

The Multi-Level Lennard-Jones Problem

Jithin George, Dr. Wendy Di

ESAM, Northwestern

November 4, 2020

$$V_{LJ} = \sum_{i,j} \frac{A}{||v_i - v_j||^{12}} - \frac{B}{||v_i - v_j||^6}$$

$$V_{LJ} = \sum_{i,j} \frac{A}{||v_i - v_j||^{12}} - \frac{B}{||v_i - v_j||^6}$$

Figure: The 1-d Lennard Jones Potential

Figure: Global minima for 3 atoms

Figure: Global minima for 4 atoms

Figure: Global minima for 6 atoms

Figure: Global minima for 100 atoms

Multigrid

Algebraic Multigrid

Does a local minima for fewer atoms help?

Figure: Iterations needed for a random guess versus a guess that uses the (N-1)th local minima

Delaunay triangulation

Figure: Delaunay simplices for 5 atoms

Delaunay surfaces

Figure: Delaunay simplices for 5 atoms

How many points should we add?

Figure: Number of iterations needed to reach a local minima for number of atoms

Heuristics fail

Figure: No clear heuristic for choosing a good point

MG-OPT

minimize $f(x_h)$

minimize
$$f(x_H) - V^T(x_H)$$

The energy landscape for 3 atoms

The iterations landscape for 3 atoms

Landscapes

$$V_{LJ} = \sum_{i,j} \frac{A}{||v_i - v_j||^{12}} - \frac{B}{||v_i - v_j||^6}$$

Figure: The 1-d Lennard Jones Potential

A really good initial guess

Starting at 5, the trilateration goes to

11, 23, 41, 47, 59, 65

Starting at 5, the trilateration goes to

Iterations needed at each step

$$37, 123, 118, 142, 222, 151\\$$

Sums to 828.

Starting at 5, the trilateration goes to

Iterations needed at each step

Sums to 828.

Iterations for each size if you took a random initial guess

246, 498, 839, 916, 1104, 1130

The 2d problems

Problems arise

Bugs

Dealing with bugs

Light at the end of the tunnel

Trilateration in 2d

Trilateration in 2d

Trilateration in 3d

Trilateration in 3d

Thank you

