

МАТЕМАТИКА

В. А. УСПЕНСКИЙ

ТЕОРЕМА ГЁДЕЛЯ И ТЕОРИЯ АЛГОРИТМОВ

(Представлено академиком А. Н. Колмогоровым 8 VI 1953)

1. Предварительные замечания. В работе ⁽³⁾ Гёдель показал, что попытка аксиоматического построения арифметики неизбежно приводит к дедуктивно-неполному исчислению, т. е. к исчислению, в котором существует формула, интерпретируемая как содержательно-истинное высказывание о натуральных числах и вместе с тем недоказуемая в этом исчислении. Более того в ⁽³⁾ был указан эффективный способ построения такой формулы. Настоящая заметка содержит результаты предпринятого по инициативе А. Н. Колмогорова выяснения общих причин такого положения вещей. При этом обнаруживается роль теории алгоритмов в вопросах дедуктивной полноты.

Мы скажем, что множество натуральных чисел R порождается функцией φ , если R есть множество значений φ . Каждой системе равенств, задающей частично-рекурсивную функцию φ , можно отнести некоторое натуральное число, по которому система равенств однозначно восстанавливается; это число называется номером функции φ ⁽⁵⁾. Номером рекурсивно-перечислимого множества R мы назовем любое число, являющееся одним из номеров одной из частично-рекурсивных функций, порождающих R .

2. Эффективная неотделимость. Говорят, что множества E_1 и E_2 отделяются множествами H_1 и H_2 , если $E_1 \subseteq H_1$, $E_2 \subseteq H_2$, $H_1 \cap H_2 = \emptyset$. Множества E_1 и E_2 называются рекурсивно-неотделимыми ⁽²⁾, а короче — неотделимыми, если они не отделяются никакими рекурсивными множествами. Можно построить два непересекающихся рекурсивно-перечислимых множества, являющихся неотделимыми (впервые такие множества построены П. С. Новиковым; дальнейшие примеры принадлежат Б. А. Трахтенброту ⁽²⁾).

Введем понятие эффективной неотделимости. Множества E_1 и E_2 назовем эффективно-неотделимыми, коль скоро существует такая частично-рекурсивная функция $v(x, y)$, что если n_1 и n_2 суть номера рекурсивно-перечислимых множеств H_1 и H_2 , отделяющих E_1 и E_2 , то $v(n_1, n_2)$ существует, но не принадлежит $H_1 \cup H_2$.

Теорема 1. Существуют два эффективно-неотделимых непересекающихся рекурсивно-перечислимых множества.

Более того, эффективно-неотделимыми являются все известные до сего времени неотделимые множества.

3. Дедуктивные исчисления. Для любого конечного множества \mathfrak{Z} «знаков» будем обозначать через $\mathfrak{S}(\mathfrak{Z})$ множество всевозможных конечных строчек, составленных из этих знаков («слов в алфавите \mathfrak{Z} » по А. А. Маркову ⁽¹⁾). Знаки из \mathfrak{Z} занумеруем числами $1, 2, \dots, n$, где n — число знаков в \mathfrak{Z} ; каждой строчке $A = \alpha_1 \alpha_2 \dots \alpha_j$,

где a_μ суть знаки из \mathfrak{Z} , отнесем в качестве номера число $N(A) = 2^{b(\alpha_1)} \cdot 3^{b(\alpha_2)} \cdots p_j^{b(\alpha_j)}$, где p_j есть j -е простое число, а $b(\alpha)$ — номер знака α .

Дедуктивное исчисление Π есть совокупность следующих образований: 1) конечного множества \mathfrak{Z} элементарных знаков (строчки из $\mathfrak{S}(\mathfrak{Z})$) называются «формулами» исчисления Π ; 2) конечного множества A_1, \dots, A_p формул из $\mathfrak{S}(\mathfrak{Z})$, называемых «аксиомами»; 3) конечного множества $\Gamma_1, \dots, \Gamma_q$ алгоритмов, называемых «правилами вывода». При этом алгоритм Γ_i ($i = 1, 2, \dots, q$) способен «перерабатывать» лишь строчки вида $X_1, X_2, \dots, X_{k_i}, Y_1, Y_2, \dots, Y_{l_i}$, где k_i и l_i — фиксированные неотрицательные числа, X_μ и Y_ν — формулы из $\mathfrak{S}(\mathfrak{Z})$, а запятая «,» — знак, не входящий в \mathfrak{Z} . Для любой строчки описанного сейчас вида алгоритм Γ_i или дает формулу из $\mathfrak{S}(\mathfrak{Z})$ или ничего не дает. В целях уточнения термина «алгоритм» примем следующее основное допущение: если $Z = \Gamma_i(X_1, \dots, X_{k_i}, Y_1, \dots, Y_{l_i})$, то $N(Z) = \varphi_i(N(X_1), \dots, N(X_{k_i}), N(Y_1), \dots, N(Y_{l_i}))$, где φ_i — частично-рекурсивная функция.

В $\mathfrak{S}(\mathfrak{Z})$ образуется подмножество выводимых формул по следующему закону: все аксиомы выводимы; далее, если X_1, \dots, X_{k_i} выводимы и $Z = \Gamma_i(X_1, \dots, X_{k_i}, Y_1, \dots, Y_{l_i})$, то и Z выводима. Понятие дедуктивного исчисления можно несколько сузить, потребовав, чтобы для каждого правила вывода Γ_i существовал алгоритм Δ_i , позволяющий для всякой строчки $X_1, \dots, X_{k_i}, Y_1, \dots, Y_{l_i}$ определять, принадлежит она области применимости Γ_i или нет. Для дальнейшего безразлично, как понимать термин «дедуктивное исчисление» — в широком смысле или в узком: все утверждения, которые будут высказаны, остаются справедливыми при обоих пониманиях.

Ниже мы будем рассматривать лишь исчисления «с отрицанием», т. е. удовлетворяющие условию: 4) в \mathfrak{Z} выделен некоторый определенный знак, для которого примем стандартное обозначение \neg . Если A — формула, то формулу $\neg A$ назовем отрицанием A ; формулу $\underbrace{\neg \neg \dots \neg}_n A$ назовем n -кратным отрицанием A .

^{н раз}

Рассмотрим произвольное подмножество $\mathfrak{V} \subseteq \mathfrak{S}(\mathfrak{Z})$, обладающее следующими свойствами: а) существует алгоритм, позволяющий для всякой формулы $A \in \mathfrak{S}(\mathfrak{Z})$ определить, принадлежит A к \mathfrak{V} или нет; б) если $A \in \mathfrak{V}$, то и $\neg A \in \mathfrak{V}$. Можно показать, что эти свойства множества \mathfrak{V} не зависят от того, в каком объемлющем множестве $\mathfrak{S}(\mathfrak{Z})$ мы его рассматриваем. Исчисление Π высекает в \mathfrak{V} подмножество $\mathfrak{E}_{\mathfrak{V}}(\Pi)$ выводимых формул и подмножество $\mathfrak{D}_{\mathfrak{V}}(\Pi)$ формул, отрицания которых выводимы. В применении к \mathfrak{V} исчисление Π называется непротиворечивым, если $\mathfrak{E}_{\mathfrak{V}}(\Pi) \cap \mathfrak{D}_{\mathfrak{V}}(\Pi) = \Lambda$, и полным, если $\mathfrak{E}_{\mathfrak{V}}(\Pi) \cup \mathfrak{D}_{\mathfrak{V}}(\Pi) = \mathfrak{V}$. Исчисление Π' назовем усилением исчисления Π в применении к \mathfrak{V} , если $\mathfrak{E}_{\mathfrak{V}}(\Pi') \supseteq \mathfrak{E}_{\mathfrak{V}}(\Pi)$. Исчисление Π назовем неполным в применении к \mathfrak{V} , если оно не допускает полного и непротиворечивого усиления. Множества номеров, соответствующие множествам $\mathfrak{E}_{\mathfrak{V}}(\Pi)$ и $\mathfrak{D}_{\mathfrak{V}}(\Pi)$, обозначим через $K_{\mathfrak{V}}(\Pi)$ и $L_{\mathfrak{V}}(\Pi)$; легко показать, что оба эти множества рекурсивно-перечислимые. Исчисление Π назовем эффективно-неподчастично-рекурсивной функцией $\gamma(\cdot)$, что если n есть номер рекурсивно-перечислимого множества $K_{\mathfrak{V}}(\Pi')$, где Π' — непротиворечивое усиление исчисления Π , то $\gamma(n)$ есть номер формулы из \mathfrak{V} , неразрешимой в Π' . При этом формула называется неразрешимой в исчислении, если ни она, ни ее отрицание не выводимы в этом исчислении. В дальнейшем множество \mathfrak{V} будет всегда фиксированным,

поэтому слова «в применении к \mathfrak{B} », равно как и индекс \mathfrak{B} будут для краткости в большинстве случаев опускаться.

4. Регулярные исчисления. Дедуктивное исчисление Π назовем D_1 -исчислением в применении к \mathfrak{B} , если для всякой формулы $A \in \mathfrak{B}$ из выводимости A следует выводимость $\neg\neg A$. Дедуктивное исчисление Π назовем регулярным в применении к \mathfrak{B} , если оно есть D_1 -исчисление и для всякой формулы $A \in \mathfrak{B}$ из выводимости $\neg\neg A$ следует выводимость $\neg A$.

Теорема 2. Необходимым и достаточным условием неполноты регулярного исчисления Π является неотделимость множеств $K(\Pi)$ и $L(\Pi)$.

Следуя Тарскому⁽⁶⁾ назовем исчисление Π разрешимым в применении к \mathfrak{B} , если $K(\Pi)$ есть рекурсивное множество, и существенно неразрешимым, если Π непротиворечиво и не допускает непротиворечивого разрешимого усиления.

Теорема 3. Регулярное исчисление тогда и только тогда существенно неразрешимо, когда оно непротиворечиво и неполномо (ср. ⁽⁶⁾).

Теорема 4. Эффективная неотделимость $K(\Pi)$ и $L(\Pi)$ необходима и достаточна для эффективной неполноты регулярного исчисления Π .

Отнесем к множеству $\mathfrak{X}(\mathfrak{B})$ всякую формулу $A \in \mathfrak{B}$, для которой не существует формулы $B \in \mathfrak{B}$ такой, что $\neg B = A$.

Теорема 5. Пусть D_1 -исчисление Π эффективно-неполнимо в применении к \mathfrak{B} . Тогда существует такая частично-рекурсивная функция $\tilde{\gamma}(x)$, что если n есть номер рекурсивно-перечислимого множества $K_{\mathfrak{B}}(\Pi')$, где Π' непротиворечивое усиление Π , то $\tilde{\gamma}(n)$ есть номер формулы из $\mathfrak{X}(\mathfrak{B})$, неразрешимой в Π' .

5. Применение к теореме Гёделя. Пусть для каждого натурального m определена формула $F(m) \in \mathfrak{S}(\mathfrak{B})$, причем выполняются следующие условия: а) существует обще-рекурсивная функция $f(x)$ такая, что $f(m)$ есть номер формулы $F(m)$; б) множество номеров формул $F(m)$ рекурсивно. Пусть, далее, E_1 и E_2 — эффективно-неотделимые множества. Образуем множество \mathfrak{B} , состоящее из всех формул вида $\neg\neg\dots\neg F(m)$. Можно построить дедуктивное исчисление Π_0 такое, что $\mathfrak{X}(\Pi_0)$ состоит из четнократных отрицаний формул $F(m)$ при $m \in E_1$ и нечетнократных отрицаний $F(m)$ при $m \in E_2$. Легко показать, что $K(\Pi_0)$ и $L(\Pi_0)$ эффективно-неотделимы. Применяя последовательно теоремы 4 и 5, получаем, что для всякого непротиворечивого исчисления Π' , являющегося усилением исчисления Π_0 , алгоритмически строится формула $F(m)$, неразрешимая в Π' ; более точно, существует такая частично-рекурсивная функция $\zeta(x)$, что если n — номер $K(\Pi')$, где Π' — непротиворечивое усиление Π_0 , то $F(\zeta(n))$ неразрешима в Π' .

Отсюда легко следует теорема Гёделя. В качестве E_1 и E_2 возьмем какие-нибудь непересекающиеся эффективно-неотделимые рекурсивно-перечислимые множества (см. теорему 1). Известно⁽⁴⁾, что всякое рекурсивно-перечислимое множество может быть порождено примитивно-рекурсивной функцией. Пусть $b_1(x)$ и $b_2(x)$ — примитивно-рекурсивные функции, порождающие, соответственно, E_1 и E_2 . Положим

$$F(m) = (\exists x)(b_1(x) = m \wedge (y)(y \leq x \rightarrow (b_2(y) = m))).$$

Формула $F(m)$ содержательно эквивалентна утверждению $m \in E_1$. Построим, как указано, множество формул \mathfrak{B} и исчисление Π_0 . Обычно усилительные исчисления, описывающие арифметику, являются дедуктивными исчислениями, описываемыми арифметику, являются усилителями Π_0 , поэтому для каждого из них алгоритмически указывается

неразрешимая формула $F(m)$. Нам остается заметить, что для всякого m из неразрешимости $F(m)$ вытекает, что $\neg F(m)$ истинна, но невыводима.

6. Нерегулярные исчисления. Неотделимость $K(\Pi)$ и $L(\Pi)$ достаточна для неполномости произвольного исчисления Π .

Теорема 7. Если \mathfrak{B} таково, что $\mathfrak{X}(\mathfrak{B})$ бесконечно, то существует непротиворечивое исчисление, являющееся неполным разрешимым D_1 -исчислением в применении к \mathfrak{B} .

Из теоремы 7 следует, что теоремы 2 и 3 перестают быть верными при замене слов «регулярное исчисление» словами « D_1 -исчисление».

Теорема 8. Эффективная неотделимость $K(\Pi)$ и $L(\Pi)$ достаточна для эффективной неполномости произвольного исчисления Π .

Отнесем к множеству $\mathfrak{L}^+(\Pi)$ всякую формулу A , обладающую следующими свойствами: а) $A \in \mathfrak{X}(\mathfrak{B})$; б) существует такое четное число s , что s -кратное отрицание A принадлежит $\mathfrak{L}(\Pi)$. Аналогично строится множество $\mathfrak{L}^+(\Pi)$. Соответствующие множества номеров обозначим $K^+(\Pi)$ и $L^+(\Pi)$. Исчисление Π назовем согласованным в применении к \mathfrak{B} , если $\mathfrak{L}^+(\Pi) \cap \mathfrak{L}^+(\Pi) = \Lambda$. Из согласованности исчисления следует его непротиворечивость; в регулярном случае эти понятия совпадают.

Теорема 9. Всякое несогласованное исчисление неполнимо.

Теорема 10. Необходимым и достаточным условием неполномости согласованного исчисления Π является неотделимость множеств $K^+(\Pi)$ и $L^+(\Pi)$.

Назовем исчисление Π слабо эффективно-неполнимым в применении к \mathfrak{B} , коль скоро существует такая частично-рекурсивная функция $\delta(x)$, что если n — номер множества $K(\Pi')$, где Π' — согласованное усиление исчисления Π , то $\delta(n)$ есть номер формулы из \mathfrak{B} , неразрешимой в Π' .

Теорема 11. Необходимым и достаточным условием слабой эффективной неполномости согласованного исчисления Π является эффективная неотделимость множеств $K^+(\Pi)$ и $L^+(\Pi)$.

7. Проблемы. В заключение сформулируем несколько нерешенных, связанных с изложенным выше, проблем:

I. Существуют ли неотделимые множества, не являющиеся эффективно-неотделимыми?

II. Существует ли неполнимое исчисление, не являющееся эффективно-неполнимым?

III. Является ли эффективная неотделимость $K(\Pi)$ и $L(\Pi)$ необходимой для эффективной неполномости нерегулярных исчислений?

IV. Существует ли слабо эффективно-неполнимое исчисление, не являющееся эффективно-неполнимым?

V. Существует ли неполнимое исчисление, не являющееся слабо эффективно-неполнимым?

Автор благодарен А. Н. Колмогорову за ряд советов. В частности, А. Н. Колмогорову принадлежит определение «исчисления» и указание на достаточность условия теоремы 2.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

Поступило
22 V 1953

¹ А. А. Марков, Тр. Матем. ин-та им. Стеклова АН СССР, 38, 176 (1951).
² Б. А. Трахтенборт, ДАН, 88, 953 (1953).
³ С. С. Клиепе, Trans. Am. Math. Soc., 53, 41 (1943).
⁴ J. B. Rosser, J. Symb. Logic, 1, 87 (1936).
⁵ S. C. Kleene, Trans. Am. Math. Soc., 53, 41 (1943).
⁶ A. Tarski, J. Symb. Logic, 14, 75 (1949).
7/0