BiDAF and QANet

Sviatokum Polina

02.03.2019

QA as reading comprehension task

Extractive datasets

Answer to every question is a continuous span of context.

Multiple choice datasets

Questions about context with multiple choice.

Cloze datasets

Statements related to context with blanks to fill in.

Datasets

Dataset	Size	Source of	Source of	Answer
		Que.	Docs	Туре
CNN/DailyMail	300K	Synthetic	News	Fill in entity
	1.4M			
RACE	50K	English	English	Multiple
	870K	exam	exam	choices
MCTest	500	Crowd	Fictional	Multiple
	2K	sourced	stories	choices
SQuAD	536	Crowd	Wiki.	Span of
	100K	sourced		words
TrivaQA	40K	Trivia	Wiki./Web	Span of
	650K	websites	doc.	words

SQuAD leaderboard

SQuAD v1.1

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 Oct 05, 2018	BERT (ensemble) Google Al Language https://arxiv.org/abs/1810.04805	87.433	93.160
2 Feb 14, 2019	Knowledge-enhanced BERT (single model) Anonymous	85.944	92.425
2 Sep 26, 2018	nlnet (ensemble) Microsoft Research Asia	85.954	91.677
3 Sep 09, 2018	nlnet (ensemble) Microsoft Research Asia	85.356	91.202
3 Oct 05, 2018	BERT (single model) Google Al Language https://arxiv.org/abs/1810.04805	85.083	91.835
4 Feb 19, 2019	WD (single model) Anonymous	84.402	90.561
4 Jul 11, 2018	QANet (ensemble) Google Brain & CMU	84.454	90.490
5 Feb 21, 2019	WD1 (single model) Anonymous	83.804	90.429
5 Jul 08, 2018	r-net (ensemble) Microsoft Research Asia	84.003	90.147

SQuAD v2.0

SQUAD VZ.0							
Rank	Model	EM	F1				
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452				
1 Jan 15, 2019	BERT + MMFT + ADA (ensemble) Microsoft Research Asia	85.082	87.615				
2 Jan 10, 2019	BERT + Synthetic Self-Training (ensemble) Google Al Language https://github.com/google-research/bert	84.292	86.967				
3 Dec 13, 2018	BERT finetune baseline (ensemble) Anonymous	83.536	86.096				
4 Dec 16, 2018	Lunet + Verifier + BERT (ensemble) Layer 6 Al NLP Team	83.469	86.043				
4 Dec 21, 2018	PAML+BERT (ensemble model) PINGAN GammaLab	83.457	86.122				
5 Jan 10, 2019	BERT + Synthetic Self-Training (single model) Google Al Language https://github.com/google-research/bert	82.972	85.810				

BiDAF

Embedding Layers Word Embeddings

Character Embedding Layer

Produces character-level embedding of each word using CNN. Characters are embedded into vectors, which can be considered as 1D inputs to the CNN.

Word Embedding Layer

Use pre-trained word vectors GloVe to obtain the fixed word embedding of each word.

Embedding Layers

Context embeddings

The concatenation of the character and word embedding vectors is passed to a two-layer Highway Network to obtain d-dimensional embedding vectors.

Contextual Embedding Layer

LSTM in both directions is placed on top of embeddings.

Hence we obtain 2d-dimensional contextual embeddings for every token

The inputs to the layer are contextual vector representations of the context C and the query Q.

S – similarity matrix between C and Q.

$$S_{i,j} = \alpha(C_{:i}, Q_{:j})$$

, where α is a trainable scalar function.

$$\alpha(c,q) = W_S^T \operatorname{concat}[c,q,c\circ q]$$

Context-to-query Attention

$$S_{i,j} = \alpha(C_{:i}, Q_{:j})$$

Context-to-query Attention

Signifies which query words are most relevant to each context word.

$$a_t = \operatorname{softmax}(S_{t:})$$

 a_t describes relation between t-th token of context and query

$$\hat{Q}_{:t} = \sum_{j} (a_t)_j Q_{:j}$$

 \hat{Q} – C2Q matrix

Query-to-context Attention

$$S_{i,j} = \alpha(C_{:i}, Q_{:j})$$

Query-to-context Attention

Signifies which context words have the closest similarity to one of the query words.

$$b = \operatorname{softmax}(\operatorname{max}_{\operatorname{col}}(S))$$

b describes relation between query tokens and their most similar tokens in the context

$$\hat{c} = \sum_{i} (b_i C_{:i})$$

 \hat{C} is tiled \hat{c} vector – Q2C matrix

Attention Flow Layer

Output G combines C2Q and Q2C.

$$G_{:t} = \beta \left(C_{:t}, \hat{Q}_{:t}, \hat{C}_{:t} \right)$$

, where β is a (possibly) trainable vector function that fuses its (three) input vectors

$$\beta(c,\hat{q},\hat{c}) = [h;\hat{u};h\circ\hat{u};h\circ\hat{h}]$$

Modeling Layer

Modeling Layer

This layer captures the interaction among the context words conditioned on the query.

We use two layers of bi-directional LSTM, with the output size of d for each direction.

Hence we obtain a matrix $M \in \mathbb{R}^{2d \times T}$, where T is context size

Output Layer

Output Layer

The output layer is application-specific. For SQuAD output layer predicts start and end point of answer span.

$$p^{start} = \operatorname{softmax} (W_{start}^T[G; M])$$

For the end index of the answer phrase, we pass M to another bidirectional LSTM layer and obtain M_2

$$p^{end} = \operatorname{softmax}(W_{end}^T[G; M_2])$$

Training & Testing

Training

$$L(\theta) = -\frac{1}{N} \sum_{i}^{N} \left(\log(p_{true_start_i}^{start}) + \log(p_{true_end_i}^{end}) \right)$$

Testing

$$\mathit{start}_\mathit{idx}, \mathit{end}_\mathit{idx} = \underset{\mathit{start}_\mathit{idx} < \mathit{end}_\mathit{idx}}{\operatorname{argmax}} p_{\mathit{start}_\mathit{idx}}^{\mathit{start}} \cdot p_{\mathit{end}_\mathit{idx}}^{\mathit{end}}$$

QANet

- ▶ What if we don't use RNN (not very new idea)?
- ▶ What if we use CNN + self-attention?

Benefits:

- Faster training and inference
- Training on larger datasets

Encoder Block

Multi-head attention mechanism

Depthwise separable convolution

Architecture

Data Augmentation by Backtranslation

- Translation model from English to French
- Translation model from French to English
- Obtain k French translations
- Obtain k English translations for each French phrase
- ▶ Total of k^2 paraphrases of the input sequence

Backtranslation & SQuAD

Document paraphrasing

- Question remains unchanged
- k = 5, so each sentence has 25 paraphrase choices
- New document is formed by replacing each sentence with a randomly-selected paraphrase

Answer extraction

- Sentence s contains original answer a
- Sentence s' is a paraphrase of s
- Compute character-level 2-gram scores between each word in s' and start/end words of a
- ► The highest scoring pair of words is a start and end of answers paraphrase

Results & Conclusions

- Best result as SQuAD v1.1 (at a time)
- ▶ 5 times speedup in training over BiDAF (train time to get 77.0 F1 on SQuAD v1.1 Dev set)

Effect of data augmentation

- Making the training data twice as large yields an increase in the F1 by 0.5 percent
- ▶ Adding same amout of data with another pivotal language brings another 0.2 improvement in F1
- ▶ Injecting more data beyond ×3 does not benefit the model
- ▶ Increasing the ratio of the original data to (3:1:1) yields the best performance

Links

- M. Seo, A. Kembhavi, A. Farhadi, H. Hajishirzi
 Bidirectional Attention Flow for Machine Comprehension
 https://arxiv.org/abs/1611.01603
- D. Dohan, A. Wei Yu, M.T. Luonga, R. Zhao, K. Chen, M. Norouzi, Q. V. Le

 QANet: Combining Local Convolution with Global
 Self-Attention for Reading Comprehension
 https://arxiv.org/abs/1804.09541
- François Chollet
 Xception: Deep Learning with Depthwise Separable
 Convolutions
 https://arxiv.org/abs/1610.02357
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin Attention Is All You Need https://arxiv.org/abs/1706.03762