# While folks are joining

Get you laptops ready and login to www.crio.do. We will be coding away in the session!



# DSA-1

Session 6



#### What's for this session?

- Base System (Binary/Octal/Decimal/Hexadecimal)
  - Conversions between them
- Factors and Prime Factors
- Exponentiation
- Problems
  - Find factors of a given number and their sum
  - Add two integers represented by strings
  - Find number of trailing zeros in the Factorial



### Base System

- What is the Binary System?
  - Base 2 number system. Number system which uses only 0 and 1.
  - How is it represented?
- What is the Decimal System?
  - Base 10 number system. Number system which uses 0-9 digits.
  - How is it represented?
- What is the Octal System?
  - Base 8 number system. Number system which uses only 0-7 digits.
  - O How is it represented?
- What is the Hexadecimal System?
  - Base 16 number system. Number system which uses 0-9 digits and A-F characters.
  - How is it represented?



# **Base System**



# How to convert between different base systems?

How would you convert a Binary number to Hexadecimal?

How would you convert a Decimal number to Binary?



#### **Factors and Prime Factors**

- What are Factors of a number?
  - X is the factor of Y when X can divide Y without any remainder.
  - How would you find them?
- What are Prime Factors of a number?
  - A prime number is a number which is divisible only by 1 and itself (2,3,5,7,11,13,17...)
  - A composite number is a number with more than two integral divisors.
  - A factor that is a prime number is a Prime Factor.
  - Is 1 a prime number or a composite number?
  - Output Description 

    Output Description



# How to Approach Problems?

For any given problem, following these milestones will help you solve the problem systematically:

- **Milestone 1** Understand the problem statement and confirm your understanding with some examples or test cases, including edge cases.
- **Milestone 2** Think about approaches and select the best one you know. Explain your approach to a 10 year old. Write the pseudocode with function breakdown.
- Milestone 3 Expand pseudocode to code
- **Milestone 4** Demonstrate that the solution works



# Activity 1 - Find factors of a given number and their sum



# Activity 2 - Add two integers represented by strings



# Exponentiation

- What is Exponentiation?
  - The operation of raising one quantity to the power of another.
  - $\circ$  Eg.  $X^y$ ,  $2^3$ ,  $4^2$
  - How would you implement it?

- What is Modular Exponentiation?
  - Calculates the remainder when exponential term is divided by some other term (mod).
  - $\circ$  Z = X<sup>y</sup> mod m
  - Why is (10^9+7) significant?
  - You'll solve this as part of the Take home.

# Activity 3 - Find number of trailing zeros in the Factorial

• One of those problems where you need to know the logic and would be difficult to derive the logic in an interview.



# Questions?

#### Take home exercises

Convert number of Decimal to given base

#### Simple Math Mock Assessment

- Number of Primes in the given range
- Modular Exponentiation

To be solved before the next session on Tuesday, 7:30 PM



### **Feedback**

Thank you for joining in today. We'd love to hear your thoughts and feedback.

https://bit.ly/dsa-nps



# Thank you

