Question 1

Show that $\vdash_{tot} \{T\} P \{z = \max(x, y)\}$ is valid, where $\max(x, y)$ is the largest number of x and y. [3 marks]

 $\{T\}$ if (x > y) { $\{T \land x > y\}$ If-statement $\{x = \max(x,y)\}$ Implied z = x; $\{z = \max(x,y)\}$ Assignment $\{y = \max(x,y)\}$ If-statement $\{y = \max(x,y)\}$ Implied z = y; $\{z = \max(x,y)\}$ Assignment

Explanation:

}

First, If branch, by the Assignment rule we can prove

$${y = \max(x,y)} z = y {z = \max(x,y)}$$

From $\vdash x > y \rightarrow y = \max(x, y)$ by the Implied rule we can prove

$${x > y} z = y {z = max(x, y)}$$

the else branch is similar, so we can show

$$\frac{\{\top \land x > y\}_{Z} = y \{z = \max(x, y)\}\{\top \land \neg(x > y)\}_{Z} = x\{z = \max(x, y)\}}{\{\top\} \text{ if } x > y \text{ then } z = y \text{ else } z = x \{z = \max(x, y)\}}$$

Question 2

Show that $\vdash_{tot} \{x \ge 0\} Fac1(x) \{y = x!\}$ is valid

- Write down a proper loop invariant which is useful for constructing the correctness proof.
 [2 marks]
- Write down a proper variant which is useful for proving the termination of the program.[1 mark]
- 3. Provide the full proof using proof rules. [4 marks]
- Justify the correct uses of the implied rule in three places of the proof in English. [3 marks]

1.
$$y * a! = x!$$

2. a

3.

(1). If
$$a > 0$$

$$\{0 \le x\}$$

$$\{ 1^*x! = x! \land 0 \le x \}$$

Imply

$$a = x;$$

$$\{ 1*a! = x! \land 0 \le a \}$$

Assignment

$$y = 1;$$

$$\{ y^*a! = x! \land 0 \le a \}$$

Assignment

while
$$(a > 0)$$
 {

```
\{y^*a! = x! \land a > 0 \land 0 \le a = E_0\}
                                                           Invariant Hyp. and guard
                   \{y * a * (a-1)! = x! \land 0 \le a - 1 < E_0\}
                                                           Implied
       y = y * a;
                   \{y^*(a-1)! = x! \land 0 \le a - 1 < E_0\}
                                                           Assignment
       a = a - 1;
                   \{y^*a! = x! \land 0 \le a < E_0\}
                                                           Assignment
}
                   {y*a! = x! \land \neg(a > 0)}
                                                           Total-while
                   {y = x!}
                                                           Implied
(2). If a = 0
               \{0 \le x\}
                                                       Implied
a = x = 0;
y = 1;
while (a > 0) {
       y = y * a;
       a = a - 1;
}
               {y = 0! = x!}
```

If a = x = 0, so that we can imply x is greater than or equal to 0. Also, it will not enter the while loop, so it will always terminate. Thus, we can imply y = 1 = 0! = x!.

Implied

4. (1) First, from the Invariant Hyp. and guard $\{y*a!=x! \land a>0 \land 0 \leq a=E0\}$, as a! equals to a*(a-1)!, so that y*a!=x! can imply y*a*(a-1)!=x!.

Also, as a is greater than 0, known from the condition of the while loop, and $0 \le a = E_0$, so that a -1 is greater than or equal to 0 and also less than E_0 .

Thus, $\{y*a! = x! \land a > 0 \land 0 \le a = E0\}$ can imply $\{y*a*(a-1)! = x! \land 0 \le a-1 < E0\}$

- (2) From $\{1 * x! = x! \land 0 \le x\}$, as 1 * x! = x! is a tautology, so that $T \land 0 \le x$ can imply the precondition $\{0 \le x\}$.
- (3) From $\{y*a!=x! \land \neg(a>0)\}$, as $0 \le a$ and $\neg(a>0)$, so that a is equal to 0. Because 0! is equal to 1, so that y*1=x!. Thus, $\{y*a!=x! \land \neg(a>0)\}$ can imply $\{y=x!\}$.