- Given $f(x) = \begin{cases} -5x 8 & for & x < -2 \\ \frac{1}{2}x + 5 & for & -2 \le x \le 4 \end{cases}$
 - a. Graph f(x)
 - b. Find f(-1)
- 2. Given $f(x) = \begin{cases} x^2 2 & \text{if } x \le 2 \\ 1 & \text{if } x > 2 \end{cases}$ find:

- a) f(-1) b) f(2) c) f(4) d) f(-2)
- 3. Given $g(x) = \begin{cases} -|x + 2| & | & \text{if } x < -1 \\ -2x + 3 & \text{if } x \ge -1 \end{cases}$ find:

- 4. Determine if each function is odd, even, or neither.

 - a) g(x) = |x| + 4 b) $h(x) = x^4 + 2x^2 8$
- $c) \quad f\left(x\right) = -x^3 + 2x$
- d) $k(x) = x^2 x + 6$ e) $f(x) = \frac{x-1}{x-2}$
- 5. Let $f(x) = \sqrt{x+3}$, $g(x) = \frac{x+2}{x-1}$ and h(x) = x-5 Find the following:
 - a) Domain f
- b) Domain g

c) Domain h

- d) Domain $\frac{f}{h}$ e) Domain of g + f, g f, and $g \cdot f$
- f) Domain $\frac{g}{f}$ g) Domain of f + h, f h, and $f \cdot h$
- Let f(x) = 3x + 2 and $g(x) = 2x^2 1$. Find the following:
 - a) $(f \circ g)(4)$ b) $(g \circ f)(2)$ c) $(f \circ g)(x)$
- d) $(g \circ f)(x)$

Let $f(x) = \sqrt{x+1}$, $g(x) = x^2 - 3$, and $h(x) = \frac{1}{x}$. Find the following functions, and state the domain of each:

$$a) (f \circ g)(x)$$

b)
$$(g \circ f)(x)$$
 c) $(h \circ f)(x)$

c)
$$(h \circ f)(x)$$

Find the difference quotient $\frac{f(x+h) - f(x)}{h}$ for 8.

a)
$$f(x) = 4x - 5$$

b)
$$f(x) = 3 - 4x$$

c)
$$f(x) = 3x + 1$$

a)
$$f(x) = 4x - 5$$
 b) $f(x) = 3 - 4x$ c) $f(x) = 3x + 1$ d) $f(x) = 2x^2$

- 9. An airplane is flying at an altitude of 3700 ft. The slanted distance directly to the airport is d feet. Express the horizontal distance h as a function of d.
- Determine the end behavior of the graph of the polynomial function.

a)
$$f(x) = 2x^4 - 9x^3 - 5x^2 + 57x - 45$$

b)
$$f(x) = x(x-2)^3(x+2)^2$$

c)
$$f(x) = -4x^5 + 16x^4 + 13x^3 - 76x^2 - 3x + 18$$

d)
$$f(x) = (x-2)^2(x-5)$$

e)
$$f(x) = -(x-2)^2(x-5)^2$$

Find the quotient and the remainder:

a)
$$\frac{x^3 + x^2 - 11x - 10}{x - 3}$$

$$b) \quad \frac{3x^3 + 8x^2 + 5x + 10}{x + 2}$$

$$c) \quad \frac{2x^3 - x + 6}{x + 4}$$

d)
$$(x^4 + 3x^3 + 3x^2 + 3x + 2) \div (x+2)$$

12. Use the Intermediate Value Theorem to determine whether the function has zeros between a and b.

a)
$$f(x) = x^3 + 3x^2 - 9x - 13$$
; $a = 1, b = 2$

b)
$$f(x) = 4x^2 - 5x - 3$$
; $a = 1, b = 2$

c)
$$f(x) = x^3 - 8x^2 + x + 2$$
; $a = -1$, $b = 0$

d)
$$f(x) = x^3 - 8x^2 + x + 2$$
; $a = 2$, $b = 3$

13. Use synthetic division to find the indicated function value

a)
$$f(x) = x^3 + 2x^2 - 13x + 10$$
; $f(-2)$

b)
$$f(x) = x^4 - 16$$
; $f(-2)$

- **14.** Find all solutions of the equation: $x^4 + 9x^3 + 31x^2 + 49x + 30 = 0$
- 15. Use the Rational Zero theorem to list all possible rational zero for each of the following:

a)
$$f(x) = x^3 + 3x^2 - 6x - 8$$

b)
$$f(x) = 2x^3 + x^2 - 25x + 12$$

c)
$$f(x) = 3x^4 + 23x^3 + 56x^2 + 52x + 16$$

16. Find the *vertical* and *horizontal* asymptotes (if any) of:

a)
$$y = \frac{x-2}{x^2 - 4x + 3}$$

c)
$$y = \frac{x^3 - 2x^2 - 4x + 8}{x - 2}$$

b)
$$y = \frac{(x+2)(x-1)}{x^2 - 3x - 10}$$

$$d) \quad y = \frac{-x+1}{-2x^2 + 5x - 3}$$

1. a)

b)
$$f(-1) = \frac{1}{2}(-1) + 5 = \frac{9}{2}$$

2. *a*) -1 *b*) 0

c) 1 d) 2

3.

a) 5 b) -1 c) -5 d) 0

4.

a) even b) even c) odd d) neither e) neither

 $a) \ \left[-3, \infty \right) \qquad \qquad b) \ \left(-\infty, 1 \right) \bigcup \left(1, \infty \right) \qquad c) \ \left(-\infty, \infty \right) \qquad \qquad d) \ \left[-3, 1 \right) \bigcup \left(\ 1, \infty \right)$

e) $(-3,1) \cup (1,\infty)$ f) $[-3,\infty)$ g) $[-3,5) \cup (5,\infty)$

6.

a) 95 b) 127 c) $6x^2 - 1$ d) $18x^2 + 24x + 7$

7. a) $(f \circ g)(x) = \sqrt{x^2 - 2} : (-\infty, -\sqrt{2}) \bigcup (\sqrt{2}, \infty)$

b) $(g \circ f)(x) = x - 2; (-\infty, \infty)$

c) $(h \circ f)(x) = \frac{1}{\sqrt{x+1}}$; $(-1, \infty)$

8.

a) 4 b) -4 c) 3 d) 4x + h

 $h(t) = \sqrt{d^2 - (3700)^2}$

10. *a*) Leading Term: $2x^4$; rises left and right

b) Leading Term: x^6 ; rises left and right

c) Leading Term: $-4x^5$; rises left and falls right

d) Leading Term: x^3 ; fall left and rises right

- e) Leading Term: $-x^4$; falls left and right
- **11.** a) $Q(x) = x^2 + 4x + 1$; R(x) = -7
 - b) $Q(x) = 3x^2 + 2x + 1$; R(x) = 8
 - c) $Q(x) = 2x^2 8x + 31$; R(x) = -118
 - d) $Q(x) = x^3 + x^2 + x + 1$; R(x) = 0
- **12.** *a*) Can't be determined
 - b) Yes
 - c) Yes
 - d) Can't be determined
- **13.** *a*) f(-2) = 36
- b) f(-2) = 0
- **14.** -3, -2, -2, $\pm i$
- **15.** $a) \pm \{1, 2, 4, 8\}$
 - b) $\pm \left\{1, 2, 4, 6, 12, \frac{1}{2}, \frac{3}{2}\right\}$
 - c) $\pm \left\{ 1, 2, 4, 8, 16, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{8}{3}, \frac{16}{3} \right\}$
- **16.** a) VA: x = 1, x = 3; HA: y = 0
 - b) $VA: x = 5; HA: y = \frac{4}{3}$
 - c) VA: n/a; HA: n/a
 - *d*) $VA: x = \frac{3}{2}$; HA: y = 0