Отчёт по лабораторной работе №8

Дисциплина: архитектура компьютера

Аветисян Алина Эдуардовна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Задание для самостоятельной работы	13
4	Выводы	15

Список иллюстраций

2.1	Создание каталога и файла	6
2.2	Открываю файл lab8-1.asm с помощью текстового редактора nano.	6
2.3	Исполнение файла	7
2.4	Изменение программы	7
2.5	Исполнение файла	8
2.6	Изменение программы	8
	Исполнение файла	9
2.8	Создание файла	9
	Ввод программы	10
	Исполнение файла	10
	Создание файла	10
	Ввод программы	11
	Исполнение файла	11
	Изменение программы	12
2.15	Исполнение файла	12
3.1	Создание файла	13
	Написание программы	14
3.3	Исполнение файла.	14

Список таблиц

1 Цель работы

Целью работы является приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Выполнение лабораторной работы

Создаю каталог для программ лабораторной работы No 8, перехожу в него и создаю файл lab8-1.asm.

Рис. 2.1: Создание каталога и файла.

Открываю созданный файл lab8-1.asm, вставляю в него программу вывода значений регистра есх.

```
| Afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch-pc/lab88/lab8-1.asm
| Afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch-pc/lab88/lab8-
```

Рис. 2.2: Открываю файл lab8-1.asm с помощью текстового редактора nano.

Создаю исполняемый файл и проверяю его работу. Беру значение N=12.

```
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ nasm -f elf lab8-1.asm
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-1 lab8-1.o
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ./lab8-1
BBeдите N: 12
11
10
9
8
7
6
5
4
3
2
1
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $
```

Рис. 2.3: Исполнение файла.

Изменяю текст программы в файле lab8-1.asm.

```
CNU mano 6.4

/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch-pc/lab88/lab8-1.asm

EXCITION .data
assgl db 'Beegare N: ',%h

EXCITION .data

EXCITION .
```

Рис. 2.4: Изменение программы.

```
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ nasm -f elf lab8-1.asm
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-1 lab8-1.o
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ./lab8-1
BBeдите N: 12
11
9
7
5
3
1
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $
```

Рис. 2.5: Исполнение файла.

Регистр есх уменьшается на 2 в цикле. Число проходов не соответствует значению N введенному с клавиатуры.

Вношу изменения в текст программы добавив команды push и pop (добавления в стек и извлечения из стека) для сохранения значения счетчика цикла loop.

```
GNU nano 6.4

/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch-pc/lab88/lab8-1.asm

/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch-pc/lab8/lab8-1.asm

/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch

/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch

/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch

/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch

/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch

/afs/
```

Рис. 2.6: Изменение программы.

```
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ nasm -f elf lab8-1.asm
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-1 lab8-1.o
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ./lab8-1
Введите N: 12
11
10
9
8
7
6
5
4
3
2
1
0
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $
```

Рис. 2.7: Исполнение файла.

В данном случае число проходов цикла соответствует значению \boxtimes введенному с клавиатуры(12=12).

Создаю файл lab8-2.asm в каталоге ~/work/arch-pc/lab08 и ввожу в него текст про- граммы из листинга 8.2(программу выводящую на экран аргументы командной строки).

```
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ touch lab8-2.asm
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $
```

Рис. 2.8: Создание файла.

```
/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch-pc/lab08/lab8-2.asm
%include 'in out.asm
global _start
                ; Извлекаем из стека в 'есх' количество
рор есх
                ; аргументов (первое значение в стеке)
; Извлекаем из стека в `edx` имя программы
pop edx
                ; (второе значение в стеке)
sub ecx, 1
               ; Уменьшаем 'есх' на 1 (количество
                ; аргументов без названия программы)
cmp ecx, 0
               ; проверяем, есть ли еще аргументы
jz _end
                ; если аргументов нет выходим из цикла
               ; (переход на метку '_end')
                ; иначе извлекаем аргумент из стека
pop eax
call sprintLF ; вызываем функцию печати
              ; переход к обработке следующего
loop next
                ; аргумента (переход на метку 'next')
call quit
```

Рис. 2.9: Ввод программы.

Создаю исполняемый файл и запускаю его, указав аргументы.

```
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ nasm -f elf lab8-2.asm
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-2 lab8-2.o
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ./lab8-2 apryment1 apryment 2 'apryment 3'
apryment1
apryment2
apryment3
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $
```

Рис. 2.10: Исполнение файла.

Аргументов было обработано программой: 4.

Создаю файл lab8-3.asm в каталоге ~/work/arch-pc/lab08 и ввожу в него текст программы из листинга 8.3(программу вычисления суммы аргументов командной строки).

```
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ touch lab8-3.asm aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $
```

Рис. 2.11: Создание файла.

```
/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch-pc/lab08/lab8-3.asm
%include 'in_out.asm
msg db "Результат: ",0
global _start
                     ; Извлекаем из стека в 'есх' количество
рор есх
                     ; аргументов (первое значение в стеке)
; Извлекаем из стека в `edx` имя программы
pop edx
                      ; (второе значение в стеке)
; Уменьшаем `есх` на 1 (количество
sub ecx,1
; аргументов без названия программы)
mov esi, 0 ; Используем `esi` для хранения
; промежуточных сумм
сmp ecx,0h ; проверяем, есть ли еще аргументы 
jz _end ; если аргументов нет выходим из цикла 
; (переход на метку `_end`)
рор еах ; иначе извлекаем следующий аргумент из стека call atoi ; преобразуем символ в число add esi,eax ; добавляем к промежуточной сумме
                     ; след. аргумент \esi=esi+eax\
; переход к обработке следующего аргумента
loop next
                      ; вывод сообщения "Результат: "
mov eax, msg
call sprint
                      ; записываем сумму в регистр 'eax'
call iprintLF
                        ; печать результата
call quit
                        ; завершение программы
```

Рис. 2.12: Ввод программы.

Создаю исполняемый файл и запускаю его, указав аргументы.

```
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ nasm -f elf lab8-3.asm
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ld -m elf_1386 -o lab8-3 lab8-3.o
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ./lab8-3 12 15 8 11 6
Результат: 52
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $
```

Рис. 2.13: Исполнение файла.

Изменяю текст программы из листинга 8.3 для вычисления произведения аргументов командной строки.

```
/afs/.dk.sci.pfu.edu.ru/home/a/e/aeavetisyan/work/arch-pc/lab08/lab8-3.asm
msg db "Результат: ",0
global _start
                  ; Извлекаем из стека в `есх` количество
pop ecx
                   ; аргументов (первое значение в стеке)
; Извлекаем из стека в `edx` имя программы
pop edx
                   ; (второе значение в стеке)
                    ; Уменьшаем 'есх' на 1 (количество
sub ecx,1
; аргументов без названия программы) mov esi, 1 ; Используем 'esi' для хранения
                    ; промежуточных произведений
cmp ecx,0h
                  ; проверяем, есть ли еще аргументы
                   ; если аргументов нет выходим из цикла
; (переход на метку \_end\)
рор еах ; иначе извлекаем следующий аргумент из стека call atoi ; преобразуем сивол в число mul esi ; добавляем к промежуточному произведению
                     ; след. аргумент `esi=esi*eax`
mov esi, eax
loop next
                    ; переход к обработке следующего аргумента
                    ; вывод сообщения "Результат: "
mov eax, msg
call sprint
                   ; записываем произведение в регистр 'eax'
call iprintLF
                   ; печать результата
call quit
                    ; завершение программы
```

Рис. 2.14: Изменение программы.

```
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ nasm -f elf lab8-3.asm
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-3 lab8-3.o
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $ ./lab8-3 12 13 7 10 5
Результат: 54600
aeavetisyan@dk8n64 ~/work/arch-pc/lab08 $
```

Рис. 2.15: Исполнение файла.

3 Задание для самостоятельной работы

Создаю файл lab8-4.asm с помощью утилиты touch.

```
aeavetisyan@dk8n52 ~/work/arch-pc/lab08 $ touch lab8-4.asm
aeavetisyan@dk8n52 ~/work/arch-pc/lab08 $
```

Рис. 3.1: Создание файла.

```
*lab8-4.asm
   Открыть 🔻 🛨
                                                                                                                                                                       Сохранити
    1 %include 'in_out.asm'
   3 SECTION .data
4 msg db "Результат: ",0
   5 msg1 db "Функция: f(x)=6x+13"
   7 SECTION .text
   8 global _start
   9_start:
9_start:
10 pop ecx ; Извлекаем из стека в есх количество
11 ; аргументов (первое значение в стеке)
12 pop edx ; Извлекаем из стека в еdх имя программы
13 ; (второе значение в стеке)
14 sub ecx,1 ; Уменьшаем есх на 1 (количество
15 ; аргументов без названия программы)
16 mov esi, 0 ; Используем esi для хранения
17 ; промежуточных сумм
 18 next:
18 next:
19 cmp ecx,0h ; проверяем, есть ли еще аргументы
20 jz _end ; если аргументов нет выходим из цикла
21 ; (переход на метку _end)
22 pop eax ; иначе извлекаем следующий аргумент из стека
23 call atoi ; преобразуем символ в число
24 mov ebx,6 ;ebx=6
25 mul ebx ; eax=eax*ebx
26 add eax,13 ; eax-13
27 add esi,eax ; добавляем к промежуточной сумме
28 ; след. аргумент esi=esi+eax
                                          ; след. аргумент esi=esi+eax
; переход к обработке следующего аргумента
 28
29 loop next
 30
 31 _end:
 32 mov eax,msg1
 33 call sprintLF ;
 34 mov eax, msg ; вывод сообщения "Результат: "
35 call sprint
36 mov eax, esi ; записываем сумму в регистр eax
37 call iprintLF ; печать результата
 38 call quit ; завершение программы
 39
```

Рис. 3.2: Написание программы.

```
aeavetisyan@dk2n24 ~/work/arch-pc/lab08 $ nasm -f elf lab8-4.asm
aeavetisyan@dk2n24 ~/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-4 lab8-4.o
aeavetisyan@dk2n24 ~/work/arch-pc/lab08 $ ./lab8-4 1 2 3 4

Dункция: f(x)=6x+13
Peзупьтат: 112
aeavetisyan@dk2n24 ~/work/arch-pc/lab08 $
```

Рис. 3.3: Исполнение файла.

4 Выводы

При выполнении данной лабораторной работы я приобрела навыки написания программ с использованием циклов и обработкой аргументов командной строки.