ASSIGNMENT 6

JONAS TREPIAKAS

Contents

1. Theory and Results	1
1.1. Jet Bundles	1
1.2. The Whitney C^{∞} topology (compact-open topology)	3
1.3. Transversality	3
1.4. Critical Values and Non-degenerate Critical Values	4
2. Problems	5
2.1. Reeb's Theorem	6
2.2. Existence of Morse functions	7
2.3. On the Transversality Theorem	9

1. Theory and Results

1.1. Jet Bundles.

Definition 1.1. Let X, Y be smooth manifolds and $p \in X$. Suppose $f, g: X \to Y$ are smooth with f(p) = g(p) = q.

- (1) We that f has first order contact with g at p if $(df)_p = (dg)_p : T_pX \to T_qY$
- (2) We say that f has k th order contact with g at p if $(df): TX \to TY$ has (k-1) st order contact with (dg) at every point in T_pX . This is written as $f \sim_k g$ at p.
- (3) Let $J^k(X,Y)_{p,q}$ denote the set of equivalence classes under " \sim_k at p " of
- smooth maps $f: X \to Y$ where f(p) = q. (4) Define $J^k(X,Y) := \bigcup_{(p,q) \in X \times Y} J^k(X,Y)_{p,q}$. An element $\sigma \in J^k(X,Y)$ is called a k-jet of mappings (or just a k-jet) from X to Y.
- (5) Let σ be a k-jet. Then for some $(p,q) \in X \times Y$, $\sigma \in J^k(X,Y)_{p,q}$. Then p is called the source of σ and q is called the target of σ . The mapping $\alpha \colon J^k(X,Y) \to X$ given by $\sigma \mapsto$ source of σ is called the source map and the mapping $\beta \colon J^k(X,Y) \to Y$ given by $\sigma \mapsto \text{target of } \sigma \text{ is called the target}$ map.

Definition 1.2 (k-jet or the k-prolongation of a map). For a smooth map $f: X \to \mathbb{R}$ Y, there is a canonically defined map $j^k f: X \to J^k(X,Y)$ called the k-jet of f defined by $j^k f(p) = [f, p]$, the equivalence class of f in $J^k(X, Y)_{p, f(p)}$, for every $p \in X$.

Lemma 1.3. Let $U \subset \mathbb{R}^n$ be open and $p \in U$. Let $f, g: U \to \mathbb{R}^m$ be smooth. Then $f \sim_k g$ at p if and only if

$$\frac{\partial^{|\alpha|} f_i}{\partial x^{\alpha}}(p) = \frac{\partial^{|\alpha|} g_i}{\partial x^{\alpha}}(p)$$

for every multi-index α with $|\alpha| \leq k$ and $1 \leq y \leq m$ where f_i and g_i are the coordinate functions determined by f and g, respectively, and x_1, \ldots, x_n are coordinates on U.

Lemma 1.4. Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be open. Let $f_1, f_2 \colon U \to V$ and $g_1, g_2 \colon V \to \mathbb{R}^l$ be smooth. Let $p \in U$. If $f_1 \sim_k f_2$ at p and $g_1 \sim_k g_2$ at $q = f_1(p) = f_2(p)$, then $g_1 \circ f_1 \sim_k g_2 \circ f_2$ at p.

Proof. We proceed by induction. First, we show the case when k=1. In this case, the statement is precisely that

$$d\left(g_1\circ f_1\right)_p=d\left(g_2\circ f_2\right)_p$$

for all $p \in U$. But this is true by the chain rule:

$$d(g_1 \circ f_1)_p = (dg_1)_q (df_1)_p = (dg_2)_q (df_2)_p = d(g_2 \circ f_2)_p.$$

Suppose now the statement is true for k-1. Then since $(df_1) \sim_{k-1} (df_2)$ at p and $(dg_1) \sim_{k-1} (dg_2)$ at $q = f_1(p) = f_2(p)$, we have by induction that

$$(dg_1) \circ (df_1) \sim_{k-1} (dg_2) \circ (df_2) \quad \forall (p, v) \in \{p\} \times \mathbb{R}^n$$

which by the chain rule is precisely saying that

$$d(g_1 \circ f_1) \sim_{k-1} d(g_2 \circ f_2)$$

for all $(p, v) \in \{p\} \times \mathbb{R}^n$. But this is precisely the definition of $g_1 \circ f_1 \sim_k g_2 \circ f_2$ at p.

Definition 1.5. Let X, Y, Z, W be smooth manifolds.

- (1) Let $h: Y \to Z$ be smooth.a Then h induces a map $h_*: J^k(X,Y) \to J^k(X,Z)$ as follows: if $[f,p] \in J^k(X,Y)_{p,q}$, then $h_*[f,p] = [h \circ f,p] \in J^k(X,Z)_{p,h(q)}$.
- (2) If $a: Z \to W$ is smooth, then $(a \circ h)_* = a_* \circ h_*$ and $(\mathrm{id}_Y)_* = \mathrm{id}_{J^k(X,Y)}$. So if h is a diffeomorphism, then h_* is a bijection.
- (3) Let $g: Z \to X$ be a smooth diffeomorphism. Then g induces a map $g^*: J^k(X,Y) \to J^k(Z,Y)$ by $g^*[f,p] = [f \circ g, g^{-1}(p)] \in J^k(Z,Y)$.
- (4) Let $a: W \to Z$ be a smooth diffeomorphism. Then $(g \circ a)^* = a^*g^*$ and $(\mathrm{id}_X)^* = \mathrm{id}_{J^k(X,Y)}$.

Next, let A_n^k be the vector space of polynomials in n variables of degree $\leq k$ which have constant term equal to 0. As coordinates for A_n^k , we can choose the coefficients of the polynomials. Let $B_{n,m}^k = \bigoplus_{i=1}^m A_n^k$. Both A_n^k and $B_{n,m}^k$ are smooth manifolds.

Let now $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$ smooth. Define $T_k f: U \to A_n^k$ as $T_k f(x_0)$ being the kth order Taylor polynomial of f at x_0 without the constant term. Let $V \subset \mathbb{R}^m$ be open. There is a canonical bijection $T_{U,V}: J^k(U,V) \to U \times V \times B_{n,m}^k$ given by

$$T_{U,V}([f,x_0]) = (x_0, f(x_0), T_k f_1(x_0), \dots, T_k f_m(x_0)).$$

This map is well-defined and injective by Lemma 1.3.

Lemma 1.6. Let $U, U' \subset \mathbb{R}^n$ be open and $V, V' \subset \mathbb{R}^m$ open. Suppose $h: V \to V'$ is smooth and $q: U \to U'$ a diffeomorphism. Then

$$T_{U',V'}(g^{-1})^* h_* T_{U,V}^{-1} : U \times V \times B_{n,m}^k \to U' \times V' \times B_{n,m}^k$$

is smooth.

Definition 1.7 (Smooth structure on $J^k(X,Y)$). Let X,Y be smooth manifolds of dimension n and m, respectively. Let (U,φ) and (V,ψ) be smooth charts in X and Y, respectively. Let $U' = \varphi(U), V' = \psi(V)$. Then let $\tau_{U,V} := T_{U',V'} \circ (\varphi^{-1})^* \psi_* \colon J^k(U,V) \to U' \times V' \times B^k_{n,m}$. We declare $(J^k(U,V), \tau_{U,V})$ to be a chart for $J^k(X,Y)$. We equip $J^k(X,Y)$ with the smooth structure induced by these smooth charts.

We thus see that

$$\dim J^k(X,Y) = m + n + \dim \left(B_{n,m}^k\right)$$

Theorem 1.8. Let X and Y be smooth manifolds with $n = \dim X$ and $m = \dim Y$. Then

- (1) $\alpha \colon J^k(X,Y) \to X, \beta \colon J^k(X,Y) \to Y \text{ and } \alpha \times \beta \colon J^k(X,Y) \to X \times Y \text{ are submersions.}$
- (2) If $h: Y \to Z$ is smooth, then $h_*: J^k(X,Y) \to J^k(X,Z)$ is smooth. If $g: X \to Y$ is a diffeomorphism, then $g^*: J^k(Y,Z) \to J^k(X,Z)$ is a diffeomorphism.
- (3) If $g: X \to Y$ is smooth, then $j^k g: X \to J^k(X,Y)$ is smooth.

Proof. (3) Let (U, φ) , (V, ψ) be charts about x_0 and $g(x_0)$, respectively. Then in local coordinates,

$$\tau_{U,V} \circ j^k g \circ \varphi^{-1}(x) = \tau_{U,V} \left[g, \varphi^{-1}(x) \right] T_{U',V'} \left[\psi \circ g \circ \varphi^{-1}, x \right]$$
$$= \left(x, \psi \circ g \circ \varphi^{-1}(x), T_k \left(\psi_1 \circ g \circ \varphi^{-1} \right) (x), \dots, T_k \left(\psi_m \circ g \circ \varphi^{-1} \right) (x) \right)$$

Now, each $T_k (\psi_i \circ g \circ \varphi^{-1})$ is smooth being a sum of partial derivatives of the $\psi_i \circ g \circ \varphi^{-1}$ which are smooth functions between Euclidean spaces. Since $j^k g$ is locally smooth everywhere, we find that it is smooth.

1.2. The Whitney C^{∞} topology (compact-open topology).

Definition 1.9 (Residual, Baire space). Let F be a topological space. Then

- (1) A subset G of F is called *residual* if it is the countable intersection of open dense subsets of F.
- (2) F is called a Baire space if every residual set is dense.

Proposition 1.10. Let X and Y be smooth manifolds. Then $C^{\infty}(X,Y)$ is a Baire space in the Whitney C^{∞} topology.

1.3. Transversality.

Definition 1.11 (Transversality). Let X and Y be smooth manifolds and $f: X \to Y$ a smooth map. Let W be a submanifold of Y and $x \in X$. Then f intersects W transversally at x, denoted by $f \cap W$ at x, if either $f(x) \notin W$ or $f(x) \in W$ and $T_{f(x)}Y = T_{f(x)}W \oplus (df)_x(T_xX)$.

Proposition 1.12. Let X and Y be smooth manifolds, $W \subset Y$ a submanifold. Suppose $\dim W + \dim X < \dim Y$ (i.e., $\dim X < \operatorname{codim} W$). Let $f \colon X \to Y$ be smooth and suppose $f \cap W$. Then $f(X) \cap W = \emptyset$.

Proof. Exercise.

Lemma 1.13. Let X, Y be smooth manifolds and $W \subset Y$ a submanifold, and $f: X \to Y$ smooth. Let $p \in X$ and $f(p) \in W$. Suppose there exists a neighborhood U of f(p) in Y and a submersion $\varphi: U \to \mathbb{R}^k$, where $k = \operatorname{codim} W$, such that $W \cap U = \varphi^{-1}(0)$. Then $f \cap W$ at p if and only if $\varphi \circ f$ is a submersion at p.

Proof. We have that since $f(p) \in W$, $f \cap W$ at p if and only if $T_{f(p)}Y = T_{f(p)}W \oplus (df)_p(T_pX)$. Since $\varphi(W \cap U) = 0$, $(d\varphi)_pT_pW = 0$, we have $\ker(d\varphi)_p = T_pW$ for all p. Hence $f \cap W$ at p if and only if

$$T_{f(p)}Y = \ker (d\varphi)_p \oplus (df)_p (T_pX)$$

but $\dim \ker (d\varphi)_p = \dim T_{f(p)}U - \dim \operatorname{im} (d\varphi)_p = \dim T_{f(p)}Y - k$, so $f \cap W$ at p if and only if $\dim (df)_p (T_pX) = k$, so in particular, since $(d\varphi)_{f(p)}$ is surjective, this happens if and only if $\dim (d\varphi \circ f)_p (T_pX) = k$, i.e., $\varphi \circ f$ is a submersion at p.

Theorem 1.14 (Thom Transversality Theorem). Let X and Y be smooth manifolds and W a submanifold of $J^k(X,Y)$. Let

$$T_W = \left\{ f \in C^{\infty}(X, Y) \mid j^k f \cap W \right\}.$$

Then T_W is a residual subset of $C^{\infty}(X,Y)$ in the C^{∞} topology.

1.3.1. Multijet Spaces.

Definition 1.15. Let X and Y be smooth manifolds. Define

$$X^{s} = X \times ... \times X$$

 $X^{(s)} = \{(x_{1}, ..., x_{s}) \in X^{s} \mid x_{i} \neq x_{j}, 1 \leq i < j \leq s\}.$

Let $\alpha: J^k(X,Y) \to X$ be the source map. Define $\alpha^s: J^k(X,Y)^s \to X^s$ by $(\sigma_1,\ldots,\sigma_s) \mapsto (\alpha\sigma_1,\ldots,\alpha\sigma_s)$. Then define $J^k_s(X,Y) = (\alpha^s)^{-1}(X^{(s)})$, called the s-fold k-jet bundle

A multijet bundle is some s-fold k-jet bundle, $X^{(s)}$ is a manifold since it is an open subset of X^s , so $J_s^k(X,Y)$ is an open subset of $J^k(X,Y)^s$, hence also a smooth manifold.

Let $f: X \to Y$ be smooth. Define $j_s^k f: X^{(s)} \to J_s^k(X, Y)$ by

$$j_s^k f(x_1, ..., x_s) = (j^k f(x_1), ..., j^k f(x_s)).$$

Theorem 1.16 (Multijet Transversality Theorem). Let X and Y be smooth manifolds with W a submanifold of $J_s^k(X,Y)$. Let

$$T_W = \left\{ f \in C^{\infty}(X, Y) \mid j_s^k f \cap W \right\}.$$

Then T_W is a residual subset of $C^{\infty}(X,Y)$ in the C^{∞} topology. Moreover, if W is compact, then T_W is open.

1.4. Critical Values and Non-degenerate Critical Values.

Definition 1.17. Given smooth manifolds X,Y, let $\sigma=[f,p]\in J^1(X,Y)$. Then define rank $\sigma=\operatorname{rank}(df)_p$ and $\operatorname{corank}\sigma=q-\operatorname{rank}\sigma$ where $q=\min\{\dim X,\dim Y\}$. Define

$$S_r = \left\{ \sigma \in J^1(X, Y) \mid \operatorname{corank} \sigma = r \right\}$$

Let's use these definitions to reformulate the definitions of critical points and degenerate critical points.

Lemma 1.18. $p \in X$ is a critical value for $f: X \to \mathbb{R}$ if and only if $[f, p] \in S_1$.

Proof. Firstly, for a map $f: X \to \mathbb{R}$, a point $p \in X$ is a critical point if $(df)_p = 0$. Thus rank $j^1 f = \operatorname{rank}(df)_p = 0$, so corank $j^1 f = 1$. Therefore if p is a critical point for f, then $[f, p] \in S_1$.

Conversely, if $[f, p] \in S_1$, then corank [f, p] = 1, so rank $(df)_p = 0$, but $(df)_p : T_pX \to \mathbb{R}$, so having rank 0 means that it must be the 0 map, so $(df)_p = 0$. Hence p is a critical point. So we find that $p \in X$ is a critical point for f if and only if $[f, p] \in S_1$.

To relate non-degeneracy, we make use of the following proposition:

Proposition 1.19. Let $U \subset \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$ smooth. Then a point $p \in U$ is a nondegenerate critical point for f if and only if p is a critical point and $j^1 f \pitchfork S_1$ at p.

Proof. First recall that $J^1(U,\mathbb{R}) \cong U \times \mathbb{R} \times B^1_{n,1}$ by definition/construction. Now, $B^1_{n,1} \cong \operatorname{Hom}(\mathbb{R}^n,\mathbb{R})$. Since $T_pJ^1(U,\mathbb{R}) \cong T_p(U \times \mathbb{R} \times \operatorname{Hom}(\mathbb{R}^n,\mathbb{R})) \cong T_{p_1}U \oplus T_{p_2}\mathbb{R} \oplus T_{p_3} \operatorname{Hom}(\mathbb{R}^n,\mathbb{R})$, we find that the projection $\pi\colon J^1(U,\mathbb{R}) \to \operatorname{Hom}(\mathbb{R}^n,\mathbb{R})$ under this identification on tangent spaces simply becomes the projection on the $T_{p_3} \operatorname{Hom}(\mathbb{R}^n,\mathbb{R})$ factor, hence π is a submersion. Furthermore, if $\pi(\sigma) = 0$, that means then in local coordinates, the first degree Taylor expansions without constant term of a smooth representative f for π at p vanish, so since these determine the equivalence class of $[f,p] = \sigma$, we have $(df)_p = 0$, that is, $\sigma \in S_1$. Hence $S_1 = \pi^{-1}(0)$. In particular, S_1 is a submanifold as the preimage of a regular value. Applying Lemma 1.13, $j^1f \pitchfork S_1$ at p if and only if $\pi \circ j^1f$ is a submersion at p. Now

$$\pi \circ j^1 f(x) = (df)_x = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$$

so $\pi \circ j^1 f$ is a submersion at p if and only if the map $\mathbb{R}^n \to \mathbb{R}^n$ given by

$$x \mapsto \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$$

is a submersion at p if and only if

$$\det H(f)_p = \det \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(p) \right) \neq 0.$$

2. Problems

Definition 2.1. Let M be a smooth manifold. A Morse function $f: M \to \mathbb{R}$ is a smooth map such that all its critical points are non-degenerate, with pairwise distinct critical values in \mathbb{R} .

2.1. Reeb's Theorem.

Problem 2.2 (Reeb's Theorem). (6 pts) Let M be a smooth, compact manifold of dimension d. Show that if M admits a Morse function with only two critical points, then M is homeomorphic to the sphere S^d . Indicate why the above proof fails in showing that M is diffeomorphic to the sphere S^d .

For the proof, we state a theorem that we will need:

Definition 2.3. For a smooth map $f: M \to \mathbb{R}$ on a smooth manifold M, let $M^a = f^{-1}(-\infty, a]$.

Theorem 2.4. Let $f \in C^{\infty}(M)$ on a manifold M. Let a < b and suppose that the set $f^{-1}[a,b]$ is compact and contains no critical points of f. Then M^a is diffeomorphic to M^b . Furthermore, M^a is a deformation retract of M^b , so the inclusion $M^a \hookrightarrow M^b$ is a homotopy equivalence.

Proof of Problem 2.2. Since M is compact, we have that $f(M) = [a, b] \subset \mathbb{R}$. Without loss of generality, assume that f(M) = [0, 1].

We shall need the following lemma from analysis:

Lemma 2.5 (Fermat's Theorem). Let $f:(a,b) \to \mathbb{R}$ be a function on an open interval $(a,b) \subset \mathbb{R}$. Suppose f has a local extremum at $x_0 \in (a,b)$. If f is differentiable at x_0 , then $f'(x_0) = 0$.

Now, we claim that the two critical points are precisely the preimages of 0 and 1. For suppose $x \in f^{-1}(0)$. Then x is a global minimum for f. Taking some chart centered around x, we have a local representation of f as a function $\mathbb{R}^d \to [0,1]$ with a global minimum at 0. Taking the partial derivatives of f and applying Fermat's theorem to each of them, we find that each partial derivative evaluated at 0 is 0: $\frac{\partial f}{\partial x^i}(0) = 0$. Hence we find that Df(0) = 0, so transfering back to the manifold, Df(x) = 0, so $x \in M$ is a critical point. The same argument applies to show that any $y \in f^{-1}(1)$ is a critical point. Since there are only two critical points, this immediately forces $f^{-1}(0)$ and $f^{-1}(1)$ to be singletons and thus global maximum and minimum of M. Suppose without loss of generality that $p \in M$ is the minimum and $q \in M$ is the maximum.

By Morse's Lemma, in some coordinate system about p, let's say in a neighborhood U, f takes the form

$$f(x_1, \dots, x_n) = -x_1^2 - \dots - x_{\lambda}^2 + x_{\lambda+1}^2 + \dots + x_n^2$$

Now p is a global minimum, so in fact, we must have that $\lambda = 0$. That is

$$f(x_1,\ldots,x_n) = x_1^2 + \ldots + x_n^2$$

in this neighborhood. Since also f(U) is open in the subspace topology and contains 0, we can find an open disk \tilde{D}_1 centered at 0 of radius ε_1 such that $\tilde{D}_1 \cap [0,1] \subset f(U)$, and let D_1 be the inverse of \tilde{D}_1 under this local diffeomorphism. Similarly, in a neighborhood V of q, f takes the form

$$f(x_1, \dots, x_n) = 1 - x_1^2 - x_2^2 - \dots - x_n^2.$$

Again take some open disk \tilde{D}_2 centered at 1 of radius ε_2 such that $\tilde{D}_2 \cap [0,1] \subset f(V)$. Let D_2 be the inverse image under f of \tilde{D}_2 .

We wish to show that there exists some $\varepsilon > 0$ such that $f^{-1}[0,\varepsilon]$ and $f^{-1}[1-\varepsilon,1]$

are homeomorphic to the closed n-disk D^n . There exist $\alpha, \beta \in (0,1)$ such that $f(M-D_1 \cup D_2) = [\alpha, \beta]$ since $M-D_1 \cup D_2$ is still compact. Now simply let $0 < \varepsilon < \min \left\{ \alpha, 1-\beta, \varepsilon_1, 1-\varepsilon_2, 1-\varepsilon_1, \frac{1}{4} \right\}$. To see that this works, simply note that $f^{-1}[0,\varepsilon] \subset D_1 \cup D_2$. On D_1 , f takes values in $[0,\varepsilon_1]$ and on D_2 , f takes values in $[1-\varepsilon_2,1]$. But $\varepsilon < \varepsilon_1$, so $[0,\varepsilon] \subset [0,\varepsilon_1]$, so $f^{-1}[0,\varepsilon] \subset D_1$, while $\varepsilon < 1-\varepsilon_2$, so $D_2 \cap f^{-1}[0,\varepsilon] = \emptyset$. Similarly, $1-\varepsilon > \varepsilon_1$, so $D_1 \cap f^{-1}[1-\varepsilon,1] = \emptyset$ while $1-\varepsilon_2 > 1-\varepsilon$, so $D_2 \subset f^{-1}[1-\varepsilon,1]$.

Therefore, since $f^{-1}[0,\varepsilon] \subset D_1 \subset U$ and we know that on U, f takes the form

$$f(x_1, \dots, x_n) = x_1^2 + \dots + x_n^2,$$

we know that $f^{-1}[0,\varepsilon]$ is precisely a closed disk about p. Likewise, $f^{-1}[1-\varepsilon,1]$ can be seen to be a closed disk about q.

But now by Theorem 2.4, since there are no critical points in $f^{-1}\left[\varepsilon,1-\varepsilon\right]$ by assumption, M^{ε} is diffeomorphic to $M^{1-\varepsilon}$. Hence we find that $M^{1-\varepsilon}$ and $f^{-1}\left[1-\varepsilon,1\right]$ are both diffeomorphic to closed d-disks, and furthermore, M is obtained by gluing these d-disks along their boundary which is homeomorphic to S^{d-1} . We claim that this is sufficient to conclude that M is homeomorphic to S^d . The problem is that while we have individual diffeomorphisms $M^{1-\varepsilon} \cong D^n$ and $f^{-1}\left[1-\varepsilon,1\right] \cong D^n$, the identifications of the boundaries might not be preserved under these diffeomorphisms, so we might not be able to reglue after. Let $\varphi_1 \colon M^{1-\varepsilon} \cong D^d$ and $\varphi_2 \colon f^{-1}\left[1-\varepsilon,1\right] \cong D^d$ be the diffeomorphisms. Then $\varphi_1 \circ \varphi_2^{-1}$ is a diffeomorphism of S^{d-1} , and

$$M \cong D^d \sqcup_{\varphi_1 \circ \varphi_2^{-1}} D^d$$
.

We construct a homeomorphism $\psi \colon D_1 \sqcup_{\mathrm{id}} D_2 \to D^d \sqcup_{\varphi_1 \circ \varphi_2^{-1}} D^d$ by

$$\psi(x) = \begin{cases} x & , x \in D_1 \\ 0 & , x \in D_2 \text{ and } x = 0 \\ \|x\|\varphi_1 \circ \varphi_2^{-1} \left(\frac{x}{\|x\|}\right), & x \in D_2 - \{0\} \end{cases}$$

As the sphere is compact and the twisted sphere Hausdorff, this map is a homeomorphism. The reason it might fail to be a diffeomorphism, is that on $D_2 - \{0\}$, as we let x approach 0, we might have non-agreeing derivatives from different directions.

2.2. Existence of Morse functions.

Problem 2.6 (Existence of Morse functions). Show that any smooth manifold admits a Morse function.

Proof. The proof of this problem will consist of first showing that the set of Morse functions is an open dense subset of $C^{\infty}(M,\mathbb{R})$. We will thereafter intersect this set with another residual set in $C^{\infty}(M,\mathbb{R})$ which will force critical values to be distinct. Then we will finish the problem by making use of $C^{\infty}(M,\mathbb{R})$ being a Baire space in the Whitney C^{∞} topology when M is a manifold.

Theorem 2.7. Let M be a manifold. The set of Morse functions is an open dense subset of $C^{\infty}(M,\mathbb{R})$.

Proof. Recall that S_1 is a submanifold of $J^1(M,\mathbb{R})$. Hence

$$T_{S_1} = \left\{ f \in C^{\infty}(M, \mathbb{R}) \mid j^1 f \pitchfork S_1 \right\}$$

is a residual subset of $C^{\infty}(X,Y)$ in the C^{∞} topology.

By Theorem 1.19, $j^1f \cap S_1$ if and only if for all points $x \in X$, either $j_1f(x) \notin S_1$ or $j_1f(x) \in S_1$ and $j_1f \cap S_1$ at x. If $j_1f(x) \notin S_1$, then x is not a critical value of f. If $j_1f(x) \in S_1$, then x is a critical value. Then $j_1f \cap S_1$ at x precisely means that x is a nondegenerate critical point. Hence T_{S_1} precisely consists of all smooth maps $M \to \mathbb{R}$ which are Morse functions (not necessarily distinct critical values). But by Proposition 1.10, $C^{\infty}(X,Y)$ is a Baire space in the Whitney C^{∞} topology when X and Y are manifolds, so by definition, every residual set is dense. Hence T_{S_1} is dense in $C^{\infty}(M,\mathbb{R})$. Since 0 is an element, it is in particular nonempty.

Theorem 2.8. Let M be a smooth manifold. The set of Morse functions all of whose critical values are distinct form a residual set in $C^{\infty}(M, \mathbb{R})$

Proof. Let $S = (S_1 \times S_1) \cap J_2^1(M, \mathbb{R}) \cap (\beta^2)^{-1}$ ($\Delta \mathbb{R}$). We claim that S is a submanifold of the multijet bundle $J_2^1(M, \mathbb{R})$. It suffices to check that it is locally a submanifold. Let U be an open coordinate neighborhood in M diffeomorphic to \mathbb{R}^n . Recall that $J^1(U,\mathbb{R}) \cong U \times \mathbb{R} \times B_{n,1}^1 \cong \mathbb{R} \times \mathbb{R} \times \text{Hom}(\mathbb{R}^n,1)$, so seeing as the coordinates on $J_1^2(X,Y)$ are inherited from the product smooth structure and that of an open subset of a smooth manifold, we find $J_1^2(U,\mathbb{R}) \cong (\mathbb{R}^n \times \mathbb{R}^n - \Delta \mathbb{R}^n) \times (\mathbb{R} \times \mathbb{R}) \times \text{Hom}(\mathbb{R}^n,\mathbb{R})^2$. Inserting this in the expression for S and noting that $(\beta^2)^{-1}(\Delta \mathbb{R})$ means that the codomain coordinates must be the same, so $(\mathbb{R} \times \mathbb{R})$ is replaced by $\Delta \mathbb{R}$, and intersecting with $(S_1 \times S_1)$ means that the coordinates for the partial derivatives all vanish, so $\text{Hom}(\mathbb{R}^n,\mathbb{R})^2$ reduces to (0,0). So we get

$$S \cong (\mathbb{R}^n \times \mathbb{R}^n - \Delta \mathbb{R}^n) \times \Delta \mathbb{R} \times (0,0)$$

which indeed is a submanifold of

$$J_{1}^{2}\left(U,\mathbb{R}\right)\cong\left(\mathbb{R}^{n}\times\mathbb{R}^{n}-\Delta\mathbb{R}^{n}\right)\times\left(\mathbb{R}\times\mathbb{R}\right)\times\operatorname{Hom}\left(\mathbb{R}^{n},\mathbb{R}\right)^{2}.$$

Since S is locally a submanifold of $J_2^1(M,\mathbb{R})$ at each point, it is a submanifold. Moreover, codim S=2n+1 where $n=\dim M$: since indeed dim $J_1^2(U,\mathbb{R})=2n-1+2+2n$ and dim S=2n-1+1.

Now applying the Multijet Transversality Theorem (Theorem 1.16), we obtain that $T_S = \{ f \in C^{\infty}(M, \mathbb{R}) \mid j_2^1 f \cap S \}$ is residual in $C^{\infty}(M, \mathbb{R})$ equipped with the C^{∞} topology.

But by Proposition 1.10, $C^{\infty}(X,Y)$ is a Baire space in the Whitney C^{∞} topology when X and Y are manifolds, so by definition, every residual set is dense. Hence T_S is dense in $C^{\infty}(M,\mathbb{R})$. Since 0 is an element, it is in particular nonempty. Now, if $f \colon M \to \mathbb{R}$ is a smooth map. Then $j_2^1 f \colon M^{(s)} \to J_2^1(M,\mathbb{R})$. In particular, suppose that $j_2^1 f \pitchfork S$, then since $\operatorname{codim} S = 2n + 1$, while $\operatorname{dim} M^{(2)} = \operatorname{dim} M \times M - \Delta M = 2n - 1$, we obtain immediately from Proposition 1.12 that $j_2^1 f(M \times M - \Delta M) \cap S = \emptyset$.

So if p,q are critical points of f, the fact that $j_2^1 f(p,q) \notin S$ means that since $(j^1 f(p), j^1 f(q)) \in S_1 \times S_1 \cap J_2^1(M, \mathbb{R})$, it must be the failure of being in $(\beta^2)^{-1} (\Delta \mathbb{R})$ that prevents $j_2^1 f(M \times M - \Delta M)$ from intersecting S. I.e., the targets are not

equal: $f(p) \neq f(q)$. Since p, q were arbitrary critical values, the critical values of any $f \in T_S$ are thus pairwise distinct.

Now taking the set T_S and T_{S_1} from Theorem 2.7, since T_{S_1} was shown to be an open dense subset of $C^{\infty}(M,\mathbb{R})$, and T_S was just shown to be residual in $C^{\infty}(M,\mathbb{R})$, i.e., the countable intersection of open dense subsets of $C^{\infty}(M,\mathbb{R})$, we find that $T_S \cap T_{S_1}$ is the countable intersection of open dense subsets of $C^{\infty}(M,\mathbb{R})$ also, hence residual in $C^{\infty}(M,\mathbb{R})$. From Proposition 1.10, we now obtain that $T_S \cap T_{S_1}$ is dense in $C^{\infty}(M,\mathbb{R})$, giving us the collection we wanted.

This completes the proof.

2.3. On the Transversality Theorem.

Problem 2.9 (On the transversality theorem). Let M be a smooth manifold.

- (1) Let $X \subset M$ be a smooth submanifold, and let $f: Y \to M$ be a smooth map, where Y is a smooth manifold. Show that f is smoothly homotopic to a map that intersects X transversally at every point.
- (2) Show that in the above setting, if $f: Y \to M$ intersects X transversally, then $f^{-1}(X)$ is a smooth submanifold of Y such that $\dim Y + \dim f^{-1}(X) = \dim X$

Proof. (2) We were given the following lemma in class:

Lemma 2.10. If $f: X \to Z$ and $g: Y \to Z$ are smooth maps between manifolds and $f \pitchfork g$, then the pullback exists:

$$\begin{array}{ccc} \exists W & \longrightarrow & Y \\ \downarrow & & \downarrow g \\ X & \longrightarrow & Z \end{array}$$

Saying that $f: Y \to M$ intersects X transversally then amounts to $f: Y \to M$ and $\iota: X \hookrightarrow M$ intersecting transversally, so the following pullback can be completed:

$$\begin{array}{ccc} \exists W & \longrightarrow & X \\ \downarrow & & \downarrow \iota \\ Y & \xrightarrow{f} & M \end{array}$$

In particular, W is the fiber product $X \times_M Y = \{(x,y) \mid \iota(x) = f(y)\} \cong f^{-1}(X)$. Thus $f^{-1}(X)$ is a smooth manifold.

I didn't get to the dimension part in time.