Spatial Data Science

Metropolitan Data I

(YMS31303)

Lecture 2a

Theodoros Chatzivasileiadis

A little bit of background

Assistant Professor, Economics and Finance of Climate Adaptation at TU Delft, and a member of TU Delft's Climate Action Program

Leading the Flagship Climate
Finance for Climate Resilient
Infrastructure

- Public adaptation constraints
- Private adaptation
- Instruments and engagement

Questions?

Confusion around labs, homework and assignments...

Labs

Practice

· Not graded

Homework

- · Practice
- · Peer-Levien
- · Not graded

Assignments

- · Graded
- · Submit on Brightspace

Project (10)

- · Graded
- · Groups
- Submit on Bs

More help...?

- First troubleshoot yourself
- If that doesn't work, contact a TA for help
- Finally, if nothing works, write to me

Data Understanding & Preparation

Data Understanding

- Collect initial data
- Describe data
- Explore data
- Verify data quality carefully document problems and issues

Data Understanding

My DOs and DON'TS

- Do not economise in this step
 - Data has issues
 - Understand data to understand the domain, very important for modelling later
- Do not trust the stakeholders supplying data for quality
- Verify data is correct, complete, coherent, unique, representative, independent, up-to-date and stationary
- Was the data processed? Anonymised?
 Still useful?
- Understand anomalies and outliers

TUDelft Delft University of Technology

Problem Understanding Understanding

Dota Preparation

What are Data?

"A datum is a single measurement of something on a scale that is understandable to both the recorder and the reader. Data are multiple such measurements."

Claim: everything is (can be) data!

Where do data come from?

- Internal sources: already collected by or is part of the overall data collection of your organization.
 - For example: business-centric data that is available in the organization data base to record day to day operations; scientific or experimental data.
- Existing External Sources: available in ready to read format from an outside source for free or for a fee.
 - For example: public government databases, stock market data, Yelp reviews, [your favorite sport]-reference.
- External Sources Requiring Collection Efforts: available from external source but acquisition requires special processing.
 - For example: data appearing only in print form, or data on websites.

Ways to gather Online data

How to get data generated, published or hosted online:

- API (Application Programming Interface): using a prebuilt set of functions developed by a company to access their services. Often pay to use. For example: Google Map API, Facebook API, Twitter API
- RSS (Rich Site Summary): summarizes frequently updated online content in standard format. Free to read if the site has one. For example: news-related sites, blogs
- Web scraping: using software, scripts or by-hand extracting data from what is displayed on a page or what is contained in the HTML file (often in tables).

Representing the world digitally

GIS Data

Traditionally, geographic information is represented as:

- Vector finite set of entities (shapes/geometries)
- Raster images encoding surfaces (values, colours, etc.)

© Trivik Verma. All rights reserved.

One of the most common types of raster data is land cover derived from satellite imagery. Land-cover data is produced by assigning each pixel in a Landsat thematic mapper image to one of 16 land-cover classes using a procedure known as unsupervised classification.

Raster Basics provided as a tutorial by ArcGIS

NLCD 2016 Landcover

Vector

Raster

New Sources of *Spatial* Data

New sources are appearing that are:

- ACCIDENTAL —> created for different purposes but available for analysis as a side effect
- Very diverse in nature, resolution, and detail but, potentially, much more detailed in both space and time
- Quality also varies greatly

Different ways to categorise them...

Lazer and Radford (2017)

- Digital life: digital actions (Twitter, Facebook, WikiPedia...)
- Digital traces: record of digital actions (CDRs, metadata...)
- Digitalised life: nonintrinsically digital life in digital form (Government records, web...)

Arribas-Bel (2014)

Three levels, based on how they originate:

- Bottom up: "Citizens as sensors"
- Intermediate: Digital businesses/businesses going digital
- Top down: Open Government Data (The Hague Cijfers)

Onderzoek en Statistiek

Dashboard kerncijfers

By indicator

By area

Table

Explanation

Example: Onderzoek Amsterdam

Break

CHILL

WALK

COFFEE OR TEA

MAKE FRIENDS

Spatial Data Science

Metropolitan Data I

(YMS31303)

Lecture 2b

Kung Fu Panda is property of DreamWorks and Paramount Pictures

Types of Data

Types of Data

What kind of values are in your data (data types)?

Simple or atomic:

Numeric: integers, floats

Boolean: binary or true false values $\longrightarrow 0$, 1, $\uparrow \uparrow$

Strings: sequence of symbols

70,1,2 / 1.01, 8.348 X108

hoois

habade " "156-fgho/-]"

Data Types

What kind of values are in your data (data types)? Compound, composed of a bunch of atomic types:

Date and time: compound value with a specific structure

Lists: a list is a sequence of values

Dictionaries: A dictionary is a collection of key-value pairs, a pair of values x : y where x is usually a string called the key representing the "name" of the entry, and y is a value of any type.

Example: Student record: what are x and y?

First: Trivik

Last: Verma

Classes: [EPA1316, EPA1352]

Key Value

First Trivil ...

Last Verma

Classes [EPA1316, EPA1302

Data Storage

How is your data represented and stored (data format)?

- **Tabular Data:** a dataset that is a two-dimensional table, where each row typically represents a single data record, and each column represents one type of measurement (csv, dat, xlsx, etc.).
- **Structured Data:** each data record is presented in a form of a [possibly complex and multi-tiered] dictionary (json, xml, etc.)
- Semi structured Data: not all records are represented by the same set of keys or some data records are not represented using the key-value pair structure.
- Geographic Data: (shp, dbx, shx...)

Tabular Data

In tabular data, we expect each record or observation to represent a set of measurements of a single object or event.

First Look At The Data

In [27]: hubway_data = pd.read_csv('hubway_trips.csv', low_memory=False)
hubway_data.head()

Out[27]:

	seq_id	hubway_id	status	duration	start_date	strt_statn	end_date	end_statn	bike_nr	subsc_type	zip_code	birth_da
0	1	8	Closed	9	7/28/2011 10:12:00	23.0	7/28/2011 10:12:00	23.0	B00468	Registered	'97217	1976.0
1	2	9	Closed	220	7/28/2011 10:21:00	23.0	7/28/2011 10:25:00	23.0	B00554	Registered	'02215	1966.0
2	3	10	Closed	56	7/28/2011 10:33:00	23.0	7/28/2011 10:34:00	23.0	B00456	Registered	'02108	1943.0
3	4	11	Closed	64	7/28/2011 10:35:00	23.0	7/28/2011 10:36:00	23.0	B00554	Registered	'02116	1981.0
4	5	12	Closed	12	7/28/2011 10:37:00	23.0	7/28/2011 10:37:00	23.0	B00554	Registered	'97214	1983.0

This example and all material are provided by the Data Science course at Harvard University

Tabular Data

- Each type of measurement is called a variable or an attribute of the data (e.g. seq_id, status and duration are variables or attributes).
- The number of attributes is called the dimension. These are often called features.
- We expect each table to contain a set of records or observations of the same kind of object or event (e.g. our table above contains observations of rides/checkouts).

First Look At The Data

In [27]: hubway_data = pd.read_csv('hubway_trips.csv', low_memory=False)
hubway_data.head()

Out[27]:

:		seq_id	hubway_id	status	duration	start_date	strt_statn	end_date	end_statn	bike_nr	subsc_type	zip_code	birth_da
	0	1	8	Closed	9	7/28/2011 10:12:00	23.0	7/28/2011 10:12:00	23.0	B00468	Registered	'97217	1976.0
	1	2	9	Closed	220	7/28/2011 10:21:00	23.0	7/28/2011 10:25:00	23.0	B00554	Registered	'02215	1966.0
	2	3	10	Closed	56	7/28/2011 10:33:00	23.0	7/28/2011 10:34:00	23.0	B00456	Registered	'02108	1943.0
	3	4	11	Closed	64	7/28/2011 10:35:00	23.0	7/28/2011 10:36:00	23.0	B00554	Registered	'02116	1981.0
	4	5	12	Closed	12	7/28/2011 10:37:00	23.0	7/28/2011 10:37:00	23.0	B00554	Registered	'97214	1983.0

Types of Data

Important to distinguish between classes of variables or attributes based on the type of values they can take on.

- Quantitative variable: is numerical and can be either:
 - **discrete** a finite number of values are possible in any bounded interval.
 - For example: "Number of siblings" is a discrete variable
 - continuous an infinite number of values are possible in any bounded interval.
 - For example: "Height" is a continuous variable
- Categorical variable: no inherent order among the values
 - For example: "What kind of pet you have" is a categorical variable

Common Issues

Common issues with data:

- Missing values: how do we fill in?
- Wrong values: how can we detect and correct?
- Messy format
- Not usable: the data cannot answer the question posed

Python has the following data types built-in by default, in these categories:

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray,

memoryview

None Type: NoneType

Messy Data

- The following is a table accounting for the number of produce deliveries over a weekend.
- What are the variables in this dataset? What object or event are we measuring?

	Friday	Saturday	Sunday
Morning	15	158	10
Afternoon	2	90	20
Evening	55	12	45

What's the issue? How do we fix it?

Messy Data

We're measuring individual deliveries; the variables are Time, Day, Number of Produce.

	Friday	Saturday	Sunday
Morning	15	158	10
Afternoon	2	90	20
Evening	55	12	45

Problem: each column header represents a single value rather than a variable. Row headers are "hiding" the Day variable. The values of the variable, "Number of Produce", is not recorded in a single column.

Fixing Messy Data

We need to reorganize the information to make explicit the event we're observing, and the variables associated to this event.

ID	Time	Day	Number
1	Morning	Friday	15
2	Morning	Saturday	158
3	Morning	Sunday	10
4	Afternoon	Friday	2
5	Afternoon	Saturday	9
6	Afternoon	Sunday	20
7	Evening	Friday	55
8	Evening	Saturday	12
9	Evening	Sunday	45

Tabular = Happy Me ©

Common causes of messiness are:

- Column headers are values, not variable names
- Variables are stored in both rows and columns
- Multiple variables are stored in one column/entry
- Multiple types of experimental units stored in same table

In general, we want each file to correspond to a dataset, each column to represent a single variable and each row to represent a single observation.

We want to tabularize the data. This makes Python happy.

Grammar

Exploratory Data Analysis (EDA)

Why?

- EDA encompasses the "explore data" part of the data science process
- EDA is crucial but often overlooked:
 - If your data is bad, your results will be bad
 - Conversely, understanding your data well can help you create smart, appropriate models

Exploratory Data Analysis (EDA)

What?

- 1. Store data in data structure(s) that will be convenient for exploring/processing (Memory is fast. Storage is slow)
- 2. Clean/format the data so that:
 - Each row represents a single object/observation/entry
 - Each column represents an attribute/property/feature of that entry
 - Values are numeric whenever possible
 - Columns contain atomic properties that cannot be further decomposed*

^{*} Unlike food waste, which can be composted. Please consider composting food scraps.

Exploratory Data Analysis (EDA)

What? (continued)

- 3. Explore *global* properties: use histograms, scatter plots, and aggregation functions to summarize the data
- 4. Explore *group* properties: group like-items together to compare subsets of the data (are the comparison results reasonable/expected?)

This process transforms your data into a format which is easier to work with, gives you a basic overview of the data's properties, and likely generates several questions for you to follow-up in subsequent analysis.

Say we have a small dataset of the top 50 most-streamed Spotify songs, globally, for 2019.

Say we have a small dataset of the top 50 most-streamed Spotify songs, globally, for 2019.

NOTE: The following music data are used purely for illustrative, educational purposes. The data, including song titles, may include explicit language. TU Delft, including myself and the rest of the EPA1316 staff, does not endorse any of the entailed contents or the songs themselves, and we apologise if it is offensive to anyone in anyway.

top50.csv

Each row represents a distinct song. The columns are:

- **ID:** a unique ID (i.e., 1-50)
- TrackName: Name of the Track
- ArtistName: Name of the Artist
- **Genre:** the genre of the track
- BeatsPerMinute: The tempo of the song.
- **Energy:** The energy of a song the higher the value, the more energetic.
- Danceability: The higher the value, the easier it is to dance to this song.
- Loudness: The higher the value, the louder the song.
- **Liveness**: The higher the value, the more likely the song is a live recording.
- Valence: The higher the value, the more positive mood for the song.
- **Length**: The duration of the song (in seconds).
- Acousticness: The higher the value, the more acoustic the song is.
- Speechiness: The higher the value, the more spoken words the song contains.
- **Popularity**: The higher the value, the more popular the song is.

			1	BeatsPer			1	Live			1	Speechi	
	TrackName	ArtistName	Genre	Minute	Energy	Danceability	Loudness	ness	Valence	Length	Acousticness	ness	Popularity
1	Senorita	Shawn Menc	canadian pop	117	55	76	-6	8	75	191	4	3	79
2	China	Anuel AA	reggaeton flow	105	81	79	-4	8	61	302	8	9	92
3	boyfriend (w	Ariana Granc	dance pop	190	80	40	-4	16	70	186	12	46	85
4	Beautiful Per	Ed Sheeran	рор	93	65	64	-8	8	55	198	12	19	86

Q1: What are some ways we can store this file into data structure(s) using regular Python (not the Pandas library).

TUDelft Delft University of

EDA: without Pandas

top50.csv

				BeatsPer				Live				Speechi	
	TrackName	ArtistName	Genre	Minute	Energy	Danceability	Loudness	ness	Valence	Length	Acousticness	ness	Popularity
1	Senorita	Shawn Meno	canadian pop	117	55	76	-6	8	75	191	4	3	79
2	China	Anuel AA	reggaeton flow	105	81	79	-4	8	61	302	8	9	92
3	boyfriend (w	Ariana Grand	dance pop	190	80	40	-4	16	70	186	12	46	85
4	Beautiful Pec	Ed Sheeran	рор	93	65	64	-8	8	55	198	12	19	86

Possible Solution #1: A 2D array (i.e., matrix)

Weaknesses:

- What are the row and column names? Need separate lists for them clumsy.
- Lists are O(N). We'd need 2 dictionaries just for column names

data = [][]
col_name = rindex
index = col_name

top50.csv

				BeatsPer				Live				Speechi	
	TrackName	ArtistName	Genre			Danceability	Loudness		Valence	Length	Acousticness		Popularity
1	Senorita	Shawn Meno	canadian pop	117	55	76	-6	8	75	191	4	3	79
2	China	Anuel AA	reggaeton flow	105	81	79	-4	8	61	302	8	9	92
3	boyfriend (w	Ariana Grand	dance pop	190	80	40	-4	16	70	186	12	46	85
4	Beautiful Pec	Ed Sheeran	рор	93	65	64	-8	8	55	198	12	19	86

Possible Solution #2: A list of dictionaries

```
list

Item 1 = {"Track.Name": "Senorita", "Artist.Name": "Shawn Mendes", "Genre": "Canadian pop", ...}

Item 2 = {"Track.Name": "China", "Artist.Name": "Anuel AA", "Genre": "reggaetón flow", ... }

Item 3 = {"Track.Name": "Ariana Grande", "Artist.Name": "boyfriend", "Genre": "dance pop", ... }
```

Possible Solution #2: A list of dictionaries

```
f = open("../data/top50.csv", encoding = "ISO-8859-1")
column_names = f.readline().strip().split(",")[1:] # puts names in a list
cleaned column names = [name[1:-1] for name in column names]
cleaned column names.insert(0, "ID")
dataset = []
# iterates through each line of the .csv file
for line in f:
    attributes = line.strip().split(",")
    # constructs a new dictionary for each line
    dataset.append(dict(zip(cleaned column names, attributes)))
```

Possible Solution #2: A list of dictionaries

Q2: Write code to print all songs (Artist and Track name) that are longer than 4 minutes (240 seconds):

```
for song in dataset:
    if int(song["Length."]) > 240:
        print(song["Artist.Name"], "-", song["Track.Name"], "is", song["Length."], "seconds long")
```

Possible Solution #2: A list of dictionaries

Q3: Write code to print the most popular song (artist and track) – if ties, show all ties.

```
max_score = -1
most_populars = set()
for song in dataset:
    if int(song["Popularity"]) > max_score:
        most_populars = set([str(song["Artist.Name"] + "-" + song["Track.Name"])])
        max_score = int(song["Popularity"])
    elif int(song["Popularity"]) == max_score:
        most_populars.add(str(song["Artist.Name"] + "-" + song["Track.Name"]))
print(most_populars)
```


Possible Solution #2: A list of dictionaries

Q4: Write code to print the songs (and their attributes), if we <u>sorted</u> by their popularity (highest scoring ones first).

Cumbersome to move dictionaries around in a list. Problematic even if we don't move the dictionaries.

Possible Solution #2: A list of dictionaries

Q5: How could you check for null/empty entries? This is only 50 entries. Imagine if we had 500,000.

Possible Solution #2: A list of dictionaries

Q6: Imagine we had another table* below (i.e., .csv file). How could we combine its data with our already-existing *dataset*?

spotify_aux.csv										
	TrackName	ArtistName	ExplicitLanguage							
1	Senorita	Shawn Men	c TRUE							
2	China	Anuel AA	FALSE							
3	boyfriend (w	Ariana Gran	c TRUE							
4	Beautiful Peo	Ed Sheeran	FALSE							

^{* 3&}lt;sup>rd</sup> column is made-up by me. Random values. Pretend they're accurate.

What / Why?

- Pandas is an open-source Python library (anyone can contribute)
- Allows for high-performance, easy-to-use data structures and data analysis
- Unlike NumPy library which provides multi-dimensional arrays, Pandas provides 2D table object called DataFrame (akin to a spreadsheet with column names and row labels).
- Used by *a lot* of people

How

- import pandas library (convenient to rename it)
- Use read_csv() function

```
import pandas as pd
dataframe = pd.read_csv("yourfile.csv")
```


Common Panda functions

High-level viewing:

- head() first N observations
- tail() last N observations
- columns() names of the columns
- describe() statistics of the quantitative data
- dtypes() the data types of the columns

Common Panda functions

Accessing/processing:

- df["column_name"]
- df.column_name
- .max(), .min(), .idxmax(), .idxmin()
- <dataframe> <conditional statement>
- .loc[] label-based accessing
- .iloc[] index-based accessing
- .sort_values()
- .isnull(), .notnull()

Common Panda functions

Grouping/Splitting/Aggregating:

- groupby(), .get_groups()
- .merge()
- .concat()
- .aggegate()
- .append()

Data Concerns

When determining if a dataset is sound to use, it can be useful to think about these four questions:

- Did it come from a trustworthy, authoritative source?
- Is the data a complete sample?
- Does the data seem correct?
- (optional) Is the data stored efficiently or does it have redundancies?

- Often, there may not exist a single dataset that contains all the information we are interested in.
- May need to merge existing datasets
- Important to do so in a sound and efficient format

Dataset 1

Top 200 most-frequent streams per day (for June 2019)

Dataset 2

Top 50 most streamed in 2019, so far

SpotifySongID, # of Streams, Date

SpotifySongID, Artist, Track, [10 acoustic features] 2789179, Billie Eilish, bad guy, 3.2, 5.9, ... 50 3901829, Outkast, Elevators, 9.3, 5,1, ...

50 x 13

We are interested in determining if songs with high danceability are more popular during the weekends of June than weekdays in June. What should our merged table look like? Concerns?

This is wasteful, as it has 10 acoustic features, artist, and track repeated many times for each unique song.

Datasets Merged (poorly)

SpotifySongID, # of Streams, Date, Artist, Track, [10 acoustic features]

```
2789179, 42003, 06-01 Billie Eilish, bad guy, 3.2, 5.9, ...

3819390, 89103, 06-01 Outkast, Elevators, 9.3, 5,1, ...

4492014, 52923, 06-02

8593013, 189145, 06-02
```

 $6,000 \times 15 \implies 90,000 \text{ cells}$

Some rows may have null values for # of Streams (if the song wasn't popular in June)

Datasets Merged (better)

SpotifySongID, Artist, Track, [10 acoustic features], 06-01 Streams, 06-02 Streams

50 x 43 → 2,150 cells

- Is the data correctly constructed (or are values wrong)?
- Is there redundant data in our merged table?
- Missing values?

The Parable of Google Flu: Traps in Big Data Analysis

David Lazer, 1,2* Ryan Kennedy, 1,3,4 Gary King, 3 Alessandro Vespignani 5,6,3

n February 2013, Google Flu Trends (GFT) made headlines but not for a reason that Google executives or the creators of the flu tracking system would have hoped. Nature reported that GFT was predicting more than double the proportion of doctor visits for influenza-like illness (ILI) than the Centers for Disease Control and Prevention (CDC), which bases its estimates on surveillance reports from laboratories across the United States (1, 2). This happened despite the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data (3, 4), what lessons can we draw from this error?

The problems we identify are not limited to GFT. Research on whether search or social media can predict x has become common-

place (5–7) and is often put in sharp contrast with traditional methods and hypotheses. Although these studies have shown the value of these data, we are far from a place where they can supplant more traditional methods or theories (8). We explore two issues that contributed to GFT's mistakes—big data hubris and algorithm dynamics—and offer lessons for moving forward in the big data age.

ability and dependencies among data (12). The core challenge is that most big data that have received popular attention are not the output of instruments designed to produce valid and reliable data amenable for scientific analysis.

The initial version of GFT was a particularly problematic marriage of big and small data. Essentially, the methodology was to find the best matches among 50 million search terms to fit 1152 data points

Large errors in flu prediction were largely avoidable, which offers lessons for the use of big data.

run ever since, with a few changes announced in October 2013 (10, 15).

Although not widely reported until 2013, the new GFT has been persistently overestimating flu prevalence for a much longer time. GFT also missed by a very large margin in the 2011-2012 flu season and has missed high for 100 out of 108 weeks starting with August 2011 (see the graph). These errors are not randomly distributed. For example, last week's errors predict this week's errors (temporal autocorrelation), and the direction and magnitude of error varies with the time of year (seasonality). These patterns mean that GFT overlooks considerable information that could be extracted by traditional statistical methods.

Even after GFT was updated in 2009, the comparative value of the algorithm as a stand-alone flu monitor is questionable. A study in 2010 demonstrated that GFT accuracy was not much better than a fairly simple projection forward using already available (typically on a 2-week lag) CDC data (4). The comparison has become even worse since that time, with lagged models significantly outperforming GFT (see the graph). Even 3-week-old CDC data do a better job of projecting current flu prev-

For next class...

Finish Labs to practice programming

Complete Homework for more practice

Check Assignment contents and due date

See "To do before class" for next lecture (~ 1 hour of self-study)