AI1110 - Assignment 1

Kushagra Gupta CS21BTECH1103

ICSE 2018 Grade 10

Q10-c

Problem Statement

The angle of elevation from a point P of the top of a tower QR, 50m high is 60° and that of the tower PT from a point Q is 30° . Find the height of tower PT, correct to the nearest metre.

Solution

Parameter	Symbol	Value
QR	h	50
Angle QPR	$\angle QPR$	60°
Angle PQT	$\angle PQT$	30°
Base PQ	d	???
PT	h2	???

In Δ PQR, using basic trigonometric equation in a right-angled triangle, we know that,

$$\tan(\theta) = \frac{perpendicular}{base} \qquad (1)$$

Hence,

$$\tan(\angle QPR) = \frac{h}{d}$$

$$\Rightarrow d = \frac{h}{\tan(\angle QPR)}$$

$$\Rightarrow d = \frac{50}{\tan(60^{\circ})} m$$

$$[\because \angle QPR = 60^{\circ} \& h = 50m]$$

$$\Rightarrow d = \frac{50}{\sqrt{3}} m - (1)$$

Now in ΔPQT , $\angle PQT = 30^{\circ}$.

 $h_2(PT) \approx 17$ metres after rounding off.

This can be verified by plotting QR , $\angle RPQ$ and $\angle PQT$ and approximating the length of PT.

Output

The Output of the program used to verify the answer is given below:

Figure 1: Plot of the figure and calculated length