WinQSB

Módulo de Programación Lineal y Entera

Al ejecutar el módulo "Linear and Integer Programming", la ventana de inicio es la siguiente

desde la cual, a partir del menú

File ↓ New Problem

puedes introducir un nuevo problema (también se puede hacer pinchando sobre el primer icono que aparece debajo de "File"), o bien con

File ↓ Load Problem

puedes cargar un problema guardado con anterioridad (también se puede usar para ello el segundo icono E). El propio programa incluye algunos ejemplos de muestra.

Podemos salir del programa con

File ↓ Exit o bien, pinchando el icono

Introducción de un nuevo problema

La ventana que aparece es la siguiente

en la que debemos incluir:

Problem Title: Un título para el problema que vamos a introducir.

Number of Variables: Número de variables del problema.

<u>Number of Constraints</u>: Número de restricciones del problema (sin contar las de no negatividad de las variables).

Además, debemos especificar:

En <u>Objective Criterion</u>, el tipo de problema (si es de maximizar (Maximization) o de minimizar (Minimization)).

En <u>Default Variable Type</u>, el tipo de variables que tenemos, por defecto: Continuas no negativas (Nonnegative continuous), enteras no negativas (Nonnegative integer), binarias (Binary (0,1)) o sin ninguna restricción ni de signo ni acotación (Unsigned/unrestricted).

En <u>Data Entry Format</u>, el tipo de formato para la entrada de datos:

• El formato de datos "Spreadsheet Matrix Form" presenta el problema en una hoja de cálculo como la siguiente

Variable>	X1	X2	X3	Direction	R. H. S.
Maximize		1			
C1		/		<=	
C2			/	\<=	/
LowerBound	0	/ 0/	0		
UpperBound	/ M	/)4	м		
VariableType	Continuous	Continuous	Continuous		
					X

en la que debemos introducir /

- Los coeficientes (costes) de la función objetivo en la primera fila.
- Los coeficientes (tasas de uso) de cada restricción, seguidos del sentido de la restricción y del término del lado derecho (recursos), en cada una de las filas siguientes. Para cambiar el sentido de la restricción se hace doble click en la correspondiente casilla y su valor va cambiando.
- Acotaciones, si las hubiera, para cada variable.

En el menú

Edit

Cut	Ctrl+X
Сору	Ctrl+C
Paste	Ctrl+V
Clear	
Undo	
Problem Name	
Variable Names	
Constraint Names	
Objective Function	Criterion
Insert a Variable	
Delete a Variable	
Insert a Constraint	
Delete a Constraint	1

podemos cambiar cualquier dato del problema: Nombre del problema, de las variables, de las restricciones, el tipo de problema (maximizar o minimizar), insertar o eliminar una variable e insertar o eliminar una restricción.

Por ejemplo, el siguiente problema

Min Z=
$$3x_1+2x_2+x_3$$

s.a. $x_1+2x_2+x_3 \le 4$
 $2x_1+x_2 \ge 3$
 $x_1+2x_2+3x_3 = 6$
 $x_2, x_3 \ge 0$

se incluiría como

Variable>	X1	X2	X3	Direction	R. H. S.
Minimize	3	2	1		
C1	1	2	- 1	<=	4
C2	2	1	0	>=	3
C3	1	2	3	=	6
LowerBound	-М	0	0		
UpperBound	М	М	м		
VariableType	Continuous	Continuous	Continuous		

Notemos que en la primera ventana se ha seleccionado "Variables continuas no negativas" por serlo x_2 y x_3 . Sin embargo, el rango de valores de la variable x1, al ser no restringida, se especifica en la entrada de datos.

• El formato de datos "Normal Model Form" presenta el problema en una hoja de cálculo de una forma más similar a la escritura habitual de un problema de Programación Lineal

- en la que devenios incluir.
- La expresión de la función objetivo en la primera fila.
- La expresión de cada restricción en las filas siguientes.
- Las variables de cada tipo indicado (enteras, binarias y no restringidas)
- Acotaciones, si las hubiera, para cada variable.

Por ejemplo, el problema

Min Z=
$$3x_1+2x_2+x_3$$

s.a. $x_1+2x_2+x_3 \le 4$
 $2x_1+x_2 \ge 3$
 $x_1+2x_2+3x_3 = 6$
 $x_2, x_3 \ge 0$

se incluiría como

Como en el caso anterior, en el menu Edit se pueden cambiar datos del problema.

Una vez introducido un problema, en el menú

File

se puede crear un nuevo problema, cargar uno existente, cerrar el problema actual, salvarlo, imprimirlo, cambiar configuración de fuentes (tipo de letra, estilo, tamaño, efectos y color) y cambiar la configuración de la impresora.

En el menú

Format

o con los iconos

se puede seleccionar en <u>Number</u>, el formato de los datos (notación científica, número de decimales, etc.); en <u>Font</u>, el tamaño, color, estilo y efecto de la letra; en <u>Alignment</u>, la alineación de la primera fila, primera columna, todas las columnas o columnas seleccionadas; en <u>Row Height</u>, la altura de las celdas; en <u>Column Width</u>, la anchura de las celdas. Además en <u>Switch to Matrix Form</u> o en <u>Switch to Normal Model Form</u>, se puede cambiar de formato (dependiendo del tipo de formato actual aparecerá uno u otro). Por último, seleccionando <u>Switch to Dual Form</u>, se nos muestra el problema dual correspondiente al problema actual. Por ejemplo, con el ejemplo anterior aparecerá

Variable>	C1	C2	C3	Direction	R. H. S.
Maximize	4	3	6		
X1	1	2	1	=	3
X2	2	1	2	<=	2
X3	1		3	<=	1
LowerBound	-м	0	-М		
UpperBound	0	М	М		
VariableType	Continuous	Continuous	Unrestricted		

si el problema original estaba en formato "Spreadsheet Matrix Form", o

	OBJ/Constraint/VariableType/Bound
Maximize	4C1+3C2+6C3
X1	1C1+2C2+1C3=3
X2	2C1+1C2+2C3<=2
X3	1C1+3C3<=1
Integer:	
Binary:	
Unrestricted:	C3
C1	>=-M, <=0
C2	>=0, <=M
C3	>=-M, <=M

si estaba en formato "Normal Model Form".

Resolución de un problema

En el menú

Solve and Analyze

Solve the Problem
Solve and Display Steps
Graphic Method

Perform Parametric Analysis
Alternative Solution

Change Integer Tolerance
Specify Solution Quality
Specify Variable Branching Priorities

podemos elegir:

Solve the Problem (icono), para resolver el problema. En este caso, nos muestra el resultado de la resolución.

Solve and Display Steps (icono iteraciones del método Simplex necesarias hasta obtener la solución óptima.

Graphic Method (icono), para resolver un problema gráficamente en el caso de problemas con dos variables de decisión.

Veamos cada uno de ellos con ejemplos.

Ejemplo 1: Problema con solución única

Min Z=
$$5x_1+8x_2$$

s.a. $x_1+x_2 \ge 2$
 $x_1+2x_2 \ge 3$
 $x_1, x_2 \ge 0$

Si lo resolvemos con **Solve the Problem**, se obtiene

Valores de	Costes o	Contribución	Costos reducidos	Estado de la
la solución	coeficientes	de cada variable	(costo que genera	variable
$x_1 = 1$	de la función	en el valor óptimo	incrementar una	(basic: básica,
$x_2 = 1$	objetivo	de la función objetivo	unidad para cada	at bound:
\			variable no básica)	no básica)

	18:30:19		Wednesday	July	13	2011	,	
Ì	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X1	1,0000	5,0000	5,0000	0	basic	4,0000	8,0000
2	X2	1,0000	8,0000	8,0000	0	basic	5,0000	10,0000
	Objective	Function	(Min.) =	13,0000				
3	Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price	Allowable Min. RHS	Allowable Max. RHS
1	C1	2,0000	>=	2,0000	0	2,0000	1,5000	3,0000
2	C2	3,0000	>=	3,0000	0	3,0000	2,0000	4,0000

Valor óptimo de la función objetivo: 13.

La parte inferior de la tabla presenta para cada restricción:

- El valor/alcanzado al sustituir los valores de las variables X1 y X2.
- El sentido. /
- Los recursos o disponibilidades.
- Valores de exceso o defecto. Corresponden al valor de la correspondiente variable excedente o de holgura.
- Precios sombra (indican cuánto se estaría dispuesto a pagar por una unidad adicional de cada recurso, o bien, la mejora en el valor de la función objetivo por incremento unitario de cada recurso).

La parte de la derecha nos muestra un análisis de sensibilidad. En la primera parte para los costos (coeficientes de la función objetivo) y en la segunda para los recursos o disponibilidades. En cada caso muestra el rango de valores permitidos de modo que las actuales variables básicas sigan siéndolo.

Una vez resuelto el problema en el menú

Result

Solution Summary	
Constraint Summary	
Sensitivity Analysis for O	ВЈ
Sensitivity Analysis for RI	HS.
Combined Report	
Infeasibility Analysis	
Unboundedness Analysis	
Perform Parametric Anal	ysis
Show Parametric Analysi	5
Graphic Parametric Analy	ysis
Final Simplex Tableau	
Obtain Alternate Optima	1
Show Run Time and Itera	tion

podemos solicitar distintas opciones para mostrar los resultados.

La opción Solution Summary muestra una tabla resumen de la solución

07-13-2011 19:49:10	Decision Variable	Solution Value	Unit Cost or Profit C(j)	Total Contribution	Reduced Cost	Basis Status
1	X1	1,0000	5,0000	5,0000	0	basic
2	X2	1,0000	8,0000	8,0000	0	basic
	Objective	Function	(Min.) =	13,0000		

La opción Constraint Summary muestra el estado de las restricciones del problema

07-13-2011 19:51:19	Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price
1	C1	2,0000	>=	2,0000	0	2,0000
2	C2	3,0000	>=	3,0000	0	3,0000
	Objective	Function	(Min.) =	13,0000		

La opción <u>Sensitivity Analysis for OBJ</u> muestra el análisis de sensibilidad para los costos o coeficientes de la función objetivo

07-13-2011 19:55:17				Unit Cost or Profit C(j)		
1	X1	1,0000	0	5,0000	4,0000	8,0000
2	X2	1,0000	0	8,0000	5,0000	10,0000

La opción <u>Sensitivity Analysis for RHS</u> muestra el análisis de sensibilidad para los recursos

07-13-2011 19:55:44	Constraint			Right Hand Side		Allowable Max. RHS
1	C1	>=	2,0000	2,0000	1,5000	3,0000
2	C2	>=	3,0000	3,0000	2,0000	4,0000

La opción Combined Report es la que aparece por defecto, comentada con anterioridad.

La opción <u>Perform Parametric Analysis</u> permite hacer un Análisis de sensibilidad paramétrico de los costos y de los recursos. En el caso de los costos se puede especificar si el análisis se hace para una única variable o para un vector perturbación de la función objetivo. En el caso de los recursos se puede hacer para un único recurso o para un vector perturbación de todos ellos. Analizaremos todo más adelante.

La opción <u>Final Simplex Tableau</u> muestra la tabla de la última iteración del método Simplex que proporciona la solución óptima

		X1	X2	Surplus_C1	Surplus_C2	Artificial_C1	Artificial_C2		
Basis	C(j)	5,0000	8,0000	0	0	0	0	R. H. S.	Ratio
X1	5,0000	1,0000	0	-2,0000	1,0000	2,0000	-1,0000	1,0000	М
X2	8,0000	0	1,0000	1,0000	-1,0000	-1,0000	1,0000	1,0000	М
	C(j)-Z(j)	0	0	2,0000	3,0000	-2,0000	-3,0000	13,0000	
	* Big M	0	0	0	0	1,0000	1,0000	0	Š

Por último, la opción <u>Show run time and iteration</u> muestra un mensaje con información sobre el tipo de problema resuelto, el método usado en la resolución y el tiempo y numero de iteraciones necesarias para ello.

Si resolvemos el problema con <u>Solve and Display Steps</u> (para volver a mostrar el problema se selecciona dentro del menú Window) se obtiene

		X1	X2	Surplus_C1	Surplus_C2	Artificial_C1	Artificial_C2		
Basis	C(i)	5,0000	8,0000	0	0	0	0	R. H. S.	Ratio
Artificial_C1	М	1,0000	1,0000	-1,0000	0	1,0000	0	2,0000	2,0000
Artificial_C2	М	1,0000	2,0000	0	-1,0000	0	1,0000	3,0000	1,5000
	C(j)-Z(j)	5,0000	8,0000	0	0	0	0	0	
	* Big M	-2,0000	-3,0000	1,0000	1,0000	0	0	0	

que corresponde a la primera iteración; a continuación en menú

Simplex Iteration

Next Iteration Choose Entering Variable Go to the Last Tableau Nonstop to Finish

marcamos Next Iteration y se obtiene de forma sucesiva

		X1	X2	Surplus_C1	Surplus_C2	Artificial_C1	Artificial_C2		
Basis	C(i)	5,0000	8,0000	0	0	0	0	R. H. S.	Ratio
Artificial_C1	М	0,5000	0	-1,0000	0,5000	1,0000	-0,5000	0,5000	1,0000
X2	8,0000	0,5000	1,0000	0	-0,5000	0	0,5000	1,5000	3,0000
	C(j)-Z(j)	1,0000	0	0	4,0000	0	-4,0000	12,0000	
	* Big M	-0,5000	0	1,0000	-0,5000	0	1,5000	0	

		X1	X2	Surplus_C1	Surplus_C2	Artificial_C1	Artificial_C2		
Basis	C(i)	5,0000	8,0000	0	0	0	0	R. H. S.	Ratio
X1	5,0000	1,0000	0	-2,0000	1,0000	2,0000	-1,0000	1,0000	
X2	8,0000	0	1,0000	1,0000	-1,0000	-1,0000	1,0000	1,0000	
	C(j)-Z(j)	0	0	2,0000	3,0000	-2,0000	-3,0000	13,0000	j
	* Big M	0	0	0	0	1,0000	1,0000	0	Š

Notemos que en un problema de minimizar (si no se cambia a un problema de maximizar) el criterio de optimalidad es que todos los Z_j - C_j sean menores o iguales que cero (equivalentemente C_j - Z_j mayores o iguales que cero) y la regla de salida de la base la variable correspondiente al valor más positivo de Z_j - C_j (equivalentemente el más negativo de C_j - Z_j). Además dichos valores aparecen asociados a las dos últimas filas de la tabla (habría que leerlos como 5-2M, 8-3M,, en la primera tabla; 1-0.5M,, en la segunda, ...)

Por último, si resolvemos el problema con **Graphic Method** se obtiene

En el menú de Opciones se puede modificar el aspecto del gráfico: cambiar ejes, rango de valores de las variables, colores, etc.

Ejemplo 2: Problema con solución única

Max Z=
$$4x_1+7x_2+3x_3$$

s.a. $2x_1+x_2+2x_3 \le 30$
 $x_1+2x_2+2x_3 \le 45$
 $x_1, x_2, x_3 \ge 0$

Introducción de datos

Variable>	X1	X2	X3	Direction	R. H. S.
Maximize	4	7	3		
C1	2	1	2	<=	30
C2	1	2	2	<=	45
LowerBound	0	0	0		
UpperBound	М	М	М		
VariableType	Continuous	Continuous	Continuous		

Resolución. Informe completo

	21:04:12		Wednesday	July	13	2011		
0000000	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X1	5,0000	4,0000	20,0000	0	basic	3,5000	14,0000
2	X2	20,0000	7,0000	140,0000	0	basic	2,0000	8,0000
3	X3	0	3,0000	0	-4,3333	at bound	-М	7,3333
	Objective	Function	(Max.) =	160,0000				
	Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price	Allowable Min. RHS	Allowable Max. RHS
1	C1	30,0000	<=	30,0000	0	0,3333	22,5000	90,0000
2	C2	45,0000	<=	45,0000	0	3,3333	15,0000	60,0000

Tablas sucesivas del método Simplex

		X1	X2	X3	Slack_C1	Slack_C2		
Basis	C(i)	4,0000	7,0000	3,0000	0	0	R. H. S.	Ratio
Slack_C1	0	2,0000	1,0000	2,0000	1,0000	0	30,0000	30,0000
Slack_C2	0	1,0000	2,0000	2,0000	0	1,0000	45,0000	22,5000
	C(i)-Z(i)	4,0000	7,0000	3,0000	0	0	0	

		X1	X2	X3	Slack_C1	Slack_C2		
Basis	C(i)	4,0000	7,0000	3,0000	0	0	R. H. S.	Ratio
Slack_C1	0	1,5000	0	1,0000	1,0000	-0,5000	7,5000	5,0000
X2	7,0000	0,5000	1,0000	1,0000	0	0,5000	22,5000	45,0000
	C(j)-Z(j)	0,5000	0	-4,0000	0	-3,5000	157,5000	

		X1	X2	X3	Slack_C1	Slack_C2		
Basis	C(i)	4,0000	7,0000	3,0000	0	0	R. H. S.	Ratio
X1	4,0000	1,0000	0,0000	0,6667	0,6667	-0,3333	5,0000	
X2	7,0000	0,0000	1,0000	0,6667	-0,3333	0,6667	20,0000	
	C(i)-Z(i)	0	0	-4,3333	-0,3333	-3,3333	160,0000	

Notemos que el problema es de maximizar pero en la tabla aparece C(j)-Z(j), en vez de Z(j)-C(j), con lo que los criterios de optimalidad y entrada a la base cambian.

Ejemplo 3: Problema infactible

Min Z=
$$x_1+x_2$$

s.a. $x_1+x_2 \le 1$
 $4x_1+2x_2 \ge 6$
 $x_1, x_2 \ge 0$

Introducción de datos

Variable>	X1	X2	Direction	R. H. S.
Minimize	1	1		
C1	1	1	<=	1
C2	4	2	>=	6
LowerBound	0	0		
UpperBound	М	М		
VariableType	Continuous	Continuous		

Al resolverlo nos da un mensaje de que el problema ha sido resuelto pero que es infactible. El informe que proporciona es

Infeasible	solution!!!	Make any of	the following	RHS changes	and solve the	problem again.
07-13-2011 21:16:39	Constraint	Direction	Right Hand Side	Shadow Price	Add More Than This To RHS	Add Up To This To RHS
1	C1	<=	1,0000	1,0000	0,5000	М
2	C2	>=	6,0000	0	-M	-2,0000
					4	A

donde nos sugiere posibles cambios en los valores de los recursos para hacer factible el problema.

- Se debe agregar más de esa cantidad a cada recurso /
- Se puede añadir hasta esa cantidad a cada recurso -

Ejemplo 4: Problema no acotado

Max Z=
$$2x_1+x_2$$

s.a. $x_1-x_2 \le 10$
 $2x_1 \le 40$
 $x_1, x_2 \ge 0$

Introducción de datos

Variable>	X1	X2	Direction	R. H. S.
Maximize	2	1		
C1	1	-1	<=	10
C2	2	0	<=	40
LowerBound	0	0		
UpperBound	М	М		
VariableType	Continuous	Continuous		

Al resolverlo nos da un mensaje de que el problema ha sido resuelto pero que es no acotado. El informe que proporciona es

Unbounded	solution!!!	Make any of	the following	changes and	solve it again.
07-13-2011 21:30:03	Constraint	Decision Variable	Coefficient A(i,j)	Subtract More Than This From A(i,j)	Or Add More Than This To A(i,j)
	Change	the direction	of constraint	C1	

donde nos sugiere posibles cambios en los coeficientes de las restricciones para hacer acotado el problema.

Se puede solicitar la resolución paso a paso y la gráfica.

Ejemplo 5: Problema con óptimos alternativos

Max Z=
$$6x_1+10x_2$$

s.a. $5x_1+2x_2 \le 10$
 $3x_1+5x_2 \le 15$
 $x_1, x_2 \ge 0$

Introducción de datos

Variable>	X1	X2	Direction	R. H. S.
Maximize	6	10		
C1	5	2	<=	10
C2	3	5	<=	15
LowerBound	0	0		
UpperBound	М	М		
VariableType	Continuous	Continuous		

Resolución. Informe completo

	21:38:45		Wednesday	July	13	2011		
- Constant	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X1	0	6,0000	0	0	at bound	-М	6,0000
2	X2	3,0000	10,0000	30,0000	0	basic	10,0000	М
Ì	Objective	Function	(Max.) =	30,0000	(Note:	Alternate	Solution	Exists!!)
	Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price	Allowable Min. RHS	Allowable Max. RHS
1	C1	6,0000	<=	10,0000	4,0000	0	6,0000	М
2	C2	15,0000	<=	15,0000	0	2,0000	0	25,0000

Nos indica que existen soluciones alternativas. En este caso en el menú Result, la opción Obtain Alternate Optimal nos permite obtener una solución alternativa

	21:43:29		Wednesday	July	13	2011		
Townson Co.	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X1	1,0526	6,0000	6,3158	0	basic	6,0000	25,0000
2	X2	2,3684	10,0000	23,6842	0	basic	2,4000	10,0000
Ì	Objective	Function	(Max.) =	30,0000	(Note:	Alternate	Solution	Exists!!)
0	Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price	Allowable Min. RHS	Allowable Max. RHS
1	C1	10,0000	<=	10,0000	0	0	6,0000	25,0000
2	C2	15,0000	<=	15,0000	0	2,0000	6,0000	25,0000

La resolución por pasos es

		X1	X2	Slack_C1	Slack_C2		
Basis	C(i)	6,0000	10,0000	0	0	R. H. S.	Ratio
Slack_C1	0	5,0000	2,0000	1,0000	0	10,0000	5,0000
Slack_C2	0	3,0000	5,0000	0	1,0000	15,0000	3,0000
	C(i)-Z(i)	6,0000	10,0000	0	0	0	

		X1	X2	Slack_C1	Slack_C2		
Basis	C(i)	6,0000	10,0000	0	0	R. H. S.	Ratio
Slack_C1	0	3,8000	0	1,0000	-0,4000	4,0000	
X2	10,0000	0,6000	1,0000	0	0,2000	3,0000	
	C(j)-Z(j)	0	0	0	-2,0000	30,0000	

Análisis de sensibilidad en un problema

Partiendo de un típico enunciado de problema realizado en clase sobre análisis de sensibilidad, vamos a analizar qué partes y cómo se resuelven con WinQSB.

Ejemplo

Una compañía metalúrgica elabora cuatro productos, A, B, C y D, usando cobre y zinc como materias primas. Las cantidades de materia prima que precisa una unidad de producto, los beneficios unitarios, y la cantidad máxima disponible de cobre y zinc se dan la siguiente tabla:

	A	В	\mathbf{C}	D	Recursos
Cobre(kg.)	4	9	7	10	6000
Zinc (kg.)	2	2	4	20	4000
Beneficio	12	26	20	60	

- a) Determinar el rango de variación del beneficio de B para que la tabla siga siendo óptima. ¿Cuál es la solución si éste aumenta 10 euros?
- **b)** Determinar el rango de variación del zinc. Si la cantidad disponible de zinc disminuye en 1000 kg., ¿cuál es la solución óptima?
- c) Determinar las soluciones y valor óptimo de la función objetivo del problema si se perturba el vector de costos mediante tc^0 para cada $t \in \mathbb{R}$ siendo c^0 =(-1,0,2,0).
- **d**) Determinar las soluciones y valor óptimo de la función objetivo del problema si se perturba el vector de recursos mediante tb^0 para cada $t \in \mathbb{R}$ siendo $b^0 = (160,0)$.

La introducción de datos se realiza en la forma habitual ya explicada, incluyendo los nombres de las variables y de las restricciones (esto es importante para poder identificarlas en el análisis posterior).

Variable>	A	В	C	D	Direction	R. H. S.
Maximize	12	26	20	60		
Cobre	4	9	7	10	< =	6000
Zinc	2	2	4	20	<=	4000
LowerBound	0	0	0	0		
UpperBound	м	м	М	м		
VariableType	Continuous	Continuous	Continuous	Continuous		

Resolución. Informe completo

20:19:41		Thursday	July	14	2011		
Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
Α	0	12,0000	0	-1,5000	at bound	-M	13,5000
В	500,0000	26,0000	13.000,0000	0	basic	22,0000	54,0000
C	0	20,0000	0	-4,5000	at bound	-M	24,5000
D	150,0000	60,0000	9.000,0000	0	basic	36,0000	260,0000
Objective	Function	(Max.) =	22.000,0000				
Constraint	Left Hand Side	Direction	Right Hand Side	Slack or Surplus	Shadow Price	Allowable Min. RHS	Allowable Max. RHS
Cobre	6.000,0000	<=	6.000,0000	0	2,5000	2.000,0000	18.000,0000
Zinc	4.000,0000	< =	4.000,0000	0 /	1,7500	1.333,3330	12.000,0000
	Decision Variable A B C D Objective Constraint Cobre	Decision Value A 0 B 500,0000 C 0 D 150,0000 Objective Function Constraint Side Cobre 6.000,0000	Decision Value	Decision Variable	Decision Variable Solution Value Unit Cost or Profit c(j) Total Contribution Reduced Cost A 0 12,0000 0 -1,5000 B 500,0000 26,0000 13.000,0000 0 C 0 20,0000 0 -4,5000 D 150,0000 60,0000 9.000,0000 0 Objective Function (Max.) = 22.000,0000 Constraint Side Direction Right Hand Slack or Surplus Cobre 6.000,0000 <=	Decision Variable Solution Value Unit Cost or Profit c(j) Total Contribution Reduced Cost Basis Status A 0 12,0000 0 -1,5000 at bound B 500,0000 26,0000 13.000,0000 0 -4,5000 at bound C 0 20,0000 0 -4,5000 at bound D 150,0000 60,0000 9.000,0000 0 basic Objective Function (Max.) = 22.000,0000 Slack or Surplus Shadow Price Cobre 6.000,0000 <-	Decision Variable Solution Value Unit Cost or Profit c(j) Total Contribution Reduced Cost Basis Status Allowable Min. c(j) A 0 12,0000 0 -1,5000 at bound -M B 500,0000 26,0000 13.000,0000 0 basic 22,0000 C 0 20,0000 0 -4,5000 at bound -M D 150,0000 60,0000 9.000,0000 0 basic 36,0000 Objective Function (Max.) = 22.000,0000 Slack or Surplus Shadow Price Min. RHS Cobre 6.000,0000 6.000,0000 0 2,5000 2.000,0000

a) El rango de variación del beneficio de B para que la tabla siga siendo óptima, no cambian las variable básicas, es (22,54).

Si el beneficio de B aumenta en 10 unidades y pasa a ser 36, la solución sigue siendo la misma (X1=0, X2=500, X3=0 y X4=150), pero cambia el valor de la función objetivo. En vez de 22000 (resultado de 26x500+60x150) sería 36x500+60x150=27000.

b) El rango de variación del zinc para que las variables básicas lo sigan siendo es (1333.33, 12000).

Si la cantidad disponible de zinc disminuye en 1000 kg., ¿cuál es la solución óptima?

Para responder a esta pregunta necesitamos la tabla final del Simplex

		Α	В	C	D	Slack_Cobre	Slack_Zinc		
Basis	C(j)	12,0000	26,0000	20,0000	60,0000	0	0	R. H. S.	Ratio
В	26,0000	0,3750	1,0000	0,6250	0	0,1250	-0,0625	500,0000	
D	60,0000	0,0625	0,0000	0,1375	1,0000	-0,0125	0,0562	150,0000	
	C(j)-Z(j)	-1,5000	0	-4,5000	0	-2,5000	-1,7500	22.000,0000	

Debemos multiplicar la inversa de la matriz básica por los nuevos recursos (6000 de cobre (se mantiene) y 3000 de zinc (disminuye en 1000))

$$\begin{pmatrix} 0.1250 & -0.0625 \\ -0.0125 & 0.0562 \end{pmatrix} \begin{pmatrix} 6000 \\ 3000 \end{pmatrix} = \begin{pmatrix} 562.5 \\ 93.75 \end{pmatrix}$$

Así, la nueva solución es X1=0, X2=562.5, X3=0 y X4=93.75 y Z= 26x562.5+60x93.75=20250.

c) Para analizar la solución del problema para cualquier valor de t $\in \mathbb{R}$ siendo el vector perturbación c^0 =(-1,0,2,0), en el cuadro de dialogo Results seleccionamos **Perform Parametric Analysis**

y se obtiene el siguiente cuadro de dialogo

en el que debemos seleccionar <u>Objective Function</u> y <u>Perturbation Vector</u> A continuación aparecerá una ventana donde debemos incluir el vector perturbación. La ventana resultante es

El análisis que proporciona WinQSB es el siguiente

Range	From μ (Vector)	To μ (Vector)	From OBJ Value	To OBJ Value	Slope	Leaving Variable	Entering Variable
1	0	2,2500	22.000,0000	22.000,0000	0	В	С
2	2,2500	11,0000	22.000,0000	36.000,0000	1.600,0000	D	Slack_Zinc
3	11,0000	М	36.000,0000	М	1.714,2860		
4	0	-1,5000	22.000,0000	22.000,0000	0	В	Α
5	-1,5000	-12,0000	22.000,0000	36.000,0000	-1.333,3330	D	Slack_Zinc
6	-12,0000	-M	36.000,0000	М	-1.500,0000		1000
					\	1	

En este caso, para cada rango de valores de t, WinQSB no muestra los valores de la solución sino que solamente hace un análisis de la función objetivo mostrando su valor en los puntos extremos de cada intervalo considerado y el incremento de la función objetivo por unidad de t. Además muestra, en cada caso, la variable que deja y la que entra en la base.

La interpretación de los resultados es la siguiente:

Rango de variación de t	Valor de la función objetivo
$(-\infty, -12)$	Z=36000-1500(t+12)
(-12, -1.5)	Z=22000-1333.333(t+1.5)
(-1.5, 0)	Z=220000
(0, 2.25)	Z=220000
(2.25, 11)	Z=22000+1600(t-2.25)
$(11, +\infty)$	Z=36000+1714.286(t-11)

d) Para analizar la solución del problema para cualquier valor de t $\in \mathbb{R}$ siendo el vector perturbación b⁰=(160,0), en el cuadro de dialogo Results seleccionamos nuevamente **Perform Parametric Analysis** y se obtiene el siguiente cuadro de dialogo

en el que debemos seleccionar <u>Right Hand Side</u> y <u>Perturbation Vector</u> A continuación aparecerá una ventana donde debemos incluir el vector perturbación. La ventana resultante es

El análisis que proporciona WinQSB es el siguiente

Range	From μ (Vector)	Το μ (Vector)	From OBJ Value	To OBJ Value	Slope	Leaving Variable	Entering Variable
1	0	75,0000	22.000,0000	52.000,0000	400,0000	D	Slack_Cobre
2	75,0000	М	52.000,0000	52.000,0000	0		100
3	0	-25,0000	22.000,0000	12.000,0000	400,0000	В	Slack_Zinc
4	-25,0000	-37,5000	12.000,0000	0	960,0000	D	
5	-37,5000	-Infinity	Infeasible				
		K	A		1	<u> </u>	

En este caso, para cada rango de valores de t, WinQSB no muestra los valores de la solución, igual que en el análisis de los costos, sino que solamente hace un análisis de la función objetivo mostrando su valor en los puntos extremos de cada intervalo considerado y el incremento de la función objetivo por unidad de t. Además muestra, en cada caso, la variable que deja y la que entra en la base.

La interpretación de los resultados es la siguiente:

Rango de variación de t	Valor de la función objetivo
$(-\infty, -37.5)$	El problema es infactible
(-37.5, -25)	Z=12000+960(t+25)
(-25, 0)	Z=22000+400t
(0, 75)	Z=22000+400t
$(75, +\infty)$	Z=52000