MTH 411, Fall 2018, Quiz 1 (Thursday Long Quiz/12 pts)

- 1. (6 points) An integer c is trodd if there is an integer b such that 3b + 1 = c. An integer c is trodder if there is an integer b such that 3b + 2 = c. Prove that the sum of two trodd integers is trodder.
 - Solution. Suppose that m and n are trodd. Then, there are integers x and y such that m = 3x + 1 and n = 3y + 1. Let z := x + y, then z is an integer as it is the sum of two integers. Then

$$m + n = 3x + 1 + 3y + 1 = 3(x + y) + 2 = 3z + 2$$
,

and so m + n is trodder.

- 2. (9 points) Let $n \in \mathbb{Z}^+$ and let us define a relation \sim on \mathbb{Z} as follows: Given $a, b \in \mathbb{Z}$, $a \sim b$ if a b is divisible by n. In other words, $a \sim b$ if there exists $q \in \mathbb{Z}$ such that a b = qn. Prove \sim is an equivalence relation on \mathbb{Z} .
 - Solution. We need to prove that \sim is an equivalence relation, i.e. that it is reflexive, symmetric and transitive. To show that \sim is reflexive, let $x \in \mathbb{Z}$. Then $0 \in \mathbb{Z}$ satisfies x x = 0 = 0n, and so $x \sim x$ and we are done. Next, to show that \sim is symmetric, let $x, y \in \mathbb{Z}$. If $x \sim y$, then x y = qn for some $q \in \mathbb{Z}$. Then $-q \in \mathbb{Z}$ satisfies y x = (-q)n and so $y \sim x$ and we are done. Finally, to show that \sim is transitive, let $x, y, z \in \mathbb{Z}$. If $x \sim y$ and $y \sim z$, then x y = sn and y z = tn for some $s, t \in \mathbb{Z}$. Then $s + t \in \mathbb{Z}$ satisfies x z = (x y) + (y z) = sn + tn = (s + t)n and so $x \sim z$ and we are done. Thus \sim is an equivalence relation.