Scientific Visualization

Spring 2018
Center for Data Science
New York University

Claudio Silva Gustavo Nonato

Lecture 2: Data Types and Grids

Data Model vs Conceptual Model

Data: information that can be represented in computer

Data model: mathematical abstraction (data abstraction)

Math: Sets with operations on them

Example: integers with + and × operators

Conceptual models: are mental/semantical constructions *Temperature, Image*

Examples of data vs. conceptual model

- Float numbers vs. Temperature
- 3D vectors vs. Space

Data Types and Structures

Data Types: fundamental units *Item, Link, Attribute, Position, Grid*

Data Structures: combinations of data types tables, networks, grids, etc

Dataset Types

Attributes

Attribute Types

Quantitative (Q)

- numbers, range of values, etc.

→ Quantitative

Ordinal (ordered) (O)

- small, medium, large

→ Ordered

→ Ordinal

Nominal (categorical) (N)

- apples, oranges, bananas

→ Categorical

Two aspects to consider:

- dimension of the data
- dimension of the domain

Two aspects to consider:

- dimension of the data
- dimension of the domain

Examples:

Set of points with scalar values

- which are the data and the domain?

Two aspects to consider:

- dimension of the data
- dimension of the domain

Examples:

Set of points with scalar values

- which are the data and the domain?

domain: points (dimension 0)

data: scalar (dimension 1)

Two aspects to consider:

- dimension of the data
- dimension of the domain

Examples:

Set of points with scalar values

- which are the data and the domain?domain: points (dimension 0)data: scalar (dimension 1)

3D arrays in 2D regular grid

- which are the data and the domain?

Two aspects to consider:

- dimension of the data
- dimension of the domain

Examples:

Set of points with scalar values

- which are the data and the domain?domain: points (dimension 0)data: scalar (dimension 1)

3D arrays in 2D regular grid

- which are the data and the domain?
 domain: 2D grid (dimension 2)
 data: 3D arrays (dimension 3)

Two aspects to consider:

- dimension of the data
- dimension of the domain

Examples:

Set of points with scalar values

- which are the data and the domain?domain: points (dimension 0)data: scalar (dimension 1)

3D volume with 2D arrays

- which are the data and the domain?

3D arrays in 2D regular grid

which are the data and the domain?
 domain: 2D grid (dimension 2)
 data: 3D arrays (dimension 3)

Two aspects to consider:

- dimension of the data
- dimension of the domain

Examples:

Set of points with scalar values

- which are the data and the domain?domain: points (dimension 0)data: scalar (dimension 1)

3D arrays in 2D regular grid

which are the data and the domain?
 domain: 2D grid (dimension 2)
 data: 3D arrays (dimension 3)

3D volume with 2D arrays

- which are the data and the domain?domain: 3D volume (dimension 3)data: 2D arrays (dimension 2)

Grids

Structured Grid

Grids

Structured Grid

Unstructured Grid

Bilinear Interpolation

Bilinear Interpolation

$$f(x,y) = \frac{1}{(x_2 - x_1)(y_2 - y_1)} \begin{bmatrix} x_2 - x & x - x_1 \end{bmatrix} \begin{bmatrix} f(x_1, y_1) & f(x_1, y_2) \\ f(x_2, y_1) & f(x_2, y_2) \end{bmatrix} \begin{bmatrix} y_2 - y \\ y - y_1 \end{bmatrix}$$

Bilinear Interpolation

$$\begin{bmatrix} 1 & x_1 & y_1 & x_1y_1 \\ 1 & x_1 & y_2 & x_1y_2 \\ 1 & x_2 & y_1 & x_2y_1 \\ 1 & x_2 & y_2 & x_2y_2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} f(x_1, y_1) \\ f(x_1, y_2) \\ f(x_2, y_1) \\ f(x_2, y_2) \end{bmatrix}$$

$$f(x, y) = a_0 + a_1 x + a_2 y + a_3 x y$$

$$f(x,y) = \frac{1}{(x_2 - x_1)(y_2 - y_1)} \begin{bmatrix} x_2 - x & x - x_1 \end{bmatrix} \begin{bmatrix} f(x_1, y_1) & f(x_1, y_2) \\ f(x_2, y_1) & f(x_2, y_2) \end{bmatrix} \begin{bmatrix} y_2 - y \\ y - y_1 \end{bmatrix}$$

Barycentric Coordinates

$$\mathbf{x} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3$$

 $\lambda_1 + \lambda_2 + \lambda_3 = 1$

Barycentric Coordinates

$$\mathbf{x} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3$$

 $\lambda_1 + \lambda_2 + \lambda_3 = 1$

How to compute the "lambdas"?

Barycentric Coordinates

$$\mathbf{x} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

How to compute the "lambdas"?

$$\begin{bmatrix} 1 & 1 & 1 \\ v_1^1 & v_1^2 & v_1^3 \\ v_2^1 & v_2^2 & v_2^3 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

Barycentric Coordinates

$$\mathbf{x} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

How to compute the "lambdas"?

$$\begin{bmatrix} 1 & 1 & 1 \\ v_1^1 & v_1^2 & v_1^3 \\ v_2^1 & v_2^2 & v_2^3 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$$

$$\lambda_1 = \frac{A_1}{A}, \quad \lambda_2 = \frac{A_2}{A}, \quad \lambda_3 = \frac{A_3}{A}$$

Barycentric Coordinates

If values are known in the vertices of a triangle, those values can be interpolated in the interior of the triangle using barycentric coordinates.

The same construction can be defined for higher dimensional simplices as tetrahedra in 3D.

Mean Value Coordinates

$$\mathbf{x} = \sum_{i=1}^n \lambda_i(\mathbf{x}) \mathbf{v}_i \quad \sum_{i=1}^n \lambda_i(\mathbf{x}) = 1$$

Mean Value Coordinates

What to store in the data structure?

What to store in the data structure?

Geometry:

What to store in the data structure?

Geometry:

- Vertex coordinates
- Triangle normals
- Vertex and triangle attributes

What to store in the data structure?

Geometry:

- Vertex coordinates
- Triangle normals
- Vertex and triangle attributes

Topology:

What to store in the data structure?

Geometry:

- Vertex coordinates
- Triangle normals
- Vertex and triangle attributes

Topology:

- adjacency relation among elements

Which operations should it support?

Which operations should it support?

Queries:

Which operations should it support?

Queries:

- Which are the vertices of a given face?
- Which are the vertices adjacent to a given vertex?
- Which are the faces a vertex belong to?

Structural changes:

- edge flip
- mesh refinement

Which operations should it support?

Queries:

- Which are the vertices of a given face?
- Which are the vertices adjacent to a given vertex?
- Which are the faces a vertex belong to?

Which operations should it support?

Queries:

- Which are the vertices of a given face?
- Which are the vertices adjacent to a given vertex?
- Which are the faces a vertex belong to?

Structural changes:

Which operations should it support?

Queries:

- Which are the vertices of a given face?
- Which are the vertices adjacent to a given vertex?
- Which are the faces a vertex belong to?

Structural changes:

- edge flip
- mesh refinement

corner	C.V	c.t	c.n	c.p	C.0	c.l	c.r
c_1	V 1	f_1	C 2	C 3	C 6	Ø	Ø
c ₂	v ₂	f_1	C 3	$\mathbf{c_1}$	Ø	Ø	C 6
c 3	V 3	f_1	c_1	C 2	Ø	C 6	Ø
C 4	V 3	f_2	C 5	C 6	Ø	C ₇	c_1
c ₅	V 2	f_2	C 6	C 4	C 7	c_1	Ø
c ₆	V 4	f_2	C 4	C 5	$\mathbf{c_1}$	Ø	C ₇
:	:	:	:		:	:	:

- Which are the faces that contains v4?

corner	C.V	c.t	c.n	c.p	C.0	c.l	c.r
c_1	v_1	f_1	C ₂	C 3	C 6	Ø	Ø
c ₂	v ₂	f_1	C 3	$\mathbf{c_1}$	Ø	Ø	C 6
c ₃	V 3	$\mathbf{f_1}$	\mathbf{c}_1	c ₂	Ø	C 6	Ø
C 4	v ₃	f_2	C 5	C 6	Ø	C 7	c_1
C ₅	v ₂	f_2	C 6	C 4	C 7	c_1	Ø
c ₆	V 4	f_2	C 4	C 5	$\mathbf{c_1}$	Ø	C ₇
:	:	:	:	:	:	:	:

- Which are the faces that contains v4?
- Which are the vertices adjacent to v3?

corner	C.V	c.t	c.n	c.p	C.O	c.l	c.r
c ₁	v_1	f_1	C ₂	C 3	C 6	Ø	Ø
c ₂	v ₂	f_1	C 3	c_1	Ø	Ø	C 6
c 3	V 3	f_1	c_1	c ₂	Ø	C 6	Ø
C 4	V 3	f_2	C 5	C 6	Ø	C 7	c_1
c ₅	v ₂	f_2	C 6	C 4	C 7	c_1	Ø
c ₆	V 4	f_2	C 4	C 5	c_1	Ø	C 7
:		:					:

- Which are the faces that contains v4?
- Which are the vertices adjacent to v3?
- Which are the vertices of f2?

corner	C.V	c.t	c.n	c.p	C.O	c.l	c.r
c_1	v ₁	f_1	C 2	C 3	C 6	Ø	Ø
c ₂	v ₂	f_1	c 3	$\mathbf{c_1}$	Ø	Ø	C 6
c ₃	V 3	f_1	$\mathbf{c_1}$	c ₂	Ø	C 6	Ø
C 4	V 3	f_2	C 5	C 6	Ø	C 7	C ₁
c ₅	v ₂	f_2	C 6	C 4	C 7	c_1	Ø
c ₆	V 4	\mathbf{f}_2	C 4	C 5	c_1	Ø	C ₇
:		:		:		:	
•		•	•	•	•	•	

- Which are the faces that contains v4?
- Which are the vertices adjacent to v3?
- Which are the vertices of f2?
 (tables with faces+corner and vertices+corners are also built to speedup queries)

corner	C.V	c.t	c.n	c.p	C.O	c.l	c.r
c_1	v_1	f_1	C 2	C 3	C 6	Ø	Ø
c ₂	v ₂	f_1	C 3	$\mathbf{c_1}$	Ø	Ø	C 6
c ₃	V 3	f_1	c_1	C 2	Ø	C 6	Ø
C 4	v ₃	f_2	C 5	C 6	Ø	C 7	c_1
C ₅	v ₂	f_2	C 6	C 4	C 7	c_1	Ø
c ₆	V 4	f_2	C 4	C 5	$\mathbf{c_1}$	Ø	C ₇
:		:		:	:	:	: