

# Weeks 8 & 9: Information Extraction

Edwin Simpson

Department of Computer Science,
University of Bristol, UK.

#### Information Extraction

#### What steps are needed to go from the text to the info-box?





#### Padlet for Questions

https://uob.padlet.org/edwinsimpson/7p23ijfjhk7j9jdr

#### Information Extraction (IE)

Chapter 17, Speech and Language Processing, 3<sup>rd</sup> edition draft, Jurafsky & Martin (2021).

- IE involves several different steps:
  - Named entity Recognition (NER)
  - Relation Extraction (RE)
  - Event extraction

| UNITED AIRLINES: | SPOKESPERSON | TIM WAGNER |
|------------------|--------------|------------|
|                  |              | -          |

| FAIR RAISE ATTEMPT: | LEAD AIRLINE   | UNITED AIRLINES |
|---------------------|----------------|-----------------|
|                     | AMOUNT         | \$6             |
| oc uk               | EFFECTIVE DATE | 2006-10-26      |

## Information Extraction (IE)

- IE processes the features extracted at lower levels, such as word and syntax features.
- IE processes text at the semantic level to extract meaning.
- Its results are used in downstream tasks



## NER as Sequence Labelling:

Tag the individual tokens that make up a span:

"The bus service to Old Sodbury runs on Weekdays."

## NER as Sequence Labelling:

- Tag the individual tokens that make up a span:
- It depends what kind of entities we want to extract!
- Here, assume that the 'bus service' is something we want to extract information about.

```
O B-Misc I-Misc O B-Loc I-Loc O O B-Time "The bus service to Old Sodbury runs on Weekdays."
```

#### NER as Sequence Labelling:

- Features: the input variables to a sequence tagger or classifier that represent the characteristics of the object we want to label.
- How would the features on the right help the NER sequence tagger?

| Feature     | Token 1            | Token 2            |  |
|-------------|--------------------|--------------------|--|
| Unigram     | "Old"              | "Sodbury"          |  |
| Bigram      | ["to", "Old"]      | ["Old", "Sodbury"] |  |
| Bigram      | ["Old", "Sodbury"] | ["Sodbury", "on"]  |  |
| Prefix      | None               | None               |  |
| Suffix      | None               | "bury"             |  |
| InPlaceList | No                 | Yes                |  |
| POS         | PROPN              | PROPN              |  |
| Chunk       | NP                 | NP                 |  |

#### Relation Extraction

The [bus service]
to [Old Sodbury]
runs on
[weekdays]

**Extract Feature Vector** 

| Feature          | Entity 1            | Entity 2            |
|------------------|---------------------|---------------------|
| Unigram          | "bus",<br>"service" | "old",<br>"sodbury" |
| UnigramNextToken | "to"                | "runs"              |
| UnigramPrevToken | "the"               | "to"                |
| EntityType       | MISC                | LOC                 |

[Bus service]
[TransportTo]
[Old Sodbury]

Binary Classifier for each relation type, e.g., logistic regression

Relation Features

ConcatenatedTypes MISC-LOC

DependencyPath NOUN→prep→ADP→
pobj→PROPN

#### Dependency Parsing

- runs → nsubj → the bus service
- the bus service  $\rightarrow$  prep  $\rightarrow$ to
- to → pobj → Old Sodbury







## Quiz