IDENTIFICATION OF METHODOLOGY USED IN REAL ESTATE PROPERTY VALUATION

AN INDUSTRY ORIENTED MINI REPORT

Submitted to

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD

In partial fulfilment of the requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

Submitted By

KARRE NAGARAJU

21UK1A05M8

Under the guidance of

Mr. G. Satish Chander

(Assistant Professor)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VAAGDEVI ENGINEERING COLLEGE

Affiliated to JNTUH, HYDERABAD;

 $BOLLIKUNTA,\,WARANGAL\,(T.S)-506005$

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VAAGDEVI ENGINEERING COLLEGE(WARANGAL)

CERTIFICATE OF COMPLETION INDUSTRY ORIENTED MINI PROJECT

This is to certify that the UG phase-1 entitled "IDENTIFICATION OF METHODOLOGY USED IN REAL ESTATE PROPERTY VALUATION" is being submitted by KARRE NAGARAJU(21UK1A05M8) in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology in Computer Science & Engineering to Jawaharlal Nehru Technological University Hyderabad during the academic year 2023- 2024.

Project Guide HOD
Mr.G.Satish Chander Dr.R.Naveen Kumar

(Assistant Professor) (Professor)

EXTERNAL

ACKNOWLEDGEMENT

We wish to take this opportunity to express our sincere gratitude and deep sense of respect to our beloved **Dr.SYED MUSTAK AHMED**, Principal, Vaagdevi Engineering College for making us available all the required assistance and for his support and inspiration to carry out this UG Project Phase-1 in the institute.

We extend our heartfelt thanks to **Dr. R.NAVEEN KUMAR**, Head of the Department of CSE, Vaagdevi Engineering College for providing us necessary infrastructure and thereby giving us freedom to carry out the UG Project Phase-1.

We express heartfelt thanks to Smart Bridge Educational Services Private Limited, for their constant supervision as well as for providing necessary information regarding the UG Project Phase-1 and for their support in completing the UG Project Phase-1.

We express heartfelt thanks to the guide, **G.SATISH CHANDER**, Assistant professor, Department of CSE for his constant support and giving necessary guidance for completion of this UG Project Phase-1.

Finally, we express our sincere thanks and gratitude to my family members, friends for their encouragement and outpouring their knowledge and experience throughout the thesis.

KARRE NAGARAJU

(21UK1A05M8)

ABSTRACT

The "Identification of Methodology Used in Real Estate Property Valuation" project aims to analyze and determine the methodologies commonly employed in valuing real estate properties. It involves studying various appraisal techniques, market analysis methods, and data-driven approaches used by real estate professionals, appraisers, and property valuation experts. By understanding the different methodologies, the project seeks to enhance accuracy, transparency, and reliability in real estate property valuations.

Scenario 1: Comparative Market Analysis (CMA)

Real estate agents and brokers use comparative market analysis (CMA) to determine the value of a property by comparing it to similar properties recently sold in the same area. This scenario explores how CMA methodologies vary based on factors such as property type, location, market trends, and comparable property selection criteria.

Scenario 2: Income Approach

Investors and appraisers use the income approach to value income-generating properties such as rental properties, commercial buildings, or investment properties. This scenario delves into the methodologies involved in estimating property value based on potential income streams, cash flow projections, occupancy rates, and market rental rates.

Scenario 3: Cost Approach

The cost approach involves estimating the value of a property by considering the cost of replacing or reproducing it minus depreciation. This scenario examines the methodologies used to assess construction costs, land value, depreciation factors, and adjustments for improvements or renovations when valuing real estate properties.

TABLE OF CONTENTS:-

1. I	NTRODUCTION 6	
1.1	OVERVIEW6)
1.2	2 PURPOSE7	,
2.	LITERATURE SURVEY	8
2.1	EXISTING PROBLEM	8-9
2.2	2 PROPOSED SOLUTION 1	0-113
3.7	THEORITICAL ANALYSIS	12
3.1	BLOCK DIAGRAM	12
3.2	SOFTWARE DESIGNING	13-14
4.	EXPERIMENTAL INVESTIGATIONS	15
5.	FLOWCHART	16
6.	RESULTS	17-18
7.	ADVANTAGES AND DISADVANTAGES	19
8.	APPLICATIONS	.20-22
9.	CONCLUSION	.23
10.	FUTURE SCOPE	24-26
11.	BIBILOGRAPHY	27-28
12.	APPENDIX (SOURCE CODE)&CODE SNIPPETS	29-49

1.INTRODUCTION

1.1. OVERVIEW

The real estate market is integral to economic stability, where precise property valuation is crucial. Traditional appraisal methods, while valuable, often suffer from subjectivity and inefficiency. This project leverages machine learning (ML) to improve the accuracy and efficiency of property valuations.

The primary goal is to develop machine learning models that can predict real estate property values more accurately than traditional methods, using various relevant features.

1.2. PURPOSE

The primary purpose of this project is to develop a robust and accurate methodology for real estate property valuation using machine learning (ML) techniques. This aims to address the limitations of traditional valuation methods, which are often subjective, time-consuming, and prone to inconsistencies.

Specifically, the project aims to:

1. Enhance Accuracy:

Improve the precision of property valuations by utilizing advanced ML models that can capture complex patterns and relationships within real estate data.

2. Increase Efficiency:

Streamline the valuation process, reducing the time and effort required to assess property values compared to manual appraisal methods.

3. Provide Objectivity:

Offer a data-driven approach to property valuation, minimizing human bias and subjectivity inherent in traditional appraisals.

4. Facilitate Informed Decision-Making:

Empower buyers, sellers, investors, and policymakers with reliable and consistent property valuations, aiding in more informed and confident decision-making.

5.Integrate Technology:

Develop a user-friendly web-based application that utilizes the trained ML models, allowing users to easily obtain property valuations by inputting relevant details.

6.Demonstrate ML Potential: Showcase the potential of machine learning in transforming traditional

LITERATURE SURVEY

2.1 EXISTING PROBLEM

The current practices in real estate property valuation face several significant challenges, which this project aims to address using machine learning methodologies.

These problems include:

- Subjectivity and Bias-Human Judgment: Traditional property valuation methods heavily rely
 on human appraisers whose judgments can vary based on personal experience, interpretation, and
 potential biases.
- 2. -Inconsistencies: Different appraisers might produce varying valuations for the same property due to subjective assessments, leading inconsistencies.
- 3. **Manual Analysis:** Traditional methods require extensive manual data collection and analysis, which can be time-consuming and labor-intensive. Delayed Results: The reliance on human appraisers and manual processes often results in delays, which can be critical in fast-moving real estate markets.
- 4. Data Constraints: Traditional methods often do not fully utilize the vast amounts of data available, such as real-time market trends, economic indicators, and detailed property characteristics.
- 5. **Feature Limitations:** Key features influencing property values may be overlooked or underutilized, reducing the accuracy of valuations.

6. Scalability Issues:

-Resource Intensive: Scaling traditional appraisal methods to handle large volumes of properties can be challenging due to the need for extensive human resources.

7. **Limitations**: Appraisers may have limited local knowledge, affecting the accuracy of valuations in diverse geographic locations.

8. Economic Fluctuations:

- -Market Volatility: Rapid changes in market conditions, such as economic downturns or booms, can quickly render traditional valuations outdated.
- **-Lagging Indicators:** Traditional methods might rely on historical data that do not accurately reflect current market dynamics.

9. -Lack of Standardization:

Variable Standards: Different regions and organizations may followvarying standards and methodologies for property valuation, leading to inconsistent results Regulatory Challenges: Compliance with diverse regulatory requirements can complicate the valuation process.

10. Limited Predictive Power:

Simplistic Models: Traditional statistical models, while useful, often lack the complexity to capture intricate relationships between property features and their values.

11. **Overfitting/Underfitting:** Basic models might overfit to specific datasets or underfit the realworld complexity, leading to less reliable predictions.

2.2 PROPOSED SOLUTION

Identifying an effective methodology for real estate property valuation involves several key considerations to ensure accuracy and reliability. Here's a proposed solution that incorporates widely accepted approaches:

2.2.1. Market Approach:

- Comparable Sales Method: This method evaluates the property by comparing it to recently sold properties with similar characteristics (location, size, condition). Adjustments are made for differences to arrive at an estimated value.
- **Income Approach:** Particularly useful for income-generating properties (like rental units or commercial spaces), this method calculates value based on the income it can generate. Capitalization rates are applied to estimate the property's current value based on projected future income.

2.2.2 Cost Approach:

Replacement Cost Method: This method estimates the cost to replace the property with a similar one, adjusted for depreciation and obsolescence. It's useful for newer properties or unique buildings. **Depreciated Cost Method:** This evaluates the property's current value by accured depreciation from its original cost.

2.2.3. Valuation Process:

- **Data Collection:** Gather relevant data including property details, recent sales in the area, income potential (if applicable), and construction costs.
- Analysis: Apply the chosen valuation methods. For the Market Approach, identify comparable properties and make adjustments. For the Cost Approach, calculate replacement or depreciated costs. For the Income Approach, determine potential income and apply appropriate capitalization rates.
- **Final Valuation:** Synthesize findings from all approaches to arrive at a final valuation. Weight each approach based on relevance and reliability given the property type and market conditions.

2.2.4. Considerations:

- Market Trends: Account for current market conditions, including supply and demand dynamics, interest rates, and economic trends.
- **Property-Specific Factors:** Assess unique features like location, zoning regulations, environmental factors, and potential for future development or renovation.

2.2.5. Validation and Reporting:

- Validation: Cross-check results with local real estate experts, recent appraisals, and market indicators.
- **Reporting:** Present findings clearly and comprehensively, detailing methodology, assumptions made, and any limitations or risks associated with the valuation.

2.2.6. Technology Integration:

- Utilize real estate valuation software and databases for accurate data collection, analysis, and reporting.
- Implement geographic information systems (GIS) for spatial analysis and mapping of property attributes and market trends.

2.2.7. Regulatory Compliance:

• Ensure compliance with local regulations, appraisal standards (e.g., USPAP in the United States), and industry best practices. By integrating these methodologies and considerations, real estate professionals can develop a robust valuation approach that enhances accuracy, reliability, and confidence in property assessments.

3. THEORETICAL ANALYSIS

3.1. BLOCK DIAGRAM

3.2. SOFTWARE DESIGNING

The following software tools and environments are required to complete the real estate property valuation project using machine learning:

1. Google Colab:

Google Collab will serve as the development and execution environment for predictive modeling, data preprocessing, and model training tasks. It provides a cloud-based Jupyter Notebook environment with access to Python libraries and hardware acceleration.

2. Dataset (CSV File):

The dataset in CSV format is essential for training and testing the predictive model. It should include historical real estate data with features such as transaction date, house age, distance to the nearest MRT station, number of convenience stores, latitude, longitude, and property prices.

3. Data Preprocessing Tools:

Python libraries like NumPy, Pandas, and Scikit-learn will be used to preprocess the dataset. This includes handling missing data, feature scaling, and data cleaning to ensure the quality of the data used for model training.

4. Feature Selection/Drop:

Feature selection or dropping unnecessary features from the dataset can be done using Scikitlearn or custom Python code to enhance the model's efficiency. This step ensures that only relevant features are used in the predictive modeling process.

5. Model Training Tools:

Machine learning libraries such as Scikit-learn, TensorFlow, or PyTorch will be used to develop, train, and fine-tune the predictive model. Various regression models, including linear regression, decision trees, random forests, and neural networks, can be considered depending on the dataset and project requirements.

6. Model Accuracy Evaluation:

After model training, accuracy and performance evaluation tools, such as Scikit-learn metrics or custom validation scripts, will assess the model's predictive capabilities. Metrics like Mean Absolute Error

(MAE), Mean Squared Error (MSE), and R-squared (R²) will be used to measure the model's performance in predicting property values.

7. UI Based on Flask Environment:

Flask, a Python web framework, will be used to develop the user interface for the system. The Flask application will provide userfriendly platform for users to input property details and view values.

Integration and Workflow:

- Google Colab: The central hub for model development and training. It provides a
 collaborative environment to write and execute code, handle data preprocessing, and train
 machine learning models.
- **Dataset and Data Preprocessing:** The dataset will be processed using NumPy, Pandas, and Scikit-learn to clean the data, handle missing values, scale features, and select
- **Model Training:** Scikit-learn, TensorFlow, or PyTorch will be used to train the predictive models on the processed dataset. Model hyperparameters will be tuned to optimize performance.

- **Model Evaluation**: The trained models will be evaluated using various performance metrics to ensure their accuracy and reliability in predicting property values.
- **Flask UI**: The Flask web application will facilitate user interaction, allowing users to input property details and view valuation predictions. The Flask environment will communicate with the trained models to generate predictions based on user inputs.

4. EXPERIMENTAL INVESTIGATION

In this project, we have used a Real Estate Property Dataset. This dataset is a CSV file consisting of labeled data and having the following columns:

- **-X1_transaction_date:** The date on which the property transaction occurred.
- **-X2_house_age:** The age of the house in years.
- **-X3_distance_to_the_nearest_MRT_station:** The distance from the property to the nearest Mass Rapid Transit (MRT) station.
- **-X4_number_of_convenience_stores:** The number of convenience stores within a certain distance from the property.
- **-X5_latitude:** The geographical latitude of the property.
- -X6 longitude: The geographical longitude of the property.

Price: The price of the property, which is the target variable for prediction. For the dataset we selected, it consists of more than the columns we want to predict So, we have chosen the feature drop it contains the columns that we are going to predict the House Price value.

5. FLOW CHART

6.RESULT

HOMEPAGE

PREDICTIONS

7.ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

- 1. **Accuracy:** Machine learning models can analyze large datasets to identify complex patterns and relationships, leading to more accurate property valuations compared to traditional methods.
- 2. **Efficiency:** Once trained, ML models can quickly process new data and provide valuations, saving time compared to manual appraisals.
- 3. **Consistency:** ML models apply the same criteria to all properties, ensuring consistent valuations without human bias.
- 4. **Scalability:** ML models can handle a large number of properties simultaneously, making them suitable for large-scale real estate firms or platforms.
- 5. **Adaptability:** ML models can be updated with new data, allowing them to adapt to changing market conditions and improve over time.

DISADVANTAGES:

- 1. **Data Dependency:** The accuracy of ML models depends on the quality and quantity of the data. Incomplete or biased data can lead to inaccurate valuations.
- 2. **Complexity:** Developing and maintaining ML models requires specialized knowledge in data science and machine learning, which can be a barrier for some organizations.
- 3. **Transparency:** ML models, especially complex ones, can act as "black boxes," making it difficult to understand how they arrive at specific valuations, which can be a problem for stakeholders who need to understand the decision-making process.
- 4. **Overfitting:** ML models can overfit to training data, leading to poor performance on new, unseen data if not properly managed.

8.APPLICATIONS

1. Automated Valuation Models (AVMs)

- **Application:** Develop AVMs for instant property valuation.
- Benefits: Provides quick, reliable estimates for buyers, sellers, and real estate professionals.
 Reduces reliance on time-consuming manual appraisals.

2. Property Investment Analysis

- **Application:** Analyze and predict future property values for investment purposes.
- **Benefits:** Helps investors identify profitable investment opportunities by predicting price appreciation and rental income potential.

3. Market Analysis and Trends

- **Application:** Analyze market trends and forecast future property prices.
- **Benefits:** Assists real estate professionals and developers in making informed decisions about property development, marketing strategies, and timing of sales.

4. Risk Assessment for Lenders

- **Application:** Assess the risk associated with mortgage lending by evaluating property values.
- **Benefits:** Helps financial institutions and lenders determine loan-to-value ratios and make informed lending decisions.

5. Personalized Real Estate Services

- Application: Provide personalized property recommendations to buyers based on their preferences and budget.
- **Benefits:** Enhances user experience on real estate platforms, leading to higher customer satisfaction and engagement.

6. Property Tax Assessment

- **Application:** Automate the process of property tax assessment by accurately valuing properties.
- **Benefits:** Ensures fair and consistent tax assessments, reduces disputes, and improves efficiency for tax authorities.

7. Urban Planning and Development

- Application: Use property valuation models to assist in urban planning and development projects.
- **Benefits:** Helps urban planners and government agencies make data-driven decisions regarding zoning, infrastructure development, and resource allocation.

8. Insurance Underwriting

- **Application:** Determine property values for insurance underwriting and risk assessment.
- Benefits: Allows insurance companies to accurately assess property risks and set appropriate premiums.

9. Portfolio Management for Real Estate Firms

- **Application:** Manage and optimize real estate portfolios by predicting property values and market trends.
- **Benefits:** Enables real estate firms to make strategic decisions about property acquisitions, sales, and asset management.

10. Consumer Education and Transparency

- **Application:** Provide consumers with tools to understand property values and market dynamics.
- **Benefits:** Increases transparency in the real estate market, empowering buyers and sellers with accurate information to make informed decisions.

9. CONCLUSION

Incorporating machine learning into real estate property valuation brings numerous advantages that significantly enhance the accuracy, efficiency, and scalability of property assessments. By leveraging datadriven insights, machine learning models can provide more precise and consistent valuations compared to traditional methods. This technological advancement allows for quick processing of large datasets, making it ideal for large-scale applications and providing valuable benefits to a wide range of stakeholders, including buyers, sellers, investors, lenders, and real estate professionals.

However, the implementation of machine learning in this field also presents challenges. The dependency on high-quality data, the complexity of model development, and issues related to transparency and regulatory compliance must be carefully managed to ensure the reliability and acceptance of these models.

The applications of machine learning in real estate are vast and varied, from automated valuation models and investment analysis to urban planning and insurance underwriting. Each application not only enhances decision-making processes but also contributes to a more transparent and efficient real estate market.

FUTURE SCOPE

1. Enhanced Data Integration

10.

- **Incorporation of Diverse Data Sources:** Future models will integrate more diverse and rich data sources, including satellite imagery, social media trends, environmental data, and economic indicators, to provide more comprehensive valuations.
- Real-Time Data Updates: Models will leverage real-time data from IoT devices, smart
 homes, and connected city infrastructure to provide up-to-date property valuations reflecting
 current market conditions.

2. Advanced Modelling Techniques

- **Deep Learning and Neural Networks:** The use of advanced deep learning techniques will enable models to capture even more complex patterns and relationships in the data, leading to higher accuracy.
- **Geospatial Analysis:** Improved geospatial analysis techniques will allow models to better account for the influence of location-specific factors on property values.

3. Personalized Valuations

• **Customization for Individual Users:** Models will offer more personalized property valuations based on individual user preferences, search history, and behavior, enhancing user experience on real estate platforms.

• **Context-Aware Valuations:** Context-aware models will adjust valuations based on specific scenarios, such as future urban development plans or changes in local amenities.

4. Explainable AI and Transparency

- Improved Model Interpretability: Future developments will focus on making machine learning models more interpretable and transparent, allowing users to understand the factors driving property valuations.
- **Regulatory Compliance:** Enhanced transparency will help models meet regulatory requirements and gain wider acceptance among stakeholders.

5. Integration with Augmented Reality (AR) and Virtual Reality (VR)

- AR/VR for Property Viewing: Integration with AR and VR technologies will allow users to virtually tour properties and receive real-time valuation insights, providing a more immersive and informative experience.
- Simulations and Scenario Analysis: AR/VR for Property Viewing: Integration with AR and VR technologies will allow users to virtually tour properties and receive real-time valuation insights, providing a more immersive and informative experience.

6. Automated Decision Support Systems

• **End-to-End Automation:** Future systems will offer end-to-end automation of the property valuation process, from data collection and preprocessing to model training and deployment.

 Decision Support for Stakeholders: These systems will provide actionable insights and recommendations for buyers, sellers, investors, and policymakers, enhancing decision-making processes.

7. Sustainable and Ethical AI

- **Sustainability Metrics:** Incorporating sustainability metrics into property valuations, such as energy efficiency and carbon footprint, to promote environmentally responsible real estate practices.
- **Ethical Considerations:** Ensuring models adhere to ethical guidelines, avoid biases, and promote fairness in property valuations.

8. Blockchain Integration

- **Secure and Transparent Transactions:** Integration with blockchain technology will ensure secure, transparent, and tamper-proof property transactions, enhancing trust in the valuation process.
- **Smart Contracts:** Utilizing smart contracts to automate and enforce terms of real estate transactions based on AI-generated valuations.

9. Global Expansion and Accessibility

- Adaptation to Global Markets: Models will be adapted to account for regional differences in real estate markets, making them applicable worldwide.
- Accessibility for All Users: Ensuring that advanced valuation tools are accessible to all users, including small real estate firms and individual homeowners.

11.BIBILOGRAPHY

Books

- 1. **James, G., Witten, D., Hastie, T., & Tibshirani, R.** (2013). *An Introduction to Statistical Learning with Applications in R.* Springer.
- 2. **Murphy, K. P.** (2012). *Machine Learning: A Probabilistic Perspective*. MIT Press.
- 3. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Research Papers and Articles

Online Resources

- 1. Scikit-learn Documentation. Feature Engineering and Model Evaluation. https://scikit-learn.org/stable/documentation.html
- 2. **Flask Documentation**. Web Development with Flask. https://flask.palletsprojects.com/en/2.0.x/
- 3. **Kaggle**. *House Prices Advanced Regression Techniques*. https://www.kaggle.com/c/house-prices-advanced-regression-techniques

Websites and Blogs

- Towards Data Science. Machine Learning in Real Estate: Predicting Housing Prices.
 https://towardsdatascience.com/machine-learning-in-real-estate-predicting-housing-prices-29dc8a
 39d544
- 2. **Analytics Vidhya**. *A Comprehensive Guide to Data Preprocessing in Machine Learning*. https://www.analyticsvidhya.com/blog/2020/10/data-preprocessing-techniques/

3. **Medium**. *The Future of Real Estate: How AI and Big Data are Changing the Industry*. https://medium.com/@therealestateai/the-future-of-real-estate-how-ai-and-big-data-are- changingthe-industry-6e8c1e0e7df4

Conferences and Workshops

- 1. **IEEE Conference on Computer Vision and Pattern Recognition (CVPR)**. *Machine Learning for Computer Vision Workshop*.
- 2. International Conference on Machine Learning (ICML). Advances in Machine Learning for Real Estate Valuatio

12. APPENDIX

Model building:

- 1)Dataset
- 2) Google colab and VS code Application Building
 - 1. HTML file (Index file, Predict file)
 - 1. CSS file
 - 2. Models in pickle format

SOURCE CODE:

INDEX.HTML

```
<input type="text" id="X2_house_age" name="X2_house_age"><br>
          <label for="X3_distance_to_the_nearest_MRT_station">Distance to Nearest MRT Station:</label>
          <input type="text" id="X3_distance_to_the_nearest_MRT_station"</pre>
   name="X3_distance_to_the_nearest_MRT_station"><br>
          <label for="X4_number_of_convenience_stores">Number of Convenience Stores:</label>
          <input type="text" id="X4_number_of_convenience_stores" name="X4_number_of_convenience_stores"><br/>br>
          <label for="X5_latitude">Latitude:</label>
          <input type="text" id="X5_latitude" name="X5_latitude"><br>
          <label for="X6_longitude">longitude</label>
<input type="text" id="X6_longitude" name="X6_longitude" required><br><br><br>
          <input type="submit" value="Submit">
        </form>
        {% if y is not none %}
          <div class="result">
             <h2>House Price per Unit Area:</h2>
              \{ \{ y \} \} 
          </div>
        { % endif % }
      </div>
   </body>
   </html>
```

PREDICT.HTML

```
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>House Price Prediction</title>
 k rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
</head>
<body>
  <div class="container">
    <h1>Fill Details</h1>
    <form action="/value" method="POST">
      <label for="X1_transaction_date">Transaction Date:</label>
      <label for="X2_house_age">House Age:</label>
      <input type="text" id="X2_house_age" name="X2_house_age" required><br><br><br>
      <label for="X3_distance_to_the_nearest_MRT_station">Distance to the Nearest MRT Station:</label>
      <input type="text" id="X3 distance to the nearest MRT station"</pre>
name="X3_distance_to_the_nearest_MRT_station" required><br><br>
      <label for="X4_number_of_convenience_stores">Number of Convenience Stores:</label>
      <input type="text" id="X4_number_of_convenience_stores" name="X4_number_of_convenience_stores"</pre>
required><br><br>
      <label for="X5_latitude">Latitude:</label>
      <input type="text" id="X5_latitude" name="X5_latitude" required><br><br>
      <label for="X6_longitude">Longitude</label>
```

Css

```
Body {
           background: linear-gradient(to right, #f55d05,
                        #a7eda7);
    font-family: Arial, sans-serif;
                                    text-align: center;
                                                                }
             background-color: #fff;
   form {
 padding: 20px;
                   border-radius: 10px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
  display: inline-block;
                          margin-top:
                 50px;
                                                                }
  h1 {
          font-family: 'Times New Roman',
Times, serif;
               font-weight: bold;
                                     font-size:
             24px;
                     color: #000;
                                                                }
 label {
           display: block;
 margin:
15px 0 5px;
               fontsize:
         fontweight:
 18px;
bold;
    color: #000;
                                                                }
input[type="text"], input[type="date"] {
width: calc(100% - 20px);
                             padding:
```

```
10px;
            margin-bottom: 10px;
                                    border:
   1px solid #ccc;
                    borderradius: 5px;
  font-size: 16px;
                     color:
                #333;
                                                               }
         input[type="submit"] {
       backgroundcolor: #00ff7f;
     color: #fff;
padding: 10px 20px;
                       border:
    none;
 border-radius: 5px;
font-size: 18px; cursor:
pointer; transition:
background-color 0.3s ease;
                                                               }
         input[type="submit"]:hover {
          backgroundcolor: #00cc6f;
                                                               }
       font-size: 20px; font-family: 'Times
h2 {
  New Roman', Times, serif;
                               font-weight: bold;
  color: #0000ff; text-decoration: underline;
  margin-top: 20px;
                                                               }
h3 {
       font-size: 20px; font-family: 'Times
  New Roman', Times, serif; font-weight: bold;
  color: #000;
                margin-top: 20px; }
```

APP.PY

import os

```
from flask import Flask, render_template, request import pickle from
     sklearn.preprocessing import StandardScaler sc=StandardScaler()
                      Load the
                                      saved models
                                                            md
       pickle.load(open("price.pkl",
                                      "rb")) sc
       pickle.load(open("scale.pkl", "rb"))
                    app = Flask( name )
                            @app.route('/') def
                                 index():
           return render_template('index.html')
           @app.route('/value', methods=['POST']) def predict():
                            transaction_date =
       float(request.form['X1_transaction_date'])
                                                   house age =
float(request.form['X2_house_age']) distance_to_mrt =
float(request.form['X3_distance_to_the_nearest_MR
                            T_station'])
                                                               convenience_stores
                                                                                      =
                     float(request.form ['X4\_number\_of\_convenience\_stor
                                  es'])
         latitude = float(request.form['X5_latitude'])
                                                       longitude =
float(request.form['X6_longitude']) data = [[transaction_date, house_age,
         distance_to_mrt, convenience_stores, latitude,longitude]]
                      scaled data = sc.transform(data)
                   prediction = md.predict(scaled_data)
          return render_template('predict.html', y=prediction[0])
                                      if <u>name</u>
                       == '__main___':
```

app.run(debug=True)

CODE SNIPPETS

MODEL BUILDING

READ THE DATASET

NULL VALUES AND MISSING VALUES

[417] X=dt.drop('Y house price of unit area',axis=1)
 Y=dt['Y house price of unit area']

[341] x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)

[362] train_dt=x_train.join(y_train)

	No	X1 transaction date	X2 house age	X3 distance to the nearest MRT station	X4 number of convenience stores	X5 latitude	X6 longitude	Y house price of unit area
192	193	2013.167	43.8	57.58945	7	24.96750	121.54069	42.7
234	235	2013.250	8.0	2216.61200	4	24.96007	121.51361	23.9
5	6	2012.667	7.1	2175.03000	3	24.96305	121.51254	32.1
45	46	2013.083	36.6	488.81930	8	24.97015	121.54494	38.3
245	246	2013.417	7.5	639.61980	5	24.97258	121.54814	40.8
	2008	2000	. 374	2000	3467	500	990	1000
71	72	2013.083	35.5	640.73910	3	24.97563	121.53715	40.8
106	107	2013.083	17.2	189.51810	8	24.97707	121.54308	47.1
270	271	2013.333	10.8	252.58220	1	24.97460	121.53046	117.5
348	349	2012.833	4.6	259.66070	6	24,97585	121.54516	53.7
102	103	2013.083	1.1	193.58450	6	24.96571	121.54089	54.4
331 rd	ws × 8	3 columns						

[418] train_dt.hist(figsize=(15,8))
 plt.show()


```
/ [429] x_train = x_train.dropna()
y_train = y_train.loc[x_train.index]
```

/ [430] dt.dropna(inplace=True)

```
feature matrix
[['2012.917' '32.0' '84.87882' '10' '24.98298' '121.54024']
['2012.917' '19.5' '360.59470' '9' '24.98034' '121.53951']
['2013.583' '13.3' '561.98450' '5' '24.98746' '121.54391']
['2013.500' '13.3' '561.98450' '5' '24.98746' '121.54391']
['2012.833' '5.0' '390.56840' '5' '24.97937' '121.54245']]
```

```
32] mean=train_dt['X3 distance to the nearest MRT station'].mean()
   std=train dt['X3 distance to the nearest MRT station'].std()
   z_scores=[(x-mean)/std for x in train_dt['X3 distance to the nearest MRT station']]
F [-1.4870824572785777, -0.37441354316594566, 0.9072460810406845, 0.9072460810406845, 0.04700383836315336]
33] x_train,y_train=train_dt.drop('Y house price of unit area',axis=1),train_dt['Y house price of unit area']
34] from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=20)
36] from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import StandardScaler
   # Assuming x_train, x_test, y_train are defined earlier
   scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
   x_test_scaled = scaler.transform(x_test)
   # Initialize and fit the Linear Regression model
   lr = LinearRegression()
   lr.fit(x_train_scaled, y_train)
   # Predict using the fitted model
   y_pred_lr = lr.predict(x_test_scaled)
37] y_pred_lr
array([44.30082882, 51.92008849, 27.44109342, 43.67836072, 43.71576816,
🌓 🍘 🗖 🥴 House Price Pred - Colab X 🛅 New tab
                                                                                    \times | +
                                                                                                                                                                                                                    0
               https://colab.research.google.com/drive/1L3qxtUEUDg8MbgRM3hPXoB20xtKXjpqa#scrollTo=CtlLcBLYazOi
  < C
                                                                                                                                                                 Q A ☆ 中 ☆ 由
 CO △ House Price Pred ★
                                                                                                                                                                                                                          Q,
                                                                                                                                                                                  Comment 2 Share
         File Edit View Insert Runtime Tools Help All changes saved
       + Code + Text
                                                                                                                                                                                    ✓ RAM → Gemini
 :=
      / [438] # Import necessary libraries
             # Import necessary libraries
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.model_import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
 Q
 {x}
                                                                                                                                                                                                                          £X
 O.
                                                                                                                                                                                                                          0
              # Assuming x and y are your feature matrix and target vector respectively
 # Split the data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=20)
              # Initialize the Multiple Linear Regression model mlr = LinearRegression()
              mlr.fit(x_train, y_train)
              # Make predictions on the test set
              y_pred_mlr = mlr.predict(x_test)
      from sklearn.tree import DecisionTreeRegressor
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=20)
      DecisionTreeRegressor
              DecisionTreeRegressor(random_state=20)
 <>

| ✓ [441] y_pred_dtr=dtr.predict(x_test)
```

✓ Connected to Python 3 Google Compute Engine backend

• × 戀

[442] from sklearn.ensemble import RandomForestRegressor

