Criminal Bases

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

The Programming Police are searching for a cybercriminal lair in a remote region of the Rocky Mountains. After surveying the region, they discover that there are N bases scattered in the region. The bases are connected by a network of M preexisting roads, and the ith preexisting road connects bases a_i and b_i . However, the preexisting roads must be repaired in order to become usable. The Programming Police must spend C_i dollars in order to repair the ith preexisting road. The Programming Police also identify K currently nonexistent roads that they can build between bases. The jth currently nonexistent road connects bases e_j and f_j , and the Programming Police must spend D_j dollars in order to build the jth currently nonexistent road. The Programming Police can repair any number of roads, but they have enough resources to build only R roads. Help the Programming Police find the minimum cost to connect all of the bases with usable roads.

Input

Line 1: N, M, K, and R, separated by spaces

Line 2...M+1: On line i + 1, a_i , b_i , and C_i , separated by spaces

Line M+2...M+K+1: On line j + M + 1, e_j , f_j , and D_j , separated by spaces

Output

Line 1: The minimum cost to connect all of the bases

Example

standard input	standard output
5 4 2 1	49
2 3 19	
5 2 15	
1 2 12	
1 4 9	
1 5 14	
5 3 13	

Note

 $1 \leq N \leq 100,000$

 $0 \le M, K, R \le 100,000$

 $1 \le a_i, b_i \le N$

 $1 \le e_j, f_j \le N$

 $1 \le C_i, D_j \le 100,000$