Observe that the expression for $\omega_0(\alpha)$ is exactly the expression in the statement of our proposition! The rest of the proof consists in analyzing the variations of the function $M(\alpha, \omega)$ by considering various cases for α . In the end, we find that the minimum of $\rho(\mathcal{L}_{\omega})$ is obtained for $\omega_0(\rho(J))$. The details are tedious and we omit them. The reader will find complete proofs in Serre [156] and Ciarlet [41].

Combining the results of Theorem 10.6 and Proposition 10.9, we obtain the following result which gives precise information about the spectral radii of the matrices J, \mathcal{L}_1 , and \mathcal{L}_{ω} .

Proposition 10.10. Let A be a tridiagonal matrix (possibly by blocks) which is Hermitian positive definite. Then the methods of Jacobi, Gauss-Seidel, and relaxation, all converge for $\omega \in (0,2)$. There is a unique optimal relaxation parameter

$$\omega_0 = \frac{2}{1 + \sqrt{1 - (\rho(J))^2}},$$

such that

$$\rho(\mathcal{L}_{\omega_0}) = \inf_{0 < \omega < 2} \rho(\mathcal{L}_{\omega}) = \omega_0 - 1.$$

Furthermore, if $\rho(J) > 0$, then

$$\rho(\mathcal{L}_{\omega_0}) < \rho(\mathcal{L}_1) = (\rho(J))^2 < \rho(J),$$

and if
$$\rho(J) = 0$$
, then $\omega_0 = 1$ and $\rho(\mathcal{L}_1) = \rho(J) = 0$.

Proof. In order to apply Proposition 10.9, we have to check that $J = D^{-1}(E + F)$ has real eigenvalues. However, if α is any eigenvalue of J and if u is any corresponding eigenvector, then

$$D^{-1}(E+F)u = \alpha u$$

implies that

$$(E+F)u = \alpha Du$$
,

and since A = D - E - F, the above shows that $(D - A)u = \alpha Du$, that is,

$$Au = (1 - \alpha)Du.$$

Consequently,

$$u^*Au = (1 - \alpha)u^*Du.$$

and since A and D are Hermitian positive definite, we have $u^*Au > 0$ and $u^*Du > 0$ since $u \neq 0$, which proves that $\alpha \in \mathbb{R}$. The rest follows from Theorem 10.6 and Proposition 10.9.

Remark: It is preferable to overestimate rather than underestimate the relaxation parameter when the optimum relaxation parameter is not known exactly.