BEZ-BI-SPOL-06

Asymetrické kryptosystémy (šifra RSA, Diffie-Hellman, RSA digitální podpis), hešovací funkce (SHA-2, HMAC).

Obsah

1	1 Asymetrické kryptosytémy				
2	\mathbf{RS}_{I}	A	•		
	2.1	Princip systému			
	2.2	Bezpečnost			
		2.2.1 Problém faktorizace			
3	\mathbf{RS}_{I}	A digitální podpis			
		Princip			
4	Diff	fie-Hellman			
	4.1	Princip			
	4.2	Bezpečnost			
	4.3	Problém diskrétního logaritmu			
5	Heš	śovací funkce			
	5.1	Vstup a výstup			
	5.2	Jednosměrnost			
	5.3	Bezkoliznost			
		5.3.1 Bezkoliznost 1. řádu			
		5.3.2 Bezkoliznost 2. řádu			
	5.4	Konstrukce moderních hash funkcí			
		5.4.1 Zarovnání			
		5.4.2 Damgard-Merklovo zesílení			
	5.5	SHA-2			
	5.6	HMAC			
		5.6.1 Algoritmus			
		5.6.2 Nepadělatelnost	1		
		5.6.3 Průkaz znalosti	1		

1 Asymetrické kryptosytémy

- pro šifrování a dešifrování se používá rozdílného klíče
- používají se soukromé klíče (SK) a veřejné klíče (VK)
- šifruje se pomocí VK a dešifruje pomocí SK
- SK se nedá z VK v rozumném čase zjistit

2 RSA

- zabezpečení utajené komunikace
- každá dvojice používá šifrovací klíč
 - pokud je klíč známý => dešifrovací klíč vygenerovatelný pomocí malého počtu operací
- šifrovací systém VK je řešením problému s přidělováním klíče
 - skládá se z veřejného klíče (VK) a tajného klíče (SK)
 - vypočítat dešifrovací transformaci ze šifrovací je problému
 - pomocí VK zřízena komunikace s několika subjekty
 - každý subjekt má VK a SK pro daný šifrovací systém
 - subjekt si ponechá určité utajené soukromé informace vnesené do konstrukce šifrovací transformace pomocí ${\rm SK}$
- seznam klíčů VK_1, VK_2, \ldots, VK_n je veřejný
- \bullet subjekt 1 vyšle zprávu m subjektu 2:
 - -zpráva = blok (obvykle 1) určité délky; bloku OTmodpovídá blok ŠT, písmena -> numerické ekvivalenty
 - subjekt 2 s použitím dešifrovací transformace dešifruje blok ŠT
- dešifrovací transformaci nelze najít v rozumném čase bez znalosti klíče

Definice:

- p a q jsou prvočísla
- n = p * q, $\Phi(n) = (p-1)(q-1)$
- zvolí se $e,\, 1 < e < n,\, \mathrm{gdc}(e,\, \Phi(n)) = 1$ a spočte se $d = |e^{-1}|_{\Phi(n)}$
- VK = (n, e) ten se zveřejní
- SK = (d, e) soukromý

2.1 Princip systému

- šifrovací systém VK a je založený na modulárním umocňování
- dvojice (e, n) je VK; e exponent, n modul
- n = součin dvou privočísel p a q, tj. n = p * q a $\gcd(e, \Phi(n)) = 1$
- zašifrování OT: písmena = numerické ekvivalenty, vytváří se bloky s největší možnou velikostí (se sudým počtem číslic)

- pro zašifrování zprávy m na ŠT c se použije vztah:
 - $-E(m) = c = |m^e|_n, 0 < c < n$
- pro dešifrování se použije inverze d čísla e modulo $\Phi(n)$ (existuje protože $\gcd(e, \Phi(n)) = 1$)
- ullet pro dešifrování bloku c platí:
 - $D(c) = |c^d|_n = |m^{ed}|_n = |m^{k*\Phi(n)+1}|_n = |(m^{\Phi(n)})^k * m|_n = |m|_n$
 - kde $e*d=k*\Phi(n)+1$ pro nějaké celé číslo $k(|ed|_{\Phi(n)}=1)$ a z Eulerovy věty platí $|p^{\Phi(n)}|_n=1$, kde $\gcd(p,n)=1$
- dvojice (d, n) je dešifrovací klíč tajná část klíče
 - Šifrovací modul je součinem dvou prvočísel 43 a 59. Potom dostáváme $n = 43 \cdot 59 = 2537$ jako modul.
 - e = 13 je exponent, kde platí $gcd(e, \Phi(n)) = gcd(13, 42 \cdot 58) = 1$.
 - Dále plati $\Phi(2537) = (43 1) \cdot (59 1) = 42 \cdot 58 = 2436$.
 - Pro zašifrování zprávy

PUBLIC KEY CRYPTOGRAPHY,

- převedeme OT do číselných ekvivalentů písmen textu ⇒ vytvoříme bloky o délce 4 číslic (n je 4ciferné!) a dostáváme:
 1520 0111 0802 1004 2402 1724 1519 1406 1700 1507 2423,
 Písmeno X = 23 je výplň (padding).
- Pro šifrování bloku OT do bloku ŠT použijme vztah $c=|m^{13}|_{2537}$. Šifrovaním prvního bloku OT 1520 dostáváme blok ŠT

$$c = |(1520)^{13}|_{2537} = 95.$$

Figure 1: Zašifrování pomocí RSA

2.2 Bezpečnost

- modulární umocnění potřebné k šifrování zprávy s použitím RSA může být provedeno při VK a m o velikosti 200 dekadických číslic za několik sekund
- $\bullet\,$ se znalostí pa qa s použítím Euklidova algoritmu lze najít dešifrovací klíčd
- bez znalosti prvočísel p a q není lehké nalézt dešifrovací klíč, najít je pomocí $\Phi(n)$ je podobně složité jako faktorizace celého čísla n

2.2.1 Problém faktorizace

- jedná se o převedení čísla na součin jeho faktorů (rozklad na prvočísla)
- pokud p a q jsou 100číslicová prvočísla, tak pak n je 200číslicové
- nejrychlejší známý algoritmus potřebuje pro faktorizaci 10^6 roků k faktorizci takového čísla
- naopak, pokud je známo d, ale nezná se $\Phi(n)$, je možné lehce faktorizovat n, protože se ví, že e*d-1 je násobkem $\Phi(n)$
- čím větší modulo, tím je výpočet náročnější

- Zašifrováním všech bloků OT dostáváme:
 0095 1648 1410 1299 0811 2333 2132 0370 1185 1457 1084.
- Pro dešifrování zprávy, která byla zašifrována RSA šifrou, musíme najít inverzi $e = |13^{-1}|_{\Phi(n)}$, kde $\Phi(n) = \Phi(2537) = 2436$.
- S použitím Euklidova algoritmu získáme číslo d = 937, které je multiplikativní inverzí čísla 13 modulo 2436.
- K dešifrování bloku c ŠT použijeme vztah:

$$m = |c^{937}|_{2537}, \ 0 \le m \le 2537,$$

který platí, protože

$$|c^{937}|_{2537} = |(m^{13})^{937}|_{2537} = |m \cdot (m^{2436})^5|_{2537} = m,$$

kde jsme použili Eulerovu větu

$$|m^{\Phi(2537)}|_{2537} = |m^{2436}|_{2537} = 1$$

když platí $\gcd(m, 2537) = 1$, a to je splněno pro každý blok/zprávu m OT.

Figure 2: Dešifrování RSA

- ochrana proti speciálním rychlým technikám:
 - -obě hodnoty p-1 a q-1 by měly mít velký prvočíselný faktor
 - $-\gcd(p-1,\,q-1)$ by mělo být malé a p a q by měly mít rozdílnou desítkovou reprezentaci v délce několika málo číslic

3 RSA digitální podpis

- RSA lze použít pro vyslání podepsané zprávy
- při použití podpisu se příjemce může ujistit, že:
 - zpráva přišla od oprávněného odesílatele
 - a je tomu tak na základě nestranného a objektivního testu
- takové ověření je potřeba pro elektronickou počtu, elektronické bankovnictví, elektronický obchod...

3.1 Princip

- subject 1 vysílá podepsanou zprávu \boldsymbol{m}
- subjekt 1 spočítá pro zprávu m OT
 - $-S = D_{SK_1}(m) = |m^{d_1}|_{n_1}$
 - kde $SK_1 = (d_1, n_1)$ je tajný klíč pro subjekt 1
- když $n_2 > n_1$, kde $VK_1 = (e_2, n_2)$ je veřejný šifrovací klíč pro subjekt 2, subjekt 1 zašifruje S pomocí vztahu
 - $-c = E_{VK_2}(S) = |S^{e_2}|_{n_2}$
 - $-0 < c < n_2$

- když $n_2 < n$ subjekt 1 rozdělí S do bloků o velikosti menší než n_2 a zašifruje každý blok s použitím šifrovací transformace E_{VK_2}
- pro dešifrování subjekt 2 nejdříve použije soukromou dešifrovací transformaci D_{SK_2} k získání S, protože

$$-D_{SK_2}(c) = D_{SK_2}(E_{VK_2}(S)) = S$$

- k nalezení OT m subjekt dále použije veřejnou šifrovací transoformaci $E_{VK_1},$ protože
 - $-E_{VK_1}(S) = E_{VK_1}(D_{SK_1}(m)) = m$
- \bullet kombinace OT m a podepsané verze S přesvědčí subjekt 2, že zpráva byla vyslána subjektem 1
- také subjekt 1 nemůže odepřít, že on vyslal danou zprávu, žádný jiný subjekt než 1 nemůže generovat podepsanou zprávu S z originálního textu zprávy m

Figure 3: Šifrování digitálního podpisu

4 Diffie-Hellman

Vhodná šifra pro zřízení společného kníče pro dva a více subjektů. První účastník zvolí modulo m a číslo a. Každý objekt si zvolí svůj privátní klíč k. Musí platit:

- gcd(m, a) = 1
- $gcd(k_i, m-1) = 1$

4.1 Princip

- volba veřejných prvků účastníkem A: m prvočíslo a a celé číslo $\rightarrow 0 < a < m$
- generování parametrů klíče účastníkem A: volba čísla $k_1 < m$ a výpočet $y_1 = |a^{k_1}|_m$
- účastník A odešle účastníkovi V čísla a,m a y_1
- generování parametrů klíče účastníkem B: volba čísla $k_2 < m$ a výpočet $y_2 = |a^{k_2}|_m$
- účastník B odešle účasníkovi A číslo y_2
- generování společného klíče Ačkem: $K = |Y_2^{k_1}|_m$
- generování společného klíče Bčkem: $K = |Y_1^{k_2}|_m$
- veřejnými prvky jsou čísla m a a
- neautorizovaný subjekt nemůže najít společný klíčKv rozumném čase, protože je nucen hledat logaritmus modulo m

Figure 4: Diffie-Hellman pro 3 osoby

4.2 Bezpečnost

- délka klíče je přímo uměrná kvalitě šifry
- když je m prvočíslo a m-1 je součin malých prvočísel \rightarrow je možné pomocí speciální metody nalézt logaritmus modulo m méně operacemi než $O(log_2^2 m)$

4.3 Problém diskrétního logaritmu

- $C = t^k (mod p)$
- pokud se zná t, k a p \Rightarrow C se spočítá snadno
- inverzní operace je ale náročná tzn. spočítat k ke znalosti t, p a C
- $k = |log_t(C)|_p$, k = diskrétní logaritmus

5 Hešovací funkce

Silný nástroj moderní kryptografie. Jedna z klíčových kryptologických myšlenek. Základní pojmy: *jednosměrnost* a *bezkoliznost*.

- původní význam hešovací funkce byla funkce, která libovolně velkému vstupu přiřadila krátký hash kód o pevně definované délce
- v součastnosti se pojem hash funkce používá v kryptografii pro krypto-hash funkce, která má oproti původní definici ještě navíc vlastnosti jednosměrnost a bezkoliznost

Vezme se přirozené číslo d a množina X všech binárnách řetězců délky 0 až d. Funkce $f: X - > \{0,1\}^n$ se nazve hešovací, pokud je jednosměrná 1. typu a bezkolizní. Každému binárnímu řetězci z množiny X přiřadí binární hash-kód délky n bitů.

5.1 Vstup a výstup

 hash funkce h zpracovává prakticky neomezeně dlouhá vstupní data M na krátký výstupní hash kód h(M) pevné a předem stanovené délky

Z hlediska bezpečnosti se požaduje, aby se hešovací funkce chovala jako náhodné orákulum:

- orákulum = libovolný nástroj, který na základě vstupu odpoví nějakým výstupem. Na ten samý vstup, musí odpovědět stejně
- náhodné orákulum orákulum, které na nový vstup odpoví náhodným výběrem výstupu z množiny výstupů

5.2 Jednosměrnost

Funkce $f: X \to Y$, pro něž je snadné z jakékoli hodnoty $x \in X$ vypočítat y = f(x), ale pro nějaký náhodně vybraný obraz $y \in f(X)$ nelze najít její vzor $x \in X$ tak, aby y = f(x).

Jednosměrné funkce se dělí na:

- jednosměrné, pro které je výpočetně nemožné, ale teoretický existující, najít vzor z obrazu
- jednosměrné funkce s padacími vrátky, u kterých lze najít vzor z obrazu, ale jen za předpokladu znalosti "padacích vrátek" - klíče

Figure 5: Jednosměrné funkce

5.3 Bezkoliznost

5.3.1 Bezkoliznost 1. řádu

Je odolnost proti kolizi a požaduje, aby bylo výpočetně nezvládnutelné nalezení libovolných dvou různých zpráv tak, že budou mít stejnou hash. Pokud k tomu dojde, tak se nalezla kolize. (lidsky: pro dvě lib. se nesmí zjistit, že se zahashují stejně)

- bezkoliznost se zásadně využívá k digitálním podpisům
- nepodepisuje se přímo zpráva, ale pouze její hash
- bezkoliznost zaručuje, že není možné nalézt dva dokumenty se stejnou hash

5.3.2 Bezkoliznost 2. řádu

Hashovací funkce h je odolná proti nalezení 2. vzoru, jestliže pro daný náhodný vzor x je výpočetně nezvládnutelné nalézt 2. jiný vzor tak, že se zahashují stejně. (lidsky: máme vzor a nesmíme k tomu najít druhý, aby se zahashovaly stejně)

5.4 Konstrukce moderních hash funkcí

Moderní hash funkcí, může být velmi dlouhá. Zpráva se proto zpracovává po částech. Nutnost hashování po blocích a zarovnávat vstupní zprávy na celistvý počet bloků. Zarovnání musí být bezkolizní a umožňovat jednoznačné odejmutí.

5.4.1 Zarovnání

Zarovnání musí být jednoznačné, aby nevznikly jednoduché kolize. Doplněním například 0 bitem by způsobilo zmatek, který poslední nultý bit je platný. U nových hash funkcí se doplní bit 1 a pak zbytek 0. Tím se rozezná, kde je konec zprávy.

5.4.2 Damgard-Merklovo zesílení

Jedná se o doplnění o délku původní zprávy. Zpráva je doplněna bitem 1 a pak bity 0 tak, aby na konci zbylo 64 bitů volných. Do nich je vyplněna hodnota bitů původní zprávy. Začlenění informace o délce původní zprávy eliminuje případné útoky. Současné hash funkce používají DM princip iterativně s využitím kompresní funkce.

Kompresní metoda zpracuje aktuální blok zprávy a výsledek je určitá hodnota, která nutně tvoří vstup do další iterace. Ta funkce má dva vstupy, předchozí krok a další blok. Prvotní zavolání obsahuje první blok a definovanou konstantu, která se říká *inicializační hodnota*.

5.5 SHA-2

Pod SHA-2 patří SHA-(224/256/384/512).

Založen na Damgard-Merklově konstrukci:

- je to iterativní konstrukce
- f zpracovává aktuální blok zprávy M_i a výsledek je kontext H_i
- H_i nutně tvoří vstup do f v dalším kroku
- f má tedy vstupy H_{i-1} a M_i

SHA = Secure Hash Algorithm

- nástupce SHA-1
- nejvýznamější rozdíly jsou v délce hashovacího kódu, který určuje odolnost hashového kodu vůči nalezení kolizí 1. a 2. řádu

5.6 HMAC

Klíčované hashované autentizační kódy zpráv HMAC zpracovávají hashováním nejen zprávu M, ale spolu s ní i nějaký tajný klíč K. Jsou proto podobné autentizačnímu kódu zprávy MAC, ale místo blokové šifry se použije hashovací.

Používají se k nepadělatelnému zabezpečení zpráv a autentizaci (prokázáním znalosti tajného klíče). HMAC je obecná konstrukce, která využívá obecnou hashovací funkci. Podle konkrétní hashovací funkce,

Figure 6: SHA2 kompresní funkce

Základní vlastnosti hašovacích funkcí SHA-x

	SHA-1	SHA-256	SHA-384	SHA-512
Délka haš. kódu	160	256	384	512
Délka zprávy	$< 2^{64}$	$< 2^{64}$	< 2 ¹²⁸	< 2 ¹²⁸
Velikost bloku	512	512	1024	1024
Velikost slova	32	32	64	84
# rund f	80	80	80	80
Bezpečnost v bitech	80	128	192	256

- Nejvýznamnější rozdíly jsou v délce hašového kódu, který určuje odolnost hašového kódu vůči nalezení kolizí 1. a 2. řádů.
- Na druhé straně struktura hašovacích funkcí (kompresních funkcí) je téměř stejná.

Figure 7: Porovnání SHA funkcí

která se konkrétně používá, se označuje výsledná funkce (HMAC-SHA-1(M, K) používá sha-1, kde M je zpráva a K je tajný klíč).

5.6.1 Algoritmus

Definuje se konstantní řetězen ipad jako řetězec b/8 bajtů s hodnotou 0x36 a opad jako řetězec b/8 bajtů s hodnotou 0x5C. Klíč K se doplní bity 0 vlevo od MSB bitu klíče do délky b-bitu a označí se K^+ .

Definuje se hodnota $HMAC_k(M)$ jako:

$$HMAC_k(M) = H((K^+ \oplus opad)||((K^+ \oplus ipad)||M))$$

5.6.2 Nepadělatelnost

Pokud je kod připojen za zprávu M, detekuje neúmyslnou chybu při jejím přenosu. Zabraňuje útočníkovi změnit zprávu a současně změnit HMAC, protože bez znalosti klíče nelze nový HMAC vypočítat. Správný HMAC je autentizací původu dat, odesílatel musel znát tajný klíč.

5.6.3 Průkaz znalosti

HMAC může být použit jako průkaz znalosti tajného sdíleného klíče při autentizaci entit. Dotazovatel odešlne náhodou výzvu, které se říká *challenge* a od provozovatele dostane odpověď *response*. Prokazovatel zná tajný klíč. Útočník z hodnoty response klíč nemůže odvodit.