TERRY-STOPS PROJECT

Data Understanding

In [1]: H import pandas as pd df = pd.read_csv('Terry_Stops.csv') df.head() Out[1]: **Subject Terry Stop** Stop Weapon Officer Officer GO / SC Num **Subject ID** Age **ID** Resolution Type ID YOB Group Field 36 - 45 8597903457 20190000243853 8597867579 5469 1967 Contact Field 26 - 35 -1 20160000003391 1 181276 None 7591 1985 Contact Field 2 18 - 25 7774286580 20210000118915 24056783769 7459 1973 Contact Offense 26 - 35 -1 20180000047173 400437 None 6680 1972 Report Offense 18 - 25 -1 20160000085711 136669 None 7560 1986 Report 5 rows × 23 columns

In [2]: ► df.shape

Out[2]: (58157, 23)

In [3]: ► df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 58157 entries, 0 to 58156
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Subject Age Group	58157 non-null	object
1	Subject ID	58157 non-null	int64
2	GO / SC Num	58157 non-null	int64
3	Terry Stop ID	58157 non-null	int64
4	Stop Resolution	58157 non-null	object
5	Weapon Type	58157 non-null	object
6	Officer ID	58157 non-null	object
7	Officer YOB	58157 non-null	int64
8	Officer Gender	58157 non-null	object
9	Officer Race	58157 non-null	object
10	Subject Perceived Race	58157 non-null	object
11	Subject Perceived Gender	58157 non-null	object
12	Reported Date	58157 non-null	object
13	Reported Time	58157 non-null	object
14	Initial Call Type	58157 non-null	object
15	Final Call Type	58157 non-null	object
16	Call Type	58157 non-null	object
17	Officer Squad	57613 non-null	object
18	Arrest Flag	58157 non-null	object
19	Frisk Flag	58157 non-null	object
20	Precinct	58157 non-null	object
21	Sector	58157 non-null	object
22	Beat	58157 non-null	object
			-

dtypes: int64(4), object(19)
memory usage: 10.2+ MB

In [4]: ► df.isna().sum()

Ou+[4]•	Subject Age Chaun	0
out[4].	Subject Age Group	0 0
	Subject ID	-
	GO / SC Num	0
	Terry Stop ID	0
	Stop Resolution	0
	Weapon Type	0
	Officer ID	0
	Officer YOB	0
	Officer Gender	0
	Officer Race	0
	Subject Perceived Race	0
	Subject Perceived Gender	0
	Reported Date	0
	Reported Time	0
	Initial Call Type	0
	Final Call Type	0
	Call Type	0
	Officer Squad	544
	Arrest Flag	0
	Frisk Flag	0
	Precinct	0
	Sector	0
	Beat	0
	dtype: int64	
	7 1	

Data Cleaning

dtype: int64

```
df.isna().sum()
   Out[5]: Subject Age Group
                                     0
           Subject ID
                                     0
           GO / SC Num
                                     0
           Terry Stop ID
                                     0
           Stop Resolution
                                     0
           Weapon Type
                                     0
           Officer ID
                                     0
           Officer YOB
                                     0
           Officer Gender
           Officer Race
           Subject Perceived Race
           Subject Perceived Gender
                                     0
           Reported Date
                                     0
           Reported Time
                                     0
           Initial Call Type
                                     0
           Final Call Type
                                     0
           Call Type
                                     0
           Officer Squad
                                     0
           Arrest Flag
                                     0
           Frisk Flag
                                     0
                                     0
           Precinct
           Sector
                                     0
                                     0
           Beat
```

In [6]: ► df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 57613 entries, 1 to 58156
Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Subject Age Group	57613 non-null	object
1	Subject ID	57613 non-null	int64
2	GO / SC Num	57613 non-null	int64
3	Terry Stop ID	57613 non-null	int64
4	Stop Resolution	57613 non-null	object
5	Weapon Type	57613 non-null	object
6	Officer ID	57613 non-null	object
7	Officer YOB	57613 non-null	int64
8	Officer Gender	57613 non-null	object
9	Officer Race	57613 non-null	object
10	Subject Perceived Race	57613 non-null	object
11	Subject Perceived Gender	57613 non-null	object
12	Reported Date	57613 non-null	object
13	Reported Time	57613 non-null	object
14	Initial Call Type	57613 non-null	object
15	Final Call Type	57613 non-null	object
16	Call Type	57613 non-null	object
17	Officer Squad	57613 non-null	object
18	Arrest Flag	57613 non-null	object
19	Frisk Flag	57613 non-null	object
20	Precinct	57613 non-null	object
21	Sector	57613 non-null	object
22	Beat	57613 non-null	object

dtypes: int64(4), object(19)
memory usage: 10.5+ MB

In [7]: df.drop_duplicates()

Out[7]:

	Subject Age Group	Subject ID	GO / SC Num	Terry Stop ID	Stop Resolution	Weapon Type	Officer C
1	26 - 35	-1	20160000003391	181276	Field Contact	None	7591
2	18 - 25	7774286580	20210000118915	24056783769	Field Contact	-	7459
3	26 - 35	-1	20180000047173	400437	Offense Report	None	6680
4	18 - 25	-1	20160000085711	136669	Offense Report	None	7560
5	26 - 35	7726413042	20200000137557	13081774163	Arrest	-	7662
58152	18 - 25	-1	20160000130978	146528	Arrest	None	7463
58153	18 - 25	-1	20160000426909	215171	Arrest	Lethal Cutting Instrument	8409
58154	36 - 45	7727655354	20190000388430	11143903619	Field Contact	-	8624
58155	36 - 45	7742492032	20220000335270	38989212363	Field Contact	-	8877
58156	36 - 45	-1	20150000355899	91064	Offense Report	None	6810

Exploratory Data Analysis

```
In [24]:  import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
```

Univariate Analysis

Inference

- Subject age group is mostly 26-35 and 36-45
- Stop resolution shows more field contact which could potentially show how the police suspect people
- The male gender is doing more of the arresting and being arrested

Bivariate Analysis

```
Out[11]:
           Arrest Flag
             51615
         Ν
         Υ
              5998
      df_encoded = pd.get_dummies(df["Arrest Flag"])
In [12]:
        print(df_encoded)
             N
              Υ
        1
             1
        2
             1
              0
        3
        4
        5
              1
        58152 1 0
        58153 1 0
        58154 1 0
        58155 1 0
        58156 1 0
        [57613 rows x 2 columns]
```

Out[14]: <function matplotlib.pyplot.show(close=None, block=None)>

Out[15]: <function matplotlib.pyplot.show(close=None, block=None)>

Out[16]: <function matplotlib.pyplot.show(close=None, block=None)>

In []: ▶

Multivariate Analysis

```
In [17]:
             correlation_matrix = df.corr()
             corr_arrested = correlation_matrix['Arrested']
             corr_arrested
             print(corr_arrested)
             Subject ID
                               0.272734
             GO / SC Num
                               0.088556
             Terry Stop ID
                               0.305715
             Officer YOB
                               0.137744
             Arrested
                               1.000000
             Name: Arrested, dtype: float64
```

C:\Users\admin\AppData\Local\Temp\ipykernel_26472\2152097093.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns o
r specify the value of numeric_only to silence this warning.
 correlation_matrix = df.corr()

In [18]: plt.figure(figsize=(12, 10))
 sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", lin
 plt.title('Correlation Heatmap', size=15)
 plt.show()

In []: ▶

Multivariate Analysis

C:\Users\admin\AppData\Local\Temp\ipykernel_26472\1640500724.py:1: FutureW
arning: The default value of numeric_only in DataFrame.corr is deprecated.
In a future version, it will default to False. Select only valid columns o
r specify the value of numeric_only to silence this warning.
 correlation_with_arrested = df.corr()['Arrested'].sort_values().to_frame
()

Out[19]:

	Arrested
GO / SC Num	0.088556
Officer YOB	0.137744
Subject ID	0.272734
Terry Stop ID	0.305715
Arrested	1.000000


```
In []: M
```

Modelling

Logistic Regression

The Class Imbalance Problem

```
ImportError
                                          Traceback (most recent call las
t)
Cell In[23], line 1
----> 1 from imblearn.over_sampling import SMOTE
      3 smote = SMOTE(sampling strategy='auto')
      4 X train resampled, y train resampled = smote.fit resample(X train,
y_train)
File ~\anaconda3\Lib\site-packages\imblearn\ init .py:52
            sys.stderr.write("Partial import of imblearn during the build
process.\n")
     49
            # We are not importing the rest of scikit-learn during the bui
ld
     50
            # process, as it may not be compiled yet
     51 else:
           from . import (
---> 52
     53
                combine,
     54
                ensemble,
     55
                exceptions,
     56
                metrics,
     57
                over sampling,
     58
                pipeline,
     59
                tensorflow,
                under sampling,
     60
     61
                utils,
     62
            )
     63
            from . version import version
            from .base import FunctionSampler
     64
File ~\anaconda3\Lib\site-packages\imblearn\combine\ init .py:5
      1 """The :mod:`imblearn.combine` provides methods which combine
      2 over-sampling and under-sampling.
      3 """
---> 5 from . smote enn import SMOTEENN
      6 from . smote tomek import SMOTETomek
      8 __all__ = ["SMOTEENN", "SMOTETomek"]
File ~\anaconda3\Lib\site-packages\imblearn\combine\ smote enn.py:13
     10 from sklearn.utils import check_X_y
     12 from ..base import BaseSampler
---> 13 from ..over_sampling import SMOTE
     14 from ..over sampling.base import BaseOverSampler
     15 from ..under sampling import EditedNearestNeighbours
File ~\anaconda3\Lib\site-packages\imblearn\over_sampling\__init__.py:8
      6 from . adasyn import ADASYN
      7 from . random over sampler import RandomOverSampler
----> 8 from . smote import SMOTE, SMOTEN, SMOTENC, SVMSMOTE, BorderlineSM
OTE, KMeansSMOTE
     10 __all__ = [
            "ADASYN",
     11
     12
            "RandomOverSampler",
   (\ldots)
            "SMOTEN",
     18
     19 ]
```

```
File ~\anaconda3\Lib\site-packages\imblearn\over sampling\ smote\ init .
---> 1 from .base import SMOTE, SMOTEN, SMOTENC
      2 from .cluster import KMeansSMOTE
      3 from .filter import SVMSMOTE, BorderlineSMOTE
File ~\anaconda3\Lib\site-packages\imblearn\over sampling\ smote\base.py:1
     16 from sklearn.exceptions import DataConversionWarning
     17 from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
---> 18 from sklearn.utils import (
            _get_column_indices,
     20
            _safe_indexing,
     21
            check array,
            check_random_state,
     22
     23 )
     24 from sklearn.utils.sparsefuncs fast import (
            csr_mean_variance_axis0,
     26 )
     27 from sklearn.utils.validation import num features
ImportError: cannot import name ' get column indices' from 'sklearn.utils'
(C:\Users\admin\anaconda3\Lib\site-packages\sklearn\utils\__init__.py)
```

Because of the import error we will continue with the classes as they were making sure they will not overfit

The Decision tree overfits the data giving us 99% score

.

```
In [28]:
         ▶ | from sklearn.ensemble import RandomForestClassifier
           random_forest = RandomForestClassifier(random_state=42)
           random forest.fit(X train, y train)
           y_pred = random_forest.predict(X_test)
           print(f'Accuracy : {accuracy score(y test, y pred)}')
           print(f'F1 score : {f1_score(y_test, y_pred)}')
           Accuracy: 0.9136509589516619
           F1 score: 0.4687666844634277
forest_cv_scores
   Out[29]: array([0.91017574, 0.91516598, 0.91288783, 0.91559991, 0.91429811])
'n estimators': [5, 10, 15],
               'max depth': [None, 5, 10],
               'min_samples_split': [2, 5],
               'min samples leaf': [1, 2]
           grid_search = GridSearchCV(estimator=random_forest, param_grid=param_grid,
           grid_search.fit(X_train, y_train)
           print(f'Best parameters: {grid_search.best_params_}')
           print(f'Best parameters: {grid_search.best_score_}')
           Best parameters: {'max depth': None, 'min samples leaf': 1, 'min samples s
           plit': 2, 'n_estimators': 15}
           Best parameters: 0.9121501410284226
```

The Grid search takes very long to come up with results thus going with Randomized search.

```
In [32]:
          rf_best = grid_search.best_estimator_
             rf best.fit(X train, y train)
             best_y_pred = rf_best.predict(X_test)
             best_model = accuracy_score(y_test, best_y_pred)
             print(f'Accuracy : {accuracy_score(y_test, best_y_pred)}')
             print(f'F1 score : {f1_score(y_test, best_y_pred)}')
             Accuracy: 0.9140848737307993
             F1 score: 0.48544698544698545
In [36]: ▶ from xgboost import XGBClassifier
             xgb_model = XGBClassifier()
             xgb_model.fit(X_train, y_train)
             xgb y pred = xgb model.predict(X test)
             print(f'Accuracy : {accuracy_score(y_test, xgb_y_pred)}')
             print(f'F1 score : {f1_score(y_test, xgb_y_pred)}')
             Accuracy: 0.9209407272411698
             F1 score: 0.5842081241442264

★ | xgb_cv = cross_val_score(xgb_model, X_train, y_train, cv=5)

In [38]:
             xgb_cv
   Out[38]: array([0.9144066 , 0.92373617, 0.92048167, 0.91928835, 0.92243437])
In [41]: ► | from sklearn.model_selection import RandomizedSearchCV
             random search = RandomizedSearchCV(estimator=xgb model, param distributions
             random_search.fit(X_train, y_train)
             print(f'Best parameters: {random search.best params }')
             print(f'Best score: {random_search.best_score_}')
             Best parameters: {'subsample': 0.8, 'n_estimators': 15, 'max_depth': 7, 'l
             earning_rate': 0.2, 'colsample_bytree': 1.0}
             Best score: 0.9141462356259492
```