Application No.: Not Yet Assigned

DT01 Rec'd PCT/FT 2 4 JAN 2005

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently Amended) A method for inhibiting 11βHSD1, comprising administering a compound of formula (I):

$$(R^{1})_{n}$$

$$A$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6})_{m}$$

$$R^{6}$$

wherein:

Ring A is selected from aryl or heteroaryl;

 R^1 is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, C_{1-6} alkanoyl, C_{1-6} alkanoyloxy, N-(C_{1-6} alkyl)amino, N-(C_{1-6} alkyl) $_2$ amino, C_{1-6} alkanoylamino, N-(C_{1-6} alkyl)carbamoyl, N-(C_{1-6} alkyl) $_2$ carbamoyl, C_{1-6} alkylS(O) $_3$ wherein a is 0 to 2, C_{1-6} alkoxycarbonyl, N-(C_{1-6} alkyl)sulphamoyl, N-(C_{1-6} alkyl) $_2$ sulphamoyl, C_{1-6} alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclyl C_{0-6} alkylene-Y-, and heterocyclyl C_{0-6} alkylene-Y-; or two R^1 groups on adjacent carbons may form an oxy C_{1-4} alkoxy group or a C_{3-5} alkylene group; wherein R^1 may be optionally substituted on carbon by-with one or more R^7 groups-selected from R^7 ; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by-with an R^8 group-selected-from R^8 ;

n is 0-3; wherein the values of R¹ may be the same or different;

R², R³, R⁴, and R⁵ are independently selected from hydrogen, hydroxy, amino, cyano, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, C₁₋₄alkoxycarbonylamino, C₁₋₄alkanoyloxy, carbocyclyl, heterocyclyl, carbocyclylC₁₋₄alkyl, and heterocyclylC₁₋₄alkyl; or R² and R³ together form oxo or a spiro attached heterocyclyl; wherein R², R³, R⁴, and R⁵ may be independently optionally substituted on carbon by-with one or more R⁹ groups selected from R⁹; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by-with an R¹⁰ group-selected from R¹⁰;

```
X and Z are independently selected from -CR<sup>11</sup>R<sup>12</sup>-, -S(O)<sub>a</sub>-, -O-, -NR<sup>13</sup>-, -C(O)-,
-C(O)NR<sup>14</sup>-, -NR<sup>15</sup>C(O)-, -OC(O)-, -C(O)O-, -SO<sub>2</sub>NR<sup>16</sup>-, or and -NR<sup>16</sup>SO<sub>2</sub>-; wherein a is 0 to 2;
r is 1 or 2;
q is 0 or 1;
p is 0 or 1;
s is 0 or 1;
```

Ring B is carbocyclyl or heterocyclyl; wherein if said heterocyclyl contains an -NH-moiety, that nitrogen may be optionally substituted by an R^{17} group-selected from R^{17} :

R⁶ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, NN-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, NN-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl, NN-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₄alkylene-Y-, and heterocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by with one or more R¹⁸groups selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by with an R¹⁹ group selected from R¹⁹;

m is 0-3; wherein the values of R^6 may be the same or different; Y is $-S(O)_{a^-}$, -O-, $-NR^{20}$ -, -C(O)-, $-C(O)NR^{21}$ -, $-NR^{22}C(O)$ -, or $-SO_2NR^{23}$ -; wherein a is 0 to 2;

 R^7 , R^9 , and R^{18} are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C_{14} alkyl, C_{24} alkenyl, C_{24} alkynyl, C_{14} alkoxy, C_{14} alkanoyl, C_{14} alkanoyloxy, N-(C_{14} alkyl)amino, N-(C_{14} alkyl)2amino, C_{14} alkanoylamino, N-(C_{14} alkyl)carbamoyl, N-(C_{14} alkyl)2carbamoyl, C_{14} alkylS(O)a wherein a is 0 to 2, C_{14} alkoxycarbonyl, N-(C_{14} alkyl)sulphamoyl, N-(C_{14} alkyl)2sulphamoyl, C_{14} alkylsulphonylamino, carbocyclyl, and heterocyclyl; wherein R^7 , R^9 , and R^{18} may be independently optionally substituted on carbon by-with one or more R^{26} groups;

 \mathbf{R}^{11} and \mathbf{R}^{12} are independently selected from hydrogen, hydroxy, amino, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, N- $(C_{1-4}$ alkyl)amino, N, N- $(C_{1-4}$ alkyl)₂amino, carbocyclyl, heterocyclyl, carbocyclyl C_{1-4} alkyl, and heterocyclyl C_{1-4} alkyl; wherein \mathbf{R}^{11} and \mathbf{R}^{12} may be independently

optionally substituted on carbon by with one or more R^{24} groups selected from R^{24} ; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by with an R^{25} group-selected from R^{25} ;

Docket No.: ASZD-P01-804

 $\mathbf{R^{24}}$ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C_{1-4} alkyl, C_{2-4} alkenyl, C_{2-4} alkynyl, C_{1-4} alkoxy, C_{1-4} alkanoyl, C_{1-4} alkanoyloxy, N-(C_{1-4} alkyl)amino, N, N-(C_{1-4} alkyl)carbamoyl, N, N-(C_{1-4} alkyl)carbamoyl, N-(C_{1-4} alkyl)carbamoyl, N-(C_{1-4} alkyl)sulphamoyl, C_{1-4} alkyl)sulphamoyl, C_{1-4} alkyl)sulphamoyl, C_{1-4} alkyl

 \mathbf{R}^8 , \mathbf{R}^{10} , \mathbf{R}^{17} , \mathbf{R}^{19} , and \mathbf{R}^{25} are independently selected from C_{1-4} alkyl, C_{1-4} alkanoyl, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonyl, carbamoyl, N-(C_{1-4} alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl, carbocyclyl, heterocyclyl, and phenylsulphonyl; wherein \mathbf{R}^8 , \mathbf{R}^{10} , \mathbf{R}^{17} , \mathbf{R}^{19} , and \mathbf{R}^{25} may be independently optionally substituted on carbon by-with one or more \mathbf{R}^{27} groups;

 R^{13} , R^{14} , R^{15} , R^{16} , R^{20} , R^{21} , R^{22} , and R^{23} are independently selected from hydrogen, phenyl, C_{1-4} alkylsulphonyl, and C_{1-4} alkyl;

R²⁶ and R²⁷ are independently selected from selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, dimethylamino, diethylamino, *N*-methyl-*N*-ethylamino, acetylamino, *N*-methylcarbamoyl, *N*-ethylcarbamoyl, *N*-N-dimethylcarbamoyl, *N*-diethylcarbamoyl, *N*-methyl-*N*-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, *N*-methylsulphamoyl, *N*-ethylsulphamoyl, *N*,*N*-dimethylsulphamoyl, *N*,*N*-dimethylsulphamoyl, *N*,*N*-diethylsulphamoyl, and er-*N*-methyl-*N*-ethylsulphamoyl; or a pharmaceutically acceptable salt thereof; in the manufacture of a medicament for use in the inhibition of 11βHSD1; with the proviso that said compound is not (1-methyl-1-pyrid-3-ylethyl)-(pyrid-3-yl)-ketone.

2. (Currently Amended) The <u>methoduse of a compound</u>, or a pharmaceutically acceptable salt thereof, as claimed in of claim 1, wherein Ring A is selected from phenyl, naphthyl, thienyl, furyl, thiazolyl, pyridyl, imidazolyl, benzothiazolyl, and or benzothianyl.

Application No.: Not Yet Assigned

3. (Currently Amended) The <u>methoduse of a compound, or a pharmaceutically acceptable</u> salt thereof, as claimed in either of claim 1, or claim 2 wherein R^1 is selected from halo, cyano, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, N, N-(C_{1-6} alkyl)₂amino, C_{1-6} alkylsulphonylamino, carbocyclyl, and heterocyclyl C_{0-6} alkylene-Y-; or two R^1 groups on adjacent carbons may form an oxy C_{1-4} alkoxy group; wherein R^1 may be optionally substituted on carbon by with one or more R^7 groups selected from R^7 ;

Docket No.: ASZD-P01-804

Y is $-S(O)_a$ -, or-O-; wherein a is 0 to 2; and R^7 is halo.

4. (Currently Amended) The <u>methoduse of a compound, or a pharmaceutically acceptable</u> salt thereof, as claimed in any one of claims 1,[[-3]] wherein R², R³, R⁴, and R⁵ are independently selected from hydrogen, hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, carbocyclyl, carbocyclylC₁₋₄alkyl, and heterocyclylC₁₋₄alkyl; wherein R², R³, R⁴, and R⁵ may be independently optionally substituted on carbon by with one or more R⁹ groups selected from R⁹; and wherein

R⁹ is selected from halo, cyano, C₁₋₄alkyl, and N,N-(C₁₋₄alkyl)₂amino.

- (Currently Amended) The methoduse of a compound, or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 1,[[-6]] wherein X is -S(O)_a-, -O-, -NR¹³-, -NR¹⁵C(O)-, -SO₂NR¹⁶-, or -NR¹⁶SO₂-; wherein a is 0 or 2; and R¹³, R¹⁵, and R¹⁶ are independently selected from hydrogen, phenyl, C₁₋₄alkylsulphonyl, and C₁₋₄alkyl.
- 6. (Currently Amended) The methoduse of a compound, or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 1,[[-5]] wherein Ring B is phenyl, thienyl, furyl, thiazolyl, piperidinyl, piperazinyl, pyrrolidinyl, 1,3-dihydroisoindolyl, morpholinyl, naphthyl, cyclohexyl, pyridyl, imidazolyl, 1,2,4-triazolyl, 1,3-benzodioxolyl, thiomorpholinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzimidazolyl, or pyrimidinyl; wherein if Ring B contains an -NH- moiety, that nitrogen may be optionally substituted by-with an R¹⁷ group-selected from R¹⁷;

 R^{17} is C_{1-4} alkyl or benzyl; wherein R^{17} may be optionally substituted on carbon by with one or more R^{27} groups; wherein and

Application No.: Not Yet Assigned Docket No.: ASZD-P01-804

R²⁷ is methoxy.

7. (Currently Amended) The methoduse of a compound, or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 1,[[-6]] wherein R⁶ is a substituent on carbon and is selected from halo, hydroxy, nitro, cyano, carbamoyl, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 or 2, C₁₋₄alkoxycarbonyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, carbocyclyl, heterocyclyl, and carbocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by-with one or more R¹⁸ groups selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by-with an R¹⁹ group selected from R¹⁹;

```
Y is -C(O) or -C(O)NR^{21}-; R^{18} is selected from halo, cyano, hydroxy, C_{1-4}alkoxy, and heterocyclyl; R^{19} is heterocyclyl; and R^{21} is hydrogen.
```

8. (Currently Amended) The <u>methoduse of a compound-of-formula (I) (as depicted in claim 1.[[)]</u> wherein:

Ring A is selected from phenyl, naphthyl, thienyl, furyl, thiazolyl, pyridyl, imidazolyl, benzothiazolyl, and or-benzothienyl;

 R^1 is selected from halo, cyano, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, N, N-(C_{1-6} alkyl)₂amino, C_{1-6} alkylsulphonylamino, carbocyclyl, and heterocyclyl C_{0-6} alkylene-Y-; or two R^1 groups on adjacent carbons may form an oxy C_{1-4} alkoxy group; wherein R^1 may be optionally substituted on carbon by with one or more R^7 groups selected from R^7 ;

```
Y is -S(O)_a-, or-O-; wherein a is 0 to 2; and R^7 is halo[[.]]; n is 0-3; wherein the values of R^1 may be the same or different; r is 1 or 2; s is 0;
```

R², R³, R⁴, and R⁵ are independently selected from hydrogen, hydroxy, C₁₋₄alkyl, C₁₋₄alkoxy, N-(C₁₋₄alkyl)amino, carbocyclyl, carbocyclylC₁₋₄alkyl, and heterocyclylC₁₋₄alkyl;

wherein R^2 , R^3 , R^4 , and R^5 may be independently optionally substituted on carbon by with one or more R^9 groups selected from R^9 ; wherein

R⁹ is selected from halo, cyano, C₁₋₄alkyl, and N,N-(C₁₋₄alkyl)₂amino[[.]];

X is -S(O)_a-, -O-, -NR¹³-, -NR¹⁵C(O)-, -SO₂NR¹⁶-, or -NR¹⁶SO₂-; wherein a is 0 or 2; and

 R^{13} , R^{15} , and R^{16} are independently selected from hydrogen, phenyl, C_{14} alkylsulphonyl, and C_{14} alkyl;

q is 0 or 1;

p is 0 or 1;

Ring B is phenyl, thienyl, furyl, thiazolyl, piperidinyl, piperazinyl, pyrrolidinyl, 1,3-dihydroisoindolyl, morpholinyl, naphthyl, cyclohexyl, pyridyl, imidazolyl, 1,2,4-triazolyl, 1,3-benzodioxolyl, thiomorpholinyl, pyrimidinyl, pyrazinyl, pyridazinyl, benzimidazolyl, or pyrimidinyl; wherein if Ring B contains an -NH- moiety, that nitrogen may be optionally substituted by a group selected from R¹⁷;

 R^{17} is C_{1-4} alkyl or benzyl; wherein R^{17} may be optionally substituted on carbon by with one or more R^{27} groups; wherein

R²⁷ is methoxy;

R⁶ is a substituent on carbon and is selected from halo, hydroxy, nitro, cyano, carbamoyl, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 or 2, C₁₋₄alkoxycarbonyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, carbocyclyl, heterocyclyl, and carbocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by with one or more R¹⁸ groups selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by with an R¹⁹ group selected from R¹⁹:

Y is -C(O) or -C(O)NR²¹-;

 R^{18} is selected from halo, cyano, hydroxy, C_{1-4} alkoxy, and heterocyclyl;

R¹⁹ is heterocyclyl; and

R²¹ is hydrogen; and

m is 0-3; wherein the values of R⁶ may be the same or different[[;]]

or a pharmaceutically acceptable salt thereof;

in the manufacture of a medicament for use in the inhibition of 11\(\beta\text{HSD1}\); with the provise that said compound is not (1-methyl-1-pyrid-3-ylethyl) (pyrid-3-yl)-ketone.

9. (Currently Amended) A compound of formula (I) (as depicted in claim 1) selected from:

[2-(4-chlorophenyl)-1-(pyrid-3-yl)ethyl]-(4-chlorophenyl)-ketone;

[2-(4-chlorophenyl)-1-(pyrazin-2-yl)ethyl]-(pyridin-3-yl)-ketone;

(α-methylamino-4-chlorobenzyl)-(4-chlorophenyl)-ketone;

(benzothiazol-2-yl)-(pyrrolidin-1-ylsulphonylmethyl)-ketone;

(thiazol-2-yl)-(pyrrolidin-1-ylsulphonylmethyl)-ketone;

[1-(morpholinosulphonyl)-1-methylethyl]-(4-fluorophenyl)-ketone;

(4-fluorophenyl)-[N-(cyclohexyl)-N-(isopropyl)sulphamoylmethyl]-ketone;

(4-fluorophenyl)-[N-(pyrid-2-yl)-N-(methyl)sulphamoylmethyl]-ketone;

(4-methylphenylsulphonylmethyl)-(4-cyanophenyl)-ketone;

(4-ethoxyphenoxymethyl)-(4-chlorophenyl)-ketone;

(4-chlorophenyl)-[3-(2,6-difluorobenzoylamino) propyl)]-ketone; and

(4-chlorophenyl)-[3-(4-methoxyphenylsulphonylamino)propyl)]-ketone;

or a pharmaceutically acceptable salt thereof.

10. (Currently Amended) The methoduse of a compound of formula (I) (as depicted in claim

1,[[)]] wherein the compound of formula (I) is selected from:

 $(\alpha$ -methyl- α -hydroxy-4-chlorobenzyl)-(4-chlorophenyl)-ketone;

(morpholinosulphonylmethyl)-(4-fluorophenyl)-ketone:

(N-methyl-4-methylanilinosulphonylmethyl)-(4-chlorophenyl)-ketone; and

(N-methyl-4-chloroanilinomethyl)-(4-chlorophenyl)-ketone;

or a pharmaceutically acceptable salt thereof[[;]]

in the manufacture of a medicament for use in the inhibition of 11BHSD1.

11. (Currently Amended) A compound of formula (Ij):

$$(R^{1})_{n} \xrightarrow{H} O O O O B$$

$$R^{2} R^{3} N B$$

$$(R^{6})_{n}$$

$$(Ij)$$

wherein:

R¹ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₆alkylene-Y-, and heterocyclylC₀₋₆alkylene-Y-; or two R¹ groups on adjacent carbons may form an oxyC₁₋₄alkoxy group or a C₃₋₅alkylene group; wherein R¹ may be optionally substituted on carbon by-with one or more R⁷ groups-selected from R⁷; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by an R⁸ group-selected from R⁸;

Docket No.: ASZD-P01-804

n is 0-3; wherein the values of R¹ may be the same or different;

substituted by with an R¹⁰ group selected from R¹⁰;

 R^2 and R^3 are independently selected from hydrogen, hydroxy, amino, cyano, C_{14} alkyl, C_{14} alkoxy, N- $(C_{14}$ alkyl)amino, N, N- $(C_{14}$ alkyl)2amino, C_{14} alkylS $(O)_a$ wherein a is 0 to 2, C_{14} alkoxycarbonyl, C_{14} alkoxycarbonylamino, C_{14} alkanoyloxy, carbocyclyl, heterocyclyl, carbocyclyl C_{14} alkyl, and heterocyclyl C_{14} alkyl; or R^2 and R^3 together form oxo or a spiro attached heterocyclyl; wherein R^2 and R^3 may be independently optionally substituted on carbon by-with one or more R^9 groups selected from R^9 ; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally

Ring B is a heterocyclyl linked to the sulphonyl of the compound of formula (Ij) via a nitrogen atom; wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by with an R^{17} group-selected from R^{17} ;

R⁶ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₄alkylene-Y-, and heterocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by with one or more R¹⁸ groups-selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by with an R¹⁹ group-selected from R¹⁹;

m is 0-3; wherein the values of R^6 may be the same or different; Y is $-S(O)_a$ -, -O-, $-NR^{20}$ -, -C(O)-, $-C(O)NR^{21}$ -, $-NR^{22}C(O)$ -, or $-SO_2NR^{23}$ -; wherein a is 0 to 2;

 R^8 , R^{10} , R^{17} , and R^{19} are independently selected from C_{14} alkyl, C_{14} alkanoyl, C_{14} alkylsulphonyl, C_{14} alkoxycarbonyl, carbamoyl, N-(C_{14} alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl, carbocyclyl, heterocyclyl, and phenylsulphonyl; wherein R^8 , R^{10} , R^{17} , and R^{19} may be independently optionally substituted on carbon by-with one or more R^{27} groups;

 \mathbf{R}^{20} , \mathbf{R}^{21} , \mathbf{R}^{22} , and \mathbf{R}^{23} are independently selected from hydrogen, phenyl, C_{1-4} alkylsulphonyl, and C_{1-4} alkyl;

 ${f R}^{26}$ and ${f R}^{27}$ are independently selected from selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, dimethylamino, dimethylamino, N-methyl-N-ethylamino, N-methyl-N-ethylcarbamoyl, N-ethylcarbamoyl, N-dimethylcarbamoyl, N-diethylcarbamoyl, N-methyl-N-ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, N-methylsulphamoyl, N-ethylsulphamoyl, N-dimethylsulphamoyl, N-diethylsulphamoyl, N-methyl-N-ethylsulphamoyl; or a pharmaceutically acceptable salt thereof; with the proviso that said compound is not (phenyl)-[α -(pyrrolidin-1-ylsulphonyl)benzyl]-ketone; (phenyl)-[α -(morpholinosulphonyl)benzyl]-ketone:

(4-carbamoylphenyl)-[4-(5-chloropyridin-2-yloxy)piperidin-1-ylsulphonylmethyl]-ketone;

(4-carbamoylphenyl)-[4-(4-fluorophenyl)piperidin-1-ylsulphonylmethyl]-ketone:

and with the proviso-that

(4-fluorophenyl)-[4-(5-chloropyridin-2-yloxy)piperidin-1-ylsulphonylmethyl]-ketone; (phenyl)-[4-(5-chloropyridin-2-yloxy)piperidin-1-ylsulphonylmethyl]-ketone; (4-chlorophenyl)-(piperazin-1-ylsulphonylmethyl)-ketone; (4-chlorophenyl)-[4-(t-butoxycarbonyl)piperazin-1-ylsulphonylmethyl]-ketone; (4-hydroxyphenyl)-(morpholinosulphonylmethyl)-ketone; or (phenyl)-(1,2,3,4-tetrahydroisoquinolin-2-ylsulphonylmethyl)-ketone; and with the proviso that when R² and R³ are hydrogen, m is 0, and Ring B is 4-methylpiperazin-1-yl, then (R¹)_n is not hydrogen, 4-fluoro, 4-nitro, 3,4-dimethoxy, 4-methoxy, 4-t-butyl, 4-trifluoromethyl, or 4-chloro;

Docket No.: ASZD-P01-804

when R^2 and R^3 are hydrogen, m is 0, and Ring B is morpholino, then $(R^1)_n$ is not hydrogen, 4-dimethylamino, 4-nitro, 4-methoxy, 4-t-butyl, 4-trifluoromethyl, or 4-fluoro or 4-chloro.

12. (Currently Amended) A compound of formula (Ik):

$$(R^{1})_{n}$$

$$H$$

$$R^{2}$$

$$R^{3}$$

$$R^{16}$$

$$(Ik)$$

wherein:

R¹ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N-(C₁₋₆alkyl)amino, N,N-(C₁₋₆alkyl)₂amino, C₁₋₆alkanoylamino, N-(C₁₋₆alkyl)carbamoyl, N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl, N-(C₁₋₆alkyl)sulphamoyl, N,N-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₆alkylene-Y-, and heterocyclylC₀₋₆alkylene-Y-; or two R¹ groups on adjacent carbons may form an oxyC₁₋₄alkoxy group or a C₃₋₅alkylene group; wherein R¹ may be optionally substituted on carbon by-with one or more R⁷ groups-selected from R⁷; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by-with an R⁸ group-selected from R⁸;

n is 0-3; wherein the values of R¹ may be the same or different:

 \mathbb{R}^2 and \mathbb{R}^3 are independently selected from hydrogen, hydroxy, amino, cyano, C_{1-4} alkyl, C_{1-4} alkoxy, N- $(C_{1-4}$ alkyl)amino, N, N- $(C_{1-4}$ alkyl)₂amino, C_{1-4} alkylS(O)_a wherein a is 0 to 2,

 C_{14} alkoxycarbonyl, C_{14} alkoxycarbonylamino, C_{14} alkanoyloxy, carbocyclyl, heterocyclyl, carbocyclyl C_{14} alkyl, and heterocyclyl C_{14} alkyl; or

 R^2 and R^3 together form oxo or a spiro attached heterocyclyl; wherein R^2 and R^3 may be independently optionally substituted on carbon by with one or more R^9 groups selected from R^9 ; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by with an R^{10} group-selected from R^{10} ;

Ring B is carbocyclyl or heterocyclyl; wherein if said heterocyclyl contains an -NH-moiety, that nitrogen may be optionally substituted by with an R^{17} group selected from R^{17} ;

R⁶ is a substituent on carbon and is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, N-(C₁₋₄alkyl)amino, N,N-(C₁₋₄alkyl)₂amino, C₁₋₄alkanoylamino, N-(C₁₋₄alkyl)carbamoyl, N,N-(C₁₋₄alkyl)₂carbamoyl, C₁₋₄alkylS(O)_a wherein a is 0 to 2, C₁₋₄alkoxycarbonyl, N-(C₁₋₄alkyl)sulphamoyl, N,N-(C₁₋₄alkyl)₂sulphamoyl, C₁₋₄alkylsulphonylamino, carbocyclyl, heterocyclyl, carbocyclylC₀₋₄alkylene-Y-, and heterocyclylC₀₋₄alkylene-Y-; wherein R⁶ may be optionally substituted on carbon by with one or more R¹⁸groups-selected from R¹⁸; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by with an R¹⁹ group-selected from R¹⁹;

m is 0-3; wherein the values of R^6 may be the same or different; Y is $-S(O)_a$ -, -O-, $-NR^{20}$ -, -C(O)-, $-C(O)NR^{21}$ -, $-NR^{22}C(O)$ -, or $-SO_2NR^{23}$ -; wherein a is 0 to 2;

 R^7 , R^9 , and R^{18} are independently selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, C_{14} alkyl, C_{24} alkenyl, C_{24} alkynyl, C_{14} alkoxy, C_{14} alkanoyl, C_{14} alkanoyloxy, N-(C_{14} alkyl)amino, N-(C_{14} alkyl)2amino, C_{14} alkanoylamino, N-(C_{14} alkyl)carbamoyl, N-(C_{14} alkyl)2carbamoyl, C_{14} alkylS(O)a wherein a is 0 to 2, C_{14} alkoxycarbonyl, N-(C_{14} alkyl)sulphamoyl, N-(C_{14} alkyl)2sulphamoyl, C_{14} alkylsulphonylamino, carbocyclyl, and heterocyclyl; wherein R^7 , R^9 , and R^{18} may be independently optionally substituted on carbon by-with one or more R^{26} groups;

 $\mathbf{R^8}$, $\mathbf{R^{10}}$, $\mathbf{R^{17}}$, and $\mathbf{R^{19}}$ are independently selected from C_{14} alkyl, C_{14} alkanoyl, C_{14} alkylsulphonyl, C_{14} alkoxycarbonyl, carbamoyl, N-(C_{14} alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl, carbocyclyl, heterocyclyl, and

phenylsulphonyl; wherein R^8 , R^{10} , R^{17} , and R^{19} may be independently optionally substituted on carbon by with one or more R^{27} groups;

 R^{16} , R^{20} , R^{21} , R^{22} , and R^{23} are independently selected from hydrogen, phenyl, C_{1-4} alkylsulphonyl, and C_{1-4} alkyl;

R²⁶ and R²⁷ are independently selected from selected from halo, nitro, cyano, hydroxy, trifluoromethoxy, trifluoromethyl, amino, carboxy, carbamoyl, mercapto, sulphamoyl, methyl, ethyl, methoxy, ethoxy, acetyl, acetoxy, methylamino, ethylamino, dimethylamino, dimethylamino, diethylamino, *N*-methyl-*N*-ethylamino, acetylamino, *N*-methylcarbamoyl, *N*-ethylcarbamoyl, *N*-ethylcarbamoyl, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, mesyl, ethylsulphonyl, methoxycarbonyl, ethoxycarbonyl, *N*-methylsulphamoyl, *N*-ethylsulphamoyl, *N*,*N*-dimethylsulphamoyl, *N*,*N*-diethylsulphamoyl, and er-*N*-methyl-*N*-ethylsulphamoyl;

or a pharmaceutically acceptable salt thereof;

with the proviso that said compound is not

(phenyl)-(5-methylpyrazol-3-ylaminosulphonylmethyl)-ketone;

(phenyl)-[(2-methyl-6-methoxy-2,3-dihydrobenzofuran-4-yl)aminosulphonylmethyl]-ketone;

(phenyl)-(1-phenyl-3-methylpyrazol-5-ylaminosulphonylmethyl)-ketone;

(phenyl)-[1-(cyclohexyl-N-methylaminosulphonyl)ethyl]-ketone;

(phenyl)-[1-(phenyl-N-methylaminosulphonyl)ethyl]-ketone;

(phenyl)-(cyclohexylaminosulphonylmethyl)-ketone;

(phenyl)-[(2-phenyl-4-acetyl-5-methylimidazol-3-yl]-N-methylaminosulphonylmethyl]-ketone;

(phenyl)-[(2-phenyl-4-acetyl-5-methylimidazol-3-yl]aminosulphonylmethyl]-ketone;

(phenyl)-(2,4,5,6,7,8-hexahydrocycloheptapyrazol-3-ylaminosulphonylmethyll-ketone:

(phenyl)-(4,5,6,7-tetrahydro-2H-indazol-3-ylaminosulphonylmethyl]-ketone;

(phenyl)-[(4-phenyl-5-methylpyrazol-3-yl)aminosulphonylmethyl]-ketone;

(phenyl)-[3-(1-carboxymethyl-3-methyl-4-oxo-1,2,3,4-tetrahydrophthalazin-2-yl)anilinosulphon ylmethyl]-ketone;

(phenyl)-{3-[1-(methoxycarbonylmethyl)-3-methyl-4-oxo-1,2,3,4-tetrahydrophthalazin-2-yl]anil inosulphonylmethyl}-ketone; (phenyl)-(4-methylanilinosulphonylmethyl)-ketone;

(phenyl)-(2-benzoyl-4-chloroanilinosulphonylmethyl)-ketone;

(phenyl)-(2,3-dimethylanilinosulphonylmethyl)-ketone;

(phenyl)-(3,4-dimethylanilinosulphonylmethyl)-ketone;

Application No.: Not Yet Assigned Docket No.: ASZD-P01-804

(phenyl)-(3-methylanilinosulphonylmethyl)-ketone;

(phenyl)-(3-methoxyanilinosulphonylmethyl)-ketone;

(phenyl)-(anilinosulphonylmethyl)-ketone; (phenyl)-(2-acetylanilinosulphonylmethyl)-ketone; or (phenyl)- $[\alpha-(N-\text{ethylanilinosulphonyl})$ -benzyl]-ketone.

- 13. (Currently Amended) A pharmaceutical composition which comprises a compound of formula (I), (Ij) or (Ik), or a pharmaceutically acceptable salt thereof, as claimed in any one of claims 9, 11 or 12, or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically [[-]] acceptable diluent or carrier.
- 14. (Currently Amended) A compound of the formula (I), (Ij) or (Ik), or a pharmaceutically acceptable salt thereof, as claimed inmethod for inhibiting 11BHSD1, comprising administering to a warm-blooded animal, a therapeutically effective amount of a compound of any one of claims 9, 11, or 12, for use in a method of prophylactic or therapeutic treatment of a warm-blooded animal, such as man.

15-16. (Cancelled).

- 17. (Currently Amended) A method for the treatment of a metabolic syndrome, comprising inhibiting 11βHSD1 The use of a compound as claimed in any one of claims claim 1-8, or 10-or 16 wherein production of, or producing an, 11βHSD1 inhibitory effect refers to the treatment of metabolic syndrome.
- 18. (Currently Amended) A method for the treatment of a disease selected from The use of a compound as claimed in any one of claims 1-8, 10 or 16 wherein production of, or producing an, 11βHSD1 inhibitory effect refers to the treatment of diabetes, obesity, hyperlipidaemia, hyperglycaemia, hyperinsulinemia, and or-hypertension, comprising inhibiting 11βHSD1 as claimed in claim 1 or 10 particularly diabetes and obesity.
- 19. (Currently Amended) A method for the treatment of a disease selected from The use of a compound as claimed in any one of claims 1-8, 10 or 16 wherein production of, or producing an, 11βHSD1 inhibitory effect refers to the treatment of glaucoma, osteoporosis, tuberculosis,

Application No.: Not Yet Assigned Docket No.: ASZD-P01-804

dementia, cognitive disorders or depression, comprising inhibiting 11βHSD1 as claimed in claim 1 or 10.

20. (Cancelled).