Math261S11	Quiz 4	Name:
1,10,011=01011	Q GIZ I	I (WIII).

Exercise	1.	Short	answers:

- 1. If \vec{u} and \vec{v} are parallel, what is the algebraic relation between them?
- 2. Suppose a line ℓ is normal to a plane π . What is the relation between \vec{v}_{ℓ} and \vec{n}_{π} ?
- 3. If $f:\mathbb{R}^3 \to \mathbb{R}$ is a function, how many components does its gradient ∇f have?
- 4. If $\nabla f(\vec{a}) \cdot \vec{u} < 0$, does f increase or decrease in the direction of \vec{u} at \vec{a} ?
- 5. If f has detHf > 0 and $f_{xx} > 0$ at $\vec{x} = \vec{a}$, can you conclude if f has a maximum, minimum, or saddle point at \vec{a} ?

Exercise 2. Consider the function f(x,y) = 8x + 8y on the region described by $\{4x^2 = y^2 - 1\}$. There are two critical points. Follow these steps to classify them:

- 1. Identify the function f you're optimizing.
- 2. Identify the constraint as g=0.
- 3. Write the Lagrange equation: $\nabla f = \lambda \nabla g$.
- 4. Solve for \vec{x} in terms of λ , then use g=0 to find λ .
- 5. Find \vec{x} using λ and classify the points by evaluating f.