MATHS-S1 CUPGE – ESIR Analyse combinatoire

Ahmad Karfoul

Principe fondamental de l'analyse combinatoire

- Objectif: Développer quelques techniques permettant de déterminer, sans dénombrement direct, le nombre de résultats possibles d'une expérience particulière, ou ecnore le nombre d'éléments d'un ensemble particulier.
- Principe fondamental de l'analyse combinatoire: Si un procédure quelconque peut être représenté de n_1 façons différentes et si après cette procédure une seconde procédure peut être représentée de n_2 façons différentes, et si ensuite une troisième procédure peut être représentée de n_3 façons différentes et ainsi de suite, alors le nombre de façons différentes permettant d'exécuter les procédures dans l'ordre indiqué est égal au produit $n_1n_2n_3\cdots$
- Exemple : Une plaque d'immatriculation contient 2 lettres distinctes suivies de 3 chiffres dont le premier est différent de zéro. Le nombre de plaques différentes que l'on peut imprimer est :

Principe fondamental de l'analyse combinatoire

No. de plaques = $26 \times 25 \times 9 \times 10 \times 10 = 585000$

Principe fondamental de l'analyse combinatoire

No. de plagues = $26 \times 25 \times 9 \times 10 \times 10 = 585000$

☐ Notation factorielle (!):

- \square Pour des raisons de commodité, on définit 0! = 1

• Exemple:

•
$$3! = 3 \times 2 \times 1 = 6$$

•
$$\frac{8!}{6!} = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{6!} = \frac{8 \times 7 \times 6!}{6!} = 56$$

Arrangement et Permutation

 $lue{}$ Permutation : un arrangement de n objets considérés en même temps et pris dans un ordre donné.

- L'arrangement de r de ces n objets $(r \le n)$ dans un ordre donné s'appelle arrangement d'indice r ou encore arrangement de n objets pris r à r.
 - **Exemple**: Considérons l'ensemble des lettres a, b, c et d. Alors :
 - 1. bdca, dcba et acdb sont des permutations de 4 lettres.
 - 2. bad, adb, cbd et bca sont des arrangements des 4 lettres prises 3 à 3.
 - 3. ad, cb, da et bd sont des arrangement des 4 lettres prises 2 à 2.
- \square On note \mathcal{A}_n^r le nombre d'arrangements de n objets pris r à r. Il est défini par :

$$\mathcal{A}_r^n = \frac{n!}{(n-r)!}$$

Permutation avec répétition

- ☐ Permutation avec répétition est définie lorsque on s'intéresse à connaître le nombre de permutations qu'il y a parmi des objets dont certaines sont semblables.
- **Théorème :** Le nombre de permutations de n objets dont n_1 sont semblables, n_2 sont semblables, ..., n_r sont semblables est :

$$\frac{n!}{n_1! \, n_2! \cdots n_r!}$$

Exemple : Combien de mots différents peut-on former à partir des lettres du mot LILLE?.

$$\frac{5!}{3!} = \frac{120}{6} = 20 \text{ mots différents}$$

Echantillonnage (Tirage)

- ☐ La notion de l'échantillonnage est abordé dans des situations semblables au tirage de bulles dans une urne.
- \Box Un échantillon aléatoire de taille r est une collection de r objets (ex. boules) tirés de l'urne l'un après l'autre.
- **Echantillonnage avec remise (non-exhaustif) :** Pour une urne contenant n boules et d'après le principe fondamental de l'analyse combinatoire, il existe n^r échantillons différents de taille r.
- **Echantillonnage sans remise (exhaustif)**: Pour une urne contenant n boules et d'après le principe fondamental de l'analyse combinatoire, il existe $n(n-1)(n-2)\cdots(n-r+1)$ échantillons exhaustifs de taille r. Alors :

$$n(n-1)(n-2)\cdots(n-r+1) = \mathcal{A}_r^n = \frac{n!}{(n-r)!}$$

Combinaisons

- Pour une collection donnée de n objets, on appelle combinaison de n objets pris r à r (ou combinaison de r objets), un sous ensemble quelconque de r éléments. En d'autres termes, une combinaisons de r objets est un choix quelconque de r objets parmi les n donnés sans tenir en ne tenant pas compte de l'ordre.
- **Exemple :** les combinaisons de lettres a, b, c, d prises 3 à 3 sont $\{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}.$
- lacktriangle On désigne par \mathcal{C}_r^n le nombre de combinaisons de n objets pris r à r.
- \square \mathcal{C}^n_r est aussi connu sous le nom "Coefficient du binôme"
 - Exemple: le nombre de combinaisons de quatre lettres a, b, c, d pris 3 à 3 est :

Combinaisons	Permutations
abc	abc, acb, bac, bca, cab, cba
abd	abd, adb, bad, bda, dab, dba
acd	acd, adc, cad, cda, dac, dca
bcd	bcd, bdc, cdb, cbd, dcb, dbc

Combinaisons

• Exemple: le nombre de combinaisons de quatre lettres a, b, c, d pris 3 à 3 est :

Combinaisons	Permutations
abc	abc, acb, bac, bca, cab, cba
abd	abd, adb, bad, bda, dab, dba
acd	acd, adc, cad, cda, dac, dca
bcd	bcd, bdc, cdb, cbd, dcb, dbc

- Chaque combinaison engendre 3! permutations
- \Rightarrow le nombre de combinaisons \times 3! = le nombre de permutations

$$\square$$
 De manière générale : $\mathcal{C}^n_r \times r! = \mathcal{A}^n_r \Rightarrow \mathcal{C}^n_r = \frac{\mathcal{A}^n_r}{r!} = \frac{n!}{r!(n-r)!}$

$$C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Exemple : le nombre de combinaisons, sans répétition, de quatre lettres a, b, c, d pris 3 à 3 est : $\mathcal{C}_3^4 = {4 \choose 3} = \frac{4!}{3! \ 1!} = \frac{4 \times 3!}{3! \times 1} = 4$

Combinaisons

Lemme : Soient
$$a, b \in \mathbb{N}$$
, si $a + b = n \Rightarrow \binom{n}{a} = \binom{n}{b}$. En d'autre terme: $\binom{n}{n-r} = \binom{n}{r}$.

• Exemple : $\binom{3}{2} = \binom{3}{1}$.

$$\binom{3}{2} = \frac{3!}{2! \cdot 1!} = \frac{6}{2} = 3$$

$$\binom{3}{1} = \frac{3!}{1! \, 2!} = \frac{6}{2} = 3$$

- $\binom{n}{0} = \frac{n!}{0!n!}$
- $\binom{0}{0} = \frac{0!}{0!0!} = 1$
- $\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$
- $\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}$

Partitions ordonnées

- On suppose qu'une urne, A, contient 7 boules numérotées de 1 à 7 (cad. $A = \{1,2,3,4,5,6,7\}$. On calcul le nombre de possibilités de tirer d'abord 2 boules puis 3 boules puis 2 boules.
 - ightharpoonup Il y a $\binom{7}{2}$ possibilités de tirer 2 boules en premier.
 - ightharpoonup II y a $\binom{5}{3}$ possibilités de tirer 3 boules en deuxième.
 - ightharpoonup Il y a $\binom{2}{2}$ possibilités de tirer 2 boules en troisième.
 - ightharpoonup Donc, il y a $\binom{7}{2} \times \binom{5}{3} \times \binom{2}{2} = 210$ partitions ordonnées différente de $A = \{A_1, A_2, A_3\}$ avec $A_1 = \{.,.\}$, $A_2 = \{.,.\}$ et $A_3 = \{.,.\}$.

Partitions ordonnées

- **Théorème :** Si A contient n éléments et si n_1, n_2, \cdots, n_r sont des entiers positifs tels que $n_1+n_2+\cdots+n_r=n$, alors il existe $\frac{n!}{n_1!n_2!\cdots n_r!}$ partitions ordonnées différentes de A de la forme (A_1,A_2,\cdots,A_r) où A_1,A_2,\cdots,A_r contiennent respectivement $n_1,n_2,\cdots n_r$ éléments.
- **Exemple :** De combien de manières différentes peut-on partager 9 jouets entre 4 enfants sachant que le plus jeune enfant doit recevoir 3 jouet et les autres enfants 2 jouets?

$$\frac{9!}{3!2!2!2!} = 7560$$
 partitions