

AU OPTRONICS CORPORATION

() Preliminary Specifications(V) Final Specifications

Module	10.1"(10.01") WXGA 16:10 Color TFT-LCD					
Model Name	G101EAN01.0					
Note	LED Backlight without driving circuit design					

Customer Date	Approved by Date
Checked & Approved by	Prepared by
Note: This Specification is subject to change without notice.	General Display Business Division / AU Optronics corporation

Product Specification AU OPTRONICS CORPORATION

Contents

1. Operating Precautions	4
2. General Description	
2.1 Display Characteristics	
2.2 Optical Characteristics	
3. Functional Block Diagram	9
4. Absolute Maximum Ratings	
4.1 Absolute Ratings of TFT LCD Module	
4.2 Absolute Ratings of Environment	
5. Electrical Characteristics	11
5.1 TFT LCD Module	
5.2 Backlight Unit	
6. Signal Characteristic	18
6.1 Pixel Format Image	
6.2 Integration Interface Requirement	
6.3 MIPI Interface Timing	20
6.4 Power ON(Wake Up)/OFF(Stand-by) sequence	2
7. Panel Reliability Test	22
7.1 Vibration Test	
7.2 Shock Test	
7.3 Reliability Test	
8. Mechanical Characteristics	23
8.1 LCM Standard Outline Dimension (Front View)	
8.2 LCM Standard Outline Dimension (Rear View)	24
9. Label and Packaging	25
9.1 Shipping Label (on the rear side of TFT-LCD display)	
9.2 Carton Label Format	
9.3 Shipping Package of Palletizing Sequence	2.

AU OPTRONICS CORPORATION

Version and Date	Page	Old description	New Description
0.0 Oct. 09, 2018	All	First draft specification	-
0.1 Jan. 04, 2019	25		Modify Shipping Label location in rear view
1.0 Jun. 14, 2019	6	Cross talk : TBD (Max.)	Cross talk : 2% (Max.)
1.0 Jun. 14, 2019	6	Maximum Brightness of five points	Minimum Brightness of five points ↔
, , ,		δ _{WS} = Minimum Brightness of five points	δ ws = Maximum Brightness of five points ↔
1.0 lun 14.2010	23	Pull tape location: Right-Down	Modify Pull tape location , move to Left-Up
1.0 Jun. 14, 2019		LED Forward Voltage = 2.95(Typ.)	LED Forward Voltage = 3.0(Typ.)
1.1 Jul. 17, 2019	17	LED Forward Voltage of every LED string=20.65(Typ.) Note 1: calculator value for reference PLED based on 20 mA	LED Forward Voltage = 3.0(Typ.) LED Forward Voltage of every LED string=21(Typ.) Note 1: calculator value for reference PLED based on 21 mA
	-		

AU OPTRONICS CORPORATION

1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under low temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.
- 16) Disconnecting power supply before handling LCD modules, it can prevent electric shock, DO NOT TOUCH the electrode parts, cables, connectors and LED circuit part of TFT module that a LED light bar build in as a light source of back light unit. It can prevent electrostatic breakdown.

AU OPTRONICS CORPORATION

G101EAN01.0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel, a driver circuit, and LED backlight system. The screen format is intended to support the 16:10 WXGA, 800(H) x1280(V) screen and 16.7M colors (Real 8 bits) without LED backlight driving circuit. All input signals are MIPI interface compatible.

G101EAN01.0 is designed for a display unit of notebook style personal computer and industrial machine. G101EAN01.0 is a RoHS product.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 °C condition:

Items	Unit		Specifications					
Screen Diagonal	[mm]	255.397	255.397					
Active Area	[mm]	135.36(H) >	135.36(H) x 216.576(V)					
Pixels H x V		800 x 3(RB	G) x 1280					
Pixel Pitch	[mm]	0.1692 X 0	.1692					
Pixel Format		R.G.B. Ver	tical Stripe					
Display Mode		AHVA, Nor	mally Black					
White Luminance	[cd/m2]	350 typ. (ce	enter point)					
Luminance Uniformity	δ_{5P}	5P Max. 1.2	25					
Contrast Ratio		Typ. 1000:1	I, min 800:1					
Response Time	[ms]	Тур.30						
Nominal Input Voltage VDD	[Volt]	VDD=3.3V	typ. / IOVCC=	1.8V typ.				
Power Consumption	[Watt]		V @ full white N max (1.76 W	pattern / typ). , w/o effi.				
Weight	[Grams]	161 g Max						
			Min	Тур	Max			
		Length		232.43				
Physical Size	[mm]	Width		150.3				
		Thickness			2.65 (Panel side) 4.8 (PCBA side)			
Electrical Interface		MIPI						
Surface Treatment		Anti Glare						
Support Color		16.7M colors (Real 8 bits)						
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60						
RoHS Compliance		RoHS Com	pliance					

AU OPTRONICS CORPORATION

2.2 Optical CharacteristicsThe optical characteristics are measured under stable conditions at 25 °C (Room Temperature):

Item		Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
White Lumin	White Luminance		Center Point	300	350		cd/m ²	1, 3, 4.
Viowing An			$\begin{array}{ccc} \text{Horizontal} & (\text{Right}) \\ \text{CR} \geq 10 & (\text{Left}) \end{array}$	80 80	85 85		dograe	3, 8
viewing An			$ \begin{array}{ccc} \text{Vertical} & \text{(Upper)} \\ \text{CR} \geq 10 & \text{(Lower)} \end{array} $	80 80	85 85		degree	
Luminance Un	iformity	%	5 Points	80				1, 2, 3
Contrast R	atio	CR		800	1000			3, 5
Cross tal	k	%				2		3, 6
Response T	ime	T _{RT}	Rising + Falling		30	35	msec	3, 7
	Red	Rx		0.578	0.608	0.638		
	Neu	Ry		0.325	0.355	0.385		
Color /	Green	Gx		0.309	0.339	0.369		
Chromaticity	Green	Gy		0.568	0.598	0.628		
Coordinates	Blue	Bx	CIE 1931	0.125	0.155	0.185		3
Coordinates	biue	By		0.057	0.087	0.117		
	White	Wx		0.270	0.300	0.330		
	vvnite	Wy		0.290	0.320	0.350		
NTSC		%		55	60			

Note 1: 5 points position (Ref: Active area)

Note 2: The luminance uniformity of 5 points is defined as minimum luminance divided by the maximum luminance values:

$$\delta_{W5} = \frac{\text{Minimum Brightness of five points}}{\text{Maximum Brightness of five points}}$$

AU OPTRONICS CORPORATION

Note 3: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room, and it should be measured in the center of screen.

Note 4: Definition of Average Luminance of White (Y_L):

Measure the luminance of gray level 63 at 5 points \cdot $Y_L = [L (1) + L (2) + L (3) + L (4) + L (5)] / 5 L (x) is corresponding to the luminance of the point X at Figure in Note (1).$

Note 5: Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

Contrast ratio (CR)=
$$\frac{\text{Brightness on the "White" state}}{\text{Brightness on the "Black" state}}$$

Note 6: Definition of Cross Talk (CT)

$$CT = | YB - YA | / YA \times 100 (\%)$$

Where

YA = Luminance of measured location without gray level 255 pattern (cd/m2)

YB = Luminance of measured location with gray level 255 pattern (cd/m2)

AU OPTRONICS CORPORATION

Note 7: Definition of response time:

The output signals of BM-7 or equivalent are measured when the input signals are changed from "Black" to "White" (falling time) and from "White" to "Black" (rising time), respectively. The response time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Note 8. Definition of viewing angle

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 10.1 inches wide Color TFT/LCD 39 Pin one channel Module

AU OPTRONICS CORPORATION

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vin	-0.3	+4.0	[Volt]	Note 1,2

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 3
Operation Humidity	HOP	5	95	[%RH]	Note 3
Storage Temperature	TST	-20	+60	[°C]	Note 3
Storage Humidity	HST	5	95	[%RH]	Note 3

Note 1: At Ta (25°C)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

Operating Range

Storage Range

+

AU OPTRONICS CORPORATION

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows. The power specification are measured under 25°C and frame frenquency under 60Hz

Symble	Parameter	Min	Тур	Max	Units	Note
IOVCC	Logic/LCD Drive Voltage	1.7	1.8	1.9	[Volt]	
P _{IOVCC}	IOVCC Power	-	-	0.054	[Watt]	
liovec	IOVCC Current(RMS)	-	30	-	[mA]	

Symble	Parameter	Min	Тур	Max	Units	Note
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
P _{VDD}	VDD Power	-	-	0.4	[Watt]	Note 1
I _{VDD}	VDD Current(RMS)	-	121	-	[mA]	
IRush	Inrush Current	-	-	1500	[mA]	Note 2
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	

Note 1 : Maximum Measurement Condition : White Pattern at 3.3V driving voltage.

Note 2: Measure Condition

Vin rising time

AU OPTRONICS CORPORATION

5.1.2 Signal Electrical Characteristics

Input signals shall be low or High-impedance state when VDD is off.

MIPI DC characteristics are as follows:

Parameter	Symbol	Conditions		Specification		Unit
Parameter	Symbol Conditions		MIN	TYP	MAX	Unit
Power supply voltage for MIPI Interface						
Power supply voltage for MIPI interface	VDDAM	-	1.75	2.8	6.0	V
Power supply voltage for MIPT interface	LVDSVDD	-	1.15	1.2	1.375	v
LPDT Input Characteristics				YO		
Pad signal voltage range	VI	-	-50	<u>):</u>	1350	mV
Ground Shift	VGNDSH	-	-50	-	50	mV
Logic 0 input threshold	VIL	- (0	\	550	mV
Logic 1 input threshold	VIH	$-\epsilon$	880		LVDSVDD	mV
Input hysteresis	VHYST		25	1	-	mV
LPDT Output Characteristics)		
Output low level	VOL	· -	-50	-	50	mV
Output high level	VOH		1.1	1.2	1.3	V
Logic 1 contention threshold	VIHCD,MIN		450	-	LVDSVDD	mV
Logic 0 contention threshold	VILCD,MAX		0	-	200	mV
Output impedence of LPDT	ZOLP	-	80	100	125	ohm
Hi-speed Input/Output Characteristics	10					
Single-end input low voltage	VILHS	-	-40	-	-	mV
Single-end input high voltage	VIHHS	-	-	-	460	mV
Common mode voltage	VCMRXDC	-	70	-	330	mV
Hi-speed transmit voltage	VOD	-	140	200	250	mV
Differential input impedence	ZID	-	80	100	125	ohm

AU OPTRONICS CORPORATION

Table: I2C Interface Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _{SCLK}	SCL clock frequency		DC	-	400	KHz
T _{LOW}	SCL clock LOW period	- O	1.3	1.	-	#s
T _{HIGH}	SCL clock HIGH period) ,	0.6	7.	-	#s
T _{SU;DATA}	data set-up time	- (100	-	-	ns
T _{HD;DATA}	data hold time		0	-	0.9	#s
T _r	SCL and SDA rise time	Note 2	20+0.1C _b	-	300	ns
T _f	SCL and SDA fall time	Note 2	20+0.1C _b	-	300	ns
T _f	SDA fall time for read out)	20+0.1C _b	-	1000	ns
Сь	Capacitive load represented by each bus line	-	-	-	400	pF
T _{SU;STA}	Setup time for a repeated START condition	-	0.6	-	-	#s
T _{HD;STA}	START condition hold time	-	0.6	-	-	#s
T _{SU;STO}	Setup time for STOP condition	-	0.6	-	-	#s
T _{SW}	Tolerable spike width on bus	Note 1	-	-	50	ns
T _{BUF}	BUS free time between a STOP and START condition	-	1.3	-	-	#s

Note1: The device inputs SDA and SCL are filtered and will reject spikes on the bus lines of width <t_{SW(max)}.

Note2: The rise and fall times specified here refer to the driver device and are part of the general fast I²C-bus specification. C_b = capacitive load per bus line.

Note3: All timing values are valid within the operating supply voltage and ambient temperature ranges and are referenced to V_{IL} and V_{IH} with an input voltage swing of VSS to VDDI

AU OPTRONICS CORPORATION

Parameter	Symbol	Parameter		Specification	,	Unit		
Parameter	Symbol	raiameter	MIN	TYP	MAX	Onit		
High Speed Mode	High Speed Mode							
DSI-CLK+/-	2xUI _{INST}	Double UI instantaneous	2.22	÷	25	ns		
DSI-CLK+/-	UI _{INSTA} , UI _{INSTB}	UI instantaneous Halfs	1.11		12.5	ns		
DSI-Dn+/-	t _{DS}	Data to clock setup time	0.15	(;)	-	UI		
DSI-Dn+/-	t _{DH}	Data to clock hold time	0.15) -	-	UI		
DSI-CLK+/-	t _{DRTCLK}	Differential rise time for clock	150	-	0.3UI	ps		
DSI-Dn+/-	t _{DRTDATA}	Differential rise time for data	150	-	0.3UI	ps		
DSI-CLK+/-	t _{DFTCLK}	Differential fall time for clock	150	-	0.3UI	ps		
DSI-Dn+/-	t _{DFTDATA}	Differential fall time for data	150	4.	0.3UI	ps		

AU OPTRONICS CORPORATION

The timing definitions are listed in below:

B	Complete I	B	Specification			Unit		
Parameter	Symbol	Parameter	MIN	TYP	MAX	Unit		
High Speed Data Transmis	igh Speed Data Transmission Bursts							
DSI-Dn+/-	T _{LPX}	Length of any low-power state period	50	-	-	ns		
DSI-Dn+/-	T _{HS-PREPARE}	Time to drive LP-00 to prepare for HS transmission	40ns + 4UI	7.	85ns + 6UI	ns		
DSI-Dn+/-	T _{HS-PREPARE} +T _{HS-ZERO}	T _{HS-PREPARE} + time to drive HS-0 before the sync sequence	145ns + 10UI	-	-	ns		
DSI-Dn+/-	T _{D-TERM-EN}	Time to enable Data Lane receiver line termination measured from when Dn crosses V _{IL(max)}	Time for Dn to reach V _{TERM-EN}	-	35ns + 4UI	ns		
DSI-Dn+/-	T _{HS-SKIP}	Time-out at RX to ignore transition period of EoT	40	-	55ns + 4UI	ns		
DSI-Dn+/-	T _{HS-TRAIL}	Time to drive flipped differential state after last payload data bit of a HS transmission burst	max (8UL	-	-	ns		
DSI-Dn+/-	T _{HS-EXIT}	Time to drive LP-11 after HS burst	100	-	-	ns		
DSI-Dn+/-	T _{EoT}	Time from start of T _{HS-TRAIL} period to start of LP-11 state	-	-	105ns + 12UI	ns		

High-Speed Data Transmission in Bursts

AU OPTRONICS CORPORATION

Daramatar	Sumbal	Parameter	Specification		Specification	Unit
Parameter Symbol		Parameter	MIN	TYP	MAX	Unit
itching the clock Lane between clock Transmission and Low Power Mode						
DSI-CLK+/-	T _{CLK-POST}	Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode		-		ns
DSI-CLK+/-	T _{CLK-PRE}	Time that the HS clock shall be driven prior to any associated Data Lane beginning the transition from LP to HS mode	8	i	D-`.	UI
DSI-CLK+/-	T _{CLK-PREPARE}	Time to drive LP-00 to prepare for HS clock transmission	38	<i>.</i>	95	ns
DSI-CLK+/-	T _{CLK-TERM-EN}	Time to enable Clock Lane receiver line termination measured from when Dn crosses V _{IL(max)}	7	-	38	ns
DSI-CLK+/-	T _{CLK-PREPARE} +T _{CLK-ZERO}	T _{CLK-PREPARE} + time for lead HS-0 drive period before starting Clock	300	7 .	-	ns
DSI-CLK+/-	T _{CLK-TRAIL}	Time to drive HS differential state after last payload clock bit of a HS transmission burst			-	ns
DSI-CLK+/-	T _{EoT}	Time from start of T _{CLK-TRAIL} period to start of LP-11 state	<i>J</i> .	-	105ns + 12UI	ns

Switching the Clock Lane between Clock Transmission and Low-Power Mode

AU OPTRONICS CORPORATION

Following characteristics are measured under a stable condition using an inverter at 25°C (Room Temperature):

Parameter	Symbol	Min	Тур	Max	Units	Condition
Backlight Power Consumption (W/O Efficiency)	PLED			1.82	[Watt]	Note 1 (Ta= 25°ℂ)
LED Forward Voltage	VF	2.8	3.0	3.2	[Volt]	(Ta= 25°C)
LED Forward Voltage of every LED string	Vf-string	19.6	21	22.4	[Volt]	
LED Forward Current	IF		21		[mA]	(Ta= 25°ℂ)
LED Life time	N/A	≧ 15000			Hour	Note 1 (Ta=25°ℂ)

Note 1: calculator value for reference PLED based on 21 mA

AU OPTRONICS CORPORATION

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

6.2 Integration Interface Requirement 6.2.1 MIPI/TP Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	Hirose
Type / Part Number	FH26W-39S-0.3SHW
Mating Housing/Part Number	FPC or Compatible

AU OPTRONICS CORPORATION

MIPI is a differential signal technology for LCD interface and high speed data transfer device.

Pin No.	Symbol	Description	I/O
1	NC	NC	-
2	NC	NC	-
3	NC	NC	-
4	FB4	LED-	Р
5	FB3	LED-	Р
6	FB2	LED-	Р
7	FB1	LED-	Р
8	NC	NC	-
9	VLED	LED+	Р
10	VLED	LED+	Р
11	VLED	LED+	Р
12	NC	7.5V For VPP	-
13	LED PWMin	NC	I
14	LED PWMout	LED PWMout 1.8v	0
15	ID	ID(GND for AUO)	I/O
16	LCD_RST	Reset	I
17	NC	NC	-
18	NC	NC	-
19	VDD	3.3V	Р
20	VDD	3.3V	Р
21	VDD	3.3V	Р
22	IOVCC	1.8V	Р
23	IOVCC	1.8V	Р
24	GND	GND	Р
25	D3P	MIPI Input Data Pair D3P	I
26	D3N	MIPI Input Data Pair D3N	I
27	GND	GND	Р
28	D2P	MIPI Input Data Pair D2P	I
29	D2N	MIPI Input Data Pair D2N	
30	GND	GND	Р
31	CLKP	MIPI Input Data Pair CLKP	
32	CLKN	MIPI Input Data Pair CLKN	
33	GND	GND	Р
34	D1P	MIPI Input Clock Pair D1P	I
35	D1N	MIPI Input Clock Pair D1N	
36	GND	GND	Р
37	D0P	MIPI Input Data Pair D0P	I
38	D0N	MIPI Input Data Pair D0N	I
39	GND	GND	I

AU OPTRONICS CORPORATION

6.3 MIPI Interface Timing

6.3.1 Timing Characteristics

Basically, interface timings should match the 800 x 1280 /60 Hz manufacturing guide line timing.

Vertical Total	VT (tv)	1300	line
Vertical Front-Porch	VFP (tvfp)	8	line
Vertical Active	VA (tvd)	1280	line
Vertical Sync.	VS (tw)	4	line
Vertical Back-Porch	VBP (tvbp)	8	line
Horizontal Total	HT (th)	960	clk(pixel)
Horizontal Front-Porch	HFP (thfp)	24	clk(pixel)
Horizontal Active	HA (thd)	800	clk(pixel)
Horizontal Sync.	HS (thw)	4	clk(pixel)
Horizontal Back-Porch	HBP (thbp)	132	clk(pixel)
Pixel Frequency	CLK (fc)	75.00	MHz

Driving

(LVDS Receiver Output)

item	T1 Vertical	T2	T3 VSYNC	T4	T5 VSYNC	T6 VSYNC
	Blanking	Active Field	Front Porch	Frame Time	VVidth	Back Porch
Value	20	1280		1300	4	8
value	20	1200		1300	-	

Horizontal Timing

Γ	Item	T7 Horizontal	тв	T9 HSYNC	T10	T11 HSYNC	T12 HSYNC
L		Blanking	Active Field	Front Porch	H line Time	Width	Back Porch
E	Value	160	800	24	960	4	132

Dot Timing		
ttem .	Dot Clock Frequency	Data Clock Frequency
Value	76MH2	Dot Clock Frequency

AU OPTRONICS CORPORATION

6.4 Power ON(Wake Up)/OFF(Stand-by) sequence

6.4.1 Power

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart.

Power Sequence Timing					
	Va	Value			
Parameter	Min.	Max.	Units		
T1	0.5	10			
T2	1	-			
Т3	0.5	10			
T4	0	50			
T5	0	0.002			
T6	1	-			
T7	0	0.002			
T8	0.01	-			
Т9	5	-			
T10	180	-			
T11	33.4	-	ms		
T12	200	-			
T13	200	-			
T14	33.4	-			
T15	180	-			
T16	50	-			
T17	120	-			
T18	0	10			
T19	0	10			
T20	0	10			
T21	500	-			

6.4.2 MIPI Command

T10: power on => initial code + sleep out(0x11) (by panel different)

T11: display on (0x29) T14: display off (0x28)

T15: power off \Rightarrow sleep in (0x10)

AU OPTRONICS CORPORATION

7. Panel Reliability Test

7.1 Vibration Test

Test Spec:

Test method: Non-Operation

Acceleration: 1.5 G

Frequency: 10 - 500Hz Random

Sweep: 30 Minutes each Axis (X, Y, Z)

7.2 Shock Test

Test Spec:

• Test method: Non-Operation

• Acceleration: 220 G , Half sine wave

Active time: 2 ms

Pulse: X,Y,Z .one time for each side

7.3 Reliability Test

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 40°ℂ, 90%RH, 300h	
High Temperature Operation	Ta= 50°C, Dry, 300h	
Low Temperature Operation	Ta= 0°C, 300h	
High Temperature Storage	Ta= 60°C, 300h	
Low Temperature Storage	Ta= -20°C, 300h	
Thermal Shock Test	Ta=-20°C to 60°C, Duration at 30 min, 100 cycles	
ESD	Contact : ±8 KV Air : ±15 KV	Note 1

Note1: According to EN 61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Remark: MTBF (Excluding the LED): 30,000 hours with a confidence level 90%

AU OPTRONICS CORPORATION

- 8. Mechanical Characteristics
- 8.1 LCM Standard Outline Dimension (Front View)

AU OPTRONICS CORPORATION

8.2 LCM Standard Outline Dimension (Rear View)

AU OPTRONICS CORPORATION

9. Label and Packaging

9.1 Shipping Label (on the rear side of TFT-LCD display)

9.2 Carton Label Format

AU Optronics QTY: 40 RoHS Pb

MODEL NO: G101EAN01.0

PART NO: 97.10G25.000

CUSTOMER NO:

CARTON NO:

Made in China *ZM100-0652300205*

9.3 Shipping Package of Palletizing Sequence

Pallet size: 1150mm x 840mm x 138mm

Box stacked Max

Module by air : (2x2)x3 layers , one pallet put 12 boxes , total 480 pcs module

Module by sea : (2x2)x3 layers + (2x2)x2 layers , two pallet put 20 boxes , total 800 pcs module Module by sea_HQ : (2x2)x3 layers + (2x2)x2 layers , two pallet put 20 boxes , total 800 pcs module

Box stacked on pallet (Picture):

AU OPTRONICS CORPORATION

PP Board

1pcs Flat Tray

1pcs tray with 2 pcs EPE Spacer

Put 2 pcs Panel (Face down)

1pcs Tray with 2pcs Panel+2pcs EPE Spacer

Stack flat tray one by one until 21th pcs tray, the 21th tray is empty.

Put 40 pcs Panel into anti-static bag(use tape to fix)

Put EPE cushion into carton

Then put anti-static bag into carton which has EPE cushion in it

Put on top EPE cushion

And use tape to fix carton