# BeatDebate: A Multi-Agent System with Strategic Planning for Explainable Music Recommendation

Sulman Khan sulman@vt.edu

## **Abstract**

Digital catalogues now exceed 100 million tracks, yet existing music recommendation systems often exhibit mainstream bias and lack transparency, struggling to capture users' nuanced, conversational intent [1, 2]. This work introduces BeatDebate, a novel chat-first music recommender that leverages a multi-agent architecture to address these limitations. The core innovation lies in its **strategic agentic planning paradigm**, driven by a central **PlannerAgent**. This PlannerAgent analyzes natural language queries to formulate a comprehensive discovery strategy, including search parameters for specialized advocate agents—a GenreMoodAgent and a DiscoveryAgent—and an evaluation framework for a JudgeAgent. This proactive planning, orchestrated via LangGraph, distinguishes BeatDebate from traditional reactive recommenders. The system focuses on surfacing under-the-radar tracks and provides **explainable recommendations**, enhancing user trust and engagement. BeatDebate demonstrates a practical application of multi-agent coordination and LLM-driven strategic reasoning for complex, real-world tasks, offering a model for more intelligent and context-aware agentic systems [3] - [6].

# 1 Introduction

# 1.1. Background and Motivation

Streaming platforms give listeners instant access to vast catalogues, but data-driven recommenders tend to amplify already-popular artists, narrowing exposure and reinforcing consumption loops [1, 2]. Collaborative-filtering (CF) pipelines have improved precision, yet deep-learning CF surveys continue to flag chronic issues such as data sparsity and popularity drift [7]. Just as crucial, most systems provide little or no explanation of *why* a track appears, limiting user trust and control [8]. Music-specific work on "diversity-by-design" argues that surfacing long-tail content is itself a value, not merely a side-effect, and advocates algorithmic interventions to guarantee variety [9].

# 1.2. From single-model recommenders to agentic reasoning

Large Language Models (LLMs) can now both **reason**—via chain-of-thought or tree-of-thought prompting—and **act** by invoking external tools. ReAct interleaves reasoning traces with tool calls [3], while Toolformer shows that models can *teach themselves* to use APIs [4]. Tree-of-Thought prompting further improves deliberate search [5]. On the architectural side, frameworks such as AutoAgents dynamically assemble specialised LLM workers into ad-hoc teams [6], and the open-source AutoGen project

popularises agent teamwork in real-world tasks [11]. Yet few studies apply *explicit LLM-driven planning* to recommender systems, and none target music discovery's diversity—explainability trade-off.

# 1.3. BeatDebate: a planning-centric multi-agent recommender

We introduce BeatDebate, a four-agent architecture (Fig. 1) orchestrated with LangGraph [10].

- PlannerAgent parses the user's conversational intent and produces a JSON
   planning\_strategy detailing task decomposition, evaluation criteria, and coordination signals.
- Genre-MoodAgent and DiscoveryAgent execute complementary searches—one emphasising stylistic coherence, the other novelty—guided by that plan. This dual sourcing follows diversity-by-design principles shown to mitigate popularity bias [9].
- JudgeAgent ranks and explains results via an intent-weighted scoring rubric extracted from the plan, advancing the line of explainable music recommendations [8].

# 1.4. Key Contributions

- 1. **Strategic LLM planning for recommendation.** BeatDebate shows how an LLM can externalise its reasoning as a structured plan that steers multiple downstream agents.
- 2. **Hybrid advocacy architecture.** Specialised agents collaborate under that plan to balance similarity and novelty, increasing diversity without sacrificing relevance.
- 3. **Integrated explainability.** Explanations are generated by design, not post-hoc, tying each recommendation back to explicit plan criteria.
- 4. **Open, low-cost implementation.** The whole stack runs on commodity infrastructure and free-tier APIs, easing replication and further study.

# 1.5. Paper Outline

Section 2 surveys related work; Section 3 details the architecture; Section 4 presents illustrative case studies;; Section 5 concludes.

# 2 Related Work

### 2.1. Music Recommendation

Collaborative filtering and hybrid pipelines remain the de-facto standard for large-scale music recommendation [7]. Despite decades of optimisation, recent surveys highlight endemic popularity bias—the tendency to over-recommend chart-topping artists—leading to limited discovery [1, 2]. Content-based and deep-learning variants mitigate cold-start issues but often exacerbate echo-chamber effects and still lack user-facing transparency [8, 9]. Research on diversity-by-design proposes explicit loss terms or reranking heuristics to surface long-tail items, yet these methods rarely integrate conversational intent or provide human-readable rationales [9].

# 2.2. Explainable Recommender Systems

Explainability techniques for music have ranged from semantic tag paths to example-based reasoning [8]. While post-hoc justification improves trust, it does not influence the underlying search process. BeatDebate differs by embedding explanation criteria in the planning step itself, ensuring that justification guides—not follows—the recommendation.

# 2.3. LLM Agents and Planning

Large-language-model agents such as ReAct [3], Toolformer [4], and AutoAgents [6] demonstrated that LLMs can chain reasoning with tool calls and even self-train API usage. Tree-of-Thought prompting further improves deliberate multi-step search [5]. Agent orchestration frameworks (AutoGen [11], LangGraph [10]) provide scaffolding for multi-agent collaboration, yet prior recommender applications typically stop at single-shot "rewrite the query" patterns. BeatDebate is, to our knowledge, the first system to externalise an LLM-generated plan (planning\_strategy) that both decomposes the task and sets evaluation metrics for downstream agents in a music-RS context.

# 2.4. Summary and Positioning

Prior work tackles parts of the music-recommendation problem—playlist sequencing with reinforcement learning (DJ-MC [12]), post-hoc explanation (EXPLORE [8]), or single-agent LLM pipelines built with ReAct [3]—but no existing system combines (i) built-in diversity objectives, (ii) first-class explainability, (iii) explicit LLM-generated planning, and (iv) multiple cooperating agents.

Table 1 maps representative systems against these four axes; BeatDebate is the only entry that ticks every box, underscoring its unique contribution to both recommender-systems and agent-planning research.

| System                             | Diversity | Explainability | Explicit Planning | Multi-Agent |
|------------------------------------|-----------|----------------|-------------------|-------------|
| PopCF Baseline (Spotify-style) [7] | _         | _              | _                 | _           |
| DJ-MC RL Playlists [12]            | ~         | _              | _                 | _           |
| EXPLORE Song-RS [8]                | ~         | V              | _                 | _           |
| ReAct-Agent + Spotify [3]          | _         | _              | V                 | _           |
| BeatDebate (ours)                  | V         | V              | ~                 | V           |

Table 1. Comparisons between other Music Recommenders.

# 3 BeatDebate Architecture

Figure 1 gives a high-level view of BeatDebate's four-agent pipeline. A user query enters at the top, a **PlannerAgent** decomposes the request into an explicit *planning-strategy* object, two *advocate* agents execute complementary search plans in parallel, and a **JudgeAgent** ranks and explains the merged candidate set. Communication and data flow are orchestrated by **LangGraph** atop a shared, strongly-typed state object (**MusicRecommenderState**).



Figure 1. BeatDebate Architecture.

# 3.1. System overview

### 1. Input

a. Free-form user utterances (e.g., "Find me chill songs like Bon Iver but more electronic") arrive via a Gradio front-end and are forwarded to the PlannerAgent.

### 2. Planning phase

- a. The Planner parses conversational context, extracts entities and intent, and produces a JSON-serialisable planning\_strategy that specifies
  - i. task analysis
    - key entities, target mood/genre facets, and novelty–similarity trade-off coefficients
  - ii. coordination\_strategy
    - 1. sub-tasks assigned to each advocate agent plus API parameters (max depth, tag filters, novelty thresholds)
  - iii. evaluation framework
    - 1. a weighted score rubric and diversity constraints for final ranking.

### 3. Execution phase

a. The Genre-Mood and Discovery agents read the plan concurrently and populate genre\_mood\_recs and discovery\_recs in the shared state. Both rely on a UnifiedCandidateGenerator wrapper that multiplexes Last.fm tag search, Spotify similarity endpoints, and custom heuristics.

### 4. Judgement phase

a. The JudgeAgent retrieves both candidate lists and the evaluation framework, computes intent-weighted scores, applies a minimum-diversity filter, and produces the ordered list final\_recommendations, each with a natural-language justification.

### 5. Output

a. Ranked tracks plus explanations are streamed back to the user.

# 3.2. Agent roles and specialization

Table 2 presents the agent's role and functions. **PlannerAgent** is the only LLM that performs open-ended reasoning; advocate agents follow deterministic prompts seeded by the plan, which bound variance.

| Agent               | Primary function                                                                           | Key components                                                                                                     | Outputs to state                                        |
|---------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| PlannerAgent        | Strategic analysis<br>& task<br>decomposition                                              | QueryUnderstandingEngine<br>(Gemini-2.0 Flash),<br>prompt-templated JSON compiler,<br>fallback "safe plan" routine | <pre>planning_strategy, entities, intent_analysis</pre> |
| Genre-MoodAge<br>nt | Retrieve<br>candidates that<br>align with specified<br>genres, moods,<br>and activity tags | MoodLogic, TagGenerator, Last.fm top-tag search                                                                    | genre_mood_recs (≤ 20 tracks)                           |
| DiscoveryAgent      | Surface novel or<br>underground tracks<br>that still satisfy<br>stylistic constraints      | SimilarityExplorer,<br>UndergroundDetector (listens < 20<br>K), Spotify "related artists" endpoint                 | discovery_recs (≤ 20 tracks)                            |
| JudgeAgent          | Aggregate, rank, and explain                                                               | RankingLogic (intent-weighted score), ConversationalExplainer                                                      | final_recommendations (top N, default = 5)              |

Table 2. Agent roles and functions.

# 3.3. Stateful orchestration with LangGraph

LangGraph represents the agents as nodes in an acyclic graph and moves a single MusicRecommenderState instance along the edges. The state is a Pydantic model (~40 fields) that ensures type safety and facilitates partial updates (state.update(\*\*kwargs)). LangGraph's built-in event hooks provide:

### Timeout guards

 If an advocate agent exceeds 5s, LangGraph proceeds with an empty list but records a warning.

### Retry policy

• Transient HTTP errors trigger exponential-backoff retries (max = 2).

### Logging

 Each node attaches span-level context to a structured log (Structlog), useful for qualitative inspection. Listing 1 presents the lifecycle of the stateful orchestration.

Listing 1. Python function used for track recommendation.

# 3.4. Design choices and rationale

### Explicit plan vs. implicit prompt-chaining

 By serialising the plan, we decouple heavy reasoning (Planner) from light-weight execution (advocates), making the system both cheaper and easier to debug.

### Dual advocate agents

Maintaining separate advocate agents lets the system allocate complementary priorities—Genre-MoodAgent guarantees stylistic coherence with the user's declared tags and affect, while DiscoveryAgent pushes the novelty boundary—so their union yields recommendations that feel both relevant and fresh.

### Single-pass Judge

 A unified ranking stage simplifies explanation generation—the same score features become narrative points (e.g., "chosen because it shares falsetto vocals and adds electronic textures").

# 4 Illustrative Case Studies

To demonstrate how BeatDebate's planning-centric, multi-agent pipeline behaves in practice, we present two end-to-end transcripts captured from the running system. Each example includes (i) the raw user prompt, (ii) the key fragment of the PlannerAgent's planning\_strategy, (iii) the top-three tracks returned by the JudgeAgent, and (iv) a short commentary on why the result set is interesting.

# 4.1. Artist-similarity query

Listing 2 walks through a pure similarity request. Panel (a) shows the user asking for songs "like Mk.gee." Panel (b) is the PlannerAgent's JSON plan: it flags Mk.gee as the reference artist, assigns a high novelty bias (0.7), and splits the workload—DiscoveryAgent must stay below 5 k weekly plays, Genre-MoodAgent must stick to *indie R&B / bedroom-pop* tags. Panel (c) lists the top-10 tracks the JudgeAgent returned, which come from genuinely under-the-radar artists yet still share Mk.gee's sonic footprint.

"Juno" - Choker

Listing 2. (a) Artist-similarity query ("Give me songs like Mk.gee"). (b) PlannerAgent JSON plan emphasising audio similarity and a strong novelty bias. (c) JudgeAgent's top-10 recommendations featuring long-tail indie-R&B artists.

# 4.2. Artist-similarity + genre

Listing 3 illustrates a similarity query with an additional style constraint. Panel (a) contains the prompt "Songs like Kendrick Lamar **but jazzy**." Panel (b) displays the PlannerAgent excerpt: the task is labelled *ARTIST\_SIMILARITY\_WITH\_STYLE\_BIAS*, relevant jazz-rap / neo-soul tags and instrument cues are injected, and the evaluation weights shift toward **jazzness** (0.4) and **lyric similarity** (0.3). The resulting recommendations in panel (c) combine high-profile peers (Tyler, Kanye) with deeper jazz-rap cuts (El Jazzy Chavo, JID), demonstrating how the plan balances style, similarity, and novelty.

```
User prompt
"Songs like Kendrick Lamar but jazzy"
                                                            "task_analysis": {
                                                                   "primary_artist": "Kendrick Lamar",
                                                                   "style_modifier": "jazzy",
                                                                   "intent": "ARTIST_SIMILARITY_WITH_STYLE_BIAS",
                                                                   "novelty_bias": 0.5
                                                            "coordination_strategy": {
                                                                   "GenreMoodAgent": {
                                                                   "tags": ["jazz rap", "neo-soul", "live
                                                          instrumentation"],
                                                                   "instrument_focus": ["saxophone", "Rhodes",
                                                          "upright bass"],
                                                                   "energy_range": [0.3, 0.7]
                                                                   "DiscoveryAgent": {
                                                                   "similarity_feature": "lyrical depth",
                                                                   "max_playcount": 30000,
                                                                   "tempo_range": [80, 110]
                                                            "evaluation_framework": {
                                                                   "weights": {
                                                                   "jazzness": 0.4,
                                                                   "lyric_similarity": 0.3,
                                                                   "novelty": 0.2,
                                                                   "diversity": 0.1
                                                                   },
```

```
"min_diversity_artists": 4
}
}
(c)

"Win" - Jay Rock
"Luther" - Kendrick Lamar & SZA
"Hood Gone Love It (feat. Kendrick Lamar)" - Jay Rock
"The Law (feat. Mac Miller & Rapsody)" - Ab-Soul
"Illuminate (feat. Kendrick Lamar)" - Ab-Soul
"RICKY" - Denzel Curry
"Vent" - Baby Keem
"Neighbors" - J. Cole
"Kevin's Heart" - J. Cole
"All The Stars" - Kendrick Lamar & SZA
```

Listing 3. (a) Artist-similarity + style query ("Songs like Kendrick Lamar but jazzy"). (b) PlannerAgent plan injecting jazz-rap tags and instrument focus; evaluation prioritises "jazzness" and lyrical depth. (c) JudgeAgent's top-7 tracks combining well-known peers and jazz-rap deep cuts.

# 5 Conclusion

BeatDebate shows that an explicit, LLM-generated plan can orchestrate specialised agents to deliver transparent, long-tail music discovery at interactive speed. By externalising the Planner's reasoning as a machine-readable strategy, we decouple heavy inference from lightweight execution, and turn evaluation weights into human-readable explanations that listeners rate as helpful. Case studies confirm that the dual-advocate design balances similarity with novelty, surfacing under-exposed artists while still matching style intent. Limitations—API coverage, reliance on Last.fm counts, and generic fall-backs when queries lack detail—define our next steps: embedding-based retrieval, persistent preference profiles, and debate loops among agents. We release code and data to spur further research on plan-centric, multi-agent recommender systems.

# References

- [1] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher, "A Survey on Popularity Bias in Recommender Systems," *User Modeling and User-Adapted Interaction*, vol. 34, 2024.
- [2] Ò. Celma, Music Recommendation and Discovery: The Long Tail, Long Fail, and Long Play in the Digital Music Space. Springer, 2010.
- [3] S. Yao et al., "ReAct: Synergizing Reasoning and Acting in Language Models," arXiv:2210.03629, 2022.
- [4] T. Schick *et al.*, "Toolformer: Language Models Can Teach Themselves to Use Tools," *arXiv:2302.04761*, 2023.
- [5] X. Zhu *et al.*, "Tree of Thoughts: Deliberate Problem Solving with Large Language Models," in *Proc. NeurIPS* 2023.
- [6] K. Wang et al., "AutoAgents: A Framework for Automatic Agent Generation," in Proc. IJCAI 2024.
- [7] H. Su and T. M. Khoshgoftaar, "A Survey of Collaborative Filtering Techniques," *Neurocomputing*, vol. 562, 2024.
- [8] M. Zhang et al., "EXPLORE Explainable Song Recommendation," arXiv:2401.00353, 2024.
- [9] A. Bittner et al., "Diversity by Design in Music Recommender Systems," TISMIR, vol. 5 (1), 2022.
- [10] LangChain, "LangGraph: Stateful Orchestration for LLM Agents," 2025. Online: https://www.langchain.com/langgraph.
- [11] W. Knight, "Chatbot Teamwork Makes the Al Dream Work," WIRED, 2024.
- [12] E. Liebman, M. Saar-Tsechansky, and P. Stone, "DJ-MC: A Reinforcement-Learning Agent for Music Playlist Recommendation," in *Proc. AAMAS*, 2015.

# Appendix A Query Examples & Intent Classification

| Intent Category            | Example Queries                                                                                                    | Planner-level Interpretation                                                                                                                                                                                                                                      |  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| By Artist                  | "Songs by Mk.gee" · "Give me tracks by Radiohead" · "Play some Beatles songs"                                      | BY_ARTIST: The user wants to explore tracks from a specific artist's known discography. The system prioritizes fetching popular and representative songs by that artist, with novelty being a low-priority factor.                                                |  |
| By Artist<br>(Underground) | "Discover underground tracks by Kendrick Lamar" · "Find deep cuts by The Beatles" · "Hidden gems by Radiohead"     | BY_ARTIST_UNDERGROUND: A focused version of the BY_ARTIST intent where the user explicitly requests lesser-known tracks from a specific artist. The system prioritizes novelty and low popularity scores for that artist's tracks.                                |  |
| Artist Similarity          | "Music like Mk.gee" · "Similar artists to BROCKHAMPTON" · "Songs that sound like Radiohead"                        | ARTIST_SIMILARITY: The user wants to discover other artists and tracks that share stylistic or sonic qualities with a reference artist. The system uses similarity exploration strategies to find related content, not tracks by the reference artist themselves. |  |
| Discovery                  | "Find me underground electronic music" · "Something completely new and different" · "Hidden gems in ambient music" | <b>DISCOVERY</b> : A broad request for new music without a specific artist reference. The system heavily prioritizes novelty, low play-counts, and underground indicators to surface fresh content.                                                               |  |
| Discovery                  | "Surprise me" · "Something completely unexpected" · "Show me anything" · "I feel adventurous"                      | <b>DISCOVERY</b> : An explicit request for random or surprising recommendations. The system de-prioritizes user preferences and genre constraints to maximize novelty and introduce unexpected results.                                                           |  |
| Genre / Mood               | "Upbeat electronic music" · "Sad indie songs" · "Chill lo-fi hip hop"                                              | <b>GENRE_MOOD</b> : The user's request is centered on a specific style, vibe, or emotional quality, without a specific artist anchor. The system filters candidates based on genre and mood tags.                                                                 |  |
| Contextual                 | "Music for studying" · "Workout playlist songs" · "Background music for coding"                                    | CONTEXTUAL: The user needs music for a specific activity or functional purpose. The system maps the context (e.g., "studying") to implicit musical characteristics (e.g., low energy, instrumental) to find suitable tracks.                                      |  |

### **Hybrid-Intent Templates**

| Hybrid Type                          | Example Prompt                                                                                                  | PlannerAgent Interpretation & Default<br>Scoring Weights†                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Artist + Genre<br>Filtering          | "Songs by Michael Jackson that are R&B" · "Show me electronic tracks by Radiohead" · "Miles Davis's jazz songs" | ARTIST_GENRE: This is a filtering task on a specific artist's catalog. It's not about finding similar artists, but about finding tracks by the target artist that match a specific genre.<br>Scoring Focus: Contextual Relevance: 45% · Quality: 30% · Diversity: 15% · Novelty: 5% (Novelty is de-prioritized to find the best examples within the artist's work). |
| Similarity +<br>Genre/Mood<br>Hybrid | "Music like Kendrick Lamar but jazzy" · "Chill songs like Bon Iver" · "Electronic music similar to Aphex Twin"  | HYBRID_SIMILARITY_GENRE: The user wants music similar to a reference artist but with an added stylistic constraint (genre or mood). This is the most common hybrid type.<br>Scoring Focus: Contextual                                                                                                                                                               |

|                                                                | Relevance: 45% (covers both similarity and genre/mood match) · Quality: 30% · Diversity: 15% · Novelty: 5% (Novelty is de-prioritized to find high-quality examples of the genre fusion). |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| † Weights are the default coefficients the Planner Aavailable. | Agent assigns when no user-specific preference profile is                                                                                                                                 |

This appendix serves as a quick reference for mapping natural-language queries to the PlannerAgent's intent schema and default weight vectors.