

آزمایشگاه مدار منطقی

FEBRUARY 26, 2024

پیش گزارش آزمایش سوم Soheil Sayah Varg, Amirhossein Mousavif ard

هدف آزمایش

هدف از این آزمایش طراحی یک پالس ژنراتور با فرکانس متغیر با استفاده از تراشهی 555 و اندازه گیری تاخیر انتشار در گیتها میباشد.

لوازم آزمایش

برد بورد $^{-1}$ پتاسیومتر $^{-1}$ تراشهی $^{-1}$ عدد تراشهی $^{-1}$ عدد تراشهی $^{-1}$ مقاومت $^{-1}$

شرح آزمایش

الف و ب)

در شکل زیر دیتاشیت مربوط به تراشهی 555 را میبینید.

برای محاسبهی اندازهی مقاومت و خازن، از فرمول زیر استفاده می کنیم. (فرمولها از ویکیپدیا گرفته شدهاست.)

$$t_h = \ln(2) \cdot (R_1 + R_2) \cdot C$$

 $t_l = \ln(2) \cdot R_2 \cdot C$

و میدانیم که R_1 و بای سادگی خازن را برابر $t_h=9\mu$ در نظر می گیریم و R_1 را به دست می آوریم.

$$R_1 \approx 12k\Omega, R_2 \approx 1.5k\Omega$$

بنابراین مدار را طبق چیزی که گفته شده میبندیم. خروجی را به یک کانال اوسیلوسکوپ و ولتاژ خازن خواسته شده را به کانال دیگر اوسیلوسکوپ وصل میکنیم.

¹ Bread board

ج)

مىدانيم فركانس برابر است با

$$f = \frac{1}{t_h + t_l} = \frac{1}{\ln(2) \cdot (R_1 + 2R_2) \cdot C}$$

به عبارتی، برای اینکه فرکانس از 20kHz تا 20kHz تغییر کند، باید t_h از $9\mu s$ تا $9\mu s$ عوض شود. با محاسبات پی میبریم که مقاومت پتاسیومتر باید بیشتر از $57k\Omega$ باشد.

د)

در این حالت، $t_l=1\mu s$, $t_h=2\mu s$ و با حل معادلات مقاومتها را به دست می آوریم.

 $R_1 \approx R_2 \approx 1.5 k\Omega$

و در نهایت باید از یک NOT استفاده کنیم.

(0

مدار را مطابق چیزی که گفته شده باید ببندیم.

