Field Theory and Galois Theory.

Alec Zabel-Mena

January 11, 2023

Contents

1	Fields.	5
	.1 Field Extensions	5

4 CONTENTS

Chapter 1

Fields.

1.1 Field Extensions.

Definition. We define the **characteristic** of a field F to be the smallest positive integer p, such that $p \cdot 1 = 0$, where 1 is the identity of F. We write char F = p, and if no such p exists, then we write char F = 0.

Lemma 1.1.1. Let F be a field, then char F is either 0, or a prime integer.

Proof. Let $\Gamma F = p$. If p = 0, then we are done. Now suppose that p = mn, with $m, n \in \mathbb{Z}^+$. Then $p \cdot 1 = (mn)1 = (n \cdot 1)(m \cdot 1) = mn = 0$, which makes m and n 0 divisors. Since F is a field, and hence an integral domain, this is impossible, and hence p must be prime.

Corollary. If char
$$F = p$$
, then for all $a \in F$, $pa = \underbrace{a + \cdots + a}_{p \text{ times}}$.

Proof. We have $pa = p(a \cdot 1) = (p \cdot 1)a$.

Example 1.1. (1) Both \mathbb{Q} and \mathbb{R} have char = 0. Similarly, char $\mathbb{Z} = 0$, even though \mathbb{Z} is just an integral domain.

(2) char $\mathbb{Z}_{p\mathbb{Z}} = p$ and char $\mathbb{Z}_{p\mathbb{Z}}[x] = p$ for any prime p.

Definition. We define the **prime subfield** of a field F to be the subfield of F generated by 1.

Example 1.2. (1) The prime subfields of \mathbb{Q} and \mathbb{R} is \mathbb{Q} .

(2) Let $\mathbb{Z}_{p\mathbb{Z}}(x)$ the field of rational functions over $\mathbb{Z}_{p\mathbb{Z}}$. Then the prime subfield of $\mathbb{Z}_{p\mathbb{Z}}(x)$ is $\mathbb{Z}_{p\mathbb{Z}}(x)$. Similarly, the prime subfield for $\mathbb{Z}_{p\mathbb{Z}}[x]$ is also $\mathbb{Z}_{p\mathbb{Z}}[x]$.

Definition. If K is a field containing a field F, then we call K field extension over F, and write $K/_F$ (not the quotient field!) or denote it by the diagram

Lemma 1.1.2. Every field is a field extension of its prime subfield.

Lemma 1.1.3. Let K an extension over a field F. Then K is a vector space over F.

Definition. Let K_{F} a field extension. We define the **degree** of K over F, [K:F] to be the dimension of K_{F} as a vector space.

Definition. Let F be a field, and $f \in F[x]$ a polynomial. We call am element $\alpha \in R$ a **root** (or **zero**) of f if $f(\alpha) = 0$.

Lemma 1.1.4. Let $\phi: F \to L$ a field homomorphism. Then either $\phi = 0$, or ϕ is 1–1.

Lemma 1.1.5. Let F be a field, and $p \in F[x]$ an irreducible polynomial. Then there exists a field K containing an embedding of F, such that p has a root in K.

Proof.

Corollary. There exists a field extension of F containing a root of p.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.