

Schletter, Inc.		20° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, P _s =	20.62 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.91	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.050	
Cf+ BOTTOM	=	1.050 1.650 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.400	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.840 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and nomino culture.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	722.78	3902.09	k
Compressive Load =	4218.36	<u>4527.40</u>	k
Lateral Load =	<u>13.52</u>	1803.09	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 98169.5 in-lbs Resisting Force Required = 1487.42 lbs A minimum 132in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2479.03 lbs to resist overturning. Minimum Width = Weight Provided = 4186.88 lbs Sliding Force = 433.16 lbs Use a 132in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 1082.90 lbs ballast foundation to resist sliding. Resisting Weight = 4186.88 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 433.16 lbs Cohesion = 130 psf Use a 132in long x 21in wide x 18in tall 19.25 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2093.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

ASD LC		1.0D -	+ 1.0S			1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			S	0.6D + 1.0W			
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
F_A	1630 lbs	1630 lbs	1630 lbs	1630 lbs	1200 lbs	1200 lbs	1200 lbs	1200 lbs	1989 lbs	1989 lbs	1989 lbs	1989 lbs	-341 lbs	-341 lbs	-341 lbs	-341 lbs
F _B	1665 lbs	1665 lbs	1665 lbs	1665 lbs	1431 lbs	1431 lbs	1431 lbs	1431 lbs	2185 lbs	2185 lbs	2185 lbs	2185 lbs	-1870 lbs	-1870 lbs	-1870 lbs	-1870 lbs
F۷	187 lbs	187 lbs	187 lbs	187 lbs	788 lbs	788 lbs	788 lbs	788 lbs	717 lbs	717 lbs	717 lbs	717 lbs	-866 lbs	-866 lbs	-866 lbs	-866 lbs
P _{total}	7483 lbs	7682 lbs	7881 lbs	8081 lbs	6818 lbs	7017 lbs	7216 lbs	7416 lbs	8361 lbs	8560 lbs	8760 lbs	8959 lbs	301 lbs	421 lbs	541 lbs	660 lbs
М	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	4121 lbs-ft	3510 lbs-ft	3510 lbs-ft	3510 lbs-ft	3510 lbs-ft	5384 lbs-ft	5384 lbs-ft	5384 lbs-ft	5384 lbs-ft	1603 lbs-ft	1603 lbs-ft	1603 lbs-ft	1603 lbs-ft
е	0.55 ft	0.54 ft	0.52 ft	0.51 ft	0.51 ft	0.50 ft	0.49 ft	0.47 ft	0.64 ft	0.63 ft	0.61 ft	0.60 ft	5.32 ft	3.81 ft	2.97 ft	2.43 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	271.9 psf	269.5 psf	267.2 psf	265.1 psf	254.7 psf	253.0 psf	251.5 psf	250.1 psf	281.8 psf	278.8 psf	276.2 psf	273.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	505.5 psf	492.4 psf	480.4 psf	469.5 psf	453.6 psf	442.9 psf	433.1 psf	424.1 psf	586.9 psf	570.1 psf	554.8 psf	540.7 psf	640.2 psf	90.5 psf	74.2 psf	71.7 psf

Ballast Width

4187 lbs 4386 lbs 4586 lbs 4785 lbs

23 in

22 in

21 in

24 in

Maximum Bearing Pressure = 640 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$

Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 776.6 \text{ ft-lbs}$

Resisting Force Required = 887.52 lbs S.F. = 1.67

Weight Required = 1479.21 lbs Minimum Width = 21 in in Weight Provided = 4186.88 lbs A minimum 132in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		21 in			21 in			21 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	250 lbs	671 lbs	250 lbs	908 lbs	2704 lbs	908 lbs	73 lbs	196 lbs	73 lbs		
F _V	1 lbs	0 lbs	1 lbs	5 lbs	0 lbs	5 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	5434 lbs	4187 lbs	5434 lbs	5842 lbs	4187 lbs	5842 lbs	1589 lbs	4187 lbs	1589 lbs		
M	5 lbs-ft	0 lbs-ft	5 lbs-ft	18 lbs-ft	0 lbs-ft	18 lbs-ft	1 lbs-ft	0 lbs-ft	1 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft		
f _{min}	281.4 psf	217.5 psf	281.4 psf	300.3 psf	217.5 psf	300.3 psf	82.4 psf	217.5 psf	82.4 psf		
f _{max}	283.1 psf	217.5 psf	283.1 psf	306.6 psf	217.5 psf	306.6 psf	82.6 psf	217.5 psf	82.6 psf		

Maximum Bearing Pressure = 307 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.245 k	Maximum Axial Load = 3.294 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>44%</u>	Utilization = $\frac{44\%}{}$
Diagonal Strut		
Maximum Axial Load =	1.252 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>17%</u>	
	4	
1	·	Struts under compression are shown to demo

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 40.12 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.802 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.052 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **<u>\$1.5</u>**

Strong Axis:

3.4.14

$$L_{b} = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.2 \text{ ksi}$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

h/t = 37.0588

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$2.155 \text{ in}^4$$

$$y = 41.015 \text{ mm}$$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 126 \\ J &= 0.432 \\ 221.673 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= 28.5 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

$$V = 0.599 \text{ in}^3$$

1.152 k-ft

 $M_{max}Wk =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
1.88 in²
 $\phi F_L = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

$$Sx = 1.375 \text{ in}^3$$

$$M_{max} St = 3.363 \text{ k-ft}$$

3.4.18

3.4.16.1

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

 $\phi F_L =$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

31.4 ksi

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$bx = 279836 \text{ mm}^4$$

0.672 in⁴

0.621 in³

27.5 mm

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

 $C_0 =$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

24.5

0.65

27.5

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

y =

 $M_{max}St = 1.460 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$\begin{aligned} \text{h/t} &= & 24.5 \\ S1 &= & \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr} \\ \text{S1} &= & 36.9 \\ \text{m} &= & 0.65 \\ \text{C}_0 &= & 27.5 \\ \text{Cc} &= & 27.5 \\ S2 &= & \frac{k_1Bbr}{mDbr} \\ \text{S2} &= & 77.3 \\ \text{\phiF}_L &= & 1.3\text{\phiyFcy} \\ \text{\phiF}_L &= & 43.2 \text{ ksi} \end{aligned}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 55.91 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

Weak Axis:

$$L_b = 55.91$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = 141.0$$

 $\phi F_L = 1.17 \phi y F_C y$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F cy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.29339 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.76107 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 15.9235 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \text{b/t} = & 24.5 \\ \text{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \text{S1} = & 12.21 \\ \text{S2} = & 32.70 \\ \phi \textbf{F}_L = \phi \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \phi \textbf{F}_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}} Fcy}{Dt} \right)^{2} \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{\phiF}_{\text{L}} &= & \text{\phiyFcy} \\ \text{\phiF}_{\text{L}} &= & 33.25 \text{ ksi} \\ \text{\phiF}_{\text{L}} &= & 15.92 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^{2} \\ & & 1.03 \text{ in}^{2} \\ \text{P}_{\text{max}} &= & 16.39 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc.: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-54.031	-54.031	0	0
2	M14	Υ	-54.031	-54.031	0	0
3	M15	Υ	-54.031	-54.031	0	0
4	M16	Υ	-54 031	-54 031	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-33.217	-33.217	0	0
2	M14	٧	-33.217	-33.217	0	0
3	M15	V	-52.198	-52.198	0	0
4	M16	٧	-52.198	-52.198	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	75.924	75.924	0	0
2	M14	V	58.208	58.208	0	0
3	M15	V	31.635	31.635	0	0
4	M16	V	31 635	31 635	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	317.966	2	1021.233	1	.951	1	.005	1	Ó	1	Ó	1
2		min	-440.618	3	-910.872	3	.04	15	0	15	0	1	0	1
3	N7	max	.049	1	1162.163	1	392	15	0	15	0	1	0	1
4		min	065	2	-148.834	3	-10.4	1	022	1	0	1	0	1
5	N15	max	.027	9	3244.895	1	0	1	0	1	0	1	0	1
6		min	924	2	-555.984	3	0	13	0	13	0	1	0	1
7	N16	max	1328.28	2	3482.614	1	0	1	0	2	0	1	0	1
8		min	-1386.993	3	-3001.608	3	0	9	0	9	0	1	0	1
9	N23	max	.049	1	1162.163	1	10.4	1	.022	1	0	1	0	1
10		min	065	2	-148.834	3	.392	15	0	15	0	1	0	1
11	N24	max	317.966	2	1021.233	1	04	15	0	15	0	1	0	1
12		min	-440.618	3	-910.872	3	951	1	005	1	0	1	0	1
13	Totals:	max	1963.157	2	11094.3	1	0	1	·				·	
14		min	-2268.519	3	-5677.004	3	0	11						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	110.463	1	463.881	1	-6.185	15	0	3	.263	1	0	1
2			min	4.032	15	-458.572	3	-169.942	1	012	1	.01	15	0	3
3		2	max	110.463	1	325.118	1	-4.759	15	0	3	.088	1	.456	3
4			min	4.032	15	-322.722	3	-130.72	1	012	1	.003	15	46	1
5		3	max	110.463	1	186.356	1	-3.333	15	0	3	0	12	.753	3
6			min	4.032	15	-186.872	3	-91.499	1	012	1	042	1	759	1
7		4	max	110.463	1	47.593	1	-1.907	15	0	3	004	12	.892	3
8			min	4.032	15	-51.022	3	-52.277	1	012	1	125	1	895	1
9		5	max	110.463	1	84.828	3	482	15	0	3	006	12	.872	3
10			min	4.032	15	-91.17	1	-13.056	1	012	1	164	1	87	1
11		6	max	110.463	1	220.678	3	26.166	1	0	3	006	15	.694	3
12			min	4.032	15	-229.933	1	.611	12	012	1	156	1	682	1
13		7	max	110.463	1	356.528	3	65.387	1	0	3	004	15	.357	3
14			min	4.032	15	-368.696	1	2.037	12	012	1	102	1	333	1
15		8	max	110.463	1	492.378	3	104.609	1	0	3	0	10	.178	1
16			min	4.032	15	-507.458	1	3.462	12	012	1	003	1	138	3
17		9	max	110.463	1	628.228	3	143.83	1	0	3	.142	1	.851	1
18			min	4.032	15	-646.221	1	4.888	12	012	1	.004	12	792	3
19		10	max	110.463	1	764.078	3	183.052	1	0	3	.332	1	1.686	1
20			min	4.032	15	-784.984	1	6.313	12	012	1	.01	12	-1.604	3
21		11	max	110.463	1	646.221	1	-4.888	12	.012	1	.142	1	.851	1
22			min	4.032	15	-628.228	3	-143.83	1	0	3	.004	12	792	3
23		12	max	110.463	1	507.458	1	-3.462	12	.012	1	0	10	.178	1
24			min	4.032	15	-492.378	3	-104.609	1	0	3	003	1	138	3
25		13	max	110.463	1	368.696	1	-2.037	12	.012	1	004	15	.357	3
26			min	4.032	15	-356.528	3	-65.387	1	0	3	102	1	333	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
27		14	max	110.463	1	229.933	1	611	12	.012	_1_	006	15	.694	3
28			min	4.032	15	-220.678	3	-26.166	1	0	3	156	1	682	1
29		15	max	110.463	1	91.17	1	13.056	1	.012	1	006	12	.872	3
30			min	4.032	15	-84.828	3	.482	15	0	3	164	1	87	1
31		16	max	110.463	1	51.022	3	52.277	1	.012	1	004	12	.892	3
32			min	4.032	15	-47.593	1	1.907	15	0	3	125	1	895	1
33		17	max	110.463	1	186.872	3	91.499	1	.012	1	0	12	.753	3
34			min	4.032	15	-186.356	1	3.333	15	0	3	042	1	759	1
35		18	max	110.463	1	322.722	3	130.72	1	.012	1	.088	1	.456	3
36			min	4.032	15	-325.118	1	4.759	15	0	3	.003	15	46	1
37		19	max	110.463	1	458.572	3	169.942	1	.012	1	.263	1	0	1
38			min	4.032	15	-463.881	1	6.185	15	0	3	.01	15	0	3
39	M14	1	max	49.87	1	487.488	1	-6.368	15	.005	3	.299	1	0	1
40	IVIIT	<u> </u>	min	1.824	15	-355.644	3	-174.996	1	01	1	.011	15	0	3
41		2	max	49.87	1	348.725	1	-4.943	15	.005	3	.117	1	.355	3
42			min	1.824	15	-252.864	3	-135.775	1	01	1	.004	15	488	1
43		3				209.962			15	.005	3				3
		3	max	49.87	1		1	-3.517				0	3	.59	
44		1	min	1.824	15	-150.084	3	-96.553	1_	01	1_	018	1	814	1
45		4	max	49.87	1	71.199	1	-2.091	15	.005	3	003	12	.705	3
46		-	min	1.824	15	-47.304	3	-57.332	1_	01	1	108	1	<u>978</u>	1
47		5	max	49.87	1	55.476	3	665	15	.005	3	005	12	.7	3
48		_	min	1.824	15	-67.564	1	-18.11	1	01	1_	152	1	98	1
49		6	max	49.87	1_	158.256	3	21.112	1	.005	3	005	15	.576	3
50			min	1.824	15	-206.326	1	.433	12	01	1	15	1	82	1
51		7	max	49.87	1	261.036	3	60.333	1	.005	3	004	15	.331	3
52			min	1.824	15	-345.089	1	1.858	12	01	1	103	1	498	1
53		8	max	49.87	1	363.816	3	99.555	1	.005	3	0	10	0	15
54			min	1.824	15	-483.852	1	3.284	12	01	1	009	1	033	3
55		9	max	49.87	1	466.597	3	138.776	1	.005	3	.13	1	.631	1
56			min	1.824	15	-622.615	1	4.709	12	01	1	.003	12	518	3
57		10	max	49.87	1	569.377	3	177.998	1	.005	3	.315	1	1.438	1
58			min	1.824	15	-761.377	1	6.135	12	01	1	.01	12	-1.122	3
59		11	max	49.87	1	622.615	1	-4.709	12	.01	1	.13	1	.631	1
60			min	1.824	15	-466.597	3	-138.776	1	005	3	.003	12	518	3
61		12	max	49.87	1	483.852	1	-3.284	12	.01	1	0	10	0	15
62		<u> </u>	min	1.824	15	-363.816	3	-99.555	1	005	3	009	1	033	3
63		13	max	49.87	1	345.089	1	-1.858	12	.01	1	004	15	.331	3
64		''	min	1.824	15	-261.036	3	-60.333	1	005	3	103	1	498	1
65		14	max	49.87	1	206.326	1	433	12	.01	1	005	15	.576	3
66		17	min	1.824	15	-158.256	3	-21.112	1	005	3	15	1	82	1
67		15	max	49.87	1	67.564	1	18.11	1	.01	<u> </u>	005	12	<u>02</u> .7	3
68		13		1.824					15	005	3	152	1	98	1
		16	min		15	-55.476	3	.665 57.332				003	12		3
69		10	max	49.87	1	47.304	3		1	.01	1			.705	1
70		47	min	1.824	15	-71.199	1	2.091	15	005	3	108	1	<u>978</u>	
71		17	max	49.87	1	150.084	3	96.553	1_	.01	1_	0	3	.59	3
72		40	min	1.824	15	-209.962	1	3.517	15	005	3	018	1	814	1
73		18	max	49.87	1	252.864	3	135.775	1	.01	1	.117	1_	.355	3
74			min	1.824	15	-348.725	1	4.943	15	005	3	.004	15	488	1
75		19	max	49.87	1	355.644	3	174.996	1_	.01	1	.299	1_	0	1
76			min	1.824	15	-487.488	1	6.368	15	005	3	.011	15	0	3
77	<u>M15</u>	1	max	-1.923	15	547.256	1	-6.367	15	.01	_1_	.299	1_	0	2
78			min	-52.569	1	-188.374	3	-174.966		004	3	.011	15	0	12
79		2	max	-1.923	15	390.777	1	-4.941	15	.01	_1_	.117	1	.189	3
80			min	-52.569	1	-135.196	3	-135.745		004	3	.004	15	547	1
81		3	max	-1.923	15	234.299	1	-3.515	15	.01	1	0	3	.315	3
82			min	-52.569	1	-82.019	3	-96.523	1	004	3	018	1	912	1
83		4	max	-1.923	15	77.821	1	-2.09	15	.01	1	003	12	.38	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]	LC		L LC	y-y Mome	LC :		LC_
84			min	-52.569	1_	-28.842	3	-57.302	1	004	3	108	1	-1.094	1
85		5	max	-1.923	15	24.335	3	664	15	.01	1	005	12	.383	3
86			min	-52.569	1	-78.658	1	-18.08	1	004	3	152	1	-1.093	1
87		6	max	-1.923	15	77.512	3	21.141	1	.01	1	005	15	.323	3
88			min	-52.569	1	-235.136	1	.459	12	004	3	15	1	91	1
89		7	max	-1.923	15	130.689	3	60.363	1	.01	1	004	15	.202	3
90			min	-52.569	1	-391.614	1	1.884	12	004	3	103	1	545	1
91		8	max	-1.923	15	183.867	3	99.585	1	.01	1	0	10	.018	3
92			min	-52.569	1	-548.093	1	3.31	12	004	3	009	1	003	9
93		9	max	-1.923	15	237.044	3	138.806	1	.01	1	.13	1	.734	1
94		9		-52.569	1	-704.571	1	4.735	12	004	3	.003	12	227	3
		40	min												
95		10	max	-1.923	<u>15</u>	290.221	3	178.028	1	.01	1	.315	1	1.647	1
96			min	-52.569	_1_	-861.05	1_	6.161	12	004	3	.01	12	<u>535</u>	3
97		11	max	-1.923	<u>15</u>	704.571	1_	-4.735	12	.004	3	.13	1	.734	1
98			min	-52.569	1_	-237.044	3	-138.806	1	01	1	.003	12	227	3
99		12	max	-1.923	15	548.093	_1_	-3.31	12	.004	3	0	10	.018	3
100			min	-52.569	1_	-183.867	3	-99.585	1	01	1	009	1	003	9
101		13	max	-1.923	15	391.614	1	-1.884	12	.004	3	004	15	.202	3
102			min	-52.569	1	-130.689	3	-60.363	1	01	1	103	1	545	1
103		14	max	-1.923	15	235.136	1	459	12	.004	3	005	15	.323	3
104			min	-52.569	1	-77.512	3	-21.141	1	01	1	15	1	91	1
105		15	max	-1.923	15	78.658	1	18.08	1	.004	3	005	12	.383	3
106		-10	min	-52.569	1	-24.335	3	.664	15	01	1	152	1	-1.093	1
107		16	max	-1.923	15	28.842	3	57.302	1	.004	3	003	12	.38	3
		10				-77.821	1		15		1		1		1
108		47	min	-52.569	1_			2.09		01	_	108	_	<u>-1.094</u>	_
109		17	max	-1.923	15	82.019	3	96.523	1	.004	3	0	3	.315	3
110		4.0	min		_1_	-234.299	1	3.515	15	01	1	018	1	<u>912</u>	1
111		18	max	-1.923	<u>15</u>	135.196	3	135.745	1	.004	3	.117	1	.189	3
112			min	-52.569	1_	-390.777	1	4.941	15	01	1	.004	15	547	1
113		19	max	-1.923	15	188.374	3	174.966	1	.004	3	.299	1	0	2
114			min	-52.569	1	-547.256	1	6.367	15	01	1	.011	15	0	12
115	M16	1	max	-4.285	15	523.803	1	-6.19	15	.011	1	.265	1	0	1
116			min	-117.213	1	-176.987	3	-170.139	1	007	3	.01	15	0	3
117		2	max	-4.285	15	367.324	1	-4.765	15	.011	1	.089	1	.175	3
118				-117.213	1	-123.809	3	-130.917	1	007	3	.003	15	52	1
119		3	max	-4.285	15	210.846	1	-3.339	15	.011	1	0	12	.289	3
120				-117.213	1	-70.632	3	-91.696	1	007	3	041	1	857	1
121		4	max	-4.285	15	54.368	1	-1.913	15	.011	1	004	12	.34	3
122		_		-117.213	1	-17.455	3	-52.474	1	007	3	125	1	-1.012	1
123		5	max	-4.285	15	35.722	3	487	15	.011	1	006	12	.33	3
124		5			1	-102.111		-13.253	1		3	163	1	984	1
		_								007					_
125		6	max		<u>15</u>	88.899	3	25.969	1	.011	1	006	15	.257	3
126		_		-117.213	1_	-258.589	1_	.694	12	007	3	156	1	<u>774</u>	1
127		7	max	-4.285	15_	142.076	3	65.19	1	.011	1	004	15	.122	3
128		_		-117.213	1	-415.067	1_	2.12	12	007	3	103	1	381	1
129		8	max		15	195.254	3	104.412	1	.011	1	0	10	.195	1
130			min	-117.213	1_	-571.546	1	3.545	12	007	3	004	1	075	3
131		9	max	-4.285	15	248.431	3	143.633	1	.011	1	.141	1	.953	1
132			min	-117.213	1	-728.024	1	4.971	12	007	3	.004	12	333	3
133		10	max	-4.285	15	301.608	3	182.855	1	.011	1	.331	1	1.894	1
134				-117.213	1	-884.503	1	6.396	12	007	3	.011	12	654	3
135		11	max		15	728.024	1	-4.971	12	.007	3	.141	1	.953	1
136				-117.213	1	-248.431	3	-143.633	1	011	1	.004	12	333	3
137		12	max	-4.285	15	571.546	1	-3.545	12	.007	3	0	10	.195	1
138		14		-4.263	1	-195.254	3	-104.412	1	011	1	004	1	075	3
139		13			15	415.067	<u> </u>	-2.12	12	.007	3	004	15	<u>075</u> .122	3
		13	max		-										
140			min	-117.213	1_	-142.076	3	-65.19	1	011	1	103	1	381	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
141		14	max	-4.285	15	258.589	1	694	12	.007	3	006	15	.257	3
142			min	-117.213	1	-88.899	3	-25.969	1	011	1	156	1	774	1
143		15	max	-4.285	15	102.111	1	13.253	1	.007	3	006	12	.33	3
144			min	-117.213	1	-35.722	3	.487	15	011	1	163	1	984	1
145		16	max	-4.285	15	17.455	3	52.474	1	.007	3	004	12	.34	3
146			min	-117.213	1	-54.368	1	1.913	15	011	1	125	1	-1.012	1
147		17	max	-4.285	15	70.632	3	91.696	1	.007	3	0	12	.289	3
148			min	-117.213	1	-210.846	1	3.339	15	011	1	041	1	857	1
149		18	max	-4.285	15	123.809	3	130.917	1	.007	3	.089	1	.175	3
150			min	-117.213	1	-367.324	1	4.765	15	011	1	.003	15	52	1
151		19	max	-4.285	15	176.987	3	170.139	1	.007	3	.265	1	0	1
152			min	-117.213	1	-523.803	1	6.19	15	011	1	.01	15	0	3
153	M2	1		1018.373	1	2.025	4	1.029	1	0	3	0	3	0	1
154	1712	<u> </u>	min	-813.012	3	.477	15	.037	15	0	1	0	1	0	1
155		2		1018.752	1	1.992	4	1.029	1	0	3	0	1	0	15
156			min	-812.728	3	.469	15	.037	15	0	1	0	15	0	4
157		3					4	1.029	1		3	_	1	0	15
		3		1019.132	1	1.959	15			0	1	0	15		
158		1	min	-812.443	3	.462		.037	15	0		0		001	4
159		4		1019.511	1	1.925	4	1.029	1	0	3	0	1	0	15
160		_	min	-812.159	3	.454	15	.037	15	0	1	0	15	002	4
161		5	max		1	1.892	4	1.029	1	0	3	.001	1	0	15
162			min	-811.874	3	.446	15	.037	15	0	1	0	15	002	4
163		6		1020.269	1_	1.859	4	1.029	1_	0	3	.001	1	0	15
164			min	-811.59	3	.438	15	.037	15	0	1	0	15	002	4
165		7	max	1020.649	1	1.825	4	1.029	1	0	3	.002	1_	0	15
166			min	-811.306	3	.43	15	.037	15	0	1	0	15	003	4
167		8	max	1021.028	1	1.792	4	1.029	1	0	3	.002	1	0	15
168			min	-811.021	3	.422	15	.037	15	0	1	0	15	003	4
169		9	max	1021.407	1	1.758	4	1.029	1	0	3	.002	1	0	15
170			min	-810.737	3	.414	15	.037	15	0	1	0	15	004	4
171		10		1021.787	1	1.725	4	1.029	1	0	3	.002	1	001	15
172			min	-810.452	3	.407	15	.037	15	0	1	0	15	004	4
173		11		1022.166	1	1.692	4	1.029	1	0	3	.003	1	001	15
174			min	-810.168	3	.399	15	.037	15	0	1	0	15	005	4
175		12		1022.545	1	1.658	4	1.029	1	0	3	.003	1	001	15
176			min	-809.883	3	.391	15	.037	15	0	1	0	15	005	4
177		13		1022.924	1	1.625	4	1.029	1	0	3	.003	1	001	15
178		10	min	-809.599	3	.383	15	.037	15	0	1	0	15	006	4
179		14		1023.304	1	1.591	4	1.029	1	0	3	.003	1	001	15
180		17	min	-809.314	3	.375	15	.037	15	0	1	0	15	006	4
181		15		1023.683	1	1.558	4	1.029	1	0	3	.004	1	002	15
182		13	min		3	.367	15	.037	15	0	1	0	15	002	4
		16		1024.062	1			1.029			3	_			15
183		10			_	1.525	4		1	0	1	.004	1_	002	
184		47		-808.746		.36	15	.037	15	0		0	15	007	4
185		17		1024.441	1	1.491	4	1.029	1	0	3	.004	1	002	15
186		40		-808.461	3	.352	15	.037	15	0	1	0	15	007	4
187		18		1024.821	1	1.458	4	1.029	1_	0	3	.004	1_	002	15
188			min	-808.177	3	.344	15	.037	15	0	1	0	15	008	4
189		19	max		1	1.424	4	1.029	1	0	3	.005	1	002	15
190			min	-807.892	3	.336	15	.037	15	0	1	0	15	008	4
191	<u>M3</u>	1	max		2	7.981	4	.081	1	0	3	0	1_	.008	4
192			min	-399.792	3	1.877	15	.003	15	0	1	0	15	.002	15
193		2	max		2	7.211	4	.081	1	0	3	0	1	.005	4
194			min		3	1.696	15	.003	15	0	1	0	15	.001	15
195		3	max	274.009	2	6.441	4	.081	1	0	3	0	1	.002	2
196			min	-400.047	3	1.515	15	.003	15	0	1	0	15	0	12
197		4	max	273.838	2	5.671	4	.081	1	0	3	0	1	0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
198			min	-400.175	3	1.334	15	.003	15	0	1	0	15	001	3
199		5	max	273.668	2	4.901	4	.081	1	0	3	0	1	0	15
200			min	-400.303	3	1.153	15	.003	15	0	1	0	15	003	4
201		6	max	273.498	2	4.131	4	.081	1	0	3	0	1	001	15
202			min	-400.431	3	.972	15	.003	15	0	1	0	15	005	4
203		7	max	273.327	2	3.361	4	.081	1	0	3	0	1	001	15
204			min	-400.558	3	.791	15	.003	15	0	1	0	15	006	4
205		8	max	273.157	2	2.591	4	.081	1	0	3	0	1	002	15
206			min	-400.686	3	.61	15	.003	15	0	1	0	15	008	4
207		9	max	272.987	2	1.821	4	.081	1	0	3	0	1	002	15
208			min	-400.814	3	.429	15	.003	15	0	1	0	15	009	4
209		10	max	272.816	2	1.051	4	.081	1	0	3	0	1	002	15
210		10	min	-400.942	3	.248	15	.003	15	0	1	0	15	009	4
211		11	max	272.646	2	.324	2	.081	1	0	3	0	1	002	15
212			min	-401.069	3	.019	12	.003	15	0	1	0	15	009	4
213		12	max	272.476	2	114	15	.081	1	0	3	0	1	002	15
214		12	min	-401.197	3	489	4	.003	15	0	1	0	15	002	4
215		13		272.305	2	295	15	.081	1	0	3	0	1	002	15
216		13	max	-401.325	3	-1.259	4	.003	15	0	1	0	15	002	4
		14	min								-				
217 218		14	max	272.135	2	476	15	.081	1	0	3	0	15	002	15
		4.5	min	-401.453	3	-2.029	4	.003	15	0		0		008	4
219		15	max	271.965	2	657	15	.081	1	0	3	0	1	002	15
220		4.0	min	-401.581	3	-2.799	4	.003	15	0	1	0	15	007	4
221		16	max	271.794	2	838	15	.081	1	0	3	0	1_	001	15
222		47	min	-401.708	3	-3.569	4	.003	15	0	1	0	15	006	4
223		17	max	271.624	2	-1.019	15	.081	1	0	3	0	1_	001	15
224		1.0	min	-401.836	3	-4.339	4	.003	15	0	1	0	15	004	4
225		18	max	271.453	2	-1.2	15	.081	1	0	3	0	1_	0	15
226			min	-401.964	3	-5.109	4	.003	15	0	1	0	15	002	4
227		19	max	271.283	2	-1.381	15	.081	1	0	3	0	1_	0	1
228			min	-402.092	3	-5.879	4	.003	15	0	1	0	15	0	1
229	<u>M4</u>	1		1159.096	1	0	1	392	15	0	1	0	1	0	1
230			min	-151.133	3	0	1	-10.779	1	0	1	0	15	0	1
231		2		1159.267	1_	0	1	392	15	0	1	0	12	0	1
232			min	-151.006	3	0	1	-10.779	1	0	1	0	1	0	1
233		3	max	1159.437	_1_	0	1	392	15	0	1	0	15	0	1
234			min	-150.878	3	0	1	-10.779	1	0	1	002	1_	0	1
235		4	max	1159.607	1	0	1	392	15	0	1	0	15	0	1
236			min	-150.75	3	0	1	-10.779	1	0	1	003	1	0	1
237		5	max	1159.778	1	0	1	392	15	0	1	0	15	0	1
238			min	-150.622	3	0	1	-10.779	1	0	1	004	1	0	1
239		6	max	1159.948	1	0	1	392	15	0	1	0	15	0	1
240			min	-150.495	3	0	1	-10.779	1	0	1	006	1	0	1
241		7	max	1160.118	1	0	1	392	15	0	1	0	15	0	1
242			min	-150.367	3	0	1	-10.779	1	0	1	007	1	0	1
243		8	max	1160.289	1	0	1	392	15	0	1	0	15	0	1
244				-150.239		0	1	-10.779	1	0	1	008	1	0	1
245		9	max	1160.459	1	0	1	392	15	0	1	0	15	0	1
246				-150.111	3	0	1	-10.779	1	0	1	009	1	0	1
247		10		1160.629	1	0	1	392	15	0	1	0	15	0	1
248				-149.984		0	1	-10.779	1	0	1	011	1	0	1
249		11	max		1	0	1	392	15	0	1	0	15	0	1
250			min		3	0	1	-10.779	1	0	1	012	1	0	1
251		12		1160.97	1	0	1	392	15	0	1	0	15	0	1
252		·-	min		3	0	1	-10.779	1	0	1	013	1	0	1
253		13		1161.14	1	0	1	392	15	0	1	0	15	0	1
254			min	-149.6	3	0	1	-10.779	1	0	1	014	1	0	1
		_					_			_					

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
255		14	max	1161.311	1	0	1	392	15	0	1	0	15	0	1
256				-149.473	3	0	1	-10.779	1	0	1	016	1	0	1
257		15		1161.481	_1_	0	1	392	15	0	_1_	0	15	0	1
258				-149.345	3	0	1	-10.779	1	0	1	017	1	0	1
259		16		1161.652	_1_	0	1	392	15	0	_1_	0	15	0	1
260				-149.217	3	0	1	-10.779	1	0	1	018	1	0	1
261		17		1161.822	_1_	0	1	392	15	0	_1_	0	15	0	1
262				-149.089	3	0	1	-10.779	1	0	1	019	1	0	1
263		18		1161.992	_1_	0	1	392	15	0	1	0	15	0	1
264				-148.962	3	0	1	-10.779	1	0	1	02	1	0	1
265		19		1162.163	_1_	0	1	392	15	0	_1_	0	15	0	1
266			_	-148.834	3_	0	1	-10.779	1_	0	1_	022	1	0	1
267	<u>M6</u>	1		3286.947	_1_	2.255	2	0	1_	0	_1_	0	1	0	1
268			min	-2675.782	3	.309	12	0	1	0	1	0	1	0	1
269		2		3287.326	_1_	2.229	2	0	1	0	1	0	1	0	12
270		_		-2675.497	3	.296	12	0	1	0	1	0	1	0	2
271		3		3287.705	_1_	2.203	2	0	1	0	1	0	1	0	12
272		_		-2675.213	3	.283	12	0	1_	0	1	0	1	001	2
273		4		3288.084	_1_	2.177	2	0	1	0	1	0	1	0	12
274		_	min		3	.27	12	0	1_	0	1	0	1	002	2
275		5		3288.464	1_	2.151	2	0	1	0	_1_	0	1	0	12
276			min	-2674.644	3	.257	12	0	1	0	1	0	1	002	2
277		6		3288.843	_1_	2.125	2	0	1	0	1	0	1	0	12
278		_	min	-2674.359	3	.244	12	0	1	0	1	0	1	003	2
279		7		3289.222	1_	2.099	2	0	1	0	1	0	1	0	12
280			min	-2674.075	3	.231	12	0	1_	0	1	0	1	003	2
281		8		3289.601	_1_	2.073	2	0	1	0	_1_	0	1	0	12
282				-2673.791	3_	.218	12	0	1	0	1	0	1	004	2
283		9		3289.981	_1_	2.047	2	0	1	0	1	0	1	0	12
284		4.0		-2673.506	3	.205	12	0	1	0	1	0	1	004	2
285		10	max		1_	2.021	2	0	1	0	_1_	0	1	0	12
286		4.4	min	-2673.222	3	.192	12	0	1	0	1	0	1	005	2
287		11		3290.739	1_	1.995	2	0	1	0	1	0	1	0	12
288		4.0	min	-2672.937	3	.179	12	0	1_	0	1_	0	1	005	2
289		12		3291.118	1	1.969	2	0	1	0	1_	0	1	0	12
290		40	min	-2672.653	3	.166	12	0	1	0	1	0	1	006	2
291		13		3291.498	1_	1.943	2	0	1	0	1	0	1	0	12
292		4.4	min	-2672.368	3	.153	12	0	1_	0	1_	0	1	006	2
293		14		3291.877	1	1.917	2	0	1	0	1	0	1	0	12
294		15		-2672.084	3	.14	12	0		0	_	0		007	12
295		15		3292.256 -2671.799	1_2	1.891	12	0	1	0	<u>1</u> 1	0	1	0	12
296 297		16	min	3292.636	3	.127 1.865		0	1	0	1	0	1	007	12
298		10		-2671.515	<u>1</u> 3	.114	12	0	1	0	1	0	1	008	2
299		17		3293.015	<u>ာ</u> 1	1.839	2	0	1	0	1	0	1	008 0	12
300		17		-2671.231	3	.101	12	0	1	0	1	0	1	008	2
301		18	_	3293.394	<u>ა</u> 1	1.813	2	0	1	0	1	0	1	006 0	12
302		10		-2670.946	3	.083	3	0	1	0	1	0	1	009	2
303		19		3293.773	_ <u></u>	1.787	2	0	1	0	1	0	1	009 0	12
304		13		-2670.662	3	.064	3	0	1	0	1	0	1	009	2
305	M7	1		1200.124	2	8.022	4	0	1	0	1	0	1	.009	2
306	IVI /			-1249.738	3	1.882	15	0	1	0	1	0	1	0	12
307		2		1199.954	2	7.252	4	0	1	0	1	0	1	.007	2
308				-1249.866	3	1.701	15	0	1	0	1	0	1	0	3
309		3		1199.783	2	6.482	4	0	1	0	1	0	1	.004	2
310		3		-1249.993	3	1.52	15	0	1	0	1	0	1	002	3
311		4		1199.613	2	5.712	4	0	1	0	1	0	1	.002	2
UII		_ +	παλ	1133.013		J.1 1Z	+	U		U				.002	

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1250.121	3	1.339	15	0	1	0	1	0	1	003	3
313		5	max	1199.443	2	4.942	4	0	1	0	_1_	0	_1_	0	2
314			min	-1250.249	3	1.158	15	0	1	0	1	0	1	004	3
315		6	max	1199.272	2	4.172	4	0	1	0	1	0	1	001	15
316			min	-1250.377	3	.977	15	0	1	0	1	0	1	005	3
317		7	max		2	3.402	4	0	1	0	_1_	0	1	001	15
318			min	-1250.504	3	.796	15	0	1	0	1	0	1	006	4
319		8	max	1198.932	2	2.632	4	0	1	0	1	0	1	002	15
320			min	-1250.632	3	.615	15	0	1	0	1	0	1	007	4
321		9	max	1198.761	2	1.862	4	0	1	0	_1_	0	1	002	15
322			min	-1250.76	3	.417	12	0	1	0	1	0	1	008	4
323		10	max	1198.591	2	1.232	2	0	1	0	_1_	0	_1_	002	15
324			min	-1250.888	3	.117	12	0	1	0	1	0	1	009	4
325		11	max	1198.421	2	.632	2	0	1	0	1	0	1	002	15
326			min	-1251.015	3	304	3	0	1	0	1	0	1	009	4
327		12	max	1198.25	2	.032	2	0	1	0	1	0	1	002	15
328			min	-1251.143	3	754	3	0	1	0	1	0	1	009	4
329		13	max	1198.08	2	29	15	0	1	0	1	0	1	002	15
330			min	-1251.271	3	-1.218	4	0	1	0	1	0	1	009	4
331		14	max	1197.91	2	471	15	0	1	0	1	0	1	002	15
332			min	-1251.399	3	-1.988	4	0	1	0	1	0	1	008	4
333		15	max	1197.739	2	652	15	0	1	0	1	0	1	002	15
334			min	-1251.527	3	-2.758	4	0	1	0	1	0	1	007	4
335		16	max	1197.569	2	833	15	0	1	0	1	0	1	001	15
336			min	-1251.654	3	-3.528	4	0	1	0	1	0	1	006	4
337		17	max	1197.399	2	-1.014	15	0	1	0	1	0	1	001	15
338			min	-1251.782	3	-4.298	4	0	1	0	1	0	1	004	4
339		18	max	1197.228	2	-1.195	15	0	1	0	1	0	1	0	15
340			min	-1251.91	3	-5.068	4	0	1	0	1	0	1	002	4
341		19	max	1197.058	2	-1.376	15	0	1	0	1	0	1	0	1
342			min	-1252.038	3	-5.838	4	0	1	0	1	0	1	0	1
343	M8	1	max	3241.829	1	0	1	0	1	0	1	0	1	0	1
344			min	-558.283	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3241.999	1	0	1	0	1	0	1	0	1	0	1
346			min	-558.156	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3242.169	1	0	1	0	1	0	1	0	1	0	1
348			min	-558.028	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3242.34	1	0	1	0	1	0	1	0	1	0	1
350			min	-557.9	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3242.51	1	0	1	0	1	0	1	0	1	0	1
352			min	-557.772	3	0	1	0	1	0	1	0	1	0	1
353		6	max		1	0	1	0	1	0	1	0	1	0	1
354			min	-557.645	3	0	1	0	1	0	1	0	1	0	1
355		7		3242.851	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		3243.021	1	0	1	0	1	0	1	0	1	0	1
358			1	-557.389	3	0	1	0	1	0	1	0	1	0	1
359		9		3243.191	1	0	1	0	1	0	1	0	1	0	1
360				-557.261	3	0	1	0	1	0	1	0	1	0	1
361		10		3243.362	1	0	1	0	1	0	1	0	1	0	1
362		_ · ·		-557.134	3	0	1	0	1	0	1	0	1	0	1
363		11		3243.532	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3243.702	1	0	1	0	1	0	1	0	1	0	1
366		14	min		3	0	1	0	1	0	1	0	1	0	1
367		13		3243.873		0	1	0	1	0	1	0	1	0	1
368		'	min		3	0	1	0	1	0	1	0	1	0	1
000			111111	000.70						<u> </u>		•			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	11 1	LC		LC
369		14		3244.043	1	0	1	0	1	0	1	0	1	0	1
370 371		15	min	-556.623 3244.213	<u>3</u> 1	0	1	0	1	0	<u>1</u> 1	0	1	0	1
372		15		-556.495	3	0	1	0	1	0	1	0	1	0	1
373		16		3244.384	<u> </u>	0	1	0	1	0	1	0	1	0	1
374		10		-556.367	3	0	1	0	1	0	1	0	1	0	1
375		17		3244.554	1	0	1	0	1	0	1	0	1	0	1
376			min	-556.239	3	0	1	0	1	0	1	0	1	0	1
377		18		3244.724	1	0	1	0	1	0	1	0	1	0	1
378			min	-556.112	3	0	1	0	1	0	1	0	1	0	1
379		19		3244.895	1	0	1	0	1	0	1	0	1	0	1
380			min	-555.984	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max	1018.373	1	2.025	4	037	15	0	1	0	1	0	1
382			min	-813.012	3	.477	15	-1.029	1	0	3	0	3	0	1
383		2			1	1.992	4	037	15	0	1	0	15	0	15
384				-812.728	3	.469	15	-1.029	1	0	3	0	1	0	4
385		3	max	1019.132	_1_	1.959	4	037	15	0	1	0	15	0	15
386			min	-812.443	3	.462	15	-1.029	1	0	3	0	1	001	4
387		4		1019.511	_1_	1.925	4	037	15	0	_1_	0	15	0	15
388			min	-812.159	3	.454	15	-1.029	1	0	3	0	1_	002	4
389		5	max	1019.89	_1_	1.892	4	037	15	0	1	0	15	0	15
390			min	-811.874	3	.446	15	-1.029	1_	0	3	001	1_	002	4
391		6		1020.269	_1_	1.859	4	037	15	0	1	0	15	0	15
392		_	min	-811.59	3	.438	15	-1.029	1_	0	3	001	1_	002	4
393		7			1_	1.825	4	037	15	0	1_	0	15	0	15
394				-811.306	3_	.43	15	-1.029	1_	0	3	002	1_	003	4
395		8			1	1.792	4	037	15	0	1	0	15	0	15
396			min	-811.021	3	.422	<u>15</u>	-1.029	1_	0	<u>3</u>	002	1 15	003	4
397		9		1021.407	<u>1</u> 3	1.758	<u>4</u> 15	037	1 <u>5</u>	0	3	0	15	0	15
398 399		10	min max	-810.737 1021.787	<u>ာ</u> 1	.414 1.725	4	-1.029 037	15	0	<u>ာ</u> 1	002 0	15	004 001	15
400		10	min	-810.452	3	.407	15	-1.029	1	0	3	002	1	004	4
401		11		1022.166	1	1.692	4	037	15	0	1	0	15	004	15
402				-810.168	3	.399	15	-1.029	1	0	3	003	1	005	4
403		12			1	1.658	4	037	15	0	1	0	15	001	15
404		'-	min	-809.883	3	.391	15	-1.029	1	0	3	003	1	005	4
405		13		1022.924	1	1.625	4	037	15	0	1	0	15	001	15
406			min	-809.599	3	.383	15	-1.029	1	0	3	003	1	006	4
407		14	max	1023.304	1	1.591	4	037	15	0	1	0	15	001	15
408				-809.314	3	.375	15	-1.029	1	0	3	003	1	006	4
409		15	max	1023.683	1	1.558	4	037	15	0	1	0	15	002	15
410			min	-809.03	3	.367	15	-1.029	1	0	3	004	1	006	4
411		16		1024.062	1_	1.525	4	037	15	0	1	0	15	002	15
412				-808.746	3	.36	15	-1.029	1	0	3	004	1	007	4
413		17		1024.441	1_	1.491	4	037	15	0	1	0	15	002	15
414				-808.461	3	.352	15	-1.029	1_	0	3	004	1_	007	4
415		18		1024.821	1_	1.458	4	037	15	0	1_	0	15	002	15
416		10		-808.177	3	.344	15	-1.029	1_	0	3	004	1_	008	4
417		19		1025.2	1_	1.424	4	037	15	0	1_	0	15	002	15
418	N/4.4	4		-807.892	3	.336	15	-1.029	1_	0	3	005	1_	008	4
419	M11	1		274.349	2	7.981	4	003	15	0	1	0	15	.008	4
420		2		-399.792	3	1.877	<u>15</u>	081	1_	0	3	0	1_	.002	15
421		2		274.179	2	7.211	4	003	15	0	1	0	1 <u>5</u>	.005	4
422 423		2		-399.92	3	1.696	15	081	1 15	0	<u>3</u>	0	1 15	.001	15
424		3	max	274.009 -400.047	3	6.441 1.515	<u>4</u> 15	003 081	1	0	3	0	1	.002	12
425		4		273.838	2	5.671	4	003	15	0	1	0	15	0	2
.20		т_	mux	0.000		0.071	т_	.000							

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

426		Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]		_			LC
428			_										_	_		
439			5													
430														_		_
431			6										_			
433			_								_		_	_		
833			7													
434			_	min						_				_		_
438			8													
A36											_		_			
438			9													
A38														_		
439			10													
A440														_		
441			11													
A442											_		·	_		
444			12													
Head Mar Mar	$\overline{}$									_				_		_
445			13													
446				min							_					
447			14	max							0		0			
Heat				min		3_				•	0	3	0	_		
449			15	max							0		0			15
450				min	-401.581	3					0		0	_		_
451			16	max		2		15	003	15	0	_1_	0	15	001	15
452	450			min		3	-3.569		081	1	0	3	0	1	006	4
453	451		17	max	271.624	2		15	003	15	0	1_	0	15	001	15
454	452			min	-401.836	3	-4.339	4	081	1	0	3	0	1	004	4
455	453		18	max	271.453	2	-1.2	15	003	15	0	1	0	15	0	15
456	454			min	-401.964	3	-5.109	4	081	1	0	3	0	1	002	4
457 M12	455		19	max	271.283	2	-1.381	15	003	15	0	1	0	15	0	1
458	456			min	-402.092	3	-5.879	4	081	1	0	3	0	1	0	1
459	457	M12	1	max	1159.096	1	0	1	10.779	1	0	1	0	15	0	1
460	458			min	-151.133	3	0	1	.392	15	0	1	0	1	0	1
461 3 max 1159.437 1 0 1 10.779 1 0 1 .002 1 0 1 462 min -150.878 3 0 1 .392 15 0 1 0 15 0 1 463 4 max 1159.607 1 0 1 10.03 1 0 1 464 min -150.75 3 0 1 .392 15 0 1 0 1 465 5 max 1159.778 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 .004 1 .004 1 .004 1 .004 1 .004	459		2	max	1159.267	1	0	1	10.779	1	0	1	0	1	0	1
462 min -150.878 3 0 1 .392 15 0 1 0 15 0 1 463 4 max 1159.607 1 0 1 10.779 1 0 1 .003 1 0 1 464 min -150.75 3 0 1 .392 15 0 1 0 15 0 1 465 5 max 1159.778 1 0 1 10.779 1 0 1 .004 1 0 1 466 min -150.622 3 0 1 .392 15 0 1 0 1 0 1 467 6 max 1159.948 1 0 1 10.779 1 0 1 .006 1 0 1 468 min -150.495 3 0 1 .392 15 0 1 0 1 0 1 469 7 max 1160.118 1 0 1 10.779 1 0 1 .007 1 0 1 470 min -150.239 3 0 1 .392 15 0 1 0 1 .	460			min	-151.006	3	0	1	.392	15	0	1	0	12	0	1
463 4 max 1159.607 1 0 1 10.779 1 0 1 .003 1 0 1 464 min -150.75 3 0 1 .392 15 0 1 0 1 0 1 465 0 1 0 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 0 1 .004 1 .004 1 .004 1 .006 1 0 1 .006 1 0 1 .006 1 0 1 .006 1 0 1 .006 1 0 1 .007 1 0 1 .007 1 .00 1 .007	461		3	max	1159.437	1	0	1	10.779	1	0	1	.002	1	0	1
464 min -150.75 3 0 1 .392 15 0 1	462			min	-150.878	3	0	1	.392	15	0	1	0	15	0	1
465 5 max 1159.778 1 0 1 10.779 1 0 1 .004 1 0 1 466 min -150.622 3 0 1 .392 15 0 1 0 1 0 1 467 6 max 1159.948 1 0 1 10.779 1 0 1 .006 1 0 1 468 min -150.495 3 0 1 .392 15 0 1 0 1 469 7 max 1160.118 1 0 1 10.779 1 0 1 .007 1 0 1 470 min -150.367 3 0 1 .392 15 0 1 0 1 474 1 0 1 .007 1 0 1 .007 1 0 1 .008 1 0 1 .472 .008 1	463		4	max	1159.607	1	0	1	10.779	1	0	1	.003	1	0	1
466 min -150.622 3 0 1 .392 15 0 1 0 15 0 1 467 6 max 1159.948 1 0 1 10.779 1 0 1 .006 1 0 1 468 min -150.495 3 0 1 .392 15 0 1 0 1 469 7 max 1160.118 1 0 1 10.779 1 0 1 .007 1 0 1 470 min -150.367 3 0 1 .392 15 0 1 0 1 .007 1 0 1 471 8 max 1160.289 1 0 1 10.779 1 0 1 .008 1 0 1 472 min -150.239 3 0 1 .392 15<	464			min	-150.75	3	0	1	.392	15	0	1	0	15	0	1
467 6 max 1159.948 1 0 1 10.779 1 0 1 .006 1 0 1 .468 min -150.495 3 0 1 .392 15 0 1 0 1 0 1 .007 1 0 1 .469 7 max 1160.118 1 0 1 10.779 1 0 1 .007 1 0 1 .470 1 0 1 .007 1 0 1 .470 1 0 1 .007 1 0 1 .470 1 0 1 .007 1 0 1 .471 1 0 1 .007 1 0 1 .471 1 0 1 .008 1 .008 1 .008 1 .008 1 .008 1 .008 1 .008 1 .008 1 .008	465		5	max	1159.778	1	0	1	10.779	1	0	1	.004	1	0	1
468 min -150.495 3 0 1 .392 15 0 1 0 15 0 1 469 7 max 1160.118 1 0 1 10.779 1 0 1 .007 1 0 1 470 min -150.367 3 0 1 .392 15 0 1 0 15 0 1 471 8 max 1160.289 1 0 1 10.779 1 0 1 .008 1 0 1 472 min -150.239 3 0 1 .392 15 0 1 0 1 .008 1 0 1 473 9 max 1160.459 1 0 1 10.779 1 0 1 .009 1 0 1 474 min -150.111 3 0 1 <td>466</td> <td></td> <td></td> <td>min</td> <td>-150.622</td> <td>3</td> <td>0</td> <td>1</td> <td>.392</td> <td>15</td> <td>0</td> <td>1</td> <td>0</td> <td>15</td> <td>0</td> <td>1</td>	466			min	-150.622	3	0	1	.392	15	0	1	0	15	0	1
469 7 max 1160.118 1 0 1 10.779 1 0 1 .007 1 0 1 470 min -150.367 3 0 1 .392 15 0 1 0 1 0 1 471 8 max 1160.289 1 0 1 10.779 1 0 1 .008 1 0 1 472 min -150.239 3 0 1 .392 15 0 1 0 1 473 9 max 1160.459 1 0 1 10.779 1 0 1 .009 1 0 1 473 9 max 1160.459 1 0 1 .009 1 0 1 474 min -150.111 3 0 1 .392 15 0 1 0 1 0 1 475 10 max 1160.629 1 <t< td=""><td>467</td><td></td><td>6</td><td>max</td><td>1159.948</td><td>1</td><td>0</td><td>1</td><td>10.779</td><td>1</td><td>0</td><td>1</td><td>.006</td><td>1</td><td>0</td><td>1</td></t<>	467		6	max	1159.948	1	0	1	10.779	1	0	1	.006	1	0	1
469 7 max 1160.118 1 0 1 10.779 1 0 1 .007 1 0 1 470 min -150.367 3 0 1 .392 15 0 1 0 1 0 1 471 8 max 1160.289 1 0 1 10.779 1 0 1 .008 1 0 1 472 min -150.239 3 0 1 .392 15 0 1 0 1 473 9 max 1160.459 1 0 1 10.779 1 0 1 .009 1 0 1 473 9 max 1160.459 1 0 1 .009 1 0 1 474 min -150.111 3 0 1 .392 15 0 1 0 1 0 1 475 10 max 1160.629 1 <t< td=""><td>468</td><td></td><td></td><td>min</td><td>-150.495</td><td>3</td><td>0</td><td>1</td><td>.392</td><td>15</td><td>0</td><td>1</td><td>0</td><td>15</td><td>0</td><td>1</td></t<>	468			min	-150.495	3	0	1	.392	15	0	1	0	15	0	1
470 min -150.367 3 0 1 .392 15 0 1 0 15 0 1 471 8 max 1160.289 1 0 1 10.779 1 0 1 .008 1 0 1 472 min -150.239 3 0 1 .392 15 0 1 0 15 0 1 473 9 max 1160.459 1 0 1 10.779 1 0 1 .009 1 0 1 474 min -150.111 3 0 1 .392 15 0 1 0 15 0 1 475 10 max 1160.629 1 0 1 10.779 1 0 1 .011 1 0 1 476 min -149.984 3 0 1 .392 15 0 1 0 15 0 1 477 11 max 1160.8 1 0 1 10.779 1 0 1 .012 1 0 1 479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1	469		7	max	1160.118	1	0	1	10.779	1	0	1	.007	1	0	1
471 8 max 1160.289 1 0 1 10.779 1 0 1 .008 1 0 1 472 min -150.239 3 0 1 .392 15 0 1 0 15 0 1 473 9 max 1160.459 1 0 1 10.779 1 0 1 .009 1 0 1 474 min -150.111 3 0 1 .392 15 0 1 0 1 0 1 475 10 max 1160.629 1 0 1 10.779 1 0 1 .011 1 0 1 476 min -149.984 3 0 1 .392 15 0 1 0 1 47 1 0 1 10.779 1 0 1 .012 1 0 1 47 1 0 1 .392 15 0 1 0						3	0	1		15	0	1	0	15	0	1
473 9 max 1160.459 1 0 1 10.779 1 0 1 .009 1 0 1 474 min -150.111 3 0 1 .392 15 0 1 0 1 .011 1 0 1 475 10 max 1160.629 1 0 1 10.779 1 0 1 .011 1 0 1 476 min -149.984 3 0 1 .392 15 0 1 0 15 0 1 477 11 max 1160.8 1 0 1 10.779 1 0 1 .012 1 0 1 478 min -149.856 3 0 1 .392 15 0 1 0 15 0 1 479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1 480 min -149.728 3 0 1 .392 15 0 1 0 15 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1	471		8			1		1		1	0	1	.008		0	1
473 9 max 1160.459 1 0 1 10.779 1 0 1 .009 1 0 1 474 min -150.111 3 0 1 .392 15 0 1 0 1 .011 1 0 1 475 10 max 1160.629 1 0 1 10.779 1 0 1 .011 1 0 1 476 min -149.984 3 0 1 .392 15 0 1 0 15 0 1 477 11 max 1160.8 1 0 1 10.779 1 0 1 .012 1 0 1 478 min -149.856 3 0 1 .392 15 0 1 0 15 0 1 479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1 480 min -149.728 3 0 1 .392 15 0 1 0 15 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1	472			min	-150.239	3	0	1	.392	15	0	1	0	15	0	1
474 min -150.111 3 0 1 .392 15 0 1 0 15 0 1 475 10 max 1160.629 1 0 1 10.779 1 0 1 .011 1 0 1 476 min -149.984 3 0 1 .392 15 0 1 0 15 0 1 477 11 max 1160.8 1 0 1 10.779 1 0 1 .012 1 0 1 478 min -149.856 3 0 1 .392 15 0 1 0 15 0 1 479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1 480 min -149.728 3 0 1 .392 15 0 1 0 15 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1			9					1			0	1	.009		0	1
475 10 max 1160.629 1 0 1 10.779 1 0 1 .011 1 0 1 476 min -149.984 3 0 1 .392 15 0 1 0 15 0 1 477 11 max 1160.8 1 0 1 10.779 1 0 1 .012 1 0 1 478 min -149.856 3 0 1 .392 15 0 1 0 15 0 1 479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1 480 min -149.728 3 0 1 .392 15 0 1 0 15 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1						3	0	1		15	0	1	0	15	0	1
476 min -149.984 3 0 1 .392 15 0 1 0 15 0 1 477 11 max 1160.8 1 0 1 10.779 1 0 1 .012 1 0 1 478 min -149.856 3 0 1 .392 15 0 1 0 1 479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1 480 min -149.728 3 0 1 .392 15 0 1 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1			10				0	1			0	1	.011		0	1
477 11 max 1160.8 1 0 1 10.779 1 0 1 .012 1 0 1 478 min -149.856 3 0 1 .392 15 0 1 0 15 0 1 479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1 480 min -149.728 3 0 1 .392 15 0 1 0 15 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1								1				1				1
478 min -149.856 3 0 1 .392 15 0 1 0 15 0 1 479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1 480 min -149.728 3 0 1 .392 15 0 1 0 15 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1			11					1			0	1	.012		0	1
479 12 max 1160.97 1 0 1 10.779 1 0 1 .013 1 0 1 480 min -149.728 3 0 1 .392 15 0 1 0 15 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1																1
480 min -149.728 3 0 1 .392 15 0 1 0 15 0 1 481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1			12					•								
481 13 max 1161.14 1 0 1 10.779 1 0 1 .014 1 0 1											_					_
			13										_		_	
	482			min	-149.6	3	0	_	.392	15	0			15	0	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec	I	Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14		1161.311	_1_	0	1	10.779	1	0	_1_	.016	_1_	0	1
484			min	-149.473	3	0	1	.392	15	0	1_	0	15	0	1
485		15	max	1161.481	<u>1</u>	0	1	10.779	1	0	<u>1</u>	.017	<u>1</u>	0	1
486			min	-149.345	3	0	1	.392	15	0	1	0	15	0	1
487		16	max	1161.652	1	0	1	10.779	1	0	1	.018	1	0	1
488			min	-149.217	3	0	1	.392	15	0	1	0	15	0	1
489		17	max	1161.822	1	0	1	10.779	1	0	1	.019	1	0	1
490			min	-149.089	3	0	1	.392	15	0	1	0	15	0	1
491		18	max	1161.992	1	0	1	10.779	1	0	1	.02	1	0	1
492			min	-148.962	3	0	1	.392	15	0	1	0	15	0	1
493		19		1162.163	1	0	1	10.779	1	0	1	.022	1	0	1
494			min	-148.834	3	0	1	.392	15	0	1	0	15	0	1
495	M1	1	max	169.946	1	458.559	3	-4.031	15	0	1	.263	1	0	3
496			min	6.185	15	-462.578	1	-110.332	1	0	3	.01	15	012	1
497		2	max	170.435	1	457.55	3	-4.031	15	0	1	.205	1	.232	1
498			min	6.332	15	-463.924	1	-110.332	1	0	3	.007	15	242	3
499		3	max	236.489	3	511.303	1	-3.994	15	0	3	.147	1	.466	1
500		-	min	-149.207	2	-325.323	3	-109.562	1	0	1	.005	15	473	3
		1													1
501		4	max	236.857	3	509.957	1	-3.994	15	0	3	.089	1_	.196	
502		_	min	-148.717	2	-326.333	3	-109.562	1_	0	1_	.003	15	301	3
503		5	max	237.224	3_	508.611	1	-3.994	15	0	3	.031	1_	003	15
504			min	-148.227	2	-327.342	3	-109.562	1_	0	1	.001	15	129	3
505		6	max	237.592	3	507.265	1	-3.994	15	0	3	0	15	.044	3
506			min	-147.737	2	-328.352	3	-109.562	1	0	1	026	1_	34	1
507		7	max	237.959	3_	505.919	1_	-3.994	15	0	3	003	15	.218	3
508			min	-147.247	2	-329.361	3	-109.562	1	0	1_	084	1_	608	1
509		8	max	238.327	3_	504.573	1	-3.994	15	0	3	005	<u>15</u>	.392	3
510			min	-146.757	2	-330.371	3	-109.562	1	0	1	142	1	874	1
511		9	max	248.769	3	30.705	2	-5.819	15	0	9	.083	1	.459	3
512			min	-77.396	2	.409	15	-159.457	1	0	3	.003	15	996	1
513		10	max	249.136	3	29.359	2	-5.819	15	0	9	0	15	.446	3
514			min	-76.906	2	.003	15	-159.457	1	0	3	001	1	-1.005	1
515		11	max	249.504	3	28.013	2	-5.819	15	0	9	003	15	.433	3
516			min	-76.416	2	-1.651	4	-159.457	1	0	3	085	1	-1.013	1
517		12	max	259.905	3	211.536	3	-3.896	15	0	1	.14	1	.377	3
518			min	-48.749	10	-536.872	1	-106.954	1	0	3	.005	15	894	1
519		13	max	260.272	3	210.527	3	-3.896	15	0	1	.084	1	.265	3
520			min	-48.34	10	-538.218	1	-106.954	1	0	3	.003	15	61	1
521		14	max	260.639	3	209.517	3	-3.896	15	0	1	.027	1	.155	3
522			min	-47.932	10	-539.564	1	-106.954	1	0	3	0	15	326	1
523		15		261.007	3	208.508	3	-3.896	15	0	1	001	15	.044	3
524			min	-47.524	10	-540.91	1	-106.954		0	3	029	1	041	1
525		16	max		3	207.498	3	-3.896	15	0	1	003	15	.245	1
526		10	min		10	-542.256	1	-106.954		0	3	086	1	065	3
527		17	max		3	206.488	3	-3.896	15	0	<u> </u>	005	15	.532	1
528		17	min		10	-543.603	1	-106.954		0	3	142	15 1	175	3
		40										142			
529		18	max		<u>15</u>	526.383	1	-4.285	15	0	3		<u>15</u>	.266	1
530		40	min	-170.626	1_	-176.01	3	-117.339		0	1	203	1_	087	3
531		19	max		<u>15</u>	525.037	1	-4.285	15	0	3	01	<u>15</u>	.007	3
532	NAT.	4	min		1_	-177.02	3	-117.339	1	0	1_	265	1_	011	1
533	M5	1	max		1_	1528.11	3	0	1	0		0	1_	.024	1
534			min	12.627	12	-1562.139	1	0	1	0	1	0	1_	0	3
535		2	max		1_	1527.1	3	0	1	0	1	0	1_	.849	1
536			min	12.872	12	-1563.485	1_	0	1	0	1	0	1_	806	3
537		3	max		3_	1572.462	1	0	1	0	_1_	0	_1_	1.636	1
538			min		2	-1053.598	3	0	1	0	1_	0	1_	-1.581	3
539		4	max	760.448	3	1571.116	1	0	1	0	1	0	_1_	.807	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

540	Member	Sec	min	Axial[lb]	LC 2	y Shear[lb]	LC 3	z Shear[lb]	LC 1	Torque[k-ft]	LC 1	y-y Mome	LC 1	z-z Mome	LC 3
541		5	max	760.815	3	1569.77	1	0	1	0	1	0	1	.009	9
542			min	-554.642	2	-1055.617	3	0	1	0	1	0	1	468	3
543		6	max	761.182	3	1568.424	1	0	1	0	1	0	1	.089	3
544			min	-554.152	2	-1056.626	3	0	1	0	1	0	1	85	1
545		7	max	761.55	3	1567.078	1	Ö	1	Ö	1	0	1	.647	3
546			min	-553.662	2	-1057.636	3	0	1	0	1	0	1	-1.677	1
547		8	max	761.917	3	1565.732	1	0	1	0	1	0	1	1.205	3
548			min	-553.172	2	-1058.646	3	0	1	0	1	0	1	-2.503	1
549		9	max	780.624	3	101.311	2	0	1	0	1	0	1	1.39	3
550			min	-411.318	2	.407	15	0	1	0	1	0	1	-2.831	1
551		10	max	780.992	3	99.965	2	0	1	0	1	0	1	1.344	3
552			min	-410.828	2	.001	15	0	1	0	1	0	1	-2.859	1
553		11	max	781.359	3	98.619	2	0	1	0	1	0	1	1.299	3
554			min	-410.338	2	-1.497	4	0	1	0	1	0	1	-2.887	1
555		12	max	800.148	3	674.381	3	0	1	0	1	0	1	1.139	3
556			min	-268.491	2	-1675.084	1	0	1	0	1	0	1	-2.572	1
557		13	max	800.515	3	673.371	3	0	1	0	1	0	1	.783	3
558				-268.001	2	-1676.43	1	0	1	0	1	0	1	-1.688	1
559		14	max	800.883	3	672.362	3	0	1	0	1	0	1	.428	3
560			min	-267.511	2	-1677.776	1	0	1	0	1	0	1	803	1
561		15	max	801.25	3	671.352	3	0	1	0	1	0	1	.127	2
562			min	-267.021	2	-1679.122	1	0	1	0	1	0	1	004	13
563		16	max		3	670.343	3	0	1	0	1	0	1	.969	1
564			min	-266.531	2	-1680.468	1	0	1	0	1	0	1	28	3
565		17	max	801.985	3	669.333	3	0	1	0	1	0	1	1.856	1
566			min	-266.042	2	-1681.814	1	0	1	0	1	0	1	634	3
567		18	max	-13.037	12	1777.719	1	0	1	0	1	0	1	.96	1
568				-366.205	1	-602.415	3	0	1	0	1	0	1	331	3
569		19	max	-12.792	12	1776.373	1	0	1	0	1	0	1	.022	1
570			min	-365.715	1	-603.424	3	0	1	0	1	0	1	013	3
571	M9	1	max	169.946	1	458.559	3	110.332	1	0	3	01	15	0	3
572			min	6.185	15	-462.578	1	4.031	15	0	1	263	1	012	1
573		2	max	170.435	1	457.55	3	110.332	1	0	3	007	15	.232	1
574			min	6.332	15	-463.924	1	4.031	15	0	1	205	1	242	3
575		3	max	236.489	3	511.303	1	109.562	1	0	1	005	15	.466	1
576			min	-149.207	2	-325.323	3	3.994	15	0	3	147	1	473	3
577		4	max	236.857	3	509.957	1	109.562	1	0	1	003	15	.196	1
578			min	-148.717	2	-326.333	3	3.994	15	0	3	089	1	301	3
579		5	max	237.224	3	508.611	1	109.562	1	0	1	001	15	003	15
580			min	-148.227	2	-327.342	3	3.994	15	0	3	031	1	129	3
581		6	max	237.592	3	507.265	1	109.562	1	0	1	.026	1	.044	3
582			min	-147.737	2	-328.352	3	3.994	15	0	3	0	15	34	1
583		7	max	237.959	3	505.919	1	109.562	1	0	1	.084	1	.218	3
584			min	-147.247	2	-329.361	3	3.994	15	0	3	.003	15	608	1
585		8		238.327	3	504.573	1_	109.562	1	0	1	.142	1	.392	3
586			min	-146.757	2	-330.371	3	3.994	15	0	3	.005	15	874	1
587		9		248.769	3	30.705	2	159.457	1	0	3	003	15	.459	3
588			min	-77.396	2	.409	15	5.819	15	0	9	083	1	996	1
589		10	max		3	29.359	2	159.457	1	0	3	.001	1	.446	3
590				-76.906	2	.003	15	5.819	15	0	9	0	15	-1.005	1
591		11	max	249.504	3	28.013	2	159.457	1	0	3	.085	1_	.433	3
592			min	-76.416	2	-1.651	4	5.819	15	0	9	.003	15	-1.013	1
593		12	max	259.905	3	211.536	3	106.954	1	0	3	005	15	.377	3
594			min	-48.749	10	-536.872	1	3.896	15	0	1	14	1	894	1
595		13	max		3	210.527	3	106.954	1	0	3	003	15	.265	3
596			min	-48.34	10	-538.218	1_	3.896	15	0	1_	084	1	61	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	260.639	3	209.517	3	106.954	1	0	3	0	15	.155	3
598			min	-47.932	10	-539.564	1	3.896	15	0	1	027	1	326	1
599		15	max	261.007	3	208.508	3	106.954	1	0	3	.029	1	.044	3
600			min	-47.524	10	-540.91	1	3.896	15	0	1	.001	15	041	1
601		16	max	261.374	3	207.498	3	106.954	1	0	3	.086	1	.245	1
602			min	-47.116	10	-542.256	1	3.896	15	0	1	.003	15	065	3
603		17	max	261.742	3	206.488	3	106.954	1	0	3	.142	1	.532	1
604			min	-46.707	10	-543.603	1	3.896	15	0	1	.005	15	175	3
605		18	max	-6.338	15	526.383	1	117.339	1	0	1	.203	1	.266	1
606			min	-170.626	1	-176.01	3	4.285	15	0	3	.007	15	087	3
607		19	max	-6.19	15	525.037	1	117.339	1	0	1	.265	1	.007	3
608			min	-170.136	1	-177.02	3	4.285	15	0	3	.01	15	011	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1	max	.001	1	1	1	.004	3 7.968e-3	1	NC	_1_	NC	1
2			min	0	15	01	3	001	10 -8.014e-4	3	NC	1	NC	1
3		2	max	0	1	.241	3	.046	1 9.209e-3	1	NC	5_	NC	2
4			min	0	15	134	1	.002	15 -8.193e-4	3	1003.94	3	5817.027	1
5		3	max	0	1	.445	3	.109	1 1.045e-2	1	NC	5	NC	3
6			min	0	15	319	1	.004	15 -8.372e-4	3	554.793	3	2364.41	1
7		4	max	0	1	.568	3	.164	1 1.169e-2	1	NC	5	NC	3
8			min	0	15	423	1	.006	15 -8.551e-4	3	436.341	3	1558.969	1
9		5	max	0	1	.596	3	.193	1 1.293e-2	1	NC	5	NC	3
10			min	0	15	433	1	.007	15 -8.73e-4	3	415.882	3	1324.131	1
11		6	max	0	1	.532	3	.187	1 1.417e-2	1	NC	5	NC	3
12			min	0	15	35	1	.007	15 -8.909e-4	3	465.299	3	1367.232	1
13		7	max	0	1	.394	3	.148	1 1.541e-2	1	NC	5	NC	3
14			min	0	15	195	1	.006	15 -9.088e-4	3	624.199	3	1734.265	1
15		8	max	0	1	.219	3	.087	1 1.665e-2	1	NC	4	NC	3
16			min	0	15	011	9	.003	15 -9.267e-4	3	1101.886	3	2968.84	1
17		9	max	0	1	.164	1	.027	1 1.789e-2	1	NC	4	NC	1
18			min	0	15	.005	15	003	10 -9.446e-4	3	3599.065	3	NC	1
19		10	max	0	1	.24	1	.014	3 1.913e-2	1	NC	3	NC	1
20			min	0	1	011	3	008	2 -9.625e-4	3	1795.246	1	NC	1
21		11	max	0	15	.164	1	.027	1 1.789e-2	1	NC	4	NC	1
22			min	0	1	.005	15	003	10 -9.446e-4	3	3599.065	3	NC	1
23		12	max	0	15	.219	3	.087	1 1.665e-2	1	NC	4	NC	3
24			min	0	1	011	9	.003	15 -9.267e-4	3	1101.886	3	2968.84	1
25		13	max	0	15	.394	3	.148	1 1.541e-2	1	NC	5	NC	3
26			min	0	1	195	1	.006	15 -9.088e-4	3	624.199	3	1734.265	1
27		14	max	0	15	.532	3	.187	1 1.417e-2	1	NC	5	NC	3
28			min	0	1	35	1	.007	15 -8.909e-4	3	465.299	3	1367.232	1
29		15	max	0	15	.596	3	.193	1 1.293e-2	1	NC	5	NC	3
30			min	0	1	433	1	.007	15 -8.73e-4	3	415.882	3	1324.131	1
31		16	max	0	15	.568	3	.164	1 1.169e-2	1	NC	5	NC	3
32			min	0	1	423	1	.006	15 -8.551e-4	3	436.341	3	1558.969	1
33		17	max	0	15	.445	3	.109	1 1.045e-2	1	NC	5	NC	3
34			min	0	1	319	1	.004	15 -8.372e-4	3	554.793	3	2364.41	1
35		18	max	0	15	.241	3	.046	1 9.209e-3	1	NC	5	NC	2
36			min	0	1	134	1	.002	15 -8.193e-4	3	1003.94	3	5817.027	1
37		19	max	0	15	.1	1	.004	3 7.968e-3	1	NC	1	NC	1
38			min	001	1	01	3	001	10 -8.014e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.135	3	.004	3 5.022e-3	1	NC	1	NC	1
40			min	0	15	326	1	001	10 -2.449e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

41		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC :		LC	(n) L/y Ratio			
44			2							1		_1_				
44											<u>-2.995e-3</u>					-
45			3								7.077e-3					
46					_			•						•		
48			4													
48				min		15						3		_		
49			5	max				3						<u>15</u>		3
50				min	0	15						3		_	1487.592	-
52	49		6	max	0	-		3				1_		15		3
Second Color	50			min	0	15	-1.316		.006	15	-5.182e-3	3	254.451	1	1502.326	1
Sa	51		7	max	0	1		3	.137	1	1.119e-2	1	NC	15	NC	3
Second Part	52			min	0	15	-1.237	1	.005	15	-5.729e-3	3	276.764	1	1875.873	1
	53		8	max	0	1	.556	3	.082	1	1.221e-2	1	NC	15	NC	3
Second Color	54			min	0	15	-1.104	1	.003	15	-6.276e-3	3	323.782	1	3169.618	1
Second	55		9	max	0	1	.45	3	.026			1	NC	15	NC	1
58						15						3	390.133			1
Second Color			10		0			3						5		1
11 max						1										1
60			11		0			3						15		1
61																
62			12									_		•		•
63					_											1
65			13			_										3
66			10													
66			14													
68			17													
68			15													
69 16 max 0 15 .7 3 .141 1 8.104e-3 1 NC 15 NC 3 70 min 0 1 -1.198 1 .005 15 -4.089e-3 3 289.172 1 RIST, 1 NC 3 72 min 0 1 982 1 .003 15 -3.542e-3 3 384.342 1 2933.235 1 73 18 max 0 15 .369 3 .032 1 6.049e-3 1 NC 5 NC 2 74 min 0 1 68 1 .001 15 -2.995e-3 3 712.977 1 8458.12 1 75 19 max 0 15 .138 3 .004 3 5.022e-3 1 NC 1 NC 1 76 min 0 1 32			13		_											
To min O 1 -1.198 1 .005 15 -4.089e-3 3 289.172 1 1813.71 1 17 max O 15 .566 3 .088 1 7.077e-3 1 NC 15 NC 3 3 3 3 3 3 3 3 3			16		_									_		-
T1			10													
The following color			17									_		•		-
73 18 max 0 15 .369 3 .032 1 6.049e-3 1 NC 5 NC 2 74 min 0 1 68 1 .001 15 -2.995e-3 3 712.977 1 8458.12 1 75 19 max 0 15 .135 3 .004 3 5.022e-3 1 NC 1 NC 1 76 min 0 1 326 1 001 10 2.49e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .281 3 .004 3 2.054e-3 3 NC 1 NC 1 78 min 0 1 326 1 001 10 -5.122e-3 1 NC 1 NC 2 80 min 0 1 -7.12 1<			17		_											1
74 min 0 1 68 1 .001 15 -2.995e-3 3 712.977 1 8458.12 1 75 19 max 0 15 .135 3 .004 3 5.022e-3 1 NC 1 NC 1 76 min 0 1 326 1 001 10 -2.449e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .138 3 .004 3 2.054e-3 3 NC 1 NC 1 78 min 0 1 326 1 001 10 -5.122e-3 1 NC 1 NC 1 79 2 max 0 15 .281 3 .032 1 2.516e-3 3 NC 5 NC 2 80 min 0 1 712 1			10													1
75 19 max 0 15 .135 3 .004 3 5.022e-3 1 NC 1 NC 1 76 min 0 1 326 1 001 10 -2.449e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .138 3 .004 3 2.054e-3 3 NC 1 NC 1 78 min 0 1 326 1 001 10 -5.122e-3 1 NC 1 NC 1 79 2 max 0 15 .281 3 .032 1 2.516e-3 3 NC 5 NC 2 80 min 0 1 712 1 .001 15 -6.176e-3 1 .652.821 1 8419.386 1 81 3 3 3 3 1 2.			18													
76 min 0 1 326 1 001 10 -2.449e-3 3 NC 1 NC 1 77 M15 1 max 0 15 .138 3 .004 3 2.054e-3 3 NC 1 NC 1 78 min 0 1 326 1 001 10 -5.122e-3 1 NC 1 NC 1 79 max 0 15 .281 3 .032 1 2.516e-3 3 NC 5 NC 2 80 min 0 1 -7.12 1 .001 15 -6.176e-3 1 652.821 1 8419.386 1 81 3 max 0 15 .405 3 .089 1 2.978e-3 3 NC 15 NC 3 82 min 0 1 -1.04 1 <td< td=""><td></td><td></td><td>40</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			40					_								
77 M15 1 max 0 15 .138 3 .004 3 2.054e-3 3 NC 1 NC 1 78 min 0 1 326 1 001 10 -5.122e-3 1 NC 1 NC 1 79 max 0 15 .281 3 .032 1 2.516e-3 3 NC 5 NC 2 80 min 0 1 712 1 .001 15 -6.176e-3 1 .652.821 1 8419.386 1 81 3 max 0 15 .405 3 .089 1 2.978e-3 3 NC 15 NC 3 82 min 0 1 -1.04 1 .003 15 -7.23e-3 1 352.657 1 2925.416 1 83 4 max 0 15 .495			19													
78 min 0 1 326 1 001 10 -5.122e-3 1 NC 1 NC 1 79 2 max 0 15 .281 3 .032 1 2.516e-3 3 NC 5 NC 2 80 min 0 1 712 1 .001 15 -6.176e-3 1 652.821 1 8419.386 1 81 3 max 0 15 .405 3 .089 1 2.978e-3 3 NC 15 NC 3 82 min 0 1 -1.04 1 .003 15 -7.23e-3 1 352.657 1 2925.416 1 83 4 max 0 15 .495 3 .142 1 3.44e-3 3 NC 15 NC 3 84 min 0 1 -1.272 1		N445				_										•
79 2 max 0 15 .281 3 .032 1 2.516e-3 3 NC 5 NC 2 80 min 0 1 712 1 .001 15 -6.176e-3 1 652.821 1 8419.386 1 81 3 max 0 15 .405 3 .089 1 2.978e-3 3 NC 15 NC 3 82 min 0 1 -1.04 1 .003 15 -7.23e-3 1 352.657 1 2925.416 1 83 4 max 0 15 .495 3 .142 1 3.44e-3 3 NC 15 NC 3 84 min 0 1 -1.272 1 .005 15 -8.284e-3 1 266.302 1 1809.995 1 85 5 max 0 15 .54		<u>IVI15</u>	1		_											
80 min 0 1 712 1 .001 15 -6.176e-3 1 652.821 1 8419.386 1 81 3 max 0 15 .405 3 .089 1 2.978e-3 3 NC 15 NC 3 82 min 0 1 -1.04 1 .003 15 -7.23e-3 1 352.657 1 2925.416 1 83 4 max 0 15 .495 3 .142 1 3.44e-3 3 NC 15 NC 3 84 min 0 1 -1.272 1 .005 15 -8.284e-3 1 266.302 1 1809.995 1 85 5 max 0 15 .544 3 .172 1 3.901e-3 3 9270.963 15 NC 3 86 min 0 1 -1.387					_							_				•
81 3 max 0 15 .405 3 .089 1 2.978e-3 3 NC 15 NC 3 82 min 0 1 -1.04 1 .003 15 -7.23e-3 1 352.657 1 2925.416 1 83 4 max 0 15 .495 3 .142 1 3.44e-3 3 NC 15 NC 3 84 min 0 1 -1.272 1 .005 15 -8.284e-3 1 266.302 1 1809.995 1 85 5 max 0 15 .544 3 .172 1 3.901e-3 3 9270.963 15 NC 3 86 min 0 1 -1.387 1 .006 15 -9.338e-3 1 237.399 1 1484.862 1 87 6 max 0 15			2													
82 min 0 1 -1.04 1 .003 15 -7.23e-3 1 352.657 1 2925.416 1 83 4 max 0 15 .495 3 .142 1 3.44e-3 3 NC 15 NC 3 84 min 0 1 -1.272 1 .005 15 -8.284e-3 1 266.302 1 1809.995 1 85 5 max 0 15 .544 3 .172 1 3.901e-3 3 9270.963 15 NC 3 86 min 0 1 -1.387 1 .006 15 -9.338e-3 1 237.399 1 1484.862 1 87 6 max 0 15 .553 3 .17 1 4.363e-3 3 9240.041 15 NC 3 88 min 0 1 -1.386 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>					_			•								•
83 4 max 0 15 .495 3 .142 1 3.44e-3 3 NC 15 NC 3 84 min 0 1 -1.272 1 .005 15 -8.284e-3 1 266.302 1 1809.995 1 85 5 max 0 15 .544 3 .172 1 3.901e-3 3 9270.963 15 NC 3 86 min 0 1 -1.387 1 .006 15 -9.338e-3 1 237.399 1 1484.862 1 87 6 max 0 15 .553 3 .17 1 4.363e-3 3 9240.041 15 NC 3 88 min 0 1 -1.386 1 .006 15 -1.039e-2 1 237.678 1 1499.502 1 89 7 max 0 15			3									3_				
84 min 0 1 -1.272 1 .005 15 -8.284e-3 1 266.302 1 1809.995 1 85 5 max 0 15 .544 3 .172 1 3.901e-3 3 9270.963 15 NC 3 86 min 0 1 -1.387 1 .006 15 -9.338e-3 1 237.399 1 1484.862 1 87 6 max 0 15 .553 3 .17 1 4.363e-3 3 9240.041 15 NC 3 88 min 0 1 -1.386 1 .006 15 -1.039e-2 1 237.678 1 1499.502 1 89 7 max 0 15 .527 3 .137 1 4.825e-3 3 NC 15 NC 3 90 min 0 1 -1.288<												1_				
85 5 max 0 15 .544 3 .172 1 3.901e-3 3 9270.963 15 NC 3 86 min 0 1 -1.387 1 .006 15 -9.338e-3 1 237.399 1 1484.862 1 87 6 max 0 15 .553 3 .17 1 4.363e-3 3 9240.041 15 NC 3 88 min 0 1 -1.386 1 .006 15 -1.039e-2 1 237.678 1 1499.502 1 89 7 max 0 15 .527 3 .137 1 4.825e-3 3 NC 15 NC 3 90 min 0 1 -1.288 1 .005 15 -1.145e-2 1 261.864 1 1871.607 1 91 8 max 0 15			4		_											
86 min 0 1 -1.387 1 .006 15 -9.338e-3 1 237.399 1 1484.862 1 87 6 max 0 15 .553 3 .17 1 4.363e-3 3 9240.041 15 NC 3 88 min 0 1 -1.386 1 .006 15 -1.039e-2 1 237.678 1 1499.502 1 89 7 max 0 15 .527 3 .137 1 4.825e-3 3 NC 15 NC 3 90 min 0 1 -1.288 1 .005 15 -1.145e-2 1 261.864 1 1871.607 1 91 8 max 0 15 .481 3 .082 1 5.287e-3 3 NC 15 NC 3 92 min 0 1 -1.133														•		
87 6 max 0 15 .553 3 .17 1 4.363e-3 3 9240.041 15 NC 3 88 min 0 1 -1.386 1 .006 15 -1.039e-2 1 237.678 1 1499.502 1 89 7 max 0 15 .527 3 .137 1 4.825e-3 3 NC 15 NC 3 90 min 0 1 -1.288 1 .005 15 -1.145e-2 1 261.864 1 1871.607 1 91 8 max 0 15 .481 3 .082 1 5.287e-3 3 NC 15 NC 3 92 min 0 1 -1.133 1 .003 15 -1.25e-2 1 312.187 1 3158.103 1 93 9 max 0 15			5									3		15		
88 min 0 1 -1.386 1 .006 15 -1.039e-2 1 237.678 1 1499.502 1 89 7 max 0 15 .527 3 .137 1 4.825e-3 3 NC 15 NC 3 90 min 0 1 -1.288 1 .005 15 -1.145e-2 1 261.864 1 1871.607 1 91 8 max 0 15 .481 3 .082 1 5.287e-3 3 NC 15 NC 3 92 min 0 1 -1.133 1 .003 15 -1.25e-2 1 312.187 1 3158.103 1 93 9 max 0 15 .432 3 .026 1 5.749e-3 3 NC 15 NC 1 94 min 0 1 98 <				min	0				.006			1				
89 7 max 0 15 .527 3 .137 1 4.825e-3 3 NC 15 NC 3 90 min 0 1 -1.288 1 .005 15 -1.145e-2 1 261.864 1 1871.607 1 91 8 max 0 15 .481 3 .082 1 5.287e-3 3 NC 15 NC 3 92 min 0 1 -1.133 1 .003 15 -1.25e-2 1 312.187 1 3158.103 1 93 9 max 0 15 .432 3 .026 1 5.749e-3 3 NC 15 NC 1 94 min 0 1 98 1 002 10 -1.355e-2 1 385.263 1 NC 1 95 10 max 0 1 .409 3 .011 3 6.211e-3 3 NC 5 NC 1 <td>87</td> <td></td> <td>6</td> <td>max</td> <td>0</td> <td>15</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td><u>15</u></td> <td></td> <td></td>	87		6	max	0	15		3				3		<u>15</u>		
90 min 0 1 -1.288 1 .005 15 -1.145e-2 1 261.864 1 1871.607 1 91 8 max 0 15 .481 3 .082 1 5.287e-3 3 NC 15 NC 3 92 min 0 1 -1.133 1 .003 15 -1.25e-2 1 312.187 1 3158.103 1 93 9 max 0 15 .432 3 .026 1 5.749e-3 3 NC 15 NC 1 94 min 0 1 98 1 002 10 -1.355e-2 1 385.263 1 NC 1 95 10 max 0 1 .409 3 .011 3 6.211e-3 3 NC 5 NC 1 96 min 0 1 907 1 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>_</td> <td>1499.502</td> <td></td>				min								1		_	1499.502	
90 min 0 1 -1.288 1 .005 15 -1.145e-2 1 261.864 1 1871.607 1 91 8 max 0 15 .481 3 .082 1 5.287e-3 3 NC 15 NC 3 92 min 0 1 -1.133 1 .003 15 -1.25e-2 1 312.187 1 3158.103 1 93 9 max 0 15 .432 3 .026 1 5.749e-3 3 NC 15 NC 1 94 min 0 1 98 1 002 10 -1.355e-2 1 385.263 1 NC 1 95 10 max 0 1 .409 3 .011 3 6.211e-3 3 NC 5 NC 1 96 min 0 1 907 1 <td>89</td> <td></td> <td>7</td> <td>max</td> <td>0</td> <td>15</td> <td>.527</td> <td>3</td> <td>.137</td> <td></td> <td></td> <td>3</td> <td></td> <td>15</td> <td></td> <td>3</td>	89		7	max	0	15	.527	3	.137			3		15		3
91 8 max 0 15 .481 3 .082 1 5.287e-3 3 NC 15 NC 3 92 min 0 1 -1.133 1 .003 15 -1.25e-2 1 312.187 1 3158.103 1 93 9 max 0 15 .432 3 .026 1 5.749e-3 3 NC 15 NC 1 94 min 0 1 98 1 002 10 -1.355e-2 1 385.263 1 NC 1 95 10 max 0 1 .409 3 .011 3 6.211e-3 3 NC 5 NC 1 96 min 0 1 907 1 007 2 -1.461e-2 1 433.044 1 NC 1	90				0	1	-1.288	1	.005			1	261.864	1	1871.607	1
92 min 0 1 -1.133 1 .003 15 -1.25e-2 1 312.187 1 3158.103 1 93 9 max 0 15 .432 3 .026 1 5.749e-3 3 NC 15 NC 1 94 min 0 1 98 1 002 10 -1.355e-2 1 385.263 1 NC 1 95 10 max 0 1 .409 3 .011 3 6.211e-3 3 NC 5 NC 1 96 min 0 1 907 1 007 2 -1.461e-2 1 433.044 1 NC 1			8		0	15		3				3		15		3
93 9 max 0 15 .432 3 .026 1 5.749e-3 3 NC 15 NC 1 94 min 0 1 98 1 002 10 -1.355e-2 1 385.263 1 NC 1 95 10 max 0 1 .409 3 .011 3 6.211e-3 3 NC 5 NC 1 96 min 0 1 907 1 007 2 -1.461e-2 1 433.044 1 NC 1					0							1		1		1
94 min 0 1 98 1 002 10 -1.355e-2 1 385.263 1 NC 1 95 10 max 0 1 .409 3 .011 3 6.211e-3 3 NC 5 NC 1 96 min 0 1 907 1 007 2 -1.461e-2 1 433.044 1 NC 1			9		0	15		3				3		15		
95	94				0							1				1
96 min 0 1907 1007 2 -1.461e-2 1 433.044 1 NC 1			10			1		3				3		5		1
						1										
			11			1		3				3		15		1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

00	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
98		40	min	0	15	98	1	002	10 -1.35		1_	385.263	1_	NC NC	1
99		12	max	0	1	.481	3	.082	1 5.287		3	NC 040.407	<u>15</u>	NC 0450 400	3
100		10	min	0	15	<u>-1.133</u>	1	.003	15 -1.25		1_	312.187	1_	3158.103	1
101		13	max	0	1	.527	3	.137	1 4.825		3_	NC 004 004	15	NC 4074 007	3
102		111	min	0	15	<u>-1.288</u>	1	.005	15 -1.14		1_	261.864	1_	1871.607	1
103		14	max	0	1	.553	3	.17	1 4.363		3	9240.041	<u>15</u>	NC	3
104		4.5	min	0	15	<u>-1.386</u>	1	.006	15 -1.03		1_	237.678	1_	1499.502	1
105		15	max	0	1	.544	3	.172	1 3.901		3	9270.963	15	NC 4404 000	3
106		10	min	0	15	-1.387	1	.006	15 -9.33		1_	237.399	1_	1484.862	1
107		16	max	0	1	.495	3	.142	1 3.44		3	NC OCC OCC	<u>15</u>	NC 4000 005	3
108		47	min	0	15	<u>-1.272</u>	1	.005	15 -8.28		1	266.302	1_	1809.995	1
109		17	max	0	1	.405	3	.089	1 2.978	3e-3	3	NC OFFO CET	<u>15</u>	NC	3
110		10	min	0	15	-1.04	1	.003	15 -7.23		1_	352.657	1_	2925.416	1
111		18	max	0	1	.281	3	.032	1 2.516		3_	NC	_5_	NC 0440,000	2
112		10	min	0	15	712	1	.001	15 -6.17		1_	652.821	1_	8419.386	1
113		19	max	0	1	.138	3	.004	3 2.054		3	NC	1_	NC NC	1
114	1440	1	min	0	15	326	1	001	10 -5.12		1_	NC NC	1_	NC NC	1
115	M16	1_	max	0	15	.098	1	.003	3 3.587		3_	NC	1_	NC NC	1
116		<u> </u>	min	001	1	045	3	001	10 -7.51		1_	NC NC	1_	NC NC	1
117		2	max	0	15	.04	3	.045	1 4.257		3_	NC 0.44.700	_5_	NC	2
118		_	min	001	1	169	1	.002	15 -8.64		1_	944.728	<u>1</u>	5855.756	1
119		3	max	0	15	.107	3	.108	1 4.927		3	NC 500.440	5_	NC 0070.050	3
120		+	min	0	1	381	1	.004	15 -9.77		1_	526.113	1_	2372.253	1
121		4	max	0	15	.144	3	.163	1 5.596		3	NC 440.700	_5_	NC 4504.050	3
122		-	min	0	1	503	1	.006	15 -1.09		1_	419.793	1_	1561.359	1
123		5	max	0	15	.144	3	.192	1 6.266		3	NC 440.440	5	NC 4004 000	3
124			min	0	1	<u>516</u>	1	.007	15 -1.20		1_	410.446	<u>1</u>	1324.282	1
125		6	max	0	15	.109	3	.187	1 6.936		3	NC 404 000	5_	NC	3
126		+ -	min	0	1	425	1	.007	15 -1.31		1_	481.832	1_	1365.195	1
127		7	max	0	15	.047	3	.148	1 7.606		3	NC 740,700	5_	NC	3
128		-	min	0	1	252	1	.006	15 -1.42		1	719.723	1	1727.22	1
129		8	max	0	15	.001	13	.088	1 8.275		3	NC	3_	NC 2000 204	3
130			min	0	1	063	2	.003	15 -1.54		1	1796.872	2	2938.324	2
131		9	max	0	15	.149	1	.028	1 8.945		3	NC	4	NC oooo coc	4
132		10	min	0	1	094	3	001	10 -1.65 3 9.615		1	4862.527 NC		9823.606	1
133		10	max	0	1	.235	3	.01			<u>3</u>		5_1	NC NC	1
134		11	min	0	1	123		007 .028	2 -1.76 1 8.945		_	1841.139 NC	<u>1</u> 4	NC NC	2
135			max	0	15	.149	3	001			3	4862.527	1	9823.606	1
136		12	min		1	094	13		10 -1.65		-		•		•
137 138		12	max min	0	15	.001 063	2	.088 .003	15 -1.54		<u>3</u> 1	NC 1796.872	2	NC 2938.324	3
139		13	max	0	1	.047	3	.148	1 7.606		3	NC	5	NC	3
140		13	min	0	15	252	1	.006	15 -1.42		1	719.723	1	1727.22	1
141		14		0	1	.109	3	.187	1 6.936		3	NC	5	NC	3
142		14	max	0	15	425	1	.007	15 -1.31		1	481.832	1	1365.195	1
143		15		0	1	<u>425</u> .144	3	.007 .192	1 6.266		3	NC	5	NC	3
144		15	max	0	15	516	1	.007	15 -1.20		1	410.446	1	1324.282	1
		16		_	1	.144	3					NC	5	NC	3
145 146		10	max min	0	15	503	1	.163 .006	1 5.596 15 -1.09		<u>3</u> 1	419.793	<u> </u>	1561.359	
		17					3						•		
147 148		17	max min	0	1 15	.107 381	1	.108 .004	1 4.927 15 -9.77		<u>3</u> 1	NC 526.113	<u>5</u> 1	NC 2372.253	3
149		18		.001	1	<u>361</u> .04	3	.004 .045	1 4.257		3	NC	<u> </u>	NC	2
150		10	max	0	15	169	1	.045	15 -8.64		<u>3</u>	944.728	<u> </u>	5855.756	
151		19		.001	1	169 .098	1	.002	3 3.587		3	944.728 NC	1	NC	1
151		19	max min	.001	15	045	3	003			1	NC NC	1	NC NC	1
153	M2	1		.005	1	045 .003	2	.008	10 -7.51		15	NC NC	1	NC NC	2
154	IVIZ		max min	004	3	003	3	<u>.008</u>	15 -2.29		15 1	NC NC	1	6513.796	
104			11/11/1	004	J	000	J	U	15 -2.28	76-4		INC		0513.790	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
155		2	max	.005	1	.002	2	.008	1	-7.779e-6	15	NC	1_	NC	2
156			min	004	3	006	3	0	15	-2.136e-4	_1_	NC	1_	7105.572	1
157		3	max	.005	1	.002	2	.007	1	-7.219e-6		NC	1_	NC	2
158			min	004	3	006	3	0	15		1_	NC	1_	7811.056	1
159		4	max	.005	1	.001	2	.006	1	-6.659e-6	<u>15</u>	NC	1_	NC	2
160		_	min	004	3	005	3	0	15	-1.828e-4	1_	NC	1_	8660.462	1
161		5	max	.004	1	0	2	.006	1	-6.099e-6	<u>15</u>	NC	1	NC 2005.050	2
162			min	003	3	<u>005</u>	3	0	15	-1.675e-4	1_	NC	1_	9695.053	
163		6	max	.004	1	0	2	.005	1	-5.539e-6	<u>15</u>	NC	1_	NC NC	1
164		7	min	003	3	005	3	0	15	-1.521e-4	1_	NC NC	1_	NC NC	1
165		7	max	.004	1	0	2	.004	1	-4.979e-6	<u>15</u>	NC NC	1_	NC NC	1
166		0	min	003	3	005	3	0	15	-1.367e-4	1_	NC NC	1_	NC NC	1
167		8	max	.003	1	0	10	.004	1	-4.419e-6	<u>15</u>	NC NC	1	NC NC	1
168			min	003	3	005	3	0	15		1.	NC NC		NC NC	1
169 170		9	max	.003	3	0 004	15	.003	15	-3.859e-6	<u>15</u> 1	NC NC	1	NC NC	1
170		10	min	002				0		-1.059e-4	_		_		1
171		10	max	.003	3	0 004	15	.003	1	-3.299e-6	<u>15</u>	NC NC	1	NC NC	
		11	min	002	1			<u> </u>	15	-9.052e-5	1_	NC NC	1		1
173		11	max	.002	3	0	15	_	1	-2.739e-6	<u>15</u>	NC NC	1	NC NC	1
174 175		12	min max	002 .002	1	004 0	15	<u> </u>	1 <u>5</u>	-7.513e-5 -2.179e-6	<u>1</u> 15	NC NC	1	NC NC	1
176		12	min	002	3	004	3	0	15	-5.974e-5	1	NC NC	1	NC	1
177		13	max	.002	1	004	15	.001	1	-1.619e-6	15	NC	1	NC	1
178		13	min	001	3	003	3	0	15	-4.436e-5	1	NC NC	1	NC	1
179		14		.002	1	003 0	15	0	1	-1.059e-6	15	NC	1	NC	1
180		14	max min	001	3	003	4	0	15	-1.059e-6	1	NC NC	1	NC	1
181		15	max	.001	1	003	15	0	1	-4.988e-7	15	NC	1	NC	1
182		10	min	0	3	003	4	0	15	-1.358e-5	1	NC	1	NC	1
183		16	max	0	1	<u>.005</u>	15	0	1	1.808e-6	1	NC	1	NC	1
184		10	min	0	3	002	4	0	15	-1.892e-7	3	NC	1	NC	1
185		17	max	0	1	<u>002</u>	15	0	1	1.72e-5	1	NC	1	NC	1
186		1,	min	0	3	001	4	0	15	5.506e-7	12	NC	1	NC	1
187		18	max	0	1	0	15	0	1	3.258e-5	1	NC	1	NC	1
188		10	min	0	3	0	4	0	15	1.181e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	4.797e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	1.741e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.479e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.509e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	1.079e-5	1	NC	1	NC	1
194			min	0	2	002	4	0	15	3.935e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	3.667e-5		NC	1	NC	1
196			min	0	2	003	4	0	15		15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	6.255e-5	1	NC	1	NC	1
198			min	0	2	005	4	0	15	2.276e-6	15	NC	1	NC	1
199		5	max	0	3	002	15	.001	1	8.843e-5	1	NC	1	NC	1
200			min	0	2	007	4	0	15	3.218e-6	15	NC	1	NC	1
201		6	max	0	3	002	15	.001	1	1.143e-4	1	NC	1	NC	1
202			min	0	2	009	4	0	15	4.159e-6	15	NC	1	NC	1
203		7	max	.001	3	002	15	.002	1	1.402e-4	1	NC	1	NC	1
204			min	0	2	01	4	0	15	5.1e-6	15	8923.064	4	NC	1
205		8	max	.001	3	003	15	.002	1	1.661e-4	1	NC	1	NC	1
206			min	0	2	012	4	0	15		15	7983.869	4	NC	1
207		9	max	.002	3	003	15	.002	1	1.919e-4	1	NC	2	NC	1
208			min	001	2	013	4	0	15		15	7425.501	4	NC	1
209		10	max	.002	3	003	15	.003	1	2.178e-4	1	NC	3	NC	1
210			min	001	2	013	4	0	15	7.924e-6	15	7149.826	4	NC	1
211		11	max	.002	3	003	15	.003	1	2.437e-4	1	NC	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
212			min	001	2	013	4	0	15	8.866e-6		7115.925	4_	NC	1
213		12	max	.002	3	003	15	.004	1	2.696e-4	1_	NC	2	NC	1_
214			min	001	2	013	4	0	15	9.807e-6	15	7324.356	4	NC	1
215		13	max	.002	3	003	15	.004	1	2.955e-4	1	NC	1	NC	1
216			min	002	2	012	4	0	15	1.075e-5	15	7819.346	4	NC	1
217		14	max	.003	3	003	15	.005	1	3.213e-4	1	NC	1	NC	1
218			min	002	2	011	4	0	15	1.169e-5	15	8712.023	4	NC	1
219		15	max	.003	3	002	15	.005	1	3.472e-4	1	NC	1	NC	1
220			min	002	2	009	4	0	15	1.263e-5	15	NC	1	NC	1
221		16	max	.003	3	002	15	.006	1	3.731e-4	1	NC	1	NC	1
222			min	002	2	008	1	0	15	1.357e-5	15	NC	1	NC	1
223		17	max	.003	3	001	15	.007	1	3.99e-4	1	NC	1	NC	1
224			min	002	2	006	1	0	15	1.451e-5	15	NC	1	NC	1
225		18	max	.003	3	0	15	.007	1	4.249e-4	1	NC	1	NC	1
226			min	002	2	005	1	0	15	1.546e-5	15	NC	1	NC	1
227		19	max	.004	3	0	15	.008	1	4.507e-4	1	NC	1	NC	1
228			min	002	2	003	1	0	15	1.64e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	15	2.057e-5	1	NC	1	NC	3
230			min	0	3	004	3	008	1	7.573e-7	15	NC	1	3063.007	1
231		2	max	.003	1	.002	2	0	15	2.057e-5	1	NC	1	NC	3
232			min	0	3	003	3	007	1	7.573e-7	15	NC	1	3333.811	1
233		3	max	.002	1	.002	2	0	15	2.057e-5	1	NC	1	NC	3
234			min	0	3	003	3	007	1	7.573e-7	15	NC	1	3655.939	
235		4	max	.002	1	.002	2	0	15	2.057e-5	1	NC	1	NC	2
236		•	min	0	3	003	3	006	1	7.573e-7	15	NC	1	4042.756	1
237		5	max	.002	1	.001	2	<u>.000</u>	15	2.057e-5	1	NC	1	NC	2
238			min	0	3	003	3	005	1	7.573e-7	15	NC	1	4512.42	1
239		6	max	.002	1	.001	2	0	15	2.057e-5	1	NC	1	NC	2
240			min	0	3	003	3	005	1	7.573e-7	15	NC	1	5090.115	
241		7	max	.002	1	.001	2	<u>003</u>	15	2.057e-5	1	NC	1	NC	2
242			min	0	3	002	3	004	1	7.573e-7	15	NC	1	5811.591	1
243		8	max	.002	1	.002	2	0	15	2.057e-5	1	NC	1	NC	2
244			min	0	3	002	3	004	1	7.573e-7	15	NC	1	6728.99	1
245		9	max	.002	1	.002	2	004	15	2.057e-5	1	NC	1	NC	2
246		9	min	0	3	002	3	003	1	7.573e-7	15	NC	1	7920.814	1
247		10	max	.001	1	<u>002</u> 0	2	<u>003</u> 0	15	2.057e-5	1	NC	1	NC	2
248		10	min	0	3	002	3	003	1	7.573e-7	15	NC	1	9509.795	1
249		11		.001	1	<u>002</u> 0	2	003 0	15	2.057e-5	1	NC NC	1	NC	1
250			max min	0	3	002	3	002	1	7.573e-7	15	NC NC	1	NC NC	1
251		12		.001	1	<u>002</u> 0	2	<u>002</u> 0	15	2.057e-5	1 <u>0</u> 1	NC NC	1	NC NC	1
		12	max	_				002			_		1		1
252		13	min	0	1	001 0	2		15	7.573e-7		NC NC	1	NC NC	1
253 254		13	max	0	3	001	3	0			1_	NC NC	1	NC NC	1
		1.4	min	0	1		2	001	1 1 5	7.573e-7	<u>15</u>	NC NC	1	NC NC	1
255		14	max		3	<u> </u>		0	15		1_	NC NC	1		1
256		15	min	0			3	0		7.573e-7 2.057e-5	15		•	NC NC	1
257		15	max	0	3	0	2	0	15		1_15	NC NC	1	NC NC	
258		10	min	0		0	3	0	1 1 1 5	7.573e-7	<u>15</u>	NC NC	1	NC NC	1
259		16	max	0	1	0	2	0	15	2.057e-5	1	NC NC	1_1	NC NC	1
260		47	min	0	3	0	3	0	1_1_	7.573e-7		NC NC	1_	NC NC	1
261		17	max	0	1	0	2	0	15	2.057e-5	1	NC NC	1_	NC NC	1
262		40	min	0	3	0	3	0	1_	7.573e-7	<u>15</u>	NC NC	1_	NC NC	1
263		18	max	0	1	0	2	0	15	2.057e-5	1	NC	1	NC NC	1
264			min	0	3	0	3	0	1	7.573e-7	15	NC	1_	NC NC	1
265		19	max	0	1	0	1	0	1	2.057e-5	1	NC	1_	NC NC	1
266			min	0	1	0	1	0	1	7.573e-7	15	NC	1_	NC	1
267	M6	1	max	.018	1	.013	2	0	1	0	1	NC 1000 100	3	NC NC	1
268			min	014	3	018	3	0	1	0	1	4330.166	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio			
269		2	max	.017	1	.012	2	0	1	0	1	NC	3	NC	1
270			min	013	3	017	3	0	1	0	<u>1</u>	4780.697	2	NC	1
271		3	max	.016	1	.01	2	0	1	0	1	NC	1	NC	1
272			min	013	3	016	3	0	1	0	1_	5330.92	2	NC	1
273		4	max	.015	1	.009	2	0	1	0	_1_	NC	1_	NC	1
274		_	min	012	3	015	3	0	1	0	1_	6011.74	2	NC	1
275		5	max	.014	1	.008	2	0	1	0	_1_	NC	1_	NC	1
276			min	011	3	014	3	0	1	0	1_	6867.498	2	NC	1
277		6	max	.013	1	.007	2	0	1	0	1	NC	1_	NC	1
278		_	min	01	3	<u>013</u>	3	0	1	0	1_	7963.709	2	NC	1
279		7	max	.012	1	.006	2	0	1	0	<u>1</u>	NC	1_	NC	1
280			min	009	3	013	3	0	1	0	<u>1</u>	9400.641	2	NC	1
281		8	max	.011	1	.005	2	0	1	0	_1_	NC	1_	NC	1
282			min	009	3	012	3	0	1	0	1_	NC	1_	NC	1
283		9	max	.01	1	.004	2	0	1	0	_1_	NC	1_	NC	1
284			min	008	3	011	3	0	1	0	1_	NC	1_	NC	1
285		10	max	.009	1	.003	2	0	1	0	1	NC NC	1_	NC NC	1
286			min	007	3	01	3	0	1	0	1	NC	1_	NC	1
287		11	max	.008	1	.002	2	0	1	0	1	NC	1_	NC	1
288		4.0	min	006	3	009	3	0	1	0	1	NC	1_	NC	1
289		12	max	.007	1	.002	2	0	1	0	<u>1</u>	NC	1_	NC	1
290			min	006	3	008	3	0	1	0	<u>1</u>	NC	1_	NC	1
291		13	max	.006	1	.001	2	0	1	0	_1_	NC	1_	NC	1
292			min	005	3	007	3	0	1	0	1_	NC	1	NC	1
293		14	max	.005	1	0	2	0	1	0	_1_	NC	1_	NC	1
294			min	004	3	005	3	0	1	0	<u>1</u>	NC	1_	NC	1
295		15	max	.004	1	0	2	0	1	0	1	NC	1_	NC	1
296			min	003	3	004	3	0	1	0	1_	NC	1_	NC	1
297		16	max	.003	1	0	2	0	1	0	1_	NC	1_	NC	1
298			min	002	3	003	3	0	1	0	_1_	NC	1_	NC	1
299		17	max	.002	1	0	2	0	1	0	<u>1</u>	NC	1_	NC	1
300			min	002	3	002	3	0	1	0	1_	NC	1_	NC	1
301		18	max	0	1	0	2	0	1	0	1	NC	1_	NC	1
302			min	0	3	001	3	0	1	0	1_	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	<u>1</u>	NC	1_	NC	1
305	M7	1	max	0	1	0	1	0	1	0	_1_	NC	1_	NC	1
306			min	0	1	0	1	0	1	0	<u>1</u>	NC	1_	NC	1
307		2	max	0	3	0	15	0	1	0	_1_	NC	1_	NC	1
308			min	0	2	002	3	0	1	0	1_	NC NC	1_	NC NC	1
309		3	max	.001	3	0	15	0	1	0	1	NC NC	1	NC NC	1
310			min	001	2	004	3	0	1	0	1_	NC NC	1_	NC NC	1
311		4	max	.002	3	001	15	0	1	0	1	NC NC	1	NC NC	1
312		_	min	002	2	006	3	0	1	0	1_	NC NC	1_	NC NC	1
313		5_	max	.002	3	002	15	0	1	0		NC NC	1_	NC NC	1
314			min	002	2	007	4	0	1	0	1_	NC NC	1_	NC NC	1
315		6	max	.003	3	002	15	0	1	0	1	NC NC	1_	NC NC	1
316			min	003	2	009	4	0	1	0	1_	NC NC	1_	NC	1
317		7	max	.004	3	002	15	0	1	0	1	NC	1_	NC NC	1
318			min	003	2	01	4	0	1	0	1_	9173.396	4	NC NC	1
319		8	max	.004	3	003	15	0	1	0	1	NC 0400.045	1	NC NC	1
320			min	004	2	012	4	0	1	0	1_	8190.615	4_	NC	1
321		9	max	.005	3	003	15	0	1	0	1	NC Tool To	1_	NC	1
322			min	005	2	013	4	0	1	0	1	7604.59	4	NC	1
323		10	max	.005	3	003	15	0	1	0	1	NC Tool	1	NC	1
324			min	005	2	013	4	0	1	0	1_	7311.702	4	NC	1
325		11	max	.006	3	003	15	0	1	0	_1_	NC	<u>1</u>	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
326			min	006	2	013	4	0	1	0	1	7268.24	4	NC	1
327		12	max	.007	3	003	15	0	1	0	1_	NC	1	NC	1
328			min	006	2	013	4	0	1	0	1	7473.548	4	NC	1
329		13	max	.007	3	003	15	0	1	0	1_	NC	1_	NC	1_
330			min	007	2	012	4	0	1	0	1	7971.854	4	NC	1
331		14	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
332			min	008	2	011	4	0	1	0	1	8875.697	4	NC	1
333		15	max	.009	3	002	15	0	1	0	1	NC	1	NC	1
334			min	008	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.009	3	002	15	0	1	0	1	NC	1_	NC	1
336			min	009	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.01	3	001	15	0	1	0	1	NC	1	NC	1
338			min	009	2	009	1	0	1	0	1	NC	1	NC	1
339		18	max	.01	3	0	15	0	1	0	1	NC	1	NC	1
340			min	01	2	008	1	0	1	0	1	NC	1	NC	1
341		19	max	.011	3	0	15	0	1	0	1	NC	1	NC	1
342			min	01	2	006	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.009	2	0	1	0	1	NC	1	NC	1
344			min	001	3	011	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.009	2	0	1	0	1	NC	1	NC	1
346			min	001	3	01	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	1	.008	2	0	1	0	1	NC	1	NC	1
348			min	001	3	01	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.008	2	0	1	0	1	NC	1	NC	1
350			min	001	3	009	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	1	.007	2	0	1	0	1	NC	1	NC	1
352			min	001	3	009	3	0	1	0	1	NC	1	NC	1
353		6	max	.006	1	.007	2	0	1	0	1	NC	1	NC	1
354			min	0	3	008	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	1	.006	2	0	1	0	1	NC	1	NC	1
356			min	0	3	007	3	0	1	0	1	NC	1	NC	1
357		8	max	.005	1	.006	2	0	1	0	1	NC	1	NC	1
358			min	0	3	007	3	0	1	0	1	NC	1	NC	1
359		9	max	.004	1	.005	2	0	1	0	1	NC	1	NC	1
360			min	0	3	006	3	0	1	0	1	NC	1	NC	1
361		10	max	.004	1	.005	2	0	1	0	1	NC	1	NC	1
362			min	0	3	005	3	0	1	0	1	NC	1	NC	1
363		11	max	.003	1	.004	2	0	1	0	1	NC	1	NC	1
364			min	0	3	005	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.004	2	0	1	0	1	NC	1	NC	1
366			min	0	3	004	3	0	1	0	1	NC	1	NC	1
367		13	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
368			min	0	3	004	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
370			min	0	3	003	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
372			min	0	3	002	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.002	2	0	1	0	1	NC	1	NC	1
374			min	0	3	002	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.001	2	0	1	0	1	NC	1	NC	1
376			min	0	3	001	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378		T.	min	0	3	0	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		1.0	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.005	1	.003	2	0	15	2.29e-4	1	NC	1	NC	2
382	5	Ť	min	004	3	006	3	008	1	8.339e-6	15	NC	1	6513.796	
002			11/11/1	.001		.000		1000		3.0000				50 1011 00	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.002	2	0	15	2.136e-4	_1_	NC	_1_	NC	2
384			min	004	3	006	3	008	1	7.779e-6	15	NC	1_	7105.572	1
385		3	max	.005	1	.002	2	0	15	1.982e-4	_1_	NC	_1_	NC	2
386			min	004	3	006	3	007	1	7.219e-6	15	NC	1	7811.056	1
387		4	max	.005	1	.001	2	0	15	1.828e-4	_1_	NC	_1_	NC	2
388			min	004	3	005	3	006	1	6.659e-6	15	NC	1_	8660.462	1
389		5	max	.004	1	0	2	0	15	1.675e-4	_1_	NC	_1_	NC	2
390			min	003	3	005	3	006	1	6.099e-6	15	NC	1_	9695.053	1
391		6	max	.004	1	0	2	0	15	1.521e-4	1_	NC	1_	NC	1
392			min	003	3	005	3	005	1	5.539e-6	15	NC	1_	NC	1
393		7	max	.004	1	0	2	00	15	1.367e-4	_1_	NC	_1_	NC	1
394			min	003	3	005	3	004	1	4.979e-6	15	NC	1	NC	1
395		8	max	.003	1	0	10	0	15	1.213e-4	_1_	NC	_1_	NC	1
396			min	003	3	005	3	004	1	4.419e-6	15	NC	1	NC	1
397		9	max	.003	1	0	15	0	15	1.059e-4	1_	NC	_1_	NC	1
398			min	002	3	004	3	003	1	3.859e-6	15	NC	1	NC	1
399		10	max	.003	1	0	15	0	15	9.052e-5	1_	NC	_1_	NC	1
400			min	002	3	004	3	003	1	3.299e-6	15	NC	1	NC	1
401		11	max	.002	1	0	15	0	15	7.513e-5	1	NC	1	NC	1
402			min	002	3	004	3	002	1	2.739e-6	15	NC	1	NC	1
403		12	max	.002	1	0	15	0	15	5.974e-5	1_	NC	1_	NC	1
404			min	002	3	004	3	002	1	2.179e-6	15	NC	1	NC	1
405		13	max	.002	1	0	15	0	15	4.436e-5	1_	NC	1_	NC	1
406			min	001	3	003	3	001	1	1.619e-6	15	NC	1	NC	1
407		14	max	.002	1	0	15	0	15	2.897e-5	1	NC	1_	NC	1
408			min	001	3	003	4	0	1	1.059e-6	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	1.358e-5	1_	NC	1	NC	1
410			min	0	3	003	4	0	1	4.988e-7	15	NC	1	NC	1
411		16	max	0	1	0	15	0	15	1.892e-7	3	NC	1	NC	1
412			min	0	3	002	4	0	1	-1.808e-6	1	NC	1	NC	1
413		17	max	0	1	0	15	0	15	-5.506e-7	12	NC	1	NC	1
414			min	0	3	001	4	0	1	-1.72e-5	1	NC	1	NC	1
415		18	max	0	1	0	15	0	15	-1.181e-6	15	NC	1	NC	1
416			min	0	3	0	4	0	1	-3.258e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.741e-6	15	NC	1	NC	1
418			min	0	1	0	1	0	1	-4.797e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.509e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	5.479e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-3.935e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.079e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0	15	-1.335e-6	15	NC	1	NC	1
424			min	0	2	003	4	0	1	-3.667e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15	-2.276e-6	15	NC	1	NC	1
426			min	0	2	005	4	0	1	-6.255e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	0	15		15	NC	1	NC	1
428			min	0	2	007	4	001	1	-8.843e-5	1	NC	1	NC	1
429		6	max	0	3	002	15	0	15	-4.159e-6	15	NC	1	NC	1
430			min	0	2	009	4	001	1	-1.143e-4	1	NC	1	NC	1
431		7	max	.001	3	002	15	0	15	-5.1e-6	15	NC	1	NC	1
432			min	0	2	01	4	002	1	-1.402e-4	1	8923.064	4	NC	1
433		8	max	.001	3	003	15	0	15		15	NC	1	NC	1
434			min	0	2	012	4	002	1	-1.661e-4	1	7983.869	4	NC	1
435		9	max	.002	3	003	15	0	15		15	NC	2	NC	1
436			min	001	2	013	4	002	1	-1.919e-4	1	7425.501	4	NC	1
437		10	max	.002	3	003	15	0		-7.924e-6	•	NC	3	NC	1
438			min	001	2	013	4	003	1	-2.178e-4	1	7149.826	4	NC	1
439		11	max	.002	3	003	15	0		-8.866e-6	_	NC	3	NC	1
															$\overline{}$

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
440			min	001	2	013	4	003	1	-2.437e-4	1	7115.925	4	NC	1
441		12	max	.002	3	003	15	0	15	-9.807e-6	15	NC	2	NC	1
442			min	001	2	013	4	004	1	-2.696e-4	1	7324.356	4	NC	1
443		13	max	.002	3	003	15	0	15	-1.075e-5	15	NC	1	NC	1
444			min	002	2	012	4	004	1	-2.955e-4	1	7819.346	4	NC	1
445		14	max	.003	3	003	15	0	15	-1.169e-5	15	NC	1	NC	1
446			min	002	2	011	4	005	1	-3.213e-4	1	8712.023	4	NC	1
447		15	max	.003	3	002	15	0	15	-1.263e-5	15	NC	1	NC	1
448			min	002	2	009	4	005	1	-3.472e-4	1	NC	1	NC	1
449		16	max	.003	3	002	15	0	15	-1.357e-5	15	NC	1	NC	1
450			min	002	2	008	1	006	1	-3.731e-4	1	NC	1	NC	1
451		17	max	.003	3	001	15	0	15	-1.451e-5	15	NC	1	NC	1
452			min	002	2	006	1	007	1	-3.99e-4	1_	NC	1	NC	1
453		18	max	.003	3	0	15	0	15	-1.546e-5	15	NC	1	NC	1
454			min	002	2	005	1	007	1	-4.249e-4	1	NC	1	NC	1
455		19	max	.004	3	0	15	0	15	-1.64e-5	15	NC	1	NC	1
456			min	002	2	003	1	008	1	-4.507e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.008	1	-7.573e-7	15	NC	1	NC	3
458			min	0	3	004	3	0	15	-2.057e-5	1	NC	1	3063.007	1
459		2	max	.003	1	.002	2	.007	1	-7.573e-7	15	NC	1	NC	3
460			min	0	3	003	3	0	15	-2.057e-5	1	NC	1	3333.811	1
461		3	max	.002	1	.002	2	.007	1	-7.573e-7	15	NC	1	NC	3
462			min	0	3	003	3	0	15	-2.057e-5	1	NC	1	3655.939	1
463		4	max	.002	1	.002	2	.006	1	-7.573e-7	15	NC	1	NC	2
464			min	0	3	003	3	0	15	-2.057e-5	1	NC	1	4042.756	1
465		5	max	.002	1	.001	2	.005	1	-7.573e-7	15	NC	1	NC	2
466			min	0	3	003	3	0	15	-2.057e-5	1	NC	1	4512.42	1
467		6	max	.002	1	.001	2	.005	1	-7.573e-7	15	NC	1	NC	2
468			min	0	3	003	3	0	15	-2.057e-5	1	NC	1	5090.115	1
469		7	max	.002	1	.001	2	.004	1	-7.573e-7	15	NC	1	NC	2
470			min	0	3	002	3	0	15	-2.057e-5	1	NC	1	5811.591	1
471		8	max	.002	1	.001	2	.004	1	-7.573e-7	15	NC	1_	NC	2
472			min	0	3	002	3	0	15	-2.057e-5	1	NC	1	6728.99	1
473		9	max	.002	1	.001	2	.003	1	-7.573e-7	15	NC	1	NC	2
474			min	0	3	002	3	0	15	-2.057e-5	1	NC	1	7920.814	1
475		10	max	.001	1	0	2	.003	1	-7.573e-7	15	NC	1_	NC	2
476			min	0	3	002	3	0	15	-2.057e-5	1	NC	1	9509.795	1
477		11	max	.001	1	0	2	.002	1	-7.573e-7	15	NC	1_	NC	1
478			min	0	3	002	3	0	15	-2.057e-5	1_	NC	1_	NC	1
479		12	max	.001	1	0	2	.002	1	-7.573e-7	<u>15</u>	NC	_1_	NC	1
480			min	0	3	001	3	0	15	-2.057e-5	1	NC	1	NC	1
481		13	max	0	1	0	2	.001	1	-7.573e-7	15	NC	1_	NC	1
482			min	0	3	001	3	0	15	-2.057e-5	1	NC	1	NC	1
483		14	max	0	1	0	2	0	1	-7.573e-7	15	NC	1_	NC	1
484			min	0	3	0	3	0	15	-2.057e-5	1	NC	1	NC	1
485		15	max	0	1	0	2	0	1	-7.573e-7	15	NC	1_	NC	1_
486			min	0	3	0	3	0	15		1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-7.573e-7	15	NC	_1_	NC	1
488			min	0	3	0	3	0	15		1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-7.573e-7	15	NC	1_	NC	1_
490			min	0	3	0	3	0	15	-2.057e-5	1_	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-7.573e-7	15	NC	1	NC	1_
492			min	0	3	0	3	0	15	-2.057e-5	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-7.573e-7	15	NC	1_	NC	1
494			min	0	1	0	1	0	1	-2.057e-5	1	NC	1	NC	1
495	M1	1	max	.004	3	1	1	.001	1	1.735e-2	_1_	NC	_1_	NC	1
496			min	001	10	01	3	0	15	-1.86e-2	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio L			LC
497		2	max	.004	3	.049	1	0	15	8.43e-3	_1_		3	NC	1_
498			min	001	2	004	3	006	1	-9.202e-3	3		1	NC	1
499		3	max	.004	3	.006	3	0	15	1.351e-5	10		5	NC	1_
500			min	001	2	006	1	009	1	-1.742e-4	1		1	NC	1
501		4	max	.004	3	.025	3	0	15	4.665e-3	1_		5	NC	1_
502			min	001	2	07	1	008	1	-3.268e-3	3	07 11000	1	NC	1
503		5	max	.004	3	.05	3	0	15	9.505e-3	1	NC 1	15	NC	1
504			min	001	10	138	1	006	1	-6.445e-3	3	479.957	1	NC	1
505		6	max	.004	3	.078	3	0	15	1.434e-2	1		15	NC	1
506			min	001	10	205	1	002	1	-9.622e-3	3	375.201 ·	1	NC	1
507		7	max	.004	3	.105	3	0	1	1.918e-2	1	9674.843 1	15	NC	1
508			min	001	10	264	1	0	12	-1.28e-2	3	313.745	1	NC	1
509		8	max	.004	3	.128	3	0	1	2.402e-2	1	8592.37 1	15	NC	1
510			min	001	10	312	1	0	15	-1.598e-2	3	277.557	1	NC	1
511		9	max	.004	3	.142	S	0	15	2.641e-2	1	8028.295 1	15	NC	1
512			min	001	10	342	1	0	1	-1.598e-2	3		1	NC	1
513		10	max	.004	3	.148	3	0	1	2.716e-2	1		15	NC	1
514			min	001	10	352	1	0	12	-1.388e-2	3		1	NC	1
515		11	max	.004	3	.144	3	0	1	2.791e-2	1		15	NC	1
516			min	001	10	341	1	0	15	-1.178e-2	3		1	NC	1
517		12	max	.004	3	.132	3	0	15	2.631e-2	1		15	NC	1
518			min	001	10	311	1	001	1	-9.738e-3	3		1	NC	1
519		13	max	.004	3	.112	3	0	15	2.117e-2	1		15	NC	1
520			min	001	10	262	1	0	1	-7.794e-3	3		1	NC	1
521		14	max	.003	3	.087	3	.002	1	1.602e-2	1		15	NC	1
522		1-7	min	001	10	202	1	0	15	-5.85e-3	3		1	NC	1
523		15	max	.003	3	.059	3	.005	1	1.087e-2	1		15	NC	1
524		10	min	001	10	135	1	0	15	-3.905e-3	3		1	NC	1
525		16	max	.003	3	.03	3	.008	1	5.719e-3	1		5	NC	1
526		10	min	001	10	067	1	0	15	-1.961e-3	3		1	NC	1
527		17	max	.003	3	.002	3	.008	1	5.702e-4	1		5	NC NC	1
528		17	min	001	10	004	2	0	15	-1.654e-5	3		1	NC	1
529		18	max	.003	3	.05	1	.006	1	1.002e-2	1		4	NC NC	1
530		10	min	001	10	022	3	0	15	-3.131e-3	3		1	NC NC	1
531		19	max	.003	3	.098	1	0	15	1.982e-2	1		1	NC NC	1
532		19	min	001	10	045	3	001	1	-6.363e-3	3		1	NC	1
533	M5	1		.014	3	.24	1	<u>001</u> 0	1		1		1	NC	1
534	IVIO	_	max	008	2	011	3	0	1	0	1		1	NC NC	1
		2	min						1		+				•
535		2	max	.014	3	.117	1	0	1	0	1		5	NC NC	1
536		2	min	008		004	3	0	1	0	1	000.007	•	NC NC	1
537		3	max	.014	3	.02	3	0	1	0	1		15	NC NC	1
538		1	min	009		022	1	0		0	1		1_	NC NC	
539		4	max	.013	3	.073	3	0	1	0	1		15	NC NC	1
540		_	min	008	2	192	1	0	1	0	1_		1	NC NC	1
541		5_	max	.013	3	.146	3	0	1	0	1		15	NC NC	1
542		_	min	008	2	379	1	0	1	0	1_		1	NC NC	1
543		6	max	.013	3	.229	3	0	1	0	1		15	NC NC	1
544			min	008	2	<u>564</u>	1	0	1	0	1_		1	NC NC	1
545		7	max	.013	3	.311	3	0	1	0	1		15	NC_	1
546			min	008	2	<u>733</u>	1	0	1	0	1		1	NC	1
547		8	max	.012	3	.379	3	0	1	0	1		15	NC	1
548			min	008	2	868	1	0	1	0	1_		1	NC	1
549		9	max	.012	3	.423	3	0	1	0	_1_		15	NC	1_
550			min	007	2	953	1	0	1	0	1	00.00.	1	NC	1
551		10	max	.012	3	.439	3	0	1	0	1		15	NC	1_
552			min	007	2	982	1	0	1	0	1		1	NC	1
553		11	max	.011	3	.428	3	0	1	0	1	3324.174 1	15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio I			o LC
554			min	007	2	953	1	0	1	0	1	00.01	1	NC	1
555		12	max	.011	3	.391	3	0	1	0	1_	3577.253	15	NC	1
556			min	007	2	866	1	0	1	0	1	103.408	1	NC	1
557		13	max	.011	3	.331	3	0	1	0	1	4070.634	15	NC	1
558			min	007	2	727	1	0	1	0	1	118.322	1	NC	1
559		14	max	.011	3	.256	3	0	1	0	1	4918.953	15	NC	1
560			min	007	2	555	1	0	1	0	1	144.16	1	NC	1
561		15	max	.01	3	.172	3	0	1	0	1	6387.424	15	NC	1
562			min	007	2	366	1	0	1	0	1		1	NC	1
563		16	max	.01	3	.087	3	0	1	0	1		15	NC	1
564			min	007	2	179	1	0	1	0	1		1	NC	1
565		17	max	.01	3	.007	3	0	1	0	1		15	NC	1
566			min	007	2	012	1	0	1	0	1		1	NC	1
567		18	max	.01	3	.121	1	0	1	0	1		5	NC	1
568		1.0	min	007	2	061	3	0	1	0	1	999.663	1	NC	1
569		19	max	.01	3	.235	1	0	1	0	1	NC	1	NC	1
570		15	min	007	2	123	3	0	1	0	1		1	NC	1
571	M9	1	max	.004	3	<u>125</u> .1	1	0	15	1.86e-2	3		1	NC	1
572	IVIƏ		min	004 001	10	01	3	001	1	-1.735e-2	1	NC NC	1	NC	1
573		2		.004	3	.049	1		1	9.202e-3	3		3	NC	1
574			max	004 001	2	004	3	.006 0	15	-8.43e-3	1		1	NC NC	1
		3	min		_			.009			•		_	NC NC	
575		3	max	.004	3	.006	3		1	1.742e-4	1		5		1
576		-	min	001	2	006	1	0	15	-1.351e-5			1	NC NC	1
577		4	max	.004	3	.025	3	.008	1	3.268e-3	3		5	NC NC	1
578		_	min	<u>001</u>	2	07	1	0	15	-4.665e-3	1_	671.539	1_	NC NC	1
579		5	max	.004	3	.05	3	.006	1	6.445e-3	3		15	NC NC	1
580			min	001	10	138	1	0	15	-9.505e-3	_1_		1_	NC	1
581		6	max	.004	3	.078	3	.002	1	9.622e-3	3		15	NC	1
582			min	001	10	205	1	0	15	-1.434e-2	1_	0.0.0.	1	NC	1
583		7	max	.004	3	.105	3	0	12	1.28e-2	3		15	NC	1
584			min	001	10	264	1	0	1	-1.918e-2	1_	0.00.	1	NC	1
585		8	max	.004	3	.128	3	0	15	1.598e-2	3_		15	NC	1
586			min	001	10	312	1	0	1	-2.402e-2	1_		1	NC	1
587		9	max	.004	3	.142	3	0	1	1.598e-2	3		15	NC	1
588			min	001	10	342	1	0	15	-2.641e-2	1_		1	NC	1
589		10	max	.004	3	.148	3	0	12	1.388e-2	3		15	NC	1
590			min	001	10	352	1	0	1	-2.716e-2	1		1	NC	1
591		11	max	.004	3	.144	3	0	15	1.178e-2	3	8028.101	15	NC	1
592			min	001	10	341	1	0	1	-2.791e-2	1	259.059	1	NC	1
593		12	max	.004	3	.132	3	.001	1	9.738e-3	3		15	NC	1
594			min	001	10	311	1	0	15	-2.631e-2	1	278.437	1	NC	1
595		13	max	.004	3	.112	3	0	1	7.794e-3	3		15	NC	1
596			min	001	10	262	1	0	15	-2.117e-2	1	315.932	1	NC	1
597		14	max	.003	3	.087	3	0	15	5.85e-3	3	NC ·	15	NC	1
598			min	001	10	202	1	002	1	-1.602e-2	1	379.928	1	NC	1
599		15	max	.003	3	.059	3	0	15	3.905e-3	3	NC ·	15	NC	1
600			min	001	10	135	1	005	1	-1.087e-2	1	489.752	1	NC	1
601		16	max	.003	3	.03	3	0	15	1.961e-3	3		5	NC	1
602			min	001	10	067	1	008	1	-5.719e-3			1	NC	1
603		17	max	.003	3	.002	3	0	15	1.654e-5	3		5	NC	1
604			min	001	10	004	2	008	1	-5.702e-4	1		1	NC	1
605		18	max	.003	3	.05	1	0	15	3.131e-3	3		4	NC	1
606		T.	min	001	10	022	3	006	1	-1.002e-2			1	NC	1
607		19	max	.003	3	.098	1	.001	1	6.363e-3	3		1	NC	1
608		· Ŭ	min	001	10	045	3	0		-1.982e-2		NC	1	NC	1
000			1111111	.001	10	.070	J	<u> </u>	10	1.0020 2		110		110	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	,N $\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.