

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2010

WPISILIE ZDAJACY

WPISUJE ZDAJĄCY		Miejsce na naklejkę
KOD	PESEL	z kodem
		dysleksja

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 20 stron Ewentualny (zadania 1 - 12). brak przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

CZERWIEC 2012

Czas pracy: **180** minut

Liczba punktów do uzyskania: 50

MMA-R1_1P-123

Zadanie 1. (*4 pkt*)

Rozwiąż nierówność $|x-2|+|x+1| \ge 3x-3$.

Zadanie 2. (4 pkt)

Wielomian $W(x) = x^4 + ax^3 + bx^2 - 24x + 9$ jest kwadratem wielomianu $P(x) = x^2 + cx + d$. Oblicz a oraz b.

Zadanie 3. (5 *pkt*)

Kąt α jest taki, że $\cos \alpha + \sin \alpha = \frac{4}{3}$. Oblicz wartość wyrażenia $\left|\cos \alpha - \sin \alpha\right|$.

Odpowiedź:

Zadanie 4. (5 pkt)

Wyznacz wszystkie wartości parametru m, dla których równanie $2x^2 + (3-2m)x - m + 1 = 0$ ma dwa różne pierwiastki x_1 , x_2 takie, że $|x_1 - x_2| = 3$.

Zadanie 5. (*5 pkt*)

W ciągu arytmetycznym (a_n) , dla $n \ge 1$, dane są $a_1 = -2$ oraz różnica r = 3. Oblicz największe n takie, że $a_1 + a_2 + \ldots + a_n < 2012$.

Zadanie 6. (3 pkt)
Udowodnij, że dla dowolnych liczb dodatnich a, b, c i d prawdziwa jest nierówność $ac + bd \le \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}.$

Zadanie 7. (*4 pkt*)

Okrąg jest styczny do osi układu współrzędnych w punktach A = (0,2) i B = (2,0) oraz jest styczny do prostej l w punkcie C = (1,a), gdzie a > 1. Wyznacz równanie prostej l.

Zadanie 8. (5 pkt)

W czworokącie ABCD dane są długości boków: |AB| = 24, |CD| = 15, |AD| = 7. Ponadto kąty DAB oraz BCD są proste. Oblicz pole tego czworokąta oraz długości jego przekątnych.

Zadanie 9. (3 pkt)

Oblicz, ile jest liczb naturalnych trzycyfrowych podzielnych przez 6 lub podzielnych przez 15.

Zadanie 10. (4 pkt)

Na płaszczyźnie dane są punkty A = (3, -2) i B = (11, 4). Na prostej o równaniu y = 8x + 10 znajdź punkt P, dla którego suma $|AP|^2 + |BP|^2$ jest najmniejsza.

Zadanie 11. (5 pkt)

Podstawą ostrosłupa ABCS jest trójkąt równoramienny ABC, w którym $\left|AB\right|=30$, $\left|BC\right|=\left|AC\right|=39$ i spodek wysokości ostrosłupa należy do jego podstawy. Każda wysokość ściany bocznej poprowadzona z wierzchołka S ma długość 26. Oblicz objętość tego ostrosłupa.

Zadanie 12. (3 pkt)

Zdarzenia losowe A, B są zawarte w Ω oraz $P(A \cap B') = 0,1$ i $P(A' \cap B) = 0,2$. Wykaż, że $P(A \cap B) \le 0,7$ (A' oznacza zdarzenie przeciwne do zdarzenia A, B' oznacza zdarzenie przeciwne do zdarzenia B).

BRUDNOPIS