

Chapter 4: Hệ thống tuyến tính bất biến rời rạc

Date	@March 11, 2024
‡ Status	Done

▼ Hệ thống tuyến tính bất biến

Một hệ thống tuyến tính bất biến có thể được biểu diễn qua những dạng sau

- 1. Đáp ứng xung h(n)
- 2. Phương trình sai phân $\sum_{k=0}^{M} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$
- 3. Hàm truyền $H(z)=rac{\sum_{k=0}^M b_k.z^{-k}}{\sum_{k=0}^N a_k.z^{-k}}$
- 4. Giản đồ điểm cực và điểm không
- 5. Đáp ứng tần số $H(\omega)$ (nếu hệ thống là ổn định)

▼ Đáp ứng xung

▼ Tính chất của hệ thống

Một hệ thống tuyến tính bất biến trong miền thời gian dưới dạng đáp ứng xung h(n).

- Hệ thống nhân quả, nếu h(n)=0, orall n < 0
- Hệ thống ổn định nếu h(n) thoả mãn là tín hiệu năng lượng hay $E_h=\sum_{n=-\infty}^\infty h(n)^2<\infty$ hoặc $\sum_{n=-\infty}^\infty |h(n)|<\infty$
- ullet Hoặc hệ thống ổn định khi $h(n)_{n
 ightarrow+\infty}
 ightarrow 0$ hội tụ

▼ Phương trình sai phân và hàm truyền

▼ Xác định đáp ứng lối ra của hệ thống

Một hệ thống tuyến tính bất biến có thể được biểu diễn dưới dạng sai phân

$$\sum_{k=0}^M a_k y(n-k) = \sum_{k=0}^M b_k x(n-k)$$

Sau khi áp dụng biến đổi Z ta thu được hàm truyền $H(z) = % \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

$$\frac{\sum_{k=0}^{M} b_k.z^{-k}}{\sum_{k=0}^{N} a_k.z^{-k}}$$

Sử dụng một số hàm để biểu diễn

- Hàm filter được dùng để giải phương trình vi phân với cấu trúc lệnh filter(b,a,x,xin) trong đó
 - $\circ \;\; b$ vector hệ số chứa các phân tử b_k trong phương trình sai phân
 - $\circ \;\; a$ vector hệ số chứa các phần tử a_k trong phương trình sai phân
 - $\circ \ x$ là tín hiệu lối vào

- $\circ \ \ xin$ là giá trị khởi tạo, được xác định thông qua lệnh filtic(b,a,yin,xin) trong đó yin=[y(-1),y(-2)...] và xin=[x(-1),x(-2)] là các giá trị khởi tạo của hệ thống,
- Hàm freqz được sử dụng để tính toán và vẽ đáp ứng tần số của một hệ thống lọc số.
- ▼ Xác định đáp ứng xung của hệ thống
 - Hàm impz xấp xỉ đáp ứng xung khi biết các vector a,b với cấu trúc lệnh

$$h = impz(b, a)$$

ullet Hàm truyền và giản đồ điểm cực điểm không Dùng lệnh zplane(b,a) để biểu thị điểm cực và điểm không trên

▼ Đáp ứng tần số

Sử dụng lệnh [H,W]=freqz(b,a,n) sẽ cho ta vector gồm n giá trị rời rạc của đáp ứng tần số $H(\omega)$ tương ứng tại các vị trị tần số tại vector W. Nếu chỉ sử dụng trực tiếpfreqz(b,a,n) (không dùng lệnh gán), chương trình sẽ vẽ trực tiếp đáp ứng biên độ và đáp ứng pha của hệ thống

▼ Bài tập

- Hệ thống 1 không ổn định
- Hệ thống 2 không ổn định
- Hệ thống 3 ổn định
- Hệ thống 4 ổn định
- Hệ thống 5 không ổn định

▼ Bài 6

