

Nuclear Medicine

- A radionuclide is injected into the blood stream
- Goes to "hyperactive" locations e.g., cancer or healing cells
- Emitted Gamma rays are detected for imaging
- Very low resolution, but high sensitivity

3

Nuclear Medicine

- Biological behavior of a substance's biodistribution in the body
- Label each molecule of the substance with a radioactive atom
- "Functional" imaging modalities: body's physiological and biochemical functioning
 - Example 1:
 - $\ \square$ Metabolic activity of the bone \rightarrow activity during healing process
 - □ Structural information → bone fracture
 - Example 2:
 - $\ \square$ Myocardial perfusion \rightarrow disribution of blood flow in the heart muscle
 - $\ \ \Box$ Coronary angiography \Rightarrow anatomy of the coronary arteries

Radiotracers

- Radioactive tracer (radiotracer) could be
 - Injected into a peripheral arm vein of the patient
 - Inhaled
 - Ingested
- 100s of different radiotracers, each asses the function of a different physiologic process
- Radiotracers decays to form gamma rays, which are then detected
- Radioactive decay: Aton rearranges its protons and neutrons to end up with lower inherent energy → energy released as ionizing radiation

5

Radiotracers

- Radiotracer determines which physiological or biochemical function is being imaged
- Compare with X-ray or CT: image depends on parameters or instruments, but the information is the same (anatomy)
- Radiotracer is selectively taken up by an organ or lesion

Most Commonly Used Radiotracer

- Te99m (Technicium): Most commonly used radiotracer
 - Emits 140 keV gamma rays
 - 6 hr half life
- Uptake region appears dark in the image
- Problem:
 - Radiation continues even after imaging
 - Poor images, resolution around 1 cm, noisy
- Advantages: Shows function directly

8

Nuclear Medicine

- Three different modalities
 - Scintigraphy (projection format 2D)
 - Single-photon emission computed tomography (SPECT)
 - Positron emission tomography (PET)
- <u>Scintigraphy and SPECT:</u> radionuclide decays to form gamma rays, which are then detected
- <u>PET:</u> radionuclide decays to produce a positron, which then immediately annihilates with an electron to produce two gamma rays that fly off in opposite directions

Radiotracers

- There are 1500 known radionuclides
- ~200 can be purchased commercially
- We want "clean" gamma ray emitters
 - without particle radiation that cause additional dosage but does not contribute to the image
- IMPORTANT NOTE: We do NOT want attenuation of the radiation (unlike x-ray or CT). We want to detect them all!!

14

Radiotracers

- We want to detect location of emitters
 - Energy should be high, so μ is small
 - Energy should not be too high, because we want rays to interact with the detector
 - Typical 70-511 keV gamma rays
- Half life is important: ~minutes to hours
 - If too short, cannot image
 - If too long, creating the image takes too long
 - Some radiotracers need to be made on-site in generators or cyclotrons

	Gamma Emitters (Used in Scintigraphy an				
Z	Nuclide	Half-life	Photon Energy (keV)		
24	Chromium-51	28 d	320		
31	Gallium-67	79.2 h	92, 184, 296		
34	Selenium-75	120 d	265		
38	Strontium-87m	2.8 h	388		
43	Technetium-99m	6 h	140		
49	Indium-111	2.8 d	173, 247		
	Indium-113m	1.73 h	393		
53	Iodine-123	13.3 h	159		
	Iodine-125	60 d	35, 27		
	Iodine-131	8.04 d	364		
54	Xenon-133	5.3 d	81		
80	Mercury-197	2.7 d	77		
81	Thallium-201	73 h	135, 167		

	Positron Emitters (Used in PET)			
Z	Nuclide	Half-life	Positron Energy (keV)	
6	Carbon-11	20.3 min	326	
7	Nitrogen-13	10.0 min	432	
8	Oxygen-15	2.1 min	696	
9	Fluorine-18	110 min	202	
29	Copper-64	12.7 h	656	
31	Gallium-68	68 min	1,900	
33	Arsenic-72	26 h	3,340	
35	Bromine-76	16.1 h	3,600	
37	Rubidium-82	1.3 min	3,150	
53	Iodine-122	3.5 min	3,100	

Popular Radiotracers

- lodine-123, lodine-131: administer orally, measure in thyroid a day later to assess thyroid function
- Technetium-99m: filtered by kidneys, assess renal function
- Gaseous O2, with Oxygen-15: measures blood flow, assess oxygen metabolism
- FDG with Fluorine-18: sugar (glucose), uptaken by brain or highly active cells in the body (e.g., cancer)