Speedrun Quadratic Residue Cryptography Breaks

Buce-Ithon

 $11^{\rm th}$ January, 2025

Contents

1 Unique Section

3

1 Unique Section

The definition of <u>quadratic remainder</u> comes from the expansion of perfect square numbers (x^2) in the integer system into the multiplicative group modulo q.

Definition 1.1. Quadratic Residue

 \forall prime number $p,a \in \mathbb{Z}_p$, a is a quadratic residue modulo p if \exists integer x such that $x^2 \equiv a \pmod{p}$. Otherwise, a is a quadratic non-residue modulo p.

Definition 1.2. Legendre Symbol

 \forall odd prime number $p,a \in \mathbb{Z}_p$, the Legendre symbol is defined as:

$$\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \ mod \ p \equiv \begin{cases} 1 & \text{if a is a quadratic residue modulo } p \\ -1 & \text{if a is a quadratic non-residue modulo } p \\ 0 & \text{if } a \equiv 0 \pmod{p} \end{cases}$$

Property. 1. $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$

2. If
$$a \equiv b \pmod{p}$$
, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$

Theorem 1.1. Gauss Law of Quadratic Reciprocity

 \forall odd prime numbers p and q, the Legendre symbol satisfies:

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Definition 1.3. Jacobi Symbol

 \forall odd integer n and $a \in \mathbb{Z}_n$, gcd(n, a) = 1, the Jacobi symbol is defined as:

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}$$

where $n = \prod_{i=1}^{k} p_i^{e_i}$ is the prime factorization of n.

Moreover, 2 important theorems should be mentioned here.

Theorem 1.2. Euler's Theorem

 \forall integer a and n, gcd(a, n) = 1, then:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Theorem 1.3. (Collary)Fermat's Little Theorem

 \forall prime number p and integer a, then:

$$a^{p-1} \equiv 1 \pmod{p}$$

Last but not least, let's come back to cryptography, looking at some applications of Legendre symbol.

Theorem 1.4. Solovay-Strassen Primality Test

- 1. \forall odd prime p, then \forall integer a, we have $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$.
- 2. \forall odd composite n, then there are at least 50% integer a, s.t. $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \mod n$ is false.