Q1. $R_1 = 5\Omega$, $R_2 = 18\Omega$, $R_a = 40\Omega$, Find resistance R_b When $(V_1 - V_2) = 0$.

$$V_1 = V_2$$

$$V_s \times \frac{R_1}{R_a + R_1} = V_s \times \frac{R_2}{R_b + R_2}$$

$$R_b = \frac{R_2(R_a + R_1)}{R_1} - R_2$$

$$R_b = \frac{18(40 + 5)}{5} - 18 = 144\Omega$$

Q2. Find i (along 2Ω) and v(across 14Ω).

Apply superposition

$$i_1 = \frac{-V}{R_1 + R_2} = \frac{-8}{14 + 2} = -0.5 A$$

$$V_1 = V \times \frac{R_1}{R_1 + R_2} = 8 \cdot \frac{14}{16} = 7V$$

$$V_2 = I \times (R_1 || R_2) = 4 \cdot 1.75 = 7V$$

 $I_2 = \frac{V_2}{R_2} = \frac{7}{2} = 3.5A$

$$i = 3.5 - 0.5 = 3A$$

 $v = 7 + 7 = 14V$

$$V_a = 12V$$
, $V_b = -20V$, $R_1 = 4k\Omega R_2 = 12k\Omega$, $C = 100\mu F$. Find $v(t)$ for $t > 0$

Find $v_c(0^+)$, $v_c(\infty)$

$$v_c(0^+) = v_c(0^-) = V_a \times \frac{R_2}{R_1 + R_2} = 12 \cdot \frac{12}{16} = 9V$$

$$v_c(\infty) = V_b \times \frac{R_2}{R_1 + R_2} = -20 \cdot \frac{12}{16} = -15V$$

This is case B

$$v(t) = v_c(\infty) + [v_c(0^+) - v_c(\infty)]e^{-\frac{t}{RC}}$$

$$v(t) = -15 + 24e^{-\frac{t}{0.3}}$$

Find $V_{ab}(across\ R13)$

$$V_{ab} = V \times \frac{R_{13}}{R_{13} + 2k + 3k \big| |1K + 2k| \big| 2k + 2k} = 0.645V$$

- a. Find i(t).
- b. Find t when i(t) drop to one-third of its initial value.

Tu We Th Fr Sa Su	MEMO NO
Qb Find $\dot{i}(0^{\dagger})$ and $\dot{i}(0^{\dagger}) = \dot{i}(0) = (5)$	
$\hat{i}(\infty) = 0$	
current drop >	case B
$(a) i(t) = (i) \Rightarrow +$	[i(o+)-i(o-)]e-+R
	$\frac{-t}{0.0005}$ $\frac{R}{L} = \frac{20+20}{1} = 4$
b) $i_{L}(0) = 2$, $i_{L}(t) = \frac{2}{3} = 26$ $I_{R}(\frac{2}{6})^{\frac{1}{3}} = \frac{1}{3}$	-t/0.075 - t - 0.0x5 - 0.0>5 [In (\frac{1}{3})]
	$0.02747 s = 27.47 ms_{H}$
	, ,

Find Norton current of ab

Mo Tu We Th Fr Sa Su	MEMO NO.
Q8 RTh = RVT = Ro + 511 20 = 13 sh	
V only, $V_1 = V \times \frac{5}{20+5} = 20$	x = 4 V
A) only, V= = • I × +1111 1120	0 =-0.7×4 = 2.8V
VTO = V, +V2 = 4-2,8 = 1,2 V	
Iab = Vab = 0.0923 A.	