Leçon :Effet tunnel, radioactivité α

Gabriel Le Doudic

Préparation à l'agrégation de Rennes

11 juin 2024

Niveau : Deuxième année de CPGE

Prérequis : Physique ondulatoire

: Notion de fonction d'onde, équation de Schrödinger, cas

d'une particule libre

: Puits carré de potentiel de profondeur infinie et finie, courant

de probabilité

Réflexion et transmission

Conditions aux limites:

$$A_1 + B_1 = A_2 + B_2$$
 (1) $A_2 e^{qa} + B_2 e^{-qa} = A_3 e^{ika}$ (3)

$$ik(A_1 - B_1) = q(A_2 - B_2)$$
 (2) $q(A_2e^{qa} - B_2e^{-qa}) = ikA_3e^{ika}$ (4)

Résolution du système pour trouver une relation directe entre A_1 et A_3 :

- $(??) + \frac{1}{q}(??)$ donne $A_2 = f(A_3)$
- $(??) \frac{1}{q}(??)$ donne $B_2 = f(A_3)$
- on peut alors exprimer $A_2 + B_2$ et $A_2 B_2$ en fonction de A_3
- enfin (??) + $\frac{1}{\iota k}$ (??) donne $2A_1 = A_2 + B_2 \iota \frac{q}{k}(A_2 B_2)$.

À partir de là, on a une expression de A_1 en fonction de A_3 .

Réflexion et transmission

Conditions aux limites:

$$A_1 + B_1 = A_2 + B_2$$
 (1) $A_2 e^{qa} + B_2 e^{-qa} = A_3 e^{ika}$ (3)

$$A_1 + B_1 = A_2 + B_2$$
 (1) $A_2 e^{qa} + B_2 e^{-qa} = A_3 e^{ika}$ (3)
 $ik(A_1 - B_1) = q(A_2 - B_2)$ (2) $q(A_2 e^{qa} - B_2 e^{-qa}) = ikA_3 e^{ika}$ (4)

Résolution du système pour trouver une relation directe entre A_1 et A_3 :

- $(??) + \frac{1}{a}(??)$ donne $A_2 = f(A_3)$
- $(??) \frac{1}{a}(??)$ donne $B_2 = f(A_3)$
- on peut alors exprimer $A_2 + B_2$ et $A_2 B_2$ en fonction de A_3
- enfin (??) + $\frac{1}{\iota}$ (??) donne $2A_1 = A_2 + B_2 \iota \frac{q}{\iota} (A_2 B_2)$.

À partir de là, on a une expression de A_1 en fonction de A_3 .

D'où le coefficient de transmission :

$$T = \frac{1}{1 + \frac{\left(k^2 + q^2\right)^2}{4q^2k^2} \operatorname{sh}^2(qa)}$$

Approximation de barrière épaisse

Quelques ordres de grandeur (d'après J'intègre, PC) :

Particule	m (kg)	V_0 (eV)	a (nm)	δ (nm)	T
Électron	1×10^{-30}	4	3×10^{-1}	1×10^{-1}	1×10^{-2}
Électron	1×10^{-30}	40	3×10^{-1}	4×10^{-2}	1×10^{-6}
Électron	1×10^{-30}	4	3	1×10^{-1}	1×10^{-20}
Proton	1×10^{-27}	4	3×10^{-1}		1×10^{-63}
Proton	1×10^{-27}	4	3	2×10^{-3}	1×10^{-628}

Description et résultats expérimentaux

Figure — Gharaei, Reza & Mohammadi, Sara. (2019). (doi:10.1140/epja/i2019-12804-5)

Noyau	Temps de demi–vie (s)	E (MeV)
²²² Ra	3.3×10^{5}	5.6
222Ra 226Ra 232Th	5.4×10^{10}	4.9
$^{232}_{90}$ Th	4.4×10^{17}	4.0 ₄ → ▶

Calcul du coefficient de transmission

$$\ln T = -\frac{2\sqrt{2m}}{\hbar} \sqrt{\frac{2e^2 Z'}{4\pi\epsilon_0}} \frac{1}{\sqrt{R_c}} \int_{R}^{R_c} \sqrt{\frac{R_c}{R} - 1} dr$$
 (5)

On admet alors le résultat suivant :

$$\int_{x_0}^{x_m} \sqrt{\frac{x_m}{x} - 1} dx \simeq x_m \left(\frac{\pi}{2} - 2\sqrt{\frac{x_0}{x_m}} \right)$$

Après quelques lignes de calcul, on obtient : $\ln T = a - \frac{b}{\sqrt{E}}$, avec :

$$a = \frac{4e}{\hbar} \sqrt{\frac{mZ'r_0}{\pi \varepsilon_0}} A^{1/6}$$
$$b = \frac{e^2 Z'}{2\hbar \varepsilon_0} \sqrt{2m}$$

Comparaison avec les données expérimentales

Comparaison avec les données expérimentales

