Radzimiński Jan #35

Numerical Methods (ENUME 2019) – Project Assignment C: Solving ordinary differential equations

1. Develop a program for solving the following differential equation:

$$9y'' + 6y' + 10y = 0$$
 for $t \in [0,10]$, $y(0) = 0$ and $y'(0) = 2$

by means of the implicit Lobatto IIID order 2 method defined by the following Butcher table:

$$\begin{array}{c|cccc}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & -\frac{1}{2} & \frac{1}{2} \\
& \frac{1}{2} & \frac{1}{2}
\end{array}$$

Compare the solution, obtained by means of this program for the constant integration step h = 0.01, with the solution, obtained by means of the MATLAB operator *ode113*. Optimise the parameters *RelTol* and *AbsTol* of the latter in such a way as to get the most accurate solution $\dot{\mathbf{y}}(t;h)$ (to be used as a reference in the following sections).

2. Carry out a systematic investigation of the dependence of the accuracy of the solution $\hat{\mathbf{y}}(t;h)$ on the integration step h. Use the following accuracy indicators for this purpose:

$$\delta_{2}(h) = \frac{\|\hat{\mathbf{y}}(t;h) - \dot{\mathbf{y}}(t,h)\|_{2}}{\|\dot{\mathbf{y}}(t,h)\|_{2}} \quad \text{(the root-mean-square error)}$$

$$\delta_{\infty}(h) = \frac{\|\hat{\mathbf{y}}(t;h) - \dot{\mathbf{y}}(t,h)\|_{\infty}}{\|\dot{\mathbf{y}}(t,h)\|_{\infty}} \quad \text{(the maximum error)}$$

Make the graphs $\delta_{2}(h)$ and $\delta_{\infty}(h)$.

3. Repeat the systematic investigation, defined in Section 3, for the implicit Euler method. Add the curves representative of $\delta_2(h)$ and $\delta_\infty(h)$ to the graph obtained in Section 2.