Theory of Computation

Tutorial - NFAs

Cesare Spinoso-Di Piano

Plan for today

- 1. NFAs
- 2. NFA-to-DFA

NFAs

NFAs

Formal definition of an NFA

Definition. A <u>nondeterministic</u> finite automaton (NFA) M is a 5 element tuple $M = (Q, \Sigma, \delta, q_0, F)$ where

- Q is the set of all states
- ullet Σ is the alphabet
- * δ is the transition function $\delta: Q \times \{\Sigma \cup \{\lambda\}\} \to 2^Q$
- q_0 is the (unique) initial state
- F is the set of final states

An NFA is a machine that reads an input string and either accepts it or rejects it.

*Unlike a DFA: The transition function of an NFA can accept λ and always returns a set.

NFAs as language accepters

Non-Determinism. Let N be an NFA with input string w.

Non-determinism allows N to try *all possible walks*. If at least one walk leads to a final state, then N accepts w.

Definition. Formally, given an NFA N the language accepted by N is

$$L(N) = \{ w \in \Sigma^* : \delta^*(q_0, w) \cap F \neq \emptyset \}$$

where δ^* is the extended transition function $\delta^*: Q \times \Sigma^* \to 2^Q$.

4

Example. Consider the following NFA over the alphabet $\Sigma = \{a\}$.

Input String: ^aa

Input String: aa

Input String: aa

 $\delta(q_1, a) = \emptyset$, no where to go. Are we done?

Input String: ^aa

Are we done? No, M tries another walk.

Input String: aa

Input String: aa

One of the possible walks ends in a final state, \boldsymbol{M} accepts this string.

Input String: aaa

In both traces (top and bottom), do not end up in a final state. ${\bf M}$ rejects this string.

What is the language accepted by this NFA?

Exercise

Exercise. Given the following NFA M,

- What is $\delta^*(q_0, 01)$?
- Is 01 accepted by this NFA?
- What is the language accepted by this NFA?

Exercise

Exercise. Create an NFA that accepts the language $\{xwx: x \in \{0,1\}, w \in \{0,1\}^*\}.$

NFA-to-DFA

NFA-to-DFA

NFA-to-DFA Algorithm

Given an NFA $N=(Q,\Sigma,\delta,q_0,F)$, how can we convert it to a DFA $M=(Q',\Sigma,\delta',S_0,F')$ such that L(N)=L(M)?

Procedure:

- Step 1: Create an initial state S_0 . Assign it to $\{q_0\}$.
- Step 2: For each symbol $a \in \Sigma$, find all the states in N that can be reached from each of the states in S_0 . The set of reachable states in N will become a state in M i.e. $\delta'(S,a) = \bigcup_{a \in S} \delta(p,a)$.
- Step 3: Repeat Step 2 on every new state S (which are *sets* of states of N) that is generated. Repeat until no new states are found.
- Step 4: Assign Q' to the set of states generated in Step 3. δ' is defined as above.

The initial state for the DFA will be $S_0 := \{q_0\}$. The final states of the DFA will be all those states S that contain a final state from F (from the original N). Finally, if the original NFA N accepts λ , make S_0 a final state.

Example. Consider the following NFA N. $\Sigma = \{0,1\}$. What is the language accepted by N?

Example. Convert the NFA N to a DFA M such that L(N) = L(M).

Example. Converting the NFA N to a DFA M using the procedure presented above.

- Step 1. Begin with the start state $S_0 := \{q_0\}$.
- Step 2. Find all the states that can be reached from S_0 for each letter in Σ .

$$\delta'(S_0,0) = \underbrace{\{q_0,q_1\}}_{\mathsf{New \ state}!}, \ \delta'(S_0,1) = \{q_0\}$$

Step 3. Repeat Step 2 on every new state that is generated. Repeat until no new states are produced. This is shown in the table below.

States S	$\bigcup_{p\in S}\delta(p,0)$	$\bigcup_{p\in\mathcal{S}}\delta(p,1)$
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0\}$

Step 4. Build the DFA.

States S	$\delta'(S,0)$	$\delta'(S,1)$
$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
$\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_0\}$

Exercise

Exercise. Convert the following NFA N into an equivalent DFA M. Your conversion should ensure that L(N) = L(M). $\Sigma = \{a, b\}$.

Theorem

Theorem. The set of all languages accepted by NFAs is the same as the set of all languages accepted by DFAs. Why?

- 1. Every DFA is an NFA.
- 2. Every NFA can be converted into a DFA.

Corollary. A language is regular if and only if there is an FA (either a DFA or NFA) that accepts it.

Exercise

Exercise. Prove that the language $\{xwx : x \in \{0,1\}, w \in \{0,1\}^*\}$ is regular.