε
- ▶ Update according to the submodel: $\hat{\bar{Q}}_k^* := \expit(\operatorname{logit}(\hat{\bar{Q}}_k(\bar{X}_{k-1}, \bar{A}_{k-1})) + \hat{\varepsilon}_n H_k(\hat{\pi})(O))$

We then solve:

$$\frac{1}{n}\sum_{i=1}^{n}H_{k}(\hat{\pi})(O_{i})\left\{\hat{\bar{Q}}_{k+1}^{*}(\bar{X}_{k,i},a_{k}^{*},\bar{A}_{k-1,i})-\hat{\bar{Q}}_{k}^{*}(\bar{X}_{k-1,i},\bar{A}_{k-1,i})\right\}=0$$

The targeting step becomes a targeting algorithm that proceeds iteratively along the sequence of iterated conditional expectations, starting from the last time-point.

This procedure gives a sequence of updated estimators $\hat{\bar{Q}}^* = (\hat{\bar{Q}}_{K+1}^*, \hat{\bar{Q}}_{K}^*, \dots, \hat{\bar{Q}}_{1}^*)$ that solves the efficient influence curve equation:

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K+1} \left(\prod_{l=0}^{k-1} \frac{1\{A_{l,i} = a_{l}^{*}\}}{\hat{\pi}_{A_{l}}(a_{l}^{*} \mid \bar{X}_{l,i}, \bar{a}_{l-1}^{*})} \right) \left\{ \hat{\bar{Q}}_{k+1}^{*}(\bar{X}_{k,i}, a_{k}^{*}, \bar{A}_{k-1,i}) \right. \\ & \left. - \hat{\bar{Q}}_{k}^{*}(\bar{X}_{k-1}, \bar{A}_{k-1}) \right\} + \hat{\bar{Q}}_{1}^{*}(X_{0}, a_{0}^{*}) - \Psi(\hat{\bar{Q}}^{*}) \end{split}$$

where

$$\tilde{\Psi}(\hat{\bar{Q}}^*) = \frac{1}{n} \sum_{i=1}^n \hat{\bar{Q}}_1^*(X_{0,i}, a_0^*).$$

Practical 2: Implementing the targeting step (Task 1)

Read the first page of $day3_practical2.pdf$ and then go through the steps of Task 1.

[If time permits, we will continue with ${\it Task}~2$ after the next part of the lecture.]

```
See also: https:
//cran.r-project.org/web/packages/ltmle/ltmle.pdf
```

```
install.packages(ltmle)
library(ltmle)
```

Some useful arguments to know:

data: data frame

NB the order of columns correspond to the order of variables.

Anodes: names of treatment variables

Lnodes: names of covariates

Cnodes: names of censoring variables

Ynodes: names of outcome variables

NB All variables except baseline covariates must be specified in Anodes, Lnodes, Cnodes or Ynodes.

For the dataset simulated in Lecture 1:

```
X0.1 X0.2 X0.3 A0 X1.1 X1.2 A1 Y
1: 1.2915853 -0.29726781 0 0 1 0 0 1
2: 0.8407983 -0.48032616 0 0 0 1 0 0
3: 1.8633391 -0.50152323 0 1 1 1 0 1
4: -1.6855569 -1.57948481 0 1 0 0 1 1
5: -1.7854517 0.04438914 0 0 1 0 1 0 1
6: 0.2999129 -1.41470763 0 1 0 1 0 0
```

```
Anodes = paste0("A",0:1)
Lnodes = c(paste0("X0.", 1:3), paste0("X1.", 1:2))
Ynodes = "Y"
```

The ordering of columns dictates the temporal ordering of variables:

$$\begin{pmatrix} X_{0,1} \\ X_{0,2} \\ X_{0,3} \end{pmatrix} \rightarrow A_0 \rightarrow \begin{pmatrix} X_{1,1} \\ X_{1,2} \end{pmatrix} \rightarrow A \rightarrow Y$$

Specifying interventions:

- abar: a binary vector of treatment assignments of length = length(Anodes) or a list of two elements to contrast treatment regimes
 - to specify static treatment regimes
- rule: a function that can be applied to each row of the data to return a binary vector of treatment assignments of length = length(Anodes)
 - to specify dynamic treatment regimes

For example:

[output next slide]

```
Treatment Estimate:
   Parameter Estimate: 0.3029
   Estimated Std Err: 0.086738
              p-value: 0.00047919
   95% Conf Interval: (0.1329, 0.4729)
Control Estimate:
   Parameter Estimate: 0.36688
   Estimated Std Err: 0.015419
             p-value: <2e-16
   95% Conf Interval: (0.33666, 0.3971)
Additive Treatment Effect:
   Parameter Estimate: -0.063978
   Estimated Std Err: 0.088095
              p-value: 0.46769
   95% Conf Interval: (-0.23664, 0.10868)
```

Here note that Treatment Estimate and Control Estimate were fitted completely separately, and that they could had been obtained with separate calls:

Here note that Treatment Estimate and Control Estimate were fitted completely separately, and that they could had been obtained with separate calls:

Treatment Estimate:

```
summary(ltmle(...,
          abar=c(1,1))
```

Control Estimate:

```
summary(ltmle(...,
          abar=c(0,0))
```

0.36688

0.015419

Parameter Estimate: 0.3029 Parameter Estimate: Estimated Std Err: 0.086738 Estimated Std Err:

p-value: <2e-16

p-value: 0.00047919 95% Conf Interval: (0.1329, 0.4729) 95% Conf Interval: (0.33666, 0.3971)

For each parameter we get the standard error, the p-value of the null hypothesis that that quantity equals zero, and confidence intervals

ainfluence curve based if the argument variance.method="ic" is specified, otherwise a more robust variance estimator based on TMLE is used.

Effect of a dynamic regime:

Effect of a dynamic regime:

Static regimes can also be specified as a dynamic regime:

- Qform: character vector of regression formulas for the outcome regressions
 - Qform indicates what variables are included in each outcome regression
 - default is NULL which means that all variables from previous time-points are included
 - (does not mean that GLM is used)
- gform: character vector of regression formulas for the propensity scores
 - gform indicates what variables are included in each propensity score regression
 - default is NULL which means that all variables from previous time-points are included
 - (does not mean that GLM is used)

 SL.library: list with names entries Q and g specifying super learner libraries to pass to SuperLearner for the outcome regressions and the propensities scores

You can see available models for the super learner here: https://cran.r-project.org/web/packages/SuperLearner/vignettes/Guide-to-SuperLearner.html (Section 4)

- NB Some algorithms are really very slow
- NB Some algorithms may not converge (gives error messages)
- NB Think about what you know about each particular algorithm and do not just blindly include a ton of heavy algorithms

We can extract the super learner weights applied to each algorithm from the ltmle object (here called fit.ltmle.sl):

```
fit.ltmle.sl$fit$Q[[1]]
```

\$X1.1

	Risk	Coef
SL.glm_All	0.01672344	0.96580665
SL.mean_All	0.01765778	0.03419335
${\tt SL.glm.interaction_All}$	0.01681181	0.00000000
SL.glmnet_All	NA	0.00000000
SL.gam All	0.01673172	0.00000000

\$Y

	Risk	Coef
SL.glm_All	0.2092472	0.97832296
SL.mean_All	0.2346187	0.02167704
${\tt SL.glm.interaction_All}$	0.2116557	0.00000000
SL.glmnet_All	0.2097088	0.00000000
SL.gam_All	0.2093541	0.00000000

We can extract the super learner weights applied to each algorithm from the ltmle object (here called fit.ltmle.sl):

```
fit.ltmle.sl\fit\g[[1]]
```

\$AO

```
Risk Coef
SL.glm_All 0.2508915 0
SL.mean_All 0.2502013 1
SL.glmnet_All 0.2502013 0
SL.gam_All 0.2512009 0
```

\$A1

	Risk	Coe
SL.glm_All	0.03332285	0.00000
SL.mean_All	0.08031019	0.00000
SL.glmnet_All	0.03330272	0.82244
SL.gam All	0.03337456	0.17755

Practical 2: Implementing the targeting step (Task 2–)

In this part of the practical, we consider application of ltmle:

- Static and dynamic interventions
- Super learning

Proceed from Task 2 of day3_practical2.pdf.

Outcome process Y_k can jump from 0 to 1 at any time-point t_k . Censoring process C_k can jump from 0 to 1 at any time-point t_k .

- ▶ Time to event: $\tilde{T} = k' \wedge K + 1$ where $k' = \min(k : Y_k = 1 \text{ or } C_k = 1)$
- Event indicator: $\Delta = 1\{Y_{\tilde{T}} = 1\}$

One way that we can represent the survival data over a grid of K = 7 time-points (long format), e.g., for three different individuals:

```
id k Y C
                     5 1 0 0
  id k Y C
                  2: 5 2 0 0
  2 1 0 0
                 3: 5 3 0 0
                                       id k Y C
2: 2 2 0 0
                 4: 5 4 0 0
                                   1: 7 1 0 0
3: 2300
                 5: 5 5 0 0
                                    2: 7 2 0 1
4: 2410
                 6:
                     5 6 0 0
                  7:
                     5 7 0 0
                  8:
                     5 8 0 0
```

One way that we can represent the survival data over a grid of K = 7 time-points (long format), e.g., for three different individuals:

```
id k Y C
                 2: 5 2 0 0
  id k Y C
   2 1 0 0
                 3: 5300
                                     id k Y C
2:
                4: 5 4 0 0
                                  1: 7 1 0 0
   2 2 0 0
3: 2300
                5:
                    5 5 0 0
                                  2: 7 2 0 1
4: 2410
                 6:
                    5600
                 7:
                    5 7 0 0
                 8:
                    5800
```

Same data may also be presented as (wide format):

One way that we can represent the survival data over a grid of K = 7 time-points (long format), e.g., for three different individuals:

```
id k Y C
                 2:
                     5 2 0 0
  id k Y C
   2 1 0 0
                 3: 5 3 0 0
                                     id k Y C
2:
   2 2 0 0
                4: 5 4 0 0
                                  1: 7 1 0 0
3: 2300
               5:
                     5 5 0 0
                                   2: 7 2 0 1
4: 2410
                 6:
                     5600
                 7:
                     5 7 0 0
                 8:
                     5800
```

Same data may also be presented as (wide format):

(The wide format is needed for ltmle).

Example:

- ▶ Baseline covariate vector: $X_0 = (X_{0,1}, X_{0,2}, X_{0,3})$
- ▶ Baseline treatment decision: $A_0 \in \{0, 1\}$
- ▶ Time to event: $\tilde{T} = k' \wedge K + 1$ where $k' = \min(k : Y_k = 1 \text{ or } C_k = 1)$
- Event indicator: $\Delta = 1\{Y_{\tilde{T}} = 1\}$

Generally:

$$O = (X_0, A_0, Y_1, C_1, X_1, A_1, \dots, Y_K, C_K, X_K, A_K, Y = X_{K+1}).$$

- ▶ Covariates $X = (X_0, X_1, ..., X_K)$ change over time.
- ▶ Treatment decisions $A = (A_0, A_1, ..., A_K)$ are updated over time.
- Censoring status $C = (C_1, C_2, ..., C_K)$ change over time.
- Outcome (death) status $Y = (Y_1, Y_2, ..., Y_K)$ change over time.

[After death/censoring, all variables are deterministically set to their last observed values].

Inferring on the uncensored event time is like imposing a simple static intervention on all right-censoring nodes to impose 'no censoring'.

Target causal parameter:

$$\Psi_{k^*}(P) = \mathbb{E}\big[Y_{k^*}^{A_0 = a_0^*, C_1 = 0, A_1 = a_k^*, \dots, C_K = 0, A_K = a_K^*}\big] - \mathbb{E}\big[Y_{k^*}^{A_0 = 0, C_1 = 0, A_0 = 0, \dots, C_K = 0, A_K = 0}\big]$$

I.e., the effect of the treatment had there been no loss to follow-up.

= the absolute risk by time t_{k^*} if everyone had received treatment $(a_0^*, a_1^*, \dots, a_K^*)$ contrasted to the absolute risk if everyone had not been treated.

The ordering of

$$O = (X_0, A_0, Y_1, C_1, X_1, A_1, \dots, Y_K, C_K, X_K, A_K, Y = X_{K+1}),$$

implies a temporal ordering:

$$X_0 \to A_0 \to \cdots \to Y_k \to C_k \to X_k \to A_k \to \cdots \to Y_{K+1}.$$

- ▶ at each time-point t_k , a patient is only at risk of dying if they did not yet die and they were not yet right-censored $(Y_{k-1} = 0, C_{k-1} = 0)$.
- ▶ at each time-point t_k , a patient is only at risk of being right-censoring if they did not yet die at this time and they were not yet right-censored $(Y_k = 0, C_{k-1} = 0)$.

Factorization of the density p of $P \in \mathcal{M}$:

$$p(o) = \mu_{X_{0}}(x_{0})\pi_{A_{0}}(a \mid x_{0})$$

$$\prod_{k=1}^{K} \left(\mu_{Y_{k}}(y_{k} \mid \bar{y}_{k-1}, \bar{c}_{k-1}, \bar{x}_{k-1}, \bar{a}_{k-1})\pi_{C_{k}}(c_{k} \mid \bar{y}_{k}, \bar{c}_{k-1}, \bar{x}_{k}, \bar{a}_{k-1}) \right.$$

$$\times \mu_{X_{k}}(x_{k} \mid \bar{y}_{k}, \bar{c}_{k}, \bar{x}_{k-1}, \bar{a}_{k-1})\pi_{A_{k}}(a_{k} \mid \bar{y}_{k}, \bar{c}_{k}, \bar{x}_{k}, \bar{a}_{k-1}) \right)$$

$$\times \mu_{Y_{K+1}}(y_{K+1} \mid \bar{y}_{K}, \bar{c}_{K}, \bar{x}_{K}, \bar{a}_{K})$$

Without going into too many details, note for example that:

- $\mu_{Y_k}(1 \mid \bar{0}_{k-1}, \bar{0}_{k-1}, \bar{x}_{k-1}, \bar{a}_{k-1})$ is the risk of outcome (dying) for a subject who did not yet die nor were right-censored plus had covariate and treatment history equal to $\bar{x}_{k-1}, \bar{a}_{k-1}$.
- $\pi_{C_k}(1 | \bar{0}_k, \bar{0}_{k-1}, \bar{x}_{k-1}, \bar{a}_{k-1})$ is the probability of being right-censored for a subject who did not yet die nor were right-censored plus had covariate and treatment history equal to $\bar{x}_{k-1}, \bar{a}_{k-1}$.

Identification of the target parameter as without censoring:

$$\bar{Q}_{K+1}(\bar{x}_{K}, \bar{a}_{K}, \bar{y}_{K}) = \mathbb{E}_{P}[Y_{K+1} \mid \bar{Y}_{K} = \bar{y}_{K}, \bar{C}_{K} = 0, \bar{X}_{K} = \bar{x}_{K}, \bar{A}_{K} = \bar{a}_{K}]$$

$$\bar{Q}_{K}(\bar{x}_{K-1}, \bar{a}_{K-1}, \bar{y}_{K-1}) = \mathbb{E}_{P}[Q_{K+1}(\bar{X}_{K}, a_{K}^{*}, \bar{A}_{K-1}, \bar{Y}_{K-1}) \mid \bar{Y}_{K-1} = \bar{y}_{K-1}, \bar{C}_{K-1} = 0, \bar{X}_{K-1}, \bar{X}_{K-$$

 $\bar{Q}_2(\bar{x}_1, \bar{a}_1, \bar{v}_1) = \mathbb{E}_P[Q_3(\bar{X}_2, a_2^*, A_1, Y_1) \mid \bar{Y}_1 = v_1, \bar{C}_1 = 0, \bar{X}_1 = \bar{x}_1, A_1 = a_1]$

 $\bar{Q}_1(x_0, a_0) = \mathbb{E}_P[Q_2(\bar{X}_1, a_1^*) \mid X_0 = x_0, A_0 = a_0]$

+ note that $\bar{Q}_k(\bar{x}_{k-1}, \bar{a}_{k-1}, \bar{y}_{k-1}) = 1$ if $y_{k'-1} = 1$ for $k' \leq k$.

The efficient influence function is given by:

$$\begin{split} \tilde{\phi}^*(\bar{Q},\pi)(O) \\ &= \sum_{k=1}^{K+1} 1\{Y_k = 0\} \left(\prod_{l=0}^{k-1} \frac{1\{A_l = a_l^*\} 1\{C_l = 0\}}{\pi_{A_l}(0,0,a_l^* \mid \bar{x}_l,\bar{a}_{l-1}^*) \pi_{C_l}(0 \mid 0,0,\bar{x}_l,\bar{a}_{l-1}^*)} \right) \\ &\quad \times \left\{ \bar{Q}_{k+1}(\bar{X}_k,a_k^*,\bar{A}_{k-1},0) - \bar{Q}_k(\bar{X}_{k-1},\bar{A}_{k-1},0) \right\} + \bar{Q}_0(X_0) - \Psi(P). \end{split}$$

- Right-censoring nodes are specified in the Cnodes argument.
- The formatting of Cnodes is a bit peculiar it should be a factor variable with the values 0 and 1 and the labels "uncensored" and "censored".
- Note that we further specify survivalOutcome=TRUE, so that Ynodes are treated as indicators of a terminating event.

- Qform: character vector of regression formulas for the outcome regressions
 - Qform indicates what variables are included in each outcome regression
 - default is NULL which means that all variables from previous time-points are included
 - (does not mean that GLM is used)
- gform: character vector of regression formulas for the propensity scores and the hazards of censoring
 - gform indicates what variables are included in each propensity score regression and the hazards of censoring
 - default is NULL which means that all variables from previous time-points are included
 - (does not mean that GLM is used)

For the example:

```
XO.1 XO.2 XO.3 AO Y1 C1 Y2 C2 Y3 C3 Y4 C4 Y5 C5 Y6 C6 Y7 C7 Y8
  iд
                           1
1:
 1 0.408 -0.196
                              0 1
2:
  2 - 1.220 \quad 0.595
              1 1 0 0 0 0 0
                                 0 0 0 0 0
3: 3 1.866 -1.609
                 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1
4: 4 0.604 0.041
                 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5: 5 -0.532 -1.251
                 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6: 6 1.955 0.133
```

```
for (k in 1:7)
    sim.data[, (paste0("C", k)):=BinaryToCensoring(is.censored=get(
    paste0("C", k)))]
```

```
Treatment Estimate:
```

```
Parameter Estimate: 0.40391

Estimated Std Err: 0.031247

p-value: <2e-16

95% Conf Interval: (0.34267, 0.46515)
```

Control Estimate:

```
Parameter Estimate: 0.49545

Estimated Std Err: 0.029052

p-value: <2e-16

95% Conf Interval: (0.43851, 0.55239)
```

Parameter Estimate: -0.091539

Additive Treatment Effect:

```
Estimated Std Err: 0.041653
p-value: 0.027973
95% Conf Interval: (-0.17318, -0.0099008)
```

Relative Risk:

Parameter Estimate: 0.81524
Est Std Err log(RR): 0.095263
p-value: 0.032009

```
ltmle.fit$fit$g[[1]]
```

\$AO

Risk Coef SL.glm_All 0.2502361 0.4568067 SL.mean_All 0.2501919 0.5431933

\$C1

Risk Coef SL.glm_All 0.1533290 0.98494501 SL.mean_All 0.1667804 0.01505499

\$C2

Risk Coef SL.glm_All 0.1365783 0.956276 SL.mean_All 0.1428211 0.043724

\$C3

Risk Coef SL.glm_All 0.1373765 0.92097765 SL.mean_All 0.1440681 0.07902235