Яндекс

Проверка гипотез. Часть 2

Лемма Неймана-Пирсона. Критерий отношения правдоподобия. Введение в А/В-тестирование. Критерий последовательного отношения правдоподобия. Непараметрические критерии.

ПМИ ФКН ВШЭ, 13 октября 2018 г. **Алексей Артемов** 1,2

 1 Сколтех 2 НИУ ВШЭ

Содержание лекции

- > Лемма Неймана-Пирсона.
- > Критерий отношения правдоподобия.
- Функции штрафа и основы теории принятия статистических решений.
- > Введение в А/В-тестирование.
- > Критерий последовательного отношения правдоподобия.
- > Непараметрические критерии.

Лемма

Неймана-Пирсона

- > Пусть $X_i \sim \mathcal{N}(\theta, \sigma^2), i=1,\ldots,n$, а нулевая гипотеза заключается в том, что $\theta=\theta_0$.
- > Назовите достаточную статистику в этой задаче.

- > Пусть $X_i \sim \mathcal{N}(\theta, \sigma^2), i=1,\ldots,n$, а нулевая гипотеза заключается в том, что $\theta=\theta_0$.
- > Назовите достаточную статистику в этой задаче.
- > Достаточная статистика: $T(\mathbf{X}^{\ell}) = \overline{X}_n$.
- o Какое распределение $T(\mathbf{X}^\ell)$, когда верна \mathbb{H}_0 ?

- > Пусть $X_i \sim \mathcal{N}(\theta, \sigma^2), i=1,\dots,n$, а нулевая гипотеза заключается в том, что $\theta=\theta_0$.
- > Назовите достаточную статистику в этой задаче.
- > Достаточная статистика: $T(\mathbf{X}^\ell) = \overline{X}_n$.
- > Какое распределение $T(\mathbf{X}^{\ell})$, когда верна \mathbb{H}_0 ?
- $T(\mathbf{X}^{\ell}) \sim \mathcal{N}(\theta_0, \sigma^2/n)$
- > Какова критическая область? (Когда отклоняем \mathbb{H}_0 ?)

- > Пусть $X_i \sim \mathcal{N}(\theta, \sigma^2), i=1,\dots,n$, а нулевая гипотеза заключается в том, что $\theta=\theta_0$.
- > Назовите достаточную статистику в этой задаче.
- > Достаточная статистика: $T(\mathbf{X}^\ell) = \overline{X}_n$.
- imes Какое распределение $T(\mathbf{X}^\ell)$, когда верна \mathbb{H}_0 ?
- $T(\mathbf{X}^{\ell}) \sim \mathcal{N}(\theta_0, \sigma^2/n)$
- > Какова критическая область? (Когда отклоняем \mathbb{H}_0 ?)
- > Критическая область $\mathcal{R}_{\alpha}=[t_{\alpha},\infty)$, т.е. $T(\mathbf{X}^{\ell})\geqslant t_{\alpha}.$

> Подсчитайте вероятность ложной тревоги в этой задаче.

> Подсчитайте вероятность ложной тревоги в этой задаче.

$$\alpha = P_{\theta_0} \left(\frac{\sqrt{n}(\overline{X}_n - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma} \right) = 1 - \Phi\left(\frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma} \right).$$

> Как выбрать t_{α} , чтобы $\alpha\leqslant\alpha_{0}$?

> Подсчитайте вероятность ложной тревоги в этой задаче.

$$\alpha = P_{\theta_0} \left(\frac{\sqrt{n}(\overline{X}_n - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma} \right) =$$

$$= 1 - \Phi\left(\frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma} \right).$$

> Как выбрать t_{α} , чтобы $\alpha\leqslant\alpha_{0}$?

$$t_{\alpha_0} = \theta_0 + \sigma x_{1-\alpha_0} / \sqrt{n}$$

> Подсчитайте вероятность ложной тревоги в этой задаче.

$$\alpha = P_{\theta_0} \left(\frac{\sqrt{n}(\overline{X}_n - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma} \right) =$$

$$= 1 - \Phi\left(\frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma} \right).$$

> Как выбрать t_{α} , чтобы $\alpha \leqslant \alpha_0$?

$$t_{\alpha_0} = \theta_0 + \sigma x_{1-\alpha_0} / \sqrt{n}$$

> Пусть на самом деле верна альтернатива $\mathbb{H}_1: \theta=\theta_1$, причем $\theta_1>\theta_0$. Какова вероятность ошибки 2-го рода?

> Подсчитайте вероятность ложной тревоги в этой задаче.

$$\alpha = P_{\theta_0} \left(\frac{\sqrt{n}(\overline{X}_n - \theta_0)}{\sigma} \geqslant \frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma} \right) =$$

$$= 1 - \Phi\left(\frac{\sqrt{n}(t_{\alpha} - \theta_0)}{\sigma} \right).$$

> Как выбрать t_{α} , чтобы $\alpha \leqslant \alpha_0$?

$$t_{\alpha_0} = \theta_0 + \sigma x_{1-\alpha_0} / \sqrt{n}$$

> Пусть на самом деле верна альтернатива $\mathbb{H}_1: \theta=\theta_1$, причем $\theta_1>\theta_0$. Какова вероятность ошибки 2-го рода?

$$\beta = P_{\theta_1} \left(\overline{X}_n < t_{\alpha_0} \right) = \Phi \left(x_{1-\alpha_0} - \frac{\sqrt{n}(\theta_1 - \theta_0)}{\sigma} \right).$$

- > Критерии на самом деле задаются критическими множествами
- > Пусть имеется два критерия, заданных множествами \mathcal{R}'_{α} и \mathcal{R}''_{α} . Какой выбрать?

- > Критерии на самом деле задаются критическими множествами
- > Пусть имеется два критерия, заданных множествами \mathcal{R}'_{α} и \mathcal{R}''_{α} . Какой выбрать?
- > Сложная альтернатива: необходимо сравнивать функции мощности $W'(\theta)$ и $W''(\theta)$

- > Критерии на самом деле задаются критическими множествами
- > Пусть имеется два критерия, заданных множествами \mathcal{R}'_{α} и \mathcal{R}''_{α} . Какой выбрать?
- > Сложная альтернатива: необходимо сравнивать функции мощности $W'(\theta)$ и $W''(\theta)$

- Простая альтернатива: существует наиболее мощный критерий (Неймана-Пирсона).
- > Идея: при заданной (достаточно малой) вероятности ошибки 1-го рода α постараться уменьшить вероятность ошибки 2-го рода β насколько возможно за счет подбора критического множества \mathcal{R}_{α} .

- > Пусть задана выборка \mathbf{X}^ℓ
- > Гипотеза \mathbb{H}_0 и альтернатива \mathbb{H}_1 порождают в выборочном пространстве \mathbb{R}^ℓ меры P_0 и P_1
- > Таким образом, необходимо найти множество G такое, что $\mathrm{P}_0(G)\leqslant \alpha$ и $\mathrm{P}_1(G)\to \sup_{G:\mathrm{P}_0(G)\leqslant \alpha}\mathrm{P}_1(G)$
- > Рассмотрим систему вложенных множеств $G_c = \{ \boldsymbol{x} \in \mathbb{R}^\ell : \frac{p_1(\boldsymbol{x})}{p_0(\boldsymbol{x})} \geqslant c \}$
- ightarrow Пусть $arphi(c)=\mathrm{P}_0(G_c)$, тогда arphi(c) убывает с ростом c

 \rightarrow На самом деле, $\varphi(c)$ убывает быстрее, чем 1/c:

$$1 \geqslant P_1(G_c) = \int_{G_c} p_1(\boldsymbol{x}) d\boldsymbol{x} \geqslant c \int_{G_c} p_0(\boldsymbol{x}) d\boldsymbol{x} = c P_0(G_c) = c\varphi(c).$$

- > Далее еще потребуем, чтобы плотности $p_1({\bm x})$ и $p_0({\bm x})$ были всюду положительны
- > Дополнительно потребуем, чтобы $\forall \alpha \in (0,1) \quad \exists c = c_{\alpha} : \quad \varphi(c_{\alpha}) = \alpha.$

Лемма Неймана-Пирсона

Лемма (Неймана-Пирсона)

Наиболее мощный критерий уровня lpha задается критическим множест

$$G^* = G_{c_{\alpha}} = \left\{ oldsymbol{x} \in \mathbb{R}^{\ell} : rac{p_1(oldsymbol{x})}{p_0(oldsymbol{x})} \geqslant c_{lpha}
ight\}$$

- > Пусть G критическое множество уровня α .
- > Тогда $P_0(G_c) \geqslant \alpha = P_0(G_{c_\alpha})$
- > Пусть $I({m x})$ индикатор G_c , $I^*({m x})$ индикатор G_{c_lpha}
- > Функция

$$f(\boldsymbol{x}) = (I^*(\boldsymbol{x}) - I(\boldsymbol{x}))(p_1(\boldsymbol{x}) - c_{\alpha}p_0(\boldsymbol{x}))$$

неотрицательна при всех $x \in \mathbb{R}^\ell$

Лемма Неймана-Пирсона

> Функция

$$f(\boldsymbol{x}) = (I^*(\boldsymbol{x}) - I(\boldsymbol{x}))(p_1(\boldsymbol{x}) - c_{\alpha}p_0(\boldsymbol{x}))$$

неотрицательна при всех $x \in \mathbb{R}^\ell$

> Поэтому

$$0 \leqslant \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} f(\boldsymbol{x}) d\boldsymbol{x} = \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} I^{*}(\boldsymbol{x}) p_{1}(\boldsymbol{x}) d\boldsymbol{x} - \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} I(\boldsymbol{x}) p_{1}(\boldsymbol{x}) d\boldsymbol{x} - \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} I^{*}(\boldsymbol{x}) p_{0}(\boldsymbol{x}) d\boldsymbol{x} - \int_{\boldsymbol{x} \in \mathbb{R}^{\ell}} I(\boldsymbol{x}) p_{0}(\boldsymbol{x}) d\boldsymbol{x} \Big] =$$

$$= P_{1}(G^{*}) - P_{1}(G) - c_{\alpha} \underbrace{\left[P_{0}(G^{*}) - P_{0}(G)\right]}_{\mathbf{x} \in \mathbb{R}^{\ell}}.$$

Критерий Неймана-Пирсона:

2 простые гипотезы

Критерий Неймана-Пирсона

- $\rightarrow \mathbb{H}_0: \theta = \theta_0 \text{ vs. } \mathbb{H}_1: \theta = \theta_1$
- > Статистика Неймана-Пирсона:

$$T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{\prod_{i=1}^n f(X_i; \theta_1)}{\prod_{i=1}^n f(X_i; \theta_0)}.$$
 (1)

- > Допустим, что \mathbb{H}_0 отвергается при T>k. Выберем k так, что $\mathrm{P}_{\theta_0}(T>k)=\alpha.$
- > Тогда, критерий Неймана-Пирсона (на основе статистики (2)) будет иметь наибольшую мощность $W(\theta_1)$ среди всех критериев размера α .

Пример

- $X_i \sim \mathcal{N}(\mu, \sigma^2)$, причем дисперсия σ^2 известна
- $\rightarrow \mathbb{H}_0: \mu=\mu_0$ vs. $\mathbb{H}_1: \mu=\mu_1$
- > Статистика Неймана-Пирсона:

$$T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{\prod_{i=1}^n \mathcal{N}(X_i; \mu_1, \sigma^2)}{\prod_{i=1}^n \mathcal{N}(X_i; \mu_0, \sigma^2)}.$$
 (2)

> Подсчитайте статистику критерия (упростите)

Пример

- $X_i \sim \mathcal{N}(\mu, \sigma^2)$, причем дисперсия σ^2 известна
- $\rightarrow \mathbb{H}_0: \mu=\mu_0$ vs. $\mathbb{H}_1: \mu=\mu_1$
- > Статистика Неймана-Пирсона:

$$T = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{\prod_{i=1}^n \mathcal{N}(X_i; \mu_1, \sigma^2)}{\prod_{i=1}^n \mathcal{N}(X_i; \mu_0, \sigma^2)}.$$
 (2)

- > Подсчитайте статистику критерия (упростите)
- > Получается

$$T = \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{\ell} \left[(X_i - \mu_1)^2 - (X_i - \mu_0)^2 \right] \right] =$$

$$= \exp\left[\frac{n}{\sigma^2} (\mu_1 - \mu_0) \left[\overline{X}_{\ell} - \frac{\mu_1 + \mu_0}{2} \right] \right]$$

Алексей Артемов важен знак! 15

Краткий экскурс

в А/В тестирование

Идея А/В тестирования

Техника А/В тестирования

- > Варианты разбиения
 - > По пользователям (куки)
 - > По визитам (сессии)
 - > По действиям (запросы)
 - > ...
- > Типы экспериментов
 - > явные (интерфейсы, функциональность)
 - > неявные (ранжирование, персонализация)
 - > сервисы / части сервисов / кросс- сервисные
 - > улучшения / ухудшения / АА-тесты

Внедрения А/В тестирования

> Масштабы экспериментов:

Яндекс @ 2017:

- > 4778 экспериментов,
- > ~400 экспериментов одновременно

> Результаты:

- > Яндекс, 2014: 21% принимаются, 2017: 28% принимаются
- > Бинг, 201?: 30% принимаются
- > Гугл, 201?: 10% принимаются
- > В среднем: 20% принимаются, 50% непонятных

Техника А/В тестирования

- > Метрики
 - > абсолютные (клики, временные)
 - > относительные (ctr, доля некликнутых)

Определение

Случайная величина имеет распределение Стьюдента (t-распределение) с k степенями свободы, если:

$$f(t) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{k\pi}\Gamma(\frac{k}{2})(1 + \frac{t^2}{k})^{\frac{k+1}{2}}}$$

При $k \to \infty$ t-распределение стремится к стандартному нормальному распределению. При k=1 t-распределение совпадает с распределением Коши.

> *t*-критерий используют, когда распределение данных близко к нормальному, а размер выборки невелик.

Теорема (Критерий Стьюдента (t-test))

Пусть $X_1,...,X_n \sim N(\mu,\sigma^2)$, где параметры (μ,σ^2) неизвестны.

$$\mathbb{H}_0: \mu = \mu_0 \quad vs. \quad \mathbb{H}_1: \mu \neq \mu_0$$

Обозначим через S_n^2 выборочную дисперсию. Тогда статистика критерия:

$$T = \frac{\sqrt{n}(\overline{X_n} - \mu_0)}{S_n}$$

Основная гипотеза отвергается, если $|T|>t_{n-1,\alpha/2}$, где $t_{n-1,\alpha/2}$ -квантиль распределения Стьюдента с ${\bf n}-{\bf 1}$ степенями свободы.

При больших n выполняется $T \sim \mathcal{N}(0,1)$, то есть при больших n t-критерий эквивалентен критерию Вальда.

Рис.: http://tananyag.geomatech.hu/m/53882

Последовательный

анализ

Мотивация

- » В классической теории математической статистики предполагается, что наблюдения (данные) заранее известны
- > Однако нужно ли заранее фиксировать размер выборки?
- » В действительности, размер выборки можно определять в зависимости от уже поступивших наблюдений!
- > Это приводит к последовательному тесту Вальда (последовательному критерию отношения правдоподобия, sequential probability ratio test, SPRT)
- Основная мотивация: экономить данные (до 50% экономии доказательство на семинаре!)

Последовательный критерий

- > Гипотеза \mathbb{H}_0 : наблюдения X_i имеют плотность $p_0(x)$, \mathbb{H}_1 : наблюдения X_i имеют плотность $p_1(x)$
- > Рассмотрим $Z_i = \log rac{p_0(X_i)}{p_1(X_i)}$ и блуждание $S_k = Z_1 + \ldots + Z_k$
- > Например, если $p_0(x)=\mathcal{N}(\mu_0,\sigma^2)$, $p_1(x)=\mathcal{N}(\mu_1,\sigma^2)$, то

$$Z_i = \frac{\mu_1 - \mu_0}{\sigma^2} \left[\overline{X}_i - \frac{\mu_1 + \mu_0}{2} \right]$$

> Интуиция:

Последовательный критерий

- > Гипотеза \mathbb{H}_0 : наблюдения X_i имеют плотность $p_0(x)$, \mathbb{H}_1 : наблюдения X_i имеют плотность $p_1(x)$
- > Рассмотрим $Z_i = \log rac{p_0(X_i)}{p_1(X_i)}$ и блуждание $S_k = Z_1 + \ldots + Z_k$
- > Например, если $p_0(x)=\mathcal{N}(\mu_0,\sigma^2)$, $p_1(x)=\mathcal{N}(\mu_1,\sigma^2)$, то

$$Z_i = \frac{\mu_1 - \mu_0}{\sigma^2} \left[\overline{X}_i - \frac{\mu_1 + \mu_0}{2} \right]$$

- > Интуиция:
 - > если верна \mathbb{H}_0 (сигнала нет), то в среднем $p_0(X_i) \geqslant p_1(X_i)$ (и тогда $Z_i \leqslant 0$) $\implies S_k$ убывает
 - > если верна \mathbb{H}_1 (сигнал!), то в среднем $p_0(X_i) \leqslant p_1(X_i)$ (и тогда $Z_i \geqslant 0$) $\implies S_k$ растет

Пример: верна гипотеза

Пример: верна альтернатива

Последовательный критерий

- > Последовательный тест:
 - 1. Наблюдаем X_1, X_2, \dots последовательно
 - 2. Вычисляем значения $S_k, k = 1, 2, ...$
 - 3. $S_k \geqslant c_1$: остановимся и отклоним \mathbb{H}_0
 - 4. $S_k \geqslant c_1$: остановимся и не отклоним \mathbb{H}_0
 - 5. $c_0 < S_k < c_1$: продолжим наблюдения
- \rightarrow Остается задать пределы роста S_k :

$$c_0 = \ln \frac{\beta'}{1 - \alpha'}, \qquad c_0 = \ln \frac{1 - \beta'}{\alpha'}, \qquad \alpha' + \beta' < 1$$

При этом для вероятностей α и β :

$$\alpha \leqslant \frac{\alpha'}{1-\beta'}, \qquad \beta \leqslant \frac{\beta'}{1-\alpha'}, \qquad \alpha+\beta < \alpha'+\beta'.$$

Непараметрические

критерии

Альтернативы однородности

- > Имеем две выборки $\mathbf{X}^n \sim F(x)$ и $\mathbf{Y}^m \sim G(x)$
- > Гипотеза однородности $\mathbb{H}_0: F(x) = G(x), x \in \mathbb{R}$

- > Бывает важно уловить отклонения от \mathbb{H}_0 только определенного типа (наличие прироста Y_j по сравнению с X_i)
- > Сужение типов альтернатив \implies более эффективные критерии
- > Проверяем гипотезу однородности против альтернативы доминирования \mathbb{H}_1 (варианты б) и в))

Критерий ранговых сумм MWW

- > Построим вариационный ряд из объединенной выборки $(X_1,\ldots,X_n,Y_1,\ldots,X_m)$
 - ightarrow Верна $\mathbb{H}_0 \implies$ значения Y_i рассеяны по всему ряду
 - ightarrow Иначе средний ранг значений Y_{i} относительно большой
- > Обозначим S_j ранг порядковой статистики $Y_{(j)}$ в этом ряду
- > Положим $V = S_1 + \cdots + S_m$
- > Критическая область: $V \geqslant c$, где $c = {\sf const}$
- > Большие выборки: (Mann-Whitney-Wilcoxon, MWW)

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} I_{X_i < Y_j} \to \mathcal{N}\left(\frac{nm}{2}, \frac{nm(n+m+1)}{12}\right)$$

Резюме лекции

- Критерий отношения правдоподобия: оптимален, если у вас простые гипотезы.
- A/В-тестирование проверка гипотез в продакшене.
- Критерий последовательного отношения правдоподобия: снижение затрат на тестирование.
- \rightarrow Непараметрический ранговый критерий: рабочая лошадка ABT (наряду с t-тестом!).