Série 5

L'exercice 1 sera discuté pendant le cours du lundi 24 octobre. L'exercice 4 (*) peut être rendu le jeudi 27 octobre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a) Déterminer si les énoncés proposés s	sont vrais ou f	aux.		
• Soit $A \in M_{n \times n}(\mathbb{R}[t])$. S'il exis existe $\tilde{B} \in M_{n \times n}(\mathbb{R}[t])$ telle que		$_{n}(\mathbb{R}[t])$ telle que	$AB = I_n$, alors il
			🔾 vrai	O faux
• Soit $A \in M_{n \times n}(\mathbb{F}_2)$. S'il existe il existe $\tilde{B} \in M_{n \times n}(\mathbb{F}_2)$ telle qu) telle que $AB =$	I_n , alors	
			🔾 vrai	\bigcirc faux
• Soit $f \in \mathbb{C}[t]$ et soit $a \in \mathbb{C}$. Alo	$\operatorname{rs} t - a \text{ divise}$	e f(t) - f(a).		
			🔾 vrai	\bigcirc faux
• Le polynôme $t^4 + 4 \in \mathbb{F}_5[t]$ est	scindé dans F	$f_5[t].$		
			🔾 vrai	\bigcirc faux
• Deux polynômes $f, g \in \mathbb{C}[t]$ à con'ont aucune racine commune.	oefficients con	nplexes sont pren	niers entre	eux s'ils
			🔾 vrai) faux
(b) Soit $A \in M_{n \times n}(\mathbb{R})$. Lesquelles des assertions suivantes sont correctes?				
	Supposons que $Ax = b$ n'a pas de solution dans \mathbb{R}^n pour un vecteur $b \in \mathbb{R}^n$. Alors il n'existe pas de $x \in \mathbb{C}^n \backslash \mathbb{R}^n$ tel que $Ax = b$.			
9	Supposons que $Ax = b$ a une seule solution dans \mathbb{R}^n pour chaque vecteur $b \in \mathbb{R}^n$. Alors il n'existe pas de $x \in \mathbb{C}^n \backslash \mathbb{R}^n$ tel que $Ax = b$.			
\bigcirc Supposons que $Ax = b$ a plusi- Alors il n'existe pas de $x \in \mathbb{C}^n$		_	un vecteur	$b \in \mathbb{R}^n$.
Indice : Considérer les parties réelles	s et imaginaire	es de l'expression	$A(\operatorname{Re}(x) +$	-iIm(x)).

Exercice 2

Soient $A \in M_{m \times n}(\mathbb{C})$ et $B \in M_{n \times p}(\mathbb{C})$. Montrer que $(AB)^* = B^*A^*$.

Exercice 3

i) Pour quelle(s) valeur(s) de $\alpha, \beta, \gamma \in \mathbb{R}$ la matrice suivante est-elle hermitienne?

$$A = \begin{pmatrix} 2 & 1 + \alpha i & 4 - \beta i \\ 1 + \alpha i & 0 & \gamma - 3i \\ 4 + 2i & \beta + 3i & -1 \end{pmatrix}$$

ii) Soit $A \in M_{n \times n}(\mathbb{C})$ une matrice hermitiene et $v \in M_{n \times 1}(\mathbb{C})$. Montrer que v^*Av est réel.

Exercice 4 (\star)

Montrer les parties ii) et iv) du Théorème 2.36 du cours (voir la version du Chapitre 2 actualisée 20.10.2016.).

Exercice 5

Soient $p \in K[t]$ et $c \in K$. Montrer que p s'écrit sous la forme p(t) = g(t)(t - c) + p(c), où $g \in K[t]$. En particulier, déduire que c est une racine de p si et seulement si p(c) = 0.

Exercice 6

Décomposer les polynômes ci-dessous en produit de facteurs irréductibles dans chacun des cas suivants : $\mathbb{C}[t]$, $\mathbb{R}[t]$, $\mathbb{Q}[t]$, $\mathbb{F}_3[t]$ et $\mathbb{F}_7[t]$

$$t^3 + 2t$$
 et $t^2 + t + 1$.

Exercice 7

- Soient $p(t) = 3t^4 5t^3 + 2t + 1$ et q(t) = t 1. Effectuer la division euclidienne du polynôme p par q dans $\mathbb{R}[t]$.
- Soient $p(t) = t^4 + t^3 + t + 1$ et q(t) = t + 1. Effectuer la division euclidienne du polynôme p par q dans $\mathbb{F}_2[t]$.

Exercice 8

- i) Soit $a \in \mathbb{C}$. Définissons $f(t) = (t a)(t \bar{a}) \in \mathbb{C}[t]$. Montrer que $f \in \mathbb{R}[t]$.
- ii) Soit $g \in \mathbb{R}[t]$. Montrer que si $z \in \mathbb{C}$ est une racine de g, alors il en est de même pour son conjugé \bar{z} .
- iii) Déterminer tous les polynômes irréductibles unitaires dans $\mathbb{R}[t]$.