from sklearn.cluster import KMeans
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
%matplotlib inline

df = pd.read\_csv("/content/house\_price\_full.csv")
df.head()

|   | bedrooms | sqft_living | price   | 1 |
|---|----------|-------------|---------|---|
| 0 | 3        | 1340        | 313000  |   |
| 1 | 5        | 3650        | 2384000 |   |
| 2 | 3        | 1930        | 342000  |   |
| 3 | 3        | 2000        | 420000  |   |
| 4 | 4        | 1940        | 550000  |   |

```
plt.scatter(df.bedrooms,df['price'])
plt.xlabel('bedrooms')
plt.ylabel('price')
```





```
km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(df[['bedrooms','price']])
y_predicted
```

```
0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0,
0, 2, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
1, 0, 1, 2, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0,
1, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,
1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 2, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,
1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,
1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 1,
2, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 1,
0, 0, 1, 1, 2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0], dtype=int32)
```

df['cluster']=y\_predicted
df.head()

|   | bedrooms | sqft_living | price   | cluster | 1 |
|---|----------|-------------|---------|---------|---|
| 0 | 3        | 1340        | 313000  | 0       |   |
| 1 | 5        | 3650        | 2384000 | 2       |   |
| 2 | 3        | 1930        | 342000  | 0       |   |
| 3 | 3        | 2000        | 420000  | 0       |   |
| 4 | 4        | 1940        | 550000  | 0       |   |

```
km.cluster_centers_
```

<matplotlib.legend.Legend at 0x7fde1b06d550>



```
#Preprocessing using min max scaler
scaler = MinMaxScaler()
```

```
scaler.fit(df[['price']])
df['price'] = scaler.transform(df[['price']])
```

scaler.fit(df[['bedrooms']])
df['bedrooms'] = scaler.transform(df[['bedrooms']])

## df.head()

|   | bedrooms | sqft_living | price    | cluster | 1 |
|---|----------|-------------|----------|---------|---|
| 0 | 0.250    | 1340        | 0.068710 | 0       |   |
| 1 | 0.500    | 3650        | 0.736774 | 2       |   |
| 2 | 0.250    | 1930        | 0.078065 | 0       |   |
| 3 | 0.250    | 2000        | 0.103226 | 0       |   |
| 4 | 0.375    | 1940        | 0.145161 | 0       |   |

plt.scatter(df.bedrooms,df['price'])

<matplotlib.collections.PathCollection at 0x7fde1b11e490>

```
0.8 -
```

```
km = KMeans(n_clusters=3)
y_predicted = km.fit_predict(df[['bedrooms','price']])
y_predicted
```

```
array([1, 2, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0,
       1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,
       1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
       1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1,
       1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0,
       0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1,
         2, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
       0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,
       0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1,
       0, 1, 0, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 1,
         1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0, 2, 1, 1, 1,
       0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
       1, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2,
       1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,
       1, 2, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
       1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0,
       0, 1, 0, 1, 2, 1, 0, 2, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 2,
       1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1,
       1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 1,
       2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1,
       1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 0, 0, 0, 1, 1, 0,
       2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1,
       0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1], dtype=int32)
```

df['cluster']=y\_predicted
df.head()

|   | bedrooms | sqft_living | price    | cluster |
|---|----------|-------------|----------|---------|
| 0 | 0.250    | 1340        | 0.068710 | 1       |
| 1 | 0.500    | 3650        | 0.736774 | 2       |
| 2 | 0.250    | 1930        | 0.078065 | 1       |
| 3 | 0.250    | 2000        | 0.103226 | 1       |
| 4 | 0.375    | 1940        | 0.145161 | 0       |

km.cluster\_centers\_

```
array([[0.40508021, 0.14871579], [0.21797153, 0.1070548],
```

```
[0.43145161, 0.4735389 ]])
```

```
df1 = df[df.cluster==0]
df2 = df[df.cluster==1]
df3 = df[df.cluster==2]
plt.scatter(df1.bedrooms,df1['price'],color='green')
plt.scatter(df2.bedrooms,df2['price'],color='red')
plt.scatter(df3.bedrooms,df3['price'],color='black')
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',marker='*',label
plt.legend()
```

## <matplotlib.legend.Legend at 0x7fde1af15c90>



```
#Elbow plot
sse = []
k_rng = range(1,10)
for k in k_rng:
    km = KMeans(n_clusters=k)
    km.fit(df[['bedrooms','price']])
    sse.append(km.inertia_)

plt.xlabel('K')
plt.ylabel('Sum of squared error')
plt.plot(k_rng,sse)
```

[<matplotlib.lines.Line2D at 0x7fde1669ab10>]



## Colab paid products - Cancel contracts here

✓ 0s completed at 10:57 PM

X