Lecture 5

Simple Linear Regression IV

Reading: Chapter 11

STAT 8020 Statistical Methods II August 30, 2019

> Whitney Huang Clemson University

Agenda

- Review of Last Class
- 2 Analysis of Variance (ANOVA) Approach to Regression

Notes

Notes

Notes

Understanding Confidence Intervals

- Suppose $Y=\beta_0+\beta_1X+\varepsilon$, where $\beta_0=3,\,\beta_1=1.5$ and $\sigma^2\sim N(0,1)$
- We take 100 random sample each with sample size 20
- \bullet We then construct the 95% CI for each random sample (\Rightarrow 100 CIs)

20 7 18 - 16 - 14 - 12 - 10 J	
--	--

Regression IV
CLEMS

Review of Last Class

Analysis of Variance (ANOVA) Approach to

Confidence Intervals vs. Prediction Intervals

Simple Linear Regression IV
Review of Last Class Analysis of Variance (ANOVA) Approach to
5.4

Notes

Analysis of Variance (ANOVA) Approach to Regression

Partitioning Sums of Squares

Total sums of squares in response

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

We can rewrite SST as

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$

$$= \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$
Figure Model

Review of Last Class Analysis of Variance (ANOVA) Approach to Regression

Notes

Partitioning Total Sums of Squares

Simple Linear Regression IV	
Analysis of Variance (ANOVA) Approach to Regression	

Notes			

Total Sum of Squares: SST

• If we ignored the predictor X, the \bar{Y} would be the best (linear unbiased) predictor

$$Y_i = \beta_0 + \varepsilon_i \tag{1}$$

- SST is the sum of squared deviations for this predictor (i.e., \bar{Y})
- The total mean square is SST/(n-1) and represents an unbiased estimate of σ^2 under the model (1).

Notes

Notes

.

Regression Sum of Squares: SSR

- SSR: $\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
- Degrees of freedom is 1 due to the inclusion of the slope, i.e.,

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \tag{2}$$

 "Large" MSR = SSR/1 suggests a linear trend, because

$$E[MSE] = \sigma^2 + \beta_1^2 \sum_{i=1}^{n} (X_i - \bar{X})^2$$

Review of Last Class

Analysis of Variance (ANOVA) Approach to

...

Error Sum of Squares: SSE

• SSE is simply the sum of squared residuals

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- Degrees of freedom is n-2 (Why?)
- ullet SSE large when |residuals| are "large" $\Rightarrow Y_i$'s vary substantially around fitted regression line
- MSE = SSE/(n-2) and represents an unbiased estimate of σ^2 when taking X into account

Review of Last

Analysis of Variance (ANOVA) Approach to

Notes				

ANOVA Table and F test

				UNIVERSI
Source	df	SS	MS	Review of Last
Model		$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$		
Error		$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	MSE = SSE/(n-2)	Analysis of Variance (ANOV)
Total	n-1	$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$		Approach to Regression

- Goal: To test $H_0: \beta_1 = 0$
- Test statistics $F^* = \frac{MSR}{MSE}$
- If $\beta_1=0$ then F^* should be near one \Rightarrow reject H_0 when F^* "large"
- We need sampling distribution of F^* under $H_0 \Rightarrow F_{1,n-2}$, where $F(d_1,d_2)$ denotes a F distribution with degrees of freedom d_1 and d_2

Notes

5.10

F Test: $H_0: \beta_1 = 0$ **vs.** $H_a: \beta_1 \neq = 0$

Notes

Correlation and Simple Linear Regression

- Pearson Correlation: $r = \frac{\sum_{i=1}^n (X_i \bar{X})(Y_i \bar{Y})}{\sqrt{\sum_{i=1}^n (X_i \bar{X})^2 \sum_{i=1}^n (Y_i \bar{Y})^2}}$
- $-1 \le r \le 1$ measures the strength of the **linear** relationship between Y and X
- $\bullet \ \ \text{We can show} \ r=\hat{\beta}_{1,\mathrm{LS}}\sqrt{\frac{\sum_{i=1}^n(X_i-\bar{X})^2}{\sum_{i=1}^n(Y_i-Y)^2}}, \ \text{this implies}$

$$\beta_1=0$$
 in SLR $\Leftrightarrow \rho=0$

Simple Linear Regression IV
CLEMS#N
Analysis of Variance (ANOVA) Approach to Regression

Notes			

Coefficient of Determination R^2

 Defined as the proportion of total variation explained by SLR

$$\mathit{R}^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{\mathsf{SSR}}{\mathsf{SST}} = 1 - \frac{\mathsf{SSE}}{\mathsf{SST}}$$

• We can show $r^2 = R^2$:

$$\begin{split} r^2 &= \left(\hat{\beta}_{1,\mathsf{LS}} \sqrt{\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2}}\right)^2 \\ &= \frac{\hat{\beta}_{1,\mathsf{LS}}^2 \sum_{i=1}^n (X_i - \bar{X})^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2} \\ &= \frac{\mathsf{SSR}}{\mathsf{SST}} \\ &= R^2 \end{split}$$

Simple Linear Regression IV
CLEMS#N

Notes

Analysis of Variance (ANOVA) Approach to Regression

5.13

Residual Plot Revisited

⇒ Nonlinear relationship

- \Rightarrow Non-constant variance
- Transform X
- Transform Y
- Nonlinear regression
- Weighted least squares

Notes

Summary

In this lecture, we learned ANOVA Approach to Regression

Next time: Multiple linear regression

Simple Linear Regression IV

Review of Last Class

Analysis of Variance (ANOVA) Approach to Regression Notes ______