COL 351 Lecture 15 2023/02/13

Topic: Greedy Algorithms

(and how to design correct

greedy algorithms)

Input: Set of intervals [x1141] 1---, [xn14n]

Output: Size of the largest subset of pairwise

non-overlapping intervals.

Claim: Let [2*,y*] be an interval which starts latest. Then there exists on opticallon which includes [2*,y*].

Proof: Any interval [x,y] which intersects $[x^*,y^*]$ must satisfy $x \le x^*$, and $y \ge x^*$.

Suppose OPT is any optimum solution.

If [x*,y*] e OPT -> proved

Else: $[x^*, y^*]$ can intersed ≤ 1 interval in OPT.

(every interval in OPT that intersects $[x^*,y^*]$ must contain x^* . : ≤ 1 such interval)

Include [xt,yt] in OPT and remove the < 1 interceding interval to get a solution that is no worse than OPT.

Algorithm

- 1. Include an interval I which starts latest.
- 2. Discard all intervals intersecting with I.
- 3. Recurse on the nest.

In put: Set of njobs. Pi: processing time of ith job

Outpur: Order the jobs so that the total waiting time of jobs is minimised.

Minimise S; Wi

3	14	27		91	100	18	23
3	14	27	100	91		18	23

$$\Delta W_i = 0 \quad \forall i \neq 91,100$$

Claim: In every opt ordering, every pair of consecutive jobs should be such that the processing time of carlier job \le processing time of later job.

Proof: Suppose j is immediately after i, but Pj<Pi. Exchange the position of i, j.

The waiting time of no other job changes. $\Delta Wi = Pj$ $\Delta Wj = -Pi$. Δ total waiting time = Pj-Pi' $\Delta Wi = Pj$ $\Delta Wj = -Pi$. $\Delta Vi = Pj-Pi'$

Greedy algorithm: Sort jobs in inc. order of processing times

Input: n divisible objects; W: capacity of knapsack pi: price of ith object wir: weight of ith object.

Output: Pick fraction x_i of object i such that total weight $\leq W$, total profit is max. i.e. $x_1, \dots, x_n \leq W$

 $x \in [0,1] \forall i, \max \sum_{i} p_i x_i$

Suppose $x_i^* - \dots + x_n^*$ is optimum solution. $\therefore \sum_i w_i x_i^* = W$ Suppose $x_i^* > 0$ and $x_j^* < 1$

Remove 8; amount of i, add Sj amount of j' $S_i \leq x_i^*$ $S_j \leq 1-x_j^*$, $w_j S_j = w_i S_i$

△ profit = - Pi Si + Pj Sj : Exchange profitable iff Pj Sj > Pi Si.