Charles Hwang

Professor O'Brien

STAT 307-001

1 November 2019

Homework 8 – Exercise 13.3

\mathbf{H}_0 . $\mathbf{\mu}_A - \mathbf{\mu}_B - \mathbf{\mu}_C - \mathbf{\mu}_D$					u = .03						
H _a : At least one μ _i is different					$\mu_{A} = 70.375; \; \mu_{B} = 58.125; \; \mu_{C} = 64.125; \; \mu_{D} = 66.625$						
Source	DF	SS	MS	F	P-Value		В	C	D	A	
Trt	3	635.375	211.7917	0.8381	0.4844		58.125	64.125	66.625	70.375	

Error 7075.50 252.6964

143.15

Day 1 | Day 2 | Day 3 | Day 4

152.55

140.6

Total 31 7710.88

Method A

We fail to reject H_0 at $\alpha = .05$. The differences between the means are not significant.

Homework 8 – Problem 2

	Method B 145.15 126.75	137.2 142.6				
	$\bar{\mathbf{y}}_{.} = \frac{\bar{\mathbf{y}}_{A1.} + \bar{\mathbf{y}}_{A2.} + \bar{\mathbf{y}}_{A3.} + \bar{\mathbf{y}}_{A4.}}{=}$	143.15 + 140.6 + 152.55 + 151.7 8 / 2	_	588	= 147	
y A —	n_{A}/n_{Ai}			4	11,	
$\bar{\mathbf{y}}_{\scriptscriptstyle \mathrm{B}} = - \bar{\mathbf{y}}$	$ar{y}_{_{\mathrm{B}}} = rac{ar{y}_{_{\mathrm{B}\text{1}}} + ar{y}_{_{\mathrm{B}\text{2}}} + ar{y}_{_{\mathrm{B}\text{3}}} + ar{y}_{_{\mathrm{B}\text{4}}}}{n_{_{\mathrm{B}}}/n_{_{\mathrm{B}\text{i}}}} =$	145.15 + 126.75 + 137.2 + 142.6		551.7	- = 137.925	
	$y_{\scriptscriptstyle B} - n_{\scriptscriptstyle B} / n_{\scriptscriptstyle Bi}$	8 / 2	_	4	- 137.723	
$\bar{y}_{\cdot,\cdot} = -$	$ar{\mathbf{y}}_{\scriptscriptstyle{\mathrm{Al}}} = ar{\mathbf{y}}_{\scriptscriptstyle{\mathrm{Bl}}}$	143.15 + 145.15	_	288.3	- = 144.15	
	$y_{ii} = \frac{1}{n_{ii} / n_{ii}} = \frac{1}{n_{ii}}$	4 / 2		2		
$ar{\mathbf{y}}_{\cdot 2 \cdot} = -$	$ar{\mathbf{y}}_{\scriptscriptstyle{A2}} + ar{\mathbf{y}}_{\scriptscriptstyle{B2}}$	140.6 + 126.75	_	267.35	- = 133.675	
	$y_{.2} - {n_{.2} / n_{.2}} -$	4 / 2	_	2		
ȳ .₃₊ = ─	$ar{ar{y}}_{\scriptscriptstyle A3}$. $+ar{ar{y}}_{\scriptscriptstyle B3}$. $-$	152.55 + 137.2	_	289.75	- = 144.875	
	$y_{\cdot \cdot \cdot} - \frac{1}{n_{\cdot \cdot \cdot} / n_{\cdot \cdot \cdot}} - \frac{1}{n_{\cdot \cdot \cdot}}$	4 / 2	_	2	- 144.073	
ȳ .₄. = ─	$ar{ar{y}}_{\scriptscriptstyle A4^{ar{a}}}+ar{ar{y}}_{\scriptscriptstyle B4^{ar{a}}}$	151.7 + 142.6	_	294.3	- = 147.15	
	$y_{4} - {n_{4} / n_{4}} -$	4/2	_	2	- 147.13	

$$\alpha_{\mbox{\tiny A}} = \bar{y}_{\mbox{\tiny A}}$$
 - $\bar{y}_{\mbox{\tiny A}} = 147$ - $142.4625 = 4.5375$

$$\bar{y}_{...} = \frac{\bar{y}_{...} + \bar{y}_{...}}{n_{...}} = \frac{147 + 137.925}{2} = \frac{284.925}{2} = 142.4625$$

$$\alpha_{..} = \bar{y}_{...} - \bar{y}_{...} = 147 - 142.4625 = 4.5375$$

$$\alpha_{..} = \bar{y}_{...} - \bar{y}_{...} = 137.925 - 142.4625 = -4.5375$$

$$\beta_{.} = \bar{y}_{...} - \bar{y}_{...} = 144.875 - 142.4625 = 2.4125$$

$$\beta_{.} = \bar{y}_{...} - \bar{y}_{...} = 144.15 - 142.4625 = 1.6875$$

$$\beta_{.} = \bar{y}_{...} - \bar{y}_{...} = 147.15 - 142.4625 = 4.6875$$

 $\alpha = 05$

$$\alpha_{\text{\tiny B}} = \bar{y}_{\text{\tiny B...}} - \bar{y}_{\text{\tiny -..}} = 137.925 - 142.4625 = -4.5375$$

$$\beta_4 = \bar{\mathbf{y}}_{.4} - \bar{\mathbf{y}}_{...} = 147.15 - 142.4625 = 4.6875$$

$$\beta_1 = \bar{y}_{...} - \bar{y}_{...} = 144.15 - 142.4625 = 1.687$$

```
\alpha \beta_{AI} = \bar{y}_{AI} - \bar{y}_{AI} - \bar{y}_{AI} - \bar{y}_{AI} = 143.15 - 147 - 144.15 + 142.4625 = -5.5375
\alpha \beta_{A2} = \bar{y}_{A2} - \bar{y}_{A} - \bar{y}_{.2} + \bar{y}_{...} = 140.6 - 147 - 133.675 + 142.4625 = 2.3875
\alpha \beta_{as} = \bar{y}_{as} - \bar{y}_{a.} - \bar{y}_{..} - \bar{y}_{..} = 152.55 - 147 - 144.875 + 142.4625 = 3.1375
\alpha \beta_{A4} = \bar{y}_{A4} - \bar{y}_{A} - \bar{y}_{A} - \bar{y}_{A} = 151.7 - 147 - 147.15 + 142.4625 = 0.0125
\alpha \beta_{\text{Bi}} = \bar{y}_{\text{Bi}} - \bar{y}_{\text{Bi}} - \bar{y}_{\text{ci}} + \bar{y}_{\text{ci}} = 145.15 - 137.925 - 144.15 + 142.4625 = 5.5375
\alpha \beta_{\text{\tiny BI}} = \bar{y}_{\text{\tiny BI}} - \bar{y}_{\text{\tiny BI}} - \bar{y}_{\text{\tiny CP}} + \bar{y}_{\text{\tiny CP}} = 126.75 - 137.925 - 133.675 + 142.4625 = -2.3875
\alpha \beta_{\text{\tiny BI}} = \bar{y}_{\text{\tiny BI}} - \bar{y}_{\text{\tiny B}} - \bar{y}_{\text{\tiny I}} + \bar{y}_{\text{\tiny II}} = 137.2 - 137.925 - 144.875 + 142.4625 = -3.1375
\alpha \beta_{\text{Bi}} = \bar{y}_{\text{Bi}} - \bar{y}_{\text{Bi}} - \bar{y}_{\text{Ji}} + \bar{y}_{\text{Ji}} = 142.6 - 137.925 - 147.15 + 142.4625 = -0.0125
a = 2
                                  b = 4 n = 16
                                                                                                       a - 1 = 2 - 1 = 1
                                                                                                                                                                                                  b - 1 = 4 - 1 = 3
                                                                                                                                                                                                                                                                                    n - 1 = 16 - 1 = 15
(a-1)(b-1) = (1)(3) = 3
                                                                                                                                                                                                  ab(n-1) = (2)(4)(15) = 120
 SS_{A} = bn\Sigma_{A}^{2}(Q_{A})^{2} = (4)(16)((4.5375)^{2} + (-4.5375)^{2}) = (64)(41.1778125) = 2635.38
SS_B = an \Sigma_{-1}^4 (\beta_1)^2 = (2)(16)((1.6875)^2 + (-8.7875)^2 + (2.4125)^2 + (4.6875)^2) = (32)(107.86) =
3451.54
SS_{AB} = n\Sigma_{i=1,j=1}^{2} {}^{4}(\alpha\beta_{ij})^{2} = (16)((-5.5375)^{2} + (2.3875)^{2} + (3.1375)^{2} + (0.0125)^{2} + (5.5375)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^{2} + (-2.3875)^
(-3.1375)^2 + (-0.0125)^2 = (16)(92.41625) = 1478.66
SS_{E} = \sum_{i=1,i=1,k=2}^{2.4/2} (y_{ijk} - \bar{y}_{ij})^{2} = 2((144 - 143.15)^{2} + (146.3 - 140.6)^{2} + (156.5 - 152.55)^{2} + (152 - 151.7)^{2} + (146.3 - 140.6)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 152.55)^{2} + (156.5 - 1
(147.4 - 145.15)^2 + (127.6 - 126.75)^2 + (138.9 - 137.2)^2 + (142.9 - 142.6)^2 = 2(57.67) = 115.34
 MS_A = SS_A / (a - 1) = 2635.38 / 1 = 2635.38
MS_{R} = SS_{R} / (b - 1) = 3451.54 / 3 = 1150.51333333
MS_{AB} = SS_{AB} / [(a-1)(b-1)] = 1478.66 / [(1)(3)] = 1478.66 / [(3)] = 492.88666667
 MS_E = SS_E / [ab(n-1)] = 115.34 / 120 = 0.9611666667 = 5767 / 6000
F_A = MS_A / MS_E = 2635.38 / 0.9611667 = 2741.85538408
F_B = MS_B / MS_E = 1150.51333 / 0.9611667 = 1196.99670539
F_{AB} = MS_{AB} / MS_{E} = 492.886667 / 0.9611667 = 512.800416161
```

Source	DF	SS	MS	F	P-Value
A	1	2635.38	2635.38	2741.855	< .00001
В	3	3451.54	1150.5133	1196.997	< .00001
AB	3	1478.66	492.88667	512.8004	< .00001
Error	120	115.34	0.9611667		
Total	127	7680.92			

We reject $H_{\mbox{\tiny 0}}$ at $\alpha = .05$. The parameters A and B and the interaction term AB are significant.

$$\sigma^{2} = MS_{E} = 0.9611666667 \qquad n = 16$$

$$\sigma_{\alpha\beta}^{2} = \frac{MS_{AB} - MS_{E}}{n} = \frac{492.8866667 - 0.961166667}{16} = \frac{491.9255}{16} = 30.7453437$$

$$\sigma_{\alpha}^{2} = \frac{MS_{A} - MS_{AB}}{nb} = \frac{2635.38 - 492.8866667}{(16)(4)} = \frac{2142.4933333}{64} = 33.4764583$$

$$\sigma_{\beta}^{2} = \frac{MS_{B} - MS_{AB}}{na} = \frac{1150.51333333 - 492.8866667}{(16)(1)} = \frac{657.6266667}{16} = \frac{41.101666667}{41.101666667}$$