Conditioning GeoComput & ML 28 Apr. 2022

Transition

Transition

Transition

- Independent Thinking
- Innovative Solutions

Disruption

who am I

- fellowship
- perspectives
- self-enrichment

Interactions

- voice yourself
- in-class hours
- Matera times

Class structure

- begins at each sharp hour
- duration: 45~50 min
- two breaks

Questions

- in lecture notes
- respond to the interesting
- in class activity
- I.shen@spatial-ecology.net

Modelling

Motivation

do the impossible

Pillars

- Domain Knowledge
- Mathematics
- Computing

Set Theory

Georg Cantor

Set Theory

Bertrand Russell

Set Theory

A barber shaves those who only do NOT shave themselves

Incompleteness Theorem

Kurt Gödel

Computing

- Arithmetic
- Algorithms
- Analytics

Arithmetic

Definition

$$x = \pm \left(d_0 + rac{d_1}{eta^1} + rac{d_2}{eta^2} + \ldots + rac{d_{p-1}}{eta^{p-1}}
ight)eta^E$$

$$\beta$$
: base

$$p$$
: precision

$$[L,U]$$
 : exponent range

$$0 \leq d_i \leq \beta-1$$

$$i=0,\ldots,p-1$$

$$E \in [L,U]$$

finite and discrete


```
let x=1/n,\ n\in\mathbb{Z}, show (n+1)x-1=x
 for n in range(1, 11):
   x = 1/n
   xin = x
   for k in range (30):
    x = (n + 1)*x - 1
   print(n,xin,x)
 1 1.0 1.0
 2 0.5 0.5
 3 0.333333333333333 -21.0
 4 0.25 0.25
 5 0.2 6545103.021815777
 7 0.14285714285714285 -9817068105.0
 8 0.125 0.125
 9 0.111111111111111 4934324553889.695
```

10 0.1 140892568471739.25

$$\left(d_0 + rac{d_1}{eta^1} + rac{d_2}{eta^2} + \ldots + rac{d_{p-1}}{eta^{p-1}}
ight)eta^E$$

$$\in [\beta^E,\beta^{(E+1)}]$$

relative error

$$\in \left[rac{(eta/2)eta^{-p}eta^E}{eta^{(E+1)}}, rac{(eta/2)eta^{-p}eta^E}{eta^E}
ight]$$

$$\in [(1/2)eta^{-p},(eta/2)eta^{-p}]$$

therefore

$$\epsilon_{mach}=eta^{1-p}/2$$

$$\mathtt{fl}(x \mathtt{op} y) = (x \mathtt{op} y)(1 + \delta)$$

where
$$|\delta| \leq \epsilon_{mach}$$
 ,

f1 denotes floating representation andop denotes any elementary arithmetic operations,+, -, x and /.

Example

$$egin{aligned} extbf{fl}(x(y+z)) &= extbf{fl}((x+(y+z)(1+\delta_1))(1+\delta_2)) \ &= x(y+z)(1+\delta_1+\delta_2+\delta_1\delta_2) \ &pprox x(y+z)(1+\delta_1+\delta_2) \ &\leq x(y+z)(2\epsilon_{mach}) \end{aligned}$$

>>> 3.14+3.14e-5 3.1400314000000003

Catastrophic Cancellation

Computing Residuals

Suppose we obtained the solution \hat{x} for a linear system ax=b. We are to compute the residual $r=b-a\hat{x}$

$$egin{aligned} \mathtt{fl}(a\hat{x}) &= a\hat{x}(1+\delta_1) \ \mathtt{fl}(b-a\hat{x}) &= (b-a\hat{x})(1+\delta_1)(1+\delta_2) \ &= (r-a\hat{x}\delta_1)(1+\delta_2) \ &= r(1+\delta_2) - a\hat{x}\delta_1 - a\hat{x}\delta_1\delta_2 \ &pprox r(1+\delta_2) - b\delta_1 \end{aligned}$$

Conditioning

Question

well-posed, if its solution

- exists
- unique
- depends continuously on the data

Question

algorithm: stable

solution: well-conditioned

Errors

$$\begin{aligned} \text{total errors} &= \hat{f}\left(\hat{x}\right) - f(x) \\ &= (\hat{f}\left(\hat{x}\right) - f(\hat{x})) + (f(\hat{x}) - f(x)) \\ &= \text{computation error} + \text{data error} \end{aligned}$$

Errors

forward error : $\Delta y = \hat{y} - y$

backward error : $\Delta x = \hat{x} - x$, where $f(\hat{x}) = \hat{y}$

Errors

Example:

$$cos(x) = 1 - rac{x^2}{2} + rac{x^4}{4!} - rac{x^6}{6!} \dots$$
 $\hat{y} = \hat{f}(x) = 1 - rac{x^2}{2}$

for
$$x=1$$
 , we have

$$egin{aligned} y &= f(1) pprox 0.5403 \ \hat{y} &= \hat{f}\left(1
ight) = 0.5 \end{aligned} iggraphi \Delta y = \hat{y} - y = -0.0403 \ \Delta x = \hat{x} - x = rccos(\hat{y}) - x = 0.0472 \end{aligned}$$

Condition number

a measure on the effects on the solution incurred by data perturbation

$$\left| rac{\Delta y/y}{\Delta x/x}
ight| pprox \left| rac{xf'(x)}{f(x)}
ight|$$

Condition number

Question:

what is the condition number for the inverse function?

$$g(y) = f^{-1}(y)$$

$$\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$$

$$cond(\mathbf{A}) = ||\mathbf{A}|| ||\mathbf{A}^{-1}||$$

induced matrix norm

$$\|oldsymbol{A}\| = \max_{oldsymbol{x}
eq oldsymbol{0}} rac{\|oldsymbol{A}oldsymbol{x}\|}{\|oldsymbol{x}\|}$$

vector norms

$$\|oldsymbol{x}\|_1 = \sum_i^n |x_i|$$

$$\|oldsymbol{x}\|_2 = \left(\sum_i^n x_i^2
ight)^{1/2}$$

$$\|oldsymbol{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$$

Euclidean distance between two random points

linear system : $oldsymbol{A}oldsymbol{x} = oldsymbol{b}$

residual :
$$m{r} = m{b} - m{A} m{\hat{x}}$$

$$egin{aligned} \|\Delta x\| &= \parallel \hat{oldsymbol{x}} - oldsymbol{x} \| \ &= \parallel oldsymbol{A}^{-1} (oldsymbol{A} \hat{oldsymbol{x}} - oldsymbol{b}) \| \ &= \parallel oldsymbol{A}^{-1} oldsymbol{r} \| \ &\leq \parallel oldsymbol{A}^{-1} \parallel \parallel oldsymbol{r} \| \end{aligned}$$

$$rac{\|oldsymbol{\Delta}oldsymbol{x}\|}{\|oldsymbol{x}\|} \leq \operatorname{cond}(oldsymbol{A}) rac{\|oldsymbol{r}\|}{\|oldsymbol{A}\|\|\hat{oldsymbol{x}}\|}$$

 $m{Ax} \simeq m{b}$

Normal equation

$$egin{aligned} \phi(oldsymbol{x}) &= (oldsymbol{b} - oldsymbol{A}oldsymbol{x})^T (oldsymbol{b} - oldsymbol{A}oldsymbol{x}) \ &= oldsymbol{b}^T oldsymbol{b} - 2oldsymbol{x}^T oldsymbol{A}oldsymbol{b} + oldsymbol{x}^T oldsymbol{A}oldsymbol{x} \end{aligned}$$

$$oldsymbol{0} =
abla \phi(oldsymbol{x}) = 2oldsymbol{A}^Toldsymbol{A}oldsymbol{x} - 2oldsymbol{A}oldsymbol{b}$$

$$\boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{A} \boldsymbol{b}$$

Geometrical interpretation

$$oldsymbol{y} = oldsymbol{A}oldsymbol{x} \in \operatorname{span}(oldsymbol{A})$$

orthogonal projection $m{b}$ onto the ${\sf span}({
m A})$

Projector matrix: idempotent

$$oldsymbol{P}^2 = oldsymbol{P}$$

Orthogonal projector:

$$oldsymbol{P}^T = oldsymbol{P}$$

$$P_{\perp} = I - P$$

$$oldsymbol{v} = (oldsymbol{P} + (oldsymbol{I} - oldsymbol{P}) oldsymbol{v}) = oldsymbol{P} oldsymbol{v} + oldsymbol{P}_{oldsymbol{\perp}} oldsymbol{v}$$

$$egin{aligned} \|oldsymbol{b} - oldsymbol{A}oldsymbol{x}\| &= \|oldsymbol{P}(oldsymbol{b} - oldsymbol{A}oldsymbol{x}) + oldsymbol{P}oldsymbol{b} - oldsymbol{A}oldsymbol{x})\|^2 \ &= \|oldsymbol{P}oldsymbol{b} - oldsymbol{A}oldsymbol{x}\|^2 + \|oldsymbol{P}oldsymbol{b}\|^2 \ &= \|oldsymbol{P}oldsymbol{b} - oldsymbol{A}oldsymbol{x}\|^2 + \|oldsymbol{P}oldsymbol{b}\|^2 \ &= \|oldsymbol{A}oldsymbol{x} - oldsymbol{A}oldsymbol{x}\|^2 + \|oldsymbol{P}oldsymbol{b}\|^2 \end{aligned}$$

$$oldsymbol{A}^Toldsymbol{P} = oldsymbol{A}^Toldsymbol{P}^T = (oldsymbol{P}oldsymbol{A})^T = oldsymbol{A}^Toldsymbol{A}oldsymbol{x} = oldsymbol{A}^Toldsymbol{A}oldsymbol{x} = oldsymbol{A}^Toldsymbol{A}oldsymbol{x} = oldsymbol{A}^Toldsymbol{A}oldsymbol{x}$$

Question:

Can you show $oldsymbol{P}$ is indeed a projection matrix?

Can $oldsymbol{P}$ be an identity matrix?

pseudo inverse :
$$oldsymbol{A}^+ = (oldsymbol{A}^T oldsymbol{A})^{-1} oldsymbol{A}^T$$

$$\operatorname{cond}(\boldsymbol{A}) = \parallel \boldsymbol{A} \parallel_2 \parallel \boldsymbol{A}^+ \parallel_2$$

perturbation : $oldsymbol{b} + \Delta oldsymbol{b}$

$$egin{align*} m{A}^Tm{A}\Deltam{x} &= m{A}^Tm{b} \ \Deltam{x} &= (m{A}^Tm{A})^{-1}m{A}^T\Deltam{b} &= m{A}^+\Deltam{b} \ \|\Deltam{x}\|_2 \leq \|m{A}^+\|_2 + \|\Deltam{b}\|_2 \ rac{\|\Deltam{x}\|_2}{\|m{x}\|_2} \leq \|m{A}^+\|_2 + rac{\|\Deltam{b}\|_2}{\|m{x}\|_2} \ &= \mathrm{cond}(m{A}) rac{\|m{b}\|_2}{\|m{A}\|_2 \|m{x}\|_2} rac{\|\Deltam{b}\|_2}{\|m{b}\|_2} \ \leq \mathrm{cond}(m{A}) rac{\|m{b}\|_2}{\|m{A}m{x}\|_2} rac{\|\Deltam{b}\|_2}{\|m{b}\|_2} \ &= \mathrm{cond}(m{A}) rac{\|m{b}\|_2}{\|m{A}m{x}\|_2} rac{\|\Deltam{b}\|_2}{\|m{b}\|_2} \ &= \mathrm{cond}(m{A}) rac{1}{cos(heta)} rac{\|\Deltam{b}\|_2}{\|m{b}\|_2} \ \end{aligned}$$

Example

A 4th order polynomial fit

```
1.5
0.02 1.61351
0.04 1.70156
0.06 1.76279
0.08 1.79621
0.1 1.80131
     1.778
0.12
0.14 1.72665
0.16 1.64807
0.18 1.5435
    1.41458
0.22 1.26336
0.24 1.09221
0.26 1.09221
0.28 1.26336
```

```
Θ.
          Θ.
                    0.
                               Θ.
                8. \times 10^{-6}
                            1.6 \times 10^{-7}
        0.0004
1 0.02
                           2.56 \times 10^{-6}
  0.04
        0.0016
                0.000064
                           0.00001296
  0.06
        0.0036
                0.000216
                0.000512
  0.08
        0.0064
                           0.00004096
         0.01
   0.1
                  0.001
                             0.0001
        0.0144
                0.001728
                          0.00020736
        0.0196
                0.002744
                           0.00038416
  0.14
  0.16
        0.0256
                0.004096
                          0.00065536
  0.18
        0.0324
                0.005832
                          0.00104976
   0.2
                             0.0016
         0.04
                  0.008
                          0.00234256
        0.0484
                0.010648
  0.24
        0.0576
                0.013824
                          0.00331776
        0.0676
                0.017576
                           0.00456976
                0.021952
                           0.00614656
  0.28
        0.0784
```


$$\operatorname{cond}(\boldsymbol{A}) = 7.6 \times 10^5$$

$$\cos(heta) = rac{\|oldsymbol{A}oldsymbol{x}\|_2}{\|oldsymbol{b}\|_2} pprox 0.99$$

Take-home

Reading Assignment

What Role Does Hydrological Science Play in the Age of Machine Learning?

Grey S. Nearing¹, 2, Frederik Kratzert³, Alden Keefe Sampson¹, Craig S. Pelissier⁴, Daniel Klotz³, Jonathan M. Frame ², Cristina Prieto⁵, Hoshin V. Gupta⁶

Acknowledgement

Thanks for Your Attention

References

- M. Holmes, Introduction to Scientific Computing and Data Analysis, 2016
- B. Gustafsson, Scientific computing from a historical perspective, 2010
- M. Heath, Scientific Computing An Introductory Survey, 2018
- Goldberg, David. ACM Computing Surveys. 1991, 23 (1): 5–48.
- A. Agresti, Foundations of Linear and Generalized Linear Models, 2015
- C. McMulloch, et.al., Generalised, Linear and Mixed Models, 2008
- M. Greenberg, Advanced Engineering Mathematics, 2004
- https://www.sciencealert.com/gravitational-waves
- https://www.pinterest.com/pin/356347389250592062
- https://en.wikipedia.org/wiki/Georg_Cantor
- https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
- https://en.wikipedia.org/wiki/Bertrand_Russell
- https://ieeexplore.ieee.org/document/4610935