郑州防空兵学院电子教研室 魏银库 陈建国 狄国伟

256 级灰度 LED 点阵屏显示原理 及基于 FPGA 的电路设计

摘要:本文提出了一种LED点阵屏实现256级灰度显示的新方法。详细分析了其工作原理。并依据其原理,设计出了基于FPGA的控制电路。

关键词:256级灰度; LED 点阵屏; FPGA; 电路设计

引言

256级灰度 LED 点阵屏在很多 领域越来越显示出其广阔的应用前景,本文提出一种新的控制方式,即逐位分时控制方式。随着大规模可编程逻辑器件的出现,由纯硬件完成的高速、复杂控制成为可能。

逐位分时点亮工作原理

所谓逐位分时点亮 即从一个字节数据中依次提取出一位数据, 分8次点亮对应的像素,每一位对 应的每一次点亮时间与关断时间的 时的不同点亮时间。由表2可知:数据每增1,点亮时间增加T/128。根据点亮时间与亮度基本为线性关系的原理,从0~255T/128的点亮时间则对应256级亮度。当然,这个亮度是时间上的累加效果。如果把一个LED点阵屏所有像素对应的同一数据位点亮一遍称为一场的话,那么8位数据共需8场显示完,称为"8场原理"。

理论上讲 8场即可显示出256 级灰度 然而通过表2可看出 即使数据为FFH时,在8T时间内也只是

点亮了255T/128时间。关断时间可接近6T,点亮时间仅为总时间的约25%,因此,8场原理虽也能实现256级灰度显示,但亮度损失太大。为了提高亮度,可采用"19场原理",即8位数据分19场显示完,其中D7位数据连续显示8场,D6位连续显示4场,依次递减。表3列出了各位的点亮与关断时间。

由表 3 可推导出数据从 00H~FFH范围的总点亮时间,如表 4所示。在19T时间内,最大点亮时间可达近16T,占总时间的84.21%.

占空比不同。如果点亮 **表 I 数据位点亮与关断的时间分配**

口工儿小问。如未从兄
时间从低位到高位依
次递增 则合成的点亮
时间将会有256种组
合。定义点亮时间加上
关断时间为一个时间
单位,设为T。表1列
出了每一位的点亮与
关断的时间分配。

如果定义数据位 "1"有效(点亮),"0" 无效(熄灭),则表2列 出了数据从00H到FFH

数据位	点亮时间	关断时间	急时间
Ð0	T/128	T-T/128	T
DI	T)64	T-T/64	Ť
D2	T/32	T-T/32	Ť
D3	T/16	T-/16	Ţ
D4	7/8	T-T/8	T
D 5	T/4	T-T/4	T
Ďб	T/2	T-T/2	Ţ
D7	Ī	0	T

表 3 分 19 场显示时各位的点亮与关断时间。

数据位	点壳时间	关断时间	总时间。
D7	8T	0	87
D6	4T	0	4T
D5	2T	ū	21
D4	T	0	1
D3	TQ	T/2	T
D2	T/4	3T/4	Ţ
D1	T/8	7T/8	T
D0	T/16	15T/16	T

表 2 00H 到 FFH 时的不同点亮时间

数据	点壳时间	关断时间	总时间
90H	G	8T	8T
01H	T/128	8T-T/128	81
02H	2T/128	8T-2T/128	87
93H	3T/128	8T-3T/128	. 8 <u>T</u>
	:	:	:
1	:	:	:
FFH	255T/128	8T-255T/128	8T
	L	·	

表4 19 场显示时 00H~FFH 范围的总点亮时间

数据	点亮时间	总时间
OOH	0	191
01H	T/16	191
02H	21/16	19T
03H	3T/16	19 T
:	:	
:	:	:
FFH	- 255T/16	19T
	00H 01H 02H 03H	00H 0 01H T/16 02H 2T/16 03H 3T/16

远大于"8场原理"的25%。数据每增1,点亮时间增加了T/16,该值大于"8场原理"的T/128。所以,"19场原理"较"8场原理"的对比度更明显,图像层次分明、表现力强。

电路设计

256级灰度 LED 点阵屏通常要 具有能远程同步实时显示计算机视 频信号的功能,涉及到的电路包 括:数字视频信号的采集、数字信 号的格式转换及非线性校正、远程 传输及接收、灰度显示控制电路、 LED 点阵显示电路等。本文重点讨 论'灰度显示控制电路'的设计 控 制对象以红、绿双基色LED 点阵屏、 1/16扫描显示电路为例。FPGA内部 电路如图1所示。

因为被控对象为1/16扫描显示 电路 所以显示屏每16行只需要一 路数据信号即可。DR_{aut1}、 DG_{aut1}即 为第一个16行的红、 绿基色输出信号; DR_{out2}、DG_{out2}为第2 个16行的红、绿基色 输出信号。以此类 推。

H_a、H_b、H_c、H_d 的二进制编码 定义 当前的数据输出应是 16行中的哪一行。CP 信号为数据串行输出 的同步移位脉冲。E 信号为一行串行数据 输出结束后的锁存脉 冲,LE每有效一次, H_a、H_b、H_d二进 制编码状态增1。EA 为灰度控制信号 其

宽度为在一个时间单位T内LED的点亮时间。当然,不同的数据位其宽度不同,具体由表3决定。一个时间单位T即一行串行数据的传输时间,也即LE信号的周期,其大小取决于屏宽的像素点数量和CP信号的频率。

DR_{in1-8}和 DG_{in1-8}为红、绿数据输入信号,分别对应第1个16行点阵区到第8个16行点阵区。C_{pin}为同步脉冲,一个脉冲对应一位数据,8个脉冲对应一个像素点的8位数据输入。H信号为行同步脉冲,一行数据输入结束,H信号有效一次。V为帧同步脉冲,一帧(16行)数据输入结束,V信号有效一次。上述信号均为前级系统提供的信号。

FPGA 外部接有两组高速静态 RAM(图中未画出), DR_{A1-8}、DG_{A1-8} 为 A 组 R A M 的红、绿数据线, DR_{B1-8}、DG_{B1-8}为 B 组 RAM 的红、绿 数据线;/WRA、/RDA 为 A 组的读、 写控制信号,/WRB、/RDB为B组的读、写控制信号;A_{A0-16}为A组的地址线,A_{B0-16}为B组的地址线。使用两组RAM的目的是保证对RAM的读写操作能同时进行。当写RAM(A)时,读RAM(B);当写RAM(B)时,读RAM(A)。二者的写/读切换由帧信号V控制。V每有效一次就进行一次切换。

C_{pin}为前级系统提供的写脉冲,同时亦作为写地址生成电路的计数脉冲,计数地址范围为A0~A16,共128K字节,其中A0~A2为灰度位数据地址(决定访问8位的哪一位)。A3~A12为X方向的像素地址,即行地址。H信号到来时,清零A0~A12,同时A13~A16地址加1。V信号到来时,A0~A12及A13~A16全部清零。上述地址作为RAM的写地址。

CLK为读地址生成电路计数脉 冲(外电路提供) 计数地址范围亦 为 A0~A16, 共 128K 字节, 其中 A0~A9 为 X 方向的像素地址, A10~A13为Y方向的像素地址,即 行地址。A14~A16为灰度位数据地 址。上述地址 作为RAM的读地址, 这些地址的变化规律应符合"19场 原理 '对地址要求的变化规律 即: A0~A9计满后清零 ,产生一个行信 号即LE信号。LE信号作为A10~A13 的计数脉冲 A10~A13计满后清零, 产生一个场信号。场信号作为 A14~A16的计数脉冲。不过, A14~A16并不是一简单的二进制计 数 其规律如表5所示。为了能正确 地读取写到RAM中的数据,生成的 读地址应按表6所示的方法与RAM 连接。 (58)

求。用Synario软件设计驱动电路 时,可以采用原理图、ABEL-HDL 等多种方式。设计 CCD 驱动电路 时 先将系统划分为不同的功能模 块 功能复杂的模块均采用硬件描 述语言设计。因为应用时只需根据 具体 CCD 器件的要求修改积分时 间等参数即可 如果采用原理图则 需修改连接线路。

结语

CCD驱动电路一般有四种设计 方法 分别为存储器驱动、IC驱动、

单片机驱动、以及可编程逻辑器件 驱动。采用ispLSI器件设计CCD时 序发生器 使得电路由原来复杂的 设计变成主要只用一片 ispLSI1016 来实现。独立的单元测试与系统联 调结果均表明:采用ISP技术实现 CCD时序发生器,提高了系统的集 成度;系统抗干扰能力和稳定性也 增强了;同时还使设计与调试周期 缩短至小时数量级。

参考文献

1 杨晖,张凤言,大规模可编程

逻辑器件与数字系统设计[M].北 京航天航空大学出版社 ,1998

2 曾晓洋 ,郝志航 .在系统可 编程(ISP)技术及其器件[J] 光学精 密工程.1998.

3 日本东芝公司线阵CCD数据 手册[Z].1997

作者简介:

张智辉 北京邮电大学信息工 程学院博士。主要从事信息安全、 信号检测技术的研究。

452 读写控制电路的作用是 向两组RAM提供读写控制信号,逻 辑关系如表7所示。数据输入/输出 电路的作用是切换数据的传输方 向,如表8所示。

帧切换电路的作用是产生上述 电路所需要的切换信号S。实现的 方法是 帧同步脉冲/每有效一次, S的逻辑状态翻转一次。帧切换电 路保证了两组 RAM 随 V 信号不断 进行读写转换。

灰度信号生成电路产生被控对 象需要的 EA 信号, 它随读地址 A14、A15、A16的状态而变化。逻 辑关系如表9所示。

依据帧周期T₀=20ms,一帧=19 场原理,可得如下计算结果: 场周 期 T_v=T_v/19=1.05ms; 行周期 T=T_v/ 16=66μs; 输出移位脉冲周期T_m=T/ 1024=64ns;输出移位脉冲频率f_m=1/ T_{cn}=15.6MHz。CLK信号频率 f_{clk}=f_m=15.6MHz; 实际应用时 选取 CLK时钟信号频率为 16MHz。

在MAX PLUSII10.0环境下,使 用图形和硬件描述语言完成了以上

表 5 A 14~A 16 计数规律

场计数	Al6	A15	A14	
0	0	0	- 0	
i	Û	0	1	
2	Đ	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	i	
6	1	0	i	
7	1	1	0	
8	1	1	Û	
	1	1	0	
10	1	1	Ó	
11	1	1	ī	
12	1	1	1	
13	1	1		
14	1	1	1	
15	1	1	í	
16 17	1	1	1	
	1	1	i	
18 1		1	1	

电路的设计。

表6 读地址与RAM 连接方法

1	读地址	RAM 地址	备注
[A14A16	A0A2	灰度位数据地址
-	QA0A	A3A12	列地址
I	A10A13	A13A16	行地址

表 7 读写控制信号逻辑关系

S	/WRA	/RDA	AWRB	/RDB
0	CPin	t	i .	C
1	1	0	CPin	1

表8数据传输方向的切换

S	RAM(A)数据方向	RAM(B)数据方向
0	DRin18→DRAI8	DRB18→DRouti8
L	DGin18→DGA18	DGB18→DGout18
1	DRA18→DRout18	DRin18 → DRB18
	DGA18 →DGout18	DGm18→DGB18

表9 EA 信号逻辑关系

地址	000	001	010	011	100	101	110	111
EA	T/16	T/8	T/4	T/2	Ţ	T	T	T

FPGA 选型及仿真结果

由图1可知,FPGA必须提供 113个I/0引脚,内部资源、工作频 率须满足电路设计要求。采用 Altera 公司的ACEX1K 系列 EP1K10QC208-3 芯片,该 FPGA 芯 片速度高、价位低、有114个I/0引 脚 576个逻辑宏单元 ,可兼容输入 输出电路的TTL电平。仿真结果报 告: 引脚利用率达99%,内部逻辑

单元利用率达85%,达到了充分利 用资源、提高性价比的目的。

参考文献

1 宋万杰. CPLD 技术及应用 [M]. 西安. 西安电子科技大学出版 社,1999

作者简介:

魏银库 郑州防空兵学院电子 教研室主任,硕士生导师。研究方 向为计算机的嵌入式应用技术。