1 Notation de Landau

Soient E et F deux espace normés sur le corps $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} et $R:E\to F$ une application quelconque. On dit

• R(h) est un petit o de norme de h puissance k, écrit $R(h) = o(\|h\|^k)$, si pour tout $\epsilon > 0$ il existe $\delta > 0$ tel que

$$||h||_E < \delta$$
 entraı̂ne $||R(h)||_F \le \epsilon ||h||_E^k$

• R(h) est un grand O de norme de h puissance k, écrit $R(h) = O(\|h\|^k)$, s'il existe C > 0 et $\delta > 0$ tels que

$$||h||_E < \delta$$
 entraı̂ne $||R(h)||_F \le C||h||_E^k$

En particulier, on a $R(h) = o(\|h\|^k) \implies R(h) = O(\|h\|^k)$. (Parce qu'il suffit de choisir n'importe quel paire (ϵ, δ) pour les prendre pour (C, δ) .)

On parle aussi de petit o, grand O pour les fonctions définies sur les entiers positifs et beaucoup plus.

 $Cf.\ \texttt{https://github.com/phunc20/algorithms/tree/main/CLRS/ch03-growth_of_fn/01-asymptotic_notalline for the state of t$