Revenimento Paralelo Aplicado ao Problema de Indexação de Ferramentas

Lorrayne Cristine Ferreira Santos

Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto

4 de abril de 2025

Sumário

- Introdução
- 2 Problema de indexação de ferramentas
- Trabalhos relacionados
- 4 Revenimento Paralelo
- 5 Próximos passos
- 6 Conclusão

Panorama industrial

Javaid, Haleem, Singh e Suman (2022)

A indústria moderna exige cada vez mais eficiência, flexibilidade e personalização, demandando níveis crescentes de adaptação e dinamismo nos processos produtivos.

Soori, Ghaleh Jough, Dastres e Arezoo (2024)

A automação robótica integrada às máquinas de controle numérico computadorizado (CNC) viabilizaram a execução de processos de usinagem com maior exatidão e menor custo, contribuindo para a construção de ambientes industriais mais adaptáveis e otimizados.

Sistemas de manufatura flexível

Características

Projetados para oferecer versatilidade e resposta rápida às exigências do mercado, incluindo:

- Flexibilidade em volume, variedade, mix de produção e layout; reconfiguração rápida e resposta ágil à demanda;
- Aplicação em indústrias como automotiva, aeroespacial e de eletrônicos, que demandam alta variedade e produção customizada.

Definições

Elementos-chave da usinagem

- Sequência de operações: ordem em que a máquina executa as etapas do processo produtivo;
- Ferramentas: dispositivos utilizados para realizar operações como corte, perfuração e modelagem durante o processo de usinagem;
- ► Torreta: compartimento interno da máquina CNC onde as ferramentas são armazenadas e organizadas para uso automático;
- Slots: espaços físicos disponíveis na torreta onde cada ferramenta é posicionada individualmente.

Automatic tool changer (ATC)

ATC e o processo de indexação

- Cada ferramenta é posicionada em um slot, sendo identificadas pelo índice da ferramenta;
- O ATC realiza rotações unitárias na torreta para que ocorra a troca de ferramentas, assim obtém-se o tempo de indexação da ferramenta;
- Ao automatizar esse processo, o ATC reduz o tempo de ciclo.

Definição

O TIP busca alocar, de forma eficiente, um conjunto de ferramentas $F = \{f_1, f_2, \dots, f_m\}$ nos slots de uma torreta, de modo a atender uma sequência fixa de operações $O = [o_1, o_2, \dots, o_n]$, minimizando o tempo de troca entre as ferramentas.

7/24

Configuração do problema

- lackbox Cada operação $o_i \in O$ requer uma ferramenta específica;
- A torreta possui capacidade máxima de *C slots* disponíveis;
- ▶ Cada $f_j \in F$ deve ser única e alocada a um *slot* exclusivo.

slot	1	2	3	4	5	6	7	8	9	10
ferramenta	f_1	f_3	f_{10}	f_6	f_5	f_7	f_8	f_4	f_9	f_2

Cálculo do custo

 $lackbox{ O deslocamento entre duas ferramentas localizadas nos slots } i$ e j é dado por:

$$I_{\text{unitário}} = \min(|j-i|, |i+C-j|)$$

O custo total de indexação é a soma dos custos individuais de cada transição:

$$I_{\mathsf{total}} = \sum_{i=1}^{n} I_i$$

Objetivo

Minimizar o tempo de indexação total, reduzindo o tempo não produtivo causado pelas trocas entre ferramentas na torreta.

◆ロト ◆個ト ◆注ト ◆注ト 注 のQで

Tabela de transições entre operações e ferramentas

sequência	operações	ferramentas	custo
1	$o_1 \rightarrow o_2$	$f_1 \rightarrow f_1$	0
2	$o_2 \rightarrow o_3$	$f_1 \rightarrow f_5$	4
3	$o_3 \rightarrow o_4$	$f_5 o f_4$	3
4	$o_4 \rightarrow o_5$	$f_4 o f_2$	2
5	$o_5 \rightarrow o_9$	$f_2 \rightarrow f_9$	1
6	$o_9 \rightarrow o_{10}$	$f_9 o f_7$	3
7	$o_{10} \rightarrow o_8$	$f_7 \rightarrow f_3$	4
8	$o_8 \rightarrow o_6$	$f_3 \rightarrow f_3$	0
9	$o_6 \rightarrow o_7$	$f_3 \rightarrow f_4$	4
10	$o_7 \rightarrow o_{11}$	$f_4 o f_9$	1
11	$o_{11} \rightarrow o_{12}$	$f_9 o f_9$	0
12	$o_{12} \to o_{13}$	$f_9 \rightarrow f_9$	0
13	$o_{13} \to o_{14}$	$f_9 \rightarrow f_{10}$	4
14	$o_{14} o o_{15}$	$f_{10} \rightarrow f_8$	4
15	$o_{15} \to o_{16}$	$f_8 \rightarrow f_6$	3
	33		

Tool indexing problem - Nova distribuição das ferramentas

slot	1	2	3	4	5	6	7	8	9	10
ferramenta	f_2	f_3	f_1	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}

sequência	operações	ferramentas	custo
1	$o_1 \rightarrow o_2$	$f_1 \rightarrow f_1$	0
2	$o_2 \rightarrow o_3$	$f_1 \rightarrow f_5$	2
3	$o_3 \rightarrow o_4$	$f_5 \rightarrow f_4$	1
4	$o_4 \rightarrow o_5$	$f_4 o f_2$	3
5	$o_5 \rightarrow o_9$	$f_2 \rightarrow f_9$	2
6	$o_9 \rightarrow o_{10}$	$f_9 \rightarrow f_7$	2
7	$o_{10} \rightarrow o_8$	$f_7 \rightarrow f_3$	5
8	$o_8 \rightarrow o_6$	$f_3 \rightarrow f_3$	0
9	$o_6 \rightarrow o_7$	$f_3 \rightarrow f_4$	2
10	$o_7 \rightarrow o_{11}$	$f_4 \rightarrow f_9$	5
11	$o_{11} \rightarrow o_{12}$	$f_9 \rightarrow f_9$	0
12	$o_{12} \rightarrow o_{13}$	$f_9 \rightarrow f_9$	0
13	$o_{13} \rightarrow o_{14}$	$f_9 \rightarrow f_{10}$	1
14	$o_{14} \rightarrow o_{15}$	$f_{10} \rightarrow f_8$	2
15	$o_{15} o o_{16}$	$f_8 \rightarrow f_6$	2
	27		

Trabalhos relacionados

Dereli, Baykasoğlu, Gindy e Filiz (1998)

- Introduziram formalmente o problema TIP e analisaram diferentes cenários:
 - considerando a duplicação de ferramentas;
 - considerando a possibilidade de um magazine extra;
 - não considera nem a duplicação de ferramentas nem o uso de um magazine adicional.

Trabalhos relacionados

Atta, Morsy, El-Bardini e Darwish (2018)

- Utilizou o algoritmo harmony search para resolver o TIP;
- Considerou duplicação de ferramentas e uso de magazine adicional;
- O método foi considerado estado da arte à época.

Baykasoğlu, Atabay e Günay (2024)

- Utilizou o algoritmo weighted superposition attraction (WSA) para resolver o TIP;
- Considerado como então estado da arte, superou o (HS) em qualidade das soluções, mas com tempo de execução superior;
- Considerou duplicação de ferramentas e não considerou magazine adicional.

Abordando a Complexidade do TIP

Classificação

O TIP é um problema combinatório **NP-difícil**, o que inviabiliza métodos exatos para soluções boas em todas instâncias.

Abordagem proposta

Adota-se o parallel tempering (PT) como alternativa para equilibrar a qualidade das soluções e a viabilidade computacional em problemas combinatórios.

Panorama do Parallel Tempering na Computação

Contexto e Aplicações

- Surgiu na física estatística e química computacional para simulações moleculares;
- Introduzido na computação principalmente em inferência bayesiana e amostragem estatística;
- Pouco explorado para otimização combinatória.

Bases conceituais do Parallel Tempering

Fundamentos probabilísticos

- Amostragem estatística: faz a extração de um subconjunto equilibrado de dados para estimar propriedades específicas da distribuição;
- Monte Carlo: gera estimativas através de simulações com dados aleatórios para problemas difíceis de resolver analiticamente;
- Cadeia de Markov: processo estocástico onde cada solução depende exclusivamente da solução imediatamente anterior;

Bases conceituais do Parallel Tempering

Fundamentos dos métodos

- ► MCMC: combina Cadeias de Markov para gerar soluções sucessivas com critérios probabilísticos de Monte Carlo para sua aceitação;
- Metropolis-Hastings: algoritmo MCMC que aceita ou rejeita novas soluções com base em uma probabilidade calculada a partir da comparação entre a qualidade da solução atual e da solução candidata.

Introdução ao Parallel Tempering

Como funciona o PT

- Utiliza múltiplas réplicas independentes que executam cadeias MCMC com Metropolis-Hastings em diferentes temperaturas;
- Cada réplica é associada a uma temperatura, controlando seu grau de exploração:
 - temperaturas altas favorecem aceitar soluções piores (exploração);
 - temperaturas baixas mantêm soluções boas (refinamento).

Parallel Tempering: Trocas entre Réplicas

Mecanismo de troca

O PT realiza tentativas de troca de temperatura entre duas réplicas adjacentes, com base em um critério de aceitação probabilístico:

$$P_{\mathsf{troca}} = \min\left(1, \exp\left[(\beta_i - \beta_j)(E_i - E_j)\right]\right)$$

- Energia: representa a qualidade de uma solução (no TIP, o tempo total de indexação);
- Estado: uma configuração específica da solução, (no TIP, a disposição das ferramentas na torreta).

Parallel Tempering

Características da troca

A troca de temperatura permite que uma boa solução, que antes estava em uma réplica de alta temperatura (exploratória), passe a ser refinada em uma réplica de baixa temperatura, aumentando a chance de melhorias mais precisas.

Plano de Atividades Restantes

Próximas etapas

- O método será adaptado ao TIP usando uma API paralelizada, desenvolvida por Almeida (2024);
- Calibração dos parâmetros fundamentais para desempenho do método;
- Desenvolvimento de componentes específicos para integrar o PT ao TIP, incluindo codificação, função de avaliação, vizinhança e critérios operacionais;
- Execução de experimentos e comparação dos resultados obtidos com aqueles reportados na literatura, especialmente pelo então estado da arte, Baykasoglu (2024).

Conclusão

Síntese e Próximos Passos

- ► Tem-se o TIP como um problema essencial para eficiência produtiva em manufatura flexível;
- É pouco explorado na literatura e apresenta limitações nas abordagens;
- O método PT surge como alternativa para equilibrar a qualidade das soluções e eficiência computacional.

FIM

Referências

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022).

Industry 5.0: A human-centric solution.

Sustainable Operations and Computers.

Soori, M., Ghaleh Jough, A. M., Dastres, F., & Arezoo, B. (2024).

Intelligent tool management in CNC machining using machine learning.

Dereli, T., Baykasoğlu, A., Gindy, N. N. Z., & Filiz, M. (1998).

Tool selection and operation allocation in FMS using genetic algorithms. *Journal of Materials Processing Technology*.

Atta, M. M., Morsy, A. H., El-Bardini, M., & Darwish, A. M. (2018).

Harmony Search Algorithm for Tool Indexing Problem.

International Journal of Advanced Manufacturing Technology.

Baykasoğlu, A., Atabay, S., & Günay, M. (2024).

A Weighted Superposition Attraction Algorithm for Tool Indexing Problem. *Journal of Intelligent Manufacturing*.

Almeida, A. L. B. (2024).

Revisitando o Revenimento Paralelo: Computação de Alto Desempenho e Aplicação em Pesquisa Operacional.

Tese de Doutorado, Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciência da Computação.