中山大学本科生期末考试

考试科目:《高等数学一》(A卷)(珠海校区)

学年学期:	2015 学年第 2 学期	姓	名:	学 号:_	
学 院/系:	数学与计算科学学院	学	院:	年级专业:	
考试方式:	闭卷				
考试时长:	120 分钟	成绩许	平定:	阅卷教师:	

警示《中山大学授予学士学位工作细则》第八条:"考试作弊者,不授予学士学位。"

一、求下列极限(共2小题,每小题6分,共12分)

$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin x}$$

 $\lim_{x\to 0^+} x^{\sin x}$

二、求下列积分(共4小题,每小题7分,共28分)

$$1 \int \frac{1}{x(x-2)^2} dx$$

$$2 \int \frac{3x^3}{1-x^4} dx$$

$$3 \int_0^{\frac{\pi}{2}} \sin x \cos^3 x dx$$

$$4 \int_{-1}^{1} \frac{x dx}{\sqrt{5-4x}}$$

- 三、向量代数和空间几何(共2小题,每小题5分,共10分)
- 1 求单位向量 \vec{n} , 使 $\vec{n} \perp \vec{a} \perp \vec{n} \perp x$ 轴, 其中 $\vec{a} = (3,6,8)$.
- 2 求过点(2,0,-3)且与直线 $\begin{cases} x-2y+4z-7=0\\ 3x+5y-2z+1=0 \end{cases}$ 垂直的平面方程.

四、求最值(共1小题,每小题6分,共6分)

求函数 $y = x + \sqrt{1-x}$ 在[-5,1]上的最大值和最小值

五、(共1小题,每小题11分,共11分)

设函数 $f(x) = \frac{x^3}{(x-1)^2}$, (1) 求函数 f(x) 的单调区间与极值点; (2)

求函数f(x) 的凸凹区间与拐点; (3) 求函数f(x) 的渐近线。

六、多元函数微分学(共3小题,每小题7分,共21分)

1 求由方程 $f(x+2y+3z,x^2+y^2+z^2)=0$ 确定的函数 z=z(x,y) 的偏导数和 全微分

2 若
$$z = \frac{x+y}{x-y}$$
,求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$ 。

3 求函数 u(x,y,z)=xyz 点 $M_{_0}\big(1,-1,1\big)$ 处沿着从 $M_{_0}$ 到 $M_{_1}(2,3,1)$ 的方向导数

七、证明题(共2小题,每小题6分,共12分)

1 证明: 当x > 0时, $\arctan x + \frac{1}{x} > \frac{\pi}{2}$

2 设函数 $F(x)=(x-1)^2f(x)$, 其中 f(x) 在区间 [1,2] 上二阶可导且有 f(2)=0,证明存在 $\xi(1<\xi<2)$ 使得 $F''(\xi)=0$ 。