Markov chains for physicists

Andriy Zhugayevych, Andriy Yurachkivsky 24 вересня 2011 р.

Зміст

1	Вступ	1
2	Постановка задачі і загальні властивості 2.1 Базове рівняння 2.2 Операторне подання. Спектр оператора A 2.3 Функція Гріна	2 2 3 4
3	Локальність функції Гріна	5
4	Теорія збурень кінетичного рівняння	7
5	Залежність функції Гріна від коефіцієнтів	8
6	Наближення скінченної гратки	9
7	Узагальнені марковські ланцюги	11
8	Квазісиметричні ланцюги. Класифікація рівнянь	14
9	Дискретний час. Напівмарковські процеси	16
10	Чисельні методи 10.1 Part 1 10.2 Part 2 10.3 Time discretization of kinetic equation: "blind ant" vs. "myopic ant" 10.4 Series expansion at zero	17 17 18 19 20
11	Підсумок (неготовий)	20
\mathbf{A}	Формули для випадку дискретного часу	21
В	Винесені доведення	21

1 Вступ

Кінетичні рівняння з дискретним простором станів зустрічаються надзвичайно часто у фізиці, описуючи, наприклад, розподіл квантової системи по станах (кінетичне рівняння Паулі), стрибкове транспортування частинок (випадкове блукання), релаксацію системи до рівноважного стану, поширення шуму в біологічних системах чи інформаційних мережах тощо. В своїй основі вони базуються на гіпотезі про відсутність післядії (марковість), хоча прості модифікації їх дозволяють урахувати й ефекти пам'яті (узагальнене кінетичне рівняння зі згорткою по часу, що еквівалентно складнішому розподілу часу між стрибками (напівмарковські ланцюги, CTRW)) і кореляцію стрибків (через розпирення простору станів) [1, 2]. Ми зупинимося на кінетичному рівнянні з дискретними станами n і неперервним часом t в наступній загальній формі

$$\dot{c}_n = -c_n \nu_n + \sum_m (c_m w_{mn} - c_n w_{nm}) + f_n(t), \tag{1}$$

яке зручно інтерпретувати таким чином: $c_n(t)$ – середнє число частинок у стані n (це може бути квантовий стан, просторове положення частинки тощо), w_{nm} – інтенсивність (обернений середній час переходу) переходів частинки зі стану n у стан m (природно, w_{nm} невід'ємні), ν_n – інтенсивність затухання (зникання) (якщо $\nu_n > 0$) чи розмноження (якщо $\nu_n < 0$) частинок у стані n, $f_n(t)$ – інтенсивність народжування (якщо $f_n > 0$) чи поглинання (якщо $f_n < 0$) частинок у стані n. Рівняння з дискретним часом (разом із узагальненим кінетичним рівнянням) розглянемо в