MSBD 5004 Mathematical Methods for Data Analysis Homework 2

Due date: 13 March, 9pm, Wednesday

- 1. $\mathbb{R}^{m \times n}$ is a vector space over \mathbb{R} . Show that $\langle \boldsymbol{A}, \boldsymbol{B} \rangle = \operatorname{trace}(\boldsymbol{A}^T \boldsymbol{B})$ for $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times n}$ is an inner product on $\mathbb{R}^{m \times n}$. Here $\operatorname{trace}(\cdot)$ is the trace of a matrix, i.e., the sum of all diagonal entries.
- 2. Consider an inner product space V with the induced norm. Let $X = \{x_1, \dots, x_N\} \subset V$ be a set of vectors in V with $||x_i|| = 1$ for all i. Given a vector $y \in V$ with ||y|| = 1, show that the following two things are the same:
 - finding the vector in X that has the smallest distance to y (i.e., solving $\min_{x \in X} ||x y||$)
 - finding the vector in X that has the smallest angel to y (i.e., solving $\min_{x \in X} \arccos\langle x, y \rangle$)
- 3. Consider the polynomial kernel $K(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x}^T \boldsymbol{y})^2$ for $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2$. Find an explicit feature map $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ satisfying $\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle = K(\boldsymbol{x}, \boldsymbol{y})$, where the inner product the standard inner product in \mathbb{R}^3 .
- 4. Determine whether each of the following functions of vectors in \mathbb{R}^n is linear. If it is a linear function, give its inner product representation, i.e., an vector $\mathbf{a} \in \mathbb{R}^n$ for which $f(\mathbf{x}) = \langle \mathbf{a}, \mathbf{x} \rangle$ for all $\mathbf{x} \in \mathbb{R}^n$. If it is not linear, give specific $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$ for which superposition fails, i.e., $f(\alpha \mathbf{x} + \beta \mathbf{x}) \neq \alpha f(\mathbf{x}) + \beta f(\mathbf{y})$.
 - (a) The spread of values of the vector, defined as $f(\mathbf{x}) = \max_k x_k \min_k x_k$.
 - (b) The difference of the last element and the first, $f(\mathbf{x}) = x_n x_1$.
 - (c) The median of a vector, where we will assume n = 2k + 1 is odd. The median of the vector \boldsymbol{x} is defined as the (k+1)-st largest number among the entries of \boldsymbol{x} . For example, the median of (7.1, 3.2, 1.5) is 1.5.
 - (d) Vector extrapolation, defined as $x_n + (x_n x_{n-1})$, for $n \ge 2$. (This is a simple prediction of what x_{n+1} would be, based on a straight line drawn through x_n and x_{n-1} .)