Programming Assignment: Decision Tree Classifier

Submission Deadline: 20th November, 2024, 2:59 PM

Objective

The goal of this assignment is to build and evaluate a Decision Tree classifier for binary classification. You will implement the core components of a Decision Tree from scratch, using a modified version of the Iris dataset.

Dataset

Use the Iris dataset for binary classification:

- Dataset Source: Available directly through sklearn.datasets.
- **Features**: This dataset contains 4 numerical features (sepal length, sepal width, petal length, petal width).
- Target: For simplicity, we'll create a binary classification problem by selecting only two classes, "Iris-setosa" and "Iris-versicolor".

Instructions: Load the Iris dataset using sklearn.datasets.load_iris. Filter the data to include only "Iris-setosa" and "Iris-versicolor" classes and set the target labels to 1 for "Iris-setosa" and 0 for "Iris-versicolor".

Tasks

1. Data Preprocessing

- Load the Dataset: Use sklearn.datasets to load the Iris dataset.
- Binary Filter: Filter the dataset to include only "Iris-setosa" and "Iris-versicolor" instances.
- **Encoding**: Encode the target column as binary labels (1 for "Iris-setosa" and 0 for "Iris-versicolor").
- Train-Test Split: Split the data into training and testing sets (e.g., 80% training and 20% testing).

2. Decision Tree Implementation

Implement the following functions to build a Decision Tree classifier:

- calculate_entropy(y): Calculate the entropy of a set of labels y.
- information_gain(y, y_left, y_right): Calculate the information gain from a split, given the parent set y and two child sets y_left and y_right.
- best_split(X, y): Find the best feature and threshold to split the data, maximizing information gain. Return the feature index and threshold value.
- build_tree(X, y, max_depth): Recursively build a Decision Tree, splitting nodes up to a maximum depth max_depth. Each node should store its decision (feature index and threshold) and references to left and right child nodes.
- predict_single_instance(x, tree): Use the trained Decision Tree to predict the label of a single instance x.
- predict_decision_tree(X_test, tree): Predict binary labels for the test set using the trained Decision Tree.

Evaluation Metric:

• Accuracy: Measure and print the accuracy of the Decision Tree on both the train and test sets.

3. Comparison with Scikit-Learn

Train a Decision Tree classifier on the same dataset using scikit-learn's DecisionTreeClassifier with the same max_depth parameter:

- Compare the results from your implementation with scikit-learn's version.
- \bullet Discuss any differences in accuracy or model performance, if applicable.

4. Visualization and Analysis

- Tree Visualization: Use scikit-learn to visualize the Decision Tree structure for the trained model on a test example.
- Analysis: Examine the performance of the Decision Tree classifier:
 - How does the maximum depth max_depth affect the accuracy and overfitting of the model?
 - What are the strengths and limitations of using a Decision Tree for this binary classification problem?

Requirements

- Implement all functions from scratch, without using any pre-built machine learning libraries (e.g., scikit-learn), except for the comparison section.
- Use Numpy for numerical operations and pandas for data handling.
- Optional: Use matplotlib for visualizations.

Submission

Submit a Jupyter Notebook (.ipynb) containing:

- $\bullet\,$ Your implemented code for all functions.
- Accuracy results for both the train and test sets.
- Analysis as discussed in Task 4.
- Experiments with different values of max_depth (e.g., max_depth=3, 5, 10).