CSC520 - Artificial Intelligence Lecture 25

Dr. Scott N. Gerard

North Carolina State University

Apr 17, 2025

Agenda

- Computer vision tasks
- Convolution operation
- Padding and stride
- Convolution layer
- Pooling layer
- LeNet-5 Model

Computer Vision

 Computer vision's goal is to enable computers to interpret and understand images

Image captioning Face recognition Object tracking Human pose recognition

Fully-connected NN for Computer Vision Tasks

• Colored image is a 3-D (width x height x 3) grid of pixels

8	9	2	4	3
6	5	3	7	9
1	0	8	9	3
4	2	6	3	2
8	4	2	0	1
2	1	8	9	0

• For a 1000×1000 image, the number of features: $1000 \times 1000 \times 3 = 3M$

Convolution Operation

Х	х	Х		
Х	Х	Х		
Х	Х	Х	-	
Х	Х	Х		
Х	Х	Х		
Х	Х	Х		
Х	Х	Х		
Х	Х	X		
Х	Х	X		

	X	X	X	
	×	х	Х	
	•	•		
	×	х	Х	
	Х	Х	Х	
	х	Х	Х	
	•			
	Х	Х	Х	
-	Х	Х	Х	
	Х	Х	Х	

•	٠.	X	X	X	
		Х	Х	Х	
		•			
		Х	Х	х	
		Х	Х	Х	
		Х	Х	Х	
		Х	X	Х	
		Х	X	Х	
		Х	Х	Х	

Output

	Σ	\sum	\sum
	Σ	\sum	Σ
J	Σ	Σ	Σ

Convolution Operation

8	9	2	4	3	2
6	5	3	7	9	8
1	0	8	9	3	1
4	2	6	3	2	0
8	4	2	0	1	2
2	1	8	9	0	1

1	0	-1
1	0	-1
1	0	-1

		-2	9
-6	-12	3	10
-3	-6	10	9
-2	-5	13	9

Edge Detection using Convolution

15	15	15	0	0	0
15	15	15	0	0	0
15	15	15	0	0	0
15	15	15	15	15	15
15	15	15	15	15	15
15	15	15	15	15	15

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

0	45	45	0
0	30	30	0
0	15	15	0
0	0	0	0

0	0	0	0
0	-15	-30	-45
0	-15	-30	-45
0	0	0	0

Edge Detection Example

Padding

- Convolving an image with a filter may reduce the size of the output
 - Causes loss of information from the image borders
- Image is padded with a border to address this issue
 - Pixels in the padded region are typically set to 0

0	0	0	0	0	0	0	0
0	8	9	2	4	3	2	0
0	6	5	3	7	9	8	0
0	1	0	8	9	3	1	0
0	4	2	6	3	2	0	0
0	8	4	2	0	1	2	0
0	2	1	8	9	0	1	0
0	0	0	0	0	0	0	0

) -1
) -1
) -1

-14	9	3	-7	1	12
-14	2	-6	-2	9	15
-7	-6	-12	3	10	14
-6	-3	-6	10	9	6
-7	-2	-5	13	9	3
-5	0	-4	9	6	1

Padding

- If image size is h x w, filter size is f x f, and padding size is p, then the output size is: $(h+2p-f+1) \times (w+2p-f+1)$
- Valid convolution means no padding is added
- Same convolution means image is padded such that output size equals image size

Stride

- Filter is moved over the image in steps equal to stride value
- Suppose stride = 2

1	0	•	-1	
1	0		-1	
1	0		-1	

1	0	-1
1	0	-1
1	0	-1

Stride

- Filter is moved over the image in steps equal to stride value
- Suppose stride = 2

8	9	2	4	3	2	1
6	5	3	7	9	8	0
1	0	8	9	3	1	3
4	2	6	3	2	0	4
8	4	2	0	1	2	2
2	1	8	9	0	1	1
3	2	1	4	1	2	0

1	0	-1
1	0	-1
1	0	-1

		11
-3	10	-3
2	9	-1

Output Size Calculation

- Input size $= h \times w$
- Filter size = f
- Padding = p
- Stride = s
- Output size can be calculated using this formula:

$$\left\lfloor \frac{h+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{w+2p-f}{s} + 1 \right\rfloor$$

3D Convolution

3D Convolution

Convolution Layer

- Input dimensions: $h_{\ell-1} imes w_{\ell-1} imes c_{\ell-1}$
- Filter size: f_{ℓ} , number of filters: c_{ℓ} , padding: p_{ℓ} , stride: s_{ℓ}
- Output dimensions: $h_{\ell} \times w_{\ell} \times c_{\ell}$

$$egin{aligned} h_\ell &= \left\lfloor rac{h_{\ell-1} + 2p_\ell - f_\ell}{s_\ell} + 1
ight
floor \ w_\ell &= \left\lfloor rac{w_{\ell-1} + 2p_\ell - f_\ell}{s_\ell} + 1
ight
floor \end{aligned}$$

- ullet Number of parameters in one filter $= (f_\ell imes f_\ell imes c_{\ell-1}) + 1$
- ullet Total number of parameters $= [(f_\ell imes f_\ell imes c_{\ell-1}) + 1] imes c_\ell$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q O

Pooling Layer In Convolutional NN

- Hyperparameters are: filter size, padding, stride
- No parameters to learn
- Two variants: max pooling and average pooling
- ullet Example of max pooling where f=2 and s=2

2	4	3	5	3	2
3	5	3	7	2	1
1	0	8	9	9	1
4	2	4	8	2	0
3	4	2	0	1	2
2	1	1	2	0	1

		3
4	9	9
4	2	2

• Same formula as earlier can be used to calculate the output size

LeNet-5 CNN

LeNet-5 CNN

Image credit: Andrew Ng

LeNet-5 CNN Parameters

Layer	Shape	Parameters
Input	32 × 32 × 1	0
CONV1	$28 \times 28 \times 6$	(5*5*1+1)*6=156
POOL1	$14 \times 14 \times 6$	0
CONV2	$10 \times 10 \times 16$	(5*5*6+1)*16=2416
POOL2	$5 \times 5 \times 16$	0
FC3	120	(400 * 120) + 120 = 48120
FC4	84	(120 * 84) + 84 = 10164
Softmax	10	(84*10) + 10 = 850

Training CNN

- Can be trained using gradient descent algorithm
 - Initialize weights and baises
 - Compute activations in the forward pass
 - Compute gradient in the backward pass
 - Update weights and baises to minimize the loss
- Same loss functions we discussed earlier are used
 - Mean squared error for regression tasks

*
$$MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

- Cross-entropy loss for classification tasks
 - * Logloss = $-\frac{1}{m}\sum_{i=1}^{m}\sum_{j=1}^{k}y_{ij}\log(\hat{y}_{ij})$

Class Exercise

• Calculate the result of following convolution operation. Assume p=0 and s=1.

8	9	2	4	3	2
6	5	3	7	9	8
1	0	8	9	3	1
4	2	6	3	2	0
8	4	2	0	1	2
2	1	8	9	0	1

1	1	1	
0	0	0	
-1	-1	-1	