P. Maurer ENS Rennes

Leçon 162 : Systèmes d'équations linéaires, opérations élémentaires, aspects algorithmiques et conséquences théoriques.

Devs:

- Décomposition de Bruhat
- Algorithme du gradient à pas optimal

Références:

- 1. Gourdon, Algèbre
- 2. Griffone, Algèbre linéaire
- 3. Caldero, H2G2
- Dos Santos, Groupes finis et représentations (Poly M1 Jussieu)
- 5. Hirriat, Optimisation et analyse convexe
- 6. Ciarlet, Introduction à l'analyse numérique matricielle

Dans tout le plan, $\mathbb K$ désigne un corps de caractéristique nulle (généralement, $\mathbb K=\mathbb R$ ou $\mathbb C).$

1 Systèmes d'équations linéaires sur \mathbb{K}^n

1.1 Définitions, première propriétés.

Définition 1. On appelle système d'équations linéaires un système du type :

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2 \\ \dots \\ a_{p1} x_1 + a_{p2} x_2 + \dots + a_{pn} x_n = b_p \end{cases}$$

Où les a_{ij} et les b_i sont des éléments de \mathbb{K} . Les x_i sont appelés « inconnues », et résoudre le système signifie déterminer les $x_i \in \mathbb{K}$, s'il y en a, qui vérifient les équations ci-dessus.

Le système est dit compatible s'il admet au moins une solution $(x_1, \ldots, x_n) \in \mathbb{K}^n$.

Exemple 2. $\begin{cases} x+y=1 \\ x=0 \end{cases}$ est compatible. $\begin{cases} x+y=1 \\ x+y=0 \end{cases}$ ne l'est pas.

Proposition 3. Notons $A = (a_{ij})_{1 \le i, j \le n}$ la matrice $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$, $B = (b_i)_{1 \le i \le p}$

la matrice colone $B = \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix}$, et $X = (x_i)_{1 \le i \le n}$ la matrice colone $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Alors le sustème (1) s'écrit sous la forme AX = B

Définition 4. On appelle rang du système linéaire le rang de la matrice A associée.

Remarque 5. Le système est compatible si et seulement si $B \in \text{Vect}(A_1, \dots, A_n)$, où A_1, \dots, A_n désignent les colones de A (en tant que vecteurs colones).

1.2 Systèmes de Cramer et cas général.

Définition 6. On appelle système de Cramer un système linéaire dont la matrice A associée et carrée et inversible. Il s'agit donc d'un système de n équations à n inconnues de rang n:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n} x_n = b_1 \\ \vdots & avec \det(A) \neq 0 \\ a_{n1} x_1 + \dots + a_{nn} x_n = b_n \end{cases}$$

Proposition 7. Un système de Cramer admet toujours une unique solution donnée par $X = A^{-1}B$.

Théorème 8. (Formules de Cramer)

Soit (S): AX = B un système de Cramer avec $A \in GL_n(\mathbb{K})$. On note A_1, \ldots, A_n les colones de A, et $B_0 = (e_1, \ldots, e_n)$ la base canonique de \mathbb{K}^n . Alors l'unique solution

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} de \ (S) \ \textit{v\'erifie} :$$

$$\forall i \in \llbracket 1, n \rrbracket \quad x_i = \frac{\det_{B_0}(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n)}{\det(A)}$$

Définition 9. Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$ de rang r. Il existe un déterminant Δ d'ordre r non nul extrait de A. On l'appelle déterminant principal de A (il n'est en général pas unique).

Les équations dont les indices sont ceux des lignes de Δ s'appellent les équations principales.

Les inconnues dont les indices sont les colones de Δ s'appellent les inconnues principales.

2 Section 2

En notant $\Delta = (a_{ij})_{i \in I, j \in J}$, on appelle déterminants caractéristiques de A les déterminants d'ordre r+1 de la forme :

$$\Delta_k := \frac{(a_{ij})_{i \in I, j \in J} | (b_i)_{i \in I}}{(a_{k,j})_{j \in J} | b_k} , \ k \notin J$$

Théorème 10. (Rouché-Fontené)

Le système AX = B avec $A \in \mathcal{M}_{p,\,q}(\mathbb{K})$ de rang r admet des solutions si et seulement si p = r ou si les p - r déterminants caractéristiques sont nuls. Le système est alors équivalent au système des équations principales, les inconnues principales étant déterminées par un système de Cramer à l'aide des inconnues non principales.

Exemple 11. Soit (S) le système :

$$\begin{cases} x_1 +2x_2 -x_3 +x_4 = 1 \\ x_1 -x_3 -x_4 = 1 \\ -x_1 +x_2 +x_3 +2x_4 = m \end{cases}, m \in \mathbb{R}$$

On a $A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 1 & 0 & -1 & -1 \\ -1 & 1 & 1 & 2 \end{pmatrix}$, qui est de rang 2. On choisit le déterminant principal $\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix}$. Il n'y a qu'un seul déterminant caractéristique, qui est $\begin{vmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & m \end{vmatrix} = -2(m+1)$. On déduit

du théorème de Rouché-Fontené que (S) admet des solutions si et seulement si m=-1, et dans ce cas, (S) est équivalent à :

$$\begin{cases} x + 2x_2 = 1 + x_3 - x_4 \\ x_1 = 1 + x_3 + x_4 \end{cases} \iff \begin{cases} x_1 = 1 + x_3 + x_4 \\ x_2 = -x_4 \end{cases}$$

1.3 Solution des moindres carrés

Dans cette partie, E et E' désignent deux espaces euclidiens et $f\colon E\to E'$ une application linéaire.

Définition 12. Il existe une unique application linéaire $f^*: E' \to E$ vérifiant

$$\forall (x, y) \in E' \times E \qquad \langle f(x), y \rangle_E = \langle x, f^*(y) \rangle_{E'}$$

f* est appelée adjoint de f.

On suppose dans la suite $\dim(E) = q \le n = \dim(E')$, et que f est injective.

Proposition 13. Sous ces hypothèses, on a $\det(f^* \circ f) \neq 0$ et la projection orthogonale p sur $\operatorname{Im}(f)$ vérifie $p = f \circ (f^* \circ f)^{-1} \circ f^*$.

Définition 14. On appelle inverse généralisé de f l'application $f^{\bullet} := (f^* \circ f)^{-1} \circ f^*$. Elle vérifie $f^{\bullet} \circ f = \mathrm{id}_E$ et $f \circ f^{\bullet} = p$, et coïncide avec l'inverse de f si f est bijective.

Définition 15. Soit f(x) = b un système linéaire, avec f injective. On appelle solution des moindres carrés le vecteur $x_0 \in E$ tel que :

$$||f(x_0) - b|| = \inf_{x \in E} ||f(x) - b||$$

Théorème 16. La solution x_0 des moindres carrés de f(x) = b vérifie $x_0 = f^{\bullet}(b)$.

Théorème 17. Soit $A \in \mathcal{M}_n(\mathbb{R})$, et $B \in \mathbb{R}^n$.

Le vecteur X_0 est solution des moindres carrés de AX = B si et seulement si $A^TAX_0 = A^TB$.

2 Opérations élémentaires. Etude de $GL_n(\mathbb{K})$.

2.1 Opérations élémentaires et pivot de Gauss.

Définition 18. Pour $i \neq j$, $n \geq 2$ et $\lambda, \alpha \neq 0$, on définit les matrices élémentaires :

	Dilatation	Transvection	Permutation
Matrice	$D_i(\lambda) = I_n + (\alpha - 1) E_{ii}$	$T_{ij}(\lambda) = I_n + \lambda E_{ij}, i \neq j$	$P_{ij} = I_n - E_{ii} - E_{jj} + E_{ij} + E_{ji}$
Determinant	α	1	-1
Action à gauche	$L_i \leftarrow L_i + \alpha L_i$	$L_i \leftarrow L_i + \lambda L_j$	$L_i \leftrightarrow L_j$
Action à droite	$C_i \leftarrow C_i + \alpha C_i$	$C_j \leftarrow C_j + \lambda C_i$	$C_i \leftrightarrow C_j$
Inverse	$D_i(\alpha^{-1})$	$T_{ij}(-\lambda)$	P_{ij}

Définition 19. On appelle pivot d'une ligne non nulle le coefficient non nul situé dans la colone la plus à gauche. Une matrice est dite échelonnée en lignes lorsqu'elle vérifie les conditions suivantes :

- Si une ligne est nulle, toute les lignes suivantes sont nulles.
- Le pivot d'une ligne est strictement plus à droite que les pivots des lignes précédentes.

Une matrice échelonnée est dite réduite si, de plus, tous les pivots sont égaux à 1 et les pivots sont les seuls coefficients non nuls de leur colone.

Théorème 20. Soit $m, n \in \mathbb{N}$. On considère l'action de $GL_n(\mathbb{K})$ par multiplication à gauche sur l'espace $\mathcal{M}_n(\mathbb{K})$. Alors :

- Deux matrices A et A' de $\mathcal{M}_n(\mathbb{K})$ ont la même orbite si et seulement si elles ont le même noyau.
- Toute matrice est dans l'orbite d'une unique matrice échelonnée en ligne réduite : on a la réunion disjoints suivante :

$$\bigcup_{E \in \mathcal{E}_n} \operatorname{GL}_n(\mathbb{K}) \cdot E$$

Autres méthodes de résolution

Où \mathcal{E}_n désigne l'ensemble des matrices échelonnées réduites de taille $n \times n$.

Remarque 21. Le théorème précédent se démontre via l'algorithme du pivot de Gauss. Partant d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$, on la multiplie à gauche par des matrices élémentaires pour obtenir une matrice d'abord échelonnée en lignes, puis échelonnée en lignes réduite en annulant les coefficients éventuels au-dessus des pivots. On trouve alors P inversible telle que PA soit échelonnée réduite.

Proposition 22. La méthode du pivot de Gauss a une complexité algorithmique en $O(n^3)$.

Par comparaison, le calcul des formules de Cramer nécessite O(n!) opérations.

Exemple 23.
$$\begin{cases} x = \frac{1}{2}(1 - y + 4z) \\ y = 3 - 3z \\ z = 10 / 13 \end{cases}$$
 $\stackrel{2x + y - 4z = 1}{2x + 2y - z = 4} \iff \begin{cases} 2x + y - 4z = 1 \\ -y + 3z = 3 \\ 2y + 7z = 4 \end{cases} \iff \begin{cases} 2x + y - 4z = 1 \\ -y + 3z = 3 \\ 13z = 10 \end{cases} \iff$

Application 24. La méthode du pivot de Gauss s'applique :

- Au calcul du rang d'une matrice.
- Au calcul de l'inverse d'une matrice.
- A la recherche d'un système d'équation d'un sous-espace vectoriel défini par une famille génératrice.
- A la recherche d'une base d'un sous-espace vectoriel défini par un système d'équations.

2.2 Décomposition de $GL_n(\mathbb{K})$

On présente ici un résultat plus théorique lié aux opérations élémentaires.

Définition 25. On appelle drapeau de k^n toute suite $\{0\} = F_0 \subset \cdots \subset F_n$ de sous-espaces vectoriels de k^n tels que les inclusions soient strictes. Si de plus $\dim(F_i) = i$ pour tout i, on dit que le drapeau (F_0, \ldots, F_n) est complet.

Exemple 26. Soit (e_1, \ldots, e_n) la base canonique de k^n . On définit $F_i = \text{Vect}(e_1, \ldots, e_i)$ pour $i \ge 1$ et $F_0 = \{0\}$. Alors $C = (F_0, \ldots, F_n)$ est un drapeau complet, appelé le drapeau complet canonique.

Définition 27. On note $B_n(k)$ l'ensemble des matrices triangulaires inversibles de $\mathrm{GL}_n(k)$.

Proposition 28. $B_n(k)$ est le stabilisateur du drapeau complet canonique C pour l'action naturelle de $GL_n(k)$ sur les drapeaux. En particulier, $B_n(k)$ est un sous-groupe de $GL_n(k)$.

Proposition 29. Pour i < j, $T_{i,j}(\lambda) \in B_n(k)$ et pour $\alpha \neq 0$, $D_i(\alpha) \in B_n(k)$.

Proposition 30. Soit (e_1, \ldots, e_n) la base canonique de k^n . Pour $\sigma \in S_n$, on note w_{σ} l'application linéaire donnée par $w_{\sigma}(e_i) = e_{\sigma(i)}$.

Alors $w: S_n \to \operatorname{GL}_n(k)$ est un morphisme de groupes injectif.

Développement 1 :

Théorème 31. (Décomposition de Bruhat)

On a la décomposition suivante :

$$\mathsf{GL}_n(k) = \bigsqcup_{\sigma \in \mathcal{S}_n} B_n(k) w_{\sigma} B_n(k)$$

Corollaire 32. $GL_n(k)$ est engendré par les transvections et les matrices diagonales inversibles.

3 Autres méthodes de résolution

3.1 Factorisation LU

Théorème 33. Soit $A \in \mathcal{M}_n(\mathbb{K})$ telles que les n sous-matrices diagonales :

$$\Delta_k = \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}, \ k \in \llbracket 1, n \rrbracket$$

Soient inversibles. Alors il existe un unique couple de matrices (L,U) avec U triangulaire supérieure et L triangulaire inférieure de coefficients diagonaux tous égaux à 1, tel que A=LU.

Remarque 34. Si la condition sur les mineurs n'est pas respectée, on s'y ramène par permutations.

Application 35. Le système linéaire AX = B équivaut à LUX = B. On résout LY = B et UX = Y.

Si on connaît la décomposition LU de A, on peut alors résoudre AX = B pour tout $B \in \mathbb{R}^n$.

3.2 Factorisation de Cholesky

Théorème 36. Soit A une matrice symétrique définie positive. Il existe une matrice réelle triangulaire inférieure B dont tous les éléments diagonaux sont positifs et telle que $A = BB^T$.

4 Section 3

Application 37. Le système linéaire AX = b équivaut à $BB^TX = b$. On résout BY = b, puis $B^TY = b$. La méthode de Cholesky a une complexité comparable au pivot de Gauss, en $O(n^3)$ opérations, mais il est a noté qu'elle est plus efficace que cette dernière lorsque A est symétrique définie positive.

3.3 Factorisation QR

Théorème 38. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Il existe un unique couple (Q,R) avec $Q \in \mathcal{O}_n(\mathbb{R})$ et R triangulaire supérieure de coefficients diagonaux strictement positifs tel que A = QR.

Application 39. On a $AX = B \iff QRX = B \iff RX = Q^TB$, ce qui donne un système échelonné.

3.4 Méthode de gradient

On se place sur l'espace euclidien \mathbb{R}^n muni de son produit scalaire habituel $\langle .,. \rangle$. L'objectif est de trouver une solution (algorithmique) au système Ax = b, où $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

Lemme 40. (Inégalité de Kantarovitch)

Soit $A \in \mathcal{S}_n^{++}(\mathbb{R})$. On note $\lambda_1 \geq \cdots \geq \lambda_n > 0$ ses valeurs propres. Alors:

$$\forall x \in \mathbb{R}^n \quad \langle Ax, x \rangle \langle A^{-1}, x \rangle \leq \frac{1}{4} \left[\sqrt{\frac{\lambda_1}{\lambda_n}} + \sqrt{\frac{\lambda_n}{\lambda_1}} \right]^2 \|x\|^4$$

Développement 2 :

Théorème 41. (Gradient à pas optimal)

Soit
$$f: \begin{cases} \mathbb{R}^n \to \mathbb{R} \\ x \mapsto \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle \end{cases}$$
, où $A \in \mathcal{S}_n^{++}(\mathbb{R})$ et $b \in \mathbb{R}^n$. Pour tout $x_0 \in \mathbb{R}^n$, on considère la suite définie par :

$$x_{k+1} = x_k - t_k \nabla f(x_k)$$

Où t_k est l'unique réel tel que $f(x_k - t_k \nabla f(x_k)) = \min_{t \in \mathbb{R}} \{f(x_k - t \nabla f(x_k))\}.$ Alors $(x_n)_{n \in \mathbb{N}}$ converge vers x^* , l'unique solution de $Ax^* = b$. Plus précisément, il existe C > 0et $0 < \lambda < 1$ tels que :

$$\forall k \in \mathbb{N} \quad ||x_k - x^*|| \le C\lambda^k$$