Dariel Noño 23 nov, 2021 Tarea 9 Eyeració I. Calcular los valores propios y vatores propios de las siguientes matrices M-IX1 =0 $\begin{pmatrix} -9 & 7 \\ -7 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \lambda = \begin{pmatrix} -\lambda - 9 & 7 \\ -7 & -\lambda + 1 \end{pmatrix}$ $(-\lambda - 9 + 1)$ = $\lambda^{2} + 4\lambda + 4 = 0$ encuentra il que satistaga la condición 1=-7 -2 + 960) +4=0 eigenvectores V talque (M-11) V= substituye & en (M-II)

Ahora escribinos el sistema como ecución para determinar las entradas de V en V=(Vz) = (Vz) (Vz) es un eigen vector pora cualquer volon (Vz) = (Vz) (Vz) Todos los eigen vectores son escalare multiplos de cada uno. Vz=1 entonces (1) les un ejgen vector de la matriz asodado en degen valor B) $\begin{bmatrix} -2 & 5 \\ 5 & 2 \end{bmatrix}$ $\rightarrow \begin{bmatrix} -2 & -5 \\ 5 & 2 \end{bmatrix}$ $-\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \lambda = \begin{bmatrix} -\lambda -2 \\ 5 & 5 \end{bmatrix}$ Resudive para

$V = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
eigen Valor eigenvector. -2-5i (-1 ±). -2+5i (i 1)
c) $\begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 5 \end{bmatrix}$ $\xrightarrow{M=1,N} \begin{bmatrix} -\lambda - 1 & 2 & 4 \\ 0 & -\lambda + 3 & 3 \\ 0 & 0 & -\lambda + 5 \end{bmatrix} = 0$
-13+612-31-10=0=det(M-IN)=0
A:= -1 A:= 7 A:= 5 Son los Valores que igualen la emación a O Resuel ve $\begin{bmatrix} -\lambda - 1 & 2 & 4 \\ 0 & -\lambda + 2 & 3 \\ 0 & 0 & -\lambda + 5 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ para cada λ
el'sistema on para λ_1 es [O Z 4] [Vi] [O] resolviendo con gauss-joidan [O 3 3] \cdot [Vi] = [O] la matrix aumentada [O 0 6] [V3] [O) 0 0 0 0 0 0

resolver to 1/3 Pera cualquier valor

$$V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} -6U_2 \\ V_2 \end{bmatrix}$$
Sea $V_1 = 1$, en contra mas que $\begin{bmatrix} -6V_3 \\ 1 \end{bmatrix}$

Resolviendo con $A = 7$.

$$\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = Y$$

$$V = \begin{bmatrix} V_2 \\ V_2 \end{bmatrix}$$
Sea $V_2 = 1$ en tonces $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
eigen value $\begin{bmatrix} eigen vector \\ -6V_1 \end{bmatrix}$

ei	9	0	V	ali	ic		l'eigenvector
					-	•	ry
1940	4		: (1.			1. 1. 6/2 . 1.
		16		12	1141		1 (-1-)
	14			7)			1
	1	4	-	1.	14		(1,1)
4			4	94	1		1 - 1 - 1

U, ai Uz non vedo la propios. por que Uz nunca pode serve

Eyerocio 3. Demoestre que
$$X = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 y $Y = \begin{bmatrix} 1/2 \\ 2 \end{bmatrix}$

Sen Undores propios de A

$$A = \begin{bmatrix} 2 & 2 \\ 4 & 3 \end{bmatrix}$$

$$det(A - IA) = 0$$

$$\begin{vmatrix} -1 & +1 & 2 \\ 4 & -1 & +1 \end{vmatrix} = 1 \begin{vmatrix} -1/2 & -4/4 - 5 = 0 \end{vmatrix}$$

Couanda $A = -1 = 0$ $A = 5$ so cumplo la equación (asuelvie $(M - IA) \times 0$ pora todas A

$$\begin{pmatrix} -2 & 2 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} N_1 & N_2 & N_3 \\ N_2 & 1 \end{pmatrix} \begin{pmatrix} N_1 & N_2 & N_3 \\ N_3 & N_4 & N_4 \end{pmatrix}$$

Cesoliviendo la matrix aumentada con saus $\begin{pmatrix} -2 & 2 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} N_1 & N_2 & N_3 \\ N_4 & N_4 & N_4 \end{pmatrix}$

Cesoliviendo la matrix aumentada con saus $\begin{pmatrix} -2 & 2 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} N_1 & N_2 & N_3 \\ N_4 & N_4 & N_4 \end{pmatrix}$

Vi les diferente a $N_1 \times N_2 \times N_4 + N_4 \times N_4 \times$

$$V_2 = (1,0)$$
 $V_2 = (0,0)$

Ejancico 5. Verificor que
$$\overline{U}=a(1,0,0)+b(0,-3,1)$$
, con a y b números reales, es vector propio de

$$\bar{U} = 1(1,0,0) + 2(0,-3,1) = (1,0,0) + (0,-6,2)$$