DOKUMENTACJA TECHNICZNA PROJEKTU

16 stycznia 2025

Spis treści

1	Opi	Opis techniczny projektu		
	1.1	Wprov	wadzenie	3
	1.2	Opis o	ogólny kodu	3
		1.2.1	Ogólny przepływ działania programu	4
		1.2.2	Opis diagramu aktywności	4
	1.3	Strukt	tura kodu	4
		1.3.1	Struktury danych	5
		1.3.2	Funkcje pomocnicze	5
		1.3.3	Funkcja główna: processData	5
		1.3.4	Wielowątkowość	7
	1.4	Funkc	jonalności	8
		1.4.1	Wczytywanie danych	8
		1.4.2	Generowanie danych	8
		1.4.3	Usuwanie duplikatów	8
		1.4.4	Wielowątkowe przetwarzanie	8
		1.4.5	Zapis do plików CSV	9
		1.4.6	Kolorowe logowanie	9
	1.5	Konfig	guracja	9
		1.5.1	Ścieżka do plików CSV	9
		1.5.2	Parametry bazy danych PostgreSQL	9
		1.5.3	Parametry wielowątkowości	9
	1.6	Strukt	tury danych	9
		1.6.1	Struktura Address	9
	1.7	Przyk	ładowy przebieg działania programu	10
		1.7.1	Generowanie danych	10
		1.7.2	Wczytywanie plików CSV	10
		1.7.3	Usuwanie duplikatów i zapis wyników	10
	1.8	Instru	- · · · · · · · · · · · · · · · · · · ·	10
		1.8.1		10
		1.8.2	Uruchomienie programu	11
		1.8.3	Interfejs użytkownika	

Rozdział 1

Opis techniczny projektu

1.1 Wprowadzenie

Niniejszy dokument opisuje działanie, strukturę oraz funkcjonalność programu napisanego w języku C++. Program służy do przetwarzania danych adresowych z plików CSV oraz bazy danych PostgreSQL. Jego główne zadania to:

- Wczytywanie danych z plików CSV.
- Generowanie nowych danych na podstawie bazy danych PostgreSQL.
- Usuwanie duplikatów współrzędnych geograficznych.
- Zapis przetworzonych danych do nowych plików CSV.

Program został zaprojektowany z myślą o przetwarzaniu dużych zbiorów danych, dlatego wspiera wielowątkowość, co znacząco przyspiesza operacje.

1.2 Opis ogólny kodu

Kod programu można podzielić na kilka głównych komponentów:

- Struktury danych: Program definiuje strukturę Address, która przechowuje wszystkie informacje o pojedynczym rekordzie adresowym. Dodatkowo, struktura FileInfo przechowuje informacje o plikach CSV, takie jak ścieżka, indeks początkowy i liczba linii.
- 2. **Funkcje pomocnicze:** Zestaw funkcji, które realizują różne zadania, takie jak wyszukiwanie plików CSV, usuwanie ostatniego znaku z ciągu znaków czy identyfikowanie duplikatów współrzędnych.
- 3. Funkcja główna: Funkcja processData, która integruje wszystkie operacje, takie jak wczytywanie danych, generowanie nowych rekordów, usuwanie duplikatów oraz zapis przetworzonych danych.
- 4. **Wielowątkowość:** Operacje na dużych zbiorach danych, takie jak usuwanie duplikatów, są wykonywane w wielu wątkach, co pozwala na równoczesne przetwarzanie różnych fragmentów danych.
- 5. **Interfejs użytkownika:** Program oferuje menu w konsoli, które umożliwia użytkownikowi wybór odpowiednich działań, takich jak rozpoczęcie przetwarzania, sprawdzenie postępu lub wyjście z programu.

1.2.1 Ogólny przepływ działania programu

- 1. Program wczytuje dane z plików CSV znajdujących się w podanej ścieżce.
- 2. Łączy się z bazą danych PostgreSQL i wykonuje zapytanie SQL w celu wygenerowania nowych danych.
- 3. Usuwa rekordy zduplikowane na podstawie współrzędnych geograficznych.
- 4. Zapisuje przetworzone dane do nowych plików CSV z dopiskiem _final.
- 5. Użytkownik może śledzić postęp przetwarzania za pomocą menu w konsoli.

1.2.2 Opis diagramu aktywności

Diagram aktywności przedstawia przepływ programu, który działa w następujący sposób:

- Program rozpoczyna się od inicjalizacji i wyświetlenia menu.
- Użytkownik ma do wyboru jedną z czterech opcji:
 - 1. Przetwarzanie danych: Wczytanie plików, połączenie z bazą danych, wykonanie zapytań SQL, generowanie nowych danych, usuwanie duplikatów i zapis do nowych plików CSV.
 - 2. Wyświetlenie postępu: Prezentacja aktualnego stanu przetwarzania danych.
 - 3. Wyświetlenie segmentacji: Podział danych na segmenty i ich prezentacja.
 - 4. Wyjście: Zakończenie działania programu.
- W przypadku wybrania nieprawidłowej opcji użytkownik wraca do menu.

Na Ryc. 1.1 przedstawiono diagram aktywności ilustrujący powyższy proces.

Rysunek 1.1: Diagram aktywności programu.

1.3 Struktura kodu

Kod programu został podzielony na następujące sekcje:

5 1.3 Struktura kodu

1.3.1 Struktury danych

- Address: Reprezentuje pojedynczy rekord adresowy. Posiada następujące pola:
 - lp liczba porządkowa.
 - dataPoczatku, dataKonca okres obowiązywania danych.
 - sumaUbezpieczenia, odnowienia informacje finansowe.
 - ulica, kodPocztowy, miasto, wojewodztwo, kraj dane lokalizacyjne.
 - reasekuracja0, reasekuracjaF dane o reasekuracji.
 - szerokosc, dlugosc współrzędne geograficzne.
 - flaga1, flaga2 dodatkowe informacje.
 - nrwoj numer województwa.
- FileInfo: Przechowuje informacje o plikach CSV:
 - path ścieżka do pliku.
 - startIndex indeks początkowy w danych.
 - lineCount liczba linii w pliku.

1.3.2 Funkcje pomocnicze

- getCsvFiles: Wyszukuje wszystkie pliki CSV w podanej ścieżce.
- removeLastChar: Usuwa ostatni znak z ciągu znaków.
- findDuplicateCoordinates: Wyszukuje duplikaty współrzędnych w danych.
- removeMatchingCoordinates: Usuwa rekordy zduplikowane na podstawie współrzędnych geograficznych.
- getWojewodztwoMapa: Mapuje kod pocztowy na województwo.

1.3.3 Funkcja główna: processData

Funkcja processData realizuje główne zadania programu:

- 1. Łączy się z bazą danych PostgreSQL i wykonuje zapytanie SQL w celu wygenerowania nowych danych.
- 2. Wczytuje dane z plików CSV i zapisuje je do wspólnego kontenera.
- 3. Usuwa rekordy zduplikowane na podstawie współrzędnych geograficznych.
- 4. Zapisuje przetworzone dane do nowych plików CSV.

Na rycina 1.2 przedstawiono diagram sekwencji dla funkcji processData(), która realizuje proces generowania, przetwarzania i zapisywania danych. Diagram ilustruje interakcje między głównymi komponentami, takimi jak użytkownik, baza danych, system plików oraz logger.

Rysunek 1.2: Diagram sekwencji dla funkcji processData().

7 1.3 Struktura kodu

1.3.4 Wielowątkowość

Operacje przy pomocy funkcji removeMatchingCoordinates są wykonywane w wielu wątkach, co pozwala na równoczesne przetwarzanie różnych fragmentów danych. Liczba wątków jest określona przez zmienną numThreads.

Diagram, zobrazowany na Ryc. 1.3, ilustruje główne kroki funkcji, w tym podział danych na fragmenty, przetwarzanie w wątkach, łączenie wyników oraz sortowanie i usuwanie duplikatów.

Rycina 1.3 przedstawia następujące kroki:

- 1. Podział danych na fragmenty: Główny wątek oblicza rozmiar fragmentów danych (chunkSize) i inicjuje watki w puli (Thread Pool).
- 2. Przetwarzanie wątków: Każdy wątek pobiera odpowiedni fragment danych z generatedData oraz toProcess, przetwarza je i zapisuje wyniki lokalne w Results.
- 3. **Łączenie wyników**: Po zakończeniu pracy wątków, główny wątek łączy wszystkie wyniki lokalne w Final Result.
- 4. Sortowanie i usuwanie duplikatów: Główny wątek sortuje dane w Final Result i usuwa duplikaty za pomocą funkcji std::unique i std::sort.
- 5. Zapisanie wyników: Przetworzone dane są zapisywane z powrotem do generatedData.

Każdy etap procesu został zilustrowany na diagramie za pomocą odpowiednich komponentów, takich jak dane wejściowe (generatedData i toProcess), pula wątków (Thread Pool) oraz wyniki lokalne (Results). Diagram przedstawia również równoległe przetwarzanie danych przez wątki.

Rysunek 1.3: Diagram działania funkcji removeMatchingCoordinates.

1.4 Funkcjonalności

1.4.1 Wczytywanie danych

Program rekurencyjnie przeszukuje katalog wskazany w zmiennej path, aby znaleźć pliki CSV. Każdy plik jest wczytywany, a jego zawartość jest parsowana i przechowywana w wektorze obiektów Address. Dane są przetwarzane w sposób następujący:

- Wczytywane są wszystkie linie z pliku CSV.
- Nagłówki plików są przechowywane, aby umożliwić późniejszy zapis wyników.
- Dane są przechowywane w kontenerze toProcess.

1.4.2 Generowanie danych

Program łączy się z bazą PostgreSQL i wykonuje zapytanie SQL, które generuje dane geograficzne na podstawie tabeli placex. Generowanie danych obejmuje:

- Wybór unikalnych rekordów z tabeli na podstawie współrzędnych geograficznych (lat, lon).
- Mapowanie kodów pocztowych na województwa za pomocą funkcji getWojewodztwoMapa.
- Przechowywanie wyników w kontenerze generatedData.

Przykład zapytania SQL używanego w programie:

```
postcode, address,
st_Y(ST_Centroid(centroid)) AS lat,
ST_X(ST_Centroid(centroid)) AS lon
from placex
WHERE address -> 'housenumber' IS NOT NULL
ORDER BY RANDOM()
LIMIT 30000000;
```

1.4.3 Usuwanie duplikatów

Program identyfikuje i usuwa rekordy zduplikowane na podstawie współrzędnych geograficznych (szerokosc, dlugosc). Proces obejmuje:

- Analize danych w kontenerze toProcess.
- Usuwanie rekordów, które mają takie same współrzędne geograficzne.
- Wielowatkowe przetwarzanie danych za pomocą funkcji removeMatchingCoordinates.

1.4.4 Wielowątkowe przetwarzanie

Program wykorzystuje wielowątkowość w celu przyspieszenia przetwarzania dużych zbiorów danych. Liczba wątków jest konfigurowalna i ustawiona w zmiennej:

```
size_t numThreads = 32;
```

Każdy wątek przetwarza fragment danych, co pozwala na równoległe usuwanie duplikatów i filtrowanie wyników.

9 1.5 Konfiguracja

1.4.5 Zapis do plików CSV

Przetworzone dane są zapisywane do nowych plików CSV. Każdy plik wynikowy otrzymuje dopisek _final, aby odróżnić go od oryginału. Proces zapisu obejmuje:

- Otwieranie pliku wynikowego.
- Zapis przetworzonych danych z zachowaniem oryginalnego nagłówka.
- Obsługę błędów w przypadku problemów z zapisem.

1.4.6 Kolorowe logowanie

Program używa kolorów w konsoli, aby lepiej wyróżniać komunikaty informacyjne, ostrzeżenia i błędy. Przykład użycia kolorów:

```
Color::Modifier red(Color::FG_RED);
Color::Modifier green(Color::FG_GREEN);
Color::Modifier def(Color::FG_DEFAULT);

std::cout << red << "[INFO] " << def << "Rozpoczęto przetwarzanie danych." << std::endl;
```

1.5 Konfiguracja

1.5.1 Ścieżka do plików CSV

Ścieżka do katalogu z plikami CSV jest określona w zmiennej:

```
fs::path path = "/mnt/c/Users/szczkr/2_po_geokodowaniu";
```

1.5.2 Parametry bazy danych PostgreSQL

Połączenie z bazą danych jest konfigurowane w funkcji processData:

```
pqxx::connection c(
    "dbname=nominatim user=nominatim password=nominatim host=localhost port=5432"
};
```

1.5.3 Parametry wielowatkowości

Liczba wątków, które program wykorzystuje do przetwarzania danych, jest ustawiona w zmiennej:

```
size_t numThreads = 32;
```

1.6 Struktury danych

1.6.1 Struktura Address

Struktura Address reprezentuje pojedynczy rekord danych adresowych. Definicja:

```
struct Address {
2
       std::string lp;
       std::string dataPoczatku;
       std::string dataKonca;
       std::string sumaUbezpieczenia;
       std::string odnowienia;
       std::string ulica;
       std::string kodPocztowy;
       std::string miasto;
9
       std::string wojewodztwo;
11
       std::string kraj;
       std::string reasekuracja0;
13
       std::string reasekuracjaF;
       std::string szerokosc;
14
       std::string dlugosc;
       std::string flaga1;
17
       std::string flaga2;
       std::string nrwoj;
18
   };
19
```

1.7 Przykładowy przebieg działania programu

1.7.1 Generowanie danych

Po uruchomieniu programu użytkownik wybiera opcję generowania danych. Program łączy się z bazą PostgreSQL, wykonuje zapytanie SQL i generuje dane w pamięci. Przykład komunikatu w konsoli:

```
[INFO] Rozpoczęto generowanie danych...
[INFO] Generowanie danych zakończone.
```

1.7.2 Wczytywanie plików CSV

Program przeszukuje katalog w celu znalezienia plików CSV, a następnie wczytuje ich zawartość. Przykład komunikatu:

```
[INFO] Przetwarzanie pliku: data1.csv
[INFO] Przetwarzanie pliku: data2.csv
```

1.7.3 Usuwanie duplikatów i zapis wyników

Po usunięciu duplikatów program zapisuje wyniki do nowych plików CSV. Przykład komunikatu:

```
[INFO] Zapisywanie do pliku: data1_final.csv
[INFO] Zapisywanie do pliku: data2_final.csv
```

1.8 Instrukcja obsługi

1.8.1 Kompilacja programu

Program należy skompilować za pomocą kompilatora obsługującego standard C++17 lub nowszy:

```
g++ -std=c++17 -lpqxx -lpq main.cpp -o program
```

1.8.2 Uruchomienie programu

Uruchom program w terminalu za pomocą poniższego polecenia:

./program

1.8.3 Interfejs użytkownika

Po uruchomieniu programu użytkownik ma do wyboru następujące opcje:

- 1. Rozpocznij przetwarzanie danych inicjuje proces wczytywania, generowania i przetwarzania danych.
- $2.\$ Pokaż postęp prac wyświetla aktualny stan przetwarzania, w tym liczbę przetworzonych plików i rekordów.
- 3. Pokaż segmentację kontenera wyświetla szczegóły dotyczące podziału danych na fragmenty.
- 4. Wyjdź kończy działanie programu.