

A Study on Compositional Semantics of Words in Distributional Spaces

<u>Pierpaolo Basile</u>, Annalina Caputo, Giovanni Semeraro

Dept. of Computer Science
University of Bari Aldo Moro
{basilepp}@di.uniba.it

6th IEEE International Conference on Semantic Computing September 19-21, 2012 Palermo, Italy

Background...

You shall know a word by the company it keeps!

Meaning of a word is determined by its usage

```
memory floppy_disk
   ram chip
                  disk hard_disk
                        printer
software
               computer
           workstation
     os
             рс
                        device
operating_system
       linux
                            mouse
                                 mice
           tux
                                     rat
                           rabbit
                 penguin
                                 animal
                                         insect
                        cat monkey
```

...Background

Distributional Semantic Models (DSMs) defined as: <T, C, R, W, M, d, S>

- T: target elements (words)
- C: context
- R: relation between T and C
- W: weighting schema
- M: geometric space TxC
- d: space reduction M -> M'
- S: similarity function defined in M'

Motivations

- One definition of context at a time
 - encode syntactic information in DSMs
- Words are represented in isolation
 - syntactic role could be used as a glue to compose words

It's raining cats and dogs = My cats and dogs are in the rain

Outline

- Simple DSMs and simple operators
- Syntactic dependencies in DSMs
 - Structured DSMs
 - Compositional operators
- Evaluation and results
- Final remarks

SIMPLE DSMS AND SIMPLE OPERATORS

Simple DSMs...

Term-term co-occurrence matrix (TTM): each cell contains the co-occurrences between two terms within a prefixed distance

	dog	cat	computer	animal	mouse	
dog	0	4	0	2	1	
cat	4	0	0	3	5	
computer	0	0	0	0	3	
animal	2	3	0	0	2	
mouse	1	5	3	2	0	

...Simple DSMs

Latent Semantic Analysis (LSA): relies on the Singular Value Decomposition (SVD) of the co-occurrence matrix

Random Indexing (RI): based on the Random Projection

Latent Semantic Analysis over Random Indexing (RI^{LSA})

Random Indexing

- Create and assign a context vector to each context element (e.g. document, passage, term, ...)
- Term vector is the sum of the context vectors in which the term occurs
 - sometimes the context vector could be boosted by a score (e.g. term frequency, PMI, ...)

Context Vector

000000-10000100-10100001000-1

- sparse
- high dimensional
- ternary {-1, 0, +1}
- small number of randomly distributed nonzero elements

Random Indexing (formal)

$$B^{n,k} = A^{n,m}R^{m,k}$$
 $k << m$

B nearly preserves the distance between points (Johnson-Lindenstrauss lemma)

$$d_r = c \times d$$

RI is a locality-sensitive hashing method which approximate the cosine distance between vectors

Random Indexing (example)

John eats a red apple

$$CV_{john} \rightarrow (0, 0, 0, 0, 0, 0, 1, 0, -1, 0)$$

 $CV_{eat} \rightarrow (1, 0, 0, 0, -1, 0, 0, 0, 0, 0)$
 $CV_{red} \rightarrow (0, 0, 0, 1, 0, 0, 0, -1, 0, 0)$

$$TV_{apple} = CV_{john} + CV_{eat} + CV_{red} = (1, 0, 0, 1, -1, 0, 1, -1, -1, 0)$$

Latent Semantic Analysis over Random Indexing

- Reduce the dimension of the co-occurrences matrix using RI
- 2. Perform LSA over RI (LSARI)
 - reduction of LSA computation time: RI matrix contains less dimensions than co-occurrences matrix

Simple operators...

Addition (+): pointwise sum of components

Multiplication (°): pointwise multiplication of components

Addition and multiplication are commutative

do not take into account word order

Complex structures represented summing or multiplying words which compose them

...Simple operators

Given two word vectors **u** and **v**

- composition by sum $\mathbf{p} = \mathbf{u} + \mathbf{v}$
- composition by multiplication $\mathbf{p} = \mathbf{u} \circ \mathbf{v}$

Can be applied to any sequence of words

Syntactic dependencies...

John eats a red apple.

...Syntactic dependencies

John eats a red apple.

Representing dependences

Use filler/role binding approach to represent a dependency $dep(\mathbf{u}, \mathbf{v})$

$$r_d \odot \mathbf{u} + r_h \odot \mathbf{v}$$

r_d and r_h are vectors which represent respectively the role of dependent and head

is a placeholder for a composition operator

Representing dependences (example)

obj(apple, eat)

Structured DSMs

- Vector permutation in RI (PERM) to encode dependencies
- Circular convolution (CONV) as filler/binding operator to represent syntactic dependencies in DSMs
- 3. LSA over PERM and CONV carries out two spaces: PERM^{LSA} and CONV^{LSA}

Vector permutation in RI (PERM)

Using permutation of elements in context vectors to encode dependencies

- right rotation of *n* elements to encode dependents (permutation)
- left rotation of n elements to encode heads (inverse permutation)

PERM (method)

Create and assign a context vector to each term Assign a rotation function Π^{+1} to the dependent and Π^{-1} to the head

Each term is represented by a vector which is

- the sum of the permuted vectors of all the dependent terms
- the sum of the inverse permuted vectors of all the head terms
- the sum of the no-permuted vectors of both dependent and head words

PERM (example...)

John eats a red apple

$$\mathsf{TV}_{\mathsf{apple}} = \mathsf{\Pi}^{+1}(\mathsf{CV}_{\mathsf{red}}) + \mathsf{\Pi}^{-1}(\mathsf{CV}_{\mathsf{eat}}) + \mathsf{CV}_{\mathsf{red}} + \mathsf{CV}_{\mathsf{eat}}$$

PERM (...example)

John eats a red apple

$$TV_{apple} = \Pi^{+1}(CV_{red}) + \Pi^{-1}(CV_{eat}) + CV_{red} + CV_{eat} = ...$$
right shift
$$... = (0, 0, 0, 0, 1, 0, 0, 0, -1, 0) + (0, 0, 0, -1, 0, 0, 0, 0, 1) + (0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0)$$

Convolution (CONV)

Create and assign a context vector to each term
Create two context vectors for head and dependent roles

Each term is represented by a vector which is

- the sum of the convolution between dependent terms and the dependent role vector
- the sum of the convolution between head terms and the head role vector
- the sum of the vectors of both dependent and head words

Circular convolution operator

Circular convolution

defined as:

$$p_{j} = \sum_{k=1}^{n} u_{k} v_{(j-k)^{\equiv}(n+1)}$$

	\bigcup_{1}	U_2	U_3	U_4	U_5
V_1	1	1	-1	-1	1
$P_1 \leftarrow V_2$	1	-1	1	1	-1
$P_2 \bigvee_3$	1	1	-1	-1	1
$P_3 \leftarrow V_4$	-1	-1	1	1	-1
$P_4 \leftarrow V_5$ $P_5 \leftarrow V_5$	1	-1	1	1	-1

Circular convolution by FFTs

Circular convolution is computed in $O(n^2)$

using FFTs is computed in O(nlogn)

Given f the discrete FFTs and f^{-1} its inverse

$$-u \circledast v = f^{-1}(f(u) \circ f(v))$$

CONV (example)

John eats a red apple

John ->
$$(0, 0, 0, 0, 0, 0, 1, 0, -1, 0)$$

eat -> $(1, 0, 0, 0, -1, 0, 0, 0, 0, 0)$
red-> $(0, 0, 0, 1, 0, 0, 0, -1, 0, 0)$
apple -> $(1, 0, 0, 0, 0, 0, 0, -1, 0, 0)$
 r_d -> $(0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0)$
 r_h -> $(0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0)$

apple = eat +red +
$$(r_d * red) + (r_h * eat)$$

Context vector for dependent role

Context vector for head role

Complex operators

Based on filler/role binding taking into account syntactic role: $\mathbf{r_d} \odot \mathbf{u} + \mathbf{r_h} \odot \mathbf{v}$

u and v could be recursive structures

Two vector operators to bind the role:

- convolution (*)
- tensor (\otimes)
- convolution (*): exploits also the sum of term vectors

$$r_d \circledast u + r_h \circledast v + v + u$$

Complex operators (remarks)

Existing operators

- $-t_1 \odot t_2 \odot ... \odot t_n$: does not take into account syntactic role
- $-t_1 \circledast t_2$ is commutative
- $-t_1 \otimes t_2 \otimes ... \otimes t_n$: tensor order depends on the phrase length
 - two phrases with different length are not comparable
- $-t_1 \otimes r_1 \otimes t_2 \otimes r_2 \otimes ... \otimes t_n \otimes r_n$: also depends on the sentence length

System setup

Corpus

- WaCkypedia EN based on a 2009 dump of Wikipedia
- about 800 million tokens
- dependency parse by MaltParser

DSMs

- 500 vector dimension (LSA/RI/RI^{LSA})
- 1,000 vector dimension (PERM/CONV/PERM^{LSA}/CONV^{LSA})
- 50,000 most frequent words
- co-occurrence distance: 4

Evaluation

- GEMS 2011 Shared Task for compositional semantics
 - list of two pairs of words combination

```
(support offer) (help provide) 7
(old person) (right hand) 1
```

- rated by humans
- 5,833 rates
- 3 types involved: noun-noun (NN), adjective-noun (AN), verb-object (VO)
- GOAL: compare the system performance against humans scores
 - Spearman correlation

Results (simple spaces)...

	NN				AN				vo			
	MT	LSA	굔	RI ^{LSA}	Σ L	LSA	<u>~</u>	RILSA	ME	LSA	≅	RI ^{LSA}
+	.21	.36	.25	.42	.22	.35	.33	.41	.23	.31	.28	.31
o	.31	.15	.23	.22	.21	.20	.22	.18	.13	.10	.18	.21
*	.21	.38	.26	.35	.20	.33	.31	.44	.15	.31	.24	.34
*+	.21	.34	.28	.43	.23	.32	.31	.37	.20	.31	.25	.29
\otimes	.21	.38	.25	.39	.22	.38	.33	.43	.15	.34	.26	.32
human	.49			.52				.55				

...Results (structured spaces)

	NN				AN				vo			
	CONV	PERM	CONVLSA	PERMLSA	CONV	PERM	CONVLSA	PERM ^{LSA}	CONV	PERM	CONVLSA	PERMLSA
+	.36	.39	.43	.42	.34	.39	.42	.45	.27	.23	.30	.31
0	.22	.17	.10	.13	.23	.27	.13	.15	.20	.15	.06	.14
*	.31	.36	.37	.35	.39	.39	.45	.44	.28	.23	.27	.28
*+	.30	.36	.40	.36	.38	.32	.48	.44	.27	.22	.30	.32
\otimes	.34	.37	.37	.40	.36	.40	.45	.45	.27	.24	.31	.32
human	.49			.52				.55				

Final remarks

- Best results are obtained when complex operators/spaces (or both) are involved
- No best combination of operator/space exists
 - depend on the type of relation (NN, AN, VO)
- Tensor product and convolution provide good results in spite of previous results
 - filler/role binding is effective
- Future work
 - generate several r_d and r_h vectors for each kind of dependency
 - apply this approach to other direct graph-based representations

Thank you for your attention!

Questions?

<basilepp@di.uniba.it>