

NOTATKA ROBOCZA

Sterowniki i Regulatory

Zajęcia nr 8

Konfiguracja, podstawowe funkcje logiczne, układy czasowe, liczniki i inne.

Skład grupy:	Aleksander Łyskawa 275462 Daniel Malczyk 275424 Wiktor Kwiatkowski
Wydział i kierunek studiów:	W12N, Automatyka i Robotyka
Termin zajęć:	pon 17:05 – 18:45
Prowadzący:	dr inż. Włodzimierz Solnik
Data:	26.12.2024

1 Uruchomienie oprogramowania

W ramach prac związanych z uruchomieniem oprogramowania PL7 Pro V4.3 wykonano następujące kroki:

- 1. Sprawdzono poprawność podłączeń oraz włączono zasilanie szafy sterowniczej zawierającej sterownik.
- 2. Uruchomiono komputer.
- 3. Z poziomu pulpitu uruchomiono oprogramowanie PL7 Pro V4.3.

2 Tworzenie nowego projektu

Po uruchomieniu programu wykonano czynności związane z tworzeniem nowego projektu:

- 1. Utworzono nowy projekt poprzez wybranie w menu opcji: $File \rightarrow New$.
- 2. W konfiguracji projektu wykonano następujące działania:
 - (a) Wybrano opcję bez GRAFCETA, potwierdzając wybór znakiem No.
 - (b) Wybrano typ sterownika: Micro
 - (c) Określono typ procesora na podstawie oznaczeń z prawej strony obudowy PLC.
 - W naszym przypadku procesor oznaczono jako TSX3110 V10.

Rysunek 1: Określenie typu procesora

3 Definiowanie sprzętu

W kolejnym etapie zdefiniowano sprzęt poprzez zadanie odpowiednich typów modułów, zgodnych z konfiguracją stanowiska. Informacje te wprowadzono na podstawie danych dostępnych dla sterownika i modułów.

4 Pisanie programów

Po zakończeniu konfiguracji projektu oraz zdefiniowaniu sprzętu przystąpiono do pisania programów w języku drabinkowym (LD – Ladder Diagram). Programowanie realizowano w środowisku PL7 Pro V4.3, wykorzystując instrukcję i struktury języka LD.

4.1 Zadanie nr 18

Układ umożliwia sterowanie urządzeniem za pomocą dwóch przycisków: START oraz STOP . Opis działania programu:

4.1.1 Wejścia i wyjścia

- %I0.0 Przycisk START
- %I1.1 Przycisk STOP
- %Q2.2 Wyjście sterujące, włączenie karuzeli

4.1.2 Logika działania

Wyjście %Q2.2 steruje się według poniższych warunków:

- Naciśnięcie przycisku START (%I0.0) powoduje załączenie wyjścia %Q2.2, o ile przycisk STOP (%I1.1) nie jest aktywowany
- Stan %Q2.2 jest podtrzymywany przez sprzężenie zwrotne, co oznacza, że po uruchomieniu przyciskiem START, wyjście pozostaje aktywne, dopóki nie zostanie naciśnięty przycisk STOP.

4.1.3 Program do włączania i wyłączania karuzeli

Rysunek 2: Włączanie karuzeli

4.1.4 Program do włączania i wyłączania wiertarki

Rysunek 3: Włączanie wiertarki

5 Przesłanie programu do sterownika PLC

Program został przesłany ze środowiska programistycznego na komputerze PC do sterownika PLC.

Podczas tego procesu pojawiło się okno dialogowe informujące o różnicy między wersją programu znajdującą się na komputerze a tą zapisaną w sterowniku PLC. W celu synchronizacji i zapewnienia aktualności oprogramowania, wybrano opcję $\mathbf{PC} \to \mathbf{PLC}$, która umożliwiła przesłanie programu z komputera do sterownika.

Rysunek 4: Przesłanie programu