MH4518 Group 7 Presentation

By: Hrishi, Nicholas and Ziheng

Agenda

- 1. Product
- 2. Methodology
 - a. Sourcing our Data
 - b. Simulation Techniques
 - c. Models
- 3. Models and Results
 - a. Geometric BM
 - b. Heston (Stochastic Volatility)

Product

Our Product: Outperformance Bonus Certificate on EURO STOXX 50

- Underlying Asset: EURO STOXX 50 Index (SX5E on Bloomberg)
- Feature: Barrier Down-and-Out Call Option
- Dates
 - Initial Fixing Date: 12 July 2022
 - Final Fixing Date: 14 July 2025
- Prices
 - SX5E Initial Level: EUR 3,487.05
 - Barrier: EUR 1,743.525 (50% of initial level)
 - Initial Offering: EUR 1000

Payoff Scenarios:

$$egin{aligned} if & \min(S_t) \, > \, V, \ payoff = maxigg(1000igg(1+1.5igg(rac{S_T-S_0}{S_0}igg)igg), 1000igg) \end{aligned}$$

a) The Reference Index never reached its Barrier during the lifetime of the Certificate (best case)

- You will receive EUR 1,000 per Certificate plus 150% of the positive performance of the Reference Index, calculated from its Initial Level, or
- You will receive a Minimum Repayment of EUR 1,000 per Certificate even if the performance of the Reference Index is negative.

Payoff Scenarios:

$$egin{align} if \min(S_t) \, > \, V, \ payoff = maxigg(1000igg(1+1.5igg(rac{S_T-S_0}{S_0}igg)igg), 1000igg) \end{array}$$

$$egin{align} \mathbf{b} ig) & if \ min(S_t) \leq V \, and \, S_T > S_0, \ & payoff = 1000 igg(1 + 1 igg(rac{T - S_0}{S_0} igg) igg) \ & = 1000 igg(rac{S_T}{S_0} igg) \end{split}$$

- b) The Reference Index has reached its Barrier during the lifetime of the Certificate and closes at or above its Initial Level on the Final Fixing Date
- You will receive EUR 1,000 per Certificate plus 100% of the positive performance of the Reference Index, calculated from its Initial Level.

Payoff Scenarios:

$$if \min(S_t) > V, \ payoff = maxigg(1000igg(1+1.5igg(rac{S_T-S_0}{S_0}igg)igg), 1000igg)$$

$$egin{align} \mathbf{b} ig) & if \ min(S_t) \leq V \, and \, S_T > S_0, \ & payoff = 1000 igg(1 + 1 igg(rac{T - S_0}{S_0} igg) igg) \ & = 1000 igg(rac{S_T}{S_0} igg) \end{split}$$

$$egin{aligned} egin{aligned} c ig) & if \min(S_t) \leq V \, and \, S_t < S_0, \ payoff = 1000 igg(rac{S_T}{S_0}igg) \end{aligned}$$

- c) The Reference Index closes below its Initial Level on the Final Fixing Date and its Barrier has been reached during the lifetime of the Certificate
- Your redemption amount will be reduced by 1% for each percentage point the Reference Index closes below its Initial Level.

Payoff Scenarios:

a)
$$if \min(S_t) > V, \ payoff = maxigg(1000igg(1+1.5igg(rac{S_T-S_0}{S_0}igg)igg), 1000igg)$$

Payoff Function:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} if & \min(S_t) \leq V \, and \, S_T > S_0, \ payoff &= 1000igg(1+1igg(rac{T-S_0}{S_0}igg)igg) \ &= 1000igg(rac{S_T}{S_0}igg) \end{aligned}$$

$$\chi(S_T) = egin{cases} ext{max} \Big(1000 \Big(1 + 1.5 \Big(rac{S_T - S_0}{S_0}\Big)\Big), 1000 \Big), & \min(S_t) > V \ 1000 \Big(rac{S_t}{S_0}\Big) & \min(S_t) \leq V \end{cases}$$

c)
$$if \min(S_t) \leq V \, and \, S_t < S_0, \ payoff = 1000 igg(rac{S_T}{S_0} igg)$$

Product - Timeline

Methodology - Sourcing our Data

Data Sources

- Stock Data S_t: <u>^STOXX50E from Yahoo Finance</u>
 - Dates: 2 Aug 2022 13 Nov 2023 (daily)
- Interest Rate r: <u>Euro Area Yield Curves with 1Y Maturity from ECB</u>
 - Dates: 6 Sep 2004 13 Nov 2023 (daily)
- Actual Derivative Price: Web-scraped from Credit Suisse
 - Dates: 15 Jul 2022 10 Nov 2023 (daily)
- Options Quote Prices for Underlying Asset: Taken from Bloomberg Terminal
 - Dates: 11 Aug 2023 15 Mar 2024 (option prices for 11 different expiration dates)

Methodology - Simulation Techniques

Techniques Used

- 1. Monte Carlo
- 2. Antithetic Variates
- 3. Control Variates
- 4. 1-shoot Stratified Sampling (not applicable to path-dependent derivatives)
- 5. Empirical Martingale Correction

General Process

- 1. Obtain / calculate model parameters from historical data
 - a. Risk-free interest rate r (taken from ECB)
 - b. Initial asset price for each day in window S_0
 - c. Total simulation duration T
 - d. Volatility σ
- 2. Plug model parameters into our simulation functions (MC, AV, CV, SS, EMS) to simulate N price paths of the SX5E stock
- 3. Calculate payoff of each price path for N simulations
- 4. Estimate option price by "pulling back" from payoff and taking mean

Simulation Setup

- Historical Data
 - For each day in sliding window (e.g. 9 Aug 2023),
 - r: Taken from previous day (e.g. 8 Aug 2023)
 - S_0 : Taken from current day (e.g. 8 Aug 2023)
 - σ: Calculated from previous M timesteps (e.g. 252 working days)
 - T: Calculated from current day (e.g. 485 working days from final fixing date)

Simulation Setup

- No. of Simulations N: 1,000,000
- Sliding Window
 - Start Date: 9 Aug 2023
 - End Date: 9 Nov 2023
 - Total Working Days: 66
- Lookback Periods
 - 3 months (63 working days)
 - 1 year (252 working days)

How much is the product worth today?

Mean Absolute Error from Actual Price for 1000000 simulations (Lookback 252 days):

- Monte Carlo: 111.67965241821518 EUR
- Antithetic Variates: 111.76689883672678 EUR
- Control Variates: 111.75460378848314 EUR
- Empirical Martingale Correction: 111.51634024679343 EUR

Mean Estimated Variance for 1000000 simulations (Lookback 252 days):

- Monte Carlo: 0.135644774298475
- Antithetic Variates: 0.13569600160397383
- Control Variates: 0.003957229202394658
- Empirical Martingale Correction: 0.13558974773461657

Variance Reduction % for 1000000 simulations (Lookback 252 days):

- Antithetic Variates: -0.04%
- Control Variates: 97.08%
- Empirical Martingale Correction: 0.04%

Mean Absolute Error from Actual Price for 1000000 simulations (Lookback 63 days):

- Monte Carlo: 104.7021450502505 EUR
- Antithetic Variates: 104.72002892291869 EUR
- Control Variates: 104.72701499035304 EUR
- Empirical Martingale Correction: 104.50549300979961 EUR

Mean Estimated Variance for 1000000 simulations (Lookback 63 days):

- Monte Carlo: 0.11138777898728294
- Antithetic Variates: 0.11140412994080132
- Control Variates: 0.0025065628219082844
- Empirical Martingale Correction: 0.11138612972251363

Variance Reduction % for 1000000 simulations (Lookback 63 days):

- Antithetic Variates: -0.01%
- Control Variates: 97.75%
- Empirical Martingale Correction: 0.00%

Sensitivities for Monte Carlo Simulation

Simulation Enhancement: Just-in-time compilation (Numba)

- Rewrote simulation functions to comply with Numba's
- Adding a @jit in front of the simulation function compiles the Python code to machine code, which runs hundreds of times faster

Simulation Enhancement: Parallel processing (concurrent.futures)

- Used multiple processes to parallelize different simulation days
- Divides runtime by no. of CPUs available

Improvement:

 Cut projected simulation time of 1 million simulations over 66 days using 5 simulation techniques from 30h to 1h

Heston Pricing Formula:

$$C = S_t. \left[\frac{1}{2} + \frac{1}{\pi} \int_0^{\inf} Re \left[\frac{e^{-is \ln K} f_1(s,\nu,x)}{is} \right] ds \right] - Ke^{-rt} \left[\frac{1}{2} + \frac{1}{\pi} \int_0^{\inf} Re \left[\frac{e^{-is \ln K} f_2(s,\nu,x)}{is} \right] ds \right]$$

Simplified (Single Integral) Formula for Heston Pricing:

$$C=rac{1}{2}(S_t-Ke^{-r(T-t)})+rac{1}{\pi}\int_0^\infty Re\left[e^{r(T-t)}rac{f(s-i)}{is.\,K^{is}}-Krac{f(s)}{is.\,K^{is}}
ight]\!ds$$

where:

$$f(x) = e^{ixrT}S_t^{ix} \left(\frac{1-g.\,e^{d.\tau}}{1-g}\right)^{\frac{-ic\theta}{\sigma^2}} \times exp \left[\frac{\tau\kappa\theta}{\sigma^2}(\kappa-\sigma\rho.\,i.\,x-d) + \frac{\nu}{\sigma^2}(\kappa-\sigma\rho.\,i.\,x-d)\frac{1-e^{d_j.\tau}}{1-g_j.\,e^{d_j.\tau}}\right]$$

and

$$d = \sqrt{(
ho.\sigma.i.x)^2 - \sigma^2.(2.i.x - x^2)}$$
 $g = rac{\kappa -
ho.\sigma.i.x + d}{\kappa -
ho.\sigma.i.x - d}$

Dataset:

- Options Quote Prices for Underlying Asset: Taken from Bloomberg Terminal
 - Expiration Dates: 11 Aug 2023 15 Mar 2024 (11 different dates)
- Dataset example:

9	strike	Ticker	ExDt	Bid	Ask	IVM	Mid	DM	DB	DA	sDM	V	olm
ľ	08/11/23												
Т	3275	VSX5EB 8	/08/11/23	1107.69995	1 1110.100098	0	1108.900024	1		1 0.99334	15141	1	0
	3300	VSX5EB 8	08/11/23	1082.69995	1 1085.100098	0	1083.900024	1		0.9932	20507	1	0
			08/11/23	1057.69995	1 1060.100098	0	1058.900024	1		1 0.99306	50529	1	0
	3350	VSX5EB 8	08/11/23	1032.69995	1 1035.199951	125.6420975	1033.949951	0.999665141		1 0.9924	13933	0.999665141	0
			08/11/23	1007.69995	1 1010.199951	121.7026291	1008.949951	0.999679089		1 0.99227	70708	0.999679089	0
	3400	VSX5EB 8	08/11/23	982.699951	985.1999512	117.7696152	983.9499512	0.999694169		0.99209	95292	0.999694169	0
			08/11/23	957.699951	960.1999512	113.8392639	958.9499512	0.999710321		1 0.99191	12067	0.999710321	0
	3450	VSX5EB 8	08/11/23	932.699951	935.1999512	109.90522	933.9499512	0.999727726		1 0.99172	20974	0.999727726	0
			08/11/23	907.699951	910.1999512	105.9605713	908.9499512	0.999746442		1 0.99151	19511	0.999746442	0
	3500	VSX5EB 8	08/11/23	882.699951	2 885.1999512	101.9891052	883.9499512	0.999766886		0.99130	9166	0.999766886	0
			08/11/23	857.699951	2 860.1999512	97.98062897	858.9499512	0.999789		1 0.99108	88569	0.999789	0
	3550	VSX5EB 8	/08/11/23	832.699951	2 835.1999512	93.91284943	833.9499512	0.99981308		0.99085	6826	0.99981308	0
			08/11/23	807.800048	810.1999512	102.1004105	809	0.999236882		1 0.99061	12507	0.999236882	0
	3600	VSX5EB 8	/08/11/23	782.800048	8 785.1999512	98.55029297	784	0.999239087		1 0.99035	55253	0.999239087	0
			08/11/23	757.800048	8 760.1999512	95.02385712	759	0.999241769		1 0.99008	33396	0.999241769	0
	3650	VSX5EB 8	/08/11/23	732.800048	8 735.1999512	91.52035522	734	0.999244988		0.98979	95983	0.999244988	0
			08/11/23	707.800048	8 710.3000488	93.23561096	709.0500488	0.998652339		1 0.98884	12905	0.998652339	0
	3700	VSX5EB 8	08/11/23	682.800048	8 685.3000488	89.75177765	684.0500488	0.998632789		0.98849	98569	0.998632789	0
			08/11/23	657.800048	8 660.3000488	86.28860474	659.0500488	0.998612285		1 0.98813	33371	0.998612285	0
			/08/11/23	632.800048	635.3000488	82.85087585	634.0500488	0.998589993		1 0.98774	12484	0.998589993	0
	3775	VSX5EB 8	08/11/23	607.800048	8 610.3000488	79.43598175	609.0500488	0.998566031		1 0.98732	24119	0.998566031	0
	3800	VSX5EB 8	08/11/23	582.800048	585.3000488	76.04009247	584.0500488	0.998540759		1 0.98687	76905	0.998540759	0
			08/11/23	557.800048	560.3000488	72.66053009	559.0500488	0.998514533		0.98639	95001	0.998514533	0
			08/11/23	532.800048	535.3000488	69.30786896	534.0500488	0.99848491		1 0.98587	74474	0.99848491	0
-1	3875	VSX5EB 8	08/11/23	507.800048	510.3000488	65.97357178	509.0500488	0.99845314		1 0.98531	12045	0.99845314	0
	3900	VSX5EB 8	08/11/23	482.800048	8 485.3999023	65.53482819	484.0999756	0.997626543		1 0.98383	32836	0.997626543	0
-1	3925	VSX5EB 8	08/11/23	457.899902	3 460.3999023	64.22728729	459.1499023	0.99677676		1 0.98312	28428	0.99677676	0
		<u> </u>	V										-

- Initializing parameters and defining objective function
 - $\Theta = (\kappa, \theta, \xi, \rho, V_0) = (0.5, 0.5, 0.5, -0.5, 0.17)$
 - r, S_t $\min_{\Theta} \sum_{i=1}^{N} (P_i(\Theta) M_i)^2$
 - Upper and Lower Bounds: (3, 3, 5, 0, 1), (10⁻², 10⁻², 10⁻², -1, 10⁻²)
 - Optimization Function: Levenberg Marquardt algorithm

- Calibration Results:
 - \Rightarrow $\Theta = (\kappa, \theta, \xi, \rho, V_0) = (9.82380774, 0.05478766, 0.02353233, -0.95117468, 2.83318275)$

Simulation Setup

- No. of Simulations: 1,000,000
- Simulation Dates
 - 9 Aug 2023 :(
- $\Theta = (\kappa, \theta, \xi, \rho, V_0) = (9.82380774, 0.05478766, 0.02353233, -0.95117468, 2.83318275)$
- S_t, r

Example of Simulated Underlying Paths (Monte Carlo)

Models - Heston SV Results

After applying payoff function + discounting factor:

Predicted Value for 9 Aug 2023: 1504.36 EUR

Estimated Variance: 1.238661441

95% Confidence Interval: [1502.18, 1506.54]

Absolute Error: 212.90

Thank You!

Q&A