$Y_t = C_t + I_t + G_t + X_t - I_t$	M_t
$\frac{Y_t}{\overline{Y}_t} = \frac{C_t}{\overline{Y}_t} + \frac{I_t}{\overline{Y}_t} + \frac{G_t}{\overline{Y}_t} + \frac{X_t}{\overline{Y}_t} - \frac{1}{\overline{Y}_t}$	$-\frac{M_t}{\overline{Y}_t}$
$\frac{Y_t}{\overline{Y}_t} = \overline{a}_C + \overline{x}\widetilde{Y}_t + \overline{a}_I - \overline{b}(I)$	$(R_t - \bar{r}) + \frac{\bar{a}_G \bar{Y}_t}{\bar{Y}_t} + \frac{\bar{a}_X \bar{Y}_t}{\bar{Y}_t} - \frac{\bar{a}_M \bar{Y}_t}{\bar{Y}_t}$
$\frac{Y_t}{\overline{Y}_t} - 1 = \underline{\overline{a}_C + \overline{a}_I + \overline{a}_G + \overline{a}_I}$	$\frac{\bar{a}_X - \bar{a}_M - 1}{\bar{a}_M} + \bar{x}\tilde{Y}_t - \bar{b}(R_t - \bar{r})$
$\widetilde{Y}_t = \overline{a} + \overline{x}\widetilde{Y}_t - \overline{b}(R_t - \overline{r})$)
$\tilde{Y}_t = \frac{1}{(1-\bar{x})} \Big(\bar{a} - \bar{b} (R_t - \bar{x}) \Big) + \bar{b} (R_t - \bar{x}) \Big(\bar{a} - \bar{b} (R_t - \bar{x}) \Big) \Big) + \bar{b} (R_t - \bar{x}) \Big(\bar{a} - \bar{b} (R_t - \bar{x}) \Big) \Big)$	$-ar{r})\Big)$
	\bar{a} is normally equal to zero. Why?

	1	
1	_	\bar{x}

When $\bar{a} \neq 0$, we call this an _____ shock.

231020 - Using the IS Curve

Movement along the curve or a shift?						
R_t increases?	\bar{a} increases?		$ar{b}$ increases?			
Life-cycle model suggests households (HH) consumption over their lifetime.						
Permanent income hypothesis suggests HH spend percent of their expected earnings						
How are these hypotheses linked to the IS model?						
Contrary to the PI or Lifecycle model, we see HH typically spend about 30% of "surprise" earnings.						
What component of the IS curve best matches this empirical result?						
	·					
What are automatic stabilizers?						
What types of policies are stabilizers?						
The sype of pointing and statement						
What is the concept of Ricardian Ec	uivalence?					