Building Image Classification Models

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Image classification models

Convolutional layers and pooling layers

Convolutional Neural Networks (CNNs) for image classification

Implementing CNNs in tf.keras for image classification

Neural Networks for Image Classification

Corpus of Images

Layers in a neural network

ML-based Classifier

Neural Networks for Image Classification

Corpus of Images

Each layer consists of individual interconnected neurons

ML-based Classifier

Parameter Explosion

Consider a 100 x 100 pixel image (10,000 pixels)

If first layer = 10,000 neurons

Interconnections ~ O(10,000 * 10,000)

100 million parameters to train neural network!

Parameter Explosion

Dense, fully connected neural networks can't cope

Also do not provide feature extraction with location invariance

Convolutional neural networks to the rescue

Introducing Convolutional Neural Networks

Dense neural networks do not consider the spatial aspects of images

All neurons in the eye don't see the entire image

Each neuron has its own local receptive field

It reacts only to visual stimuli located in its receptive field

Some neurons react to more complex patterns that are combinations of lower level patterns

Neural Networks

Sounds like a classic neural network problem

Convolutional neural networks consider the **spatial** aspects of image and **aggregate** information from local fields

Convolutional Neural Networks

Eye perceives visual stimulus in 2D visual field

"Local receptive field"

Eye sends 2D image to visual cortex

Convolutional Neural Networks

Visual cortex adds depth perception Individual neurons in cortex focus on small field

Convolutional Neural Networks

CNNs perform spectacularly well at many tasks

Particularly at image recognition

Dramatically fewer parameters than DNN with similar performance

Inspirations for CNNs

Two Dimensions

Data comes in expressed in 2D

Local Receptive Fields

Neurons focus on narrow portions

Two Kinds of Layers in CNNs

Convolution

Local receptive field

Pooling

Subsampling of inputs

Two Kinds of Layers in CNNs

Convolution

Local receptive field

Pooling

Subsampling of inputs

In this context, a sliding window function applied to a matrix

In this context, a sliding window function applied to

a matrix

e.g. a matrix of pixels representing an image

In this context, a sliding window function applied to a matrix

Often called a kernel or filter

In this context, a sliding window function applied to a matrix

Kernel is applied element-wise in sliding-window fashion

Representing Images as Matrices

= 784 pixels

Representing Images as Matrices

= 36 pixels

Representing Images

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

Kernel

0	0	0	0	0	0
0.2	8.0	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	8.0	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

Kernel

Matrix

Convolution Result

Matrix

Convolutior Result

O _{x1}	хO	O _{x1}	0	0	0
хО	0.8 _{x1}	хО	0.3	0.6	0
0.2 x1	хO	O _{x1}	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

Convolutior Result

0	O _{x1}	хO	O _{x1}	0	0
0.2	хO	O _{x1}	хО	0.6	0
0.2	0.9 x1	хO	0.3 x1	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

Convolution Result

0	O _{x1}	хO	O _{x1}	0	0
0.2	хO	O _{x1}	хО	0.6	0
0.2	0.9 x1	хO	0.3 x1	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	

Matrix

Convolution Result

0	0	O _{x1}	хO	O _{x1}	0
0.2	0.8	хO	0.3 x1	хO	0
0.2	0.9	O _{x1}	хО	0.8 x1	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	

Matrix

Convolutior Result

0	0	O _{x1}	хO	O _{x1}	0
0.2	0.8	хO	0.3 x1	хO	0
0.2	0.9	O _{x1}	хО	0.8 x1	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	

Matrix

Convolutior Result

0	0	0	O _{x1}	хО	O _{x1}
0.2	0.8	0	хO	0.6 x1	хO
0.2	0.9	0	0.3 x1	хO	O _{x1}
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	

Matrix

0	0	0	O _{x1}	хO	O _{x1}
0.2	0.8	0	хO	0.6 x1	хO
0.2	0.9	0	0.3 x1	хО	O _{x1}
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9

Matrix

0	0	0	0	0	0
0.2 x1	хO	O _{x1}	0.3	0.6	0
хО	0.9 x1	хО	0.3	0.8	0
0.3 x1	хО	0.7 ×1	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9

Matrix

0	0	0	0	0	0
0.2 x1	хO	O _{x1}	0.3	0.6	0
хО	0.9 x1	хO	0.3	0.8	0
0.3 x1	хО	0.7 ×1	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9			

Matrix

0	0	0	0	0	0
0.2	0.8 x1	хO	0.3 x1	0.6	0
0.2	хО	O _{x1}	хO	0.8	0
0.3	0.8 x1	хО	0.8 x1	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9			

Matrix

0	0	0	0	0	0
0.2	0.8 x1	хO	0.3 x1	0.6	0
0.2	хО	O _{x1}	хO	0.8	0
0.3	0.8 x1	хО	0.8 x1	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7		

Matrix

0	0	0	0	0	0
0.2	0.8	O _{x1}	хO	0.6 x1	0
0.2	0.9	хО	0.3 ×1	хО	0
0.3	0.8	0.7 ×1	хО	0.9 ×1	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7		

Matrix

0	0	0	0	0	0
0.2	0.8	O _{x1}	хO	0.6 x1	0
0.2	0.9	хО	0.3 x1	хO	0
0.3	0.8	0.7 x1	хO	0.9 x1	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3 x1	хO	O _{x1}
0.2	0.9	0	хО	0.8 x1	хО
0.3	0.8	0.7	0.8 x1	хO	O _{x1}
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3 x1	хO	O _{x1}
0.2	0.9	0	хО	0.8 x1	хO
0.3	0.8	0.7	0.8 x1	хO	O _{x1}
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2 ×1	хО	O _{x1}	0.3	0.8	0
хO	0.8 _{×1}	хO	0.8	0.9	0
O _{x1}	хO	O _{x1}	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2 x1	хО	O _{x1}	0.3	0.8	0
хО	0.8 _{×1}	хО	0.8	0.9	0
O _{x1}	хО	O _{x1}	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0			

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9 x1	хO	0.3 x1	0.8	0
0.3	хО	0.7 x1	хО	0.9	0
0	O _{x1}	хO	0.2 x1	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0			

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9 x1	хО	0.3 x1	0.8	0
0.3	хО	0.7 ×1	хО	0.9	0
0	O _{x1}	хО	0.2 x1	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1		

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	O _{x1}	хO	0.8 _{x1}	0
0.3	0.8	хО	0.8 _{x1}	хО	0
0	0	O _{x1}	хО	0.8 _{x1}	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1		

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	O _{x1}	хО	0.8 _{x1}	0
0.3	0.8	хО	0.8 x1	хO	0
0	0	O _{x1}	хO	0.8 _{x1}	0
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3 x1	хO	O _{x1}
0.3	0.8	0.7	хО	0.9 x1	хO
0	0	0	0.2 x1	хO	O _{x1}
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3 x1	хO	O _{x1}
0.3	0.8	0.7	хО	0.9 x1	хO
0	0	0	0.2 x1	хО	O _{x1}
0	0	0	0.2	0.2	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3 x1	хО	0.7 x1	0.8	0.9	0
	O _{x1}	хO	0.2	0.8	0
хО	^1	٨٥			

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3 x1	хO	0.7	0.8	0.9	0
ΛI	XU	ΧI			
xO	O x1	xO	0.2	0.8	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0			

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8 x1	хО	0.8 x1	0.9	0
0.3	0.8 x1	x0 O x1	0.8 x1	0.9	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0			

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8 x1	хО	0.8 x1	0.9	0
0.3	0.8 x1	x0 O x1	0.8 x1	0.9	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8		

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7		0.9	0
0.5	0.8	x1	хO	x1	
0	0.0	x1 x0	0.2 x1	x1 x0	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8		

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7 ×1	хO	0.9 x1	0
0.3	0.8	O.7 x1	x0 O.2 x1	0.9 x1	0

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8	2.0	

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	0.8 x1	хO	O x1
0.3	0.8	0.7	0.8 x1	x0 0.8 x1	_

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8	2.0	

Matrix

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	0.8 x1	хO	O x1
0.3	0.8	0.7	0.8 x1	0.8 x1	_

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8	2.0	1.8

Matrix

Convolutional Layers

Convolutional Layers

Convolution layers - zoom in on specific bits of input

Extract structure and features in the input image

Successive layers aggregate inputs into higher level features

Pixels >> Lines >> Edges >> Object

Feature Maps

Feature maps are convolutional layers generated by applying a convolutional kernel to the input

Feature Maps

Feature Maps

Kernel Size

Convolutional kernel size usually expressed in terms of width and height of receptive area

Use small convolutional kernels, more efficient

Stacking two 3x3 kernels is preferable to one 9x9 kernel

Feature Maps

Feature Maps

Sparse, not Dense

All neurons in a feature map have the same weights and biases

Two big advantages over DNNs

- Dramatically fewer parameters to train
- CNN can recognize feature patterns independent of location

The parameters of all neurons in a feature map are collectively called the filter

Why filter?

Because weights highlight (filter) specific patterns from the input pixels

CNNs

Feature Map

Convolutional Layer

CNN

Each convolutional layer consists of several feature maps of equal sizes

The different feature maps have different parameters

Two Kinds of Layers in CNNs

Convolution

Local receptive field

Pooling

Subsampling of inputs

Matrix

Pooling Result

Neurons in a pooling layer have no weights or biases

A pooling neuron simply applies some aggregation function to all inputs

Max, sum, average

Why use them?

- Greatly reduce memory usage during training
- Mitigate overfitting (via subsampling)
- Make NN recognize features independent of location (location invariance)

Pooling layers typically act on each channel independently

So, usually, output area < input area but

Output depth = Input depth

CNN Architectures

Alternating groups of convolutional and pooling layers

Each group of convolutional layers usually followed by a ReLU layer

The output of each layer is also an image

However successive outputs are smaller and smaller (due to pooling layers)

As well as deeper and deeper (due to feature maps in the convolutional layers)

This entire set of layers is then fed into a regular, feed-forward neural network

This entire set of layers is then fed into a regular, feed-forward neural network

This feed-forward has a few fully connected layers with ReLU activation

This is the output layer, emitting probabilities

Input is an image
Outputs are probabilities

Demo

Image classification using a convolutional neural network

Summary

Image classification models

Convolutional layers and pooling layers

Convolutional Neural Networks (CNNs) for image classification

Implementing CNNs in tf.keras for image classification

Up Next:

Building Unsupervised Machine Learning Models