PREVENTIVE MAINTANENCE DEEP LEARNING

Canva

APRIL 2024

Overview

- Importance of predictive maintenance in industry
- Objective: Develop a deep learning model to predict failures
- Benefit: Prevent costly downtime, optimize maintenance

Business Understanding

Objective

OBJECTIVE: DEVELOP A DEEP LEARNING MODEL TO PREDICT FAILURES

BENEFIT: PREVENT COSTLY DOWNTIME, OPTIMIZE MAINTENANCE

Goal

GOAL: ACCURATE PREDICTIONS TO ENABLE PROACTIVE MAINTENANCE

IMPACT: REDUCE BREAKDOWNS, EXTEND EQUIPMENT LIFE, OPTIMIZE SCHEDULES

Data Set

- Utilized historical sensor data from machinery
- Identified operational status indicators from machine sensors
- Various operational parameter with different scales

Data Insight

ATTRIBUTES

• Total Entries: 220.320

• Total Columns: 55

• Unnamed: OColumn: ID/Index

• Sensor 15 column: Removing

DISTRIBUTION

• Normal: 205,836

• Recovering: 14,477

• Broken: 7

MISSING VALUES

- 77.017 and 220,320 missing
- Checked for duplicates

Data Prep

- Scaled features for uniformity
- Encoded target variables for model ingestion
- Employed stratified split for balanced class representation
- Conducted EDA to understand feature relationships

>>>

Test accuracy: 0.999636173248291

Baseline Model Training and Validation Loss

Test loss: 0.04529045149683952 Test accuracy: 0.9972600936889648

Model Process

01

Feedforward Neural Network(FNN)

• Developed a baseline neural network with dropout layers to prevent overfitting.

02

Gradient Boosting

• Trained a Gradient Boosting Classifier to capture non-linear patterns.

03

Tuning

- Optimized model with hyperparameter adjustments
- Performed hyperparameter tuning via GridSearchCV

Results

- Both models achieved near-perfect accuracy rates.
- Ensured no data leakage and that models generalize well beyond training data.

Next Steps

01

Refine models

• Further refine models with regularization and ensemble methods

02

Hyperparameters

Implement early stopping and learning rate adjustments

03

More data insight

- Explore additional metrics for deeper insights
- Interpret models to identify key predictive sensors.

04

Further experiment

 Pilot the model in a controlled environment before full deployment

Sens)

CONTACT

www.github.com/yaterjo

jly35630@yahoo.com

555-867-5309

Atlanta, Georgia

Our Team

Johnathan Yater

Data Science

THANK YOU