Lecture 7

-ccuic /

Community, Politics, and Regulation

Lecture 7.1:

Consensus in Bitcoin

Consensus about Rules

Agree on:

- what makes a transaction valid
- what makes a block valid
- how P2P nodes should behave
- protocols and formats

Consensus about History

Agree on contents of the blockchain

therefore: which transactions have occurred

therefore: which coins exist and who owns them

Consensus that Coins are Valuable

General agreement that coins have value

Any currency needs this

"Tinkerbell effect"

Lecture 7.2:

Bitcoin Core Software

Bitcoin Core software

open source (MIT license)

the most widely used Bitcoin software

those who don't use it follow its lead on rules

Bitcoin Core is the de facto rule book of Bitcoin

Bitcoin Improvement Proposals (BIPs)

"formal" proposal for changes to Bitcoin includes technical spec and rationale

published in a numbered series

each BIP has a champion to evangelize / coordinate

also: informational BIPs, process-oriented BIPs

Core developers:

Wladimir van der Laan

Gavin Andresen

Jeff Garzik

Gregory Maxwell

Satoshi Nakamoto

Pieter Wuille

How powerful are the lead developers?

their rule changes will be followed by default

but anyone can fork the software at any time

Lead devs are "leading the parade".

If users don't like a rule change:

Centralized currency: Users have the right to exit.

Bitcoin: Users have the right to fork the rules.

Right to fork is more empowering than right to exit.

⇒ community retains more power

If there's a (hard) fork in the rules:

"the currency forked"

After a hard fork:

(If fork was meant to start an altcoin: altcoin goes its separate way branches coexist nicely)

If fork reflected a fight over future of Bitcoin: branches fight for market share branches fight to be seen as "the real Bitcoin" probably one branch wins, one melts away

Stakeholders: Who's in Charge?

Lecture 7.3:

Who has the power in the Bitcoin ecosystem?

Suppose there is a negotiation about rule-setting. Who controls the outcome?

Depends who would win the fight if they fail to agree.

Claim: Bitcoin Core developers have the power.

They write the rulebook.

Almost everybody uses their code, follows their rules.

Claim: Miners have the power.

Miners write the history.

History will be consistent with miners' consensus rules.

Claim: Investors have the power.

Investors determine whether Bitcoin has any value.

In case of hard-fork, investors decide which branch wins.

Claim: Merchants and their customers have the power.

They generate the primary demand for Bitcoins.

They drive the long-term price of Bitcoin.

Investors are just guessing where merchants and customers will go.

Claim: Payment services have the power.

So they drive primary demand.

They are the ones that really handle transactions.

Merchants, customers, and investors will follow them.

The Bitcoin Foundation (founded 2012)

pays core developers

talk to governments as "voice of Bitcoin"

some controversy ...

Lecture 7.4:

Roots of Bitcoin

Precursors to Bitcoin:

Cypherpunk movement

Early digital cash (Chaum et al.)

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Abstract. A partyl peer-so-peer version of electronic cash would allow celling apparents to be such similarly from one partyl to another without partyl through a francial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted fluid party is still required to prevent double-specialing. We propose a solution to the double-specialing problem using a peer-to-peer record. The network timestures minestrians by hashing them into an ongoing chain of hash-based proced-of-work, fremenga a record that cannot be changed without redoing the proof of work. The integer chain not only surves as proof of the sequence of covera witnessed, but proof that it came from the largety of of CPU power is controlled by nodes that are not expected to attack the notwork, they'll generate the languest chain and outpace attackers. The standard of the controlled and the controlled product attack the notwork they'll generate the languest chain and outpace attackers. The standard products are also at a survey in the foreign proof of the chain as proof of what happeed while they were gene.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial inclinations serving as insisted third parties to process electronic payments. While the system works well enough for most transactions, it still suffers from the inherent weaknesses of the trust based model. Completely non-reversible transactions are not really possible, since financial institutions commat avoid mediating disputes. The cost of mediation increases transaction roats, initing the minimum peacitical transactions size and cutting off the possibility for small causal transactions, and there is a breader cost in the loss of ability to make non-reversible payments for non-reversible services. With the possibility of reversal, the need for test specials. Merchanis must be wary of their customers, basaling them for more information than they would otherwise need. A certain preventage of final is accepted as unavoidable. These costs and payment uncertainties can be avoided in person by using physical currency, but no mechanism exists to make payments over a commerciacions channel without a trained perior.

What is needed is an electronic payment system based on oxygrographic proof instead of trust, strong any two willing parties to transact directly with each other without the need for a trusted third party. Transactions that are computationally impractical to reverse would protect sellers from fraud, and results exervise mechanisms could easily be implemented to protect buyers. In this paper, we propose a solution to the double-spending problem using a poer-to-peer distributed timestamp server to generate computational proof of the chemological order of transactions. The system is accure as long as honest nodes collectively control more CPU power than any consensing around of attacker nodes.

Satoshi Nakamoto

author of white paper and original Bitcoin software

almost certainly a pseudonym identity associated with certain public keys writes fairly well in English has barely been heard from since 2010 owns lots of Bitcoins from early mining

Real identity unknown.

Lecture 7.5:

Governments Notice Bitcoin

Untraceable digital cash defeats capital controls:

country can't stop Bitcoin value from flowing in or out

government countermeasure: disconnect BTC world

from fiat currency financial institutions example: China

tax evasion

sale of illegal items

kidnapping and extortion

Untraceable digital cash facilitates some crimes:

Silk Road largest online market for illegal drugs ran as a Tor hidden service payment in Bitcoins site held BTC in escrow while goods shipped eBay-like reputation system

operated February 2011 to October 2013

run by "Dread Pirate Roberts"

Ross Ulbricht alleged operator of Silk Road

arrested October 2013 awaiting trial

government says he tried to cover his tracks, but they connected the dots

government seized 174,000 BTC auctioned them to the public

lessons:

hard to keep real and virtual separate hard to stay anonymous for a long time Feds can "follow the money"

⇒ money becomes untouchable

Lecture 7.6:

Anti Money-Laundering

(1) crossing borders, or

goal of AML: stop large amounts of money from

(2) moving from underground to legitimate economy

without detection

Know Your Customer (KYC):

- (1) identify and authenticate clients,
- (2) evaluate risk of client,

(3) watch for anomalous behavior.

Mandatory reporting in U.S.:

Must report currency transactions over \$10,000. ⇒ file "currency transaction report"

Must watch for clients "structuring" transactions to avoid reporting.

⇒ file "suspicious activity report"

Requirements differ by country; consult your lawyer.

Note well: government takes this very seriously!

Bitcoin businesses have been shut down.

Businesspeople have been arrested.

Lecture 7.7:

Regulation

Argument against regulation is common, well understood.

Argument for regulation not as well understood.

When markets fail and produce bad outcomes,

regulation can address the failure.

Market failure example: Lemons market

Market for widgets, can be low-quality or high-quality High-quality (HQ)

- costs a bit more to make
- consumers like them much better Efficient market would deliver mostly HQ

What if consumers can't tell HQ apart from LQ?

- ⇒ consumers won't pay extra for HQ
- ⇒ sellers won't sell HQ

Fixing a lemons market

Market-based approaches seller reputation warranties

Regulation

required disclosure, with penalties for lying quality standards, with enforcement required warranties, with enforcement

Market failure example: Price fixing

Sellers agree to raise prices related: agreement not to compete

These are illegal in most jurisdictions.

part of "antitrust" or "competition" law

New York's BitLicense Proposal

Lecture 7.8:

NEW YORK STATE

DEPARTMENT OF FINANCIAL SERVICES

PROPOSED

NEW YORK CODES, RULES AND REGULATIONS

TITLE 23. DEPARTMENT OF FINANCIAL SERVICES

CHAPTER I. REGULATIONS OF THE SUPERINTENDENT OF FINANCIAL SERVICES

PART 200. VIRTUAL CURRENCIES

New York "BitLicense" proposal July 2014

http://www.dfs.ny.gov/about/press2014/pr1407171-vc.pdf

Would need a "BitLicense" from NYDFS to do any of these things:

Virtual Currency Business Activity means the conduct of any one of the following ... involving New York or a New York Resident:

- (1) receiving Virtual Currency for transmission or transmitting the same;(2) securing, storing, holding, or maintaining custody or control of Virtual Currency on behalf of others;
- (3) buying and selling Virtual Currency as a customer business; (4) performing retail conversion services, including the conversion or exchange of Fiat Currency or other value into Virtual Currency, the conversion or exchange of Virtual Currency into Fiat Currency or other value, or the conversion or exchange of one form of Virtual Currency into another form of Virtual Currency; or
- (5) controlling, administering, or issuing a Virtual Currency

Applying for a licence

Provide information on ownership finances and insurance business plan

Pay an application fee

Licensees must:

```
Provide updated information to NYDFS
        including periodic financial statements
Maintain a financial reserve
        amount set by NYDFS
Follow rules on
        custody of consumer assets
        anti money laundering
        cybersecurity and disaster recovery
        recordkeeping
Designate a compliance officer, have written policies
Disclose risks to consumers
```

Status of BitLicense proposal [August 2014]

Proposed by NYDFS
Public comments solicited by NYDFS
After comments are in, NYDFS will decide what to do

Prediction: some kind of BitLicense will be put in place