Case Study_Human Resourse Dataset

- Human_Resources.csv Analysis
- Apply K mean Clustering
- Apply PCA
- Apply Autoencoder

In [3]: #Import the libraries here

Task 1:Import your libraries (Lab 2)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
In [4]: #Attach the Human_Resource.csv file and view the first five records
df = pd.read_csv('Human_Resources.csv')
df.head()
```

Out[4]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeN
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	

In [5]: # show all the file data types
 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	0ver18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtyp	es: int64(26), object(9)		

dtypes: int64(26), object(9) memory usage: 402.1+ KB

```
In [6]: # Show the following basic statistics
df.describe()
```

Out[6]:		Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	Hour
	count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.0
	mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.8
	std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.3
	min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.0
	25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.0
	50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.0
	75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.7
	max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.0

8 rows × 26 columns

Task 2: Visualize Dataset (Lab 2)

```
In [8]: # Replace 'Attritition','Overtime' and 'Over18' columns with integers before performing any visualizations
    df['Attrition'] = df['Attrition'].map({'Yes': 1, 'No': 0})
    df['OverTime'] = df['OverTime'].map({'Yes': 1, 'No': 0})
    df['Over18'] = df['Over18'].map({'Y': 1})
In [9]: # display the current first four records
    df.head(4)
```

]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeN
	0	41	1	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
	1	49	0	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
	2	37	1	Travel_Rarely	1373	Research & Development	2	2	Other	1	
	3	33	0	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	

4 rows × 35 columns

Out[9]

```
In [10]: # Drop EmployeeNumber', EmployeeCount' ,'Standardhours' and 'Over18' since they do not change from one employee to the o
         df.drop(['EmployeeNumber', 'EmployeeCount', 'StandardHours', 'Over18'], axis=1, inplace=True)
In [11]: # Let's see how many employees left the company!
         left df
                        = df[df['Attrition'] == 1]
                        = df[df['Attrition'] == 0]
         stayed df
In [12]: # Count the number of employees who stayed and left
         # It seems that we are dealing with an imbalanced dataset
         total = len(df)
         num_left = len(left_df)
         pct_left = (num_left / total) * 100
         num stayed = len(stayed df)
         pct stayed = (num stayed / total) * 100
         print(f"Total = {total}")
         print(f"Number of employees who left the company = {num left}")
         print(f"Percentage of employees who left the company = {pct left} %")
         print(f"Number of employees who did not leave the company (stayed) = {num stayed}")
         print(f"Percentage of employees who did not leave the company (stayed) = {pct stayed} %")
        Total = 1470
```

Number of employees who left the company = 237

Percentage of employees who left the company = 16.122448979591837 %

Number of employees who did not leave the company (stayed) = 1233

Percentage of employees who did not leave the company (stayed) = 83.87755102040816 %

```
In [13]: # show the correlation heat map as below
plt.figure(figsize=(18, 16))
```

```
corr = df.corr(numeric_only=True)
sns.heatmap(corr, annot=True, fmt=".2f", cmap='twilight', center=0)
plt.show()
```

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

```
Attriti
                            DailyRa
                                                            DistanceFromHor
                                                                                          Educati
                                                                                                                     EnvironmentSatisfacti
                                                                                                                                                   HourlyRa
                                                                                                                                                                               Jobinvolvem
                                                                                                                                                                                                             JobLe
                                                                                                                                                                                                                                          JobSatisfact
                                                                                                                                                                                                                                                                         MonthlyIncor
                                                                                                                                                                                                                                                                                                      MonthlyRa
                                                                                                                                                                                                                                                                                                                                    NumCompaniesWork
                                                                                                                                                                                                                                                                                                                                                                                               PercentSalaryHi
                                                                                                                                                                                                                                                                                                                                                                                                                             PerformanceRati
                                                                                                                                                                                                                                                                                                                                                                                                                                                          RelationshipSatisfacti
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        StockOptionLe
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TotalWorkingYe
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  TrainingTimesLastY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               WorkLifeBalar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           YearsAtCompa
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          YearsInCurrentR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        fearsSinceLastPromot
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      YearsWithCurrMana
```

```
In [14]: # Display the below visualization with hue as Attrition
plt.figure(figsize=(16, 6))

sns.countplot(data=df, x='Age', hue='Attrition')

plt.xlabel('Age')
plt.ylabel('Count')
plt.title('Employee Count by Age and Attrition')
plt.show()
```


In [15]: # create a Kernel Density Estimate comparing 'Employees who left' and 'Employees who Stayed' using 'Distance From Home'
plt.figure(figsize=(12,7))
sns.kdeplot(df[df['Attrition'] == 0]['DistanceFromHome'], color='blue', fill=True, label='Stayed')
sns.kdeplot(df[df['Attrition'] == 1]['DistanceFromHome'], color='red', fill=True, label='Left')

```
plt.title('Distribution of Distance From Home by Attrition')
plt.xlabel('Distance From Home')
plt.ylabel('Density')
plt.legend()
plt.show()
```



```
In [16]: # Let's see the Gender vs. Monthly Income using box plots
plt.figure(figsize=(10, 6))

sns.boxplot(data=df, x='MonthlyIncome', y='Gender', hue='Gender', palette='muted', dodge=False)
plt.title('Monthly Income Distribution by Gender')
plt.xlabel('MonthlyIncome')
```

plt.ylabel('Gender')
plt.show()

Task 3: Create Testing and Training Dataset & Perform Data Cleaning (Lab 2)

```
In [18]: # Convert the categorical fields into numerics using OneHotEncoder
    categorical_cols = df.select_dtypes(include='object').columns.tolist()
    encoder = OneHotEncoder(drop='first', sparse_output=False)
    encoded_array = encoder.fit_transform(df[categorical_cols])
    encoded_df = pd.DataFrame(encoded_array, columns=encoder.get_feature_names_out(categorical_cols))
```

df_encoded = pd.concat([df.drop(columns=categorical_cols).reset_index(drop=True), encoded_df], axis=1)

In [19]: # select your features here i.e. drop the target 'Atrittion'
X = df_encoded.drop(columns=['Attrition'])
X

Out[19]:

:		Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate	Jobinvolvement	JobLevel	JobSatisfaction
	0	41	1102	1	2	2	94	3	2	4
	1	49	279	8	1	3	61	2	2	2
	2	37	1373	2	2	4	92	2	1	3
	3	33	1392	3	4	4	56	3	1	3
	4	27	591	2	1	1	40	3	1	2
	•••	•••								
1	465	36	884	23	2	3	41	4	2	4
1	466	39	613	6	1	4	42	2	3	1
1	467	27	155	4	3	2	87	4	2	2
1	468	49	1023	2	3	4	63	2	2	2
1	469	34	628	8	3	2	82	4	2	3

1470 rows × 44 columns

```
In [20]: # scale your features data assigning it variable X
scaler = StandardScaler()
X = scaler.fit_transform(X)
```

In [21]: X

```
Out[21]: array([[ 0.4463504 , 0.74252653, -1.01090934, ..., -0.24462499,
                  -0.91892141, 1.45864991],
                 [ 1.32236521, -1.2977746, -0.14714972, ..., -0.24462499, 
                   1.08823234, -0.68556546],
                 [0.008343, 1.41436324, -0.88751511, ..., -0.24462499,
                  -0.91892141, 1.45864991],
                 ...,
                 [-1.08667552, -1.60518328, -0.64072665, ..., -0.24462499,
                   1.08823234, -0.68556546],
                 [1.32236521, 0.54667746, -0.88751511, ..., -0.24462499,
                   1.08823234, -0.68556546],
                 [-0.32016256, -0.43256792, -0.14714972, \ldots, -0.24462499,
                   1.08823234, -0.68556546]])
In [22]: # select your dependent, target or response data as "Attrition" using variable y
         y = df encoded['Attrition']
In [23]: y
Out[23]: 0
                  1
                  0
                  1
         3
                  0
                  0
         1465
                  0
         1466
                  0
         1467
         1468
         1469
         Name: Attrition, Length: 1470, dtype: int64
```

Task 4: Find the Optimal Number of Clusters using Elblow Method (Lab 2)

plt.figure(figsize=(8, 5))

plt.plot(range(1, 11), wcss, marker='o')

```
In [25]: # Compute 'within cluster sum of squares' or WCSS metric for a range of k clusters
wcss = []

for k in range(1, 11):
    kmeans = KMeans(n_clusters=k, init='k-means++', random_state=5503)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
In [26]: # Create a visualization for Finding the right number of clusters - Elbow method'
```

```
plt.title('Elbow Method: Optimal Number of Clusters')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('Within-Cluster Sum of Squares (WCSS)')
plt.grid(True)
plt.show()
```


Task 5: Apply K-Means Clustering (Lab 2)

```
In [28]: optimal_k = 3
In [29]: kmeans = KMeans(n_clusters=optimal_k, init='k-means++', random_state=5503)
y_kmeans = kmeans.fit_predict(X)
In [30]: unique, counts = np.unique(y_kmeans, return_counts=True)
In [31]: # Check size of each cluster - Are they all representative ?
```

```
In [32]: for cluster, size in zip(unique, counts):
    print(f"Cluster {cluster}: {size} points")

Cluster 0: 251 points
    Cluster 1: 399 points
    Cluster 2: 820 points
```

Are they all representative?

• Cluster 0: 251 points

• Cluster 1: 399 points

• Cluster 2: 820 points

All clusters contain a substantial number of data points. Therefore, all the clusters are considered representative of the dataset.

Task 6: Apply PCA and Visualize Results (Lab 3)

```
0 -0.034512
                      2.271801
                                     1
                                     2
         1 0.097444 -1.569353
         2 -2.871946 -0.993176
                                     2
         3 -1.222608 -1.126880
                                     2
         4 -2.075628 -1.211932
                                     2
 In []:
 In [ ]:
In [40]: # Create a scatterplot visual of Projection of the dataset on the 2 PCA dimensions'
         plt.figure(figsize=(10, 6))
         sns.scatterplot(data=pca_df, x='PC1', y='PC2', hue='Cluster', palette='Set1', s=60)
         plt.legend(title='Cluster')
         plt.grid(True)
         plt.show()
```

Out[39]:

PC1

PC2 Cluster


```
In [41]: # show the % of the total variance explained by each principal component. Overall close to 48% explained by these two.
    explained_var = pca.explained_variance_ratio_
    print(f"PC1 explains: {explained_var[0] * 100:.2f}% of variance")
    print(f"PC2 explains: {explained_var[1] * 100:.2f}% of variance")
    print(f"Total variance explained by first 2 PCs: {explained_var[:2].sum() * 100:.2f}%")
```

PC1 explains: 12.13% of variance PC2 explains: 7.85% of variance

Total variance explained by first 2 PCs: 19.98%

Task 7: Perform Dimensionality Reduction using Autoencoders (Lab 3)

```
In [43]: #import the autoencoder libraries
import tensorflow as tf
```

```
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.optimizers import Adam
```

2025-05-25 01:25:59.323727: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.

To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler f lags.

```
In [44]: # create your autoencoder with all the features showing Encoder, bottleneck, decoder, autoencoder
         # compile the autoencoder using optimizer='adam', loss='mean squared error'
         # Input diamention
         input dim = X.shape[1]
         # Encoder
         input layer = Input(shape=(input dim,))
         encoded = Dense(32, activation='relu')(input layer)
         encoded = Dense(16, activation='relu')(encoded)
         # Bottleneck
         bottleneck = Dense(8, activation='relu')(encoded)
         # Decoder
         decoded = Dense(16, activation='relu')(bottleneck)
         decoded = Dense(32, activation='relu')(decoded)
         output layer = Dense(input dim, activation='linear')(decoded)
         # Autoencoder
         autoencoder = Model(inputs=input layer, outputs=output layer)
         # Compile the autoencoder
         autoencoder.compile(optimizer='adam', loss='mean squared error')
```

Model: "functional"

In [45]: # show the autoencoder summary
autoencoder.summary()

Layer (type)	Output Shape	Param #
<pre>input_layer (InputLayer)</pre>	(None, 44)	0
dense (Dense)	(None, 32)	1,440
dense_1 (Dense)	(None, 16)	528
dense_2 (Dense)	(None, 8)	136
dense_3 (Dense)	(None, 16)	144
dense_4 (Dense)	(None, 32)	544
dense_5 (Dense)	(None, 44)	1,452

Total params: 4,244 (16.58 KB)

Trainable params: 4,244 (16.58 KB)

Non-trainable params: 0 (0.00 B)

```
In [46]: ## Train autoencoder using input = output
history = autoencoder.fit(
          X, X,
          epochs=50,
          batch_size=32,
          shuffle=True,
          validation_split=0.2
)
```

Epoch	1/50						
37/37		2s	6ms/step -	loss:	1.0132 -	val_loss:	0.9672
Epoch							
37/37		0s	4ms/step -	loss:	0.9896 -	val_loss:	0.9307
Epoch			2	-			
	4 / 5 0	ØS	3ms/step -	loss:	0.9290 -	val_loss:	0.8809
Epoch 37/37	4/30	0 c	3mc/sten -	1000	0 8660 -	val loss:	0 8205
Epoch		03	3113/3 CCP =		0.0009	va t_ t033.	0.0293
		0s	3ms/step -	loss:	0.8258 -	val_loss:	0.7863
Epoch	6/50					_	
37/37		0s	4ms/step -	loss:	0.7702 -	val_loss:	0.7622
Epoch				_			
37/37		ØS	3ms/step -	loss:	0./438 -	val_loss:	0.7468
Epoch 37/37		00	3ms/step -	1055	0 7344 -	val loss:	0 7338
Epoch		03	311137 3 CCP		01/544	va t_ t033.	01/330
•		0s	4ms/step -	loss:	0.7351 -	val_loss:	0.7196
Epoch	10/50						
-		0s	4ms/step -	loss:	0.7126 -	val_loss:	0.7073
	11/50			-			0.0050
	12/50	ขร	4ms/step -	loss:	0.6996 -	val_loss:	0.6950
	12/30	00	Ams/sten -	1055	0 6833 -	val loss:	0 6815
	13/50	03	411137 3 CCP		0.0055	va t_ t033.	0.0013
		0s	6ms/step -	loss:	0.6689 -	val_loss:	0.6710
Epoch	14/50					_	
37/37		0s	2ms/step -	loss:	0.6606 -	val_loss:	0.6613
Epoch			2	-	0.0444		0.0547
37/37 Epoch		ØS	2ms/step -	loss:	0.6444 -	val_loss:	0.651/
•		00	2ms/step -	10551	0 6458 -	val loss:	0 6420
Epoch		03	211137 3 CCP		010430	va t_ t033.	010423
		0s	3ms/step -	loss:	0.6322 -	val_loss:	0.6332
Epoch	18/50						
-		0s	4ms/step -	loss:	0.6236 -	val_loss:	0.6231
•	19/50	•		,	0.6450		0.6450
37/37		US	4ms/step -	LOSS:	0.6159 -	val_loss:	0.6159
Epoch 37/37		00	3ms/step -	1055	0 6151 -	val loss:	0 6068
Epoch		03	311137 3 CCP		0.0131	va t_ t033.	0.0000
37/37		0s	4ms/step -	loss:	0.6036 -	val_loss:	0.5992
Epoch	22/50					_	
37/37		0s	4ms/step -	loss:	0.5900 -	<pre>val_loss:</pre>	0.5922
•	23/50	•	2	1.	0 5000	1 3	0 5070
		บร	3ms/step -	LOSS:	0.5903 -	val_loss:	U.58/U
•	24/50	00	3ms/step -	1000	0 5817 _	val locci	0 5700
31/31		0.2	Juis/2rch -	10331	A:2011 -	var_tuss:	0.3/33

Epoch	25/50						
•		0s	3ms/step -	loss:	0.5826 -	val_loss:	0.5750
	26/50						
		0s	3ms/step -	loss:	0.5747 -	val_loss:	0.5724
•	27/50	_	2 ()	-			0 5050
	20 /50	ØS	3ms/step -	loss:	0.5622 -	val_loss:	0.5659
	28/50	۵c	3mc/cten -	1000	0 5674 -	val loss:	0 5607
	29/50	03	Jilis/step -	1033.	0.3074 -	va (_ t033.	0.3007
	23/30	0s	4ms/step -	loss:	0.5500 -	val loss:	0.5580
	30/50		, 5 гор	10001	01000	10.1_10001	01000
		0s	4ms/step -	loss:	0.5590 -	val_loss:	0.5529
Epoch	31/50						
		0s	3ms/step -	loss:	0.5495 -	val_loss:	0.5476
•	32/50		_	_			
		0s	3ms/step -	loss:	0.5463 -	val_loss:	0.5456
	33/50	0.0	2ms/stan	10001	0 E410	val lacci	0 E420
	34/50	05	3ms/step -	10551	0.5419 -	val_toss:	0.3420
		05	3ms/sten -	lossi	0.5378 -	val loss:	0.5381
	35/50	03	311137 3 CCP		013370	va t_ t033.	015501
		0s	3ms/step -	loss:	0.5275 -	val loss:	0.5334
Epoch	36/50		·			_	
		0s	4ms/step -	loss:	0.5349 -	val_loss:	0.5338
Epoch	37/50						
		0s	3ms/step -	loss:	0.5252 -	val_loss:	0.5277
	38/50	0 -	A / a da a	1	0 5150		0 5246
-	39/50	05	4ms/step –	toss:	0.3130 -	val_toss:	0.3240
•		05	3ms/step -	lossi	0.5239 -	val loss:	0.5220
	40/50	03	311137 3 CCP		013233	va t_ t033.	013220
		0s	3ms/step -	loss:	0.5162 -	val_loss:	0.5193
	41/50		•			_	
-		0s	4ms/step -	loss:	0.5070 -	val_loss:	0.5181
•	42/50			_			
	42./50	0s	4ms/step -	loss:	0.5104 -	val_loss:	0.5143
	43/50	0-	1mc/c+cn	1	0 5106	val lass.	0 5146
-	44/50	05	4ms/step -	10551	0.3100 -	val_toss:	0.3140
37/37		05	3ms/step -	loss:	0.5047 -	val loss:	0.5116
-	45/50	05	3.1137 3 ccp		013017	va t_ t0331	0.5110
•		0s	3ms/step -	loss:	0.5046 -	val_loss:	0.5092
	46/50		•			_	
-		0s	3ms/step -	loss:	0.5024 -	val_loss:	0.5104
	47/50						
		0s	3ms/step -	loss:	0.4939 -	val_loss:	0.5047
	48/50	•	2m = /-+	1	0 4046	1 1.	0 5000
37/37		ØS	3ms/step -	loss:	U.4846 -	val_loss:	0.5038

Task 8: Apply KMEANS to encoded dataset (Lab 3)

Reduced shape: (1470, 8)

```
In [49]: # Apply KMEANS to encoded dataset here
         kmeans encoded = KMeans(n clusters=3, init='k-means++', random state=42)
         y kmeans encoded = kmeans encoded.fit predict(X encoded)
In [50]: # create a line plot to show the " Pick optimal number of clusters using Elbow method" of the unreduced and reduced dim
         wcss original = []
         wcss encoded = []
         for k in range(1, 11):
             kmeans_orig = KMeans(n_clusters=k, init='k-means++', random_state=42)
             kmeans orig.fit(X)
             wcss original.append(kmeans originertia)
             kmeans_enc = KMeans(n_clusters=k, init='k-means++', random_state=42)
             kmeans enc.fit(X encoded)
             wcss_encoded.append(kmeans_enc.inertia_)
         plt.figure(figsize=(10, 6))
         plt.plot(range(1, 11), wcss_original, marker='o', label='Original Features')
         plt.plot(range(1, 11), wcss encoded, marker='s', label='Autoencoder-Reduced Features')
         plt.title('Elbow Method: Original vs Autoencoder-Reduced Features')
         plt.xlabel('Number of Clusters (k)')
         plt.ylabel('WCSS (Within-Cluster Sum of Squares)')
         plt.legend()
```

plt.grid(True)
plt.show()

Elbow Method: Original vs Autoencoder-Reduced Features


```
In [51]: ## Apply the resulting optimal k to find new centroids
    optimal_k = 3

kmeans_final = KMeans(n_clusters=optimal_k, init='k-means++', random_state=42)
kmeans_final.fit(X_encoded)

centroids = kmeans_final.cluster_centers_
```

```
In [52]: ## Show the centroids shape
print("Centroids shape:", kmeans_final.cluster_centers_.shape)
```

```
Centroids shape: (3, 8)
In [53]: # show the clusters shape
         print("Cluster assignments shape:", y kmeans encoded.shape)
        Cluster assignments shape: (1470,)
In [54]: # concatenate the clusters to the data
         compressed df = pd.DataFrame(X encoded, columns=[f'Feature {i}' for i in range(X encoded.shape[1])])
         compressed_df['Cluster'] = y_kmeans_encoded
         compressed df.head()
Out[54]:
                      Feature_1 Feature_2 Feature_3 Feature_4 Feature_5 Feature_6 Feature_7 Cluster
            Feature_0
            1.568441
                      1.241364
                                0.593133
                                           5.113352 2.302389
                                                                    0.0 4.245976
                                                                                   7.492687
                                                                                                 2
             2.842677 0.955184
                                7.441913
                                          2.292350
                                                    1.647639
                                                                    0.0
                                                                         5.434120
                                                                                  2.644839
                                                                                                 0
           1.698309 4.492142 8.864400
                                           2.963076 6.616045
                                                                    0.0 5.660383 4.766809
                                                                                                 0
         3 2.879568 4.075821 8.686769
                                           5.247334 4.044940
                                                                    0.0 8.881424
                                                                                  5.491131
                                                                                                 0
                                                                                                 0
             1.023033 2.681492 6.395910
                                          1.777609
                                                     4.102526
                                                                    0.0 2.958478 3.924850
In [55]: # show the 'Number of samples" in your current consolidated
         print("Number of samples:", compressed df.shape[0])
        Number of samples: 1470
In [56]: ## Apply PCA to encoded dataset
         pca encoded = PCA(n components=2)
         X pca encoded = pca encoded.fit transform(X encoded)
In [57]: # concatenate the clusters to the data
         pca encoded df = pd.DataFrame(X pca encoded, columns=['PC1', 'PC2'])
         pca encoded df['Cluster'] = y kmeans encoded
In [58]: ## Apply PCA to encoded dataset
In [59]: ## Plot your pca scatterplot with clusters as the hue
         plt.figure(figsize=(10, 6))
         sns.scatterplot(data=pca_encoded_df, x='PC1', y='PC2', hue='Cluster', palette='Set1', s=60)
         plt.title('Clusters Visualized on PCA-Reduced Encoded Data')
         plt.xlabel('Principal Component 1')
         plt.ylabel('Principal Component 2')
         plt.legend(title='Cluster')
```

plt.grid(True)
plt.show()

In []: