

Predict if client will subscribe to term deposit or not

Aishwarya Pai Sparsh Tekriwal Siddhesh Karanjkar Naeem Sunesara Deep Doshi

Problem Statement

- Decline in revenues for a Portuguese bank
- Root cause is clients not depositing as frequently as before
- Term deposit allow banks to hold onto investments for a specific amount of time
- ► These deposits --> invest in higher gain financial products == Profit
- Or, customers can be persuaded to buy other products such as funds or insurance == further increased revenues
- ► Hence, goal is to identify likely customers and focus marketing budgets on them.

About the Dataset

- ▶ There are 41,188 observations and 21 Variables in the Data Set.
- There are 10 continuous and 10 categorical variables.
- The target response (y) is a binary response indicating whether the client subscribed to a term deposit or not.
- Our first objective was to determine which variables have the highest influence on whether a client purchases a term deposit or not.
- The second objective is to determine patterns in variables that produce the most term deposit purchases.

Train Data Description- 41188 rows & 20 features

20 features categorized into 3 categories

Category 1: Personal Attributes

Column	Renamed Column	Description	Туре	Unique Value Count
age	age	Age of a person	Numeric	78
job	job	Job status	Categorical	12
marital	marital	Marital status	Categorical	4
education	education	Education Status	Categorical	8
default	credit_default	Has credit in default?	Categorical	3
housing	housing_loan	Has housing loan?	Categorical	3
Loan	personal_loan	Has personal loan?	Categorical	3

Data Description

Category 2: Contact Related Details

Column	Renamed Column	Description	Туре	Unique Value Count
contact	contact_type	Contact communication type	categorical	2
month	last_contact_month	Last contact month of year	Categorical	10
day_of_wee k	last_contact_day_of_ week	Last contact day of week	Categorical	5
duration	last_contact_duration	Last contact duration	Numerical	1544
campaign	no_of_contacts	Number of contacts performed in a campaign	Numerical	42
pdays	time_between_conta cts	Number of days passed from previous contact	Numerical	27
previous	previous_no_of_conta cts	Number of contacts before this campaign	Numerical	8
poutcome	prev_outcome	Outcome of previous campaign	Categorical	3

Data Description

Category 3 Various Indexes

Column	Renamed Column	Description	Туре	Unique Value Count
emp.var.rate	emp_var_rate	Employment variation rate(quarterly indicator)	Numerical	10
cons.price.id x	consumer_price_index	Consumer price index (monthly indicator)	Numerical	26
cons.conf.idx	consumer_conf_index	Consumer confidence index (monthly indicator)	Numerical	26
euribor3m	euribor_3month_rate	Euribor 3 month rate (daily indicator)	Numerical	316
nr.employed	num_of_employed	Number of employees (quarterly indicator)	Numerical	11

Target: Will the client Subscribe? No Probably!!

```
fig, ax = plt.subplots()
fig.set_size_inches(10, 8)
sns.countplot(x = 'target', data = df)
ax.set_xlabel('Target Variable', fontsize=15)
ax.set_ylabel('Count', fontsize=15)
ax.set_title('Target Variable Distribution', fontsize=15)
sns.despine()
# there is a class imbalance that needs to be handled
```



```
labels = 'No', 'Yes'
sizes = [36548, 4640]|
colors = ['red', 'green']
explode = (0.3, 0) # explode 1st slice

# Plot
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%', shadow=True, startangle=0)

plt.axis('equal')
plt.show()
```


Missing Data !!!

```
In [14]: df.isnull().sum()
Out[14]: age
         job
         marital
         education
         credit default
         housing loan
         personal loan
         contact type
         last contact month
         last contact day of week
         last contact duration
         no of contacts
         time between contacts
         previous no of contacts
         prev outcome
         emp var rate
         consumer price index
         consumer conf index
         euribor 3month rate
         num of employed
         target
         dtype: int64
```

- There are no missing values in any column
- But there are some abnormal values like Unknown & 999
- Here we have considered Unknown in all the features as a new class
- 999 is also kept as it is because it makes more sense according to business

Outliers, There are outliers detected by IQR method, but none are Outliers actually!!

```
numeric cols = ['age',
'last contact duration',
 'no of contacts',
 'time between contacts',
 'previous no of contacts',
 'emp var rate',
 'consumer price index',
 'consumer conf index',
 'euribor 3month rate',
 'num of employed']
for col in numeric cols:
   Q1=df[col].quantile(q = 0.25)
   Q2=df[col].quantile(q = 0.50)
   Q3=df[col].quantile(q = 0.75)
   Q4=df[col].quantile(q = 1.00)
   print('The Range for',col ,'is', Q1 - 1.5*(IQR), 'to', Q3 + 1.5*(IQR))
   print('There are', sum((df[col]>(Q3 + 1.5*(IQR))) | (df[col] < (Q1 - 1.5*(IQR)))), outliers in ", col)
  The Range for age is 9.5 to 69.5
  There are 469 outliers in age
  The Range for last_contact_duration is -223.5 to 644.5
  There are 2963 outliers in last contact duration
  The Range for no of contacts is -2.0 to 6.0
  There are 2406 outliers in no of contacts
  The Range for time between contacts is 999.0 to 999.0
  There are 1515 outliers in time between contacts
  The Range for previous no of contacts is \theta.\theta to \theta.\theta
  There are 5625 outliers in previous no of contacts
  There are 0 outliers in emp var rate
  The Range for consumer price index is 91.69650000000001 to 95.3725
  There are θ outliers in consumer price index
  The Range for consumer conf index is -52.15000000000000 to -26.949999999999999
  There are 447 outliers in consumer conf index
  The Range for euribor 3month rate is -4.081499999999999 to 10,3865
  There are 0 outliers in euribor 3month rate
  The Range for num of employed is 4905.6 to 5421.6
  There are 0 outliers in num of employed
```

IQR Outlier Detection Method

Anything above Q3+1.5*IQR or below Q3 - 1.5*IQR is an outlier

Age & Job

```
temp = pd.crosstab(pd.cut(df['age'],bins=[17,20,25,55,60,100]),df['target'])
total = (temp['no']+temp['yes'])
temp['ratio'] = temp['yes']/total
print(temp)
                              ratio
  target
                     yes
  age
  (17, 20]
                80
                      55 (0.407407
  (20, 25]
              1234
                     292
                          0.191350
  (25, 55]
             32390
                   3550
                          0.098776
  (55, 60]
              2345
                     327 0.122380
  (60, 100]
               496
                     414 (0.454945
```

```
temp = pd.crosstab(df['job'],df['target'])
total = (temp['no']+temp['yes'])
temp['ratio'] = temp['yes']/total
print(temp)
  target
                                ratio
  job
  admin.
                 9070
                            0.129726
  blue-collar
                 8616
                        638
                            0.068943
  entrepreneur
                 1332
                      124 0.085165
  housemaid
                  954
                        106 0.100000
  management
                 2596
                            0.112175
  retired
                 1286
                            0.252326
  self-employed 1272
                            0.104856
                        149
  services
                 3646
                        323 0.081381
  student
                  600
  technician
                 6013
                        730
                            0.108260
  unemployed
                  870
                        144 0.142012
  unknown
                  293
                         37 0.112121
```

While Age is just a number, it matters a lot here, clients before the age of 20 and who are students and those above 60 and retired are highly likely to subscribe as compared to middle aged clients

Education: Illiterates very low in numbers but high in subscription

```
temp = pd.crosstab(df['education'],df['target'])
total = (temp['no']+temp['yes'])
temp['ratio'] = temp['yes']/total
print(temp)
```

target	no	yes	ratio
education			
basic.4y	3748	428	0.102490
basic.6y	2104	188	0.082024
basic.9y	5572	473	0.078246
high.school	8484	1031	0.108355
illiterate	14	4	0.222222
professional.course	4648	595	0.113485
university.degree	10498	1670	0.137245
unknown	1480	251	0.145003

Contacts: High in month of May-Aug, but the subscriptions are lower

```
temp = pd.crosstab(df['last_contact_month'],df['target'])
total = (temp['no']+temp['yes'])
temp['ratio'] = temp['yes']/total
print(temp)
```

target	no	yes	ratio
last_contact_month			
apr	2093	539	0.204787
aug	5523	655	0.106021
dec	93	89	0.489011
jul	6525	649	0.090466
jun	4759	559	0.105115
mar	270	276	0.505495
may	12883	886	0.064347
nov	3685	416	0.101439
oct	403	315	0.438719
sep	314	256	0.449123

Number of Contacts & Call Duration

```
temp = pd.crosstab(df['no_of_contacts'],df['target'])
total = (temp['no']+temp['yes'])
temp['ratio'] = temp['yes']/total
print(temp)
```

target	no	yes	ratio
no_of_contacts			
1	15342	2300	0.130371
2	9359	1211	0.114570
3	4767	574	0.107471
4	2402	249	0.093927
5	1479	120	0.075047
6	904	75	0.076609
7	591	38	0.060413
8	383	17	0.042500
9	266	17	0.060071
10	213	12	0.053333
11	165	12	0.067797
12	122	3	0.024000
13	88	4	0.043478
14	68	1	0.014493
15	49	2	0.039216

As the number of contacts increases probability of subscription reduces, above 10 there is extremely low probability of subscription

 One of the most important features is Call Duration, there is a clear indication that high durations lead to conversions

Previous Contacts

```
temp = pd.crosstab(df['prev_outcome'],df['target'])
total = (temp['no']+temp['yes'])
temp['ratio'] = temp['yes']/total
print(temp)
                                ratio
  target
                        yes
  prev_outcome
  failure
                 3647
                        605 0.142286
  nonexistent
                32422
                       3141 0.088322
  success
                  479
                        894 0.651129
```

► There is a very low chance for first timers to convert

Heatmap of Numerical Variables

- 0.9

- 0.6

- 0.3

- 0.0

- -0.3

High Correlation Among Indexes

- num_of_employed & euribor_3month_rate : 0.95
- num_of_employed & emp_var_rate : 0.91
- num_of_employed & consumer_price_index : 0.52
- euribor_3month_rate & consumer_price_index : 0.69
- consumer_price_index & emp_var_rate : 0.78
- previous_no_of_contacts & time_between_contacts: -0.59

Modeling

- XGBoost
- Random Forest
- Decision Trees
- **KNN**
- ► Logistic Regression

Handling Class Imbalance

Actual Data: 36548:4640

Down sampling & SMOTE(up sampling)

Model Data: 7000:7000

First Model, Random Forest with all variables

		precision	recall	f1-score	support
	0	0.93	0.97	0.95	7303
	1	0.66	0.47	0.55	935
micro	avg	0.91	0.91	0.91	8238
macro	avg	0.80	0.72	0.75	8238
weighted	avg	0.90	0.91	0.91	8238

Feature Selection: Pearson Correlation

- 0.9

- 0.6

- 0.3

- 0.0

Feature Selection

last contact duration
euribor 3month rate
age
rum of employed
prev_outcome
pb
ro_of_contacts
education
last_contact day_of_week
mental
consumer_conf_index
housing_ban
last_contact_month
consumer price_index
personal_ban
time_between_contacts
erno_var_rate
previous_no_of_contacts
contact_type
credit_default
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Decision Tree Classifier

Random Forest Classifier

Recursive Feature Elimination

KNN Results

Selected Variables

- 'last_contact_duration'
- 'euribor_3month_rate'
- 'age'
- 'prev_outcome'
- ▶ 'job'
- 'no_of_contacts'
- 'education'
- 'last_contact_day_of_week'

Results

Confusion Matrix

```
print("Confusion Metrix:\n",confusion_matrix(y_test,knn1.predict(X_test)))
Confusion Metrix:
  [[1381    34]
      [ 44   1341]]
```

Classification Report

print (c	lassi	fication_rep	ort(y_tes	t,pred1))		
		precision	recall	f1-score	support	
	0	0.97	0.98	0.97	1415	
	1	0.98	0.97	0.97	1385	
micro	avg	0.97	0.97	0.97	2800	
macro	avg	0.97	0.97	0.97	2800	
weighted	avg	0.97	0.97	0.97	2800	

Best Model: Tuned Random Forest

Selected Variables

- 'last_contact_duration'
- 'euribor_3month_rate'
- 'age'
- 'prev_outcome'
- ▶ 'job'
- 'no_of_contacts'
- 'education'
- 'last_contact_day_of_week'

Results

Confusion Matrix

```
from sklearn.metrics import confusion_matrix
print("Confusion Metrix:\n",confusion_matrix(y_test1,rfc.predict(X_test1)))

Confusion Metrix:
  [[1412      3]
      [ 34 1351]]
```

Classification Report

```
Classification Report:
    precision recall f1-score support
    0 0.98 1.00 0.99 1415
    1 1.00 0.98 0.99 1385

micro avg 0.99 0.99 0.99 2800
macro avg 0.99 0.99 0.99 2800
weighted avg 0.99 0.99 0.99 2800
```

Pre and Post Feature Selection ROC Curves

AUC = 0.71

AUC = 0.98

Next Models in Pipeline

- Trying out Random Forest with a split of 9000(neg):7000(pos)
- Trying out Random Forest with a split of 12000(neg):7000(pos)
- XGBoost with hyper parameter tuning

Final Thoughts

- Need more information about successful calls such as:
- The sales representatives who conducted the calls
- And create strategies to make the calls last longer
- ► Find out why the contact method has been recorded as unknown for some of the clients, rather than telephone or cellphone
- Correlations are not always causations, and there might be other hidden reasons for a client to subscribe:
- ► Longer calls could equate to interested clients asking questions or they could be setting up deposits over the phone
- ► It would be a good idea to set up a small A/B test to check if call duration is significantly impacting the subscription rate

Thank You

