Markov and Chebyshev's inequality, Central Limit Theorem and Conditional probability and conditional expectation

What do you think?

I toss a coin 1000 times. The probability that I get 14 consecutive heads is

A B C
$$< 10\%$$
 $\approx 50\%$ $> 90\%$

Consecutive heads

Let N be the number of occurrences of 14 consecutive heads in 1000-coin flips.

$$N = I_1 + \dots + I_{987}$$

where I_i is an indicator r.v. for the event

"14 consecutive heads starting at position i"

$$E[I_i] = P(I_i = 1) = 1/2^{14}$$

 $E[N] = 987 \cdot 1/2^{14} = 987/16384 \approx 0.0602$

Limit Theorems

 Markov's Inequality: If X is a random variable that takes only nonnegative values, then for any value a > 0

$$P(X \ge a) \le \frac{E[X]}{a}$$

$$E[N] \approx 0.0602$$

$$P[N \ge 1] \le E[N] / 1 \le 6\%$$
.

Proof of Markov's inequality

For every non-negative random variable X: and every value a:

$$P(X \ge a) \le E[X] / a.$$

$$E(X) = \int_{0}^{\infty} xp(x)dx = \int_{0}^{a} xp(x)dx + \int_{a}^{\infty} xp(x)dx$$
$$\geq \int_{a}^{\infty} ap(x)dx = a \int_{a}^{\infty} p(x)dx = aP(X \geq a)$$
$$P(X \geq a) \leq \frac{E(X)}{a}$$

Example

1000 people throw their hats in the air. What is the probability at least 100 people get their hat back?

Solution

$$N = I_1 + \dots + I_{1000}$$

where I_i is the indicator for the event that person i gets their hat.

Then
$$E[I_i] = P(I_i = 1) = 1/n$$

$$E[N] = n \, 1/n = 1$$

$$P[N \ge 100] \le E[N] / 100 = 1\%.$$

What do you think?

- Suppose we know that the number of items produced in a factory during a week is a random variable with mean 500.
- If the variance of a week's production is known to equal 100, then what can be said about the probability that this week's production will be between 400 and 600?

Chebyshev's Inequality

- What is the probability that the value of X is far from its expectation?
- Let X be a random variable with $E[X] = \mu$, $Var(X) = \sigma^2$

$$P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$
, for any value $k > 0$

- Proof
 - Since $(X \mu)^2$ is non-negative random variable, apply Markov's Inequality with $a = k^2$

$$P((x-\mu)^2 \ge k^2) \le \frac{E[(x-\mu)^2]}{k^2} = \frac{\sigma^2}{k^2}$$

• Note that: $(X - \mu)^2 \ge k^2 \iff |X - \mu| \ge k$, yielding: $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$

Markov's and Chebyshev's inequalities enable us to derive bounds on probabilities when only the mean, or both the mean and the variance, of the probability distribution are known.

What do you think?

- Suppose we know that the number of items produced in a factory during a week is a random variable with mean 500.
- If the variance of a week's production is known to equal 100, then what can be said about the probability that this week's production will be between 400 and 600?
- Solution

$$P\{|X-500| \ge 100\} \le \frac{\sigma^2}{(100)^2} = \frac{1}{100}$$

and so, the probability that this week's production will be between 400 and 600 is at least 0.99

Central Limit Theorem

- Recall
 - Observation
 - Result from one trial of an experiment.
 - Sample
 - Group of results gathered from separate independent trials.
 - Population
 - Space of all possible observations that could be seen from a trial.
- If we calculate the mean of a sample, it will be an estimate of the mean of the population distribution.
- But, like any estimate, it will be wrong and will contain some error.
- If we draw multiple independent samples, and calculate their means, the distribution of those means will form a Gaussian distribution.

Central Limit Theorem

demonstration of the central limit theorem

calculate the mean of 50 dice rolls 1000 times

means = [mean(randint(1, 7, 50)) for _ in range(1000)]

from numpy.random import seed from numpy.random import randint

from matplotlib import pyplot

seed the random number generator

plot the distribution of sample means

from numpy import mean

pyplot.hist(means)

pyplot.show()

seed(1)

• The central limit theorem states that if you have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed.

200

150

100

50

Central Limit Theorem

• Let $X_1, X_2, ...$ be a sequence of independent, identically distributed random variables, each with mean μ and variance σ^2 . Then the distribution of

$$\frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}}$$

• tends to the standard normal as $n o \infty$. That is

$$P\left(\frac{X_1+X_2+\cdots+X_n-n\mu}{\sigma\sqrt{n}}\leq a\right)\to \frac{1}{\sqrt{2\pi}}\int_{-\infty}^a e^{-x^2/2}dx$$

Conditional probability and conditional expectation

Recall: The Discrete Case

• For any two events E and F, the conditional probability of E given F is defined, as long as P(F) > 0, by

$$P(E|F) = \frac{P(EF)}{P(F)}$$

- Example:
 - Flip three different fair coins, then S={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
 - Question: What is the probability that the first coin comes up heads when exactly two of the three coins came up heads.?

The Discrete Case

• If X and Y are discrete random variables, then the conditional probability mass function of X given that Y = y, by

$$p_{X|Y}(x|y) = P\{X = x|Y = y\}$$

$$= \frac{P\{X = x, Y = y\}}{P\{Y = y\}}$$

$$= \frac{p\{x, y\}}{p_Y\{y\}}, P\{Y = y\} > 0$$

The Discrete Case

• Similarly, the conditional probability distribution function of X given that Y = y is defined, for all y such that $P\{Y = y\} > 0$, by

$$F_{X|Y}(x|y) = P\{X \le x|Y = y\}$$

$$=\sum_{a\leq x}p_{X|Y}(a|y)$$

The Discrete Case

• The conditional expectation of X given that Y = y is defined by

$$E[X|Y=y] = \sum_{x} xP(X=x|Y=y)$$

$$=\sum_{x}xp_{X|Y}(x|y)$$

if X is independent of Y, then

$$p_{X|Y}(x|y) = P(X = x|Y = y) = P(X = x)$$

Example

- Suppose that p(x,y), the joint probability mass function of X and Y, is given by p(1,1) = 0.5, p(1,2) = 0.1, p(2,1) = 0.1, p(2,2) = 0.3
- Question: Calculate the conditional probability mass function of X given that Y = 1
- Solution: $p_Y(1) = \sum_x p(x, 1) = p(1, 1) + p(2, 1) = 0.6$

Hence,

$$p_{X|Y}(1|1) = P\{X = 1|Y = 1\}$$

$$= \frac{P\{X = 1, Y = 1\}}{P\{Y = 1\}}$$

$$= \frac{p(1, 1)}{p_{Y}(1)}$$
Similarly,
$$= \frac{5}{6}$$

$$p_{X|Y}(2|1) = \frac{p(2, 1)}{p_{Y}(1)} = \frac{1}{6}$$

Example

• If X_1 and X_2 are independent binomial random variables with respective parameters (n_1, p) and (n_2, p) , calculate the conditional probability mass function of X_1 given that $X_1 + X_2 = m$.

$$P\{X_{1} = k | X_{1} + X_{2} = m\} = \frac{P\{X_{1} = k, X_{1} + X_{2} = m\}}{P\{X_{1} + X_{2} = m\}}$$

$$= \frac{P\{X_{1} = k, X_{2} = m - k\}}{P\{X_{1} + X_{2} = m\}}$$

$$= \frac{P\{X_{1} = k\}P\{X_{2} = m - k\}}{P\{X_{1} + X_{2} = m\}}$$

$$= \frac{\binom{n_{1}}{k}p^{k}q^{n_{1}-k}\binom{n_{2}}{m-k}p^{m-k}q^{n_{2}-m+k}}{\binom{n_{1} + n_{2}}{m}} - P\{X_{1} = k | X_{1} + X_{2} = m\} = \frac{\binom{n_{1}}{k}\binom{n_{2}}{m-k}}{\binom{n_{1} + n_{2}}{m}}$$

The Continuous Case

• If X and Y have a joint probability density function f(x,y), then the conditional probability density function of X, given that Y=y, is defined for all values of y such that $f_Y(y)>0$, by

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

The Continuous Case

 $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$

• The conditional expectation of X, given that Y=y, is defined for all values of y such that $f_Y(y)>0$, by

$$E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

Example

Suppose the joint density of X and Y is given by

$$f(x,y) = f(x) = \begin{cases} 6xy(2-x-y), & 0 < x < 1, 0 < y < 1 \\ 0, & otherwise \end{cases}$$

• Question: Compute the conditional expectation of X given that Y = y, where 0 < y < 1.

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$= \frac{6xy(2-x-y)}{\int_0^1 6xy(2-x-y) dx}$$

$$= \frac{6xy(2-x-y)}{y(4-3y)}$$

$$= \frac{6x(2-x-y)}{4-3y}$$

$$= \frac{6x(2-x-y)}{4-3y}$$

$$= \frac{6x(2-x-y)}{4-3y}$$

$$= \frac{5-4y}{8-6y}$$
Hence,
$$= \frac{(2-y)2-\frac{6}{4}}{4-3y}$$

22

Reference

- Lecture notes on Probability Theory by Phanuel Mariano
- Introduction to Probability Models, Sheldon M. Ross, Tenth Edition