Christian Mendl and Irene López Gutiérrez

11 February 2020

Last name, first name, signature:

I

Matrikelnummer:

Notes:

- Allocated time: 90 minutes
- Permitted material: one A4 sheet (both sides) with your own notes
- Write your name on each sheet!
- Please use the back side if you run out of space
- The maximum number of points is the same for all problems

Problem	1	2	3	\sum
Points				

Problem 1

(a) Recall that the rotation operator R_{x} is defined as

$$R_x(\theta) = \mathrm{e}^{-i\theta X/2} = \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \quad \text{for } \theta \in \mathbb{R}.$$

Compute the eigenvalues of $R_x(\theta)$ and of the controlled- $R_x(\theta)$ gate:

Hint: The eigenvalues of $R_x(\theta)$ are identical to the ones of $R_u(\theta)$ and $R_z(\theta)$.

(b) The following circuit implements the quantum Fourier transform ${\mathcal F}$ for two qubits:

Here H is the Hadamard gate, $S=\left(\begin{smallmatrix}1&0\\0&i\end{smallmatrix}\right)$ the so-called phase gate, and the last operation the swap gate. Provide a circuit which realizes the *inverse* quantum Fourier transform for two qubits.

Hint: In general, $(AB)^\dagger=B^\dagger A^\dagger$ for matrices A and B with compatible dimensions.

We now consider the following quantum circuit:

(c) Compute the intermediate state $|\chi\rangle$ of this circuit for the two cases

$$\mbox{(i)} \quad |\psi\rangle = \frac{1}{\sqrt{2}}|0\rangle(|0\rangle + |1\rangle) \qquad \mbox{and} \qquad \mbox{(ii)} \quad |\psi\rangle = \frac{1}{\sqrt{2}}|1\rangle(|0\rangle + |1\rangle).$$

(d)	What is the overall output of the circuit for $\theta=\pi$ in the cases (i) and (ii)?
Prob chann	lem 2 Phase damping models decoherence in realistic physical situations and is described by the quantum
Cham	$\mathcal{E}(ho) = \sum_{k=0}^1 E_k ho E_k^\dagger,$
tels	K-U
with	operation elements $E_0=egin{pmatrix}1&0\0&\sqrt{1-\lambda}\end{pmatrix}, E_1=egin{pmatrix}0&0\0&\sqrt{\lambda}\end{pmatrix}$
and '	$(0 \sqrt{1-\lambda})$, $(0 \sqrt{\lambda})$ 'scattering" probability $\lambda \in [0,1]$. We assume $0 < \lambda < 1$ in the following.
	A quantum channel \mathcal{E} is called <i>unital</i> if $\mathcal{E}(I) = I$. Show that the phase damping channel is unital.
(b)	Recall that an arbitrary density operator ρ for a mixed state qubit can be represented as
	$\rho = \frac{I + \vec{r} \cdot \vec{\sigma}}{2},\tag{1}$
	with $ec{r}\in\mathbb{R}^3$ the <i>Bloch vector</i> of $ ho$ and $ec{\sigma}$ the vector of Pauli matrices. Compute the Bloch vector $ec{r}'$ of the
	output state $ ho'=\mathcal{E}(ho)$ of the phase damping channel in dependence of $ec{r}.$
	I and the second

(6)	In which case(s) does $\mathcal{E}(\rho)$, with \mathcal{E} the phase damping channel, describe a pure quantum system?
(८)	In which case(s) does $\mathcal{E}(\rho)$, with \mathcal{E} the phase damping channel, describe a pure quantum system:
(4)	Compute the density matrix after n repeated applications of the phase damping operation, $\mathcal{E}(\dots\mathcal{E}(\mathcal{E}(\rho)))$,
(u)	compute the density matrix after n repeated applications of the phase damping operation, $c(\dots c(c(p)))$,
	and take the limit $n \to \infty$. You may work with a symbolic 2×2 matrix representation of ρ , or the Bloch
	representation (1) and part (b).

(e) Show that the following circuit describes the phase damping operation, and relate the angle θ to the parameter λ :

Hint: The operation elements corresponding to the circuit have entries $(E_k)_{\ell,m}=\langle \ell,k|U|m,0\rangle$ with $k,\ell,m\in\{0,1\}$ and U the controlled- $R_y(\theta)$ operation.

	2 14/-									V V (7	
Probl Pauli	matrices acts	onsider a on the j	quantı th qub	ım syste it; e.g.,	em of $n \in X_1Z_3$:	i qubit $\equiv X \ ar{\otimes}$	\otimes $I \otimes$	d use the Z for n :	notation = 3.	X_j, Y_j, Z	\mathcal{L}_j to denote t	hat one of the
Co	onjugation by l	U refers	to the t	ransfori	mation	UgU^{\dagger}	of a	quantum	gate g by	a unitary	operation U .	The following
table s	summarizes se						C	CNOT	CNOT	CNOT	CNOT	
		$\frac{c}{g}$	X Y	Z = Z	$\stackrel{S}{X}$	$\stackrel{S}{Y}$	\overline{Z}	$\begin{array}{c}CNOT\\X_1\\X_1X_2\end{array}$	X_2	Z_1	Z_2	
	l	UgU^{\dagger}	Z –	Y = X	Y	-X	Z	X_1X_2	X_2	Z_1	Z_1Z_2	
Here .	$S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ is the	he phase	gate, a	and the	CNOT	gate	has t	he first q	ubit as co	ntrol and	the second q	ubit as target.
(a)	Verify that in	$\operatorname{deed} SX$	$S^{\dagger} = Y$	Y, SZS	$S^{\dagger}=Z$,	and (CNO	$T\cdot Z_2\cdot CN$	$NOT^\dagger = 2$	Z_1Z_2 .		
(b)	Compute CN0	OT \cdot Y_2 \cdot	CNOT	†.								
. ,	Compute CN0 Hint: $Y = iXZ$				r†.							
. ,					7†.							
. ,					r†.							
. ,					7†.							
. ,					7†.							
. ,					7†.							
					r†.							

Last name, first name:

(c)	We consider the subgroup $R=\{I,X_1Z_2\}$ of the Pauli group G_2 . Compute the two-qubit subspace V_R stabilized by R , such that $g \psi\rangle= \psi\rangle$ for all $g\in R$ and $ \psi\rangle\in V_R$.
(d)	The subgroup $T=\langle X_1Y_2,Y_2Z_3\rangle$ of the Pauli group G_3 stabilizes the subspace $V_T=\mathrm{span}\{ \chi_0\rangle, \chi_1\rangle\}$ with
	$ \chi_0\rangle = 000\rangle + i 010\rangle + 100\rangle + i 110\rangle, \qquad \chi_1\rangle = 001\rangle - i 011\rangle - 101\rangle + i 111\rangle.$
	(A proof of this statement is not required here.) Find a subgroup T' of the Pauli group G_3 which stabilizes $V_{T'} = \operatorname{span}\{(S \otimes S \otimes S) \chi_0\rangle, (S \otimes S \otimes S) \chi_1\rangle\}.$
(e)	Let U be a unitary, diagonal 2×2 matrix which maps the set $\{\pm X, \pm Y\}$ to itself by conjugation. Show that U can be written as matrix products of phase gates (including $S^0 = I$).