Iterative Solution of Linear Equations

定常迭代法

概述

迭代法基本概念

常用于稀疏矩阵,迭代序列 $\{x^{(k)}\}_{k=0}^\infty$,有 $\lim_{k\to\infty}x^{(k)}=x*=A^{-1}b$,定常迭代&子空间迭代(CG)

定常迭代法概念

每次迭代格式一致,例如 $A\Delta(x) = A(x^k - x^{(k-1)}) = b - Ax^{(k-1)} = b^{(k)}$

矩阵分裂是什么

A = M - N , (A, M 非奇异)

基于矩阵分裂的定常迭代法

$$Mx^{(k)} = Nx^{(k-1)} + b$$

三种经典定常迭代法

Jacobi迭代法(A=D-L-U)

M=D, N=L+U , 迭代更新顺序与 i 无关适合并行

停机准则要求相对残量满足精度, $\dfrac{||b-Ax^{(k)}||}{||b-Ax^{(0)}||} < EPS$

GS(Gauss-Seidel)迭代法

$$M = D - L, N = U$$
 , $Dx^{(k)} = Lx^{(k)} + Ux^{(k-1)} + b$

运用已经更新的解,收敛速度更快

SOR迭代法

将 G-S 迭代法的 $x^{(k-1)}$ 与 $x^{(k)}$ 加权平均,获得更好的近似解, ω 松弛参数

$$x^{(k)} = (1-\omega)x^{(k-1)} + \omega D^{-1}(Lx^{(k)} + Ux^{(k-1)} + b)$$
 ->

$$x^{(k)} = (D - \omega L)^{-1} ((1 - \omega)D + \omega U) x^{(k-1)} + \omega (D - \omega L)^{-1} b$$

 $\omega < 1$ 低松弛, $\omega > 1$ 高松弛(通常), $\omega = 1$ G-S迭代

