Parallel Computing with GPUs

Introduction Part 1 - Course Context

Dr Paul Richmond http://paulrichmond.shef.ac.uk/teaching/COM4521/

This Lecture (learning objectives)

- ☐ Introduce the course context
 - ☐ Identify the significance of GPU performance
 - ☐ Analyse the emergence of multi and many core architectures
 - ☐ Present accelerators as a co-processor

Context of course

6 hours CPU time VS.

1 minute GPU time

Transistors != performance

- ☐ Moore's Law: A doubling of transistors every couple of years
 - ■Not a law actually an observation
 - ☐ Doesn't actually say anything about performance
- ☐ Future of Moore's Law
 - ☐ Moore's law is dead!
 - ☐ A bright future for Moore's Law

Dennard Scaling

"As transistors get smaller their power density stays constant"

Power = Frequency x Voltage²

- ☐ Performance improvements for CPUs traditionally realised by increasing frequency
- ☐ Decrease voltage to maintain a steady power
 - □Only works so far
- □Increase Power
 - ☐ Disastrous implications for cooling

Instruction Level Parallelism

- ☐ Transistors used to build more complex architectures
- ☐ Use pipelining to overlap instruction execution

Instruction Level Parallelism

- ☐ Transistors used to build more complex architectures
- ☐ Use pipelining to overlap instruction execution

Golden Era of Performance

- ☐ 90s saw great improvements to single CPU performance
 - ☐ 1980s to 2002: 100% performance increase every 2 years
 - □2002 to now: ~40% every 2 years

Why More Cores?

- ☐ Use extra transistors for multi/many core parallelism
 - ☐ More operations per clock cycle
 - ☐Power can be kept low
 - ☐ Processor designs can be simple shorter pipelines (RISC)

GPUs and Many Core Designs

- ☐ Take the idea of multiple cores to the extreme (many cores)
- ☐ Dedicate more die space to compute
 - ☐ At the expense of branch prediction, out of order execution, etc.
- ☐ Simple, Lower Power and Highly Parallel
 - ☐ Very effective for HPC applications

From GTC 2017 Keynote Talk, NVIDIA CEO Jensen Huang

Accelerators

- ☐ Problem: Still require OS, IO and scheduling
- ☐ Solution: "Hybrid System",
 - □CPU provides management and
 - "Accelerators" (or co-processors) such as GPUs provide compute power

Types of Accelerator

GPUs

- ☐ Emerged from 3D graphics but now specialised for HPC
- ☐ Readily available in workstations

■Xeon Phis

- ☐ Many Integrated Cores (MIC) architecture
- ☐ Based on Pentium 4 design (x86) with wide vector units
- □Closer to traditional multicore
- ☐ Simpler programming and compilation

Summary

- ☐ Introduce the course context
 - □ Identify the significance of GPU performance
 - ☐ Analyse the emergence of multi and many core architectures
 - ☐ Present accelerators as a co-processor

☐ Next Lecture: Supercomputers and Software

