# ANALIZA I BADANIE DZIAŁANIA WYBRANYCH SIECI NEURONOWYCH W ZADANIU KLASYFIKACJI OBRAZÓW NA ZBIORZE IMAGENET

**AUTOR: MAREK SIGMUND** 

PROMOTOR PRACY: DR HAB, INŻ, PROF, PCZ KRYSTIAN ŁAPA

#### SPIS TREŚCI

- 1. Wstęp
- Wprowadzenie do tematu klasyfikacji, motywacja oraz cel i zakres badań.
- 2. Zbiór danych
  - Opis zbiorów ImageNet i Tiny ImageNet oraz wstępne przetwarzanie danych.
- 3. Technologie i metodologia eksperymentów
  - Omówienie środowiska obliczeniowego oraz struktury eksperymentów.
- 4. Konwolucyjne sieci neuronowe (CNN)
  - Teoretyczne podstawy działania CNN, przegląd architektur i zastosowań.

### 5. CZĘŚĆ EKSPERYMENTALNA – ANALIZA I PORÓWNANIE ARCHITEKTUR SIECI CNN

- **Etap I** Eksperymenty wstępne: struktura sieci i zachowanie modeli
  - analiza wpływu głębokości sieci, warstw FC, aktywacji i regularyzacji
- **Etap II** Eksperymenty zaawansowane: zachowanie modeli podczas uczenia
  - badanie wpływu parametrów treningowych (LR, batch size, optymalizator) na trzech modelach o różnych profilach
    - **Etap III** Budowa finalnego modelu
  - projekt i trening modelu oparty na wnioskach z poprzednich etapów oraz literaturze



6. ANALIZA I PORÓWNANIE GOTOWYCH ROZWIĄZAŃ

• DenseNet121
DenseNet161
• DenseNet169

• VGG11
• VGG13
• VGG16
• VGG19

• AlexNet
• GoogLeNet
• InceptionV3
• SqueezeNet

ResNet18 ResNet34 ResNet50
 ResNet101 ResNet152
 MobileNetV2 (Small i Large)
 MobileNetV3 (Small i Large)
 B0 B1
 B2 B3

#### ZAKOŃCZENIE PRACY

- Praktyczne wykorzystanie najlepszych modeli
  - Opcjonalne testy działania najlepszego modelu własnego oraz wybranego modelu predefiniowanego w warunkach rzeczywistych (np. analiza obrazów z kamery).ego modelu i najlepszego z predefiniowanych
- Podsumowanie pracy
  - Omówienie rezultatów, najważniejszych wniosków oraz dalszych możliwych kierunków rozwoju.

#### REZULTATY WŁASNYCH EKSPERYMENTÓW

W pierwszym etapie badań analizowano wpływ wybranych parametrów architektury sieci konwolucyjnych na stabilność procesu uczenia i jakość klasyfikacji. Zbadano:



 liczbę warstw konwolucyjnych i w pełni połączonych



przypadki przeuczenia i niedouczenia



• wybór funkcji aktywacji



 oraz zastosowanie różnych technik regularyzacji

#### LICZBA WARSTW KONWOLUCYJNYCH

•ShallowCNN (2 warstwy) – bardzo szybkie dopasowanie do treningu (87% accuracy), ale całkowite przeuczenie (≈0% walidacja).

•DeepCNN (12) i VeryDeepCNN (27) – brak sensownej konwergencji, bardzo niska skuteczność, długi czas treningu.

| Model       | Liczba warstw<br>konwolucyjnych | Train<br>Accuracy | Validation<br>Accuracy | Średni czas<br>epoki | Konwergencja         |
|-------------|---------------------------------|-------------------|------------------------|----------------------|----------------------|
| ShallowCNN  | 2                               | 87%               | ≈0%                    | ~33.7 s              | Tak<br>(przeuczenie) |
| DeepCNN     | 12                              | 0.5%              | 0%                     | ~53.9 s              | Nie                  |
| VeryDeepCNN | 27                              | 0.48%             | 0%                     | ~86.4 s              | Nie                  |

Więcej warstw = większy koszt obliczeniowy, ale bez poprawy wyników.

#### LICZBA WARSTW FC

- Tylko MaximalFCNN (3 FC) wykazał spadek straty i oznaki konwergencji.
  - Modele z 1 i 2 warstwami FC nie uczyły się skutecznie.
- Zwiększenie liczby FC poprawiło stabilność, ale nie skuteczność klasyfikacji.
  - Brak objawów przeuczenia nawet przy trzech warstwach.

| Hipoteza | Treść hipotezy              | Weryfikacja            |  |
|----------|-----------------------------|------------------------|--|
|          | Dodanie jednej warstwy FC   |                        |  |
| H1       | poprawi skuteczność         | Obalona częściowo      |  |
|          | klasyfikacji                |                        |  |
| H2       | Zbyt duża liczba warstw FC  | Niepotwierdzona        |  |
| nz       | prowadzi do przeuczenia     | Nieporwierazona        |  |
|          | Model z 1 FC będzie szybki, |                        |  |
| Н3       | ale o ograniczonej          | Potwierdzona           |  |
|          | skuteczności                |                        |  |
|          | Optymalna liczba FC zależy  |                        |  |
| H4       | od złożoności danych i      | Potwierdzona częściowo |  |
|          | głębokości ekstrakcji cech  |                        |  |

# RZEUCZENIE A NIEDOUCZENIE – ANALIZA STABILNOŚCI UCZENIA

| Model        | Warstwy konwolucyjne | Warstwy FC | Cechy konstrukcyjne                     |
|--------------|----------------------|------------|-----------------------------------------|
| VerySmallCNN | 2                    | 1          | Minimalna głębokość                     |
| MediumCNN    | 6                    | 2          | Zrównoważona<br>architektura            |
| VeryLargeCNN | 18                   | 3          | Bardzo głęboka sieć bez<br>stabilizacji |

W celu zbadania przeuczenia i niedouczenia przygotowano trzy modele o różnych głębokościach i liczbie warstw w pełni połączonych.

- **VerySmallCNN** przykład niedouczenia.
- **VeryLargeCNN** przykład przeuczenia.
- MediumCNN największa stabilność i względna równowaga między dopasowaniem a generalizacją.



VerySmallCNN – wykres strat i dokładności



MediumCNN – przebieg uczenia



VeryLargeCNN – objawy przeuczenia

# PORÓWNANIE WYBRANYCH FUNKCJI AKTYWACJI

ReLU i Leaky ReLU – szybkie i stabilne; rekomendowane do dalszego użycia (z regularyzacją).

**Swish i ELU** – potencjalnie warte ponownego testu w bardziej złożonych modelach.

Sigmoid i Tanh — nieskuteczne, problemy z gradientem; nie będą stosowane.

| Funkcja<br>aktywacji | Train Loss | Train Acc | Val Loss | Val Acc | Czas<br>treningu<br>(średni) |
|----------------------|------------|-----------|----------|---------|------------------------------|
| ReLU                 | 0.3250     | 90.15%    | 27.78    | 0.48%   | ~35.7s                       |
| Leaky ReLU           | 0.2779     | 91.94%    | 26.83    | 0.71%   | ~34.6s                       |
| ELU                  | 0.3559     | 90.78%    | 31.25    | 0.60%   | ~34.5s                       |
| Swish<br>(SiLU)      | 0.1897     | 94.12%    | 33.42    | 0.43%   | ~35.5s                       |
| Sigmoid              | 5.38       | 0.50%     | 4.65     | 0.00%   | ~34.9s                       |
| Tanh                 | 0.3469     | 89.84%    | 17.57    | 0.46%   | ~34.5s                       |

## ETAP II BADAŃ- EKSPERYMENTY PARAMETRYCZNE

Na podstawie wyników z etapu l przygotowano trzy modele:

BalancedCNN, UnderfittingCNN i OverfittingCNN,
reprezentujące różne profile działania sieci — od niedouczenia po
przeuczenie.

Cel: Zbadanie wpływu parametrów treningowych (learning rate, batch size, optymalizator) na stabilność procesu uczenia, skuteczność klasyfikacji i zdolność generalizacji modeli.

#### **MODELE REFERENCYJNE**

#### BalancedCNN

Zrównoważona architektura: 6 warstw konwolucyjnych + 2 FC.
Punkt odniesienia w analizie parametrów.

#### OverfittingCNN

Głęboka sieć (12 Conv + 3 FC), bez regularyzacji. Stworzona do testów przeuczenia i wpływu LR/optymalizacji.

#### UnderfittingCNN

Bardzo płytka sieć (2 Conv + 1 FC), niska pojemność. Służy do analizy niedouczenia i wpływu parametrów.

#### WNIOSKI Z DRUGIEGO ETAPU EKSPERYMENTÓW

- Nie ma uniwersalnych ustawień każdy model wymaga indywidualnego dostrojenia.
- BalancedCNN stabilny, ale wrażliwy na dokładny dobór hiperparametrów (najlepszy przy LR 0.0001–0.00001, BS 64).
- OverfittingCNN łatwo się uczył, ale tracił zdolność generalizacji bez regularyzacji.
  - UnderfittingCNN niezdolny do efektywnej nauki; zbyt ograniczona architektura.
- Optymalizatory adaptacyjne (Adam, RMSprop, AdamW) zapewniały stabilność, ale łatwo prowadziły do przeuczenia bez dodatkowych technik.

#### OPTYMALNE USTAWIENIA – BALANCEDCNN

| Parametr      | Rekomendowana wartość  | Uzasadnienie                 |
|---------------|------------------------|------------------------------|
| Learning rate | 0.0001 - 0.00001       | Dobre wyniki bez przeuczenia |
| Batch size    | 64                     | Dobry kompromis jakość/czas  |
| Optymalizator | AdamW lub RMSprop      | Lepsza stabilność niż SGD    |
| Regularyzacja | Dropout (0.3–0.5) + L2 | Ochrona przed przeuczeniem   |

Zestawienie to stanowi punkt wyjścia do budowy finalnego modelu, opartego na najlepszych parametrach uzyskanych w eksperymentach.

#### BUDOWA MODELU KOŃCOWEGO

 Na podstawie wyników eksperymentów i literatury zaprojektowano model o nazwie
 ResNet18Lite zoptymalizowany do klasyfikacji obrazów z Tiny ImageNet.



#### GŁÓWNE ZAŁOŻENIA KONSTRUKCYJNE

- 18 warstw blokowych kompromis między głębokością a stabilnością.
- ResidualBlock lepszy przepływ gradientów, poprawa konwergencji.
- BatchNorm + ReLU sprawdzona para, zwiększa stabilność uczenia.
  - Augmentacja danych RandomCrop, Flip, normalizacja → lepsza generalizacja.
- Parametry treningowe Adam + LR=0.001 + StepLR → skuteczna i stabilna konfiguracja.

# REZULTATY KOŃCOWEGO MODELU RESNET 18LITE

- Kluczowe wyniki:
- Train acc (epoka 20): ~87%
- Val acc (epoka 20): ~32.7%
- Przebieg loss/accuracy: stabilny wzrost na treningu, maksimum walidacji ok. epoki 13



Model osiągnął zadowalającą skuteczność przy niskim koszcie obliczeniowym. Stanowi dobrą bazę do dalszych optymalizacji.

#### USPRAWNIENIA ARCHITEKTURY RESNET 18LITE

- Najważniejsze zmiany w stosunku do wersji bazowej:
- Dropout (0.5) poprawa generalizacji, redukcja przeuczenia.
  - Zaawansowana augmentacja danych (RandomResizedCrop, Rotation, ColorJitter, HorizontalFlip).
    - Nowa strategia uczenia
    - Optymalizator: **Adam** + weight decay
      - Scheduler: CosineAnnealingLR

#### WYNIKI KOŃCOWE – MODEL ULEPSZONY

- Train Accuracy: 41.1%
- Val Accuracy: ~39.7%
- Val Loss: systematyczny spadek (z 4.53 → 2.53)
- Brak oznak przeuczenia –
   linie strat zbieżne



Model ResNet18LiteV2 wykazuje zrównoważony trening i wysoką skuteczność generalizacji bez wyraźnych objawów przeuczenia.

# PORÓWNANIE WYNIKÓW Z LITERATURĄ

• Stanford CS231n (2017):

ResNet-18 na Tiny ImageNet  $\rightarrow$  **ok. 40%** val accuracy.

GitHub (Tiny-ImageNet-Classifier):

Transfer learning z ImageNet  $\rightarrow$  25.9%  $\rightarrow$  56.9%.

Benchmarki TinylmageNet:

ResNet-18 (bez TL) osiqga ~41.5% test accuracy.

Osiągnięta dokładność ~40% w treningu od podstaw jest zgodna z literaturą i potwierdza skuteczność zastosowanych optymalizacji.

#### STRATEGIA TESTOWANIA GOTOWYCH SIECI

- ETAPY TESTOWANIA MODELI PREDEFNIOWANYCH:
  - Zero-shot (bez uczenia):

Model oceniany bez treningu. Oczekiwana skuteczność: bardzo niska.

• Feature extraction:

Uczony tylko klasyfikator. Oczekiwana skuteczność: średnia, szybki trening.

• Fine-tuning:

Trening całego modelu (Tiny ImageNet + regularyzacja, LR scheduler).

Skuteczność: najwyższa, wysoki koszt obliczeniowy.

#### **WYNIKI MODELU RESNET18 – TINY IMAGENET**

#### Wyniki testu zero-shot – ResNet18 na Tiny ImageNet

- Model użyty bez dodatkowego treningu (oryginalna baza i klasyfikator z lmageNet).
  - Tiny ImageNet to podzbiór ImageNet, ale wyniki były skrajnie niskie.
    - Validation accuracy: 0.46% potwierdza brak adaptacji i losową klasyfikację.

#### WYNIKI MODELU RESNET18 – TINY IMAGENET

- Tryb classifier\_train trenowano tylko ostatnią warstwę klasyfikującą (reszta zamrożona).
  - Osiągnięta dokładność walidacyjna: 26.7%.
  - Przebieg treningu stabilny, bez przeuczenia.
  - Niski koszt obliczeniowy, dobra skuteczność względem testu zero-shot.



#### **WYNIKI MODELU RESNET18 – TINY IMAGENET**

#### Tryb: Fine-tuning (pełne dostosowanie)

- Wszystkie warstwy trenowane przez 40 epok.
- Najlepszy wynik spośród wszystkich podejść:
   Val accuracy: 55.3%, F1-score: ~54.8%
- Brak przeuczenia, stabilny przebieg uczenia.
- Najwyższa jakość, kosztem większej złożoności.



#### ETAP PRACY

- ✓ Zrealizowano:
- Eksperymenty wstępne
- Analiza parametrów treningowych na trzech modelach
  - Budowa i test własnego modelu (~40%)
  - Porównanie gotowych modeli w trzech trybach
    - **%** W toku:
    - Opis własnego modelu i jego wyników
  - Redagowanie części eksperymentalnej i wniosków

