SCADA PREVENTATIVE MAINTENANCE: REDUCING THE POTENTIAL OF UNEXPECTED FAILURES

Kyle Feist¹
Zach Markow²
Charles M. Burt³

ABSTRACT

Irrigation district infrastructure utilizing Supervisory Control and Data Acquisition (SCADA) systems can perform a critical service to irrigators, but also present the risk of damage to nearby property and humans in certain failure scenarios. It is therefore prudent to minimize the scope, frequency, and duration of SCADA component failure. However, it is typical for irrigation districts to focus on corrective (post-failure) SCADA maintenance activities, instead of investing in preventive maintenance.

Preventive SCADA maintenance requires budget and labor investment. However, it is anticipated that it is possible to balance the effectiveness and expenses of a preventative maintenance program with some strategic forethought. For example, preventative maintenance is a major topic of discussion in other industrial applications with similar economic and safety risks. It follows that preventative maintenance can be a valuable tool, especially for complex systems such as SCADA.

This paper provides a survey of several preventative maintenance philosophies and discusses preventative maintenance strategies for irrigation district applications. A template for a preventative SCADA maintenance program is also provided.

INTRODUCTION

Electrical, electronic, and mechanical items deteriorate over time and use. To keep systems running, worn items must be replaced and components require routine maintenance. While it is well-understood that mechanical systems require periodic attention, maintenance of Supervisory Control and Data Acquisition (SCADA) systems can be less intuitive, but equally important.

Implementing SCADA maintenance can be difficult because many systems lack:

- *Documentation*. SCADA systems are custom assemblies of hardware and software. User manuals with thorough maintenance schedules may not have been provided by the SCADA system integration firm.
- Awareness. While most people familiar with mechanical systems know to grease bearings and change oil and filters, there are few obvious maintenance tasks with SCADA systems.

¹ California Polytechnic State University (Cal Poly) Irrigation Training & Research Center (ITRC), 1 Grand Ave, San Luis Obispo, CA, 93407-0730. 805-756-2434. kfeist@calpoly.edu

² Cal Poly ITRC, 805-756-2434. <u>zmarkow@calpoly.edu</u>

³ Cal Poly ITRC, 805-756-2434. cburt@calpoly.edu

- *Budget*. Budgets are generally tight for most irrigation districts and justifying a request to increase the budget for unspecified maintenance is difficult.
- Experience with failure. Irrigation district SCADA systems are relatively new and district personnel may not be aware of notable failures that can occur with automated structures.

In the authors' experience, most irrigation districts follow the "fix it when it breaks" philosophy primarily because of the factors listed above, and because it requires less forethought. The down side is that failures tend to negatively impact the level of service provided by the irrigation district. The magnitude of the impact (impact level and duration) depends on the type of failure and availability of both hardware/software and the skilled labor of SCADA technicians.

Not all SCADA component failures result in significant problems; some failures are only frustrating to technicians and operations staff. Examples highlighting the range of SCADA failure impact categories (as defined by the authors) are listed in Table 1.

Table 1. A range of SCADA system failure results, durations and the corresponding impact level category

			Impact level
Scenario	Potential result	Duration range	category
A key sensor fails on an automated flow	Operators are forced to	A few hours to a few	Low
control gate without redundant sensors	visit the site frequently and	weeks depending on	
	make manual gate	technician readiness	
	adjustments		
The calibration of a flow measurement	Tail end turnouts are	A few hours to a few	Medium
device is modified incorrectly at the head	shorted water; irrigators	weeks depending on	
of an upstream-controlled canal	complain	technician readiness	
A key sensor fails on an automated	The canal overtops, and	A few hours	High
emergency spill gate without redundant	property is damaged		
sensors			

Because each irrigation district has a unique set of circumstances and infrastructure, it is the responsibility of the district to internally assign its own impact levels to various potential failures and failure results. However, for all districts, failures resulting in damage to persons and property is a possibility. It follows that avoiding such high-impact failures altogether is preferred. Avoiding failures in the first place requires:

- 1. Adequate budget and available skilled labor.
- 2. A good initial SCADA system design with documentation.
- 3. A transition from reactive repairs to proactive (preventative) maintenance.

GOOD SCADA SYSTEM DESIGN

There are several aspects to "good" design practices. Appropriate hydraulic control and measurement structures help improve accuracy and provide backup services to SCADA systems. Examples of this include emergency spills, sensor stilling wells and applying adequate safety factors for sizing devices such as trash racks and pumps. Other, more SCADA-specific design choices are equally important, such as using redundant sensors

for critical and/or control-related signals, alarm notification systems and selecting components with appropriate environmental ratings.

MOVING BEYOND REACTIONARY REPAIRS

When the failure cause and location are easily identifiable, repairing a component failure is relatively straight-forward. This is because the failure inherently defines the "when" (probably as soon as possible) and "what" (replace the component) of the repair needs. Under preventative maintenance, the "when" (or how often) and "what" must be defined.

It is difficult to perfectly schedule preventative maintenance activities. On one hand, repeating the same maintenance activity too frequently can be considered an unnecessary expense. Conversely, delaying maintenance activities increases the risk of a failure occurring. Under good management, striking the right balance requires consideration of the following key factors:

- Budget to a large extent, maintenance activities are constrained by budgets
- Criticality prioritizing major infrastructure over lower impact assets
- Flexibility timely adaption of policies and procedures based on new evidence

There are several philosophies that can be used to guide preventative maintenance activities:

- Basic Interval Tasks are triggered by the passing of a specific time duration (e.g., daily, monthly, annual).
- Flexible Interval Basic task intervals are adjusted based on the frequency of identified problems. When maintenance checks repeatedly fail to identify any problems, the frequency of those maintenance checks are extended to minimize costs until problems are more regularly identified.
- Performance threshold Tasks are triggered when a certain performance threshold is exceeded; requires continuous or intermittent performance monitoring.

Advantages and disadvantages of these philosophies are discussed in Table 2.

Table 2. Advantages and disadvantages of different preventative maintenance philosophies

Preventative maintenance philosophy	Relative up- front capital costs	Relative ongoing labor input	Comments
Basic interval	\$	\$\$\$	Capital costs are low, but there is a higher probability of executing maintenance tasks both too frequently and/or not often enough.
Flexible interval	\$\$	\$\$	Asset management software may help increase efficiency at a slightly increased capital cost. The additional labor to analyze maintenance results and determine adjustments to maintenance tasks is likely offset by reducing unnecessary tasks in the field.
Performance	\$\$\$\$\$	\$\$	Substantial capital investment is required to install continuous performance monitoring equipment; alternatively, intermittent performance testing can also increase costs.

For readers contemplating the implementation of a preventative maintenance program, a good starting point is the basic interval approach. As the tasks become familiar and good record-keeping practices develop over time, the next logical step is to transition to a flexible interval program and consider a limited deployment of performance-based maintenance for key sub-systems and components.

MAINTENANCE ACTIVITIES

To help readers better distinguish between different maintenance tasks, key terms and categories are defined in Table 3.

Table 3. Categories of maintenance activities for a typical preventative maintenance program

Category	Action	Example
Visual inspections	Looking for visual defects, deficiencies or problems	Looking for cracks in conductor insulation
	Presence checks	Checking for the presence of spare fuses in the correct type and quantity
Functional testing	Simulating control commands or alarm conditions and verifying on/off functionality	Calling a gate to move up and down and verifying functionality
Performance measurements	Comparing actual performance metrics with minimum thresholds	Measuring the current of a gate actuator and comparing the readings with manufacturer specifications
Benchmarking	Recording and tracking performance or environmental characteristics over time	Recording ambient radio noise over time
Administrative	Tracking maintenance activities over time to identify trouble areas, sites or devices	Entering maintenance logs into a database
	Procurement of tools or replacement components	Purchasing consumables (e.g., fuses) or replacement instrumentation such as sensors
Computers and office software	Implementing firmware updates, replacing obsolete equipment	Replacing hardware and updating software that has reached its official end-of-life, or is no longer supported by the manufacturer/vendor

LOGISTICS AND IMPLEMENTATION RECOMMENDATIONS

Good record-keeping practices and traceability are critical aspects to successful preventative maintenance programs. Recommendations regarding logistics and implementation details can include:

- Action item checklists are helpful for technicians. The complete list of tasks is no longer executed based on memory but is written and easily transferrable to new employees.
- A signature or initials from the person doing the work provides traceability and a beneficial transfer of responsibility to perform the work professionally.
- To minimize paperwork and streamline record-keeping, several software options are available to irrigation districts. In most cases, the software would be made available to field technicians on a mobile tablet or similar device. Platform types (but not specific vendors) include:
 - Web forms. Several cloud-based software platforms provide the background architecture necessary for the development and input tracking of custom electronic forms. In some cases, the forms are developed by the software

- vendor based on client criteria. In other cases, the district may be able to create its own at any time.
- Complete asset management software can include entire software platforms designed for tracking the maintenance of hard and soft assets.

PREVENTATIVE MAINTENANCE PLAN TEMPLATE

A preventative maintenance plan template is provided in Table 4 as a starting point for discussion and adaption by readers. Table 4 lists several tasks and a preliminary frequency for executing the tasks. If used, it is expected that the template would be modified over time to better represent the specific SCADA system being maintained.

For readers with existing preventative maintenance programs, it is recommended that the template be reviewed and compared to existing program tasks. In many cases, the authors have found many SCADA preventative maintenance programs to be incomplete when compared to the template.

Table 4. Preventative maintenance template for consideration and adaption

Category	Subsystem	Frequency	Task	Justification
Electric power	Any; utility	3-5 years	Retorque service feeder,	Heat cycling over time can cause
source	or		branch circuit, grounding,	loosening of terminals. Loose
	photovolta		bonding and other critical	terminals can cause arcing
	ic systems		terminal fasteners	
			Function test circuit	Circuit breakers, especially some older
			breakers	brands can wear out over time
			Visually check fuses; check	Fuse connections can corrode and be
			for corrosion and test for	susceptible to oxidation over time
			resistance/impedance	
			Test all ground-fault and	Verifying safety functions to avoid the
		_	arc-fault interrupt devices	risk of damage to persons
	Grounding	3-5 years	Visually inspect all	Connections can corrode and be
	system		grounding terminals,	susceptible to oxidation over time
			conductors and	
			connectors; clean and	
			apply protective coating if	
			necessary Denobmark ground	Cafaty and alastronia norformance
			Benchmark ground resistance/impedance to	Safety and electronic performance issues can arise when the
			earth using the fall of	resistance/impedance to the earth
			potential method or equal	increases
			Benchmark the resistance	Terminals and connectors can corrode
			between key points of the	over time, decreasing grounding and
			grounding/bonding system	bonding performance
	Solar	Monthly	Visually inspect for debris	Solar panel shading from dust and
	panels	,	and dust on solar panels;	debris accumulation will decrease
			clean if necessary	performance
		Annually	Clean solar panels anyway	
		,	Trim trees to avoid shading	
			if applicable	
		3-5 years	Verify solar panel azimuth	Wind gusts, seismic activity and
			and bearing	vandalism can change the vertical and
				horizontal pointing of the solar panel;

Category	Subsystem	Frequency	Task	Justification
				poor pointing will decrease
				performance
			Retorque bracketry and railing fasteners/anchors	Fasteners can loosen over time
	Solar	3-5 years	Confirm temperature	Temperature compensation
	charge		compensation is functional	coefficients need to be changed to
	controllers			match battery manufacturer
				recommendations; batteries with different coefficients can be used over time
			Check charge voltage	Multi-stage charging setpoints need to
			setpoints	be changed to match battery
				manufacturer recommendations; batteries with different setpoints can be used over time
			Retorque terminals	Heat cycling over time can cause
				loosening of terminals. Loose
				terminals can cause arcing
			Benchmark charge profiles	Multi-stage charging is a specific procedure of applying varying voltage and current to a battery as specified by the battery manufacturer
	Conductor	3-5 years	Visually inspect accessible	As the conductor insulation and jacket
	s (wires)		conductor insulation for	material age, the insulation/jackets
			cracking and/or melting	can crack, creating corrosion and arcing potential
	Enclosures	3-5 years	Visually inspect panels;	Dust and debris can be problematic
			clean out debris	for electronic equipment, decrease
				the convective cooling capacity and
			Visually inspect conduit	accelerate corrosion
			Visually inspect conduit	Open conduit penetrations allow insect and rodent ingress
			penetrations; fill openings with conduit putty	insect and rodent ingress
	Batteries	Annually	Visually inspect battery	Heat cycling over time can cause
	(not		terminals for corrosion;	loosening of terminals. Loose
	flooded)		clean and coat with battery	terminals can cause arcing
		Annualli	terminal protective coating	Lood gold bottories should be
		Annually	Replace lead acid batteries over 10 years old	Lead acid batteries should be expected to last 5-8 years under ideal conditions; the probability of more problems increases after 10 years of age
		Annually	Replace lithium batteries over 15 (?) years old	Lithium batteries should be expected to last 10-12 years under ideal
				conditions; the probability of more problems increases after 15 years of age
		3-5 years	Retorque terminals	
			Discharge test	Batteries lose energy storage capacity
			benchmarking	as they age; discharge testing is a
				performance test of a true deep cycle
				battery requiring special equipment to
				maintain a target discharge current over a number of hours
Electronic	Contactors	3-5 years	Conduct function testing	Electromechanical devices can wear
controls	and	Jaycara	Benchmark coil and	out over time
			contact resistance	
	1	I .	23.7600 1 23.3601100	l

Category	Subsystem	Frequency	Task	Justification
	control relays			
	Digital PLC outputs	3-5 years	Conduct function testing	Electromechanical devices can wear out over time
	PLC general	Annually	Clean off any dust	Dust can reduce heat dissipation and cause over-heating
Instrumentation	Analog and serial	Weekly	Compare sensor reading to a reference measurement	Sensors drift over time
	sensors	Annually	Check full range calibration	Sensors drift over time
		3-5 years	Recalibrate sensors (including flow meters)	Sensors drift over time
	Digital switches	Annually	Check functionality	Electromechanical devices can wear out over time
		3-5 years	Check contact resistance	Electromechanical devices can wear out over time
	Spliced connection s in the field possibly exposed to weather	Annually	Check connection and apply dielectric grease	Exposed connections can be subject to accelerated corrosion due to environmental conditions
RTU	Vandalism enclosure	Monthly	Check for vandalism or environmental damage on locks and hinges	
	Grounding and bonding system	3-5 years	Benchmark resistance between critical grounding and bonding points	Terminals and connectors can corrode over time, decreasing grounding and bonding performance
	RTU enclosure	Annually	Inspect the enclosure for debris, leaks and dust. Clean as necessary	Dust and debris can be problematic for electronic equipment, decrease the convective cooling capacity and accelerate corrosion
			Visually inspect enclosure door gasket for damage; replace as necessary	Failing gaskets can increase water and dust ingress
	Conductor s (wire)	3-5 years	Check for cracks or other failures in insulation	As the conductor insulation and jacket material age, the insulation/jackets can crack, creating corrosion and arcing potential
	Conduit penetratio ns	3-5 years	Verify or replace conduit putty seal	Open conduit penetrations allow insect and rodent ingress
	Fuses and circuit breakers	Annually	Check for contact corrosion and function	Circuit breakers, especially some older brands can wear out over time; fuse connections can corrode and be susceptible to oxidation over time
		3-5 years	Re-torque critical conductor terminals	Heat cycling over time can cause loosening of terminals. Loose terminals can cause arcing
	PLC	Annually	Check internal battery voltage	The internal PLC battery provides backup memory functions and needs to be replaced intermittently;
		Annually	Verify backup application files are available	Up-to-date backup files are critical when a PLC fails

Category	Subsystem	Frequency	Task	Justification
	Terminal	3-5 years	Retorque critical terminal	Heat cycling over time can cause
	block		block screw connections	loosening of terminals. Loose
				terminals can cause arcing
	Power	3-5 years	Check the output voltage	Power supply output voltages can
	supplies		and AC ripple	change over time or be adjusted
				incorrectly; AC ripple is an imperfect
				conversion of AC current to DC current
				and can cause problems
	Operator	Annually	Visually inspect and test for	Interface terminals have a limited
	interface	,	functionality	lifespan, especially touchscreens with
	terminal		·	backlights
	Alarms	Annually	Function test critical alarms	Alarms are the first indication of a
		,		problem and therefore should be
				functional
		3-5 years	Test all software and	
		, ,	hardware-based alarms	
	Misc.	Annually	Check for spare fuse	Small glass fuses are not always
		,	quantity; verify presence of	available locally with the correct
			as-built wiring diagram	rating; having wiring diagrams in the
			as same manageam	field, that are accurate, is critical for
				troubleshooting issues
Gates and	Gates	Annually	Clean and lubricate gate	Gate stems should be clean and
valves			stems; check for	greased to minimize wear on the
			misalignment and bending	lifting nut; bent stem shafts can be
				problematic to actuators
	Actuators	Annually	Visually inspect actuator	Losing lubricant can be a problem over
		,,	for oil leaks	time
			Fully stroke actuators that	Actuators should be operated
			are not moved regularly	regularly
			Verify full open/close limits	Correct open/close limits on the
			and functions	actuator are critical to achieve
				expected performance and prevent
				damage from over travel
		3-5 years	Retorque mounting and	Loose hardware can cause damage
			enclosure fasteners	
			Retorque branch circuit	Heat cycling over time can cause
			conductors and motor	loosening of terminals. Loose
			leads	terminals can cause arcing
			Replace actuator battery as	Internal batteries lose capacity over
			recommended by	time
			manufacturer (5 years for	
			some)	
			Benchmark actuator	Gates and valve can get more difficult
			operating current	to move over time, potentially
				overloading the actuator motor
Pumps	Variable	Monthly	Verify cooling system	Cooling systems can be critical for VFD
	Frequency		performance; clean all air	operation; overheating will result in
	Drives		filters	unexpected nuisance tripping that can
				be frustrating
		Annually	Visually inspect enclosures	Dust and debris can be problematic
			and clean dust and debris	for electronic equipment, decrease
				the convective cooling capacity and
				accelerate corrosion
			Verify backup configuration	Backups need to be verified
			Verify backup configuration files are available and up to	Backups need to be verified intermittently; backup files are critical
				1

Category	Subsystem	Frequency	Task	Justification
				complete configuration to be saved as
				a readable computer file
				(spreadsheet) for record keeping
		3-5 years	Retorque branch circuit	Heat cycling over time can cause
			conductors and motor leads	loosening of terminals. Loose
Communication	Radios and	Annually	Benchmark radio Received	terminals can cause arcing Monitoring the ambient radio
s / Networking	accessories	Ailliually	Signal Strength Indication	environment and specific radio
3/ NetWorking	accessories		(RSSI) and Signal to Noise	performance is critical for future
			Ratio (SNR) and data	troubleshooting
			throughput	
			Verify backup radio	Having access to the latest radio
			configuration files	configuration file is critical if the radio
				needs to be replaced
		3-5 years	Check antenna alignment	Antenna can shift positioning over
				time
			Benchmark ambient noise	
			levels using a spectrum	
			analyzer	2
	Copper and fiber	3-5 years	Benchmark data	Data traffic issues in copper and fiber
	and liber		throughput and percentages of lost packets	systems can also occur over time
			across key network links	
			using the "ping" test or	
			equal	
НМІ		Annually	Verify HMI automatic	Automatic backups need to be verified
			backup frequency and/or	intermittently; backup files are critical
			dates	for computer hardware replacements
		3-5 years	Test data and application	
			file backup; test redundant	
		344 11	hot-swapping functions	
Security	Network	Weekly	Run software security	Frequent security scans for viruses,
			scans	malware, trojans, etc. are easy to schedule automatically
		Annually	Review, test and	Security and firmware updates are
		7 timidany	implement security	provided intermittently by software
			operating system patches,	and hardware vendors
			firmware updates, etc.	
		3-5 years	Review user access	User access privileges and active
			privileges, firewall rules,	accounts should be reviewed regularly
			network segregation, etc.	and updated as needed
	Firewalls	Annually	Verify documentation of	Up to date documentation and
	and .		system/configuration	configurations are important
	managed		changes	Deslace and to be conflict.
	switches		Verify backup configurations for firewalls,	Backups need to be verified
	1		managed switches and	intermittently; backup files are critical for computer hardware replacements
	1		images of	io. compater naraware replacements
			computers/servers	
		3-5 years	Update firewall rulesets	
	1	,	and managed switch	
			configurations	
	Physical	Weekly	Verify physical access	Physical security measures can wear
			controls (locks, gates, etc.);	or be lost over time
			Verify presence of spare	
	<u> </u>		keys	

Category	Subsystem	Frequency	Task	Justification
		Annually	Verify/test and lubricate padlocks	
		Monthly	Review security footage for problems	Review security video footage to identify problems in a timely manner
Computers	General	Annually	Clean out dust and filters	Keeping computers cool and dust free can extend their lifespan
		3-5 years	Test HVAC systems	
			Verify and test all backup application files	Up-to-date backup files are critical when hardware failure and replacements occur
			Verify and provide redundant backups for critical archive data	Maintaining redundant copies of critical data is important; consider storing the two copies in separate, secure locations
	Computers (servers and	Annually	Review, test and implement software updates	Software updates occur over time and should be implemented after testing
	clients)	3-5 years	Review, test and implement replacement programs for hardware/software without manufacturer support. Replace end-of-life products	
	Mobile tablets and phones	3-5 years	Replace the device	These items are typically consumables and tend to fail or become obsolete after 5 years

SUMMARY

Implementing a preventative maintenance program is a worthwhile consideration for irrigation districts with sufficient budget and available skilled labor. It is equally worthwhile to periodically evaluate existing preventative maintenance programs, test results and failure events in the field to determine if adjustments to maintenance programs are justified.

All of this requires excellent and organized records. It is anticipated that asset management software tools can assist irrigation district personnel in tracking and updating records. However, the authors are unaware of any irrigation districts using specialized software for preventative maintenance program tracking in the irrigation district SCADA sector currently, despite common use in manufacturing and other industrial sectors.