MARKED UP COPY OF AMENDED CLAIMS (Do not enter)

1.(TWICE AMENDED)

A compound of the formula

ı

or a pharmaceutically acceptable salt thereof, wherein

A is -CR₇;

B is $-NR_1R_2$, $-CR_1R_2R_{11}$, $-C(=CR_2R_{12})R_1$, $-NHCHR_1R_2$, $-OCHR_1R_2$, $-SCHR_1R_2$, $-CHR_2OR_1$, $-CHR_1OR_2$, $-CHR_2SR_1$, $-C(S)R_2$, $-C(O)R_2$, $-CHR_2NR_1R_2$, $-CHR_1NHR_2$, $-CHR_1N(CH_3)R_2$, or $-NR_{12}NR_1R_2$;

Z is NH, O, S, -N(C₁-C₂ alkyl), -NC(O)CF₃, or -C(R₁₃R₁₄), wherein R₁₃ and R₁₄ are each, independently, hydrogen, trifluoromethyl or methyl, or one of R₁₃ and R₁₄ is cyano and the other is hydrogen or methyl, or -C(R₁₃R₁₄) is a cyclopropyl group, or Z is nitrogen or CH and forms a five or six membered heterocyclic ring fused with R₅, which ring optionally includes two or three further hetero members selected independently from oxygen, nitrogen, NR₁₂, and S(O)_m, and optionally includes from one to three double bonds, and is optionally substituted with halo, C₁-C₄ alkyl, -O(C₁-C₄ alkyl), NH₂, NHCH₃, N(CH₃)₂, CF₃, or OCF₃, with the proviso that said ring does not include any – S-S-, -S-O-, -N-S-, or –O-O- bonds, and does not include more than two oxygen or S(O)_m heterologous members;

R₁ is C(O)H, C(O)(C₁-C₆ alkyl), C(O)(C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), C(O)(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), C(O)(C₁-C₆ alkylene)(C₄-C₈ heterocycloalkyl), -C(O)(C₃-C₈ cycloalkylene)(C₄-C₈ heterocycloalkyl), C₁-C₆ alkylene)(C₃-C₈ cycloalkyl, C₄-C₈ heterocycloalkyl, -(C₁-C₆ alkylene)(C₃-C₈ cycloalkyl), -(C₁-C₆ alkylene)(C₄-C₈ heterocycloalkyl), -(C₁-C₆ alkylene)(C₄-C₈ heterocycloalkyl), or -O-aryl, or -O-(C₁-C₆ alkylene)-aryl; wherein said aryl, C₄-C₈ heterocycloalkyl, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkylene, and C₁-C₆ alkylene groups may each independently be optionally substituted with from one to six fluoro and may each independently be optionally substituted with one or two substituents R₈ independently selected from the group consisting of C₁-C₄ alkyl, -C₃-C₈ cycloalkyl, hydroxy, chloro, bromo, iodo, CF₃, -O-(C₁-C₆ alkyl), -O-(C₃-C₅ cycloalkyl), -O-CO-(C₁-C₄ alkyl), -O-CO-NH(C₁-C₄ alkyl), -O-CO-N(R₂₄)(R₂₅), -N(R₂₄)(R₂₅), -S(C₁-C₄ alkyl), -S(C₃-C₅ cycloalkyl), -N(C₁-C₄ alkyl)|CO(C₁-C₄ alkyl), -NHCO(C₁-C₄ alkyl), -COO(C₁-C₄ alkyl), -CON(C₁-C₄ alkyl), and -SO₂(C₁-C₄ alkyl), S⁺(C₁-C₆ alkyl)(C₁-C₂ alkyl)l), -SO(C₁-C₄ alkyl) and -SO₂(C₁-C₄ alkyl), -N(C₁-C₄ alkyl) and -SO₂(C₁-C₄ alkyl), -N(C₁-C₄ alkyl) and -SO₂(C₁-C₄ alkyl), -SO(C₁-C₄ alkyl), -SO(C₁-C₄ alkyl), and -SO₂(C₁-C₄

alkyl); and wherein the C_1 - C_6 alkyl, C_1 - C_6 alkylene, C_5 - C_8 cycloalkyl, C_5 - C_8 cycloalkylene, and C_5 - C_8 heterocycloalkyl moieties of R_1 may optionally independently include from one to three double or triple bonds; and wherein the C_1 - C_4 alkyl moieties and C_1 - C_6 alkyl moieties of R_8 can optionally independently be substituted with hydroxy, amino, C_1 - C_4 alkyl, aryl, - C_7 -aryl, C_7 - C_7 cycloalkyl, or – C_7 - C_7 - C_7 -alkyl), and can optionally independently be substituted with from one to six fluoro, and can optionally include one or two double or triple bonds; and wherein each heterocycloalkyl group of R_1 includes from one to three heteromoieties selected from oxygen, S_7 - S_7

 R_2 is hydrogen, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, C_4 - C_8 heterocycloalkyl, -(C_1 - C_6 alkylene)(C_3 - C_8 cycloalkyl), -(C_3 - C_8 cycloalkylene)(C_3 - C_8 cycloalkyl), -(C_1 - C_6 alkylene)(C_4 - C_8 heterocycloalkyl), -(C_3 - C_8 cycloalkylene)(C_4 - C_8 heterocycloalkyl), aryl, -(C_1 - C_6 alkylene)aryl, or -(C_3 - C_8 cycloalkylene)(aryl); wherein each of the foregoing R_2 groups may optionally be substituted with from one to three substituents independently selected from chloro, fluoro, and C_1 - C_6 alkyl, wherein one of said one to three substituents can further be selected from bromo, iodo, C_1 - C_6 alkoxy, -OH, -O-CO-(C_1 - C_6 alkyl), -O-CO-N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), -S(C_1 - C_6 alkyl), -C(C_1 - C_1 -

or when R_1 and R_2 are as in -NHCHR $_1R_2$, -OCHR $_1R_2$, -SCHR $_1R_2$, -CHR $_1R_2$ or -NR $_1R_2$, R $_1$ and R $_2$ of B may form a saturated 5- to 8-membered ring which may optionally include one or two double bonds and in which one or two of the ring carbons may optionally be replaced by an oxygen, S(O)_m, nitrogen or NR $_1$; and which ring can optionally be substituted with from 1 to 3 substituents selected from the group consisting of hydroxy, C $_1$ -C $_4$ alkyl, fluoro, chloro, bromo, iodo, CF $_3$, -O-(C $_1$ -C $_4$ alkyl), -O-CO-(C $_1$ -C $_4$ alkyl), -O-CO-NH(C $_1$ -C $_4$ alkyl), -O-CO-N(C $_1$ -C $_4$ alkyl)(C $_1$ -C $_4$ alkyl), -N(C $_1$ -C $_4$ alkyl), -N(C $_1$ -C $_4$ alkyl), -N(C $_1$ -C $_4$ alkyl), -COO(C $_1$ -C $_4$ alkyl), -CONH(C $_1$ -C $_4$ alkyl), -CON(C $_1$ -C $_4$ alkyl), CN, NO $_2$, -OSO $_2$ (C $_1$ -C $_4$ alkyl), -SO(C $_1$ -C $_4$ alkyl), and -SO $_2$ (C $_1$ -C $_4$ alkyl), wherein one of said one to three substituents can further be selected from phenyl;

 R_3 is methyl, ethyl, fluoro, chloro, bromo, iodo, cyano, methoxy, OCF₃, NH₂, NH(C₁-C₂ alkyl), N(CH₃)₂, -NHCOCF₃, -NHCH₂CF₃, S(O)_m(C₁-C₄ alkyl), CONH₂, -CONHCH₃, CON(CH₃)₂, -CF₃, or CH₂OCH₃;

 $R_4 \text{ is hydrogen, } C_1\text{-}C_4 \text{ alkyl}, C_3\text{-}C_5 \text{ cycloalkyl}, -(C_1\text{-}C_4 \text{ alkylene})(C_3\text{-}C_5 \text{ cycloalkyl}), -(C_3\text{-}C_5 \text{ cycloalkyl}), -(C_3\text{-}C_5 \text{ cycloalkyl}), cyano, fluoro, chloro, bromo, iodo, -OR_{24}, C_1\text{-}C_6 \text{ alkoxy, -O-}(C_3\text{-}C_5 \text{ cycloalkyl}), -O-(C_1\text{-}C_4 \text{ alkylene})(C_3\text{-}C_5 \text{ cycloalkyl}), -O-(C_3\text{-}C_5 \text{ cycloalkylene})(C_3\text{-}C_5 \text{ cycloalkyl}), -CH_2\text{-}C_3\text{-}C_5 \text{ cycloalkyl}), -CH_2\text{-}C_3\text{-}C_5 \text{ cycloalkyl}), -CH_2\text{-}C_4 \text{ alkylene})(C_3\text{-}C_5 \text{ cycloalkyl}), -CH_2\text{-}C_4 \text{-}C_4 \text{-}C_4$

 $S(O)_mR_{24}$, $-C(O)R_{24}$, $-OC(O)R_{24}$, -C(O)CN, $-C(O)NR_{24}R_{25}$, $-C(O)NHNR_{24}R_{25}$, and $-COOR_{24}$, wherein the alkyl and alkylene groups of R_4 may optionally independently include one or two double or triple bonds and may optionally independently be substituted with one or two substituents R_{10} independently selected from hydroxy, amino, $-NHCOCH_3$, $-NHCOCH_2CI$, $-NH(C_1-C_2$ alkyl), $-N(C_1-C_2$ alkyl), $-COO(C_1-C_4$ alkyl), $-COO(C_1-C_4$ alkyl), $-COO(C_1-C_4$ alkyl), $-COO(C_1-C_4$ alkyl), $-COO(C_1-C_4$ alkyl), $-COO(C_1-C_4$ alkyl), $-COO(C_1-C_4)$ alkyl), $-COO(C_1-C_4)$

R₅ is anyl or heteroaryl and is substituted with from one to four substituents R₂₇ independently selected from halo, C₁-C₁₀ alkyl, -(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₁-C₄ alkylene)(C_4 - C_8 heterocycloalkyl), -(C_3 - C_8 cycloalkyl), -(C_4 - C_8 heterocycloalkyl), -(C_3 - C_8 cycloalkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₄-C₈ heterocycloalkyl), C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, nitro, cyano, -NR₂₄R₂₅, -NR₂₄COR₂₅, -NR₂₄CO₂R₂₆, -COR₂₄, -OR₂₅, -CONR₂₄R₂₅, - $CO(NOR_{22})R_{23}$, $-CO_2R_{26}$, $-C=N(OR_{22})R_{23}$, and $-S(O)_mR_{23}$; wherein said C_1-C_{10} alkyl, C_3-C_8 cycloalkyl, $(C_1-C_4$ alkylene), $(C_3-C_8$ cycloalkyl), $(C_3-C_8$ cycloalkylene), and $(C_4-C_8$ heterocycloalkyl) groups can be optionally substituted with from one to three substituents independently selected form C₁-C₄ alkyl, C₃-C₈ cycloalkyl, (C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), -(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl), C₁-C₄ haloalkyl, hydroxy, C₁-C₆ alkoxy, nitro halo, cyano, -NR₂₄R₂₅, -NR₂₄COR₂₅, $NR_{24}CO_2R_{26}$, $-COR_{24}$, $-OR_{25}$, $-CONR_{24}R_{25}$, CO_2R_{26} , $-CO(NOR_{22})R_{25}$, and $-S(O)_mR_{23}$; and wherein two adjacent substituents of the R₅ group can optionally form a 5-7 membered ring, saturated or unsaturated, fused to R5, which ring optionally can include one, two, or three heterologous members independently selected from O, S(O)_m, and N, but not any -S-S-, -O-O-, -S-O-, or -N-Sbonds, and which ring is optionally substituted with C1-C4 alkyl, C3-C8 cycloalkyl, -(C1-C4 alkylene)(C_3 - C_8 cycloalkyl), -(C_3 - C_8 cyloalkylene)(C_3 - C_8 cycloalkyl), C_1 - C_4 haloalkyl, nitro, halo, cyano –NR₂₄R₂₅, NR₂₄COR₂₅, NR₂₄CO₂R₂₆, -COR₂₄, -OR₂₅, -CONR₂₄R₂₅, CO₂R₂₆, -CO(NOR₂₆)R₂₅, or -S(O)_mR₂₃; wherein one of said one to four optional substituents R₂₇ can further be selected from $-SO_2NH(C_1-C_4 \text{ alkyl})$, $-SO_2NH(C_1-C_4 \text{ alkylene})(C_3-C_8 \text{ cycloalkyl})$, $-SO_2NH(C_3-C_8 \text{ cycloalkyl})$. $SO_2NH(C_3-C_8)$ cycloalkylene)(C_3-C_8 cycloalkyl), $-SO_2N(C_1-C_4)$ alkyl)(C_1-C_2 alkyl), $-SO_2NH_2$. -NHSO₂(C₁-C₄ alkyl), -NHSO₂(C₃-C₈ cycloalkyl), -NHSO₂(C₁-C₄ alkylene)(C₃-C₈ cycloalkyl), and -NHSO₂(C₃-C₈ cycloalkylene)(C₃-C₈ cycloalkyl); and wherein the alkyl, and alkylene groups of R₅ may independently optionally include one double or triple bond;

 R_6 is hydrogen, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, -(C_1 - C_6 alkylene)(C_3 - C_8 cycloalkyl), or -(C_3 - C_8 cycloalkylene)(C_3 - C_8 cycloalkyl), wherein said alkyl and cycloalkyl may optionally be substituted with one hydroxy, methoxy, ethoxy or fluoro group;

 R_7 is hydrogen, methyl, fluoro, chloro, bromo, iodo, cyano, hydroxy, $-O(C_1-C_2 \text{ alkyl})$, -O(cyclopropyl), $-COO(C_1-C_2 \text{ alkyl})$, $-COO(C_3-C_8 \text{ cycloalkyl})$, $-OCF_3$, CF_3 , $-CH_2OH$, or CH_2OCH_3 ;

R₁₁ is hydrogen, hydroxy, fluoro, ethoxy, or methoxy;

 R_{12} is hydrogen or C_1 - C_4 alkyl;

R₂₂ is independently at each occurrence selected from hydrogen, C₁-C₄ alkyl, C₁-C₄

haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_8 cycloalkyl, $(C_3$ - C_8 cycloalkyl), and $(C_1$ - C_4 alkylene) $(C_3$ - C_8 cycloalkyl);

 R_{23} is independently at each occurrence selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_8 alkoxyalkyl, C_3 - C_8 cycloalkyl, -(C_1 - C_4 alkylene)(C_3 - C_8 cycloalkyl), -(C_3 - C_8 cycloalkyl), aryl, -(C_1 - C_4 alkylene)aryl, piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine, and thiomorpholine;

 R_{24} and R_{25} are independently at each occurrence selected from hydrogen, $-C_1$ - C_4 alkyl, C_1 - C_4 haloalkyl, especially CF₃, $-CHF_2$, CF₂CF₃, or CH₂CF₃, $-(C_1$ - C_4 alkylene)OH, $-(C_1$ - C_4 alkylene)-O- $(C_1$ - C_4 alkylene)-O- $(C_3$ - C_5 cycloalkyl), $-(C_1$ - C_4 alkylene)(C_3 - C_8 cycloalkyl), $-(C_3$ - C_8 cycloalkylene)(C_3 - C_8 cycloalkyl), $-(C_3$ - C_8 cycloalkylene)(C_3 - C_8 heterocycloalkyl, and $-(C_1$ - C_4 alkylene)(aryl), wherein the $-C_4$ - C_8 heterocycloalkyl groups can each independently optionally be substituted with aryl, $-(C_1$ - $-(C_4)$ alkylene) and $-(C_1$ - $-(C_4)$ alkylene) are as $-(C_1$ - $-(C_4)$ alkylene) and $-(C_1$ - $-(C_4)$ alkylene) are as $-(C_1$ - $-(C_4)$ alkylene).

 R_{26} is independently at each occurrence selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_8 cycloalkyl, -(C_1 - C_4 alkylene)(C_3 - C_8 cycloalkyl), -(C_3 - C_8 cycloalkylene)(C_3 - C_8 cycloalkyl), aryl, and -(C_1 - C_4 alkylene)(aryl); and

wherein each m is independently zero, one, or two,

with the proviso that heterocycloalkyl groups of the compound of formula I[$\frac{1}{1}$, or III] do not include any -S-S-, -S-O-, -N-S-, or -O-O- bonds, and do not include more than two oxygen or $S(O)_m$ heterologous members.

9. (AMENDED) A pharmaceutical composition for the treatment of (a) a disorder or condition the treatment of which can be effected or facilitated by antagonizing CRF, or (b) a disorder or condition selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic; phobias, including social phobia, agoraphobia, and specific phobias; obsessive-compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, mood disorders associated with premenstrual syndrome, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; chronic fatigue syndrome; stress-induced headache; [cancer;] irritable bowel syndrome[, Crohn's disease]; spastic colon; post operative ileus; ulcer; diarrhea; stress-induced fever; [human immunodeficiency virus infections;] neurodegenerative diseases such as

Patent Application 09/761,995 Attorney Docket No. PC10759A

Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases; [eating_disorders_such_as_anorexia_and_bulimia_nervesa;] hemorrhagic_stress; chemical dependencies or addictions, including dependencies or addictions to alcohol, cocaine, heroin, benzodiazapines, or other drugs; drug or alcohol withdrawal symptoms; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiuretic hormone; [ebesity; infertility;] head trauma; spinal cord trauma; ischemic neuronal damage, including cerebral ischemia, for example cerebral hippocampal ischemia; excitotoxic neuronal damage; epilepsy; stroke; immune dysfunctions including stress induced immune dysfunctions, including porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, confinement dysfunction in chicken, sheering stress in sheep, and human-animal interaction stress in dogs; muscular spasms; urinary incontinence; senile dementia of the Alzheimer's type; multiinfarct dementia; amyotrophic lateral sclerosis; hypertension; tachycardia; congestive heart failure; osteoporosis[;] and premature birth[; hypoglycemia, and Syndrome X] in a mammal or bird, comprising an amount of a compound according to claim 1 that is effective in the treatment of such disorder or condition, and a pharmaceutically acceptable carrier.

0

10. (AMENDED) A method for the treatment of (a) a disorder or condition the treatment of which can be effected or facilitated by antagonizing CRF, or (b) a disorder or condition selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis. pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic; phobias, including social phobia, agoraphobia, and specific phobias; obsessive-compulsive disorder; post-traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, mood disorders associated with premenstrual syndrome, and postpartum depression; dysthemia; bipolar disorders; cyclothymia; chronic fatique syndrome; stress-induced headache; [cancer;] irritable bowel syndrome[, Crohn's disease]; spastic colon; post operative ileus; ulcer; diarrhea; stress-induced fever; [human immunodeficiency virus infections;] neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease; gastrointestinal diseases; [eating-disorders such as anorexia and bulimia nervosa; hemorrhagic stress; chemical dependencies or addictions, including dependencies or addictions to alcohol, cocaine, heroin, benzodiazapines, or other drugs; drug or alcohol withdrawal symptoms; stress-induced psychotic episodes; euthyroid sick syndrome; syndrome of inappropriate antidiuretic hormone; [obesity; infertility:] head trauma; spinal cord trauma; ischemic neuronal damage, including cerebral ischemia, for example cerebral hippocampal ischemia; excitotoxic neuronal damage; epilepsy; stroke; immune dysfunctions including stress induced immune dysfunctions, including porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, confinement dysfunction in chicken, sheering stress in sheep, and human-animal interaction stress in dogs; muscular spasms; urinary incontinence;

senile dementia of the Alzheimer's type; multiinfarct dementia; amyotrophic lateral sclerosis; hypertension; tachycardia; congestive heart failure; osteoporosis[;] and premature birth[; hypoglycemia, and Syndrome X] in a mammal or bird, comprising administering to a subject in need of said treatment an amount of a compound according to claim 1, that is effective in treating such disorder or condition.

- 17. A pharmaceutical composition for treating a condition comprising a compound of claim 1 in an amount effective to treat said condition and a pharmaceutically acceptable carrier, wherein said condition is selected from the group consisting of:
 - a) abnormal circadian rhythm;
- b) depression, further wherein a second compound for treating depression is administered, said second compound for treating depression having an onset of action that is delayed with respect to that of said [CRF-antagonist] compound of claim 1; and
 - c) emesis.