AMENDMENTS TO THE CLAIMS

1. (Currently Amended) An organic electroluminescent device comprising:

a pair of electrodes; and

at least one organic layer between the pair of electrodes, the at least one organic layer including a luminescent layer.

wherein the luminescent layer contains at least one electron injection/transport compound, at least one hole injection/transport compound, and at least one green or blue phosphorescent compound; and the electron injection/transport compound and the hole injection/transport compound each has a minimum triplet exciton energy value which is equal to or more than that of the green or blue phosphorescent compound;

wherein the hole injection/transport compound has an ionization potential of from 5.6 eV to 6.1 eV and the electron injection/transport compound has an electron affinity of from 2.0 eV to 3.5 eV.

2-3. (Cancelled)

- 4. (Original) The organic electroluminescent device of claim 1, wherein the green or blue phosphorescent compound is a transition metal complex capable of emitting light via a triplet excitation state.
- 5. (Original) The organic electroluminescent device of claim 1, wherein the electron injection/transport compound, the hole injection/transport compound and the green or blue phosphorescent compound each has a T1 value of 62 kcal/mole or more; and phosphorescence obtained from the green or blue phosphorescent compound has a \(\lambda \text{max} \) of not longer than 500 nm.
- 6. (Original) The organic electroluminescent device of claim 1, wherein the hole injection/transport compound is a substituted or unsubstituted pyrrole compound.

2

(Original) The organic electroluminescent device of claim 6, wherein the substituted
or unsubstituted pyrrole compound is represented by the formula (1):

(1)

wherein R¹¹ to R¹⁵ each represents a hydrogen atom or a substituent, and the substituents may be bonded to each other to form a ring structure.

8. (Original) The organic electroluminescent device of claim 7, wherein the formula (1) is represented by the formula (3):

$$\begin{array}{c} \text{(3)} \\ \text{ } \\$$

wherein R³² to R³⁵ each represents a hydrogen atom or a substituent, and the substituents may be bonded to each other to form a ring structure; L³¹ represents a connecting group; L³² represents a di- or more valent connecting group; n³¹ represents an integer of 2 or more; and n³² represents an integer of from 0 to 6.

- (Previously Presented) The organic electroluminescent device of claim 1, wherein the electron injection/transport compound is a heterocyclic compound containing at least two nitrogen atoms.
- (Original) The organic electroluminescent device of claim 9, wherein the heterocyclic compound containing at least two nitrogen atoms is a compound represented by the

formula (2):

(2)

$$R^{21}$$
 N X^{21} X^{22} X^{23} X^{24} X^{23}

wherein R^{21} represents a hydrogen atom or a substitutent; X^{21} , X^{22} , X^{23} , and X^{24} each represents a nitrogen atom or a substituted or unsubstituted carbon atom; and at least one X^{21} , X^{22} , X^{23} , and X^{24} represents a nitrogen atom.

11. (Original) The organic electroluminescent device of claim 10, wherein the formula (2) is represented by the formula (4):

$$\begin{array}{c} (4) \\ \\ L^{41} \\ \hline \\ (4^{2})_{n^{42}} \\ \\ R^{43} \\ \\ R^{42} \\ \end{array} \right]_{n^{41}}$$

wherein R⁴¹, R⁴², and R⁴³ each represents a hydrogen atom or a substituent; L⁴¹ represents a connecting group; n⁴¹ represents an integer of 2 or more; L⁴² represents a di- or more valent connecting group; and n⁴² represents an integer of from 0 to 6.

(Original) The organic electroluminescent device of claim 10, wherein the formula
 is represented by the formula (5):

$$L^{51} = \left(L^{52}\right)_{n^{52}} \times N = R^{52} \\ R^{53} = R^{53}$$

wherein R⁵², R⁵³, and R⁵⁴ each represents a hydrogen atom or a substituent; L⁵¹ represents a connecting group; n⁵¹ represents an integer of 2 or more; L⁵² represents a di- or more valent connecting group; and n⁵² represents an integer of from 0 to 6.

13. (Withdrawn) The organic electroluminescent device of claim 1, wherein at least one of the hole injection/transport compounds contained in the luminescent layer is represented by the following formula (6)

(6)
$$(R^{63})n^{63}$$
 $(R^{62})n^{62}$

wherein R^{61} , R^{62} and R^{63} each represent a substituent and n^{61} to n^{63} each represent an integer of 0 to 5.

14. (Withdrawn) The organic electroluminescent device of claim 1, wherein at least one of the hole injection/transport compounds contained in the luminescent layer is represented by the following formula (7)

(7)
$$R^{72} \xrightarrow{R^{71}} R^{70} \xrightarrow{R^{79}} R^{71} R^{70} \xrightarrow{R^{79}} R^{71} R^{70} R^{79}$$

wherein R^{70} to R^{79} each represent a hydrogen atom, an alkyl group, an aryl group, or a group that forms a hydrocarbon ring when bonded to each other.

15. (Withdrawn) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a nitrogencontaining six-membered ring compound. 16. (Withdrawn - Currently Amended) The organic electroluminescent device of claim 15, wherein the nitrogen-containing six-membered ring compound is represented by the following formula (8), formula (9), formula (10) or general formula (11)

wherein R^{81} to R^{85} , R^{91} to R^{94} , R^{101} to R^{104} and R^{111} to R^{113} each represents a hydrogen atom or a substituent.

- 17. (Previously Presented) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a nitrogen-containing heterocyclic compound, and that at least one of the hole injection/transport compounds is a pyrrole compound.
- 18. (Withdrawn) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a nitrogen-containing heterocyclic compound, and that at least one of the hole injection/transport compounds is a triarylamine-based compound.

Attorney Docket No.: 0649-1070PU1

Application No. 10/530,289 Attor

19. (Withdrawn) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a nitrogen-containing heterocyclic compound, and that at least one of the hole injection/transport compounds is a hydrocarbon-based aromatic compound.

- 20. (Withdrawn) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a hydrocarbon-based aromatic compound, and that at least one of the hole injection/transport compounds is a triarvlamine-based compound.
- 21. (Withdrawn) The organic electroluminescent device of claim 1, wherein at least one of the electron injection/transport compounds contained in the luminescent layer is a hydrocarbon-based aromatic compound, and that at least one of the hole injection/transport compounds is a pyrrole compound.
- 22. (Previously Presented) The organic electroluminescent device of claim 1, wherein the luminescent layer has at least one stacked layer structure of an electron injection/transport compound and a hole injection/transport compound.

23. (Cancelled)

- 24. (Previously Presented) The organic electroluminescent device of claim 1, wherein a light emission caused by the organic electroluminescent device originates from the green or blue phosphorescent compound.
- (New) The organic electroluminescent device of claim 1, wherein the electron injection/transport compound has an electron affinity of from 2.5 eV to 3.3 eV.
- 26. (New) The organic electroluminescent device of claim 1, wherein the hole injection/transport compound has an ionization potential of from 5.8 eV to 6.0 eV.

Application No. 10/530,289 Attorney Docket No.: 0649-1070PU1

27. (New) The organic electroluminescent device of claim 1, wherein the phosphorescent compound is an iridium complex or a platinum complex.

- 28. (New) The organic electroluminescent device of claim 1, wherein the phosphorescent compound is an orthocarbometalated iridium complex.
- (New) The organic electroluminescent device of claim 1, wherein the phosphorescent compound is an orthocarbometalated iridium complex having a difluorophenylpyridine ligand.