	v	va	V1	vo						x0				x0		
0	0	0 X2	X1 0	X0 0				[0	1	3	2	0	1	3	2
1	0	0	0	1												
2	0	0	1	0				x2	4	5	7	6	4	5	7	6
3	0	0	1	1					12	13	15	x2	12	13	15	14
4	0	1	0	0					1		15	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{x3}$	1			x3
5	0	1	0	1				'	8	9	11	10	8	9	11	10
6	0	1	1	0												
7	0	1	1	1						0	x1			0	x1	
8	1	0	0	0					0	x0	3	2	0	x0	3	2
9	1	0	0	1				x2		5						6
10	1	0	1	0							7	6	4	5	7	
11	1	0	1	1						1.5	5 14 x2	12	12 15	14.		
12	1	1	0	0					12	13	15		12	13	15	14
13	1	1	0	1					8	9	11	10 x3	8	9	11	10 x3
14	1	1	1	0												
15	1	1	1	1						x0	x 1			x0	x1	
7	XX	XX							0	1	3	2	0	1	3	2
	3 2	1 0														
0 0		0 0			-				4	5	7	6	4	5	7	6
1 (_	0 1						x2	12	13	15	14 x2	12	13	15	14
3 0	_	1 0 1 1										x3				x3
4 (0 0							8	9	11	10	8	9	11	10
5 (0 1			+											
6 0		1 0			+				.	x0	x1			x0	x1	
7 0		1 1							0	1	3	2	0	1	3	2
8 1	_	0 0							4	5	7	6 1	4	5	7	6
9 1	0	0 1						x2	x2		15 14	x2			15 14	
1 1	0	1 0								13		$ ^{14} $	12	13		14
0	0	1 1			+							x3	0			10 x3
$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$		1 1							8	9	11	10	8	9	11	10
1 1	1	0 0									x1	'	<u> </u>		x1	'
2					-				0	x0	3	2		x0	3	<u> </u>
1 1 3		0 1								1	3	4	0	1	3	4
1 1	1	1 0							4	5	7		4	5	7	6
4								x2		12 13						
1 1 5		1 1							12		15		12	13	15	14
									8	9	11	10 x3	8	9	11	10 x3
										-	x1				x1	

Nome e Matricula _____

Prova 1 – Inf 251 – 2016/II – Professor Ricardo dos Santos Ferreira

- 1) a) Preencha a tabela no verso da folha para projetar um circuito com entradas A e B de 2 bits sem sinal. A saída S será S= 4-A*B se A >=B e S=A-1, caso contrário. A saída será em complemento de 2 com 4 bits.
- b) Faça o mapa de Karnaugh e simplifique as equações. Não é necessário montar o circuito.
- 2) a) Suponha A e B com 2 bits em complemento de 2. Preencha a tabela para realizar a operação S=A*B com saída em BCD com um dígito e um bit de sinal (0- positivo e 1 para negativo). b) Faça o mapa de Karnaugh e simplifique as equações. Não é necessário montar o circuito.
- 3) Desenhe o circuito para a seguinte equação F = ((A xor B) and C) or (A nand B)). Monte a tabela verdade para F.

4) Qual será o valor das saídas a e b para o circuito abaixo nos três casos: (1) x=0,y=1,z=0, (2) x=1,y=0,z=1 (3) x=1,y=1,z=1. Dica: para portas AND, se uma entrada é 0, a saída será 0. Para portas OR se uma entrada for 1, a saída será 1.

