Chapitre X - Droites du plan

I - Caractérisation analytique d'une droite

Exercice 1 : Dans un repère $(O; \ \vec{\imath}, \ \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \left(\begin{matrix} 3 \\ -2 \end{matrix} \right)$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

Exercice 1 : Dans un repère $(O; \ \vec{\imath}, \ \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

<u>Solution</u>: Pour trouver l'équation réduite de la droite d, il faut dans un premier temps trouver son **coefficient directeur** puis son **ordonnée à l'origine**.

Cherchons alors un vecteur directeur de d'abscisse 1.

Exercice 1 : Dans un repère $(O; \ \vec{\imath}, \ \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

<u>Solution</u>: Pour trouver l'équation réduite de la droite d, il faut dans un premier temps trouver son **coefficient directeur** puis son **ordonnée à l'origine**.

Cherchons alors un vecteur directeur de d'abscisse 1.

Le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ est un vecteur directeur de d, donc $\overrightarrow{v} \begin{pmatrix} 1 \\ -\frac{2}{3} \end{pmatrix}$ est un

autre vecteur directeur de d (ici $\overrightarrow{v}=\frac{1}{3}\overrightarrow{u}$ pour avoir un vecteur directeur d'abscisse égale à 1).

Exercice 1 : Dans un repère $(O; \ \vec{\imath}, \ \vec{\jmath})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

<u>Solution</u>: Pour trouver l'équation réduite de la droite d, il faut dans un premier temps trouver son **coefficient directeur** puis son **ordonnée à l'origine**.

Cherchons alors un vecteur directeur de d d'abscisse 1.

Le vecteur
$$\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 est un vecteur directeur de d , donc $\overrightarrow{v} \begin{pmatrix} 1 \\ -\frac{2}{3} \end{pmatrix}$ est un

autre vecteur directeur de d (ici $\overrightarrow{v}=\frac{1}{3}\overrightarrow{u}$ pour avoir un vecteur directeur d'abscisse égale à 1). Le coefficient directeur de d est alors égal à $-\frac{2}{3}$, et une équation de d est de la forme $y=-\frac{2}{3}x+p$.

Exercice 1: Dans un repère $(O; \vec{i}, \vec{j})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

Une équation de d est de la forme $y = -\frac{2}{3}x + p$.

De plus $A(-4\,;\,5)$ est sur d, d'où $5=-\frac{2}{3}\times(-4)+p$

$$5 = -\frac{2}{3} \times (-4) + p$$

Exercice 1: Dans un repère $(O; \vec{i}, \vec{j})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

Une équation de d est de la forme $y = -\frac{2}{3}x + p$.

De plus
$$A(-4;5)$$
 est sur d , d'où
$$5=-\frac{2}{3}\times(-4)+p\iff 5-\frac{8}{3}=p\iff \frac{7}{3}=p.$$

Exercice 1: Dans un repère $(O; \vec{i}, \vec{j})$, on donne le point A(-4; 5) et le vecteur $\overrightarrow{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

Déterminer une équation de la droite d passant par A et de vecteur directeur \overrightarrow{u} .

Une équation de d est de la forme $y = -\frac{2}{3}x + p$.

De plus
$$A(-4; 5)$$
 est sur d , d'où $5 = -\frac{2}{3} \times (-4) + p \iff 5 - \frac{8}{3} = p \iff \frac{7}{3} = p$.

Donc une équation de d est $y = -\frac{2}{3}x + \frac{7}{3}$.