

DoubleML - Sensitivity Analysis

DoubleML Trainings

October 18 - 19, 2023

Philipp Bach, Sven Klaassen, Heinrich Koegel, Martin Spindler

Motivation: Sensitivity Analysis

Motivation: DoubleML Workflow

- o. Problem Formulation
- 1. Data-Backend
- 2. Causal Model
- 3. ML Methods
- 4. DML Specification
- 5. Estimation
- 6. Inference
- 7. Sensitivity Analysis

- Earlier we introduced 6 steps of the **DoubleML workflow**.
- Actually, there is a **7th step** that is often overlooked:
 Sensitivity Analysis

Motivation

Whenever we have (properly collected)
 experimental data, we have good reason to believe
 that the independence assumption holds, i.e., the
 treatment assignment is independent of the
 potential outcomes

$$Y(d)\perp D$$

 However, what about causal evidence from observational data?

"A well designed RCT is the dream of any scientist",
Source: Chapter 2 of Facure and Germano (2021)

Motivation

- Observational studies are often based on the assumption of **conditional independence**¹
- ullet Conditional on pre-treatment confounders X, the treatment is as good as randomly assigned

$$Y(d) \perp D \mid X$$

• In general, the **independence** assumption is not testable!

Code

Motivation

- What if the conditional independence assumption is **violated**?
- Unobserved confounders *U* would introduce an omitted variable bias/selection-into-treatment bias
- Key questions:
- 1. How strong would a confounding relationship need to be in order to change the conclusions of our analysis?
- 2. Would such a confounding relationship be plausibly present in our data?

▶ Code

confounders X and unobserved confounders U.

Outlook: Sensitivity Analysis

- 1. How strong would a confounding relationship need to be in order to change the conclusions of our analysis?
- Model the strength of the confounding relationships in terms of some sensitivity parameters, i.e.,
 - ullet U o D and
 - $lacksquare U \,{ o}\, Y$
- 2. Would such a confounding relationship be plausibly present in our data?
- Benchmarking framework

► Code

Consider a linear regression model with observed and unobserved confounders X and U, respectively

$$Y = heta_0 D + eta X + \gamma_1 U + \epsilon, \ D = \delta X + \gamma_2 U +
u,$$

with ϵ and ν being uncorrelated error terms and θ_0 corresponds to the average treatment effect of the (continuous) treatment D on Y.

- ullet Short parameter $heta_{0,s}$ corresponds to model using data $\{Y,D,X\}$ (short model) $^{\scriptscriptstyle 1}$
- Long parameter $heta_0$ corresponds to model using data $\{Y,D,X,U\}$ (long model)

 \Rightarrow Omitted variable bias:

$$\theta_{0,s} - \theta_0$$

$$Y = heta D + eta X + \gamma_1 U + \epsilon, \ D = \delta X + \gamma_2 U +
u,$$

- Simple idea for sensitivity analysis:
 - Parametrically model / simulate the unobserved confounder U and derive sensitivity bounds according to different values of γ_1 and γ_2
 - lacktriangledown Problem: Sensitivity results will depend on the parametric model for U, which might be too simplistic, for example,
 - \circ Binary or continuous U?
 - \circ Single or multiple confounders U?
 - \circ Correlation of U with X?
- Alternative: Use \mathbb{R}^2 -based sensitivity parameters (Cinelli and Hazlett 2020)

Sensitivity parameters in Cinelli and Hazlett (2020)

- $U \to D$: Share of residual variation of D explained by omitted confounder(s) U , after taking X into account, $R^2_{D \sim U|X}$
- U o Y: Share of residual variation of Y explained by U , after taking X and D into account, $R^2_{Y \sim U|D,X}$

Code

Results in Cinelli and Hazlett (2020)

- Bounds for the omitted variable bias $\theta_{0,s}-\theta_0$ and confidence intervals as based on values for these sensitivity parameters
- Various measures to be reported:
 - Robustness value
 - Extreme scenarios
- Visualization:
 - Contour plots (Imbens 2003)

Example contour plot, Source DoubleML User Guide

- The approach by Cinelli and Hazlett (2020) can be used to derive sensitivity bounds depending on various specifications of the sensitivity parameters
- However, how do we know if the values for these parameters are **plausible**?
- Cinelli and Hazlett (2020) also develop a formal **benchmarking framework** to relate the values of the sensitivity parameters to observed confounders

• Idea:

- Mimic omitting an important observed (benchmark) confounder and re-compute the values of the sensitivity parameters
- Use domain expertise to assess plausibility of the confounding scenarios

Benchmarking example

- Assume we know that X_1 is a very important predictor for Y and D, then we can calculate the benchmark values for the sensitivity parameters, i.e.,
 - $X_1 o D$: Share of residual variation of D explained by the omitted confounder(s) X_1 , after taking X_{-1} into account, $R^2_{D\sim X_1|X_{-1}}$
 - ullet $X_1 o Y$: Share of residual variation of Y explained by X_1 , after taking X_{-1} and D into account, $R^2_{Y\sim X_1|D,X_{-1}}$
- Given the values for the benchmarking variable, we can judge whether critical values of the sensitivity parameters are plausible or not

- The framework of Cinelli and Hazlett (2020) is very intuitive and powerful for the linear regression model
- Here, linearity helps to endow the sensitivity parameters with an intuitive interpretation (partial \mathbb{R}^2)
- However, the framework itself does not directly expand to non-linear models, such as the interactive regression model

- Chernozhukov et al. (2022) propose a generalization of the sensitivity analysis framework to non-linear models and is suitable for ML-based estimation
- We do not go into the formal details¹ as the approach is technically evolved
- We sketch the main ideas and demonstrate the implementation in DoubleML with an example

- The sensitivity parameters in Cinelli and Hazlett (2020) are formulated in terms of partial \mathbb{R}^2 measures which apply to linear relationships
- However, we might want to model non-linear relationships
- Example: Partially linear regression model

$$Y=D heta_0+g_0(X)+\zeta, \qquad \mathbb{E}(\zeta|D,X)=0, \ D=m_0(X)+V, \qquad \mathbb{E}(V|X)=0,$$

with nonlinear functions g_0 and m_0 .

- Moreover, we would like to apply sensitivity analysis for
 - Other causal models, such as the interactive regression model
 - ML-based estimation

Brief summary: Chernozhukov et al. (2022)

- Generalization of the ideas in Cinelli and Hazlett (2020) to a broad class of causal models, including
 - Partially linear regression
 - Interactive regression model
 - Difference-in-Differences
- The approach is based on the so-called *Riesz-Fréchet representation*, which is related to the orthogonal score of a causal model (*debiasing*)
- Sensitivity parameters are defined in terms of **nonparametric** partial \mathbb{R}^2

Brief summary: Chernozhukov et al. (2022)

Advantages

- Various causal models (including nonseparable models, like IRM)
- ML-based estimation
- Non-linear confounding relationships

Limitations

- Technical complexity
- Generalization comes at costs of interpretability (\mathbb{R}^2 ?)

- Let's complete the 7th step of the DoubleML workflow example¹
- We obtained the following results for the ATE (IRM)

1 dml_irm_rf.summary.round(3)								
		coef	std err	t	P> t	2.5%	97.5%	
	e401	8121.565	1106.553	7.34	0.0	5952.76	10290.369	

Now, we wonder how robust these effects are with respect to unobserved confounding

- At given values for the sensitivity parameters cf_d
 and cf_y, we can compute bounds for
 - The parameter θ_0 and
 - $(1-\alpha)$ confidence intervals
- The interpretation of the sensitivity parameters depends on the causal model

PLR

- $U \to D$: Partial nonparametric R^2 of U with D, given X
- $U \rightarrow Y$: Partial nonparametric R^2 of U with Y, given D and X

► Code

- At given values for the sensitivity parameters cf_d
 and cf_y, we can compute bounds for
 - The parameter θ_0 and
 - $(1-\alpha)$ confidence intervals
- The interpretation of the sensitivity parameters depends on the causal model

IRM

- $U \to D$: Average gain in quality to predict D by using U in addition to X (relative)
- $U \rightarrow Y$: Partial nonparametric R^2 of U with Y, given D and X

► Code

• Sensitivity analysis as of Chernozhukov et al. (2022) • Robustness value RV: Minimum is implementented in the method sensitivity analysis()

```
dml irm rf.sensitivity analysis()
   print(dml irm rf.sensitivity summary)
=========== Sensitivity Analysis =============
  ----- Scenario
Significance Level: level=0.95
Sensitivity parameters: cf y=0.03; cf d=0.03, rho=1.0
  ----- Bounds with CI
      CI lower theta lower theta theta upper
CI upper
e401 2145.47168 4033.019801 8121.564764 12210.109726
14101.927365
     ----- Robustness Values -----
     H 0 RV (%) RVa (%)
e401 0.0 5.870442 4.478475
```

- strength of the confounding relationship that would lead to an adjustment of the parameter bounds such that they include 0^1
- A confounding relationship with cf d=cf y= 5.87% would suffice to set the lower bound for the ATE to 0

Sensitivity analysis as of Chernozhukov et al. (2022)
 Robustness value RVa: Minimum strength of the confounding relationship that would lead to

- Robustness value RVa: Minimum strength of the confounding relationship that would lead to an adjustment of the $(1-\alpha)$ confidence interval bounds such that they include the observed parameter estimate
- A confounding relationship with cf_d=cf_y= 4.48% would suffice to let the lower bound for the 95% confidence interval include 0 (=render effect nonsignificant)

Visualization

- Contour plots make it possible to visualize many different sensitivity scenarios at once
- Each contour line indicates the combinations of cf_d and cf_y that lead to the same level of bias

```
1 dml_irm_rf.sensitivity_plot()
```


- So far, we considered how we can perform sensitivity analysis for a given set of parameter values
- However, we might wonder how we can **choose** plausible values for the sensitivity parameters
- There are basically two ways to do this:
 - 1. **Domain expertise**: Use domain expertise to postulate certain values for the confounding scenarios
 - 2. **Benchmarking**: Mimic omitting an important observed (benchmark) confounder and re-compute the values of the sensitivity parameters

Benchmarking

- We consider the variable inc which measures individuals' income
- For more details, see Chapter 6 in Chernozhukov et al. (2022) as well as the notebook in the DoubleML Example Gallery

Benchmarking

Let's add this scenario to the contour plot

Degree of adversity

- When specifying the main confounding scenario in the sensitivity_analysis() call, there is a parameter called ρ (degree of adversity)
- Informally speaking, $ho\in[-1,1]$ measures the **correlation** between the deviations that are created by the confounder(s) in terms of the relationships
 - ullet U o D and
 - ullet U o Y
- ullet Intuitively, if the variations in D and Y , which can be explained by the omitted variable U , are uncorrelated, the resulting bias would be 0

Degree of adversity

- ullet ho operates as a scaling factor in the omitted variable bias formula
- Results are most conservative results with ho=1 (default)
- We can calibrate ρ during the empirical benchmarking procedure
- Without further modification, the scenarios added to the contour plot are conservative (i.e., based on ho=1)

Benchmarking

• We can use the benchmarking scenario as the major confounding scenario and calibrate the contour plot according to ρ

```
1 dml_irm_rf.sensitivity_analysis(cfly

2 cf_d

3 rho

1 print(dml_irm_rf.sensitivity_summary
```

Benchmarking

 We can use the benchmarking scenario as the major confounding scenario and calibrate the contour plot according to ρ

```
1 dml_irm_rf.sensitivity_analysis(cf]y
2 cf_d
3 rho
1 dml_irm_rf.sensitivity_plot(grid_bou
```


Conclusion: Workflow example

- ullet If we believe that we likely miss a confounder with similarly strong relationships with Dand Y as the benchmark variable inc, the results do not seem to be robust
- However, if we believe that excluding such a confounder is unlikely, we can be more confident in the results (e.g., compare to other benchmarking variables)

General comment

• Conclusions from sensitivity analyses will generally not be unambiguous - they depend on the context of the study and need to be interpreted based on domain expertise

Appendix

Appendix: Sensitivity Analysis for Causal ML

• Nonparametric partial \mathbb{R}^2

$$rac{\mathrm{Var}(\mathbb{E}[Y|D,X,A]) - \mathrm{Var}(\mathbb{E}[Y|D,X])}{\mathrm{Var}(Y) - \mathrm{Var}(\mathbb{E}[Y|D,X])}$$

Appendix: Sensitivity Analysis for IRM

Riesz-Fréchet representation for IRM (ATE)

$$egin{aligned} heta_0 &= \mathbb{E}(m(W,g)) \ &= \mathbb{E}(g(1,X) - g(0,X)), \end{aligned}$$

with $g(d,X)=\mathbb{E}[Y|D=d,X]$. The Riesz-representation theorem says that we can rewrite the $heta_0$ as

$$heta_0 = \mathbb{E}[g_0(W) \underbrace{lpha_0(W)}_{RR}].$$

In the IRM we have

$$lpha_0(W)=rac{D}{m(X)}-rac{1-D}{1-m(X)}.$$

Appendix: Sensitivity Analysis for IRM

Riesz-Frechet representation for IRM (ATE)

The Riesz-Representer (RR) points down a debiased / orthogonal score function, see Chernozhukov, Newey, and Singh (2022).¹

$$\psi(W, \theta_0, g, \alpha) = m(W, g) - \theta_0 + \alpha(W)\{Y - g(X)\}$$

For the ATE in the IRM (Example 3 in Chernozhukov, Newey, and Singh (2022)), we have

$$\psi(\cdot) := g(1,X) - g(0,X) - \theta + \frac{D(Y - g(1,X))}{m(X)} - \frac{(1-D)(Y - g(0,X))}{1 - m(x)}$$

which is the doubly-robust score.

Appendix: Sensitivity Analysis for IRM

• Sensitivity parameter cf_d:= $\frac{C_D^2}{1+C_D^2}$ with

$$C_D^2 = rac{\mathbb{E}\Big[ig(P(D=1|X,A)(1-P(D=1|X,A))ig)^{-1}\Big]}{\mathbb{E}\Big[ig(P(D=1|X)(1-P(D=1|X))ig)^{-1}\Big]} - 1$$

References

References

- Bach, Philipp, Victor Chernozhukov, Malte S Kurz, and Martin Spindler. 2022. "DoubleML-an Object-Oriented Implementation of Double Machine Learning in Python." *Journal of Machine Learning Research* 23: 53–51.
- Bach, Philipp, Victor Chernozhukov, Malte S Kurz, Martin Spindler, and Sven Klaassen. 2021. "DoubleML An Object-Oriented Implementation of Double Machine Learning in R." https://arxiv.org/abs/2103.09603.
- Chernozhukov, Victor, Carlos Cinelli, Whitney Newey, Amit Sharma, and Vasilis Syrgkanis. 2022. "Long Story Short: Omitted Variable Bias in Causal Machine Learning." National Bureau of Economic Research.
- Chernozhukov, Victor, Christian Hansen, Nathan Kallus, Martin Spindler, and Vasilis Syrgkanis. forthcoming. *Applied Causal Inference Powered by ML and AI*. online.
- Chernozhukov, Victor, Whitney K Newey, and Rahul Singh. 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects." *Econometrica* 90 (3): 967–1027.
- Cinelli, Carlos, and Chad Hazlett. 2020. "Making Sense of Sensitivity: Extending Omitted Variable Bias." Journal of the Royal Statistical Society Series B: Statistical Methodology 82 (1): 39–67.
- Facure, Matheus, and Michell Germano. 2021. "matheusfacure/python-causality-handbook: First Edition." Zenodo. https://doi.org/10.5281/zenodo.4445778.
- Imbens, Guido W. 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation." American Economic Review 93 (2): 126–32.