Projet 7: Implémentez un modèle de scoring

Ilham NOUMIR | Parcours Data Science | Date: /02/2021

Sommaire

- 1. Présentation de la problématique et du jeu de données
- 2. Approche de la modélisation
- 3. Présentation des résultats
- 4. Présentation du Dashboard métier

_ Problématique :

Description de la société:

"Prêt à dépenser" est une société financière qui propose des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt

Contexte:

L'entreprise souhaite mettre en œuvre un outil de "scoring crédit" pour calculer la probabilité qu'un client rembourse son crédit

Missions:

- Construire un modèle de scoring
- Construire un dashboard interactif permettant d'interpréter les prédictions faites par le modèle

_ Jeu de données :

Jeu de données principal :

- 307511 observations
- 121 features
- Variable dépendante :

TARGET = 0 si pas de problème de remboursement

TARGET = 1 si problème de remboursement

Prétraitement des données :

- Suppression de toutes les features ayant plus de 40% de valeurs manquantes
- Détection des outliers / anomalie
- Réduction des modalités des variables catégorielles
- Création de features métier en se basant sur ce <u>Kernel</u>
- Encodage des variables catégorielles (OneHotEncoder)
- Normalisation des variables numériques (StanderScaler)
- Sélection des variables pertinents grâce au features selection de Scikit learn

Features métiers :

- ☐ CREDIT_INCOME_PERCENT : le pourcentage du montant du crédit par rapport au revenu du client
- ANNUITY_INCOME_PERCENT : le pourcentage de l'annuité du prêt par rapport au revenu du client
- ☐ CREDIT_TERM : la durée du paiement en mois (l'annuité étant le montant mensuel dû)
- □ DAYS_EMPLOYED_PERCENT : le pourcentage des jours d'emploi par rapport à l'âge du client

_ Variable dépendante :

Problématique : Jeu de données déséquilibré

92 % des clients sans défaut de paiement 8 % des clients avec défaut de paiement

Solution: SMOTE de Imblearn combinée avec la méthode cross validation avec une stratégie de stratification adaptée à ce genre de problématique qui est la méthode de RepeatedStratifiedKFold

Métriques utilisées : —

Problématique métier :

Dans le contexte bancaire deux types de risques à prendre en compte :

- ➤ Risque financier lié à l'insolvabilité des clients
- Risque de perte d'opportunité (des nouveaux clients)

Objectif: Minimiser les clients à risque qui font perdre de l'argent à la société

Fonction coût métier:

Réduire le risque financier Réduire les clients à défauts qui sont prédits comme des bons clients

Réduire le taux des faux négatifs

Fonction coût métier :

	Clients prédits en défaut	Clients prédits sans défaut	
Clients réellement en défaut	Vrais positifs	Faux négatifs	
Clients sans défaut	Faux positifs	Vrais négatifs	

Fbeta score : La métrique qui permet de définir le poids qu'on souhaite attribuer au recall ou à la précision.

Précision = TP / (TP+FP)

Recall = TP/(TP+FN)

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}.$$

Métrique d'évaluation:

La courbe ROC représente le taux de vrais positifs (TPR) par rapport au taux de faux positifs (FPR).

La métrique ROC_AUC correspond à l'aire sous la courbe ROC, elle est comprise entre 0 et 1.

_ Approche de la modélisation :

Algorithmes testés:

- LogisticRegression
- RandomForestClassifier
- GaussianNB
- DecisionTreeClassifier
- XGBClassifier
- GradientBoostingClassifier

_ Modèle choisi:

	name	fbeta_score_training	AUC_training	fbeta_score_test	AUC_test
0	LogisticRegression	0.450023	0.779952	0.428043	0.753343
1	RandomForestClassifier	1.000000	1.000000	0.149021	0.721708
2	GaussianNB	0.319311	0.531986	0.318506	0.526606
3	DecisionTreeClassifier	1.000000	1.000000	0.226633	0.568475
4	XGBClassifier	0.974246	0.999893	0.156041	0.709660
5	GradientBoostingClassifier	0.385635	0.831904	0.258458	0.726335

Choix des hyperparamètres: HyperOpt

```
Best: {'C': 0.053974302792412, 'fit_intercept': 1, 'max_iter': 597, 'solver': 1, 'tol': 9.755892114577838e-05, 'warm_start': 0}
```

Interprétabilité des résultats :

Interprétabilité globale:

Interprétabilité des résultats :

Interprétabilité locale:

LIME

SHAP

Présentation API et dashboard : ____

<u>API</u>

Dashboard

_ Conclusion et améliorations possibles : ____

- La fonction coût basée sur des hypothèses métiers confirmées
- > Feature engineering plus élaboré
- Dashboard : Plus de diversification sur les graphes