# Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)» Физтех-школа прикладной математики и информатики Кафедра интеллектуальных систем

# Мешков Владислав Сергеевич

# Анализ сходимости оптимизационной поверхности сверточных нейросетевых моделей на основе Гессиана функции потерь

01.03.02 — Прикладная математика и информатика

Выпускная квалификационная работа бакалавра

Научный руководитель:

Грабовой Андрей Валериевич, канд. физ.-мат. наук

#### Аннотация

Аннотация — Гессиан нейронной сети является важным аспектом для понимания ландшафта потерь и характеристики сетевой архитектуры. Матрица Гессе фиксирует важную информацию о кривизне, чувствительности и локальном поведении функции потерь. Наша работа предлагает метод, который улучшает понимание локального поведения функции потерь и может использоваться для анализа поведения нейронных сетей, а также для интерпретации параметров в этих сетях. В этой работе мы рассматриваем подход к исследованию свойств глубокой нейронной сети с использованием Гессеана. Мы предлагаем метод оценки нормы матрицы Гессе для определенного типа нейронных сетей, таких как сверточные. Мы получили результаты как для одномерных, так и для двумерных сверток, а также для полностью связанной головы в этих сетях. Наш эмпирический анализ подтверждает эти выводы, демонстрируя сходимость в ландшафте функции потерь. Мы оценили гессианскую норму для нейронных сетей, представленных как произведение матриц, и рассмотрели, как эта оценка влияет на ландшафт функции потерь.

# Содержание

| Bı        | ведение                                       | 4  |
|-----------|-----------------------------------------------|----|
| 1.        | Обзор литературы                              | 6  |
| 2.        | Предварительные сведения                      | 8  |
|           | 2.1. Общие обозначения                        | 8  |
|           | 2.2. Основное Предположение                   | 9  |
|           | 2.3. Аппроксимация и декомпозиция             | 9  |
|           | 2.4. Разложение матрицы Гессе                 | 10 |
| 3.        | Представление сети в виде произведения матриц | 11 |
|           | 3.1. Структура матрицы Гессе                  | 12 |
| 4.        | Сверточные сети                               | 13 |
|           | 4.1. Одномерные свертки                       | 13 |
|           | 4.2. Двумерные свертки                        | 14 |
|           | 4.3. Пуллинги                                 | 15 |
|           | 4.4. Полносвязная голова                      | 16 |
| <b>5.</b> | Эксперименты                                  | 17 |
| 6.        | Обсуждение результатов                        | 18 |
| 7.        | Заключение                                    | 20 |
| Cı        | писок литературы                              | 22 |
| 8.        | Дополнение                                    | 28 |
|           | 8.1. Доказательство Леммы 1                   | 28 |
|           | 8.2. Доказательство Леммы 2                   | 29 |
|           | 8.3. Доказательство Теоремы 1                 | 30 |
|           | 8.4. Доказательство Теоремы 2                 | 31 |
|           | 8.5. Доказательство Леммы 3                   | 32 |
|           | 8.6. Доказательство Леммы 4                   | 33 |
|           | 8.7. Доказательство Леммы 5                   | 34 |

Ландшафт функции потерь играет ключевую роль в понимании свойств параметров глубоких нейронных сетей [1, 2, 3]. Его анализ позволяет исследовать различия между архитектурами [4, 5], влияние функций активации [6], а также свойства локальных и глобальных минимумов [7, 8, 9].

Многочисленные исследования посвящены изучению ландшафта функции потерь в современных архитектурах. В частности, работа [10] анализирует самоконтролируемые Vision Transformers (ViT) через призму ландшафта потерь, тогда как [11] исследует ViT и MLP-Mixers с точки зрения геометрии потерь, стремясь улучшить эффективность обучения и обобщающую способность моделей. Исследование [12] предлагает метод визуализации, дающий ценные инсайты о ландшафтах потерь нейронных сетей. Работа [13] сокращает вычислительные затраты на подобный анализ. Такие исследования, как [14, 15], экспериментально исследуют поверхность потерь глубоких нейронных сетей, включая траектории различных алгоритмов оптимизации. Другие работы фокусируются на спектре матрицы Гессе [16, 17, 18] или выводят верхние оценки ее ранга. Например, [19] оценивает ранги блоков Гессе через их декомпозицию.

В данной работе мы выводим теоретические оценки для спектральной нормы матрицы Гессе. Мы показываем, что спектральная норма Гессе дает верхнюю оценку на разность средних значений функции потерь при добавлении нового объекта в выборку. Это открывает возможности для приложений, связанных с определением размера выборки [20], и позволяет глубже понять, как параметры влияют на матрицу Гессе.

Основные цели исследования:

- Теоретический анализ декомпозиции матрицы Гессе на линейные компоненты с конкретными приложениями к сверточным сетям
- Исследование поведения функции потерь в окрестности оптимума и зависимости ландшафта потерь от архитектуры сети
- Анализ влияния нормы параметров, их количества и пространственного распределения в сети на процесс обучения [21, 22, 23]
- Оценка абсолютной разности между средними значениями функции потерь на последовательных шагах обучения, вытекающая из нашей оценки нормы Гессе

# Основные результаты работы:

- Предложен метод декомпозиции матрицы Гессе на линейные компоненты и применен для оценки ее нормы
- Продемонстрировано применение результатов к сверточным архитектурам и установлены связи между параметрами и их оценками
- Подтверждена справедливость теоретических результатов экспериментами по классификации изображений с использованием сверточных сетей

### 1. Обзор литературы

Ландшафт функции потерь в нейронных сетях. В литературе ландшафт функции потерь исследуется с различных точек зрения. В работе [24] установлена связь между количеством классов и направлениями высокой положительной кривизны. Исследование [5] показывает, что ландшафт потерь двухслойной сети с функцией активации ReLU обладает хорошими свойствами при большом количестве скрытых узлов. В работе [25] предложена модель, описывающая необходимые топологические свойства ландшафта потерь для линейной связности мод (LMC). Авторы [26] предлагают классификацию кривых поверхности потерь, построенных вдоль направлений гауссовского шума. Свойства нейронных сетей и спектры их матриц Гессе вблизи порога интерполяции изучены в [27]. Исследования [10, 11] анализируют архитектуру ViT через локальный ландшафт функции потерь. Однако эти работы ограничены конкретными архитектурами.

Анализ матрицы Гессе. Декомпозиция матрицы Гессе на составляющие является ключевым инструментом изучения ее свойств. В работе [28] предложена гипотеза декомпозиции послойных матриц Гессе в виде произведения Кронекера двух матриц меньшей размерности. В исследовании [29] представлено правило дифференцирования для Гессе и полезные тензорные вычисления. Однако эти результаты не были распространены на анализ ландшафта функции потерь через норму матрицы Гессе.

Собственные значения и спектр матрицы Гессе. Спектр матрицы Гессе играет важную роль в понимании структуры ландшафта функции потерь. В работе [16] разработан инструмент для изучения эволюции полного спектра Гессе в процессе оптимизации. Авторы [30] предлагают эффективный метод аппроксимации спектра Гессе нейронных сетей через его декомпозицию на компоненты. Исследование [31] демонстрирует, что распределение собственных значений может состоять из двух частей: сосредоточенной около нуля и удаленной от нуля. В работе [32] выявлена и проанализирована формальная структура "класс/межкласс лежащая в основе многих особенностей спектров глубоких сетей. Проблема выбросов в спектре Гессе рассмотрена в [33], где предпринята попытка их объяснения. Авторы [18] дают характеристику спектров Гессе для широкого класса нелинейных моделей. В исследовании [21] разработан инструмент для отслеживания эволюции спектра Гессе в процессе обучения.

Наиболее полное освещение темы представлено в работе [34], где предложен метод исследования спектра при изменении размера выборки, однако анализ ограничен только полносвязными нейронными сетями.

### 2. Предварительные сведения

#### 2.1. Общие обозначения

В данном разделе вводятся основные обозначения и предположения, используемые в работе. Аналогично [35], мы рассматриваем матричные производные, используя построчное векторное представление  $(vec_r)$ . Для заданных матриц  $\mathbf{X} \in \mathbb{R}^{m \times n}$  и  $\mathbf{Y} \in \mathbb{R}^{p \times q}$  определим:

$$\frac{\partial \mathbf{X}}{\partial \mathbf{Y}} := \frac{\partial vec_r \mathbf{X}}{\partial (vec_r \mathbf{Y})^{\mathsf{T}}}.$$
 (1)

Для тензоров более высокой размерности определение аналогично.

Рассматривается задача классификации на K классов, где  $p(\mathbf{y}|\mathbf{x})$  - вероятность отображения входного вектора  $\mathbf{x} \in \mathcal{X}$  в соответствующий выход  $\mathbf{y} \in \mathcal{Y} = \mathbb{R}^K$  (one-hot векторы). Нейронная сеть  $f_{\boldsymbol{\theta}}$  параметризуется вектором  $\boldsymbol{\theta} \in \mathbb{R}^p$ .

Пусть задана независимая выборка размера т:

$$\mathfrak{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1,\dots,m}.$$

Функция потерь на одном объекте  $\mathbf{x}_i$ :

$$\ell_i(\boldsymbol{\theta}) := \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_i), \mathbf{y}_i).$$

Эмпирическая функция потерь для первых к элементов:

$$\mathcal{L}_k(oldsymbol{ heta}) := rac{1}{k} \sum_{i=1}^k \ell_i(oldsymbol{ heta}), \quad \mathcal{L}(oldsymbol{ heta}) := \mathcal{L}_m(oldsymbol{ heta}).$$

Основная цель - оценка эмпирической функции потерь на всей выборке:

$$\mathcal{L}_m = rac{1}{m} \sum_{i=1}^m \ell_i(m{ heta}) pprox \mathbb{E}_{p(\mathbf{x}, \mathbf{y})} \ell(f_{m{ heta}}(\mathbf{x}_i), \mathbf{y}_i).$$

Особый интерес представляет оценка разности:

$$\mathcal{L}_{k+1}(\boldsymbol{\theta}) - \mathcal{L}_k(\boldsymbol{\theta}) = \frac{1}{k+1} (\ell_{k+1}(\boldsymbol{\theta}) - \mathcal{L}_k(\boldsymbol{\theta})).$$

Введем ключевые определения производных:

$$J(\boldsymbol{\theta}) := J_{f_{\boldsymbol{\theta}}(\mathbf{x})} = (\nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\mathbf{x}))^{\mathsf{T}}.$$

Матрица Якоби нейронной сети:

$$J(\boldsymbol{\theta}) := J_{f_{\boldsymbol{\theta}}(\mathbf{x})} = (\nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}(\mathbf{x}))^{\mathsf{T}}.$$

Полная матрица Гессе:

$$\mathbf{H}^{(k)}(oldsymbol{ heta}) := 
abla_{oldsymbol{ heta}}^2 \mathcal{L}_k(oldsymbol{ heta}) = rac{1}{k} \sum_{i=1}^k 
abla_{oldsymbol{ heta}}^2 \ell_i(oldsymbol{ heta}).$$

# 2.2. Основное Предположение

Для сравнения функций потерь в одной точке введем следующее предположение:

Предположение 1. Пусть  $\boldsymbol{\theta}^*$  - локальный минимум как для  $\mathcal{L}_k(\boldsymbol{\theta})$ , так и для  $\mathcal{L}_{k+1}(\boldsymbol{\theta})$ . В частности, это означает, что  $\nabla_{\boldsymbol{\theta}} \mathcal{L}_k(\boldsymbol{\theta}^*) = \nabla_{\boldsymbol{\theta}} \mathcal{L}_{k+1}(\boldsymbol{\theta}^*) = 0$ .

Данное предположение позволяет изучать поведение ландшафта, используя лишь одну точку.

# 2.3. Аппроксимация и декомпозиция

Используя это предположение и квадратичную аппроксимацию, в работе [34] показано, что для изучения локального поведения можно использовать разложение Тейлора второго порядка:

$$\left| \mathcal{L}_{k+1}(\boldsymbol{\theta}) - \mathcal{L}_{k}(\boldsymbol{\theta}) \right| \approx \frac{1}{k+1} \left| \ell_{k+1}(\boldsymbol{\theta}) - \mathcal{L}_{k}(\boldsymbol{\theta}) \right| + \frac{1}{k+1} \left\| \boldsymbol{\theta} - \boldsymbol{\theta}^* \right\|^2 \left\| \mathbf{H}_{k+1}(\boldsymbol{\theta}^*) - \frac{1}{k} \sum_{i=1}^k \mathbf{H}_{i}(\boldsymbol{\theta}^*) \right\|. \tag{2}$$

Согласно [36], применяя правило дифференцирования сложной функции,

можно декомпозировать матрицу Гессе:

$$\mathbf{H} = \mathbf{H}_O + \mathbf{H}_F = J(\boldsymbol{\theta})^{\mathsf{T}} \left[ \nabla_{f_{\boldsymbol{\theta}}}^2 \ell(\boldsymbol{\theta}) \right] J(\boldsymbol{\theta}) + \sum_{c=1}^K \left[ \nabla_{f_{\boldsymbol{\theta}}} \ell(\boldsymbol{\theta}) \right] c \nabla^2 \boldsymbol{\theta} f_{\boldsymbol{\theta}}^c(\mathbf{x}).$$

Как показано в [24, 37], вблизи локального минимума можно учитывать только член  $\mathbf{H}_O$ , поскольку средний градиент близок к нулю, и членом  $\mathbf{H}_F$  можно пренебречь. На основе этой аппроксимации мы будем рассматривать норму матрицы  $\mathbf{H}_O$ :

$$\|\mathbf{H}\| \approx \|J(\boldsymbol{\theta})^{\mathsf{T}} \left[\nabla_{f_{\boldsymbol{\theta}}}^{2} \ell(\boldsymbol{\theta})\right] J(\boldsymbol{\theta})\|.$$
 (3)

## 2.4. Разложение матрицы Гессе

Мы используем термин "внешне-произведенная" матрица Гессе для члена  $\mathbf{H}_O$ , следуя [38]. Именно в такой форме матрица Гессе наиболее удобна для анализа. Отметим, что  $\nabla^2_{f_{\boldsymbol{\theta}}} \ell(\boldsymbol{\theta})$  зависит только от функции потерь:

- ullet Для MSE:  $abla^2_{f_{m{ heta}}}\ell(m{ heta}) = \mathbf{I}$
- ullet Для кросс-энтропии:  $abla^2_{f_{m{ heta}}}\ell(m{ heta}) = diag(\mathbf{p}) \mathbf{p}\mathbf{p}^{\scriptscriptstyle\mathsf{T}}$ , где  $\mathbf{p} := \mathrm{SoftMax}(\mathbf{z})$

Выбор функции потерь влияет лишь на мультипликативную константу, не меняя общего анализа. Оценка нормы произведения матриц сводится к произведению их норм, что приводит к квадратичной зависимости нормы Гессе от Якобиана. Как отмечено в [39], Якобиан содержит важную структурную информацию о сети, что будет исследовано далее.

### 3. Представление сети в виде произведения матриц

Пусть  $f_{\theta}(\mathbf{x})$  представляет собой композицию L+1 слоев с активациями ReLU:

$$f_{\theta}(\mathbf{x}) = \mathbf{T}^{(L+1)} \circ \sigma \circ \cdots \circ \sigma \circ \mathbf{T}^{(1)}(\mathbf{x}).$$

Здесь  $\mathbf{T}^{(p+1)}$  - линейный оператор (или его матрица),  $\sigma$  - функция активации ReLU. Промежуточные результаты можно представить как:

$$\begin{cases} \mathbf{z}^{(p+1)} = \mathbf{T}^{(p+1)} \mathbf{x}^{(p)}, \\ \mathbf{x}^{(p+1)} = \sigma(\mathbf{z}^{(p+1)}) \end{cases}$$

где выходные логиты  $f_{\theta}(\mathbf{x}) = \mathbf{z} := \mathbf{z}^{(L+1)}$ , и вход  $\mathbf{x}^{(0)} := \mathbf{x}$ .

Пусть  $\mathbf{\Lambda}^{(p+1)} := diag(\mathbf{x}^{(p+1)} > 0)$  - входозависимая матрица. Тогда  $f_{\boldsymbol{\theta}}(\mathbf{x})$  можно представить в виде произведения (возможно, входозависимых) матриц:

$$f_{\theta}(\mathbf{x}) = \mathbf{T}^{(L+1)} \mathbf{\Lambda}^{(L)} \dots \mathbf{\Lambda}^{(1)} \mathbf{T}^{(1)} \mathbf{x}.$$
 (4)

Вектор весов рассматривается как  $\boldsymbol{\theta} = col(\mathbf{W}^{(L+1)}, \dots, \mathbf{W}^{(1)})$ , где  $\mathbf{T}^{(p)}$  дифференцируем и параметризуется частью  $\mathbf{W}^{(p)}$ . Тогда производная слоя по его параметрам может быть определена как:

где матрица  $\mathbf{Q}^{(p)}$  полностью описывает расположение параметров в p-м слое.

Для упрощения дальнейших формул определим:

$$\mathbf{G}^{(p)} := \mathbf{T}^{(L+1)} \mathbf{\Lambda}^{(L)} \dots \mathbf{T}^{(p+1)} \mathbf{\Lambda}^{(p)}; \mathbf{G}^{(L+1)} := \mathbf{I}$$

$$\mathbf{R}^{(p)} := \mathbf{\Lambda}^{(p)} \mathbf{T}^{(p)} \dots \mathbf{\Lambda}^{(1)} \mathbf{T}^{(1)}; \quad p = \overline{1, L}; \ \mathbf{R}^{(0)} := \mathbf{I}.$$

Используя эти обозначения, можно переписать:

$$\mathbf{z} = \mathbf{G}^{(p)} \mathbf{z}^{(p)}, \, \mathbf{x}^{(p)} = \mathbf{R}^{(p)} \mathbf{x},$$
$$\mathbf{z} = f_{\theta}(\mathbf{x}) = \mathbf{G}^{(p)} \mathbf{T}^{(p)} \mathbf{R}^{(p-1)} \mathbf{x}.$$

Объединенные матрицы  $\mathbf{G}^{(p)}$  и  $\mathbf{R}^{(p)}$  дают:

$$\mathbf{F}^{\mathsf{T}} := egin{pmatrix} \mathbf{G}^{(1)^{\mathsf{T}}} \otimes \mathbf{R}^{(0)} \mathbf{x} \ & dots \ \mathbf{G}^{(k)^{\mathsf{T}}} \otimes \mathbf{R}^{(k-1)} \mathbf{x} \ & dots \ \mathbf{G}^{(L+1)^{\mathsf{T}}} \otimes \mathbf{R}^{(L)} \mathbf{x} \end{pmatrix}.$$

Матрица Гессе нейронной сети по логитам в случае функции потерь кроссэнтропии:

$$\mathbf{A} := \nabla_{\mathbf{z}}^2 \ell = diag(\mathbf{p}) - \mathbf{p}\mathbf{p}^{\mathsf{T}},$$

where  $\mathbf{p} := \operatorname{softmax}(\mathbf{z})$ .

# 3.1. Структура матрицы Гессе

Согласно работам [19, 28, 34], мы можем декомпозировать outer-product  $(\mathbf{H}_O)$  матрицу Гессе на более простые компоненты, в частности, нам нужно декомпозировать только матрицу Якоби.

Рассмотрим ключевые леммы данной работы, которые описывают декомпозицию матрицы Гессе в произведение 5 матриц и использование этого представления для оценки нормы. Доказательства приведены в приложениях 8.1. и 8.2..

Лемма 1. Если наша сеть  $f_{\theta}(\mathbf{x})$  может быть представлена как (4), то  $\mathbf{H}_{O}(\boldsymbol{\theta}) = \mathbf{Q}^{T}\mathbf{F}^{T}\mathbf{AFQ}$ .

Лемма 2. Пусть нейронная сеть  $f_{\theta}(\mathbf{x})$  представляется в виде (4) Пусть  $\forall p: \|\mathbf{Q}^{(p)}\| \leqslant q, \|\mathbf{T}^{(p)}\|^2 \leqslant w_{\mathbf{T}}^2.$  Тогда имеет место:

$$\|\mathbf{H}_{O}\| \leqslant \sqrt{2}q^{2} \|\mathbf{x}\|^{2} (L+1) w_{\mathbf{T}}^{2L}.$$

Эти леммы используются для оценки норм матрицы Гессе.

# 4. Сверточные сети

### 4.1. Одномерные свертки

В данном разделе для простоты сохраняем обозначение  $\mathbf{T}^{(p)}$  для одномерных сверток и поясняем их представление в виде линейных операторов. Как известно, сверточные сети часто могут быть представлены линейными сверточными нейронными сетями (LCN), что обычно относится к представлению CNN через матрицы Тёплица [40, 41].

В работе используется обозначение для матриц Тёплица из [19], где авторы нашли специфический вид матрицы  $\mathbf{Q}^{(p)}$  согласно структуре одномерной матрицы Тёплица.

Наша одномерная сверточная сеть:  $f_{\theta}(\mathbf{x}) = \mathbf{T}^{(L+1)} * (\sigma(\dots(\sigma(\mathbf{T}^{(1)} * \mathbf{x}))\dots)$ где операция \* означает свертку.

Пусть  $C_p$  - количество каналов после p-го слоя,  $d_p$  - размер последовательности. Тогда  $\mathbf{x}^{(p)} \in \mathbb{R}^{C_p \times d_p}$ ,  $\mathbf{T}^{(p)}$  - слой одномерной свертки с ядром  $\mathbf{W}^{(p)} \in \mathbb{R}^{C_{p-1} \times C_p \times k_p}$ .

Для упрощения обозначений заменяем  $\mathbf{x}^{(p)}$  на  $vec(\mathbf{x}^{(p)}) \in \mathbb{R}^{(C_p d_p)}$ . Теперь имеем:

$$\mathbf{z}^{(p+1)} = \mathbf{T}^{(p+1)} \mathbf{x}^{(p)}.$$

Основные результаты для одномерных сверток, использующие матрицы Тёплица для вычисления  $\mathbf{T}^{(p)}$  и  $\mathbf{Q}^{(p)}$  (наши обозначения для сверток и матриц Тёплица упрощены), а также Леммы 1 и 2. Подробности доказательства - в приложении 8.3...

**Теорема 1.** Рассмотрим сеть  $f_{\mathbf{x}} = C_{\mathbf{W}^{(L+1)}} \circ \sigma \circ \cdots \circ \sigma \circ C_{\mathbf{W}^{(1)}}$ , где  $C_{\mathbf{W}^{(i)}}$  - одномерная свертка с ядром  $\mathbf{W}^{(i)}$ , без дополнения и шагом 1. Пусть заданы верхние границы:  $C_l \leqslant C$ ,  $k_i \leqslant k$ ,  $d_i \leqslant d_1 := d$ ,  $|\mathbf{W}_{i,j,k}^{(p)}|^2 \leqslant w^2$ . Тогда можем оценить норму outer-product матрицы Гессе:

$$\|\mathbf{H}_O\| \leqslant \sqrt{2} \|x\|^2 d^2(L+1) (C^2 w^2 k d)^L.$$

Применяя эту теорему к разности потерь, аналогично [34], получаем:

**Следствие.** Пусть  $\theta$  находится в R-окрестности оптимума:  $\|\theta - \theta^*\| \le R$ . Функция потерь ограничена константой:  $\exists W_l > 0 : \forall i |\ell_i| \le W_l$ . Все объекты в

выборке ограничены:  $\exists W_x \forall i |x_i| \leqslant W_x$ . Тогда в условиях теоремы 1 и наших предположений имеем:

$$\left| \mathcal{L}_{k+1}(\boldsymbol{\theta}) - \mathcal{L}_{k}(\boldsymbol{\theta}) \right| \leqslant \frac{2}{k+1} W_{\ell} + \frac{2}{k+1} R^2 \sqrt{2} d^2 W_x^2 (L+1) (C^2 w^2 k d)^L.$$

Как видно, эта оценка чрезмерно завышена по сравнению с реальной нормой. Однако можно предположить, что зависимость от числа каналов, норм весов и размеров действительно соответствует представленной выше. Если параметры свертки уже достаточны для обучения, то увеличение, например, размера ядра свертки k неоправданно увеличит оценку примерно в  $(1+\frac{\Delta k}{k})^L$  раз, что может привести к замедлению скорости сходимости без существенного улучшения качества.

# 4.2. Двумерные свертки

Рассматриваем двумерные сверточные сети, сохраняя обозначение  $\mathbf{T}^{(p)}$  для слоев сверточной сети.  $\mathbf{x} \in \mathbb{R}^{m \times n \times C}$  - входное изображение размером (m,n) с C каналами.  $\mathbf{x}^{(l)} \in \mathbb{R}^{m_i \times n_i \times C_i}$  - вход (l+1)-го слоя.  $\mathbf{W}^{(l)} \in \mathbb{R}^{C_{l-1} \times C_l \times k_l^1 \times k_l^2}$  - свертка с размерами ядра  $(k_l^1, k_l^2)$ , числом входных и выходных каналов  $C_{l-1}, C_l$  соответственно.

Аналогично разделу А, используем  $vec(\mathbf{x}) \in \mathbb{R}^{m_i n_i C_i}$  вместо  $\mathbf{x} \in \mathbb{R}^{m_i \times n_i \times C_i}$ . Операция свертки рассматривается для векторизованного входа. Можно использовать тот же подход с матрицами Тёплица, что и в [42], но проще использовать специфическую матрицу  $\mathbf{T}^{(p)}$ , строка которой состоит из элементов  $\mathbf{W}^{(p)}_{*,c_2,*,*}$  для  $c_2$ -го канала.

**Теорема 2.** Пусть сеть  $f_{\mathbf{x}} = C_{\mathbf{W}^{(L+1)}} \circ \cdots \circ C_{\mathbf{W}^{(1)}}$ , где  $C_{\mathbf{W}^{(l)}}$  - двумерная свертка с ядром  $\mathbf{W}^{(i)}$ , без дополнения и шагом 1. Пусть заданы верхние границы:  $C_l \leqslant C$ ,  $k_i \leqslant k$ ,  $m_i \leqslant m_1 := m$ ,  $n_i \leqslant n_1 := n$ ,  $|\mathbf{W}_{i,j,k}^{(p)}|^2 \leqslant w^2$ . Тогда норма матрицы Гессе:

$$\|\mathbf{H}_O\| \leq \sqrt{2} \|\mathbf{x}\|^2 q^2 (L+1) (C^2 k^2 w^2 m n)^L$$

 $e \partial e \ q^2 = C^2 k^2 m n.$ 

**Следствие.** Пусть  $\theta$  в R-окрестности оптимума:  $\|\theta - \theta^*\| \le R$ . Функция потерь ограничена:  $\exists W_l > 0 : \forall i |\ell_i| \le W_l$ . Объекты ограничены:  $\exists W_x \forall i |x_i| \le R$ 

 $W_x$ . Тогда в условиях теоремы 2:

$$\left| \mathcal{L}_{k+1}(\boldsymbol{\theta}) - \mathcal{L}_{k}(\boldsymbol{\theta}) \right| \leq \frac{2}{k+1} W_{\ell} + \frac{2}{k+1} R^{2} \sqrt{2} q^{2} W_{x}^{2} (L+1) (C^{2} k^{2} w^{2} m n)^{L},$$

 $e \partial e \ q^2 = C^2 k^2 m n.$ 

Как можно видеть, сеть в этом примере состоит исключительно из сверточных слоев, что является редким явлением на практике. В 5 мы обсуждали случай добавления полностью связанной головы к сверточной нейронной сети. Эти результаты позволяют нам построить гипотезу о том, что гессиановая норма может быть экспоненциальной функцией числа слоев, а также зависеть от размера ядра, размеров изображения и каналов как описано выше. Главным недостатком этих результатов является то, что на них не влияет уменьшение размеров после сверток и они зависят только от верхних границ параметров.

# 4.3. Пуллинги

Мы также предоставляем результаты, связанные с добавлением пула в сеть. Сначала речь идет о максимальном пуле, доказательство можно найти в приложении 8.5..

Лемма 3. Пусть сверточная нейронная сеть  $f_{\theta}(\mathbf{x}) = \mathbf{T}^{(L+1)} \mathbf{\Lambda}^{(L)} \dots \mathbf{\Lambda}^{(1)} \mathbf{T}^{(1)} \mathbf{x}$  стодержит MaxPool2D в слое  $\mathbf{\Lambda}^{(l)}$  с ядром  $k_{\text{pool}} \times k_{\text{pool}}$  вместо ReLU активации. Тогда  $\|\mathbf{H}_O\| \leq \sqrt{2} \|\mathbf{x}\|^2 q^2 \left(\frac{1}{k_{\text{pool}}^2}\right)^{L-l+2} (L+1) (k^2 C^2 w^2 m n)^L$ , где  $q^2 = mnC^2 k^2$ .

И результат заключается в добавлении среднего пула, доказательство можно найти в 8.6.

Лемма 4. Пусть Сверточная сеть

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{T}^{(L+1)} \boldsymbol{\Lambda}^{(L)} \dots \boldsymbol{\Lambda}^{(1)} \mathbf{T}^{(1)} \mathbf{x}$$

содержит AvgPool2D в качестве слоя  $\mathbf{\Lambda}^{(l)}$  вместо ReLU активации с ядром размера  $k_{\mathrm{pool}} \times k_{\mathrm{pool}}$ . Тогда

$$\|\mathbf{H}_O\| \le \sqrt{2} \|\mathbf{x}\|^2 q^2 \left(\frac{1}{k_{\text{pool}}^2}\right)^{L-l+2} (L+1) (k^2 C^2 w^2 m n)^L,$$

 $e \partial e \ q^2 = mnC^2k^2.$ 

#### 4.4. Полносвязная голова

Видно, что наша сеть состояла исключительно из сверточных слоев, что почти никогда не случается, рассмотрим сеть, которая последними P слоями является полносвязной. Докказательство можно найти в 8.7..

**Лемма 5.** Пусть сверточная сеть с полносвязной классификационной головой размера p:

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{T}^{(L+P+1)} \boldsymbol{\Lambda}^{(L+P)} \dots$$
  
  $\dots \boldsymbol{\Lambda}^{(L+1)} \mathbf{T}^{(L+1)} \boldsymbol{\Lambda}^{(L)} \dots \boldsymbol{\Lambda}^{(1)} \mathbf{T}^{(1)} \mathbf{x},$ 

, где  $\mathbf{T}^{(L+1+i)}$  - Линейный слой с  $h_i$  скрытыми параметрами, где  $i=1,\ldots,P$ ,  $\mathbf{T}^{(r)}$ -2D-сверточный слой как в 4.2.. Предполагается, что  $\left\|\mathbf{T}_{ij}^{(L+1+i)}\right\| \leqslant \tilde{w}$  и  $h_p \leqslant h$ . То, в рамках ограничений и обозначений Теоремы 2, имеем

$$\|\mathbf{H}_{O}\| \leq \sqrt{2} \|\mathbf{x}\|^{2} q^{2} (h^{2} \tilde{w}^{2})^{P} (k^{2} C^{2} w^{2} m n)^{L} \times (L + 1 + P \frac{h^{2} \tilde{w}^{2}}{k^{2} C^{2} w^{2} m n}).$$

### 5. Эксперименты

Для проверки теоретических оценок было проведено всестороннее эмпирическое исследование. В данном разделе представлены результаты обучения сверточных сетей с различными параметрами.

Основная цель экспериментов - продемонстрировать зависимость ландшафта функции потерь от таких параметров как количество слоев, размер ядра, число каналов, позиции пулинга, а также наблюдение зависимости скорости сходимости от этих параметров. Для этого мы обучали сверточные сети и получали параметры  $\hat{\boldsymbol{\theta}}$  вблизи оптимума.

Использовалась сверточная архитектура с активацией ReLU после каждого слоя. Для отслеживания влияния конкретного параметра на сходимость мы фиксировали ключевые параметры нейронной сети, варьировали интересующий гиперпараметр и обучали соответствующий набор моделей.

Затем исследовалась зависимость между средней абсолютной разностью значений средней функции потерь и доступным размером выборки. Для каждой модели, чтобы получить более надежные результаты, усреднялась разность потерь по перемешанным выборкам. Для улучшенной визуализации применялось экспоненциальное сглаживание с коэффициентом 0.995.

В исследовании использовалось числовое представление пикселей изображений в качестве входных данных. Результаты получены на выборках из баз данных MNIST[43], FashionMNIST[44] и CIFAR10[45].

Во всех экспериментах использовались следующие гиперпараметры:

- постоянная скорость обучения 1е-3
- оптимизатор Adam
- размер мини-батча 64
- $\bullet$  10 эпох обучения на MNIST и Fashion-MNIST
- 15 эпох на CIFAR-10

Если параметр не варьировался, он сохранялся одинаковым для всех слоев.



Рис. 1: Изменение количества скрытых сверточных слоев L при фиксированном размере ядра k=3 и числе каналов C=6. Анализ полученных графиков выявляет немонотонную зависимость между выходными значениями и количеством слоев.



Рис. 2: Изменение размера ядра свертки k при фиксированном количестве сверточных слоев L и числе каналов C=6. Данные демонстрируют немонотонную зависимость от размера ядра.

# 6. Обсуждение результатов

Как демонстрируют графики, абсолютная разность между средними значениями функции потерь не имеет прямой зависимости от размера ядра или количества слоев сети, но показывает монотонную зависимость от размера слоя и позиции пулинга. Мы предполагаем, что это в первую очередь свидетельствует о более значительном влиянии первой части уравнения (2) на эту величину.

Стоит отметить, что в экспериментах использовались относительно небольшие сети, поэтому увеличение количества параметров улучшало качество модели, существенно влияя на результаты, в частности на значение функции потерь в точке оптимума.

Мы выделили несколько потенциальных решений этой проблемы. Вопервых, предлагается исследовать более сложные структуры сетей, где уве-



Рис. 3: Изменение количества каналов C при фиксированном числе сверточных слоёв L и размере ядра k=3. Наблюдается монотонная зависимость величины от числа каналов.



Рис. 4: Изменение количества каналов C при фиксированном числе сверточных слоев L и размере ядра k=3. График демонстрирует монотонную зависимость величины от позиции операции пулинга в сети.

личение количества параметров не будет так значительно влиять на наши оценки.

Кроме того, очевидно, что наша оценка существенно превышает реалистичные значения и служит в первую очередь теоретической конструкцией, а не практической мерой. Основная причина завышения оценки связана с тем, что норма матрицы  $\mathbf{T}^{(p)}$  оценивалась через произведение норм (см. доказательства 8.3. или 8.4.). Такой подход для нашего случая с разреженными матрицами неизбежно приводит к значительному завышению результатов.

Мы полагаем, что наше исследование имеет потенциальные приложения в нескольких областях, включая анализ ландшафта функции через гессиан, разработку методов определения оптимального размера выборки и исследование структурных свойств гессиана нейронных сетей.

#### 7. Заключение

В данной работе мы предложили метод оценки нормы гессиана и способ использования этой нормы для оценки сходимости ландшафта потерь. Используя квадратичную аппроксимацию функции потерь, наш теоретический анализ показал, как сходимость ландшафта функции потерь может зависеть от нормы гессиана, а также как норма гессиана зависит от параметров сети.

Основные теоретические результаты включают:

- Аналитическую оценку нормы гессиана через параметры сети (количество слоев, размер ядра, число каналов)
- Декомпозицию гессиана на структурные компоненты
- Исследование влияния различных архитектурных элементов (пулингов, полносвязных головок)
- Экспериментальные результаты на наборах данных MNIST, Fashion-MNIST и CIFAR-10 показали, что:
- Зависимость абсолютной разности между средними значениями функции потерь имеет сложный характер

Мы считаем, что наши результаты дают ценную информацию о:

- Локальной геометрии ландшафтов потерь
- Структурных свойствах гессиана сверточных сетей
- Взаимосвязи между архитектурными параметрами и сходимостью

Перспективные направления дальнейших исследований включают:

- Уточнение оценок с учетом разреженности матриц
- Изучение более сложных архитектур
- Применение результатов для задач подбора размера выборки
- Анализ связи с обобщающей способностью моделей

• Полученные результаты вносят вклад в теоретическое понимание свойств нейронных сетей и могут найти применение при проектировании эффективных архитектур.

### Список литературы

- 1. Hoffmann Jordan, Borgeaud Sebastian, Mensch Arthur et al. Training Compute-Optimal Large Language Models. 2022. URL: https://arxiv.org/abs/2203. 15556.
- 2. Grabovoy Andrey, Bakhteev Oleg, Strijov V. ESTIMATION OF THE RELE-VANCE OF THE NEURAL NETWORK PARAMETERs // Informatics and Applications. 2019. . URL: http://dx.doi.org/10.14357/19922264190209.
- 3. Grabovoy Andrey, Bakhteev O, Strijov V. ORDERING THE SET OF NEURAL NETWORK PARAMETERS // Informatics and Applications. 2020. . URL: http://dx.doi.org/10.14357/19922264200208.
- 4. Visualizing the Loss Landscape of Neural Nets / Hao Li, Zheng Xu, Gavin Taylor et al. // Advances in Neural Information Processing Systems / Ed. by S. Bengio, H. Wallach, H. Larochelle et al. Vol. 31. Curran Associates, Inc., 2018. URL: https://proceedings.neurips.cc/paper\_files/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.
- 5. Is the skip connection provable to reform the neural network loss landscape? / Lifu Wang, Bo Shen, Ning Zhao, Zhiyuan Zhang // Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. IJCAI'20. 2021. 7 pp.
- 6. Bosman Anna Sergeevna, Engelbrecht Andries, Helbig Marde. Empirical Loss Landscape Analysis of Neural Network Activation Functions // Proceedings of the Companion Conference on Genetic and Evolutionary Computation. Vol. 33 of GECCO '23 Companion. ACM, 2023. URL: http://dx.doi.org/10.1145/3583133.3596321.
- 7. Anna Sergeevna Bosman Andries Engelbrecht Mardé Helbig. Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions // Neurocomputing. 2020. Vol. 400. Pp. 113–136. URL: https://www.sciencedirect.com/science/article/pii/S0925231220303593.
- 8. The role of over-parametrization in generalization of neural networks / Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli et al. // International

- Conference on Learning Representations. 2019. URL: https://openreview.net/forum?id=BygfghAcYX.
- 9. Zou Difan, Gu Quanquan. An Improved Analysis of Training Over-parameterized Deep Neural Networks // Advances in Neural Information Processing Systems / Ed. by H. Wallach, H. Larochelle, A. Beygelzimer et al. Vol. 32. Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper\_files/paper/2019/file/6a61d423d02a1c56250dc23ae7ff12f3-Paper.pdf.
- 10. Lee Youngwan, Willette Jeffrey Ryan, Kim Jonghee, Hwang Sung Ju. Visualizing the loss landscape of Self-supervised Vision Transformer. 2024. URL: https://arxiv.org/abs/2405.18042.
- 11. Chen Xiangning, Hsieh Cho-Jui, Gong Boqing. When Vision Transformers Outperform ResNets without Pre-training or Strong Data Augmentations // International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=LtKcMgGOeLt.
- 12. Elhamod Mohannad, Karpatne Anuj. Neuro-Visualizer: An Auto-encoder-based Loss Landscape Visualization Method. 2023. URL: https://arxiv.org/abs/2309.14601.
- 13. Bain Robert. Visualizing the Loss Landscape of Winning Lottery Tickets. 2021. URL: https://arxiv.org/abs/2112.08538.
- 14. Yuan Qunyong, Xiao Nanfeng. Experimental exploration on loss surface of deep neural network // International Journal of Imaging Systems and Technology. 2020. Vol. 30, no. 4. Pp. 860–873. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/ima.22434.
- 15. Im Daniel Jiwoong, Tao Michael, Branson Kristin. An empirical analysis of the optimization of deep network loss surfaces. 2017. URL: https://arxiv.org/abs/1612.04010.
- 16. Ghorbani Behrooz, Krishnan Shankar, Xiao Ying. An Investigation into Neural Net Optimization via Hessian Eigenvalue Density // Proceedings of the 36th International Conference on Machine Learning / Ed. by Kamalika Chaudhuri, Ruslan Salakhutdinov. Vol. 97 of Proceedings of Machine Learning Research.

- PMLR, 2019. 09–15 Jun. Pp. 2232–2241. URL: https://proceedings.mlr.press/v97/ghorbani19b.html.
- 17. Papyan Vardan. The Full Spectrum of Deep Net Hessians At Scale: Dynamics with Sample Size // CoRR. 2018. Vol. abs/1811.07062. URL: http://arxiv.org/abs/1811.07062.
- 18. Liao Zhenyu, Mahoney Michael W. Hessian eigenspectra of more realistic non-linear models // Proceedings of the 35th International Conference on Neural Information Processing Systems. NIPS '21. Red Hook, NY, USA: Curran Associates Inc., 2024. 14 pp.
- 19. Singh Sidak Pal, Hofmann Thomas, Schölkopf Bernhard. The Hessian perspective into the nature of convolutional neural networks // Proceedings of the 40th International Conference on Machine Learning. ICML'23. JMLR.org, 2023. 39 pp.
- 20. Numerical Methods of Sufficient Sample Size Estimation for Generalised Linear Models / Andrey Grabovoy, Tamaz Gadaev, A. Motrenko, Vadim Strijov // Lobachevskii Journal of Mathematics. 2022. 12. Vol. 43. Pp. 2453–2462.
- 21. Azadbakht Alireza, Kheradpisheh Saeed Reza, Khalfaoui-Hassani Ismail, Masquelier Timothée. Drastically Reducing the Number of Trainable Parameters in Deep CNNs by Inter-layer Kernel-sharing. 2022. URL: https://arxiv.org/abs/2210.14151.
- 22. Kroshchanka A. A., Golovko V. A., Chodyka M. Method for Reducing Neural-Network Models of Computer Vision // Pattern Recognit. Image Anal. 2022. . Vol. 32, no. 2. P. 294–300. URL: https://doi.org/10.1134/S1054661822020146.
- 23. Kahatapitiya Kumara, Rodrigo Ranga. Exploiting the Redundancy in Convolutional Filters for Parameter Reduction // 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). 2021. Pp. 1409–1419.
- 24. Fort Stanislav, Ganguli Surya. Emergent properties of the local geometry of neural loss landscapes // CoRR. 2019. Vol. abs/1910.05929. URL: http://arxiv.org/abs/1910.05929.

- 25. Singh Sidak Pal, Adilova Linara, Kamp Michael et al. Landscaping Linear Mode Connectivity. 2024. URL: https://arxiv.org/abs/2406.16300.
- 26. Li Xin-Chun, Li Lan, Zhan De-Chuan. Visualizing, Rethinking, and Mining the Loss Landscape of Deep Neural Networks. 2024. URL: https://arxiv.org/abs/2405.12493.
- 27. Phenomenology of Double Descent in Finite-Width Neural Networks / Sidak Pal Singh, Aurelien Lucchi, Thomas Hofmann, Bernhard Schölkopf // International Conference on Learning Representations. 2022. URL: https://openreview.net/forum?id=lTqGXfn9Tv.
- 28. Wu Yikai, Zhu Xingyu, Wu Chenwei et al. Dissecting Hessian: Understanding Common Structure of Hessian in Neural Networks. 2021. URL: https://openreview.net/forum?id=0rNLjXgchOC.
- 29. Skorski Maciej. Chain Rules for Hessian and Higher Derivatives Made Easy by Tensor Calculus. 2019. URL: https://arxiv.org/abs/1911.13292.
- 30. Papyan Vardan. The Full Spectrum of Deepnet Hessians at Scale: Dynamics with SGD Training and Sample Size. 2019. URL: https://arxiv.org/abs/1811.07062.
- 31. Sagun Levent, Bottou Leon, LeCun Yann. Eigenvalues of the Hessian in Deep Learning: Singularity and Beyond. 2017. URL: https://arxiv.org/abs/1611. 07476.
- 32. Papyan Vardan. Traces of Class/Cross-Class Structure Pervade Deep Learning Spectra // Journal of Machine Learning Research. 2020. Vol. 21, no. 252. Pp. 1–64. URL: http://jmlr.org/papers/v21/20-933.html.
- 33. Papyan Vardan. Measurements of Three-Level Hierarchical Structure in the Outliers in the Spectrum of Deepnet Hessians // Proceedings of the 36th International Conference on Machine Learning / Ed. by Kamalika Chaudhuri, Ruslan Salakhutdinov. Vol. 97 of Proceedings of Machine Learning Research. PMLR, 2019. 09–15 Jun. Pp. 5012–5021. URL: https://proceedings.mlr.press/v97/papyan19a.html.

- 34. Kiselev Nikita, Grabovoy Andrey. Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes. 2024. URL: https://arxiv.org/abs/2409.11995.
- 35. Magnus Jan R., Neudecker Heinz. Matrix Differential Calculus with Applications in Statistics and Econometrics. Second edition. John Wiley, 1999.
- 36. Schraudolph Nicol N. Fast curvature matrix-vector products for second-order gradient descent // Neural Comput. 2002. . Vol. 14, no. 7. P. 1723–1738. URL: https://doi.org/10.1162/08997660260028683.
- 37. Empirical Analysis of the Hessian of Over-Parametrized Neural Networks / Levent Sagun, Utku Evci, V. Ugur Güney et al. // CoRR. 2017. Vol. abs/1706.04454. URL: http://arxiv.org/abs/1706.04454.
- 38. Latrémolière Frédéric, Narayanappa Sadananda, Vojtěchovský Petr. Estimating the Jacobian matrix of an unknown multivariate function from sample values by means of a neural network. 2022. URL: https://arxiv.org/abs/2204.00523.
- 39. Hayou Soufiane, Dadoun Benjamin, Youssef Pierre et al. A Theoretical Study of the Jacobian Matrix in Deep Neural Networks. 2024. URL: https://openreview.net/forum?id=pvhyBB86Bt.
- 40. Geometry of Linear Convolutional Networks / Kathlén Kohn, Thomas Merkh, Guido Montúfar, Matthew Trager // SIAM Journal on Applied Algebra and Geometry. 2022. Vol. 6, no. 3. Pp. 368–406. URL: https://doi.org/10.1137/21M1441183.
- 41. Qin Zhen, Han Xiaodong, Sun Weixuan et al. Toeplitz Neural Network for Sequence Modeling. 2023. URL: https://arxiv.org/abs/2305.04749.
- 42. Gnacik Michal, Łapa Krystian. Using Toeplitz Matrices to obtain 2D convolution.  $-\ 2022.\ -10.$
- 43. Deng Li. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] // IEEE Signal Processing Magazine. 2012. Vol. 29. Pp. 141–142. URL: https://api.semanticscholar.org/CorpusID: 5280072.

- 44. Xiao Han, Rasul Kashif, Vollgraf Roland. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. 2017. cite arxiv:1708.07747Comment: Dataset is freely available at https://github.com/zalandoresearch/fashion-mnist Benchmark is available at http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/. URL: http://arxiv.org/abs/1708.07747.
- 45. Krizhevsky Alex. Learning Multiple Layers of Features from Tiny Images. 2009. URL: https://api.semanticscholar.org/CorpusID:18268744.

#### 8. Дополнение

## 8.1. Доказательство Леммы 1

Доказательство. Выходы из сверточной нейронной сети - логиты:

$$\mathbf{z} = f_{\boldsymbol{\theta}}(x) = \mathbf{T}^{(L+1)} \mathbf{\Lambda}^{(L)} \mathbf{T}^{(L)} .... \mathbf{\Lambda}^{(1)} \mathbf{T}^{(1)} \mathbf{x}.$$

Рассматривается производная логитов по параметрам нейронной сети

$$\frac{\partial \mathbf{z}}{\partial \mathbf{W}^{(p)}} = \frac{\partial \mathbf{z}}{\partial \mathbf{z}^{(p)}} \frac{\partial \mathbf{z}^{(p)}}{\partial \mathbf{T}^{(p)}} \frac{\partial \mathbf{T}^{(p)}}{\partial \mathbf{W}^{(p)}}$$
 как Якобиан композиции

Используя свойство  $vec(\mathbf{BVA}^{\scriptscriptstyle\mathsf{T}}) = (\mathbf{A} \otimes \mathbf{B})vec(\mathbf{V})$  где  $\mathbf{A} = \mathbf{I}$  и получим векторизованный  $\mathbf{z}^{(p)}$ 

$$vec(\mathbf{z}^{(p)}) = vec(\mathbf{T}^{(p)}\mathbf{x}^{(p-1)}) = (\mathbf{I} \otimes \mathbf{x}^{(p-1)})vec(\mathbf{T}^{(p)}).$$

Видно, что,

$$\frac{\partial \mathbf{z}^{(p)}}{\partial \mathbf{T}^{(p)}} = \mathbf{I} \otimes \mathbf{x}^{(p-1)^{\mathsf{T}}}.$$

Из  $\mathbf{z} = \mathbf{G}^{(p)}\mathbf{z}^{(p)}$  получим

$$rac{\partial \mathbf{z}}{\partial \mathbf{z}^{(p)}} = \mathbf{G}^{(p)}.$$

Используя определение  $\mathbf{Q}^{(p)}$ :

$$rac{\partial \mathbf{T}^{(p)}}{\partial \mathbf{W}^{(p)}} = \mathbf{Q}^{(p)}.$$

Также используем

$$\mathbf{A}_i \in \mathbb{R}^{m_i \times n_i}, \mathbf{A}_1 \otimes \mathbf{A}_2 = (\mathbf{A}_1 \otimes \mathbf{I}_{m_2})(\mathbf{I}_{m_1} \otimes \mathbf{A}_2).$$

с  $m_2 = 1$  получаем

$$\mathbf{G}^{(p)}(\mathbf{I} \otimes \mathbf{x}^{(p-1)^{\mathsf{T}}}) = (\mathbf{G}^{(p)} \otimes \mathbf{I}_1)(\mathbf{I} \otimes \mathbf{x}^{(p-1)^{\mathsf{T}}}) = \mathbf{G}^{(p)} \otimes \mathbf{x}^{(p)^{\mathsf{T}}}.$$

подставляем приведенные выше утверждения в одну формулу и получаем

$$\frac{\partial \mathbf{z}}{\partial \mathbf{W}^{(p)}} = (\mathbf{G}^{(p)} \otimes \mathbf{I}_1)(\mathbf{I} \otimes \mathbf{x}^{(p-1)^{\mathsf{T}}})\mathbf{Q}^{(p)} = (\mathbf{G}^{(p)} \otimes \mathbf{x}^{(p)^{\mathsf{T}}})\mathbf{Q}^{(p)}.$$

Как в [19] рассматривая блок  $\mathbf{H}_{O}^{(kl)}$ :

$$\mathbf{H}_O^{(kl)} = J(\boldsymbol{\theta})^{\mathsf{T}} \mathbf{A} J(\boldsymbol{\theta}) =$$

$$= \mathbf{Q}^{(k)^{\mathsf{T}}} (\mathbf{G}^{(k)^{\mathsf{T}}} \otimes \mathbf{R}^{(k-1)} \mathbf{x}) A(\mathbf{G}^{(l)} \otimes \mathbf{x}^{\mathsf{T}} \mathbf{R}^{(l-1)^{\mathsf{T}}}) \mathbf{Q}^{(l)}$$

A значит  $\mathbf{H}_O = \mathbf{Q}^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} \mathbf{A} \mathbf{F} \mathbf{Q}$ .

# 8.2. Доказательство Леммы 2

Доказательство. Используя результаты предыдущей леммы 1, нам достаточно оценить верхнюю границу выражения:  $\|\mathbf{Q}\|^2 \|\mathbf{F}\|^2 \|\mathbf{A}\|$  In the work [34], норма матрицы **A** было проверено, и было доказано, что:

$$\|\mathbf{A}\| \leqslant \sqrt{2}.$$

Норма блочно-диагональной матрицы не больше максимальной нормы блока

$$\|\mathbf{Q}\|^2 \le \max_{i=1,\dots,L+1} \|\mathbf{Q}^{(i)}\|^2 \le q^2.$$

Норма произведения матриц меньше или равна произведению норм:

$$\left\|\mathbf{G}^{(p)}\right\|^{2} \leqslant \left\|\mathbf{T}^{(p+1)}\right\|^{2} \dots \left\|\mathbf{T}^{(L+1)}\right\|^{2} \leqslant w_{\mathbf{T}}^{2(L-p+1)}.$$

$$\left\|\mathbf{R}^{(p-1)}\right\|^2 \leqslant \left\|\mathbf{T}^{(1)}\right\|^2 \dots \left\|\mathbf{T}^{(p-1)}\right\|^2 \leqslant w_{\mathbf{T}}^{2(p-1)}.$$

Спектральная норма матрицы произведения Кронекера равна их обычной норме произведения. Спектральная норма вертикально сложенных матриц меньше или равна сумме норм ее блоков.

$$\|\mathbf{F}\|^{2} \leqslant \sum_{p=1}^{L+1} \|\mathbf{G}^{(p+1)^{\mathsf{T}}} \otimes \mathbf{R}^{(p-1)} \mathbf{x}\|^{2} =$$

$$= \sum_{p=1}^{L+1} \|\mathbf{G}^{(p)}\|^{2} \|\mathbf{R}^{(p-1)} \mathbf{x}\|^{2}.$$

Подставляя полученные оценки в  $\|\mathbf{H}_O\|$  получим

$$||F||^{2} \leqslant ||\mathbf{x}||^{2} \sum_{p=1}^{L+1} w_{\mathbf{T}}^{2L} \leqslant ||\mathbf{x}||^{2} (L+1) w_{\mathbf{T}}^{2L}.$$

$$||\mathbf{H}_{O}|| \leqslant ||\mathbf{Q}||^{2} ||\mathbf{F}||^{2} ||\mathbf{A}|| \leqslant \sqrt{2} ||\mathbf{x}||^{2} q^{2} (L+1) w_{\mathbf{T}}^{2L}.$$

# 8.3. Доказательство Теоремы 1

Доказательство. Ясно, что на основании Леммы 2, нам нужно доказать только 2 утверждения:

$$\left\| \mathbf{T}^{(p)} \right\|^2 \leqslant C^2 dk w^2,$$

$$\left\| \mathbf{Q}^{(p)} \right\|^2 \leqslant d^2.$$

В [19], легко видеть, что в  $\mathbf{T}^{(p)}$  каждый блок  $C_lC_{l-1}$  содержит  $d_{l-1}$  строки с ядром в правильном положении, которые приводят нас к

$$\left\|\mathbf{T}^{(p)}\right\|^2 \leqslant C^2 dk w^2.$$

Для доказательства второго неравенства снова обратимся к [19] и оцените норму вертикально сложенных матриц:

$$\frac{\partial \mathbf{T}^{(l)}}{\partial \mathbf{W}^{(l)}} =: \mathbf{Q}^{(l)} = \mathbf{I}_{C_l} \otimes \begin{pmatrix} \mathbf{I}_{C_{l-1}} \otimes (\pi_R^0 \mathbf{I}_{d_{l-1} \times k_l}) \\ \vdots \\ \mathbf{I}_{C_{l-1}} \otimes (\pi_R^{d_{l-1} - k_l} \mathbf{I}_{d_{l-1} \times k_l}) \end{pmatrix}.$$

$$\left\| \mathbf{Q}^{(l)} \right\| \leqslant \sum_{i=0}^{d_{l-1}-k_l} \left\| \pi_R^i \mathbf{I}_{d_{l-1} \times k_l} \right\| \leqslant \sum_{i=1}^{d_{l-1}-k_l} \left\| \pi_R \right\| = \sum_{i=0}^{d_{l-1}-k_l} 1 = d_{l-1} - k_l + 1 = d_l \leqslant d_1 = d.$$

### 8.4. Доказательство Теоремы 2

 $\mathcal{A}$ оказательство. из описания 4.2. мтарицы  $\mathbf{T}^{(p)}$  можно увидеть, что

$$\left\|\mathbf{T}_{i,*}^{(p)}\right\|^2 = \sum_{c,k,l}^{C_{p-1},k_p^1,k_p^2} |\mathbf{W}_{c,c_2,k,l}^{(p)}|^2.$$

И как очевидное следствие

$$\left\| \mathbf{T}^{(p)} \right\|_F^2 = \sum_{c_1, i, k, l}^{C_{p-1}, C_p n_p m_p, k_p^1, k_p^2} \left( \mathbf{W}_{c_1, c_2(i), k, l}^{(p)} \right)^2.$$
 (5)

Здесь мы предполагаем простое соответствие между выходным каналом  $c_2$  и i-й строкой  $\mathbf{T}^{(p)}$ .

По аналогии с доказательством 8.3., используя 2 нам нужно доказать 2 утверждения:

$$\left\| \mathbf{T}^{(p)} \right\| \leqslant C^2 k^2 w^2 m n.$$
$$\left\| \mathbf{Q}^{(p)} \right\| \leqslant C^2 k^2 m n.$$

Первоначально норма  $\mathbf{T}^{(p)}$  оценена:

$$\|\mathbf{T}^{(p)}\|^2 \le \|\mathbf{T}^{(p)}\|_F^2 \le |(5)| \le \sum_i Ck^2w^2 \le C^2k^2w^2mn.$$

Далее оценим норму производной слоя по параметрам.

$$\left\| \mathbf{Q}^{(p)} \right\| = \left\| \frac{\partial \mathbf{T}^{(p)}}{\partial \mathbf{W}^{(p)}} \right\|.$$

Как было сказано ранее, строка  $\mathbf{T}^{(p)}$  - это в точности  $vec_r(\mathbf{W}^{(p)}_{*,i,*,*})$  расположены в правильном порядке. Тогда норма строки равна:

 $\frac{\partial \mathbf{T}_{(i,j)}^{(p)}}{\partial \mathbf{W}_{c_1,c_2,k_1,k_2}^{(p)}} \neq 0 \iff$  индексы подобраны таким образом, что  $T_i^{(p)}$  соответствует  $c_2$  и в то же время  $\mathbf{T}_{i,j}^{(p)}$  соответствует  $c_1,k_1,k_2$  и это соответствие зависит от конкретной матрицы  $\mathbf{T}^{(p)}$ , но очевидно, что один i соответствует только одному  $c_2$ , потому что каждая строка участвует в формировании только одного элемента

одного канала. Так как только  $\mathbf{W}^{(p)}_{*,c_2,*,*}$  участвует в формировании одной строки  $\mathbf{T}^{(p)}_{i,*}$ , можно исправить i и соответственно $c_2$ , и в то же время мы знаем, что для каждого  $c_1, k_1, k_2$ , есть только один столбец j:  $\mathbf{T}^{(p)}_{i,j} = \mathbf{W}^{(p)}_{c_1,c_2,k_1,k_2}$ :

$$\sum_{j,c_1,k_1,k_2} \left( \frac{\partial \mathbf{T}_{i,j}^{(p)}}{\partial \mathbf{W}_{c_1,c_2,k_1,k_2}^{(p)}} \right)^2 =$$

$$\sum_{c_1,k_1,k_2} \sum_{j} \left( \frac{\partial \mathbf{T}_{i,j}^{(p)}}{\partial \mathbf{W}_{c_1,c_2,k_1,k_2}^{(p)}} \right)^2 =$$

$$= |_{\text{во внутренней сумме есть только один ненулевой член}| =$$

$$= \sum_{c_1,k_1,k_2} 1 = C_{p-1} k_p^1 k_p^2 \leqslant C k^2.$$

Рассмотрим норму Фробениуса как верхнюю границу спектральной нормы:

$$\begin{split} &\|\mathbf{Q}\|^{2} \leqslant \|\mathbf{Q}\|_{F}^{2} = \sum_{i,j,c_{1},c_{2},k_{1},k_{2}} \left(\frac{\partial \mathbf{T}_{i,j}^{(p)}}{\partial \mathbf{W}_{c_{1},c_{2},k_{1},k_{2}}^{(p)}}\right)^{2} = \\ &= \sum_{i,c_{2}} \sum_{j,c_{1},k_{1},k_{2}} \left(\frac{\partial \mathbf{T}_{i,j}^{(p)}}{\partial \mathbf{W}_{c_{1},c_{2},k_{1},k_{2}}^{(p)}}\right)^{2} = \\ &= |_{\text{оценили внутреннюю сумму ранее и только при соответствующих } i \text{ и } c_{2}| \leqslant \\ &\leqslant \sum_{i} Ck^{2} = CmnCk^{2} \leqslant C^{2}k^{2}mn. \end{split}$$

8.5. Доказательство Леммы 3

Доказательство. Используя обозначение  $\mathbf{M}^{(l)}$  для 2D-Мах-Рооl слоя Как и в случае со свертками, мы можем описать каждую строку  $\mathbf{M}^{(l)}$ : Прежде чем начать, рассмотрим некоторые свойства  $\mathbf{M}$ , то, что будет использоваться: Во-первых, что строка  $\mathbf{M}_{i*}$  соответствует определенному окну пула (элементам, охватываемым окном), и, как и второй, является тем столбцом  $\mathbf{M}_{*j}$  соответствует элементам, умноженным на j'й элемент входа.

Так как каждое окно покрывает только один элемент и два разных окна не

пересекаются, то в каждой строке находится только один элемент, таким образом

$$\|\mathbf{M}^{(l)}\| = \sqrt{\lambda_{max}(\mathbf{M}^{(l)^{\mathsf{T}}}\mathbf{M}^{(l)})} = 1,$$

так как  $(\mathbf{M}_{*,i}^{(l)}, \mathbf{M}_{*,j}^{(l)}) \neq 0 \iff (\mathbf{M}_{*,i}^{(l)}, \mathbf{M}_{*,j}^{(l)}) = 1 \iff i = j$  и і-й элемент — это максимум в соответствующем окне. Для простоты предположим, что  $\mathbf{M}^{(l)}$  уменьшает обе размерности в  $k_{\text{pool}}$  раз, аналогично 8.4. оценивается  $\mathbf{G}^{(p)}$  и  $\mathbf{R}^{(p-1)}$  компонента, однако, в соответствии с новым слоем.

$$\left\| \mathbf{G}^{(p)} \right\| \left\| \mathbf{R}^{(p-1)} \right\| \leqslant \frac{\prod_{i=1}^{L+1} \left\| T^{(i)} \right\|}{\left\| T^{(p)} \right\|} \leqslant (C^{2}k^{2}w^{2}mn)^{2L} \left( \frac{1}{k_{\text{pool}}^{2}} \right)^{L-l+2-I\{p-1\leqslant l\}} \leqslant (C^{2}k^{2}w^{2}mn)^{2L} \left( \frac{1}{k_{\text{pool}}^{2}} \right)^{L-l+2}.$$

Далее, получим

$$\|\mathbf{F}\|^{2} \leq \|\mathbf{x}\|^{2} (L+1) (k^{2} C^{2} w^{2} m n)^{(L)} \left(\frac{1}{k_{\text{pool}}^{2}}\right)^{L-l+2},$$

$$\|\mathbf{H}_{O}\| \leq \sqrt{2} \|\mathbf{x}^{2}\| q^{2} \left(\frac{1}{k_{\text{pool}}^{2}}\right)^{L-l+2} (L+1) (k^{2} C^{2} w^{2} m n)^{L},$$

где  $q^2 = mnC^2k^2$ .

# 8.6. Доказательство Леммы 4

 $\mathcal{\underline{A}}$ оказательство. Используя обозначение  $\mathbf{A}^{(l)}$ для 2D-Avg-Pool слоя Видно, что

$$(\mathbf{A}_{*,i}, \mathbf{A}_{*,j}) = \frac{1}{k_{\mathrm{pool}}^4} I\{\mathrm{i,\,j\,\,cootsetct}$$
вует одному и тому же окну.}

Чтобы достичь этого, рассмотрим формулу:

$$(\mathbf{A}_{*j}, \mathbf{A}_{*i}) = \sum_{k} \mathbf{A}_{ki} \mathbf{A}_{kj} = \sum_{k: \mathbf{A}_{ki} \neq 0, \mathbf{A}_{kj} \neq 0} \frac{1}{k_{\text{pool}}^4}.$$

После этого, применяя элементарные преобразования над строками и столбцами, приводим матрицу  $\mathbf{A}^{(p)^\mathsf{T}}\mathbf{A}^{(p)}$  в блочно-диагональную форму, где блоки соответствуют индексам в том же окне avg-pool. Каждый блок  $\mathbf{A}^{(p)^\mathsf{T}}\mathbf{A}^{(p)}$  - это  $\mathbf{B}_i = \frac{1}{k_\mathrm{pool}^2}\mathbf{1}\mathbf{1}^\mathsf{T}$ , где  $\mathbf{1} = \mathbf{1}_{k_\mathrm{pool}^2} \in \mathbb{R}^{k_\mathbf{A}^2}$  - вектор из едениц, и его норма  $\|\mathbf{B}_i\| = \frac{1}{k_\mathrm{pool}^2}\|\mathbf{1}\mathbf{1}^\mathsf{T}\| = \frac{1}{k_\mathrm{pool}}$ 

Норма блочно-диагональной матрицы (и норма матрицы, которая может быть приведена к этому виду) равна максимуму норм:

$$\|\mathbf{A}^{(p)}\| = \max_{i} \|\mathbf{B}_i\| = \frac{1}{k_{\text{pool}}},$$

потому, что  $\|\mathbf{A}^{(p)}\| \leqslant 1$ , мы можем полностью повторно использовать вычисления предыдущего доказательства и получить тот же результат.

### 8.7. Доказательство Леммы 5

*Доказательство*. Как и в предыдущих доказательствах, нам нужно оценить  $\|\mathbf{G}^{(p)}\|^2 \|\mathbf{R}^{(p-1)}\|^2$ .

Также известно, что  $\|T^{(L+1+p)}\|^2 \leqslant (h^2 \tilde{w}^2) \ \forall p=1,\ldots,P$  Тогда мы можем оценить

$$\left\| \mathbf{G}^{(p)} \right\|^2 \left\| \mathbf{R}^{(p-1)} \right\|^2 \leqslant (h^2 \tilde{w}^2)^P (k^2 C^2 w^2 m n)^L$$

Для  $p \leqslant L + 1$  и

$$\left\| \mathbf{G}^{(p)} \right\|^2 \left\| \mathbf{R}^{(p-1)} \right\|^2 \leqslant (h^2 \tilde{w}^2)^{P-1} (k^2 C^2 w^2 m n)^{L+1}$$

для  $p = L + 2, \dots, L + P + 1.$ 

Или в одной записи:

$$\left\| \mathbf{G}^{(p)} \right\|^2 \left\| \mathbf{R}^{(p-1)} \right\|^2 \le (h^2 \tilde{w}^2)^{P - I_{\{p > L+1\}}} (k^2 C^2 w^2 m n)^{L + I_{\{p > L+1\}}}.$$

А значит имеем:

$$||F||^{2} \leqslant \sum_{p=1}^{L+P+1} ||\mathbf{G}^{(p)}||^{2} ||\mathbf{R}^{(p-1)}||^{2} ||x||^{2} \leqslant (h^{2}\tilde{w}^{2})^{P} (k^{2}C^{2}w^{2}mn)^{L} (L+1+P\frac{h^{2}\tilde{w}^{2}}{k^{2}C^{2}w^{2}mn}).$$

И применяя этот результат к матрицы Гессе

$$\|\mathbf{H}_O\| \le \sqrt{2}W_x q^2 (h^2 \tilde{w}^2)^P (k^2 C^2 w^2 m n)^L \times (L + 1 + P \frac{h^2 \tilde{w}^2}{k^2 C^2 w^2 m n}).$$