1^{η} OMA Δ A

Σειρά Θέση

ΦΥΣ. 131 2^η Πρόοδος: 15-Νοεμβρίου-2008

Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας).

Ονοματεπώνυμο	Αριθμός ταυτότητας		

Η εξέταση αποτελείται από 2 μέρη.

Το πρώτο μέρος έχει 2 ασκήσεις (συνολικά 55 μονάδων) που θα πρέπει να λύσετε.

Το δεύτερο μέρος έχει 15 ασκήσεις/ερωτήσεις πολλαπλής επιλογής (συνολικά 45 μονάδων). Οι απαντήσεις στις ερωτήσεις αυτές θα πρέπει να αναγραφούν στο πίνακα που υπάρχει στην τελευταία σελίδα. Στο πίνακα αυτό σημειώστε με ένα X την απάντηση που θεωρείτε σωστή. Μόνο οι απαντήσεις που έχετε σημειώσει στο πίνακα θα βαθμολογηθούν.

Προσπαθήστε να δείξετε την σκέψη σας και να εξηγήσετε όσο το δυνατόν πιο καθαρά για ποιό λόγο κάνετε ότι γράφετε. Γράψτε καθαρά διαγράμματα με δυνάμεις, ταχύτητες, επιταχύνσεις.

ΑΠΑΓΟΡΕΥΕΤΑΙ ΟΠΟΙΟΔΗΠΟΤΕ ΕΙΔΟΣ ΣΥΝΕΡΓΑΣΙΑΣ ΟΠΩΣ ΕΠΙΣΗΣ ΧΡΗΣΗ ΣΗΜΕΙΩΣΕΩΝ, ΒΙΒΛΙΩΝ, ΚΙΝΗΤΩΝ Η ΟΤΙΔΗΠΟΤΕ ΑΛΛΟ.

ΧΡΗΣΙΜΟΠΟΙΕΙΣΤΕ ΜΌΝΟ ΤΙΣ ΣΕΛΙΔΕΣ ΠΟΥ ΣΑΣ ΔΙΝΟΝΤΑΙ ΚΑΙ ΜΗΝ ΚΟΨΕΤΕ ΟΠΟΙΑΔΗΠΟΤΕ ΣΕΛΙΔΑ

Η διάρκεια της εξέτασης είναι 2 ώρες. Καλή Επιτυχία!

Τύποι που μπορεί να φανούν χρήσιμοι

Γραμμική κίνηση:

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Στροφική κίνηση:

1περιστροφή = 360° = 2π ακτίνια

$$\theta = \frac{s}{s}$$

$$\overline{\omega} = \frac{\Delta \theta}{\Delta t}, \quad \overline{\alpha} = \frac{\Delta \omega}{\Delta t}$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

$$\vec{v}_{\varepsilon \omega} = \vec{\omega} \times \vec{r}$$
 $v_{\varepsilon \omega} = \omega R$

$$\vec{\alpha}_{\gamma\omega\nu} = \frac{d\vec{\omega}}{dt}$$
 $\vec{a}_{\varepsilon\varphi} = \vec{\alpha} \times \vec{r} \Rightarrow |a_{\varepsilon\varphi}| = \alpha R$

$$\vec{a}_{\kappa \epsilon \nu \tau \rho} = \vec{\omega} \times \vec{v} \Rightarrow \left| \vec{a}_{\kappa \epsilon \nu \tau \rho} \right| = \frac{v_{\epsilon \phi}^2}{R} = \omega^2 R$$

$$\vec{a}_{\text{уроц}} = \vec{a}_{\text{кеvtр.}} + \vec{a}_{\text{ep}} = \vec{\alpha} \times \vec{r} + \vec{\omega} \times \vec{v}$$

$$T = \frac{1}{f} = \frac{2\pi R}{v_{\epsilon\phi}}$$

Περιστροφή σώματος:

$$I = \sum_{i} m_{i} r_{i}^{2}$$

$$E_{\kappa i \nu}^{\pi \epsilon \rho i \sigma \tau \rho o \phi i \kappa \eta} = \frac{1}{2} I \omega^2$$

$$\vec{\tau} = \vec{r} \times \vec{F} = |\vec{r}| |\vec{F}| \sin \theta = I\alpha$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\vec{L} = I\vec{\omega}$$

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

Απομονωμένο σύστημα: $\vec{L}_i = \vec{L}_f$

Έργο – Ενέργεια:

Έργο σταθερή δύναμης: $W = \vec{F} \cdot \vec{s}$

Έργο μεταβαλλόμενης δύναμης: $W = \int \vec{F} \cdot d\vec{s}$

$$\vec{F} = -\frac{dU}{d\vec{r}}$$

$$\Delta U = -\int_{r}^{r_f} \vec{F} \cdot d\vec{r}$$

$$U_{\varepsilon\lambda} = \frac{1}{2}kx^2$$

$$U_g = mgh \text{ (h<$$

$$W = \Delta E_{\kappa \iota \nu}$$

 $W = -\Delta U$ (για συντηρητικές δυνάμεις)

$$E_{\mu\eta\gamma} = E_{\kappa\nu} + U$$

$$E_{\kappa \nu} = \frac{1}{2} m v^2$$

 $W = \Delta E_{\mu\eta\chi}$ (για μη συντηρητικές δυνάμεις)

$$\vec{F}_{\varepsilon\lambda} = -k\vec{x}$$

$$P = \frac{\Delta W}{\Delta t} = \frac{\Delta E}{\Delta t} \quad \text{kat} \quad P = \vec{F} \cdot \vec{v}$$

Ορμή – Ώθηση - Κρούσεις:

$$\vec{p}=m\vec{v}$$

$$\Omega$$
θηση: $\vec{I} = \int \vec{F} dt = \Delta \vec{p}$

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t}$$

Απομονωμένο σύστημα: $\vec{p}_i = \vec{p}_f$

Ελαστική κρούση: $\Delta \vec{p} = 0$, $\Delta E = 0$

Μη ελαστική κρούση: $\Delta \vec{p} = 0$, $\Delta E \neq 0$

Ελαστική κρούση σε 1-Δ: $\vec{v}_1 - \vec{v}_2 = -(\vec{v}_1' - \vec{v}_2')$

$$x_{CM} = \frac{1}{M_{cl}} \sum_{i} mx_{i}$$
 (κέντρο μάζας)

$$\vec{v}_{CM} = \frac{1}{M_{\odot}} \sum_{i} m v_{i}$$
 (ταχύτητα κέντρου μάζας)

$$\sum \vec{F}_{e\xi} = M\vec{a}_{CM}$$
 (δύναμη – επιτάχυνση CM

ΠΡΩΤΟ ΜΕΡΟΣ – ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ (2 ΣΥΝΟΛΙΚΑ)

- 1. [25π] Ένα τούβλο μάζας M=1kg και πάχους Δx=0.1m βρίσκεται ακίνητο στην κορυφή ενός
 - κεκλιμένου επιπέδου κλίσης 20° με την οριζόντια διεύθυνση. Μια σφαίρα μάζας m=5gr η οποία κινείται παράλληλα προς το κεκλιμένο επίπεδο με ταχύτητα υ=300m/s χτυπά το τούβλο, το διαπερνά και εξέρχεται έχοντας χάσει το 75% της αρχικής κινητικής της ενέργειας.
 - (α) Ποια είναι η ταχύτητα του τούβλου ακριβώς τη στιγμή που η σφαίρα εξέρχεται από αυτό. (Υποθέστε ότι η σφαίρα και το τούβλο δεν αλλάζουν μάζα) [10π]

- (β) Ποια είναι η μέση δύναμη που ασκείται στην σφαίρα καθώς διαπερνά το τούβλο; [7π]
- (γ) Αν το τούβλο κατόπιν γλυστρά κατά s=50m προς τη βάση του κεκλιμένου επιπέδου πριν σταματήσει, ποιος είναι ο συντελεστής της κινητικής τριβής μεταξύ του τούβλου και της επιφάνειας του επιπέδου; $[8\pi]$

- **2.** [30π] Θεωρήστε μια ομοιόμορφη ράβδο μάζας m και μήκους l στο άκρο της οποίας είναι
 - κολημένη μια σφαίρα μπάλα επίσης μάζας m. Το άλλο άκρο της ράβδου, O, είναι στερεωμένο σε λείο άξονα ο οποίος είναι κάθετος στη ράβδο. Αρχικά η ράβδος είναι ακίνητη στη κατακόρυφη θέση πάνω από το σημείο στήριξης και αρχίζει να πέφτει όπως φαίνεται στο σχήμα. (Σημειώστε ότι η ροπή αδράνειας μιας ομοιόμορφης ράβδου μάζας M και μήκους L ως προς άξονα που περνά από το κέντρο μάζας της είναι $I_{CM} = ML^2/12$).

- (α) Να βρεθεί η γωνιακή επιτάχυνση της ράβδου καθώς περνά από την οριζόντια θέση (για παράδειγμα το σημείο Α του σχήματος). [8π]
- (β) Να βρεθεί η γωνιακή ταχύτητα της ράβδου καθώς περνά από την κατακόρυφη θέση (για παράδειγμα το σημείο B του σχήματος). [8π]
- (γ) Αν τη στιγμή που το σύστημα ράβδου-μπάλας περνά από το σημείο B η μπάλα ξεκολήσει από τη ράβδο ποια είναι η μέγιστη τιμή που μπορούσε να έχει ο δεσμός της κόλας που κρατούσε τη μπάλα στη ράβδο; [6π]
- (δ) Ενώ η μπάλα έχει ξεκολήσει η ράβδος εξακολουθεί να κινείται. Σε ποια γωνία ως προς την οριζόντια διεύθυνση η ράβδος έρχεται στιγμιαία σε ηρεμία; [8π]

ΔΕΥΤΕΡΟ ΜΕΡΟΣ – ΑΣΚΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ (15 ΣΥΝΟΛΙΚΑ)

1. Ένα αντικείμενο κινείται από το σημείο Α στο σημείο Β πάνω σε ένα ημικύκλιο όπως στο Θεωρείστε τις ακόλουθες συντηρητικές δυνάμεις: (α) η F₁ έχει κατεύθυνση προς το βορρά (β) η F_2 έχει κατεύθυνση προς ανατολή και (γ) η F_3 έχει κατεύθυνση προς το κέντρο του ημικυκλίου. Αν το μέτρο των τριων δυνάμεων είναι το ίδιο ποια από τις τρεις δυνάμεις παράγει το περισσότερο έργο στο σώμα καθώς αυτό μετακινείται από το σημείο Α στο σημείο Β; [3π]

(A) W_{F_1} (B) W_{F_2} (C) W_{F_3} (A) $W_{F_2} = W_{F_3}$ (E) $W_{F_1} = W_{F_2} = W_{F_3}$

2. Συγκρίνετε το έργο που χρειάζεται για να συμπιέσετε ένα ελατήριο από τη θέση ισορροπίας του (φυσικό του μήκος) κατά μια απόσταση χ και αυτό που απαιτείται για να συμπιέσετε το ίδιο ελατήριο από τη θέση x στη θέση 2x. [3π]

(A) $W_2 = 4W_1$ (B) $W_2 = 3W_1$ (Γ) $W_2 = 2W_1$ (Δ) $W_2 = W_1$ (E) $W_2 = W_1/2$

- 3. Που βρίσκεται το κέντρο μάζας στο σύστημα των δίσκων ως προς το σύστημα συντεταγμένων του σχήματος; Όλοι οι δίσκοι έχουν μάζα Μ και ακτίνα R. [3π]
 - $(\mathbf{A}) \mathbf{x}_{\mathrm{cm}} = 0$ $y_{cm} = 2R$
 - (B) $x_{cm} = R$ $y_{cm} = R$
 - $(\Gamma) x_{cm} = R/2$ $y_{cm} = R$
 - (Δ) $x_{cm} = R/3$ $y_{cm} = 5R/3$
 - (E) $x_{cm} = 2R/3$ $y_{cm} = 2R$

4. Ένα αυτοκίνητο μάζας 750Kg το οποίο κινείται με ταχύτητα υ_{αυτ}=60Km/h συγκρούεται με ακίνητο φορτηγό μάζας 1500Kg. Ποιος είναι ο λόγος του μέτρου της μεταβολής της ορμής του αυτοκινήτου ως προς το μέτρο της μεταβολής της ορμής του φορτηγού; [3π]

(A) 2/3

(B) 1.0

 $(\Gamma) \ 3/2 \qquad (\Delta) \ 2.0$

(Ε) Ελλειπή στοιχεία

5. Μια μικρή μπάλα γλυστρά προς το κάτω μέρος μιας τσουλήθρας σχήματος τεταρτημορίου ακτίνας R όπως στο σγήμα. Αν η μπάλα αφήνεται να πέσει από ύψος 2R πάνω από την οριζόντια επιφάνεια, ποια είναι η συνολική οριζόντια διαδρομή που κάλυψε από το σημείο που αφέθηκε ελεύθερη μέχρι το σημείο που χτύπησε στο έδαφος; [3π]

- (A) 4R
- **(B)** 3*R*
- (Γ) 2R
- $(\Delta) \frac{5R}{2}$
- Σώμα Α μάζας m_A κινείται με ταχύτητα υ_A πάνω σε λεία επιφάνεια. Σε ποιες από τις ακόλουθες περιπτώσεις συγκρούσεων η ώθηση που δίνεται στη μάζα Α είναι η μέγιστη; [3π]
 - (i) Η μάζα Α συγκρούεται ελαστικά με ακίνητη μάζα m_B όπου m_B < m_A.
 - (ii) Η μάζα Α συγκρούεται ελαστικά με ακίνητη μάζα m_C όπου $m_C = m_A$.
 - (iii) Η μάζα Α συγκρούεται ελαστικά με ακίνητη μάζα m_D, όπου m_D > m_A.
 - (Α) Μη επαρκή στοιγεία
 - (B) Περίπτωση (i)
 - (Γ) Περίπτωση (ii)
 - (Δ) Περίπτωση (iii)
 - (Ε) Σε όλες τις περιπτώσεις η ώθηση που δέχεται η μάζα Α είναι ίδια.
- Ένα άτομο μάζας m στέκεται ακίνητο πάνω σε μια πλατφόρμα τρένου μάζας Μ που κινείται με ταχύτητα ν προς τα δεξιά πάνω σε λεία και ευθύγραμμη σιδηροτροχιά. Το άτομο αρχίζει να τρέχει προς τα αριστερά με σταθερή ταγύτητα υ ως προς το βαγόνι. Ποια είναι η ταχύτητα του ατόμου ως προς το έδαφος; [3π]

(A)
$$v + \frac{Mu}{m+M}$$

(B)
$$u + \frac{Mv}{m+M}$$

$$(\Gamma) v - \frac{m\iota}{M}$$

$$(\Delta) \quad \text{v} - \frac{Mu}{m+M}$$

(A)
$$v + \frac{Mu}{m+M}$$
 (B) $u + \frac{Mv}{m+M}$ (Γ) $v - \frac{mu}{M}$ (Δ) $v - \frac{Mu}{m+M}$ (E) $u + \frac{mv}{m+M}$

- Ένα σώμα μάζας m το οποίο κινείται με ταχύτητα υ₀ προς τα δεξιά πάνω σε λεία επιφάνεια ξαφνικά εκρήγνυται σε δυο κομμάτια. Κατόπιν το ένα κομάτι μάζας 2m/5 κινείται με ταχύτητα υ₀/2 προς τα αριστερά. Ποια η ταχύτητα του δεύτερου κοματιού; [3π]
- (A) $\frac{v_0}{2}$ (B) $\frac{v_0}{3}$ (Γ) $\frac{7v_0}{5}$ (Δ) $\frac{3v_0}{2}$
- (E) $2v_0$

9. Μια μπάλα κινείται οριζόντια με ταχύτητα \vec{v}_i όπως στο σχήμα. Ξαφνικά τη χτυπά ένα ξύλο και καθώς αφήνει την επιφάνεια του ξύλου κινείται κάθετα ως προς την αρχική της διεύθυνση με ταχύτητα \vec{v}_{t} της οποίας το μέτρο είναι μικρότερο από το μέτρο της

ταχύτητας \vec{v}_i . Ποια η διεύθυνση της δύναμης που ασκεί το ξύλο στη μπάλα; $[3\pi]$

10. Δυο σώματα ίδιας μάζας \mathbf{m} κινούνται με την ίδια ταχύτητα \mathbf{v}_0 σε ευθύγραμμες τροχιές που σχηματίζουν γωνία 30° με την οριζόντια διεύθυνση, όπως στο σχήμα. Τα δυο σώματα συγκρούονται και μετά την σύγκρουση η οποία είναι τέλεια πλαστική κινούνται μαζί. Ποιο

είναι το μέτρο της ταχύτητας του συστήματος των δυο μαζών μετά την κρούση; [3π]

- (A) $\frac{v_0}{2}$ (B) $\frac{v_0}{4}$ (C) $\frac{\sqrt{2}}{2}v_0$ (A) $\frac{\sqrt{3}}{2}v_0$ (E) v_0
- Μια μάζα είναι εξαρτημένη με ένα νήμα από ένα κυλινδρικό πάσαλο ακτίνας R. Η απόστασή της από το κέντρο του πασάλου είναι d και αρχικά κινείται με εφαπτομενική ταχύτητα υ0 σε λεία επιφάνεια. Το νήμα τυλίγεται γύρω από την εξωτερική επιφάνεια του πασάλου. Ποια είναι η τελική ταχύτητα της μάζας όταν φθάνει στο πάσαλο; [3π]
- $(\mathbf{A}) \left(\frac{d}{R} \right) v_0 \qquad (\mathbf{B}) \left(\frac{R}{d} \right) v_0 \qquad (\mathbf{\Gamma}) \sqrt{\left(\frac{d}{R} \right)} v_0 \qquad (\mathbf{\Delta}) \sqrt{\left(\frac{R}{d} \right)} v_0 \qquad (\mathbf{E}) \ v_0$
- 12. Ποια είναι η ολική στροφορμή γύρω από την αρχή Ο για το παρακάτω σύστημα μαζών; $[3\pi]$

 - (A) $24Kg \cdot m/s$ (B) $12Kg \cdot m/s$ (Γ) $8Kg \cdot m/s$ (Δ) $0Kg \cdot m/s$ (E) $-12Kg \cdot m/s$

13. Μια μπάλα κυλά χωρίς να γλυστρά πάνω στο έδαφος. Αν το κέντρο της μπάλας κινείται με ταχύτητα 3m/s ως προς το έδαφος τότε ποια είναι η ταχύτητα του σημείου P (πιο μπροστινό σημείο της μπάλας); [3π]

- (A) $0.0 \, m/s$ (B) $\frac{3}{2} \, m/s$ (C) $3 \, m/s$ (A) $3 \sqrt{2} \, m/s$ (E) $6 \, m/s$

- **14.** Ένα τούβλο μάζας 16Kg είναι εξαρτημένο από σχοινί το οποίο είναι τυλιγμένο γύρω από τροχαλία διαμέτρου 0.40m η οποία κρέμεται κατακόρυφα από την οροφή, όπως δείχνει το σχήμα. Η ροπή αδράνειας της τροχαλίας είναι $0.50 {\rm Kg \cdot m}^2$. Το τούβλο αφήνεται ελεύθερο να πέσει και το σχοινί ξετυλίγεται. Ποια είναι επιτάχυνση του τούβλου; [3π]

- (A) 0.15g
- (B)0.56g
- (Γ) 0.84g
- (Δ) g
- **(E)** 1.3g
- 15. Ένα νήμα είναι τυλιγμένο στη περιφέρεια ενός yo-yo ακτίνας 5.0cm το οποίο μπορεί να περιστρέφεται γύρω από άξονα που περνά από το κέντρο του. Το νήμα αρχίζει να τραβιέται ευθύγραμμα με σταθερό ρυθμό 10.0cm/s ενώ δε γλυστρά πάνω στο κύλινδρο. Η αλλαγή της επιτάχυνσης κάθε στοιχειώδους τμήματος του νήματος που αφήνει το κύλινδρο είναι: [3π]

 - (A) $0 m/s^2$ (B) $0.010 m/s^2$ (C) $0.020 m/s^2$ (A) $0.10 m/s^2$ (E) $0.20 m/s^2$

Ονοματεπώνυμο: Ομάδα:Α

Άσκηση	A	В	Γ	Δ	Е
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					