Linear Models

Statistics with R

Basel R Bootcamp

April 2019

Linear Models

Linear models are, by far, the most important models in all of statistics.

Many statistical tests you may know of are special types of linear models.

Why are linear models so great?

- They are easy to interpret.
- They can approximate non-linear data well.
- They are easy to calculate and implement (just addition and multiplication!).
- They just work!

\$\$\Large income = 885 + age \times 149.3\$\$

What is a linear model?

A linear model is just addition and multiplication and can be written in the following forms:

Version 1

 $\$ \huge y = \beta_{0} + \beta_{1}x_{1} + \beta_{2} x_{2} + ... + β_n + \beta_{n}x_{n} + \epsilon\$\$

Version 2

 $\$ \huge y = \beta_{0} + \sum_{i=1}^{n} \beta_{i}x_{i}+ \epsilon\$\$

from media.tumblr.com

Simple Linear Regression

Definition: Simple linear regression is a linear model with one predictor (x), and where the error term (ϵ) is Normally distributed.

\$\$\huge y=\beta_{0} + \beta_{1} x + \epsilon\$\$

Parameter	Description	In words
β_0	Intercept	When x = 0, what is the predicted value for y?
β_1	Coefficient for x	For every increase of 1 in x, how does y change?

Formula

\$\$\Large income = 885 + 149.3 \times age + \epsilon\$\$

Coefficients

\$\$\Large \beta_{0} = 885, \beta_{age} = 149.3\$\$

Multiple Linear Regression

Definition: Multiple linear regression is a linear model with many predictors $(x_{1}, x_{2}, ..., x_{n})$, and where the error term \(\epsilon\) is Normally distributed.

Parameter	Description	In words
β_0	Intercept	When all x values are 0, what is the predicted value for y?
$\beta_1, \beta_2,$	Coefficient for $x_1, x_2,$	For every increase of 1 in coefficient for $x_1, x_2,$ how does y change?

<u>Formula</u>

\$\$\large income = 1628 + 147 \times age - 4.1 \times height + \epsilon\$\$

Coefficients

\$\$\large \beta_{0} = 1628, \beta_{age} = 147, $\beta_{weight}=-4.1$

Estimating coefficients

How do we estimate the 'right' coefficients in a linear model? Which of the four would be a good fit?

\$\$\Large income = \beta_{0} + \beta_{1} \times age + \epsilon\$\$

Estimating coefficients

How do we estimate the 'right' coefficients in a linear model? Which of the four would be a good fit?

\$\$\Large income = -0.254 + 0.167 \times age + \epsilon\$\$

Estimating coefficients

How do we estimate the 'right' coefficients in a linear model?

Find the values that minimise **Mean Squared Error** (MSE).

MSE: The average squared distance between the prediction and the data.

 $\$ \Large MSE = \frac{1}{N}\sum_{i=1}^{n}(y_{i}-Prediction_{i})^2\$\$

id	age	income	Prediction	SE
1	24	4.0	3.730	0.0729
2	27	4.2	4.228	0.0008
3	31	5.1	4.892	0.0433
4	44	6.3	7.050	0.5625
5	65	10.9	10.536	0.1325
			MSE	0.16

R² (R-Squared)

R-Squared (R^{2}) is the most common method of calculating the **overall performance** of a model.

 $\ \R^{2} = 1 - \frac{SS_{res}}{SS_{tot}}$

\mathbb{R}^2 Interpretation

- Model explains no variance in y. 0
- Model explains half the variance in y.
- Model explains half the variance in y. 1

R² (R-Squared)

R-Squared (R^{2}) is the most common method of calculating the **overall performance** of a model.

 $\ \R^{2} = 1 - \frac{SS_{res}}{SS_{tot}}$

\mathbb{R}^2 Interpretation

- Model explains no variance in y. 0
- Model explains half the variance in y. .5
- Model explains half the variance in y. 1

How to fit and and dissect linear models in R

with glm()

11 / 17

<u>Fitting</u>

Function	Description
glm(formula, data)	Fit a linear model to data and calculate best coefficients

```
# Create a model income_glm
\# Y = income
# X1 = age, X2 = children
income_glm <- glm(formula = income ~ age + children,</pre>
                  data = baselers)
```

Evaluation

Function	Description
coef(mod)	Get coefficients from a model
<pre>fitted(mod)</pre>	Get fitted results.
resid(mod)	Get residuals (errors)

id	income	age	children
1	6300	44	2
2	10900	65	2

Fitting

Function Description glm(formula, data and calculate best coefficients

Evaluation

```
Function Description

coef(mod) Get coefficients from a model

fitted(mod) Get fitted results.

resid(mod) Get residuals (errors)
```

```
# Print income_glm
income_glm
## Call: glm(formula = income ~ age + children, data = baselers)
## Coefficients:
                               children
## (Intercept)
                       age
       871.10
                    149.25
                                   7.78
## Degrees of Freedom: 8509 Total (i.e. Null); 8507 Residual
    (1490 observations deleted due to missingness)
## Null Deviance:
                         6.33e+10
## Residual Deviance: 1.29e+10
                                  AIC: 145000
```

13 / 17

Fitting

Function Description Fit a linear model to glm(formula, data and calculate best data) coefficients

Evaluation

```
Function
               Description
               Get coefficients from a
coef(mod)
               model
               Get fitted results.
fitted(mod)
               Get residuals (errors)
resid(mod)
```

```
# Show summary info
summary(income_glm)
##
## Call:
## glm(formula = income ~ age + children, data = baselers)
## Deviance Residuals:
     Min
               10 Median
                               3Q
                                      Max
             -835
                                     4779
    -4250
                              820
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 871.101
                            44.959
                                      19.4
                                             <2e-16 ***
                             0.818
               149.249
                                     182.5
                                             <2e-16 ***
## age
## children
                 7.777
                            12.861
                                       0.6
                                               0.55
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 1513138)

<u>Fitting</u>

Function	Description
glm(formula, data)	Fit a linear model to data and calculate best coefficients

Evaluation

Function	Description
coef(mod)	Get coefficients from a model
<pre>fitted(mod)</pre>	Get fitted results.
resid(mod)	Get residuals (errors)

```
# Get fitted values (only first 5)
fitted(income_glm)
# Get residuals (only first 10)
resid(income_glm)
## 7454 10588 5513 4916 4461
## -1153.6 312.2 -413.4 -716.4 -460.9
           id income age children fitted resid
                 6300 44 2
                                   7454 -1153.6
                                   10588 312.2
                10900 65 2
```

Fitting

Function Description Fit a linear model to glm(formula, data and calculate best data) coefficients

Evaluation

```
Function
                Description
                Get R<sup>2</sup> value from
rsq(mod)
                model.
                Get tidy results from a
tidy(mod)
                model.
```

```
library(rsq)
library(broom)
# Show R-squared from model
rsq(income_glm)
```

[1] 0.7967

```
# Show 'tidy' results from my model
tidy(income_glm)
```

```
## # A tibble: 3 x 5
                estimate std.error statistic p.value
    term
    <chr>
                   <dbl>
                                       <dbl>
                                                <dbl>
                             <dbl>
                  871.
                            45.0
                                      19.4 7.11e-82
## 1 (Intercept)
## 2 age
                  149.
                             0.818
                                     183.
                                             0.
## 3 children
                    7.78
                                       0.605 5.45e- 1
                            12.9
```

Practical

(cc) BY-SA www.therbootcamp.com