الإجابة النمودجية لموضوع اختبار مادة : الرياضيات /الشعية : علوم تجريبية/البكالوريا دورة: 2017

العلامة		عناصر الإجابة				
المجموع	مجزؤة					
	الموطـــــوع الأول					
<u> </u>		التمرين الأول: (04 نقاط)				
01	01	$egin{aligned} y = ilde{\lambda} & / \lambda \in \mathbb{R} . ig(D ig) \ z = - \lambda + 4 \end{aligned}$ (1) التمثيل الرسيطي للمستقيم				
		$z = -\lambda + 4$				
01	01	x-y+z-4=0 . (P) انتي يشمل A ويوازي (P). $(2$				
01	01	A'(G;3;1) اثبات آن (D) بقطع (P') في النقطة A' حيث $(G;3;1)$				
		(Δ) التعقیل انوسیطی، للمستثیم (Δ				
01	01	$\begin{cases} x = 5t + 1 \\ (D) \cap (P') \cap (\Delta) = \{A'\} \end{cases}$				
••	``	$\begin{cases} x = 5t + 1 \\ y = 4t - 1 / t \in \mathbb{R} \end{cases} (\Delta) = (AA') \text{where } \begin{cases} (D) \cap (P') \cap (A) = \{A'\} \\ A \in (\Delta) \end{cases}$				
		z = -t + 2				
		النمرين الثاني: (04 نقاط)				
01	01	$0 < u_n < 1$ ، n عدد طبيعي n ، $n < u_n < 1$. n البرهان بالتراجع أن: من أجل كل عدد طبيعي n				
	0.75	$u_{n+1} - u_n = rac{(1 - u_n)(u_n + 2)}{u_n + 4} > 0$ ب) بيان أنّ النتائية $ig(u_nig)$ متزايدة تصما				
01	0.25	$u_{g} \in \mathcal{U}$ جيما أن $\left(u_{g} ight)$ متزايدة نماه. ومحدودة من الأعلى قابها متقاربة $-$				
	0.50					
	0.50	$rac{5}{2}$ بيان آن: $v_{n+1} = rac{5}{2}$ ومثه المتقالية (v_n) مندسية أساسها (1 \sim				
01	0.25	$v_{\rm b} = 3$				
		$oldsymbol{arphi}_n=3igg(rac{5}{2}igg)^n$ مبازة عقدها العالم $pprox 2$				
	0.25	7, 3(2)				
	0.50	$u_n=1-rac{3}{ u_n+1}$ بب $(قیات آن، من لول کل عدد طبیعی ایر u_n=1$				
01						
	0.50	$\lim_{n o +\infty} \mu_n = 1$: استنتاج النهلية				
	I I	التعرون الثالث: (05 نقاط)				
01	0.25	$\Delta = 16 (I)$				
· 	0.75	$S\!\!=\!\!\left\{-2;2\!-\!2i;2\!+\!2i ight\}$ هل المعادلة:				
0.50	2×0.25	$z_B^{}=2\sqrt{2}e^{irac{a^2}{4}}$ ، $z_A^{}=2\sqrt{2}e^{-irac{a^2}{4}}$) الشكل الأنشى:				
01	01	$z_D = 6 + 8i \cdot (2$				
	0.25	$\left(\Gamma ight)$ التحقق أنَّ مبدأ المحام O هو نقطة من (3				
		(الصعيمة 1 من 6				

الإجابة التموذجية لموضوع الحبار مادة : الرياضيات /الشعبة : علوم تجريبية/البكالوريا دورة: 2017

ظعلامة		عناصر الإجابة
إمجداع	-جزأة	
	0.25	$(\overline{MA};\overline{MB})=rac{\pi}{2}+2\pi k^-/k\in\mathbb{Z}$ مي مجموعة النق M من السنتري حيث M
	0.50	O منہ Γ میں نصبف الدائرۃ المفتوعۃ التي حداما A و B وقبارها A وتشمل Γ ابشاء Γ :
1.25	0.25	2 · · · · · · · · · · · · · · · · · · ·
		2
	0.50	z'=2z+2 هي: h هي: $z'=2z+2$
1.25	0.25	المجموعة B') هي نصف الدانرة المعتومة التي حداها النفطتين A' و B' والتي نشمل ω ذات
	0.50	$arepsilon_{A'}=6-4i$: حيث $arepsilon+4i$ حيث $arepsilon$
		التمرين الوابع: (07 نقاط)
0 7 <i>6</i>	0.50	يان أنْ لدالهٔ f فرىية $(1$
0.75	0.25	$\left(C_{j} ight)$ انتمسیر ابیانی: المبنا O مرکز نتاظر المنحسی
	0.25<4	$\lim_{x \to \infty} f(x) = +\infty \cdot \lim_{x \to \infty} f(x) = -\infty (2)$
		$\lim_{x \to \infty} f(x) = -\infty \lim_{x \to \infty} f(x) = +\infty$
1.50	2×0 25	من البهايات السايغة نستنج أن $\left(oldsymbol{C}_{j} ight)$ يقبل مستقيمين مقاربين موزيين لحامل محرر التراتيب معاطنيهما
		x=-1; $x=1$
	0.50	$f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$, D ميان ان من البل كل x من $f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$ بيان ان من البل كل $f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$

الإجابة النموذجية لموضوع اختيار مادة : الرياضيات /الشعية : علوم تجريبية/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
تعهرع	مجزانا	
1.25	8.25	D ب f اتجاه تغير الدالة f ؛ f متزايدة تماما على كل مجال من f
		جدرل تغیراتها
	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	* 70	18
0.75	0.75	. 1,8 < $lpha$ حيث: $lpha$ عقبل حلا رحينا $lpha$ حيث: $f\left(x ight)=0$ عقبل (4
01	0.50	$\lim_{ r \to \infty} \left[f(x) - \frac{2}{3} x \right] = \lim_{ r \to \infty} \ln \left(\frac{x-1}{x+1} \right) = 0 \text{if } \Delta $ (5)
	0.50	الوصيع النصبي: (C_f) فوق (Δ) من الطي (C_f) تحك (Δ) من الحل (Δ)
0.75	0.75	(C_{j}) (Δ)
	0.25	$f(x) = m x$ نکھی $(2-3 m)x + 3\ln\left(\frac{x-1}{x+1}\right) = 0$ (7)
01	0.25	$y\!=\! m x $ عنول المعادلة هي فواصل نقط نقاطع $\left(C_f ight)$ مع المستقيم ذو المعادلة المعادلة هي فواصل نقط نقاطع
	2×0.25	انا كان $\begin{bmatrix} 2 \\ 3 \end{bmatrix} + \infty$ فان المعلالة لا تقبل حنول $m \in \left[-\frac{2}{3} \right] \cup \left[\frac{2}{3} \right] + \infty$ فان المعلالة لا تقبل حنول إذا كان $m \in \left[-\frac{2}{3} : \frac{2}{3} \right]$

الإجابة التموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : علوم تجريبية/الكالوريا دورة: 2017

المصة		عناصر الإجابة
لبجوع	مجزاة	
	•	الموضـــوع الثاني
		المتعربين الأول:(04 نقلط)
	0.50	ييان أنّ الغط A ، H و C تعيّن مستويا C بيان أنّ الغط
1.25		(ABC) معادله للمستوي $x+3y+6z-6=0$ معادله المستوي
	0.75	يكفي التأكد ان إحداثيات النفط $A: L$ و L تحقق الصفاطة المعطاة
	0.50	$\int x = 2t$
0.50		$\left\{ y=3t \mid t\in \mathbb{R} ight.$ انتمثان الوسيطي السنطير (Λ) انتمثان الوسيطي السنطير (λ
		z = 6t
01	01	$H\left(rac{12}{49};rac{18}{49};rac{36}{49} ight):H$ المناطِات H
[0.50	ACBH=0 اثبات أن (4)
1.25	0.75	$\overline{ ext{CII}}\cdot\overline{AB}=0$ يَصْلَمُهُ بَارَتِي (لاعبدو: يَكِفِي لقباتِ $\overline{AII}\cdot\overline{BC}=0$ أن
	•	القبرين الثاني: (14 نفاط)
0.75	0.25	[-4;1] التحقق أن الدانة f معزايدة تماما على المحال $[-4;1]$
U. 13	0.50	$f\left(x ight)$ الثبات ان: من أجل كل $x\in [-4;1]$ فإن $x\in [-4;1]$
01	0.50	TI)
		ا تسكيل المحدود $u_{lpha} \cdot u_{eta} \cdot u_{eta} \cdot u_{eta}$ على حامل سمور المواصل $t_{lpha} \cdot u_{eta} \cdot u_{eta}$
		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	2×0.25	التشمين: (عنالصة تعاما ومنقارية
	0.75	$-4 < u_{_{m{g}}} \leq 0 + B$ المِرَمَانَ بِالتَوَامِعَ أَنَّ مِنْ أَمِلَ كِلَ عَدِد مِلْسِعِي $-4 < u_{_{m{g}}} \leq 0$
1.25	0.5Q	$u_{n+1}-u_n=-rac{\left(u_n+1 ight)^2}{\left u_n+1 ight ^2}<0$ بیان آن شمختائیہ $\left(u_n ight)$ متافسیہ تماما
	17. - 74.	
01	0.50	$v_{n+1}=v_n^-+rac{1}{7}$: افیات آن: $(oldsymbol{v}_n^-)$ حصابیة $(3$
	0.50	,

الإجابة التموذجية لموضوع اختيار مادة : الرياضيات /الشعبة : علوم تجريبية/البكالوريا دورة: 2017

العلامة		عناسر الإجابة
مجززة سبسع		÷÷1, 3—
.	1 -3+-	
		التمرين الثلاث: (05 تفاطع
01	0.25 0.75	اً مجموعة حارل المعانلة $S = \left\{-rac{1}{2}+i ight\}$ في المجموعة C هي $\left(rac{z+1-i}{z-i} ight)^z = 1$. (منعيحة)
01	0.25 0.75	من أجل كل عدد مركب z ء $ z+2 = z+2 ^2$. $(z+2)$ من أجل كل عدد مركب
01	0.25	ن اجل کل مند طبیعی n ، $\left(rac{1}{2}+irac{\sqrt{3}}{2} ight)^{3n}=1$ ، من اجل کل مند طبیعی n (خاطئة)
	0.75	(2)
01	0.25	معورة الدائرة (C) ذات المركز $\omega(0;1)$ وتصف القطر 3 بالتشايه S هي الدائرة (C') ذات المركز (C')
71	0.75	(صحيحة) (صحيحة) (صحيحة)
	0.25	5) من أجل كان عند حقيقي ١٤: إذا كان
01	0.75	(خدمیمه $Z=(\sin\alpha+i\cos\alpha) imes(Z)=rac{\pi}{2}-2lpha+2k\pi$ فين: $Z=(\sin\alpha+i\cos\alpha) imes(\cos\alpha-i\sin\alpha)$
		أالتمرين الرابع: (07 نفاط)
	0.50	$\lim_{x \to \infty} f(x) = 2$ این آن $2 = 2$
01	0.25	$y=2$ التغسير هندسي : (γ) يقبل مستقيما مفاريا يوازي حامل محور القواصل معادلته $y=2$
	0.25	$\lim_{x \to \infty} f(x) = -\infty$: حساب الایایة
	0.50	$x o -\infty^-$. $f'(x) = x(x-2)e^{1-x}$ ، $\mathbb R$ بيان ان: من أجك كل x من x كل x من x 1.
		$[2;+\infty[$ و $]-\infty;0]$ بهنی الدالله f منزایده تصامها علی $[0;+\infty[$ و $]-\infty;0]$
	0.50	ب) مبدعير منت را د انتخاب على [ب.د ور] رستظمية شاما على [0:2]
		: جدرك الثنيرات:
		, — <u>, — , — , — , — , — , — , — , — , —</u>
1.50		
	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.50	n. 50	$(T):y=-\mathfrak{r}+2$ معادلة المعاس (3)

الإجابة النموذجية للوضوع اختيار مادة : الرياضيات /الشعية : علوم تجريبية/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المحموج	مجزؤة	
	0.50	$h(x)\geq 0$ تبیان آن من لول کل x من $\mathbb R$ فإن: $(1 \mid \Pi \mid$
1.25	0.25	$egin{array}{c c} x & -\infty & 1 & +\infty \\ h^{\prime}(xr) & - & 0 & + \\ h(xr) & & & & & & & & & & & & & & & & & & &$
	0.50	f(x) - y = xh(x)
		$]-\infty;0[$ طی (T) علی $]0;1[igl(igl)]+\infty[$ علی (T) علی (C_f) این $A(1;1);B(0;2)$ علی (T) علی (C_f)
0.75	0.75	f(x)=0بيان أنْ الممادلة $f(x)=0$ تقبل عملاً وهيدا $lpha$ عيث (1
	0.25	وذلك بواسطة ميرونة القيم المتوسطة وريامة الدالة $[-1;+\infty[$ على المجال (C_f) على المجال $[-1;+\infty[$. \cdot
01	0.75	
		√ · · · · · · · · · · · · · · · · · · ·
	0.50	$F'(x) = f(x) \; : \; \parallel x$ على f على الدولة f على الدولة
01	0.50	$S = \int\limits_0^1 f(x) dx = F(1) - F(0) = (7 - 2e)$ عضاب المساحة $u.a$