Lewis theory of acids - bases:

Acid: which accepts electron pair.

- All electrophiles are Lewis acids
- Lewis acid must contain suitable vacant orbitals.

Eg: BF₃, BCl₃, AlCl₃, H⁺, Ag⁺ etc.

Base: which donates e⁻ pair.

- All nucleophiles are Lewis bases
- Lewis base must contain 1 or more lone pairs of electrons.

Eg:
$$NH_3$$
, PH_3 , $R - NH_2$, $NH_2 - NH_2$, OH^- , CI^- , H_2O

Neutralization: It involves formation of coordinate covalent bond by the transfer of e[®] pair form base to acid.

$$H_3N + \square$$
 BF₃ \rightarrow [H₃ N \rightarrow BF₃]

 \vdots
 $H_2O + H^{\oplus} \rightarrow [H_2O - H]^+ \text{ or } H_3O^{\oplus}$
 \vdots
 $H_3N + H^{\oplus} \rightarrow [H_3N - H]^+ \text{ or } NH_4^{\oplus}$
 $C\widehat{l}^- + AlCl_3 \rightarrow [Cl - AlCl_3]^- \text{ or } AlCl_4$

- Types of Lewis acids :
 - 1) All simple cations:

Eg :
$$H^+$$
, Ag^+ , Li^+ , Cu^{2+} , Co^{3+} , Al^{3+} etc.

$$Ag^+ + 2NH_3 \rightarrow [Ag(NH_3)_2]^+$$

2) Electron deficient molecules:

Eg: BF_3 , BCl_3 , BBr_3 , Bl_3 , $AlCl_3$, $GaCl_3$ etc.

$$BF_3 < BCl_3 < BBr_3 < Bl_3$$

$$\mathsf{BF}_3 + \mathsf{F}^- \to [\mathsf{F}_3\mathsf{B} - \mathsf{F}]^- \text{ or } BF_4^-$$

• 3) Molecules which can extend octet configuration:

Eg: SiF₄, SiCl₄, SnCl₄, SF₄, SFCl₄, TeCl₄ etc.

• 4) Molecules with multiple bonds in between atoms of different electronegativities

$$Eg:CO_{2},\,SO_{2},\,SO_{3},\,NO_{2},\,N_{2}O_{5},\,CI_{2}O_{7},\,P_{2}O_{5}$$

$$O = \overset{\delta^{+}}{C} = \overset{\delta^{-}}{O} + \overset{\bullet \bullet}{OH} \rightarrow Q = \overset{C}{C} - O^{-} \text{ or } HCO_{3}^{-}$$

• 5) Molecules in which the central atom with sextet configuration

$$\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} + \begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} \rightarrow O \leftarrow \begin{array}{c} O \\ \parallel \\ \bullet \\ \bullet \\ \bullet \\ \bullet \end{array} - O^{-}$$

$$S + SO_3^{2-} \rightarrow S_2O_3^{2-}$$

• Types of Lewis bases :

All simple anions:

Eg : Cl⁻, Br⁻,OH⁻,CN⁻etc.
SiCl₄ + 2Cl⁻
$$\rightarrow$$
SiCl₄²

• Molecules with lone pairs:

Eg:
$$NH_3$$
, PH_3 , N_2H_4 , $R-NH_2$, $R-OH$, H_2O ,

$$R - O - R$$
, R_2S etc.

$$NH_3$$
+ H⁺ \rightarrow [H₃N \rightarrow H]⁺ or NH_4 +

• Molecular multiple bonds in between similar atoms:

Eg:
$$CH_2 = CH_2$$
, $CH \equiv CH$, pyridine, : NO, : CO

Draw backs of Lewis theory:

- 1) It will not consider popular acids like HClO₄, HNO₃, H₂SO₄ as they do not form coordinate covalent bond.
- 2) It fails to explain the catalytic activity of H⁺.
- 3) Lewis acid base neutralisation is very slow as it involves formation of co-ordinate covalent bond but actually neutralisation reactions are very fast.
- 4) It fails to explain strength of acids and bases.
- 5) It fails to explain the simple neutralisation reactions where H⁺ is involved.

Comparison of acid – base theories :

- 1) All Arrhenius acids are bronsted lowery acids but all bronsted lowery bases are not Arrhenius bases.
 - Eg: $HCl_{(aq)} \rightarrow It$ is Arrhenius acid as it gives H^+ and bronsted lowery acid as it donates proton.
 - $NH_3 \rightarrow It$ is bronsted lowery base because it accepts proton but it is not Arrhenius base as it will not give OH^2 ?
- 2) All bronsted lowery bases are Lewis base but Lewis acids need not be bronsted lowery acids.
 - Eg: $NH_3 \rightarrow$ It is Bronsted lowery base because it accepts proton and it is Lewis base because it donates e^- pair.
 - $BF_3 \rightarrow It$ is Lewis acid as it accepts electron pair but it is not bronsted lowery acid as it will not donate proton.