Ramesh

Rough k-means in Q

Version 0.1 January 19, 2024

Contents

Rough 1	k-mean	s in Q	2
1	Introd	action	2
	1.1	Notation	2
	1.2	Invariants	3
	1.3	Mathematics to Code	3
2	Comp	atation	3
	2.1	The Update Step	3
	2.2	The Assignment Step	4

Rough k-means in Q

1 Introduction

We describe the rough k-means algorithm [?]. We assume that the reader is familiar with the k-means algorithm [?]. We make a minor change to their terminology, referring to the

- lower approximation as the "inner" approximation
- upper approximation as the "outer" approximation

1.1 Notation

- 1. Let n_J be the number of features. We shall use j as the feature index.
- 2. Let n_I be the number of objects/instances/observations. We shall use i as the instance index.
- 3. Let n_K be the number of means/centroids. We shall use k as the centroid index.
- 4. Let X be a set of observations in n_J dimensional space, such that $X_{j,i}$ is the value of the j^{th} feature of the i^{th} instance.

We store the observations as n_J vectors of length n_I . So, X_j is the vector corresponding to the j^{th} feature and $X_{i,i}$ is the value of the j^{th} feature of the i^{th} observation.

- 5. Let $\mu_{k,j}$ be the value of the j^{th} feature of the k^{th} centroid
- 6. Let $I_{k,i}$ be true if instance i is part of the Inner approximation of centroid k
- 7. Let $O_{k,i}$ be true if instance i is part of the **O**uter approximation of centroid k
- 8. We shall treat the boolean value "true" and the integer 1 interchangeably.
- 9. We shall treat the boolean value "false" and the integer 0 interchangeably.

- 10. Let w_I and w_O be the weights assigned to the Inner and Outer approximations
- 11. Let α be the threshold for determining whether an instance belongs to the outer approximation. This is explained in Section 2.1
- 12. Identifying i, j, k as feature indexes simplifies the notation. For example, $\sum_{k=1}^{k=n_K}$ is actually $\sum_{k=1}^{k=n_K}$. Similarly, $\forall k$ means for all centroids, numbered $1, \ldots, n_K$
- 13. We use the following conventions for types

F4 4-byte floating point

I4 4-byte signed integer

B1 1-bit boolean

14. Define $\delta(x,y) = 1$ if x = y and 0 otherwise.

1.2 Invariants

Invariant 1 An instance can belong to the inner approximation of at most one centroid.

$$\forall i: \sum_{k} I_{k,i} = 1$$

Invariant 2 If an instance is not part of any inner approximation, it must belong to two or more outer approximations. This implies that an instance cannot belong to only a single boundary region.

$$\sum_{k} I_{k,i} = 0 \Rightarrow \sum_{k} O_{k,i} \ge 2$$

1.3 Mathematics to Code

The mathematical terms we use are terse, the variable names in the code somewhat more verbose. A mapping is provided in Table 1.

2 Computation

2.1 The Update Step

- 1. $\forall k: d_k$ is a F4 Vector of length n_I such that $d_{k,i}$ is distance of instance i from centroid k
- 2. \bar{d} is a F4 Vector of length n_I such that \bar{d}_i is smallest distance of instance i from any centroid i.e., $\bar{d}_i = \min_k d_{k,i}$

Math	Code	Type	Length
d_k	dist[k]	F4 Vector	n_I
$ar{d}$	best_dist	F4 Vector	n_I
\bar{k}	best_clss	I4 Vector	n_I
O_k	is_outer[k]	B1 Vector	n_I
N_k^O	num_in_outer[k]	I4 Vector	n_I
\hat{I}	inner	I4 Vector	n_I

Table 1: Math symbols to names in code

- 3. \bar{k} is an I4 Vector of length n_I such that \bar{k}_i identifies the centroid that is closest to instance i. Note that $\bar{k}_i \in [1, \dots n_K]$
- 4. $\forall k: O_k$ is a B1 Vector of length n_I such that $d_{k,i} \leq \bar{d}_i \times \alpha \Rightarrow O_{k,i} = \text{true}$
- 5. N^O is an I4 Vector of length n_I , where $N_i^O = \sum_k O_k[i]$
- 6. Let \hat{I} be a Vector of length n_I such that $N_i^O \geq 2 \Rightarrow \hat{I}_i = 0$; else, $\hat{I}_i = \bar{k}_i$. What we are doing here is stating that if nobody else has a claim on instance i, then it belongs to the inner approximation of \bar{k}_i . In other words,
 - (a) $\hat{I}_i = 0 \Rightarrow$ instance i not in inner approximation of any centroid
 - (b) $\hat{I}_i = k' \Rightarrow \text{instance } i \text{ in inner approximation of centroid } k'$

2.2 The Assignment Step

- 1. The contribution of the inner and outer sets are weighted and then combined into the value of the centroid as follows: $\mu_{k,j} = w_I \times \mu_{k,j}^I + w_O \times \mu_{k,j}^O$
- 2. $\mu_{k,j}^{I} = \frac{\sum_{i} \delta(\hat{I}_{i},k) X_{k,i}}{D_{k}^{I}}$
- 3. $\mu^{O}_{k,j} = \frac{\sum_{i}(O_{k,i} \times X_{k,i})}{D^{O}_{k}}$
- 4. $D_k^I = \sum_i \delta(\hat{I}, k)$
- 5. $D_k^O = \sum_i O_{k,i}$