Université Sultan Moulay Slimane Ecole Supérieure de Technologie, Fkih Ben Salah :Filière; Génie Informatique-Informatique décisionnelle Année Universitaire 2022-2023

Série 2 Mathématiques

Exercice 1

Les applications suivantes sot elles injectives, surjectives, bijectives? $f: IN \longrightarrow IN$ définie par : $f(n) = n + 1 \ \forall n \in IN$

$$g: Z \longrightarrow Z$$
 définie par : $g(n) = n + 1 \ \forall n \in Z$
 $h: IR \times IR \longrightarrow IR \times IR$ définie par : $h(x,y) = (x+y,x-y) \ \forall (x,y) \in IR \times IR$
 $k: IR \longrightarrow IR$ définie par : $k(x) = e^{2x} - 2e^x \ \forall x \in IR$

Exercice 2

1- Sur IR^2 , on définit la relation \Re par : $\forall (x,y) \in IR \times IR$, $(x,y)\Re(x,y) \Leftrightarrow x=x'$ Montrer que \Re est une relation d'equivalence et déterminer la classe d'equivalence de $(a,b) \in IR \times IR$ 2- Sur IN, on définit la relation \Re par : $\forall p,q \in IN$, $p\Re q \Leftrightarrow 2$ divise q. \Re est elle une relation déquivalence ou d'ordre.

Exercice 3

Soit (E, +, .) un espace vectoriel sur IR et E_1, E_2 deux sous espaces vectoriels de E. Montrer que $E_1 + E_2$ et $E_1 \cap E_2$ sont deux sous espaces vectoriels de E

Exercice 4

Montrer si le sous ensemble F suivant est un sous espace vectoriel de E a- E = IR[X], $F = \{P(X) \in IR[X] : D^{\circ}P < n, n \in IN\}$

b- $E = \Im(I, IR), F = \{f \in \Im(I, IR) : fest croissante sur I\}$

c- $E = IR^3$, $F = \{(x + y + z, x - y, z) : x, y, z \in IR\}$

Exercice 5

Montrer que la famille $\{(1,2),(-1,1)\}$ est une base de IR^2

Exercice 6

On considère dans IR^3 , le sous ensemble $F=\{(x,y,z)\in IR^3: 2x+y-z=0\}$ 1- Montrer que F est un sous espace vectoriel de IR^3 2- Donner une base de F et calculer la dimension de F

- 3-F est il égale à IR^3 ?