

FIG.1A

2 % 91

FIG.1B

FIG.1C

1716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

FIG.2B

FIG.3

Cohorage Tages

FIG.4A

FIG.4B

FIG.4C

	Forward Primer	Reverse Primer
	4	HCGR2
Safety PTM	lobir	ЯЕ-ТО
	β-g	A-nidolg-8
	4	A-nidolg-q
	9	Ac-TO
	ä	HCGR2
		Marker (bp)
	받	HCGR2
Linear PTM	lobir	AE-TQ
	β-9	A-nidolg-q
	ų.	A-nidolg-8
	HCG-F	ЯЕ-ТО
	표	HCGR2
•		Marker (bp)

7 8 9 10 11 12 9 Ŋ က

1ST CODING NUCLEOTIDE OF DT-A EXON 1 OF AHCG6 | 5-CAGGGGAGCCACCAAGGATGATGTTCCAG-GGGCTGATGATGTTCTT GATTCTTCTTAAATCTTTTGTGATGGAAAACTTTTCTTCGTACCACGGGACTA AACCTGGTTATGTAGATTCCATTCAAAA-3'

Cis-spliced products

Trans- spliced products

E1 DT-A = 1st EVENT, 196bp. Trans-SPLICING BETWEEN 5' ss OF TARGET & 3' ss OF PTM.

DT-A E3 = 2nd EVENT, 161bp. Trans- SPLICING BETWEEN 3' ss OF TARGET & 5' ss OF PTM.

FIG.8B

FIG.9

FIG. 10B

FIG.11A

FIG.11B

FIG.11C

FIG.12A

GGCTTTCGCTACCTCGAGAGACGCCCCCTGATCCTTTCCGAATACGCCCACGCGATGGGTAACAGTCTTG GGACTGGCTGGATCAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATTT GCCGTTTCCCTAAATACTGGCAGGCCTTTCGTCAGTATCCCCGTTTACAG/GGCCGCCTTCGTCTAATAATG Splice junction 1. NUCLEOTIDE SEQUENCES OF THE cis-SPLICED PRODUCT (285 bp): BioLac-TR1

TGGCGATACGCCGAACGATCGCCAGTTCTGTATGAACGGTCTGGTCTTTGCCGACCGCCACGCCATCCAG 2. NUCLEOTIDE SEQUENCES OF THE trans-SPLICED PRODUCT (195 bp) BioLac-TR1

GGCTTTCGCTACCTGGAGAGACGCCCCCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTGG COGETITICACITACA TACTICACIO CONTITICATA CONTITICA CONTIT Splice junction

GAGCATGGGCGGCATGGGCATCCAAGGAGCCACTTCGGCCACGTGCCG

FIG. 12B

CFTR Pre-therapeutic molecule (PTM or "bullet")

FIG.13

FIG.14

FIG. 15A

GTGTTTCCTATGATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGCATCATCATCATCATCATTAG 320 CACAAAGGATACTACTATATCTATGTCTTCGCAGTAGTTTCGTACGTTGATCTTCTCGTAGTAGTAGTAATC

p.25

ı—	Kpn I Dra I	SCTCGGTACCAAGCTTAAGİT 400 CGAGCCATGGTTCGAATTCAA 184 1	390	BUT NOT TARGET	ICCCCCSTGCCTTCCTTGACC 480 AGGGGGCACGGAACTGG
٠.	Opn 1	TTCCACCACTGGACTAGTĠĠATCCĠAG AAGCTGGTGATCACCTAGGCTC CF28 11 1	373 373	378	AGTTBCCAGCCATCTGTTGTTTGCCCCT ATCAACGGTCGGTAGAACAAACGGGG
111 00	Not I EcoR V EcoR I	SCGCCGCCACTGTGCTGCATATCTGCACACTGCACTGGACTAGTGGATCCGAGCTCGGTACCAAGCTTAAGTT 400 SCCGGCGCGTGACACGTATAGACGTCTTAAGGTGGTGGAACTGAACTACCTAGGCTGCAGCCCATGGTTCGAATTCAA SCT	323 344	Sau3A Don I	TAAACCGCCIGATCAGCCTCCACTGTGCCTTCTAGTTGCCAGCCATCTGTTGCTGCCCCTCCCCGTGCCTTCCTT

nsage
site
leases
ndonuc
تت
tion
tric
Restr

CTGGAAGCTGCCACTCCCAC 500 GACCTTCCACGTGAGGGTG

410

						L	4		
	7	-	. 1		- 1	1	1		
	Sau96	Sco I	Smo	Soh 1	- 5	Ssn	Stu 1		
2000	· 1	•	-	1	2	ıi	3		
מינה היהי	Nde 1	Nhe I	Not I	Pf IM	Pst 1	Pvu	Pvu II		
	•		ı	2	. 1	-	i		
	EcoR 1	EcoR V	Hae II	Hoe III.	HinC 11	Hind III	- Hinf I - Pvu II		
•	ı	 -	I	1	_	7	1		
	Acc I	Apa I	Apal I	Avr II	BamH 1	Bon 11	Bbe 1		

8 91

FIG.16

Double Splicing PTM

CFTR BD intron 9 Spacer+BP+PPI+3'SS CFTR exon 10 Spacer+BP+PPI+5'SS CFTR BD intron 10

Poly A Poly A Exon 10 F508 deletion Trans-splicing Exons 1-9 ŝ Repaired CFTR mRNA PI

91

FIG.17

DOUBLE TRANS-SPLICING SPECIFIC TARGET

FIG. 19

DOUBLE TRANS-SPLICING B-GAL MODEL

30

Repaired LacZ mRNA

FIG.20

(1) 3' BD (120 BP): GATTCACTTGCTCCAATTATCATGCTAAGCAGAAGTGTATTTCTATTTGTAAAGATTCTATTAACTCATTTGATTC AAAATATTTAAAATACTTCCTGTTTCATACTCTGCTATGCAC

(2) Spacer sequences (24 bp): AACATTATTATAACCTTGCTCCAA

3'ss Lacz mini (3) Branch point, pyrimidine tract and acceptor splice site: IACIAAC I CETACCICTICTITTITTE BATACCIGCAG GGC GGC

(4) 5' donor site and 2nd spacer sequence: | IGA ACG|C7A4G7 GITAICACCCAIAIGIGICTAACCIGAIICGGGCCITCGAIACG CTAAGATCCACCGG LacZ mini 5°83

(5) 5' BD (260 BP): TCAAAAAGTTTTCACATAATTTCTTACCTCTTCTTCAAATTCATGCTTTGATGACGCTTCTGTATTCTATTCATCATTGGAA ACACCAATGATTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACAATGAAATTCTTCCACTGTGCTTAA AAAAACCCTCT*GAATTC*TCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAACCCATCATTATTAACTCA TTATCAAATCAGG

FIG.21

1

91

DOPPH TOPOL

ACCURACY OF DOUBLE TRANS-SPLICING REACTION

FIG.23A

ACCURACY OF DOUBLE TRANS—SPLICING REACTION

FIG.23B

Double Trans-splicing Produces Full-length Protein

35

Lane 1: DSCFT1.6 Target alone
Lane 2: DSPTM7
Lane 3 Target + PTM #6
Lane 4: Target + PTM #9
Lane 5: Delta 3' splice mutant alone
Lane 6: Target + Delta 3' ss
Lane 7: Target+PTM29+30 (mutants)

25 µg 25 µg 25 µg 25 µg 25 µg 25 µg 25 µg

Figure 24

FIG.25

antoto, settaeen

FIG.26

FIG.27

FIG.29

DOPHILL GHOHOE

FIG.30

PTM with a long binding domain masking two splice sites and part of exon 10 in a mini-gene target

DACATAC COTOTO

<u>C170</u>CCCCTCACTIACCACCACTACCCCTAICCTICGCTCATIAACCCCTCICACTICCACGAC ACCAGCT 1GC T CATGATGATGATGGG CGAGT TAGA ACCAAGT GAAGG CGAAGAT CAAGATTCCG GCCCCATCAGCTTITGCAGCCAATTCAGTIGGATCATGCCCCGGTACCATCAAGGAGAACATAAT MCU in exon 10 of PTM 88 OF 192 (46%) bases in PTM exon 10 are not complementary to its binding domain (bold and underlined).

FIG.31

43 of 91

Sequence of a double Trans—spliced product

FIG.32

CF—TR Repair: 5' Exon—Replacement schematic diagram of a PTM binding to the splices site of intron 10 of a mini—gene target

DSSHITES OHDHOE

FIG.34A

FIG.34B

PTM with a long binding domain masking two splice sites and the whole of exon 10 in a mini-gene target.

FIG.34C

 $\frac{MCU}{10}$ in exon 10 of PTM 88 of 192 (46%) bases in PTM exon 10 are not complemetary to its binding domain.

G<u>CCGCATCAGC</u>TTTTG<u>CAGC</u>CA<u>A</u>TT<u>CAGTT</u>GGAT<u>C</u>ATGCCCCGGGTACCATCAAGGAGAACATAAT <u>C 7 7</u>CGGG T CAGTI A CGA CGA GTA CCC CTA T CGC T CGAT TA A GGC C TGT CAGT T GGA GGA G

FIG.35

COPPLACE CHOPE

FIG. 36 A

48 of 91

Cis-spliced product [Primers CF1+CF111]

FIG.36A-1

achoho" ashrheso

FIG.36B

FIG.37A

FIG.37B

DOGFIFSE DYDAGE

DODFIFOR DFOFOR

				Total RNA	# PCP coulon	" I Ch cycles	(bp) 500 500 100 Trans-spliced 200 (299 bp)	
		T			20 25 30	3		9 10 11 12 M 13 14 15
		6	accury	50 ng	\ 2			14
	50		Iac		12		e e	13
	Trans-splicing	T	1		ě			Z .
	rs-sp	1		100 ng	20 25 30		्रिक्	
	Tra				20		·	2
		lacZCF9n1 + PTM-CF24			20 25 30			0
		TM-(8	200	25		•	òo
		1 + P		1	20		*	7
		Š	Γ.		2		4. 4	Σ Ψ
		lacZ	50 110		22 30	2		S
				1	₹		2000年	4
100	Co-spiicing			1.	3		**************************************	~
			25 ag	ž	3		\overline{i}	7
L	_		<u>.</u>	٤	1			-
							A STATE OF THE STA	
							s-spliced 303 bp)	

FIG 38 A

dotato" astituce

FIG. 38B

FIG. 39

F1G. 40A

HOTOTO HOTOTO

FIG.41A

DANTHOE DHOHOE

Figure 4RB

60

FIG.41C

Ü

61 of 91

Exons 1-10

ATGCAGAGGTCGCCTCTGGAAAACGCCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAG GGAAAGAGAATGCGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGG AGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCA TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTAT TGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGT TTGATTTATAAGAAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTT CCAACAACCTGAACAAATTTGATGAAGGACTTGCATTGGCACATTTCGTGTGGGATCGCTCCTTTGCAAGTGGCACTCCT CATGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAG GCTGGGCTAGGGAGAATGATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTGAAAGACTTGTGATTACCTCAG AAATGATCGAGAACATCCAATCTGTTAAGGCATACTGCTGGGAAGAAGCAATGGAAAAAATGATTGAAAACTTAAGACA AACAGAACTGAAACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAATAGCTCAGCCTTCTTCTTCTCAGGGTTCTTT GTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAGGAATCATCCTCCGGAAAATATTCACCACCATCTCATTCT GCATTGTTCTGCGCATGGCGGTCACTCGGCAATTTCCCTGGGCTGTACAAACATGGTATGACTCTCTTGGAGCAATAAA CAAAATACAGGATTTCTTACAAAAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGGAG AATGTAACAGCCTTCTGGGAGGAGGATTTGGGGAATTATTTGAGAAAAGCAAAACAATAACAATAGAAAAACTT CTAATGGTGATGACAGCCTCTTCTTCAGTAATTTCTCACTTCTTGGTACTCCTGGTCCTGAAAGATATTAATTTCAAGAT AGAAAGAGGACAGTTGTTGGCGGTTGCTGGATCCACTGGAGCAGGCAAGACGAGCTTGCTCATGATGATGATGATGATGGGCGAG TTAGAACCAAGTGAAGGCAAGATCAAACATTCCGGCCGCATCACCTTTTGCAGCCAATTCAGTTGGATCATGCCCCGGTA CCATCAAGGAGAACATAATCTTCGGCGTCAGTTACGACGAGTACCGCTATCCCTCGGTGATTAAGGCCTGTCAGTTGGA CCAG

Trons-splicing domain

GTAAGATATCACCGATATGTGTCTAACCTGATTCGGGCCTTCGATACGCTAAGATCCACCGG

TCAAAAAGTTTTCACATAATTTCTTACCTCTTCTTGAATTCATGCTTTGATGACCCTTCTGTATCTATATTCATCATTG

GAAACACCAATGATATTTTCTTTAATGGTGCCTGCCATAATCCTCGAAAACTGATAACACAATGAAATTCTTCCACTGT

GCTTAATTTTACCCTCTGAATTCTCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAACCCATCATT

ATTAACTCATTATCAAATCACGCT

FIG. 42

TOPLIFOR DIPLIFOR

153 bp PTMZ4 Binding Domain:

Nhe I GCTAGC-AATAATGAGGAGGGGCCCCCCCGGGGTTCACTTGCCTCCAATTATCATCCTAAGCAGAGTGTATA

TTCTTATTTGTAAAGATTGTATTAACTCATTTGATTCAAAATATTTAAAATACTTCCTGTTTCACCTACTCTGCTATGC

Sac II

FIG. 43A

Trans-splicing domain

Exons 10-24

ACTTCACTTCTAATGATGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATTTCATTCT GTTCTCAGTTTTCCTGGATTATGCCTGCCACCATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATA CAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGAGACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAA GGTGGAATCACACTGAGTGGAGGTCAACGAGCAAGAATTTCTTTAGCAAGAGCAGTATACAAAGATGCTGATTTGTATT TATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAGCTGTGTCTGTAAACTGATGGC AGCAGCTATTTTTATGGGACATTTTCAGAACTCCAAAATCTACAGCCAGACTTTAGCTCAAAACTCATGGGATGTGATT CTTTCGACCAATTTAGTGCAGAAAGAAGAAGTTCAATCCTAACTGAGACCTTACACCGTTTCTCATTAGAAGGAGATGC TCCTGTCTCCTGGACAGAAACAAAAAAAAACAATCTTTTAAACAGACTGGAGAGTTTGGGGAAAAAAAGGAAGAATTCTATT CTGATGAGCCTTTAGAGAGAGGCTGTCCTTAGTACCAGATTCTGAGCAGGGAGAGGCGATACTGCCTCGCATCAGCGT GATCAGCACTGGCCCCACGCTTCAGGCACGAAGGAGGCAGTCTGTCCTGAACCTGATGACACACTCAGTTAACCAAGGT CAGAACATTCACCGAAAGACAA<u>CAGCATC</u>CACACGAAAAGTGTCACTGGCCCCCTCAGGCAAACTTGACTGAACTGGATA TATATTCAAGAAGGTTATCTCAAGAAACTGGCTTGGAAATAAGTGAAGAAATTAACGAAGAAGACTTAAAGGAGTGCTT TTTTGATGATATGGAGAGCATACCAGCAGTGACTACATGGAACACATACCTTCGATATATTACTGTCCACAAGAGCTTA ATTITIGTGCTAATTTGGTGCTTAGTAATTTTTCTGCCAGAGGTGGCTGCTTCTTTGGTTGTGCTGTGCCTCCTTGGAA ACACTCCTCTCAAGACAAAGGGAATAGTACTCATAGTAGAAATAACAGCTATGCAGTGATTATCACCAGCACCAGTTC CATACTCTAATCACAGTGTCGAAAATTTTACACCACAAAATGTTACATTCTGTTCTTCAAGCACCTATGTCAACCCTCA ACACGTTGAAAGCAGGTGGGATTCTTAATAGATTCTCCAAAGATATAGCAATTTTGGATGACCTTCTGCCTCTTACCAT ATTIGACTICATCCAGTIGITATTAATIGIGATICGAGCTATAGCAGTIGICGCAGTITTACAACCCTACATCTTIGIT GCAACAGTGCCAGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTCCAAACCTCACAGCAACTCAAACAACTGG AATCTGAAGGCAGGAGTCCAATTTTCACTCATCTTGTTACAAGCTTAAAAGGACTATGGACACTTCGTGCCTTCGGACG GCAGCCTTACTTTGAAACTCTGTTCCACAAAGCTCTGAATTTACATACTGCCAACTGGTTCTTGTACCTGTCAACACTG CGCTGGTTCCAAATGAGAATGATTTTTGTCATCTTCTTCATTGCTGTTACCTTCATTTCCATTTTAACAACAG GAGAAGGAGAAGGAAGAGTTGGTATTATCCTGACTTTAGCCATGAATATCATGAGTACATTGCAGTGGGCTGTAAACTC CAGCATAGATGTGGATAGCTTGATGCGATCTGTGAGCCGAGTCTTTAAGTTCATTGACATGCCAACAGAAGGTAAACCT ACCAAGTCAACCAAACCATACAAGAATGGCCAACTCTCGAAAGTTATGATTATTGAGAATTCACACGTGAAGAAGATG ACATCTGGCCCTCAGGGGGCCAAATGACTGTCAAAGATCTCACAGCAAAATACACAGAAGGTGGAAATGCCATATTAGA GAACATTTCCTTCTCAATAAGTCCTGGCCAGAGGGTGGGCCTCTTGGGAAGAACTGGATCAGGGAAGAGTACTTTGTTA TGAACAGTGGAGTGATCAAGAAATATGGAAAGTTGCAGATGAGGTTGGGCTCAGATCTGTGATAGAACAGTTTCCTGGG AAGCTTGACTTTGTCCTTGTGGATGGGGGCTGTGTCCTAAGCCATGGCCACAAGCAGTTGATGTGCTTGGCTAGATCTG TICTCAGTAAGGCGAAGATCTTGCTGCTTGATGAACCCAGTGCTCATTTGGATCCAGTAACATACCAAATAATTAGAAG AACTCTAAAACAAGCATTTGCTGATTGCACAGTAATTCTCTGTGAACACAGGATAGAAGCAATGCTGGAATGCCAACAA

Histidine tog Stop
TGCTCTGAAAGAGGAGACAGAAGAAGAGAGAGAGATACAAGGCTTCATCATCATCATCATCATCATTAG

FIG.44A

FIG.44B

DOSTATE DATE

CTTTAAAAAGAAACTTATGAGAAAATTTČÖĞĞĞSAACA*TTATTATAACGTTGCTC*SAA*TACTAACTGGTAC* IATTAAAATCCTAAGCTTTTATATCTCTATCCCTATCTTTTGCTCTCTATCCTATCTTATTAACTTAGA CICTICTITITITIGATATOCIÓCAG

Chicken \(\beta \)-octin Promoter

tolicized=Spacer+PPT+BP+AG dinucleotide Nucleotide changes are shown in blue Boxed+Arrow=Transcription Start Oval=Downstream elements Boxed=Cat box, TATA box Bold=Binding domain

OCCCCCTCCCCCCCCCCCCCCCCCCCTCTCACCCCCCTTACTCCCCACAGGTGAG CGGGCGGGCCCTTCTCCTCCGGGCTGTAATTAGCCCTTGGTTTAATCACGGCT TGTT1CTTTCTGTGGCTGCGTGAAAGCCTTGACGGGCTCCGGGAGGAATTCGTA_ Sequence not included in construct

F13+F2=235+106=341 bp F13+F4=235+315=550 bp Exon 1 Intron 1(partial) Extent of promoter in original construct Extent of promoter in above construct CBA promoter CMV enhancer

Chicken Beta Actin Promoter (including exon 1 and part of intron 1)

FIG.44D

91

Method:

Excise TSD and part of exon 16 with XhoI and PfIMI and ligate in a PCR product that:
1) eliminates the TSD and splice acceptor site
2) inserts EcoRV adjacent to exon 16
3) restores the coding for exon 16

FIG.45

69 4 91

Repair of Factor VIII
Preliminary results from one experiment

FVIII activity in Exon 16 FVII-KO mice after IV PTM-FVII intraportal infusion (100 μ gDNA)(n=3)

Detailed structure of a mouse factor VIII PTM containing normal sequences for exons 16-26 and a C-terminal FLAG tag. BGH=bovine growth hormone 3' UTR; Binding domain= 125 bp.

FIG. 47A

FLAG=C-terminal tag to be used to detect repaired factor VIII protein.

FIG.47B

SMaRT Strategy to Disrupt the Expression of Human Papillomavirus Type 16

91

73

SMaRT Strategy by 3' Exon Replacement: Schematic diagram of HPV-PTM2 binding to the 3' splice site of the HPV type 16 target pre-mRNA

T

FIG.51

HPV-PTM2 with 149 bp binding domain targeted to 3'ss at 409:

ITCTAATGIT GITCCATACA CACTATAACA ATAATGICIA TACICACIAA Binding domain sequence: CAGITAATAC ACCIAATTAA CAAAICACAC AACGCTITGI TGTATTGCTG ITITAGAATA AAACTITAAA CATTTATCAC ATACAGCATA TCGATTCCC FIG.52B

Binding Domains of HPV-PTM3 and 4

AGTTAATACACCTAATTAACAAATCACAACGGTTTGTTGTATTGCAGTTCTAATGTTGTTCCATACACACTA GATGATCTGCAACAAGACATACATCGACCGTCCA(53 nt bubble)CTTCAGGACACAGTGGCTTTTGAC HPV—PTM3 Binding domain (covers both 3'ss at 409 and 526; has 53 bp bubble)

GATGATCTGCAACAAGAC(76 nt bubble)GACACTGGCTTTTGACAGTTAATACACTTAACAAATC HPV—PTM4 Binding domain (covers both 3'ss at 409 and 526; has 76 bp bubble) **ACACAACGGTTTGTTGTATTGCAGTTCTAATGTTGTTCCATACACACTATAACAAT**

17 4 91

HPV-PTM5 and 6

HPV-PTM5, Binding domain (140 nt, has 53 nt bubble, covers 3'ss at position 409 and 526)

GATGATCTGCAACAAGACATACATCGACCGGTCCA. CTTCAGGACACAGTGGCTTTTGACAGTTAATACACCTAATTAACAAATCACACAAGCG TTGTTGTATTGCAGTTCTAATGTTGTTCCATACACACTATAACA

GATGATCTGCAACAAGAC. GACACAGTGGCTTTTGACAGTTAATACACCTAATTAACAAATCACAAACGGTTTGTTGTATTGCAGTTCT HPV-PTM6, Binding domain (117 nt, has 76 nt bubble, covers 3'ss at position 409 and 526) **AATGITCGATACACACTATAACA**

16.54

FIG.55

F19.56

Trans -splicing between target pre-mRNA and PTM is accurate (293T cells)

FIG.57

Trans—splicing in 293 Cells (Co—transfections)	5'ss 3'ss A E7 S S S S S S S S S S S S S S S S S S	% trans-spliced 26 sd 880 sd	9.0	0.9	0.8	0.2		37	22	0	RT-PCR
		% trans 226 sd	69	45	55	0.5	29	7	14	0	ng real—time Q
		Binding Domain egion Size (nt)	80	149	140	140	117	104	174	CF intron 411	efficiency usir SΩ
	ss 3'ss 17 19 29 526 18) (2)	∢	∢	A+B	A+B	A+B	ပ	ပ	CF int	Trans-splicing effi □ FIC 50
	5'ss / / / / / / / / / / / / / / / / / /		HPV-PTM1	HPV-PTM2	HPV-PTMS	HPV-PTM5ABP/PPT	HPV-PTM6	HPV-PTM8	HPV-PTM9	CF-PTM27	Quantification of <i>Trans</i> —splicing efficiency using real—time QRT—PCR FIC 58
	TARGET:	PTW	HPV	HP	HPV	HP	HPV	HPV	HPV	CF.	

DOSTATOR DEPTROPO

Accurate Trans—splicing of HPV—PTM1 in Si Ha Cells (Endogenous target pre—mRNA)

SIMD 15

84

85 \$ 11

Trans—splicing in SiHa Transfections (Endogenous target)

PTM	% trans-spliced					
pcDNA3.1	0					
HPV-PTM1	0.16					
HPV-PTM5	0.12					
HPV-PTM6	0.11					
CF-PTM27	0					

Quantification of trans-splicing efficiency using real-time QRT-PCR

Lanes 1 & 2: RNA from cells transfected with HPV-? PPT (mutant); No trans-splicing Lanes 3 & 4: RNA from cells transfected with HPV-PTM5 plasmid; trans-splicing ➤ Total RNA isolated after 48 hr and SiHa cells transfected with 1.5 μg analyzed by RT-PCR (30 cycles) Deletion of polypyrimidine tract abolishes trans-splicing Primers: oJMD15+Lac6R Expected product: 269 bp Detected (269 bp product) of plasmid DNA Methods: detected Total RNA (μg) HPV-PTM5 3 00x ? PPT mutant 2

87

491

F1G. 63

91

5' DI-A HPV Exon 3 - 3'

Trans-spliced Chimeric mRNA Poly A
Schematic diagram of a PTM binding to the 5' splice site of the HPV mini-gene target

HPV Exon 1 DI-A HPV Exon 3 - 3'

Frans-spliced chimeric mRNA

Schematic diagram of a double Trans—splicing PTM binding to the 3' and 5' splice sites of the HPV mini—gene target

90 of 91

SMaRT Strategy by 3' Exon Replocement: Schematic diagram of a PTM binding to the 3' splice site of the HPV mini-gene target

FIG.66A

SMaRT Strategy by 5' Exon Replacement: Schematic diagram of a PTM binding to the 5' splice site of the HPV mini-gene target

FIG.66B

