Some questions about $bu^*(bu)$

Jiacheng Liang

June 3, 2023

The original problem is how to naturally give a canonical E_{∞} -ring structure of $MU\langle 2k \rangle$ when $k \geq 3$, which finally can be refined to 2 questions on calculating $bu^*(bu)$.

1 Whether $bu^{1-2k}(bu) = 0$?

We know the E_{∞} Thom spectrum functor induces a Quillen adjunction $Top[E_{\infty}]_{/BU} \rightleftharpoons Sp[E_{\infty}]$.

Follow the paper AHS[01], E_{∞} -ring structure of $MU\langle 2k \rangle$ should be from the Thom spectrum of the map of infinite loop spaces $BU\langle 2k \rangle \to BU$, which takes from a homotopy class of morphism $\Sigma^2 bu \to bu$ (where bu is the connective complex K-theory). So $BU\langle 2k \rangle \to BU$ is a only a homotopy class of morphism in $Ho(Top[E_{\infty}])$, and hence give an object in $Ho(Top[E_{\infty}])_{/BU}$ but not in $Ho(Top[E_{\infty}]_{/BU})$! They are different.

We know there is a natural functor $Ho(Top[E_{\infty}]_{/BU}) \to Ho(Top[E_{\infty}])_{/BU}$. An natural question is that whether we can lift $BU\langle 2k \rangle \to BU$ uniquely up to unique isomorphism to $Ho(Top[E_{\infty}]_{/BU})$ in some way. If that is right, we can conclude the E_{∞} ring $MU\langle 2k \rangle$ is independent on the choice of the lifting.

Actually, a homotopy between two E_{∞} maps of $X \to BU$ give a following diagram.

$$X \xrightarrow{f} X \otimes I \xleftarrow{g} X$$

$$BU$$

It means that a homotopy could give an isomorphism in $Ho(Top[E_{\infty}]/BU)$, which induces a functor from $\pi Map_{E_{\infty}}(X,BU) \to Ho(Top[E_{\infty}]/BU)$, where π is fundamental groupoid. (All mapping spaces involved should be considered as derived mapping spaces). Then the lifting problem will be solved if $Map_{E_{\infty}}(X,BU)$ is simply-connected. Now let $X = BU \langle 2k \rangle$, we have

$$\pi_1 Map_{E_{\infty}}(X,BU) = \pi_1 Map_{Sp}(\Sigma^{2k}bu,\Sigma^2bu) = bu^{1-2k}(bu)$$

So the first question is: whether $bu^{1-2k}(bu) = 0$?

2 Is $bu^4(\Sigma^4bu) \to bu^4(BSU)$ injective?

Is E_{∞} structure of BSU unique up to unique isomorphism? Let $Ho(Top[E_{\infty}]) \to Ho(Top)$ be the derived functor induced by forgetful functor. Consider the category of the fiber F over BSU

$$F \xrightarrow{} * \downarrow BSU$$

$$Ho(Top[E_{\infty}]) \longrightarrow Ho(Top)$$

Adams showed that F_{BSU} and F_{BSO} are connected, I hope further that it is simply-connected. By calculation $\pi_1 F = ker(\pi_0 Map_{E_\infty}(BSU, BSU) \to \pi_0 Map(BSU, BSU)) = Ker(bu^4(\Sigma^4bu) \to bu^4(BSU))$. So the Second question is: whether $bu^4(\Sigma^4bu) \to bu^4(BSU)$ is injective?