Week 4 tutorial

Question #1

a) How do you write the number 78 as an 8-bit binary number?

b) What is the two's complement of 01101101?

10010011

c) What is the sum of 01101101 and 01101101?

 $1101\overline{1010}$

Question #2

• What groupings are in the K-map on the right?

	<u>C</u> · <u>D</u>	C · <u>D</u>	C ·D	<u>C</u> ∙D
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$	1	1	X	1
A·B	X	0	X	1
A·B	1	X	X	1
Ā·B	1	X	0	X

What logic equations do these groupings represent?

$$\overline{A} \cdot \overline{B} + \overline{C}$$

Question #3

Step 1: What is the half adder logic equation?

$$\mathbf{C} = \mathbf{X} \cdot \mathbf{Y}$$
 $\mathbf{S} = \mathbf{X} \cdot \overline{\mathbf{Y}} + \overline{\mathbf{X}} \cdot \mathbf{Y}$ $= \mathbf{X} \oplus \mathbf{Y}$

Step 2: Equivalent Verilog components.

```
assign C = X & Y;
assign S = X & ~Y | ~X & Y;
```

Question #3 (cont'd)

Step 3: What is the complete Verilog code for this device?


```
module half_adder(X, Y, C, S);
  input X, Y;
  output C, S;

assign C = X & Y;
  assign S = X & ~Y | ~X & Y;
endmodule
```