

2024 FS CAS PML - Supervised Learning 3 Regression 3.1 Einführung

Werner Dähler 2024

3 Regression - AGENDA

- 31. Einleitung
 - 311. Abgrenzung
 - 312. Demo Dataset
 - 313. Fallstudien Dataset
 - 314. Vorbereiten der Umgebung
- 32. Regression klassisch (OLS)
- 33. Regression mit ML
- 34. Vergleiche über alle Modelle

die hinterlegten Links wurden am 27.02.2024 abgegriffen

3.1.1 Abgrenzungen gegenüber Klassifikation

- in den Daten: das Target ist metrisch skaliert und weist (meist) stetige numerische Werte auf
- 2) andere Vorhersageklassen: zumeist xxxRegressor anstelle von xxxClassifier
- andere Performance-Metriken (z.B. r2_score anstelle von accuracy, Details dazu in Kap. 4.4.2)

 im Übrigen ist das Vorgehen dasselbe wie bei Klassifikation

Machine Learning

3.1.2 Das Demo Dataset

- zur Visualisierung von Ideen und Verfahren wird auch hier ein Demo Dataset verwendet:
 - demo_data_regr.csv
- zwei Spalten (columns)
 - X: Feature (unabhängige Variable)
 - y:Target (abhängige Variable)
- 81 Beobachtungen
- (es sind tatsächlich dieselben Daten wie bei demo_data_class.csv, ausser
 - \rightarrow X1 \rightarrow X
 - $X2 \rightarrow y$

3.1.3 Das Fallstudien Dataset

- wie bei der Klassifikation wird auch bei Regression mit einem Dataset aus einer konkreten Fallstudie gearbeitet
- das für die Praxisteile im Rahmen von Regression verwendete Dataset wurde im Rahmen des Workshops 03 unter Feature Engineering bereits aufbereitet
- einige Kennwerte
 - Anzahl rows: 18'393
 - Anzahl columns: 24, davon
 - float64: 10
 - int64:14
 - Target: "Price" (float64)
- Ziel der Arbeiten mit diesem Dataset: trainieren eines Vorhersagemodells für den Verkaufspreis von Immobilien

3.1.4 Vorbereiten der Umgebung

- wie bei den Methoden zur Klassifikation hat es auch bei der Regression im begleitenden Jupyter Notebook gleich am Anfang einen Codeblock, in welchem die Umgebung und die Daten vorbereitet werden:
 - importieren der notwendigen Libraries
 - setzen des Datenpfades
 - Laden und vorbereiten der Datasets
 - Demo Dataset
 - Melbourne Housing Dataset
- das Demo Dataset wird auch hier nicht in Train Test gesplittet, es wird ausschliesslich dazu verwendet, die Regressionsmethoden darzustellen (X_demo, y_demo)
- die Performance Vergleiche erfolgen dann aber auf dem Melbourne Housing Dataset, welches aus diesem Grund gesplittet wird (X_train, y_train, X_test, y_test)

3.1.4 Vorbereiten der Umgebung

die Standard Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

 analog dem Vorgehen bei Klassifikation können auch hier die im Modul bfh_cas_pml implementierten Funktionen für die Bereitstellung der Daten verwendet werden

```
from bfh_cas_pml import prep_data, prep_demo_data
X_train, X_test, y_train, y_test = prep_data(
    'melb_data_prep.csv', 'Price', seed = 1234)
X_demo, y_demo = prep_demo_data('demo_data_regr.csv', 'y')
```