homework2

info ID = 2020010919 tel= 13051862801 collaborator: Chenyang Zhao 曹甚里 1,2,1

① Incorrect · counter example = for
$$V_1 = \operatorname{Span}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $V_2 = \operatorname{Span}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $V_3 = \operatorname{Span}\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $V_4 = \operatorname{Span}\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

then any three of Vi... V4 are linearly independent, but all of them are not.

- 2) the example is the same as O's
- 3 Proof. V1, V2 are linearly independent =) dim(V1+V2) = dimV1+V2 also dim (V3+V4) = dimV3+ dimV4, $\dim(V_1+V_2+V_3+V_4)=\dim(V_1+V_2)+\dim(V_3+V_4)$ $=\sum_{i=1}^{4}dimVi$

: VI... V4 are linearly independent.

1,2,2 for any A,
$$A = \frac{A + A^{T}}{2} + \frac{A - A^{T}}{2}$$

symmetric skew symmetric.

matrix

"S'

then $A = S+S' \xrightarrow{1} S-S'$

let $V_1 = \{all \text{ symmetric matrices in } V\}$, $V_2 = \{all \text{ skew Symmetric matrices in } V\}$

$$V=VI \oplus V_2$$
, V_1 , V_2 are T -invariant subspaces.
since $dim V_1 = \frac{n^2+n}{2}$, $dim V_2 = \frac{n^2-n}{2}$, then the corresponding T is =
$$\begin{pmatrix} I \frac{n^2+n}{2} \\ -I \frac{n^2-n}{2} \end{pmatrix}$$

Ran(A^T) $\xrightarrow{A_{11}}$ Ran(A). An is injection. Proof. suppose $A_{11}x=0$ for some $x \in Ran(A^T)$. A_{11} is injection. Proof. suppose $A_{11}x=0$ A_{11} is injection. Proof. suppose $A_{11}x=0$ A_{11} for some $x \in Ran(A^T)$. A_{11} because $A_{11}x+A_{21}x$, $A_{21}x$, $A_{21} X = 0$, therefore $A_{X} = A_{11} X = 0$ $\exists x \in \text{Ker}(A) \cap \text{Ran}(A^T) \Rightarrow x = 0$. So A_{II} is injection. Also All is surjection. Proof. for $\forall \nu \in Ran(A)$, $\exists x$, sit $\nu = Ax$. see the proof for this at the end. Ran(AAT) = Ran(A). $\exists y$, sit $\nu = Ax = AATy$. that is, for $\forall v \in Ran(A)$, $\exists A^Ty \in Ran(A^T)$, sit. A^Ty is the preimage of v. so A11 is surjection. So A11 is invertible. : rank A11=dim Ran(AT)=r. $\overline{Sin}(e \forall v \in \text{Ker}(A), A_{12}v = A_{12}v = 0 \Rightarrow \text{rank of } A_{12}, A_{22} \text{ are } 0.$ since for any $v \in \text{Ran}(A^T)$, $Av \in \text{Ran}(A)$ therefore $A_{21}v = 0$. so rank A21 = 0 . =) rank A11=Y, rank A12, A21, A22=0. 1,2,4 O V is an A-invariant subspace. let {b1, b2... bk} be a basis of V.

T 存在的前提是 V是 A-invariant subspace. suppose V has dimV=k then $A(b_1,...,b_k) = (b_1,...,b_k)T$ where $T \in M_{kxk}(C)$.

Suppose $Tx = \lambda x$, $X = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} T = \lambda \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \lambda \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ then $A(c_1b_1 + c_2b_2 + ..., + c_kb_k) = A(b_1,...,b_k) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = (b_1,...,b_k)T \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$

=
$$(b_1 \dots b_K) \lambda \begin{pmatrix} c_1 \\ \vdots \\ c_K \end{pmatrix}$$

= $\lambda c_1 b_1 + \lambda c_2 b_2 + \dots + \lambda c_K b_K = \lambda (c_1 b_1 + \dots + c_K b_K)$

let $W = Gb1 + \dots + CKbK$, then $AW = \lambda W$. $W \in V$, and W is A's eigenvector. \square .

② Suppose $\exists x \neq 0, \lambda, sit. Ax = \lambda x$. then the eigenspace for A is N(A- λ I). for $\forall v \in N(A-\lambda I), (A-\lambda I)v = 0$. then $(A-\lambda I)Bv = ABv - \lambda Bv = BAv - \lambda Bv$ $= B(A-\lambda I)v$

- 0.

 \Rightarrow Bo \in N(A- λ I), N(A- λ I) is B-invariant.

from (1) We know that if $N(A-\lambda I)$ is an B-invariant Subspace then B has an eigenvector in $N(A-\lambda I)$.

 $\therefore \exists w, (A-\lambda I)w=0$ and also $Bw=\mu w$.

 \Rightarrow Aw = λw and also Bw = μw \Rightarrow A1B has a common eigenvector w. 1.2.5.

 $N_{\infty}(D) = \{ f(x) | f \text{ is a polynoimial of } x \}.$

 $N_{\infty}(D-I)$ is not spanned by e^{x} .

counter example: [et $f = e^x(x+1)$.

then $(D-I) f = (x+2)e^{x} - (x+1)e^{x} = e^{x}$ $(D-I)^{2} f = e^{x} - e^{x} = 0$

 \Rightarrow $e^{x}(x+1) \in N_{\infty}(D-I)$. so $N_{\infty}(D-I)$ is not spanned by e^{x} .

Lemma. Ran(ATA) = Ran(A).

To prove R(ATA)= R(A).

we only need to prove $N(A^TA) = N(A)$.

 $N(A^TA) \subseteq N(A)$ is trivial, since

for $\forall x$, $A^TAx = 0$.

 $\Rightarrow \chi^T A^T A \chi = 0.$

 $\Rightarrow \|Ax\|^2 = 0 \Rightarrow Ax = 0. \quad \text{so} \quad N(A) \leq N(A^TA). \Rightarrow N(A) = N(A^TA).$