CS & IT ENGINEERING

Compiler Design

Intermediate code and code optimization

Lecture No.2

By- DEVA Sir

TCFG (Control Flow Graph)

3AC

Take (0xb) (ormor) C = a + bd = a+6 9= (0+16)*a G=C*0 f= d*b $= (a+b) \times [a+b]$ 9 = e+f

$$a = a + b$$
 2 variables
$$a = a + g$$


```
for(i=0;icn;i++)
x=x+i;
```

```
1=0
if(i>n)
       ) gob
  i=i+1; 90to 2
exit
```


Control Flow Graph:

TH is Flow graph to represents "controls"

The is collection of Basic Blocks & controls

The is collection of nodes & edges

Basic Block:

last

- I) Maximum Statements
- II) Sequential execution
- III) (norther) only conterns at 1st
- Tt) (ontrol baves after last statem

1.
$$x=a+1$$

$$5. \quad \alpha = x-1$$

5.
$$x = x-1$$

6. $y = y-1$, goto 3

Code Generatos: Code Generator M/c Dependent Phase X=X+Y 2 and y are variables

Mr. Dependent

(M/C Dependent)

x and y are

1851sters/memmy
addrency

ADD R, 15

Assembly Instaurtion Type of Instouction -> Type of operation Hype of addressing mode Ly Memory Addrew Register

Register Memory Not speed Compared to Ryix Code Generator APD RI, PZ 7-1+4 La Register Allocation
La Graph coloring
Lator allocate min no. of registers

We have only I register tow many rimemony spills required?

 $R_{i} \leftarrow Q$ $R_{i} \leftarrow B$ $R_{i} \leftarrow R_{i} + Nw_{i}$ $R_{i} \leftarrow C$ $R_{i} \leftarrow C$ $R_{i} \leftarrow R_{i} + Nw_{i}$ $R_{i} \leftarrow C$ $R_{i} \leftarrow R_{i} + Nw_{i}$ $R_{i} \leftarrow R_{i} + Nw_{i}$

W

a=a+6 b= *c We have only 2 degister tow many ringmany spills required?

 $R_1 \leftarrow \alpha$ $R_2 \leftarrow b$ $R_1 \leftarrow R_1 + R_2$ $R_2 \leftarrow c$ $R_1 \leftarrow R_1 \times R_2$

Three Address Code:

L) TO Store 3FIC, we have 3 data structures.

(1) Triple Notation

North	Operator	operand,	Operard 2
1000	*	j	Z
7010	+	[1000]	0
1015	_		(1010)
		1	

2) Quadruple Notation

	obspaxes	Ch Servi	5 Stroom	posud
5000	*	y	Z	χ
5012	+	\mathfrak{X}	0	4
5020)		9	7

6000	(1000]
6005	(1010)
6010	[1015]
17	ople Notati
1000 *	+ ((000) C
	(000

1015

North	Operator	operand,	Operard 2
1000	*	,4	Z
10/0	+	[000]	0
1015	_		[1010].

$$(x,y,z)$$
 $(000)(x,y,z)$
 $(+,[1000],a)$
 $(015)(-,[1010])$

Reordering

Common Sub expressions

Find no. of variable in SSA

)

Summary

LY CFG/ TAC/

