EECS 376: Foundations of Computer Science

Chris Peikert 15 March 2023

Recall

- * **Definition:** A language B is **NP-Complete** if:
 - 1. $B \in \mathbf{NP}$
 - 2. B is \mathbb{NP} -Hard: $A \leq_p B$ for every language $A \in \mathbb{NP}$. Easier route: $A \leq_p B$ for some \mathbb{NP} -hard language A.
- * Reminder: Language A is polynomial-time mapping reducible to language B, written $A \leq_p B$, if there is a polynomial-time algorithm f such that:
 - * $x \in A \iff f(x) \in B$.
 - * Implies: If $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- * Known NP-C languages: SAT, 3SAT, CLIQUE, ...

Recall: $3SAT \leq_p CLIQUE$

Goal: " $\underline{transform}$ " 3CNF formula φ into (G, k) such that:

- ϕ satisfiable \iff G has a k-clique
- * Consider the following example formula:

$$\phi = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z)$$

* Result of transform: has a 3-clique

$3SAT \leq_p CLIQUE$

Goal: " $\underline{transform}$ " 3CNF formula φ into (G, k) such that:

- ϕ satisfiable \iff G has a k-clique
- * Example that is not satisfiable:

$$\phi = (x \lor x \lor y) \land (\neg x \lor \neg x \lor y) \land (\neg y \lor \neg y \lor \neg y)$$

* Result of transform: no 3-clique

Vertex Cover

("Starbucks Problem")

- * Given a city, is it possible to put stores on k street corners so that *every* street is "covered" by some store?
- * Formally: A vertex cover of a graph G = (V, E) is a set $C \subseteq V$ s.t. for all $(u, v) \in E$: $u \in C$ or $v \in C$ (or both). (all edges are "covered" by C)
 - * VERTEXCOVER = $\{(G, k) : G \text{ is an undirected} \}$

VERTEXCOVER is NP-C

- * Claim: VERTEXCOVER is NP-Complete
- * Proof: General Strategy:
 - 1. $VERTEXCOVER \in \mathbb{NP}$ (Exercise)
 - 2. $A \leq_p \text{VERTEXCOVER}$ for <u>some</u> **NP**-C language A
- * We will show that $3SAT \leq_p VERTEXCOVER$.
- * **Detailed Goal:** Given an algorithm $f: \{3CNF \ formula\} \rightarrow \{(graph, \ k)\}$
 - f is efficient
 - 4. ϕ is satisfiable \iff G has a vertex cover of size k

* Proof idea:

- * Given a 3CNF formula ϕ with n variables, m clauses:
- * Make "gadget" subgraphs that represent variables and clauses.
- * Connect the gadgets together in the right way.

- * Include the edge (u, v) if:
 - * u is in a <u>variable gadget</u> and v is in a <u>clause gadget</u>, AND
 - * u and v have the <u>same variable label</u> (e.g., x, $\neg z$, etc.)
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

n variables x $\neg x$

m clauses

- * Include the edge (u, v) if:
 - * u is in a <u>variable gadget</u> and v is in a <u>clause gadget</u> AND
 - * u and v have the <u>same variable label</u> (e.g., x, $\neg z$, etc.)
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

- * Include the edge (u, v) if:
 - * u is in a <u>variable gadget</u> and v is in a <u>clause gadget</u> AND
 - * u and v have the <u>same variable label</u> (e.g., x, $\neg z$, etc.)
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

$$f(\phi) = (G, n + 2m)$$

- * Claim: Let ϕ be a 3CNF with n variables and m clauses; then
 - 1. The graph G is constructible in time O(mn).
 - 2. ϕ is satisfiable iff G has a V.C. of size k = n + 2m.

- * Observation: Any vertex cover has size $\geq n + 2m$.
 - * Needs ≥ 1 node per variable gadget and ≥ 2 nodes per clause
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

- * If ϕ satisfiable: Let α be a satisfying assignment (e.g., (1,0,0)).
 - * For each variable gadget: take x if $\alpha_x = 1$ and $\neg x$ if $\alpha_x = 0$.
 - * Each clause has ≥ 1 literal covered.
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

- * If ϕ satisfiable: Let α be a satisfying assignment (e.g., (1,0,0)).
 - * For each variable gadget: take x if $\alpha_x = 1$ and $\neg x$ if $\alpha_x = 0$.
 - * Each clause has ≥ 1 literal covered, so take ≤ 2 more.
- * Example:

$$(x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z)$$

* Conclusion/Claim 1:

$$\phi \in 3SAT \Longrightarrow (G, n + 2m) \in VERTEXCOVER$$

- * Claim 2: $\phi \in 3SAT \longleftarrow (G, n + 2m) \in VERTEXCOVER$
 - * A vertex cover of size n + 2m must include the following:
 - * Exactly 1 vertex from each variable gadget, to cover its edge.
 - * Exactly 2 vertices from each clause gadget, to cover its 3 edges.
 - * The 2 vertices from a clause gadget cover only 2 of the "crossing" edges.
 - * So, the 3rd crossing edge is covered by the variable gadget's vertex.
 - * Setting the literals from the selected vertices of the *variable* gadgets to "true" satisfies every clause, so the whole formula is satisfied.

Set Cover

(Contractor Problem)

* Problem Setup:

- st n workers, each worker i has a set of skills S_i
- * To complete a task, we need to hire a team of workers that jointly have all the required skills.
- * What is the smallest team of workers we can hire?

* Formally:

- st A set of elements (all the required skills) U
- * n sets: $S_i \subseteq U$ (the set of skills worker i has)
- * Find the smallest number of S_i that "cover" U. That is, their union is U.

Set Cover

- * Example: $U = \{1,2,3,4,5,6,7\}$
- * $S_1 = \{1,2,3\}$; $S_2 = \{3,4,6,7\}$; $S_3 = \{1,4,7\}$
- * $S_4 = \{1,2,6\}$; $S_5 = \{3,5,7\}$; $S_6 = \{4,5\}$
- * Question: What is the size (number of S_i) of a smallest set cover?
- * Answer:
 - * A) 1
 - * B) 2
 - * C) 3
 - * D) 4

Set Cover

* Definition:

SETCOVER =
$$\begin{cases} (U, S_1, S_2, ..., S_n, k) : S_i \subseteq U \text{ and there} \\ \text{exists a collection of size } k \text{ that covers } U \end{cases}$$

- * Theorem: SETCOVER is NP-Complete
- * Proof:
 - 1. Desired certificate = k indices of S_i that cover U.
 - 2. VERTEXCOVER \leq_p SETCOVER
 - * Give an efficient transform f: G has a VC of size $k \iff f(G,k) = (U,S_1,...,S_n,k')$ has a set cover of size k'.
- * Intuition: vertex → worker; edge → skill

Vertex Cover \leq_p Set Cover

Definition:

SETCOVER =
$$\left\{ \begin{array}{l} \left(U, S_1, S_2, ..., S_n, k \right) : S_i \subseteq U \text{ and there} \\ \text{exists a collection of size } k \text{ that covers } U \end{array} \right\}$$

* Claim: VERTEXCOVER \leq_p SETCOVER

* Intuition: vertex \rightarrow worker; edge \rightarrow skill S_2

*
$$S_1 = \{2, 5, 6\}, S_2 = \{3, 7, 8, 9\}, \dots$$

*
$$k' = k$$

Vertex Cover \leq_p Set Cover

transformVertexCover(graph G = (V, E), int k):

- 1. $U \leftarrow E$
- 2. for each vertex $v \in V$: $S_v = \emptyset$
- 3. for each edge $e = (u, v) \in E$:
- 4. Add e to both S_u and S_v
- 5. **return** $(U, S_v \text{ for } v \in V, k)$
- * Runtime: convertCover is efficient.
- * Correctness:

$$(G, k) \in VERTEXCOVER \iff (U, S_1, ... S_n, k) \in SETCOVER$$

* Let $C \subseteq V$ be a vertex cover of size k. Then the vertices in C cover all the edges in E. Therefore,

$$\bigcup_{i \in C} S_i = \bigcup_{i \in C} \{e \in E : e \text{ is adjacent to } v_i\} = E = U.$$

* Let W be the collection of k S_i that covers U. Then $\bigcup_{i \in W} S_i = U = E$, so the vertices i of the selected S_i form a vertex cover of size k for G.

Set Cover Post-Mortem

- * We saw how to efficiently map an instance of VERTEXCOVER to an instance of SETCOVER, preserving the yes/no answer.
- * Not every SETCOVER instance corresponds directly to a VERTEXCOVER instance!
 - * In a VERTEXCOVER instance, every skill (edge) is shared by exactly two workers (vertices).
- * VERTEXCOVER is a "specialization" of SETCOVER.
- * Observation: An efficient algorithm for a problem also solves any specialized sub-problem efficiently.
- * Alternatively: If a specialized sub-problem is hard, then so is the original problem.

Even More NP-C languages!

- * **Definition:** A *Hamiltonian path* from s to t in a graph G is a path that starts at s, ends at t, and visits each vertex in G exactly once.
- * Definition:

$$HAMPATH = \left\{ \begin{aligned} &(G, s, t) : G \text{ is an undirected graph} \\ &\text{with a Hamiltonian path from } s \text{ to } t \end{aligned} \right\}$$

- * Fact: HAMPATH is NP-Complete (grungy proof omitted).
- * Definition:

HAMCYCLE =
$$\begin{cases} G : G \text{ is an undirected graph with} \\ a \text{ cycle that visits all vertices one} \end{cases}$$

HAMCYCLE is NP-Complete

- * Claim: HAMPATH \leq_p HAMCYCLE.
- * We need to show an algorithm f(G, s, t) = G' such that:
 - 1. f is polynomial-time computable
 - 2. $(G, s, t) \in \mathsf{HAMPATH} \iff G' \in \mathsf{HAMCYCLE}$
- * Attempt 1: Given (G, s, t), define $G' = G \cup (s, t)$.
- * Claim: $(G, s, t) \in HAMPATH \Longrightarrow G' \in HAMCYCLE$
- * Proof: Obvious (right?).
- * Question: What about ← direction?
- * Example: $G' \in HAMCYCLE$, however $(G, s, t) \notin HAMPATH$.
 - * Why: We can't get an s->t Ham path from a Ham cycle, because the cycle might not go through the "new" edge!

HAMCYCLE is NP-Complete

```
transformGraph(graph G = (V, E), vertex s, vertex t):
```

- 1. $V' \leftarrow V \cup \{u\}$ // u is a new vertex not in G
- 2. $E' \leftarrow E \cup \{(t, u), (u, s)\}$
- 3. **return** G' = (V', E')
- * Claim: HAMPATH \leq_p HAMCYCLE.
- * Given (G, s, t), define $G' = G \cup (t, u) \cup (u, s)$.
- * Claim: $(G, s, t) \in HAMPATH \iff G' \in HAMCYCLE$
- * Proof:
- * $(G, s, t) \in \text{HAMPATH} \Longrightarrow \exists p = (s, ..., t)$, a Hamiltonian path in G.
 - * Then (s, ..., t, u, s) is a Hamiltonian cycle in $G' \Longrightarrow G' \in HAMCYCLE$.
- * $G' \in \text{HAMCYCLE} \Longrightarrow \exists p = (s, ..., u, ..., s)$, a Hamiltonian cycle in G'.
 - * By reversing p if needed, p = (s, ..., t, u, s).
 - * Remove final two edges from p to get an s->t Ham path in G:
 - * Final conclusion: $(G, s, t) \in HAMPATH$.

Knapsack Problem

(Theft Problem)

- * Problem: Given a set of items, each with a value and a weight, is there a subset of items with total value at least V and total weight at most W?
- * Exercise: Knapsack problem is NP-Complete.

NP-Completeness is Everywhere

- * Constraint Satisfaction: SAT, 3SAT
- * Covering Problems: Vertex Cover, Set Cover
- * Coloring Problem: 3-colorability of a graph
- * Scheduling Problems: optimal class schedules
- * Model Checking: context-bounded reachability
- * Social Networks: Clique, Maximal-Cut
- * Routing: Longest Path, HAMPATH, TSP
- * Games: Sudoku, Battleship, Super Mario, Pokémon
- * ... One ALGORITHM would rule them all!

NP-Completeness

"I can't find an efficient algorithm, I guess I'm just too dumb."

NP-Completeness

"I can't find an efficient algorithm, because no such algorithm is possible!"

NP-Completeness

"I can't find an efficient algorithm, but neither can all these famous people."

