1	<u>Claims</u>
2	
3	We claim:
4	
5	1. A method of generating IP identification numbers for IP datagrams, comprising
6	the steps of:
7	maintaining a plurality of IP identification number generators;
	associating a plurality of receiving stations with the plurality of IP identification
	number generators such that each receiving station has an IP identification number generator
	associated therewith; and
	generating an IP identification number for a datagram sent to one of the receiving
, 取	stations based on an output of the associated IP dentification number generator.
5 登	2. A method as in claim 1, wherein each of the IP identification number
15	generators has at least one receiving station associated therewith.
16	
17	3. A method as in claim 1, wherein at least one of the IP identification number
18	generators has plural receiving stations associated therewith.
19	
20	4. A method as in claim 1, wherein the plurality of IP identification number
21	generators forms an array of number generators.

Express Mailing no. EL 513 996 659 US

103.1043.01

1	11\ A method of reducing a likelihood of misassembly of data fragments from
2	tragmented IP datagrams, comprising the steps of:
3	receiving data fragments of a datagram having an IP identification number; and
4	discarding all received data fragments of the datagram upon detection of receipt of
5	an overlapping data fragment having the IP identification number, wherein the overlapping data
6	fragment overlaps data in an already-received data fragment.
7	
	12. A method as in claim 11, wherein the overlapping data fragment overlaps all
	of the already-received data fragment.
	13. A method as in claim 11, wherein the overlapping data fragment overlaps less
	than all of the already-received data fragment.
M M	
#	14. A method as in claim 11, wherein the steps are performed by an IP layer of a
15	receiving station's communication system
16	
17	15. A method of reducing a likelihood of misassembly of data fragments from
18	fragmented IP datagrams, comprising the step of reducing a timeout for reassembling the
19	datagrams to less than a standard timeout.
20	

1	16. A method as in claim 15, wherein the data fragment reassembly timeout is
2	reduced to 45 seconds from the standard timeout of 64 seconds.
3	
4	17. A method as in claim 15, wherein the data fragment assembly timeout is
5	dynamically reduced based on NFS data for round-trip times between a sending station and a
6	receiving station.
7	
<u>□</u> 8 □	18. A method as in claim 15, wherein the step is performed by an IP layer of a
	receiving station's communication system.
	19. A method of reducing a likelihood of misassembly of data fragments from
	fragmented IP datagrams, comprising the steps of:
1 <u>3</u>	receiving data fragments of a datagram having an IP identification number; and
	reducing a remaining time for reassembling the datagram upon detection of a gap
15	in the received data fragments.
16	
17	20. A method as in claim 19, wherein the remaining time for reassembling the
18	datagram is reduced to eight seconds.
19	
20	21. A method as in claim 19, wherein the steps are performed by an IP layer of a
21	receiving station's communication system.

1	22. A method of reducing a likelihood of misassembly of data fragments from
2	fragmented IP datagrams, comprising the steps of:
3	receiving data fragments of a first datagram having a protocol identification
4	number, a source address, and a first IP identification number; and
5	reducing remaining time for reassembling the first datagram upon detection,
6	before receipt of a last data fragment of the first datagram, of a data fragment of a second
7	datagram having the protocol identification number and the source address but having a second
	IP identification number. 23. A method as in claim 22, wherein the remaining time for reassembling the datagram is reduced to eight seconds. 24. A method as in claim 22, wherein the steps are performed by an IP layer of a receiving station's communication system.
16	25. A method of detecting a likelihood of misassembly of data fragments from
17	fragmented IP datagrams, comprising the steps of:
18	detecting for communication errors between a sending station and a receiving
19	station; and
20	determining that the likelihood of misassembly is high upon detection that the
21	communication errors occur at a high rate for a predefined period of time.

1	26. A method as in claim 25, wherein the communication errors that are detected
2	include communication errors detected by an IP layer of the receiving station's communication
3	system.
4	
5	27. A method as in claim 26, wherein the communication errors include receipt of
· 6	overlapping data fragments.
7	
™	28. A method as in claim 26, wherein the communication errors include IP
	datagram reassembly timeout errors.
ė	29. A method as in claim 25, wherein the communication errors that are detected
<u> </u>	include communication errors detected by a UDP layer of the receiving station's communication
	system.
15	30. A method as in claim 29, wherein the communication errors include UDP
16	length errors.
17	
18	31. A method as in claim 20, wherein the communication errors include UDP
19	checksum errors.
20	

1	32. A method as in claim 25, wherein the communication errors that are detected
2	include communication errors detected by an NFS layer of the sending station's communication
3	system.
4	
5	33. A method as in claim 25, further comprising the step of implementing
6	policies to reduce the likelihood of misassembly of data fragments upon determining that the
7	likelihood of misassembly is high.
	34. A method as in claim 33, wherein implementing the policies further
	comprises preferentially using TCP instead of UDP.
	35. A method as in claim 33, wherein implementing the policies further
	comprises using additional checksums.
15	36. A method as in claim 33, wherein implementing the policies further
16	comprises presenting a warning message to a system administrator.
17	
18	37. A method for a sending station to detect a likelihood of misassembly at a
19	receiving station of data fragments from fragmented IP datagrams, comprising the steps of:
20	determining a rate at which an IP identification number generator associated with
21	the receiving station wraps around; and

1	determining that the likelihood of misassembly at the receiving station is high
2	upon determination that the IP identification number generator wraps around at faster than a
3	predetermined rate.
4	
5	38. A method as in claim 37, wherein the predetermined rate is once every ninety
6	seconds.
7	
	39. A method as in claim 37 further comprising the step of implementing
	policies to reduce the likelihood of misassembly of data fragments upon determining that the
[왕] [왕] [왕]	likelihood of misassembly is high.
" 页 净	40. A method as in claim 39, wherein implementing the policies further
	comprises preferentially using TCP instead of UDP.
15	41. A method as in claim 39, wherein implementing the policies further
16	comprises use of additional checksums.
17	
18	42. A method as in claim 39, wherein implementing the policies further
19	comprises presenting a warning message to a system administrator.
20	

1	43. A method as in claim 39, wherein the sending station maintains plural IP
2	identification number generators, and wherein implementing the policies further comprises
3	reducing a number of receiving stations associated with the IP identification number generator
4	that is wrapping around at faster than the predetermined rate.
5	
6	44. A method for a sending station to detect a likelihood of misassembly at a
7	receiving station of data fragments from fragmented IP datagrams, comprising the steps of:
8	determining a rate at which an IP identification number generator associated with
V 1	the receiving station wraps around; and
M M	determining that the likelihood of misassembly at the receiving station is high
H H	upon determination both that (a) the IP identification number generator wraps around at faster
	than a predetermined rate and (b) NFS re-transmissions are higher than a predetermined
	threshold.
15	//
16	//
17	//
18	//
19	// ·
20	//
21	//