Package 'mmfit'

February 23, 2016

Title mmfit: fitting distributions to data and assessing model fit

Type Package

Date 2016-02-23

Index

Author Guicheng Wu, Eric	Sturzinge	r, Rafa	el Lou	renco			
Maintainer Guicheng Wu	<gchwu@uo< th=""><th>cdavis</th><th>edu></th><th></th><th></th><th></th><th></th></gchwu@uo<>	cdavis	edu>				
Description fitting distribut	tions to da	ta and	assessi	ng mo	del fit		
License GPL-2							
R topics document	ted:						
mmfit-package .							
beta_density							
beta_func beta sim							
expMixture_densit							
exponential	•						
exp_mixture_func							
exp_mixture_sim							
gamma_density .							
gamma_func							
gamma_sim mmfit							
plot.mmfit							
poisMixture_densi							
poisson2	•						
poisson_density .						 . .	10
poisson_func							
poisson_mixture_f							
poisson_mixture_s							
poisson_sim							
powerlaw_density							
power_law_func .							
power_law_sim .							
print.mmfit							
summary.mmfit .						 	14

15

2 mmfit-package

mmfit-package

mmfit: fitting distributions to data and assessing model fit

Description

fitting distributions to data and assessing model fit

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

The user mainly use three functions: plot.mmfit(), print.mmfit(), summary.mmfit().

Author(s)

Guicheng Wu, Eric Sturzinger, Rafael Lourenco

Maintainer: Guicheng Wu <gchwu@ucdavis.edu>

Examples

```
# begin: test function
#test Poisson esitimated result
testmmfitPoisson = function() {
  poissonData <- poisson_sim(10000, 5)</pre>
  start <- c(2)
  #result <- poisson_func(start, poissonData)</pre>
  testResult <- mmfit(poisson_func, poissonData, start, 'poisson')</pre>
  return(testResult)
}
#test power law estimated result
testmmfitPowerlaw = function() {
  powerlawData = power_law_sim(10000, 1, 10)
  start <- 0.5
  #result <- power_law_func(start, powerlawData)</pre>
  testResult <- mmfit(power_law_func, powerlawData, start, 'powerlaw')</pre>
  return(testResult)
#test gamma estimated result
testmmfitGamma = function () {
  gammaData <- gamma_sim(10000, 7.5, 4)</pre>
  start \leftarrow c(7, 2)
  testResult <- mmfit(gamma_func, gammaData, start, 'gamma')</pre>
  return(testResult)
}
#test beta estimated result
testmmfitBeta = function() {
```

mmfit-package 3

```
betaData <- beta_sim(10000, 7.5, 4)
  start \leftarrow c(5, 2)
  testResult <- mmfit(beta_func, betaData, start, 'beta')</pre>
  return(testResult)
}
# test poisson estimated result
testmmfitPoissonMixture = function() {
  poissonMixtureData <- poisson_mixture_sim(10000, 6, 20, 0.3)</pre>
  start <- c(4, 17, 0.2)
 testResult <- mmfit(poisson_mixture_func, poissonMixtureData, start, 'poissonMixture')</pre>
  return(testResult)
}
# test plot estimated result
testmmfitExpMixture = function() {
  expMixtureData <- exp_mixture_sim(10000, 3, 10, 0.3)</pre>
  start <- c(2, 8, 0.2)
  testResult <- mmfit(exp_mixture_func, expMixtureData, start, 'expMixture')</pre>
 return(testResult)
#test plot poisson
testPlotPoisson = function() {
 poissonData <- poisson_sim(10000, 8)</pre>
 start <- c(1)
 plot.mmfit(poisson_func, poissonData, start, 'poisson')
# test power law
testPlotPowerlaw = function() {
  powerlawData <- power_law_sim(1000, 1, 3)</pre>
  start <- c(2)
  plot.mmfit(power_law_func, powerlawData, start, 'powerlaw')
}
#test plot gamma
testPlotGamma = function() {
  gammaData <- gamma_sim(1000, 2, 0.5)</pre>
  start <- c(1, 0.2)
 plot.mmfit(gamma_func, gammaData, start, 'gamma')
}
testPlotUserFunc1 = function() {
  poissonData <- poisson_sim(10000, 8)</pre>
 start <- c(lambda = 1)
 plot.mmfit(poisson_func, poissonData, start, '', poisson_density)
testPlotUserFun2 = function() {
  gammaData <- gamma_sim(1000, 2, 0.5)</pre>
  start <- c('shape' = 1, 'rate' = 0.2)
```

4 mmfit-package

```
plot.mmfit(gamma_func, gammaData, start, 'user', gamma_density)
#test plot beta
testPlotBeta = function() {
  betaData <- beta_sim(1000, 4, 3)
 start <- c(0.7, 1)
 plot.mmfit(beta_func, betaData, start, 'beta')
  #mmfit(beta_func, betaData, start, 'beta')
}
# test plot poisson mixture
testPlotPoisMixture = function() {
 mixtureData <- poisson_mixture_sim(100000, 6, 20, 0.3)
  start <- c(5, 19, 0.2)
 plot.mmfit(poisson_mixture_func, mixtureData, start, 'poissonMixture')
}
# test plot exponential mxiture
testPlotExpMixture = function() {
  expMixtureData <- exp_mixture_sim(100000, 5, 8, 0.3)</pre>
  start <- c(6, 7, 0.5)
 plot.mmfit(exp_mixture_func, expMixtureData, start, 'expMixture')
testPrintPoisson = function() {
  poissonData <- poisson_sim(10000, 8)</pre>
  start <- c(1)
 print.mmfit(poisson_func, poissonData, start, 'poisson')
testPrintPowerlaw = function() {
  powerlawData <- power_law_sim(10000, 1, 4)</pre>
  start <- c(k = 3)
  print.mmfit(power_law_func, powerlawData, start, 'powerlaw')
testPrintGamma = function() {
  gammaData <- gamma_sim(10000, 7.5, 4)</pre>
  start <- c(alpha = 5, beta = 2)
 print.mmfit(gamma_func, gammaData, start, 'gamma')
}
testPrintBeta = function() {
  betaData <- beta_sim(10000, 2, 4)
  start <- c(alpha = 0.5, beta = 1)
 print.mmfit(beta_func, betaData, start, 'beta')
testPrintPoisMixture = function() {
  mixtureData <- poisson_mixture_sim(100000, 6, 20, 0.3)</pre>
```

beta_density 5

beta_density

Function for Beta PDF

Description

This function takes argument shape 1 and shape 2 and computes a beta distribution based upon those variables. In the function we use "dbeta" which is a built in function that actually computes the function.

Usage

```
beta_density(x, shape1, shape2)
```

Arguments

X	x means to plot the values which dbeta generates on the x-axis.
shape1	Shape1 refers to the commonly known parameter alpha.
shape2	Shape2 refers to the commonly known parameter beta.

beta_func

Beta Moments Function

Description

Function that contains the moment functions for Beta distributed random variables. Uses the gmm() function to estimate sample parameters based on sample data.

```
beta_density(theta, x)
```

\itemtheta Theta is a vector of 2 parameters, commonly known as alpha and beta, from which the population mean calculated. Alpha and Beta are the initial guess parameters from the user.

\itemxx refers to the vector of sample data, in this case a sample of beta distributed RVs.

6 exponential

beta	SIM	

Beta Data Simulation

Description

Function that generates n beta distributed random variables.

beta_density(n, shape1, shape2)

\itemn n is the desired sample size of the user.

\itemshape1shape1 refers to the common parameter alpha that is used in generating the data.

\itemshape2 SHape2 is the common parameter beta.

expMixture_density

Moment function for a Mixture of Exponential Distributions

Description

This function calculates the estimated parameters of simulated data asssuming it is a mixture of exponential distributions.

Usage

```
expMixture_density(x, lambda1, lambda2, r)
```

Arguments

X	x is the vector of simulated data or sample data.
lambda1	Lambda1 is the rate at which data point is generated by the first exponentially distributed RV.
lambda2	Lambda2 is the rate at which data point is generated by the second exponentially distributed RV.
r	r is the probability that the exp distributed RV is a value from system 1, where 1-r is the probability that the value belongs to system 2.

0.44	2000	n+	: .	٦.
exp	one	enτ	16	эт.

Exponential RV Generation

Description

This function generates 1 exponentially distributed random variable with a probability r that it will be with rate1 or rate2.

Usage

```
exponential(lambda1, lambda2, r)
```

exp_mixture_func 7

Arguments

lambda1 lambda1 is the rate of the first exponential distribution to generate.lambda2 lambda2 is the rate of the first exponential distribution to generate.

r is the probability that a value will be generated with rate lambda1 and 1-r the

the probability that value will be generated with rate lambda2.

Description

This function is supplied to the gmm() function for parameter computation when dealing with a mixture of exponentially distributed RVs.

Usage

```
exp_mixture_func(theta, x)
```

Arguments

Х

theta is a vector of the initial guesses of parameters: lambda1, lambda2, and r.

x is the vector of simulation data of a mixture of two expnontially distributed

random variables.

exp_mixture_sim Exponential Mixture Simulation Data

Description

Thie function generates data of a mixture of two exponentially distributed random variables to supply to the gmm() function for computation and parameter estimation.

beta_density(n, lambda1, lambda2, r)

\temn n is the desired sample size of the simulation data. For mixtures, we must use a very large sample size. \sim 100000

\itemlambda1Lambda1 refers to the rate of the first exponentially distributed RV.

\itemlambda2Lambda2 refers to the rate of the first exponentially distributed RV.

\itemr refers to the probability that the RV comes from system 1, and 1-r the probability that it comes from system 2.

8 gamma_sim

gamma_density

Gamma Density Function

Description

Function that is used to plot the theoretical gamma density function with the estimateed parameters. gamma_densityx, shape, rate

\itemx x is the sample data required to plot the function against.

\itemshapeshape is the parameter alpha used to compute density values.

\itemrate rate is the parameter alpha used to compute density values.

gamma_func

Gamma Distribution Moments Function

Description

Function that is used to calculate 1st and second moments of gamma distribution and ffed to the gmm() function.

gamma_func(theta, x)

\itemtheta theta is the vector of initial guess parameters, alpha and beta.

\itemxx refers to the sample data used.

gamma_sim

gamma simulation function

Description

The function will generate gamma simulated data

Usage

```
gamma_sim(n, shape, rate)
```

Arguments

n n is the size of data

shape shape is a gamma distribution parameter rate rate is a gamma distribution parameter

mmfit 9

mmfit mmfit function

Description

The mmfit function will return a "mmfit" class object, which includes the estimated parameters, the standard errors and two graphs.

Usage

```
mmfit(g, x, start, distributionType, user_density_func = "")
```

Arguments

g g is the moment functionx x is the simulated data

start start is a vector of the guess values

distributionType

distributionType is a string that describes the distribution type. It can be "gamma"

user_density_func

User_density_func is the distribution's density function

plot.mmfit plot.mmfit function

Description

This function will draw two graphs, one is to check whether the simulated data fits the certain distribution, the other is to draw empirical cdf with its K-S confidence band.

Usage

```
plot.mmfit(g, x, start, distributionType, user_density_func)
```

Arguments

g g is the moment functionx x is the simulated data

start start is a vector of the guess values

 ${\tt distributionType}$

distributionType is a string that describes the distribution type. It can be "gamma" and e.t.c.

user_density_func

User_density_func is the distribution's density function

10 poisson_density

poisMixture_density poisson mixture density function

Description

This function is poisson mixture density function.

Usage

```
poisMixture_density(x, lambda1, lambda2, r)
```

Arguments

x x is the sample data

lambda1 lambda1 is the parameter of the first part of poisson mixture lambda2 lambda1 is the parameter of the second part of poisson mixture

r is the parameter of proportion of poisson mixture

poisson 2 poisson mixture density function

Usage

```
poisson2(lambda1, lambda2, r)
```

Arguments

lambda1 lambda1 represents the poisson parameter of the first part of poisson mixture lambda2 lambda2 represents the poisson parameter of the second part of poisson mixture

r represents the porportion of the first part of poisson mixture

poisson_density poisson density function

Description

This function is the poisson density function

Usage

```
poisson_density(x, lambda)
```

Arguments

x x is the sample data

lambda is the poisson parameter

poisson_func 11

poisson_func poisson moment function

Description

This function is the poisson moment function

Usage

```
poisson_func(theta, x)
```

Arguments

theta is the vector of guess values

x x is the sample data

poisson_mixture_func poisson mixture moment function

Description

This function is the moment function of poisson mixture

Usage

```
poisson_mixture_func(theta, x)
```

Arguments

theta theta is the vector of guess value

x x is the simulated data

poisson_mixture_sim poisson mixture simulation function

Description

This function generates poisson mixture simulation data

Usage

```
poisson_mixture_sim(n, lambda1, lambda2, r)
```

Arguments

n n is the size of data

lambda1 lambda1 is the parameter of the first part poisson lambda2 lambda1 is the parameter of the second part poisson

r is the proportion of the first part poisson

power_law_func

poisson_sim

poisson data simulation function

Description

This function will generate poisson simuated data

Usage

```
poisson_sim(n, lambda)
```

Arguments

n n is the size of data

lambda is the parameter of poisson

powerlaw_density

Power law density

Description

This function define the power density

Usage

```
powerlaw_density(x, theta)
```

Arguments

x x is the sample data

theta is the estimated parameter for the power law density

power_law_func

power law moment function

Description

This is the power law moment function

Usage

```
power_law_func(theta, x)
```

Arguments

theta is the initial guess values of the parameters

x x is the sample data

power_law_sim 13

w simualtion function

Description

This function generates the power law simulated data

Usage

```
power_law_sim(n, xmin, k)
```

Arguments

n is the size of simulated data

xmin is the lower bound

k is the estimated parameter for power law

print.mmfit print.mmfit function

Description

print.mmfit function will print the estimated parameters and standard errors.

Usage

```
print.mmfit(g, x, start, distributionType, user_density_func)
```

Arguments

g g is the moment function

x x is the simulated data

start is a vector of the guess values

distributionType

distributionType is a string that describes the distribution type. It can be "gamma"

and e.t.c.

user_density_func

User_density_func is the distribution's density function

14 summary.mmfit

summary.	mmfit

summary.mmfit function

Description

This function will summary everything the mmfit method returned, including the estimated parameters, the standard errors, and the graphs.

Usage

```
summary.mmfit(g, x, start, distributionType, user_density_func)
```

Arguments

g g is the moment functionx x is the simulated data

start start is a vector of the guess values

 ${\tt distributionType}$

distributionType is a string that describes the distribution type. It can be "gamma"

and e.t.c.

user_density_func

User_density_func is the distribution's density function

Index

```
*Topic mmfit
     mmfit-package, 2
beta_density, 5
beta_func, 5
beta_sim, 6
exp_mixture_func, 7
exp_mixture_sim, 7
expMixture_density, 6
exponential, 6
{\tt gamma\_density}, \textcolor{red}{8}
gamma\_func, 8
{\tt gamma\_sim}, \textcolor{red}{8}
mmfit, 9
{\tt mmfit-package}, {\color{red} 2}
plot.mmfit, 9
poisMixture\_density, 10
poisson2, 10
poisson_density, 10
{\tt poisson\_func}, 11
poisson_mixture_func, 11
poisson_mixture_sim, 11
\verb"poisson_sim", 12
power_law_func, 12
power_law_sim, 13
powerlaw_density, 12
print.mmfit, 13
\verb|summary.mmfit|, 14|\\
```