The rmeta Package

April 22, 2004

T7 .	0 11	
Version	-211	

Author Thomas Lumley <tlumley@u.washington.edu>

Maintainer Thomas Lumley <tlumley@u.washington.edu>

Description Functions for simple fixed and random effects meta-analysis for two-sample comparisons and cumulative meta-analyses. Draws standard summary plots, funnel plots, and computes odds ratios and tests for association and heterogeneity

Title Meta-analysis

License GPL version 2

R topics documented:

																											14
cochrane funnelplot meta.DSL meta.MH meta.colors cummeta meta.summaries .	cochrane	catheter cochrane funnelplot meta.DSL meta.MH meta.colors cummeta meta.summaries metaplot																									

Description

Data on the effectiveness of silver sulfadiazine coating on venous catheters for preventing bacterial colonisation of the catheter and bloodstream infection

Usage

data(catheter)

2 cochrane

Format

A data. frame with 8 variables giving information about 16 controlled trials of antibacterial coated venous catheters

> Name: Name of principal author n.trt: number of coated catheters n.ctrl: number of standard catheters

col.trt: number of coated catheters colonised

by bacteria

col.ctrl: number of standard catheters colonised

by bacteria

inf.trt: number of coated catheters resulting in

bloodstream infection

inf.ctrl: number of standard catheters resulting in

bloodstream infection

or: Odds ratio

Source

Veenstra D et al (1998) "Efficacy of Antiseptic Impregnated Central Venous Catheters in Preventing Nosocomial Infections: A Meta-analysis" JAMA 281:261-267

Examples

cochrane

Data for Cochrane Collaboration logo

Description

Data from randomised trials before 1980 of corticosteroid therapy in premature labour and its effect on neonatal death.

Usage

```
data(cochrane)
```

funnelplot 3

Format

This data frame contains the following columns:

```
name Identifier for the study
ev.trt Number of deaths in the treated group
n.trt Number in the treated group
ev.ctrl Number of deaths in the control group
n.ctrl Number in the control group
```

Details

This meta-analysis, if done, would likely have resulted in the treatment being widely used a decade earlier than it was, saving many lives. The graph is part of the logo of the Cochrane Collaboration, a group aiming to perform systematic reviews of the entire clinical trial literature.

Source

```
http://www.cochrane.org
```

Examples

funnelplot

Funnel plot for publication bias

Description

Plots the treatment difference for trials against the size of the trial (or other specified variable). Asymmetry in the plot often indicates publication bias. Generic, with methods for meta-analysis objects.

Usage

4 funnelplot

Arguments

x	Treatment difference
se	Standard error of x
size	Variable for the vertical axis
summ	summary treatment difference
xlab	x-axis label
ylab	y-axis label
colors	list of colors for components of the plot
conf.level	For confidence interval plotting
plot.conf	Plot confidence intervals instead of just points?
zero	location of a null hypothesis line
mirror	Add points reflected around summ?
	further arguments to be passed from or to methods.

Details

With the default value of size the plot should appear as a upwards-pointing funnel shape. Publication bias often causes one side of the funnel to be trimmed near the base. The mirror plot creates a symmetric funnel by reflecting the plot around the summ value. In the presence of publication bias the added points will separate from the real studies.

Value

Used for its side-effect.

Author(s)

Thomas Lumley

See Also

```
meta.DSL, meta.MH, meta.summaries, metaplot
```

Examples

meta.DSL 5

meta.DSL Random effects (DerSimonian-Laird) meta-analysis

Description

Computes the individual odds ratios or relative risks, the summary, the random effects variance, and Woolf's test for heterogeneity. The print method gives the summary and test for heterogeneity; the summary method also gives all the individual odds ratios and confidence intervals. Studies with zero or infinite odds ratio are omitted, as their variance cannot be calculated sensibly.

The plot method draws a standard meta-analysis plot. The confidence interval for each study is given by a horizontal line, and the point estimate is given by a square whose height is inversely proportional to the standard error of the estimate. The summary odds ratio, if requested, is drawn as a diamond with horizontal limits at the confidence limits and width inversely proportional to its standard error.

Usage

Arguments

8011101100	
ntrt	Number of subjects in treated/exposed group
nctrl	Number of subjects in control group
ptrt	Number of events in treated/exposed group
pctrl	Number of events in control group
conf.level	Coverage for confidence intervals
names	names or labels for studies
data	data frame to interpret variables
subset	subset of studies to include
na.action	a function which indicates what should happen when the data contain NAs. Defaults to na.fail.
statistic	"OR" for odds ratio, "RR" for relative risk
x,object	a meta.DSL object
summary	Plot the summary odds ratio?
summlabel	Label for the summary odds ratio
colors	see meta.colors
xlab	x-axis label, default is based on statistic
	further arguments to be passed from or to methods.

6 meta.MH

Value

An object of class meta.DSL with print, plot, funnelplot and summary methods.

Author(s)

Thomas Lumley

See Also

```
plot,par,meta.MH,funnelplot
```

Examples

meta.MH

Fixed effects (Mantel-Haenszel) meta-analysis

Description

Computes the individual odds ratio or relative risk, the Mantel-Haenszel summary, and Woolf's test for heterogeneity. The print method gives the summary and test for heterogeneity; the summary method also gives all the individual odds ratios and confidence intervals.

The plot method draws a standard meta-analysis plot. The confidence interval for each study is given by a horizontal line, and the point estimate is given by a square whose height is inversely proportional to the standard error of the estimate. The summary odds ratio, if requested, is drawn as a diamond with horizontal limits at the confidence limits and width inversely proportional to its standard error.

Usage

meta.MH

Arguments

ntrt Number of subjects in treated/exposed group

nctrl Number of subjects in control group

ptrt Number of events in treated/exposed group

pctrl Number of events in control group

names or labels for studies

data frame to interpret variables

subset subset of studies to include

na.action a function which indicates what should happen when the data contain

NAs. Defaults to na.fail.

statistic "OR" for odds ratio, "RR" for relative risk

x, object a meta. MH object

summary Plot the summary odds ratio?

summlabel Label for the summary odds ratio
conf.level Coverage for confidence intervals

colors see meta.colors

xlab x-axis label, default is based on statistic

... further arguments to be passed to or from methods.

Value

An object of class meta. MH with print, plot, funnelplot and summary methods.

Note

There are at least two other ways to do a fixed effects meta-analysis of binary data. Peto's method is a computationally simpler approximation to the Mantel-Haenszel approach. It is also possible to weight the individual odds ratios according to their estimated variances. The Mantel-Haenszel method is superior if there are trials with small numbers of events (less than 5 or so in either group)

Author(s)

Thomas Lumley

References

See Also

plot,par,meta.DSL,funnelplot

8 meta.colors

Examples

meta.colors

Control colours in meta-analysis plot

Description

Wrapper function for specifying colours to meta-analysis plots

Usage

Arguments

all.elements if present, overrides other arguments

box Colour of sample size box
lines Colour of confidence intervals
summary Colour of summary estimate
zero Colour of null hypothesis line

mirror Colour of reflected points (in funnelplot)

text Colour of labels

axes Colour of x-axis and axis labels

background colour.

Value

a list of colors

See Also

```
plot.meta.MH,plot.meta.DSL,plot.meta.summaries,funnelplot,metaplot
```

cummeta 9

Examples

```
data(cochrane)
steroid <- meta.MH(n.trt, n.ctrl, ev.trt, ev.ctrl,
                   names=name, data=cochrane)
## All black, for better photocopying
plot(steroid, col=meta.colors("black"))
## distinguish the summary
plot(steroid,colors=meta.colors(summary="forestgreen"))
data(catheter)
e <- meta.DSL(n.trt, n.ctrl, inf.trt, inf.ctrl, data=catheter,
              names=Name, subset=c(13,6,3,12,4,11,1,14,8,10,2))
## Truly awful colour scheme to illustrate flexibility
plot(e, colors=meta.colors(summary="green",lines=c("purple","skyblue"),
       box="red",zero="yellow",text=palette(),background="tomato",
       axes="lightgreen"))
## Dark blue background popular for presentations.
plot(e, colors=meta.colors(summary="white",lines="#FFFFF0",
        box="#FFFF50",zero="grey90",text="white",background="darkblue",
        axes="grey90"))
```

cummeta

Cumulative meta-analysis of binary data

Description

A cumulative meta-analysis plot shows how evidence has accumulated over time. The ith line in the cumulative meta-analysis plot is the summary produced by a meta-analysis of the first i trials.

Usage

Arguments

ntrt	Number of subjects in treated/exposed group
nctrl	Number of subjects in control group
ptrt	Number of events in treated/exposed group
pctrl	Number of events in control group
effects	Difference between control and treatment group

10 cummeta

stderrs Standard errors of effects

weights Study weights (see meta.summaries)

names or labels for studies

data frame to interpret variables

subset subset of studies to include

method Which meta-analysis method to use

statistic "OR" for odds ratio or "RR" for relative risk.

How to handle missing values

logscale The effects values are the logarithms of actual effects (for plotting)

x, object a meta.cum object

na.action

... other graphical arguments for metaplot

conf.level Coverage for confidence intervals

colors see meta.colors

xlab X-axis label

summary.line Plot a vertical line at the final summary value?

summary.conf Plot vertical lines at the final confidence interval limits?

main, lwd graphical parameters

Value

Object of class meta.cum.

See Also

```
meta.MH,meta.DSL
```

Examples

summary(d)

meta.summaries 11

meta.summaries

Meta-analysis based on effect estimates

Description

Computes a summary estimate and confidence interval from a collection of treatment effect estimates and standard errors. Allows fixed or random effects, optional quality weights.

Usage

Arguments

d Effect estimates
se standard errors for d
method Standard errors and default weights from fixed or random-effects?

weights Optional weights (eg quality weights)
logscale Effect is on a log scale? (for plotting)

names labels for the separate studies

data optional data frame to find variables in

conf.level level for confidence intervals

subset Which studies to use

na.action a function which indicates what should happen when the data contain

NAs. Defaults to na.fail.

x,object a meta.summaries object
summary Plot the summary odds ratio?
summlabel Label for the summary odds ratio

colors see meta.colors

xlab label for the effect estimate axis.

... further arguments to be passed to or from methods.

Details

The summary estimate is a weighted average. If weights are specified they are used, otherwise the reciprocal of the estimated variance is used.

The estimated variance is the square of **se** for a **fixed** analysis. For a random analysis a heterogeneity variance is estimated and added.

The variance of a weighted average is a weighted average of the estimated variances using the squares of the weights. This is the square of the summary standard error.

With the default weights these are the standard fixed and random effects calculations.

12 metaplot

Value

An object of class meta.summaries, which has print,plot,summary and funnelplot methods.

Author(s)

Thomas Lumley

See Also

```
meta.DSL, meta.MH, funnelplot, metaplot
```

Examples

metaplot

Meta-analysis plot (forest plot)

Description

Plot confidence intervals with boxes indicating the sample size/precision and optionally a diamond indicating a summary confidence interval. This function is usually called by plot methods for meta-analysis objects.

Usage

Arguments

mn	point estimates from studies
se	standard errors of mn
nn	precision: box ares is proportional to this. 1/se^2 is the default
labels	labels for each interval
conf.level	Confidence level for confidence intervals
xlab	label for the point estimate axis
ylab	label for the axis indexing the different studies
xlim	the range for the x axis.
summn	summary estimate

metaplot 13

standard error of summary estimate sumse precision of summary estimate sumnn label for summary estimate summlabel TRUE to display on a log scale logeffect line width lwd Scale factor for box size boxsize "Null" effect value zero use "n" for no x-axis (to add a customised one) xaxt if TRUE and logscale, have tick values approximately equally spaced on logticks a log scale

colors see meta.colors

Other graphical parameters

Value

This function is used for its side-effect.

See Also

```
plot.meta.DSL, plot.meta.MH, plot.meta.summaries
```

Examples

```
data(catheter)
a <- meta.MH(n.trt, n.ctrl, col.trt, col.ctrl, data=catheter,
             names=Name, subset=c(13,6,5,3,7,12,4,11,1,8,10,2))
metaplot(a$logOR, a$selogOR, nn=a$selogOR^-2, a$names,
         summn=a$logMH, sumse=a$selogMH, sumnn=a$selogMH^-2,
         logeffect=TRUE)
metaplot(a$logOR, a$selogOR, nn=a$selogOR^-2, a$names,
         summn=a$logMH, sumse=a$selogMH, sumnn=a$selogMH^-2,
         logeffect=TRUE,logticks=FALSE)
## angry fruit salad
metaplot(a$logOR, a$selogOR, nn=a$selogOR^-2, a$names,
         summn=a$logMH, sumse=a$selogMH, sumnn=a$selogMH^-2,
         logeffect=TRUE, colors=meta.colors(box="magenta",
             lines="blue", zero="red", summary="orange",
             text="forestgreen"))
```

Index

```
*Topic datasets
    catheter, 1
    cochrane, 2
*Topic \ hplot
    cummeta, 9
    funnelplot, 3
    {\tt meta.colors},\, 7
    meta.DSL, 4
    meta.MH, 6
    meta.summaries, 10
    \mathtt{metaplot},\, \underline{12}
*Topic htest
    cummeta, 9
    meta.DSL, 4
    meta.MH, 6
    meta.summaries, 10
catheter, 1
cochrane, 2
cummeta, 9
funnelplot, 3, 5, 7, 8, 11
funnelplot.meta.DSL (funnelplot), 3
funnelplot.meta.MH (funnelplot), 3
funnelplot.meta.summaries
         (funnelplot), 3
meta.colors, 5, 6, 7, 9, 11, 12
meta.DSL, 4, 4, 7, 10, 11
meta.MH, 4, 5, 6, 10, 11
meta.summaries, 4, 9, 10
metaplot, 4, 8, 9, 11, 12
na.fail, 5, 6, 11
par, 5, 7
plot, 5, 7
plot.meta.cum (cummeta), 9
plot.meta.DSL, 8, 13
plot.meta.DSL (meta.DSL), 4
plot.meta.MH, 8, 13
plot.meta.MH (meta.MH), 6
plot.meta.summaries, 8, 13
plot.meta.summaries (meta.summaries),
```