Consortium to Assess Prevention Economics (CAPE)

Optimizing Targeted LTBI Testing & Treatment among California's Foreign Born Population

May 3rd, 2017 Haleh Ashki PhD

Organizations within CAPE

UC Berkeley - UCSF
Joint Medical Program

San Francisco
Department of Public Health

This image cannot currently be displayed.						

Who We Are

Principle Investigators

- James G. Kahn, MD, MPH
- Paul Volberding, MD

Clinical Experts

- Priya Shete, MD
- Phillip Coffin, MD
- Marion Peters, MD

Epidemiologist

Andrea Parriott, PhD

Modelers

- Haleh Ashki, PhD
- Harinder Chahal, PhD
- Jeremy Goldhaber-Fiebert
- Eran Ben-David
- Alex Goodell, MD⁽ⁱ⁾

Senior Program Manager

Devon McCabe

TB Control, CADPH

- Jennifer Flood, MD, MS
- Pennan Berry, MD, MPH
- Peter Oh, DrPH

Research Questions

 What is the epidemiologic and economic impact of expanded testing and treatment to classes of immigrants not currently screened?

 What is the best test and treatment scenario to reach pre-elimination?

 What is the impact of a combination of these strategies?

Background

- CA has largest burden of TB in the US with 2,137 Cases in 2015
- Incidence rate of 5.5/100 000
- Estimated 7% imported cases, 13% recent transmission and 80% reactivation (2015)

Background

- 27% of CA population is FB
- TB in CA disproportionately affects FB (incidence 16.5/100 000)
- 81% of all TB cases are in FB

New immigrants by visa classes in California

Main topics for this talk

- Model aspects and design
- Initial validation: Population diversity and Risk factors
- Parameter Estimation:

Risk of progression Risk ratios

- Targeted test and treatment design
- Results and analysis

Validation of model for risk factors

Parameter estimation using Markov Chain Monte Carlo (MCMC)

Risk of progression estimation

Risk of progression where the risk of progression in month t after infection (P_t) is determined by the following equation:

$$P_t = P_0 e^{-\lambda t}$$

Challenges

MCMC estimates P_0 and λ for each year but we need a one value for each. To find the best P_0 and λ we tried three different approaches:

- 1. Using only two different P_0 and λ for before and after 2009 where we have jump in MCMC estimation.
- 2. Using one value as an average of all P_0 and λ
- 3. Using P_0 and λ as normal distribution with mean and sigma as average of all P_0 and λ estimated by MCMC.

	Mean	Standard deviation
P ₀	0.00378	0.00025
λ	0.0377	0.00112

Risk of progression estimated by month since infection

RP error range

Estimated Risk ratios

	HIV	Diabetes	ESRD
Literature	2.9-22	1.3-3.6	2-20
MCMC	16	2.7	19.78

Limitation: Control data is available for only few years

TB trend by estimated parameters

TB trend estimation till 2040

Base-case scenario

Testing 4.5% of population annually.

Subtracting the number of people get green cart, because they have been tested for the process.

TB trend till 2040 only applying base-case TT

TTT scenarios

Previously tested scenarios:

- Base_case: Current LTBI screening (random, .004 uptake)
- Foreign born testing: (2x(.004), 4x, 10x uptake)
- Risk factor testing: (2x(.004), 4x, 10x uptake)

New tested scenarios:

- Visa-class: Screening new immigrants based on their visa classes
- Universal on Arrival: Screening all new immigrants that have classifiable visas
- High prevalence: Screening people in higher prevalence targeted population using combination information of visa classes and risk factors

Previously TTT results

Visa-class testing scenario

 Testing new immigrants with three largest visa class population: Student, Temporary workers and Immigrant visa

classes.

The population target sizes are small (limited number of new immigrants in classifiable visa status), and their LTBI prevalence rate is almost the same. Therefore the tastings have almost the same effect on reducing TB active cases.

Universal on Arrival testing scenario

Testing people from top 5 countries at their arrival in classifiable visa status.

Comparing Universal at arrival and Fb2x

Cumulated testing on oniversal on Arrival is less than 1 DZA testing

FB2x:625835 Universal on Arrival: 575400

LTBI diversity at 2014

Largest population

- People with immigrant visa and not tested in previous year.
- Foreign born population with diabetes and smoking
- All HIV infected people

High prevalence targeted population testing result

LTBI diversity before and after TTT at 2014 and 2030

Largest population in LTBI state at 2030

Comparing 3 and 7 targeted LTBI population results

Comparing 3 and 7 targeted LTBI population with Fb4x and FB 10x and the number of test

Limitations

- Lack of control data tend to uncertainty in parameter estimation.
- Small sample sizes make projections challenging in an Individual based stochastic model
- Population projections past 2014 carry significant uncertainty
- Base case testing uptake may be an overestimate
- Modeled only >= 15 years old
- Did not model undocumented
- Inter-person transmission does not account for geography or households

Overview and Conclusion

- Individual model based on Markov chain process
 .Pros: Having so many parameter for better modeling
 - .Cons: Increasing uncertainty
- Using numerical algorithm for calibration (MCMC)
- Capable for having as many as demographic and biomedical attributes:
 - .Better and more accurate modeling
 - .Better TTT design
- Capable of extension for more than one state/region, by having initial information of new regions.

Future work

- More TTT designs:
- With high prevalence testing, most of the pre-infected people are tested.
- With Universal on arrival, new immigrants are tested, so the initializing to LTBI is been covered.
- The transition to LTBI happen based on new active cases, with more weight on being in same community (in our model, its based on race and being foreign or US born), so maybe having only Universal on Arrival testing and community based testing can have better effect.

