Задаване на множество с уравнения и с параметрични уравнения

Нека \mathcal{A} е n-мерно афинно пространство, моделирано върху линейното простран-

ство $U, K = Oe_1 \dots e_n$ е афинна координатна система в $\mathcal{A}, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} : \mathcal{A} \to \mathbb{R}^n$ е координатното изображение, съответно на K, и B е подмножество на \mathcal{A}

Определение 1 Нека S е някакво множество и $f, g : \mathbb{R}^n \to S$. Ако

$$P \in B \quad \Leftrightarrow \quad f(x_1(P), \dots, x_n(P)) = g(x_1(P), \dots, x_n(P)),$$

тоест ако

$$B = \{ P \in \mathcal{A} : f(x_1(P), \dots, x_n(P)) = g(x_1(P), \dots, x_n(P)) \},$$

то казваме, че B има спрямо K уравнение $f(x_1, \ldots, x_n) = g(x_1, \ldots, x_n)$ и пишем

$$B: f(x_1, \ldots, x_n) = g(x_1, \ldots, x_n).$$

Забележка 1 Често S е \mathbb{R} или \mathbb{R}^m и g е 0 или друга константа. В случая $S=\mathbb{R}^m$ се казва също и че B се задава със система от m (скаларни) уравнения (вместо с едно \mathbb{R}^m -значно уравнение).

Забележка 2 Всяко подмножество $B \subset \mathcal{A}$ може да се зададе с уравнение по следния

Дефинираме
$$f: \mathbb{R}^n \to \{0,1\}$$
: $f(a) = \left\{ \begin{array}{l} 1, & \text{ако } P(a) \in B \\ 0, & \text{ако } P(a) \not \in B \end{array} \right.$ Тогава $B: f(x) = 1$.

Пример 1 Нека K^0 е стандартната координатна система в \mathbb{R}^n и нека B е афинно подпространство на \mathbb{R}^n . Знаем, че B е множеството от решенията на някоя линейна система Ax = b. Също знаем, че координатният вектор спрямо K^0 на точката $a \in \mathbb{R}^n$ си е a. Следователно B:Ax=b спрямо K^0 .

Пример 2 По-късно ще видим, че афинно подпространство $B \subset \mathcal{A}$ също се задава с линейна система: B : Ax = b спрямо K.

Пример 3 Нека f е полином от степен d на n променливи. Тогава множеството $B: f(x_1,\ldots,x_n)=0$ се нарича алгебрична (хипер)повърхнина от степен d (при n=2- алгебрична крива от степен d, а при n = 3 - алгебрична повърхнина от степен d).

Пример 4 Нека f_1, \ldots, f_m са полиноми на n променливи съответно от степени d_1, \ldots, d_m . Тогава множеството

$$B: \begin{cases} f_1(x) = 0 \\ \vdots \\ f_m(x) = 0 \end{cases}$$

се нарича алгебрично множество от степен $d = \max(d_1, \ldots, d_m)$.

В частност, Пример 2 показва, че афинните подпространства са алгебрични множества от степен 1.

Пример 5 Нека $B_i: f_i(x) = g_i(x), i = 1, \dots, m$. Тогава $B = \bigcap_{i=1}^m B_i$ има уравнения

$$B: \begin{cases} f_1(x) &= g_1(x) \\ \vdots &\vdots \\ f_m(x) &= g_m(x) \end{cases}$$

Следователно алгебричните множества са сечения на алгебрични хиперповърхнини.

Определение 2 Нека Λ е някакво множество и $h = (h_1, \dots, h_n) : \Lambda \to \mathbb{R}^n$. Ако

$$P \in B \iff \exists \lambda \in \Lambda : x_i(P) = h_i(\lambda), i = 1, \dots, n,$$

тоест ако

$$B = \{ P \in \mathcal{A} : \exists \lambda \in \Lambda : x_i(P) = h_i(\lambda), i = 1, \dots, n \},\$$

то казваме, че $x_i = h_i(\lambda), i = 1, \dots, n$, са (скаларни) параметрични уравнения на B спрямо K и пишем

$$B: \begin{cases} x_1 = h_1(\lambda) \\ \vdots & , \lambda \in \Lambda, \\ x_n = h_n(\lambda) \end{cases}$$

или накратко във векторна форма $B: x = h(\lambda), \lambda \in \Lambda$.

Определение 3 Изображението

$$r: \mathcal{A} \to U, \quad P \mapsto \overrightarrow{OP},$$

се нарича изображение (или функция) радиус-вектор, стответно на К

Забележка 3 Очевидно r зависи само от началото O на K, но не и от координатния базис (e_1, \ldots, e_n) , така че всъщност е изображение радиус-вектор по отношение на точката O.

Определение 4 Нека Λ е някакво множество и $\widetilde{h}:\Lambda \to U.$ Ако

$$P \in B \quad \Leftrightarrow \quad \exists \lambda \in \Lambda : \ r(P) = \widetilde{h}(\lambda),$$

тоест ако

$$B = \{ P \in \mathcal{A} : \exists \lambda \in \Lambda : r(P) = \widetilde{h}(\lambda) \},$$

то казваме, че $r=\widetilde{h}(\lambda)$ е векторно параметрично уравнение на B спрямо K и пишем $B: r=\widetilde{h}(\lambda), \ \lambda \in \Lambda.$

Забележка 4 Очевидно векторното параметрично уравнение зависи само от началото O на K, но не и от координатния базис (e_1, \ldots, e_n) .

Твърдение 1 Ако векторно параметрично уравнение на В се напише покоординатно, се получават скаларни параметрични уравнения на В. Всички системи скаларни параметрични уравнения на В се получават по тоя начин.

Твърдение 2 1. В има спрямо K уравнение $f(x) = g(x) \Leftrightarrow x(B)$ има спрямо K^0 уравнение f(x) = g(x).

2. В има спрямо K параметрично уравнение $x = h(\lambda) \Leftrightarrow x(B)$ има спрямо K^0 параметрично уравнение $x = h(\lambda)$.

 $(C\ други\ думи,\ уравненията\ на\ B\ спрямо\ K\ u\ на\ координатния\ му\ образ\ <math>x(B)\ спрямо\ стандартната\ координатна\ система\ K^0\ в\ \mathbb{R}^n\ са\ едни\ u\ същи\ u\ аналогично\ за\ параметричните\ уравнения.)$

Забележка 5 В горните неща никъде не се използват някакви специфични свойства на полето на реалните числа, така че всичко важи без промяна и ако вместо $\mathbb R$ се вземе произволно поле F, тоест ако U е линейно пространство над произволно поле.