

By Anh Huynh

Table of Contents

 Overview Goals • DATA description • DATA Cleaning & EDA Database & MySQL Insights Deploy Machine Learning

Overview

 The cacao tree was cultivated more than 3000 years ago by the Maya, Toltec and Aztec

 They use cocoa bean to prepare a beverage as a ceremonial and as a currency.

 The Maya considered chocolate to be the food of gods, held the cacao tree to be sacred for after life

 Today chocolate industry estimated to be an USD 130.56 billion-dollar industry

Project Main goals

focused on <i>Rating</i> on diffe	erent chocolate k	pars with an aim of o	different categories
Main dataset 'Chocolate	rating 2	530 rows,10 colum	ns
Chocolate flavor	1	795 rows × 9 colum	nns
Countries and continents	5 2	49 rows × 9 columi	าร
get the data Define the goal	Clean the data	Visualization	Deploy machine learning

Enrich the data

Find insights

Iterate

Data Descriptions

Ingredients

Rating

$$3.5 - 4 = Outstanding$$

```
B (Beans)
S (Sugar)
Sa (Salt)
(L) Lecithin
S* (Beet sugar)
C (Cocoa Butter)
V (Vanilla)
```

Data Descriptions

Review day

Companies (manufacturer)

Company location

Country of bean origin

Cocoa percent

Memorable Characteristics

Data cleaning (Main data)

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2530 entries, 0 to 2529
Data columns (total 10 columns):
                                     Non-Null Count Dtype
    Column
    REF
                                     2530 non-null int64
    Company (Manufacturer)
                                     2530 non-null object
    Company Location
                                     2530 non-null object
    Review Date
                                     2530 non-null int64
    Country of Bean Origin
                                     2530 non-null object
    Specific Bean Origin or Bar Name 2530 non-null object
                                     2530 non-null object
    Cocoa Percent
    Ingredients
                                     2443 non-null object
    Most Memorable Characteristics 2530 non-null object
    Rating
                                     2530 non-null
                                                   float64
```

```
#prep percentage field
def clean_perc(x):
    return pd.to_numeric(x.replace('%',''))
df['Cocoa Percent'] = df['Cocoa Percent'].apply(clean_perc)
```

```
#Finding missing values:
 df.isna().sum().sort values(ascending=False)
 Ingredients
 RFF
 Company (Manufacturer)
 Company Location
 Review Date
 Country of Bean Origin
 Specific Bean Origin or Bar Name
 Cocoa Percent
 Most Memorable Characteristics
 Rating
 df.groupby('Cocoa Percent')['Ingredients'].agg(mode)
 Cocoa Percent
           4- B,S,V,L
 42.0
      5- B.S.C.V.L
 46.0
       4- B,S,C,L
 50.0
 53.0
         5- B,S,C,V,L
 55.0
         5- B,S,C,V,L
 56.0
           4- B,S,C,L
 57.0
             3- B,S,C
df['Ingredients'].mode()
    3- B,S,C
Name: Ingredients, dtype: object
```

```
#Fill the misisng values:
df.loc[df['Cocoa Percent'] == 100, 'Ingredients'] = '2- B,C'
df['Ingredients']=df['Ingredients'].replace(np.nan,'3- B,S,C')
```

EDA

Company location

Rating by Year

Rating by cocoa percent

rating top 10 company

Tobago Estate (Pralus) 4,0000	Matale 3,8333	Chocola'te 3,7500	Christopher Morel (Felchlin) 3,7500
Heirloom Cacao Preservation (Zokoko) 3,8750	Patric 3,7917	Cuna de Piedra 3,7500	
Ocelot 3,8750	Idilio (Felchlin) 3,7750	Dole (Guittard) 3,7500	

AVG(Rating)

3,7500 4,0000

Rating by ingredients

Further exploratory data analysis

Rating by chocolate type

df['Chocolate Type'] = df['Cocoa Percent'].apply(lambda x: 'dark' if x>=70 else 'normal' if x < 70 and x > 50 else 'white')

OPTION 1: Create continents by import new dataset include country and continents

#Clasify the country of bean in continents by: #Find another dataset about countries and continents #Do left join with dataset df

```
M continents = pd.read_csv(r'C:\Users\James\Documents\CODE DATA ANALYSIS\FINAL PROJECT\countryContinent.csv',encodir
continents
```

1]:

	country	code_2	code_3	country_code	iso_3166_2	continent	sub_region	region_code	sub_region_code
0	Afghanistan	AF	AFG	4	ISO 3166-2:AF	Asia	Southern Asia	142.0	34.0
1	Åland Islands	AX	ALA	248	ISO 3166-2:AX	Europe	Northern Europe	150.0	154.0
2	Albania	AL	ALB	8	ISO 3166-2:AL	Europe	Southern Europe	150.0	39.0
3	Algeria	DZ	DZA	12	ISO 3166-2:DZ	Africa	Northern Africa	2.0	15.0
4	American Samoa	AS	ASM	16	ISO 3166-2:AS	Oceania	Polynesia	9.0	61.0
244	Wallis and Futuna	WF	WLF	876	ISO 3166-2:WF	Oceania	Polynesia	9.0	61.0
245	Western Sahara	EH	ESH	732	ISO 3166-2:EH	Africa	Northern Africa	2.0	15.0
246	Yemen	YE	YEM	887	ISO 3166-2:YE	Asia	Western Asia	142.0	145.0
247	Zambia	ZM	ZMB	894	ISO 3166-2:ZM	Africa	Eastern Africa	2.0	14.0
248	Zimbabwe	ZW	ZWE	716	ISO 3166-2:ZW	Africa	Eastern Africa	2.0	14.0

	country	continent
0	Afghanistan	Asia
1	Åland Islands	Europe
2	Albania	Europe
3	Algeria	Africa
4	American Samoa	Oceania
244	Wallis and Futuna	Oceania
245	Western Sahara	Africa
246	Yemen	Asia
247	Zambia	Africa
248	Zimbabwe	Africa
249 r	ows × 2 columns	

```
continents.at[8, 'continent'] = 'Europe'
continents.at[30, 'continent'] = 'Europe'
continents.at[206, 'continent'] = 'Americas'
continents.at[236, 'continent'] = 'Americas'

continents['continent'] = continents['continent'].replace(np.nan, 'Asia')
```

Option 2

```
Asia = ['Japan', 'Vietnam', 'Israel', 'South Korea',
North_america = ['U.S.A.', 'Canada', 'Martinique', 'I
South_america = ['Ecuador', 'Eucador', 'Colombia', '!
Europe = ['France', 'Denmark', 'Scotland', 'Wales',
Oceania = ['Australia', 'New Zealand', 'Fiji']
Africa = ['Madagascar', 'Sao Tome', 'South Africa',
```

dtype=object)

```
def continents(x):
    if x in Asia:
        return 'Asia'
    if x in Africa:
        return 'Africa'
    if x in North america:
        return 'North america'
    if x in South america:
        return 'South america'
    if x in Europe:
        return 'Europe'
    if x in Oceania:
        return 'Oceania'
    return 'Europe'
```

Repartition of cocoa bean continents

Wordcloud

```
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
stopwords = set(STOPWORDS)
from PIL import Image
import requests
comment_words = ''
stopwords = set(STOPWORDS)
for val in df['Most Memorable Characteristics']:

    val = str(val)

    tokens = val.split()

    for i in range(len(tokens)):
        tokens[i] = tokens[i].lower()

    comment_words += " ".join(tokens)+" "
comment_words
```

ich cocoa spicy, minty, vegetal cocoa, dominate off note oily, nutty, burnt, sour gritt herry, rich spicey, mild metallic spice, cocoa, short very nutty, very bitter chewy, gr icey black pepper and banana grassy, black licorice, mint blackpepper, chemical, rubber n llow, roasty, nutty gritty, nutty creamy, marshmallow, off cinamon, nutmeg, fatty straw ther, black licorice, off smooth, astringent, cocoa strawberries, mild tart, roasty cre oasty creamy, rich, blueberry off aroma, vegetal, honey, sandy, sandy, vanilla waxy, dried right fruit, sweet, sour chemical, spice, earthy intense, sour tart plum, rubber chalky nt, then off unrefined, flat, grassy coarse, smokey, metallic smoke, ham, papaya bland, amel, pungent black pepper, cardamom gritty, fatty, sour, off bitter, fatty, mild fruit mplex,black pepper,coffee molasses,toffee,coffee grounds raspberry, mild sour creamy, re ied fruit slightly dry, cocoa, berry intense, tangy, alcohol gritty, floral, vanilla sa fudgey strawberry, candy flavor strong vanilla, off notes caramel, spice, earthy smokey dry sandy, sweet, molasses intense, floral, black pepper intense floral, bitter, earthy cky, moss, nuts dry, cinamon, nutmeg oily, complex, pungent sticky, delicate, melon car y, nutty, roasty dominate cocoa notes unbalanced, tangy, pungent sweet, nibby, green ba ty, fatty gummy, fatty, sour off aroma, smokey, off note intense, red berry, strawberry si dairy, sour nutty, roasty, dairy mocha, intense, sweet cinamon and nutmeg sweet, vanill nutty, light toffee, mild musty ham-like, smokey, banana dark cocoa, spicy pepper chunk rustic, earthy creamy, banana, rich creamy, nutty, cocoa bitter, molasses, flour molasse

Database type comparation

	SQL		NoSQL
-	Relational	_	Non-relational
-	Use structured query language	-	Have dynamic schemas for
	and predefined schema		unstructured or semi
-	Can work with smaller amount		structured data
	of data	_	Can work with big amount of
-	Are table-based, multi-row		data
	transaction	_	Document key-value, graph,
-	OOP unfriendly (object-		wide-column
	oriented programing)	_	OOP friendly

Entities. ERD

MySQL

Database creation and data importation

After deciding on which type of database to use, I began creating my relational database on MySQL workbench with "create database if not exists":

- create database if not exists CHOCOLATE1;
- use CHOCOLATE1;

Then I upload 2 table choco1 and choco2 by clicking on "Table Data Import Wizard". After import successfully, I start to make some queries to response for 5 tasks above in order to receive various insights from my data.

-- Task 1: select the top 10 Country of Bean Origin, company base on Rating

Select `Country of Bean Origin`, `Company (Manufacturer)`, `Rating` from chocol group by `Country of Bean Origin`

Order by rating desc LIMIT 10;

	Country of Bean Origin	Company (Manufacturer)	Rating
•	Mexico	A. Morin	4
	Haiti	Arete	4
	Costa Rica	Arete	4
	Ecuador	A. Morin	3.75
	Madagascar	5150	3.75
	Blend	Amedei	3.75
	Peru	A. Morin	3.75
	Sao Tome	A. Morin	3.75
	Philippines	Askinosie	3.75
	Indonesia	Akesson's (Pr	3.75

-- Task 2: find the highest rating, lowest and average rating base on Cocoa percent in chocol select REF, 'Cocoa Percent', 'Rating' from chocol group by 'Cocoa Percent' ORDER by Rating desc; select REF, 'Cocoa Percent', 'Rating' from chocol group by 'Cocoa Percent' ORDER by Rating asc; Select 'Cocoa Percent', avg(Rating) from chocol group by 'Cocoa Percent' order by avg(Rating) desc;

	REF	Cocoa Percent	Rating
١	2514	67	4
	797	63	3.75
	331	77	3.75
	572	50	3.75
	470	73.5	3.75
	423	81	3.5
	1145	73	3.5
	797	70	3.5
	2630	79	3.5
	586	71	3.5
	705	88	3.5
	907	58	3.25
	785	87	3.25

	REF	Cocoa Percent	Rating	
١	259	91	1.5	
	486	100	1.75	
	81	99	2	
	32	53	2	
	1359	72.5	2.5	
	1189	89	2.5	
	809	84	2.5	
	502	75	2.75	
	1788	90	2.75	
	2052	71.5	2.75	
	552	46	2.75	
	705	60	2.75	
	370	55	2.75	

	Cocoa Percent	avg(Rating)
•	50	3.75
	63	3.5357142857142856
	69	3.4615384615384617
	78	3.380952380952381
	66	3.3482142857142856
	67	3.3455882352941178
	68	3.28819444444446
	70	3.2629186602870814
	87	3.25
	79	3.25
	86	3.25
	56	3.25
	74	3.2234848484848486

-- Task 3: Join the column 'Ingredient' from choco1 to choco2

Select choco2.*, choco1.Ingredients from choco2

inner join choco1 on choco2.`Bean Origin` = choco1.`Country of Bean Origin`

group by choco2.`Bean Origin`;

Company	Specific Bean Origin	REF	Review Date	Cocoa Percent	Company Location	Bean type	Bean Origin	Ingredients
Zart Pralinen	Kakao Kamili, Kilombero Valley	1824	2016	70%	Austria	Criollo, Trinitario	Tanzania	3-B,S,C
Zotter	Santo Domingo	879	2012	70%	Austria	Â	Dominican Republic	3-B,S,C
Zart Pralinen	Millot P., Ambanja	1820	2016	70%	Austria	Criollo, Trinitario	Madagascar	3-B,S,C
Pitch Dark	Namau Village	1315	2014	73%	U.S.A.	Trinitario	Fiji	3-B,S,C
Woodblock	Ocumare	741	2011	70%	U.S.A.	Â	Venezuela	3-B,S,C
Terroir	Uganda	1323	2014	73%	U.S.A.	Forastero	Uganda	3-B,S,C
Zotter	Kerala State	781	2011	62%	Austria	Â	India	3-B,S,C
Zotter	El Ceibo Coop	879	2012	90%	Austria	Â	Bolivia	4- B,S,C,L
Zotter	Peru	647	2011	70%	Austria	Â	Peru	4- B,S,C,L
Zotter	Bocas del Toro, Cocabo Co-op	801	2012	72%	Austria	Â	Panama	4- B,S,C,L
Willie's Cacao	Los Llanos	1227	2014	88%	U.K.	Trinitario	Colombia	4- B,S,C,L
A. Morin	Birmanie	1015	2013	70%	France	Â	Burma	4- B,S,C,L
						•	- 4	

-- Task 4: Join average rating from chocol to choco2

Select choco2.company,choco2.`Cocoa Percent`, choco2.`company location`,choco1.Ingredients, avg(Rating) from choco2
inner join choco1 on choco2.`Bean Origin` = choco1.`Country of Bean Origin`
group by choco2.`Bean Origin`,choco2.`Company Location`;

company	Cocoa Percent	location	Ingredients	avg(Rating)
Zart Pralinen	70%	Austria	3-B,S,C	3.2341772151898733
Upchurch	72%	U.S.A.	3-B,S,C	3.2341772151898733
Soul	80%	Canada	3-B,S,C	3.2341772151898733
Smooth Chocolator, The	67%	Australia	3-B,S,C	3.2341772151898733
Pralus	75%	France	3-B,S,C	3.2341772151898733
Omnom	70%	Iceland	3-B,S,C	3.2341772151898733
Maglio	75%	Italy	3-B,S,C	3.2341772151898733
Hotel Chocolat (Coppeneur)	75%	U.K.	3-B,S,C	3.2341772151898733
Fossa	67%	Singapore	3-B,S,C	3.2341772151898733
Alexandre	70%	Netherlands	3-B,S,C	3.2341772151898733
Zotter	70%	Austria	3-B,S,C	3.21570796460177
N II	70.0/		2.2.0	0.04570705450477

Select choco1.`Country of Bean Origin`, choco2.`bean type`,choco1.Rating from choco1
inner join choco2 on choco2.`Bean Origin` = choco1.`Country of Bean Origin`
group by choco1.`Country of Bean Origin`;

Country of Bean Origin	bean type	Rating	Country of Bean Origin	bean type	Rating
Venezuela	Criollo	4	Vietnam	Trinitario	3.5
Jamaica	Trinitario	4	Tanzania	Forastero	3.5
	•		Belize	Trinitario	3.5
Tobago	A	4	Philippines	Trinitario	3.5
Colombia	Â	3.75	Malaysia	Â	3.5
Nicaragua	Criollo, Tr	3.75	Uganda	Forastero	3.5
Dominican Republic	Trinitario	3.75	Sao Tome & Principe	Forastero	3.5
Ghana	Forastero	3.75	India	Â	3.5
Honduras	Â	3.75	Sao Tome	Â	3.25
Australia	Â	3.75	Cuba	Â	3.25
Solomon Islands	Â	3.75	Bolivia	Â	3.25

```
# drop REF because it is not useful
df.drop('REF',axis=1, inplace=True)
```

df['Rating2']=df['Rating2'].replace({2.75:1, 3.00:2, 3.25:2, 3.50:3, 3.75:3, 4.00:4}

Data preparation

```
#Catoregies of ingredients:
                                                                                                                                                  Correlation Map
 df['Bean'] = df.Ingredients.str.contains(Bean[0]).astype(int)
                                                                                                                       0.016 0.12
                                                                                                                                                         -0.055 0.087 -0.1 0.089 -0.16 0.18 0.022 -0.1
                                                                                                         Review Date -
                                                                                                                                      -0.18 -0.26 0.057
 df['Cocoa butter'] = df.Ingredients.str.contains(Cocoa_butter[0]).ast
                                                                                                                                      -0.051 -0.15 -0.46
                                                                                                        Cocoa Percent - 0.016
                                                                                                                                                         -0.028 -0.11 0.034 -0.017 0.051 -0.014 -0.012 -0.056
 df['Lecithin'] = df.Ingredients.str.contains(Lecithin[0]).astype(int)
 df['Sugar'] = df.Ingredients.str.contains(Sugar[0]).astype(int)
                                                                                                             Rating - 0.12 -0.15 1
                                                                                                                                                         -0.046 0.95 -0.038-0.00150.00330.014 0.046 -0.036
                                                                                                                                      -0.019 -0.051 0.19
 df['Beet_Sugar'] = df.Ingredients.str.contains(Beet_Sugar[0]).astype(
                                                                                                              Bean
 df['Salt'] = df.Ingredients.str.contains(Salt[0]).astype(int)
 df
                                                                                                        Cocoa_butter - -0.18 -0.051 -0.019
                                                                                                            Lecithin - -0.26 -0.15 -0.051
                                                                                                                                                         -0.018 -0.036 0.059 0.027 0.2 -0.28 -0.052 0.17
#Encoding Continent
                                                                                                              Sugar - 0.057 -0.46 0.19
                                                                                                                                                          0.011 0.12 -0.034 0.018 -0.053 0.055-0.00740.0073
df = pd.get_dummies(data=df, columns=['Continent'])
df
                                                                                                          Beet_Sugar -
                                                                                                               Salt -- 0.055 -0.028 -0.046
                                                                                                                                                              -0.04 -0.012 -0.024 0.1 -0.059 -0.023 -0.035
                                                                                                                                      0.073 -0.018 0.011
#Encoding Chocolate type
                                                                                                                                                              1 -0.0350.0073 0.013 -0.002 0.036 -0.035
                                                                                                            Rating2 - 0.087 -0.11 0.95
                                                                                                                                      -0.0024-0.036 0.12
df = pd.get_dummies(data=df, columns=['Chocolate Type'])
                                                                                                                                                         -0.012 -0.035 1 -0.02 -0.068 -0.11 -0.019 -0.029
                                                                                                      Continent_Africa - -0.1 0.034 -0.038
                                                                                                                                      0.05 0.059 -0.034
                                                                                                                                                         -0.0240.0073 -0.02
                                                                                                                                                                        1 -0.13 -0.21 -0.036 -0.055
                                                                                                       Continent_Asia - 0.089 -0.017-0.0015
                                                                                                                                      -0.06 0.027 0.018
                                                                                                     Continent_Europe - -0.16 0.051-0.0033
                                                                                                                                       0.2 0.2 -0.053
                                                                                                                                                          0.1 0.013 -0.068 -0.13
                                                                                                                                                                             1 -0.72 -0.12 -0.19
#Encoding Rating
df.loc[df["Rating"]<=2.5, "Rating2"]=0
                                                                                                                                                         -0.059 -0.002 -0.11 -0.21 -0.72 1 -0.2 -0.31
                                                                                                    nent_North america - 0.18 -0.014 0.014
                                                                                                                                      -0.22 -0.28 0.055
                                                                                                                                                         -0.023 0.036 -0.019 -0.036 -0.12 -0.2
                                                                                                    Continent_Oceania - 0.022 -0.012 0.046
                                                                                                                                      0.017 -0.052-0.0074
 df.loc[df["Rating"]>2.5, "Rating2"]=df["Rating"]
                                                                                                    nent_South america - -0.1 -0.056-0.036
                                                                                                                                      0.079 0.17 -0.0073
                                                                                                                                                         -0.035 -0.035 -0.029 -0.055 -0.19 -0.31 -0.053
                                                                                                                                       oa_butter
df['Rating2'].value_counts()
```

0.2

23 columns

Chocolate	Chocolate	Chocolate	Cantinant Africa	Cantinant Asia	Continent France	Continent North	Continuent Conomic	Continent South	Datin #0
Type_dark	Type_normal	Type_white	Continent_Africa	Continent_Asia	Continent_Europe	america	Continent_Oceania	america	Rating2
1	0	0	0	0	0	1	0	0	2.0
1	0	0	0	0	0	1	0	0	3.0
1	0	0	0	0	0	1	0	0	3.0
0	1	0	0	0	0	1	0	0	2.0
1	0	0	0	0	0	1	0	0	2.0
1	0	0	0	0	1	0	0	0	1.0
1	0	0	0	0	1	0	0	0	3.0
1	0	0	0	0	1	0	0	0	2.0
1	0	0	0	0	1	0	0	0	2.0

Deploy Machine learning

sklearn.svm.LinearSVC

k-Nearest-Neighbors ¶

Random Forest Classifier

LinerSVC

```
linear_svc = LinearSVC()
linear_svc.fit(x_train, y_train)
y_pred = linear_svc.predict(x_test)
acc_linear_svc = round(linear_svc.score(x_train, y_train) * 100, 2)
acc_linear_svc
```


73%

Conclusion

chocolate from 65-75% cocoa

Chocolate brands can affect to the choices of customers

From review time, It show the quality of chocolate are improving

The biggest production of chocolate is in USA

Predict how well a chocolate bar will do in the near future to see if we can increase sales

Q&A Thank you

