Recitation 1

By Danyang Tong

Units

Table.1: Systems of Units

Name	Length	Time	Mass	Force
International System of Units SI	meter	second	kilogram	newton*
	m	S	kg	N
				$\left(rac{ ext{kg}\cdot ext{m}}{ ext{s}^2} ight)$
U.S. Customary FPS	foot	second	slug*	pound
	ft	s	$\left(rac{ ext{lb}\cdot ext{s}^2}{ ext{ft}} ight)$	lb

1 lb =
$$(1 \text{ slug})(1 \text{ ft/s}^2)$$
.

• Units

Table.2: Units Conversion

Time	1 minute 1 hour 1 day	= = =	60 seconds 60 minutes 24 hours
Length	1 foot 1 mile 1 inch 1 foot	= = =	12 inches 5280 feet 25.4 millimeters 0.3048 meters
Angle	2π radians	=	360 degrees
Mass	1 slug	=	14.59 kilograms
Force	1 pound	=	4.448 newtons

Units

Problem 1

The cross-sectional area of the C12×30 American Standard Channel steel beam is $A = 8.81 \text{ in}^2$. What is its cross-sectional area in mm²?

A = 8.81 in²
According to last slide of units conversion

US

SI

I in =
$$\times$$
.4 mm

 2 in² = $(\times$.4 $)^{2}$ mm²

8.81 in² = 8.81 × $(\times$ 5.4 $)^{2}$ mm²
 ≈ 5683.86 mm²

• Units

Problem 2

Suppose that in Einstein's equation

$$E = mc^2$$
,

the mass m is in kilograms and the velocity of light c is in meters per second.

- (a) What are the SI units of E?
- (b) If the value of E in SI units is 20, what is its value in U.S. Customary base units?

Solution:

(a)
$$E = M C^{2}$$

(b) If the value of E in SI units is 20, what is 1

(a) $E = M C^{2}$

(b) $E = M C^{2}$

(b) $E = M C^{2}$

(c) $E = M C^{2}$

(b) $E = M C^{2}$

(c) $E = M C^{2}$

(d) $E = M C^{2}$

(e) $E = M C^{2}$

(f) $E = M C^{2}$

(g) $E = M C^{2}$

$$E = (kg) \cdot (m/s)^{2}$$

$$= kg \cdot m^{2}/s^{2} \quad \text{or} \quad \frac{kg \cdot m^{2}}{s^{2}} \quad \text{ov} \quad kg \cdot m^{2} \cdot s^{2}$$

$$E = |kg| \cdot |m^{2}/s^{2}| \quad \text{or} \quad \frac{kg \cdot m^{2}}{s^{2}} \quad \text{ov} \quad kg \cdot m^{2} \cdot s^{2}$$

$$According \quad \text{to} \quad \text{table } \cdot 2 : \text{ units. conversion}$$

$$US \qquad \qquad SI$$

$$I \quad \text{slug} \qquad = 14.19 \text{ kg}$$

$$I \quad \text{fig.} \qquad = 15$$

$$I \quad \text{slug} \qquad = 15$$

$$\int_{0.3048} ft = 3.28 ft = 1 m$$

$$(3.28)^2 ft^2 = 10.76 ft^2 = 1 m^2$$

$$So 1 kg \cdot m^2/s^2 = 0.068t slug \cdot 10.76 ft^2 = 0.737 slug ft^2/s^2$$

$$E = 20 kg \cdot m^2/s^2 = 20 \times 0.737 slug ft^2/s^2 = 14.74 slug ft^2/s^2$$

Newtonian Gravitation

Problem 3

The acceleration due to gravity at sea level is $g = 9.81 \text{ m/s}^2$. The radius of the earth is 6370 km. The universal gravitational constant $G = 6.67 \times 10^{-11} \text{ N-m}^2/\text{kg}^2$. Use this information to determine the mass of the earth.

Solution: According to $F = \frac{Gm_1m_2}{\gamma^2}$ about the cen at the sea level: $F = mg = m \frac{Gm_2}{\gamma^2}$ consistency. $m_2 = \frac{g\gamma_2^2}{G} = \frac{9.81 \text{ m/s}^2 \cdot (6.370 \times 10.37m^2)}{6.67 \times 10^{-11} \text{ Nm²/kg}^2} = 5.97 \times 10^{-14} \text{ kg}$

NOTE: be careful about the unit consistency.