- 1. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the points A(2,3,-4), B(3,-4,5) and C(3,2,-3) respectively, then $-\vec{a} + \vec{b} + \vec{c}$ is equal to
 - (A) $\sqrt{113}$
 - (B) $\sqrt{185}$
 - (C) $\sqrt{203}$
 - (D) $\sqrt{209}$
- 2. Find the distance of the point (a, b, c) from the x-axis.
- 3. (a) If

$$\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k} \tag{1}$$

and

$$\vec{b} = 5\hat{i} - 3\hat{j} - 4\hat{k},\tag{2}$$

then find the ratio $\frac{projection\ of\ vector\ \vec{a}\ on\ vector\ \vec{b}}{projection\ of\ vector\ \vec{b}\ on\ vector\ \vec{a}}$

(b) Let \hat{a} and \hat{b} be two unit vectors. If the vectors

$$\vec{c} = \hat{a} + 2\hat{b} \tag{3}$$

and

$$\vec{d} = 5\hat{a} - 4\hat{b} \tag{4}$$

are perpendicular to each other, then find the angle between the vectors \vec{a} and $\vec{b}.$

- 4. Show that $-\vec{a}-\vec{b}+-\vec{b}-\vec{a}$ is perpendicular to $-\vec{a}-\vec{b}$ $-\vec{b}-\vec{a}$, for any two non-zero vectors \vec{a} and \vec{b} .
- 5. Prove that three points \vec{A} , \vec{B} and \vec{C} with position vectors \vec{a} , \vec{b} and \vec{c} respectively are collinear if and only if

$$(\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) + (\vec{a} \times \vec{b}) = 0$$

$$(5)$$