UNCLASSIFIED

AD NUMBER AD822827 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Oct 1967. Other requests shall be referred to Aero Propulsion Laboratory, Attn: APFL, Wright-Patterson AFB, OH 45433. **AUTHORITY** AFAPL 1tr, 12 Apr 1972

VAPORIZING AND ENDOTHERMIC FUELS FOR ADVANCED ENGINE APPLICATION

Part I. Studies of Thermal and Catalytic Reactions, Thermal Stabilities, and Combustion Properties of Hydrocarbon Fuels

A.C. Nixon, G.H. Ackerman, L.E. Faith, R.D. Hawthorn, H.T. Henderson, A.W. Ritchie, L.B. Ryland

> Shell Development Company, A Division of Shell Oil Company

TECHNICAL REPORT AFAPL-TR-67-114, Part I

October 1967

STATEVENT #2 UNCLASSIFIED

This document is subject to special export controls and with transmittal to foreign povernments or foreign nationals and early with prior approval of figure is the first of the first

alli: APFL

のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「」」というない。「「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、」」というない。「「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、」」というない。「「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、」」というない。「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、「一般のでは、」」というない。「一般のでは、「一般のでは、「一般のでは、」」というない。「一般のでは、「一般のでは、「一般のでは、」」というない。「一般のでは、「一般のでは、」」というない。「一般のでは、「一般のでは、「一般のでは、」」というない。「一般のでは、「一般のでは、」」」というない。「一般のでは、「一般のでは、」」というない。「一般のでは、「一般のでは、」」というない。「一般のでは、「一般のでは、」」」というない。「一般のでは、「一般のでは、」」」というない。「一般のでは、「一般のでは、」」」というない。「一般のでは、」」」というない。「一般のでは、「一般のでは、」」」というない。「一般のでは、「」」」というない。「」」」というない。「一般のでは、「」」」というない。「」」」というない。「」」」というない。「」」」というない。「」」」
「「一般のでは、」」」」
「「一般のでは、」」」」
「「一般のでは、」」」」
「「一般のでは、」」」」
「「一般のでは、」」」
「「一般のでは、」」」」
「「一般のでは、」」」
「「一般のでは、」」
「「一般のでは、」」
「「一般のでは、」」」
「「一般のでは、」」
「「一般のでは、」」
「「一般のでは、」」」
「「一般のでは、」」」
「「一般のでは、」」
「「一般のでは、」」」
「「一般のでは、」」
「「一般ので

Aero Propulsion Laboratory Air Force Systems Command Wright-Patterson Air Force Base, Ohio

BES

AVAILABLE

COPY

NOTICES

When Government drawings, specifications, or other data are used for my purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be recorded by implication or otherwise as in any manner. The swing the holder or any other person or corporation, or corvoying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This report was prepared by Shell Development Company, Emeryville, California, under U.S. Air Force Contract No. AF 33(615)-3789. The contract was initiated under Project No. 3048, Task No. 304801. The work was administered under the direction of the AF Propulsion Laboratory, Mr. H. L. Lander, Project Engineer, AFPL.

This report covers work for June 1966 to June 1967.

A. C. Mixon was principal investigator and project supervisor for Shell Development Company. The professional staff participating in the investigation was comprised of: G. H. Ackerman, L. E. Faith, R. D. Hawthorn, H. T. Henderson, A. W. Ritchie, and L. B. Ryland.

This report was submitted by the authors 1 August, 1967.

This report has been reviewed and is approved.

ARTHUR V. CHURCHILL, Chief

Arthur V. Churchill

Fuels, Lubrication and Hazards Branch

Support Technology Division

ABSTRACT

Investigation of the feasibility of using endothermic reactions to augment the latent and sensible heat of fuels for cooling engines operating under a high mach number regime is continuing. Studies in the literature continue to maintain the desirability and feasibility of producing vehicles with hypersonic flight speeds and suggest some areas of advantage of hydrocarbons.

Laboratory studies on the dehydrogenation over Pt/Al_2O3 of a number of mixtures of naphth mes have been made including methyl-Decalin and dicyclohexyl as well as the pure components, with additional studies on Decalin.

About 220 dehydrogenation catalysts have been prepared using a variety of metals and supports. Most of these have been tested in our microscale reactor and a number of these have shown activity somewhat superior to our standard Pt/Al₂O₃ catalyst in MCH dehydrogenation. The results have been confirmed in our bench scale equipment. Attempts are being made to develop vapor (or dispersed) phase catalysts for the dehydrogenation of naphthenes; a number of compounds have shown some indications of activity when tested with MCH.

Propane and an advanced jet fuel were tested as possible heat sink fuels in our fuel system simulation test reactor under thermal cracking conditions. A maximum heat sink of 1300 Btu/lb was achieved at space velocities to 400 and pressures to 900 psi with maximum conversions of about 60%. The effect of increasing tube size from 3/8 to 3/4 inch has been checked using the MCH-Pt/Al₂O₃ system. Conversions of up to 95% at 80 LHSV were obtained with anticipated heat sinks.

Our packed bed reactor program included herein, has been mountained and simplified resulting in a considerable saving in both human and computer time. With this program we have been able to extraoptate analytically to a variety of configurations extending far beyond fiel flow and heat fluxes presently possible in the FSSTR. A short high heat flux section has been designed for this unit to allow experimental verification of calculations. Operation at 900 psi pressure, IHSV of 1600, conversion of 65% at a heat flux of 3.6 x 10⁵ Btu/hr/sq ft was achieved with MCH over R-8 catalyst.

The thermal stability of MCH, Decalin and a naphthenic jet fuel were all critically, but uniquely, dependent on O2 concentration in the region below about 10 ppm. A new apparatus for assessing thermal stability of endothermic type fuels was designed, constructed and brought into successful initial operation.

The ignition delay behavior of both ethane and ethylene was found to be considerably different from other hydrocarbons in the shock tube, the ignition delay reaching a minimum in the region of E/R=0.5 with two different temperature coefficients which are dependent upon total reactives concentration. Additional data have also been obtained on normal dodecane, Decalin, methyl-Decalin, methane, tetramethylbutane and neopentane. The nenefit of utilizing infrared detection for measuring ignition delays was

A APL-TR-67-114 Fart 1

established. The essential identity of combustion of propage and toluene when premixed hot with hot air was determined in a small subsonic burner.

Included in this report are: the physical properties of the MCH system to 1600°F and 3000 pai; a bibliography of paper; and reports of interest in this field; a computer program for simulating reactions in a packed bed; a summary table on the evaluation of candidate fuels.

TABLE OF CONTENTS

DAM FAM	E
Introduction	
Summary	}
Considerations Affecting Applications)
Laboratory Renotion Studies	7
Monocyclic Naphthenes	ł
Dehydrogenation of 1,2,4,5-Tetramethylcyclohexage	3
Catalyst Stability Tests With Methylcyclohexane 20)
Bench-Scale Catalyst Evaluation Tests With Methylcyclohexane 27	7
Thermal Reaction of Methylcycloherane Over Alumina 27	7
Thermal Reaction of Ethylcyclohexane)
Dicyclic Naphthenes	3
Dicyclohexyl	3
Reaction Rates for Dehydrogenatics of Dicyclohexyl and Fhenylcyclohexane	3
Dehydrogenation Over UOP-R8 Catalyst 41	L
Decalin	>
Reaction Rates and Equilibrium Constants for Dehydrogenation of Decalin and Tetralin	5
Relative Stabilities of Laboratory Platinum on Alumina and UOP-R8 Catalysts	ŧ
Dehydrogenation Over 14 Platinum on UOP-R8 Alumina: No Halogen	5
Extended Dehydrogenation Test With Laboratory Catalyst 62	2
Dehydrogenation of F-111 Decalin Over UOP-R8 Catalyst 62	2
Dehydrogenation and Isomerization of Decalin Isomers 65	5
Summary: Dehydrogenation of Decalin	5
l-Methyldecalin	ξ.

v

AFAPL-TR-67-114 Part I

TABLE OF CONTENTS (Contd)

	PAGE
Effect of Pore Size on Catalyst Stabilities for the Dehydrogenation of Naphthenes	77
Dehydrogenation of Naphthene Mixture	78
Dicyclohexyl-Methylcyclohexane	78
Effect of Temperature	80
Effect of Space Velocity and Conversion	80
Effect of Pressure	80
Thermal Reaction	88
Decalin-Methylcyclohexane	88
Dicyclohexyl-Decalin	93
Thermal Reaction of Dicyclohexyl-Decalin Mixture	109
Dicyclohexyl-Methyldecalin	113
Propane Cracking	113
Thermal Reaction	116
Catalytic Reaction	118
Conventional Catalysts: Preparation and Testing	121
Catalyst Preparation	121
Exploratory Preparations	121
Larger Scale Preparations	121
Catalyst Evaluation	122
Supported Platinum	122
Various Supported Metals	128
Catalysts on Shaped Supports	128
Nonconventional Catalyst Systems: Homogeneous Catalysis	130
Thermal Stability	13h

TABLE OF CONTENTS (Contd)

		PAUL
	Effect of Oxygen Concentration on the Thermal Stability of Naphthenes	:3 ⁴
	Thermal Stability of Reaction Products	146
	Preliminary Tests	3.4 <i>E</i> .
	Catalyst and Fuel System Test Rig (CATSTR) Design	147
	CAFSTR Testing	152
	Calorimetric Tuberator	154
Pull	System Simulation Test Rig	155
	Thermal Cracking of Fuel F-71	158
	Catalytic Dehydrogenation of MCH in 3/4" Reactor	166
	Thermal Cracking of Propane	175
	Catalytic Dehydrogenation of Propane	186
	High Heat Flux Section	186
	Dehydrogenation of MCH Over UOP-R8 in the High Heat Flux Reactor Section	190
Deve:	lopment of Analytical Models of Catalytic Reactors	193
	Simulations of FSSTN Experiments	194
	Heat Transfer to a Packed Bed Reactor	196
	Influence of Thermal Conductivity of Catalyst Particles	200
	Exploratory Calculations	203
	One Cide Heating of Reactor Tubes	205
	High-Flux Test Section for FSSTR	207
Shoel	k Tube Studies of Ignition Delays of Hydrocarbons	207
	Ethane and Ethylene	209
	n Dodenane	213
	or The Fally Unyldocalin	213

AFAPL-TR-67-114 Part I

TABLE OF CONTENTS (Contd)

	PAGE
Methane	213
Examination of Experimental Method and Equipment	218
Infrared Equipment	218
Limitations of the Experimental Method	220
Detection of Ignition by Infrared Emission	221
Determination of Concentration Histories of Molecular Species	227
Ignition Polays of Paraffins With Unusual Structures	228
Small-Scale Subsonic Combustion Tests	234
Physical Freperties Program	238
Methylcyclohexane-Toluene-Hydrogen System	239
Description of Methods Used for Extending or Estimating Pure	
Component Data	240
Present Status and Future Projections	242
Appendix	247
References	344
Bibliography	348
Subject Index for Bibliography	38 1

ILLUSTRATIONS

		PAGE
FIGURE		+ * * * * * * * * * * * * * * * * * * *
1.	Characteristics of Supersonic Aircraft	11
2.	Environments of Supersonic Aircraft	12
3.	Typical Reaction Profile for Hypersonic Transports	13
4.	Hypersonic Interceptor Test Bed	15
5•	Thermal Reaction of 1,2,4,5-Tetramethylcyclohexane. Temperature Coefficient	22
6.	Dehydrogenation of Methylcyclohexane, Catalyst Life Tests	26
7.	Thermal Reaction of Methylcyclohexane Over Alumina	33
8.	Thermal Reaction of Ethylcyclohexane, Temperature Coefficient .	3 6
9.	Relative Rates and Energies of Activation for Thermal Reactions of Naphthenes	37
10.	Temperature Coefficient for the Dehydrogenation PCH -> DP + 3H2	40
11.	Equilibrium Constants for DHN = THN + 3H2 = N + 5H2	46
12.	Equilibrium Composition of DHN-THN-N System	47
13.	Total Conversion of Decalin as a Function of cis-Decalin in Feed	50
14.	Dehydrogenation of Various Decalins. Temperature Coefficients.	51
15.	Dehydrogenation of Various Decalins. Effect of Temperature on Conversion	52
16.	Dehydrogenation of Tetralin to Naphthalene. Temperature Coefficient	5 5
17.	Dehydrogenation of Decalin Over UOP-R8 and Laboratory Pt/Al ₂ O ₃ Catalysts	60
18.	Isomerization of Decalin: cis-trans Equilibrium	-66
19.	Dehydrogenation of cis and trans Decalin. Temperature Coefficient	70
20.	Dehydrogenation of DCH-MCH Mixture. Effect of Temperature on Conversion of DCH	£2.
11.	Debyd a remation of DCH-MCH Mixture. Effect of Conversion on Scheet Livity for DP	64

ETGINT		PAGE
FIGURE		
22.	Dehydrogenation of DCH-MCH Mixture at 842°F. Effect of Pressure on DCH Conversion and Selectivity for Diphenyl	86
23.	Dehydrogenation of DCH-MCH Mixture at 1022°F. Effect of Pressure of DCH Conversion and Selectivity for Dipmenyl	87
24.	Thermal Reaction of DCH-MCH Mixture. Temperature Coefficien	90
25.	Dehydrogenation of Decalin and Methylcyclohexane at 1022°F. Effect of MCH on Component Reaction Rates	95
26.	Dehvdrogenation of DCH-DHN Mixture. liffect of Temperature on Conversion	100
27.	Dehydrogenation of DCH-DHN Mixture. Temperature Coefficient	102
28.	Dehydrogenation of DCH-DHN Mixture. Effect of DCH Conversion on Selectivity for DP	
29.	Dehydrogenation of DCH-DHN Mixture. Effect of Pressure on Selectivity for Naphthalene	108
30 .	Thermal Reaction of DCH-Decalir Mixture. Temperature Coefficient	111
31.	Dehydrogenation of 1-MDHN-DCH Mixture. Temperature Coefficient	115
32.	Influence of Surface Area on MCH Dehydrogenation Activity	124
33.	Influence of Platinum Content on MCH Dehydrogenation Activity .	125
34.	Temperature Coefficient for MCH Dehydrogenation With Improved Pt/Al ₂ O ₃ Catalyst	127
35.	Low Pressure Drop Catalyst Supports	#9
3 6.	Typical Vaporization and Expansion Curve	132
37•	Effect of Dissolved Og on MCH Thermal Stability	137
3 8.	Affect of O_2 Partial Pressure on SD Coker Ratings of Decalin	138
39.	Effect of Temperature on Thermal Stability of Decalin	140
40.	Effect of Temperature on Thermal Stability of MCH	141
41.	Effect of Temperature on Thermal Stability of Decalin	142

FIGURE		PAGE
12.	Effect of Temperature on Thermal Stability of Naphthenic Jet Fuel	143
43.	Effect of Dissolved O_2 on Thermal Stability of Naphthenes	144
44.	Catalyst and Fuel System Test Rig (Schematic)	150
45.	Catalyst and Fuel System Test Rig (Photo)	151
46.	Calorimetric Tuberator	156
47.	Flow Sketch of Fuel System Simulation Test Rig	157
48.	FSSTR-Thermal Cracking of Fuel F-71: Total Heat Sink	163
49.	FSSTR-Thermal Cracking of Fuel F-71: Effect of Temperature on Reaction Products	164
50.	FSSTR-5/4" OD Reactor Tube	167
51.	FSSTR-Dehydrogenation of MCH Over UCP-R8 in a 3/4" Reactor: Temperature Profile for Run 10018-9-14:00	171
52.	FSSTR-Heat Transfer to MCH in Empty 3/8" Tube: Dittus-Boelter Correlation	173
53•	FSSTR-Thermal Cracking of Propane: Effect of Reaction Conditions	180
54.	FSSTR-Thermal Cracking of Propane: Total Heat Sink	181
55•	FSSTR-Thermal Cracking of Propane: Temperature Profile for Run 10018-27-15:50	182
56.	FOSTR-Thermal Cracking of Propane: Section III Temperature Profiles for Series 10018-27	183
57•	FSSTR-Heat Transfer to Propane in Empty 3/8" Tube: Dittus- Boelter Correlation	184
58.	FSSTR-Heat Transfer to Propane: Physical Properties of Propane	185
59•	FSSTR-Dehydrogenation of Propane Over Chromia on Alumina Catalyst: Catalyst Deactivation	168
60.	FSSTR-High Heat Flux Section	189
61.	FSSTR-High Heat Flux Study: Catalyst Bed Exit Fluid Temperature	192

		PAGE
FIGURE		
62.	Calculated Temperature and Conversion Profiles for Conditions of Run 10018 9-1300	197
63.	Calculated Temperature and Conversion Profiles for Conditions of Run 10018-9-1400	19ઉ
64.	Calculated Temperature and Conversion Profiles for Conditions of Run 8915-198-1420	199
65.	Comparison of Experimental Heat Transfer Coefficients at Tube Wall With Correlation	202
66,	Calculated Axial Temperature Profiles for Dehydrogenation of Methyl Cyclohexane at High Heat Flux	206
67.	Comparison of Ethylene Ignition Data With White's Correlation .	21.0
68.	Ignition Delays for Ethylene	212
69.	Correlation of Ignition Delays for Very Lean and Dilute Ethane Mixtures	214
70.	Correlation of Ignition Delays for Lean Ethane	215
71.	Correlation of Ignition Delays for Near Stoichiometric Mixtures With Ethane	216
72.	Comparison of Ignition Delays for MCH and Decalin	217
73.	Ignition Delays for Methane-Oxygen-Argon	219
74.	Comparison of Ignition Delays Detected by Two Methods for a Propane-Oxygen-Argon Mixture	222
75•	Ignition Delays for Propane-Oxygen-Argon With Temperature Corrected for Shock Wave Attenuation	223
76.	Oscilloscope Traces Showing IR Emission From $\rm CO_2$ and $\rm CO$ Calibration Mixtures, and Comparison of $\rm CO_2$ and Visible Light Emission at Ignition	2 25
77.	Oscilloscope Traces Showing ${\rm CO_2}$ and ${\rm CO}$ IR Emission for Ignition of Two Propane Mixtures	226
78.	Oscilloscope Traces at High Sweep Rates for Observation of IR Emission at 2350 cm ⁻¹	229
79.	Ignition Delay Times for n-Octane	231

FIGURE		PAGE
		<u> </u>
80.	Ignition Delay Times for 2,2,3,3-Tetramethylbutane	232
81.	Ignition Delay Times for Neopentane	233
82.	Rate Constants for Post-Ignition Appearance of CO ₂ for n-Octane Mixtures	235
83.	Assembly of Redesigned Combustion Chamber	236
84a.	Contact Time for MOH Dehydrogenation: 100% Conversion	249
b •	Contact Transfor MCH Dehydrogenation: 75% Conversion	250
c.	Contact Time for MCH Dehydrogenation: 50% Conversion	251.
d.	Contact Time for MCH Dehydrogenation: 25% Conversion	252
e.	Contact Time for MCH Dehydrogenation: 0% Conversion	253
85.	Inner Furnace Liner for Pulse Reactor System	255
86.	Schematic Diagram of Pulse Reactor System	256
87.	Micro-Catalyst Test Reactor (Schematic)	257
88.	Micro-Catalyst Test Reactor (General View)	258
89.	Micro-Catalyst Test Reactor (Detail)	259
90.	Details of Heat Exchanger	26 8
91.	Annular Heat Exchanger From CAFSTR	269
92.	Diagram of Bench-Scale Reactor System	338
93.	Dual Catalytic Reactor	339
Oμ.	Dual Catalytic Reactor Showing Product Sampling System	340

TABLES

TABLE]	PAGE
1.	Dehydrogenation of 1,2,4,5-Tetramethylcyclohexane	,	19
2.	Thermal Reaction of 1,2,4,5-Tetramethyleyclohexane		sı
3.	Dehydrogenation of MCH Over NOP-R8 Catalysts: Life Test		23
4.	Dehydrogenation of MCH Over 1% Pt on Al ₂ O ₃ Catalyst: Life Test .		24
5•	Dehydrogenation of MCH Plus IONOL Over UOP-R8 Catalyst: Life Test		25
6.	Evaluation of Various Catalysts: Dehydrogenation of MCH		28
7.	Thermal Reaction of Methylcyclohexane		31
8.	Thermal Reaction of Methylcyclohexane: Gas Phase Production Distribution		3 2
9.	Thermal Reaction of Ethylcyclohexane	,	34
10.	Thermal Reaction of Ethylcyclohexane: Gas Phase Product Distribution	,	3 5
11.	Comparison of Reaction Rates for DCH \longrightarrow PCH and PCH \longrightarrow DP		3 9
12.	Dehydrogenation of Dicyclohexyl Over UOP-R8 Catalyst: Effect of Temperature		42
13.	Dehydrogenation of Dicyclohexyl Over UOP-R8 Catalyst: Effect of Pressure	•	43
14.	Dehydrogenation of Dicyclohexyl Over UOP-R8 Catalyst: Effect of Conversion on Selectivity for Diphenyl		կև
15.	Dehydrogenation of Decalin: Various Feedstocks	,	48
16.	Reaction Rates and Equilibrium Constants for the Decalin/ Tetralin/Naphthalene/H ₂ System	,	53
17.	Dehydrogenation of Decalin Over UOP-R8 Catalyst - Effect of Temperature and Conversion	,	57
18.	D hydrogenation of Decalin Over UOP-R8 Catalyst - Effect of Pressure		58
19.	Dehydrogenation of Decalin Over Laboratory Platinum Catalyst		59
20.	Dehydrogenation of Decalin: Test of Platinum on UOP-R8 Base With no Halogen		61
21.	Dehydrogenation of Decalin: Extended Catalyst Test		63

TABLE		PAGE
22.	Dehydrogenation of F-111 Decalin Over UOP-R8 Catalyst	64
23.	Deh drogenation and Isomerization of cis-Decalin	67
24.	Dehydrogenation and Isomerization of trans-Decalin	68
25.	Rate Constants for Dehydrogenation and Isomerization of Decalin .	72
26.	Dehydrogenation of 1-Methyldecalin at Various Pressures	75
27.	Pore Distribution of Two Platinum on Alumina Catalysts	79
28.	Dehydrogenation of DCH-MCH Mixture: Effect of Temperature	81
29.	Dehydrogenation of DCH-MCH Mixture: Effect of DCH Conversion on Selectivity for Diphenyl	65
30.	Dehydrogenation of DCH-MCH Mixture: Effect of Pressure	85
31.	Thermal Reaction of DCH-MCH Mixture	89
32.	Thermal Reaction of DCH-MCH Mixture: Cracked Liquid Product Distribution	91
33•	Thermal Reaction of DCH-MCH Mixture: Gas Phase Product Distribution	92
34.	Dehydrogenation of Decalin-Methylcyclohexane Mixtures	94
35.	Dehydrogenation of DCH-Shell DHN Mixture: Effect of Temperature	96
3 6.	Dehydrogenation of DCH-DHN Mixture: Effect of Temperature	9 8
37•	Dehydrogenation of DCH-DHN Mixture: Effect of Conversion on Selectivities for Diphenyl and for Naphthalene	103
3 8.	Dehydrogenation of DCH-DHN Mixture: Effect of Pressure	106
39•	Thermal Reaction of Dicyclohecyl-Decalin Mixture	110
40.	Thermal Reaction of Dicyclohexyl-Decalin Mixture: Gas Phase Product Distribution	112
41.	Dehydrogenation of 1-Methyldecalin-Dicyclohexyl Mixture	114
42.	Thermal Reaction of Propane	117
43.	Propage Cracking Over Houdry M46 Catalyst	119
44.	Catalytic Cracking of Propane Cver Various Catalysts	120

TABLE		PAGE
45.	MCH Dehydrogenation With Platinum on Type 1 Supports of Varying Surface Area	123
46.	MCH Dehydrogenation Rates Over Reference and Improved Pt/Al ₂ O ₂ Catalysts	126
47.	Dehydrogenation of MCH Over Shaped Support	130
48.	Homogeneous Catalysis: Dehydrogenation of MCH With Organometallic Compounds	133
49.	Thermal Stability Test	135
50.	Description of F-71 Jet Fuel	148
51.	SD Coker Ratings of F-71 Jet Fuel Thermal Reaction Products From the FSSTR	149
52.	FSSTR-Thermal Cracking of Fuel F-71: Summary of Operating Conditions	159
53.	FSSTR-Thermal Cracking of Fuel F-71: Data Summary	160
54.	FSSTR-Thermal Cracking of Fuel F-71: Product Recovery and Analyses	162
55•	Description of Jet Fuels	1 65
56.	FSSTR-Dehydrogenation of MCH Over UOF-R8 in a 3/4-Inch Reactor: Summary of Operating Conditions	169
57.	FSSTR-Dehydrogenation of MCH Over UOP-R8 in 3/4-Inch Reactor:	170
58.	FSSTR - Dehydrogenation of MCH Over UOP-R8 in a 3/4-Inch Reactor: History of Catalyst Charge	172
59•	FSSTR-Heat Transfer Correlation: MCH in Empty 3/8-Inch Tube	174
60.	FSSTR-Thermal Cracking of Propane: Range of Operating Conditions	176
61.	FSSTR-Thermal Cracking of Propane: Data Summary	177
62.	FSSTR-Thermal Cracking of Propane: Product Analyses	179
63.	FSSTR-Dehydrogenation of Propane Over Chromia on Alumina Catalyst: Data Summary	187
<u>6</u> և	FSSTR-High Heat Flux Study: Data Summary for Series 10018-50	191

TABLE		PAGE
65.	Comparison of Computer Calculations With Experimental Results for Dukydrogenation of MCH in 3/4-Inch Tube	1/+5
66.	Components of Measured Temperature Differences in Reaction Section	201
67.	Predicted Effect of Mass Velocity and Heat Flux in Constant Flux Reactors	204
68.	Comparison of Performances Calculated for Several High Output Conditions for MCH Dehydrogenation	204
69.	Effect of Bed Thickness on Performance of Flat-Plate Catalytic Reactor for Dehydrogenation of MCH	205
70.	Prodicted Performance of High Heat Flux Test Section for Two Sets of Conditions	208
71.	Stability Limits in Modified Small-Scale Combustor	237
72.	Radiation Measurements for Small-Scale Combustor: IR 9669-28	238
73.	MCH Dehydrogenation With Various Catalysts in MICTR (LHSV = 100).	261
74.	MCH Dehydrogenation With Various Catalysts in MICTR (LHSV = 200).	266
75•	Shell Development Packed Bed Reactor Program	280
76.	Ignition Delays for Ethylene-Oxygen-Argon Mixtures	297
77•	Ignition Delays for Ethane-Oxygen-Argon Mixtures	299
78.	Ignition Delays for Decalin-Oxygen-Argon Mixtures	302
79•	Ignition Delays for $\alpha ext{-Methyl Decalin-Oxygen-Argon Mixtures}$	303
80.	Ignition Delays for n-Dodecane-Oxygen-Argon Mixtures	304
81.	Ignition Delays for Propane-Oxygen-Argon Mixtures	305
82.	Ignition Delays for Methane-Oxygen-Argon Mixtures	306
83.	Ignition Delays for n-Dodecane-Oxygen-Argon Mixtures	307
84.	Ignition Delays for Toluene/3H2-Oxygen-Mixtures	308
85.	Ignition Delays for MCH-Oxygen-Argon Mixtures	309
86.	Ignition Delays for Propane-Oxygen-Argon Mixtures	311

TABLE		PAGE
87.	Ignition Delays for 2,2,3,3-Tetramethyl Butane-Oxygen-Argon Mixtures	31 3
88.	Ignition Delays for Neopentane-Oxygen-Argon Mixtures	514
89.	Ignition Delays for 2,2,3-Trimethyl Butane-Oxygen-Argon Mixtures	3 15
90.	Ignition Delays for n-Octane-Oxyren-Argon Mixtures	31 6
91.	Property Values for Methylcyclohexane (Gas and Liquid)	317
92.	Property Values for Toluene (Gas and Liquid)	3 16
93.	Property Values for Hydrogen (Gas)	31 9
94.	Physical Properties of Methylcyclohexane-Toluene-Hydrogen Mixtures	321
95.	Summary Table: Evaluation of Vaporizing and Endothermic Fuels .	336
96.	Thermodynamic Heats of Reaction	342
97•	Latent Plus Sensible Heats of Various Naphthenes	343

Introduction

The cojective of this study is to provide the information necessary for specifying nonhydrogen fuels which will be capable of providing cooling and propulsion for engines powering aircraft in the speed range above Mach 3. The fuel will provide cooling by giving up its latent and sensible heat and by undergoing endothermic reactions before it is fed into the engine in vapor form. This could be in the temperature range up to about 1400°F. In order for the fuel to function in this manner, it must have excellent thermal stability up to the temperature at which reaction occurs and also in the post-reaction portion of the heat exchanger, to avoid fouling problems. Work under early Air Force contracts served to establish many of the parameters which obtain in delineating the boundaries of the problem. Work was done under our previous contract! -3) to define more closely the advantages and limitations for the application of hydrocarbon fuels. In that contract the goal was to develop specifications for a fuel or fuels which could be utilized for advanced engine application and to design methods and equipment for testing the properties of such a fuel.

In order to allow precise definition of the fuel, we studied various problems that could arise in several parts of the fuel-combustion system. These included thermal stability publems which could originate in the fuel tanks or in the various metering devices and fuel lines; deposition or coking problems which could affect the efficiency of heat exchanger-reactor devices and catalysts, or plug fuel nozzles; and combustion parameters which could affect the design or operation of the combustion chambers. In order to provide a sound basis for the selection or rejection of fuels, we endeavored to relate the various phenomena observed to the physical and chemical properties of the fuels studied.

The problem areas and approaches used were broken down in the following manner: we improved a previously designed coker apparatus for use in studying the thermal stability of possible fuels and components at temperatures up to 900°F. We studied possible thermal and catalytic reactions in laboratory scale equipment in order to test the reactivity of fuels and the suitability of selected catalytis. The heat sinks available in the hydrocarbons tested were calculated from thermodynamic properties of the reamants and products. A fuel system similation test rig (FSSTR) was constructed and used to provide data on hydrocarbon systems. A computer program for simulating the behavior of a packed bed reactor was modified to accept and correlate the results obtained in the fuels system similator. The subsonic combustion properties of selected fuels and reaction products were observed in a small scale combustor while the ignition-delay behavior of the same fuels and products was studied in a single-diaphragm shock tube to give an indication of supersonic combustion properties.

Studies done under the previous contract indicated the general feasibility of the endothermic reaction approach, particularly the utilization of catalytic dehydrogenation reactions. Our best results were

See References.

achieved with the methylcycloberane-pratings/aluadua combination. With this combination, the possibility of mehicving the original goal of 2000 bin per pound of fuel total heat sink seems possible. The importance of restricting the oxygen content to very low levels to reduce heat exchanger problems was also indicated. Operations with the fuel system simulation test unit (FSSTR) have provided valuable data for heat exchanger design calculations and demonstrated the possibility of high space velocity and long catalyst 110 with the MM system. The limitation of thermal cracking of hydrocarbons to a relatively low heat sink of about 300 btu per pound due to hydrogen transfer reaction was demonstrated. The mathematical model for the cylindrical axial flow reactor was found to be macquate to the extent of its development. The combustion studies suggest that the possibilities of burning the proposed feed materials and the products of their lehydrogenation under both subsonic and supersonic combustion conditions are promising.

YIV

Under our present contract we are continuing and extending the work done under the revious contract, with some changes in emphasis: We are continuing to survey the pertinent literature and will issue bibliographies from time to time. We will continue to consider various feed materials which might be useful in this application and assess the probability of their being successful candidate materials. Such candidates are screened in our small scale equipment for reactivity and effect on catalyst life and the thermal stability under heat exchanger conditions. Successful candidate materials will be tested with improved catalysts and also under larger scale conditions as represented by our fuel system simulation test rig.

In the previous contract only a limited number of catalysts, selected for their probable activity, were tested with a variety of feed materials. The reactions of interest in that program included dehydrogenation, dehydrocyclization and depolymerization. In the present program we are conducting an intensive catalyst development program for new catalysts for these types of reactions. This involves the small scale preparation of a wide variety of catalysts in which catalytic elements (e.g., transition metals) are deposited on substrates and medified by a variety of noncatalytic elements such as the alkalies, alkaline earths, and halogens. Other catalysts are prepared containing metallic exides and acidic sites. Such catalysts are tested initially in a small scale apparatus (the "micro-scale catalyst test reactor", MICTR) which allows rapid screening with standard feed materials such as methylcyclohexane, dimethylhexane and tetraisobutylene. In addition to the sttempt to prepare superior conventional type catalysts in which catalytic materials are mounted on substrate granules, attempts are being made to prepare nonconventional catalysts in which the catalytic material is or mounted on specially shaped supports (designed to minimize pressure drop), or is previously dispersed in the feed material, or is formed by decomposition in the heated zone. Such nonconventional catalysts are to be tested with the appropriate standard read materials prior to being used with other feed materials developed as a result of the program mentioned above.

The computerized mathematical model mentioned above has been carried to the point where good representation of the FSSTR experimental results is possible. Further development of this model undertaken under the present contract allows the inclusion of different size tubes the catelyst dispositions and variable heat flux and temperatures along the tube length. It will eventually include latent and sensible heat sinks both before and

after the reaction zone, and the mating of a reaction exchange with a new source such as a combustor or a leading edge. This letter s eye of source will require collaboration with engine manufacturers who are working on the combustor desgin part of the overall program.

Extension of the program towards an aircraft system requires that considerably more work be done on the supersonic combustion characteristics of the candidate fuels. This phase might include an analytical program involving different mose: of controlling flames within the collistor, analysis of nezzle expansion, an experimental small scale and rathe scale effects which would put the combustion end of the problem on a sound basis. In this program, our own efforts will be directed towards maintaining collaboration and liaison with other programs and with other contractors in the hydrocarbon scramjet program. We have been continuing our studies in the shock tube with high molecular weight tuels and infrared study of naphthene dehydrogenation systems. We have also undertaken to complete our work on the examination of subsonic combustion in the small burner developed under the previous contract with the additional feature of obtaining quantitative data on the radiation emitted, as a function of fuel composition and burner conditions.

An important consideration in any system which attempts to use the fuel for cooling is the thermal stability of the fuel in the exchanger portions of the fuel system. In our previous contract we used the Shell Development Coker for evaluating the thermal stability both of feed material and of products produced by both thermal and citalytic reactions. Examination of the products suffers from the serious deficiency that inevitably a time lapse and some handling has to occur, before the products of reaction are tested. We have therefore constructed a new piece of equipment under the present contract for establishing a standard test for both catalysts and fuels. This unit, called the Catalyst and Fuel Stability Test Rig (CAFSTR), will permit simulation of the thermal environment and representative contact times all the way from the fuel tank to the engine inlet. Fuels will be tested using a standard catalyst, while catalyst will be tested using a standard catalyst, while catalyst will be tested using a standard fuel.

Specific support is also being furnished to contractors in the cooling program. This support consists of consultation with respect to problems encountered in the study programs, the furnishing of technical data required for the solution of design problems or for the carrying out of experimental investigations. We also expect to perform some mutually specified tests in our laboratory equipment to solve specific problems encountered by the other contractors.

Summary

Examination of the literature during the past year has revealed a continuing interest in the possibility of developing aircraft compable of achieving flight speeds up to about Mach 12. It appears that sound to choological reasons exist that lend optimism to hopes of overcoming the formidable cooling and propulsion problems that still stand in the way of being able to achieve such speeds utilizing hydrocarbons as fuels. Some of the more important of the papers and reposits that have appeared are analyzed below.

During this year considerable attention has been given to the effect of mixed feed components on the dehydrogenation reaction and catalyst stability. Thus, in both the DCH/MCH (dicyclohexyl/methylcyclohexune) and DIN/MCH (Decalin/methylcyclonexare) systems the effect of mixtures under both thermal and catalytic conditions is to increase the rate of reaction of the dicyclic compound and decrease the rate of reaction of MoH. Contrary to previous results, the presence of MCH with DHN either increased catalyst deactivation or did rot improve it. This differs from previous results with a different sample of DHN where the addition of MCH improved the catalyst stability. Attention has also been given to the possibility of utilizing mixed feeds with dicyclohexyl and Decalin as components as well as further investigations of the dehydrogenation of the pure components. The dehydrogenation of Decalin over Pt/Al₂O₃ is complicated by the presence of the geometric isomers and by the fact that the reaction goes in two steps. Studies with the pure isomers have given insight into the course of the 3 parallel reactions which proceed simultaneously. Pure 1,2,4,5-tetramethylcyclohexane was tested (beach scale) under both thermal and catalytic $(P^{+}/\Lambda l_{2}O_{3})$ conditions. This compound reacted considerably faster than MCH, but in the case of the catalytic reaction deactivation occurred rapidly. The effect of two alumina carrier materials on the thermal reaction of MCH was tested in comparison to the usual quartz chips used in the small-scale reactor to fill the catalyst space. Both increased the rate by about 50 to 100%. Although this is probably not tremendously important, it does suggest a possibility for improving catalysts supports by decreasing their acidity.

Our standard laboratory catalyst (1% Pt/Al₂O₃) and the UOP R-8 catalyst have been compared for their efficacy in the dehydrogenation of Decalin (DHN). The two catalysts are equivalent at high (30 atm) pressures, but the R-3 catalyst is less active and shows a tendency to deactivate at low pressures (somewhat at 20 atm but markedly at 10 atm). This probably can be ascribed to the presence of acidic sites in the R-8 catalyst due to the presence of chloride in the formulation. The dehydrogenation of dicyclohexyl (DCH) also proceeds in two steps; first, to phenylcyclohexan and then to diphen. The first order rate constants and energies of activation for both steps have been determined using the method of Wheeler. The initial reaction is faster at low temperature but slower at high temperature than the second reaction, the apparent energies of activation being 8 and 43 kcal/mole. The addition of an equal volume of DCH to DHN result⇒d in some modification of the rates of reaction of each component, but the effects were not large. The presence of the DCH reduced the tendency of DHN to deactivate the catalyst. Stability tests with both the lab and the UOP catalysts have

been done in the laboratory reactor over a 10-hour processing period. Both catalysts declined at a rate of about 0.7% conversion per hour after an initial drop of about 2% in the first hour. The presence of a phenolic antioxidant reduced both the activity and the catalyst stability to some extent. MCH was used as the test fluid in the tests.

Comparison of recults with both DCH and DHN over Ft/Al₂O₃ catalysts suggests that stability is related to the pore size of the catalyst. Stability increases as pore size decreases, due it is thought, to the increasing surface to volume ratho, which results in an increasing H₂ partial pressure in the pores. As the pores decrease in size, however, a point will be reached where the rate will be diffusion rather than surface limited and further decrease in pore size will result in decreased stability.

Analysis of results with decalin over Pt/Al₂O₃ indicates that While cis isomer dehydrogenates only moderately faster than trans, its rate of isomerization is almost an order of magnitude faster than the trans.

Attempts to achieve catalysis of the thermal reaction of propane (hopefully to CH_4 and C_2H_4) by the introduction of free radical sources (e.g., Me I, allylchloride, hydrogen) failed to achieve its goal (at 1295°F, 1 atm, LHSV of 25). Little additional conversion, except to coke, was observed. However, some additional experiments will be done on this system with other free radical sources in the future.

Further work on the catalytic cracking of propane in an attempt to achieve the reaction to ethylene and methane using a hydrocracking catalyst and several modified zeolite catalysts was unsuccessful; little reaction occurred at a block temperature of 1022°F, atmospheric pressure, and a LHSV of 20. Apparently, the propane reacts almost instantaneously to form coke which precludes catalysis of the reaction of interest. Dehydrogenation of methyl Decalin over the laboratory catalyst was also tested. It reacts at about the same rate as Decelin but has a somewhat more adverse effect on catalyst stability. Previously, we indicated that the Decalit/R-8 catalyst combination had somewhat less stability than the Decalin/standard laboratory catalyst combination. This was previously attributed to the presence of halogen in the R-8 catalyst. However, catalyst prepared on the R-8 base in the absence of halogen also is somewhat less stable indicating that this is probably, in part at least, a specific effect of the base used. Similarly, dehydrogenation of DCH over R-S catalyst indicated that this catalyst, under laboratory conditions, shows less stability with this feed also. However, catalyst stability is generally improved by operation at higher pressures.

Recheck of previous runs using very pure ethylcyclohexane has brought the results of previous work into line with those obtained with other naphthenes, indicating that for this naphthene impurities in the feed were affecting our results.

The catalyst development program designed to produce conventional type catalysts of superior activity and thermal indifference has been continued. A total of about 220 dehydrogenative catalysts have been made, and have been tested in the microscale catalyst test reactor (MICTR) using MCH as a test fluid. Most of the catalysts are inferior to our standard laboratory catalyst or the R-8 catalyst, but about a dozen have been found

which are of superior activity. These have been tested further in the small coale reactor setup and their activity generally confirmed. The best catalyst increased the specific reaction rate by about 50%.

Some success has been achieved in placing an active catalyst on a low pressure drop fused alumina shape after initially affixing a highly active alumina on the surface.

Attempts have also been made to develop disperse or vapor phase catalysts by utilizing metallo-organics. Some activity has been noted with a number of compounds in screening tests.

Modifications to the fuel system simulation testing (FSSTR) were made and a 3/4-in. by 10-ft section packed with R-8 catalyst was installed. Smooth operation with the modified equipment ensued and 95% conversion at 80 LHSV was obtained. The observed temperature profiles, conversions, and pressure drops were well represented by our packed bed reactor computer program.

Study of the thermal cracking of an advanced state-of-the-art paraffinic jet fuel (F-71) begun under the previous contract was completed. Studies indicate a maximum endothermic heat sink of about 300 Btu/lb and maximum allowable fluid temperature of operation of about 1200°F. The results observed are not very sensitive to operating conditions except temperature. The upper temperature limitation occurred because of coking which caused plugging of the pressure control valve.

The catalytic dehydrogenation of propane using ϵ K-promoted ${\rm Cr_2O_3-Al_2O_3}$ catalyst was examined in the FSSTR using a 10° x 3/8" diam bed. Two series of tests have been made at a feed rate of 10 lb/hr (LHSV = 75). In the first series, bed inlet temperature was maintained at 900°F. Variables were inlet pressure of 430 and 590 psig and catalyst section exit temperature of 1100 and 1200°F. Maximum conversion measured was 7.7%. Conversion declined rapidly and after about 5 hours of operation the catalyst was almost completely deactivated. Following this test, 10.7 g of carbon was burned from the catalyst bed.

For the second test series, nominal inlet and exit temperatures of 1000°F and 1250°F respectively and an inlet pressure of approximately 500 psig were maintained for the entire operating period (ca 4 hours). Propane conversion started at ca 2% and declined to ca % after 250 min ites of operation. Pressure drop increased from about 300 to 465 psi during the first 25 minutes, then increased at 5 psi per hour through the rest of the run to a maximum of 490 psi. Coke was not burned from the catalyst after this test. A weight increase of 15 grams due to coke deposit was measured after dumping the catalyst charge. It had been hoped that more satisfactory results would be achieved in the FSSTR because of the better temperature control and the higher linear velocity achieved in this equipment compared to the bench scale apparatus.

A two-foot long (by 3/8" diam) high flux section capable of accepting about 600,000 Btu/hr/sq ft has been constructed and put into operation during the year. It has been used for the dehydrogenation of MCH on R-8 Pt/Al₂O₃ at an LHSV of 1600 with a maximum heat sink of ca 360,000

Btu/hr/sq ft. Some catalyst deactivation was noted at the most severe conditions (fluid temperature, ca 1100°F). Conversions under high heat flux conditions were generally higher than predicted by our mathematical model indicating a need to reexamine the parameters used in the program.

The mathematical model of a packed bed reactor system, developed under our previous contract, has been modified and completely rewritten in order to economize on both human and machine time. It has been used successfully to represent the results obtained in the FSSTR and to extrapolate to condition inaccessible to experimentation. It has indicated, for instance, that increasing the thermal conductivity of the catalyst particles (even by a factor of 1000) would have no beneficial effect on the heat sink capabilities of a reacting system. Also that supplying the heat from one side only of a catalyst bed, such as would be encountered in a regeneration type application, can be represented by the model.

Flat plate configuration shows that the basic features of the results are similar to those obtained with the axieynmetric cylinder model. It appears that the average flux over a 2' length is about 0.5 to 0.7 x 10⁸ Btu/hr/sq ft. Some compromise between maximum heat flux and the degree of reaction of the fuel must be made. With the flat plate configuration, the dimension of the layer compared to the particle diameter is more critical. The region of dimension which appears to be most favorable is a thickness of only 2 to 4 particle diameters. Also, we can calculate the relative advantages of a series of adiabatic reactors compared to a single bed. We find that a five-bed reactor (with intermediate heat absorption) with a total length of 2-1/2 feet and a maximum fluid temperature of 1150°F can absorb about 8 x 107 Btu/hr/square foot cross-section area with a flow rate of 120,000 lb/hr/square foot and a pressure drop of 400 psi, while a single continuous bed under the same conditions can take up somewhat more heat. Thus we conclude there is no benefit to this scheme except it might allow better matching with the radiation flux in an engine.

Considerations of the changes that must be made in the mathematical model to represent the dehydrogenation of dicyclonaphthenes such as Decalin and DCH are proceeding. Attempts will be made in the first instance to apply the kinetic results obtained in the bench scale reactors to this calculation. The application is difficult in this case because of the uncertainty in our knowledge of fluid temperatures in this configuration of equipment, as well as the complexities of the kinetics.

Work that has been done on the effect of oxygen on the thermal stability of naphthenes has been brought together and summarized with particular reference to the pure naphthenes, MCH and decalin, and to a highly naphthenic jet fuel (RAF 163). All hydrocarbons show improved thermal stability when oxygen is removed at least down to 1 ppm, generally by about 200°F improvement in SD coker breakpoint. This effect has been related to the fundamental response of hydrocarbons to oxygen concentration during oxidation. The effect varies with the composition of the feed, with the lowest oxygen content to which the fuel is sensitive decreasing in the order: decalin, MCH, naphthenic jet fuel.

A new piece of equipment, the CAFSTR (catalyst and fuel system test rig) was designed, manufactured, and put into operation during the year.

This equipment, which is intended to provide a standardized test for either fuels or catalysts, consists of 3 proheaters, internally heated by rod type heaters; an externally heated packed reactor; and a final preheater similar to the first three; failowed by an orifice plate (to simulate a fuel nozzle). Freliminary runs have been made with an advanced jetfuel and with NCH at 3 and 6 lb/hr flow rate, 1000 psig, temperatures up to 1200°F, with and sans Pt/AlgO3, catalyst. The equipment has performed according to design.

However, the question of how to rate the preheater tubes must be resolved since visual ratings with the Eppi Tuberator are far less meaningful than before. At high temperatures, the presence of a blue coloration of the tube metal, plus some shades of yellow and tan which may also be the metal itself (Inconel 600), make the visual evaluation of thermal stability both difficult and uncertain. In some cases, the change in ΔT (T metal surface – T fluid) over the course of the run (where flow and heat input were constant) may give a more reliable indication of true deposit lay-down. Not enough data has been accumulated to date to assess the us fulness of this measure. The possibility of developing a calorimetric tuberator is being explored. Calculations indicate that significant results should be obtained if reasonable stability and accuracy in the test equipment is achieved.

Tests have been done in the modified small scale subsonic combustor with both p spane and toluene/3H₂ using a Rayotube to monitor the total radiation, at E. R. values of 0.9-1.4 and 0.95-1.3, respectively. The results indicate radiation fluxes for propane for 5000-7000 Btu/hr and 6000-8000 for toluene/3H₂. The lowest fluxes were associated with the richest mixtures in both cases, presumably because of lower flame temperature and lower production rates of the emitting species CO₂ and H₂O. There was no indication of radiation from carbon particles with either fuel.

Shock tube studies of the effect of environment on ignition delay of ethylene and ethane were done. Both compounds show behaviors different from those observed with higher hydrocarbons or with methane. Ignition delay decreases with increasing E/R down to about 0.5 and then increases. Under otherwise constant conditions, increasing pressure, concentration, and temperature decrease delay times. Both compounds under lean conditions give two different temperature coefficients, varying with total reactant concentration (18 keal below 10⁻⁵ m/1 and 36 keal above). Studies of ignition delays of dodecane, Decalin, and methyl Decalin have been extended to higher partial pressures. The behavior of all compounds is quite similar to that of MCH. The behavior of methane has been studied over a wider range of conditions. Temperature coefficients were found to vary with E/R, activation energies being 25-30 keal in lean mixtures and 45-55 in rich. Under otherwise constant conditions, increasing E/R increases delay time while increasing pressure decreases it.

It has been found that utilization of the infrared emission from CO₂ gives considerably better definition of ignition delay time in the shock tube than utilizing either visible light (as used in the past) or CO infrared emission. This is particularly true in the region of very short ignition delays where apparently the superior collimation of the infrared system and decreased reflection affords sharper reception. CO₂ emission is superior to that from CO because of the higher signal-to-noise ratio even at the same species concentration.

The study of the effect of hydrocerbon structure on ignition delay has been extended to include a number of highly branched paraffins utilizing the infrared detection technique in the single diaphragm shock tube. The hydrocarbons examined were 2,2,3 trimethyl butane, 2,2,3,3 tetramethylbutane and neopentane (tetramethyl methane). Normal octane was included for comparative purposes. Experiments were concentrated over a fairly narrow range of operating conditions, at low equivalents ratios and pressures of 9.15 and 25 psia. Because of the improvement in detection techniques, the compounds were studied over a wider range of temperature (ca 1100-1500°K) than was previously possible. The results indicate that although the more highly branched paraffins do have a somewhat longer delay (ca a factor of 2 in the mid-temperature range) the effect of structure is not very large. The effect of pressure and equivalence ratio was not great over the range studied While the effect of temperature is reasonably represented by an activation energy of about 40 kmel per mole. The effect of oxygen concentration appeared to be somewhat less than first order.

By comparing the output obtained with argon and $\rm CO_2$ in the tube with that obtained with a reacting mixture some indication of the rate of combustion in the mixture could be estimated. The apparent rate constant has a value of about $10^3~{\rm sec}^{-1}$ in the middle of the temperature range studied and is relatively insensitive to the effect of temperature (7 kcal per mole) and oxygen concentration. This would suggest a time for complete combustion of several milliseconds. However, the values obtained are for low equivalence ratios (0.1 and 0.2) and it will be worthwhile to extend the study over the entire equivalence ratio range of interest and to get similar data for the MCH system.

As part of our program to support work done by others in attempts to utilize hydrocarbons for fueling and cooling sub- and supersonic combustion ramjets, and also for our own calculations, we have been attempting to systematize and extend the physical data for hydrocarbons over the temperature and pressure ranges of interest (up to 1600°F and up to 3000 psia). Considerable difficulty was encountered in reconciling various existing correlation programs but concordance was finally achieved, for the MCH system at least. Data are included delineating data for this system at 0, 25, 50, 75, and 100% conversion to toluene/3H₂.

We have also calculated equilibrium compositions for the Pecalin/tetralin/naphthalene/H₂ system from the data of Allam and Vlugter⁴) at 10, 30, and 60 atmospheres as a function of temperature over the range 600 to 1100°F. A consistent set of data was obtained which indicates that at the three pressures mentioned a 95% conversion of Decalin to naphthalene would be possible at 775, 925 and 1075°F respectively.

We nave attempted to maintain continuing surveillance of the literature of interest in this area. A bibliography comprising 537 references is appended.

Considerations Affecting Applications

A recent group of articles in Astronautics and Aeronautics⁵⁾ (October, 1966) on the hypersonic transport (the HST) highlighted some of

the opportunities and the problems in the development of aircraft designed to operate in the range of Mach 6 to Mach 12. It is proposed that a hydrocarbon fuel would be the optimum selection for a flight regime up to about Mach ? or 8 with hydrogen becoming necessary at higher speeds. Miller's article suggests that the penalty associated with the use of hydrocarbon fuels stem largely from the losses in the propulsion system due to dissociation phenomena resulting from the inability of the carbon dioxide fragments to recombine sufficiently rapidly in the nozzle to achieve the full specific impulse potential. This range could possibly be extended somewhat if it turns out that our development of a dispersed "throwaway" cat layt leads to a situation where we will also have a catalyst for recombination of carbon dioxide fragments because of the presence of metal or metal oxide particles in the exhaust.

The rticle by Ferri^{5b}) also endorses the idea of using a hydrocarbon fuel up to about Mach 8 (Figure 1) using the latent and sensible heat capacity of the fuel for cooling the aircraft, without however mentioning the possibility of using endotlermic reactions to give additional heat sink. It would appear that this might be a more economical way to cool the air required for cooling the structure rather than the use of expansion turbines to absorb the energy of the air as proposed by Ferri in his article. The article by Laidlaw and Johnston⁵⁰) discusses the structural technology required for HST's in the Mach 6 and the Mach 12 range, assigning methane as a fuel to the Mach 6 aircraft and recommending hydrogen for Mach 12 as a consequence of the environments encountered by such aircraft (Figure 2). Here again, they have not given any consideration to the possibility of achieving higher heat sinks with endothermic reactions. This lack of consideration is probably not due to any lack of knowledge of the possibilities involved but simply reflects the fact that a great deal of work remains to be done before the potential heat sink available can be translated into meaningful proven concepts. The article by Simpson and Hursch^{5d}) gives an interesting estimate of the mission profile of a M-12 aircraft (Figure 3). We have amended the figure slightly to also show how a Mach 7 aircraft would behave.

A recent paper by Stroud and Miller⁶) on the design of hypersonic inlets emphasizes the importance of cooling in obtaining improved inlet pressure recovery. For instance, they show that at Mach 8 cooling the inlet surfaces to 2000°F provides for optimization of the inlet design system at a fineness ratio between 2 and 3, thus, achieving near maximum efficiency at a relatively low weight penalty. It is apparent from their analysis of the problem that better cooling would result in still higher inlet efficiency.

Similarly, an investigation of flow separation in aerodynamic controls at hypersonic speeds by Kaufman et al. reveal the extremely high heating rates associated with most types of controls and suggests that the provision of cooling at critical points when the controls are to be used may alleviate the severe problems associated with this application.

Another interesting article involving hypersonic aircraft was by Peterson et al⁸) in which they presented the results of a launch vehicle mission analysis for a hypersonic first stage which accelerated up to Mach 7 before launching the second stage. They assumed that the air frame and leading edges were cooled by radiation but used regenerative cooling for the

Figure 1. CHARACTERISTICS OF SUPERSONIC AIRCRAFT

Figure 2. ENVIRONMENTS OF SUPERSONIC AIRCRAFT

62731

てきのことになることから、そのことのことのもなるとのできるとは、

- 13 -

internal surfaces of the propulsion system. They assumed that the ongines were hydrogen-fueled subsonic burning turbe ramjets. They made a parametric investigation of the vehicle characteristics and trajectory. The first-stage parameters that were varied included wing loading, fusilage slenderness ratio, wing thickness, and aspect ratio. Their optimum vehicle cruising at about Mach 6 delegated 35% to the airframe and about 25% to the fuel using liquid hydrogen fuel. For a launch vehicle of 500,000 lb with a 2000-nautical mile lateral range, about 13,500 lb could be placed in orbit. In view of the favorable volume ratio for hydrocarbons of about one third that required for liquid hydrogen it would be interesting to determine if the weight of the airframe could be reduced sufficiently to overcome in combination with reduced drag the unfavorable weight ratio of hydrocarbon to liquid hydrogen of 2-1/2 to 1.

It would appear that a low-weight, high-efficiency catalytic heat exchanger could be constructed on the basis of the high surface area heat exchanger introduced by du Pont. Our concept would utilize a multiplicity of thin-walled tubes of an appropriate metal having, say, an OD of 0.1 inch and a wall thickness of 0.01 inch. The circulating fluid (e.g., hydrogen or helium) would be rumped from the primary heat exchange surface (i.e., the engine or leading edge) through the inside of the small tubes to heat exchange with the fuel which would be circulated on the outside of the tubes. Catalysts would be deposited on the outside of the tubes in the bundle. Latent and sensible heat would be utilized initially for cooling the circulating fluid; but as the temperature of the coolant fluid increased. resetion would occur. This construction should provide about 200 sq ft of heat transfer area per cubic ft of shell volume; and if a modest heat transfer coefficient of only 200 is assumed with an average approach of 400°F, it may be calculated that the 2 x 108 Btu/hr required to provide 2000 Btu/lb for 100,000 lb/hr fuel flow could be provided in 12.5 cu ft of volume (in the FSSTR we have actually measured heat transfer coefficients of 1200). This would appear to provide the promise of a highly efficient device having a low pressure drop. Its success as a reactor/heat exchanger will depend on our ability to deposit a sufficiently active catalyst on the surface of the heat exchanger tubes. This is presently being investigated.

A recent paper by Ashby and Stone, 10 analyses the effect of volume addition on $L/D_{\rm max}$ for configurations suitable for a cruise type vehicle. This indicates that a reduction in drag loss is achieved equivalent to about 10 reduction in the loss in $L/D_{\rm max}$ for a typical hydrocarbon fuel compared to the volume required for liquid hydrogen (assuming that a volume increase of 92% would be necessary in the latter case). However, it is realized this potential benefit from the use of hydrocarbons may become less as Mach numbers increase because the increasing capture area necessary for the inlet system will shadow a considerable volume which could be utilized for fuel sterage.

The editorial in Space/Aeronautics for November 1966 by John B. Campbell¹¹ is entitled "The Hypersonic Era" and concludes"...and, if events do not force a faster pace, we well may see an operational hypersonic interceptor by the early 1980's". This is accompanied by an article by L. H. Delberger¹² on "Advanced Interceptor Aircraft" in which he discusses the possibility of production of hypersonic aircraft. This article shows an illustration (of Figure 4) of a LH₂ fueled hypersonic interceptor test bed

HYPERSONIC INTERCEPTOR TESTBED

By extrapolating presently evolving technology, a hyperscrip-cruise interceptor-testhed configuration may be postulated, and could be constructed and tested by the late 1976s, Nominal cruise speed at 140/20 ft would be Mach 12, although actual intercept would depend on long-range maneuverable air-to-air missiles. Yo provide firepower within massile minimum-range immiations, the aircraft, but no steel with a nickel alloy skin, would be stressed for close-in maneuverability in the supersonic regime and outfitted with cannon firing high-speed projectiles. Target identification might be augmented by a laser target-delineator at high altitudes or in clear weather. Forward vision for the pilot, with droop-nose up in hypersonic forward flight, is alforded by a to camera system. Two engines, each capable of dual-mode operation, are aboard, a turbo-ramjet for flight Mach numbers from zero to about Mach 3, and a convertible sub-to-supersonic combustion ramjet (scramjet) operating from Mach 3 to 12+. Redundant capability of one of the engines in the Mach 2 to 6 range would be abrogated in an operational version. Liquid hydrogen fuel, used with bottengines, could provide regenerative cooling of the scramjets combustors, a liefal exchange which prehears the -433 in fuel for more efficient burning. The fuel might also be circuised to cool the wing leading-edges and noise surface which may reach 1800-2400. F. As an alternate, an ablative coaling neight be used. The low-density of liquid hydrogen militates for a large aircraft vesighing at least 200,000 fb with a length of circ 1901 ft. Use of integrated microwave direction modules could permit design of a conformal array-radar virapped around the nose for target search-spd-track and missing guidance. A speed-brake for deceleration is required, due to the aircraft's low-dera configuration.

Figure 4. HYPERSONIC INTERCEPTER TESTBED
Courtesy Space-Aeronautics Magazine

which would operate in the range of Mach 3 to 12+. It is described as a large aircraft weighing at least 200,000 pounds with a length of over one humber feet in which leading edgs and nose surfaces may reach 1800-2400°F. It is stated that, "there is intense effort to develop a more manageable fuel with angher density to permit reducing storage tank volume and thus aircraft size and to avoid the temperature problems of raising -423°F fuel to combustion temperature in the supersonic combustor. Ideally a fuel as easy to handle as JP-4 is sought, but hydrocarbons because of low flame speed, kinetic energy, and storage temperature limitations, are presently unature tive".

A paper presented at the ATAA Third Annual Meeting (December 1966) by A. Farrill) discusses scrampet propulsion technology. In this Ferri reviews the present status and some of the important considerations on the use of supersonic combustion breathing engines as propulsion systems for hypersonic vehicles. The author concludes that good progress is being made toward solutions of the many problems that exist but that considerable work remains to be done.

In a study issued by the Rand Corporation last year, T. F. Kirkwood¹⁴) comments on future air transportation systems. The author considers that in the future ranges up to 9000 nautical miles nor op will be a desirable feature and that under these circumstances an aircr ϵ pable of cruising at Mach 8 is not out of the question.

Recent studies3) have emphasized the desirability of achieving higher heat sink capability ir hydrocarbon fuels. Under otherwise equivalent conditions it appears that in a system utilizing endothermic cooling with MCH, the maximum sustained speed achievable word; only be about 2/3 of that possible with liquid hydrogen at a heat sink equivalent ratio of one. Matching LH2 would involve achieving reaction heat sinks above about 1400 Btu/lb. On paper there are a number of ways that this could be achieved with hydrocarbon fuels. Preliminary calculations indicate that a number of polycyclic structures should fall in this category if maximum dehydrogenation can be achieved. Other reactions in this category include the clean catalytic cracking of even-numbered paraffins to ethylene and hydrogen (if ethane production can be avoided). The catalytic cracking of butadiane to acetylene will yield about 2700 Btu/lb (if ethylene and acetylene are formed. the value is about 1300). The dehydrogenation of methylamine to cyanogen would yield over 2000 Btu/lb (with some loss in heat of combustion). However, Whether catalysis exist which will give good selectivity in these reactions is a matter still to be established.

Two articles¹⁸)1e) in Industrial Engineering Chemistry emphasized the importance of a good understanding of the behavior of fixed bed catalytic bed reactors. Both articles discussed the problem of building models for such reaction systems and stressed the value of the computer in choosing optimum operating conditions. It appears on the basis of these articles that the mathematical model we have developed is more useful than anything available in the literature.

Rubins and Bauer point out in a recent article¹⁷⁾ that a scramjet may be required to utilize several combustion methods to traverse a desired flight path and, further, that in this flight path envelope regions will

exist which produce combuster inlst air flow conditions in which the chemical reactions are relatively slow and for which more accurate knowledge of reaction chemistry is necessary than new available. They point out that in this region premixing of the fuel by shorten the combustor length and that shock-induced combustion may be necessary or at least desirable. They further state that, in spite of the advances that have been made in the past few years, more research on mixing and combustion will be needed before results can be applied with confidence to scramjet engines.

Laboratory Reaction Studies

The bench-scale lacoratory studies of candidate endothermic fuels and their catalyst systems, that were initiated under the previous contract, are being continued under the present contract. Tests were conducted in the apparatus that was developed under the previous contract, and which was described in detail in other reports (2)3) and in the Appendix.

Extending the work with monocyclic naphthenes, 1,2,4,5-tetramethyl-cyclohexane (TeMCH) was tested for catalytic dehydrogenation and for thermal reaction. The effect of the alumina catalyst support on the thermal decomposition of MCH was tested using a Harshaw 0104 alumina (the support for our standard 1% Pt on Al₂O₃, catalyst) and a UOP alumina that was the support for the UOP-R8 catalysts. Extended catalyst life tests (10 hr) for the dehydrogenation of methylcyclohexane were done with both the laboratory and commercial platinum on alumina catalysts. The effect of IONOL® on catalyst stability was determined. A number of new catalysts were evaluated for the dehydrogenation of methylcyclohexane.

Continuing the work with dicyclic naphthenes, the commercial UOP-R8 platforming catalyst was tested for the dehydrogenation of dicyclohexyl. Rate constants and activation energies were calculated for the dehydrogenations of dicyclohexyl to phenylcyclohexane and for the latter to diphenyl, using data obtained in earlier work. The dehydrogenation and isomerization of cis and trans Decalin isomers were studied over the laboratory platinum on alumina catalysts. The relative rates for the various reaction processes were computed. 1-Methyl Decalin was tested with the platinum on alumina catalysts. Factors influencing the relative stabilities of platinum on alumina catalysts for the dehydrogenation of dicyclic naphthenes were studied.

Mixtures of methylcyclohexane with dicyclohexyl and with Decalin and of dicyclohexyl with Decalin and with 1-methyldegalin were tested for dehydrogenation and for thermal reaction.

Some exploratory work was done on the thermal and catalytic cracking of propane.

Procedures for carrying out the runs and analyzing the products for the thermal and catalytic experiments and for computing the conversions, selectivities and first order rate constants have been described in previous reports. 1)2)3) In this respect it should be noted that these reactions were treated as being first order. Although this is not strictly kinetically accurate, the calculated k-values are useful in comparing different fuels and catalysts.

Monocyclic Namhthenes

Dehydrogenation of 1,2,4,5-Tetramethylcy lohexane

1,2,4 5-Tetramethyloyclohexane (TeMCH) was tested for catalytic dehydrogenation and for thermal reaction at 10 atm pressure and 842-1292°F. This material was prepared by hydrogenation of the corresponding tetramethylbenzene (TeMB) and contained at least for of the six 1,2,4,5-TeMCH distrans species. Identification of the individual species was not made due to lack of GLC reference compounds.

The catalytic dehydrogenation was carried out over our standard 1% Pt on Al₂O₅ catalyst at 842-1022°F and LHSV^a) of 100. Under these conditions, this naphthene showed the same instability that was observed previously with trimethyloyolohexane⁴) (TMCH), namely, that catalyst detactivation occurred during all of the runs. This was shown by the increase in catalyst bed temperature during the 30-minute reaction periods (Table 1); and the magnitude of the temperature increase was taken as a measure of catalyst deactivation. The deactivation was small at 842 and 932°F (AT = 18 to 39°F), but was considerable at 1022°F where increases in bed temperatures of over 200°F were observed. This deactivation occurred rather rapidly with over 95% taking place during the first 15 minute reaction period (Table 1). Based on this criteria the TeMCH was less stable than TMCH feeds where the increase in catalyst bed temperatures were 90 to 140°F at 1022°F (cf Table 10). 3)

Product material was principally TeMB (85-90% selectivity), with possible small amounts of benzene and toluene. Our analysis system did not differentiate between benzene and one of the TeMCH isomers. Consequently, the benzene yield was taken as the increase in this feed component during reaction. However, isomerization during the run would also increase this feed component. Thus, the values of selectivities in Table 1 should be considered as minimum.

First order rate constants were computed at 842 and 932°F based on total feed conversion. These are minimum values due to catalyst deactivation during the run. Based on the rate constant of 0.98 \sec^{-1} at 842°F, this feed was about 1.5 times more reactive than MCH ($k = 0.62 \sec^{-1}$). A minimum apparent activation energy of 5.4 kcal/mole was calculated for the temperature range of 842-952°F.

As in the study of TMCH, no attempt was made to identify the deactivating reaction. Presumably deactivation was due to a hydrocracking-type reaction that affects naphthenes with three or more substituted alkyl groups. Gas products were mainly hydrogen but did contain 0.1% to 0.2% methane. The small amount of methane produced indicates that deactivation of the catalyst requires the production of only a small amount of dealkylated naphthene. This suggests that modification of the catalyst need not be profound to eliminate this effect. Best heat sink was 429 Btu/lb (about 70% of theoretical) which corresponds to a total heat sink of 1379 Btu/lb at 1340°F.

Unier the conditions of thermal reaction (1022-1293°F, LHSV = 20), 1,2,4,5-TeMCH was the most reactive of all the naphthenes tested. With this feedstock at 1202 and 1293°F conversions of 53.0% and 72.2%, respectively.

a) Liquid Hourly Space Velocity = volumes of feed/volume of catalyst/hour.

DEHYDROGENATION OF 1

Pressure: 10 atm

Reaction	Feed		The	rsal			Cat	alytic	
Run Number 9645-	· •••	110	111	112-1	112-3	107	108	109-1	109-3
Catalyst		<	- Ouartz	Chips	>	<	— iß Pt	on Al ₂ O ₃ ?	>
Catalyst Vol. mi	ĺ	<	 - ?	D	>	<		7	
THZA		<	3/	0	 ->	<		100	 ~->
Tamparature, %			1	}	t		1	1	1
Block		1022	1112	1202	1293	842	932	1022	1022
Vail		1017	1101	1175	1244	730-29	812-03	903-90	990-1013
Catalyst Bed		995	1065	1114	1157	626-44	693-732	808-393	993-1002
		Į		}		617-19	686-89	768-975	975-1002
		!	1	j	ĺ	650-44	718-12	795-916	915-1000
9		ı	1	ł	ł	671-62	745-34	830-56	866-997
Resction Partod, min		<	20)	>	30	30	15	18
Produci Anglyata, %u			1	1	į				
Cracked ^a	-	0.9	4.5	8.4	8.4	١.	_		0.3
Heptene	•	0.1	0.5	1.1	1.9			! -	0.3
MCH	-	0.3	0.6	1,3	1.6		! _	1 [_
DUCH	•	0.7	2.1	1.7	1.7	-		I -	_
7rj-µCH	•	0,2	0.3	1.8	2.2	_		-	
g ₁ 5)	-	-	-	0.5	0.5	_	_	_	
(1 ₂ b)	-	0.1	0.7	1.1	0.8	-			_
υ <u>,</u> b)	•	0.2	1.2	2.2	1.4	-	١.		0.4
Feed • Benzenec)	0,9	1.6	2.1	2.4	3.6	10.5	6.9	2.9	1.7
Feed	40.8	42.3	42.6	25,4	9.2	21.6	18.4	19.4	35.1
(1 ₈)	-	-	-	2,€	3.1	-		•	•
Feed d)	9.4	8.5	6.7	4.1	1.7	3.6	2.3	3.1	8.3
Fed · To!uened)	48.9	44.0	30.2	16.1	13.3	5.6	3.1	6.7	34.4
Űå ⁶)	•	0.5	1.3	1.9	1.0	-	-	0.5	5.û
Xylene	-	1.0	2.0	7.3	12.3	-	•	0.1	0.5
Xylena Tri-WB	•	0.1	0.1	1,4	2.0	•	•	-	-
fie)	-	•	0.2	1.1	2.4	•	0.6	2.9	1.2
1,2,4,5=Te 4 3	•	-	-	0.1	0.5	-	0.5	1.2	•
Light Gas	-	-		-		58.7	68.2	63.2	12.5
right das	-	•	5.0	18.8	32.6	-			-
, 2, 4, 5-TaMCI!				Fn (
Conversion, 💈 🛮	•	4.3	19.6	53.0	72.2	68.3	75.3	69.9	21.3
alectivity for	j					or o	200.0	,, i	
,2,4,5-TeM8, 🕻 w	-	-	-	-	-	85.9	90.6	90.4	58.7
, sec ⁻¹	-	0.010	0.049	0.177	0.312	0.981	1.273	-	
, aut, kcal/mole	-	<	49	.0	->	←5	.4>		
leat Sink, Btu/ib	ļ					l			
Reaction	- [7	29	60	78	376	429	391	79
Total at Block lenu	- 1	672	794	892	998	926	1044	IC76	763
Tota: at 1340°i	_ 1	957	979	1010	1028	326	1379	1341	1028

e) Unidentified.

a) Co and lighter paraffine and olefine.
b) Unidentified; presumed to be partially dehydrogeneted naphthenes.
c) Feed = 0.9%, the rest taken as benzene as feed isomer and benzene not separable.

d) Not separable on our column; assume no toluene formed.

were observed (Table 1). Product material was liquid and gaseous cracked material and alkyl aromatics. Product distribution of the light gas fraction is shown in Table 2. Heat sinks due to reaction were 60 Btu/lb and lower due to hydrogen transfer reactions.

First order rate constants were calculated from the overall feed conversions based on the wall temperatures, from which an apparent activation energy of 49.0 kmal/mole was computed. An Arrhenius plot of the data did not give a straight line (Figure 5) and the activation energy value was based on the best straight line drawn through the points. Actually, from the plot of the data it appears that the activation energy decreases with increasing temperature (or conversion) which suggests that at higher temperatures reactions with lower activation energies are becoming more predominant.

Based on a comparison of first order rate constants at $1202^{\circ}F$, the reactivity of 1,2,4,5-TeMCH (k = 0.18 sec⁻¹) was greater than all other naphthenes tested. (cf Table 16)³)

Catalyst Stability Tests With Methylcyclohexane

Bench-scale tests on the dehydrogenation of methylcyclohexane over both he laboratory 1% Pt on Al₂O₃ and over the UOP-R8 catalysts showed a loss in activity of about 2% over a 90-minute reaction period (ca 1.3%/hr) when the reactor was operated at high MCH conversion.²) While this activity decline rate could be tolerable for our intended catalyst application, it was germaine to see if catalyst stability improved or declined with further use. At the same time it was of interest to investigate the effect of a feed antioxidant (IONOL) on catalyst stability (earlier tests had indicated no gross effect).

Three extended series of runs were carried out over a ten-hour period at 10 atm pressure, 1022°F, and at LHSV of 50. These tests were done with pure MCH over the 1% Pt on Al₂O₃ catalyst and over the UOP-R8 catalyst, and with MCH feed containing 50 ppm IONOL over the UOP-R8 catalyst. In these experiments the dehydrogenations were interrupted for 15 minutes after 6 hours reaction in order to refill the liquid feed reservoir. During this time the catalyst was contacted with hydrogen at the reaction temperature. In these tests the change in MCH conversion was taken as a measure of the change in catalyst activity. The data are tabulated in Tables 3, 4, and 5.

In all three tests the change in catalyst stability appeared to follow the same pattern (see <u>Figure 6</u>). Catalyst activity declined rather rapidly initially and then more slowly and at a constant rate after 1-2 hours reaction time. Hydrogen treatment enhanced the activity temporarily.

In the tests conducted with pure MCH feed, the activity and stability of the 1% Pt on Al₂O₃ catalyst was greater than the UOP-R8 (see Figure 6). Thus, after three hours' reaction time the constant activity decline of the Pt on Al₂O₃ catalyst was 0.44%/hour compared to 0.58% per hour for the UOP-R8 catalyst. With IONOL both activity and catalyst stability (UOP-R8) were lower than with the pure MCH feed (0.83%/hr). Thus it appears that IONOL in concentrations of 50 ppm is deleterious to both catalyst activity and catalyst stability.

TABLE 2
THERMAL REACTION (F 1,2,4,5-TETRAMETHYLCYCLCHEXANE

Gas Phase Product Distribution

Pressure: 10 atm

Run Number	111	112-1	112-3
Block Temperature, °F	1112	1202	1293
Conversion to Light Gas, %w	5.0	18.8	32.6
Product Analysis, %v			
H ₂	9.8	11.5	11.4
CH4	73.8	65.8	61.3
C2H4	2.8	3.5	4.4
C ₂ H ₆	6.1	6.8	7.0
C ₃ H ₆	5.5	7.8	8.8
C ₃ H ₈	0.8	1.5	1.8
C ₄ H ₆	-	0.2	0.3
C _a H ₆	0.8	2.0	3.4
C4H10	~	0.2	0.3
Higher than C4	0.4	0.7	1.3

Figure 5. THERMAL REACTION OF 1,2,4,5-TETRAMETHYLCYCLOHEXANE

TEMPERATURE COEFFICIENT

Table 5: IEHYDROGENATION OF MCH OVER UOP-R8 CATALYST: LIFE DEST

Fred: Pure MCH Catalyst volume: 7 ml Pressure: 10 atm Block temperature: 1022°F LHSV: 50

-		3							
	Resction	Тепре	Temperature, °F		Pr	Product Analysis,	3, 4		HDW.
9347-	Time, hr	Wall	Catalyst	Cracked	MCH	Methyl- Cycloh exa ne	Benzene	Toluene	Conv.,
111-1		887	169	2 *C		ე*0	0.5	94.5	95.2
111-2	0.5	878 678		o. 0	5.6	0.0	6.3	93.9	94.4
111-3		873	989	o. 0		0.0	0.3	93.0	93.5
111-4		371 2	885	a. 0		0.0	0.3	92.3	93.8
111-5	2.0	178	₩ ₩	0.5	6.	0.0	ري. 0	91.7	92.1
9-111	2.5	369	င္ဆ	ณ 0	တ တ	0.0	ر. د	90.7	91.1
112-1	୍.	(S)	678	0.5	, , .	0.0	٥. ٥	90.5	90.9
112-2	3.5	969	678	ું.	0.5	0.0	٥, ٥	90.6	91.0
112-3	o. 4	969	676	2,0	20.00	0.0	2.0	8	4.06
112-4	4.5	873	678	ن 0	2.5	0.0	c; 0	90.1	90.5
112-5	5.0	8	676	0.5	7.6	0.0	0.3	89.8	90.3
112-6	5.5	96.4 86.4	676	0.8	10.6	o.2	٠ <u>٠</u>	88.7	4. &
113-1	6.0	960	576	0.1	10.5	0.1	رب 0	89.8	89.5
113-28)	6.25ªJ	င္ဆ	705	6.0		0.1	4. 0	90.98	91.68)
113-3	6.5	දු		٠ د	7.6	0,1	0 دا	8,0	90°6
113-4	0.7	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	769	0.0	10.5	0.1	ด	88 6.	39.5
114-1	5.5	9 <u>7</u> 9	<u>5</u>	0.2	11.5	0.1	ر. 0	့ အ	88. v.
114-2	3.0	876	8	0.0	11.0	0,1	0.2	88.5	o.68
114-3	8.5	871	8	0.2	11.5	0.1	٥.	88 0.	88.5
114-4	0.0	87.⁴	8	2.0	12.4	0.1	о. О	87.1	37.6
114-5	9.5	67.3	986	o. 0	12.3	0.0	o. 0	87.3	87.7
114-6	10.0	878	989	ಣ <u>.</u> ೦	12,7	0.1	0.1	6.9	87.3
a) Catalyst h	st hydrogen	treated	d at 1022°F	for 15	mimtes b	before this run],	Y	

Table 4. DEHYDROGENATION OF MCH OVER 15 Pt ON ALROS CATALYST: LIFE TEST

Feed:

Pure MCH Catalyst volume:

7 ml

Pressure: 10 atm

Block temperature: 1022°F

LHSV:

50

Run No.	Reaction Time,	Temp	erature, °F	Pr	oduct 1	malysis,	Ç.	MCH Conv.,
9241-	hr	Wall	Catalyst	Cracked	MCH	Benzene	Toluene	%
123-1 123-2 123-3 123-4 123-5 123-6 124-1 124-2 124-3 124-4 124-5 124-6 125-1 125-1 126-2 126-3 126-4 126-5 127-1 127-2	0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	8655 8555 8555 8549 8477 8476 8678 8551 968 8551 849 868 868 868 868 868 868 868 868 868 86	707 704 698 693 693 693 689 689 711 707 702 696 689 689	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.9991200030943924225927	0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	97.7 97.8 95.1 95.5 94.7 93.7 93.4 93.4 93.4 93.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95	98.1 98.1 95.8 95.4 95.0 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1

a) Catalyst hydrogen treated at 1022°F for 15 minutes before this run.

DEHYDROGENATION OF MCH PLUS "IONOL" OVER TOP-RB CATALYST: LIFE TEST 5 Table

7 El	1022°F	
Catalyst volume:	Block temperature:	
IONOL		
MCH + 50 ppm	10 atm	50
Feed:	Pressure:	LHSV:

	Ĕ	Conv.	93.2	95.8	91.8	90.8	90.5	8	8	ુ જો	3° 60° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	88.1	87.9	87.2	86.9	31.3	87.÷	87.10 10	86,6	85,8	6.58	. \ .	35.4	84.5	
	***************************************	Toluene	47.76	92.2	90.4	80.3	50.1	89.2	38.7	88 V.	87.9	37.6	91. t	86.8	86.4	8.08	87.6	•	86.1	85.3	85.4	84.2	85.0	84.1	
	a .	Bengene	0.5	6.0	, 0	a 0	0.2	ر. 0	ر د د	v.0	<i>و</i>	0.0	5.0	0.5	0.5	4.0	0	0.0	o.2	(V)	0.2	- 1 .0	0.1	0.1	n.
A 400 4 100 40	rroduct Adalysis,	Methyl- cyclohexane	0.1	0,1	0.1	0.1	0.1	0.1	°0	0.2	H. C	0.1	0,1	0.1	0.1	0.2	٠ ٠	0.5	0.1	0.1	0.1	0.1	0.1	0.2	before this run
6	T.	НОМ	6.8	7.2	တ	9.2	9.5	10.3	10,8		11.6	11.9	12.1	12.8	13.1	8.7	12.6	•	13.4	14.2	14.1	15.5	14.6	15.4	minutes
		Cracked		\ 0							0.2		0.2	0,2	o.°0	0.0	٠ د.	0.2	0.2	0.2	0.2	0.2	0.2	0.8	for 15
To canto		Catalyst	769	691	989	දි	88	88	673	678	673	919	678	676	919	889	969	893	891	689	8	689 639	887	685	hydrogen treated at 1022°F
Pomot	e.mor.redinet	Velî.	် လ	, <u>S</u>	88. 73.	. <u>.</u> 	882	క్ష	1 88	88	500	878	88 188	<u>8</u> 49	#88 #88	& %	882	885	ည္ထ	දිදි	876	878	876	<i>876</i>	n treat
	Restion	Time, hr	0.25	, 5,0	1.0	1.5	୦ . ଧ	2.5	0.0	3.5	0.4	4.5	5.0	5.5	6.0	6.25ª/	6.5	7.0	7.5	0.0	8.5	0.6	9.5	10.0	ددا
	Bin Kin	9547	117-1	117-2	117-3	11.7-4	117-5	117-6	118-1	118-2	118-3	113-4	118-5	118-6	119-1	119-28/	119-3	119-4	120-1	120-2	120-3	120-4	180-5	120-6	a) Catalys

Figure 6. DEHYDROGENATION OF METHYLCYCLOHEXANE CATALYST LIFE TESTS

Bench-Coale Catalyst Bushuatler Tests With Methy Loyalele care

The present contract calle for a catalyst development program in which condidate catalysts are rapidly screened in a micro-scale reactor (MICTR), and then the most promising are further evaluated in bench-scale tests. A bench-scale test procedure in dehydrogenal ion catalysts using methylogenomer feedstock has been devised, which gives a measure of the effect of temperature, pressure, space velocity (i.e., contact time) and catalyst stability over a three sour test period using a single charge of catalyst. This test involves taking a series of runs at 342 and 1022°F, 10 and 30 atm, and LEEV's of 50 and 100.

A number of catalysts that appeared promising under micro-scale testing were evaluated in our bench-scale test reactor. These catalysts contained varying amounts of active materials mounted on various supports. The tests were done in two groups with a test with the standard laboratory catalyst done in each group for reference. During the interval between the first and second series of tests, the Mechanite furnace liners warped and had to be replaced. The new liners made better contact with the reactor tube than did their predecessors. Presumably this better metal-to-metal contact enhanced the heat conductivity of the system and resulted in the higher MCH conversions for a given black temperature that was observed in the second series of runs.

The results of the tests, the conditions of each run, and the order in which the runs were made are shown in Table 6. Each catalyst was rated as to "Relative Performance". This rating was designed to show how the catalyst was performing at the end of the test, relative to the standard catalyst and quantitatively was taken as the ratio of the first order rate constant with the catalyst (k_c) to that with the standard catalyst (k_s) calculated from the MCH conversion of Run No. 7. Based on this criteria several of the catalysts tested appeared to be 25% to 50% bettyr then the standard catalyst. Activation energies for the various catalysts ranged from 10 to 17 kcal/mole. These values were calculated from the first order rate constants obtained from the data of Runs 1 and 2. Generally, there vis a parallelism between the ratio of the rate constants and the ratio of the activation energies $(E_{\bf c}/E_{\bf s})$ indicating that the better catalysts would be even more superior than the standard catalyst at higher temperatures. However, Cactors much as catalyst stability, effect on side reactions, and regenerability remain to be investigated. This will be studied in the course of future work.

Thermal Reaction of Methylcyclohexane Over Alumina

It was of interest to test the reaction of MCH over the aluminas that were used as supports for our platinum catalysts. These tests were carried out in the same manner as the thermal reaction tests, with alumina substituted for quartz chips (pages 20-22, reference 2, for detailed run procedures). Both Harshaw 0104 alumina and UOP R8 Base alumina were tested at 10 atm pressure, 1022-1293°F and at IHSV of 20 (20 ml alumina; 10-20 mesh).

Methylcyclohexane reacted readily over both aluminas to give cracked and dehydrogenated products. The liquid products were identified by GLC

TABLE 6. BULLINTION OF THIOTIC LATALYSTS: INSTITEMENTION OF MOST

			feed; Reaction Time; 20 min	· Sulla	ਰੰਗਰ ਹੋ ਹਵਾਲੇ	s 1	Pure Mathyloyolohezane 20 min	are		
Aur Ho.	-	2	က		s	ŷ	7	Zact, kcal/zole	Retio.	S 6 7 Real/Role Eo/Es Terformance,
Dicor reus, ** 842 <	23.88		C		2.3		1		Andrew Victorial physical designation of	the statement of the towns that the terminal statement is the terminal statement of the terminal statement is the terminal
Pressure, att.	13	16	30	ņ	10 10	10	36			
AS: 71	100	100	190	100	50	1.90	100			
MON Courection Ww.										

9374.	4.3,4	67.4	61.2	69.3	3,46	છે. ક	65.1	63 ,-1 e1	0 .4	<i>ੂੰ</i> ਜ
₫.	L	6.83	61.1	68.2	93.	0 79	64.5	11.7	85°0	G H
8	\$5.4	67.2	61.8	59,5	55.1	88.1	88.8	李芸芸	6.93	150
104	G. G.	65.5	60.7	57,7	31.6	65. b	2.89	8 E	с. Н	हो. इ.स.
<u>1</u> 80,7	\$5. \$3. \$4.	64.3	66.0	63.6	92.6	82°8	63.0	10,8	60.0	୍ଦ୍ର
₹ 6 1	ις. (1)	ට 'S 9	.09	£ 69	95 1	6.4.3	65.3	10.9	0.93	r5 H
廣	41.0	59.6	58.P	62,0	37. FS		56.5	r U	6,69	69 69 69
¥έ	33.00	47.3c)	49.70	47,5	69.0°)	() E * (2 th	39, 70	٠	i	69 C
ď.	, 'do', 458	13.40	•		1(4)		^	,	ı	 *!
35	, 24° 53°	€0, 8¢	42.70!	37.4	46.7	(a)	(a)	:	٠	<u></u>
9:5A	55.6	72.8	64.9	74.2	ئ ئ	72,1	72.6	15,2	1,28	988 E*
# <u>7</u> ,9	41.7	56.3	3.80	£8,4	95.9	63,3	36.6	17.	66.0	1.07
1054	47.7	\$0.8	€8. €	80.8	99.5	78.2	78.0	13.7	3.7.5	1,52
73	47.1	16.1	66.4	75.6	97.9	74.0	9. 74	13.0	1,10	े हर ज
1.80	8.3	o 59	55.2	70.3	99.0		87.8	6.6	9 G	3
37.17	90°,	18,3	65.7	79.6	93.4	5.8	75.5	13.6	10 m	35
0.6%	£4.3	73.6	62,4	 4.	98.7	72.3	71.9	e :	1.27	:4 117 -4
1998	48.6	78.	67.4	78.0	97.6	77.1	77.1	13.4	를 . 다. 전문 . 다	1,04
1978	48.2	17.0	65.4	7.7.	37.7	15.3	75.3	12.7	37.7	. S 1
197B	47.6	76.0	67.7	18.1	38.5	47.6	77.4	13.1	1,21	1,35

EVALUATION OF VARIOUS CATALYSTS: DEHYDROGEN/TION OF MCH Table 6 (Contd).

Pure Methyllcyclohexane 20 min Feed: Reaction Time:

Ref. No.	r=i	c4	ε	ぜ	က	ဗ	r-	Eact, kcal/mole	Ratio. Bc/Es	Relative Ferformance, Ko/ks
Block Temp, *P Fressure, atm	842 10	100	30	1022 10	10 50	10	† 9 9			
MSH Conversion, Sw. for Catalyne So.										
					Sec	Second Series	ries			
9874- 78)	52.3	78.0	72.6	80,1	97,0	75.2	75.5	11.9	1.0	1.30
1818	51.6	æ 6.	76.1	86.1	99.5	84,4	8.8	16.4	1.38	1.31
V5 C	44, 3	68.0	65.8	66.1	75.5	40.8	(q)	(o)	٠	(£)
1655	46.5	74.7	69.2	76.2	94.2	72.4	72.1	7.540)	0,62	6,3301
五 - 1	46.9	67.0	68.1	70.2	88.7	58.0	46.0	4.12°	ن ا ا	ر∵ 180 -
#96E	46.5	11.9	67.2	14.8	93.6	71.9	71.8	8,8	0.58	6,31
#GT2	52.4	82.5	75.9	85.4	0.68	38.8	78,8	17,2	47.	
1.563	50.3	82.1	74.5	83.6	98.7	81.1	£	16.5	1.39	.m
STOTE	60,7	83.4d)	80,9	24.80)	•	•	ŧ	g.1	•	ı
10080- 16A	50,0	78.7	72.9	81.4	97.7	76.6	77.1	12,4	1.04	3
10280- 243	50.0	80.7	0.0,	82.2	99.3	79.9	79,1	12,3	1.04	r d
3874-121A	55.8	84,30)	81.7c)e)	(a)	,	•	•	10.1	0.84	,

Frandaro 18 Ft on Al₂03 Catalyst. Catalyst Gatalyst Inactive. Catalyst Deartivating Durit the Test. Selectivity for Toluene = 64.45. Selectivity for Toluene = 63.55. 35553

analysis as methylcyclohexenes, methylcyclohexadienes, a) benzene, toluene, and cracked material (Table 7). Analysis of the light gas products are shown in Table 8. At 1203°F (block temperature) extensive reaction occurred with about 60% of the MCH converted. Under these reaction conditions 100-150°F temperature differences were observed between the block and catalyst bed temperatures. Heat sinks were low however due to exothermic hydrogen transfer reactions between the products. Lower conversions and heat sinks were observed at lower temperatures. MCF who more reactive over the Harshaw 0104 than over the UOP support. The data are presented in Table 7, which also includes data obtained previously, 2)3 with quartz chips.

First order rate constants were computed from the conversion of MCH. Based on these values at 1202°F the mactivity of MCH was 1.6/1.5/1 over Marshaw alumina, UOP alumina, and quartuchips. Further, the yields of dehydrogenated products and light gas products obtained with the aluminas were greater than those obtained with quartz chips. This enhanced reactivity of MCH over alumina could be a diffusion effect reflecting the greater pore volumes, and hence holding time, of the aluminas. Activation energies were computed from the first order rate constants and were 44.9 and 40.3 kcal/mole for Harshaw and UOP alumina, respectively, compared to 46.1 kcal/mole for the quartz chips. Figure 7 is an Arrhenius plot of the data for all three systems. It is doubtful that the differences in E values are significant. Although it is evident that the aluminas are weak catalysts for the cracking reaction, the effect in the temperature region of interest for catalytic reactions (i.e., below 1050°F) is probably unimportant.

Thermal Reaction of Ethylcyclohexane

The thermal reaction of ethylcyclohexane(ECH) was studied briefly under the previous contract. This naphthene appeared to be considerably less stable than the other monocyclic naphthenes that were subsequently tested. The ECH feedstock was a commercial product, "Prestical" grade and was passed over silica gel prior to use. Because the reactivity of this material was so much greater than that of the other monocyclic naphthenes, it was suspected that impurities present might be acting as "initiators" for the thermal reaction. Consequently a high purity ECH feedstock was prepared by the hydrogenation of ethylbenzene. This feed was tested at 10 atm pressure, 1022-1232°F, at LHEV of 20. The data are tabulated in Table 9.

The reactivity of this lot of ECH was lower than that of the "Practical" grade and was the same as that of MCH under the above test conditions. For example, at 1002°F a first order rate constant of 0.08 sec-1 was observed for both MCH and high purity ECH compared to 0.26 sec-1 for the "Practical" grade ECH (Table 15).2) With the high purity ECH the reaction was highly exothermic due to hydrogen transfer reactions and had a calculated exothermic heat of reaction of 500 Btu/lb at complete conversion. The product distribution for the light gas products is shown in Table 10. From the first order rate constants an activation energy of 48.7 kcal/mole was calculated compared to 43 kcal/mole with the "Practical" ECH. Figure 8 is an Arrhenius plot of the data. Figure 9 shows the relative reaction rates and entivation energies for the thermal reaction of various naphthenes. This includes the data for high purity ECH and replaces Figure 9 in a previous report.

a) See footnote (a), page 22 of reference 2.

THERMAL REACTION OF METHYLOYCLOHEXANE

Pressure: 10 atm LHSV: 20 Catalyst Volume: 20 ml Reaction Time: 20 mln

Catalyst	eng.	Quartz Chips	ips	Her	Hershaw Alumina-0104	unina-0	₹	don	Alunda	Alumine RB Bese	96
		8277			8	-54.06			8	9645-	
Munder	57	51	52	82	83	100-1	100-3	103-1	103-3	104	105
Temperature, °F											
Block Well	1112	2887	1256	1013	1100	1202	1293	2020 2010 2010	21.48	1202	1205 1266
Catalyst Bed	1067	1152	1191	3	1064	1107	1911	970	1033	1083	128
Product Analysis, Sw											
НОН	8.8	79.1	52.3	98.1	89.5	66.8	37.4	6.48	% %	59.5	40.2
Methylcycloherenes and	2.8	7.7	10.5	4	 	5.3	5.1	0.7	3.8	3.7	5.2
Benzene	0.3	0.7	3.1	t	7.0	2.3	6.6	0.1	9.0	9	3
Tolueze		4.0	2.2	1	נינ	7.6	8.8	2,2	٠. ن	, B	12.5
Heavier Than Toluene		i	9.0	ì	,	0.3	0.9	ł	1	8.0	0
Cracked, Liquide;	8.2	H .	13.6	9.0	2.5	7.9	70.	3.7	9.0	8.5	12,4
Cracked, Light Gas	,	9:	17.7	1	4.	0.01	30.5	0.5	0.8	4 ,	8.8
MCH Conversion	11.2	33.6	17.74	1.9	10.5	33.2	62.5	5.1	13.4	8.08	59.8
First Order Rate Constant, sec-1	₹ •	0.03	0.82	ı	0.035	0.130	0.329	0.015	140.0	0.188	0.306
E, act, keal/mole	V	-t.∂4	<u> </u>	ı	>	14.9	^	1	>	40.3	1
Heat Sink, Btu/1b		-				_	,			•	
Reaction	-	∞	ホ	 1	12	83	65	r=1	٥	35	2
Total at Block Temp	126	1003	경	848	932	1017	1135	S 5	88	1030	1101
Total at 1540	1754	1150	1157	1211	1152	計訂	1185	121	- 138 - 138	11.55	1151
a) Lighter than MCH.											

TABLE 8 THERMAL REACTION OF METHYLCYCLOHEXANE

Gas Phase Product Distribution

Pressure: 10 atm LHSV: 20 Catalyst Volume: 20 ml Reaction Time: 20 min

Run Number	8077 58 0) L	961	+5 -	
nun number	8277-58-2	100-1	100-3	104	105
Catalyst	Quartz Chips		shaw Alumina	UOP -Ré	Base pina
Block Temperature, °F	1293	1202	1293	1202	1293
Conversion to Light Gas, fw	£1.5	10.0	30.6	8.4	31.8
Product Analysis, fv					
H ₂	18.6	62.7	37.8	65.3	43.7
CR4	39.4	21.6	31.1	21.4	30.4
ිgH ₄	16.0	5.2	9.2	4.4	7.5
C ₂ H ₈	11.0	4.8	8.9	4.0	7.5
C ₃ H ₅	9.5	2.9	6.2	2.5	5.0
Calle	2.1	1.2	2.6	1.0	2.2
C₄H _B	1.0	0.2	0.7	0.2	0.5
C⁴ਜ ⁸	2.6	1.1	5.h	0.9	2.0
C4H1C	0.2	0.1	0.4	0.1	0.3
C5H10	-	0.1	0.3	0.1	0.3
C ₅ H ₁₂	-	-	0.1	_	0.1
Higher than Cs	0.1	0.1	0.3	0.1	0.3

Figure 7. THERMAL REACTION OF METHYLCYCLOHEXANE

OVER ALUMINA

Temperature Coefficient

Table 9. THERMAL REACTION OF ETHYLCYCLOHEXANE

Pressure: 10 atm LHSV: 20

Reaction Time: 20 min Catalyst Vol: 20 ml

Catalyst: Quartz Chips

Run No. 10100-	12	17	14-1	14-3
Temperature, 'F Block Wall Catalysi Bed	1022 1022 1013 986	1112 1112 1101 1072	1202 202 1180 1130	1295 1295 1247 11 7 5
Product Analysis, ** MCH U1 ^a) ECH U2 ^a) Benzene U3 ^a Toluene Ethylbenzene Heavier Than Ethylbenzene Cracked, hiquid Light Gas	0.4 99.0 0.0 0.0 0.0 0.0 0.4 0.0	0.5 2.1 92.0 0.0 0.0 0.0 0.0 0.0 0.0	1.3 5.0 77.2 0.9 0.5 0.0 0.0 5.0	3.0 9.6 42.5 1.4 1.4 0.5 11.0 26.3
ECH Conversion, %	1.0	8.0	22.8	57•5
k, Overall, sec-1 E, act, kcal/mole	••	0.025	0.081 - 46.7 —	0.278 >

a) Unidentified.

Table 1C. THERMAL REACTION OF ETHYLCYCLOHEXANE:
GAS PHASE PRODUCT DISTRIBUTION

Pressure: 10 atm LHSV: 20

Run No. 10100-	13	14-1	14-3
Block Temperature, °F	1115	1202	1295
EUH Conversion, Fw	8.0	22.8	57.5
Conversion to Light Gas, Aw	3.0	10.0	26.3
Gas Product Analysis, /v H2 CH4 CgH4 CgH6 CsH6 CsH6 C4H6 C4H6 C4H6 C4H10 C5H10	12.6 42.3 21.1 17.5 2.7 1.5 0.7 0.0	11.5 34.6 23.4 20.4 5.1 1.9 0.3	12.8 34.3 21.3 19.2 6.4 2.0 2.1 0.3

Figure 8. THERMAL REACTION OF ETHYLCYCLOHEXANE, TEMPERATURE COEFFICIENT

Figure 9. RELATIVE RATES AND ENERGIES OF ACTIVATION FOR THERMAL REACTION OF NAPHTHENES

のでは、これでは、日本のでは、

AFAPL-TR-67-114 Part I

If the employment of thermal cracking as a heat sink reaction becomes attractive, it will be worthwhile to investigate in more detail the nature of the impurities in the "Practical" grade of ECH that were responsible for the enhanced rate of reaction. However, it will also be necessary to determine if it is possible to simultaneously control the exothermic H-transfer reactions which reduce or destroy the endothermicity of the overall reaction.

Dicyclic Naphthenes

Dicyclohexyl

Reaction Rates for Dehydrogenation of Dicyclohexyl and Phenylcyclohexane

The dehydrogenation of dicyclohexyl (DCH) to dephenyl (DP) was shown to proceed in two detectable steps, in which phenylcyclohexane (PCH) was an intermediate product. In this earlier work first order rate constants and apparent activation energies were calculated for the dehydrogenation reaction, based on the rate of disappearance of starting material. Presumably these values were for the first reaction step, namely DCH \rightarrow PCH + 3H₂. Using the data of this earlier work, the rate constants and apparent activation energies now have been calculated for the second reaction step, PCH \rightarrow DF + 3H₂, following the method of Wheeler. In his treatment of a system using a porous catalyst, the fraction of DCH converted to PCH(α B) in terms of the fraction of DCH reacted (α A) and the selectivity factor S, is given by:

$$\alpha_{\rm B} = \frac{s}{s-1} \left[(1-\alpha_{\rm A})^{\frac{1}{s}} - (1-\alpha_{\rm A}) \right]$$
 (1)

where $S = \frac{k_1}{k_2} = \frac{\text{rate constant for DCH}}{\text{rate constant for PCH}} \xrightarrow{\text{PCH}} DP$

This equation is a rearrangement of Wheeler's Equation 92. By trial and error a value of S was obtained that satisfied equation (1) using values of α_B , α_A and k_1 obtained in previous work. It was then possible to obtain k_2 from S.

The results of these calculations with two different sets of data are presented in Table 11. At low temperature (842-932°F) the dehydrogenation of DCH to PCH was faster than the dehydrogenation of PCH to DP, and the overall reaction was more selective for PCH than DP. At 1020°F and higher the dehydrogenation of PCH to DP was faster and high selectivities for DP were obtained. The apparent activation energy for the reaction PCH \longrightarrow DP, calculated from the rate constants (k_2), was 43 kcal/mole compared to 8 kcal/mole for DCH \longrightarrow PCH. Figure 10 is an Archemius plot of the data. This suggests that the change in DP selectivity with design rature is at least in part, a kinetic effect.

When we study this reaction in the FSSTR where considerable is a real drop, higher linear velocities and different temperature profiles which the catalyst bed, it will be interesting to see if the

Table 11. COMPARISON OF REACTION RATES FOR DCH ---> PCH AND PCH ---> DP

Pressure: 10 atm

Feed:

98.4% DCH 1.6% PCH

Run No. 9426-	62-1	62-3	63	93-1	93-3	94-1
Temperature, °F						
Block	932	1055	1112	842	932	1022
Wall	819	880	963	756	824	891
$\alpha_{ extsf{A}}$	0.590	0.664	0.761	0.530	0.592	0.665
α _B	0.220	0.138	0.082	0.314	0.216	0.134
s	1.8	0.6	0.38	5.0	1.5	0.6
First Order Rate Constant for, sec-1						
$k_1 = DCH \longrightarrow PCH$	0.79	1.01	1.40	0.61	0.76	0.97
$k_2 = PCH \longrightarrow DP$	0.44	1.44	3.68	0.12	0.51	1.62

Figure 10. TEMPERATURE COEFFICIENT FOR THE DEHYDROGENATION OF PHENYL CYCLOHEXANE

additional emplications introduced by the consecutive reactions can be handled by our packed bed reactor program.

Dehydrogenation Over UOP-R8 Catalyst

Good catalyst stability for the dehydrogenation of dicyclohexyl (DCH) was observed with our standard laboratory platinum on alumina catalyst. For the dehydrogenation of decalin, moderately good stability was observed with this catalyst and poor stability with the UOP-R8 platinum catalyst. Thus it was of interest to test this commercial catalyst for the dehydrogenation of dicyclohexyl.

The tests were done at 10 and 30 atm pressure, 842-1022°F at LHSV's of 30-100. The test procedures and the method of analyzing the reaction products were the same as used in the experiments with the laboratory catalyst. 3)

At 10 atm pressure, good catalyst stability was observed at 842°F. At higher temperatures, however, catalyst bed temperatures increased during the run, signifying catalyst deactivation (Table 12). At 1022°F the deactivation was considerable and the DCH conversion at this temperature was less than that observed at 932°F (Table 12). In these experiments the magnitude of the catalyst bed temperature increase was taken as a measure of catalyst deactivation. DCH conversions at 842 ard 932°F observed with this catalyst were slightly higher than were observed with the laboratory catalyst; which suggests that initially the commercial catalyst was slightly more active. However, selectivities for diphenyl at a given conversion were slightly higher with the laboratory catalyst (Table 12; values obtained with the laboratory catalyst are shown in parentheses). These were abstracted from Table 22 of a previous report.³)

Increasing the pressure appeared to stabilize the catalyst (Table 13). Also, operating the catalyst at elevated pressure appeared to stabilize the catalyst for operation at 10 atm pressure. For example, at 10 atm pressure and 1022°F an increase in catalyst bed temperature of only 41°F was observed after operation at 30 atm (842°F, Table 13) compared to an increase of 108°F after operation at 10 atm (842°F, 932°F, Table 12).

The effect of pressure on conversion and selectivity for diphenyl was about the observed with the laboratory catalyst. The date are recorded in <u>Table 13</u> where the values obtained with the laboratory catalyst are shown in parentheses. These values were abstracted from Table 25 of a previous report. 3)

Operating the reactor at high conversion also appeared to stabilize the catalyst. Thus at 83.9% and 94.1% conversion increases in catalyst temperatures of only 26°F and 16°F, respectively, were observed (Table 14) compared to a temperature increase of 108°F at 60-65% conversion (Table 12; 10 atm pressure; 1022°F). The complete data for the runs a high conversion are shown in Table 14, which also shows the effect of space velocity on conversion and the effect of conversion on selectivity. The data obtained with the laboratory catalyst are shown in parentheses for comparison, and were abstracted from Table 24 of a previous report. 3)

Table 12. DEHYDRGJENATION OF DICYCLOHEXYL OVER UOP-R8 CATALYST: EFFECT OF TEMPERATURE

Fressure: LHSV:

10 atm 100

Catalyst Volume: Feed Composition:

7 ml 97.2% DCH 2.8% PCH

Run No. 10100-	24-1	24-2	25
Temperature, °F Block Wall Catalyst Bod	842 712 663 626 628-6 617-2	932 815-24 671-87 657-66 658-50 646-44	1022 921-42 781-878 752-860 727-63 707-12
ΔTmax °F, catalyst bed	-5	+1 6	108
Product Analysis, %w Cracked DCH U1 a) PCH U2 a) DP	0.6 42.2 0.0 37.9 0.3 19.0	0.6 34.2 0.3 30.0 0.0 34.9	2.0 37.3 3.0 16.6 0.0 41.1
DCH Conversion, %w	56.5 (52.2)	64.8 (58.3)	61.6 (65.4)
Yield PCH, %w	35.1	26.7	13.6
Selectivity for, %w PCH DP	66.2 36.3 (40.8)	41.2 55.4 (63.5)	22.1 69.6 -
k, Overall, sec ⁻¹	0.66	0.91	-

a) Unidentified.

Table 13. DEHYDROGENATION OF DICYCLOHEXYL OVER UOP-R8 CAT-INST: EFFECT OF PRESSURE

LHSV:

100

Feed Composition: 97.2% DCH 2.8% PCH

Catalyst Volume: 7 ml

	33-2	34	35
10	30	30	10
842 753-59 648-44 637-35 617-19	842 794-92 691-93 868 682 684 +2	1022 932-34 750-52 736-40 721 727-25 +4	1022 934-48 747-88 723-58 676-96 682-91 41
0.5 42.8 0.0 38.7 18.0	1.2 54.4 0.0 37.8 6.6	2.7 23.0 1.2 41.2 31.9	0.8 27.5 0.3 19.2 52.2
56.0 (52.2)	44.0 (38.5)	76.3 (75.3)	71.7 (70.3)
35.9	35.0	38.4	16.4
64.1 33.3 (38.4)	79.6 15.5 (16.9)	50.4 43.0 (40.5)	22.9 75.0 (74.2) 1.206
	842 753-59 648-44 637-35 617-19 617 +2 0.5 42.8 0.0 38.7 18.0 56.0 (52.2) 35.9	842 842 753-59 794-92 648-44 691-93 637-35 868 617-19 682 617 684 +2 +2 0.5 1.2 42.8 54.4 0.0 0.0 38.7 37.8 18.0 6.6 56.0 44.0 (52.2) (38.5) 35.9 35.0 64.1 79.6 33.3 (38.4) (16.9)	842 842 1022 753-59 794-92 932-34 648-44 691-93 750-52 637-35 868 736-40 617 684 727-25 +2 +2 +4 0.5 1.2 2.7 42.8 54.4 23.0 0.0 0.0 1.2 38.7 37.8 41.2 38.7 37.8 41.2 18.0 6.6 31.9 56.0 (44.0 76.3 (52.2) (38.5) (75.3) 35.9 35.0 38.4 64.1 79.6 50.4 33.3 (38.4) (16.9) (40.5)

Table 14. DEHYDROGENATION OF DICYCLOHEXYL OVER UOP-R8 CATALYST: EFFECT OF CONVERSION ON SELECTIVITY FOR DIPHENYL

Pressure: 10 atm Catalyst Volume: 7 ml

10 atm

Fecd Composition: 97.2% DCH 2.8% PCH

Run No. 10100-	27-1	27-2	28-1	28-3
LHSV	50	30	50	30
Temperature, °F				
Block	842	842	1022	1022
Wall	774	779	936-38	948-54
Catalyst Bed	653	686-82	800-26	882-96
	633-35	622	772-92	810-26
	653	650-48	729-30	763-70
	658-55	655-53	738-29	781-771
△Tmax, °F, Catalyst Bed	+2	-14	26	16
Product Analysis, %w				
Cracked	0.3	0.3	1.2	2.0
DCH	22.6	10.0	15.6	5-7
Ωs)	0.0	0.0	0.9	3.6
PCH	37.4	27.1	10.3	4.9
DP	39.7	62.6	72.0	83.8
DCH Conversion, % w	76.7	89.7	83.9	94.1
	(78.3)	(93.2)	_	(93.8)
Yield PCH, %w	34.6	24.3	7•5	2.1
Selectivity for, % w				
PCH	45.1	27.1	8.9	2.2
DP	53.4	71.6	88.3	91.6
	(57.0)	(79.0)	-	(95.4)
k, Overall, sec-1	0.61	0.57	0.86	0.81

a) Unidentified.

In summary then for the dehydrogenation of DCH, the commercial UOP-R8 catalyst was less stable and slightly less selective for diphenyl than the laboratory platinum catalyst. The effect of pressure and space velocity on convergion and on selectivity for diphenyl appeared to be the same with both catalysts. The commercial catalyst was stabilized by operating the reactor at a) higher pressures (20 to 30 atm); b) high conversion; c) 30 atm pressure prior to operation at 10 atm pressure. The effect of high pressure is generally favorable for the intended use since it is anticipated that the fuel will enter the reaction zone at several hundred pounds pressure. The effect of pressure and high conversion on catalyst stability during the dehydrogenation of naphthenos is discussed in detail in a later section.

Decalin

Reaction Rates and Equilibrium Constants for Dehydrogenation of Decalin and Tetralin

Under our test conditions the dehydrogenation of DHN to naphthalene (N) was a two-step process with tetralin (tetrahydrenaphthalene; THN) as an intermediate product. Schematically the reaction can be represented:

The heat of reaction to form THN is 670 Btu/lb.

Both reactions were equilibrium limited at high conversions and in the lower temperature region at both 10 and 30 atm pressure. Reaction II was faster than I and the back reaction was significant for II but not for I. Figure 11 shows the thermodynamic equilibrium constants for Reactions I (Kp1) and II (Kp2) as functions of temperature. Kp2 was obtained by extrapolating the equilibrium data of Allam and Vlugter. Kp1 was obtained using the data of Miyazawa and Pitzer of the calculated Kp2. Figure 12 shows equilibrium concentrations of DHN, THN, and N at 10 and 30 atm pressure as a function of temperature using the calculated Kp1 and Kp2.

Comparative test data for the six feedstocks at 10 atm pressure and 842-1112°F are recorded in Table 15. At this pressure the decalin reactivities varied with each feedstock. Further, the reactivity (i.e., conversion) appeared to increase with increasing fraction of cis isomer in

Figure 11. EQUILIBRIUM CONSTANTS FOR DECALIN SYSTEM

Figure 12. EQUILIBRIUM COMPOSITION OF DECALIN SYSTEM

Table 15. DEHYDROGENATION OF DECALIN: VARIOUS FEEDSTOCKS

Catalyst: 1% Pt on Al₂O₃
Catalyst Volume: 7 ml
Pressure: 10 atm
LHSV: 100
Reaction Time: 50 minutes

	 -	1			,		L															
)(() ()		1				, [\$25 85	اير			1				
	1-65-14)	3	8	رَ ا	6-3	۲-	10:-1*)	104-5	105	106	182-181	182-3	इझ	181	166-10)	106-3	127-16)	25.53	727	119*)	35.	3
Feet		7-111			F-113			She 11	POHO!			1	E P1905,	Lot A			EK PL	P1905, Let	B		18: R	
set Damparition, 4						_																
thus AN		- 57.5 -		ļ	- 25.1		1	91.2	.2	\uparrow			57.9			Ì		37.7	1		11.8	
::::-::::		- 68.1		1	74.5		1	.8	8.8	1			57.6	\$		1	Ĭ	60.1	1		8. 8. 1.	1
£:		0.4		↓ ↓	*:0		<u> </u>	0.0	0	1			3			1		2.2	1		00	
Cemerature, **																					:	
13.53x	3	326	1022	3	36	7005	- 642 	8%	2202	त्राा	Z	ž	1002	त्रा	106.2	21112	æ	8	88	2%	2201	an
74 1 at #	1.197.2	15~24	867-90	1012	80-308	8 87:-50	756-58	805-15	874-65	83-58	19-951		13-819	89-84	8	39-19K	-82	a d	116	8	85.7.58	8
Catalyst Bed in tile	23-43	515-95	716-48		640-58 684-711	æ-æ₁ п	69-299	691-716	727-84	866-592	639-57	6.6-98	4 65-97.1	596-6:	718-68	966-611		714-6		621-469		TACLY.
	2-40	8 1,73	61-112	(48-35	5 666-75	15 709-16	11-499	695-705	729-48	828-521	637-48	1.1 08 4.19	7, 81-77	218-657	107-18	756-810	632-37	70-907		67-599		590 - 55
	\$3 ~ \$3	66	まー3/1-1 	644-50	16-989 0	138	92-129	704-711	25-7-52	792-306	655-62	69.78g	* 452	23-82	\$2	98-111	65.41	517	Ş.	676		197-F02.1
	11-200	ļ111-13		899-599 CSZ	8 707-11	11 763	88	716-23	761-63	815-15	611-13	711-112	752-56	810-06	24	Sto	65¥5è	745	8	839	×.	1 X1-0X
Commercial	5.	81	۶۷.		18 S	27 20	2	25	57	272	18	8	÷	₹.	9,	219	ä	SI	*	35	3	
Product Analysis, 5								-					-, -,									
AC-2-E1	57.9	33.6	15	6.53	χ,	29.6	71.4	63.1	55.6	18.0	37.8	33.6	29.6	23.4	4.62	23.9	38.9	8.8	21.8	37.1	ž.	5.7
6 2-50	2, ê	8.	0.11	\$.	×;	22.5	3.6	3.4	2.9	2.9	24.2	19.8	17.0	16.2	17.4	17.5	27.3	19.8	14.6	29.1	17.6	ž,
A.	0.0	0.2	0.2	0.0	•	1 0.5	0.1	9.5	6.9	1.5	0.0	0.0	0.0	6.0	0.1	9.0	0.0	0.1	٥.۴	0.0	0.0	2
80	9.8	4.7	e.	11.6	ъ;	2 5.1	4.7	0.4	3.0	2.5	1.6	7.1	5.1	5.7	5.1	4.2	6.01	5.8	3.6	8.2	5.7	17
Suphthalene	27.5	39.2	; ġ	29.0	41.4	4 51.2	39.1	28.0	37.6	45.0	28.3	39.5	2.2	55.5	6.74	53.5	25.5	6.44	3.5	33.7	3	ες <i>ξ</i> ,
(Jaoxede)	0.0	0.0	0:0	0.0		0 0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.7	6.9	5.	0.3	0.0	0.0	7.20	0.0	0.0	٠, د, ع
Dew Conversion, \$	8.9	4.94	55.3	,0°.2	2.64 2	2 56.5	25.0	33.5	41.5	1.67	35.1	14.2	÷.	55.9	1.8.1	54.1	31.6	4.8	61.4	41.9	0.0%	42.5
1, cec -1	747.0	0.646	0,879	0.498	3 0.693	0.930	0.284	614.0	0.58	0.774	20,400	6×.0	0.750	1.081	0.73	40.0	8	9.69.0	3.0%	0.555	0.727	•
E, sot, keal/mole		- 8.2	1		1.7		1	2.5	1	,	-	9.1	1	'	•	'		Î	,	- 0	1	•
Selectivity for, \$								_												. —		
Ę.	25.5	15.1	6.0	27.8	15.8	8 9.3	18.8	11.6	7.2	5.1	15.5	6.2	2.2	,	1.2	,	27.3	7.5	2.3	19.61	ដ	0.0
Naphthalene	74.5	æ	8.8	72.2	2 84.1	1 90.6	8	9.98	9.06	91.6	84.5	95.8	, o,	87.6	7.86		2.5	₹.3°	85.	8	38	, 'g
Rest Sick, Btu/lb																						
Beaction	X	8	514	253	3	230	222	8	TTK	797	爻	33	4 7	8%	1,56	\$14	276	977	oi c	E	ą,	8
Total at Block Temp	1037	2027	35.	106.5	5 1228	07	- X	1082	1ेव	138	1014	un	1724	1448	1,96,	14.54	8	E.38	3,77	1155	2,70	3
Total at 1340'F	13%	1467	1579	1418	3 1513	3 158	1287	1362	14:2	1509	1369	1,58	1539	1595	15:1	1579	1283	891	2563	1440	1531	35

b) Unidentified; heavier than decallin but lighter than tetralin.
 c) Unidentified; heavier to ann 9956-124 in which cracked component was 0.2\$ liquid and 7.0\$ light gas.
 d) Majame change in establish to deterperature during the nun.

the feed (Figure 13). There appeared to be some cis to trans isomerization during the runs (cf 9426-199-1 and 9654-6-1) hence the relative reaction rates of the cis and trans species could not be quantitatively determined from these data.

Some catalyst deactivation occurred during the 30 minute runs with all six feedstocks. This conclusion is based on the observation that the temperature of the catalyst bed increased during the run (Table 15). The magnitude of the temperature increase was taken as a measure of catalyst deactivation. Curiously enough, poorest catalyst stability was observed with one of the purest decalin feeds, namely, EK 1905 where at 1022°F the catalyst bed temperature increased 64°F during the run, compared to an increase of 43°F with the "Practical" grad EK P1905. (At 1112°F the bed temperature increased over 300°F with the EK 1905 feed.) This suggested that trace impurities in the P1905 were moderating the catalyst to suppress the deactivating reactions.

Rate constants and apparent activation energies were calculated from decalin conversion. Because of the concurrent deactivation during dehydrogenation these values were minimal. For the six decalins tested, the activation energies ranged from 7.7 to 12.2 kcal/mole (Teble 15). Presumably this variation in Eact was an isomer effect as the feeds with the highest and lowest Eact had the highest and lowest concentration of trans DHN, respectively. Indeed, it will be shown later that the apparent activation energy for dehydrogenation of trans isomer is greater than that for the cis species. Figure 14 is an Arrhenius plot of the data for the six decalins.

Figure 15 shows conversions as a function of furnace block temperature at 10 atm pressure. The slopes of the curves are reasonably parallel although conversion at a given temperature vary considerably between the decalins.

Selectivity for naphthalene was high and increased with increasing temperature. This was a kinetic effect that depended upon the relative ratio of Reactions I and II.

The first order rate constants for Reaction I were calculated from the rate of disappearance of DCH and are shown in <u>Table 15</u>. The rate constants for Reaction II for F-111 and F-113 DHN were computed following the method of Wheeler¹⁸) and are shown in <u>Table 16</u>. In both of these calculations, the effect of the back reaction was neglected.

a) In a system using a porous catalyst, the fraction of DHN converted to THN, in terms of the fraction of DHN converted, $\alpha_{\rm A}$, and the selectivity factor, $\alpha_{\rm B}$, S, is given by: 1

$$\alpha_{\rm B} = \frac{\rm S}{\rm S-1} \quad [(1-\alpha_{\rm A})^{\sqrt{\rm S}} - (1-\alpha_{\rm A})]$$
 (2)

where $S = \frac{\text{rate constant for DHN} \longrightarrow \text{THN}}{\text{rate constant for THN} \longrightarrow \text{N}} = \frac{k_1}{k_2}$

This equation is a rearrangement of Wheeler's Equation 92. By trial and error a value of S was obtained that satisfied Equation 2. k_2 then, was obtained from S.

Figure 13. TOTAL CONVERSION OF DECALIN AS A FUNCTION
OF cis-DECALIN IN FEED

Figure 14, DEHYDROGENATION OF VARIOUS DECALINS
Temperature Coefficient

Table 16. REACTION RATES AND EQUILIBRIUM CONSTANTS FOR DHN → THN + TH2 AND THN → N + 2H2

Pressure: 10 Atm

Decalin	T	F-111	rich d'Antique Milliotrativ		F- 113	
	 	942		[-	
Rur. No.	199-1		200	6-1	5645- 6-3	7
T perature, °F Block Vall Gas Exit	3ii2 738-43 670	932 815-24 712	1022 887-90 759	81/2 740-43 665	932 802-08 709	1022
Liquid Product Analysis, Www. DHN THN N	62.7 9.8 27.5	53.2 7.4 39.2	44.3 4.8 50.7	59.4 11.6 29.0	50.4 8.2	
വും വള S	0.370 0.094 0.42		0.555 0.744 0.10	0.112 0.45		0.565 0.047 0.12
Product Analysis, 5m DHN THN N Mg	22. 3 3.6 10. 5 63.6	15.8 2.5 .2.6 69.4	11.3 1.5 23.9 73.5	20.1 4.1 10.7 65.1	14.6 2.5 12.9 70.0	1.4
Popullibrium Constant DHN → THN + 3H ₂ Kp Kp Kp Kp/Kp THN → N + 2H ₂ Kp Kp	42 1,150 0.037 108 160	49 5,800 0.008 264 382	47 33,500 0.001 578 930	55 950 0.058 111 157	59 5,400 0.018 253 365	52
Kt/Kp First Order Rate Constants, sec ⁻¹ k ₁ = DHN → THN + 3H ₂ k ₂ = THN → N + 2H ₂	0.675 0.45 1.07	0.692 0.65 3.25	0.622 0.88 8.30	0.707 0.50 1.17	0.693 0.67 3.14	0.544 0.90 7. 50
Corrected First Order Rate Constants, sec-1 k ₁ k ₂	0.46 3.29	0.65 10.65	0.88 23.3	0.54 3.78	0.68	0.90 16.5
E, act, kcal/mole ^{a)} DHN → THN + JHz TRH → N + 2Hz		 8,2 - 23.7 -	>	< 6. € < 24.		- -

The extent to which the backward resistion affects the overall reaction rate can be determined by comparing the thermodynamic equilibrium constant $K_{\rm P}$, with an equilibrium constant calculated from the experimental data $K_{\rm P}^{\rm L}$. This was done for F-111 and F-115 DHN and the values for the various $K_{\rm P}$ and $K_{\rm P}^{\rm L}$ are shown in Table 16. For Reaction I the $K_{\rm P}^{\rm L}$ values were 0.06 to 0.001 times $K_{\rm P}$ while for Reaction II, the $K_{\rm P}^{\rm L}$ values were 0.71 to 0.54 times $K_{\rm P}^{\rm L}$. Thus the backward reaction had little effect on the overall rate of Reaction I, but had an appreciable effect on the overall rate of Reaction II.

The calculated rate constants were corrected for the effect of the backward reaction in the following manner. Near equilibrium, the rate of a first order reaction can be expressed by:

$$R = k P \left(1 - \frac{K_p}{K_p} \right)$$
 (3)

where k is the first order rate constant for the forward reaction and P is the reactant pressure. Thus the rate constants calculated from rate of disappearance of P (i.e., from R) will be low by a factor of

$$\frac{1}{1 - \frac{K_{\mathcal{D}}^{\mathsf{T}}}{K_{\mathcal{D}}}}$$

This correction has been applied to our calculated constants and the corrected values are tabulated in <u>Table 16</u>. Apparent activation energies were calculated from the corrected rate constants (<u>Table 16</u>) and <u>Figure 15</u> is an Arrhenius plot of the data for Reaction II. Appreciable catalyst deactivation was observed with F-113 DHN at 1022°F (<u>Table 15</u>), nence with this feed the activation energy was for the temperature range 842-932°F. Thus Reaction II was 2.2-3.4 times faster, and had an apparent activation energy 2.9-3.7 times greater than Reaction I.

Relative Stabilities of Laboratory Platinum on Alumina and UOP-R8 Catalysts

In a previous section of this report it was shown that the commercial UCP-R8 platforming catalyst was less stable than the laboratory platinum catalyst for the dehydrogenation of dicyclohexyl. In previous work with decalin, similar results were observed. It was of interest now to extend this work and to compare relative stabilities of these two catalysts for the dehydrogenation of decalin under a variety of reaction conditions.

Decalin F-113 feedstock was tested with both the laboratory and commercial UOP-R8 platinum on alumina catalysts at LHSV of 30-100, 842-1022°F at 10-30 atm pressure. This feed was the most reactive in previous tests³⁾ and contained 74.5% cis DHN, 25.1% trans DHN and 0.4% tetralin (THN). Product material was analyzed by GLC from which conversions and selectivities were calculated. First order rate constants were calculated from the rate of disappearance of starting materials.

Figure 16. TEMPERATURE COEFFICIENT FOR DEHYDROGENATION OF TETRALIN

一年の一日の一日のこと

In series of runs on single charges of catalyst at 10 atm pressure, the R-8 catalyst was considerably less stable and less active than the laboratory catalyst. For example, an increase in catalyst bed temperature of 192°F was observed with the R-8 catalyst (Table 17), compared to only 60°F with the laboratory catalyst (Table 19). (The magnitude of the temperature increase during reaction was taken as a measure of catalyst deactivation.) Further at 932°F, DHN conversions of 43.7% and 49.2% were obtained with the R-8 and laboratory catalysts, respectively. However, with both catalysts at 10 atm pressure, increasing the conversion reduced the catalyst deactivation markedly. Thus with the UOP-R8 catalyst, an increase in catalyst bed temperature of only 40°F was observed at 83% DHN conversion compared to 192°F at 48% conversion (Table 17; 1022°F). A similar effect was observed with the laboratory catalyst (Table 19). Increasing the pressure also decreased catalyst deactivation and with both catalysts no deactivation was observed at 30 atm pressure; but at 20 atm slight deactivation (25°F) was noted for the R-8 catalyst (Table 18).

Activation energies were calculated from the first order rate constants. At 10 atm pressure an activation energy of 7.6 kcal/mole was obtained with the laboratory catalyst, compared to only 4.8 kcal/mole with the R-8 catalyst. Presumably this low value with the R-8 catalyst was due to the rather extensive catalyst poisoning which occurred at 1022°F (Table 18). Indeed at 30 atm pressure where no catalyst deactivation was observed, an activation energy of 7.2 kcal/mole was obtained with the R-8 catalyst. Figure 17 shows Arrhenius plots of the data.

Possible reasons for the variation in stabilities of the two catalysts are discussed in a later section (pg 77).

Dehydrogenation Over 1% Platinum on UOP-R8 Alumina: No Halogen

In previous work on the dehydrogenation of Decalin (DHN), it appeared that the UOP-R8 platinum catalyst was considerably less stable than the laboratory platinum on alumina catalyst.³) As this latter catalyst was halogen-free while the commercial catalyst contained 0.76% halogen, it was thought that the instability of the commercial catalyst might be due to the halogen. Accordingly, a 1% platinum on UOP-R8 alumina base was prepared under halogen-free conditions and was tested for the dehydrogenation of F-113 Decalin (74.5% cis-DHN), at 10 atm pressure and at 842-1022°F. This catalyst had about one-half the weight of platinum per 7 ml volume as did the laboratory catalyst. The procedure for making the runs and analyzing the products was the same as the previous work.³)

Under the above test conditions, this catalyst was less active and less stable than the laboratory 1% platinum on alumina catalyst. Thus at 842 and 932°F conversions and first order rate constants were lower, and increases in catalyst bed temperatures were greater than those obtained with the laboratory catalyst (Table 20). Further, at 1022°F the conversion was less than was observed at 932°F indicating severe catalyst deactivation at the higher temperature (Table 20). This was not observed with the laboratory catalyst (Table 28 of a previous report³). No differences in selectivities for naphthalene were observed with the two catalysts.

Table 17 DESTRUCTION OF DECALEN CVER UOP-HB CATALYST - RETECT OF TEMPERATURE AND CONVENTION

Catalyst: G./6/-Catalyst Vol: 7 #1

G./6/ Pt on AlaCa

Ford: Fall's Decalin

Pressure:

10 sta

25.16 to see JUN 74.56 the JUN

C.47 THE

Aun No. \$545-	171-1	171-3	172	134	135-1	135-2	135
LINSY	100	100	100	50	3 ∪	50	30
Temperature, T							
Block	842	932	11322	842	842	1022	1022
Veli	752-4	835	909-38	752	761-85	805-14	923-28
Cetalyet Bed	635-48	689-722	776-968	640-49	650-60	770-851	838-7 8
·	617-22	662- 69	709-828	635-39	653-5€	746- 66	779-97
	620-24	566- 68	702- 47	649-51	675-82	768	802-10
	6?8 -3 0	671- II	722- 29	668-21	700-07	600-795	953-56
Alags: F. catelyst beda)	13	33	192	ĝ	10	81	40
Product Amelysis, Fe							
trans-DM	35.9	29.8	24.1	12.2	25.7	17.3	9.9
cia-DM	26.0	26.2	27.1	3.8	7.1	13.6	7.0
U	0-1	0.1	1.7	0.4	0.4	4.6	7.5
THAN	15.5	11.1	6,5	14.8	11.3	4.2	2.8
Hap thalens	21.4	32.8	39.9	38.5	54.9	59.6	71.7
Cracked, liquid	0.0	0.0	0.1	6.0	0.1	0.4	0.5
Ylaid THI, Fr	16,2	10.7	6,5	14.4	10.9	3.8	7,1
DAM Conversion, Fr	37.8	43.7	48.2	53.8	67.0	69.9	83.0
k, sec I	0.46	0.60	0.74	9,38	0.33	0.65	0.00
E, act, kcml/mole		4.8 -		-		-	•
Selectivity for, Fw		: 1					
The second	42.9	24.5	13.5	25.8	16.3	6.1	3,4
Haphthalens	\$6.8	75.3	83.7	72.7	83.3	80.5	78.8
Heat Sink, Btu/Ib			ļ				
Pasction	312	383	423	465	598	594	700
Tetal at Block Teap	1022	1163	1273	1175	1308	1444	1550
	1377	1448	1409	1530	1663	1659	1768

a) Maximum change in catalyst bed temperature during the rune.

Table 18. DEHYPHOGENATION OF DECALIN OVER UOD-RS CATALYST - REFERENCE OF PRESSURE

Catalyst: 0.75% Pt on Alg0s Catalyst Vol: 7 ml 100

Feed: F-113 Decelin 25.1% trans-DHN 74.5% cie-DHN 0.4% THN

Run 9645-	174-1	174-3	175	177-1	177-3	178
Pressure, ata	10	20	30	10	20	30
Temperature, *F				<u> </u>		İ
Plock		- 842		~	- 1022 -	
Wall	722-7	732	736-8	902-12		912
Catalyst Bed	632-44	642-38	65 3	722-887		876
	622-28		653	594-740		
	628-33	646-44	∂ 5 8	702~ 16		725-23
	637-40	655-53	668-66	716- 18	725-25	730-28
ΔT _{max} , *F, catalyst bed ^a)	12	16	-2	165	25	-4
Product Analysis, %						
trans-DHN	35.1	44.8	54.8	24.3	27.4	29.8
cis-DHN	26.8	16.8	12.4	23.9	20.6	17.1
U	0,0	0.1	0.0	1.2	1.4	0.6
THN	14.8	24.2	23.9	7.1	16.3	25.2
Naphthalene	23.3	14.1	8.9	43.5	34.0	27.0
Cracked, liquid	0.0	0.0	0.0	0.0	0.3	0.3
Yield THN, %w	14.4	24.3	23.5	6.7	15.9	24.6
DHN Conversion, %w	37.8		32,4	51.6	51.8	52.9
k, sec-1	6.46					
E, act, kcal/mole	7			30 atm p	ressure	
Selectivity for, %						1
THN	38.1	63.0	72.6	15.0	30.7	46.9
Naphthalene	61.9	36.8	27.4	84.7	66.0	51.4
<u> </u>			,	,		
Heat Sink, Btu/lb	710	207	243	453	430	422
Reaction	317	297		1 30 8		1272
Total at block temp	1027	1007	953 130 8	1425	1495	1487
Total at 1340°F	1382	1362	1,700	1429	1477	1401

Table 19. DRHYDROGENATION OF DECALIN OVER LABORATORY PLATINUM CATALICI

F-113 Decalin 25.1% trans-LHN 74.5% cis-DHN 0.4% THN
Feed:
1% Pt on Al ₂ 0, Feed: F-113 Decalin 7 ml 25.1% trans-LR 74.5% cis-DEH 0.4% THN
Catalyst: Catalyst Volume:

		-040			-00101			10000	
1146 (A	£-3	6-3	Ŀ	137	138-1	138-2	130-1	1 80-3	181-1
Et a duties and		0 ;	1	*	10		0	20	(°)
	1	00.1	1	30	50	100		30T	
Temperature of									
300 CG	29g	282	1022	1	- 1022	1		-1933	•
Train.	140-43	805-08	874-80	925-21	902-900	891-80	694-98	86 306	53-868
Catalyst Bed	640-58	584-711	132-92	761-61	752~56	770-88	720-50	(中・) 見い	741-37
	628-35	666-75	709-18	786-54	756-56	743-50	163-11	720-15	724-20
	35-6-5	286-91	738-38	848-40	795-94	763-66	7. 0.34	736-56	741-39
	80-899	70:-11	763-63	836- £7	833-33	792-94	164-66	753-66	776-70
Orner 'F, catalyst had Product Analysis, Ku	7 H	21	60	о 1	1	+18	30	1	4
trans-DW	28.9	23 23	20.5	69°	16.6	19.3	21.6	2. 8	
c1s-DHi	30,5	25.2	22.5	3	16.7	34	21.3	16.0	07
na)	G G	0.1	0.5	7.5	3°0	0.7	0.3	5	<u>ن</u>
THE	11.6	00 23	5.7	9 .0	e. 60	α 	ري د	₽ 3	च .
Naphthalene	28.0	41.4	51.2	82.4	62.2	4.3	30.6	0.54	58.3
Gracked, liquit	0.0	0.0	0.1	0.2	0.2	ා	0 0	0;	er er
194)	•	٠	•	* .0	9.0	0.3	•	٠	•
医生化性 医阴道 美田	3.5	7.8	4.7	5,6	2.7	£-	S,	, 4	\$. \$.
DES Conversion, Es	40.3	49.2	56,5	90.5	66.6	48.5	56.9	E	⊕ ⊕
K, 200.	6,498	0.693	0.900	1	•	ı	833	© (₹.0	0.325
E, act, Mosl/mole	*	7.6-	1						
Selectivity for, fiv									
NHL	27.9	15.7	ος ου	6.2	4	17.3	9,1	-: ::	.0 (C)
Haphthalene	72.1	84.1	90.8	91.4	94.)	79,8	90,9	£. 3	ट्य च
Heat sink, Et./13									
Resotian	253	445	520	820	808	399	514	:X: 4-3 W.F	er ver
Total reaction temp	1063	1228	1370	1670	1458	1294	1364	66 65 67 67	
Total at 1340cm	1418	1519	76.05	300	0 64 6	1000	064.		

Figure 17. DEHYDROGENATION OF DECALIN OVER UOP-R8 AND

LABORATORY Pt/Al₂O₃ CATALYSTS

Temperature Coefficient

Table RO. DENY ELECTRICS OF FEGALING TEXT OF PLATINUM
ON DOTAG BASE WITH NO HALOGEN

Pressure: 10 stm Catalyst: 1/ Ft on commercial IMSV 150 alumino base
Decalin: F-113 Feed: 25.10 trans-DHN 74.50 cis-DHN 0.49 TAN

Run No. 10100	21-1	21-2	22
Temperature, *F	1		
Block	842	932	1022
Wall	747-48	883-42	934-99
Catalyst Bed	655-66	702-1-7	885-982
	637-44	676- 9 3	790-970
	542-48	684-89	765-948
T •17	650-53	654-58	770-932
Tmax, *F, cotalyst bedd	(18)	45 (000)	183
	(10)	(27) ^{c)}	(4¢V ^{e)}
Product Analysis, w			
Cracked	0.0	0.0	1.9
trens-DHN	30.2ª)	27.1ª)	23.0
cis-DHN Ub)	35.9	31.1	41.1
THN	10.8	0.3	7.2 6.4
ບູ້ວົ)	0.0	7•5 0.0	0.4
Naphthalene	22.7	34.0	19.7
Yield THN, ww	10.4	7.1	5.1
Total DHN Conversion, A	33.9	41.6	35.6
	(40.2)9	(49.2)°)	(56.5) ^{c)}
Selectivity for, W			
THN	30.7	17.1	14.3
Naphthalene	66.6	81.0	55.0
k, overall, sec-1	0.41	0.57	- .
•	(0.50)c)	$(0.69)^{c}$	(೧ .୨୦) વ)

a) trans-DHN concentration in product higher than in feed due to cis-to trans-isomerization during dehydrogenation.

e) Vulues obtained with laboratory catalyst,

b) Unidentified.

d) Maximum change in catalyst bel temperature during the run.

AFAPL TR-67-114 Part I

Both the laboratory catalyst and the catalyst used in this test were prepared in the same manner. Both the alumina support used for the laboratory catalyst (Harshaw 0104) and the UOP-R8 alumina are high purity aluminas. While it is possible that the greater instability of the platinum on UOP-R8 alumina catalyst was due to lower platinum content, it appears more likely that the observed differences in catalyst performance are due to physical rather than chemical properties of the catalyst.

Extended Dehydrogenation Test With Laboratory Catalyst

In previous work on the dehydrogenation of various Decalin feedstocks, catalyst deactivation was observed during all of the runs.³⁾ These runs were of short duration (30 min) and it was of interest to see if the catalyst became stabilized with continued use. An extended run has now been carried cut with F-113 Decalin (74.5% cis-DHN) over a four-hour period at 10 atm pressure, LHSV of 100 and at 1022°F using the standard laboratory 1% platinum on alumina catalyst. The test was interrupted for 15 minutes after three hours to refill the feed reservoir, during which time the catalyst was hydrogen treated at the reaction temperature. The data are recorded in Table 21.

There appeared to be no stabilization of the catalyst during the four-hour test. Thus, during this time, conversion declined from 56.1% to 43.2% or about 8%/hour; and the catalyst bed temperature increased progressively from 694°F to 959°F with the "cold spot" moving down the catalyst bed (Table 21). Hydrogen treatment reactivated the catalyst temporarily. This suggests that the catalyst might be stabilized by the addition of hydrogen to the feed; or possibly by operating the reactor at higher conversion which would increase the partial pressure of hydrogen over the catalyst during the run.

Dehydrogenation of F-111 Decalin Over UOP-R8 Catalyst

In previous work it was observed that the laboratory 1% platinum on alumina catalyst was moderately stable with Decalin F-113 (74.5% cis) and showed good stability with Decalin F-111 (62.1% cis). The UOP-R8 catalyst was considerably less stable than the laboratory catalyst with Decalin F-113, and it was of interest to test the stability of this catalyst with Decalin F-111. The tests were carried out at 10 atm pressure, LHSV of 100 over the temperature range of 842-1022°F following the same procedure that was used for previous tests. 3)

With this feedstock lower conversions and rate constants and greater increases in catalyst bed temperatures during the runs were observed with the UOP-R8 catalyst compared to the laboratory catalyst (Table 22; the values obtained with the laboratory catalyst are shown in parentheses for comparison). At the highest temperature tested (1022°F) the increase in catalyst bed temperature was 157°F which was about four times the temperature increase observed with the laboratory catalyst (Table 22). Further, at this temperature, DHN conversion was less than was obtained at 932°F which indicates severe catalyst deactivation at 1022°F. At the lower temperatures, however, conversions and catalyst bed temperature increases were comparable to those observed with the laboratory

Table 21. DEHYDROGENATION OF DECALIN: EXTENDED CATALYST TEST

Pressure: 10 eta Catelyat: IS Pt on AlaDa LHSV: 100 Catalyst Vol: 7 al 25.1% trans-OHN Temperature: 1022°F Feed: Decalin: F-113 74.5% cts-DHN Run No .: 9347-184 0.45 Tetralin

Total Reaction Time, min	0	30	60	90	120	150	1802)		210	240
Temperature, *F										
Vail	896	891	891	892	898	902	910*)	892	902	918
Catalyst Bed ^{b)}	694	711	725	752	795	858	932	835	918	959
-	705	711	716	723	729	743	770	727	756	799
	738	743	745	748	748	752	759	738	747	759
	761	765	766	768	770	770	768	744	756	751
ATmax, F, catalyst bods)		17	!4	27	43	63	74	-97	73	43
Product Analysis, 🎾		l								1
trans-DHN	-	21.1	2!.1	•		•	20.6	-	20.9	20.6
cis- DiM	-	22.8	25.5				35.2	•	32.7	36.0
THN	-	5.4	5.3	-		•	4.7	•	5.2	5.€
Naphthallene	•	50.7	48.1	-	-	•	39.5	-	41.2	38.4
Total DHN Conversion, 🛵	•	56.1	53.2	-		-	44.0	•	46.2	43.2

- a) Catalyst H₂ treated for 15 minutes after this run.
- b) Cold spot moved down the catalyst bed with increased reaction lime.
- c) Maximum change in catalyst bod temperature during the run.

Table 22. DEHYDROGENATION OF F-111 DECALIN OVER UOP-RE CATALYST

Pressure:	10 atm	Catalyst:	lý Pt on AlgOs
Decalin:	100 F-111	Feed:	62.15 cis PHV
Catalvst Vol:	7 ml		0.45 Tetralin

Run No. 9347-	168	169-1	169-2
Temperature, °F Block Wall ATmax, °F; catalyst bed	842 729-36 689-98 639-49 639-44 646-49 10	932 819-30 752-72 704-11 700-05 704-68 20 (18) ^{d)}	1022 928-984 964-972 804-941 776-880 768-824 137 (32)4)
Product Analyses, pw Cracked trans-DHN cis-DHN yb) THN yb) Naphthalene	0.0 40.7 ⁸) 20.8 0.1 13.5 0.0 24.9	0.0 34.1 22.6 0.4 7.9 0.0 35.0	0.5 29.4 27.5 4.1 5.6 0.2 32.7
Yield THN, Au Total DHN Conversion, Au	15.1 38.3 (36.9) ^{d)}	7.5 43.1 (46.4)d)	5.6 42,90) (55.3) ^{d)}
Selectivity for, fw THN Naphthalene k, overall, sec-1	34.2 65.8 0.47 (0.45)d)	17.4 82.6 0.59 (0.65)d)	13.1 00.5 (0.88%)

a) trans-DHN concentration in product higher than in feed due to trans to dis isomerization during dehydrogenation.

b) Unidentified.
c) Conversion low presumably due to catalyst deactivation.
d) Values obtained with laboratory 1/2 Pt on Algos catalyst.

catalyst. Possible reasons for differences in behavior between the UDP-R8 and the laboratory catalyst are discussed in a later section of this report (pg 77).

Dehydrogenation and Isomerization of Decalin Isomers

In previous work on the dehydrogenation of Decalin (DHN) the cis species appeared more reactive than the trans. This conclusion was based on comparison of overall reaction rates of different feedstocks that contained different concentrations of the cis and trans species. We have since prepared two DHN feedstocks, one with a high concentration of the cis isomer, and the other with a high concentration of the trans isomer, and those feeds have been labydrogenated over our standard if platinum on atomica catalyst. The dehydrogenations were carried out at both low and moderate conversions in order to study rates of isomerization and rates of dehydrogenation.

The experious were carried out at 662-1112°F and at 10-30 atm pressure. The catalyst was 2 ml of 1% Pt on Al₂O₃ that was diluted with 5 ml of quartz chips. Product material was analyzed by GLC, from which conversions and selectivities were calculated. First order rate constants for DHN dehydrogenation were calculated from the rate of disappearance of starting material. The cis DHN and trans DHN feedstocks were prepared by fractional distillation and had the following compositions:

	cis-DHN	trans-DHN
% cis-DHN % trans-DHN	95.0 4.1	4.9 95.1
5 Tetralin	0.9	0.0

These compositions were nonequilibrium compositions over the temperature range of our study (<u>Figure 18</u>). Both feedstocks were tested at LHSV of 200, 842-1112°F and at 10-30 atm pressure. In addition the cis-DHN was tested at LHSV of 400, 662-842°F, 10-30 atm pressure. The data for the cis and trans feeds are tabulated in <u>Table 23</u> and <u>Table 24</u>, respectively.

For dehydrogenation the reactivity of cis-DNN was greater than that of trans-DHN but not by a factor of two as was estimated in the previous work. As an example at 10 atm pressure and 842°F, 37.5% cis-DHN conversion was observed compared to 29.7% trans-DHN conversion ($k_{\rm CIF}=0.935$; $k_{\rm trans}=0.706~{\rm sec^{-1}}$). Similar higher cis-DHN reactivities were observed at higher temperatures and pressures (of runs 129 and 130, <u>Table 23</u>; and Runs 193 and 194, <u>Table 24</u>). No isomer effect on selectivity for naphthalene was observed with these feedstocks.

Apparent activation energies for DHN dehydrogenation were calculated from the first order rate constants and presumably are for the reaction DHN \longrightarrow THN. Under similar reaction conditions $E_{\rm act}$ for trans-DHN was about 30% greater than $E_{\rm act}$ for cis-DHN. Further, the $E_{\rm act}$ for cis-DHN were greater for this isomer at lower temperatures and conversions (Table 23). This change in $E_{\rm act}$ with temperature or conversion might be a kinetic effect (i.e., the reaction changing kinetic order) or a heat transfer effect.

Table 23. DEPTOROGENATION AND ISOMERIZATION OF c18-DECALIN

trans/cis Ratio in Feed: 0.043
Catsiyst: 15 Pt on Ai_O_2
Catsiyst Volume: 2 mi
Cotsiyst dijuted with 5 mi quartz chips

Food: 4.16 trans-USB 95.07 ets 218 0.95 788

UMSW Fressure, sta Temperature, F		8 3	137-1	191	25	136-2	-82	123-3	8	131		133-! 133-2	존	135
Fresnurs, sta Temparaturs, F				50		•				8				
Temperature, F Block	ļ	2	1		8	1		Ī		1		8		
Brock										_				
	299	752	842	299	752	842	842	932	220	1112	642	646	1022	Ξ
	5	654	765	623	389	780	22	842	912	8	28	38	25	5
Catalyst (celd apot)	283	651	ě	619	653	678	594	745	815	28	673	22	712	8
AT, Cetalyst	0	۴	Ξ	0	0	0	12	12	K	8	2	0	2	10
Product Analysis, Se														
	9.5	8.	 	24.6	22.9		9.6	7.6	8.4	.;	28.5		7.=	9
	90.08	75.7	8,38	67.8	80.2	55,4	52.0	14.7	3	÷0.5	20.4		2.3	₩. 9.
- E	8.8	0.9	7.1	0.7	14.3		8.9	6.9	5.4	5,5	27.1		17.0	~
Raphtha Jene	3,3	10.2	19.0	9.0	2.6		28.5	40.6	49.2	48.9	6.9		48.4	62.
Others*)	0.0	0.0	0.0	0.0	0.0		0.0	0.2	0.2	2.0	0.0		0.9	7
CHA Conversion, Sy	9.0	15.3	24.2	9.9	0.91		37.5	46.8	53.8	53.6	42.3	55.4	65.0	20
E, act, kcai/acie	1	2	1				•	9			,	•		•
(cehydrogenet on)					<u>*</u> ,	} :						į		
rield War, F.	5.6	5.1	6.2	0.9	13.4	17.4	8.0	ဖွဲ့	1.5	9	29.3	73.8	16.1	5
Salectivity for, Sw														
-	6.29		3.5	6.08	83.7				8.4	8.6			24.5	80
Kaphthalone	37.i		74.4	 	16.3	38.0	_		9.16	7.16			74.4	₩,
Yield trans-OH", Sy	7.	0.	0.4	8	18.8			3.5	0.7	9.7	25.6	15.9	12.5	3.
A cits to trans	5.7		4.2	2i,6	19.8			3.7	0.7	=======================================	_		13.1	3.
T trium at Equilibrium			8	5	8		8	8	3	8				2
(baris vell temp)	7.6	2.60	? 8	3	S C	8	93.1	⊋ 8	8		0.20	8	3	3
Srans/els Ratio in Product	0.117	. O.	3.122	0.302	0.379	0.345	0.185	0.13	0.119	0.076	206.0	979.0	0.511	0.357
Rate Constants, sec-					_							_		
Delydrogenation	8.0	0.63	9:	8	22.0					12.21	0.38		2.7	==
cin trace incommittation	0.24	0.21	0.3	ਲ,	6,39		0.30			0.0	8.0	0.41	×.	%
trims of a home tration	0.03	0,025	1,043	0.036	0.045	20.0		0.036	0.045	920	2100		0.066	5

Table 24. DEHYDROGENATION AND ISOMERIZATION OF trans-DECALIN

18.55	12 Pt on A120s	뎹	
trans/cis Ratio in Feed:	N Catalyst:	Catalyst Volume:	ml quartz chips
LHSV: 200	Feed: 95.1% Trans DHN	4.9% cis DHN	Catalyst diluted with 5

Run 9645-	193	194-1	194-3	195	197-1	197-3	193	159
Pressure, atm	>	CT		1	•	×		1
Temperature, 'F								
Block	312	938	1322	2717	24 25	938	1022	1112
Wall	731	S 28	715	1029	282	Σ‡3	91.8	80
Catalyst	716	763	313	1013	712	770	0 26 26	ŝ
△f, Catalyst	9	ה	13	103	0	C	_ _	Н
Product Analysis, Sw								
	67.5	56.8	76.2	9.44	\$	54.3	43.4	-7. Ω
cis DHN	્યું	.a. (v)	ં	3 3	3.5	2,3	0	(-
NEC	7.7	2.6	3.5	(A)	15.3	13.0	9	ŭ,
Nephthalene	25.4	37.0	47.6	15.2	17.2	, N	(C) 1/1	9
Othersa)	0.1	0.0	9.0	0, 70	0.0	(0)	. 1	-
DHN Cenversion, Sw	29.7	6.04	51.3	52.1	2.5	43, 44	54.3	98
k, sec 1, dehydrogenation	0,77	1.08	1.62		0.27	0,0	0	Ö
E, act. kcal/mole	•	- 11.9		,	1	11.		
(dehydrogenation)								-
Yield Till, Sw	5.7	3,5	3.6	3.5	15.3	13.0	9.6	6.5
Selectivity for, Sw	•	1				`	•	
THAN	12.5	တ	7.0	7.5	47.1	30.0	17.5	60
Naphthalene	87.3	20.7	91.7	96.3	52.9	69.8	31.7	35.0
Yield cis DHN, %w	رم	25.5	0.0	-1.6	-1.7	-5.6	13.7	, r
trans/cis Ratio in Product	24.1	23.7	23.1	13.5	20.2	23.6	24.1	\ \
S cls-Din at Equilibrium	3,2	0.0	11.6	14.2	8	10.0	11.7	
(Basis Wall Temperature)					•	,	į	

a) Cracked and heavier than haphthalene.

Arrhenius plots of the data for dis and trans-DHN at moderate conversion (LHSV = 200) and for dis-DHN at low conversion (LHSV = 400) are shown in Figure 19.

Catalyst deactivation occurred during dehydrogenation with both feedstocks. The increase in catalyst bed temperature was taken as a measure of catalyst deactivation, and the maximum temperature increase during each run is recorded in <u>Tables 23 and 24</u>. Deactivation was slight at 1022°F,10 atm pressure, and lower temperatures but was appreciable at 1112°F where the overall DEN conversions were about that observed at 1022°F. However, as in other cases, the effect was less at the higher pressure.

Rate constants for isomerization were calculated using the equations set down by Benson. 20) These show that for a reversible reaction:

$$A \xrightarrow{k_1} B$$

that

-
$$(k_1 + k_2)t = 2.3 \log \frac{AK - B}{A_0K - E_0}$$

where k₁ and k₂ are the rate constants for the forward and backward reaction, respectively,

 $A_{\rm O}$ and $B_{\rm O}$ are the concentrations of cis and trans-DHN, respectively, in the feed

A and B are the concentrations of cis and trans-DHN, respectively, in the product

K is the equilibrium constant and = k_1/k_2

t is the reaction time which in a flow system is the residence time or Apparent Contact Time (ACT)^a)

Interpretation of the isomerization rate data was complicated by the fact that the rate of dehydrogenation of cis-DHN was greater than that of the trans species. The method used to calculate the isomerization rate constants did not take into account the relatively higher rate of disappearance of cis-PHN during dehydrogenation. Thus the calculated isomerization rate constants for cis to trans will be maximum values while those for trans to cis will be minimum values.

a) The Apparent Contact Time is related to the LHSV in the following manner:

 $ACT = \frac{3600 \times 273 \text{ Pr} \times MW}{LHSV \times T_R \times \rho \times 22,412}$

where PR = reactor pressure in atmospheres

TR = reaction temperature in "K

MW = molecular weight of feed

 ρ = liquid density of the feed.

(This equation neglects the volume change during reaction).

With dis-DHN feed at the higher space valuedly (UHST = \$00) the rate of dis to trans-isomerization was 7-10 times greater than the rate of trans to dis, at both 10 and 30 atmorressure (Table 27). We clear out temperature effect was observed which suggests that the activation energy for isomerization was vary low. The isomerization rates at 30 atm pressure were greater than those at 10 atm (632-752°F), which may have been because there was less dehydrogenation at the higher pressure.

At the lower space velocity (IESV = 200) the rate of dis to trans was 4.5 to 6 times greater than the rate of trans to dis (Table 21). At both 10 and 30 atm pressures the rates appeared to decline with increased temperature, possibly due to the increased rate of the competing dehydrogenation reaction. As at the higher space velocity, isomerization rates were greater at the higher pressure.

No overall trans to dis-isome isation was observed with the trans-DHN feed. Thus no grantitative conclusion regarding the relative isomerization and denyirogenation rates were obtained from these experiments. Qualitatively, however, it appeared that the rate of isomerization of transto dis-DHN was lower than the rate of dis-io trans-domerization and lower than the dehydrogenation rates; since during reaction there was a net loss in the dis-component of the feed even at up to 50% DHN conversion (Table 24).

The reactions of the DHN isomers for dehydrogenation and for isomerization can be represented by:

where A = cis-DHN

B = trans-DHN

C = THN

The relative rates of the various reactions can be obtained by comparing the calculated rate constants. For convenience these have been collected on Table 25. The cis isomer was more reactive than the trans for both dehydrogenation and isomerization. At 30 and pressure, dehydrogenation was faster at 932°F and higher temperatures, but below 932°F isomerization was faster; presumably due to a combined effect of equilibrium and activation energy on the dehydrogenation reaction. For isomerization the rate of cis—DHN was five to ten times faster than the rate of trans. For dehydrogenation the rate of cis was 6-30% faster than the rate of trans.

In summery, during the dehydrogenation of a mixture of cis and trans-decalin ischers at 842-1112°F, 10 to 30 atm pressure, the cis isomer will dehydrogenate more rapidly than the trans; no trans to cis-isomerization will occur; some cis to trans-isomerization will occur; and the relative concentration of the trans to cis in the product will decrease with increased temperature due to the increase in rate of dehydrogenation of the trans isomer relative to that of the cis isomer.

Table 25. HATE CONSTANTS FOR DEHYDROGENATION AND ISOMERIZATION OF DECALIN

Catalyst: 1% Pt on AlgOs

The many desired victorials of the production of desired in a major		10	stm			3 0	atm	
Block Temp, 'Z'	k ₁	k 2	N ₃	K ₄	k ₁	k ₂	k ₃	k ₄
	and distance transport to an		LHSV	- 200				
842	0.94	0.30	0.041	0.71	0.38	0.50	0.072	0.27
932	1.18	0.29	0.036	1.09	0.58	0.41	0.066	0.40
1055	1.72	0.20	0.045	1.62	0.74	0.56	0.066	ი.60
1112		-	-	-	1.16	0.28	0 .05 6	0.85
		kraen many san ma	IHSV	- 40J				
662	0.35	0.24	0.023	_	0.08	0.34	0.036	-
752	0.63	0.21	0.025	_	0.22	0.39	0.045	-
842	1.10	0.31	0.043	-	0.34	0.31	0,041	-

Summary: Dehydrogenation of Decalin

The dehydrogenation of decalin occurred in two discernible steps with tetralin as the intermediate product. In the region of 842-1022°F the second step (THN \longrightarrow N + 2H₂) appeared to be faster by 1 to 1.5 orders of magnitude and had an activation energy about three times greater than that of the first step (DHN \longrightarrow THN + 3H_2). The cis DHN species was slightly more reactive than the trans.

Isomerization of the cis and trans species occurred concurrently with dehydrogenation. Compared to rates of dehydrogenation the rate of trans-isomerization was lower by about an order of magnitude while that of the cis-isomerization was lower by a factor of about four. This suggests that if isomerization does play a role in the dehydrogenation mechanism, it is not the rate determining step.

Selectivity for naphthalene was governed by equilibrium and was favored by high temperature, high conversion, and low pressure.

The highest heat sink obtained thus far with decalin was 1688 Btu/lb, of which 838 Btu/lb was due to heat of reaction (10 atm, 1022°F, IHSV = 30). This corresponded to a total heat sink of 1903 Btu/lb at 1340°F. The adverse effect of pressure on selectivity for nanhthalene at pressures greater than 10 atm would be expected to decrease heat sinks only slightly. For example, at complete DHN conversion a decline in selectivity for naphthalene of 20% would lower the heat of reaction by only about 7% and the total heat sink by about 4%.

The laboratory platinum on alumina catalyst was somewhat unstable at 10 atm pressure; a commercial platinum catalyst was even more unstable. Stability of both catalysts was improved at higher pressures and at high conversions.

1-Methyldecalin

A brief study of the dehydrogenation of the 1-and 2-methyldecalins (MDHN) was made under the previous contract.³⁾ Using a platinum on alumina catalyst it was observed that at 10 atm pressure the catalyst was unstable with both isomers ever the temperature range of 842 1022°F. This work new has been extended to higher pressures and conversions to study principally, the effect of these variables on catalyst stability.

The feed was 1-methyldecalin and contained 11.7% trans and 88.3% cis species.^{a)} This feed was prepared by hydrogenation of the corresponding methylnaphthalene. Vapor phase dehydrogenation was studied with our standard 1% platinum on alumina catalyst at 10-30 atm pressure, LHSV of 30-100 over the temperature range of 842-1022°F. Froduct material was analyzed by GLC using a five foot, 1/4-in. OD stainless steel column packed with 5% Carbowax 1000 on Chromosorb W.

a) This is a nominal value. Actually, there are 4 geometric isomers for each positional isomer (not counting optical isomers) cis-cis, cis-trans, trans-cis, trans-trans.

Under the above reaction conditions, the dehydrogenation of 1-MDNN to 1-methylnaphthalene was a two-step process with two methyltetralin isomers (MTHN) as intermediate products. Schematically the reaction can be represented:

The heat of reaction to form MTHN is 600 Btu/lb; and to form methylnaphthalene is 900 Btu/lb.

At 10 atm pressure, 842 and 932°F considerable catalyst deactivation was observed with this feedstock. This was shown by the fact that the catalyst bed temperature increased during the run by 68-108°F and 185-207°F at 932°F. Further, in these experiments no increase in MDHN conversion occurred when the reaction temperature was increased from 342°F to 932°F (of Runs 180-1 and 180-2; and Runs 142 and 143; Table 26).

Increasing the reactor pressure appeared to stabilize the catalyst. Thus, increases in catalyst bed temperatures of only 9°F or less were observed when the pressure was increased to 20 and 30 atm (842-1022°F; Table 26). Also operating the reactor at elevated pressures (20 and 30 atm) appeared to stabilize the catalyst somewhat for subsequent operation at 10 atm pressure. This is shown by Run 189-3, Table 26 in which the catalyst deactivation at 1022°F after operation at 30 and 20 atm, was less than that observed either at 242 or 932°F at 10 atm with fresh catalyst (Runs 180-1 and 180-2; 142-143, Table 26).

The complete data are recorded in <u>Table 26</u>. Runs 183-1 to 189-3 were made on the same charge of catalyst in the order tabulated (left to right). Runs 180-1 and 142 were made on fresh catalyst. First order rate constants were calculated from the rate of disappearance of MDHN and were for the reaction MDHN ——> MTHN.

At 20 and 30 atm pressure, the reaction products were mainly 1- and 5-MTHN and methylnaphthalene. Selectivity for the sum of these products was high (90-99%) at both moderate and high conversions. As was observed with Decalin, selectivity for the completely dehydrogenated product (methylnaphthalene) was favored by high temperature and high conversion. Presumably this was an equilibrium rather than a kinetic effect. For the two MTHN isomers, the 5-MTHN appeared to be favored by high pressure and lower temperature (cf 5-MTHN/1-MTHN ratio, Table 26).

At these pressures, the reactivities and selectivities for methylnaphthalene were about comparable to those observed with Decalin. Heat sinks were slightly lower than was observed with Decalin primarily due to the greater molecular weight of the MPHN.

Table #6. DESIDROGENATION OF 1-MITHYLDECALIN AT VARIOUS FRESSURES

Catalyst: 1% Pt on AlgOs Catalyst Volume: 7 ml Renction Time: 30 min

Feed: 11.75 trans-1-47)EN 88.3% cts-1-40;RN

Run No. 9347- Pressure, atm LIKSV Temperature, "F Block Wall Catalyst Bed trans-1-PDHN cis-1-PDHN cis-1-PDHN cis-1-PDHN Uga) F-WTHN Uga) Methylnaphthalene Gracked Conversion, %w 5-WTHN/1-WTHN Kethylnaphthalene Gracked Kracked Krac	1.83.1 2.5.5.7 2.5.5.3 2.5.5.3 2.5.5.3 3.6.5	183- 201 689- 201-201-201-201-201-201-201-201-201-201-	42.00 47.75 47.75 47.75 60.0 60	1.65-1.05	25.62 25.62 27.62 27.62 27.62 27.62 27.63 27	選	2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1881 1987 1987 1987 1987 1987 1987 1987
Heat Sink, Btu/1b Reaction Total at Block Temp Total at 1340°F	279 989 1579	77. 1211 1741	473 1383 1572	68 1521 1787	745 1595 1845	239 946 1339	45.24.2 14.5.5	दे पुर
a) Inidentified.		1	7		T	7	Tacs)	Cast Inves

Table 26 (Conta). DENYPROGENATION OF 1-METHYLDECALIN AT VARIOUS PARSSUE ES

143	10 100 100 100 100 100 100 100 100 100	
1,85-2	25, 25, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27	and the second s
180-1	100 100 100 729-50 651-725 648-80 662-3 680-91	4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
189-5	10 100 172-37 972-38 957-74 850-923 853-78	01.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
189-1	1022 936-38 763-66 795-97 855-60 910-12	. 44.0000.148.01.0000.14.00.000.000.000.000.000.000.0
188-3	201 1022 916-13 756 761 761 842-44	9 10 00 00 00 10 4 10 00 00 00 00 00 00 00 00 00 00 00 00
Run 180. 9347-	Fressure, atm LHSV Temperature, °F Block Wall Catalyst Bed	ysis, fw ithalene ithalene for, fw rthelene

a, Unidentified.

Effect of Pore Size on Cataly: Stabilities For the Dehydrogenation of Naph henes

In the dehydrogenation of dicyclics decalin and decycloheryl at 10 atm pressure, poor catalyst stability was observed with the commercial platimum on alumina catalyst, while better catalyst stability was observed with the laboratory platinum on Harshaw 0104 alumina catalyst. Further, poor catalyst stability was observed with a harogen-free platinum on the commercial alumina-base catalyst, propared in the same manner as the laboratory catalyst. Stability of both catalysts was improved, however, at higher pressures and at high conversions. These results suggested the following explanation as to why manhipment can be dehydrogenated without added hydrogen over a platinum on alumina catalyst with good catalyst stability.

For the dehydrogenation of MCH over our laboratory platinum on alumina catalyst it was observed that good catalyst stability was obtained when the partial pressure of hydrogen in the exit gas was about 0.75 atm; but that the catalyst became inactive when the partial pressure was less than about 0.7 atm. Presumably the hydrogen formed by dehydrogenation reacted with and removed the coke precursors, and this maintained a "clean" catalyst surface. Since this reaction occurred in the catalyst pores, the actual "effective" partial pressure of hydrogen in the pore may have been greater than 0.75 atm.

At a given overall naphthene conversion the "effective" hydrogen partial pressure is determined by the concentration of hydrogen in the pore. This hydrogen concentration will be greater in smaller pores, since the surface-to-volume ratio is greater and hence the fraction of naphthene in the pore that is converted will be greater. Further, the transport rate of hydrogen out of the pore may also be a factor in maintaining catalyst stability, as for a given conversion this rate will determine the "residence" time and hence effective partial pressure of hydrogen in the pore. Conceivably then, for the dehydrogenation of MCH with a catalyst having a smooth, non-porous surface the partial pressure of hydrogen needed for maintaining good catalyst stability may be greater than 0.75 atm. Thus the pore diameter of the catalyst will be a factor in maintaining good catalyst stability.

For the dehydrogenation of DHN and DCH at 10 atm pressure good catalyst stability was observed with the laboratory platinum catalyst. With the commercial catalyst; however, the following results were obtained:

- a. Poor catalyst stability was obtained at 10 atm pressure at 50% conversion and lower.
- b. Increasing the reactor pressure to 20 or 30 atm stabilized the catalyst.
- c. Operating the reactor at 90% conversion stabilized the catalyst at 10 atm pressure.

Most of the pores in the laboratory catalyst are of smaller diameter than those of the commercial catalyst. For example, with the laboratory catalyst 72% of the pore volume was in pores of diameter 204 A or less, while with the commercial catalyst only 46% was in pores of 235 A or less diameter

(see <u>Table 27</u>). Thus for the commercial catalyst the partial pressure of hydrogen in the pores was lower than that in the laboratory catalyst and the hydrogen concentration was not greater enough to maintain good catalyst stability. When the partial pressure of hydrogen was enhanced by increasing the total reactor pressure or by operating the reactor at high conversion, good catalyst stability was obtained.

These views predict that a catalyst with smaller pore diameters than our laboratory catalyst would be more stable for the dehydrogenation of DHN. Also that the stability of the commercial catalyst would be improved by reducing the pore size of this catalyst. However, it would be expected that as pore size is continually decreased, a point will be reached at which the relative diffusion rate of hydrogen out of the pore will be greater than that of toluane and hence the "effective" hydrogen concentration in the pore will begin to decrease and catalyst instability will occur.

Dehydrogenation of Naphthene Mixture

Methylcyclohexane (MCH), dicyclohexyl (DCH) and decalin (DHN) are readily dehydrogenated over platinum on alumina catalysts to give heat sinks of 1800+ Btu/lb. With dicyclic naphthene, however, intermediate dehydrogenation products are formed, which can reduce the heat sink of reactions appreciably. With dicyclohe yl and decalin selectivity for the completely dehydrogenated aromatic was favored by high temperature, high conversion and low pressure. In earlier work it was shown that in a mixture of naphthenes, the reactivities of the components were different from those of the pure compounds. Thus it was of interest to study the dehydrogenation of naphthene mixtures, perticularly with respect to reactivity, selectivity for the completely dehydrogenated product, and to catalyst stability. For these studies mixtures of MCH with DCH and with DHN, and DCH with DHN and 1-methyldecalin were used.

Dicyclohexyl-Methylcyclohexane

In this series of experiments the effect of added methylcyclohexane (MCH) was studied on the reactivity of dicyclohexyl (DCH) for catalytic dehydrogenation and for thermal reaction, and on the selectivity of the dehydrogenation reaction for diphenyl (DP). The feed mixture was 75.5% DCH; 2.2% phenylcyclohexane (PCH) and 22.3% MCH.

The catalytic reaction was studied at 10-30 atm pressure, 842-1022°K LHSV of 30-100 using a 1% platinum on alumina catalyst. Compared to reaction of pure DCH^{A)} and MCH³⁾ the DCH-MCH feed gave:

- 1. Enhanced reactivity of the DCH component but lower reactivity of MCH at a given temperature and pressure.
- 2. Enhanced selectivity for DP at a given conversion, temperature and pressure.

Heat sinks were slightly lower for the DCH-MCH mixture than for pure DCH under the same reaction conditions.

a) The complete data for dehydrogenation of pure DCH were reported previously.

Table 27. PORE DISTRIBUTION OF TWO PLATIMUM ON ALLWANS CATALYSTS

15 Pt on Here	thew Olo	animula 4	τ	10P-R8	
Pure Diameter	Cumula	tive Volume	Pore Diameter	Cumula	tive Volume
Α	oc/g	5 of Total	A	co/g	% of Total
24	0,001	0.4	5#	0.003	0.4
50	0.013	4.9	35	0.024	3.4
102	0,095	35.7	52	0.050	7.0
204	0.192	72.2	5 2 2	0.091	12.8
050	o.266	100	147	0.186	26.1
			235	0.328	46.1
			419	0,599	84.1
			850	0.712	100

Effect of Temperature

The effect of temperature on conversion and reaction rate was studied at 10 atm pressure over the range of 842-1022°F. The data are tabulated in Table 28 and Figure 20 shows a comparison of conversion as a function of temperature for the DCH-MCH mixture (points) and pure DCH (solid line). Over this temperature range the DCH conversions obtained with the DCH-MCH mixture were about 10% greater than those obtained with pure DCH. First order rate constants were calculated from the component conversions and are recorded in Table 28. The values obtained previously with pure components 1,2,3 are shown in parenthesis for comparison. Based on the rate constants, in reactivity of DCH in the mixture was about 1.2 times greater than that of pure DCH while the reactivity of MCH was about one fourth that of pure MCH. Activation energies were computed from the rate constants and were lower for DCH and higher for MCH compared to the pure components. Heats of reaction for the mixture (Table 28) were lower by 3-8% than those obtained with pure DCH (Table 28, values in parentheses).

Effect of Space Velocity and Conversion

The effect of space velocity on conversion of DCH and MCH and the effect of conversion of DCM on selectivity for DP were studied in a series of "bracketed" runs at 842 and 1022°F. There was some decline in catalyst activity during these runs as in each series the conversions observed in the final runs were always slightly lower than those in the initial runs. The data are recorded in Table 29. Figure 21 shows selectivity for DP as a function of DCH conversion for pure DCH (solid lines) and in the mixture (points) at 842 and 1022°F. At both temperatures for a given conversion the selectivity for DP appeared to be greater for the feed containing MCH. As was observed with pure DCH, higher selectivity was obtained at the higher temperature for a given DCH conversion.

Effect of Pressure

The effect of pressure on reactivity and selectivity for DP was studied at 842 and 1022°F over the pressure range of 10-30 atm. At the higher temperature, DCH conversion appeared to increase slightly with increased pressure while at the lower temperature the reverse was true (Table 30). Selectivity for DP was quite pressure sensitive (as was observed with pure DCH) particularly at the lower temperature where the selectivity declined by a factor of about 2.5 when the pressure was increased for 10 to 30 atm. In general selectivities for DP were higher with the DCH-MCH mixture. Figures 22 and 23 show DCH conversions and selectivities for DP as a function of pressure at 842 and 1022°F, respectively, for pure DCH (solid lines) and for the DCH-MCH mixture (points). Heats of reaction of the DCH-MCH generally were up to 10% lower than those obtained with pure DCH (Table 30, values in parentheses are for pure DCH), under comparable conditions due to the low conversion of MCH.

From the experiments carried out this far with DCH-MCH mixture it appears that diluting a DCH feed will enhance the reactivity of the DCH and the selectivity of the reaction for diphenyl. Slight loss in heat sink will occur, however, that appears to be due to the low reactivity of the MCH component. Presumably DCH or more probably the product diphenyl is more

TABLE 28 DEHYDROGENATION OF DOH-MCH MIXTURE

Effect of Temperature

(Values for Pure DCH and Pure Noth in Parentheses) Catalyst: 1% Pt on Al₂O₃ Catalyst Volume: 7 ml Feed: 75.7% DCH LHSV: 100

Feeu:

75.7% DCH 2.3% FCH 22.0% MCH

Pressure:

10 eta

Run 9645-	155	123	124
Temperature, *F			
Block	842	932	1022
Vall	749	814	880
Catalyst Bed	658	640	68 0
Product Analysis, w			
MCH	19.4	18.0	16.2
Benzene	0.0	0.1	0.1
Toluene	2.6	3.8	5.7
DCH	31.2	26.4	21.4
PCH	26.9	17.6	9.6
DP	19.9	34.1	47.0
Yield PCH, bw	24.6	15.3	7.3
Conversion, %w			
DCH	58.8	65.1	71.7
MCH	11.8	18.2	26.4
Selectivity for, %w			
PCH	44.8	34.0	17.0
DP	55.2	66.0	83.0
k, sec ⁻¹			
DCH	0.730	0.910	1.148
	(0.609)	(0.762)	(0.972)
MCH	0.151	0.252	0.406
	(0.62)	(1.00)	(1.45)
E, act, kcal/mole			
DCH		- 6.4	
	4	— (7.8) —	
MCH		- 14.0	
	-	— (11.8) —	
Heat Sink, Btu/1b			
Reaction Mixture	396	480	593
Pure DCH	406	523	644

TABLE 29 DEHYDROGENATION OF DCH-MCH MLXTURE

Effect of DCH Commarsion on Selectivity for Diphenyl

(Values for Pure DCH and Pure MCH in Parentheses)

Catalyst: 12 Pt cr Al2O3 Feed: 75.72 LCH Catalyst Volume: 7 ml 2.35 PCH Pressure: 10 atm 22.05 MCH

Hun 9645-	126-1	125-3	127-1	127-3	128	129-1	129-3
Temperature, *F Block	4	84	2	>		1022 —	
Wall	741	750	761	747	887	900	892
Catalyst Bel	604	615	6;2	614	6 69	686	682
THSA	100	50	30	100	100	50	160
Product Analysis, W		_					
MCH	20.0	13.5	15.1	20.0	17.3	12.1	17.9
Benzene Toluene	2.0	0.2	0.2	0.1	0.3 4.4	0.5	0.2
DCH	31.3	3.5 17.1	6.5 7.1	1.9 36.2	20.9	9.4 4.9	4.2
PCH	26.2	24.0	10.7	21.5	11.8	3.2	10.5
DP	20.0	36.7	60.4	20.5	45.3	69.9	43.6
Yield PCH, Sw	23.9	21.7	8.4	19.3	9.5	1.4	8.2
Conversion, w		ĺ					
DCH	58.0	77.4	90.7	52.2	72.4	94.6	67.5
МСН	9.1	16 9	30.5	9.1	21.4	40.5	20.0
Selectivity for, Sw	_, ,						_
PCH DP	54.4 lin 6	37.2	12.0	48.5	17.3	2.0	15.8
	45.6	62.8	88.0	51.5	82.7	98.0	84.2
k, sec ⁻¹ DCH	0.707	0.610	0 100	0.604	1 170	3 71.5	
1000	0.707 (0.609)	0.010	0.590	0.004	1.177 (0.972)	1.345	1.030
MCH	0.114	0.111	0.132	0.115	0.320	0.348	0.296
	(0.62)	-		-	(1.45)	-	-
Heat Sink, Btu/lb							
Reaction Mixture Pure DCH	-	-	-	-	-	851 9 7 8	-

Effect of Conversion on Selectivity for DP

TABLE 50 DEHYDROGENATION OF DCH-MCH MIXTURE

Effect of Pressure

(Values for pure DCH and pure MCH in parentheses)

Catalyst:

1% Pt on AlgOs

Catalyst Volums: LHSV: Feed:

7 ml

100

75.5% DCH 2.2% PCH 22.3% MCH

Run No. 9645-	134	135-1	135-3	131-1	131-3	132
Temperature, °F						
Block	&	842	>	<	- 1022 -	>
Well	734	745	752	873	874	862
Catalyst Bed	608	639	663	673	691	709
Pressure, ctm .	3,0	20	30	10	20	30
Product Analysis, &w]		
MCH	19.8	3.9.4	19.9	17.0	16.5	16.4
Benzene	-	_	_	0.3	0.3	0.2
Toluene	1.9	2.5	2.1	4.7	5.4	5.2
DCH	31.8	31.9	39.9	19.5	16.3	16.9
PCH	26.0	34.1	31.6	9.3	21.8	31.8
DP	20.5	12.1	6.5	49.2	40.0	29.5
Yield PCH, ww	23.8	31.9	29.4	7.3	19.5	29.5
Conversion, by						Ì
DCH	57.9	57.7	47.2	74.2	78.5	77.7
MCH	11.3	13.1	10.8	22.8	25.0	25.5
Selectivity for, \$1] -	}	1		1	
FCH	53.7	72.5	81.9	12.9	32.8	50.0
DP	46.3	27.5	18.1	87.1	67.2	50.0
k, sec-1	1		1		ì	
DCH	0.700	0.352	0.175	1.225	0.695	0.454
MOH	0.141	0.061	0.046	0.541	0.189	0.089
Heat Sink, Btu/1b						
Reaction Mixture	372	329	250	616	560	530
Pure DCH	390	294	242	672	619	565

Figure 22. DEHYDROGENATION OF DCH-MCH MIXTURE AT 842°F Effect of Pressure on DCH Conversion and Selectivity for Diphenyl

Figure 23. DEHYDROGENATION OF DCH-MCH MIXTURE AT 1022°F
Effect of Pressure on DCH Conversion and Selectivity for Diphenyl

strongly adsorbed on the catalyst surface than the MCH and hence inhibits the reactivity of this latter component. No further laboratory work with the PCH-MCH system is planned at this time. It is possible that results will be different under FSSTR conditions. If this appears likely by calculation, such a mixture may be tested under the larger scale conditions.

Thermal Reaction

The thermal reaction was studied at 10 1tm pressure over the temperature range of 1022-1293°F. Under these conditions the reactivity of DCH was greater, and the reactivity of MCH was less than that of the pure components. For example, at 1293°F with the DCH-MCH mixture conversion of 86.2% and 54.7% were observed for DUT and MCH, respectively, compared to 67.7% and 47.7% for the pure components (Table 31). Based on first order rate constants that were calculated from the conversion of the two components, the reactivity of DCH was greater by a factor of 1.6 to 1.8 and the reactivity of MCH less by a factor of 0.7 to 0.8 compared to the pure compc ents. The apparent activation energy for DCH in the mixture was 45.6 kcal/mole compared to 47.0 kcal/mole for pure DCH. With MCH the apparent activation energy in the mixture was 60.1 kcel/mole compared to 39.3 keal/mole for pure MCH. Figure 24 is an Arrhe lus plot of the data obtained with the mixture. The values observed for DCH are certainly the same within the accuracy of measurement, but the values for MCH are probably significantly different. The cause of this effect is not known. The larger value for MCH is about the same as was observed by Fabuss et al of Monsanto 21 22) for naphthenes generally, while thermal decomposition of DCH at 800°F is 0.18 hr-1 which corresponds to ca 0.56 sec-1 at 1100°F using an E value of 60 kcal, compared to a value of 0.023 found here. If the 46 kcal value of E is used, k at 1100°F would be 0.027. Product material consisted of cracked liquid and light gas and dehydrogenated products. The dehydrogenated materials consisted of cyclohexenes, cyclohexadienes, benzene, toluene, and unidentified material heavier than toluene that was presumed to be alkyl aromatics. At the higher temperatures considerable light gas was formed that was principally methane, ethene, ethane, and hydrogen. The product distribution and yields of the cracked liquids are shown in Table 32. The light gas product distribution is shown in Table 33.

Heat sinks were estimated to be not greater than those obtained with pure DCH. This was based upon the fact that most of the products came from the reactions of DCH and that the products obtained were not very different from those obtained with pure DCH. (More conversion to light gas was observed with the mixture than with pure DCH.) Thus the heat of reaction for the mixture is estimated to be not greater than 65 Btu/15.

Decalin-Methylcyclohexane

In earlier work on the dehydrogenation of MCH over a platinum on alumina catalyst, 2) it was shown that addition of 22% Decalin (decahydro-naphthalene; DHN; 68% cis DHN) to the MCH feed reduced the reaction rate of the MCH by about a factor of two. In later work on the dehydrogenation of DHN addition of 10% MCH to one of the feeds appeared to retard the catalyst

a) The thermal reaction of DCH was reported in detail in reference 3 and, of MCH in reference 2.

TABLE 31 THERMAL REACTION OF DOH-MOR MINTURE

(Values for pure DCH and pure MCH in parentheses)

Pressure:

10 atm

LHSV:

20

Catalyst:

Quarts Chips

Feed:

75.55 DCH 2.24 FCH 22.35 MCH

Catalyst Volume: 20 ml

Run No. 9645-	137	138	139-1	139-3
Temperature, °F		1		
Block	1022	1112	1202	1293
Wall	1022	1110	1193	1267
Catalyst Bed	1011	1085	1139	1190
Product Analysis, %w				
МСН	21.5	21.4	17.3	10.1
Cyclohexenes	1.0	7.0	12.5	8.3
Cyclohexadienes	0.0	0.2	1.7	2.2
Bengene	0.0	0.3	2.7	9.2
Toluene	0.0	0.2	1.6	5.0
DCH	74.1	61.9	33.8	10.4
PCH	2.2	2.1	1.5	0.8
DΡ	6.0	0.0	0.0	0.0
Cracked, liquid	1.2	7.4	14.8	20.6
Cracked, light gas	0.0	0.0	14.1	34.1
Conversion, \$w				
DCH	1.9	18.0	55.2	86.2
MCH	3.6	4.0	22.4	54.7
First Order Rate		1		
Constants, sec-2		,		
DCH	-	0.043	0.130	0.465
(pure)	-	(0.023)	(0.111)	(0.255)
MCH	-	0.009	0.057	0.185
(pure)	-	(0.04)	(80.0)	(0.22)
E, act, keal/mole		1 -		
DCH		<	- 45.6	>
			(47.0)	_
MCH			60.1 -	>
		1	(39-3)	

Figure 24. THERMAL REACTION OF DCH-MCH MIXTURE
Temperature Coefficient

TABLE 32
THERMAL REACTION OF DOH-MCH MIXTURE

Cracked Liquid Product Distribution

Faed: 75.5% DCH 2.2% PCH 22.5% MCH

Product	Pro	duct A	nalveis	, %w	Yield, %w			
Run No. 9645-	137	138	139-1	139-3	137	138	139-1	139-3
Block Temperature, °F	1022	1112	1202	1293	1022	11.2	1202	1293
Lighter than Co	-	6.8	10.1	14.6	-	0.5	1.5	3.0
Hexane	33.3	31.0	31.1	22.8	0.4	2.3	4.6	4.7
СН	41.7	17.0	20.9	10.2	0.5	2.0	3.1	2.1
ū _æ)	-	1.4	6.8	3.4	-	0.1	1.0	0.7
£ p)	25.0	28.4	25.0	35.0	0.3	2.1	3.7	7.2
UC)	-	5.4	6.1	14.0	_	0.4	0.9	2.9

a) Heavier than benzene but lighter than toluene.
b) Heavier than toluene but lighter than DCH.
c) Heavier than FCH.

TABLE 33 THERMAL REACTION OF DCH-MCH MIXTURE

Gas Phase Product Distribution

75.5% DCH 2.2% PCH 22.3% MCH Feed:

Run No. 9645-	139-1	139-3
Block Temperature, °F	1202	1293
% Feed to Light Gas, %w	14.1	34.1
Product Analysis, %v		
H ₂	19.9	16.5
CH4	31.8	3 1.5
C2H4	22.2	20.6
C_H ₀	13.5	14.6
CaHe	7.0	9.1
СэНа	2.7	2.9
C4He	0.8	1.0
C4Ha	1.7	2.9
C4H10	0.0	0.2
CsH ₁₀	0.1	0.3
Higher than C5	0.3	0.4

deactivating reaction. These effects have now been investigated further using DHN-MCH mixtures and studying the effect of MCH concentration on the reactivities of the feed components and on the catalyst deactivating reaction. In these tests DHN-MCH mixtures with 9%, 2%, 47%, and 71% MCH were dehydrogenated over the 1% Pt on Al₂O₂ catalyst at 10 atm pressure and 842-1022°F. The DHN was a Shell plant preparation and contained 91.2% trans and 8.8% cis-DHN. The results are summarized in Table 34.

Based on the first order rate constants the reactivities of both DHN and MCH generally increased with increasing MCH concentration (Figure 25). However, the rates of reaction for DHN were greater, and those for MCH smaller, than for the pure compounds. Thus with the 29% DHN-71% MCH mixture, the reactivity of the DHN component was about double that of pure DHN, while the reactivity of MCH was about one half that of pure MCH (k_{MCH} = 1.45 sec⁻¹ at 1022°F). The addition of MCH had no appreciable effect on the selectivity for naphthalene. Similar results with a different DHN feed, addition of 9% or 23% MCH to this DHN feed enhanced catalyst deactivation, while addition of 47% or 71% MCH reduced the deactivation only slightly. The magnitude of the increase in catalyst bed temperature during the run was taken as a measure of catalyst deactivation. These results suggest that factors influencing catalyst deactivation with DHN may be effected by the isomer composition of the DHN feed.

Dicyclohexyl-Decalin

で、「一年の一」 「「「「「「」」」」 「「「」」」」 「「「」」」」 「「」」」 「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「「」」 「「」」 「「」」」 「「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」 「「」」 「「」」」 「「」」 「「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」 「「」」 「「」」 「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「」」 「「」

Two mixtures of 50% DCH-50% DHN were tested at 842-1022°F, 10-30 alm pressure, at LHSV's of 30-100. One feedstock was made up with a Decalin containing a high concentration of the cis isomer (Fl13; 74.5% cis DHN) and the other with a Decalin containing a high concentration of the trans isomer (Shell DHN; 91.5% trans DHN). Complete compositions of the two feedstocks were:

	50% DCH P1	us 50% of
	F-113 DHN	Shell DHN
% DCH	49.2	49.5
% trans-DHN	12.3	44.8
🧚 cis-DHN	36. 9	4.3
₱ PCH	1.4	1.4
≸ THN	0.2	0.0

Reaction products were analyzed by GLC from which conversions and selectivities were calculated. First order rate constants were calculated for each naphthene component based on its rate of disappearance. Activation energies were computed from the first order rate constants, based on the reactor wall temperatures.

The effect of temperature on conversion was studied over the temperature region of 842-1022°F (10 atm, LHSV = 100). Tests with both feedstocks showed that addition of DHN to DCH lowered the reactivity of DHN; increased the reactivity of DCH when the DHN had high trans content (Table 35, Figure 5); and did not appreciably affect the DCH reactivity when the DHN had high cis isomer content (Table 36, Figure 26).

Activation energies ($E_{\rm act}$) for the dehydrogenation of DCH and DHN were calculated from the first order rate constants (<u>Tables 36 and 35</u>) and

TABLE 34
DEHYDEOGENATION OF DECALIN-METHYLCYCLOHEXANE MIXTURES

10 atm	100	1% Pt on Al ₂ 03	7 mJ
Pressure:	I.HSV:	Catalyst:	Catalyst Volume:

Pun Munber 9645-	104-1	104-3	103	21.5	τ-9ττ	€-917	5 1	346-3.	146-3	149	150-1	150-3	133	154-1	154-3
Feed Composition, %															
trans-DHW		- 91.2	1	•	- 63.1 -	•		- 4005 -	•		1.6.7	•		1.0.38	+
ols-Diff		8.8	1		3.0	•		- 6.8 -	-	•		•		3:5	
MCH	•	- 0.0 -	•		F 6.8 F	1		22.7	1		1.6.6	•	•	- 7	1
Temperature, 'F													-		
Blook	842	27.6	1022	842	27.6	1022	8±2	3,75	1022	245	88	192%	£	34	28
W411	85-951	306-15	875-85	752-54	915-19	679-91	792	827-38	19%-361 838-901	756-58	35	37.8	74. 45	28	374-78
Catalyst Bed	69-3 99	911-169	727-84	96.499	716-63	151-874	676-93	7:6-61	755-876	653-67	689-718	124-83	8-38	75-27	8-52
	664-71	595-705	E77-622	12-259	£17-369	732-66	662-73	6977.2	134-61	653-62	067585	725-43	25-055	6cF.33	8-12
		104-71	745-52	671-78	9T-LCL	750-61	08-929	7.11-18	150-61	17-339	724-33	746-52	655-62	674-126	74.5.47
	680-85	716-23	\$9-1%	68-189	7:5-30	91-011	689-93	1.56-2"	61-411	86-389	12-24	170-74	99-229	7.5-720	71.77
Product Analysis, fkr					•						-				
H: X	,	,	ı	7.3	5.6	6.1	18.5	16.4	14.7	55.9	2, 5,	27.3	7 3/	3. P	. E.
Тодцеле	,	,	,	1.6	2.3	2.6		2.5	2.9	10.2	8:3	3.91	0	13	5
trans-DEM	71.1	67.1	55.6	63.7	57.0	49.3	54.5	4.74	41.1	\$. \$.	X.X	24.5	(.9	33	4.01
ois-DHN	3.6	3.4	2.3	3.4	2.8	2.4	5.6	 «i	2.0	9:3	1.4	9	۲.,	-1 -1	4.0
(gg)	: : :	6.9	· · ·	0.1	C.2	9.5	0.0	5.0	5.5	্ত	i-i	5	, ,	.:	2.2
Tro	7.4	0.4	3.0	7.4	5.5	2.5	3.0	2.7	2.3	2.3	5.3	2.1	ig.	- 1	<u>ග</u>
Nephthalene	50.0	29.0	57.6	19.7	28.0	×. ×	17.2	25.5	72.7	14.3	3,0,1	21.7	21.	1.51	7.7
Cracked	C.:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	S.	(a)	ر. و: و	3	3::	6
Conversion, 🗚															
trans-DeN	24.3	8.0%	0.66		31.4	40.7	4.25	8. 8.	41.7	9. د	37.8	3,64 2,54	3.7.		0.55
cis-5fN	59.1	61.4	0.19	53.5	0.59	0.1	61.7	69.1	70.5	o.	77.7	7.8.1	£\	<i>₹</i> ,	2 δ
Total DHN	0.33	33.5	1.14	 M	۳: *	45.2	36.1	e K	3	0 %	43.2	77	2	*) } 	2.50
MCH	ı	,	,	ુ ગ્રા	25.8	31.4	18.5	ري ق	35.2	23.0	33.3	4.14	ai R	1	37
Selectivity for, \$v															
TEN	18.8	11.6	7.2	17-2	10.2	9.9	14.9		8.6	15.9	v;	e - o's	≠	cu : }	0.0
Maphthalenec)	4.08	9 8	÷:	고	2.6	91.8	65.1	95°.7	98.1		5.69	93.2	***	, I,	3 K.
Sirst Order Rate Constants, "Pc-1						· ·					-				
NEIC	0.2%	614.0	0.580	0.301	0.433	: 618	0.301	594.0	0.64.	5.365	#K: 0	2.7.5	-	3,4	8.4
жсн	,	ı	1	0.230	0.376	0.502	0.247	6.414	0.582	415.0	62+5	5-7-3		. :	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Pure MGH	0.62	1.8	1.4.		1	,		4	ı	1	,	,	:	1	,

a) Unidentified.
b) Eunzene.
c) Based on DHM converted.

Figure 25. DEHYDROGENATION OF DECALIN-METHYL-CYCLOHEXANE AT 1022°F Effect of MCH Concentration on Component Reaction Rates

Table 35- DEHYDROGENATION OF DOM-SHELL DHN
(UXTURE: EFFECT OF TEMPERATURE)

Values for pure DOH and pure DHN in parentheses.

Catalyst: Est on Algos Food: Ma. 5. trans DAN
Catalyst Volume: 7 ml 4.75 cis DAN
THEY: 100 49.55 DCH
Fressure: 10 etm 1.45 FCA

Run No. 9645-	167	138-1	168-2
Temperature, °F			
Block	842	932	1022
Vall	733	802	862
Catalyst Bed	639	682	741
AT Catalyst Bed, 'F	Į ii	7	16
Product Analysis, \$w	من وروسه	<u> </u>	
trans-DHN	39.2	36.0	30.3
cia-DHN	2.5	2.3	2.4
DCH	20.0	15.2	11.8
THN	3.0	2.3	2.1
PCH	14.3	10.4	8.3
Naphthalene	5.1	8.8	14.5
DP	15.9	25.0	30.6
Yield PCH, \$w	13.3	9.1	7.0
Conversion, %w			
DCH	59.7	69.7	76.3
	(51.2)	(58.3)	(65.4)
1747A7	15.1	22.0	33.4
	(25.0)	(33.5)	(41.5)
Selectivity for, 5w			
FCH	45.2	25.4	18.4
DP	54.8	73.6	81.6
THN	36.6	20.6	12.5
Naphthal :ne	63.4	79.4	87.5

(Continued)

11 大学 11 日本
Table 35 (Contd). DEHYDROGENATION OF DOH-SHELL DHN MIXTURE: EFFECT OF TEMPERATURE

成の野山金藤一里をする

187	188-1	188-2		
(0.609)	1.022	1.291 (0.872)		
0.161	0.254	0.435		
0.398	0.577	0.812		
		>		
13.9				
	1	1		
454 532	583 705	637 781 306		
	(0.609) 0.161 (0.284) 0.398	(0.609) (0.762) 0.161 (0.254 (0.284) (0.419) 0.398 0.577 7.8		

Table 36. DESTREY DATION OF TOHE N MIXTURES REPORT OF TEMPERATURE

values of pure the and pure Rev to parenthraes.

Tatalyst: 15 Pt on AlpOs Feed. 49.0% DCB Catalyst Volume: 7 ml 12.3% true 12.35 trens Dan LHSV: 106
Freesure: 10 atm
Freeslin: F-115 35.35 cis Dhn 1.45 por 0.25 Thn

Ft., 9645-	158	159	;60
Temperature, °F Block	642	932	1022
Wall	718	844	889
Catalyst Bod	644	697	748
AT Catalyst Bed, "F	9	9	25
Product Analysis, &			
trans-DHH	15.9%	12.75)	11.2
cis-DHN	20.7	18.0	15.1
£ 3 H	25.4	20.3	17.1
Thin	5.1	4.0	2.7
FCH	12.7	10.2	8.1
Nephthalone	10.2	14.8	19.8
DF	12.1	20.0	25.0
Yleld PCH, 🏞	22.3	8.8	6.7
Conversion, %			
ੋ ਉਸ਼	51.2	58.7	65.0
	52.2)	(58.3)	(65.4)
DHN	29.7	37.6	44.5
	(40.2)	(49.2)	(56.5)
Selectivity for, 51			1
PCH	51 - 7	30.5	21.1
ρÞ	48.3	69 +	78.9
THN	33.4	21.3	22.0
Nephthalene	66.6	79.7	88.0

a) dis to transmisomerization occurs : during manydrogenation. (Continued)

Table 36 (Contd). DEHYDROGENATION OF DCH-DHN MIXTURE: EFFECT OF TEMPERATURE

Run 9645-	158	159	1 60
k, sec-1			
DCH	0.573	0.780 (0.762)	0.960 (0.972)
DHN	0.357	0.497 (0.693)	0.642
Overall E, act, keal/male	0.487	0.602	0.762
DCH DCH	<u> </u>	5.3	 >
DHN	<u> </u>	- (7.8) $-$ 6.6 $-$ -	
Heat Sink Reaction,	<	(7.7)	>
Btu/lb Mixture	333	437	533
Pure DCH Pure DHN	406 276	523 448	644 510

Figure 26. DEHYDROGENATION OF DCH-DHN MIXTURE Effect of Temperature on Conversion for Different Decalins

were different with the two feedstocks. Thus with the high cis-DHN feed, Eact for DCH and DHN were lower than those observed for the pure compenents (Table 36); while with the high tran -DHN feed, Eact for DCH equalled that of pure DCH and Eact for DHN was higher than that of pure DHN (Table 35). Figure 27 shows Arrhenius plots of the data for the DCH-DHN mixtures. As the activation energies were calculated from the first order rate constant, they represent activation energies for the first dehydrogenation step.

With pure DHN, catalyst deactivation was observed during dehydrogenation. Mixing DCH and DHN reduced this catalyst deactivation considerably. For example, during dehydrogention of pure F-113 PHN and pure Shell DHN increases in catalyst bed temperatures of 140°F and 57°F, respectively, were observed at 1022°F. With the DCH-DHN feeds temperatures increases of only 23°F and 16°F were observed with the DCH-F-113 DHN (Table 36) and the DCH-SHELL DHN (Table 35), respectively.

Reaction heat sinks calculated for the DCH-DHN mixtures were lower than those obtained with pure DCH but higher than those obtained with pure DHN.

The effect of conversion on selectivity was studied in a series of experiments at 842° and 1022°F (LhSV 50 and 30; 10 atm pressure) using the DCH-F-113 DHN feedstock (i.e., high dis DHN concentration). With this mixture DCH conversions were about that observed with pure DCH (Table 37). Selectivities for DP at a given conversion were higher than was observed with pure DCH, more so at 842°F than at 1022°F (Figure 28). Comparison of the results for DHN with the mixture to that of pure DHN are not possible now as pure F-113 DHN has not been tested as yet under these reaction conditions. Heat sinks of reaction obtained with the DCH DHP mixture were somewhat lower than those observed with pure DCH.

The effects of pressure on conversions and selectivities were studied in a series of experiments at 10 and 20 atm pressure and 842° and 1022°F (LHSV = 100). In general, at a given pressure and compared to the pure components, conversions of the naphthenes in the mixture were slightly lower (Table 38); while selectivities for DP were slightly higher, and those for haphthalene slightly lower (Figure 29) than was observed with the pure components. Heat sinks of reaction with the mixture were lower, general than those obtained with pure DIW.

In summary then, addition of 50% DHN to DCH reduced the reactivity of DHN; enhanced the reactivity of DCH if the trans isomer content of the DHN was high (90%); and did not effect the reactivity of DCH if the cis isomer content of the DHN was high (75%). No reason for this isomer effect on the DCH reactivity is immediately evident.

a) The DHN conversions and selectivities for naphthalene were compared to those obtained with EK P1905 DHN.³) This Decalin was less reactive than F-115 DHN hence the DHN conversions and naphthalene selectivities shown in Table 9 and Figure 29 for pure DHN could be slightly higher for the F-113 decalin.

Figure 27. DEHYDROGENATION OF DCH-DHN MIXTURE
Temperature Coefficient

Table 37. DEHYDROGENATION OF DCH-DHN MIXTURE: EFFECT OF CONVERSION ON STLECTIVITIES FOR DIPHENYL AND FOR NAPHEHALENE

Values for pure DCH and pure DHN in parentheses.

Catalyst:

Decalin:

1% Pt on Al₂O₃ 7 ml

Fe d: 49.25 DCH

Catalyst Volume: Pressure:

10 atm F-113

12.3% trens-DHN 36.9% cis-DHN 1.4% PCH

0.2% THN

Run 9645-	162-1	162-2	163-1	163-2
Temperature, °F Block Wall Catalyst Bed	725 635	42 	<−− 10 925 720	941 732
LHSV	50	30	50	30
Product Analysis, %w Cracked Benzene Toluene trans-DHN cis-DHN yb) DCH THN PCH Naphthalene DP	0.0 0.0 0.0 14.9 ^a) 9.9 0.0 11.3 5.7 11.9 19.2 27.0	0.0 0.0 0.0 13.9 ^a) 5.4 5.0 4.3 6.5 26.9	0.1 0.1 7.5 4.2 0.1 3.3 2.5 54.6	0.3 0.4 0.2 2.7 1.0 0.4 0.5 0.4 0.4 8.9
Conversion, %w DCH DHN	78.6 (78.3) 49.2 (41.3)	89.9 (93.2) 60.8 (58.9)	93.3 (93.8) 76.6 (65.4)	99.2 (-) 92.5 (87.9)

cis to trans isomerization during the run. Unidentified.

b)

(Continued)

Table 37 (Contd). DEHYDROGENATION OF DCH-DHN MIXTURE:

EFFECT CF CONVERSION (. SELECTIVITIES

FOR DIPHENYL AND FOR NAPHTHALENE

Run 9645-	162-1	162-2	163-1	163-2
Selectivity for, %w PCH DF THN Naphthalene	28.0 72.0 22.2 77.8	11.8 88.2 13.2 86.8	2.0 98.0 2.9 97.1	0.0 99.94% 0.4 99.6
k, sec ⁻¹ DCH DHN	0.587 0.325	0.560 0.273	0.761 0.813	o. 8 8o
Heat Sink, Btu/lb Reaction, Mixture Reaction, Pure DCH React on, Pure DHN	574 656 383	736 895 552	862 978 618	976 1050 825

Effect of DCH Conversion on Selectivity for DP

Table 38. DEHYDROGENATION OF DCH-DHN MIXTURE: EFFECT OF PRESSURE

Values of pure DCH and pure DHN in parentheses.

Catalyst:

1% Pt on Al₂O₃ Feed: 49.2% DCH 7 ml 12.3% trans DHN 100 36.9% cis DHN F-113 1.4% FCH Catalyst Volume: 7 ml LHSV: Decalin:

0.2% THN

Run 9645	165 -1	165-3	166	168-1	168-3	169
Temperature, 'F		– 842 –		<i></i>	—10 2 2 —	>
Wall	720 624	716	729	882	885	889
Catalyst Bed	024	635	660	703	702	711
Pressure, atm	10	20	30	10	20	30
Product Analysis, %w	14.8 ^{a)}	18.9 ^{a)}	23.6ª)	12.4 ^{a)}	14.2 ⁸⁾	15,4 ^a)
cis-DHN	19.0	14.0	10.0	13.1	9.5	7.1
DCH	24.8	27.6	31.3	14.6	13.9	14.7
THIN	6.1	10.6	12.2	4.2	9.6	13.5
PCH Naphthalene	14.2	17.6 6.3	17.0	10.2 19.9	16.5 16.4	20.7
DP	9.5 11.6	4.9	1.5	25.6	19.8	13.7 14.6
Cracked	0.0	0.1	0.1	0.0	0.1	0.3
Yield FCH	12.8	16.2	15.6	8.8	15.1	19.3
Conversion, My						
DCH	50.0	43.5	35.8	70.1	71.5	69.6
DUN	(52.2)	(46.0)	(38.5)	(71.0) 47.8	(75.5) 51.4	(74.6) 54.1
DHN	31.7 (31.5)	32.5 (33.1)	31.1 (32.6)	(52.9)	(54.0)	(55.5)
Selectivity for, w						
PCH	53.1	76.8	91.3	25.6	43.3	56.9
DP	46.9 38.4	23.2	8.7	74.4 16.7	56.7 36.4	43.1 49.2
THN Naphthalene	50.4 61.6	62.3 37.7	75.2 24.8	83.3	53.6	50.8
a) cis to trans-iso		ţ	<u> </u>	l	• -	ontinued)

a) cis to trans-isomerization occurred during dehydrogenation. (Continued)

Table 38 (Contd). DEHYDROGENATION OF DOH-DHN MIXTURE: EFFECT OF PRESSURE

Run 9645-	165-1	16,5-3	166	168-1	168-1	169
k, sec ⁻¹ DOH DHN	0.554 0.364	0.228 0.187	0.119 0.119	1.100 0.706	0.558 0. 3 93	0.366 0.283
Heat Sink, Btu/1b Reaction, Mixture Reaction, Pure DCH Reaction, Pure DHN	333 390 288	273 294 242	220 211 230	547 661 503	530 625 495	491 567 485

Part I

Signer 19. DENYDROGENATION OF DCH-DHN MIXTURE Filed. It is resoure on Selectivity for Maphthalene and DF

Activation energies for the first dehydrogenation step were lower than those observed for the pure components with the 50% DCH-50% DHN (75% cis) but with the 50% DCH-50% DHN (90% trans) $E_{\rm act}$ for DCH was unchanged and $E_{\rm act}$ for DHN was higher than those obtained with the pure components.

At 842°F and a given DCH conversion (80-90%) there was a marked increase in selectivity for DP when DHN (75% cis) was added to DCH. A similar but less marked effect also was observed at 1022°F.

With increased pressure (10-30 atm) addition of DHN (75% cis) generally reduced the reactivity of both DCH and DHN; and at a given conversion gave a slight increase in selectivity for DP and a considerable decrease in selectivity for naphthalene. As was observed with pure DCH and pure DHN, at 842-1022°F conversions were essentially independent of pressure except for DCH at 842°F where conversion did decline somewhat with increased pressure. 1)

Very little catalyst deactivation was observed during dehydrogenation of the 50% DCH-50% DHN mixtures.

With the dehydrogenation of 50% DCH-50% DHN the reaction heat sink was less than that of pure DCH, but greater than that of pure DHN. This was primarily because the total reaction heat sink available from DCH is 1080 Btu/lb and from DHN is 950 Btu/lb. Although an increase in selectivity for DP was btained when DHN was added to DCH, the gain in reaction heat sink due to this enhanced selectivity was not enough to compensate for the loss in heat sink by diluting DCH with DHN. Thus it appears that no gain in reaction heat sink over that of pure DCH will be obtained by adding DHN to a DCH feedstock.

Thermal Reaction of Dicyclohexyl-Decalin Mixture

The 50% DCH-50% DHN mixture was also tested for thermal reaction at 10 atm pressure, 1022-1293°F at LHSV of 20. In these tests quartz chips (10-20 mesh) filled the reaction zone in the reactor.

With this mixture the reactivity of DCH was slightly greater than the overall reactivity of DHN. For example, at 1293°F DCH conversion of 69.9% was observed compared to 62.2% for DHN (Table 39). For the two DHN isomers the cis species was more reactive than the trans (of rate constants Table 39). Apparent activation energies ranged from 44.2 kcal/mole (cis DHN) to 54.2 kcal/mole (trans DHN). Figure 30 is an Arrhenius plot of the data. Reaction products were mainly liquid cracked material (Table 39) with lesser amounts of gas products. Gas products were mainly methane, ethylene and hydrogen (Table 40). Heats of reaction were less than 230 Btu/1b due to hydrogen transfer reactions between the reaction products.

Conversions, first of relate constants and activation energies obtained with the pure components of shown an <u>Table 39</u> in parantheses for comparison. In the mixture the reactivity of DCH was comparable to that of pure DCB while the overall reactivity of DCH was slightly less than that of pure DCB (a) related constants; <u>Table 39</u>); while activation energies obtained with the pure magnets.

Table 19. THERMAL REACTION OF DICYCLOHEXCY-PERSONS MOVEMENT

 Prossure:
 10 atm
 Feed:
 12.35 trans-Pho

 LHSV:
 20
 35.46 tis-DHI

 Rentition Time:
 20 min
 49.25 DCH

 Catalyst:
 Quartz Cnips
 0.25 THN

 Cacalyst Vol:
 20 ml
 1.45 PCH

Pun No. 10100-	17-1	17-3	18	18
Temperature, *P				
Block	1022	1112	1202	1295
Wall	1009	1094	1175	1240
Catalyst Bed	972	1056	1119	1155
Product Analysis, &w	1 0,12	1 2000	1110	1 1100
Benzene	0.0	0.4	1.7	5.5
υ ₁ b)	0.1	1.3	2.3	3.0
Toluene	0.0	0.1	1.2	4.6
y, b)			3	2.8
trans-DHN	0.0	0.4	1.5	
n* p)	12.4	12.2	10.0	6.7
	0.1	0.3	0.6	1.0
cis-DHN	36.1	32. 3	22.8	11.9
υ ₄ b)	0.0	1.4	3.5	4.6
DOH.	49.0	44.1	30.1	14.8
U _S ^E)	0.0	0.0	0.6	0.8
THN	0.1	0.1	0.4	0.6
PCH	1.4	1.4	1.1	0.8
Naphthalene .	0.0	0.0	0.0	0.5
Cracked, liquid	0.8	6.0	17.2	21.3
Cracked, light gas	0.0	0.1	8.2	21.5
Conversion, % w	1		0.2	1 21.0
trans-DHN	0.0		70 "	15.0
cis-DHN		0,8	18.7	45.6
Total DHNa)	2.2	12.5	38.2	87.7
TOCAL DAY	1.5	9.6	33.4	62,2
5 .444	1	(14.6)	(46.2)	
DCH	0.5	10.4	38.8	69.9
	(3.7)	(10.3)	(39.2)	(66.7)
First Order Rate Constant, sec-1	1			}
trans-DHN	-	-	0.055	0,167
		(0.018)	(0.119)	(0.348)
cis-DHN		0.034	0.197	0,361
	1 1	(0.055)	•	*
Total DHN	-	0.025	0.108	0.267
			(0.116)	(0.425)
DCH		0.023	0.109	0.277
	;	•	(0.111)	
E, Act Energy, kcal/mole	1	(0,020,	(0.777)	1 (0 5 8 9 9 9)
trans-DHN	1 1		- EA	0 5
cis-DH	1		≪ 54	
		- Allen and a second a second and a second a	- 44.2	·
Batal DHN			- 47.0 -	———
m /s.r.	1		(45,3)	
DOM	1 !	4	- 48.9 -	
]		(47.0)	!
leat Sink, Btu/15	1	Î		
Reaction	0.0	35	124	228
	1	222	1	
Total at Block Temp	769	866	1038	3.206

The Tolera for pure acapearate shown in parenthases.

a) -- dembilied.

TEMPERATURE COEFFICIENT

Table 40. THERMAL REACTION OF DICYCLOHEXYL-DECALIN MIXTURE: GAS PHASE PRODUCT DISTRIBUTION

Pressure: 10 atm LHSV: 20

Feed:

20 12.3% trans-DHN 36.9% cis-DHN 49.2% DCH 0.2% THN 1.4% PCH

Run No. 10100-	18	19
Block Temperature, °F	1202	1295
Total Conversion, w	33.4	62.2
Conversion to Light Gas, /w	8,2	21.5
Gas Product Analysis, by H ₂ CH ₄ C ₂ H ₃ C ₃ H ₆ C ₃ H ₈ C ₄ H ₈ C ₄ H ₈ C ₄ H ₁₀ C ₅ H ₁₀	22.2 30.2 21.3 12.8 7.4 2.7 0.5 1.3 0.1	18.4 29.8 21.5 14.3 8.7 3.8 0.8 2.3 0.2

Dicyclohexyl-Methyldecslin

These experiments were done with a 50% DCH-50% 1-MDHN mixture that analyzed to be:

6.1% trans-1-MDHN 43.9% cis-1-MDHN 49.4% DCH 0.6% PCH

The experiments were done at 10 atm pressure, LHSV of 100, at 842-1022°F using our laboratory 1% platinum on alumina catalyst. The procedure for carrying out the experiments was the same as that used for studying the DCH-Decalin system. Product material was analyzed by GLC, using a five-foot 1/4-in stainless steel column packed with 5% Carbowax on Chromosorb W. With this column the 5-MTHN and PCH emerged as one component. Hence these components were obtained by a separate analysis using a two-foot, 1/2-inch diameter column packed with 20% tricyanoethoxypropane on 100-200 Chromosorb W. The data are recorded in Table 41; values obtained with pure components are shown in parentheses.

Addition of DCH to 1-MDHN stabilized the catalyst. For example, at 932°F an increase in catalyst bed temperature of only 49°F was observed compared to an increase of over 200°F with pure 1-MDHN 'Table 41). Further, the overall reactivity of 1-MDHN was enhanced, prosume because of catalyst stabilization (of rate constants Table 41). Selectivity for methylnaphthalene was considerably lower in the mixture, however. The reactivity was enhanced, but the selectivity for DP was virtually that of the pure component (Table 41).

Activation energies were computed from first order rate constants and are recorded in Table 41. Figure 31 is an Arrhenius plot of the data. Heat sinks with the mixture were lower than those obtained with pure DCH but greater than those for pure 1-MDH (Table 41).

In summary then addition of DCH to 1-MDHN:

- 1. Stabilizes the catalyst for dehydrogenation of the naphthene mixtures.
- 2. Enhances the reactivities of both DCH and 1-MDHN.
- 3. Lowers the selectivity for methylnaphthalene but does not effect the selectivity for DP.
- 4. Gave a heat of reaction that was lower than that obtained with pure DCH but greater than that obtained with pure 1-MDHN.

Propane Cracking

The reaction of propane to give ethylene and methane has an endothermic heat of 740 Btu/1b. For this reaction the equilibrium propane conversion is 95% at 10 atm pressure and 1340°F. This would give a total

1

Table 41. DEHYDROGENATION OF 1-METHYLDECALIN-DICYCLOREXYL MIXTURE

Values obtained with pure components shown in parentheses
Catalyst: 1% Pt on Al₂O₃ Feed: 6.1% trans
Catalyst Volume: 7 ml Feed: 6.15 trans-1-MDHN 43.5% cls-1-MDHN

49.45 DCH 0.65 PCH 100 LHSV: 10 atm Pressure:

9-1	10-1	10-2
		1022
842		-
705-12		855-78
640-67		777-925
	650-60	698-743
815-20	657	707
626-28	671-69	730-18
27	49	148
0.0	7 8	6.5
		17.1
	1	12.2
		1.1
	1	1.7
1	5	7.8
2	ľ	23.6
3	3	30.0
11.7	1	}
17.6	11.5	7.2
	00.0	75.3
1		52.8
1	1	64.0
51.8	28.8	1
80.0	33.2	18.4
		(20.2)
		81.6
		(79.8)
		10.7
1		89.3
(83.5))	İ
		2 040
0.731		1.249
(0.609)		(0.972)
0.498		0.729
(0.329)		0.050
0.606	0.775	0.953
4	8.6	
4(7.8)	1
1		
-	6.5	-
	}	
1	1	
374	481	555
448	662	732
1 200	1 340	378
	842 705-12 640-67 610-22 615-20 626-28 27 9.3 16.9 19.7 2.3 5.9 18.2 14.0 11.7 17.6 60.1 43.6 51.8 60.0 (59.2) 40.0 (40.8) 36.4 63.6 (83.5) 0.731 (0.609) 0.498 (0.329) 0.606	842 932 705-12 763-70 640-67 698-747 610-22 650-60 815-20 657 626-28 671-69 27 49 9.3 7.6 18.9 18.3 19.7 15.0 2.3 1.5 5.9 3.3 18.2 12.1 14.0 19.1 11.7 23.1 17.6 11.5 60.1 69.6 43.6 48.2 51.8 58.9 60.0 33.2 (59.2) (36.5) 40.0 (63.5) 36.4 (63.5) 40.0 (63.5) 40.0 (63.5) 36.4 (83.5) 0.731 (0.993 (0.609) (0.762) 0.498 (0.329) 0.598 (0.367) 0.755 4.6 4.6 4.6 4.6 4.6 4.6 <

Figure 31. DEHYDROGENATION OF 1-MDHN-DCH MIXTURE TEMPERATURE COEFFICIENT

heat sink of about 1950 Btw/lb. Under conditions of thermal r action about equal selectivities for the dehydrogenation of propane to propylene and the cracking of propane to ethylene and methane are reported in the literature. A few exploratory experiments were carried out under conditions of thermal reaction using free-radical initiators, and also at lower temperatures with various catalysts, to test the reactivity and selectivity of propane for the cracking reaction.

Thermal Reaction

The thermal reaction was tested in both the standard laboratory reactor (1/2" IPS; 5/8" ID) and in a modified apparatus using a 1/4" OD reactor tube.

The tests in the standard reactor were done at 10 atm pressure, 1022-1295°F at LHSV of 20, with 20 ml of quartz chips (10-20 mesh) in the reaction zone. Under these reaction entitions propane conversions were considerably higher then were observed reviously at lower pressure. For example, at 1295°F about 20% propane rersion was observed at 10 atm pressure (Table 42) compared to only of a previous report). Presumably higher conversions were due to longer contact times at the higher program. Dehydrogenation and cracking the pyrolysis. Thus at 1295°F were the principal reactions during T selectivity for the dehydrogenation relation (product propylene) was about 40% while that for cracking (products ethylene and ethane and methane) was about 53% (10 atm; Table 42). The receivity of propane for thermal reaction was about one half that of m cyclohexane (MCH) based on the F kc.H. = 0.04 sec. compared to r propune pyrotysis was 51.4 first order rate constants. Thus at 0.08 sec-1 for MCH. Activation energ Loui, note over the temperature range of 1202°-1295°F (Table 42). Heat sink of reaction was only 175 Btu/1b (1295 3) due to low conversion.

Thermal reactions proceed v. a free-radical mechanism. A few experiments were carried out to explore the possibility of enhancing the rate of thermal reaction by the use of free-radical initiation. These experiments were done at 1 atm press. e, 1295°F, and as a propane LHSV of about 22. Allyl chloride (1%), methyl iodide (10%), and hydrazine (1%) were tried as initiators. To carry out an experiment, propane flow was started through the reactor and then liquid initiators were forced into the propane streams at the top of the reactor by a syringe pump. The flow rates were such that the initiator vaporized completely into the propane stream. These experiments were carried out in a modified apparatus using a 1/6" OD reactor tube and which is described in detail in the Appendix. The data for the experiments are shown in Table 42.

Very little enhanced reactivity was observed with 1% added allyl chloride. With 10% added methyl iodize the overall conversion was increased by a factor of three (cf runs 108 and 110-1, Table 42). Considerable coke accumulated during the runs with allyl chloride and methyl iodide, although the reactor was contacted with 4% Op in argon at 1022°F for 16 hrs between runs.

Table 42. THERMAL REACTION OF PROPANE

Catalyst:

Quartz chips

Catalyst Volume: 20 ml

Run No. 10100-	72ª)	73 ^a)	74-1 ^{a)}	74-2 ⁸)	110-1 ^{b)}	110-4b)	108 ^{b)}
Initiator	<u> </u>	r	one	>	none	1% allyl chloride	10% methyl iodide
LHSV			20	>	22 base	ed on 2.3 c	c volume
Pressure, atm			10 —	>		<u> </u>	
Temperature, °F Block Wall Catalyst Bed	1022 1018 995	1112 1108 1090	1202 1197 1168	1293 1274 1240	«	1.295	>
Product Analysis, %m H2 CH4 C2H4 C2H6 C3H6 C3H6 C4H8	0.0 0.1 0.0 0.0 0.0 99.9 0.0	0.4 0.7 0.6 0.0 0.5 97.8 0.0	0.4 2.6	9.2 10.5 6.5 2.1 6.7 64.8 0.2	2.3 1.4 1.4 0.0 1.4 93.5 0.0	2.0 1.5 1.6 0.0 1.6 93.3 0.0	4.6 6.1 3.5 0.1 5.5 80.2 0.0
C ₃ H ₈ Conversion, % m	>0.1	1.1	6.6	19.2	2.9	3.4	10.6
Yield CaHe, %m	_	0.5	2.8	8.0	4.45	7•!	6.1
Yield C2H4 + C2He, % m		0.6	3.8	10.6	1.45	1.7	4.0
First Order Rate		_	0.040	0.134	-	-	
Constant, sec 2							
Eact, keal/mole			← 51	.4>			

a) Carried out in the standard 5/8" ID reactor tube.
b) Carried out in the modified reactor with the 1/4" OD reactor tube.

From the results obtained thus for it did not appear that addition of small amounts of free-radical initiators would enhance the propage pyrolysis rate appreciably. No further experiments are presently planned although the idea has not been discarded completely since the effect on the rate would be critically related to the properties and abundance of the free-radical species generated. Here we have barely scratched the surface.

Catalytic Reaction

A few exploratory experiments were done on the catalytic cracking of prepane using various types of off-the-shelf catalysts. The purpose of the work was to see if propane could be converted catalytically to ethylene and methane at temperatures lower than those needed by thermal reaction. Seven different catalysts were tested, including two platinum on eluminas, two commercial platinum catalysts, two commercial zeolites, and one zeolite upon which platinum had been highly dispersed. One of the catalysts was tested in our standard laboratory reactor, all of the catalysts were tested in the modified apparatus with the 1/4" OD reactor tube. This latter apparatus is described in detail in the Appendix. Product analyses were carried out by GLC and mass spectrometry.

A Houdry cracking catalyst (146; 20 ml volume; 10-20 mesh) was tested in the standaru raporatory reactor (1/2" IPS) at 932-1202°F, 1 and 10 atm pressure at LHSV of 20. At the highest temperature only 3.5% to 4.1% propane conversion was obtained at both pressures (Table 43). The catalyst was inactive at 1022°F and only slightly active at 1112°F (conversion 1%).

The catalysts were tested in the 1/4" reactor at 572°-1022°F, 1 and 5 atm pressure, at LHSV of 20. Catalyst of 2 ml diluted with 5 ml of quartz chips (10-20 mesh) were used in these tests. The data are tabulated in Table 43 in which the product distributions shown are from the mass spectrometric analyses.

The 1% platinum on alumina (our standard dehydrogenation catalyst) and the UOP-R8 platforming catalyst (0.76% Ptm Al₂O₃) were the most active of the catalysts tested. With these catalysts 15 to 24% conversion was observed at 1022°F. Dehydrogenation was the principal reaction and selectivities of 79 to 89% for this reaction (i.e., propylene) were obtained. Both catalysts were quite active and 5 atm pressure and 1022°F the propylene product concentrations were about the equilibrium values. The activity of both catalysts were about the same at 5 atm but at 1 atm pressure the UOP-R8 appeared concentrations (1022°F).

All of the other catalysts tested were less active than the platinum on aluminas. Based on propane conversion at 5 atm and 1022°F the catalysts in order of decreasing activity were: Zeolon (Mordenite) NH4 form; Shell Hydrocracking catalyst; 0.08% Pt on Mordenite; Houdry M46; and Zelon (Mordenite) H form. With these catalysts propane conversions ranged from 6 to 0.6% (5 atm, 1022°F; Table 44). None of the catalysts showed activity at 772°F except UOP-R8 with which about 0.5% conversion was obtained at atm pressure.

From the exploratory tests conducted with these catalysts it appeared that cracking catalysts and reforming catalyts do not catalyze the

propane cracking reactions with even a moderate degree of selectivity. It might be possible to develop a catalyst more selective for this reaction but we have no plans to do this at present.

Table 45. PROPANE CRACKING OVER HOUDRY M46 CATALYST a)

Catalyst Volume: 20 ml iHSV: 20

Pin No. 10100	75	76	77-1	77-2	79 - 1	79-2	79-3	79-4	80-1	80-2	81-1	81-2
Pressure, atm	4-				4			1	0 —			
Temperature, °F Block	932	1022	1112	1202	932	932	1022	1022	1112	1112	1202	1202
Reaction Time, min	4	7	20 —	-	2	15	2	15	2	15	2	15
Product Analysis, %m												
H ₂	-	-	0.3	1.8	-	-	-	-	0.3	0.6	2.9	2.3
CH ₄	-	•	0.2	1.6	•	-	•	•	0.5	0.5	2.5	2.4
C2H4	-	•	0.0	1.5	-	=	•	•	0.5	0.3	1.9	1.8
C ₂ H ₆	-	-	0.0	0.0	-	•	-	•	0.0	0.0	0.3	0.2
C3K6	-	•	0.5	1.9	-	-	. •	-	0.4	0.4	1.7	1.7
C ₃ H _e	190	100	99.5	93.2	100	100	100	- 100	98.3	98.2	90.7	91.6
C₃Ha Conversion, ≸⊞	0.0	G . 0	0.5+	3.5	0.0	0.0	0.0	0.0	0.9	0.7	4.1	3.8
Calla Converted to Calle,	-	•	0.5	2.0	•	-	-	•	0.4	0.4	1.8	1.7
C ₃ H ₈ Converted to	-	-	0.0	1.5	-		•	-	0.5	0.3	2.3	2.1

a) Carried out in the standard 5/8" ID reactor tube.

cracking Catalyst Shell Hydro-0.0 = <u>ھ</u> 122-1 on Mordenite 0.08% Pt 0.7 124-1 1.4 1.1 0.2 0.2 0.7 0.7 0.3 9 1.7 CATALYTIC CRACKING OF PROPANE OVER VARIOUS CATALYSTSA) 9.0 0.0 0.5 0.4 0.0 0.0 0.0 126-1 126-2 Zeolon H for≡ 9. 0.0 9. 1.6 1.3 0.3 0.0 97.8 1022 — .5 3.4 118 119-1 119-3 131-1 31-2 133-1 133-2 0.9 3.6 4.1 2.3 0.8 1.4 87.0 S Zeolon NH4 form " 0.5 1.6 0.8 0.5 0.5 93.2 9.0 7.0 0.2 0.3 0.3 0.4 97.7 <u>.</u> Houdry 146 0.0 0.4 0.0 0.0 0.0 0.0 0.0 **C.**2 0.2 2.2 13.4 15.8 2.8 2.8 0.0 1.9 11.4 77.5 21.8 *****• 24.0 18.9 1.9 0.2 1.1 17.2 60.3 UOP-R8 --0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 572 4.0 0.0 0.5 0.5 3.8 0.1 0.1 0.6 0.4 9•4 117 842 a) Analysis made on hydrogen-free basis.
 b) Carried out in the modified reactor wi 3,3 Table 14. 12,3 15.6 1 4.2 4.2 0.2 1.9 10.5 71.7 129-2 14 Pt on A1203 Block Temperature, *F <-- 1022 -00250 0 129-1 2 Product Analysis, 5m CoHe Conversion, 🏞 C₃Hs Converted to C₃He < H2, Fm tc C2H. . CH., 1 Higher than C₃ CaHe Converted Run No. 10100-Pressure, atm Catalyst

Carried out in the modified reactor with 1/4" OD reactor tubos.

120

Conventional Catalysts: Preparation and Testing

An extensive catalyst preparation program has been carried out with the object of discovering catalysts more useful for endothermic reactions. Specifically, for naphthene dehydrogenation, this means such catalysts must be more active, or have other desirable attributes such as greater stability than the present reference catalys: 9874-24 (1% Pt/UOP R-8 Al₂O₃). Many catalysts (224) of different types have been prepared or obtained and rapidly screened for activity for MCH dehydrogenation at 10 atm pressure, IHSV 100, and at 662, 792 and 842°F, in the microscale test rig (MICTR).⁸) The purpose of the screening tests has been to obtain a quick comparison with the reference catalyst and to eliminate catalysts with activities too low to be of practical importance. After the initial screening, some of the more active catalysts have been further evaluated in the bench scale reactor with MCH. If warranted, some of these catalysts will be later evaluated for dehydrogenation of other naphthenes (e.g., decalin), for dehydrocyclization (with 2,5-dimethylhexane) and for depolymerization (with tetraisobutylene).

Catalyst Preparation

Exploratory Preparations

The majority of catalysts have been prepared by impregnating various supports with one or more metal salt or metal complex solutions, followed by drying, and reduction in situ. Typically, only small quantities of any particular catalyst have been prepared, 10-50 g. The amounts of metals employed are within the broad limits of 0.5 to 30%, and most commonly within the limits of 1 to 5%. Virtually all of the individual metals in the periodic system that are known or can be expected to have dehydrogenating activity have been studied as well as bimetallic and a few trimetallic combinations. The active Group VIII metals have been given particular attention. Ten different types of supports have been employed. These are, commercial aluminas of many types, charcoal, graphite, ferric oxide, silica, zirconia, amorphous alumina-silica, three crystalline alumino-silicates (molecular sieves), and diatomaceous earth (celite). In addition, a number of commercially available catalysts have been included, and Shell catalysts available from earlier proprietary investigations.

Lerger Scale Preparations

Two catalysts were prepared in relatively large quantities. Both consisted of Pt mounted on Harshaw 0104 alumina. The first preparation (5 lbs) duplicated our standard laboratory catalyst (1% Pt on 1/8" pellets) and had comparable activity; most of this was supplied to the Fuels, Lubricants, and Hazards Branch of AFAPL, Wright-Patterson AF Base for inhouse studies.

The pellets were broken, sieved to 10-20 mesh size and tested in the bench-scale reactor at 10 atm pressure, 842-1022°F and IHSV of 100. The activity of this catalyst was slightly higher than that of the standard laboratory catalyst (9874-7) and at block temperatures of 842°, 932°, and

a) See Appendix.

AFAPL-TR-67-114 Part I

1022°F MCH conversion of 44.6%, 57%, and 73.2% were obtained, compared to 40.8%, 54.8%, and 66.6% with the standard catalyst. With this catalyst a temperature increase of 16°F was observed during a 30-minute run at 1022°F. However, in another 4-hour test (1022°F) no catalyst bed temperature increase was observed, duplicating the behavior of other preparations of this catalyst. The reasons for this difference in behavior is not known.

The second preparation (1 lb) consisted of 0.76% Pt on 50-60 mesh alumina and was supplied to United Aircraft Research Labs (E. Hartford) for asymmetric heating studies. Because of the fine particle size, the catalyst was tested by forming into 1/8" pellets and fracturing. It had a high bulk density (0.88 vs 0.52 for the MICTR reference catalyst) and somewhat higher activity (1.1 x the standard). The enhanced activity was probably due to the larger amount of Pt in the reaction zone.

Catalyst Evaluation

Supported Platinum

Of the many different catalytic metals and metal combinations so far tested on various supports for dehydrogenation of methylcyclohexane to toluene, the most active system appears to be platinum supported on a Some of the other supports (types number of high surface area aluminas. 5,6 and 7) lead to active but not quite competitive catalysts. The results with a possible alternate support (type 7) are discussed below. In general, at relatively constant total platinum content the dehydrogenation activity rises rapidly with increasing surface area of the support and then tends to level off (cf Table 45 and Figure 32). Activity usually does not rise much beyond a total platinum content of 4% for the higher surface area supports. A typical example is shown in Figure 33 for a Type 1 support. The limiting factor is undoubtedly the amount of platinum which can be highly dispersed, a function of the extent of surface area of a particular support. Activity can diminish if the support is overloaded with Pt. This is shown in Figure 33 for a type 7 support (this is a dense support, so the two curves are not on a comparable basis). Optimum activity is obtained with a platinum content of 2. The high activity is partly a result of the high catalyst charging weight per unit volume (cf catalysts 9874-111, 119A, and 119B; runs 49, 144, 145, respectively).

Table 46 shows the first order rate data obtained at various temperatures and LHSV 100 for the reference catalyst (9874-24) and for one of the better experimental catalysts (9874-200A) at LHSV 50, 100, and 200. The test conditions were closely controlled and the average temperatures between the block and the reactor tube wall have been used. The instruments had just been calibrated. The difference between the two series measurements did not exceed 45°F at the highest conversion, unlike bench scale results where differential temperatures of ~170°F or more are observed. At the highest temperature employed, the experimental catalyst has about twice the rate of dehydrogenation at LHSV 100 as the reference catalyst. Figure 34 shows a log k sec⁻¹ vs 1/T plot. The apparent activation energies calculated from this relation are 19.3 and 15.2 kcal/mole, respectively. The differ-

Table 45. MCS DESTROGENATION WITH FLATINGM ON TYPE 1 SUPPORTS OF VARYING SUNTAGE AREA

Conditions: LHSV = 100, 10 atm presoure; temperatures we see so in block. Other details are in Table 73 of the Appendix

Surface Area, 1)	Porr Volume, c)	Pt,	Catalyst	Rua No.		sion of luene, 7	
m ² /g	ml/g	jour	No. 9874-	adi 140,	662 ° F	752 ° F	842°F
1.47(b) 3165) -278 -230 -188 -175 -165 164b) -20 -0	-0.6 -0.4 -0.4 -0.5 -1.3 -0.8 -0.8 -0.8	222222 1 122	168A 107 118A 132A 96 131 132B ref 24 7 112	44 45 70 84 31 80 83 avg of 11 tests 111 48 50	31 39 34 38 30 35 37 28 ± 4 29 30 0	63 61 67 57 58 56 52 ± 3	82 81 86 86 74 73 86 72 ± 7 77 67

Measurement on similar sample.

b) Measurement made on support.
c) Estimated from density.
d) Average of 8 and 13 minute samples.

- 124 -

Figure 33. INFLUENCE OF PLATINUM CONTENT ON MCH DEHYDROGENATION ACTIVITY

Estatus ...

Table 46. MCH DEHYDROGENATION HATES O'ER REFERENCE AND IMPROVED Pt/AlgOg CATALYSTS

Conditions: 10 atm pressure

Temperature variable LHSV 50, 100, or 200

Cat. No. 9874	IHSV	Diock Temp,	Avg remp	≯ rich Conv	Sec	% of Equilibriumb)
24 (reference)c)	100	662	649	24	0.302	48
	100	752	729	49	0.792	55
	100	842	815	68.(9	1.46	69
200A ^{d)}	50	662	649	37	0.256	60
	50	752	732	69	v.688	77
	50	842	812	94	1. 7	95
	100	662	649	30	0.391	60
	100	752	732	63	1,17	70
	100	842	812	87	2.58	88
	200	662	649	30	0.781	48
•	200	752	732	54	1. 33	60
	200	842	817	70	2.85	71

b)

Average of block temperature and lowest temperature measured. cf, APL TDR 64-100, Part II, Figure 8, p. 21 (Ref. 2). 1% Pt/R-8 Al₂O₃, Surface Area 180 m²/g. 44 Pt/H151 Al₂O₃, Surface Area 350 m²g.

Figure 34. TEMPERATURE COEFFICIENT FOR MCH DEHYDROGENATION WITH IMPROVED Pt/Al₂O₃ CATALYST

AFAPL-TR-67-114

ences between the E values calculated for this data and for the rates observed in the bench scale equipment is undoubtedly due to the different bed and furnace arrangements in the two apparatuses.

Various Supported Metals

A number of metals for promoting the activity of platinum on alumina and other supports have been studied. In general the dehydrogenation activity is only that induced by the platinum metal itself. Small improvements from incorporating a second metal oxide in alumina support (i.e. catalysts, 188A, 189A, 190A, 192A and 194A; runs 226, 233, 235, 241, and 256).

Most of the single metals or bimetallics on alumina or other supports ranged from inactive to moderately active. One of the more interesting metals on alumina gives activities similar to that of platinum although at higher metal content (i.e., 121A and 121B; runs 156 and 157, respectively). However, particularly at the higher temperature (842°F) such catalysts form benzene as well as believe, and also hydrocarbon fragments (i.e., CH₄). An exothermic reaction develops at the outlet end of the catalyst reactor tube. This reaction would detract from the total heat sink available. Such a catalyst was found to deactivate in a relatively short time during the bench scale test and this is probably a result of coking (cf page 29, of this report). This metal on several other supports gives about the same activity as the reference catalyst, without the aforementioned side reactions (i.e., 140A, and 160B, runs 90 and 140, respectively).

A number of nonplatinum bimetallics on alumina are about as active as the reference catalysts but no means have been found to increase their activity further. (i.e., 155C, 156A, 157B, and 177A; runs 123, 128, 138, and 187, respectively).

A short study was made of materials which could be used to coat the surfaces of nonconforming catalyst shapes so that platinum could be replaced (i.e.,honeycomb structures).^a) Sauereisen cement impregnated with platinum gives an inactive catalyst. On the other hand fibrous acetate stabilized alumina (du Pont "Baymal") is a good support for active catalysts and adheres well to aluminum oxide honeycomb structures.

Catalysts on Shaped Supports

Pressure drop through packed beds can be reduced by utilizing geometric shapes designed to minimize resistance to flow. This possibility has been explored briefly by using a du Pont "Torvex" honeycomb shape as a catalyst support. It has longitudinal parallel hexagonal cellular passages. (See upper portion of Figure 35.) The cell size was 1/8" (cross-sectional area/hole = 0.007 in.²), and the cell walls were 0.03" thick. The overall open area of the catalyst support was 60%, and the bulk density was about 40 lbs/ft³ (d = 0.64). This configuration provides a geometric surface area of 384 ft² per cubic foot, with a surface roughness of ca 100 microns.

A catalyst consisting of a coating of Baymal on the mullite honey-

a) Desirable to minimize pressure drop at high space velocity and MCH conversion.

Figure 35. LOW-PRESSURE DROP CATALYST SUPPORTS

Upper: Straight, Parallel Cells Lower: Crossflow Cells (Approx 45°)

AFAPL-TR-67-114 Part I

comb support and impregnated with platinum to give 0.8% was tested in a 5/8" ID tube at 18, 50, and 100 LHSV. Results for these tests are shown in Table 47. Typical conversions with a standard laboratory catalyst are also shown for comparison.

Table 47. DEHYDROGENATION OF MCH OVER SHAPED SUPPORT

Nonconventional Catalyst #9874-145

Run No.: 10100-189 Pressure: 10 atm Block Temp: 1022°F

Reaction Time: 10 min each condition Apparatus: Bench-scale Reactor

LHSV =	1	.8	50	100
Product Analysis, %w Cracked MCH Benzene Toluene MCH Conversion, %w Conversion with Pellet Cat., a) %w	23.2 0.5 74.6 76.8	23.9	54.3 0.1 45.5 45.7	Trace

a) Standard laboratory catalyst = 1%w Pt on Al₂O₃; 1/16" pellets in an annular bed.

These lists show moderate conversions for the shaped catalysts, but less than with the pellet catalyst. The two catalysts were not tested under strictly comparable conditions, however, since the heat transfer path for the shaped catalyst was of the order of 10 times the distance of that in the pellet bed. Thus, the temperature near the center of the shaped catalyst might have been comparatively cold. The true surface area of the honeycomb catalyst was not determined.

The catalyst support shown in the bottom half of <u>Figure 35</u> will be tried next, and this configuration should be more effective since the cell passages follow a zig-zag pattern from wall-to-wall which will improve the heat transfer. Further tests are planned to evaluate other configurations, and on a comparable tube diameter basis with the packed bed.

Nonconventional Catalyst Systems: Homogeneous Catalysis

Excellent conversions have been obtained on the dehydrogenation of MCH and other naphthenes over packed beds of solid catalysts. However, the use of packed beds can result in high pressure drops at high gas velocities. Although considerable improvements can be made by suitable selection of tube diameter and certain catalyst shapes, the problems of pressure drop, catalyst handling, and catalyst rejuvenation are always present.

Despite the difficulties associated with solid bed catalysts, alternative schemes are not simple, and no proven ones are available. However, one possible approach we have suggested is to use a "throw-away" catal-

yst in the form of an organometallic compound. Such a catalyst should best be fuel-soluble and stable in low temperature fuel environments. The effective catalyst agent might be the organometallic compound itself, but considering the temperatures required for high equilibrium conversion, would generally be a decomposition product, i.e., the finely dispersed metal or metal oxide.

Although we know of no literature precedence for dehydrogenation by homogeneous catalysis, the approach offers sufficient advantages to warrant investigation.

The first question to be answered was whether organometallic compounds could be found having dehydrogenation properties. To determine this, a small autoclave screening test has been set up. The autoclave is of a simple stainless construction, about 200 ml liquid capacity, and equipped with a Magna-dash stirrer. The maximum operating temperature was at first limited to 900°F due to the use of an aluminum heat transfer block. Temperature is controlled by a WEST Guardsman Indicating Pyrometric Controller, which is a taper or proportional type.

The method of test has been to place liquid MCH and 1%^{a)} catalyst in the autoclave, which is then tightly sealed. Oxygen is then removed by seven repeated pressurings with helium to 200 psig. The pressure is then reduced to atmospheric, the valve is closed, and the Magna-dash and heater are turned on. The average heating rate to 900°F is about 3°F/min. Upon reaching 900°F the temperature is leveled out and held steady for some convenient length of time, usually under three hours.

Pressure and temperature are read versus time. The plot of P vs T is compared with a reference plot obtained with the same amount of MCH and no catalyst (see <u>Figure 36</u>). A fixed amount of MCH is charged each time. The amount selected, 7.41 g, was calculated to give about 150 psig pressure at 900°F when no reaction has occurred. Since a nonreactive run shows a vaporization curve followed by a nearly perfect gas law expansion line, moderate amounts of reaction can readily be observed by deviation from the reference pressure temperature curve during the run. However, absolute conversions are determined by GLC analysis of the reaction products.

Table 48 shows the results with 19 organometallic catalysts which have been tried thus far. For comparison, an additional run was made using R-8 Pt/Al₂O₃ catalyst of the type used in the other laboratory denydrogenation studies. A small amount of reaction occurs, of course, with no catalyst, as shown.

Although none of the organometallics showed large conversions, most did give some dehydrogenation reaction activity. IR-8527-92 gave the greatest conversion to toluene (1.8%) and the largest total conversion (4.0%). The catalyst compounds, except ferrocene, were decomposed during the test.

a) Basis weight of metallic element and MCH charged.

Figure 36. TYFICAL VAPORIZATION AND EXPANSION CURVE

While the results are not very impressive, there is at least encouragement to continue the investigation. A number of other compounds are on hand and are being tested; higher temperatures will be explored; and the effect of the presence of oxygen will be examined.

L. S. Ballett Ballet, of the part of the com-

Table 48. HOMOGENEOUS CATALYSIS: DEHYDROGENATION OF MCH WITH ORGANOMETALLIC COMPOUNDS

Steady-State Temp = ca 900°F

Organometallic		Composition of Products, \$				
Catalyst ^a ; Code Number	Toluene	B enze ne	Methyl Cyclo- Hexadiene	Light ^{b)} Products	Total ^{c)}	
IR 8527-87 -88 -89 -92 -93 -96 -97 -98 -100 -101	0.1 0.3 1.8 0.5 1.1 0.5 1.3 0.4	0.1 0.2 Trace 0.1 Trace	0.1 0.5 0.5 0.2 0.9 0.7 0.5 0.7	0.2 0.4 0.2 1.7 0.3 0.4 0.5 0.2 0.6	0.4 0.6 1.1 4.0 1.2 2.4 1.7 2.1 1.3	
-102 -103 -104 -105 -106 -107 -108 -109 -110 None R-8 Pt/Al ₂ O ₃	0.1 0.1 0.1 0.1 0.1 0.4 0.4 0.1	O.4 O.1 Trace	0.6 0.1 0.3 0.2 0.3 0.1 0.1 0.4 0.1 0.5	0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.2 0.2	0.9 0.4 0.6 0.5 0.6 0.4 1.1 1.4 0.4 0.4	

a) Organometallic compounds added in an amount to give 1.0% metal, basis weight of MCH charged.

b) Hight products were unidentified, but were lower mol wt than MCH.

c) Where catalyst ligands obviously contributed to the products, the theoretical amounts of these ligand products have been substracted from the totals determined by GLC analysis.

Thermal Stability

Effect of Oxygen Concentration on the Thermal Stability of Naphthenes

While the thermal stability quality of current jet fuels appears to be under control, we anticipate that higher speed jet aircraft will bring with them a new round of fuel stability problems. Moreover, whenever cooling demands become such as to require endothermic fuels, we may assume that every possible means will be necessary to meet the severe thermal stability conditions of their use. This will entail consideration not only of the properties of the major fuel hydrocarbons themselves, but also of trace components, contaminants, and dissolved oxygen.

The role of oxygen in fuel thermal degradation has certainly been widely recognized, 23) and various investigators have reported its effect on the thermal stability of jet fuels. 24-28) However, work with specific pure hydrocarbons, at high temperatures, and particularly at dissolved oxygen contents extending below 1 ppm appears not to have been done.

We have consequently studied two naphthenes, methylcyclohexane and decalin, as well as a high naphthene content jet fuel, under conditions where dissolved oxygen concentrations ranged from air saturation down to the ppb level. (Properties for these fuels are shown in Table 49.)

The tests were made using the SD Coker, which we have previously described. 2)3)24)

For fuels and operating conditions such as used in the present work, vaporization usually takes place in the preheater, the vapor then passes through the filter (usually without significant pressure drop), cools and condenses in a water-cooled heat exchanger, and finally passes through a Grove pressure regulator and back into the glass reservoir for recycle. The SD Coker was operated at temperatures up to 900°F, usually at 250 psig. Preheater tube ratings were judged in an Eppi tuberator, using an extended color code scale (8 max) for each inch of tube. The maximum rating is the greatest value observed at any area on the tube, while the total rating is the sum of all 15 areas. In some instances we present the total as well as the maximum ratings. We have now built and are testing a calorimeter by means of which we hope to replace these arbitrary color ratings with heat transfer coefficient measurements.

To vary the dissolved oxygen content of the test fuels, several gas supplies of fixed and known oxygen concentration were previously prepared by suitable partial pressure blending of pure oxygen and nitrogen in standard nitrogen cylinders. Accurate θ_2 concentration measurements were then made chromatographically.

Prior to beginning a run, the fuel was thoroughly sparged with the proper equilibrating gas. Simultaneously, the coker was flushed for at least an hour with a large flow of nitrogen. Since the SD coker was used in a fuel recycle mode, dissolved oxygen was continuously diminished by reaction in the test section, but was resaturated by gas sparging in the fuel reservoir. Saturation was ensured by following the dissolved O2 content of the fuel effluent from the reservoir while increasing the sparge gas flow until the

Table 49. THERMAL STABILITY TEST

のでは、100mのでは、

Fuel Properties

Fue1	Nephthene Purity, A	Haphthere Cone, wol/1	Sulfur, ppm	Copper, ppm	Ž	Lensity, g/ml bp, °F Tc, °F Pc, pei	gr.	TC, F	Pe, pet
Methylcyclobexane	100ª)	7.8	9.05	20.02	98.2	0.769	213.8 574.7	5.472	504
Decalin	100p)	6.3	α	•	138.3	0.872	370.4	772.1	23
Jet Firel RAF - 163-60	(°06)	(p5°7	O t	8.00	190d)	0.863	356	831 ^d)	102g)
) (Me)		
	•								1

MCH contained trace smounts of cyclobexane and unidentified heavy ends. MCH was passed through a silion gel column prior to use. **S**

91.2% trans.; Contained 0.1% 10NOL® as received, which was reduced to < ppm by passing over silica Q

Mass spec analysis: 11% peraffins, 2% clefins, 15% 1-ring, 51% 2-ring, 18% 3-ring, 3% 4-ring naphthenes. **~**

Properties estimated using the paraffin/naphthene split, UOP characterization factor, 100°F kinematic wiscosity, and API gravity. q

e) ASTH D86 distillation; 50% pt = 450°F.

dissolved oxygen concentration no longer increased with further increase in gas flow rate. After the run was started and the test sections had reached thermal equilibrium, the reservoir oxygen content was again checked, and the sparge gas flow further increased, if required, to maintain equilibrium dissolved oxygen concentration.

Where dissolved oxygen levels below 100 ppb were desired, helium was used as the sparge gas $(O_2$ ca 6 ppm). Dissolved oxygen determinations were made using a chromatographic technique similar to that of Elsey, and described in a previous report. Although base line stability becomes limiting at high sensitivity, dissolved oxygen detection at concentrations below 50 ppb were found possible with 1 ml liquid samples. Readout was on a 1 mv recorder, and peak areas were determined by integrator count or by planimeter, although we favor the latter method for better precision at low oxygen levels. Oxygen was easily resolved from nitrogen since the ratio of emergence times was about $N_2/O_2 = 3$.

To make a dissolved oxygen determination, a liquid hydrocarbon sample of up to 1 ml was injected into a Vigreux column, where helium carrier gas quickly removed the air from the liquid.

Calibration of the analyzer was accomplished by using 1-10 μ l samples of hydrocarbon of known dissolved oxygen content. Such standard solutions were obtained by saturating liquid samples at a known temperature.

A minor problem was the danger of contamination with air in sampling and transferring. Even the tip of the hypodermic needle could not be allowed to come in contact with air, particularly when measuring dissolved oxygen concentrations belc 1 ppm.

In the figures presented in this section the preheater code ratings replaced averaged values of two or more replicate determinations per set of corollons. Repeatability of coker ratings was generally within ± 1 for maximum code, and to within ± 5 for total ratings.

Dissolved oxygen determinations were repeatable to within 5% above 1 ppm. At lower levels the error was greater, partly because of the great difficulty of avoiding adventitious contamination on sampling.

In determining the effect of oxygen on deposit tendency, a series of runs was made at a selected set of conditions, with various oxygen contents. Figures 37 and 38 are typical of the type of data that were obtained. Figure 37 shows that at 550°F, MCH is most responsive to 02 in the range from I to 4 ppm, becoming less so at higher values. The code ratings at 16.3 ppm is uncertain since the color was darker than 8, the upper limit of the scale. Also the possibility exists that the curve should sweep tharply upward at about 3 ppm, since we have insufficient data to know whether the point at 3.1 ppm is high or the point at 4.4 is low. However, with coker ratings at low 02 contents it is easier to err towards higher ratings.

In <u>Figure 38</u> we see that the thermal stability of decalin, at 550° F, remains constant over the entire range of 15 to 300 ppm oxygen, which corresponds to equilibration with gases of increasing oxygen-content-in-N₂ from 5%

曹書を放松さる 地質をないるという

to 100%. Below 15 ppm, improvement in thermal stability is marked, but tends to level out towards 1 ppm. A critical concentration region exists between 4 and 14 ppm.

Figure 39 shows the large temperature gradient effect on decalin when the dissolved oxygen content is only 0.6 ppm.

With good control of oxygen concentration, pure hydrocarbons demonstrate a sharp deposit-temperature breakpoint. This is illustrated by the behavior of MCH, shown in Figure 40, for two oxygen concentrations. The breakpoint for MCH is increased from 325 to 500°F by reducing the dissolved O_2 content from 80 to 3 ppm. The divergent slopes of the curves demonstrate the fact that oxygen content becomes increasingly important as the temperature rises. At and below the temperature of the air-saturation breakpoint (325°F, 80 ppm), oxygen concentration is of little importance. It would appear from this, that there would be little to be gained from controlling Q_2 content, during flight, with subsonic jets: but with supersonic and, particularly, with hypersonic aircraft, handsome dividends would ensue from rigorous removal of Q_2 from the fuel prior to takeoff.

In Figure 41 a similar sharp breakprint is allown for Decalin, even at air saturation conditions. This is a temperature effect; the previous breakpoint shown (Figure 38) for Decalin was at constant temperature and was due to oxygen concentration change.

In contrast to these sharp breakpoints the naphthenic jet fuel displays a gradual change in deposit tendency with temperature (Figure 42), which may be characteristic of hydrocarbon mixtures. This broader breakpoint may be related to the existence of a spectrum of reaction rates and mechanisms. Differences in sharpness of breakpoint have also been noted by Zengel. 30)

From the table below we can see that Decalin can be increased in thermal stability by as much as 200°F by reducing the dissolved 0_2 level from 6^4 down to 0.6 ppm. The improvement found for MCH was 175°F, and with the jet fuel, about 275°F, with the ultimate effect not yet in hand.

Fuel	Dissolved	Oxyge	en, ppm	Tg.s Bre	akpoint	, °F
	High	Low	Δ	High	Low	Δ
MCH Decalin Jet Fuel (F-1)	80 64 40	3 0.6 0.4	77 63.4 39.6	325 500 500	500 700 775	175 200 275

As exposure to temperature is increased, the level to which O_2 may have to be reduced is indicated by the curves shown in Figure $\frac{45}{2}$ for all three fuels. The response of the naphthenic jet fuel, although uncertain in the interval 500-725°F, shows increasing thermal stability with decreasing O_2 content up to the lowest level tested. At higher O_2 contents, its stability falls below that of decalin. Mass spectrometric analysis of the

62698

Figure 43. EFFECT OF DISSOLVED OXYGEN ON THERMAL STABILITY OF NAPHTHENES

jet fuel revealed that it contains a broad spectrum of 1, 2, 3, and 4-ring cyclics. The possible significance of this on its behavior is discussed below.

It is interesting to consider the effect of oxygen concentration in the light of our previous efforts to tie the deposit forming reaction to the initial reaction of oxygen with hydrocarbons. If the initial reaction is assumed to be the interaction of a free radical with a dissolved oxygen molecule, leading to the for ation of a chain propagating peroxide, the dissappearance of θ_2 may be represented by θ_2

Rate =
$$\frac{-d}{d} \frac{O_C}{v} = \frac{k_B}{1 + \frac{k^*(RH)}{P_{\mathbf{Q}_C}}}$$
, (4)

where (RH) is the hydrocarbon concentration, (ROOH) is the concentration of peroxide formed, P_{0_2} is the partial pressure of oxygen, and k and k' are empirical constants. Under our conditions. (RH) is substantially constant for each hydrocarbon and will be approximately 7.8 for MCH, 6.3 for decalin and about 4.5 for the jet fuel (m/1).

Under high oxygen concentrations the partial pressure of oxygen could be large, and the rate expression would tend to approach:

Rate =
$$k_8$$
 '(RH) (ROOH) (5)

Rate
$$*k_a$$
 ''(ROOH) (5a)

being proportional to the peroxide concentration for any particular hydrocarbon. On the other hand at very low oxygen concentrations the expression would approach:

Rate =
$$k_a$$
 ''' (ROOH) P_{0_2} . (6)

If the assumption we made regarding the role of the initial oxidation reactions is valid, then the results we have obtained are in general agreement with this thesis. For instance, at high concentrations of oxygen the tendency to form deposits appears to be independent of θ_2 partial pressures (following Eq. 5a), while as the oxygen content is lowered, the rate (or deposit tendency) decreases (following Eq. 6), i.e., giving higher θ_2 values. Also, rates would be expected to decrease with increasing molecular weight for similar type compounds since they have lower molar concentrations. Tendency to form peroxides would be very important, also.

The failure of decalin to follow the expected behavior below 3 ppm suggests that another mechanism, independent of oxygen content, is coming into play. Why this should be true for decalin at this particular oxygen concentration, but not true for the jet fuel, can only be conjectured at the present time. It is remarkable that the naphthenic jet fuel proved to be more stable than decalin at low oxygen concentrations, since the jet fuel undoubtedly contains C_{5-} , as well as C_{6} -ring naphthenes. The C_{5} -rings have been indicated to be less stable than the C_{3-} under conditions where substantial amounts of oxygen are present $^{3/2*})^{32}$. This may not be true under low oxygen conditions. It may be that each compound has a characteristic

temperature at which the becomes indifferent to decreasing oxygen content, as suggested by the behavior of decalin. When the fuel consists of a large number of compounds, as does the jet fuel, the threshold temperature will gradually rise with decreasing θ_2 as successive compounds abandon their dependence on oxygen concentration. In this case, it would be expected that at still lower oxygen levels the jet fuel would also become indifferent to changes in this parameter. It might also be expected that the proportion of oxygen in the deposits would decrease. Another expectation would be that comparable behavior could be achieved by a mixture of pure components. Both of these expectations will be tested in future work. It will be interesting to observe if such missing area display synergy.

We have previously reported the effect of structure on the thermal stability of a wide variety of compounds. 3)²⁴ It was found that naphthenes are generally more stable than aromatics or paraffins of comparable molweight and that thermal stability increases with carbon number (and so also with molecular weight and with boiling point). The genter stability of naphthenes over aromatics is surprising, and it will be relevant to determine if this persists at very low 0_2 concentrations. In the ultimate utilization of naphthenic fuels for endothermic cooling of high speed aircraft the naphthenes will be catalytically dehydrogenated to aromatics (and H_2). Under these conditions, the oxygen concentration will be vanishingly small. Results obtained with the CAFSTR (see below) should evaluate the thermal stability of such mixtures under more realistic conditions.

The thermal stability of naphthenes is strongly dependent on oxygen concentration, being independent at high levels, improving with decreasing content at intermediate levels (1-10 ppm) and then indifferent again at low levels.

Complete removal of oxygen increases the thermal stability breakpoint by about 200°F.

At constant O_2 , thermal stability increases with molecular weight and perhaps with mixture complexity.

Naphthenes are generally more stable than aromatics or paraffins of comparable molecular weight.

Dissolved oxygen content, which has been perhaps of little importance to thermal stability with subsonic jets, will have to be rigidly controlled to a level below 1.0 ppm in fuels for future hypersonic aircraft. This procedure may also be beneficial with supersonic aircraft.

Thermal Stability of Reaction Products

Preliminar: Tests

Fuel stability problems of endothermic jet fuels involve more than marely properties of the tank fuels. Where heat sink capacity is abetted by endothermic reactions (e.g., dehydrogenation), the characteristics of the reaction products must also be considered. Moreover, interactions between catalyst and fuel systems may produce integrated effects not discernible from the separate properties of either. For example, fuel composition

changes or admixture of chemicals for the purpose of improving fuel thermal stability can have seriously harmful effects on catalyst life and reactivity. In reverse, variations in catalyst properties might seriously impair thermal stability of reaction products.

As a first step in the assessment of reaction product thermal stabilities we looked at SD coker ratings of several pure aromatic hydrocarbons, as shown for example in Figure 8 of reference 24 and as discussed in previous reports. $^{1)2}$ 3)

In a second step, SD coker tests at 675°F were made on thermal reaction products taken from FSSTR runs with F-71 jet fuel (properties shown in <u>Table 50</u>). Coker data for runs at three different sets of FSSTR operating conditions are shown in <u>Table 51</u>. Results of these tests show satisfactory thermal stability of F-71 product exposed to FSSTP temperatures up to ca 1000°F fluid. However, product material from the 1200°F maximum fluid temperature run gave the heaviest deposits ever observed here in a coker test. Moreover, most of this deposit material was hard and unwipable, as shown by the ratings in <u>Table 51</u>. These tests were conducted at a standard dissolved oxygen level of 0.45-0.50 ppm. Higher oxygen concentrations would probably have resulted in even poorer thermal stability ratings.

Catalyst and Fuel System Test Rig (CAFSTR) Design

To be adequate, an evaluation test for endothermic fuel thermal stability must permit examination of the reaction products under actual exchanger conditions and with minimum time lapse. Conventional fuel cokers are inadequate for this purpose, since reaction products, on sampling and cooling, may further react to form condensation products of decreased thermal stability. Conventional coker results are also suspect with respect to evaluating reaction products at meaningful conditions of reaction and use.

To meet these peculiar requirements, a Catalyst and Fuel System Test Rig (called the CAFSTR) has been designed and built. The equipment schematic is shown in Figure 44 and the completed unit photograph in Figure 45.

Fuel flowing at a design rate of three pounds per hour is heated in a series of three annular heat exchangers, then passed through a tube reactor, and the product effluent further heated to a final temperature of upwards to 1300°F. Design operating pressure is to 1500 psig.

Each heat exchanger has a specific function and may be operated within closely defined liquid temperature ranges. Beginning with E_1 (see Figure 44), the first exchanger may be limited to sensible liquid heat transfer only. If the operating pressure is sufficiently low for boiling to occur, E_2 becomes a vaporizer and will convert all liquid to vapor. At low pressure, E_3 sees only vapor which it will heat to the predetermined reaction temperature. E_4 then heats the product fluid from the reactor to some higher temperature limited by thermal stability. The reactor may be operated either thermally or catalytically and consists of a simple straight tube, heated in an electric furnace.

Table 50. DESCRIPTION OF F-71 JET FUEL

Properties	F-71
Gravity, "API at 60"F	50.7
Specific Gravity, 60/60	0.777
ASTM Distillation, °F	
IBF	402
10%	409
2 0%	410
50 %	420
90%	467
E.P.	543
Recovery, 🗫	98.5
Residue	1.5
Vapor Pressure, psia	•
300°F	2.6
500°F	44.0
Flash Point, °F, P.M.C.C. Freezing Point, °F	180
Freezing Point. °F	-51
Color, Saybolt	30+
Kinematic Viscosity at -30°F, cs	13.6
Aniline Cloud Point, °F	185
Amiline Gravity Constant	9805
Sulfur, w	0,003
Mercaptan Sulfur, %w	0.0001
Cu Strip Corrosion at 212°F	118
Luminometer	104
Gum, Existent (Steam Jet), mg/100 ml	1
Heat of Combustion, BM/16 (Net)	18,929
Water Separometer Index (Modified)	100
Thermal Stability, CFR Research Coker	100
(650/650°F, 250 psig)	
	0.2
Pressure Drop, in. Hg	0.2
Preheater Deposit Rating (as is/wiped)	2/1
Hydrocarbon Analysis, %v	90.0
Paraffins	82.9
Naphthenes	10.6
Olefins	5.1
Aromatics	1.4
Thermal Stability, SD Coker, 450/500°F, 5 hr,	2 -12/
Preheater Deposit (Maximum/Total Rating)	1.5/16
Pressure Drop, in. Hg	0

TABLE 51 SD COKER RATINGS OF F-71 JET FUEL THERMAL REACTION PRODUCTS FROM THE FSSTR

Preheater conditions: 6/5°F, 250 paig; dissolved oxygen content, 0.45-0.50 ppm

FSST	R Operating C	SD Coker F Rating, M		
Max Fluid Temp, °F	Pressure, psig	Space Velocity, IHSV	Wiped	Unwiped
855 1076 1200	890 766 770	398 256 255	0.5/ 1 0/ 0 7 /74.5	3 / 7 2 / 7 8.5/87.5

Following the product heat exchanger, E^{-1} , the fluid passes through an orifice to simulate a fuel nozzle. Pressure drop across this unit is detected by a Foxboro d/p cell and read out on a recorder.

Direct helium drive is used to establish fuel pressure while fuel flow is controlled by a needle valve-operated Foxboro pneumatic controller. A five-gallon stainless steel, unheated cylinder is used for the fuel supply reservoir. System pressure is controlled by the helium drive pressure regulator.

Temperature control of each preheater is by thermocouple in the effluent fluid temperature of each particular unit. Temperatures of the heat transfer surface and of the liquid adjacent to it are measured at inlet and outlet points of each preheater, and surface temperatures, every three inches along the reactor. Static pressures are read at a point upstream of preheater E-1 and downstream of the test orifice.

Further design details may be found in the Appendix of this report.

Tentatively, the test length has been set at about four hours, but this may be varied if desired.

Evaluation procedures for the tests likewise have not been finalized. However, the following kinds of data are being obtained directly from the CAFSTR.

- A. At steady-state test conditions,
- 1. Pressure drop across the combined neat exchangers and reactor is noted. If this item proves to be significant, instrumentation for ΔP measurements across individual units may later be installed.
- 2. Fluid and heat transfer surface temperatures are recorded, and any changes in AT which reflect change in heat transfer coefficient are noted.

- 150 -

Figure 44. CATALYST AND FUEL STABILITY TEST RIG (SCHEMATIC)

1.

學工作

Figure 45. CATALYST AND FUEL SYSTEM TEST RIG

- 3. Total rate of power input to each unit is controlled and recorded. For comparative just testing, these rates are pre-estimated and preset, based upon the operating pressure and the desired temperature profile.
- 4. Changes in pressure drop across the test orifice are also continuously recorded. The size of the orifice has been set at .042 inches. but will require additional experience before a final selection can be made. Changes in AF may reflect either deposit formation or changes in conversion.
- 5. The temperature profile of the reactor wall is observed to indicate loss in catalyst activity with time.
- 6. Periodic samples of the product gas and liquid effluent are taken and liquid samples are tested for refractive index. Both liquid and gas are analyzed for composition by GLC. A continuous material balance on liquid and gaseous product is available since gaseous products are measured continuously through a wet test meter. Hence, catalyst life and change in selectivity can be observed over the time of test.
 - B. At conclusion of the test,
- 1. The inner tube of each heat exchanger is removed 'rom the CAFSTR for inspection and rating. Although semi-quantitative visual ratings based on ASTM color codes have been made, construction of a calorimeter is now complete where heat transfer coefficients can be measured. If significant changes in liquid-heated surfale temperature difference are observed during the actual CAFSTR test, this data may also be used. Detailed discussion of the calorimet. In tuberator is given below.
- 2. The reactor tube is opened for inspection. Carbon deposits or other physical effects can be observed.
- 3. The orifice is inspected for deposit formation. If appreciable, such deposits can be measured gravimetrically since the orifice plate is small.

CAFSTR Testing

The CAFSTR has been completed, debugged, and is operating according to design. Only minor problems requiring simple adjustments were encountered.

Preliminary runs were made on two fuels (F-7' Jet Fuel and MCH) at 1000 psig, at temperatures up to 1200°F (metal surface temperature), at both 3 and 6 lb/hr flow rate, and with and without R-8 platinum on alumina catalyst.

All runs were 4 hours duration and were made at a calculated dissolved oxygen level of a few parts per billion (ppb) obtained by sparging with helium of less than 10 ppm $\rm O_2$ content while the reservoir was placed under 23 in. Hg vacuum.

In the first two runs with F-71 jet ruel, at 3 lb/hr flow and 446 and 500°F maximum temperatures in all heat exchangers (without catalyst) the

product fuel became amber in color, but no deposits were formed on any of the preheater tubes.

On further testing, F-71 jet fuel gave no visible deposits at temperatures up to a tube surface temperature of 950°F. No catalyst was charged with this fuel.

With MCH at 3 15/hr flow, heavy carbonaceous deposits occurred in the third preheater where surface temperatures of 1104 to 1121°F and fluid temperatures of 1067 to 1092°F were reached. Some streaks of carbon appeared at 1024°F/972°F (surface/fluid). However, a 6-1b/hr run at 1024°F/972°F gave a virtually clean surface.

In preheater No. 1 and No. 2, no distinct effect of flow rate was reen. Black-brown color appeared on preheater tube No. 2 when surface temperatures ranged from 651 to 728°F, but whether this color originated entirely from a deposit film or in part from the tube surface itself could not be determined. A similar, but much lighter, color was observed at surface temperatures of 392 to 419°F in No. 1 preheater. Changes in AT (metal-fluid) were observed in some instances, but further experience will be necessary to know whether these differences were significant.

Preheater No. 4, which follows the reactor, was exposed to surface temperatures in the range of 1150-1200°F and products containing up to 43 mol percent toluene plus small amounts of cracked hydrocarbons. No deposit formation occurred; the light yellow colors observed were apparently due to the metal.

The question of how to rate the preheater tubes must now be answered, since visual ratings with the Eppi Tuberator are far less meaningful than before. At high temperatures, the presence of a blue coloration of the tube metal, plus some shades of yellow and tan which may also be the metal itself (Inconel 600), make the visual evaluation of thermal stability both difficult and uncertain.

An experiment was run on the CAFSTR in an attempt to clarify the meanings of the colors observed, since the tubes often appeared clean despite coloration. In this run the CAFSTR was operated with helium only, at a flow low enough to provide negligible heat transfer to the gas, but sufficient to prevent the presence of air. Results of this test are summarized in the following chart. Evidently, with the situation shown here, color code ratings are meaningless, and visual ratings of any sort are quite unreliable. Moreover, the "helium" colors cannot be assumed to be the colors which would occur with a nondegrading hydrocarbon, so that in the F-71 and MCH runs which were made it is impossible to know whether the colors observed were due to purely temperature effects on the metal, interaction effects between the fuel and the metal, or to thin deposits formed from the fuel.

CAFSTR HEAT EXCHANGER TUBE COLORATION DUE TO TEMPERATURE IN HELIUMP) ENVIRONMENT

Preheater No.	Max Tube Skin Temp, °F	Tube Color Pescription	A pprox Color Code
1	327	Very light sellow	1.5
2	543	Tan	3.0
3	931	Assorted colors = copper-pink, light and dark grey, dull blue, and dull blue-pink	3.0-3.5
4	97	Light copper tan with soft light grey overlay	0-3.5

a) Helium contained <10 ppm Co.

Calorimetric Tuberator

There has been a long-recognized deficiency in the rating of coker tutes by assignment of an arbitrary color code number using the Eppi Tuberator. Although coker fuel "break points" have shown remarkably good agreement with the minex heat exchanger test, 30) the following weaknesses in color-code ratings have been recognized:

- 1) Deposit colors often do not match any of the standard code colors, and are, at best, subject to operator interpretation and hence, large error.
- 2) Deposit color is not necessarily a measure of deposit thickness or of its resistance to heat flow.
- 3) At high temperatures (particularly with metals other than aluminum) the tubes themselves may display a wide variety of colors due to oxide, sulfide, or other metal reaction product films.
- 4) Code ratings do not reflect the total area covered by deposits, but rather the maximum color density within an area.

Desirable features of a tube deposit rating test would include:

- 1) Repeatability and sensitivity
- 2) Simplicity and speed
- 3) Meaningfulness.

Thus, one might wish to rate tube deposits in terms of heat-transfer coefficients, which not only provide relative values but also would find direct usefulness in design work. Unfortunately, even heat-transfer coefficient measurement is a function of temperature, flow velocity, and system

geometry, so that the best one can probably do in to come up with a sensitive, rapid test which will reflect in a relative way how the total deposits affect heat-transfer rates.

Our concern with this problem has led us to a direct calorimetric approach. The apparatus, now nearing completion, (see Figure 46) consists of a stainless steel Dewar flask in which the proheater tube is immersed to above the heated zone in water, and the top of the flask is closed by a split styrofoam stopper. Thermoscouple and power leads enter through tightly fitting holds in the stopper, through which also passes a motor-driven stirrer.

One thermocouple, welded to the inside of the preheater tube shell, will be used to control constant metal temperature by use of a Berber-Colman controller, while a second thermocouple opposite the first in the liquid gives the water temperature, which will be read out on a Honeywell strip recorder. Power to the preheater tube will be supplied through a SOIA constant voltage regulator and a variac.

As planned, the test will consist of holding the tube shell at a constant temperature of about 200°F and measuring the time elapsed while heating the stirred water (ca 2 quarts) from about 70 to 170°F. Average overall heat transfer coefficients will be calculable, but the time measurement is expected to be more sensitive for relative ratings. Therefore, it is proposed to define the deposit rating as,

Time elapsed with dirty tube X 100.

In this way, ratings above 100 will represent loss in heat transfer due to the deposits. Time of the test is expected to be of the order of 3600 seconds. Calculations indicate an expected lower limit of deposit thickness detection of about 0.0002 in. Evaluation tests on clean tubes will be made first, followed by tests on tubes coated with aerosol sprayed lacquers.

Fuel System Simulation Test Rig

The Fuel System Simulation Test Rig (FSSTR) has been described in detail in the three annual reports associated with the preceding contract on this subject. (1)2)3) therefore no description of the unit will be included here. However, a flow scheme is repeated as Figure 47 for convenience.

During the past year five different studies have been conducted in the FSSTR. These tests, which are reported here, were carried out in the following sequence:

Thermal Cracking of Fuel F-71. Catalytic Dehydrogenation of MCH in 3/4" Reactor Thermal Cracking of Propane Catalytic Dehydrogenation of Propane High Heat Flux Study (in progress)

igure 46. CALOPIMETRIC TUBERATOR

Figure 47. FSSTR - FLOW SKETCH OF FUEL SYSTEM SIMULATION TEST HIG

一般のできる からのない からない からから かられる からない ないのうない からした

No modifications to the unit were made prior to the first of these tests. There were changes made during subsequent operations, however, which are described later in the appropriate sections.

Thermal Cracking of Fuel F-71

The program of tests for studying the thermal reaction of the highly paraffinic jet fuel F-71 (see Table 54 and Tabl_ 55 of this report for characteristics of this fuel) has been completed. The range of variables covered during these tests is outlined in Table 52.

Tables 53 and 54 present the operating data summary and product recovery and analytical data for the previously unreported tests. Previous work on this system was covered in Tables 73 and 74 of Reference 3. No further work using this fuel is presently anticipated.

Inspection of the product distribution data of Table 54 clearly shows that increasing pressure and decreasing flow rate, both tending to increase residence time, result in cracking larger fractions of the feed to gaseous products. However, it is also apparent that, over the ranges studied, these variables have only minor effect on total heat sink availability at a given fluid temperature. As illustrated in Figure 48, changing LHSVa) from 360 to 139 increased the heat sink by <10%. Pressure variation (from 500 to 900 psig) had even less effect. Heat-transfer coefficients did not show any unexpected characteristics, varying from about 85 to 450 Btu/hr/sq ft/°F.

The change in reaction with temperature and flow rate is shown in <u>Figure 49</u> where the gas produced and change in paraffin content of the product liquid is presented as a function of temperature at the three space velocities tested. This indicates that the maximum conversion of the original feed material is about 60% at the highest temperature employed.

Coke formatio esulted in very erratic operation during the 900 psig, 1200°F runs at both 360 and 130 IHSV. It appeared that, periodically, coke particles would partially plug the pressure control valve and then break free when the valve would open to maintain the set pressure. This resulted in fluctuating pressure and flow which in turn caused temperature cycling. During the previously reported tests, operation had been satisfactory at 1200°F at 750 psig and 255 IHSV but serious coke formation occurred at 1248°F. Thus, while we have been unable to determine any loss in heat-transfer coefficient resulting from take deposition. It would appear that a realistic upper limit of ca 1150°F resulting in a total heat sink of 1000 to 1050 Btu/lb seems to be indicated. This would be some 200 Btu/lb above the heat sink available from sensible and latent heat only.

Our results have been compared qualitatively with those obtained by Kutzko in his hot air heated calorimeter. Although insufficient data were given in the reference to make an unambiguous quantitative comparison it appears that the heat sinks obtained by him with a special JP fuel (cf Table 55) are entirely concordant with ours. The composition of the cracked gases is also generally the same.

a) Calculated on the volume of one 10-foot section.

TABLE 52 FSSTR-THERMAL CRACKING OF FUEL F-71: SUMMARY OF OPERATING CONDITIONS

Section III inlet temperature 970-1010°F LHSV based on Section III volume only

Nominal LHSV	Nominal Pressure, psig	Section III Exit Fluid Temp, °F
130	500	1090-1196
130	750 ^{a)}	1099-1174
130	900	1085-1214 ^{b)}
5ر2	750 ^{a)}	1122-1200-1248 ^{b)}
360	500	1067-1201
360	750	1068-120
3 60	900	1068-1215 ^{b)}

a) Previous work.

b) Coke formation seriously affected these runs.

TABLE 53
FSSTR-THERMAL CRACKING OF FUEL F-71 - DATA SUMMARY

Rus No.	F-	7) Hate	Pres pol		Zoociar	Finis at Ca Lings	7 map 1			Nest 1	ramije, k)		letai Mac
Mil.	<u> </u>		-		Socilar		,		ratura,				te filele Stufit
	9611	THZ8.83	ia	Qui		in.	Det :	Fluid	Nic)	h-qc)	(yn.)t 44g)	(4) (11)(11)	210011
					,	t	 			-			
# - 17: X	12.3	362	400	900)	} , {		399	(1mm)) 217	747 700	784 133	20,600	-03	
	1				' \	7.	777	328	178	615	70, 630 20, 600	103	197
	1) }		İ	440	135	528	20, 00	149	134
	1				1 6 1	399	648	512	176	575	20,100	180	
	ł		1		1	1	1	586	112	647	20,100	180	361
	1	i '	1		1 7	ì	1	697	85	706	15,100	275	
	[•		''' {	144	949	744	75	751 936	19,100 18,100	251 255	537
	<u> </u>		L			L	<u></u>			1,2	13,100	1	337
harmed sale			Bat mred				τ	T	r		1 10 000	1	
83-17:30	11.3	340	805	300	: {	63	800	(265)	647 328	508 644	50,300 50,300	153	
			['			,		(663)	259	793	90,300	194	197
	1		ì)	ļ	İ	855	98	824	21,100	J 64	
	ì i	Ì	1		111	800	\$97	895	56	973	21,100	377	
	i		!	į	1	1	1	55 1	61	\$87	24,400	344	702
	ì		1	}	1 . ?	}	1	1015) 33	1035	i ≀z,±00	380	
	i.	ł	Į.	l	111	997	1(67	1034	28	1048	12,800	450	
	į		ļ	L	1	<u> </u>	 	1057	13	1069	12,600	300	879
98-F3c78	11.3	360	THE .	750	ir	1	1	(266)	450	Sil	50,300	112	ĺ
			ļ		1 {		910	184	334	651	50,100	150	ļ .
					1	l	i	(658)	270	794	50, 300	186	492
	1	ĺ	1		1 :	١	l	870	23	975 544	\$1,100	324	1
	1		1		0.4	CIO	1001	913 968	62	991	21,100	340 345	1 706
	ł			}	}	1	1	1070	15	1039	\$1,100 13,500	340	מח
	f		l .		ni [1901	1068	1039	30	1054	13,500	150	ĺ
	l _		l	İ	<i>]</i> [[1	1	1054	33	iori	13,500	410	846
186×13-39	11.3	360	902	900	1			(795)	446	508	19.700	110	
	Į i				1 1	70	805	481	335	664	C3,700	147	Į .
	1		}		\ \ \	ł	Ì	(650)	275	798	49, 20C	178	487
	1		l .		l (i	868	89	903	21,100	306	ĺ
	1		ļ		11	805	Indi	313	65	945	21,100	325	
	1	i	1		}	1	}	968	37	1000	21,100 14,200	330	697
	İ				111	1001	1068	1037	32	1053	14,200	440	ł
	l				1 1	1		1053	37	1072	14,200	380	837
188-11:50			(800)	(805)			1 —	(287)	150	512	49,200	101	
(Fire sui	process	e fluctur	rting bed	ly)	1 1	71	815	485	335	553	49,200	147	l
	1	!	1 :	i	1	ı	ļ	(65¢)	273	j 796	49, 200	180	487
	1	ł			1 1	١		874	N	909 951	21,100	300	1
	I		İ		1 " {	874	1004	919	54	1004	71,100 71,100	326	7.23
	1	i	ł		1 :	i	Ì	1	t	1	1	1	
	1	}	!		} Hi {	1004	100	1072	105	1125	42,900 42,900	. 005 1 421	\$
	1				"' {	1008	1215	1163	102	1214	42,100	120	1124
165-15:50	11.3	390	750	746	,	1		(201)	442	502	89,900	113	
		-~	-		1 1 {	77	817	490	337	654	49,900	95	!
	1	ì	ì		i i	1	1	(863)	270	765	42,200	164	190
	Ì	l	1	1	l i	1	ļ	873	65	206	21,700	326]
	1	1	1		111 {	817	:010	919	59	949	21,200	359	ļ .
	1	!	ţ	1	! (1	ļ	377	57	1001	21,200	372	101
		I	1	1	1 1	13.0	1,03	1130	\$7 \$2	1124	40,:00	490	i
	1		i		'" {	1.5.0	1	1130	91	1208	40,100 40,100	452	1104
106-16:30	11.3	360	494	4K,	 	1		(289)	442	110	50,100	113	
	1	1.7	1	1	1 1 {	n	NO2	484	322	645	90,100	156	l
	l	1	l		1 1] `	1	(871)	251	797	50,100	700	496
	l	ł	l		1 7	1	l	851	54	878	21,300	385	l
	1	l	1	!	1 11 (802	99;	893	55	921	21,300	368	
	I	i	ļ	i	1 (.}	1	951	52	977	21,300	410	RIS
	1	l	l	Ī	1 1	T		1071	91	1177	35,300	171	1
			ł	ı	1 111 {	999	1201	1134	74	1171	36, 300	518	t
	1	1	ı.	i	, 1			1165	85	1203	38,400	445	1003

(Certinued)

a) (37 based on a nigle (6-ft lon) reactor section.

B) Field temperatures in () colourated free poor input and faul heat capacity. T.C. readings at those points even out at line. Specificater for those locations were based on these catesiated temperatures.

B) Elizad key temperatures use coloulated heaten table well temperatures (Tig).

AT or Tig = Tip and key temperatures.

(Continues)

TABLE 53 (CONTL)
FSSTR-THERMAL CRACKING OF FUEL F-71 - DATA SUMMARY

Aun No.		-71 3 Rate	Pre: pa	- 7	Rasetor	Fluid et f	^up-			Heet Is	enster ^{b)}		Total Hest
8915-		insa _u)	T		i wation			Tempe	rature,	7	Rtu	Stu	te fluid
	6PH	TN2A	in	Out		in	Out	Fividb)	VIc)	Avgc)	(hr)(ft ^c)	(hr)(ft ²)(*F)	
91-13:46	4.08	130	894	692	((387)	243	508	24, 500	102	
	1		l		1 11 {	פר	993	659	167	743	24,900	149	1
			l	j	(1	l	86?	157	941	74 900	158	691
	1	l	ì	l	Ì	1	1	1018	47	1042	8,700	185	ł
	ì	1	1	Ì	1111 {	993	1085	1042	43	1064	8,700	202	ì
	-		1		l			1070	46	1093	8,700	189	929
91-15:00	4.08	130	450	489	(1		(383)	242	505	25,300	104	
			l	1	11 (07	987	652	153	729	25, 300	165	l
	į .	i	1	ĺ	l (1	1	858	139	928	25 300	182	COL
	ł		1	l	· (ļ	l	1018	48	1042	8,500	177	
	1	1]	1	111 ₹	987	1090	1059	39	1070	8,500	218	1
					(1075	46	1099	8,500	185	9,
91-16:00	4.08	130	497	495	١	1		(380)	242	501	74, 700	102	
	1	j	}	}	11 5	סז	985	65!	156	729	24,700	158]
	1	Ì	1	į	(1	l	852	141	923	24,700	175	674
	1		i	Ì	l (l	1058	93	1105	17,200	185	Į.
		1	į .	į	1111 {	985	1196	1:21	65	11160	17,200	221	į.
								i 155	88	1:20	17,200	196	1150
91-15:40	4,08	130	(850)	(850)	,	1	1	(384)	245	507	24,700	101	ĺ
Flow and	pressur	e fluctuat	ing bed	ly)	11 {	70	984	655	159	740	24,700	146	
Port 4 sa	spier p	luggad)			i (1	i	859	156	938	24,700	158	674
					?	1	j	1053	94	1100	17,200	183	!
	1	ļ	1	1	111 {	984	1214	1214	84	1151	17, 200	205	1
					l		1	1153	89	1198	17,200	193	1150
92-13:20	12.5	399	892	889	((150)	258	279	20,800	81	
			Ì	ļ	1 1 }	73	402	239	200	339	20,800	104	1
	1		Į	1	(1	1	333	176	421	20,8CU	118	186
	Ī	1	l	Í	[1		467	131	532	20,300	155	
	ļ	Į :	Į	1	\$1 1	403	653	519	125	59!	20,300	152	1
	i	j	i	Ì	(. [1	591	114	648	20,300	178	369
	1	1	Ī		1	1		700	65	87	18,900	223	1
	1				111 (653	850	750	71	69	18,900	266	i
	1	1	i	t	1 1	1	1	801	1 74	1 72	18,900	255	537

TABLE 54 FSSTR-THERMAL CRACKING OF FUEL F-71: PRODUCT RECOVERY AND ANALYSES

Aun Pilater 8915-	(act ⁴)	169- 12:30	188+ 13:10	188- 13:50	168- 15:30	180- 15:50	186- 14:50	191- 15:00	(65_8) 14:40	191- 13:40	191- 15:00	185_±) 16:00	191 - 16;30	General Electric Studiesd)s)
Operating Conditions (MSyb) Iniet Press., poig Nex Field Teap, "F Heat to Fuel, Rtm/ib		360 502 106) 828	360 761 1068 840	360 902 1068 837	360 494 1204 1083	360 750 1703 1104	360 900 1215 1124	130 490 1090 \$28	129 762 1099 981	130 894 1095 979	130 497 (196 1150	129 765 1174 1131	130 (#50) !2!4 150	950 300 (exit) 1200 1100
Preduct Recovery, \$		(101)c)	(102)c)	95	100	102	109	99	юа	103	101	104	107	KR.
Product Distribution, Se Ese Liquid		(6) ^{c)} 94	(9) ^{c)}	10 90	29 71	33 67	37 63	17 83	20 BU	21 79	43 57	4? 58	51 49	HR HR
Product 6== Companition		_												
Noon Spoc Analysin, No No No Colle				1.6 21.2 10.6 17.1 16.5 13.9 8.0 2.9 3.9 2.4	2-2 22-1 16-2 14-4 17-3 9-1 10-0 1-6 1-7 3-6	2.3 23 11 15 18.5 10.6 9.3 2.1 2.5 3.7	2.5 24.8 9.9 !5.4 !5.5 !1.4 9.7 2.6 2.7 4.2	1.7 19.3 13.5 15.7 17.2 11.9 10.5 2.8 2.2 4.0	1.4 20.4 10.3 16.2 17.4 13.8 9.3 3.6 2.7 4.6	1.7 19.6 8.6 15.9 16.0 13.8 11.7 4.0 0.2	2.4 22 12 15 18 9.4 11 -7 2.0 3.7 1.3	1.7 21.8 10 16 17 12 10 3.1 3 5.3 1.5	1.7 24 9 15 16 11 10 3 2 5.2 1.5	2.7 15.1 13.1 13.8 27.8 17.3(+ C ₂ H ₂) 1.4 1.0
Product Liquid Composition	M													MR
StC Analysis, Su C1 C2 C3 C4 C5 C7 C7 C8 C9 C1 C1 C1 C12 C12 C12 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14 C15 C14	n Tr 0 0.1 16.5 39.6 72.8 17.4 4.8 2.0 .5 .2	0.1 1.0 1.4 2.3 2.5 2.4 15.4 34,8 19.8 3.6 1.4 -7 -4	Tr 0.4 1.4 4.2 2.9 3.8 3.2 2.7 14.7 27.4 11.3 2.9 1.0 .5	Tr. 0.8 1.8 4.2 3.4 4.4 3.0 14.7 31.0 16.8 8.6 2.9 1.4	0.2 1.2 5.8 5.6 6.7 5.9 4.3 24.7 16.5 4.5 2.2 1.1	0.2 1.4 6.3 7.3 9.2 8.5 12.7 21.0 12.9 4.0 2.3 .9	0.5 2.7 7.7 7.8 9.7 7.96 10.1 17.2 7.90 1.59 1.59 1.59 1.31	7. 0.5 2.4 5.3 3.1 4.6 4.3 3.4 22.3 22.3 16.4 8.3 1.0 .5	7r 0.6 2.3 4.2 5.5 7.1 6.9 5.4 4.2 15.1 23.1 6.6 3.2 1.1 .6 .2 .7	Tr 1.4 4.2 6.1 5.5 7.1 6.1 6.2 19.8 12.0 6.3 7.1 1.4 .9 2.6	Tr 0.7 4.4 7.7 8.1 10.6 7.6 5.3 16.0 17.7 10.8 2.1 1.1	0.1 -4 2.0 4.0 6.4 10.0 8.1 5.5 12.5 12.5 1.0 5.1 2.5 1.6 1.2	0.1 1.8 2.1 8.0 11.4 11.4 12.2 8.0 9.9 11.5 7.9 3.4 1.9 1.4 2.0	
Basa Spac Analysis, Sa CmH and CmH and	\$1.7 3.4 3.1 1.3	81.0 13.2 3.8 1.5	75.9 17.7 4.3 1.7	73.2 19.8 4.7 1.9 .2	.1	28.5 9.3 3.3 6.2 1.4	8.2 2.1 1.0	74.5 16.7 5.2 _4 2.3	64.0 22.3 7.2 1.5 3.6 .8	63.7 21.8 7.3 2.1 3.6 .8		45.7 25.3 10.6 4.7 8.9 2.5 1.4	33.3 22.0 12.3 7.0 5.5 4.7 3.2 2.0	KR

<sup>b) Data repeated from previous work.
b) DSS based on single 10-6; reactor section.
c) Calculated assuming NR of product gas similar to other rune.
d) MR = not reported.
e) cf Reference ASD-TDR-62-920 Part II, January 1984, Ashland Special JP-6.</sup>

Figure 48. FSSTR - THERMAL CRACKING OF FUEL F-71: TOTAL HEAT SINK

Figure 49. FSSTR - THERMAL CRACKING OF FUEL F-71: EFFECT OF TEMPERATURE ON REACTION PRODUCTS

TABLE 55 DESCRIPTION OF JET FUELS

Properties	F-71	Ashland Special JP-6
Gravity, "API at 60°F	50.7	46.4
Specific Gravity, 60/60	0.777	0.796
ASTM Distillation, °F		
IBP	402	33 5
10%	409	342
20%	410	_
50%	420	352
90%	467	370
E.P.	543	400
Recovery, %v	98.5	99.0
Residue, %v	1.5	1.0
Vapor Pressure, psia		
300°F	2.6	
500°F	44.0	
Flash Point, °F, P.M.C.C.	180	122
Freezing Point, °F	-51	-80
Color, Saybolt	30+	-
Kinematic Viscosity at -30°F, cs	13.6	6.24 (-40)
Aniline Cloud Point, "F	185	135.5
Aniline Gravity Constant	9805	6287
Sulfur, Iw	0.003	0.03
Merca tan Sulfur, %w	0.0001	<0.001
Cu Strip Corrosion at 212°F	1B	1A
Luminometer	104	••
Gum, Existent (Steam Jet), mg/100 ml	1	0.6
Heat of Combustion, BM/16 (Not)	19,929	18,500
Water Separometer Index (Modified)	100	-
Thermal Stability, CFR Research Coker		
Pressure Drop, in. Hg	0.2	
Preheater Deposit Rating (as is/wiped)	2/1	
Hydrocarbon Analysis, %v		
Pareffins	82.9	_
Naphthenes	10.6	-
Olefins	5.1	2.3
Aromatics	1.4	10.8
Thermal Stability, SD Coker, 450/500°F, 5 hr,		- 1
Preheater Deposit	1.5/16	Oa)
ΔP	0	0

a) Erdco Coker, 450/550. b) of <u>Table 50</u>.

Catalytic Dehy progenation of MCH in 3/4" Reactor

Prior to beginning this study the following changes were made in the Fuel System Simulation Test Rig (FSSTR):

- 1. A 24-point temperature recorder was substituted for the 16and 6-point instruments which had been used previously. This allows all reactor temperature profile points to be printed out on a single chart.
 - 2. A 5/4n-OD reactor tube was installed in reactor section 111.
- 3. Power cables to Section III were doubled and heavier bus bars were welded to the reactor couplings to handle the anticipated heavier electrical load.
- 4. Thermocouples were attached to the four bus bars to monitor those temperatures.
- 5. Thermocouples were also wired on the necked-down adapter ends of the 3/4"-reactor section where tube wall temperatures would be expected to be the highest.

In order to provide an extension of the experimental data used to develop the computer program for predictions of reactor performance a program of test runs has been cerried out using the MCH/UOP-R8 system in a 3/4"-OD x ca 10-foot long reactor tube. A sketch of the reactor section is given in Figure 50.

A total of seven runs were performed covering the range of operating conditions outlined in <u>Table 56</u>. The target for these tests was set at attaining a conversion of <u>95%</u> at about 75 LHSV. Nominal bed inlet conditions were set at 900 psig and 900°F. For the bed volume used (627 cm³ or 0.1657 gal) this required a feed rate of ca 12.5 gph and cm the basis of 1000 Btu/lb heat sink in the catalyst section a power input of 80,300 Btu/hr or 23.5 KW was required. For the 0.60 ohm reactor resistance this corresponds to a current of 627 smps. While the rated cutput of the welding machine used as a power supply was 650 amps, the first series of runs showed the low efficiency of the transformer (ca 45% at maximum rated load) would prevent reaching this goal without first providing an increased primary current supply.

Series 8915-198 was, therefore, limited to a power input of ca 8 kw or 27,000 Rtu/hr to the catalyst section. For the second series (10018 5) a Hunterdon Variable Reactance Transformer was used as the power supply. The superior efficiency of this transformer permitted operation at a maximum of ca 40,000 Rtu/hr which gave 90% conversion at 37 IHSV and 62% at 72 IHSV. Installation of a larger circuit breaker (125 amp at 480 v) and heavier primary wire to the welding machine was then completed and the final series of runs was made reaching the desired conditions (97% conversion at 80 IHSV).

A complete data summary for all runs is presented in Table 57.

To minimize the current through the bus bar leading to the coupling between Sections II and III no power was supplied to Section II. Typical

Tube: 34" OD x 0.049" Wali Hastelloy "C" Thermocouples: 716" OD Incone! Sheathed Scale: None

Figure 50. 75STR - 3/" CD REACTOR TUBE

The determination of the second

AFAPL-TR-67-114 Part I

operations then had the preheaters raising the feed temperature to ca 600°F and Section I further heating to about 900°F. Figure 51 shows the temperature profile for the final run of the program (highest power input).

Experimental results were much as predicted by the computer program. A full analysis of the comparison of predicted and experimental data is presented in a later section of this report.

Dehydrogenation of MCH to toluene was quite clean, selectivity ranging from 92 to 98.5% and, as pointed out in the following tabulation, selectivity increased with extent of reaction.

LHSV	MCH Conversion,	Selectivity for Toluene, %
37	64	92
37	98	92 96
77	43	95
72	62	96
72 80 80	77	98
80	97	99

(Bed inlet conditions ca 900 psig and 900°F for all above tests)

Liquid products formed other than toluene were predominantly C_7H_{14} isomers of MCH. Gas product samples from each run were analyzed by mass spectrometer and, except for Run 10018-5-13:20, were all pure H_2 (plus noncondensed MCH and toluene). In that run, the low feed rate-high conversion case, ca 0.2% CH_4 and 0.1% C_2H_6 were found in the samples.

A single catalyst charge which had been initially activated by heating in a N₂ stream at 1100°F for two hours was used for these tests during which a total of 1028 vol of feed/vol of catalyst was processed. No evidence of catalyst deactivation was noted. A summary of the catalyst charge operating history is given in Table 58.

In the course of these tests some additional data points were obtained from Section I on heat transfer to MCH in an empty 3/8"-OD x 0.049"-wall tube. A comparison of these points with the Dittus-Boelter correlation

$$N_{Nu}/N_{Pr} = 0.023 N_{Re}$$

is shown in Figure 52. A tabulation of the dimensionless numbers calculated for the various data points is included in <u>Table 59</u>. (Previous data on this correlation was reported in reference 3, Figure 66 for fuel F-71 and Figure 70 for MCH.)

Other than the power supply problem described above, the unit operated satisfactorily during these tests. However, we have about reached a limit on power which can be supplied to the 3/4" reactor section as it is presently constructed. At the maximum power used (Run 10018-9-14:00) the tube wall temperature at the necked-down tube entrance reached 1235°F as measured

by a wired-on thermocouple. While this is not an unsafe condition, the temperature level at this location was increasing rapidly with power input and further power increase seems unwarranted.

Table 56. FSSTR- DEHYDROGENATION OF MCH OVER
UOP-R8 IN A 3/4-INCH REACTOR:
SUMMARY OF OPERATING CONDITIONS

LHSV	Nominal Inlet Press., psig	Catalyst Bed Exit Temp., °F	Total Power Input, Btu/lb
37	900	825	1110
37	900	1013	1600
80	500	682	840
77	500	782	930
72	900	838	1150
80	900	872	1300
80	500	1034	1640

a) Catalyst bed inlet temp 894-905°F. LHSV based on catalyst bed volume only. ID = 0.652.

Table 57. FSSTR - DEHYDROGENATION OF MCH OVER UOP-R8 IN 3/4-INCH REACTOR: DATA SUMMARY

	1	MCH Fend Rate ^{m)}		Pres	. ,		Fluid 1	femp at			Heat	Transfer		Tutal Heat	MCH	Selectivity
Run No.	Catalyst				ig	Reactor Section ^c)	Couplin	ngs, T	Temp	eratur	e, °F	Btu	Btu	to Fluid,	Converted,	for Toluene,
	CILLEG	gph	TH2A _P)	In	Out	Duc (1 ca.)	In	Out	Fluid	v(q)	Avgd)	(hr)(ft2)	(hr)(rt2)(*F)	Btu/lb	\$	\$
8915-198- 15:00	I	12.8	77	913	809	PH I	654	895 {	698 760 833	64 71 67	750 796 867	27,600	450 590 410	370 610		
						II	895 895	895 782 {	732 750 764	24 22 24	744 761 776	16,000	670 750 670	950	, •	٦.
8915-198- 14700	I	13.2	80	488	219	H9 1	573	P23 {	640 764 811	92 93 85	61 V , 771 853	\$2,100	*50 \$45 385	510 580		
						III II	893 394	894 68e {	687 684 684	22 21 24	698 698 696	0 14,200	650 680 590	84 0	لو لو	99
10018-5- 12:00	I	6.2	57	902	871	PH I II	410 900	900 { 898	558 678 807	136 117 83	626 737 849	23,600 0	174 202 284	180 610		
10018-5-	 :	6.2	37	904	860	III PH	898	185	746 777 800	26 24 27	759 789 314	12,500	480 520 450	1110 180	Ű4.	R
15:20					!	I II	411 902	902 {	555 679 811	142 125 (M	626 741 153	25,800 0	168 195 983	r-10		
10018-5-	ı	11.9	72	907	790	III PH	900	1013	773 824 872	51 47 52	729 848 898	24,000	470 510 410	1600 340	98	96
16:20						I	601 902	900 { 900 {	674 748 835	88 88 70	718 799 870	50,600 0	547 547 457	620		
10018-9-	I	13.2	9o l	886	720	III	900	858 {	7149 777 798	56 33 35	767 794 816	25,000	690 760 710	1150 350	ęφ	96
15:00						I	610 904	90'ı { 90'ı	679 752 F38	86 81 74	722 793 875	51,460	265 588 424	610		
10018-9-	1	13.2	9o	874	2.97	III	904	827 {	758 139 117	47 45 47	782 814 841	55,600	760 830 760	1,00	77	98
14:00		\$3.4 	50	(8.4)		I I	615	907 { 905	105 105 241	84 62 70	725 796 816	50,700	365 374 439	350 610		
a) Feat?					 	III	905	10!4	777 552 456	69 62 72	305 623 875	5°.000 1	750 640 720	C+ 12	97	99

a) Few (2). ** MTH, 0.1% Toluene, 0.1% Cyclohexane,
b) LATY based on volume of catalyst section in 1/4m OD reactor.
c) TH - probaster; heat input from PH head on heat content of MCH at Ception I inlet temperature.
c) AT and Aug temperatures use calculated inside title call temperature, T₁: AT = T₂ - T₂ and aug temp. • T₁₄ + T₂/O.

Table 58. FESTR - DEHYDROGENATION OF MCH OVER UOP-R8 IN A 3/4-INCH REACTOR: HISTORY OF CATALYST CHARGE

Catalyst Charge 8915-195 (Charge I in 3/4-Inch Tube)

UOP-R6 (Pt/Al₂O₃) Platforming ostalyst Bed vol: 627 co

Catalyst sctivated in place by heating at 3100°F

in No for 2 hours

Feed: 99.8% MCH, 0.1% toluene, 0.1% cyclohexane

Series	Run Time, hr	MCH Conversion,	Vol Feed Vol Catalyst	Vol Feed Vol Catalyst (During Conv Rune Chity)
	0.3	O	19	The second secon
8915-198	3,8	43-44	893	793
ļ į	0.8	Ç	28	A. C. C. C. C. C. C. C. C. C. C. C. C. C.
10018-5	7.3	62 -98	366	659
	0,6	0	46	T. dillinoise - C. di
10018-9	4.6	77-97	369	1028

Figure 52. FSSTR - HEAT TRANSFER TO MCH IN EMPTY 3/8-INCH TUBE:

Dittus-Boelter Correlation

Table . FSSTR - HEAT TRANSFER CORRELATION:
MCH IN EMPTY 3/8-INCH TUBE

Dimensionless numbers calculated for Dittus-Boelter corr lation

Run	Temp,	Press.,	$N_{ m Re}$	n _{Nu}	Npr0.4	N _{Nu} /N _{Fr} o.4
9815-198- 13:00	698 760 833	900 900 900	68,500 79,400 85,300	172 164 174	1.03 .98 .95	163 168 184
8915-198- 14:20	640 724 81.1	500 500 500	109,000 107,000 102,000	191 185 200	.98 .98 .98	195 189 204
10018-5- 12:00 and 13:20	557 679 809	900 900 900	12,200 31,300 40,600	63 78 121	1.47 1.05 .96	43 74 126
10013-5- 16:20	674 748 835	900 900 900	60,530 71,800 79,900	131 145 185	1.06 .99 .95	124 146 195
10018-9- 13:00 and 14:00	681 754 840	900 900	66,800 82,000 88,100	143 160 182	1.05 .99 .95	136 162 192

Thermal Cracking of Propane

The Fuel System Simulation Test Rig (FSSTR) using the usual 3/8-in. (D x 0.049-in. wall x 10-it long reactor tubes has been used to determine the heat sink capability of propane when subjected to temperatures which result in thermal cracking of the fuel. Two thirty-kva variable reactance continuously variable transformers have been installed giving much better control over the energy input to the FSSTR than was previously possible.

Feed rates corresponding to 100 and 400 MISV (per 10-ft section) and pressures of 200 and 900 psig were selected as covering a range of conditions broad enough to demonstrate the characteristics of this fuel. The range of temperatures covered at each IMSV and pressure combination are outlined in Table 60. The procedure followed in these tests was to set the fuel flow rate and operating pressure and use Reactor Sections I and II to preheat the fuel to ca 1000°F at the entrance to Section III. Power was then supplied to Section III as necessary to raise the outlet temperature in about 50°F increments.

A summary of the operating data is presented in <u>Table 61</u>. <u>Table 62</u> contains the product analyses for all runs. Depth of cracking is illustrated in <u>Figure 53</u> as a function of temperature for the four pressure and feed rate combinations tested.

The heat sink capacity of propane at the various conditions tested is shown in Figure 54. Up to ca 1100°F the heat sink is provided only by latent and sensible heats. Above 1100°F the difference between the measured heat sink and the extrapolated heat content curve illustrates the contribution of the endothermic heat of reaction. Even under the most severe cracking conditions encountered (ca 65% of the propane reacting) the heat of reaction was only about 300 Btu/lb out of a total of 1400 Btu/lb. Also at this condition the endothermic reaction appears to be slowing and the heat sink capacity per degree is becoming smaller.

An example illustrating the temperature profile over the entire reactor is shown in <u>Figure 55</u>. Section III fluid temperatures for the five runs of Series 10018-27 are given in <u>Figure 56</u>. The effect of the reaction in flattening the temperature gradient is apparent.

As the temperature level was increded an upper limit was reached, for all except the shortest residence time condition, when pressure and flow fluctuations, probably caused by coke particles lodging against the pressure control valve, forced shutdown of the uni. The maximum heat sink attained without sign of operating difficulty was 1944 Dou/1b (above liquid at 68°F) at 400 IHSV, 200 psig and 1392°F outlet temperature. No attempt was made to determine how long operation at these conditions could have been continued.

A few data points were obtained in Sections I and II for comparison with the Dittus-Boelter heat-transfer correlation:

$$N_{Nu} = 0.023 N_{Re}^{0.8} N_{Pr}^{0.4}$$

AFAPL-TR-67-114 Part I

This comparison is shown in Figure 57. Physical property data for propane used in calculating the Reynolds, Nusselt, and Prandtl numbers are given in Figure 58.

Table 60. FSSTR-THERMAL CRACKING OF PROPANE: RANGE OF OPERATING CONDITIONS

Section III inlet temperature 974-1014°F LHSV based on Section III volume only

Nominal LHSV	Nominal Pressure, psig	Section III Exit Fluid Temp, °F
100	200	1143-13428
100	900	1097-1373 ^{a)}
400	200	1093-1392
400	900	1104-1326 ^{a)}

a) Coke formation halted test at maximum listed temperatures for these series.

Table 61. FSSTR - THERMAL CRACKING OF PROPANE: DATA SUMMARY

	٠	e Prod	Prosoure, palg			PINE	Tong at Age, 'F				at Transfer		Ivial No
1007g-		,	 -		Bootles				are terre	Avgb)	राजीदेखा	राजार रहे । एक	to Fluid Btu/1b
91 - 19-20	19/Ar	111	200	Dut 800		29	Oet .	Fluid 110	19	120	8,000	137.	
21 - 75190	3.1			•~	l t	60	275 {	167 360	15k 113	264 617	8,000	52 T1	392
					11	512	1011	641 907	91 71	687 943	8,200 8,200	90 115	796
					111	1011	111.7 {	1036	15	1065	2,710 2,710	180 180	
			L_			1011	, ſ	1111	15	1119	2,710	180	921
81 - 15:50	26.7	111	200	200	,	60	311 {	110 167 360	18 154 114	119 244 416	8,000 8,000 8,000	\$2 52 71	992
		İ			11	m	907 {	633	86	676 921	7,630	89 112	767
	}				l	j	1 }	1026	28	10/12	5.990	140 145	'''
			L		III	987	1186 {	1087	27 25	1101	3,920	151	958
21 - 15:20	16.7	m	300	500		60	515	110 169	19 156	120 247	8,000 8,000	N20 11 71	
		1				515	99, {	563 637	114 87	681	6,000 7,650	8.6	392
		1			-	j	1 }	1050	69 10	928 1070	5,290	111	767
					111	995	1240 {	1127	X X	1145 1211	5,290 5,290	147 155	1024
21 - 15:10	19.7	111	201	\$C7	,	60	521 {	110	18 155	119	8,000 8,000	25 770	
	1				1		}	645	114	252 426 688	6,000 7,630	71 09	3,42
	1	1	ĺ		111	521	1005	901 1279	71 50	937 1104	7,5,0 6,620	108	761
	[111	1002	1265 {	1171	17	1195 1267	6,620 6,620	261 261	1091
21 - 16:00	16.7	111	200	500	 	-		111	18	120	8,000 8,000	\$40 51	
					¹	60	278 {	170 X13	157	249	6,000	71	yμ
					11	518	2.5	640	10	68A 930	7.630 7.630	109	767
					111	995	1326 {	1100	68 59	1136 1252	8,940 8,940	132 152	
21 - 16:40	16.7	111	200	200	ļ			1297	28	1323	8,940	172	1197
11 - 10;40	10.1	***		•~	1	60	508 {	163 357	155	241 414	8,000 8,000	52 71	932
					11	508	982 {	629 862	86 67	673 917	7.650 7.650	89 111	767
		1	ľ		111	962	3 242	1108 1241	79 67	1148	10,040 10,040	177 150	'
	L		<u> </u>		L			1516	62	1347	10,040	162	1268
26 - 12:50	13.6	104	900	908	med coke i	Cross ree	ictor. M	213	0.3 €	of carbor	7,570	131	
24 - 12; 50													
		100	902	y-4	1	68	547 {	242	اضغا	176	7,370	90 113	364
ļ			,,,,	7-4	1	68 547	976	658	82 65 69	555 676 695 916	7,370 7,370 6,620	90 113 96	
			,,,,	7-4	11	547	978 {	658 885 998	82 65 69 62 15	693 916 1008	7,370 7,570 6,620 6,620 2,300	90 113 96 107 150	384 742
					-		1 }	658 885 998 1037 1072	82 65 69 62 15 14 13	693 916 1008 1044 1079	7,370 7,370 6,620 6,620 2,300 2,300 2,300	90 113 96 197 150 160 180	
24 - 13:30	13.8	104	901	901	11	547	978 {	658 885 998 1037 1072	82 65 69 62 15 14 13	693 916 1008 1044 1079 242 338	7,370 7,370 6,620 6,620 2,300 2,300 2,300 2,300	90 113 96 107 150 160 180	741 560
24 - 13:30					11	5 ³ 7 978	976 { 1097 {	658 665 998 1037 1072 215 297 450 674	82 65 69 62 15 14 13 53 81 66	699 916 1008 1044 1079 242 336 483 712	7,370 6,620 6,620 2,300 2,300 2,500 7,590 7,590 7,590 6,970	90 113 96 107 150 160 180 139 91 112	741 660 584
24 – 13:30 l					11 111	547 978 68 554	976 { 1097 { 554 { 1012 {	658 665 998 1037 1072 215 297 450 674 914	82 65 69 62 15 14 13 50 81 66 75 64 22	693 916 1008 1044 1079 242 336 483 712 946 1052	7,370 6,620 6,620 2,300 2,300 2,300 7,390 7,390 7,390 6,970 6,970	96 107 150 160 180 112 91 112 93 109	741 660
		104			111	5 ³ 7 978 68	976 { 1097 { 554 {	658 685 998 1037 1072 215 297 450 674 914	82 65 69 62 15 14 13 52 81 66 75 64	693 916 1008 1044 1079 242 336 463 712 946	7,370 6,620 6,620 2,900 2,900 2,900 2,900 7,590 7,590 6,970 6,970	90 113 96 107 150 160 180 139 91 112 93 109	741 660 584
24 - 15:30 24 - 14:20					11 111	547 978 68 554	976 { 1097 { 554 { 1012 {	658 885 998 1037 1072 215 297 879 674 914 1089 1130	82 65 69 62 15 14 13 50 81 66 75 64 22 21 19	693 916 1008 1044 1079 242 336 483 712 946 1052 1100 1140	7,370 6,620 6,620 2,300 2,300 2,300 2,300 7,590 7,590 6,970 6,970 3,040 3,040 3,040 7,590	90 113 96 150 160 180 112 93 109 109 155 155 157	741 660 384 750 908
	13.8	104	901	901	I III	547 976 68 554 1012	976 { 1097 { 1098 { 1098 { 1158 { 1550 {	658 885 998 1057 1072 215 297 674 914 1061 1061 1150 215 297 1150	52 65 69 62 15 14 13 53 81 66 75 64 22 21 19	693 916 1008 1048 1019 242 338 483 712 483 1052 1100 1140 240 335 480 705	7,370 6,620 6,620 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 2,900 1,990 1,900	90 113 96 107 150 160 180 139 112 93 109 125 155 157 69 114	741 660 984 750 988
	13.8	104	901	901	1 111 111 111	547 978 68 554 1012 66	976 { 1097 { 1092 { 1012 { 1155 { 1005 {	658 885 998 1037 1072 215 297 859 674 914 1049 1130 213 293 447	65 69 62 15 14 13 55 81 66 75 64 22 21 19	693 916 1008 1044 1079 242 336 483 712 946 1052 1100 1140 240 335 480	7,370 6,620 6,620 2,900 2,900 2,900 2,900 7,990 7,990 7,990 6,970 6,970 6,970 3,040 3,040 3,040 7,990 7,990 7,990	90 113 96 107 150 160 180 112 93 109 128 155 155 157 89	741 660 384 750 908
	13.8	104	901	901	I III	547 976 68 554 1012	976 { 1097 { 1098 { 1098 { 1158 { 1550 {	658 885 998 1057 1072 215 297 450 674 1041 1069 1130 215 293 447 669 910	62 65 69 62 15 14 13 81 66 75 64 22 21 19 54 65 72 65	693 916 1008 1014 1019 242 336 483 712 946 1052 1100 1140 240 335 481 703 941	7.370 7.370 6.620 6.620 6.620 7.300 2.300 2.300 2.300 7.390 6.970 3.000 3.000 3.000 7.390 7.390 7.390 7.390 7.390 6.970 8.070 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000	90 113 96 107 150 160 180 190 1112 93 109 115 152 177 69 114 97 112	741 660 984 750 988
	13.8	104	901	901	11 11 11 11 11 11 11 11 11 11 11 11 11	547 976 68 554 1012 66 550 1005	976 { 1097 { 1092 { 1153 { 1155 { 1196 { 119	658 658 998 1057 1072 215 297 459 1041 1069 1150 215 293 447 669 210 2117 1169 2117 1169 2117 2117 21169	65 69 62 15 13 50 81 66 75 64 22 21 19 54 65 72 62 22 21 22 23 65 22 23 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	693 916 1008 1004 1019 24-2 336 485 712-2 1100 24-0 335 480 705 946 1052 1140 24-0 335 480 705 941 1150 1151 1151	7.370 7.370 6.620 6.620 2.300 2.300 2.300 7.390 7.390 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 6.970 7.390 7.300	90 113 96 107 150 160 180 199 112 93 109 115 157 89 114 97 112 149 166 166	763 560 504 720 908 564 750
24 - 14;20	15.8	104	901	901	11 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	547 978 68 554 1012 66 550 1005	976 { 1097 { 1098 { 1158 { 1158 { 1159 { 1196 { 1196 { 1558 { 1196 { 119	658 658 658 657 1077 1077 215 297 859 671 1089 1130 213 223 243 145 210 213 223 233 244 215 225 235 247 245 245 245 245 245 245 245 245	65 65 66 69 62 15 13 13 55 81 66 67 64 22 21 19 54 65 72 65 24 25 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	693 916 1008 1044 1019 24-2 336 485 7126 485 1052 1100 24-0 335 480 705 946 1140 24-0 1150 1151 1151	7.370 7.370 6.620 6.620 6.620 2.300 2.300 7.390 7.390 6.970 3.000 3.000 3.000 7.390 7.390 6.970 8.070 8.000 8.000	90 113 96 107 150 160 160 100 112 93 109 115 157 197 118 97 112 149 166	741 660 904 750 908
24 - 14;20	15.8	104	901	901	11 11 11 11 11 11 11 11 11 11 11 11 11	547 976 68 554 1012 66 550 1005	976 { 1097 { 1092 { 1153 { 1155 { 1196 { 119	445 658 689 998 1037 215 297 450 1041 1049 1130 215 225 221 211 215 225 221 211 211 211	65 66 69 62 15 13 13 11 13 11 15 11 15 15 16 66 75 66 75 66 75 66 75 66 75 66 75 66 75 66 75 66 75 75 75 75 75 75 75 75 75 75 75 75 75	693 916 1008 1004 1004 1009 202 203 203 1000 1100 1100 1100 1100 11	7.376 7.376 6.620 6.620 6.620 2.300 2.300 7.390 7.390 7.390 6.970 7.390 7.300	905 113 96 150 160 160 100 100 112 100 115 100 115 115 117 118 119 110 110 110 110 110 110 110	763 560 708 709 700 700 700
24 - 14;20	15.8	104	901	901	11 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	547 978 68 554 1012 66 550 1005	976 { 1097 { 1098 { 1158 { 1158 { 1159 { 1196 { 1196 { 1558 { 1196 { 119	445 658 995 1057 1072 235 297 450 674 1041 1099 1150 215 291 1110 215 294 215 296 216 217 217 217 218 219 219 219 219 219 219 219 219 219 219	65 65 66 67 15 113 113 113 113 113 114 115 115 115 116 117 117 117 117 117 117 117 117 117	693 916 1008 1004 1014 1079 242 336 463 108 1100 1110 210 210 210 480 1067 1131 1067 1131 1151 1151 1151	7.370 7.370 6.620 6.620 6.620 2.900 2.900 2.900 7.990 7.990 7.990 6.970	90 113 96 107 150 160 160 180 191 112 193 109 115 157 197 115 117 119 119 119 119 119 119 119	743 660 994 720 908 908 750 968
24 - 14;20 25 - 15;10	15.8	104	901	901	11 11 11 11 11 11 11 11 11 11 11 11 11	547 976 68 554 1012 66 550 1005	976 { 1097 { 1098 { 1098 { 1153 { 1155 { 1196 { 119	445 650 998 998 1057 1072 215 225 225 225 225 225 225 225 225 22	65 69 62 15 11 11 11 11 11 11 11 11 11 11 11 11	693 916 1008 1004 1019 242 336 365 1092 1100 210 210 210 210 210 210 210 210 2	7.376 7.376 6.620 6.620 2.300 2.300 2.300 7.390 7.390 6.970	903 113 96 1150 160 160 100 112 100 1145 115 115 115 116 117 119 110 110 110 110 110 110 110	762 768 750 968 750
24 - 14;20 25 - 15;10	13.8	104	901	901	111 111 111 111 111 111 111 111 111 11	547 976 68 554 1012 66 550 1005 67 358 1012	976 { 1097 { 1097 { 1159 { 1159 { 1159 { 1159 { 1150 { 115	445 650 998 998 1057 1057 2057 295 295 295 291 1049 1049 2109 2109 2109 2109 2109 2109 2109 210	65 65 66 62 11 13 13 10 16 66 22 11 19 54 21 19 56 22 21 21 56 66 22 21 23 66 66 22 21 21 21 21 21 21 21 21 21 21 21 21	691 916 1008 1104 1008 1104 1008 1008 1008 1009 1009 1009 1008 1008	7.376 7.376 6.620 6.620 6.620 2.900 2.900 2.900 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 7.990 6.970	900 1133 96 1147 1500 1600 1600 1600 1600 1600 1600 1600	762 768 750 968 750
24 - 14;20	13.8	104	901	901	11 11 11 11 11 11 11 11 11 11 11 11 11	547 976 68 554 1012 66 550 1005	976 { 1097 { 1098 { 1098 { 1153 { 1155 { 1196 { 119	450 650 650 995 995 1057 1072 215 297 301 1009 1130 201 215 225 225 225 226 227 227 227 227 227 227 227 227 227	65 69 62 15 15 15 15 16 66 67 68 22 21 19 56 67 68 68 68 68 68 68 68 68 68 68 68 68 68	691 946 1008 4107 1009 1009 1100 1100 1100 1100 1100 1	7.370 7.370 6.620 6.620 6.620 2.900 2.900 7.990 6.970	900 1133 966 1160 1150 1150 1150 1150 1150 1150 11	762 764 750 968 750 968 750 760 760 761 762
24 - 14;20 25 - 15;10	13.8	104	901	901	111 111 111 111 111 111 111 111 111 11	547 976 68 554 1012 66 550 1005 67 358 1012	976 { 1097 { 1097 { 1159 { 1159 { 1159 { 1159 { 1150 { 115	450 650 659 995 1057 1077 2257 597 100 1130 201 215 227 210 215 227 211 215 227 211 215 227 211 215 227 211 215 227 211 215 227 227 227 227 227 227 227 227 227 22	65 69 62 15 115 115 55 81 81 81 81 81 82 82 82 82 83 84 85 86 86 86 87 88 88 88 88 88 88 88 88 88 88 88 88	691 1008 4 1009 1009 1009 1009 1009 1009 1009 10	7.370 7.370 6.620 6.620 6.620 2.900 2.900 7.990 6.970	900 1133 966 1167 1500 1600 1600 11800 1190 1191 1192 1193 1195 1195 1197 1198 1199 1199 1199 1199 1199 1199	762 764 750 968 750 968 750 968 750 763 764
24 - 14;20 25 - 15;10	13.8	104	901	901	11 11 11 11 11 11 11 11 11 11 11 11 11	547 978 68 594 1012 66 550 1005 67 578 1012 67 510 1006	976 { 1097 { 1097 { 102 { 1155 { 1005 { 1005 { 1106 { 10246 { 10246 { 1026 { 10	450 650 650 956 956 1057 1072 237 237 247 1081 1081 1081 1091 1092 11170 215 215 215 216 217 218 218 218 218 218 218 218 218 218 218	65 69 62 15 14 15 15 15 16 66 75 64 22 11 17 17 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	691 1098 1099 1099 1099 1099 1099 1099 10	7.376 7.376 6.620 6.620 6.620 2.300 2.300 2.300 7.390 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300	903 113 96 107 1500 1600 1600 1800 1199 191 112 193 109 115 115 117 118 119 119 119 119 119 119 119 119 119	742 660 904 71:0 908 968 988 73:0 107:9
24 - 14:20 25 - 15:10 26 - 16:00	15.8	10k	903	901	11 11 11 11 11 11 11 11 11 11 11 11 11	547 978 68 554 1012 66 550 1005 67 558 1012	976 { 1097 { 1097 { 1097 { 1155 { 1155 { 1155 { 1166 { 102 { 1168 { 1556 { 1566	459 998 1057 1072 1075 1075 1075 1075 1075 1075 1075 1075	65 69 62 15 14 15 15 15 16 66 75 64 22 11 19 15 16 16 16 16 16 16 16 16 16 16 16 16 16	691 1008 1104 1104 1104 1106 1106 1106 1106 1106	7.376 7.376 6.620 6.620 6.620 2.300 2.300 2.300 2.300 7.390 7.390 7.390 7.390 6.976 6.976 6.976 6.970	900 113 96 107 150 160 150 160 199 112 199 195 195 197 199 199 199 199 199 199 199 199 199	762 764 750 968 750 968 750 968 750 763 764
24 - 14:20 25 - 15:10 26 - 16:00	15.8	10k	903	901	11 11 11 11 11 11 11 11 11 11 11 11 11	547 978 68 594 1012 66 550 1005 67 578 1012 67 510 1006	976 { 1097 { 1097 { 102 { 1155 { 1005 { 1005 { 1106 { 10246 { 10246 { 1026 { 10	650 650 995 995 1037 1037 1037 1037 1037 1037 1039 1039 1039 1039 1039 1039 1039 1039	865 696 215 114 13 13 13 14 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	691 1006 11009 1007 1007 1007 1007 1007 1007 100	7.376 7.376 6.620 6.620 6.620 2.300 2.300 2.300 2.300 7.390 7.390 7.390 6.976	905 113 96 1107 1500 1600 1600 1600 1100 1112 1112 1113 1114 1115 1115 1115 1116 1116 1117 1117 1118 1118 1119 1119 1119 1119	761 860 904 710 908 968 968 968 1079 944 750
24 - 14:20 25 - 15:10 26 - 16:00	15.8	10k	903	901	111 111 111 111 111 111 111 111 111 11	547 978 68 554 1012 66 550 1005 67 558 1012 67 5100 67 57 57 57 57 57 57 57 57 57 5	976 { 1097 { 1097 { 1097 { 102 { 1155 { 1155 { 1005 { 1005 { 1106 { 102 { 1046 { 1000	658 658 658 658 658 658 658 658 658 658	65 69 62 15 14 15 15 15 16 66 75 64 22 11 19 15 16 16 16 16 16 16 16 16 16 16 16 16 16	691 1008 1008 1008 1008 1008 1008 1008 10	7.376 7.376 6.620 6.620 6.620 7.390 2.300 2.300 7.390 7.300	900 1130 966 1150 1600 1600 1190 1191 1192 1195 1195 1197 1191 1190 1190 1190 1190 1190 1190	761 660 504 750 908 504 750 968 750 1079 944 750

a) IMPV based on engine 10.5% long resetur section.
 b) IZ and Avg temperatures use calculated inside tube well temperatures (Zju).

Table 61 (Contd). FSSTR - THERMAL CRACKING OF PROPANE: DATA SUMMARY

<u> </u>	Props	no Poul	Pres	rure,		Fluid	Tomp &				Neat	Transfer		Total Heat
Ren No. 10018-	1b/hr	Lugya)	Da Da	LE OUT	Resetor Section	Coupl	ings, 1	_	Pluid	ATb)	Avgb)	(hr)(ft ²)	(hr)(24 ²)(*7)	to Fluid, Bru/18
27 - 12:10	54.0	40s	903	905	<u> </u>	_	 	7	251	205	334	37,400	185	
1	}	ļ			1	63	677	ţ	326 514	191 146	587	37,400 37,400	136 256	L-86
l]				11	677	1005	{	918	79	784 953	21,400	271 306	768
			Ì		111	1005	1104	{	1023	20 19 18	1053 1062 1068	7,350 7,350 7,350	370 390	866
27 - 13:00	54.0	406	905	905	<u> </u>	64	4	ſ	231	199	331	37,400	188	
		1			•	-	675	Ì	526 513 742	188 146 80	5%	37,400 37,400 21,400	199 256 268	1-86
				j	11	675	998	{	914	69	949	21,400	310 350	758
					111	998	1167	į	1035 1682 1127	35 31	1099	12,700 12,700 12,700	380 410	935
27 - 14:00	54.0	40 6	898	898	1	66	678	{	232 328	197 189	351 423	37,400 37,400	190 198	
	}				11	678		ľ	516 745	146 78 63	589 784	37,400	256	486
						010	999	١	914	54	948 10€0	21,400	315 340	768
		L			III	999	1229	{	1119	50 46	1144	18,350 18,350	570 400	1006
27 - 15:00	54.0	H06	896	896	ı	67	673	{	254 326 513	159 165	394 420	37,400 37,400	188 199 260	1-86
					11	673	996	į	513 741 910	78 68	780 944	57,400 21,400 21,400	274 315	**** 768
					111	0.6	1202	j	1078	79	1118	26,800	940 968	100
	<u> </u>	<u> </u>	Ļ.		***	9,6	1292	I	117% 1250	73	1211	26,800 26,800	1006	1117
87 = 15:50 (AP incres		i hos Ig pat at	895 16:16	895	1	1.7	675	$\{ $	27.2 25.4 523	211 187 145	339 140 386	37,400 37,400 37,400	177 200 258	406
	:	16 pai nt	16:22)		11	675	999	Ì	744 912	\mathcal{Z}	784 946	21,400	271 315	768
İ					111				1115	112	1170	55,500	94.6 900	100
						977	1353		1510	1C . →1	1290 1556	18,500 38,500	િંડ	1871
30 - 12 :0	53.0	399	197	Đư 194	ned toke f	ron re	etot.	Meg	asured 0		earbon.	** ***		
,	,,,.	<i>)</i> "	171	'''	1	62	672	$\{ \mid$	258 469	29 26: 18:	119 371 561	36,900 36,900 36,900	1270 159 202	kga
İ					11	672	9,46	$\{ $	743 914	76 67	761 943	20,100 20,100	25/5 500	759
					111	598	1095	Ì	1015	18 16	1024 1052	6,790 6,780	580 1620	
\$0 : 15:00	33.0	171	1:77	1'#					1069	15	1077	6,780 yr.,um	11/0	851
1					1	6.5	677	$\{ \}$	474	19.0 19.1	170	90,79600 96,7900	141 200	190
ļ					11	6TT	1005		750 NI	17	700	29,100 20,100	961 900	759
1	l				111	1005	11.9		1048	40 37	1120 1-8-9	11,7∞ 13,7∞	940 370	1
50 - 15:20	55.0	399	197	192				7	105	27	1172	15,700	1370	941
į		ļ			1	65	659		159 159	261	363 510	36,900 36,300	141 204	. 490
1				- 1	11	619	981		750 901	76 67	768 755	20,100 20,100	765 300	759
ĺ				}	111	981	1250		1245 1117 1191	60 55 51	1073 1145 1217	19,500 19,500 19,500	メウ 555 男3	1051
30 - 15:15	53.0	599	197	192	1	63	651	7	105	25	116	36,9€0	1470	
1					-				724	183	762	56,900 56,900 20,100	202 265	190
-	ł	ĺ	1		21	651	97% {		893	67 83	227 1101	20,100	300 317	759
	1				:11:	y.ph	1314 {	1	1158 1251	75	1136	26,500 26,500	351 352	1117
50 - 16:50	53.0	319	197	191	I	(2	~e≎ {	1	175	37	1.17	96,999 36,900	1370	$\neg \neg$
	(ĺ		į	.,	4 .	- in (.	753	77	151 774	96,990 10,139	.84 16.	1
į	ĺ	Ì	İ	1	į	İ	l 1	. [2.0		10 (12 M) 19 (4)	3.6	759
							.*:- {	1		-:}	147	13.5% 13.5%	-07	1209
40 = 31 44	35.0	1.07			1				32	. *	:5.	Y , 420 Yo , 4X	(%,c) (%)	
		į	i		1:	1,54	- 2: {			10	70	9. W	.1021 .1138	k-so
į	į	ĺ		į	•		.,]		117	110	ius f	48 July 1	14.	759
				Ì	111	1		i.	1.4		361		X 1.	1279
				le `l∗	ont non fr		etar 1	* 1	· · · · ·	2811	rainten.			

Propane Conv., 400000 Q Q Q 2 8 **ひひりゅ**は3 Average Not wt 25.00 20.00 20.00 20.00 20.00 20.00 43.8 42.6 42.8 41.2 38.4 37.4 45.8 45.1 42.1 26.0 20.0 0.2 5 1.0 0.3 ٠.٠ 3 0 0 0 0.7 ڻ 9 2 3 0.7 4. 5 98.8 905.6 14.7 51.1 99.5 98.7 95.2 92.1 99.7 98.3 97.1 92.2 80.9 C, H, £ Analyses, 9 4 9 4 9 0 % Q 0 . 4.8 8 8 4 0 S B Cr He Gas Product 4.0.012.012.012.0 0 4 8 8 4 8 8 8 0 440 C.H. 0.1 1.7 6.4 13.8 0 . 4 8 8 9 8 8 9 0 4 4662 CH based on single 10-ft reactor section. liquid polymerization product during this 0 . 4 4 4 6 4 6 0 4 5 4 0°1 3°0 3°0 0 H 64 H Heat to Pel. 851 941 1021 1117 1209 1279 921 958 1024 1091 1197 1268 860 908 968 968 1079 1332 866 935 1006 11117 1271 on single 10-ft reactor Run Conditions Max. Fluid Temp, 1093 1199 1256 1314 1370 1392 1143 1186 1240 1283 1328 1342 1097 1158 1198 1248 1300 1104 11229 1292 1326 Inlet Fress., psig 200 x = 200 x 902 901 900 906 904 903 905 898 896 896 С в в в в LH3Va) 339 # # O 24-12:30 13:33 14:20 15:10 16:00 16:40b) 21-12:40 13:40 14:20 15:10 16:00 30-12:20 13:20 14:20 15:15 16:30 27-12:10 13:00 14:00 15:00 Run Mo. 10018a a

PRODUCT ANALYSIS

- THERMAL CRACKING OF PROPANE:

FSSTR

Table 62.

179

Figure 53. FSSTR-THERMAL CRACKING OF PROPANE EFFECT OF REACTION CONDITIONS

Figure 54. FSSTR-THERMAL CRACKING OF PROPANE: TOTAL HEAT SINK

Figure 55, FSSTR-THERMAL CRACKING OF PROPENS.
Temperature Profile for Run 10018-27-15 55

Figure 56. FSSTR - THERMAL CHACKING OF PROPANE Section III, Temperature Profiles for Series 10018-27

Figure 57. FSSTR - FAT TRANSFLR TO PROPANE IN EMPTY

1/6 INCH TUBE: DITTUS-BOELTER CORRELATION

Figure 58. FSSTR-HEAT TRANSFER TO PROPANE:
PHYSICAL PROPERTIES OF PROPANE

Catalytic Dehydrogenation of Propane

The catalytic dehydrogenation of propane was studied briefly in the FSSTR using a commercial catalyst (Catalysts and Chemicals, Inc., Catalyst C-94; 2% K₂O, 8% Cr₂O₃ on Al₂O₃). The as-received extruded pellets were crushed and screened 1C-12 Tyler mesh prior to use. The usual 3/3° OD x 0.049° wall x 10 ft long Hastelloy C reactor tubes were used for this study with Reactor Section III being the catalyst section while Section I was used as a preheater. No power was supplied to Section II.

Two series of runs using a single catalyst charge of 64.8 g were made at a feed rate of 10 lb/hr (IHSV = 75 based on the catalyst section volume). Operating conditions, product analyses, and calculated values of heat sink are summarized in <u>Table 63</u>.

In the first series (10018-36) the fluid temperature at the catalyst section inlet was maintained at 900°F throughout the test period. Variables were inlet pressure of ca 430 and 590 psig and catalyst section exit fluid temperature of 1100° and 1200°F. The maximum conversion of propane measured during this run sequence was 7.7%. Conversion declined rapidly and after about 5 hours of operation the catalyst was almost completely deactivated. Following this test, coke containing 10.7 g of carbon was burned from the catalyst bed.

For the second test (Series 10018-40) nominal inlet and exit temperatures of 1000° and 1250°F, respectively, and an inlet pressure of ca 500 psig were maintained for the entire operating period. Conversion at the start of this test indicated that burning off the coke deposit following the previous run had restored normal catalyst activity. Propane conversions started at 22.5% and declined to 4.2% after 252 min of operations. Pressure drop increased from about 300 to 465 psi during the first 25 minutes, then increased at 5 psi per hour through the rest of the run to a maximum of 490 psi. Catalyst deactivation and pressure drop for this test are illustrated in Figure 59. Coke was not burned from the catalyst following this final run. However, a weight increase of 15 grams due to coke deposition was measured after dumping the catalyst charge.

The maximum heat sink attained during the propane dehydrogenation was 1205 Btu/1b (above liquid propane at 68°F). Of this, 217 Btu/1b was due to heat of reaction.

The short catalyst life and relatively low heat sink show little promise for this system. No little tests are planned for catalytic dehydrogenation of propane in the Fount unless a more stable catalyst is discovered.

High Heat Flux Section (in progress)

In order to permit investigation of heat flux conditions closer to those which might be encountered in combustion chamber cooling, a short reactor section has been constructed and installed in the FSSTR in place of the usual 10-ft long reactor section III. This reactor, a sketch of which is shown in Figure 60 is made up of a 2-ft long section of 3/8" OD x 0.049" wall Hastelloy C tube welded to Ni bus bars. 3/8" compression type fittings

F3STn - DEHYDROGENATION OF PROPANE OVER CHROMIA ON ALUMINA CATALYST: DATA SUMMARY Table 63.

Catalyst = C-94

											1	ı
Heat Sink, d) Etu/1b	Reaction		843844	3325	967	75	9 2		217 179	16.5	85 244 80 244	
Heat	Total		935 935 888 888	891 887 876 876 880	956 956	888	255 856		1205	1251	1089 1067 1048 1052 1051	
	Mol Wt		41.3 40.9 41.2 41.8	42.3 42.5 42.5 42.5	41.3	12.7	43.6		36.0 37.2	37.4	40.0 40.0 41.5 42.0	
1, Amc)	СэНв		87.7 84.7 86.1 88.3	91.7 92.4 93.0 92.9	87.5 89.3	94.1 94.3	98.1 98.0	10018-36)	63.2	70.3	8.788 8.798 8.708 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
Composition,	C3He		7.1.0.1.4	3.6 2.3 2.6 2.6	4.€ 4.€	2.0	5.9	က	12.7 12.3	11.0	20.000	
Compo	CzHe		o a wa a a	5. 5. 1.1	1.3	1.1	8.0.	Serie	3.1	2.3	44	
ct Gas	C2H4			0.3	.7			following	0.9	1.5	11111 12001	
Product	년 년		o aaiwaw	4.4.4	1.5	.5 4.		1	2.0	3.	9099	
	Hz		6.0 7.4 6.7 5.6 4.8	3.7 3.4 2.8 2.7	4.6	0 0 0 0	9.9	catalyst	14.6	11.5	0.00.01	
Conv.,			6.0 7.7 6.9 5.7	3.8 3.1 3.1	6.2 5.1	5.5 4.5	0.6 0.7	fren	22.5	17.1	ひしい はっぱん	
Fluid Fluid			1100	1100	7500	1200	1100	burned	1255			
Flu	uI		8	86	86	8	900	carbo.	1000			
-	_	1	750	188	195	419	1,10	10.79			7584 1424 1482 1483	_
Fluid Press.,	Sut Je	ŢŢ	13	405	007	13	13				242222	-1
Fluid	ı	Catalyst)	433	593	595	755	1423	containing	478 4485 4483 4483 4483 4483		264 464 493 493 503	
Pate	LASVa)		75	75	<u> </u>	10	15	1 -	73			
Feed	1b/hr	⊣	10.0	10.0	10.0	10.c	10.0	10018-46 (Coke	9.7			
Run Time, min		Series 100	0 2 50 CC	121 145 160 180 200	200 200 200 200 200 200 200 200 200 200	243 255 250	261 275 285		16	8.8	25.25.25.25.25.25.25.25.25.25.25.25.25.2	2/2

15.0 g come on catalyst.

a) IESV based on 0.277" ID x 10 it long catalyst section. b) Across catalyst section. c) Feed analysis; 99.4 %m C3Ha, 0.6 %m C2Hg. d) Heat sink above liquid propane at 68°F (calculated).

Figure 59. FSSTR - DEHYDROGENATION OF PROPANE OVER CHROMIA ON ALUMINA CATALYST: CATALYST DEACTIVATION

FIGURE 60. FSSTR - HIGH HEAT FLUX SECTION

provide inlet and outlet connections and 1/16" fittings are used as glands for inlet and outlet fluid temperature thermocouples. A 1/16" fitting is also provided in the exit end bus bar for sample withdrawal. Tube wall (external) temperatures are measured at six locations by thermocouples spot welded to the reactor tube. The two lead wires from each junction (insulated from direct contact with the tube by ceramic cement) are wrapped 1/2-turn each in opposite directions around the tube and then are led thru ceramic insulating tubes until well away from the high temperature area.

The electrical resistance of this reactor section is about 0.025 ohms. With the power supply presently in use, a maximum heat flux of ca 590,000 Btu/(hr)(ft²) can be reached without exceeding the 1000 ampere rating of the transformer secondary.

No compensating heat is supplied around this reactor as with the 10-ft sections. However, a 2-in. layer of insulation surrounds the tube and at the high heat flux conditions to be studied heat losses will be a minor portion of the power supplied.

Dehydrogenation of MCH Over UOP-R8 in the High Heat Flux Reactor Section

12.9 grams of UOP-R8 Pt on Al₂O₃ catalyst in the form of 1/16" spheres was charged to the reactor and activated in place by heating in N₂. A series of eight tests has been completed covering the following range of condition:

Inlet Temperature, °F	900
Inlet Pressure, psig	885
Feed Rate, 1b/hr	64.5
IHSV (for 2-ft section)	1600
Power to Catalyst Section, Btu/(hr)(ft2)	0-359.000

Reactor sections I and II were used as preheaters for these runs.

A summary tabulation of the data obtained is presented in <u>Table 64</u>. Power to the reactor was increased in steps as shown until a point was reached when it became apparent that the catalyst bed was deactivating. This effect is shown in <u>Figure 61</u> where exit fluid temperature is indicated. The continuing temperature rise shown in the final runs after a step increase in power indicates that the heat sink resulting from reaction is declining and a corresponding amount of power is going to heat the product. This is confirmed by the decline in conversion shown on the same figure.

In this series a maximum heat flux of 359,000 $Btu/(hr)(ft^2)$ was attained which is higher by a factor of 10 than was previously reached in the 10-ft long 3/8"-diam catalyst section and 7 times higher than the maximum for the 3/4" diam tube (Reference 3 and preceding section this report).

Analysis of the data from these tests is still in progress. However, comparing the final run (10018-50-16:30) with the predicted performance

at similar conditions (Table 70 condition B) indicates that conversions higher than predicted were attained, resulting in higher pressure drop and lower exit temperature then predicted. Clarification of this point as well as investigation into reasons for the catalyst deactivation will require further effort.

Table 64. FSSTR - HIGH HEAT FLUX STUDY: DATA SUMMARY FOR SERIES 10018-50

Catalyst Section Inlet Conditions:

Feed:

99.7% MCH, 0.1% CH, 0.2% Toluene

Feed Rate: 64.5 lb/hr; 10.05 gph; 154,000 lb/(hr)(ft²)

LHSV:

1600 based on 2-ft catalyst section

Pressure:

885 psig

_	Run No. 10018-50-									
Properties	12:30	13:10	13:50	14:30	15:10	15:40	16:05	16:30A ^{a)}	16:30Ba)	
Power Measurement										
Btu/hr x 10-3	0	6.1	13.3	21.7	30.8	39.0	45.5	52.0	52.0	
Btu/1b	0	96	210	342	485	615	717	820	820	
Btu/(hr)(ft 2) x 10^{-3}	0	42.1	91.7	150	212	269	314	359	359	
Temperature, Pa)								•		
Inlet Fluid	896	900	891	893	903	908	906	898	900	
Wall at 1/2"	864	897	922	961	1009	1047	1072	1091	1094	
Wall at 3"	800	839	880	931	988	1032	1067	1096	1100	
Wall at 9"	737	787	841	901	963	7.014	1054	1094	1099	
Wall at 15"	713	773	836	902	968	1023	1069	1115	1122	
Wall at 21"	701	771	841	913	988	1053	1115	1192	1212	
Wall at 23 1/2"	699	770	840	913	990	1067	1141	1242	1266	
Exit Fluid	699	745	788	831	880	936	1002	1100	1126	
Exit Press., psig	700	671	645	604	548	505	466	436	436	
MCH Conv, %	15	21	29	39	51	60	65	55	63	

a) Temperatures are averaged over 15 min intervals except for Run 16:30 where two 7 min periods 20 min apart are indicated to show changing conditions.

Development of Analytical Models of Catalytic Reactors

Work has been concentrated on development of an improved version of the "Shell Packed Bed Reactor Program" for simulation of experiments which have been carried out in the FSSTR and for some exploration of the effects of reactor parameters on the performance of the reactor. A new version of the program has been written, tailored specifically to the requirements of calculations for endothermic fuel reactors.

The primary objective in undertaking a revision of the packed bed reactor program was to simplify input and output and reduce loading time and computer storage requirement in order to facilitate our own use of the program and to make it available for use by the Air Force and other Air Force Contractors on related contracts. The only significant feature of possible use, which was omitted is the ability to represent a radial profile of mass velocity. This feature has not been used in past simulations of experimental work but could conceivably be of use in the future. Several additions have been made to allow coverage of a wider range of applications. These additions involve a revision of the available choices of the boundary conditions at the outer wall of the tube. In the new version: 1) the flux profile may be specified by a table of up to 10 values equally spaced along the length of the tube, or 2) the outside temperature of the tube may be similarly described by a table of up to 10 equally spaced points, or 3) the tube may be assumed heated by a secondary fluid flowing along the outside wall with constant mass velocity, heat capacity and heat transfer coefficient.

The basic equations representing the processes occurring within a single tube packed with catalyst and the logic of their solution remain the same as in the original version. A slight improvement in computation time is realized, 0.6 minutes of computer time on IDM 7040 compared with 0.7 minutes for the original version for a normal computation simulating a FSSTR run with 500 axial steps and two radical increments.

The rewriting was accomplished in two stages. In the first of these, the program was adapted to the requirements of calculations for endothermic fuels, but remained restricted to handling cylindrical. axisymmetric reactors. An addition to this version also allowed calculations for a sequence of adiabatic reactors, with reheating of the fluid between stages. Subsequently, in a second stage of modification, the program was adapted to also allow calculations for a packed bed in the configuration of a thin semi-infinite slab with heating on one face, and held adiabatic on the opposite face. Such a configuration is felt to be a reasonable approximation to the configuration which would be used for regenerative cooling of a combustion chamber. At the present time, MCH is the only fuel for which we have adequate thermodynamic and kinetic data to carry out calculations with the program. As experimental investigations of other fuels proceed and develop the required information, this can readily be incorporation into the program to allow the same types of calculations for these other fuels. Data for decalin to reaction products is now being assembled.

A listing of the current version of the program in FORTRAN IV language and memoranda describing each of these two stages of development

are contained in the Appendix. This program has been used for most of our own calculations and has been made available to the Air Force and other contractors.

Some work was also done on development of a one-dimensional program representing a single packed tube. In this program, radial temperature gradients are represented by approximations, and rates are calculated at an average (cross-sectional) temperature. Our present feeling is that such a representation cannot be made to function in a manner useful for design of equipment or refined calculations, but may be of value in early stages of attempting to develop reaction rate expressions for the endothermic reactions of other fuels. Such a program has a significant advantage in shorter computing time when a large number of cases must be run.

Simulations of FSSTR Experiments

The additional experiments carried out on dehydrogenation of MCH in the FSSTR using a 0.75" diameter tube were simulated in order to demonstrate the capability of the model for this wider range of conditions, and to assist in interpretation of heat transfer measurements made in these experiments. Substantially the same parameters were used in these simulations as had been used previously in simulation of experiments in the smaller diameter tube. Because of the larger ratio of tube diameter to particle diameter, two factors involved in calculation of pressure drop were adjusted. For the average fraction voids between particles, ϵ , a value of 0.415 was used rather than 0.432 which had been used for the smaller tube. The value of AF, the factor which corrects for a typical packing arrangement near the wall, was raised from 0.50 to 0.67. Both changes tend to make the calculated pressure drop larger in the larger tube. The rate expression used was the same as had been used previously. The parameters which are used to generate the equilibrium constant were adjusted slightly to bring the calculated value into better agreement with the tabulated values given by API 44 tables. The rate in 1b-mole/hr-ft3 of reactor volume is given by:

$$\text{Rate} = \frac{(1-\epsilon)A_1A_2C_{MCH} \exp[(B_1 + B_2)/R_gT_S]}{1 + A_2C_{MCH} \exp[B_2/R_gT_S]} \left[1 - \frac{P_{\text{tol}}P_{\text{H}_2}^S}{P_{MCH}A_S \exp[B_S/R_gT_S]}\right]$$

Rg = gas constant (Btu/1b mole-°R)

 $C_{MCH} = concentration of MCH (lb mole/ft³)$

T_S = surface temperature of catalyst (°R)

PA = partial pressure of component A (atm)

€ = fraction voids in bed

A's and B's are reaction rate and equilibrium parameters.

 $A_1 = 7.5 \times 10^{12}$ $A_2 = 5.5 \times 10^{-8}$ $A_3 = 4.0 \times 10^{20}$ $B_1 = -59,000$ $B_2 = +54,000$ $B_3 = -92,500$

The run numbers and conditions for the seven runs simulated are given in the upper part of <u>Table 65</u>. The lower part of the table gives a

Table 65. COMPARISON OF COMPUTER CALCULATIONS WITH EXPERIMENTAL RESULTS FOR DEHYDROGENATION OF MCH IN 3/4-INCH TUBE

Run No.	8915	-198		1001.8-5	10018-9		
Rui no.	1300	1420	1200	1320	1.620	1300	1400
Flux (Btu/hr-ft ²)	15700.	13300.	11740.	23100.	. 80میاد	34500.	50000.
G (lb/hr-ft²)	35500.	36800.	17200.	17200.	33200.	36700.	36700.
T _o , °F	895.	894 .	898.	900.	900.	904.	905.
P _o , psig	911.	487.	901.	903.	903.	886.	886.
ΔP, psig ^a)	109.	270.	3 0.	39.	1.3.	166.	207.
	<u>102.</u>	<u>268.</u>	<u> 30.</u>	43.	113.	166.	210.
Temp on axis, *F							
2.51	729.	684.	741.	771.	745.	756.	775.
	<u>732.</u>	<u>687.</u>	746.	773.	749.	<u>758.</u>	777.
5.01	752.	654	776.	828.	779.	793.	823.
). 0'	<u>750.</u>	<u>687.</u>	777.	824.	177-	752.	822.
2 51	771.	696.	804.	882.	805.	824.	875.
7.5'	<u> 764.</u>	<u>684.</u>	<u>800.</u>	872.	798.	817.	866.
Outlet Temp (mean),	790.	695.	834.	1028.	834.	865.	1039.
Į.	782.	<u>68£.</u>	825.	1013.	838.	872.	1034.
Conversion	45	7174	63	98	64	79	97
	<u>43</u>	<u> 777</u>	<u>64</u>	39	<u>62</u>	77	97

a) Experimental values are underlined.

comparison of the calcul ted and observed values of pressure drop, conversion, outlet mean temperature, and values of the temperature at the axis of the reactor tube at three parts along its length. In this portion of the table the upper figure is the calculated, the lower (underlined) the experimental. These comparisons indicate a very satisfactory agreement between experiment and calculation. Calculations showed that the overall heat balance can be in error by up to about 4 percent. This is probably due to errors in experimental measurements of flow rate and heat flux. Figures 62, 63, and 64 show profiles of temperature at the tube axis and conversion calculated for three of the above experiments. Experimental points are shown for intermediate temperatures and overall conversion. These profiles demonstrate behavior typical of a constant-flux reactor. In Figure 62, it can be seen that the rate of reaction is nearly constant throughout the reactor (except for the first foct of length), the conversion increasing linearly with length. In this section nearly all of the added heat is utilized by the endothermic reaction, with only a small portion going to heat up the fluid. The temperature in this section rises as necessary to adjust the rate constant to maintain the chemical reaction rate at a level sufficient to absorb the heat being added. At the falet, the feed was admitted at a temperature much higher than necessary to maintain a reaction rate capable of absorbing the heat added. Therefore, the temperature fell rapidly, with the sensible heat of the gas being absorbed by additional reaction in this section.

Explorations with the computer program have shown that the primary factors influencing the snape and location of such profiles are the rate of heat addition in B u/lb of fluid flowing, and the inlet temperature; the actual heat flux and mass flow rate have only a minor influence upon these profiles.

Figure 63 shows profiles for a run in which the total heat addition was high enough to carry the conversion near to reactant exhaust on. Thus near the outlet, the rate of reaction declines and the rate of temperature increase turns up sharply, with sensible heat now absorbing a larger fraction of the heat input in this section.

Figure 64 shows profiles for a run made at lower pressure, with a high enough flow rate that the pressure drop seriously affects the pressure level in the reactor. The rapidly becreasing pressure shifts the equil brium point of the reaction sufficiently that the reaction is maintained at a steady rate even though the temperature is nearly constant or dealiring throughout the reactor.

Heat Transfer to a Packed Bed Reactor

A second application of the packed bed computer program is in aiding analysis of rates of heat transfer to the FSSTR. In the experiments, the overall temperature difference is measured between a thermocouple on the outside wall of the reactor and a thermocouple at the centerline of the bed. Heat transfer between these two points occurs by a series of three consecutive processes: 1) generation of heat from electrical power and its transfer through the wall with an associated temperature drop At wall between outside and inside of the wall, 2) transport across a turbulent fluid film inside the wall, with an associated At film, 3) transport through the packed bed, radially, accompanied by absorption of heat by the fluid as sensible had and

Figure 62. CALCULATED TEMPERATURE AND CONVERSION PROFILES FOR CONDITIONS OF RUN 10018-9-1300

PROFILES FOR CONDITIONS OF RUN 10018-9-1400

PROFILES FOR CONDITIONS OF RUN 8915-198-1420

AFAPL-TR-67-114 Pert I

> endothermic heat of reaction, with an associated At packing. The measured temperature difference is the sum of these three. The first, At wall, may be simply calculated from the thermal conductivity and one half the thickness of the wall and the rate of heat generation. For the second, At film, correlations exist in the literature. However, these correlations are based on data at lower Reynolds' numbers. We are interested in demonstrating whether or not such correlations are applicable in our region of conditions. Therefore, we would like to be able to separate At film from the remaining processes. To do this, the computer program is used to calculate At packing, Which allows calculation of At film by difference. The experimentally measured At's and the three component parts of each are given in Table 66 for the seven runs made with the 0.75-inch diameter tube. For each run, an average film heat-transfer coefficient calculated from the flux and the values of Atf is also given. A comparison of Nusselt numbers based upon wall heattransfer coefficients calculated in this way, with a correlation based on that of Hanratty for heat-transfer to beds of spherical particles, is shown in Figure 65. The experimental results obtained in both the 3/8-inch and 3/4-inch tubes are in good agreement with this correlation and indicate its usefulness in predicting heat transfer coefficients at highly turbulent Reynolds' numbers.

Influence of Thermal Conductivity of Catalyst Particles

The radial temperature drop through the packing within the catalyst bed is a significant part of the overall radial temperature difference. In the past we have indicated that the major process influencing radial transport of heat within the bed was gas mixing. To assure ourselves that the parallel process of conduction of heat through the solid packing was not important in determining the radial temperature drop, exploratory runs were made with the computer program to determine the influence of the thermal conductivity of the catalyst.

Two pairs of runs were made for conditions representing two levels of flow conditions possible in our experimental apparatus; one pair at LHSV of 20, the other of LHSV of 100. In one run of each pair, the solid conductivity of the base run was taken as 0.130 Btu/hr-ft-°F, a value typical of our current catalyst. In the other run, a solid conductivity 10° times greater was taken. This value is arbitrarily high, but comes close to representing copper metal. To maximize the effect of radial conductivity, a total heat input of 1000 3tu/1b was taken for the 10-ft reaction section. In the higher space velocity pair, no significant difference between the two runs was observed, the largest difference being 0.5°F lower wall temperature at the outlet for the run with the higher conductivity. In the lower space velocity pair, differences were observable but still very small. A maximum difference of 3.5°F in the wall temperature at the outlet resulted.

From these explorations we conclude that any attempt to develop a catalyst supported on a base of higher thermal conductivity than the alumina we now use would clearly not be fruitful in terms of overall reactor performance.

Table 66. COMPONENTS OF MEASURED TEMPERATURE
DIFFERENCES IN REACTION SECTION

	8915-198			10018-5	10018-9		
Run lio.	1300	1425	1 2 00	1320	1620	1300	1400
At 2.5' Measured At At walln At filmi At packinge)	28 4 12.8 11.2	26 4 10.8 11.2	20 3 12.3 13.7	57 6 27.4 23.6	42 6 19.0 17.0	56 9 25.4 21.6	81 12 39.5 29.5
At 5.0' Measured At At walla) At filmb) At packinge)	26 4 12.0 10.0	25 10.2 10.8	27 3 12.1 11.9	63 6 25.2 22.0	39 6 18.1 14.9	51 8 23.6 19.4	74 12 33.2 28.8
At 7.5' Measured At At walla) At filmb) At packingc)	28 4 14.8 9.2	28 4 13.1 10.9	30 3 15.8 11.2	58 6 25.0 27.0	41 6 20.6 14.4	55 8 27.1 19.9	84 12 36.4 35.6
Mean hf (Btu/hr-ft ²)	1200	1190	900	900	1250	1360	1580

a) Determined from well thickness, thermal conductivity of metal and flux, Aty = Q/A·m .

b) By difference $\Delta t_f = \Delta t_n - \Delta t_w - \Delta t_p$. c) Determined from computer program calculations.

Figure 65. COMPARISON OF EXPERIMENTAL HEAT TRANSFER COEFFICIENTS AT TUBE WALL WITH CORRELATION

Exploratory Calculations

Further calculations have been carried out with the computer program to attempt to define, at least roughly, the upper limit conditions of mass velocity, heat flux and endothermic capacity for MCH as an endothermic reacting fuel. For these calculations, which are specific to MCH fuel and R-8 catalyst, a reactor length of 2.0 ft and inlet fuel temperature of 900°F at 900 psig were selected as constant conditions.

Results shown in Table 67 indicate the effect of mass velocity and heat flux for a reactor tube 0.65-in. ID subject to a constant heat flux along its length. These calculations indicate moderately high but probably tolerable pressure drops of 250-400 psi over the two-foot length for mass velocities of 100,000-120,000 lb/hr-ft2. Thus, 120,000 lb/hr-ft2 is probably near the upper limit of mass velocity allowable by pressure drop at a constant heat flux of 0.5 x 108 Btu/hr-ft2, maximum temperatures attained are probably within the permissible range. It should be noted that upper limit temperatures for this fuel and it reaction products have not been firmly established. However, our past experience with these hydrocarbons indicates that significantly above 1300°F the hydrocarbon will rapidly coke up the tube. and the fuel in contact with the catalyst will result in deactivation of the catalyst above some temperature in the range 1100-1200°F. At the higher flux level, 0.625 x 108 Btu/hr-ft2, maximum temperatures are above these tentative upper limits. Thus, this level of heat flux is "too high". Figure 66 shows axial temperature profiles for three radial locations for the first set of conditions in Table 67. These show that although temperatures at the inlet end are well below stability limits; as reaction proceeds, the temperature of the fluid rises in order to maintain acceptance of the high rate of heat input. Even though the overall conversion attained is only 60%, the rate of the reaction is not sufficient at this conversion level to sustain this high level of heat input at the high space velocity (LHSV = 1250) for which the calculation was made.

In an attempt to obtain a high average heat input and keep temperatures below tolerable limits, calculations were made for reactors subject to tapered heat-flux profiles, with the maximum heat flux at the inlet (lowconversion end). Table 68 shows results of calculations where such a tapered flux profile was obtained by imposing the condition that the inside tube-wall temperature be 1225°F over the reactor length. For this condition with a tube diameter of 0.65 inches, the heat flux varies by a factor of three over the length; from nearly 10^6 Btu/hr-ft² at the inlet to 0.34×10^6 at the outlet end, with an average value of 0.62×10^6 . The maximum temperature, both within the packing and at the wall remain within a safe range. The first three entries in this table show the effect of increasing the diamever of the reactor tube with space velocity hold constant. The maximum and average heat fluxes increase as would be expected due to the decreased surface to volume ratio of the tube. However, the utilization of the endothermic capacity of the fluid, as indicated by the conversion attained and the total heat input in Stu/1b of fluid, decreases significantly with increased tube diameter. This decreased utilization of the endothermic capacity of the fluid together with the added weight and volume of larger dismeter tubes, attaches a heavy penalty to the use of larger diameter tubes to increase permissible heat flux.

Table 67. PREDICTED EFFECT OF MASS VELOCITY AND HEAT FLUX IN CONSTANT FLUX REACTORS

Axisymmetric cylinder

L = 2 ft; dt = 0.65 1:. ID Dehydrogenation of MCd over UOP R-8

Inlet pressure: 900 psig - total temp: 900°F

LHSV ≈ 0/9€

Mass Vel	Flux.	AP, Temp los psig out, Xout	Temp	v	D4 - /22-	Fluid Max Temp, °F		
1b/hr-1t ² , G	Btu/hr-ft ² x 10 ⁶		^out	pedro.	At Wall	In Packing		
120,000	.625	396	1145	.61	768	1386	1223	
100,000	.625	283	1234	.69	921	1513	1325	
120,000	.50	348	1010	.56	615	1205	1075	
100,000	.50	248	1065	.64	737	1293	1142	

Table 68. COMPARISON OF PERFORMANCES CALCULATED FOR SEVERAL HIGH OUTPUT CONDITIONS FOR MCH DEHYDROGENATION

Axisymmetric cylinder

L = 2 ft; LHSV = 1250

G = 120,000 lbµhr-ft²; $t_w = 1225$ °F P_{in} = 900 psig; $T_{in} = 900$ °F

ddt, Rel Rate,	T _{max} in Packing	Δ₽,	Temp	Xout	Btu/lb _	Heat Plux, Btu/hr-ft ² x 10 ⁸			
in.	Constant	racking	bar	°F		Inlet	Outlet	Average	
0.277	1.0	1202	314	1198	.70	905	.89	.05	.31
0.65	1.0	1142	437	1100	.63	760	•95	-34	.625
1.32	1.0	1066	1,98	915	.48	460	1.1	.6 2	.76
0.65	2.0	1134	511.	1086	.77	875	1.0	-37	.71

The basic barrier to attaining higher heat flux and higher utilization of endothermic capacity of the fuel is the slow rate of reaction at moderately high conversion. As an indication of the benefit which could be obtained from the use of a more active catalyst, the calculation summarized in the bottom line of Table 68 was carried out. Here, a reaction rate was assumed twice that obtained with our current catalysts. For the same configuration and conditions, this postulated increase in reaction rate resulted in an increase in conversion from 6% to 7% and of average heat flux from 0.625 x 10° to 0.71 x 10° Btu/hr-ft². Even this quite substantial increase in activity would leave nearly a quarter of the endothermic capacity of the fluid unused. Utilizing this remaining fraction would require a second stage catalytic reactor operated at lower space velocity, operating to extract heat from a load less intense than the combustor walls.

One Side Heating of Reactor Tubes

Although the preceding calculations have been discussed with reference to heat fluxes expected in regenerative cooling of the combustion chamber, these calculations were made for a cylindrical tube configuration uniformly heated around its periphery. In a regenerative application, the tube would in fact be largely heated from one side. A more realistic, simple approximation this condition might be to consider the catalytic reactor as a flat plate of thickness to length L, and indefinite extent (essentially infinite) in width, heated on one side of the thickness and adiabatic on the other. Using the version of the packed bed reactor program incorporating the most recent modifications, exploratory calculations were made for this configuration as well. Results obtained are illustrated by Table 69.

Table 69. EFFECT OF BED THICKNESS ON PERFORMANCE OF FLAT-PLATE CATALYTIC REACTOR FOR DEHYDROGENATION OF MCH

Length, ft	2	Mass Velocity, lb/hr-ft2	100,000
Catalyst Pellet	_	Inlet Temperature, °F	900
Diemeter, in.	1/16	Inlet proceure, paig	900
		LHSV	1,000

Heated face of reactor maintain-d at 1225°F on inside of metal wall.

Thickness,	Heat Btu/i x	Flux, r-ft ² , 10 ⁶	неаt Input to Fluid, - Btu/lb	Conversion of MCH	Outlet Temp,	Pressure Drop,
	Meximum	Average	- Dealin		r	psi.
0.36	•93	.74	497	.528	900	240
0.24	.87	.69	685	.528 .644	1000	240
0.18	. 84	.61	80 8	.705	1084	215
0.144	.84	.52	874	•73	1133	210

Figure 66. CALCULATED AXIAL TEMPERATURE PROFILES
FOR DEHYDROGENATION OF METHYL CYCLOHEXANE
AT HIGH HEAT FLUX

The basic features of results with the flat plate configuration are similar to those with the axisymmetric cylinder. An average flux over a two-foot length of 0.5-0.7 x 10° Btu/hr-ft² can be attained with reasonable utilization of the endothermic capacity of the fuel. Some compromise between maximum heat flux and utilization of the available capacity of the fuel to take up heat must be made. With the flat plate configuration, the dimension of the layer compared to the particle diameter becomes more critical. The region of dimension which appears to be most favorable is a thickness of only two to four particle diameters.

Righ-Flux Test Section for FSSTR

Application of a catalytic, heat-exchanger reactor to regenerative cooling of the combustion chamber of a hydrocarbon-fueled scramjet would require that the reactor accept a heat flux of 10° Btu/hr-ft² or greater. In our experiments in the FSSTR, the highest heat flux employed in any experiment was 51,000 Btu/hr-ft², lower by twentyfold. Even in view of the success we have had simulating experiments with the mathematical model, we believe experiments at conditions nearer to those of application are desirable, before design of a practical system.

The equipment to be used for these experiments is described elsewhere in this report. Its design basis involves attempting to reach the highest possible heat flux input within the constraints of using the existing power supply, fuel feed system, and preheating arrangements. The computer-program model was used to predict the extreme conditions under which the experimental apparatus could be operated. Two examples of calculations for this equipment are given in Table 70. The fuel to be used is MCH. The conditions indicated for A in the table may be barely attainable due to the high pressure drop. However, maximum temperatures appear to be within reasonable upper limits. At the lower mass velocity and higher heat flux of conditions B, the pressure drop is reasonable but maximum temperatures predicted are probably above the upper limit tolerable by the hydrocarbon without significant coke formation. On the basis of such calculations the region to be investigated in this apparatus has been selected as:

1.5 x
$$10^5 < G < 2.0 x 10^5 lb/hr-ft^2
2 x $10^5 < q/A < 3-5 x $10^5 \text{ Btu/hr-ft}^2$$$$

The upper limit of the heat flux is indefinite and will be approached gradually in the experiments. The heat flux which we expect to attain in these experiments is a factor of six greater than in our previous experiments, and should be within a factor of 2-3 of the maximum to be anticipated in practical application.

Shock Tube Studies of Ignition Delays of Hydrocarbons

Under the previous contract on this subject (AF 33(657)-11096) a program of measurement of ignition delays of hydrocarbon-oxygen inert mixtures was initiated. Experimental methods and equipment have been described in reports under that contract.²⁾³⁾ Work in the same area has been carried out under the present contract with the general objective of providing information on the time required for ignition of hydrocarbon air mixtures in

Table 70. PREDICTED PERFORMANCE OF HIGH HEAT FLUX
TEST SECTION FOR TWO SETS OF CONDITIONS

Length:

2 ft

Tube Diameter: 0.277-in. ID

Conditions	A	В
LHSV	2080	1560
Mass Velocity, lb/hr-ft2	2 x 10 ⁵	1.5 x 10 ⁵
Heat Flux, Btu/hr-ft2	3 x 10 ⁵	3.5 x 10 ⁵
Inlet		
Temp, °F	900	900
Fressure, psig	900	900
Heat Added, Btu/1b	520	810
Outlet		
Temp, °F	1073	1233
Pressure, psig	57	494
Conversion	0.41	0.77
Maximum Temp, °F		
Outside Tube Wall	1202	1402
Fluid at Wall	1142	1323
Fluid in Catalyst	1083	1248

the temperature range 1300-1800°F. Such information is being supplied to assist in screening hydrocarbon fuels for application to supersonic combustion systems and in the analysis of the supersonic combustion of hydrocarbons.

Using the same techniques described in previous reports, work was done on three high-boiling materials: n-dodecane, decalin, and α -methyl decalin, to extend the range of conditions under which they had been studied. Two new species, ethane and ethylene were investigated. A few additional experiments were done on methane and propane as fuels. Results are tabulated in Tables 76 through 82 in the Appendix.

Ethane and Ethylene

Our previous survey of ignition characteristics of hydrocarbons has not included the C2's. They have not been seriously considered as potential heat sink fuels since they appear to offer no significant advantages over methane as cryogenic fuels. Furthermore, the highly refractory nature of methane led us to anticipate that the C2's would also require at least somewhat more severe conditions for ignition than the higher molecular weight hydrocarbons and hence be no more attractive as potential fuels for supersonic combustion. However, recently White 1 reported that acetylene and ethylene have ignition delays similar to and in some cases shorter than hydrogen in very lean mixtures under low pressure conditions. It was therefore agreed to include ethane and ethylene in our experimental program; in these cases extending the range of conditions to leaner mixtures than we had studied with most other hydrocarbons in order to allow a cross comparison of our results for ethylene with those obtained by using a different experimental technique.

For ethylene, in lean and dilute mixtures, the results we obtained compared well with White's correlation. <u>Figure 67</u> shows a comparison for a set of data obtained with a 1% ethylene plus oxygen mixture in argon at an equivalence ratio of 0.1. Our experimental points indicate ignition delays about 30% shorter than those given by White's correlation as shown in Figure 67, which he represented by

$$\log(\tau[0_2]^{1/3}[C_2H_4]^{2/3}) = -11.0 + \frac{17.900}{4.58T}.$$

It is significant that these data, in addition to agreeing reasonably well in magnitude, also support the low temperature coefficient of the correlation; viz., an activation energy for ignition of 17.9 keal/mole.

At higher concentrations of fuel, our data indicate a radical change in the dominant ignition process, since the apparent activation energy increases to about 37 keal/mole. In our experiments the boundary of the low activation energy region in which White's correlation applies appears to be set by the concentration of ethylene being less than about 10⁻⁵ moles/liter, rather than by a critical value of the fuel-oxygen ratio. At an equivalence ratio of 0.1, the low activation energy behavior was observed when the fuel plus oxygen concentration was 1%m but not when the fuel plus oxygen concentration was 10%m or 20%m.

In the region of more practical importance, with higher ethylene concentration, the ignition delay continues to decrease with the first power

Figure 67. COMPARISON OF ETHYLENE IGNITION DATA WITH WHITE'S CORRELATION

of pressure. This pressure dependence appears to be due to dependence upon the concentration of reactants only (oxygen plus ethylene), not involving any dependence upon the concentration or partial pressure of the inert diluent. The ignition delay decreases almost proportionately to the concentration of total reactants from 1% to 20%m. This strong dependence upon concentration results in the lowest delays we have measured for any hydrocarbons in 20%m reactant mixtures. Figure 66 shows data obtained at this concentration with an equivalence ratio of 0.1.

A further difference between ethylene and the higher hydrocarbons we have studied previously is the occurrence of a minimum in ignition delay as a function of equivalence ratio. The form of White's correlation clearly shows the ignition delay decreasing with increasing fuel concentration (ca equivalence ratio) in the lean and dilute region. This pattern holds even in the more concentrated fuel mixtures (in which a stronger dependence of celay upon temperature was observed) up to an equivalence ratio of about 0.5. At this equivalence ratio a minimum delay time is reached; further increases in fuel-to-oxygen ratio increasing the delay. On the basis of the existence of this minimum delay region, ver would predict by extrapolation that the ignition delays for stoichiometric ethylene in air would be about the same as those measured for equivalence ratios of 0.1 or 0.2 in the mixtures with 80%m argon; thus, at 1 atm, the anticipated temperature for a 1 millisecond delay would be 1400-1450°F (compared to 1550-1600 for MCH).

The quantitative ignition behavior of ethane was similar to that of ethylene. Ignition delays depended upon pressure to the inverse first power throughout the region studied. A minimum in ignition delay with equivalence ratio was observed centered about an equivalence ratio of 0.5, but this minimum was much broader and less marked than with ethylene. A low fuel concentration region in which the influence of temperature on ignition delay was lower than normal was also observed, bounded by an ethane concentration of about 10^{-5} moles/liter. However, the effect of reactant concentrations, in particular oxygen concentration on ignition delay was much less for ethane than for ethylene. Thus, although in very lean and dilute mixtures these two C_2 's have about the same ignition delays, in mixtures of greater practical interest (i.e., 20% total reactant) ethane has ignition delays significantly larger than ethylene, and in fact these lie in the region characteristic of the higher molecular weight paraffins.

The data obtained for ethane ignitions have been divided into three regions of independent variables, and approximate correlations obtained for ignition delay in each region. The correlating equations are given:

1. Very lean and dilute mixtures with

$$(C_2H_6) < 10^{-5} \text{ m/l}$$

 $\log_{10} \left[\tau(C_2H_6)^{1/2}(\text{M})^{1/2}\right] = -10.0 + \frac{18.000}{4.58\text{T}}$

where τ is in seconds, (C₂H₆) in moles/liter and (M) represents the total concentration of all species including inerts.

Figure 68. IGNITION DELAYS FOR ETHYLENE

2. Lean, with
$$(C_2H_6) \ge 3 = 5 \text{ n/}$$
:
 $\log_{10} [\tau(M)] = -13.50 + \frac{35.000}{4.50T}$

Near steichiemetric

$$log_{10} [\tau(O_2)^{3/2}(H)^{1/2}/(O_2H_0)] = -10.56 + \frac{35.000}{1.50T}$$

These correlations are compared with the experimental data for the appropriate region in Figures 69, 10, and 71.

n-Dodecane

By modification of our procedure in making up the fuel-oxygen-inert premix, it was possible to extend the runge of mixtures of n-dodecane studied to slightly higher fuel concentrations. The modification involved making the premix up to a lower total pressure; thus, only a few experiments could be made from each tank of premix. The maximum n-dodecane concentration obtained in this way allowed us to study 1%m fuel plus oxygen in argon at an equivalence ratio of 0.5 and a 5%m fuel plus oxygen at an equivalence ratio of 0.1.

Ignition delays for these maxtures showed close correspondence with those for n-octane under the same conditions both in absolute magnitude and in response of ignition delay to changes in experimental variables (i.e., temperature, equivalence ratio, concentration, and pressure). Thus, the results obtained with these additional mixtures offer support to our previous conclusion that n-octane can be used as a model compound for predicting the ignition delays of heavier n-paraffins.

Decalin and a-Methyldecalin

Similarly, the concentration range for decalin-oxygen argon mixtures was extended by making up the premixes to a lower total pressure. In this case, additional mixes of 10%m decalin plus oxygen with an equivalence ratio of 0.2 and 20%m fuel plus oxygen with 0.1 equivalence ratio were studied. Ignition delays measured for these mixtures followed the same pattern observed for the lower concentrations of decalin - the ignition delay for decalin was identical to that for methylcyclohexane at the same conditions (i.e., temperature, pressure, equivalence ratio, and concentration). Data for one of the mixtures studied are compared with those for MCH in Figure 72.

Two mixes with α -methyldecalin as fuel were made up to fairly low fuel concentrations (1% and 10% n fuel plus exygen, both at 0.1 equivalence ratio) for exploratory determination of the ignition behavior of this bicyclic naphthene. Measurements with this fuel gave ignition delays which were indistinguishable from those of decalin (and MCH). Apparently the methyl substitution on the decalin has no significant influence or its ignition delay.

Methane

Ignition delays were measured for one additional methane mixture, 80%m argon, with an equivalence ratio of 0.1. We believe these data presented

Figure 69. CORRELATION OF IGNITION DELAYS FOR VERY LEAN AND DILUTE ETHANE MIXTURES

Figure 70. CORRELATION OF IGNITION DELAYS FOR LEAN ETHANE MIXTURES

Figure 71. CORRELATION OF IGNITION DELAYS FOR NEAR STOICHIOMETRIC MIXTURES WITH ETHANE

Figure 72. COMPARISON OF IGNITION DELAYS FOR MCH AND DECALIN

in Figure 72 give a realistic lower bound to the ignition delays which can i - expected with methane-air mixtures at moderate pressures. These and previous data at somewhat richer but more dilute mixtures (APL-TDR 64-100 Pt II) indicate an inverse first order dependence of delay on total pressure and a temperature coefficient corresponding to an activation energy of about 25-30 kcal/mole for ignition of methane in lean mixtures. This is in contradistinction to the activation energy of 45-50 kcal/mole indicated by the data of Skinner and Ruehrwein and Asaba et al. 38) [Ninth Symposium on Combustion, p. 195f (1963)] and our own earlier data for mixtures on the rich side of stoichiometric. The present body of data for lean mixtures is insdequate to define the dependence of ignition delay on the separate concentrations of oxygen and fuel. However, the data indicate that in the region sindied delays decrease with increasing oxygen concentration and increase with increasing fuel concentration probably throughout the whole region. Thus increasing the equivalence ratio above the value of 0.1 at which the wrotent measurements were made will certainly increase the delay above the measured value.

Examination of Experimental Method and Equipment

A second major area of work undertaken has been to determine experimentally the limitations of the present method and equipment (as used for the past two years) and to consider the capabilities of additional instrumentation for improving both the accuracy and kind of results obtained. Since these experiments were aimed at examination of experimental methods. they were restricted to fuels and mixture ratios which had been examined previously. Thus, the results presented in Tables 83 through 86 in the Appendix do not co er new fuels or wider ranges of conditions than those previously reported. 2)3) The conclusions based upon these experimental results may be grouped into three general categories: 1) those bearing upon limitations of our method for determining ignition delays; 2) the potentiality for improvement of detection of ignition delay by using observation of infrared emission from the igniting gas; and 3) the possibility of obtaining additional information on pre- and post-ignition phenomena by observing infrared emission as a function of time. Because the use of infrared detection equipment was an integral part of each of these categories, a brief description of the equipment used is given before further discussion of the conclusions reached.

Infrared Equipment

The additional equipment used allowed observation of infrared emission at specific wavelengths from the gas before, during, and after ignition. The observation of infrared emission is made in the same plane (approximately 17 feet from the diaphragm of the shock tubes) used for measurement of visible light emission and observation of pressure. The radiation is allowed to pass through a sodium chloride window into the monochromator of a Beckman IR-7 infrared spectrophotometer. The monochromatic radiation separated by this instrument is detected by either an indium antimonide detector cooled to liquid nitrogen temperature or a copper-doped germanium detector cooled to liquid helium temperature. The signal from the detector is amplified by a Tektronic type 122 low level preamplifier and then fed to an oscilloscope where the intensity of the

Figure 73. IGNITION DELAYS FOR METHANE-OXYGEN-ARGON

emission at the frequency set on the monochromator is displayed as a function of time. Several frequencies could be examined under the same conditions by repeating the experiment in the shock tube with the monochromator set for a different frequency for each run.

The principal advantage gained by observing infrared emission is the ability to detect the appearance and growth of concentration of particular molecular species. If the frequency observed is properly selected, it can be clearly associated with the presence of a particular molecular species (e.g., 60_2 , H_20 , 60_2). Thus, the observed event of ignition using this method is the appearance of the species associated with the frequency being followed. Furthermore, since the intensity of emission is dependent upon the concentration of the emitting species, the possibility exists that the time histories of concentrations of particular species (during the combustion process) can be obtained from the infrared emission traces.

Limitations of the Experimental Method

The objective of the experiments in the shock tube is the measurement of the time between heating of the gas by the shock wave and the detectable onset of combustion. In our equipment, the measurement made at a given point along the tube is the time between passage of the shock wave and the combustion front (or wave). Fundamental to the interpretation of this measured quantity as proportional to the ignition delay is the assumption that both shock wave and combustion front are well-developed fronts moving along the tube at the same, constant velocity, with a fixed distance between them. This condition is approximately met in our apparatus except for mixtures in which it is possible for the flame front to develop into a detonation. Then, the first formation of the flame front occurs some distance behind the shock wave. However, the flame front accelerates, once formed, until it overtakes the original shock wave. In one limiting case, the detonation is fully developed before reaching the point at which it is observed. Then, the pressure and temperature rise and velocity of the wave are characteristic of a detonation in the mixture composition and not related to the shock wave parameters. Under somewhat less severe conditions the shock wave and flame front have merged but the detonation is not yet fully developed. These two cases yield no information from which a delay time could be calculated. They are easily recognized since the apparent delay time is zero (the flame front coincides with the shock front) and the pressure rise at the front is usually excessive for the conditions of the experiment. With slightly less severe conditions yet, the flame front has not yet merged with the shock front at the observation point. An apparent (but not physically meaningful) delay time is observed in such a case, and the fact that the flame front is accelerating is not readily detected. Fortunetely, such behavior is observed only under conditions very near to those giving a more recognizable detonation and even then, the apparent delay is very sensitive to experimental conditions. The capability of detonation of certain mixture compositions places severe restrictions on the range of mixture ratios and concentrations for which we are able to study ignition delays with the method and equipment we have been using. For all of the hydrocarbons studied, no detonations have been observed for even stoichiometric mixtures containing one percent or less oxygen. At five percent oxygen, stoichiometric mixtures can no longer be studied and mixtures as lean as 0.5 stoichiometric have shown detonations. With increasing oxygen concentration, the detonable region extends to even lower equivalence ratios. So long as the method used involves some lapse of time following the initial development of the ignition front in the apparatus, before the ignition delay is measured, there seems little possibility of removing this limitation on the composition of mixtures which can be studied.

A second apparatus factor which has not been taken into account up to the present time results from the fact that the shock wave velocity is attenuated by friction in the tube and moves at a velocity which decelerates slightly as the wave progresses down the tube. As a consequence of this attenuation, the pressure and temperature rises following the shock decrease as the wave progresses down the tube. The pressure profiles obtained in our experiments indicate a decrease in pressure following the shock of the order of 6-10% as the wave moves from the disphragm end to the observation plane. The order of attenuation of shock strength is compatible with that found by others in studies of this phenomenon. 37) In itself, this pressure decrease is not very important because ignition delay is not very sensitive to pressure. However, this pressure decrease is accompanied by a corresponding drop in temperatures following the shock. Thus, gas compressed by the shock wave near the diaphragm end may be heated 50-75°0 hotter than gas compressed by the same wave, later, at the observation plane. In all of the reported data, the temperature reported has been calculated from the shock velocity measured in the two-foot interval immediately upstream of the observation plane. This temperature is very nearly correct for short ignition delays (<600 µsec), since for these cases the gas observed igniting was shocked within this two-foot interval. For long ignition delays, the gas observed igniting was compressed much nearer the diaphragm and to a significantly higher temperature. A first-order correction for attenuation may be applied by adding to the reported temperature an increment proportional to the measured ignition delay, with a maximum correction of 50-75°C applied to the temperatures corresponding to observed delays of 3500 µsec. The effect of this correction on correlation of ignition delays is to raise the apparent temperature coefficient of ignition slightly and to bring the points corresponding to long ignition delays into better correlation with the remainder of the data. This is shown in Figures 74 and 75. The data are shown in Figure 74 without correction of the temperature for shock wave attenuation. In Figure 75 a maximum increment of 60°C was added to the point with longest delay and the temperatures for shorter delays were incremented proportionately. The dotted line in Figure 75 is the line from Figure 74 and the solid line is the new line of best fit for the corrected points. We have not yet attempted to review our earlier data to make corrections for shock wave attenuation. However, data obtained subsequently and discussed in the following sections have been corrected for this effect.

Detection of Ignition by Infrared Emission

A number of series of experiments were carried out using infrared detection equipment in order to determine whether this method could be used to determine the onset of combustion and whether it offered significant advantages over visible light detection. Observation of emitted radiation was concentrated on frequencies characteristic of two combustion products, CO₂ at 2300 cm⁻¹ and CO at 2050 cm⁻¹. Of these two, because of the more intense emission by a given concentration and consequently higher potential

Figure 74. COMPARISON OF IGNITION DELAYS DETECTED

BY TWO METHODS FOR A PROPANE- OXYGEN
ARGON MIXTURE

Figure 75. IGNITION DELAYS FOR PROPANE-OXYGEN-ARGON
WITH TEMPERATURE CORRECTED FOR SHOCK
WAVE ATTENUATION

signal-to-noise ratio in the recorded signal, CO₂ appeared to be the more promising combustion product to observe.

Figures 76a and 76b show calibrations obtained when 55m CO₂ and 55m CO in argon were shock-heated to a temperature of 1250°C. Although the gains used in amplifying the two signals were adjusted to give about the same maximum height of the trace, the higher signal to noise ratio obtained for CO₂ is apparent. For both species, the intrared emission (lower trace in each picture) begins to rise, very closely coincident with the pressure increase of the shock wave (upper trace in each picture). For CO₂, there is neither lag of emission behind the pressure trace which would indicate some additional relaxation process between forming heated molecules and their starting to emit, nor lead which would be a consequence of detection of light reflected shead of the shock front. The CO emission builds up much more slowly to its maximum value.

With visible light detection, it has been observed under detonation or near detonation conditions that light is detected at the measurement station as much as 100 user ahead of the shock front pressure rise. Such a phenomenon can only be the result of detecting light reflected ahead of the actual combustion front. Thus, particularly for short ignition delays there has always been the question of whether the time of arrival of the combustion front was being taken erronsously from the detection of this reflected light. In the case of infrared detection, not only do the calibrations indicate no significant reflected radiation ahead of the front, but under detonation conditions, the delay observed goes to zero (emission coinciding with the pressure rise) as it should. This improvement in measurement of short ignition delays with the infrared equipment is probably det primarily to the superior inlet collimation system used with the monotonemator.

Figures 76c and 76d show comparisons of the CO₂ (lower) and visible light (upper) traces obtained in two experiments. These indicate CO₂ emission starting to rise very slightly after the first visible light is observed. From pictures such as these it appears that the onset of combustion can always (with hydrocarbons) be determined with at least as great precision from the CO₂ emission as from visible light, and in some cases (as in Figure 76d) with much better definition. Figure 77 shows a comparison of a series of ignition delays determined for a propage fuel mixture using both methods of detection. The agreement of the two methods is quite good down to delays of 500 pases. Below this, visible light tends to indicate significantly shorter delay times, probably because of observation of light reflected shead of the combustion zone. In this region delay times determined from CO₂ emission are of greater accuracy.

Figure 77 shows results from two sets of experiments. In each set (a and b or c and d), the IR emission was monitored first at 2300 cm $^{-1}$ (CO₂) and then the experime t repeated monitoring at 2050 cm $^{-1}$ (CO). These traces show the much better signal-to-noise ratio and clearer definition of ignition obtained by following CO₂ emission.

One further feature of the IR emission traces in <u>Figures 76 and 77</u> which should be mentioned is the abrupt decrease in emission 1000-1200 usec after the shock wave. This cessation of emission is due to the errival of the contact surface between the driver gas (helium) and the fuel mixture at

c) Visible

00 (9

LOS AND CO CALIBRATION MIXTUPES, AND CONFARES OF COLON PARTICION PRINTED CONFARES OF COLON PARTICION PRINTED PRINTED PARTICION

62731

- 225 -

- 226 -

this time. The arrival at 1000-1200 used of the contract surface at the observation window sets an upper limit of about 3500 used to the ignition delay times which can be measured in this appearatus.

With the more sensitive and accurate method of detection of ignition by emission from CO₂ in the 2350 cm⁻¹ band of the infrared available, it appeared possible to reduce the lower limit of delay times which could be measured with confidence. Equipment was assembled to allow control of the triggering of the oscilloscope used to display the output from pressure transducer and IR detector, which enabled using a higher sweep rate on this oscilloscope to obtain a higher lime resolution or the photographic record of the delay time data. While previously, sweep rates were limited to 100 µscc/cm or greater, with the additional control of triggering, sweep rates down to 10 µsec/cm have been used in recent experiments. With this increased resolution of data, delay times down to about 50 µsec have been measured; and we have reasonably high confidence in measurements down to about 100 µsec. This represents an increase of about a half-order of magnitude in the possible range of measurements.

A few measurements have been made of the initial rate of increase of $\rm GO_2$ concentration followin, ignition of paraffins in lean mixtures. In these cases, a calibration for $\rm GO_2$ concentration was obtained by running some auxilliary experiments with a mixture containing no fuel, but $\rm GO_2$ equivalent to total combustion of the fuel in the mixture being studied. This gave a signal strength for maximum emission from the mixture following combustion. Signal strength from lower concentrations was assumed proportional to concentration. These measurements are discussed, together with ignition delay measurements for the compounds studied in the following section.

Determination of Concentration Histories of Molecular Species

As a reference for the development of analytical models of combustion of the fuels we have studied, it would be desirable to have not only the ignition delays for these fuels, but in addition measurements of concentration histories of at least some of the intermediates and combustion products during the course of combustion. Since the infrared monochromator and detector system which we have been using detects a signal whose intensity is dependent upon the concentration of the emitting species, it has a potentiality for providing this type of information. We have investigated both analytically and experimentally the problems involved in implementing this potentiality. The conclusion reached is that such information probably could be obtained for a limited range of fuel-oxygen-inert compositions. However, the effort required to obtain such information would be considerably greater than has been planned for combustion research under this contract. Whether this effort would be justified by the value of the data obtained is a matter that would have to be carefully studied before proceeding further.

The factors limiting c mpositions are the same for this case as for ignition delays. Thus, the region of most interest, near-stoichiometric mixtures containing about 20% oxygen, could not be investigated. In the study of ignition delays, the reaction follows a near isothermal course up to the point of ignition. However, if concentrations were followed beyond this point, through the exothermic combustion zone, the reaction course would

be nonisothermal and strongly dependent upon the mixture composition, and in particular the heat capacity of the inert diluent. The data obtained from the special compositions with which we work could nevertheless be used in testing analytical mosels of combustion kinetics, but not at their point of greatest interest.

The major problems, however, relate to characteristics of the infrared emission. Except for CO₂, the signal-to-noise ratio of the detected signal for the species of interest does not allow a very precise determination of signal intensity. The intensity of emission is not in all cases linear in concentration of the species emitting, hence considerable calibration would be required to allow interpretation of data in terms of concentrations. Finally, in the case of CO, a strong time-dependence of the intensity of emission was observed in the few calibrations which were run. The separation of this inherent slow rate of rise of emission, from the true rate of change of concentration with time would probably present a fermidable problem in interpretation.

Ignition Delays of Paraffins With Unusual Structures

It was decided to reexamine structural effects on ignition delays and to a lesser extent post ignition increase of CU₂ concentration, for paraffins, using the newly available infrared detection techniques. Of particular interest were 2,2,3,5-tetramethyl butane and neopentane, two hydrocarbons of unusual structure in that they are totally branched and contain only primary hydrogens. Normal octane and 2,2,5-trimethyl butane were also incorporated in the experimental program for comparison purposes as more conventional paraffin structures. Experiments were concentrated in a fairly narrow range of operating conditions: 2-1/2 and #m fuel plus oxygen and equivalence ratios of 0.1 and 0.2. Most experiments were done at 1 atmosphere pressure, but a few at 9 psia. Because of the decrease in the lower limit of measurable delays down to 50-100 µsec, these compounds could be studied over a wider temperature range than was previously possible.

Experimental results obtained are tabulated in the Appendix (Tables 87 through 90). In these tables, temperatures have been corrected for shock wave attenuation, by adding to the temperature obtained from shock wave velocity measurement, an increment proportional to delay time (17°0/mill.second).

Figure 78 shows examples of oscilloscope traces obtained in various experiments. The upper trace in each case is the output from the pressure transducer and is used primarily to indicate the time of arrival of the shock wave at the measurement plane. (Oscillation superimposed on this trace is due to mechanical ringing.) The lower trace is output from the IR detector monitoring 2550 cm⁻¹ and is approximately proportional to CO₂ concentration. Figure 78a was obtained in a calibration run with a mixture of CO₂, oxygen and argon containing CO₂ equivalent to that obtained in complete combustion of the fuel mixes. Observed at a sweep rate of 10 µsec/cm, these traces indicate that response of the CO₂ detector leads the pressure transducer by about 5 µsec. This lead is presumably due to imperiect alignment of the insuruments. In subsequent experiments, delay times measured were corrected for this small offset. The trace also indicates rapid rise of CO₂ emission following the shock, and the level of emission to be expected from complete

FOR OBSERVATION OF IR EMISSION AT 2350 cm-1

combastion. Results from the ignition experiments indicated an ultimate level of Cu₂ emission corresponding to complete combustion of carbon in the first to CO₂ under all conditions studied. Figures 78b and c, observed at 20 µsec/cm, show results from ignition experiments resulting in fairly short ignition delays. The rise of CO₂ emission following ignition is nearly linear in time for the first 200 µsec, and much slower than the rise observed with the call bration mir, indicating that we are observing formation of CO₂ due to the combustion process. Figure 78d (at 50 µsec/cm) and Figure 78e (at 100 µsec/cm) show unusual behavior consistently observed with all of the hydrocarbons observed in these experiments under short delay conditions. CO₂ emission reaches a plateau level approximately 100 µsec after ignition, which persists until about 250 µsec after the shock wave passage. The level of the plateau is shout half the level for complete combustion. No explanation for this behavior is offered. In subsequent interpretation of data, this behavior has not been taken into account.

Ignition delay results obtained with the paraffins followed the same general patterns observed previously. Belays at 9 psia were about 50-50-60% higher at 15 and 25 psia. No effect of pressure was observed between 15 and 25 psis. No significant effect of equivalence ratio was detected between 0.1 and 0.2. The effect of temperature is reasonably represented by an effective activation energy for ignition of about 40 heal/mole. The effect of oxygen concentration is significant but indicates a dependence of ignition on oxygen concentration somewhat less than first order. These trends are indicated by the data shown in Figure 79 for ignition of n-octane under a variety of conditions. Delay times for the highly branched 2,23,3-tetramethyl butane and neopertane showed the same trends with pressure, temperature and concentrations, but were about a factor of two greater than those for n-octane. These are shown in Figure 80 and 81. Delays for less branched 2,2,3-trimethyl butane were only slightly shorter than those for 2,2,3,3-tetramethyl butane.

From these data it is concluded that ignition delay is not greatly influenced by the character of the hydrogens in the original fuel hydrocarbon. The highly branched neopentane and 2,2,3,3-tetramethyl butane contain only primary hydrogens, while n-octane contains predominantly secondary ones, and the intermediately-branched compounds contain tertiary hydrogens. However, this tack of influence of hydrogen character may be due to hydrocarbon cracking prior to ignition, which would cause the delay to be more dependent on the character of the cracking fragments than on the nature of the parent hydrocarbon. Tsang³⁸) has studied cracking behavior of these hydrocarbons and finds rate constants for cracking of 10⁴ sec⁻¹ or higher ir the middle of the temperature range which we studied. However, since the activation energies for cracking are much higher than for ignition, Tsang's results would suggest that there may be a change in the character of the ignition process at lower temperatures where crecking is slow compared with ignition. On the other hand the difference in behavior of the two types of hydrocarbons (i.e., methane/ethane vs the highly branched ones) may simply be due to the fact that the more complex hydrocarbons have many more degrees of vabrational freedom and hence the chance of localizing sufficient energy in any one C-H bond coincident with a collision with an oxygen, atom or molecule is very much greater. The shorter ignition delays and complex temperature response of ethane and ethylene would tend to support this suggestion.

Figure 79. IGNITION DELAY TIMES FOR n-OCTANE

- 231 -

Figure 80. IGNITION DELAY TIMES FOR 2,2,3,3-TETRAMETHYLBUTANE

Figure 81. IGNITION DELAY TIMES FOR NEOPENTANE

In the examination of the post-ignition appearance of 30_2 it was found that the initial rate of appearance (over at least the first 100-300 μ sec) following ignition may be described by:

 $R = k(C^{*}-C)$

where Cⁿ is the ultimate (total combustion) concentration of CO₂ and C, the current value. The rate constant, k, was found relatively insensitive to temperature, with an activation energy of about 7 kcal/mole or less; and has a value of 10° sec⁻¹ in the middle of the temperature range studied (<1500°K). No significant effect of oxygen concentration on this rate was found. Data obtained for CO₂ formation from n-octane are shown in Figure O2. The most significant observation here is the low activation energy for post-ignition combustion. The indication is that combustion proceeds at a rate nearly independent of temperature, after ignition, and that a matter of several milliseconds will be required for relatively complete combustion. It should be pointed out that these results are limited to quite lean mixtures, however, hence the conclusion may not be safely extrapolated to near stoichiometric conditions.

Small-Scale Subsonic Combustion Tests

In order to study the combustion properties of endothermic fuels and reaction products under subsonic conditions, a small-scale combustor in which fuel can be burned over a wide range of operating conditions was designed and constructed. A first version of this equipment was constructed as a part of the previous contract. Its design and application to the burning of propane, MCH and toluene/ $3H_2$ as fuels have been descirbed. Under the current contract a modification of this equipment was undertaken with the objectives of improving fuel-air mixing in the precombustion region, and of facilitating quantitative measurements of the radiant emission from flames.

An assembly drawing of the redesigned combustion chamber is shown in Figure 83. The major change for improvement in fuel-air mixing was in decreasing the area of the tangential slots by which air enters the mixer (part 22 in Figure 83). Decreasing this area by a factor of two raises the velocity of tangentially entering air to near sonic velocity. The remaining changes were made to facilitate viewing the flame radially through the Window at part 15 with a radiometer in order to make quantitative measurements of flame radiation. The head end flamge (23) was changed in order to bring the flame nearer to the viewing window. The combustion chamber was jackeded to allow water cooling of the metal walls. A target tube was installed opposite the viewing window to provide a cold background for viewing the flame, so that radiation seen is that from the flame gases only, with no significant contribution from the walls. To assure adequate cooling of the target, cooling water for the jacket is brought in directly behind this piece. Construction of redesigned parts for the combustor and assembly of these parts into the new configuration was completed.

Prior to installation of the radiometer, preliminary tests were undertaken to determine what effects these modifications might have had on the operability of the combustor. Two sets of tests were carried out; one with propane as the fuel, and one with toluene/3H2 as fuel; both with a

Figure 83. ASSEMBLY OF REDESIGNED COMBUSTION CHAMBER

constant fuel flow of 5 lb/hr. The operable ranges found for these two fuels are given in <u>Table 71</u>. The only problem encountered in these tests was the inability to sustain combustion of the small pilot-ignition flame. However, it was possible to ignite the main flame with just the spark-ignition device, though less smoothly than with the pilot flame.

Table 71. STABILITY LIMITS IN MODIFIED SMALL-SCALE COMBUSTOR

Fuel Flow: 5 lb/hr
Fuel Preheat: 450°F
Air Preheat: 450°F
Combustor Pressure: 1 atm

	Equivalence	ce Ratio
Fuel	Lean Limit	Rich Limit
Propane	0.8	3.4
Toluene/3H2	0.7	1.4 ^{a)}

a) Blowoff not yet observed, but flame brightness indicated richer mixtures would not be of interest

The limits obtained for stability of propane flames were somewhat narrower than with the previous configuration. Part of this effect may be due to absence of the pilot flame, but it is probably due primarily to cooler combustor walls. No significant narrowing of limits was observed with the toluene/3H₂ fuel. Even in the new configuration, both fuels seem to have sufficiently broad stability limits on both sides of stoichiometric to accommodate our proposed test program.

No further modifications in the construction of the combustor have been undertaken to date. However, if further experimental work is to be carried out, it is recommended that: 1) the pilot flame holder be redesigned to provide greater shielding of this flame from the main air stream in the region of attachment, and 2) that a 1/4-inch diameter stainless steel rod, placed directrically in the head end of the combustor be tried as a flame holder to given broader stability limits.

The radiometer acquired for use with the combustor is a Leeds and Northwap "Rayotube", with a short focal length and sapphire window (Model 8891-A48-K601-12-S). This has been installed on the subsonic compustor to view the interior of the combustor radially at the furthest upstrain window. The instrument is essentially a thermopile with an optical system for focusing radiation from the small area viewed upon it. The output from the thermopile is dependent upon the radiant flux from the viewed area. With sapphire windows, the flux is not seriously attenuated at wave-lengths shorter than 4.5 microns. The manufacturers calibration for the instrument used indicates an output of 24.3 mw when viewing a blackbody at 1400°C (total flux, 1.4 x 105 Bru/hr-ft²). In interpreting our measurements, we have assumed that the output from the "Rayotube" is proportional to the radiant flux down to the region of outputs encountered (at 1.0 mw). Thus, for each condition, a flux and equivalent backbody temperature are calculated:

AFAPL-TR-67-114 Part I

$$\Sigma = \left(\frac{\text{mv out}}{24.3}\right) (1.4 \times 10^5) \text{ Btu/hr-ft}^2$$

$$T_B = (3000)^4 \sqrt{\frac{\text{mv out}}{24.3}} - 460^{\circ}\text{F}$$

Series of tests were carried out in the small-scale combustor (Table 72) with both propane and toluene/3H₂, using the "Rayotube" to monitor total radiation fluxes for propane of 5000-7000 Btu/hr-ft² and 6000-8000 for toluene/3H₂. The lowest fluxes were associated with the richest mixtures in both cases, presumably because of the lower flame temperature and lower production of the emitting species, CO₂ and H₂O. There was no indication of radiation from carbon particles with either fuel.

Table 72. RADIATION MEASUREMENTS FOR SMALL-SCALE COMBUSTOR

LR 9669-28

Fuel Flow: 5 lb/hr Pressure: 1 atm Fuel Temp: 600-650°F Air Temp: 450°F

Equivalence Ratio	Rayotube Output (mv)	Σ (Btu/hr-ft ²)	(°F)		
	Propane Fue	1.			
0.86 0.93 0.975 1.27 1.45	0.93 1.235 7250 0.975 1.185 6820 1.27 0.975 5720				
	Toluene/3H ₂ F	uel			
0.95 ^{a)} 1.03 1.15 1.26	1.18 1.19 1.28 1.09	6950 6950 7750 6380	955 955 985 925		

a) Pure toluene fuel.

Physical Properties Program

Because of the need for the availability of the best possible physical properties data for endothermic fuel systems we have been engaged in assessing the merits of various methods of estimation and correlation. The objective is to make the data available generally to reople associated with the present hydrocarbon scramjet effort. The study has involved rainly as an approprietary programs and the AIChE properties program and

as IBM 7040 computer programs. Output from the programs was cross compared with each other and with values hand calculated from selected literature data. As it turned out a considerable portion of our difficulties arose from "bugs" residing in the AIChE program and one of our own programs. These "bugs" have now been exterminated and the program we are now using we believe to be the best currently available. Data will be generated, using this system, for a number of the more promising candidate endothermic reaction systems. Results for the first of these, methylcyclohexane - toluene - hydrogen, are presented in the Appendix covering temperatures up to 1600°F and pressures to 3000 psia.

Because of its complexity, and, in part, its proprietary nature, a) no attempt has been made to provide a complete description of the physical properties program used in this report. However, portions of the program are present in the AICHE Physical Property Estimation System, descripttions of which have been published by the American Institute of Chemical Engineers. b)ss) Moreover, literature references to the original methods of calculating physical properties are listed under a separate heading at the end of this report.

Mixture rules used were those recommended by either the API "Technical Data Book - Petroleum Refining41) or by Reid and Sherwood.42)

The internal program and the AIChE System now give essentially identical results and both have the desirable ability to utilize available experimental data to increase the accuracy of estimated properties. For our purposes, a disadvantage of the AIChE System is that it was intended to be used for equipment design and therefore generates irrelevant information and requires excessive computer time. The internal program gives desired properties only.

Methylcyclohexane-Toluene-Hydrogen System

The physical properties of MCH, toluene, and hydrogen are shown in the Appendix in <u>Table 91</u> through <u>94</u>. Properties of pure liquid MCH and toluene are presented in <u>Tables 91</u> and <u>92</u>. Properties of gaseous toluene, hydrogen, and MCH are to be found in <u>Tables 91</u>, <u>92</u>, and <u>93</u>. <u>Table 94</u> contains properties data for the gaseous reaction system:

for 0, 25, 50, 75, and 100 percent conversion. However, the mixtures are keyed in Table 94 headings by mole fraction composition as follows:

a) The proprietary program most relied on was the work of G. W. Lundberg and D. C. Whitney of our Physical Chemistry Dept.

b) An internal report by a contributor to the AIChE program (D. C. Whitney) was also used. 40)

		le Headi		_
	(Mole Frac	tions i	n Mixture)
MCH Reacted	MCH	Tol	H2	
0	1.0			
25	0.429	0.143	0.429	
50	0.2	0.2	0.6	
75	0.077	0.231	0.692	
100	•••	0.25	0.75	

Corresponding calculated weight fractions are also shown.

Estimated maximum errors for the program are shown in the following tabulation:

	to be Less Than							
Physical Property	For Pure Liquid	For Pure Real Gas	For Gaseous Mixtures					
Density and/or Compressibility Factor	1	5	5 - 10					
Thermal Conductivity	5	5	15					
Heat Capacity	5	2-5	5					
Enthalpy	5	2-5	5					
Viscosity at High Temperature	5	5	15					
Viscosity at Low Temperature	10	5	15					
Latent Heat of Vaporization	3	•	•					
Vapor Pressure	ĺ							
Surface Tension	3							

For gaseous mixtures, the indicated maximum errors apply generally in the pressure range to ca 1500 psia; above this probable errors may be as much as double those shown. The program does not provide an automatic method of including data through the critical region. This is of concern only for pure MCH in this case since the low critical temperature of MCH (570°F) makes the possibility of reaction occurring to produce toluene and H₂ extremely remote. To obtain properties through the critical region the appropriate liquid and vapor phase data should be plotted and the values estimated by interpolation.

Description of Methods Used for Extending or Estimating Pure Component Data

1. Compressibility Factor, $Z = \frac{r_V}{RT}$, and Gas/Density calculated by the method of Redlich and Kweng, Ref. 43 and Ref. 52, Chapter 7.

2. Liquid Density, from

$$P = A-BT-C/(E-t),$$
 $t \le T_C-55^{\circ}F$

with constants from Ref. 41. Extrapolated to $T_{\rm c}$ by means of the Guggenheim relation,

$$P/P_{C} = 1 + a(T-T_{R})^{1/3} + b(1-T_{R}), Ref. 44$$

- 3. Gas Viscosity (Table 94) by the method of Wilke (low pressure) and Dean and Stiel (high pressure), Ref. 42, Chapter 9. as Viscosity (Tables 92 and 95), see Ref. 20, p. 528. When o and 6/K (the Lennard Jones Force constants) are not known they are estimated by the method of Stiel and Thodos, Ref. 46. Experimentally derived constants are also given in this reference.
- 4. Liquid Viscosity, by extrapolating from two experimental data with

$$\log \mu = A - (B/T), T_R = 0.7$$

Extrapolated to To by the method of Jossi, Stiel and Thodos, Ref. 47.

- 5. Gas Thermal Conductivity, by the methods of Chung-Bronile Welks (low pressure) and Stiel and Thodos (high pressure) Ref. 42, Chapter 10; Ref. 41, 48, 49.
- 6. Liquid thermal Conductivity, extrapolated from a single datum or estimated by the method of Robbins and Kingrea. Ref. 50.
- 7. Gas Enthalpy, calculated from the Redlich-Kwong equation of state. Ref. 43 and 51. Pressure correction for the heat content is

$$\mathbf{H_{T}} - \mathbf{H_{T}^{o}} = \mathbf{PV} \cdot \mathbf{RT} - \frac{3a}{2\sqrt{T_{b}}} \cdot \ln(1 \cdot \frac{b}{v})$$

8. Liquid Enthalpy, found by adding the contributions of compression (to saturation pressure) and liquefaction to the ideal gas heat content. The Redlich-Kwong equation of state was used to estimate the effect of compression; the Watson correlation,

$$\Delta H_{V} = \Delta H_{V_{1}} \left[\frac{1 \cdot T_{R}}{1 - T_{R_{1}}} \right]^{\circ.38}$$

was used to extrapolate the heat of vaporization data.

- 9. Gas Heat Capacity, found by numerical differentiation (Lagrangian) of gas heat contents.
- 10. Liquid Heat Capacity, found by numerical differentiation of liquid heat content.
 - 11. Freezing Point and Boiling Point, Ref. 51, 52.
 - 12. Critical Properties, Ref. 53, 54.
 - 13. Acentric Factor, calculated from vapor pressure tables,

$$\omega = -\log \frac{P_8^{\circ}}{P_C} - 1.000$$

where P_6 ° = vapor pressure at T_R = 0.700. Ref. 55, 56.

- 14. Heat of Vaporization at Bouling Point, Ref. 51, 57.
- 15. Heat of Formation at TToF, Ref. 51.
- 16. Heat of Combustion at 77°F, Ref. 51.
- 17. Free Energy of Formation at 77°F, Ref. 51.
- 18. Fire-hazard properties, Ref. 58, 59.

Present Status and Future Projections

- 1. Information in the literature continues to indicate areas in which hydrocarbons would have a distinct advantage as fuels for high speed a reraft. A paper by Ashby and Stone points out the adverse effect on maximum L/D of increasing aircraft volume at Mach 6. Indications are that at this speed the lowering of L/D max could be reduced by about 40%. While it is true that this advantage will diminish with speed, it should remain an important factor over a considerable portion of the speed range up to Mach 12. It is anticipated that work by Marquardt Corporation and United Aircraft Research Laboratories will serve to more closely delineate the tradeoffs that can be expected.
- 2. Work by Marquardt Corporation has shown the effect of heat sink equivalence on the limiting Mach number obtainable with a scramjet engine. On this basis, significant benefits would accrue to increasing the presently obtainable heat sink available from naphthene dehydrogenation. This indicates that increased attention should be paid to the possibilities of dehydrocyclozation type reactions. This will be done with tailored type molecules such as bis-2,6-dimethylcyclohexyl and 1,4,5,8-tetramethyldecalin. Successful dehydrocyclization of these molecules should raise the reaction heat sink by about 50%. Other reaction types include dehydrogenation of polycyclic naphthenes, butchiene cracking and dehydrogenation of methylamine to cyanogen.
- 3. Benefits in the handling and storage properties of fuels are possible by tailoring properties of the fuels by the use of mixtures. These could be very significant. Accordingly, we have contained to study the reactivity of binary mixtures over Pt/Al₂O₃; specifically, in this report, DCH with MDHN, DHN and MCH; DHN with MCH, and DCH with MCH. Although each component affects the reactivity of the other component no catastrophic effects have been observed and the overall reaction raise and heat sink are about maintained. However, we are concerned about the effect of various components on catalyst stability and we are continuing study of this aspect of the problem. It is anticipated that considerable flexibility will be possible in designing into the fuel and sort of volatility, viscosity, lubricity, freezing point, and other properties which will result in optimum engine and aircraft design.
- 4. We have finally arrived at a consistent method of calculating and extrapolating physical properties of the MCH-toluene/3H2 system for various mixtures over the range from -200°F to 1600°F and pressures up to 3000 ps. (although data around the critical region may still be uncertain). The method finally selected is based on the AIChE program plus two proprietary programs. We will now go on to determine the applicability of this program to other

fuel systems such as the decalin and DCH systems. These are considerably more complicated, is principle, than with MCH since the decalin system will have a minimum of five components and the DCH system a minimum of four. Also, less experimental data is available in the literature which may necessitate obtaining some in the laboratory.

- 5. We have re-examined the possibility of utilizing propane as a fuel from two different aspects based on the possibility of obtailing high conversion in a cracking reaction to methane and ethene. Two different approaches to a catalyst for this reaction are being examined. One involves the introduction of a highly dispersed or vaporized strongly acid catalyst such as an acid treated zeolite. The other involves he possibility of generating free radicals to act as catalysts for the eracking. High conversion in this reaction would give about the same total heat sink as would the MCH dehydrogenation but would have the advantage, if successful, of utilizing a low pressure drop throwaway type catalyst. So far, however, it has not been possible to develop a suitable catalyst.
- 6. number of additional conventional type dehydrogenation type catalysts have been made in which a catalytic metal is placed on a suitable support and utilized as a bed. Variations in both the catalytic metal and the nature of the support have been investigated. Although several catalysts which are more active than our standard laboratory catalysts have resulted, nothing in the nature of a "breckthrough" has been achieved. So far relatively limited excursions from the presently active combination of platinum on alumina have been made. Work in the future in this area contemplates increasing the number of metallic components and also studying the incorporation of a wider variety of secondary elements in the support.
- 7. A desirable objective in the development of new catalysts is to modify the geometric arrangement of the catalyst in the bed to reduce pressure drop. In trying to achieve this objective we have been looking at the possibility of placing a catalyst on an open structure which will present less resistence to the flow of fluids. Such shapes are semicommercially available. However, depositing platinum on the surface, does not produce an active catalyst, probably because the low surface area of the shape. Attempts to increase the surface area by initially depositing a finely divided alumina (Baymal) has been tried and a reasonable level activity observed. Other possibilities of this general nature will be pursued in the future. Another method of reducing the pressure drop we are following is to utilize a disperse phase catalyst which will be carried along with the fuel through the reaction system into the engine. The most desirable type of catalysts have extremely high activity initially which rapidly drop off to the more usual level of catalysis. This type of catalyst we are studying in bed form but with primary interest in the very early stages of reaction. In application the catalyst would be introduced in fuel in the form of an extremely finely divided powder. Another method of introduction would involve incorporating a solid soluble metallic organic compound into the fuel and having it vaporize and proceed through the reaction zone unchanged as a vapor phase catalyst or decompose to a dispersed catalyst. This possibility is being investigated by heating MCH in an autoclave with various metal composites and observing if reaction occurs. Some indicates of reactive catalytic materials have been found, although conversions have not been

range. The most reactive material gave at mit 11% conversion. This approach will be explored further.

- 8. Modifications on the power input and temperature measurements on the FSSTR hav been installed. These have improved the control and opersting flexibilit, of the equipment as well as improving the precision of the data obtained. Studies on the thermal reaction of propane has been completed covering the range of space velocities up to 400, temperatures to 1400 and pressures to 900 psi. Results established that the highest temper ture that can be tolerated in the reactor tube is about 1400°F under orditions that we have investigated to date and that the maximum reaction heat sink that can be achieved in thermal cracking is about 300 Btu/lb. Further work was done with propane using a chrome/alumina catalyst for dehydrogenation to propylene and hydrogen. This gave us an opportunity to investigate the effect of a different catalyst configuration on this reaction. Results were comparable to those obtained in the laboratory reactors; it was possible to achieve equipibrium conversion but activity decreased rapidly due to coke formation. If laboratory studies succeed in de loping a satisfactory catalyst experiments utilizing a catalytic cracking catalyst in this equipment will be done in an attempt to bring about the conversion of propane to methane and ethane. The next fuel to be tested in the FSSTR will probably be decalin with the UOP R-8 catalyst.
- 9. One of the major objectives of the present contract has been to develop a satisfactory mathematical model for the reaction system in order to allow engine manufacturers and aircraft companies to utilize it in mating the reaction system to the heat sink requirements of a ramjet combustion chamber. The model under development during the last contract has now been brought to a more satisfactory state of development. It has been rewritten in a form less demanding in both machine and human time. With the program, we have not only been able to simulate the reactions taking place in the FSSTR in the MCH-Pt/Al₂O₃ system, but we have also been able to simulate operation under various conditions that we have not been able to achieve, as yet, experimentally. Thus we have been able to calculate the effect of very much higher flow rates, higher heat fluxes in terms of the temperature profile and pressure drop, to vary the bed length and to study the advantages and disadvantages of multiple adiabatic reaction sections. Though the program is giving some interesting insights in possible areas of experimentation, the heat fluxes are very much beyond those that we were able to investigate up to the middle of the year. Accordingly, we fabricated a short (2 foot) test section which was substituted for the third section of the FSSTR, allowing us to study heat fluxes approaching half a million Btu/hr/sq ft of tube surface. In the first series of runs with this section satisfactory operation was achieved at heat fluxes up to 300,000 Btu/hr/sq ft. However, as the flux increased the model results departed increasingly from experiment, in the direction of lower conversion. Reasons for this will be sought. Another modification of the model was accomplished to have it represent the case in which heat is being delivered to the reactor from only one side (slab geometry) a situation most spt to prevail in an actual use situation. This has yielded interesting results; however, it will be necessary to confirm them by experimental values. A possible convenient experimental setup has been devised and will be assembled and utilized in the next period.

- 10. One of the variables affecting the reaction of hydroserbons to high 'empriature conditions is the amount of dissolved exygen in the fuel at the time it is exposed to the thermal stress. However, the degree to which deoxygenation is beneficial appears to be an attribute of the particular fuel involved. With pure DHN little benefit is obtained, according to SD Coker recycle results, by reducing the O2 content below about 8 ppm, whereas with MCH benefits accrue down to at least 1 ppm whilst with a mixed highly naphtehnic jet fuel containing a broad mixture of components much lower and as yet incompletely defined limits appears to be operative. Whether this is a function of the types of compounds present or whether it is an attribute of the components mix will have to be determined in subsequent work. In the meantime we have completed a more comprehensive unit for determining thermal stability of fuels as well as catalytic activity and the thermal stability of reaction products. This is the CAFSTR, which has performed well at temperatures up to 1200°F at 1000 psi. However, with the material used in the rod heaters (Inconel), which provide the heat exchange surface, it is virtually impossible to rate the tubes by appearance as is done with cokers. Accordingly we are investigating the possibility of assessing the conditions of the tubes by determining the change in heat transfer characteristics calorimetrically, which of course, will yiel 'e much more meaningful attribute.
- 11. We established, in an earlier contract, by analysis and by visual and photographic means, that the (simulated) products of endothermic reactions could be burned successfully in a small-scale subsonic burner if the hot products were initially mixed with air prior to being ignited. In order to establish this more firmly we obtained a radiometer to view the radiation more critically. The virtual equivalence of the radiation from propane and toluene under a variety of conditions we feel confirms this without fear of successful contradiction. It appears unnecessary to do additional work in this area except with fuels of higher molecular weight, unusual structure or following thermal cracking.
- 12. Our contribution to determining the supersonic combustion properties of our candidate fuels and their reaction products has been limited to determining ignition delay times in our single diaphragm shock tube. The results obtained have established that the ignition delay times observed with most hydrogarbons of carbon numbers above 2 are relatively indifferent to molecular weight, structure or to the presence of substantial amounts of Hz. This evidently stems from the fact that the primary step in the oxidation involves the removal of a proton by C2 to form an C2H or OH radical. The ignition delay then should be related to the weakest C-H bond which is ordinarily a tertiary or secondary one. This is borne out by the sluggishness of methane and to a somewhat lesser degree, ethane and ethylana. However, rather surprisingly, two other hydrocarbons, lacking secondary or tertiary hydrogen atoms, tetramethyl butane, and neopentane, had IDT's close to those shown by the majority of hydrocarbons. Not a great deal of additional work will be done with the shock tube as far as determining IDT's are concerned. Some work will be done thin high density fuels such as Shelldyne which are of rather unusual structure. Another possibility not yet fully explored, would involve getting estimates of the rates of combustion from the rate of increase of the concentration of combustion products. Another area which has not been explored involves the use of additives to

reduce IDT's but whether this could lead to a practical application would have to be established before undertaking an investigation of this kind.

- 13. A bibliography of references of interest is included in the Appendix of this report. The present listing attempts to include all references published since the compilation of our previous literature survey⁸⁰) or which were overlooked at that time.
- 14. A "Fuels Evaluation Table" in the form of a summary table of the bench scale evaluation work done on various candidate fulls is included. This is an extension of a table previously published (Table 86, TDR-64-100, Part III, p. 255) and may be of interest in making a quick comparison of the reactivity and properties of different compounds. However, it does not include FSSTR data and should not be used in making definitive application evaluations.

APPENDIX

	Page
Calculation of Contact Time	248
Pulse Reactor	8ú'i.
Micro Catalyst Test Reactor	25կ
Tables 75-74. MCH Dehydrogenetion With Various Catalysts in MICTR	261.
CAFSTR Heat Exchanger Design	2 67
A Computer Program for Simulating Endothermic Fuel Reactions in a	070
Packed Bed Reactor	270
Table 75. Shell Development Packed Bed Reactor Program	280
Tables 76-90. Ignition Delays From Shock Tube Experiments	297
Tables 91-94. Property Values for MCH/Toluene/H2	317
Table 95. Summary Table: Evaluation of Vaporizing and Endothermic Fuels	336
Bench Scale Reactor - Description of the Apperatus, Procedure for the	
Experiments, Calculation of Heat Sinks	337
Table 96. Thermodynamic Heats of Reaction	342
Table 97. Latent Plus Sensible Heats of Various Naphthenes	343

Calculation of Contact Time

In our reports we have usually used either LHSV or the mass flow rate (G) to designate the feed rate. In order to facilitate an appreciation of the residence time in the reaction zone, we have expressed the relationship between these values and contact time under a variety of conditions.

Figures 84(a) through (e) give the relation between contact time and temperature for mass flow (G) of 1b/hr/sq ft, length (L) of 1 foot and void fraction (ϵ) of 1 at 0, 25, 50, 75 and 100% conversion. In order to relate G and LHSV the length of the tube must be given. For example, for MCH in a 2-foot tube at a LHSV of 1600, with L = 2 feet, the contact time with R-8 catalyst (ϵ = 0.54) the nominal contact time (6) at 50% conversion, 1000°F, 800 psi would be

$$\mathbf{e} = \mathbf{t} \frac{(\mathbf{L}\epsilon)}{G}$$
 and $G = LHSV (96)$
= 7.2 x 10³ $\frac{(2 \times 0.54)}{96 \times 1600}$
= 0.05 sec.

This is only a nominal value since it assumes that the flowing mixture consists of a 50% converted MCH feed (i.e., 20%m MCH, 20%m toluene and 60%m H₂). Since the conversion actually increases from zero to 50% as the MCH proceeds through the tube, a point-to-point calculation would be necessary to obtain the true average contact time (this is an average contact time since some molecules will spend more time in pores than others).

Another example would be useful: MCH, P = 600, $\epsilon = 0.54$, LHSV = 100, $T = 900^{\circ}F$, 100% conversion in a 10-ft tube.

$$\mathbf{0} = 3.6 \times 10^3 \frac{(10 \times 0.54)}{480 \times 100}$$

= 0.41 sec

Pulse Reactor

In a dispersed phase catalyst system the catalyst will be in contact with the reactants for about one second or less. Thus in this system the initial reactions that occur when the reactants first contact the catalyst surface will be more important in determining the product material composition than will the reactions that occur under steady-state conditions. One way of studying these initial reactions is by means of the pulse reactor technique. In such a system an inert carrier gas (e.g., helium) flows through the reactor continuously. At the desired time a small amount of feed is injected into the carrier gas stream and subsequently passes over the catalyst as a "pulse". The products, or a slip-stream sample thereof, are led directly into a GLC for analysis. This affords a rapid method of studying initial reactions under a variety of conditions. Other advantages of using a pulse teactor technique are that studies can be made: (a) at very high space valuables with small arounts of feed, and (b) also where only a small amount fixed is available. From the above considerations it appeared desirable to

Figure 84a. CONTACT TIME FOR MCH DEHYDROGENATION:
106% CONVERSION

Figure 84b. CONTACT TIME FOR MCH DEHYDROGENATION: 75% CONVERSION

105 B = Nominal Contact Time = t (Le/G) t = Contact Time, sec; When G = 1, L = 1, e = 1 L m Reactor Length, ft. G = Mass Velocity, Ib/(hr)(ft2) e = Void Fraction For MCH In 2 ft. Long Tube: G = LHSV (96) In 10 ft. Long Tube: G = LHSV (480) 104 1200 Contact Time (t), sec 008 600 400 300 <u> 2</u>00 10³ 100 psia 10^2 600 800 1000 1200

Figure 84c. CONTACT TIME FOR MCH DEHYDROGENATION: 50% CONVERSION

Temperature, °F

1400

1600

12.21

10²
600 800 1000 1200 1400 1600
Temperature, °F

Figure 84e. CONTACT TIME FOR MCH DEHYDROGENATION:

0% CONVERSION

63294

- 253 -

incorporate the pulse reactor technique into our satalytic program, even though with such a system the data is not necessarily obtained under steady-state conditions. Accordingly one section of our laboratory dual reactor system was modified in the following manner so that it could also be used as a pulse reactor system.

In our laboratory reactor system the furnace is 26 in. overall length and contains four heating elements of lengths 4", 8", 8", 4" located from top to bottom in that order. The outer shell of the furnace extends one inch beyond the top and bottom of the heating elements. The furnace consists of two hinged halves and opens lengthwise. Each half contains a heavy Meehanite liner with a groove down the center to hold the reactor tube. When closed the grooves form an opening 7/8 inch in diameter.

To modify the apparatus for use as a pulse reactor, a secondary furnace liner was fabricated from a 7/8-inch stainless steel rod (No. 416), 13 inches long. A 0.257-in. diameter hole was drilled down the center to accommodate a 1/4-in. OD reactor tube. Seven holes were drilled radially from the outside to the center hole in which thermocouples were cemented. The thermocouples were 1-1/2 inches apart and the top couple was 1-1/2 inches from the top of the liner. The thermocouples were situated so that they just touched the reactor wall. This secondary liner was placed in the Mechanite liners at the very bottom of the furnace and extended one inch below the bottom heating element. Figure 85 shows the construction of the secondary liner and its position in the furnace.

The reactor was a 1/4-in. OD stainless steel tube (No. 304) with 0.028-in. wall. An 1/8-in. OD thermowell can be fitted into the reactor at the bottom. Feed is injected into the carrier gas stream with a syringe pump. A slin-stream sample of the crit gas is led to the GLC via a heated lead. The pulse reactor system utilizes the same temperature and pressure controls and measuring devices as are used for the standard reactor tube. Thus the standard laboratory reactor can be converted to the pulse reactor by merely installing the secondary liner complete with thermocouples and reactor tube into the furnace, and connecting the syringe pump and the heated lead to the GLC. Figure 86 shows a schematic diagram of the pulse reactor system.

It should be noted that if desired this apparatus can be used as a small dimension continuous flow reactor and was actually used as such to study propane cracking.

Micro Catalyst Test Reactor

The micro catalyst test reactor (MICTR) was completed and the first test run made with the reference catalyst (1% Pt/UOP R-8 Al₂O₃) at the end of October 1966. Since that time, 262 runs have been made with the MICTR. The design of the MICTR is shown in Figure 87. Figure 88 shows the layout of the overall apparatus and Figure 89 shows details of the furnace block and reactor tube construction. The feed line pressure gauge was eliminated to reduce feed holdup and a check valve was installed in the feed line to prevent "blow-back".

MICTE tests have been carried out at 662, 752, and 842°F block temperature, with MCH usually at LHSV 100, and 10 atm pressure. Hydrogen

Figure 85. SECONDARY FURNACE LINER FOR PULS REACTOR SYSTEM

Figure 86. SCHEMATIC DIAGRAM OF PULSE REACTOR SYSTEM

Eliquee 87. MICRO CATALYST TEST REACTOR (SCHEMAT)

450 psig Pressure Rating

Figure 88. MICRO CATALYST TEST REACTOR (General View)

Figure 69. MICRO CATALYST TEST REACTOR (DETAIL).
Reactor Tube, Form, co. at J. com. (

formed during the reaction is sufficient to maintain the pressure; no additional hydrogen is added. Samples at each temperature are bled at 3, 8, and 13 minute intervals into an Aerograph GLC unit, and the conversion of MCH to toluene determined from the ratio of the respective peak areas. It is necessary to recharge the piston pump after testing at each temperature. Catalysts (10-20 mesh granules) are diluted with 10-20 mesh quartz granules (0.9 ml:1.1 ml) be one charging giving a bed length of 4-1/4 in. in the lower end of the 1/4-in. diameter thin walled stainless steel reactor tube. Catalysts are reduced 20 minutes at 797°F in hydrogen at 1 atm pressure before testing. Space velocity has been varied by changing catalyst volume, using a constant pump rate for MCH.

Temperatures have been measured at the outer skin of the reactor tube, 1 in. below the top and 1 in. below the bottom of the catalyst zone. An additional measurement is made in a thermovell at the very end of the catalyst bed. Up to run 140 the thermocouples were brought down parallel to the reactor tube via a closely adjacent slot in the block with the impinging bead held in place with Sauereisen cement. This proved mechanically unsatisfactory, however, and the couples were then brought in via a slot near the edge of the block and then by a right angle cut to the correct position; the couple beads were demented so as to touch the reactor tube (of Figure 89). Temperature drops of 30-40°F are observed with very active catalysts at 842°F block temperature.

The MICTR was operated in the catalyst preparation laboratory up to run 96 and then was moved to another location. Shortly after this, difficulty with the reproducibility of the activity of the reference catalyst (9874-24) was experienced. During about a month's period various possible refinements of procedure were made to obtain greater reproducibility. During this period Il test runs were made and the following overall probable errors for the δ and 13 minute samples results were calculated which are of consequence only when comparing candidate catalysts of high activity with the reference catalyst: 662°F, 29 ± 4% conversion; 752°F, 52 ± 3% conversion; and 842°F, 72 ± 7% conversion. Periodic checks for temperature calibration for both control and recording instruments have been found necessary. This was done after runs 105 and 220 which changed the base data for the reference catalyst. Values close to the above mean values are usually obtained if the flow of hydrogen gas used for catalyst reduction is not cut off until the pump is started (and a temperature drop observed), and the gas flow restarted just before the pump is stopped, during each test pariod. It seems best to retest the reference catalyst once a week for best data alignment with catalysts evaluated during this time interval.

All the results obtained at IMSV 100 are listed in sequence in Tables 73 and those at IMSV 200 in Table 74 of the Appendix. A few runs were left out where mechanical or instrumental problems occurred and the validity of the data obtained were in doubt. In such cases the catalysts were retested.

Table 73. MCH DEHYDROGENATION WITH VARIOUS CATALYSTS IN MICTR (LHSV = 100)

Period: December 1966 to February 1967

Conditions: 10 atm pressure. Catalysts reduced in H₂ for 20 min at 796°F. GLC samples normally taken at 3-, 8- and 13-min operation at each block temperature. Catalyst volume: 0.9 ml. Catalyst diluted with 1.1 ml quartz chips.

Run	Catalyst	alyst		& NCH Conversion									
No.	No. 9874-	Catalyst Description	652 ° F	752 ° F	842°F								
3	24	IF Pt/R-8 Al ₂ O ₃ (Reference)	-, 28, 25	48, 43, 46 48, a) 39, a) -	72, 68, 60								
19	24	15 Pt/R-8 Al 203	23, 18, 18		60, 57, 58								
	·	(Reference)		-, 47, 52									
6	90	27 Pt/R-8 Al ₂ 0 ₃ (Reference)	31, 28, 28	57, 51, 47	60, 65, 63								
7	180	25 Pt/R-8 Al 203	27, 26, 34	54, 48, 46	70, 64, 64								
4	418	Expt'i. I, metai	2, 1, -	23, 1, 05	5, 1, -								
5	41C	Expt*1. 2/ metal		59, 23, 1	15, 2, 0								
8	198	Expt 1. 1, metal	17, 9, 9	20, 18, 12	37, 29, 22								
9	398	Expt ¹ l. I/ metal	20, 1, 3	34, 10, 1	4, i,								
10	56/	Expt*1. 15 metal	1, 0, -		0, 0, -								
Ш	33	Bimetallic, I and 3/	20, 1, 1	2, 0, -	1, 0, -								
12	22C	Expt*1. 5/ metal	0, 0, -	0, 0, -	0, -, (932°F)								
13	57A	Expt'l. 17 metal	0, 0, -	0, 0, -	0, 0, (932°F)								
14	658	Bimetallic, I and IA	28, 26, 27	(33) 42, 45	۰,								
15	65A	Bimetallic, 0.5 and 0.5%	-, 27, 22	50, 46, 45	79, 72, 67								
16	23	Expt'l. 1% metal	8, 6, -	9, 8, -	39, 13, 11								
17	638	Bimetallic, 17 and 18	20, 18, 17	31, 30, 16	37, 7, 2								
18	63A	Bimetallic, 0.5% and 0.5%	20, 16, 13	33, 28, 24	10, 3, 1								
20	678	Bimetallic, 15 and 17	19, 20, 19		73, 53, 50								
21	9 4 A	Expt ¹ 1. 2/ metal	22, 17, 17	49, 27, 27	30, 25, 30								

a) After 842°F run.

(Continued)

Table 73 (Contd-1). MCH DEHYDROGENATION WITH VARIOUS CATALYSTS IN MICTR (LHSV = 100)

Period: December 1966 to February 1967

Conditions: 10 atm pressure. Catalysts reduced in H2 for 20 min at 796°F. GLC samples normally taken at 3-, 8- and 13-min operation at each block temperature. Catalyst volume: 0.9 ml. Catalyst diluted with 1.1 ml quartz chips.

Run	Catalyst			≸ MCH Conver	sion
No.	No. 9874-	Catalyst Description	662°F	752 ° F	842°F
23 85 84	24(ref) 948 72	1% Pt/R-8 AliOs 4% metal/support #2 2% metal/support type #1	28 ± 4 -, 20, 14 24, 25, -	52 ± 3 43, 39, 40 54, 50, 48	72 ± 7 58, 57, 56 71, 64, 63
24 25	73 71	25 metal/support type #1 25 metal/support type #1	25, 23, 22	50, 49, 48	80, 77, -
26 27 28	67A 66B 58B	Bimetallic; 0.5, 0.5% type #1 Bimetallic; 1, 1%, type #1 2% metal, ^B) support type #1	10, 13, 14 22, 18, 18 -, 27, 26	35, 31, 28 37, 35, 33 47, 44, 42	45, 37, 16 50, 32, △ 75, 62, 66
29 30	95A 95B	Bimetallic; 1, 1%, type #1 Bimetallic, 0.5, 0.5%, type #1	-, 27, 27 37, 41, 37	64, 56, 54	79, 80, 79
31	96 65B	25 metal, type #1 Bimetallic, 1, 15 type #1	32, 29, 30 24, 28, 26	60, 57, 57	81, 74, 73
32 33 34	97 98	Bimetallic, 0.5, 0.5≸ Bimetallic, 0.5, 0.5≸, type #1	25, 24, 18 20, 22, 20	46, 43, 42	79, 50, 36
35 56	99 103	25 metal, support #5 25 metal, support #8	-, -, - -	-, 10, 0.7 0, 0	0.5, -, -
37 38	105 58A	2% metal, support #8 1% metal, support #1	29, 22, 30	0, 0 47, 50, 43	0, 0 61, 64, 68 85,(70),65
59 41 42	95A 101 102	Bimetallic, 1%, 1% support type #1 12% metal, support type #1 11% metal (sulfided), support type #1	35, 32, 28	57, 55, 54 0, 0, 0 15, 18, 16	0, 0, 0
43 ! 44	107 108A	2% metal, support type #1 2% metal, support type #1	33, 32, 32 37, 30, 31	60, 63, 63 65, 65, 60 81, 68, 68, 68	87, 83,~79
45 46	Shell 405	Classified 10% metal, support two #1	36, 42, 38	5, 4, 3	91, 82, 82 850 80,0 80,0 5, 3, 1 76, 75, 73
47 48 49	113 112 111	Bimetallic 1, 10%, support type #1 2% metal, support type #1	26, 25, - 31, 29, 31	56, 53, 51 50, 49, 48	(10),00, 35
56 58	116 Shell 405	15 metal, type #7 25 metal, type #1 Type classified	33, 36, 30 0, 0, 0 31, 31, 34	55, 56, 55 0, 0, 1 61, 59, 57	82, 75, 72 3, 2, 0 71, 0,72,6,730)
59	117B 1118B	8 metal, support type #1 2 metal, support type #1, purif dried (118)	31, 30, 30 28, 33, 35	63, 65, 80 57, 53, 50	91, 89, 87
70 71	118A 120	2% metal, support type #1, purif. dried (500°) Bimetallic, 2, 11%, support type #1	-, 55, 54 -, 29, 25	62, 62, 59	76, 87, 88
72 74 75	117A 124 125	45 metal, support type #1 105 metal, support type #1 105 metal, support type #1	35, 33, 35 -, 11, 11 21, 21, 27	59, 59, 60 19, 15, 12 57, 57, 59	90, 93, 89 18, ~3, 1 84, 81, 81
77 79	21C 1,5	25 metal, 2.7% Cl, support type #1 Bimetallic, 2, 5%, support type #1	1, 0, 0	4, 1, 1 52, 53, 53	2, 1, 1
80 82	131 130	4≸ metal, type #1 4≸ metal, type #1	58, 54, 55 42, 57, 56	59, 58, 57 69, 66, 65	74, 73, 72 85, 88, 85
83 84 85	132B 132A	25 metal, type #1 25 metal, type #1	38, 34, 35 40, 40, 36	62, 59, 58 70, 69, 64	85, 86, 80
86 87	15-270 135 136A	Bimetallic, 2, 8%, support type #4 2% metal, support type #1 2% metal, support type #1	~1 ~1 ~1	77	777
88 89	137 140B	Bimetallic, 2, 2%, support type #1 10% metal, support type #2	16, 14, 12	23, 20, 18	31, 16, 15
90 91	140A 140C	10% metal, support type #2 10% metal, support type #2	29, 26, 26 25, 25, 23	44, 45, 44 50, 4 <i>ξ</i> , 41	70, 70, 70 43, 38, 39
92 93 94	141A 141B 139	Bimetallic, 1, 2% support type #1 Bimetallic 1, 2% support type #1 1% metal, ::pport type #1	~1 ~1 36, 35, 35	~1 ~1 69, 60, 55	~1 ~1 85, 75, -
95 96	141C 142A	Bimetallic, 1, 1%, support type #1 Bimetallic, 2, 11%, support type #1	25, 25, 22	49, 45, 45 47, 43, 41	60, 58, 54 36, 59, 38
97	139	Moved MICTR to new locati 1≰ metal, support type #1	on 53,(43),40	82, 64, 65	63, 83, 84
98 100 101	1428	Bimetallic 4, 11% support type #1 Reactor tube filled with quartz only 1% metal, support type #1	37, 37, 37 32, 35, 32	60, 62, 60 60, 61, 59	85, 81, 68 0, 0, 0 78, 79, 78
10.1	159	4≸ metal, support type #1. (muddled) 500 1≸ metal, support type #1	2, 35, 12 28, 10, 57 34, 31, 11	72, 79, 60 (5, 65, 7	(2, 19, 10 (3, 9, 8) (3, 8)
104	17 .	2≸ metal, support type #4 1≸ metal, support type #1	<1 39, 38, 31	<1 72, 69,(76)	91, (88), (86)
106 107 109	24 24 250	1% metal, support type #1 1% metal, support type #1 1% metal, support type #1	39,(32),32 28, 25, 25 28, 25, 26	50, 50, 50 55, 49, 48 55, 49, 43	75, 70, 75 79, 68, 68 74, 65, 66
a)	Impregnatio	ig solution different from that for catalyst *6% is fermed with told as a conversion of MCH included			Continued)

a) Impregnating solution different from that for catalyst *%.
 b) Some benzene formed with toleron, conversion of MCH includes buts.
 c) Indicationate loading.

Table 73 (Contd-2). MCH DEHYDROGENATION WITH VARIOUS CATALYSIS IN MICTR (LHSV = 100)

Period: December 1966 to February 1967

Conditions: 10 atm pressure. Catalysts reduced in H2 for 20 min at 796°F. GLC samples normally taken at 3-, 8- and 13-min operation at each block temperature. Catalyst volume: 0.9 ml. Catalyst diluted with 1.1 ml quartz chips.

B.,,	Catalyst			≸ MCH Convers	ion
No.	No. 9874-	Catalyst Description	662°F	752°F	842°F
No.	No. 9874- 139 7 152B 130 142B 151A 24a 151Ca 152C 148 24a 155Cb 148 25Ab 155Cb 146b 25Ab 156Ab 156Ab 156Ab 156Ab 156Ab 157A 24b 157B 157C 160B 160A 119B 27 24	<pre>1% metal, support type #1 1% metal, support type #1 Bimetallic, 2, 2% type #1 4% metal, support type #1, purif., 932° muffled Bimetallic, 4%, 10%, type #1 (500°) Bimetallic, 2, 2%, type #1 1% metal, support type #1 Bimetallic, 2, 2%, type #1 Bimetallic, 2, 2%, type #1 Bimetallic, 2, 2%, type #1 Bimetallic, 2, 2%, type #1 Bimetallic, 2, 2%, type #1 Bimetallic, 2, 2%, type #1 Bimetallic, 2, 2%, type #1 Bimetallic, 2, 2%, type #1</pre>	32, 28, 28 36, 29, 28 22, 29, 28 28, 29, 28 28, 29, 28 28, 29, 28 28, 31, 27 34, 19, 16 0, 18, 30 37, 30 31, 32, 31 31, 32, 31 31, 32, 31 31, 32, 31 31, 32, 31 32, 33, 31 33, 33, 33 33, 38, 37 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 28, 33 33, 38, 39 33, 38, 39 33, 38, 39 33, 38, 39 33, 38, 39 33, 38, 39 33, 38, 39 34, 35 35, 36 36, 36 37, 36 38, 37 38, 38, 39 38, 39 39, 30 30, 31 31, 32 32, 33 33, 38, 38 33, 38, 38 34, 35 36, 36 37, 38 38, 37 38, 38 38, 38 38, 38 39, 30 30, 31 31, 32 32, 33 33, 38 34, 35 36, 36 37, 38 38, 38 38, 38 38, 38 38, 38 39, 30 30, 30 31, 32 31, 32 32 33, 33 34, 35 36, 36 37, 36 38, 37 38, 38 38, 37 39, 30 30, 30 31, 32 31, 32 32 33, 34 35 36 37, 36 38 38, 37 39, 30 30, 31 30, 32 31 32 32 33 34 35 36 36 37 38 39 30 30 30 30 30 30 30 30 30 30	45, 50, 44 64, 53, 52 68, 53, 55 52, 55, 55 52, 55, 55 63, 55, 55 43, 27, 23 44, 57, 58, 55 43, 57, 58, 55 2, 51, 57 30, 54, 58, 56 61, 50, 54, 58 62, 52, 64, 68, 68, 59, 57 56, 56, 50, 17 56, 57, 58, 57 56, 57, 58, 58 61, 50, 54, 58 62, 52, 64, 68, 68, 68, 59, 57 56, 52, 64, 59, 57 56, 57, 57 62, 58, 56, 57 63, 58, 58 63, 57, 58, 58 64, 59, 57 65, 57, 58 66, 59, 57 66, 59, 58 66, 59, 59, 59 66, 59, 59, 59 66, 59, 59, 59 66, 59, 59, 59 66, 59, 59, 59 66, 59, 59, 59 66, 59, 59, 59 66, 59, 59, 59 66, 59, 59, 59 67, 59, 59 67, 59, 59 67, 59, 59 67, 59, 59 67, 59,	80, 70, 69 89, 77, 76 10, 1, 78 10, 1, 78 17, 82, 76, 78 17, 82, 76 60, 48, 78 19, 74, 68 49, 14, 64 63, 67, 64 63, 67, 66 21, 12, 69 80, 71, 89, 85 79, 79, 71, 70 24, 17, 70 70, 77, 77, 77 68, 64, 78, 75 79, 79, 89, 75 10, 70, 79, 89 75, 67, 75 10, 76, 78 10, 76, 78 11, 78 12, 78 13, 77 14, 78 15, 78 16, 78, 78 17, 78 18, 78
151 152 153 154 155 156 157	161C 155B 155A 133 72	5% metal, support #6 Bimetallic, 3, 2%, type #1 Bimetallic, 3, 2%, type #1 Bimetallic, 2, 5%, type #1 2% metal, support type #1 10% metal, support type #1 30% metal, support type #1e)	28, 28, 24 - 27, 25 13, (22), 14 24, 29, 26 31, 30, 30 40, (26), 37 47, 41, 39	47, 44, 43 44, 46, 43 13,(11), 3	57, 52, 55 65, 63, 59 13, 11, 5 70, 64, 58 84, 77, 77 267, 84, 27, 81, 191, 84 267, 70, 71, 80, 42, 75

a) New reactor tube.

(Jontinued)

b) Hydrogen flow left on until temp drop occurs, and hydrogen flow started before pump stopped after last sample taken.

c) After activation, test d directly a. 450°C.
d) Reduced at 230°E instead of 350°E.

e) Reduced at 932°F before test.
f) Conversion to benzene.

Table 73 (Contd-3). MCH DEHYDROGENATION WITH VARIOUS CATALYSTS IN MICTR (IHSV = 100)

Period: March-May 1967

Conditions: 10 atm pressure. Catalysts reduced in H2 for 20 min at 796°F. GLC samples normally taken at 5-, 8- and 13-min operation at each block temperature. Catalyst volume: 0.9 ml. Catalyst diluted with 1.1 ml quartz chips. LHSV = 100.

	Onto locat		9,	MCH Conversi	on
Run No.	Catalyst No. 9874-	Catalyst Description	662°F	752° F	842°F
159 160 161 162 163 164 165 166 167 171 172 173 174 175 177 178 179 181 182 183 184 185 189 190 191 193 193 193 193 193 193 193 193 193	167A 24(ref) 105B 165A 111 168A 168B 169A 169B 171A 171B 24(ref) 171C 173A 173B 173C 173D 183A 183B 172A 175B 172B 177B 181B 177B 181B 177B 181B 177B 181B 177B 181B 177B 181B 177B 181B 177B 181B 177B 181B 177B 181B 177B 181B 179A 186A 186B 186A 186B	0.76% metal, support type #1a) 1% Pt, R-8 Al ₂ O ₃ 1% metal, R-8 Al ₂ O ₃ 1% metal, R-8 Al ₂ O ₃ 1% metal, support type #7 Bimetallic, 2, 2%, R-8 Al ₂ O ₃ Bimetallic, 2, 2%, R-8 Al ₂ O ₃ 2.4% metal, support type #10 2.4% metal, support type #10 2.4% metal, support type #10 1% Pt, R-8 Al ₂ O ₃ 2.4% Pd, support type #10 0.5% metal, support type #10 0.5% metal, support type #10 0.5% metal, support type #10 Bimetallic, 0.5, 0.5% support type #10 4% metal, support type #1 6% metal, support type #1 1% Pt, R-8 Al ₂ O ₃ 2% metal, support type #1 1% Pt, R-8 Al ₂ O ₃ 2% metal, support type #9 4.4% metal, support type #10 Bimetallic, 5, %, R-8 Al ₂ O ₃ 2% metal, support type #10 1% metal, R-8 Al ₂ O ₃ 1% metal, R-8 Al ₂ O ₃ 1% metal, support type #10 1% metal, support type #10 2% metal, support type #10 1% Pt, R-8 Al ₂ O ₃ 5% metal, support type #10 1% Pt, R-8 Al ₂ O ₃ 4% metal, support type #10 1% Pt, R-8 Al ₂ O ₃ 5% metal, support type #10 1% Pt, R-8 Al ₂ O ₃ 5% metal, support type #10 1% Pt, R-8 Al ₂ O ₃ 5% metal, support type #10 1% Pt, R-8 Al ₂ O ₃ 5% metal, support type #10	24, (42), 30 26, 27, 35, 23 18, 47, 37, 0, 28 22, 24, 17, 18, 27, 20, 21, 18, 27, 20, 24, 24, 24, 22, 18, 18, 27, 27, 26, 31, 26, 24, 24, 22, 22, 18, 16, 27, 26, 31, 27, 28, 21, 23, 24, 24, 0, 11, 14, 23, 25, 27, 28, 27, 29, 24, 24, 27, 29, 28, 27, 29, 24, 24, 27, 29, 28, 27, 29, 24, 24, 27, 29, 28, 27, 29, 20, 26, 30, 26, 30, 27	61, 66, 48 60 30 61 66 49, 65, 7, 7, 7, 57, 8, 7, 7, 7, 7, 8, 7, 7, 7, 8, 7, 7, 7, 8, 7, 7, 7, 8, 7, 7, 7, 8, 7, 7, 7, 8, 7, 7, 8, 7, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	87, 85, 80 72, 71, 64 82, 85, 85 51, 82, 85, 85 51, 88, 81 83, 80, 61 67, 70, 61 44, 44, 42 11, 75, 70 6, 72 21, 75, 70 6, 72 28, 82, 73 74, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 65 2, 73, 73, 73 81, 82, 73 81, 82, 73 81, 82, 73 81, 82 81, 73 81, 82 81, 73 81, 73 82 81, 73 81, 73 82 81, 73 81, 73 82 81, 73 82 81, 73 82 81, 73 82 81, 73 82 81, 73 83 84 85 86 86 86 86 87 88 88 89 89 89 89 89 89 89 89 89 89 89
201 202 203 204	197A 198A	1% Pt, R-8 Al ₂ O ₃ 4% metal, support type #1 4% metal, support type #1 4% metal, support type #1c)	28, 30, 31 32, 36, 36 35, 39, 36 34, 27, 21	70, 72, 66	78, 75, 71 94, 95, 90, 89 95, 92, 89, 88 13, 12, 6
205 206 207 208	199A 199B 199D 199C	4% metal, support type #1 4% metal, support type #1b) 4% metal, support type #1b) 4% metal, support type #1	26, 23, 24 38, 28, 32 27, 29, 28 28, 37, 36	54, 53, 54 63, 72, 68 57, 64, 60 65, 66, 60	84, 88, 84 92, 95, 91 86, 90, 87 86, 90, 87

a) Pelleted powdered catalyst supplied to the United Aircraft Research Laboratory

b) Muffled at 1092°F for 1 hour in air.

) Parius stabilized support.

Table 73 (Contd-4). MCH DEHYDROGENATION WITH VARIOUS CATALYSTS IN MICTR (LHSV = 100)

Period: March-May 1967

Conditions: 10 atm pressure. Catalysts reduced in H2 for 20 min at 796°F. GLC samples normally taken at 3-, 8- and 13-min operation at each block temperature. Catalyst volume: 0.9 ml. Catalyst diluted with 1.1 ml quartz chips.

Run Catalyst Catalyst Description No. No.			
	662°F	752°F	842°F
210 9874-187c 4 metal, support type #9 22 9874-200A 4 metal, support type #1 33 9874-200C 4 metal, support type #1 36 metal, support type #1 37 9874-200C 4 metal, support type #1 37 9874-200C 4 metal, support type #1 37 9874-200C 4 metal, support type #1 37 37 3874-217 3874-117A 4 metal, support type #1 4 metal, support ty	22, 23, 23 26, 30, 29 37, 40, 35 31, 35, 36 31, 35, 37 31, 35, 37 31, 32, 33 31, 32, 33 32, 33 33, 34, 27 31, 26, 24 32, 22, 23 33, 34, 35 34, 35 35, 26, 36 36, 38, 31 37, 38, 27, 28 38, 27, 28, 29 39, 28, 39, 31 30, 28, 29 31, 32, 33 32, 33 33, 33 34, 28, 29 35, 28, 29 36, 38, 29 37, 28, 29 38, 39 39, 38, 39 39, 38, 39 39, 39 30, 39 30, 39 31, 30 32, 33 33, 33 34, 28, 29 35, 36 36, 37 37, 29 38, 39 39, 39 39, 39 30, 39 31, 30 32, 33 33 34, 29 35, 36 36, 37 37, 38 38, 39 39, 39 39, 39 39, 39 30, 39 31, 32 31, 32 32 33 34, 35 36 37, 38 38 39, 39	4906685666442778891-777754343099541115527693,14566658950,7538,665,665,665,665,665,665,665,665,665,66	79, 75, 88, 89, 81, 79, 88, 89, 81, 82, 86, 81, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88

a) Muffled at 1092°F for 1 hour in air.

b) LHSV = 200.

c) LHGV - 50.

Table 74. MCH DEHYDROGENATION WITH VARIOUS CATALYSTS IN MICTR (LHSV = 200)

Period: December 1966 to February 1967

Conditions:

Same as given in Table 73

Catalyst Volume: 0.45 ml

Catalyst diluted with 1.55 ml quartz chips

Run	Catalyst			% MCH Conversion									
No.	No. 9871-	Catalyst Description	662°F		752 ° F			842°F			_		
51	24	15 Pt, R-8 Al ₂ O ₃	23,	20,	20	33,	34,	30	55,	52,	5		
52	90	25 Pt, R-8 Al ₂ 0 ₃	21,	22,	21	40,	43,	42	•	58,			٠,
66	90	25 Pt, R-8 Al ₂ O ₃		•		-					78,	70,	76°
68	90	2\$ Pt, R∪8 Al ₂ O ₂	21,	(35),	24	43,	42,	42,	•	55, 64,	52 64 ²))	
50	Shell 405	Classified	26,	27,	25	44,	46,	46	67,	65,	60		
53	73	2% metal, support type no. !	20,	20,	17	39,	,9,	39	54,	56,	60		
54	95A	Bimetallic I, 1% support type no. 1	22,	22,	•	40,	41,	38	58,	58,	58		
55	108A	25 metal, support type no. 1	29,	30,	25	48,	48,	52	72,	67,	66		
57	107	2% metal, support type no. !	26,	25,	25	51,	51,	52	61,	61,	61		
60	1178	## metal, support type no.	26,	25,	23	52,	48,	59	78,	71,	71		
61	1198	4% motel, support type no. i	27,	29,	28	43,	45,	43	63,	62,	60		
62	120	Bimetailic 2,11% support type no. 1	24,	32,	25	43,	46,	46	63,	65,	65		
63	She11 405	Classified	39,	25,	25	58,	50,	45	57,	57,	58		
64	121A	10% metal, support type no. 1	25,	27,	23	51,	45,	45	59,	61,	55		
65	1218	30% metal, support type no. i	(50),	27,	25	47,	47,	46	67,	63,	63		
69	1084	25 metal, support type no. 1							90,	, 91,	a)		
73	117A	4% metal, support type no. 1	29,	29,	28	50,	46,	(57)		, 64,			
									88,	84,	, 82ª)	
76	125	iO≸ metal, support type no. 1		•		55,	53,	52	1	, 78,			
									75,	, 75,	, 79 ²)	
78	1184	25 metal, support type no. 1		-		55,	57,	52	1	, 74			
									87	, 81	, 80ª	3)	
81	130	4% metal, support type no. 1		-		57,	, 55,	55		, 77			
		(purified, 932° auffled)							87	, 87	, 83 ^a	1)	

a) 932°F.

CAFSTR Heat Exchange, Lesign

All functional heat exchangers in the CAFSTR are identical, as shown in Figures 90 and 91.

Of particular importance is the annular design, permitting removal of the inner tube for inspection and lating, and for cleaning of the entire assembly. The inner tube is also the wall of the cartridge heating unit. A machine threaded header is welded to one end of the cartridge, which allows the roo to be removed after each test. The other and is positioned by a restricted portion of the annulus which centers the tube.

The outer heat exchanger shells are machined from Incomel Alloy $600 \, 1-1/2$ bar stock. The cartridge heater sheaths are also of Incomel 600, but other netals may be used for this purpose if desired.

To avoid fuel channeling, a circumferential distribution ring was provided at the inlet, while at the outlet, liquid flows without restriction through parallel slots positioned radially around the end of the heater.

The curtridge heaters for the annular heat exchangers are interchangeable and each is rated at 2000 watts, 220-vac. This represents two-fold or more the combined power requirement for heating fuel, heat losses, and rapid heatup of equipment on startup.

The exchangers for sensible heat were sized using the streamline flow equation of Sieder and Tate for heat-transfer coefficient, 11)

$$h = 2.0 \frac{k}{D} \left(\frac{w_{D}}{kT}\right)^{1/3} \left(\frac{\mu}{\mu_{B}}\right)^{0.14}$$

where k = thermal conductivity of the fluid, Btu/hr ft°F,

D = annular width, ft,

w = mass rate of flow, 1b/hr,

cp = specific heat at constant pressure, Btu/lb°F,

L = length of the heat transfer surface, ft,

μ = absolute viscosity at bulk temperature, 1b mass/hr ft,

 $\mu_{\rm g}$ = absolute viscosity at the surface temperature, 1b mass/hr ft.

For a 13-inch long annular heated space, $5/8" \times 11/16"$, and for MCH, calculated values of h ranged from 50 to 75 for the pressure range of 150 to 900 psia and temperature range of 600 to 1400°F. Calculated temperature differences between bulk fluid and wall varied from 65 to 170°F over these came sets of conditions.

Figure 90. DETAILS OF HEAT EXCHANGER

Figure 91. ANNULAR HEAT EXCHANGER FROM THE CAFSTR

AFAPL-TR-67-114 Part I

A Computer Program for Simulating Endothermic Fuel Reactions in a Packed Fed Reactor

The program described here was assembled to allow calculation of the amount of heat absorbed by a fluid passing through a single tube packed with catalyst. Calculations are made for the steady-state condition, with fluid flowing through the tube at constant mass velocity and undergoing endothermic reaction(s) when in contact with the catalyst. Heat is supplied to the fluid through the walls of the tube: 1) due to an axial profile of temperature imposed on the outside of the tube wall; 2) by flow of a secondary fluid outside the tube; or 3) due to an axial profile of heat flux imposed upon the tube wall. To calculate the extent of heat absorption, the program solves the set of partial differential equations describing the temperature and concentration distributions in the axial and radial directions within the symmetrical cylindrical tube. Thus, in addition to the heat absorption, these profiles of temperature and concentration and the axial profiles of pressure and tube wall temperature are also available from the program. An auxiliary portion of the program allows analogous calculations of conversion and temperature to be made for a series of adiabatic reactors with reheating of the fluid between stages.

In its present form the program makes calculations only for methyl cyclohexane as the fluid. This specificity is built into the program in two subprograms, REAX and RATE. As information becomes available for other endothermic fuels, alternates will be written for these two subprograms to allow calculations for other fluids. The remaining twelve subprograms are independent of the fluid used.

In the following sections, use of the program and a description of input and output formats are given. Subsequent sections contain a brief description of the equations integrated and their physical basis.

Input

Card 1. The first 72 columns comprise an alphanumeric field which will be printed out as a label for the problem at the top of the data printout. Column 75 (LIMIN) and column 80 (LAST) are control characters. LIMIN is set equal to zero for the first data deck loaded with the program. For subsequent decks, a 1 in LIMIN calls for card 6 as the next data card; a 2 calls for card 5 as the next data card; a blank or zero calls next for card 2. A

I in LAST indicates the last set of data. The program will then not attempt to read another data deck following completion or one problem.

Cord 2 - Six 12 character E format fields.

- 1-12: R. reactor radius in feet.
- 13-24: REACTR, reactor length in feet.
- 25-35: DP. catalyst particle diameter, in fest.
- 37-43: AF, a correction factor for the pressure drop alculation.

 (A function of PP/R, ranging from 0.5 for DP/R=0.45 to 0.57 for DP/R=J.19 to 1.0 for DP/R=0. Similar to Figure 35, Ferry, Chemical Engineering Handbook, edition 3. page 394.)
- 3. page 394.)
 49-60: EPSILN, fraction interparticular voids in bed.
- 51-72: PE, Peclet Number = 10.0

Cord 3 - 5, 5 character I format fields followed by one ?2 character E-format field.

- 1-5: JREACT, number of reactions for which calculations are to be made.
- 5-10: KC, number of components.
- 11-15: M, number of radial increments to be used in calculation. (2 has been adequate in our work). (2, 3, 4, 5, 5, 8, and 10 are permissible.)
- 21-25: IPSUP, a control character. If equal to 1 "intermediate printout" is suppressed and only the data printout and the final tabular printout will be obtained.
- 15-20: NPRI, number of axial points equally spaced axially along reactor for which results will be printed out either in intermediate printouts or in the final tabulation.
- 26-37: CROSKO; axial step length for integration in feet. This length will be shortened if necessary by the program to raintain stability in integration.
- Card 4 5, 12 character E-format fields.
- 1-12: GAMA, compressibility factor of the fluid. (A constant value is used for the length of the reactor)
- 13-24: ZKF, thermal conductivity of the fluid (9tu/hr-ft-*F) (A constant value is used.)
- 25-36: ZMU, viscosity of the fluid (lb/hr-it) (A constant value is used.)
- 37-48: HW, effective hest transfer coefficient through the wall of the sube. (Btu/hr-ft2-*F).
- 49-50: HC, heat transfer coefficient outside tube well (Btu/hr-ft²-*F). If flux or outer tube well temperature is to be specified supply a large number (e.g. 10⁸) for HC.

Card 5 - 10 F5.4 fields giving the mole fractions of ten possible components in the fluid. For MCH fuels, the first six may be used. These are:

1-6, MM; 7-12; H₂; 13-18, toluene; 19-24, an isomer of MCH which will not undergo reaction to taluene; 25-30, cyclohexane; 31-36, benzene.

Card 5 - 6 E-format fields of 12 characters.

1-12: G, mass velocity of feed (b/hr-ft2)

13-24: P, inlat pressure (psig)

25-35; TBARE, ...nlet temperature (°F)

37-43: initial conversions of three possible reactions.

49-50: These will normally be set equal to zero, except 50-72: when calculating the second reactor in a series where it is desired to refer conversions to the feed composition to the first reactor. In this case the feed composition specified on Carl 5 would be the initial feed to the first reactor. For the MCH system the three possible reactions are: 1 MCH Toluene + 3H₂, 2) MCH Isomer; 3) CH Benzene + 3H₂.

Card 7 - 215, 5% 12.4

1-5: INDLXT, a control character specifying the type of boundary condition to be used. The value of the control character also influences the interpretation of the data on this card and the following card (if used).

6-12: NFROP, specifies the number of E-format fields to be read on this card and the following. If NPROP is 5 or less, the following card will not be called for and should not be supplied except when calculating a series of adiabatic reactors in which case, Card 3 is always called for.

13-24: 25-36: 37-48: 49-30: 51-72: Boundary condition information read under the name DATPRO (I), I = 1, 5

Card 3 - 5 = 12.4. These fields offer a continuation of boundary condition information read as DATPRO (I), I = 5, 11.

If INDEXT = 1, the boundary condition information (DATPRO) is trusted as specified temperatures of the secondary fluid surrounding the reactor tube (*F). If HC is made very large, these temperatures are the refectively the satisfied wall temperatures of the tube. If NPROP = 1, that temperature is taken as a constant along the length of the tube with the value given by DATPRO (1), (Card 7, columns 15-24) If NPROP = 2, the temperature is taken to vary linearly along the length from an inlet end temperature of DATPRO (1) to an outlet end temperature of DATPRO (2). If NPROP = 3 or higher, (up to a maximum of 10), the DATPRO values are taken as equally spared points on an axial temperature profile. In the program, these specified points are fit with a series of parabolas to obtain values for intermediate points along the reactor.

If INDEXT = 2, the boundary condition information is referred to a secondary fluid surrounding the tube. Only the first three values of DATPRO are used (NFROF should be set - 3, and Card 3 should be omitted). Reasonable values should be supplied for HC and H/ in this case. DATPRO (1) is the inlet and temperature of the secondary fluid (°F). DATPRO (2) is the flow rate of the secondary fluid (1b/hr). For cocurrent flow this should have a positive sign and for countercurrent, a negative sign. DATPRO (3) is the heat capacity of the secondary fluid (Btu/lb-°F).

If INDEXT = 3, the boundary condition information is treated as a specified beat flux 1 Btu/nr-ft²) to the tube. A single specified value for a constant flux or a sequence of values for a flux profile are treated in a manner analagous to that used for temperature profiles when INDEXT = 1. The value of NPROP should agree with the number of points specified and Card 8 omitted unless NPROP is 6 or greater. The flux values as well as HC and HW should be based on the inside wall area of the tube.

If INDEXT = 4, a one-dimensional calculation will be made for a series of adiabatic reactors. These reactors will all be of the same length specified by DATPRO (11) in feet. The number of reactors is given by NPROP and the separate feed temperatures to these are given by the first NPROP values of DATPRO in *F. The composition of the feed to each reactor after the first is given by the composition of the product leaving the preceding reactor. Card 8 is always required for this calculation.

Output

Three types of output printing are available from the program:

1) A first page repeating input data; 2) Intermediate printouts giving radial profile information at a selected number of points along the reactor; and 3) A final tabular printout listing heat transfer coefficients used and giving axial profiles of temperatures, pressure and conversion.

The printout of input data is reasonably self-explanatory. At the top is given the label from the first card of the input deck followed by the names of components and their mole fractions in the feed. The remaining input data is repeated below in the same units used in the input data deck. The portions labeled ARATE, BRATE, CRATE printout rate constant parameters which are built into the program in subprogram REAXN. The bottom portion of the rage gives the boundary condition information.

The intermediate printout may be suppressed if not require as explained in the input section. Each intermediate printout occupies a separate page, giving the number of printout, pressure in psig, temperature of the "secondary fluid" in "F, mean conversion in each of the pertinent reactions, in moles/mole of feed and the mean temperature of the reacting fluid. This is followed by radial profiles of conversion and temperature. The radial profiles are at equal r² increments beginning at the centerline and ending at the outer limit of the packing. Then, the number of steps taken, the reactor length and heat added up to this length are given. Finally, the printout gives the mean fluid composition in both mole fraction and moles/mole of feed.

The final printout gives the heat-transfer coefficients used and a tabulation containing temperatures, pressure, conversions and heat added at NPRINT equally spaced points along the reactor length. H is the overall heat transfer coefficient from secondary fluid to the outside of the packing, HC and HW are as input, the coefficients across the secondary fluid and the metal wall. HF is the coefficient across the primary fluid film just inside the reactor wall. HP is the particle-to-fluid heat transfer coefficient inside the catalyst bed. The tabular part of the final printout lists: the length (in feet), heat adied (Btu/lb), average fluid temperature (°F), centerline temperature of the reactor (°F), temperature at the outside of packing (°F), temperature on the hot side of reactor wall (°F), pressure (psig), and conversions by each of the three possible reactions (moles/mole of feed).

Numerical Integration Aspects of the Program

The program operates to solve the differential equations using a simple forward difference approximation in the axial direction and higher order approximations in the radial direction for temperature and conversions. The radial variable used is r², thus increments in the radial direction are of equal area. The radial increment is set by M, the number of radial increments data loaded. From the standpoint of computing time, it is desirable to use a minimum value for M. Our experience has been that the minimum value of M=2 has given satisfactory accuracy. Hence, a larger number of radial increments would be used only to obtain a more precise definition of radial profiles. The axial step is data loaded. However, for stability of integration, a relationship between the axial and radial step must be met:

where:

k is the axial step (ft)

Dp is the particle diameter (ft)

Pe is the Peclet Number

R_t is the tube radius (ft)

The program is arranged to automatically reduce the data loaded axial step size, if necessary, to meet this criterion. From the standpoint of accuracy we have found no benefit in reducing the axial step below the value required for stability. Of course, from the standpoint of computing time it is desired to use the largest possible axial step. Our experience with computation times is limited to those on an IBM 7040. Here, the compiled form of the program (object docks) require about 0.75 min for loading and 0.5-0.7 min for calculation of a ten foot reactor tube (500 axial steps) with one reaction. The inclusion of the second reaction adds about 0.1-0.2 min to this calculation. Our experimental results with the smaller diameter tube (Rel.15x10-2 ft) require, a smaller axial step for stability (2000 axial steps for a 10 ft length) and take a proportionately longer calculation time. The calculation of the adiabatic reactors goes very much faster since no stability restriction is imposed and only one source term is required on each axial profile. For this type of calculation one is concerned only with the

effect of axial step size on accuracy. A step size of 0.02 ft has been satisfactory for the magnitude of rates and mass velocities for which we have been calculating up to this time.

Reactions in the MCH System

TO F NO. TO GA MANUAL TRANS.

The portions of the program specific to the MM fuel system have been set up to allow calculations for three possible reactions among six possible components. For a pure MCH feed, however, only the first two reactions and four components are necessary. The reactions in order are:

<u>J</u>	Reaction
1	MCH ☐ Toluene + 3H2
2	MCH → Isomer - not reversible
3	Ch == Benzene + 5Ho

For most screening calculations, it will be sufficient to deal only with the first reaction (JREACT=1 and KC=3). For more refined calculations the formation of isomers (principally ethyl and dimethyl cyclopentanes) should be taken into account as well (JREACT=2, KC=4). Under extreme conditions of low space velocity and high temperature as much as five percent of the MCH feed may be diverted by this nearly iscenthalpic reaction and thus be unavailable for the primary endothermic reaction. The third reaction was included in the program only because some of our experiments were carried out with a feed containing about 3.5 mol \$ cyclohexane.

The first and primary reaction is treated as reversible. Both equilibrium and reaction rate parameters are built into subprogram REAXN. rate of the reaction is calcu ated at each mesh point in the program by subroutine RATE, the reaction rate is calculated from the expression

$$R(\text{lb-mol/hr-ft}^3) = \frac{(1-\epsilon) (A_1A_2) \exp \left(\frac{B_1+B_2}{R_gT_g}\right) C_{MCH}}{1 + A_2 \exp \left(\frac{B_2}{R_gT_g}\right) C_{MCH}} \left[1 - \frac{P_{\text{tol}}P_{\text{H2}}^3}{P_{MCH}^K eq}\right]$$

CMCH is the local concentration of MCH (1b mol/ft³) in the gas phase. Ptol, PH2 and PMCH are the partial pressures of toluene, hydrogen and MCH (atm).

R is the gas constant (Btu/lb mcl - *R).

Tg is the surface temperature of the catalyst pellet (*R).

Ko is the equilibrium constant for the catalyst pellet (*R). K_{eq}^{o} is the equilibrium constant for the reaction (a function of temperature only).

A1, A2 and B1, B2 are rate parameters printed out with the input data as ARATES (1 and 2) and BR/TES (1 and 2).

AFAPL-TR-67-114 Part I

They have the values:

$$A_X = 7.5 \times 10^{12}$$
 $B_1 = -59000$ $A_2 = 4.5 \times 10^{-8}$ $B_2 = 54000$

 K_{eq} for this reaction is calculated from the expression:

$$M_{eq} = 4.0 \times 10^{20} \exp \left(-\frac{92500}{R_g T_g}\right)$$

The surface temperature of the catalyst pellet is related to the fluid temperature by the equation:

$$T_g = T_g + \frac{R\Delta HD_p}{6H_p}$$

This temperature and the reaction rate R, require an iterative calculation since each quantity depends on the other. They are calculated together in subroutine RATE.

The second reaction is treated as an irreversible first order catalytic reaction with the rate given by:

$$R_2$$
 (1b-mol/hr-ft³) = (1-6) C_{MCH} $A_3 \exp (B_3/R_gT_g)$

This is obviously a simple approximation to the rate, but has proved satisfactory in reproducing experimental results when small conversions (5%m or less) to isomer were observed. The values of the rate constant parameters: A_3 and B_3 are contained in subprogram REAX as ARATE (3) and BRATE (5). They have the values:

$$A_3 = 1.4 \times 10^7$$

 $B_3 = -30,000$

The third reaction is also treated in a simplified manner suitable only for small exacentraction of cyclohexane in the feed. The rate is given by:

$$R_3$$
 (1b mol/ft³-hr) = (1-\epsilon.) $C_{(H)}$ A_4 exp (B_4/R_gT_g) $\left\{1 - \frac{P_{BZ}P_{Hg}^3}{P_{CH}K_{eq}^4}\right\}$

where

$$A_4 = 3.25 \times 10^8$$

 $B_4 = -27000$

physical Basis of Computer Program for Simulating Packed Bed Reacter

Material and Energy Transport

The general equations describing material and energy transport within

a packed bed have been discussed in some detail previously^{a)} and will not be discussed here. We simplify the equations by making the following assumptions:

1. The flow is axially symmetric,

2. Axial diffusion and conduction may be neglected, and

3. Molecular diffusion may be neglected.

The last assumption is important. By imposing the same (eddy) diffusivity on all chemical species, it allows us to describe the material balance in terms of the conversion via each reaction rather than in terms of the concentration of each component. This reduces the number of equations from a maximum of ten to a maximum of three. In deriving the material-balance and associated equations the basis has been selected to be a "mass unit" of material equal to one mole of original feed. Conversions are thus expressed as moles of reaction per mole of original feed. Similarly mass velocities are expressed as these "mass units" per unit area per unit time.

The steady-state equations for material transport are written in terms of conversion, x_1 , as follows:

$$0 = \left(\frac{\partial x_j}{\partial z}\right) - \frac{\mu d_D}{R^2 \text{Fe}} \left(u \frac{\partial^2 x_j}{\partial u^2} + \frac{\partial x_j}{\partial u}\right) - \frac{R_j}{G} \qquad j = 1 \text{ to JREACT}$$
 (1)

In simplified notation these are written:

$$0 = \hat{\mathbf{x}}_j - \omega[\mathbf{u}\mathbf{x}_j^2 + \mathbf{x}_j^2] - \mathbf{s}_j \tag{2}$$

where the dots signify differentiation exially and the primes signify differentiation radially. The quantity ω does not vary with axial position. There will be one such equation for each independent chemical reaction. All will have the same value of ω and will differ only in the "source term", S_1 .

The steady-state equation for energy transport is written:

$$0 = \left(\frac{\partial T}{\partial z}\right) - \frac{4d_{p}}{R^{z}Pe}\left(u\frac{\partial^{z}T}{\partial u^{z}} + \frac{\partial T}{\partial u}\right) - \frac{4R}{GC_{p}R^{z}}\left(u\frac{\partial^{z}T}{\partial u^{z}} + \frac{\partial T}{\partial u}\right)$$

$$- \frac{4R}{GC_{p}R^{z}}\left[\frac{1}{K}\frac{\partial K}{\partial u}\right] u\left(\frac{\partial T}{\partial u}\right) - \frac{4d_{p}}{R^{z}Pe}\left[\frac{z}{C_{p}}\right] \frac{JREACT}{z}\left(\frac{\partial C_{p}}{\partial x_{j}}\right)\left(\frac{\partial x_{j}}{\partial u}\right)u\left(\frac{\partial T}{\partial u}\right)$$

$$- \frac{4d_{p}}{R^{z}Pe}\left(\frac{\partial C_{p}}{\partial x}\right)\left(\frac{\partial T}{\partial u}\right) u\left(\frac{\partial T}{\partial u}\right)\frac{1}{C_{p}} + \frac{1}{GC_{p}}\left[\frac{JREACT}{z}R_{j}Q_{j}\right]$$

$$(3)$$

The energy-transport equation has been written in such a form as to illustrate its similarity to the material-transport equation. In addition to the assumptions made for the material-transport equation, it has been assumed that the radial diffusivity for heat is the sum of an eddy diffusivity and a "non-eddy" diffusivity, K, the latter in turn being related in some manner to the transport

a) Beek, J., Advances in Chemical Engineering, Vol. 3, pp 203-271, New York, Academic Press, 1962.

of heat via conduction through the fluid, conduction through the packing, and radiation. In simplified notation equation (3) becomes:

$$0 = T - \theta[uT'' + T'] - S_t$$
 (4)

In general, since terms such as k, C_D , $\partial C_D/\partial T$, and $(\partial x_1/\partial u)$ vary axially as well as radially, it is convenient to lump all of the last five terms of equation (3) into the source term, S_T , when solving the problem on a computer. Equations (2) and (4) are then of the same general form.

The boundary conditions at the tube wall are:

$$xj = \left(\frac{\partial x_j}{\partial u}\right) = 0$$
 $j = 1$ to JREACT (5)

$$T' = \left(\frac{\partial T}{\partial u}\right) = -\frac{Ru(T - Tc)}{2\left(\frac{GC_{p}d_{p}}{p_{p}} + K\right)} = -H_{T}(T - T_{c})$$
 (6)

Average values of mass velocity, \bar{C} , heat capacity, C_p^0 , and thermal conductivity, K^0 , are used in applying equation (5).

Coolant Temperatures

For a sensibly heated, cocurrent coolant the differential equation is:

$$\dot{T}_{c} = \left(\frac{\partial T_{c}}{\partial z}\right) = \frac{2\pi Rh}{VC} \quad (T - T_{c}) \tag{7}$$

Pressure Drop

The differential equation for pressure d.oo is:

$$\dot{P} = \frac{\partial P}{\partial z} = \frac{rG^2 Ar}{Ec\rho d_B} \tag{3}$$

For the friction factor the equation of Erguna; is used:

$$f = \frac{1 - \epsilon}{\epsilon^3} \left(1.75 + 150 \, \frac{1 - \epsilon}{Rs} \right) \tag{9}$$

For gases the specific volume will be of the form:

$$\frac{1}{\rho} = \frac{\gamma R_0 T}{P_0^2} \tag{10.}$$

In terms of the conversion as defined in this report, the specific volume, averaged radially, becomes:

a) Ergun, S., Chem. Engr. Progress, 48, 89 (1952).

$$\frac{1}{\rho} = \frac{7RGT}{PM_0} \begin{bmatrix} JREACT \\ 1 + \sum_{j=1}^{KC} \begin{pmatrix} KC \\ \Sigma \\ k=1 \end{bmatrix} \hat{x}_j \end{bmatrix}$$
(11)

The variation of pressure within the bed has been included in the analysis because of its effect on the rate of gas phase reactions.

Heat-Transfer Coefficients

The heat-trensfer coefficient from the fluid to the catalyst particles is that suggested by Beek^{a)} for

$$h_p = \frac{k_f}{d_p} [3.22 (Re)^{\frac{1}{3}} (Pr)^{\frac{1}{3}} + 0.117 (Re)^{0.8} (Pr)^{0.4}]$$
 (12)

The heat transfer coefficient at the wall is given by:

$$h_{w=} \frac{k_f}{d_p} [0.203 (Re)^{\frac{1}{3}} (Pr)^{\frac{1}{3}} + 0.220 (Re)^{0.8} (Pr)^{0.4}]$$
 (13)

Effective Thermal Conductivity Within the Bed

Radial transport of energy occurs by a variety of means, to wit: eddy conduction, conduction through the fluid, conduction through the catalyst and radiation. In equation (3), it is assumed that the conductivity is the sum of the eddy and "noneddy" conductivities. The latter includes all other forms of conduction and is treated by the method suggested by Beek. a) The everall conductivity is:

$$K_{\text{OVERALL}} = \frac{C_{\text{D}}Gd_{\text{D}}}{\text{Fe}} + \frac{0.5 \text{ h}_{\text{D}}d_{\text{p}}k_{\text{g}}}{2k_{\text{g}} + 0.7 \text{ h}_{\text{D}}d_{\text{p}}} + 2\epsilon_{\text{T}}\sigma_{\text{T}}d_{\text{p}}T^{\text{g}}$$

$$EDDY \qquad \text{PACKING} \qquad \text{RADIATION}$$
(14)

Note that no expression for molecular conductivity of the fluid has been included.

Heat Capacity

The heat capacity of each component is assumed to be of the form:

$$(C_{D})_{K} = a_{K} + b_{K}T \tag{15}$$

The heat capacity of the mixture is assumed to be linear in composition.

Peclet Number

The Peclet number is assumed to be constant throughout the reactor.

a) Beek, J., Loc. cit.

```
AFAPI.-TR-67-114
               TABLE 75. SHELL DEVELOPMENT PACKED DED REACTOR PROGRAM
Part I
    SHELL DEVELOPMENT PACKED BED REACTOR PROGRAM SIBETC MAIN
                                                             3/30/67
          MAIN
                PROGRAM
           COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
         1MMINUS, MONE, MIVO, N. NPLUS, OMEGA, PHI(12), R. SIGMA(12),
         2 BARE(3.1), TREER, TPRIME(3), TSUBE(12.3.1), V(13.3), UM(12.3),
         3UT(12+3) + XBARM(3+3) + XSUBM(12+3+3) + Y + ZLENGT + ZM
          COMMON /XESEA/ AF, BARMO, BTUPPO, DP, E, EPSILN, EPSILR, FLARGE,
         1 G. GAMA, H. HC. HF. HP. HW. INDEXT. IPSUP. KINT. NPR. NPROC.
         2 NPROP. NSS. NSTEP. PE. REACTR. RGAS. ZKF. ZKS. ZMU
          COMMON/XFIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
          1C(5,3), CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
          2 PROF(10.5), PSI(3), QO(3), S(10.3), SR(12.3), ST(12.3),
         3 TPRINT(10,100), XI(3), ZBIGM(10)
           DIMENSION SUBJEC(12)
    \mathbf{C}
           START OF PROGRAM
           NRUN = 0
    C
           REIGRN POINT FOR STACKED RUNS
           READ AND WRITE TITLE OF RUN
        13 READ(5,1000) (SUBJEC(I), I=1,12), LIMIN, LAST
           LIMIN IS PLAG FOR ACCRIVIATED DATA DECK
     1000 FORMAT (12A6, 2X, II, 4X, II)
           WRITE(6,1001) (SUBJEC(1), I=1,12)
     1001 FORMAT, (1H1 20X, 12A6)
           ZERO SIGNIFICANT PARTS OF COMMON
           JRFRUN = 0
           ZLENGT = C.O
           CROSSK = 0.0
           NPR = 0
           DO 14 N=1.3
           P(N) = 0.0
           TBARE(N \cdot 1) = 0.0
           TPRIME(N) = 0.0
           XBARM(N+1) = 0.0
           XBARM(N+2) = 0.0
        14 \times BARM(N_{\bullet}3) = 0.0
           KINT = U
           NPROP = 0
           DC 15 I=1,10
        15 DATPRO(I) = 0.0
           NRUN = NRUN + 1
           JINPT = LIMIN + 1
    C
           COMPLETE DATA DECK REQUIRED FOR FIRST RUN
           IF(NRUN \cdot EQ \cdot 1) JINPT = 1
    C
           READ AND WRITE INPUT DATA
           CALL INPUT (JINPT)
    C
           CALCULATE CONSTANT COEFFICIENTS
           CALL MISCFL
           IF(JRERUN.EQ.1) GO TO 100
           CALL SRCOEF
           KVPRIM = 0
           CALL FXPCF()(UM)
           KVPRIM = 1
           CALL FXPCFG(UT)
           NSS = 0
           NP = 0
```

```
NPLUS = 1
                                                           Part I
      KIN* = 0
      ZLENGT = -CROSSK
      IF(1 SUP) 42.41.42
      PRINT OUT INITIAL PROFILE DATA
(
   41 CALL PRINT(1)
   42 CALL COMPOS
      RETURN POINT FOR AXIAL STEP IN INTERGRATION
   50 ZLENGT = ZLENGT + CROSSK
   52 N = MOD(NSS \cdot 3) + 1
      NPLUS = MOD(NSS+1.3) + 1
      LALL RATE
      CALL SOURCE
      KVPRIM = 0
      CALL EXPLIC(XSUBM, UM, SR)
      KVPRIM = 1
      CALL EXPLICITSUBE . UT . ST)
      CALL COOLEX
      IF(JRFRUN.FQ.1) GO TO 100
      NSS = NSS+1
   53 NP = NP + 1
      IF (NP.LT. NPR) GO TO 50
      KVPRIM = 0
      CALL AVERAG(XSUBM, XBARM)
      KVPRIM = 1
      CALL AVERAGITSUBE, TBARE)
C
      IPSUP SUPPRESSES INTERMEDIATE PRINT
      IF(IPSUP) 62,61,62
   61 CALL PRINT(1)
   62 CALL COMPOS
      NP - 0
      IF (NSS-LT-NSTEP) GO TO 50
   71 CALL PRINT(2)
  100 IF(LAST.NE.1) GO TO 13
  101 CALL EXIT
      FNU
$1BFTC INPU
      SUBROLTINE INPUT(JINPT)
      COMMON/ALL/ CROSSK, GBAR, HT. HM, JREACT, JRERUN, KC, KVPRIM, M,
     IMMINUS, MONE, MTWO, N. NOLUS: OMEGA. PHI(12). R. SIGMA(12).
     2TBARE(3,1), TREER, TPRIME(3, TSUBE(12,3,1), V(13,3), UM(12,3),
     3UT(12,3), XBARM(3,3), XSUBM(12,3,3), Y. ZLENGT, ZM
      COMMON /XESFA/ AF, BARMO, BTUPPO, DF, E, FPSILN, EPSILR, FLARGE,
     1 G. GAMA, H. HC. HF. HP. HW. INDEXT, IPSUP. KINT, NPR. NPROC,
     2 NPROP. NOS, NSTEP, PE, REACTR, RGAS, ZKF, ZKS. ZMU
      COMMON/XFIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
     1C(5,3), CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
     2 PROF(10,5), PSI(3), QO(3), S(10,3), SR(12,3), ST(12,3),
     3 TPRINT(10,100), XI(3), ZBIGM(10)
      M = MSAVF
      REACTR = RESAVE
C
      JINPT IS FLAG FOR ABBREVIATED DATA DECK
      GO TO (10,20,30), JINPT
C
      FULL DATA DECK
```

Edit Paramining

رني

10 READ(5,1000) R, REACTR, DP, AF, FPSILN, PE

```
AFAPL-TR-67-114
Part I
     1000 FORMAT(SF12.4)
          RESAVE = REACTR
          READ(5.1000) (ARATE(1). I=1.6)
          READ(5,1000) (BRATE(1), [=1,6)
          READ(5,1000) (CRATE(I), I=1,6)
          READ(5,1001) JREACT, KC, M, NPRI, IPSUP, CROSKO
     1001 FORMAT (515.F]2.4)
           MSAVE = M
          READ(5,1000) GAMA, 7KE, ZMU, HW, HC, DUM
           4 OR 5 CARD INPUT DECK
        30 READ(5,1002) (F(K), K=1,10)
     1002 FORMAT (10F6.4)
           3 OR 4 CARD DECK
        20 READ(5,1000) G. P(1), TBARE(1,1), (XBARM(1,1), I=1.3)
           READ(5,1003) INDEXT, NPROP, (DATPRO(I), I = 1.5)
     1003 FORMAT (216.5F12.4)
    \subset
           DUM IS USED TO LOAD 1.0 IF CARTESIAN COORDINATES
           H USED TO TRANSMIT INDICATION OF CARTESIAN COORDINATES TO MISCEL
    \mathbf{C}
           H = D(IM)
           IF((NPROP.LF.5).AND.(INDEXT.NE.4)) GO TO 21
           READ(5,1000) (DATERO(I), I=6,11)
           1F(INDEXT.FQ.4) REACTR = DATPRO(11)
           SECTION 2000 FOR PRINTOUT OF INPUT DATA
        21 WRITE(6+2000)
      2000 FORMAT (1HO, 55X, 10HINPUT DATA//)
           WRITE(6,2001) (ANAME(1,1), ANAME(2,1), I=1,5), (F(K),K=1,5)
      2001 FORMAT(1H + 16X, 9HCOMPONENT,4X,5(2A6,4X)/21X,1HF,8X,5(E12,4,4X))
           IF (KC.LT.6) GO TO 22
           WRITE (6,2001) (ANAME (1,1)), ANAME (2,1)), I=6,10), (F(K),K=6,10)
        22 WRITE(6,2002) JREACT, R, GAMA, KC, REACTR, ZKE, M, DP, ZMU, NPRI,
          1 AF. HW. IPSUP, FPSILN, HC. CRUSKO, PE
      2002 FCRMAT(1H0//17X+9HJRFACT = +4X+112+6X+3HR = +10X+1PE12+4+6X+
          1 6HGAMA = ,7X, F12.4/17X,4HKC = 9X, I12, 6X,8HREACTR = ,5X,E12.4,
          26X, 5HZKF = .8X,F12.4/17X.3HM = 10X.112.6X.4HDP = 9X.F12.4.6X.
          35HZMU = 8X,E12.4/17X, 8HNPRINT = ,5X,I12,6X, 4HAF = 9X,E12.4,6X,
          4 \text{ 4HHW} = 9X, F12.4/17X, THIPSUP = 6X, I12, 6X, BHEPSILN = ,5X,
          5E12.4,6X,4HHC = 9X,E12.4/17X,8HCROSKO = 5X,E12.4,6X,4HPE = 9X,
          5 E12.4//)
           WRITE(6,2003) (ARATE(I), BRATE(I), CRATE(I), I=1,6)
      2003 FORMAT(1H + 33X,5HARATE,19X,5HBRATE,19X,5HCRATE/6(30X,1PE12.4,
          1 12X, E12.4, 12X, E12.4/)//)
           WRITE(6,2004) G, P(1), TBARF(1,1), (XBARM(1,1), I=1,3)
      2004 FORMAT(1H /32X,4HG = 1PE12.4,7X,7HP(1) = 0PF6.1,10X,9HTINLET = ,
          1 + 6.1/32 \times 7HX(1) = F8.5 \times 8X \times 7HX(2) = F8.5 \times 9X \times 7HX(3) = F8.5 //1
           FOLLOWING PRINT DEPENDS ON BOUNDARY CONDITION
           GO TO (41,42,43,44) , INDEXT
        41 WRITE(6,2011) (DATPRO(1), I = 1,10)
      2011 FORMAT(1HO, 40X, 41HINDEXT = 1 COOLANT TEMPERATURE SPECIFIED/23X,
          1 4HDEGF, 4X, 5(4X, F8, 2)/ 31X, 5(4X, F8, 2))
           DO 51 I=1.10
        51 DATPRO(I) = DATPRO(I) +460. -TREFR
           GO TO 99
        42 WRITE(6,2012) (DATPRO(I), I = 1,3)
      2012 FURMAT(1HO, 39X+ 42HINDEXT = 2 CONSTANT HEAT CAPACITY COOLANT/
```

2 14H LB/HR, CP = OPF8.4, 13H BTU/LB-DEGF

1 18X. 14H INLET TEMP = .F8.2,20H DEGF, FLOW RATE = .1PE12.4.

```
AFAPL-TR-57-114
     DATPROTEL = DATPROTEL +460. - TREER
                                                          Part :
     60 10 99
  43 WRITE (6,2013) (DATPRO(1), 1=1,10)
2013 FORMATCINO, 42X, 35HINDEXT = 3 FLUX BOUNDARY COMULTION /1/X.
    1 12HFLUX PROFILE. Stax. [PE12.4]/12x. 12H HTU/HR- 150.5/6/, 5/2.6/1
     30 10 99
  44 WRITE(6.2014) NPROP. (DATPRO(1), I=1.10)
2014 FORMATCING, 38X, ICHINDEXE = 4, 2X, 12,3]H CONSECUTIVE ADJABATIC R
    IEACTORS / 17X. 14H INLET TEMP = .5(4x,13.7)/22x, 40DECE. 5x,
     2 5(4X + £8 = 2))
     1BARF(1.1) = DATPRO(1)
     00 61 1=1.10
  61 DATPRO(1) = DATPRO(1) + 460. - TREFR
     SET INTERNAL VARIABLES
  99 NPR = NPRI
     CROSSK = CROSKO
     TBARF(1,1) = TBARF(1,1) +460. - TREFR
     P(1) = 144. * (P(1) + 14.7)
 100 RETURN
     END
SIPETC PRIN
     SUBROUTINE PRINT(IDUM)
     IDUM IS FLAG FOR INTERMEDIATE OR TABULAR PRINT
     COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KYPRIM, M,
     1MMINUS, MONE, MTWO, N, NPLUS, OMEGA, PHI(12), R, SIGMA(12),
     2TBARF(3+1), TREFR, TPRIME(3), TSUBE(12+3+1), V(13+3), UM(12+3),
     3UY(12,3), XBARM(3,3), XSUBM(12,3,3), Y. ZLENGT. ZM
     COMMON /XESEA/ AF, BARMO, BTUPPO, DP, E, EPSILN, EPSILR, FLARGE,
     1 G. GAMA, H. HC. HF. HP. HW. INDEXT, IPSUP, KINT, NPR. NPROC,
     2 NPROP, NSS: NSTEP, PE: REACTR: RGAS: ZKF: ZKS: ZMU
     COMMON/XFIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
     1C(5,3), CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), E(10), P(3),
     2 PROF(10.5), PSI(3), QO(3), S(10.3), SR(12.3), ST(12.3),
     3 TPRINT(10,100), XI(3), ZBIGM(10)
      DIMENSION TOUR(12)
      GO TO (100,200) . IDUM
      SECTION 100 FOR INITIAL AND INTERMEDIATE PROFILES
  100 \text{ KPRINT} = \text{KINT} + 1
      WRITE(6+1000) KPRINT
 1000 FORMAT(1H1 40x, 34H**** INTERMEDIATE PRINTOUT NUMBER 13,5H ****//1
      PCUR = P(NPLUS)/144. - 14.7
      TPCUR = TPRIME(NPLUS) + TREFR - 460.
      WRITE(6,1001) NSS, PCUR, TPCUR
 1001 FORMAT(1HO 4X, 1HN 18X, 8HPRESSUPE 27X, 20HHOT-SIDE TEMPERATURE //
     1 3X, I4, 9X, F15,2, 24X, F15,2)
      TBCUR = TBARF(NPLUS+1) + TREER - 460.
     WRITE(6,1002)
 1002 FGRMAT(1H0 4X: 6HJREACT 7X: 4HXBAR 17X: 6HJREACT 7X: 4HXBAR 16X:
     1 6HUREACT 7X, 4HXBAR 20X, 4HYBAR //)
      WRITE(6,1003) (J, XBARM(NPLUS,J), J=1,JREACT)
 1003 FORMAT (1H 7X, II, 4X, F15.8, 14X, II, 4X, E15.8, 13X, II, 4X, E15.8)
```

Å

WRITE(6,1004)

1004 FORMAT(1H+ 102X,F15.2) WRITE(6,1005)

TBCUR

1005 FORMAT(3H0 M15X,4HCUNV30X,4HCONV 29X,4HCONV16X,11HTEMPERATURE//)

```
AFAPL-TR-67-114
          DO THE IST MONE
Part I
           WRITE 16 + 1008 | 1 + IXSUBMIT + NPUUD + U + U + UREACT)
      1006 FORMAIL IX. 12. 10%, F15.3. 19%, F15.8. 18%, F15.81
           TCUR(I) = TSURF(I, NPLUS-11 + TRFER - 460.
      101 WRITE (6+100T) TOUR(1)
      1007 FORMAT(1H+ 102%, F15.2)
           ZZELEN = ZLENGT + CROSSK
           WRITE (6.1008) NSS. 77ELEN
      JOOR ECRMATCHCAOX. 15.22H STEPS HAVE BEEN TAKEN/41X.9HLENCTH = E15.8//1
           CO TO 5000
           SECTION 200 FOR FINAL TABULAR PRINT
       200 WRITE (6.2000)
      2000 (GRMAT(TH) 40X+24H**** FINAL PRINTOUT ****//)
           WRITE(6:2001) H. HC. HW. HC. HP
      200] FORMAT (1HO 34X, SOHHEA) FRANSFER COEFFICIENTS USED (BTU/HR-FTSQ-DF
          3GF1/(5X) 4HH = F12.4, 2X.5HHC = E12.4.2X, 5HHW = F12.4.2X,
          2 5F 1F = F12.4.2X. 5HHP = F13.4///)
           WRITE (6,2002)
      2002 FORMAT (1HO 8X, 6HLENGTH 4X, 6HBTU/LB 6X, 4HTAVG 9X, 3HTCL 8X,
          1 3HTM1 8X. 3HTHS 8X. 3H P 9X. 2HX1 9X. 2HX2 9X. 2HX3)
                  I=1.KINT
       201 WRITE (6.2003) (TPRINT(J.I), J=1.10)
      2003 FORMAT (1H 8X, F. 2, 6:4X, F7.1), 3(4X, F7.5))
      5000 RETURN
           FND
     SIBFIC MISC
           SUBROUTINE MISCEL
           COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
          1MMINUS, MONE, MIWO, N, NPLUS, OMEGA, PHI(12), R, SIGMA(12),
          21BARE(3,1), TREFR, TPRIME(3), TSUBE(12,3,1), V(13,3), UM(12,3),
          3UT(12,3), XBARM(3,3), XSUSM(12,3,3), Y, ZLENGT, ZM
           COMMON /XESEA/ AF, BARMO, BTUPPO, DP, E, EPSILN, EPSILR, FLARGE,
          1 C. GAMA, H. HC. HE. HP. HW. INDEXT. IPSUP, KINT. NPR. NPROC.
          2 HPROP, NSS, NSTEP, PE, REACTR, RGAS, ZKF, ZKS, ZMU
           COMMON/XEIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
          1C(5,3), CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
          2 PROF(10,5), PSI(3), QO(3), S(10,3), SR(12,3), ST(12,3),
          IF (INDEXT.EQ.4) M=0
           ZM = M
           MONE = M + 1
           MMINUS = M - 1
           MTWC = M + 2
           ADJUST AXIAL STEP SIZE TO MEET STABILITY CRITERION
      (
            TELINDEXT. FQ.41 GO TO 42
           GMEGA = 4.0*DP/(R**2*PE)
            TESTK = 0.25*(j.0+3.0*H)/(GMEGA*ZM**2)
         43 IF(CROSSK.LE.TESTK) CO TO 42
           CPOSSK = CROSSK/2.0
           CO TO 43
           MEAN MW AND MOLAL FLOW OF FEED
         42 \text{ BARMO} = 0.0
           0.041 I = 1.60
```

41 BARMO = BARMO + F(I)*ZBIGM(I)

GBAR = G/BARMO

```
AFAPL-TR-67-114
\overline{\phantom{a}}
      CALCULATE PRINT INTERVAL AND AXIAL STEP
                                                             Fart I
      ZNP - NPR
      INSIEP - REACTRICROSSK
      ZNPRT = ZNSTED/ZNP
      ZNPRIA = ZNPRY + 0.5
      NPR = ZNPRTA
      ZNERTA - NER
      ZNSTEP = ZNPRTA * ZNP
      CROWSK = REACTRIZATED
      NSTEP = ZNSTEP
      COFFFICIENTS FOR SIMPSONS RULE INTEGRATION
      IF (INDEXT. FQ-41 GO TO 30]
      GO TO(35,32,33,32,34,37,35,32,35,32), M
   32 \text{ SIGMA}(1) = 1.07(3.0*2M)
      DØ 3 0 1=2.M
      IFXP = I
  320 SIGMA (1) = (3.0+(-1.0)**IEXP)/(3.0*7M)
      SIGMA(MONE) = SIGMA(1)
      GO TO 301
   33 \text{ SIGMA}(1) = 0.125
      SIGMA(4) = SIGMA(1)
       SIGMA(2) = 0.375
      SIGMA(3) = SIGMA(2)
      GC TO 301
   34 \text{ SIGMA}(1) = 0.06597222
       SIGMA(6) = SIGMA(1)
       51GMA(2) = 0.26041667
       SIGMA(5) = SIGMA(2)
      SIGMA(3) = 0.17361111
      SIGMA(4) = SIGMA(3)
      GO TO 301
      M-VALUES OF 1, 7, AND 9 ARE FORBIDDEN
   35 WRITE (6:1000) M
 1000 FORMAT (1H1 +10X+ 21H FRROR+MISCELLANEGUS+ + 4H M = 15+ 25HNOT A
     1 PERMISSIBLE VALUE. / 10X, 41H THE NEXT SET OF DATA WILL BE PROCE
     25SFD.
       JRERUN = 1
       GO TO 100
       COFFFICIENTS FOR HEAT CAPACITY AND ITS DERIVATIVES WITH TEMP AND
        CONVERSION
  301 DO 333 ICT = 1.5
      DO 333 JCT = 1+JREACT
  333 C(ICT,JCT) = 0.0
       DO 10 K = 1.KC
       C(1,1) = C(1,1) + F(K)*A(K)
   10 C(2+1) = C(2+1) + F(K)*B(K)
       DO 12 J=1.JRFACT
       DØ 11 K=1.KC
       C(3,J) = C(3,J) + A(K)*S(K,J)
       C(4,J) = C(4,J) + B(K)*S(K,J)
   11 C(5,J) = 0.5*C(4,J)
   12 CONTINUE
       DO 500 I=1.MONE
       DO 501 J=1.JRFACT
       SET INITIAL FLAT PROFILES OF TEMP AND CONVERSION
   501 \times SUBM(I \cdot I \cdot J) = \times KBARM(I \cdot J)
```

```
AFAPL-TR-67-114
Part I
                500 \text{ TSUBF}(1,1,1) = \text{TBARE}(1,1)
                          HEAT CAPACITY OF FEED AND INITIAL ENTHALPY
                          C3JX = 0.0
                          \zeta 4JX = 0.0
                          ENTHO = 0.0
                          DO 900 J=1, JREACT
                          FNTHO = ENTHO + QO(J) *XBARM(1.J)
                          C3JX = C3JX + C(3,J) BARM(1,J)
                 900 \text{ C4JX} = \text{C4JX} + \text{C(4,J)} \text{ XBARM(1,J)}
                          CPO = C(1+1)+C3JX + (C4JX + C(2+1))*TBARE(1+1)
                          BTUPPO = ENTHO/BARMO + (C(1,1)+C3JX+0.5*(C4JX+C(2,1))*TBARE(1,1))*
                             TBARE(1+1)/BARMO
                          HEAT TRANSFER COEFFICIENTS AND PARAMETERS
            C
                   18 ZNPR = CPO*ZMU/(ZKF*BARMO)
                          ZNRE = DP*G/ZMU
                          HP=ZKT/DP*(3,22*/ZNRE*ZNPR)**U.333333+0.117*ZNRE**0.8*ZNPR**0.4)
                          51GMAR = 1.712F-9
                          RGAS = 1544.0
                           GC = 4.13*10.0**8
                           COEFFICIENTS FOR PRESSURE DROP CALCULATION
                          FSMALL = (1.-EPSILN)/EPSILN**3*(1.75+150.0*(1.-EPSILN)/ZNRE)
                          FLARGE = FSMALL*AF*GBAR**2*BARMO*GAMA*RGAS*CROSSK/GC/DP
                           DERIVATIVE OF VOLUME WITH CONVERSION
             C
                          DO 70 J=1.JREACT
                          DELTA(J) = 0.0
                           DO 69 K=1,KC
                    69 DELTA(J) = DFLTA(J) + S(K,J)
                    70 CONTINUE
                           SM = 0.0
                           DO 72 J=1. JREACT
                    72 SM=SM+DELTA(J)*XBARM(1+J)
                           PSI(1) = (TBARE(1.1) + TREFR)*(1.0+SM)
                           IF(INDEXT.EQ.4) CALL ADIAID
                           IF(INDEXT.EQ.4) GO TO 100
                           XI(1) = 0.6*HP*DP*ZKS/(2.0*ZKS+0.7*HP*DP)
                           XI(2) = 2.0*EPSILR*SIGMAR*DP
                           ZKO = XI(1) + XI(2)*(TO + TREFR)**3
                           0.0 = MH
                           HF=ZKF/DP*(0.203*(ZNRE*ZNPR)**0.333333+0.22*ZNRE**0.8*ZNPR**0.4)
                           H = 1.0/(1.0) + 1.0) + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 +
                           HT = H&R*PE/(Z.O*GUAR*DP)
                            IF(INDEXT.EO.2) GO TO 23
                            IF (NPROP.FQ.1) GO TO 23
                           COEFFICIENTS FOR AXIAL PROFILES OF FLUX OR TEMPERATURE
              C
                           FINK = NPROP -1
                           NPROC = 1
                            JE(NPROP.EQ.2) GO TO 21
                           RFINK = REACTR/FINK
                            NGUAD = NPROP-2
                           DO 22 I=1, NOUAD
                            FI = i
                            PROF(1,2) = DATPRO(1+1)
                            PROF(1:3) = 0.5*(DATPRO(1+2)-DATPRO(1))/RFINK
                            PROF(I_94) = (0.5*(DAYPRO(I+2)+DATPRO(I))+DATPRO(I+1))/RFINK**2
                            PROF(I_{\bullet}I) = RFINK*FI
```

22 PROF(I.5) = PROF(I.1) + 0.5*RFINK

```
PROF(NQUAD.5) = REACTR + 0.5
                                                           Part I
      GO TO 23
  21 PROF(1,1) = 0.0
     FROF(1,2) = DATPRO(1)
      PROF(1.3) = (DATPRO(2)-DATPRO(1))/REACTR
      PROF(1.4) = 0.0
      PROF(1.5) = RFACTR + 0.5
  23 IF(INDEXT.EQ.3) GO TO 26
      TPRIME(1) = DATPRO(1)
      IF(INDEXT.FQ.1) GO TO 100
      SENSIBLE COOLANT
   24 CCOOL = DATPRO(3)
      WCOOL = DATPRO(2)
      E = H*CROSSK/WCGGL/CCGGL
      GO TO 100
      FLUX CONDITION
   26 TPRIME(1) = DATPRO(1)/H + TBARE(1.1)
  100 RETURN
      END
SIBFTC ADIA
      SUBROUTINE ADIAID
      COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
     1MMINUS, MONE, MTWO, N, NPLUS, OMEGA, PHI(12), R, SIGMA(12),
     2TBARE(3,1), TREFR, TPRIME(3), TSUBE(12,3,1), V(13,3), UM(12,3),
     3UT(12,3), XBARM(3,3), XSUBM(12,3,3), Y, ZLENGT, ZM
      COMMON /XESEA/ AF, BARMO, BTUPPO, DP, E. EPSILN, EPSILR, FLARGE,
     1 G. GAMA, H. HC. HF. HP. HW. INDEXT. IPSUP, KINT, NPR. NPROC.
     2 NPROP, NSS, NSTEP, PE, REACTR, RGAS, ZKE, ZKS, ZMU
      COMMON/XFIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
     1C(5,3), CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
     2 PROF(10,5), PSI(3), QO(3), S(10,3), SR(12,3), ST(12,3),
     3 TPRINT(10,100), XI(3), ZBIGM(10)
      IPSTOR = IPSUP
      NSECT = 1
      IPSUP = 1
      Y = CROSSK/GBAR
   40 \text{ NSS} = 0
      NP = 0
      NPLUS = 1
      ZLENGT = -CROSSK
      CALL COMPOS
   50 ZLENGT = ZLENGT + CROSSK
      N = MOD(NSS+3) + 1
      NPLUS = MOD(NSS+1.3) + 1
      CALL RATE
      TERM1 = 0.0
      TERM2 = 0.0
      TERMA = 0.0
      DØ 29 J = 1,JREACT
      TERM1 = TERM1 + (C(3,J)*XSUBM(1,N,J))
      TERM2 = TERM2 + (C(4,J)*XSUBM(1,N,J))
   29 TERMA = TERMA+(SR(1+J)*(QO(J)+TSUBE(1+N+1)*(C(3+J)+C(5+J)*
     1 TSUBE(1.N.1)))
      CP = C(1,1) + TERM1 + (TERM2 + C(2,1))*TSUBE(1,N,1)
   30 ST(1,1) = -TERMA/CP
```

```
AFAPL-TR-67-114
Part I
           TSUBE(1,NPLUS,1) = TSUBE(1,N,1) + Y*ST(1,1)
           DØ 31 J=1, JREACT
           XSUBM(1 \cdot NPLUS \cdot J) = XSUBM(1 \cdot N \cdot J) + Y*SR(1 \cdot J)
       31 XBARMINPLUS.J) = XSUBM(1.NPLUS.J)
           TBARE (NPLUS+1) = TSUBE(1+NPLUS+1)
           CALL COOLEX
           IF(JRERUN.EQ.1)
                             GO TO 99
           NSS = NSS + 1
           NP = NP + 1
           IF (NP.LT.NPR) GO TO 50
           CALL COMPOS
           NP = 0
           IF (NSS.LT.NSTFP) GO TO 50
           IF (NSECT. EQ. NPROP) GO TO 98
           NSECT = NSECT + 1
           KINT = KINT + 1
           DO 79 I=1,10
        79 TPRINT(I,KINT) = 0.0
           DO 80 J=1,JRFACT
           XSUBM(1,1,J) = XSUBM(1,NPLUS,J)
        80 XBARM(1,J) = XSUBM(1,1,J)
           TBARE(1,1) = DATPRO(NSECT)
           TSUBE(1,1,1) = TBARE(1,1)
           P(1) = P(NPLUS)
           SM = 0.0
           DO 81 J=1, REACT
        81 SM = SM + DELTA(J) * XBARM(1,J)
           PSI(1) = (TBARE(1,1) + TREFR)*(1.0 + SM)
           GO TO 40
        98 H = 0.0
           HC = 0.0
           HW = 0.0
           HF = 0.0
           CALL PRINT(2)
        99 IPSUP = IPSTOR
           JRERUN = 1
       100 RETURN
           END
     $IBFTC SRCO
           SUBROUTINE SRCOEF
           CALCULATES CONSTANT COEFFICIENTS USED IN ENTHALPY SOURCE TERM
           COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
          1MMINUS, MONE, MTWO, N. NPLUS, OMEGA, PHI(12), R. SIGMA(12),
          2TBARE(3,1), TREFR, TPRIME(3), TSUBE(12,3,1), V(13,3), UM(12,3),
          3UT(12,3), XBARM(3,3), XSUBM(12,3,3), Y, ZLENGT, ZM
           COMMON /FORSOR/ VCO(13)
           DO 10 1=2,M
           FI = I
        10 PHI(I) = (MEGA*ZM*(FI-1.0)*GBAR/4.0
           PHI(MONE) = OMEGA*(HT**2)*GBAR
           ZMOR = 2.0*ZM/R**2
```

V(1,1)= -3.0*ZMOR V(1,2) = 4.0*ZMOR V(1,3) = -ZMOR DO 11 I=2,M

```
V(I_*1) = ZMOR*(2.0*FI - 3.0)
     V(I_{•}2) = -4.0*2MOR*(FI-1.0)
   11 \ V(1,3) = ZMOR*(2.04F[-1.0])
     V(MONE_{+}1) = -2M*2MOR
     V(MONE+2) = 8.0*7M*7MOR
      V(MONE,31 - -14.0*(ZM/R)**2
      V(MTWO_{\bullet}1) = HT*(4.0+12.0*ZM)/R**2
      DO 12 1=2.M
      FI = I
   12 \text{ VCO}(I) = 7M/R**2*(FI-1.0)
      VCO(MONE) = 4.0#HT*ZM/R**2
  100 RETURN
      END
$IBFTC SOUR
      SUBROUTINE SOURCE
C
      THIS ROUTINE CALCULATES ENTHALPY SOURCE TERM
      COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
     1MMINUS, MONE, MTWO, No NPLUS. OMEGA. PHI(12), R. SIGMA(12),
     2TBARE(3,1), TREFR, TPRIME(3), TSUBF(12,3,1), V(13,3), UM(12,3),
     3UT(12,3), XBARM(3,3), XSUBM(12,3,3), Y, ZLENGT, ZM
      COMMON /XFSFA/ AF, BARMO, BTUPPO, DP, F, FPSILN, FPSILR, FLARGF,
     1 G. GAMA. H. HC. HE. HP. HW. INDEXT, IPSUP, KINT, NPR. NPROC.
     2 NPROP, NSS, NSTEP, PE, REACTR, RGAS, ZKE, ZKS, ZMU
      COMMON/XEIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
     1C(5,3), CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
     2 PROF(10,5), PSI(3), QO(3), S(10,3), SR(12,3), ST(12,3),
     3 TPRINT(10,100), XI(3), ZBIGM(10)
      DIMENSION XISTAR(11), SPRIME(11), SPRIM2(11), SPRIM3(11),
     1 SPRIM4(11), CP(12)
      COMMON /FORSOR/ VCO(13)
      DO 30 I= 1, MONE
C
      RADIAL THERMAL CONDUCTIVITY
      XISTAR(I) = XI(I) + XI(2)*(TSUBF(I+N+1)+TREFR)**3
\subset
      EFFECT OF TEMP ON HEAT OF REACTION
      TFRMI = 0.0
      TFRM2 = 0.0
      TFRMA = 0.0
      DO 29 J=1, JREACT
      TERM1 = TERM1 + (C(3,J)*XSUBM(I,N,J))
      TERM2 = TERM2 + (C(4,J)*XSUBM(1,N,J))
      REACTION CONTRIBUTION
C
   29 TERMA = TERMA + (SR(I,J)*(QO(J) + TSUBE(I,N,1)*(C(3,J)+C(5,J)
     1 *TSUBE([;N,1))))
      LOCAL HEAT CAPACITY
C
      CP(I) = C(I+1) + TERM1 + (TERM2 + C(2+1))*TSUBE(I+N+1)
   30 SPRIME(I) = -TERMA
      DC = CP(MONE) + XISTAR(MONE) * PF/(GBAR*DP)
      UT(MTWO_{1}) = CT(MTWO_{2}) / DC
      FILDEL = TPRIME(N) -TSUBE(MONE,N,1)
      RADIAL VARIATION IN HEAT CAPACITY
C
      SPRIM2(1) = 0.0
      DO 41 I= 2,M
      IPLUS = I + 1
      IMINUS = I - 1
```

1 1 = 1

```
AFAPL-TR-67-114
Part I
                                TERMC = 0.0
                                DO 40 J=1+JREACT
                       40 TFRMC = TERMC+(C(3,J)+C(4,J)*TSUBE(I,N,1))*2.0*(XSUBM(IPLUS,N,J)
                              1 -XSUBM(IMINUS,N,J))
                       41 SPRIM2(I) = PHI(I)*(TSUBF(IPLUS\cdot N\cdot 1)-TSUBE(IMINUS\cdot N\cdot 1))*(CP(IPLUS)
                              1 -CP(IMINUS) + TERMC)
                                 TERMD = 0.0
                                DO 45 J=1, JREACT
                       45 TERMD = TERMD + ((4,J)*XSUBM(MONE,N,J)
                                 SPRIM2(MONE) = PHI(MONE)*(FILDEL/DC)**2*(C(2:1) + TERMD)
                                 NON-EDDY RADIAL CONDUCTIVITY
                        50 SPRIM3 (1) = (V(1,1)*TSUBE(1,N,1)+V(1,2)*TSUBE(2,N,1)+V(1,3)*
                              1 TSUBF(3,N,1))*XISTAR(1)
                                 DC 51 1=2.M
                                 IMINUS = I - I
                                 IPLUS = I+1
                        51 SPRIM3(I) = \{V(I_{2}) * TSUBE(IMINUS_{2},N_{2}) * V(I_{2}) * TSUBE(I_{2},N_{2}) * V(I_{2},N_{2})                     1 TS- BE(IPLUS • N • 1)) *XISTAR(I)
                        52 SPRIM3(MONF) = (V(MCNE,1)*TSUBE(MMINUS.N,1)+V(MONF,2)*TSUBE(M,N,1)+
                              1V(MONE,3)*TSUBF(MONE,N,1)+V(MTWO,1)/DC*FILDEL)*XISTAR(MONE)
                                 RADIAL VARIATION IN CONDUCTIVITY
               \mathbf{C}
                                 SPRIM4(1) = 0.0
                                 DO 60 I=2.M
                        60 SPRIM4(I) = VCO(I) * (TSUBE(I+1*N*1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XISTAR(I+1) - TSUBE(I-1*N*1)) * (XIS
                               1 XISTAR(I-1))
                        61 SPRIM4(MONE) = VCO(MONE)*(1.5*XISTAR(MONE)- 2.0*XISTAR(M) +0.5*
                               1XISTAR(MMINUS))*FILDEL/DC
                                 DO 70 1=1.MONE
               C
                                 FINAL SOURCE TERM
                         70 ST(I-1) = (1.0/CP(I))*(SPRIME(I)+SPRIM2(I)+SPRIM3(I)+SPRIM4(I))
                     100 RETURN
                                 FND
                SIBFTC RATE
                                  SUBROUTINE RATE
                                  SUPPLIES REACTION RATE CALCULATIONS--SPECIFIC FOR FUEL.
               C
                                     ROUTINE FOR MCH.
                                  COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
                               1MMINUS, MONE, MIWO, N, NPLUS, OMEGA, PHI(12), R, SIGMA(12),
                               2TBARE(3,1), TREFR, TPRIME(3), TSUBE(12,3,1), V(13,3), UM(12,3),
                               3UT(12.3), XBARM(3.3), XSUBM(12.3.3), Y, ZLENGT, ZM
                                  COMMON /XESEA/ AF, BARMO, BTUPPO, DP, E, EPSILN, EPSILR, FLARGE,
                               1 G. GAMA, H. HC. HF. HP. HW. INDEXT, IPSUP, KINT, NPR, NPROC.
                               2 NPROP, NSS, NSTEP, PE, REACTR, RGAS, ZKF, ZKS, ZMU
                                  COMMON/XFIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
                               1C(5,3), CRATF(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
                               2 \text{ PROF}(10.5), \text{ PSI}(3), \text{ QO}(3), \text{ S}(10.3), \text{ SR}(12.3), \text{ ST}(12.3),
                               3 TPRINT(10,100), XI(3), 2BIGM(10)
                                  DIMENSION CEF(10), YX(10), TSURF(11), TDELT(11)
                                  PAT = P(N) / 2120.
                C
                                  CALCULATE MOLE FRACTIONS
                                  DO 9 I=1, MONE
                                  DØ 10 K=1.KC
                                  XNUME = F(K)
                                  XDENO = 1.0
```

DO 11 J=1, JREACT

```
XNUME = XNUME + S(K*J)*XSUBM(I*N*J)
                                                            Part I
   11 XDENO = XDENO + DELTA(J)*XSUBM(I,N,J)
   10 YX(K) = XNUME/XDEEO
      GROUP = \{YX(Z) # * 3\} * \{PAT # * 3\}
      XKGR1 = YX(3)/YX(1)*GROUP
      XKGR2 = YX(6)/YX(5)*GROUP
C
      BEGIN ITERATION FOR SURFACE TEMPERATURE
    8 TCOMP = (TDFLT(1) + TCOMP)/2.0
      ISURF(I) = TREER + ISUBE(I,N.1) + TOMP
      GR2 = P(N)/(GAMA*RGAS*TSURF(I))
      CEE(1) = GR2*YX(1)
      RT = 1.987 * TSURF(I)
      RKRC = ARATE(2)*EXP(BRATE(2)/RT)*CFE(1)
      RATEK = ARATE(1)*EXP(BRATE(1)/RT)
      XKEQI = EQ(1,1) *EXP(EQ(1,2)/RT)
      RFQ1 = 1.0 - XKGRI/XKEQ1
C
      RATE OF MCH TO TOLUENE
      SR(I+1) = (1.0-EPSILN)*REQ1*RATEK*RKRC/(1.0+RKRC)
      TDELT(I) = -GO(1)*SR(I+1)*DP/((I+0-EPSILN)*HP*6+0)
      IF(ABS(TCOMP-TDELT(1)).GT.1.0) GO TO 8
      IF(JREACT.FQ.1) GO TO 22
C
      RATE OF CRACKING
      SR(I*2) = (I*-EPSILN)*(CEE(I))*ARATE(3)*EXP(BRATE(3)/RT)
      IF(JRFACT.FQ.2) GO TO 21
      XKEQ2 = EQ(3+1)*EXP(EQ(3+2)/RT )
      RFQ2 = 1.0 - XKGR2/XKFQ2
\overline{\phantom{a}}
      RATE OF CHITO BENZENE
      SR(I_{3}) = (1_{\bullet}-FFSILN)*GR2*YX(5)*4RATE(4)*EXP(BRATE(4)/RT)*REQ2
      GO TO 9
   22 SR(1.2) = 0.0
   21 SR(1.3) = 0.0
    9 CONTINUE
  100 RETURN
      END
SIBFTC REAX
      SUPPLIES DATA PERTINENT TO REACTION AND REACTANTS--SPECIFIC FOR
       FUEL. THIS ROUTINE FOR MCH
      BLOCK DATA
      COMMON/ALL/ CROSSK: GBAR: HT; HM; JREACT; JRERUN; KC; KVPRIM; M;
     1MMINUS, MONE, MTWO, N, NPLUS, OMEGA, PHI(12), R, SIGMA(12),
     2TBARE(3,1), TREFR, TPRIME(3), TSUBE(12,3,1), V(13,3), UM(12,3),
     3UT(12,3), XBARM(3,3), XSUBM(12,3,3), Y, ZLENGT, ZM
      COMMON /XESEA/ AF, BARMO, BTUPPO, DP, E, EPSILN, EPSILR, FLARGE,
     1 G, GAMA, H, HC, HF, HP, HW, INDEXT, IPSUP, KINT, NPR, NPROC,
     2 NPROP, NSS, NSTEP, PE, REACTR, RGAS, ZKE, ZKS, ZMU
      COMMON/XEIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
     1C(5,3), CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
     2 PROF(10,5), PSI(3), QO(3), S(10,3), SR(12,3), ST(12,3),
     3 TPRINT(10,100), XI(3), ZBIGM(10)
\boldsymbol{C}
      HEAT CAPACITIES AT TREFR
      DATA A/ 79.1, 7.099, 55.9, 79.1, 67.33, 45.41, 4*0.0/
      TEMPERATURE COEFFICIENT OF CP
C
      DATA B/ 0.0363, 0.00272, 0.0238, 0.0363, 0.0302, 0.0169, 4*0.0/
C
      MOLECULAR WEIGHTS
      DATA ZBIGM/98.189,2.016,92.141,98.189,84.162,78.114,4*0./
```

```
STOICHIOMETRIC FACTORS
C
      DATA S/-1.0, 3.0, 1.0, 7*0.0, -1.0, 2*0.0, 1.0, 6*0.0, 0.0, 3.0,
     1 2*0.0, -1.0, 1.0, 4*0.0/
      EQUILIBRIUM PARAMETERS
(
      DATA FO/ 4.0E20, 0.0, 4.0E20, -92500.. 0.0, -93900./
C
      HEATS OF REACTION
      DATA QO/ 92500., 0.0, 93900./
      DATA ZKS. FPSILR. TRFFR/ 0.130, 0.3, 1460./
\boldsymbol{\mathsf{C}}
      NAMES OF COMPONENTS
                                    HYDROGEN
                                                 TOLUENE
                                                             C7 ISOMER CYC
      DATA ANAME/120H
                          MCH
     1LOHEXANE
                  BENZENE
      DATA ARATE/ 7.5 E12, 4.5 E-8, 1.4 E7, 3.25E8, 2*0.0/
      DATA BRATE / -59000., 54000.. -30000.. -27000., 2*0.0/
$IBFTC EXCO
      SUBROUTINE EXPCEDIUMUT)
      CALCULATES CONSTANT COEFFICIENTS USED IN AXIAL STEP
C
      COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
     IMMINUS, MONE, MTWO, N. NPLUS, OMEGA, PHI(12), R. SICMA(12),
     2TBARE(3,1), TREFR, TPRIME(3), TSUBE(12,3,1), V(13,3), U"(12,3),
     3UT(12.3), XBARM(3.3), XSUBM(12.3.3). Y. ZLENGT, ZM
      DIMENSION UMUT(12,3)
      UMUT(1,1) = 1.0 - (1.5*OMEGA*ZM*CROSSK)
      UMUT(1,2) = 2.0*OMEGA*ZM*CRO!SK
      UMUT(1,3) = -OMEGA*ZM*CROSSK/2.0
      DØ 10 I=2,M
      FI = I
      UMUT(1,1) = CROSSK/2.0*ZM*(2.0*FI-3.0)*OMEGA
      UMUT(I \cdot 2) = 1.0 - 2.0 * CROSSK * ZM * (FI - 1.0) * OMEGA
   10 UMUT(1,3) = CROSSK/2.0*ZM*OMEGA*(2.0*FI-1.0)
   11 UMUT(MONF,1) = -OMEGA*CROSSK*(ZM**2)/2.0
      UMUT(MONE * 2) = 4.0*OMEGA*CROSSK*(ZM**2)
      UMUT(MONE_{3}) = 1.0 - (CROSSK*OMEGA*3.5*(ZM**2))
   20 Y = CROSSK/GBAR
       1F(KVPRIM) 12,100,12
   12 UMUT(MTWO,2) = HT*CROSSK*OMEGA*(1.0 + 3.0*ZM)
   100 RETURN
       END
SIBFIC FXPL
       SUBROUTINE EXPLICIPAT, UMUT, SRST)
       AXIAL STEP - ARGUMENTS DISTINGUISH CONVERSION FROM ENTHALPY
       COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
      IMMINUS, MONE, MIWO, N. NPLUS, CMEGA, PHI(12), R. SIGMA(12).
      2TBARE(3,1), TREFR, TPRIME(3), TSUBE(12,3,1), V(13,3), UM(12,3),
      3UT(12,3), XBARM(3,3), XSUBM(12,3,3), Y, ZLENGT, ZM
       DIMENSION YXT(12,3,3) , UMUT(12,3), SRST(12,3)
       IF(KVPRIM) 11,10,11
    10 LIMIT = JREACT
       WALL = 0.0
       GO TO 12
    11 LIMIT = 1
       WALL = UT(MTWO_{1})*(TPRIME(N) - YXT(MONE_{1}N<sub>1</sub>))
```

12 DO 13 J = 1.LIMIT

```
YXT(1.NPLUS.J) = UMUT(1.1)*YXT(1.N.J) + UMUT(1.25*YXT(2.N.J)
     1 +UMUT(1,3)*YXT(3,N,J) + Y*SRST(1,J)
     DO 14 I = 2.M
      IMINUS = I - 1
      IPLUS = 1 + 1
   14 YXT(1,NPLUS,J) = UMUT(1,1)*YXT(1MINUS,N,J) + UMUT(1,2)*YXT(1,N,J)
     1 +UMUT(I+3)*YX1:1PLUS.N.J) + Y*SRST(I,J)
   13 YXT(MONE,NPLUS,J) = UMUT(MONE,1)*YXT(MMINUS,N,J) - UMUT(MONE,21*
     1 YXT(M+N+J) + UMUT(MONT+3)*YXT(MJNF+N+J) + Y*SRSTEMONF+J) + WALL
 100 RETURN
      END
$IBFTC COOL
      SUBROUTINE COOLEX
C
      SUBROUTINE DOES ONE-DIMENSIONAL INTEGRATION OF P AND COULANT TEMP
      COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M.
     1MMINUS, MONE, MTWO, N, NPLUS, OMEGA, PHI(12), R, SIGMA(12),
     2TBARE(3+1), TREFR, TPRIME(3), TSUBE(12+3+1), V(13+3), UM(12+3),
     3UT(12:3), XBARM(3:3), XSUBM(12:3:3), Y, ZLENGT, ZM
      COMMON /XESEA/ AF, BARMO, BIUPPO, DP, E, EPSILN, EPSILR, FLARGE,
     1 Go GAMA: H, HC, HE, HP, HW, INDEXT: IPSUP, KINT, NPR, NPROC,
     2 NPROP, NSS, NSYEP, PER REACTR, RGAS, ZKE, ZKS, ZMU
      COMMON/XFIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
     1C(5,3). CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
     2 \text{ PROF}(10,5), \text{ PSI}(3), \text{ QO}(3), \text{ S}(10,3), \text{ SR}(12,3), \text{ ST}(12,3),
     3 TPRINT(10,100), XI(3), ZBIGM(10)
      ZZELEN = ZLENGT + CRØSSK
      IF(INDEXT.EQ.4) GO TO 15
      COOLANT TEMPERATURE CALCULATION
      IF(INDFXT.FQ.2) GO TO 20
      IF(NPROP.EQ.1) GO TO 10
      PROLEN = ZZELEN - PROF(NPROC, 1)
      FPROP=PROF(NPROC,2)+PROLEN*(PROF(NPROC,3)+PROF(NPROC,4)*PROLEN)
      IF(ZZELEN.GT.PROF(NPROC.5)) NPROC=NPROC+1
   12 IF(INDEXT. FQ. 3) GO TO 30
   11 TPRIME (NPLUS) = FPROP
      GO TO 40
   10 FPROP = DATPRO(1)
      GØ TØ 12
   30 TPRIME(NPLUS) = FPROP/h + TSUBE(MONE, NPLUS, 1)
      GO TO 40
   20 TPRIME(NPLUS) = TPRIME(N) + E*(TSUBF(MONE+N+1) -TPRIME(N))
      CALCULATE MEAN TEMPERATURE AND CONVERSIONS
C
   40 \text{ KVPRIM} = 0
      CALL AVERAG(XSUBM, XBARM)
      KVPRIM = 1
      CALL AVERAG(TSUBF, TBARE)
      PRESSURE DROP CALCULATION
C
   15 SM = 0.0
      DO 14 J=1, JREACT
   14 SM= SM + DELTA(J)*XBARM(NPLUS+J)
      P(NPLUS) = P(N) - (FLARGE/P(N))*PSI(N)
      TEST FOR PRESSURE - TERMINATION ON NEGATIVE PRESSURE
      1F(P(NPLUS).GT.0.0) GO TO 60
      WRITE(6,1000) ZZFLEN
```

1000 FORMAT(1H0,24X,8HZFAIL = E15.8/25X, 24HTHE PRESSURE IS NEGATIVE/

```
AFAPL-TR-67-_14
        1 25X. 38HTHIS PROBLEM ENDS IN SUBROUTINE COOLEX/25X. 38HTHE NEXT S
Fart I
         PET OF DATA WILL SE PROCESSED.
          JRERUN = 1
         66 18 100
      60 PSI(NPLUS) = (TBARF(NPLUS.1) + TREER)*(1.0+SM)
      100 RETURN
          END
    $IBFTC AVRG
          SUBROUTINE AVERAGIYXI. YXTBARI
          CALCULATES RADIAL AVERAGES . ARGUMENTS DISTINGUISH TEMP FROM CONV
          COMMONDALL/ CROSSK+ GBAR+ HI+ HM+ JREACT+ JRERUN+ KC+ KVPRIM+ M+
         IMMINUS, MONE, MIWO. N. NPLUS, OMEGA, PHICIPLE R. SIGMA(12).
         2TBARE(3+1) + TREFR + TPRIME(3) + TSUBE(12+3+1) + V(13+3) + UM(12+3) +
         3UT(12,3), XBARM(3,3), XSUBM(12,3,3), Y, ZLENGT, ZM
          DIMENSION YXT(12.3.3). YXTBAR(3.3)
          IF(KVPRIM) 10,11,10
       10 YXTBAR(NPLUS, 1) = 0.0
          DO 20 I= 1.MONE
       20 YXTBAR(NPLUS.1) = YXTBAR(NPLUS.1) + SIGMA(I)*YXT(I,NPLUS.1)
          GO TO 100
       11 DO 21 J=1. JREACT
          YXTBAR(NPLUS*J) = 0*0
          DO 21 I=1, MONE
       21 YXTBAR(NPLUS,J) = YXTBAR(NPLUS,J) + SIGMA(I)*YXT(I:NPLUS,J)
      100 RETURN
          FND
    SIBFIC COMP
          SUBROUTINE COMPOS
          CALCULATES COMPOSITIONS AND ENTHALPIES FOR INTERMEDIATE PRINTOUT
          COMMON/ALL/ CROSSK, GBAR, HT, HM, JRFACT, JRERUN, KC, KVPRIM, M,
         1MMINUS, MONE, MTWO, N, NPLUS, OMEGA, PHI(12), R, SIGMA(12),
         2TBARF(3:1), TREFR, TPRIMF(3), TSUBE(12,3,1), V(13,3), UM(12,3),
         3UT(12+3), XBARM(3+3), XSUBM(12+3+3), Y+ ZLENG1, ZM
         COMMON /XESEA/ AF, BARMO, BTUPPO, DP, E, EPSILN, EPSILR, FLARGE,
         1 G. GAMA, H. HC. HF. HP. HW. INDEXT: IPSUP. KINT, NPR. NPROC.
         2 NPROP, NSS, NSTEP, PE, REACTR, RGAS, ZKF, ZKS, ZMU
          COMMON/xFIND/ A(10), ANAME(2,10), ARATE(6), B(10), BRATE(6),
         1C(5,3), CRATE(6), DATPRO(11), DELTA(10), EQ(3,2), F(10), P(3),
         2 PROF(10,5), PSI(3), QO(3), S(10,3), SR(12,3), ST(12,3),
         3 TPRINT(10,100), X1(3), ZBIGM(10)
          DIMENSION YBAR(10) + ZBAR(10)
          SUM2 = 0.0
          DO 10 J=1, JREACT
       10 SUM2 = SUM2 + DFLTA(J)*XBARM(NPLUS.J)
          PBAR = 1.0 + SUM2
          DO 12 K = 1.KC
          SUM1 = 0.0
          DO 11 J = 1, JREACT
       11 SUM1 = SUM1 + S(K_*J)*XBARM(NPLUS_*J)
          ZBAR(K) = F(K) + SUM1
       12 YBAR(K) = ZBAR(K)/PBAR
          ENTHO = 0.0
          C3JX = C(1,1)
```

C4JX = C(2,1)

```
AFAPL-TR-67-114
    DO 30 JEL JREACT
                                                          Part I
    C3JX = C3JX + C(3+J)*XBARM(NPLUS+J)
    C4JX = C4JX + C(4+J)*XBARM(NPLUS+J)
 30 ENTHO = ENTHO + QO(J) *XBARM(NPLUS, J)
    BTUPP = ENTHO/BARMO + (C3JX+0.5*C4JX*TBARE(NPLUS.1))*TBARE(NPLUS.
    1 1)/BARMO - BTUPPO
     IF(IPSUP.EQ.1) GO TO 99
     WRITE (6.1000) BTUPP
1000 FORMAT(1H0,20X-20HPRINTOUT FROM COMPOS , 10X, 10HHEAT ADDOD, 4X,
    1 F8.2. 2X. SHBTU/LB )
     WRITE (6,1001)
1001 FORMAT(1H +5X, 8HCOMPOUND +12X+13HMOLF FRACTION, 7X, 19H MOLES/MO
    ILE OF FEED )
     DO 20 K = 1.KC
  20 WRITE (6,1002) K. YBAR'K), ZBAR(K)
1002 FORMAT (1H , 5X, 15, 7X, 2(6X, E15,8))
     SETS UP DATA FOR FINAL TABULAR PRINT
  99 KINT = K[NT+]
     J = KINT
     TPRINT(1,J) = ZLENGT + CROSSK
     TPRINT(2,J) = BTUPP
     TPRINT(3.3) = TBARF(NPLUS.1) + TRFFR - 460.
     TPRINT(4.J) = TSUBF(1.NPLUS.1) + TRFFR - 460.
     TPRINT(5, J) = TSUBF(MONF, NPLUS, 1) + TREFR - 460.
     TPRINT(6, J) = TPRIME(NPLUS) + TREFR - 460.
     TPRINT(7,J) = P(NPLUS)/144. - 14.7
     TPRINT(8,J) = XBARM(NPLUS,1)
     TPRINT(9,J) = XBARM(NPLUS,2)
     TPRINT(10,J) = XBARM(NPLUS,3)
 100 RETURN
```

END

```
AFAPL-TR-67-114
Part I
   $18Ffc Exces
           THIS VERSION FOR CARTESIAN COORDINATES
          SUBROUTINE EXPCEDIUMNITY
          CALCULATES CONSTANT CONFELCTIONS USED IN AXIAL STEP
          COMMONIALLY CROSSK. GR'R. HT. HM. JREACT. JRERUN, KC. KVPRIM, M.
          MMINUS, MONE, MINO, N. NPLUS, OMEGA, PHICI2), R. SIGMACI2),
          BARE(3.1), TREER, TPRIME(3), TSUBE(12.3.1), V(13.3), UM(12.3),
         3UT(12.3), YBARM(3.3), XSUBM(12.3.3), Y. ZLINGI. ZM
          SIMPRISTEL (MICTO)2.31
          ZMSQ = M*+>
          UNIT - OMEGA#CROSSK#ZMSQ/4.0
          HMATCHAIL TAN - NAT HINTT
           M(IT(1.2) = 4.0*(INIT)
          EMMIT(1.3) = -0.5*UNIT
          E 10 I=2.M
          UMUT(I * I) = UNIT
          UMUT(1,2) = 1.0 - 2.0*UNIT
       I \cap UMU^*(I \cdot 3) = UNIT
       II UMUT(MONE \cdot I) = -UNII/2.0
          UMUT(MONE *?) = 4.0*UNIT
          UMUT(MORE+3) = 1.0 - 3.5*UNIT
       20 Y = CROSSKIGBAR
          IF(KVPRIM) 12,100,12
       12 UT(MTWO*2) = 6.0*UNIT*HT/ZM
      100 RETURN
          END
   $iBFTC SRCC
           THIS VERSION FOR CARTESIA; COORDINATES
   C
          SUBROUTINE SECOFF
          CALCULATES CONSTANT COEFFICIENTS USED IN ENTHALPY SOURCE TERM
   C
          COMMON/ALL/ CROSSK, GBAR, HT, HM, JREACT, JRERUN, KC, KVPRIM, M,
         IMMINUS, MONF, MTWO, N, NPLUS, OMEGA, PHI(12), R, SIGMA(12),
         2TBARE(3+1) + TREFR + TPRIME(3) + TSUBE(12+3+1) + V(13+3) + UM(12+3) +
         3UT(12,3), XBARM(2,3), XSUBM(12,3,3), Y, ZLENGT, ZM
          COMMON /FORSOR/ VCO(13)
          DO 10 I=2,M
       10 PHI(I) = OMEGA*ZM*ZM*GBAR/16.0
          PHI(MONE) = OMEGA*(HT**2)*GBAR
          ZMOR = (ZM/R)**2
          V(1+1) = -3.5*ZMCR
          V(1,2) = 4.0*7MOR
          V:1.3) = -0.5±7MAR
          DØ 11 1=2.4
          V(I,1) = ZMCR
          V(I_{\bullet}2) = -2.0*ZMCR
       11 \text{ V}(I_{\bullet}3) = ZMOR
          V(MONE \cdot 1) = -0.5 \times ZMOR
          V(MONE \cdot z) = 4.0 *ZMOR
          V(MONE_{3}3) = -3.5 * ZMOR
          V(MfWO_{*}1) = 6.0*HT*ZMOR/ZM
          DC 12 I=2.M
       12 VCC(I) = ZMCP/4.0
          VCC(MONE) = 2.0*HT*ZM/R**2
      100 RETURN
          END
```

Table 76. IGNITION DELAYS FOR ETHYLENE-OXYGEN-ARGON MIXTURES

Note: ER is the equivalence ratio; the actual fuel/oxygen ratio divided by the stoichiometric fuel/oxygen ratio (taking H₂O and CO₂ as the products of combustion).

N = no ignition detected

D = apparent detonation

Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec		
Argon, 99/m; ER = 0.2										
9.2 3.3 8.6 9.6 7.9 8.9	1281 1213 1293 1419 1235 1146 1352	1162 1295 1005 517 1244 1825 767	15.0 15.6 14.9 14.8 14.5	1281 1352 1340 1213 1141 1104	534 478 445 804 1211 1800	24.3 24.4 24.5 26.5 23.6 24.5	1218 1258 1281 1174 1114 1119	558 407 345 764 1263 1208		
			Argon,	99%m; E	R = 0.5					
9.0 8.6 9.2 8.8 8.6	1309 1303 1405 1211 1173	603 6 3 2 355 1395 1965	14.6 14.9 14.5 14.5 14.6	1263 1303 1206 1135 1167	472 316 712 1818 1225	24.6 24.9 24.4 24.1	1251 1234 1151 1189 1102	313 375 1159 616 2340		
			Argon,	99/m; E	R = 1.0					
8.5 8.4 8.6 9.4 9.3 9.1	1232 1187 1301 1421 1397 1373	2120 2720 1172 325 387 515	15.0 15.1 14.9 15.0 14.6	1337 1319 1244 1278 1176 1144	320 349 1000 536 1730 2621	24.8 25.0 24.9 24.3 24.1	1255 1295 1232 1171 1138	754 349 936 1720 2500		
			Argon,	90%m; E	R = 0.1					
9.1 8.4 8.9 8.9 8.9 8.8	1152 1066 1121 1116 1126 1106 1071	3575 2145 1030 1063 1035 1252 2030	15.5 14.7 14.6 15.3 14.8 15.2	1126 1091 1086 1126 1056 1032	387 956 1018 518 1480 2435	25.0 25.5 24.5 23.0 24.0 23.9 24.2	1137 1096 1091 984 1032 1046 1081	259 893 957 N 2120 1695 1020 829		

(Continued)

Table 76 (Contd). IGNITION DELAYS FOR ETHYLENE-OXYGEN-ARGON MIXTURES

Press, psia	Temp,	Delay, paec	Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µmec			
	Argon, 90%m; ER = 0.2										
10.3 9.2 8.4 9.1 10.0 10.3 10.2	1174 1023 981 1072 1163 1184 1153	264 2755 N 1658 461 264 394	16.0 15.9 15.9 15.0 15.8 18.6 15.6	1072 1082 1102 995 1052 1184 1028	767 737 452 2915 1015 132 2165	25.0 24.7 30.2 22.9 26.0 26.6	1077 1052 1195 962 1072 1004	448 606 D N 478 2435			
			Argon,	90 %m ; E	R = 0.5						
9.4 8.6 6.6 9.0	1077 959 1005 1014 1024	D 3100 2530 2035 2170	14.7 14.2 14.4	968 963 968	3360 3360 3045	23.6 24.3 24.2 22.7 22.2 24.6	972 991 996 959 950 1019	3030 2095 2395 3350 3275 2420			
			Argon,	80%m; E	R = 0.1						
9.4 9.6 9.6 9.6 8.1 8.5 9.1	1150 1115 1115 1091 545 985 1049 980	278 552 621 924 N 3715 1680 3730	15.8 15.1 15.9 14.8 15.6 15.6	1125 1082 1072 998 1044 1049 989	277 477 542 2665 940 908 2880	25.0 23.9 24.3 24.2 25.3 22.6 23.5 24.1	1082 998 1035 1039 1086 949 989	238 1318 703 670 204 3370 1247 1250			
			Argon,	80%m; E	R = 0.2						
8.3 8.7 8.4 8.3	974 1024 992 948	3035 944 166 0 391 0	14.2 14.3 14.8	951 957 9 61	3080 2720 3115	23.7	957	3400			

Table 77. IONITION DELAYS FOR ETHANE-OXYGEN-ARGON MIXTURES

Note: ER is the equivalence ratio; the actual fuel/oxygen ratio divided by the stoichiometric fuel/oxygen ratio (taking H₂O and CO₂ as the products of combustion).

Press, psia	Temp, °K	Delay, µsec	Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec				
	Argon, 90/m; ER = 0.2											
9.9 10.1 8.9 6.0 8.1 8.4 8.8 9.9	1251 1235 1095 1120 1041 1070 1120 1246	338 438 2005 1370 3170 2530 1500 338	15.7 15.1 15.8 15.4 16.0 15.3 15.2 16.1	1224 1146 1203 1140 1182 1120 1060 1130	134 524 202 689 265 315 2550 687	25.4 25.5 24.5 24.6 22.8 24.5	1161 1140 1075 1100 974 1050	165 328 900 640 N 2365 1025				
			Argon,	80% m ; E	R = 0,2							
9.5 8.7 8.3 8.3 9.4	1156 1071 1025 1029 1099 1057	D 2560 N 3530 1995 2960	19.2 15.1 17.0 14.7 15.2	1330 1108 1161 1025 1061	D 1192 286 5030 2380	34.8 25.0 22.8 24.7	1319 980 971 1029	D 3200 3450 20 7 5				
			Argon,	90, m; E	R = 0.1							
9.0 9.1 8.3 8.7 8.8 8.5 9.3	1199 1236 1146 1156 1115 1065 1231	660 367 1235 1175 1675 2540 433	14.7 15.3 15.2 14.9 14.7 14.7	1204 1209 1172 1115 1050 1060 1141	331 265 622 1290 1463 2370 814	24.2 24.7 24.2 23.7 23.9	1151 1185 1125 1085 1045	522 329 807 1468 2515				

Table 77 (Contd-1). IGNITION DELAYS FOR ETHANS-OXYGEN-ARGON MIXTURES

Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec			
Argon, 95%m; ER = 0.1											
8.7 8.7 8.4 8.6 7.5 8.4	1171 1204 1193 1242 1041 1118 1209	946 636 753 385 N 1835 574	14.1 14.7 14.9 14.8 14.9	1193 1204 1160 1128 1108 1051	381 318 598 997 1241 2310	24.3 25.3 24.8 24.5 23.7 23.7	1231 1220 1176 1139 1061 1092	160 192 316 626 2018 1190			
			Argon,	80%m, E	R = 0.1						
8.2 8.7 10.2 9.8 11.2 8.5 8.3 11.2 8.8	1035 1080 1228 1193 1312 1056 1038 1259 1099	3350 2520 358 460 183 3040 3495 289 2410	14.5 14.3 15.5 14.8 15.0 16.2 16.2 15.6 14.3	1099 1104 1182 1143 1118 1099 1128 1109 1015	860 756 317 524 693 825 1385 759 3460 1088	24.0 24.5 24.2 26.0 23.4 23.7 25.7 25.1	1061 1099 1085 1099 983 1010 1085 1047	1085 516 752 585 3410 3520 1538 2700			
			Argon, 9	5%m; EA	= 0.025						
8,6 8,3 8,9 8,9 9,2 8,8	1189 1184 1278 1313 1383 1189	1265 1138 646 587 363 1075	14.1 14.7 14.6 14.6 14.8 14.6	1200 1267 1239 1189 1156 1114	633 387 512 758 877 1238	24.4 24.7 24.4 24.5 23.4	1222 1206 1167 1146 1088	351 413 628 753 1165			
			Argon,	99/m; E	R = 0.2						
8.8 8.7 8.8 8.8 8.7 3.2	1270 1304 1316 1376 1401 1185 1093	943 822 762 544 483 1260 2270	13.8 14.4 14.8 15.0 14.5 13.7	1279 1270 1328 1190 1109 1036	921 597 413 862 1320 2705	23.9 24.5 24.0 22.8 22.8	1196 1281 1152 1062 1021	523 314 782 1420 N			

(Continued)

Table 77 (Contd-2). IGNITION DELAYS FOR ETHANE-OXYGEN-ARGON MIXTURES

Press, psia	Temp,	Delay,	Press, psis	Temp,	Deiw, µsec	īlesi, Psia	Tem,	Длау, µвес				
	Argon, 99/m; ER = 0.025											
8.8 8.5 6.8 9.1 9.2 8.8	1276 1265 1353 1464 1554 1452	1878 2000 1468 910 462 935	14.7 15.0 13.7 14.9 14.6 15.2	1265 1225 1169 1341 1377 1502 1420	1255 1365 1950 822 769 382 562	24.8 24.0 24.5 25.0 25.2 25.9	1259 1180 1169 1341 1390 1437	812 1318 1342 573 482 388				
			Argon, 9	97m; ER	- 0.5							
3.4 8.8 9.0 9.0 8.6 8.6	1222 1285 1350 1362 1200 1161	1492 917 448 353 1670 2445	14.7 15.0 14.7 14.9 14.8	1256 1314 1273 1228 1177 1134	722 318 441 840 1535 2190	24.6 24.5 24.0 23.7 24.4	1250 1222 1177 1113 1205	375 653 1230 2175 806				
			Argon, 9	Sán; ER	- 1.0							
8.8 8.7 9.0 3.6 9.1	1294 1317 1383 1347 1242 1237	1258 1055 420 706 2155 2075	14.3 14.9 14.9 14.7 14.8	1265 1300 1329 1220 1175	1008 541 584 1590 2465	25.4 25.3 25.0 26.8 24.3	1254 1294 1265 1181 1132	856 381 756 1855 3050				
			Argon, 9	Oźm; ER	~ 0.5							
8.3 12.2 14.3 8.4 3.6 13.5 8.2 8.0	1078 1452 1583 1039 1063 1505 1030 1011	2170 D D 3739 3340 D N N	20.5 23.7 14.5 17.3 15.4 18.8	1452 1589 1030 1173 1068 1235	2650 2620 2620	37.0 24.0 23.7 25.5 23.5	1487 992 997 1063 1001	D 3495 3375 2260 3410				

Table 78. IGNITION DEIAYS FOR DECALIN-OXYGEN-ARGON MIXTURES

Note: ER is the equivalence ratio; the actual fuel/oxygen ratio divided by the stoichiometric fuel/oxygen ratio (taking H₂O and CO₂ as the products of combustion).

N = no ignition detected D = apparent detonation

Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec			
	Argon, 80%m; ER = 0.1										
8.6 8.7 9.0 8.9 8.2	1133 1182 1233 1248 1061	1540 925 505 289 3130	15.0 14.8 15.2 14.8 14.3	1197 1162 1133 1080 1024	393 676 982 2063 3360	25.3 25.2 25.2 25.2 25.2 25.2 25.2 22.8	1197 1142 1157 1042 1123 1108 1019	143 632 423 2575 674 1055 3360			
			Argon,	90,m; E	R = 0.2						
9.52 9.7 9.9.5 9.8.8 8.8	1202 1202 1245 1289 1070 1075 1100	1142 1176 577 275 3870 3880 3390	15.6 15.4 15.5 14.7 16.0 14.1 16.1	1245 1171 1202 1075 1176 1060 1181	136 666 533 3230 668 4170 635 2675	25.8 25.8 25.0	1181 1155 1105	367 597 2150			

Table 79. IGNITION DELAYS FOR G-METHYL DECALIN-OXYGEN-ARGON MIXTURES

Note: ER is the equivalence ratio; the actual fuel/oxygen ratio divided by the stoichiometric fuel/oxygen ratio (taking $\rm H_2O$ and $\rm CO_2$ as the products of combustion).

N = no ignition detected D = apparent detonation

Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec	Press, psis	Temp,	Delay, µsec			
	Argon, 95%m; ER = 0.1										
8.8 8.7 8.9 9.0 8.3	1259 1224 1311 1335 1141	1035 1363 556 381 3030	14.6 14.8 14.4 14.5 14.6	1253 1299 1202 1174 1141	780 409 1292 1680 2482	24.6 24.4 24.3 24.0 24.5 24.3	1253 1276 1264 1174 1169 1141	842 440 720 1805 1930 2600			
			Argon, 9	0%m; ER	= 0.1						
8.7 8.8 8.2 8.8 9.1 7.9	1246 1198 1090 1172 1252 1115	336 1030 2950 1250 336 2330	14.9 14.9 14.7 14.8 14.6	1209 1177 1115 1095 1135	333 759 1810 2440 1175	24.5 24.2 24.8 24.5 24.5	1172 1125 1193 1085 1110	593 1428 364 2560 1810			

Table 80. IGNITION DELAYS FOR n-DODECANE-OXYGEN-ARGON MIXTURES

Note: ER is the equivalence ratio; the actual fuel/oxygen ratio divided by the stoichiometric fuel/oxygen ratio (taking $\rm H_2O$ and $\rm CO_2$ as the products of combustion).

N = no ignition detected

D = apparent detonation

Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec		
Argon, 99/m; ER = 0.5										
9.8 8.7 9.1 9.5 8.7	1248 1259 1271 1389 1300 1353 1175	1355 1390 1205 30 830 452 2910	15.2 15.1 14.6 15.0	1288 1335 1192 1181	794 385 2020 2358	24.8 24.9 25.2 25.1	1248 1323 1312 1231	1198 320 479 1444		
			Argon,	95,0m; E	CR = 0.1					
8.5 8.6 9.7 8.8 8.5 8.7	1196 1228 1284 1279 1228 1251 1126	1152 775 262 262 807 518 2260	14.7 14.7 14.8 14.9 15.0 14.5	1284 1251 1234 1206 1174 1110	132 162 323 546 1113 2248	24.4 24.7 24.6 24.6	1158 1196 1185 1131	1105 480 638 1729		

Table 81. IONITION DELAYS FOR PROPANE-OXYGEN-ARGON MIXTURES

Note: ER is the equivalence ratio; the actual fuel/oxygen ratio divided by the stoichiometric fuel/oxygen ratio (taking H₂O and CO₂ as the products of combustion).

Press, psia	Temp,	Delay,	Press, psia	Temp,	Delay, µsec	Press, psia	Temp,	Delay, µsec		
Argon. 90%m; ER = 1.0										
10.1 8.3 8.8 9.9 9.0 8.8	1307 1124 1144 1255 1183 1173	371 4220 3885 1460 2760 2760	15.2 15.8 14.9 14.6	1134 1163 1114 1100	2360 1632 2585 3470	25.0 28.5 24.3 27.0	1110 1203 1057 1144	2375 432 3420 1520		
	Argon, 90%m; ER = 0.1									
9.1 9.2 9.0 8.7 8.7 9.4	1303 1281 1204 1226 1209 1135 1314	336 434 1315 1055 1115 2310 337	15.3 15.5 14.7 14.8 15.0	1274 1226 1141 1161 1120	397 660 1450 1295 1920	26.9 25.0 25.3 24.9 24.1 24.1	1281 1188 1209 1130 1059 1079	268 750 590 1572 3300 31.00		
			Argon,	99 <i>i</i> m; E	R = 1.0					
9.0 8.0 9.6 9.8 9.8 8.8	1242 1203 1335 1265 1377 1371 1413	2920 3370 1285 2455 840 96) 392	15.1 15.1 14.9 14.5 14.9	1341 1371 1271 1197 1323	706 453 1455 2800 928	25.0 24.7 25.3 25.6	1259 1208 1335 1383	1638 2498 706 357		

Table 82. IGNITION DELAYS FOR METHANE-OXYGEN-ARGON MIXTURES

Note: ER is the equivalence ratio; the actual fuel/oxygen ratio divided by the stoichiometric fuel/oxygen ratio (taking $\rm H_{2}O$ and $\rm CO_{2}$ as the products of combustion).

N = no ignition detected

D = apparent detonation

Press, psia	Temp,	Dalay, µsec	Press, psia	Temp,	Delay, µsec	Press, psia	Temp, °K	Delay, µsec		
	Argon, 85min; ER ≈ 0.1									
8.4 9.8 8.5 9.3 9.3 8.8	1272 1654 1336 1499 1534 1358	4250 382 2085 744 675 1810	15.0 15.3 15.6 15.1 15.2 14.3	1546 1470 1465 1402 1358 1272 1190	225 444 444 657 1050 1915 3060	26.0 24.9 26.5 23.5 25.2 25.3	1482 1386 1391 1210 1310 1294	295 437 400 216: 787 854		

Table 83. IGNITION DELAYS FOR n-DODECANE-OXYGEN-ARGON MIXTURES

Argon, 90%m; ER = 0.1. Visible light used as criterion of ignition.

Press., psia	Temp,	Delay, µsec	Press., psia	Temp,	Delay,	Press.	Temp,	Delay, µsec
8.8	1210	773	15.3	1226	337	24.0	1111	1400
8.5	1215	672	14.3	1121	1605	25.7	1231	135
8.6	1269	102	15 .2	1188	569			
9.0	1291	136	15.1	1126	1440			
8.6	1226	574	14.8	1076	2640			
8.1	1076	3095	15.5	1215	269			
8.7	1152	1383						

Table 84. UNUTION DELAYS FOR TOLUENE/THE-OXYGEN-MIXTURES

Argon, 80%; FR = 0.1

Press psie	Temp,	Delay. Pusec	Press, psia	Temp,	Delay, Nacc	Press., psia	Temp,	Delay,		
Ignition Detected From 002 Emission at 2300 cm ⁻¹										
1.8 8.8 8.9 9.6 9.6	1052 3114 1139 1158 1219 1276	3376 9600 2150 1850 1280 650	17.6 15.4 16.0 16.9 16.0 16.0	1071 1129 1214 1219 1224 1239	3100 1030 460 360 430 320	23.8 24.2 25.7 24.9 25.7 25.1 25.4 25.7	1038 1043 1109 1119 1114 1148 1786 1224	2700 2750 690 1000 660 700 390 210		
	Igni	tion Det	ected Fr	om CO I	mission	et 2050 c	m_1			
		-	14.6 15.2 15.5 19.7 14.1 14.3	1090 1090 1134 1168 1217 1274	2650 1650 630 780 390 320 250	,				

Table 85. IGNITION DELAYS FOR MCH-OXYGEN-ASCEN MAXTURES

Igr ⁴ tion	99%m; FH Detected n at 2300	From CO2	Argon, 99%m; ER = 0.1, Ignition Detected From CO Emission at 2050 cm ⁻¹			
Press., psia	Temp,	Delay, µaca	Press., psia	Temp, °K	De lay, µsec	
14.5	1125	2400	13.6	1213	1400	
14.8	1180	2100	15.1	1288	900	
14.6	1213	1260	15.0	1311	450	
14.4	1247	940	14.5	<u> 1341</u>	320	
14.8	1300	75.)	ا و.يا1	1371	580	
14.5	1316	6lio	(15)	1409	320	
15.2	1323	470	!		-	
15.0	1377	320	1			
15.0	1230	2820	! (15)	1180	3100	
14.8	1264	2600	14.8	1219	2500	
15.1	1340	1290	14.7	1275	1260	
15.4	1394	620	15.6	1304	770	
15.3	1418	560	15.3	1358	520	
15.2	1449	560	15.2	1370	480	
15.3	1480	460	15.3	1418	300	
(15)	1556	330				
15.1	1133	2500	14.8	1107	2500	
14.6	1171	1900	14.7	1149	1250	
14.7	1231	748	15.0	1220	770	
14.9	1276	740	14.9	1276	360	
14.8	1299	390	(15.0)	1320	330	
(15.0)	1343	7 50	(15 0)	70ر1	300	
(15.0)	1355	3 >≎	(15.0)	1390	270	
(15.0)	1410	270	(15.0)	1400	1.00	
14.5	1130	N	14.3	1104	3430	
14.7	1.157	2600	15.1	1162	1910	
15.0	1184	2000				
15.5	1205	22:00	16.0	1238	780	
15.4	1216	2000	15.7	1244	450	
16.0	1249	7 00	17.4	1300	330	
16.3	1294	460	16. 2	1317	330	
15.8	1300	430	16.5	1330	150	
	- ;	-	1.3	2340	200	

(Continued)

Table 85 (Conts). IGNITION DELAYS FOR MCH-OXYGEN-ARG M MIXTURES

Argon, 80%m; ER = 0.1, Ignition Detected From CO _R Emission at 2500 cm ⁻¹									
Press., psis	Temp,	Delay, psec	Press., psia	Temp,	Delay, Macc	Press., µsec	Temp, *K	Delay, puec	
8.6 8.6 9.1 9.7 9.7	1088 1122 1187 1247 1247	3120 2240 1570 435 870	14.1 15.1 14.7 15.0 15.6 15.9	1051 1079 1084 1088 1132 1171	3000 2780 2540 2630 1680 570	24.1 25.2 24.8 25.0 28.7 31.2	1028 1074 1108 1118 1167 1294	5370 2460 1180 700 1280 400	
Argon, C	94.794 0. ; £1	(O. L.)	14.3 14.9 14.8 15.7 15.4 15.3	1014 1061 1065 1122 1122 1142 1147	N 2460 2600 1460 810 700 850	O FM18816	on at 20	yo em	

Table 36. ICNITION DELAYS FOR PROPANE-OXYGEN-AROON MIXTURES

***************************************	-	Argon, 90	An; ER - 0.1		
.			Delay,	pseo	
Press., psia	Temp,	,	Detwo- tion, CO ₂ 2300 cm ⁻¹	Method Vieibl Light	e
14.4 14.6 14.3 14.4 14.1 13.2 14.6 15.0	1069 1120 1135 1161 1199 1209 12d1 1337		3150 2000 2100 1360 850 1000 430 250	5500 1850 1960 1230 850 1000 350 190	
		Argon, 99%	lm; ER = 1.0		
Prees.,	Temp,		CO ₂ Delay, µsec	Delay µsec	
14.2 15.2 14.6 15.5 15.2 15.2 16.8 15.1 15.2	1219 1317 1276 1377 1383 1413 1457 1507		2310 1340 1460 775 680 619 525 433	2245 1180 1 33 2 646 584 489 394 298	
Ignition	99%m; ER Detected On at 2300	From COm	Ignition D	94m; ER etected :	From CO
Press., psia	Temp, °K	Delay, µsec	Press.,	Temp,	Delay, psia
15.3 15.0 14.6 15.6 (15)	1294 1370 11.07 1460 1535	1650 645 555 525 340	(15) 14.7 14.5 14.1 15.2	1115 1214 1242 1271 1407	3020 2500 1630 820 325

Table 86 (contd). IGNITION DRIAYS FOR PROPANE-CXYGEN-ARGON MIXTURES

Argon, 99%m; ER = 0.1			Argon, 99%m; ER = 0.1			
Ignition Detected From CO ₂			Ignition Detected From CO			
Emission at 2300 cm ⁻¹			Emission at 2050 cm ⁻¹			
Press.,	Temp,	Delay,	Press.,	Temp,	Delay,	
psia	"K	µ se c	psia		µsec	
13.8 14.1 14.2 13.9 16.1 14.0 15.0	1089 1095 1172 1188 1204 1215 1275	2800 3300 1230 1180 1340 1220 610 440	(15.0) 13.6 15.0 14.6 14.0 14.9 14.8 15.0	1110 1156 1188 1199 1215 1269 1286	2200 1230 1050 1700 990 530 470 370	

Table 87. IGNITION DELAYS FOR 2,2,3,3-TETRAMETHYL BULLNE-CXYCEN-ARGON MIXTURES

Temp,	95 paia Delay,
,K	Delay,
	haec
1100 1184 1210 1225 1237 1293 1307 1326	3700 2440 1400 1470 925 715 560 460

P = 15 psiu, ER = 0.1, 95%m Argon

Temp, °K	Delay, µsec	Temp, °K	Delay, µsec	Temp, °X	ретау, таес
1162	3530	1130	3700	1404	155
1162	3290	1160	2800	1404	150
1194	2015	1196	1800	1410	100
1196	2650	1200	2650	1410	100
1201	1770	1210	1650	1416	140
1227	Ιμές	12 3 5	1970	1416	110
1227	1405	1246	882	1422	110
1245	932	1288	730	1428	110
1 250	966	1323	410	1428	85
1290	516	1338	329		-
1300	782	1356	280		
1310	684	13 63	370		
1352	410	13 €3	250		
1365	260	1374	230		
1383	300	1.380	220		•
1390	280	1380	180		•
1390	270	1386	150		
1465	78	1398	190		
1503	64	139 8	150		

Table 88. IGNITION DELAYS FOR NEOPENTANE-OXYGEN-ARGON MIXTURES

 $\mathbb{R} = 0.1, 9$ m Argon

P = 9	psia	P - 1	5 psia	P ≈ 2	🤊 psia
Temp,	Delay,	Temp,	Delay, µsec	Temp,	Delay, µsec
1215 1239 1284 1337 1352 1374 1406	3530 1720 1230 825 730 540 340	1147 1170 1180 1199 1220 1229 1249 1268 1312 1325 1352 1352 1377 1490 1503 1545 1605	3510 2435 2410 2270 1655 1510 1028 905 783 523 390 390 300 100 81 79 62 35	1179 1181 1191 1217 1240 1284 1320 1341 1346	3300 2820 2080 1770 1505 842 653 360 360

Table 89. IGNITION DELAYS FOR 2,2,3-TRIMETHYL BUTANE-OXYGEN-LRCON MIXTURE:

P = 15 psia, ER = 0.1, 95% m Argon

Temp, °K	Delay, µsec	Temp, °K	Delay, µsec	Temp,	Deley, µsec
1161	3150	1 3 60	200	7,400	165
1187	2500	1 3 66	200	1400	150
1203	1£00	1374	160	1404	110
1230	1250	1380	200	1422	120
1245	1150	1380	195	1428	90
1264	950	1366	165	1459	70
1302	850	1392	150	1465	70
1316	32c	1392	140	1471	35
1339	360	1398	100	1483	35

Table 90. IGNITION DELAYS FOR n-OCTANE-OXYGEN-ARGON MIXTURES

P = 15 psia

0.1	ER =	0.2	ER =	0.1	ER =	0.2
Delay, µsec	Temp,	Delay, µsec	Temp,	Delay,	Temp, °K	Delay,
3500 2600 2000 1600 860 860 740 850 390 490 325 470 310 350 150 150 165 125 115	1140 1176 1177 1190 1231 1231 1260 1322 1322 1331 1345 1358 1388 1420 1460	3200 1400 2400 1900 900 870 550 215 200 460 250 100 135 1170 85 35	1107 1134 1177 1178 1178 1225 1230 1250 1263 1297 1319 1356 1401 1444 1450 1467 1481 1513	2750 2000 1750 1800 1800 950 870 760 850 510 240 155 115 115 115 110 80	1165 1223 1223 1275 1294 1317 1339 1375 1381 1393 1423 1435 1473	2290 1570 1250 682 735 450 355 150 190 163 140 105 115 73
	ивес 3500 2600 2000 1600 860 860 860 740 850 390 490 325 470 310 350 150 115 125 115	рвес "К" 3500 1140 2600 1176 2000 1177 1600 1190 860 1231 860 1231 740 1260 850 1322 390 1322 490 1331 325 1345 470 1358 310 1358 310 1358 300 1420 350 1426 150 1460 115 150 165 125 115 55 150 70	μsec	Bec K Bec K	μsec	μsec

TABLE 91. PROPE	RTY VALUES	FOR MET	THYLCYCL	CHEXANE		C7H14	
MOLECULAR WEIGHT	98.18		HEAT	, VAPCRIZ	ATION	138.72	
BOILING POINT	213.68		HEAT	, FUSION		29.6	
FREEZING PCINT	-195.87			, CUMBUST		8797.	Ç
SPECIFIC GRAVITY		53		ENERGY.		138.6	
CRITICAL TEMP.	570.5			, FÜRMATI		678•2	
CRITICAL PRESSURE				ENERGY.	FORM.	119.5	
CRITICAL VOLUME	0.05	61		H PCINT	*	25•	
ACENTRIC FACTOR		7		IIGNITION		5 +5 •	
LOWER EXPLO. LIMI	T 1.2		UPPE	R EXPLG.	LIMIT		
********	*****	# GAS PF	ROPERTIE	S *****	*****	****	****
TEMP. PV/RT		THERMAL	HEAT	PRANDTL	HEA	T CONTEN	Т
• • PRESSURE •	-ITY	CONDUC-	CAPAC-	NUMPER .	••••P	RÉSSURE.	• • • • •
600 1200) 1	TIVITY	ITY		0	600	1200
-200			0.087	0.712	-38.4		
-100			0.195	0.751	-24.1		
0			0.284		-0.0		
100			∪ • 35 5		32.1		
200			0.420	0.769	70.9		
300			0.480	0.771	115.9		
400		0.0170	0.536	0.773	165.7		
500		0.0205	0.589	0.774	222.9		
600 0.343 0.408		7.0242	0.638		284.3	231.2	210.7
700 0.656 0.477		0.0279	0.685	0.776	350.5	323.4	290.9
800 0.760 0.589		0.0316	0.728	0.776	421.2	400.4	375.5
900 0.823 0.692		0.0354	0.769	0.777	496.1	479.0	460.2
1000 0.865 0.768		0.0391	C.806	0.777	574.8	560.3	545.4
1100 0.895 0.822		0.0428	0.840	0.778	657.1		632.3
1200 0.918 0.862	0.0415	0.0465	0.871	0.778	742.7	731.7	721.2
*****	IQUID PROPE	ERTIES A	AT SATUR	ATION PRE	SSURE *	*****	****
TEMP. DENSITY VIS						SURFA	CE
– I T	Y CONDUC-			T VAPOR-		RE TENSI	ΟN
164 44 64 20	TIVITY	+ITY		IZATION			
	0.29 0.114	_		176.3		0.00 O.01	
	328 0.09/		-196.1		0.00		
- · · · · · · · · · · · · · · · · · · ·	853 0.085	0.334	-180.7		0.00		
_	267 0.676	5.331	-162 . 8		0.67		
	045 0.069	0.424	-142.7	_	0.40		
	392 0.062	0.462	-120.5		1.57		
	009 0.057	0.499	-96.5		4.74		
	768 0.053	0.534	-70.6		11.78		
	607 0.049	0.569	-43.0		25.184		
	516 0.046	0.603	-13.8		47.999		
	446 0.043	0.638	17.2		83.67		
	386 0.041	0.677	50.1		135.022		
	334 0.038	0.726	85.1		209.24		
	283	0.808	123.2		308.26		
550 26.26 0.	222	1.113	168.7	52.4	439.32	99 0.00	09

The state of the s

AFAPI-TR-67-114 Part I

TABLE	92. PRUPER	TY VALUES	FOR TOL	UENE			C7H8	
BOILIN FREEZI SPECIF CRITIC CRITIC CRITIC ACENTR	LAR WEIGHT G POINT NG POINT IC GRAVITY AL TEMP. AL PRESSURE AL VOLUME IC FACTOR EXPLO. LIMIT	609.5 611. 0.05! 0.24!	3 ⁵ 5 54 5	HEAT, FREE HEAT, FREE FLASH AUTOI	VAPORIZ FUSION COMBUST ENERGY, FCRMATI ENERGY, H POINT GNITION EXPLO.	ION 18 COMB. 4 ON FORM.	41.5 3433. 4831.3 233.4 571.0 40.	
*****	******	*****	* GAS PR	ROPERTIES	*****	****	*****	****
		-ITY	TIVITY	CAPAC- N		HEAT •••••PE •• •29.8	T CONTEN RESSURE. 600	T 1200
-200 -100 100 200 300 400 500		0.0113 0.0145 0.0177 0.0209 0.0241 0.0272 0.0302	0.0065 0.0091 0.0119	0.153 0.228 0.281 0.332	0.739 0.754 0.760 0.764 0.766 0.766 0.770	-19.3 -0.0 23.5 56.1 91.8 131.9 176.3		
900 1000 1100 1200	0.677 0.410 0.773 0.555 0.831 0.679 0.870 0.760 0.899 0.816 0.920 0.857	0.0359 0.0386 0.0412 0.0438 0.0462 0.0486	n.n246 n.n279 n.n312 n.n344 n.n377 n.n409	0.530 0.558 0.585 0.609 0.631 0.651	0.772 0.773 0.773 0.774 0.774 0.775	275.8 330.2 387.4 447.2 509.2 573.3	370.8 433.0 496.9 562.5	417.4 434.1 551.7
****	******** L	QUID PROP	ERTIES	AT SATUR	ATION PRE	SSURE *	****	*****
	DENSITY VISC -ITY	CGNDUC	- CAPAC	CONTEN	T VAPOR- IZATION	PRESSU 1	SURFA RE TENSI	ON
-100 -50 500 100 1500 2500 3500 4500 550	36.23 0.3 32.21 0.3	0.101 0.090 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081	0.302 0.341 0.375 0.406 0.466 0.466 0.524 0.534 0.534	-202.5 -186.5 -188.5 -168.1 -128.0 -105.4 -55.4 -29.6 -29.6 61.6	192.0 186.5 180.7 174.5 167.9 160.9 153.3 145.4 125.5 125.7 70.7	0.00 0.03 0.24 1.03 3.33 8.74 19.61 38.93 70.24 117.57 185.40 279.23 405.41	94 0.07 94 0.07 29 0.08 20 0.03 92 0.04 92 0.04 19 0.03 10 0.03 10	726 525 525 546 546 546 546 546 546 546 546 546 54

TABLE 93. PROPERT	Y. VALUES FOR	HYDRUGEN	H2
MOLECULAR WEIGHT BOILING POINT FREEZING POINT SPECIFIC GRAVITY CRITICAL TEMP.	2.02 -422.98 -434.55	HEAT, VAPORIZATION HEAT, FUSION HEAT, COMBUSTION FREE ENERGY, COMB. HEAT, FORMATION	194.39 13.7 60997. 33.0
CRITICAL PRESSURE CRITICAL VOLUME ACENTRIC FACTUR LOWER EXPLO. LIMIT	188. 0.5159 -0.230 4.0	FREE ENERGY, FURM. FLASH POINT AUTOIGNITION TEMP. UPPER EXPLO. LIMIT	1085• 75•0

TEMP.	PV/RT	viscos	THERMAL		PRANDTL NUMBER		AT CONTE	
- +	••PRESSURE• 600 1200	-ITY	TIVITY	ITY	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C	600	1200
-200	1.034 1.076	0.0129	0.0638	3.432	0.695	-683.1	-686.9	-687.0
-100.	1.032 1.068	0.0162	0.0771	3.412	0.719	-341.1	-337.4	-331.8
o o	1.028 1.058	0.0192	0.0912	3.413	0.717	-0.0	7.5	16.0
100	1.025 1.050	0.0218	0.1081	3.433	0.693	342.3	352.0	362.3
200	1.022 1.044	0.0243	0.1237	3.447	0.678	686.2	697.3	708.8
300	1.020 1.039	0.0267	o.1389	3.459	0.665	1031.6	1043.6	1056.0
400	1.018 1.035	0.0290	0.1519	3.464	€.660	1377.9	1390.7	1403.7
500	1.016 1.032	0.0311	0.1648	3.469	0.655	1724.5	1737.8	1751.3
600	1.015 1.029	0.0332	0.1768	3.472	0.652	2071.7	2085.4	2099.3
700	1.013 1.027	0.0352	0.1895	3.479	0.645	2419.2	2453.3	2447.4
800	1.012 1.025	0.0370	0.2028	3.487	0.637	2767.5	2761.3	2796.2
900	1.012 1.023	0.0389	0.2171	3.499	0.627	3116.8	3131.3	3145.9
1000	1.011 1.022	0.0407	0.2328	3.512	0.615	3467.3	3482.0	3496.8
1100	1.010 1.020	0.0425	0.2496	3.529	0.601	3819.3	3834.2	3849.1
1200	1.010 1.019	0.0443	0.2677	3.547	0.587	4173.1	4188.1	4203.1

UNITS FOR PROPERTY VALUES IN TABLES 91 - 93

MOLECULAR WEIGHT	POUNDS/MOLE	HEAT . VAPORIZATION	, CCIL. PT.	CTU/LS
BOILING POINT	DEGREES F.	HEAT: FUSION		BTUZES
FREEZING PUINT	DEGREES F.	HEAT, COMBUSTION	25 DEG. C.	BTU/LB
SPECIFIC GRAVITY	(A)	FREE ENERGY, COMB.	25 DEG. C.	BTUZLB
CRITICAL TEMP.	DEGREES F.	HEAT, FORMATION	25 DEG. C.	BTU/LB
CRITICAL PRESSURE	PSIA	FREE ENERGY, FORM.	25 DEG. C.	BTU/LB
CRIFICAL VOLUME	CUFT/LB	FLASH POINT		DEG. F.
ACENTRIC FACTOR		AUTOIGNITION TEMP.		DEG. F.
EXPLOSIVE LIMITS	PERCENT	BY VOLUME IN AIR		/

***************** GAS PROPERTIES ***************

TEMP		PV/ PRES	RT SURE.	VISCOS -ITY							••••
		100	200		TIVITY	ITY		Ò	100		500
DEG.	F	(A)	(B)	LB(MASS) /FT/HR			(A)	9TU/P	CUND	(B)	(C)

********* LIQUID PROPERTIES AT SATURATION PRESSURE **********

TEMP. DENSITY VISCOS THERMAL HEAT HEAT HEAT OF VAPOR SURFACE CONDUCT CAPAC CONTENT VAPORT PRESSURE TENSION -ITY YTI- YTIVIT IZATION

DIG. F. LB/ LB(MASS)/ (D) DTU/LB/ BTU/LB BTU/LB PSIA POUNDALS/ CUFT FT/HR UEG. F (C)FUOT

⁽A) DIMENSIONLESS UNITS (LIQUID SP. GR. AT 60/60°F)

⁽B) PRESSURE IN PSIA
(C) REFERENCE STATE -- GAS AT O DIGREES F.

⁽D) STUZHRZFTZDEG. F

2	I
0	Į
ā	
-	į

ž	•		ç	
CORPAN	300(003300000000000000000000000000000000000	300	
DEVELOPMENT	2700.	00.134 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2300.	
	•00•	0.1.12 0.1.13 0.1098 0.1098 0.00996 0.00996 0.00996 0.00996 0.00996 0.00996 0.00996 0.00996 0.00996 0.00996 0.00996	2400.	
SHELL	2100.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2100.5	
	1,000.	0.1122 0.1122 0.1122 0.0014 0.0024 0.0049 0.0069 0.0069 0.0069 0.0069 0.0069 0.0069	000	
	1500.	00-10148 00-10148 00-10494 00-10494 00-10494 00-10494 00-10494 00-10494 00-10494 00-10494 00-10494 00-10494 00-10494 00-10494	1,500	
	1200.	00.00 00	1,000	$egin{array}{cccccccccccccccccccccccccccccccccccc$
M IXTURE	•006		/DEG•F)	000000000000000000000000000000000000000
	# 00 #	00000000000000000000000000000000000000	CT/HCUP BOD	: พพพพพพพจจจจจจจั
-TCLUENE-HYDROGEN	PSIA) 700.		(910/FC) PSIA) 700-	
ANE-TOL NDS/FC!)	SSURE (00000000000000000000000000000000000000	SSURE (00000000000000000000000000000000000000
PCI CHEXANI DROGEN	78E 500.	COCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCNOUC PRE	
HETHYLCYCI CHEXANE HEND OF O. VISCOSTIY (POUNDS	400	000 000 000 000 000 000 000 000 000 00	Thermal 600.	00 00 00 00 00 00 00 00 00 00 00 00 00
CCMPC CCMPC TCLI'E 0. 0.	300.	CC-M4CC-MCCC-M-NNNN I	A CO	0.00
000000.	200*	$\begin{array}{c} \text{C} \text{C} \text{C} \text{C} \text{C} \text{C} \text{C} C$	200	
S1CAL	100.	$\begin{array}{c} c \ c \ c \ c \ c \ c \ c \ c \ c \ c$	0,0	NN mmmmm 4 4 4 4 4 5 5 5 5 5 5 6 5 6 5 6 6 6 6 6
44. DE	້	2025-2022-2022-2022-2020-2020-2020-2020	ć	**************************************
TABLE Y	TEMP DEG.	990	TEMP CEAL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 94 (CONT'D 1)

CCHO				3000.	-00	٠,٠	ė'n.	٠.	~ 6			•					3000	000000000000000000000000000000000000000	819	# 0 4 0 4 0 4 0 4	76.	478 88.	905	Ş	M d	750	5	6 6
NEW COOK		* * 2	k ∰ ağ	2700.	31.244	26.017	24.153	22.854	20.484	18,450	16.745	15,324	14,704	13,615	12,691	t.	2700	0.7461			2	4.8	K 80		ē ?	6		9.0
L DEVELOP				2400	30.453		7.7	*	9.9	800	2	, m	3.2	2.2	40		2400	0.6864	0.718	0.754	7	0.813	0.658	0.884	0.912	0.925	9,6	00
T) SHELL				2100.	20,542	9	1.15	9.68	,	5.13		2.30	77. 1.29	₹ 3	82		2100	0.6137 0.6220 0.6364	00	0 2	0	0 0	8.0	0		000	0	00
				1,900	26,465	2 4	2,72	4.56 6.20	5,02	3.13	7.	19.0	9.14	5. C	2.5		1800.	0.5460	627	689	2	808	826	365	.896	909	932	941
				1500.	24.939	20.43	16.47	14.61	12.54	10.91	6.73	82	9.10	7.51	7.26		1500.	0.4772	0.50	0.677	0.749	0.506	0,829 0,849	7 98 0	0.897	0.910	0.931	0,940
_ J &				1200.	25.402 22.689		m,	-0	9.175	8.561	7.669	6.985	6.697	5.986	5.48 5.605		1200.	0.4079 0.4361 0.4771						, 32, 1				, v
T'D 1)				•006	22.776 18.806	200	90.0	25	85	6.5	9	3.	* ?	ĕ.,	51.		900	0.3412 0.3946 0.4827	646	744	808	.832	. 870 . 875	800	920	930	945	.951
CON				\$00.	21.438	3		5 4	.07 27.		92	53	, 20	9	.69		800.	0.3272 0.4016 0.5225	680	768	825		. 88 . 98 . 98	907	714. 1027	935	6	6. 03.
LUENE-HYDROGEN			C FCCT)	(PSIA) 700.	19,476	o c	, •	ţ	~. લ્	0 4	~	•	٠,	v. 4	~,∾	œ	(PSIA) 700.	0.3163	719	794	844	.880	906	916	,934	941	954	959.
Tabi			5/CUB;	ESSURE 600	15.031		.~	o o	~,		. 9	. ~	~ ~	ಚಿ ಕೆ	8.	IY FACTO	ESSURE (0.3446 0.5645 0.6555	4	2.4	7	8 6	916.	26.		9.0	. 6	96.
CYCI CYEK	nyGROGEN		ONUCA)	500°	7.656	2.0	.2	2.4	د م	77.5	6.		55.	5.4	28	55187111	500°	0.5636 0.6629 0.7240	· ~ 3	9 00 00		٠,٠	9.3			6.0		٠,٠
WETAYL(CHENT SPE B	00	PENSTIV	4 00	5 E E E E E E E E E E E E E E E E E E E	m	, m ,	4 V	2.5	2.5		2.1	70	6.1	8.4	Sadwoo	400	7.6807 7.7459 7.7858 7.858	8	88.	06	9.429	9.6	96.	956	963	1.60	976.
1 F S S C P	400	င် ဒီ	SAS	300.	3.022	2.614	2.137	2,113	1.037	1.861	1,729	414	1.5.0 1.5.0	1.437	1.356	S W S	300	0.7844 0.5384 0.8451	4 6 6	911	940	9.46	9.60	46.	949	972	-977	• •
980 181	ž	1.00000		200	1.998 1.846	.6.		. m	.31 .25	~;	- 6		55	6.4	9.0		200.	0.88% 0.88% 0.09% 0.09%	669	94)	9.53	, 964 1464	0.00	\$7.6	2.6	983	486	
HYSICAL	_	¥ C.		100.	0.923		. 22	99	49.	5.5	55.	5.00	. 49	a	24		100.	0.9353 0.9440 0.9512	962	970	976	981	7 W	98.0	585	997	992	666
i		55		ő	600	·		c c	ပ်င်	0.0	ร่อ			• •			ċ	ဝီဘီဝီဘ			·	•••	••	~°~	• • •	·.·	· • •	••
6 P		HOLE FRACT		TEND DEG.	50°.	0.0	ر ا	ው ው የ	000	100	200	000	1400	500	553		TEND DEG.	430.0	÷ 6	9.6	0000	000	200	3.00	350		5000	600°

Table 94 (CONT'D 2)

IABLE 94. BEYSICAL BROPERTIFS OF METHVICYCIONEMART-TOLLENE-HYDROGEN MIXTURES

2 0.7469 0.7384 0.7325 0.7282 0.7282 0.6 0.7707 0.7483 0.7548 0.7501 0.7503 0.7548 0.7558 0.7501 0.7503 0.7548 0.7501 0.7503 0.7 1500. 1400. 633. CAPACITY (BTU/PCUND/DEG.F) PRESSIRE (PSIA) 500. 600. 700. HEAT CONTENT (BTU/POUND) HYDROGEN ;; CPRPOKENT TPLUEME HEAT 741. 826. 871. 917. 963. 1010. :0 1.00000 614. 655. MELE FRACTION WEJGHT FRACTION 876. 922. 928. 1014. 1061.

SHELL DEVELOPMENT COMPANY

TABLE 94. DHYSICAL PROPERTIES OF HETHYLCYCLOMEXANE-TOLUENE-HYDROGEN MIXTURES

	,		000	00000000000000000000000000000000000000	
			0		000
			270		000
			2400		ဝီဝီဝ
			2100.	00000000000000000000000000000000000000	600
			, HOO.	00000000000000000000000000000000000000	000
			1500.	00000000000000000000000000000000000000	
			1200.	00000000000000000000000000000000000000	083
		,	900	######################################	.0756
			#00 *	à	0755
		(AUCH)	15IA) 700.	00000000000000000000000000000000000000	0753
		DS/FCCT	SURE P	00000000000000000000000000000000000000	.0752
HYDROGEN	2900	TY (PCUND)	PRES.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0751
<u> </u>	0.0	150051	, c	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0749
COMPONE! TOLUEME	0.14300	へ ジャシ	300.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0747
£	.42900 .75003		200.	₽ ₽ 1 m m n O 1 P m n O 2 P m n C 2 M n m n P U D N O M n m n P U D N O M n m n P U D N O M m n N D M n m n P U D N O M m n N D M n m n P U D N O M n m n N D M n m n N D M n M n M n M n M n M n M n M n M n M	0779
ž	2		100.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0772
	ACTION FRACTIO		•0	00000000000000000000000000000000000000	0 1240
	LE FR		EMP EG. P		000

Table 94 (CONT'D 4)

COMPANY				3000.	7.055	t.867	3,162	2,485	1,800	0.814	354	9.583	9.237	8 - 62 a	3,357	8.10	7.868	7.430	7.244			3000°	C. 8687												1,0417	0477	1,0501	1.0524
				2700-	5.783 1.4.636 1	_			_		_											2700	0.8448 0	8929	4132	9312	0609	4733	2833	0000	0800	0142	7610	0287	0324	1 C C	6	Č
. DEVELOPMENT				2400	14,355 1																	2400	0 8256		•	5,		٠.	٠,٠	•		٠,	•		٧,	•	٠.	
SHELL		•		2100.	12.756	~ :	-	٠.		•	•	_	_	-		_			-			2100.	0 81	0.871	0.894	0.513		0.957	0.968	200	0.992	866.0	000	1.013	٠.	1.022	1.02	1.02
•				1800.	10.985																	1800.	0.84	0.491	0.8920	0.9114	Ö	ó	o o	Š	o	o.	o-	-	<u>.</u> ب	-		•
				1500.	9.075																	1500.	0.8163	0.874	0.896	0.914	0.942	0.453	0.963	176.0	486.0	0.989	40000	1.002	1.0056	1.001	1.013	1.015
s o		. •		1200.		•		• .	• •	•	•	, ,.,		., .				•			•	1200.	00		ċ	ċ	: د	ó	o.	ô	ó	ċ	÷ 0		.		-	:
MIXTURE				• 006		•	_	m,	n m		m r	, ~	~	~ ~	٠.	~	~ (٧'n	~			300								*	0.9845	•	•		•	1,0013		_
				800°	4.198																	800.	U.8782		0,929	0.040	ှီ ၁	0.965	0.971	0.976	0.985	0.989	0.991	400	0	1,000	-	1,005
CLUENE-PYDROGEN			FCCT3	PS1A) 790.	3,874	3.419	3.072	2,92	2,799	2.576	2.479	2,307	2,231	2,160	20.0	1,973	1.918	4964	1.771	α	A I S d	}	4168.0	: ·						٠,			•			•	• •	
F	·		SUNDS/CURIC	SSURE (3.273	2.900	2,616	2.436	2,389	2,202	2,120	1.975	1.910	820	74.	1.691	1.645	10901	1.520	Y FACTO	SSURE	600	909		4	953	960	2. 2.	. 97	2	786	66	992	,	0.9983	900	1,0022	8
THYLCYCI CHEXANE	HVDROGEN	42900	5	FRE 500.	2,528	2.391	7.271	2.068	1,981	1.429	1.762	1. 743	1.530	0,4	4.0	004	1.471	1.334	1.267	SSTRILIT	ă	500	0.0	0.456	0	0	0.466	. 0	0.080	2000	0.00	C. 991	0.993	0.00	C	666.0	1001	
₩ETHYL (370 00+	RENSTIT	4 00	2,112	1.802	1.870	1.644	1.576	1.458	1.476					1.179	1.097	1.068	1.015	Sadeco		40V	c c	Ċ	ċ	o	٠ د	c	ď	c c	c	c	Ö	c c	c	c* -	-	1.0017
FS OF	CCHDOMENT	0.143	7 A 5	300.	1.550	1.403	1,270	1,224	1.176	1 080	1.051	0.043	0.951	0.927	C C C C C C C C C C C C C C C C C C C		P.24.0	200	0.761	CAS.		300		•		•	•	• •	•	•	• •	•	•	•	9	•		5
PROPERT	£	.429PQ		200.	1.071	35	E 4	ā	۲,	, 6	9	0 4	6	9	, ,	Š	4	5	Š			200-	1967	460	626	.982	800	0 00	166	266	, 0	950	966	200	6866.0	0.00	000	000
SICAL	1	3		100.	0.507		3.4	4	8	3.0				٣,	2	, ,	~	Ž,	7 7			100.	689	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		166	565.	700	995	966	666.	966	965	200	4566° j	900	200	000
4. PHY		PACTICE		5		::	o c	• •	c .	• 6		· c	•	0	. (· c	٠.	•		•		c	o*:	• •	•						• o			• •	•		•••	
TABLE		HOLE F	Ł	TEMP DEG.F	900	100	750°	850	900										1600.		OM 4 T	neg.F	6		5 6	S		30	000	500	4 44	200	250	4	1400	ي ۾	550	•

Table 94 (CONT'D 5)

70EN (0) (0) (0) (0) (0) (0) (0) (0)	HYDDOGEN 0.42900 0.01500 0.01500 0.01500 0.01500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015000 0.001500 0.001500 0.001500 0.001500 0.001500 0.001500 0.0015	1020	7.42. 2.42. 2.42. 2.43. 2.
00 01 02 03 04 05 06 06 06 06 06 06 06 06 06 06	0.47900 0.01400 0.01400 0.01400 820 827 827 827 827 828 828 828 828 828 828	4 4 0444444444444444444444444444444444	T T T T T T T T T T T T T T T T T T T
NT (BTU/PCUND) PRESSURE (PSIA) 00. 284. 282. 275. 385. 385. 275. 389. 426. 428. 28. 466. 463. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428. 29. 426. 428.	500 - 600 -	E	¥
16.55(IRF 6.00 6.00 8	5000 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 2000000000000000000000000000000000000	H hhm
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	746 9370 9370 9310 9310 9310 10010 10059 10059		ш нына 2
99 99 99 99 99 99 99 99 99 99 99 99 99	100140 100140 100140 100140 100140 100140 100140		ш нын
	4231 5555 5555 5555 5555 5555 5555 1112		H P P P
2000 2000	4.28 5.65 5.65 5.65 7.65 7.65 7.65 1.12 1.12		<u> </u>
7667 7667 7667 7667 7667 7667 7667 766	9559 9559 7055 7055 7055 10019 1112	ch 44 k 6 a - 4 a L E L C L C N U	<u>"</u>
7.6.2. 5.81 7.0.2. 5.81 7.0.2. 6.6.2. 7.0.2. 7.0.4. 7.0.3. 7.0.4. 7.0.3. 7.0.4. 7.0.3. 7.0.4. 7.0.3. 7.0.4. 7.0.3. 7.0.4.	543. 5543. 555. 707. 700. 700. 100. 100. 100. 100.	44 K G E H G E E E E C P O O O O O	
753 765 765 765 765 765 765 765 765	6555 7565 7565 7565 7565 1019 1112	I K C A - 4 A L E L C N C I	
664. 664. 704. 704. 704. 704. 704. 704. 704. 70	665. 707. 794. 794. 838. 973. 1019. 112.	A R - 4 R L E M C W C	
707 704 704 704 704 707 801 907 907 907	757. 756. 756. 838. 927. 1019. 1015.	4 a L & L & L & N O	# m m # #
7037 7037 7037 7037 7037 7037 7037	1065 1112	-486860000	<u> </u>
837 836 927 926 972 975	438- 682- 927- 973- 1019- 1065- 1112-	8 m m m c m c	
781. 881 927. 926 972. 975	882. 927. 973. 1019. 1065. 1112.		# n n w
972, 975	973. 1019. 1065. 1112.	9 0 0 0	1019. 1065. 1112.
	1019. 1065. 1112.	9 10 10	1019. 1065. 1112.
101% 101%	1065. 1112. PACTTY	٠, ٠,	1112. 1112.
1111. 1111	PACITY		S WEAT C
TTY (BTU/PCUND/LEG.F	1	Ú	
PRESSURE (PSIA) 100, 600, 700.	PRES C.	ç	.00 .00
719 G.6764 Q.6813 C.	6119		0.6676
0.7126 0.7156	7607		0,000,0
0.7299 0.7302	. 7276		0,7253
3.7472 0.7496	7448		0.7504
0.7794 0.7812	1775		
0.7947 0.7953	3604	2	
0.8094 0.810R	. 8079	3	
0.8245 0.8247	6778	2 2	
0.8500 0.8570	1648	λ α	
0.8625 0.8633	.8615	ő	_
0.8743 0.8751	0.8736	(C) 4	-
0.8863 0.8064 0.8863	0.8449 0.8954	* 6	
0.9065 0.9072	0.9358	, K	
0,9181 0,9168	4616.0	4	
0.9251 0.9259	0.9244		
0.0415 0.0004	0.936	νç	

Table 94 (CONT'D 6)

TABLE MA. PHYSICAL PROPERTIES OF METHYLCYCICHEMANE-TOLLENE-HYDROGEN MIXTURES

2000 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0	;	.	£	C. C:	<u>-</u>	HYCROGEN					•						
10C, 200, 301, 400, 504, 504, 100, 100, 1100	يَ چِ			0.2.0 0.4.9	00	09160											
100. 200. 301. Adv.				V	VISCOS		NDS/FC	ST/HOUP!	_								
Colored Colo		•	0	303.	0	•	SSURE 600.	\$18 70	800	900	1200	1500.	e C	2100.	2400.	2700.	3000
Court Cour		ï	4	ć	ć	4	0	į		į	:	, ;					•
Control Cont	٠.	35	034	S	034	0371	0.03	. 5	•	0.0	1 to 1	040	0.0416	043		֭֓֓֓֓֓֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ء د
0.0331 0.0332 0.0342 0.0442 0.0441 0.0441 0.0442 0.0443 0.0442 0.0443 0.0444 0.		6	.037	•	603	0385	0.0387	039		0.0	÷	Č	0.0427	0	0452	֚֚֚֚֡֝֜֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֓֓֡֓	
Control Cont	0	6	980	•	.03	0360	1040.0	0.00	ر د	0	-	042	0.000	0	046.1	; ;	, c
7.6416 0.0431 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0449 0.	4	2	0.00		č	6140	0.0415	100	0.42	042	4	0.43	0.0449	0	C 1 7	•	, c
Color Colo	•	5	042	•	040	0427	0.0429	043	0.43	0	1		0440	640	0440	•	•
Colored Colo	•		0	•	٦,	1440	0.0443	96	0		1	440	20.00		2010	י י	•
Control Cont		3	4	•	•			3	•					֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓	1410	•	•
7.1.4.7.6 0.0747 0.01425 0.01424 0.01441 0.01442 0.01442 0.01442 0.01442 0.01442 0.01442 0.01423 0.01422 0.01422 0.01422 0.01422 0.01441 0.014				•	֭֝֜֞֜֜֜֝֜֜֜֜֝֓֓֜֜֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֡֓֜֜֜֓֡֓֡֓֡֓֡֓֜֜֡֓֡֓֜֡֓֜		00000	5	٠	9	é		0.0484	*	*0505	٦	۰
Color Colo	_	5	940	•	•	4040	0.0470	ŏ		•047	9.0	•048	0.0497	080	.0513	5	٩
\$\times_{\tilde{\text{C}} \tilde{\text{C}} \text{		3	.047	•	100000	2840.0	0,0484	840,	•	.048	940	050.	0.0509	.051	.0525	5	9
7.05% 0.05% 0.00%	e.	Š	040	•	C.0495	0496	0.0498	040		080	050	0.51	0.0522	052	0536	, <	
Control Cont	•	č	0.50	•	8050 C	0506	0.011	ě			֓֓֓֜֝֓֜֝֓֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡֓֡֓֡֓		46.00		2440	•	•
100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, e		•	1	2000			•	֭֓֞֞֜֜֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡	2 1		10000) 		5	•
0.0552 0.0553 0.0554 0.0555 0.0555 0.0555 0.0555 0.0555 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0557 0.0555 0.	_ ;	9 6		•	0.60.0	12613	6260	760	•	į	93	200	0.0545	, 52,	8650.	ç	٩
105 1 0.0559 0.0559 0.0558 0.0558 0.0558 0.0559 0.0	23	S	250	•	0.0532	0.0533	0,0535	ç	c	ş	054	.055	0.0556	056	.0568	9	٩
0.0551 0.0553 0.0544 0.0554 0.0555 0.0559 0.0551 0.0551 0.0551 0.0551 0.0551 0.0551 0.0553 0.0554 0.0553 0.0554 0.0553 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0553 0.0554 0.0555 0.0554 0.0555 0.0554 0.0553 0.0554 0.0555 0.0554 0.0555 0.0554 0.0555 0.0554 0.0555 0.0554 0.0555 0.0554 0.0555 0.0554 0.0555 0.0554 0.0555 0.	39	9	.054	•	0.0544	0.0349	0.0546	9	Ö	2	5	, C	0.0546	0.17	0578		
100 100		5	0.55	,	44.0	08.56	9.50	č	900	· •						•	? •
100 100				•				3	0.0	2	900	60	1 6000	000	6000	9	•
Control Cont		9		•	1960.0	2000	5000	֓֞֜֝֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֟	60.0	ŝ	.057	0.28	0.0588	650	6650	Ğ	٩,
Court Cour	•	S	0.5	•	n.0578	0119	0.0581	õ	K & C O	ç	460.	950	0.0598	0.0604	6090	5	٥,
100	e C	8	15 C		0.0583	1.0591	0.0592	50	0.059	.0.	040	040	0.040	4140 0	0410		
CAST CORST	40	Ę	050	0	0	040	0	č						*****	6400	•	•
ICC		۲,	0	140	1000	0.50	4140	2			100			7000	6700	Ç: '	•
150, 700, 370, 400, 500, 600, 700, 800, 1200, 1800, 1800, 2400, 2700, 3		,						•			200	6	0.00	* 600.0	***	•	•
150, 200, 3-0, 400, 500, 660, 700, R00, 900, 1200, 1800, 2100, 2400, 2700, 3 150, 200, 3-0, 400, 500, 600, 700, 700, R00, 1200, 1800, 1800, 2100, 2400, 2700, 3 150, 200, 10, 10, 10, 10, 10, 10, 10, 10, 10,				CAS			TIVITY	7.57	50	/DEG•							
150																	
CC489 CC0688 CC688 CC689 CC6	°	O	Ċ	C	6	<u>~</u> 2	SSURE 600.	PSIA)	0	8	1200.	004	00	2100.		2700.	0004
Control Cont			•		•			,	•	•			2	• > 0 1 3	١.	• 00.7	200
	C	6489	.049	.048	0.04A7	0.048	0.49	0.0493	0.0	640	.057						
Fuggs c.0537 Dicks n.0533 O.0535 O.0550 V.0554 O.0566 O.0663 O. O. O. O. O. O. O. O.	C	C512	051		0.0510	0.051	051	0.0516	0	.042	250						
0.0559 0.0560 0.0855 F.0857 C.0158 0.0560 0.0565 F.0566 0.0568 0.0643 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	L	0535	.053		0.0533	0.053	683	0.0539	C	0.54	4			•			
CCST COCT	Ç	0559	.056		0.0587	0.65	O. A.	0.450	, c	4 4 6				•	•		•
COCCE COCCE COCCE COCCE COCCE COCCE COCCE COCE COCCE	C	6 8 5	9.0	•							0.00			•	•		•
0.0659 0.0654 0.0625 0.0625 0.0629 0.0631 0.0633 0.0644 0.0112 0.0639 0.0631 0.0649 0.0025 0.0625 0.	•			•	OKCO.			0.0	2000		0.0656			•	•		•0
0.0659 0.0631 0.0647 0.0659 0.0631 0.0633 0.0634 0.0712 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	•				6000	2	9	x 0 0 0	0,060	190.	0.0689			•			ċ
Company 0.00534 0.00447 0.0555 0.0554 0.0556 0.0657 0.0736 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	000	000	740	040020	790	•005	0.0631	0°093	•063	0.0712			•			•
0.c677 0.0678 0.0472 0.0674 0.0678 0.0678 0.0678 0.0681 0.0789 0. 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C.	6290	600	.064	0.0650	2,00	6,0	0.0654	0.065	690	0.0736			,			ď
0.07C1 6.0772 0.0694 0.0697 0.0740 0.0701 0.0703 0.0704 0.0783 0.0783 0.0783 0.0783 0.0783 0.0783 0.0783 0.0784 0.0783 0.0784 0.0784 0.0787 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	¢	C677	.067	40.	0.0674	0.067	.067	0.0678	0.047	A 40	0.0780						•
### CF725 G G G G G G G G G G G G G G G G G G G	C	0701	070	ď	7000	=	040	1000	0		2000		•	•	•		•
0.0748 0.0749 0.0744 0.0744 0.0744 0.0744 0.0744 0.0774 0.08807 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C	376	070	Ċ		•	- (•		1		•	•			• (
10.0748 U.0749 U.0749 D.0744 U.0744 U.0744 U.0749 U.0750 U.0789 U.0749 U	•			•	17100	7	0.0	6270.0	္ ၁	2.0	0.0807		•	•			•
	=	£ 7.0		è	0.0744	\$4°C.	, o ,	0.0743	c	400	0.0829		•		•		ć
0.c741 c.0792 0.0784 n.0744 0.0788 0.0749 0.0749 0.0793 0.0872 0.06872 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	C	0360	017	ç	0.0766	076	.076	0.0769	0,0	.077	.008						
CCR13 C.0913 C.0807 0.0807 0.0808 0.0813 C.0813 C.0814 C.0844 C. C. C. C. C. C. C. C. C. C. C. C. C.	C	(26)	070	c	7.070	4,00	9.0	0					•	•	•		•
C.CF13 C.CF13 C.CF15 G.CFC J.CBC J.C	c						,	5 0			9			٠	•		•
CEM34	١			2	9080°	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90.	0.0817	5	. O.	40			•			•
0.6855 C.0856 O.0840 C.0850 C.0852 O.0853 O.0854 O.0655 O.0856 O.0936 C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Ľ	C P 34	.083	.042	0.80.0	0,0431	.084	0.0933	2	0.83	ç						` c
0.0876 0.0877 0.0877 0.0872 0.0873 0.0874 0.0875 0.0876 0.0956 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	C	C.855	.085	400	0.0850	C.0852	.085	0.0854	0.0					•			•
0.6695 0.0897 0.0897 0.0897 0.0893 0.0893 0.0897 0.0875 0.0898 0.0898 0.0897 0.	C	A7KO	0.97	003	٠	67.00	, ,			1 (•			•			
0.0077 0.0077 0.0071 0.0072 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.007 0.00777 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.00	•	000	0		•			0000		¥0.	•	•		•			•
%*************************************	•) (•	0.000	500	0.0895	0 KO 0	680	9	.	•	•			•
6.6937 6.6338 0.003! 0.0932 0.0933 0.0934 0.0935 0.0934 0.0937 0.1017 0.	٠.	1160		5	٠	0,0913	160.	0.0915	0,041	160.	660.	•	•			•	9.
	C	6937	633	်	٧	0,0933	9	0.0935	0.03	00	101	,	ć			, ,	c

SHELL DEVELOPMENT COMPANY

TABLE 94. PHYSICAL PROPERTIES OF METHYLCYCICHEXANE-TOLUENE-HYPROGEN MIXTURES

			3000.	•	ì	֓֞֞֞֓֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֓֡֓֡֓֡֓֡֓֡		8.992	Š.	7	Š	.,		7		.28	į	8	2	5.	?	25	5,147	,02			3000		•	1666 0	- (•	•	•	•	•	•			•		•	•		1,0618
			2706,				3	_	Ċ.	?	2:	2 2	7=	8	8	S	2	35	2	5	9	2	5.667	5			2700.	.9613	*916		400	0161	. n225	•0279	40325	4000	0424	8440	0468	0485	6640	1150	1250	7777	
			2400.		•		•		•	•	•	•						•	•	•		•	4.178	•			2400	9556	0896	8086	1000	1800	.0145	0199	6420	4070.	4460	0370	.0390	.0408	.0422	0434	4 4 6	4	0466
			2100.			•				•							•	•					3.681	•			2100.	9468	9621	7470	7707	0015	0011	0130		0244	0274	C 2 9 A	0319	0335	0320	036			1,0395
			1800.				i, i	9			9	9	2	-	8	6	7	49	34	₹.	₹.	.25	3,176	Š.			1800.	.9442	.9588	0.0	.0803	900	*0023	.0073	0110	010	0210	.0232	.0252	.0268	.0283	66.00	40504	1650	.0327
			1500.	•			700	100	K 100	777		3, 936	00	3,475	3,359	3,251	3,150	3.056	2.968	2.885	2.007	2,733	2.663	2,597			1500.	1846.	9585	9540	0.00	9959	2866*	0026	000	0150	0.153	.0174	.0192	\$020°	.0221	• 0232	7520	0257	1.0263
			1200			•		•	•	•	•	• 1				•	•	•	•	•	•	•	2,143	•			1200.	4616.	9611	<u> </u>		6066	9466.	9666	2000	4000	50.0	4210	.0139	.0153	•0165	0175	0183	ç	1.0202
			•006	•			•	7.	Š	֡֜֝֝֜֜֝֝֜֝֓֓֓֞֜֝֝֓֓֓֡֝֝֓֡֓֞֝֓֡֓֡֝			- 1	2	60	Ş	6.	8	. 19		5	\$	1.416	1			900	•	5	8080			٠.	٠,	•			2	್	٠	1.0114	o,	76.00	1.014	
			,00°	٠	5 ~		•	2 2 4 5 5	•	. -	: 5		•	æ	æ	٦.	•	•	۲.	•	S	•	1.434	•			900°	•	990	0 0 0	986	999	466	706		00	305	900	, 00A	CO3	600	010	35	210	1,0128
		FCCT3	PSIA) 700.		•	•		2 080	•	•	•			•	•	•	•	•	•	•	•	294	1,261	1.230		•	(PSIA) 700.	9645	0216		9878	*166°	9945	7266	6.00	0030	4400	9500	1900	.001	600	600		010	011
	•	S/CURIC	.SSURF (2, 130	220		7 7 0	1 4 4 4 3	100	1.004	1.542	1.504	1,453	1,405	1,339	1.317	1.277	1.240	1.205	1,172	1.141		0.03	1.0.6	Y FACTO		55URE 600.	0.9680	•		•	•	•	•	•					•	•	1.0076	•	•	1,0093
HYDROGEN	000000	GNOCA)	FRE 500•		X X Y	•		1 447															0.904		STLIT	- (500.	0.4730		0.0870										1,00,1	1,0057	79001	0/00/1	1.0074	1,0077
ENT	0000	FENSTTY	400			• •		•	•	•				•	•	•	•	٠	•	•	•	•	0.77	•	Control		* 00 *	9778	80.0	0.9892	1664	100	. 69	4 6 6 4	000	50	500	005	500	00	Ď.		1.0055	1.0043	1,0041
CCMBON 10LUEN	0.200	A A	300.	Ç	. 8		; =		. 4	•		.75	.72	5	٠٨8	ş.	4.5	4	\$	80	2	ă,		Ç	CAS		3.	0.9230	9000	0.9916	0.9934	0.9953	0.9067	0000	0.999	1.0001	1.0013	1.0019	1.0024	1.0029	1.0037	4600	1,000	1,0043	1,00045
£	.2000° .5000¢		.00.	9	4	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		¥	7	52	50	4.	\$		•	42		3	6		, ,	0.363	č			200.	- 10 t		6	966.	4(6	666		666	.00	200.	.00	60.	200	200	200	200	200	500
2	20		100.	14		-		•			26	25	.24	.23	.22	. 22	12:	200	20	<u>.</u>	5	2	0.187	-			100.	9.0	. 400	997	166.	865	2 C	000	566	000	000.	000	000	200		200	100	5	C01
	PACTI-N FRACTI		g.	c				• c	· c	·c			°.	o	°	c.	c ·	•	•	E (.	c •	.	• •			°					•	•	•							•			•	•
	MOLF FI		TEMP DEG.F	2	2	100	ç	(8	ç	6	950	600	0	8	130	207	250	300	500		9		1250	2		u	DEG.		9	50.	ç O	200	9 6	000	050	100	150.	- 002	250	9000		- - -	500.	550.	င့် လွှဲ

table 94 (CONT'D 8)

00.00 00.00	FFY51CAL			NENT												
FOR WELL CCATENT (BILL/DCLND) 700. 370. 407. 407. 900. 803. 302. 303. 302. 303. 204. 209. 220. 220. 2270. 370. 407. 407. 407. 407. 407. 407. 407. 4	2 60	9293	í¥ 66	1 00	*3100 .03100											
10. 300, 400, 500, 600, 700, 600, 100, 1200, 1300, 1800, 2100, 2400, 2700, 170, 371, 371, 371, 371, 371, 371, 371, 371			C	-	YFRI	BTU/PCL	(QVC									
17. 37. 454. 195. 394. 303. 302. 302. 302. 202. 292. 292. 292. 292. 292. 372. 372. 372. 372. 372. 372. 372. 37		0	õ	ઠ	500	SSURF 600.	31A)	0	8	1200.	0	0	8	004	2700.	3000.
417. 417. 417. 417. 417. 417. 417. 417.		E 04	307.	30A	305	304.	303	302.	301;	298.	296.	293.	291,	289.	287.	286.
442, 412, 411, 412, 411, 410, 410, 410, 410, 410, 410, 410	α.	. 7	376	378	4.6	44	373.	372.	371.	369	167	365	363	3619	160	386
\$25. \$4.5. \$		~ · · · ·	412.	411.	014 044	410	409. 446.		407		4 d	402.	438	399.	397	396. 434.
75. 5.4. 6.4. 6.4. 6.4. 6.4. 5.4. 5.4. 5.		6	400	A 4 4	4.85	484	4 8 4	483	4.82	4.81	419	478	474	475	4.4	473
4.6. 4.3. 4.3. 4.6. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.3. 4.3		2 4	324	15.24°	523	523	522.	\$22	521.	519	5 3 50 5 5 5 6	517	910	514	4 4 4	F 13.
644, 644, 643, 644, 643, 642, 644, 641, 641, 640, 639, 639, 637, 637, 676, 577, 776, 776, 776, 776, 776, 77		. 0	, v.	603	505	402.	601	£01.	600	3000	598	597	296	595	, 40 k	\$4.00 \$6.00 \$4.00 \$6.00 \$4.00 \$6.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00 \$4.00
757. 776. 774. 774. 774. 775. 775. 775. 777. 777	•	7 4	644.	A43.	643	642	642.	641.	641.	640	639	6384	6.84	636.	635	635
# 17.		٠ ٧	726.	724.	720	725.	725	724.	724.	681.	722	521.	2.5	720.	720	
# # # # # # # # # # # # # # # # # # #		\$	749	768	768	769	767	767	767	766.	765	184	\$	763	762	
### 85. 85. 85. 85. 85. 85. 85. 85. 85. 85.		~ !	811	- T d	911	0.0	910	\$10	810.	800	808	A07	6	806	806.	906
94, 943, 943, 943, 943, 943, 944, 942, 944, 941, 941, 941, 945, 945, 945, 946, 946, 946, 946, 946, 946, 946, 946	•	5.5	90.00		4 0	4 0 4 4 0 4	924	953	853	- NO - 1	3 5 6	# 2 F	7	920	850.	
95° 96° 96° 98° 98° 98° 98° 98° 98° 98° 98° 98° 98	•) K	0 0 0 0 0 0		3 4 0 4 0	493	6 4 40	197	897		900	340 040	3 9	930	* 0 0 0 0	030
1174. 1173. 1173. 1173. 1173. 1173. 1174. 1174. 1174. 1174. 1171. 1171. 1173. 1174. 1173. 1173. 1174. 1173. 1174. 1173. 1174.		.0	98.0	989	986	987	987	787	987	986	386	985	985	985	984	280
1774 1775 1775 1775 1775 1776 1776 1776 1776 1776 1777 1775		400	1033	1034	033	033	1033.	1032	635	032	1031.	1031.	031	1030	1030	2030
CAS MEAT CAPACITY (BTU/PCLND/DEG.F) 2CC. 310. 403. 500. 500. 500. 700. RCD. 800. 1200. 1500. 1800. 2100. 2400. 2700. 2CC. 310. 403. 500. 500. 500. 700. RCD. 800. 1200. 1500. 1800. 2100. 2400. 2700. 2700. 500. 500. 500. 500. 500. 500. 500.		124	1175.	3125		1125.	1124.	1124	124	124	1124	1123.	123	1123.	1123	1123.
200. 300. 400. 500. 500. 700. RND. 900. 1200. 1500. 1600. 2100, 2400. 2700. 2700. 2700. 2000. 300. 700. 700. 700. 700. 700. 700.				EATC	APAC	(BTU/P)	/DF	14								
0.6684 0.6704 0.6728 0.6728 0.6955 0.6974 0.58817 0.6839 0.6904 0.6965 0.7166 0.7208 0.7208 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7276 0.7278 0	•	Ö	ő	400	900	SSURE SOO.	•	GO	C	~	\$00	800	200	004	700	3000
	^	.668	.6704	0.6723	0,6750	0.677	0,6795	0.581	.683	4	909			0.710	0.7144	0,7171
7241 0.7754 0.7771 0.7785 0.7289 0.7311 0.7327 0.7340 0.7457 0.7417 0.7411 0.7451 0.7553 0.7553 0.7554 0.7754 0.7751 0.7751 0.7754 0.7755 0.77	U 1	4684	6897	0.6916	0,6936	0.695	0.6974	664.0	25.	, 10A	717		0 0	0.724	0.7276	0.1303
7399 0 7441		724	1254	0.7271	0.7285	0,729	0.7313	0.732	734	773	74.1			0,751	0.7534	0.7563
.7554 0.7471 0.7594 0.7794 0.7794 0.7794 0.7753 0.7445 0.7741 0.7741 0.7744 0.7774 0.7779 0.7794 0.7771 0.7554 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7754 0.7755 0.7754 0.7755 0.7754 0.7755 0.7	٧.	.739	. 1413	127431	3.7441	0.745	C . 746R	9.748	.749	753	736		6	0. 786	0.7684	0.1706
7.77.0 0.77.2 0.77.2 0.77.2 0.77.2 0.77.2 0.77.9 0.77.9 0.77.7 0.	· `	12.0	147	0.7594	0.7596	0.760	0.7621	0.763	ζ:	767	771		5 0	0.779	0.7816	0.7836
## ## ## ## ## ## ## ## ## ## ## ## ##		736	7071	0.7891	2 7 4 6	7 20	7010			756	705		. 0	0.804	0.8068	0.8085
# # # # # # # # # # # # # # # # # # #	•	PCC.	ניט	0.8020	C. MO29	0.803	0.8047	Caro	. 68	K C d	118		0	0.817	0.8189	0.8204
PRION OF 477 K PRINTS 1 U. 3770 U. 86297 U. 8410 U. 66437 U. 6450 U. 64573 U. 84529 U. 84515 U. 68515 U. 68515 U. 68515 U. 68519 U. 68515 U. 68516 U. 68513	٠.	. E. C.	.8146	0.8155	0.8163	0.817	0.8178	a18.0	2	. 821	623		0	0.829	0.8305	0.8320
#8510 0.6514 0.8522 0.8528 0.8534 0.88540 0.8555 0.8551 0.8567 0.8582 0.8759 0.8869 0.8862 0.8736 0.8736 0.8736 0.8736 0.8735 0.8736 0.8737 0.	- v	C	53.93		0.8780	0.841	0.8425	2 4 2			6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5 0	0.851	0.9528	0.8540
. #472 0.842° C.8439 0.8639 0.8644 0.8647 C.8655 0.8655 C.8675 0.8489 0.8771 0.6713 C.8725 0.8736 .8729 0.8734 C.8749 C.8744 0.8744 0.8754 0.8754 0.8757 0.8759 0.8402 C.8813 C.8826 0.8835 .8729 0.8734 C.8934 0.8749 0.8754 0.8754 0.8757 0.8777 C.8789 0.8402 C.8813 C.8826 0.8835 .8729 0.8734 C.8934 0.8037 C.8942 0.8644 0.8751 0.88055 C.877 0.8979 C.8990 0.9001 0.9011 0.9021 .8721 0.8027 C.8934 0.8037 C.8942 0.8944 0.8034 C.9130 0.9049 0.9067 0.9067 0.9079 0.9108 .9721 0.9074 C.9071 0.9025 0.9019 0.9034 C.9120 0.9075 0.9067 0.9079 0.9089 0.9009 .8724 C.99174 C.9140 C.9185 C.9187		. A 5.1	.6514	0.8522	0.8528	0,853	0,8540	0.854	8	984	. 38		0	0,862	D. A634	0.0345
. 17.59 0.8734 0.8719 0.4744 0.88754 0.8754 0.8759 0.8751 0.8774 0.8769 0.88715 0.88719 0.89719 0.89719 0.89719 0.9971	•	. 442 642	44429	68433	0.8639	0 x 54	0.8647	2.86.0	80.	764	40 €		0 0	0.872	0.8736	74740
.8921 0.8029 0.8933 0.8037 0.8942 0.8844 0.8951 0.8055 0.8047 0.4970 0.8990 0.9001 0.9011 0.9021 0.9021 0.8021 0.8021 0.8021 0.9011 0.9021 0.9021 0.9021 0.9012 0.9012 0.9012 0.9014 0.9021 0.9021 0.9021 0.9021 0.9021 0.9021 0.9021 0.9021 0.9021 0.9021 0.9131 0.9013 0.9133 0.9021 0.9013 0.9013 0.9003 0.9021 0.9000 0.9	٠, ٠	. ∠8a.	36734	0 F & E & C	* * * * * * * * * * * * * * * * * * *	486.0	0.00			- u	D 60		, c	0.892	0.8929	0.8939
.9612 0,901K R.0071 0,9025 0,9030 0,9034 P.0039 0,9043 0,9055 0,9067 0,9067 0,9078 0,9089 0,9099 0,9108 .9694 0,9090 0,9103 0,9108 6,913 0,9117 P.0122 0,9126 0,9139 6,9151 0,9162 0,9173 C.9183 C.9192 .9171 0,9175 0,9190 0,9185 C.9190 0,9194 F.0199 0,9204 0,9217 0,9230 0,9242 0,9253 C.9263 0,9272 .9241 0,9244 0,9251 0,9256 0,9261 0,9266 Y.9271 0,9276 0,9291 0,9304 0,9317 0,9328 0,9339 0,9348	σ	. A 92	.8929	F-8933	0.8937	0.894	0.8946		8	9	6.5		0	0.901	0.9021	0.9030
0.3744 0.9774 0.4173 0.4173 0.4173 0.9117 0.4174 0.91760 0.9137 0.4171 0.6172 0.9173 0.9173 0.9173 0.9173 0.9173 0.9174 0.9272 0.9273 0.9273 0.9263 0.9273 0.9273 0.9273 0.9283 0.9273 0.9273 0.9274 0.9274 0.9274 0.9274 0.9274 0.9274 0.9274 0.9274 0.9274 0.9274 0.9274 0.9274 0.9374 0.9339 0.9348	0.4	00.00	31 ng.	0.0021	0.9025	0000	0.9034	100°C	96.	40.	006		0 0	0.909	0.9108	0.9117
.9241 0.9744 0.9251 0.9256 0.9261 0.9266 9.9271 0.9276 0.9291 0.9304 0.9317 0.9328 0.9339 0.9348	- 40	416	9175	0.9140	0,9185	0.919	0.9194	616	. 6	. 921	423			0.926	0,9272	0.9280
	¥n	924	346.	0.9251	0,9256	0,926	0.9266	7.927	6		0		ċ	0.933	0.4348	0,9356

Table 94 (CONF'D o)

NO. F.		_	ŗ	CHADOMENI	_ \	YUPCGEN											
	GLE FRACTON ETGHT FRACTIO	2	0.25000	0.24100	ပ် င	.69200 .34600											
				יליזל ען	VISCOSTIV	<u>-</u>	CUNDS/FC	OT/HCL	â								
TENP PEG.	ć.	100.	200.	, 0 ng	. 00.	ррк 503•	ESSURE ROP.	(PSIA)	800.	900	1200	5 · S	0061	5012		2765,	, ()
		,					,	;							J		**
, c	0.00		0.000				0.00	0.00	3000	216000	0.0379	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(A)	1	
			, ,			60.00		3 6	n 6	0.00	•	•- •	-		٠,	40	
						10.00		•		A .	٠,	.,	_		Ċ		
		,				3	, (. •	176.0	٠.	.,,	_	••		.;	2. 4. A. A. A. A.	
	,		٠.,	3 6	5 i	0.042		3	5255	0,042		٠.,	_		ੌ	2	
	0 / 9 0	C4.3F	٠.	C . 40 0	4 3	0,7433	5	0	6640 0	\sim	944040	-	_		•	. 76.2	
	F 4 7 0	.0444	٠.	9.000	9440	6440	0.045	o	6740.0	_	04470	_			c	9 . 6	- 4
	5457	4540		0.0	0.42	2.0463	0.0	c		2		•				0 6	
	4.72	6473	٠.	1000	94.40	6.40			č	٠.,	, ,					226	
	70.70	1075	٠,				, .	5			, ,				•		
				2 0 0				5	•	7000	,				ċ	.055	٠
	200	1360			2504	0.000	C. (0	605040	o	_	٠.			ូ	0.533	•
	25.14	0.21.5	Ļ,	1 0 ° 0	5.0	0,0510	0,052	ċ	C. 0522	0.052	٠-	•	_		ć	7	*
-	1524	10527	•	0.70.0	0530	0.0531	С.	٠,	7.0.36	0.683	C		٠.				- 4
	5.3	0,000	٠.	6.54.0	0.87.2	4	¢				٠. (٠,	•			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠.
	. 2.5		, c	0.0	7 7			•) i	٠.	, ,	- 7			100	- 4
									0 1		00.00	,	_		÷	. 058	
	000	0 1			240	0.00	0	0	0.60	€.	46360		•		ĕ	200	
	,	52.5	•	0.0	0578	87.50.0	0.057	3	1 α5ύ*υ.	0.058	0.0585	•	_		ু	40.40	, ,
_	S.P.	C 5 8 7	o	0.000	0850	0.0840	O	. 5	0.000	3 40	200	•			•		٠.
_	1807	*0 *		0.0	0 0	0.0	·C		Ċ		200	, ,			٠,	1001	
_							٠.	30	1000	0.00	0.00		•		٠	(A)	
_		0 0	_ 1	0.0	200		•	2	\$190	•	0.CA19	C,	_		Ġ	0.00	4
•	2	 V		2743	0623	0.082	0	?	0.0676	0,042	0.0430	•			ď	1,054A	6.60
				144 PH	· With	Sugar	717!TY	/HTI./F	07 0 10 H 7 1 0 0	9/06/6	_						
										,							
TEMP						707	40:155	(A129)									
DEG.*	6	100	200	376.	, ,	\$00°	4004		#00#	900	1200,	0951	1 1 P O G .	2160	2400	2730	0.00
	•																•
		1		0.73			0.0578	-	450.4	0,0484	3,066	ċ	Č	9	ć		
350.0	י טעט י	C540		KOYO O	-	1.601	0.0403	•	0					•	•		÷ .
							1000	•	000	K 0 4 5	90.0		•	ċ	ئ	٠	. •
			1000 TO			6790	12821	_	0.09	0,0632	֓֝֝֓֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓			ó	ď		
-04/	". USYC"	2593	0,0653	0,0447		0680	0,0651	v	0.00	0.0454	50.0		c		· «		
a • 008	. 5640.	C. 4.7.	0.0677	17.40.0		47.40	0.0475	٠.		0000					•	•	•
360.0	2 0000		6 760	1017		0 7 6		•		50000				ڎ	<u>.</u>		
							0.1.	•	2	1010			ċ	Ĵ	ď	• •	
		6	1717	1 CO*		17.	0.0724			C123	0.061			j	ó		
950	. 0340	0.150	0.0753	0.0746	_	7447	0.0749	u	A 0 . n	0.0753	600		ی			,	
000	.0776	27.0	P.C776	0.0774		1772	0.0773	•	60.0	7777				,	•	•	•
ć	6.700	250	100	0.6704		606							5	•			•
6							200	,	5	704017	180		ċ		.,	٠	
		2000	0	0.0	0	C. 0P.23	628046	2.0.0	280*	5 0 0 0 25	0.00	•	ċ	. ز.	ċ	Ċ	
	4 4 4 6 0	0.25	0 f k t t	9 0 0	-	946	7.0847	Ç	950	058017		0	•	ď	10		
302	.0471	5230	67.57.0	0.0054		898	3.0870	Ç	7.0.7	600					•		•
200	A 4000	40.00	030					, .				;	•	,	ć	<u>.</u> د	
			0 0	1000			7.80.	,	683	0,000	260.0	°	ċ	ບໍ	ć	* ن	ς."
5	100		0.0518	0.00		* ·	410000	0	100	0.0019		0	ő		ċ	ú	-
250	.0030	0040	75000	0.0034		920	FE60.0		0.053	0400						•	÷
*00¢	6064	0000	4450-0	0.005				ις				•	•		•	•	a
								Э,	0	20000	* C	ំ	•	ċ	ċ	·•	ı,
		5 E	24042	F . C . C		C880.	1860'0	c	0.00	0.0984		3		•	ċ	΄,	,
0 0000	1001	30.	C.1007	1001.0	,_		0.1003	Ç		00.00	0-100			; ; c	•		• ,
250.0	.1027 6.	1028	0.1020	0.1577		K	7001.0						•	, ,		. د	•
000		1			•			;		2010		•	j		Ċ	4.	ŧ
6					٠			4							•	;	

Table 94 (CONT'D 10)

188, t 4	76. 7	PAYETCH!		1F5 OF	METHYL	وبادا جابوع	RANK -TOL	LENE-HY	A ROSEN	POCHERTIES OF METHYLCYCLOHEARN -TOLLENS-HYPROGEN MIXTURES	s			∃H.	MELL DEVELOPMENT CONDAN	PARKA	Charma
			ı. a	COMPONENT		HYDROGEN											
MOLF FRACTION	PACTI		0,07760 0,2550	0.24100		0000000											
				5 A C	PENSTT	RAK PENSITY (POUNDS/CUPIC FOOT)140.578¢	(Appl)									
75 M D		1001	, , ,	W D L R	, C.	4Rt 5002	PRESSURF (G. 600.	(PSIA)	Pu0.	900.	1200.	1550.	1800.	2100.	- 10 #Z	2700.	້ ພຸດ ພູຄ
* 04	ó	0.266	0,534	6000	1.071					2.422	3.230	4.032	4, 423	5.549	6.35	7,095	1.8.7
650		0.254		7.464								3.833	570	30.	6.020	6.720	2.400
00.	٠,	2.5		187								7.65.	***	. 64.	5,723	F 60 0	
 		0.224	ں د	0.4.0	0.0							3,319	1,0,0	200		3.5	
530	ċ	C.21*		4								3,182	3,798	404	800.5	S	
9006	ď.	0.207	5 (27.5	0.827							60°0	(F) (F) (F) (F) (F) (F) (F) (F) (F) (F)	6,259	() () () () () ()	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
000	c* c *		., .	, C	2 0	0,96,0		1.00	1.30	1,719	2.26	2. x 3.5	3,010	3.922		0.0	1 6 4 6 10 4 6 7 10
1050		2,138		, v								2. 34	3.266	3,784	46234	462.4	
1100	ė,	7		ر ا د ا								7.567	3,157	3.659	60 C		
1200	c'a	0 0 0		174°0								, 50 t	9,036		1 m	, , , ,	
1250) }	0.16		63								204.2	2 2 7 2	3,323	7	25.5	
1300	ć	C. 18		8 4 C								2,330	2.789	3,233	3.070	62.	
9 6 6	<i>.</i> .	C. 135										ر در در در در در در در در در در در در در د	2,71	3,142	7 9 5 ° C	60 C	
0.00	c [†] c	0	200	C C	2 0							153	2 568	200	, e		
1500	• c	0.1	, ,	67			900					2.05	2,503	000	3,293	- 46 - 46 - 17	
1550	· c	0.140	. 27 c	#19 °C	0.547	•	C. 832	0.969			1.646	7.045	2,4	7.824	3,5	3,388	
1600.	ç.	6.137		Ĉ,	6.543		218.0	946			_	1.995	2,380	7 459	34,33	305.	
				4	384.02	SIRILITY FACTOR	IY FACTE	or .									
44.40						0.	38.185	. V . S									
neg.	ć	100	2 05	3^5€	Š	\$005	30, 500,	100.	#cū.	900	1200.	1506.	1400°	2100.	2405	2200	30008
0 .000	~*	U = 50° L	C. 3961			5165.0	6,66,0	1686.0	V. 98A6	0.4981	0.9878	0.9892	78 0,9892 0,9424 0,9974 1,0034 1,	\$799.5	1,0034	1,0113	1,5213
980.	••	0.99 Re	20073	0,0053	K 45 4 6	1. C. C. C. C. C. C. C. C. C. C. C. C. C.	0.0030	4664.0	5 400 C	0.4031	000	10000 F	1,0002	1,0058	1,0173	1,020	1670
	• ~	4000	K056	0.00000		0686	2,6942	0.000	2000	90000*1	00.1	1,0069	1,0113	21.5	1.0247		\$1.00°
		1.000	00000	1,00001	1.0003	10003	1.0012	1.001	1.0025	*E00*1		1.0168	1.0161	1.0223	1,0294	0373	044043
950	ກ ໍ ນ	1000	600	1.0717	1,0015	0043	6200"1	1,003,1	\$ 2	75001	Č	1,025	1,0196	0200	1,0332	7 4 6	46467
	•_•	, C C C		1,0	1,0033	00	000	1,000	1.077	20001		0614.1	1.0250	0316	1.0348	40	0820
1001	·•.	1,001	ر درا	1,0720	1,0040	1500	. nos.	1.007	160001	9010	1.01	1.0209	1.0270	1.0337	1.0439	** B ** C **	1,75-3
	•	1000	2	1,001	0400-1	4400	7.	4800.1	1010			1.0264	0000	4 4 E O	0740	2 4	
1150.0	•	1.001	0027		1.0055	900	1,0045	1.010.1	1,0117	4510	1.01	E 4 2 0 1	1160-1	1.0379	1,0+51	4. N	
12000	•	\$100.	56.00	5	3,0056	4,00	0600	1,0104	1.0123	1410	500	1,0256	1.0320	6.00 mm	1,046	が 10 100 年 100 年	
1300	•	1001	3 7	1,00	1 600	ORGO	1,0097	1011	1.0333	1.01.01		6920	1.03%	1000	5540,1	- 10 0 40 0 40	1.552
1350 6	٠•	1,001	1.0037	1.00).0	1.0045	786∪	1,0100	1.011	1.0136	1.0155	1.02	1.7274	1.0138	1.0403	1,0475	1.0549	4.0524
1400+	. .	1,0017	1.0633	1.00 to	1.0047	1.0984	1.9102	0,10	60.30	1,0150	1.0216	1.7277	1.0342	1,040	86.40	0.550-1	524
1503	•_•	1004			0000	1,0047	5010.1	1.0124		1.0162	1.0273	1.0282	1.0346	1.041	0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1530 0	••	.001	1.0035		0400	_	1,010,1	1,0125	-1	1,0163	1,0222	1,0283	1.0347	041	04.00	1.1550	1.0621
1600.	.•	1,761	_	1,0053	1,6041	1,0089	1,0108	1,0124	1,0145	1,0164	3.0223	1.00294	1,0347	1,0412	1.0479	8461.1	1,0518

Table 94 (CONT'D 11)

TABLE	4	YE ICAL	PENETCAL DROPFHITS OF	115 £ OF		PHO DYD.	XBNF-TO	LUENE+	"ETHYLCYC ONFXBNEHTOLUENEHHYDKOGEN MIXTURES	*TXTUR	r. S			ZH.	SMPLL DEVELOSSFIT	PARKO.	ANYONE
			ţ	156	CHROWENT FOLVENE	NYDDOREN											
FOLE F	FRACTION IT FRACTION	ž	0,07770	0.21100		0.54200											
				9. V V V	#£ 4.7	CONTENT (PTU/POUND	(PTU/PC	CAND)									
76.40 DEG.	ပ်	100.	500	300	•00•	×	25ESS('0E (PSEA)	(PS[A)	پن	900	1200	1560,	1900	210°.	2405.	27004	3000
		;		3		,		i	•		•	;			-		
0.00		, r		356	124		350	916		347	3 18	* 0	343.	3.5		906	0 1
100		392		301			98.	340		3.6	367			3.83	90	3.8	
150		428,		4.27			425	455.	42	474.	423.	472	421	.50	0 4	4 1 6	₩ .
000		4 4 4		4 4			462	462.	462	441.	, e	4		* u	457	7.56 7.56 7.56 7.56	4 10 10 10 10 10 10 10 10 10 10 10 10 10
608		2,0		5 29			538	538	537	537.	5.16	3.6	 	1 10			
950		5.78		£15			577	577	576	576.	\$74.	5.7.5	574	14.5	573	5.73	373
- 5001		8		417			516	616	616	9 6	9 7 9	2.	414	£ } 4	£ .	¥ 13 4	e
1100		0 4 0 0 0 0		, K.			5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	556.	654	656	694	654 654	4404	\$ 0 4 6 0 4	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 E	50.40 40.00 40.60
1150		739		7.			739	736.	738	738	7.3.B.	737	737	737		13.7	4
1200		0.		1 2			780	7.90	780	780	780.	219	175.	179	179	779.	776
1450		£ 2 z		e e			473	873	# 22 a	87.	#22°	228	422	372	82.7		2
		e u							000	000	000	1 00 4: (C		9 C			- - - - - - - - - - - - - - - - - - -
1400		. C.					686	955	250	96.2	989	260	9550	2.5	955		25.5
1680"		497		3.7			447	646	997	967	997	956	465	2.66	997	407	397
1000	_	1041	_	.		-	101	1041	1041.	10.1	1041.	1041	1041	104	1041	1042	1562
1607	1046.	1131	108	9.6	1131.	1085	1096	10%6.	1131	1131	1086.	1132	1046.	132	1087	1097	1057
				•					i							•	
				, A		HERT CAPACITY		(BTU/PCUND/DEG.F)	(J. F.)								
45.60			,			Ď.	PRESSURE	(415d)						•			
DEG. P	ċ	100	٠ درو.	000	¢.	2005		700.	, 00 1	900	1200.	1500	10081	2100.	2405.	2790,	t v cor
	4114	F. F 732	C. F. 160	C. 6. 64.	0.K 795	C. 6795 D.	5812	3.6827	0.6843	5.685R	0.6901	0.5042	0.69.0	C.7314	9,7946	7074	8604.0
	100	K 0 0 0 0 0 0	2007		3.4116	2327	7.0	3340	736.		4000	707	0.7169	60.400	0.44.0	6076 6076	3,74.0
	0.1277	4672.0	2.7	•		23	1292	7303	7313	1, 1323	0.7351	7378	0.7404	2,7427	8441.0	(Q 4 P	0 4 4 B
	1757.	C. 73#2	Cc 7302	0.7.0		745	7433	0.7443	1.74.2	3.7462	0.7489	0.7515	0.75	0,7567	2.57.0	2,7602	2.75.4
	75.7	1967	6.7536		3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2		7587	7591	76.0	7624	76.48	0,7470	1690	44409	0.7725	5,7762
	0,4		7 6 7 6 7	2 i			200	7 7 7 7	7052	7077	700	0.00	00-11-0	4 4 4 6		4 6 6 6	V C C C C C C C C C C C C C C C C C C C
	0 722	7.00	1654	1 U I	C		7564	7971	7577	100.	0,002	0.8039	0.8735	0.8051		0.000	- c
	O. Bridge	PC)	3434.0	0.1.67	0.8073 0	8.97	P.085	1,8091	F. E E	4.81C?	0,119	0.8134	64.8.0	0,8163	3,9176	B 1 8 9	0.8199
1100	0.83	0.8173	2.1817g	0.6184	00144	2 X 2 C	4200	3.8204	. R 2 5 1	3.8215	0.4231	0.2745	8 5 7 E 0	2.627	20 A 40 A 40 A 40 A 40 A 40 A 40 A 40 A	42640	
	3 80	4648	A 2. 2	0.6403	0.940.8			1.8421	, V.	9430	0.845.2	0.8674	Ver. 0	, 43 °C	100	2000	4054
	0,8495	9574	0,500	0.805	F. R579	.851	1517		. 8 3 2 5	62784	0,6541	1,4551	. 456	0.8571	CENTO.	6889	6.854.0
	98.59	66666	F 0.504	0	2004.0	098	613	7.8617	3620	3.8424	0.6835	0.854	9.4554	0.8663	2,440	0.884.0	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		0.6983)	0.8779	0.678	0.00	2 0	2 B 7 C 7	4024	*******	4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C 4 C	# n _ n = 0	0.1763	0,004,000		0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
143:4	0.484.0	r. # # 53	C. N. B.	0.8960	C. RBA4	0.8867	3,70	0.0	C. A 4 7 7	0.88.0		0.88.0	0.5907	3,8916	0.00	1604.0	0.8038
1500	0.897	7.9929	(6000)	0.8034	0.8939	6.8043	0.4946	0,8950	0,8453	0.8050	0.8966	0,8975	4898 0	2,8992	3 4 5 E	1600.0	0.9013
1600	,		000	10.00.0	2010	1000	7 7 0	0.0047	0.00	4006.0	40.00	4-10		4906	24.06.00	0.000	40 4 C 0 C 0
, , ,					?			200	4424	· ·	1			***	314543		

| サーフ・コネー・コートでは、100mmのでは、100mmの対象を開発される。100mmのでは、100mmの対象を持ちません。 100mmの対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を

Table 94 (CONT'D 12)

PANERY COMPANY

2100

Table 94 (CONT'D 13)

TABLE 94,	PHYETCA	PHYCICAL PROPERTIES OF VETHYLOYCLOHFXANE-TOLLENE-MIDROGEN MIRTLESS	TIFS OF	VE FHYL (CYCLOHE	XANE -TOI	LENG+Y	PROGEN	MIRTURE	. ee			SPEL	L DEVEL	THEMES	SMELL DEVELOPMENT COMPANY
		ţ	COMP.	COMPONENT TOLIGHE HI	HYDOPAER											
MOUE FRACTION METISH FRACTION	ION CTION	٠. د د	00000000000000000000000000000000000000		0.14000											
			74.	PENSITY (POUMUS/EUFIC FOOT)	Hichar :	USFCUF IC	F0013									
76 50 P	n. 100.	٠ ډرن٠	*00 *	, 63.4	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4850PF 600•	(P5'4)	300.	900	1200.	.500.	1400.	\$103.	\$400*	2100.	300V.
0000	0.21		3.44	4	200			1.324	900	•		,		4		,
	0.20			4	1.029		1,43	1.522		2.632		,	. 22	7.7.4		200
300.	C. 19			0.787	L		14374	1.566		2,140		3 . 72	2 0	4.567	000	, U.
	£ .			4			- A 1.5	1.50		2,238		9,319	7.88.	4,356		5.372
	0 0		,	200	, a		1,261	0 .		2.00		() () () () () ()	4 6			90 # # : # : # :
	0.16				. C		1 165	0.00		26.0			, r		4 7	, , , , , , , , , , , , , , , , , , ,
	0.16	2 0,324	7.484	5,645		0.965	1,124	1.242		010	2.373	2	3.279	1772		1 M
	0.1			0.673			1.085	1.238	-	1.843		2.730	1.104	5.3	-	424.
	5			2000	7.7.		0.0	901.1		1		2.438	6	7	9.876	4.2.78
				2,543			- 0			1.723		, ,	7.454			er (
				6,5,0			0.653		•	1 4		72.	27.6	4	, , ,	(P (C) 4 (C)
	, 3 , 3			0.531	0.663		0.92			2.5		2.23	2 653	100 100 100 100	(A	3. 4. 4. B.
	× .			6.53	4+6-0		0.89			1,525		3.6	2.63	21+15	3,325	3.663
				205.0	979		4.0					90.		2,893	3.234	3.569
	000									4 4					× * * * * * * * * * * * * * * * * * * *	***
	0.116			643	2		0	0		2		0	254		0 40	000
1380	411.0			0,442	2.50		0.787		. 907	1.338		086.1	2,294	10 10 10 10 10 10 10 10 10 10 10 10 10 1	970	3,723
	6.11	0.221	Ē.	1 * * "	388	669	194	5.8.0	0,003	1,303		1.432	2,241	3.54	946	E # 1 * 5
			> 4 E	* FOGACY	STATLES	ESTRILSTY FACTOR	Q;									
.E No					92		(6414)									
)£6.1	, 16°	200.	3.0	Ş	\$00	\$00, 600.	100	00	906	1200	300	.00#1	2100.	2.4C0,	3300	3000
\$0.00	1665	0.0000	_	ď	9999	1,0002	1.0007	1,0013	1.0620	0.000	1,7091		1.0204	02.70	0.00	9 40
0 °056	1,000,	40000	1.046	1.00.1		1,0023	1.603.1	1.00.0	1.0050	1 009.1	1,6133	0.1		03.5	10000	56407
707 707 767 767 767	1,000	20010	1.0024	F. 000 .		1,004,1	1,0051	1,5062	1,0076	1,7116	1,0166	1.0225		10366	1,0444	1,531
0000	100.	1,0075	1.00	1702		1.0056	000	460	00100	4510.1	1,0318	1.0254		20 P	9690	
0 26	1.001	1,0023	10.34	1.6044		1.0075	1,0090	0109	1.0122	1,0174	1,0232	1.0295		06.38	0.00	1080
	1.001	1,000	60,00			1,0083	6600	1,0115	3.0132	1.0186	1.7245	01:001		2642.1	1.0530	1.562.1
1000	100		1	100	1,007	000	10101	1,0179	2410	0100	1.0196 1.7237	1,0322	200	4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		() () () () () () () () () () () () () (
1080" 0	1000	1.0032	1.0.4			1.000	0115	1.0134	1.0153	1.00.1	1,7273			2,40		5 G 6 4 4
1100" 0.	1.7617	£ 550.1	1.1.40	9000		10101	1.0120	3.0338	1.0137	1.0216	1.0274	1.0343		1.0402	1.0556	
12001			יי בליר. היי היי	9 6	3000	010	1.0127	1,01	0910-1	1.0220	1,0282	7460		24.6	1,0338	1, 363.1
1250+ 0		1,033	-			1000	1.0126	40.0	94.0	3350	1.000	0.000		0 6	800	n c
1300 G	1,001	1,036	-	1,0474	-	1.0109	1,012	10147	1.0166	1.0226		1.0352	243	20	1.1356	5
1350, 0	1.0010	9,0001	-	1.0072		1,0110	1,0128	1.0148	1.0167			1.0352	0417	4440	(655)	4.0624
	\$100.	1000	1.075	1.0013	1.0091	2.0	1.0129	1.0148	-	1-0227	1.0288	1.0351	0.16	24401	1.0550	1.0620
1,0041	0100-1		1000	0013	1.0092	011011	1,0129	1.0.1	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.0226	10201		4 6		1.0347	
1593.	1001	_	1,000	1,0073	1.0092	1,0110	1.0129	0.0	1.0167	1.0226	2.0	0347	00	140		
1600. 0.	1,0019	_	1,005	1,0073	7,0005	1,0110	1,0129	1,6146	1.0167	. 0225	1. 7.84	1,0345	9040	0.43	9610	

電子を表する。 これの

7	ŕ	1
2	2	
	5	
70	*	
-	0	į

	_	ţ	Gallery Control	AN Bulling	NADROKEN											
MOLE EMACTION WEIGHT ERACTION	ž	::	00386°) 560387°3		0.75000											
			¥	HEAT CO	COUTENT (PTU/POUND)	Pruze	Ĉ.									
7£ wn 0E6.F 0.	300	•30 2	3,5	Ş	500s	PPESSURE ((PSIA)	, CO.	900	1200.	1,500.	•0⊹#1	2100.	\$400.	2730,	٠ ٥٥ ١
	4.38 8.88	33%	, c. c.	737.	137.	336.	336.	135	335.	334.	333.	312.		330,	336.	12.5
			8	*04		*04	, e	000		408	0	# C C	0	625	ç	3
			**		643		644	44.2			44.	0 7 4 7	110	* C * 4	459	633
				4 4 6 4		313	517			47.0	9	. <u></u>			- w	
900, 54	e e e	**		4	3.50	96	555	525		555.		9.24	55.	4.0	40 C	4 C
			, 10 A	e 4 3- m 4- 4	, e		9 40 to	, w			, 00 t		143 6343	A 33.	9 A4	, K
			676	9, 9	,	674	674.	673		673.	673.	673.	673		573	, , , , , , , , , , , , , , , , , , ,
		414.	***	7.4	755.	755	755.	755.		4.6	7.57	76.8	755.	# H'	7.5	
			, G J ,	7.5	7.96	794	100	50.		796.	736	757.	797		203	λ (c
			e .	a .			20 . MA 0			٠ . ٣ . ٣ .	 	969		2 6		· · ·
			373.	, , , , , ,	£2.6	623	 			926	100	456	924	, i.		
			9.00	064.	66	966	90	987		967		7.40	9	# C		
			77 10°		1010	070	1010	1056		1010			1651	1000	• • • • • • • • • • • • • • • • • • •	
550 1048.		100	1698	1040	200	50	1098	8 6 U		1000	000	1000	1100	1100.	10 m	
°• 1142.	1142.	-	, 142,	1147.	1143.	.143	1143.	1143.		1.43	11.	***	1145,			
			4	FEAT CA	FEAT CAPACITY (BTUJPCUNCZOFG.F)	(BTU/PC	CUNCZOFC									
46.45					300	PRESCUER (PSIA)	(P15d)						ı			1
ets.r o.	100.	20°	300.	* 00*	200	\$00°	100.	800	900	126 ⊓1	1500.	1906.	2100.	• € 5 • 6 • 6 • 7	7,000	e.
600 0 KP2	O.	0.684B	1949.5	1.667	C. A. R. B. C.	9698	11.900	F.6923	3 0.6935 0.4989 0.1761 0.	0,4949	1901.0	1604	0.7059	0.3083	9.7136	A 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5
		7 2 6	7 7 7 0	707	روم/ م 10 م	718	0	7.77	0.7216	0.77	C-1767	122		28.6	, ,	4
C 1212		0.7240	0.477	130 B	7117	32	0,7330	0.7342	0.7350	0.7373	0,7195	74.	7634	. 74.		
00.42.0	C.7409	3.7415	0,7424	76.47	C. 74.3	3449	2,454	766	4.44.0	0.7806	5.35.74	15.7	155		465.	7
	7,7691	0 1 2 1 2 1	0.747		0.000	1661.0	2,70	7710	0.1716	0.73%	0.100	7 9 6		0.7703	0, 4810	7.923
ATTE 0. 177	7.7283	0.7780	C. 777	(a)	7907	184.0	0,7819	7425	6.7431	0.7847	0.7863	787	6 G	40404	2401.0	7,28
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0000000	51650	0.00	262.0	20.00		40000	0.40		40	0 & P OP P EX P OP O O	0 40 0 40 0 40	1 (C) (A)
0.0	4114	0.8124		96100	C. 8133	0.413	0.8747	4	0.815	C. P. 16.2	* I	- ×	19A	. ~ e.	0.4215	. 3 2 4
150 0 A712	6.584	0.520	0,8724	0.8279	0.8233	0,3231	0,8261	0.8245	0.8248	0.6260	0,4270	000	C 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.4.4.0		40 4
			0.84[7	4 2 4 4 6	0.0		0.8424 0.8424	8429	0.843	0.8442	2.5.4.4	2 S S S S S S S S S S S S S S S S S S S	2 40	7 4 3 4	0, m 4.33	
300 - 0. RARG		A. B. G.	O. 8 x 30	6.8513	60.8408	0	6.8517	0 6.8517 7.8515 0	6 1 5 8 ° O	0.8527	0.45	7.4	C. 多数的数字 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	40 40 40 40 40 40 40 40 40 40 40 40 40 4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
450 0 8574 400 0 8481	4 2 4 6	, A 4 6 7	1		0.0000		0.8394	. 86.75	0.850		0 PC		0 M		0	
	•			7 6 7 8 7	0.8740	0 1113		B 4 L & 6	0.8741	0 (0.8764	4778.0	6 6 6		0.8793	50.4
1000 C. 8708	80 E 8 C	C. B.B.C.	4(48.0		0.44.0	0, R81.2	C	19 H 9 L 01	1768.0	S 8 8 5	0.58935	0.404.0	ر الله الله الله	6 A SE .		۲ ۳
							4		4000	4044	000	2 C			# C C S	

Table 95. SUMMARY TABLE: EVALUATION OF VAPORIZING AND ENDOTHERY IFFER A

Values in parentheses are estimated Catalyst: 1% Pt/AlgOs

	i .	Ī	ene person in .		· ————————————————————————————————————	
4			Ŷ	e e	10 10 10 10 10 10 10 10 10 10 10 10 10 1	San State Committee of the Committee of
		3	۲.	÷	器商署	ሕሕ చ
Ry tresait to		E 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1,000 - 1,000 - 1,000 1,	Acceptance (Control of Control of	25.15 (2010) (20
Į .		5.151	5. ·U	126.2	5.5.5 5.5.5 5.5.6 5.5.6	152.5
Deta-179, 10/99,		¥	ž	9	7,575	25.7
Thermal Stability, (Nr. 17), (Nr.),	X 200	(100	8	8	87.8	(775-800) (775-800)
Specific Heat,	1./4T/m2c	(0.424.0)	(0.41°)	(0,364.)	(0, 1, 1, 10)	(60° / 4")
Boiling Mis ally, Let Heat of Specific Point, co.st. Combatten, Heat,	Btu/1b	18.607	(18,539) (18,639)	18,545	18,690 18,400 (18,315.	(16,200)
Merelly,		(1.59)	(1.59)	(1.59)	4, 54 Solid (16.51)	(16.5) (16.5)
Bot 13 ng Point,		(5 %-)	(5 %)	(23.)	\$5 (%)	4, 4, 4, 3,
Freezing Point,		(7-)	(£4)	(% -)	-120 -120 -573	ዓ ሄና
Vepon Press., P. pole, "F	<u>%</u>	(40) (41) (46)	ट्या- (स्त्रा-) (०ता)	(128)	(157) (23.3 (48)	8 8
Vept.7	36	(673)	(38) (33)	(69) (4.54) (78)	g 45	€£
Pol ot.			3		(3.5) (3.5) (3.5)	(180)
Report and Page		72 (6,111	35 (°,111	111,4) 35	(b) III,a) 47 (12) III,a) 67 (130)	III, 1, 2, 4, 1 (180) (111, 7) 69 (200)

		shdothermic	errate Capacity	٠,			Care Lyth	.			İ	Res Lad	Rest LLOD 16 AUR Propries	LT iCal			3	7. 1. 1. 1.
Report		8tu/1b				1	Temperature, *F	<u>.</u>			F.95	Pent Sink, E' 1/11		44 C 1818			7	
	res. tion	Latent . Sensible Heat	To:#1 mth' 1340°F	8.2/Ct3	. ±0. ×	Block .		Catalyst	Š	Conversion,	Reertion	Total #: Block Jemp.	Tellal at	ł.		7 f		:
31 (• 'III	સુ	676	17.35	# 32 2	- - - -	 	į.	35.0	8	1 3	240	e4.	off	3				
111.4) 15		0%	1645	ģ	ui.	ъ, °	 F) F	653	83	2,8	43	ģ	\$	· ·	·o ·	-	,	
`		,		:	:	—		.\$	88	ः १ ड	316		×	· ·		-	<u>;</u> •	
111, 35	¥.	95	1635	ب. نې	u.	ź	i i	639	9		22		3				i.	
æ	Ţ	0%	1565	Ķ	,	 £ 8	<u>.</u>	- 618	88	£ 4	i i	180			. ,		. :	
	_				•	3	810	169	8	12.0	- -8	Ž		÷ 1				
111,00 47	Xot	88	1968		10.7	Ç.	ź	8	8	ξ X	ģ	*	252	;			5.	
	_			_		83	3 6	8	8	4.63	-	1111	153.		٠. ;:		,	•
					•	8	E.	3	Ŗ	æ.	3%	1 (S.4)	: e		i		,	
III. +7	ž.	817	8	₹. 9.	: 5 : 5	ağ ağ	n:	9	8	· 0	323	1/21	1.11	6	•			
", "		:				8	E ; :	77.	8	r. K	2×.	22	- EX		ç'			
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2	201	000	y.	17.5	, i	1	6	2	6.6	1	ž	3	•				
111.		3	200	9.	17.0	2	2/	6,5	<u></u>		a	8	747	۱- ئ			ā	
						- L	S	3D	8	· ·	8	1170	81		,			
2 : 'III	Ř.	0017	88	9. 8.	0.11	G.	2	200	8	*	ş	0101	8	6.0			ij	
						28	£	617	8	53.0	\$ 3	1515	134	•	,:		,	
த்ரி நின் சிரையார்	nue .																	-

b) This report c) 932'F. d) Combination of Table 89, reference 3. Bench-Scale Reactor - Description of the Apparatus, Procedure for the Experiments, Calculation of Heat Sinks

The apparatus used for the reaction studies consisted of two identical reactor units, each with a hot tube reactor and with conventional devices for measuring feed flow rates and for collecting and measuring reaction products. A schematic of one reactor unit is shown in Figure 92; photographs of the complete dual reactor according are shown in Figure 53 and 94.

The reactor was a furnace-heated stainless steel tube (1/2-inch IPS) 33 inches long. The catalyst bed (ca 5 inches long) was located in the lower portion of the tube; the top portion served as a preheater. For thermal reaction studies, a bed of quartz was used instead of catelyct. The nonhydrocarton gases (used for cetalyst regeneration), were metered through conventional rotameters and entered the reactor at the top. Liquid hydrocarbon feed was forced from a liquid reservoir through a rotameter by means of argon pressure. The feed was then vaporized in a heated line and entered the reactor as a vapor through a separate tube that terminated just above the catalyst bed. The hot exit gases from the reactor passed through a condenser and then a liquid-gas separator. The liquid was collected in a Jarguson gauge; the gas products were passed through a Grove pressure regulator, a wet test meter and then were vented. Gas samples were taken upstream from the wet-test meter. A thermowell entered the reactor from the bottom end and served to contain the thermocouples used for measuring bed temperatures.

The platinum cotalyst was stored in the unreduced form and sieved before charging. It was reduced with hydrogen just before starting the experiment. The reduction was cerried out as follows. After loading and pressure testing the reactor was brought to 572°F in argon and then hydrogen flow started. The catalyst was held at this temperature in hydrogen for 30 minutes and then brought to reaction temperature. The flow was maintained and the catalyst held at the reaction temperature for one hour after which the hydrogen was shut off and the feed flow started. After catalyst reduction the catalyst was always cooled to below 572°F or brought up to reaction temperature in an atmosphere of hydrogen.

Calculation of Conversions, Selectivities and Coke Formed

The conversions and selectivities were calculated on the basis of gas phase (at reaction temperature) product material only; any coke or polymer formed did not enter into the calculations. Thus, conversions are minimum and selectivities are maximum values.

Calculation of Heat Sinks and Heats of Reaction

Endothermic heats of reaction were calculated from the conversion, selectivity for a given product and the thermodynamic heat of reaction at 100% conversion. Thus, the contribution to the total heat of reaction by any given reaction is given by Hp = CpxSpxHp where

Figure 92. BENCH-SCALE REACTOR SYSTEM (CHEMATIC)

59146-A

Pigure 94. DUAL CATALYTIC REACTOR SHOWING REACTOR NO. 2 AND PRODUCT SAMPLING SYSTEM

by a meanifed to product to

Sp : Selectivity for product P

Mp - Thermodynamic heat of reaction to form product 1

Thermodynamic heats of reaction by, for the ancient iver error, are tabulated in Table 90. Estant and sensible heats for various symbolarious as various temment is one shown in Table 97.

Table 96. THERMODYNAMIC HEATS OF REACTION

Naphthene	Reaction Products	ΔΗ _R μ, Btu/lb	
Diethylcyclohexane	DEB, H ₂	622 ,	
	Light gas	-600 ^a)	
Dicyclohexyl	Ben ene, He	103 8	
	Toluene, pentane	325 31.81	
	Cyclohexane Hexane	-948) -322a)	
	MCH, pontane	-231a)	
	Light gas	223	
	Diphenyl, H2	1080	
	Phenylcyclohexane, H2	540	
Decalin	Naphthalene, H2	9 50	
	Tetralin, He	670	
	CH + olefin	143	
	MCH + olefin	143	
	DMKH + olefin DECH	143 -110 ^a)	
	Benzene + clefin	300	
	Toluene + olefin	800	
	EB + olefin	80 0	
	DEB	~700	
	Alkyl aromatics	~400	
Methy idecal in	Methylmaphthalene, Ha	90 0	
	Methyltetralin, He	600	
	MCH, olefin	130	
	DMCF olefin	130 -240 ³³	
	DECH, CH ₄ Benzene, olefin + CH ₄	600	
	Toluene, olefin	730	
	DFB, CH.	350	
	Xylene, olefin	700	
	Light gas	-230 ^a)	

Table 97. LATENT PLUS SENSIBLE HEATS OF VARIOUS NAPHTHENES

	Le	tent	Plus S	ensibl	e Heat	, Btu/	lba)	
Naphth e ne	Temperature, °F							
	842	932	1022	1112	1202	1293	1340	
MUH ^{b)}	707	Tis	847	920	995	1070	1120	
DCH	560	620	687	742	839	891	930	
DHN	710	780	850	920	990	1.065	1100	
MOHN	710	780	850	920	990	1065	1100	

a) From 70°F to temperature indicated.
b) From freezing point (-196°F); to convert to 70°F subtract 163 Btu/lb.

REFERENCES

- "Vaporizing and Endothermic Fuels for Advanced Engine Application", Technical Decumentary Report No. APL TDR 64-100 Part I. Contract No. AF 33(657)-11096, Shell Development Company, September 1964.
- 2. Ibid. Part II, September 1965.
- 3. Ibid, Part III, September 1966.
- 4. Allam, U. I. and Vlugter, J. C., J. Inst. of Pet. 52, 385 (1966).
- Aeronautics and Astronautics, October, 1966, "Case for the Hypersonic Transport".
 - a) Miller, Rene H., "HST-Developing the Foundation", p. 30.
 - b) Ferri, Antonio, "Goels of Hypersonic", p. 34.
 - Laidlaw, W. R. and Johnston, E. W., "Developing HST Structural", p. 40.
 - d) Simpson, Robert W. and Hursch. John W., "Guiding the Hypersonic Transport", p. 44.
 - e) Weber, Richard J., Dugan, James F., Jr., and Luidens, Roger W., "Methane-Fueled Propulsion Systems", p. 48.
 - f) Coethert, Bernard H., "Hypersonic Cruise Vehicles in the World of Tomorrow", p. 56.
- 6. Stroud, J. F. and Miller, L. D., J. Aircraft 3, 548 (1966).
- 7. Kaufman, L. G., Meckler, L., and Hartofilis, S. A., J. Aircraft 3, 555 (1966).
- 8. Petersen, R. H., Gregory, T. J., and Smith, C. L., J. Aircraft 3, 398 (1966).
- 9. Du Pont Fact Sheet, A-51424.
- 10. Ashby, G. C. and Stone, D. R., J. Spacecraft 4, 277 (1967).
- Campell, J. B., "The Hypersonic Era", Space/Aeronautics, p. 53, November 1966,
- 12. Delberger, L. H., "Advanced Interceptor Aircraft", Space/Aeronautics, p. 54, November 1966.
- 13. Ferri, A., "Review of Scramjet Propulsion Technology", AIAA Third Annual Meeting, Boston, Massachusetts, November 29, 1966. Paper No. 66-286.
- 14. Kirkwood, T. F., Comments on Future Air Transportation Systems, The Rand Corporation, Santa Monica, Calif., May 1966, (AD 633023).

REFERENCES (CONTD-1)

- 15. Froment, G. F., "Fixed Bed Catalytic Reactors Current Design Status", Industrial Engineering Chemistry 59, 18 (1967).
- 16. Kittrell, J. R. and Mezaki, R., "Reaction Rate Modeling in Heterogeneous Catalysis", Industrial Engineering Chemistry 59, 28 (1967).
- Rubins, P. M. and Bauer, R. C., Astronautics and Aeronautics, p. 17. May 1967.
- 18. Wheeler, A., "Advances in Catalysis", III, Academic Press, New York, pp. 249-329 (1951).
- 19. M awa, T. and Pitzer, K. S., J. Am. Chem. Soc. 30, 60 (1958).
- 20. Benson, "Foundations of Chemical Kinetics", McGraw-Hill, New York, pp. 27-28, 1960.
- 21. Monsanto Research Corporation, Contract No. AF 33(616)-5799 and AF 33(657)-8193.
- 22. Fabuss, B. M., Borsanyi, A. S., Duncan, D. A., Kafesjian, R. and Smith, J. O. (Monsanto Research Corp.), "Research on the Mechanism of Thermal Decomposition of Hydrocarbon Fuels", U.S. Air Force, ASD TDR 63-102, Part 2, Contract AF 33(657)-8193, August 1964.
- 23. Lundberg, W. N., ed. "Antioxidation and Antioxidants", Interscience, New York, Chapter 3, p. 108, (1961).
- 24. Nixon, A. C. and Henderson, H. T., "Thermal Stability of Endothermic Heat-Sink Fuels", Industrial Engineering Chemistry Product Research and Development 5, 87, March 1966.
- 25. Bagnetto, L., Phillips Petroleum Company, Technical Documentary Report No. APL-TDR-64-89, Part II, August 1965.
- 26. McKecwn, A. B. and Hibbard, R. B., U.S. NACA RM E 55128, December 28, 1965.
- 27. Shuler, R. L., Krynitski, J. A., and Carhart, H. W., U.S. Naval Research Laboratory, NRL Report No. 10, September-November 1965.
- Bially, J. J., Norris, T. A., and Frascati, F. P., Texaco Inc., USAF ASD-TDR-64-83, July 1964.
- 29. Klsey, P. G., Anal. Chem. 31, 869-, (1959).
- 30. Zengel, A. E., "A Comparison of the Capabilities of a Fuel Coker and the Miner Heat Exchanger of Determining Hydrocarbon Fuel Thermal Stability", Technical Report AFAPL-TR-64-154, Air Force Aero Propulsion Laboratory Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, March 1965.

REFERENCES (CONTD-2)

- 51. Lusebrink, T. R. and Sorem, S. S., "Symposium on Jet Fuels", ACS Division of Pet. Chem. Preprints, New York Meeting, September 1960.
- 32. Lusebrink, T. R., Shell Development Company, ASD-TR-61-687, Contract No. AF 33(616)-7667.
- Kutzko, G., TDR ASD-TDk, Part II, pp. 62-920, General Electric Company, January 1964.
- 34. White, D. R., "Density Induction Times Behind Shock Waves in Very Lean Mixtures of D₂, H₂, C₂H₂, and C₂H₄ with O₂", ARL 65-274, Contract AF 33(657)-7945, 26 pp., December 1965.
- 35. Skinner, G. B. and Ruehrwein, R. A., J. Phys. Chem. 63, 1736-42 (1959).
- Asaba, T., et al, "Ninth Symposium on Combustion" Academic Press, New York, p. 193, 1963.
- 37. Bradley, V. N., "Shock Waves in Chemistry and Physics", John Wiley, New York, pp. 88-89, 1962.
- 38. Tsang, W., J. Chem. Phys. 44, 4283 (1966).
- 39 "A.I.Ch.E. Physical Property Estimation System", Volume I: Report, 1965, American Institute of Chemical Engineers, 345 East 47 Street, New York, New York 10017.
- 40. Whitney, D. C., Shell Development Company, Technical Report No. 363-66.
- 41. "Pechnical Data Book Petroleum Refining", American Petroleum Institute, Division of Refining, 1271 Avenue of the Americas, New York, 1966.
- 42. Reid, R. C. and Sherwood, T. K., "The Properties of Gases and Liquids", Second Edition, McGraw-Hill, New York, 1966.
- 43. Redlich, O. and Kwong, J. N. S., Chem. Rev. 44, 233 (1949).
- 44. Guggenheim, E. A., J. Chem. Phys. 13, 253 (1935).
- 45. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. . , "Molecular Theory of Gases and Liquids", John Wiley and Sons, Inc., New York, 1954. (Also notes added in second printing, 1963.)
- 46. Stiel, L. I. and Thodos, G., J. Chem. Eng. Data 7, 234 (1962).
- 47. Jossi, J. A., Stiel, L. I., and Thodos, G., A.I.Ch.E. Journal 8, (1), 59 (1962).
- 48. Hirschfelder, J. O., J. Chem. Phys. 26, 282 (1957).

REFERENCES (CONID-3)

- 49. Lambert, J. D., et al, Proc. Royal Soc. 231, 280 (1955).
- 50. Robbins, L. A. and Kingrea, C. L., Proc. API, 42, (III), 52 (1962).
- 51. American Petroleum Institute Research Project 44, "Selected Values of Properties of Hydrocarbons and Related Compounds", Agricultural and Mochanical College of Texas, College Station, Texas.
- 52. "Selected Values of Properties of Chemical Compounds", Manufacturing Chemists Association Research Project, Texas A and M University, College Station, Texas, 1965.
- 53. "Technical Date Book: Petroleum", Shell Development Company, 1945.
- 54. Kobe, K. A. and Lynn, K. E., Jr., Chem. Rev. 52, 117 (1953).
- 55. Lewis, G. N., Randall, M., Pitzer, K. S., and Brewer, L., "Thermodynamics", Second Edition, McGraw-Hill Book Co., Inc. New York, 1961.
- 55. Edmister, W. C., "Applied Fwirocarbon Thermodynamics", Gulf Publishing Company, Houston, Texas, Chapter 4, 1961.
- 57. "Technical Data Book: Chemical", Shell Development Company, 1947.
- 58. "Safety Manual", Second Edition, Shell Development Company, 1962.
- 59. "Fire-Hazard Properties of Flammable Liquids, Gases and Volatile Solids", NFPA No. 325M-1965 in "National Fire Codes", Vol. 1, 1965-66.
- 60. "Literature Survey on Vaporizing and Endothermic Fuels for Advanced Engine Application", Shell Development Company, Report S-13979.

BIBLIOGRAPHY a)

- 1. Agapov, G. I., CALCUL TION OF THE COEFFICIENTS IN THE G. M. PANCHEN KOV EQUATION. Tr., Mosk. Inst. Neftekhim. i Gaz. From. No. 51, 186-8 (1964).
- 2. Agapov, G. I. and Levir er, M. E. CALCULATION OF COEFFICIENTS IN THE EQUATION OF COME FORMATION ON CATALYSTS. Tr., Mosk. Iret. Neftekhim. i Gaz. Prom, No. 51, 126-8 (1964).
- 3. Abern, J. E. and Yankura, C. A., ADVANCED RAMJET CONCEPTS PROGRAM. 1965 VOLUME V LIQUID METAL FILM COOLED NOZZLE STUDY. Marquardt Corp. Final Report 1 March 31 November 1905, Report No. 25188-Vol-5, AF AFL TR-66-49-Vol-5, U.S. Air Force Contract AF 33(615)-2399, June 1906, 60 pp. (AD 3730596). CONFIDENTIAL.
- 4. Akhmedov, Sh. T., Guseinov, D. A., Hirzoev, B. M., DEHYDROGENATION OF CYMENES TO ISOPROPENYL TOLUFNES. Uch. Zap. Azerb. Gos. Univ., Ser. Fiz.-Mat. i Khim. Navk 1961 (6), 59-75; L. A. 61, 1777 (1964); Ret. Zh., Khim. 1963, Abstr. No. 22N60.
- 5. Aladiev, I. T., HEAT TRANSFER TO LIQUIDS BOILING IN PIPES AND DURING BULK BOILING. Teploenergetika (USSR) 10, 57-61 (1967); Reistone Scientific Information Center Report No. RSIC-530, TT 66-61387, March 1966, 16 pp. (AD 633583).
- 6. Alchudzhan, A. A., Mantikyan, M. A., Aikazyan A. M., MIXED ADSORPTION CATALYSTS FOR DEHYDROGENATION. III. Pd , Au/SiO₂ AS A CATALYST FOR CYCLOHEXANE DEHYDROGENATION. Izv. Akad. Nauk Arm. SSR, Khim. Nauki 17 (4), 363-74 (1964) (Russ.).
- 7. Alm, J., THE TRANSFORMATION OF NAPHTHENES ON NICKEL-ZINC OXIDE-TUNGSTEN OXIDE CATALYSTS. Monatabor. Deut. Akad. Wiss. Berlin 6 (1), 18-22 (1954).
- 8. Amirkhanov, Kh. I., Alibekov, B. G., Vikhrov, D. I., Kerimov, A. M., ISOCHORIC HEAT CAPACITIES OF SCE ALKANES. Teploenergetika 11 (3), 81-6 (1964).
- 9. Appeldoorn, J. K., Campion, R. J., Dukek, W. G. Furry, M. J., Tao, F. F., LUBRICITY PROPERTIES OF HIGH-TEMPERATURE JET FUELS. Esso Research and Engineering Co. Quarterly Progress Report No. 1, 15 May-15 August 1965, U.S. Air Force Contract AF 33(615)-2828, August 1965, 43 pp. (AD 472 148).
- 10. Appeldoorn, J. K., Campion, R. J., Read, C. L., Tao, F. F., LUBRICITY PROPERTIES OF HIGH-TEMPERATURE JET FUELS. Esso Research and Engineering Co. Quarterly Progress Report No. 2, 15 August-15 November 1965, U. S. Air Force Contract AF 33(515)-2828, November 1965, 46 pp. (AD 480 825).
- a) This extends the survey of the literature presented in reference 60 (cf preceding page).

- 11. Appeldoorn, J. K., Campion, H. J., Feng, I-M., Tao, F. F., LUBRICITY PROPERTIES OF HIGH-TEMPERATURE JET FUELS. Esso Research and Engineering Co. Quarterly Progress Report No. 3, 15 November 1965-15 February 1966, U.S. Air Force Contract AF 33(615)-2828, February 1966, 49 pp. (AD 491 937).
- 12. Allam, M. I. and Vlugter, J. C., AROMATIZATION OF MEROSINE FRACTIONS CONTAINING BICYCLONAPHTHENES. Part I. Thermodynamics Considerations. J. Inst. Pet. 52, 385 (1965). Part II. Conversions of Decelin and Tetralin Over a Platinum Reforming Catalyst, ibid 53, 43, 1967.
- 13. Ashby, G. C. and Stone, D. R., (NASA Langley Research Center, Hampton, Va.) AERODYNAMIC EFFECT OF VOLUME ADDITION TO A HIGH L/D WING/BODY AT MACH 6.0., J. Spacecraft 4, 277 (1967).
- 14. Aucoin, P. J., Ji., FUNDAMENTAL RELATIONS IN THE SUPERSONIC FLOW OF A PERFECT GAS AND THE METHOD OF CHARACTERISTICS CALCULATIVE TECHNIQUE. Marquard: Corp. Report No. 5278, U.S. All Folia Continua AF 33(657)-10796, March 1962, 54 pp. (AD 481 391).
- 15. Avbel, J. A., PROPOSED REVISION TO MIL-E-5007B AND MIL-E-5009B STANDARDIZED METHOD OF CONDUCTING CONTAMINATED FUEL TESTS. U.S. Naval Air Engineering Center, Aeronautical Engine Laboratory. Final Report. Report No. NAEC-AEL-1791 February 1965, 13 pp. (AD 456 891).
- 15. Aviatsionnyi Institut, Moscow. Trudy (USSR) No. 157, 102 pp. 1964; Parandjuk, S., AIRBREATHING PROPULSION TECHNOLOGY: COMPILATION OF ABSTRACTS. U.S. Library of Congress, Aerospace Technology Division Report No. 2, Report No. ATD-U-54-116, TT 66-61113, December 1964, 40 pp. (AD 631 642).
- 17. Backman, K. C., TEST RESULTS FROM THE ESSO HEAT TRANSFER UNIT FOR FA-S-1, FA-S-2A AND RAF 175-64. Esso Research and Engineering Co., Products Research Division Final Report, SST 65-6, U.S. Federal Aviation Agency Contract FA-SS-65-5, May 1965, 123 pp. (AD 4792812).
- 18. Bader, F. and Bunt, E. A., RAMJET TECHNOLOGY. SECTION ON FLOW PROCESSES AND ENGINE PERFORMANCE. CHAPTER 5. CCMBUSTOR FLOW AND ENGINE PERFORMANCE. Johns-Hopkins University, Applied Physics Laboratory Technical Memo, Report No. TG-610-5, U.S. Navy Contract NCw-62-0604-C, November 1964, 90 pp. (AD 631 817).
- 19. Badger, G. M., Jolad, S. D., Spotswood, T. M., FORMATION OF ARCMATIC HYDROCARBONS AT HIGH TEMPERATURES. XX. PYROLYSIS OF NAPHTHALENE-1-"C. Australian J. Chem. 17 (7), 771-7 (1964).
- 20. Badger, G. M., Donnelly, J. K., Spotswood, T. M., FORMATION OF AROMATIC HYDROCARBONS AT HIGH TEMPER TURES, XXII. PYROLYSIS OF PHENANTHRENE. Australian J. Chem. 17 (10), 1138-46 (1964).

- 21. Badger, Q. M., Kimber, R. W. L., Novotny, J., THE FORMATION OF AROMATIC HYDROCARBONS AT HIGH TEMPERATURES. XVI. THE PYROLYSIS OF TETRALIN-1-14C. Australian J. Chem. 15, 616-25 (1962).
- 22. Bagretto, L., THERMAL STABILITY OF HYDROCARBON FUELS. Phillips Petroleum Co. Quarterly Progress Report No. 7, 1 June-31 August 1965, Report No. 4236-654, U.S. havy Contract AF 33(657)-10639, September 1965, 64 pp. (AD 475 006).
- 23. Bagnetto, L. and Schirmer, R. M., THERMAL STABILITY OF HYDROCARBON FUELS. Phillips Petroleum Co. Progress Report No. 9, 1 December 1965-28 Fabruary 1966, Report No. 43 90-66R, U.S. Air Force Contract AF 33(667)-10639, March 1966, 81 pp. (AD 485 292).
- 24. Balenkova, E. S., Alybina, A. Yu., Kochnova, G. P., Khromov, S. I., Kazanskii, B. A., CATALYTIC CONVERSIONS OF CYCLO UNDECANE IN THE PRESENCE OF NICKEL CALALIUIS. Nefte-Khimiy a 4 (1), 16-20 (1964).
- 25. Barningham, R. C., COMPONENT PROPULSION PROGRAM FOR FUTURE MICH-PERFORMANCE STRATEGIC AIRCRAFT. VOLUME II. ENGINE/AIRFRAME INTEGRATION STUDIES. Pratt and Whitney Aircraft Semiannual Report No. 1, 1 August 1965-31 January 1966, Report No. PWA-2767-Vol-2, U.S. Air Force Centract AF 33(657)-14903, February 1966, 33 pp. (AD 369 613) (REPURT CLASSIFIED SECHET).
- 26. Barningham. R. C., COMPONENT PROPULSION PROGRAM FOR FUTURE HIGH-PERFORMANCE STRATEGIC AIRCRAFT VOLUME XI. TURBINE COOLING. Pratt and Whitney Aircraft Co. Semi-annual Report No. 1, 1 August 1965-31 January 1966, Report No. PWA-2767-Vol-11, U.S. Air Force Contract AF 33(657)-14903, February 1966, 16 pp. (AD 369 517) (CONFIDENTIAL).
- 27. Barningham, R. C., COMPONENT PROPULSION PROGRAM FOR FUTURE HIGH-PERFORMANCE STRATEGIC AIRCRAFT. VOLUME I. SUMMARY. Pratt and Whitney Aircraft Semi-annual Report No. 2, 1 February-31 July 1966, Report No. PWA-2863-Vol-1, U.S. Air Force Contract AF 33(557)-14903, August 1966, 61 pp. (AD 375 350 L) (CONFIDENTIAL).
- 28. Barningham, R. C., COMPONENT PROPULSION PROGRAM FOR FUTURE HIGH-PERFORMANCE STRATEGIC AIRCRAFT. VOLUME II. ENGINE/AIR FRAME INTEGRATION STUDIES. Pratt and Whitney Aircraft Se:1-annual Report No. 2, 1 February-3 July 1966 Report No. FVA-2863-Vol-2, U.S. Air Force Contract AF 33(657)-14903, August 1966, 42 pp. (AD 375 351 L) (SECRET).
- 29. Barningham, R. C., COMPONENT PROPULSION PROGRAM FOR FUTURE HIGH-PERFORMANCE STRATEGIC AIRCRAFT. VOLUME IV. ENGINE DESIGN STUDIES. Prett and Whitney Aircraft Somi-annual Report No. 2, 1 February=31 July 1965, Report No. PWA-2863-Vol-4, U.S. Air Force Contract AF 33(657)-14903, August 1966, 32 pp. (AD 375 353 L) (CONFIDENTIAL).

- 50. Barninglam, R. C., COMPONENT PROPULSION PROGRAM FUR FUTURE HIGH-PERFORMANCE STRATEGIC AIRCRAFT. VOLUME IX. BURNERS. Pratt and Whitney Aircraft Semiannual Report No. 2, 1 February-51 July 1966, Report No. PWA-2865, Vol. 9. U.S. Air Force Contract AF 33(657)-14903, August 1966, 54 pp. (AD 375 557L) (REPORT CLASSIFIED CONFIDENTIAL).
- 31. Barningham, R. C., COMPONENT PROPULSION PROGRAM FOR FUTURE HIGH-PERFORMANCE STRATEGIC AIRCRAFT. VOLUME XI. TURBINE COOLING. Pratt and Whitney Aircraft Semiannual Report No. 2, 1 February 31 JULY 1966, Report No. PWA-2863-Vol. 11, U.S. Air Force Contract AF 33(657)-14903, August 1966, 10 pp. (AD 375 359L) (REPORT CLASSIFIED CONFIDENTIAL).
- 32. Barningham, R. C., COMPONENT PROPULSION PROCRAM FOR FUTURE HIGH-PERFURMANCE STRATEGIC AIRCPAFT. VOLUME XIV. INFRARED SUPPRESSION. Pratt and Whitney Aircraft Semiannual Report No. 2, 1 February 31 July 1556, Report No. FWA-2863, Vol. 14, U.S. Air Force Contract AF 33(657)-14903, August 1966, 24 pp. (AD 375 362L) (REPORT CLASSIFIED SECRET).
- 53. Barningham, R. C., COMPONENT PROPULSION PROGRAM FOR FUTURE HIGH-PERFORMANCE STRATEGIC AURCRAFT. VOLUME XVIII. DEMONSTRATOR ENGINE. Pratt and Whitney Aircraft Semiannual Report No. 2, 1 February-31 July 1966, Report No. PWA-2863, Vol. 18, U.S. Air Force Contract AF 33(657)-14903, August 1966, 100 pp. (AD 375 366L) (REPORT CLASSIFIED CONFIDENTIAL).
- 34. Barusch, M. R. and MacPherson, J. H. (California Research Corp.), ENGINE FUEL ADDITIVES. Advan. Petrol. Chem. Refining 10, 4-6-546 (1965).
- 35. Beech, J. C. and Ziebland, H., HEAT TRANSFER TO KEROSINE, D. ENG. R.D. 2495, AT SUPERCRITICAL AND SUBCRITICAL PRESSURES. Explosives Research and Development Establishment, Waltham Abbey (England) Report ERDE-5R63, May 1963, 1 Vol. (AD 420 775).
- 30. Begg, H. A., Chapman, C. E., Brady, J. F., SPACEPLANE. PROPULSION AND PROPULSION DESIGN. General Development Corp., Technical Status Report No. ZPM59-011, February 1961, 1 Vol. (AD 342 997L) (REPORT CLASSIFIED SECRET).
- 37. Bergles, A. E. and Rohsenow, W. M. (Massachusetts Inst. of Technology), THE DETERMINATION OF FORCED-CONVECTION SURFACE-BOILING HEAT TRANSFER.

 J. Heat Transfer 86, (3), 365-72 (1964); C.A. 61, 10332 (1964).
- 38. Bernstein, T. N., Maddux, G. E., Engle, R. M., Jr., THE ANALYTICAL DETERMINATION OF THE THERMAL RESPONSE OF A TIPICAL AIRCRAFT STRUCTURE SUBJECTED TO TRANSIENT EXTERNAL HEATING AND COOLING. U.S. Air Force Flight Dynamics Laboratory, Wright-Patterson A.F.B., Final Report 1 July 1964-30 June 1965, Report No. AFFDL-TR-65-219, February 1966, 60 pp. (AD 480 622).
- 39. Bert, J. A. and Porter, H. R. (California Research Corp.), SURFACTANIS IN JET FUELS SYMPTOMS, SOURCES, AND SOLUTIONS. Proc. Am. Petrol. Inst. Sect. III 43, 165-71 (1963); C. A. 61, 118-23 (1964).

- 40. Billig, F. S., A REVIEW OF EXTERNAL BURNING RAMJETS. Johns Hopking University, Applied Physics Laboratory Final Report No. TG-801, U.S. Navy Contract NOw-62-0504, December 1965, 133 pp. (AD 570 6391) (REF ht CLASSIFIED CONFIDENTIAL).
- 41. Bishop, P. N. H., Rogers, K. F., Gilbey, D. M., A NEW METHOD FOR THE MEASUREMENT OF HEAT TRANSFER. Great Britain Royal Aircraft Establishment Technical Report No. TR-66040, February 1966, 23 pp. (AD 634 158).
- 42. Blanchard, G. C., MECHANISM OF MICROBIOLOGICAL CONTAMINATION OF JET FUEL AND DEVELOPMENT OF TECHNIQUES FOR DETECTION OF MICROBIOLOGICAL CONTAMINATION. Helpar, Inc., Final Technical Report, 1 March 1963 31 January 1966, Report No. 4019, AFD TDR-64-70-Pt-3, U.S. Air Force Contract AP 35(657)-9186, January 1966, 212 pp. (AD 637 876).
- 43. Blouri, B., Nubaui, R., Rumpt, P., Padzerski, A., PYROLYSIS OF LONG CHAIN ALIPFATIC HYDROUARBONS. I. THERMAL DECOMPOSITION OF DODECANE WITH FORM TION OF 1-ALYENES. Bull. Soc. Crim. France 1965 (2), 336-41; C. A. 62, 14471 (1965).
- 44. Bluston, H. S., AN EXPERIMENTAL STUDY OF THE TURBULENT MIXING OF A SUBSONIC AND A SUPERSONIC JET IN A CLOSED DUCT. Polytechnic Institute of Brooklyn, Department of Aerospace Engineering and Applied Mechanics Report Nc. pibal 868, AF OSR 65-1794, U.S. Air Force Office of Scientific Research Contract AF-AF OSR-1-63, May 1965, 56 pp. (AD 624 551)
- 45. Bolshakov. G. F., INSOLUBLE RESIDUES FORMING DURING THE HEATING OF JET FUELS. Khimiya i Tekhnologiya Topliv i Masel (USSR) 8, No. 5, 55-7 (1963) (U.S. Air Force Translation No. ftd-TT-65-1064; TT 66-600004) (AD 625 143).
- 46. Borne, U., Homann, K. A. and Wagner, H. G. (Gottingen University), CARBON FORMATION IN PREMIXED FLAMES. Tenth Sumposium (Intl) on Combustion, Pittsburgh: The Combustion Institute, 1965, pp. 503-512.
- 47. Botteri, B. P., Cretcher, R. E., Fultz, J. R., Lander, H. R., A REVIEW AND ANALYSIS OF THE SAFETY OF JET FUEL. U.S. Air Force Aero Propulsion Laboratory, Wright-Patterson AFB Technical Report June-October 1965, Report No. AF APL-TR-66-9, March 1966, 63 pp. (AD 573 633) (REPORT CLASSIFIED CONFIDENTIAL).
- 48. Bollinger, L. E. (Chio State University), DETONABILITY OF COMBUSTIBLE MIXTURES. Presented at the Annual National Conference on Environmental Effects on Aircraft and Propulsion Systems (5th), Princeton, N.J., 20-22 September 1905; AFOSS 66-0342, U.S. Air Force Office of Scientific Research Contract AF-AFOSR-203-65, 1965, 34 pp. (AD 650 641).
- 49. Boreskova, E. G., Topchieva, K. V., Piguzova, L. I., CATALYTIC ACTIVITY OF SYNTHETIC ZEOLITES IN THE CRACKING OF CUMENE. Kinetika i Kateliz 5 (5), 903-9 (1964); C. A. 52, 9036 (1965).

- 50. Boreskova, E. G., Lygin, V. I., Topchieva, R. V., NATURE OF ACTIVE CENTERS IN THE CRACKING OF CUMENE CATALYZE: BY DECATIONIZED ZEOLITES. Kinetika i Kataliz 5 (6), 11 15-8 (1964); C. A. 62, 9031 (1965).
- 51. Brisendine, J. C., FUTURE TRANSPORTS. Douglas Aircraft Company, AIAA Paper No. 66-820, AIAA Thirl Immusi Meeting, Boston, Massachusetts, November 29-December 2. 1966.
- 52. Brodskii, A. M., Lavroskii, K. P., Rumyentsev, A. N., Timkin, V. N., Fish, Yu. L., PRODUCTION OF HIGHER O-OLEFING BY HIGH-SPEED CONTACT CRACKING OF PARAFFINIC PETROLEUM PRODUCTS. Neftekhimiya 4 (6), 880-7 (1964); A. A. 62, 8906 (1965).
- 53. Brossard, J., DETONATION AS A SHOCK WAVE FOLLOWED BY A COMPUSTION WAVE. Compt. Rend. Congr. Netl. Soc. Savanies, Sect. Sci. 87, 339-51 (1962) (Pub. 1963) (in French); C. A. 61, 14456 (1964).
- 54. Brown, M. L. and Campbell, R. C., APPLIED RESEARCH INVESTIGATION OF THE SUPERSONIC/HYPERSONIC COMBUSTION RAMMET ENGINE. Marquardt Corp. Final Summary Report, 1 January 31 December 1962, A SD-TDR63-590, U.S. Air Force Contract AF 33(657)-5:91, December 1963, 480 pp. (AD 345 914) (REPORT CLASSIFIED SECRET).
- 55. Brown, M. I., SUPERSONIC COMBUSTION RABUET ENGINE PROGRAM. Marquardt Corp. Monthly Letter Progress Report for January 1965, Report No. 1R-275-10%, U. S. Air Force Contract AF 33(657)-8491, February 1965, 11 pp. (AD 363649) (REPORT CLASSIFIED CONFIDENTIAL).
- 56. Brown, M. L. Woodgritt, K. E., Ozawa, R. I., APPLIED RESEARCH AND ADVANCED TECHNOLOGY FOR THE SUPERSONIC COMBUSTION RAMJET FOR 1964. PART I. DESIGN AND ANALYSIS, FUEL INJECTION AND COMBUSTION, NOZZLES, STRUCTUFFS, AND CONTROL SYSTEM STUDIES. Marquardt Cor: Final Report No. 6087, API-TR-65-15-Pt. 1, U.S. Air Force Contract AF 33(615)-1469, April 1965, 615 pp. (AD 359 464) (REPORT CLASSIFIED CONFIDENTIAL).
- 57. Buchmann, O. A., EXPLORATORY DEVELOPMENT OF HIGH-TEMPERATURE HEAT EXCHANGERS. Garrett Corp. AiResearch MCg. Division Interim Engineering Progress Report No. 5. 1 January-31 March 1966, Report No. 66-0482, RTDIR-3084, Vol. 3, U.S. Air Force Contract AF 53(615)-2753, March 1966, 95 pp. (AD 485 344).
- 58. BUNT, E. A., RAMIET TECHNOLOGY, SECTION ON FLOW FROCESSES AND ENGINE PERFORMANCE. CHAPTER 2, BASIC ADIABATIC THEORY. Applied Physics Laboratory, Johns Hopkins University, TG-610-2, U.S. Navy Contract NOw-62-0604c, October 1964, 92 pp. (AD 607 979).
- 59. Burnette, T. D., Campbell, R. C., Woodgrift, K. E. (Marquardt Corp.), TEST RESULTS ON SCRAMETS. Presented at the AIAA/ASD (AFSC) Vehicle Design and Propulsion Meeting on November 5, 1963 at Dayton Ohio; Marquardt Corp. Report No. 6015, U.S. Air Force Contract AF 33(657)-10795, December 1963, 22 pp. (AD 345 763) (REPORT CLASSIFIED CONFIDENTIAL).

- 60. Campbell, E. S., Heinen, F. J., Schelit, L. M. (New York Univ.), A THEORETICAL STUDY OF FLAME PROPERTIES AS A FUNCTION OF THE CHARACTERISTICS OF FLAME CASES. Philosophical Transactions of the Royal Society of London ser. A, 259, No. 1101, 355-89, (April 21 1966); AFOSR-66-1728, U.S. Air Force Contract AF 49(638)-169, July 1965, 38 pp. (AD 636 707).
- 61. Caras, G. J., SUPERSONIC COMBUSTION: A BIBLIOGRAPHY. Redstone Scientific Information Center Report No. RSIC-520, February 1966, 54 pp. (AD 375 627) (REPORT CLASSIFIED SECRET).
- 62. Chaulin, P., Ravel, M., Gozlan, A., EXPERIMENTAL AND DESIGN STUDIES FOR TURPO-RAMINE COMBINATION ENGINE. VOLUME 1 SPECIFICATIONS AND PERFORMANCE. Polar d Electronics Corp. Final Report No. 5147/NIOBE-4/29/Z, AF APL TR-66-34-Vol-1, U.S. Air Force Contract AF 61(052)-750, January 1966, 50 pp. (AD 486 375).
- 63. Chaulin, P., Ravel, M., Gozlan, A., EXPERIMENTAL AND DESIGN STUDIES FOR TURBO-RAMUET COMBINATION ENGINE. VOLUME II CALCULATION ANALISIS. Nord Aviation (France) Final Report nos. 5148/NIOBE-4/30/Z, 5149/NIOBE-4/31/Z, AF APL 1R-66-34-Vol. 2, U.S. Air Force Contract AF 61(052)-750, January 1966, 138 pp. (AD 486 376).
- 64. Chaulin, P., Ravel, M., Gozlan, A., EXPELIMENTAL AND DESIGN STUDIES FOR TURBO-RAMJET COMBINATION ENGINE. VOLUME III DATA. Nord Aviation (France) Final Report nos. 5150/NIOBE-4/3C/Z, 5151/NIOBE-4/35/Z, AFAPL TR-66-Vol. 3, U.S. Air Force Contract AF 61(052)-750, January 1966, 80 pp. (AD 486 377).
- 6j. Chaulin, P., Ravel, M., Gozlan, A., EXPERIMENTAL AND DESIGN STUDIES FOR TURBO-RAMJET COMBINATION ENCINE. VOLUME IV CALCULATED RESULTS. Nord Aviation (France) Final Report nos. 5152/NIOBE-4/34/Z, 5153/NIOBE-4/35/Z, AFAPL TR-66-34-Vol. 4, U.S. Air Force Contract AF 61(052)-750, January 1966, 175 pp. (AD 486 378)
- 66. Chaulin, P., Ravel, M., Gozlan, A., EAPERIMENTAL AND DESIGN STUDIES FOR TURBO-RAMIET COMBINATION ENGINE. VOLUME V COMBUSTION-TEST INSTALLATION. Nord Aviation (France) Final Report no. 5154/NIORE-4/36/Z, AFAPI TR-66-34-Vol. 5, U.S. Air Force Contract AF 61(052)-750, January 1966, 66 pp. (AD 484 774).
- 67. Chaulin, P., Ravel, M., Gozlan, A., EXPERIMENTAL AND DESIGN STUDIES FOR TURBO-RAMJET CONDINATION ENGINE. VOLUME VI COMBUSTION TESTS AT LES GATINES. Nord Aviation (France) Final Report no. 5155/NIOBE-4/37/2, AFAPL TR-66-34-Vol. 6, U.S. Air Force Contract AF 61(052)-750, January 1966, 127 pp. (AD 484 775).
- 68. Chaulin, P., Ravel, M., Gorlan, A., EXPERIMENTAL AND DESIGN STUDIES FOR TURBO-RANJET COMBINATION ENGINE. VOLUME VII COMBUSTION TESTS AT SACLAY, Nord Aviation (France) Final Report no. 5156/NIOBF-4/38/2, AFTPL TR-66-34-Vol. 7, U.S. Air Force Contract AF 61(052)-750, January 1966, 90 pp. (AD 484 776).

- 69. Cherthov, Ya. B., Marinchenko, N. I., Zrelov, V. N., A METHOD FOR THE ANALYSIS OF MICROIMPURITIES AND DEPOSITS IN FUELS OF THE MEDIUM BOILING RANGE. Neftepererabotka i Neftekhim., Nauchn.-Tekhn. Sb. 1963 (11), 16-18; C. A. 61, 1680 (1964).
- 70. Cheng. H., INTENSIFICATION EFFECT OF ULTRASONIC WAVES ON THE HEAT TRANSFER PROCESS BETWEEN LIQUIDS OUTSIDE AND INSIDE THE TUBES. Wu Li Haceh Pao (Chinese People's Republic) 20, 368-73 (1964); U.S. Air Force Translation Report No. F TP-T1-65-1766, TT 66-62287 (AD 639 161).
- 71. Churchill, A. V., Hagar, J. A., Zengel, A. E., Foster, R. P., Sutphin, E. M., ECONOMICAL FUEL FOR BOTH SST AND SUBSONIC AIRCRAFT IS HERE NOW. SAE Journal, 74, No. 6, 82 (1966).
- 72. Congelliere, J. T., Frank, H., Odegaard, E. A., 1965 ADVANCED RAMJET CONCEPTS PROGRAM FINAL REPORT. VOLUME III. EJECTOR SCRAMJET ANALYSIS. Marquardt Corp. Technical Report, 1 March 1965 1 April 1966, Report No. 25188-Vol. 3, AF APL TR-66-49-Vol. 3, U.S. Air Force Contract AF 33(615)-2399, August 1966, 268 pp. (AD 375 1251) (REPORT CLASSIFIED CONFIDENTIAL).
- 73. Copley, J. A., A SCALING TECHNIQUE FOR INVESTIGATING HEAT TRANSFER FROM LUMINOUS FLAMES. U.S. Navel Weapons Laboratory Technical Report No. NWL-TR-2058, August 1966, 29 pp. (AD 488 832).
- 74. Crunnet, J. L., RESULTS OF RAMMET FACILITY MODEL TESTS AT MACH 11. Fluidyne Engineering Corp. Technical Report, AEDC TR-66-138, U.S. Air Force Contract AF 40(600)-1132, July 1966, 50 pp. (AD 184 824).
- 75. Curran, E. T. and Stull, F. D., THE UTILIZATION OF SUPERSONIC COMBUSTION RAMMET SYSTEMS AT LOW MACH NUMBERS. Research and Technology Division, Air Force Systems Command Report RTD-TDR 63-4097, January 1964, 40 pp. (AD 348 073) (REPORT CLASSIFIED CONFIDENTIAL).
- 76. Curran, E. T. and Swithenbank (Sheffield University, England), REALLY HIGH SPEED PROPULSION BY SCRAMVETS. Aircraft Engineering (citation incomplete); Sheffield University (England) Scientific Report No. MIC-67, AFOSR 66-1861, U.S. Air Force European Office of Aeronautical Research Contract AF-EOAR-23-65, October 1965, 35 pp. (AD 638 520).
- 77. Danchevskaya, M. N., Kobozev, N. I., Pankroshev, Yu. A., CATALYSIS WITH METAL VAPORS. III. CATALYTIC CRACKING OF HYDROCARBONS IN ZINC VAPORS. 2h. Fiz. Khim. 38 (2), 442-8 (1964); C. A. 61, 72 (1964).
- 78. Da Riva, I., DIFFUSION FLAMES AND SUPERSONIC COMBUSTION. Instituto
 Nacional de Technica Aerospacial, Madrid (Spain) Final Report for 1 April
 1963 1 April 1965, AYOSR 65-1604, U.S. Air Force European Office for
 Air Research Contract AF-EOAR-43-63, April 1965, 23 pp. (AD 622 581).
- 79. Da-Riva, I., Linan, A., Fraga, E., SOME RESULTS IN SUPERSONIC COMBUSTION. Instituto Nacional de tecnica herospacial, Madrid. U.S. Air Force Grant AF-ECAR-63-43, 1964, 28 pp. (AD 451 191).

- 80. Davies, R. A. and Scully, D. B. (Manchester), CARBON FORMATION FROM AROMATIC HYDROCARBONS. II COMBUSTION AND FLAME 10, No. 2, 165-70 (1966). See also C and F 9, 185 (1965).
- 81. DeJarnette, H., BI IOGRAPHY ON RADIANT HEAT TRANSFER. Martin Co. Report No. ER-13490, May 1964, 24 pp. (AD 459 685).
- 82. Defense Documentation Center, REACTION KINETICS IN FLAMES. A DDC REPORT BIBLIOGRAPHY. Bibliography for 1959-May 1962, Report No. ARB-10375, May 1962, 62 pp. (AD 446 775).
- 83. Dobrowolski, A., ANALYSIS OF MONCCRETANT AND COMBUSTION AND MIXING IN RANGER AND ROCKET-RAMUEL HYBRID ENGINES, Lewis Research Center, Cleveland, Ohio, NASA TN D-3626, October 1966.
- 84. Doebler, R. L. and Hinton, M. G., Jr., CURRENT STATUS AND CHALLENGE OF AIRBREATHING PROPULSION FOR LAUNCH VEHICLE SYSTEMS. Aerospace Corp. Technical Documentary Report No. TDR-669(6520-10)-1, SSD TR-66-56, U.S. Air Force Contract AF 04(695)-689, March 1966, 33 pp. (AD 372 320) (REPORT CLASSIFIED CONFIDENTIAL).
- 85. Donovan, A. F., Lawrence, H. R., Goddard, F. E., Gilroth, R. R., HIGH SPEED AFRODYNAMICS AND JET PROPULSION. VOLUME VIII. HIGH SPEED PROBLEMS OF AIRCRAFT AND EXPERIMENTAL METHODS. Princeton University Press, Princeton, N.J., 1961, 1013 pp., U.S. Navy Contract Nonr-03201 (AD 638986).
- 86. Donovan, M. B., A SURVEY OF STAGNATION POINT HEATING. Boeing Co. Document No. D2-22050, rev. A, January 1963, 75 pp. (AD 444 657).
- 87. Douglas Aircraft Co., DESIGN CONCEPTS FOR MINIMUM WEIGHT, HIGH PERFORMANCE SUPERSONIC AIRCRAFT STRUCTURES. Monthly letter progress report No. C-25-3273, U.S. Air Force Contract AF 33(657)-8541, September 1962, 11 pp. (AD 458 6911).
- 88. Douglas Aircraft Co., Inc., DESIGN CONCEPTS FOR MINIMUM WEIGHT HIGH PERFORMANCE SUPERSONIC AIRCRAFT STRUCTURES, VOLUME II. MANUFACTURING. ASD-TDR-63-871, Vol. 2, U.S. Air Force Contract AF 33(657)-8541, September 1963, 170 pp. (AD 454 4151).
- 89. Douglas Aircraft Co., Inc., DESIGN CONCEPTS FOR MINIMUM WEIGHT HIGH PERFORMANCE SUPERSONIC AIRCRAFT STRUCTURES, VOLUME I. STRUCTURAL DESIGN AND ANALYSIS. Report for 1 April 1962 20 November 1963, ASD-TDR-63-871, Vol. 1, U.S. Air Force Contract AF 33(657)-8541, September 1963, 395 pp. (AD 424 377L).
- 90. Douglas Aircraft Co., DESIGN CONCEPTS FOR MINIMUM WEIGHT, HIGH PERFORMANCE SUPERSONIC AIRCRAFT STRUCTURES. Monthly letter progress report No. 01-25-5207, U.S. Air Force Contract AF 33(657)-6541, November 1963, 3 pp. (AD 458 692L).

- 91. Deuglas Aircraft Co., Inc., DESIGN CONCEPTS FOR MINIMUM WEIGHT HIGH PERFORMANCE SUPERSONIC AIRCRAFT STRUCTURES. VOLUME III. TESTING. Final Report ASD-TDR-03-871, Vol. 3, U.S. Air Force Contract AF 33(657)-8541, May 1964, 379 pp. (AD 444 2191).
- 92. Drabkina, I. E., Orechkin, D. B., Popova, T. S., EFFECT OF ELEMENTAL SULFUR ON THE STABILITY OF DISTILLATE FUELS. Neftepererabotka i Neftekhim., Nauchn.-Tekhn. Sb. 1964 (2), 14-17; C.A. 61, 9337 (1964).
- 93. Pugger, G. L., A SUPERSONIC COMBUSTION RAMJET MISSILE (SCRAM) FOR NAVAL MISSIONS. Applied Physics Laboratory, Johns Hopkins University Report No. TG-640, U.S. Navy Contract NOw-62-0604c, January 1965, 137 pp. (AD 364 465) (REPORT CLASSIFIED CONFIDENTIAL).
- 94. Dwyer, O. E. (Brookhaven National Laboratory), TRANSFER OF HEAT TO FLUIDS FLOWING THROUGH PIPES, ANNULI AND PARALLEL PLATES. Nucl. Sci. Eng. 17, 336-44 (1963); C.A. 61, 2741 (1964).
- 95. Dukek, W. G. (Esso Research and Engineering Co.), FUELS AND LUBRICANTS FOR THE NEXT GENERATION AIRCRAFT THE SUPERSONIC TRANSPORT. J. Inst. Petrol. 50 (491), 273-96 (1964); C. A. 62, 12949 (1965).
- 96. Eglinton, G., Raphael, R. A., Willis, R. G., Zabkiewicz, J. A., REARRANGEMENT OF DIACETYLENES TO AROMATIC COMPOUNDS. J. Chem. Soc. 1964 (August), 2597-603; C.A. 61, 10620 (1964).
- 97. Erickson, W. D., Williams, G. C., Hottel, H. C., LIGHT-SCATTERING MEASUREMENTS ON SOOT IN A BENZENE-AIR FLAME. Combust. Flame 8 (2), 127-32 (1964); C. A. 61 11474 (1964).
- 98. Fabuss, B. M., Duncan, D. A., Smith, J. O. (Monsanto Research Corp.) and Satterfield, C. N., EFFECT OF ORGANOSULFUR COMPOUNDS ON THE RATE OF THERMAL DECOMPOSITION OF SELECTED SATURATED HYDROCARBONS. Ind. Eng. Chem., Process Design Develop. 4 (1), 117-22 (1965); C.A. 62, 2697 (1965).
- 99. Fabuss, B. M., Katesjian, R., Smith, J. O. (Monsanto Research Corp.), THURMAL DECOMPOSITION RATES OF SATURATED CYCLIC HYDROCARBONS. Ind. Eng. Chem., Process Design Develop. 3 (3), 248-54 (1964); C.A. 61, 1731 (1964).
- 100. Fabruss, B. M., Smith, J. O., Satterfield, C. N. (Monsanto Research Corp.), THERMAL CRACKING OF PURE SATURATED HYDROCARBONS. Advan. Petrol. Chem. Refining 9, 157-201 (1964); C.A. 62, 3863 (1965).
- 101. Fagan, W. and Leipziger, S., NONUNIFORM COOLING OF A HEAT-GENERATING CYLINDER OR SPHERE, Journal of Heat Transfer, 88C, 257-264 (No. 3), 1966.
- 102. Faro, I. D. V. and Keirsey, J. L., RAMDET TECHNOLOGY, SECTION ON FLOW PROCESSES AND ENGINE PERFORMANCE. CHAPTER 3B. SUPERSONIC INLETS. Johns Hopkins University, Applied Physics Laboratory Technical Memo, Report No. TG-610-3B, U.S. Navy Contract NOw-62-0604-c, March 1965, 70 pp. (AD 631 872).

ī

- 103. Fare, I. D. V., RAMIET TECHNOLOGY. SECTION ON FLOW PROCESSES AND ENGINE PERFORMANCE. CHAPTER FOUR. PROPULSION MOZZLES. Johns Nepkins University, Applied Physics Laboratory Technical Memo, Report No. TG-610-4, U.S. Navy Contract NOw-62-0604-c, February 1965, 57 pp. (AD 631 715).
- 104. Favin, S., IBM 7090 PROGRAM FOR COMPLEX CHEMICAL KITETIC FLOW COMBUSTION. John Hopkins University, Applied Physics Laboratory Report No. TG-456, U.S. Navy Contract NOw-62-0604-c, December 1962, 40 pp. (AD 631 721).
- 105. Federal Aviation Agency, UNITED STATES SUPERSONIC TRANSPORT PROGRAM. CHRONOLOGY. BRIEF HISTORY RESEARCH CONTRACT SUMMARY. Report No. SST-65-10, July 1965, 48 pp. (AD 468 505).
- 106. Feldman, L., SOME PRELIMINARY DESIGN APPROACHES TO THE APPLICATION OF THE SUPERSONIC COMBUSTION RAMJET TO THE LOW ALTITUDE RUN-IN PROBLEM. General Applied Science Laboratories, Inc. Technical Report No. TR-579, U.S. Navy Contract SD-149, January 1966, 54 pp. (AD 370 142) (REPORT CLASSIFIED SECRET).
- 107. Ferri, A., REVIEW OF SCRAMTET PROPULSION TECHNOLOGY, AIAA Paper No. 66-826, AIAA Third Annual Meeting, Boston, Massachusetts, November 29 December 2, 1966.
- 108. Ferri, A. and Vaglio-Laurin, R., A REVIEW OF THE WORK PERFORMED AT THE POLYTECHNIC INSTITUTE OF BROOKLYN AEROSPACE INSTITUTE. Polytechnic Institute of Brooklyn Report for 1 September 1957 31 August 1963, No. PIB AL-809, AFOSR-5428, U.S. Air Force Contract AF 49(638)-217, September 1963, 34 pp. (AD 621 162).
- 109. Finefrock, V. H., MICROBIAL CONTAMINATION OF USAF JP-4 FUELS. Air Force Aero Propulsion Laboratory, Research and Technology Division, Air Force Systems Command, Technical Report AFAPL-TR-66-91, August 1966, Wright Patterson Air Force Base, Ohio.
- 110. Fitch, R. E., SUPERSONIC COMBUSTION EXPERIMENTS IN THE BOEING 44-INCH HOTSHOT WIND TUNNEL. Boeing Company Report No. DN-D2-22125, February 1963, 20 pp. (AD 354 623) (REPORT CLASSIFIED CONFIDENTIAL).
- 111. Flornes, B. J. and Stroup, K. E., 1964 ADVANCED RAMUET CONCEPTS PROGRAM. VOLUME I. ADVANCED JET COMPRESSION CONCEPTS. Marquardt Corporation Final Report No. 25155, APL-TR-65-32-Vol. 1, U.S. Air Force Contract AF 33(615)-1581, March 1965, 232 pp. (AD 360 320L) (REPORT CLASSIFIED CONFIDENTIAL).
- 112. Fristrom, R. M., MEASUREMENT OF BURNING VELOCITY A SURVEY. Esso Development Co. Ltd., England Report No. TG-481, U.S. Nave Contract NOw-62-0604-c, April 1963, 50 pp. (AD 631 538).
- 113. Frolova, V. S., Polataiko, R. I., Skarchenko, V. K., Musienko, V. P., Galich, R. I., DEHYDROGENATION OF HEXANE ON CHRONIA-ZINC OXIDE CATALYSTS. Neft. i Gaz. Prom., Inform. Nauchn.-Tekhn. Sb. 1964 (3), 54-5; C.A. 62, 2647 (1965).

- 114. Fromm, E. A., Quigg, H. T., Schirmer, R. M., EFFECT OF JP-5 SULFUR CONTENT ON HOT CORROSION OF SUPERALLOYS IN MARINE ENVIRONMENT. Phillips Petroleum Co., Research Division Progress Report No. 2, Report No. 4319-66R, U.S. Navy Contract Now-65-0310, January 1966, 62 pp. (AD 479 488).
- 115. Froning, H.D., SCRAM PROPULSION STUDY. VOLUME I. (SUMMARY). Douglas Aircraft Company Final Report No. SM-47718-Vol. 1, U.S. Navy Contract NOw-64-0434F, September 1964, 79 pp. (AD 364 498) (REPORT CLASSIFIED CONFIDENTIAL).
- 116. Galich, F. N., Gutyrya, V. S., Neimark, I. E., Egorov, Yu. P., Ilin, V. G., Golubchenko, I. T., Frolova, V. S., CATALYTIC REACTIONS ON ZEOLITES. Neftekhim., Akad. Nauk Ukr. SSR, Inst. Khim. Vysokomolekul. Soedin. 1964, 13-24; C.A. 62, 8905 (1965).
- 117. Gazley, C., Jr., Hartnett, J. P., Eckert, E. R. G., PROCEEDINGS OF THE ALL-SOVIET UNION CONFERENCE ON HEAT AND MASS TRANSFER (2D), VOLUME I. Rand Corporation Report No. R-451-PR-Vol. 1, U.S. Air Force Contract AF 49(638)-1700, August 1966, 377 pp. (AD 637 690).
- 118. General Applied Science Laboratories, Inc., ANALYTICAL AND EXPERIMENTAL EVALUATION OF HYPERSONIC RAMJET. Final Summary Report, No. TR 355, January 1962-March 1963, ASD-TDR-63-591, U.S. Air Force Contract AF 33(657)-7911, April 1963, 255 pp. (AD 345 944) (REPORT CLASSIFIED CONFIDENTIAL).
- 119. General Applied Science Laboratories, Inc., ANALYTICAL AND EXPERIMENTAL EVALUATION OF THE SUPERSONIC COMBUSTION RAMIET. Final Summary Report No. TR 435, APL-TDR 64-68, U.S. Air Force Contract AF 33(657)-10463, May 1964, 226 pp. (AD 352 049) (REPORT CLASSIFIED CONFIDENTIAL).
- 120. General Applied Science Laboratories, ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF ADVANCED AIR-BREATHING ENGINES. Final Summary Report No. GASL-TR-479, U.S. Air Force Contract AF 33(615)-1575, April 1965, 164 pp. (AD 360 045) (REPORT CLASSIFIED CONFIDENTIAL).
- General Dynamics Astronautics, AFROSPACEPIANE PROPULSION SYSTEM/VEHICLE INTEGRATION STUDY. EVALUATION OF PRATT AND WHITNEY AIRCRAFT TURBGRAPJET ENGINES. Final Report No. 63-1069, Volume 4, U.S. Air Force Contract AF 33(657)-10162, October 1963, 234 pp. (AD 345 604L) (REPORT CLASSIFIED SECRET).
- 122. General Dynamics Astronautics, AEROSPACEPIANE PROPULSION SYSTEM/VEHICLE INTEGRATION STUDY. EVALUATION OF THE GENERAL ELECTRIC COMPANY TURBO-RAMJET ENGINES. Final Report No. 63-1069, Volume 5, U. S. Air Force Contract AF 30(657)-10162, October 1963, 126 pp. (AD 345 603L) (REPORT CLASSIFIED SECRET).

- 123. General Electric Co., ANALYTICAL AND EXPERIMENTAL EVALUATION OF THE SUPERSONIC COMBUSTION RAMJET ENGINE. VOLUME III. COMPONENT EVALUATION. Final Technical Report June 1964-June 1965, Report No. R65FPD184-Vol. 3, AF APL TR-65-103-Vol. 3, U.S. Air Force Contract AF 33(615)-1586, December 1965, 272 pp. (AD 367 775L) (REPORT CLASSIFIED CONFIDENTIAL).
- 124. General Electric Co., ANALYTICAL AND EXPERIMENTAL EVALUATION OF THE SUPERSONIC COMBUSTION RAMJET ENGINE. VOLUME 1. PROPULSION SYSTEM AND APPLICATIONS INVESTIGATIONS. Final Technical Report June 1964-June 1965, Report No. R65FPD184-Vol. 1, AF APL TR-65-103-Vol. 1, U.S. Air Force Contract AF 33(615-1586, December 1965, 160 pp. (AD 367 773L) (REPORT CLASSIFIED CONFIDENTIAL).
- 125. General Electric Co., ANALYTICAL AND EXPERIMENTAL EVALUATION OF THE SUPERSONIC COMBUSTION RAMJET ENGINE. VOLUME II. COMPONENT EVALUATION. Final Technical Report June 1964-June 1965, Report No. 65FFD-184-Vol. 2, AF APL TR-65-103-Vol. 2, U.S. Air Force Contract AF 33(615)-1586, December 1965, 370 pp. (AD 367 774L) (REPORT CLASSIFIED CONFIDENTIAL).
- 126. Germain, J. E., Ostyn, M., Beufils, J. P., TEXTURE OF CATALYSTS BY GAS ABSORPTION. II. Pt-Ai2O3 CATALYSTS, J. Chim. Phys. 62 (1), 32-6 (1965). C.A. 62, 15471 (1965).
- 127. Gilks, J. H. (I.C.I. Ltd), ANTIOXIDANTS FOR PETROLEUM MODUCTS. J. Inst. Petrol. 50 (491), 309-18 (1964); C.A. 62, 12950 (1965).
- 128. Glenny, R. J. E., SOME MATERIALS AND COOLING TECHNIQUES APPLICABLE TO AIR-REATHING ENGINES AT HIGH FLICHT SPEEDS. American Institute of Aeronautics and Astronautics Paper No. 65-743, New York, 1965.
- 129. Gluckstein, M. E., Hu, J., Lehikoinen, U.A., IMPROVED HEAT FLUX HYDRO-CARBON FUELS. Ethyl Corp. Quarterly Progress Report No. 3, Report No. GR-65-60, U.S. Army Contract DA-18-035-AMC-285(A), April 1966, 52 pp. (AD 372 019) (REPORT CLASSIFIED CONFIDENTIAL).
- 130. Gordon, J. S., COMBUSTION GAS EMITTED RADIATION AND CHEMILUMINESCENCE PHENOMENA. Astrosystems International, Inc. Annual Technical Status Report 15, April 1965-15 April 1966, Report No. TR-64002-F2, AFOCR 66-1366, U.S. Air Force Contract AF 49(638)-1400, May 1966, 52 pp. (AD 635 161).

- 131. Hamelin, G. L., INVESTIGATION OF THE MIXING OF COAXIAL HETEROGENEOUS GAS JETS AS APPLIED TO SUPERSONIC COMBUSTION. Master's Thesis, U. S. Air Force Institute of Technology, Wright-Patterson AFB School of Engineering Report No. GA/MF/65-2, August 1965, 78 pp. (AD 622035).
- 132. Hartill, W. R. (Marquardt Corp.), DEDIGN TECHNIQUE AND TEST RESULTS OF A QUADRIFORM LOW DRAG SCRAMJET INLET. Presented at the AIAA Propulsion Specialists Conference U. S. Air Force Academy, Colorado Springs, Colo., 15 June 1965; Marquardt Corp. Report No. MP-1334, U. S. Air Force Contract AF 33(657)-8491, 1965, 21 pp. (AD 372899) (REPORT CLASSIFIED CONFIDENTIAL).
- 133. Hartill, W. R., ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF A SCRAMUET INLET OF QUADRIFORM SHAPE. Marquardt Corp. Technical Report No. 6096, APL-TR-65-74, U. S. Air Force Contract AF 33(657)-8491, August 1965, 109 pp. (AD 364159L)(REPORT CLASSIFIED CONFIGURITIAL).
- 134. Hawkins, R. and Fox, M. D., REAL GAS EFFECTS RELEVANT TO THE PERFORMANCE OF A KEROSINE FUELLED RAMUET. Supersonic Flow, Chem. Process. Radiative Transfer., 1964, 113-36.
- 135. Hawthorn, R. D. and Nixon, A. C. (Shell Development) SRCCI. TUBE IGNITION DELAY STUDIES OF ENDOTHERMIC FUFLS, AIAA Journal, 4, 513-20, March 1966.
- 136. Hayek, A. J., CRITICAL AREA CCOLING INVESTIGATIONS. Parquardt Corp. Final Report No. 6085, Contract AF 33(657)-11754, December 1964, 87 pp. (AD 355867)(REPORT CLASSIFIED CONFIDENTIAL).
- 137. Heller, J. and Greensfelder, B. S., A STUDY OF ANTICATALYTIC MATERIALS. Stanford Research Institute Final Report 5 March 1964-31 January 1966, Report No. SRI-66-1508, U. S. Army Contract DA-18-064-AMC-209(A), May 1966, 67 pp. (AD 373035)(REPORT CLASSIFIED CONFIDENTIAL).
- 138. Herbst, W. A., ENDOTHERMIC REACTIONS FOR COOLING AND PROVIDING FUEL IN SUPERSONIC COMBUSTION, U. S. Patent 3,263,414, 2 August 1966, assigned to Esso Research and Engineering Co.
- 139. Hibbard, R. R. and Olson, W. I. (Lewis Research Center), FUELS FOR TURBOJETS AND RAMJETS. Combust. Propellenti Nuovi, Atti Conv., Milan 1963, 217-36 (Pub. 1964)(Eng.)
- 140. Hightower, J. W. and Emmett, P. H. (Johns Hopkins University), CATALYTIC CRACKING OF n-HEXADECANE. IV. THE FORMATION AND BEHAVIOR OF ARCMATICS OVER A SILICA-ALUMINA CATALYST, J. Am. Chem. Soc., 87 (5), 939-49 (1965).
- 141. Hube, F. K., PRESSURE DISTRIBUTION AND MASS FLOW IN A HYPERSONIC INLET CONFIGURATION AT MACH NUMBERS 3 THROUGH 8. Arnold Engineering Development Center, Arnold Air Force Station Technical Report No. AEDC-TR-66-90 prepared in cooperation with ARO, Inc., U. S. Air Force Contract AF 40(600)-1200, April 1966, 16 pp. (AD 371751L)(REPORT CLASSIFIED CONFIDENTIAL).

- 142. Huybregtse, R. and van der Linder, A. C. (Koninklijke/Shell Lab.), THE OXIDATION OF O-OLEFINS BY A PSEUDOMANAS. REACTIONS INVOLVING THE DOUBLE BOND. Antonie van Leeuwenhoek J. Microbiol. Serol., 30 (2), 185-96 (1964).
- 143. Jacobs, H. R. and Woodcock, G. R., HEAT TRANSFER IN RAMJETS AND LIQUID ROCKETS. Boeing Co. Report No. DN-D2-12041, March 1962, 149 pp. (AD 450927).
- 144. Johnston, R. K. and Monita, C. M., EVALUATION OF A DETECTOR FOR FREE WATER IN FUEL. Southwest Research Institute Summary Report March 1965-March 1966, Report No. RS-481, AFAPL TR-66-39, U. S. Air Force Contract AF 33(615)-2327, April 1966, 43 pp. (AD 481506).
- 145. Johnston, R. K., Tyler, J. C., and Weichlein, R. G., FUEL CONTAMINATION SURVEY AT AIR FORCE BASES. Southwest Research Institute Final Technical Report 11 July 1963-30 September 1964, Report No. RS-429, SEG TR-65-7, U. S. Air Force Contract AF 33(657)-11362, March 1965, 339 pp. (AD 480436).
- 146. Jost, F. and Bazant, V., CATALYTIC DEALKYLATION OF ALKYL AROMATIC COMPOUNDS. X. INFLUENCE OF PREPARATIVE PROCEDURES ON PROPERTIES OF NICKEL-ALUMINA CATALYST. Collection Czech. Chem. Commun., 30 (3), 853-61 (1965) Eng.).
- 147. Kaliko, M. A., Pelevine, R. S., Pervushins, M. N., and Fedotova, T. V., PRODUCTION OF HIGHER NORMAL α-OLEFINS BY THE CATALYTIC CONVERSIONS OF PARAFFINS. Neftekhimiya, 5 (1), 24-32 (1965).
- 146. Kambarov, Yu. G., Kakhramanova, A. T., and Mekhtiev, S. D., THERMODYNAMIC CALCULATIONS OF THE n-OCTANA PRESSURE PYHOLYSIS. Azerb. Khim. Zh., 1964
 (3), 111-8.
- 149. Kaplan, B., VISIBLE RADIATION FROM A STREAM OF REACTING CHAR PARTICLES. General Applied Science Laboratories, Inc. Technical Memo. Renport No. GA SL-TM-140, U. S. Supersonic Development Contract SD-149, April 1966, 50 pp. (AD 374669)(REPORT CLASSIFIED SECRET).
- 150. Keough, A. H. (Norton Co.), CATALYTIC CRACKING OF HYDROCARBONS WITH OPEN SYNTHETIC MORDENITES. Am. Chem. Soc., Div. Petrol. Chem., Preprints 8 (1), 65-8 (1963).
- 151. Kim, S. K., Flynn, G. P., and Ross, J., THERMAL CONDUCTIVITY OF MODER-ATELY DENSE GASES. University of Virginia Technical Report on Project Squid, Report No. BRN-15-P, U. S. Navy Contract Nonr-362300, September 1965, 16 pp.; Prepared in cooperation with Brown University. (AD 471864).
- 152. Kirk, H. F., RAMJET TECHNOLOGY. CHAPTER 13. FACILITIES AND TESTING. Johns Hopkins University, Applied Physics L. boratory Technical Memo, Report No. TG-610-13, U. S. Navy Contract NOW-62-0604-C, May 1965, 42 pp. (AD 630826).

- 153. Kirkegaard, P. M. and Waite, H. R., IGNITION SENSITIZATION OF GELLED JP-5 FUEL. Atlantic Research Corp. Final Report, U. S. Naval Ordnance Test Station Report NOTS TP 4113, U. S. Navy Contrac', N60530-11071. April 1966, 12 pp. (AD 483275).
- 154. Kirkwood, T. F., COMMENTS ON FUTURE AIR TRANSPORTATION SYSTEMS. Rand Corp. Report No. P-3362, May 1966, 9 pp. (AD 633023).
- 155. Kistiakowsky, G. B. and Smith, W. R., THE KINETICS OF CIS-TRANS ISOMERIZATION. IV. J. Am. Chem. Soc., 57, 269 (1935).
- 156. Klimov, K. i., Vilenkin, A. V., and Kichkin, G. I., NEW METHOD OF EVALUATING THE EFFECTIVENESS OF ACTION OF ANTI-SCORING ADMIXTURES TO OUS AND FUELS. Vsyscivznoe Navchno Tekhnicheskoz Soveshchanie po Prisadkam K Maslam i Toplivam Trudy (USSR) 1960-1, 275-8; U. S. Air Force Translation FTD-TT-65-1491, TT66-61131, March 1966, 15 pp. (AD 631838).
- 157. Kolesnikova, T. A. and Sadyrina, N. A., PREPARATION AND ACTIVATION OF CATALYSTS FOR THE DEPOLYMERIZATION OF HYDROCARBONS. Tr. Bashkirsk. Nauchn.-Issled. Inst. po Pererabotke Nefti No. 7, 97-101 (1964).
- 158. Knecht, A. T., Jr., Kools, J. W., Muhbaler, D. J., and Rizzuto, A. R., MICROBIAL UTILIZATION OF HYDROCARBON FUEL FORMULATIONS WITH THE FRODUCTION OF GUMS, SLIMES, SLUDGE AND SURFACE ACTIVE COMPONENTS. Sinclair Research Inc. Final Report 1 April 1963-28 September 1965, U. S. Army Contract DA-19-129-AMC-88(N), October 1965, 185 pp. (AD 476174L).
- 159. Kobayashi, K. and Yumada, K., OXIDATIVE DECOMPOSITION OF HYDROCARBONS BY MICROORGANISMS. I. DECOMPOSITION OF STRAIGHT-CHAIN HYDROCARBONS. Hakko Kyokaishi, 21 (10), 407-14 (1963).
- 160. Kobayashi, K. and Yamada, K., OXIDATIVE DECOMPOSITION OF HYDROCARBONS BY MICROORGANISMS. II. DECOMPOSITION OF CYCLIC HYDROCARBONS. Hakko Kyokaishi, 21 (1.), 453-8 (1963).
- 161. Konovalchikov, O. D., Galich, P. N., Petrov, A. A., and Skarchenko, V. K., DEHYDROGENATION OF n-HEXAME ON ACTIVATED CARBON AND Cr203 CARBON CATALYSTS. Kinetika i Kataliz, 5 (3), 561-3 (1964).
- 162. Konovalchikov, O. D., Galich, P. N., Musienko, V. P., Skarchenko, V. K., and Petrov, A. A., Effect Of the POWE STRUCTURE OF AN ALUMINOCHROME CATALYST ON THE CONVERSION OF n-HEXANT. Kinetika i Kataliz, 5 (2), 350-4 (1964).
- 163. Krakov, B. (Warner and Swasey Co.), DETERMINATION OF HOT-GAS TEMPERATURE PROFILES FROM INFRARED EMISSION AND ABSORPTION SEPCTRA. AIAA Journal, 2, No. 7, 1359-60 (1965); Revised edition, AFOSR 66-0352, U. S. Air Force Contract AF 49(638)-1132, March 1965, 3 pp. (AD 631616).

- 164. Krohn, N. A. and Wymer, R. G. (Oak Ridge National Laboratory), EFFECTS OF INCORPORATED RADIOACTIVITY AND EXTERNAL RADIATION ON HETEROGENEOUS CATALYSIS. Ind. Uses Large Radiation Sources, Proc. Cont. Suleburg, Austria, 1963, 2, 25-39, discussion 39-40.
- 165. Kuchta, J. M., Cato, R. J., Martindill, G. H., and Gilbert, W. H. (U. S. Bureau of Mines), IGNITION CHARACTERISTICS OF FUELS AND LUBRICANTS.
 U. S. Air Force, AFAFL TR-66-21, March 1966, 83 pp. (AD 632730).
- 166. Kuchta, J. M., Spolan, I., and Zubetakis, M. G. (U. S. Bureau of Mines); FLAMMABILITY CHARACTERISTICS OF METHYLACETYLENE, PROPADIENE (ALLENE), AND PROPYLENE MIXTURES. J. Chem. Eng. Data, 9 (2), 467-72 (1964).
- 167. Kushida, R., Falconer, F., and Seiteno, D., ADVANCED ATR-BREATHING ENGINE STUDY. National Engineering Science Co. Report No. SN 129. U. S. Air Force Contract AF 33(657)-10794. November 1964, 93 pp. (AD 355503)(REPORT CLASSIFIED CONFIDENTIAL).
- 168. Rushida, R., Seiveno, D., and Troblay, J., ADVANCED AIR-BREATHING ENGINE STUDY. National Engineering Science Co. Quarterly Report No. SN 129, APL-TDI.54-16, U. S. Air Force Contract AF 33(657)-10794, April 1964, 71 pp. (AD 349675)(REPORT CLASSIFIED CONFIDENTIAL).
- 169. Langenbeck, W. and Grimm, H., THE SELECTIVITY OF ZINC-DOPED NICKEL CATALYST DURING THE DEHYDROGENATION OF CYCLOHEXANE. Z. Anorg. Allgum. Chem., 332 (1-2), 55-62 (1964).
- 170. Laster, M. L., THERMODYNAMIC FACTORS AFFECTING THE PERFORMANCE OF SUPERSONIC COMBUSTORS. Arnold Engineering Development Center, Arnold Air Force Station Technical Report No. AEDC-TR-65-252, prepared in cooperation with ARD, Inc. Presented at the 12th Annual Air Force Science and Engineering Symposium, 12-14 October 1965, Brooks AFB, U. S. Air Force Contract AF 40(600)-1200, December 1965, 28 pp. (AD 367800) (REPORT CLASSIFIED CONFIDENTIAL).
- 171. Lebedev, W. P., THE THEORY OF THE CATALYTICAL ACTIVITY OF MIXING CATALYSTS. THE COMPOSITION OF THE CATALYTICALLY ACTIVE CENTERS OF NI-Mg MIXING CATALYSTS. Zeitschrift für Physikalische Chemie, 225, No. 1, 101-15 (1965) (U. S. Air Force Translation FTD-TT-65-221)(HP 466258).
- 172. Lettler, A. J., RADIATION ACTIVATION OF PARA-ORTHO MIDROGEN CATALYSTS. Arthur D. Little, Inc. Report No. C64814, RTD-TDR65-4106, Suppl. 1, U. S. Air Force Contract AF 33(657)-8878, December 1963, 21 pp. (AD 345789)(REPORT CLASSIFIED CONFIDENTIAL).
- 173. Lettler, A. J., RADIATION ACTIVATION OF PARA-ORTHO HYDROGEN CATALYSTS. Arthur D. Little, Inc. Report No. C64814, RTD-TDR63-4106, U. S. Air Force Contract AF 33(657)-8878, December 1963, (no. of pages not legible)(AD 425799).

- 174. Lettler, A. J., RADIATION ACTIVATION OF PARA-ORTHO HYDROGEN CATALYSTS.

 Arthur D. Little, Inc. Quarterly Progress Report No. 2, U. S. Air Force Contract AF 35(615)-1362, June 1964, 17 pp. (AD 449210).
- 175. Levinson, G. S. (Shell Development Company), HIGH TEMPERATURE PREFLAME REACTIONS OF n-HEPTANE. Combustion and Flame, 9 (1), 63-72 (1965).
- 176. Levis, B., Pease, R. N., and Taylor, H. S., HIGH SPEED AERODYNAMICS AND JET PROPULSION. VOLUME II. COMBUSTION PROCESSES. Princeton University Press, Princeton, N. J., 1956, 662 pp. U. S. Navy Contract None-03201 (AD 638982).
- 177. Lewis, G. O. and Kah, C. L., HIGH CHAMBER PRESSURE STAGED COMBUSTION RESEARCH PROGRAM. Pratt and Whitney Aircraft Final Report, 19 October 1964-18 October 1965, Report No. PWA-FR-1675, AFRPL TR-66-70, U. S. Air Force Contract AF 04(611)-10372, June 1966, 149 pp. (AD 374697) (REPORT CLASSIFIED CONFIDENTIAL).
- 178. Lin, C. C., HIGH SPEED AERODYNAMICS AND JET PROPULSION. VOLUME V. TURBULENT FLOWS AND HEAT TRANSFER. Princeton University Press, Princeton, N. J., 1959, 553 pp., U. S. Navy Contract Nonr-03201 (AD 638983).
- 179. Liptert, F. W. and O'Neill, J. E., FEASIBILITY STUDY OF A SUPERSONIC COMBUSTION TURBOJET ENGINE. General Applied Science Laboratories Inc. Final Technical Report 1 August 1964-9 August 1965, Report No. TR-545, APL-TR-65-102, U. S. Air Force Contract AF 33(615)-2119, August 1965, 175 pp. (AD 366972)(REPORT CLASSIFIED CONFIDENTIAL).
- 180. Lodwick, J. R. (British Petroleum Co.), CHEMICAL ADDITIVES IN PETROLEUM FUELS: SOME USES AND ACTION MECHANISMS. J. Inst. Petrol, 50 (491), 297-308 (1964).
- 181. Lopatik, M. D., HYDROCARBON-OXIDIZING CAPACITY OF MYCOBACTERIA. Mikrobiologiya, 33 (2), 236-8 (1964); C. A. 61, 4736 (1964).
- 182. Lyster, W. N. (Univ. of Houston), KINETICS OF CHEMICAL REACTIONS DEHYDROCYCLIZATION OF n-HEPTANE. Univ. Microfilms (Ann Arbor, Mich.), Order No. 64-7594, 374 pp.
- 183. MacFarlane, J. J., Holderness, F. H., and Whitcher, F. S. E (N.G.T.E.), SOOT FORMATION IN PREMIXED Cs AND Cs HYDROCARBON AIR FLAMES AT PRESSURES UP TO 20 ATMOSPHERES. Combustion and Flame, B, 215-29 (1964). (Similar to AD 411328 listed in literature survey as 0572.)
- 184. Malone, E. W., HEAT FLUX MEASUREMENT. Boeing Co. Document No. D2-35057, January 1963, 33 pp. (AD 467835).
- 185. Mamedaliev, Yu. G., Ismailov, R. G., Mamedaliev, G. M., Aliev, S. M., Gustinov, N. I., and Akhmed-Zade, Z. A., DEHYDROGENATION OF ALKYL AROMATIC HYDROCARBONS IN THE FLUIDIZED BED OF VARIOUS OXIDE CATALYSTS. Dokl. Akad. Nauk. Azerb. SSR, 20 (5), 7-10 (1964).

- 186. Mamedaliev, Yu. G. and Mamedaliev, G. M., DEALKYLATION AND TRANSALKYLA-TION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF ALUMINOSILICATE CATALYSTS. Istrannye Proizvedeniya, Adad. Nauk. Azerb. SSR, Inst. Neftekhim. Protsessov, 1, 524-67 (1965)
- 187. Marquardt Corp., SUPERSONIC COMBUSTION RAMJET FACINE PROGRAM. Monthly Letter Progress Report No. LR-344-6M, U. S. Air 'orce Contract AF 33(615)-1469, September 1964, 1 vol. (AD 361127)(REPORT CLASSIFIED CONFIDENTIAL).
- 1 3. Marquardt Corp., LACE-ACES HEAT EXCHANGER DESIGN STUDY. Final Report, U. S. Air Force Contract AF 33(657)-11754, November 1964, 1 vol. (AD 346416L)(REPORT CLASSIFIED CONFIDENTIAL).
- Marquardt Corp., SUPERSONIC COMBUSTION RAMJET ENGINE PROGRAM, Monthly Letter Progress Report for October 1964, Report No. LR-344-8M, U. S. Air Force Contract AF 33(615)-1469, November 1964, 24 pp. (AD 364471) (REPORT CLASSIFIED CONFIDENTIAL).
- 190. Marquardt Corp., HYPERSONIC RAMJET PROGRAM. Monthly etter Progress
 Report for Cotober 1964, Report No. LR 343-8, U. S. Force Contract
 AF 33(615)-1467, November 1964, 37 pp. (AR 364468)(4 T CLASSIFIED CONFIDENTIAL).
- 191. Marquardt Corp., SUPERSONIC COMBUSTION ENGINE PROGRAM (INLET). Monthly Letter Progress Report No. LR-275-7M, U. S. Air Force Contract AF 53(657)-8491, November 1964, 3 pp. (AD 359849)(REPORT CLASSIFIED CONFIDENTIAL).
- 192. Marquardt Corp., SUPERSONIC COMBUSTION RAMJET PROGRAM. Monthly Letter Progress Report for December 1964, Report No. LR-344-10M, U. S. Air Force Contract AF 33(615)-1469, Jonuary 1965, 7 pp. (AD 364470)(REPORT CLASSIFIED CONFIDENTIAL).
- 193. Marquardt Corp., SUPERSONIC COMBUSTION RAMJET ENGINE PROGRAM (INLET). Monthly Progress Report for December 1904, Report No. LR-175-9M. U. S. Air Force Contract AF 33(657)-8491, January 1365, 6 pp. (AD 364473) (REPORT CLASSIFIED CONFIDENTIAL).
- 194. Martin, E. C., A RESEAFCH AND DEVELOPMENT STUDY OF FUEL AND OIL CONTAMINANTS. Southwest Research Institute Monthly Progress Report, 1 October-1 November 1963, U. S. Army Contract DA23-072-AMC-128, November 1965, 56 pp. (AD 345314) (REPORT CLASSIFIED CONFIDENTIAL).
- 195. Maslyanskii, G. N., Rabinovich, G. L., and Avtonomova, N. Kh., CATALYTIC DEALKYLATION OF ETHYLBENZENE. Neftekhimiya, 4 (3), 421-5 (1964); C. A. 61, 6832 (1964).
- 196. Mcslyanskii, G. N., Rabinovich, G. L., and Brisker, K. L., CATALYTIC DEALKYLATION OF XYLENE ISOMERS. Neftekhimiy: 4 (3), 426-30 (1964); C. A. 61, 6832 (1964).

- 197. Maurel, R. and Saudemont, G., CERTAIN TRANSITORY PHENOMENA IN HETERO-GENEOUS CATALYSIS. Pull. Sec. Chim. France 1964 (10), 2435-6.
- 198. Maxim, R. E., CONVECTIVE HEAT TRANSFER AND FLOW FRICTION CHARACTERISTICS OF COMPACT HEAT EXCHANGER SURFACES. U. S. Naval Postgraduate School Master's Thesis, 1962, 47 pp. (AD 482250).
- 199. Mazitova, F. N., Durova, O. S., and Bukhryakova, V. V., SYNTHESIS OF MULTIFUNCTIONAL FUEL OXIDATION INHIBITORS. Neftekhimiya, 4 (2), 323-8 (1964); C. A. 51, 4127 (1964).
- 200. McGinley, L. AUTO IDATION AND ANTIOXIDANTS. Rept. Progr. Appl. Chem., 48, 149-56 (1963).
- 201. McKee, D. W. and Norton, F. J. (General Electric Research Laboratory), CATALYTIC ACTIVITY OF NOBLE METAL ALLOYS. METHANE-DEUTERIUM EXCHANGE AND PROPANE CRACKING ON PLATINUM-PALLOTUM AND PALLADIUM-RHODIUM ALLOYS. J. Catalysis, 3 (3), 252-67 (1964); C. A. 61, 3729 (1964).
- 202. McLaren, G. W., Krynitsky, J. A., and Hazlett, R. N., EFFECT OF CORROSION INHIBITORS ON JET FUEL FILTRATION. U. S. Naval Research Laboratory Final Report No. NRL-MR-1660, November 1965, 18 pp. (AD 474875L).
- 203. Meguerian, G. H., Hillstrom, W., Hirschberg, E. H., Rakowsky, F. W. and Zletz, A., FUNDAMENTAL INVESTIGATION OF THE CATALYTIC DEGRADATION OF HYDROCARBON FUELS. American Oil Co. Final Report, U. S. Army Contract DA-18-108-AMC-198A, January 1965, 1 vol. (AD 461420).
- 204. Melnikova, N. P., Fedorov, A. P., and Kuleshova, A. N., REACTIONS OF INDIVIDUAL HYDROCARBONS IN CATALYTIC REFORMING. Khim. i Tekhnol. Topliv i Masel, 9 (7), 24-8 (1964).
- 205. Melvin, A. SPONTANEOUS IGNITION OF METHANE-AIR MIXTURES AT HIGH PRESSURE. I and II. Combustion and Flame, 10, No. 2, 120-134 (1966).
- 206. Merkulov, I. A., PROBLEMS OF SPACE AIR-BREATHING JET ENGINES. Izvestiya Akademiya Nauk SSSR, Energetika i Transport 1965, No. 5, 159-72; U. S. Library of Congress, Aerospace Technology Division ATD Work Assignment No. 76, Report No. ATD-66-8, TT66-6D934, January 1966, 23 pp. (AD 630764).
- 207. Michels, H. H., THEORETICAL RESEARCH ON THERMODYNAMIC AND TRANSPORT PROPERTIES OF GASES AT HIGH TEMPERATURES. United Aircraft Corp. Final Report No. UACRL-E9 10004-12, AFOSR-66-0407, U. S. Air Force Contract AF 49(638)-1133, January 1966, 15 pp. (AD 628911).
- 208. Mickley, H. S., Nestor, J. W., Jr., and Gould, L. A. (Massachusetts Institute of Technology), A KINETIC STUDY OF THE REGENERATION OF A DEHYDROGENATION CATALYST. Can. J. Chem. Eng., 43 (2), 61-8 (1965).

- 209. Mirsaeva, A. K., Elagina, N. V., Sterin, Kh. E., Bobrov, A. V., and Kazanskii, B. A., THE CATALYTIC CONVERSION OF AMYLBENZENE ON A PLATINUM CATALYST. Neftekhimiya, 4 (5), 417-20 (1964).
- 210. Morgan, J. E. and Schiff, H. I. (McCill University), ATCM RECOMBINATION CN SURFACES. Montreal, Canada, November 1965.
- 211. Mosely, R. B. and Good, J. M. (Shell Levelopment Co.), EFFECTS OF INERT SOLIDS ON HETEROGENEOUS REACTIONS. J. Catalysis, 4 (1), 85-9 (1965).
- 212. Mullaney, G. J., Ku, P. S., and Botch, W. D. (Boeing), DETERMINATI(N OF INDUCTION TIMES IN ONE-DIMENSIONAL DETONATIONS (H₂, C₂H₂ and C₂H₄). AIAA Journal, 3 No. 5, May 1965, pp. 873-75.
- 213. Murzinov, I. N., TEMPERATURE PROFILES IN BODIES TRAVELLING AT HIGH ALTITUDES AT HYPERSONIC SPEED. Akad. Nauk SSSR, Izvestiya. Mekhanika i Mashinostroenic, 1964, No. 4, 148-50; U. S. Air Force Translation Report No. TT-65-1478; TT65-61414 (AD 633713).
- 214. Musienko, V. P., Polataiko, R. I., Skarchenko, V. K., Frolova, V. S., and Galich, P. N., CONVERSION OF n-HEXANE ON CHROMIUM-MAGNESIUM OXIDE CATALYSTS. Ukr. Khim. Zh., 30 (9), 915-8 (1964).
- 215. Nardo, S. V. and Brown, L. D., EXPERIMENTAL HEAT TRANSFER AND TEMPERATURE DISTRIBUTION IN A HOLLOW TUBE WITH INTERNAL AIRFLOW AT HIGH TEMPERATURE AND PRESSURE. NASA Doc. N62-12031, 42 pp. (1962); C.A. 61, 9183 (1964).
- 216. Nixon, A. C., Bjorklund, I. S., Hawthorn, R. D., Henderson, H. T., Ritchie, A. W., LITERATURE SURVEY ON VAPORIZING AND ENDOTHERMIC FUELS FOR ADVANCED ENGINE APPLICATIONS. Shell Development Co. Special Report No. S-13979, U.S. Air Force Contract AF 33(657)-11096, November 1965, 362 pp. (AD 476611).
- 217. Nixon, A. C. et al, VAPORIZING AND ENDOTHERMIC FUELS FOR ADVANCED ENGINE APPLICATION. Shell Development Co. Report No. S-14007, for Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio, Contract No. AF 33(615)-3789 Quarterly Progress Report No. 1, June 1966 August 1966.
- 218. Nixon A. C. et al, VAPORIZING AND ENDOTHERMIC FUELS FOR ADVANCED ENGINE APPLICATION. Shell Development Company Report S-14-01c for Aeronautical Systems Division, Wright-Patterson Air Force Base, Ohio, Contract No. AF 33(615)-3789 Quarterly Progress Report No. 2, Sept. 1966 Nov. 1966.
- 219. Nixon, A. C., Ackerman, G. H., Bjorklund, I. S., Hawthorn, R. D., Henderson, H. T., Ritchie, A. W., VAPORIZING AND ENDOTHERMIC FUELS FOR ADVANCED ENGINE APPLICATION. PART II. STUDIES OF THERMAL AND CATALYTIC REACTIONS, THERMAL STABILITIES AND COMBUSTION PROPERTIES OF HYDROCARBON FUELS. June 1964—June 1965 (APL TDM 64-100).

- 220. Nixon, A. C., Ackerman, G. H., Hawthorn, F. D., Henderson, H. T., and Ritchie, A. W., VAPORIZING AND ENDOTHERIC FUELS FOR ADVANCED ENGINE APPLICATION. PART III. FURTHER STUDIES OF THERMAL AND CATALYTIC REACTIONS, THERMAL STABILITIES AND COMBUSTION PROPERTIES OF HYDROCARBON FUELS, September 1966, API-TDR-64-100.
- 221. Nunn, D., MICROBIOLOGICAL INVESTIGATIONS. Dayton University Research Institute RTD-TDR-63-4118-Part 2, U.S. Air Force Contract AF 33(657)-9175, February 1965, 40 pp. (AD 464158).
- Omilian, B., A PARAMETRIC STUDY AND SURVEY OF THE THEXRETICAL PERFORMANCE OF THE SUPERSONIC COMBUSTION RAWLET. Flight Sciences Laboratory, Inc. Report for June 1962-May 1963, AFO R-5351-2, U.S. Air Force Contract AF 49(638)-1173, October 1963, 56 pp. (AD 348072) (REPORT CLASSIFIED CONFIDENTIAL).
- 223. Osgerby, I. A., AN INVESTIGATION OF SUPERSONIC COMBUSTION AND HETERO-GENEOUS TURBULENT JET MIXING RELATED TO THE DESIGN/OPERATION OF SCRAMJETS. Poctoral Thesis Sheffield University (England), AFOSR 66-1855, U.S. Air Force European Office of Aeronautical Research Contract AF-EOAR-23-65, October 1965, 235 pp. (AD 638665).
- 224. Panchenkov. G. M., Kuznetsov, I. I., Bazilevich, V. V., Bessmertnaya, E. K., Zhorov, Yu. M., THE EFFECT OF KINETIC FACTORS ON THE YIELD, FRACTIONAL COMPOSITION, AND STRUCTURE OF OLEFINS IN THE THERMAL CRACKING OF n-HEXADECANE. Tr., Mosk. Inst. Neftekhiw. i Gaz. Prom. No. 51, 142-7 (1964); C.A. 62, 14474 (1965).
- Panchenkov, G. M., Venkatachalam, K. A., Zhorov, Yu. M., THE KINETICS OF THE DEHYDROCYCLIZATION OF PARAFFIN HYDROCARBONS ON OXIDE CATALYSTS. Neftekhimiya 4 (1), 30-6 (1964); C.A. 61, 500 (1964).
- Panchenkov, G. M., Zhorov, Yu. M., Kazunskaya, A. S., Kolesnikov, I. M., Venkatachalam, K. A., THE KINETICS OF DEHYDROCYCLIZATION AND DEHYDRO-GENATION OF HYDROCARBONS IN CONTINUOUS PROCESSES. Tr., Mosk. Inst. Neftekhim. i Gaz. Prom. No. 51, 154-70 (1964); C.A. 62, 14399 (1965).
- 227. Pansing, W. F. (American Cil Co.), THE CATALYTIC CRACKING OF HEXADECANE-EFFECTS OF IMPURITIES, ULEFINS, AND STEAM. J. Phys. Chem. 69 (2), 392-9 (1965); C.A. 62, 7555 (1965).
- 228. Pansing, W. F. and Malloy, J. B. (American Oil Co.), CHARACTERIZING CRACKING CATALYSTS BY THE KINETICS OF CUMENE CRACKING. Ind. Eng. Chem., Process Design Develop. 4 (2), 181-7 (1965); C.A. 52, 11596 (1965).
- Parker, K. O., EXPLORATORY DEVELOPMENT OF HIGH-TEMPERATURE HEAT EXCHANGERS. Garrett Corp., AiResearch Mrg. Division Interim Engineering Progress Report 1 July-30 September 1965, Report No. L-9578, RTD IR-3084-Vol. 1, U.S. Air Force Contract AF 3(615)-2753, September 1965, 82 pp. (AD 369380) (REPORT CLASSIFIED CONFIDENTIAL).

- 230. Peskin, R. L., A THEORETICAL INVESTIGATION OF AEROSOL FLASHING. Rutgers-The State University New Jersey Annual Progress Report, 1 February 1965-31 January 1966, EA 66-4, U.S. Army Contract DA-AMD-18-035-80(A), February 1966, 65 pp. (AD 482569).
- 231. Phillips, D. C. (Marquardt Corp.) and Unterberg, W., HIGH-SPEED HYDRO-CARBON-AIR MIXTURE IGNITION BEHIND BLUFF BODIES. Pyrodynamics 1 (1-2), 41-60 (1964); C.A. 61, 4139 (1964).
- 232. Pichtelberger, J. R., SMOKE SUPPRESSANT FUEL ADDITIVES RESULTS OF TESTS OF ETHYL CORPORATION COMBUSTION IMPROVER NO. 2. U.S. Naval Air Engineering Center, Aeronautical Engine Laboratory Phase Report No. NAEC-AEI-1827, March 1966, 5h pp. (AD 478876L)
- Plank, C. J., Rosinski, E. J., Hewtherne, W. P. (Socony Mobil Oil Co., Inc), ACIDIC CRYSTALLINE ALUMINOSILICATES. NEW SUPERACTIVE, SUPER-SPLECTIVE CRACKING CATALYSTS. Ind. Eng. Chem., Prod. Res. Develop. 3 (3), 165-9 (1964); C.A. 61, 9536 (1964).
- Plank, P. P. and MacMiller, C. J., ANALYTICAL INVESTIGATION OF CANDIDATE THERMAL-STRUCTURAL CONCEPTS APPLICABLE TO WING, FUSELAGE AND INLET STRUCTURE OF A MANNED HYPERSONIC VEHICLE. North American Aviation Inc. Final Technical Report 15 June-5 December 1965, Report No. NA-65-1061, AFFDL TR-66-15, U.S. Air Force Contract AF 33(615)-2996, February 1966, 478 pp. (AD 370 834) (REPORT CLASSIFIED SECRET).
- 235. Pluchery, M. and Cermi, P., OBSERVATION OF PYROCARBONS DEPOSITED ON VARIOUS SUBSTRATES AT INTERMEDIATE TEMPERATURES BY MEANS OF ELECTRON MICROSCOPY, ELECTRON AND X-RAY DIFFRACTION. Proc. European Reg. Cont., Electron Microscopy, 3rd, Prague 1964 (A), 405; C.A. 62, 11597 (1965).
- 236. Pratt and Whitney Aircraft, COMPARISON OF AIR-EREATHING PROPULSION SYSTEMS FOR SCRAMJET CRUISE VEHICLES. Report for 1 July 1964-1 March 1965, Report No. PWA-2596, U.S. Air Force Contract AF 33(615)-1305, May 1965, 188 pp. (AD 373608L) (REPORT CLASSIFIED CONFIDENTIAL) Re-issue of Report No. PWA-2559 without section VII.
- 257. Pratt and Whitney Aircraft, AMSA PROPULSION STUDY. Final Report No. PWA-2510, December 1964. 1 vol. (AD 358464L) (REPORT CLASSIFIED SECRET).
- 238. Quigg, H. T., HIGH PRESSURE COMBUSTOR STUDIES OF DOWNSTREAM METAL TEMPERATURE AS RELATED TO HYDROCARBON STRUCTURE. Progress Report No. 1, Report No. 4240-65R, U.S. Navy Contract NOw-65-0310-d, November 1965, 88 pp. (AD 476160).
- 239. Rachinskii, A. V., FNERGY AND FLOW RATE OF A GAS WITH SUSPENDED PARTICLES MOVING THROUGH IT. Tr. Vses. Zaochn. Energ. Inst. 1962 (20), 44-54; C.A. 61, 7713 (1964); Ref. Zh., Khim. 1964, Abstr. No. 11 14.

- 240. Rachinskii, F. Yu., Bruk, Yu. A., Bolshakov, G. F., METHOD OF IMPROVING THE THERMOOXIDATION STAPILITY OF HYDROCARBON FUELS. USSR Patent 159,591, Appl. No. 305093/25-4, 29 November 1522 (U.S. Air Porce Translation ttd-TT-65-1127; TT 66-60053) (AD 625247).
- 241. Rackley, D. H. and Asbury, D. F., COMPONENT PROPULSION PROGRAM FOR FUTURE HIGH PERFORMANCE STRATEGIC AIRCRAFT. General Electric Co., Advanced Engine and Technology Dept. Report No. R66 FPD 14, U.S. Air Force Contract AF 33(657)-14902, January 1966, 172 pp. (AD 3715/2L) (REPORT CLASSIFIED CONFIDENTIAL).
- 242. Rakovskii, V. E., Orshenskii, R. B., Parnov, E. I., Volgina, I. V., Zhirtova, V. M., Topunova, A. I., Basharin, I. E., THERMAL DECOMPOSITION OF CERTAIN HYDROCARBONS IN THE PRESENCE OF FERRIC OXIDE. Tr. Kalininsk. Tort. Inst. 1963 (13), 140-3; C.A. 62, 5114 (1965); Ret. Zh., Khim. 1964, Abstr. No. 138604.
- Raymond, A. E., OVER THE HORIZON IN AIR TRANSPORTATION. RAND Corp. Report No. P-3396, August 1966, 17 pp.; Published in Astronautics and Aeronautics, September 1966 (AD 638031).
- 244. Rieche, A., Seeboth, H., Wolf, H., DEALKYLATION OF TOLUENE, XYLENE, ETHYLBENZENE, AND CUMENE, AND FORMATION OF TOLUENE FROM BENZENE AND METHANE ON A TECHNICAL NICKEL CATALYST UNDER NORMAL PRESSURE. Monatsber., Deut. Akad. Wiss. Berlin 6 (5), 364-70 (1964); C.A. 6L, 15993 (1964).
- 245. Rigdon, W. S. and Thomas, M., STAGNATION FOINT HETT TRANSFER IN AIR, CONSIDERING SIMULTANEOUS CHEMICAL REACTIONS. Douglas Aircraft Co. Report No. SM-45730, September 1963, 47 pp. (AD 464586).
- 246. Rosner, D. E. (Aerochem Research Laboratories, Inc.), EFFECTS OF CON-VECTIVE DIFFUSION ON THE APPARENT KINETICS OF ZEROTH ORDER SURFACE-CATALYZED CHEMICAL REACTIONS. Chemical Engineering Science 21, 223-39 (1966); Revised ed., AFOSR 66-1804, U.S. Air Force Contract AF 49(638)-1130, August 1965, 19 pp. (AD 638704).
- 247. Rozergart, M. I., Gitis, K. M., Kazanskii, B. A., DEVELOPMENT OF AN ALUMUNA-CHROMIUM OXIDE-POTASSIUM OXIDE CATALYST IN THE DEHYDROCYCLIZATION OF PARAFFIN HYDROCARBONS. Neftekhimiya 4 (3), 406-12 (1964); C.A. 61, 8101 (1964).
- 248. Rozengart, M. I., Mortikov, E. S., Kazenskii, B. A., DEHYDROCYCLIZATION OF n-HEPTENES ON ALUMINUM-CHROMIUM-POTASSIC OXIDE CATALYSTS. Dokl. Akad. Nauk SSSR 158 (4), 911-4 (1964); C.A. 62, 2697 (1965).
- 249. Rozengart, M. I., Kuznetsova, Z. F., Gitis, K. M., ROLE OF POTASSIUM OXIDE IN THE ALUMINA-CHRCMIA CATALYST FOR AROMATIZATION OF HEPTANE. Neftekhimiya 5 (1), 17-23 (1965); C.A. 62, 12948 (1965).

- 250. Rubinshtein, I. A. and Sobolev, E. P., ANTIOXIDATION PROPERTIES OF ORGANO-SULFUR COMPOUNDS AND A CRITERION FOR THEIR EVALUATION. Khim. i Tekhnol. Topliv i Masel 10 (1), 45-9 (1965); C.A. 62, 11597 (1965).
- 251. Ruhnke, L. H., Will, E., Pederson, P., ELECTRO-HYDRODYNAMIC REMOVAL OF MICROURGANISMS FROM HYDROCARBON FUELS. Litton Systems, Inc., Applied Science Division Final Report 25 June 1963-20November 1965, Report No. ASD-2905, U.S. Army Contract DA-19-129-AMC-141(N), November 1965, 138 pp. (AD 630889).
- 252. Ryashentseva, M. A., Minachev, Kh. M., Atanaseva, Yu. A., (DEHYDROGENATION) OF CYCLOHEXANE IN THE PRESENCE OF ALUMINA-PALLADIUM CATALYSTS CONTAINING NEODYMIUM CXIDE. Neftekhimiya 2 (1), 41-3 (1962); C.A. 61, 2934 (1964).
- 253. Ryashentseva, M. A. and Minachev, Kh. M., CATALYTIC PROPERTIES OF RHENIUM CATALYSTS IN THE CONVERSION OF HYDROCARBONS AND THEIR MIXTURES. Renii, Akad. Nauk SSSR, Inst. Met., Tr. 2-go (Vtorogo) Vses. Soveshoh., Moscow 1962, 226-30 (Pub. 1964); C.A. 62, 11707 (1965).
- 254. Ryder, M. O., Jr., SKIN FRICTION, HEAT TRANSFER, AND PRESSURE MEASURE-MENTS ON HYPERSONIC INLET COMPRESSION SURFACES IN THE MACH NUMBER RANGE 7.5 to 16. Cornell Aeronautical Laboratory Inc. Final Report May 1964-December 1965, Report No. AA-1948-Y-3, AFFDL TR-65-199, U.S. Air Force Contract AF 33(615)-1845, December 1965, 93 pp. (AD 627798).
- 255. Sanlorenzo, E. and Kush, E. (General Applied Science Laboratories, Inc.), GROUND TESTING OF A MODEL INTEGRATED SCRAMUET ENGINE SYSTEM. Presented at the AIAA Propulsion Joint Specialist Meeting, Colorado Springs, Colorado, 14-18 June 1965; General Applied Science Laboratories Summary Technical Report No. GASL-TR-540, U.S. Air Force Contract AF 33(615)-2436, June 1965, 30 pp. (AD 370709) (REPORT CLASSIFIED CONFIDENTIAL).
- 256. Sate, T. and Matsumoto, R., RADIANT HEAT TRANSFER FROM LUMINOUS FLAME. Proc. Heat Transfer Conf., 1961-62, Univ. Coic. 1961 (and) London 1962, 801-11 (Pub. 1963): C.A. 61, 11633 (1904).
- 257. Sedgwick, T. A. and Rose, A., LACE/ACES HEAT EXCHANGER DESIGN AND TEST SITE PREPARATION. Marquerdt Corp. Final Report, U.S. Air Force Contract AF 33(657)-11754, May 1964, 35 pp. (AD 356417) (REPORT CLASSIFIED CONFIDENTIAL).
- 258. Seemann, V., SOME ASPECTS OF COMBUSTION KINETICS: ANALYTIC'L SURVEY. U.S. Library of Congress, Aerospace Technology Division Report No. 1 on ATD work assignment No. 68, Report No. ATD-65-100, TT66-60153, December 1965, 136 pp. (AD 625832).
- 259. Sergienko, S. R., Medredeva, V. D., Garbalinskii, V. A., SELECTIVITY OF CATALYSTS FOR DEHYDROGENATION OF PARAFFINIC HYDROCARBONS. Izv. Akad. Nauk. Turkm. SSR, Ser. Fiz.-Tekhn., Khim. i Geol. Nauk 1964 (3), 25-31; C.A. 61, 10516 (1964).

- 260. Schetz, J. A. and Jannone, J. (General Applied Science Laboratories), THE IGNITION OF FICWIPE HYPPOCARBON/AIR MIXTURES BY A HYDROGEN PILOT FIAME. Pyrodynamics 2, 1 44 (1965); AFOSR 64-2008, U.S. Air Force Contracts AF 49(638)-1503 and AF 49(638)-991, 1964, 14 pp. (AD 626243).
- 261. Schirmer, h. M. and Quigg, H. T., EFFECT OF JP FUEL COMPOSITION ON FLAME RADIATION AND HOT CORROSION. Phillips Petroleum Co. Summary Report 1 April 1964-31 March 1965, Report No. 4230-65R, U.S. Navy Contract NOw 64-0443d, October 1965, 122 pp. (AD 174003).
- 262. Schleicher, A. R., RAPID GELLING OF AIRCRAFT FUEL. Western Cc. of North America, Research Division Final Report. USA AVIABS TR-65-18, U.S. Army Contract DA-44-177-AMC-112(T), February 1966, 34 pp. (AD 629765).
- 263. Schribner, W. G., Warren, J. H., Zengel, A. E., Lander, H. R. (Wright-Patterson AFE), AN EXAMINATION OF METHODS FOR CALCULATING VAPOR PRESSURES OF PETROLEUM HYDROCARBONS. NASA Accession No. N64-19653 (AD 437285); C.A. 61, 15897 (1964).
- 264. Schuster, F., THE IGNITION VELOCITY OF GAS MIXTURES. Gas-Wasserfach 105 (35), 951-3 (1964); C.A. 61, 14427 (1964).
- 265. Scipioni, A. and Simioni, F. (University of Padua, Italy), ACTIVITY OF MOLYRDENUM CATALYSTS IN ARCMATIZATION PROCESSES. Atti Ist. Veneto Sci., Lettere Arti, Classe Sci. Mat. Nat. 121, 83-107 (1962-1963); C.A. 62, 7554 (1965).
- Shiba, T., Aonuma, T., Yoshida, K., Hattori, H., Sato, M., ACIDITY AND ACTIVITY OF SILICA-ALUMINA CATALYSTS. Shokubai (Tokyo) 6 (3), 176-81 (1964); C. A. 62, 8985 (1965).
- 267. Shimulis, V. I. and Zemanek, F., KINETICS OF THE DEHYDROGENATION OF CYCLOHEXENE ON A PALLADIUM FILM. I. LOCALIZED ADSCRPTION. Kinetika i Kataliz 5 (5), 898-902 (1964); C.A. 62, 2690 (1965).
- 268. Shopov, D. and Andreev, A., KINETICS OF CATALYTIC CRACKING OF TETRALIN. Compt. Rend. Acad.Bulgare Sci. 16 (6), 625-8 (1963) (in English); C.A. 61. 4999 (1964).
- 269. Shuikin, N. I., Hofman, Kh., Erivanskaya, L. A., DEHYDROGENATION OF 1-METHYLCYCLOPENTENE IN THE PRESENCE OF OXIDE CATALYSTS. Izv. Akad. Nauk SSSR, Ser. Khim. 1964 (5), 912-4; C.A. 61, 5525 (1964).
- 270. Shuikin, N. I., Naryshkina, T. I., Kashchupkins, Z. A., SUPPRESSION OF COKE FORMATION ON ALUMINA-POTASSIA CATALYST DURING THE DEHYDROCYCLIZATION OF PIPERYLENE INTO CYCLOPENTADIENE. Kinetika i Kataliz 5 (5), 950-2 (1964); C.A. 62, 456 (1965).

- 271. Singleton, A. H., Kinard, G., Schmauch, G. E., Waring, R. W., Jr., Impin, A., APPLICATION OF THE PARACRINO CONVERSION REACTION OF HYDROGEN TO ORBITAL SYSTEMS. Air Products and Chemicals, Inc. Final Report November 1962-February 1964, U.S. Air Force Contract AF 33(657)-10057, (AD 350-603) (REPORT CLASSIFIED SECRET). APL-TDR-64-43.
- 272. Skerchenko, V. K., Frolova, V. S., Golubchenko, I. T., Musienko, V. P., Galich, P. N., IRON CXIDE-ALUMINUM OXIDE CATALYSTS IN THE DEHYDROGENATION OF NORMAL ALKANES. Kinetika i Ketaliz 5 (5), 932-5 (1964); C.A. 62, 2647 (1965).
- 273. Skurchenko, V. K., THE SFLECTIVITY OF CATALYSTS FOR THE DEHYDROGENATION OF PARAFFIN HYDROCARBONS. Ne ftekhim., Akad. Nauk Ukr. SSR, Inst. Khim. Vysokomolekul. soedin. 1964, 5-12; C.A. 62 8906 (1965).
- 274. Skarchenko, V. K., Galich, P. N., Golubchenko, I. T., Frolova, V. S., Musienko, V. P., CHROMIUM-IRON-ALUMINUM OXIDES AS CATALYSTS OF THE DEHYDROGENATION OF n-HEXANE. Kinetika i Kataliz 5 (3), 548-9 (1964); C.A. 61, 8207 (1964).
- 275. Skarchenko, V. K., Galich, P. N., Musienko, V. P., Frelova, V. S., Golubchenko, I. T., CATALYTIC INFLUENCE OF IRON OXIDE ON THE DEHYDROGENATION REACTION OF n-HEXANE. Neftekhim., Akad. Nauk Turkm. SSR 1963, 76-8 C.A. 61, 15961 (1964).
- 276. Sklyar, V. T., Lebedev, E. V., Zakupra, V. A., DEHYDROCRACKING OF PARAFFIN HYDROCARBONS OVER OXIDE CATALYSTS. Nertekhimiya 4 (2), 209-14 (1964); C.A. 61, 2879 (1964).
- 277. Sklyar, V. T., Lebelev, E. V., Zakupra, V. A., DEHYDROCRACKING OF ALKANES ON SULFIDE CATALYSTS. Neftexhimiya 4 (2), 200-8 (1964); C.A. 61, 1678 (1964).
- 278. Snyder, A. D., Robertson, J., Zanders, D. L. and Skinner. G. B. (Monsanto Research Corp.), SHOCK TUBE STUDIES OF FUEL-AIR IGNITION CHARACTERISTICS", AFAPL-TR-65-93 August, 1965, Contract AF 33(615)-1317 44 pp.
- 279. Sokulik, A. S., SELF-IGNITION, FLAME AND DETONATION IN CASES. TRANSLATED FROM THE RUSSIAN. Jerusalem: Israel Program for Scientific Translations, 1963, 458 pp.; C.A. 61, 2512 (1964).
- 280. Southwest Research Institute, EVALUATION OF FUEL ADDITIVES CHUSING ENGINE MALPERFORMANCE. Summary Report. U.S. Army Contract DA-23-072-CRD-1766(X), November 1965, 9 pp. (AD 482170) (REPORT CLASSIFIED CONFIDENTIAL).
- 281. Starshov, I. M. and Syrmolaeva, G. P., THE CATALYTIC INFLUENCE OF METALS ON COKE FORMATION DURING THE PYROLISIS OF PROPANE. Nefteperorabotka i Neftekhim., Nauchn.-Tekhn. Sb. 1964 (2), 26-9; C.A. 61, 5429 (1964).

- 282. Sterligov, O. D. and Eliseev, N. A., DEHYDROGENATION OF ISOPENTANE ON ALUMINA-CHROMIA-POTASSIUM OXIDE CATALYSTS. EFFECT OF CHROMIA CONTENTS IN THE CATALYST. Neftekhimiya 5 (1), 10-16 (1965); C.A. 62, 12-953 (1965).
- 283. Sterman, L. S. and Mikhailov, V. D., INVESTIGATION OF CRITICAL HEAT FLUXES FOR SURFACE BOILING OF ORGANIC LIQUIDS IN TUBES. Insh.-Fiz. Zh., Akad. Nauk Berlorusak. SSR 7 (2), 10-14 (1964); C.A. 61, 317 (1964).
- 284. Samsonov, G. V., SOME PROBLEMS OF SURFACE ACTIVITY OF METAL AND NOMMETAL ALLOYS IN REGARD TO THEIR ELECTRONIC STRUCTURE. Poverkhn. Yavleniya v. Rasplavakh i Protsessakh Poroshkovoi Met., Akad. Nauk Ukr. SSR, Inst. Metallokeram. i Spets. Splavov 1963, 90-6; C.A. 61, 6727 (1964).
- 285. Surber, L. E., EFFECTS OF EXIT FLOW MONUNIFORMITY ON SCRAM AIR INDUCTION SYSTEM PERFORMANCE DETERMINATION. Air Force Flight Dynamics Laboratory, Wright-Patterson A.F.B. Technical Report No. AFFDL-TR-65-231, March 1966, 94 pp. (AD 372431L) (REFORT CLASSIFIED CONFIDENTIAL).
- 286. Tager, S. A. and Smirnov, A. S., CONSTRUCTING 1-THETA DIAGRAMS OF COMBUSTION PRODUCTS TAKING INTO ACCOUNT THE DISSOCIATION OF CO2 AND H2O. Teploenergetika (USSR) 1965, No. 5, p. 94; U.S. Air Force Translation No. FTD-TT-65-1457, March 1966, 5 pp. (AD 631 577).
- 287. Tamagno, J., Fructman, I., and Slutsky, S., SUPERSONIC COMBUSTION IN PREMIXED HYDROCARBON-AIR FLOW, GASL TR No. 602, Contract AF 49(638)-1503 AFOSR, 55 pp.; May 1966, AFOSR 66-0872.
- 288. Tamagno, J., Fruchtman, I., Slutsky, S., SUPERSONIC COMBUSTION IN PRE-MIXE HYDROCARBON-AIR FLOW. General Applied Science Laboratories Final Report No. tr-602, U.S. Air Force Contract AF 49(638)-1503, May 1956, 64 pp. (AD 633977).
- 289. Tamagno, J. and Trentacoste, N. (General Applied Science Laboratories, Inc.), IGNITION AND AXI-SYMMETRIC TURBULENT FLAME PROPAGATION IN HYDROGEN-AIR MIXTURES AT SUPERSONIC SPEEDS. 104 pp. (1964) (AD 604429); C.A. 62, 2661 (1965); U.S. Govt. Res. Rept. 39 (20), 41 (1964).
- 290. Tanatarov, M. A. and Levinter, M. E., MECHANISM OF COKE FORMATION. Khim. i Tekhnol. Topliv i Masel 10 (1), 29-32 (1965); C.A. 62, 11196 (1965).
- 291. Tarasenkova, E. M., Abarenkova, E. A., Manzol, F. A., Vagner, V. V., CATALYTIC CONVERSION OF HEPTANE ON MANGANESE OXIDES. Tr. Leningr. Inzh.-Ekon. Inst. No. 46, 96-102 (1964); C.A. 61, 8171 (1964).
- 292. Taylor, W. F. and Wallace, T. J., THE STUDY OF HYDROCARBON FUEL VAPOR PHASE DEPOSITS. Esso Research and Engineering Co. Quarterly Progress Report No. 1, 16 May-16 August 1966, U.S. Air Force Contract AF 33(615)-3575, August 1966, 27 pp. (AD 489416).

- 293. Tetenyi, P. (Inst. Isotopes, Budapest), KINETICS OF THE CATALYTIC DEHYDROGENATION OF HYDROAROMATIC COMPOUNDS. VII. ROLE OF THE DEHYDROGENATION OF CYCLOHEXANE IN THE KINETICS OF THE REACTION. Acta Chim. Acad. Sci. Hung. 40 (2), 157-66 (1964): C.A. 61, 9375 (1964).
- 294. Tetenyi, P., Babernice, L., Guczi, L., Schachter, K., EFFECT OF THE METHOD OF PREPARATION ON THE ADSORPTIVE AND CATALYTIC PROPERTIES OF Ni. I. Acta Chem. Acad. Sci. Hung. 40 (4), 387-9: (1964); C.A. 62, 3446 (1965).
- 295. Tetenyi, P., Schachter, K., Babernics, L., EFFECT OF THE METHOD OF PREPARATION ON THE ABSORPTIVE AND CATALYTIC PROPERTIES OF NICKEL. III. KINETICS OF THE DEHYDROGENATIONS OF CYCLOHEXANE. Acta Chim. Acad. Sci. Hung. 42 (3), 227-41 (1964) (Fng.); C.A. 62, 11655 (1965).
- 296. Tetenyi, P., Schachter, K., Holly, S. (Inst. Isotopes, Budupest), KINETICS OF THE CATALYTIC DEHYDROGENATION OF HYDROAROMATIC COMPOUNDS. VI. INVESTIGATION OF THE ADSORPTION OF METHYLCYCLOHEXANE ON NICKEL CATALYSTS BY A KILETIC METHOD. Acta Chim. Acad. Sci. Hung. 4C (2), 145-55 (1964); C.A. 61, 9375 (1964).
- 297. Thring, M. W., LUMINOUS RADIATION FROM FLAMES. Chemical and Process Engineering 46 No. 10 pp. 544-51, October 1965.
- 298. Thring, M. W., Foster, P. J., McGrath, I. A., Ashton, J. S., PREDICTION CF THE EMISSIVITY OF HYDROCARBON FLAMES. Proc. Heat Transfer Conf. 1961-62, Univ. Colorado 1961, (and) London 1962, 796-803 (Pub. 1963); C.A. 61, 11640 (1964).
- 299. Tong, L. S., BOILING HEAT TRANSFER AND TWO-PHASE FLOW, John Wiley and Sons, Inc. New York.
- 300. Townend, L. H. and Reid, J. (Royal Aircraft Establishment), SOME EFFECTS OF STABLE COMBUSTION IN WAKES FORMED IN A SUPERSONIC STREAM. Supersonic Flow, Chem Process. Radiative Transfer 137-55 (1964); C.A. 62, 6161.
- 301. Traver, R. H. and Porter, R. O., COMPARISON OF ADVANCED RAMJET ENGINES. U.S. Naval Ordnance Plant Technical Publication Report No. NOTS-TP-3766, NAVWEPS 8719, January 1965, 40 pp. (AD 375709L) (REPORT CLASSIFIED CONFIDENTIAL).
- 302. Treccani, V., MICROBIAL DECRADATION OF HYDROCARBONS. Progr. Ind. Microbiol. (D.J.D. Hockenhull, editor. Fordon and Breach, Sci. Publ., Inc. New Tork) 4, 1-33 (1964); C.A. 62, 5843 (1965).
- 303. Tung, S. E. and Mcinich, E. (Continental Oil Co.), HIGH-PURITY ALUMINA.

 I. THE NATURE OF ITS SURFACE ACID SITES AND ITS ACTIVITY IN SOME
 HYDROCARBON CONVERSION REACTIONS. J. Catalysis 3 (3), 229-38 (1964);
 C.A. 61, 3730 (1964).

- 304. Ulery, H. E. and Richards, J. H. (California Institute of Technology), THE ACID-CATALYZED CYCLIZATION OF ACYCLIC DIENES. J. Am. Chem. Soc. 36 (15), 3113-17 (1964); C.A. 61, 5879 (1964).
- 305. U.S. Air Force, THERMOPHYSICAL PROPERTIES OF CERTAIN AVIATION FUELS IN THE LIQUID AND GASEOUS STATE, FTD-TT-61-81/1+2, 3 April 1962, 201 pp. (English) (AD 274118).
- 306. Uselton, B. L., DYWAMIC STABILITY TENTS ON THE SNAP-27 FURL CASK CONFIGURATION AT PACH NUMBERS 6 and 10. Arnold Engineering Development Center, Arnold Air Force Station Technical Report No. AFDC-TR-66-154 prepared in cooperation with ARO, Inc., U.S. Air Force Contract of 20(600)-1200, August 1966, 11 pp. (AD 487030).
- 307. User, Yu. N., Kuvshinova, N. I., Shestova, L. S., KINETICS OF DEHYDRO-CYCLIZATION OF n-HEPTANE AND n-OCTANE CM AN Algos-Pt CATALYST. Leftekhimiya 4 (5), 700-6 (1964); C.A. 62, 3899 (1965).
- JOB. Van Tiggelen, A., THEORETICAL AND EXPERIMENTAL STUDY OF REACTION KINETICS IN FLAMES. Louvain University, Belgium, Fine Technical Report, AFOSR 65-2240, U.S. Air Porce European Office of Air Research Contract AF-ROAR-42-63, October 1965, 16 pp. (AD 628144).
- Venkatachalam, K. A., Panchenkov, G. M., Zhorov, Yu. M., THE STABILITY OF AN ALUMINUM-CHROMIUM-POTASSIUM CATALYST IN THE DEHYDROCYCLIZATION OF PARAFFIN HYDROCARBONS. Tr., Mosk. Inst. Neftekhim. i Gaz. Prom. No. 51, 136-41 (1964); C.A. 62, 14399 (1965).
- 310. Voevodskii, V. V., INHIBITION OF PARAFFIN CRACKING IN THE GAS PHASE. Kinetika i Kataliz 5 (4), 603-8 (1964); C.A. 62, 2647 (1965).
- Vorcgushin, V. T., SELECTION OF THE OPTIMUM PARAMETERS OF A SUPERSONIC RANDET ENGINE WITH A HEAT EXCHANGER. Izv. VUZ Aviats. Tekh. (4), 75-81, 1961, U.S.S.R.
- 712. Vorogushin, V. T., SELECTION OF THE OPTIMUM PARAMETERS OF A SUPERSONIC RAMJET ENGINE WITH A HEAT EXCHANGER. Izv. Vyssh. Uchenb. Zaved. Ser. Aviats. Tekh. 1961, No. 4, 75-81 (Great Britain Ministry of Aviation Translation MINISTIL-T5396) (AD h41158).
- 313. Vybihal, J., PRODUCTION OF BENZENE BY CATALYTIC AROMATIZATION OF GASOLINE. Sb. Praci Vyzhomu Chem. Vyuziti Uhli, Dehtu Ropy No. 3, 54-51 (1964); C.A. 62, 7556 (1965).
- 314. Walker, J. H., RAMJET TECHNOLOGY. CHAPTER 10. PRELIMINARY DESIGN FOR SUPERSONIC FLIGHT. Johns Hopkins University, Applied Physics Laboratory Technical Memo, Report No. TG-610-10, U.S. Navy Contract NOw-62-0604-c, February 1966, 100 pp. (AD 630 827).

- 315. Wallace, T. J. (Esso Research and Engineering Co.), CHEMISTRY OF FUEL INSTABILITY. Advan. Petrol. Chem. Refining 2, 353-407 (1964), C.A. 62, 387; (1965).
- 316. Wellace, J. and Priedman, N., FUNDAMINIAL INVESTIGATION OF THE CATALYTIC DEGRADATION OF HYPROCARBON FUELS. Process Research Division, Esso Research and Engineering Co. Quarterly Progress Report No. PoRD. 3M. 65, U.S. Army Contract DA-10-035-AMU-330A, May 196, 31 pp (AD 164454).
- DIT. Vallace, T. J. and Friedman, F., FUNDAMENTAL INVESTIGATION OF THE DEGRAPATION OF HYDROCARBON FUNS. Esso Research and Engineering Co. Quarterly Progress Report No. 2, Report No. PoRD. SM. 55, U.S. Army Contract DA-18-035AMC-330A, August 1965, 41 pp. (AD 168552).
- 318. Wallace, T. J., Vogchfenjer, E., Friedman, N., FUNDAMENTAL INVESTIGATION OF THE DEGRADATION OF HYDROGARBON FUELS. Esso Research and Engineering Co. Quarterly Progress Report No. 3, 16 August-16 November 1965, Report No. PCRD.7M.65, U.S. Army Contract DA-18 035-AMC-330(A), November 1965, 87 pp. (AD 47-53).
- 519. Wallace, T. J., Friedman, N., Vogrifanger, T., Weiss, H. A., FUNDAMENTAL INVESTIGATION OF THE DEBRADATION OF HYPROCAFION FUELS. Process Research Division, Esso Research and Engineering Co. Progress Report No. 4 (Final) February 1965-June 1966, Report N. Pard-3M-666R, U.S. Army Contract DA-16-035-AMM-330(A), July 1966, 315 pp. (AD 373805) (REPORT CLASSIFIED CONFIDENTIAL).
- 320. Watton, A., RECENT STUDIES OF AIR-BREATHING LAUNCH VEHICLES AND THEIR FROPULSION IMPLICATIONS. Systems Engineering Group, Research and Technology Division, Wright-Patterson A.F.B. Technical Report No. SFU-TN-65-65, February 1966, 48 pp. (AD 372217) (REPORT CLASSIFIED SECRET).
- 321. Weiss, M. A. and Morganthaler, J. H., RAMJET TECHNOLOGY. CHAPTER 3. AIR-FUEL MIXTURE PREJAMATION. Johns Hopkins University Technical Memo, Report No. TG-610-8, U.S. Navy Contract NOw-62-0608-c, January 1966, 91 pp. (AD 630828).
- 322. We st, E., AN INVESTIGATION OF CARBON DEPOSITION. Washington University Dept. of Chemical Engineering Progress Report No. 3, 1 November 6, 31 January 66, U.S. in Force Contract AF Ok(694)-695, February 1966, 3 pp. (AD 627813).
- 723. Whismen, M. L. and Wird. C. (), STORAGE STABLLIME OF HIGH TEMPERATURE FUELC. U.S. Sureau of lines Report for February 1965-February 1966, AFAPL TR-65-13-P 1, W. Air Fonce Contract AF 33(615)-64-1009, February 1966, 185 pg = 2 6507-33).
- 324. White D. R. (General Flectric Research Lab.), DENSITY INDUCTION FIMES BEHIND SHOCK WAVES IN VERY LEAF MIXTURES OF De, He, CeHe, AND CeH4 WITH Oz, ARL 55-274, December 1965; 26 pp. Contract AF 33(657)-7945; also presented at 11th Intl. Symposium on Combistion, August 1966.

- 325. White, D. R., A STUDY OF SHOCK WAVE INDUCED REACTIONS. U. S. Air Force, Office of Aerospace Research, ARL 66-0177, September 1966, 37 pp.
- 326. Williams, F. A., COMBUSTION THEORY; THE FUNDAMENTAL THEORY OF CHEMICALLY REACTING FLOW SYSTEMS. (Addison-Wesley, Series in Engineering Science). Reading, Massachusetts, Addison-Wesley, 1965, 477 pp.; C.A. 62, 8695 (1965).
- 327. Wilson, D. M. and Fisher, P. D., EFFECT OF A HIGHLY COOLED WALL ON HYPERSONIC TURBULENT HEAT TRANSFER. U.S. Naval Ordnance Laboratory Report No. NOL TR-65-153, Aerolynamics Research 250, June 1266, 49 pp. (AD 638232)
- 328. Wilson, G. R., Smith, J. O., Martin, H. F., Klein, I., Harrington, E. C., EFFECTS OF SELECTED STRAINS OF MICHOGRANISMS ON THE COMPOSITION OF FLELS AND LUBRICANTS. Monsanto Research Corp. Final Report, 1 September 1962-27 November 1964, Report No. NRB-2023F, RTD TDR-63-4117-Pt. 2, U.S. Air Force Contract AF 33(657)-9814, January 1966, 154 pp. (AD 628673).
- 379. Wilson, W. E., Jr. and Berl, W. G., RAMJET TECHNOLOGY. CHAPTER 6. FUELS. Johns Hopkins University, Applied Physics Laboratory Technical Memo, Report No. Tr-610-6, U.S. Navy Contract NOw-62-0604-c, July 1965, 64 pp. (AD 6316'3).
- 330. Wirts, R. and Pechtold, N., THE BEHAVIOR OF HYDROCARBONS IN HIGH-TEMPERATURE PROLYSIS. Erdoel Kohle 15, 977-82 (1962); C.A. 61, 10512 (1964); C.Z. 1964 (12), Abstr. No. 2182.
- 331. Worley, W. E., RAMJET TECHNOLOGY. CHAPTER 7. FUEL SYSTEMS. Johns Hopkins University in Cooperation with Bendix Mishawaka Division, Bendix Corporation Technical M.mo, Report No. TG-610-7, U.S. Navy Contract NOw-62-06 4-c, March 1966, 155 pp. (AD 630330).
- 332. Yantovskii, S. A., TWO-STAGE COMBUSTION OF EXPLCIPE MIXTURES. II. RATES OF THE FIRST AND SECOND STAGES OF IGNITION OF n-HEPTANE-AIR MIXTURES AT PRESSURES ABOVE ONE ATMOSPHERE. Kinetika i Kataliz 5 (3), 399-406 (1964) C.A. 61, 8121.
- 333. Zhabrova, G. M., Kazanskii, V. B., Vladimirova, V. I., Kadenstsi, B. M., Parliskii, G. B., R'DIATICH-CATALITIC CONVERSIONS OF CYCLOHEKANE. Neftekhimiye 4 (5), 755-62 (1904); C.A. 52, 3564 (1965).
- 33%. Zhemov, A. K., Yholdgahov, E. I., Fedina, V. V., Eutyupin, S. M., DENYDROCYCLIFATION OF A LOW-COTANG PHACTION OF KOROSKOV PETROLIUM ON AN ALUMINA-CHROMIA CATALTOT LOW IN CHROMIOM CATAL. Izv. Vyeshiku Uchebu. Zavedonii Neft i usp. (1911), 51-4 (1914), 6,4, 62, 890k (1965).
- 335. Zhorov, Yu. M., : anchenmov, J. M., Nuznetsov. O. 1., Bezilovich, V. V., THE STRUCTURE of CLEFFING TORNED OF CATALYTIC TRANSPORMATION OF 1-HEWA-DECAN . Tr., cosk. Inst. Neftekhir : Gaz. Prom. No. 51, 346-53 (1964); C.A., 14474 (1965).

AFAFL TR-67-114 Fert 1

- 336. Zimmerman, C. C. and York, R. (Cornell University), THERMAL DEMETHYLATION OF TOLUENE. Ind. F g. Chem., Process Design Develop. 3 (3), 254-8 (1964); C.A. 61, 1730 (1964).
- 337. Zrelov, U. N. and Rybakov, K. V., THAT THE FUEL BE PURE. Vestrik Pr tivo-vosdushnoi Oborony (USGR) 1966, No. 1, 83-4; Institute of Mode. 1 Languages Tran lation, AERDLT-1843-66, TT 61378, U.S. Army Contract DA-14-CO9-AMC- 563(T), May 1966, 7 pp. (AD 633413).

SUBJECT INDEX YOR BIBLIOGRAPHY

Supersonic Aircraft

13, 16, 75, 26, 27, 28, 29, 30, 31, 32, 33, 36, 38, 44, 51, 71, 85, 86, 87, 88, 89, 90, 91, 95, 105, 135, 154, 213, 234, 241, 243, 254, 366, 320

Vaporizing and Endothermic Fuels 129, 130, 139, 216, 217, 218, 219, 220

Therma Reaction. 43, 82, 98, 99, 100, 148, 175, 224, 235, 242, 281, 290, 308, 322, 330, 336

Catelycis and Catalytic Reactions

1, 2, 4, 5, 7, 12, 19, 20, 21, 24, 49, 50, 52, 77, 96, 113, 116, 126, 137, 140, 142, 146, 147, 150, 155, 157, 159, 160, 161, 162, 164, 169, 171, 172, 173, 174, 181, 182, 185, 186, 195, 196, 197, 201, 203, 204, 208, 209, 210, 211, 214, 225, 226, 227, 128, 233, 242, 244, 246, 247, 248, 249, 252, 253, 259, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 281, 282, 283, 284, 290, 291, 293, 294, 295, 296, 302, 303, 304, 307, 309, 310, 313, 333, 334, 335

High Temperature Stability
22, 23, 34, 39, 240, 250, 292, 315, 316, 317, 318, 319, 323

Fuel Contaminants

15, 39, 42, 45, 47, 69, 92, 95, 109, 114, 144, 145, 153, 158, 181, 194, 202, 221, 251, 230, 302, 337

Fuel Additives
34, 39, 95, 127, 156, 180, 199, 200

Combustion Characteristics

18, 46, 47, 48, 53, 60, 61, 66, 67, 63, 78, 79, 0, 83, 97, 104, 110, 112, 150, 131, 135, 149, 163, 16), 106, 170, 176, 177, 179, 187, 190, 205, 212, 231, 232, 238, 256, 257, 260, 261, 264, 278, 279, 286, 287, 288, 289, 297, 298, 300, 308, 322, 324, 325, 326, 328, 332

Physical and Chemical Properties 8, 9, 10, 11, 151, 207, 262, 263, 305

Heat Transfer and Flow Behavior

5, 14, 17, 18, 35, 38, 41, 57, 70, 73, 81, 94, 101, 117, 132, 133, 136, 141, 143, 173, 183, 184, 189, 198, 213, 215, 229, 230, 239, 245, 254, 285, 299, 311, 312, 327

Advanced Engines

3, 16, 40, 54, 55, 56, 58, 59, 62, 63, 64, 65, 66, 67, 68, 72, 74, 75, 76, 84, 93, 102, 103, 106, 107, 108, 111, 115, 118, 119, 120, 121, 122, 123, 124, 125, 128, 152, 133, 134, 149, 152, 167, 166, 187, 190, 191, 192, 193, 206, 222, 223, 256, 237, 255, 285, 301, 311, 312, 314, 321, 329, 331