Discrete Mathematics Final Exam (GEDB007-41, Spring 2022)

Problem 1. Let n be an odd integer with n > 1. Prove or disprove: n is a composite if and only if it has a divisor d with $1 < d \le n/3$.

Problem 2. (1) Find the inverse of 567 mod 131.

(2) Find the inverse of 131 mod 567.

Problem 3. For an integer $n \ge 3$, let $X = \{1, 2, ..., n\}$ and $Y = \{1, 2, 3, 4, 5\}$. Find the number of functions $f: X \to Y$ such that

$$|\{f(x): x \in X\}| \le 3.$$

Problem 4. Let $a_1 a_2 \dots a_{1000}$ be a rearrangement of

$$\underbrace{1\cdots1}^{700}\underbrace{3\cdots3}^{200}\underbrace{5\cdots5}_{100}.$$

Prove that there are two integers i and j such that $1 \le i < j \le 1000$ and $a_i + a_{i+1} + \cdots + a_j = 199$.

Problem 5. Find a formula for the *n*th term a_n of the sequence a_0, a_1, a_2, \ldots , which satisfies the initial conditions $a_0 = 3$, $a_1 = 0$ and the recurrence relation given by

$$(n^2 - n)a_n = 8(n - 1)a_{n-1} - 16a_{n-2}.$$

Problem 6. Show that every bipartite graph with 21 vertices has at most 110 edges.

Problem 7. Consider the set of letters in the following table.

letter	A	В	С	D	Е	F	G
frequency	7	1	7	11	3	4	2

- (1) Find an optimal Hoffman code for these letters. (Draw a tree and write a 0-1 sequence for each letter. There are many possible optimal Hoffman codes, and you need to find just one of them.)
- (2) Encode "BAG" using the Hoffman code.

Problem 8. Let A = 1, B = 2, C = 3, D = 4, E = 5, F = 6. Compute each expression, which is either a prefix form or a postfix form. Write "invalid" if the expression is not valid as a prefix or postfix expression.

- (1) ABCD + + + +
- (2) +++ABCD
- (3) AB + CD + +
- (4) A + B + CD +
- (5) A + B + C + D +
- (6) AB + CDEF * + *