Площади

- **Теорема 1.** Площадь треугольника ABC с высотой h_a , проведённой из вершины A, равна $S_{ABC}=\frac{1}{2}h_aBC$.
- **Задача 1.** Диагонали AC и BD трапеции ABCD (BC параллельно AD) пересекаются в точке O. Докажите, что треугольники AOB и COD равновелики. Докажите обратное утверждение: если треугольники AOB и COD равновелики, то BC параллельно AD.
- **Задача 2.** а) Докажите, что медиана делит треугольник на две равновеликие части (фигуры называются равовеликими, еси имеют одинаковую площадь).
- б) На медиане AM треугольника ABC выбрана точка K. Докажите, что площади треугольников AKB и AKC равны.
- **Задача 3.** а) Дан треугольник ABC проведены медианы AA_1 и BB_1 , которые пересеклись в точке O. Докажите, что площади треугольников AOC,BOA, COB равны. б) Докажите, что медианы треугольника пересекаются в одной точке.
- **Задача 4.** Точка B_1 лежит на стороне OB угла AOB. Докажите, что $S_{AOB}/S_{AOB_1} = OB/OB_1$.
- **Задача 5.** а) Докажите, что площади треугольников с равным углом относятся как произведения сторон, заключающих этот угол (т.е. если $\angle A_1O_1B_1 = \angle A_2O_2B_2$, то $S_{A_1O_1B_1}/S_{AOB} = O_1A_1 \cdot O_1B_1/O_2A_2 \cdot O_2B_2$.
- б) Докажите то же утверждение для треугольников с углами, дополняющими друг друга до 180° (т.е. если $\angle A_1O_1B_1 + \angle A_2O_2B_2 = 180$ °, то $S_{A_1O_1B_1}/S_{AOB} = O_1A_1 \cdot O_1B_1/O_2A_2 \cdot O_2B_2$.

Задача 6. Докажите теорему Фалеса:

- а) Две параллельные прямые высекают на сторонах угла с вершиной O отрезки A_1A_2 и B_1B_2 . Докажите, что $OA_1/A_1A_2=OB_1/B_1B_2$.
- б) Две прямые высекают на сторонах угла с вершиной O отрезки A_1A_2 и B_1B_2 . Докажите, что если $OA_1/A_1A_2=OB_1/B_1B_2$, то эти прямые параллельны.
- **Задача 7 (Теорема Пифагора).** а) Дан прямоугольный треугольник с катетами a, b и гипотенузой c. Докажите, что $a^2 + b^2 = c^2$.
- б) Пусть a,b,c стороны треугольника и $a^2+b^2=c^2$. Докажите, что треугольник прямоугольный.