Code	RANDOM_FOREST.PY
Author	Nathaniel Heatwole, PhD (<u>heatwolen@gmail.com</u>) (<u>GitHub</u>) (<u>LinkedIn</u>)
Summary	Uses random forest to predict survival for passengers in the Titanic disaster
Methods/ Process	 Random forest Supervised learning method that fits many decision trees ("forest") and aggregates the results Combines benefits of decision tree learning while mitigating their tendency to overfit to training data Each decision tree fitted on: 1) random subset of features; and 2) random selection of training data observations (with replacement) Randomly withholding some information (that would otherwise be available to fit the model) reduces correlations between trees Trees can be split using various measures, including entropy¹ or Gini impurity² (minimum sought in either case) Root node (top of tree): quantity/threshold yielding best split Predictions of many individual trees homogenized using plurality vote (classification) or average (regression) Out-of-bag testing can also be used (if entire dataset is not used to generate tree) Steps Import/clean training data Feature engineering (prepare data for use in a random forest model, maximizing useful information that can be extracted from it) Feature importance (correlation matrix, chi-squared, and coefficient of variation) Fit random forest to training data to predict survival
Training Data	<u>Titanic dataset</u> – containing data for 891 Titanic passengers (from Kaggle)
Results	 High predicted survival probabilities for survivors (mean: 0.87), and opposite for non-survivors (mean: 0.09) IQRs for predicted survival probability for the two groups are non-overlapping Feature importance indicates most useful variables are: fare, male, and age

¹ Entropy is a measure of disorder, defined as the expected value of information, equal to: sum[-p*In(p)].

² Gini impurity measures how often a randomly chosen element would be incorrectly labeled (if group labels were assigned randomly, using the distribution of labels in the training set), equal to: sum[p*(1 - p)].