Data Science Career Track

Capstone 2 -

Milestone 1 Report

by Edward Franke 05/26/2019

Detect Pneumonia is chest x-rays Project – Milestone 1 Report

EXECUTIVE SUMMARY:

The purpose for this project is to find a correlation connected to chest x-rays containing pneumonia that can separate them in real time compared to normal healthy chest x-rays. The dataset is a cleaned dataset from Kaggle.com. Tensorflow and Keras has discovered some connections but further analysis is required.

IDEA: A model to detect pneumonia is chest x-rays. (problem to solve)

CLIENT: Medical Industry

REASON: Pneumonia is a very serious condition that has the potential for death. I have personal knowledge of how serious it can be. The sooner it can be detected, the better the chance for survival and less damage to the lungs.

DATA: From Kaggle, 2 cleaned datasets with 5863 images and over 112,000 images.

SOLUTION: Create a model or analysis to discover what makes an x-ray image of the chest to have pneumonia and to capture this automatically.

DETAILS: I'm currently unsure. I need to work with and explore the data.

DELIVERABLES: Code and a presentation outlining the discoveries.

Initial findings from exploratory analysis

```
In [23]:  # Metrics
2  # Getting predictions
4  predictions = model.predict(x=x_test)
5  acc = accuracy_score(y_test, np.round(predictions))*100
7  tn, fp, fn, tp = confusion_matrix(y_test, np.round(predictions)).ravel()
8  print('Accuracy: {}%'.format(acc))
10  print('Precision: {}%'.format(tp/(tp+fp)*100))
11  print('Recall: {}%'.format(tp/(tp+fn)*100))
Accuracy: 68.91025641025641%
Precision: 82.23684210526315%
Recall: 64.1025641025641%
```

Tensorflow and Keras has discovered some connections but further analysis is required.

Layer (type)	Output	•	Param #
input_1 (InputLayer)	(None,	64, 64, 3)	0
conv2d_1 (Conv2D)	(None,	64, 64, 16)	448
conv2d_2 (Conv2D)	(None,	64, 64, 16)	2320
max_pooling2d_1 (MaxPooling2	(None,	32, 32, 16)	0
conv2d_3 (Conv2D)	(None,	32, 32, 32)	4640
conv2d_4 (Conv2D)	(None,	32, 32, 32)	9248
batch_normalization_1 (Batch	(None,	32, 32, 32)	128
max_pooling2d_2 (MaxPooling2	(None,	16, 16, 32)	0
conv2d_5 (Conv2D)	(None,	16, 16, 64)	18496
conv2d_6 (Conv2D)	(None,	16, 16, 64)	36928
batch_normalization_2 (Batch	(None,	16, 16, 64)	256
max_pooling2d_3 (MaxPooling2	(None,	8, 8, 64)	0
flatten_1 (Flatten)	(None,	4096)	0
dense_1 (Dense)	(None,	256)	1048832
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	64)	16448
dropout_2 (Dropout)	(None,	64)	0
dense_3 (Dense)	(None,	1)	65
Total params: 1,137,809 Trainable params: 1,137,617 Non-trainable params: 192			
Non-trainable params: 192			

None

WHAT'S NEXT

Deep Dive

Incorporate second dataset of chest x-rays.

Further analysis to attempt greater accuracy and precision.

Final Report and Presentation