# **Understanding Poverty**

Building a Supervised Learning classifier for Poverty
Thresholds



## Problem: Poverty

- Affects 40.6 million americans



- The U.S. spends only 16.2 percent of its GDP on social programs, compared to 21.3 percent that similarly developed countries do
- The U.S. is 36th out of 175 developed countries in rates of childhood poverty

#### What is the Poverty Threshold?

The Census Bureau assigns each person or family one out of 48 possible poverty thresholds.

- Threshold of 100: \$12,752 for one person under 65
- \$11,756 for one person in the household over 65

A single person with a threshold of 501, the highest threshold, makes at least \$63,887



# Goal of project

What traits are most indicative of whether or not an individual will be have a poverty threshold equal to or below 200?

testing several different supervised learning models for the most accurate classification

I predict most impactful variables will include rent to income ratio and education

# Why is this important?

- Understanding who is affected by changes to poverty threshold calculations
- Help focus targeting efforts of programs
- Help focus how and where to focus political messaging
- Identifying if someone qualifies for federal aid programs



Image Courtesy: The Times of India

#### The Dataset





#### The Dataset

148,594 rows and 31 variables

 The variables surround educational attainment, race, health care coverage type, food stamp recipients, metropolitan type, income, rent paid, and ownership type.

- target variable is 'lowerpov':
  - value 1 in case of a poverty threshold less than or equal to 200
  - value of 0 otherwise

#### Limits of the Data

Reduced to single renters only

- Excludes people below 26 years old

- Poverty status cannot be determined for people in:
  - Institutional group quarters (such as prisons or nursing homes)
  - College dormitories
  - Military barracks
  - Living situations without conventional housing (and who are not in shelters)











#### Variable Correlations

|          | lowerpov  |
|----------|-----------|
| HISPAN   | 0.030791  |
| RACASIAN | -0.044368 |
| RACBLK   | 0.086742  |
| RACPACIS | -0.001068 |
| RACWHT   | -0.076643 |

|          | lowerpov  |
|----------|-----------|
| HCOVANY  | -0.106239 |
| HCOVPRIV | -0.429340 |
| HCOVPUB  | 0.370129  |

|                | lowerpov   |
|----------------|------------|
| FOODSTMP       | 0.371749   |
| SEX            | 0.094411   |
| AGE            | 0.088128   |
| EDUCD          | - 0.263232 |
| income_vs_rent | -0.427177  |
| METRO          | -0.118219  |

# Approach

Test Using 10 components PCA
 Select KBest

2) gridsearch cv to find ideal parameters for each classifier

3)

- Native Bayes Classifier
- Knn classifier
- Random Forest
- Decision tree
- Logistic regression
- Sym classifier
- Gradient boosted classifier

4) Use AUC and classification report to evaluate best model

#### Worst Select K Best Classifier: Naive Bayes

With 20% Holdout: 0.6164743093643796

Testing on Sample: 0.6193924384564653

Naive Bayes Classification report:

| pr | ecision | recall | f1-score | suppor |
|----|---------|--------|----------|--------|
| 0  | 0.61    | 0.94   | 0.74     | 17201  |
| 1  | 0.68    | 0.17   | 0.27     | 12518  |



#### Select K Best Classifier: KNN

{'n\_neighbors': 25} 0.8339973350202565

With 20% Holdout: 0.8341465056024765

Testing on Sample: 0.8441727122225662

KNN report:

precision recall f1-score support
0 0.90 0.82 0.86 17201
1 0.78 0.87 0.82 12518



# Select K Best Classifier: Logistic Regression

{'C': 0.1, 'penalty': 'l1'} 0.8095481647980403

With 20% Holdout: 0.8078333725899256 Testing on Sample: 0.8097971654306365

Logistic regression report :

0.84 0.82 0.83 17201 0.76 0.79 0.77 12518

precision recall f1-score support



#### Select K Best Classifier: Decision Tree

{'max\_depth': 8, 'max\_features': 8} 0.8398791337469884

With 20% Holdout: 0.8408762071402134 Testing on Sample: 0.8404578919741039

#### Decision Tree report:

precision recall f1-score support



#### Best Select K Best Classifier: Random Forest

{'max\_depth': 8, 'max\_features': 7, 'n\_estimators': 200} 0.8403300267843924

With 20% Holdout: 0.8462599683704027

Testing on Sample: 0.8449331736140087

Random Forest report:

|   | precision | recall | f1-score | support |
|---|-----------|--------|----------|---------|
| C | 0.90      | 0.83   | 0.86     | 17154   |
| 1 | 0.79      | 0.87   | 0.83     | 12565   |



# Worst PCA Classifier: Naive Bayes

With 20% Holdout: 0.7659073320098254

Testing on Sample: 0.7677564370028399

Naive Bayes Classification report:

| p | recision | recall | f1-score | support |
|---|----------|--------|----------|---------|
| 0 | 0.85     | 0.72   | 0.78     | 17201   |
| 1 | 0.68     | 0.83   | 0.75     | 12518   |



#### PCA Classifier: Random Forest

{'max\_depth': 8, 'max\_features': 6, 'n\_estimators':750}

0.8403300267843924

With 20% Holdout: 0.8372758168175242

Testing on Sample: 0.8405722976701616

Random Forest report:

precision recall f1-score support
0 0.89 0.83 0.86 17154
1 0.79 0.87 0.82 12565



# Select K Best Classifier: Logistic Regression

{'C': 0.001, 'penalty': 'l1'} 0.8111969527706367

With 20% Holdout: 0.8089774218513409 Testing on Sample: 0.810739329986406

Logistic regression report :

0 0.85 0.82 0.83 17201 1 0.76 0.80 0.78 12518

precision recall f1-score support



#### **PCA Classifier: KNN**

{'n\_neighbors': 25} 0.8158673970685223

With 20% Holdout: 0.816312796527474

Testing on Sample: 0.8315948154030446

KNN report:

precision recall f1-score support
0 0.90 0.80 0.85 17201
1 0.76 0.88 0.81 12518



## Best PCA classifier: Gradient Boosted using PCA

{'max\_depth': 7,
'n\_estimators': 50}

0.8448389571584317

With 20% Holdout: 0.8448130825397894

Testing on Sample: 0.8595636432157422

Gradient Boosting report:

| pre | ecision | recall | f1-score | support |
|-----|---------|--------|----------|---------|
| 0   | 0.90    | 0.85   | 0.88     | 17201   |
| 1   | 0.81    | 0.87   | 0.84     | 12518   |



# ← Poverty Line →

## Thank You!