A Gallery of Examples for Additive Regular Functions - Working Notes

Maayan and Dana

BGU

Abstract. As part of our effort to build a library for cost register automata with focus on additive regular functions, we maintain the following list of examples.

1 Introduction

2 Preliminaries

2.1 Definitions

Cost register automata are defined in [2]. Our focus here is on additive cost register automata.

Definition 1 (Additive CRAs (ACRA)).

An ACRA is a tuple $\mathcal{A} = (\Sigma, Q, X, \delta, \mu, q_0, \eta_0, F, \nu)$ where Σ is a finite non-empty set of input letters, Q is a finite non-empty set of states, X is a finite set of registers, $\delta: Q \times \Sigma \to Q$ is the state transition function, $\mu: Q \times \Sigma \times X \to X \times \mathbb{Z}$ is the register update function, q_0 is the initial state, $\eta_0: X \to \mathbb{Z}$ is the initial registers value map, $F \subseteq Q$ is the set of final states, and $\nu: F \to X \times \mathbb{Z}$ is the output function.

We often assume all registers start with initial value 0 and remove η_0 from the description of an ACRA. The configuration of \mathcal{A} is a pair (q,η) where $q \in Q$ is the current state and $\eta: X \to \mathbb{Z}$ maps each register to its value. For a letter $\sigma \in \mathcal{L}$, the σ -successor of a configuration (q,η) is the configuration (q',η') such that $\delta(q,\sigma)=q'$ and for each register $x \in X$ if $\mu(q,\sigma,x)=(y,c)$ then $\eta'(x)=\eta(y)+c$. The successor notation is extended from letters to words in the usual manner. We use $\Delta(q,\eta,w)$ to denote the w-successor of (q,η) . The ACRA \mathcal{A} implements a function $[\![\mathcal{A}]\!]: \mathcal{L}^* \to \mathbb{Z}_\perp$ defined as follows. If $\Delta(q_0,\eta_0,w)=(q_f,\eta_f), q_f \in F$ and $\nu(q_f)=(x,c)$ then $[\![\mathcal{A}]\!](w)=\eta_f(x)+c$. Otherwise $[\![\mathcal{A}]\!](w)=\bot$.

If the update function of register x depends only on x for every $x \in X$, we say that \mathcal{A} is a simple ACRA (ASCRA). If |X| = k we say that \mathcal{A} is a k-ACRA (or k-ASCRA if it is also simple). We use k-ACRA and k-ASCRA to denote the class of functions $f: \mathcal{D}^* \to \mathbb{Z}$ that can be implemented by a k-ACRA and k-ASCRA, resp. We use ACRA and ASCRA for the union of the classes k-ACRA and k-ASCRA for $k \in \mathbb{N}$, resp.

Known facts: [1]

- The class ACRA is equivalent to unambiguous weighted automata, and is therefore strictly sandwiched between weighted automata and deterministic weighted automata in expressiveness
- Deterministic weighted automata are 1-ACRA and 1-ASCRA.
- The class \mathbb{ACRA} is as expressive as the class of functions implemented by cost register automata with binary addition (i.e. when registers can be added to each other as in x = y + z + c) conditioned the updates are copyless.

3 Examples

In the examples below we use the following convetions:

- the notation above the split line of a state is the state name,
- the notation below the split line of a state q specifies the output for that state, i.e. $\nu(q)$,
- all registers start with initial value 0, unless specified otherwise,
- if the update of a register x is not specified on an edge transition then the update is x := x.

Fig. 1. An example of a 2-ACRA. Captures the story of a coffee house where a cup of coffee (denoted by letter C) costs \$2 but if you fill in a survey (denoted by letter S) you get a discount, and pay \$1 for every cup of coffee purchased in this month. The letter \sharp indicates it is the end of the month.

Fig. 2. An example of a 2-ASCRA. It captures the story of a coffee house where a cup of coffee (denoted by letter C) costs \$2 but if you apply for membership (denoted by letter M) you get a discount, and pay \$1 for every cup of coffee purchased.

Fig. 3. An example of a 2-ASCRA. It captures the story of a business where an employee is payed \$5 an hour (denoted by letter H) but if he is promoted (denoted by letter P) twice then his salary per hour is \$8, starting from the first promotion.

Fig. 4. An example of a 2-ASCRA. Roughly, for $\sigma \in \{a, b\}$ awards the first σ in a block of σ 's with 20, and every consequent σ with 1 or 2 if no \sharp was seen, otherwise consequent σ 's are awarded 2.

References

- 1. R. Alur and M. Raghothaman. Decision problems for additive regular functions. pages 37–48, 2013.
- 2. Rajeev Alur, Loris D'Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei Yuan. Regular functions and cost register automata. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 13–22, 2013.