1 BIAS-VARIANCE TRADEOFF

$$\begin{split} \mathbf{E}(\theta - \widehat{\theta})^2 &= \mathbf{E}(\theta - \mathbb{E}\widehat{\theta} + \mathbb{E}\widehat{\theta} - \widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2\mathbf{E}\{(\theta - \mathbb{E}\widehat{\theta})(\widehat{\theta} - \mathbb{E}\widehat{\theta})\} + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2(\theta - \mathbb{E}\widehat{\theta})\mathbf{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta}) + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbf{E}(\partial - \mathbb{E}\widehat{\theta})^2 + \mathbf{E}(\partial - \mathbb{E}\widehat{\theta})^2 \end{split}$$

2 Cross Validation

Iteration								
Obs	1	2	3	4		n		
1	valid	train	train	train		train		
2	train	valid	train	train		train		
3	train	train	valid	train		train		
4	train	train	train	valid		train		
n	train	train				valid		
MSE	MSE₁	MSE ₂	MSE ₃	MSE₄		MSE		

LOOCV test error: $CV_{(n)} = \frac{1}{n} \sum_{i} MSE_{i}$

Iteration									
Obs	1	2	3	4		k			
1	valid	train	train	train		train)			
2	valid	train	train	train		train > fold 1			
3	valid	train	train	train		train)			
4	train	valid	train	train		train			
<i>n</i> − 2	train	train				valid)			
<i>n</i> − 1	train	train				valid \rangle fold k			
n	train	train				valid)			
MSE	MSE₁	MSE ₂	MSE ₃	MSE ₄		$\overline{MSE_k}$			

K-Fold: $CV_{(k)}=\sum_b \frac{n_b}{n} MSE_b$ where n_b is the total observations in the b-th fold, and n is the total observations in the entire dataset. Suppose the

fitted values can be written $\hat{Y} = HY$. The leave-one-out-cross-validation error is

$$R_{LOOCV} = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_{(-i)} \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{Y}_i}{1 - H_{ii}} \right)^2$$

where H_{ii} is the i-th diagonal entry. This is the case for least squares and regularized multiple regression:

$$H = X \left(X^T X \right)^{-1} X^T \text{ or } H = X \left(X^T X + \lambda I \right)^{-1} X^T$$

3 TREE

Tree Build: (1) Cycle through predictors X_k for $k=1,\ldots,p$. For each X_k :

- (Quantitative X_k) Consider cutpoints s (unique values of X_k) that divide up the region into two parts:

$$R_1(k,s) = \{i \mid X_{ik} < s\}$$
 and $R_2(k,s) = \{i \mid X_{ik} \ge s\}$

- Evaluate (for regression trees):

$$Q_k(s) = \sum_{i:i \in R_1(k,s)} (y_i - \bar{y}_{R_1})^2 + \sum_{i:i \in R_2(k,s)} (y_i - \bar{y}_{R_2})^2$$

Find the value of s that minimizes $Q_k(s)$. Call this s_k .

(2) Find the predictor X_k with the minimum $Q_1(s_1), Q_2(s_2), \ldots, Q_p(s_p)$. Make the first binary partition along predictor X_k at cut point s_k . Cost-complexity pruning:

$$C(T) = \sum_{m=1}^{|T|} \sum_{i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

 $\alpha=0$ implies the full tree, Larger α implies higher penalty for complexity of model. With increasing α :

(1) Grow a big tree on a training set. (2) Obtain a nested set of subtrees $T_L \subset \cdots \subset T_2 \subset T_1 \subset T$ corresponding to a sequence of α values. (3)

Use K -fold cross-validation to identify the subtree that does best.

Classification Tree Impurity measures: Define node proportion of class k:
$$\widehat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I\left(y_i = k\right)$$
 and $k(m) = \arg\max_k \widehat{p}_{mk}$

- Misclassification error: $1-\widehat{p}_{mk(m)}$

- Gini index:
$$\sum_{k=1}^{K} \widehat{p}_{mk} \left(1 - \widehat{p}_{mk}\right)$$

- Entropy:
$$-\sum_{k=1}^K \widehat{p}_{mk} \log \widehat{p}_{mk}$$

Bagging

Regression trees: Create B bootstrap samples, grow tree (without pruning) using each \widehat{f}^{*1} , \widehat{f}^{*2} , ... \widehat{f}^{*B} . For prediction at x , we take an average:

$$\widehat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}^{*b}(x)$$

Classification trees: $\widehat{f}_{\text{bag}}(x)$ is decided by majority vote.

OOB Estimation: For each bagged tree, we can make predictions for the OOB observations. At the end, we can aggregate over all predictions for the i-th observation to arrive at a OOB prediction \widehat{y}_i . We can compute prediction error based on these OOB predictions $\widehat{y}_1,\ldots,\widehat{y}_n$.

Random Forests:

- (1) For b=1 to B:
 - (a) Draw a bootstrap sample Z^* of size n from the training data
- (b) Grow a random-forest tree T_b to the bootstrapped data, recursively repeating following steps, until minimum node size reached: i. Select m variables at random from the p variables ii. Pick the best variable/split-point among the m iii. Split the node into two children nodes

(2) Output the ensemble fo trees $\{T_b\}_{b=1}^B$. To make a prediction at a new

Regression: Average $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{i=1}^B T_b(x)$

Classification: Majority vote of the individual trees

4 PCA

Algorithm (1) Center the data: $x_i \mapsto x_i - \frac{1}{n} \sum_{i=1}^n x_j = x_i - \bar{x}$ (2) Compute

the $d \times d$ sample covariance $S = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$. Note that $\frac{1}{n} \sum_i \left(x_{ij} - \bar{x} \right)^2$

is the sample variance of j th coordinate of data.(3) Find the first k eigenvectors of S $,\phi_1,\ldots,\phi_k\in {\hbox{\bf R}}^d,\quad S\phi_j\ =\ \lambda_j\phi_j$ (4) Project the data onto those k vectors: $x_i \mapsto \bar{x} + \left(\phi_1^T x_i\right) \phi_1 + \ldots + \left(\phi_k^T x_i\right) \phi_k$

PCA is an unsupervised method

- Finds directions of greatest variation in the data
- The directions are called the principal vectors; the weightings on the vectors are called the principal components
- The first few vectors may be interpretable
- Orthogonality makes interpretation difficult for the higher components
- Can be used for visualization or dimensionality reduction
- Prediction: accurately predict Y for new observations
- Inference: explain the underlying relationship between Y and X

- linear regression: Fitting a straight line through the data
- knn: k-nearest neighbors regression. Average together the yi for xi close to x
- $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{f}(x_i))^2$
- overfitting: A method is overfitting the data when it has a small training MSE but a large test MSE
- The least squares approach selects coefficients β0 and β1 that minimize the residual sum of squares $\widehat{\beta} = (X^T X)^{-1} X^T y.$

$$\hat{y_i} = \hat{a} + \hat{b}x_i$$

$$ar{y}=\hat{a}+\hat{b}ar{x}$$

$$\sum_{i=1}^{n} (x_i -$$

$$\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\underbrace{\sum (y_i - \bar{y})^2}_{\text{total sum of squares}(\mathit{TSS})} = \underbrace{\sum (\hat{y}_i - \bar{y})^2}_{\text{explained sum of squares}(\mathit{ESS})} + \underbrace{\sum (y_i - \hat{y}_i)^2}_{\text{residual sum of squares}(\mathit{RSS})}$$

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

Binary classifier h: function from \mathcal{X} to $\{0,1\}$.

Linear if exists a function $H(x) = \beta_0 + \beta^T x$ such that h(x) = 1 if H(x) > 0; 0 otherwise.

H(x) also called a *linear discriminant function*. Decision boundary: $\operatorname{set}\left\{x\in\mathbb{R}^d\ :\ H(x)=0\right\}$

Classification risk, or error rate, of h

$$R(h) = \mathbb{P}(Y \neq h(X))$$

and the empirical classification error or training error is

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} I$$

Theorem. The rule h that minimizes R(h) is

$$h^*(x) = \begin{cases} 1 & \text{if } m(x) > \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

where $m(x) = \mathbb{E}(Y | X = x) = \mathbb{P}(Y = 1 | X = x)$ denotes the regression function

The rule h^* is called the Bayes rule. The risk $R^* = R(h^*)$ of the Bayes rule is called the *Bayes risk*. The set $\{x \in \mathcal{X} : m(x) = 1/2\}$ is called the Baves decision boundary.

From Bayes' theorem

$$\begin{split} \mathbb{P}(Y = 1 \,|\, X = x) &= \frac{p(x \,|\, Y = 1)\mathbb{P}(Y = 1)}{p(x \,|\, Y = 1)\mathbb{P}(Y = 1) + p(x \,|\, Y = 0)\mathbb{P}(Y = 0)} \\ &= \frac{\pi_1 p_1(x)}{\pi_1 p_1(x) + (1 - \pi_1)p_0(x)}. \end{split}$$

$$m(x) > \frac{1}{2}$$
 is equivalent to $\frac{p_1(x)}{p_0(x)} > \frac{1 - \pi_1}{\pi_1}$

Thus the Bayes rule can be rewritten as

logistic regression

$$logit(\widehat{p}(x)) = \widehat{\beta}_0 + \widehat{\beta}_1 x$$

decision boundary is given by $\{x : x^T \widehat{\beta} = 0\}$.

$$L_i(\beta) = p_i^{y_i} \cdot (1 - p_i)^{1 - y_i} = \left(\frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}}\right)^{y_i} \cdot \left(1 - \frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}}\right)^{1 - y_i}$$

 $h^*(x) = \begin{cases} 1 & \text{if } \frac{p_1(x)}{p_0(x)} > \frac{1 - \pi_1}{\pi_1} \\ 0 & \text{otherwise} \end{cases}$

$$\begin{split} \ell_i(\beta) &= y_i \log \left(\frac{e^{x_i^T \beta}}{1 + e^{x_i^T \beta}} \right) + (1 - y_i) \log \left(\frac{1}{1 + e^{x_i^T \beta}} \right) \\ &= y_i x_i^T \beta - \log(1 + e^{x_i^T \beta}) \end{split}$$

$$\ell(\beta) = \sum \left(y_i x_i^T \beta - \log(1 + e^{x_i^T \beta}) \right)$$

$$\widehat{\beta} = \underset{\alpha}{\operatorname{arg\,min}} (y - \beta)^2 + \lambda \beta^2$$

Solution: $\hat{\beta}=\frac{y}{1+\lambda}$. As λ gets large, $\hat{\beta}$ shrinks to zero • requalitzation • 2 classifiers

- Generative models model both the input X and the output Y, estimate the joint distribution by maximizing the joint likelihood.

$$X \mid y = 0 \sim N(-1, \sigma^2)$$
 $X \mid y = 1 \sim N(1, \sigma^2)$ $X \mid y = 2 \sim N(2, \sigma^2)$

- Read data item x
- ② Make a prediction $\hat{y}(x)$
- Observe the true response/label y
- ① Update the parameters β so \hat{y} is closer to \hat{y}
- For each parameter β_j , see what happens to the loss if that parameter is increased a little bit.
- If the loss goes down (up), then increase (decrease) β_i
- Do this simultaneously for all of the parameters

Rinse and repeat y = iris.target

lr_error_rate = []
trials = 100

$$L(\beta + \eta \mathbf{v}) \approx L(\beta) + \eta \mathbf{v}^{\mathsf{T}} \nabla L(\beta) \Big|$$

$$L(\beta - \eta \nabla L(\beta)) \approx L(\beta) - \eta \|\nabla L(\beta)\|^{2}$$

 $\beta \longleftarrow \beta - \eta \nabla_{\beta} L(y, \beta^T x)$ (vector notation)

sad for linear regression

Change β_j by a little bit:

$$\beta_j \to \beta_j + \varepsilon$$

What happens to the squared error?

$$\approx (y-y)^2 + \underbrace{-2(y-y)x_j}_{\text{derivative of loss}}$$

Use adjustment

$$\beta_j \to \beta_j - \eta \cdot \text{derivative of loss}$$

$$= \beta_j + \eta \cdot 2(y - \widehat{y})x_j$$

Squared error then decreases:

$$(y-\widehat{y})^2 \approx (y-\widehat{y})^2 - 4\eta(y-\widehat{y})^2 x_j^2$$
 (X@beta + intercept - y) # line

dintercept = np.sum(X@beta + intercept - y) # 1

beta = beta - step_size * dbeta intercept = intercept - step_size * dintercept

sgd for logistic regression

$$\beta_j \longleftarrow \beta_j + \eta(y - p(x))x_j$$

$$\beta_j x_j \longleftarrow \beta_j x_j + \eta (y - p(x)) x_j^2$$

$$p(x) = \frac{1}{1 + \exp(-\beta^T x)}$$

Ir. 1/t : decreasing Ir

Linear Regression

form an array with 1, x, x^2

```
X = sm.add_constant(x_week)
model = sm.OLS(y_week, X)
result = model.fit()
beta = [result.params[0], result.params[1]]
```

x_week = x[is_weekday]
y_week = y[is_weekday] X = np.array([np.ones(len(x_week)), x_week, x_week**2])
X = X.T # fit a linear model
model = sm.0LS(y_week, X)
result = model.fit()
beta = [result.params[0], result.params[1], result.params[2]]

plot the result week_dates = dates[is_weekday]

week_dates = dates[15_weekday]
plt.scatter(dates, y, alpha=.5)
plt.plot(x, beta[0] + beta[1]*x + beta[2]*x**2, color='red', linewidth=2)
_ = plt.xticks(dates[[0, 40, 80, 120, len(dates)-1]], rotation=90)

train_percent = np.linspace(.1,.9,num=9) for p in tqdm(train_percent):
 errs = []
 for trial in np.arange(trials): X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=p)
In.fit(X_train, y_train)
err = np.mean(Ir.predict(X_test) != y_test)
errs.append(err)
this_err = np.mean(errs)
lr_error_rate.append(this_err) plt.plot(train_percent, lr_error_rate)
plt.xlabel('train percent')
_ = plt.ylabel('error') $(y - \widehat{y})^2 \rightarrow (y - \widehat{y} - \varepsilon x_j)^2 \\ \approx (y - \widehat{y})^2 + \underbrace{-2(y - \widehat{y})x_j}_{\textit{derivative of loss}} \varepsilon \\ \text{plt.xlabel('train_percent plt.xlabel('train_percent plt.xlabel('tra$ delta = .1

lr = LogisticRegression(penalty='12', C=.1, multi_class='multinomial')

Logistic Regression

i = np.random.choice(n) $x_i = X_{train[i]}$ y_i = y_train[i] $p = 1 / (1 + np.exp(-np.dot(x_i,beta)))$ beta = beta + delta/np.sqrt(t) * $(y_i - p) * x_i$ for i in np.arange(len(bandwidths)): $sq_bias[i] = np.mean((np.mean(fhat[i], axis=0) - f)**2)$ variance[i] = np.mean(np.var(fhat[i], axis=0))

for t in tqdm(range(1,steps)):

from sklearn import tree dtree = tree.DecisionTreeClassifier(min_samples_leaf=75) dtree = dtree.fit(X, y) fig = plt.figure(figsize=(20,20)) = tree.plot_tree(dtree, filled=True, feature_names = X.columns) oob_error = []
num_trees = np.arange(50, 180, 20)

rf = ensemble.RandomForestRegressor(min_samples_leaf=100, max_features=4, \ criterion='mse', oob_score=True) for m in tqdm(num_trees): rf.set_params(n_estimators=m)
model = rf.fit(X, y)

oob_error.append(1-model.oob_score_)
images = X((y=3), :]
wying = images.mean(0)
_ = plt.inshow(avging.reshape((28, 28)), cmap=plt.cm.gray.reversed())

num_components = 25
pca = PcA(num_components).fit(cimages)
principal_vectors = pca.components_
principal_vectors = pca.components_
principal_vectors = pca.components_
principal_vectors = principal_vectors.reshape((num_components, height, width))
pcs = pca.fit_ransform(cimages)
capprox = pca.inverse_transform(pcs)
labels = ['principal_vectors if X (sia) for i in np.arange(num_components)]
plot_images(principal_vectors, labels, height, width, int(num_components/5.), 5)
print('Variance explained variance_ratio_sum()
print('Variance explained variance_ratio_sum()

pcs.shape cimages[0].shape v = principal_vectors[0].reshape(784,1) np.dot(cimages[0], v)