PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

DO PORTO						
Ano	ANO LECTIVO: 2010/2011 Data: 22/05/2010 Prova: MALEMATICA			da Prova: <u>2h</u> a: <u>15 min</u>		
	Escola onde realiza est	a prova: ESEIG	ESTGF ISCAP	□ISEP	Rubrica de Docente em Vigilância	
ato	Nome do Candidato: _					
candidato	Documento de Identifi	Classificação Final				
preencher pelo	Número do Document	o de Identificação:				
ench	Escola(s) a que se cano	didata: ESEIG ES	STGF ISCAP] ISEP	(0-200)	
A pre	Curso(s) a que se cand	idata:			Rubrica de Docente (Júri de Prova)	
	Número de folhas extr	a entregues pelo Candidato:				
	É obrigatória a apresentação de documento de identificação com fotografia ao docente encarregado da vigilância					

Material admitido:

- Material de escrita.
- Máquina de calcular elementar ou máquina de calcular científica (não gráfica).

Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta, excepto nas respostas que impliquem a elaboração de construções, de desenhos ou de outras representações, que podem ser primeiramente elaborados a lápis, sendo, a seguir, passados a tinta.

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

A prova é constituída por dois grupos, I e II.

- O Grupo I inclui 7 questões de escolha múltipla.
 - Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correcta.
 - Responda na página fornecida para o efeito, respeitando as regras nela indicadas. Só serão consideradas as respostas dadas nessa página.
- O Grupo II inclui 7 questões de resposta aberta, algumas delas subdivididas em alíneas, num total de 11.
 - Nas questões deste grupo apresente de forma clara o seu raciocínio, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.
 - Quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exacto.
 - o Cada questão deve ser respondida na própria folha do enunciado.
 - Devem ser pedidas folhas adicionais caso a resposta à pergunta não caiba na folha respectiva.

A prova tem 16 páginas e termina com a palavra FIM.

Na página 15 é indicada a cotação de cada pergunta.

Na página 16 é disponibilizado um formulário.

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

Nº Respostas CERTAS:

Classificação Grupo I:

Rubrica de Docente Corrector

FOLHA DE RESPOSTAS DO GRUPO I

Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a resposta for ilegível. Não apresente cálculos, nem justificações.

Assinalar resposta correcta:	(A) (% ©	D	
Anular a resposta:	(A) (© ©	D	
Assinalar de novo resposta anulada:	(A)		D	
1	A	B	C	D
2	A	B	(C)	D
3	A	B	(C)	D
4	A	B	(C)	D
5	A	B	(C)	D
6	A	B	<u>C</u>	D

7

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

A preencher pelo candidato

Nome do Candidato:	
Número do Documento de Identificação:	
Escola(s) a que se candidata: ESEIG	☐ ESTGF ☐ ISCAP ☐ ISEP
Curso(s) a que se candidata:	

GRUPO I — RESPONDA NA PÁGINA FORNECIDA PARA O EFEITO

1.	Sendo $a \in b$	números reais não nulos, então uma expressão equivalente a	$\frac{a-b^{-1}}{b-a^{-1}}, b-a^{-1}$	≠0,é
----	-----------------	--	---------------------------------------	------

(A) $\frac{b}{a}$

(C) $\frac{a}{b}$

(B) 1

(D) $\frac{2a}{b}$

2. Considere a equação x(x-3) = -2. O seu conjunto solução, em \mathbb{R} , é:

(A) $\{1, 2\}$

(c) $\{-2,1\}$

(B) $\{0,3\}$

(D) $\{-2\}$

3. Quantos números inteiros positivos satisfazem a inequação $\frac{2x}{3} + \frac{x-7}{2} < 0$?

(A) Nenhum

(C)

(B) 2

(D) 3

4. O domínio da função real de variável real f, definida por $f(x) = \frac{\sqrt{2-x}}{x+1}$, é:

(A) $\left[-2,+\infty\right[\setminus\left\{-1\right]$

(c) $]-\infty,2]$

(B) $[2, +\infty[$

(D) $]-\infty,2]\setminus\{-1\}$

5. Sabendo que $sen(\theta) = \frac{1}{3}$, pode afirmar-se que:

(A)
$$\cos(90^{\circ} + \theta) = \frac{1}{3}$$

(C)
$$\cos(\theta) = -\frac{\sqrt{8}}{3}$$

(B)
$$\sec (180^{\circ} - \theta) = -\frac{1}{3}$$

(D)
$$\sec (180^{\circ} + \theta) = -\frac{1}{3}$$

6. Considere a função real de variável real h, definida por $h(x) = K(2x+1)^6$, $K \in \mathbb{R}$. Sabendo que a expressão analítica da função derivada de h é $h'(x) = 16(2x+1)^5$, então o valor de K é:

(c)
$$\frac{4}{3}$$

(B)
$$\frac{3}{4}$$

(D)
$$\frac{8}{3}$$

7. Considere a função real de variável real g, cuja representação gráfica é:

Pode afirmar-se que:

(A)
$$\lim_{x \to -\infty} g(x) = -2$$

•
$$\lim_{x \to \infty} g(x) = 2$$

$$\bullet \quad g'(0) = 0$$

 A função é contínua à esquerda de x = 3.

(C)
$$\lim_{x \to -\infty} g(x) = -2$$

$$\bullet \quad \lim_{x \to \infty} g(x) = 2$$

•
$$g'(0) = 0$$

 A função é contínua à direita de x = 3.

(B) •
$$\lim_{x \to a} g(x) = -2$$

$$\bullet \quad \lim_{x \to +\infty} g(x) = 2$$

•
$$g'(0) = 1$$

 A função é contínua à esquerda de x = 3.

(D) •
$$\lim_{x \to -\infty} g(x) = -2$$

$$\bullet \quad \lim_{x \to +\infty} g(x) = 2$$

•
$$g'(0) = 1$$

• A função é contínua à direita de x = 3.

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 2	23 ANOS	
olo	Nome do Candidato	o:	GII Q1.	GII Q2.
eencher pelo candidato	Número do Documo	ento de Identificação:	Clas. Parc	ial Q1+Q2
م	Escola(s) a que se ca	andidata:		e Docente ector
⋖	Curso(s) a que se ca	andidata:		

GRUPO II

1. Na composição de 100 g de um determinado chocolate, 11 g são proteínas. Sabendo que 48 barras desse chocolate pesam 1,8 kg, determine quantos gramas de proteínas tem cada uma dessas barras.

2. Calcule e simplifique o valor da seguinte expressão numérica: $\frac{\left(\frac{1}{4}\right)^{-1} \times \left[-\frac{3}{4} + \left(\frac{1}{2}\right)^{3}\right]}{\sqrt{16} - \left(\frac{1}{3}\right)^{-2} \times \left(\frac{1}{3}\right)^{3}}$

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE	23 ANOS	
pelo c	Nome do Candidato	o:	GII Q3.	GII Q4.
preencher pe candidato	Número do Docum	ento de Identificação:	Clas. Parc	ial Q3+Q4
rg ,	Escola(s) a que se c	andidata: ESEIG ESTGF ISCAP ISEP	Rubrica de Corre	e Docente ector
⋖	Curso(s) a que se ca	andidata:		

3. Determine os valores de $m \in \mathbb{R}$ para os quais a equação $2x^2 + mx + 2 = 0$ é uma condição impossível.

4. Suponha que $\log_3(a) = 7$. Calcule o valor exacto de $\log_3(\frac{9}{a})$.

5. Determine a **expressão analítica mais simples** da **função derivada** de cada uma das seguintes funções reais de variável real:

5.1.
$$f(x) = \frac{2x^3}{3} - \sqrt{5x} + \frac{\sin(x)}{x-2}$$

5.2.
$$g(x) = 6e^{4x} + \cos^5(3x) + x\ln(2x)$$

POLITÉCNICO DO PORTO PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS Nome do Candidato: Número do Documento de Identificação: Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP Caracteria GII Q6 Rubrica de Docente Corrector

6. Um matemático curioso, com um teodolito (instrumento óptico de medida de ângulos) situado a 123,6 metros da base (quadrada) da Torre Eiffel, mede o ângulo entre a horizontal e o topo da antena no alto da torre e obtém 60°. Atendendo aos dados da figura, determine a medida da altura da torre, arredondada às unidades.

Curso(s) a que se candidata:

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

A preencher pelo candidato

	GII Q7.1
Nome do Candidato:	GII Q7.2
	GII Q7.3
	GII Q7.4
Número do Documento de Identificação:	Clas. Parcial GII Q7
Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP	Rubrica de Docente Corrector
Curso(s) a que se candidata:	

- 7. Uma bola é lançada do terraço de um prédio, usando uma catapulta. A distância, em metros, da bola ao solo, t segundos após ter sido lançada, é dada pela função definida por: $h(t) = -5t^2 + 20t + 25$.
 - 7.1. Calcule a altura do prédio.
 - **7.2.** Determine a altura máxima atingida pela bola.
 - **7.3.** Ao fim de quantos segundos a bola atinge o solo?
 - **7.4.** Sabendo que a velocidade da bola é dada pela derivada da função, determine a velocidade de lançamento.

COTAÇÕES

Grupo I		84 pontos
Cada resposta certa	12 pontos	
Cada questão errada, não respondida ou anulada	0 pontos	
Grupo II		116 pontos
1	10 pontos	
2	10 pontos	
3	12 pontos	
4	6 pontos	
5	28 pontos	
5.1. 12 pontos		
5.2. 16 pontos		
6	15 pontos	
7	35 pontos	
7.1. 5 pontos		
7.2.		
7.3. 10 pontos		
7.4 7 pontos		

FORMULÁRIO

Relações trigonométricas de ângulos agudos

	$sen(\alpha)$	$\cos(\alpha)$	$\operatorname{tg}(lpha)$
$\alpha = 0^{\circ}$	0	1	0
$\alpha = 30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\alpha = 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\alpha = 60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
α = 90°	1	0	-

Trigonometria

•
$$\operatorname{sen}^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

•
$$\operatorname{sen}(\alpha + \beta) = \operatorname{sen}(\alpha) \cdot \cos(\beta) + \operatorname{sen}(\beta) \cdot \cos(\alpha)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$

•
$$\operatorname{tg}(\alpha) = \frac{\operatorname{sen}(\alpha)}{\operatorname{cos}(\alpha)}$$

Regras de derivação

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$(\operatorname{sen}(u))' = u' \cdot \cos(u)$$

$$(\cos(u))' = -u' \cdot \sin(u)$$

$$\bullet \quad \left(\mathbf{e}^{u}\right)' = u' \cdot \mathbf{e}^{u}$$

$$(\log_a(u))' = \frac{u'}{u \cdot \ln(a)}$$

FIM