线性代数(内招) 2019-2020 学年(上) 姓名: 专业: 学号:

第 09 周作业

练习 1. 根据参数 a 的取值,讨论向量组 $\alpha_1 = \begin{pmatrix} 3 \\ 1 \\ a \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 4 \\ a \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix}$ 何时线性相关,何时线性无关。

练习 2. 设 α , β , γ 线性无关,证明: α , $\alpha + \beta$, $\alpha + \beta + \gamma$ 也是线性无关。

练习 3. 求向量组
$$\alpha_1 = \begin{pmatrix} -2\\1\\3\\-1\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1\\3\\5\\-3\\-1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0\\5\\7\\-5\\-4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1\\2\\2\\-2\\-3 \end{pmatrix}$ 的一组极大无关组,并将其余向量表示成极大无关组的线性组合。

下一题是附加题,做出来的同学下周交上来,可以加分

练习 4. 先介绍"幂零"的概念: 一个方阵 A 称为幂零是指存在正整数 m 使得 $A^m = O$ 。要注意的是幂零 矩阵不一定是零矩阵。例如 $A=\begin{pmatrix}0&1\\0&0\end{pmatrix}$ 不是零矩阵,但满足 $A^2=O$ 。 现假设 n 阶方阵 A 是幂零,并假设 m 是最小的正整数满足 $A^m=O$ 。设 v 是 \mathbb{R}^n 的向量,并且满足

 $A^{m-1}v \neq 0$ 。证明: 向量组 $v, Av, A^2v, \cdots, A^{m-1}v$ 是线性无关。

利用上述结论证明: 如果 n 阶方阵 A 是幂零,则 $A^n = O$ 。