### **Announcements**

- HW3 due Monday
- Lab 3 write-up due Monday as well
- Next lab isn't until next Wednesday
- Read Ch 5.2 for Friday

# **Understanding Check**

You draw two cards from a standard shuffled deck of cards, replacing the first after it is drawn. What is the probability that on the first you draw a King or club, and on the second you draw a number less than 5 or a red card?

- A) 0.201
- B) 0.289
- C) 0.314
- D) 0.385



# **Understanding Check**

You draw two cards from a standard shuffled deck of cards, replacing the first after it is drawn. What is the probability that on the first you draw a King or club, and on the second you draw a number less than 5 or a red card?

- A) 0.201
- B) 0.289
- C) 0.314
- D) 0.385



#### **Justification**

## Why linear regression and why now?

- We've already been talking about how data is related, linear fits just quantify that idea
- One of the more common methods that people have already been exposed to
- Let's us focus the second half of the semester on significance

#### **Justification**

### Why linear regression and why now?

- We've already been talking about how data is related, linear fits just quantify that idea
- One of the more common methods that people have already been exposed to
- Let's us focus the second half of the semester on <u>significance</u>

**Linear regression** lets us quantify the relationship between two numerical variables, and can enable us to model or predict response variables from explanatory variables.

The <u>scatterplot</u> to the right shows the relationship between HS graduation rates in all 50 US states and the % of residents who live below the poverty line.

Response variable?

Explanatory variable?

Relationship?



The <u>scatterplot</u> to the right shows the relationship between HS graduation rates in all 50 US states and the % of residents who live below the poverty line.

Response variable?

• % in poverty

Explanatory variable?

Relationship?



The <u>scatterplot</u> to the right shows the relationship between HS graduation rates in all 50 US states and the % of residents who live below the poverty line.

# Response variable?

• % in poverty

Explanatory variable?

• % HS graduation rate

Relationship?



The <u>scatterplot</u> to the right shows the relationship between HS graduation rates in all 50 US states and the % of residents who live below the poverty line.

## Response variable?

% in poverty

### Explanatory variable?

• % HS graduation rate

## Relationship?

• linear, negative, moderately strong



# Quantifying your relationship with numbers



- Correlation describes the strengths of the <u>linear</u> association between two variables
- It takes values between -1 (perfect negative) and +1 (perfect positive)
- A value of 0 indicates no linear association
- Mathematically looks like:

$$R = \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_i - \bar{x}}{s_x} \frac{y_i - \bar{y}}{s_y}$$

# Quantifying your relationship with numbers



- Correlation describes the strengths of the <u>linear</u> association between two variables
- It takes values between -1 (perfect negative) and +1 (perfect positive)
- A value of 0 indicates no linear association
- Mathematically looks like:

$$R = \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_i - \bar{x}}{s_x} \frac{y_i - \bar{y}}{s_y}$$

### **Guess the Correlation**

Which of the following is the best guess for the correlation between the % of female households with no husband present and the % in poverty?

- A) 0.1
- B) -0.4
- C) 0.9
- D) 0.5



### **Guess the Correlation**

Which of the following is the best guess for the correlation between the % of female households with no husband present and the % in poverty?

- A) 0.1
- B) -0.4
- C) 0.9
- D) 0.5



## **Beware of Curves!**

Strength of correlation is based off of linear relationships!





## **Beware of Curves!**

Strength of correlation is based off of linear relationships!





Higher correlation

# Having a fit

#### What is a linear fit?

- Attempts to model data with high degrees of correlation
- Never going to be perfect, but useful for making predictions
- Establishes relationships of the form:

$$\hat{y} = \beta_0 + \beta_1 x$$

where  $\beta_0$  and  $\beta_1$  are the model parameters

• x is the explanatory variable,  $\hat{y}$  the predicted response variable

8

# Eyeballing it



What makes one particular line describing a correlation better than another?

### Residuals

#### **Residuals** are the leftovers from the model fit:



### **Residual Math**

Mathematically, the residual is the difference between the observed response variable  $(y_i)$ , and the predicted response variable  $(\hat{y}_i)$ .

$$e_i = y_i - \hat{y}_i$$



#### **Residual Math**

Mathematically, the residual is the difference between the observed response variable  $(y_i)$ , and the predicted response variable  $(\hat{y}_i)$ .

$$e_i = y_i - \hat{y}_i$$

 % living in poverty in DC is 5.44% more than predicted



### **Residual Math**

Mathematically, the residual is the difference between the observed response variable  $(y_i)$ , and the predicted response variable  $(\hat{y}_i)$ .

$$e_i = y_i - \hat{y}_i$$

- % living in poverty in DC is 5.44% more than predicted
- % living in poverty in RI is 4.16% less than predicted



# **Understanding Check**

The best fit line on the plot to the right is given by:

$$\hat{y} = 64.781 - 0.6212x$$

Oregon has an 86.9% HS graduate rate and a poverty rate of 11.2%. What is the residual for Oregon?

- A) -0.5%
- B) -1.4%
- C) 0.4%
- D) 29%



# **Understanding Check**

The best fit line on the plot to the right is given by:

$$\hat{y} = 64.781 - 0.6212x$$

Oregon has an 86.9% HS graduate rate and a poverty rate of 11.2%. What is the residual for Oregon?

- A) -0.5%
- B) -1.4%
- C) 0.4%
- D) 29%



# Fitting the best lines

• For a useful predictor, we want a line that has small residuals:

**Option 1:** Minimize the sum of the absolute values of the residuals

$$|e_1| + |e_2| + \cdots + |e_n|$$

Option 2: Minimize the sum of squared residuals - *least squares* 

$$e_1^2 + e_2^2 + \cdots + e_n^2$$

- Why least squares?
  - 1. Most commonly used
  - 2. Easier to compute by hand and computer
  - 3. Frequently, a residual that is twice as large is more than twice as bad

# Anatomy of a Line

Recall that our best fit line takes the form of

$$\hat{y} = \beta_0 + \beta_1 x$$

- x is our explanatory variable
- $\hat{y}$  is our predicted response variable
- $\beta_0$  is the y-intercept of the line
  - $\beta_0$  itself corresponds to the population intercept
  - Our estimate of  $\beta_0$  (from our sample) will be denoted  $b_0$
- $\beta_1$  is the slope of the line
  - $\beta_1$  corresponds to the population slope
  - Our estimate of β<sub>1</sub> will be denoted b<sub>1</sub>

# **Our Starting Point**

Least square linear fits have certain properties that we can take advantage of. Given:



|      | % HS grad         | % in poverty      |
|------|-------------------|-------------------|
|      | (x)               | (y)               |
| mean | $\bar{x} = 86.01$ | $\bar{y} = 11.35$ |
| sd   | $s_x = 3.73$      | $s_y = 3.1$       |
|      | correlation       | R = -0.75         |

# The Slope!

The slope of the regression can be calculated as

$$b_1 = \frac{s_y}{s_x} R$$

# The Slope!

The slope of the regression can be calculated as

$$b_1 = \frac{s_y}{s_x} R$$

In this case:

$$b_1 = \frac{3.1}{3.73}(-0.75) = -0.62$$

# The Slope!

The slope of the regression can be calculated as

$$b_1 = \frac{s_y}{s_x} R$$

In this case:

$$b_1 = \frac{3.1}{3.73}(-0.75) = -0.62$$

Interpretation:

For each additional % point in HS graduation rate, we would expect the % living in poverty to be lower on average by 0.62% points.