1 Adjoint of a linear transformation

• <u>Definition</u>: Let V, W be inner product space. Let $A: V \to W$ be an operator, then the adjoint of A is the operator $A^*: W \to V$ such that

$$(Ax, y) = (x, A^*y)$$
 $\forall x \in V, y \in W$

• <u>Definition</u>: For a $m \times n$ matrix A, its adjoint $A^* := \overline{A^T}$. Given the definition, it satisfies the property

$$(Ax, y) = (x, A^*y)$$
 $\forall x \in \mathbb{C}^n, y \in \mathbb{C}^m$

Question

Let A be an $m \times n$ matrix. Show that $Ker A = Ker(A^*A)$

2 Isometries and unitary operators

• Definition: An operator $U: X \to Y$ is called an isometry, if it preserves the norm. That is

$$||Ux|| = ||x|| \qquad \forall x \in X$$

Some useful facts about isometry:

1. An operator $U: X \to Y$ is an isometry if and only if

$$(x,y) = (Ux, Uy) \qquad \forall x, y \in X$$

- 2. An operator $U: X \to Y$ is an isometry if and only if $U^*U = I$
- <u>Definition</u>: An isometry $U: X \to Y$ is a unitary operator if it is invertible. Some useful facts about unitary operator:
 - 1. If $U: X \to Y$ is a unitary operator, then $U^{-1} = U^*$
 - 2. An isometry $U: X \to Y$ is a unitary operator if and only if $\dim X = \dim Y$

Questions

1. Show that a product of unitary matrices is unitary.

2. Let $U: X \to X$ be a linear transformation on a finite-dimensional inner product space. Prove that if ||Ux|| = ||x|| for all $x \in X$, then U is unitary.

3. Let A, B be $n \times n$ matrices. Show that $\operatorname{trace}(AB) = \operatorname{trace}(BA)$. Conclude that similar matrices have the same trace.