Použití TI-89 v úlohách předmětu BPC-MA3

Šťur

20. prosince 2024

1 Prerekvizity

Vyžadován je tabulkový editor CellSheet, který si můžete stáhnout zde:

https://education.ti.com/en/software/details/en/C348D29C99284143B9E3FE93CF6742A6/89cellsheet

Taktéž je vyžadován Simultaneous Equation Solver App for the TI-89 Titanium, ke stažení zde:

 $\verb|https://education.ti.com/en/software/details/en/BD358C4836B84DBCBA254D6554FBBEAC/89simultaneous equation in the contraction of the contraction$

2 Základní práce s kalkulačkou

2.1 Změna aktuálně používané složky a její vytvoření

Je praktické si vytvářet pro různé předměty složky a práci soustředit do nich. Vytvoření probíhá následovně:

Klávesovou kombinací [2nd]+[-] vyvoláme VAR-LINK menu.

Klávesou [F1] následně vyvoláme Manage menu, Create folder je pátá položka.

Pomocí [ESC] obrazovku opustíme.

Chceme-li se do složky přepnout, vyvoláme klávesou [MODE] nastavení kalkulačky a změníme druhou položku.

TYPE OR USE +>++ (ENTER) OR (ESC)

Položku volíme šipkou doprava, potvrzujeme klávesou [ENTER] a s uložením nastavení opouštíme taktéž klávesou [ENTER].

2.2 Uložení funkce jedné proměnné

V MODE menu se ujistěte, že položka Graph je nastavena na FUNCTION.

Klávesovou kombinací $[\diamond]+[F1]$ vyvoláme Y= menu. Zde můžeme do jednotlivých proměnných ukládat kýžené funkce.

Uložit funkci do funkční proměnné lze taktéž z výchozí obrazovky následovně. Šipka je vyvolána klávesou [STO ▷].

■
$$\times^2$$
 + $e^{2 \cdot \times}$ → y5(\times) Done
 $\frac{\times^2 + e^{(2\times)} + y5(\times)}{\times^2}$
MA3 RAD AUTO FUNC 1/30

Obecně v TI-89 ukládáme výsledky již při zadávání příkladu pomocí [STO ▷] a kýženého názvu proměnné, který u běžných číselných/maticových/řetězcových výsledků může být jakýkoliv (např. mnouk). Ve výpočtech pak tyto funkce můžeme využívat následovně:

F1+ F2+ Tools Algebra	F3+ F4+ Ca1c Other	F5 Pr9mi0	F6+ C1ean Up	
■ y1(x)		e ⁾	× + ײ	- 6
■ y1(2)		5.389	05609	893
■ y2(x)			e^{\times} +	2 · ×
■ y2(y)			e ⁹ +	2 · y
<u>■92(1.e</u> -	5)	1.000	03000	005
<u>92(1e-5)</u>				
MA3	RAD AUTO	FUN	4C	5/30

Pakliže výsledek není ve tvaru, který by nám vyhovoval (například je zlomkem), jako desetinné číslo ho můžeme zobrazit, pakliže místo klávesy [ENTER] použijeme kombinaci $[\diamond]+[\text{ENTER}]$ (\approx).

2.3 Uložení funkce dvou proměnných

V MODE menu je nutno položku Graph přepnout do 3D:

Práce pak probíhá stejně, jako s funkcí jedné proměnné:

Musíme však mít na paměti, že do závorek za názvem proměnné je třeba dosadit 2 hodnoty, jelikož jde o funkci dvou proměnných:

2.4 Vytvoření matice/vektoru

Velmi jednoduché matice můžeme zadat přímo z výchozí obrazovky, je to však praktické nanejvýš u vektorů. Vektor [5;3] zadáme jako:

[[5][3]]

Pro větší matice je žádoucí používat vestavěnou aplikaci Data/Matrix Editor, kterou nalezneme v APPS nabídce. Zvolíme New, což nás dostane na následující obrazovku:

USE + AND + TO OPEN CHOICES

Type je nutno přepnout na Matrix, do kolonky Variable zadáme název proměnné, do Row dimension a Col dimension pak počet řádků, respektive sloupců. Na následujícím obrázku je příklad vytvoření 2x2 matice s názvem "mnau":

Po potvrzení můžeme zadávat:

Kromě čísel je možno do matice vkládat i funkce:

Fi- Tools	341 54100 C	B EN	F1 F3- F7 (3)4 (2)5 Sto	ıt 📄
MAT 2x2				
2X2	c1	c2	c3	
1	e^x+x	0		
2	0	0		
2 3 4				
4				
	=y1(x)			
MA3	RAD	AUTO	FUNC	

Aplikaci opustíme QUIT kombinací, ([2ND]+[ESC]), uložení je automatické. Na výchozí obrazovce pak matici vyvoláme prostým zadáním názvu proměnné, můžeme s ní i provádět libovolné dovolené matematické operace:

V matici máme dosazenou funkci. Pakliže chceme za proměnné ve funkci (nejen u matic) dynamicky dosazovat, použijeme za příkladem (a před případným STO) $|\mathbf{x}=(\check{\mathbf{c}}(\mathbf{s}\mathbf{lo}))|$. Svislou čáru vyvoláme klávesou $[\ |\]$.

U funkcí více proměnných používáme $|\mathbf{x}=(\texttt{c}(\texttt{islo}))|$ and $\mathbf{y}=(\texttt{c}(\texttt{islo}))$. Je nutno to napsat i s mezerami, pro usnadnění si jde "and "i s mezerami najít v nabídce CATALOG vyvolané tlačítkem [CATALOG]. V CATALOGu je možno se rychle pohybovat pomocí počátečního písmena, která můžeme vidět u jednotlivých kláves bíle. Pro přeskok do sekce funkcí začínajících písmenem 'a' stiskneme klávesu [=]:

Výsledek pro funkci dvou proměnných je takovýhle:

2.5 Derivování

Derivovat můžeme přímo z výchozí obrazovky, potřebnou funkci vyvoláme kombinací [2ND]+[8]. První parametr je vstupní funkce, druhý proměnná, podle které derivujeme (díky tomu je možno provádět i parciální derivace). Vstupem může být jak ručně napsaná funkce, tak funkce uložená do speciální proměnné:

2.6 Integrování

Integrovat můžeme přímo z výchozí obrazovky, potřebnou funkci vyvoláme kombinací [2ND]+[7]. Funkce má 4 parametry, 2 jsou volitelné. První parametr je vstupní funkce, druhý proměnná, podle které integrujeme. Vstupem může být jak ručně napsaná funkce, tak funkce uložená do speciální proměnné:

Pakliže chceme použít určitý integrál, využijeme i třetí a čtvrtý parametr, kterým je dolní a horní mez:

2.7 Základy práce s tabulkovým procesorem CellSheet

Aplikaci CellSheet, pakliže ji máme nainstalovanou, vyvoláme z nabídky APPS -¿ FlashApps... -¿ CellSheet, kde z nabídky zvolíme New. V dialogu zvolíme složku a název proměnné. Otevře se nám okno nápadně připomínající Excel:

F1+F FileP1	2+ F3+ (14 ot Edit (146)	F5 F6+ & Funcs	F7+ F8 Stat ReCa1c	
s01	A	В	С	D
1				
2				
3				
4				
5				
A1:				
MA3	RAD	AUTO	FUNC	

Práce probíhá téměř na chlup stejně jako se známým tabulkovým procesorem. Vzorce začínáme rovnítkem, buňky označujeme kombinací sloupec+řádek (např. A1, možno psát i a1), konstantní řádky/sloupce/buňky ve vzorci označujeme dolarem pomocí klávesy [F5].

Pakliže zvolená funkce (např. sum) pracuje s rozsahem buněk, oddělíme ve vzorci buňky dvojtečkou, např. =sum(a1:a3):

File 20	? /	F5 F6+ & Funcs	F7+ F8 Stat ReCa1c	
s01	A	В	С	D
1	1			
2	2			
3	3			
4				
5				
A4:	=sum(a	a1:a3)		
MA3	RAD	AUTO	FUNC	

Po vzoru konvenčních tabulkových procesorů je taktéž možno vybranou buňku s nějakým vzorcem zkopírovat (pomocí kombinace $[\diamond]+[\uparrow]$, vybrat rozsah buněk, kam chceme vzorec vložit (za stálého stisku klávesy $[\uparrow]$ mačkáme šipku odpovídající kýženému směru, dokud není zvolen žádaný rozsah)...

	F1+ File	F;	2+ ot	F3+ Edit	F4 Undo	() ()	113 v Fissional	F7+ Stat	FB ReCalc		_
	s 0	1	А			В		C		D	
	1				1		1				
	Α				2						
	M				3						
	4	1			6						
	5										
	B2:	В	4								
•	MA3				RAD	ĤЦТ	0	FUH	IC	•	

...načež pomocí [\$]+[ESC] provedeme vložení:

F1+ F; Fi1e P1	2+ F3+ F4 ot Edit Undo	F5 F6+ & Funcs	F7+ F8 Stat ReCalc	
s01	A	В	С	D
1	1	1		
2	2	4	ì	
3	3	9		
4	6	36		
5				
B4:	=A4^2			
MA3	RAD	AUTO	FUNC	

Chceme-li hodnotu nějaké buňky exportovat do standardní proměnné, vybereme v Edit ([F3]) nabídce funkci Export...

V dialogu zvolíme Type: Expr, do Variable vložíme název proměnné, do Cell zadáme buňku (bývá předvyplněno, pakliže jsme export vyvolali na námi kýžené buňce) a odentrujeme.

2.8 Řešení soustav lineárních rovnic

Stejně jako u Casio kalkulaček lze toto řešit pomocí matic, což však může být zdlouhavé. Lze si nicméně nainstalovat aplikaci Simultaneous Eqn Solver.

Tu spustíme pomocí APPS -¿ FlashApps... -¿ Simultaneous Eqn Solver. Z nabídky vybereme New...

Dialog se nás zeptá na počet rovnic a neznámých, který zadáme, například 2 a 2. Otevře se toto okno:

Zápis provádíme maticově, sloupce a1 až an označují matici neznámých, sloupec b1 je vektor pravé strany. Předpokládejme, že chceme vložit následující rovnici:

$$x + y = 5$$
$$2x - 3y = 2$$

Zápis bude vypadat takto:

Výsledky vyvoláme stisknutím klávesy [F5]:

USE + + TO GO TO NEXT SOLUTION