Name	Muhammad Asad
Reg. #	2019-EE-383
Marks	

Experiment # 9

Introduction to sequential circuit and working of RS flip-flop

Objective:

- Design and operation of latching circuits.
- Extended RS flip-flops
- RS flip-flop with dominant reset

Apparatus:

Workstation Core 2 Duo, Uni*Tr@inLucas Nulle*, *SO4201-9T*RS FFCard, Jumpers wires, Power Supplies.

Procedure:

• RS - flip-flop

In the following experiments, a simple RS flip-flop, consisting of two connected NAND gates, is examined.

Experiment steps: RS - flip-flop

1. Connect an Experimenter to the UniTr@in-I Interface and insert with the experiment card SO4201-9T. Then connect up the experiment card to the UniTr@in-

I Interface as shown in the illustration and as specified in the list of connections:

Digital Out 1	Terminal NAND E1
Digital Out 0	Terminal NAND E4
Digital In 1	Terminal NANDQ1
Digital In 0	Terminal NANDQ2
Terminal NAND E2	Terminal NAND Q2
Terminal NAND E3	Terminal NAND Q1

- 2. Select the following virtual instrument from *Instruments* menu
 - Digital Inputs and Outputs

Settings

Digital see Table outputs

3. Use the input variables to generate the input states given in the Table and note down the values of the output variables.

 \mathbf{Q}_n designates the level **before** a new input signal combination is applied.

 \mathbf{Q}_{n+1} designates the level **after** a new input signal combination has been applied.

- 4. Demonstrate the memory (latching) capability of the circuit and summarize the results determined in the subsequent truth table.
- 5. Specify the individual functions of the RS flip-flop:
 - a). disallowed
 - b). set
 - c). reset
 - d). no change
- 6. What conclusions can you draw from the truth table regarding the practical applications of an RS flip-flop?

From the truth table of RS flip floop, when both R and S having value (0) it disallowed the output both NAND gate invert values give 1 that is not physically understandable both Q and Q' have same value 1. When the value given 0 and 1 respectively to S and R its sets the value and when values are given 1 and 0 then it reset the value and last when both values are 1 then its gives us no change and it is depend upon the present value of Q.

	S	R	Q _{n+1}	Q'n+1
a).	0	0	1	1
b).	0	1	1	0
c).	1	0	0	1
d).	1	1	0	1

• Expanded RS flip-flop

In the following experiment, we will investigate an extended RS flipflop, consisting of two interconnected NAND gates and two inverters.

Experiment steps: Expanded RS flip-flop

1. Connect the experiment card to the sockets of the Uni*Tr@in*-I as specified in the list of connections on the right.

ľ	
ĺ	
i	
-	
ļ	

- 2. Now open the following virtual instrument from the *Instruments* menu
 - Digital inputs and outputs

3. Use the input variables to generate the input states specified in the Table and note down the values of the output variables.

 \mathbf{Q}_n designates the level **before** a new input signal combination is applied.

 \mathbf{Q}_{n+1} designates the level \boldsymbol{after} a new input signal combination is applied.

- 4. Demonstrate the memory (latching) capability of the circuit and summarize the results determined in the following Truth table.
- 5. Describe the individual functions of the expanded RS flip-flop:
 - a). disallowed
 - b). reset
 - c). set
 - d). no change
- 6. Describe the signal response of the expanded latch.

From the truth table of RS flip flop, when both R and S having value (1) then it disallowed the output because NOT gate inverts the values and both NAND gate inverts value give 1 that is not physically

S	R	Q _{n+1}	Q'n+1
1	1	1	1
0	1	0	1
1	0	1	0
0	0	1	0

• RS flip-flop with dominant reset

In the following experiments, we will be investigating a RS flip-flop with dominant reset consisting of three NAND gates and one inverter.

Experiment steps: RS flip-flop with dominant reset

1. Connect the experiment board to the sockets of the Uni*Tr@in*-I as specified in the list of connections on the right.

List of connections			
From	То		
Digital Out 1	Terminal NAND E5		
Digital Out 0	Terminal NOT E1		
Terminal NOT Q1	Terminal NAND E4		
Terminal NOT Q1	Terminal NAND E6		
Terminal NAND Q3	Terminal NAND E1		

Terminal NAND Q2
Terminal NAND Q1
Terminal NANDE1
Terminal NANDE4
Terminal NANDQ1
Terminal NANDQ2

- 2. Now open the following virtual instrument from the *Instruments* menu
 - Digital inputs and outputs

- 3. Use the input variables to generate the input states and note down the values of the output variables.
 - \mathbf{Q}_n designates the level **before** the new input signal combination is applied.
 - \mathbf{Q}_{n+1} designates the level **after** a new input signal combination is applied.

Settings

Digital	as specified in the
outputs	Table

S	R	Qn	\mathbf{Z}_1	\mathbb{Z}_2	Q _{n+1}	Q' _{n+1}
Q1	Q0	I1	13	12	I1	10
0	0	0	1	1	0	1
0	0	1	1	1	1	0
0	1	0	1	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	1	0
1	0	1	0	1	1	0
1	1	0	1	0	0	1
1	1	1	1	0	0	1

