基于 Origin9.1 的杨氏模量实验数据处理方法

刘慧丰

(中北大学信息商务学院 山西 晋中 030600) (收稿日期:2019-03-27)

摘 要:运用 Origin 9.1 软件对铜棒杨氏模量实验的数据进行多项式拟合,并运用 $Peak\ Analyzer$ 和 $Find\ X/Y$ 拟合曲线处理,将基频固有频率的理论值和实验值进行比较,确定合适的拟合次数,与作图法相比,该方法操作快捷、准确和直观.

关键词: Origin 9.1 软件 数据处理 杨氏模量 外推法 作图法

杨氏模量是描述固体材料抵抗形变能力的重要物理量,其测定对于机械设计、工程设计和建筑方面有重要的意义.杨氏模量实验是大学物理实验中的基础实验,测量方法有拉伸法、悬挂式共振法、弯曲法、支撑式共振法等,我们实验室采用支撑式共振法测量铜棒的杨氏模量,测量值精确稳定^[1].但是,由于实验数据不满足线性关系,学生需要通过手工作图来处理数据,这种方法主观性大,引入的误差大.本文介绍了运用 Origin9.1 软件对实验数据进行多项式拟合,并找到最佳拟合次数和基频固有频率实验值的具体方法,该方法操作快捷,准确和直观.

1 实验原理

1.1 共振法测量杨氏模量[2]

一根长为L,直径为 $d(L\gg d)$ 的细长棒的横振动满足动力学方程

$$\frac{\partial^2 \eta}{\partial t^2} + \frac{EI}{\rho S} \frac{\partial^4 \eta}{\partial x^4} = 0 \tag{1}$$

式中 $,\eta$ 为长棒x 处截面z 轴方向的位移;E 为弹性模量 $;\rho$ 为材料密度;S 为棒的横截面积;I 为某一截面的惯量矩.

分离变量得

$$\eta(x,t) = X(k,x) \cdot A\cos(\omega t + \varphi) \tag{2}$$

式中

$$\omega = \left(\frac{k^4 EI}{\rho S}\right)^{\frac{1}{2}} \tag{3}$$

对两端自由的长棒,其边界条件为两端所受的

作者简介:刘慧丰(1988-),女,硕士,助教,研究方向为物理学.

横向作用力和力矩均为零,利用数值法求得 $k_nL = 0,4.730,7.853,10.996,14.137,...$,数值的不同决定着振动模式的不同,其中 $k_1L = 4.730$ 对应的振动频率为基频共振频率,此时棒的振幅分布如图 1 所示.

图 1 $k_1L = 4.730$ 时棒的振幅分布图

据计算,长棒在做基频振动时,存在的两个节点的位置处于距离长棒两端 0.224L 和 0.776L 处,将 $k=\frac{4.730}{L}$ 代入频率公式(3) 中,得到自由振动的固有频率 —— 基频

$$\omega = \left(\frac{4.730^4 EI}{\rho L^4 S}\right)^{\frac{1}{2}} \tag{4}$$

解出弹性模量

$$E = 1.606 \ 7 \frac{L^3 m}{d^4} f^2 \tag{5}$$

式中,L 为铜棒长度,d 为直径,m 为质量,f 为基频 固有频率.本实验数据中 $\frac{d}{L}=0.04$,上式需要乘以一

修正因子 1.008,即

$$E = 1.606 \ 7 \frac{L^3 m}{d^4} f^2 \cdot 1.008 \tag{6}$$

1.2 外推法处理实验数据

理论上,长棒做基频共振时,支撑点在节点处,

测得的共振频率为基频固有频率,但是,此时棒的振动无法激发,实验中观察不到任何共振现象.支撑点只有处于非节点处时,方可激发棒的振动,这样会引入系统误差.故实验中采用外推法来确定节点处的共振频率,从而确定长棒的杨氏模量 E. 具体做法为:在节点左右两边同时改变两支撑点位置,每隔 5 mm 测一次共振频率,画出共振频率 f 与支撑点位置、 $\frac{x}{t}$ 的关系曲线.拟合曲线在节点处应该有极小值,

从而确定节点位置的基频共振频率,即为长棒的固有频率 $f^{[3]}$.

2 数据处理

2.1 原始数据记录

铜棒长度L=180 mm,直径d=8 mm,质量m=75.5 g,测得支撑点位于不同位置时铜棒的共振频率如表 1 所示.

表 1 支撑点位于铜棒不同位置测到的共振频率

x/mm	5	10	15	20	25	30	35	40	45	50	55	60	65	70
f/Hz	763.52	762.24	760.89	758.48	757.27	755.84	755.29		755.26	755.83	757.29	758.47	760.88	762.25

2.2 作图法

共振频率 f 与 $\frac{x}{L}$ 不满足线性关系,坐标纸上 f-

 $\frac{x}{L}$ 图线为曲线,用曲线板连成光滑的曲线,尽可能使曲线两侧的实验数据点都很靠近曲线,且分布大体均匀.在处理同一组实验数据寻找拟合曲线的最低点的情况下,由于拟合曲线作得不一样,获得的固有频率差距甚大.利用表 1 中数据,不同学生获得了不同的结果,得到的基频固有频率有 754.8 Hz,755.1 Hz 等各种数值,误差较大.

2.3 Origin9.1 处理实验数据

Origin 目前被广泛应用于作图和数据分析,功

能强大但操作简单.上述实验数据,用 Origin9.1 的多项式拟合,绘制成曲线,可以得到较理想的结果.

第一步,输入实验数据.打开 Origin9.1 软件,在 Workbook1 的灰色区域,选择"Add New Column"新建一列.选中 B(Y) 列,选择"Set As X",列头自动变为 B(X2).将表 1 中数据一一对应输入 A(X1) 和 C(Y2),选中 B(X2) 列右击,选择"Set Colum Values",在 弹 出 的 函 数 编 辑 框 中 输 入 "col(A)/180",结果如图 2 所示.A(X1),B(X2) 和 C(Y2) 分别表示支撑点到棒的两端点的距离 x,x与棒长L 的比值和相对应的位置处铜棒的共振频率.

图 2 实验数据和 $f = \frac{x}{l}$ 散点图

第二步,绘制 $f^-\frac{x}{L}$ 散点图.选中 B 和 C 两列,点 击 plot 菜单下 Symbol 中的 Scatter 键,可得到 $f^-\frac{x}{L}$

散点图.双击坐标轴修改对应的参数,如图 2 所示.

第三步,对 f- $\frac{x}{L}$ 曲线进行多项式拟合.选中数

据点,点击菜单中 Analysis → Fitting → Fit Polynomial → Open Dialog 键,弹出如图 3 所示 Polynomial Fit 对话框,其中 Polynomial Order 为多项式阶数,可进行 1 ~ 9 次项拟合,接下来依次对步骤 2 中的数据点进行 2 ~ 9 次拟合,图 3 为 6 次项拟合曲线;Find X/Y中 Find Y from X和 Find X from Y勾住后,生成表格 Fit Polynomial Find X from Y1

和 Fit Polynomial Find Y from X1,在 "Enter x values" 列中输入 $X\left(\frac{x}{L}\right)$ 值则可在"Yvalue" 列自动输出拟合曲线上对应 y(频率) 值;在 "Enter Y values" 列中输入 y(频率) 值则可在"Xvalue" 列自动输出拟合曲线上对应 $X\left(\frac{x}{L}\right)$ 值^[4].

图 3 Polynomial Fit 对话框、f- $\frac{x}{I}$ 项拟合曲线(6 次) 及 Fit Polynomial Find 对话框

第四步,找出 f- $\frac{x}{L}$ 曲线上的极小值点.选中曲线后,进入 Analysis,点击 Peaks and Baseline \rightarrow Peak Analyzer \rightarrow Open Dialog,弹出如图 4 所示对话框.选中 Baseline Mode 下的 Minimum,显示的数字即为拟合曲线的频率极小值 f_{\min} ,即节点处共振频率的实验值.

图 4 Peak Analyzer 对话框

第五步,在步骤 3 表格 Fit Polynomial Find X from Y1 输入步骤 4 中 f_{\min} 值,可得到拟合曲线上与

之对应的 $\frac{x}{L}$;在 Fit Polynomial Find Y from X1 中输入 0.224,得到节点处共振频率的理论值 f_0 .多项式拟合多少次情况最理想?

表 2 为利用外推法和 $2\sim 9$ 次多项式拟合结合起来处理数据点的结果比较.表中 $\left(\frac{x}{L}\right)_{\min}$ 为共振频率的实验值 f_{\min} 相对应的 x 与L 的比值; $\Delta\left(\frac{x}{L}\right)$ 为 $\left(\frac{x}{L}\right)_{\min}$ 与 0.224 的差值; Δf 为 f_{0} 与 f_{\min} 的差值. 2.4 实验结果

理想情况下,节点处阻尼系数为零, $f_0=f_{\rm min}$. 观察表 2 可得,不同次项拟合, f_0 和 $f_{\rm min}$ 的差值不一样,差值越小即 f_0 和 $f_{\rm min}$ 越接近,准确度越高. 从表 2 中看到,当实验数据作 6 次项拟合时,节点处共振频率的实验值 $f_{\rm min}$ 和理论值 f_0 差值最小,且 $\Delta\left(\frac{x}{L}\right)$ 也最小. 因此,拟合次数并不是越大越好,本次实验采用 6 次多项式拟合,则铜棒的基频共振频率 755.006 93 Hz,代入式(6),得铜棒的杨氏模量为 $E=9.924\times10^{10}$ Pa.

为什么托盘天平的平衡与砝码或物体所在的位置无关

黄绍书

(六盘水市第 23 中学 贵州 六盘水 553004) (收稿日期:2018-12-07)

摘 要:托盘天平的平衡与砝码或物体所在的位置无关,是由其"罗伯威尔结构"决定的.托盘天平不能看成一个简单的等臂杠杆,它实际上是组合式杠杆.

关键词:托盘天平 罗伯威尔结构 罗伯威尔原理 组合式杠杆

为什么托盘天平的平衡与砝码或物体所在的 位置无关?这是一个看似简单实则是比较复杂的问题,它涉及到托盘天平的结构与原理.

通常习惯地认为,托盘天平就是等臂杠杆,其托盘就固定在横梁上,结构如图1所示.

这其实只是最粗浅的认识,如果是这样,那么天平平衡时,只有满足物体和砝码都严格处在托盘的

中心,物体质量才会等于砝码质量.也就是说,托盘 天平的平衡与砝码或物体所在的位置是有关的,但 这与实验事实不吻合.这是为什么呢?实际上托盘 天平的结构是比较复杂的,如果只根据"等臂杠杆" 是无法清楚说明其原理的.因此,要回答这一问题, 还得先弄清楚托盘天平的真实结构及其原理.

1 罗伯威尔结构

托盘天平的结构称为罗伯威尔结构[1],如图 2 所示.横梁与竖杆之间以及横梁与支架之间通过刀口连接,其中A,O,B为刀口;竖杆与支架之间通过

表 2	外推法和多项式拟合结合处理数据结果

\overline{n}	2	3	4	5	6	7	8	9
f_0	755.392 03	755.309 25	754.861 49	754.880 01	755.006 94	755.078 00	755.077 94	754.900 80
f_{\min}	755.387 50	755.304 09	754.860 89	754.877 81	755.006 93	755.071 82	755.071 75	754.898 28
$\left(\frac{x}{L}\right)_{\min}$	0.219 57	0.228 40	0.222 61	0.221 45	0.224 06	0.218 94	0.219 00	0.226 59
$\Delta\left(\frac{x}{L}\right)$	0.004 43	0.004 40	0.001 39	0.002 55	0.000 06	0.005 06	0.005 00	0.002 59
Δf	0.004 53	0.005 16	0.000 60	0.002 20	0.000 01	0.006 18	0.006 19	0.002 52

3 结论

大学物理实验课程中,大量的数据处理是个非常繁重的工作,人为处理起来工作量大而且可能会有一定的人为误差.而运用 Origin9.1 软件中的 Polynomial Fit, Peak Analyzer 以及 Find X/Y,对共振法测量铜棒的杨氏模量数据处理,无须编程、精准度高而且操作过程简单,非常便捷可靠,可以广泛应用于大学物理实验数据的处理中.

— 80 —

参考文献

- 1 季诚响,丁晟.动态法测量杨氏模量实验的数据处理.实验室科学,2009,2(1):87 \sim 89
- 2 张旭峰.大学物理实验.北京:国防工业出版社,2014. $56\sim59$
- 3 何熙起.动态法测杨氏模量共振频率的拟合研究.内江师范学院学报,2010,25(10): $37 \sim 39$
- 4 余潇杭,张军朋.Origin 在共振法测量固体材料的杨氏模量实验数据处理中的应用.大学物理实验,2015,8(4): $85\sim89$