

Chaos Based Image Encryption using Latin Rectangle Scrambling

Santosh Chapaneri¹, Radhika Chapaneri²,

¹ St. Francis Institute of Technology,

² Thadomal Shahani College of Engineering,

University of Mumbai

Problem: Image Encryption

Military Images

Aadhar card Enrolment

General Architecture

Related Work

Chaos: Deterministic model of dynamical system that yields unpredictable behavior

Chaos Based	Non-Chaos
Solutions	Based Solutions
Logistic Map [1]	Sudoku Matrix approach [4]
Baker Map [2]	Latin Square Image Cipher [5]
Arnold Map [3]	Selective Encryption [6]

Proposed Architecture

Latin Square (LS) / Latin Rectangle (LR)

$$\begin{bmatrix} 123 \\ 231 \\ 312 \end{bmatrix} \begin{bmatrix} \alpha \beta \delta \\ \delta \alpha \beta \\ \beta \delta \alpha \end{bmatrix} \begin{bmatrix} 13245 \\ 21435 \\ 52143 \end{bmatrix} \begin{bmatrix} \alpha \beta \mu \delta \\ \beta \alpha \delta \mu \end{bmatrix}$$

$$\begin{bmatrix} 13245 \\ 21435 \\ 52143 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

- Latin Square = $P \times P$ array such that each row and column contains every symbol from $\{1, 2, ..., P\}$ exactly once
- Latin Rectangle = $P \times Q$ array with elements occurring at most once in each row and column

• Using a discrete 2D Hénon chaotic map:

$$\begin{aligned}
 x_{n+1} &= 1 - ax_n^2 + y_n \\
 y_{n+1} &= bx_n
 \end{aligned}$$

Chaotic when a = 1.4, b = 0.3

Lyapunov Exponent = 0.4241

Algorith	Algorithm I: Construction of Latin Square		
Input:	x_0, y_0 – initial conditions		
	H, W – height and width of image to be scrambled		
Out:	LS – Latin square of order $max(H, W)$		
1.	$M = \max(H, W); a = 1.4; b = 0.3; N_0 = 1000$		
2.	for $n \leftarrow 1$ to $N_0 + M$ do $X(n), Y(n) \leftarrow H\acute{e}nonMap(x_0, y_0)$		
3.	$X \leftarrow X(N_0+1:N_0+M); Y \leftarrow Y(N_0+1:N_0+M)$		
4.	$X \leftarrow 10^6 X - floor(10^6 X); Y \leftarrow 10^6 Y - floor(10^6 Y)$		
5.	$Q \leftarrow Sort(X); F \leftarrow Sort(Y)$		
6.	for $r \leftarrow 1$ to M do		
7.	$LS(r,:) \leftarrow Q >> F(i)$		
8.	end		

Algorithm II: Latin Rectangle Scrambling I – plain image to be scrambled **Input:** LS – Latin square of order M = max(H, W)Out: SI – Scrambled image 1. If H == W2. for $i \leftarrow 1$ to H do T(i,:) = I(i, LS(i,:)') % Row**3.** for $j \leftarrow 1$ to W do SI(:,j) = T(LS(:,j)',j) % Column 4. else if H > W**5.** for $j \leftarrow 1$ to W do T(:,j) = I(LS(:,j)',j) % Column **6.** $LR \leftarrow zeros(H, W)$ **7.** for $i \leftarrow 1$ to M do r = LS(i,:); r(r > W) = []; LR(i,:) = r; % LR8. 9. for $i \leftarrow 1$ to H do SI(i,:) = T(i, LR(i,:)') % Row

10	3	50	130
4	15	77	137
15	54	102	125
75	113	113	112
146	126	97	110
168	115	89	104

4	5	6	2	1	3
5	6	1	3	2	4
6	1	2	4	3	5
3	4	5	1	6	2
1	2	3	5	4	6
2	3	4	6	5	1
(b)					

(a) Plain Image (6 x 4),

(b) Latin Square (6 x 6),

 4
 5
 6
 2
 3
 3

 5
 6
 1
 3
 2
 4

 6
 1
 2
 4
 3
 3

 3
 4
 5
 1
 6
 2

 1
 2
 3
 5
 4
 6

 2
 3
 4
 6
 5
 3

(a)

75 126 89 137 146 115 50 125 168 3 77 112

(c) Partial Latin Square (6 x 4),

(c)

 15
 113
 97
 130

 10
 15
 102
 110

 4
 54
 113
 104

(d)

(d) Column Scrambling with (c),

(e)

126 75 89 146 50 115 125 3 77 168 112 97 130 15 113 10 15 102 110 113 104 4

(f)

(e) Latin Rectangle (6 x 4),

(f) Row Scrambling with (e)

720 x 480

Pixel Diffusion

Update pixel values to avoid differential cryptanalytic attack

• Typically done once per iteration => more iterations needed to achieve better security

• Proposed: perform **Forward** as well as **Backward** diffusions in single iteration => less iterations required

Bi-directional Pixel Diffusion

Plain Image

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16
17	18	19	20
21	22	23	24

12	6	13	3
22	5	4	19
20	11	14	21
1	24	15	18
23	9	2	8
7	10	16	17

LR Scrambled Image

Forward Diffusion

	12	6	13	3
	22	5	4	19
	20	11	14	21
1	1_	55	32	78
	167	174	176	136
1	143	249	233	216

223	216	119	210
203	220	118	98
197	201	9	26
250	37	41	139
249	80	159	146
211	66	100	187

Backward Diffusion

Bi-directional Pixel Diffusion

• Using 1D Piecewise Linear Chaotic Map (PWLCM):

$$f(k) = F(f(k-1), p)$$

$$= \begin{cases} f(k-1)/p & \text{if } f(k-1) \in [0, p); \\ (f(k-1)-p)/(0.5-p) & \text{if } f(k-1) \in [p, 0.5]; \\ F(1-f(k-1), p) & \text{if } f(k-1) \in (0.5, 1] \end{cases}$$

Discrete 1D PWLCM:

$$\phi(k) = \operatorname{mod}\left(floor\left(\left(f(k) + 1\right)/2\right) \times 10^{8}\right), L\right)$$

Bifurcation Diagram of PWLCM:

Chaotic in the range of control parameter $p \in (0, 0.5)$

Bi-directional Pixel Diffusion

Algorithm III: Bi-directional Pixel Diffusion Input: SI – Latin scrambled image iD, nD, pD, vD_1 , vD_2 – secret keys Out: *CI* – Cipher (encrypted image) 1. $IS = H \times W$ 2. for $k \leftarrow 1$ to IS do $f(k) \leftarrow PWLCM(iD, nD, pD)$ for $k \leftarrow 1$ to IS do $f(k) \leftarrow Digitize(f(k)) \%$ **Discrete map 3.** 4. $SI \leftarrow Vectorize(SI) \% 1-D vector$ **5.** $TI \leftarrow ForwardDiffusion(SI, vD_1)$ % Forward Diff. $CI \leftarrow BackwardDiffusion(TI, vD_2) \%$ **Backward Diff. 6.** $CI \leftarrow Reshape(CI, H, W)$ **7.**

$$TI(1) = \phi(1) \oplus \left\{ \left[SI(1) + \phi(1) \right] \mod N \right\} \oplus vD_1 \qquad CI(IS) = \phi(IS) \oplus \left\{ \left[TI(IS) + \phi(IS) \right] \mod N \right\} \oplus vD_2$$

 $TI(k) = \phi(k) \oplus \left\{ \left[SI(k) + \phi(k) \right] \mod N \right\} \oplus TI(k-1) \qquad CI(k) = \phi(k) \oplus \left\{ \left[TI(k) + \phi(k) \right] \mod N \right\} \oplus CI(k+1)$

Results: Visual, Entropy, Correlation

Plain Image (*P*)

Cipher Image (C)

Decrypted Image (MSE = 0)

<= Histograms / Entropy HG(P) = 7.2859, HG(C) =**7.9995** HL(P) = 5.5016, HL(C) =**7.9109**

Results: Diffusion Property Analysis

Encryption Method	GDD	NPCR%	UACI%
Ideally	1	> 99.609	> 33.464
Borujeni et al. [7]	0.9173	95.5293	33.4398
Behnia et al. [8]	0.8147	42.8195	32.4671
Proposed	0.9951	99.6442	33.5061

GDD = Gray Difference Degree (to evaluate scrambling)

NPCR = Number of Pixels Change Rate (to evaluate robustness to attacks)

UACI = Unified Average Change Intensity (robustness to attacks)

Results: Key Sensitivity Analysis

K¹=79DE299EAF4E68FD4D6047B1318E87C21A165372E293C3D1ECAF635D E481ACC**0**

K²=79DE299EAF4E68FD4D6047B1318E87C21A165372E293C3D1ECAF635D E481ACC1

Results: Computation Analysis

Only **3 cycles** needed to achieve enhanced security and resist cryptanalytic attacks with proposed system

Conclusions

Novel Latin rectangle scrambler for confusion

• Bi-directional pixel diffusion for robustness to differential attacks

Completely invertible

 Reduced overall number of cycles to achieve enhanced security

INDICON-2014

References

- 1) N. Pareekh, "Image encryption using chaotic logistic map", *Elsevier Image and Vision Computing*, pp. 926–934, Feb 2006
- 2) Y. Mao, G. Chen, S. Lian, "A Novel Fast Image Encryption Scheme Based on 3D Chaotic Baker Maps", *Intl. Journal of Bifurcation and Chaos*, vol. 14, no. 10, pp. 3613-3624, Oct 2004
- 3) S. Keshari, S. Modani, "Image Encryption Algorithm based on Chaotic Map Lattice and Arnold cat map for Secure Transmission", *IJCST*, vol. 2, no. 1, Mar 2011
- 4) Y. Wu, Y. Zhou, J. P. Noonan, K. Panetta, and S. Agaian, "Image Encryption using the Sudoku Matrix", *SPIE Digital library*, vol. 7708, 2010
- 5) Y. Wu, Y. Zhou, J. Noonan, and S. Agaian, "Design of image cipher using Latin squares", *Elsevier Jour. Information Sciences*, Nov 2013
- 6) L. Krikor, "Image Encryption Using DCT and Stream Cipher", *European Journal of Scientific Research*, vol.32, no.1, pp.48-58, 2009
- 7) S. Borujeni, M. Eshghi, "Chaotic image encryption system using phase-magnitude transformation and pixel substitution", *Springer Jour. Telecommunication Systems*, pp. 1-13, May 2011
- 8) S. Behnia, A. Akhshani, H. Mahmodi, A. Akhavan, "A novel algorithm for image encryption based on mixture of chaotic maps," Chaos, Solitons and Fractals, 2vol. 35, no.2, pp. 408–419, 2008

Appendix

x_0 – double (0.0, 1.0)	nD – integer (>= 25)
y_0 – double (0.0, 1.0)	pD – double (0.0, 0.5)
nC – integer (>= 2)	vD_1 – integer (0, 255)
<i>iD</i> – double (0.0, 1.0)	vD_2 – integer (0, 255)

$$v(b) = \sum_{i=1}^{q} b_{-i} 2^{-i}$$

$$GD_{i,j}^{P} = \frac{1}{4} \sum_{i',j' \in \{-1,+1\}} \left[P(i,j) - P(i',j') \right]^{2}$$

$$EGD^{P} = \frac{\sum_{i=2}^{H-1} \sum_{j=2}^{W-1} GD^{P}(i, j)}{(H-2) \times (W-2)}$$

$$GDD(P,C) = \frac{EGD^{P} - EGD^{C}}{EGD^{P} + EGD^{C}}$$

$$N(C^{1}, C^{2}) = \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{Diff(i, j)}{M \times N} \times 100\%$$

$$Diff(i, j) = \begin{cases} 0, & \text{if } C^{1}(i, j) = C^{2}(i, j) \\ 1, & \text{if } C^{1}(i, j) \neq C^{2}(i, j) \end{cases}$$

$$U(C^{1}, C^{2}) = \sum_{i=1}^{M} \sum_{j=1}^{N} \frac{\left| C^{1}(i, j) - C^{2}(i, j) \right|}{256 \times M \times N} \times 100\%$$