Problem L. Low Cost Set

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 1024 mebibytes

Consider an integer sequence c of length 2k-1. Also consider k intervals $[\ell_i, r_i)$. Here, ℓ_i and r_i satisfy $\ell_i < r_i$, and each integer between 1 and 2k appears exactly once as an end of an interval.

Given this sequence, create a set s of intervals. Each interval $[\ell, r)$ in the set must satisfy $1 \le \ell < r \le 2k$. Additionally, for all i = 1, 2, ..., k, the set s has to satisfy at least one of the two following conditions:

- $[\ell_i, r_i) \in s$,
- there exists an integer x ($\ell_i < x < r_i$) such that $[\ell_i, x) \in s$ and $[x, r_i) \in s$.

The cost of the set s is defined as the sum of $c_{\ell} + c_{\ell+1} + \ldots + c_{r-1}$ for all intervals $[\ell, r)$ included in s. Find the minimum cost of a set that satisfies all the conditions.

Input

The first line of input contains an integer k: the number of intervals $(1 \le k \le 100)$.

The *i*-th of the following k lines contains two integers ℓ_i and r_i : the left (included) and the right (excluded) end of the *i*-th interval $(1 \le \ell_i < r_i \le 2k$, each integer between 1 and 2k can be found in those k lines exactly once).

The last line contains 2k-1 integers: the sequence c_i $(1 \le c_i \le 10^9)$.

Output

Print the minimum cost of the set that satisfies the condition.

Examples

standard input	$standard\ output$
3	27
1 4	
2 6	
3 5	
1 2 3 5 8	
5	82
3 10	
1 5	
7 8	
4 9	
2 6	
9 9 8 2 4 4 3 5 3	