8.3.4 Chain Drives

*This quide follows Mott and Shigley, but mostly Mott

8.3.4.1 Chain Drives (Mott)

- 1. To start off, you will be given the following information:
 - H_{nom} [hp], nominal horsepower
 - n_1 , input speed $(n_{driving})$
 - n_2 , nominal output speed $(n_{driven})^{26}$
 - VR, velocity or speed ratio:

$$VR = \frac{V_{driven}}{V_{driving}} = \frac{D}{d} = \frac{n_{driving}}{n_{driven}}$$

2. Find the design horsepower H_d . Use

$$H_d = H_{nom} \times SF$$

where SF is the service factor given in the figure below

Load type	Type of driver		
	Hydraulic drive	Electric motor or turbine	Internal combustion engine with mechanical drive
Smooth Agitators; fans; generators; grinders; centrifugal pumps; rotary screens; light, uniformly loaded conveyors	1.0	1.0	1.2
Moderate shock Bucket elevators; machine tools; cranes; heavy conveyors; food mixers and grinders; ball mills; reciprocating pumps; woodworking machinery	1.2	1.3	1.4
Heavy shock Punch presses; hammer mills; boat propellers; crushers; reciprocating conveyors; rolling mills; logging hoists; dredges; printing presses	1.4	1.5	1.7

3. Use the tables in Appendix B to choose a chain (No. 40, 60, or 80) given your H_d and n_1 values.²⁷

After choosing your chain type, you will also be given the the number of teeth on your driving sprocket²⁸, or N_d , from the same figure (left-most column).

If you do not find the desired power rating, consider using multiple strands instead! The multiple strand factor is explained at the end of this guide.

²⁶Usually a range. For VR calculations, take mid-point to be conservative

 $^{^{27}}$ Tip: you most certainly can never go wrong with choosing a No. 60 chain. No. 40 often does not work, and No. 80 is usually an overkill. $^{28}17$ teeth or above is best

Also, note down the pitch²⁹, p [in.] for your chosen chain (from the figures) and the rated power value (H_r) .

4. Use N_d and your VR to calculate N_D :

$$N_D = N_d \times VR$$

Round N_D up to the nearest whole number, and recalculate your VR and output speed, n_2^{30} .

5. Calculate the pitch diameters, PD_d and PD_D [in.] using the following equation:

$$PD_d = \frac{p}{\sin(180^\circ/N_d)}$$

$$PD_D = \frac{p}{p}$$

 $PD_D = \frac{p}{\sin(180^\circ/N_D)}$

6. Next, find CD and L_c in pitches. Start with a trial CD (30 - 50 pitches is a good)³¹, and calculate L_c :

$$L_c = 2CD + \frac{N_2 + N_1}{2} + \frac{(N_2 - N_1)^2}{4\pi^2 CD}$$

Round up your L_c value to the nearest **even whole number**. Then recalculate CD:

$$CD = \frac{1}{4} \left[L_c - \frac{N_2 + N_1}{2} + \sqrt{\left[L_c - \frac{N_2 + N_1}{2} \right]^2 - \frac{8(N_2 - N_1)^2}{4\pi^2}} \right]$$

To find L_c and CD in inches, simply multiply by your pitch!

7. After that, find the wrap angles [degrees]:

$$\phi_d = 180 - 2sin^{-1} \left(\frac{PD_D - PD_d}{2CD} \right)$$
$$\phi_D = 180 + 2sin^{-1} \left(\frac{PD_D - PD_d}{2CD} \right)$$

Note: CD is in inches here!

 $^{^{29}0.5}$ in for No. 40, 0.75 in for No. 60, and 1 in for No. 80

 $^{^{30}}$ Once again, if the output speed was given as a range, make sure you are still within it

³¹I usually go for 40 pitches

8. Finally, check how many strands you need, which is given by:

$$\frac{H_d}{H_r \times Strand\ Factor} < 1$$

where the strand factors are:

- Strand Factor = 1 for 1 strand
- Strand Factor = 1.7 for 2 strands
- Strand Factor = 2.5 for 3 strands
- Strand Factor = 3.3 for 4 strands

Try them one by one, and see which one works, or rearrange for the strand factor:

$$\frac{H_d}{H_r} < Strand\ Factor$$

The calculator does this for you if you give it the H_r value as well.

You're Done, Good job! Check out the calculator for amazing magic!

Extra note: When using Shigley, the process is very similar, you just need N_d to be 17 to not have to do too much work. Also, the H_r value requires to be corrected with two different factors

8.3.4.2 Chain Drive (Shigleys) Now looking more in-depth into Shigley's method of chain drive calculations

- 1. Here we are starting at step X of the Mott Process
- $2. \ \,$ There are some differences in the calculation method for Nominal horsepower