Linear Algebra cheat sheet

Ellin Zhao

May 23, 2018

1 Chapter 1

Thm Given $\mathbf{A}\vec{x} = \vec{b}$, \mathbf{A} is $m \times n$, the following statements are logically equivalent:

- a) For each \vec{b} in \mathbb{R}^m , $\mathbf{A}\vec{x} = \vec{b}$ has a solution.
- b) Each \vec{b} in \mathbb{R}^m is a linear combination of columns of **A**.
- c) The columns of **A** span \mathbb{R}^m .
- d) A has a pivot position in every row.

1.1 Transformations

| Def |A transformation T is linear if:

- a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}), \forall \vec{u}, \vec{v} \in T$ check!!
- b) $T(c\vec{u}) = c T(\vec{u}), \forall c \in \mathbb{R}, \vec{u} \in T$

Def A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** \mathbb{R}^m if each \vec{b} in \mathbb{R}^m is the image of at least one \vec{x} in \mathbb{R}^n . This is assuming the mapping is Ax=b.

– pivots in every row iff columns span \mathbb{R}^m .

Def A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if each \vec{b} in \mathbb{R}^m is the image of at most one \vec{x} in \mathbb{R}^n . This is assuming the mapping is Ax=b.

- pivots in every column iff columns are linearly independent.

Thm Matrix transpose, inverse identities:

a)
$$(\mathbf{A}^{\intercal})^{\intercal} = \mathbf{A}$$

b)
$$(\mathbf{A} + \mathbf{B})^{\intercal} = \mathbf{A}^{\intercal} + \mathbf{B}^{\intercal}$$

c)
$$(r \mathbf{A})^{\mathsf{T}} = r \mathbf{A}^{\mathsf{T}}, \forall r \in \mathbb{R}$$

d)
$$(\mathbf{A}\mathbf{B})^{\intercal} = \mathbf{B}^{\intercal}\mathbf{A}^{\intercal}$$

e)
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

f)
$$(AB)^{-1} = B^{-1}A^{-1}$$

g)
$$(\mathbf{A}^{\intercal})^{-1} = (\mathbf{A}^{-1})^{\intercal}$$

Thm Inverse of a 2×2 matrix:

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Thm Determinant properties

- a) Multiple of one row of **A** added to another to form **B**, $\det \mathbf{B} = \det \mathbf{A}$.
- b) Two rows of **A** interchanged to produce **B**, $\det \mathbf{B} = -\det \mathbf{A}$.
- c) One row of **A** multiplied by k to produce **B**, $\det \mathbf{B} = k \det \mathbf{A}$.

Thm If $\mathbf{A}_{n \times n}$, then $\det \mathbf{A}^{\dagger} = \det \mathbf{A}$.

Thm If $\mathbf{A}_{n\times n}$, $\mathbf{B}_{n\times n}$, then $\det{(\mathbf{A}\mathbf{B})} = (\det{\mathbf{A}})(\det{\mathbf{B}})$.

3.1 Cramer's Rule

Thm $\mathbf{A}_{n \times n}$ and invertible. $\mathbf{A}_i(\vec{b})$ is made by replacing the i^{th} column of \mathbf{A} with \vec{b} . x_i is the i^{th} element of \vec{x} .

For any $\vec{b} \in \mathbb{R}^n$, $x_i = \frac{\det \mathbf{A}_i(\vec{b})}{\det \mathbf{A}}$, i = 1, 2, ..., n.

Def A vector space is a nonempty set of vectors for which the following ten axioms hold: note that u, v, w in V

- 1) $\vec{u} + \vec{v} \in \mathcal{V}$
- 2) $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 3) $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- 4) $\vec{u} + \vec{0} = \vec{u}$ (a $\vec{0}$ exists in \mathcal{V})
- 5) $\forall \vec{u} \in \mathcal{V}, \vec{u} + (-\vec{u}) = \vec{0}$
- 6) $c\vec{u} \in \mathcal{V}$
- 7) $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
- 8) $(c+d) \vec{u} = c\vec{u} + d\vec{u}$
- 9) $c(d\vec{u}) = (cd)\vec{u}$
- 10) $1\vec{u} = \vec{u}$

Def A subspace of \mathcal{V} is a subset \mathcal{H} of \mathcal{V} with the following three properties:

- a) The $\vec{0}$ of \mathcal{V} is in \mathcal{H}
- b) $\vec{u} + \vec{v} \in \mathcal{H}, \forall \vec{u}, \vec{v} \in \mathcal{H}$
- c) $c\vec{u} \in \mathcal{H}, \forall c \in \mathbb{R}, \forall \vec{u} \in \mathcal{H}$

Thm If $\vec{v_1}, ..., \vec{v_p} \in \mathcal{V}$, then $\text{Span}\{\vec{v_1}, ..., \vec{v_p}\}$ is a subspace of \mathcal{V} .

- Def Col $\mathbf{A} = \{\vec{b} : \vec{b} = \mathbf{A}\vec{x}, \text{ for some } \vec{x} \in \mathbb{R}^n\}$

- pivot columns of **A** forms a basis for Col **A**

Def Suppose \mathcal{H} is a subspace of \mathcal{V} . $\beta = \{\vec{b_1}, ..., \vec{b_p}\}$ in \mathcal{V} is a basis for \mathcal{H} if:

- a) β is a linearly independent set
- b) $\mathcal{H} = \text{Span} \{\vec{b_1}, ..., \vec{b_p}\}$

Thm The eigenvalues of a triangular matrix are the entries on its main diagonal.

Thm If $\vec{v}_1, ..., \vec{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, ..., \lambda_r$, then the set $\{\vec{v}_1, ..., \vec{v}_r\}$ is linearly independent.

Fact $\det \mathbf{A} = \begin{cases} (-1)^r \cdot (\text{product of pivots in echelon form}), & \mathbf{A} \text{ is invertible} \\ 0, & \mathbf{A} \text{ is not invertible} \end{cases}$

Thm Determinant properties: $\mathbf{A}_{n\times n}, \mathbf{B}_{n\times n}$

- a) **A** is invertible \iff det **A** \neq 0
- b) $\det(\mathbf{AB}) = (\det \mathbf{A})(\det \mathbf{B})$
- c) $\det A^{\intercal} = \det \mathbf{A}$
- d) If A is triangular, then det A = product of entries on main diagonal

Fact λ is an eigenvalue of $A_{n \times n} \iff \det(\mathbf{A} - \lambda \mathbf{I}) = 0$

Def Suppose $\mathbf{A}_{n\times n}, \mathbf{B}_{n\times n}$. A is similar to B, denoted $\mathbf{A} \sim \mathbf{B}$, if $\exists \mathbf{P}$ such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$.

Thm If $\mathbf{A} \sim \mathbf{B}$, then they have the same characteristic polynomial and the same eigenvalues with the same multiplicities.

Thm $\mathbf{A}_{n \times n}$ is diagonalizable $\iff \mathbf{A}$ has n linearly independent eigenvectors.

Thm Suppose $\mathbf{A}_{n\times n}$ with distinct eigenvalues: $\lambda_1,...,\lambda_p$

- a) For $1 \leq k \leq p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of λ_k .
- b) A is diagonalizable \iff sum of dimensions of the eigenspaces = n.
- c) If **A** is diagonalizable and β_k is the basis for the eigensapce corresponding to λ_k for each k, then $\beta_1, ..., \beta_p$ forms an eigenvector basis for \mathbb{R}^n .

later!

Thm Invertible Matrix Theorem: Given **A** is $n \times n$, the following statements are logically equivalent:

- a) A is invertible.
- b) **A** is row equivalent to $\mathbf{I}_{n\times n}$.
- c) **A** has n pivot positions.
- d) $\mathbf{A}\vec{x} = \vec{0}$ has only trivial solutions.
- e) Columns of **A** form a linearly independent set.
- f) $\mathbf{A}\vec{x} = \vec{b}$ has at least one solutions for each \vec{b} in \mathbb{R}^n .
- g) $\vec{x} \mapsto \mathbf{A}\vec{x}$ is one-to-one.
- h) Columns of **A** span \mathbb{R}^n .
- i) $\vec{x} \mapsto \mathbf{A}\vec{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j) $\exists \mathbf{C}_{n \times n}$ such that $\mathbf{C}\mathbf{A} = \mathbf{I}$.
- k) $\exists \mathbf{D}_{n \times n}$ such that $\mathbf{AD} = \mathbf{I}$.
- l) A^{\dagger} is an invertible matrix.
- m) Columns of **A** form a basis of \mathbb{R}^n .
- n) Col $\mathbf{A} = \mathbb{R}^n$.
- o) dim Col $\mathbf{A} = n$.
- p) rank $\mathbf{A} = n$.
- q) Nul $\mathbf{A} = \vec{0}$ check this...
- r) dim Nul $\mathbf{A} = 0$.
- s) 0 is not an eigenvalue of \mathbf{A} .
- t) The determinant of A is not 0.