Calculating Speed

Speed tells us how quickly something is moving.

A cyclist has a constant (steady) speed of 6 m/s (six metres per second). Every second they travel six metres.

In ten seconds, the cyclist will travel $10 \times 6 = 60$ m. In 25 s, they will travel $25 \times 6 = 150$ m.

You can also measure speeds in kilometres per hour (km/h) or miles per hour (mph). A truck on a motorway moving at 60 km/h travels 60 km each hour. In two hours, the truck will travel 120 km. In half an hour, the truck will travel 30 km.

1 Match each of these moving objects to their typical speed: **Snail**, **Airliner**, **Bus in town** and **Person walking** (but not in that order).

Object	Speed (m/s)	Speed (km/h)
	0.01	0.04
	1.5	6
	12	40
	220	800

2	A long	distance runner	runs	at 3	m/s
_	Aiding	distance runner	iuiis	$at \mathcal{I}$	111/3

(a) Complete the sentence: They run metres every second.

(b) Work out how far they will run in ten seconds using an equation.

(c) Work out how far they will run in $40\,\mathrm{s}$ using an equation.

(d) Work out how far they would travel in 120 s.

(e) Work out how far they would travel in fifteen minutes.

3	A car on a motorway travels at 30 m/s.
	(a) How far does it travel every second?

(1	၁)	Work out how	much time	it will take	to travel 1	50 m using	i an eo	uation
U	IJ	WOLK OUT HOW	much time	it will take	to traver 1	JU III USIIIC	j ari eq	uation.

- (d) Work out how much time it would take to travel 900 m.
- (e) Work out how much time it would take to travel 90 km. 1 km = 1000 m

(a) Distance flown in one second
$$=$$
 \div $=$ metres

- (d) Work out the speed of a pigeon which flies $440\,\mathrm{m}$ in $22\,\mathrm{s}$.
- (e) Work out the speed (in m/s) of a cyclist who travels 5000 m in thirty minutes.

A radio controlled buggy takes 8 s to travel 32 m at a steady speed. What is the buggy's speed in m/s?

A train travels 30 km at a steady speed. The journey takes 12 min = 0.2 h. What is the train's speed in km/h?

- 7 Complete the word equations using **speed**, **distance** and **time**.
 - (a) distance =
- (b) time =

- (c) speed =
- 8 Rewrite your word equations using symbols. s is the distance, t is the time taken and v is the speed.
 - (a) s =

(b) t =

- (c) v =
- 9 Use your understanding of speed, or the equations, to calculate
 - (a) the distance travelled when a toy car rolls at 2 m/s for 5 s
 - (b) the distance travelled when a 3 m/s jogger jogs for 4 s
 - (c) the time taken for a child to run 30 m at 5 m/s
 - (d) the time taken for a train to travel 150 km at 100 km/h
 - (e) the speed of a marble rolling 1.5 m in 0.5 s
 - (f) the speed of an athlete running 200 m in 22 s.

You need to know speed and direction to work out where something will end up. Suppose you move a trolley 12 m forwards and then 3 m backwards. You have moved it 15 m in total, but it is only 9 m from where it started.

10 A child moves a model train forward at 1.5 m/s for 6 s then backwards at 0.75 m/s for 4 s. How far is the train from where it started?

Most journeys are not done at a steady speed. We calculate average speed $=\frac{100}{100}$

 $= \frac{\text{total distance}}{\text{total time}}$

- 11 The speed limit on a road is 30 m/s. Two average speed cameras are 3600 m apart.
 - (a) A car takes 90 s to travel this distance. Calculate its average speed.
 - (b) A different car takes 150 s to travel the distance. Did this car exceed the speed limit?