Phylogenetic inference of contact network parameters with kernel approximate Bayesian computation

Rosemary M McCloskey¹ Richard H Liang¹ Art FY Poon^{1,2} HIV Dynamics & Evolution, Woods Hole, USA, April 25, 2016

¹BC Centre for Excellence in HIV/AIDS, Vancouver, Canada

²Department of Medicine, University of British Columbia, Vancouver, Canada

Most epidemiological models assume homogeneous mixing

Most epidemiological models assume homogeneous mixing

 Often provide a reasonable approximation in practice.

Most epidemiological models assume homogeneous mixing

 Often provide a reasonable approximation in practice.

 Can be inaccurate when substantial contact heterogeneity exists.

 May offer more accurate predictions for highly structured populations.

- May offer more accurate predictions for highly structured populations.
- Network parameters may be of interest for their own sake, e.g. are there superspreaders?

- May offer more accurate predictions for highly structured populations.
- Network parameters may be of interest for their own sake, e.g. are there superspreaders?
- Extremely difficult to estimate in practice.

Contact networks shape transmission trees

Contact networks shape transmission trees

• Transmission trees in turn shape viral phylogenies.

Contact networks shape transmission trees

- Transmission trees in turn shape viral phylogenies.
- Aim: estimate contact network parameters from viral phylogenies.

 Start with a small number of connected nodes.

- Start with a small number of connected nodes.
- Attach new nodes with m edges.

- Start with a small number of connected nodes.
- Attach new nodes with m edges.
- Other endpoints of degree d are chosen with probability $\propto d^{\alpha} + 1$.

- Start with a small number of connected nodes.
- Attach new nodes with m edges.
- Other endpoints of degree d are chosen with probability $\propto d^{\alpha} + 1$.

- Start with a small number of connected nodes.
- Attach new nodes with m edges.
- Other endpoints of degree d are chosen with probability $\propto d^{\alpha} + 1$.
- Continue until network has N nodes.

- Start with a small number of connected nodes.
- Attach new nodes with m edges.
- Other endpoints of degree d are chosen with probability $\propto d^{\alpha} + 1$.
- Continue until network has N nodes.
- Also consider the prevalence *l*.

• Generate networks under different parameter values (number of nodes N, number of edges per vertex m, pereferential attachment power α).

¹Art FY Poon et al. (2013). "Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses". In: PLoS ONE 8.11.

- Generate networks under different parameter values (number of nodes N, number of edges per vertex m, pereferential attachment power α).
- Simulate epidemic over each network until / nodes are infected.

¹Art FY Poon et al. (2013). "Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses". In: PLoS ONE 8.11.

- Generate networks under different parameter values (number of nodes N, number of edges per vertex m, pereferential attachment power α).
- Simulate epidemic over each network until / nodes are infected.
- Randomly subsample to form transmission trees.

 $^{^{1}}$ Art FY Poon et al. (2013). "Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses". In: PLoS ONE 8.11.

- Generate networks under different parameter values (number of nodes N, number of edges per vertex m, pereferential attachment power α).
- Simulate epidemic over each network until / nodes are infected.
- Randomly subsample to form transmission trees.
- Compare trees pairwise using tree kernel¹.

 $^{^{1}}$ Art FY Poon et al. (2013). "Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses". In: PLoS ONE 8.11.

Preferential attachment power α affects tree shape

Prevalence I affects tree shape

Number of edges per vertex *m* does not affect tree shape

Number nodes N modestly affects tree shape

sample parameters

 θ_1

 θ_2

 θ_3

kernel approximate Bayesian computation (kernel-ABC)

Example simulation shows α and I can be reconstructed

Example simulation shows α and I can be reconstructed

Maximum *a posteriori* estimates are accurate for α and I

preferential attachment power

prevalence

Maximum *a posteriori* estimates are accurate for α and I

0-

0.5

true a

1.5

prevalence

1000

2000

1000

true I

total nodes

Real world HIV datasets exhibit network heterogeneity

Real world HIV datasets exhibit network heterogeneity

 Kernel-ABC is the first phylodynamic method to fit contact network models to phylogenetic data.

- Kernel-ABC is the first phylodynamic method to fit contact network models to phylogenetic data.
- The preferential attachment power of the Barabási-Albert network model, which is challenging to estimate by traditional epidemiological methods, can be estimated with kernel-ABC.

- Kernel-ABC is the first phylodynamic method to fit contact network models to phylogenetic data.
- The preferential attachment power of the Barabási-Albert network model, which is challenging to estimate by traditional epidemiological methods, can be estimated with kernel-ABC.
- The networks underlying real epidemics are heterogeneous, underscoring the importance of considering network structure in phylodynamic analyses.

- Kernel-ABC is the first phylodynamic method to fit contact network models to phylogenetic data.
- The preferential attachment power of the Barabási-Albert network model, which is challenging to estimate by traditional epidemiological methods, can be estimated with kernel-ABC.
- The networks underlying real epidemics are heterogeneous, underscoring the importance of considering network structure in phylodynamic analyses.

github.com/rmcclosk/netabc

Acknowledgements

BC Centre for Excellence in HIV/AIDS

Art Poon

Jeff Joy

Richard Liang

Thuy Nguyen

P. Richard Harrigan

University of British Columbia Sarah Otto

Alexandre Bouchard-Côté

Classifiers for network parameters

- kSVR using tree kernel
- SVR using normalized lineages-through-time²
- linear regression using Sackin's index³

²Thijs Janzen, Sebastian Höhna, and Rampal S Etienne (2015). "Approximate Bayesian computation of diversification rates from molecular phylogenies: introducing a new efficient summary statistic, the nLTT". . In: *Methods in Ecology and Evolution* 6.5, pp. 566–575.

³Kwang-Tsao Shao (1990). "Tree balance". In: Systematic Biology 39.3, pp. 266–276.

