Started on	Monday, 27 January 2020, 8:57 PM
State	Finished
Completed on	Monday, 27 January 2020, 9:18 PM
Time taken	20 mins 44 secs
Marks	10.00/10.00
Grade	100.00 out of 100.00

Question 1

Correct

Mark 1.00 out of 1.00

Pipelining improves CPU performance by

Select one:

- a. increasing CPU frequency
- b. decreasing latency of individual operations
- c. increasing bandwidth
- d. decreasing memory access

The correct answer is: increasing bandwidth

Question 2

Correct

Mark 1.00 out of 1.00

Single Instruction, Multiple Data (SIMD) instructions work on

Select one:

- a. any memory locations
- b. only for memory locations in same array
- 🏿 c. contiguous, cache aligned data 🧹
- d. contiguous, randomly aligned data

The correct answer is: contiguous, cache aligned data

Correct Mark 1.00 out of 1.00	The computational intensity in a sequential computer with a two-fever well of the first slow. The first slow is defined as Select one: a. the number of slow memory accesses multiplied by the time per memory access b. the number of arithmetic operations multiplied by the time per flop c. the number of flops divided by the number of slow memory accesses d. the number of slow memory accesses divided by the number of flops
	The correct answer is: the number of flops divided by the number of slow memory accesses
Question 4 Correct	The computational intensity of a program is dependent upon Select one:
Mark 1.00 out of 1.00	a. the memory hierarchy
1.00	b. the CPU flop rate
	c. the memory bandwidth
	■ d. the algorithm for a problem
	The correct answer is: the algorithm for a problem
Question 5 Correct	Which of the following is not an assumption of the performance model for Naive Matrix Multiplication?
Mark 1.00 out of	Select one:
1.00	a. cost of accessing fast memory is 0
	b. ignoring parallelism between memory and arithmetic operations
	$lacksquare$ c. arithmetic operations and memory operations have same time \checkmark
	d. memory latency is constant
	The correct answer is: arithmetic enerations and memory enerations have some time
	The correct answer is: arithmetic operations and memory operations have same time

Correct	The potential computational intensity for mathx hiddiply fuse by considering size of the the put and outputs is
Mark 1.00 out of 1.00	Select one: a. 2 b. n^2 c. 1 d. n d. n
	The correct answer is: n
Question 7 Correct	The computational intensity of naïve matrix multiply for a large n is: Select one:
Mark 1.00 out of 1.00	a. 1/2 b. n
	c. 1d. 2 ✓
	The correct answer is: 2
Question 8 Correct Mark 1.00 out of 1.00	In the blocked Matrix Multiply algorithm the constraint on the upper size of the block size is Select one: a. none (it can be as large as needed) b. b must be smaller than a constant times the memory size M c. b must be smaller than a constant times the cube root of the memory size M d. b must be smaller than a constant times the square root of the memory size M
	The correct answer is: b must be smaller than a constant times the square root of the memory size M

Quizuestion 9 Correct Mark 1.00 out of 1.00	What is temporal locality? Select one: a. Multiple processors trying to write to adjacent items that fall into the same cache line b. Reusing the same item that was recently accessed c. Accessing unrelated elements that accidentally fall into the same cache line due to a cache conflict d. Accessing items that are nearby recently accessed elements
	Your answer is correct. The correct answer is: Reusing the same item that was recently accessed
Question 10 Correct Mark 1.00 out of 1.00	What is spatial locality? Select one: a. Accessing unrelated elements that accidentally fall into the same cache line due to a cache conflict b. Accessing items that are nearby recently accessed elements c. Multiple processors trying to write to adjacent items that fall into the same cache line d. Reusing the same item that was recently accessed
	Your answer is correct. The correct answer is: Accessing items that are nearby recently accessed elements
↓ Lecture Video: Machines	Single Processor Jump to Lecture Video: Optimizing Matrix Multiply (cont), Introduction to Data Parallelism ▶