CC1004 - Modelos de Computação Teórica 14

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Abril 2021

O autómato produto $A_1 \times A_2$ de $A_1 = (S, \Sigma, \delta_1, s_0, F_1)$ e $A_2 = (Q, \Sigma, \delta_2, q_0, F_2)$ é um AFD

$$A_1 \times A_2 = (S \times Q, \Sigma, \delta, (s_0, q_0), F),$$

com $\delta((s,q),a) = (\delta_1(s,a), \delta_2(q,a))$, para $(s,q) \in S \times Q$, e $a \in \Sigma$. Em vez de $S \times Q$, podemos restringir aos estados acessíveis do estado inicial (s_0, g_0) .

Tal AFD simula a execução de A_1 e A_2 paralelamente e, dependendo do modo como definimos F, reconhecerá $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$

- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ se $F = F_1 \times F_2 = \{(s, q) \mid s \in F_1 \text{ e } q \in F_2\};$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ se $F = (F_1 \times Q) \cup (S \times F_2) = \{(s, q) \mid s \in F_1 \text{ ou } q \in F_2\}.$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$ se $F = F_1 \times (Q \setminus F_2) = \{(s,q) \mid s \in F_1 \text{ e } q \notin F_2\}.$

Os exemplos seguintes mostram que o AFD produto pode não ser o AFD mínimo.

◆ロト ◆@ ト ◆意 ト ・ 意 ・ 夕 Q @

O autómato produto $A_1 \times A_2$ de $A_1 = (S, \Sigma, \delta_1, s_0, F_1)$ e $A_2 = (Q, \Sigma, \delta_2, q_0, F_2)$ é um AFD

$$A_1 \times A_2 = (S \times Q, \Sigma, \delta, (s_0, q_0), F),$$

com $\delta((s,q),a) = (\delta_1(s,a), \delta_2(q,a))$, para $(s,q) \in S \times Q$, e $a \in \Sigma$. Em vez de $S \times Q$, podemos restringir aos estados acessíveis do estado inicial (s_0,q_0) .

Tal AFD simula a execução de A_1 e A_2 paralelamente e, dependendo do modo como definimos F, reconhecerá $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$

- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ se $F = F_1 \times F_2 = \{(s, q) \mid s \in F_1 \text{ e } q \in F_2\};$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ se $F = (F_1 \times Q) \cup (S \times F_2) = \{(s, q) \mid s \in F_1 \text{ ou } q \in F_2\}.$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$ se $F = F_1 \times (Q \setminus F_2) = \{(s,q) \mid s \in F_1 \text{ e } q \notin F_2\}.$

Os exemplos seguintes mostram que o AFD produto pode não ser o AFD mínimo.

O autómato produto $A_1 \times A_2$ de $A_1 = (S, \Sigma, \delta_1, s_0, F_1)$ e $A_2 = (Q, \Sigma, \delta_2, q_0, F_2)$ é um AFD

$$A_1 \times A_2 = (S \times Q, \Sigma, \delta, (s_0, q_0), F),$$

com $\delta((s,q),a) = (\delta_1(s,a), \delta_2(q,a))$, para $(s,q) \in S \times Q$, e $a \in \Sigma$. Em vez de $S \times Q$, podemos restringir aos estados acessíveis do estado inicial (s_0,q_0) .

Tal AFD simula a execução de A_1 e A_2 paralelamente e, dependendo do modo como definimos F, reconhecerá $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$.

- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ se $F = F_1 \times F_2 = \{(s, q) \mid s \in F_1 \text{ e } q \in F_2\};$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ se $F = (F_1 \times Q) \cup (S \times F_2) = \{(s, q) \mid s \in F_1 \text{ ou } q \in F_2\}.$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$ se $F = F_1 \times (Q \setminus F_2) = \{(s,q) \mid s \in F_1 \text{ e } q \notin F_2\}.$

Os exemplos seguintes mostram que o AFD produto pode não ser o AFD mínimo.

O autómato produto $A_1 \times A_2$ de $A_1 = (S, \Sigma, \delta_1, s_0, F_1)$ e $A_2 = (Q, \Sigma, \delta_2, q_0, F_2)$ é um AFD

$$A_1 \times A_2 = (S \times Q, \Sigma, \delta, (s_0, q_0), F),$$

com $\delta((s,q),a) = (\delta_1(s,a), \delta_2(q,a))$, para $(s,q) \in S \times Q$, e $a \in \Sigma$. Em vez de $S \times Q$, podemos restringir aos estados acessíveis do estado inicial (s_0,q_0) .

Tal AFD simula a execução de A_1 e A_2 paralelamente e, dependendo do modo como definimos F, reconhecerá $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$.

- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ se $F = F_1 \times F_2 = \{(s, q) \mid s \in F_1 \text{ e } q \in F_2\};$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ se $F = (F_1 \times Q) \cup (S \times F_2) = \{(s, q) \mid s \in F_1 \text{ ou } q \in F_2\}.$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$ se $F = F_1 \times (Q \setminus F_2) = \{(s,q) \mid s \in F_1 \text{ e } q \notin F_2\}.$

Os exemplos seguintes mostram que o AFD produto pode não ser o AFD mínimo.

2 / 15

O autómato produto $A_1 \times A_2$ de $A_1 = (S, \Sigma, \delta_1, s_0, F_1)$ e $A_2 = (Q, \Sigma, \delta_2, q_0, F_2)$ é um AFD

$$A_1 \times A_2 = (S \times Q, \Sigma, \delta, (s_0, q_0), F),$$

com $\delta((s,q),a) = (\delta_1(s,a), \delta_2(q,a))$, para $(s,q) \in S \times Q$, e $a \in \Sigma$. Em vez de $S \times Q$, podemos restringir aos estados acessíveis do estado inicial (s_0,q_0) .

Tal AFD simula a execução de A_1 e A_2 paralelamente e, dependendo do modo como definimos F, reconhecerá $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$, $\mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$.

- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ se $F = F_1 \times F_2 = \{(s,q) \mid s \in F_1 \text{ e } q \in F_2\};$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ se $F = (F_1 \times Q) \cup (S \times F_2) = \{(s, q) \mid s \in F_1 \text{ ou } q \in F_2\}.$
- $\mathcal{L}(A_1 \times A_2) = \mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$ se $F = F_1 \times (Q \setminus F_2) = \{(s,q) \mid s \in F_1 \text{ e } q \notin F_2\}.$

Os exemplos seguintes mostram que o AFD produto pode não ser o AFD mínimo.

Exemplo: Dois AFDs A_1 e A_2 e o AFD produto para a interseção $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$

Exemplo: Dois AFDs A_1 e A_2 e o AFD produto para a união $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$

O AFD obtido pela construção de AFD produto pode não ser o AFD mínimo. Por exemplo, vimos que tinha seis estados para

mas $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ é o conjunto das palavras de $\{a,b,c\}^*$ que têm algum a, terminam em b e não têm c's, e o AFD mínimo para $\mathcal{L}(A_1) \cap \mathcal{L}(A_2)$ é

Também para $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ o AFD obtido pela construção de AFD produto para

não seria o AFD mínimo. $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ é o conjunto das palavras de $\{a,b,c\}^*$ que terminam em a ou b e não têm c's ou têm c's e terminam em b. O AFD minimo para essa linguagem tem quatro estados.

Nem todos os problemas podem ser resolvidos computacionalmente.

Mas, muitos **problemas de decisão** sobre linguagens regulares e autómatos finitos podem ser resolvidos computacionalmente: **existem algoritmos** que produzem uma resposta "sim/não" para cada instância do problema.

Por exemplo, para os problemas seguintes:

- Dado um autómato finito A e dado $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(A)$.
- Dada uma expressão regular r e uma palavra $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(r)$.
- Dados dois AFDs A_1 e A_2 , decidir se
 - $\mathcal{L}(A_1) \cup \mathcal{L}(A_2) = \Sigma^*$
 - $\mathcal{L}(A_1) = \mathcal{L}(A_2)$, isto é, os AFDs A_1 e A_2 são equivalentes
 - $\mathcal{L}(A_1) \cap \mathcal{L}(A_2) = \emptyset$
 - $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$
- Dadas duas expressões regulares r_1 e r_2 , decidir se r_1 e r_2 são equivalentes, i.e., decidir se $\mathcal{L}(r_1) = \mathcal{L}(r_2)$.

Justificação:

- Dado um autómato finito A e dado $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(A)$. Verificar se existe um percurso de s_0 para algum $f \in F$, sendo x a concatenação dos valores nos ramos.
- Dada uma expressão regular r e uma palavra $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(r)$. Converter a expressão para um AF e aplicar o anterior.
- Dadas duas expressões regulares r_1 e r_2 , decidir se r_1 e r_2 são equivalentes, i.e., decidir se $\mathcal{L}(r_1) = \mathcal{L}(r_2)$.
 - Aplicar o algoritmo de Thompson às expressões para ter AFNDs-ε; converter para AFDs; aplicar o algoritmo de Moore para os minimizar: Verificar se os AFDs mínimos são iguais a menos da designação de estados.

Justificação:

- Dado um autómato finito A e dado $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(A)$. Verificar se existe um percurso de s_0 para algum $f \in F$, sendo x a concatenação dos valores nos ramos.
- Dada uma expressão regular r e uma palavra $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(r)$. Converter a expressão para um AF e aplicar o anterior.
- Dadas duas expressões regulares r_1 e r_2 , decidir se r_1 e r_2 são equivalentes, i.e., decidir se $\mathcal{L}(r_1) = \mathcal{L}(r_2)$.
 - Aplicar o algoritmo de Thompson às expressões para ter AFNDs-ε; converter para AFDs; aplicar o algoritmo de Moore para os minimizar: Verificar se os AFDs mínimos são iguais a menos da designação de estados.

Justificação:

- Dado um autómato finito A e dado $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(A)$. Verificar se existe um percurso de s_0 para algum $f \in F$, sendo x a concatenação dos valores nos ramos.
- Dada uma expressão regular r e uma palavra $x \in \Sigma^*$, determinar se $x \in \mathcal{L}(r)$. Converter a expressão para um AF e aplicar o anterior.
- Dadas duas expressões regulares r_1 e r_2 , decidir se r_1 e r_2 são equivalentes, i.e., decidir se $\mathcal{L}(r_1) = \mathcal{L}(r_2)$.
 - Aplicar o algoritmo de Thompson às expressões para ter AFNDs- ε ; converter para AFDs; aplicar o algoritmo de Moore para os minimizar: Verificar se os AFDs mínimos são iguais a menos da designação de estados.

Nos exemplos seguintes, definimos o AFD produto, mantendo apenas os estados acessíveis do estado inicial.

- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cup \mathcal{L}(A_2) = \Sigma^*$. Construir o AFD produto para a união e verificar se todos os estados são finais.
- Dados dois AFDs A₁ e A₂, decidir se L(A₁) = L(A₂).
 Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A₁ nem de A₂.
- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cap \mathcal{L}(A_2) = \emptyset$ Construir o AFD produto para a interseção e verificar se não tem estados finais
- Dados dois AFDs A₁ e A₂, decidir se L(A₁) ⊆ L(A₂)
 Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A₁.

Nos exemplos seguintes, definimos o AFD produto, mantendo apenas os estados acessíveis do estado inicial.

- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cup \mathcal{L}(A_2) = \Sigma^*$. Construir o AFD produto para a união e verificar se todos os estados são finais.
- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) = \mathcal{L}(A_2)$. Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A_1 nem de A_2 .
- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cap \mathcal{L}(A_2) = \emptyset$ Construir o AFD produto para a interseção e verificar se não tem estados finais
- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$ Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A_1 .

O número de estados do AFD produto é polinomial no número de estados dos AFDs de partida pois, no pior caso, é $|S_1 \times S_2| = |S_1||S_2|$, o que permite ter algoritmos eficientes.

9 / 15

Nos exemplos seguintes, definimos o AFD produto, mantendo apenas os estados acessíveis do estado inicial.

- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cup \mathcal{L}(A_2) = \Sigma^*$. Construir o AFD produto para a união e verificar se todos os estados são finais.
- Dados dois AFDs A₁ e A₂, decidir se L(A₁) = L(A₂).
 Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A₁ nem de A₂.
- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cap \mathcal{L}(A_2) = \emptyset$ Construir o AFD produto para a interseção e verificar se não tem estados finais.
- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$ Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A_1 .

Nos exemplos seguintes, definimos o AFD produto, mantendo apenas os estados acessíveis do estado inicial.

- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cup \mathcal{L}(A_2) = \Sigma^*$. Construir o AFD produto para a união e verificar se todos os estados são finais.
- Dados dois AFDs A₁ e A₂, decidir se L(A₁) = L(A₂).
 Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A₁ nem de A₂.
- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cap \mathcal{L}(A_2) = \emptyset$ Construir o AFD produto para a interseção e verificar se não tem estados finais.
- Dados dois AFDs A₁ e A₂, decidir se L(A₁) ⊆ L(A₂)
 Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A₁.

Nos exemplos seguintes, definimos o AFD produto, mantendo apenas os estados acessíveis do estado inicial.

- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cup \mathcal{L}(A_2) = \Sigma^*$. Construir o AFD produto para a união e verificar se todos os estados são finais.
- Dados dois AFDs A₁ e A₂, decidir se L(A₁) = L(A₂).
 Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A₁ nem de A₂.
- Dados dois AFDs A_1 e A_2 , decidir se $\mathcal{L}(A_1) \cap \mathcal{L}(A_2) = \emptyset$ Construir o AFD produto para a interseção e verificar se não tem estados finais.
- Dados dois AFDs A₁ e A₂, decidir se L(A₁) ⊆ L(A₂)
 Construir o AFD produto para a interseção e verificar se os estados não finais (se existirem) não incluem estados finais de A₁.

A palavra reversa de w, denotada por w^R , é w escrita da direita para a esquerda. Tal operação pode ser definida formalmente por: $\varepsilon^R = \varepsilon$ e $(ax)^R = x^R a$, para todo $x \in \Sigma^*$ e $a \in \Sigma$. A linguagem reversa de L é

$$L^R = \{ w^R \mid w \in L \}$$

Dado um AFD $A = (S, \Sigma, \delta, s_0, F)$, o seguinte AFND- ε A' reconhece $\mathcal{L}(A)^R$: $A' = (S \cup \{i\}, \Sigma, \delta', i, \{s_0\})$

onde i é um estado novo e a função δ' de $(S \cup \{i\}) imes (\Sigma \cup \{\varepsilon\})$ é dada por

$$\begin{array}{lcl} \delta'(i,\varepsilon) & = & F \\ \delta'(s,a) & = & \{s' \mid \delta(s',a) = s\}, \text{ para todo } s \in S \text{ e } a \in \Sigma \\ \delta'(s,\alpha) & = & \{\}, \text{ para os restantes } (s,\alpha) \in (S \cup \{i\}) \times (\Sigma \cup \{\varepsilon\}) \end{array}$$

Ideia: Se w é aceite pelo AFD A, existe um percurso no diagrama de A desde o estado s_0 até um estado final f. Se revertermos os arcos, podemos efetuar um percurso de f até s_0 para consumir w^R e aceitar w^R se s_0 for final em A'. Como A' só deve ter um estado inicial, criamos o estado i e ligamo-lo aos que eram finais em A, para poder iniciar a pesquisa em qualquer $\underline{f} \in F$.

A palavra reversa de w, denotada por w^R , é w escrita da direita para a esquerda. Tal operação pode ser definida formalmente por: $\varepsilon^R = \varepsilon$ e $(ax)^R = x^R a$, para todo $x \in \Sigma^*$ e $a \in \Sigma$. A linguagem reversa de L é

$$L^R = \{ w^R \mid w \in L \}$$

Dado um AFD $A = (S, \Sigma, \delta, s_0, F)$, o seguinte AFND- ε A' reconhece $\mathcal{L}(A)^R$: $A' = (S \cup \{i\}, \Sigma, \delta', i, \{s_0\})$

onde i é um estado novo e a função δ' de $(S \cup \{i\}) imes (\Sigma \cup \{\varepsilon\})$ é dada por

$$\begin{array}{lcl} \delta'(i,\varepsilon) & = & F \\ \delta'(s,a) & = & \{s' \mid \delta(s',a) = s\}, \text{ para todo } s \in S \text{ e } a \in \Sigma \\ \delta'(s,\alpha) & = & \{\}, \text{ para os restantes } (s,\alpha) \in (S \cup \{i\}) \times (\Sigma \cup \{\varepsilon\}) \end{array}$$

Ideia: Se w é aceite pelo AFD A, existe um percurso no diagrama de A desde o estado s_0 até um estado final f. Se revertermos os arcos, podemos efetuar um percurso de f até s_0 para consumir w^R e aceitar w^R se s_0 for final em A'. Como A' só deve ter um estado inicial, criamos o estado i e ligamo-lo aos que eram finais em A, para poder iniciar a pesquisa em qualquer $f \in F$

A palavra reversa de w, denotada por w^R , é w escrita da direita para a esquerda. Tal operação pode ser definida formalmente por: $\varepsilon^R = \varepsilon$ e $(ax)^R = x^R a$, para todo $x \in \Sigma^*$ e $a \in \Sigma$. A linguagem reversa de L é

$$L^R = \{ w^R \mid w \in L \}$$

Dado um AFD
$$A = (S, \Sigma, \delta, s_0, F)$$
, o seguinte AFND- ε A' reconhece $\mathcal{L}(A)^R$:

$$A' = (S \cup \{i\}, \Sigma, \delta', i, \{s_0\})$$

onde i é um estado novo e a função δ' de $(S \cup \{i\}) \times (\Sigma \cup \{\varepsilon\})$ é dada por

$$\delta'(i,\varepsilon) = F$$

 $\delta'(s,a) = \{s' \mid \delta(s',a) = s\}, \text{ para todo } s \in S \text{ e } a \in \Sigma$
 $\delta'(s,\alpha) = \{\}, \text{ para os restantes } (s,\alpha) \in (S \cup \{i\}) \times (\Sigma \cup \{\varepsilon\})$

Ideia: Se w é aceite pelo AFD A, existe um percurso no diagrama de A desde o estado s_0 até um estado final f. Se revertermos os arcos, podemos efetuar um percurso de f até s_0 para consumir w^R e aceitar w^R se s_0 for final em A'. Como A' só deve ter um estado inicial, criamos o estado i e ligamo-lo aos que eram finais em A, para poder iniciar a pesquisa em qualquer $f \in F_0$

A palavra reversa de w, denotada por w^R , é w escrita da direita para a esquerda. Tal operação pode ser definida formalmente por: $\varepsilon^R = \varepsilon$ e $(ax)^R = x^R a$, para todo $x \in \Sigma^*$ e $a \in \Sigma$. A linguagem reversa de L é

$$L^R = \{ w^R \mid w \in L \}$$

Dado um AFD $A = (S, \Sigma, \delta, s_0, F)$, o seguinte AFND- ε A' reconhece $\mathcal{L}(A)^R$:

$$A' = (S \cup \{i\}, \Sigma, \delta', i, \{s_0\})$$

onde i é um estado novo e a função δ' de $(S \cup \{i\}) \times (\Sigma \cup \{\varepsilon\})$ é dada por

$$\begin{array}{lcl} \delta'(i,\varepsilon) & = & F \\ \delta'(s,a) & = & \{s' \mid \delta(s',a) = s\}, \text{ para todo } s \in S \text{ e } a \in \Sigma \\ \delta'(s,\alpha) & = & \{\}, \text{ para os restantes } (s,\alpha) \in (S \cup \{i\}) \times (\Sigma \cup \{\varepsilon\}) \end{array}$$

Ideia: Se w é aceite pelo AFD A, existe um percurso no diagrama de A desde o estado s_0 até um estado final f. Se revertermos os arcos, podemos efetuar um percurso de f até s_0 para consumir w^R e aceitar w^R se s_0 for final em A'. Como A' só deve ter um estado inicial, criamos o estado i e ligamo-lo aos que eram finais em A, para podem iniciar a pesquisa em qualquer $f \in F$.

O conjunto das linguagens regulares sobre Σ , isto é das que podem ser descritas por *expressões regulares* é uma classe na hierarquia de Chomsky. **Uma linguagem** é regular se e só se pode ser reconhecida por um autómato finito. Mais à frente, vamos ver que podem ser caraterizadas por *gramáticas regulares*.

Fonte:https://devopedia.org/chomsky-hierarchy

Proposição: A classe das linguagens regulares sobre Σ é fechada para as operações de união, intersecção, diferença, complementação, fecho de Kleene e reverso.

- **1** Se L e M são linguagens regulares então $L \cup M$ é regular.
- ② Se L e M são linguagens regulares então $L \cap M$ é regular.
- **3** Se L e M são linguagens regulares então $L \setminus M$ é regular.
- 4 Se L é regular então \overline{L} é regular.
- **5** Se L é regular então L^* é regular.
- **6** Se L é regular então L^R é regular.

Prova:

1 Se L e M são linguagens regulares então $L \cup M$ é regular.

Se r e s são expressões regulares tais que $L=\mathcal{L}(r)$ e $M=\mathcal{L}(s)$, a expressão (r+s) descreve $L\cup M$.

② Se L e M são linguagens regulares então $L \cap M$ é regular

② Se L e M são linguagens regulares então $L \setminus M$ é regular. Sejam A_1 e A_2 AFDs tais que $L = \mathcal{L}(A_1)$ e $M = \mathcal{L}(A_2)$. Podemos definir **AFDs produto** para reconhecer $L \cap M$ e para reconhecer $L \setminus M$.

4 Se L é regular então \overline{L} é regular.

Seja A um AFD tal que $L = \mathcal{L}(A)$. Se trocarmos os estados finais por não finais (e vice-versa), teremos um AFD que reconhece \overline{L} .

 \odot Se L é regular então L^* é regular

Se r é uma expressão regular com $L = \mathcal{L}(r)$, a expressão (r^*) descreve L^* .

6 Se L é regular então L^R é regular.

Seja A um AFD tal que $L = \mathcal{L}(A)$. Vimos que podiamos construir um AFND ε que aceita $L(A)^R$.

- **1** Se L e M são linguagens regulares então $L \cup M$ é regular.
 - Se r e s são expressões regulares tais que $L=\mathcal{L}(r)$ e $M=\mathcal{L}(s)$, a expressão (r+s) descreve $L\cup M$.
- 2 Se L e M são linguagens regulares então $L \cap M$ é regular.
- lacktriangle Se L e M são linguagens regulares então $L\setminus M$ é regular.
 - Sejam A_1 e A_2 AFDs tais que $L = \mathcal{L}(A_1)$ e $M = \mathcal{L}(A_2)$. Podemos definir **AFDs produto** para reconhecer $L \cap M$ e para reconhecer $L \setminus M$.
- 4 Se L é regular então \overline{L} é regular.
 - Seja A um AFD tal que $L = \mathcal{L}(A)$. Se trocarmos os estados finais por não finais (e vice-versa), teremos um AFD que reconhece \overline{L} .
- **6** Se L é regular então L^* é regular
 - Se r é uma expressão regular com $L=\mathcal{L}(r)$, a expressão (r^*) descreve L^* .
 - **6** Se L é regular então L^R é regular.
 - Seja A um AFD tai que $L = \mathcal{L}(A)$. Vimos que podiamos construir um AFND ε que aceita $L(A)^R$.

Prova:

1 Se L e M são linguagens regulares então $L \cup M$ é regular.

Se r e s são expressões regulares tais que $L=\mathcal{L}(r)$ e $M=\mathcal{L}(s)$, a expressão (r+s) descreve $L\cup M$.

- ② Se L e M são linguagens regulares então $L \cap M$ é regular.
- Se L e M são linguagens regulares então L \ M é regular.
 Sejam A₁ e A₂ AFDs tais que L = L(A₁) e M = L(A₂). Podemos definir AFDs produto para reconhecer L ∩ M e para reconhecer L \ M.
- 4 Se L é regular então \overline{L} é regular.

Seja A um AFD tal que $L = \mathcal{L}(A)$. Se trocarmos os estados finais por não finais (e vice-versa), teremos um AFD que reconhece \overline{L} .

- **Se** L é regular então L^* é regular. Se r é uma expressão regular com $L = \mathcal{L}(r)$, a expressão (r^*) descreve L^* .
- **5** Se L é regular então L^R é regular. Seja A um AFD tal que $L = \mathcal{L}(A)$. Vimos que podiamos construir um AFND ε que aceita $L(A)^R$.

Outras provas

 Como a classe das linguagens regulares é fechada para a união e para a complementação, podemos concluir que é fechada para a intersecção pois, pelas leis de De Morgan,

$$L \cap M = \overline{\overline{L} \cup \overline{M}}$$

Portanto, se L e M são regulares, então \overline{L} e \overline{M} são regulares.

Consequentemente, $\overline{L} \cup \overline{M}$ é regular.

E, portanto, $\overline{\overline{L} \cup \overline{M}}$ é regular.

- Definimos a reversa $\mathcal{R}(.)$ de uma expressão regular assim:
 - $\mathcal{R}(\varepsilon) = \varepsilon$, $\mathcal{R}(\emptyset) = \emptyset$, $\mathcal{R}(a) = a$, com $a \in \Sigma$
 - $\mathcal{R}((rs)) = (\mathcal{R}(s)\mathcal{R}(r))$
 - $\mathcal{R}((r+s)) = (\mathcal{R}(r) + \mathcal{R}(s))$
 - $\mathcal{R}((r^*)) = (\mathcal{R}(s)^*)$

Se r descreve L então $\mathcal{R}(r)$ descreve L^R .

Proposição: A classe das linguagens regulares é fechada para a união finita mas não para a união infinita:

- **1** Se $L_1, L_2, \ldots L_n$ são regulares, com $n \ge 2$, constante, então $\bigcup_{i=1}^n L_i$ é regular.
- ② Existe uma família $\{L_i\}_{i\in\mathbb{N}}$ de linguagens regulares tal que $\bigcup_{i\in\mathbb{N}} L_i$ não é regular.

- Por indução matemática.
 - (i) Caso de base (n=2): Vimos que se L_1 e L_2 são regulares, $L_1 \cup L_2$ é regular.
 - (ii) **Hereditariedade:** Para todo $k \geq 2$, se $\bigcup_{i=1}^k L_i$ é regular, quaisquer que sejam $L_1, L_2, \ldots L_k$ regulares, então $\bigcup_{i=1}^{k+1} M_i$ é regular, quaisquer que sejam $M_1, M_2, \ldots M_k, M_{k+1}$ regulares. De facto, como a união de duas linguagens regulares é regular e, por hipótese de indução, $\bigcup_{i=1}^k M_i$ é regular, concluimos que
 - Portanto, pelo princípio de indução matemática, de (i) e (ii) segue que a união de n linguagens regulares é regular, qualquer que seja $n \ge 2$.
- ② A linguagem $\{0^n1^n \mid n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{0^n1^n\}$ não é regular, mas cada uma das linguagens $\{0^n1^n\}$ é regular, pois só tem uma palavra. Se $|\Sigma| = 1$, podiamos tomar $\{0^p \mid p \text{ primo}\}$.

Proposição: A classe das linguagens regulares é fechada para a união finita mas não para a união infinita:

- **1** Se $L_1, L_2, \ldots L_n$ são regulares, com $n \ge 2$, constante, então $\bigcup_{i=1}^n L_i$ é regular.
- ② Existe uma família $\{L_i\}_{i\in\mathbb{N}}$ de linguagens regulares tal que $\bigcup_{i\in\mathbb{N}} L_i$ não é regular.

- 1 Por indução matemática.
 - (i) Caso de base (n=2): Vimos que se L_1 e L_2 são regulares, $L_1 \cup L_2$ é regular.
 - (ii) **Hereditariedade:** Para todo $k \geq 2$, se $\bigcup_{i=1}^k L_i$ é regular, quaisquer que sejam $L_1, L_2, \ldots L_k$ regulares, então $\bigcup_{i=1}^{k+1} M_i$ é regular, quaisquer que sejam $M_1, M_2, \ldots M_k, M_{k+1}$ regulares. De facto, como a união de duas linguagens regulares é regular e, por hipótese de indução, $\bigcup_{i=1}^k M_i$ é regular, concluimos que $\bigcup_{i=1}^{k+1} M_i = (\bigcup_{i=1}^k M_i) \cup M_{k+1}$ é regular.
 - Portanto, pelo princípio de indução matemática, de (i) e (ii) segue que a união de n linguagens regulares é regular, qualquer que seja $n \ge 2$.
- ② A linguagem $\{0^n1^n \mid n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{0^n1^n\}$ não é regular, mas cada uma das linguagens $\{0^n1^n\}$ é regular, pois só tem uma palavra. Se $|\Sigma| = 1$, podiamos tomar $\{0^p \mid p \text{ primo}\}$.

Proposição: A classe das linguagens regulares é fechada para a união finita mas não para a união infinita:

- **1** Se $L_1, L_2, \ldots L_n$ são regulares, com $n \ge 2$, constante, então $\bigcup_{i=1}^n L_i$ é regular.
- ② Existe uma família $\{L_i\}_{i\in\mathbb{N}}$ de linguagens regulares tal que $\bigcup_{i\in\mathbb{N}} L_i$ não é regular.

- 1 Por indução matemática.
 - (i) Caso de base (n=2): Vimos que se L_1 e L_2 são regulares, $L_1 \cup L_2$ é regular.
 - (ii) **Hereditariedade:** Para todo $k \geq 2$, se $\bigcup_{i=1}^k L_i$ é regular, quaisquer que sejam $L_1, L_2, \ldots L_k$ regulares, então $\bigcup_{i=1}^{k+1} M_i$ é regular, quaisquer que sejam $M_1, M_2, \ldots M_k, M_{k+1}$ regulares. De facto, como a união de duas linguagens regulares é regular e, por hipótese de indução, $\bigcup_{i=1}^k M_i$ é regular, concluimos que $\bigcup_{i=1}^{k+1} M_i = (\bigcup_{i=1}^k M_i) \cup M_{k+1}$ é regular.
 - Portanto, pelo princípio de indução matemática, de (i) e (ii) segue que a união de n linguagens regulares é regular, qualquer que seja $n \ge 2$.
- ② A linguagem $\{0^n1^n \mid n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{0^n1^n\}$ não é regular, mas cada uma das linguagens $\{0^n1^n\}$ é regular, pois só tem uma palavra. Se $|\Sigma| = 1$, podiamos tomar $\{0^p \mid p \text{ primo}\}$.

Proposição: A classe das linguagens regulares é fechada para a união finita mas não para a união infinita:

- **1** Se $L_1, L_2, \ldots L_n$ são regulares, com $n \ge 2$, constante, então $\bigcup_{i=1}^n L_i$ é regular.
- ② Existe uma família $\{L_i\}_{i\in\mathbb{N}}$ de linguagens regulares tal que $\bigcup_{i\in\mathbb{N}} L_i$ não é regular.

- 1 Por indução matemática.
 - (i) Caso de base (n=2): Vimos que se L_1 e L_2 são regulares, $L_1 \cup L_2$ é regular.
 - (ii) **Hereditariedade:** Para todo $k \ge 2$, se $\bigcup_{i=1}^k L_i$ é regular, quaisquer que sejam $L_1, L_2, \ldots L_k$ regulares, então $\bigcup_{i=1}^{k+1} M_i$ é regular, quaisquer que sejam $M_1, M_2, \ldots M_k, M_{k+1}$ regulares. De facto, como a união de duas linguagens regulares é regular e, por hipótese de indução, $\bigcup_{i=1}^k M_i$ é regular, concluimos que
 - Portanto, pelo princípio de indução matemática, de (i) e (ii) segue que a união de n linguagens regulares é regular, qualquer que seja n > 2.
- ② A linguagem $\{0^n1^n\mid n\in\mathbb{N}\}=\bigcup_{n\in\mathbb{N}}\{0^n1^n\}$ não é regular, mas cada uma das linguagens $\{0^n1^n\}$ é regular, pois só tem uma palavra. Se $|\Sigma|=1$, podiamos tomar $\{0^p\mid p \text{ primo}\}$.

Proposição: A classe das linguagens regulares é fechada para a união finita mas não para a união infinita:

- **1** Se $L_1, L_2, \ldots L_n$ são regulares, com $n \ge 2$, constante, então $\bigcup_{i=1}^n L_i$ é regular.
- ② Existe uma família $\{L_i\}_{i\in\mathbb{N}}$ de linguagens regulares tal que $\bigcup_{i\in\mathbb{N}} L_i$ não é regular.

Prova:

- 1 Por indução matemática.
 - (i) Caso de base (n=2): Vimos que se L_1 e L_2 são regulares, $L_1 \cup L_2$ é regular.
 - (ii) **Hereditariedade:** Para todo $k \geq 2$, se $\bigcup_{i=1}^k L_i$ é regular, quaisquer que sejam $L_1, L_2, \ldots L_k$ regulares, então $\bigcup_{i=1}^{k+1} M_i$ é regular, quaisquer que sejam $M_1, M_2, \ldots M_k, M_{k+1}$ regulares. De facto, como a união de duas linguagens regulares é regular e, por hipótese de indução, $\bigcup_{i=1}^k M_i$ é regular, concluimos que $\bigcup_{i=1}^{k+1} M_i = (\bigcup_{i=1}^k M_i) \cup M_{k+1}$ é regular.

Portanto, pelo princípio de indução matemática, de (i) e (ii) segue que a união de n linguagens regulares é regular, qualquer que seja $n \ge 2$.

② A linguagem $\{0^n1^n \mid n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{0^n1^n\}$ não é regular, mas cada uma das linguagens $\{0^n1^n\}$ é regular, pois só tem uma palavra. Se $|\Sigma| = 1$, podiamos tomar $\{0^p \mid p \text{ primo}\}$.

Proposição: A classe das linguagens regulares é fechada para a união finita mas não para a união infinita:

- **1** Se $L_1, L_2, \ldots L_n$ são regulares, com $n \ge 2$, constante, então $\bigcup_{i=1}^n L_i$ é regular.
- ② Existe uma família $\{L_i\}_{i\in\mathbb{N}}$ de linguagens regulares tal que $\bigcup_{i\in\mathbb{N}} L_i$ não é regular.

- 1 Por indução matemática.
 - (i) Caso de base (n=2): Vimos que se L_1 e L_2 são regulares, $L_1 \cup L_2$ é regular.
 - (ii) **Hereditariedade:** Para todo $k \geq 2$, se $\bigcup_{i=1}^k L_i$ é regular, quaisquer que sejam $L_1, L_2, \ldots L_k$ regulares, então $\bigcup_{i=1}^{k+1} M_i$ é regular, quaisquer que sejam $M_1, M_2, \ldots M_k, M_{k+1}$ regulares. De facto, como a união de duas linguagens regulares é regular e, por hipótese de indução, $\bigcup_{i=1}^k M_i$ é regular, concluimos que $\bigcup_{i=1}^{k+1} M_i = (\bigcup_{i=1}^k M_i) \cup M_{k+1}$ é regular.
 - Portanto, pelo princípio de indução matemática, de (i) e (ii) segue que a união de n linguagens regulares é regular, qualquer que seja $n \ge 2$.
- ② A linguagem $\{0^n1^n \mid n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{0^n1^n\}$ não é regular, mas cada uma das linguagens $\{0^n1^n\}$ é regular, pois só tem uma palavra. Se $|\Sigma| = 1$, podiamos tomar $\{0^p \mid p \text{ primo}\}$.

Proposição: A classe das linguagens regulares é fechada para a união finita mas não para a união infinita:

- **1** Se $L_1, L_2, \ldots L_n$ são regulares, com $n \ge 2$, constante, então $\bigcup_{i=1}^n L_i$ é regular.
- ② Existe uma família $\{L_i\}_{i\in\mathbb{N}}$ de linguagens regulares tal que $\bigcup_{i\in\mathbb{N}} L_i$ não é regular.

- 1 Por indução matemática.
 - (i) Caso de base (n=2): Vimos que se L_1 e L_2 são regulares, $L_1 \cup L_2$ é regular.
 - (ii) **Hereditariedade:** Para todo $k \geq 2$, se $\bigcup_{i=1}^k L_i$ é regular, quaisquer que sejam $L_1, L_2, \ldots L_k$ regulares, então $\bigcup_{i=1}^{k+1} M_i$ é regular, quaisquer que sejam $M_1, M_2, \ldots M_k, M_{k+1}$ regulares. De facto, como a união de duas linguagens regulares é regular e, por hipótese de indução, $\bigcup_{i=1}^k M_i$ é regular, concluimos que $\bigcup_{i=1}^{k+1} M_i = (\bigcup_{i=1}^k M_i) \cup M_{k+1}$ é regular.
 - Portanto, pelo princípio de indução matemática, de (i) e (ii) segue que a união de n linguagens regulares é regular, qualquer que seja $n \ge 2$.
- ② A linguagem $\{0^n1^n \mid n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{0^n1^n\}$ não é regular, mas cada uma das linguagens $\{0^n1^n\}$ é regular, pois só tem uma palavra. Se $|\Sigma| = 1$, podiamos tomar $\{0^n \mid n \text{ primo}\}$

Proposição: A classe das linguagens regulares é fechada para a união finita mas não para a união infinita:

- **1** Se $L_1, L_2, \ldots L_n$ são regulares, com $n \ge 2$, constante, então $\bigcup_{i=1}^n L_i$ é regular.
- ② Existe uma família $\{L_i\}_{i\in\mathbb{N}}$ de linguagens regulares tal que $\bigcup_{i\in\mathbb{N}} L_i$ não é regular.

- 1 Por indução matemática.
 - (i) Caso de base (n=2): Vimos que se L_1 e L_2 são regulares, $L_1 \cup L_2$ é regular.
 - (ii) **Hereditariedade:** Para todo $k \geq 2$, se $\bigcup_{i=1}^k L_i$ é regular, quaisquer que sejam $L_1, L_2, \ldots L_k$ regulares, então $\bigcup_{i=1}^{k+1} M_i$ é regular, quaisquer que sejam $M_1, M_2, \ldots M_k, M_{k+1}$ regulares. De facto, como a união de duas linguagens regulares é regular e, por hipótese de indução, $\bigcup_{i=1}^k M_i$ é regular, concluimos que $\bigcup_{i=1}^{k+1} M_i = (\bigcup_{i=1}^k M_i) \cup M_{k+1}$ é regular.
 - Portanto, pelo princípio de indução matemática, de (i) e (ii) segue que a união de n linguagens regulares é regular, qualquer que seja $n \ge 2$.
- ② A linguagem $\{0^n1^n \mid n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{0^n1^n\}$ não é regular, mas cada uma das linguagens $\{0^n1^n\}$ é regular, pois só tem uma palavra. Se $|\Sigma| = 1$, podiamos tomar $\{0^p \mid p \text{ primo}\}$.