

Polar[™] **Power MOSFET**

IXTY08N100P IXTA08N100P IXTP08N100P

1000V **A8.0** 20Ω \leq R_{DS(on)}

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	1000	V	
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 150°C, $R_{_{\rm GS}} = 1\text{M}\Omega$	1000	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	0.8	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	1.5	Α	
I _A	T _C = 25°C	0.8	A	
E _{as}	$T_{c} = 25^{\circ}C$	80	mJ	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	10	V/ns	
P_{D}	T _C = 25°C	42	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	g 300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
F _c M _d	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in	
Weight	TO-252 TO-263 TO-220	0.35 2.50 3.00	g g	

		acteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	1000			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 50\mu A$	2.0		4.0	V
l _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±50	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			3 100	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		17	20	Ω

G = Gate= Drain S = SourceTab = Drain

Features

- International Standard Packages
- Low Q_GAvalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Switch-Mode and Resonant-Mode **Power Supplies**
- AC and DC Motor Drives
- Lasers Driverserators
- Robotics and Servo Controls

Symbol		Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		Тур.	Max			
g _{fs}		$V_{DS} = 30V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	0.35	0.60	S	
C _{iss})			240	pF	
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		18	pF	
\mathbf{C}_{rss}	J			3.6	pF	
$\mathbf{Q}_{g(on)}$)			11.3	nC	
\mathbf{Q}_{gs}	}	$V_{gs} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		1.7	nC	
\mathbf{Q}_{gd}	J			6.7	nC	
t _{d(on)})	Resistive Switching Times		19	ns	
t,				37	ns	
$\mathbf{t}_{d(off)}$	($V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$ $R_{G} = 50\Omega$ (External)		35	ns	
t _f	J	$H_{\rm G} = 3032 (External)$		34	ns	
R _{thJC}					3.0 °C/W	
$\mathbf{R}_{ ext{thCS}}$		TO-220		0.50	°C/W	

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C, U)$	Inless Otherwise Specified)	Min.	Тур.	Max	
I _s	$V_{GS} = 0V$			0.8	Α
I _{SM}	Repetitive, Pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			2.4	A
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr}	$I_F = 0.8A$, -di/dt = 100A/ μ s, $V_R = 100V$		750		ns

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ T_J = 25°C 1.2 $V_{GS} = 10V$ 1.0 0.8 ID - Amperes 0.6 0.4 0.2 0.0 5 10 25 30 0 15 20 35 V_{DS} - Volts

I_D - Amperes

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

IXTY08N100P

IXTA08N100P IXTP08N100P

