

Cadence Virtuoso LAB (4) Report

By: Magdy Ahmed Abbas Abdelhamid

Analog Electronics Workshop

COMMON DRAIN AMPLIFIER FREQUENCY RESPONSE

SIZING CHART

P1:

→ Square Law.

$$\begin{aligned} |A_v| &\approx g_m r_o = \frac{2I_D}{V_{ov}} \times \frac{V_A}{I_D} = \frac{2V_A}{V_{ov}} \rightarrow We \ used \ g_m = \frac{2I_D}{V_{ov}}, V_{ov} = \frac{2I_D}{g_m} \\ V^* &= V_{ov} \end{aligned}$$

 \rightarrow For Real MOSFET.

$$V_{ov}
eq rac{2I_D}{g_m}
ightarrow Define V^* = rac{2I_D}{g_m} \Leftrightarrow g_m = rac{2I_D}{V^*}$$
, $|A_v| pprox rac{2V_A}{V^*}$

P2:

We want to design a CD amplifier with the parameters below.

Specs (Specifications) $M_1 = PMOS$

$V_{Star}(V^*)$	200 mV.
Supply (V _{DD})	1.8 V.
Current Consumption (ID)	10 μΑ.
Length (L)	1 μm.
Width (W)	10 μm.

We want to compare $V^*=\frac{2I_D}{g_m}$ and $V_{ov}=V_{GS}-V_{TH}$ by plotting them overlaid. Use the calculator to create expressions for V^* and Vov.

v("M1:vgs" ?result "dc")-v("M1:vth" ?result "dc")

2*getData("M1:id" ?result "dc")/getData("M1:gm" ?result "dc")

P5

Plot V^* and V_{ov} Overlaid vs V_{GS} Y-axis of Both Curves Has Same Range

P6

We will notice that at the beginning of the strong inversion region, V^* and V_{ov} are relatively close to each other (i.e., square – law is relatively valid). For deep strong inversion (large V_{ov} : velocity saturation and mobility degradation) or weak inversion (near – threshold and subthreshold operation) the behavior is quite far from the square-law.

 $@V_{GS_Q} = 607.\,2124\;mV \to g_{m_X} = 119.\,083\;\mu\text{S}.$

P8

Plot g_{ds} vs V_{GS}. Find its Values at V_{GSO}

 $@V_{GS_Q} = 607.\,2124\ mV \rightarrow g_{ds_X} = 914.\,349\ nS \rightarrow r_o = \frac{1}{g_{ds_X}} = 1.\,1\ M\Omega$

Now back to the assumption that we made that $W=10~\mu m.$ This is not the actual value that we will use for our design. But the good news is that I_D is always proportional to W irrespective of the operating region and the model of the MOSFET (regardless square – law is valid or no). Thus, we can use ratio and proportion (cross – multiplication) to determine the correct width at which the current will be $I_{D_Q}=10~\mu A$ as given in the specs.

Calculate W as shown below.

P9

W	I_{D}
$W_{assumed} = 10 \mu m$	I _{DX} @ V _Q * (From The Chart)
$W_{required} = ?$	$I_{D_Q} = 10 \mu A \text{ (From The Specs)}$

W	$I_{\mathbf{D}}$
$W_{assumed} = 10 \mu m$	$I_{D_X} @ V_Q^* $ (From The Chart) = 11. 914 µA
$W_{required} = ?$	$I_{D_Q} = 10 \mu A \text{ (From The Specs)}$

$$W_{required} = 8.393 \ \mu m.$$

Now we are almost done with the design of the amplifier. Note that g_m is also proportional to W as long as V_{ov} is constant. On the other hand, $r_o = \frac{1}{g_{ds}}$ is inversely proportional to W (I_D) as long as L is constant. Before leaving this part, calculate g_{m_Q} and g_{ds_Q} using ratio and proportion (cross multiplication).

P10

${f g_m}$	W
$g_{m_X} = 119.083 \mu S.$	$W_{assumed} = 10 \mu m$
$g_{mQ_{required}} = ?$	$W_{required} = 8.393 \mu m$

$$g_{mQ}_{required} = 99.946 \mu S.$$

g _{ds}	W
$g_{ds_X} = 914.349 \text{ nS}.$	$W_{assumed} = 10 \mu m$
$\mathbf{g_{ds_{required}}} = ?$	$W_{required} = 8.393 \ \mu m$

$$g_{dsQ_{required}} = 767.413 \text{ nS} \rightarrow r_o = 1.3 \text{ M}\Omega$$

CD AMPLIFIER

OP (Operating Point) Analysis

Simulate the OP point. Report a snapshot clearly showing the following parameters (add a filter to your monitor).

ID

VGS

VDS

VTH

VDSAT

GM

GDS

GMB

CDB

CGD

CGS

CSB

Region

Value Parameters -10u id -609.7m vgs -609.7m vds -411m vth vdsat -166m 99.31u gm 819.9n gds 31.95u gmb cdb -6.695f -5.533f cgd -56.8f cgs -22.84f csb region

- **4** Check that the transistor operates in saturation.
 - \rightarrow From Simulation (Above).
 - Hint: The "region" meaning is as follows:
 (0 cut-off, 1 triode, 2 sat, 3 sub threshold, and 4 breakdown).
 - \circ Region = 2 = Saturation.
 - → From Hand Analysis:

- $\circ~|V_{TH}|=411~mV$, $V_{sg}=609.7~mV>|V_{TH}|$ (Transistor ON)
- $_{\odot}\ V_{sd}=609.7>V_{sg}-|V_{TH}|$, \therefore Trans. In Saturation.

AC Analysis

(1Hz: 10GHz, logarithmic, 20points/decade) to investigate the frequency domain peaking.

frequency domain peaking = 4.288 dB.

- **♣** Analytically calculate quality factor (use approximate expressions).
 - From Simulation:

0

Q3

$\mathbf{g}_{\mathbf{m}}$	99.31 μS
C_{gs}	56.8 fF
C_{gd}	5. 533 fF
C_L	2 pF
R _{sig}	2 ΜΩ
$Q = \sqrt{\frac{g_m(C_{gs} + C_{gd})R_{sig}}{C_L}}$	2.488

- o Is the system underdamped or overdamped?
 - \to Since, Q > 0.5 , \div The System is Underdamped Response. This is shown by the Magnitude Bode Plot above.

Perform parametric sweep: $C_L = 2pF, 4pF, 8pF$. 🗄 🗹 备 Global Variables ✓ 相 CL 2p,4p,8p ✓ 柏 1u ✓ Rsig 2M 1.8 8.393u Click to add variable ■ LAB_4_PART_2 × 🥒 adexl 🛚 Outputs Setup Run Preview Results Diagnostics Append Detail Point Output Nominal Spec Parameters: CL=2p IEEE_Workshop:LAB_4_PART_2:1 4.288 IEEE_Workshop:LAB_4_PART_2:1 1 Vout dB

peak

peak

Vout dB

Vout dB

3.238

1.755

1

IEEE_Workshop:LAB_4_PART_2:1

IEEE_Workshop:LAB_4_PART_2:1

IEEE_Workshop:LAB_4_PART_2:1

IEEE_Workshop:LAB_4_PART_2:1

Report the peaking vs C_L.

Parameters: CL=4p

2

Parameters: CL=8p

3

 Increase C_L Eventually Decrease Q And Decrease the Peak. the bandwidth is inverse proportional to the shunt capacitance, so when increasing the capacitance, the band width tends to be much narrow.

Report Bode plot magnitude overlaid on same plot.

Q5

4 Comment.

 \circ Increase C_L Eventually Decrease Q And Decrease the Peak. the bandwidth is inverse proportional to the shunt capacitance, so when increasing the capacitance, the band width tends to be much narrow.

Peaking and Ringing

- □ For Q > 0.5 (ζ < 1) → underdamped response
 - There's damping oscillation in time domain (Ringing).
 - % overshoot = $100 e^{-\frac{\hbar}{\sqrt{4Q^2-1}}}$
- > For $Q = 0.707 \rightarrow$ maximally flat response.
- > For $Q > 0.707 \rightarrow$ peaking in frequency.

Report the peaking vs R_{sig} .

Report Bode plot magnitude overlaid on same plot.

Comment.

 \circ Increase R_{sig} Eventually Increase Q And Increase the Peak. For small R_{sig} , no peaks in frequency for the output, the output spectrum is just like a low-pass filter with attenuation after certain cut-off frequency. For small R_{sig} , system is overdamped, and for large R_{sig} , the system is underdamped.

Peaking and Ringing

- □ For Q > 0.5 (ζ < 1) → underdamped response
 - There's damping oscillation in time domain (Ringing).
 - % overshoot = $100 e^{-\frac{R}{\sqrt{4Q^2-1}}}$
- ightarrow For Q=0.707
 ightarrow maximally flat response.
- > For $Q > 0.707 \rightarrow$ peaking in frequency.

