David L. Nelson and Michael M. Cox

LEHNINGER PRINCIPLES OF BIOCHEMISTRY

Sixth Edition

CHAPTER 22

Biosynthesis of Amino Acids, Nucleotides, and Related Molecules (아미노산, 누클레오티드 및 관련 물질의 생합성)

CHAPTER 22

Nitrogen Assimilation, Biosynthetic Use, and Excretion

Key topics:

- Nitrogen fixation
- Incorporation of ammonia into biomolecules
- Biosynthesis of amino acids
- Biosynthesis of heme
- Biosynthesis of nucleotides
- Catabolism of purines

22.1 Overview of Nitrogen Metabolism

- 질소화합물: 아미노산(단백질의 구성단위), purine nucleotide, pyrimidine nucleotide (핵산의 구성단위)
- 식물, 미생물: 질산이온 또는 암모니아에서 질소화합물 합성
- 동물: 필수아미노산은 섭취, 비필수아미노 산은 생체 내 합성. 주된 공급원은 단백질 섭취(아미노산 형태)

The Nitrogen Cycle

연간 10¹¹kg의 공기중의 질소가 암모니아로 고정

Figure 22-1
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

단독 유리질소고정세균:

호기성세균: Azotobacter

혐기성세균: Klebsiella, Clostridium

공생 유리질소고정세균: 뿌리흑박테리아 (Rhizobium)

Nitrogen Fixation by the Nitrogenase Complex (질소화복합체)

- N₂ + 3H₂ → 2NH₃ △G° = -33.5 kJ/mol (N₂ 삼중결합 때문에 활성화 에너지가 대단히 높음(ATP이용을 통해 극복)
- 질소화효소 복합체(dinitrogenase reductase와 dinitogenase의 복합체)에 의해 고정:
- N₂ + 10H⁺ +8e⁻ + 16ATP → 2NH₄⁺ + 16ADP + 16Pi + H₂
- 질소화효소복합체는 산소에 의해 불활성 화(뿌리혹박테리아는 leghemoglobin이 보호, 시아노박테리아는 산소가 세포내로 들어올 수 없는 heterocysts에서 질소고정

Figure 22-4
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

아미노산의 대사경로

- 탄수화물과 지방이 충분히 공급되면 단백질과 아미노 산이 에너지 생산을 위해 분해되는 일은 없음 → 펩타 이드나 단백질 합성, transamination에 의한 다른 아미 노산 합성, 질소를 함유하거나 함유하지 않은 화합물 합성 등에 이용됨
- 위의 3가지 작용에 쓰이고 남은 필요 이상의 아미노산은 deamination 반응에 의하여 분해되거나 탄소골격으로 대사됨.
- 과량의 NH₃는 어떤 형태로 배설(예: 요소)되며, 필요에 의해 새로운 질소화합물의 합성에 이용
- NH₃ 동화의 중요한 경로는 동식물, 세균에 존재하는 glutamine synthetase에 의한 glutamine의 합성임.
- Glutamic acid는 질소대사에서 중요하며, 다른 아미노 산 합성의 전구체로 작용

Ammonia is incorporated into biomolecules through Glu and Gln

 Glutamine is made from Glu by glutamine synthetase in a twostep process:

Glu + ATP
$$\Rightarrow \gamma$$
-glutamyl + NH₄⁺ \Rightarrow Gln + P_i

phosphate

 Phosphorylation of Glu creates a good leaving group that can be easily displaced by ammonia

암모니아에서 글루타민과 글루탐산의 합성

- 모든 생물: 글루타민 합성은 글루타민 합성효소 (glutamine synthetase)에 의해 촉매 Glutamate + NH₄⁺ + ATP → glutamine + ADP + Pi + H⁺ - (A)
- 세균과 식물: 글루탐산 합성은 글루탐산 생성효소
 (glutamate synthase)에 의해 촉매
 α-ketoglutarate + glutamine + NADPH + H⁺ → 2 glutamate + NADP⁺ (B)
- (A)와 (B)의 전체 반응식: α-ketoglutarate + NH₄+ + NADPH + ATP → L-glutamate + NADP+ + ADP + Pi
- 동물에는 글루탐산 생성효소 없음. 아미노기 전달반응에 의해 α-ketoglutarate에서 글루탐산 합성 (Fig 18-4)
- L-글루탐산 탈수소효소(L-glutamate dehydrogenase) 에 의해 글루탐산이 만들어지기도 함(모든 생물)

```
\alpha-ketoglutarate + NH<sub>4</sub><sup>+</sup> + NADPH \rightarrow L-glutamate + NADP<sup>+</sup> + H<sub>2</sub>O
```

Regulation of Gln Synthetase -by Six Endpoints of Gln

Figure 22-8 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Glutamate

Covalent Modification of Gln Synthetase

: 제2레벨에서의 조절

AT: adenylyltransferase

P_{II}: AT 조절단백질

Figure 22-9
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Proposed Mechanism for Glutamine Amidotransferases (글루타민 아미노기 전달효소)

- 글루타민은 아미노기의 주요한 생리학적 원료로 작용
- 글루타민 아미드기 전달 효소(glutamine amidotransferases)에 의해 아미노기를 다른 화합물에 전달

Figure 22-10
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

22.2 Biosynthesis of Amino Acids

- 모든 아미노산은 해당경로, 시트 르산 경로, 펜토오스 인산경로에 서 유래. 질소는 글루타민과 글루 탐산 형태로 이 경로에 참여.
- 세균과 식물은 대개 20가지 아미 노산 합성
- 포유류는 절반 정도 합성 가능. 필 수 아미노산은 음식물로 섭취
- 아미노산 생합성 경로는 대사 전 구체(탄소골격 제공)에 따라 분류

Figure 22-11
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

대사전구체에 따른 아미노산 생합성 분류

TABLE 22-1

Amino Acid Biosynthetic Families, Grouped by Metabolic Precursor

 α -Ketoglutarate Pyruvate

Glutamate Alanine

Glutamine Valine*

Proline Leucine*

Arginine Isoleucine*

3-Phosphoglycerate Phosphoenolpyruvate

Serine and erythrose

Glycine 4-phosphate

Cysteine Tryptophan*

Oxaloacetate Phenylalanine*

Aspartate Tyrosine[†]

Asparagine Ribose 5-phosphate

Methionine* Histidine*

Threonine*

Lysine*

Nucleotide 합성 중간체인 5-phosphoribosyl-1pyrophosphate(PRPP): ribose-5-phosphate로부 터 합성

^{*}Essential amino acids in mammals.

[†]Derived from phenylalanine in mammals.

Biosynthesis of Pro and Arg from Glu in Bacteria

Figure 22-12
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

In animals, proline can ALSO be synthesized from arginine

- Arginase converts Arg to ornithine
- Ornithine $\delta\text{-aminotrans}ferase$ converts ornithine to glutamate $\gamma\text{-semialdehyde}$ that cyclizes and converts to Pro
- See Fig 22-13

Mammalian Conversion of Ornithine (from Arg) to Cyclized Precursor to Pro

Biosynthesis of Ser and Gly from 3-Phosphoglycerate in all organisms

Figure 22-14
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Biosynthesis of Cys from Ser in Plants and Bacteria

Figure 22-15
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Biosynthesis of Cys from Homocysteine and Ser in Mammals

Figure 22-16
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

옥살로아세트산과 피루브산으로부터 3종의 비필수 아미노산과 6종의 필수 아미노산의 합성

(Fig 22-17 참조)

Unnumbered 22 p895

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

세균과 식물에서 방향족 아미노산의 생합성

3-Dehydroshikimate

Figure 22-18

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

세균과 식물에서 방향족 아미노산의 중간체가 되는 코리슴산의 합성

세균과 식물에서 코리슴산 으로부터 트립토판의 생합성

- Chorismate Glutamine anthranilate synthase Glutamate → Pyruvate **Anthranilate** anthranilate phosphoribosyltransferase N-(5'-Phosphoribosyl)anthranilate N-(5'-phosphoribosyl)-anthranilate isomerase Enol-1-o-carboxyphenylamino-1deoxyribulose phosphate indole-3-glycerol phosphate synthase >H2O + CO2 CH—CH2—O—P Indole-3-glycerol phosphate Glyceraldehyde 3-phosphate tryptophan synthase Serine CH2-CH-COO Tryptophan
- Figure 22-19
 Lehninger Principles of Biochemistry, Sixth Edition
 © 2013 W. H. Freeman and Company

- Tryptophan synthase(α₂β₂ 구조)가 촉매
- α 소단위체: Indole-3-glycerol phosphate → indole + glyceraldehyde-3-phosphate
- β₂ 소단위체: indole + serine → tryptophan + H₂O

세균과 식물에서 코리슴 산으로부터 페닐알라닌과 티로신의 생합성

- chorismate mutaseprephenate dehydrogenase
- prephenate dehydratase

• 동물에서는 페닐알라닌 히드 록실화효소(phenylalanine hydroxylase)에 의해 페닐알 라닌으로부터 티로신 합성

세균과 식물에서 히스 티딘의 생합성

- 푸린 생합성 전구체 이용
- 히스티딘은 3가지 종 류의 전구체로부터 유 도: PRPP에서 5개의 탄소(적색), ATP의 푸 린고리에서 1개의 질 소와 1개의 탄소(청 색), 글루타민과 글루 탐산에서 2개의 질소 (녹색).

Figure 22-22
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Feedback Inhibition in Ile Synthesis from Thr

Figure 22-23
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Regulation of Aspartate-Derived Pathways

 대장균에서 아스파르트산으로 부터 유도되는 여러가지 아미 노산 생합성 조절기전이 서로 맞물려서 일어남

Figure 22-24
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

22.3 Molecules Derived from Amino Acids

- Porphyrin: Gly에서 유도
- Phosphocreatine: 골격근의 중요한 에너지 저장물질. Gly, Arg, Met 등에서 유도
- D-아미노산: 세균에서 발견. Amino acid racemase에 의해 L-이성질체에서 만들어짐
- Lignin: 식물의 단단함 유지. Phe과 Tyr에서 유도
- Tannin, morphine, cinnamon oil, vanilla, 정향(clove), 육 두구(nutmeg) 등도 Phe과 Tyr에서 유도
- 식물성장호르몬인 auxin은 Trp에서 유도
- Spermine과 spermidine: DNA packaging에 이용. Met과 ornithine에서 유도
- neurotransmitters:
 - dopamine, norepinephrine, epinephrine: Tyr에서 유도
 - γ-aminobutyrate(GABA)는 Glu, Histamine은 His, Serotonin은 Trp에서 유도

Heme (ironporphyrin)의 생합성

- glycine이 hemoglobin
 과 cytochrome의
 porphyrin의 전구체로
 작용
- 포르피린 생합성의 유전 적 결함은 포르피린증 (porphyria) 유발
- 수명이 다된 적혈구는 비장(spleen)에서 파괴 되어 bilirubin 생성. bilirubin은 간에서 담즙 색소인 bilirubin diglucuronide로 변환

Enzymes Inhibited in Heme Synthesis Defects

Box 22-2 *Lehninger Principles of Biochemistry,* Sixth Edition © 2013 W. H. Freeman and Company

빌리루빈과 빌리루빈의 분해물질

Figure 22-27

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

크레아틴과 포스포 크레아틴의 생합성

Figure 22-28
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Biosynthesis and Oxidation of Glutathione

Figure 22-29a
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

- Glutathione(GSH)의 역할:
 - Cytosol의 환원상태 유지
 - Heme의 Fe²⁺ 유지
 - Peroxide 제거

D-amino acids in bacteria arise from racemases

- Bacterial peptidoglycans contain D-Ala and D-Glu
- Racemases act on D-amino acids, use PLP as cofactor
- Racemase inhibitors are used/studied as antibiotic targets

Aromatic amino acids are precursors to plant lignins, hormones, and natural products

- **Lignin** (rigid polymer in plants) from Phe and Tyr
- Auxin (growth hormone indole-3-acetate) from Trp
- Other extracts: spices (nutmeg, vanilla), alkaloids (morphine), etc.

Biosynthesis of Auxin from Trp and Cinnamate from Phe in plants

Figure 22-30
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Amino acid decarboxylation yields neurotransmitters, inhibitors

- Decarboxylations often require PLP
- Tyr yields catecholamines such as dopamine, norepinephrine, and epinephrine
- Glu yields neurotransmitter γ-aminobutyrate
 (GABA) and Trp yields serotonin
- His yields the vasodilator and stomach acid secretion stimulant **Histamine**

Biosynthesis of Some Neurotransmitters

Figure 22-31
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

알레르기 반응과 위산 분비촉진: antagonist인 cimetidine(Tagamet)은 위산과다, 위궤양 치료제로 쓰임

DNA pakaging에 관여하는 Spermidine과 spermine의 생합성

Biosynthesis of Nitric Oxide (일산화질소)

Figure 22-33
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

• NO는 신경전달물질, 혈액응고, 혈압조절에 관여

22.4 Biosynthesis and Degradation of Nucleotides

- Nucleotide의 생합성:
 - Purine nucleotide: PRPP, Gly, N-formyltetrahydrofolate,
 Asp로부터 생합성
 - Pyrimidine nucleotide: Asp, PRPP, carbamoyl phosphate로부터 생합성
- Nucleotide의 분해:
 - Purine nucleotide: 염기는 요산으로 변환
 - Pyrimidine nucleotide: 염기는 요소로 변환
- Deoxyribonucleotide는 ribonucleotide에서 생성

Origin of Ring Atoms in Purines

Figure 22-34
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Purine nucleotide의 신생합성

 5-phosphoribosyl-1pyrophosphate(PRPP) 에서 이노신산 (inosinate, IMP) 생성

Figure 22-35
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Synthesis of AMP and GMP from IMP

Figure 22-36
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Regulation of Adenine and Guanine Biosynthesis in *E. coli*

Figure 22-37

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Pyrimidines are made from Asp, PRPP, and carbamoyl phosphate

 Unlike purine synthesis, pyrimidine synthesis proceeds by first making the pyrimidine ring and then attaching it to ribose 5-phosphate

 First committed step is rx between Asp and N-carbamoylphosphate, catalyzed by aspartate transcarbamoylase (ATCase)

Pyrimidine nucleotide의 신생합성

Figure 22-38

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Ribonucleotides are precursors to deoxyribonucleotides

- 2'C-OH bond is directly reduced to 2'-H bond...without activating the carbon!
 - Catalyzed by ribonucleotide reductase
- Mechanism: Two H atoms are donated by NADPH and carried by proteins thioredoxin or glutaredoxin

Reduction of
Ribonucleotides to
Deoxyribonucleotides
by Ribonucleotide
Reductase

Figure 22-41
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Regulation of Ribonucleotide Reductase by dNTPs

Figure 22-44

Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

dTMP is made from dUTP

- Roundabout pathway...
- 1. dUTP is made (via deamination of dCTP or by phosphorylaton of dUDP)
- 2. dUTP → to dUMP by dUTPase
- 3. $dUMP \rightarrow dTMP$ by thymidylate synthase
 - adds a methyl group from tetrahydrofolate

Thymidylate synthase is a target for some anticancer drugs.

Thymidylate(dTMP)의 생합성

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Folic acid deficiency leads to reduced thymidylate synthesis

- Folic acid deficiency is widespread,
 especially in nutritionally poor populations
- Reduced thymidylate synthesis causes uracil to be incorporated into DNA
- Repair mechanisms remove the uracil by creating strand breaks that affect the structure and function of DNA
 - Associated with cancer, heart disease, neurological impairment

Catabolism of Purines: Formation of Uric Acid

- Degradation of purines proceeds through dephosphorylation (via 5'-nucleotidase)
- Adenosine is deaminated to inosine and then hydrolyzed to hypoxanthine and ribose
- Guanosine yields xanthine via these hydrolysis and deamination reactions
- Hypoxanthine and xanthine are then oxidized into uric acid by xanthine oxidase
- Spiders and other arachnids lack xanthine oxidase

Purine nucleotide의 이화과정

Figure 22-48
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Catabolism of Pyrimidines

- Leads to NH₄⁺ then urea
- Can produce intermediates of citric acid cycle
 - Example: Thymine is degraded to succinyl-CoA

Catabolism of Thymine, a Pyrimidine

Figure 22-49
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

nucleotide 생합성 효소를 표적으로 하는 항암제의 종류

- Azaserine, acivicin: 글루타민 유사체.
 Glutamine amidotransferase 활성 저해를 통해 nucleotide 생합성 억제
- Fluorouracil(5-FU): thymidylate synthase의 활성 저해를 통해 thymine 합성 억제
- Methotrexate, aminopterin: dihydrofolate reductase 활성 억제

Chemotherapy Targets—Thymidylate Synthesis and Folate Metabolism

Figure 22-52a
Lehninger Principles of Biochemistry, Sixth Edition
© 2013 W. H. Freeman and Company

Chapter Summary

In this chapter, we learned:

- Some prokaryotes are able to reduce molecular nitrogen into ammonia; understanding details of the nitrogen fixation is one of the holy grails in biochemistry
- The 20 common amino acids are synthesized via difficult-to-remember pathways from α -ketoglutarate, 3-phosphoglycerate, oxaloacetate, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and ribose-5-phosphate
- Nucleotides can be synthesized either de novo from simple precursors, or reassembled from scavenged nucleobases
- Purine degradation pathway in most organisms leads to uric acid, but the fate of uric acid is species-specific