WARDAYA COLLEGE

TOP UNIVERSITY CLASS

MATHEMATICS

June 2019

Preliminary Test

2 hours

READ THESE INSTRUCTIONS FIRST

Write your name and school on all the work you hand in.

Write your answers in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

This paper consists of 10 questions and comprises 4 printed pages.

Answer all the questions.

The list of formulas and statistical tables are attached at the end of the paper.

This is a close book test. Any books, notes, or electronic materials are not allowed.

The use of an electronic calculator is allowed and expected, where appropriate.

You are given a list of formulae in a separate sheet.

You are reminded of the need for clear presentation in your answers.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

At the end of the test, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

PURE MATHEMATICS

Mensuration

Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of sphere = $4\pi r^2$

Volume of cone or pyramid = $\frac{1}{3} \times$ base area \times height

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arc length of circle = $r\theta$ (θ in radians)

Area of sector of circle $=\frac{1}{2}r^2\theta$ (θ in radians)

Algebra

For the quadratic equation $ax^2 + bx + c = 0$:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For an arithmetic series:

$$u_n = a + (n-1)d$$
, $S_n = \frac{1}{2}n\{2a + (n-1)d\}$

For a geometric series:

$$u_n = ar^{n-1},$$
 $S_n = \frac{a(1-r^n)}{1-r} \quad (r \neq 1),$ $S_{\infty} = \frac{a}{1-r} \quad (|r| < 1)$

Binomial series:

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^2 + \binom{n}{3} a^{n-3}b^3 + \dots + b^n, \text{ where } n \text{ is a positive integer}$$
and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$
, where *n* is rational and $|x| < 1$

Trigonometry

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\cos^2 \theta + \sin^2 \theta = 1, \qquad 1 + \tan^2 \theta = \sec^2 \theta, \qquad \cot^2 \theta + 1 = \csc^2 \theta$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Principal values:

$$-\frac{1}{2}\pi \leqslant \sin^{-1}x \leqslant \frac{1}{2}\pi$$
, $0 \leqslant \cos^{-1}x \leqslant \pi$, $-\frac{1}{2}\pi < \tan^{-1}x < \frac{1}{2}\pi$

Differentiation

f(x) f'(x)
$$x^{n} nx^{n-1}$$

$$\ln x \frac{1}{x}$$

$$e^{x} e^{x}$$

$$\sin x \cos x$$

$$\cos x -\sin x$$

$$\tan x \sec^{2} x$$

$$\sec x \sec x \tan x$$

$$\csc x -\csc x \cot x$$

$$\cot x -\csc^{2} x$$

$$\tan^{-1} x \frac{1}{1+x^{2}}$$

$$uv v\frac{du}{dx} + u\frac{dv}{dx}$$

$$\frac{u}{v} v\frac{du}{dx} - u\frac{dv}{dx}$$
If $x = f(t)$ and $y = g(t)$ then $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$

Integration

(Arbitrary constants are omitted; a denotes a positive constant.)

$$f(x) \qquad \int f(x) dx$$

$$x^{n} \qquad \frac{x^{n+1}}{n+1} \qquad (n \neq -1)$$

$$\frac{1}{x} \qquad \ln|x|$$

$$e^{x} \qquad e^{x}$$

$$\sin x \qquad -\cos x$$

$$\cos x \qquad \sin x$$

$$\sec^{2} x \qquad \tan x$$

$$\frac{1}{x^{2} + a^{2}} \qquad \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$

$$\frac{1}{x^{2} - a^{2}} \qquad \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| \qquad (x > a)$$

$$\frac{1}{a^{2} - x^{2}} \qquad \frac{1}{2a} \ln\left|\frac{a + x}{a - x}\right| \qquad (|x| < a)$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)|$$

Vectors

If
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ then
$$\mathbf{a}.\mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

PROBABILITY & STATISTICS

Summary statistics

For ungrouped data:

$$\overline{x} = \frac{\sum x}{n}$$
, standard deviation $= \sqrt{\frac{\sum (x - \overline{x})^2}{n}} = \sqrt{\frac{\sum x^2}{n} - \overline{x}^2}$

For grouped data:

$$\overline{x} = \frac{\sum xf}{\sum f}$$
, standard deviation $= \sqrt{\frac{\sum (x - \overline{x})^2 f}{\sum f}} = \sqrt{\frac{\sum x^2 f}{\sum f} - \overline{x}^2}$

Discrete random variables

$$E(X) = \sum xp$$
, $Var(X) = \sum x^2 p - \{E(X)\}^2$

For the binomial distribution B(n, p):

$$p_r = \binom{n}{r} p^r (1-p)^{n-r}, \qquad \mu = np, \qquad \sigma^2 = np(1-p)$$

For the geometric distribution Geo(p):

$$p_r = p(1-p)^{r-1},$$
 $\mu = \frac{1}{p}$

For the Poisson distribution $Po(\lambda)$

$$p_r = e^{-\lambda} \frac{\lambda^r}{r!}, \qquad \mu = \lambda, \qquad \sigma^2 = \lambda$$

Continuous random variables

$$E(X) = \int x f(x) dx$$
, $Var(X) = \int x^2 f(x) dx - \{E(X)\}^2$

Sampling and testing

Unbiased estimators:

$$\overline{x} = \frac{\sum x}{n},$$
 $s^2 = \frac{\sum (x - \overline{x})^2}{n - 1} = \frac{1}{n - 1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right)$

Central Limit Theorem:

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Approximate distribution of sample proportion:

$$N\left(p, \frac{p(1-p)}{n}\right)$$

THE NORMAL DISTRIBUTION FUNCTION

If Z has a normal distribution with mean 0 and variance 1, then, for each value of z, the table gives the value of $\Phi(z)$, where

$$\Phi(z) = P(Z \leqslant z).$$

Z	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
	0.5000	0.5040	0.5000	0.5100	0.5160	0.7100	0.5000	0.5050	0.5010	0.5050		ADD							
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	4	8	12	16	20	24	28	32	36
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596		0.5675	0.5714	0.5753	4	8	12	16	20	24	28	32	36
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	4	8	12	15	19	23	27	31	35
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517	4	7	11	15	19	22	26	30	34
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879	4	7	11	14	18	22	25	29	32
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	3	7	10	14	17	20	24	27	31
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	3	7	10	13	16	19	23	26	29
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	3	6	9	12	15	18	21	24	27
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133	3	5	8	11	14	16	19	22	25
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	3	5	8	10	13	15	18	20	23
1.0	0.0412	0.0420	0.0461	0.8485	0.0500	0.9521	0.8554	0.0577	0.9500	0.9621	2	5	7	0	12	1.4	16	10	21
1.0	0.8413	0.8438	0.8461		0.8508		0.8554	0.8577	0.8599	0.8621	2		7	9	12	14	16	19	21
1.1	0.8643	0.8665 0.8869	0.8686	0.8708	0.8729	0.8749		0.8790	0.8810	0.8830	2	4	6	8	10	12	14	16	18
1.2	0.8849		0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	2	4	6	7	9	11	13	15	17
1.3	0.9032	0.9049			0.9099	0.9115		0.9147	0.9162	0.9177	2	3	5	6	8	10 8	11	13	14
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	1	3	4	6	7	8	10	11	13
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441	1	2	4	5	6	7	8	10	11
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	1	2	3	4	5	6	7	8	9
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	1	2	3	4	4	5	6	7	8
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706	1	1	2	3	4	4	5	6	6
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	1	1	2	2	3	4	4	5	5
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817	0	1	1	2	2	3	3	4	4
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857	0	1	1	2	2	2	3	3	4
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890	0	1	1	1	2	2	2	3	3
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916	0	1	1	1	1	2	2	2	2
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931		0.9934	0.9936	0	0	1	1	1	1	1	2	2
'											3	9	1	1	1	1	1	_	_
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952	0	0	0	1	1	1	1	1	1
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964	0	0	0	0	1	1	1	1	1
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974	0	0	0	0	0	1	1	1	1
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981	0	0	0	0	0	0	0	1	1
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986	0	0	0	0	0	0	0	0	0

Critical values for the normal distribution

If Z has a normal distribution with mean 0 and variance 1, then, for each value of p, the table gives the value of z such that

$$P(Z \leq z) = p$$
.

p	0.75	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
z	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291