Evidence-based Ayurveda

This book begins by looking back at the research of the last three centuries, Indian medicinal plants, and An essential tool for herbal drug development, this text is designed for knowledgeable students, practiti

This groundbreaking work calls for an overhaul of traditional Ayurveda and its transformation into a pro-

C. P. Khare is the founder president of the Society for New Age Herbals, a forum for promoting evidence

The Old Order Changeth

Yielding Place to New . . .

Evidence-based Ayurveda

Defining a New Scientific Path

Edited by

C. P. Khare

First published 2020

by Routledge

2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge

52 Vanderbilt Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2020 selection and editorial matter, C. P. Khare; individual chapters, the contributors

The right of C. P. Khare to be identified as the author of the editorial material, and of the authors for the

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are u

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-I

A catalog record for this book has been requested

ISBN: 978-0-367-35709-2 (hbk)

ISBN: 978-0-429-34126-7 (ebk)

Typeset in Times New Roman

by Apex CoVantage, LLC

Contents

List of contributors vii

Introduction: the thrust: why a new scientific path?

1

PART I

The legacy and logical steps for a new therapeutic regimen 5

1 The need for liberal regulations for promoting evidence-

based Ayurveda

7

2 Each and every step of AYUSH will have a far-reaching

impact

29

3 To move with the times: expand the knowledge base of

Ayurveda		
33		
4 The classical age in countries that are now leaders in		
herbal medicine		
39		
5 Avoiding scientific inquiry is not possible now		
57		
6 Ayurvedic pharmacognosy and pharmacology: in modern		
perspective		
61		
7 How classical procedures lost ground		
67		
8 Identification of proper herbs: a new scientific route		
73		
9 Pruning of classical formulations: suggested process		
121		
10 The pragmatic nature of Ayurveda: no restrictions on		
revising old formulations		
127		
11 Basic steps: for restructuring Ayurvedic formulations		
131		
12 Hidden secrets of clinical success: super power of "Sacred		
Word"		
155		
vi Contents		

$D\Delta$	RT	Ш

Defining a new scientific path by switching over to modern pharmacognosy, pharmacology and research protocols

161

13 Identification of medicinal plants by voucher specimen

163

14 DNA barcoding: a breakthrough in authentication of

raw herbs

173

15 Modern extraction methods and standardization of extracts

183

VIKRAM ANDREW NAHARWAR

16 Markers for quality control of herbal drugs

201

17 Pharmacological actions of chemical constituents

217

18 Pharmacological screening of Ayurvedic drugs by experimental studies

231

R. C. SAXENA

19 An enigmatic approach in Ayurvedic Pharmacopoeia of India: from holistic approach to disease-specific concepts

237

20 Unbiased research: lifeline of evidence-based Ayurveda

21 Threat to classical reputation by dubious herbs and

substitutes

261

22 Red list of medicinal plants: a threat to Ayurvedic

formulations

273

23 Ayurvedic education system: a path-breaking study

reflecting the elements of evidence-based Ayurveda

293

List of abbreviations

299

Index

301

Contributors

viii Contributors

He has authored numerous articles on herbal medicines, including the Official Indian Pharmacopoeia medicines are the National Pharmacopoeia medicines. The National Pharmacopoeia medicines are the National Pharmacopoeia medicines. The National Pharmacopoeia medicines are the National Pharmacopoeia medicines. The National Pharmacopoeia medicines are the National Pharmacopoeia medicines. The National Pharmacopoeia medicines are the National Pharmacopoeia medicines. The National Pharmacopoeia medicines are the National Pharmacopoeia medicines. The National Pharmacopoeia medicines are the National Pharmacopoeia medicines are the National Pharmacopoeia medicines. The National Pharmacopoeia medicines are the National Pharmacopoeia medicines are the National Pharmacopoeia medicines. The National Pharmacopoeia medicines are the National Pharmacopoeia med

Vikram Andrew Nahaewar is a third-generation herbalist. For 23 years he has been Director of India's f

Hammersmit, Royal Postgraduate Medical School, University of London.

Dr. Saxena occupied first faculty position in Pharmacology, represented India at the First Clinical Pharmacology

Introduction

The thrust: why a new scientific path?

During the classical period, Ayurveda was a holistic medicine. First, the Dosha was identified; then, the Rasa was considered an important marker which indicated, initially, the right choice of the herb to treat With the introduction of the Linnaean system, Sanskrit names were converted to botanical names. That Indian scientists started exploring the hidden potentials of Indian medicinal plants and tried to scan the To protect the holistic medicine from the scientific onslaught, in 1964, 54 classical and pro-classical botanical plants were allowed into the Ayurvedic Pharmacopoeia of India. In mone For three centuries, Indian scientists had been trying to use the ancient wisdom and new scientific advantage and the pro-classical botanical plants were allowed into the Ayurvedic Pharmacopoeia of India.

We were the first to divide Ayurvedic medicine into two periods, classical and modern. Our first book, T In accordance with our understanding, a number of Ayurvedic scholars acknowledged the following: "No There always remains room for further improvement. The Ayurvedic Pharmacopoeia of India and Ayurve Holistic medicine (as Ayurvedic sciences) is still on the center stage. In this setup, scientists are facing The biggest drawback is that Ayurvedic drug "research" is confined to only classical plant drugs, and the Now, have a look at the scientific database provided by Indian scientists. The Reviews on Indian Medic research papers (from A to P, May 2019) in 21 volumes. Earlier, in The Wealth of India series, 22 volumes to the scientific surge. We are giving a number of suggestions for the transformation.

disease-specific medicinal system. But within the framework of a holistic system, which tries to treat the

books will inspire young academicians and scientists to see that Ayurveda gets a much-needed launch.

While concluding, we would like to acknowledge the contribution of Dr. Vikram Andrew Naharwar, a thir

- C. P. Khare

Introduction 3

Khare.herbalsociety@gmail.com

Part I

The legacy and logical steps

for a new therapeutic regimen

1 The need for liberal

regulations for promoting

evidence-based Ayurveda

Why Ayurvedic Medicine and Herbal Medicine are treated as two rival systems with different legal regu

Why all Indian medicinal Plants are not Ayurvedic Plants?

Why the research of the last three centuries is not a part of Ayurveda?

The Drugs and Cosmetics Act, 1940

(Editor's note: First, we will quote certain clauses of The Drugs and Cosmetics Act, 1940 (23 of 1940) (

The Drugs and Cosmetics Act Chapter, 3(a): Drug [Ayurvedic, Siddha or Unani] includes all medicines

3(h): patent or proprietary medicine means –

(i) in relation to Ayurvedic, Siddha or Unani Tibb systems of medicine all formulations containing only si

8 Legacy and logical steps

THE FIRST SCHEDULE [See section 3(a)]1

A. Ayurvedic Books: 2 contain 54 (actually 59) authoritative books. (For

analysis, see chapter 3.)

(1. Subs. by Act 13 of 1964, s. 31, for the Sch. The First Schedule came into force with effect from 1-2-

Drugs and Cosmetics Rules, 1945

PART X A: 122 DAC. Permission to conduct clinical trial: (1) The Licensing Authority as defined in claus

(a) Clinical trial shall be conducted in compliance with the approved protocols, requirements of Schedul

(b) Approval of the Ethics Committee shall be obtained before initiation of the study;

(c) Clinical trial shall be registered at Clinical Trials Registry of India before enrolling the first patient for

(d) Annual status report of each clinical trial, as to whether it is ongoing, completed or terminated, shall

(Editor's Note: See The Controversy on PART X A: 122 DAC

and ADVISORY from AYUSH on April 2, 2019, at the end of

salient features of Drugs and Cosmetics Rules, 1945, chapter 2.) Part XVI: 158(B) Guidelines for issue

I (A) Ayurveda, Siddha Unani Medicines under section 3(a): Ayurveda, Siddha or Unani drugs includes

The need for liberal regulations 9

exclusively in accordance with the formulae described in the authoritative books of Ayurvedic, Siddha a

(B) Patent or Proprietary medicine under section 3(h):

(i) In relation to Ayurvedic, Siddha and Unani Tibb system of medicine of all formulations containing onl

II (A) For issue of licence to the medicine with respect to Ayurvedic, Siddha and Unani, the conditions r

Guidelines for issue of license with respect to Ayurveda, Siddha or Unani drugs (Drugs and Cosmetics

2 Ingredients: As per texts. (54 Authoritative books) 3 Indication(s): As per texts. (54 Authoritative book

6 Requirement of non-clinical Efficacy data: Not required 1 Category: Any change in dosage form of Ay

2 Ingredients: As per text

3 Indication(s): As per texts

4 Requirement of non-clinical Safety data: Not required 5 Published Literature: Required

6 Requirement of non-clinical Efficacy data: Not required 1 Category: Ayurveda, Siddha and Unani drug

2 Ingredients: As per text

3 Indication(s): New*.

4 Requirement of non-clinical Safety data: Not required

10 Legacy and logical steps

5 Published Literature: If required

6 Requirement of non-clinical Efficacy data: Required II (B) For issue of license with respect to Patent of

1 Category: Patent or Proprietary medicine containing crude drugs 2 Ingredients: As per text

3 Indication(s): Textual Rationale

4 Requirement of non-clinical safety data: Not required 5 Published Literature: Of ingredients

6 The requirement of non-clinical efficacy data: Pilot study as per relevant protocol for ASU drugs

For the issue of license with respect to medicine Aushadh Ghana, extract of medicinal plant (dry or wet

Category: Crude drug/Aqueous extract(s)/hydro-alcoholic extracts/

dry/wet

Ingredient(s): As per text

Indication: Textual Rationale

Requirement of non-clinical Safety data: Not Required

Published Literature Not Required

Requirement of non-clinical Efficacy data: Not Required

Category: Aqueous extract dry/wet

Ingredient(s): As per text

Indication: New indications*

Requirement of non-clinical Safety data: Not Required

Published Literature: Not Required

Requirement of non-clinical Efficacy data: Required

Category: Hydro-Alcohol extract dry/wet

Ingredient(s): As specified

Indication: As per text

Requirement of non-clinical Safety data: Not Required

Published Literature If Required

Requirement of non-clinical Efficacy data: Not Required

Category: Hydro-Alcoholic extract dry/wet

Ingredient(s): As specified

Indication: New indications*

Requirement of non-clinical Safety data: Required

Published Literature: If Required

Requirement of non-clinical Efficacy data: Required

The need for liberal regulations 11

Category: Other than Hydro/Hydro-Alcoholic extracts containing other solvents

Ingredient(s): As specified

Indication: As specified/claimed

Requirement of non-clinical Safety data: Required for oral preparations. Single dose toxicity, Repeated

Published Literature: If Required

Requirement of non-clinical Efficacy data: Required

The standard protocol will also include the concept of Anupan, Prakriti and

Tridosha etc. published by Central Research Councils Ayurveda, Siddha, Unani and other Government

* New indication means which is other than mentioned in 1st schedule books of Drugs and Cosmetics A

ADVISORY from AYUSH on April 2, 2019

Subject: Scientific Studies and publication of Research Papers on AYUSH

drugs and treatments by non-AYUSH researchers/scientists.

Whereas it is reported that research papers and scientific studies on AYUSH

(Ayurveda, Yoga, Naturopathy, Unani, Siddha and Homoeopathy systems) drugs and treatments have

Whereas AYUSH systems are officially recognized an integral part of the country's healthcare delivery

systems and their drug-based interventions are not at all comparable to the prevalent modern medical

12 Legacy and logical steps

website www.ayush.gov.in;

Whereas potential and scope of AYUSH in public healthcare cannot be jeopardized and the people may from arbitrary statements and unfounded conclusions in the scientific studies and research publications.

All concerned are urged to take note of the advisory for compliance by the respective researchers/scientary.

For comments by Ayurvedic educationists and scientists, see "Each and every step of AYUSH will have

Intervention (CCRAS):

In Drugs and Cosmetics Rules, 1945, Part XVI, legally there is no need of safety study or proof of effective for researchers, this document is worth going through.

Excerpts

The fundamental aspects of holistic systems need adequate positioning while designing clinical trials to

The following approach has been suggested by CCRAS:

General Guidelines for Clinical Evolution of Ayurvedic

The need for liberal regulations 13

Evidence Base in Ayurveda: Suggested Approach

Disease/Participant Classification

Diagnosis based on

Ayurvedic Principles Prakrti,

Modem Methods

Dosha, Dushya etc.

Therapeutic classification of Drugs

Conventional

Ayurvedic

Combined Results Analysis based on Conventional Ayurvedic principles Stage II **Expanded Therapeutic Use** Mechanism of Action (Traditional: Modern) General Methodologies and Guidelines of Drug Development (CCRAS): Preparatory phase (1) Prevalence survey and Formulation of drug/combination for Specific targeted indication and activity. (A Drug development phases (2) Collection of raw drugs (2). (considering current good agricultural practices good field collection practic 14 Legacy and logical steps Botanical identification/Pharmacogonostic/Chemical studies of ingredients (3). (Based on available guid chemical, Biological parameters, microbial loads, Heavy metal estimation, pesticide residues, etc. for standardization and safety). Preclinical safety studies (5) (Acute/sub-acute-chronic studies as per intended therapeutic use with Institutional Animal Ethics Comn Animal Studies for biological activity and /or mechanism of action for clinical correlation (6) with IAEC a Execution of clinical trial (8) Bulk preparation of quality assured Drug for clinical trial, packing labeling etc. as per requirement with a Note: Intellectual Property Rights (IPR) Protection and issues of filing of patent to be addressed at suita

Stage I: Controlled Clinical Observations

Phases of clinical trial for ayurvedic drug/patent or proprietary medicines

Aim and Objective: To discover or verify the clinical, pharmacological (including pharmacodynamics/pharmacology (Phase I)

- (i) The objective of studies in this Phase is the estimation of safety and tolerability with the initial admini Phase I trials should preferably be carried out with access to the necessary facilities to closely observe The need for liberal regulations 15
- (ii) Studies conducted in Phase I, usually intended to involve one or both of the following objectives:

 a Maximum tolerated dose: To determine the tolerability of the dose range expected to be needed for label be Early measurement of Drug activity: Preliminary studies of activity or potential therapeutic benefit may Therapeutic exploratory trials (Phase II):

The primary objective of Phase II trials is to evaluate the effectiveness of an Ayurvedic Patent or Propri Studies in Phase II should be conducted in a group of participants who are selected by relatively narrow Doses used in Phase II are usually (but not always) less than the highest doses used in Phase I. These (ii) Additional objectives of Phase II studies can include evaluation of potential study endpoints, therape

(iii) These objectives may be served by exploratory analyses, examining subsets of data and by including

Therapeutic confirmatory trials (Phase III)

Post marketing trials (Phase IV)

(i)

(i)

Phase III studies have primary objective of demonstration or confirmation of therapeutic benefits(s). Stu 16 Legacy and logical steps

- (ii) For Ayurvedic drug/Patent or Proprietary Medicines intended to be administered for long periods, tria (iii) For Ayurvedic drug/Patent or Proprietary Medicines approved outside India, Phase III studies need
- (iv) If the application is for the conduct of clinical trials as a part of multi-national clinical development of

Post Marketing trials are studies (other than routine surveillance) performed after drug approval and rel NOTE

- For classical Ayurvedic drugs with the same textual indications, directly phase III/IV trial may be condu
- For classical Ayurvedic drug with new indications/Patent or Proprietary Medicines, directly phase II tria
- Patent or Proprietary Medicines with Schedule E-I ingredients, Phase I trials may be conducted as ap
 There are mainly two types of clinical studies: Observational and Experimental.

Observational study

An observational study is one which tries to explore the cause-and-effect relationships. Like experiment.

The need for liberal regulations 17

participants by allocating in groups or assigning any particular treatment. The Investigators only observ A sample survey is an example of an observational study. Followings are observational studies:

Case series studies: Case-series is a descriptive study design wherein a series of cases of any particul Case reports: Documentation of reports on a single participant constitutes case reports. They do not us Case control studies: When a correlation is drawn between factors or exposures as causal in participant Cohort studies: A 'cohort' meaning is a population who are exposed to similar environmental conditions Cross sectional studies: A cross sectional study is an observational study that aims at determining the experimental study

In a clinical trial, participants receive specific interventions according to the research plan or protocol cr 18 Legacy and logical steps

are already available to each other. When a new product or approach is being studied, it is not usually l

Single arm trials: Single arm trial is the simplest trial design. A sample of participants with a particular design is adopted where placebo effect is minimal or there is no scope for incorporating or it is uneconstructed trials: In a cross over design, the objective is to compare the effect of therapies. The trial particular Trials: Factorial designs are considered when the objective of the study is to compare effects of the study is to compare effects.

then group-1 is given intervention A, group-2 is given B, group-3 is administered both A and B and group-

Non inferiority trials (Active Controlled trials): This type of trial design consists of testing the effect of a parallel design: Placebo controlled trials: A placebo is an agent that produces an effect on the disease. Three arms trial: Placebo and active control: This design involves inclusion of a placebo as well as an add on Study: An add on study is a placebo-controlled trial wherein a new agent is concomitantly admit The need for liberal regulations 19

in addition, can bring about better outcomes and if there are no adverse drug reactions or interactions. Three arms trial: Placebo and active control: This design involves inclusion of a placebo as well as an add on Study: An add on study is a placebo-controlled trial wherein a new agent is concomitantly admin Replacement study: In this design a new drug or placebo is randomly added to the conventional treatmerally escape rescue treatment: If in a trial, administration of a treatment protocol is either ineffective or Limited placebo period: In situations where it is not possible to continue the participants for long duration. Additional doses design: This design involves randomizing participants into parallel groups of different for Randomized withdrawal: In this design participants getting a test treatment for a particular period of time. No-treatment concurrent control: No treatment concurrent control design involves randomization of participants control (including historical control): This is a comparative trial where participants receiving an 20 Legacy and logical steps

Designs amenable to test ayurvedic therapies

Black-box design

Generally, Ayurvedic treatments are not just isolated administration of a therapeutic molecule or a single.

Therefore, a traditional treatment that may consist of a set of therapeutic procedures should be considered. Reverse Pharmacology (RP) design

In the realm of traditional medicines, many herb based medicinal formulations have known to have hea RP-Phase I: This involves an experiential phase where comprehensive documentation of clinical observables. The purpose of this phase is to evaluate the target activity of the Ayurvedic formulation/drease. RP-Phase III: The purpose of this phase is to carry out basic and clinical studies at several levels of bio

Studies in this phase should be able to decipher mechanisms of action at multiple biological systems at Placebo controlled trials

The use of a placebo generates evidence of better quality. Placebo controlled trials are intended to esta The need for liberal regulations 21

whether the additional cost, risk and effort of a specific treatment are worthwhile.

It is also important for understanding the mechanism of a treatment. This is true for the evaluation of all However, in some cases, where disease-based whole phytocomplex treatment is not preferred, placeby Most of the drugs are also polyformulations consisting of ingredients from plant, mineral and animal original triangles in Ayurvedic system of medicine also involves procedural interventions like Panchakarma in A Different controls can be used in clinical trials to answer different questions.

The use of a placebo, when possible, is desirable, because it generates evidence of better quality. Place Data-based studies

Systematic reviews: These are studies based on already published studies. A certain review criteria is of Meta analysis

These studies are also based on already published studies. The study compiles and examines the result Data based studies on Ayurvedic drugs can provide much needed evidence to recommend use of Ayur 22 Legacy and logical steps

Conventionally, the level of evidence is ranked in order of risk of bias and from top to bottom ranked as However, due to classical textual evidence, long history of use and vast clinical experience, this hierarc Randomization

Randomization is used to develop comparable groups to assess therapeutic interventions. It is essential Randomization method and procedure (wherever applicable)

Simple random samples: This is a procedure where each individual of a population has equal probabilit Random allocation: Random allocation is a procedure of randomly allocating an identified sample to different block randomization: This randomization procedure helps in achieving same sample size in two or more

This method helps in interim analysis.

Stratified randomization

To avoid imbalances among baseline characteristics, pre-randomization stratifica-tion is done based or

Methods of blinding

Blinding is a process of ensuring that the people involved in a research study (participants or investigat

The need for liberal regulations 23

arise because participants who know about the active treatment might report more favorable outcomes

Open: The participants, investigators, and data analyst know about what treatment they are receiving.

Single blind: Here either the participant or investigator does not know about the treatment.

Double blind: Here neither the participant nor the investigator knows about the treatment.

Triple blind: This is a blinding procedure in which the participant, the investigator and the data analyst of

Randomization codes and procedures for breaking the code

Breaking the codes/un-blinding in case of emergency

Randomization codes are computer generated. Requirement for unblinding arises out of an emergency

Breaking the codes/un-blinding at the end of the trial

Breaking the codes/un-blinding is done by a formal request to the Sponsor and head of the Institute but

- Completion of last follow up of the participant
- All data has been entered and validated and there is no scope for further changes.

It is better that the statistician is also blinded until the analysis is complete.

Information on establishment of study code, where it will be kept and when, how, and by whom it can be

Allocation concealment

Allocation concealment is a procedure that ensures that either participants or investigators do not know

24 Legacy and logical steps

procedure is done as follows: The trial drug and placebo are prepared in a way that they are similar in our line double blind study a random sequence of codes is generated centrally and assigned to the prospection.

In single blind studies where the investigator knows about what the participant is going to receive, the company assessment

Blind assessment is a critical component of conventional evaluation of therapeutic interventions.

However, in the evaluation of efficacy of procedure-based therapies (such as Panchakarma therapy, Ks

Treatment blinding in the evaluation of Ayurvedic medicines should adopt the approach of conventional

Summary

(Ayurvedic) Drug includes all medicines intended for internal or external use for or in the diagnosis, treatent or proprietary Ayurvedic medicine means: (1) All formulations containing only such ingredients in the need for liberal regulations 25

authoritative books of Ayurveda (2) In relation to any other systems of medicine, a drug which is not inc All non-AYUSH researchers, scientists, institutions and editors of the medical/scientific journals are adv

research intervention to explore AYUSH drug or treatment and for vetting of the publication of its outcomes from AYUSH on April 2, 2019.)

Final report of the AYUSH task force (Submitted to Ministry of AYUSH, Government of India, on 12 October 2015.)

Research Council of AYUSH in conducting any scientific study/clinical trial/

Salient features

A few decades from now, single knowledge system based medical hospitals, clinics and even medical of 5.3 Recommendations

- 5.3.4 The definition of Drug of AYUSH origin is very strict and only classical formulation can be conside 5.3.5 The regulations should be upgraded to align with international standards wherever they exist like 5.3.10 The public lab infrastructure is in a dismal state and there is a need to think of Public-Private Part 5.3.11 There is a need for up gradation of public labs by prescribing National Accreditation Board for Te 26 Legacy and logical steps
- 5.3.15 The AYUSH industry needs high quality medical plants and therefore, the Medicinal plant certific

- 5.3.16 The cultivation of medicinal plants by AYUSH manufacturers based on Good Agricultural Practic
- 1.2 Goals underlying the recommendations
- 1 To establish safety and efficacy of AYUSH treatments for diseases of national and global importance
- 2 To promote collaborative clinical and basic research that has the potential to transform healthcare, in
- 3 To develop patents, novel products, services and biological concepts including tissue engineering and
- 6 To support high quality publications as well as peer-reviewed, indexed, high impact journals.
- 1.3.1. Recognize selected existing reputed autonomous health science institutions from public or private
- Such institutions whether in public or private sector should have autonomy to engage in innovative research.

 1.3.2. Support large scale multi-centric clinical research involving reputed AYUSH and modern medical
- 5.1.1 Industry

The AYUSH industry is currently regulated under the Drugs and Cosmetics Act that also regulates the r

The need for liberal regulations 27

the AYUSH industry regulation gets neglected with many states not even having suitably qualified many 5.3.2 Services

1. The regulations should be based on international standards, if available, and to this end, all existing in Editor's Note: The Holistic concept of Ayurveda was unique 5000 years back. It was based on Vata-Pitt Now, Ayurvedic medicines are to be produced for millions whose prakriti is not known. Holistic medicine In India, the national policy on traditional and alternative medicine was introduced in 1940 in the form of Later the act was modified again with some substitutions in the year 1983, 1987, 1994 and 2002. In 2006 and 2008 guideline for evaluation and analysis of drugs under ISM was given under Drug and Cosmetic Rule 1945. The Central Council of Indian Medicine (CCIM) is constitutions.

28 Legacy and logical steps

References

1 Government of India, Ministry of Health and Family Welfare (Department of Health), The Drugs and C

2 General Guidelines for Drug Development of Ayurvedic Formulations Volume 1. Published by Centra

3 General Guidelines for Safety/Toxicity Evaluation of Ayurvedic Formulations, Volume II. Published by 4 General Guidelines for Clinical Evaluation of Ayurvedic Interventions Volume III. Published by CCRAS Some portions in the text have been highlighted by the Editor for emphasis.

2 Each and every step

of AYUSH will have

a far-reaching impact

Opinion of Ayurveda educationists

A recent advisory (F. No. Z.25023–10912018-DCC (AYUSH) dated 2 April 2019) issued by the Ministry "qualified AYUSH experts were not involved/consulted in these studies and research publications." This potential and scope of AYUSH in public healthcare cannot be jeopardized and the people may not be defrom arbitrary statements and unfounded conclusions in the scientific studies and research publications. The advisory therefore states that

all non-AYUSH researchers, scientists, institutions and editors of the medical/scientific journals are here.

Institution/Research Council of AYUSH in conducting any scientific study/

clinical trial/research intervention to explore AYUSH drug or treatment and for vetting of the publication Such steps would not only curb the much-needed unbiased research in these traditional medicine systems.

PhD theses in the numerous colleges and universities that have mushroomed. It

30 Legacy and logical steps

is also a known fact that many of these AYUSH colleges retain their recognition through "ghost" patient It is possible that there are non-AYUSH researchers who also generate and publish poor research outp The AYUSH practices and formulations need to be substantiated by evidence-based understanding. St Actually, we need to foster more unbiased multidisciplinary research rather than making it a close-door

Asking the journal editors to ensure the inclusion of AYUSH experts as authors in a research paper is r

- S. C. Lakhotia

SERB Distinguished Fellow, Department of Zoology,

Banaras Hindu University; Kishor Patwardhan,

Professor in Kriya Sharir Banaras Hindu University

and Sanjeev Rastogi, Professor (Associate), State

Ayurvedic College, Lucknow. (Current Science, May 2019.)

Far-reaching impact of AYUSH 31

Comments by eminent scientists

No democratic nation can regiment free research by academia. The image has to be built and not protesty systems.

Who decides the expertise/Institution/Research Council of AYUSH, with a proven track record and train

As per the advisory, my teacher late Dr. Rustom Jal Vakil should not have worked on Sarpagandha, that

Ashok D. B. Vaidya MD, PhD, FAIM

Former Regional Medical Director (South Asia)

Ciba-Geigy (Now Novartis); Research Director, Kasturba

Health Society-Medical Research Centre; Adjunct

Professor, Saurashtra University, Rajkot; Drexel University,

Philadelphia; Transdisciplinary University, Bengaluru

AYUSH should answer the following questions: I. Rationale for issuing such an Advisory? II. Is it evider

experts? IV. Will such advisory not restrict the research in Ayurveda in modern laboratories? V. Is the research in Ayurveda in modern laboratories?

VII. Does AYUSH have a list of Ayurveda postgraduates/doctorate working in modern laboratories of our

It may not be out context to mention that even today, AYUSH do not have their own Indexed journal wit

CSIR/DBT many public/private organizations except Ayush supported labs?

Most of these experienced students leave AYUSH and India, as AYUSH does not have a special scher

We endorse the views of Dr. Ashok Vaidya that the "quality of research has to be built with training, app

32 Legacy and logical steps

popularise the pride of Ayurveda. It is vice versa and AYUSH-Advisory is detrimental for the department

- Dr. B. Dinesh Kumar, FNAMS, FAPASc, FTASc, FIPS

Coordinator, Centre for Advanced Research for

Pre-clinical Toxicology (PCT); President, Indian

Pharmacological Society (IPS); Secretary,

Nutrition Society of India (NSI); National Institute

of Nutrition (NIN) Indian Council of Medical Research

It is explicitly calling for censorship, albeit (one that is) voluntary for now.

It is essentially an instruction to the public-sector funding agencies to ensure compliance. This is a clas

Satyajit Rath

Medical Immunologist and teacher

Indian Institute of Science Education and Research, Pune

Any attempt to discourage research in AYUSH by non-AYUSH streams would have disastrous consequ

In my opinion, the advisory is hyper protective knee jerk reaction by the Ministry.

AYUSH had earlier signed agreements with scientific organizations like Department of Biotechnology a

Opinions expressed in the media indicate that scientists are worried that the advisory is intended to sup

Government laboratories too have released traditional remedies without adequate evidence of their hea

3 To move with the times

Expand the knowledge base

of Ayurveda

Ayurveda's future development should not be confined to the texts of 54 Authoritative books approved I

As a nation, we have a responsibility to further our traditional knowledge and improve and keep it update

23 Rasa Yoga Sagara. 24 Rasa Yoga Ratnakara. 25 Rasa Yoga Samgraha. 26 Rasendra Sara Samgraha. 27 Rasa Pradipika. 28 Sahasrayoga. 29 Sarvaroga Chikitsa Ratnam. 30 Sarvayoga Chikitsa Ratnam. 31 Sharangadhara Samhita. 32 Siddha Bhaishajya Manimala. 33 Siddha Yoga Samgraha. 34 Sushruta Samhita. 35 Vaidya Chintamani. 36 Vaidyaka Shabda Sindhu. 37 Vaidyaka Chikitsa Sara. 38 Vaidya Jiwan. 39 Basava Rajeeyam. 40 Yoga Ratnakara. 41 Yoga Tarangini. 42 Yoga Chintamani. 43 Kashyapa Samhita. 44 Bhela Samhita. 45 Vishwanathachikitsa. 46 Vrindachikitsa.

47 Ayurvedachintamani.

- 48 Abhinavachintamani.
- 49 Ayurveda-ratnakara.
- 50 Yogaratnasangraha.
- 51 Rasamrita.
- 52 Dravyaguna nighantu.
- 53 Rasamanjari.
- 54 Bangasena. 154A. 2 A yurvedic Formulary of India and its parts. 54B. Ayurveda Sara Samgraha. 35 311–6–2002; 415–4–2010.)

212 31-8-1994. 213 15-4-2010.

212 31-8-1994. 213 15-4-2010.

- 1 Inserted by GSR 735 (E), dt 28–8–1987.
- 2 Substituted for "Ayurvedic Formulary of India" vide GSR 337(E), dt. 15–4–2010.
- 3 Inserted vide GSR 423(E), dt. 11-6-2002.
- 4 Inserted vide GSR 337(E), dt. 15-4-2010.

To move with the times 35

The period, name of author/editor/commentator and publisher are not mentioned.

Thus the list from 1 to 54 and 54B lacks transparency. It is difficult to identify the authentic text of almost

Only a few titles are available in Ayurvedic colleges and research libraries.

Out of 54 Ayurvedic books enlisted in the Drugs and Cosmetics Act of 1940, the Central Council for Re processed the translations of 13 books:

Published books: Astanga Samgraha; Basavarajeeyam; Abhinava Chintamani; Rasa Pradeepika (Telu

Books still being processed: Arya Bhishaka (Gujarati*); Vaidyak Chikitsa Sara (Gujarati); Ayurveda Sar

* Identified by the Editor.

Though Sahasrayoga Sanskrit/Hindi text was published by CCRAS on Novem-ber 30, 1990, Ayurvedic

- 1 Vaidya Yoga Ratnavali (published by Indian Medical Practitioners' Cooperative Pharmacy, Chennai)
- 2 Dravya gun Vigyan (Vaidya Yadavaji Trikamji Acharya, the name of the publisher not given)
- 36 Legacy and logical steps
- 3 Ayurvedic Aushadhi Gunadharma Shastra (Acephali Private Ltd.) 4 Rasa yoga Sundara (anonymous
- 5 Rasa Ratnakara (anonymous)
- 6 Rasoddhar tantra (Rasasala Aushadhasrama)
- 7 Brahad yoga tarangani
- 8 Pharmacopoeia of Hospital of Integrated Medicine, Madras (1956) A number of compound drugs, que

For Ayush Elective Curriculum for MBBS students (for 2019), which will be changed after the first expension

- 1 Kutumbiah P, Ancient Indian Medicine, Orient Longman, Chennai, India, 1969 (reissued 1999).
- 2 Srikanthamurthy KR, Biographical History of Indian Medicine, Chaukhambha Orientalia, Jaikrishnada
- 3 Narayanaswamy V, Origin and development of Ayurveda: A brief history, Ancient Science of Life, 199
- 4 Patwardhan K., The history of the discovery of blood circulation: Unrecognized contributions of ayurve
- 5 Muthu CA, Short review of the history of ancient Hindu medicine, Proc R
- Soc Med, 1931, 6: 177–190.
- 6 Patwardhan K, Human Physiology in Ayurveda, Chaukhambha Orientalia, Varanasi, India, 2008.

7 Conboy LA, I Edshteyn, H Garivaltis, Ayurveda and Panchakarma: Measuring the effects of a holistic

- 8 Loukas M et al, Anatomy in ancient India: A focus on the Susruta Samhita. J
- Anat, 2010, 217: 646–650.
- 9 Savrikar S, B Ravishankar, Bhaishajya Kalpanaa-The ayurvedic pharmaceutics-an overview, African
- 10 Chaudhary A, N Singh, Herbo mineral formulations (Rasaoushadhies) of Ayurveda: An amazing inh
- 11 Kurande VH et al., Reliability studies of diagnostic methods in Indian traditional ayurveda medicine:
- 12 Thakar VJ, Diagnostic methods in Ayurveda, Ancient Science of Life, 1982, 1(3): 139–145.
- 13 Singh RH, The psychosomatic disorders and their management in Ayurveda, Ancient Science of Life
- 14 Rastogi S, Development and validation of a Prototype Prakriti Analysis Tool (PPAT): Inferences fron

- 15 Juyal RC et al, Potential of Ayurgenomics approach in complex trait research: Leads from a pilot stu 16 Mahalle NP et al, Association of the constitutional type of Ayurveda with cardiovascular risk factors,
- Journal of Ayurveda and Integrative Medicine, 2012, 3(3): 150-157, doi:10.4103/0975-9476.100186.
- 17 Dey S, Pahwa P, Prakriti and its associations with metabolism, chronic diseases, and genotypes: Po
- 18 Ajanal M et al, Adverse drug reaction and concepts of drug safety in Ayurveda: An overview, Journa
- 19 Wal P et al, Pharmacovigilance of herbal products in India, Journal of Young Pharmacists, 2013, 3:
- 20 Rastogi S, Why and how? Addressing the two most pertinent questions about pharmacovigilance in
- 21 Chaudhary A et al, Pharmacovigilance: Boon for the safety and efficacy of Ayurvedic formulations, J
- 22 Manohar PR et al, DHARA: Digital helpline for Ayurveda research articles, Journal of Ayurveda and
- 23 Rotti H et al, DNA methylation analysis of phenotype specific stratified Indian population, Journal of
- 24 Govindaraj P et al, Genome-wide analysis correlates Ayurveda Prakriti, Scientific Reports, 2015, 5:
- 25 Wujastyk D, Interpreting the image of the human body in premodern India, Int J Hindu Studies, 2009
- This list has no link with "authoritative" knowledge base because it is aimed at offering an olive branch
- The big questions that students of modern medicine will raise include, why has research of the last three
- How can it be kept secret that the following Unani plant drugs are part of Ayurveda?
- 1 Ajwain-khurasani (Hyoscyamus niger Linn.); Parseek Yavaani (Bhavaprakasha) 2 Aqarqarha (Anac
- 4 Behman safed (Centeurea behen Linn.) (Ayurvedic Formulary of India, Part II)
- 38 Legacy and logical steps
- 5 Behman surkh (Salvia haemetodes Linn.) (Ayurvedic Formulary of India,
- Part II)
- 6 Chobachini (Smilax china Linn.); Dweepaantara Vachaa (Bhavaprakasha) 7 Gheekuwaar (Aloe bar
- 10 Khatmi (Althea officinalis Linn.) (Ayurvedic Formulary of India, Part II)
- 11 Khoobakalaan (Sysmbrium iro Blume) (Ayurvedic Formulary of India, Part II)
- 12 Khoonkharaabaa (Dasmonorps draco Blume); Rakta-niryaas (Ayurvedic Formulary of India, Part II

- 13 Papitaa Desi (Carica papaya Linn.); Erandakarkati (Ayurvedic Pharmacopoeia of India, Part I, Vol.
- 14 Pudinah (Mentha viridis Linn.) (Ayurvedic Pharmacopoeia of India, Part I,

Vol. V.)

- 15 Revandachini (Rheum emodi Wall.); used as a substitute for Amlvetus (Sharangadhara Samhita)
- 16 Rumimustagi (Pistacia lentiscus Linn.) (Ayurvedic Formulary of India, Part II)
- 17 Unnaab (Zizyphus jujube Mill. (Ayurvedic Formulary of India, Part II)
- 18 Sapistaan (Cordia dichotama Frot. F.) (Ayurvedic Formulary of India, Part II)
- (116 Ayurvedic Plant drugs were adopted by Unani Tibb. Few Ayurvedic scholars will know that an Una

That tomorrow is not far off when AYUSH will welcome new plant drugs.

Why? The Red List is getting longer every day. See "Threat to Plant Drugs of Ayurvedic Formulations."

4 The classical age in countries

that are now leaders in

herbal medicine

China

The Yellow Emperor's Internal Classic (around 300 bc) is one of the oldest and most comprehensive extra popular treatment known as Traditional Chinese Medicine is actually a modern modification of the In the formation of TCM, important philosophical and practical doctrines from Classical Chinese Medicine

By simplifying the medicine, some of the theoretical tools were overlooked.

Here are some of the main differences between Classical Chinese Medicine and Traditional Chinese M

- (1) Health is an active process of nourishing life in order to maximize one's potential (CCM)
- (1) Health defined as the absence of symptoms and ailments (TCM) (2) Individual diagnosis and treatm
- (2) Standardized diagnosis and treatment (TCM)
- (3) Treating according to individual assessment in conjunction with universal factors of time and space

- (3) Treating according to patterns using formulas of points (TCM)
- 40 Legacy and logical steps
- (4) Treating the whole person in a holistic approach (CCM)
- (4) Treating separate symptoms and systems in the body (TCM)
- (5) The mind is primary to the body (CCM)
- (5) The body is primary to mind (TCM)
- (6) Treating according to one's personal qi and constitution (CCM) (6) People with similar patterns will be
- (7) No difference between genders (TCM)
- (8) Different treatment according to season (CCM)
- (8) No consideration to the season (TCM)
- (9) Different techniques for treating existing conditions and preventing future ailments (CCM)
- (9) Similar principles for treatment and prevention (TCM)2

The Institute for Medicinal Plant Development, Beijing, founded in 1983, employs more than 350 scient logical studies. 1

References

1 Herbal Emissaries by Steven Foster and Yue Chongxi, Healing Arts Press, Rochester, Vermont, 1992

2 www.sourcecentre.ca/classical-chinese-medicine-vs-traditional-chinese-medicine/

America

Sauer's Herbal Cures1

America's first book of herbal healing, Sauer's Herbal Cures, was assembled by Pennsylvania apothec

The classical age in herbal medicine 41

quantities were defined in terms of their inherent salts, a system of evaluation that was linked to Parace

Theodor Zwinger's son, Friedrich, revised his father's herbal in 1744. And this was the edition that was

medicinal herbs were listed. Ginger was the first herb that appeared in the first installment of 1762.

Ingwer (Ginger): Ginger was one of the first herbs to be included in Sauer's Herbal, appearing as it did

Basilien (Sweet Basil): A warming and drying herb. It strengthens the head, brain, and stomach; loosen Burretsch (Borage): For medical purposes, borage is gathered when the sun moves into the sign of Ge The distilled water of borage delights and enlivens the heart, guards against fainting spells, banishes made and logical steps

Reference

References

1 Sauer's Herbal Cures: America's First Book of Botanic Healing, translated and edited by William Woy Britain

The English Physitian1

In Britain, Nicholas Culpeper (1616–1654) is the household name for herbal medicine. He is famous for Culpeper followed the classical medical precepts of Hippocrates and Galen.

He also subscribed to the doctrine of signatures – that is, the belief that plants contain some physical signatures beliefs weren't so uncommon for seventeenth-century academics and physicians, and some planesignature."

A medical populist, Culpeper's mission was to put medicine and natural healing back into the hands of a Culpeper's best known work, A Complete Herbal (The English Physician), gives the astrological indicated Through an elaborate system of planetary sympathies and antipathies, he found the right herb or formulate are quoting just three examples from Culpeper's Complete Herbal: Government and Virtues of Garl. The classical age in herbal medicine 43

(except those which itself breed). It provokes urine, and women's courses, kills worms in children, cuts Government and virtues of Agrimony: It is an herb under Jupiter, and the sign of cancer; and strengther Government and virtues of Fox-Glove: The plant is under the domination of Venus, being of a gentle clean the plant is familiarly and frequently used by the Italians to heal any fresh or green wound, the leaves be

- 1 Culpeper's Complete Herbal, Wordsworth Editions Ltd. 1995.
- 2 Journal of the Royal Society of Medicine, September 1994, 87: 552.

Gerard's Herbal1

John Gerard (also John Gerarde, c. 1545–1612) was the renowned Elizabethan herbalist, with a large l

44 Legacy and logical steps

illustrated Herball, or Generall Historie of Plantes, first published in 1597. It became the most prevalent

Except for additions of some plants from his own garden and from North America, Gerard's Herbal is la

We will give Gerard's version of Herbe Gerard and three examples of his text (in sixteenth-century Eng

Herbe Gerard: John Gerard equated Herbe Gerarda with Herbe Gerard, Wilde Masterwort, Ashweed a

Clownes Wound-wort or All-heale: The leaves hereof stamped with Axungia or hog's grease, and applied

Onion: The onion do bite, attenuate or make thin, and cause dryness. Being boiled they do lose their sh

The classical age in herbal medicine 45

changed, and yet for all they doe not lose their attenuating qualities. The juice of onion snuffed up into r

African Marigold: The unpleasant smel, especially of that common sort with single floures doth shew that 1 Gerard's Herbal, John Gerard's Historie of Plants, Edited by Marcus Wood-ward, Tiger Books Internation

Germany

(Allium cepa).

Hildegard von Bingen's Physica1

In Germany, the rise of Christianity brought the art and science of healing within the deeply spiritual bound Hildegard's writings were not only the first books on herbals and medicine written by a woman but were Natural medicine as a practice was quickly adopted and propagated by the monks. This monastic medicine

46 Legacy and logical steps

tested various practices and their outcomes. It remained the epicenter of natural

medicine for hundreds of years.1

Overview of the section about plants in Physica:

(a) Physica ("Plants") contains 230 sections on medicinal uses of plants. Hildegard makes little attempt

(b) She was not always clear about the specific ailment; for example, she used gicht to cure gout, arthri

- (c) She follows the traditional view that created things consist of mixture of four elements hot, cold we Every herb is either warm or cold. The warmth of the herb signifies the soul and the cold of herbs signif
- (d) Certain herbs have very strong aromas, others the harshness of the most pungent aromas. They ca
- (e) Certain herbs hold the foam of the elements. People who try to seek their own fortunes are deceived
- (f) Hildegard combines the elements with a theological notion ultimately derived from Genesis according
- (g) Since the balance of the elements and their corresponding humors determined good or bad health in Germany, now a world leader

With the introduction of cellular pathology in the late 1800s by the "Father of Modern Pathology," Germany, 600 to 700 plant-based medicines are available and are prescribed by some 70%. Hopefully, this will not be the case for long. The herbs sold with the intent of

The classical age in herbal medicine 47

curing, alleviating or preventing disease or symptoms of illness have been allowed in the German mark In 1976, Germany passed a law that required all medicines on the market (including conventional drugs a special committee on herbal remedies called Commission E3,4 was established.

With the global interest in herbal medicine rapidly expanding, the German Commission E monographs of the European Scientific Cooperative on Phytotherapy (ESCOP)5 uses the monographs as the basis for the World Health Organization draws on Commission E's work to develop a new series of herbal monographs of their own drug regulations.6

References

- 1 Hildegard's Healing Plants, translated by Bruce W. Hozeski, Becon Press, Boston, 2001: xi-xv, 3.
- 2 https://healthyhildegard.com (a forum promoting holistic approach to the interconnec-tivity of spirit min
- 3 The Complete German Commission E Monographs, edited by Blumenthal et al., American Botanical
- 4 Herbal Medicine: Expanded Commission E Monographs, American Botanical Council, Austin, TX, 200
- 5 ESCOP Monographs, Thieme, 2003 and 2009.
- 6 WHO Monographs on Selected Medicinal Plants, WHO, Geneva, Vol. 1–4, 2009.

Ancient Roman medicine

Pliny the Elder's Natural History1

Roman medicine, during the first century, was described by Pliny the Elder (Gaius Plinius Secundus, ac volumes that covered "Materia Medica" in Books XX through XXX.

A few excerpts from an authentic translation of the original text:1

Human blood for leprosy: I have said that leprosy did not occur in Italy before the time of Pompeius Mag 48 Legacy and logical steps

were attacked, it was a deadly thing for the inhabitants, because the tubs in the baths used to be prepa (Book XXVI)

Human blood for quinsy: The blood let from any part of the patient himself makes, we are told by Orphe (Book XXVIII)

Woman's milk as medicine: As to the use of woman's milk, it is agreed that it is the sweetest and most of the saliva too of a fasting woman is judged to be powerful medicine for bloodshot eyes and fluxes, if the (Book XXVIII)

Ass's milk: It is thought that ass's milk removes wrinkles from the face, making the skin white and soft, (Book XXVIII)

Elephant's blood as medicine: The blood of an elephant, particularly that of the male, checks all the flux (Book XXVIII)

The classical age in herbal medicine 49

Aphrodisiacs and antaphrodisiac: Aphrodisiacs: An application of wild-boar's gall, pig's marrow swallow Antaphrodisiac for men: An application of mouse's dung. Intoxication is kept away by the roasted lung (Book XXVIII)

Properties of (selected) medicinal plant drugs

Basil: Ocimuni (basil) too was severely condemned by Chrysippus as injurious to stomach, urine and example of the breasts it checks the flow of milk.

(Book XX)

50 Legacy and logical steps

Linseed: Linseed is not only used in combination with other ingredients, but also by itself removes spots. For pains of the liver it is eaten with raisins; for consumption electuaries are made from the seed with verbilled in wine it prevents a sore from spreading, and with honey checks erup-tions of phlegm. With an (Book XX)

Walnuts: Walnuts have received their name in Greek from the heaviness of the head which they being (Book XXIII)

Cucumber: There is a variety of wild cucumber much smaller than the cultivated kind. The pale smooth This when pressed out is received in rain water, where it falls to the bottom.

Then it is thickened in the sun, and made into lozenges for the great benefit

The classical age in herbal medicine 51

of mankind, being good for dim vision, eye diseases and sores of the eyelids.

It is said that if the roots of vines are touched by this juice the grapes are not attacked by birds. The root Many authorities assign all these qualities to the cultivated cucumbers, which even apart from them is a Another kind of wild gourd is called colocynthis. The fruit is smaller than the cultivated, and full of seed. (Book XX)

52 Legacy and logical steps

Radish: Cultivated radishes moreover, besides what has been said about them, purge the stomach, loc In addition, a decoction of the skin in wine, drunk in the morning up to three cyathi, breaks up and eliminate these purposes and for spitting of blood Medius prescribes that they should be given cooked, as we (Book XX)

The classical age in herbal medicine 53

Stray parsnip: A kind is staphylinus, is called stray parsnip. Its seed, crushed and taken in wine, soothe 54 Legacy and logical steps

benefiting men also when pounded with an equal part of bread and drunk in wine as a cure for bellyach Philistion boils it in milk; for strangury he prescribes four ounces of the root, giving it in water for dropsy (Book XX)

Cabbage: The earliest Greeks divided cabbage into three varieties; (a) the curly, which they called seling As cabbage is the enemy of the vine, they say that it opposes wine; that if taken in food beforehand it pook XX)

The classical age in herbal medicine 55

Large Juniper: The big Cedrus (the large Juniper), which Greek botanists call cedrelate, yields a pitch v (Book XXIV)

Reference

1 Natural History (Rackham, Jones, & Eichholz)/Book 20 to 28, https://en.wikisource.org/wiki/Natural_History_(Rackham,_Jones,_%26_Eichholz)/Bo., accessed March 21–22, 2019. (I = Pliny These examples are enough to prove that by investing all our energy and resources in reviving and revalidating the tenets of the classical period of India,

5 Avoiding scientific inquiry

is not possible now

Col. Sir Ram Nath Chopra (MRCS, England 1907; B. Ch, Cambridge, UK, 1908;

MD, 1912; Sc D, Cantab; FRCS, London) wrote in 19331:

we are fighting a losing battle against an herbal renaissance.

- Attempts at the revival of Ayurvedic and Unani systems in their present form (based on classical doctr
- When it is remembered that the Ayurvedic system of medicine has been practically stationary for about
- Khoon, Balgham, Safra and Sauda, i.e., blood, phlegm, yellow bile and black bile), to explain the causa

 History shows that many of our important pharmacopoeial drugs were known and were also used in s

When it is said that a drug like Sarca indica is useful in menorrhagia or Cephalandra indica in diabetes
 58 Legacy and logical steps

diseases; what we (scientists) want to know is their particular value in these various conditions and how

- The active principles, responsible for their therapeutic action, have to be isolated and worked out. The
- The question of making suitable preparations and their preservation so as to make their potency independent
- The standardization of (herbal) drugs and preparations by chemical and biological methods of the ass
- The active and useful drugs should be separated from those which are inactive and worthless.
- Until drugs are investigated on rational lines, their use by the profession in India must be restricted.
- Much more could be done in furthering the cause of indigenous medicine by a thorough study of indig
- The scientific mind is not satisfied by mere statements, no matter from what source they originate, unled the first prime minister of India, Pandit Jawahar Lal Nehru, observed:2

There can be no doubt that these ancient systems (Ayurveda and Unani) of India have an honorable hi In 1989, Dr. Nitya Anand, the then Director, Central Drug Research Institute, Lucknow, wrote: "Knowled modern development to rationalize their basic tenets."3

Dr. BN Dhavan, the then Director, Central Drug Research Institute, Lucknow, also advocated scientific were created."3

Avoiding scientific inquiry impossible now 59

In 1994, VV Sivarajan and Indira Balachandran wrote4:

Reflecting on the decline of Ayurveda after a Brahmanic period (800 bc-ad 10005), one would find that

- A complacent attitude among men of Ayurveda that everything is written in the ancient texts and there
- A self-righteous feeling that their practice reflects ancient wisdom.
- Reluctance on their part to seek and get collaboration from people working in other allied fields.

According to these authors, pharmacognosy is the most neglected area of medicinal plant research in A
The easiest path to promote the classical period of Ayurveda is based on emotions and past glory uncri
in the long-term, nor to meaningful change in the health sector. Such an easy route of resisting contemp

The editors of the Reviews on Indian Medicinal Plants series of the Indian Council of Medical Research

The clinical reports have been objectively included in the Monographs without comments on their validit

60 Legacy and logical steps

innumerable ethical, technical, logistic hindrances and bias involved in the conduct of clinical trials. A number of the cases, a biostatistician has not been involved at any stage of the trial.

Dr. Ranjit Roy Chaudhury wrote in a WHO publication (SEARO No. 20): It has been said that those pla Setting aside all these observations, The Ayurvedic Pharmacopoeia of India, remained firm to the tradit References

- 1 Chopra Col. Sir RN et al, Indigenous Drugs of India, second edn, Academic Publishers, Kolkata.
- 2 Cited in "An Overview of Ayurveda, Yoga, Naturopathy, Unani, Siddha and Homoeopathy in India," A
- 3 Research and Development of Indigenous Drugs, 1989, Institute of History of Medicine and Medical F
- 4 Sivarajan VV, Indira Balachandran, Ayurvedic Drugs and Their Plant Sources (ADPS), 1994, Oxford
- 5 Patwardhan B, Journal of Ayurveda & Integrative Medicine, April–June 2014, 5, www.

jaim.in Editorial.

6 Ayurvedic pharmacognosy

and pharmacology

In modern perspective

In The Ayurvedic Pharmacopoeia of India the "properties and actions" of a herb have been assessed of Sweet (Madhura), sour (Amla), salty (Lavana), pungent (Katu), bitter (Tikta) and astringent (Kasaay Physical properties (Guna) of herbs have been divided into 20 categories: light, heavy, cold, hot, unctulated properties (Veerya) has been divided into Sheeta (cold) and Ushna (hot) segments.

The herb is selected for medicinal use after assessing the imbalance or dis-harmony due to Doshas (m Once the Dosha (morbidity) has been identified, the first component of the herb, Rasa (taste), is selected Sweet taste pacifies Vaata and Pitta but aggravates Kapha.

Sour taste pacifies Vaata but aggravates Pitta and Kapha.

Salty taste pacifies Vaata but aggravates Pitta and Kapha.

Pungent taste pacifies Kapha but aggravates Vaata and Pitta.

Bitter taste pacifies Pitta and Kapha but aggravates Vaata.

Astringent taste pacifies Pitta and Kapha but aggravates Vaata.1

In The Ayurvedic Pharmacopoeia of India, Karma of the drug is defined by its impact on Dosha, follower Since the effort is to compile pharmacopoeial monographs of Ayurvedic drugs, the accent on classical at 62 Legacy and logical steps

doctrine of Rasa, Guna, Veerya, Vipaaka and Karma has not been lost sight of, though some of them a of an established experimental method to qualify them (emphasis added).

This statement was modified in the preface of The Ayurvedic Pharmacopoeia of India, Part I, Vol. VI, 20 Such parameters are not possible to measures by modern scientific methods thus not mandatory (emphasis added)."

A large number of drugs have got no specific odour. The "odour" is examined by directly smelling 25 g of Vaata, Pitta and Kapha were also not easy to define. Vaata was equated with breath, Pitta with fire and Arvind Chopra and Vijai V. Doiphode opined that, to a certain degree, modern analytical chemistry has physiologic forces.3

The Ayurvedic philosophy describes a unifying hypothesis linking the universe with all living and nonlivi Each Dosha has its own characteristic, physiologic and psychologic expres-sions. Vaata is dry, cold, lig Ayurvedic pharmacognosy and pharmacology 63

is cold, wet, heavy, cloudy and static. Although Vaata, Pitta and Kapha often colonize in the intestines, stomach and chest, they are ubiquitous.3

Bhagwan Dash, Mahadihassan, Udupa, Asima Chatterjee and Satyesh Chandra Pakrashi also tried to According to Bhagwan Dash, Vaayu is responsible for all movements and sensations, including motor a

cohesiveness in the body by providing the fluid matrix to it.4

According to Mahadihassan S. and Udupa K. N., the three morbidities (Doshas) can be easily estimated destroying the respective neurohumors or their precursors.5

These "modified interpretations" indicate that a concerted effort is made to establish the significance of We must realize that the situation has changed drastically. After imparting instruction to the Ayurvedic sequence will give only a few examples of pharmacognosy of Ayurvedic herbs to demonstrate the difficulty in (a) Brahmi (Bacopa monnieri): Rasa: Tikta; Guna: Laghu; Veerya: Ushna;

Vipaaka: Katu; Prabhaava: Medhya. Pacifies Kapha-Vaata.

- (b) Manduukaparni (Centella asiatica): Rasa: Tikta, Anu-rasa: Kashaya; Guna: Laghu; Veerya: Sheeta Pacifies Kapha-Pitta. (Dravya Guna Vijnana, Vol. II, 1978, by P. V. Sharma.) The Rasa, Guna, Veerya
- (a) Haridra (Curcuma longa): Rasa: Tikta, Katu; Guna: Ruksha; Laghu; Veerya: Ushna; Vipaaka: Katu.
- (b) Tulasi (Ocimum sanctum): Rasa: Katu, Tikta; Guna: Laghu, Ruksha; Veerya: Ushna; Vipaaka: Katu 64 Legacy and logical steps

Even herbs with different therapeutic actions were shown to have the same activity on Vaata, Pitta, and

- (b) Nirgundi (Vitex negundo): Rasa: Katu, Tikta; Guna: Ruksha, Laghu; Veerya: Ushna; Vipaaka: Katu
- (c) Bhringaraaja (Eclipta alba): Rasa: Katu, Tikta; Guna: Laghu, Ruksha; Veerya: Ushna; Vipaaka: Kat
- (d) Baakuchi (Psoralia corylifolia): Rasa: Katu, Tikta; Guna: Laghu, Ruksha; Veerya: Ushna; Vipaaka:

(Dravya Guna Vijnana, Vol. II, 1978, by P. V. Sharma)

There is a caution even for cow's milk, if these parameters are followed.

India has 37 pure cattle breeds. Five of these, Sahiwal, Gir, Red Sindhi, Thar-parkar and Rathi, are known properties have been attributed to cow's milk in Ayurveda (Yogarat-nakara, Varnabheda):

Black cow's milk: Vaatahara (pacifies Vaata).

Yellow cow's milk: Vaata-Pittahara (pacifies Vaata and Pitta).

White cow's milk: Kaphavardhaka (aggravates Kapha).

Milk of a cow whose calf is very young: Tridoshakaaraka (aggravates all the three doshas).

An example of data fudging

No reference of Carica papaya could be traced in classical texts. Ayurvedic Pharmacopoeia of India inc

Prabhava or Karma was obviously based on ethnomedicine or the doctrine of signatures.

The relevance of signatures of plants and animal's intuition-based selection or rejection of plants was n

Brahmi pacifies Kapha-Vaata, Manduukaparni Kapha-Pitta. This may indicate that their universal Medh

Ayurvedic pharmacognosy and pharmacology 65

Ayurvedic Pharmacopoeia of India still continues to quote Rasa, Guna, Veerya, Vipaaka and Prabhaav

We are now concerned with the standardization of crude herbs, extracts, quality of finished products wi

References

1 Chatterjee A, Satyesh Chandra Pakrashi, Basic concepts of ayurveda, Treatise on Indian Medicinal F

2 Balch PA, Prescription for Herbal Healing, 2002.

3 Chopra A and Vijay V. Doiphode, Ayurvedic medicine, core concept, therapeutic principles and current

4 Dash B, Lilitesh Kashyap, Materia Medica of Ayurveda, Concept Publishing Company, New Delhi-110

5 Mahadihassan S, A comparative study of early system of Indian cosmology and Tridosha doctrine, In

7 How classical procedures

lost ground

In Ayurveda, Bhaishaja-Kalpana (Pharmaceutical preparation procedures) is the next step after the her

They hardly reach the consumer before the expiry period.1

Hemidesmus indicus (Saarivaa), Tinospra cordifolia (Guduchi), Adhatoda visica (Aduusaa), Abroma au

Collection of herbs is also not being done scientifically. For example, annual plants should be collected

Thus herbal medicines are prepared in total disregard of standard methods.

This affected the shelf-life of Ayurvedic drugs. Ayurvedic Churna (powders) should be used within two

68 Legacy and logical steps

potency for one year.3 Kwaaath churna retains potency only for two months.

Gutika vati, pills of herbal composition, retain their potency for 12 months.

Avaleha, Ghrita and Taila retain their potency for 16 months. Aasavas and Arish-

tas can be kept for any length of time in well-closed bottles or jars.4

Now we go back to 2000 bc and try to find out how herbal medicines were processed and how they we Charaka in Charaka Samhita, Vimansthan 7, 22, advised the use of sukshma churna (micro-pulverized According to Sushruta, the churna (powder) of essential parts of the plant belonging to a group, is saturated.

(Sushruta Samhita, Chikitsasthan, 10, 3; 12, 10).

and cold.5

At this point, we would like to remember the seer who gave the Ayurvedic dictum: mardanam gunavard. Thus, impregnating and triturating the herb was of utmost importance in the mind of the physician. It was according to Sushruta, subtlety is the quality by virtue of which a drug can penetrate into the smallest of In Ayurveda, impregnating the herb and its trituration were supposed to go together. The process of importance in the mind of the physician. It was according to Sushruta, subtlety is the quality by virtue of which a drug can penetrate into the smallest of In Ayurveda, impregnating the herb and its trituration were supposed to go together. The process of importance in the mind of the physician. It was according to Sushruta, subtlety is the quality by virtue of which a drug can penetrate into the smallest of In Ayurveda, impregnating the herb and its trituration were supposed to go together. The process of importance in the mind of the physician. It was according to Sushruta, subtlety is the quality by virtue of which a drug can penetrate into the smallest of In Ayurveda, impregnating the herb and its trituration were supposed to go together. The process of importance in the mind of the physician. It was according to Sushruta, subtlety is the quality by virtue of which a drug can penetrate into the smallest of the subtlety is the quality by virtue of which a drug can penetrate into the smallest of the subtlety is the quality by virtue of which a drug can penetrate into the smallest of the subtlety is the quality by virtue of which a drug can penetrate into the smallest of the subtlety is the quality by virtue of which a drug can penetrate into the smallest of the subtlety is the quality by virtue of which a drug can penetrate into the smallest of the subtlety is the quality by virtue of which a drug can penetrate into the smallest of the subtlety is the quality by virtue of which a drug can penetrate into the smallest of the subtlety is the quality by virtue of which a drug can penetrate into the smallest

It was found that Albosang (a tonic for general debility, containing Ashwagandha) was more effective in During the 1950s, Sundarrao Bhaskarji Vaidya, a medical practitioner from Mumbai, coined the term "S In Calcutta, Dr. Ghosh S. C. made a combination of medicinal herbs with the alcohol-water mixture, me During recent years Kulkarni P. H., Institute of Indian Medicine, Pune, and Ranjana Y Abhang, Jnana P In a clinical trial by Swarge J. M. and Kulkarni P. H., juice of Aloe indica and Adhatoda vasica was mixed.

The second phase of jarjarikaran came in 1918, when J & J DeChane of Hyderabad introduced micro-h

Kulkarni P. H. prescribed Bhuu-nimbaadi tablets (1 tablet of 250 mg three times a day) for 21 days to 5 Ashokarishta and Lodhrasava mixture in subtle (sukshma) form (4 globules three times a day) was giv 92% of the patients showed excellent results. The drugs were found free of side-effects.7

70 Legacy and logical steps

Vasosin, consisting of ingredients like Adhatoda vasica (Vasaka), Solanum xanthocarpum (Kantakari), Subtle (sukshma) Triphala guggul (TG-3x), consisting of Terminalia belerica (Baheraa), T. chebula (Ha A significant weight loss was observed without any side-effect.7

A subtle form of a mixture of Khadirarishta, Mahamanjishthadi kwath and Sarivadyasava (four 3x globu patients got relief in 30 days and 56% needed 90 days for relief.7

Ranjana Y. Abhang's first document on "Ayurveda and Sukshma Medicine"

appeared in 1985,8 1987, and another document "The Pharmacy of Sukshma Medicines" in 1987.9

In 1992 and 1993 Ranjana carried out double-blind controlled studies to evaluate the effect of Centella Jnana Prabodhni Institute of Research in Ayurvedic Medicines, Pune, prepared sukshma medicines by Piper nigrum (Maricha), Azadirachta indica (Nimba), Embelia ribes (Vidanga), Tribulus terrestris (Gokhi Sukshma suvarna bhasma, sukshma abhraka bhasma, sukshma praval pishti, sukshma mahalakshmiv Only the form of the medicine is changed, but the action remains unaltered and could be used according These sukshma medicines were put on clinical trials in the Jnana Prabodhini Institute's Comprehensive The method of triturating and tableting the herbal compounds was the same, as is being followed by home

conversion of herbal contents to a homeopathic medicine was rejected by the consumers. Thus, sukship Ayurveda, as usual, maintained its eternal and holy image, while most of the old, essential procedures,

References

1 Singh R, Vanaushadhi Nidarshika, 1983.

5 Deerghayu international, 1990, 6(3): 5.

How classical procedures lost ground 71

- 2 Pharmacopoeial Standards of Ayurvedic Formulations, CCRAS, 1987.
- 3 Ayurvedic Formulary of India, second revised edn, 2003.
- 4 Pharmacological Standards for Ayurvedic Formulations, Central Council for Research in Ayurveda an

- 6 Deerghayu international, 1995, 11–01(41): 24–26.
- 7 Kulkarni PH, ed, Ayurved Research Papers, II, 1995.
- 8 Journal of Res Edu Indian Med, IV: 59-66.
- 9 Deerghayu international, 1987, III-2, 18-22.
- 10 Journal of Research in Ayurveda and Siddha, 1992, 13(1-2): 35-47; ibid, 1993, 14(1-2): 10-24.

8 Identification of proper herbs

A new scientific route

- In the Ayurvedic Formulary of India, herbal components have been reproduced from classical texts by
- A number of Sanskrit names of the plants, over the course of time, have been linked to different plants
- Thus the classical name of the herb, equated with different botanical names, will exhibit different biolo
- Extinct herbs have been retained in compound formulations; substitute herbs have been permitted wit
- Only revalidated herbs by clinical or experimental trials are to be retained.

Traditional uses should not be taken as the final word. Those found redundant should be discarded.

- Properties of compound formulations are to be revised in the present context (as the drug is to be use
- A number of synonyms of botanical names have been Sanskritized. For example, Monochoria vaginal
- Nonclassical Sanskritized names have been assigned to a number of plants. For example, Vrakkapha
- Sanskrit verses (shlokas) have been composed by contemporary vaidyas and quoted in the Ayurvedi Sanskrit shloka on Erandakarkati (Carica papaya) was composed by Prof.

74 Legacy and logical steps

P. V. Sharma (API, Vol. VI); Erandakarkati is itself a nonclassical Sanskritized name of common Indian Now, we give 85 examples of the complexity of botanical drugs of Ayurvedic Pharmacopoeia of India. Taalisha still remains a drug of disputed source. Abies webbiana and Taxus wallichiana both are known

Svarna-taali (yellow-flowered sp. of rhododendron?) was used as a substitute for Taalisha patra during

National Formulary of Unani Medicine equated Zarnab (Taalisapattar) with Flacourtia cataphracta, also Cinnamomum tamala Nees leaf oil resembles C. zeylanicum leaf oil which contains d-alpha-phellandres Cinnamomum tamala leaves belong to two chemotypes: eugenol type and cinnamic aldehyde type. Euglidentification of proper herbs 75

Ativishaa, Atis

Daughter tubers of Aconitum heterophyllum Wall. ex Royle constitutes the main drug, Atis root. Mother of total alkaloids; atisine, heterotisine, heterophyllisine, heterophyllisine, heterophylline, heterophyllidine, atidir Commercial Atis (Patis) of the market is not the root of A. heterophyllum. The market drug is adulterate Vacha

Acorus calamus Linn. is the official drug. Roots of Alpinia galanga Willd, known as Sugandh Vachaa, and Paris polyphylla Sm. Baal Vach (Paris polyphylla); Malaya Vachaa (Alpinia galanga); Dweepaanta Type I: Acorus calamus L. var. americanus, a diploid American variety; Type II: var. vulgaris L. (var. cal Beta-asarone in different chemo-types: In type I, beta-asarone and other phenylpropanoids are absent. In type II, III and IV, the major constituent is usually beta-asarone (isoasarone) up to 96%. Indian calam (Beta-asarone is carcinogenic in animal studies.)

The American variety is isoasarone free. European form contains less than 10% isoasarone; others contain up to 96% beta-isoasarone in the volatile oil.

Vaasaa

Vaasaa is equated with Adhatoda vasica Nees (Syns. A. zeylanica Medic., Justicia adhatoda Linn.). A. Hamspaadi

Hamspaadi is equated with Adiantum lunulatum Burm., Adiantum philippenese Linn. syn. A. lunulatum 76 Legacy and logical steps

consists commonly of Adiantum venustum Don. And/or A. capillus-veneris Linn.

The genuine material is scarce.

In Kerala, Desmodium triflorum (L.) DC. Is used as Hamsapadi. Vitis pedata Vahl is also known as Ham

Ayurvedic Pharmacopoeia of India (Part I, Vol. VI) equated A. capillus-veneris Linn. with Bijapatra, which

Paashaanabheda

Bergenia ciliata (Haw.) Sternb. Syn. Bergenia ligulata (Wall.) Engl. (Saxifragaceae) is the Indian pharm Aerva lanata (Linn.) Juss. (Fam. Amaranthaceae) is used in Tamil Nadu, Rotula aquatica Lour. (Boragii Sthuula-Aila

Sthuula-aila is the pharmacopoeial name equated with Amomum subulatum Roxb.

In Kerala, fruits of Pucedanum grande C. B. Clarke are used as Sthuula-aila.

Dhava

Dhava is the pharmacopoeial name equated with Anogeissus latifolia Wall. The Indian Medical Practition
Heartwoods of both (A. latifolia and S. hemisphericum), were used for preparing cart wheels, which was
According to Ayurvedic Pharmacopoeia of India (Part I, Vol. VI), two varieties are mentioned in classical
Identification of proper herbs 77

Chandaa

Chandaa is the pharmacopoeial name equated with Angelica archangelica Linn.

In Kerala, Costus specious (Koenig) Smith is used for Chandaa and Choraka (the white and yellow vari Agaru

Agaru is the pharmacopoeial name equated with Aquillaria agallocha Roxb.

Syn. A. malaccensis Lam. In South India, Vepris bilocularis Engl. And Anaphalis neelgeeriana DC. Are Agarwood or Eaglewood of commerce is derived from the fungus-infected tree through wounds caused Vriddhadaaru

Vriddhadaaru is the pharmacopoeial name equated with Argyreia nervosa (Burm.

f.) Boj., syn. A. speciosa Sweet. Roots of Ipomoea pes-caprae (L.) Sw., syn. I.

biloba Chois. And I.

petaloidea Chois. are common substitutes in South and North-west India, respectively.

Naakuli

In Ayurvedic Formulary of India, Part 1, page 320, Naakuli is equated with Aristolochia indica Linn. Ishv

Part I, Vo. III, Aristolochia indica Linn. is equated with Gandganaakuli.

In India, Rauvolfia tetraphyla Linn. is used as a substitute when Rauvolfia serpentina is not available. R

are sometimes found mixed in Kerala and Western India.

Dvipaantara Damanaka

Dvipaantara Damanaka is the pharmacopoeial name equated with Artemisia absinthium Linn. The original

78 Legacy and logical steps

Shataavari

Shataavari is the pharmacopoeial name equated with Asparagus recemosus Willd.

Mahaashataavari, mentioned in classical texts, is equated with A. sarmentosus Linn. Roots of A. sarme

The trade procures three varieties as Shataavari: var. racemosus, common in plains and upper ghats in

Braahmi

Braahmi is the pharmacopoeial name equated with Bacopa monnieri (Linn.) Wettst., syn. Herpestis mon

These have been identified as Manduukaparni.

Danti

Danti is the pharmacopoeial name equated with Baliospermum montanum Muell.-

Arg. Croton tiglium Linn. is used as a substitute in Tamil Nadu. Dantimuula is sold as Danti, Hastidanti,

Sahachara

Sahachara is the pharmacopoeial name equated with Barleria prionitis Linn.

In Kerala, other Acanthaceae spp. are used as Sahachara: Nilgirianthus ciliatus (Nees) Bremek., Ecbol

Daaruharidra

Daaruharidra is the pharmacopoeial name equated with Berberis aristata DC.

B. aristata Hook. f. & Thomson (non DC.), B. asiatica Roxb., B. chitria Lindl.

Are also used as Daaruharidra.

The stem bark of Coscinium fenestratum Colebr. is used as a substitute in Kerala and Tamil Nadu, and

Identification of proper herbs 79

Rakta Punarnavaa

Rakta Punarnavaa is the pharmacopoeial name equated with Boerhaavia diffusa Linn.

Trianthema portulacastrum Linn. is used as a substitute in the South, and sold as Sveta punarnavaa. T

Shallaki

Shallaki is the pharmacopoeial name equated with Boswellia serrata Roxb. Indian material is found adu

Karanja

Karanja is the pharmacopoeial name equated with Pongamia pinnata Pierre.

Three plant species are being used as Karanja because their flowers impart color to the water. Pongar

Priyangu

Priyangu is the pharmacopoeial name equated with Callicarpa macrophylla Vahl. Aromatic buds of C. n

Paathaa

Paathaa is the pharmacopoeial name equated with Cissampelos pareira Linn.

The root is sometimes found adulterated with the roots of Stephania glabra Hk. f.

80 Legacy and logical steps

from Chondrodendron tomentosum Ruiz & Pav. (a native of Peru and Brazil) or from C. platyphyllum M

Bigger var. (Raaja-paathaa is equated with Stephania hernandifolia Walp. and Cyclea peltata (Lamk.) H

Bhaarangi

Bhaarangi is the pharmacopoeial name equated with Clerodendrum serratum (Linn.) Moon. None of the

(Clerodendrum serratum and Elaeodendron glaucum: distributed throughout India, common in souther

Aparaajitaa is the pharmacopoeial name equated with Clitoria ternatea Linn.

The market samples of Shankhapushpi from South India, consisted largely of C. ternatea, while from of

Kerala physicians do not discriminate between Aparaajitaa and Shankhapushpi and use Clitoria ternate

Gandira

Gandira is the pharmacopoeial name equated with Coleus forskohlii Briq. syn. C, barbatus Benth., Plec

C. forskohlii is the source of forskolin (0.1% on dry weight basis). In none of the other Coleus spp. (C. a Identification of proper herbs 81

and C. rotundifollius) forskolin could be detected at levels down to 1 x 10–4% on dry wt. of plant material Shankhapushpi

Shankhpushpi is the pharmacopoeial name equated with Convolvulus pluricaulis Convolvulus pluricaulis Kaaliyaka

Kaaliyaka is the pharmacopoeial name equated with Coscinium fenestratum (Gaertn.) Colebr. while Pit Stem bark of C. fenestratum is used as a substitute of Daaruharidra (Berberis aristata) DC. in Tamil Na Kebuka

Kebuka is the pharmacopoeial name equated with Costus speciosus (Koerning ex Retz.) Smith. Not to In the market, dried pieces of Kebuka root tuber are sold as Kalihaari (Gloriosa superba Linn.). Laangli

Kumkuma is the pharmacopoeial name equated with Crocus sativus Linn.

Kumkuma

During the classical period, the drug sources were Mimusops elengi Linn. or Mesua ferrea Linn. The he Kashmiraj was mentioned for the first time by Vagbhata (sixth–seventh century).

Chakrapaani (eleventh century) interpreted Rudhira of Charaka as Kumkuma.

Kesara and Keshara are difficult to define in Ayurvedic literature.

Kesharaahva, in most cases, has been treated as a synonym of Naagakesara (stamens of Mesua ferre In Ayurvedic Formulary of India, Part I, Second Edn. (page 317), Keshara and Kesara are synonyms of 82 Legacy and logical steps

the column for the official name. In Ayurvedic Formulary of India, Part II, First Revised Edn., Kumkuma Krishna Saarivaa, Shveta Saariva

Krishna Saariva is the pharmacopoeial name equated with Cryptolepsis buchanani Roem. & Schult.

Black stem pieces of C. buchanani are used and sold in Uttar Pradesh market as Anantamuula. Ichnoc Two varieties of Saarivaa are mentioned in Ayurvedic texts: Shveta (white) and Krishna (black). Shveta

Taalmuuli

Taalmuuli is the pharmacopoeial name equated with Curculigo orchioides Gaertn.

In Kerala, in practice, C. orchioides is used for both, the black and white variety of Mushali (known as N A black variety of Mushali is used since long as Taalamuuli. The white variety of Mushali is equated wit

Aamra Haridra

Aamra Haridra is the pharmacopoeial name equated with Curcuma amada Roxb.

The genuine material is available in West Bengal, Kerala, and Tamil Nadu.

At the majority of trade centers, C. aromatica Salisb., wild turmeric, is sold as Aambaahaldi.

Haridra

Haridra is the pharmacopoeial name equated with Curcuma longa Linn.

Rajani, Nishaa, Nishi, Raatri, Nilakanth are wrong synonyms of Haridra. These should be equated with

Source of Radix curcumae in China: Curcuma wenyujin Y. H. Lee et C. Ling, C. kwangsiensis S. Lee et

Identification of proper herbs 83

Karchura

Karchura is the pharmacopoeial name equated with Curcuma zedoaria Rosc.

Rhizomes of Curcuma caesia Roxb. are sold as a substitute, especially in West Bengal.

The source of Karchura in Kerala, in recent times, has been Kaempfera galanga Linn.

Shimshapaa

Simshapaa is the pharmacopoeial name equated with Dalbergia sissoo Roxb.

Two varieties of Shimshapaa are mentioned in Ayurveda (Dhanvantari Nighantu, prior to thirteenth cen

latifolia Roxb.

In Kerala, the heartwood of Xylia xylocarpa Roxb. Taub. is used as Shimshapaa.

Dhattuura

Dhatuura is the pharmacopoeial name equated with Datura metel Linn.

Indian Dhatura species contain alkaloids hyoscyamine and hyoscine, but D.

metel Linn., additionally, contains meteloidine, as a specific characteristic (Indian Council of Medical Re Shaalparni

Shaalparni is the pharmacopoeial name equated with Desmodium gangeticum DC.

The drug is sometimes adulterated or even substituted with the roots of Desmodium pulchellum Benth.

Kerala physicians, by and large, accepted Psuedarthria viscida (L.) W. & A. as the source plant of Shaa

Bhringaraaja

Bhringaraaja is the pharmacopoeial name equated with Eclipta alba Hassk.

Three varieties are mentioned in Ayurvedic texts, shvetapushpi (white-flowered), nilapushpi (blue-flowered), nilap

Vidang

Vidang is the pharmacopoeial name equated with Embelia ribes Brum. f.

Embelia tsjeriam-cottam A. DC. syn. E. rabusta C. B. Cl. is a commonly employed substitute for Vidang

Hingu

Hingu is the pharmacopoeial name equated with Ferula foetida Regel. Ferula narthex Boiss. is an inapp

Charaka used dried fruits of Hingu (Hinguka) in a gruel as a blood purifier and purgative (Charaka San

Hingupatri is the pharmacopoeial name equated with Ferula jaeschkeana Vatke. Two more botanical se

Parpata

Parpata is the pharmacopoeial name equated with Fumaria parviflora Lam.

In Kerala, Hedyotis brachypoda DC., H. corymbosa (L.) Lam. and H. diffusa Willd. are generally accept

Naadihingu

Naadihingu is the pharmacopoeial name equated with Gardenia gummifera L. f.

Leaf buds and young shoots of G. gummifera, as also of G. lucida Roxb. Syn.

G. resinifera Roth. yield a resinous exudation, known as Cumbi Gum.

The gum is not related to Ferula spp., nor is a substitute for any Ferula product.

A flavonoid (gardenin A, its methyl ether and acetate) has been isolated from the plant gum (3.76%); six Laangali

Laangali is the pharmacopoeial name equated with Gloriosa superba Linn.

Sliced rhizomes of Costus spiciosus (Koem.) Sims. (Kabuka) are often adulterated with the drug Laang Identification of proper herbs 85

Yashti

Yashti is the pharmacopoeial name equated with Glycyrrhiza glabra Linn.

A number of botanical drugs were used as a substitute for Madhuyashti during the classical period.

The root of Abrus precatorius is still known as Indian liquorice as it contains glycyrrhizin.

Taverniera cuneifolia Arn. syn. T. nummularia Baker (found in plains of Punjab, Gujarat and the Deccar Shathi

Shathi is the pharmacopoeial name equated with Hedychium spicatum Ham. ex Smith

The rhizome of Hedychium coronarium Koening is the most common adulterant.

H. spicatum (a Himalayan plant) is not available in South India. Curcuma zedoaria Roscoe is used as S Wall.

Riddhi

Riddhi is the pharmacopoeial name equated with Habernaria intermedia D.Don.

Habernaria spp. (H. intermedia, H. acuminata Thw., H. goodyeroides D.Don.) are collected in the Dehra Substitute drug of Riddhi is Dioscoria bulbifera Linn. (Ayurvedic Fomulary of India).

Kutaja

86 Legacy and logical steps

Kutaja is the pharmacopoeial name equated with Holarrhena antidysenterica (Roth) A. DC. and Indraya Wrightia antidyserterica (L.) R. Br is the currently valid name of Kutaja (Indian Council of Medical Research Varieties of Kutaja have been mentioned in Ayurvedic texts, male and female. Holarrheana antidys

Bitter Indrayava is the fruit of H. antidysenterica; sweet Indrayava is the fruit of Wrightia tinctoria R.Br.

Chirbilva

Chirbilva is the pharmacopoeial name equated with Holoptelea integrifolia Planch.

Two species of Karanja trees have been mentioned in texts: Puutika (Chira-bilva, Prakirya) and Naktan

Paarsika Yavaani

Paarsika Yavaani is the pharmacopoeial name equated with Hyoscyamus niger Linn.

Seeds of H. niger and H. muticus Linn. are the official source of Paarasika yavaani. (H. muticus is Egy

Commercial samples of the drug sold in Gujarat were found to be seeds of Cleome viscosa Linn.

Pushkara

Pushkara is the pharmacopoeial name equated with Inula racemosa Hook. f.

Roots of Saussurea lappa C. B. Clarke is commonly found mixed with commercial samples of Pushkara

Even in Bhavaprakasha (sixteenth century), Kushtha (Saussurea lappa) was a substitute for Pushkarar

Hapushaa

Hapushaa is the pharmacopoeial name equated with Juniperus communis Linn.

In South India, Sphaeranthus indicus Linn. is used as the drug source. Kerala physicians consider Hap

Madayanti

Madayanti is the pharmacopoeial name equated with Lawsonia inermis Linn.

Nil Madayantika could not be traced in classical texts. Madayanti/Madayanti-kaa is mentioned in Bhava

Identification of proper herbs 87

Henna (Mehendi) was originally an Unani plant drug. Classical Ayurvedic drug as Mendi, Mendikaa, Ma

Jivanti

Jivanti is the pharmacopoeial name equated with Leptadenia reticulata W. & A.

The market drug, in most parts of the country, is the whole herb of Ephemeran-tha macraei (Lindl.) Hur

Roots of Holostemma ada-kodien Schult are used as Jivanti in South India, especially in Kerala. Majori

Kaakoli

Kaakoli is the pharmacopoeial name equated with Lilium polyphyllum D.Don.

Tuberous roots of Roscoea procera Wall. are also used as Kaakoli.

Withania somnifera Dunal. roots are used as a substitute for Kaakoli and Kshirakaakoli (in double quan

Kshirakaakoli

Kshirakaakoli is the pharmacopoeial name equated with Fritillaria roylei Hook.

In addition to Fritillaria roylei, orchids being sold in the market include Roscoea procera Wall., Nomocha

Jivaka and Rshbhaka

Jivaka and Rshbhaka is the pharmacopoeial name equated with Malaxis acuminata D.Don.

Malaxis mucifera (Lindley) Kuntz. syn. Microstylis musifera Ridly is also used as Jivaka. Malax acumina

Muurvaa

Muurvaa is the pharmacopoeial name equated with Marsdenia tenacissima Wight. & Arn.

M. tenacissima is wrongly supplied in the Northern markets under the name of Trivrit.

88 Legacy and logical steps

Jingini was used as a substitute for Muurvaa during the sixteenth century.

(Jingini is equated with Lannea coromandelica Merill.) In Kerala, Chonemorpha fragrans (Moon) Alston

Kaaka-Naasikaa

Kaaka-Naasikaa is the pharmacopoeial name equated with Martynia annua Linn.

Seeds of Anamirta paniculata W. & A. are used as Kaaka-Naasikaa in Tamil Nadu.

Naagakeshara

Naagakeshara is the pharmacopoeial name equated with Mesua ferrea Linn.

In Ayurvedic Formulary of India, Part I, Second Edn. (page 317), Keshara and Kesara are synonyms of

Flower buds of Mammea suriga (Ham.) Kesterm (Fam. Cluciaceae) are known as Rakta-Naagakesara;

Jaatiphala

Jaatiphala is the pharmacopoeial name equated with Myristica fragrans Houtt.

East Indian nutmeg is available in three grades: (i) Banda nutmeg, considered to be the finest, contains

Bombay nutmeg, an adulterant of true nutmeg, is obtained from M. malabarica Lam., known as False N

Jataamaansi

Jataamaansi is the pharmacopoeial name equated with Nardostachys jatamansi DC.

Rhizomes of Selinum vaginatum C. B. Cl. and S. tenuifolium Wall. (known as Muraa) are sold as a cheal dentification of proper herbs 89

Gojihvaa

Gojihvaa is the pharmacopoeial name equated with Onosma bracteatum Wall.

Elephantopus scaber Linn. is the source of Gojihvaa in Kerala Not to be confused with Gaozabaan. Un Borago officinalis Linn. is equated with Gaozabaan in the National Formulary of Unani medicine. In Side (Ayurvedic Formulary of India, Part II, First English Edition. Page 69. On page 332, Go-Javana, as a sy Papata is the pharmacopoeial name equated with Pavetta indica var. tomentosa Hook. (Ayurvedic For Parpata is not to be confused with Papata which is known as Kath-champaa.) According to some author A market survey reveals that Morinda pubscens Smith and Stylocoryne lucens Gamble (both Rubiacea Jalapippali

Jalapippali is the pharmacopoeial name equated with Phyla nodiflora Greene syn.

Lippia nodiflora Rich. Ayurvedic Formulary of India, Part I, page 314, equated Lippia nodiflora with Jala National Academy of Ayurveda (Rashtriya Ayurveda Vidyapeeth) equated Phyla nodiflora with Siddha Scientists of Indian National Science Academy equated Jalapippali with Ranunculus aculeata Pers. (Po Taamalaki

Taamalaki is the pharmacopoeial name equated with Phyllanthus fraternus Webst.

90 Legacy and logical steps

Ayurvedic Formulary of India, Part I, wrongly equated Taamalaki with Phyllanthus niruri Linn. (page 327 P. amarus Schum & Thonn. and P. airy-shawii Brunal & Roux, syn. P. debilis Klein ex Willd. are very co

P. urinaria Linn. may also be used.

Kankol

Kankol is the pharmacopoeial name equated with Piper cubeba Linn. f.

Adulterants include Piper crassipes Korth., P. cannum Blume, P. baccatum Blume, Litsea cubeba Pers Maricha

Maricha is the pharmacopoeial name equated with Piper nigrum Linn.

Whole black pepper is often adulterated with fruits of Lantana camara Linn., Vitex altissima, seeds of C In Bhavaprakasha (sixteenth century) seeds of Shigru (Moringa oleifera Lam.) are described as Shveta Raasanaa

Raasanaa is the pharmacopoeial name equated with Pluchea lanceolata Oliver & Hiern.

Pluchea lanceolata is the official Raasnaa, the substitute plant drug is Alpinia galanga Willd., which is u I, page 323.)

Polygonum grabrum Willd. are sold since decades in Varanasi market as Raasanaa. Vanda roxburghii in Andhra Pradesh. Heliotropium strigosum Willd. is sold as Raasanaa in Bihar.

Rakta Chitraka

Rakta Chitraka is the pharmacopoeial name equated with Plumbago indica Linn.

Three varieties of Chitraka are mentioned in classical texts based on the color of the flower, red, white a White flowered variety (Plumbago zeylanica L.) is used in North India. The red-flowered variety (P. india flowered variety is possibly P. auriculata Lam. (= P. capensis Thumb.), not used as a source of Chitraka In South India, Rakta chiraka is considered to be therapeutically more active.

The roots, as well as the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, form an important indigenous drug, but less commonly used to the root bark of P. indica, and the roo

Medaa and Mahaa Medaa

Lonikaa

Identification of proper herbs 91

Medaa and Mahaa Medaa are the pharmacopoeial names equated with Polygonatum cirrhifolium Royle Polygonatum verticillatum (L.) Alloini also has been identified as Medaa, Asparagus racemosus Willd. is

Kozuppaa is the pharmacopoeial name equated with Portulaca oleracea Linn.

Kozuppaa is confined to Kerala and Tamil Nadu, while Lonikaa or Loni are classical Ayurvedic plant na

In Kerala, at least three different plants are currently used as the source of Lonika (Malyalam Kozuppa)

Alternanthera sessilis (Matysakshi) has been the source of Kozuppaa since long in Kerala.

Asana

Asana is the pharmacopoeial name equated with Pterocarpus marsupium Roxb.

Asana is a synonym of Terminalia tomentosa W. & A. and Bridelia montana Willd. in Maharashtra. The Rakta-Chandana

Rakta-Chandana is the pharmacopoeial name equated with Pterocarpus santalinus Linn.

Raktachandana may be used as a substitute in place of Chandan-shveta (Santalum album Linn.) and harpagandhaa is the pharmacopoeial name equated with Rauwolfia serpentina (Linn.) Benth. ex Kurz.

Roots of Rauvolfia tetraphylla Linn., cultivated in various parts of India, are employed as a substitute where the control of the control of

The heartwood of Adenanthera pavonia Willd. is often passed on as a substitute. The heartwood of Ca

Sarpagandhaa of Ayurvedic texts was not Rauvolfia serpentina of modern medicine, which was identific

92 Legacy and logical steps

Naakuli and Gandha Naakui were the drugs that were included in compound formulations for mental dis Kushtha

Kushtha is the pharmacopoeial name equated with Saussurea lappa C. B. Clarke.

Kuth, commonly known as costus in trade, has no connection with the botanical genus Costus. Kustha In Unani medicine, Qust-e-Arabi (Sweet var. is equated with Iris germanica Linn.) and Qust-e-Hindi, bit

Gajapippli is the pharmacopoeial name equated with Scindapsus officinalis Schoott.

In Kerala, sliced and dried inflorescence of Balanophora indica Wall. and pieces of the stem (not fruits)

Gajapippali was used as a substitute of Piper longum Linn. root.

Bhootakeshi

Gajapippli

Bhootakeshi is the pharmacopoeial name equated with Selinum vaginatum C. B.

Clarke.

Bhootakeshi roots are covered by hair-like fibers. Several species, Nardostachys, Selinium, and Coryda Roots of S. vaginatum are frequently mixed with those of Seseli sibricum Benth. ex C. B. Clarke and so

Mahaa Balaa is the pharmacopoeial name equated with Sida rhombifolia Linn.

(Yellow-flowered var.) syn. S. rhomboidea Roxb. ex Fleming. (White-flowered variety.)

While Sida cordifolia is a widely used source of Balaa in northern parts of India, Kerala physicians have

Kakamaachi is the pharmacopoeial name equated with Solanum nigrum Linn.

Identification of proper herbs 93

Diploid. Each form differs from the other. Tetraploids closely resemble S.

luteum Mill.

Mahaa Balaa

Kaakamaachi

Hexaploid: mostly occurs in temperate parts, rarely in warmer regions.

Solanum americanum Linn. syn. S. incertum Dunal; S. rubrum Mill., is also treated as S. nigrum. Solanum M. Johnson, syn. G. reniformis D.Don (Fam. Rubiaceae) is used as Karintakaali (Kaakamaachi) in Kera

Leaves of S. nigrum sometimes occur as an adulterant of Indian belladonna.

Mundi

Munditikaa is the pharmacopoeial name equated with Sphaeranthus indicus Linn.

S. africanus Linn. is used as Mahaamundi.

In Kerala, Sphaeranthus indicus is equated with Hapushaa (Juniperus communis Linn.); red and white to the Wealth of India, Vol X, page 4, Hapushaa and Shveta Hapushaa are included among synonyms

Vishmushthi is the pharmacopoeial name equated with Strychnos nux-vomica Linn.

Nux-vomica seeds are often adulterated with the seeds of S. potatorum Linn. f.

and S. nux-blanda A. W. Hill.

Nux-vomica is a tree, while S. colubrina Linn. is a climber of the Deccan peninsula, from Konkan to Coo

Kiraatikta

Kiratikta is the pharmacopoeial name equated with Swertia chirata Buch. Ham.

Andrographis paniculata is even known as chirayata variety.

Substitution of (Himalayan) Kiraatatikta by other species of Swertia (S. angustifolia Buch.-ham. and S.

Lodhra

Lodhra is the pharmacopoeial name equated with Symplocos racemosa Roxb. In Bhavaprakasha, two Shaavara Lodhra is equated with S. racemosa and Pattikaa Lodhra with S. crataegoides Buch-Ham. In 94 Legacy and logical steps

Sthauneya

Sthauneya is the pharmacopoeial name equated with Taxus baccata Linn.

Taxus baccata Linn. is European Yew. Himalayan Yew is T. wallichiana Zucc. syn.

T. baccata Linn. subsp. wallichiana (Zucc.) Pilgoe; T. baccata Hook. f. non Linn.

In Ayurvedic Formulary of India (Part I, page 327), Abies webbiana Lindl.

is equated with Taalisa. A. pindrow Spach. and Taxus baccata Linn. have been recognized as its subst All these examples will prove that due to a fundamental weakness in the identification of the proper her In "Ayurvedic Pharmacopoeial Plant Drugs" we had pointed out a number of discrepancies in the select

The way out to solve the problem

In all classical compounds of Ayurvedic Formulary of India, Sanskrit names with updated pharmaceutic Himalaya Drug Company, the manufacturers of research-oriented herbal/Ayurvedic drugs, recently upg

When we can accommodate botanical names of Ayurvedic plants, phytochemical markers and chemical

We will give some examples of pharmaceutical names of Ayurvedic plant drugs from WHO Monograph

Achillea millefolium Linn. herb

(Herba Millefolii),

Aesculus hippocastanum Linn. seed

(Semen Hippocastani),

Alliun cepa Linn. bulb

(Bulbus Allii Cepae), Allium sativum Linn. bulb (Bulbus Allii Sativi), Identification of proper herbs 95 Althaea officinalis Linn. root (Radix Althaceae), Ammi majus Linn. fruit (Fructus Ammi Majoris), Andrographis paniculata (Burm.f.) Nees herb (Herba Andrographidis), Berberis vulgeris Linn. bark (Cortex Berberidis), Boswellia serrata Rox. ex Colebr. Gum (Gummi Boswellii). Pharmaceutical names have been in use since 1992 German Commission E Monographs, The Scientific Foundation for Herbal Medicinal Products (ESCOP We will provide an exhaustive list of pharmaceutical names in the next pages. Pharmacopoeia of People's Republic of China Pharmaceutical names While we are still trying to promote Sanskrit names as Pharmaceutical Names, Chinese have already a AYUSH should have a look at the pharmaceutical names of Pharmacopoeia of the People's Republic of **Botanical Name** Pharmaceutical Drug Name Chinese Name Roman Abrus cantoniensis

Herba Abri

Jigucao
Abutilon theophrastii
Semen Abutili
Qingmazi
Acacia catechu
Catechu
Ercha
Acanthopanax gracilistylus
Cortex Acanthopanacis
Wujiapi
Achyrantes bidentata
Radix Achyranthis Bidentatae
Niuxi
Aconitum carmichaeli
Radix Aconiti
Chuanwu
Aconitum kusnezoffii
Folium Aconiti Kusnezoffii
Caowuye
Aconitum kusnezoffii
Radix Aconiti Kusnezoffii
Caowu
Acorus calamus
Rhizoma Acori Calami
Zangchangpu

Acorus tatarinowii
Rhizoma Acori Tatarinowii
Shichangpu
Adenophora stricta
Radix Adenophorae
Nanshashen
Adenophora tetraphylla
Radix Adenophorae
Nanshashen
Aesculus chinensis
Semen Aesculi
Suoluozi
Aesculus chinensis
var. chekiangensis
Semen Aesculi
Suoluozi
Agrimonia pilosa
Herba Agrimoniae
Xianhecao
Ailanthus altissima
Cortex Ailanthi
Chunpi
Akebia quinata
Fructus Akebiae
Yuzhizi

Akebia trifoliata
Fructus Akebiae
Yuzhizi
Akebia trifoliata var.
Fructus Akebiae
Yuzhizi
australis
Albizia julibrissin
Flos Albiziae
Hehuanhua
Albizia julibrissin
Cortex Albiziae
Hehuanpi
Alisma orientalis
Rhizoma Alismatis
Zexie
Allium chinensis
Bulbus Alii Macrostemonis
Xiebai
Allium macrostemon
Bulbus Alii Macrostemonis
Xiebai
Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman

Allium tuberosum
Semen Allii Tuberosi
Jiucaizi
Aloe barbadensis et spp.
Aloe
Luhui
Aloe ferox et spp.
Aloe
Luhui
Alpinia galanga
Fructus Galangae
Hongdoukou
Alpinia katsumadai
Semen Alpiniae Katsumadai
Caodoukou
Alpinia officinarum
Rhizoma Alpiniae Officinarum
Gaoliangjiang
Alpinia oxyphylla
Fructus Alpiniae Oxyphyllae
Yizhi
Amomum compactum
Fructus Amomi Rotundus
Doukou
Amomum kravanh

Fructus Amomi Rotundus
Doukou
Amomum longiligulare
Fructus Amomi
Sharen
Amomum tsaoko
Fructus Tsaoko
Caoguo
Amomum villosum
Fructus Amomi
Sharen
Amomum villosum var.
Fructus Amomi
Sharen
xanthioides
Ampelopsis japonica
Radix Ampelopsis
Bailian
Andrographis paniculata
Herba Andrographis
Chuanxinlian
Anemarrhena asphodeloides Rhizoma Anemarrhenae
Zhimu
Anemone raddeana
Rhizoma Anemones Raddeanae

Liangtoujian
Angelica dahurica
Radix Angelicae Dahuricae
Baizhi
Angelica pubescens
Radix Angelicae Pubescentis
Duhuo
Angelica sinensis
Radix Angelicae Sinensis
Danggui
Apocynum venetum
Folium Apocyni Veneti
Luobumaye
Aquilaria sinensis
Lignum Aquilariae Resinatum
Chenxiang
Arctium lappa
Fructus Arctii
Niubangzi
Areca catechu
Pericarpium Arecae
Dafupi
Areca catechu
Semen Arecae
Binglang

Arisaema amurense
Rhizoma Arisaematis
Tiannanxing
Arisaema erubescens
Rhizoma Arisaematis
Tiannanxing
Arisaema heterophyllum
Rhizoma Arisaematis
Tiannanxing
Aristolochia contorta
Fructus Aristolochiae
Madouling
Aristolochia contorta
Herba Aristolochiae
Tianxianteng
Aristolochia debilis
Fructus Aristolochiae
Madouling
Aristolochia debilis
Herba Aristolochiae
Tianxianteng
Aristolochia debilis
Radix Aristolochiae
Qingmuxiang
Aristolochia fangchi

Radix Aristolochiae Fangchi
Guangfangji
Aristolochia manshuriensis
Caulis Aristolochiae
Manshuriensis
Guanmutong
Arnebia euchroma
Radix Arnebiae
Zicao
Arnebia guttata
Radix Arnebiae
Zicao
Artemisia annua
Herba Artemisiae Annuae
Qinghao
Artemisia argyi
Folium Artemisiae Argyi
Aiye
Artemisia capillaris
Herba Artemisiae Scopariae
Yinchen
Artemisia scoparia
Herba Artemisiae Scopariae
Yinchen
Asarum heterotropoides var. Herba Asari

Xixin
mandshuricum
Asarum sieboldii, A.
Herba Asari
Xixin
sieboldii var. seoulense
Asparagus cochinchinensis
Radix Asparagi
Tiandong
Aster tataricus
Radix Asteris
Ziwan
Astragalus complanatus
Semen Astragali Complanati
Shayuanzi
(Continued)
(Continued)
Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman
Astragalus membranaceus
var. mongholicus
Radix Astragali
Huangqi
Atractylodes chinensis

Rhizoma Atractylodis
Cangzhu
Atractylodes lancea
Rhizoma Atractylodis
Cangzhu
Atractylodes macrocephala
Rhizoma Atractylodis
Baizhu
Macrocephalae
Atropa belladonna
Herba Belladonnae
Dianqiecao
Aucklandia lappa
Radix Aucklandiae
Muxiang
Bambusa textilis
Concretio Silicea Bambusae
Tianzhuhuang
Bambusa tuldoides
Caulis Bambusae in Taeniam
Zhuru
Baphicacanthus cusia
Indigo Naturalis
Qingdai
Baphicacanthus cusia

Rhizoma et Radix
Nanbanlangen
Baphicacanthis Cusiae
Belamcanda chinensis
Rhizoma Belamcandae
Shegan
Benincasa hispida
Exocarpium Benincasae
Dongguapi
Bletilla striata
Rhizoma Bletillae
Baiji
Bolbostemma paniculatum
Rhizoma Bolbostematis
Tubeimu
Brassica juncea
Semen Sinapsis
Jiezi
Brassica juncea
Semen Brassicae Junceae
Jiezi
Broussonetia papyrifera
Fructus Broussonetiae
Chushizi
Brucea javanica

Fructus Bruceae
Yadanzi
Buddleja officinalis
Flos Buddlejae
Mimenghua
Bupleurum chinense, B.
Radix Bupleuri
Chaihu
scorzonerifolium
Buxus mierophyila var.
Cyclovirobuxinum D
Huanweihuangyangx ing D
sinica et spp.
Caesalpinia sappan
Lignum Sappan
Sumu
Calvatia gigantea
Lasiosphaera seu Calvatia
Mabo
Calvatia lilacina
Lasiosphaera seu Calvatia
Mabo
Camellia meiocarpa
Oleum Camelliae
Chayou

Camellia oleifera
Oleum Camelliae
Chayou
Campsis grandiflora
Flos Campsis
Lingxiaohua
Campsis radicans
Flos Campsis
Lingxiaohua
Canarium album
Fructus Canarii
Qingguo
Canavalia gladiata
Semen Canavaliae
Daodou
Cannabis sativa
Fructus Cannabis
Huomaren
Carpesium abrotanoides
Fructus Carpesii
Heshi
Carthamus tinctorius
Flos Carthami
Honghua
Cassia acutifolia

Mugua
Changium smyrnioides
Radix Changii
Mingdangshen
Choerospondias axillaris
Fructus Choerospondiatis
Guangzao
Chrysanthemum indicum
Flos Chrysanthemi Indici
Yejuhua
Chrysanthemum morifolium Flos Chrysanthemi
Juhua
Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman
Cibotium barometz
Rhizoma Cibotii
Gouji
Cichorium glandulosum
Herba Cichorii
Juju
Cichorium intybus
Herba Cichorii
Juju
Cimicifuga dahurica

Cirsium setosum
Herba Cirsii
Xiaoji
Cissampelos pareira var.
Herba Cissampelotis
Yahunu
hirsuta
Cistanche deserticola
Herba Cistanches
Roucongrong
Citrus aurantium
Fructus Aurantii Immaturus
Zhishi
Citrus aurantium
Fructus Aurantii
Zhiqiao
Citrus grandis
Exocarpium Citri Grandis
Huajuhong
Citrus grandis "Tomentosa" Exocarpium Citri Grandis
Huajuhong
Citrus medica
Fructus Citri
Xiangyuan
Citrus medica var.

Fructus Citri Sarcodactylis
Foshou
sarcodactylis
Citrus reticulata and its
Pericarpium Citri Reticulatae
Chenpi
cultivars
Citrus reticulata and its
Pericarpium Citri Reticulatae
Qingpi
cultivars
Viride
Citrus reticulata and its
Exocarpium Citri Rubrum
Juhong
cultivars
Citrus reticulata and its
Semen Citri Reticulatae
Juhe
cultivars
Citrus sinensis
Fructus Aurantii Immaturus
Zhishi
Citrus wilsonii

Fructus Citri

Xiangyuan
Clematis armandii
Caulis Clematidis Armandii
Chuanmutong
Clematis chinensis
Radix Clematidis
Weilingxian
Clematis hexapetala
Radix Clematidis
Weilingxian
Clematis manshurica
Radix Clematidis
Weilingxian
Clematis montana
Caulis Clematidis Armandii
Chuanmutong
Clinopodium chinensis
Herba Clinopodii
Duanxueliu
Clinopodium polycephalum Herba Clinopodii
Duanxueliu
Cnidium monnieri
Fructus Cnidii
Shechuangzi
Codonopsis pilosula,

C. pilosula var. modesta
Radix Codonopsis
Dangshen
Codonopsis tangshen
Radix Codonopsis
Dangshen
Coix lacrymajobi var.
Semen Coicis
Yiyiren
ma-yuen
Commelina communis
Herba Commelinae
Yazhicao
Coptis chinensis
Rhizoma Coptidis
Huanglian
Coptis deltoidea
Rhizoma Coptidis
Huanglian
Coptis teeta
Rhizoma Coptidis
Huanglian
(Continued)
(Continued)
Botanical Name

Pharmaceutical Drug Name
Chinese Name Roman
Cordyceps sinensis
Cordyceps
Dongchongxiacao
Cornus officinalis
Fructus Corni
Shanzhuyu
Corydalis decumbens
Rhizoma Corydalis
Xiatianwu
Decumbentis
Corydalis yanhusuo
Rhizoma Corydalis
Yanhusuo
Crataegus pinnatifida
Fructus Crataegi
Shanzha
Crataegus pinnatifida var.
Fructus Crataegi
Shanzha
major
Cremastra appendiculata
Pseudobulbus
Cremastrae seu Pleiones

Shancigu
Crocus sativus
Stigma Croci
Xihonghua
Croton tiglium
Fructus Crotonis
Badou
Curculigo orchioides
Rhizoma Curculiginis
Xianmao
Curcuma kwangsiensis
Radix Curcumae
Yujin
Curcuma kwangsiensis
Rhizoma Curcumae
Ezhu
Curcuma longa
Rhizoma Curcumae Longae
Jianghuang
Curcuma longa
Radix Curcumae
Yujin
Curcuma phaeocaulis
Radix Curcumae
Yujin

Curcuma phaeocaulis
Rhizoma Curcumae
Ezhu
Curcuma wenyujin
Radix Curcumae
Yujin
Curcuma wenyujin
Rhizoma Wenyujin Concisum
Pianjianghuang
Curcuma wenyujin
Rhizoma Curcumae
Ezhu
Cuscuta chinensis
Semen Cuscutae
Tusizi
Cyathula officinalis
Radix Cyathulae
Chuanniuxi
Cynanchum atratum
Radix Cynanchi Atrati
Baiwei
Cynanchum glaucescens
Rhizoma Cynanchi Stauntonii
Baiqian
Cynanchum paniculatum

Radix Cynanchi Paniculati
Xuchangqing
Cynanchum stauntonii
Rhizoma Cynanchi Stauntonii
Baiqian
Cynanchum versicolor
Radix Cynanchi Atrati
Baiwei
Cynanchum versicolor
Radix Cynanchi Atrati
Baiwei
Cynomorium songaricum
Herba Cynomorii
Suoyang
Cyperus rotundus
Rhizoma Cyperi
Xiangfu
Daemonorops draco
Sanguis Draxonis
Xuejie
Dalbergia odorifera
Lignum Dalbergiae Odoriferae
Jiangxiang
Daphne genkwa
Flos Genkwa

Yuanhua
Datura metel
Flos Daturae
Yangjinhua
Daucus carota
Fructus Carotae
Nanheshi
Dendrobium candidum
Herba Dendrobii
Shihu
Dendrobium chrysanthum
Herba Dendrobii
Shihu
Dendrobium fimbriatum
var. oculatum
Herba Dendrobii
Shihu
Dendrobium loddigesii
Herba Dendrobii
Shihu
Dendrobium nobile
Herba Dendrobii
Shihu
Descurainia sophia
Semen Descurainiae

Mianbixie
Dioscorea hypoglauca
Rhizoma
Dioscoreae Hypoglaucae
Fenbixie
Dioscorea opposita
Rhizoma Dioscoreae
Shanyao
Dioscorea septemloba
Rhizoma Dioscoreae
Septemlobae
Mianbixie
Diospyros kaki
Calyx Kaki
Shidi
Dipsacus asperoides
Radix Dipsaci
Xuduan
Dolichos lablab
Semen Lablab Album
Baibiandou
Drynaria fortunei
Rhizoma Drynariae
Gusuibu
Dryopteris crassirhizoma

Rhizoma Dryopteris
Crassirhizomatis
Mianmaguanzhong
Echinops grijisii
Radix Echinopsis
Yuzhou loulu
Echinops latifolius
Radix Echinopsis
Yuzhou loulu
Ecklonia kurome
Thallus Eckloniae
Kunbu
Eclipta prostrata
Herba Ecliptae
Mohanlian
Ephedra equisetina
Herba Ephedrae
Mahuang
Ephedra intermedia
Herba Ephedrae
Mahuang
Ephedra intermedia
Radix Ephedrae
Mahuanggen
Ephedra sinica

Pipaye
Eriocaulon buergerianum
Flos Eriocauli
Gujingcao
Erodium stephanianum
Herba Erodii
Laoguancao
Erycibe obtusfolia
Caulis Erycibes
Dinggongteng
Erycibe schmidtii
Caulis Erycibes
Dinggongteng
Eucalyptus globulus et spp.
Oleum Eucalypti
Anyou
Eucommia ulmoides
Cortex Eucommiae
Duzhong
Eugenia caryophyllata
Flos Caryophylli
Dingxiang
Eupatorium fortunei
Herba Eupatorii
Peilan

Euphorbia humifusa
Herba Euphorbiae Humifusae
Dijincao
Euphorbia kansui
Radix Kansui
Gansui
Euphorbia lathyris
Semen Euphorbiae
Qianjinzi
Euphorbia maculata
Herba Euphorbiae Humifusae
Dijincao
Euphorbia pekinensis
Radix Euphorbiae Pekinensis
Jingdaji
Euryale ferox
Semen Euryales
Qianshi
Evodia rutaecarpa
Fructus Evodiae
Wuzhuyu
Evodia rutaecarpa var.
Fructus Evodiae
Wuzhuyu
bodinieri

Fritillaria thunbergii
Bulbus Fritillariae Thunbergii
Zhebeimu
Fritillaria unibracteata
Bulbus Fritillariae Cirrhosae
Chuanbeimu
Fritillaria ussuriensis
Bulbus Fritillariae Ussuriensis
Pingbeimu
Fritillaria walujewii
Bulbus Fritillariae Pallidiflorae
Yibeimu
Ganoderma lucidum
Ganoderma
Lingzhi
Ganoderma sinensis
Ganoderma
Lingzhi
Gardenia jasminoides
Fructus Gardeniae
Zhizi
Gastrodia elata
Rhizoma Gastrodiae
Tianma
Gentiana crassicaulis

Radix Gentianae Macrophyllae Qinjiao
Gentiana dahurica
Radix Gentianae Macrophyllae Qinjiao
Gentiana macrophylla
Radix Gentianae Macrophyllae Qinjiao
Gentiana manshurica
Radix Gentianae
Longdan
Gentiana ringescens
Radix Gentianae
Longdan
Gentiana scabra
Radix Gentianae
Longdan
Gentiana straminea
Radix Gentianae Macrophyllae Qinjiao
Gentiana triflora
Radix Gentianae
Longdan
Geranium carolinianum
Herba Geranii
Laoguancao
Geranium wilfordii
Herba Geranii
Laoguancao

Radix Glycyrrhizae
Gancao
Glycyrrhiza uralensis
Radix Glycyrrhizae
Gancao
Hedysarum polybotrys
Radix Hedysari
Hongqi
Helwingia japonica
Medulla Helwingiae
Xiaotongcao
Hippophae rhamnoides
Fructus Hippophae
Shaji
Homalomena occulta
Rhizoma Homalomenae
Qiannianjian
Hordeum vulgare
Fructus Hordei Germinatus
Maiya
Houttuynia cordata
Herba Houttuyniae
Yuxingcao
Hyoscyamus niger
Semen Hyoscyami

Tianxianzi
llex cornuta
Folium Ilicis Cornutae
Gouguye
Illicium defengpi
Cortex Illicii
Difengpi
Illicium verum
Oleum Anisi Stellati
Bajiao Huixiangyou
Impatiens balsamina
Semen Impatientis
Jixingzi
Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman
Imperata cylindrica var.
Rhizoma Imperatae
Baimaogen
major
Inula britannica
Flos Inulae
Xuanfuhua
Inula helenium
Radix Inulae

Juncus effusus
Medulla Junci
Dengxincao
Kaempferia galanga
Rhizoma Kaempferiae
Shannai
Knoxia valerianoides
Radix Knoxiae
Hongdaji
Kochia scoparia
Fructus Kochiae
Difuzi
Laminaria japonica
Thallus Laminariae
Kunbu
Lasiosphaera fenzlii
Lasiosphaera seu Calvatia
Mabo
Leonurus japonicas
Fructus Leonuri
Chongweizi
Leonurus japonicus
Herba Leonuri
Yimucao
Lepidium apetalum

Semen Lepidii
Tinglizi
Ligusticum chuanxiong
Rhizoma Chuanxiong
Chuanxiong
Ligusticum jeholense
Rhizoma Ligustici
Gaoben
Ligusticum sinense
Rhizoma Ligustici
Gaoben
Ligustrum lucidum
Fructus Ligustri Lucidi
Nüzhenzi
Lilium brownii var.
Bulbus Lilii
Baihe
viridulum
Lilium lancifolium
Bulbus Lilii
Baihe
Lilium pumilum
Bulbus Lilii
Baihe
Lindera aggregata

Retinervus Luffae Fructus

Danzhuye

Luffa cylindrica

Sigualuo
Lycium barbarum
Cortex Lycii
Digupi
Lycium barbarum
Fructus Lycii
Gouqizi
Lycium chinense
Cortex Lycii
Digupi
Lycopodium japonicum
Herba Lycopodii
Shenjincao
(Continued)
(Continued)
Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman
Lycopus lucidus var. hirtus
Herba Lycopi
Zelan
Lygodium japonicum
Spora Lygodii
Haijinsha
Lysimachia christinae

Herba Lysimachiae
Jinqiancao
Magnolia biondii
Flos Magnoliae
Xinyi
Magnolia denudata
Flos Magnoliae
Xinyi
Magnolia officinalis
Cortex Magnoliae Officinalis
Houpo
Magnolia officinalis
Flos Magnoliae Officinalis
Houpohua
Magnolia officinalis var.
Cortex Magnoliae Officinalis
Houpo
biloba
Magnolia officinalis var.
Flos Magnoliae Officinalis
Houpohua
biloba
Magnolia sprengeri
Flos Magnoliae
Xinyi

Mahonia bealei
Caulis Mahoniae
Gonglaomu
Mahonia fortunei
Caulis Mahoniae
Gonglaomu
Malva verticillata
Fructus Malvae
Dongkuiguo
Melia azedarach
Cortex Meliae
Kulianpi
Melia toosendan
Cortex Meliae
Kulianpi
Melia toosendan
Fructus Toosendan
Chuanlianzi
Menispermum dauricum
Rhizoma Menispermi
Beidougen
Mentha haplocalyx
Herba Menthae
Bohe
Mentha haplocalyx

Oleum Menthae
Bohesuyou
Dementholatum
Momordica cochinchinensis Semen Momordicae
Mubiezi
Momordica grosvenori
Fructus Momordicae
Luohanguo
Morinda officinalis
Radix Morindae Officinalis
Bajitian
Morus alba
Fructus Mori
Sangshen
Morus alba
Folium Mori
Sangye
Morus alba
Ramulus Mori
Sangzhi
Morus alba
Cortex Mori
Sangbaipi
Mosla chinensis
Herba Moslae

Xiangru
Murraya exotica
Folium et Cacumen Murrayae
Jiulixiang
Murraya paniculata
Folium et Cacumen Murrayae
Jiulixiang
Myristica fragrans
Semen Myristicae
Roudoukou
Nardostachys chinensis
Radix seu Rhizoma
Nardostachyos
Gansong
Nardostachys jatamansi
Radix seu Rhizoma
Nardostachyos
Gansong
Nelumbo nucifera
Folium Nelumbinis
Heye
Nelumbo nucifera
Plumula Nelumbinis
Lianzixin
Nelumbo nucifera

Receptaculum Nelumbinis
Lianfang
Nelumbo nucifera
Nodus Nelumbinis Rhizomatis Oujie
Nelumbo nucifera
Semen Nelumbinis
Lianzi
Nelumbo nucifera
Stamen Nelumbinis
Lianxu
Nigella glandulifera
Semen Nigellae
Heizhongcaozi
Notopterygium forbesii
Rhizoma et Radix Notopterygii Qianghuo
Notopterygium incisum
Rhizoma et Radix Notopterygii Qianghuo
Ocimum gratissimum
Oleum Ocimi Gratissimi
Dingxiang Luoleyou
Omphalia lapidescens
Omphalia
Leiwan
Ophiopogon japonicus
Radix Ophiopogonis

Maidong
Oroxylum indicum
Semen Oroxyli
Muhudie
Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman
Oryza sativa
Fructus Oryzae Germinatus
Daoya
Paeonia lactiflora
Radix Paeoniae Rubra
Chishao
Paeonia suffruticosa
Cortex Moutan
Mudanpi
Paeonia veitchii
Radix Paeoniae Rubra
Chishao
Panax ginseng
Radix Ginseng
Renshen
Panax ginseng
Folium Ginseng
Renshenye

Panax japonicus
Rhizoma Panacis Japonici
Zhujieshen
Panax japonicus var.
Rhizoma Panacis Majoris
Zhuzishen
bipinnatifidus
Panax japonicus var. major
Rhizoma Panacis Majoris
Zhuzishen
Panax notoginseng
Radix Notoginseng
Sanqi
Panax quinquefolium
Radix Panacis Quinquefolii
Xiyangshen
Papaver somniferum
Pericarpium Papaveris
Yingsuqiao
Paris polyphylla var.
Rhizoma Paridis
Chonglou
chinensis
Paris polyphylla var.
Rhizoma Paridis

Chonglou
yunnanensis
Perilla frutescens
Fructus Perillae
Zisuzi
Perilla frutescens
Folium Perillae
Zisuye
Perilla frutescens
Caulis Perillae
Zisugeng
Periploca sepium
Cortex Periplocae
Xiangjiapi
Peucedanum decursivum
Radix Peucedani
Qianhu
Peucedanum praeruptorum
Radix Peucedani
Qianhu
Pharbitis nil
Semen Pharbitidis
Qianniuzi
Pharbitis pupurea
Semen Pharbitidis

Qianniuzi
Phaseolus angularis
Semen Phaseoli
Chixiaodou
Phaseolus calcaratus
Semen Phaseoli
Chixiaodou
Phellodendron amurense
Cortex Phellodendri
Huangbo
Phellodendron chinensis
Cortex Phellodendri
Huangbo
Phragmitis communis
Rhizoma Phragmitis
Lugen
Phyllanthus emblica
Fructus Phyllanthi
Yuganzi
Phyllostachys nigra var.
Caulis Bambusae in Taeniam
Zhuru
henonis
Physalis alkekengi var.
Calyx seu Fructus Physalis

Jindenglong
franchetii
Physochlaina infundibularis Radix Physochlainae
Huashanshen
Phytolacca acinosa
Radix Phytolaccae
Shanglu
Phytolacca americana
Radix Phytolaccae
Shanglu
Picrasma quassioides
Ramulus et Folium Picrasmae
Kumu
Picrorhiza scrophulariiflora Rhizoma Pircrorhizae
Huhuanglian
Pinellia ternata
Rhizoma Pinelliae
Banxia
Pinus massoniana et spp.
Pollen Pini
Songhuafen
Pinus spp.
Oleum Terebinthinae
Songjieyou
Pinus tabulaeformis et spp.

Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman
Platycladus orientalis
Semen Platycladi
Baiziren
Platycladus orientalis
Cacumen Platycladi
Cebaiye
Platycodon grandiflorum
Radix Platycodonis
Jiegeng
Pleione bulbocodioides
Pseudobulbus
Cremastrae seu Pleiones
Shancigu
Pleione yunnanensis
Pseudobulbus
Cremastrae seu Pleiones
Shancigu
Pogostemon cablin
Herba Pogostemonis
Guanghuoxiang
Polygala sibirica
Radix Polygalae

Yuanzhi
Polygala tenuifolia
Radix Polygalae
Yuanzhi
Polygonatum cyrtonema
Rhizoma Polygonati
Huangjing
Polygonatum kingianum
Rhizoma Polygonati
Huangjing
Polygonatum odoratum
Rhizoma Polygonati Odorati
Yuzhu
Polygonatum sibiricum
Rhizoma Polygonati
Huangjing
Polygonum aviculare
Herba Polygoni Avicularis
Bianxu
Polygonum bistorta
Rhizoma Polygoni Bistortae
Quanshen
Polygonum cuspidatum
Rhizoma Polygoni Cuspidati
Huzhang

Polygonum multiflorum
Radix Polygoni Multiflori
Heshouwu
Polygonum multiflorum
Caulis Polygoni Multiflori
Shouwuteng
Polygonum orientale
Fructus Polygoni Orientalis
Shuihonghuazi
Polygonum tinctorium
Folium Polygoni Tinctorii
Liaodaqingye
Polygonum tinctorium
Indigo Naturalis
Qingdai
Polyporus umbellatus
Polyporus
Zhuling
Poria cocos
Poria
Fuling
Portulaca oleracea
Herba Portulacae
Machixian
Potentilla chinensis

Herba Potentillae Chinensis
Weilingcai
Prinsepia uniflora
Nux Prinsepiae
Ruiren
Prunella vulgaris
Spica Prunellae
Xiakucao
Prunus armeniaca
Semen Armeniacae Amarum
Kuxingren
Prunus armeniaca
Semen Armeniacae Amarum
Kuxingren
mandshurica
Prunus armeniaca sibirica
Semen Armeniacae Amarum
Kuxingren
Prunus armeniaca var. ansu Semen Armeniacae Amarum
Kuxingren
Prunus davidiana
Semen Persicae
Taoren
Prunus humilis
Semen Pruni

Yuliren
Prunus japonica
Semen Pruni
Yuliren
Prunus mume
Flos Mume
Meihua
Prunus mume
Fructus Mume
Wumei
Prunus pedunculata
Semen Pruni
Yuliren
Prunus persica
Semen Persicae
Taoren
Pseudolarix kaempferi
Cortex Pseudolaricis
Tujingpi
Pseudostellaria heterophylla Radix Pseudostellariae
Taizishen
Psoralea corylifolia
Fructus Psoraleae
Buguzhi
Pueraria lobata

Shiwei
Pyrrosia sheareri
Folium Pyrrosiae
Shiwei
Quisqualis indica
Fructus Quisqualis
Shijunzi
Ranunculus ternatus
Radix Ranunculi Ternati
Maozhaocao
Raphanus sativus
Semen Raphani
Laifuzi
Rehmannia glutinosa
Radix Rehmanniae
Dihuang
Rhaponticum uniflorum
Radix Rhapontici
Loulu
Rheum officinale
Radix et Rhizoma Rhei
Dahuang
Rheum palmatum
Radix et Rhizoma Rhei
Dahuang

Rheum tanguticum
Radix et Rhizoma Rhei
Dahuang
Rhododendron dauricum
Folium Rhododendri Daurici
Manshanhong
Rhododendron dauricum
Oleum Rhododendri Daurici
Manshanhongyou
Rhododendron molle
Flos Rhododendri Mollis
Naoyanghua
Rhus chinensis
Galla Chinensis
Wubeizi
Rhus potaninii
Galla Chinensis
Wubeizi
Rhus punjabensis var. sinica Galla Chinensis
Wubeizi
Ricinus communis
Oleum Ricini
Bimayou
Ricinus communis
Semen Ricini

Bimazi
Rosa chinensis
Flos Rosae Chinensis
Yuejihua
Rosa laevigata
Fructus Rosae Laevigatae
Jinyingzi
Rosa rugosa
Flos Rosae Rugosae
Meiguihua
Rubia cordifolia
Radix Rubiae
Qiancao
Rubus chingii
Fructus Rubi
Fupenzi
Salvia miltiorrhiza
Radix Salviae Miltiorrhizae
Danshen
Sanguisorba officinalis, S.
Radix Sanguisorbae
Diyu
officinalis var. longifolia
Santalum album
Lignum Santali Albi

Tanxiang
Saposhnikovia divaricata
Radix Saposhnikoviae
Fangfeng
Sarcandra glabra
Herba Sarcandrae
Zhongjiefeng
Sargassum fusiforme
Sargassum
Haizao
Sargassum pallidum
Sargassum
Haizao
Sargentodoxa cuneata
Caulis Sargentodoxae
Daxueteng
Saururus chinensis
Herba seu Rhizoma Saururi
Sanbaicao
Schisandra chinensis
Fructus Schisandrae Chinensis Wuweizi
Schisandra sphenanthera
Fructus
Schisandrae Sphenantherae
Nanwuweizi

Schizonepeta tenuifolia
Herba Schizonepetae
Jingjie
Schizostachyum chinense
Concretio Silicea Bambusae
Tianzhuhuang
Scrophularia ningpoensis
Radix Scrophulariae
Xuanshen
Scutellaria baicalensis
Radix Scutellariae
Huangqin
Scutellaria barbata
Herba Scutellariae Barbatae
Banzhilian
Sedum sarmentosum
Herba Sedi
Chuipencao
Selaginella pulvinata
Herba Selaginellaceae
Juanbai
Selaginella tamariscina
Herba Selaginellaceae
Juanbai
Semiaquilegia adoxoides

Radix Semiaquilegiae
Tiankuizi
Sesamum indicum
Semen Sesami Nigrum
Heizhima
Sesamum indicum
Oleum Sesami
Mayou
Setaria italica
Fructus Setariae Germinatus
Guya
Siegesbeckia glabrescens
Herba Siegesbeckiae
Xixiancao
Siegesbeckia orientalis
Herba Siegesbeckiae
Xixiancao
Siegesbeckia pubescens
Herba Siegesbeckiae
Xixiancao
(Continued)
(Continued)
Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman

Sinapsis alba
Semen Sinapsis (Albae)
Jiezi
Sinocalamus beecheyanus
var. pubescens
Caulis Bambusae in Taeniam
Zhuru
Sinomenium acutum
Caulis Sinomenii
Qingfengteng
Sinomenium acutum var.
Caulis Sinomenii
Qingfengteng
cinereum
Sinopodophyllum emodi
Fructus Sinopodophylli
Xiaoyelian
Smilax glabra
Rhizoma Smilacis Glabrae
Tufuling
Sophora flavescens
Radix Sophorae Flavescentis
Kushen
Sophora japonica
Fructus Sophorae

Huaijiao
Sophora japonica
Flos Sophorae
Huaihua
Sophora tonkinensis
Radix Sophorae Tonkinensis
Shandougen
Sparganium stoloniferum
Rhizoma Sparganii
Sanleng
Spatholobus suberectus
Caulis Spatholobi
Jixueteng
Spirodela polyrrhiza
Herba Spirodelae
Fuping
Stachyurus chinensis
Medulla Stachyuri
Xiaotongcao
Stachyurus himalaicus
Medulla Stachyuri
Xiaotongcao
Stellaria dichotoma var.
Radix Stellariae
Yinchaihu

lanceolata
Stemona japonica
Radix Stemonae
Baibu
Stemona sessilifolia
Radix Stemonae
Baibu
Stemona tuberosa
Radix Stemonae
Baibu
Stephania tetranda
Radix Stephaniae Tetrandae
Fangji
Sterculia lychnophora
Semen Sterculiae Lychnophorae Pangdahai
Strychnos nux-vomica
Semen Strychni
Maqianzi
Styrax tonkinensis
Benzoinum
Anxixiang
Swertia mileensis
Herba Swertiae Mileensis
Qingyedan
Tamarix chinensis

Cacumen Tamaricis
Xiheliu
Taraxacum mongolicum et
Herba Taraxaci
Pugongying
spp.
Taraxacum sinicum et spp.
Herba Taraxaci
Pugongying
Taxillus chinensis
Herba Taxilli
Sangjisheng
Terminalia bellerica
Fructus Terminaliae Billericae
Maohezi
Terminalia chebula
Fructus Chebulae
Hezi
Terminalia chebula var.
Fructus Chebulae
Hezi
tomentella
Tetrapanax papyriferus
Medulla Tetrapanacis
Tongcao

Pericarpium Trichosanthis
Gualoupi
Trichosanthes kirilowii
Radix Trichosanthis
Tianhuafen
Trichosanthes kirilowii
Semen Trichosanthis
Gualouzi
Trichosanthes rosthornii
Fructus Trichosanthis
Gualou
Botanical Name
Pharmaceutical Drug Name
Chinese Name Roman
Trichosanthes rosthornii
Pericarpium Trichosanthis
Gualoupi
Trichosanthes rosthornii
Radix Trichosanthis
Tianhuafen
Trichosanthes rosthornii
Semen Trichosanthis
Gualouzi
Trigonella foenum-graecum Semen Trigonellae
Huluba

Ramulus Uncariae cum Uncis
Gouteng
Vaccaria segetalis
Semen Vaccariae
Wangbuliuxing
Verbena officinalis
Herba Verbenae
Mabiancao
Viola yedoensis
Herba Violae
Zihuadiding
Viscum coloratum
Herba Visci
Hujisheng
Vitex negundo var.
Folium Viticis Negundo
Mujingye
cannabifolia
Vitex negundo var.
Oleum Viticis Negundo
Mujingyou
cannabifolia
Vitex trifolia
Fructus Viticis
Manjingzi

tuber
Adonidis herba
Adonis vernalis
Pheasant's Eye herb
Agni casti fructus
Vitex agnus castus
Chaste Tree fruit
Agrimoniae herba
Agrimonia eupatoria
Agrimony
Agrimoniae herba
Agrimonia procera
Cocklebur
Alchemillae alpinae herba
Alchemilla alpine
Alpine Lady's Mantle herb
Alchemillae herba
Alchemilla vulgaris
Lady's Mantle
Allii cepae bulbus
Allium cepa
Onion
Allii cepae bulbus
Allium esculentum
Onion

Allii cepae bulbus
Allium porrum
Onion
Allii sativi bulbus
Allium sativum
Garlic
Allii satwi bulbus
Porvium sativum
Garlic
Aloe barbadensis
Aloe barbadensis
Aloe
Aloe barbadensis
Aloe barbadensis
Curacao aloe
Aloe barbadensis
Aloe vera
Aloe
Aloe capensis
Aloe ferox
Cape aloe
Aloe gel
Aloe vera
Aloe vera gel
Althaeae folium

Althaea officinalis
Marshmallow leaf
Althaeae radix
Althaea officinalis
Marshmallow root
Ammeos visnagae fructus
Ammi daucoides
Bishop's Weed fruit
Ammeos visnagae fructus
Ammi visnaga
Bishop's Weed fruit
Ammi majoris fructus
Ammi majus
Bishop's Weed fruit
Andrographidis herba
Andrographidis paniculata
Chiretta herb
Anethi fructus
Anethum graveolens
Dill seed
Anethi herba
Anethum graveolens
Dill herb
Angeliaceae sinensis radix
Angelica sinensis

Chinese Angelica root
Angelicae fructus
Angelica archangelica
Angelica seed
Angelicae herba
Angelica archangelica
Angelica herb
Angelicae radix
Angelica archangelica
Angelica root
Anisi aetheroleum
Pimpinella anisum
Aniseed essential oil
Anisi fructus
Pimpinella anisum
Anise/Aniseed
Anisi stellati
Illicium return
Star Anise
Pharmaceutical Name
Botanical Name
Common English Name(s)
Antennariae dioicae flos
Antennaria dioica
Cat's Ear flower, Cat's Foot

Arnica chamissonis
Arnica flower
Arnicae flos
Arnica montana
Arnica flower
Artemisiae vulgaris herba
Artemisia vulgaris
Mugwort herb
Artemisiae vulgaris radix
Artemisia vulgaris
Mugwort root
Asparagi herba
Asparagus officinalis
Asparagus herb
Asparagi rhizoma
Asparagus officinalis
Asparagus root
Astragali radix
Astragalus membranaceus
Astragalus root
Astragali radix
Astragalus mongholicus
Astragalus root
Aurantii flos
Citrus aurantium

Bitter Orange flower
Aurantii flos aetheroleum
Citrus aurantium
Bitter Orange flower oil
Aurantii pericarpium
Citrus aurantium
Bitter Orange peel
Avenae fructus
Avena sativa
Oats
Avenae herba
Avena sativa
Oat herb
Avenae stramentum
Avena sativa
Oat straw
Azadirachti folium
Azadirachta indica
Neem tree leaf
Balsamum peruvianum
Myroxylon balsamum
Peruvian Balsam
Balsamum tolutanum
Myroxylon balsamum
Tolu Balsam

Atropa belladonna
Belladonna root, Deadly
Nightshade root
Berberidis cortex
Berberis vulgaris
Barberry bark
Berberidis fructus
Berberis vulgaris
Barberry
Berberidis radicis cortex
Berberis vulgaris
Barberry root bark
Berberidis radix
Berberis vulgaris
Barberry root
Betulae folium
Betula pendula
Birch leaf
Betulae folium
Betula pubescens
Birch leaf
Boldo folium
Peumus boldus
Boldo leaf

Belladonnae radix

Boraginis flos
Borago officinalis
Borage flower
Boraginis herba
Borago officinalis
Borage herb
Bromelainum
Ananas comosus
Bromelain
Bruceae fructus
Brucea javanica
Brucea fruit
Bryoniae radix
Bryonia alba
Bryonia root
(Continued)
(Continued)
Pharmaceutical Name
Botanical Name
Common English Name(s)
Bryoniae radix
Bryonia cretica
Bryonia root
Bupleuri radix
Bupleurum chinense

Chinese thorowax root
Bupleuri radix
Bupleurum falcatum
Bupleurum root
Bursae pastoris herba
Capsella bursa pastoris
Shepherd's Purse
Cacao semen
Theobroma cacao
Cocoa seed
Cacao testes
Theobroma cacao
Cocoa
Cajuputi aetheroleum
Melaleuca leucodendra
Cajeput oil
Calendulae flos
Calendula officinalis
Calendula flower
Calendulae herba
Calendula officinalis
Calendula herb
Callunae vulgaris flos
Calluna vulgaris
Heather flower

Callunae vulgaris herba
Calluna vulgaris
Heather herb
Camphora
Cinnamomum camphora
Camphor
Capsicum
Capsicum frutescens
Cayenne (Paprika)
Cardamomi fructus
Elettaria cardamomum
Cardamom
Cardui mariae fructus
Silybum marianum
Milk Thistle fruit
Cardui mariae herba
Silybum marianum
Milk Thistle herb
Caricae fructus
Ficus carica
Figs
Caricae papayae folium
Carica papaya
Papaya leaf
Caricis rhizoma

Carex arenaria
Sarsaparilla root, German
Carthami flos
Carthamus tinetorius
Safflower flower
Carvi aetheroleum
Carum carvi
Caraway oil
Carvi fructus
Carum carvi
Caraway seed
Caryophylli flos
Eugenia caryopfryllata
Cloves
Caryophylli flos
Jambosa caryoplvyllus
Cloves
Caryophylli flos
Syzigium aromaticum
Cloves
Castaneae folium
Castanea sativa
Chestnut leaf
Castaneae folium
Castanea vesca

Chestnut leaf
Castaneae folium
Castanea vulgaris
Chestnut leaf
Centarii herba
Centaurium erythraea
Centaury herb
Centarii herba
Centaurium minus
Centaury herb
Centaurii herba
Centaurium umbellatum
Centaury herb
Centaurii herba
Erythraea centaurium
Centaury herb
Centellae herba
Centella asiatica
Asiatic pennywort herb
Centellae herba
Trisanthus cochinchineusis
Asiatic pennywort herb
Chamomillae flos
Chamomilla rucutita
Chamomille, German

Chamomillae romanae flos
Anthemis nobilis
Chamomile, Roman
Chamomillae romanae flos
Chamaemelum nobile
Chamomile, Roman
Chelidonii herba
Chelidonium majus
Celandine herb
Chrysanthemi vulgaris flos
Chrysanthemum vulgare
Tansy flower
Chrysanthemi vulgaris flos
Tanacetum vulgare
Tansy flower
Chrysanthemi vulgaris
Chrysanthemum vulgare
Tansy herb
herba
Chrysanthemi vulgaris
Tanacetum vulgare
Tansy herb
herba
Cichorium intybus
Cichorium infybus

Cinnamomum zeylanicum
Cinnamon bark
cortex
Cinnamomi cortex
Cinnamomum cassia
Cinnamon bark
Cinnamomi flos
Cinnamomum aromaticum
Cinnamon flower
Cinnamomi flos
Cinnamomum cassia
Cinnamon flower
Citri sinensis pericarpium
Citrus sinensis
Orange peel
Cnici benedicti herba
Cnicus benedictus
Blessed Thistle herb
Coffeae carbo
Coffea Arabica
Coffee charcoal
Coffeae carbo
Coffea canephora
Coffee charcoal
Coffeae carbo

Coffee charcoal
Coffeae carbo
Coffea spp.
Coffee charcoal
Colae semen
Cola nitida
Cola nut
Colchicum, Colchicum
Colchicum autumnale
Autumn Crocus
autumnale
Colocynthidis fructus
Citruiius colocynthis
Colocynth
Condurango cortex
Marsdenia condurango
Condurango bark
Convallariae herba
Convallaria majalis
Lily-of-the-valley herb
Coptidis rhizoma
Coptis chinensis
Chinese goldthread rhizome
Coriandri fructus

Coffea liberica

Coriandrum sativum
Coriander
Crataegi flos
Crataegus laevigata
Hawthorn flower
Crataegi flos
Crataegus monogyna
Hawthorn flower
Crataegi folium
Crataegus laevigata
Hawthorn leaf
Crataegi folium
Crataegus monogyna
Hawthorn leaf
Crataegi folium cum flore
Crataegus azardus
Hawthorn leaf and flower
Crataegi folium cum flore
Crataegus laevigata
Hawthorn leaf and flower
Crataegi folium cum flore
Crataegus monogyna
Hawthorn leaf and flower
Crataegi folium cum flore
Crataegus oxycanthoides

Hawthorn leaf and flower
Crataegi folium cum flore
Crataegus pentagyna
Hawthorn leaf and flower
Crataegi fructus
Crataegus laevigata
Hawthorn berry
Crataegi fructus
Crataegus monogyna
Hawthorn berry
Croci stigma
Crocus sativa
Saffron
Cucurbitae peponis semen
Cucurbita pepo
Pumpkin seed
Curcumae longae rhizoma
Curcuma aromatica
Turmeric root
Curcumae longae rhizoma
Curcuma domestica
Turmeric root
Curcumae longae rhizoma
Curcuma longa
Turmeric root

Hound's Tongue herb
Cynoglossi herba
Cynoglossum officinale
Hound's Tongue herb
Cytisi scoparii flos
Cytisus scoparius
Scotch Broom flower
(Continued)
(Continued)
Pharmaceutical Name
Botanical Name
Common English Name(s)
Cytisi scoparii flos
Sarothamnus scoparius
Scotch Broom flower
Cytisi scoparii herba
Cytisus scoparius
Scotch Broom herb
Cytisi scoparius flos
Cytisus scoparius
Broom flower, Scotch
Cytisi scoparius flos
Sarothamnus scoparius
Broom flower, Scotch
Cytisi scoparius herba

Cytisus scoparius
Broom herb, Scotch
Cytisi scoparius herba
Sarothamnus scoparius
Broom herb, Scotch
Delphinii flos
Delphinium consolida
Delphinium flower
Droserae herba
Drosera intermedia
Sundew herb
Droserae herba
Drosera longifolia
Sundew herb
Droserae herba
Drosera ramentacea
Sundew herb
Droserae herba
Drosera rotundifolia
Sundew herb
Dulcamarae stipites
Solanum dulcamara
Woody Nightshade
Echinaceae angustifoliae
Echinacea angustifolia

Male fern herb
Filicis maris rhizoma
Dryopteris filix-mas
Male fern rhizome
Filipendula ulmaria
Spiraea ulmaria
Meadowsweet
Filipendulae ulmariae
Filipendula ulmaria
Meadowsweet flowering
herba
tops
Foeniculi aetheroleum
Foeniculum vulgare
Fennel oil
Foeniculi fructus
Foeniculum vulgare
Fennel seed
Foenugraeci semen
Trigonella foenum-graecum Fenugreek seed
Fragariae folium
Fragaria vesca
Strawberry leaf
Fragariae folium
Fragaria viridis

Frangulae cortex
Frangula alnus
Buckthorn bark
Pharmaceutical Name
Botanical Name
Common English Name(s)
Frangulae cortex
Rhamnus frangula
Buckthorn bark
Fraxini cortex
Fraxinus excelsior
Ash bark
Fraxini folium
Fraxinus excelsior
Ash leaf
Fucus
Ascophyllum nodosum
Bladderwrack
Fucus
Fucus vesiculosus
Bladderwrack
Fumariae herba
Fumaria officinalis
Fumitory

Strawberry leaf

Galangae rhizoma
Alpinia officinarum
Galangal
Galegae officinalis herba
Galega officinalis
Goat's Rue herb
Galeopsidis herba
Galeopsis ochroleuca
Hempnettle herb
Galeopsidis herba
Gakopsis segetum
Hempnettle herb
Galii odorati herba
Galium odoratum
Sweet Woodruff herb
Gelsemii rhizoma
Gelsemiums sempervirens
Yellow Jessamine rhizome
Gentianae radix
Gentiana lutea
Gentian root
Ginkgo folium
Ginkgo biloba
Ginkgo Biloba leaf/leaf
extract

Ginseng radix
Panax ginseng
Ginseng root
Glycyrrhizae radix
Glycyrrhiza uralensis
Licorice root
Graminis flos
Poa spp.
Hay flower
Graminis rhizoma
Agropyron repens
Couch grass rhizome
Grindeliae herba
Grindelia robusta
Gumweed herb
Grindeliae herba
Grindelia squarrosa
Gumweed herb
Guaiaci lignum
Guaiacum officinale
Guaiac wood
Guaiaci lignum
Guaiacum sanctum
Guaiac wood
Gugguli gummi

Commiphora mukul
Indian boledlium oleo-gum
resin
Gypsophilae radix
Gypsophila paniculata
Soapwort root, White
Hamamelidis cortex
Hamamelis virginiana
Witch Hazel bark
Hamamelidis folium
Hamamelis virginiana
Witch Hazel leaf
Harpagophyti radix
Harpagophytum
Devil's Claw root
procumbens
Harunganae
Harungana
Haronga bark and leaf
madagascariensis cortex
madagascariensis
et folium
Hederae helicis folium
Hedera helix
Ivy leaf

Helenii radix
Inula helenium
Elecampane root
Helichrysi flos
Helichrysum arenarium
Sandy Everlasting flower
Hepatici nobilis herba
Hepatica nobiiis
Liverwort herb
Herniariae
Herniaria glabra
Rupturewort
Herniariae
Herniaria hirsute
Rupturewort
Hibisci flos
Hibiscus sabdariffa
Hibiscus flower
Hippocastani cortex
Aesculus hippocastanum
Horse Chestnut bark
Hippocastani flos
Aesculus hippocastanum
Horse Chestnut flower
Hippocastani folium

Aesculus hippocastanum
Horse Chestnut leaf
Hippocastani semen
Aesculus hippocastanum
Horse Chestnut seed
Hydrastis rhizoma
Hydrastis canadensis
Goldenseal rhizomes, roots
Hyoscyami folium
Hyoscyamus niger
Henbane leaf
Hyperici herba
Hypericum perforatum
St. John's Wort flowering
tops
Hyssopi aetheroleum
Hyssopus officinalis
Hyssop oil
Hyssopi herba
Hyssopus officinalis
Hyssop herb
Ipecacuanhae radix
Cephaelis ipecacuanha
Ipecac root
(Continued)

(Continued)
Pharmaceutical Name
Botanical Name
Common English Name(s)
Iridis rhizoma
Iris florentina [Iris
Orris root
germanica var. florentina]
Iridis rhizoma
Iris germanica
Orris root
Iridis rhizoma
Iris pallida
Orris root
Juglandis folium
Juglans regia
Walnut leaf
Juglandis fructus cortex
Juglans regia
Walnut hull
Juniperi fructus pseudo-
Juniperus communis
Juniper berry
fructus
Lamii albi flos

Lamium album
White Dead Nettle flower
Lamii albi herba
Lamium album
White Dead Nettle herb
Laminariae stipites
Laminaria cloustonii
Kelp
Laminariae stipites
Laminaria hyuperborea
Kelp
Lavandulae aetheroleum
Lavandula angustifolia
Lavender essential oil
Lavandulae flos
Lavandula angustifolia
Lavender flower
Lecithin ex soja
Glycine max
Soy Lecithin
Ledi palustris herba
Ledum palustre
March Tea
Leonuri cardiacae herba
Leonurus cardiac

Motherwort herb
Levistici radix
Levisticum officinale
Lovage root
Lichen islandicus
Cetraria islandica
Iceland Moss
Lini semen
Linum usitatissimum
Flaxseed/Linseed
Liquiritiae radix
Glycyrrhiza glabra
Licorice root
Lupuli strobulus
Humulus lupulus
Hops strobili
Lycopi herba
Lycopus europaeus
Bugleweed
Lycopi herba
Lycopus virginicus
Bugleweed
Majoranae aetheroleum
Majorana hortensis
Marjoram oil

Majoranae aetheroleum
Origanum majorana
Marjoram oil
Majoranae herba
Majorana hortensis
Marjoram herb
Majoranae herba
Origanum majorana
Marjoram herb
Malvae arboreae flos
Alcea rosea
Hollyhock flower
Malvae arboreae flos
Althaea rosea
Hollyhock flower
Malvae flos
Malva sylvestris
Mallow flower
Malvae folium
Malva sylvestris
Mallow leaf
Manna
Fraxinus ornus
Manna
Marrubii herba

Marrubium vulgare
Horehound herb
Mate folium
llex paraguariensis
Maté
Matricariae flos
Chamomilla rucutita
Chamomille flower, German
Matricariae flos
Matricaria recutita
Chamomile flower, German
Melalencae alternifolia
Meraleuca alternifolia
Australian tea tree oil
aetheroleum
Meliloti herba
Melilotus altissimus
Sweet clover herb
Meliloti herba
Melilotus officinalis
Sweet clover/Melilot herb
Melissae folium
Melissa officinalis
Wellssa Ullicilialis
Lemon balm leaf

Mint oil
aetheroleum
Menthae piperitae
Mentha x piperita
Peppermint oil
aetheroleum
Menthae piperitae folium
Mentha x piperita
Peppermint leaf
Mentzeliae cordifoliae
Mentzelia cordifolia
Mentzelia
Menyanthis folium
Menyanthes trifoliate
Bogbean leaf
Millefolii flos
Achillea millefolium
Yarrow flower
Pharmaceutical Name
Botanical Name
Common English Name(s)
Millefolii herba
Achillea millefolium
Yarrow herb

Mentha arvensis

Myristica aril
Myristica fragrans
Mace
Myristica fragrans
Myristica fragrans
Nutmeg
Myrrha gummi
Commiphora molmol
Myrrh oleo-gum resin
Myrtilli folium
Vaccinium myrtillus
Bilberry leaf
Myrtilli fructus
Vaccinium myrtillus
Bilberry fruit, Blueberry
fruit
Nasturtii herba
Nasturtium officinale
Watercress herb
Niauli atheroleum
Melaleuca viridiflora
Niauli oil
Ocimi Sancti folium
Ocimum sanctum
Holy Basil leaf

Oenotherae oleum
Oenothera biennis
Evening primrose oil
Oleae folium/oleum
Olea europaea
Olive leaf/oil
Oleandri folium
Nerium oleander
Oleander leaf
Ononidis radix
Ononis spinose
Restharrow root
Origani vulgaris herba
Origanum vulgare
Oregano herb
Orthosiphonis folium
Orthosiphon spicatus
Java tea/dried leaves and
tops
Orthosiphonis folium
Orthosiphon stamineus
Java tea/dried leaves and
tops
Paeoniae flos
Paeonia mascula

Petroselini fructus
Petroselinum crispum
Parsley seed
Petroselini herba/radix
Petroselinum crispum
Parsley herb/root
Phaseoli fructus sine
Phaseolus vulgaris
Kidney bean pods (without
semine
seeds)
Phospholipide ex soja
Glycine max
Soy Phospholipid
Piceae aetheroleum
Abies alba
White Spruce oil
Piceae aetheroleum
Abies sachalinensis
Fir Needle oil
Piceae aetheroleum
Abies sibirica
Fir Needle oil
Piceae aetheroleum
Picea abies

Plantago ovata
Psyllium seed, Blonde
Plantaginis ovatae testa
Plantago isphagula
Psyllium seed husk, Blonde
Platycodi radix
Platycodon grandiforum
Chinese-Japanese bell-
flower root
Podophylli peltati resina
Podophyllum peltatum
Mayapple resin
Podophylli peltati rhizoma
Podophyllum peltatum
Mayapple root
Polygalae radix
Polygala senega
Senega Snakeroot
Polygalae radix
Polygala tenuifolia
Polygala root
Polygoni avicularis herba
Polygonum aviculare
Knotweed herb
Populi cortex

Pygeium bark
Pruni africanae cortex
Pygeum africanum
Pygeum bark
Pruni spinosae fructus
Prunus spinose
Blackthorn berry
Pruni spinosae flos
Prunus spinose
Blackthorn flower
Psyllii semen
Plantago afra
Psyllium seed, Black
Psyllii semen
Plantago arenaria
Psyllium seed, Black
Psyllii semen
Plantago indica
Psyllium seed, Black
Psyllii semen
Plantago psyllium
Psyllium seed, Black
Ptychopetali lignum
Ptychopetalum olacoides
Muira Puama

Ptychopetali lignum
Ptychopetalum unicatum
Muira Puama
Pulmonariae herba
Pulmonaria officinalis
Lungwort herb
Pulsatillae herba
Pulsatilla pratensis
Pasque flower
Pulsatillae herba
Pulsatilla vulgaris
Pasque flower
Quercus cortex
Quercus petraea
Oak bark
Quercus cortex
Quercus robur
Oak bark
Raphani sativi radix
Raphanus sativus
Radish
Ratanhiae radix
Krameria triandra
Rhatany root
Rauwolfiae radix

Rauvolfia serpentina
Indian Snakeroot
Rehmanniae radix
Rehmannia glutinosa
Figwort root
Rhamni cathartici fructus
Rhamnus catharticus
Buckthorn berry
Rhamni purshianae cortex
Frangula purshiana
Cascara Sagrada bark
Rhei radix
Rheum officinale
Rhubarb root
Rhei radix
Rheum palmatum
Rhubarb root
Rhododendri ferruginei
Rhododendron fermgineum
Rhododendron, Rusty-
folium
leaved
Rhoeados flos
Papaver rhoeas
Corn Poppy

Serenoa repens
Saw Palmetto berry
repentis fructus
Saccharomyces cerevisiae
Saccaromyces cerevisiae
Brewer's yeast
Salicis cortex
Salix alba
White Willow bark
Salicis cortex
Salix daphnoides
Willow bark
Salicis cortex
Salix fragilis
White Willow bark
Salicis cortex
Salix purpurea
White Willow bark
Salviae folium
Salvia officinalis
Sage leaf
Sambuci flos
Sambucus nigra
Elder flower
Saniculae herba

Sanicula europaea
Sanicle herb
Santali albi lignum
Santalum album
White Sandalwood
Santali lignum rubrum
Pterocarpus santalinus
Sandalwood, Red
Saponariae rubrae herba
Saponaria officinalis
Soapwort herb, Red
Saponariae rubrae radix
Saponaria officinalis
Soapwort root, Red
Sarsaparillae radix
Smilax aristolochiaefolii
Sarsaparilla root
Sarsaparillae radix
Smilax febrifuga
Sarsaparilla root
Sarsaparillae radix
Smilax regelii
Sarsaparilla root
Scillae bulbus
Urginea maritima

Squill bulb
Scopolia rhizoma
Scopolia carniolica
Scopolia root
Scutellariae radix
Scutallaria baicalensis
Baical Skullcap root
Secale cornutum
Claviceps purpurea
Ergot
Selenicerei grandiflori flos
Selenicereus grandiflorus
Night-blooming Cereus
flower
Selenicerei grandiflori
Selenicereus grandiflorus
Night-blooming Cereus
herba
herb
Senecionis herba
Senecio nemorensis
Senecio herb
Sennae folium
Cassia acutifolia
Senna leaf

Sinapis alba
White Mustard seed
Solidago virgaureae herba
Solidago virgaurea
European Goldenrod herb
Sorbi aucupariae fructus
Sorbus aucuparia
Mountain Ash berry
Spinaciae folium
Spinacia oleracea
Spinach leaf Spiny
Stramonii folium
Datura stramonium
Jimsonweed leaf
Stramonii semen
Datura stramonium
Jimsonweed seed
Strychni semen
Strychnos nuxvomica
Nux Vomica seed
Symphyti folium
Symphytum officinale
Comfrey leaf
(Continued)
(Continued)

Pharmaceutical Name
Botanical Name
Common English Name(s)
Symphyti herba
Symphytum officinale
Comfrey herb
Symphyti radix
Symphytum officinale
Comfrey root
Syzygii cumini cortex
Syzygium cumini
Jambolan bark
Syzygii cumini cortex
Syzygium jambolona
Jambolan bark
Syzygii cumini semen
Syzygium cumini
Jambolan seed
Syzygii cumini semen
Syzygium jambolona
Jambolan seed
Tanceti parthenii herba
Tanacetum parthenium
Feverfew herb
Taraxaci herba

Taraxacum officinale
Dandelion herb
Taraxaci radix cum herba
Taraxacum officinale
Dandelion root with herb
Terebinthina laricina
Larix decidua
Larch Turpentine
Terebinthina veneta
Larix decidua
Venetian Turpentine
Terebinthinae aetheroleum Pinus spp.
Turpentine oil, Purified
rectificatum
Thymi herba
Thymus vulgaris
Thyme herb
Thymi herba
Thymus zygis
Thyme herb
Tiliae carbo
Tilia cordata
Linden charcoal
Tiliae flos
Tilia cordata

Tormentillae rhizoma
Potentilla tormentilla
Tormentil root
Tropaeolum majus
Tropaeolum majus
Nasturtium
Turnerae diffusae folium
Turnera diffusa
Damiana leaf
Turnerae diffusae herba
Turnera diffusa
Damiana herb
Uncariae cortex
Uncaria tomentosa
Cat's claw bark
Urticae folium
Urtica spp.
Nettle leaf
Urticae herba
Urtica spp.
Nettle herb
Urticae radix
Urtica spp.
Nettle root
Usnea

Usnea spp.
Usnea
Uvae ursi folium
Arctostaphylos uva-ursi
Uva Ursi leaf
Valerianae radix
Valeriana officinalis
Valerian root
Verbasci flos
Verbascum densiflorum
Mullein flower
Verbasci flos
Verbascum thapsus
Mullein flower
Verbenae herba
Verbena officinalis
Verbena herb
Veronicae herba
Veronica officinalis
Veronica herb
Vincae minoris herba
Vinca minor
Periwinkle
Violae odoratae rhizoma
Viola odorata

Sweet Violet root and herb
and herba
Violae tricoloris herba
Viola tricolor
Heart's Ease herb
Visci albi fructus
Viscum album
Mistletoe berry
Visci albi herba
Viscum album
Mistletoe herb
Visci albi stipitis
Viscum album
Mistletoe stem
Yohimbehe cortex
Pausinystalia yohimbe
Yohimbe bark
Zedoariae rhizoma
Curcuma zedoaria
Zedoary rhizome
Zingiberis rhizoma
Zingiber officinale
Ginger root
Zizyphi fractus
Zizyphus jujuba Mill.

Chinese jujube fruit

Source: The complete German Commission E Monographs, Blumenthal et al, American Botanical cour

9 Pruning of

classical formulations

Suggested process

A widespread perception that prevails among Ayurvedic scholars is that there is no need for carrying or

Col. Ram Nath Chopra wrote against this trend and raised the issue in 1933

when he suggested that attempts must be made to separate the good herbs from the useless ones and

undertaken.1

Prof. (Dr.) A. J. Baxi (Gujarat Ayurved University, Jamnagar) wrote in 1986: Dashamuula Kwaath Churi

ineness and quality of each drug.2

122 Legacy and logical steps

Redundant herbs can be easily removed from the compound.

The same process has been advised recently by A. Subramoniam: "In the development of a polyherbal

Ayurvedic Formulary of India (AFI), Part I, first edn, 1978, included the roots of all the ten plants: Aegle

In classical Ayurvedic medicine, plant parts like root, bark, flower, seed, fruit and leaves are used for th

plant, described in the ancient texts, is sought to be prepared in a different manner from that described

Keeping the therapeutic target in mind, only those herbs which can play an active role can be retained

Pruning classical formulations 123

Like many other drugs of the classical period, the profile of Dashamuulaarishta also changed with the p

Dabur recommends Dashamuulaarishta as a general tonic and restorative for women; Baidyanath Ayur

Now, let us see the biological activities of Classical Dashamuula Kwaath. Its extract produced CNS dep

study indicated that Dashamuula Kwaath extract effectively produced an aspirin-like analgesic, antipyre

Dhawan et al. (1977) reported that the entire plant extract of Uraria picta exhibited CNS depressant act root of Desmodium gangeticum gave gangetin, one of the pterocarpans isolated from the hexane extractly in rats.10 Alcoholic extract of the stem bark of Gmelina arborea showed anti-inflammatory activity comparable to phenylbutazone."11

Thus, if we scan the published literature, on the basis of leads already available, the number of herbs of A Srilankan compound formulation, Karvi Panchakadasha Kashaaya, consisted of 50 herbs, was shorted 124 Legacy and logical steps

an adjuvant with modern hypertensive drugs, also as an independent drug). At the end of 28 days, both and reduction in systolic and diastolic blood pressure.12

Shunthi Guggulu, a CCRAS drug for rheumatoid arthritis, can be quoted as another example. It contains the clinical study was conducted at the then CRI, Bhubaneswar, on 63 patients of rheumatoid arthritis. The result indicated a better effect of Shunthi guggulu (Group A) as compared to the other set of medical A clinical trial with four single drugs – Commiphora mukul oleoresin, Acorus calamus. Inula racemosa and linear and powdered roots of Inula racemosa and purified oleoresin of Commiphyperlipidemia.14

Now that a good number of single herbs are exhibiting CNS-CVS active, antihypertensive, hypolipidem Pruning classical formulations 125

In the chapter, "Basic Steps for Restructuring Ayurvedic Formulations," we will discuss the classification References

1 Chopra Col. Sir RN, Indigenous Drugs of India, 1933, first edn, 1958, second reprint 1994, Academic 2 CCRAS, Perspectives in Pharmaceutical Aspects of Indian Medicinal Plants, Scientific Seminar on M 3 Shah DC, SN Sannd, Regional Research Centre, CCRAS, Rehari Chowk, Jammu, Scope of Research Chaudhury Dr Ranjit Roy, Herbal Medicine for Human Health, WHO, Regional Publication, SEARCO 5 Gupta RA et al, Pharmacological Studies on Dashammula Kwaath, JRAS, 1983, IV: 73–84.

- 7 Neuropharmacological properties of several Indian medicinal plants, Jour Res Ind Med, 3(1): 9–18.
- 8 Screening of Indian plants for biological activity, Part IV, Ind Jour Exp Biol, 15: 208–219.
- 9 Kakiuchi et al, Planta Med, 1991, 57: 43; Handa et al, Fitoterapia, 1992, 63: 3.
- 10 Handa et al, Fitoterapia, 1992, 63: 12.
- 11 Agrawal et al, Ind J Nat Prod, 1994, 19(1): 14.
- 12 Ariyawansa HAS, RH Singh, supervisor, 1999. Ph. D. thesis, Dept of Kayachikitsa, Banaras Hindu L
- 13 Singh RH, Institute of medical sciences, Banaras Hindu university, Varanasi, Ayu International, Guja
- 14 Ramji Singh et al, JRAS, 1991, XIII: 1–18.

10 The pragmatic nature

of Ayurveda

No restrictions on revising

old formulations

Ayurvedic Drug Formulations, which were based on Ganas or Vargas devised by Charaka and Sushrut 2 Pancha Gavya Ghrita (Charaka Samhita, Chi. 10: 16) was composed of cow's urine, dung filtrate, mil

If these ingredients were collected from aja (goat), the drug was called Panchaaja; if collected from ma

Maha Panch Gavya Ghrita (Ashtangahridaya) contained 42 extra herbs (Ayurvedic Formulary of India,

This can be prescribed for Apasmaara (epilepsy), Kaamalaa (jaundice), Jvara (fever), and also for Uda

This formulation can be easily revalidated as it contains Dashamuula, Triphala, Haridraadi Gana, Tryuu

Pancha Gavya Ghrita of Sahasrayoga (Non-Samhita, Kerala Materia Medica) contains only basic five of

128 Legacy and logical steps

Second variation of Sahasrayoga, does not contain Dashamuula,

but contains Triphala, and 14 additional plant drugs, a totally different formulation, to be used as a rejuve

Elaadi Churna (Gadanigraha, twelfth century) contained eight components: cardamoms 1 part, cinnamo

In Bhaishajya ratnavali (seventeenth century), only three components were retained (cardamoms, naag

Gadanigraha (twelfth century) formulation was revised in Sharangadhara Samhita (thirteenth century).

5 Kumaryaasava:

Sharangadhara Samhita (thirteenth century) text contains 44 ingredients, while the formulation of Yoga ingredients. Both have been incorporated in Ayurvedic Formulary of India,

Part I, as A & B.

4 Draksharishta:

6 Navaayasa Churna:

In Ashtangahridaya (seventh century), the formulation contains Loha bhasma (clax of iron) 27 parts, who there was no bar to add or drop ingrediants from formulations during the classifications of Ayurvedic formulations

Ayurvedic formulations were a part of holistic healing. The imbalances of the whole system of the patient Charaka, Sushruta, and Vagbhat worked out different classifications (Ganas or Vargas) containing identification (Ganas or Vargas) contai

Now, Ayurvedic drugs have emerged as OTC drugs and millions of people are buying them directly from All Ganas and Vargas are first to be screened as the base-strength of classical formulations are to be considered that, each herb can be screened on the basis of the last 200 hundred years' research, which overweighs the foundation material we had in the sixteenth century.

The Second Supplement series was published during 2006–2009. The Supplement series covered 2,00 After the closure of The Wealth of India series, the Indian council of Medical Research (ICMR) brought species. The text is based on 75,486 research papers (reference material is preserved in ICMR, Medici This scientific progress will prove a boon to Ayurveda, and all old data can be revalidated for further ground the next chapter, we will be giving basic details of Ganas and Vargas of the classical period.

We have at our disposal 22 volumes of T he Wealth of India series, published by NISCAIR, CSIR (Coul

11 Basic steps

For restructuring Ayurvedic

formulations

Understanding the criteria of drug formulation during the

classical period

Sushruta's Classification of Ayurvedic Drugs is the pharmacological classification which will help drug reconstruction. The classification of Charaka is known as Dashemaani, 50 classifications having 10 herbs in each. His Sushruta Samhita (second century bc), and later on Vagabhata (ad sixth century) classified the group of Now that scientifically validated clinical profile of all plant drugs are available, and main herbs, synergis

Sushruta's vision was broad-based. He emphasized that components of a Gana can be used jointly or

or Vargas if so required. (Sushruta: Sutra 38: 82.) This was misconstrued, and, mainly due to lack of co

132 Legacy and logical steps

We find that Sushruta's text has also been modified at many places by commentators. In the sixth centre of the main text, we have added the plant drugs of Ganas of Vagbhat for point-ing out certain variations. We have taken the main text from Ayurveda Saukhyam text1 (sixteenth century) and Dravya Guna Vijn

In the main text, we have identified a number of obscure herbs of the Classical period and equated the

Sushrut's Ganas (Pharmacological Classifications) with

Charaka's Vargas (Dashemaani)

1 Vidaarigandhaadi Gana:

Vidaari (Pueraria tuberosa), Vidaarigandhaa (Desmodium gangeticum), Vishvadevaa (Abutilon indicu The Vidaarigadhaadi Gana ameliorate Vaayu and Pitta, cure sosha (wasting diseases), gulma (tumor), Charaka's Varga: Brahaniya (nourishing), Hikkaanigraha (curative of hiccup), kaasahara (curative of co

Basic steps for restructuring 133

Vagbhat's Vidaaryaadi Gana:

Vidaari, Eranda, Vrischikaali, Vrischeeva (Boerhaavia verticillata), Devaah-vaya (Cedrus deodra), Mud 2 Aaragvadhaadi

Gana:

Aaragvadha (Cassia fistula), Madana (Randia dumetorum), Gopa (Hemidesmus indicus) Ghontaa (Z Drugs of Aaragwadhaadi Gana alleviate Kapha and visha (poisoning, toxemia), and cures meha (urinar Charaka's Varga: Kushthaghna (curative of obstinate skin diseases), kanduughna (curative of pruritus), Vagbhat's Aaragwadhaadi Gana:

Aaragvadha, Indrayava (Wrightia tinctoria seed), Paatali (Mushkaka = Schrebera swieteniodes), Kaaka 3 Saalsaaraadi Gana:

Saalasaara (Shorea robusta), Ajakarna (Dipterocarpus turbinatus), Khadira (Acacia catechu), Kaala s 134 Legacy and logical steps

pinnata), Ashvakarna (Dipterocarpus alatus), Shaaka (Tectona grandis), Guduchi (Tinospora cordifoli Drugs of Saalsaaraadi Gana cure kushtha (obstinate skin diseases including leprosy), meha (urinary di Charaka's Varga: Kushthagna (curative of obstinate skin diseases), muutra sangrahaniya (corrective of Vagbhat's Asanaadi Gana (Sushruta's Saalasaaraadi Gana): Asana, Tinisa, Bhuurja, Swetavaaha (Arju 4 Varunaadi Gana:

Varuna (Crataeva nurvala), Aartgala (Xanthium strumarium), Shigru (Moringa pterygosperma, white varungs of Varunaadi Gana alleviate Kapha and reduce medas (adiposity).

They cure shirahshuula (headache), gulma (tumor) and aabhyantara vid-radhi (internal abscess).

5 Viratarvaadi

Gana:

Virataru (Terminalia arjuna or Viravriksha = Dichrostachys cinerea), Sahachara dwai (Barleria cristata Basic steps for restructuring 135

The drugs of Viratarvaadi Gana cure diseases caused by Vaayu, ashmari (stone in urinary tract), shark Charaka's Varga: Muutravirechaniya (diuretic).

Vagbhat's Viratarvaadi Gana:

Vellaantara (Virataru or Dirgha patra = Diospyros melanoxylon), Aranika (Agnimantha), Booka (?), Vris

Gana:

6 Rodhraadi

Rodhra = Lodhra, Saavar rodhra (Symplocos racemosa and S. crataegoides), Palaasha (Butea monocomorge The drugs of Rodhraadi Gana reduce medas (adiposity), and Kapha. They cure you i dosha (ailments of Charaka's Varga: Vedanaathaapana (anodyne), vishaghna (the antidote to poisoning), purishasangraha

Vagbhat's Rodhraadi Gana:

Rodhra, Saavaraka Rodhra, Palaasa, Jingini, Sarala (Devadaaru), Katphala, Kutsitaamba (Kadamba), 7 Arkaadi Gana:

Arka (Calotropis gigantea), Alarka (Calotropis procera), Karanjadwai (Udkirya: Pongamia pinnata, Prk Drugs of Arkaadi Gana reduce Kapha and medas (adiposity). They cure visha (poisoning, toxemia), krn Charaka's Varga: Vishaghna (the antidote to poisoning), kushthagnna (cures obstinate skin diseases in 136 Legacy and logical steps

Vagbhat's Arkaadi Gana:

Arka, Alarka, Naagadanti, Vishalyaa (Langali = Gloriosa superba), Bhaargi (Clerodendrum serratum), I 8 Surasaadi Gana

Surasaa (Ocimum sanctum), Shveta surasaa (White-flowered Ocimum basilicum, common English nai Drugs of Sursaadi Group alleviate Kapha and cure krmi (Parasitic infection), pratishyaaya (rhinitis), aruc Charak's Varga: Krmighna (curative of worms), shvaasahara (curative of labored breathing), shitaprash

Vagbhat's Surasaadi Gana:

Surasayugma (Krishna Tulasi and Sweta Tulasi), Phanijja, Kaalamaalaa, Vidanga, Kharabusa (Kharap 9 Mushkakaadi Gana:

Mushkaka (Moha Tree: Schrebera swietenioides), Palaasha (Butea monosperma), Dhava (Anogeissu Charaka's Varga: Arshaghna (curative of piles and haemorrhoids).

Basic steps for restructuring 137

Vagbhat's Mushkakaadi Gana:

Mushkaka (Mokshaka), Snuk (Euphorbia neriifolia), Varaa (Triphalaa) Dweepi (Karanji = Caesalpinia o

Krishnaa (Piper longam mature fruits), Granthika (Piper longum root), Chavya (Piper chava), Chitraka

Drugs of Krishnaadi Gana stimulate the power of digestion. They cure gulma (tympanitis, abdominal lur

Charaka's Varga: Dipaniya (promoter of digestion), shuulaprashamana (cures colic pain), shitaprasham

11 Elaadi Gana:

10 Krishnaadi Gana:

Elaa (Elettaria cardamomum), Tagara (Valeriana wallichii), Kushtha (Saussurea lappa), Maansi (Nar

Drugs of Elaadi Gana alleviate Vaayu and Kapha, cure visha (toxemia) and promote complexion (varn

Charak's Varga: Varnya (improves complexion), kanduughna (curative of pruritus).

138 Legacy and logical steps

Vagbhat's Elaadi Gana:

Elayugma (Suukshma Elaa and Sthuula Elaa), Turushka, Kushtha, Pha-lini (Prunus mahaleb), Maams

12 Vachaadi Gana:

Vacha (Acorus calamus), Ativisha (Aconitum heterophyllum), Jimuuta (Luffa pentandra), Japaa (Hibi

Charaka's Varga: Stanyashodhana (purifier of breast milk).

Vagbhat's Vachaadi Gana:

Vacha, Jalada (Cyperus rotundus), Devaahwa (Cedrus deodara), Naagara (Sunthi), Ativishaa (Aconi

13 Haridraadi Gana:

Haridraa (Curcuma longa), Daaru haridraa (Berberis aristata), Kalshi (Prshniparni: Uraria Picta), Yash

Drugs belonging to Vachaadi Gana and Haridraadi Gana (12, 13) help in the purification of breast milk

They especially help in paachana (toning up the whole digestive system).

Charaka's Varga: Stanyashodhana (purifier of breast milk).

Vagbhat's Haridraadi Gana:

Haridraa, Daaruharidraa, Yastyaahwa (Yashti), Kalasi (Prisniparni), and Kutajodbhava (Indrayava = Wr 14 Shyaamaadi Gana:

Trivrit (Operculina turpethum), Bidhaara (Ipomoea petaloidea), Danti (Baliospermum montanum), Sha Basic steps for restructuring 139

Drugs of Shyaamaadi Gana are purgative (bhedana) in cases of obstinate constipation (anaaha) and Charaka's Varga: Bhedaniya (purgative).

Vagbhat's Syaamnadi Gana:

Syaamaa (Syaama = trivrit), Danti, Dravanti, Kramuka (Areca catechu nut or Symplocos crataegoides)

15 Brhatyaadi Gana:

Brhati (Solanum indicum), Kantakaarikaa (Solanum xanthocarpum), Kutaja phala (Holarrhena antidys Drugs of Brhatyaadi Gana are paachaneeya (carminative). They alleviate Pitta, Vaayu, and Kapha. The Charaka's Varga: Hikkaanigraha (curative of hiccup).

16 Patolaadi Gana:

Patola (Trichosanthes dioica), Chandana (Santalum album), Kuchandana (Pterocarpus santalinus), Natolaadi drugs cure aruchi (anorexia), jvara (fever), chardi (vomiting), kandu (pruritus, itching), and vis Charaka's Varga: Triptighna (cures anorexia).

Vagbhat's Patolaadi Gana:

Patola, Katurohini, Chandana, Madhusravaa (Muuvaa), Guduchi and Paathaa.

17 Kaakolyaadi Gana:

Kaakoli (extinct), Kshira Kaakoli (extinct), Jivaka (extinct), Rshabhaka (extinct), Medaa (exitnct), Mahaa 140 Legacy and logical steps

Drugs of Kaakolyaadi Gana alleviate Pitta and anil-shonita (gout). They are vitalizing, nourishing and approach the Charaka's Varga: Jivaniya (promoter of longevity). stanyajanana (promoter of lactation), shukrajanana (Vagbhat's Padmakaadi Gana (= Sushruta's Kaakolyaadi Gana): Padmaka, Pundra (Nelumbo nucifera) Vagbhat's Jivantyaadi Gana:

Jivanti (Leptadenia reticulata), Kaakoli (extinct), Kshira kaakoli (extinct), Medaa (extinct), Mahaa Meda 18 Uushakaadi Gana:

Uushaka (a variety of alkaline soil which could not be identified or Dorema ammoniacum exudate), Sair Drugs of Uushakaadi Gana alleviate Kapha and help in the depletion of fat (medovishoshana). They cu Vagbhat's Uushakaadi Gana:

Uushaka, Tuththaka, Hingu, Kaasisadwai (Pushpakaasisa and Paansu-kaasisa), Saindhava, Shilaajatu 19 Saarivaadi Gana:

Saariva (Hemidesmus indicus), Madhuka (Glycyrrhiza glabra), Chandana (Santalum album), kuchand Charak's Varga: Trshnaanigrahana (curative of morbid thirst), jvarahara (curative of fever), daahaprash Vagbhat's Saarivaadi Gana:

Saarivaa, Usheera, Kaashmarya, Madhuuka, Sisiradwai (Chandana and Raktachandana), Yashti (Yesl 20 Anjanaadi Gana:

Anjana (one of the five variants of collyriums, uparasa group of eight minerals, or could be the ash or M Basic steps for restructuring 141

Rasaanjana (dry extract of Berberis aristata heartwood), Naaga pushpa (Minsops elangi flowers or sta Drugs of Anjanaadi Gana cure rakta-pitta (bleeding disorders, haemoptysis).

They cure visha (poisoning, toxemia) and an acute form of burning sensation inside the body (aabhyar Charaka's Varga: Shonitasthaapana (haemostatic), daahaprashamana (curative of burning sensation), Vaqbhat's Anjanaadi Gana:

Anjana, Priyangu, Maamsi, Padma (Nelumbo nucifera), Utpala (Nymphaea stellata), Rasaanjana, Elaa 21 Paruushakaadi Gana:

The drugs of Paruushakaadi Gana alleviate Vayu and cure muutra dosha (urinary disorders). They are Charaka's Varga: Virechanopaga (purgative, due to Triphala), shrmahara (curative of fatigue), hrdya (co

Paruushaka (Grewia asiatica), Draakshaa (Vitis vinifera bigger raisins), Katphala (Myrica nagi), Daadi

Paruushaka, Varaa (Triphala), Draakshaa, Katphala, Raajaahva (Aaragvadha = Casia fistula), Daadima

22 Priyangvaadi Gana:

Priyangu (Callicarpa mavrophylla flower-buds or Prinus mahaleb kernel of fruits), Samangaa (Mimosa Charaka's Varga: Purisha-sangrahaniya (renders fecal matters consistent), sandhaaniya (promote the tall Legacy and logical steps

Vagbhat's Priyangvaadi Gana:

Priyangu, Pushpaanjana (Pushpaanjana is a variety of Anjana (Collyrium), white in color, used for eye of 23 Ambaashthaadi Gana:

Ambashthaa (Cissampelos pariera), Dhaataki pushpa (Woodfordia fruticosa flowers), Samangaa (Mir Charaka's Varga: Sandhaaniya (promote the union of fractured parts, promote cell generation), purisha-sangrahaniya (renders fecal matters consistent).

Vagbhat's Ambashtaadi Gana:

Ambaashtaa, Madhuka (Glycyrrhiza glabra), Namaskari (Samangaa), Nan-divriksha (Prarohi), Palaash Drugs of Priyangvaadi Gana and Ambaashthaadi Gana possess the same properties. They alleviate Pi 24 Nyagrodhaadi Gana:

Nyagrodha (Ficus benghalensis), Udunbara (Ficus racemosa), Ashvattha (Ficus religiosa), Plaksha (Drugs of Nyagrodhaadi Gana are graahi (astringent), sandhaaniya (promote the union ofractured parts Basic steps for restructuring 143

sensation). Used for treating ulcers or wounds, fractures, rakta-pitta (bleeding disordrs), daaha (burning Vagbhat's Nyagrodhaadi Gana:

Nyagrodha, Ashvattha, Udumbara, Rodhrayugma (Rodhara and Saavara Rodhra), Jambudwai, Arjuna, Charaka's Varga: Chhardinigraha (nausea preventing), purisha-sangrahaniya (renders fecal matters co 25 Guduchyaadi Gana:

Guduchi (Tinospora cordifolia), Nimba (Azadirachta indica), Dhaanyaka (Coriandrum sativum), Padm The drugs of Guduchyaadi Gana cure trshnaa (morbid thirst), daaha (burning syndrome), aruchi (anore They have dipana property (stimulate the power of digestion). Charaka's Varga: Trshnaanigrahana (curative of morbid thirst).

Vagbhat's Guduchyaadi Gana:

Guduchi, Padmaka, Arista (Azadirachta indica), Dhaanyaka and Raktachandana.

26 Utpalaadi Gana:

Utpala (Nymphaea alba), Kumuda (Nymphaea stellata), Padma (Nelumbo nucifera), Kalhaara (Nelumbo nucifera

Drugs of Utpalaadi Gana alleviate rakta-pitta (bleeding disorders), and cure visha (poisoning, toxemia),

Charaka's Varga: Daahaprashamana (curative of burning sensation), Trshnaanigrahana (curative of mo

27 Mustaadi Gana

Musta (Cyperus rotundus), Paathaa (Cissampelos pareira), Nishaadwai (Curcuma longa, Berberis ari Drugs of Mustaadi Gana contain shodhana (internal cleansing) components; paachana (carminative) ai

144 Legacy and logical steps

Charaka's Varga: Lekhaniya (reducing obesity and scarifying), stanyashod-hana (purifier of breast milk

Vagbhat's Mustaadi Gana:

Mustaa, Vacha, Agni (Chitraka = Plumbago zeylanica), Dwinisaa (Haridraa and Daaruharidraa), Dwitikt

28 Triphlaa:

Triphala or Phala trika: fruits of Haritaki (Terminalia chebula, one part), Vibhitaki (Terminalia bellirica, t Triphalaa complex alleviates Kapha as well as Pitta and cures meha (urinary diseases), as well as kush

It cures visham jvara (irregular fever).

Charaka has described another variety of Triphala/ Phala trika. It contains Draakshaa (Vitis vinifera rai

29 Tryuushana Gana:

Pippali (Piper longum), Maricha (Piper nigrum) and Shunthi (Zingiber officinale dried rhizome), as a g

It reduces Kapha and medas (adiposity), cures meha (urinary diseases), kushtha (obstinate skin diseases)

30 Aamalakyaadi Gana:

Aamlaki (Emblica officinalis), Abhayaa (Terminalia chebula), Krshnaa (Piper longam), Chitraka (Plun

Drugs of Aamalakyaadi Gana cure jvara (fever). They are Chaakshushya (promote eye sight), vrshya (a

Charaka's Varga: Jvarahara (curative of fever).

31 Trapvaadi Gana (calcined minerals):

The group consists of calcined trapu (tin), sisa (lead), taamra (copper), rajata (silver), krshna lauha (old Mineral drugs of Trapvaadi Gana are rakta-krmi-hara (cure blood and parasitic infection), alleviate pipas Basic steps for restructuring 145

toxemia), cure hrdroga (heart diseases), paandu (anemia), meha (urinary disorders).

32 Lakshaadi Gana:

Lakshaa (lac: twigs of plants covered with the resinous bodies of the lac insect, Laccifer lacca), Aareva The drugs of Lakshaadi Gana are kashaaya-tikta-madhura (astringent, bitter and sweet). They alleviate Charaka's Varga: Krmighna (curative of worms), kushthaghna (curative of obstinate skin diseases).

33 Kshudra panchamuula (Laghu panchamuula):

Prshniparni (Uraria picta), Shaaliparni (Desmodium gangeticum), Brha-tidwai (Solanum indicum and Solanum indicum indicum and Solanum indicum indicum and Solanum indicum indicum indicum and Solanum indicum indicum indicum and Solanum indicum indicum and Solanum indicum in

Bilva (Aegle marmelos), Agnimantha (Premna integrifolia), Shyonaaka (Oroxylum indicum), Kaashma All the five roots taken together are deepana (stimulate digestion) Kapha-Vaataghna (alleviates Kapha Dashamuula:

Both Kshudra panchamuula and Mahat panchmuula, taken together constitute Dashamuula (Sushruta, Charaka's Dashmuula Varga: Shothahara (anti-inflammatory).

(See Editor's Note.)

35 Vallija panchamuula:

Roots of Vidaari (Vidaari (Pueraria tuberosa), Saariva (Hemidesmus indicus), Chhagashrngi (Ajashrngi 146 Legacy and logical steps

(=Guduchi: Tinospora cordifolia), and Nishaa (Curcuma longa or Curcuma caesia).

All the roots taken together are vrshya (aphrodisiac) and alleviate pittaanil (Pitta as well as Vaayu).

Charaka's Varga: Shukra shodhana (purifier of semen).

36 Panchakantaka:

Karamardaka (Carissa carandas), Saireya (Barleria prionitis), Trikantaka (Tribulus terrestris), Shataav All the five drugs, taken together, cure rakta-pitta (bleeding disorders), shopha (edema), shukra meha (Charaka's Varga: Shukra shodhana (purifier of semen).

37 Trna panchamuula:

Kusha (Desmostachya bipinnata), Kaasha (Saccharum spontaneum), Nala (Arundo donax or Phragm (Charaka: Shaali (Oryza sativa), Kaasha (Saccharum spontaneum), Shara (Saccharum munja), Darb "The roots of five-grasses," when taken together, alleviate daaha (burning syndrome), vitiation of pitta, to Charaka's Varga: Muutravirechaniya (diuretic).

Additional groups mentioned in Sushruta texts

1 Vatsakaadi Gana:

Vatsaka (Holarrhena antidysenterica), Ativishaa (Aconitum heterophyllum), Muurva (Marsdenia tenac Drugs of Vatsakaadi Gana alleviate Vaayu and Kapha, and cure gulma (abdominal lump), arsha (piles) Basic steps for restructuring 147

2 Kadambaadi Gana:

Kadamba (Anthocephalus cadamba), Vaaji karna (Ashwa karna: Vatica robusta), Karanja (Pongamia Drugs of (Kadambaadi Gana cure vitiated Kapha, paandu (anemia), tvaka roga (skin diseases), kushtha 3 Karanjaadi Gana:

Karanja (Pongamia pinnata), Vatsa (Kutaja: Holarrhena antidysenterica), Sairiya (Barleria prionitis), Song of Karanjaadi Gana cure meha (urinary disorders), kushtha (obstinate diseases including leprosy

4 Tri karshita:

Naagara (Zingiber officinale dried rhizome), Ativishaa (Aconitum heterophyllum), and Musta (Cyperus Drugs of Tri karshita alleviates Kapha, Pitta, and Vaayu, and cures jvara (fever). It is graahi (astringent)

5 Panch Kola:

Pippali (Piper longam), Pippali muula (Piper longam root), Chavya (Piper chaba), Chitraka (Plumbag

Vagbhata (sixth century ad) added some Panchakarma-

specific and Vaata, Pitta, Kapha alleviative drugs among its 31 Ganas.

1 Vamanaoushadha Gana (Emetics):

Madana (Randia dumetorum), Madhuka (Glycyrrhiza glabra), Tumbi (Lagenaria siceraria), Nimba (A

148 Legacy and logical steps

2 Virechanaoushdha

Gana (Purgatives):

Nikumbha (Danti = Baliospermum montanum), Kumbha (Trivrit = (Operculina turpethum), Triphalaa, G

3 Niroohana Dravya Gana (used for Niroohavasti):

Madana phala (Randia dumetorum), Kutaja (Holarrhena antidysenterica bark), Kushtha (Saussurea la

4 Shirsha virechaniya Gana (Sodhana Nasya):

Vella (Vidanga = Embelia ribes), Apaamaarga (Achyranthes aspera), Tryuushana Gana, Daarvi (Berb

5 Vaatahara

Gana:

Bhadradaaru (Cedrus deodara), Nata (Tagara = (Valeriana wallichii),) Kushtha (Saussurea lappa), Da

Bhadradaarvaadi Gana, Viratarvaadi Gana and Vidaaryadi Gana were used Vaatahara Gana.

6 Pittahara Gana:

Duurvaa (Cynodon dactylon), Anantaa (Yavaasaa = Alhagi pseudalhagi), Nimba (Azadirachta indica),

Duurvaadi Gana checks Pitta.

Basic steps for restructuring 149

7 Kaphahara Gana:

Aargvadhaadi Gana, Arkaadi Gana, Mushkakaadi Gana, Asanaadi Gana, Surasaadi Gana, Mustaadi G

8 Vatsakaadi Gana:

Vatsaka (Kutaja: Holarrhena antidysenterica), Vanatiktaka (Wild Picrorhiza kurroa), Muurvaa (Marsder Vatsakaadi Gana checks Vaata, Kapha and medas (adiposity), peenasa (chronic cold, sinusitis, rhinitis

1 Haritakyaadi Varga:

The Eight Vargas of Bhavprakasha Nighantu8

In this Varga, out of 94 plants, possible adverse effect of 26 drugs have been reported including four dr Contraindications for therapeutic uses of Haritaki (Terminalia chebula) and Aardraka (Zingiber officina 150 Legacy and logical steps

2 Karpuraadi Varga:

4 Pushpa Varga:

Drugs of this group consist of 58 aromatic drugs like Karpura (Cinnamomum camphora), Chanadana (3 Guduchyaadi Varga:

In this Varga, details of 124 drugs were mentioned. Out of these, 44 drugs are to be administered with o

In this group, out of 33 drugs, 11 are reported for side effect on Dosha, Dhaatu (seven tissues) and Mal Kalhar (Nymphaea alba) and Kadamba Pushpa (Anthocephalus cadumba).

5 Vataadi

Varga:

Eight, out of 40 big trees, described under this group, are mentioned with their possible side effects. An 6 Phalaadi Varga:

This group describes edible fruits which are otherwise considered healthy but still pose problems when fruits are reported for their possible side effects. Mango, in unripe condition, leads to vitiation of Tridosh

Basic steps for restructuring 151

7 Dhaanya Varga:

the digestive system and eyes if more is consumed. Among all fruits, five may hamper Agni (digestive s

This group consists of 33 plants of different varieties of Dhaanya (Grains), Shaali (cereals), Shashtika (Dry and roasted Chanaka (Cicer arietinum) is Kushtha-prakopaka (causes skin diseases), while Triputa

8 Shaaka Varga:

Some vegetables were considered harmful to eyesight. They also reduce sexual potency, mental power

Editor's note: a number of classifications need

total restructuring. A few examples:

1 All Dashmuula and Panchmuula formulations are to be rechristened and should be considered as new

152 Legacy and logical steps

provided stem bark and whole plant as substitutes for roots of Dashmuula.

We suggest that the classical formulation should be replaced with the following components:

Aegle marmelos leaves possess highly significant acute and subacute anti-inflammatory activity which

Crude ethyl acetate, methanolic and water extracts of leaves of Oroxylum indicum showed significant a

Crude extracts of Gmelina arborea plant are reported to possess wound-healing properties, antidiarrhea

Stereospermum suaveolens flowers are used with honey to stop cough.

Phytoconstituents such as 6-O-glucosyls-cutellarein7 dinatin, dinatin-7-glucuroniside, dinatin-7

The juice of Clerodendron phlomoides leaves is used as an alternative and bitter tonic. The plant is rep

The five roots (Laghu Panchamuula) have already been replaced with their plant parts. From additiona

2 All Ashvagangha (Withania) formulations are to be subjected to experimental and clinical studies, due

3 All formulations containing Mesua ferrea and Crocus sativa are to be reex-amined for their therapeuti

Part I, Second Revised Edition, 2003, page 317, and Keshara is not a synonym of Kumkuma, Crocus s

Basic steps for restructuring 153

4 All formulations of Bhaargi (Bhaarangi) are to be checked for their botanical components, as Clerode

are the sources of what is available in the market. Pygmaeopremna herbacea is also known as Bharan

5 All Nishaa (till now equated with Curcuma longa) formulations are to be reviewed. Synonyms of Curc

All Nishaa formulations should be revalidated by using Curcuma caesia.

Nishaamalaki Churna (Ashtangahridya) was prescribed for diabetes. The powdered drug contained Nis

Rajnayaadi Churna (Ashtangahridaya) contains Rajani rhizome. Used in Ayurveda for diarrhea, dysent

6 Madhuka and Madhuuka are synonyms of Glycyrrhiza glabra and Madhuca indica, respectively. In Ay In Bhavaprakasha, 99 formulations contain Madhuka; 10 Madhuuka; 9

Yashtimadhu (Madhuyashti, Madhuyashtika), 6 Yashtimadhu; 7 Yashti-madhuka; 16 Yashtyaahva (synbc. Madhukaahva (synonyms: Klitaka, Madhuyashtikaa, Madhuyashti, Yashtimadhu, Yasti, and Yashta places in Charaka Samhita. In Charaka Samhita (Su, 1.80) Klitaka is a synonym of Glycyrrhiza glabra (154 Legacy and logical steps

317). It has been included among the purgative fruit drugs (there is no record of the use of Glycyrrhiza of There is a possibility that Taverniera cuneifolia, locally known as Jethimadh (a folk version of Yashtimadh Further work should be done on Ganas, Vargas, and formulations on the basis of detailed research available References

- 1 Bhagwan Dasha V, Vaidya Lalitesh Kashyap, Materia Medica of Ayurveda (Based on Ayurveda Sauk
- 2 Dravya Guna Vijnana, Vol. I, Prof. P.V. Sharma, Chaukhambha Bharati Academy, Varanasi, 1993: 47
- 3 Chunekar Prof. KC, Dr NP Hota, Plants of Bhavaprakasha, National Academi Ayurveda, New Delhi, 1
- 4 Balwant Singh T, Glossary of Vegetable Drugs in Brhattrayi, Chaukhambha Amarab-harati Prakasha
- 5 Ayurvedic Formulary of India, part I, second revised edn, 2003, Government of India.
- 6 Ray P, HN Gupta, M Roy, Sishruta Samhita: A Scientific Synopsis, Indian National Science, New Del 7 Khare CP, Dictionary of Synonyms: Indian Medicinal Plants, IK International, New Delhi, 2012.
- 8 Kolhe R and Rabinarayan Acharya, Ayurpharm Int J Ayur Alli Sci., 2015, 4(10): 183-196.
- 9 Dhankhar S, Ruhil S, Balhara M, Dhankhar S, Chhillar A, Aegle marmelos (Linn.) Cor-rea: A potentia 10 Gupta RC et al, Journal of Pharmacy Research, 2008, 1(1): 65–72.
- 11 Dr. Sonawane Suvarna Rambhau et al, International Journal of Ayurvedic & Herbal Medicine, Septe

12 Hidden secrets

of clinical success

Super power of "Sacred Word"

Hidden secrets of clinical success 157

German Professor Rudolf Hansel wrote in the Preface of Rational Phytotherapy: Approximately two-thir This is surprising when we consider that German Commission E evaluated the therapeutic use of some We were surprised to see a 4-page text on "Drug Therapy and the Doctor's Word": Today the therapeut "Herb Doctor," measurable as the "placebo effect") accounts for between two-thirds and one-third of the 156 Legacy and logical steps

In India, Ayurvedic medicine has very deep roots in religion and rituals, even one pinch of "holy ash" wi
We have said earlier that Ganas and Vargas (classification of herbs based on their therapeutic properti
We will analyze a few such formulations in this chapter. While a number of drugs for psychological diso
Panch Gavya Ghrita contains filtered cow's dung, cow's milk, curd, urine and ghee.

Mahaa Panch Gavya Ghrit contains all the five constituents of Panch Gavya Ghrita, plus Dashamuula C Manasmitra Vataka contains Shankhpushpi (Convolvulus pluricaulis) with 72

other herbs drawn from different Ganas and Vargas. Prescribed for Manodosha and Manovikaara (mer There are drugs for Bhuutonmaada (insanity due to ghost influence = exog-enous psychosis), Kalyaana and 32 plant drugs respectively. Kalyaanaka Ghrita contains Tagara (Valeriana wallichii), Triplala and Maha Kalyaanaka Ghrita does not contain Tagara (Valeriana wallichii) and included Kapikachhu (Muchana Kalyaanaka Ghrita does not contain Tagara (Valeriana wallichii)

1 For Graha dosha (Planetary evil influnce syndrome), Arvinda Asava and Panch Mahagavya Ghrita ha 2 For

Baala Graha Dosha (Child's illness due to Planetary evil influnce), Kalyanaka, Maha Kalyaanaka Ghrita 3 For Napunsakataa (impotency) Vishnu Taila has been identified. It contains seven herbs. In the origin 4 For epilepsy, 36 Ayurvedic herbal and mineral drugs have been identified in Ayurvedic Formulary of In The impact of placebo

Now, we will elaborate on the impact of placebo in the treatments which survived for centuries.

Placebos have been shown to produce measurable physiological changes and exert therapeutic response

Brain imaging studies have found measurable changes in the neural activity of people experiencing pla parts of the brain stem, spinal cord, nucleus accumbens and amygdala.1 Strong

placebo responses have also been linked to increases in dopamine and opioid receptor activity. Both o Conversely, nocebos have been found to reduce dopamine and opioid receptor activity.

Some of these neurological changes occur in areas of the brain that are often targeted by antidepressa.

The following conditions have demonstrated positive responses to the placebo effect:1

Pain: A placebo's ability to reduce pain is referred to as placebo analgesia.

Either the placebo initiates the release of natural painkillers and endorphins or they change the individual Additionally, genuine analgesics have been found to be more effective if a person knows they are being 158 Legacy and logical steps

given without the person's knowledge. In this case, the placebo effect can be viewed as assisting a gere Depression: The effect of antidepressants is believed to be largely reliant on the placebo effect. One over Anxiety disorders: The placebo effect is particularly prevalent in trials for anti-anxiety drugs and significant coughs: A review of cough medication trials found that "85 percent of the reduction in cough is related to Erectile dysfunction: In one study, participants were split into three groups.

The first group was told they would receive treatment for erectile dysfunction, the second group was told like a second group was to

Epilepsy: Participants in anti-epilepsy drug trials have a 0% to 19% placebo response. A "placebo response in their normal seizure frequency.1

Critically reviewed placebo studies: There is increasing evidence that placebo interventions also affect the Hidden secrets of clinical success 159

of "implicit affordance," which assumes that placebo effects are dependent on "lived experience" rather

expected outcomes.2

Placebo response rates in clinical trials: A recent study investigated the impact of placebo response rat

PubMed publication databases were searched for randomized, double-blind, placebo-controlled trials o

The pooled drug and placebo response rates for studies with a placebo response rate ≤30% were 50.5

These results suggest that the relative efficacy of the active drug compared to placebo in clinical trials f

It is important to maintain placebo response rates below this critical threshold since this is one of the m

ment in BPD.3

A more caring approach from clinicians ("Doctor's Word") was found to enhance the placebo effect. Psy

References

1 Summarized from the post by Tim Newman, News Editor at Medical News Today, September 7, 2017

2 Meissner K, The placebo effect and the autonomic nervous system: Evidence for an intimate relations

3 Nadia Iovieno et al, Relationship between placebo response rate and clinical trial outcome in bipolar

Sciencedirect.com.

Part II

Defining

a new scientific path

by switching over to

modern pharmacognosy,

pharmacology and

research protocols

13 Identification of medicinal

plants by voucher specimen

Identification of medicinal plants 165

In the pharmaceutical community, herbarium specimens are essential for documenting the source mater. The use of vouchers for taxon identity is crucial in ethnobotanical research in which botanical information. The Oxford University Herbarium, the oldest in the UK and fourth-oldest in the world, was founded in 16 Institutions worldwide now host herbaria whose collections, in their entirety, may house many different anatomical variation as well as the distribution of that species.1

In India, Indian Institute of Integrative Medicine (Formerly RRL) Jammu, Herbarium is the main source of Many journals focused on the plant sciences, including the Botanical Society of America's journals, Approximations within publications as a means to document scientific data.2.

The International Code of Botanical Nomenclature requires that a "holotype,"

a specimen that permanently fixes the identity of the new taxon, be prepared or designated from previous 164 Defining a new scientific path

The United States Department of Agriculture (USDA) Forest Service in north-western states also requirement be placed in a public repository for verification of identification.3

The misidentification of a sample can dramatically hamper drug development.4

The classical example is that of Ashwagandha. Five forms of Indian Ashwagandha have been identified Now, Indian species of Withania has been identified as Withania ashwaganda sp. novo (Bilal Ahamad Mithanolide accumulation correlated positively with developmental stages and the highest content of the Same is the case of different chemo types of Acorus calamus. In literature, Acorus calamus has been of (Chief constituents of the volatile oil are heavily dependent upon the chemical strain (dis-, tri-, tetraploid All the 27 Indian genotypes of A. calamus were also analyzed for α and β -asarone contents, and percentage of the volatile oil are heavily dependent upon the chemical strain (dis-, tri-, tetraploid All the 27 Indian genotypes of A. calamus were also analyzed for α and β -asarone contents, and percentage of the volatile oil are heavily dependent upon the chemical strain (dis-, tri-, tetraploid All the 27 Indian genotypes of A. calamus were also analyzed for α and β -asarone contents, and percentage of the volatile oil are heavily dependent upon the chemical strain (dis-, tri-, tetraploid All the 27 Indian genotypes of A. calamus were also analyzed for α and β -asarone contents, and percentage of the volatile oil are heavily dependent upon the chemical strain (dis-, tri-, tetraploid All the 27 Indian genotypes of A. calamus were also analyzed for α and β -asarone contents, and percentage of the volatile oil are heavily dependent upon the chemical strain (dis-, tri-, tetraploid the triangle of the volatile oil are heavily dependent upon the chemical strain (dis-, tri-, tetraploid the triangle of the

One more example of intraspecific variation in plants. Artemisia dracunculus has been used medicinally Studies of samples from many sources found that some cytotypes contain specific antidiabetic compount within a single species 5 and not to misidentification of samples. Voucher specimens not only are a source.

Apart from providing a clear reference for a certain batch of material, voucher specimens also allow a formula of the processed or powdered material is purchased, it should be compared with chemical assays available. Without identifying the fertile parts, no plant should be used in herbal medicine. The voucher must contain the Janaki Ammal Herbarium

Indian Institute of Integrative Medicine (Formerly RRL),

Jammu, India

The original collection from all over India by col. Sir R. N. Chopra, Shri R. L.

Bhadwar and Dr. S. L. Nayar, include specimens dated even prior to 1935, some of them even dating be the collections in herbarium were further enriched by Dr. T. N. Srivastava in close collaboration with Dr. The structure or organization of Janaki Ammal Herbarium is based on Bentham and Hooker system of 166 Defining a new scientific path

synonyms. If the correct name has a basionym, the basionym follows the correct name and other synonyms. This herbarium is recognized internationally. The acronym RRLH has been assigned to it which is regist.

The preserved specimens in this herbarium include a large number of medicinal, aromatic and other educations.

Plant Families6:

1 Acanthaceae

132

9 Brassicaceae

12

2 Aceraceae

52

10 Burseraceae

41

3 Agavaceae

179

11 Buxaceae
158
4 Aizoaceae
88
5 Alangiaceae
93
1 Cactaceae
89
6 Alliaceae
182
2 Caesalpiniaceae 60
7 Alismataceae
194
3 Campanulaceae
103
8 Amaranthaceae
138
4 Cannabaceae
161
9 Amaryllidaceae
178
5 Cannaceae
179
10 Anacardiaceae

6 Capparaceae
13
11 Apiaceae
93
7 Caprifoliaceae
97
12 Apocynaceae
115
8 Caryophyllaceae
21
13 Aquifoliaceae
46
9 Celastraceae
47
14 Araceae
199
10 Ceratophyllaceae
169
15 Arecaceae; Palmae 196
11 Chailleticeae
43
16 Araliaceae

12 Chenopodiaceae
142
17 Araucariaceae
174
13 Cochlospermaceae 16
18 Aristolochiaceae
145
14 Colchicaceae
190
19 Arecaceae
196
15 Combertaceae
74
20 Asclepidaceae
116
16 Commelinaceae
193
17 Convolvulaceae
124
1 Balanophoraceae
155
18 Cordiaceae
122
2 Balsaminaceae

19 Coriariaceae

57
3 Berberidaceae
7
20 Cornaceae
95
4 Betulaceae
165
21 Crassulaceae
68
5 Biebersteiniaceae
36
22 Cucurbitaceae
86
6 Bignoniaceae
132
23 Cupressaceae
171
7 Bixaceae
17
24 Cuscutaceae
125
8 Boraginaceae

·—·
25 Cyperaceae
203
Identification of medicinal plants 167
1 Datiscaceae
88
1 Lamiaceae/Labiata 137
2 Dilleniaceae
3
2 Leeaceae
51
3 Dipsacaceae
100
3 Lauraceae
148
4 Dipterocarpaceae
27
4 Lecythidaceae
77
5 Dioscoriaceae
185
5 Lemnaceae
78
6 Dracaenaceae

189
6 Lentibulariaceae
130
7 Droseraceae
69
7 Liliaceae
187
8 Linaceae
31
1 Ebenaceae
112
9 Loganiaceae
117
2 Ehretiaceae
400
123
10 Loranthaceae
10 Loranthaceae
10 Loranthaceae 154

4 Elatinaceae

5 Ephedraceae
170
1 Magnoliaceae
4
6 Ericaceae
104
2 Malpighiaceae
33
7 Eriocauleaceae
201
3 Malvaceae
28
8 Erythroxylaceae
33
4 Martyniaceae
134
9 Euphorbiaceae
157
5 Melastomaceae
78
6 Meliaceae
42
1 Fagaceae

7 Menispermaceae
6
2 Ficoideae
90
8 Menyanthaceae
119
3 Flacourtiaceae
18
9 Mimosaceae
61
4 Flagellarieae
194
10 Molluginaceae
92
5 Fumariaceae
11
11 Monotropaceae
107
12 Moraceae
162
1 Gentianaceae
118
13 Morinaceae
101
2 Geraniaceae

2 Nyctaginaceae
139
4 Hernandiaceae
149
3 Nymphaeaceae
9
5 Hippuridaceae
72
6 Hydrangeaceae
65
1 Olacaceae
44
7 Hydrocharitaceae
176
2 Oleaceae
114
8 Hypoxidaceae
182
3 Onagraceae
82
9 Hypericaceae
24
4 Orchidaceae
177

5 Orobanchaceae
129
1 Icacinaceae
45
6 Oxalidaceae
37
2 Illecebraceae
140
3 Iridaceae
181
1 Paeoniaceae
2
2 Pamanaceae
197
1 Juglandaceae
164
3 Papaveraceae
10
2 Junacaceae
195
4 Papilionaceae
59
168 Defining a new scientific path
5 Passifloraceae

1 Sabiaceae
55
6 Parnassiaceae
64
2 Salicaceae
168
7 Pedaliaceae
133
3 Samydaceae
84
8 Philadelphaceae
66
4 Santalaceae
156
9 Phytolacaceae
143
5 Sapindaceae
52
10 Pinaceae
175
6 Sapotaceae
111
11 Piperaceae

54 17 Podophyllaceae

13 Sterculiaceae
29
18 Polemoniaceae
120
14 Symplocaceae
113
19 Polygalaceae
20
20 Polygonaceae
144
1 Tamaricaceae
23
21 Potamogetonaceae 202
2 Taxaceae
173
22 Pontederiaceae
192
3 Taxodiaceae
172
23 Portulacaceae
22
4 Thymelaeaceae
151

24 Primulaceae
109
5 Theaceae
26
25 Proteaceae
150
6 Tiliaceae
30
26 Punicaceae
81
7 Trapaceae
83
27 Pyrolaceae
105
8 Trichopodaceae
186
9 Trilliaceae
191
10 Typhaceae
198
1 Ranunculaceae
1
2 Resedaceae

160
3 Rhamnaceae
48
2 Urticaceae
159
4 Rhizophoraceae
73
5 Rosaceae
62
1 Zygophyllaceae
34
6 Rubiaceae
98
2 Zingiberaceae
178
7 Rutaceae
39
3 Zanichelliaceae
5
Other Indian Herbariums
1 NBRI: LWH Virtual Herbarium7
2 Deccan Regional Herbarium:8 It houses approximately 11,000 herbarium specimens including 890 M
3 Central National Herbarium, Howrah: 9 The Central National Herbarium, popularly known as CNH. It is

1 Ulmaceae

Identification of medicinal plants 169

4 French Institute of Pondicherry (The Western Ghats Forest Biodiversity Portal):10 The herbarium of F

species.

5 ENVIS Centre on Medicinal Plants (Digital Herbarium):11 It was established in 1993 is a specialized I

6 Kerala Forest Research Institute (Herbarium):12 Kerala Forest Research Institute was started in the

specimens and recognized internationally by the acronym "KFRI" by the International Association of Pla

The Museum of Materia Medica

Institute of Natural Medicine, Toyama, Japan

The museum was started in 1973 as a crude drug specimen room belonging to the Department of Deve

In 1985, the ground floor of a preservation building for pharmaceutical materials was developed as the

The Museum of Materia Media is also a natural drug resource for almost all important regions of the wo

European crude drugs (Herbs)

Tibetan crude drugs from Tibet

Tibetan crude drugs from Tibet and Qinhai Prov.

Tibetan crude drugs from India and Bhutan

Tibetan crude drugs from Nepal

Ayurvedic crude drugs from Nepal

Ayurvedic crude drugs from India

Ayurvedic crude drugs from Sri Lanka

Plant specimens from Nepal

Crude drugs from Myanmar

Unani medicines from Pakistan and Bangladesh

170 Defining a new scientific path

Medicinal Plant Names Services, Kew Garden, London

Medicinal Plant Names Services at Kew Gardens offer information service related to medicinal plants, r

Dr. Bob Allkin, in a personal communication13:

Researchers are familiar with current confusions that the use of different plant names can cause for pra

• Out of date or ambiguous names are being used in legislation.

Funk VA et al, The importance of vouchers, Taxon, 2005, 54: 127–129.

- Organizations are failing to communicate with one another because they use different names for the s
- Prescribing the wrong drug or manufacturers receiving the wrong plant material from their suppliers ca
- It is becoming difficult to find previously published literature due to being unaware of the synonyms of
- The problem becomes acute to communicate with those working in different countries, different discip
 Medicinal Plant Names Services (MPNS) is working to make people aware of these issues and to help
 References
- 1 Eisenman SW, AO Tucker, L Struwe, Voucher specimens are essential for documenting source mate 2 Goldblatt P, PC Hoch, LM McCook, Documenting scientific data: The need for voucher specimens. A
- 3 USDA Forest Service, Memorandum Regarding the Vouchering Policy for Bryophytes, Lichens, Fung
- 4 Eisenman SW et al, Voucher specimens are essential for documenting source material used in medic

5 Bilal Ahmad Mir (Indian Institute of Integrative Medicine, Jamu), Jabeena Khazir (Indian Institute of In

6 https://iiim.res.in/herbarium/introduction.h

Identification of medicinal plants 171

7 www.nbri.res.in LWH Virtual Herbarium

8 http://164.100.52.111/circles/Deccan/Herbarium.shtm

9 http://164.100.52.111/cnh/aboutus.shtm

10 www.ifpindia.org/biodiversityportal/index.php? option=com_content&view=article&i

d=58&Itemid=63&lang=en

- 11 http://envis.frlht.org.in/digital-herbarium-main.php
- 12 www.kfri.res.in/herbarium.asp
- 13 b.allkin@kew.org, August 28, 2018.

14 DNA barcoding

A breakthrough in authentication

of raw herbs

A recent (2015–2016) study by Sophie Lorraine Vassou, Stalin Nithaniyal, Balaji Raju, and Madasamy (API-RDBL).1

The monographs in the API contain the Sanskrit and botanical names of the plants. Since these monographs (Ayurvedic Pharmacopoeia of India Part I, Volumes I to VI), the name of the plants was updated by incommedicinal plants in the API plant list are not available in India and hence imported as raw drugs from Genomic DNA was extracted from either 100 mg of fresh leaf tissue or 25 mg of raw drugs using the central DNA was checked on 0.8% Agarose gel and quantified for PCR amplification.

Polymerase chain reaction (PCR) was performed using rbcLa F (ATGTCAC-CACAAACAGAGACTAAACAT) primers. The amplicons were checked on 1% agarose gel and purified using EZ-10 Spin Column 174 Defining a new scientific path

(Applied Biosystems, CA, USA), and full-length sequences were assembled using local alignment algored BLAST (Basic Local Alignment Search Tool) search was performed against

GenBank3 and BOLD (Barcode of Life Database) databases. TaxonDNA v. 1.6.2

ket samples.4 Unmatched samples were analyzed by BLAST search against the NCBI nucleotide datale API-Reference DNA Barcode Library was created with high quality and authentic rbcL barcodes for 374. The study demonstrated the utility of DNA barcoding in authenticating medicinal plant raw drug and four 395 medicinal plants of API were selected for barcoding. A number of botanical names were corrected

(http://taxondna.sf.net/) was used to calculate pairwise divergence. Phylogenetic tree based on Neighb

API medicinal plants1,5

Currently accepted Botanical names of

Sanskrit name Botanical name as given in API Currently accepted Botanical name Kasturilatika Hibiscus abelmoschus Linn. Abelmoschus moschatus Medik. Talisa Abies webbiana Lindl. Abies spectabilis (D.Don) Spach Arimeda Acacia leucophloea Willd. Acacia leucophloea (Roxb.) Willd. Babbula Acacia nilotica (Linn.) Willd. ex Acacia nilotica subsp. indica Del. sp. Indica (Benth.) Brenan (Benth.) Brenan Kadara Acacia suma Buch.-Ham. Acacia polyacantha Willd. Bijapatra Adiantum cappillus-veneris L. Adiantum capillus-veneris L. Hamsapadi Adiantum lunulatum Burm Adiantum lunulatum Burm. f.

Kuntze.
Svetapunarnava Boerhaavia verticillata Poir.
Boerhavia plumbaginea Cav.
Kunduru
Boswellia serrata Roxb.
Boswellia serrata Roxb. ex Colebr.
Sarsapa
Brassica campestris Linn.
Brassica rapa L.
Priyala
Buchanania lanzan Spreng.
Buchanania cochinchinensis
(Lour.) M. R. Almeida
Palasa
Butea monosperma (Lam.) Kuntze
Butea monosperma (Lam.) Taub.
Arka
Calotropis procera (Ait.) R. Br.
Calotropis procera (Aiton) Dryand.
Madana
Xeromphis spinosa (Thunb.) Keay
Catunaregam spinosa (Thunb.)
Tirveng.
Devadaru
Cedrus deodara (Roxb.) Loud.

Cedrus deodara (Roxb. ex D.Don)
G.Don
Brhat Dugdhika Euphorbia hirta L.
Chamaesyce hirta (L.) Millsp.
Kebuka
Costus speciosus
Cheilocostus speciosus (J. Koenig)
(Koerning ex Retz.) Smith.
C. D. Specht
Usira
Vetiveria zizanioides (Linn.) Nash
Chrysopogon zizanioides
(L.) Roberty
Karpura
Cinnamomum camphora
Cinnamomum camphora (L.) J.Presl
(L.) Nees & Eberm.
Tvak
Cinnamomum zeylanicum Blume
Cinnamomum verum J. Presl
Indravaruni
Citrullus colocynthis Schrad.
Citrullus colocynthis (L.) Schrad.
Nimbu
Citrus limon (Linn.) Burm. f.

Elaeocarpus sphaericus
Elaeocarpus serratus L.
Gaertn. K. Schum
Nahi
Enicostemma axillare
Enicostema axillare
(Lam.) A. Raynal.
(Poir. ex Lam.) A.Raynal
Paribhadra
Erythrina indica Lam.
Erythrina variegata L.
Dugdhika
Euphorbia prostrata W. Ait.
Euphorbia prostrata Aiton
Hingu
Ferula foetida Regel.
Ferula assa-foetida L.
Nandi
Ficus arnottiana Miq.
Ficus arnottiana (Miq.) Miq.
Phalgu
Ficus hispida Linn.
Ficus hispida L. f.
Sruvavrksa
Flacourtia indica Merr.

Hiptage benghalensis L.
Hiptage benghalensis (L.) Kurz
Kutaja
Holarrhena antidysenterica
Holarrhena pubescens
(Roth) A. DC.
Wall. ex G. Don
Kokilaksa
Asteracantha longifolia Nees
Hygrophila auriculata Heine
Darbha
Imperata cylindrica (Linn.) Beauv.
Imperata cylindrica (L.) Raeusch.
Siva-nili
Indigofera aspalathoides
Indigofera aspalathoides DC.
Vahl ex DC.
Vasa
Adhatoda vasica Nees
Justicia adhatoda L.
Granthiparni
Leonotis nepetaefolia R. Br.
Leonotis nepetifolia (L.) R. Br.
Jivanti
Leptadenia reticulata W.& A.

Anthocephalus cadamba Miq.
Neolamarckia cadamba
(Roxb.) Bosser
Karavira
Nerium indicum Mill.
Nerium oleander L.
Utpala
Nymphaea stellata Willd
Nymphaea nouchali Burm. f.
Syonaka
Oroxylum indicum Vent.
Oroxylum indicum (L.) Kurz
Ketaki
Pandanus tectorius
Pandanus tectorius
Soland. ex Parkinson
Parkinson ex Du Roi
Kakajangha
Peristrophe bicalyculata Linn.
Peristrophe bicalyculata
(Retz.) Nees
Jalpippalika
Phyla nodiflora Greene
Phyla nodiflora (L.) Greene
Amalaki

Currently accepted Botanical name
Gajapippali
Scindapsus officinalis Schoott.
Scindapsus officinalis
(Roxb.) Schott
Mura
Selinium candollei DC.
Selinum wallichianum
(DC.) Raizada & H. O. Saxena
Bhallataka
Semecarpus anacardium Linn.
Semecarpus anacardium L. f.
Svarnapatri
Cassia angustifolia Vahl.
Senna alexandrina Mill.
Prapunnada
Cassia tora Linn.
Senna tora (L.) Roxb.
Itkata
Sesbania bispinosa W. F. Wight
Sesbania bispinosa
(Jacq.) W.Wight
Kantakari
Solanum surattense Burm. f.
Solanum virginianum L.

Patalai
Stereospermum suaveolens DC.
Stereospermum colais (Buch
Ham. ex Dillwyn) Mabb.
Kiratatikta
Swertia chirata BuchHam.
Swertia chirata
BuchHam. ex Wall.
Aranya-surana Synantherias syeatica
Synantherias sylvatica
Schott Gen.Aocja
(Roxb.) Schott
Lavanga
Syzygium aromaticum (Linn.)
Syzygium aromaticum
Merr. & M.Perry
(L.) Merr. & L. M. Perry
Saka
Tectona grandis Linn.
Tectona grandis L. f.
Masaparni
Teramnus labialis Spreng.
Teramnus labialis (L. f.) Spreng.
Arjuna
Terminalia arjuna W. & A.

Valeriana jatamansi Jones
Asphota
Vallaris solanacea Kuntze
Vallaris solanacea (Roth) Kuntze
Vanyajiraka
Centratherum anthelminticum
Vernonia anthelmintica (L.) Willd.
(L.) Kuntze
Sahadevi
Vernonia cinerea Lees.
Vernonia cinerea (L.) Less.
Mudga
Phaseolus radiatus Linn.
Vigna radiata (L.) R. Wilczek
Kesaraja
Wedelia calendulacea
Wedelia calendulacea Rich.
Less non Rich.
Asvagandha
Withania somnifera Dunal.
Withania somnifera (L.) Dunal
Laghupatra-
Trianthema decandra L.
Zaleya decandra (L.) Burm.f.
varsabhu

Ghonta

Ziziphus xylopyrus Willd.

Ziziphus xylopyrus (Retz.) Willd.

Kola

Zizypus jujuba Lam.

Ziziphus mauritiana Mill.

Source: Madasamy Parani and Sophie Lorraine Vassou conceived and designed the experiment. Stalir

DNA barcoding 179

Views of Indian researchers

Views of DB A. Narayana, Member, Expert Working Group, Phytopharmaceuticals Group of Indian Phaseveral conventional techniques such as macroscopy, powder microscopy, and other pharmacognostic DNA barcode makes use of short (<1 kb) region of the genome (a barcode) from either nuclear or organ Several gene candidates matK, rbcL, trnH-psbA, ITS, trnL-F, 5S-rRNA, and 18S-rRNA have been tested

Two international initiatives working toward the development of DNA barcodes include the consortium f

Later, China Plant BOL Group proposed the addition of nuclear ITS to the matK-rbcL combination as a

180 Defining a new scientific path

rates even in closely related species. ITS is by far the most widely sequenced locus for angiosperms con However, the presence of universal primer for the ITS region and its evolu-tionary divergence rate sugginated States Pharmacopoeia, British Pharmacopoeia, and Indian Pharmacopoeia have in recognition of However, DNA testing cannot be a final answer as it has its limitations in detecting the authenticity of provided test methods to extract DNA from varying matrix of products, viz., food matrix, pharmaceutical In addition, many of the bioinformatic databases which were freeware are becoming chargeable adding

Pharmacognosists need to learn and build competency in this area so that their role continues to be rel

Further, authors propose that the manufacturers of products, dietary supplements, and extracts may de-

bp to test finished formulations and dietary supplements and validate before

being made available to buyers.6

A study on 203 herbal trade samples

In a recent study, the extent of adulteration in raw herbal trade of 30 important medicinal plants in South

DNA barcoding 181

using two candidate regions, nr-ITS and psbA-trnH were identified. A total of 203

herbal trade samples representing the 30 medicinal plant species were collected from 34 locations in S as reference, the analysis indicated that the substitution ranged from 20 to 100%.

Overall, approximately 12% of the market samples were adulterated.7

A study in Oslo

A number of studies in India have surveyed herbal raw drug markets and tested the authenticity of the lawer substituted with other phenotypically similar Phyllanthus species. Similar substitution was reported quality and good labeling practices of herbal products.8

References

1 Cordial acknowledgment. Synopsis based on the paper, Creation of reference DNA barcode library at plementalternmed.biomedcentral.com/articles/supplements/volume-16-supplement-1,

doi:10.1186/s12906-016-1086-0.) PMCID: PMC4959393 PMID: 27454470.)

- 2 Phytochem Bull., 1987, 9: 11-15.
- 3 http://blast.ncbi.nlm.nih.gov/Blast.cgi
- 4 Meier R, K Shiyang, G Vaidya, PKL Ng. DNA barcoding and taxonomy in diptera: A tale of high intras
- 5 The first part of the botanical name refers to the genus, second part to its species, followed by the na Maberley has elaborated one sample entry: Anisodus stramoniifolius (Wallich) G. Don f.

The species was first described in another genus by Nathaniel Wallich (or Nathan Wolf), and first referr non Mill. is common jujube or Kola of Ayurvedic medicine, while Ziziphus jujuba Mill.

182 Defining a new scientific path

is Chinese Tsao (Unnaba of Unani medicine). Capsicum frutescens sensu Clarke, non Linn. and Capsi

6 DNA Barcode testing in the authentication of botanical raw material coming of age, Phcog Mag, 2018

7 Santhosh Kumar JU et al., Biotech, 2018, 3(8): 135.

8 Seethapathy GS et al, Front. Plant Sci., February 5, 2019.

15 Modern extraction methods

and standardization of

extracts

Vikram Andrew Naharwar

The current rationale for producing extracts in India as determined by the Ayurvedic Pharmacopoeia of Some of the commercial methods of extraction

1 Decoction: Herbs are heated in an aqueous solution for a period of time determined by individuals co

2 Forced Extraction: This is conducted under pressure in a closed vessel usually made of food grade s

3 Countercurrent extraction: This involves a liquid-liquid extraction process and principles are similar to

184 Defining a new scientific path

separate between each transference. The mixture to be fractionated is placed in the first tube containing

The layers are allowed to separate. The compounds in the mixture will be distributed between the two I

4 Microwave-assisted extraction (MAE): The application of microwave-assisted extraction process for is

Microwaves possess electric and magnetic fields which are perpendicular to each other. The electric fields

The target for heating dried plant material is the minute microscopic traces of moisture that occurs in pl

5 Ultrasonic Extraction (UAE): UAE involves the application of high-intensity, high-frequency sound was

is a potentially useful technology as it does not require complex instruments and is relatively low-cost. I

UAE involves ultrasonic effects of acoustic cavitations. Under ultrasonic action, solid and liquid particles

Modern extraction methods & standardization 185

are attributed to the formation and asymmetrical collapse of microcavities in the vicinity of cell walls lead

6 Supercritical fluid extraction (SFE): Supercritical fluid extraction (SFE) is the process of separating on

2

2

is the major supercritical fluid for extraction of botanicals. Extraction conditions for supercritical CO are critical pressure of 74 bar. Supercritical fluids are highly compressed gases, which have combined prop Supercritical fluids can lead to reactions, which are difficult or even impossible to achieve in convention to 60 minutes. A supercritical fluid can be separated from analyte by simply releasing pressure, leaving 7 Drying of extracts: There are various methods employed for drying of extracts, these are discussed b Tray drying: The most basic form of drying involves placing liquid extracts in trays and placing them in a Vacuum tray drying: This is much the same process as tray drying with the addition of a vacuum syster Rotary vacuum drying: Liquid extracts are injected into a vacuum sealed chamber that rotates at a slow Spray drying: This method involves a continuous feed of liquid extract into an atomizer that spins at a v Freeze drying: Freeze drying uses a process called lyophilization to gently freeze the product, and then 186 Defining a new scientific path temperature rise extracts all remaining "bound" moisture from the product. This process retains the che Strength and limitation of various extraction

- techniques
- Decoction method: This method is only suitable for extracting heat-stable polar compounds. This method
- Forced extraction method: This method allows the use of polar, nonpolar and a mixture of solvents. The
- Countercurrent extraction method: This is a highly selective method as it yields selective compounds,
- Microwave assisted extraction: This method is fast and efficient in extracting most compounds, however
- Ultrasonic extraction: This method is by far the most promising in commercial production as it produce.

 However polar extraction is certainly a very viable process by Ultrasonic method.
- Supercritical fluid extraction: This method has become extremely popular for the production of oleores
 Extractions are carried out at comparatively low temperature (often as low as 40°C or 50°C), decreasin

Most of the volatile components, which tend to be lost in hydrodistillation, are retained by SFE.

• Soxhlet extraction: Evaluation of Soxhlet extraction for Moringa olief-era leaves resulted in lower yield mization of Centella asiatica extraction using Soxhlet extraction showed to achieve optimum metal chel Soxhlet extraction has been used to remove lypodial materials from powdered Clitorea ternata flowers of Modern extraction methods & standardization 187

the presence of alkaloids and saponins, but the major component of Clitorea ternate flowers, the anthomal Soxhlet extraction comes with disadvantage such as exposure to hazardous and flammable liquid organical components.

- Evaluation on Microwave assisted extraction (MAE) as a new method to extract triterpene from Cente
 MAE with 100 W for 20 minutes on Dioscorea hispida yielded the highest extraction using 85% ethanol
- The benefits of Ultrasound-assisted extraction (UAE) or sonication extraction is mainly a due reduction.

 However, the use of ultrasound energy more than 20 kHz may have an effect on the active phytochemical of Withania somnifera by water solvent at 15 minutes showed maximum yield, 11.85% compared to ether.
- Accelerated solvent extraction (ASE) is an efficient form of liquid solvent extraction compared to mace
- Supercritical fluid extraction (SFE) or also called as dense-gas is a substance that shares the physical Supercritical-CO (SC-CO) has poor solubility for polar compounds, modi-2

2

fication such as adding small amount of ethanol and methanol enable it to extracts polar compounds. A of the equipment is very high.5

188 Defining a new scientific path

Importance of natural configuration of compounds

Standardization of herbs is based on the premise that isolated/concentrated compounds are responsible.

The medicinal value of a plant is due to its natural configuration of compounds.

Nature in its infinite wisdom has given each plant a unique chemical fingerprint; all plants have dozens

A Full Spectrum Extract is one that reflects the natural chemical profile of the original plants without ma

Consequently, standardization may concentrate one constituent at the expense of other potentially important.

There is also a risk involved in "standardization" of selective compounds.

Several herbs contain poisonous substances. Atropa Belladonna is a poisonous plant, known as deadly

Modern extraction methods & standardization 189

atropine, hyocyamine, scopolamine, and total alkaloids and a chemical fingerprint produced for every b

Understanding the concept of standardization

The industry uses the term "standardization" with a great deal of liberty without understanding the conc

The strength of herbal extracts is generally expressed as a ratio of dry plant material to the final extract

It is expressed in the following format:

X:Y

X = weight of dry plant material

Y = weight or volume of extract (depending upon whether the extract is a solid/

dry or a liquid extract)

The concept here is that the essential activity of the dry plant material (X) is found in the quantity of ext

The second form is to state a level of bioactive value. (As an example, Glycyrrhiza glabra extract is usu

The crude root yields approximately 4-5% crude glycyrrhizin, and a 5:1 concentration should give an ex

The third and more scientific method is bioactivity guided assay. These are relatively simple at a basic

In order to establish a scientific basis for claiming standardization, extracts should bear the same bioch

Further, simple TLC can establish qualitative benchmarks that will ensure that a

190 Defining a new scientific path

herb extract reflects the naturally occurring primary metabolites and secondary metabolites.

A general principle of herbal medicine is that the activity of the medicine is due to a combination of activity

Extract equivalency and dosage calculations

With multiple dosage forms now being common in herbal medicine, it is essential that formulators can describe the common in herbal medicine, it is essential that formulators can be seen to be seen t

For instance, the conversion between extract and herb is given here:

An extract of Emblica officinalis tablet stated to contain 500 mg of a 4:1

extract, with a dose of 1 tablet three times daily, translates to a dose of 2,000 mg of crude dry fruit per dose or 6,000 mg per day. (Bhavprakash nighantu recommends 3-12 g a day Therefore a scientific basis of the anti-oxidant activity or bio-guided assays are essential for clinical do To further establish the qualitative assay, TLC should be conducted to identify the major bioactive cor Chemical constituents identified in important medicinal herb extracts Botanical name Part used Chemical constituents Abies webbiana Leaves Abiesin, betuloside, abietane Abrus precatorius Seeds Aberin, hypaphorine, precatorin, abridin, abrusin Root

Precol, abrol, abrasine, precasine

Galactose, aldobio uronic,

Tannins, polyphynolic componds

arobinobioses, calcium

Acasia leuocuphlosa

Acacia Arabica

Gum

Bark

Stem bark
Tannins, n-hexacosanol, β-amyrin,
β-sitosterol
Achyranthus aspera
Root
Triterpenoid saponins, oleanolic
acid, achyranthine
Kshara (whole
plant)
Botanical name
Part used
Chemical constituents
Aconitum chasmanthum
Root
Alkaloids, pseudo aconitine,
chasmacontine, indaconitine
Aconitum palmantum
Root
Aconitin
Ailanthus excelsa
Stem bark
Ailanthic acid, melanthine,
β-sitosterol, quassinoids
Albizzia lebbek
Bark

Tannins, pseudotannins, friedelin,
β -sitosterol
Alhagi pseudhalhagi
Whole plant
Flavonoid glycosides kaempferol,
chrysoeriol, isorhamnetin,
Allium sativum
Bulb
Alliin, arinicacid, allinase,
allyalcohol, scordine
Aloe barbadensis
Leaves
Emodin, aloctin A, galactose,
aloesin, aloenin
Alstonia scholaris
Stem bark
Ditamine, echitenine, echitamine,
picrinine
Alternanthera Sessilis
Whole plant
Flavonoids, tannins, phenols,
saponins
Alternanthera triandra
Whole plant
Flavenoids, tannins, saponins,

phenols
Amaranthus tricolor
Whole plant
Fatty oils, sitosterol, calcium, and
magnesium
Anacyclus pyrethrum
Root
Anacycline, inulin, isobutylamide
Andropogon Citratus
Leaves
Citral, citronellal, citronellol,
geraniol, geranyl-Acetate
Anethum sowa
Seeds (oil)
α and $\beta\text{-pinene},$ sabinene,
myrcene, limonene
Angelica archangelica
Root
Limonene, S-phellandrene, pinene,
p-cymene, terpinolene
Angelica glauca
Root
Furocoumarins, dimeric latone,
lingusticum latone, volatile oils
Anogeissus latifolia

Bark
Tannins, quinic, shikmik acid
Anthocephalus cadamba
Bark
Alkaloids, steroids, tannins,
chichotannins
Arctocarpus lakoocha
Bark
Alpha amyrin, β-amyrin, tannins,
β-sitosterol
Aregyreia speciosa
Roots
Tannins, resin
Baliospermum montanum
Root
Baliospermin, montanin
Bambosa bambos
Dried resin
Silica, silicic acid, peroxide or
iron, potash, lime
Barringtonia acutangula
Bark
Tannins, dihydromuticetin, gallic
acid, bartogenic acid
Fruit, root

Boerhaavia verticilata
Root
Punarnavosides, oxalic acid,
punarnavine 1 &2
Borassus flabellifer
Fruit
Vitamin C, carotene, protein,
minerals
Buchananta Lanzen
Seeds, nuts
Kaempferol
Caesalpinia crista
Seeds
phytosterenin, bonducin, saponin,
bonducella
phytosterol, fixed oil, starch
Caesalpinia sappan
Heartwood
Throconine, β-amyrin, glucoside
alarine
Cajanus cajan
Root
Saponins and reducing sugars,
flavonoids, terpenoids
Seeds

Root
Hayatin, hayatinin, menismine,
cissamine, cycleanine
Citrullus colocynthis
Root
Saponins, alpha-elaterin
Fruit
Colocynthin and Colocynthitin,
Citrullol, Pectin
Citrus limon
Fruit
Citric acid
Citrus medica
Fruit
Citric acid, glucose, limonin,
limonene, rutin
Clitoria ternatea
Root
Ternatins, alkaloids, flavonoids,
saponins, tannins,
Carbohydrates, proteins, resins,
starch, taraxerol
Seeds
Palmitic, stearic, oleic, linoleic
acid, cinnamic acid

Botanical name
Part used
Chemical constituents
Cocos nucifera
Fruit
Proteins, vitamin C, B, iron
Commiphora myrrha
Resin
Commiferin A & B, myrrhol,
murrhin, limonene
Coriandrum sativum
Seeds
β-sitosterol, D-maninitol,
coriandrinonediol, linalool
Coscinium fenestrstum
Roots
Calumbin, berberine, palmatine,
calumbic acid
Crocus sativus
Stigma
Terpenes, terpene esters, crocetin,
carotenoids
Crotalaria juncea
Seeds
Corchorin

Croton tiglium
Seed
Tinglinic acid, crotonic acid,
crotonol
Cryptolepis buchanani
Root
Alkaloids
Cucumis melo
Seeds
Oil and sugars
Cucumis sativus
Fruit
Rutin, ascorbic acid, β-sitesterol,
pristine
Seeds
Glucosides
Cuminum cyminum
Seeds
Cuminaldehyde, cymene,
terpenoids
Curculigo orchioides
Root
Saponins, phenolic glycosides,
sitosterol, sigmasterol
cyanodon dactylon

Whole plant
Ferulic, Phenolic phyto-toxins,
vannilictricin
Cymbopogon citratus
Leaf
Volatile oils, citral, citronella,
citronellol
cymbopogon Jawarancusa
Whole plant
Piperitone, borneol, cadinene,
camphene, camphor, farnesene
Cymbopogon martinii
Whole plant
Geraniol, geranyl acetate,
citronellol, linalool, geranyl
butyrate
Cyperus Rotundus
Tuber
Cineol, copaene, cyperol,
cyperolone, kodusone
Dalbergia sissoo
Heartwood
Dalbergipherol
Bark
Isotectorigenin

Leaves
Biochanin A, tectorigenin
Desmodium gangeticum
Roort
Hypaphorine, hordenin, caudicine,
gangetinin,demodin
Desmostachya bipinnata
Root
Cylindrin, arundroine, feninole
Dioscorea bulbifera
Tuber
Diosbulbinosides
Diospyros tomentosa
Stem bark, fruit
Lupeol, betulin, β-sitosterol
Dipterocarpus turbinatus
Bark
Dipterocarpol, betulonic acid
Oil
A-Cardiana, A-muurolene
Dolichos biflorus
Seeds
Protein, pantosan, genistein,
colliding
Elaeocarpus ganitrus

Seeds
Rudrakine, quercetin, gallic acid
Erythrina indica
Bark
Erythrinins A, B, C, erysotin,
erythratidine, alkaloids
Leaves
Ertybidine, alkaloids
Euphorbia dracunculgides
Whole plant
Glyco-alkaloid (euphorbine).
Euphorbia thynifolia
Whole plant
Glucoside, galactoside,
β-sitosterol, campesterol
(Continued)
(Continued)
Botanical name
Part used
Chemical constituents
Fagonia cretica
Whole plant
Sapogenin, nahagenin, oleanolic
acid, diterpenes
Ficus arnottiana

oleanolate, stigmasteriol
Leaves
Carbohydrate, protein, lipid,
calcium, sodium, potassium
Forniculum vulgare
Seeds
β-carotene, calcium, iron, vitamin
С
Fritillaria roylei
Root
Catechin, gallic acid, ferulic acid,
vanillic acid, ferulic acid
Garcinia indica
Fruit
Garcinol, isogarcinol, comboginol
Garcinia Pendunculata
Fruit
Pendunculol, garcinol, cambogin
Garuga pinnata
Whole plant
Flavonoids, alkaloids, and tannins
Gentiana kurroo
Root
Secoiridoid, amarogentin,
alkaloids, gentianine,

Gynandropsis gynandra
Seeds
β-kitosterol, kaempferol,
glucocibrine, luteolin
Leaves
Carotenoids, cardiac glycosides,
flavonoids, saponins, tannins
Habenaria intermedia
Tuber
Alkaloids, coumarin glycoside,
phenolic compounds
Habeneria sarasiformi
Rhizomes
Taxol, starch
Hedychium spicatum
Rhizomes
Sitosterol, glucosides, furanoids
Hibiscus esculantus
Fruit (pods)
Quercetin, hyperin, D-glucose,
D-glucuronic
Hibuscus sabdariffa
Flowers
Sucrose, xylose, hibiscetin, h
ibiscin, pectin, oxalic acid

Botanical name
Part used
Chemical constituents
Hiptage benghalensis
Leaf, bark
Cellulose, lignin, hiptagin
Hordeum vulgare
Whole plant
Proteins, carbohydrate, free
Amino-acids, vitamins, tannins
Hydnocarpus laurifolia
Seed
Hypnocarpic acid, chaulmoorgic
acid, oleic acid
Imperata cylindrica
Root
Cylindrin, arundoin, fernenon,
isoburneol and simiarenol.
Indigofera Tinctoria
Root
Indican
Leaf
Indican
Inula racemose
Root

Mangiferolic acid, indicenol,
mangiferin
Seed & kernal
Palmitic, linoleic, arachidonic and
behenic acids
Marsdenia tenacissima
Root
Glycosides
(Continued)
(Continued)
Botanical name
Part used
Chemical constituents
Melia azedarch
Stem bark
Tannins and alkaloids
Michelia champaca
Bark
Liriodenine, macheline,
lanuginosine
Flowers
Champacene, linalool
Microstylis wallici
Tubers
Carbohydrates, total sugars,

proteins, phenols
Microstylus muscifera
Psudo bulb
Piperitone, citronella, eugenol,
limonene, β-sitosterol
Mimosa pudica
Root/leaves
Mimosine, turgorin,
c-glycosylflavones
Mimusops elengi
Bark
Tannins, saponins, taraxerone,
taraxerol
Flowers
D-mannitol, β-sitesterol,
D-glycoside
Musa paradisiaca
Fruit
Starch, albuminoids, glycosides,
vitamin C
Stem
Hexoses, uronic acid
Myrica nagi
Bark
Myricanol, proanthocyanidin

Myristica Fragrans
Seeds
Beta pipene, alpha-teroinene,
safrole, myristicin, myristic acid
Myristica malabarica
Seed
Isoflavones, diarylnonanoids,
tannins,
Nelumbo nucifera
Seeds
Palmitic, myristic, oleic and
linoleic acid
Nerium indicum
Root
Karabin, neriodin, neriodorin,
obandrin
Nymphaea stellata
Flowers
Nymphalin, quercetin, kaempferol
Root
Luteolin
Onosma bracteatum
Leaf
Lycopsamine, supindine
viridiflorate

Flowers
Cholin, glucose, fructose
Oroxylum Indicum
Root
Baicalein, teluin, oroxindin,
chysin, prunetin
Oryza sativa
Fruit
Starch
Osmanthus fragrans
Fruit
Ketones, alcohols, asters,
aldehydes, 1,3,5-trioxepane
Ougeinia dalbergoides
Heartwood
Isoflavinoids, hemoferitin,
urgenin, oujenin
Bark
lupeol, botulin, tannins
Parmelia perlata
Whole plant
Lichenin, lecanoric acid, atraric
acid, gum
Pentatropsis microphylla
whole plant

Leaf
Essential Oil, amino Acids,
vitamins and enzymes.
Piper chaba
Root
Piperine, sitosterol piplartine
Piper cuboba
Fruit
Cubebine, kinokinin, cubebic acid,
cyclohexanes
Pistacia integerrima
Gall
n-decan-3'-ol-yl-n-eicosanoate,
n-octadecan-9,11-diol-7-one
Plumbago zeylanica
Root
Chitranone, plumbagin,
plumbagicacid, elliptinone
Polygonatum cirrhifolium
Rhizome
Glucose, sucrose
Polygonatum cirrhifolium
Root
Glucose, sucrose
Punica granatum

Fruit
Tannins, falvonoids, alkaloids
Quercus infectoria
Gall
Gallotannic acid, gallic acidellagic
acid, rubric acid
Randia dumetorium
Fruit
Itric and tartaric acid, Randialic
acid, ursosaponin
Rosa centrifolia
Petals
Saponins, citronellol, geraniol,
nerol
Saccharum munja
Root
Cellulose, lignin, pantosoms
Saccharum officinarum
Stem
Glucose, fructose, amino acids
Saccharum spontansum
Root
Alkaloids, glycosides, phenolic
compounds, saponins
Salix caprea

Flower
Cyanidin, pipecolic acid, salicin,
salicortin, salireprocide
Salmalia
Bark
Lupeopl
Gum
Gallic and tannic acid
Root bark
Monoclinic sulphur, salvadourea
Salvadora persica
Leaves
Isotymol, thymol, eugenol,
eucalyptol
Saraca indica
Bark
Tannins, catechol, catechin,
epicatechin, procyanidin
Scindapsus officinalis
Fruit
Scindepsin A and B, fructose,
glucose, xylose
Selinium tenuifolium
Root

Dihydropyrano-coumarines,

sucrose, and mannitol.
Sesbania grandiflora
Bark
Tannins and gum
Leaf
Tannins, flavonoids, coumarins,
steroids
Flowers
Calcium, iron and vitamin B
Root
Tannins, flavonoids, coumarins,
steroids
Sessamum indicum
Seeds oil
Vitamin E, copper, megnesium,
calcium, iron
Shorea robusta
Resin
Hydroxyanone, ursolic acid
Sida cordifolia
Root
Ephedrine, hypaphorine,
vasicinone, choline
(Continued)
(Continued)

sesquiterpene acid, β-eudesmol
Spondius pinnata
Fruit ripe
Beta-amyrin, oleanolic acid,
glycine, cystine, serine
Bark
Lignoceric acid, Saidinin,
pipecolic acid, fragilin, picein,
Salicin Salicortin, sitosterol,
glucosides
Leaves
Lignoceric acid, β -sitosterol,
glucosides
Strebulis asper
Bark
Cardiac glycoside, stebloside,
mansonin
Strychnos potatorum
Seeds
Mannogalactan, dibolin,
strychnine
Symplocos Racemosa
Bark
Alkaloids: Loturine, isoloturine,
and harmane

Phenolic Glycosides:
Benzoylsalireposide
Flavanol glucosides:
Symplocoside, symposide
Syzygium aromaticum
Flowers bud
Eugenol, vanillin, kaempferol,
β-caryophyllene
Tamarisdus indica
Fruit
Tamarindienol
Leaves
Tannins, saponins, alkaloids
Tecomella undulata
Bark
Tecomin, tecoside, β -sitosterol,
tecomelloside
Tectona grandis
Heartwood
Resin, essential oil, fatty Oil and
tectoquinone.
Teramnus labialis
Whole plant
Arginin, leucine, calcium,
magnesium, potassium

steroids
Modern extraction methods & standardization 199
Botanical name
Part used
Chemical constituents
Valeriana wallichi
Root
Cyclopentapyrans, valtrote,
valepotriates, valerosidatum
Vateria indica
Resin
Oleoresin, limonene
Vaterial indica
Resin
Limonene, chamazulene, alpha-
β-pinene
Vetiveria zizanioides
Root
Allokhusiol, eugenol,
vanillin,vetivenic acid, vetiverol
Vitex agnus-castus
Seeds
n-tritriacontane, n-hentriacontane,
n-pentatriacontan
Zanthoxylum alatum

Linalool, linolyl acetate, terpenes
Zingiber officinale
Rhizome
gingerol, shogaol, starch
Zizyphus jujba
Fruit
Vitamin C, jujubosides, zizogenin,
zeatin, saponin
Bark
Leucocyanidin, mauritines
Leaves
Rutin, yuzirin
References
1 Dai and Mumper, Molecules 2010, 15(10), 7313–7352
2 Cares MG et al., Physics Procedia, 2010, 3: 169–178.
3 Baig S, A Faroog, F Rehman, Sonochemistry and its industrial applications, World Applied Sciences
4 Metherel AH et al, The application of ultrasound energy to increase lipid extraction throughput of solid
Fatty Acids, 2009, doi:10.1016/j.plefa.2009.07.003.
5 Azwanida NN, A review on the extraction methods use in medicinal plants, principle, strength and lim
16 Markers for quality control
of herbal drugs
WHO guidelines1

Leaves

The main purpose of markers of characteristic constituents is the identification and quantification of her Markers used as chemical reference substances should be international chemical or pharmacopoeial return the general requirements for markers

- Identity, specificity and selectivity using the specified analytical method(s).
- Should be present in traceable quantity for the identification or sufficient quantity for assay.
- Should be easily obtained, stable under specified storage conditions.
- Should be easily detected and quantified analytically.

The criteria for selection of a marker

- The marker must be readily available (for example, as an international or pharmacopoeial reference s
- It should be relatively easy to separate or distinguish the marker analytically from other structurally sir
- Markers should be detectable and quantifiable with available analytical instrumental methods (such as

202 Defining a new scientific path

- Different marker substances may be selected for the same herbal medicines depending on the analyti
- Derivatives of the naturally occurring markers may be used where the latter is not easy to detect, are
- Different marker substances may be selected for the same herbal materials depending on the different
- A group of markers may be selected if a single marker is not sufficient to identify and evaluate the her
- Markers for quantification: should be representative of the main therapeutic or pharmacological profile
- Markers for identification: should be specific for one plant or for certain plant species and genera. If no

Markers for toxic constituents

Marker substances for toxic constituents are used to define maximum acceptable concentrations of toxic

- Toxicological evaluation is required, but experience with traditional use should be taken into account.
- Genotoxicity, mutagenicity and carcinogenicity should also be considered when establishing toxicity c
- An analytical detection procedure for the established tolerable limits should be available.
- These requirements should always be met by the finished herbal product destined for human use, sin-
- Highly sensitive instrumental analytical methods (such as TLC, HPTLC, GC, HPLC, GC/mass spectro

- Simple identification tests for groups of toxic substances, such as alkaloids or terpenoids, should be a
- The toxicity may be assessed for control by the absence of a constituent or by establishing and testing
 Markers for quality control of herbal drugs 203

using selected marker(s) and analytical methods. For example, the absence of thiaminase enzyme action products.1

The European Medicines Agency (EMEA)2

According to the definition by the EMEA, analytical markers are the constituents or groups of constituer Other categories of markers

In United States Pharmacopeia's dietary supplement verification program, Srinivasan proposed the following the following states are categories: (a) active principles, (b) active markers.4

Group chemical markers have similar chemical structures and/or physical properties. The pharmacolog herbal medicines due to low quantities.4

Songlin Li et al., while discussing the pitfalls of the selection of chemical markers for the quality control general components.5

204 Defining a new scientific path

Therapeutic components possess direct therapeutic effects of herbal medicine. Isosteroidal alkaloids of Bioactive components, including isoflavonoids and saponins, were used simultaneously in the evaluation Synergistic components act synergistically to reinforce the bioactivities of other components. Therefore Flavonoids, terpene lactones including ginkgolides A, B and C, and bilo-balide are chemical markers for Valerenic acids are the characteristic components of valerian derived from the roots of Valeriana officing are used as markers for Ginseng.

Correlative components may be the precursors, products or metabolites of a chemical or enzymatic real Toxic components of medicinal herbs, documented by toxicological studies are used as markers, for insuffingerprints for quality control purposes.5

In Chinese Pharmacopoeia (2005 edition), a total of 282 chemical markers are listed for the quality control of Chinese herbal medicines.6 Reference Standards (RS) in The Ayurvedic Pharmacopoeia of India In India, for a large majority of botanical extracts, it is not known with certainty which of the various com Markers for quality control of herbal drugs 205 For the first time, on an experimental basis, API included Reference Standards of 15 Ayurvedic plant di Achyranthes aspera (whole plant) RS: Oleanolic acid. Albizia lebbeck (stem bark) RS: Catechin. Berberis aristata (dried stem) RS: Berberine chloride. Boerhaavia diffusa (dried root) RS: Boeravinone B. Boswellia serrata (exudate) RS: β -boswellic acid. Cassia senna (dried leaflets) RS: Sennoside A and Sennoside B. Garcinia gummi-gutta (dried fruits) RS (–)Hydroxycitric acid lactone and (–)hydroxycitrate. Gymnema sylvestre (dried leaf) RS: Gymnemagenin. Ocimum sanctum (dried leaf) RS:

1.0%), safrole (NMT

15.0% w/w of the stated 1.0%), linalool (1.5%-& 1.5% w/w NLA 10.0% w/w of the stated amount T (not less than) 0.6% w/w T 45% T 0.20% w/w T 1.0% w/w amount L-carvone (27.0%), L-carvone (27.0%–35.0%) T 0.8% w/w T 0.1% w/w T 0.30% T 1.0% w/w T 2.5% w/w T 0.70% w/w T 0.50% w/w T 0.005% w/w T 1.0% w/w T 0.25% respectively T 1.0% w/w T 1.0% w/w amount T 0.07% w/w T 0.50% w/w T 0.7% w/w 90.0%), cinnamyl acetate (1.0%-6.0%), eugenol (nmt 0.5%), coumarin (1.5%-4.0%), trans-2- methoxy Specification NL 1.0% w/w NL NL NL 90.0-120.0% w/w of the labeled

T 10.0% w/w

Cis-dehydro carvone (15.0%–25.0%)

NL NL NL 1.00% 1.00% NL NL

Bacoside

```
90.0-120.0% w/w of the stated amount
NL 35.0%-45.0% and 48.0%-60.0%
NL NL 85.0% w/w-1
NL NL
90.0-1
0.1% w/v; 0.2% w/v of stated amount
NL trans-cinnamic aldehyde (70.0%-
Cineole (NMT
1,
& acetyl
1-keto-
1-keto-beta-
& acetyl 1
- IV
[sum of bacoside-A3,
& hyoscine & hyoscine
Α
Α
& carvone
12-didehydroandrographolide content shall not be more than one sixth of andrographolide 90.0-120.09
bacopaside-II, bacopasaponin-C, jujubogenin isomer of bacopasaonin-C]
11-keto-beta-boswellic acid
boswellic acid beta-boswellic acid, alpha and beta boswellic acids and alpha and beta acetyl boswellic
```

NL NL NL NL

Dried leaves Tuberous roots Flowering top and leaf Flowering top and leaf Flowering top and leaf Dried
Dried roots Dried stems Dried roots Gum-resin
Gum-resin
Dried ripe fruits Ripe fruits
Dried compound leaves Dried compound pods Dried compound pods
Fruit pulp Dried aerial parts
Dried aerial parts
Roots
Fruits Leaves
Bark of the shoots
illd.
A.
W
ahal. ahal. ahal.
Blume
J. S.
Linn. Linn. A. Juss.
Linn.
VVV
Linn.
Nees Nees
(Linn.)

Mature seeds

(Linn.)
DC DC
Roxb.
Roxb.
(Linn.)
(Linn.)
Linn.
L.
L.
Linn.
ographis paniculata
ographis paniculata
haavia diffusa
Nees
Nees
opa belladonna opa belladonna
Pennell
Pennell
Urban.
Urban.
Rich.
Presl.
Ayurvedic Herb-markers in Indian Pharmacopoeia, 2018, V
Botanical name
Adhatoda vasica Adhatoda vasica Aesculus hippocastanum Allium sativum Andr

T 45% T 0.20% w/w T 1.0% w/w amount L-carvone (27.0%), L-carvone (27.0%-35.0%) T 0.8% w/w T 0.1% w/w T 0.30% T 1.0% w/w T 2.5% w/w T 0.70% w/w T 0.50% w/w T 0.005% w/w T 1.0% w/w T 0.25% respectively T 1.0% w/w T 1.0% w/w amount T 0.07% w/w T 0.50% w/w T 0.7% w/w 90.0%), cinnamyl acetate (1.0%-6.0%), eugenol (nmt 0.5%), coumarin (1.5%-4.0%), trans-2- methoxy Specification NL 1.0% w/w NL NL NL 90.0-120.0% w/w of the labeled Cis-dehydro carvone (15.0%–25.0%) NL NL NL 1.00% 1.00% NL NL Bacoside NL NL NL NL 90.0-120.0% w/w of the stated amount NL 35.0%-45.0% and 48.0%-60.0% NL NL 85.0% w/w-1 NL NL 90.0 - 1

T (not less than) 0.6% w/w

Berberine Berberine Boeravinone B 11-keto-beta-boswellic acid
Boswellic acids [sum of 1
Capsaicin Limonene
Total sennosides as sennoside B Total sennosides as sennoside B Total sennosidesas calcium salts R
Total triterpenes [sum of asiaticoside, asiatic acid, madecassic acid as medecassoside] Emetine Chloro
ol. III
& flowering tops
& stems
& stems
& rhizomes
& seeds & young branches
bulbs
leaves and stems
leaves and stems
leaves
leaves
Part Used
Dried mature leaves Dried mature leaves extract Fruit Fresh or dried compound Dried aerial parts main
Dried aerial parts mainly
Mature seeds
Dried leaves Tuberous roots Flowering top and leaf Flowering top and leaf Flowering top and leaf Dried
Dried roots Dried stems Dried roots Gum-resin
Gum-resin
Dried ripe fruits Ripe fruits
Dried compound leaves Dried compound pods Dried compound pods

Fruit pulp Dried aerial parts
Dried aerial parts
Roots
Fruits Leaves
Bark of the shoots
illd.
A.
W
ahal. ahal.
Blume
J. S.
Linn. Linn. A. Juss.
Linn.
VVV
Linn.
Nees Nees
(Linn.)
(Linn.)
DC DC
Roxb.
Roxb.
(Linn.)
(Linn.)

Linn.
L.
L.
Linn.
ographis paniculata
ographis paniculata
haavia diffusa
Nees
Nees
opa belladonna opa belladonna
Pennell
Pennell
Urban.
Urban.
Rich.
Presl.
Ayurvedic Herb-markers in Indian Pharmacopoeia, 2018, V
Botanical name
Adhatoda vasica Adhatoda vasica Aesculus hippocastanum Allium sativum Andr
Andr
Anethum sowa
Artemisia annua Asaragus racemosus Atr Atr Azadirachta indica Bacopa monnieri Bacopa monnier
Berberis aristata Berberis aristata Boer Boswellia serrata
Boswellia serrata

Capsicum annuum (Linn.) Carum carv

Centella asiatica Cephaelis ipecacuanha Cichorium intybus Cinnamomum cassia Cinnamomum verum & decanal 1.0%), 0.5%), & 0.20% of 1.0% w/w), (0.02%-0.50%),7.5%), cineole T 1.50% w/w), T 10% w/w valencene T 0.20% w/w), eicosanoic T 0.2% w/w) 3.0%), coumarin (NMT 0.30%), beta-myrcene T 0.20% w/w), arachidic T 1.0% w/w aldehyde (55.0%-75%), beta-carryophyllene (1.0%-4.0%), eugenol (NMT (NMT 0.5%), safrole (NMT I (62.0%-69.0%), gamma-terpinene (8.0%-12.0%)

Cassia angustifolia Cassia angustifolia Cassia angustifolia Cassia fistula Centella asiatica

pinene (1.20%–2.0%), sabinene (NMT (1.50%–2.0%), p-cymene (NMT 1.0%), limonene (65.0%–75.0%)

gotoxine NLD 0.15% labeled amount

caprylic acid (5.0%-1 caproic acid (4.0%-9.0% w/w), lauric acid (40.0%-50.0% w/w), myristic acid (15.

Specification

NL

Linalool (1.0%-6.0%), trans-cinnamic

NL D-limonene (45.0%-60.0%) alpha-

Beta-pinene (10.0%–16.5%), limonene

Alpha-pinene (1.60%-3.0%), beta-

Alpha-pinene (0.40%-0.60%) beta-

NL

Er

Caproic acid (NL

NL NL Forskolin NL

1.0% w/w-1.50% w/w 4.0% w/w-6.0% w/w

cineole,

eugenol,

& E) & E)

beta-carryophyllene, coumarin, safrole, benzyl benzoate, trans 2-methoxycinnamaldehyde terpinene

beta-myrcene, p-cymene, limonene, gamma-terpinene, methyl N-methyllanthranilate beta-myrcene, lim

gotoxine

acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidi

Cinnamaldehyde

Linalool, trans-cinnamic aldehyde,

Quercetin D-limonene, alpha-terpinene

Beta-pinene, limonene, gamma-	
Alpha-pinene, beta-pinene, sabinene,	
Alpha-pinene, beta-pinene, sabinene,	
Er	
Er	
Caproic acid, caprylic acid, caproic	
Chlorogenic acid Forskolin Forskolin	
Guggulsterones (Z Guggulsterones (Z	
ol. III	
fee bean	
endosperm	
guggul resin	
Part Used	
Dried inner bark	
Bark of the shoots	
Stem Whole fruits	
Epicarps of fresh fruits	
Peel of fresh fruits	
Fresh peel	
Dried selerotia	
Dried selerotia	
Dried solid part of	
Green cof Whole or cut dried roots Roots	
Oleoresin exudation Ethyl acetate extractive of	


```
T 0.20% w/w), eicosanoic T 0.2% w/w)
3.0%), coumarin (NMT
0.30%), beta-myrcene
T 0.20% w/w), arachidic
T 1.0% w/w
aldehyde (55.0%-75%), beta-carryophyllene (1.0%-4.0%), eugenol (NMT (NMT 0.5%), safrole (NMT I
(62.0%–69.0%), gamma-terpinene (8.0%–12.0%)
pinene (1.20%-2.0%), sabinene (NMT (1.50%-2.0%), p-cymene (NMT 1.0%), limonene (65.0%-75.0%)
gotoxine NLD 0.15% labeled amount
caprylic acid (5.0%-1 caproic acid (4.0%-9.0% w/w), lauric acid (40.0%-50.0% w/w), myristic acid (15.
Specification
NL
Linalool (1.0%–6.0%), trans-cinnamic
NL D-limonene (45.0%-60.0%) alpha-
Beta-pinene (10.0%–16.5%), limonene
Alpha-pinene (1.60%-3.0%), beta-
Alpha-pinene (0.40%-0.60%) beta-
NL
Er
Caproic acid (NL
NL NL Forskolin NL
1.0% w/w-1.50% w/w 4.0% w/w-6.0% w/w
cineole,
eugenol,
& E) & E)
```

beta-carryophyllene, coumarin, safrole, benzyl benzoate, trans 2-methoxycinnamaldehyde terpinene beta-myrcene, p-cymene, limonene, gamma-terpinene, methyl N-methyllanthranilate beta-myrcene, lim gotoxine acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidi Cinnamaldehyde Linalool, trans-cinnamic aldehyde, Quercetin D-limonene, alpha-terpinene Beta-pinene, limonene, gamma-Alpha-pinene, beta-pinene, sabinene, Alpha-pinene, beta-pinene, sabinene, Er Er Caproic acid, caprylic acid, caproic Chlorogenic acid Forskolin Forskolin Guggulsterones (Z Guggulsterones (Z ol. III fee bean endosperm guggul resin Part Used Dried inner bark Bark of the shoots Stem Whole fruits Epicarps of fresh fruits Peel of fresh fruits

Fresh peel
Dried selerotia
Dried selerotia
Dried solid part of
Green cof Whole or cut dried roots Roots
Oleoresin exudation Ethyl acetate extractive of
Linn.
(Fries)
(Fries)
illd.Briq
Blanco
ea
ea
Briq W
Linn.
L.
Linn.
(L.) Burm.
eticulate
Blume
Nees
(Christman) Swingle.
tulasne.

Ayurvedic Herb-markers in Indian Pharmacopoeia, 2018, V Botanical name Cinnamomum zeylanicum Cinnamomum zeylanicum Cissus quadrangularis Citrus aurantiifolia Citrus limon Citrus r Citrus sinensis Claviceps purpur Claviceps purpur Cocos nucifera Coffea arabica Coleus forskohlii Coleus forskohlii Commiphora wightii Commiphora wightii 1.0%), & alpha-0.1%), citronellyl 0.1%), neral (2.0% 1.0%), geranyl 3.0%), neral (NMT T 50.0%) (3.0%–7.0%), camphor (4.0%–6.0%) p-mentha-1, 3-diene-7-al (14.0%-18.0%), p-mentha-1, 4-dieneo-7-al (1.1%-2.0%), beta-pinene (12.0%) methyl heptanoate (1.56% w/w- 8.0% w/w)

tulasne.

citronellal (NMT acetate (NMT w/w-5.0% w/w), geranial (2.0% w/w-5.0% w/w), geranyl acetate (5.0% v/w)

(30.0%-45.0%), citronellyl acetate (NMT geranial (NMT acetate (2.0%-5.0%), citronellol (9.0%-15.0%)

acetate (32.0%-42.0%) T 2.0% w/w T 1.0% w/w

pinene (10.0%-22.0%) T 0.10% w/w T 0.6% T 12.0% T 0.50% w/w

T 3.0% w/w

amount T 1.0% w/w

amount T 3.0%

Specification

0.10%-0.30%

Linalool (65.0%-78.0%), alpha-pinene

Cuminic aldehyde (18.0%–30.0%),

NL 95.0% w/w-102.0% w/w of stated

NL NA

Citral (70.0% w/w–90.0% w/w)

Limonene (1.0% w/w-5.0% w/w),

Limonene (1.0%–5.0%), citronellal

NL 1, 8-cineole (23.0%–33.0%), terpinyl

NL NL 40% w/w 1, 8-cineole (60.0%-80.0%)

NL NL NL NL 22.0% w/w-27.0% w/w NL

90.0% w/w-120.0% w/w of the stated

NL 90.0% w/w-120.0% w/w of stated

NL

10.0% w/w

& terpinyl acetate

& alpha-pinene

Dried rhizome Dried rhizome
Whole plant Ground endosperm of seeds
Leaves
Fresh and partially dried
Fresh and partially dried
Whole plant Fruits
Dried matured fruits Fruit pericarp Juice of fresh fruits Leaves Oleogum resin Dried fruit Dried deseede
Dried mature leaves Dried mature leaves
Leaves
Leaves
••
Stapf.
•
L.
e Mill. Desr
Linn.
Linn.
dus
Gaertn. Gaertn.
e R. Br e R. Br
Linn. Linn.
Linn.

Burm.f.
Regel.
L. L.
(L.) Hassk damomum
L.
L.
eflexa
hiza glabra
hiza glabra
cinia cambogia
Choisy
cuma longa cuma longa
(Linn.)
(Continued)
Ayurvedic Herb-markers in Indian Pharmacopoeia, 2018, V
Botanical name
Convolvulus pluricaulis
Coriandrum sativum
Cuminum cyminum
Cur Cur
Cuscuta r Cyamopsis tetragonolobus
Cymbopogon flexuosus
Cymbopogon nar
Cymbopogon winterianus
Eclipta alba Elletaria car

Gymnema sylvestr Gymnema sylvestr Hedera helix Hedera helix) 1.0%), & alpha-(Continued 0.1%), citronellyl 0.1%), neral (2.0% 1.0%), geranyl 3.0%), neral (NMT T 50.0%) (3.0%–7.0%), camphor (4.0%–6.0%) p-mentha-1, 3-diene-7-al (14.0%-18.0%), p-mentha-1, 4-dieneo-7-al (1.1%-2.0%), beta-pinene (12.0%) methyl heptanoate (1.56% w/w- 8.0% w/w) citronellal (NMT acetate (NMT w/w-5.0% w/w), geranial (2.0% w/w-5.0% w/w), geranyl acetate (5.0% v/w) (30.0%-45.0%), citronellyl acetate (NMT geranial (NMT acetate (2.0%-5.0%), citronellol (9.0%-15.0%) acetate (32.0%-42.0%) T 2.0% w/w T 1.0% w/w pinene (10.0%-22.0%) T 0.10% w/w T 0.6% T 12.0% T 0.50% w/w T 3.0% w/w amount T 1.0% w/w amount T 3.0%

Specification

Embelia ribes Emblica officinalis Emblica officinalis Eucalyptus globulous Ferula foetida Foeniculum vu

0.10%-0.30%

Linalool (65.0%–78.0%), alpha-pinene

Cuminic aldehyde (18.0%-30.0%),

NL 95.0% w/w-102.0% w/w of stated

NL NA

Citral (70.0% w/w-90.0% w/w)

Limonene (1.0% w/w-5.0% w/w),

Limonene (1.0%–5.0%), citronellal

NL 1, 8-cineole (23.0%–33.0%), terpinyl

NL NL 40% w/w 1, 8-cineole (60.0%-80.0%)

NL NL NL NL 22.0% w/w-27.0% w/w NL

90.0% w/w-120.0% w/w of the stated

NL 90.0% w/w-120.0% w/w of stated

NL

10.0% w/w

& terpinyl acetate

& alpha-pinene

3-diene-7-al, p-mentha-1, 4-dieneo- 7-al, beta-pinene, gamma-terpinene, p-cymene acetate, neral, gera

Marker Compounds

Scopoletin

Linalool, alpha-pinene, camphor

Cuminic aldehyde, p-mentha-1,

Curcumin Curcuminoids

Quercetin Hydrocolloidal polysaccharide

Citral, methyl heptanoate

Limonene, citronellal, citronellyi Limonene, citronellal, citronellyi W 1, 8-cineole Embelin Gallic acid Gallic acid; polyphenols 1, 8-cineole trans-ferulic acid Anethole Hydroxycitric acid Flavone glycosides Flavonoids Glycyrrhizinic acid Glycyrr Gymnemic acids (as gymnemagenin) Gymnemic acids (as gymnemagenin) Hederacoside C Hederacoside C ol. III & & aerial parts aerial parts stolons stolons Part Used Whole plant **Fruits** Dried rhizome Dried rhizome Whole plant Ground endosperm of seeds Leaves Fresh and partially dried Fresh and partially dried Whole plant Fruits Dried matured fruits Fruit pericarp Juice of fresh fruits Leaves Oleogum resin Dried fruit Dried deseede

Dried mature leaves Dried mature leaves
Leaves
Leaves
Stapf.
L.
e Mill. Desr
Linn.
Linn.
dus
Gaertn. Gaertn.
e R. Br e R. Br
Linn. Linn.
Linn.
Burm.f.
Regel.
L. L.
(L.) Hassk damomum
L.
L.
eflexa

hiza glabra


```
T 0.20%) (NL1
1.2% w/w), trans-
T3.5%), p-cymene
T 15.0%), gamma-
Rb
T 10.0% w/w) codeine
1.5% w/w), alpha-
T 2.0% w/w)
T 0.8% w/w
T 0.02% w/w T 0.08% T 0.01% T 0.05%
50.0%), beta-pinene (1.0%–12.0%), limonene (2.0%–12.0%)
60.0%) linalool (25.0%-35.0%) T 1.5% w/w
sabinene (NL (0.5–12.0%), limonene (0.5–4.0%), alpha-terpinene (5.0–13.0%), cineole (NL terpinene (1
menthol (32.0% w/w-45.0% w/w) T 50.0% w/w T 0.30% w/w T 0.33% w/w T 3.0% w/w
pinene (13.0%–18.0%), sabinene (14.0%–29.0%)
limonene (15%-25%) T 0.40% w/w
ginsenosides T 4.0%
(NL
codeine (1.90% w/w-2.10% w/w)
stated amount of phyllanthin hypophyllanthin T 0.25% w/w
T 5.0% w/w
terpineol (NMT anethole (87.0% w/w-94.0% w/w) T 0.40% w/w
caryophyllene (12.0%-29.0%) T 2.50% w/w
Specification
NL
```

NL NL NL Alpha-pinene (20.0%-Linalyl acetate (35.0%-NL Alpha-pinene (1.0%-6.0%), Menthol (33.0%-45.0%), Menthone Menthone (13.0% w/w-28.0% w/w), NL NL NL NL Alpha-pinene(15.0%-28.0%), beta-35.0%-50.0% Methyl chavicol (50.0%-75%), NL 0.10% w/w-0.20% w/w Ginsenosides Rg 1 (NL NL Morphine (NL Morphine (9.50% w/w-10.50% w/w) 90.0% w/w-120.0% w/w of NLNL Linalol (NMT NL Limonene (10.0%-17.0%), beta-NL& Ginsenosides & limonene & hypophyllanthin & hypophyllanthin & beta-caryophyllene

Α

limonene, cineole, alpha-, gamma- terpinene, terpinolene
Rb 1
Marker Compounds
p-methoxycinnamic acid ethyl ester
Iso-vanillin Hypericins Hypericins Alantolactone Alpha-pinene, beta-pinene, limonene Linalyl acetate, lin
Mangiferin Alpha-pinene, sabinene, p-cymene,
Menthol, menthone
Menthone, menthol
Menthol Mesuol Scopoletin
L-DOP Alpha-pinene, beta-pinene, sabinene
Total balsamic acid as cinnamic acid
Methyl chavicol
Eugenol Ursolic acid Ginsenosides Rg 1
Total ginsenosides Morphine, codeine
Morphine, codeine
Phyllanthin
Phyllanthin
Kutkin
Linalol, alpha-terpineol, trans-anethole
Piperine Limonene
Piperine
ol. III
& flower buds
& terminal branch
& crushed nuts

& flowering tops	
Part Used	
Dried rhizome	
Root Flowering tops or aerial part Flowering tops or aerial part Dried roots Slightly dried ripe berries	s Flo
Stem bark Foliage	
Flowering tops	
Flowering herb	
Dried stamen Dried fruits	
Dried seed Dried	
Solid or semi solid balsum	
Leaves	
Leaves Leaves Dried roots	
Dried roots Air dried latex	
Air dried latex	
Aerial part	
Aerial part	
Dried roots	
Fruits	
Fruit Dried unripe berries	
Unripe fruits	
Linn. (Linn). (Linn).	

(Linn.)

Linn.
Linn.
Schum
Schum.
L.
Linn.
Linn. Houttuyn
Linn. Linn.
Royle ex
Linn
Hook. F
L.
oa
Linn.
Linn.
& Betch) Cheel.
L.
hiza kurr
oxylon balsamum
or
BuchHam.ex Smith
P.Miller
(Maiden
Harms.
and Thom

```
and Thom.
Benth
(Continued)
Ayurvedic Herb-markers in Indian Pharmacopoeia, 2018, V
Botanical name
Hedychium spicatum
Hemidesmus indicus Hypericum perforatum Hypericum perforatum Inula racemosa Juniperus commun
Mangifera indica Melaleuca alternifolia
Mentha arvensis
Mentha piperita
Mentha sp. Mesua ferra Morinda citrifolia
Mucuna pruriens Myristica fragans
Myr
Ocimum basilicum
Ocimum sanctum Ocimum sanctum Panax ginseng
Panax ginseng Papaver somniferum
Papaver somniferum
Phyllanthus amarus
Phyllanthus amarus
Picr
Pimpinella anisum
Piper longum Piper nigrum
Piper nigrum
)
& w/w)
```

```
&
```

(Continued

T 0.10%

T 0.20%) (NL1

1.2% w/w), trans-

T3.5%), p-cymene

T 15.0%), gamma-

Rb

T 10.0% w/w) codeine

1.5% w/w), alpha-

T 2.0% w/w)

T 0.8% w/w

T 0.02% w/w T 0.08% T 0.01% T 0.05%

50.0%), beta-pinene (1.0%–12.0%), limonene (2.0%–12.0%)

60.0%) linalool (25.0%-35.0%) T 1.5% w/w

sabinene (NL (0.5-12.0%), limonene (0.5-4.0%), alpha-terpinene (5.0-13.0%), cineole (NL terpinene (1.5-4.0%)),

menthol (32.0% w/w-45.0% w/w) T 50.0% w/w T 0.30% w/w T 0.33% w/w T 3.0% w/w

pinene (13.0%-18.0%), sabinene (14.0%-29.0%)

limonene (15%-25%) T 0.40% w/w

ginsenosides T 4.0%

(NL

codeine (1.90% w/w-2.10% w/w)

stated amount of phyllanthin hypophyllanthin T 0.25% w/w

T 5.0% w/w

terpineol (NMT anethole (87.0% w/w-94.0% w/w) T 0.40% w/w

caryophyllene (12.0%–29.0%) T 2.50% w/w

Specification

NL

NL NL NL Alpha-pinene (20.0%-

Linalyl acetate (35.0%-

NL Alpha-pinene (1.0%-6.0%),

Menthol (33.0%-45.0%), Menthone

Menthone (13.0% w/w-28.0% w/w),

NL NL NL

NL Alpha-pinene(15.0%-28.0%), beta-

35.0%-50.0%

Methyl chavicol (50.0%-75%),

NL 0.10% w/w-0.20% w/w Ginsenosides Rg 1 (NL

NL Morphine (NL

Morphine (9.50% w/w–10.50% w/w)

90.0% w/w-120.0% w/w of

NL

NL

Linalol (NMT

NL Limonene (10.0%-17.0%), beta-

NL

& Ginsenosides

& hypophyllanthin
& hypophyllanthin
& beta-caryophyllene
A
limonene, cineole, alpha-, gamma- terpinene, terpinolene
Rb 1
Marker Compounds
p-methoxycinnamic acid ethyl ester
Iso-vanillin Hypericins Hypericins Alantolactone Alpha-pinene, beta-pinene, limonene Linalyl acetate, li
Mangiferin Alpha-pinene, sabinene, p-cymene,
Menthol, menthone
Menthone, menthol
Menthol Mesuol Scopoletin
L-DOP Alpha-pinene, beta-pinene, sabinene
Total balsamic acid as cinnamic acid
Methyl chavicol
Eugenol Ursolic acid Ginsenosides Rg 1
Total ginsenosides Morphine, codeine
Morphine, codeine
Phyllanthin
Phyllanthin
Kutkin
Linalol, alpha-terpineol, trans-anethole
Piperine Limonene

& limonene

Piperine
ol. III
& flower buds
& terminal branch
& crushed nuts
& flowering tops
Part Used
Dried rhizome
Root Flowering tops or aerial part Flowering tops or aerial part Dried roots Slightly dried ripe berries Flo
Stem bark Foliage
Flowering tops
Flowering herb
Dried stamen Dried fruits
Dried seed Dried
Solid or semi solid balsum
Leaves
Leaves Leaves Dried roots
Dried roots Air dried latex
Air dried latex
Aerial part
Aerial part
Dried roots
Fruits
Fruit Dried unripe berries
Unripe fruits

Linn. (Linn). (Linn). (Linn.) Linn. Linn. Schum Schum. L. Linn. Linn. Houttuyn Linn. Linn. Royle ex Linn Hook. F L. oa Linn. Linn. & Betch) Cheel. L. hiza kurr

oxylon balsamum

or


```
Piper nigrum
Т
and NLA
Alpha-pinene
Alpha-pinene
T 5.0% w/w), T 12.5% w/w)
ithaferin
T 0.30% w/w), T 0.75% w/w)
W
& 0.25%
T 1.0% w/w T 0.50% w/w T 0.30% w/w
0.15%T
(15.0%-40.0%) T 0.02% w/w
T 0.40% w/w T 0.40% w/w T 2.0% w/w T 0.016% w/w T 1.50% w/w T 30.0% T 0.14% T 7.0% w/w acet
acetate (0.5%-4.0%)
acetate (0.5%-4.0%) T 0.04% T 0.02% w/w
chebulinic acid (NL
(15.0%-40.0%) T 0.02% w/w
T 1.0% w/w
gallic acid (NL
T 0.50% T 0.10% w/w T 2.0% w/w T 0.02% w/w
T 0.30% w/w T 0.0004% w/w T 0.02% w/w
T 2.5% w/w 7.5% w/w total withanolides T 0.8% w/w
```

Piper longum Piper nigrum

Specification NL NL NL NL0.15% w/w-2.0% w/w Borneol (2.0%-10.0%), NLNL NL NL NL NL NL NL NL Eugenol (75.0%-85.0%), eugenyl Eugenol (80.0%-92.0%), eugenyl Eugenol (83.0%-92.0%), eugenyl NL NL 60.0% w/w Chebulagic acid (NL 15.0% w/w 40.0% w/w Borneol (2.0%-10.0%) NL NL Ellagic acid (NL 7.0% w/w NL NL NL NL 0.02% NL NL NL NL NL 5.0% w/w; 20.0% w/w & chebulinic acid & chebulinic acid Α

Total gingerols 6-gingerol, 8-gingerol, 10-gingerol and
ol. III
8.
& blossoming tips
Part Used
Fruit Ripe fruit Heart-wood
Dried roots
Dried roots
Twigs
Dried stem
Stem bark Ripe fruit Ripe fruit Root Dried mature fruits Dried mature fruits Dried stem bark Dried flower
Leaf
Stem
Dried leaves Stem bark
Stem bark
Dried fruit pericarp
Dried fruit pericarp Dried fruit pericarp
Flowering stem
Dried mature Stem
Fruit Fruit pericarp
Fruit Dried fruits Dried ripe seeds Dried rhizome Rhizome, roots and stolons Rhizome, roots
Dried leaves Dried mature fruits Mature root
Mature root
Dried rhizome Dried rhizome

. Chandra Kant Katiyar
ahl
Linn.
Roxb. (L.)
L.
Mill.
Gaertn.
Gaertn.
DC.
DC.
V Linn.
L. or
L. or
Zucc (Roxb)
(Roxb)
Retz.
Retz. Retz.
L.

L.

Terminalia chebula Terminalia chebula Thymus zygis Tinospora cor Trachyspermum ammi Trerminalia bellirica Trerminalia bellirica Tribulus terr Trigonella foenum-graecum Valeriana jatamansi Valeriana officinalis \ Vitex negundu Vitis vinifera W W Zingiber officinale Zingiber officinale Source: Contributed by Dr Т and NLA Alpha-pinene Alpha-pinene T 5.0% w/w), T 12.5% w/w) 0.30% w/w), ithaferin T T 0.75% w/w) W & 0.25% T 1.0% w/w T 0.50% w/w T 0.30% w/w T 0.15% (15.0%-40.0%) T 0.02% w/w T 0.40% w/w T 0.40% w/w T 2.0% w/w T 0.016% w/w T 1.50% w/w T 30.0% T 0.14% T 7.0% w/w acet

Terminalia chebula

acetate (0.5%-4.0%)

acetate (0.5%-4.0%) T 0.04% T 0.02% w/w

chebulinic acid (NL

(15.0%-40.0%) T 0.02% w/w

T 1.0% w/w

gallic acid (NL

T 0.50% T 0.10% w/w T 2.0% w/w T 0.02% w/w

T 0.30% w/w T 0.0004% w/w T 0.02% w/w

T 2.5% w/w 7.5% w/w total withanolides T 0.8% w/w

Specification

NL NL NL

NL

0.15% w/w-2.0% w/w

Borneol (2.0%-10.0%),

NL

NL NL NL NL NL NL NL NL

Eugenol (75.0%-85.0%), eugenyl

Eugenol (80.0%-92.0%), eugenyl

Eugenol (83.0%-92.0%), eugenyl

NL NL

60.0% w/w

Chebulagic acid (NL

15.0% w/w 40.0% w/w

Borneol (2.0%-10.0%)

NL

NL Ellagic acid (NL
7.0% w/w NL NL NL NL
0.02%
NL NL NL
NL
NL 5.0% w/w; 20.0% w/w
& chebulinic acid
& chebulinic acid
Α
& withanoside iv
& gallic acid
& gallic acid
& ajmalicine
& ajmalicine
Α
Alpha-pinene
ithanolide a
ithaferin
6-shogaol]
Marker Compounds
Piperine Psoralen Pterostilbene
Reserpine
Reserpine
Borneol, alpha-pinene
Rubiadin

Beta-sitosterol Schisandrin Schisandrin Ecdysterone Silymarin Silymarin as silibinin Epiafzelechin Euge
Eugenol, eugenyl acetate
Eugenol, eugenyl acetate
Paclitaxel Arjungenin
Arjunolic acid
Chebulagic acid
Chebulagic acid Total polyphenols including chebulic, gallic, ellagic acids Borneol, Cordifolioside
Thymol Ellagic acid
Ellagic acid Diosgenin Trigonelline Valproic acid Total squiterpenic acid as valerenic acid Total sesquite
W
Total gingerols 6-gingerol, 8-gingerol, 10-gingerol and
ol. III
8.
& blossoming tips
Part Used
Fruit Ripe fruit Heart-wood
Dried roots
Dried roots
Twigs
Dried stem
Stem bark Ripe fruit Ripe fruit Root Dried mature fruits Dried mature fruits Dried stem bark Dried flower
Leaf
Stem
Dried leaves Stem bark
Stem bark

Dried fruit pericarp
Dried fruit pericarp Dried fruit pericarp
Flowering stem
Dried mature Stem
Fruit Fruit pericarp
Fruit Dried fruits Dried ripe seeds Dried rhizome Rhizome, roots and stolons Rhizome, roots
Dried leaves Dried mature fruits Mature root
Mature root
Dried rhizome Dried rhizome
L.
. Chandra Kant Katiyar
ahl
Linn.
Roxb. (L.)
L.
Mill.
Gaertn.
Gaertn.
DC.
DC.
V Linn.

Rauwolfia serpentina

Rosmarinus officinalis

Rubia cor

Saraca asoca Schisandra chinensis Schisandra chinensis Sida acuta Silybum marianum Silybum maria

Syzygium aromaticum L.

Syzygium aromaticum L.

Taxus wallichiana Terminalia arjuna

Terminalia arjuna

Terminalia chebula erminalia chebulaT

Thymus zygis

Terminalia chebula

Tinospora cor

Trachyspermum ammi Trerminalia bellirica

Trerminalia bellirica Tribulus terr Trigonella foenum-graecum Valeriana jatamansi Valeriana officinalis \

Vitex negundu Vitis vinifera W

W

Zingiber officinale Zingiber officinale

Source: Contributed by Dr

216 Defining a new scientific path

References

1 WHO Technical Report Series, No. 1003, 2017.

2 The European Medicines Agency Reflection paper on markers used for quantitative and qualitative ar

3 Srinivasan VS, Challenges and scientific issues in the standardization of botanicals and their prepara

4 Chan SSK, SL Li, G Lin, Pitfalls of the selection of chemical markers for the quality control of medicin

5 Li S et al, Chin Med., 2008, 3: 7. Published online June 28, 2008, doi:10.1186/1749-8546-3-7, PMCIE

6 Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China, Vol. 1, People is Republic of China,

7 The Ayurvedic Pharmacopoeia of India (API): Part I, IX.

8 Chandra Kant Katiyar in Ayurveda at the Turning Point, 2018: 198.

17 Pharmacological actions of

chemical constituents

Chemical constituents of the herbs form an integral part of the research for herbal drug development. T

- Herbs' definite pharmacological actions
- Synergistic action of herbs
- Balancing factors
- · Bioavailability of active principles
- Possible interactions with drugs of modern medicines
- Toxic components and potential risks

Alkaloids1

The first alkaloids for medicinal use were isolated at the beginning of the nineteenth century, by Derosn They present numerous biological activities such as being emetic, anticholinergic, antitumor, diuretic, sy Based on reported biological activities alkaloids have emerged as potential agents for intestinal inflamman

In accordance with structural forms, the alkaloids are classified in diterpenoid alkaloids (14-O-acetylneous)

218 Defining a new scientific path

Flavonoids2

Medicinal efficacy of many flavonoids as antibacterial, hepatoprotective, anti-inflammatory, anticancer a Flavonoids can be divided into a variety of classes such as flavones (e.g. flavone, apigenin, and luteolin Medicinal plants rich in flavonoids contents

Aloe vera

Luteolin
Acalypha indica
Kaempferol glycosides
Azadirachta indica
Quercetin
Andrographis paniculata
5-hydroxy-7,8-dimethoxyflavone
Bacopa monnieri
Luteolin
Betula pendula
Quercetrin
Butea monosperma
Genistein
Bauhinia monandra
Quercetin-3-O-rutinoside
Brysonima crassa
(+)-catechin
Calendula officinalis
Isorhamnetin
Cannabis sativa
Quercetin
Citrus medica
Hesperidin
Clerodendrum phlomidis
Pectolinarigenin,

Clitoria ternatea
kaempferol-3-neohesperidoside
Glyccheriza glabra
Liquiritin,
Mimosa pudica
Isoquercetin
Limnophila indica
3,4-methlenedioxyflavone
Mentha longifolia
Luteolin-7-O-glycoside
Momordica charantia
Luteolin
Oroxylum indicum
Chrysin
Passiflora incarnata
Vitexin
Pongamia pinnata
Pongaflavonol
Tephrosia purpurea
Purpurin
Tilia cordata
Hyperoside
Antioxidant activity: The best described property of almost every group of flavonoids is their capacity to
Lipid peroxidation is a common consequence of oxidative stress. Flavonoid protects lipids against oxidative
Pharmacological actions 219

A 3',4'-catechol structure in the B ring firmly enhances inhibition of lipid peroxidation. This trait of flavon Hepatoprotective activity: Several flavonoids such as catechin, apigenin, quercetin, naringenin, rutin, ar Silymarin is a flavonoid having three structural components silibinin, silydia-nine, and silychristine extra Several clinical investigations have shown the efficacy and safety of flavonoids in the treatment of hepatomatical structural components are safety of flavonoids in the treatment of hepatomatical demonstrated the inhibitory activity of quercetin, apigenin and 3,6,7,3',4'-pentahydroxyflavone and 5-hydroxyisoflavanones inhibited the growth of S.

mutans and Streptococcus sobrinus.

222 Defining a new scientific path

Anti-inflammatory activity: A number of flavonoids such as hesperidin, apigenin, luteolin and quercetin a 220 Defining a new scientific path

and serine-threonine protein kinases. The inhibition of kinases is due to the competitive binding of flavor Reversal of the carrageenan induced inflammatory changes has been observed with silymarin treatment phosphodiesterase, and this may in part explain their ability to inhibit platelet function.

Anticancer activity: Drugs inhibiting tyrosine kinase activity are thought to be possible antitumor agents.

Heat shock proteins also allow for improved cancer cell survival under different bodily stresses. Flavono Recently it has been shown that the flavonol epigallocatechin-3-gallate inhibited fatty acid synthase (FA Pharmacological actions 221

The anticancer effects of genistein on in vitro and in vivo models have been extensively reviewed. In a

of the flavone nucleus was found to be essential for their activity. Flavone-8-acetic acid has also been so Antiviral activity: Flavonoids inhibit various enzymes associated with the life cycle of viruses. Favan-3-or infection and replication. Baicalein and other flavonoids such as robustaflavone and hinokiflavone have Catechins are also known to inhibit DNA polymerases of HIV-1. Flavonoid such as demethylated garded It has also been reported that the flavonoids chrysin, acacetin and apigenin prevent HIV-1 activation via Various combinations of flavones and flavonols have been shown to exhibit synergism. Kaempferol and The antidengue virus properties of quercetin, hesperetin, naringin, and daidzein at different stages of D

Quercetin:
Rabies virus, herpesvirus, parainfluenza
virus, polio virus, mengo virus, and
pseudorabies virus.
Rutin:
Parainfluenza virus, influenza virus, and
potato virus.
Apigenin:
Immunodeficiency virus infection, Herpes
simplex virus type, and Auzesky virus
Naringin:
Respiratory syncytial virus
Luteolin:
Auzesky virus
Morin:
Potato virus
Galangin:
Herpes simplex virus type
Terpenoids
The terpenoids are a group of compounds that occur mostly in plants. The functional diversity of chemi
More than 30,000 terpenoids have been identified. The monoterpenoides and sesquiterpenoids are the
Monoterpenoids are major components of many essential oils – myrcene, geraniol, and linalool (acyclic
15
20

sesterterpenes (C). Artemisinin from Artemisia is a sesquiterpenoid. Taxol from 25

Taxus brevifolia is a diterpenoid. Triterpenoids produce several pharmacologically active groups, such a Among these pharmaceuticals, the anticancer drug Taxol and the antimalarial drug Artimesinin are two Bitters

Extracts of the following drugs have been used as bitter stomachic: gentian, quas-sia, calumba, cinchol Two major classes of bitters could be distinguished: the terpenoid or isoprenoid bitters and the nonterper Pharmacological actions 223

Terpenoid bitters include isoprenoid bitters of different structures: (a) monoterpenoids (C) e.g., iridoids sidic forms; (b) sesquiterpenoids (C) containing a lactone ring, sesquiterpenes 15 are responsible for the bitterness of wormwood blessed thistle (Cnicus benedictus) and ginkgo (Ginkg and pimarane structures e.g., marrubiin; (d) triterpenoids (C) e.g., cucurbitacins 30 and quassinoids.

Nonterpenoid bitters are classified according to their chemical structure: (a) phenolic bitters e.g., humul Plant Steroids

Plant steroids constitute a diverse group of natural products. Biosynthetically, they are derived from S-s Among the plant steroids, phytosterols are ubiquitous in the plant kingdom. It is significant that some photosterol is noteworthy that trace amounts of cholesterol and mammalian steroidal hormones including progest their detection, quantification and identification.4

Ergosterol and stigmastrol are the principal plant sterols. Ergosterol occurs in yeast. There is a hydroxy Stigmasterol is an important constituent and has been isolated from plants.

It is involved in the synthesis of many hormones like progesterone, androgens, estrogens and corticoids macological aspects have been assessed.5

Stigmasterol has significant effect on serum cholesterol comparable with the antihypercholestrolemic ac 224 Defining a new scientific path

in the activities of catalase, superoxide dismutase and glutathione thereby suggesting its antioxidantproindicating its thyroid inhibiting and hypoglycaemic property.7

The cytostatic activity of stigmasterol in the chloroform extract of Achillea ageratum was determined ag of inhibition when compared with 6-Mercaptopurine against both cultures.8

Stigmasterol also is involved in the synthesis of many hormones like progesterone, androgens, estroge Cardioactive glycosides

The cardiac glycosides are a group of saponins exhibiting cardiotonic properties in low concentrations,

Digitalis leaves contain more than 40 cardiac glycosides based on four genins: digitoxigenin, gitoxigenin

Gitalin and many other glycosides exhibit similar properties.

Cardiac glycosides are found in several plants, including foxglove (Digitalis purpurea), lily of the valley Cyanogenic glycosides

Common cyanogenic glycosides include amygdalin, found in bitter almonds and peach karnels, and pru Cyanogenic glucosides are capable of generating hydrocyanic acid, which is a

Pharmacological actions 225

violent poison. But hydrolysis of the glycosides in the digestive tract or by the liver leads to a slow releated. Addition of 10% apricot kernels to the diet of rats for 18 weeks showed only moderate toxic effects. Am However, co-administration of beta-glucosidase with amygdalin to rats substantially increased its toxicit Anthraquinones

Anthraquinones are phytochemicals based on anthracene (three benzene rings joined together). At each Anthraquinones usually occur in plants as glycosides; for example, the sennosides from senna (Cassia Long term use is not advised.

Natural anthraquinones in the form of chrysarobin have also been used topically in the treatment of pso Hypericin and pseudohypericin are structurally related to anthraquinones. They have been shown to have Coumarins

Coumarins are benzo-alpha-pyrones (lactones of o-hydroxycinnamic acid) formed via the shikimic acid

226 Defining a new scientific path

Dietary exposure to benzopyrones is significant as these compounds are found in vegetables, fruits, se

Most coumarins occur in higher plants, with the richest sources being the Rutaceae and Umbelliferone. Coumarins are made of fused benzene and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings, on the basis of different substituents on confidence and α -pyrone rings.

Saponins

Saponins are glycosides. They can be divided into two categories on the basis of sapogenin: steroidal a Saponins cause lysis of the blood cells, hemolysis and are toxic. On oral ingestion, hydrolysis readily of Pharmacological actions 227

Tannins

Tannins are phenolic compounds rich in hydroxy (-OH) residues that impart their astringent properties. Hydrolyzable tannins consist of numerous simple phenolics (e.g., gallic acid, ellagic acid) attached to a "hydrolysis" using an acid or base to release the phenolics from the sugar molecule. Hydrolyzable tannin Nonhydrolyzable tannins, also called condensed tannins, are most resistant to splitting. They are related When heated in acid they tend to polymerize to form a red insoluble substance called tannin red or phlotygrable tannins are significantly more astringent than condensed tannins.

The hydroxyl groups on the tannins are capable of undergoing several different reactions and interaction. As astringents, when applied topically, tannins help heal venous leg ulcers, make the wound more resil. This reduces the influx of water into the lumen of the bowel and reduces watery stools. By altering the sum of the property of the property

Gum, mucilage, resin

228 Defining a new scientific path

In Indian medicine, mostly Gum Arabic (Acacia Senegal) is used. It is a mucilaginous, demulcent and of From phytochemical point of view, mucilages are often considered to be a minor category of plant polys. Thus the mucilaginous plants have been used as wound remedies, soothing pain, irritation and itching,

Resins are a complex group of solids (occasionally liquid), insoluble in water, but soluble in alcohol, eth Polysaccharides

Polysaccharides are polymers based on sugars and uronic acids. They are found as a component of a Pharmacological actions 229

Aloe vera, Angelica sinensis, Astragalus membranaceus, Bupleurum falcutum, Dendrobium spp., Dimo Any herbal extract prepared in 50% or more ethanol will not contain significant quantities of polysaccha The results showed that the extraction yield of ultrasonic was 35.42%, microwave method was 32.12%, Essential oils

Essential oils have been widely used for bactericidal, fungicidal, antioxidant, allelochemical, medicinal, These compounds determine the pharmacology and toxicology of the essential oils. Ketones are more From a biosynthetic perspective, the components of essential oils can be classified into two major groups.

References

- 1 Ana Cristina Alves de Almeida et al, Recent Trends in pharmacological activity of alkaloids. Evidence 2 Kumar S, Abhay K. Pandey, Chemistry and biological activities of flavonoids: An overview, The Scient 230 Defining a new scientific path
- 3 Wang G, Weiping Tang, Terpenoids as Therapeutic Drugs and Pharmaceutical Agents, in book Natural terpenoids.
- 4 Gunaherath H, Plant steroids: Occurrence, biological significance and their analysis plant steroids: Occurrence analysis plant steroids: Occurrenc
- 6 Chandler RF, et al., Antihypercholesterolemic studies with sterols: Beta-sitosterol and stigmasterol, J 7 Panda S et al, Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated fr 8 Gómez MA, García, Cytostatic activity of Achillea ageratum Linn., Phytotherapy Research, 2001, 15(7 9 Ling Xu, Yan-Ling Wu, The Study on Biological and Pharmacological Activity of Coumarins, Research Study_on_Biological_and_Pharmacological_Activity_of_Coumarins, accessed on February 13, 2019.

18 Pharmacological screening

of Ayurvedic drugs by

experimental studies

R. C. Saxena

The use of drugs of any system of medicine, may it be Ayurvedic system of medicine, must be based of this is an era of safer surgery, but of dangerous medicine. This holds true for modern drugs but seems Some toxicities cannot be detected with the help of animal studies, such as psychosis, drugs causing in the producing a specific type of proteins in the transgenic animals, one can know amino acid sequences 232 Defining a new scientific path

Biological assays are also done for observing pharmacological effects of the drug or its chemical composition. In India, in general, pharmacological screening on intact animals, as well as on tissues and organs isolated Experiments on anaesthetized animals involve carrying out a series of standard tests after injecting the A brief review of models adopted for screening biological activities of herbs demonstrates how India is a

Effect on mammalian blood pressure.

Effects on frog heart.

Effect of aconitine induced arrhythmias in dogs.

Effect of herbal drugs on isolated guinea pig ileum or the isolated ileum of the rabbit.

Effect of herbal drugs on the estrogen-primed uterus of female rats.

Effect of herbal drugs on the eyes of rabbits.

2. Activity on muscles:

Effect of drugs on cat's polysynaptic lingo-mandibular reflex for central muscle relaxant activity.

Frog's rectus or rat phrenic nerve diaphragm for effects on the neuromuscular junction for peripheral measurements. Sciatic nerve gastrochemius preparation of frog or of a cat.

3. Activity on central nervous system (CNS): Anesthetic and hypnotic activity: Rabbit or dog by giving inhalational or general inhalational anesthetic (not used with herbal drugs). Rabbit's cornea for assessing local anesthetic activity. Hypnotic activity model of rats or mice to assess various righting, pinna, sound reflexes or motor activity Pharmacological screening of Ayurvedic drugs 233 Antiepileptic activity: Supramaximal electroshock seizure pattern test in rats. Metrazol-induced seizure threshold test in rats. Analgesic activity: Hardy Woolfe and Goodel method. Stimulation of tooth pulp in dogs, rabbits or even in man. Mechanical (Tail Clip method using analgesiometer), thermal (Eddy's hot plate method) or mechanical Tranquilizing activity: (a) Effect on gross behavior: Decrease of spontaneous locomotor activity. Catalepsy. Hypothermia. Prolongation of pentobarbital/hexobarbital sleeping time. (b) Effect on unlearned behavior: The taming effect on cats and monkeys. Abolition of fighting behavior in beta spiendens (Siamese fighting fish). Abolition of "Shamrage" in decorticated and diencephalic cats. (c) Effect on learned behavior: Impairment of performance in Maize, or skinner's box or light discrimination box. Blockade of conditions Conflict neurosis in rats and cats. (e) Adaptogenic activity: Mice and rats, swimming endurance test; stress-induced gastric ulcer in rats; milk-induced leukocytosis 234 Defining a new scientific path (f) Antagonism of CNS stimulants: Amphetamine induced stimulation. Methods used for assessing anti-depressant activity. Reserpine reversal test. Amphetamine potentiation test in rats. Swimming despair test in mice. (g) Anti-emetic effects: Apomorphine induced vomiting in dogs. Chemoreceptor trigger-zone ablated dogs. 4. Autacoid activity: Anti-allergic/antihistaminic activity by – Model: mast cell degranulation produced by diazoxide or compound 48/80 in rats, antigen or histamine 5. Anti-inflammatory and anti-pyretic activity: Carrageenan and cotton pellet-induced edema in rats and mice, formalin or adjuvant induced arthritis a 6. Activity on gastrointestinal tract (GIT): Anti-ulcerogenic activity: Prednisolone or histamine or aspirin/phenyl-butazone or stress-induced ulcers in guinea pigs, rats resp Antiemetic activity models in dogs or cats, as previously described.

The decrease in lever pressing rate of rats with chronically implanted elec-trodes in "pleasure centers."

(d) Effect on stress-induced behavior:

Spasmolytic activity, as previously described.

7. Hepatoprotective activity:

Model: carbon tetrachloride-induced hepatotoxicity in rats and rabbits; stimulated viral hepatitis; fatty in

Pharmacological screening of Ayurvedic drugs 235

8. Metabolic disorders:

Hypoglycaemic activity:

Model: normal and alloxan - induced diabetic rats, rabbits, guinea pigs and dogs; streptozotocin-induced

Hypolipidemic activity:

Model: Cholesterol fed rabbits or guinea pigs, albino rats or dogs.

9. Urinary activity:

Diuretic and anti-diuretic activity on the urinary flow in rats.

10. Antifertility activity:

Female rats for estrogenic/anti-estrogenic activity; male rats for inhibition of spermatogenesis.

11. Antimalarial activity:

Antimalarial activity in malarial mice and rhesus monkeys (testing of current herbal drugs).

12. Anti-infective activity:

Plant (alcoholic, ethanolic and aqueous) extracts, essential oil and seed extracts tested in vitro for their

13. Anticancer or effects on genomic structure:

Besides routine toxicity studies (mostly not done with herbal drugs), studies are being done by using ce

On the basis of pharmacological and toxicological studies, a new classification of Indian medicinal plan

236 Defining a new scientific path

cytoprotective activities of Indian medicinal plants have been explored, but scientific validation will depe

But research scientists point toward a paradoxical situation:

The practitioners of Ayurvedic system of medicine, in general, are neither keen nor motivated to subject

On the other hand, clinicians of modern medicine traditionally suffer from

skepticism and are averse to such clinical studies.1,2

References

1 Das PK et al, Clinical studies on medicinal plants of India, Current Research on Medicinal Plants of Ir 2 CCRAS, General Guidelines for Safety/Toxicity Evaluation of Ayurvedic Formulations, Volume II, 201

19 An enigmatic approach in

Ayurvedic Pharmacopoeia

of India

From holistic approach to

disease-specific concepts

Excerpts from Special Introduction to

A recent trend in Ayurvedic manufacturing pharmacy aims at (1) enhancement of potency and reduction Extracts: The modernization of the Ayurvedic drug industry is experiment-ing with various extraction ted Even liquids like syrups, medicated oils, and other oral suspensions depend on the extracts. Extraction Standardized extract: Standardized extract for use in a pharmacopoeia indicates an extract having an a 238 Defining a new scientific path

Ayurvedic Pharmacopoeia of India, Part I, Vol. IX: Since the last half a century, Ayurveda has had to co

defined range for the constituents (biomarker or chemical/analytical marker).

Approach of Ayurvedic Pharmacopoeia of India 239

Herbs treated with a low dose of gamma radiations shall meet national regulations related to such treat Phyto-chemical reference standards as markers: Extracts are usually complex mixtures of several chemical currently, the following types of marker compounds are specified in compendial monographs and may Fifteen single plant drugs were selected for preparing aqueous and hydroalcoholic dried extracts. The vijayawada, and Green Chem Pvt. Ltd., Bangalore, in one group and Sanat Product Pvt. Ltd. Bulendas

Dry extracts usually have a loss on drying or water content not greater than 5 percent w/w, unless spec

In the light of this latest amendment in the Drugs and Cosmetics Rule 158 (B) clause IV, the Ayurvedic (Excerpts end.)

Ayurvedic Pharmacopoeia of India also approved thin-layer chromatography (TLC) and High performar This has become the main choice for fingerprinting study.

The monographs on Hydro-alcoholic extract and Water extract were selected from earlier volumes of the

- 1 Apaamaarga (Also in Vol. II and Vol. III.)
- 2 Asana (Also in Vol. I.)
- 3 Daaruharidraa (Also in Vol. II and Vol. VI.)
- 4 Dhaaraa Vrkshaamla (Vrantaamlaphala in Vol VI.)
- 5 Katukaa (Also in Vol. II.)
- 6 Manjishthaa (Also in Vol. III.)
- 7 Meshashringi (Also in Vol. V.)
- 8 Methi (Also in Vol. II.)
- 9 Nirgundi (Also in Vol. III and Vol. IV,)
- 10 Punarnavaa (Also in Vol. I and Vol. V.)
- 11 Shallaki (Also in Vol. IV as Kunduru.)
- 12 Shrisha (Also in Vol. III.)
- 13 Shunthi (Also in Vol. I.)
- 14 Svarnapatri (Also in Vol 1.)
- 15 Tulasi (Also in Vol. II and Vol. IV.)

First of all, before identifying a Reference Standard and chemical constituents, Ayurvedic Pharmacopo

240 Defining a new scientific path

of the plant has been correctly equated with the botanical name. Two varieties of Apaamaarga have be abortifacient activity experimentally, while it was used by Vagbhata (Ashtangahridaya, Sa 1, 39) for Pur Rakta Apaamaarga has been equated with Achyranthes rubra-fusca Hook. f.

and Achyranthes verschaffeltii Lam., syn. Irestine herbstii. Cyathula prostrata, equated with Rakta Apaa Pupalia lappacea (L.) Juss., syn. Achyranthes lappacea L. = Pupalia atropur-purea (Lamk) Moq. is also "Pupalia. lappacea ointments significantly (p < 0.05) accelerated wound healing with 20% ointment hav This exercise will help scientists to investigate the right herb for validated drug development.

Now, we will give a summary of one revised monograph on Apaamaarga (Achyranthes aspera Linn.) but In the updated part, Apaamaarga dried whole plant was shown to contain not less than 0.002% of olean Approach of Ayurvedic Pharmacopoeia of India 241

27-cyclohexylheptacosan7-ol, 16-hydroxy-26-methylheptacosan-2-one, 4-meth-ylheptatriacont-1-en-10. At this stage, biological activities of oleanolic acid and those of chemical constituents should have been We hope it will be done in the next phase. The dose almost remained the same: Churna (powder): 3–6. The monograph is on the whole plant. Charaka prescribed dried fruits alone or in prescriptions for hemical line. Apaamaarga Kshaara (alkaline ash) and root were also used. In Maha Vishaga Now that "Identity and Strength" of the powdered herb is known and "RS"

(Reference Standard) and "Constituents" give a clear picture of the biological activity and curative poter.

We are adding quantitative analysis of Apaamaarga Kshaara (5 samples), on our own, as additional inf.

Sodium as Na (wt.%)

0.34

0.29

0.27

0.29

0.3

Potassium as K (wt.%)

2.11

2.64

2.59

2.74
0.0001
Magnesium as Mg (wt.%)
0.03
0.03
0.02
0.02
0.05
Calcium as Ca (wt.%)
5.13
0.54
0.51
0.55
0.61
Alkalinity as CaCO ppm
3
Phenolphthalein
185528 211519
188730 163043 144284
Methyl orange
144592 81353
107845 122282 144284
Sulphate as SO (wt.%)
7.86
8.84

```
9.77
11.59
8.765
4
Carbonate as CaCO ppm
104106 258054 230250 198913 176026
3
Bicarbonate as CaCO
ppm
Nil Nil Nil Nil Nil
3
Source: Journal of Ayurveda Medical Sciences, 3 (1).
242 Defining a new scientific path
This exercise is a shift from a Holistic approach to disease-specific concepts. Thin Layer Chromatograp
We expect many new findings. A few examples:

    Nardostachys jatamansi DC. (Jataamaamsi), as a total herb (2–4 g powder or 5–10 g of the drug decomposition.

Part I, Vol. I.) Hydrodistillation of the crude drug gave an oil (2.5% v/w) that contained d-nardostachone
Alcoholic extract of the roots caused an overall increase in the level of central monamines, 5-hydroxy ir
• Detoxified seeds of Mucuna prurita Hook. are used in most of the aphrodisiac drugs of Ayurveda. Who

    Glycyrrhiza glabra Linn. was used in Ayurveda for cough, hoarseness of voice, now Deglycyrrhizinate

    While investigating chemical constituents of herbs and screening their biological activities experimenta

• Bromelain, a proteolytic enzyme found in the stem and fruit of the pineapple plant (Ananas comosus)
```

Approach of Ayurvedic Pharmacopoeia of India 243

Capsaicin, the major component of Capsicum annuum is currently an investigational drug for migraine

For pain syndrome, including rheumatoid and osteoarthritis, neuropathy and fibromyalgia, creams contains

applied three to four times daily. For cluster headache, 0.1 mL of a 10 mM

capsaicin suspension, providing 300 mcg/day of capsaicin, applied to the ipsilateral nostril, has been us

- Curcumin, the major yellow pigment of Turmeric (Curcuma longa) exhibits anti-inflammatory activity,
- Hesperidin is primarily derived from citrus fruits and is known as a citrus bio-flavonoid, closely related

GDU/g and Vitamin C 9 mg. For hemorrhoids, hesperidin 150 mg plus diosmin 1,350 mg twice daily for

• Lycopene is the most abundant carotenoid in tomatoes (Lycopersicon esculentum). Raw tomatoes co

Heat processing of tomato paste, juice, ketchup induces the isomerization of lycopene from trans- to cis

ml) provides about 23 mg of lycopene. The majority of evidence supported the use of lycopene in cancer

- Oligomeric proanthocyanidins are usually derived from grape (Vitis vinifera) seeds. The highest conc
- Papaya (Carica papaya) was introduced into India in the sixteenth century. It became a part of Ayurv

244 Defining a new scientific path

in experimental trials. In practice, the ripe fruit is used as a digestive aid in ethnomedicine. Current rese

Both species, known as Chirchatta, Achyranthes aspera and Pupalia lappacea, have shown free radio

While concluding, we are confident that these changes in the Ayurvedic Pharmacopoeia, sooner or late

20 Unbiased research

Lifeline of evidence-based

Ayurveda

Contributions of young Indian scientists

to Ayurveda

Indian scientists are exploring new areas for further development of Ayurveda.

We are quoting the summary of selected research papers published in The Indian Journal of Pharmaco

The Indian Journal of Pharmacology is an official publication of the Indian Pharmacological Society. Th

The following studies demonstrate the positive growth of

research and development in India:

1 Hypoglycaemic effect of the aqueous extract of Boerhavia diffusa leaves: M. A. Chude, O. E. Orisakw The study aims at investigating the effects of B. diffusa aqueous leaf extract on the blood sugar level of 246 Defining a new scientific path

Inserted into a one-touch brand meter and the reading noted. The aqueous extract was found to contain Thus the hypoglycemic effect produced by the extract of B. diffusa leaves may be due to the glycosides Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I: Dried matured whole plant is used for anemia and 2 Effect of Pongamia pinnata flowers on blood glucose and oxidative stress in alloxan induced diabetic Pongamia pinnata (Linn.) Pierre has been largely used in the traditional Indian system of medicine (Ayur Albino Wistar male rats (7–8 week old, weighing 150–200 g) were used in the present study and house Group I: control (2 ml distilled water, orally).

Group II: diabetic control (alloxan, 150 mg/kg, i.p).

Group III: diabetic + PpFAet (300 mg/kg, orally).

Group IV: diabetic + glibenclamide (600 µg/kg, orally).

Group V: PpFAet + distilled water (300 mg/kg, orally).

The diabetic condition was assessed by determining the blood glucose concentration 3 and 5 days after the dose (300 mg/kg, orally) was standardized after a pilot study with different doses of the PpFAet to study unbiased research 247

in blood, plasma, and liver samples using colorimetric methods. Plasma insulin was assayed by the EL

A significant decrease in the level of blood glucose and glucose-6-phosphatase activity and a significant Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I and II covered seed, leaf, stem bark, root and root 3 A study of the antidiabetic activity of Barleria prionitis: Dheer R, and Bhatnagar P, Indian Journal of P Alcoholic extract of leaf and root of B. prionitis Linn. was tested for their antidiabetic activity. Albino rats Animals treated with the alcoholic extract of leaves of B. prionitis Linn showed a significant decrease in

Ayurvedic Pharmacopoeia of India (API), Part I, Vol. III: whole plant is used for obstinate skin diseases,

4 The effect of Allium sativum on ischemic preconditioning and ischemia reperfusion induced cardiac in In this study, the effect of garlic (Allium sativum) extract on ischemic preconditioning and ischemia-reperfusioning a new scientific path

Langendorff's apparatus for retrograde perfusion. After 15 minutes of stabiliza-tion, the hearts were sub-The study demonstrated that garlic extract exaggerates the cardio protection offered by ischemic preco (Allium sativum is used in Ayurveda for worm infection, tympanitis, skin diseases, piles, cough, asthmatical formula of the cardio protection offered by ischemic preco

Shah, N. S. Parmar, Indian Journal of Pharmacology, 2003; 35: 168-172.

The antiulcer activity of aqueous extract of roots of Tephrosia purpurea (AETP) was studied in different AETP was administered in the dose of 1 to 20 mg/kg orally 30 min prior to ulcer induction. The antiulce Omeprazole was used as a reference drug.

The ulcer index in the AETP treated animals was found to be significantly less in all the models compared to the results suggest that AETP possesses a significant antiulcer property which could be either due to describe the treated animals was found to be significantly less in all the models compared to the results suggest that AETP possesses a significant antiulcer property which could be either due to describe the describe the property which could be either due to describe the property which could be either due to describe the property which could be either due to describe the describe the described the describe

Tephrosia purpurea attracted the attention of scientists all over the world for its use in Ayurvedic medical 6 Anticarcinogenic and antilipidperoxidative effects of Tephrosia purpurea

(Linn.) Pers. in 7, 12-dimethylbenz(a)anthracene (DMBA) induced hamster buccal pouch carcinoma: Ka

This study investigates the chemopreventive potential and antilipidperoxidative effects of ethanolic root Oral squamous cell carcinoma was developed in the buccal pouch of Syrian golden hamsters, by painting TpEt showed potent antilipidperoxidative effect, as well as enhanced the antioxidant status in DMBA-particles of Tinospora cordifolia on learning and memory in normal and memory deficit rats: Agarwal A, I

Both alcoholic and aqueous extracts of Tc indicated an enhancement of learning and memory. However

skin sensitivity test. Histopathological examination of hippocampus was done.

To study the effect of Tinospora cordifolia (Tc) on learning and memory in normal and cyclosporine-ind

Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I: Tinospora cordifolia stem is used for obstinate sl 250 Defining a new scientific path

8 Possible anorectic effect of methanol extract of Benincasa hispida

(Thunb.). Cogn. Fruit: Kumar A, Vimalavathini R. Indian Journal of Pharmacology, 2004; 36: 348–350. In this study, the anorectic effect of the methanol extract of Benincasa hispida (MEBH) in Swiss albino MEBH significantly reduced the cumulative food intake over a 7 h period in a dose-dependent manner. The 4 h gastric emptying was not significantly influenced by MEBH when compared to control.

The study revealed for the first time a possible anorectic activity of Benincasa hispida, most probably manual expression of India (API), Part I, Vol. IV: Benincasa hispida fruit is used in retention of understanding the effect of aqueous extract of Embelia ribes Burm on serum homocysteine, lipids, and oxidative en The study was designed to evaluate the effect of the aqueous extract of Embelia ribes Burm fruits on manual extraction of methionine (1 g/kg, p.o.) for 30 days to vehicle control rats produced significant increase. Unbiased research 251

decreased the levels of homocysteine, LDH, total cholesterol, triglycerides, LDL-C, and VLDL-C and inc

The results provide clear evidence that the aqueous extract of Embelia ribes treatment enhances the an Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I: Embelia ribes fruit is used in worm infestation, flat 10 Protective effect of aqueous extract of Embelia ribes Burm fruits in middle cerebral artery occlusion. The study was carried out to evaluate the neuroprotective effect of the aqueous extract of Embelia ribes. After 30 days of feeding, all the animals were anaesthetized with chloral hydrate (400 mg/kg, i.p.). The The animals were used for grip strength measurement, biochemical estimation in serum and brain tissue. In the ischemic group, a significant (P < 0.01) alteration in the markers of oxidative damage (thiobarbitus The results of our study, for the first time, provide clear evidence that aqueous extract of Embelia ribes

Glycyrrhizin (1.5, 3.0 and 6.0 mg/kg, i.p.) was administered once daily for seven successive days to sep

252 Defining a new scientific path

11 Evaluation of the antidepressant-like activity of glycyrrhizin in mice: Dhingra D, Sharma A, Indian Jo

The antidepressant-like effect of glycyrrhizin was compared to that of imipramine (15 mg/kg, i.p.) and fly Glycyrrhizin produced a significant antidepressant-like effect at a dose of 3.0

mg/kg administered for seven successive days, as indicated by a reduction in the immobility times of medicated by a reduction in the immobility times of medicated provided peroxidative damage: For Peroxidative hepatic damage in rats was studied by assessing parameters such as thiobarbituric acid reflect of co-administration of G. glabra on the above parameters and histopathological findings of the increased lipid peroxide formation in the tissues of CCI -treated rats 4

was significantly inhibited by G. glabra. The observed decreased antioxidant enzyme activities of SOD, Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I: G. glabra root is used for cough, hoarseness of vol. 13 Pharmacological evaluation of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the extracts of Sphaeranthus indicus flowers on anxiolytic activity in rounding under the cough of the cough

The study was to investigate the anxiolytic activity of petroleum ether, alcohol and water extracts, obtain Elevated Plus Maze (EPM), Open Field Test (OFT) and Foot-Shock Induced Aggression (FSIA) were the time animals receiving extracts or diazepam (1 mg/kg) showed an increase in the time spent, percent extract (10 mg/kg) resulted in prominent activity in the mice. Petroleum ether extract (10 mg/kg) resulted in more promayurvedic Pharmacopoeia of India (API), Part I, Vol. IV: Sphaeranthus indicus whole plant is used for such the time spent, percent extract (10 mg/kg) resulted in more promayurvedic Pharmacopoeia of India (API), Part I, Vol. IV: Sphaeranthus indicus whole plant is used for such the time spent, percent extract (10 mg/kg) resulted in more promayurvedic Pharmacopoeia of India (API), Part I, Vol. IV: Sphaeranthus indicus whole plant is used for such the study estimated the hepatoprotective effects of the methanolic seed extract of Eugenia jambolana Liver damage in rats treated with CCI (1 ml/kg/bw, administered subcutane-4

ously, on alternate days for one week) was studied by assessing parameters such as serum glutamate.

These biochemical observations were supplemented by weight and histological examination of liver second contents.

Administration of Eugenia jambolana (doses 100, 200 and 400 mg/kg p.o.) significantly prevented carbon Ayurvedic Pharmacopoeia of India (API), Part I, Vol. II: Eugenia jambolana seed is used in polyuria and 254 Defining a new scientific path

15 Evaluation of the hepatoprotective activity of Cissus quadrangularis

stem extract against isoniazid-induced liver damage in rats: Viswanatha Swamy AH, RV Kulkarni, AH T The study was designed to investigate the hepatoprotective activity of methanol extract of Cissus quadratic content of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective activity of methanol extract of Cissus quadratic content of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective activity of methanol extract of Cissus quadratic content of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective activity of methanol extract of Cissus quadratic content of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective activity of methanol extract of Cissus quadratic content of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective activity of methanol extract of Cissus quadratic content of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective activity of methanol extract of Cissus quadratic content of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective activity of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective activity of the successive petroleum ether (60–80°C) and methanol extracts of C. quadrangularis were used. Hepatoprotective petroleum ether (60–80°C) and methanol extracts of C. quadrangularis ether extracts of C. quadrangularis ether

Elevated levels of aspartate transaminase, alanine transaminase, alkaline phosphatase, and bilirubin for the results of this study indicated that the hepatoprotective effect of CQ might be attributed to its antiox. Ayurvedic Pharmacopoeia of India (API), Part I, Vol. III and VI: Cissus quadrangularis stem (Vol. III) is a 16 Immunomodulatory effect of Tinospora cordifolia extract in human immuno-deficiency virus positive Efficacy of Tinospora cordifolia extract (TCE) in HIV positive patients was assessed in randomized dou TCE treatment caused a significant reduction in the eosinophil count and hemoglobin percentage. 60% Unbiased research 255

Tinospora cordifolia extract significantly affected the symptoms of HIV. However, not all of the objective Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I: Tinospora cordifolia stem is used for obstinate sl 17 Immunosuppressive properties of Pluchea lanceolata leaves: Bhagwat DP, MD Kharya, S Bani, A K This study was designed to investigate the immunosuppressive potential of Pluchea lanceolata 50% ether Preliminary screening of the Pluchea lanceolata 50% ethanolic extract (PL) was carried out with basic r Oral administration of PL at doses of 50 to 800 mg/kg in mice, with sheep red blood cells (SRBC) as an also decreased the process of phagocytosis both in vitro (31.23%) and ex vivo (32.81%) and delayed the CD4+ T-cell surface markers and intracellular Th1 (IL-2 and IFN-(Y)) cytokines at 25–200 mg/kg p.o. do The findings reveal that P. lanceolata causes immunosuppression by inhibiting Th1 cytokines.

Ayurvedic Pharmacopoeia of India (API), Part I, Vol. III: Pluchea lanceolata dried leaf is used in inflamn 18 Effect of Hemidesmus indicus (Anantmool) extract on IgG production and adenosine deaminase act 256 Defining a new scientific path The study was designed to investigate the effect of Hemidesmus indicus extract on activities of human. The total extract of the raw herb was obtained by methanol: isopropyl alcohol: acetone extraction and use Hemidesmus indicus extract stimulated the cell proliferation at 1 mg/ml concentration significantly, after An immunomodulatory activity of H. indicus, related to IgG secretion and ADA activity, is revealed during Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I: Hemidesmus indicus root is used for digestive in 19 A study of the antimicrobial activity of Alangium salviifolium: Pandian MR, GS Banu, G Kumar, India The major phytochemical constituents of Alangium salviifolium Linn. are alang-ine A and B, alangicine, The shadow-dried root was macerated overnight with solvents butanol and ethanol in a 1:5 (drug to soluntil they were used for the experiment.

Ten Gram positive and Gram negative ATCC (American Type Culture Collection) bacterial isolates, we Agar dilution method with a working concentration of 1, 2 and 4 mg/ml of butanol and ethanol extracts, Unbiased research 257

ciprofloxacin (Cadila Pharmaceuticals, India) at 4 µg/ml concentration, was used as positive control.

Butanol extract of the plant showed growth inhibitory effect at 4 mg/ml concentrations in all the bacterial Inhibitory effect of the ethanol extract with all the three concentrations was not found on any of the cultural Ayurvedic Pharmacopoeia of India (API), Part I, Vol. V: Alangium salviifolium leaf is used in rheumatism 20 Effect of Aegle marmelos leaf on rat sperm motility-An in vitro study: Sur TK, S Pandit, T Pramanik, Earlier studies of Aegle marmelos Corr. in the laboratory have been shown that ethanolic extract of A. respectively.

The study showed that A. marmelos leaf possesses antimotility action on spermatozoa in rats.

Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I, III, and IV covered fruit pulp, dried root, and sten 258 Defining a new scientific path

seconds. But, sperm motility appears to decrease with the time and significantly so with the increasing

21 Antiovulatory and abortifacient effects of Areca catechu (betel nut) in female rats: Shrestha J, T Sha Sharma, S Banerjee, S Kafle, Indian Journal of Pharmacology, 2010, 42: 306–311.

To study the antiovulatory and abortifacient effects of ethanolic extract of Areca catechu in female rats,

mg/kg doses were administered orally for 15 days. Vaginal smears were examined daily microscopicall The extract of A. catechu showed a significant decrease in the duration of estrus at 100 mg/kg (P = 0.0 < 0.001) phase. However, the diestrus phase was unchanged.

Histopathological study of the ovaries showed mainly primordial, primary, and secondary follicles in the and P = 0.006, respectively) increased when compared with control.

The ethanolic extract of A. catechu at doses of 100 and 300 mg/kg showed antiovulatory and abortifaci Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I: Areca catechu nut is used in diseases of the mo 22 Effect of methanolic extract of Benincasa hispida against histamine and acetylcholine induced brond Ramu, Indian Journal of Pharmacology, 2002, 34: 365–366.

Benincasa hispida (Thunb.) Cogn. is employed as a main ingredient in Kush-manda lehyam in Ayurved Adult guinea pigs of either sex (400–600 gms) were used for the experiment.

The methanol extract of Benincasa hispida (MEBH) was used for the pharmacological studies by dissolution Unbiased research 259

0.25% or acetylcholine chloride. The mean increase in exposition time against histamine challenge was The methanol extract of Benincasa hispida (MEBH) showed excellent protection in guinea pigs against Therefore, it can be deduced that MEBH is unlikely to have antimuscarinic action.

The results suggested that the protective effect against bronchospasm induced by histamine aerosol m

Ayurvedic Pharmacopoeia of India (API), Part I, Vol. IV: Benincasa hispida fruit is used in retention of undianal study: Agrawal B, A Mehta, Indian Journ The present study was carried out to investigate the efficacy and safety of seed kernels of Moringa oleinate Treatment with the drug for 3 weeks produced significant improvement in forced vital capacity, forced expurvedic Pharmacopoeia of India (API), Part I, Vol. IV: Moringa oleifera seed is used for worm infestational Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens: Bhuvaneswari K, Seed Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens: Bhuvaneswari K, Seed Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens: Bhuvaneswari K, Seed Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens: Bhuvaneswari K, Seed Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens: Bhuvaneswari K, Seed Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens: Bhuvaneswari K, Seed Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens: Bhuvaneswari K, Seed Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens: Bhuvaneswari K, Seed Inhibitory concentrations of Lawsonia innermis dry powder for urinary pathogens:

This study investigated the possibility of in vitro antimicrobial activity of Lawsonia Innermis Linn. (LI) lea

260 Defining a new scientific path

Antimicrobial activity of LI dried leaves suspension, by Broth dilution method: Gram negative: 55-85 mg

Antimicrobial activity of LI fresh leaves suspension by Disc diffusion method: E.

coli: 10 mg/disc and for S. aureus: 25 mg/disc.

LI leaves showed definite antimicrobial activity against the common urinary pathogens.

Ayurvedic Pharmacopoeia of India (API), Part I, Vol. IV: Lawsonia Innermis leaves are used for fever, p

25 Effect of ethanolic leaf extract of Ocimum sanctum on haloperidolinduced catalepsy in albino mice: I

Gopalakrishna, MRSM Pai, Indian Journal of Pharmacology, 2007, 39: 87–89.

Neuroleptic drugs used in the treatment of schizophrenia and other affective disorders are known to pro

(at 1.75, 4.25 and 8.5 mg/kg doses) and the standard drugs, scopolamine (1.0 mg/

kg) and ondansetron (0.5 and 1.0 mg/kg doses) were assessed after single and repeat dose administra

The results suggest that OS has a protective effect against haloperidol-induced catalepsy, which is con

The study indicates that OS could be used to prevent drug-induced extrapyramidal side effects.

Ayurvedic Pharmacopoeia of India (API), Part I, Vol. II: Ocimum sanctum leaf is used for dyspnea, coug

21 Threat to classical reputation

by dubious herbs and

substitutes

Ashta varga

The Ashta varga of the classical period has been extinct since the sixteenth century, but the group is ve

The substitute herbs and other (provisionally) identified herbs, when used as a composite drug, do not

Let us go back to the history of Ashta varga.

Following are the features and properties of Ashta varga drugs of the classical period, as described in A

Riddhi:

Balya: Promotes strength.

Tridoshaghni: Alleviates all the three Doshas.

Shukralaa: Spermatopoetic, promotes spermatogenesis.

Madhuraa: Sweet.

Guru: Heavy, Difficult to digest.

Vriddhi:

Garbhpradaa: Promotes fertility, helps in conception.

Sheeta: Cooling.

Vrshyaa: Aphrodisiac and age-sustaining.

Kaasa kshaya kapha: Cures cough, bronchitis, and consumption.

Kaakoli and Kshirakaakoli:

Sheetam: Cooling.

Shukralam: Spermatopoetic, promotes spermatogenesis.

Madhuram: Sweet.

Guru: Heavy, difficult to digest.

262 Defining a new scientific path

Jayet Samira daaha asra pitta shosha, visha jwara: Both Kaakoli and Kshirakaakoli cure aggravated Va

Medaa, Mahaa Medaa:

G uru: Heavy, difficult to digest.

Swaadu: Tasty, relishing.

Vrashym: Aphrodisiac and age-sustaining.

Stanyam: Galactogogue.

Kaphaapham: Alleviate Kapha.

Bramhanam: Nourishing, anabolic.

Sheetalam: Cooling.

Pitta rakta kshaya Samir-jit: Alleviate pitta, bleeding disorders or blood abnormalities, consumption, and

Jivaka and Rshabhaka:

Balya: Strength promoting.

Sheeta: Cooling.

Shukra kaphaprada: Spermatopoetic, spermatogenic, aggravate kapha.

Haratah pitta daaha arsra kaarshya shosha kshaya: Cure aggravated Pitta, burning syndrome, piles, er Jivaka and Rshabhaka grow on Hemaadri-shikhara (in the peaks of the Himalayas), Rasona kanda-vat According to another text: jivaka has the shape of kuurchaka (brush). Rshbhaka is like Vrsha shranga-vat Riddhi and Vriddhi are the roots of creepers, shveta-lomaanvita kand (the roots covered with white hair Riddhi is like a knot in the root and its fruit takes an anti-clockwise turn. On the other hand, Vriddhi has Medaa is white. It can be cut with the help of finger nail, looks like fat tissues.

Mahaa Medaa root looks like a piece of dried ginger. It is unctuous, sweet and cooling. It has a foul sme Kaakoli and Kshira kaakoli have roots like pivari (Abroma augusta). Both contain a milky latex and they All the eight herbs when taken together as a composite drug: Cooling, exceedingly spermatopoetic and Threat to classical reputation 263

According to Ayurveda Saukhyam, if Ashta varga drugs are not available, Yashti (Glycyrrhiza glabra) in Bhavaprakasha Nighantu commentary,2 by Prof. K. C. Chunekar and Dr. G.

S. Pandey, some more options have been incorporated. A few scholars, according to these commentate Behman safed (Centauria behen) or Guduchi (Tinospora cordifolia) as Jivaka; Behman surkh (Salvia Saleb misri (Orchis latifolia) as Medaa; Shakaakul misri (Pastinacea secacul) or Prasaarini (Paederia Musali syaah (Curculigo orchioides) as Kaakoli; Musali safed (Chlophytum tuberosum) as Kshira Kaak But substitutes are always of secondary importance in the eyes of the consumer.

So live Ashta varga plants started surfacing. These Ashta varga plants are endangered and rare, found the manufacturers are not aware of chemical markers for Ashta varga plants, and regulatory authorities. Hence, manufacturers take the liberty to use substandard drugs or substitutes.

Following are new botanical identifications of Ashta varga based on Ayurvedic Pharmacopoeia of India

Malaxis acuminata (Jivaka tuber) API, Part I, Vol. V.

M. muscifera (Rshbhaka bulb)

Polygonatum cirrhifolium (Mahaa Medaa, Medaa rhizome) API, Part I, Vol.

V and VI.

Polygonatum verticillatum (Medaa rhizome)

Lillium polyphyllum (Kaakoli rhizome) API, Part I, Vol. III.

Roscoea procera (Kaakoli rhizome)

Fritillaria roylei (Kshir-kaakoli) API, Part I, Vol. V.

Habenaria edgeworthii (Vriddhi tuber)

Habenaria intermedia (Riddhi tuber) API, Part I, Vol. V.

264 Defining a new scientific path

Malaxis acuminata (Jivaka tuber) and M. muscifera

(Rshbhaka bulb)

The genus Malaxis is distributed in the Himalayas at altitudes of 1,500–2,800 m, also in Indo-China and Chemical constituents: Beta-sitosterol has been isolated from ethyl acetate extract of M. acuminata. Other Polygonatum cirrhifolium (Mahaa Medaa) Distributed in the temperate Himalayas from Kashmir (at an 3,000 m) to Sikkim (at an altitude of 2,600–4,000 m above sea level, and in Uttarakhand at 1,600–3,500 Chemical constituents: Steroidal saponins sibiricoside A and B; n-butanol extract contained steroid terp P. verticillatum: Rhizomes contain lysine, serine, aspartic acid, threonine, beta-sitosterol, sucrose and cultilium polyphyllum (Kaakoli rhizome) Distributed in temperate Himalayas from Kumaun to Kashmir at Chemical constituents: The bulb contains linalool and alpha-terpineol. The methanolic extract of bulb yi Fritillaria roylei (Kshir-kaakoli) The center of diversity for the genus Fritillaria is East Mediterranean reg

The possible center of evolution of the genus is Iran. According to Rix, the genus Fritillaria is represented

roylei and F. cirrhosa) are found in Uttarakhand in different alpine meadows such as Kedarnath, Rudra

Chemical constituents: The basic fractions of alcoholic extract of bulbs yielded a C-nor-D-homo steroid

Threat to classical reputation 265

4, 1932; 265) isolated peimine and peiminine from the root of F. roylei (Chinese drug Pei-Mu), and K. K. Habenaria intermedia (Riddhi tuber) Distributed through temperate Himalayan regions, including Megh. Chemical constituents: Scopoletin and gallic acid are marker compounds of the tuber. Scopoletin, a could when the properties of these Ashta varga plants were compared with those

mentioned in Classical texts, none is found genuine.2

Thus, Ashta varga is still a deceptive expression in the post-classical period.

Until finally validated by pharmacognosists and pharmacologists, its classical reputation should not be a Ashta varga, for the time being, should be removed from all compound formulations.

References

1 Ayurveda Saukhyam, compiled by Raja Todaramalla during the period of Mughal Emperor Akbar (six2 Prof. K.C. Chunekar and Dr G.S. Pandey, Bhavaprakasha Nighantu, 2010: 61.

Ashwagandha

The editors of The Wealth of India (Vol. X), while writing about Ashwagandha of ancient Indian literature. K.N. Kaul designated classical Ashwagandha as the "so-called Withania somnifera of Indian literature" Kaul was first to point out that cultivated Ashwagandha of commerce is different from the wild variety (An "Ayurvedic Pharmacopoeia of India" (Part I, Vol. I), Ashwagandha (so-called Withania somnifera) has Klaibya (male impotence)

Kshaya (phthisis)

Daurbalya (weakness)

266 Defining a new scientific path

Vaataroga (diseases of the nervous system/neurological diseases) Shoth (inflammation, edema).

(English equivalents are quoted from

"The Ayurvedic Formulary of India, Part I,

Second Revised English Edn., 2003, 461–480)

"The Ayurvedic Formulary of India" recommends Ashwagandha as rasaayana and vaajikarana (rejuver In Shaarangadhara Samhitaa (thirteenth century)2 a paste prepared with the fresh root of Ashwagandh "The Ayurvedic Formulary of India" (Part I, 2003 edn.) quoted one vaajikarana polyherbal formulation, A Now a few questions:

Is the root of Indian Ashwagandha an aphrodisiac drug?

Does it promote spermatogenesis?

Does it increase the size of the penis?

Does it remove vaginal laxity?

How far it is logical to equate Ashwagandha with Withania somnifera?

It is a common belief that Ashwagandha carries the body odor of the horse.

According to Shaarangdhara Samhita, the fresh root of Ashwagandha smells like horse's urine.2 If Ash In Charaka Samhita, Ashwagandha and Rshyagandhaa have been used as one composite drug. Rshya Threat to classical reputation 267

or W. somnifera. Rshyagandhaa and Rshyaproktaa (Charaka Samhita) possessed similar medicinal pro

The roots of Asparagus racemosus, Abutilon indicum, Mucuna prurita, and Astracantha longifolia are under the control of the control of the concluding, we again go back to Bhaavaprakasha (sixteenth century) wherein Bhaavamisra advantaria belonged to Gaya in Bihar. Let us see if it was possible for him to procure fresh root of native forms of Indian Ashwagandha have been identified by C. K. Atal. Form I is the Ashwagandha of control of the control of the

Three chemotypes of Withania somnifera have been defined in (Lawrence) Review of Natural Products

268 Defining a new scientific path

Withania coagulans Dunal also does not qualify for the drug used in Bhaavaprakasha. It was not found From these facts, it can be inferred that the fresh root of Ashwagandha used by Bhaavamisra was not to Now there are two possibilities:

Either the classical Ashwagandha was a different variety of Solanaceae, which could not be identified by Or Ashwagandha of the classical period was a related species of Mucuna. M.

cochinchinensis Cheval and M. nigricans Stend syn. M. imbricata DC. belonged to Bihar and Bengal. Nused in Indian medicine.7,8 During the classical period, the root of some species

or subspecies of Mucuna were used as an aphrodisiac. Dalhan (twelfth century) identified Kaakaanda a Here, we would like to repeat that two Mucuna species, M. cochinchinensis and M. nigricans, were eas M. monosperma is found in Nepal and eastwards up to Khasi hills.

Finally, if we accept Withania somnifera as Ashwagandha of classical medicine, it should be possible to Recently (in 2002), Dept. of Anatomy, Faculty of Medicine, University of Ruhuna, Sri Lanka, examined Male rats were orally administered 300 mg/kg/day of root methanolic extract for 7 days. Their sexual be These effects were partly reversible on cessation of treatment. These antimascu-line effects were not do of the extract.9

Now, after a lot of research, Indian species of Withania has been identified as Withania ashwagandha s Threat to classical reputation 269

were found to be the principal organ for WS-3 accumulation while roots mainly accumulate WS-1, sugg maturity in both roots and leaves.10

Cultivated Ashwagandha should not be used in any classical formulation until it is proven that its biolog References

1 Kaul KN, The Origin, Distribution, and Cultivation of the So-Called Withania Somnifera of Indian Litera 2 Chunekar and Pondel, Shaarangdhara Samhita, Rashtriya Ayurveda Vidyapeeth, New Delhi, 1999. 3 Sharma PV, Dravyaguna Vigyaan, Vol. V: 72.

- 4 Pharmacognosy and Phytochemistry of Withania somnifera, CCRAS, 1979: 18.
- 5 Kumar A, BA Mir, D Sehgal, TH Dar, S Koul, MK Kaul, SN Raina, GN Qazi. Utility of multidisciplinary s00606-010-0372-4.
- 6 Mills S, Kerry Bone, Principles and Practice of Phytotherapy, 2000: 595.
- 7 The Wealth of India, Vol. V: 442.
- 8 Ayurvedic Pharmacopoeia of India, Part I, Vol. IV.
- 9 Ilayperuma I, WD Ratnasoorya, TR Weerasoorya, Asian J Androl, December 2002, 4(4), 295–298. Pl 10 Withanolides array of Withania ashwagandha sp. novo populations from India, Industrial Crops and Shilajatu

Shilajatu (Asphalt, Mineral Pitch) is being promoted as a sex stimulant and a vitality drug. This is an example of the contains of the contains drugs with curative product texts, Shilajatu belongs to Ushakaadi gana, the group that contains drugs with curative production of the contains drugs with curative

(asthma), aggravated Vaayu, arsha (piles), paandu (anemia), apasmaara (epilepsy), unmaada (insanity (Iron Shilajatu, the blackish brown variety, is used in Ayurveda.) The people of Tajikistan, as part of the eczema, anorexia, fracture of bones and osteoporosis.3

Fulvic acid and humic substances are important active principles of Shilajatu.

Shilajatu obtained from India in the region of Kumaon contains a higher percentage of fulvic acids (21.4 (15.4%), Pakistan (15.5%) and Russia (19.0%).4

Fulvic acids are powerful antioxidants and have superoxide and hydroxyl radical scavenging properties cessed Shilajatu (PS), consisting of resonance stabilized soft-spin semiquinone free radicals, has been Preclinical studies in adult male Wistar rats reveal that processed Shilajatu provided complete protection Shilajatu in the dose of 20 and 50 mg/kg/day, i.p., for 21 days induced a dose-related increase in super larly, the effect of Shilajatu on lipid peroxidation and glutathione content in rat

liver homogenates. 7 Shilajatu inhibited lipid peroxidation induced by cumene hydroperoxide and ADP/F

Threat to classical reputation 271

Reactive oxygen species (ROS) have now shown an indispensable role in controlling the growth of path evaluated the effect of Shilajatu in rats pertaining to the levels of brain monoam-ines. Shilajatu at a dos Shilajatu extract inhibited the proliferation of the Ehrlich ascites tumor cells significantly.10 Shilajatu and Shilajatu from USSR and its corresponding combined fractions acted essentially as cell-growth factors in Shilajatu is used in 20 Shastric (classical) formulations and 24 proprietary

drugs.14

Shilajatu must be validated by well-structured clinical trials before it is branded as a virility drug.

References

- 1 Bhavaprakasha, Dhatu-updhatu Varga, 8: 80–82.
- 2 Schepetkin Igor A et al, Characterization and biological activities of humic substances from mumie, J
- 3 Schepetkin Igor A, Andrei Khlebnikov, Byoung Se Kwon, Medical drugs from humus matter: Focus or
- 4 Agarwal SP, Rajesh Khanna, Ritesh Karmarkar, Md. Khalid Anwer, Roop K. Khar, Shilajit: A review, I
- 5 KORUS, Russia International Symposium on Science and Technology, Russia, Tomsk, June 26-July
- 272 Defining a new scientific path
- 6 Bhattacharya SK, Ananda P. Sen, Effects of Shilajatu on biogenic free radicals, Phytother Res, 1995,
- 7 Ghosal S, Free radicals, oxidative stress, and antioxidant defense, Phytomedica, 2000, 1: 1–8.
- 8 Agarwal SP, Rajesh Khanna, Ritesh Karmarkar, Md. Khalid Anwer, Roop K. Khar, Shilajatu: A review
- 9 Tripathi YB, S Shukla, S Chaurasia, S Chaturvedi, Antilipid peroxidative property of shilajit, Phytother
- 10 Schepetkin Igor A, Andrei Khlebnikov, Byoung Se Kwon, Medical drugs from humus matter: Focus of
- 11 Bhaumik S, S Chattopadhyay, S Ghosal, Effects of Shilajit on mouse peritoneal macrophages, Phyto
- 12 Ghosal S, Chemistry of Shilajit, an immunomodulatory ayurvedic rasayan, Pure Appl Chem, 1990, 6
- 13 Tiwari, Ramarao P, S Ghosal, Effects of Shilajit on the development of tolerance to morphine in mice
- 14 Wilson E et al, Journal of Ethnopharmacology, 136, 2011: 5 (Table 2).

22 Red list of medicinal plants
A threat to Ayurvedic formulations
Red list of Ayurvedic medicinal plants1
Botanical name:
Aconitum ferox Wall. ex Seringe
Family:
Ranuculaceae
Threat status:
critically endangered/North-West
Used in Ayurveda:
Ayurvedic Formulary of India, Part I
Distribution:
Distributed in the Himalayan region across India, Nepal, and Bhutan in an altitude range of 2,100-3,60
Botanical Name:
Aconitum heterophyllum Wall. ex Royle
Family:
Ranuculaceae
Threat status:
critically endangered/North-West
Used in Ayurveda:
Ayurvedic Pharmacopoeia of India (API), Part I, Vol. I Distribution:
Distributed in the Himalayan region across Pakistan, India, and Nepal. In India, it has been recorded in
Botanical name:
Acorus calamus L.

Family:
Araceae
Threat status:
vulnerable/regional
Used in Ayurveda:
API, Part I, Vol. II
Distribution:
Globally distributed in the North temperate hemisphere and tropical Asia.
Within India, it has been recorded throughout, in marshes, wild or cultivated, ascending to an altitude or
Botanical name:
Adhatoda beddomei C. B. Clarke
Family:
Acanthaceae
Threat status:
critically endangered/global
Used in Ayurveda: API, Part I, Vol. IV
274 Defining a new scientific path
Distribution:
This species is endemic to India occurring in the Travancore hills of South Western Ghats, Valparai (So
Botanical name:
Aquilaria malaccensis Lam. syn. A. agallocha Roxb.
Family:
Thymelaeaceae
Threat status:
critically endangered/North-East

Family:
Zlingiberaceae
Threat status:
critically endangered/Central India
Used in Ayurveda:
Nisha, Rajani, Ratri of Ayurvedic texts Distribution:
The species is native of Bengal and distributed in the tropics. It is also cultivated to some extent.
Red list of medicinal plants 275
Botanical name:
Embelia ribes Burm. f.
Family:
Myrsinaceae
Threat status:
(low risk/near threatened)/regional
Used in Ayurveda:
API, Part I, Vol. I
Distribution:
It is an Indo-Malesian species, reported from India, Sri Lanka, Singapore, Malaysia, and Southern Chin
Within India, it is found throughout up to an altitude of 5,000 ft.
Botanical name:
Embelia tsjeriam-cottam A. DC.
Family:
Myrsinaceae
Threat status:
vulnerable/regional

Used in Ayurveda:
substitute of Vidanga
Distribution:
Global distribution of this species is recorded in India, Myanmar (earlier Burma) and Sri Lanka. Within I
Botanical name:
Fritillaria roylei Hook.
Family:
Liliceae
Threat status:
critically endangered/North-West
Used in Ayurveda:
Kshirakakakoli (API, Part I, Vol. V) Distribution:
This species distributed in the Himalayan region across Pakistan and India.
Within India, it has been recorded in Jammu and Kashmir, Himachal Pradesh, and Uttar Pradesh in an
Botanical name:
Gardenia gummifera L. f.
Family:
Rubiaceae
Threat status:
(low risk/near threatened)/global
Used in Ayurveda:
API, Part I, Vol. VI
Distribution:
This species is endemic to Peninsular India. It has been recorded in the drier parts of Maharashtra (Ra
276 Defining a new scientific path

Botanical name:
Gentiana kurroo Royle
Family:
Gentianaceae
Threat status:
critically endangered/North-West
Used in Ayurveda:
API, Part I, Vol. VI
Distribution:
This species is distributed in the Himalayan region across Pakistan, India, and Nepal. Within India, it has
Botanical name:
Gloriosa superba L.
Family:
Liliaceae
Threat status:
(low risk/near threatened)/regional
Used in Ayurveda: API, Part I, Vol. III Distribution:
A Paleotropic species found in Africa, Madagascar, India to Indo-China and Malesia. It is found through
Botanical name:
Hydnocarpus kurzii (King) Warb.
Family:
Flacourtiaceae
Threat status:
endangered/North-East
Used in

Africa, Tropical Asi, and Australia. Recorded throughout the warmer parts. In Karnataka and Tamil Nad

Family:
Santalaceae
Threat status:
endangered/regional
Used in Ayurveda: API, Part I, Vol. III Distribution:
Globally the species is distributed in the Indo-Malesian region and Peninsular India. Though it is natura
Botanical name:
Saraca asoca (Rosc.) De Wilde
Family:
Caesalpiniaceae
Threat status:
endangered/regional
Used in Ayurveda: API, Part I, Vol. I Distribution:
Globally the species is distributed in the Indo-Malesian region and Sri Lanka. Within India, its distribution
Botanical name:
Saussurea costus (Falc.) Lipsch.
Family:
Asteraceae
Threat status:
critically endangered/North-West
Used in Ayurveda: API, Part I, Vol. I., syn. S . lappa C. B. Clarke Botanical name:
Taxus wallichiana Zucc.
Family:
Taxaceae
Threat status:

critically endangered/North-East
Used in Ayurveda: Himalayan yew. T. baccata Linn.: European yew (API, Part I, Vol. III)
Distribution:
This species is endemic to India occurring only in the temperate Himalayas between an altitude of 2,0
280 Defining a new scientific path
Botanical name:
Terminalia arjuna (Roxb.) Wight & Arn.
Family:
Combretaceae
Threat status:
(low risk/near threatened)/regional
Used in Ayurveda:
API, Part I, Vol. II
Distribution:
Globally the species is found to be distributed in India and Sri Lanka. Within India, it is found in the Su
Botanical name:
Valeriana jatamansi Jones
Family:
Valerianaceae
Threat status:
critically endangered/North-East
Used in Ayurveda: API, Part I, Vol. I., syn. V. wallichii DC.
Distribution:
This species has a restricted distribution occurring in India and Bhutan between an altitude range of 3
Botanical name:

Vateria indica Linn.
Family:
Dipterocarpaceae
Threat status:
(low risk/near threatened)/global
Used in Ayurveda:
API, Part I, Vol. IV
Distribution:
Endemic to the Western Ghats of Karnataka, Tamil Nadu and Kerala. This species is endemic to Western
Threatened species2
(Identified through 14 Central Institute of Medicinal and Aromatic Plants (CIMAP) workshops covering 1
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories
1
Aconitum chasmanthum Stapf ex Ranunculaceae
CR
Holmes
2
Aconitum heterophyllum Wall.
Ranunculaceae
CR

ex Royle
3
Adhatoda beddomei C. B. Clarke
Acanthaceae
CR
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories
4
Alectra chitrakutensis (Rau)
Scrophulariaceae
CR
Prasad & Dixit
5
Amentotaxus assamica D. K.
Taxaceae
CR
Ferguson
6
Aquilaria malaccensis Lam.
Aquilariaceae

CR

Arnebia benthami (Wall. ex G.
Boraginaceae
CR
Don) Johns
8
Arnebia euchroma (Royle) John.
Boraginaceae
CR
9
Atropa acuminata Royle ex
Solanaceae
CR
Lindl.
10
Betula utilis D.Don
Betulaceae
CR
11
Chlorophytum borivillianum
Liliaceae
CR
Sant. & Fernandes
12
Cochlospermum religiosum DC.

Cochlospermaceae
CR
13
Commiphora wightii (Arn.)
Lauraceae
CR
Bhandari
14
Coscinium fenestratum (Gaertn.)
Menispermaceae
CR
Coleb.
15
Cycas beddomei Dyer
Cycadaceae
CR
16
Cycas circinalis L.
Cycadaceae
CR
17
Dactylorhiza hatagirea (D.Don)
Orchidaceae
CR
Soo

Embelia ribes Burm.f.
Myrsinaceae
CR
19
Eulophia cullenii (Wight) Blume
Orchidaceae
CR
20
Eulophia ochreata
Orchidaceae
CR
21
Gentiana kurroo Royle
Gentianaceae
CR
22
Gymnocladus assamicus
Caesalpiniaceae
CR
Kanjilal
23
Heliotropium keralense Sivar. &
Boraginaceae
CR

Manilal
24
Helminthostachys zeylanica (L.)
Ophioglossaceae
CR
Hook.
25
Holostemma ada-kodien Schult.
Asclepiadaceae
CR
26
Illicium griffithii Hook.f. &
Illiciaceae
CR
Thoms.
27
Janakia arayalpathra
Periplocaceae
CR
J.Joseph & V. Chandras.
28
Lilium polyphyllum D.Don ex
Liliaceae
CR
Royle

Litsea glutinosa (Lour.)
Lauraceae
CR
Robinson
30
Malaxis muscifera (Lindl.)
Orchidaceae
CR
Kuntze
31
Nardostachys grandiflora DC.
Valerianaceae
CR
32
Panax pseudoginseng Wall.
Araliaceae
CR
33
Paphiopedilum druryi (Bedd.)
Orchidaceae
CR
Pfitz.
34
Persea glaucescens (Nees) Long

Lauraceae
CR
35
Picrorhiza kurrooa Royle ex
Scrophulariaceae
CR
Benth.
(Continued)
(Continued)
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories
36
Piper barberi Gamble
Piperaceae
CR
37
Podophyllum hexandrum Royle
Podophyllaceae
CR
38
Psilotum nudum (L.) P.Beauv.

Saussurea costus (Falc.) Lipsch.
Asteraceae
CR
45
Saussurea gossypiphora D.Don
Asteraceae
CR
46
Saussurea obvallata (DC.)
Asteraceae
CR
Edgew.
47
Shorea tumbaggaia Roxb.
Dipterocarpaceae
CR
48
Smilax glabra Roxb.
Smilacaceae
CR
49
Swertia chirayita (Roxb. ex
Gentianaceae
CR

CR
56
Aconitum bisma (BuchHam.)
Ranunculaceae
EN
Rapaics
57
Aconitum deinorrhizum Stapf
Ranunculaceae
EN
58
Aconitum ferox Wall. ex Seringe
Ranunculaceae
EN
59
Aconitum spicatum (Bruhl) Stapf
Ranunculaceae
EN
60
Acorus calamus L.
Acoraceae
EN
61
Alpinia calcarata Roscoe
Zingiberaceae

EN
62
Ampelocissus barbata (Wall.)
Vitaceae
EN
Planch.
63
Ampelocissus indica (L.) Planch.
Vitaceae
EN
64
Angelica glauca Edgew.
Apiaceae
EN
65
Angiopteris evecta (Forst.)
Marattiaceae
EN
Hoffm.
66
Anodendron paniculatum A.DC.
Apocynaceae
EN
67
Asparagus racemosus Willd.

Liliaceae
EN
68
Balanophora involucrata
Balanophoraceae
EN
Hook.f.
69
Blepharispermum subsessile
Asteraceae
EN
DC.
70
Boswellia ovalifoliolata Bal. &
Burseraceae
EN
Henry
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories
71

Boswellia serrata Roxb. ex

Celastrus paniculatus Willd.
Celastraceae
EN
78
Cephalotaxus griffithii Hook.f.
Cephalotaxaceae
EN
79
Chlorophytum arundinaceum
Liliaceae
EN
Baker
80
Chonemorpha fragrans (Moon)
Apocynaceae
EN
Alston
81
Cibotium barometz Link.
Cyatheaceae
EN
82
Cinnamomum cecidodaphne
Lauraceae

EN
Meissn.
83
Cinnamomum wightii Meisn.
Lauraceae
EN
84
Citrus macroptera Montr. var.
Rutaceae
EN
annamensis Tanaka
85
Clerodendrum serratum (L.)
Verbenaceae
EN
Moon
86
Coptis teeta Wall.
Ranunculaceae
EN
87
Cordia macleodii (Griff.)
Ehretiaceae
EN

Hook.f. & Thoms.

Corollacarpus epigaeus
Cucurbitaceae
EN
(Rottler & Willd.) Clarke
89
Datisca cannabina L.
Datiscaceae
EN
90
Decalepis hamiltonii Wight &
Periplocaceae
EN
Arn.
91
Dendrobium nobile Lindl.
Orchidaceae
EN
92
Didymocarpus pedicillata R. Br.
Gesneriaceae
EN
93
Dioscorea deltoidea Wall. ex
Dioscoreaceae

EN
Griseli
94
Dioscorea prazeri Prain &
Dioscoreaceae
EN
Burkill
95
Dipcadi ursulae Blatter
Liliaceae
EN
96
Dipterocarpus indicus Bedd.
Dipterocarpaceae
EN
97
Drosera burmannii Vahl
Droseraceae
EN
98
Drosera indica L.
Droseraceae
EN
99
Drosera peltata J. E. Sm. ex

Droseraceae
EN
Willd.
100
Dysoxylum malabaricum Bedd.
Meliaceae
EN
ex Hiern
101
Entada pursaetha DC.
Mimosaceae
EN
102
Ephedra foliate
Ephedraceae
EN
103
Ephedra gerardiana Wall. ex
Ephedraceae
EN
Stapf.
(Continued)
(Continued)
SI. No

Name of species

Family
Conservation
Status as per
IUCN Categories
104
Eulophia herbacea Lindl.
Orchidaceae
EN
105
Eulophia nuda Lindl.
Orchidaceae
EN
106
Eulophia ramentacea Wight
Orchidaceae
EN
107
Flickingeria fugax (Rchb.f.)
Orchidaceae
EN
Seodemf.
108
Fritillaria cirrhosa D.Don
Liliaceae

ΕN

Gymnema khandalense Santapau

Asclepiadaceae

ΕN

Gymnema montanum (Poyh)
Gymnema montanum (Roxb.)
Asclepiadaceae
EN
Hook.f.
116
Gymnema sylvestre R.Br.
Asclepiacaceae
EN
117
Gynocardia odorata R.Br.
Flacourtiaceae
EN
118
Habenaria intermedia D.Don
Orchidaceae
EN
119
Homalomena aromatica (Roxb.)
Araceae
EN
Schott
120
Humboldtia vahliana Wight
Caesalpiniaceae

ΕN

Hydnocarpus macrocarpa
Flacourtiaceae
EN
(Bedd.) Warb.
122
Hyoscyamus niger L.
Solanaceae
EN
123
Iphigenia stellata Blatter
Liliaceae
EN
124
Juniperus polycarpos C. Koch.
Cupressaceae
EN
125
Jurinea dolomiaea Boiss.
Asteraceae
EN
126
Lamprachaenium
Asteraceae
EN

EN
139
Neurada procumbens L.
Rosaceae
EN
140
Nilgirianthus ciliatus (Nees)
Acanthaceae
EN
Bremek.
141
Nothapodytes nimmoniana
Icacinaceae
EN
(Graham) Mabber.
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories
142
Operculina turpethum (L.) Silva
Convolvulaceae
EN

Manso
= Merremia turpethum (L.)
Shah & Bhat
143
Ophioglossum reticulatum L.
Ophioglossaceae
EN
144
Oroxylum indicum (L.) Vent.
Bignoniaceae
EN
145
Ougeinia oojeinensis (Roxb.)
Fabaceae
EN
Hochr.
146
Panax wangianus Sun
Araliaceae
EN
147
Paris polyphylla Sm.
Liliaceae
EN

Persea macrantha (Nees)
Lauraceae
EN
Kosterm.
149
Pimpinella tirupatiensis Bal. &
Apiaceae
EN
Subr.
150
Piper longum L.
Piperaceae
EN
151
Piper nigrum L.
Piperaceae
EN
152
Plectranthus barbatus Andr.
Lamiaceae
EN
153
Plectranthus nilgherricus Benth.
Lamiaceae

ΕN

EN

Polygonaceae

159

Rheum moorcroftianum Royle

Rheum emodi Wall. ex Meissn.

Polygonaceae
EN
160
Rhododendron anthopogon
Ericaceae
EN
D.Don
161
Salacia reticulata Wight
Hippocrateaceae
EN
162
Santalum album L.
Santalaceae
EN
163
Semecarpus travancorica Bedd.
Anacardiaceae
EN
164
Sonneratia caseolaris (L.) Engl.
Sonneratiaceae
EN
165
Sterculia urens Roxb.

Sterculiaceae
EN
166
Stereospermum colais(Dillwyn)
Bignoniaceae
EN
Mabb.
167
Strychnos aenea A. W. Hill
Loganiaceae
EN
168
Strychnos colubrina L.
Loganiaceae
EN
169
Swertia lawii (Wight ex C. B.
Gentianaceae
EN
Clarke) Burkill
170
Syzygium alternifolium (Wight)
Myrtaceae
EN
Walp.

Name of species

Family
Conservation
Status as per
IUCN Categories
176
Trichopus zeylanicus Gaertn.
Trichopodaceae
EN
subsp. travancoricus (Bedd.)
Burkill
177
Tropidia curculigoides Lindl.
Orchidaceae
EN
178
Urginea nagarjunae Hemadri &
Liliaceae
EN
Swahari
179
Xylocarpus granatum Koenig
Meliaceae
EN
180

Zanthoxylum armatum DC.

Rutaceae
EN
181
Zanthoxylum rhetsa (Roxb.) DC.
Rutaceae
EN
182
Zingiber roseum (Roxb.) Roscoe
Zingiberaceae
EN
183
Aconitum balfourii Stapf
Ranunculaceae
VU
184
Aconitum violaceum Jacq. ex
Ranunculaceae
VU
Stapf
185
Adenia hondala (Gaertn.) W. J.
Passifloraceae
VU
de Wilde
186

VU
Gibson) Planch.
192
Andrographis paniculata
Acanthaceae
VU
(Burm.f.) Wall. ex Nees
193
Aphanamixis polystachya
Meliaceae
VU
(Wall.) Parker
194
Arisaema tortuosum Schott
Araceae
VU
195
Aristolochia tagala Cham
Aristolochiaceae
VU
196
Artemisia maritima L.
Asteraceae

Artocarpus hirsutus Lam.
Moraceae
VU
198
Baliospermum montanum
Euphorbiaceae
VU
(Willd.) Mull.Arg.
199
Barleria acanthoides
Acanthaceae
VU
200
Berberis aristata DC.
Berberidaceae
VU
201
Bergenia ciliata (Haw.) Sternb.
Saxifragaceae
VU
202
Bergenia stracheyi (Hook.f. &
Saxifragaceae
VU
Thoms.) Engl.

Blepharis sindica Stocks ex
Acanthaceae
VU
T.Anders
204
Buchanania lanzan Spreng.
Anacardiaceae
VU
205
Caesalpinia digyna Rottler
Caesalpiniaceae
VU
206
Calophyllum apetalum Willd.
Clusiaceae
VU
207
Canarium strictum Roxb.
Burseraceae
VU
208
Cerbera odollam Gaertn.
Anacardiaceae

VU

Ceropegia bulbosa Roxb.
Asclepiadaceae
VU
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories
210
Chlorophytum tuberosum Baker
Liliaceae
VU
211
Cinnamomum bejolghota
Lauraceae
VU
(BuchHam.) Sweet
212
Cinnamomum macrocarpum
Lauraceae
VU
Hook.f.
213

Cinnamomum sulphuratum Nees
Lauraceae
VU
214
Cinnamomum tamala (Buch
Lauraceae
VU
Ham.) Nees
215
Citrullus colocynthis (L.)
Cucurbitaceae
VU
Kuntze
216
Colchicum luteum Baker
Colchicaceae
VU
(Liliaceae)
217
Costus speciosus (J.Koenig ex
Costaceae
VU
Retz.) Sm.
218

Crateva magna (Lour.) DC.

Capparidaceae
VU
219
Curcuma angustifolia Roxb.
Zingiberaceae
VU
220
Curcuma pseudomontana
Zingiberaceae
VU
Graham
221
Curcuma zedoaria (Christ.)
Zingiberaceae
VU
Roscoe
222
Desmodium motorium (Houtt.)
Fabaceae
VU
Merr.
223
Dioscorea bulbifera L.
Dioscoreaceae

۷U

Dioscorea hispida Dennst.
Dioscoreaceae
VU
225
Diospyros candolleana Wight
Ebenaceae
VU
226
Diospyros paniculata Dalz.
Ebenaceae
VU
227
Elaeocarpus sphaericus
Elaeocarpaceae
VU
(Gaertn.) K.Schum.
228
Embelia tsjeriam-cottam
Myrsinaceae
VU
(Roem. & Schult.) A. DC.
229
Eremostachys superba Royle ex
Lamiaceae

VU
Benth.
230
Euphorbia fusiformis Buch
Euphorbiaceae
VU
Ham.
231
Fagonia cretia L.
Zygophyllaceae
VU
232
Ferula jaeschkeana Vatke
Apiaceae
VU
233
Garcinia indica (Thouars)
Clusiaceae
VU
Choisy
234
Garcinia morella (Gaertn.) Desr.
Clusiaceae
VU

Garcinia xanthochymus Hook.f.
Clusiaceae
VU
236
Gardenia gummifera L. f.
Rubiaceae
VU
237
Gentiana quadrifaria Bl.
Gentianaceae
VU
238
Glycosmis macrocarpa Wight
Rutaceae
VU
239
Gnetum ula Brongn.
Gnetaceae
VU
240
Gymnadenia orchides Lindl.
Orchidaceae
VU
241
Hedychium coronarium Koenig

Zingiberaceae
VU
242
Heracleum candolleanum
Apiaceae
VU
(Wight & Arn.) Gamble
243
Heracleum lanatum Michx.
Apiaceae
VU
(Continued)
(Continued)
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories
244
Hildegardia populifolia (Roxb.)
Sterculiaceae
VU
Schott & Endl.

Hippophae rhamnoides L.
Elaeagnaceae
VU
246
Hydnocarpus alpina Wight
Flacourtiaceae
VU
247
Hydnocarpus kurzii (King.)
Flacourtiaceae
VU
Warb.
248
Hydnocarpus pentandra (Buch
Flacourtiaceae
VU
Ham.) Oken
249
Hypericum perforatum L.
Hypericaceae
VU
250
Hyssopus officinalis L.
Lamiaceae

۷U

Kingiodendron pinnatum (Roxb.
Caesalpiniaceae
VU
ex DC.) Harms
252
Limonia acidissima L.
Rutaceae
VU
253
Lumnitzera racemosa Willd.
Combretaceae
VU
254
Madhuca longifolia (Koen.)
Sapotaceae
VU
Macbr.
255
Madhuca neriifolia (Moon) H.
Sapotaceae
VU
J. Lam
256
Mahonia napaulensis DC.

Berberidaceae
VU
257
Michelia nilagirica Zenk.
Magnoliaceae
VU
258
Morinda citrifolia L.
Rubiaceae
VU
259
Moringa concanensis Nimmo ex
Moringaceae
VU
Dalz. & Gibson
260
Mucuna monosperma DC.
Fabaceae
VU
261
Myristica dactyloides Gaertn.
Myristicaceae
VU
262
Myristica malabarica Lam.

Myristicaceae
VU
263
Naringi crenulata (Roxb.)
Rutaceae
VU
Nicolson
264
Nypa fruticans (Thunb.) Wurmb.
Arecaceae
VU
265
Ochreinauclea missionis (Wall.
Rubiaceae
VU
ex G. Don) Ridsdale
266
Ocimum gratissimum L.
Lamiaceae
VU
267
Olax nana Wall.
Olacaceae
VU
268

Physochlaena praealta (Walp.)
Solanaceae
VU
Miers.
275
Piper boehmeriaefolium Wall.
Piperaceae
VU
ex C.DC.
276
Piper mullesua BuchHam. ex
Piperaceae
VU
D.Don
277
Piper pedicellatum C.DC.
Piperaceae
VU
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories

Piper peepuloides Roxb.
Piperaceae
VU
279
Plumbago zeylanica L.
Plumbaginaceae
VU
280
Polyalthia simiarum (Buch
Annonaceae
VU
Ham.) Hook.f & Thoms.
281
Polygonatum multiflorum (L.)
Liliaceae
VU
All.
282
Polygonatum verticillatum (L.)
Liliaceae
VU
All.
283
Pseudarthria viscida (L.)

Rhododendron campanulatum
Ericaceae
VU
D.Don
290
Rhodondendron lepidotum Wall.
Ericaceae
VU
ex D.Don
291
Roylea cinerea (D.Don) Baillon
Lamiaceae
VU
292
Rubia cordifolia L.
Rubiaceae
VU
293
Salacia oblonga Wall. ex
Hippocrateaceae
VU
Wight & Arn.
294

Salvadora oleoides Decne

Salvadoraceae
VU
295
Salvadora persica L.
Salvadoraceae
VU
296
Sarcostemma viminale (L.) R.Br.
Asclepiadaceae
VU
297
Schrebera swietenioides Roxb.
Oleaceae
VU
298
Scindapsus officinalis (Roxb.)
Araceae
VU
Schott
299
Smilax zeylanica L.
Liliaceae
VU
300
Stemona tuberosa Lour.

Liliaceae
VU
301
Strychnos nux-vomica L.
Strychnaceae
VU
302
Strychnos potatorum L. f.
Strychnaceae
VU
303
Swertia corymbosa (Griseb.)
Gentianaceae
VU
Wight ex C. B. Clarke
304
Symplocos paniculata (Thunb.)
Symplocaceae
VU
Miq.
305
Terminalia arjuna (Roxb. ex
Combretaceae
VU
DC.) Wight & Arn.

Terminalia chebula Retz.
Combretaceae
VU
307
Thalictrum foliolosum DC.
Ranunculaceae
VU
308
Tinospora sinensis (Lour.) Merr.
Menispermaceae
VU
309
Toona ciliata M. J. Roem.
Meliaceae
VU
310
Tragia bicolor Miq.
Euphorbiaceae
VU
311
Tylophora indica (Burm. f.)
Asclepiadaceae
VU
Merr.

Uraria picta (Jacq.) Desv. ex DC.
Fabaceae
VU
(Continued)
290 Defining a new scientific path
(Continued)
SI. No
Name of species
Family
Conservation
Status as per
IUCN Categories
313
Urginea indica (Roxb.) Kunth
Liliaceae
VU
314
Valeriana hardwickii Wall.
Valerianaceae
VU
315
Valeriana jatamansi Jones
Valerianaceae
VU

Vateria indica L.

Dipterocarpaceae

۷U

IUCN = International Union for Conservation of Nature and Natural Resources.

CR = Critically endangered. EN = Endangered. VU = Vulnerable.

Red Data Book series of the Botanical Survey of India

Based on the survey and exploration as well as herbarium and literature studies, about 1,500 species of the intensification of search for some of the extremely rare plant species in their known localities, as well as the Botanical Survey of India has also been instrumental in the establishment of Nepethes and Citrusgows, K. Nisteswar, Gujarat Ayurved University, Jamnagar, Gujarat, while discussing the depleting plant resorted of facts is that most popular Ayurvedic formulations like Chyavanap-rash, Dashamoolarishta, Ashabel Depletion of forest area and medicinal plants finally lead to the disappearance of classical prescriptions to a critical situation to process even their proprietary medicines.3

Red list of medicinal plants 291

References

2 Workshops were organized between 1995–2007. Contributed by NB Brindavanum, former adviser, B

1 FRLHT's ENVIS Centre on Medicinal Plants, Bengaluru, http://envis.frlht.org. Editors: D K Ved, Suma

3 Nisteswar K, Depleting medicinal plant resources: A threat for the survival of ayurveda, Ayu, October-

23 Ayurvedic education system

A path-breaking study

reflecting the elements of

evidence-based Ayurveda

Between 2005 and 2008, a nation-wide survey was planned and executed by an Ayurvedic teacher, Dr The objective of his study was to evaluate the "Relevance of current system of Ayurvedic education in the method adopted in the study: Mailed Survey.

Population: The population for the study was defined in terms of students and teachers studying and teachers: All IRNS/house surgeons registered under BAMS course who had passed the third profess 2 Teachers: All teachers of Ayurvedic colleges/universities who possessed at least BAMS or equivalent Sample Frame: The sample frame that became available to the investigator constituted a list of 242 Ayurvedic: With the availability of this sample frame, it was decided to include at least 10% of institutions 294 Defining a new scientific path

The tool used for the study was a semi-structured questionnaire consisting of eight sections. A total of 7 1 Problems related to the exposure of a BAMS graduate to basic clinical skills.

- 2 Problems related to job opportunities after the completion of the BAMS program
- 3 Problems related to the relevance of the Curriculum of BAMS program 4 Problems related to Teachin 5 Problems related to Global Challenges being faced by the Ayurvedic system of medicine
- 6 Problems related to Entrepreneurship/Business opportunities after the completion of the BAMS progra 7 Perception regarding Ideal system of Medical Education for India.
- 8 Problems related to Personal relevance of Ayurveda to the teachers and students.

The tool was evaluated for its reliability and consistency after administering it to a sample of 100 responding to the questions were in the form of statements, and the responses were obtained in the form of a five-positive major points that emerged out of this study

Inadequate exposure to clinical skills

There was also a tendency toward an agreement that they were not exposed sufficiently in carrying out

The study revealed a common perception that employability of Ayurveda graduates was limited as they

The study reported a general perception among students and teachers that the graduates were not equ

Ayurvedic education system 295

On scientific relevance of the curriculum of BAMS program

The study reported a general tendency toward an agreement, among both students and teachers, rega

- Most of the topics in the subject "Ayurved

 ya Itih

 sa" had the least practical applicability.
- Most of the topics covered in the subject "Pad■rtha Vijny■na" were philosophical, and their practical a
- ■■r■ra" such as "Marma," "Sir■," "Sn■yu," "Sandhi," etc. were outdated as more advanced knowledge
- The topics like "Assessment of Prakrti and Dh∎tu S∎ra" were given undue importance in the subject '
- An essential practical exposure to laboratory diagnostic methods in serology, immunology, histopatho
- In "Dravyaguna," essential basic information related to recent advances in pharmacodynamic/pharma
- An essential basic knowledge related to various technologically advanced methods of "Drug Standard
 "Dravyaguna" or "Rasa ■■stra."
- An essential basic knowledge related to pharmaco-vigilance, safety profile, toxicity studies and Good
- Essential basic knowledge related to the methods of quantitative and qualitative analysis of chemical
- In "Agada Tantra," most of the Ayurvedic topics describing the classifications/ numbers/varieties of poisons and their effects are outdated and impractical.
- The topics related to "Arishta Vijn■na" explained in "Indriya Sth■na" of
 "Caraka Samhit■" are practically not useful because they do not fit into the present social scenario.
- Practical training related to the basics of medical jurisprudence, toxicology and forensic medicine was
- graduate inefficient in handling the legal procedures.
- Essential information on recent studies/reports related to the efficacy of Ayurvedic medicines/procedu
 296 Defining a new scientific path
- The curricula of clinical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management that vertical disciplines contained many outdated methods of treatment/management and the vertical disciplines contained many outdated methods of the vertical disciplines contained many outdated methods of the vertical disciplines contained many outdated methods of the vertical disciplines contained methods of the vertical disciplines contained many outdated methods of the vertical disciplines contained many outdated methods of the vertical disciplines contained methods of the vertical discipline
- Many modern technical terms were translated into "Sanskrit" in the curriculum (e.g. "Unduka Puccha I
- Many controversial topics (e.g. certain structures in Racan
 ■■r■ra, certain herbs in Dravyaguna) we
 Radical changes suggested

Based on those observations, the investigator suggested that the curricula of BAMS course required a
The study also suggested that recent advances in technology/research related to medicinal herbs were
To achieve the goal, the investigator suggested that there had to be a multidisciplinary approach in the
Observations on teaching methodology that was followed in the

A significant number of students and teachers showed a tendency toward an agreement that the teaching Ayurvedic education system 297

existing system of Ayurvedic education

values and scientific spirit of a young student. Also, they agreed that the teaching methodology followed It was a general perception that the interpretation of theories like "Tridosa" or

"Pancha Mah hat" varied largely from one teacher to another, making these theories even more con A significant proportion of students also agreed that memorizing the classical "Sanskrit" verses was und "Samhit" did not serve any practical purpose, but it was given undue importance in teaching and exam There was a general tendency toward an agreement that memorizing the numbers of various structures Global challenges faced by the Ayurvedic system of medicine

More than 85% of students and more than 80% of teachers agreed that serious questions being raised Also, as the study showed, there was a general tendency toward an agreement that Ayurvedic academ More than 85% of students and teachers agreed that pharmacodynamic/pharmacokinetic properties/eff Out of 32 institutions covered in the study, 23 were of governmental administration. Only 6 private and Therefore, this study reflected the status of Ayurvedic education system more in governmental institution 298 Defining a new scientific path

Considering the nature of the study (mailed survey) and the lengthy questionnaire, an overall 57.4% of Impact of the study

Ten years have passed after the findings from this study were published. The Investigator (Dr. Kishor F Kishor Patwardhan and his team have developed and tested new integrative ways of teaching Ayurved Dr. Kishor Patwardhan currently works for the Department of Kriya Sharir (Ayurvedic Physiology), Facu

Central Nervous System
CSIR
Council of Scientific & Industrial Research
СТС
Common toxicity criteria
CVS
Cardiovascular system
D
day(s)
DNA
Deoxyribonucleic acid
L-Dopa Levodopa
E. coli
Escherichia coli
ED
Median effective dose
50
FSH
Follicle stimulating hormone
GABA Gamma-amino butyric acid
g/gm
Gram(s)
kg kilogram
h Hour

Hb Hemoglobin

HDL
High density lipoproteins
HIV
Human immunodeficiency virus
HPLC
High pressure liquid chromatography
HPTLC High performance thin layer chromatography
HSV
Herpes simplex virus
5-HT
5-Hydroxytryptamine
ICMR
Indian Council of Medical Research
300 Abbreviations
i.m. Intramuscular
i.p. Intraperitoneal
i.v. Intravenous
IC
Median inhibitory concentration
50
IU
International Unit
ID
Median inhibitory dose
50

Kcal/kg Kilocalorie per kilogram
Kg
kilogram
LC
Median lethal concentration
50
LD
Median lethal dose
50
LDL
Low density lipoproteins
LH
Luteinizing hormone
M
M Meter
Meter
Meter MIC
Meter MIC Minimum inhibitory concentration
Meter MIC Minimum inhibitory concentration MTD
Meter MIC Minimum inhibitory concentration MTD Maximum tolerated dose
Meter MIC Minimum inhibitory concentration MTD Maximum tolerated dose µg
Meter MIC Minimum inhibitory concentration MTD Maximum tolerated dose µg Microgram
Meter MIC Minimum inhibitory concentration MTD Maximum tolerated dose µg Microgram mg

Milligram per kilogram

ml/mL Milliliter
NLT
Not Less Than
NMT
Not More Than
p.o.
Per oral
PMID
PubMed identifier unique number.
Ppm
Parts per million
RBC
Red blood corpuscles
s.c. Subcutaneous
SGOT
Serum glutamic oxaloacetic transaminase
SGPT
Serum glutamic-pyruvic transaminase
Sh.
Shigella
Sp. Species
Spp.
Multiple species
Staph.
Staphylococcus

Syn. Synonym
TLC
Thin layer chromatography
UV Ultraviolet
Var. Variety
Vib.
Vibrio
VLDL
Very low density lipoproteins
v/v
Volume per volume
v/w
Volume per weight
WBC
White blood corpuscles
Wk
Week(s)
Wol
The Wealth of India (CSIR/Niscair)
w/w
Weight per weight

Index

Aamalakyaadi Gana 144

Sphaeranthus indicus flowers on

Aamra Haridra 82

anxiolytic activity in mice" 252■-■253

Aaragvadhaadi Gana 133

America see United States

Abies webbiana see Taalisha

Amomum subulatum see Sthuula-aila

abiesin 94

Amuthan, A., "Antiovulatory and

Abrol, B. K. 165

abortifacient effects of Areca catechu

accelerated solvent extraction (ASE) 187

(betel nut) in female rats" 258

Aconitum heterophyllum see Atis

analytical markers 203

Acorus calamus 164; see also Vacha

Anand, Nitya 58

Active Controlled trials 17

Ancient Rome, herbal medicine in 47■–■55

add on studies 17■-■18

Angelica archangelica see Chandaa

additional doses design 18

Animal Ethical Committees 231

Adhatoda vasica 69; see also Vaasaa

Anjanaadi Gana 140**■**–**■**141

Adiantum lunulatum see Hamspaadi

Anogeissus latifolia see Dhava

Adiantum venustum 76

Ansari, M. N.: "The effect of aqueous

adrenocorticotrophic hormone (ACTH) 226

extract of Embelia ribes Burm on

Aegle marmelos 257; leaves 152

serum homocysteine, lipids, and

Aeschines 48

oxidative enzymes in methionine

Afonne, O. J., "Hypoglycaemic effect of

induced hyperhomocysteinemia"

the aqueous extract of Boerhavia diffusa

250**■**–**■**251; "Protective activity of

leaves" 245**■**-**■**246

Glycyrrhiza glabra Linn. on carbon

African Marigold 45

tetrachlorideinduced peroxidative

Agaru 77

damage" 251

Agarwal, A., "Effect of Tinospora

antaphrodisiacs 49

cordifolia on learning and memory in

anthraquinones 225

normal and memory deficit rats" 249

anticancer activity: of flavonoids 220 ■-■221;

Agrawal, B., "The antiasthmatic activity of

of terpenoids 222

Moringa oleifera Lam-A clinical study"

anti-inflammatory activity, of flavonoids

259

219**■**–**■**220

agrimony 43

antioxidant activity, of flavonoids 218■-■219

Alangium salviifolium 256**■**–**■**257

antiviral actvity, of flavonoids 221■–■222

alkaloids 217

Anupan 11

Allium sativum 247**■**–**■**248

anxiety disorders, response to placebo

Allkin, Bob 170

effect 158

allocation concealment 23■-■24

Apaamaarga 240■-■241

Aloe indica 69

Apaamaarga Kshaara 241; quantitative

Ambaashthaadi Gana 142

analysis 241**■**–**■**242

Ambavade, S. D., "Pharmacogical

Aparaajitaa 80

evaluation of the extracts of

aphrodisiacs 49, 52, 53, 242

302 Index

API-Reference DNA Barcode Library

Ayurvedic Formulary of India 35, 73, 81,

(API-RDBL) 173, 174

82, 94, 122, 151, 157, 261; permitted

Apollodorus 52

extraction methods 183

Appala, R., "Inhibitory concentrations

Ayurvedic Pharmacopoeia of India (API)

of Lawsonia innermis dry powder for

1, 60, 61, 62, 64, 65, 73, 173, 239, 244;

urinary pathogens" 259**■**–**■**260

Aamra Haridra 82; accepted botanical

Aquillaria agallocha see Agaru

names of medicinal plants 174**■**–**■**178;

Archelaus 48

Agaru 77; Aparaajitaa 80; Asana 91;

Areca catechu 258

Atis 75; Bhaarangi 80; Bhootakeshi Argyreia nervosa see Vriddhadaaru

92; Bhringaraaja 83; Braamhi 78;

Aristolochia indica see Naakuli

Chandaa 77; Chirbilva 86; collection of

Arka Prakasha 35

plants 173; Daaruharidra 78; Danti 78;

Arkaadi Gana 135**■**–**■**136

Dhatuura 83; Dhava 76; Dvipaantara

Artemisia absinthium see Dvipaantara

Damanaka 77; Gajapippli 92; Gandira

Damanaka

80■-■81; Gojihvaa 89; Hamspaadi Artemisia dracunculus 165

75**■**–**■**76; Hapushaa 86; Haridra 82;

Asana 91

Hingu 84; Jaatiphala 88; Jalapippali Ashokarishta 69

89; Jataamaansi 88; Jivaka 87; Jivanti Ashta varga 261 ■ 263; Jivaka 262, 264;

87; Kaaka-Naasikaa 88; Kaakoli 87;

Kaakoli 261, 264; Kshirakaakoli 261,

Kaaliyaka 81; Kakamaachi 92■–■93;

264**■**–**■**265; Mahaa Medaa 262, 264;

Kankol 89■–■90; Karanja 79; Karchura Medaa 262; Riddhi 261, 265; Rshbhaka

83; Kebuka 81; Kiraatikta 93; Kozuppaa

262; substitute drugs 263; Vriddhi 261

91; Krishna Saariva 82; Kshirakaakoli Ashwagandha 164

87; Kumkuma 81**■**–**■**82; Kushtha 92;

Asparagus recemosus see Shataavari

Kutaja 85**■**–**■**86; Laangali 84; Lodhra

astringents 227

93; Lonikaa 91; Madayanti 86**■**−**■**87;

Atis 75

Mahaa Balaa 92; Mahaa Medaa 91;

Atropa Belladonna 188

Maricha 89**■**–**■**90; markers of Ayurvedic

aurapten 123

herbs 206■–■215; Medaa 91; Munditikaa Axungia 44

93; Muurvaa 87■–■88; Naadihingu Ayurveda 2, 3, 11, 14, 15, 16, 21, 24, 27,

84; Naagakeshara 88; Naakuli 77;

29, 57, 70, 156, 231; "additional texts"

Paarsika Yavaani 86; Paashanabheda

35■–■36; aphrodisiacs 242; Bhaishaja-

76; Paathaa 79**■**–**■**80; Papata 89;

Kalpana 67; decline of 59; Doshas Parpata 84; Priyangu 79; Raasanaa

62**■**–**■**63; global challenges faced by

89■–■90; Rakta-Chandana 91; Rakta

297■–■298; "Important Resources" for

Chitraka 89**■**–**■**90; Rakta Punarnavaa 79;

MBBS students 36■–■37; impregnating

Reference Standards (RS) 204■-■205;

the herb 68

■69; legal knowledge base

Riddhi 85; Rshbhaka 87; Sahachara

of 33■–■35; pharmacognosy 59; red list

78; Sarpagandhaa 91■–■92; Shaalparni

of medicinal plants 273■–■280; research

83; Shallaki 79; Shankhpushpi 81;

2, 121; and the "Sacred Word" 156;

Shataavari 78; Shathi 85; Shveta

threatened medicinal plants 280**■**–**■**290;

Saariva 82; Simshapaa 83; Sthauneya vaidyas 2, 73; see also Ayurvedic

94; Sthuula-aila 76; Taalisha 74;

education in India; Ayurvedic Formulary

Taalmuuli 82; Taamalaki 89**■**–**■**90; Vaasaa

of India; Ayurvedic Pharmacopoeia

75; Vacha 75; Vidang 84; Vishmushthi

of India; formulations; Sushruta's

93; Vriddhadaaru 77; Yashti 85

Classification of Ayurvedic Drugs

AYUSH (Department of Ayurveda, Yoga,

Ayurveda Sangraha 35

and Naturopathy, Unani, Siddha and

Ayurveda Saukhyam 132, 263

Homeopathy) 2, 38, 59; Advisory from

Ayurvedic education in India 293

■294;

(2019) 11**■**–**■**12; colleges 30; comments

BAMS program 295■-■296; exposure to

by eminent scientists 31■–■32; final

clinical skills 294; suggested curricula

report of the AYUSH task force 25■-■27;

changes 296; teaching methodology

industry regulation 26■–■27; services 27;

296**■**–**■**297

unqualified "experts" 29■-■30

Index 303

B. diffusa aqueous leaf extract 245■-■246

Bhatti, R., "The effect of Allium sativum

Baakuchi 64

on ischemic preconditioning and

Baala Graha Dosha 157

ischemia reperfusion induced cardiac

Bacon, Francis 42

injury" 247**■**–**■**248

Bacopa monnieri see Braamhi

Bhavprakasha Nighantu 132, 153;

Baicalin 221

Dhaanya Varga 151; Guduchyaadi

Bairy, K. L., "Effect of Tinospora

Varga 150; Haritakyaadi Varga 149;

cordifolia on learning and memory in

Karpuraadi Varga 150; Phalaadi Varga

normal and memory deficit rats" 249

150■–■151; Pushpa Varga 150; Shaaka Balachandran, I. 59

Varga 151

Baliospermum montanum see Danti

Bhootakeshi 92

BAMS program 295■-■296

Bhringaraaja 64, 83

Banerjee, S., "Antiovulatory and

bhuuta-baadhaa 156

abortifacient effects of Areca catechu

Bhuutonmaada 156

(betel nut) in female rats" 258

Bhuvaneswari, K., "Inhibitory

Bani, S., "Immunosuppressive properties

concentrations of Lawsonia innermis

of Pluchea lanceolata I eaves"

dry powder for urinary pathogens"

255

259**■**–**■**260

Banu, G. S., "A study of the antimicrobial

bicoumarins 226

activity of Alangium salviifolium"

bioactive components 204

256**■**–**■**257

bioactive value 189

Barcode of Life Database (BOLD) 174

bioactivity guided assay 189

Barleria prionitis, antidiabetic effect of

biological activities, of alkaloids 217

247; see also Sahachara

biological assays 232

Basic Local Alignment Search Tool

Bipolar Depression (BPD), placebo (BLAST) 174 response rates in clinical trials 159 basil 49 bitters 222**■**–**■**223 basilien (sweet basil) 41 black-box designs 20 Baxi, A. J. 121 blind assessment 24 Benincasa hispida 250, 258**■**−**■**259 blinding 22■–■23 Berberis aristata see Daaruharidra block randomization 22 Bergenia ciliata see Paashanabheda blood: astringents 227; as medicine 47**■**–**■**48 Bhaarangi 80, 153 Bodhankar, S. L., "Pharmacogical Bhadwar, S. R. L. 165 evaluation of the extracts of Bhagwat, D. P. 255 Sphaeranthus indicus flowers on Bhaishaja-Kalpana 67

anxiolytic activity in mice" 252■–■253

Bhandari, U.: "The effect of aqueous

Boerhaavia diffusa see Rakta Punarnavaa

extract of Embelia ribes Burm on serum

borage 41

homocysteine, lipids, and oxidative

Boswellia serrat see Shallaki

enzymes in methionine induced

botanical drugs: Aamra Haridra 82;

hyperhomocysteinemia" 250**■**–**■**251;

Agaru 77; Aparaajitaa 80; Asana 91;

"Protective activity of Glycyrrhiza glabra

Atis 75; Bhaarangi 80; Bhootakeshi 92;

Linn. on carbon tetrachlorideinduced

Bhringaraaja 83; Braamhi 78; Chandaa

peroxidative damage" 251

77; Chirbilva 86; Daaruharidra 78;

Bharat Bhaishajya Ratnakara 35

Danti 78; Dhatuura 83; Dhava 76;

Bhatagar, P. 247

Dvipaantara Damanaka 77; Gajapippli Bhatnagar, M.: "Hepatoprotective activity

92; Gandira 80**■**–**■**81; Gojihvaa 89;

of Eugenia jambolana Lam. in carbon

Hamspaadi 75**■**–**■**76; Hapushaa 86;

tetrachloride treated rats" 253; "A study

Haridra 82; Hingu 84; Jaatiphala 88;

of the antidiabetic activity of Barleria

Jalapippali 89; Jataamaansi 88; Jivaka prionitis" 247

```
87; Jivanti 87; Kaaka-Naasikaa 88;
```

Bhattacharyya, D., "Effect of Aegle

Kaakoli 87; Kaaliyaka 81; Kakamaachi marmelos leaf on rat sperm motility-An

92**■**–**■**93; Kankol 89**■**–**■**90; Karanja 79;

in vitro study" 257

Karchura 83; Kebuka 81; Kiraatikta

304 Index

93; Kozuppaa 91; Krishna Saariva Central Council for Research in Ayurvedic

82; Kshirakaakoli 87; Kumkuma

Sciences (CCRAS) 2, 35; General

81**■**–**■**82; Kushtha 92; Kutaja 85**■**–**■**86;

Guidelines for Clinical Evolution of

Laangali 84; Lodhra 93; Lonikaa 91;

Ayurvedic Intervention 12; general

Madayanti 86■–■87; Mahaa Balaa 92;

methodologies and guidelines of drug

Mahaa Medaa 91; Maricha 89■–■90;

development 13■–■14

Medaa 91; Munditikaa 93; Muurvaa Central Council of Indian Medicine

87**■**–**■**88; Naadihingu 84; Naagakeshara

(CCIM) 27

88; Naakuli 77; Paarsika Yavaani Chandaa 77

86; Paashanabheda 76; Paathaa

Charaka 68, 127, 241; Dashemaani 131;

79**■**–**■**80; Papata 89; Parpata 84;

see also Vargas

pharmaceutical names of Ayurvedic

Charaka Samhita 35, 68

plant drugs 94**■**–**■**95; Priyangu 79;

Chatusshashti Prahari Pippali 68

Raasanaa 89■–■90; Rakta-Chandana Chaudhury, R. R. 60

91; Rakta Chitraka 89■–■90; Rakta Chauhan, P. S., "Immunosuppressive

Punarnavaa 79; Riddhi 85; Rshbhaka properties of Pluchea lanceolata leaves"

87; Sahachara 78; Sarpagandhaa

255

91**■**–**■**92; Shaalparni 83; Shallaki 79;

chemical constituents 190**■**–**■**199, 238,

Shankhpushpi 81; Shataavari 78; Shathi

240 ■ – ■ 241; alkaloids 217; anthraquinones

85; Shveta Saariva 82; Simshapaa

225; bitters 222**■**–**■**223; cardioactive

83; Sthauneya 94; Sthuula-aila 76;

glycosides 224; categories of markers

Taalisha 74; Taalmuuli 82; Taamalaki

203**■**–**■**204; coumarins 225**■**–**■**226;

89**■**–**■**90; Vaasaa 75; Vacha 75; Vidang

cyanogenic glycosides 224**■**–**■**225;

84; Vishmushthi 93; Vriddhadaaru 77;

essential oils 229; flavonoids 218■–■222;

Yashti 85

Gum Arabic 228; natural configuration

botanical names 156, 173; equivalent

of compounds 188**■**–**■**189; plant steroids

pharmaceutical names 96■–■109,

223**■**–**■**224; polysaccharides 228**■**–**■**229;

110■–■120; and pharmaceutical names 94;

saponins 226; tannins 227; terpenoids

plant families 166■–■168; Sanskritization

222; toxic constituents, markers for

of 73**■**–**■**74, 239**■**–**■**240

202**■**–**■**203

Botanical Survey of India 290

chemotypes 164

Braamhi 63, 64, 78

China: herbal medicine 39■–■40; Institute

breaking the codes 23■–■24

for Medicinal Plant Development 40;

Brhatyaadi Gana 139

pharmaceutical drug names in 96■-■109;

Britain see United Kingdom

see also Classical Chinese Medicine

bromelain 242

(CCM); Traditional Chinese Medicine

Butea monosperma 223**■**–**■**224

(TCM)

Chinese Pharmacopoeia 204 cabbage 54 Chirbilva 86 calamus 75 Chirchatta 243■–■244 Callicarpa macrophylla see Priyangu Chopra, A. 62 capsaicin 242■–■243 Chopra, Ram Nath 57, 121, 163, 165 cardioactive glycosides 224 Chrysippus 49, 51 Carica papaya 64 Chude, M. A., "Hypoglycaemic effect of carotenoids 222 the aqueous extract of Boerhavia diffusa case control studies 17 leaves" 245**■**-**■**246 case reports 17 Chunekar, K. C. 263 case-series studies 17 churna 67**■**-**■**68 catechins 219, 227 Chyavanpraasha 67 categories of markers 203■–■204 Cineraria lyrata 45

Cinnamomum tamala 74 cavitation 184■-■185 Cissampelos pareira see Paathaa cedria 55 Cissus quadrangularis 254 Index 305 Classical Chinese Medicine (CCM) 39; cross over trials 17 see also Traditional Chinese Medicine cross sectional studies 17 (TCM) Cryptolepsis buchanani see Krishna classical formulations, pruning 156; see Saariva also formulations cucumber 50■-■51 classical plant drugs 2 Culpeper, Nicholas: Art of Physick 42; A classification of Ayurvedic drugs, Complete Herbal 42■–■43; The English Dashemaani 131 Physitian 42; The London Dispensatory Cleophantus 53, 54 42 Clerodendron phlomoides 152

Curculigo orchioides see Taalmuuli

Cato 54

Clerodendrum serratum see Bhaarangi

Curcuma amada see Aamra Haridra

clinical studies: experimental 17■-■19;

Curcuma longa 153, 165; see also Haridra

observational 16**■**−**■**17; see also designs

Curcuma zedoaria see Karchura

amenable to test Ayurvedic therapies

curcumin 243

Clinical Trial Registry-India (CTRI) 14

curriculum of the BAMS program 295■–■296

clinical trials 124; human pharmacology

cyanogenic glycosides 224**■**–**■**225

1415; placebo response rates in 159;

therapeutic exploratory trials 15;

Daaruharidra 78

un-blinding 23; see also designs

Daginawala, H. F., "Effect of Hemidesmus

amenable to test Ayurvedic therapies

indicus (Anantmool) extract on IgG

Clitoria ternatea see Aparaajitaa

production and adenosine deaminase

Clownes Wound-wort 44

activity of human lymphocytes in vitro"

cohort studies 17

255**■**–**■**256

Coleus forskohlii see Gandira Dalbergia sissoo see Simshapaa collection of herbs 67■–■68, 173 Danti 78 colocynthis 51 Dash, Bhagwan 63 Commiphora wightii 124 Dashamuula complex 122 Commission E 47, 155 Dashamuula Kwaath 123 comparative trials 18 Dashamuula Kwaath Churna 121 comparison, of Classical Chinese Medicine Dashamuulaarishta 121, 122■-■123 and Traditional Chinese Medicine Dashemaani 131 39**■**–**■**40 Dashmuulu Varga 145; suggested compounds: identifying stable markers in substitutions for classical formulations 205; Karvi Panchakadasha Kashaaya 151**■**–**■**152 123; natural configuration of 188**■**–**■**189; data based studies 21 redundant herbs 121■–■122; trituration data fudging 64**■**−**■**65

68, 69, 70

Datura metel see Dhatuura

condensed tannins 227

Deccan Regional Herbarium 168

consortium for the barcode of life (CBOL)

decoction 183, 186

179

Democritus 52

controls 21

Deopujari, J. Y., "Effect of Hemidesmus

Convolvulus pluricaulis see Shankhpushpi

indicus (Anantmool) extract on IgG

correlative components 204

production and adenosine deaminase

Coscinium fenestratum see Kaaliyaka

activity of human lymphocytes in vitro"

Costus speciosus see Kebuka

255■-■256

coughs, response to placebo effect 158

Department of Indian Medicine and

coumarins 225**■**–**■**226; marmin 123

Homeopathy (ISM&H) 27

Council of Scientific and Industrial

depression, response to placebo effect 158

Research (CSIR) 2, 32

Derosne 217

countercurrent extraction 183■–■184, 186

Deshpande, S. S., "Antiulcer activity of

cow's milk, properties of 64

Tephrosia purpurea in rats" 248**■**–**■**249

critically renewed placebo studies 158-159

designs amenable to test Ayurvedic

Crocus sativa 152

therapies 20■-■23; black-box 20; blinding

306 Index

22**■**–**■**23; data based studies 21; meta

Drugs Technical Advisory Board 25

analysis 21**■**–**■**22; placebo controlled

drying of extracts 185■-■186

trials 20■–■21; randomization 22; Reverse Dvipaantara Damanaka 77

Pharmacology (RP) 20

Desmodium gangeticum see Shaalparni

early escape rescue treatment 18

Desmodium triflorum 76

Eclipta alba see Bhringaraaja

deterioration of herbs 67

Elaadi Churna 128

Dhaanya Varga 151

Elaadi Gana 137**■**–**■**138

Dhatuura 83

elaterium 50■-■51

Dhava 76

Embelia ribes 250■-■251; see also Vidang

Dhavan, B. N. 58

Emblica officinalis 67

Dheer, R., "A study of the antidiabetic

ENVIS Centre on Medicinal Plants 169

activity of Barleria prionitis" 247

Epicatechin 219

Dhingra, D., "Evaluation of the

epilepsy, response to placebo effect 158

antidepressant-like activity of

erectile dysfunction, response to placebo

glycyrrhizin in mice" 251**■**–**■**252

effect 158

diabetes: Barleria prionitis effect on 247;

ergosterol 223

Pongamia pinnata effect on 246**■**–**■**247

essential oils 222, 228, 229

dianthrone glycosides 225

Eugenia jambolana 253

Dieuches 53, 54

eugenol 74

Diodorus, Empirica 49

European Medicines Agency (EMEA) 203

DNA barcoding 173, 174; and adulteration

European Scientific Cooperative on

180**■**–**■**181; views of Indian researchers

Phytotherapy (ESCOP) 47

179**■**–**■**180

experimental studies 17■-■19; placebo

doctrine of signatures 42, 64

controlled trials 20■-■21

Doiphode, V. V. 62

external control 18

Dorababu, P., "Effect of ethanolic

extraction methods: accelerated solvent

leaf extract of Ocimum sanctum on

extraction (ASE) 187; countercurrent

haloperidolinduced catalepsy in albino

extraction 183■–■184; decoction 183;

mice" 260

forced extraction 183; microwave-

dosage calculations for extracts 190

assisted extraction (MAE) 184; Soxhlet

Doshas 1, 61, 62**■**–**■**63, 122; see also

extraction 186**■**–**■**187; strengths and

Prakriti

limitations of 186**■**–**■**187; supercritical

double blind studies 23, 24, 69

fluid extraction (SFE) 185; ultrasonic

Draksharishta 128

extraction (UAE) 184■-■185

Dravya Guna Vijnana 132

extracts 237; dosage calculations 190; dry

drug extract ratio (DER) 189

238; drying of 185**■**–**■**186; standardized

drugs 24; biological assays 232; general

237**■**–**■**238; strength of 189

methodologies and guidelines of

development (CCRAS) 13■-■14;

factorial trials 17

pharmacodynamic activities 231;

Ferula foetida see Hingu

phases of clinical trial for 14■–■16;

final report of the AYUSH task force

polyformulations 21; and scientific

25■–■27

inquiry 57■-■58; subtlety 68; therapeutic

"Five Elements" 39

benefit of 155; toxicity studies 231;

flavonoids 204, 218; antibacterial activity

see also botanical drugs; compounds;

219; anticancer activity 220**■**–**■**221;

formulations

anti-inflammatory activity 219**■**–**■**220;

Drugs and Cosmetics Act (1940) 1, 24,

antioxidant activity 218■–■219; antiviral

26**■**–**■**27, 35; Chapter 3(a) 7; Chapter 3(h)

actvity 221 ■-■222; hepatoprotective

7**■**–**■**8; see also Drugs and Cosmetics

activity 219

Rules (1945)

forced extraction 183, 186

Drugs and Cosmetics Rules (1945) 27;

formulations 156; Ashvagangha 152;

Part X A: 122 DAC 8; Part XVI: 158(B)

Bhaargi 153; Draksharishta 128;

8**■**–**■**11

Elaadi Churna 128; Kumaryaasava

Index 307

128; logistics of 128■–■129; Maha Panch Gardenia gummifera see Naadihingu

Gavya Ghrita 127**■**–**■**128; Mahaa Panch

garlic 42**■**–**■**43

Gavya Ghrit 156; Manasmitra Vataka

genistein 221

156; Napunsakataa 157; Navaayasa genomic DNA extraction 173■-■174

Churna 128; Nishaa 153; Panch Gavya Gerard, John, Herball, or Generall

Ghrita 156; Pancha Gavya Ghrita 127;

Historieof Plantes 43, 44

Phala Ghrita 157; pruning 121**■**–**■**124;

Gerardia 44

revalidating 153**■**–**■**154; suggested

Germany: Commission E 47, 155; Federal

substitutions 151**■**–**■**152; Triphala 127;

Institute for Drugs and Medical Devices

see also Ganas; Vargas

47; herbal medicine in 45**■**–**■**47

foxglove 43, 224

Ghosh, S. C. 69

freeze drying 185■-■186

ginger 41

French Institute of Pondicherry 169

global challenges faced by the Ayurvedic

Fritillaria roylei see Kshirakaakoli

system of medicine 297**■**–**■**298

Full Spectrum Extracts 188

Gloriosa superba see Laangali

Fumaria parviflora see Parpata

glycosides 225, 226

furano coumarins 226

Glycyrrhiza glabra 153**■**−**■**154, 252; see also

Yashti

Gajapippli 92

glycyrrhizin 226, 251**■**–**■**252

Galen 42

Gmelina arborea 123, 152

Gamaniel, K. S., "Hypoglycaemic effect of Gojihvaa 89

the aqueous extract of Boerhavia diffusa Good Clinical Practice (GCP) guidelines

leaves" 245**■**-**■**246

11

Ganas 27, 127, 128, 129, 131**■**–**■**132;

Gopalakrishna, H. N., "Effect of ethanolic

Aamalakyaadi 144; Aaragvadhaadi leaf extract of Ocimum sanctum on

133; Ambaashthaadi 142; Anjanaadi haloperidolinduced catalepsy in albino

140**■**–**■**141; Arkaadi 135**■**–**■**136;

mice" 260

Brhatyaadi 139; Elaadi 137**■**–**■**138;

Gore, A. 254

Guduchyaadi 143; Haridraadi 138;

Graha dosha 157

Kaakolyaadi 139**■**–**■**140; Kadambaadi

group chemical markers 203

147; Kaphahara 149; Karanjaadi Guduchyaadi Gana 143

147; Krishnaadi 137; Kshudra Guduchyaadi Varga 150

panchamuula 145; Lakshaadi

Gum Arabic 228

144**■**–**■**145; Mahat panchmuula 145;

Gunas 1, 61, 62, 65

Mushkakaadi 136**■**–**■**137; Mustaadi

143**■**–**■**144; Niroohana Dravya 148;

Habernaria intermedia see Riddhi

Nyagrodhaadi 142**■**–**■**143; Panch

Haimavati Vachaa 75

Kola 147; Panchakantaka 146;

Hamspaadi 75**■**–**■**76

Paruushakaadi 141; Patolaadi 139;

Hansel, Rudolf, Rational Phytotherapy

Pittahara 148; Priyangvaadi 141■–■142;

155

Rodhraadi ■135; Saalsaaraadi ■134;

Hapushaa 86

Saarivaadi 140; Shirsha virechaniya Haridra 63, 82

148; Shyaamaadi 138**■**–**■**139; Surasaadi Haridraadi Gana 138

136; Trapvaadi 144■–■145; Triphlaa Haritakyaadi Varga 149

143**■**–**■**144; Trna panchamuula 146;

Harvey, William 42

Tryuushana 144; Utpalaadi 143;

heart activity, cardioactive glycosides,

Uushakaadi 140; Vaatahara 148;

effect on 224

Vachaadi 138; Vallija panchamuula

heat shock proteins 220

145**■**–**■**146; Vamanaoushadha 147;

Hedychium spicatum see Shathi

Varunaadi 133■–■134; Vatsakaadi Hemaadri 68

146, 149; Vidaarigandhaadi

Hemidesmus indicus 255■-■256

132**■**–**■**133; Viratarvaadi 134**■**–**■**135;

hepatoprotective activity, of flavonoids 219

Virechanaoushdha 148

herbal medicine: categories of markers

Gandira 80**■**–**■**81

203■-■204; doctrine of signatures 42;

308 Index

dosage calculations for extracts 190;

Indian Institute of Integrative Medicine

European Scientific Cooperative on

163

Phytotherapy (ESCOP) 47; see also

Indian Journal of Pharmacology, The 245

extraction methods; extracts; herbs;

Indian Pharmacopoeia 25

medicinal plants

Indian System of Medicine (ISM) 27

herbal products: authenticity of 180**■**–**■**181;

Indication Pluralism 73

markers for toxic constituents 202■–■203

indigenous medicine 58

herbariums: Central National Herbarium

ingwer see ginger

168; Deccan Regional Herbarium 168;

Institute for Medicinal Plant Development

ENVIS Centre on Medicinal Plants 169;

40

French Institute of Pondicherry 169;

Institutional Animal Ethics Committee

Janaki Ammal Herbarium 165**■**–**■**166;

(IAEC) 14

Kerala Forest Research Institute 169;

Intellectual Property Rights (IPR) 14

LWH Virtual Herbarium 168

International Code of Botanical

Herbe Gerarda 44

Nomenclature 163, 165**■**–**■**166

herbs 45**■**–**■**46; collection of 67**■**–**■**68;

international pharmaceutical names

deterioration of 67; holotypes 163;

110■-■120

impregnating 68■–■69; properties

intraspecific variation in plants 164**■**−**■**165

and actions of 61; specimens 163;

Inula racemosa see Pushkara

standardization 65; see also Ayurveda;

Irritable Bowel Syndrom (IBS), response

Ayurvedic Pharmacopoeia of India;

to placebo effect 158

formulations; herbal medicine;

Ishar, M. P., "The effect of Allium sativum

medicinal plants; standardization;

on ischemic preconditioning and

vouchers

ischemia reperfusion induced cardiac

hesperidin 243

injury" 247**■**–**■**248

high performance liquid chromatography

Islam, F., "The effect of aqueous extract

(HPLC) 65, 84, 239

of Embelia ribes Burm on serum

Hippocrates 42

homocysteine, lipids, and oxidative

Holarrhena antidysenterica see Kutaja

enzymes in methionine induced

holistic medicine 1, 2, 27; see also

hyperhomocysteinemia" 250**■**–**■**251

Ayurveda; medicinal plants

Holoptelea integrifolia see Chirbilva

Jaatiphala 88

holotypes 163

Jalapippali 89

human pharmacology 1415 Janaki Ammal Herbarium 165**■**–**■**166 humors 40**■**–**■**41 Japan, Museum of Materia Medica 169 hydrocyanic acid 224**■**–**■**225 jarjarikaran 68, 69 hydrolyzable tannins 227 Jataamaansi 88 Hyoscyamus niger see Paarsika Yavaani Jethimadh 154 hyssop 52 Jivaka 87, 262, 264 Jivanti 87 ICMR (Indian Council of Medical Jnana Prabodhni Institute of Research in Research) 129 Ayurvedic Medicines 69 identifying stable markers in Ayurvedic journals, need for unbiased research 29■-■30 compounds 205 Juniperus communis see Hapushaa "implicit affordance" 158-159 impregnating the herb 68■-■69 Kaakamaachi 92**■**–**■**93

Independent Ethics Committee (IEC) 14

Kaaka-Naasikaa 88

Independent Review Board (IRB) 14

Kaakoli 87, 261, 262**■**–**■**263, 264

India: BAMS program 295**■**–**■**296; Drugs

Kaakolyaadi Gana 139**■**–**■**140

and Cosmetics Act (1940) 7; Research

Kaaliyaka 81

Councils 11; survey of the Ayurvedic

Kadambaadi Gana 147

education system in 293■-■294

Kafle, S., "Antiovulatory and abortifacient

Indian Council of Medical Research,

effects of Areca catechu (betel nut) in

Reviews on Indian Medicinal Plants 2

female rats" 258

Index 309

Kainthla, R. P., "Effect of Hemidesmus

Krishna Saariva 82

indicus (Anantmool) extract on IgG

Krishnaadi Gana 137

production and adenosine deaminase

Kshaara 241

activity of human lymphocytes in vitro"

Kshirakaakoli 87, 262**■**–**■**263, 264**■**–**■**265

255**■**–**■**256

Kshirakaakoli 261

Kakamaachi 92**■**–**■**93

Kshudra panchamuula Gana 145

Kalikar, M. V. 254**■**–**■**255

Kulkarni, P. H. 69

Kankol 89**■**–**■**90

Kulkarni, R. V., "Hepatoprotective activity

Kant Katiyar, C. 32

of Cissus quadrangularis stem extract

Kapahi, B. K. 165

against isoniazid-induced liver damage

Kapha 1, 27, 61, 63, 64

in rats" 254

Kaphahara Gana 149

Kumar, A. 250; "Effect of methanolic

Kapur, L. D. 165

extract of Benincasa hispida against

Karanja 79

histamine and acetylcholine induced

Karanjaadi Gana 147

bronchospasm in guinea pigs" 258■-■259;

Karchura 83

"Possible anorectic effect of methanol

Karma 1, 61, 62, 64

extract of Benincasa hispida (Thunb.).

Karpuraadi Varga 150

Cogn. Fruit" 250

Kashyap, R. S., "Effect of Hemidesmus

Kumar, B. D. 32

indicus (Anantmool) extract on IgG

Kumar, G., "A study of the antimicrobial

production and adenosine deaminase

activity of Alangium salviifolium" 256**■**−**■**257

activity of human lymphocytes in vitro"

Kumaryaasava 128

255**■**–**■**256

Kumkuma 81**■**–**■**82

Kaul, A., "Immunosuppressive properties

Kuruvilla, A. B., "Inhibitory

of Pluchea lanceolata leaves" 255

concentrations of Lawsonia innermis

Kavitha, K., "Anticarcinogenic and

dry powder for urinary pathogens"

antilipidperoxidative effects of

259**■**–**■**260

Tephrosia purpurea (Linn.) Pers. in

Kushtha 92

7, 12-dimethylbenz(a)anthracene

Kutaja 85**■**–**■**86

(DMBA) induced hamster buccal pouch

carcinoma" 249 Laangali 84 Kebuka 81 Lakshaadi Gana 144**■**–**■**145 Kerala Forest Research Institute 169 large juniper 55 Kesara 81**■**–**■**82 Latha, M. S., "Protective activity of Keshara 81**■**–**■**82, 152 Glycyrrhiza glabra Linn. on carbon ketones 229 tetrachlorideinduced peroxidative Khare, C. P.: The Ayurvedic damage" 252 Pharmacopoeia of India and Ayurvedic Lawsonia inermis see Madayanti Pharmacopoeial Plant Drugs: legal knowledge base of Ayurveda 33■-■35 Expanded Therapeutics 2; The Modern leprosy 47**■**–**■**48 Ayurveda: Milestones beyond the Leptadenia reticulata see Jivanti Classical Age 2

Kharya, M. D., "Immunosuppressive

Lilium polyphyllum 87, 281

limited placebo period 18 properties of Pluchea lanceolata leaves" Linnaean system 1 255 linseed 50 Khiyani, R. K., 254**■**–**■**255 lipid peroxidation 218■-■219 Kiraatikta 93 Lodhra 93 Koti, B. C., "Hepatoprotective activity Lodhrasava 69 of Cissus quadrangularis stem extract logistics of Ayurvedic formulations against isoniazid-induced liver damage 128**■**–**■**129 in rats" 254 Lonikaa 91 Kour, K., "Immunosuppressive properties LWH Virtual Herbarium 168 of Pluchea lanceolata leaves" 255 lycopene 243 Kozuppaa 91 lyophilization 185**■**–■186 310 Index

Madayanti 86**■**–**■**87

extraction methods; herbal medicine;

Madhuuka 153**■**–**■**154

herbs

Maha Panch Gavya Ghrita 127■-■128

medicine 57; placebo effect 157■-■159; see Mahaa Balaa 92

also drugs

Mahaa Medaa 91, 262, 264

Mehta, A., "The antiasthmatic activity of

Mahaa Panch Gavya Ghrit 156

Moringa oleifera Lam-A clinical study"

Mahadihassan, S. 63

259

Mahat panchmuula Gana 145

Mesua ferrea 152; see also Naagakeshara

Malaxis acuminata see Jivaka

meta analysis 21**■**–**■**22

Malini, S., "Effect of Tinospora cordifolia

Mhetra N. A., "Pharmacogical evaluation

on learning and memory in normal and

of the extracts of Sphaeranthus indicus

memory deficit rats" 249

flowers on anxiolytic activity in mice"

Manasmitra Vataka 156

252■-■253

Manduukaparni 63

microwave-assisted extraction (MAE) 184,

Manoharan, K., "Effect of Pongamia

186, 187

pinnata flowers on blood glucose and

monoterpenoids 222

oxidative stress in alloxan induced

Moringa oleifera 259

diabetic rats" 246■-■247

mucilaginous plants 228

Manoharan, S., "Anticarcinogenic

Munditikaa 93

and antilipidperoxidative effects of

Museum of Materia Medica 169

Tephrosia purpurea (Linn.) Pers. in

Mushali 82

7, 12-dimethylbenz(a)anthracene

Mushkakaadi Gana 136**■**–■137

(DMBA) induced hamster buccal pouch

Muurvaa 87**■**–**■**88

carcinoma" 249

Myristica fragrans see Jaatiphala

mardanam gunavardhanam 68

Maricha 89**■**-**■**90

Naadihingu 84

markers 179, 180, 201; analytical 203; of

Naagakeshara 88

Ayurvedic herbs 206**■**–**■**215; categories

Naakuli 77

of 203**■**–**■**204; general guidelines for 201;

Naharwar, Vikram Andrew 3

phytochemical reference standards as

Nair, V., "Effect of ethanolic leaf extract of

238■–■244; problem of identification in

Ocimum sanctum on haloperidolinduced

Ayurvedic compounds 205; selection

catalepsy in albino mice" 260

criteria 201**■**–**■**202; for toxic consituents

Napunsakataa 157

202**■**–**■**203

Nardostachys jatamansi see Jataamaansi

marmin 123

National Formulary of Unani Medicine 74

Marsdenia tenacissima see Muurvaa

natural configuration of compounds 188■-■189

Martynia annua see Kaaka-Naasikaa

Navaayasa Churna 128

maximum tolerated dose 16

Nayar, S. L. 163, 165

Medaa 91, 262

Nehru, Pandit Jawahar Lal 58

Medicinal Plant Names Services (MPNS)

Nero, Emperor of Rome 48

170

Nirgundi 64

medicinal plants 45■-■46; African Marigold

Niroohana Dravya Gana 148

45; agrimony 43; basil 41, 49; borage

Nishaa formulations 153

41; cabbage 54; chemical constituents

Nithaniyal, S. 172

190**■**–**■**199, 217; classical names 73;

non-AYUSH researchers 29■-■30

Clownes Wound-wort 44; cucumber

non inferiority trials 17

50**■**–**■**51; doctrine of signatures 42;

nonhydrolyzable tannins 227

flavonoids 218; foxglove 43; garlic

nonterpenoid bitters 223

42**■**–**■**43; ginger 41; Herbe Gerarda 44;

no-treatment concurrent control design 18

large juniper 55; linseed 50; onion

Nyagrodhaadi Gana 142**■**–**■**143

44**■**–**■**45; radish 52; red list of 273**■**–**■**280;

Sanskritized names 73■–■74; stray parsnip Obi, E., "Hypoglycaemic effect of the

53**■**–**■**54; threatened species 280**■**–**■**290;

aqueous extract of Boerhavia diffusa

walnuts 50; see also botanical drugs; leaves" 245**■**-**■**246 Index 311 observational studies 16**■**–**■**17 haloperidolinduced catalepsy in albino Ocimum sanctum 260 mice" 260 oleanolic acid 241 phagedaenae 52 oligomeric proanthocyanidins 243 Phala Ghrita 157 onion 44**■**–**■**45 Phalaadi Varga 150**■**–**■**151 Onosma bracteatum see Gojihvaa pharmaceutical names 94; of Ayurvedic open blind studies 23 plant drugs 94**■**–**■**95; equivalent botanical Orisakwe, O. E., "Hypoglycaemic effect of names 96■-■109, 110■-■120; see also the aqueous extract of Boerhavia diffusa international pharmaceutical names leaves" 245**■**-**■**246 pharmacodynamic activities 231 Orpheus 48, 53 pharmacognosy 59, 63

Osthanes 49

pharmacological screening: activity on

Oxford University Herbarium 163

autonomous nervous system (ANS)

232; activity on central nervous

Paarsika Yavaani 64, 86

system (CNS) 232■-■234; activity on

Paashanabheda 76

gastrointestinal tract 234; activity on

Paathaa 79**■**–**■**80

muscles 232; anticancer or effects

Pai, M., "Effect of ethanolic leaf extract of

on genomic structure 235**■**–**■**236;

Ocimum sanctum on haloperidolinduced

antifertility activity 235; anti-

catalepsy in albino mice" 260

inflammatory and anti-pyretic activity

pain, response to placebo effect 157-158

234; antimalarial activity 235; autacoid

Panch Gavya Ghrita 156

activity 234; hepatoprotective activity

Panch Kola Gana 147

234; hypoglycaemic activity 235

Pancha Gavya Ghrita 127

Phase I trials 14**■**–**■**15

Panchakantaka Gana 146

Phase II trials 15

Panchakarma 21; Ganas for 147■-■149

Phase III trials 15■-■16

Panchbhuutas 62

Phase IV trials 16

panchmuula, suggested substitutions for

phenolic compounds 227

classical formulations 151■–■152

phenylpropanoids 229

Panchmuulu 151

Philistion 53, 54

Pandey, G. S. 263

Phyla nodiflora see Jalapippali

Pandian, M. R. 256**■**–**■**257

Phyllanthus fraternus see Taamalaki

Pandit, S., "Effect of Aegle marmelos leaf

Phyto-Chemical Reference Standard (PRS)

on rat sperm motility-An in vitro study"

238

257

phytochemicals 165, 242

Papata 89

phytoecdysteroids 223

papaya 243**■**-**■**244

Piper cubeba see Kankol

Paracelsus 41

Piper nigrum see Maricha

Parani, M. 172

Pita Chandan see Kaaliyaka

Parkinson's disease, response to placebo

Pitta 1, 27, 61, 63, 64, 262

effect 158

Pittahara Gana 148

Parmar, N. S., "Antiulcer activity of

placebo controlled trials 17, 20■-■21

Tephrosia purpurea in rats" 248■–■249

placebo effect 156; on coughs 158; on

Parpata 84

depression 158; on epilepsy 158; on

Paruushakaadi Gana 141

erectile dysfunction 158; on Irritable

patent medicine 7■–■8, 24■–■25; phases of

Bowel Syndrome (IBS) 158; on pain

clinical trial for 14■-■16

157-158; on Parkinson's disease 158;

Patis 75

response rate in clinical trials 159

Patolaadi Gana 139

plant steroids 223■–■224

Patwardhan, B. 59

Plantago ovata 228

Patwardhan, K. 293

Pliny the Elder, Natural History 47■–■55

Pavetta indica see Papata

Plistonicus 49

Pemmnati, S., "Effect of ethanolic

Pluchea lanceolata 255; see also leaf extract of Ocimum sanctum on

Raasanaa

312 Index

Plumbago indica see Rakta Chitraka

Raasanaa 89**■**-**■**90

Podagraria 44

radish 52

polyformulations 21; redundant herbs 122

Rajesh, M. G., "Protective activity of

Polygonatum cirrhifolium see Medaa

Glycyrrhiza glabra Linn. on carbon

polysaccharides 228**■**–**■**229

tetrachloride induced peroxidative

polyterpenoids 222

damage" 252

Pongamia pinnata, effect on blood glucose Raju, B. 172

levels 246**■**–**■**247; see also Karanja

Rakta-Chandana 91

Poongothai, S. G., "Inhibitory

Rakta Chitraka 89**■**–**■**90

concentrations of Lawsonia innermis

Rakta Punarnavaa 79

dry powder for urinary pathogens"

Ramu, D. P. 258**■**−**■**259

259**■**–**■**260

random allocation 22

Popaea 48

randomization codes 22, 23■-■24

Portulaca oleracea see Lonikaa

randomized withdrawal design 18

post marketing trials 16

Rao, M. S., "Effect of Tinospora cordifolia

Prabhava 64, 65

on learning and memory in normal and

Prabhu, K., "Antiovulatory and

memory deficit rats" 249

abortifacient effects of Areca catechu

Rasa tantra va siddha prayog sangraha 35

(betel nut) in female rats" 258

Rasas 1, 61, 62, 65

Prakriti 2, 11, 27, 62

rasayana 69

Pramanik, T., "Effect of Aegle marmelos

Rath, Satyajit 32

leaf on rat sperm motility-An in vitro

Rauwolfia serpentina see Sarpagandhaa

study" 257

rbcL DNA barcode 174

Praxagoras 52

recommendations: in the final report of the

preclinical animal data 231

AYUSH task force 25■–■27; suggested

Priyangu 79

substitutions for classical formulations

Priyangvaadi Gana 141**■**–**■**142

151**■**–**■**152

properties and actions 241■–■242

Red Data Book of Indian Plants 290

proprietary medicine 7■–■8, 24■–■25; phases

red list of Ayurvedic medicinal plants

of clinical trial for 14■–■16

273■**−**■**280**

prostaglandins 220

Reference Standards (RS) 204■-■205; as

pruning classical formulations 121■–■124, 156

markers 238**■**-**■**244

psoriasis 51

replacement studies 18

Pterocarpus marsupium see Asana

research 121; in Ayurvedic sciences 2;

Pterocarpus santalinus see Rakta-

biases 22**■**–**■**23; low-quality 29**■**–**■**30

Chandana

resins 228

Punitha, R., "Effect of Pongamia pinnata

revalidating formulations 151■-■154; see flowers on blood glucose and oxidative

also Ganas; Vargas

stress in alloxan induced diabetic rats"

Reverse Pharmacology (RP) design 20

246**■**–**■**247

Reviews on Indian Medicinal Plants

Purohit, H. J., "Effect of Hemidesmus

59**■**–**■**60

indicus (Anantmool) extract on IgG

Rhododendron anthopogon 74

production and adenosine deaminase

Riddhi 85, 261, 262, 265

activity of human lymphocytes in vitro"

Rodhraadi Gana ■135

255**■**–**■**256

rotary tray drying 185

Pushkara 86

Rshabhaka 262

Pushpa Varga 150

Rshbhaka 87, 262 pyrano coumarins 226 rutin 219 quantitative analysis, of Apaamaarga Saalsaaraadi Gana 133■-■134 Kshaara 241**■**–**■**242 Saarivaadi Gana 140 quercetin 218**■**–**■**219, 220 "Sacred Word" 156 quinsy 48 Sahachara 78 Index 313 Sahasrayoga 35 Shirsha virechaniya Gana 148 salts 41 shlokas 73, 74, 156 samhitas 69 Shrestha, J., "Antiovulatory and sample surveys 17 abortifacient effects of Areca catechu Sanskritized names 1, 73■–■74, 156, (betel nut) in female rats" 258

239 = 240

Shri, R. L. 163

saponins 226

Shunthi Guggulu ■124 Sarin, Y. K. 165 Shveta Saariva 82 Sarpagandhaa 91**■**–**■**92 Shveta Vachaa 75 Satti, N. K., "Immunosuppressive Shyaamaadi Gana 138**■**–**■**139 properties of Pluchea lanceolata leaves" Sida rhombifolia see Mahaa Balaa 255 Siddha 11, 27 Sauer, Christopher, Sauer's Herbal Cures 40 Siddhayoga Sangraha 35 Saussurea lappa see Kushtha signatures 42 scientific journals, need for unbiased Silymarin 219, 220 research 29**■**–**■**30 simple coumarins 226 Scindapsus officinalis see Gajapippli simple random samples 22 screening biological activities of herbs: Simshapaa 83 activity on gastrointestinal tract 234; Singh, K., "The effect of Allium sativum anticancer or effects on genomic structure

on ischemic preconditioning and

235 = - ■236; antifertility activity 235; anti-

ischemia reperfusion induced cardiac

inflammatory and anti-pyretic activity

injury" 247**■**–**■**248

234; antimalarial activity 235; autacoid

Singh, R. P. 254**■**–**■**255

activity 234; on autonomous nervous

single arm trials 17

system (ANS) 232; on central nervous

single blind studies 23, 24

system (CNS) 232 ■ - ■ 234; hepatoprotective Sisodia, S. S., "Hepatoprotective activity

activity 234; hypoglycaemic activity 235;

of Eugenia jambolana Lam. in carbon

on muscles 232

tetrachloride treated rats" 253

selinas 54

Sivarajan, V. V. 59

Selinum vaginatum see Bhootakeshi

Sobti, S. N. 165

Shaaka Varga 151

Solanum nigrum see Kaakamaachi

Shaalparni 83

Sontakke, S. D., 254**■**–**■**255

Shah, G. B., "Antiulcer activity of

Sowa Rigpa 27

Tephrosia purpurea in rats" 248**■**–**■**249

Soxhlet extraction 186■-■187

Shallaki 79

Sphaeranthus indicus 252 = 253; see also Shanbhag, T., "Antiovulatory and

Munditikaa

abortifacient effects of Areca catechu

spray drying 185

(betel nut) in female rats" 258

Srivastava, T. N. 165

Shankhpushpi 81

standardization 58, 65, 188, 189**■**−**■**190

Sharma, A., "Evaluation of the

standardized extracts 237■-■238

antidepressant-like activity of

Stereospermum suaveolens 152

glycyrrhizin in mice" 251**■**–**■**252

steroidal saponins 226

Sharma, B. M. 165

Sthauneya 94

Sharma, P. V. 64, 74

Sthuula-aila 76

Sharma, S., "Antiovulatory and

stigmastrol 223**■**–**■**224

abortifacient effects of Areca catechu

stratified randomization 22

(betel nut) in female rats" 258

stray parsnip 53**■**–**■**54

Shataavari 78

strengths and limitations of extraction

Shathi 85

methods 186**■**–**■**187

shelf-life of Ayurvedic herbs 67**■**–**■**68

Strychnos nux-vomica see Vishmushthi

Shenoy, S., "Antiovulatory and

Subramoniam, A. 122

abortifacient effects of Areca catechu

substitute drugs see suggested substitutions

(betel nut) in female rats" 258

for classical formulations

314 Index

subtlety 68

Swarge, J. M. 69

suggested substitutions for classical

sweet basil 41

formulations 151**■**–**■**152; Ashta varga 263

Swertia chirata see Kiraatikta

Sukshma Ayurvediya Aushadhi 69

Symplocos racemosa see Lodhra

sukshma churna 68

```
symptoms 57■–■58
sukshma medicines 69
synergystic components 204
sukshma suvarna bhasma 69
systematic reviews 21
supercritical fluid extraction (SFE) 185,
186, 187
Taalisha 74
Sur, T. K. 257
Taalmuuli 82
Surasaadi Gana 136
Taamalaki 89■–■90
Suri, K. A., "Immunosuppressive
tannins 227
properties of Pluchea lanceolata leaves" Taori, G. M., "Effect of Hemidesmus
255
indicus (Anantmool) extract on IgG
survey of the Ayurvedic education system
production and adenosine deaminase
in India 293■–■294; observations on
activity of human lymphocytes in vitro"
teaching methodology 296■–■297;
255■-■256
suggested curricula changes in the
```

tastes 61; see also Rasas

BAMS program 296

Tate, V. D. 252**■**–**■**253

Sushruta Samhita 80, 131

Taverniera cuneifolia 154

Sushruta's Classification of Ayurvedic

Taxol 222

Drugs 68, 131, 132; Aamalakyaadi

Taxus baccata see Sthauneya

Gana 144; Aaragvadhaadi Gana 133;

Taxus wallichiana see Taalisha

Ambaashthaadi Gana 142; Anjanaadi

temperaments 41

Gana 140**■**–**■**141; Arkaadi Gana

Tephrosia purpurea: anticarginogenic

135**■**–**■**136; Brhatyaadi Gana 139; Elaadi

effect of 249; antiulcer effect of

Gana 137**■**–**■**138; Guduchyaadi Gana

248■-■249

143; Haridraadi Gana 138; Kaakolyaadi

terpenoid bitters 223

Gana 139**■**–**■**140; Kadambaadi

terpenoids 222, 229

Gana 147; Karanjaadi Gana 147;

Thawani, V. R. 254**■**–**■**255

Krishnaadi Gana 137; Kshudra

theory of Herbal Microcosm 69

panchamuula Gana 145; Lakshaadi

therapeutic benefit of drugs 155

Gana 144**■**–**■**145; Mahat panchmuula

therapeutic components 204

Gana 145; Mushkakaadi Gana

therapeutic confirmatory trials 15■-■16

136**■**–**■**137; Mustaadi Gana 143**■**–**■**144;

therapeutic exploratory trials 15

Nyagrodhaadi Gana 142■-■143; Panch

thin-layer chromatography (TLC) 239

Kola Gana 147; Panchakantaka

Thippeswamy, A. H., "Hepatoprotective

Gana 146; Paruushakaadi Gana 141;

activity of Cissus quadrangularis stem

Patolaadi Gana 139; Priyangvaadi

extract against isoniazid-induced liver

Gana 141■–■142; Rodhraadi Gana ■135;

damage in rats" 254

Saalsaaraadi Gana 133■–■134; Saarivaadi threatened species 280■–■290

Gana 140; Shyaamaadi Gana 138**■**–**■**139;

three arms trial 17

Surasaadi Gana 136; Trapvaadi Gana Tinospora cordifolia 249, 254■-■255

144■–■145; Triphlaa Gana 143■–■144; Trna toxic constituents 204; markers for

panchamuula Gana 146; Tryuushana

```
202■–■203
```

Gana 144; Utpalaadi Gana 143;

toxicity studies 231

Uushakaadi Gana 140; Vachaadi

Traditional Chinese Medicine (TCM) 39

Gana 138; Vallija panchamuula Gana Trapvaadi Gana 144■-■145

145**■**–**■**146; Varunaadi Gana 133**■**–**■**134;

tray drying 185

Vatsakaadi Gana 146; Vidaarigandhaadi Tridoshas 1, 11, 61, 63

Gana 132■-■133; Viratarvaadi Gana Tripathi, C. D., "The effect of aqueous

135; see also Vagabhata

extract of Embelia ribes Burm on serum

Svarna-taali 74

homocysteine, lipids, and oxidative

Index 315

enzymes in methionine induced

Vaatahara Gana 148; Vachaadi Gana

hyperhomocysteinemia" 250■-■251

138; Vamanaoushadha Gana 147;

Triphala 127

Vatsakaadi Gana 149; Vidaaryaadi Gana Triphlaa Gana 143**■**–**■**144

132**■**–**■**133; Viratarvaadi Gana 134–135;

triple blind studies 23

Virechanaoushdha Gana 148

triterpenoidal saponins 226

```
vaidyas 2, 73, 129
triterpenoids 222
valerenic acids 204
trituration 68, 69, 70
Vallija panchamuula Gana 145■–■146
Trna panchamuula Gana 146
Vamanaoushadha Gana 147
Tryuushana Gana 144
Varadpande, U. K., "Immunomodulatory
Tulasi 63
effect of Tinospora cordifolia extract
in human immuno-deficiency virus
Udupa, K. N. 63
positive patients" 254■–■255
ultrasonic extraction (UAE) 184■-■185,
Vargas 27, 127, 129, 131■–■132; Dhaanya
186, 187
151; Guduchyaadi 150; Haritakyaadi Unani 11, 27; plant drugs 37■–■38
149; Karpuraadi 150; Phalaadi
unbiased research, need for 29■–■30
150■–■151; Pushpa 150; Shaaka 151;
un-blinding 23
Vataadi 150; see also Ganas;
United Kingdom: herbal medicine 42■–■45;
```

Vagabhata

Medicinal Plant Names Services

Varunaadi Gana 134

(MPNS) 170

Vassou, S. L. 172

United States: Food and Drug

Vasuedevan, K., "Effect of Pongamia

Administration 47; herbal medicine

pinnata flowers on blood glucose and

40**■**–**■**41; journals 163

oxidative stress in alloxan induced

United States Department of Agriculture

diabetic rats" 246**■**−**■**247

(USDA) 164

Vataadi Varga 150

Uraria picta 123

Vatsakaadi Gana 146, 149

Utpalaadi Gana 143

Vedic medicine 1

Uushakaadi Gana 140

Veerya 61

verapamil 123

Vaasaa 75

Vidaarigandhaadi Gana 132**■**–**■**133

Vaata 1, 27, 61, 63, 64

Vidang 84

Vaatahara Gana 148

Vimalavathini, R., "Possible anorectic

Vaayu 63

effect of methanol extract of Benincasa

Vacha 75

hispida (Thunb.). Cogn. Fruit" 250

Vachaadi Gana 138

Vipaka 1, 61, 62, 65

vacuum tray drying 185

Viratarvaadi Gana 134**■**–**■**135

Vagabhata 131, 132; Aaragwadhaadi

Virchow, Rudolf 46

Gana 133; Ambaashthaadi Gana 142;

Virechanaoushdha Gana 148

Anjanaadi Gana 141; Arkaadi Gana Virya 1, 62, 65

135**■**–**■**136; Asanaadi Gana 134; Elaadi Vishmushthi 93

Gana 137■-■138; Guduchyaadi Gana Viswanatha, Swamy A. H. 254

143; Haridraadi Gana 138; Jivantyaadi

Vitis pedata 76

Gana 140; Kaphahara Gana 149;

von Bingen, Hildegard, Physica 45**■**–**■**46

Mushkakaadi Gana 136**■**–**■**137; Mustaadi

Vongtau, O. H., "Hypoglycaemic effect of

Gana 144; Niroohana Dravya Gana 148;

the aqueous extract of Boerhavia diffusa

Nyagrodhaadi Gana 143; Paruushakaadi

leaves" 245**■**-**■**246

Gana 141; Pittahara Gana 148;

vouchers 163; intraspecific variation

Priyangvaadi Gana 141**■**–**■**142;

in plants 164**■**–**■**165; Janaki Ammal

Rodhraadi Gana 135; Saarivaadi

Herbarium 165**■**–**■**166; misidentification

Gana 140; Shirsha virechaniya Gana

of samples 164**■**–**■**165

148; Surasaadi Gana 136; Syaamnadi Vriddhadaaru 77

Gana 139; Uushakaadi Gana 140;

Vriddhi 261, 262

316 Index

walnuts 50

Yashti 85, 263

Wealth of India, The 129

Yellow Emperor's Internal Classic, The 39

Withania Ashvagandha 152

Yin and Yang 39

withanolides 223

World Health Organization (WHO)

Zingiber officinale ■124

47; criteria for selection of a marker

Zwinger, Friedrich 41

Zwinger, Theodor 40 **Document Outline** Cover Half Title Series Title Copyright Contents List of contributors Introduction: The thrust: why a new scientific path? Part I The legacy and logical steps for a new therapeutic regimen 1 The need for liberal regulations for 2 Each and every step of AYUSH will have a far-reaching impact 3 To move with the times: expand the knowledge base of Ayurveda 4 The classical age in countries that are now leaders in herbal medicine 5 Avoiding scientific inquiry is not possible now 6 Ayurvedic pharmacognosy and pharmacology: in modern perspective 7 How classical procedures lost ground 8 Identification of proper herbs: a new scientific route 9 Pruning of classical formulations: suggested process 10 The pragmatic nature of Ayurveda: no restrictions on revising old formulations 11 Basic steps: for restructuring Ayurvedic formulations 12 Hidden secrets of clinical success: super power of "Sacred Word"

201■–■202; guidelines for markers 201

Part II Defining a new scientific path by switching over to modern pharmacognosy, pharmacology and r

14 DNA barcoding: a breakthrough in authentication of raw herbs

15 Modern extraction methods and standardization of extracts

16 Markers for quality control of herbal drugs

17 Pharmacological actions of chemical constituents

18 Pharmacological screening of Ayurvedic drugs by experimental studies

19 An enigmatic approach in Ayurvedic Pharmacopoeia of India: from holistic approach to disease-spe-

20 Unbiased research: lifeline of evidence-based Ayurveda

21 Threat to classical reputation by dubious herbs and substitutes

22 Red list of medicinal plants: a threat to Ayurvedic formulations

23 Ayurvedic education system: a path-breaking study reflecting the elements of evidence-based Ayurv

List of abbreviations

Index