Práctica 1

- 1. (a) Si $m \in \mathbb{Z}$, probar que m es múltiplo de 3 si y sólo si m^2 es múltiplo de 3.
 - (b) Probar que $\sqrt{3}$ no es racional.
- **2.** Probar que si $x < y + \varepsilon$, para todo $\varepsilon > 0$, entonces $x \le y$. Deducir que si $|x y| < \varepsilon$, para todo $\varepsilon > 0$, entonces x = y.
- **3.** (a) Sean $x, y \in \mathbb{R}$ tales que y x > 1. Probar que existe $k \in \mathbb{Z}$ tal que x < k < y.
 - (b) Sean $x, y \in \mathbb{R}$ tales que x < y. Probar que existe $q \in \mathbb{Q}$ tal que x < q < y.
 - (c) Sean $s, r \in \mathbb{Q}$ tales que s < r. Probar que existe un número irracional entre s y q.
 - (d) Sean $x, y \in \mathbb{R}$ tales que x < y. Probar que existe un irracional entre $x \in y$.
- 4. Sea $A \subseteq \mathbb{R}$ no vacío. Probar:

$$s = \sup A \Leftrightarrow \left\{ \begin{array}{l} a \leq s \quad \forall \ a \in A, \\ \\ \forall \varepsilon > 0 \ \exists \ a \in A \ / \ s - \varepsilon < a \leq s. \end{array} \right.$$

$$i = \inf A \Leftrightarrow \left\{ \begin{array}{l} i \leq a \quad \forall \ a \in A, \\ \\ \forall \varepsilon > 0 \ \exists \ a \in A \ / \ i \leq a < i + \varepsilon. \end{array} \right.$$

5. Hallar, si existen, supremo, ínfimo, máximo y mínimo de los siguientes subconjuntos de \mathbb{R} , y probar que lo son:

$$(a,b]$$
 $B = \left\{ \frac{1}{2^n} : n \in \mathbb{N} \right\}$ $B \cup \{0\}$ $\left\{ x^2 - x - 1 : x \in \mathbb{R} \right\}$

- **6.** Si $A \subseteq B \subseteq \mathbb{R}$, $A \neq \emptyset$, probar:
 - (a) Si B está acotado superiormente, A también y sup $A \leq \sup B$.
 - (b) Si B está acotado inferiormente, A también e inf $B \leq \inf A$.
 - (c) Si A no está acotado, B tampoco.
- 7. Dados un conjunto de números reales A y $c \in \mathbb{R}$, denotamos

$$cA = \{ca : a \in A\}.$$

Más aún, -A será el conjunto (-1)A. Probar:

- (a) Si A está acotado superiormente, entonces -A está acotado inferiormente e $\inf(-A) = -\sup A$.
- (b) Si c > 0 y A está acotado superiormente, entonces cA está acotado superiormente y $\sup(cA) = c\sup(A)$.
- 8. Probar, usando la definición de límite:
 - (a) $\lim_{n \to \infty} \frac{3-2n}{n+1} = -2$.
 - (b) $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0.$
 - (c) $\lim_{n \to \infty} \frac{2^n 3}{2^n + 4} = 1$.
- **9.** Sean $(x_n)_{n\in\mathbb{N}}$ y $(a_n)_{n\in\mathbb{N}}$ succesiones de números reales. Probar que si $|x_n-\ell|\leq a_n$ para todo $n\in\mathbb{N}$ y $a_n\underset{n\to\infty}{\longrightarrow}0$ entonces $x_n\underset{n\to\infty}{\longrightarrow}\ell$.
- **10.** Si $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ son sucesiones de números reales tales que $x_n \xrightarrow[n\to\infty]{} \ell_1$ e $y_n \xrightarrow[n\to\infty]{} \ell_2$, probar que:
 - (a) $x_n + y_n \xrightarrow[n \to \infty]{} \ell_1 + \ell_2$.
 - (b) $cx_n \xrightarrow[n \to \infty]{} c \ell_1$, para cualquier $c \in \mathbb{R}$.
 - (c) $x_n \cdot y_n \xrightarrow[n \to \infty]{} \ell_1 \cdot \ell_2$.
 - (d) Si $y_n \neq 0$ para todo $n \in \mathbb{N}$ y $\ell_2 \neq 0$ entonces $\frac{x_n}{y_n} \xrightarrow[n \to \infty]{\ell_1} \frac{\ell_1}{\ell_2}$.

Sugerencia: probar que $\frac{1}{y_n} \xrightarrow[n \to \infty]{} \frac{1}{\ell_2}$ y usar (c).

- (e) Si $x_n \leq y_n \ \forall n \in \mathbb{N} \Rightarrow \ell_1 \leq \ell_2$.
- 11. Si $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$ son sucesiones de números reales tales que $(x_n)_{n\in\mathbb{N}}$ converge a 0 e $(y_n)_{n\in\mathbb{N}}$ está acotada, probar que $(x_ny_n)_{n\in\mathbb{N}}$ converge a 0.
- **12.** Sean $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ y $(z_n)_{n\in\mathbb{N}}$ successiones de números reales tales que $x_n \leq y_n \leq z_n$ para todo n. Si $x_n \underset{n\to\infty}{\longrightarrow} \ell$ y $z_n \underset{n\to\infty}{\longrightarrow} \ell$ probar que $y_n \underset{n\to\infty}{\longrightarrow} \ell$.
- 13. Probar que:
 - (a) Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión creciente y acotada superiormente, entonces tiene límite y $\lim_{n\to\infty} x_n = \sup\{x_n : n\in\mathbb{N}\}.$
 - (b) Si $(x_n)_{n\in\mathbb{N}}$ es una sucesión creciente y no acotada superiormente, entonces $x_n \xrightarrow[n\to\infty]{} +\infty$.
 - (c) Enunciar y demostrar los resultados análogos para sucesiones decrecientes.
- **14.** Probar que $\lim_{n\to\infty} x_n = \ell$ si y sólo si toda subsucesión de $(x_n)_{n\in\mathbb{N}}$ converge a ℓ .

15. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de números reales, y sea $\ell\in\mathbb{R}$.

Probar que si toda subsucesión $(x_{n_k})_{k\in\mathbb{N}}$ tiene una subsucesión $(x_{n_{k_j}})_{j\in\mathbb{N}}$ que converge a ℓ , entonces la sucesión $(x_n)_{n\in\mathbb{N}}$ converge a ℓ .

16. Probar:

- (a) Si $\lim_{k\to\infty} x_{2k} = \lim_{k\to\infty} x_{2k+1}$ entonces $(x_n)_{n\in\mathbb{N}}$ es convergente.
- (b) Si $(x_{2k})_{k\in\mathbb{N}}$, $(x_{2k+1})_{k\in\mathbb{N}}$ y $(x_{3k})_{k\in\mathbb{N}}$ son convergentes entonces $(x_n)_{n\in\mathbb{N}}$ es convergente.