Croquis de SLHs 2D a CC

Rafael Ramírez Ros

Clase 8 (de problemas de EDOs-GM)

Abreviaturas

- SL = Sistema lineal
- SLH/SLNH = Sistema lineal homogéneo/no homogéneo
- CC = coeficientes constantes
- LI/LD = Linealmente independiente/dependiente
- VAP/VEP = Valor/vector propio
- PEQ = Punto de equilibrio
- RI/PI = Recta/plano invariante

Tiempo, posición y velocidad

- Sea A una matriz real $n \times n$.
- Dado el SLH a CC

$$\frac{\mathsf{d}\boldsymbol{x}}{\mathsf{d}t}=\boldsymbol{x}'=A\boldsymbol{x},$$

diremos que

- La variable independiente $t \in \mathbf{R}$ es el tiempo;
- La variable dependiente $\mathbf{x} = \mathbf{x}(t) \in \mathbf{R}^n$ es la posición; y
- La primera derivada $\mathbf{x}' = \mathbf{x}'(t) \in \mathbf{R}^n$ es la velocidad.
- La fórmula x' = Ax permite calcular la velocidad x' asociada a cada posición x y dibujar los llamados campos de velocidades.

Campo de vectores: Ejemplo 2D

Definiciones

- Un punto $x_0 \in \mathbb{R}^n$ es un PEQ del SLH x' = Ax cuando la velocidad en ese punto sea cero: $x_0 \in \text{Nuc } A$.
- El SLH $\mathbf{x}' = A\mathbf{x}$ es degenerado cuando tiene infinitos PEQs. Es decir, cuando det A = 0.
- Diremos que el SLH x' = Ax es:
 - Repulsor si todas sus soluciones no triviales escapan a infinito cuando $t \to +\infty$;
 - Inestable no repulsor si alguna (pero no todas) de sus soluciones escapa a infinito cuando $t \to +\infty$;
 - Estable no atractor cuando todas sus soluciones están acotadas para $t \ge 0$ y alguna de ellas no tiende al origen; y
 - Attractor si todas sus soluciones no triviales tienden al origen cuando $t \to +\infty$.

Soluciones "sencillas" de SLHs a CC

■ Si \mathbf{v} es un VEP de VAP λ de una matriz A, entonces

$$\mathbf{x}(t) = \mathrm{e}^{\lambda t} \mathbf{v}$$

es una solución del SLH x' = Ax.

■ Si $\mathbf{v}_{\pm} = \mathbf{u} \pm \mathbf{w}$ i son VEPs complejos conjugados de VAPs $\lambda_{+} = \alpha \pm \beta$ i de una matriz real A, entonces

$$\mathbf{y}(t) = e^{\alpha t} (\mathbf{u} \cos \beta t - \mathbf{w} \sin \beta t),$$

 $\mathbf{z}(t) = e^{\alpha t} (\mathbf{u} \sin \beta t + \mathbf{w} \cos \beta t),$

son dos soluciones reales LI del SLH x' = Ax.

■ Nota: $\mathbf{u} = \text{Re}(\mathbf{v}_+)$, $\mathbf{w} = \text{Im}(\mathbf{v}_+)$, $\alpha = \text{Re}(\lambda_+)$, $\beta = \text{Im}(\lambda_+)$.

Rectas invariantes (RIs)

- Si \mathbf{v} es un VEP de VAP $\lambda \in \mathbf{R}$ de la matriz A, entonces $r = [\mathbf{v}]$ es una
 - RI inestable (o de salida) del SLH x' = Ax cuando $\lambda > 0$.
 - RI estable (o de entrada) del SLH x' = Ax cuando $\lambda < 0$.
 - RI de PEQS del SLH x' = Ax cuando $\lambda = 0$.
- Explicación:
 - Dado $\mathbf{x}_0 \in r$ arbitrario, la función $\mathbf{x}(t) = \mathrm{e}^{\lambda t} \mathbf{x}_0$ es la solución del PVI

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \mathbf{x}_0.$$

- $x(t) \in r$ para todo $t \in \mathbb{R}$.
- $\lambda < 0 \Rightarrow \lim_{t \to +\infty} \mathbf{x}(t) = \mathbf{0}.$

Planos invariantes (Pls)

- Si $\mathbf{v}_+ = \mathbf{u} \pm \mathbf{w}$ i son VEPs complejos conjugados de VAPs $\lambda_{+} = \alpha \pm \beta i$ de la matriz A, entonces $\Pi = [\boldsymbol{u}, \boldsymbol{w}]$ es un
 - PI inestable (o de salida) del SLH x' = Ax cuando $\alpha > 0$.
 - PI estable (o de entrada) del SLH x' = Ax cuando $\alpha < 0$.
 - PI de giros cerrados del SLH x' = Ax cuando $\alpha = 0$.
- Ejercicio para casa:
 - Dado $\mathbf{x}_0 = a_0 \mathbf{u} + b_0 \mathbf{w} \in \Pi$ arbitrario, la función

$$\mathbf{x}(t) = \mathrm{e}^{\alpha t} \left[(a_0 \cos \beta t + b_0 \sin \beta t) \mathbf{u} + (b_0 \cos \beta t + a_0 \sin \beta t) \mathbf{w} \right]$$

es la solución del PVI

$$\mathbf{x}' = A\mathbf{x}, \quad \mathbf{x}(0) = \mathbf{x}_0.$$

- $\mathbf{x}(t) \in \Pi$ para todo $t \in \mathbf{R}$.
- $\alpha > 0 \Rightarrow \lim_{t \to +\infty} \|\mathbf{x}(t)\| = +\infty.$
- \bullet $\alpha < 0 \Rightarrow \lim_{t \to +\infty} \mathbf{x}(t) = \mathbf{0}.$

Clasificación de SLHs 2D a CC

Sea A una matriz real 2 \times 2. El SLH 2D a CC $\mathbf{x}' = A\mathbf{x}$ es

- Degenerado cuando det A = 0;
- Una silla, si los VAPs son reales y de signos diferentes;
- Un nodo, si los VAPs son reales pero del mismo signo, en cuyo caso diremos que el nodo es:
 - atractor/repulsor si ambos VAPs son negativos/positivos;
 - propio/impropio si la matriz diagonaliza/no diagonaliza;
- Un centro, si los VAPs son imaginarios puros; y
- Un foco, si los VAPs son complejos conjugados de parte real no nula, en cuyo caso diremos que el foco es atractor/repulsor si su parte real es negativa/positiva.

Croquis de una silla

2 RIs:

- inestable y
- estable.

Las otras trayectorias son "hipérbolas".

Croquis de un nodo propio repulsor

2 RIs:

- inestable rápida
- inestable lenta.

Las otras trayectorias son "parábolas" tangentes a la dirección lenta en el origen y con la dirección rápida lejos de origen.

Nota: El caso atractor tiene la misma "forma".

Croquis de un nodo impropio atractor

1 RI:

■ estable

Las otras trayectorias tiene forma de "S" y son tangentes a la RI en el origen y con esa misma dirección pero sentido opuesto lejos de origen.

Nota: El caso repulsor tiene la misma "forma".

Croquis de un degenerado inestable

2 RIs:

- inestable y
- de PEQs.

Las otras trayectorias son paralelas a la RI inestable.

Nota: El caso estable tiene la misma "forma".

Croquis de un centro

∄ RIs

Las trayectorias son periódicas y forman elipses.

El sentido de giro se determina calculando la velocidad en un punto.

Periodo:
$$p = \frac{2\pi}{\beta}$$

Croquis de un foco repulsor

∄ RIs

Las trayectorias son espirales.

El sentido de giro se determina calculando la velocidad en un punto.

Tiempo en completar una vuelta: $p = \frac{2\pi}{\beta}$

Nota: El caso atractor tiene la misma "forma".

Criterio traza-determinante

Si $T=\operatorname{traza} A$, $D=\det A$ y $\Delta=T^2-4D$, entonces tenemos el siguiente esquema en el plano (T,D):

¿Cómo calcular las elipses de un centro?

■ Supongamos que el SLH 2D de 1er orden a CC

$$\begin{cases} x' = ax + by \\ y' = cx + dy \end{cases}$$

es un centro, luego T = a + d = 0 y D = ad - bc > 0.

Al imponer que $V(x,y) = (\alpha x^2 + 2\beta xy + \gamma y^2)/2$ sea una cantidad conservada:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\partial V}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial V}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} = (\alpha x + \beta y)(ax + by) + (\beta x + \gamma y)(cx + dy)$$
$$= (a\alpha + c\beta)x^2 + (b\alpha + (a + d)\beta + c\gamma)xy + (b\beta + d\gamma)y^2 \equiv 0,$$

obtenemos que $\alpha = c$, $\beta = d = -a$ y $\gamma = -b$.

■ Por tanto, las trayectorias del centro describen las elipses

$$cx^2 + (d-a)xy - by^2 = \text{ctte}$$
.