FROM RESEARCH TO INDUSTRY

VARIANT PRIORITIZATION WITH GENOWAP TOOL

ThinkLab | Thomas Riquelme

10 SEPTEMBRE 2018

SUMMARY

- 1) Intro the necessity to prioritize GWAS identified variants
- 2) Choice of GenoSuite tools
- 3) GenoCanyon General-functional annotation tool
- 4) GenoSkyline Tissue-specific functional Annotation
- 5) GenoWAP GWAS Signal Prioritization
- 6) GenoWAP pipeline
- 7) Comparison GWAS SNP pval VS GWAS SNP prioritized scores

INTRODUCTION

- GWAS have identified more than 10,000 SNPs associated with numerous traits/diseases.
- Variant prioritization techniques are crucial for post-GWAS analysis
- To reveal truly functional sites within each significant locus
- To enhance signals at some loci to identify risk loci among all the SNPs known to be associated with a trait.

INTRODUCTION

- ⇒ Choice of GenoSuite tools (Lu et al.)
- prioritization based on the functionality of a DNA region
- Functional regions = regions which can regulate gene expression
- e.g. promoter, enhancer, silencer, insulator, transcription factor binding site, chromatin regulators

GENOCANYON - General-functional annotation

- Whole-genome functional annotation approach
- Predicts the functional potential at each nucleotide : gives a scores (0-1)
- Integrates 22 annotation signals :
 - 2 genomics conservations measures (GERP, PhyloP),
 - 2 indicators of open-chromatine (Dnasel, FAIRE),
 - 8 histone modifications (H3K4me3, H3K9ac...)
 - 10 TFBS (CEBPB, CTCF, FOS, GATA2...)

Results for HBB gene complex

Fig1: Example with the prediction for cis-regulatory Modules in the β -globin (HBB) gene complex on chromosome 11 In red : already discovered cis regulatory modules. In dark blue : prediction score at each location.

Picture from Lu et al. (2015). A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Scientific reports, 5, 10576.

CEA | 10 SEPTEMBRE 2018 | PAGE 7

GENOCANYON - General-functional annotation

- Method : unsupervised statistical learning
- Uses Bayes formula to compute the posterior probability that a locus is functional given the annotations by taking into account the probability of presence of these annotations when the locus is known to be functional.

$$P(Z=1|A) = \frac{\pi f(A|Z=1)}{\pi f(A|Z=1) + (1-\pi)f(A|Z=0)}$$

Formula1: Posterior probability calculation that a locus is functional given the annotations Z= measure of functionnality A= vector of annotations = (A1, A2 ... A22)

Formula from Lu et al. (2015). A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Scientific reports, 5, 10576.

GENOSKYLINE - Tissue-specific Functional Annotation

- Declination of GenoCanyon
- Predicts tissue-specific functional scores at each nucleotide
- Based on 111 epigenomes database from the Epigenomics Roadmap Project
- Each tissue type is a clustering of relevant samples in order to contain at least these histone modifications: H3k4me1, H3k4me3, H3k36me3, H3k27me3, H3k9me3, H3k27ac, H3k9ac, and DNase I Hypersensitivity
- 7 unique tissue clusters : Brain, GI, Lung, Heart, Blood, Muscle, Epithelium
- Extension of the available tissues with GenoSkyline-Plus: Bone, Breast, Fat, Muscle, Kidney, Liver, Ovary, Pancreas, Skin, Spleen, Thymus, Vascular...
- Useful application: identify if GWAS SNPs are enriched in functional region specific for a tissue

GENOSKYLINE - Tissue-specific Functional Annotation

Fig1: Visualisation of the functionality tracks for seven tissues in the genomic region surrounding MYH6 and MYH7

Picture from Lu et al. (2016). Integrative tissue-specific functional annotations in the human genome provide novel insights on many complex traits and improve signal prioritization in genome wide association studies. PLoS genetics, 12(4), e1005947.

GENOWAP

GWAS Signal Prioritization

- Post-GWAS prioritization method
- Integrates genomic functional annotation and GWAS test statistics

GENOWAP PIPELINE

RESULT VISUALIZATION

Comparison GWAS SNP pval VS GWAS SNP prioritized scores (snapshot from IGV)

REFERENCES

- GenoCanyon paper:
 Lu, Q., Hu, Y., Sun, J., Cheng, Y., Cheung, K. H., & Zhao, H. (2015). A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data. Scientific reports, 5, 10576.
- GenoSkyline paper:
 Lu, Q., Powles, R. L., Wang, Q., He, B. J., & Zhao, H. (2016). Integrative tissuespecific functional annotations in the human genome provide novel insights on many
 complex traits and improve signal prioritization in genome wide association studies.
 PLoS genetics, 12(4), e1005947.
- GenoWAP paper:
 Lu, Q., Yao, X., Hu, Y., & Zhao, H. (2015). GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional annotation. Bioinformatics, 32(4), 542-548.

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex DRF/JOLIOT
NEUROSPIN
UNATI-Brainomics