SaHHN(e)

Combinatorial Coworkspace

Adding Lattice Points in Polytopes

Day # 2

- **Exercise 1.** Consider $P := \operatorname{conv} \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 7 & 8 \end{pmatrix} \subset \mathbb{R}^3$.
 - i) Show that P is not IDP.
 - ii) Show that for every vertex v of P, the lattice points in P-v generate the semigroup $\operatorname{cone}(P-v)$.
- **Exercise 2.** i) Show that $2 \cdot S(p,q)$ has a unimodular cover.
 - ii) Show that $2 \cdot S(1,q)$ has a regular unimodular triangulation.
 - iii)* Show that $2 \cdot S(2,5)$ does not have a unimodular triangulation.
- **Exercise 3.** Describe the Gröbner basis for the toric ideal of an order polytope corresponding to the canonical triangulation.
- **Exercise 4.** Suppose $P \subset \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ have regular unimodular triangulations.
 - i) Show that $P \times Q$ also has a regular unimodular triangulation.
 - ii) Can you say something about Gröbner basis degrees?
- **Exercise 5.** The unique empty 4-simplex S of width 4 is the convex hull of the standard unit vectors in \mathbb{R}^4 together with (6, 14, 17, 65).
 - i)** Can you give a $k \in \mathbb{N}$ so that kS has a unimodular triangulation?
 - ii)*** What is the smallest such k?
 - iii)* Does 2S have a unimodular triangulation?
- **Exercise 6.** i) Let $P \subset \mathbb{R}^2$ be a lattice polygon with all edges of length ≥ 2 . Show that the corresponding toric ideal is quadratically generated.
 - ii) Show that it even has a quadratic Gröbner basis.
 - iii)*** Let $P \subset \mathbb{R}^3$ be a lattice polytope which is covered by kth dilates of unimodular simplices for some $k \in \mathbb{N}$. Show that the corresponding toric ideal is quadratically generated.
 - iv)*** Is it enough to assume that all edges have length $\geq k$?