Robust Anomaly Detection in Videos using Multilevel Representations

Hung Vu¹, Tu Dinh Nguyen², Trung Le², Wei Luo¹ and Dinh Phung²

¹Centre for Pattern Recognition and Data Analytics (PRaDA), Deakin University, Australia ²Monash University Clayton, VIC 3800, Australia

Outline

- Video Anomaly Detection (VAD)
- Related work
- Problem statement
- Proposed framework
- Experiments
- Conclusion

Video Anomaly Detection (VAD)

- Video Anomaly Detection = detect anomaly events in video data
- Anomaly events = events occur infrequently in comparison to normal events¹

Example

A cyclist on a pedestrian footpath

Applications

Traffic monitoring

Fighting detection

Access detection

Falling detection

Related work

Deep detectors

- Convolutional Autoencoders (CAEs) ¹
- □ CAEs + Long Short Term Memories (LSTMs)²
- □ Conditional Generative Adversarial Networks (cGANs)³
- Adversarial AEs⁴
- **...**

→ work on low-level features (pixels/edges/motions)

 1 (Hasan et al., 2016; Ribero, Lazzaretti , and Lopes, 2017); 2 (Chong and Tay, 2017; Luo, Liu, and Gao, 2017) 3 (Ravanbakhsh et al., 2017a; 2017b); 4 (Sabokrou et al., 2018)

Problem statement

- Low-level features → two issues:
 - □ <u>Issue 1</u>: fragmented and interrupted detection

□ <u>Issue 2</u>: false detection by noise and environment changes

unreliable and ineffective features

Idea

- Detect abnormality at abstract-level features
 - Abstractness extraction via deep networks¹
 - □ Low layers: edges, corners, colors
 - □ High layers: objects and their relationship
 - → detect complete objects → solve Issue 1 (fragments + interruption)
 - □ Combine low-level + abstract-level detections
 - □ **Reason**: true anomalies should appear at all level representations
 - → Reduce false detections → solve Issue 2 (many false detections)

¹(Zeiler and Fergus 2014)

- Multilevel Anomaly Detector (MLAD)
- Two phases: training and detection

• Training phase:

- compute optical flow image for every frame
- train Denoising Autoencoders (DAEs)
- extract high-level features
- train Conditional GANs (cGANs)

• Training phase:

compute optical flow image for every frame

Training phase:

- □ compute optical flow image for every frame
- □ train Denoising Autoencoders (DAEs)

$$\min_{\theta,\phi} \mathcal{I}_{\text{DAE}} = \min_{\theta,\phi} \frac{1}{|D|} \sum \left\| v_i - g_{\phi}(f_{\theta}(\tilde{v}_i)) \right\|_2^2 + \gamma \left(\sum_{l=1}^{N_e} \left\| W_e^{(l)} \right\|_2^2 + \sum_{l=1}^{N_e} \left\| W_d^{(l)} \right\|_2^2 \right)$$
reconstruction loss regularization term

Training phase:

- □ compute optical flow image for every frame
- □ train Denoising Autoencoders (DAEs)

Training phase:

- □ compute optical flow image for every frame
- □ train Denoising Autoencoders (DAEs)
- extract high-level features

Training phase:

- compute optical flow image for every frame
- train Denoising Autoencoders (DAEs)
- extract high-level features
- train Conditional GANs (cGANs)¹

$$\begin{aligned} \mathcal{I}_{cGAN} &= \mathbb{E}_{x,z}[\log(1 - D(x, G(x, z)))] \\ &+ \mathbb{E}_{x,z}[\log D(x, y)] + \lambda ||y - G(x, z)||_1 \end{aligned}$$

¹(Isola et al., 2017)

Detection phase:

- extract optical flow images for testing frames
- compute high-level features
- compute single level detections
- consolidate detection maps

Detection phase:

extract optical flow images for testing frames

• Detection phase:

- extract optical flow images for testing frames
- compute high-level features

$$F^{(0)}$$

• Detection phase:

- extract optical flow images for testing frames
- compute high-level features

$$F^{(0)}$$

$$F^{(l)}$$

$$O^{(l)}$$

• Detection phase:

- extract optical flow images for testing frames
- □ compute high-level features
- compute single level detections

Detection phase:

- extract optical flow images for testing frames
- compute high-level features
- compute single level detections
- consolidate detection maps

Algorithm 1 Combining multilevel detection maps

```
Input: Detection maps \left\{D^{(l)}\right\}, score maps \left\{E^{(l)}\right\}, object lists \left\{C^{(l)}\right\}, anomaly threshold \beta and overlapping threshold \rho

Output: Final detection D, E and C

1: D \leftarrow D^{(0)}; E \leftarrow E^{(0)}; C \leftarrow C^{(0)}

2: for l \leftarrow 1, \ldots, N_e do

3: for c \in C and c_l \in C^{(l)} do

4: if L^{(c \cap c_l)}/L(c) \geq \rho then

5: D(c) \leftarrow D(c) \cup D^{(l)}(c_l)

6: E(c_l \cup c) \leftarrow \max\left(E(c_l \cup c), E^{(l)}(c_l \cup c)\right)

7: C(c) \leftarrow C(c) \cup C^{(l)}(c_l)

8: E \leftarrow \min(E, 2\beta)

9: E \leftarrow \frac{E - \min(E)}{\max(E) - \min(E)}
```

- Datasets:
 - □ UCSD Ped 1, Ped 2¹ and Avenue²
 - resize into 256 x 256
- Experimental settings
 - $\alpha = 2, \beta = 0.8$ and $\rho = 0.75$ (best performance)
- Criteria: AUC (Area Under Curve) and EER (Equal Error Rate)
 - □ frame-level¹
 - □ pixel-level¹
 - dual-pixel level³

True Positive:

|D| > 0 and |GT| > 0

pixel-level

True Positive:

 $|D \cap GT|/|GT| > 0.4$

dual-pixel level

True Positive:

 $|D \cap GT|/|GT| > 0.4$ and $|D \cap GT|/|D| > 0.05$

- Abstract feature representations
 - □ MLAD₀: low-level detector only
 - □ MLAD_{0+Alex}: low-level detector + high-level detector using Conv5 of AlexNet¹
 - \square MLAD₀₊₃: low-level detector + high-level detector using the 3rd layer's activation of our DAEs

Abstract feature representations

	UCSD Ped 1			UC	CSD Ped	. 1*	U	CSD Pec	12	Avenue			
	Pixel		Dual	Pixel		Dual	Pixel		Dual	Pixel		Dual	
	AUC↑ EER↓		AUC↑	AUC↑	$EER \downarrow$	AUC↑	AUC↑	AUC↑ EER↓		AUC↑ EER↓		AUC↑	
$MLAD_0$	66.07	22.38	59.74	64.41	22.32	56.79	92.96	5.47	92.39	47.07	43.90	46.05	
$MLAD_{0+Alex}$	63.48	24.35	56.19	61.89	24.24	53.04	94.33	4.43	92.59	40.60	46.33	40.02	
$MLAD_{0+3}$		22.65	60.79	66.95	21.08	58.55	94.45	4.58	93.99	52.82	38.82	51.76	

Abstract-level representation vs low-level representation

Filters trained by DAE_F

Example

- → our trained multilevel detector:
 - **□** improves performance
 - □ better than AlexNet-based detector

Combined detections

- different networks
 - (A) 32/16/8
 - (B) 32/64/128
 - (C) 32/64/128/256
 - (D) 64/128/256/512/1024

- consolidation strategy
 - (I) low-level + one abstract-level detector
 - (II) low-level + all abstract-level detectors
 - (III) low-level + highest-level (≥ 3) detectors

La	yers	1	2	3	4	5	0+1	0+2	0+3	0+4	0+5	0+all	0+≥3
*	(A)	34.89	37.02	57.01	_	_	64.28	60.69	68.36	_	_	63.14	_
*	(B)	33.95	38.68	42.60	_	_	62.01	59.40	62.20	_	_	57.76	_
Ped	(C)	26.56	37.25	36.87	53.98	_	60.21	60.61	63.23	64.61	_	56.89	64.13
P	(D)	36.21	30.42	38.14	46.88	33.49	63.09	62.51	64.24	63.46	64.67	62.60	63.47
	MĽÁI	$O_0: 64.4$											
	(A)	45.52	47.61	59.83	_	_	93.11	92.51	94.45	_	_	92.51	_
2	(B)	45.68	54.22	47.04	_	_	92.44	92.68	93.06	_	_	92.78	_
Ped 2	(C)	55.86	56.40	63.25	66.20	_	92.85	95.34	96.12	93.69	_	96.87	96.98
Ь	\ /		53.39	58.68	78.65	64.73	93.13	96.25	97.22	96.67	97.36	97.61	98.28
	MĽÁI	$O_0:92.9$											
е	(A)	43.68	46.52	52.33	_	_	49.31	50.73	52.82	_	_	48.66	_
≅	(B)	41.03	36.65	51.82	_	_	48.35	46.88	49.98	_	_	49.69	_
Avenue	(C)	37.88	41.54	50.04	47.19	_	47.39	48.38	50.31	48.43	_	50.93	51.59
¥			40.40	46.35	52.45	52.43	47.78	49.28	50.1	50.21	48.74	51.36	51.82
	MLÁI	$O_0:47.0$	07										
(A)	(A) 32/16/8 (B) 32/64/128 (C) 32/64/128/256 (D) 64/128/256/512/1024												

→ Best network and strategy combination: (A) 32/16/8 and (I) low-level + one abstract-level

- Combined detections
 - Some results

Video anomaly detection

	Ped 1							Ped 2			Avenue				
	Frame		Pixel		Dual	Dual Frame		Pixel		Dual	Frame		Pixel		Dual
	AUC↑	$EER \downarrow$	AUC↑	$EER \downarrow$	AUC↑	AUC↑	$EER\downarrow$	AUC↑	$EER \downarrow$	AUC↑	AUC↑	$EER\downarrow$	AUC↑	$EER \downarrow$	AUC↑
Machine learning methods															
OC-SVM(Vu et al. 2017)	59.06	42.97	21.78	37.47	11.72	61.01	44.43	26.27	26.47	19.23	71.66	33.87	33.16	47.55	33.15
GMM(Vu et al. 2017)	60.33	38.88	36.64	35.07	13.60	75.20	30.95	51.93	18.46	40.33	67.27	35.84	43.06	43.13	41.64
MCOV (Wang et al. 2017)	_	26.0	65.8	-	_	-	_	_	-	-	_	_	-	-	_
MDT (Mahadevan et al. 2010)	81.8	25.0	44.0	55.0	_	85.0	25.0	_	55.0	_	_	-	-	-	_
Deep models															
CAE (FR+OF)(Ribeiro, Lazzaretti, and Lopes 2017)	58.50	43.10	-	-	-	82.10	26.90	-	-	-	62.0	41.8	-	-	-
ConvAE(Hasan et al. 2016)	81.00	27.90	_	-	_	90.00	21.70	_	-	_	70.20	25.10	_	_	_
Adversarial AE(Sabokrou et al. 2018)	-	-	-	-	_	_	13.00	_	-	-	_	-	-	_	_
Conv-WTA+SVM[1x1](Tran and Hogg 2017)	81.3	27.9	56	46.8	-	96.6	8.9	89.3	16.9	-	-	-	-	-	_
AMDN(Xu et al. 2015)	92.1	16.0	67.2	40.1	_	_	_	90.8	17.0	-	_	_	_	_	_
DeepGMM(Feng, Yuan, and Lu 2017)	92.5	15.1	69.9	64.9	-	-	-	_	-	_	_	-	-	-	-
Plug-and-Play CNN(Ravanbakhsh et al. 2018)	95.7	8.0	64.5	40.8	-	88.4	18.0	-	-	-	-	-	-	-	-
GAN/generator(Ravanbakhsh et al. 2017a)	97.40	8.0	70.30	35.00	_	93.50	14.00	_	_	_	_	_	_	_	_
GAN/discriminator(Ravanbakhsh et al. 2017b)	96.80	7.0	70.80	34.00	-	95.50	11.00	-	-	-	-	-	-	-	-
Proposed system															
$MLAD_{0+3}(A)$	82.34	23.50	66.60	22.65	60.79	<u>97.52</u>	4.68	94.45	4.58	93.99	71.54	36.38	52.82	38.82	51.76
MLAD (best for each dataset)	82.34	23.50	66.60	22.65	60.79	99.21	2.49	97.22	1.74	96.75	71.54	36.38	52.82	38.82	51.76
	$MLAD_{0+3}(A)$					MLAD ₀₊₃ (D)				MLAD ₀₊₃ (A)					

→ Significantly improve over the state-of-the-art deep detectors

Pixel-level EER improvement:

□ Ped 1: 11.35%

□ Ped 2: 12.32%

■ Avenue: 4.31%

Conclusion

Low-level feature based detectors

- fragmented and interrupted detection regions
- false detections by noise and environment changes

Proposed detector (MLAD)

- combine low-level and abstract-level detections
 - increase reliability and reduce false detections

Experiments

- three standard benchmarks
- improve at least 4% in pixel-level EER in VAD task

References

Sodemann, A.A., Ross, M.P., Borghetti, B.J.: A Review of anomaly detection in automated surveillance. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 42(6), 1257-1272 (2012).

Hasan, M.; Choi, J.; Neumann, J.; Roy-Chowdhury, A. K.; and Davis, L. S. 2016. Learning Temporal Regularity in Video Sequences. In CVPR, volume abs/1604.04574.

Ribeiro, M.; Lazzaretti, A. E.; and Lopes, H. S. 2017. A Study of Deep Convolutional Auto-Encoders for Anomaly Detection in Videos. Pattern Recognition Letters.

Chong, Y. S., and Tay, Y. H. 2017. Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder. In Advances in Neural Networks - ISNN 2017: 14th International Symposium, Part II, 189–196.

Luo, W.; Liu, W.; and Gao, S. 2017. Remembering history with convolutional lstm for anomaly detection. In ICME, 439–444.

Ravanbakhsh, M.; Nabi, M.; Sangineto, E.; Marcenaro, L.; Regazzoni, C. S.; and Sebe, N. 2017a. Abnormal Event Detection in Videos using Generative Adversarial Nets. In International Conference on Image Processing (ICIP), 1577–1581.

Ravanbakhsh, M.; Sangineto, E.; Nabi, M.; and Sebe, N. 2017b. Training Adversarial Discriminators for crosschannel Abnormal Event Detection in Crowds. CoRR.

Sabokrou, M.; Khalooei, M.; Fathy, M.; and Adeli, E. 2018. Adversarially learned one-class classifier for novelty detection. In CVPR.

Isola, P.; Zhu, J.; Zhou, T.; and Efros, A. A. 2017. Image-to-image translation with conditional adversarial networks. In CVPR, 5967–5976.

Li, W.-X.; Mahadevan, V.; and Vasconcelos, N. 2014. Anomaly Detection and Localization in Crowded Scenes. In TPAMI, volume 36, 18–32.

Lu, C.; Shi, J.; and Jia, J. 2013. Abnormal Event Detection at 150 FPS in MATLAB. In ICCV.

Sabokrou, M.; Fathy, M.; Hosseini, M.; and Klette, R. 2015. Real-Time Anomaly Detection and Localization in Crowded Scenes. CVPRW.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS, 1106–1114.

THANK YOU