1(a) Proof. Fix any x where |x| < 1. First if x = 0. Since $e^0 = 1$ by Rudin 8.27. And $e^{\log y} = y$ for all positive y by Rudin 8.36. Therefore, $\log(1) = 0$. And it's clear that

$$0 = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{0^k}{k}.$$

Thus, the equation is true in this case.

Now suppose $x \in (0,1)$. Then for any $t \in [1,1+x]$, $|1-t|=t-1 \le x < 1$. Therefore, by the formula for geometric series,

$$\frac{1}{t} = \frac{1}{1 - (1 - t)} = \sum_{k=0}^{\infty} (1 - t)^k.$$

Therefore,

$$\int_{1}^{1+x} \frac{1}{t} dt = \int_{1}^{1+x} \sum_{k=0}^{\infty} (1-t)^{k} dt.$$

Furthermore, note that the above infinite series has radius of convergence (0,2) as $|1-t| < 1 \implies 0 < t < 2$. Thus that by Rudin Theorem 8.1, $\sum_{k=0}^{\infty} (1-t)^k$ converges uniformly on [1, 1+x], as $[1, 1+x] \subsetneq (0,2)$. Hence, by Rudin Theorem 7.16,

$$\int_{1}^{1+x} \sum_{k=0}^{\infty} (1-t)^{k} dt = \sum_{k=0}^{\infty} \int_{1}^{1+x} (1-t)^{k} dt.$$

Combining the above results, and evaluating each integrals, we have

$$\int_{1}^{1+x} \frac{1}{t} dt = \sum_{k=0}^{\infty} \int_{1}^{1+x} (1-t)^{k} dt$$

$$= \sum_{k=0}^{\infty} \left[\frac{-(1-t)^{k+1}}{k+1} \right]_{1}^{1+x}$$

$$= \sum_{k=0}^{\infty} \frac{-(-x)^{k+1}}{k+1}$$

$$= \sum_{k=1}^{\infty} \frac{-(-x)^{k}}{k}$$

$$= \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{k}}{k}.$$

And since Rudin 8.39, $\log(1+x) = \int_1^{1+x} \frac{1}{t} dt$, the equation is thus true in this case.

Now suppose $x \in (-1,0)$. Then again for any $t \in [1+x,1]$, $|1-t|=1-t \le -x < 1$. And the series $\sum_{k=0}^{\infty} (1-t)^k$ converges uniformly on [1+x,1], as $[1,1+x] \subsetneq (0,2)$. Therefore, the above decomposition applies still. This completes the proof.

1(b) Proof. We apply Rudin 8.2 (Abel's Theorem) here. First note that $\sum_{n=1}^{\infty} (-1)^{n-1} 1/n$ converges by the alternating series test. Therefore, by Rudin 8.2 and by results from (a),

$$\lim_{x \to 1^{-}} \log(1+x) = \lim_{x \to 1^{-}} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{n}}{n} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}.$$

And since e^x is and strictly increasing and continuous, then $\log(y)$, being the inverse of e^x , is also strictly increasing continuous. Therefore,

$$\lim_{x \to 1^{-}} \log(1+x) = \log(2).$$

This gives that

$$\log(2) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}.$$

2

2 Proof. First note that since $\sum_{n=0}^{\infty} a_n = \infty$, then given any c > 0, we also have

$$c \cdot \sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} c \cdot a_n = \infty.$$

Let M > 0 be arbitrary. Choose c = 1/2. This means that there exists a natural K s.t. for N > K,

$$\sum_{n=0}^{N} c \cdot a_n > M.$$

Note that there exists $0 < \delta < 1$ such that $(1-\delta)^N = c$, since $1-\delta = c^{1/N}$ where $0 < c^{1/N} < 1$. We thus pick this δ . Then note that for any $1-\delta < x < 1$, and any $n \le N$

$$x^n > (1 - \delta)^n = c^{n/N} \ge c,$$

which, with the fact that each $a_n \geq 0$, gives that,

$$\sum_{n=0}^{N} a_n x^n \ge \sum_{n=0}^{N} c \cdot a_n.$$

Note also that the partial sums of the series $\sum_{n=0}^{\infty} a_n$ are monotone increasing on (0,1), since $a_n \geq 0$ for all n. Therefore, for 0 < x < 1,

$$\sum_{n=0}^{\infty} a_n x^n \ge \sum_{n=0}^{N} a_n x^n.$$

Therefore, combining the above results, we get that for any $x \in (1 - \delta, 1)$,

$$\sum_{n=0}^{\infty} a_n x^n \ge \sum_{n=0}^{N} a_n x^n \ge \sum_{n=0}^{N} c \cdot a_n > M.$$

This completes the proof that $\sum_{n=0}^{\infty} a_n x^n \to \infty$ as $x \to 1^-$.

3

MATH 321 HW 07 36123040 Shawn Wu

4 Proof. We first show that $f \in \mathcal{R}[0,R]$. By Rudin Theorem 8.1, we know that f is continuous on [0,R) since f is a power series with radius of convergence R. Also note that f is bounded on the whole [0,R] since f is bounded on [0,R) and $f(R) \in \mathbb{R}$. This means that f(x) on [0,R] is a bounded function with possibly x=R being its only discontinuity. Therefore, by Rudin Theorem 6.10, $f \in \mathcal{R}[0,R]$, i.e., the expression $\int_0^R f(x) dx$ is well-defined.

We next show that the series $\sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1}$ actually converges. First note that for each n,

$$a_n \frac{R^{n+1}}{n+1} = a_n R^n \cdot \frac{R}{n+1}.$$

Let $\alpha_n = a_n R^n$ and $\beta_n = R/(n+1)$. Since $\sum_{n=0}^{\infty} \alpha_n$ converges, the partial sums A_n of $\sum_{n=0}^{\infty} \alpha_n$ form a bounded sequence. Also $\beta_0 \geq \beta_1 \geq \beta_n \geq \cdots$, with $\lim_{n \to \infty} \beta_n = 0$. Therefore, by Rudin Theorem 3.42, $\sum_{n=0}^{\infty} \alpha_n \beta_n$ converges, i.e., $\sum_{n=0}^{\infty} a_n R^{n+1}/(n+1)$ converges.

Now note that by Rudin Theorem 8.1, $f(x) = \sum_{n=0}^{\infty} a_n x^n$ converges uniformly on $[0, R - \xi]$ given any $R > \xi > 0$. Thus, by Rudin Theorem 7.16,

$$\int_0^{R-\xi} f(x) \, dx = \sum_{n=0}^{\infty} \int_0^{R-\xi} a_n x^n \, dx.$$

And by integrating each term,

$$\int_0^{R-\xi} f(x) dx = \sum_{n=0}^{\infty} a_n \frac{(R-\xi)^{n+1}}{n+1}.$$

For the rest of this proof, we show that as $\xi \to 0^+$,

$$\int_0^{R-\xi} f(x) \, \mathrm{d}x \to \int_0^R f(x) \, \mathrm{d}x, \text{ and } \sum_{n=0}^\infty a_n \frac{(R-\xi)^{n+1}}{n+1} \to \sum_{n=0}^\infty a_n \frac{R^{n+1}}{n+1}.$$

And since the functional limit is unique, this would complete the proof that $\int_0^R f(x) dx = \sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1}$.

Let's show the former first. Let $\varepsilon > 0$ be given. Note first that since f(x) is bounded on [0, R], then there exists $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in [0, R]$. Let $\delta = \varepsilon/M$. Then for any $0 < \xi < \delta$,

$$\left| \int_{0}^{R-\xi} f(x) \, \mathrm{d}x - \int_{0}^{R} f(x) \, \mathrm{d}x \right| = \left| \int_{R-\xi}^{R} f(x) \, \mathrm{d}x \right|$$

$$\leq \int_{R-\xi}^{R} |f(x)| \, \mathrm{d}x \qquad (\text{Rudin 6.13(b)})$$

$$\leq \int_{R-\xi}^{R} M \, \mathrm{d}x$$

$$= M\xi$$

$$< M \cdot \frac{\varepsilon}{M}$$

$$< \varepsilon.$$

This completes the proof of the former functional limit.

Let's move on to the later. Notice that if we do a change of variable with $t = (R - \xi)/\xi$,

$$\sum_{n=0}^{\infty} a_n \frac{(R-\xi)^{n+1}}{n+1} = \sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1} \left(\frac{R-\xi}{R} \right)^{n+1} = \sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1} t^{n+1},$$

where 0 < t < 1. Note that as $\sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1}$ converges by above, by Rudin Theorem 8.2,

$$\lim_{t \to 1^{-}} \sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1} t^{n+1} = \sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1}.$$

Also note that by the change of variable,

$$\lim_{t \to 1^{-}} \sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1} t^{n+1} = \lim_{\xi \to 0^{+}} \sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1} \left(\frac{R-\xi}{R} \right)^{n+1}.$$

Therefore, by combining the above results,

$$\lim_{\xi \to 0^+} \sum_{n=0}^{\infty} a_n \frac{(R-\xi)^{n+1}}{n+1} = \sum_{n=0}^{\infty} a_n \frac{R^{n+1}}{n+1}.$$

This completes the latter functional limit, which completes the whole proof.

5(a) Proof. **5(b)** Proof. **5(c)** Proof.

■