Calculus Assignment 1

CALC 1500 Date: June 2023

Name(s) Michael Student Number(s) N015000 49

- 1. Consider the series $\sum_{n=1}^{\infty} \frac{(-3)^n}{5^n}.$
 - (a) (1 point) Write the first three terms of the series. $-\frac{3}{6}$, $\frac{\alpha}{25}$, $-\frac{27}{125}$

$$-\frac{1}{6}$$
, $\frac{\alpha}{25}$) $-\frac{27}{125}$

(b) (1 point) Write the first three terms of the associated sequence of partial sums $\{S_n\}_{n=1}^{\infty}$.

$$S_1 = -\frac{3}{5} = -0.6$$

$$S_3 = -\frac{3}{5} + \frac{4}{25} + \left(-\frac{27}{125}\right) = -\frac{57}{125} = -0.456$$

After simplifying:

$$S_1 = \frac{3}{6} = -0.6$$

$$S_2 = \frac{6}{2} = -0.24$$

$$S_3 = \frac{57}{125} = -0.456$$

[Question continues on next page . . .]

[... question continues from previous page]

(c) (1 point) Does the series $\sum_{n=1}^{\infty} \frac{(-3)^n}{2^n}$ satisfy the conditions necessary to apply the Al-

$$\stackrel{\infty}{\underset{\longrightarrow}{\mathcal{Z}}} \frac{(-3)^n}{3^n} = \frac{(-3)^n}{2^n} + \frac{(-3)^n}{2^n} + \frac{(-3)^3}{2^3}$$

We looked at the sequence
$$\{A_n\}_{n=1}^{\infty} = \{\frac{3}{2}\}_{n=1}^{\infty} = \{(\frac{3}{2})_{n=1}^{\infty}\}_{n=1}^{\infty}$$
We cannot apply the Alternating series

Since $(\frac{3}{2})^n \Rightarrow 0$ as $n \to \infty$

Also $(\frac{3}{2})^n$ is not decreasing sequence as $(\frac{3}{2})^{n+1} > (\frac{3}{2})^n$

(d) (1 point) Does the series $\sum_{n=1}^{\infty} \frac{(-3)^n}{5^n}$ converge? If yes, explain why and write down the number that the series converges to. If not, why not?

$$\sum_{n=1}^{\infty} \frac{(-3)^n}{5^n} = \sum_{n=1}^{\infty} \left(\frac{(-3)^n}{5} \right)^n$$

$$= \frac{1}{5} \left(1 - \left(\frac{-3}{5} \right) \right)$$

$$= \frac{3}{8}$$

$$\lim_{N \to \infty} \left(\frac{-3n}{5} \right) = 0$$

$\lim_{n\to\infty} \sqrt[n]{(-\frac{3}{5})^n} = \frac{3}{5} < 1$

So,
$$\underset{n=1}{\overset{\infty}{\not=}} \left(-\frac{3}{5}\right)^n$$
 absolutely converges:

:+ converges since $\left(\frac{-3}{5}\right)^n$ is less than 1

Page 2

2. (3 points) Determine whether or not the following series converges? Show the details of your work and justify your steps. (*Hint:* Use one of the comparison tests, comparing with an appropriate *p*-series.)

with an appropriate p-series.)
$$\sum_{n=2}^{\infty} \frac{n^2 + 7n + 5}{n^3 - 8}$$
Consider the emperison series $\frac{2}{n^2}$

Since
$$\lim_{n\to\infty} \frac{\frac{n^2+7n+5}{n^2-8}}{\frac{1}{n}} = \lim_{n\to\infty} \frac{n^2+7n+5}{n^2-8} \cdot \frac{n}{1}$$
 : Since $\lim_{n\to\infty} \frac{1}{n}$ is $\frac{2}{n}$ Since $\lim_{n\to\infty} \frac{1}{n}$ is $\frac{2}{n}$ Since $\lim_{n\to\infty} \frac{1}{n}$ is $\frac{2}{n}$ diverging scries

3. (3 points) Does the series $\sum_{k=1}^{\infty} \frac{k!}{(-5)^k}$ converge or diverge? Justify your answer.

$$\lim_{K\to\infty} \left| \frac{\frac{(K \circ 1)!}{(-t)^{K \circ 1}}}{\frac{K!}{(-t)!}} \right| = \lim_{K\to\infty} \left| \frac{(K \circ 1)!}{(-t)^{K \circ 1}} \cdot \frac{(K \circ 1)!}{(-t)^{K \circ 1}} \right|$$

$$= \lim_{K \to \infty} \left| \frac{K + 1}{5} \right|$$

$$= \lim_{K \to \infty} \left| \frac{K + 1}{5} \right|$$

=
$$\infty$$

By the vallo test, $\frac{2}{k-1} \frac{K!}{(-s)^k}$ diverges

4. (4 points) Use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} 3ne^{-n^2}$ converges or not? Your work should also show that the conditions necessary to apply the Integral Test have been met.

Consider f: [1:0] -> R given by fix = 3xe-2

- (i) Since e-2 is positive forall new & 3x>0 for xx1, fin = 3x e-2 >0 for all re[1,00).
- (ii) f'(x)= 3x-x2-6x2en2 = -(6x1-3)e-x

<0 Since $x \ge 1 \rightarrow x^2 \ge 1$ >0>3ex (1-15x1) Multiply. both by pothly quality 3ex

So Apr x21 is decreasing

(iii) for == (, 2, 3 , f(n) = 3 = = " which is precisely the nth term of the senior

Here we apply the Integral test.

\int 3xe - 5 dx = \int e - du = \lim \int e - du \\
\text{1.50 } \text = lim (-e-b-(-e-1)) = lin (-e-b+ 1) = 0+ \frac{1}{e}, since as b > 0, e^b > 0

So, by integral test, since Jano no dor converges, the series & one onverges.

5. Express the taylor series of the function $f(x) = \frac{5}{(2+x^2)}$ about x=0 in summation notation.

So)
$$\frac{5}{2} \cdot \frac{5}{1 \cdot x^{2}}$$

$$= \frac{5}{2} \cdot \frac{2}{x^{2}} \cdot (-\frac{x^{2}}{2})^{n}$$

$$= \frac{5}{4} \cdot \frac{2}{x^{2}} \cdot (-\frac{x^{2}}{2})^{n}$$

$$= \frac{5}{4} \cdot \frac{2}{x^{2}} \cdot (-\frac{x^{2}}{2})^{n}$$
Page 5

we know that
$$S_0$$
 $f(x) = \frac{5}{(2 \cdot x^2)}$

$$= \frac{5}{2} \cdot \frac{1}{1 + 2x^2}$$

$$= \frac{5}{2} \cdot \frac{2}{n \cdot 0} \cdot (-\frac{x^2}{2})^n$$
• the summation notation is
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n 5 x^{3n}}{2^{n+1}}$$