Fonctions usuelles Corrigé

DARVOUX Théo

Septembre 2023

Exercices.

Exponentielle and friends.	 1
Exercice 3.1	 1
Exercice 3.2	 2

Exercice 3.1 $[\Diamond \Diamond \Diamond]$

Résoudre $2 \ln \left(\frac{x+3}{2} \right) = \ln(x) + \ln(3)$, sur \mathbb{R}_+^* . Soit $x \in \mathbb{R}_+^*$. On a : $2 \ln \left(\frac{x+3}{2} \right) = \ln(x) + \ln(3)$ $\iff \ln \left(\left(\frac{x+3}{2} \right)^2 \right) = \ln(3x)$ $\iff \frac{(x+3)^2}{4} = 3x$ $\iff x^2 - 6x + 9 = 0$ $\iff x = 3$ Ainsi, 3 est l'unique solution.

Exercice 3.2 $[\Diamond \Diamond \Diamond]$

Résoudre l'équation ch(x)=2. Que dire des solutions ? Soit $x\in\mathbb{R}$.

On a:

$$\frac{e^x + e^{-x}}{2} = 2$$

$$\iff e^x + e^{-x} = 4$$

$$\iff e^{2x} - 4e^x + 1 = 0$$

$$\iff e^x = 2 \pm \sqrt{3}$$

$$\iff x = \ln(2 \pm \sqrt{3})$$

Ainsi, $\ln(2-\sqrt{3})$ et $\ln(2+\sqrt{3})$ sont les uniques solutions dans \mathbb{R} . On remarque que :

$$\ln(2+\sqrt{3}) = -\ln\left(\frac{1}{2+\sqrt{3}}\right) = -\ln\left(2-\sqrt{3}\right)$$

Les solutions sont opposées.