Analysis II Homework 5

Nutan Nepal

March 27, 2023

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

- 1. Lebesgue's Criteria for R-integrability: A bounded $f:[a,b]\to\mathbb{R}$ is R-intb. iff f is continuous a.e. In class, we showed "LHS \Rightarrow RHS". Prove the converse.
- 2. Let $f:[a,\infty)\to\mathbb{R}$ be Riemann integrable on every closed subinterval of $[a,\infty)$. Moreover, assume that f is Lebesgue integrable on $[a,\infty)$. Show that $\int_a^\infty |f(x)|\ dx < \infty$, and moreover, $\int_{[a,\infty)} f\ dm = \int_a^\infty f(x)\ dx$.
- 3. Prove Holder's Inequality: Let $1 \leq p \leq \infty$ and let q be its conjugate exponent. Let $f \in L^p(\Omega)$ and $g \in L^q(\Omega)$. Then $fg \in L^1(\Omega)$ and

$$\left| \int_{\Omega} fg \ d\Omega \right| \le \int_{\Omega} |fg| \ d\Omega \le ||f||_p ||g||_q$$

If $f \neq 0$ and $g \neq 0$, then the inequality is trivial. For p = 1, the result follows from the Young's inequality.

4. In any measure space (X, \mathcal{M}, μ) , show that if $1 \leq p \leq r \leq q \leq \infty$, then

$$L^p(\mu) \cap L^q(\mu) \subset L^r(\mu)$$
.

1

5. Prove Minkowski's Inequality for Lebesgue spaces.

$$||f + g||_p = \int_E (f + g) \cdot (f + g)^*$$

$$= \int_E f \cdot (f + g)^* + \int_E g \cdot (f + g)^*$$

$$= ||f||_p \cdot ||(f + g)^*||_q + ||g||_p \cdot ||(f + g)^*||_q$$

$$= ||f||_p + ||g||_p$$

- 6. Give explicit examples of measure spaces (X, \mathcal{M}, μ) where each of the following are true:
 - (a) $L^p(\mu) \subset L^q(\mu)$, if 0
 - (b) $L^p(\mu) \subset L^q(\mu)$, if $0 < q < p < \infty$
 - (c) $L^p(\mu)$ does not contain $L^q(\mu)$ unless p=q.
- 7. Suppose that $\mu(X) = 1$ and let f and g be positive, measurable functions on X s.t. $f, g \in L^1(\mu)$ and $fg \geq 1$. Prove that $(\int_X f \ d\mu)(\int_X g \ d\mu) \geq 1$.
- 8. Royden, p. 143/13 Show that if f is a bounded function on E that belongs to $L^{p_1}(E)$, then it belongs to $L^{p_2}(E)$ for any $p_2 > p_1$.

If f is bounded we have $|f(x)| \leq M$ for some constant M. Then

$$f \in L^{p_1}(E) \implies \int_E |f|^{p_1} < \infty$$

$$\int_E |f|^{p_2} = \int_E \left(|f|^{p_2/p_1}\right)^{p_1} < \infty$$

- 9. Royden, p. 150/25 Assume that E has finite measure and $1 \le p_1 < p_2 < \infty$. Show that if If $\{f_n\} \to f$ in $L^{p_2}(E)$, then $\{f_n\} \to f$ in $L^{p_1}(E)$.
- 10. Let $\{f_n\}_{n\geq 1}$ in $L^p(\mu)$. Assume that $f_n \xrightarrow[n\to\infty]{a.e.} f$.
 - (a) If $\{f_n\}_{n\geq 1}$ is bounded in $L^p(\mu)$, then $f\in L^p(\mu)$ and $\|f\|_p\leq \liminf_{n\to\inf}\|f_n\|_p$.

(b) If $\exists g \in L^p(\mu)$ s.t. $|f_n(x)| \leq g(x)$ a.e. for all $n \geq 1$, then $f_n \xrightarrow[n \to \infty]{L^p} f$.