Implementing Factor Analysis and PCA in R

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Assemble a data set of returns from correlated stocks

Use R to calculate principal components of the financial data

Eliminate low-value principal components using a Scree plot

Relate the principal components to underlying latent factors

PCA in R

Explain Google's returns

Yahoo finance

Using returns of correlated stocks

Eigen Decomposition

Built-in R function

On covariance matrix

Principal Components

From eigen vectors

Uncorrelated components

Covariance and Correlation

Correlation matrix signals trouble

Multicollinearity problems

Scree Plot

Number of dimensions

Discard low-value dimensions

Interpret and Regress

Beta, bonds, sectors

Now regress Google

Demo

Implement Eigen analysis and PCA in R

PCA should always be applied on the covariance matrix of standardised vectors

Data Frame: Data in Rows and Columns

AD HICTED

DATE	OPEN	A	CLOSE
2016-12-01	772	• • •	779
2016-11-01	758	• • •	747
2006-01-01	302	•••	309

Each column represents 1 variable (a list or vector)

Each row represents 1 observation

From File to Data Frame

DATE	OPEN	•••	ADJUSTED CLOSE
2016-12- 01	772	• • •	779
2016-11- 01	758	• • •	747
2006-01 -01	302	• • •	309

File

Data Frame

Never Regress Non-Stationary Data

Smoothly trending data will lead to poor quality regression models

First Differences

$$y'_{12} = \log y_2 - \log y_1$$

$$x'_{12} = \log x_2 - \log x_1$$

Regress y' and x'

Log Differences

$$y'_{12} = (y_2 - y_1)/y_1$$

$$x'_{12} = (x_2 - x_1)/x_1$$

Regress y' and x'

Returns

Take first differences of smooth data converting either to log differences or returns

DATE	GOOG. PRICE	NASDAQ. PRICE	
2016-12-01	779	5550	Ro
2016-11-01	747	5324	
2006-01-01	309	1900	Ro

Row 1

goog

Row nrow(goog)

Column 1

goog[-nrow(goog),-1]

goog[-nrow(goog),-1]

Element-wise Operations

779	5550	747	5324		779/747	5550/5324
					• • •	• • •
				=		
					•••	•••

goog[-nrow(goog),-1]/ goog[-1,-1]

Prices to Returns

779/747	5550/5324		1	1		779/
•••	• • •		1	1		
		-	1	1	=	
			1	1		
	***		1	1		

779/747 - 1	5550/5324 -1
• • •	• • •

This converts prices to returns

Standardising Data

X11 X_{1k} **X**21 X₂k **X**31 X_{3k} X_{n1} Xnk $avg(X_1)$ $avg(X_k)$ $stdev(X_1)$ $stdev(X_k)$

Standardising Data

$$\frac{x_{11} - avg(X_1)}{stdev(X_1)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

$$\frac{x_{1k} - avg(X_k)}{stdev(X_k)}$$

Each column of the standardised data has mean 0 and variance 1

Principal Components Analysis

Eigenvalue Decomposition

Principal Components:

Eigenvectors:

Eigenvalues:

Interpreting Eigenvalues

These vectors F_i are arranged in order of decreasing variance

The greater the variance of a principal component, the more important it is

Interpreting Eigenvalues

The greater the eigenvalue of a principal component, the more important it is

Use the Scree plot to determine how many principal components to discard

Exploratory Factor Analysis: Experts trace back principal components to observable factors

PCA for Latent Factor Identification

3 Latent Factors in Stock Returns

Market Movements Interest Rates Industry Sectors

Matrix Multiplication

Fi = X Vi

n rows, n rows, k rows,

1 column k columns 1 column

Scree Plots

Scree Plots

Scree Plots

Summary

R makes PCA very simple and easy-to-use

PCA of equity returns reveals three important principal components

These closely correlate with underlying economic factors