

Non-parametric Methods

Introduction

Niall Anderson

Outline

- Identifying a problem
- Possible solution?
- Example 2 sample problem
- Non-parametric analogues of standard methods

Making Assumptions...

- Standard methods for continuous data e.g. Student's t-test assume data sampled from Normal distribution
- Need to estimate parameters of assumed Normal distribution
- Reality is not always Normal!
- T-tests etc can be quite *robust* (insensitive to departure from Normality)
- More extreme cases may require an alternative...

Non-parametric Methods

AKA *rank-based* or *distribution-free* methods

Avoid Normality assumption by replacing data with ranks: e.g.

Data: 7 4 9 17 11 6 21 14 Rank: 3 1 4 7 5 2 8 6

We analyse the ranks, instead of the original data...

Example – 2 sample problem

Assume the data on the previous slide comprise measurements from 2 groups, A and B:

Data:	7	4	9	17	11	6	21	14
Rank:	3	1	4	7	5	2	8	6
Group:	A	A	A	A	В	В	В	В

If A and B are sampled from similar distributions, then ranks should be randomly distributed between A and B.

Thus, group-specific sets of ranks would be similar: alternatively think of sum of ranks:

Group A sum = 15, Group B sum = 21

Close, but not same...

Can use a probability argument to work out how likely (or not) those sums of ranks are to be found, assuming same (unspecified) distribution of measurements for A and B.

Known as *Wilcoxon Rank Sum* test or *Mann-Whitney* test.

Here, p = 0.484 – A and B appear to come from same distribution.

Why "Non-parametric"?

 No need to estimate the parameters (mean & SD) of the assumed Normal distribution

"Rank-based" = as it sounds!

• "Distribution-free" = no requirement for a specific probability distribution to generate the observed data.

Essentially, all equivalent terminology.

Analogs...

Parametric Test	Non-parametric Analog				
1 sample t-test	Wilcoxon Signed Rank test				
Paired t-test	Wilcoxon Matched Pairs test				
2 sample t-test	Wilcoxon Rank Sum/ Mann-Whitney test				
One-way ANOVA	Kruskall-Wallis				
Pearson's Correlation Coefficient	Spearman Rank Correlation Coefficient				

A number of other tests may be encountered in the literature.

Worth remembering: these methods are only really important for *continuous* data (because otherwise a Normality assumption may be made) – not encountered with categorical data.