Bayesian Data Analysis

Week 4: Hierarchical models

Jarno.Vanhatalo@helsinki.fi

On previous weeks

- Markov chain Monte Carlo (MCMC)
 - $E[\theta|y] \approx \frac{1}{S} \sum_{i=1}^{S} \theta^{i}$
 - Convergence diagnostics
 - Stan
- Stan computing environment

Aims of the week

- Theory
 - Hierarchical models
 - Exchangeability
 - Hyperprior
 - Population distribution
- Models
 - Hierarchical Binomial model

Joint distribution

- Two random variables θ_1 , θ_2
 - e.g. α and β in the bioassay example
- The joint distribution

$$p(\theta_1, \theta_2) = p(\theta_1 | \theta_2) p(\theta_2)$$

• Independent variables conditional marginal

$$p(\theta_1, \theta_2) = p(\theta_1)p(\theta_2)$$

marginal marginal

Joint distribution

- Prior independence does not imply posterior independence!
 - The likelihood typically ties the parameters
 - For example, Gaussian observation model excercise

$$p(\mu, \sigma^2 | y) \propto p(y|\mu, \sigma^2) p(\mu) p(\sigma^2) \neq p(\mu|y) p(\sigma^2|y)$$

conditionally independently and identically distributed (i.i.d)

- e.g. i.i.d. Gaussian observations $y = \{y_1, \dots y_n\}$
- Joint Distribution

$$p(y|\mu,\sigma^2) = N(y_1|\mu,\sigma^2) \times ... \times N(y_n|\mu,\sigma^2)$$

$$= \prod_{i=1}^{N} N(y_i|\mu,\sigma^2)$$

Identical Gaussian distributions

Conditionally independently distributed

• Observations $y = \{y_1, ... y_n\}$ from

$$y_i | \mu_i, \sigma^2 \sim N(\mu_i, \sigma^2)$$

 $\mu_i = c + ax_{i,1} + bx_{i,2}$

Joint distribution

$$p(y|\mu, \sigma^{2}) = N(y_{1}|\mu_{1}, \sigma^{2}) \times ... \times N(y_{n}|\mu_{n}, \sigma^{2})$$

$$= \prod_{i=1}^{N} N(y_{i}|\mu_{i}, \sigma^{2})$$

Non-Identical but independent distributions given x

Graphical description

i.i.d. observations

Directed acyclic graph (DAG)

- Unobserved variables (circle): parameters of the model
- Direction of conditional independence
 - Arrow points from parent to child
 - Children are independent given their parents
 - Tells which way the information flows
- Observed variables (boxes): data or fixed parameter values

Graphical description

Hierarchical models

Simplest form

• Likelihood: $p(y|\theta)$

• Prior: $p(\theta | \gamma)$ 1st stage prior

• Hyperprior: $p(\gamma)$ 2nd stage prior

Can go further and further by extending hyperparameters

Hierarchical model

- Example: white fish larval presence (see also Rat tumor experiments in BDA3, p. 102)
 - The same survey set-up in n=19 different areas which may differ in their environmental properties

Hyperparameters / Hyperprior:

$$p(\alpha, \beta) = p(\alpha)p(\beta)$$

Parameters / Prior:

$$p(\theta|\alpha,\beta) = \prod p(\theta_i|\alpha,\beta)$$

Observations / Observation model:

$$p(y|\theta) = \prod p(y_i|\theta_i)$$

Hierarchical model

Posterior through chain rule

$$p(\theta, \alpha, \beta | y) \propto p(y|\theta)p(\theta | \alpha, \beta)p(\alpha, \beta)$$

Prediction with hierarchical model

- Prediction within a group from where we have data
 - e.g. new observation in the n'th area

•
$$p(\tilde{y}_n|y_1 \dots y_n) = \int p(\tilde{y}_n|\theta_n)p(\theta_n|y_1 \dots y_n)d\theta_n$$

Monte Carlo approximation

- Sample $\theta_n^s \sim p(\theta_n | y_1 \dots y_n)$
- Sample $\tilde{y}_n^s \sim p(\tilde{y}_n | \theta_n^s)$
- Repeat

Prediction with hierarchical model

- Prediction for new area
 - e.g. new survey in a new area

$$p(\tilde{y}_n|y_1 \dots y_n) = \int p(\tilde{y}_{n+1}|\theta_{n+1})p(\theta_{n+1}|\alpha,\beta)p(\alpha,\beta|y_1 \dots y_n)d\theta_{n+1}d\alpha d\beta$$

Monte Carlo approximation

- Sample α^s , $\beta^s \sim p(\alpha, \beta | y_1 ... y_n)$
- Sample $\theta_{n+1}^s \sim p(\theta_{n+1} | \alpha^s, \beta^s)$
- Sample $\tilde{y}_{n+1}^s \sim p(\tilde{y}_{n+1} | \theta_{n+1}^s)$
- Repeat

Exchangeability

- First about random variables:
 - ullet Y denotes random variable which has distribution

$$Y \sim p(Y)$$

- Thus, Y is "something we have not observed"
- y is an outcome/realization of a random variable
 - Does not have distribution
- p(Y = y) is
 - the probability that random variable gets value y (discrete)
 - the probability density at y (continuous)

Exchangeability

- If no prior information is available to distinguish any of the random variables Y_i from any of the others, one must assume symmetry among the variables in their prior distribution.
- This symmetry is represented by exchangeability:
 - Inability to order the variables a priori
 - "Ignorance implies exchangeability"

Exchangeability

- Mathematically
 - The n variables Y_i are exchangeable if their joint distribution $\mathrm{p}(Y_1,\ldots,Y_n)$ is invariant to permutations of the indices $(1,\ldots,n)$.

Exchangeable

- Consider the whole Finnish population
 - Pick up 100 individuals randomly and measure their lenghts Y_i
 - No prior information to distinguish between individuals
 - → the lenghts are exchangeable
 - Pick randomly 50 females and 50 males
 - No prior information to distinguish which measurements correspond to male and female
 - → the lenghts are exchangeable
 - Pick first 50 females and then 50 males
 - There is prior information to distinguish between the first and second half of sample
 - $\rightarrow Y_1 \dots Y_{100}$ are not exchangeable
 - \rightarrow however, $Y_1 \dots Y_{50}$ and $Y_{51} \dots Y_{100}$ are exchangeable

- 1. Consider a bag of 1 white and 1 black ball. Let the random variables be
 - Y_1 the outcome of drawing one ball from the bag
 - Y_2 the outcome of drawing second ball from the bag after replacing the first ball
- Are Y_1 and Y_2 exchangeable?
- Are Y_1 and Y_2 independent?

- 2. Consider a bag of 1 white and 1 black ball. Let the random variables be
 - Y_1 the outcome of drawing one ball from the bag
 - Y_2 the outcome of drawing second ball from the bag <u>without replacing the first ball</u>
- Are Y_1 and Y_2 exchangeable?
- Are Y_1 and Y_2 independent?

- 3. Consider a bag of 10000 white and 10000 black balls. Let the random variables be
 - Y_1 the outcome of drawing one ball from the bag
 - Y_2 the outcome of drawing second ball from the bag <u>without replacing the first ball</u>
- Are Y_1 and Y_2 exchangeable?
- Are Y_1 and Y_2 independent?
- Can we act as if Y_1 and Y_2 were independent?

- 4. Consider a bag of white and black balls (<u>n is known but the proportion is unknown</u>). Let the random variables be
 - Y_1 the outcome of drawing one ball from the bag
 - Y_2 the outcome of drawing second ball from the bag <u>after replacing the first</u> <u>ball</u>
- Are Y_1 and Y_2 exchangeable?
- Are Y_1 and Y_2 independent?
- Can we act as if Y_1 and Y_2 were independent?

- 5. Consider a bag of white and black balls (n is known but the proportion is unknown). Let the random variables be
 - Y_1 the outcome of drawing one ball from the bag
 - Y_2 the outcome of drawing second ball from the bag <u>without replacing the first ball</u>
- Are Y_1 and Y_2 exchangeable?
- Are Y_1 and Y_2 independent?
- Can we act as if Y_1 and Y_2 were independent?

- 6. Consider a bag of white and black balls (<u>n is unknown and the proportion is unknown</u>). Let the random variables be
 - Y_1 the outcome of drawing one ball from the bag
 - Y_2 the outcome of drawing second ball from the bag <u>without replacing the first ball</u>
- Are Y_1 and Y_2 exchangeable?
- Are Y_1 and Y_2 independent?
- Can we act as if Y_1 and Y_2 were independent?

Bag of balls – reflection

- Compare the bag of balls examples to the earlier exercises in the course
 - Mark recapture
 - Female birth rate

Earlier exercises — reflection

- Discuss the exchangeability within the earlier experiments:
 - Populations and population parameters exercise
 - Effect of bottom coverage on white fish larvae
 - Newcombs speed of light

Why exchangeability is important?

- Assume a superpopulation of variables Y_i that are exchangeable
 - e.g. a characteristic in Finnish population, repeated measurements, all the balls in the bag
- Take a sample from the superpopulation
 - We can act as if we had a random sample from the superpopulation
 - We can extrapolate for the whole population
- Exchangeability can often be represented through conditional independence
 - We can act as if we had a random, conditionally independent sample from the superpopulation

Exchangeability in practice

 Stating that variables are exchangeable does not say anything about the exact form of their distribution.

How do we model the exchangeability in practice?

Exchangeability in practice

 The simplest form of an exchangeable distribution is conditionally i.i.d. from a population distribution

$$p(Y_1, \dots, Y_n | \theta) = \prod_{i=1}^n p(Y_i | \theta)$$

• The population parameter θ is usually unknown, and thus the marginal (exchangeable) distribution is

$$p(Y_1, \dots, Y_n) = \int \prod_{i=1}^n p(Y_i \mid \theta) d\theta$$

Mixture of independent and identical distributions

Example

- Bag of balls
- Speed of light

Exchangeability and hierarchical models

• Exchangeable observations within a group $Y_j = (Y_{j,1}, ..., Y_{j,n})$

$$p(Y_j|\theta_j) = \prod_{i=1}^n p(Y_{i,j}|\theta_j)$$

• Exchangeable group specific parameters $\theta = (\theta_1, ..., \theta_J)$

$$p(\theta|\varphi) = \prod_{j=1}^{J} p(\theta_j|\varphi)$$

- Exchangeable hyperparameters
- ... etc.

Exchangeability and hierarchical models

- Rat tumor example:
 - We know there are 71 laboratories
 - The results, y_i , within each laboratory are exchangeable
 - The laboratories are exchangeable

Hyperprior: $p(\alpha, \beta)$

Prior: $p(\theta|\alpha,\beta) = \prod p(\theta_i|\alpha,\beta)$

Observation model: $p(y|\theta) = \prod p(y_i|\theta_i)$

Exchangeability and de Finetti

de Finetti's theorem:

 All exchangeable distributions of infinite number of variables can be written as a mixture of conditionally i.i.d. distributions

$$p(Y_1, Y_2, \dots) = \int \prod_{i=1}^{n} p(Y_i \mid \theta) d\theta$$

- → often good enough approximation for finite (and large) number of variables
- → theoretical justification for hierarchical models
- → theoretical justification for extrapolation with posterior predictive distribution

Exchangeability and covariates

• If covariates x_i can be attached to observations y_i we can build exchangeable model for pairs (x_i, y_i)

Exchangeable blocks

For example, the length of a Finnish person with covariates of:

- Age
- Sex

Note! Covariates are observations as well.

This week

- "Ignorance implies exchangeability"
 - Exchangeability does not induce independence
- Exchangeable distribution can be constructed from conditionally independent distributions
 - Hierarchical models
- Exchangeable parameters
 - → theoretical justification for conditionally i.i.d. model blocks
 - Theoretical justification for extrapolation

Next week

Generalized linear models