IPV4 VERSUS IPV6

Routing: How communication between networks is facilitated

Function of the Network layer: To facilitate transport of data from one network to another The Network Layer

• Layer 3 provides services to allow end devices to exchange data across the network The Network layer uses four basic processes:

Addressing end devices	 End devices must be configured with a unique IP for identification Host: An end device with a configured IP address
Encapsulation	Layer 3 receives a PDU from transportNetwork layer adds IP header information (address of source/destination hosts)After header information is added to the PDU, it's called a packet
Routing	 Provides services to direct packets to a destination host To travel, packets must be processed by a router Routers direct packets towards destinations (routing) Packets can cross many devices before reaching a destination Hop: Each route the packet takes to reach its destination
Decapsulation aka Deencapsulation	 Packets arrive at layer 3 of a destination host: The host checks the IP header If the destination IP w/in the header matches its own IP: The IP header is removed from packet Known as deencapsulation After a packet is deencapsulated by layer 3: Layer 4 PDU is passed up to service at transport

Network layer protocols specify the packet structure/processing used to carry data from one host to another

Two Commonly Used Network Layer Protocols:

- 1. Internet Protocol version 4 (IPv4)
- 2. Internet Protocol version 6 (IPv6)

Legacy network layer protocols (uncommon use):

- 1. Novell Internetwork Packet Exchange (IPX): Part of Novell Netware/Popular in the 80's/90's
- 2. **AppleTalk:** Apple's proprietary protocol
- 3. Connectionless Network Service (CLNS/DECNet): Telecommunications networks/doesn't require established circuits

Characteristics of IP

- Implemented by the TCP/IP suite
- Low overhead
- Not designed to track/manage the flow of packets

Basic characteristics of IP

Connectionless	 No connection with the destination is established before sending packets Layer 3 isn't concerned with the type of communication inside No dedicated end-to-end connection is created before data is sent Example: Think of a letter sent without the receivers knowledge
Best effort (unreliable)	 Packet delivery isn't guaranteed IP doesn't have the capability to manage/recover from undelivered/corrupt packets No acknowledgements/data tracking/error control/etc
Media Independent	 Independent of the medium carrying the data IP packets can be communicated electrically/wirelessly/over fiber etc DLL's responsibility to take IP and prepare it for transmission MTU: Maximum transmission unit The maximum size of the PDU each medium can transport

- Part of the control communication between IP/Network layer

The establishment of a maximum size for a packet
 Network layer determines how large packets should be

Fragmentation: When a device (router) splits a packet: Forwarding from 1 medium to another with a smaller MTU

IPv4 Packet: Been in use since 1983: Deployed on ARPANET (Advanced Research Projects Agency Network)

An IPv4 packet has 2 parts:

- 1. IP header: Identifies packet characteristics
- 2. Payload: Contains layer 4 segment information/data

Significant fields in the IPv4 header include:

Version	4bit binary value identifying IP packet versionIPv4 always sets this field to 0100
Differentiated Services (DS)	 – 8bit field used to determine priority of packets – AKA ToS or Type of Service field – First 6bits identify Differentiated Services Code Point (DSCP) – DSCP is a value used by QoS mechanisms – Last 2 bits identify Explicit Congestion Notification (ECN) – ECN can be used to prevent dropped packets during congestion
Time-to-Live (TTL)	 – 8bit binary value used to limit packet lifetime – AKA a hop count – Value decreases by 1 each time the packet is processed by a router/hop – If TTL field hits 0: Router discards packet – Sends an ICMP time exceeded message to source IP ICMP: Internet Control Message Protocol traceroute: Command uses field to identify routers used between source/destination
Protocol	 – 8bit binary value indicates data payload type the packet is carrying – Enables network layer to pass data to right upper layer protocols Common values include: ICMP (0x01) TCP (0x06) and UDP (0x11)
Source IP address	- 32bit binary value represents source IP address of packet
Destination IP address	 – 32bit binary value represents destination IP address of packet
IPv4 Header Fields:	
Internet Header Length (IHL)	 4bit binary value identifying the number of 32bit words in header IHL value varies b/c of Options/Padding fields Minimum value: 5 (532 = 160bits = 20bytes) Maximum value: 15 (1532 = 480 bits = 60 bytes)
Total Length	 16bit field defines the entire packet (fragment) size; including header/data in bytes AKA packet length Minimum-length packet: 20 bytes (20byte header + 0bytes data)Maximum-length packet: 65,535
Header Checksum	 16bit field used for error checking of the IP header Checksum of the header is recalculated/compared to the value in checksum field If values don't match, the packet is dropped

When fragmentation occurs, the following fields keep track:

Identification	-16bit field identifies the fragment of an original IP packet
Flags	– 3bit field identifies how packet is fragmented– Used with Fragment Offset and Identification fields to help reconstruct the fragment
Fragment Offset	 13bit field identifies the order in which to place the packet fragment In reconstruction of original unfragmented packet

Limitations of IPv4:

IP address depletion: Limited number of addresses: 4 billion addresses isn't enough **Internet routing table expansion:** Routes consume tons of memory/processor resources on Internet routers

Lack of end-to-end connectivity: NAT provides a way for multiple devices to share a single IP

- Problematic for technologies that require end-to-end connectivity

NAT: Network Address Translation

IPv4 Packet Header Fields

IPv6: Introduced in the 90's by the IETF (Internet Engineering Task Force) to help replace IPv4 – Helps overcome the limitations of IPv4 with enhancements

Improvements to IPv6 are:

Increased address space	 – IPv6 addresses are based on 128bit hierarchical addressing – IPv4 only had 32bit – Increases the number of available IP addresses
Improved packet handling	 Header has been simplified with fewer fields Improves handling by routers Also provides support for extensions/options for increased scalability/longevity
Eliminates need for NAT	– NAT is no longer needed
Integrated security	Supports authentication and privacy capabilitiesIPv4 had to be implemented with additional features to do that

IPv4: 5billion addresses

IPv6: 340undecillion addresses

IPv4 header consists of:

- 20 octets (up to 60bytes if Options field is used)

- New field in IPv6

- 12 basic header fields (not including Options/Padding)

IPv6 header consists of:

- 40 octets (length of source/destination addresses)
- 8 header fields (3 IPv4 basic fields + 5 additional header fields)

IPv6 simplified header advantages:

- Better routing for performance/forwarding-rate scalability
 No requirement for processing checksums
 Simplified extension header mechanisms (opposed to IPv4 Options)
 Flow Label field for per-flow processing with no need to open transport inner packet to identify traffic flows

IPv6 Packet Header:

Version	4bit binary value identifying IP packet versionWith IPv6, this field is always set to 0110
Traffic Class	 – 8bit field equivalent to IPv4 Differentiated Services (DS) field – Contains a 6bit DSCP value to classify packets – 2bit ECN used for traffic congestion control
Flow Label	 20bit field provides special service for real-time applications Can be used to inform routers/switches to maintain the same path for packet flow Prevents packets from being reordered
Payload Length	16bit field equivalent to the Total Length field in IPv4Defines the entire packet (fragment) size, including header/optional extensions
Next Header	 - 8bit field equivalent to the Protocol field - Indicates data payload type packet is carrying - This enables the network layer to pass the data to appropriate upper layer protocols - Also used as an optional extension header
Hop Limit	 – 8bit field replaces TTL field – Value is decremented by 1 each router that forwards the packet – When counter reaches o: The packet is discarded – ICMPv6 message is forwarded to the sending host
Source Address	– 128bit field represents IPv6 address of receiving host
Destination Address	– 189 bit field represents IPv6 address of receiving host