• 연구동기:

□ 기존의 ViT가 항상 Fixed scale로 접근해 여러 CV의 같은 scale에 민감한 task를 잘 처리하지 못함.

문제ViT 방식의 경우 고해상도 Image 처리에 있어 Quadratic하게 증가하는 연산량으로 인해 학습에 오랜 시간, 많은 비용이 든다. + Semantic segmentation에 Transformer 모델 적용 -> dense prediction을 구하는데 계산량이 많아져 -> Intractable 문제 발생 해결: Transformer 기반의 backbone + CNN vision task 에서 수행하는 역할 일부를 수용해 **Swin Transformer** 제안.

+ Hierarchical feature map, Shifted window (Swin) block 이용

해결: Shifted window partitioning

Layer I의 분할이 발생한 patch에서 $(\left[\frac{M}{2}x\frac{M}{2}\right])$ pixel 단위로 이동시켜 Layer I+1의 window를 분할함으로써 window간의 연결성을 반영한다.

더 작은 단위의 patch로 시작해 점점 patch들을 merge하는 방식

Window내의 patch들끼리 만 self-attention 수행

Linear Computational complexity to image size

Window: M개의 인접한 patch로 구성된 patch set

Image를 Fixed Scale patch들로 쪼갬
Resolution↑=> Self-Attention↓
Quadratic computational complexity to image size

Method:

Method:

Swin Transformer Block은 2개의 encoder 로 구성: Window multihead self-attention, Shifted window multihead self attention

Swin Transformer Block W-MSA

W-MSA: 현재 window에 있는 패치끼리 만 self-attention 수행 => computational complexity 해결 (주변 픽셀들끼리 서로 연관성↑) Quadratic -> Linear!

$$\Omega(\text{MSA}) = 4hwC^2 + 2(\underline{hw})^2C,$$

$$\Omega(\text{W-MSA}) = 4hwC^2 + 2M^2hwC,$$

M(Window size) < hw(image size) => W-MSA의 연산량 < MSA의 연산량

단점: Window 고정 ,고정된 부분에서만 self-attention 수행해결: Window를 이동(Shift)해서 self-attention 수행

SW-MSA!!

Method:

Method:

ViT 와 다르게 Positional embedding 을 입력 부분에 추가하지 않고, Relative Position Bias 활용.

Attention
$$(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$$
,

Relative Position Bias: 기존 ViT에서 softmax를 취하기 전, B를 더함

Author: 기존의 Position Embedding에서의 절대좌표를 더하는 것보다 상대좌표를 더해주는 것이 더 좋은 방법

0,0 Pixel에서 2,2 Pixel로 이동하기 위해 2,2 만큼 이동해야 한다. 반대로 2,2 Pixel에서 0,0 Pixel로 이동하기 위해 -2,-2 만큼 이동해야 한다.

- => 어떤 Pixel을 중심으로 하나에 따라 이동 값이 달라짐
- => 단순하게 Sin, Cos의 주기로 구한 절대 좌표를 사용하는 것보다 상대적인 좌표를 embedding해 더하는 것이 더 좋다.

Experiment:

ImageNet Dataset에서 Swin Transformer는 ViT base model보다 parameter 수, FIOPs는 훨씬 적으면서 높은 성능을 보였다. CNN 기반 모델 중 SOTA를 달성한 EfficientNet-B7보다 좋은 성능을 보인다. 다른 여러 Task(detection, segmentation 등)에서 SOTA를 달성했다.

Comparison of different backbones on ImageNet-1K classification Results on COCO object detection and ADE20K semantic segmentation

(a) Regular ImageNet-1K trained models								
method	image	#param.	FI OPs	throughput	_			
method		трагані.	TLOIS	(image / s)	top-1 acc.			
RegNetY-4G [48]	224 ²	21M	4.0G	1156.7	80.0			
RegNetY-8G [48]	224 ²	39M	8.0G	591.6	81.7			
RegNetY-16G [48]		84M	16.0G	334.7	82.9			
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6			
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9			
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6			
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0			
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3			
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9			
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5			
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8			
DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8			
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1			
Swin-T	224 ²	29M	4.5G	755.2	81.3			
Swin-S	224 ²	50M	8.7G	436.9	83.0			
Swin-B	224 ²	88M	15.4G	278.1	83.5			
Swin-B	384 ²	88M	47.0G	84.7	84.5			
(b) ImageNet-22K pre-trained models								
method	image	#param.	FLOPs	throughput	ImageNet			
	size			(image / s)	top-1 acc.			
R-101x3 [38]	384 ²	388M	204.6G	-	84.4			
R-152x4 [38]	480^{2}	937M	840.5G	-	85.4			
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0			
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2			
Swin-B	224 ²	88M	15.4G	278.1	85.2			
Swin-B	384 ²	88M	47.0G	84.7	86.4			

Swin-L

(a) Various frameworks								
Method	Backbone	AP ^{box}	AP ₅₀	AP ₇₅	#param.	FLOPs	FPS	
Cascade	R-50	46.3	64.3	50.5	82M		18.0	
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3	
ATCC	R-50	43.5	61.9	47.0	32M	205G	28.3	
ATSS	Swin-T	47.2	66.5	51.3	36M	215G	22.3	
PanPointaV2	R-50	46.5	64.6	50.3	42M	274G	13.6	
RepPointsV2	Swin-T	50.0	68.5	54.2	45M	283G	12.0	
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0	
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4	
(b) Various backbones w. Cascade Mask R-CNN								
APbox	AP ₅₀ AP ₇₅	AP ^{ma}	sk AP ₅₀	ask AP	mask 75 parar	nFLOP	sFPS	
DeiT-S [†] 48.0	67.2 51.7	7 41.4	64.	2 44	.3 80M	889G	10.4	
R50 46.3	64.3 50.5	5 40.1	61.	7 43	.4 82M	739G	18.0	
Swin-T 50.5	69.3 54.9	43.7	66.	6 47	.1 86M	745G	15.3	
X101-32 48.1	66.5 52.4	4 41.6	63.	9 45	.2 101N	1 819G	12.8	
Swin-S 51.8	70.4 56.3	3 44.7	67.	9 48	3.5 107N	1 838G	12.0	
X101-64 48.3	66.4 52.3	3 41.7	64.	0 45	.1 140N	1 972G	10.4	
Swin-B 51.9	70.9 56.5	5 45.0	68.	4 48	.7 145N	1 982G	11.6	

ADE	val	test		EL OD-	EDC	
Method	Backbone	mIoU	score	#param.	FLOPS	FPS
DANet [23]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [11]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [24]	ResNet-101	45.9	38.5	-		
DNL [71]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [73]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [69]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [73]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [11]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [11]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [81]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1	-	60M	945G	18.5
UperNet	Swin-S	49.3	-	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L [‡]	53.5	62.8	234M	3230G	6.2

• Experiment:

기존 shifted window, kernel 기반, padding 기반보다 제안한 cyclic shift가 가장 좋은 성능을 입증했다 또한 relative position bias 를 단독으로 사용할 때 가장 좋은 성능을 달성해 효과를 입증했다.

Shifted windows approach and Different position embedding methods on three benchmarks (using the Swin-T architecture)

	ImageNet		COCO		ADE201	k
	top-1	top-5	APbox	APmask	mIoU	
w/o shifting	80.2	95.1	47.7	41.5	43.3	—
shifted windows	81.3	95.6	50.5	43.7	46.1	Better Performance
no pos.	80.1	94.9	49.2	42.6	43.8	_
abs. pos.	80.5	95.2	49.0	42.4	43.2	
abs.+rel. pos.	81.3	95.6	50.2	43.4	44.0	
rel. pos. w/o app.	79.3	94.7	48.2	41.9	44.1	D. ()
rel. pos.	81.3	95.6	50.5	43.7	46.1	Better Performance

성능: Only W-MSA < <mark>SW-MSA + W-MSA</mark>

성능: 절대좌표(abs.pos), 절대+상대좌표(abs.+rel.pos).. < Only 상대좌표(rel.pos)