Shortest Path

- Generalize distance to weighted setting
- Digraph G = (V, E) with weight function W: $E \rightarrow R$ (assigning real values to edges)
- Weight of path $p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

- Shortest path = a path of the minimum weight
- Applications
 - static/dynamic network routing
 - robot motion planning
 - map/route generation in traffic

Shortest-Path Problems

- Shortest-Path problems
 - **Single-source (single-destination).** Find a shortest path from a given source (vertex *s*) to each of the vertices. The topic of this lecture.
 - **Single-pair.** Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
 - All-pairs. Find shortest-paths for every pair of vertices.
 - Unweighted shortest-paths.

Optimal Substructure

- Theorem: subpaths of shortest paths are shortest paths
- Proof ("cut and paste")
 - if some subpath were not the shortest path, one could substitute the shorter subpath and create a shorter total path

Negative Weights and Cycles?

- Negative edges are OK, as long as there are no negative weight cycles (otherwise paths with arbitrary small "lengths" would be possible)
- Shortest-paths can have no cycles (otherwise we could improve them by removing cycles)
 - Any shortest-path in graph G can be no longer than n − 1 edges, where n is the number of vertices

Edsger Wybe Dijkstra

Dijkstra's ALgorithm

Solution to Single-source (single-destination).

<u>Dijkstra's algorithm</u> - is a solution to the single-source shortest path problem in graph theory.

Works on both directed and undirected graphs. However, all edges must have nonnegative weights.

Approach: Greedy

Input: Weighted graph $G=\{E,V\}$ and source vertex $v\in V$, such that all edge weights are nonnegative

Output: Lengths of shortest paths (or the shortest paths themselves) from a given source vertex *v*∈V to all other vertices

```
dist[s] \leftarrow o
                                             (distance to source vertex is zero)
for all v \in V - \{s\}
     do dist[v] \leftarrow \infty
                                             (set all other distances to infinity)
                                             (S, the set of visited vertices is initially empty)
S←Ø
O←V
                                             (Q, the queue initially contains all
vertices)
while Q ≠Ø
                                             (while the queue is not empty)
do u \leftarrow mindistance(Q,dist)
                                             (select the element of Q with the min. distance)
    S \leftarrow S \cup \{u\}
                                             (add u to list of visited vertices)
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v)
                                                                    (if new shortest path found)
                 then \operatorname{dist}[v] \leftarrow \operatorname{dist}[u] + w(u, v)
                                                                    (set new value of shortest
path)
return dist
```


A graph (or multigraph) G is called *planar* if G can be drawn in the plane with its edges intersecting only at vertices of G, such a drawing of G is called an *embedding* of G in the plane.

Application Example: VLSI design (overlapping edges requires extra layers), Circuit design (cannot overlap wires on board)

Representation examples: K1, K2, K3, K4 are planar, Kn for n>4 are non-planar

Representation examples: Q₃

Representation examples: K_{3,3} is Nonplanar

Theorem: Euler's planar graph theorem

For a **connected** planar graph or multigraph:

Example of Euler's theorem

A planar graph divides the plane into several regions (faces), one of them is the infinite region.

Proof of Euler's formula: By Induction

Base Case: for G1, $e_1 = 1$, $v_1 = 2$ and $r_1 = 1$

<u>n+1 Case:</u> Assume, $r_n = e_n - v_n + 2$ is true. Let $\{an+1, bn+1\}$ be the edge that is added to Gn to obtain Gn+1 and we prove that $r_n = e_n - v_n + 2$ is true. Can be proved using two cases.

<u>Case 1:</u>

$$r_{n+1} = r_n + 1$$
, $e_{n+1} = e_n + 1$, $v_{n+1} = v_n = r_{n+1} = e_{n+1} - r_{n+1} + 2$

<u>Case 2:</u>

$$r_{n+1} = r_n, e_{n+1} = e_n + 1, v_{n+1} = v_n + 1 = r_{n+1} = e_{n+1} - v_{n+1} + 2$$

Corollary 1: Let G = (V, E) be a connected simple planar graph with |V| = v, |E| = e > 2, and r regions. Then $3r \le 2e$ and $e \le 3v - 6$

Proof: Since G is loop-free and is not a multigraph, the boundary of each region (including the infinite region) contains at least three edges. Hence, each region has degree ≥ 3 .

Degree of region: No. of edges on its boundary; 1 edge may occur twice on boundary -> contributes 2 to the region degree.

Each edge occurs exactly twice: either in the same region or in 2 different regions

Region Degree

Degree of R = 3

Degree of R = ?

Each edge occurs exactly twice: either in the same region or in 2 different regions

- \Rightarrow 2e = sum of degree of r regions determined by 2e
- \Rightarrow 2e \geq 3r. (since each region has a degree of at least 3)
- \Rightarrow r \leq (2/3) e
- \Rightarrow From Euler's theorem, 2 = v e + r
- \Rightarrow 2 \leq v e + 2e/3
- \Rightarrow 2 \leq v e/3
- \Rightarrow So 6 \leq 3v e
- \Rightarrow or e $\leq 3v 6$

Corollary 2: Let G = (V, E) be a connected simple planar graph then G has a vertex degree that does not exceed 5

Proof: If G has one or two vertices the result is true

If G has 3 or more vertices then by Corollary 1, $e \le 3v - 6$

 \Rightarrow 2e \leq 6v - 12

If the degree of every vertex were at least 6:

by Handshaking theorem: 2e = Sum (deg(v))

- \Rightarrow 2e \geq 6v. But this contradicts the inequality 2e \leq 6v 12
- ⇒There must be at least one vertex with degree no greater than 5

Corollary 3: Let G = (V, E) be a connected simple planar graph with v vertices ($v \ge 3$), e edges, and no circuits of length 3 then $e \le 2v$

Proof: Similar to Corollary 1 except the fact that no circuits of length 3 imply that degree of region must be at least 4.

Elementary sub-division: Operation in which a graph are obtained by removing an edge {u, v} and adding the vertex w and edges {u, w}, {w, v}

■ **Homeomorphic Graphs:** Graphs G1 and G2 are termed as homeomorphic if they are obtained by sequence of elementary sub-divisions.

• **Kuwratoski's Theorem:** A graph is non-planar if and only if it contains a subgraph homeomorephic to $K_{3,3}$ or K_5

Representation Example: G is Nonplanar

