

Discovering Process Models from unlabeled Event Logs

Pascal Schulze, Anjo Seidel Data Extraction for Process Mining (ST-2020) 17.06.2020

The Problem

Unlabeled Event Log

- Events can be mapped to activities
- No knowledge of a data model
- Relation between events and cases is NOT known

How can we still do process mining with these logs?

The Approach

- If Case IDs are NOT given, try to **predict them!**
- Diogo R. Ferreira, Daniel Gillblad: "Discovering Process Models from Unlabelled Event Logs" [2]

Input: Unlabeled Event Log

A B D A E A C C D D A E F F F C D F . . .

Output: Estimated/Predicted Case ID

1 1 1 2 1 3 3 2 2 3 4 3 3 1 2 4 4 4 . .

- Estimation based on a given Probability Matrix M
- Assign an event to the trace: with the highest probability
 - which was last active

Log: A B D A E A C C D D A E F F F C D F ...

Case 1:

IDs:

М	0	Α	В	С	D	Е	F	•
0	-	1.0	-	-	-	-	-	-
A	-	-	0.25	0.75	-	-	-	-
В	-	-	-	-	1.0	-	-	-
С	-	-	-	-	1.0	-	-	-
D	-	-	-	-	-	0.5	0.5	-
E	-	-	-	-	-	-	1.0	-
F	-	-	-	-	-	-	-	1.0
•	-	-	-	-	-	-	-	-

- M gets initialized: random or based on direct successorship (M+)
- Iteratively estimate Case IDs with M and estimate M with given Case IDs

The Approach - Restrictions

- Metrics for Probability Matrix
 - M+ only with direct successorship
- Assumptions to the process
 - no loops
 - no parallelism
 - ...
- Greedy Algorithm
 - "iterative Expectation–Maximization procedure"
 - always pick most likely candidates
 - leads to suboptimal solutions

Research Question

- 1. Can the results of this approach be improved by using a Genetic Programming Paradigm and other metrics?
- 2. Can assumptions for this approach be overcome with a Genetic Approach?

New Contribution

Steps

- 1. Genetic Extension to the iterative Algorithm [3]
 - a. Implementation
 - b. Evaluation and Comparison of both Approaches
- 2. Getting rid of assumptions: Testing on different input models
 - a. Loops, parallel behaviour, only full recorded end-to-end instances
- 3. Extending Algorithm
 - a. Dynamic model creation instead of greedy rule-based procedure
 - b. Different estimation matrices for initialization
 - i. Distance
 - ii. Global strength of causality

Genetic Algorithm

Genetic Programing Paradigm

Searching for an optimal or at least suitable model among the space of all models, by evolving them, starting from a population of unfit (usually random) ones.

<u>After every (training) epoch → Reproduction:</u>

Selection

- select parents for next generation
- better performing individuals have a higher chance of getting selected

Crossover

- genetic operations to breed new individuals from selected parents

Mutation

randomly change values

[RECALL] The Approach - Iterative Process [3]

Genetic Programing Paradigm

- ¹ The term 'Model' can be interpreted as a container for a Probability Matrix and the corresponding estimated traces.
- ² Breed new individuals through crossover and mutation operations from fittest individuals to replace the weakest ones.

Model Evaluation - Weight Functions

Weight Functions

- weight function $w \to w(M) \in [0, 1]$

Intuition

Compare Model to Real World Instances with Case IDs

Not provided by unlabeled Event Logs

Problem

Evaluation of multiple model instances

- need for descriptive metrics
- need for computation of those metrics
- no Case IDs for comparison (no ground truth)

Research Question

- 0. How can models be evaluated/ranked without further data (ground truth)?
- 1. Can the precision of this approach be improved by using a Genetic Programming Paradigm and other metrics?
- 2. Can assumptions for this approach be overcome with a Genetic Approach?

- Take many unlabeled Event Logs as Input
- Initialize one Model each
- Compare one Matrix Instance to all other Input Logs
 - Token Replay, Alignment
 - Fitness, Precision ...

Evaluation: Genetic Approach

Evaluation

- Comparison of present results and our own results
- Metrics:
 - G-score [2]
 - similarity of generated traces and real life traces
 - Fitness, Precision, Generalization, Simplicity [4]
 - Runtime & Space

Conclusion

Next Steps

- **1.** Genetic Extension to the iterative Algorithm [3]
 - a. Define Weight Function
 - b. Implementation
 - c. Evaluation and Comparison of both Approaches
- **2.** Getting rid of assumptions: Testing on different input models
 - a. Loops, parallel behaviour, only full recorded end-to-end instances
- 3. Extending Algorithm
 - a. Dynamic model creation instead of greedy rule-based procedure
 - b. Different estimation matrices for initialization
 - i. Distance
 - ii. Global strength of causality

Summary

Discovering Process Models from unlabeled Event Logs

Pascal Schulze, Anjo Seidel Data Extraction for Process Mining (ST-2020) 17.06.2020

Sources

- [1] Diba, Kiarash & Batoulis, Kimon & Weidlich, Matthias & Weske, Mathias. (2019). Extraction, correlation, and abstraction of event data for process mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 10. 10.1002/widm.1346.
- [2] Ferreira D.R., Gillblad D. (2009) Discovering Process Models from Unlabelled Event Logs. In: Dayal U., Eder J., Koehler J., Reijers H.A. (eds) Business Process Management. BPM 2009. Lecture Notes in Computer Science, vol 5701. Springer, Berlin, Heidelberg
- [3] Source code to accompany the paper "Discovering Process Models from Unlabelled Event Logs" [2] by Diogo R. Ferreira, Daniel Gillblad; Url: http://web.ist.utl.pt/diogo.ferreira/mimcode/
- [4] Abbad Andaloussi A., Burattin A., Weber B. (2018) Toward an Automated Labeling of Event Log Attributes. In: Gulden J., Reinhartz-Berger I., Schmidt R., Guerreiro S., Guédria W., Bera P. (eds) Enterprise, Business-Process and Information Systems Modeling. BPMDS 2018, EMMSAD 2018. Lecture Notes in Business Information Processing, vol 318. Springer, Cham
- [5] https://medium.com/ssense-tech/schema-evolution-in-data-lakes-f956c6f978d4

Appendix

Real World Example

- Usage information needed improve (and automate) enterprise software
- Record user interaction in logs → User Behavior Mining
- "ERP Systems use the Business objects as the case identifier" [1]
- What if it is extremely difficult or even impossible to identify the Business objects?
 - companies often have old running on-premise systems (SAP Gui) → difficult
 - frontend gets rendered on server (SAP Screen Personas) → extremely difficult or impossible
- Updates or bigger Adjustments would be needed to get desired result

The Approach - G-score [2]

Scoring measure which evaluates the degree of similarity between a complete event log, where both x and s are known, and an incomplete event log x that has been labelled by the estimated source sequence s[~].

Genetic Programing Paradigm - Detailed

- Take many unlabeled Event Logs as Input
- Initialize one Model each
- Compare one Matrix Instance to all other Input Logs
 - Token Replay, Alignment
 - Fitness, Precision ...

- Compare one Matrix instance to all other estimated Traces
 - Token Replay, Alignment
 - Metrics: Fitness, Precision, Generalization, Simplicity
- Matrices resembling most consent get better weight

- Take many unlabeled Event Logs as Input
- Initialize one model each
- for each model, compare pattern Y with patterns Y' of all other input strings
 - Idea: a good matrix produces similar patterns for event logs from the same process model

