Basic Electronics (ECE113) Tutorial 4

- 1) (a) Employ Thevenin's theorem to obtain a two-component equivalent for the network shown in Fig. shown below.
- (b) Determine the power supplied to a 1 M Ω resistor connected to the network if i_1 = 19 μ A, R1 = R2 = 1.6 M Ω , R2 = 3 M Ω , and R4 = R5 = 1.2 M Ω .

- 2) (a) Obtain a value for the Thévenin equivalent resistance seen looking into the open terminals of the circuit shown below by first finding V_{OC} and I_{SC} .
 - (b) Connect a 1 A test source to the open terminals of the original circuit after shorting the voltage source, and use this to obtain R_{TH} .
 - (c) Connect a 1 V test source to the open terminals of the original circuit after again zeroing the 2 V source, and use this now to obtain R_{TH} .

- 3.) With regard to the circuit of Fig. 5.82, determine the power dissipated by
 - (a) a 1 k Ω resistor connected between a and b;
 - (b) a 4.7 k Ω resistor connected between a and b;
 - (c) a 10.54 k Ω resistor connected between a and b.

4) For the circuit of Fig. 5.90, what value of R_L will ensure it absorbs the maximum possible amount of power?

- 5.) Referring to the circuit of Fig. 5.92,
- (a) determine the power absorbed by the 3.3 Ω resistor;
- (b) replace the 3.3 Ω resistor with another resistor such that it absorbs maximum power from the rest of the circuit.

■ FIGURE 5.92

6. For the network of Fig. 5.98, select a value of R such that the network has an equivalent resistance of 70.6 Ω .

■ FIGURE 5.98