1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2021	1	자연과학	5	4
2021	1	공학	92	88
2022	1	자연과학	1	1
2022	1	공학	91	87
2023	1	공학	97	92
2024	1	공학	64	53
2025	1	공학	91	0

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2018	1	39.54	61.09	35.36	47	
2017	2	37.26	63.09	32.32		
2017	1	38.26	65.82	33.5	36	
2016	2	37.24	72.07	31.53		
2016	1	37.88	73.25	32.17	30.67	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	1	3.44	3.02	3.58	3.44	
2016	1	3.52	3.29	3.61	3.44	
2015	1	3.49	2.94	3.64	3.4	

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율
2021	1	Α+	25	27.17
2021	1	Α0	18	19.57
2021	1	B+	43	46.74
2021	1	ВО	6	6.52
2022	1	Α+	22	25
2022	1	A0	14	15.91
2022	1	B+	32	36.36
2022	1	ВО	16	18.18
2022	1	C+	4	4.55
2023	1	Α+	33	35.87
2023	1	A0	5	5.43
2023	1	B+	36	39.13
2023	1	ВО	12	13.04
2023	1	C+	6	6.52
2024	1	Α+	15	28.3
2024	1	A0	5	9.43
2024	1	B+	19	35.85
2024	1	ВО	1	1.89
2024	1	C+	13	24.53

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	1	91.5	93.79	91.1	87	
2023	2	91.8	93.15	91.56		
2023	1	91.47	93.45	91.13	82.5	
2022	2	90.98	92.48	90.7		
2022	1	90.98	92.29	90.75	84	

6. 강의평가 문항별 현황

		нош				점수병	별 인원	실분포	
번호	평가문항	본인평 균 (가중 치적용)	차	ዘ학평균과의 ·이 ,-:미달)	매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
		5점	학과	대학	- 1점	2점	3점	4점	5점
	교강사:	미만	차이 평균	차이 평균	178	42	28	42	26

No data have been found.

7. 개설학과 현황

학과	2025/1	2024/1	2023/1	2022/1	2021/1
융합전자공학부	2강좌(6학점)	2강좌(6학점)	2강좌(6학점)	2강좌(6학점)	2강좌(6학점)

8. 강좌유형별 현황

강좌유형	2021/1	2022/1	2023/1	2024/1	2025/1
일반	2강좌(97)	2강좌(92)	2강좌(97)	2강좌(64)	2강좌(91)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 서 2027 교육과 <i>원</i> 정	융합전자공학 부	직접 회로에 사용되는 나노 전자소자들의 device physics와 동작원리를 공부한다. I. 시스템 LSI : 스트레인드 실리콘 채널 SOI CMOSFET, Fin-FETs and other Multi-gate transistors. II. 휘발성 메모리 : Dynamic random-access memory (DRAM), Cap-less memory III. 비휘발성 메모리 : 낸드 플래시 메모리 (NAND Flash), 나노 플로팅 게이트 메모리 (NFGM), 터널링 베리어 메모리(TBM), 폴리머 메모리(PoRAM), 저항변화 메모리 (ReRAM), 스핀전달토크형 자기저항메모리(STT-MRAM) IV. Emerging devices : 단전자 트랜지스터 (SET), 분자 소자 (Molecular device), Carbon 나노 튜브 디바이스 (CNT devices)	The purpose of this lecture is to learn about device physics, and fabrication process for nano-electron devices as belows: I. System LSI: strained-Si-channel SOI CMOSFET, Fin-FETs and other Multi-gate transistors. II. Volatile Memory: Dynamic random-access memory (DRAM), Cap-less memory III. Non-volatile Memory: NAND flash memory, Nano-Floating Gate memory (NFGM), Tunnel-Barrier-engineered memory (TBM), Polymer memory (PoRAM), Resistive change memory (ReRAM), Phase change memory (PCRAM), Spin-torque magnetic random-access-memory (STT-MRAM) IV. Emerging Devices: Single electron	

교육과정	관장학과	국문개요	영문개요	수업목표
			transistor (SET), Molecular device, CNT devices.	
학부 2020 - 2023 교육과 정	서울 공과대학 융합전자공학 부	직접 회로에 사용되는 나노 전자소자들의 device physics와 동작원리를 공부한다. I. 시스템 LSI: 스트레인드 실리콘 채널 SOI CMOSFET, Fin-FETs and other Multi-gate transistors. II. 휘발성 메모리: Dynamic random-access memory (DRAM), Cap-less memory III. 비휘발성 메모리: 낸드 플래시 메모리 (NAND Flash), 나노 플로팅 게이트 메모리 (NFGM), 터널링 베리어 메모리(TBM), 폴리머 메모리(PoRAM), 저항변화 메모리(ReRAM), 스핀전달토크형 자기저항메모리(STT-MRAM) IV. Emerging devices: 단전자 트랜지스터 (SET), 분자 소자 (Molecular device), Carbon 나노 튜브 디바이스 (CNT devices)	The purpose of this lecture is to learn about device physics, and fabrication process for nano-electron devices as belows: I. System LSI: strained-Si-channel SOI CMOSFET, Fin-FETs and other Multi-gate transistors. II. Volatile Memory: Dynamic random-access memory (DRAM), Cap-less memory III. Non-volatile Memory: NAND flash memory, Nano-Floating Gate memory (NFGM), Tunnel-Barrier-engineered memory (TBM), Polymer memory (PoRAM), Resistive change memory (ReRAM), Phase change memory (PCRAM), Spin-torque magnetic random-access-memory (STT-MRAM) IV. Emerging Devices: Single electron transistor (SET), Molecular device, CNT devices.	
	서울 공과대학 융합전자공학 부	직접 회로에 사용되는 나노 전자소자들의 device physics와 동작원리를 공부한다. I. 시스템 LSI: 스트레인드 실리콘 채널 SOI CMOSFET, Fin-FETs and other Multi-gate transistors. II. 휘발성 메모리: Dynamic random-access memory (DRAM), Cap-less memory III. 비휘발성 메모리: 낸드 플래시 메모리 (NAND Flash), 나노 플로팅 게이트 메모리 (NFGM), 터널링 베리어 메모리(TBM), 폴리머메모리(PoRAM), 저항변화 메모리 (ReRAM), 스핀전달토크형 자기저항메모리(STT-MRAM) IV. Emerging devices: 단전자 트랜지스터 (SET), 분자 소자 (Molecular device), Carbon나노 튜브 디바이스 (CNT devices)	The purpose of this lecture is to learn about device physics, and fabrication process for nano-electron devices as belows: I. System LSI: strained-Si-channel SOI CMOSFET, Fin-FETs and other Multi-gate transistors. II. Volatile Memory: Dynamic random-access memory (DRAM), Cap-less memory III. Non-volatile Memory: NAND flash memory, Nano-Floating Gate memory (NFGM), Tunnel-Barrier-engineered memory (TBM), Polymer memory (PoRAM), Resistive change memory (ReRAM), Phase change memory (PCRAM), Spin-torque magnetic random-access-memory (STT-MRAM) IV. Emerging Devices: Single electron transistor (SET), Molecular device, CNT devices.	
학부 2013 - 2015 교육과 정	서울 공과대학 융합전자공학 부	직접 회로에 사용되는 나노 전자소자들의 device physics와 동작원리를 공부한다. I. 시스템 LSI : 스트레인드 실리콘 채널 SOI CMOSFET, Fin-FETs and other Multi-gate transistors.	The purpose of this lecture is to learn about device physics, and fabrication process for nano-electron devices as belows: I. System LSI: strained-Si-channel SOI CMOSFET, Fin-FETs and other Multi-gate	

교육과정	관장학과	국문개요	영문개요	수업목표
		II. 휘발성 메모리 : Dynamic random-access memory (DRAM), Cap-less memory III. 비휘발성 메모리 : 낸드 플래시 메모리 (NAND Flash), 나노 플로팅 게이트 메모리 (NFGM), 터널링 베리어 메모리(TBM), 폴리머 메모리(PoRAM), 저항변화 메모리 (ReRAM), 스핀전달토크형 자기저항메모리(STT-MRAM) IV. Emerging devices : 단전자 트랜지스터 (SET), 분자 소자 (Molecular device), Carbon 나노 튜브 디바이스 (CNT devices)	transistors. II. Volatile Memory: Dynamic random-access memory (DRAM), Cap-less memory III. Non-volatile Memory: NAND flash memory, Nano-Floating Gate memory (NFGM), Tunnel-Barrier-engineered memory (TBM), Polymer memory (PoRAM), Resistive change memory (ReRAM), Phase change memory (PCRAM), Spin-torque magnetic random-access-memory (STT-MRAM) IV. Emerging Devices: Single electron transistor (SET), Molecular device, CNT devices.	
	서울 공과대학 전자·통신공학 부		The purpose of this lecture is to learn about device characteristic, theoretical background, function and process for nano-electron device. 1. system LSI: strained Si/SOI, Tri-gate 2. memory: DRAM, F-RAM, M-RAM, P-RAM, NFGM, PORAM, RERAM, SONOS 3. emerging device: SET, molecular device, CNT device	
학부 2009 - 2012 교육과 정	서울 공과대학 융합전자공학 부	직접 회로에 사용되는 나노 전자소자들의 device physics와 동작원리를 공부한다. I. 시스템 LSI: 스트레인드 실리콘 채널 SOI CMOSFET, Fin-FETs and other Multi-gate transistors. II. 휘발성 메모리: Dynamic random-access memory (DRAM), Cap-less memory III. 비휘발성 메모리: 낸드 플래시 메모리 (NAND Flash), 나노 플로팅 게이트 메모리 (NFGM), 터널링 베리어 메모리(TBM), 폴리머 메모리(PoRAM), 저항변화 메모리 (ReRAM), 스핀전달토크형 자기저항메모리(STT-MRAM) IV. Emerging devices: 단전자 트랜지스터 (SET), 분자 소자 (Molecular device), Carbon 나노 튜브 디바이스 (CNT devices)	The purpose of this lecture is to learn about device physics, and fabrication process for nano-electron devices as belows: I. System LSI: strained-Si-channel SOI CMOSFET, Fin-FETs and other Multi-gate transistors. II. Volatile Memory: Dynamic random-access memory (DRAM), Cap-less memory III. Non-volatile Memory: NAND flash memory, Nano-Floating Gate memory (NFGM), Tunnel-Barrier-engineered memory (TBM), Polymer memory (PoRAM), Resistive change memory (ReRAM), Phase change memory (PCRAM), Spin-torque magnetic random-access-memory (STT-MRAM) IV. Emerging Devices: Single electron transistor (SET), Molecular device, CNT devices.	
학부 2005 - 2008 교육과 정	서울 공과대학 전자통신컴퓨 터공학부	그 저 배겨 내 소 사는이 저진 트저트은 가이하고	The purpose of this lecture is to learn about device characteristic, theoretical background, function and process for nano-electron device.	

교육과정 관장학교	국문개요	영문개요	수업목표
	1. 시스템 LSI: strained Si/SOI, Tri-gate 2. 메모리: DRAM, F-RAM, M-RAM, P-RAM NFGM, PoRAM, ReRAM, SONOS 3. 차세대 소자: SET, 분자소자, CNT 소자	1. system LSI: strained Si/SOI, Tri-gate 2. memory: DRAM, F-RAM, M-RAM, P-RAM, NFGM, PoRAM, ReRAM, SONOS 3. emerging device: SET, molecular device, CNT device	
학부 2001 - 서울 공과대 2004 교육과 전자전기킴 정 터공학투	ELE367 집적회로소자 기초전자공학을 통해 배운 반도체 물성 및 p-n 접합 이론을 바탕으로 반도체집적회로 구성에 필요한 p-n 접합 다이오드, BJT, MOSFET, JFET, CMOS 소자의 구조와 동작원리, 전류-전 압 특성, 바이어스회로와 부하특성에 대해 집중 적으로 알아보고 간단한 회로 응용을 연습하고 신호 주파수에 따른 출력 특성의 변화와 이에 영향을 주는 중요한 소자 파라미터에 대해 알아본다. 또한 이들 소자들의 설계방법에 대해서도 학습한다. 이 외에도 상기 기본 소자에 대한 지식을 바탕으로 전력반도체소자, Solar-Cell, CCD 등에 대한 구조 및 동작원리에 대한 기초 적 내용을 포함한다	semiconductor field effect transistor(MOSFET), junction field effect transistor(JFET), and compliment metal- oxide-semiconductor(CMOS) devices will be intensively studied in this course using the knowledge of basic electronics course(ENE201). And we will find the	

10. CQI 등록내역

No data have been found.