

Chapter 8

HYDROXY COMPOUNDS

8.2 Physical Properties

LEARNING OUTCOMES

Introduction

- a) Give the name of hydroxy compounds according to the IUPAC nomenclature. (C2)
- b) Give the structural formulae for the hydroxy compounds (parent chain $\leq C_{10}$). (C2)
- c) classify the hydroxy compounds (C2)

INTRODUCTION TO ALCOHOLS

Contain hydroxyl group (-OH) bonded to sp³ hybridized C atom.

□ Aliphatic alcohol

General formula: R—OH

 $\mathbf{C}_n \mathbf{H}_{2n+1} \mathbf{O} \mathbf{H}$

CLASSIFICATION OF ALCOHOLS

□ Depending on type of C atom to which the−OH group is directly attached.

CLASS	GENERAL FORMULA	EXAMPLE
1º	R-OH	CH ₃ CH ₂ OH
2 °	R-CHR I OH	CH ₃ CHCH ₃ OH
3º	R-C-R OH	CH ₃ C—CH ₃ OH

EXERCISE 1

Classify the types of alcohol (1°, 2° or 3°) for the following molecules.

(a)	CH ₃ CH	(OH)	CH ₃
•	•	•	•

(b)
$$(CH_3)_2C(OH)CH_2CH_3$$

NOMENCLATURE OF ALCOHOLS

- 1) Find the *longest C chain* containing the OH.
- 2) Give the **OH** group the **lowest number**.
- 3) Identify substituent groups and their position.
- 4) The substituent are arranged in alphabetical order.
- 5) The **suffix** '-e' in the alkane parent name is replaced by '-ol'.

Example:

2-methyl-2-butanol

5-methyl-3-hexanol

6) Ring/Cyclic: Numbering start at C bearing OH.

EXAMPLE:

2-chlorocyclohexanol

2-bromo-5-methylcyclopentanol

Example:

Structure	Common name	IUPAC name
CH ₃ OH	methyl alcohol	methanol
CH ₃ CH ₂ OH	ethyl alcohol	ethanol
CH ₃ CH(OH)CH ₃	isopropyl alcohol	2-propanol
OH	cyclohexyl alcohol	cyclohexanol

EXAMPLE:

CH₃CH₂CH₂CH₂OH

1979 IUPAC recommendation: 1-butanol

1993 IUPAC recommendation: butan-1-ol

The first of these convention

1-butanol is more widely used

7) Aromatic alcohol – phenol

(-OH group attached directly to benzene ring)

For **phenol**, C attach to the -OH group is C1.

Example:

or m-

nitrophenol

8) –OH has priority over C=C

EXAMPLE:

$$HO - CH_2CH = CHCH_2CH_3$$

HO - CH₂CH = CHCH₂CH₃

2-penten-1-ol or pent-2-en-1-ol

Increasing PRIORITY fo parent name

MAIN GROUPS	
carboxylic acids	
esters	
aldehydes	
ketones	
alcohol	
amine	
alkenes	
alkanes / halides	

9) Two OH groups rediol

EXAMPLE:

1,2-ethanediol

1,2-cyclopentanediol

4-chloro-1-phenyl-1,5-hexanediol

10) If two or more –OH on the aromatic ring: Benzene derivatives with two –OH groups are name as benzenediol

Benzene-1,2-diol

Benzene-1,4-diol

5-bromobenzene-1,3-diol

EXERCISE 2

Give the IUPAC names of the following compounds.

(c)
$$CH_3$$
 $CH_3CH_2C=C(CI)CH_2OH$

(e)
$$HO-(CH_2)_8-OH$$

LEARNING OUTCOMES

Physical properties:

- a) Explain the physical properties:(C3,C4)
 - (i) boiling point
 - (ii) solubility in water

BOILING POINT

□ In liquid form, molecules of alcohol can form hydrogen bond between OH group and also van der Waals forces between alkyls group.

EXAMPLE:

☐ As molecular weight increase (size of molecule increase), the strength of van der Waals forces increase, thus the boiling point will increase.

EXAMPLE:

Compound	Molecular weight (gmol ⁻¹)	Boiling Point (°C)
Ethanol (2C) CH ₃ CH ₂ OH	46	78
1-butanol (4C) CH ₃ CH ₂ CH ₂ CH ₂ OH	74	118

□ When the number of -OH groups increases, boiling point increases.

➤ This is due to the *formation of more hydrogen bonds* between alcohol molecules

Example:

Compound	Boiling Point (°C)
1,2-ethanediol HOCH ₂ CH ₂ OH	198
1-propanol CH ₃ CH ₂ CH ₂ OH	97

- Alcohols have higher boiling points than alkanes of similar molecular weight.
 - alcohols form hydrogen bond between molecules while alkanes only form weak van der Waals forces between molecules.
- Hydrogen bond is stronger than van der Waals forces.

Example:

Compound	Molecular weight (gmol ⁻¹)	Boiling Point (°C)
Ethanol CH ₃ CH ₂ OH	46	78
Propane CH ₃ CH ₂ CH ₃	44	-42

☐ For compounds of comparable molecular size, the stronger the intermolecular forces, the higher the boiling point.

EXAMPLE:

CH₃CH₂CH₂CH₃ CH₃OCH₂CH₃ CH₃CH₂CH₂OH

London Dipole Hydrogen

Force dipole bond

London Dipole dipole

Force London

Force

Increasing BOILING POINT

EXERCISE 3:

Rank the compounds in each group in order of increasing boiling point.

(b) $(CH_3)_3COC(CH_3)_3$ $CH_3(CH_2)_3O(CH_2)_3CH_3$ $CH_3(CH_2)_7OH$

(a)

SOLUBILITY

- □ ≤ 5 C: water soluble
 - Capable of H bonding to H₂O
- \supset > 5 C: water insoluble
 - Non polar (hydrophobic) alkyl portion is too large to dissolve in H₂O

- □ The alkyl group are hydrophobic and the hydroxyl group are hydrophilic.
- □ As the size of alkyl group increases, the hydrophobic area increases, thus solubility decrease.

Hydrophilic area

Hydrophobic area

hydrophobic

hydrophilic

ALKYL (R)

OH

WATER SOLUBILITY OF ALCOHOLS (AT 25°C)	
ALKYL	SOLUBILITY
methyl	miscible
ethyl	miscible
propyl	miscible
<i>tert</i> -butyl	miscible
isobutyl	10.0%
butyl	9.1%
pentyl	2.7%
hexane-1,6-diol	miscible

- □ For alcohols with comparable molecular weight,
 - solubility increase with increasing number of –OH groups.
 - able to form more hydrogen bonds with H₂O molecules.

EXAMPLE:

Solubility: $HO(CH_2)_6OH > CH_3(CH_2)_5OH$

w two OH groups one OH group

can form more
H bonding with water

EXAMPLE:

Compare the solubility in water for the following compounds.

(a)
$$CH_3CH_2CH_2CH_3$$
 $CH_3CH_2CH_2OH$

(c) CH₃CH₂CH₂CH₂OH HOCH₂CH₂OH

ANSWER:

(a) Ability to form hydrogen bonding with H₂O:

CH₃CH₂CH₂CH₃ an alkane

Can't form hydrogen bond with water Insoluble in water

CH₃CH₂CH₂OH an alcohol

Can form hydrogen bond with water

Soluble in water

ANSWER:

Soluble

insoluble

Solubility in water

ANSWER:

(c) CH₃CH₂CH₂CH₂OH HOCH₂CH₂OH

Solubility: $HOCH_2CH_2OH > CH_3CH_2CH_2OH$

two OH groups one OH group

can form more
H bonding with water

PHYSICAL PROPERTIES OF PHENOLS

- □ Strongly influenced by hydroxy group (-OH)
- □ has higher melting point and boiling point than alkanes, arenes and aryl halides of comparable molecular size.
- □ slightly soluble in water but has higher solubility than alkanes, arenes and aryl halides of comparable molecular size.

LEARNING OUTCOMES

Preparation of alcohols (C3,C4)

- a) Explain the preparation of alcohol by:
 - i. Fermentation
 - ii. Hydration of alkenes
 - iii. Hydrolysis of haloalkanes
 - iv. Addition of Grignard reagents to carbonyl compounds

PREPARATION OF ALCOHOLS

PREPARATION OF ALCOHOLS

1) Fermentation

 A biological process of enzymatic degradation of sugars by microorganisms

$$C_6H_{12}O_6 \xrightarrow{yeast} 2CH_3CH_2OH + 2CO_2$$
 glucose ethanol

- 2) Hydration of Alkenes
 - Method for preparation of simple alcohol.
 - □ Reactant : Alkene and water
 - \square Condition: Catalyst (H₂SO₄)

H and OH added!

☐ Follow Markovnikov's Rule

$$\begin{array}{c} \text{CH}_2 = \text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \\ \text{CH}_3 \\ \text{2-methyl-1-hexene} \end{array} \qquad \begin{array}{c} \text{H}_2\text{O/H}^+ \\ \text{H}_2\text{O/H}^+ \\ \text{CH}_3\text{CCH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \\ \text{CH}_3 \\ \text{2-methyl-2-hexanol} \end{array}$$

1-methylcyclopentene

1-methylcyclopentanol

- 3) Hydrolysis of haloalkanes
 - □ Reactant: haloalkane and NaOH or H₂O

Substitute X with OH

EXAMPLE:

bromoethane

$$(CH_3)_3C-CI + H_2O \longrightarrow (CH_3)_3C-OH + HCI$$
3º haloalkane weak Nu

2-chloro-2-methylpropane

2-methyl-2-propanol

- 4) Addition of Grignard reagent to carbonyl compounds
 - 1°, 2° & 3° alcohols can be prepared by addition of Grignard reagent with carbonyl compounds followed by hydrolysis.

(a) Formation of 1° alcohols

(Grignard reagent + methanal @ formaldehyde)

$$\begin{array}{c|c} & & H \\ R-MgX \\ \delta-\delta+ & H \end{array} \xrightarrow{\delta+} \begin{array}{c} ether \\ R-C \\ H \end{array} \xrightarrow{R-C} -OMgX$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

$$\begin{array}{c} & & H \\ R-C \\ H \end{array}$$

(b) <u>Formation of 2° alcohols</u> (Grignard reagent + aldehyde)

$$\begin{array}{c|c}
R-MgX + R & C=O \\
R-MgX + H & S+S- \\
& & H
\end{array}$$

$$\begin{array}{c}
ether \\
R - C-OMgX \\
& H_3O^+
\end{array}$$

$$\begin{array}{c}
R - C-OMgX \\
& R - C-OH \\
& H
\end{array}$$

$$\begin{array}{c}
R - C-OH \\
& H
\end{array}$$

$$\begin{array}{c}
R - C-OH \\
& H
\end{array}$$

$$\begin{array}{c}
R - C-OH \\
& H
\end{array}$$

2º alcohol

(c) <u>Formation of 3° alcohol</u> (Grignard reagent + ketone)

$$\begin{array}{c} R-MgX + R \\ S-S+ S- \\ \hline \\ ketones \end{array} \qquad \begin{array}{c} ether \\ R-C-OMgX \\ \hline \\ R \\ \hline \\ R \\ \end{array}$$

3º alcohol

EXAMPLE:
$$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{-MgX} & + & \text{CH}_3\text{-C-CH}_3 \\ & \text{ether} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{-C-OMgX} \\ \text{CH}_3 \\ & \text{CH}_3\text{O}^+ \\ \text{CH}_3 \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{-C-OH} \\ & \text{CH}_3 \\ \end{array}$$

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{-C-OH} \\ \text{CH}_3 \\ \text{CH}_3\text{CH}_2\text{-C-OH} \\ \text{CH}_3 \\ \end{array}$$

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{-C-OH} \\ \text{CH}_3 \\ \text{CH}_3\text{-C-OH}_2\text{-C-OH} \\ \text{CH}_3 \\ \end{array}$$

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{-C-OH$$

□ Sometimes, there are two or three possibilities to prepare alcohol using Grignard reagent

EXAMPLE: preparation of 2-butanol

LEARNING OUTCOMES

Chemical properties of alcohols

- a) Explain the reactions of alcohol with reference to:(C3,C4)
 - (i) reaction with sodium
 - (ii) esterification
 - (iii) dehydration
 - (iv) substitution reactions using HX, PX₃, PCI₅ or SOCI₂
- b) Explain the oxidation reactions with KMnO₄/H⁺, Cr₂O₇²⁻/H⁺, CrO₃/H⁺ and PCC/CH₂Cl₂ (C3,C4)

- c) Explain the identification tests to distinguish classes of alcohols using Lucas reagent, i.e. concentrated HCI/ZnCI₂ (C3,C4)
- d) Explain iodoform test, i.e. I₂/OH⁻ to identify methyl carbinol CH₃CH(OH)-. (C3,C4)
- d) Outline the synthesis of compounds involving alcohols (C4)
- * Limit to maximum 4 steps only

HEMICAL PROPERTIES OF ALCOHOLS

TYPES OF REACTIONS OF HYDROXY COMPOUNDS

1) Cleavage of bond between O and H in -OH group (O-H bond is broken in R-O-H):

- (a) Reaction with Na
- (b) Esterification
- (c) Oxidation

2) Cleavage of bond between C and O (C-OH bond is broken in R-O-R):

- (a) Dehydration
- (b) Substitution reaction using: HX, PX₃, PCl₅ or SOCl₂

(A) REACTION WITH SODIUM

□ Reactant : alcohol and Na

□ Product : sodium alkoxide and H₂ gas

The alcohol acts

$$R \longrightarrow R \longrightarrow R \longrightarrow Na^+ + \frac{1}{2} H_2 \uparrow$$
 sodium alkoxide

as an acid

EXAMPLE:

CH₃CH₂OH + Na
$$\longrightarrow$$
 CH₃CH₂O-Na+ + $\frac{1}{2}$ H₂↑ ethanol sodium ethoxide

(B) ESTERIFICATION

- □ Reactant : carboxylic acid and alcohol
- □ Condition : Reflux
 - Catalyst (H₂SO₄ or HCl)
- \square Product : ester and H₂O

R—OH + R—C—OH
$$\stackrel{H^+}{\rightleftharpoons}$$
 R—C—OR + H₂O

 $\stackrel{\Delta}{\rightharpoonup}$ ester 57

$$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{COH} \\ \text{+} \\ \text{CH}_3\text{CH}_2\text{OH} \\ \end{array} \begin{array}{c} \text{H}^+ \\ \longrightarrow \\ \Delta \\ \text{acetic acid} \end{array} \begin{array}{c} \text{O} \\ \text{H}^+ \\ \text{CH}_3\text{COCH}_2\text{CH}_3 \\ \text{+} \\ \text{H}_2\text{O} \\ \end{array}$$

(C) OXIDATION

- □ Oxidizing agent:
 - Acidified solution of chromate (Na₂Cr₂O₇, K₂Cr₂O₇, CrO₃)
 - Acidified solution of permanganate (KMnO₄)
 - Pyridinium chlorochromate (PCC) in CH₂Cl₂

□ Oxidation product depends on the class of alcohol used and types of oxidizing agent.

Oxidation of 1° alcohol

1º alcohols are oxidized to aldehydes or carboxylic acids, depending on the reagent:

Oxidising Agent	Product
PCC in CH ₂ Cl ₂ (mild condition)	aldehyde
Hot acidified KMnO ₄ , Na ₂ Cr ₂ O ₇ , K ₂ Cr ₂ O ₇ , or CrO ₃ (harsher condition)	carboxylic acid

Oxidation of 2° alcohol

□ 2º alcohol is oxidised to ketone

Oxidation of 3° alcohol

- □ 3° alcohol does not undergo oxidation under normal condition.
 - have no C-H bond on the C bearing the OH group.

SUMMARY

Class of alcohol	Reaction with	Product
1°	KMnO ₄ /Na ₂ Cr ₂ O ₇ / K ₂ Cr ₂ O ₇ / CrO ₃	Carboxylic acid
	PCC	Aldehyde
2 °	KMnO ₄ /Na ₂ Cr ₂ O ₇ / K ₂ Cr ₂ O ₇ / CrO ₃	Ketone
	PCC	Ketone
3°	KMnO ₄ /Na ₂ Cr ₂ O ₇ / K ₂ Cr ₂ O ₇ / CrO ₃	
	PCC	No reaction 64

(D) DEHYDRATION

- □ Reactant : alcohol
- \square Condition: conc. H₂SO₄
 - heat
- \square Product: alkene and H₂O

$$-\overset{|}{C}-\overset{|$$

H and OH eliminated!

☐ Follow Saytzeff's rule

H-C-C-H
$$\xrightarrow{\text{conc. } H_2SO_4}$$
 H-C= $\xrightarrow{\text{conc. } H_2SO_4}$ H-C= $\xrightarrow{\text{conc. } H_2O_4}$

ethanol

ethene

cyclohexanol

cyclohexene

EXERCISE 4

Give the product formed for the following reaction:

b) O
$$\parallel$$
 C $-OH + CH_3OH$ $\xrightarrow{H^+}$

c)
$$CH_3$$
 CH_3 CH_3 $CONC. H_2SO_4$ CH_3

(E) SUBSTITUTION REACTION USING HX, PX₃, PCl₅ OR SOCl₂

□ ROH reacts with HX, PX₃, PCI₅ or SOCI₂ to produce haloalkane.

General reaction:

(i)
$$ROH + HX \longrightarrow RX + H_2O$$
 (X = CI, Br)

(ii)
$$ROH + PX_3 \longrightarrow RX + H_3PO_3$$
 (X = CI, Br)

(iii)
$$ROH + PCI_5 \longrightarrow RCI + POCI_3 + HCI$$

(iv)
$$ROH + SOCI_2 \longrightarrow RCI + SO_2 + HCI$$

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{CH_3} \\$$

$$(CH_3)_2CHCH_2OH + PBr_3 \longrightarrow (CH_3)_2CHCH_2Br + H_3PO_3$$

Phosphorus tribromide

EXERCISE 5:

Give the structures of the products you would expect when 2-methyl-2-butanol reacts with:

- a) conc. HCl
- b) PBr₃
- c) SOCI₂

ANSWER:

a)
$$CH_3$$

 $CH_3C-CH_2CH_3 + conc. HCI \rightarrow$
OH

b)
$$CH_3$$

 $CH_3C-CH_2CH_3 + PBr_3 \rightarrow OH$

ANSWER

c)

EXERCISE 6

Show how each of the following transformations could be accomplished:

a)
$$CH_2OH$$
 CH_2OH CH_2OH

1) LUCAS TEST

□ Lucas reagent : HCl_(conc.) + ZnCl₂

R-OH
$$\xrightarrow{\text{conc. HCl, ZnCl}_2}$$
 R-Cl + H₂O

TYPE OF ALCOHOL	OBSERVATION
1°	No cloudy solution form at room temperature even after 15 minutes.
2°	Cloudy solution formed within 5 - 10 minutes.
3°	Cloudy solution formed immediately.

Example:

OBSERVATION: No cloudy solution form at room temperature even after 15 minutes.

OH CI CI CH₃CH₂CHCH₂CH
$$_3$$
Conc. HCI, ZnCl₂ CH $_3$ CH $_2$ CHCH $_2$ CH $_3$ + H $_2$ O 3-pentanol 3-chloropentane (2° alcohol)

OBSERVATION: Cloudy solution formed within 5 - 10 minutes.

$$\begin{array}{c}
\text{OH} \\
\text{CH}_3\text{CCH}_2\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{conc. HCI, ZnCl}_2\\
\text{CH}_3\text{CCH}_2\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{CI} \\
\text{CH}_3\text{CCH}_2\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{CH}_3\text{CCH}_2\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{CH}_3\text{CH}_3\text{CH}_3
\end{array}$$

$$\begin{array}{c}
\text{2-chloro-2-methylbutane}
\end{array}$$

OBSERVATION: Cloudy solution formed immediately.

(3° alcohol)

2) OXIDATION TEST

Class of alcohol	Reaction with	Observation
1°	acidified K ₂ Cr ₂ O ₇ or Na ₂ Cr ₂ O ₇	Orange colour of K ₂ Cr ₂ O ₇ turned to green.
	acidified KMnO ₄	Purple colour of KMnO ₄ is decolourised.
2 °	acidified K ₂ Cr ₂ O ₇ or Na ₂ Cr ₂ O ₇	Orange colour of K ₂ Cr ₂ O ₇ turned to green.
	acidified KMnO ₄	Purple colour of KMnO ₄ is decolourised.
3°	acidified K ₂ Cr ₂ O ₇ or Na ₂ Cr ₂ O ₇	Orange colour of K ₂ Cr ₂ O ₇ remain unchanged.
	acidified KMnO ₄	Purple colour of KMnO ₄ remain unchanged.

Oxidation using acidified solution of K₂Cr₂O₇ or Na₂Cr₂O₇ or CrO₃:

OBSERVATION: Orange colour of K₂Cr₂O₇ turns to green.

Example:

$$\begin{array}{c} \text{Na}_2\text{Cr}_2\text{O}_7/\text{H}^+\\ \hline \Delta \end{array} \qquad \begin{array}{c} \text{II}\\ \text{CH}_3\text{C-OH} \\ \text{ethanol}\\ \text{(1° alcohol)} \end{array}$$

OBSERVATION: Orange colour of Na₂Cr₂O₇ turns to green.

OH
$$| Na_2Cr_2O/H^+ \cap CH_3C+CH_3$$
 $| CH_3C+CH_3 \cap CH_3C+CH_3$ $| CH_3C+CH_3 \cap CH_3C+CH_3C+CH_3 \cap CH_3C+CH_3 \cap CH_3C+CH_3 \cap CH_3C+$

OBSERVATION: Orange colour of Na₂Cr₂O₇ turns to green.

$$\begin{array}{c} \text{OH} \\ \text{CH}_{3}\text{C-CH}_{3} \\ \text{CH}_{3} \end{array} \qquad \begin{array}{c} \text{Na}_{2}\text{Cr}_{2}\text{O}_{7}/\text{H}^{+} \\ \hline \Delta \end{array} \qquad \text{no reaction}$$

2-methyl-2-propanol (3° alcohol)

OBSERVATION: Orange color of Na₂Cr₂O₇ remain unchanged.

3) IODOFORM TEST

- To detect methyl carbinol group.
- ☐ Reagent: excess I₂, NaOH (base)

Methyl carbinol cleavage to give carboxylate ion and iodoform.

OBSERVATION: Light yellow precipitate formed.

Example:

$$\begin{array}{c} \text{OH} & \text{O} \\ \text{I} & \text{excess I}_2, \text{HO}^- & \text{II} \\ \text{CH}_3\text{CH}_2\text{C-O}^- & \text{CH}_3\text{C}_-\text{O}^- & \text{CHI}_3\downarrow \\ \text{H} & \text{iodoform} \end{array}$$

OBSERVATION: Light yellow precipitate formed.

$$CH_{3}C \xrightarrow{|} CH_{2}C \xrightarrow{|} CH_{2} \xrightarrow{|} CH_{3} \xrightarrow{|} CH$$

OBSERVATION: Light yellow precipitate formed.

EXERCISE 7:

Show how you would use a simple test to distinguish between the following pairs of compounds. Tell what you would observe with each compound. Write the chemical equation involved.

- (a) 1-hexanol and cyclohexanol
- (b) 2-butanol and 3-pentanol
- (c) 2-butanol and 1-methylcyclohexanol

(a) 1-hexanol and cyclohexanol

Test:_____

CH₃CH₂CH₂CH₂CH₂OH _____

OBSERVATION: _____

OBSERVATION: ____

ANSWER:

(b) 2-butanol and 3-pentanol

Test:_____

OBSERVATION:

OBSERVATION: _____

ANSWER:

(c) 2-butanol and 1-methylcyclohexanol

Test:_____

OBSERVATION:

OBSERVATION:

LEARNING OUTCOMES

Phenol

- a) Compare the acidity of phenol, alcohol and water (C4)
- b) Explain the chemical properties of phenol with reference to: (C3,C4)
 - Reaction with sodium
 - ii. Reaction with sodium hydroxide
 - iii. Identification tests using
 - -FeCl₃ solution and
 - -bromine water

8.5

PHENOL

ACIDITY OF PHENOL, ALCOHOL AND WATER

- □ Alcohol, water and phenol have different acidity (different K_a values).
- □ Acidity increases in the order of :

Alcohol (aliphatic alcohol)

< water < phenol

- □ Like water, both alcohol and phenol are weakly acidic.
 - As weak acid (donate H⁺):

Water H—O—H
$$\longrightarrow$$
 H—O⁻ + H⁺ hydoxide ion (Ka \approx 10⁻¹⁴)

Alcohol R—O—H
$$\Longrightarrow$$
 R—O + H⁺ alkoxide ion $(K_a \approx 10^{-16})$

Alcohol(aliphatic alcohol) < Water < Phenol

- Phenol more acidic than aliphatic alcohol and water.
 - due to phenoxide ion formed is more stable than the alkoxide ion (from alcohol) and hydroxide ions (from water).

The phenoxide ion formed is stabilised by resonance effect.

RESONANCE-STABILIZED PHENOXIDE ION

□ The ability to spread the negative charge over four atoms rather than concentrated it on just one atom produces more stable ion.

Example:

Acidity increase

CHEMICAL PROPERTIES OF PHENOL

1) Reaction with Na

☐ Both alcohols and phenols can react with Na.

EXAMPLE:

cyclohexanol

2) Reaction with NaOH

- □ Phenols are soluble in aqueous NaOH but alcohols with six C atom or more do not.
- Phenols are much more acidic than alcohols.

EXAMPLE:

$$O-H + NaOH - O-Na^+ + H_2O$$

phenol sodium phenoxide

 $CH_3(CH_2)_4CH_2OH + NaOH \longrightarrow almost insoluble$

1-hexanol

IDENTIFICATION TEST

1) Using FeCl₃ solution

Phenol reacts with aqueous solution of iron (III) chloride to form a purple complex.

OBSERVATION: Purple complex formed.

2) Using bromine water

Phenol reacts with aqueous bromine to form white precipitate.

2,4,6-tribromophenol

White precipitate

OBSERVATION: White precipitate formed.

GLOSSARY

- 1. Alcohol organic compounds containing hydroxyl functional group.
- 2. Esterification reaction between carboxylic acid and alcohol to produce ester and water.
- 3. Oxidation loses a bond to hydrogen and gains a new bond to oxygen.
- 4. Lucas test use of concentrated hydrochloric acid and anhydrous zinc chloride to identify classes of alcohols.
- 5. lodoform test use of excess iodine and sodium hydroxide to detect the presence of methyl carbinol and methyl carbonyl group