МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

21.05.2021 г. – Вариант 1

МОДУЛ 1

Време за работа – 90 минути

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

	<u>1</u> <u>1</u>	
1 Czażwaczza wa wanana	$2^{2}.2^{3}$	۰.
1. Стойността на израза	<u>2</u>	e:
	2^{3}	

- **A)** $\sqrt[6]{2}$
- **Б)** ⁶√4
- **B)** $\sqrt[6]{8}$
- Γ) $\sqrt[6]{32}$

2. Стойността на израза
$$\sqrt{21^2-15^2}-\sqrt{150}+\sqrt{\left(\sqrt{6}-3\right)^2}$$
 е:

- **A)** $3-4\sqrt{6}$
- **b)** $2\sqrt{6}-3$
- **B)** 2

Γ) 3

3. Множеството от НЕДОПУСТИМИТЕ стойности на израза
$$\frac{x-3}{x^2+9} - \frac{x-2}{x^2-4}$$
 е:

- **A)** {-2; 2}

- **Б)** {-2, 3} **В)** {-3; 2; 3}

4. Решенията на неравенството
$$(x-6)^2(x-1)(x+5) \le 0$$
 са:

A)
$$x \in [-5;1] \cup \{6\}$$

$$\mathbf{E}) x \in (-\infty; -5] \cup [1; 6]$$

A)
$$x \in [-5;1] \cup \{6\}$$
 B) $x \in (-\infty;-5] \cup [1;6]$ **B)** $x \in (-\infty;-6] \cup [-1;5]$ Γ) $x \in [-1;5] \cup \{6\}$

$$\Gamma) x \in [-1;5] \cup \{6\}$$

- 5. С колко процента трябва да се намали числото 72, за да се получи числото 63?
- A) $\frac{1}{9}\%$
- Б) 8%

6. Най-големият корен на уравнението
$$(x^2 - 4x)^2 + 7(x^2 - 4x) + 12 = 0$$
 е:

- **A)** -4
- **Б**) 2

B) 3

Г) 4

- 7. Ако x_1 и x_2 са корените на уравнението $6x^2 3x 1 = 0$, то HE е вярно, че:
- **A)** $x_1 + x_2 = \frac{1}{2}$ **B)** $x_1.x_2 < 0$
- **B)** $x_1 + x_2 > 0$
- Γ) $\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{6}$

- 8. Стойността на израза $\frac{\text{tg}405^{\circ}}{\sqrt{2} \text{ tg}^2 765^{\circ}}$ е:
- **A)** $\frac{\sqrt{2}}{2}$
- **b**) $\frac{\sqrt{6}}{6}$ **b**) $\frac{\sqrt{6}}{2}$
- **Γ**) 1
- 9. В равнобедрен $\triangle ABC(AC = BC)$ е вписана окръжност с център O.

Лъчът AO^{\rightarrow} пресича страната BC в точка L. Ако LB=3 cm и LC = 5 cm, то периметърът на $\triangle ABC$ e:

- **A)** 20 cm

- **b)** 20,8 cm **b)** 21,4 cm Γ) $\frac{88}{3}$ cm

- 10. В $\triangle ABC$ AB = 8 cm, BC = 5 cm и AC = 10 cm. Ако точка M е средата на страната AB, а точката N от страната AC е такава, че $\angle AMN = \angle ACB$, то намерете дължината на MN.
- A) 2 cm
- **Б)** 2,5 cm
- **B)** 3,2 cm
- Γ) 4 cm
- 11. Графиката на коя от дадените функции има само една обща точка с абсцисната ос?

A)
$$f(x) = x^2 + 25x + 25$$

b)
$$f(x) = x^2 + 5x + 25$$

B)
$$f(x) = x^2 - 10x - 25$$

$$\Gamma) \ f(x) = x^2 - 10x + 25$$

12. Коя от редиците НЕ е монотонна?

A)
$$-2;-4;-6;-8$$
 B) $-\frac{1}{3};-\frac{1}{9};-\frac{1}{27};-\frac{1}{81}$ **B)** $-1;\frac{1}{2};-\frac{1}{3};\frac{1}{4}$ Γ) $1;\frac{1}{2};\frac{1}{4};\frac{1}{8}$

B)-1;
$$\frac{1}{2}$$
;- $\frac{1}{3}$; $\frac{1}{4}$

$$\Gamma$$
) 1; $\frac{1}{2}$; $\frac{1}{4}$; $\frac{1}{8}$

- 13. Сумата на първите шест члена на геометрична прогресия, за която $a_1 = 6$ и $q = \frac{1}{2}$, е равна на:
- **A)** $\frac{198}{16}$
- **Б**) $\frac{189}{16}$
- **B**) $\frac{179}{16}$
- Γ) $\frac{21}{2}$
- 14. Колко е $\cos \alpha$, ако $\cot \left(\alpha \frac{\pi}{2}\right) = 2$ и $\alpha \in \left(\frac{\pi}{2}; \pi\right)$?
- **A)** $-\frac{2}{\sqrt{5}}$
- **B**) $-\frac{1}{\sqrt{5}}$ **B**) $\frac{1}{\sqrt{5}}$
- Γ) $\frac{2}{\sqrt{5}}$

15. С помощта н	на цифрите 2, 3, 4 и 5 с а о	бразувани всички в	зъзможни трицифрени числа
с различни циф	ри. Броят на тези от тях	х, които НЕ се делят	т на 9, е:
A) 6	Б) 12	B) 18	Γ) 24
16. За статист	ическия ред 0, 1, <i>a</i> , 2	, b, 5, 9, 11 мода	та е 1, а медианата е 2,5.
Средноаритмет	ичното на реда е равно 1	на:	
A) 3	Б) 4	B) 6,5	Γ) 7
17. В остроъгъл	іен <i>△АВС</i> страната <i>АВ</i>	$=2\sqrt{3}$ cm, а радиус	ът на описаната около него
окръжност е R	= 2√3 ст. Градусната м	ярка на <i>∢АСВ</i> е раг	вна на:
A) 30°	Б) 45°	B) 60°	Γ) 150°
18. В правоъгъл	иния ΔABC ($\sphericalangle C=90^\circ$) ві	исочината <i>СН</i> (<i>H</i> ∈	ABig) разделя AB на отсечки
АН и ВН , като В	$3H = 9.AH$. And $CH = 3\sqrt{3}$	5 cm, то лицето на	∆ <i>ABC</i> е равно на:
A) 25 cm ²	Б) 75 cm ²	B) 135 cm ²	Γ) 150 cm ²
19. Дължините	на страните на успоредн	ик се отнасят както	о 3:2, а диагоналите му могат
да са катети	на правоъгълен триъ	гълник с хипотен	иуза с дължина $13\sqrt{2}$ cm.
Периметърът н	а успоредника е:		
A) $5\sqrt{13}$ cm	6) $10\sqrt{13}$ cm	B) 40 cm	Γ) $10\sqrt{26}$ cm
20. Бедрото на г	равнобедрен трапец е 2 с	ст, малката основа	е $\sqrt{2}$ cm, а ъгълът при нея е
135°. Лицето на	трапеца е равно на:		
A) 3 cm ²	Б) 4 cm ²	B) 6 cm ²	Γ) 8 cm ²

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left|a\right| & \sqrt[2k+1]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \ \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \ \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \ \text{и} \quad m, n, k \in \mathbb{N} \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \ \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah_a$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°−α	90°+α	180°-α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \cos^$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

21.05.2021 г. - Вариант 1

МОДУЛ 2

Време за работа – 150 минути

Отговорите на задачите от 21. до 25. включително запишете в свитъка за свободните отговори!

21. Пресметнете стойността на израза $A = \sqrt{3B + 2C}$, където $B = \log_2(\log_3 81)$, а $C = \left(\frac{1}{81}\right)^{\log_{16}\frac{1}{2}}$.

- **22.** Намерете множеството от решенията на неравенството $x^2 + 2x \le \frac{9}{x^2 + 2x}$.
- **23.** Дадена е аритметична прогресия с n члена, за която $a_1=1, a_3=13$ и $S_n=280.$ Намерете броя n на членовете.
- 24. В купа има 4 червени и 7 черни топки. Намерете вероятността при едновременно изваждане на три топки поне една от тях да е червена топка.
- **25.** В $\triangle ABC$ страните AB, BC и AC са с дължини съответно $2\sqrt{2}$ cm, $\sqrt{5}$ cm и 1 cm. Ако CC_1 е височината през върха C, намерете радиуса на вписаната в $\triangle ACC_1$ окръжност.

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително</u> запишете в свитъка за свободните отговори!

26. Дадена е функцията
$$f(x) = \frac{x-2}{2(\sqrt{x-1}-1)} + \sqrt{x-1}$$
. Намерете:

- а) дефиниционното ѝ множество;
- б) стойностите на x, за които f(x) = 1.
- **27.** Дадени са изразите $A = \frac{1 + \sin \alpha + \cos \alpha}{\sqrt{2} \cos \frac{\alpha}{2}}$ и $B = 2 \cos \left(45^{\circ} \frac{\alpha}{2}\right)$. За допустимите

стойности на α докажете, че:

a) A = B;

6)
$$B = \frac{1+\sqrt{7}}{2}$$
, and $tg\frac{\alpha}{2} = \sqrt{7}$ if $\alpha \in (0^\circ; 180^\circ)$.

- **28.** В окръжност k с център O е вписан $\triangle ABD$. Допирателната към окръжността k в точка D пресича правата AB в точка M (A е между B и M), като MA = 2 cm, AB = 6 cm и $\blacktriangleleft AMD = 60^\circ$.
- а) Пресметнете дължината на MD и докажете, че $AD \perp MB$ и $O \in BD$.
- б) Ако C е средата на дъгата \widehat{BD} , несъдържаща точката A, докажете, че дължината на $MC = 2\sqrt{10 + 4\sqrt{3}}$ сm.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0\,,\;\;a\neq 0$$
 $D=b^2-4ac$ $x_{1,2}=\frac{-b\pm\sqrt{D}}{2a}$ при $D\geq 0$ $ax^2+bx+c=a\big(x-x_1\big)\big(x-x_2\big)$ Формули на Виет: $x_1+x_2=-\frac{b}{a}$ $x_1x_2=\frac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \neq 0$ е парабола с връх точката $\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$

Корен. Степен и логаритъм

$$\begin{array}{l} \sqrt[2k]{a^{2k}} = \left|a\right| & \sqrt[2k+1]{a^{2k+1}} = a \quad \text{при} \quad k \in \mathbb{N} \\ \frac{1}{a^m} = a^{-m}, \ a \neq 0 & \sqrt[n]{a^m} = a^{\frac{m}{n}} \ \sqrt[n]{\sqrt[k]{a}} = \sqrt[nk]{a} & \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \ \text{при} \quad a \geq 0, k \geq 2, n \geq 2 \ \text{и} \quad m, n, k \in \mathbb{N} \\ a^x = b \Leftrightarrow \log_a b = x & a^{\log_a b} = b & \log_a a^x = x \quad \text{при} \quad a > 0, b > 0 \ \text{и} \quad a \neq 1 \end{array}$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = n.(n-1)...3.2.1 = n!$

Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$

Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{k.(k-1)...3.2.1}$

Вероятност за настъпване на събитието A:

$$p(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}}, \quad 0 \le p(A) \le 1$$

Прогресии

Аритметична прогресия: $a_n = a_1 + (n-1)d$ $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$

Геометрична прогресия: $a_n = a_1 \cdot q^{n-1}$ $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}, \ q \neq 1$

Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник и успоредник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$c^2 = a^2 + b^2$$

$$S = \frac{1}{2}ab = \frac{1}{2}ch_c$$

$$a^2 = a_1 c$$

$$b^2 = b_1 c$$

$$h_c^2 = a_1 b_1$$

$$h_c^2 = a_1 b_1$$
 $r = \frac{a+b-c}{2}$ $\sin \alpha = \frac{a}{c}$ $\cos \alpha = \frac{b}{c}$ $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

$$\sin \alpha = \frac{a}{c}$$

$$\cos \alpha = \frac{b}{c}$$

$$\operatorname{tg} \alpha = \frac{a}{b}$$

$$\cot \alpha = \frac{b}{a}$$

Произволен триъгълник:

$$a^{2} = b^{2} + c^{2} - 2bc\cos\alpha$$
 $b^{2} = a^{2} + c^{2} - 2ac\cos\beta$ $c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$ $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

Формула за медиана:

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$

$$m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$$

$$m_a^2 = \frac{1}{4} (2b^2 + 2c^2 - a^2)$$
 $m_b^2 = \frac{1}{4} (2a^2 + 2c^2 - b^2)$ $m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$

Формула за ъглополовяща: $\frac{a}{b} = \frac{n}{m}$

$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - mn$$

Формула за диагоналите на успоредник:

$$d_1^2 + d_2^2 = 2a^2 + 2b^2$$

Формули за лице

Триъгълник:

$$S = \frac{1}{2}ch_c$$

$$S = \frac{1}{2}ab\sin\gamma$$

$$S = \frac{1}{2}ch_c$$
 $S = \frac{1}{2}ab\sin\gamma$ $S = \sqrt{p(p-a)(p-b)(p-c)}$

$$S = pr$$

$$S = pr$$
 $S = \frac{abc}{AR}$

Успоредник:

$$S = ah_a$$

$$S = ab \sin \alpha$$

$$S = ah_a$$
 $S = ab\sin\alpha$ Трапец: $S = \frac{a+b}{2}h$

Четириъгълник:

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

α°	0°	30°	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot g \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	90°−α	90°+α	180°-α
sin	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin\alpha$	$-\cos\alpha$
tg	$-tg\alpha$	$\cot g \alpha$	$-\cot g \alpha$	$-tg\alpha$
cotg	$-\cot g \alpha$	tg α	$-\operatorname{tg}\alpha$	$-\cot g \alpha$

$$\begin{split} \sin\left(\alpha\pm\beta\right) &= \sin\alpha\cos\beta\pm\cos\alpha\sin\beta & \cos\left(\alpha\pm\beta\right) = \cos\alpha\cos\beta\mp\sin\alpha\sin\beta \\ tg\left(\alpha\pm\beta\right) &= \frac{tg\,\alpha\pm tg\,\beta}{1\mp tg\,\alpha\,tg\,\beta} & \cos\left(\alpha\pm\beta\right) = \frac{\cot\alpha\cos\beta\mp\sin\alpha\sin\beta}{\cot\beta\pm\cot\beta} \\ \sin2\alpha &= 2\sin\alpha\cos\alpha & \cos2\alpha &= \cos^2\alpha-\sin^2\alpha = 2\cos^2\alpha-1 = 1 - 2\sin^2\alpha \\ tg\,2\alpha &= \frac{2tg\,\alpha}{1-tg^2\,\alpha} & \cot 2\alpha &= \frac{\cot^2\alpha-1}{2\cot\beta\alpha} \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) \\ \sin^2\alpha &= \frac{1}{2}(1-\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \frac{1}{2}(1+\cos2\alpha) & \sin^2\alpha &= 2\sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} \\ \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha &= \cos^2\alpha - \cos^$$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ

ПО МАТЕМАТИКА

21.05.2021 г. - Вариант 1

Ключ с верните отговори

Nº	Отговор	Брой точки
1	A	2
2	Γ	2
3	A	2
4	A	2
5	В	2
6	В	2
7	Γ	2
8	Α	2
9	Б	2
10	A	2
11	Γ	3
12	В	3
13	Б	3
14	Б	3
15	В	3
16	Б	3
17	A	3
18	Б	3
19	Б	3
20	Б	3
21	$A = 2\sqrt{3}$	4
22	$A = 2\sqrt{3}$ $x \in [-3; -2) \cup (0; 1]$	4
23	10	4

24	$\frac{26}{33}$	4
25	$r = \frac{1}{2(\sqrt{2}+1)} = \frac{\sqrt{2}-1}{2}$ cm	4
26	a) $x \in [1;2) \cup (2;\infty)$ 6) $x = \frac{10}{9}$	10
27		10
28	a) <i>MD</i> = 4 cm	10

Задача 26.

Решение: а) Дефиниционното множество *DM* на функцията се определя от решенията на системата $\begin{vmatrix} x-1 \ge 0 \\ \sqrt{x-1} \ne 1 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x \ge 1 \\ x \ne 2 \end{vmatrix} \Leftrightarrow DM : x \in [1;2) \cup (2;\infty)$.

б) При
$$x \in DM : f(x) = 1 \Leftrightarrow \frac{x-2}{2(\sqrt{x-1}-1)} + \sqrt{x-1} = 1 \Leftrightarrow$$

$$\Leftrightarrow x-2+2(x-1)-2\sqrt{x-1}=2\sqrt{x-1}-2 \Leftrightarrow 4\sqrt{x-1}=3x-2.$$

Повдигаме в квадрат и решаваме уравнението $16(x-1) = (3x-2)^2 \Leftrightarrow 16x-16 = 9x^2-12x+4 \Leftrightarrow 9x^2-28x+20 = 0, x_1 = 2 \notin DM, x_2 = \frac{10}{9} \in DM$.

C проверка
$$\left(4\sqrt{\frac{10}{9}-1}=3.\frac{10}{9}-2 \Leftrightarrow 4.\frac{1}{3}=\frac{10}{3}-2\right)$$
 или с еквивалентност $\left(3x-2\geq 0 \Leftrightarrow x\geq \frac{2}{3}\right)$

установяваме, че $x = \frac{10}{9}$ е решение. Следователно уравнението има единствен корен $x = \frac{10}{9}$.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

а) Определяне на $x \ge 1, x \ne 2$ или $x \in [1;2) \cup (2;\infty)$	2 точки
б) Преобразуване на уравнението до вида $4\sqrt{x-1} = 3x-2$	2 точки
Получаване на уравнението $9x^2 - 28x + 20 = 0$	2 точки
Намиране на корените $x_1 = 2$ и $x_2 = \frac{10}{9}$	2 точки
Установяване, че $x = 2$ не е решение	1 точка

Установяване, ч	е $x = \frac{10}{9}$ е решение (с проверка или с еквивалентност)	1 точка

Задача 27.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението: а)

$A = \frac{1 + \sin \alpha + \cos \alpha}{\sqrt{2} \cos \frac{\alpha}{2}} = \frac{2 \cos^2 \frac{\alpha}{2} + 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{\sqrt{2} \cos \frac{\alpha}{2}} =$	1 точка
$= \frac{2\left(\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}\right)}{\sqrt{2}} = \sqrt{2}\left[\sin\left(90^{\circ} - \frac{\alpha}{2}\right) + \sin\frac{\alpha}{2}\right] =$	1 точка
$=2\sqrt{2}\sin\frac{90^{\circ}-\frac{\alpha}{2}+\frac{\alpha}{2}}{2}\cos\frac{90^{\circ}-\frac{\alpha}{2}-\frac{\alpha}{2}}{2}=2\sqrt{2}\sin 45^{\circ}\cos\left(\frac{90^{\circ}-\alpha}{2}\right)=$	1 точка
$=2\sqrt{2}\frac{\sqrt{2}}{2}\cos\left(45^{\circ}-\frac{\alpha}{2}\right)=2\cos\left(45^{\circ}-\frac{\alpha}{2}\right)$ и следователно $A=B$	1 точка

б)

От
$$\lg \frac{\alpha}{2} = \sqrt{7}$$
 и основното тригонометрично тъждество получаваме
$$\frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} = \sqrt{7}$$

$$\sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2} = 1$$
 получаваме $\cos \frac{\alpha}{2} = \pm \frac{\sqrt{2}}{4}$, $\frac{\alpha}{2} \in (0^\circ; 90^\circ) \Rightarrow \cos \frac{\alpha}{2} = \frac{\sqrt{2}}{4}$ и $\sin \frac{\alpha}{2} = \frac{\sqrt{14}}{4}$
$$\cos \alpha = \sin \alpha = 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} = 2 \frac{\sqrt{14}}{4} \frac{\sqrt{2}}{4} = \frac{\sqrt{7}}{4}$$
 и
$$\cos \alpha = \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} = \frac{2}{16} - \frac{14}{16} = -\frac{3}{4}.$$
 Следователно $B = 2 \cos \left(45^\circ - \frac{\alpha}{2}\right) = \frac{1 + \sin \alpha + \cos \alpha}{\sqrt{2} \cos \frac{\alpha}{2}} = \frac{1 + \frac{\sqrt{7}}{4} - \frac{3}{4}}{\sqrt{2} \frac{\sqrt{2}}{4}} = \frac{1 + \sqrt{7}}{2}$

Задача 28.

Решение: a) От равенството $MD^2 = MA.MB \Leftrightarrow MD^2 = 2.8$ намираме MD = 4 cm.

Ще докажем, че $<\!\!\!< MAD = 90^\circ$, от което ще следва, че $AD \perp MB$.

$$AD^2 = MA^2 + MD^2 - 2.MA.MD.\cos 60^\circ = 4 + 16 - 2.2.4.\frac{1}{2} = 12$$
.

От $MA^2 + AD^2 = 4 + 12 = 16 = MD^2$ следва, че $\triangle MAD$ е правоъгълен с $\blacktriangleleft MAD = 90^\circ$.

От $AD \perp MB$ следва, че $\prec BAD = 90^{\circ}$. Но той е вписан в k, BD е диаметър на k и $O \in BD$.

б) Тъй като MD е допирателна на k, то $MD \perp DO$, $\triangle MDB$ е правоъгълен, $\ll BMD = 60^\circ$ и $BD = MB.\sin 60^\circ = 8.\frac{\sqrt{3}}{2} = 4\sqrt{3}$ cm.

По условие $\widehat{BC} = \widehat{CD}$. Тогава BC = CD , △BCD е равнобедрен и правоъгълен (BD е диаметър на k), ∢CBD = 45° и $BC = BD.\sin 45° = 4\sqrt{3}.\frac{\sqrt{2}}{2} = 2\sqrt{6}$ cm.

B $\triangle MDC \blacktriangleleft MDC = \blacktriangleleft MDB + \blacktriangleleft CDB = 90^{\circ} + 45^{\circ} = 135^{\circ}$.

От косинусовата теорема в $\triangle MDC$ намираме: $MC^2 = MD^2 + DC^2 - 2MD.DC.\cos 135^\circ = 16 + 24 + 2.4.2\sqrt{6}.\frac{\sqrt{2}}{2} = 40 + 8.2\sqrt{3} = 40 + 16\sqrt{3} = 4\left(10 + 4\sqrt{3}\right)$ и $MC = 2\sqrt{10 + 4\sqrt{3}}$ cm.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

а) Намиране на $MD = 4$ cm	1 точка
Доказване, че $AD \perp MB$ и $O \in BD$	3 точки и 1 точка
б) Пресмятане на $BC = 2\sqrt{6}$ cm	2 точки
Пресмятане на $MC = 2\sqrt{10 + 4\sqrt{3}}$ cm	3 точки