

Fundamentals of Recurrent Neural Networks (RNNs) and Long-Short Term Memory (LSTMs)

Doutoranda: Débora Lima

Apresentação

Formação

- Técnica em Informática pelo IFRN Campus Mossoró
- Bacharel em Biotecnologia pela UFERSA
- Mestre em Bioinformática
- Atualmente Doutoranda em Bioinformática

Linhas de Pesquisa

- Projeto de Desenvolvimento do observatório de Dados de Câncer da Liga mossoroense de estudos e combate ao câncer
- Pesquisa com redes neurais para análise de dados clínicos de câncer de pulmão
- Pesquisa usando Deep Learning e Random Forest para análise de dados clínicos e moleculares de câncer de pulmão

Tipos de redes e seus dados

- MLP
 - Dados Tabulares
 - Cada observação tem sua própria linha e cada atributo tem sua própria coluna
- CNN
 - Dados mais complexos como dados de imagem
 - Dificilmente se enquadram em um conjunto de dados tabular típico
 - No entanto, os dados ainda tem comprimento fixo.

O que fazer quando nos deparamos com dados sequenciais?

• • •

RNNs e dados sequenciais

- Muitas tarefas de aprendizagem exigem lidar com dados sequenciais.
- Dados sequenciais estão em toda parte
 - Vídeo (Sequência de imagens)
 - Audio (Sequência de ondas sonoras)
 - Texto (Sequência de caracteres/palavras)
 - Preço de ações
 - Sequências de DNA
 - Condições climáticas
- Diversos tipos de problemas
 - Classificação Binária
 - Classificação de Sentimentos
 - o Legendagem de imagens ...
 - Tradução

The Perceptron Revisited

. .

Feed-Forward Networks Revisited

Feed-Forward Networks Revisited

$$x_t \in \mathbb{R}^m$$

$$\in \mathbb{R}^n$$

Handling Individual Time Steps

Neurons with Recurrence

Recurrent Neural Networks (RNNs)

Apply a **recurrence relation** at every time step to process a sequence:

$$h_t = f_W(x_t), h_{t-1}$$
cell state function input old state with weights w

Note: the same function and set of parameters are used at every time step

RNNs have a state, h_t , that is updated at each time step as a sequence is processed

RNNs: Computational Graph Across Time

Re-use the same weight matrices at every time step

new hidden state

previous hidden state

X_t input

→ concatenation

Modelos sequenciais

- Tipos de modelos sequenciais
 - One to One
 - Many to One
 - One to Many
 - Many to Many
- Critérios para modelos sequenciais
 - Lidar com sequências de comprimento variável
 - Rastrear dependências de longo prazo
 - Manter informações de ordem
 - Compartilhar parâmetros em toda a sequência

• • •

A Sequence Modeling Problem: Predict the Next Word

"This morning I took my cat for a walk."

given these words predict the
next word

Representing Language to a Neural Network

Neural networks require numerical inputs

- RNNs são constantemente utilizadas para modelos de linguagem
- Perplexidade para medição da qualidade do modelo de linguagem
 - "Está chovendo lá fora"
 - o "Está chovendo bananeira"
 - "Está chovendo piouw;kcj pwepoiut

$$\exp\left(-\frac{1}{n}\sum_{t=1}^n \log P(x_t\mid x_{t-1},\ldots,x_1)\right)$$

- Inverso da média geométrica do número de escolhas reais que temos ao decidir qual token escolher em seguida.
 - Melhor hipótese, o modelo sempre estima perfeitamente a probabilidade do token alvo como 1.
 - Pior hipótese, o modelo sempre prevê a probabilidade do token alvo como
 Nessa situação, a perplexidade é infinita positiva.
 - Se o modelo prevê uma distribuição uniforme sobre todos os tokens disponíveis do vocabulário, a perplexidade é igual ao número de tokens únicos do vocabulário.

Sequence Modeling Applications

One to One Binary Classification

Many to One
Sentiment Classification

One to Many
Image Captioning

"A baseball player throws a ball."

Many to Many

Machine Translation

Aplicação

```
class RNN(d21.Module): #@save
    """The RNN model implemented with high-level APIs."""
   def init (self, num hiddens):
       super(). init ()
       self.save hyperparameters()
       self.rnn = tf.keras.layers.SimpleRNN(
           num_hiddens, return_sequences=True, return_state=True,
           time major=True)
   def forward(self, inputs, H=None):
       outputs, H = self.rnn(inputs, H)
       return outputs, H
class RNNLM(d21.RNNLMScratch): #@save
    """The RNN-based language model implemented with high-level APIs."""
   def init params(self):
       self.linear = tf.keras.layers.Dense(self.vocab size)
   def output layer(self, hiddens):
       return tf.transpose(self.linear(hiddens), (1, 0, 2))
    data = d21.TimeMachine(batch size=1024, num steps=32)
    rnn = RNN(num hiddens=32)
    model = RNNLM(rnn, vocab size=len(data.vocab), lr=1)
    model.predict('it has', 20, data.vocab)
     'it hasretsnrnrxnrnrgczntgq'
```



```
model.predict('it has', 20, data.vocab)
```

'it has and the pas an and '

|..

Recall: Backpropagation in Feed Forward Models

Backpropagation algorithm:

- Take the derivative (gradient) of the loss with respect to each parameter
- Shift parameters in order to minimize loss

. .

...

RNNs: Backpropagation Through Time

. . .

Backpropagation em modelos sequenciais

- Em RNNs, o avanço envolve avançar no tempo.
 - Os erros retrocedem no tempo até o início da sequência.
- Para calcular o gradiente, são necessárias muitas multiplicações de matrizes envolvendo a matriz de pesos, bem como cálculos repetidos de gradientes.
- Esta operação de multiplicação repetida é problemática pois pode levar à Explosão ou esvanecimento do gradiente.

. . .

Gradiente em modelos sequenciais

- Explosão do gradiente durante o treinamento na situação em que muitos valores são muito maiores que 1.
 - Pode ser usado gradient clipping

- Esvanecimento do gradiente onde os valores dos pesos são muito pequenos.
 - Multiplicar muitos números menores pode enviesar o modelo levando o foco nas dependências de curto prazo e ignorando as dependências de longo prazo.

• • •

Métodos para evitar o esvanecimento do gradiente

- Funções de Ativação
 - Evitar que o gradiente diminua drasticamente.
 - ReLU é uma boa escolha porque o valor da função de ativação aumenta para 1 quando x > 0.
- Inicialização de parâmetros
 - Podemos inicializar os pesos na matriz identidade para evitar que os pesos diminuam para zero.

Métodos para evitar o esvanecimento do gradiente

- Gated Cells
 - Uma solução mais robusta
 - Unidade recorrente mais complexa para rastrear de forma mais eficaz as dependências de longo prazo.
 - Gates ajudam a adicionar ou remover seletivamente informações dentro de cada unidade recorrente.
 - Um exemplo é as LSTM.
 - Nos LSTMs, existem muitas operações introduzidas para ajudar a controlar o fluxo de informações.

Long-Short Term Memory

- Primeiros RNNs (Elman, 1990)
- Problemas de aprendizagem (Bengio et al., 1994, Hochreiter et al., 2001)
- LSTM (Hochreiter e Schmidhuber (1997)
- LSTMs se assemelham a redes neurais recorrentes padrão, mas:
 - Cada nó recorrente comum é substituído por uma célula de memória.
 - Caracterizada pela cell state a e seus vários gates.
- "Memória de longo e curto prazo"
 - Intuição: Redes neurais recorrentes simples possuem memória de longo prazo na forma de pesos.
 - O modelo LSTM introduz um tipo intermediário de armazenamento através da célula de memória.

Customers Review 2,491

Thanos

September 2018
Verified Purchase

Amazing! This box of cereal gave me a perfectly balanced breakfast, as all things should be. I only ate half of it but will definitely be buying again!

A Box of Cereal \$3.99

- Cell State
 - Transfere informações relativas por toda a cadeia de sequência.
 - Pode transportar informações relevantes ao longo do processamento da sequência.
 - Leva informações dos intervalos de tempo anteriores aos intervalos de tempo posteriores
 - Informações são adicionadas ou removidas do cell state por meio de gates.
- Gates são diferentes redes neurais que decidem quais informações são permitidas no cell state.

- Gates contém ativações sigmóides.
- Uma ativação sigmóide é semelhante à ativação tanh.
 - o Tanh comprime valores entre -1 e 1
 - o Sigmoid comprime valores entre 0 e 1
 - Útil para atualizar ou esquecer dados
 - Número multiplicado por 0 é 0, fazendo com que os valores desapareçam ou sejam "esquecidos".
 - Número multiplicado por 1 tem o mesmo valor, portanto esse valor permanece o mesmo ou é "mantido".

Forget Gate

- C₁₁ previous cell state
- forget gate output

- Este gate decide quais informações devem ser descartadas ou guardadas.
- As informações do estado oculto anterior e as informações da entrada atual são passadas pela função sigmóide.
- Os valores ficam entre 0 e 1. Próximo a 0 esquece e próximo a 1 mantém

Input Gate

- previous cell state
- forget gate output
- input gate output
- c candidate

- Para atualizar o cell state, temos o input gate
- Estado oculto anterior e a entrada atual para uma função sigmóide.
- Valores serão atualizados transformando os valores entre 0 e 1. 0 significa não importante e 1 significa importante.
- Estado oculto e a entrada atual para a função tanh para comprimir valores entre -1 e 1 para ajudar a regular a rede. Então você multiplica a saída tanh pela saída sigmóide.
- A saída sigmóide decidirá quais informações são importantes para manter na saída tanh.

Cell State

previous cell state

- Calcular o cell state.
- Cell state é multiplicado pontualmente pelo vetor de esquecimento.
 - Possibilidade de diminuir valores no estado da célula se for multiplicado por valores próximos a 0.
- Pegamos a saída da porta de entrada e fazemos uma adição pontual que atualiza o estado da célula para novos valores que a rede neural considera relevantes. Isso nos dá nosso novo cell state

Output Gate

- C₁₄ previous cell state
- forget gate output
- input gate output
- candidate
- new cell state
- output gate output
- h hidden state

- O output gate decide qual deve ser o próximo estado oculto.
- O estado oculto contém informações sobre entradas anteriores e também é usado para previsões.
- O estado oculto anterior e a entrada atual é passado para uma função sigmóide.
- O estado da célula recém-modificado passa para a função tanh.
- Multiplicamos a saída tanh pela saída sigmóide para decidir quais informações o estado oculto deve transportar.
- A saída é o estado oculto.
- O novo estado da célula e o novo oculto são então transferidos para a próxima etapa de tempo.

Aplicações


```
model.predict('it has', 20, data.vocab)

'it has a dimension a dimen'
```

Aplicações - Previsão de temperatura média

	date	meantemp	humidity	wind_speed	meanpressure
0	2013-01-01	10.000000	84.500000	0.000000	1015.666667
1	2013-01-02	7.400000	92.000000	2.980000	1017.800000
2	2013-01-03	7.166667	87.000000	4.633333	1018.666667
3	2013-01-04	8.666667	71.333333	1.233333	1017.166667
4	2013-01-05	6.000000	86.833333	3.700000	1016.500000


```
# Creating a Training set with 60 time-steps
x_train = []
y_train = []
time_steps = 60
n_cols = 1

for i in range(time_steps, len(scaled_data)):
    x_train.append(scaled_data[i-time_steps:i, :n_cols])
    y_train.append(scaled_data[i, :n_cols])
    if i<=time_steps:
        print('X_train: ', x_train)
        print('y_train:' , y_train)</pre>
```

```
# Reshaping the input to (n_samples, time_steps, n_feature)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
x train.shape , y train.shape
```

```
((1402, 60, 1), (1402, 1))
```

Aplicações - Previsão de temperatura média

17

```
model = Sequential([
    LSTM(50, return sequences= True, input shape= (x train.shape[1], n cols)),
    LSTM(64, return sequences= False),
    Dense(32),
    Dense(16),
    Dense(n cols)
model.compile(optimizer= 'adam', loss= 'mse', metrics= "mean absolute error")
model.summary()
Model: "sequential"
 Layer (type)
                             Output Shape
                                                        Param #
 1stm (LSTM)
                             (None, 60, 50)
                                                        10400
 1stm 1 (LSTM)
                             (None, 64)
                                                        29440
 dense (Dense)
                             (None, 32)
                                                        2080
 dense 1 (Dense)
                             (None, 16)
                                                        528
```

(None, 1)

dense 2 (Dense)

Aplicações - Previsão de temperatura média

```
# Creating a testing set with 60 time-steps and 1 output
time steps = 60
test data = scaled data[train size - time steps:, :]
x test = []
y test = []
n cols = 1
for i in range(time steps, len(test data)):
   x test.append(test data[i-time steps:i, 0:n cols])
   y test.append(test data[i, 0:n cols])
x test, y test = np.array(x test), np.array(y test)
x test = np.reshape(x test, (x test.shape[0], x test.shape[1], n cols))
# Get Prediction
predictions = model.predict(x test)
12/12 [======= - - 1s 18ms/step
predictions.shape
(366, 1)
```

	Predictions	Actuals
0	14.367847	14.000000
1	13.843797	14.375000
2	13.974187	15.750000
3	14.946880	15.833333
4	15.261067	17.375000
361	16.526890	17.217391
362	16.794012	15.238095
363	15.496777	14.095238
364	14.405824	15.052632
365	14.742517	10.000000

366 rows x 2 columns

GRU - Gated Recurrent Units

- Geração mais recente de redes neurais recorrentes e é semelhante a LSTM.
- Não usa cell state, usa o estado oculto para transferir informações.
 Possui apenas dois gates:
 - Reset Gate
 - Usada para decidir quanta informação passada deve ser esquecida.
 - Update Gate
 - Atua de forma semelhante à Forget e Input gate da LSTM.
 - Decide quais informações descartar e quais novas informações adicionar.
- GRU tem menos operações de tensor;
- Um pouco mais rápidos de treinar do que os LSTM.
- LSTM x GRU: tentar ambos para determinar qual funciona melhor para seu caso de uso.

Resumo

- Redes Neurais Recorrentes são usadas para dados sequenciais
- Diversas aplicações
- RNNs modernas
 - Possuem mais seletividade de acordo com a relevância da informação
 - LSTM: Forget gate, Input gate, State cell, Output gate
 - GRU: Reset Gate, Update gate

Referências

https://d2l.ai/chapter_recurrent-neural-networks/index.html

https://d2l.ai/chapter_recurrent-neural-networks/language-model.html

https://d2l.ai/chapter_recurrent-modern/lstm.html

https://dair-ai.notion.site/Lecture-2-RNNs-and-Transformers-71fb3ba2a24f4b6c8cc77281fc19cfab

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44

e9eb85bf21

https://www.kaggle.com/code/hadeerismail/daily-climate-time-series-analysis-lstm/notebook

https://www.kaggle.com/datasets/sumanthvrao/daily-climate-time-series-data/data