Algebraic Methods in Combinatorics

Solutions to Assignment 2

The aim of the homework problems is to help you understand the theory better by actively using it to solve exercises. **Do not read the solutions** before you believe you have solved the problems: it ruins your best way of preparing for the exam. The purpose of this write-up is merely to provide some guideline on how solutions should look like, and to help clean up hazy arguments. For hints, feel free to consult your teaching assistant.

Problem 1: Let A be a Nikodym set in \mathbb{F}_p^n and suppose that $|A| < \binom{p-2+n}{n}$. Since by Lemma 1.15, the number of monomials of degree at most p-2 is $\binom{p-2+n}{n}$, by a lemma we saw in class there is a non-zero polynomial f of degree at most p-2 such that f(a)=0 for all $a \in A$ (this is the same as the argument in the beginning of the proof of Theorem 1.13 in the notes).

By the property satisfied by A, we have that for each $x \in \mathbb{F}_p^n$, there is a $u \in \mathbb{F}_p^n \setminus \{\vec{0}\}$ such that f(x+tu)=0 for all $t \neq 0$. Note that viewing p(t):=f(x+tu) as a univariate polynomial of t, it then has degree at most p-2 and at least p-1 roots. Therefore, it must be the zero polynomial. Now, note that the constant term of the polynomial p(t) is f(x) and therefore, f(x)=0. But then, this must be true for all x and thus, since f has degree at most p-2, it must be the zero polynomial, which is a contradiction.

Problem 2(a): Let us denote the set S by $S := \{p^{(1)}, p^{(2)}, \dots, p^{(m)}\} \subset \mathbb{R}^n$. We want to show that $m \leq \binom{n+s+1}{s}$. Let also $\delta_1, \dots, \delta_s$ denote the s possible distances between distinct points in S. For each $1 \leq j \leq m$, define the polynomial

$$f_j(\mathbf{x}) = \prod_{1 \le i \le s} (|\mathbf{x} - p^{(j)}|^2 - \delta_i^2).$$

Just as in Section 1.6 of the notes, it is easy to check that these polynomials are linearly independent since $f_j(p^{(i)}) = 0$ for all $i \neq j$ and $f_j(p^{(j)}) \neq 0$ for all j. Now we need only to show that these polynomials are contained in a subspace of dimension at most $\binom{n+s+1}{s}$. Indeed, note that each polynomial f_j can be written as

$$f_j(\mathbf{x}) = \prod_{1 \le i \le s} (|\mathbf{x} - p^{(j)}|^2 - \delta_i^2) = \prod_{1 \le i \le s} \left(|\mathbf{x}|^2 - 2\sum_{k=1}^n x_k p_k^{(j)} + |p^{(j)}|^2 - \delta_i^2 \right).$$

Therefore, letting $y := |x|^2$ (a polynomial of x_1, \ldots, x_n), f_j can be viewed as a polynomial in $\mathbb{R}[y, x_1, \ldots, x_n]$ with degree at most s. By Lemma 1.15 in the notes, this space has at most

 $\binom{n+s+1}{n+1} = \binom{n+s+1}{s}$ monomials of degree at most s, which also form then a basis for the subspace containing the polynomials f_j , as desired.

Problem 2(b): Take S to be all points in $\{0,1\}^{n+1}$ with exactly s non-zero coordinates. Clearly, the possible distances are $\sqrt{2s}$, $\sqrt{2(s-1)}$,..., $\sqrt{2}$. Furthermore, the set belongs to the space of points with $x_1 + \ldots + x_{n+1} = s$ and so can be isometrically mapped to \mathbb{R}^n .

Problem 3(a): For each of the sets $A \in \mathcal{A}$ let v_A be its characteristic vector, and let s_1 and s_2 be the two possible sizes. For each such A, define the polynomial $f_A : R^n \to R$ as follows:

$$f_A(x) = (|A| + x_1 + \ldots + x_n - 2\langle x, v_A \rangle - s_1)(|A| + x_1 + \ldots + x_n - 2\langle x, v_A \rangle - s_2).$$

Notice that if x is the characteristic vector of a set B, then $|A| + x_1 + \ldots + x_n - 2\langle x, v_A \rangle$ is precisely equal to $|A\Delta B|$. Hence, for $B \in \mathcal{A}$ one can see that $f_A(v_B)$ is equal to $s_1s_2 \neq 0$ when B = A, and is equal to 0, otherwise. Hence, as seen in the lecture notes, the defined polynomials are linearly independent.

Now define polynomials $\bar{f}_A(x)$ obtained from $f_A(x)$ by replacing each occurrence of x_i^2 by x_i , for all $i \in [n]$. By doing this, we do not change the evaluation of these polynomials in v_B , for each $B \in \mathcal{A}$, hence the new collection of polynomials is again linearly independent. The evaluation does not change since v_B is a 0/1 vector, and $x_i = x_i^2$ for $x_i \in \{0, 1\}$.

Now, it is easy to see that this collection of polynomials can be generated by the following set of monomials:

$$1, x_1, \dots, x_n$$
, and $x_i x_j$ for $1 \le i < j \le n$.

There is $1 + \frac{n(n+1)}{2}$ of those generating monomials, hence they span a space of at most this dimension, and due to the independence of the \bar{f}_A 's there is at most $1 + \frac{n(n+1)}{2}$ of them, so we have our desired bound on A.

Problem 3(b): Take \mathcal{A} to be the family consisting of all sets of two elements, together with the empty set. \mathcal{A} has the desired number of sets, and the possible symmetric differences are in the set 2, 4, which completes the proof.