Improving Bayesian Procedures to Detect Breakpoints in Time Series Data

Dainia Higgins, Nathaniel Wilson, Madison Ell, Sarah Klingbeil Mentor: Jeff Liebner

Coppin State University, Fullerton College, Southern Adventist University

Tuesday, July 26, 2022

Acknowledgements

Special thanks to NSF Grant number DMS-2150343, Layafette College and Mentor Professor Jeff Liebner for making this REU (Research Experience for Undergraduates) possible.

- 1 Project Overview
- 2 Progress and Results
- 3 Conclusion and Further Research

Definition

Breakpoints (also known as Change Points) are points in time where the model changes.

Breakpoints are significant changes in time series data

How do we find Breakpoints?

Expert Opinion: breakpoints are approximated by experts in a specific field based on historical knowledge.

What is Bai-Perron Test?

Definition

Bai-Perron Test is a general algorithm to find an optimal breakpoint set.

- 1 a frequentist approach
- 2 checks almost every single location for a breakpoint and returns the optimal set
- 3 requires a user to specify the number of breakpoints

What are some common types of time series models?

Auto-regressive (AR) model: each output value depends linearly upon previous values and an independent error term

AR(1)

$$x_t = \phi x_{t-1} + \epsilon_t$$

Moving average (MA) model: output value depends linearly upon previous error terms

MA(1)

$$x_t = \epsilon_t + \theta \epsilon_{t-1}$$

Bayesian Adaptive Auto-Regression (BAAR)

BAAR is a Bayesian method used to find the location and number of breakpoints in a time series.

needs to have an input stating breakpoint places (Bai-Perron)

Bayesian Adaptive Auto-Regression (BAAR)

BAAR is a Bayesian method used to find the location and number of breakpoints in a time series.

- needs to have an input stating breakpoint places (Bai-Perron)
- A new breakpoint set is proposed at each step of the MCMC
 - birth, death, and move

Bayesian Adaptive Auto-Regression (BAAR)

BAAR is a Bayesian method used to find the location and number of breakpoints in a time series.

- Metropolis-Hastings (a MCMC method for receiving a sequence of random samples from the probability distribution when direct sampling is difficult) ratio determines the set's acceptance
 - Acceptance Ratio

$$\textit{ratio} \approx \exp\Big(\frac{-\Delta \textit{BIC}}{2}\Big) \frac{\pi(\textit{K}_{\textit{n}})}{\pi(\textit{K}_{\textit{o}})} \frac{\pi(\tau_{\textit{n}}|\textit{K}_{\textit{n}})}{\pi(\tau_{\textit{o}}|\textit{K}_{\textit{o}})} \frac{q(\tau_{\textit{o}}\textit{K}_{\textit{o}}|\tau_{\textit{n}}\textit{K}_{\textit{n}})}{q(\tau_{\textit{n}}\textit{K}_{\textit{n}}|\tau_{\textit{o}}\textit{K}_{\textit{o}})}$$

Bayesian Adaptive Auto-Regression (BAAR)

BAAR is a Bayesian method used to find the location and number of breakpoints in a time series.

- Metropolis-Hastings (a MCMC method for receiving a sequence of random samples from the probability distribution when direct sampling is difficult) ratio determines the set's acceptance
 - Acceptance Ratio

$$\textit{ratio} \approx \exp\Big(\frac{-\Delta \textit{BIC}}{2}\Big) \frac{\pi(\textit{K}_{\textit{n}})}{\pi(\textit{K}_{\textit{o}})} \frac{\pi(\tau_{\textit{n}}|\textit{K}_{\textit{n}})}{\pi(\tau_{\textit{o}}|\textit{K}_{\textit{o}})} \frac{q(\tau_{\textit{o}}\textit{K}_{\textit{o}}|\tau_{\textit{n}}\textit{K}_{\textit{n}})}{q(\tau_{\textit{n}}\textit{K}_{\textit{n}}|\tau_{\textit{o}}\textit{K}_{\textit{o}})}$$

Hence, a distribution of possible breakpoints locations can be obtained

Bayesian Adaptive Moving-Average (BAMA)

BAMA is a Bayesian method used to find the location and number of breakpoints in a time series.

 Somewhat similar to BAAR in starting breakpoint and Metropolis-Hastings procedures

Bayesian Adaptive Moving-Average (BAMA)

BAMA is a Bayesian method used to find the location and number of breakpoints in a time series.

- Somewhat similar to BAAR in starting breakpoint and Metropolis-Hastings procedures
- Uses a Metropolis-Hastings procedure within a Gibbs sampler procedure to generate new coefficients

Bayesian Adaptive Moving-Average (BAMA)

BAMA is a Bayesian method used to find the location and number of breakpoints in a time series.

- Somewhat similar to BAAR in starting breakpoint and Metropolis-Hastings procedures
- Uses a Metropolis-Hastings procedure within a Gibbs sampler procedure to generate new coefficients
- Can handle seasonal/cyclical datasets

Bayesian Adaptive Moving-Average (BAMA)

BAMA is a Bayesian method used to find the location and number of breakpoints in a time series.

- Somewhat similar to BAAR in starting breakpoint and Metropolis-Hastings procedures
- Uses a Metropolis-Hastings procedure within a Gibbs sampler procedure to generate new coefficients
- Can handle seasonal/cyclical datasets
- Improves the Bayesian adaptive algorithm compatibility with various kinds of datasets

- Project Overview
- 2 Progress and Results
- 3 Conclusion and Further Research

Where do you think a Breakpoint is located?

How did you do?

BAAR vs. BP Breakpoints Mean

Standard Devation=1,Breakpoint at 45

- 1 Project Overview
- Progress and Results
- 3 Conclusion and Further Research

Conclusion

- BAAR correctly identifies breakpoints with greater accuracy than existing algorithms (i.e. Bai-Perron)
- BAMA still a work in progress, in part due to COVID outbreak

Before JMM Plans

- Conduct stress testing on BAMA
- 2 Run BAAR simulations on World Health Organization (WHO) dataset of suicide rates among 15-24 year olds in the United States of America
- 3 Pick a case study on real data use on BAMA
- 4 If time permits, author an R package containing the BAAR and BAMA algorithms

Further Research

- Improve starting point of the BAAR algorithm
- Expand BAAR and BAMA techniques to more complicated ARMA and ARIMA models

References

Bai, J. and Perron, P., (2003). *Computation and analysis of multiple structural change models*. Journal of applied econometrics, 18(1), pp.1-22.

Any Questions?

