CPU SPECIFICATIONS AND OPERATION

CHAPTER 3

In This Chapter

Overview	
CPU Specifications	-3
CPU Hardware Setup	-4
Using Battery Backup	-8
CPU Operation	12
I/O Response Time	17
CPU Scan Time Considerations	20
Memory Map	25
DL06 System V-memory	29
DL06 Aliases	31
DL06 Memory Map	32
X Input/Y Output Bit Map	33
Stage Control/Status Bit Map	34
Control Relay Bit Map	36
Timer Status Bit Map	38
Counter Status Bit Map	38
GX and GY I/O Bit Map	39

Overview

The Central Processing Unit (CPU) is the heart of the Micro PLC. Almost all PLC operations are controlled by the CPU, so it is important that it is set up correctly. This chapter provides the information needed to understand:

- Steps required to set up the CPU
- Operation of ladder programs
- Organization of Variable Memory

NOTE: The High-Speed I/O function (HSIO) consists of dedicated but configurable hardware in the DL06. It is not considered part of the CPU because it does not execute the ladder program. For more on HSIO operation, see Appendix E.

DL06 CPU Features

The DL06 Micro PLC has 14.8K words of memory comprised of 7.6K of ladder memory and 7.6K words of V-memory (data registers). Program storage is in the FLASH memory which is a part of the CPU board in the PLC. In addition, there is RAM with the CPU which will store system parameters, V-memory, and other data not in the application program. The RAM is backed up by a super-capacitor, storing the data for several hours in the event of a power outage. The capacitor automatically charges during powered operation of the PLC.

The DL06 supports fixed I/O which includes twenty discrete input points and sixteen output points.

Over 220 different instructions are available for program development as well as extensive internal diagnostics that can be monitored from the application program or from an operator interface. Chapters 5, 6, and 7 provide detailed descriptions of the instructions.

The DL06 provides two built-in communication ports, so you can easily connect a handheld programmer, operator interface, or a personal computer without needing any additional hardware.

CPU Specifications

Specifications		
Feature	DL06	
Total Program memory (words)	14.8K	
Ladder memory (words)	7680	
Total V-memory (words)	7616	
User V-memory (words)	7488	
Non-volatile V Memory (words)	128	
Contact execution (boolean)	<0.6us	
Typical scan (1k boolean)	1-2ms	
RLL Ladder style Programming	Yes	
RLL and RLLPLUS Programming	Yes	
Run Time Edits	Yes	
Supports Overrides	Yes	
Scan	Variable / fixed	
Handheld programmer	Yes	
DirectSOFT programming for Windows	Yes	
Built-in communication ports (RS232C)	Yes	
FLASH Memory	Standard on CPU	
Local Discrete I/O points available	36	
Local Analog input / output channels maximum	None	
High-Speed I/O (quad., pulse out, interrupt, pulse catch, etc.)	Yes, 2	
I/O Point Density	20 inputs, 16 outputs	
Number of instructions available (see Chapter 5 for details)	229	
Control relays	1024	
Special relays (system defined)	512	
Stages in RLLPLUS	1024	
Timers	256	
Counters	128	
Immediate I/O	Yes	
Interrupt input (external / timed)	Yes	
Subroutines	Yes	
For/Next Loops	Yes	
Math (Integer and floating point)	Yes	
Drum Sequencer Instruction	Yes	
Time of Day Clock/Calendar	Yes	
Internal diagnostics	Yes	
Password security	Yes	
System error log	Yes	
User error log	Yes	
Battery backup	Optional D2-BAT-1 available (not included with unit)	

CPU Hardware Setup

Communication Port Pinout Diagrams

Cables are available that allow you to quickly and easily connect a Handheld Programmer or a personal computer to the DL06 PLCs. However, if you need to build your cable(s), use the pinout descriptions shown below, or use the Tech Support/Cable Wiring Diagrams located on our website. The DL06 PLCs require an RJ-12 phone plug for port 1 (D2-DSCBL) and a 15-pin SVGA DSub for port 2 (D2-DSCBL-1).

The DL06 PLC has two built-in serial communication ports. Port 1 (RS232C only) is generally used for connecting to a D2-HPP, *Direct* SOFT, operator interface, MODBUS slave only, or a *Direct* NET slave only. The baud rate is fixed at 9600 baud for port 1. Port 2 (RS232C/RS422/RS485) can be used to connect to a D2-HPP, *Direct* SOFT, operator interface, MODBUS master/slave, *Direct* NET master/slave or ASCII in/out. Port 2 has a range of speeds from 300 baud to 38.4K baud.

NOTE: The 5V pins are rated at 220mA maximum, primarily for use with some operator interface units.

	Port 1 Pin Descriptions			
1	0V	Power (-) connection (GND)		
2	5V	Power (-) 220 mA max		
2 3 4	RXD	Receive data (RS-232C)		
4	TXD	Transmit data (RS-232C)		
5 6	5V	Power (+) connection		
6	0V	Power (-) connection (GND)		

Communications Port 1		
	Connects to HPP, <i>Direct</i> SOFT, operator interfaces, etc.	
	6-pin, RS232C	
	Communication speed (baud): 9600 (fixed)	
	Parity: odd (fixed)	
Com 1	Station Address: 1 (fixed)	
	8 data bits	
1 start, 1 stop bit Asynchronous, half-duplex, DTE		

	Port 2 Pin Descriptions		
1	5V	Power (+) connection	
2	TXD	Transmit data (RS-232C)	
3	RXD	Receive data (RS-232C)	
4	RTS	Ready to send	
5	CTS	Clear to send	
6	RXD-	Receive data (-) (RS-422/485)	
7	0V	Power (-) connection (GND)	
8	0V	Power (-) connection (GND)	
9	TXD+	Transmit data (+) (RS-422/485)	
10	TXD-	Transmit data (-) (RS-422/485)	
11	RTS+	Ready to send (+) (RS-422/485)	
12	RTS-	Ready to send (-) (RS-422/485)	
13	RXD+	Receive data (+) (RS-422/485)	
14	CTS+	Clear to send (+) (RS-422/485)	
15	CTS-	Clear to send (-) (RS-422/485)	

Communications Port 2			
	Connects to HPP, <i>Direct</i> SOFT, operator interfaces, etc.		
	15-pin, multifunction port, RS232C, RS422, RS485 (RS485 with 2-wire is only available for MODBUS and Non-sequence.)		
	Communication speed (baud): 300, 600, 1200, 2400, 4800, 9600, 19200, 38400		
Com 2	Parity: odd (default), even, none		
00III <u>L</u>	Station Address: 1 (default)		
	8 data bits		
	1 start, 1 stop bit		
	Asynchronous, half-duplex, DTE		
	Protocol (auto-select): K-sequence (slave only), Direct NET (master/slave), MODBUS (master/slave), non-sequence/print/ASCII in/out		

Connecting the Programming Devices

If you're using a Personal Computer with the *Direct*SOFT programming package, you can connect the computer to either of the DL06's serial ports. For an engineering office environment (typical during program development), this is the preferred method of programming.

The Handheld programmer D2-HPP is connected to the CPU with a handheld programmer cable. This device is ideal for maintaining existing installations or making small program changes. The handheld programmer is shipped with a cable, which is approximately 6.5 feet (200 cm) long.

CPU Setup Information

Even if you have years of experience using PLCs, there are a few things you need to do before you can start entering programs. This section includes some basic things, such as changing the CPU mode, but it also includes some things that you may never have to use. Here's a brief list of the items that are discussed:

- Using Auxiliary Functions
- Clearing the program (and other memory areas)
- How to initialize system memory
- Setting retentive memory ranges

The following paragraphs provide the setup information necessary to get the CPU ready for programming. They include setup instructions for either type of programming device you are using. The D2–HPP Handheld Programmer Manual provides the Handheld keystrokes required to perform all of these operations. The *DirectSOFT* Manual provides a description of the menus and keystrokes required to perform the setup procedures via *DirectSOFT*.

Status Indicators

The status indicator LEDs on the CPU front panels have specific functions which can help in programming and troubleshooting.

Mode Switch Functions

The mode switch on the DL06 PLC provides positions for enabling and disabling program changes in the CPU. Unless the mode switch is in the TERM position, RUN and STOP mode changes will not be allowed by any interface device, (handheld programmer, <code>DirectSOFT</code> programming package or operator interface). Programs may be viewed or monitored but no changes may be made. If the switch is in the TERM position and no program password is in effect, all operating modes as well as program access will be allowed through the connected programming or monitoring device.

Indicator	Status	Meaning
PWR	ON	Power good
rwn	OFF	Power failure
	ON	CPU is in Run Mode
RUN	OFF	CPU is in Stop or Program Mode
	Blinking	CPU is in firmware upgrade mode
	ON	CPU self diagnostics error
CPU	OFF	CPU self diagnostics good
	Blinking	The CPU indicator will blink if the battery is less than 2.5 VDC
TX1	ON	Data is being transmitted by the CPU - Port 1
'^'	OFF	No data is being transmitted by the CPU - Port 1
RX1	ON	Data is being received by the CPU - Port 1
I II	OFF	No data is being received by the CPU - Port 1
TX2	ON	Data is being transmitted by the CPU - Port 2
1/2	OFF	No data is being transmitted by the CPU - Port 2
RX2	ON	Data is being received by the CPU - Port 2
n AZ	OFF	No data is being received by the CPU - Port 2

Changing Modes in the DL06 PLC

Mode Switch Position	CPU Action	
RUN (Run Program)	CPU is forced into the RUN mode if no errors are encountered. No changes are allowed by the attached programming/monitoring device.	
TERM (Terminal) RUN	PROGRAM and the TEST modes are available. Mode and program changes are allowed by the programming/monitoring device.	
STOP	CPU is forced into the STOP mode. No changes are allowed by the programming/monitoring device.	

There are two ways to change the CPU mode. You can use the CPU mode switch to select the operating mode, or you can place the mode switch in the TERM position and use a programming device to change operating modes. With the switch in this position, the CPU can be changed between Run and Program modes. You can use either *DirectSOFT* or the Handheld Programmer to change the CPU mode of operation. With *DirectSOFT* use the PLC menu option PLC > Mode or use the Mode button located on the Online toolbar. With the Handheld Programmer, you use the MODE key.

Mode of Operation at Power-up

The DL06 CPU will normally power-up in the mode that it was in just prior to the power interruption. For example, if the CPU was in Program Mode when the power was disconnected, the CPU will power-up in Program Mode (see warning note below).

WARNING: Once the super capacitor has discharged, the system memory may not retain the previous mode of operation. When this occurs, the PLC can power-up in either Run or Program Mode if the mode switch is in the term position. There is no way to determine which mode will be entered as the startup mode. Failure to adhere to this warning greatly increases the risk of unexpected equipment startup.

The mode which the CPU will power-up in is also determined by the state of B7633.13. If the bit is set and the Mode Switch is in the TERM position, the CPU will power-up in RUN mode. If B7633.13 is not set with the Mode Switch in TERM position, then the CPU will power-up in the state it was in when it was powered-down.

Using Battery Backup

An optional lithium battery is available to maintain the system RAM retentive memory when the DL06 system is without external power. Typical CPU battery life is five years, which includes PLC runtime and normal shutdown periods. However, consider installing a fresh battery if your battery has not been changed recently and the system will be shut down for a period of more than ten days.

NOTE: Before installing or replacing your CPU battery, back-up your V-memory and system parameters. You can do this by using **Direct**SOFT to save the program, V-memory, and system parameters to hard/floppy disk on a personal computer.

To install the D2-BAT-1 CPU battery in the DL06 CPU:

- 1. Press the retaining clip on the battery door down and swing the battery door open.
- 2. Place the battery into the coin-type slot with the +, or larger, side out.
- 3. Close the battery door making sure that it locks securely in place.
- 4. Make a note of the date the battery was installed

WARNING: Do not attempt to recharge the battery or dispose of an old battery by fire. The battery may explode or release hazardous materials.

Battery Backup

The battery backup is available immediately after the battery has been installed. *The CPU indicator will blink if the battery is low* (refer to the table on page 3-6). Special Relay 43 (SP43) will also be set when the battery is low. The low battery indication is enabled by setting bit 12 of V7633 (B7633.12). If the low battery feature is not desired, do not set bit V7633.12. The super capacitor will retain memory IF it is configured as retentive regardless of the state of B7633.12. The battery will do the same, but for a much longer time.

Auxiliary Functions

Many CPU setup tasks involve the use of Auxiliary (AUX) Functions. The AUX Functions perform many different operations, ranging from clearing ladder memory, displaying the scan time, copying programs to EEPROM in the handheld programmer, etc. They are divided into categories that affect different system parameters. Appendix A provides a description of the AUX functions.

You can access the AUX Functions from *Direct*SOFT or from the D2–HPP Handheld Programmer. The manuals for those products provide step-by-step procedures for accessing the AUX Functions. Some of these AUX Functions are designed specifically for the Handheld Programmer setup, so they will not be needed (or available) with the *Direct*SOFT package. The following table shows a list of the Auxiliary functions for the Handheld Programmer.

Auxiliary Functions				
AU	AUX 2* — RLL Operations			
21	Check Program			
22	Change Reference			
23	Clear Ladder Range			
24	Clear All Ladders			
AUX 3	* — V-Memory Operations			
31	Clear V-memory			
AUX	(4* — I/O Configuration			
41	Show I/O Configuration			
42	I/O Diagnostics			
44	Power Up I/O Configuration check			
45	Select Configuration			
46	Configure I/O			
AUX	5* — CPU Configuration			
51	Modify Program Name			
52	Display/Change Calendar			
53	Display Scan Time			
54	Initialize Scratchpad			
55	Set Watchdog Timer			
56	Set Communication Port 2			

Auxiliary Functions (cont'd)		
57	Set Retentive Ranges	
58	Test Operations	
59	Override Setup	
5B	HSIO Configuration	
5C	Display Error History	
5D	Scan Control Setup	
AUX 6* — Ha	ndheld Programmer Configuration	
61	Show Revision Numbers	
62	Beeper On / Off	
65	Run Self Diagnostics	
AUX 7	7* — EEPROM Operations	
71	Copy CPU memory to HPP EEPROM	
72	Write HPP EEPROM to CPU	
73	Compare CPU to HPP EEPROM	
74	Blank Check (HPP EEPROM)	
75	Erase HPP EEPROM	
76	Show EEPROM Type (CPU and HPP)	
AUX 8* — Password Operations		
81	Modify Password	
82	Unlock CPU	
83	Lock CPU	

Clearing an Existing Program

Before you enter a new program, be sure to always clear ladder memory. You can use AUX Function 24 to clear the complete program. You can also use other AUX functions to clear other memory areas.

- AUX 23 Clear Ladder Range
- AUX 24 Clear all Ladders
- AUX 31 Clear V-memory

Initializing System Memory

The DL06 Micro PLC maintains system parameters in a memory area often referred to as the scratchpad. In some cases, you may make changes to the system setup that will be stored in system memory. For example, if you specify a range of Control Relays (CRs) as retentive, these changes are stored in system memory. AUX 54 resets the system memory to the default values.

WARNING: You may never have to use this feature unless you want to clear any setup information that is stored in system memory. Usually, you'll only need to initialize the system memory if you are changing programs and the old program required a special system setup. You can usually load in new programs without ever initializing system memory.

Remember, this AUX function will reset all system memory. If you have set special parameters such as retentive ranges, for example, they will be erased when AUX 54 is used. Make sure that you have considered all ramifications of this operation before you select it. See Appendix F for additional information in reference to PLC memory.

Setting Retentive Memory Ranges

The DL06 PLCs provide certain ranges of retentive memory by default. The default ranges are suitable for many applications, but you can change them if your application requires additional retentive ranges or no retentive ranges at all. The default settings are:

Memory Area	DL06	
Memory Area	Default Range	Available Range
Control Relays	C1000 - C1777	C0 – C1777
V-Memory	V400 – V37777	V0 – V37777
Timers	None by default	T0 – T377
Counters	CT0 - CT177	CT0 - CT177
Stages	None by default	S0 – S1777

You can use AUX 57 to set the retentive ranges. You can also use *Direct*SOFT menus to select the retentive ranges. Appendix A contains detailed information about auxiliary functions.

WARNING: The DL06 CPUs do not come with a battery. The super capacitor will retain the values in the event of a power loss, but only for a short period of time, depending on conditions (typically 4 to 7 days). If the retentive ranges are important for your application, make sure you obtain the optional battery.

Using a Password

The DL06 PLCs allow you to use a password to help minimize the risk of unauthorized program and/or data changes. Once you enter a password you can lock the PLC against access. Once the CPU is locked you must enter the password before you can use a programming device to change any system parameters.

You can select an 8-digit numeric password. The Micro PLCs are shipped from the factory with a password of 00000000. All zeros removes the password protection. If a password has been entered into the CPU you cannot just enter all zeros to remove it. Once you enter the correct password, you can change the password to all zeros to remove the password protection.

WARNING: Make sure you remember your password. If you forget your password you will not be able to access the CPU. The Micro PLC must be returned to the factory to have the password (along with the ladder project) removed. It is the policy of Automationdirect to require the memory of the PLC to be cleared along with the password.

You can use the D2–HPP Handheld Programmer or *DirectSOFT*. to enter a password. The following diagram shows how you can enter a password with the Handheld Programmer.

Press CLR to clear the display

There are three ways to lock the CPU once the password has been entered.

- 1. If the CPU power is disconnected, the CPU will be automatically locked against access.
- If you enter the password with *Direct*SOFT, the CPU will be automatically locked against access when you exit *Direct*SOFT.
- 3. Use AUX 83 to lock the CPU.

When you use *Direct*SOFT, you will be prompted for a password if the CPU has been locked. If you use the Handheld Programmer, you have to use AUX 82 to unlock the CPU. Once you enter AUX 82, you will be prompted to enter the password.

NOTE: The DL06 CPUs support multi-level password protection of the ladder program. This allows password protection while not locking the communication port to an operator interface. The multi-level password can be invoked by creating a password with an upper case **A** followed by seven numeric characters (e.g. A1234567).

CPU Operation

Achieving the proper control for your equipment or process requires a good understanding of how DL06 CPUs control all aspects of system operation. There are four main areas to understand before you create your application program:

- CPU Operating System the CPU manages all aspects of system control. A quick overview of all the steps is provided in the next section.
- CPU Operating Modes The two primary modes of operation are Program Mode and Run Mode.
- CPU Timing The two important areas we discuss are the I/O response time and the CPU scan time.
- CPU Memory Map DL06 CPUs offer a wide variety of resources, such as timers, counters, inputs, etc. The memory map section shows the organization and availability of these data types.

CPU Operating System

At powerup, the CPU initializes the internal electronic hardware. Memory initialization starts with examining the retentive memory settings. In general, the contents of retentive memory is preserved, and non-retentive memory is initialized to zero (unless otherwise specified).

After the one-time powerup tasks, the CPU begins the cyclical scan activity. The flowchart to the right shows how the tasks differ, based on the CPU mode and the existence of any errors. The scan time is defined as the average time around the task loop. Note that the CPU is always reading the inputs, even during program mode. This allows programming tools to monitor input status at any time.

The outputs are only updated in Run mode. In program mode, they are in the off state.

Error detection has two levels. Non-fatal errors are reported, but the CPU remains in its current mode. If a fatal error occurs, the CPU is forced into program mode and the outputs go off.

Program Mode

In Program Mode, the CPU does not execute the application program or update the output points. The primary use for Program Mode is to enter or change an application program. You also use program mode to set up the CPU parameters, such as HSIO features, retentive memory areas, etc.

You can use a programming device, such as *Direct*SOFT, the D2–HPP (Handheld Programmer) or the CPU mode switch to place the CPU in Program Mode.

Run Mode

In Run Mode, the CPU executes the application program and updates the I/O system. You can perform many operations during Run Mode. Some of these include:

- Monitor and change I/O point status
- Change timer/counter preset values
- Change variable memory locations

Run Mode operation can be divided into several key areas. For the vast majority of applications, some of these execution segments are more important than others. For example, you need to understand how the CPU updates the I/O points, handles forcing operations, and solves the application program. The remaining segments are not that important for most applications.

You can use *Direct*SOFT, the D2–HPP (Handheld Programmer) or the CPU mode switch to place the CPU in Run Mode.

You can also edit the program during Run Mode. The Run Mode Edits are not bumpless to the outputs. Instead, the CPU ignores the inputs and maintains the outputs in their last state while it accepts the new program information. If an error is found in the new program, then the CPU will turn all the outputs off and enter the Program Mode. This feature is discussed in more detail in Chapter 9.

Normal Run mode scan

WARNING: Only authorized personnel fully familiar with all aspects of the application should make changes to the program. Changes during Run Mode become effective immediately. Make sure you thoroughly consider the impact of any changes to minimize the risk of personal injury or damage to equipment.

Read Inputs

The CPU reads the status of all inputs, then stores it in the image register. Input image register locations are designated with an X followed by a memory location. Image register data is used by the CPU when it solves the application program.

Of course, an input may change after the CPU has just read the inputs. Generally, the CPU scan time is measured in milliseconds. If you have an application that cannot wait until the next I/O update, you can use Immediate Instructions. These do not use the status of the input image register to solve the application program. The Immediate instructions immediately read the input status directly from the I/O modules. However, this lengthens the program scan since the CPU has to read the I/O point status again. A complete list of the Immediate instructions is included in Chapter 5.

Service Peripherals and Force I/O

After the CPU reads the inputs from the input modules, it reads any attached peripheral devices. This is primarily a communications service for any attached devices. For example, it would read a programming device to see if any input, output, or other memory type status needs to be modified. There are two basic types of forcing available with the DL06 CPUs:

- Forcing from a peripheral not a permanent force, good only for one scan
- Bit Override holds the I/O point (or other bit) in the current state. Valid bits are X, Y, C, T, CT, and S. (These memory types are discussed in more detail later in this chapter).

Regular Forcing — This type of forcing can temporarily change the status of a discrete bit. For example, you may want to force an input on, even though it is really off. This allows you to change the point status that was stored in the image register. This value will be valid until the image register location is written to during the next scan. This is primarily useful during testing situations when you need to force a bit on to trigger another event.

Bit Override — Bit override can be enabled on a point-by-point basis by using AUX 59 from the Handheld Programmer or, by a menu option from within *Direct*SOFT. Bit override basically disables any changes to the discrete point by the CPU. For example, if you enable bit override for X1, and X1 is off at the time, then the CPU will not change the state of X1. This means that even if X1 comes on, the CPU will not acknowledge the change. So, if you used X1 in the program, it would always be evaluated as Off in this case. Of course, if X1 was on when the bit override was enabled, then X1 would always be evaluated as On.

There is an advantage available when you use the bit override feature. The regular forcing is not disabled because the bit override is enabled. For example, if you enabled the Bit Override for Y0 and it was off at the time, then the CPU would not change the state of Y0. However, you can still use a programming device to change the status. Now, if you use the programming device to force Y0 on, it will remain on and the CPU will not change the state of Y0. If you then force Y0 off, the CPU will maintain Y0 as off. The CPU will never update the point with the results from the application program or from the I/O update until the bit override is removed. The following diagram shows a brief overview of the bit override feature. Notice the CPU does not update the Image Register when bit override is enabled.

WARNING: Only authorized personnel fully familiar with all aspects of the application should make changes to the program. Make sure you thoroughly consider the impact of any changes to minimize the risk of personal injury or damage to equipment.

CPU Bus Communication

It is possible to transfer data to and from the CPU over the CPU bus on the backplane. This data is more than standard I/O point status. This type of communications can only occur on the CPU (local) base. There is a portion of the execution cycle used to communicate with these modules. The CPU performs both read and write requests during this segment.

Update Clock, Special Relays and Special Registers

The DL06 CPUs have an internal real-time clock and calendar timer which is accessible to the application program. Special V-memory locations hold this information. This portion of the execution cycle makes sure these locations get updated on every scan. Also, there are several different Special Relays, such as diagnostic relays, for example, that are also updated during this segment.

Solve Application Program

The CPU evaluates each instruction in the application program during this segment of the scan cycle. The instructions define the relationship between the input conditions and the desired output response. The CPU uses the output image register area to store the status of the desired action for the outputs. Output image register locations are designated with a Y followed by a memory location. The actual outputs are updated during the write outputs segment of the scan cycle. There are immediate output instructions available that will update the output points immediately instead of waiting until the write output segment. A complete list of the Immediate instructions is provided in Chapter 5.

The internal control relays (C), the stages (S), and the variable memory (V) are also updated in this segment.

You may recall that you can force various types of points in the system, discussed earlier in this chapter. If any I/O points or memory data have been forced, the output image register also contains this information.

Solve PID Loop Equations

The DL06 CPU can process up to 8 PID loops. The loop calculations are run as a separate task from the ladder program execution, immediately following it. Only loops which have been configured are calculated, and then only according to a built-in loop scheduler. The sample time (calculation interval) of each loop is programmable. Please refer to Chapter 8, PID Loop Operation, for more on the effects of PID loop calculation on the overall CPU scan time.

Write Outputs

Once the application program has solved the instruction logic and constructed the output image register, the CPU writes the contents of the output image register to the corresponding output points. Remember, the CPU also made sure that any forcing operation changes were stored in the output image register, so the forced points get updated with the status specified earlier.

Write Outputs to Specialty I/O

After the CPU updates the outputs in the local and expansion bases, it sends the output point information that is required by any Specialty modules which are installed. Specialty modules have built-in microprocessors which communicate to the CPU via the backplane. Some of these modules can process data. Refer to the specific Specialty module user manual for detailed information.

Diagnostics

During this part of the scan, the CPU performs all system diagnostics and other tasks such as calculating the scan time and resetting the watchdog timer. There are many different error conditions that are automatically detected and reported by the DL06 PLCs. Appendix B contains a listing of the various error codes.

Probably one of the more important things that occurs during this segment is the scan time calculation and watchdog timer control. The DL06 CPU has a watchdog timer that stores the maximum time allowed for the CPU to complete the solve application segment of the scan cycle. If this time is exceeded, the CPU will enter the Program Mode and turn off all outputs. The default value set from the factory is 200 ms. An error is automatically reported. For example, the Handheld Programmer would display the following message "E003 S/W TIMEOUT" when the scan overrun occurs.

You can use AUX 53 to view the minimum, maximum, and current scan time. Use AUX 55 to increase or decrease the watchdog timer value.

I/O Response Time

Is Timing Important for Your Application?

I/O response time is the amount of time required for the control system to sense a change in an input point and update a corresponding output point. In the majority of applications, the CPU performs this task in such a short period of time that you may never have to concern yourself with the aspects of system timing. However, some applications do require extremely fast update times. In these cases, you may need to know how to determine the amount of time spent during the various segments of operation.

There are four things that can affect the I/O response time.

- The point in the scan cycle when the field input changes states
- Input Off to On delay time
- CPU scan time
- Output Off to On delay time

The next paragraphs show how these items interact to affect the response time.

Normal Minimum I/O Response

The I/O response time is shortest when the input changes just before the Read Inputs portion of the execution cycle. In this case the input status is read, the application program is solved, and the output point gets updated. The following diagram shows an example of the timing for this situation.

In this case, you can calculate the response time by simply adding the following items:

Input Delay + Scan Time + Output Delay = Response Time

Normal Maximum I/O Response

The I/O response time is longest when the input changes just after the Read Inputs portion of the execution cycle. In this case the new input status is not read until the following scan. The following diagram shows an example of the timing for this situation.

In this case, you can calculate the response time by simply adding the following items: $Input \ Delay + (2 \ x \ Scan \ Time) + Output \ Delay = Response \ Time$

Improving Response Time

There are a few things you can do to help improve throughput.

- You can choose instructions with faster execution times
- You can use immediate I/O instructions (which update the I/O points during the program execution)
- You can use the HSIO Mode 50 Pulse Catch features designed to operate in high-speed environments. See Appendix E for details on using this feature.
- You can change Mode 60 filter to 0 msec for X0, X1, X2, and X3.

Of these three things the Immediate I/O instructions are probably the most important and most useful. The following example shows how an immediate input instruction and immediate output instruction would affect the response time.

In this case, you can calculate the response time by simply adding the following items.

Input Delay + Instruction Execution Time + Output Delay = Response Time

The instruction execution time would be calculated by adding the time for the immediate input instruction, the immediate output instruction, and any other instructions in between the two.

NOTE: Even though the immediate instruction reads the most current status from I/O, it only uses the results to solve that one instruction. It does not use the new status to update the image register. Therefore, any regular instructions that follow will still use the image register values. Any immediate instructions that follow will access the I/O again to update the status.

CPU Scan Time Considerations

The scan time covers all the cyclical tasks that are performed by the operating system. You can use *Direct*SOFT or the Handheld Programmer to display the minimum, maximum, and current scan times that have occurred since the previous Program Mode to Run Mode transition. This information can be very important when evaluating the performance of a system. As we've shown previously there are several segments that make up the scan cycle. Each of these segments requires a certain amount of time to complete. Of all the segments, the following are the most important:

- Input Update
- Peripheral Service
- Program Execution
- Output Update
- Timed Interrupt Execution

The one you have the most control over is the amount of time it takes to execute the application program. This is because different instructions take different amounts of time to execute. So, if you think you need a faster scan, then you can try to choose faster instructions.

Your choice of I/O type and peripheral devices can also affect the scan time. However, these things are usually dictated by the application.

The following paragraphs provide some general information on how much time some of the segments can require.

Reading Inputs

The time required during each scan to read the input status of built-in inputs is 52.6 µs. Don't confuse this with the I/O response time that was discussed earlier.

Writing Outputs

The time required to write the output status of built-in outputs is $41.1 \, \mu S$. Don't confuse this with the I/O response time that was discussed earlier.

Service Peripherals

Communication requests can occur at any time during the scan, but the CPU only logs the requests for service until the Service Peripherals portion of the scan. The CPU does not spend any time on this if there are no peripherals connected.

To Log Request (anytime)		DL06
Nothing Connected Min. & Max		0μs
Port 1	Send Min. / Max.	5.8/11.8 μs
	Rec. Min. / Max.	12.5/25.2 μs
Port 2	Send Min. / Max.	6.2/14.3 μs
	Rec. Min. / Max.	14.2/31.9 μs
LCD	Min. / Max.	4.8/49.2 μs

During the Service Peripherals portion of the scan, the CPU analyzes the communications request and responds as appropriate. The amount of time required to service the peripherals depends on the content of the request.

To Service Request DL06	DL06						
Minimum	9 μs						
Run Mode Max.	412 μs						
Program Mode Max.	2.5 second						

CPU Bus Communication

Some specialty modules can also communicate directly with the CPU via the CPU bus. During this portion of the cycle the CPU completes any CPU bus communications. The actual time required depends on the type of modules installed and the type of request being processed.

Update Clock/Calendar, Special Relays, Special Registers

The clock, calendar, and special relays are updated and loaded into special V-memory locations during this time. This update is performed during both Run and Program Modes.

Mo	Modes						
Program Mode	Minimum	12.0 μs					
Frogram Woue	Maximum	12.0 μs					
Run Mode	Minimum	20.0 μs					
Hull Wode	Maximum	27.0 μs					

NOTE: The Clock/Calendar is updated while there is energy on the super-capacitor. If the super-capacitor is discharged, the real time and date is lost.

Application Program Execution

The CPU processes the program from address 0 to the END instruction. The CPU executes the program left to right and top to bottom. As each rung is evaluated the appropriate image register or memory location is updated. The time required to solve the application program depends on the type and number of instructions used, and the amount of execution overhead.

Just add the execution times for all the instructions in your program to determine to total execution time. Appendix C provides a complete list of the instruction execution times for the DL06 Micro PLC. For example, the execution time for running the program shown below is calculated as follows:

Instruction	Tin	ne	-	
STR X0	.67	μs	-	X0
OR CO	.51	μs		l ''
ANDN X1	.51	μs		C0
OUT Y0	1.82	μs		\vdash
STRN C100	.67	μs		
LD K10	9.00	μs		C100
STRN C101	.67	μs		H
OUT V2002	9.3	μs		C10
STRN C102	.67	μs		-
LD K50	9.00	μs		1 1
STRN C103	.67	μs		C10:
OUT V2006	1.82	μs		$\vdash \vdash \vdash \vdash$
STR X5	.67	μs		
ANDN X10	.51	μs		C10:
OUT Y3	1.82	μs		H
END	12.80	μs		X5
SUBTOTAL	51.11	μs	-	
Overhead DL06 Minimum 746.2 µs				

C100 LD K10

C101 OUT V2002

C102 LD K50

C103 OUT V2006

X5 X10 Y3 OUT)

(END)

TOTAL TIME = (Program execution time + Overhead) x 1.18

The program above takes only 51.11 µs to execute during each scan. The DL06 spends 0.18ms on internal timed interrupt management, for every 1ms of instruction time. The total scan time is calculated by adding the program execution time to the overhead (shown above) and multiplying the result (ms) by 1.18. Overhead includes all other housekeeping and diagnostic tasks. The scan time will vary slightly from one scan to the next, because of fluctuation in overhead tasks.

Program Control Instructions — the DL06 CPUs offer additional instructions that can change the way the program executes. These instructions include FOR/NEXT loops, Subroutines, and Interrupt Routines. These instructions can interrupt the normal program flow and affect the program execution time. Chapter 5 provides detailed information on how these different types of instructions operate.

Maximum 4352.4 µs

PLC Numbering Systems

If you are a new PLC user or are using *AutomationDirect* PLCs for the first time, please take a moment to study how our PLCs use numbers. You'll find that each PLC manufacturer has their own conventions on the use of numbers in their PLCs. We want to take just a moment to familiarize you with how numbers are used in *AutomationDirect*

octal	BCD	, b	inary
? 1482	? 3	040	2 ?
3A9 7	-96142	8 AS	SCII
100101101	1	hexad	ecimal
	. 177	1	011
decima	A A	72B	2
-300124			?

PLCs. The information you learn here applies to all of our PLCs.

As any good computer does, PLCs store and manipulate numbers in binary form - just ones and zeros. So, why do we have to deal with numbers in so many different forms? Numbers have meaning, and some representations are more convenient than others for particular purposes. Sometimes we use numbers to represent a size or amount of something. Other numbers refer to locations or addresses, or to time. In science we attach engineering units to numbers to give a particular meaning (see Appendix I for numbering system details).

PLC Resources

PLCs offer a fixed amount of resources, depending on the model and configuration. We use the word **resources** to include variable memory (V-memory), I/O points, timers, counters, etc. Most modular PLCs allow you to add I/O points in groups of eight. In fact, all the resources of our PLCs are counted in octal. It's easier for computers to count in groups of eight than ten, because eight is an even power of 2 (see Appendix I for more details).

Octal means simply counting in groups of eight things Decimal 1 2 3 4 5 6 7 8 at a time. In the figure to the right, there are eight circles. The quantity in decimal is 8, but in octal it is 10 (8 and 9 are not valid in octal). In octal, 10 means 1 Octal 1 2 3 4 5 6 7 10 group of 8 plus 0 (no individuals).

In the figure below, we have two groups of eight circles. Counting in octal we have 20 items, meaning 2 groups of eight, plus 0 individuals Don't say "twenty", say "two–zero octal". This makes a clear distinction between number systems.

After counting PLC resources, it's time to access PLC resources (there's a difference). The CPU instruction set accesses resources of the PLC using octal addresses. Octal addresses are the same as octal quantities, except they start counting at zero. The number zero is significant to a computer, so we don't skip it.

Our circles are in an array of square containers to the right. To access a resource, our PLC instruction will address its location using the octal references shown. If these were counters, CT14 would access the black circle location.

V-Memory

Variable memory (V-memory) stores data for the ladder program and for configuration settings. V-memory locations and V-memory addresses are the same thing, and are numbered in octal. For example, V2073 is a valid location, while V1983 is not valid (9 and 8 are not valid octal digits).

Each V-memory location is one data word wide, meaning 16 bits. For configuration registers, our manuals will show each bit of a V-memory word. The least significant bit (LSB) will be on the right, and the most significant bit (MSB) on the left. We use the word "significant", referring to the relative binary weighting of the bits.

V-memory address	Ü					\	/-m				a						
(octal)	MSB						(bin	ary)						LSB	
V2017	0	1	0	0	1	1	1	0	0	0	1	0	1	0	0	1	

V-memory data is 16-bit binary, but we rarely program the data registers one bit at a time. We use instructions or viewing tools that let us work with decimal, octal, and hexadecimal numbers. All these are converted and stored as binary for us.

A frequently-asked question is "How do I tell if a number is octal, BCD, or hex?" The answer is that we usually cannot tell just by looking at the data ... but it does not really matter. What matters is, the source or mechanism which writes data into a V-memory location and the thing which later reads it must both use the same data type (i.e., octal, hex, binary, or whatever). The V-memory location is just a storage box ... that's all. It does not convert or move the data on its own.

Binary-Coded Decimal Numbers

In a pure binary sense, a 16-bit word can represent numbers from 0 to 65535. In storing BCD numbers, the range is reduced to only 0 to 9999. Many math instructions use Binary-Coded Decimal (BCD) data, and *Direct*SOFT and the handheld programmer allow us to enter and view data in BCD.

Hexadecimal Numbers

Hexadecimal numbers are similar to BCD numbers, except they utilize all possible binary values in each 4-bit digit. They are base-16 numbers so we need 16 different digits. To extend our decimal digits 0 through 9, we use A through F as shown.

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F

A 4-digit hexadecimal number can represent all 65536 values in a V-memory word. The range is from 0000 to FFFF (hex). PLCs often need this full range for sensor data, etc. Hexadecimal is just a convenient way for humans to view full binary data.

Hexadecimal number	Α	7	F	4			
V-memory storage	1 0 1 0	0 1 1 1	1 1 1 1	0 1 0 0			

Memory Map

With any PLC system, you generally have many different types of information to process. This includes input device status, output device status, various timing elements, parts counts, etc. It is important to understand how the system represents and stores the various types of data. For example, you need to know how the system identifies input points, output points, data words, etc. The following paragraphs discuss the various memory types used in DL06

Micro PLCs. A memory map overview for the CPU follows the memory descriptions.

Octal Numbering System

All memory locations and resources are numbered in Octal (base 8). For example, the diagram shows how the octal numbering system works for the discrete input points. Notice the octal system does not contain any numbers with the digits 8 or 9.

Discrete and Word Locations

As you examine the different memory types, you'll notice two types of memory in the DL06, discrete and word memory. Discrete memory is one bit that can be either a 1 or a 0. Word memory is referred to as V-memory (variable) and is a 16-bit location normally used to manipulate data/numbers, store data/numbers, etc.

Some information is automatically stored in V-memory. For example, the timer current values are stored in V-memory.

V-memory Locations for Discrete Memory Areas

The discrete memory area is for inputs, outputs, control relays, special relays, stages, timer status bits and counter status bits. However, you can also access the bit data types as a V-memory word. Each V-memory location contains 16 consecutive discrete locations. For example, the following diagram shows how the X input points are mapped into V-memory locations.

8 Discrete (X) Input Points

These discrete memory areas and their corresponding V-memory ranges are listed in the memory area table for DL06 Micro PLCs on the following pages.

Input Points (X Data Type)

The discrete input points are noted by an X data type. There are 20 discrete input points and 256 discrete input addresses available with DL06 CPUs. In this example, the output point Y0 will be turned on when input X0 energizes.

Output Points (Y Data Type)

The discrete output points are noted by a Y data type. There are 16 discrete outputs and 256 discrete output addresses available with DL06 CPUs. In this example, output point Y1 will be turned on when input X1 energizes.

Control Relays (C Data Type)

Control relays are discrete bits normally used to control the user program. The control relays do not represent a real world device, that is, they cannot be physically tied to switches, output coils, etc. There are 1024 control relays internal to the CPU. Because of this, control relays can be programmed as discrete inputs or discrete outputs. These locations are used in programming the discrete memory locations (C) or the corresponding word location which contains 16 consecutive discrete locations.

In this example, memory location C5 will energize when input X6 turns on. The second rung shows a simple example of how to use a control relay as an input.

Timers and Timer Status Bits (T Data Type)

There are 256 timers available in the CPU. Timer status bits reflect the relationship between the current value and the preset value of a specified timer. The timer status bit will be on when the current value is equal or greater than the preset value of a corresponding timer.

When input X0 turns on, timer T1 will start. When the timer reaches the preset of 3 seconds (K of 30) timer status contact T1 turns on. When T1 turns on, output Y12 turns on. Turning off X0 resets the timer.

Timer Current Values (V Data Type)

As mentioned earlier, some information is automatically stored in V-memory. This is true for the current values associated with timers. For example: V0 holds the current value for Timer 0; V1 holds the current value for Timer 1; and so on. These can also be designated as TA0 (Timer Accumulated) for Timer 0, and TA1 for Timer 1.

The primary reason for this is programming flexibility. The example shows how you can use relational contacts to monitor several time intervals from a single timer.

Counters and Counter Status Bits (CT Data type)

There are 128 counters available in the CPU. Counter status bits that reflect the relationship between the current value and the preset value of a specified counter. The counter status bit will be on when the current value is equal to or greater than the preset value of a corresponding counter.

Each time contact X0 transitions from off to on, the counter increments by one. (If X1 comes on, the counter is reset to zero.) When the counter reaches the preset of 10 counts (K of 10) counter status contact CT3 turns on. When CT3 turns on, output Y2 turns on.

Counter Current Values (V Data Type)

Just like the timers, the counter current values are also automatically stored in V-memory. For example, V1000 holds the current value for Counter CT0, V1001 holds the current value for Counter CT1, etc. These can also be designated as CTA0 (Counter Accumulated) for Counter 0 and CTA01 for Counter 1.

The primary reason for this is programming flexibility. The example shows how you can use relational contacts to monitor the counter values.

Word Memory (V Data Type)

Word memory is referred to as V-memory (variable) and is a 16-bit location normally used to manipulate data/numbers, store data/numbers, etc. Some information is automatically stored in V-memory. For example, the timer current values are stored in V-memory. The example shows how a four-digit BCD constant is loaded into the accumulator and then stored in a V-memory location.

Stages (S Data type)

Stages are used in RLL^{PLUS} programs to create a structured program, similar to a flowchart. Each program Stage denotes a program segment. When the program segment, or Stage, is active, the logic within that segment is executed. If the Stage is off, or inactive, the logic is not executed and the CPU skips to the next active Stage. (See Chapter 7 for a more detailed description of RLL^{PLUS} programming.)

Each Stage also has a discrete status bit that can be used as an input to indicate whether the Stage is active or inactive. If the Stage is active, then the status bit is on. If the Stage is inactive, then the status bit is off. This status bit can also be turned on or off by other instructions, such as the SET or RESET instructions. This allows you to easily control stages throughout the program.

Special Relays (SP Data Type)

Special relays are discrete memory locations with predefined functionality. There are many different types of special relays. For example, some aid in program development, others provide system operating status information, etc. Appendix D provides a complete listing of the special relays.

In this example, control relay C10 will energize for 50 ms and de-energize for 50 ms because SP5 is a pre–defined relay that will be on for 50 ms and off for 50 ms.

Word Locations - 16 bits

Ladder Representation

SP4: 1 second clock SP5: 100 ms clock SP6: 50 ms clock

DL06 System V-memory

System Parameters and Default Data Locations (V Data Type)

The DL06 PLCs reserve several V-memory locations for storing system parameters or certain types of system data. These memory locations store things like the error codes, High-Speed I/O data, and other types of system setup information.

System V-memory	Description of Contents	Default Values / Ranges
V700-V707	Sets the V-memory location for option card in slot 1	N/A
V710-V717	Sets the V-memory location for option card in slot 2	N/A
V720-V727	Sets the V-memory location for option card in slot 3	N/A
V730-V737	Sets the V-memory location for option card in slot 4	N/A
V3630-V3707	The default location for multiple preset values for UP/DWN and UP Counter 1 or pulse catch function	N/A
V3710-V3767	The default location for multiple preset values for UP/DWN and UP Counter 2	N/A
V7620-V7627	Locations for DV-1000 operator interface parameters	
V7620	Sets the V-memory location that contains the value	V0 - V3760
V7621	Sets the V-memory location that contains the message	V0 - V3760
V7622	Sets the total number $(1 - 32)$ of V-memory locations to be displayed	1 - 32
V7623	Sets the V-memory location containing the numbers to be displayed	V0 - V3760
V7624	Sets the V-memory location that contains the character code to be displayed	V0 - V3760
V7625	Contains the function number that can be assigned to each key	V-memory for X, Y, or C
V7626	Powerup operational mode	0,1, 2, 3, 12
V7627	Change preset value	0000 to 9999
V7630	Starting location for the multi–step presets for channel 1. The default value is 3630, which indicates the first value should be obtained from V3630. Since there are 24 presets available, the default range is V3630 – V3707. You can change the starting point if necessary.	Default: V3630 Range: V0- V3710
V7631	Starting location for the multi–step presets for channel 2. The default value is 3710, which indicates the first value should be obtained from V3710. Since there are 24 presets available, the default range is V3710 – V3767. You can change the starting point if necessary.	Default: V3710 Range: V0- V3710
V7632	Setup Register for Pulse Output	N/A
V7633	Sets the desired function code for the high speed counter, interrupt, pulse catch, pulse train, and input filter. This location can also be used to set the power-up in Run Mode option.	Default: 0060 Lower Byte Range: Range: 10 – Counter 20 – Quadrature 30 – Pulse Out 40 – Interrupt 50 – Pulse Catch 60 – Filtered discrete In. Upper Byte Range: Bits 8–11, 14, 15: Unused, Bit 13: Power–up in RUN, only if Mode Switch is inTERM position. Bit 12 is used to enable the low battery indications.
V7634	XO Setup Register for High-Speed I/O functions for input XO	Default: 1006
V7635	X1 Setup Register for High-Speed I/O functions for input X1	Default: 1006
V7636	X2 Setup Register for High-Speed I/O functions for input X2	Default: 1006
V7637	X3 Setup Register for High-Speed I/O functions for input X3	Default: 1006

System V-memory	Description of Contents	Default Values / Ranges
V7640	PID Loop table beginning address	V1200 - V7377 V10000 - v17777
V7641	Number of PID loops	1-8
V7642	Error Code - V-memory Error location for Loop Table	
V7643-V7647	Reserved	
V7650	Port 2: Setup for V-memory address for Non-Sequence protocol	V1200 – V7377 V10000 - V17777
V7653	Port 2: Setup for terminate code for Non-Sequence protocol	
V7655	Port 2: Setup for the protocol, time-out, and the response delay time	
V7656	Port 2: Setup for the station number, baud rate, STOP bit, and parity	
V7657	Port 2: Setup completion code used to notify the completion of the parameter setup	0400h reset port 2
V7660	Scan control setup: Keeps the scan control mode	
V7661	Setup timer over counter: Counts the times the actual scan time exceeds the user setup time	
V7662-V7717	Reserved	
V7720-V7722	Locations for DV–1000 operator interface parameters	
V7720	Titled Timer preset value pointer	
V7721	Titled Counter preset value pointer	
V7722	HiByte-Titled Timer preset block size, LoByte-Titled Counter preset block size	
V7723–V7737	Reserved	
V7740	Port 1 and Port 2: Communication Auto Reset Timer Setup	Default: 3030
V7741–V7746	Reserved	20144111 0000
V7747	Location contains a 10 ms counter (0-99). This location increments once every 10 ms	
V7750	Reserved	
V7751	Fault Message Error Code — stores the 4-digit code used with the FAULT instruction when the instruction is executed	
V7752	I/O Configuration Error: Current ID code of error slot	
V7753	I/O Configuration Error: Old ID code of error slot	
V7754	I/O Configuration Error: error slot number	
V7755	Error code — stores the fatal error code	
V7756	Error code — stores the major error code	
V7757	Error code — stores the minor error code	
V7760-V7762	Reserved	
V7763	Program address where syntax error exists	
V7764	Syntax error code	
V7765	Scan counter — stores the total number of scan cycles that have occurred since the last Program Mode to Run Mode transition (in decimal)	
V7766	Contains the number of seconds on the clock (00-59)	
V7767	Contains the number of seconds on the clock (00-59)	
V7770	Contains the number of hours on the clock (00-23)	
V7771	Contains the day of the week (Mon., Tues., Wed., etc.)	
V7772	Contains the day of the work (Work, Flass, Wed., etc.)	
V7773	Contains the day of the month (01, 52, 66.)	
V7774	Contains the Horian (Or to 12)	
V7775	Scan — stores the current scan time (milliseconds)	
V7776	Scan — stores the minimum scan time (miniscontas) Scan — stores the minimum scan time that has occurred since the last Program Mode to Run Mode transition (milliseconds)	
V7777		
VIIII	Scan — stores the maximum scan rate since the last power cycle (milliseconds)	

DL06 Aliases

An alias is an alternate way of referring to certain memory types, such as timer/counter current values, V-memory locations for I/O points, etc., which simplifies understanding the memory address. The use of the alias is optional, but some users may find the alias to be helpful when developing a program. The table below shows how the aliases can be used.

		DL06 Aliases
Address Start	Alias Start	Example
V0	TA0	V0 is the timer accumulator value for timer 0, therefore, its alias is TA0. TA1 is the alias for V1, etc
V1000	CTA0	V1000 is the counter accumulator value for counter 0, therefore, its alias is CTA0. CTA1 is the alias for V1001, etc.
V40000	VGX	V40000 is the word memory reference for discrete bits GX0 through GX17, therefore, its alias is VGX0. V40001 is the word memory reference for discrete bits GX20 through GX 37, therefore, its alias is VGX20.
V40200	VGY	V40200 is the word memory reference for discrete bits GY0 through GY17, therefore, its alias is VGY0. V40201 is the word memory reference for discrete bits GY20 through GY 37, therefore, its alias is VGY20.
V40400	VX0	V40400 is the word memory reference for discrete bits X0 through X17, therefore, its alias is VX0. V40401 is the word memory reference for discrete bits X20 through X37, therefore, its alias is VX20.
V40500	VY0	V40500 is the word memory reference for discrete bits Y0 through Y17, therefore, its alias is VY0. V40501 is the word memory reference for discrete bits Y20 through Y37, therefore, its alias is VY20.
V40600	VCO	V40600 is the word memory reference for discrete bits C0 through C17, therefore, its alias is VC0. V40601 is the word memory reference for discrete bits C20 through C37, therefore, its alias is VC20.
V41000	VS0	V41000 is the word memory reference for discrete bits S0 through S17, therefore, its alias is VS0. V41001 is the word memory reference for discrete bits S20 through S37, therefore, its alias is VS20.
V41100	VT0	V41100 is the word memory reference for discrete bits T0 through T17, therefore, its alias is VT0. V41101 is the word memory reference for discrete bits T20 through T37, therefore, its alias is VT20.
V41140	VCT0	V41140 is the word memory reference for discrete bits CT0 through CT17, therefore, its alias is VCT0. V41141 is the word memory reference for discrete bits CT20 through CT37, therefore, its alias is VCT20.
V41200	VSP0	V41200 is the word memory reference for discrete bits SP0 through SP17, therefore, its alias is VSP0. V41201 is the word memory reference for discrete bits SP20 through SP37, therefore, its alias is VSP20.

DL06 Memory Map

Memory Type	Discrete Memory Reference (octal)	Word Memory Reference (octal)	Decimal	Symbol
Input Points	X0 – X777	V40400 - V40437	512	X0 -
Output Points	Y0 – Y777	V40500 – V40537	512	Y0 -()-
Control Relays	C0 – C1777	V40600 - V40677	1024	C0 C0
Special Relays	SP0 – SP777	V41200 – V41237	512	SP0
Timers	T0 – T377	V41100 – V41117	256	TMR T0 K100
Timer Current Values	None	V0 – V377	256	V0 K100 - ≥ -
Timer Status Bits	T0 – T377	V41100 – V41117	256	T0 -
Counters	CT0 – CT177	V41140 – V41147	128	CNT CT0 K10
Counter Current Values	None	V1000 – V1177	128	V1000 K100 - ≥ -
Counter Status Bits	CTO - CT177	V41140 – V41147	128	СТ0 — —
Data Words (See Appendix F)	None	V400-V677 V1200 – V7377 V10000 - V17777	192 3200 4096	None specific, used with many instructions.
Data Words EEPROM (See Appendix F)	None	V7400 – V7577	128	None specific, used with many instructions. May be non-volatile if MOV inst. is used. Data can be rewritten to EEPROM at least 100,000 times before it fails.
Stages	S0 – S1777	V41000 – V41017	1024	SG
Remote I/O (future use) (See Note 1)	GX0-GX3777 GY0-GY3777	V40000-V40177 V40200-V40377	2048 2048	GX0 GY0
System parameters	None	V700-V777 V7600 – V7777 V36000-V37777	64 128 1024	None specific, used for various purposes

NOTE 1: This area can be used for additional Data Words.

NOTE 2: The DL06 systems have 20 fixed discrete inputs and 16 fixed discrete outputs, but the total can be increased by up to 64 inputs or 64 outputs, or a combination of both.

X Input/Y Output Bit Map

This table provides a listing of individual input and output points associated with each V-memory address bit for the DL06's twenty integrated physical inputs and 16 integrated physical outputs in addition to up to 64 inputs and 64 outputs for option cards. Actual available references are X0 to X777 (V40400 – V40437) and Y0 to Y777 (V40500 - V40537).

MSB			DI	LO6 Ir	ıput (X) an	d Out	tput (Y) Po	ints		LSB				X Input	Y Output
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Address
017	016	015	014	013	012	011	010	007	006	005	004	003	002	001	000	V40400	V40500
037	036	035	034	033	032	031	030	027	026	025	024	023	022	021	020	V40401	V40501
057	056	055	054	053	052	051	050	047	046	045	044	043	042	041	040	V40402	V40502
077	076	075	074	073	072	071	070	067	066	065	064	063	062	061	060	V40403	V40503
117	116	115	114	113	112	111	110	107	106	105	104	103	102	101	100	V40404	V40504
137	136	135	134	133	132	131	130	127	126	125	124	123	122	121	120	V40405	V40505
157	156	155	154	153	152	151	150	147	146	145	144	143	142	141	140	V40406	V40506
177	176	175	174	173	172	171	170	167	166	165	164	163	162	161	160	V40407	V40507
217	216	215	214	213	212	211	210	207	206	205	204	203	202	201	200	V40410	V40510
237	236	235	234	233	232	231	230	227	226	225	224	223	222	221	220	V40411	V40511
257	256	255	254	253	252	251	250	247	246	245	244	243	242	241	240	V40412	V40512
277	276	275	274	273	272	271	270	267	266	265	264	263	262	261	260	V40413	V40513
317	316	315	314	313	312	311	310	307	306	305	304	303	302	301	300	V40414	V40514
337	336	335	334	333	332	331	330	327	326	325	324	323	322	321	320	V40415	V40515
357	356	355	354	353	352	351	350	347	346	345	344	343	342	341	340	V40416	V40516
377	376	375	374	373	372	371	370	367	366	365	364	363	362	361	360	V40417	V40517
417	416	415	414	413	412	411	410	407	406	405	404	403	402	401	400	V40420	V40520
437	436	435	434	433	432	431	430	427	426	425	424	423	422	421	420	V40421	V40521
457	456	455	454	453	452	451	450	447	446	445	444	443	442	441	440	V40422	V40522
477	476	475	474	473	472	471	470	467	466	465	464	463	462	461	460	V40423	V40523
517	516	515	514	513	512	511	510	507	506	505	504	503	502	501	500	V40424	V40524
537	536	535	534	533	532	531	530	527	526	525	524	523	522	521	520	V40425	V40525
557	556	555	554	553	552	551	550	547	546	545	544	543	542	541	540	V40426	V40526
577	576	575	574	573	572	571	570	567	566	565	564	563	562	561	560	V40427	V40527
617	616	615	614	613	612	611	610	607	606	605	604	603	602	601	600	V40430	V40530
637	636	635	634	633	632	631	630	627	626	625	624	623	622	621	620	V40431	V40531
657	656	655	654	653	652	651	650	647	646	645	644	643	642	641	640	V40432	V40532
677	676	675	674	673	672	671	670	667	666	665	664	663	662	661	660	V40433	V40533
717	716	715	714	713	712	711	710	707	706	705	704	703	702	701	700	V40434	V40534
737	736	735	734	733	732	731	730	727	726	725	724	723	722	721	720	V40435	V40535
757	756	755	754	753	752	751	750	747	746	745	744	743	742	741	740	V40436	V40536
777	776	775	774	773	772	771	770	767	766	765	764	763	762	761	760	V40437	V40537

Stage Control/Status Bit Map

This table provides a listing of individual Stage control bits associated with each V-memory address bit.

MSB					DL	.06 St	age (S	S) Cor	itrol B	Bits					LSB	Address
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Auuless
017	016	015	014	013	012	011	010	007	006	005	004	003	002	001	000	V41000
037	036	035	034	033	032	031	030	027	026	025	024	023	022	021	020	V41001
057	056	055	054	053	052	051	050	047	046	045	044	043	042	041	040	V41002
077	076	075	074	073	072	071	070	067	066	065	064	063	062	061	060	V41003
117	116	115	114	113	112	111	110	107	106	105	104	103	102	101	100	V41004
137	136	135	134	133	132	131	130	127	126	125	124	123	122	121	120	V41005
157	156	155	154	153	152	151	150	147	146	145	144	143	142	141	140	V41006
177	176	175	174	173	172	171	170	167	166	165	164	163	162	161	160	V41007
217	216	215	214	213	212	211	210	207	206	205	204	203	202	201	200	V41010
237	236	235	234	233	232	231	230	227	226	225	224	223	222	221	220	V41011
257	256	255	254	253	252	251	250	247	246	245	244	243	242	241	240	V41012
277	276	275	274	273	272	271	270	267	266	265	264	263	262	261	260	V41013
317	316	315	314	313	312	311	310	307	306	305	304	303	302	301	300	V41014
337	336	335	334	333	332	331	330	327	326	325	324	323	322	321	320	V41015
357	356	355	354	353	352	351	350	347	346	345	344	343	342	341	340	V41016
377	376	375	374	373	372	371	370	367	366	365	364	363	362	361	360	V41017
417	416	415	414	413	412	411	410	407	406	405	404	403	402	401	400	V41020
437	436	435	434	433	432	431	430	427	426	425	424	423	422	421	420	V41021
457	456	455	454	453	452	451	450	447	446	445	444	443	442	441	440	V41022
477	476	475	474	473	472	471	470	467	466	465	464	463	462	461	460	V41023
517	516	515	514	513	512	511	510	507	506	505	504	503	502	501	500	V41024
537	536	535	534	533	532	531	530	527	526	525	524	523	522	521	520	V41025
557	556	555	554	553	552	551	550	547	546	545	544	543	542	541	540	V41026
577	576	575	574	573	572	571	570	567	566	565	564	563	562	561	560	V41027
617	616	615	614	613	612	611	610	607	606	605	604	603	602	601	600	V41030
637	636	635	634	633	632	631	630	627	626	625	624	623	622	621	620	V41031
657	656	655	654	653	652	651	650	647	646	645	644	643	642	641	640	V41032
677	676	675	674	673	672	671	670	667	666	665	664	663	662	661	660	V41033
717	716	715	714	713	712	711	710	707	706	705	704	703	702	701	700	V41034
737	736	735	734	733	732	731	730	727	726	725	724	723	722	721	720	V41035
757	756	755	754	753	752	751	750	747	746	745	744	743	742	741	740	V41036
777	776	775	774	773	772	771	770	767	766	765	764	763	762	761	760	V41037

This table is continued on the next page.

MSB				D	L06 S	tage	(S) Co	ontrol	Bits (cont'd	I)				LSB	Address
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address
1017	1016	1015	1014	1013	1012	1011	1010	1007	1006	1005	1004	1003	1002	1001	1000	V41040
1037	1036	1035	1034	1033	1032	1031	1030	1027	1026	1025	1024	1023	1022	1021	1020	V41041
1057	1056	1055	1054	1053	1052	1051	1050	1047	1046	1045	1044	1043	1042	1041	1040	V41042
1077	1076	1075	1074	1073	1072	1071	1070	1067	1066	1065	1064	1063	1062	1061	1060	V41043
1117	1116	1115	1114	1113	1112	1111	1110	1107	1106	1105	1104	1103	1102	1101	1100	V41044
1137	1136	1135	1134	1133	1132	1131	1130	1127	1126	1125	1124	1123	1122	1121	1120	V41045
1157	1156	1155	1154	1153	1152	1151	1150	1147	1146	1145	1144	1143	1142	1141	1140	V41046
1177	1176	1175	1174	1173	1172	1171	1170	1167	1166	1165	1164	1163	1162	1161	1160	V41047
1217	1216	1215	1214	1213	1212	1211	1210	1207	1206	1205	1204	1203	1202	1201	1200	V41050
1237	1236	1235	1234	1233	1232	1231	1230	1227	1226	1225	1224	1223	1222	1221	1220	V41051
1257	1256	1255	1254	1253	1252	1251	1250	1247	1246	1245	1244	1243	1242	1241	1240	V41052
1277	1276	1275	1274	1273	1272	1271	1270	1267	1266	1265	1264	1263	1262	1261	1260	V41053
1317	1316	1315	1314	1313	1312	1311	1310	1307	1306	1305	1304	1303	1302	1301	1300	V41054
1337	1336	1335	1334	1333	1332	1331	1330	1327	1326	1325	1324	1323	1322	1321	1320	V41055
1357	1356	1355	1354	1353	1352	1351	1350	1347	1346	1345	1344	1343	1342	1341	1340	V41056
1377	1376	1375	1374	1373	1372	1371	1370	1367	1366	1365	1364	1363	1362	1361	1360	V41057
1417	1416	1415	1414	1413	1412	1411	1410	1407	1406	1405	1404	1403	1402	1401	1400	V41060
1437	1436	1435	1434	1433	1432	1431	1430	1427	1426	1425	1424	1423	1422	1421	1420	V41061
1457	1456	1455	1454	1453	1452	1451	1450	1447	1446	1445	1444	1443	1442	1441	1440	V41062
1477	1476	1475	1474	1473	1472	1471	1470	1467	1466	1465	1464	1463	1462	1461	1460	V41063
1517	1516	1515	1514	1513	1512	1511	1510	1507	1506	1505	1504	1503	1502	1501	1500	V41064
1537	1536	1535	1534	1533	1532	1531	1530	1527	1526	1525	1524	1523	1522	1521	1520	V41065
1557	1556	1555	1554	1553	1552	1551	1550	1547	1546	1545	1544	1543	1542	1541	1540	V41066
1577	1576	1575	1574	1573	1572	1571	1570	1567	1566	1565	1564	1563	1562	1561	1560	V41067
1617	1616	1615	1614	1613	1612	1611	1610	1607	1606	1605	1604	1603	1602	1601	1600	V41070
1637	1636	1635	1634	1633	1632	1631	1630	1627	1626	1625	1624	1623	1622	1621	1620	V41071
1657	1656	1655	1654	1653	1652	1651	1650	1647	1646	1645	1644	1643	1642	1641	1640	V41072
1677	1676	1675	1674	1673	1672	1671	1670	1667	1666	1665	1664	1663	1662	1661	1660	V41073
1717	1716	1715	1714	1713	1712	1711	1710	1707	1706	1705	1704	1703	1702	1701	1700	V41074
1737	1736	1735	1734	1733	1732	1731	1730	1727	1726	1725	1724	1723	1722	1721	1720	V41075
1757	1756	1755	1754	1753	1752	1751	1750	1747	1746	1745	1744	1743	1742	1741	1740	V41076
1777	1776	1775	1774	1773	1772	1771	1770	1767	1766	1765	1764	1763	1762	1761	1760	V41077

Control Relay Bit Map

This table provides a listing of the individual control relays associated with each V-memory address bit.

MSB					[)L06 (Contro	l Rela	ays (C)					LSB	Address
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address
017	016	015	014	013	012	011	010	007	006	005	004	003	002	001	000	V40600
037	036	035	034	033	032	031	030	027	026	025	024	023	022	021	020	V40601
057	056	055	054	053	052	051	050	047	046	045	044	043	042	041	040	V40602
077	076	075	074	073	072	071	070	067	066	065	064	063	062	061	060	V40603
117	116	115	114	113	112	111	110	107	106	105	104	103	102	101	100	V40604
137	136	135	134	133	132	131	130	127	126	125	124	123	122	121	120	V40605
157	156	155	154	153	152	151	150	147	146	145	144	143	142	141	140	V40606
177	176	175	174	173	172	171	170	167	166	165	164	163	162	161	160	V40607
217	216	215	214	213	212	211	210	207	206	205	204	203	202	201	200	V40610
237	236	235	234	233	232	231	230	227	226	225	224	223	222	221	220	V40611
257	256	255	254	253	252	251	250	247	246	245	244	243	242	241	240	V40612
277	276	275	274	273	272	271	270	267	266	265	264	263	262	261	260	V40613
317	316	315	314	313	312	311	310	307	306	305	304	303	302	301	300	V40614
337	336	335	334	333	332	331	330	327	326	325	324	323	322	321	320	V40615
357	356	355	354	353	352	351	350	347	346	345	344	343	342	341	340	V40616
377	376	375	374	373	372	371	370	367	366	365	364	363	362	361	360	V40617
417	416	415	414	413	412	411	410	407	406	405	404	403	402	401	400	V40620
437	436	435	434	433	432	431	430	427	426	425	424	423	422	421	420	V40621
457	456	455	454	453	452	451	450	447	446	445	444	443	442	441	440	V40622
477	476	475	474	473	472	471	470	467	466	465	464	463	462	461	460	V40623
517	516	515	514	513	512	511	510	507	506	505	504	503	502	501	500	V40624
537	536	535	534	533	532	531	530	527	526	525	524	523	522	521	520	V40625
557	556	555	554	553	552	551	550	547	546	545	544	543	542	541	540	V40626
577	576	575	574	573	572	571	570	567	566	565	564	563	562	561	560	V40627
617	616	615	614	613	612	611	610	607	606	605	604	603	602	601	600	V40630
637	636	635	634	633	632	631	630	627	626	625	624	623	622	621	620	V40631
657	656	655	654	653	652	651	650	647	646	645	644	643	642	641	640	V40632
677	676	675	674	673	672	671	670	667	666	665	664	663	662	661	660	V40633
717	716	715	714	713	712	711	710	707	706	705	704	703	702	701	700	V40634
737	736	735	734	733	732	731	730	727	726	725	724	723	722	721	720	V40635
757	756	755	754	753	752	751	750	747	746	745	744	743	742	741	740	V40636
777	776	775	774	773	772	771	770	767	766	765	764	763	762	761	760	V40637

This table is continued on the next page.

MSB					DL06	Cont	rol Re	elays ((C) (cc	nt'd)					LSB	Address
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Auuress
1017	1016	1015	1014	1013	1012	1011	1010	1007	1006	1005	1004	1003	1002	1001	1000	V40640
1037	1036	1035	1034	1033	1032	1031	1030	1027	1026	1025	1024	1023	1022	1021	1020	V40641
1057	1056	1055	1054	1053	1052	1051	1050	1047	1046	1045	1044	1043	1042	1041	1040	V40642
1077	1076	1075	1074	1073	1072	1071	1070	1067	1066	1065	1064	1063	1062	1061	1060	V40643
1117	1116	1115	1114	1113	1112	1111	1110	1107	1106	1105	1104	1103	1102	1101	1100	V40644
1137	1136	1135	1134	1133	1132	1131	1130	1127	1126	1125	1124	1123	1122	1121	1120	V40645
1157	1156	1155	1154	1153	1152	1151	1150	1147	1146	1145	1144	1143	1142	1141	1140	V40646
1177	1176	1175	1174	1173	1172	1171	1170	1167	1166	1165	1164	1163	1162	1161	1160	V40647
1217	1216	1215	1214	1213	1212	1211	1210	1207	1206	1205	1204	1203	1202	1201	1200	V40650
1237	1236	1235	1234	1233	1232	1231	1230	1227	1226	1225	1224	1223	1222	1221	1220	V40651
1257	1256	1255	1254	1253	1252	1251	1250	1247	1246	1245	1244	1243	1242	1241	1240	V40652
1277	1276	1275	1274	1273	1272	1271	1270	1267	1266	1265	1264	1263	1262	1261	1260	V40653
1317	1316	1315	1314	1313	1312	1311	1310	1307	1306	1305	1304	1303	1302	1301	1300	V40654
1337	1336	1335	1334	1333	1332	1331	1330	1327	1326	1325	1324	1323	1322	1321	1320	V40655
1357	1356	1355	1354	1353	1352	1351	1350	1347	1346	1345	1344	1343	1342	1341	1340	V40656
1377	1376	1375	1374	1373	1372	1371	1370	1367	1366	1365	1364	1363	1362	1361	1360	V40657
1417	1416	1415	1414	1413	1412	1411	1410	1407	1406	1405	1404	1403	1402	1401	1400	V40660
1437	1436	1435	1434	1433	1432	1431	1430	1427	1426	1425	1424	1423	1422	1421	1420	V40661
1457	1456	1455	1454	1453	1452	1451	1450	1447	1446	1445	1444	1443	1442	1441	1440	V40662
1477	1476	1475	1474	1473	1472	1471	1470	1467	1466	1465	1464	1463	1462	1461	1460	V40663
1517	1516	1515	1514	1513	1512	1511	1510	1507	1506	1505	1504	1503	1502	1501	1500	V40664
1537	1536	1535	1534	1533	1532	1531	1530	1527	1526	1525	1524	1523	1522	1521	1520	V40665
1557	1556	1555	1554	1553	1552	1551	1550	1547	1546	1545	1544	1543	1542	1541	1540	V40666
1577	1576	1575	1574	1573	1572	1571	1570	1567	1566	1565	1564	1563	1562	1561	1560	V40667
1617	1616	1615	1614	1613	1612	1611	1610	1607	1606	1605	1604	1603	1602	1601	1600	V40670
1637	1636	1635	1634	1633	1632	1631	1630	1627	1626	1625	1624	1623	1622	1621	1620	V40671
1657	1656	1655	1654	1653	1652	1651	1650	1647	1646	1645	1644	1643	1642	1641	1640	V40672
1677	1676	1675	1674	1673	1672	1671	1670	1667	1666	1665	1664	1663	1662	1661	1660	V40673
1717	1716	1715	1714	1713	1712	1711	1710	1707	1706	1705	1704	1703	1702	1701	1700	V40674
1737	1736	1735	1734	1733	1732	1731	1730	1727	1726	1725	1724	1723	1722	1721	1720	V40675
1757	1756	1755	1754	1753	1752	1751	1750	1747	1746	1745	1744	1743	1742	1741	1740	V40676
1777	1776	1775	1774	1773	1772	1771	1770	1767	1766	1765	1764	1763	1762	1761	1760	V40677

Timer Status Bit Map

This table provides a listing of individual timer contacts associated with each V-memory address bit.

MSB						L06 1	imer	(T) Co	ontact	S					LSB	Address
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Auuress
017	016	015	014	013	012	011	010	007	006	005	004	003	002	001	000	V41100
037	036	035	034	033	032	031	030	027	026	025	024	023	022	021	020	V41101
057	056	055	054	053	052	051	050	047	046	045	044	043	042	041	040	V41102
077	076	075	074	073	072	071	070	067	066	065	064	063	062	061	060	V41103
117	116	115	114	113	112	111	110	107	106	105	104	103	102	101	100	V41104
137	136	135	134	133	132	131	130	127	126	125	124	123	122	121	120	V41105
157	156	155	154	153	152	151	150	147	146	145	144	143	142	141	140	V41106
177	176	175	174	173	172	171	170	167	166	165	164	163	162	161	160	V41107
217	216	215	214	213	212	211	210	207	206	205	204	203	202	201	200	V41110
237	236	235	234	233	232	231	230	227	226	225	224	223	222	221	220	V41111
257	256	255	254	253	252	251	250	247	246	245	244	243	242	241	240	V41112
277	276	275	274	273	272	271	270	267	266	265	264	263	262	261	260	V41113
317	316	315	314	313	312	311	310	307	306	305	304	303	302	301	300	V41114
337	336	335	334	333	332	331	330	327	326	325	324	323	322	321	320	V41115
357	356	355	354	353	352	351	350	347	346	345	344	343	342	341	340	V41116
377	376	375	374	373	372	371	370	367	366	365	364	363	362	361	360	V41117

Counter Status Bit Map

This table provides a listing of individual counter contacts associated with each V-memory address bit.

MSB					DL	06 Co	unter	(CT)	Conta	cts					LSB	Address
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Audicss
017	016	015	014	013	012	011	010	007	006	005	004	003	002	001	000	V41140
037	036	035	034	033	032	031	030	027	026	025	024	023	022	021	020	V41141
057	056	055	054	053	052	051	050	047	046	045	044	043	042	041	040	V41142
077	076	075	074	073	072	071	070	067	066	065	064	063	062	061	060	V41143
117	116	115	114	113	112	111	110	107	106	105	104	103	102	101	100	V41144
137	136	135	134	133	132	131	130	127	126	125	124	123	122	121	120	V41145
157	156	155	154	153	152	151	150	147	146	145	144	143	142	141	140	V41146
177	176	175	174	173	172	171	170	167	166	165	164	163	162	161	160	V41147

GX and **GY** I/O Bit Map

This table provides a listing of the individual global I/O points associated with each V-memory address bit.

MSB				DL	.06 G	X and	I GY I	/0 Pc	oints			LS	SB			GX	GY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Address
017	016	015	014	013	012	011	010	007	006	005	004	003	002	001	000	V40000	V40200
037	036	035	034	033	032	031	030	027	026	025	024	023	022	021	020	V40001	V40201
057	056	055	054	053	052	051	050	047	046	045	044	043	042	041	040	V40002	V40202
077	076	075	074	073	072	071	070	067	066	065	064	063	062	061	060	V40003	V40203
117	116	115	114	113	112	111	110	107	106	105	104	103	102	101	100	V40004	V40204
137	136	135	134	133	132	131	130	127	126	125	124	123	122	121	120	V40005	V40205
157	156	155	154	153	152	151	150	147	146	145	144	143	142	141	140	V40006	V40206
177	176	175	174	173	172	171	170	167	166	165	164	163	162	161	160	V40007	V40207
217	216	215	214	213	212	211	210	207	206	205	204	203	202	201	200	V40010	V40210
237	236	235	234	233	232	231	230	227	226	225	224	223	222	221	220	V40011	V40211
257	256	255	254	253	252	251	250	247	246	245	244	243	242	241	240	V40012	V40212
277	276	275	274	273	272	271	270	267	266	265	264	263	262	261	260	V40013	V40213
317	316	315	314	313	312	311	310	307	306	305	304	303	302	301	300	V40004	V40214
337	336	335	334	333	332	331	330	327	326	325	324	323	322	321	320	V40015	V40215
357	356	355	354	353	352	351	350	347	346	345	344	343	342	341	340	V40016	V40216
377	376	375	374	373	372	371	370	367	366	365	364	363	362	361	360	V40007	V40217
417	416	415	414	413	412	411	410	407	406	405	404	403	402	401	400	V40020	V40220
437	436	435	434	433	432	431	430	427	426	425	424	423	422	421	420	V40021	V40221
457	456	455	454	453	452	451	450	447	446	445	444	443	442	441	440	V40022	V40222
477	476	475	474	473	472	471	470	467	466	465	464	463	462	461	460	V40023	V40223
517	516	515	514	513	512	511	510	507	506	505	504	503	502	501	500	V40024	V40224
537	536	535	534	533	532	531	530	527	526	525	524	523	522	521	520	V40025	V40225
557	556	555	554	553	552	551	550	547	546	545	544	543	542	541	540	V40026	V40226
577	576	575	574	573	572	571	570	567	566	565	564	563	562	561	560	V40027	V40227
617	616	615	614	613	612	611	610	607	606	605	604	603	602	601	600	V40030	V40230
637	636	635	634	633	632	631	630	627	626	625	624	623	622	621	620	V40031	V40231
657	656	655	654	653	652	651	650	647	646	645	644	643	642	641	640	V40032	V40232
677	676	675	674	673	672	671	670	667	666	665	664	663	662	661	660	V40033	V40233
717	716	715	714	713	712	711	710	707	706	705	704	703	702	701	700	V40034	V40234
737	736	735	734	733	732	731	730	727	726	725	724	723	722	721	720	V40035	V40235
757	756	755	754	753	752	751	750	747	746	745	744	743	742	741	740	V40036	V40236
777	776	775	774	773	772	771	770	767	766	765	764	763	762	761	760	V40037	V40237

This table is continued on the next page.

MSB				D	L06 G	X an	d GY	/0 Pc	ints (cont'	d) (t				LSB	GX	GY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Address
1017	1016	1015	1014	1013	1012	1011	1010	1007	1006	1005	1004	1003	1002	1001	1000	V40040	V40240
1037	1036	1035	1034	1033	1032	1031	1030	1027	1026	1025	1024	1023	1022	1021	1020	V40041	V40241
1057	1056	1055	1054	1053	1052	1051	1050	1047	1046	1045	1044	1043	1042	1041	1040	V40042	V40242
1077	1076	1075	1074	1073	1072	1071	1070	1067	1066	1065	1064	1063	1062	1061	1060	V40043	V40243
1117	1116	1115	1114	1113	1112	1111	1110	1107	1106	1105	1104	1103	1102	1101	1100	V40044	V40244
1137	1136	1135	1134	1133	1132	1131	1130	1127	1126	1125	1124	1123	1122	1121	1120	V40045	V40245
1157	1156	1155	1154	1153	1152	1151	1150	1147	1146	1145	1144	1143	1142	1141	1140	V40046	V40246
1177	1176	1175	1174	1173	1172	1171	1170	1167	1166	1165	1164	1163	1162	1161	1160	V40047	V40247
1217	1216	1215	1214	1213	1212	1211	1210	1207	1206	1205	1204	1203	1202	1201	1200	V40050	V40250
1237	1236	1235	1234	1233	1232	1231	1230	1227	1226	1225	1224	1223	1222	1221	1220	V40051	V40251
1257	1256	1255	1254	1253	1252	1251	1250	1247	1246	1245	1244	1243	1242	1241	1240	V40052	V40252
1277	1276	1275	1274	1273	1272	1271	1270	1267	1266	1265	1264	1263	1262	1261	1260	V40053	V40253
1317	1316	1315	1314	1313	1312	1311	1310	1307	1306	1305	1304	1303	1302	1301	1300	V40054	V40254
1337	1336	1335	1334	1333	1332	1331	1330	1327	1326	1325	1324	1323	1322	1321	1320	V40055	V40255
1357	1356	1355	1354	1353	1352	1351	1350	1347	1346	1345	1344	1343	1342	1341	1340	V40056	V40256
1377	1376	1375	1374	1373	1372	1371	1370	1367	1366	1365	1364	1363	1362	1361	1360	V40057	V40257
1417	1416	1415	1414	1413	1412	1411	1410	1407	1406	1405	1404	1403	1402	1401	1400	V40060	V40260
1437	1436	1435	1434	1433	1432	1431	1430	1427	1426	1425	1424	1423	1422	1421	1420	V40061	V40261
1457	1456	1455	1454	1453	1452	1451	1450	1447	1446	1445	1444	1443	1442	1441	1440	V40062	V40262
1477	1476	1475	1474	1473	1472	1471	1470	1467	1466	1465	1464	1463	1462	1461	1460	V40063	V40263
1517	1516	1515	1514	1513	1512	1511	1510	1507	1506	1505	1504	1503	1502	1501	1500	V40064	V40264
1537	1536	1535	1534	1533	1532	1531	1530	1527	1526	1525	1524	1523	1522	1521	1520	V40065	V40265
1557	1556	1555	1554	1553	1552	1551	1550	1547	1546	1545	1544	1543	1542	1541	1540	V40066	V40266
1577	1576	1575	1574	1573	1572	1571	1570	1567	1566	1565	1564	1563	1562	1561	1560	V40067	V40267
1617	1616	1615	1614	1613	1612	1611	1610	1607	1606	1605	1604	1603	1602	1601	1600	V40070	V40270
1637	1636	1635	1634	1633	1632	1631	1630	1627	1626	1625	1624	1623	1622	1621	1620	V40071	V40271
1657	1656	1655	1654	1653	1652	1651	1650	1647	1646	1645	1644	1643	1642	1641	1640	V40072	V40272
1677	1676	1675	1674	1673	1672	1671	1670	1667	1666	1665	1664	1663	1662	1661	1660	V40073	V40273
1717	1716	1715	1714	1713	1712	1711	1710	1707	1706	1705	1704	1703	1702	1701	1700	V40074	V40274
1737	1736	1735	1734	1733	1732	1731	1730	1727	1726	1725	1724	1723	1722	1721	1720	V40075	V40275
1757	1756	1755	1754	1753	1752	1751	1750	1747	1746	1745	1744	1743	1742	1741	1740	V40076	V40276
1777	1776	1775	1774	1773	1772	1771	1770	1767	1766	1765	1764	1763	1762	1761	1760	V40077	V40277

This table is continued on the next page.

MSB				D	L06 G	X and	d GY I	/0 Po	ints (cont'o	d)				LSB	GX	GY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Address
2017	2016	2015	2014	2013	2012	2011	2010	2007	2006	2005	2004	2003	2002	2001	2000	V40100	V40300
2037	2036	2035	2034	2033	2032	2031	2030	2027	2026	2025	2024	2023	2022	2021	2020	V40101	V40301
2057	2056	2055	2054	2053	2052	2051	2050	2047	2046	2045	2044	2043	2042	2041	2040	V40102	V40302
2077	2076	2075	2074	2073	2072	2071	2070	2067	2066	2065	2064	2063	2062	2061	2060	V40103	V40303
2117	2116	2115	2114	2113	2112	2111	2110	2107	2106	2105	2104	2103	2102	2101	2100	V40104	V40304
2137	2136	2135	2134	2133	2132	2131	2130	2127	2126	2125	2124	2123	2122	2121	2120	V40105	V40305
2157	2156	2155	2154	2153	2152	2151	2150	2147	2146	2145	2144	2143	2142	2141	2140	V40106	V40306
2177	2176	2175	2174	2173	2172	2171	2170	2167	2166	2165	2164	2163	2162	2161	2160	V40107	V40307
2217	2216	2215	2214	2213	2212	2211	2210	2207	2206	2205	2204	2203	2202	2201	2200	V40110	V40310
2237	2236	2235	2234	2233	2232	2231	2230	2227	2226	2225	2224	2223	2222	2221	2220	V40111	V40311
2257	2256	2255	2254	2253	2252	2251	2250	2247	2246	2245	2244	2243	2242	2241	2240	V40112	V40312
2277	2276	2275	2274	2273	2272	2271	2270	2267	2266	2265	2264	2263	2262	2261	2260	V40113	V40313
2317	2316	2315	2314	2313	2312	2311	2310	2307	2306	2305	2304	2303	2302	2301	2300	V40114	V40314
2337	2336	2335	2334	2333	2332	2331	2330	2327	2326	2325	2324	2323	2322	2321	2320	V40115	V40315
2357	2356	2355	2354	2353	2352	2351	2350	2347	2346	2345	2344	2343	2342	2341	2340	V40116	V40316
2377	2376	2375	2374	2373	2372	2371	2370	2367	2366	2365	2364	2363	2362	2361	2360	V40117	V40317
2417	2416	2415	2414	2413	2412	2411	2410	2407	2406	2405	2404	2403	2402	2401	2400	V40120	V40320
2437	2436	2435	2434	2433	2432	2431	2430	2427	2426	2425	2424	2423	2422	2421	2420	V40121	V40321
2457	2456	2455	2454	2453	2452	2451	2450	2447	2446	2445	2444	2443	2442	2441	2440	V40122	V40322
2477	2476	2475	2474	2473	2472	2471	2470	2467	2466	2465	2464	2463	2462	2461	2460	V40123	V40323
2517	2516	2515	2514	2513	2512	2511	2510	2507	2506	2505	2504	2503	2502	2501	2500	V40124	V40324
2537	2536	2535	2534	2533	2532	2531	2530	2527	2526	2525	2524	2523	2522	2521	2520	V40125	V40325
2557	2556	2555	2554	2553	2552	2551	2550	2547	2546	2545	2544	2543	2542	2541	2540	V40126	V40326
2577	2576	2575	2574	2573	2572	2571	2570	2567	2566	2565	2564	2563	2562	2561	2560	V40127	V40327
2617	2616	2615	2614	2613	2612	2611	2610	2607	2606	2605	2604	2603	2602	2601	2600	V40130	V40330
2637	2636	2635	2634	2633	2632	2631	2630	2627	2626	2625	2624	2623	2622	2621	2620	V40131	V40331
2657	2656	2655	2654	2653	2652	2651	2650	2647	2646	2645	2644	2643	2642	2641	2640	V40132	V40332
2677	2676	2675	2674	2673	2672	2671	2670	2667	2666	2665	2664	2663	2662	2661	2660	V40133	V40333
2717	2716	2715	2714	2713	2712	2711	2710	2707	2706	2705	2704	2703	2702	2701	2700	V40134	V40334
2737	2736	2735	2734	2733	2732	2731	2730	2727	2726	2725	2724	2723	2722	2721	2720	V40135	V40335
2757	2756	2755	2754	2753	2752	2751	2750	2747	2736	2735	2734	2733	2732	2731	2730	V40136	V40336
2777	2776	2775	2774	2773	2772	2771	2770	2767	2766	2765	2764	2763	2762	2761	2760	V40137	V40337

This table is continued on the next page.

MSB				D	L06 (GX an	d GY	I/O Po	oints ((cont'	d)				LSB	GX	GY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Address	Address
3017	3016	3015	3014	3013	3012	3011	3010	3007	3006	3005	3004	3003	3002	3001	3000	V40140	V40340
3037	3036	3035	3034	3033	3032	3031	3030	3027	3026	3025	3024	3023	3022	3021	3020	V40141	V40341
3057	3056	3055	3054	3053	3052	3051	3050	3047	3046	3045	3044	3043	3042	3041	3040	V40142	V40342
3077	3076	3075	3074	3073	3072	3071	3070	3067	3066	3065	3064	3063	3062	3061	3060	V40143	V40343
3117	3116	3115	3114	3113	3112	3111	3110	3107	3106	3105	3104	3103	3102	3101	3100	V40144	V40344
3137	3136	3135	3134	3133	3132	3131	3130	3127	3126	3125	3124	3123	3122	3121	3120	V40145	V40345
3157	3156	3155	3154	3153	3152	3151	3150	3147	3146	3145	3144	3143	3142	3141	3140	V40146	V40346
3177	3176	3175	3174	3173	3172	3171	3170	3167	3166	3165	3164	3163	3162	3161	3160	V40147	V40347
3217	3216	3215	3214	3213	3212	3211	3210	3207	3206	3205	3204	3203	3202	3201	3200	V40150	V40350
3237	3236	3235	3234	3233	3232	3231	3230	3227	3226	3225	3224	3223	3222	3221	3220	V40151	V40351
3257	3256	3255	3254	3253	3252	3251	3250	3247	3246	3245	3244	3243	3242	3241	3240	V40152	V40352
3277	3276	3275	3274	3273	3272	3271	3270	3267	3266	3265	3264	3263	3262	3261	3260	V40153	V40353
3317	3316	3315	3314	3313	3312	3311	3310	3307	3306	3305	3304	3303	3302	3301	3300	V40154	V40354
3337	3336	3335	3334	3333	3332	3331	3330	3327	3326	3325	3324	3323	3322	3321	3320	V40155	V40355
3357	3356	3355	3354	3353	3352	3351	3350	3347	3346	3345	3344	3343	3342	3341	3340	V40156	V40356
3377	3376	3375	3374	3373	3372	3371	3370	3367	3366	3365	3364	3363	3362	3361	3360	V40157	V40357
3417	3416	3415	3414	3413	3412	3411	3410	3407	3406	3405	3404	3403	3402	3401	3400	V40160	V40360
3437	3436	3435	3434	3433	3432	3431	3430	3427	3426	3425	3424	3423	3422	3421	3420	V40161	V40361
3457	3456	3455	3454	3453	3452	3451	3450	3447	3446	3445	3444	3443	3442	3441	3440	V40162	V40362
3477	3476	3475	3474	3473	3472	3471	3470	3467	3466	3465	3464	3463	3462	3461	3460	V40163	V40363
3517	3516	3515	3514	3513	3512	3511	3510	3507	3506	3505	3504	3503	3502	3501	3500	V40164	V40364
3537	3536	3535	3534	3533	3532	3531	3530	3527	3526	3525	3524	3523	3522	3521	3520	V40165	V40365
3557	3556	3555	3554	3553	3552	3551	3550	3547	3546	3545	3544	3543	3542	3541	3540	V40166	V40366
3577	3576	3575	3574	3573	3572	3571	3570	3567	3566	3565	3564	3563	3562	3561	3560	V40167	V40367
3617	3616	3615	3614	3613	3612	3611	3610	3607	3606	3605	3604	3603	3602	3601	3600	V40170	V40370
3637	3636	3635	3634	3633	3632	3631	3630	3627	3626	3625	3624	3623	3622	3621	3620	V40171	V40371
3657	3656	3655	3654	3653	3652	3651	3650	3647	3646	3645	3644	3643	3642	3641	3640	V40172	V40372
3677	3676	3675	3674	3673	3672	3671	3670	3667	3666	3665	3664	3663	3662	3661	3660	V40173	V40373
3717	3716	3715	3714	3713	3712	3711	3710	3707	3706	3705	3704	3703	3702	3701	3700	V40174	V40374
3737	3736	3735	3734	3733	3732	3731	3730	3727	3726	3725	3724	3723	3722	3721	3720	V40175	V40375
3757	3756	3755	3754	3753	3752	3751	3750	3747	3746	3745	3744	3743	3742	3741	3740	V40176	V40376
3777	3776	3775	3774	3773	3772	3771	3770	3767	3766	3765	3764	3763	3762	3761	3760	V40177	V40377

