

Divide y Vencerás

Algorítmica. Práctica 2

Jose Alberto Hoces Castro Javier Gómez López Moya Martín Castaño

- 1. Introducción
- 2. Ejercicio 1
- 3. Ejercicio 2
- 4. Conclusiones

Introducción

Problemas planteados

Introducción 000

- Ejercicio 1: Buscar en un vector ordenado un elemento tal que v[i] = i.
- Ejercicio 2: Dados k vectores ordenados, de n elementos cada uno, combinarlos en un vector ordenado.

Objetivo de la prática

Introducción 000

> Apreciar la utilidad de la técnica divide y vencerás (DyV) para resolver problemas de forma más eficiente que otras alternativas más sencillas o directas.

Ejercicio 1

Búsqueda secuencial

Es la manera más obvia de buscar en un vector. Empezamos en el primer elemento y lo vamos recorriendo hasta encontrar el elemento deseado. En caso de no encontrarlo, devolvemos un valor que indique error (en nuestro caso -1).

Búsqueda secuencial. Código

```
int buscarSecuencial(int v[], int n){
    for (size_t i = 0; i < n; i++) //0(n)

    {
        if (v[i] == i){ //0(1)
            return i; //0(1)
        }
}

return -1;//0(1)
}</pre>
```

Búsqueda secuencial. Eficiencia teórica

Observamos claramente que

$$T(n) \in O(n)$$

Búsqueda secuencial. Eficiencia empírica

Elementos (n) Tiempo (s) 1760000 0.016594 2520000 0.0265689 3280000 0.0360554 4040000 0.0368924 4800000 0.0369925 4800000 0.0599273 5560000 0.0529679 7080000 0.0529679 7080000 0.058522 784,0000 0.0649594 8600000 0.0723527 9360000 0.0856522 10880000 0.0992702 12400000 0.105115 13160000 0.114969 13920000 0.118283 14680000 0.123955 15400000 0.132098 16200000 0.146774 17720000 0.156614 18480000 0.157312 192400000 0.163214 20000000 0.169743	Búsqueda secuencial		
2520000 0.0262689 3280000 0.0336055 4040000 0.0368924 4800000 0.0368924 4800000 0.0368927 5560000 0.068927 7080000 0.0585823 7840000 0.0649594 8600000 0.0695969 10120000 0.080981 10120000 0.08056522 10880000 0.092261 11640000 0.0922702 12400000 0.114969 13920000 0.114969 13920000 0.132098 16200000 0.132098 16200000 0.132098 16200000 0.132098 16200000 0.139156 16960000 0.146774 17720000 0.150614 18480000 0.157312	Elementos (n)	Tiempo (s)	
3280000 0.0336055 4040000 0.0368924 4800000 0.0399273 5560000 0.0485439 6320000 0.0529679 7080000 0.058823 7840000 0.0649594 8600000 0.0723527 10880000 0.0856522 10880000 0.0922361 11640000 0.0922361 11640000 0.105115 13160000 0.114969 13920000 0.114283 14680000 0.132098 16200000 0.132098 16200000 0.132098 16200000 0.136714 17720000 0.150614 18480000 0.157312	1760000	0.0165694	
4040000 0.0368924 4800000 0.0399273 5560000 0.0485439 6320000 0.058523 7840000 0.058523 7840000 0.0587287 7840000 0.0649594 860000 0.0723527 9360000 0.0807981 10120000 0.0856522 10880000 0.092261 11640000 0.0992702 12400000 0.114969 13920000 0.132995 15440000 0.132995 15440000 0.139156 16960000 0.136674 17720000 0.150614 18480000 0.15614	2520000	0.0262689	
4800000 0.0399273 5560000 0.0485439 5560000 0.0529679 7080000 0.0529679 7080000 0.0585823 7840000 0.0649594 8600000 0.0801981 10120000 0.08056522 10880000 0.092702 12400000 0.105115 13160000 0.114969 13920000 0.132098 14680000 0.132098 16200000 0.132098 16200000 0.139156 16960000 0.146774 17720000 0.150614 18480000 0.157312 182400000 0.157312	3280000	0.0336055	
5560000 0.0485439 6320000 0.0595679 7080000 0.0595823 7840000 0.0595823 7840000 0.0649594 8600000 0.073527 10880000 0.0856522 10880000 0.092201 11640000 0.092202 1240000 0.105115 13160000 0.114969 13920000 0.114283 14680000 0.132098 16200000 0.132098 16200000 0.150614 1720000 0.150614 18480000 0.150714	4040000	0.0368924	
6320000 0.0529679 7080000 0.0585823 7080000 0.0585823 7080000 0.0649594 860000 0.0649594 810120000 0.0807981 10120000 0.0855522 10880000 0.0922361 11640000 0.0992702 12400000 0.105115 13160000 0.114969 13920000 0.118283 14680000 0.132098 16200000 0.132098 16200000 0.156614 18480000 0.156714	4800000	0.0399273	
7080000 0.0585823 784,0000 0.0649594 8600000 0.0649594 8600000 0.0801981 10120000 0.0856522 10880000 0.0922361 1164,0000 0.092702 124,00000 0.105115 13160000 0.114969 13920000 0.132098 14,680000 0.132098 16200000 0.139055 16960000 0.139051 16960000 0.150614 17720000 0.150614 18480000 0.157312 1924,0000 0.157312	5560000	0.0485439	
7840000 0.0649594 8600000 0.0723527 9360000 0.0859181 10120000 0.0856522 10880000 0.092201 11640000 0.0992702 12400000 0.105115 13160000 0.114969 13920000 0.132098 15440000 0.132098 16200000 0.132098 16200000 0.136674 17720000 0.150614 18480000 0.157312 18480000 0.157312	6320000	0.0529679	
860000 0.0723527 9360000 0.0801981 10120000 0.08856322 10880000 0.0922361 116,0000 0.0992702 124,00000 0.105115 13160000 0.114969 13920000 0.118283 14,680000 0.132995 154,0000 0.132098 16200000 0.136714 17720000 0.150614 184,80000 0.157312	7080000	0.0585823	
9360000 0.0801981 10120000 0.0856522 10880000 0.0922361 1164,0000 0.092702 124,00000 0.105115 13160000 0.114969 13920000 0.18283 14,680000 0.132098 16200000 0.133098 16200000 0.139156 16960000 0.146774 17720000 0.150614 184,800000 0.157312 1924,0000 0.167312	7840000	0.0649594	
10120000 0.0856522 10880000 0.0922361 11640000 0.0992702 12400000 0.105115 13160000 0.114969 13920000 0.118283 14680000 0.123955 15440000 0.132098 16200000 0.13098 16960000 0.146774 17720000 0.150614 18480000 0.157312 18480000 0.157312	8600000	0.0723527	
10880000 0.092361 116,0000 0.0992702 124,00000 0.105115 13160000 0.114969 13920000 0.118283 1,680000 0.132955 154,0000 0.132098 16200000 0.136774 17720000 0.150614 184,80000 0.157312	9360000	0.0801981	
1164,0000 0.0992702 124,00000 0.105115 13160000 0.114969 13920000 0.118283 14,680000 0.132955 154,40000 0.13295 16200000 0.139156 16960000 0.146774 17720000 0.150614 184,80000 0.153212 1924,0000 0.163214	10120000	0.0856522	
1240000 0.105115 13160000 0.114969 1392000 0.118283 14680000 0.123955 15440000 0.132098 16200000 0.139156 16960000 0.146774 17720000 0.150614 18480000 0.157312 18480000 0.157312	10880000	0.0922361	
1316000 0.114/969 13920000 0.118283 14/680000 0.123955 154/40000 0.132908 16200000 0.139156 16960000 0.146774 17720000 0.150614 184/80000 0.157312 19240000 0.163214	11640000	0.0992702	
13920000 0.118283 14,680000 0.123955 15440000 0.132098 16200000 0.139156 16960000 0.146774 17720000 0.150614 18480000 0.153312 19240000 0.163214	12400000	0.105115	
14,680000 0.123955 15440000 0.132098 16200000 0.139156 16960000 0.146774 17720000 0.150614 184,80000 0.157312 19240000 0.163214	13160000	0.114969	
15440000 0.132098 16200000 0.139156 16960000 0.146774 17720000 0.150614 18480000 0.157312 19240000 0.163214	13920000	0.118283	
1620000 0.139156 1696000 0.146774 17720000 0.150614 18480000 0.157312 19240000 0.163214	14680000	0.123955	
1696000	15440000	0.132098	
17720000 0.150614 18480000 0.157312 19240000 0.163214	16200000	0.139156	
18480000 0.157312 19240000 0.163214	16960000	0.146774	
19240000 0.163214	17720000	0.150614	
	18480000	0.157312	
20000000 0.169743	19240000	0.163214	
	20000000	0.169743	

Tabla 1: Experiencia empírica de la búsqueda a fuerza bruta

Búsqueda secuencial. Eficiencia híbrida

Figura 1: Gráfica con los tiempos de ejecución de la búsqueda a fuerza bruta

Búsqueda binaria

La tećnica Divide y Vencerás usada es la búsqueda binaria. Al estar ante un vector ordenado, podemos recurrir hasta algoritmo cuya eficiencia es logarítmica, mucho más preferible que una lineal.

Búsqueda binaria. Código

```
int buscarBinaria(int *v, int inicio, int fin){
      if(fin >= inicio) \{ // 0(1) \}
2
          int medio = inicio + (fin - inicio) / 2; // 0(1)
4
          if(v[medio] == medio) { // 0(1)}
               return medio; // 0(1)
6
8
          if(v[medio] > medio){ // 0(1)
9
               return buscarBinaria(v, inicio, medio - 1); // 0(n
10
      /2)
12
          //else
13
          return buscarBinaria(v, medio + 1, fin); // 0(n/2)
14
      }
16
      return -1; // 0(1)
17
18
```

Búsqueda binaria. Eficiencia teórica

Observamos claramente que

$$T(n) = T\left(\frac{n}{2}\right) + a$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(x-1)^2 \qquad \qquad \downarrow$$

$$T(2^k) = (co + c1 \cdot k) \cdot 1^k \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$T(n) = co + c1 \cdot log(n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$T(n) \in O(\log(n))$$

Búsqueda binaria. Eficiencia empírica

Búsqueda binaria		
Elementos (n)	Tiempo (s)	
1760000	0.000000402733	
2520000	0.0000005118	
3280000	0.000000472	
4040000	0.000000538667	
4800000	0.0000006558	
5560000	0.0000006632	
6320000	0.000000618467	
7080000	0.0000005378	
7840000	0.000000617267	
8600000	0.000000618667	
9360000	0.0000007254	
10120000	0.000000638133	
10880000	0.0000006072	
11640000	0.00000071	
12400000	0.000000569667	
13160000	0.0000006822	
13920000	0.000000631667	
14680000	0.000000569333	
15440000	0.000000697867	
16200000	0.0000005758	
16960000	0.00000069	
17720000	0.000000623667	
18480000	0.000000644133	
19240000	0.0000007254	
20000000	0.000000673533	

Búsqueda binaria. Eficiencia híbrida

Figura 2: Gráfica con los tiempos de ejecución de la búsqueda binaria

Búsqueda binaria. Fuerza bruta vs Divide y Vencerás

Figura 3: Gráfica comparativa: Fuerza Bruta vs DyV sin repeticiones

Búsqueda binaria. Fuerza bruta vs Divide y Vencerás

Las expresiones del tiempo de cada algoritmo son:

Fuerza bruta $\longrightarrow T(n) = 8.41755 \cdot 10^{-9}n + 0.00153755$

DyV sin repeticiones $\longrightarrow T(n) = 5.63832 \cdot 10^{-8} \cdot \log_2(n) - 6.87177 \cdot 10^{-7}$.

E igualando las expresiones obtenemos que: **Umbral:** n = 1

¿Qué pasaría si tuviésemos elementos repetidos? Por ejemplo:

1 2 3 4 4 5 6 7

¿Elementos repetidos?. Solución

```
int buscarBinaria(int v[], int inicio,int fin){
      int medio = (inicio + fin)/2; // 0(1)
2
      int resultado = -1; // 0(1)
4
      if(v[medio] == medio) { // 0(1)}
5
           return medio; // 0(1)
6
      else{
8
           if(inicio \ll fin) \{ // 0(1) \}
9
               resultado = buscarBinaria(v, inicio, medio - 1); //
10
      0(n/2)
               if(resultado == -1){
12
                   resultado = buscarBinaria(v, medio + 1, fin); //
13
       0(n/2)
14
15
      }
16
17
      return resultado; // 0(1)
18
```

¿Elementos repetidos?. Eficiencia teórica

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + a$$

$$\downarrow$$

$$(x-1)(x-2)$$

$$\downarrow$$

$$T(2^k) = co + c1 \cdot 2^k$$

$$\downarrow$$

$$T(n) = co + c1 \cdot n$$

$$\downarrow$$

$$T(n) \in O(n)$$

¿Elementos repetidos?. Eficiencia empírica

Divide y Vencerás con repeticiones		
Elementos (n)	Tiempo (s)	
1760000	0.020179	
2520000	0.0220417	
3280000	0.0344659	
4040000	0.0398963	
4800000	0.0443348	
5560000	0.0502432	
6320000	0.0558109	
7080000	0.0592223	
7840000	0.0630519	
8600000	0.0698851	
9360000	0.0772074	
10120000	0.0808893	
10880000	0.0893751	
11640000	0.0940162	
12400000	0.0992901	
13160000	0.103868	
13920000	0.116623	
14680000	0.118174	
15440000	0.12476	
16200000	0.131296	
16960000	0.145325	
17720000	0.162416	
18480000	0.170681	
19240000	0.177497	
20000000	0.185571	

¿Elementos repetidos?. Eficiencia híbrida

Figura 4: Gráfica con los tiempos de ejecución de la búsqueda con repeticiones

¿Elementos repetidos?. Fuerza bruta vs DyV con repeticiones

Figura 5: Gráfica comparativa: Fuerza Bruta vs DyV con repeticiones

Fuerza bruta
$$\longrightarrow T(n) = 8.41755 \cdot 10^{-9} n + 0.00153755$$
.
DyV con repeticiones $\longrightarrow T(n) = 8.71886 \cdot 10^{-9} \cdot n - 0.00140853$.

¡La pendiente del algoritmo de fuerza bruta es menor que la del "Divide v Vencerás"!

Ejercicio 2

Fuerza Bruta

Este algoritmo consiste en ir mezclando los dos primeros vectores, después mezclar el resultante con el tercero y así sucesivamente.

Eiercicio 2 000000000000

```
void mergeKArrays(int nElementos, int **arr, int nVectores, int
     * &v resultante)
     int k = 0;
     bool encontrado;
     for(int i = 0; i < nElementos; i++){ //0(n)</pre>
       v_resultante[i] = arr[0][i];
     //iteramos por cada vector y por cada elemento del nuevo
     vector a insertar
     for(int i = 1: i < nVectores: i++){
                                                 //0(k)
       for(int j = 0; j < nElementos; j++){
         encontrado = false;
         k = 0:
         while(k < nElementos * i + i && !encontrado){ //0(kn
           if(v_resultante[k] > arr[i][j])
             encontrado = true;
           else
             k++:
         //Realizamos traslacion a la derecha para insertar
     elemento si es menor
         if(encontrado){
           for(int 1 = nElementos*i+j-1; 1 >= k; 1--){ //0(kn)
             v_resultante[1+1] = v_resultante[1];
           v_resultante[k] = arr[i][j];
         elsef
           v_resultante[nElementos * i + j ] = arr[i][j];
```

Fuerza Bruta. Análisis Teórico

Vemos tras lo explicado que

$$T(n) \in O(k^2n^2)$$

Ejercicio 2 000000000000

Fuerza Bruta. Análisis Empírico

Algoritmo de fu	erza bruta fijado n	Algoritmo de fu	erza bruta fijado k
Elementos (n)	Tiempo (s)	Elementos (n)	Tiempo (s)
176	0.025546	176	0.0459797
252	0.0542358	252	0.10393
328	0.110631	328	0.159313
404	0.179092	404	0.231346
480	0.192662	480	0.340936
556	0.307523	556	0.417845
632	0.355095	632	0.517876
708	0.472475	708	0.649491
784	0.528376	784	0.790378
860	0.588945	860	0.961221
936	0.679135	936	1.01366
1012	0.810773	1012	1.33613
1088	0.935887	1088	1.53368
1164	1.07567	1164	1.7476
1240	1.19148	1240	1.78693
1316	1.43658	1316	2.27582
1392	1.57392	1392	2.73955
1468	1.67358	1468	3.09484
1544	1.92939	1544	3.2492
1620	2.13879	1620	3.48283
1696	2.38177	1696	3.72723
1772	2.54604	1772	4.12856
1848	2.67226	1848	4.72144
1924	3.0154	1924	4.95091
2000	3.19709	2000	5.2639

Tabla 4: Experiencia empírica de algoritmo de Inserción sin optimizar

Fuerza Bruta. Análisis Híbrido

Fuerza Bruta. Análisis Híbrido

Divide y vencerás

Vamos creando en cada iteración 2 arrays auxiliares de la matriz de tamaño $\frac{k \cdot n}{2}$ y llamar a la función de nuevo para cada uno de los arrays.

Divide y vencerás. Análisis Teórico

La recursividad a plantear es

$$T(n) = 3 * T\left(\frac{n}{2}\right) + a$$

Resolviendo esta ecuación, obtenemos que

$$T(n) \in O(n^{\log_2(3)}))$$
 $T(k) \in O(k^{\log_2(3)})$

Divide y vencerás. Análisis Empírico

Divide y Vencerás fijado k		
Elementos (n)	Tiempo (s)	
176	0.0355	
252	0.0539	
328	0.0823	
404	0.1298	
480	0.1566	
556	0.1893	
632	0.2341	
708	0.2911	
784	0.3463	
860	0.3992	
936	0.4528	
1012	0.5013	
1088	0.576	
1164	0.7865	
1240	0.8748	
1316	0.9568	
1392	1.1786	
1468	1.2567	
1544	1.4251	
1620	1.6832	
1696	1.854	
1772	2.092	
1848	2.1477	
1924	2.3216	
2000	2.4351	

Divide y vencerás. Análisis Empírico

Divide y Vencerás fijado n		
Elementos (n)	Tiempo (s)	
176	0.0596	
252	0.0865	
328	0.1133	
404	0.2911	
480	0.4478	
556	0.5541	
632	0.6012	
708	0.7355	
784	0.8129	
860	0.9115	
936	1.0218	
1012	1.1244	
1088	1.2152	
1164	1.4891	
1240	1.5771	
1316	1.7632	
1392	1.8914	
1468	1.9788	
1544	2.1257	
1620	2.3554	
1696	2.783	
1772	2.961	
1848	3.3428	
1924	3.7213	
2000	3.9121	

Divide y Vencerás. Análisis Híbrido

Conclusiones

- El uso de la técnica "Divide y Vencerás" no siempre es garantía de mejora respecto al uso del algoritmo de fuerza bruta.
- En aquellos casos en los que el uso de "Divide y Vencerás" sí nos ayuda a mejorar los tiempos, es importante saber que el algoritmo de fuerza bruta es preferible si se usan tamaños por debajo del umbral.
- EL uso de la recursividad requiere un uso excesivo de la pila y en algunos casos, esto da lugar a algoritmos ineficientes.