Convolutional Neural Networks (CNN, ConvNets)

Computer Vision / ITBA

https://github.com/deeplearning-itba/cnn

Para qué se usan las CNN:

• Image classification

Object detection

- Face detection
- Face recognition
- Image segmentation

Usos fuera de las imágenes:

- NLP: text classification
- Audio classification
- Time series forecasting
- Game playing (extracción de features para Reinforcement Learning)

Problemas con las FCN

Ej: MNIST / Fashion MNIST

- Imágenes de 28x28x1 => Dimensión de entrada = 784
- 1 capa densa de 1000 => 784.784 parámetros

Ej: Imágenes más reales:

- Imágenes de 227x227x3 => Dim. de entrada: 154.587
- 1 capa densa de 1000 => +150 millones de parámetros

Problemas que surgen:

- La cantidad de parámetros hace que sea computacionalmente caro/imposible de manejar.
- El exceso de parámetros tiende al overfitting.
- 3. Las imágenes tienen una estructura espacial que la red tiene que aprender, pero que sería mucho más sencillo dárselo resuelto de antemano.

Capa convolucional / Filtros

- La idea es transformar la información espacial en características (feature maps).
- Para eso se utilizan filtros o "kernels". Cada filtro será capaz de extraer patrones de la imagen, los cuales en sucesivas capas se van convirtiendo en los feature maps.

Funcionamiento de un filtro sobre una imagen monocromática (1 canal):

Estructura básica de una CNN

Capas:

- Convolucional (con o sin función de activación): feature extraction
- Pooling: reducción de la dimensionalidad
- Fully-connected: interpreta los feature maps y realiza la clasificación

Efecto de los filtros

Ejemplo de detección de bordes:

1	N-20	
	0	-1
1	0	-1

0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	

*

0	-30	-30	0		
0	-30	-30	0		
0	-30	-30	0		
0	-30	-30	0		

Efecto de la función de activación

Los filtros pueden tener a su salida una función de activación y los efectos pueden verse acá:

Esto está visualizado mejor en la notebook: https://github.com/deeplearning-itba/cnn/blob/master/1-CNN-Teoria.ipvnb

Un filtro visto como una neurona

En una CNN los valores de los filtros son los pesos (w_n) que la red "aprende" durante la etapa de back propagation del entrenamiento.

Resultados de la convolución de 1 filtro

Ejemplo con 6 filtros

El resultado es equivalente a una "imagen" de 6 canales, donde cada canal/feature guarda características espaciales de la imagen original.

Hiperparámetros de la capa convolucional

filters: cantidad de filtros o "kernels" (K)

kernel_size: tamaño de cada filtro (F), ej: (3,3)

padding: 'valid' (p=0) o 'same' (p=1)

strides: normalmente (1, 1)

activation: None ('linear'), 'relu', etc.

Dimensión de salida: $\mathbf{W}_{o} \times \mathbf{H}_{o} \times \mathbf{K}$

$$W_0 = \frac{(W - F + 2p)}{S} + 1$$

$$H_0 = (H - F + 2p) + 1$$

K = cantidad de kernels

Dimensiones de la capa convolucional

Capa pooling

Su función es reducir la cantidad de parámetros, bajar la dimensionalidad. Tipos de pooling: Max, Average, Global Max, Global Average (explicar flatten).

Hyperparámetros para Max y Average Pooling:

- Pool size
- Strides: en None por default, lo que significa que strides=pool_size La capa de pooling no tienen ningún parámetro entrenable. Se aplica a cada canal por separado, es decir, no cambia la cantidad de canales a su salida, sólo el ancho y el alto.

Ejemplo completo de CNN: LeNet-5 (1998)

LeNet-5 fue desarrollado por Yann Lecun y presentado en 1998, y fue usado por el servicio postal para reconocer códigos postales escritos a mano. Este modelo fue pionero al introducir el concepto de red neuronal convolucional y es la base sobre la cual se diseñaron otras arquitecturas.

Implementación de LeNet-5 con Keras

```
model = Sequential()
model.add(Conv2D(filters=6, kernel size=(5, 5), activation='tanh', input shape=(32,32,1)))
model.add(AveragePooling2D(pool size=(2, 2)))
model.add(Conv2D(filters=16, kernel size=(5, 5), activation='tanh'))
model.add(AveragePooling2D(pool size=(2, 2)))
model.add(Flatten())
model.add(Dense(units=120, activation='tanh'))
model.add(Dense(units=84, activation='tanh'))
model.add(Dense(units=10, activation = 'softmax'))
model.compile(loss='categorical crossentropy', optimizer='Adam', metrics=['accuracy'])
```

Implementación de LeNet-5 con Keras (cont.)

model.summary()			
Layer (type)	Output	Shape	Param #
conv2d_3 (Conv2D)	(None,	28, 28, 6)	156
average_pooling2d_3	(Average (None,	14, 14, 6)	0
conv2d_4 (Conv2D)	(None,	10, 10, 16)	2416
average_pooling2d_4	(Average (None,	5, 5, 16)	0
flatten_2 (Flatten)	(None,	400)	0
dense_4 (Dense)	(None,	120)	48120
dense_5 (Dense)	(None,	84)	10164
dense_6 (Dense)	(None,	10)	850 =======
mal - 1			

Total params: 61,706

model summary()

Trainable params: 61,706 Non-trainable params: 0

Link a la Notebook

Back propagation

Sin weight sharing:

De backpropagation:

$$\frac{\partial J}{\partial w_1} = -2\sum_j \bar{e_j} \frac{\partial O_j}{\partial w_1}$$

$$O_1 = x_1. w_1 + x_2. w_2 + x_4. w_3 + x_5. w_4$$

$$O_2 = x_2. w_5 + x_3. w_6 + x_5. w_7 + x_6. w_8$$

$$O_3 = x_4. w_9 + x_5. w_{10} + x_7. w_{11} + x_8. w_{12}$$

$$O_4 = x_5. w_{13} + x_6. w_{14} + x_8. w_{15} + x_9. w_{16}$$

$$\frac{\partial J}{\partial w_1} = -2\bar{e_j}x_1$$

Como me quiero mover en dirección contraria al gradiente, con un learning rate η :

$$\Delta w_1 = 2\eta \bar{e_j} x_1$$

Back propagation

Con weight sharing:

De backpropagation:

$$\frac{\partial J}{\partial w_1} = -2\sum_j \bar{e_j} \frac{\partial O_j}{\partial w_1}$$

$$O_1 = x_1 \cdot w_1 + x_2 \cdot w_2 + x_4 \cdot w_3 + x_5 \cdot w_4$$

 $O_2 = x_2 \cdot w_1 + x_3 \cdot w_2 + x_5 \cdot w_3 + x_6 \cdot w_4$
 $O_3 = x_4 \cdot w_1 + x_5 \cdot w_2 + x_7 \cdot w_3 + x_8 \cdot w_4$
 $O_4 = x_5 \cdot w_1 + x_6 \cdot w_2 + x_8 \cdot w_3 + x_9 \cdot w_4$

$$\frac{\partial J}{\partial w_1} = -2\bar{e_j}(x_1 + x_2 + x_4 + x_5)$$

Como me quiero mover en dirección contraria al gradiente, con un learning rate η :

$$\Delta w_1 = 2\eta \bar{e_j}(x_1 + x_2 + x_4 + x_5)$$

Image Viz

- https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
- http://cs231n.github.io/understanding-cnn/
- http://yosinski.com/deepvis

Bibliografía

- Coursera: Convulutional Neural Networks, Andrew Ng https://www.coursera.org/learn/convolutional-neural-networks/
- 2. Stanford University: Lecture 5 | Convolutional Neural Networks https://www.youtube.com/watch?v=bNb2fEVKeEo
- 3. Convolutional Neural Networks, Muhammad Rizwan https://engmrk.com/convolutional-neural-network-3/
- 4. Deep Learning Book, Ian Goodfellow and Yoshua Bengio and Aaron Courville http://www.deeplearningbook.org/contents/convnets.html
- 1. Backpropagation in CNN https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/