AE721 Boundary layer Theory

(2022-2023, Even Semester)

Assignment - 3

1. Derive the Falkner-Skan equation (given below) from the boundary layer equations by assuming $u_e = Ax^m$, where s is streamwise direction

$$f''' + \frac{m+1}{2}ff'' + m[1 - (f')^2] = 0$$

2. Solve the Falkner-Skan equation numerically with appropriate boundary conditions for m = 2.0, 1.0, 0.6, 0.3, 0, -0.05, -0.09043, -0.08.

$$f''' + \frac{m+1}{2}ff'' + m[1 - (f')^2] = 0$$

Deliverables:

(a) For each m, include a table for the final iteration values of η , f, f', f''

(b) Comparison plot of streamwise velocity profiles $\left(\frac{u}{u_e} \text{ vs } \eta\right)$ and locate the inflectional point in the profile, if any.

(c) Comparison plot of normal velocity profiles $\left(\frac{v\sqrt{Re_x}}{u_e} \text{ vs } \eta\right)$

(d) Comparison plot of shear stress profiles $\left(\frac{\tau \sqrt{Re_x}}{\rho_e u_e^2} \text{ vs } \eta\right)$

(f) Provide a table with $\frac{\delta^*}{\delta_{FS}}$, $\frac{\theta}{\delta_{FS}}$, H, $\sqrt{Re_x} \frac{c_f}{2}$, λ , \mathcal{T} , F_θ for the given values of m, where $\delta_{FS} = \sqrt{\frac{v \ x}{u_s}}$. The definition of H, λ , \mathcal{T} , \mathcal{F}_θ are given below

•
$$H = \frac{\delta^*}{\theta}$$

•
$$\mathcal{T} = \sqrt{Re_{\theta}} \frac{c_f}{2}$$

•
$$\lambda = \frac{\theta^2}{\nu} \frac{du_e}{dx}$$

•
$$\mathcal{F}_{\theta} = 2[\mathcal{T} - (H+2)\lambda]$$

(g) Plot λ vs H, λ vs \mathcal{T} , and λ vs \mathcal{F}_{θ} for different m.

3. Calculate the value of $\frac{\delta^*}{\delta_{FS}}$, $\frac{\theta}{\delta_{FS}}$, H, $\sqrt{Re_x} \frac{c_f}{2}$, for the given values of m (refer Problem 2) using analytical Thwaits method and compare with the numerical solutions of Falkner-Skan equation.

$$\widetilde{H}(\lambda) = 2.61 - 4.1 \,\lambda + 14 \,\lambda^3 + \frac{0.56 \,\lambda^2}{(\lambda + 0.18)^2}$$

$$\widetilde{T}(\lambda) = 0.220 + 1.52 \,\lambda - 5 \,\lambda^3 - \frac{0.072 \,\lambda^2}{(\lambda + 0.18)^2}$$