Multimodal Graph Autoencoder

21.04.

Administriva

- Slack
 - Upload this morning
- Cluster
 - Received all, do I have to test now?
- Overleaf
 - New updates?

Graphlets

- Graph building blocks
 - Possible granularity reduction?
- Weisfeiler-Lehman kernel
 - Smartly count the amount of the different graphlets
 - O(#edges)
- Often used as similarity measure
 - Also works for changing amount of nodes:)
 - Prefer Graph-Edit-Distance if available and feasible
 - More precise and closer to what happens during generation

Communities/Cliques/Clusters

- Possible level for hierarchy
- Louvain algorithm
 - Each node is it's own cluster
 - Change cluster if it is beneficial
 - Pre-defined function → Less total edges
 - Contract edges inside cluster, sum outgoing edges

_

- Probably could be learned with GNNs (if not already done)
- Simple Community-affiliation graph model
 - If two nodes are in same community, make an edge with probability p_c

GraphRNN

- Graph generation as a sequence of
- node additions and edge additions
- One can use RNNs on sequences
- Two RNNs
 - Node RNN, decides if new node or EOS, gives hidden state for Edge RNN
 - Edge RNN, decide if nodes should be connected, gives hidden state for Node RNN
 - GOTO node RNN
- Tractability and loss tricks needed
- Could be used on each cluster, needs to be tweaked to incorporate intercluster edges
- GCPN uses Reinforcement-Learning and GNNs for targeted generation of proteins

Figure 1. GraphRNN at inference time. Green arrows denote the

Other from guest lecturers

- <u>SubGNN</u>

- Subgraph message passing
- Anchor nodes for position in graph
 - Hardly needed for us

Aligraph

- Algorithm warehouse may have some interesting algorithms to check out
- Graph embeddings

Current Focus and Challenges

- Recommendation pipeline for Alibaba: billions of users and products with over trillions of edges and extremely rich attributes
 - Algorithm + System Co-optimization
- Graph embedding & inference for attributed heterogeneous network
 - ✓ Heterogeneous nodes with attributes
 - ✓ Different types of edges, easy to integrate knowledge (Knowledge Graph and Graph Embedding)
 - ✓ For each specific task, best choice of edge type & node attributes

Hierarchical graph embedding in vector space by graph pyramid

- Like in pictures, use "lower resolution" with supernodes/clusters
 - Generate super-nodes by using your favourite clustering algorithm on a task dependent affinity matrix
 - Use k-means to compute the features of the super-node
 - Insert super-edges
 - Check if the amount of between cluster edges is above a threshold
 - Labelling
- Use the concatenated graph representation of many resolutions
 - Experiments done with three resolution layers, each clustering layer are 3 rounds of GNN feature updates
 - Structure and information update on two different layers
- Many algorithms can be augmented with this technique
- Rather formulaic, not much learning done

Hierarchical Graph Representation Learning with Differentiable Pooling

- Predetermined amount of clusters
- Compute soft-assignments to clusters in matrix S
 - S=softmax(GNN_pool(A,X))
 - S "sums up to 1" per row
- Update the features and adjacency matrix accordingly
 - Z=GNN_embed(A,X)
 - X=SZ
 - A=S^T A S
- Use extra losses at each layer to regulate
 - Link prediction (close nodes go together)
 - Entropy loss (node goes to only one cluster)
- Learning and elegant

Multimodal Graphs

- Generally graphs are binary or weighted for one relation
- Each relation can be one modality
- The task is given some relation(s), generate the missing one
- Many (huge) datasets available, rather realistic scenario, already now
- Use the same nodes
 - Same amount
 - Same feature space

Questions/ToDo

- Current stack viable (could be optimised)
 - Multirelational dataset with same nodes
 - Encoding → Clustering
 - Hierarchical Graph Representation Learning with Differentiable Pooling
 - Or Louvier
 - Latent graph of clusters
 - What do if cluster different (your original question)
 - Metalabels? (label1 x label2) per node :(
 - Decoding → Generation inside* clusters
 - Simple Community-affiliation graph model
 - GraphRNN
 - Loss: Graph Edit distance (if possible) or Weisfeiler Lehman
- Now that we have some systems, it is easier to find similar ones for our task
- Find a programming framework that works well
 - Course already gave some pointers
- Find a concrete dataset with many (small) graphs with different relations