第四章 调度与死锁 作业答案

3(6)改为使用先来先服务、最短作业优先、高相应比优先算法,计算 T与 W

作业的提交时间和运行时间						
作业 J1 J2 J3 J4						
提交时间/h	8.0	8.6	8.8	9.0		
运行时间	2.0	0.6	0.2	0.5		

解答:

FCFS Execution Order: J1, J2,J3,J4

作业	提交时间	运行时间	开始时间	完成时间	周转时间	带权周转 时间
J1	8.0	2.0	8.0	10.0	2.0	1
						2 22
J2	8.6	0.6	10.0	10.6	2.0	3.33
J3	8.8	0.2	10.6	10.8	2.0	10
J4	9.0	0.5	10.8	11.3	2.3	4.6

平均周转时间 T=(2+2+2+2.3)/4=2.075

SJF: J1,J3,J4,J2

作业	提交时间	运行时间	开始时间	完成时间	周转时间	带权周转 时间
J1	8.0	2.0	8.0	10.0	2.0	1
J2	8.6	0.6	10.7	11.3	2.7	4.5
J3	8.8	0.2	10.0	10.2	1.4	7
J4	9.0	0.5	10.2	10.7	1.7	3.4

平均周转时间 T=(2+2.7+1.4+1.7)/4=1.96

高响应比优先:

8.0: J1 到达,运行时间 2.0, J2, J3, J4 依次均到达

10.0: R2=1+1.4/0.6=3.33 R3=1+1.2/0.2=7 R4=1+1/0.5=3,J3 运行

10.2: R2=1+1.6/0.6=3.67 R4=1+1.2/0.5=3.4, J2 运行

10.8: J4 运行

执行顺序为 J1 J3 J2 J4

作业	提交时间	运行时间	开始时间	完成时间	周转时间	带权周转 时间
J1	8.0	2.0	8.0	10.0	2	1
J2	8.6	0.6	10.2	10.8	2.2	3.67
J3	8.8	0.2	10.0	10.2	1.4	7
J4	9.0	0.5	10.8	11.3	2.3	4.6

平均周转时间 T=(2+2.2+1.4+2.3)/4=1.975

平均带权周转时间 W= (1+3.33+10+4.6) /4=4.7325

平均带权周转时间 W= (1+4.5+7+3.4) /4=3.975

平均带权周转时间 W= (1+3.67+7+4.6) /4=4.0675

3 (8)

解答

三个作业并发情况如下:

由图中可以看出:

Job1 从投入到运行完成需要 110ms

Job2 从投入到运行完成需要 90ms

Job3 从投入到运行完成需要 110ms

CPU 在时间段 60ms 至 70ms,80ms 至 90ms,100ms 至 110ms 期间空闲,所以 CPU 的利用率为: (110-30)/110=72.7%。

设备 I1 在时间段 20ms 至 40ms, 90ms 至 100ms 期间空闲,所以设备 I1 的利用率为: (110-30)/110=72.7%;

设备 I2 在时间段 30ms 至 50ms 期间空闲, 所以设备 I2 的利用率为: (110-20)/110=81.8%。

3(10) 由题设可知,当前时刻系统中有三个进程,P4 尚未到达

资源情况 进程	Max	Allocation	Need	Available
P1	70	25	45	40
P2	60	40	20	
Р3	60	45	15	
P4				

满绩小铺 QQ: 1433397577, 搜集整理不易, 自用就好, 请勿倒卖, 谢谢!

P4 到达,最大需求 60,目前请求 25,则此时的系统资源情况如下:

资源情况 进程	Max	Allocation	Need	Available
P1	70	25	45	40
P2	60	40	20	
Р3	60	45	15	
P4	60	0	60	

若 P4 请求 25 个资源,系统按银行家算法进行检查:

RequestP4(25) \leq NeedP4(60)

RequestP4(25) \leq Available(40)

系统先假定可为 P4 分配资源,并修改有关数据,如下所示。

资源情况 进程	Max	Allocation	Need	Available
P1	70	25	45	15
P2	60	40	20	
Р3	60	45	15	
P4	60	25	35	

再利用安全性算法检查此时系统是否安全,可得如下所示的安全性分析。

NeedP1: 45 NeedP2: 20 NeedP3: 15 NeedP4: 35

AllocP1: 25 AllocP2: 40 AllocP3: 45 AllocP4: 25

P3 P1 P2 P4

资源情况 进程	Work	Need	Alloc	Work+Alloc	Finish
Р3	15	15	45	60	true
P1	60	45	25	85	true
P2	85	20	40	125	true
P4	125	35	25	150	true

满绩小铺 QQ: 1433397577, 搜集整理不易, 自用就好, 请勿倒卖, 谢谢!

可以找到安全序列{P3、P1、P2、P4},故可以将资源分配给进程 P4。

若 P4 请求 35 个资源,系统按银行家算法进行检查:

RequestP4(35) \leq NeedP4(60)

RequestP4(35) \leq Available(40)

系统先假定可为 P4 分配资源,并修改有关数据,如下所示。

为 P4 分配资源后的情况如下:

资源情况 进程	Max	Allocation	Need	Available
P1	70	25	45	5
P2	60	40	20	
P3	60	45	15	
P4	60	35	25	

可以看出,系统空闲资源已不能满足任何进程的需要,试分配作废,让进程 P4 等待。

3 (12)

设 max (i) 表示第 i 个进程的最大资源需求量,

need(i)表示第i个进程还需要的资源量,

alloc(i)表示第 i 个进程已分配的资源量。

由题设条件可知:

 $\max (1) + \cdots + \max (n)$

=
$$(\text{need }(1) + \dots + \text{need }(n))$$

$$+$$
 (alloc (1) +···+alloc (n))

假设该系统发生死锁,那么 m 个资源应该全部分配出去,即

alloc (1)
$$+\cdots$$
+alloc (n) = m

由上述两式可得:

need (1)
$$+\cdots$$
+need (n) \leq n

上式表示死锁发生后,n个进程还需要的资源量之和小于n,这意味着此刻至少存在一个进程i,

need
$$(i) = 0$$
,

即它已获得了所需要的全部资源。既然该进程已获得了它所需要的全部资源,那么它就能执行完成并释放所占有的全部资源,这与前面的假设矛盾,从而证明在这个系统中不可能发生死锁。

补充 1.请证明,当一批作业同时到达时,最短作业优先调度算法才能获得最短平均周转时间。 答案略,见讲义 满绩小铺 QQ: 1433397577, 搜集整理不易, 自用就好, 请勿倒卖, 谢谢!

这里需要说明的,对于抢占式的最短作业优先算法,即最短剩余时间优先算法,当作业同时 到达时候,其会蜕化为最短作业优先算法

补充 2.请按照 P82 表 4-2 的运行要求,完成其在最短剩余时间优先调度算法下的工作过程。请按照 P82 表 4-2 的运行要求,完成其在最短剩余时间优先调度算法下的工作过程

作业	提交时间	运行时间	开始时间	完成时间	周转时间	带权周转
						时间
J1	8.0	2.0	8.0	11.7	3.7	1.85
J2	8.4	1	8.4	10.1	1.7	1.7
J3	8.8	0.5	8.8	9.5	0.7	1.4
J4	9.0	0.2	9.0	9.2	0.2	1

T=(3.7+1.7+0.7+0.2)/4

W=(1.85+1.7+1.4+1)/4

时间序列图:

J1(0.4)J2(0.4)J3(0.2)J4(0.2)J3(0.3)J2(0.6)J1(1.6)

补充 3.有5 个待运行的作业,各自预计运行时间分别是: 9、6、3、5 和 x,采用哪种运行次序使得平均响应时间最短

因为平均响应时间=平均周转时间-平均运行时间,因此,对于多个作业同时到达的, 平均周转时间最短的算法是最短作业优先算法。

按照最短作业优先的算法可以使平均响应时间最短。X 取值不定,按照以下情况讨论:

- 1) x≤3 次序为: x, 3, 5, 6, 9
- 2) 3<x≤5 次序为: 3, x, 5, 6, 9
- 3) 5<x≤6 次序为: 3, 5, x, 6, 9
- 4) 6<x≤9 次序为: 3, 5, 6, x, 9
- 5) 9<x 次序为: 3, 5, 6, 9, x