

Feb 03, 2025

illumina MiSeq Dual Index Amplicon Sequencing Sample Preparation Bacterial 16S rRNA gene

Forked from a private protocol

DOI

dx.doi.org/10.17504/protocols.io.qytdxwn

Alexander Eiler¹, Omneya Osman², Anna Szekely³

¹University of Oslo; ²eDNA solutions AB; ³Uppsala University

AQUA at UiO

Alexander Eiler

Alex private

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.qytdxwn

Protocol Citation: Alexander Eiler, Omneya Osman, Anna Szekely 2025. illumina MiSeq Dual Index Amplicon Sequencing Sample Preparation Bacterial 16S rRNA gene. **protocols.io** https://dx.doi.org/10.17504/protocols.io.qytdxwn

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: June 14, 2018

Last Modified: February 03, 2025

Protocol Integer ID: 13043

Disclaimer

Use at your own risk

Abstract

Preparation of PCR products for amplicon sequencing

Guidelines

We have a common stock of barcoded primers stored in the -80C freezer number 3. The primers are in an orange box, which box can be found in the position indicated on the following picture:

In the box from 1 to 20 are the forward primers and from 37 to 56 are the reverse primers. The last line has extras from some primers. If you run out of a barcode, check those first before ordering. Check primer ordering file on common server for primer ordering.

Sequence of barcodes to fill in the SampleSheet file for sequencing:

Index 2 (i5)	Index 2 (i5) Seque nce	Index 1 (i7)	Index 1 (i7) Seque nce
Illu_N	TAGA	Illu_N	TCGC
501F	TCGC	701R	CTTA
Illu_N	CTCT	Illu_N	CTAG
502F	CTAT	702R	TACG
Illu_N	TATC	Illu_N	TTCT
503F	CTCT	703R	GCCT
Illu_N	AGAG	Illu_N	GCTC
504F	TAGA	704R	AGGA
Illu_N	GTAA	Illu_N	AGGA
505F	GGAG	705R	GTCC
Illu_N	ACTG	Illu_N	CATG
506F	CATA	706R	CCTA
Illu_N	AAGG	Illu_N	GTAG
507F	AGTA	707R	AGAG
Illu_N	CTAA	Illu_N	CCTC
508F	GCCT	708R	TCTG
Illu_N	CTTG	Illu_N	AGCG
521F	CTTT	709R	TAGC
Illu_N	GGCT	Illu_N	CAGC
522F	TCAA	710R	CTCG
Illu_N	AATC	Illu_N	TGCC
523F	GGCA	711R	TCTT
Illu_N	GGTT	Illu_N	TCCT
524F	CAAA	712R	CTAC
Illu_N	ACTT	Illu_N	GGTA
525F	CGAC	733R	TAAG
Illu_N	TGAC	Illu_N	CAGC
526F	TTGC	735R	TAGA
Illu_N	TAGG	Illu_N	CCAT
527F	ACCT	736R	AGCA
Illu_N	GGAG	Illu_N	GGTA
528F	ACTT	738R	TAGC
Illu_N	AGGT	Illu_N	GGTT
529F	TACG	739R	ATGC
Illu_N	AATT	Illu_N	TAGG
530F	CGCT	740R	CAAG

	···· · · - · · ·	TTGT CCAT
		TCTA GGCA

Note: the sequence of the reverse barcodes to fill in the SampleSheet is the reverse complement of their sequence of in the primers.

The 1st part of the protocol is performed in the pre-PCR room.

The 2nd part in the post-PCR room.

Never bring back PCR products to the pre-PCR room.

Materials

MATERIALS

🔯 Q5 High-Fidelity DNA Polymerase - 100 units **New England Biolabs Catalog #**M0491S

Protocol materials

⊠ Q5 High-Fidelity DNA Polymerase - 100 units New England Biolabs Catalog # M0491S	Materials
Q5 High-Fidelity DNA Polymerase - 500 units New England Biolabs Catalog # M0491L	Step 1

Before start

Put pipettes and tips in the UV chamber for 10 mins.

Clean bench with MQ and EtOH.

Perform the first PCR (triplicates/duplicates of each sample) using Illumina adaptor attached primers that target the gene of your choice. Here we present the protocol using the Bacteria primers 341F and 805RN. For the forward primer cite: **Herlemann et al., 2011** and for the reverse primer cite based on: **Apprill et al., 2015** but the one here is not exactly as the one in that paper.

Illumina adapter-N4-341F:

5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNN**CCTACGGGNGGCWGCAG**-3' Illumina adapter-805NR:

5'-AGACGTGTGCTCTTCCGATCTGACTACNVGGGTATCTAATCC-3'

First PCR reactions

Comp onent s		Final conc.	1 reacti on (20 µI)	(N) reacti ons	
5xQ5 React on Buffer) SX	1X	4 μl		
Forwa rd Prime r (illu- ada- 341F)	10 μΜ	0.25 μΜ	0,5 μΙ		
Rever se Prime r (illu- ada- 805N R)		0.25 μΜ	0,5 μΙ		
dNTP s	2 mM	200 μΜ	2 µl		
Q5 HF DNA polym erase	211/01	0.02 U/µl	0.2 µl		
Temp ate DNA			1 μl		
Nucle ase- Free water			11.8 µl		
Σ			20 µl		

First PCR program

STEP	TEMP.	TIME
Initial Denat uratio n	98°C	3 min utes*
20 cycle s	98°C	10 secon ds
48°C*	30 secon ds	
72°C	30 secon ds/kb	
Final Exten sion	72°C	2 minut es
Hold	6°C	∞

^{*} In the latest protocols this was reduced to 30 seconds but in order to have complete denaturation of long high GC genome fragments, we increased it to 3 minutes, which is in accordance with the manufacturers recommendation.

🔀 Q5 High-Fidelity DNA Polymerase - 500 units **New England Biolabs Catalog #**M0491L

- 2 Check PCR products with Agarose gel electrophoresis (1%) optional
- Pool PCR duplicate samples together and perform purification with magnetic beads (Agencourt AMPure or similar)- Optional: run Agarose gel electrophoresis (1%)
- 4 1. A second PCR is conducted for attaching standard illumina handles and index primers Multiplex_fwd AATGATACGGCGACCACCGAGA{TCTACAC}-[i5 index] ACACTCTTTCCCTACACGACG Multiplex_rev CAAGCAGAAGACGGCATACGAGAT-[i7 index]-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

^{**} First temperature ever used was 55C. Then it changed to 62C. We decided on 48 based on suggestion by Anna Szekely. 48C gets unbiased product amounts of non-mismatch and 3-mismatch isolates. If you use this profile cite: addressing PCR biases or effect of annealing temperature

(We have in total 20 different forward index/barcode primers and 20 different reverse index/barcode primers. By combining both primers (20X20), it can possible to generate 400 tags in one final pool for sequencing. To find the common stock of the barcoded second step primers check the guidelines of this protocol)

Table 2: Second PCR reactions

Comp onent s	Worki ng conc.	Final conc.	1 reacti on (20 µI)	(N) reacti ons	
5xQ5 Reacti on Buffer	5X	1X	4 µl		
Forwa rd index (i5, illu- N501- N508)	5 μΜ	0.25 μΜ	1 µl		
Rever se index (i7, illu- N701- N712)	5 μΜ	0.25 μΜ	1 µl		
dNTP s	2 mM	200 μΜ	2 µl		
Q5 HF DNA polym erase	2 U/µl	0.02 U/μl	0.2 μΙ		
Templ ate from 1 st PCR			2 µl		
Nucle ase- Free water			9.8 µl		
Σ			20 µl		

Second PCR program

STEP	TEMP.	TIME
Initial Denat	98°C	30 secon

uratio n		ds
15 cycle s	98°C	10 secon ds
66°C	30 secon ds	
72°C	30 secon ds/kb	
Final Exten sion	72°C	2 minut es
Hold	6°C	∞

5 Check second PCR products with Agarose gel electrophoresis (1%)

- Perform purification with magnetic beads (Agencourt AMPure) and (optional) run Agarose gel electrophoresis (1%)
- 7 Quantification: using gel analyzer program or PicoGreen assay
- 8 Calculate PCR samples concentration and volume before pooling
- 9 Pool the PCR samples in equal DNA amount (ng) or for unequal length amplicons, in equal molecule amount (mol).

You will get one tube with a mix of all the samples in it.

To calculate the volume of each sample to be pooled (DNA amount mixing):

- Use the lowest concentration sample to define the minimum amount of DNA (ng) that you have available from a single sample: the DNA concentration (ng/μL) of the lowest concentration sample multiplied with its volume (μL). This will be your target DNA amount for each sample.
- Calculate how many μLs of each sample you need to achieve the target DNA amount: divide the target DNA amount with the concentration of each sample.
- Pipette into one tube the calculated volume of each sample. Aim to use the same pipette for all samples (dilute or pipette multiple times) to avoid pipette calibration errors.

10 Gel purify the pool and requantify with PicoGreen before submitting to sequencing facility.