$Esercizi-50pt-75'-CN\ AER\ 23/06/20$

Esercizio 1 – 30pt

Si consideri il sistema lineare $A \mathbf{x} = \mathbf{b}$ con $A \in \mathbb{R}^{n \times n}$ invertibile e \mathbf{b} , $\mathbf{x} \in \mathbb{R}^n$, dove: n = 100,

$$A = \begin{bmatrix} 1 & -2 & 10 & 0 & & \cdots & 0 \\ -1 & 2 & -2 & 10 & 0 & & & \\ 0 & -1 & 3 & -2 & 10 & 0 & & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ & & & & & & & \\ & & 0 & -1 & 97 & -2 & 10 & 0 \\ & & & 0 & -1 & 98 & -2 & 10 \\ & & & & 0 & -1 & 99 & -2 \\ 0 & \cdots & & & & 0 & -1 & 100 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}.$$

1.1 - 5 pt

Il metodo di Gauss–Seidel applicato al sistema lineare $A \mathbf{x} = \mathbf{b}$ risulta convergente per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)}$? Si motivi la risposta data definendo tutta la notazione utilizzata.

$$\rho_{B_{GS}} = 0.729799 < 1$$

Spazio per risposta lunga

1.2 - 3 pt

Si utilizzi la funzione Matlab® gs.m per risolvere il sistema lineare A $\mathbf{x} = \mathbf{b}$ tramite il metodo di Gauss–Seidel con criterio d'arresto basato sul residuo normalizzato. Si pongano: $\mathbf{x}^{(0)} = \mathbf{b}$, nmax= 1000 e la tolleranza sul criterio d'arresto tol= 10^{-4} . Si riportino: il numero di iterazioni N effettuate, le prime due componenti della soluzione approssimata $\mathbf{x}^{(N)} = \left(x_1^{(N)}, x_2^{(N)}, \ldots\right)^T$ e il residuo normalizzato $r_{norm}^{(N)}$ corrispondente. Si riportino i risultati con almeno 4 cifre decimali.

$$N = 49$$
 $\mathbf{x}^{(N)} = (0.057096, 0.101700, ...)^T$ $r_{norm}^{(N)} = 8.378606 \cdot 10^{-5}$

Spazio per risposta breve

1.3 - 3 pt

Dopo aver risposto al punto 2, si stimi e si riporti il valore dell'errore relativo $e_{rel}^{(N)} = \frac{\|\mathbf{x} - \mathbf{x}^{(N)}\|}{\|\mathbf{x}\|} \text{ con almeno 4 cifre decimali. Si motivi la risposta data.}$

$$e_{rel}^{(N)} \le 0.136618$$
 $(K_2(A) = 1.630564 \cdot 10^3)$

Spazio per risposta lunga

1.4 - 6 pt

Consideriamo lo splitting di una generica matrice A nella sua parte diagonale D, triangolare inferiore (con valori nulli sulla diagonale) -E e triangolare superiore (con valori nulli sulla diagonale) -F, tale che A = D - E - F. Si vuole risolvere un generico sistema lineare $A \mathbf{x} = \mathbf{b}$ tramite il seguente metodo iterativo:

$$\begin{cases} (D - E) \mathbf{x}^{(k+1/2)} = F \mathbf{x}^{(k)} + \mathbf{b}, \\ \mathbf{x}^{(k+1)} = (1 - \omega) \mathbf{x}^{(k)} + \omega \mathbf{x}^{(k+1/2)}, \end{cases} \text{ per } k = 0, 1, \dots,$$

dato $\mathbf{x}^{(0)}$, dove $\omega \in \mathbb{R}$ è un parametro.

Si riscriva il precedente metodo iterativo come:

$$\mathbf{x}^{(k+1)} = B_{\omega} \, \mathbf{x}^{(k)} + \mathbf{g}_{\omega}, \quad \text{per } k = 0, 1, \dots,$$

dato $\mathbf{x}^{(0)}$, fornendo le espressioni della matrice B_{ω} e vettore \mathbf{g}_{ω} di iterazione in funzione di ω . Si fornisca inoltre l'espressione del precondizionatore corrispondente P_{ω} .

$$B_{\omega} = \omega (D - E)^{-1} F + (1 - \omega) I$$
, $\mathbf{g}_{\omega} = \omega (D - E)^{-1} \mathbf{b}$, $P_{\omega} = \frac{1}{\omega} (D - E)$

Caricamento file

1.5 - 4 pt

Si mostri che il metodo iterativo di cui al punto 4 è fortemente consistente per ogni $\omega \neq 0$.

Caricamento file

1.6 - 4 pt

Si implementi il metodo iterativo di cui al punto 4 in una funzione Matlab metodo iterativo. musando il criterio d'arresto basato sul residuo normalizzato. La funzione metodo iterativo. musando il stessi inputs e outputs della funzione Matlab gs. m., ricevendo in aggunta in ingresso il parametro ω . Si suggerisce pertanto di modificare opportunamente la funzione gs. m.

Si utilizzi la funzione metodoiterativo.m per risolvere il sistema lineare A $\mathbf{x}=\mathbf{b}$ con gli stessi dati di cui al punto 2 e $\omega=0.6$. Si riportino: il numero di iterazioni N effettuate, le prime due componenti della soluzione approssimata $\mathbf{x}^{(N)}=\left(x_1^{(N)},x_2^{(N)},\ldots\right)^T$ e il residuo normalizzato $r_{norm}^{(N)}$ corrispondente. Si riportino i risultati con almeno 4 cifre decimali.

$$k = 14$$
 $\mathbf{x}^{(N)} = (0.057690, 0.102043, ...)^T$ $r_{norm}^{(N)} = 7.060284 \cdot 10^{-5}$

Spazio per risposta breve

1.7 - 5 pt

Per quali valori di $\omega \in \mathbb{R}$ è garantita la convergenza del metodo iterativo di cui al punto 4 per ogni $\mathbf{x}^{(0)}$? Per quale valore ω_{opt} la convergenza del metodo è ottimale? Si risponda svolgendo un opportuno studio grafico tramite Matlab[®]; si motivi la risposta data. Si riporti il grafico su foglio con la risposta.

Convergenza: $0 < \omega < 1.1562$, $\omega_{opt} = 0.7464$

Caricamento file

Esercizio 2 – 20pt

Si consideri il seguente problema ai limiti:

$$\begin{cases}
-\mu u''(x) + \sigma u(x) = f(x) & x \in (a, b), \\
\mu u'(a) = \delta, \\
u(b) = \beta,
\end{cases} (1)$$

dove $\mu \in \mathbb{R}$, $\mu > 0$, $\sigma \ge 0$, δ , $\beta \in \mathbb{R}$.

2.1 - 6 pt

Si approssimi il problema (1) usando il metodo delle differenze finite centrate, partizionando l'intervallo [a,b] in N+1 sottointervalli di uguale ampiezza $h=\frac{b-a}{N+1}$ delimitati da N+2 nodi $x_j=a+j\,h$ per $j=0,1,\ldots,N,N+1$. Per l'approssimazione di u'(a) si utilizzi lo schema delle differenze finite in avanti.

Si riportino le equazioni del sistema risultante in forma esplicita definendo tutta la notazione utilizzata e illustrando la procedura seguita. Si riportino inoltre le espressioni della controparte algebrica, ovvero del sistema lineare $A \mathbf{u}_h = \mathbf{b}$, in forma condensata, dove $A \in \mathbb{R}^{(N+1)\times(N+1)}$, $\mathbf{u}_h, \mathbf{b} \in \mathbb{R}^{N+1}$, essendo $\mathbf{u}_h = (u_0, u_1, \dots, u_N)^T$.

Caricamento file

2.2 - 4 pt

Si pongano per il problema (1) i seguenti dati: $a=0,\ b=1,\ \mu=2,\ \sigma=1,$ $f(x)=1-x+(4+2\pi^2)\cos\left(\frac{\pi}{2}\,x\right),\ \delta=-2,\ \beta=0.$ Si approssimi il problema con il metodo di cui al punto 1 con $h=\frac{1}{10}$. Si riporti il valore di u_0 con almeno 4 cifre decimali.

 $u_0 = 4.573077$

Spazio per risposta breve

2.3 - 3 pt

Dopo aver risposto al punto 2, si utilizzi opportunamente il vettore \mathbf{u}_h ottenuto per approssimare $I(u) = \int_0^1 u(x) \, dx$ attraverso la formula dei trapezi composita. Si riporti il valore ottenuto con almeno 4 cifre decimali.

2.837222

Spazio per risposta breve

2.4 - 3 pt

Si risolva ora il problema con i dati di cui al punto 2 per $h=0.04,\,0.02,\,0.01,\,0.005$ e, sapendo che la soluzione esatta è $u(x)=4\cos\left(\frac{\pi}{2}\,x\right)+1-x$, si calcolino gli errori corrispondenti $e_h=\max_{j=0,\dots,N+1}|u(x_j)-u_j|$; si riportino i risultati con almeno 4 cifre decimali.

2.5 - 4 pt

Si usino gli errori e_h calcolati al punto 4 per stimare algebricamente l'ordine di convergenza p del metodo di cui al punto 1 applicato al problema (1). Si illustri schematicamente la procedura seguita per la stima e si commenti il risultato ottenuto alla luce della teoria.

p = 1

Spazio per risposta lunga