BRAIDS

DALE ROLFSEN - U.B.C.

(joint with R. FENN and JUN ZHU)

REFERENCES:

Fam, Rottsen, Zhu, Centralisers in braid groups and singular braid monoids, L'enseign. Math. 95.

Rolfsen, Normaliserswell commensurators in braid subgroups and induced representations, to appear, Invent. Math.

BRAIDS

FOR FIXED $n \ge 1$, the set of braids with n-strings forms a group, Bn

Isotopie braids (with ends fixed) considered equal:

GENERATORS OI, ..., On-1

THESE ARE A COMPLETE SET OF RELATIONS (ARTIN)

EACH BRAID DETERMINES A

PERMUTATION OF $\{1,...,n\}$. IF THE PERMUTATION IS TRIVIAL, THE BRAID IS PURE. The PURE BRAID subgroup P_n is THE KERNEL OF THE MAP $P_n \to P_n$, i.e. $P_n \to P_n \to P_n \to P_n$.

OTHER VIEWPOINTS:

BRAID = TIME HISTORY OF N UNDISTINGUISHABLE

PARTICLES ROAMING IN DISK D²(OR C)

PURE BRAID = TIME HISTORY OF DISTINGUISHABLE

PARTICLES.

$$P_n = \pi_1 \left(C^n \setminus \{ \text{diagonal } \} \right)$$
 $B_n = \pi_1 \left(C^n \setminus \{ \text{diag}, \} \right)$
 $E_n \in \mathbb{R}$
 $E_n \in \mathbb{R}$

FADELL-NEUWIRTH: C" & diag, } HAS

TRIVIAL MGHER HOMOTOPY

LIKEWISE [" \ 2 fings

Bn HAS FINITE COHOMOL. DIMENSION

=) By HAS NO TORSION. > FOLD GROUP, n>4

MARRING CLASS VIEW:

fixed sturse

 $B_n \cong \pi_0(Diff_0(D^2, \{x_1, ..., x_n\}))$

AT TI, LEVEL, FREE GROUP F, = T, (D' EX,, X $B_n \hookrightarrow Aut(F_n)$

THEREFORE B_n IS <u>RESIDUALLY</u>

FINITE

B \in B_n, \(\text{J FINITE GROUP G AND HOMOMORPHISM} \)

B_n \(\text{G} \) \(\text{WITH } \iff \(\beta \beta \)) \(\text{BAUMSLAG: AUT (res. finite)} \) is RESID. FINITE \(\)

\(\text{DAUMSLAG: AUT (res. finite)} \) \(\text{NOT } \cong \text{A PROPER QUOTIENT} \)

(SAME FOR \(\begin{align*} \text{C} \) \(\text{SAME FOR } \begin{align*} \text{P} \\ \text{D} \end{align*} \)

THURSTON: By IS AUTOMATIC

= ALGORITHMIC SOLUTION OF WORD PROBLEM
& CONJUCACY PROBLEM

II. BRAW SUBGROUPS

· COMMUTATOR SUBGROUP. If generators

commute, Then of tit, ti = Tit, Ti Tit,

 $\Rightarrow \nabla_i = \nabla_{i+1}$. So

{Bn} = Z

The abelianization map is

 $\sigma_{i_1}^{\mathcal{E}_i} \cdots \sigma_{i_k}^{\mathcal{E}_k} \longmapsto \sum_{i=1}^k \mathcal{E}_i$

 $[B_n, B_n] = \{ \text{ words of degree 0 in } \sigma_i \}$

• CENTRE OF B_n ? [Chow, 1948]

For $n \ge 3$, $Z(B_n) \cong Z$ generator: Δ^2

TO INCLUDE By IN By, m<n.

B_m < B_n "USUAL INCLUSION"

AS SUBGROUP GEN BY $\sigma_{1},...,\sigma_{m-1}$ NOT NORMAL.

Q: NORMALISER? CENTRALISER? (de la Harpe) (JONES)

THE CENTRALISER 7 (Bm)

15 THE SUBGROUP OF BN GENERATED BY:

- · D=Dm (generates centre of Bm)
- · J j m
- · Pj J > m

Pi

THEOREM: THE NORMALISER N_B (B_m)
IS THE GROUP GENERATED

BY B_m AND THE CENTRALISER:

 $N_{B_n}(B_m) = \langle B_m, \mathcal{I}_{B_n}(B_m) \rangle.$ MOREOVER, B_m is a DIRECT SUMMAND.

· COMMENSURATOR?

DEF: SUBGROUPS A, B < G ARE
COMMENSURABLE IF [A:AnB] < 00 &

[B:AnB] < 00.

IF H < G, COMG(H) :=

{ g \in G | g'Hg AND H COMMENSURABLE}

THEN
$$COM_{B_n}(H) = B_n (\Delta^2)$$
 FIXED UNDER CONJ.)

BUT
$$N_B(H) = \{ words invariant \\ under $\sigma_i \leftrightarrow \sigma_{n-i} \}$$$

KEY REASON:
$$\beta \longrightarrow \sigma_i$$
 FF
 $\beta \longleftrightarrow \sigma_i^N$ some $N \neq 0$.

As MAPPING CLASS GROUPS $B_m \hookrightarrow B_n$ is

INDUCED BY THE INCLUSION $D_m^2 \subset D_n^2$

UNDER THE 160MORPHISM

$$B_{m} \cong \overline{\Pi}_{0} \text{ Diff}_{0}(D_{n}^{2}, \underline{\xi}_{3}..., n\underline{\xi}_{3})$$

$$2\Gamma_{m}$$

$$B_{m} \cong Stab(D_{n}^{2} \cup D_{m}^{2})$$

$$Z_{B_{n}}(B_{m}) \cong Stab(D_{m}^{2})$$

$$N_{B_{n}}(B_{m}) = Stab(\Gamma_{m})$$

$$\Gamma_{m} = \partial D_{m}$$

GEOMETRIC BRAID SUBGROUPS

Bp = Diffeomorphisms fixed otsido !? CURVES IN $D_n \setminus \{1,...,n\}$, up to ISOTOPY,

PARAMETRIZE THE GEOMETRIC SUBGROUPS $B_p = Stab(autside of P)$

THEN $Z_{B_n}(B_r) = Stab(inside of \Gamma)$ AND $N_{B_n}(B_r) = Stab(\Gamma)$

Each B_r is conjugate to some B_m , where $m = number of points enclosed by <math>\Gamma$. $\Gamma = g \Gamma_m \implies stab(\Gamma) = g stab(\Gamma_m) g^{-1}$

GENERIC CASE: 1 < m < n-1

THEOREM: For generic [, [The stabilisers Stab (1) and Stab (1") are COMMENSURABLE iff 1= [' (up to isotopy in D' : \le 1, ..., n\ref{3}).

PROOF.

 $i(\Gamma, \Gamma') =$ min intersection

up to isotopy

ine $D_n \setminus \{1, ..., n\}$

If $\Gamma \neq \Gamma'$ CHOOSE Γ'' with $i(\Gamma',\Gamma')\neq 0$, $i(\Gamma',\Gamma)=0$ $[g] \in \pi_0 \text{ Diff}(D_n^2, \epsilon_1,...,n_3)$ where $g = Defin \text{ TNIST ALONG }\Gamma''$ $\{g^{k}\}\}$ is an infinite subgroup of $Stab(\Gamma)$ which intersects $Stab(\Gamma')$ only in $\{1\}$. $\Rightarrow Stab(\Gamma') \cap Stab(\Gamma)$ infinite

INDEX IN $Stab(\Gamma) \Rightarrow INCOMMENS$.

COR: FOR BM < BN OR BT < BN

ANY GEOMETRIC SUBGROUP, THE

COMMENSURATOR IS SELF-COMMENSURATING.

$$Com_{B_n}(Com_{B_n}(B_r)) = Com_{B_n}(B_r)$$

III OPEN QUESTIONS:

- · IS By LINEAR? (FINITE-DIMENSIONAL FAITHFUL REP. ?)
- Does its group ring ZBn have zero divisors? Nontrivial units?

 (conjecture: NO, even under the weaker hypothesis: torsion-free fin.gen.)

ORDERED GROUPS.

If Gr can be totally ordered by <, respecting multiplication:

 $x < y \Rightarrow xz < yz$ and zx < zy, it is called 'orderable.'

THEOREM: Pn is ORDERABLE.

COR: ZP, HAS NO ZERO DIVISORS OR TRIVIAL UNITS.

PROOF OF THEOREM: Follows from

Falk-Randall result that lower central series has free abelian milpotent, torsion
motients: $(P_n)_k$ & free, fin. gen =)

2. $(P_n)_k = 1 \frac{3}{2} (P_n)_{k+1}$ orderable.

PROP: Bn 15 NOT ORDERABLE, n>2.

REASON: GENERALISED TORSION

Def: 9 is a gen. torsion element if 9 # 1

and $\exists x_1, ..., x_k \in G$ with $g(x_1'gx_1) \cdots (x_k'gx_k) = 1$.

PROP: Orderable => NO GENERALISED TORSION

But B3 HAS generalised torsion!

let g = 0,5, A= A3 = 0,020,

THEN $\Delta g \Delta = \sigma_0 \sigma_1' = g' \neq g(\Delta g \Delta) = 1$

=) g is a generalised torsion ett.

Assure X = MKK Prof Braids: Dalo Rolfsen
Reference: Centralizors in braid groups L'ensingnement Mosts 95
Rolfsen
To appea Inventiones $B_{n} = \begin{cases} \sigma_{i}, \sigma_{i} = \sigma_{i}, \delta_{i} = \sigma_{i}, \delta_$ To ois oi = oin oity) Other views (1) Braid = Time History of n undistinguished pts in D^2 ending at same set (2) $P_n = T_1 \left(C^n - big diagonal \right)$ $B_n = T_1 \left(C^n - D \right)$ Faddl-Nevwith: C^9-D is asperial J and als =7 B_n his finit coh. dim and is tassion—free P_n prival sature (3) $B_n = T_0$ (Diff, D^2 , $3x_1$, x_n . 3) as groups (4) Bn -> Aut (Fn) F = Ti, (D2- 5x, xn3) Question? Pros I faithful rep. In 6 B. In Linear group

Thosal faithful rep. In 6 B. In Linear group FACT: Free groups are vesidually finite, Aut (r.f.) wis residued finite
present suppropriate by resid. finite => Hopfian Thurston ! By is automatic

salus bar.

Fron Wiston? Rolfsen(2) and I of 2 subgroups ABG are commensurable

if [A; ANR] < CO

[B, ANB] < Of: $(am(H) = 3g \in G/gH G)$ and H are commensurable)

eg. $G=B_n$ $H=\langle \Delta_n \rangle$ then $(am(H) = B_n)$ $(am(H) = B_n)$ (am(H)The Comp (Bm) = N (Bm) Key: O comm of @ o comm of of N Some N 70 Song NFD

3 "Abstract" Commensuraitor of a group

Mm: FALK-Randall: ON Soles

Py sutisfies these = 2 orders ble 7.7 proper quotiental Braid Braid is torsion-free