MA - 102: B.Tech. I year; Spring Semester: 2017-18 (Tutorial Sheet)

(LU/PLU - Square (invertible) system)

1

1. Solve the following systems by Gauss elimination method:

2. Use Gauss elimination method to show that following system has no solution:

$$2 \sin x - \cos y + 3 \tan z = 3$$

 $4 \sin x + 2 \cos y - 2 \tan z = 10$
 $6 \sin x - 3 \cos y + \tan z = 9$

3. Find Cholesky decomposition for following matrices.

$$\bullet \ \ A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 5 & -4 \\ 2 & -4 & 6 \end{bmatrix}$$

$$\bullet \ A = \begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix}$$

4. Find LU/PLU for following matrices and hence find solution for Ax = b for given vector b:

•
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$$
 $b = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}$

•
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 $b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

•
$$A = \begin{bmatrix} 1 & 4 & 2 \\ -2 & -8 & 3 \\ 0 & 1 & 1 \end{bmatrix}$$
 $b = \begin{bmatrix} -2 \\ 32 \\ 1 \end{bmatrix}$

5. Use Gauss Jordan method to find the solution of following system:

(Vector Spaces, Subspaces and Linear Span)

- 1(i). Suppose we define addition on \mathbb{R}^2 by the rule $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, 0)$. Show that additive identity does not exist in \mathbb{R}^2 w.r.t. above rule.
- 1(ii). Suppose we define addition on \mathbb{R}^3 by the rule $(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1b_1, a_2b_2, a_3b_3)$. Show that we have an additive identity for this operation in \mathbb{R}^3 but inverse may not exist for some elements.
- 2. Let \mathbb{R}^+ be the set of all positive real numbers. Define operations of addition \bigoplus and the scalar multiplication \bigotimes as follows: $u \bigoplus v = uv$ for all $u, v \in \mathbb{R}^+$ and $\alpha \bigotimes u = u^{\alpha}$ for all $u \in \mathbb{R}^+$ and $\alpha \in \mathbb{R}$ (here \mathbb{R} is the field of scalars). Prove that $(\mathbb{R}^+, \bigoplus, \bigotimes)$ is a real vector space.
- 3. Let $V = \mathbb{R}^2$. Define operations of addition \bigoplus and the scalar multiplication \bigotimes as follows: $(a_1, a_2) \bigoplus (b_1, b_2) =$ $(a_1 + b_2, a_2 + b_1)$ and $\alpha \otimes (a_1, a_2) = (\alpha a_1, \alpha a_2), \alpha \in \mathbb{R}$ (here \mathbb{R} is the field of scalars). Does $(V, \bigoplus, \bigotimes)$ form a real vector space? Give reasons for your assertion.
- 4. Elaborate: In any real vector space $(V, \bigoplus, \bigotimes)$, we have
- (i) $\alpha \otimes \mathbf{0} = \mathbf{0}$ for every scalar α .
- (ii) $0 \bigotimes u = \mathbf{0}$ for every $u \in V$.
- (iii) $(-1) \bigotimes u = -u$ for every $u \in V$.
- (iv) $\alpha \bigotimes u = \mathbf{0} \Rightarrow \alpha = 0$ or $u = \mathbf{0}$, where u is vector and α is scalar.
- 5. Prove that a nonempty subset S of a vector space $(V, \bigoplus, \bigotimes)$ is a subspace iff $(\alpha \bigotimes u) \bigoplus v \in S$ for all scalars α and $u, v \in S$.
- 6. Let V = C[0,1] be the set of all real valued function defined and continuous on the closed interval [0,1]. Prove that V is a real vector space with respect to pointwise addition and multiplication. Further, determine that which of the following subsets of V are subspaces
- (i) $\{f \in V : f(1/2) = 0\}$
- (ii) $\{f \in V : f(3/4) = 1\}$
- (iii) $\{f \in V : f(0) = f(1)\}\$
- (iv) $\{f \in V : f(x) = 0 \text{ only at a finite number of points}\}$
- 7. Determine whether each of the following set S form a subspace of \mathbb{R}^4 , if addition and multiplication rules are defined in the usual way.
- (i) $S = \{(a, b, c, d) : a = c + d\}.$
- (ii) $S = \{(a, b, c, d) : b = c d \text{ and } a = c + d\}.$
- (iii) $S = \{(a, b, c, d) : c = d\}.$
- (iv) $S = \{(-a+c, a-b, b+c, a+b) : a, b, c \in \mathbb{R}\}.$
- (v) $S = \{(a, b, c, d) : a = 1\}.$
- (vi) $S = \{(a, b, c, d) : a \le b\}.$
- (vii) $S = \{(a, b, c, d) : a = b = c = d\}.$
- (viii) $S = \{(a, b, c, d) : a \text{ is an integer}\}.$
- (ix) $S = \{(a, b, c, d) : a^2 b^2 = 0\}.$
- 8. Which of the following subsets of \mathcal{P} are subspaces. Where, \mathcal{P} is the real vector space of all polynomials w.r.t. usual vector addition and scalar multiplication rules.
- (i) $\{p \in \mathcal{P} : \deg. p \leq 4\}$
- (ii) $\{p \in \mathcal{P} : \deg. p = 4\}$
- (iii) $\{p \in \mathcal{P} : \deg p \ge 4\}$ (iv) $\{p \in \mathcal{P} : p(1) = 0\}$
- (v) $\{p \in \mathcal{P} : p(2) = 1\}$ (vi) $\{p \in \mathcal{P} : p'(1) = 0\}$

- 9. Which of the following subsets of $\mathbb{R}^{2\times 2}$ are subspaces. Note that, $\mathbb{R}^{m\times n}$ is the vector space over real field of all matrices of order $m\times n$ under usual definitions of addition and scalar multiplication of matrices.
- (i) All diagonal matrices.
- (ii) All upper triangular matrices.
- (iii) All symmetric matrices.
- (iv) All invertible matrices.
- (v) All matrices which commute with a given matrix T.
- (vi) All matrices with zero determinant.
- 10. Let W_1 and W_2 be subspaces of a vector space V such that $W_1 \bigcup W_2$ is also a subspace. Show that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- 11. Let W_1 and W_2 be subspaces of a vector space V such that $W_1 + W_2 = V$ and $W_1 \cap W_2 = \{0\}$. Show that for each vector u in V there are unique vectors $u_1 \in W_1$ and $u_2 \in W_2$ such that $u = u_1 + u_2$.
- 12. Let $S = \{(1,2,3), (1,1,-1), (3,5,5)\}$. Determine which of the following are in L[S]
- (i) (0,0,0)
- (ii) (1,1,0)
- (iii) (4,5,0)
- (iv) (1, -3, 8).
- 13. In the complex vector space \mathbb{C}^2 , determine whether or not $(1+i,1-i) \in L[(1+i,1),(1,1-i)]$.
- 14. Let M and N be subsets of the vector space (V, +, .). Define $M + N = \{m + n : m \in M \text{ and } n \in N\}$. Then
- (i) $M \subset N \Rightarrow L[M] \subset L[N]$
- (ii) M is a subspace of $V \Leftrightarrow L[M] = M$
- (iii) L[L[M]] = L[M].

Answers

- 3. Not a vector space. 6. (i) Yes (ii) No (iii) Yes (iv) No
- 7. (i) Yes (ii) Yes (iii) Yes (iv) Yes (v) No (vi) No (vii) Yes (viii) No (ix) No
- 8. (i) Yes (ii) No (iii) No (iv) Yes (v) No (vi) Yes
- 9. (i) Yes (ii) Yes (iii) Yes (iv) No (v) Yes (vi) No
- 12. (i) and (iii) are in L[S]. 13. Yes

(RREF/Four Fundamental Subspaces/Solution of Ax = b)

1. Find the row-reduced echelon forms and hence rank of following matrices:

(i)
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$$

2(i). Obtain for what values of λ and μ the equations

have (i) no solution (ii) a unique solution (iii) infinitely many solutions.

2(ii). Obtain for what values of λ the equations

have (i) no solution (ii) a unique solution (iii) infinitely many solutions.

2(iii). In the following system of linear equations

$$ax_1 + x_2 + x_3 = p$$

 $x_1 + ax_2 + x_3 = q$
 $x_1 + x_2 + ax_3 = r$

determine all values of a, p, q, r for which the resulting linear system has (i) unique solution (ii) infinitely many solutions (iii) no solution.

3. Does the system:

has a solution for z = 7? Find the general solution of system by Gauss elimination.

4. Show that the rank of matrix AB is less than or equal to rank of A as well as rank of B. Further prove that rank of AB is equal to rank of A, if B is invertible.

4

5. Suppose that $A_{m\times n}$ has rank k. Show that $\exists B_{m\times k}, C_{k\times n}$ such that rank (A) = rank (B) = k and A = BC.

6. Find Row reduced Echelon form of the following matrices and hence find all four fundamental spaces:

•
$$A_1 = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$
 $A_2 = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}$

•
$$A_3 = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 2 \end{bmatrix}$$
 $A_4 = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 1 \\ 2 & 5 & 2 \end{bmatrix}$

7. Use Gauss elimination method to find all polynomials $f \in \mathcal{P}_2 : f(1) = 2$ and f(-1) = 6.

(LI, LD, Basis and Dimension)

- 1(i). Check the linear dependence or linear independence of the following sets in respective real vector spaces
- (a) $\{e^x, e^{2x}\}$ in $\mathcal{C}^{\infty}(\mathbb{R})$.
- (b) $\{x, |x|\}$ in C[-1, 1].
- (c) $\{(\frac{1}{2}, \frac{1}{3}, 1), (-3, 1, 0), (1, 2, -3)\}$ in \mathbb{R}^3 .
- (d) $\{(1,1,1,0),(3,2,2,1),(1,1,3,-2),(1,2,6,-5)\}$ in \mathbb{R}^4 .
- (e) $\{(x, x^3 x, x^4 + x^2, x + x^2 + x^4 + \frac{1}{2}\}$ in \mathcal{P}_4 .
- 1(ii). Show that the set $S = \{\sin x, \sin 2x, \dots, \sin nx\}$ is a LI subset of $\mathcal{C}[-\pi, \pi]$ for every positive integer n.
- 2(i). If u, v and w are LI vectors of a vector space V, then prove that u + v, v + w, and w + u are also LI.
- 2(ii). Let S_1, S_2 be subsets of a vector space V such that $S_1 \subset S_2$. Then prove that
- (a) S_1 is $LD \Rightarrow S_2$ is LD.
- (b) S_2 is $LI \Rightarrow S_1$ is LI.
- 2(iii). Let S be a LI subset of a vector space V. Let $v \in L[S]$. Prove that $\{v\} \cup S$ is a LD set.
- 2(iv). Let S be a LI subset of a vector space V. Let v does not belong in L[S]. Prove that $\{v\} \cup S$ is a LI set also.
- 3(i). In a vector space V, if a **ordered** set $S = \{v_1, v_2, v_3, \dots, v_n\}$ is LD **with** $v_1 \neq 0$ then prove that \exists a vector $v_k, 2 \leq k \leq n$ such that $v_k \in L[\{v_1, v_2, v_3, \dots, v_{k-1}\}]$.
- 3(ii). In a vector space V, if a set $S = \{v_1, v_2, v_3, \dots, v_n\}$ is LI and $S_1 = \{w_1, w_2, w_3, \dots, w_m\}$ generates the space V then prove that $n \leq m$.
- 4. Determine whether the following sets are bases for given vector spaces V over field F
- (i) $\{(2,4,0),(0,2,-2)\};\ V=\mathbb{R}^3 \text{ and } F=\mathbb{R}.$
- (ii) $\{(6,4,4),(-2,4,2),(0,7,0)\};\ V=\mathbb{R}^3 \text{ and } F=\mathbb{R}.$
- (iii) $\left\{ \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix} \right\}$; $V = \mathcal{M}_{2 \times 2}$ and $F = \mathbb{R}$.
- (iv) $\{1, x-2, (x-2)^2, (x-2)^3\}$; $V = \mathcal{P}_3$ and $F = \mathbb{R}$.
- (v) $\{x-1, x^2+x-1, x^2-x+1\}$; $V = \mathcal{P}_2$ and $F = \mathbb{R}$.
- (vi) $\{(1, i, 1+i), (1, i, 1-i), (i, -i, 1)\}; V = \mathbb{C}^3 \text{ and } F = \mathbb{C}.$
- 5(i). Find the co-ordinates of the following vector of \mathbb{R}^3 relative to the ordered basis $B = \{(2,1,0),(2,1,1),(2,2,1)\}$
- (i) (1, 2, -1) (ii) (2, 0, -1) (iii) (-1, 3, 1)
- 5(ii). Find the relation between the co-ordinates of the vector (1,5) with respect to the ordered bases $B_1 = \{(1,1),(0,1)\}$ and $B_2 = \{(-1,4),(7,6)\}$
- 6. Find a basis for the plane P: x-2y+3z=0 in \mathbb{R}^3 . Find a basis for the intersection of P with with the xy-plane. Also, find a basis for the space of vectors perpendicular to the plane P.
- 7(i). Let $S = \{(4,5,6), (a,2,4), (4,3,2)\}$ be a set in \mathbb{R}^3 . Find the values for a such that $L[S] \neq \mathbb{R}^3$.
- 7(ii). For what values of k vectors $S = \{(k+1, -k, k), (2k, 2k-1, k+2), (-2k, k, -k)\}$ form a basis of \mathbb{R}^3 .
- 8. For each of followings, find a basis (here all vector spaces are real)
- (i) $\{(x_1, x_2, x_3) \text{ in } \mathbb{R}^3 : x_1 x_3 = 0\}.$
- (ii) $\{(x_1, x_2, x_3) \text{ in } \mathbb{R}^3 : 2x_1 + x_2 + x_3 = 0\}.$
- (iii) $\{(x_1, x_2, x_3, x_4) \text{ in } \mathbb{R}^4 : x_1 + x_2 + 2x_3 = 0, 2x_2 + x_3 = 0 \text{ and } x_1 x_2 + x_3 = 0\}.$
- (iv) ${a + bx + cx^3 \text{ in } \mathcal{P}_3 : a 2b + c = 0}.$

- (v) $\{p \text{ in } \mathcal{P}_4 : p(7) = 0 \text{ and } p'(1) = 0\}.$
- (vi) $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in $\mathbb{R}^{2\times 2} : a d + c = 0 \right\}$.
- (vii) $\{A \text{ in } \mathbb{R}^{4\times 4} : A \text{ is a real symmetric martix} \}$.
- (viii) $\{A \text{ in } \mathbb{R}^{5 \times 5} : \text{Trace } A = 0\}$.
- (ix) $\{A \text{ in } \mathbb{R}^{2\times 2} : A \text{ is a complex Hermitian martix} \}$.
- (x) $\{A \text{ in } \mathbb{R}^{m \times n} : \text{ sum of each row of } A = 0\}$.
- 9(i). Write two bases of \mathbb{R}^4 that have no common elements.
- 9(ii). Write two different bases of \mathbb{R}^4 that have the vectors (0,0,1,0) and (0,0,0,1) in common.
- 9(iii). Find a basis of $L[\{(1,-1,2,3),(1,0,1,0),(3,-2,5,2)\}]$ which includes the vectors (1,1,0,-1).
- 9(iv). Extend the set $\{(1,1,-1,0),(1,0,1,1),(1,2,1,1)\}$ to a basis of \mathbb{R}^4 .
- 10. Find a basis for $U, W, U \cap W$ and U + W in the following cases for a vector space V.
- (i) $U = \{(x_1, x_2, x_3) : x_1 + x_2 x_3 = 0\}, W = \{(x_1, x_2, x_3) : 2x_1 + x_2 = 0\}, V = \mathbb{R}^3.$ (ii) $U = \{a_0 + a_1x + a_2x^2 : a_1 + a_2 = 0\}, W = \{a_0 + a_1x + a_2x^2 : 2a_0 + a_1 = 0\}, V = \mathcal{P}_2.$
- (iii) $U = \{p : p(2) = 0\}, W = \{p : p'(2) = 0\}, V = \mathcal{P}_4.$
- 11. Find the subspaces $S \cap T$, S + T of vector space V. Further, find dim (S), dim (T), dim $(S \cap T)$ dim (S + T) if
- (i) $S = L[\{(1, -1, 0), (1, 0, 2)\}], T = L[\{(0, 1, 0), (0, 1, 2)\}], V = \mathbb{R}^3.$
- $\text{(ii) } S = L[\{(2,2,-1,2),(1,1,1,-2),(0,0,2,-4)\}], \ T = L[\{(2,-1,1,1),(-2,1,3,3),(3,-6,0,0)\}], \ \mathcal{V} = \mathbb{R}^4.$

Answers

- 1(i). (a) LI (b) LI (c) LI (d) LD (e) LI
- 4. (i) No (ii) Yes (iii) Yes (iv) Yes (v) No (vi) Yes

(Linear Transformation)

- 1(i). Find a LT $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that T(1,0) = (1,1) and T(1,1) = (-1,2). Also prove that T maps square with vertices at (0,0), (1,0), (1,1), (0,1) into a parallelogram.
- 1(ii). If possible, find a LT $T: A \to B$ such that
- (a) $T(2,3) = (4,5), T(1,0) = (0,0), \text{ where } A = \mathbb{R}^2 \text{ and } B = \mathbb{R}^2.$
- (b) T(1,1) = (1,0,1), T(0,1) = (1,0,0), T(1,2) = (2,1,1) where $A = \mathbb{R}^2$ and $B = \mathbb{R}^3$.
- (c) T(1,0,0) = (2,3), T(0,1,0) = (1,2), T(0,0,1) = (-1,-4) where $A = \mathbb{R}^3$ and $B = \mathbb{R}^2$.
- (d) T(1,1,0) = (0,1,1), T(0,0,0) = (0,0,1), T(1,0,1) = (0,0,0) where $A = B = \mathbb{R}^3$.
- 2(i). Find a LT $T: \mathbb{R}^3 \to \mathbb{R}^3$, whose range is spanned by the vectors (1,0,-1) and (1,2,2).
- 2(ii). Find a nonzero LT $T: \mathbb{R}^2 \to \mathbb{R}^2$, which maps all the vectors on the line y=x onto the origin.
- 3. Find the range and null space of followings LTs. Also find the rank and nullity wherever applicable:
- (i) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x_1, x_2) = (3x_1 + x_2, 0, 0)$.
- (ii) $T: \mathbb{R}^4 \to \mathbb{R}^3$ defined by $T(x_1, x_2, x_3, x_4) = (x_1 x_4, x_2 + x_3, x_3 x_4)$.
- (iii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1 + x_2, x_1 + x_2)$.
- (iv) $T: \mathcal{P}_3 \to \mathbb{R}^3$ defined by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = (a_0 + a_1 + 2a_3, 2a_1 + a_2, a_3 + a_1)$.
- (v) $T: \mathcal{C}(0,1) \to \mathcal{C}(0,1)$ defined by $T(f)x = f(x)\sin x$.
- 4. Examine whether the following transformations are linear or not. In case of LT, find their matrix representation with respect to given bases B_1 and B_2 .
- (i) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1 + x_2, x_2)$; B_1 and B_2 are standard bases.
- (ii) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$; B_1 and B_2 are standard bases.
- (iii) $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $T(x_1 + ix_2, x_3 + ix_4) = (x_1, x_2)$; $B_1 = \{(0, 1), (1, 1)\}$ and B_2 is standard bases.
- (iv) $T: \mathcal{P}_2 \to \mathcal{P}_2$ defined by $T(a_0 + a_1x + a_2x^2) = -a_0 + 2a_1x + (a_2 + a_0)x^2$; B_1 and B_2 are standard bases.
- (v) $T: \mathcal{P}_3 \to \mathcal{P}_3$ defined by $T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_0 + a_1(x+1) + a_2(x+1)^2 + a_3(x+1)^3$; $B_2 = \{1, 1+x, 1+x^2, 1+x^3\}$ and B_1 is standard basis.
- (vi) $T: \mathcal{P}_2 \to \mathcal{P}_3$ defined by $T(p(x)) = xp(x) + \int_0^x p(t)$; B_1 and B_2 are standard bases.
- (vii) $T: \mathcal{P}_2 \to \mathbb{R}^4$ defined by $T(a_0 + a_1x + a_2x^2) = (a_0 + a_2, a_1 a_0, a_2 a_1, a_0); B_1 = \{1; 1 + x; x + x^2\}$ and $B_2 = \{(1, 0, 1, 0); (1, 0, 0, 0); (0, 1, -1, 0); (0, 0, 1, 1)\}.$
- (viii) $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ defined by $T(A) = AM, \forall A \in \mathbb{R}^{2\times 2}$, where $M = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ is a fixed matrix in $\mathbb{R}^{2\times 2}$; B_1 and B_2 are standard bases.
- (ix) Repeat part (viii), when $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ is defined by T(A) = A + M.
- 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x_1, x_2, x_3) = (x_1 + x_2, x_1 + 2x_2, 3x_3 + x_2)$. Show that T is invertible and further, find a formula for T^{-1} . Match the result by matrix representation also.

- 6(i). Find a LT $T: \mathbb{R}^3 \to \mathbb{R}^3$, whose matrix representation is $\begin{bmatrix} 2 & 0 & 0 \\ 2 & -5 & 0 \\ 0 & 2 & 1 \end{bmatrix}$, with respect to standard bases. Find its inverse matrix also.
- 6(ii). Find a LT $T: \mathbb{R}^3 \to \mathbb{R}^3$, whose matrix representation is $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 1 \\ 1 & 0 & -1 \end{bmatrix}$, with respect to standard bases. Find the matrix of T with respect to basis $\{(1,1,-1),\,(1,2,0),\,(1,0,1)\}$.
- 6(iii). Find a LT $T: \mathcal{P}_3 \to \mathbb{R}^3$, whose matrix representation is $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 1 \\ 5 & 4 & 1 & -1 \end{bmatrix}$, with respect to $\{1; 1 + x^2; x + x^3; 1 + x + x^2\}$ and $\{(1,0,1), (2,4,5), (0,0,1)\}$.

(Eigenvalues and Eigenvectors)

- 1. For each matrix, find all eigenvalues and eigenvectors;
- (i) $\begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{bmatrix}$ (ii) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 2. (i) If λ is an eigenvalue of a nonsingular matrix $A_{n\times n}$, then verify that λ^{-1} is an eigenvalue of A^{-1} .
- (ii) If A and P be both $n \times n$ matrices and P be nonsingular, then verify that A and $P^{-1}AP$ have the same eigen values.
- (iii) Prove that eigen values of a real symmetric matrices are all real.
- (iv) Prove that eigen values of a real skew symmetric matrix are purely imaginary or zero.
- (v) Prove that eigen vectors corresponding to two distinct eigen values of a real symmetric matrix are orthogonal.
- (vi) Prove that eigen value of a real orthogonal matrix has unit modulus.
- (vii) Prove that any skew-symmetric Matrix of odd order has zero determinant.
- (viii) Let A and B be matrices of order n. Show that AB and BA have same eigenvalues.
- 3. Find a matrix P such that $P^{-1}AP$ is a diagonal matrix where A is (i) $\begin{bmatrix} 4 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 4 \end{bmatrix}$ (ii) $\begin{bmatrix} 0 & 2 & -1 \\ 2 & 3 & -2 \\ -1 & -2 & 0 \end{bmatrix}$
- 4. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Find A^{-1} and A^4 by Cayley-Hamilton theorem.
- 5. Find e^{2A} and A^{50} when (i) $A = \begin{bmatrix} -4 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -2 \end{bmatrix}$ (ii) $A = \begin{bmatrix} -2 & 4 & 3 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{bmatrix}$