Deep Learning for Robotics

Jesse Zhang, CSCI 566 Fall 2020

But Wait!

This was 12 years ago! Why aren't we seeing robots doing this now?

...Controlled by humans ©

What does this mean?

- Robots are technically capable of doing all these tasks
- Why can't robots do these things 12 years later?
 - Too hard to manually program robots to do this -> Deep Learning
 - Our deep learning algorithms are not good enough

What can we do now?

Outline of Today's Lecture

Outline of Today's Lecture

Supervised Vision-Based Learning

Using vision to solve robotic tasks through supervised learning

- Mainly focused on object manipulation: grasping
 - We can learn everything from grasping?
- General Idea:
 - 1. Collect dataset with traditional grasping methods
 - 2. Train CNN architecture on images to predict grasping success probabilities on regions

- 1. Collect 50k grasping examples: keep track of (x_i, y_i, θ_i)
 - 1. Sample 380x380 patch with (x_i, y_i) at the center
 - 2. Randomly rotate that patch

- 1. Collect 50k grasping examples: keep track of (x_i, y_i, θ_i)
 - 1. Sample 380x380 patch with (x_i, y_i) at the center
 - 2. Randomly rotate that patch
- 2. Use AlexNet-based Grasp Network
 - 1. Loss function: Cross Entropy Loss

Fig. 5. Our CNN architecture is similar to AlexNet [6]. We initialize our convolutional layers from ImageNet-trained Alexnet.

- 1. Collect 50k grasping examples: keep track of (x_i, y_i, θ_i)
 - 1. Sample 380x380 patch with (x_i, y_i) at the center
 - 2. Randomly rotate that patch
- 2. Use AlexNet-based Grasp Network
 - 1. Loss function: Cross Entropy Loss
- 3. Finally, Grasp!
 - Sample hundreds of random patches, pick patch and grasping angle with highest predicted success probability!

TABLE II
COMPARING OUR METHOD WITH BASELINES

		Learning based					
	Min	Eigenvalue	Optimistic	kNN	SVM	Deep Net	Deep Net + Multi-stage
	eigenvalue	limit	param. select	KININ		(ours)	(ours)
Accuracy	0.534	0.599	0.621	0.694	0.733	0.769	0.795

- Q: How is arm control performed?
 - Given (x_i, y_i, θ_i) grasping params, call upon a robotic kinematic controller to figure out how to grasp
- Q: What do the best ranked success patches look like?

Fig. 6. Highly ranked patches from learnt algorithm (a) focus more on the objects in comparison to random patches (b).

Extending this idea even further?

• 800k grasps!

This works! What's the problem?

- How do we do something other than grasping?
 - Washing dishes?
 - Opening doors?
 - Folding laundry?
- We can't rely just on traditional kinematic control!
- Solution: *Learn* to control the robot, too.

Outline of Today's Lecture

Imitation Learning

Learn from human experts

- Learning from scratch on robots is slow, accelerate it with human help
 - Ex: Human teleoperates robot
- Two types of imitation learning:
 - 1. Assumes demonstrations already collected by the expert
 - 2. Assumes we can query an expert

Naïve Imitation Learning: Supervised Behavior Cloning

- Assume we have trajectories $\tau_i=(s_1,a_1,s_2,a_2,s_3,a_3,\dots,s_H,a_H)$, dataset = $\{\tau_1,\tau_2,\dots,\tau_n\}$
- How do we model a policy $\pi(a|s)$ to replicate these actions?
 - Continuous: $L_{BC} = \frac{1}{B} \sum [\pi(a|s_i) a_i]^2$
 - Discrete: $L_{BC} = \frac{1}{B} \sum CrossEntropy(\pi(a|s_i), a_i)$

Machine Learning Approach to Visual Perceptic of Forest Trails for Mobile Robots

Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

Behavior Cloning on Images

Quadcopter in Action

Naïve Imitation Learning: Supervised Behavior Cloning

- What's the problem?
 - Poor support: take one wrong action, and you're in a new place you've never seen before!

Imitation Learning w/ Expert Querying

- Increase the support of the dataset with Dataset Aggregation (Dagger)
 - 1. Train $\pi(a|s)$ from $D = \{\tau_1, \tau_2, ..., \tau_n\}$
 - 2. Run $\pi(a|s)$ to get dataset $D_{\pi} = \{\tau_1^{\pi}, ..., \tau_n^{\pi}\}$
 - What's the problem here?
 - No labels for correct actions a
 - 3. Solution: Ask expert/human to label D_{π} with CORRECT actions a_t
 - 4. Aggregate $D = D \cup D_{\pi}$ and repeat
- Ensures that the policy has a good data support

Break

Outline of Today's Lecture

Inverse Reinforcement Learning

Rather than copying the expert's actions, we want to copy the expert's *intentions*. Once we figure out their intentions, we can copy their behavior.

- The expert's intentions can be summarized by their true reward function $r(s_t, a_t, s_{t+1})$
- We can learn r_ϕ and then train an RL policy π^{r_ϕ} using r_ϕ
- Problem: Many reward functions can explain expert's behaviors
- What is the *optimal* reward function?

Maximum Entropy Inverse RL

- The optimal reward function r_{ϕ} should result in a policy that that maximizes the probability of réplicating the demonstrations in D, while maximizing entropy on states outside of D
- Intuition: The higher the rewards, the more likely a trajectory by an expert!

•
$$p_{r_{\phi}}(\tau_i) = \frac{\exp(R_{\phi}(\tau_i))}{\int exp(R_{\phi}(\tau_i))d\tau_i}$$

• Objective function: $\max_{\phi} \sum_{\tau_i} \log p_{\tau_{\phi}}(\tau_i)$ • $\nabla_{\phi} \mathbf{L} = -\frac{1}{|\mathbf{D}|} \sum_{\tau_i} \frac{dr_{\phi}}{d_{\phi}}(\tau_i) - \sum_{s} p(s|\phi) \frac{dr_{\phi}}{d_{\phi}}(s)$

•
$$\nabla_{\phi} \mathbf{L} = -\frac{1}{|\mathbf{D}|} \sum_{\tau_i} \frac{dr_{\phi}}{d_{\phi}} (\tau_i) - \sum_{s} p(s|\phi) \frac{dr_{\phi}}{d_{\phi}} (s)$$

- What's the problem with this gradient here?
 - We can't calculate $p(s|\phi)$ unless we know the dynamics of the environment!

Guided Cost Learning (GCL)

- How do we handle unknown system dynamics?
 - Sample based approximation to estimate the system dynamics
 - Use a policy π_{θ} to generate samples which are used to estimate the current $p(s|\phi)$

1. REPEAT:

- 1. Generate samples D_{π} from π_{θ}
- 2. $D = D \cup D_{\pi}$
- 3. Calculate loss with an estimate of $p(s|\phi)$ with samples from D
- 4. Update r_{ϕ} with loss
- 5. Update π_{θ} with RL Policy Gradient
- 2. Return π_{θ}

Guided Cost Learning (GCL)

Outline of Today's Lecture

Sim-to-Real and Domain Adaptation

Running RL in real-world robots is too sample inefficient. What if we learn in simulation and use domain adaptation techniques to learn in the real world?

- Learn in a simulator, transfer this knowledge for quick adaptation in the real world
- A form of domain adaptation
 - Can use existing domain adaptation techniques from vision community to help

Learning
Dexterous InHand
Manipulation

- Main Idea: Learn to manipulate objects with domain randomization in simulator, then transfer to real world
 - Domain Randomization: Add Gaussian noise to observations, randomize object dimensions, arm masses, friction coefficients, joint limits, gravity effects, etc. all in simulation
- Randomize appearance

- 1. Collect experience in randomized simulator
- 2. Train RL policy based on experience
- 3. Train a CNN pose predictor
- 4. Combine both to be able to recreate target object poses in the real world

Demo

Outline of Today's Lecture

Offline (Batch) RL

How do we perform RL fully *offline*, with no environment interactions?

Ideal for situations in which exploring in the real-world is problematic (hospital surgical robot, self driving, etc) but we can collect data.

- Given large dataset *D*, collected by any arbitrary mix of policies, how can we learn RL policies without any environment interaction?
- Why? Large datasets (ImageNet) are behind the success of DL in vision
- Why this problem formulation?
 - Offline RL can generalize to be better than the performance of the dataset
 - Imitation Learning generally can not

Attempt 1: Naïve Offline RL

- Apply generic, off-policy RL algorithm to the existing dataset
 - In the training loop, skip the exploration step. Sample from dataset for trajectories to train on
- Doesn't perform well!
- Why?

Attempt 1: Naïve Offline RL

- Assume a perfect Value/Q Function for our dataset $D: Q_D(s, a)$
- Assume a simple policy: $\max_{a} Q_D(s, a)$
- Problem: What if the dataset doesn't contain all actions?
 - A randomly initialized neural network $Q_D(s,a)$ function will have random values for out-of-distribution actions!
 - $argmax_aQ_D(s,a)$ could be an action never seen before with very low **true** Q-value.
- This isn't a problem in regular RL because the policy can explore these bad actions and learn their true value during training

Attempt 2: Constraints

- There are three types of fixes to this problem, take a guess?
- 1. Constrain the Policy:
 - Ensure the policy only picks actions that are in the distribution of D
 - $\pi_{\theta} = \arg \max_{\theta} E_{a \sim \pi_{\theta}(a|s)}[Q(s,a)] \text{ s.t. } dist\left(\pi_{\theta}(a|s), \pi_{\beta}(a|s)\right) \leq \epsilon$
 - π_{eta} can be a policy learned with behavior cloning on the data
 - Dist can be KL divergence or other types of probability distribution distances
- 2. Constrain the Q function:
 - Ensure the Q values for actions outside the distribution are low
- 3. Collect a ginormous dataset and hope for the best

The Bellman Backup, Revisited

- Bellman Backup: $Q_{i+1}(s, a) = E_{s'}[r + \gamma \max_a' Q_i(s', a')]$
 - Iteratively update Q(s, a) with the optimal Bellman Equations
 - With an arbitrary policy in continuous spaces: $Q_{i+1}(s,a) = E_{s',a' \sim \pi(a|s)}[r + \gamma Q_i(s',a')]$
- Distribution constraint example: $\max_{\theta} E_{a \sim \pi_{\theta}(a|s)}[Q(s,a)] \ s.t. \ KL(\pi_{\theta}(a|s), \pi_{\beta}(a|s)) \le \epsilon$
 - Becomes $Q_{i+1}(s, a) = E_{s', a' \sim \pi_{\theta}(a|s)}[r + \gamma \max_{a}' Q_{i}(s', a') + \log \pi_{\beta}(a|s) \log \pi_{\theta}(a'|s')]$
 - Intuition: Increase Q values by $\log \pi_{\beta}(a|s)$, the behavior cloned policy -> increase Q values by amount proportional to frequency in dataset
- Policy update example: $\pi(s) = argmax_{a_i}Q(s, a_i)$
 - Constrain the policy: $\pi_{BCQ}(s) = argmax_{a_i+\xi(s,a_i)}Q(s,a_i+\xi(s,a_i))$
 - $a_i \sim G(s)$, G(s) a VAE trained on D, $\xi(s, a_i)$ a perturbation trained to maximize $Q(s, a_i + \xi(s, a_i))$

Figure from Aviral Kumar, Distribution constraint from Jaques et al (Way Off-Policy), Policy Constraint from Fujimoto et al (BCQ)

a

How well does Offline RL work?

Domain	Task Name	BC	SAC	BEAR	BRAC-p	BRAC-v	$CQL(\mathcal{H})$	$\mathbf{CQL}(\rho)$
AntMaze	antmaze-umaze	65.0	0.0	73.0	50.0	70.0	74.0	73.5
	antmaze-umaze-diverse	55.0	0.0	61.0	40.0	70.0	84.0	61.0
	antmaze-medium-play	0.0	0.0	0.0	0.0	0.0	61.2	4.6
	antmaze-medium-diverse	0.0	0.0	8.0	0.0	0.0	53.7	5.1
	antmaze-large-play	0.0	0.0	0.0	0.0	0.0	15.8	3.2
	antmaze-large-diverse	0.0	0.0	0.0	0.0	0.0	14.9	2.3
Adroit	pen-human	34.4	6.3	-1.0	8.1	0.6	37.5	55.8
	hammer-human	1.5	0.5	0.3	0.3	0.2	4.4	2.1
	door-human	0.5	3.9	-0.3	-0.3	-0.3	9.9	9.1
	relocate-human	0.0	0.0	-0.3	-0.3	-0.3	0.20	0.35
	pen-cloned	56.9	23.5	26.5	1.6	-2.5	39.2	40.3
	hammer-cloned	0.8	0.2	0.3	0.3	0.3	2.1	5.7
	door-cloned	-0.1	0.0	-0.1	-0.1	-0.1	0.4	3.5
	relocate-cloned	-0.1	-0.2	-0.3	-0.3	-0.3	-0.1	-0.1
Kitchen	kitchen-complete	33.8	15.0	0.0	0.0	0.0	43.8	31.3
	kitchen-partial	33.8	0.0	13.1	0.0	0.0	49.8	50.1
	kitchen-undirected	47.5	2.5	47.2	0.0	0.0	51.0	52.4

Grasping, part 2

In Summary

Supervised Vision-Based Control **Imitation** Learning Learning from Experts Inverse RL Sim to Real, Domain Adaptation Offline Reinforcement Learning

- Supervised vision-based control allows us to perform tasks like vision-based grasping, but joint and vision-based visuomotor control is needed for more complicated tasks
- We can learn from experts (e.g. humans), by cloning demonstrations, being able to query humans, or estimating experts' reward functions to learn policies to behave like the expert
- We can also perform sim-to-real transfer using domain adaptation techniques to train in simulators and execute tasks on the real-world robots
- Offline RL is a promising approach where we can learn, fully offline, RL policies that may generalize beyond the performance of the given datasets

Questions?