

HEAT NUMBER DIGITIZATION SYSTEM

PHASE 1 PRESENTATION

Trainee Name: Ling Zhao Jia, Danny

Company Name: Keppel FELS Ltd

Company Supervisor Name & Email: Mr. Liew Wing Leong

(wingleong.liew@keppelfels.com)

NUS-ISS Supervisor Name & Email: Dr. Tian Jing (tianjing@nus.edu.sg)

AGENDA (PHASE 1)

- Problem Background & Business Objectives
- Project Scope & Success Criteria
- Knowledge/Data collection and preparation
- Technical Progress
- System Overview
- Project plan

PROBLEM BACKGROUND & BUSINESS OBJECTIVES

Problem/Domain background

 Logistics Steel Stock supply chain process is highly manual and time consuming

Project's business objectives/goals;

- To automate Steel Stock supply chain process
- To identify and track Steel Stock
- Overall reduction in No. of manhours for Steel Stock Receiving & Issuing

PROJECT SCOPE

Technical Development

 Use Object Recognition and OCR to automatically classify Heat Numbers labelled on Steel Stock and digitize it

Vendor Evaluation

 Evaluate 3rd Party Image Capturing Devices and/or OCR Vendor solution and benchmark against in-house technical solution for management's review

PROJECT SUCCESS CRITERIA

Project success criteria (technical)

 Demonstrate Proof of Concept using Python script to automatically run images through Object Recognition model and output classification and predicted text onto .csv

Project success criteria (business)

- Eliminate manual identification of Heat Numbers
- Eliminate the need to use handwriting and manual data-entry for Heat Numbers
- Vendor evaluation for management's review

PROJECT BUSINESS USERS & STAKEHOLDERS

Business user profile

- KOM Digi Team
- Logistics Operations/Administration Team

Stakeholders

Logistics Department

Image Acquisition

- Estimated 10-20 images from 10 different Suppliers (Total 100 200 images)
 - Different format for labelling the different classes: Heat Number,
 Dimensions, Country of Origin etc.

Supplier 2 - 10 images

Supplier 3 – 10 images

Image Labelling

Label images with bounding boxes

Filename	x1	y1	x2	y2	Label
lmage_0001.jpg	251	51	444	300	heat_number
lmage_0002.jpg	100	25	400	120	heat_number
Image 0003.jpg	111	41	414	250	heat number

Filename	x 1	y1	x2	y2	Label
lmage_0001.jpg	111	21	300	212	dimension
lmage_0002.jpg	333	22	231	111	dimension
lmage_0003.jpg	243	35	234	11	dimension

Image Augmentation

- Colour Space Manipulation
 - Random Brightness, Random Contrast, Noise/Blur
 - To simulate different lighting conditions and camera exposure
 - To simulate different camera image quality
 - To simulate camera user hand movements / out-of-focus image

Original

High Brightness & Contrast

Low Brightness & Contrast

Gaussian Blur

Image Augmentation

- Rotation
 - 45, 90, 135, 180, 225, 270, 315 degrees rotation
 - To simulate different image orientation

Image Augmentation

- Scaling / Cropping / Translation
 - To simulate camera zoom (near image vs far image)
 - To simulate incomplete images taken
 - To simulate different position of texts

Original Scaling Cropping Translation

TECHNICAL PROGRESS

Image cquisition

- Acquire 100 200 images using camera
- 10 20 images each from 10 different suppliers (Different labelling format)

Image Labelling & Augmentation

- Label Images & Object bounding boxes
- Image Augmentation
- Visually verify actual text on images and tabulate into Excel for OCR accuracy comparison

Classification Model

- Develop CNN model for Image Classification
- Save Keras model (HDF5 format) with trained weights for script implementation

OCR Model

- Paddle OCR vs. pytesseract
- Compare accuracy

Script Developmen

- Python script in .py format
- To run in Windows environment
- User Guide & Documentation

EXPECTED PROOF OF CONCEPT

Image_0001.jpg

Image_0002.jpg

Classification Labels

- Heat Number
- Dimension
- Country of Origin

Filename	Heat Number	HN Confidence	Dimension	Dim Confidence	Country of Origin	COO Confidence
Image_0001.jpg	909397100	92%	14*3048*9144	95%	China	98%
Image_0002.jpg	2003A2933	94%	150*90*9	95%		
Image_0003.jpg	A12345B	93%	14*2048*9144	90%	Germany	97%
Image_0004.jpg	C123456D	80%	150*90*9	77%		
				••		
Image_1000.jpg	E1234567G	94%	14*3048*9144	94%	Germany	97%

System Overview Image_0001.jpg **خرنه** PaddlePaddle 0909397100 14*3048*9144 Image_0002.jpg 1032769 S355ML PaddleOCR Tesseract OCR 常熟市龙腾特种钢有限公司 检 27 Legend: **OCR Engine Open-source** 船检标记 Class Mark 不等边角钢 IN CHINA For Text Extraction **Optical Character Development Tasks** KEPPEL FELS L EN10056-1:1999 Recognition 钢级 Grade 规格 pecificat ∠150×90×9 **Heat Number Digitization Process** (OCR) Engine 高强(AH) 2003A2933 重量 1771kg 2020-3-10 长度 9.0m Date modifie Text Extraction Image_0001.jpg 21-Dec-20 2:5 Engine Image_0002.jpg 21-Dec-20 2:56 Image_0003.jpg 21-Dec-20 2:5 Image_0004.jpg 3 Image_0005.jpg 21-Dec-20 2:56 PM JPG File JPG File Image_0006.jpg 21-Dec-20 2:56 PM **Images captured Run Python** Output to .csv Image_0007.jpg 21-Dec-20 2:56 PM JPG File and stored in Image_1000.jpg 21-Dec-20 2:56 PM JPG File **Script** format Output folder Input Heat HN Dim Country of COO Origin Filename Number Confidence **Dimension Confidence** Confidence Inference 14*3048*9144 95% China 98% Image_0001.jpg 909397100 92% Engine 2003A2933 Image_0002.jpg 94% 150*90*9 95% 93% 14*2048*9144 90% 97% Image_0003.jpg A12345B Germany 150*90*9 77% Image_0004.jpg C123456D 80% MADE IN CHINA 4900019808 8384 KEPPEL FELS LIU MADE IN CHINA: 4900019808 ESSI KEPPEL FELS LITO Image_1000.jpg 14*3048*9144 94% 97% E1234567G 94% Germany **Labelled Images Trained CNN** for Model Model **Training** MINE STATE **Uil Path Classification Labels Deep Learning Model Infinity Scan** □ 常熱市龙橋特种钢有限公司 检 **企** 常熟市龙鹤特种钢有限公司 检 不等边角钢 不等边角铜 Convolutional Neural **Heat Number** EN10056-1:1999 EN10056-1:1999 ∠150×90×9 Network (CNN) Z150×90×9 Dimension Use Case 3: For Heat 高强(AH) Use Case 2: Work with For Object Recognition 2020-0-10 FE 9. Om Country of Origin **Number Tracking using Infinity Scan for** Use Case 1: RPA for **Steel Stock Automatic Mill Cert** Class 1 - Heat Number Class 2 - Dimension data entry into SAP **Management System** Validation

PROJECT PLAN

Step-by-Step Deliverables (Technical Development)

No.	Item Description	Platform Used	Date	Deliverables / Expected Results
1	Data and Image Acquisition	Handheld/Phone Camera	15-Jan-20	1) 10 - 20 images of labels from 10 different suppliers
2	Data Processing - Image Labelling and Augmentation	Jupyter Notebook - Labellmg - OpenCV MS Excel	02-Feb-21	 1) .txt or .xml file indicating coordinates for object detection bounding boxes 2) Labelled images (800 or more images after augmentation) 3) Actual heat numbers, dimensions and country of origin (to be visually verified) in excel
3	Development of Classification Model for Object Detection with training and testing	Jupyter Notebook - CNN model	19-Feb-21	1) Classification Accuracy Score > 80%
4	Optimization of Classification Model	Jupyter Notebook - CNN model vs Other models	25-Feb-21	 Select optimal Classification model for use Saved Keras model (HDF5 format) with trained weights
5	Test OCR engine on Predicted Data	Jupyter Notebook - pytesseract vs. PaddleOCR	26-Feb-21	1) Predicted Text Accuracy > 80% and select optimal OCR engine for use
6	Initial Proof of Concept & Evaluation of Object Detection Model	Jupyter Notebook	01-Mar-21	1) Demonstrate object detection and text extraction using test data
7	Further Optimization of Classification + OCR model	Handheld/Phone Camera Jupyter Notebook	05-Mar-21	 Take additional images for training and check if model accuracy can be further improved Additional image augmentation for training and check if model accuracy can be further improved
8	Development of Python Script for Object Detection	Spyder IDE	26-Mar-21	 Python code to run script Transfer of Jupyter Notebook code to Spyder IDE Final Python script in .py
9	Demonstrate final Proof of Concept	Windows - Python script	29-Mar-21	 Run through a folder of unseen images Output predicted text and classification in .csv
10	User guide & documentation	MS Word / PDF	02-Apr-21	1) User guide and documentation in .pdf

Step-by-Step Deliverables (Vendor Evaluation)

No.	Item Decription	Date	Deliverables / Expected Results
1	Research on suitable vendors for engagement	15-Jan-21	Propose 2-3 OCR and/or storage solution providers
2	Invite Vendors to present Proof of Concept / Site Demo	12-Feb-21	2 - 3 Vendors to come in for presentation and site demo
3	Vendors to submit quotation	05-Mar-21	2 - 3 Vendor quotations to be received
4	Vendor Cost-Benefit Analysis	12-Feb-21	Tabulate vendor cost vs benefit
5	Vendor Engagement Presentation/Proposal to Keppel	19-Mar-21	Present Cost-Benefit Analysis
6	Refinement of Presentation/Proposal	02-Apr-21	Update presentation/proposal after feedback from Keppel
7	Final Presentation/Proposal to Keppel	23-Apr-21	Final Vendor Engagement Presentation

Final Deliverables

Technical Development Deliverables

- 1x Trained CNN Model for Object Recognition
- 1x Python Script
- 1x User Guide & Documentation

Vendor Evaluation Deliverables

• 2 – 3x 3rd Party Vendor Quotations

Any Questions?

END