ЗАМЕЧАНИЕ. Для линейной зависимости n решений линейного однородного дифференциального уравнения n-го порядка необходимо и достаточно, чтобы их определитель Вронского был равен нулю хотя бы в одной точке.

ТЕОРЕМА 3 (о структуре общего решения линейного однородного дифференциального уравнения второго порядка). Пусть $a_i(x)$, i = 0,1,2 непрерывны $\forall x \in [a,b]$, $a_0(x) \neq 0$ и $y = y_1(x)$, $y = y_2(x)$ – произвольные линейно независимые решения дифференциального уравнения (10.12). Тогда общее решение этого уравнения имеет вид:

$$y = C_1 y_1(x) + C_2 y_2(x), C_1, C_2 \in \square$$
.

ДОКАЗАТЕЛЬСТВО. По теореме 1 $y = C_1 y_1(x) + C_2 y_2(x)$ – решение (10.12) $\forall C_1, C_2 \in \square$. Покажем, что оно общее.

Зададим произвольные начальные условия $y(x_0) = y_0$, $y'(x_0) = y'_0$, удовлетворяющие условиям теоремы Коши. Тогда для определения постоянных C_1 , C_2 получим систему линейных алгебраических уравнений

$$\begin{cases} y(x_0) = C_1 y_1(x_0) + C_2 y_2(x_0) = y_0 \\ y'(x_0) = C_1 y_1'(x_0) + C_2 y_2'(x_0) = y_0', \end{cases}$$

основной определитель которой $\Delta = W(y_1(x_0), y_2(x_0)) \neq 0$ по теореме 2.

Значит, система имеет единственное решение (C_1^0, C_2^0) , а функция $y(x) = C_1^0 y_1(x) + C_2^0 y_2(x)$ — решение дифференциального уравнения (10.12), удовлетворяющее заданным начальным условиям.

Таким образом, $y(x) = C_1 y_1(x) + C_2 y_2(x)$ по определению – общее решение дифференциального уравнения (10.12).

Что и требовалось доказать.

ПРИМЕР. Ранее были найдены линейно независимые решения дифференциального уравнения y'' + 4y = 0. Теперь можно записать *общее* решение этого уравнения:

$$y = C_1 \cos 2x + C_3 \sin 2x$$
 или $y = 3C_2 \cos 2x + C_3 \sin 2x$, $C_1, C_2, C_3 \in \square$.

ОПРЕДЕЛЕНИЕ. Совокупность n линейно независимых решений линейного однородного дифференциального уравнения (10.12) называется его фундаментальной системой решений (ф.с.р.).

ПРИМЕР. Фундаментальную систему решений (ф.с.р.) уравнения y'' + 4y = 0 образуют, например, функции $y_1 = \cos 2x$, $y_3 = \sin 2x$, или функции $y_3 = \sin 2x$, $y_2 = 3\cos 2x$.

ТЕОРЕМА 4 (о структуре общего решения линейного неоднородного дифференциального уравнения). Пусть $y = y_u(x)$ — некоторое частное решение линейного неоднородного дифференциального уравнения (10.11) с непрерывными коэффициентами $a_i(x)$, i = 0,1,2, $a_0(x) \neq 0$, а $y = y_0(x)$ — общее решение соответствующего однородного дифференциального уравнения (10.12). Тогда общее решение дифференциального уравнения (10.11) имеет вид: $y = y_0(x) + y_u(x)$.

ДОКАЗАТЕЛЬСТВО. Покажем, что $y = y_0 + y_4 -$ решение дифференциального уравнения (10.11). Подставим эту функцию в уравнение:

$$a_0 (y_0 + y_u)'' + a_1 (y_0 + y_u)' + a_2 (y_0 + y_u) =$$

$$= (a_0 y_0'' + a_1 y_0' + a_2 y_0) + (a_0 y_u'' + a_1 y_u' + a_2 y_u) = 0 + f(x) = f(x).$$

Покажем, что это решение – общее. Зададим произвольные начальные условия $y(x_0) = y_0$, $y'(x_0) = y_0'$, удовлетворяющие условиям теоремы Коши.

По теореме 3 $y_0 = C_1 y_1(x) + C_2 y_2(x)$, $C_1 C_2 \in \square$, где решения y_1 , y_2 дифференциального уравнения (10.12) образуют ф.с.р. Тогда для определения постоянных C_1 , C_2 получим систему линейных алгебраических уравнений

$$\begin{cases} y(x_0) = C_1 y_1(x_0) + C_2 y_2(x_0) + y_4(x_0) = y_0 \\ y'(x_0) = C_1 y'_1(x_0) + C_2 y'_2(x_0) + y'_4(x_0) = y'_0 \end{cases}$$

или

$$\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) = y_0 - y_u(x_0) \\ C_1 y_1'(x_0) + C_2 y_2'(x_0) = y_0' - y_u'(x_0) \end{cases}$$

основной определитель которой $\Delta = W(y_1(x_0), y_2(x_0)) \neq 0$ по теореме 2.

Значит, эта система имеет единственное решение (C_1^0, C_2^0) , а функция $y(x) = C_1^0 y_1(x) + C_2^0 y_2(x) + y_u(x)$ — решение дифференциального уравнения (10.11), удовлетворяющее заданным начальным условиям.

Таким образом, по определению $y = y_0(x) + y_u(x)$ — общее решение дифференциального уравнения (10.11).

Что и требовалось доказать.