# HW 4 - Group Actions on $B_n$ (Due Thursday 2/29)

**0.** [Warm-up; Not-for-credit] Draw the Hasse diagram of the poset of nonisomorphic simple graphs with 5 vertices (with subgraph containment ordering). What is the size of the largest antichain? How many antichains have this size?

### 1. [Some (counter)-examples]

- (i) Give an example of a finite graded poset P with the Sperner property, together with a group G acting on P, such that P/G is not Sperner (From our lectures we know that P cannot be  $B_n$ )
- (ii) Consider the poset P whose Hasse diagram is given by



Find a subgroup G of  $S_7$  such that  $P \cong B_7/G$  or else prove that such a group does not exist.

#### 2. [Binary Necklace Poset]

A (0,1)-necklace of length n and weight i is a circular arrangement of i 1's and n-i 0's. For instance, the (0,1)-necklaces of length 6 and weight 3 are (writing a circular arrangement linearly) 000111,001011,010011 and 010101. Cyclic shifts of a linear word represent the same necklace.

Let  $N_n$  denote the set of all (0,1)-necklaces of length n. Define a partial order  $\leq$  on  $N_n$  by letting  $u \leq v$  if we can obtain v from u by changing some 0's to 1's. Clearly  $N_n$  is graded of rank n, where the rank of a necklace being its weight.

- (i) (easy) Show that  $N_n$  is rank-symmetric, rank-unimodal and Sperner.
- (ii) (difficult; not-for-credit) Show that  $N_n$  has a symmetric chain decomposition.
- (iii) (unsolved; not-for-credit) Show that every quotient poset  $B_n/G$  has a symmetric chain decompositions.

## **3**. [Transitive Group Action]

Suppose X is a finite set with n elements. Let G be a group of permutations on X. Thus G acts on  $2^X$ . We say that G acts transitively on the j-element subsets if for every two j-element subsets S and T, there is a  $\pi \in G$  for which  $\pi \cdot S = T$ . Show that if G acts transitively on j-element subsets for some  $j \leq \frac{n}{2}$ , then G acts transitively on i-element subsets for all  $0 \leq i \leq j$ .

# 4. [On Switching-reconstructability; for Grad students]

(i) Let  $\mathcal{G}_n$  be the set of all simple graphs on [n], so  $|\mathcal{G}_n| = 2^{\binom{n}{2}}$ . Given  $G \in \mathcal{G}_n$ , let  $G_i$  be the graph obtained by *switching* at vertex i, that is, deleting all edges incident to i, and adding every edge from i that is not in G. Define a linear transformation

$$\phi: \mathbb{R}\mathcal{G}_n \to \mathbb{R}\mathcal{G}_n$$
 by  $\phi(G) = G_1 + G_2 + \cdots + G_n$ 

Show that  $\phi$  is invertible iff  $n \not\equiv 0 \pmod{4}$ 

- (ii) The graph G is switching-reconstructible if it can be uniquely reconstructed from the (multi)set of unlabelled vertex switches  $G_i$ . Show that G is switching-reconstructible if  $n \not\equiv 0 \pmod{4}$ .
- (iii) (unsolved; not-for-credit) Show that G is switching-reconstructible if  $n \neq 4$
- (iv) Show that the number of edges can be determined from the multiset of unlabelled  $G_i$ 's if  $n \neq 4$ . Find two graphs with 4 vertices and a different number of edges, but with the same unlabelled  $G_i$ 's
- (v) Define G to be weakly switching-reconstructible if it can be uniquely reconstructed from the multiset of labelled vertex switches  $G_i$ . That is, we are given each  $G_i$  as a labelled graph, but we are not told the vertex i that was switched. Show that G is weakly switching-reconstructible if  $n \neq 4$ , but that G need not be weakly switching-reconstructible if n = 4.