RIGID WATER COLUMN THEORY
VALVE CLOSURE OVER FINITE-TIME; ISOLATING
TWO RESERVOIRS

PIPELINE AS SHOWN, VALVE INITIALLY OPEN.

VALVE CLOSED IN FINITE TIME SUCH THAT

VELOCITY DECREASES LINEARLY TO ZERO

IN TIME To ESTIMATE MIN/MAX PRESSURES

IN SYSTEM AND TIME OF OCCURANCE

EULER'S EQUATION (FOR EACH SECTION)

$$\frac{P_2}{8} - \frac{P_1}{8} + \frac{fL}{2g} \frac{V^2}{D} + \frac{L}{g} \frac{dV}{dt} = 0$$

SET VALVE CLOSURE RATE SUCH THAT

UPSTREAM SECTION

$$\frac{P_2 = H_V - f_L V^2 - L \left(-\frac{V_0}{T_c}\right)}{2gD} \frac{1}{g} \left(-\frac{T_c}{T_c}\right)$$

$$\frac{p_2}{8} = H_U + \frac{V_0 L}{gT_c} - \frac{f L V^2}{2gD}$$

MAX OCCURS WHEN $V \rightarrow 0$, $\frac{p_z}{y} = H_0 + \frac{v_0 L}{g T_c}$, WHICH OCCURS WHEN

THE VALVE IS COMPLETLY CLOSED $(t = T_c)$

MIN OCCURS BEFORE VALVE BEGINS CLOSING-DURING PRE-CLOSURE STEADY FLOW (dV = 0)

$$\frac{-p_{2}}{g} = H_{0} - \frac{\int LV_{0}^{2}}{2gD}$$

SUMMARY

$$\frac{p_2 - H_0 + V_0 L}{8} = t = T_c$$

$$\frac{p_2 - H_0 - f_1 V_0^2}{8} = t \le 0$$

DOWNSTREAM SECTION

$$\frac{p_4}{8} - \frac{p_3}{8} + \frac{fL}{2gD}V^2 + \frac{L}{g}\frac{dV}{dt} = 0$$

$$\frac{p_{3}}{g} = \frac{H_{s}}{2} + \frac{f L V^{2}}{2gD} + \frac{L(-V_{o})}{g(T_{c})}$$

$$\frac{p_8 = H_d - \frac{L}{g} \left(\frac{V_o}{T_c}\right) + \frac{fLV^2}{2gD}}{8}$$

MAX OCCURS WHEN DV = 0 (JUST BEFORE VALVE CLOSURE)

$$\frac{b_3 = H_d + \frac{fLV_0^2}{2gD} \quad e + \leq 0$$

MIN OCCURS WHEN V->O (JUST AT COMPLETE CLOSURE)

$$\frac{B_3}{8} = H_d - \frac{CV_o}{gT_c}$$
 $e t = T_c$

R SCRIPT TO EXPLORE SCHEDULED VALVE CLOSURÉ (AS MANIFEST BY dV-CONSTANT)

INPUTS: Hu, HD, Lu, LD, D, g, f, Te

OUTPUTS: V_0 , V(t), $\frac{p_2}{3}(t)$, $\frac{p_3}{3}(t)$

ATTACHED CODE & EXAMPLE FOR

 $H_{V} = 100 Ft$ $H_{d} = 80 Ft$ $L_{V} = 3220 Ft$. $L_{D} = 3220 Ft$.

D=

Tc = 100 sec

NOTES:

```
# Finite-difference approximation for scheduled valve closure
steadyVelocity <- function(head, distance, diameter, gravity, friction) {</pre>
  steadyVelocity <-
sqrt((2.0*gravity*diameter*head)/(friction*distance))
  return(steadyVelocity)
# Read Inputs
Hu <- as.numeric(readline(prompt = " Enter Upstream Reservoir Pool</pre>
Elevation "))
Hd <- as.numeric(readline(prompt = "Enter Downstream Reservoir Pool</pre>
Elevation "))
Lu <- as.numeric(readline(prompt = "
                                               Enter Upstream Pipeline
Length "))
Ld <- as.numeric(readline(prompt = "</pre>
                                             Enter Downstream Pipeline
Length "))
D <- as.numeric(readline(prompt =</pre>
                                                           Enter Pipe
Diameter "))
g <- as.numeric(readline(prompt = "</pre>
                                                  Enter gravitational
constant "))
f <- as.numeric(readline(prompt = "</pre>
                                                  Enter Darcy friction
factor "))
Tc <- as.numeric(readline(prompt = "
                                                             Valve
Closure Time "))
# Echo Inputs
message("
              Upstream Reservoir Pool Elevation : ", Hu)
message("
            Downstream Reservoir Pool Elevation : ", Hd)
message("
                       Upstream Pipeline Length : ",Lu)
message("
                     Downstream Pipeline Length : ",Ld)
message("
                       Pipe Diameter : ",D)
message("
            Gravitational Constant : ",g)
message("
              Darcy Friction Factor : ",f)
message("
                  Valve Closure Time : ",Tc)
# Compute Some Constants
DeltaH <- Hu - Hd
TotalL <- Lu + Ld
Vzero <- steadyVelocity(DeltaH, TotalL, D, g, f)</pre>
DecelerationRate <- Vzero/Tc
# Report Some Constants
message("
                               Vo : ", Vzero)
message(" Deceleration Rate : ",DecelerationRate)
PmaxUp <- Hu + Lu*DecelerationRate/g
PminUp \leftarrow Hu - (f*Lu*Vzero^2)/(2*g*D)
PstartUp <- Hu - (f*Lu*Vzero^2)/(2*g*D) + Lu*DecelerationRate/g
PmaxDn \leftarrow Hd + (f*Ld*Vzero^2)/(2*g*D)
PminDn <- Hd - Ld*DecelerationRate/g</pre>
PstartDn <- Hd + (f*Ld*Vzero^2)/(2*g*D) - Ld*DecelerationRate/g
message(" Upstream Minimum Pressure Head @ Time < 0 : ",PminUp)</pre>
message(" Upstream Pressure Head at Initial Valve Motion @ Time = 0 : ",
```

```
PstartUp)
message(" Upstream Maximum Pressure Head @ Time = ",Tc,": ",PmaxUp)
message(" Downstream Maximum Pressure Head @ Time < 0 : ",PmaxDn)
message(" Downstream Pressure Head at Initial Valve Motion @ Time = 0:
    ", PstartDn)
message(" Downstream Minimum Pressure Head @ Time = 0 ",Tc,": ",PminDn)</pre>
```

© © ©					١
② → 🥶 → 🔠 😭 🖒 🖒 👝 Go to file/function			0	Project: (None) •	None) •
② ZReserviorValveClose.R ×	Environment	t History			0
⇔ □ □ Source on Save ♀ □ · □ Source • □					
led valve closure	Piles Piots	Files Piots Patriages Help Viewer	Help VI	Viewer	
3 * steadyVelocity <- function(head, distance, diameter, gravity, friction){	Unsteady	InsteadyPipeNetwork	RigidWaterColumnTheory	e 🙀 Mo olumnTheo) i
4 steadyVelocity <- sqrt((2.0*gravity*diameter*head)/(friction*distance))	▼	▲ Name		Size	
S return(SteadyWelocity) 10:39 C (Untitled) R Script	- t				2
Console ~/Dropbox/3-Research/NetworkSimulators/UnsteadyPipeNetwork/RigidWaterColumnTheory/ @		.r.Data .Rhistory		13	24.7 KB 13.1 KB
> source('~/Dropbox/3-Research/NetworkSimulators/UnsteadyPipeNetwork/RigidWaterColumnTheory/2ReserviorValveClose.R')	0 2R	2ReserviorValveClose.R	Close.R	2.3 KB	X 8
Enter Upstream Reservoir Pool Elevation 100		Example 1, jpg		735 KB	K8
Enter Downstream Reservoir Pool Elevation 80	Ex.	Example 2. ipg		069	690 9 KR
Enter Upstream Pipeline Length 3220	6	646	•		
Enter Downstream Pipeline Length 3220		KeserviorValveClose.R	ose.R	2.8 KB	2 2 2
Enter Pipe Diameter 2	- Res	ReservoirValveOpen.R	pen.R	1.5 KB	KB
Enter gravitational constant 32.2					tentas
Enter Darcy friction factor 0.004					
Valve Closure Time 100					
Upstream Reservoir Pool Elevation : 100					-1005
Downstream Reservoir Pool Elevation : 80					
Upstream Pipeline Length : 3220					
Downstream Pipeline Length : 3220					
Pipe Diameter : 2					
Gravitational Constant : 32.2					
Darcy Friction Factor : 0.004					
Valve Closure Time : 100					
Vo : 10					
Deceleration Rate : 0.1					
Upstream Minimum Pressure Head @ Time < 0 : 90					
Upstream Pressure Head at Initial Valve Motion @ Time = 0:100					
Upstream Maximum Pressure Head @ Time = 100: 110					
Downstream Maximum Pressure Head @ Time < 0 : 90					
Downstream Pressure Head at Initial Valve Motion @ Time = 0: 80					
Downstream Minimum Pressure Head @ Time = 0 100: 70					
^					
					-

4 17