Rozdělení rychlostí molekul

Dokažte, že když složky rychlosti (v_x, v_y, v_z) molekul ideálního plynu budou mít normální rozdělení s očekávanou hodnotou 0, bude mít velikost rychlosti $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$ Maxwell-Boltzmanovo rozdělení.

V Pythonu, ROOTu nebo Excelu nasimulujte histogram velikostí rychlostí 10000 molekul dusíku N_2 při pokojové teplotě T = 300 K a porovnejte histogram s hustotou pravděpodobnosti Maxwell-Boltzmanova rozdělení.

všechny směry jsou stejně pravděpodobné → konce vektorů rychlostí o velikosti v vyplňují rovnoměrně povrch koule

zvolím nějaký vektor rychlosti $\vec{v} = (v_x, v_y, v_z)$

pravděpodobnost, že rychlost bude v okolí \vec{v}

tj.
$$v_x \in \langle v_x, v_x + dv_x \rangle$$
 a $v_y \in \langle v_y, v_y + dv_y \rangle$ a $v_z \in \langle v_z, v_z + dv_z \rangle$

$$\left(\frac{1}{\sqrt{2\pi}\sigma}\right)^3 e^{-\frac{v_x^2+v_y^2+v_z^2}{2\sigma^2}}\,dv_xdv_ydv_z = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^3 e^{-\frac{v^2}{2\sigma^2}}\,dv_xdv_ydv_z$$

$$4\pi v^2 \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^3 e^{-\frac{v^2}{2\sigma^2}}\,dv$$
 povrch koule o poloměru v

Rozdělení rychlostí molekul

Dokažte, že když složky rychlosti (v_x, v_y, v_z) molekul ideálního plynu budou mít normální rozdělení s očekávanou hodnotou 0, bude mít velikost rychlosti $v = \sqrt{v_x^2 + v_y^2 + v_z^2}$ Maxwell-Boltzmanovo rozdělení.

V Pythonu, ROOTu nebo Excelu nasimulujte histogram velikostí rychlostí 10000 molekul dusíku N_2 při pokojové teplotě T = 300 K a porovnejte histogram s hustotou pravděpodobnosti Maxwell-Boltzmanova rozdělení.

pravděpodobnost, že velikost rychlosti bude v intervalu $\langle v, v + dv \rangle$

$$f(v) dv = \sqrt{\frac{2}{\pi}} \frac{1}{\sigma^3} v^2 e^{-\frac{v^2}{2\sigma^2}} dv$$

Hustota pravděpodobnosti je tedy

$$f(v) = \sqrt{\frac{2}{\pi}} \frac{1}{\sigma^3} v^2 e^{-\frac{v^2}{2\sigma^2}}$$

což je Maxwell-Boltzmanovo rozdělení pro molekuly ideálního plynu je $\sigma = \sqrt{\frac{kT}{m}}$

histogramy složek rychlosti

histogram velikostí rychlostí

