$$\rm M2\ Biology$$ $$\rm TD5\colon Rate\ Models$$

Elie Oriol

TD material is available at:

https://github.com/Elieoriol/2122_UlmM2_ThNeuro/tree/master/TD5

In this tutorial, we will consider a very standard example of rate model: the ring model.

1 Ring model

We consider a network of neurons responsive to a stimulus θ which spans the range $[0, 2\pi]$. Each neuron has a preferred stimulus and the connection strength between two neurons respectively preferring θ_1 and θ_2 is proportional to $J_0 + J_1 \cos(\theta_1 - \theta_2)$. Additionally, each neuron receives en external input which depends on the neuron's preferred stimulus $h(\theta)$.

In the limit where the number of neurons is large and their preferred stimuli uniformly span the range $[0, 2\pi]$, we can write the neural activity as a continuous function $m(\theta, t)$. The input current to a neuron preferring θ can then be written as:

$$I(\theta, t) = h(\theta) + \int_0^{2\pi} \frac{\mathrm{d}\theta'}{2\pi} \left[J_0 + J_1 \cos(\theta - \theta') \right] m(\theta', t)$$

The activity then evolves according to:

$$\frac{\mathrm{d}m(\theta,t)}{\mathrm{d}t} = -m(\theta,t) + f[I(\theta,t)] \tag{1}$$

$$f(x > 0) = x \tag{2}$$

$$f(x<0) = 0 (3)$$

1. Suppose that there is a constant, uniform and positive external current $h(\theta) = h_0$, which is sufficient for there to be positive, uniform network activity $m(\theta, t) = m_0$. What is the current received by each neuron? What is the network activity m_0 ? How does it depend on J_0 ?

We wish to study whether this uniform state is stable, we therefore consider small perturbations around it: $m(\theta,t) = m_0 + \delta m(\theta,t)$. We wish to see how these evolve with time.

To do so, we want to find a simple description of the dynamics. We introduce the order parameters:

$$M(t) = \int_0^{2\pi} \frac{\mathrm{d}\theta'}{2\pi} \delta m(\theta', t) \tag{4}$$

$$C(t) = \int_0^{2\pi} \frac{\mathrm{d}\theta'}{2\pi} \delta m(\theta', t) e^{i\theta'}$$
 (5)

2 Rate Models

- 2. What does M(t) correspond to?
- 3. Suppose that the perturbation is uniform:

$$\delta m(\theta, t) = \epsilon$$

What are the values of M and C?

4. Suppose that the perturbation is a small bump centered around the angle ϕ :

$$\delta m(\theta, t) = \epsilon \cos(\theta - \phi) = \epsilon \frac{e^{i(\theta - \phi)} + e^{-i(\theta - \phi)}}{2}$$

What are the values of M and C?

- 5. What does C(t) correspond to?
- 6. Now that we have understood what M(t) and C(t) characterize, we will try to obtain a description of the dynamics in terms of the evolution of these two order parameters. Linearize the dynamics of the activity around m_0 and express it as a function of M(t) and C(t).
- 7. Derive the differential equations governing the evolution of the order parameters.
- 8. Under what conditions is the uniform activity stable? What happens when either of these conditions is not met?
- 9. Consider $J_0 < 1$, $J_1 < 2$. Consider an external input with weak modulation, $h(\theta) = h_0 + \epsilon \cos(\theta)$, where $\epsilon \ll 1$. What is the profile of activity of the network induced by such an external input?
- 10. Suppose that the firing rate is given by $m(\theta,t) = m_0 + m_1 \cos(\theta)$, under what conditions does the network amplify the input, ie: $\frac{m_1}{m_0} > \frac{\epsilon}{h_0}$?

Trigonometry:

$$\cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) \tag{6}$$

$$\int_0^{2\pi} \frac{d\theta'}{2\pi} \cos(\theta') = \int_0^{2\pi} \frac{d\theta'}{2\pi} \sin(\theta') = 0 \tag{7}$$

$$\int_0^{2\pi} \frac{d\theta'}{2\pi} \cos(\theta')^2 = \int_0^{2\pi} \frac{d\theta'}{2\pi} \sin(\theta')^2 = \frac{1}{2}$$
 (8)

$$\int_0^{2\pi} \frac{d\theta'}{2\pi} \cos(\theta') \sin(\theta') = 0 \tag{9}$$

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \tag{10}$$

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \tag{11}$$