Introduction to Programming Language (C) (KON 110E)



### **FINAL EXAM**

### Question: 1

Write a function,

CheckCredentials(char[] email, char[] pw)

which checks the given e-mail and password such that the e-mail should contain the characters '@' and '.' in correct order, and the password should contain both numbers, capital and small letters. The function returns 1 if the given credentials are valid, otherwise returns 0.





### **FINAL EXAM**

### Question: 2

Write a function,

Solve(double a, double b, double c)

which solves a second-order equation  $ax^2 + bx + c = 0$  for a given a, b and c coefficients and returns the roots. Since the roots of the equation can also be complex, your function should be able to handle this case.

**Introduction to Programming Language (C) (KON 110E)** 



#### **FINAL EXAM**

### Question: 3

Secant method is a numerical method for solving equations of the form f(x) = 0. The iteration rule for the Secant method is given as follows:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

Here, the initials points  $x_{k-1}$  and  $x_k$  should be provided to obtain the solution.

a) Write a function

Secant(double (\*f)(double), double eps, double \*xInitials)

in order to find a root of any given function f.

**b)** Test your function on the following equation by writing an appropriate program.

$$x^2 \left| \sin \sqrt{x} \right| = 10$$

(Set the initial conditions as x=[1,2] and the error tolerance as  $\epsilon=10^{-3}$ )

Introduction to Programming Language (C) (KON 110E)



#### **FINAL EXAM**

### Question: 4

Bresenham's line algorithm is a famous algorithm which draws a straight line to a discretized canvas as shown in the figure. The pseudo-code of this algorithm is given below.

```
Input: Integer x0, Integer x1, Integer y0, Integer y1, Integer canvas[HEIGHT][WIDTH]
```

```
Real \Delta x = |x1 - x0|

Real \Delta y = |y1 - y0|

Real error = 0

Integer y = y0, x = x0

If \Delta x \ge \Delta y then

For x from x0 to x1

canvas[y][x] = "\#"
error += 2\Delta y
If error \ge 0 and extit{ } \Delta x = 0 then
y = y + sign(y1 - y0)
error -= 2\Delta x
```



Else:

For y from y0 to y1 canvas[y][x] = #"  $error += 2\Delta x$  If  $error \ge 0$  and  $\Delta y != 0$  then x = x + sign(x1-x0)  $error -= 2\Delta y$ 

In your program, implement the given algorithm with a function. After that using your function construct a program that draws a triangle to the console output window.

**Hint:** In the beginning of your program, define a canvas in the form of 2D array and fill with empty '' characters. You will also need a function that draws your canvas.