МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по практическому заданию №2 по дисциплине «Машинное обучение»

Студент гр. 6304	Ваганов Н.
Преподаватель	Жангиров Т. Р.

Санкт-Петербург

Задание 1

Запись исходных данных

```
X = np.array([[8, -20], [0, -1], [10, -19], [10, -20], [2,0]])
```

Вычисление ядерной матрицы по формуле $K(x_i, x_j) = ||x_i - x_j||^2$

```
matrix = np.empty([4,4])
for j in range(X.shape[0]):
    for i in range(X.shape[0]):
        np.append(matrix, np.sum(np.power(X[i] - X[j],2)))
```

Ядерная матрица

0,00	5,86	1,46	4,64
5,86	0,00	10,00	1,46
1,46	10,00	0,00	5,86
4,64	1,46	5,86	0,00

Задание 2

data =
$$np.array([[8,-20], [0,-1], [10,-19], [10,-20], [2,0]])$$

1. Среднее значение

```
np.mean(data, axis=0)
```

[6. -12.]

Ковариационная матрица

```
np.cov(data, rowvar=False)
```

22.	-47.5
-47.5	110.5

2. Собственные числа

```
np.linalg.eigvals(np.cov(data, rowvar=False))
```

(1.332, 131.168)

- 3. "Внутренний" размер набора данных (5, 2)
- 4. Первая главная компонента

```
max_eigenval_idx = np.argmax(eigenvals)
projection_mat = -eigenvecs[:,max_eigenval_idx]
first pc = data centered@projection mat
```

-8.134	
12.48	
-8.015	
-8.932	
12.599	

5. Пусть **μ** и **Σ** характеризуют нормальное распределение. Построен график 2-мерной функции нормальной плотности (рис. 1)

Рисунок 1 — 2-мерная функция нормальной плотности.

Задание 3

```
\label{eq:transform} $$\operatorname{np.array(matrix)/100 + np.ones((len(X), len(X)))*0.5}$$ $$\operatorname{matrix} = \operatorname{transform@matrix@transform}$$ $$\operatorname{precomputed\_data} = \operatorname{KernelPCA(1, 'precomputed').fit\_transform(matrix)} $$
```

(-0.057, 0.057, 0.057, -0.057)