

ESCOLA DE ENGENHARIA DE VOLTA REDONDA (EEIMVR-UFF) Departamento de Ciências Exatas (VCE)

Verificação Suplementar (VS) - 2019/2

Disciplina:	Equações Diferenciais Ordinárias (EDOs)	Data: 13/12/2019	Folhas	NOTA
Professor:	Yoisell Rodríguez Núñez			
Aluno(a):				

1. (1,50 pontos) Determine a solução geral da EDO:
$$(3x^2 - 2xy + 2)dx + (6y^2 - x^2 + 3)dy = 0$$

2.
$$(1,50 \text{ pontos})^*$$
 Resolva o **PVI**:
$$\begin{cases} x^2 + y^2 - 2xy \frac{dy}{dx} = 0, \\ y(1) = 1 \end{cases}$$

3. $(1,50 \text{ pontos})^*$ Encontre a **solução da EDO** abaixo, sabendo que $y_1(x) = x$ é uma solução particular desta equação:

$$\frac{dy}{dx} = 2x^2 + x^{-1}y - 2y^2.$$

4. (1,00 ponto) Assinale com a letra V para VERDADEIRA ou a letra F para FALSA, as afirmações abaixo, justificando cada resposta dada:

a) ____ A função
$$y(x) = \frac{1}{1 + Ce^x}$$
 é a solução geral da EDO de Bernoulli $y' + y + y^2 = 0$.

b) ____ $\{e^{3t}, e^{2t}\}$ não representa um conjunto fundamental de soluções da EDO: y'' - 5y' + 6y = 0.

c) ____ A EDO
$$\left(3x^2y^2 - \frac{2020 \ln x}{e^x}\right) dx + \left(\frac{e^{3y} \tan y}{y^3} + 2x^3y\right) dy = 0$$
 é exata.

d) ____
$$\mu(x) = x^3$$
 é um fator integrante da EDO de 1^a ordem linear $\frac{dy}{dx} + \frac{2}{x}y = x^3$.

5. $(1,50 \text{ pontos})^{\ddagger}$ Calcule a solução do PVI:

$$\begin{cases} y'' + 4y' + 13y = 2t + 3e^{-2t}\cos(3t) \\ y(0) = 0, \\ y'(0) = -1 \end{cases}$$

- a) Usando as ferramentas sobre EDOs de 2^a ordem linear não-homogêneas e com coeficientes constantes (estudadas na primeira parte do curso).
- b) Via transformada de Laplace.

Dicas:

$$\frac{1}{s^2 + 4s + 13} \left[\frac{2}{s^2} + \frac{3(s+2)}{(s+2)^2 + 9} - 1 \right] = -\frac{8}{169} \left[\frac{1}{s} \right] + \frac{2}{13} \left[\frac{1}{s^2} \right] - \frac{10}{3(169)} \left[\frac{3}{(s+2)^2 + 9} \right] + \frac{8}{169} \left[\frac{s+2}{(s+2)^2 + 9} \right] + \left[\frac{3(s+2)}{[(s+2)^2 + 9]^2} \right] - \frac{1}{3} \left[\frac{3}{(s+2)^2 + 9} \right]$$

$$\mathcal{L} \left\{ te^{-at} \operatorname{sen}(\omega t) \right\} = \frac{2 \cdot \omega(s+a)}{[(s+a)^2 + \omega^2]^2}$$

6. (2,00 pontos) Calcule a **transformada inversa de Laplace** da função:

a)
$$\frac{1}{s^2 - 4s + 5}$$

b)
$$\frac{3 + e^{-7s}}{s^4}$$

7. (2,50 pontos) Encontre a solução para o seguinte PVI associado ao sistema de EDOs homogêneo:

$$\begin{cases} x_1' = x_1 + 2x_2 \\ x_2' = 2x_1 + x_2 \\ x_1(0) = 1, \quad x_2(0) = 3 \end{cases}$$

Observações:

- o *Escolha a questão 2 ou 3 para resolver.
- o ‡ Na questão 5, faça apenas um dos itens (a) ou b))
- o As demais questões são de resolução obrigatória.
- o Todas **as respostas devem ser justificadas**, isto é, acompanhadas dos argumentos e/ou cálculos usados para obtê-las.

 $O\ importante\ \acute{e}\ N\tilde{A}O\ PARAR\ DE\ QUESTIONAR.$ Albert Einstein

BOA PROVA!!!

Laplace transforms - Table					
$f(t) = L^{-1}{F(s)}$	F (s)	$f(t) = L^{-1}\{F(s)\}$	F (s)		
$a t \ge 0$	$\frac{a}{s}$ $s > 0$	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$		
at $t \ge 0$	$\frac{a}{s^2}$	cosωt	$\frac{s}{s^2 + \omega^2}$		
e ^{-at}	$\frac{1}{s+a}$	$\sin(\omega t + \theta)$	$\frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$		
te ^{-at}	$\frac{1}{(s+a)^2}$	$\cos(\omega t + \theta)$	$\frac{s\cos\theta - \omega\sin\theta}{s^2 + \omega^2}$		
$\frac{1}{2}t^2e^{-at}$	$\frac{1}{(s+a)^3}$	t sin ωt	$\frac{2\omega s}{(s^2 + \omega^2)^2}$		
$\frac{1}{(n-1)!}t^{n-1}e^{-at}$	$\frac{1}{(s+a)^n}$	tcosωt	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$		
e ^{at}	$\frac{1}{s-a} \qquad s > a$	sinh ωt	$\frac{\omega}{s^2 - \omega^2} \qquad s > \omega $		
te ^{at}	$\frac{1}{(s-a)^2}$	$\cosh \omega t$	$\frac{s}{s^2 - \omega^2} \qquad s > \omega $		
$\frac{1}{b-a}\left(e^{-at}-e^{-bt}\right)$	$\frac{1}{(s+a)(s+b)}$	e ^{-at} sin ωt	$\frac{\omega}{(s+a)^2+\omega^2}$		
$\frac{1}{a^2}[1-e^{-at}(1+at)]$	$\frac{1}{s(s+a)^2}$	e ^{-at} cosωt	$\frac{s+a}{(s+a)^2+\omega^2}$		
t ⁿ	$\frac{n!}{s^{n+1}}$ $n = 1,2,3$	e ^{at} sin ωt	$\frac{\omega}{(s-a)^2+\omega^2}$		
t ⁿ e ^{at}	$\frac{n!}{(s-a)^{n+1}} s > a$	e ^{at} cos ωt	$\frac{s-a}{(s-a)^2+\omega^2}$		
t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}} s > a$	$1-e^{-at}$	$\frac{a}{s(s+a)}$		
\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{3/2}}$	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$		
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$ $s > 0$	$f(t-t_1)$	$e^{-t_1s}F(s)$		
$g(t) \cdot p(t)$	$G(s) \cdot P(s)$	$f_1(t) \pm f_2(t)$	$F_1(s) \pm F_2(s)$		
$\int f(t)dt$	$\frac{F(s)}{s} + \frac{f^{-1}(0)}{s}$	$\delta(t)$ unit impulse	1 all s		
$\frac{df}{dt}$	sF(s)-f(0)	$\frac{d^2f}{df^2}$	$s^2F(s) - sf(0) - f'(0)$		
$\frac{d^n f}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - s^{n-3}f''(0) - \dots - f^{n-1}(0)$				