SPI Slave with Single Port RAM

By

Karim Yehia & Amr Khaira

RTL Design:

SPI Interface:

```
module spi_slave(MOSI, SS_n, clk, rst_n, tx_data, tx_valid, MISO, rx_data, rx_valid);
    input MOSI, SS_n, tx_valid, clk, rst_n;
    input [7:0] tx_data;
    output reg MISO, rx_valid;
    output reg [9:0] rx data;
    parameter IDLE = 0, WRITE = 1, CHK_CMD = 2, READ_ADD = 3, READ_DATA = 4;
9 (* fsm_encoding = "sequential" *)
    reg [2:0] cs, ns;
    reg [3:0] rx_counter;
    reg [2:0] tx counter;
    reg address_read;
    always @(posedge clk) begin
        if(!rst_n) begin
18
            cs <= ns;
    end
```

```
26 valways @(*) begin
27 🕶
28 🗸
            IDLE: begin
29 🗸
              if(!SS_n) begin
30
               ns = CHK_CMD;
31
32 🗸
              else begin
33
34
            end
36 🗸
            CHK_CMD: begin
37 🗸
              if(!SS_n && !MOSI) begin
38
               ns = WRITE;
39
40 🗸
              else if(!SS_n && MOSI) begin
41 🗸
               if(address_read)
42
                ns = READ_DATA;
44
               ns = READ_ADD;
45
46 🗸
47
48
            end
49 🗸
            WRITE: begin
50 🗸
              if(SS_n)
51
52 🗸
53
                ns = WRITE;
54
55 🗸
            READ_ADD: begin
56
              address_read = 1;
57 ×
              if(SS_n)
58
              ns = IDLE;
60
              ns = READ_ADD;
61
            end
62 🗸
            READ_DATA: begin
63
              address_read = 0;
64 V
              if(SS_n)
65
66 V
                ns = READ_DATA;
68
            end
69
70
```

```
always @(posedge clk) begin
    rx_counter <= rx_counter + 1;</pre>
    rx_data <= {rx_data[8:0], MOSI};</pre>
    if(rx_counter == 9) begin
      rx_valid <= 1;
     rx_counter <= 0;
     rx_valid <= 0;
    else if(cs == READ_ADD) begin
      rx_counter <= rx_counter + 1;</pre>
      rx_data <= {rx_data[8:0], MOSI};</pre>
      if(rx_counter == 9) begin
         rx_counter <= 0;</pre>
         rx_valid <= 1;</pre>
     rx_valid <= 0;
    else if(cs == READ_DATA) begin
    rx_counter <= rx_counter + 1;</pre>
    rx_data <= {rx_data[8:0], MOSI};</pre>
    if(rx_counter == 9) begin
     rx_counter <= 0;
     rx_valid <= 1;
     rx_valid <= 0;
    if(tx_valid) begin
      MISO <= tx_data[7 - tx_counter];</pre>
     tx_counter <= tx_counter + 1;</pre>
        MISO <= 0;
        tx_counter <= 0;</pre>
      rx_counter <= 0;</pre>
      tx_counter <= 0;</pre>
      rx_valid <= 0;</pre>
```

RAM:

```
module synch_ram(clk, rst_n, din, rx_valid, dout, tx_valid);
    input clk, rst_n, rx_valid;
3 input [9:0] din;
4 output reg tx valid;
   output reg [7:0] dout;
    parameter MEM_DEPTH = 256, ADDR_SIZE = 8;
    reg [ADDR_SIZE-1 :0] mem [MEM_DEPTH-1 :0];
    reg [ADDR_SIZE - 1 : 0] wr_address, rd_address;
    always @(posedge clk) begin
        if(!rst_n) begin
          dout <= 0;
          wr_address <= 0;</pre>
          rd_address <= 0;
          tx_valid <= 0;</pre>
        else begin
            if(rx_valid) begin
                 case ({din[9:8]})
                     2'b00: begin
                        wr_address <= din[7:0];</pre>
                        tx_valid <= 0;</pre>
                     2'b01: begin
                       mem[wr_address] <= din[7:0];</pre>
                        tx_valid <= 0;</pre>
                     2'b10: begin
                        rd_address <= din[7:0];</pre>
                        tx_valid <= 0;</pre>
                     2'b11: begin
                       dout <= mem[rd_address];</pre>
                       tx_valid <= 1;</pre>
                 endcase
```

SPI Wrapper:

```
module spi_wrapper(MOSI, MISO, SS_n, clk, rst_n);
input MOSI, SS_n, clk, rst_n;
output MISO;

wire [9:0] rx_data;
wire [7:0] tx_data;
wire rx_valid, tx_valid;

spi_slave spi(MOSI, SS_n, clk, rst_n, tx_data, tx_valid, MISO, rx_data, rx_valid);
synch_ram ram(clk, rst_n, rx_data, rx_valid, tx_data, tx_valid);
endmodule
```

Testbench & Waveform:

Case 1 & 2: Writing data to address

```
module SPI TB();
    reg MOSI, SS_n, clk, rst_n;
    wire MISO;
   reg [9:0]data_to_be_relayed;//either the address or the actual data itself
   reg [7:0]data_read_from_RAM;
   reg [7:0]address=8'b0000011;
   reg [7:0]actual_data_in=8'b10110111;
   spi_wrapper k2(MOSI, MISO, SS_n, clk, rst_n);
        clk=0;
        forever
        clk=~clk;
L6 ∨ initial begin
        rst_n=0;
        SS n=1;
        $readmemh("mem.dat", k2.ram.mem);
20
        @(negedge clk);
        rst n=1;
        SS n=0;
        /*Initiate Writing Address*/
        data to be relayed[9:8]=2'b00;
        data to be relayed[7:0]=address;
        repeat(2) @(negedge clk); // one cycle cs goes from IDLE -> CHK CMD, 2nd cycle: CHK CMD -> WRITE
        for(i=9;i>=0;i=i-1)begin
            MOSI = data_to_be_relayed[i];
            @(negedge clk);
        @(negedge clk);
        SS_n=1;
        @(negedge clk);
```

```
/*Initiate Writing Data*/
SS_n=0;
MOSI=0;
data_to_be_relayed[9:8]=2'b01;
data_to_be_relayed[7:0]=actual_data_in;
repeat(2) @(negedge clk); // one cycle cs goes from IDLE -> CHK_CMD, 2nd cycle: CHK_CMD -> WRITE
for(i=9;i>=0;i=i-1)begin
    MOSI = data_to_be_relayed[i];
    @(negedge clk);
end
@(negedge clk);
SS_n=1;
@(negedge clk);
```

Waveform & Memory:

Case 3 & 4: Reading data from address

```
/*Initiate Reading Address*/
   MOSI=1;
   SS n=0;
   data to be relayed[9:8]=2'b10;
   data to be relayed[7:0]=address;
   repeat(2)@(negedge clk);
   for(i=9;i>=0;i=i-1)begin
       MOSI=data_to_be_relayed[i];
       @(negedge clk);
   @(negedge clk);
   SS n=1;
   @(negedge clk);
   /*Initiate Reading Data*/
   MOSI=1;
   SS n=0;
   data to be relayed[9:8]=2'b11;
   data to be relayed[7:0]=address;
   repeat(2)@(negedge clk);
   for(i=9;i>=0;i=i-1)begin
       MOSI=data_to_be_relayed[i];
       @(negedge clk);
   @(negedge clk);
   repeat(8) @(negedge clk);
   SS n=1;
   @(negedge clk);
   $stop;
end
```

Waveform:

Testing Different Encoding for Best Timing

Binary Encoding:

Elaborated Design:

Synthesis Schematic:

Report Showing Encoding:

State	New Encoding	Previous Encoding
IDLE	000	000
CHK_CMD	001	010
WRITE	010	001
READ_DATA	011	100
READ_ADD	100	011
·		

Timing Report:

Design Timing Summary

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.445 ns	Worst Hold Slack (WHS):	0.142 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	93	Total Number of Endpoints:	93	Total Number of Endpoints:	42

Critical Path

Implementation Utilization Report:

Name	Slice LUTs (20800)	Slice Registers (41600)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)
∨ N spi_wrapper	26	43	15	26	11	0.5	5	1
ram (synch_ram)	5	17	7	5	0	0.5	0	0
spi (spi_slave)	21	26	13	21	10	0	0	0

Implementation Timing Report:

Design Timing Summary

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.385 ns	Worst Hold Slack (WHS):	0.102 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	94	Total Number of Endpoints:	94	Total Number of Endpoints:	42

FPGA Device:

Gray Encoding

Elaborated Design:

Report Showing Encoding

State	New Encoding	Previous Encoding
IDLE	000	1 000
CHK_CMD	001	010
WRITE	011	001
READ_DATA	010	100
READ_ADD	111	011

Synthesis Schematic:

Timing Report:

Critical Path:

Implementation Utilization Report:

Name	Slice LUTs (20800)	Slice Registers (41600)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)
∨ N spi_wrapper	26	43	15	26	10	0.5	5	1
ram (synch_ram)	4	17	6	4	0	0.5	0	0
I spi (spi_slave)	22	26	12	22	9	0	0	0

Implementation Timing Report:

etup		Hold		Pulse Width		
Worst Negative Slack (WNS):	5.293 ns	Worst Hold Slack (WHS):	0.044 ns	Worst Pulse Width Slack (WPWS):	4.500 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	94	Total Number of Endpoints:	94	Total Number of Endpoints:	42	

FPGA Device:

One Hot Encoding

Elaborated Design:

Report Showing Encoding:

New Encoding	Previous Encoding
00001	000
00010	010
00100	001
01000	100
10000	011
	00001 00010 00100 01000

Synthesis Schematic:

Timing Report:

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.898 ns	Worst Hold Slack (WHS):	0.144 ns	Worst Pulse Width Slack (WPWS):	4.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	93	Total Number of Endpoints:	93	Total Number of Endpoints:	44
All user specified timing constrain	ints are met				

Critical Path:

Implementation Utilization Report:

Name	, Slice LUTs (20800)	Slice Registers (41600)	Slice (815 0)	LUT as Logic (20800)	LUT Flip Flop Pairs (20800)	Block RAM Tile (50)	Bonded IOB (106)	BUFGCTRL (32)
√ N spi_wrapper	26	47	17	26	11	0.5	5	1
I ram (synch_ram)	5	17	8	5	0	0.5	0	0
spi (spi_slave)	21	30	13	21	9	0	0	0

Implementation Timing Report:

Setup		Hold		Pulse Width		
Worst Negative Slack (WNS):	5.372 ns	Worst Hold Slack (WHS):	0.114 ns	Worst Pulse Width Slack (WPWS):	4.500 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	94	Total Number of Endpoints:	94	Total Number of Endpoints:	44	

FPGA Device:

Messages Tab:

- Vivado Commands (3 infos, 20 status messages)
 Elaborated Design (11 infos, 9 status messages)
- > 🚡 Synthesis (3 warnings, 35 infos, 11 status messages)
- > [Implementation (99 infos, 231 status messages)
- > [a Implemented Design (11 infos, 7 status messages)

Linting:

Encoding	Setup Slack	Hold Slack
Binary	5.385s	0.102s
Gray	5.293s	0.044s
One Hot	5.372s	0.114s

Binary encoding has higher setup slack while one hot encoding has higher hold time slack. We shall choose binary encoding for maximum frequency operation.