1. Random Forest Classification

Recall:

- 1. What is the percentage of correct classification of "Purchased" to the total input of "Purchased" in the test set? 0.85
- 2. What is the percentage of correct classification of "Not Purchased" to the total input of "Not Purchased" in the test set? 0.91

Precision:

- 1. What is the percentage of classification of "Purchased" to sum of correctly classified as "Purchased" and wrongly classified as "Purchased" in the test set? 0.83
- 2. What is the percentage of classification of "Not Purchased" to sum of correctly classified as "Not purchased" and wrongly classified as "Not purchased" in the test set? 0.92

Accuracy:

What is the overall performance of the model? 0.89

F1 Measure:

- 1. What is the overall performance of "Purchased" class? 0.84
- 2. What is the overall performance of "Not Purchased" class? 0.92

Macro Average:

Precision: What is the overall performance of precision(correctly and wrongly classified)? 0.88

Recall: What is the average performance of recall (correctly classified)? 0.88

F1 Measure:

What is the overall performance of F1 Measure?0.88

Weighted Average:

Precision: what is the sum of product of proportion rate of each class("Purchased" and "Not Purchased")? 0.89

Recall: What is the sum of product of proportion rate of each class? 0.89

F1-Measure: What is the sum of product of proportion rate of each class? 0.89

2. Decision Tree Classification

Recall:

- 3. What is the percentage of correct classification of "Purchased" to the total input of "Purchased" in the test set? 0.93
- 4. What is the percentage of correct classification of "Not Purchased" to the total input of "Not Purchased" in the test set? 0.90

Precision:

- 3. What is the percentage of classification of "Purchased" to sum of correctly classified as "Purchased" and wrongly classified as "Purchased" in the test set? 0.83
- 4. What is the percentage of classification of "Not Purchased" to sum of correctly classified as "Not purchased" and wrongly classified as "Not purchased" in the test set? 0.96

Accuracy:

What is the overall performance of the model? 0.91

F1 Measure:

- 3. What is the overall performance of "Purchased" class? 0.87
- 4. What is the overall performance of "Not Purchased" class? 0.93

Macro Average:

Precision: What is the overall performance of precision(correctly and wrongly classified)? 0.89

Recall: What is the average performance of recall (correctly classified)? 0.91

F1 Measure:

What is the overall performance of F1 Measure?0.90

Weighted Average:

Precision: what is the sum of product of proportion rate of each class("Purchased" and "Not Purchased")? 0.91

Recall: What is the sum of product of proportion rate of each class? 0.91

F1-Measure: What is the sum of product of proportion rate of each class? 0.91

3. SVM Classification

Recall:

- 5. What is the percentage of correct classification of "Purchased" to the total input of "Purchased" in the test set? 0.44
- 6. What is the percentage of correct classification of "Not Purchased" to the total input of "Not Purchased" in the test set? 0.97

Precision:

- 5. What is the percentage of classification of "Purchased" to sum of correctly classified as "Purchased" and wrongly classified as "Purchased" in the test set? 0.90
- 6. What is the percentage of classification of "Not Purchased" to sum of correctly classified as "Not purchased" and wrongly classified as "Not purchased" in the test set? 0.77

Accuracy:

What is the overall performance of the model? 0.79

F1 Measure:

5. What is the overall performance of "Purchased" class? 0.59

6. What is the overall performance of "Not Purchased" class? 0.86

Macro Average:

Precision: What is the overall performance of precision(correctly and wrongly classified)? 0.83

Recall: What is the average performance of recall (correctly classified)? 0.71

F1 Measure:

What is the overall performance of F1 Measure?0.79

Weighted Average:

Precision: what is the sum of product of proportion rate of each class("Purchased" and "Not Purchased")? 0.81

Recall: What is the sum of product of proportion rate of each class? 0.79

F1-Measure: What is the sum of product of proportion rate of each class? 0.77

Based on the evaluation metrics, Decision Tree Classifier model is the best model.