Detekce objektů z hloubkové kamery

Lukáš Kunt

Vedoucí práce: RNDr. Petr Štěpán, Ph.D.

České vysoké učení technické v Praze Fakulta elektrotechnická

00.00.2020

Motivace a cíle práce

Motivace práce: Detekce cihel v soutěži Mohamed Bin Zayed International Robotics Chalenge (MBZIRC).

Cíle práce:

- Seznámení se s metodami detekce z hloubkových dat
- Navržení algoritmu pro detekci objektů (cihel) z hloubkových dat
- Implementování programu v jazyce C++
- Ověření programu na datech z kamery

Intel RealSenseTM D435

- RGB modul
- Dvojice infračervených kamer
- Infračervený projektor
- Dedikovaný procesor pro zpracování dat z infračervených kamer

Postup detekce

- Detekce normálového vektoru země
 - Pomocí Random Sample Consensus (RANSAC) algoritmu.
 - Určení gradientu výšky v každém bodě a následné sloučení do shluků.
 - Postup založený na analýze hlavních komponent (PCA).
- Prahování bodů podle vzdálenosti od země
- Detekce polohy jednotlivých cihel
 - Pomocí otáčejícíh se třmenů.
 - Pomocí RANSAC algoritmu.

Detekce normálového vektoru země pomocí PCA

- Statická maska 40-ti bodů
- Proložení pomocí PCA
- Expandování bodů
- Opětovné proložení pomocí PCA

- Určena vzdálenost bodů od země
- Podle vzdálenosti přiřazeno patro zdig

Detekce pozice cihel z prahovaných dat pomocí RANSAC

- Detekce obrysu shluku
- Rotace obrysu
- Nalezení přímky v obrysu
- Nalezení parelelní přímky

 Nalezení maximální hustoty promítnutý bodů

Vyhodnocování výsledků

- Pseudonáhodný výběr 20-ti a 15-ti hloubkových snímků
- Ručně zenesena poloha cihel
- Měření času běhu algoritmu na jednom jádře procesoru

Výsledky

algoritmus	přesnost [%]	čas [ms]
RANSAC-li a Otáčející se třmeny	43,2	108
RANSAC- <i>hi</i> a Otáčející se třmeny	61,3	143
PCA-n a Otáčející se třmeny	57,5	148
PCA-v a Otáčející se třmeny	65,2	243
RANSAC-li a RANSAC-det	58,4	182
RANSAC- <i>hi</i> a RANSAC-det	68,7	217
PCA-n a RANSAC-det	63,1	223
PCA-v a RANSAC-det	70,8	328
PCA-v a RANSAC-det - složité objekty	68,24	341

Porovnání výsledků

Tato práce

- Přesnost detekce až 70,8 %
- Zpracovává 5 snímků za sekundu při rozlišení 848×480 pixelů

Jia at al. 2013

- Detekce objektů podobných tvarů
- Objetky se nachází v obecnější poloze
- Přesnost detekce 61.7 % 70 %
- Nepracuje v reálném čase

Holz et al. 2011

- Segmentace obrazu na jednotlivé instance
- Přesnost segmentace 93 %
- Zpracovává 7 snímků za sekundu při rozlišení 640×480 pixelů

Závěr

- Vyzkoušeno několik metod detekce cihel
- Přesnost detekce až 70,8 %
- Při přesnosti nad 68 % pouze 5 snímků za sekundu

Návrhy na zlepšení:

- Použití výkonějšího hardwaru
- Paralelizace programu
- Použití LIDARu

Děkuji za pozornost.

