6.3 为什么

2024年7月1日

1.0 < x < 1, 那么序列 $(x^n)_{n=1}^{\infty}$ 是单调递减的。 需要证明 $x^n \ge x^{n+1}$:

$$x^n - x^{n+1}$$
$$= x^n(1-x) < 0$$

所以 $x^n > x^{n+1}$

2. 定义 5.2.6 中定义的等价序列,如果有极限,则极限是相同的。

设序列 $(a_n)_{n=0}^{\infty}$ 和序列 $(b_n)_{n=0}^{\infty}$ 是等价序列,并且 $(a_n)_{n=0}^{\infty}$ 收敛于 x,现在需要证明: $(b_n)_{n=0}^{\infty}$ 也收敛与 x。

任意实数 $\epsilon>0$, $\epsilon/2>0$,序列 $(a_n)_{n=0}^\infty$ 最终 $\epsilon/2-$ 接近于 x,所以存在 $N\geq 0$ 对任意 $n\geq N$ 有

$$|a_n - x| \le \epsilon/2$$

 $d(a_n, x) \le \epsilon/2$

又因为序列 $(a_n)_{n=0}^{\infty}$ 和序列 $(b_n)_{n=0}^{\infty}$ 是等价序列,所以是最终 $\epsilon/2-$ 接近的,即存在 $N'\geq n$ 使得,

$$|b_n - a_n| \le \epsilon/2$$
$$d(b_n, a_n) \le \epsilon/2$$

由命题 4.3.3 (g)【准确的说是实数版本,并把 y 看做 a_n 】所以,

$$d(b_n - x) \le d(a_n, x) + d(b_n, a_n)$$

 $\le \epsilon$

所以序列 $(b_n)_{n=0}^{\infty}$ 最终 ϵ — 接近于 x。由 ϵ 的任意性可知,序列 $(b_n)_{n=0}^{\infty}$ 收敛于 x。

6.3.4

反证法。假设序列 $(x^n)_{n=1}^{\infty}$ 收敛于 L,由于 x>1,所以 0<1/x<1,由命题 6.3.10 可知,序列 $[(1/x)^n]_{n=1}^{\infty}$ 收敛于 0,由定理 6.1.19 中的极限定律可知,序列 $[(1/x)^n\times x^n]_{n=1}^{\infty}$ 的极限为:

$$\lim_{n \to \infty} (1/x)^n \times x^n = \lim_{n \to \infty} (1/x)^n \times \lim_{n \to \infty} x^n$$
$$= L \times 0$$
$$= 0$$

又因 $(1/x)^n \times x^n = 1$ 可知,

$$\lim_{n \to \infty} (1/x)^n \times x^n = \lim_{n \to \infty} 1$$

$$= 1$$

由矛盾可知, 假设不成立。