Assignment #1 Solution

Question No. 1

Find the solution of inequality and show answer in interval notation i) $\frac{6-x}{4} \le \frac{3x-4}{2}$

$$i) \qquad \frac{6-x}{4} \le \frac{3x-4}{2}$$

ii)
$$\left| \frac{3}{2}z - 1 \right|^{2} \le 2$$

iii)
$$\left| \frac{3p}{5} - 1 \right| > \frac{2}{5}$$

iv)
$$x^{2} - 5x + 6 \ge 0$$

iii)
$$\left| \frac{3p}{5} - 1 \right| > \frac{2}{5}$$

iv)
$$x^2 - 5x + 6 > 0$$

Solution

olution	WUESTION # 01:
Q1)(i)	$\frac{G \cdot x}{G} \leq \frac{3x - 4}{G}$
• /	4 2
	C = 1 C =
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$7x \ge 14$. $x \ge 2$
	0 1 2 ∞ x E(2,∞)
ũ)	$\left \begin{array}{c c} 3 & 7 & 2 \\ \hline 2 & \end{array} \right \leq 2$
	3 z - 1 ≤ 2 3 z - 1 ≥ -2
	$37 \le 6$ $Z \ge -\frac{3}{3}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	- o - d o s d o o
	z∈ [-2/3,2]
	26643343
(in)	$\begin{vmatrix} 3P - 1 \end{vmatrix} > \frac{2}{5}$
,	5 5
	$\frac{3p-1>2}{5}$ $\frac{3p-1<-2}{5}$
	5 5 5 5 3p-5>2 3p-5<-2
	3p-5>2 $3p-5<-2$ $9<3/3$
	0.57/3

Question No. 2

Find an equation for line described

- i) Passes through (-1,3) with slope -2
- ii) The vertical line passes through (-1.4)
- iii) The horizontal line (-5,4)

(2) i) Passes through (-1.3) with	Slepe	- Q
Point Slope form.		
4-47 = m(x-x1)	E+1	Ge = 1
$\frac{y-y_1-m(x-x_1)}{y-3=-2(x+1)}$		
$y-3 = -2\alpha - 2$ $1y = -2\alpha + 1$		520 20
9 = - 0		

Question No. 3

A particle starts at A(-2,3) and its coordinate change by increments $\Delta x = 5$, $\Delta y = 0 - 6$. Find its new position.

(2,3)	A Particle Starts at	A(-2,3) and its
	Co-ordinate change by Dy = - 6 , Find its now	method.
	Dy = - 6 3 hnd is ind) posiedir
- 1	$\Delta x = x 2 - x1$	$\Delta q = y2 - y2$
	22 = Dx +21	y2 = Dy + y1
	22 = 3	42 = -3
17		
	New position (3,	- 3)

Question No. 4

Identifying the domain and range of the following functions

i)
$$f(x) = \sqrt{-(16 - x^2)}$$

ii)
$$g(x) = \frac{1}{\sqrt{x^2}}$$

Consider $h(x) = \sqrt{4 - \sqrt{x}}$ can < 0 ? Can \sqrt{x} > 4 ? Find the domain of h(x)

QUESTION #	04: Identify Domain	8 Range:
F(x)=	1 -(16-x2)	0
. 2 -	16 > 2	
20 ° -	(n+4) > 0	
The state of the s	. 26 2 - 4	
	[-00,-4] U[40a	5.7
DE ILLEGIO	[0,00]	
	F(x)=	$f(x) = \sqrt{-(16-x^2)}$ $x^2 - 16 \ge 0$ $(x - x)(x + 4) \ge 0$ $x \ge 4 \Rightarrow x \ge -4$

Dat (11)	
(")	$\frac{g(\alpha)-\sqrt{\alpha^2}}{\sqrt{\alpha^2}}$
	1 Vx 2
_	1 > 0 2
	Domain = $(-\infty, 0) \cup (0, \infty)$ Range $(-\infty, 0) \cup (0, \infty)$
(iii)	$h(\alpha) = \sqrt{4 - \sqrt{\chi}}$
-	$\frac{4-\sqrt{x} \geq 0}{-\sqrt{x}} > -4$
	√x < 4 x < 16
_	Demoin = [0,16]

Find a formula in terms of x for the function below.

Solution

y-2 = 9e+6	
y = 2 = 0 $y = 2$ $F(x) = 2$	
Second line: (-1.3) to (2.0)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{rcl} 9-3 & = x+1 \\ 0-3 & 2+1 \end{array}$	
$\frac{y-3}{3} = x+1$ $-(y-3) = x+1$	
-(y-3) = x + 1 $y-3 = -x - 1$ $y = -x + 2$	
f (x = x + 2	
Third line:- (2,-1) to (6,-1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3.4
$\frac{g+1}{-1+1} = \frac{x-2}{6-2}$	

y+1 = 0 y = -1 $f(x) = -1 \quad x > 2$ $f(x) = -1 \quad x < 2$