Lezione 6 Algebra I

Federico De Sisti2024-10-21

1 Teoremi sulla cardinalità dei gruppi

Teorema 1

 (G, \cdot) gruppo. Se |G| = 6 allora $G \cong C_6$ (abeliano) oppure $G \cong D_3$ (non abeliano)

Dimostrazione

Se G contiene un elemento di ordine 6 allora $G \cong C_6$ Se invece G non contiene elementi di ordine 6, per l'esercizio (2) esistono elementi $r, s \in G$ t.c. ord(r) = 3 e ord(s) = 2Definisco:

$$G := < r >= \{e, r, r^2\} \qquad k := < s >= \{e, s\}.$$

$$H \cap K = \{e\}.$$

$$|HK| = \frac{|H||K|}{|H \cap K|} = 6 = |KH|.$$

 $\Rightarrow HK = G = KH$

Esplicitamente:

 $HK = \{e, r, r^2, s, rs, r^2s\}$ $KH = \{e, r, r^2, s, sr, sr^2\}$

Dobbiamo considerare 2 casi:

$$\begin{split} I\; caso:\; rs &= sr\\ studiamo\; ord(rs)\\ (rs)^2 &= r^2s^2 = r^2 \neq e \Rightarrow ord(rs) \neq 2\\ (rs)^3 &= r^3s^3 = s^3 = s \neq e \end{split}$$

Per Lagrange

$$\Rightarrow G \ \grave{e} \ cicliclo \Rightarrow Assurdo$$

$$II \ caso: \begin{cases} rs = sr^2 \\ r^2s = sr \end{cases}$$

Costruiamo l'isomorfismo

$$G \to D_3 := < \rho, \sigma >$$

$$e \to Id$$

$$r \to \rho$$

$$r^2 \to \rho^2$$

$$s \to \sigma$$

$$sr \to \sigma \rho$$

Definizione 1

Dato un gruppo (G,\cdot) il reticolo dei sottogruppi T_G è un grafo definito come

- esiste un vertice in T_G per ogni sottogruppo $H \leq G$
- esiste un lato $H_1 H_2$ se e solo se $H_1 \subseteq H_2$ e $\not\exists K \leq G \ t.c. \ H_1 \subset K \subset H_2$

Esempio:

 T_{D_4}

Ricordiamo che $D_4 = \langle \sigma, \rho \rangle \quad |D_4| = 8$

studiamo i sottogruppi di D_4

ordine 1: L'unico sottogruppo è $H = \{e\}$

ordine 2: Sono tutti e soli quelli generati da un elemento di ordine 2 in D_4

ordine 4: per la classificazione sono ciclici (C_4) oppure di Klein (K_4) altre al ciclico esistono altri sottogruppi

$$\langle \rho^2, \sigma \rangle = \{e, \sigma, \rho^2, \sigma \rho^2\}.$$
$$\langle \rho^2, \sigma \rho \rangle = \{e, \sigma \rho, \rho^2, \sigma \rho^3\}.$$

Ordine 8: D_4

Esempio:

$$\begin{aligned} G &= D_4 \\ N &= < \rho^2 > \trianglelefteq G \\ \text{Vogliamo } T_{G/N} \\ \text{studiamo } G/N &= D_4/ < rho^2 > \\ |G/N| &= [G:N] = \frac{|G|}{|N|} = \frac{8}{2} = 4 \\ \text{chi sono i laterali?} \\ IdN &= N < \rho^2 > = \{Id, \rho^2\} \\ \rho N &= \{\rho, \rho^3\} \\ \sigma N &= \{\sigma\rho, \sigma\rho^3\} \end{aligned}$$

Ricordo:

Abbiamo una corrispondenza biunivoca tr
 ai sottogruppi di G/N e i sottogruppi di G contenent
iN.

Obiettivo: studiare S_n

Ricordo:

$$X:=\{1,\dots,n\}$$

 $S_n := S_X = \{ \text{ applicazioni biunivoche } X \to X \}$

 S_n gruppo di permutazioni

Osservazione:

$$|S_n| = n!$$

Osservazione:

se
$$n = 3 \to |S_3| = 6$$

$$\Rightarrow S_3 \cong D_3$$

Osservazione

$$S_n \cong D_n \ \forall n \ge 4$$

Infatti $n! > 2n \ \forall n \ge 4$

2 Notazioni in S_n

$$\begin{split} \sigma &= (123)(47) \\ \tau &= (23456) \\ \sigma\tau &= \sigma \circ \tau = (123)(46)(23456)(12)(36)(45) \\ \tau \circ \sigma &= (23456)(123)(46) = (13)(24)(56) \end{split}$$

Lemma 1

Data $\sigma \in S_n$ allora σ partizione $X = \{1, ..., n\}$ in sottoinsiemi permutati ciclicamente e disgiunti tra loro

Dimostrazione

Definiamo la relazione d'equivalenza $i \sim j \Leftrightarrow \exists k \in \mathbb{Z} \ t.c. \ \sigma^k(i) = j$ È una relazione d'equivalenza!

studiamo le classi di equivalenza

 $fissato i \in X$

la sua clase

$$X_i = {\sigma^k(i)|k \in \mathbb{Z}} \subseteq X.$$

quindi
$$\exists k_1, k_2 \in \mathbb{Z}$$
 distinti $t.c.$ $\sigma^{k_1}(i) = \sigma^{k_2}(i)$
 $\Rightarrow i = \sigma^{k_2 - k_1}(i)$
 $\Rightarrow m := \min\{k \in \mathbb{Z}_{>0} | \sigma^k(i) = i\}$
 $\Rightarrow X_i = \{i, \sigma(i), \sigma^2(i), \dots, \sigma^{n-1}(i)\}$

Proposizione 1

Data $\sigma \in S_n$, allora σ può essere rappresentata come composizione di cicli disgiunti

Obiettivo: Definire un omomorfismo

$$sgn: S_n \to (\{\pm 1\}, \cdot).$$

Questo ci permetterà di definire il sottogruppo alterno $A_n \leq S_n$ $A_n := ker(sgn)$

Notazione 1

Dato un polinomio $f \in \mathbb{Q}[x_1, \dots, x_n]$ e data $\sigma \in S_n$ Definiamo

$$f^{\sigma}(x_1,\ldots,x_n) := f(x_{\sigma(1),\ldots,x_{\sigma(n)}}).$$

 ${\it Ci sta un polinomio speciale:}$

- $\Delta(x_1,\ldots,x_n) = \prod_{1 < i < j < n} (x_i x_j)$
- $\Delta^{\sigma}(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} x_{\sigma(j)})$

Definizione 2

$$\begin{array}{l} \sigma \in S_n \\ sgn(\sigma) := \frac{\Delta^{\sigma}}{\Delta} \in \{\pm 1\} \end{array}$$

Osservazione

 $sgn: S_n \to \{\pm 1\}$ è un omomorfismo

Dimostrazione

$$(f^{\sigma})^{\tau} = f^{\sigma\tau}$$

$$(fg)^{\sigma} = f^{\sigma}g^{\sigma}$$

$$sgn(\sigma\tau) = \frac{\Delta^{\delta\tau}}{\Delta} = \frac{(\Delta^{\sigma})^{\tau}}{\Delta} = \frac{\Delta^{\sigma}}{\Delta} = \frac{\Delta^{\sigma}}{\Delta} = sgn(\sigma) =$$