线性代数期中试卷

(2021.11.20)

一. 简答与计算题(本题共5小题,每小题8分,共40分)

1.
$$B = A^*$$
,计算 B 的所有代数余子式的和,即 $\sum_{i,j=1}^4 B_{ij}$,此处 $A = \begin{pmatrix} 0 & 0 & 4 & 5 \\ 3 & 0 & 5 & 6 \\ 3 & 0 & 13 & 16 \\ 5 & 0 & 7 & 0 \end{pmatrix}$.

- 2. 计算行列式 $D_5 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 3^2 & 5^2 & 7^2 \\ 1 & 3^3 & 5^3 & 7^3 \end{vmatrix}$.
- 3. 证明: 如果 $A \stackrel{c}{\rightarrow} B$,则 A 的列向量组与 B 的列向量组等价.
- 4. 设 $A = (a_{ij})_{n \times n}$, $A^k = O$, k > 1 是正整数, 证明: E A 可逆.

5.
$$\eta = (1,1,1)^{\mathrm{T}}$$
 是矩阵 A 的特征向量,计算 a,b 与 A 的所有特征值,此处: $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & a & b \\ 1 & b & 2 \end{pmatrix}$.

二.(12分) 计算矩阵
$$X$$
 使得 $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ X $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$.

三.(14分)

(1) 计算矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$ 的秩,计算A列向量组的一个极大线性无关组,并用以表示其余向量(6分);

(2) 判断 Ax = b 解的存在性,如有解则计算其通解(8分).

$$A = \begin{pmatrix} 0 & 1 & 1 & -1 & -1 \\ 1 & 2 & 0 & -1 & -4 \\ 0 & -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 0 & 3 \end{pmatrix}, b = \begin{pmatrix} -4 \\ 2 \\ 4 \\ -6 \end{pmatrix}.$$

四. (10分) A 为 $m \times n$ 矩阵, $\mathbf{r}(A) = r > 0$,证明必有 m 维向量 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 与 n 维向量 $\beta_1, \beta_2, \cdots, \beta_r$,使得 $A = \alpha_1 \beta_1^{\mathrm{T}} + \alpha_2 \beta_2^{\mathrm{T}} + \cdots + \alpha_r \beta_r^{\mathrm{T}}$.

五.(10分) $\alpha = (1,1,\cdots,1)^T$ 为 n 维向量, $A = \alpha\alpha^T$,计算 A 的 n 个线性无关的特征向量.

六.(14分) $A = (a_{ij})_{3\times 3}$, $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $A\alpha_1 = \alpha_1 - 2\alpha_2 - 2\alpha_3, A\alpha_2 = -2\alpha_1 + \alpha_2 - 2\alpha_3, A\alpha_3 = -2\alpha_1 - 2\alpha_2 + \alpha_3$. 计算 A 的特征值与特征向量(用 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合表示).

1

线性代数期中试卷 答案 (2021.11.20)

一. 简答与计算题(本题共5小题,每小题8分,共40分)

1.
$$B = A^*$$
,计算 B 的所有代数余子式的和,即 $\sum_{i,j=1}^4 B_{ij}$,此处 $A = \begin{pmatrix} 0 & 0 & 4 & 5 \\ 3 & 0 & 5 & 6 \\ 3 & 0 & 13 & 16 \\ 5 & 0 & 7 & 0 \end{pmatrix}$.

解:
$$A \to \begin{pmatrix} 1 & 0 & 3 & 12 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 则 $\mathbf{r}(A) = 3$, 由 $AA^* = |A|E = O$, $0 = \mathbf{r}(O) = \mathbf{r}(AA^*) \ge \mathbf{r}(A) + \mathbf{r}(A^*) - 4$,

故
$$\mathbf{r}(B) = \mathbf{r}(A^*) \le 1$$
,于是 $B_{ij} = 0, i, j = 1, 2, 3, 4$. 得 $\sum_{i,j=1}^4 B_{ij} = 0$.

解法二: $\mathbf{r}(A)=3, AA^*=|A|E=O$,故 $B=A^*$ 的列为 $Ax=\theta$ 的解,

故
$$\mathbf{r}(B) \leq (Ax = \theta)$$
的基础解系向量个数)=4-3=1,于是 $B_{ij} = 0, i, j = 1, 2, 3, 4$. 得 $\sum_{i,j=1}^{4} B_{ij} = 0$.

解法三: 易知
$$A^* = \begin{pmatrix} 0 & 0 & 0 & 0 \\ A_{12} & A_{22} & A_{32} & A_{42} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 故 $B_{ij} = 0, i, j = 1, 2, 3, 4$, 于是 $\sum_{i,j=1}^4 B_{ij} = 0$. 解法四: $A_{12} = 200, A_{22} = 100, A_{32} = -100, A_{42} = 0$, 其余代数余子式因为含0列故均为0, 于是 $A^* = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 200 & 100 & -100 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 故 $B_{ij} = 0, i, j = 1, 2, 3, 4$. 于是 $\sum_{i,j=1}^4 B_{ij} = 0$.

于是
$$A^* = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 200 & 100 & -100 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,故 $B_{ij} = 0, i, j = 1, 2, 3, 4$. 于是 $\sum_{i,j=1}^4 B_{ij} = 0$.

2. 计算行列式
$$D_5 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 3^2 & 5^2 & 7^2 \\ 1 & 3^3 & 5^3 & 7^3 \end{vmatrix}$$

2. 计算行列式
$$D_5 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 5 & 7 \\ 1 & 3^2 & 5^2 & 7^2 \\ 1 & 3^3 & 5^3 & 7^3 \end{vmatrix}$$
. 解: 范德蒙行列式 $D_5 = (7-1)(7-3)(7-5)(5-1)(5-3)(3-1) = 768$. 解法二: $D_5 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 4 & 6 \\ 0 & 3 \times 2 & 5 \times 4 & 7 \times 6 \\ 0 & 3^2 \times 2 & 5^2 \times 4 & 7^2 \times 6 \end{vmatrix} = 2 \times 4 \times 6 \begin{vmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \\ 2^2 & 5^2 & 7^2 \end{vmatrix} = 48 \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 4 \\ 0 & 5 \times 2 & 7 \times 4 \end{vmatrix} = 768.$

3. 证明: 如果 $A \stackrel{c}{\rightarrow} B$, 则 A 的列向量组与 B 的列向量组等价.

证:一系列的列初等变换等价于右乘可逆矩阵,即 B = AP, P可逆,此表示B的列是A的列的组合, P的列为组合系数. P可逆,故有 $A = BP^{-1}$,则A的列是B的列的组合,A, B的列可相互表示,故等价.

证法二: 易知 A 进行列初等变换得到 A_1 ,则 A_1 的列可以表示成 A的列的组合, A_1 再进行列变换 得到 A_2 ,则 A_2 的列可以由 A_1 的列表示,从而也可以由 A 的列表示,依次下去,A 经过一系列 的列初等变换得到 B,则 B的列可由 A的列表示出来.

由于列初等变换有逆变换,故 B 也可以经过一系列的列初等变换得到 A,故 A 的列可由 B的列表示, $A \times B$ 的列可以相互表示,则 $A \ni B$ 的列向量组等价.

4. 设 $A = (a_{ij})_{n \times n}$, $A^k = O$, k > 1 是正整数, 证明: E - A 可逆.

证: $(E-A)(E+A+\cdots+A^{k-1})=E+A+\cdots+A^{k-1}-A-A^2-\cdots-A^k=E-A^k=E$,故 E-A 可逆.

证法二: 反证法, 假设 E-A 不可逆, 则存在 $\xi \neq \theta$, 使得 $(E-A)\xi = \theta$, 即 $A\xi = E\xi = \xi$,

于是 $A^k\xi = A^{k-1}A\xi = A^{k-1}\xi = \cdots = A\xi = \xi \neq \theta$,但是 $A^k\xi = O\xi = \theta$,矛盾,故 E - A 可逆.

证法三: 设 λ 为 A 的任意特征值, 则 λ^k 是 $A^k=O$ 的特征值, 故 $\lambda^k=0$, 从而 $\lambda=0$,

于是 $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$. 则 $|E - A| = (1 - \lambda_1) \dots (1 - \lambda_n) = 1 \neq 0$,故 E - A 可逆.

5.
$$\eta = (1,1,1)^{\mathrm{T}}$$
 是矩阵 A 的特征向量,计算 a,b 与 A 的所有特征值,此处: $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & a & b \\ 1 & b & 2 \end{pmatrix}$. 解: 因为 $A\eta = \lambda \eta$,即 $(4,a+b+1,b+3)^{\mathrm{T}} = (\lambda,\lambda,\lambda)^{\mathrm{T}}$,解得 $\lambda = 4,b = 1,a = 2$.
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ -1 & \lambda - 2 & -1 \\ -1 & -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 4) = 0$$
,故特征值为 $\lambda = 1$ (二重),4.

二.(12分) 计算矩阵
$$X$$
 使得
$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} X \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

二.(12分) 计算矩阵
$$X$$
 使得 $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ X $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$. 解: 方程写成 $AXB = C$,则有 $X = A^{-1}CB^{-1}$.
$$(A,E) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0.5 & -0.5 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0.5 & -0.5 & 1 \end{pmatrix}, \quad \text{故 } A^{-1} = \begin{pmatrix} 0.5 & -0.5 & 0 \\ 0 & 1 & -1 \\ 0.5 & -0.5 & 1 \end{pmatrix}.$$
 同理可得 $B^{-1} = \frac{1}{6} \begin{pmatrix} 4 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 2 & 3 \end{pmatrix}$. 故 $X = A^{-1}CB^{-1} = \frac{1}{6} \begin{pmatrix} 3 & 0 & 0 \\ -1 & 4 & -3 \\ 2 & -2 & 3 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/6 & 2/3 & -1/2 \\ 1/3 & -1/3 & 1/2 \end{pmatrix}.$ 解法二: 方程写成 $AXB = C$,先解方程 $AY = C$,有

同理可得
$$B^{-1} = \frac{1}{6} \begin{pmatrix} 4 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 2 & 3 \end{pmatrix}$$
. 故 $X = A^{-1}CB^{-1} = \frac{1}{6} \begin{pmatrix} 3 & 0 & 0 \\ -1 & 4 & -3 \\ 2 & -2 & 3 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/6 & 2/3 & -1/2 \\ 1/3 & -1/3 & 1/2 \end{pmatrix}$.

再解方程
$$XB = Y$$
, $\begin{pmatrix} B \\ Y \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & -1 & 2 \\ \hline 1 & -0.5 & 0 \\ -1 & 2 & -1 \\ 1 & -1.5 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline 1/2 & 0 & 0 \\ -1/6 & 2/3 & -1/2 \\ 1/3 & -1/3 & 1/2 \end{pmatrix}$, 故 $X = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/6 & 2/3 & -1/2 \\ 1/3 & -1/3 & 1/2 \end{pmatrix}$.

三.(14分)

(1) 计算矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$ 的秩,计算A列向量组的一个极大线性无关组,并用以表示其余向量(6分);

(2) 判断 Ax = b 解的存在性,如有解则计算其通解(8分).

$$A = \begin{pmatrix} 0 & 1 & 1 & -1 & -1 \\ 1 & 2 & 0 & -1 & -4 \\ 0 & -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 0 & 3 \end{pmatrix}, b = \begin{pmatrix} -4 \\ 2 \\ 4 \\ -6 \end{pmatrix}.$$

r(A) = r(A, b), 故有解, 其中一个特解为: $\eta = (10, -4, 0, 0, 0)^{T}$, 对应齐次方程组的 基础解系为: $\beta_1 = (2, -1, 1, 0, 0)^T$, $\beta_2 = (-1, 1, 0, 1, 0)^T$, $\beta_3 = (2, 1, 0, 0, 1)^T$,

Ax = b 的通解为 $\eta + k_1\beta_1 + k_2\beta_2 + k_3\beta_3, k_1, k_2, k_3 \in \mathbf{R}$.

(1) 由(*)式的系数部分可知, $\mathbf{r}(A) = 2$, 一个极大无关组为: α_1, α_2 , 并且有 $\alpha_3 = -2\alpha_1 + \alpha_2, \alpha_4 = \alpha_1 - \alpha_2, \alpha_5 = -2\alpha_1 - \alpha_2.$

(2) 由(*)式知 $\mathbf{r}(A) = \mathbf{r}(A,b)$, 故有解, 其中一个特解为: $\eta = (10, -4, 0, 0, 0)^{\mathrm{T}}$, 对应齐次方程组的 基础解系为: $\beta_1 = (2, -1, 1, 0, 0)^T$, $\beta_2 = (-1, 1, 0, 1, 0)^T$, $\beta_3 = (2, 1, 0, 0, 1)^T$, Ax = b 的通解为 $\eta + k_1\beta_1 + k_2\beta_2 + k_3\beta_3, k_1, k_2, k_3 \in \mathbf{R}$.

四. (10分) A 为 $m \times n$ 矩阵, $\mathbf{r}(A) = r > 0$,证明必有 m 维向量 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 与 n 维向量 $\beta_1, \beta_2, \cdots, \beta_r$, $\phi \in A = \alpha_1 \beta_1^{\mathrm{T}} + \alpha_2 \beta_2^{\mathrm{T}} + \cdots + \alpha_r \beta_r^{\mathrm{T}}$.

证: 因为 $\mathbf{r}(A) = r > 0$,故有可逆矩阵 $P \in \mathbf{R}^{m \times m}$ 和 $Q \in \mathbf{R}^{n \times n}$ 使得 $A = P\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$ Q.

接列分块: $P = (\alpha_1, \dots, \alpha_m), Q^T = (\beta_1, \dots, \beta_n)$,

则有
$$A = (\alpha_1, \alpha_2, \cdots, \alpha_m)$$
 $\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$ $\begin{pmatrix} \beta_1^{\mathrm{T}} \\ \vdots \\ \beta_n^{\mathrm{T}} \end{pmatrix} = (\alpha_1, \alpha_2, \cdots, \alpha_r)$ $\begin{pmatrix} \beta_1^{\mathrm{T}} \\ \vdots \\ \beta_r^{\mathrm{T}} \end{pmatrix} = \alpha_1 \beta_1^{\mathrm{T}} + \alpha_2 \beta_2^{\mathrm{T}} + \cdots + \alpha_r \beta_r^{\mathrm{T}}.$

证法二:因为 $\mathbf{r}(A)=r>0$,故可进行一系列的行初等变换化成行简化梯形 $B=\begin{pmatrix} \beta_1^{\Gamma}\\ \vdots\\ \beta_r^{\mathrm{T}}\\ O \end{pmatrix}$, $\beta_1^{\mathrm{T}},\cdots,\beta_r^{\mathrm{T}}$ 非零.

此变换等价于
$$A$$
 左乘一个可逆矩阵 P ,即 $PA = B$,于是有 $A = P^{-1}B$,将 P^{-1} 按列分块得
$$P^{-1} = (\alpha_1, \dots, \alpha_m), \quad \text{则有} A = P^{-1}B = (\alpha_1, \dots, \alpha_r) \begin{pmatrix} \beta_1^{\text{T}} \\ \vdots \\ \beta_r^{\text{T}} \end{pmatrix} = \alpha_1 \beta_1^{\text{T}} + \alpha_2 \beta_2^{\text{T}} + \dots + \alpha_r \beta_r^{\text{T}}.$$

证法三: 按列分块 $A=(\gamma_1,\cdots,\gamma_n)$, 因为 $\mathbf{r}(A)=\mathbf{r}\{\gamma_1,\cdots,\gamma_n\}=r>0$, 故极大无关组含r个向量, 设一个极大无关组为 $\gamma_{k_1},\cdots,\gamma_{k_r}$, 记为 α_1,\cdots,α_r , 则它可以表示所有列向量,

设为
$$\gamma_j = b_{1j}\alpha_1 + \dots + b_{rj}\alpha_r, j = 1, 2, \dots, n$$
, 再设 $B = \begin{pmatrix} \beta_1^{\rm T} \\ \vdots \\ \beta_r^{\rm T} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ \vdots \\ b_{r1} & b_{r2} & \dots & b_{rn} \end{pmatrix}$, 则 $A = (\alpha_1, \dots, \alpha_r)B = \alpha_1\beta_1^{\rm T} + \alpha_2\beta_2^{\rm T} + \dots + \alpha_r\beta_r^{\rm T}$.

$$\text{M: $A = \alpha \alpha^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}, \ |\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & \cdots & -1 \\ -1 & \lambda - 1 & \cdots & -1 \\ \vdots & \vdots & \vdots \\ -1 & -1 & \cdots & \lambda - 1 \end{vmatrix} = \begin{vmatrix} \lambda - n & -1 & \cdots & -1 \\ \lambda - n & \lambda - 1 & \cdots & -1 \\ \vdots & \vdots & \vdots \\ \lambda - n & -1 & \cdots & \lambda - 1 \end{vmatrix} = (\lambda - n)\lambda^{n-1},$$

故 A 的特征值为 $\lambda = n, 0(n-1)$

当
$$\lambda = n$$
 时, $nE - A = \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \cdots & n-1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & \cdots & -1 \\ 0 & 1 & \cdots & -1 \\ \vdots & \vdots & & \vdots \\ 0 & \cdots & 1 & -1 \\ 0 & 0 & \cdots & 0 \end{pmatrix}$,无关特征向量为 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$.

当
$$\lambda = 0$$
 时, $0E - A \rightarrow \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$,无关特征向量为 $\alpha_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \cdots, \alpha_n = \begin{pmatrix} -1 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$.

因为 $|\alpha_1, \alpha_2, \dots, \alpha_n| = n \neq 0$,故 $\alpha_1, \alpha_2, \dots, \alpha_n$ 即为 n 个无关特征向量. 解法二: 因为 $A\alpha = \alpha(\alpha^{T}\alpha) = n\alpha$, 故 $\alpha_1 = \alpha = (1, 1, \dots, 1)^{T}$ 为特征值 n 的特征向量.

$$A = \alpha \alpha^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}, \quad \&Ax = \theta \tilde{A} \stackrel{\text{def}}{=} & \&Ax \stackrel{\text{def}}{=} & \&Ax$$

即为0的无关特征向量. 又 $|\alpha_1, \alpha_2, \dots, \alpha_n| = n \neq 0$,故 $\alpha_1, \alpha_2, \dots, \alpha_n$ 即为 A 的 n 个无关特征向量.

六.(14分)
$$A = (a_{ij})_{3\times 3}$$
, $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $A\alpha_1 = \alpha_1 - 2\alpha_2 - 2\alpha_3, A\alpha_2 = -2\alpha_1 + \alpha_2 - 2\alpha_3, A\alpha_3 = -2\alpha_1 - 2\alpha_2 + \alpha_3$. 计算 A 的特征值与特征向量(用 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合表示).

$$A\alpha_3 = -2\alpha_1 - 2\alpha_2 + \alpha_3$$
. 计算 A 的特征但与特征问重(用 $\alpha_1, \alpha_2, \alpha_3$ 的线性组合表示). 解: $A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1 - 2\alpha_2 - 2\alpha_3, -2\alpha_1 + \alpha_2 - 2\alpha_3, -2\alpha_1 - 2\alpha_2 + \alpha_3) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$.

令
$$P = (\alpha_1, \alpha_2, \alpha_3), B = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$
, 由于 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,故 P 可逆,于是有 $P^{-1}AP = B$,即 $A 与 B$ 相似,则 $A 与 B$ 有相同的特征值.
$$|\lambda E - B| = \begin{vmatrix} \lambda - 1 & 2 & 2 \\ 2 & \lambda - 1 & 2 \\ 2 & 2 & \lambda - 1 \end{vmatrix} = (\lambda + 3)(\lambda - 3)^2$$
,故特征值为 $\lambda = -3, 3$ (二重).

$$|\lambda E - B| = \begin{vmatrix} \lambda - 1 & 2 & 2 \\ 2 & \lambda - 1 & 2 \\ 2 & 2 & \lambda - 1 \end{vmatrix} = (\lambda + 3)(\lambda - 3)^2, \text{ bistantial} \lambda = -3, 3(\Box \underline{\pi}).$$

当
$$\lambda = -3$$
 时, $-3E - B = \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,无关特征向量为 $\eta_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

当
$$\lambda = 3$$
 时, $3E - B = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,无关特征向量为 $\eta_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\eta_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

因为由 $B\eta = \lambda \eta$ 可得 $AP\eta = PB\eta = \lambda$

故 A 有特征值 $\lambda = -3$,对应无关特征向量 $\xi_1 = P\eta_1 = \alpha_1 + \alpha_2 + \alpha_3$,特征向量为 $k_1\xi_1$.

特征值 $\lambda = 3$ (二重),对应无关特征向量 $\xi_2 = P\eta_2 = -\alpha_1 + \alpha_2, \xi_3 = P\eta_3 = -\alpha_1 + \alpha_3$,特征向量为 $k_2\xi_2 + k_3\xi_3$. 解法二:由条件 $\alpha_1,\alpha_2,\alpha_3$ 是3个线性无关的3维向量,故任意3维向量都可以由这3个向量表示.

设 $\xi = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 \neq \theta$ 是 A 的特征向量,则有 $A\xi = \lambda \xi$.

将 $\xi = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3$, $A\alpha_1 = \alpha_1 - 2\alpha_2 - 2\alpha_3$, $A\alpha_2 = -2\alpha_1 + \alpha_2 - 2\alpha_3$, $A\alpha_3 = -2\alpha_1 - 2\alpha_2 + \alpha_3$ $(k_1 - 2k_2 - 2k_3 - \lambda k_1)\alpha_1 + (-2k_1 + k_2 - 2k_3 - \lambda k_2)\alpha_2 + (-2k_1 - 2k_2 + k_3 - \lambda k_3)\alpha_3 = \theta.$

由于
$$\alpha_1, \alpha_2, \alpha_3$$
 线性无关,故组合系数为零,即 $\begin{pmatrix} 1 - \lambda & -2 & -2 \\ -2 & 1 - \lambda & -2 \\ -2 & 1 - \lambda \end{pmatrix}$ $\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = B\eta = \theta.$

由于
$$\xi = k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 \neq \theta$$
,故 k_1, k_2, k_3 不全为零,即 $\eta = (k_1, k_2, k_3)^T \neq \theta$.
因为 $B\eta = \theta$ 要求非零解 η ,故必须满足 $|B| = \begin{vmatrix} 1 - \lambda & -2 & -2 \\ -2 & 1 - \lambda & -2 \\ -2 & -2 & 1 - \lambda \end{vmatrix} = -(\lambda + 3)(\lambda - 3)^2 = 0$.

故必须有 $\lambda = -3,3(二重)$.

当
$$\lambda = -3$$
 时, $B = \begin{pmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$,基础解系 $\eta_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. 令 $\xi_1 = (\alpha_1, \alpha_2, \alpha_3)\eta_1 = \alpha_1 + \alpha_2 + \alpha_3$,则 $c_1\xi_1, c_1 \neq 0$ 为特征向量.

令 $\xi_2 = (\alpha_1, \alpha_2, \alpha_3)\eta_2 = -\alpha_1 + \alpha_2, \xi_3 = (\alpha_1, \alpha_2, \alpha_3)\eta_3 = -\alpha_1 + \alpha_3,$ 则 $c_2\xi_2 + c_3\xi_3, c_2, c_3 \neq 0$ 为特征向量.