Volumes

Paralelepípedo: $V = c \times h \times l$

Esfera:
$$V = \frac{4}{3}\pi r^3$$

Cone:
$$V = \frac{1}{3}\pi r^2 \times h$$

Cilindro
$$V = \pi r^2 \times h$$

Pirâmide:
$$V = \frac{1}{3}Ab \times h$$

Centroides 2D

$$\bar{y} = \frac{h}{3}$$

$$ea = \frac{bh}{2}$$
 Are

1/4 Circulo

$$\bar{x} = \frac{4r}{3\pi}$$

$$\bar{y} = \frac{4r}{3\pi}$$

$$\bar{y} = \frac{4r}{3\pi}$$

$$Area = \frac{\pi r^2}{4}$$

$$Area = \frac{\pi r^2}{2}$$

$$Area = \frac{\pi r^2}{2}$$

$$\overline{x} = 0$$

$$\bar{y} = \frac{4\pi}{3}$$

$$Area = \frac{\pi r^2}{2}$$

Centroides 3D

Semiesfera

Centroide | Volume

$$\frac{3a}{8}$$
 $\frac{2}{3}$

Pirâmide

Centroide | Volume

$$\frac{h}{4}$$
 $\frac{1}{3}abh$

Cone

Centroide | Volume

$$\frac{h}{4}$$
 $\frac{1}{3}\pi a^2 h$

Semielipsoide

$$\frac{3h}{8}$$
 $\frac{2}{3}\pi a^2h$

Paraboloide

Centroide | Volume | Centroide | Volume

$$\frac{3h}{8}$$
 $\frac{2}{3}\pi a^2h$

$$\frac{h}{3}$$
 $\frac{1}{2}\pi a^2 h$

Centroide qualquer triângulo

$$C = \left(\frac{1}{3}(X_L + X_M + X_N), \frac{1}{3}(Y_L + Y_M + Y_N)\right)$$

X_{LMN}: coordenadas dos vértices em X

Y_{LMN}: coordenadas dos vértices em Y

Teorema dos eixos paralelos

I: Inércia relativamente a um eixo A

 \overline{I} : Inércia relativamente a um eixo B

A: Área da forma (2D) / Massa (3D)

d: distância entre os eixos A e B

$$I = \overline{I} + Ad^2$$

Cálculo do momento de inércia de uma peça em relação a um eixo

- 1. Dividir a peça em partes.
- 2. Calcular o volume V das peças.
- 3. Calcular a massa **m** das peças.
- 4. Calcular as inércias Ic em relação ao centroide.
- 5. Calcular a distância d do centroide ao eixo pedido.
- 6. Calcular a inércia I das peças em relação ao eixo pedido.
- 7. Calcular a inércia total I_T somando as inércias de cada peça

Inércias podem ser negativas se forem furos)

Cálculo do centro de gravidade de uma peça

- 1. Dividir a peça em diferentes partes.
- 2. Calcular o volume de cada uma das peças.
- 3. Obter os centros de gravidade das peças.
- 4. Preencher a seguinte tabela:

Peça	Vi	x_i	y_i	Z_i	$x_i V_i$	$y_i V_i$	$z_i V_i$		
P_1									
P_2									
Pi									
Σ	$\sum Vi$				$\sum x_i v_i$	$\sum YiVi$	$\sum ZiVi$		

5. Calcular o centro de gravidade da peça: $X_G = \frac{\sum XiVi}{\sum Vi} \qquad Y_G = \frac{\sum YiVi}{\sum Vi} \qquad Z_G = \frac{\sum ZiVi}{\sum Vi}$

$$X_G = \frac{\sum XiVi}{\sum Vi}$$

$$Y_G = \frac{\sum YiV}{\sum Vi}$$

$$Z_G = \frac{\sum ZiVi}{\sum Vi}$$

Inércia Semi Cilindro em relação ao centroide

$$I_{XC} = \left(\frac{1}{4} - \frac{16}{9\pi^2}\right) mr^2 + \frac{1}{12} mL^2$$

$$I_{YC} = \frac{1}{4}mr^2 + \frac{1}{12}mL^2$$

$$I_{YC} = \frac{1}{4}mr^2 + \frac{1}{12}mL^2$$

$$I_{XC} = \left(\frac{1}{2} - \frac{16}{9\pi^2}\right)mr^2$$

Centros de massa 2D

$$\overline{I}_{x'} = \frac{1}{12}bh^3$$

$$\overline{I}_{y'} = \frac{1}{12}b^3h$$

$$I_{x} = \frac{1}{12}bh^3$$

$$I_y = \frac{1}{3}b^3h$$

$$J_C = \frac{1}{12}bh(b^2 + h^2)$$

Semicírculo

Quarto de círculo

$$\overline{I}_x = \frac{1}{4}\pi a b^3$$

$$\overline{I}_y = \frac{1}{4}\pi a^3 b$$

$$J_O = \frac{1}{4}\pi ab(a^2 + b^2)$$

Centros de massa 3D

Paralelepípedo

$$I_x = \frac{1}{12} m(b^2 + c^2)$$

$$I_y = \frac{1}{12} m(c^2 + a^2)$$

$$I_x = \frac{1}{12} m(b^2 + c^2)$$

$$I_y = \frac{1}{12} m(c^2 + a^2)$$

Cilindro

$$I_x = \frac{1}{2} ma^2$$

$$I_y = I_z = \frac{1}{12} m(3a^2 + L$$

$$I_x = \frac{3}{10}ma^2$$

$$I_y = I_z = \frac{3}{5}m(\frac{1}{4}a^2 + h^2)$$

$$I_x = \frac{1}{12}m(b^2 + c^2)$$

$$I_y = \frac{1}{12}mc^2$$

$$I_z = \frac{1}{12}mb^2$$

Raio de Giração

$$K = \sqrt{\frac{I}{m}} = \sqrt{\frac{In\acute{e}rcia}{massa}}$$

$$I_x = I_y = I_z = \frac{2}{5} ma^2$$

$$I_x = \frac{1}{2} mr^2$$

$$I_y = I_z = \frac{1}{4} mr^2$$

Planeamento de trajetórias

Interpolação cúbica:

$$\theta(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

$$\dot{\theta}(t) = a_1 + 2a_2t + 3a_3t^2$$

$$\ddot{\theta}(t) = 2a_2 + 6a_3t$$

Coeficientes:

$$a_0 = \theta_0$$

$$a_1 = \dot{\theta}_0$$

$$a_2 = \frac{3}{t_f^2} (\theta_f - \theta_0) - \frac{2}{t_f} \dot{\theta}_0 - \frac{1}{t_f} \dot{\theta}_f$$

$$a_3 = -\frac{2}{t_f^3} (\theta_f - \theta_0) + \frac{2}{t_f^2} (\dot{\theta}_f + \dot{\theta}_0)$$

Denavit-Hartenberg

Eixos:

 z_i : normalmente colocado na junta ou na direção no movimento linear.

 o_i : origem é colocada onde a normal comuns aos eixos z_i e z_{i-1} interseta z_i .

 x_i : ou fica na direção da normal comum aos eixos z_i e z_{i-1} ou na direção normal ao plano z_{i-1} - z_i (no caso de estes se intercetarem)

 y_i : completa-se pela regra da mão direita

Contruir a tabela de DH:

 d_i α_i

 \mathbf{r}_i

	ī				
		$\cos heta_n$	$-\sin\theta_n\cos\alpha_n$	$\sin \theta_n \sin \alpha_n$	$r_n\cos heta_n$
	4 _	$\sin \theta_n$	$\cos \theta_n \cos \alpha_n$	$-\cos heta_n\sinlpha_n$	$r_n\sin heta_n$
1	$A_n =$	0	$-\sin\theta_n\cos\alpha_n\\\cos\theta_n\cos\alpha_n\\\sin\alpha_n$	$\cos lpha_n$	d_n
			0	0	1

$$T_n^0 = \prod_{1}^n A_n$$

 \mathbf{r}_i - distância (ao longo de x_i) desde a interseção do eixo x_i com z_{i-1} até ao centro o_i

 d_i - distância (ao longo de z_{i-1}) desde o centro o_{i-1} até à interseção do eixo x_i com z_{i-1}

 α_i - angulo de z_{i-1} para z_i medido em torno de x_i

 θ_i - angulo de x_{i-1} para x_i medido em torno de z_{i-1}

Se a junta i for prismática d_i é variável *

Se a junta i for rotacional θ_i é variável *