Простые вопросы по ML

* Required

Email address *

Your email

При какой функции потерь каждое следующее дерево в градиентном 1 point бустинге обучается на разность правильного ответа и прогноза предыдущих деревьев? *

a)
$$L(y, \hat{y}) = -y \ln \hat{y} - (1 - y) \ln(1 - \hat{y})$$

б)
$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$E(y,\hat{y}) = |y - \hat{y}|$$

r)
$$L(y, \hat{y}) = (\ln y - \ln \hat{y})^2$$

д)
$$L(y, \hat{y}) = \left| \frac{y - \hat{y}}{y} \right|$$

е) при любой, градиентный бустинг всегда так работает

- () a
- () б
- О в
- Ог
- Од
- O 6
- О не знаю

Выберите правильные X и Y в следующем утверждении: «В X во избежание переобучения нужно брать не слишком высокие деревья, а вот в Y можно не ограничивать глубину деревьев, т.к. модель обычно не переобучается по глубине деревьев» *	1 point
X – Random Forest, Y – GBDT	
X - GBDT, Y - Random Forest	
X – Random Forest, Y – решающее дерево	
Не знаю	
ROC-AUC константного ответа 0 на выборке из 99000 объектов	1 point
класса 0 и 1000 объектов класса 1 будет равен: *	
0	
O 0	
00.01	
00.010.49	
 0 0.01 0.49 0.5 	
 0 0.01 0.49 0.5 0.51 	

Какое значение метрики качества ROC-AUC на тестовой выборке в 1 point задаче бинарной классификации соответствует наименее применимой на практике модели: *

- 0
- 0.01
- 0.49
- 0.5
- 0.51
- 0.99
- O 1
- Не знаю

* 1 point

Известно, что для оптимизации МАРЕ иногда прибегают к оптимизации МАЕ с предварительным логарифмированием таргета. Первое объяснение этого трюка в том, что:

$$\left|\ln(y+\varepsilon) - \ln y\right| \approx \left|\ln y + \frac{\varepsilon}{y} - \ln y\right| = \left|\frac{\varepsilon}{y}\right|$$

(по формуле Тейлора для логарифма)

Второе объяснение выглядит так:

$$\left| \ln(y + \varepsilon) - \ln y \right| = \left| \ln \frac{y + \varepsilon}{y} \right| = \left| \ln \left(1 + \frac{\varepsilon}{y} \right) \right|$$
$$\left| \ln \left(1 + \frac{\varepsilon}{y} \right) \right| \to \min \iff \left| \frac{\varepsilon}{y} \right| \to \min$$

Какое из объяснений более строгое?

- первое, т.к. второе не сводит МАРЕ к МАЕ на логарифмированном таргете
- второе, т.к. первое не сводит МАРЕ к МАЕ на логарифмированном таргете
- второе, т.к. не использует приближенные равенства
- О не знаю

This content is neither created nor endorsed by Google. <u>Report Abuse</u> - <u>Terms of Service</u> - <u>Privacy Policy</u>

Google Forms