Chapter-3运输问题TransportationProblem

问题引入

如图所示, Ai表示产地, Bi表示销地, 表中元素代表Ai—>Bi的单位运价, 产量销量如表所示。

问题: 应如何调运可使总运输费用最小?

运价	B 1	B2	В3	产量
A1	6	4	6	200
A2	6	5	5	300
销量	150	150	200	

Solution:

	B 1	B2	В3	产量
A1	x_{11}	x_{12}	x_{13}	200
A2	x ₂₁	x ₂₂	x ₂₃	300
销量	150	150	200	

$$egin{aligned} \min z &= 6x_{11} + 4x_{12} + 5x_{13} + 6x_{21} + 5x_{22} + 5x_{23} \ x_{11} + x_{12} + x_{13} &= 200 \ x_{21} + x_{22} + x_{23} &= 300 \ x_{11} + x_{21} &= 150 \ x_{12} + x_{22} &= 150 \ x_{13} + x_{23} &= 200 \ x_{ij} &\geq 0, i &= 1, 2; j &= 1, 2, 3. \end{aligned}$$

通用模型

产销平衡表和单位运价表

产销平衡表和单位运价表可以合二为一。

产地		B_2	• • •	B_n	产量
A_1	$x_{11}^{c_{11}}$	x_{12}		X_{1n}	a_1
A_2	$x_{21}^{c_{21}}$	$x_{22}^{c_{22}}$		$x_{2n}^{c_{2n}}$	a_2
:					
A_m	X_{m1}	x_{m2}		x_{mn}	a_m
销量	b_1	b_2		b_n	

数学模型

1. 产销平衡

$$egin{aligned} \min z &= \sum_{i=1}^m \sum_{j=1}^n C_{ij} X_{ij} \ \left\{ egin{aligned} \sum_{j=1}^n X_{ij} &= S_i & i = 1, 2, \dots, m \ \sum_{i=1}^m X_{ij} &= d_j & j = 1, 2, \dots, m \ X_{ij} &\geq 0 \end{aligned}
ight.$$

2. 产大于销

$$egin{aligned} \min z &= \sum_{i=1}^m \sum_{j=1}^n C_{ij} X_{ij} \ \left\{ egin{aligned} \sum_{j=1}^n X_{ij} &\leq S_i & i = 1, 2, \dots, m \ \sum_{i=1}^m X_{ij} &= d_j & j = 1, 2, \dots, m \ X_{ij} &\geq 0 \end{aligned}
ight.$$

3. 产小于销

$$\min z = \sum_{i=1}^m \sum_{j=1}^n C_{ij} X_{ij} \ \left\{ egin{aligned} \sum_{j=1}^n X_{ij} &= S_i & i = 1, 2, \dots, m \ \sum_{i=1}^m X_{ij} &\leq d_j & j = 1, 2, \dots, m \ X_{ij} &\geq 0 \end{aligned}
ight.$$

这就是运输问题的数学模型。它包含 $m \times n$ 个变量,(m+n)个约束方程。其系数矩阵的结构比较松散,且特殊。

表上作业法

单纯形法可以解决运输问题, 但是可以使用基于单纯形法的表上作业法, 求解效率更高。该方法可分为三步:

- 1. 第一步:求出初始基可行解(初始运调方案),即在产销平衡表中给出m+n-1个数字格。<mark>(最小元素</mark> 法,Vogel法)
- 2. 第二步: 求非基变量(空格)的检验数并判断是否得到最优解。若已得最优解,停止计算,否则转第三步。 (闭回路法, 位势法)

3. 第三步: 换基,对原运量进行调整得到新的基可行解,转入第二步 (闭回路法)

第一步: 求出初始基可行解

最小元素法

所谓最小元素,是指作业表中的最小运价Cij。即先给最小运价那格安排运量,然后花去该运价所在行或列; 直到求出初始方案为止。

		B ₁		B ₂		B ₃	В	4	产量
A ₁						_ 4		3	7
	3		11		3		10		
A ₂		3				1			4
_	1		9		2	_	8		
A_3				6				3	9
	7		4		10		5		
销量		3		6		5	6	3	

如图所示,最小元素法操作的过程如下:

- 1. 最小运价为1, 用A2为B1调运, 4大于3, 划去B1列, 4剩余1
- 2. 最小运价为2, 用A2为B3调运, 1小于5, 划去A2行, 5剩余4
- 3. 最小运价为3, 用A1为B3调用, 7大于4, 划去B3列, 7剩余3
- 4. 最小运价为4, 用A3为B2调运, 9大于6, 划去B2列, 9剩余3
- 5. 最小运价为5, 用A3为B4调运, 3小于6, 划去A3行, 6剩余3
- 6. 最小运价为10, 用A1为B4调运, 7大于3, 填入3

Vogel法

元素差额法对最小元素法进行了改进,考虑到产地到销地的最小运价和次小运价之间的差额,如果差额很大, 就选最小运价先调运,否则会增加总运费。

Vogel法给出的初始解比最小元素法更接近最优解。

计算步骤如下:

- 1.对每行每列的运价 C_{ij} 分别计算两最小元素之差 (取正值), 将"行差"记于表右侧,"列差" 基于表下端
- 2. 在所有行差、列差中选一最大差额, 若有几个同时最大, 则可任选其中之一
- 3. 在最大差额所在行(列)中选一最小运价,若有几个同时最小,则可任选其一。
- 4. 在所确定的最小运价格子内,确定基变量数值并画圈,然后划去所在的行或列,具体做法同最小元素法
- 5. 对剩余未划去的行列重复上述步骤,但当只剩下最后一行(列)时, 不在计算行 (列) 差, 而直接按最小元素法分配运量并划去相应的行或列。

单位 销地 运价 产地	B_1	-	B_2	B_3	B_4	产量	行差额
A_1	3	1	1	3	10	7	0
A_2	1	g		2	8	4	1
A_3	7	4	6	10	5	9	1
销量	3	6		5	6		
列差额	2		5	1	3		

单位 销地 运价	B_1		B_2	B_3	B_4	产量	行差 额
A_1	3	1	1	3	10	7	0
A_2	1	9		2	8	4	1
A_3	7	4	6	10	5 3	9	2
销量	3		6	5	6		
列差额	2		_	1	3		

单位 销地 运价		B_1	-	B_2	B_3	B_4	产量	行差 额
A_1	` '	3	1	1	3	10	7	0
A_2	•	3	9		2	8	4	1
A_3	•	7	4	6	10	5 3	9	
	Ľ							
销量		3		6	5	6		
列差额		2	-		1	2		

单位 销地 运价		B_1		B_2	_	В	3	E	3 ₄	产量	行差 额
A_{1}	(3	1	1	3		5	10	2	7	7
A_2		3	Ç		2			8	1	4	6
A_3	-	,	_	6	1	þ.		5	3	9	
销量		3		6		5		6	6		
列差额		—	•			1		2			

第二步: 最优解的判别(计算检验数)

闭回路法

闭回路是以某空格为起点。用水平或垂直线向前划,当碰到一数字格时可以转90°后,继续前进,直到回到起始空格为止。闭回路如下图的(a),(b),(c)等所示。

假设初始基可行解如下所示。

	B ₁	B ₂	B ₃	B ₄	产量
A ₁	3	11	3	10 3	7
A ₂	1	9	2	8	4
A ₃	7	4	10	5	9
销量	3	6	5	6	

在已给出初始解的表中,可从任一空格如(A1, B1)出发,若A1的产品调运1吨给B1。为了保持产销平衡,就要依次调整: (A1, B3)处减少1吨,(A2, B3)处增加1吨,(A2, B1)处减少1吨,即构成了以空格为起点,其他为数字格的闭回路。

	B ₁	B ₂	B_3	B ₄	产量
A ₁	(+1)	11	(-1) ⁴	10 3	7
A ₂	(-1) ³	9	(+1) ¹	8	4
A ₃	7	4	10	5	9
销量	3	6	5	6	

调整的方案会让运费增加(+1) *3+(-1) *1+(+1) *2+(-1) *3 = 1元, 所以(A1, B1)的检验数为1

当所有检验数中还有负数的时候<mark>(意味着还可以通过换基使得运费减少)</mark>,就说明当前的解还不是最优解。

销地 产地	\mathbf{B}_1		\mathbf{B}_2		B ₃		\mathbf{B}_4		产量
$\mathbf{A_1}$	\bigcirc	4	2	12	10	4	k	11	16
$\mathbf{A_2}$		2	Î	10	**************	3	*******************	9	10
	8	8	Н	5	2	11		6	
A ₃ 销量	8		1 4		12		<mark>8</mark>		22 48

$$\sigma_{12} = 12 - 11 + 6 - 5 = 2$$

$$\sigma_{22} = 10 - 3 + 4 - 11 + 6 - 5 = 1$$

位势法

计算行位势和列位势

计算检验数

解的改进

1. 确定换入基的变量:

当在表中空格处出现负检验数时,表明未得最优解。若有两个和两个以上的负检验数时,<mark>一般选其中最小</mark>的负检验数,以它对应的空格为调入格。即以它对应的非基变量为换入量。

2. 确定换出基的变量:

以进基变量xik为起点的闭回路中,<mark>标有负号的最小运量作为调整量θ,θ对应的基变量为出基变量</mark>,并打上"×"以示换出作为非基变量。

(2, 4)为调入格。以此格为出发点,作一闭回路,按顺序对每个顶点标记+1、-1, (2, 4)格的调入量 θ 是选择闭回路上具有(-1)的数字格中的最小者。即 θ =min(1,3)=1(其原理与单纯形法中按 θ 规划来确定换出变量相同)。

	B ₁	B ₂	B ₃	B ₄	产量
A ₁			4 (+1)-	-3 (-1)	7
A ₂	3		1 (-1)	(+1)	4
A ₃		6		3	9
销量	3	6	5	6	

调整步骤为:在进基变量的闭回路中标有正号的变量加上调整量 θ ,标有负号的变量减去调整量 θ ,其余变量不变,得到一组新的基可行解。然后求所有非基变量的检验数重新检验。

	B ₁	B ₂	B ₃	B ₄	产量
A ₁			5	2	7
A ₂	3			1	4
A ₃		6		3	9
销量	3	6	5	6	

如图, (2, 4):0+1=1, (2, 3):1-1=0, (1, 3):4+1=5, (1, 4):3-1=2

	B ₁		B ₂		B ₃		B ₄		U _i
A ₁	3	(0)	11	(2)	3	5	10	2	0
A ₂	1	3	9	(2)	2	(1)	8	1	-2
A ₃	7	(9)	4	6	10	(12)	5	3	-5
Vj		3		9		3	1	0	

再用闭回路法或位势法求各空格的检验数,表中的所有检验数都非负,则当前方案为最优方案,此时最小总运费:

 $Z = (1\times3) + (4\times6) + (3\times5) + (2\times10) + (1\times8) + (3\times5) = 85\pi$

表上作业法补充说明

- 1. 若运输问题的某一基可行解有多个非基变量的检验数为负,在继续迭代时,取它们中任一变量为换入变量均可使目标函数值得到改善,但通常取 $\sigma_{ii} < 0$ 中最小者对应的变量为换入变量。
- 2. 无穷多最优解产销平衡的运输问题必定存最优解。如果非基变量的 $\sigma_{
 m ii}=0$, 则该问题有无穷多最优解。

3. 退化解:

*表格中一般要有 (m+n-1) 个数字格。但有时在分配运量时则需要同时划去一行和一列,这时需要补一个 0,以保证有 (m+n-1)个数字格作为基变量。<mark>一般可在划去的行和列的任意空格处加一个 0 即可。(通常选一个单位运价最小的空格)</mark>

*利用进基变量的闭回路对解进行调整时, 标有负号的最小运量 (超过 2 个最小值) 作为调整量 θ , 选择任意一个最小运量对应的基变量作为出基变量, 并打上" X"以示作为非基变量。当出现退化解后, 可能在某闭回路上有标记为 (-1) 的取值为 0 的数字格, 这时应取调整量 =0.

4. 产销不平衡转化成产销平衡:

求下列表中极小化运输问题的最优解。

	B1	B2	В3	B4	a _i
A1	5	9	2	3	60
A2		4	7	8	40
A3	3	6	4	2	30
A4	4	8	10	11	50
b _i	20	60	35	45	180
~				10	160 🔪

表中A2不可达B1,用一个很大的正数M表示运价C21。虚设一个销量为b5=180-160=20,Ci5=0,i=1,2,3,4,表的右边增添一列 ,得到新的运价表。

	B1	B2	<i>B3</i>	B4	B5	a_i
A1	5	9	2	3	0	60
A2	M	4	7	8	0	40
A3	3	6	4	2	0	30
A4	4	8	10	11	0	50
b _i	20	60	35	45	20	180

5. 求极大值问题

将极大化问题转化为极小化问题。设极大化问题的运价表为 C, 用一个较大的数 M ($M \geq \max\{c_{ij}\}$) 去减每一个 c_{ij} 得到矩阵 C', 其中 $C' = (M-c_{ij}) \geq 0$, 将 C' 作为极小化问题的运价表,用表上用业法求出最优解。

下列矩阵C是Ai(I=1, 2, 3)到Bi的吨公里利润,运输部门如何安排运输方案使总利润最大。

销 地 产地	B ₁	B ₂	B ₃	产量
A ₁	2	5	8	9
A_2	9	10	7	10
A_3	6	5	4	12
销量	8	14	9	

销 地 产地	B ₁	B ₂	B_3	产量
A ₁	8	5	2	9
A_2	1	0	3	10
A_3	4	5	6	12
销量	8	14	9	

小结

- 表上作业法
 - 1. 每一步骤如何操作
 - 2. 和单纯形法类别,检验数,调整方法原理
- 建模思路
 - 1. 供需关系——产地销地
 - 2. 产销不平衡处理