MEP Introduction Report

Isabel Postmes

 $^1 Kavli\ Institute\ of\ Nanoscience,\ Delft\ University\ of\ Technology,\ 2628CJ\ Delft,\ The\ Netherlands$

Abstract

A short revision on the continious Fourier transform, and the discrete approximation of it.

Contents

0.1	Approximating continious Fourier transform with dicrete Fourier transform		2
	0.1.1	Original definitions	2
	0.1.2	Discrete approximation CFT	2
	0.1.3	Convolutions	Ç
	0.1.4	Other calculations on CFTs	F

0.1 Approximating continious Fourier transform with dicrete Fourier transform

Lets start with a small refresher on Fourier transforms, and evaluate how to approximate the continious Fourier transform with the discrete Fourier transform.

0.1.1 Original definitions

The continuous Fourier transfrom (CFT) of function f(x) is defined as:

$$\mathcal{F}\left\{f(x)\right\} = F(\nu) = \int_{-\infty}^{\infty} e^{-i2\pi\nu x} f(x) dx. \tag{0.1}$$

The inverse of the CFT is given by:

$$\mathcal{F}^{-1}\{F(\nu)\} = f(x) = \int_{-\infty}^{\infty} e^{i2\pi\nu x} F(\nu) d\nu.$$
 (0.2)

The discrete Fourtier transform (DFT) of discrete function f[n] defined on $n \in \{0,...,N-1\}$ is given by:

DFT
$$\{f[n]\}\ = F[k] = \sum_{n=0}^{N-1} e^{-i2\pi kn} f[n], \forall k \in \{0, ..., N-1\}.$$
 (0.3)

The inverse of the CFT is given by:

$$DFT^{-1} \{F[k]\} = f[n] = \sum_{k=0}^{N-1} e^{i2\pi kn} F[k], \forall n \in \{0, ..., N-1\}.$$
 (0.4)

0.1.2 Discrete approximation CFT

If one approximates function f(x) by $f[x_0+n\Delta x], \forall n \in \{0,...,N-1\}$, and ν by $k\Delta \nu, \forall k \in \{0,...,N-1\}$, where:

$$\Delta x \Delta \nu = \frac{1}{N},\tag{0.5}$$

starting from eq. (0.1), one can obtain:

$$F(\nu) \approx F[k\Delta\nu] = \sum_{n=0}^{N-1} \Delta x f[x_0 + n\Delta x] \exp\left[-i2\pi k\Delta\nu(x_0 + n\Delta x)\right],$$

$$= \Delta x \exp\left[-i2\pi k\Delta\nu x_0\right] \sum_{n=0}^{N-1} \exp\left[-i2\pi nk/N\right] f[x_0 + n\Delta x],$$

$$= \Delta x \exp\left[-i2\pi k\Delta\nu x_0\right] \text{DFT} \left\{f[n]\right\}.$$

$$(0.6)$$

Similarly, we can reobtain the original function $f(x) \approx f[n\Delta x + x_0]$ from the approximation of $F(\nu) \approx F[k\Delta\nu]$, using eq. (0.2):

$$f(x) \approx f[n\Delta x + x_0] = \sum_{k=0}^{N-1} \Delta \nu F[k\Delta \nu] \exp\left[i2\pi k\Delta \nu (n\Delta x + x_0)\right]$$

$$= \Delta \nu \sum_{k=0}^{N-1} F[k\Delta \nu] \exp\left[i2\pi k\Delta \nu x_0\right] \exp\left[i2\pi kn/N\right].$$
(0.7)

Defining:

$$G[k\Delta\nu] = \exp\left[i2\pi k\Delta\nu x_0\right] F[k\Delta\nu],\tag{0.8}$$

we find:

$$f(x) \approx f[n\Delta x + x_0] = \Delta \nu \sum_{k=0}^{N-1} G[k\Delta \nu] \exp\left[i2\pi kn/N\right]$$
$$= \Delta \nu \operatorname{DFT}^{-1} \left\{ G[k\Delta \nu] \right\}$$
(0.9)

0.1.3 Convolutions

Definition of concolution The concolution of two functions f(x) and g(x) is defined as te integral:

$$h(x) = \int_{-\infty}^{\infty} f(\bar{x})g(x - \bar{x})d\bar{x}.$$
 (0.10)

Assuming f(x) and g(x) have a limited domain, h(n) will also have a limited domain, given by:

$$f(x) = \begin{cases} f(x), & x_{0,f} \le x \le x_{1,f} \\ 0, & x < x_{0,f} \lor x > x_{1,f} \end{cases},$$

$$g(x) = \begin{cases} g(x), & x_{0,g} \le x \le x_{1,g} \\ 0, & x < x_{0,g} \lor x > x_{1,g} \end{cases},$$

$$h(x) = \begin{cases} h(x), & x_{0,f} + x_{0,g} \le x \le x_{1,f} + x_{1,g} \\ 0, & x < x_{0,f} + x_{0,f} \lor x > x_{1,f} + x_{1,g} \end{cases}.$$

$$(0.11)$$

This simplifies eq. (0.10) to:

$$h(x) = \int_{x_{0,f}}^{x_{1,f}} f(\bar{x})g(x - \bar{x})d\bar{x}.$$
 (0.12)

Futhermore, the Fourier transform of the convolution has the beautiful property that, for the limited domain functions, but this can be extended into infinity:

$$H(\nu) = \int_{x_{0,1}+x_{0,g}}^{x_{1,f}+x_{1,g}} h(x) \exp\left[-i2\pi\right] dx,$$

$$= \int_{x_{0,1}+x_{0,g}}^{x_{1,f}+x_{1,g}} \int_{x_{0,1}}^{x_{1,f}} f(\bar{x})g(x-\bar{x})d\bar{x} \exp\left[-i2\pi\nu x\right] dx,$$

$$= \int_{x_{0,1}}^{x_{1,f}} \int_{x_{0,1}+x_{0,g}}^{x_{1,f}+x_{1,g}} g(x-\bar{x}) \exp\left[-i2\pi\nu x\right] dx \quad f(\bar{x})d\bar{x}.$$
(0.13)

Defining $\hat{x} = x - \bar{x}$, evaluation the limits on the integrals and realising d(x) = dx, you obtain:

$$H(\nu) = \int_{x_{0,f}}^{x_{1,f}} \int_{x_{0,g}}^{x_{1,g}} g(\hat{x}) \exp\left[-i2\pi\nu(\hat{x} + \bar{x})\right] d\hat{x} \quad f(\bar{x}) d\bar{x},$$

$$= \int_{x_{0,g}}^{x_{1,g}} g(\hat{x}) \exp\left[-i2\pi\nu\hat{x}\right] d\hat{x} \int_{x_{0,f}}^{x_{1,f}} f(\bar{x}) \exp\left[-i2\pi\nu\bar{x}\right] d\bar{x},$$

$$= F(\nu)G(\nu).$$
(0.14)

Discretisation of the convolution and its CFT Again, we can approximate f(x), g(x) and h(n) by:

$$f(x) \approx f[n_f(\Delta x)_f + x_{0,f}], \forall n_f \in \{0, N_f - 1\}, (\Delta x)_f = (x_{1,f} - x_{0,f})/N_f,$$

$$g(x) \approx g[n_g(\Delta x)_g + x_{0,g}], \forall n_g \in \{0, N_g - 1\}, (\Delta x)_g = (x_{1,g} - x_{0,g})/N_g.$$
(0.15)

If we ensure that $(\Delta x)_f = (\Delta x)_g \equiv \Delta x$, we can approximate h(n):

$$h(x) \approx h[n_h \Delta x + x_{0,f} + x_{0,q}], \forall n_h \in \{0, N_f + N_q - 1\},$$
 (0.16)

where

$$h[n_h \Delta x + x_{0,f} + x_{0,g}] = \sum_{k=0}^{N_f - 1} f[k \Delta x + x_{0,f}] g[n \Delta x + x_{0,g} - k \Delta x] \Delta x.$$
 (0.17)

To discretisize the continious fourier transfrom, we once again need to define $\Delta\nu$, but mind the difference for $\Delta\nu$ for the discretisations of f(x) or g(x) and h(x):

$$(\Delta \nu)_f = \frac{1}{N_f \Delta x}$$

$$(\Delta \nu)_g = \frac{1}{N_g \Delta x}$$

$$(\Delta \nu)_h = \frac{1}{(N_f + N_g) \Delta x}$$

$$= \left((\Delta \nu)_f^{-1} + (\Delta \nu)_g^{-1} \right)^{-1}$$

$$(0.18)$$

Now the discrete approximation of the CFT of the convolution (given by eq. (0.13)) is given by:

$$H(\nu) \approx H[k(\Delta\nu)_h] = \sum_{n=0}^{N_f + N_g - 1} h[n\Delta x + x_{0,f} + x_{0,g}] \exp\left[-i2\pi k(\Delta\nu)_h(n\Delta x + x_{0,f} + x_{0,g})\right] \Delta x,$$

$$= \sum_{n=0}^{N_f + N_g - 1} \sum_{l=0}^{N_f - 1} f[l\Delta x + x_{0,f}]g[(n-l)\Delta x + x_{0,g}] \exp\left[-i2\pi k(\Delta\nu)_h(n\Delta x + x_{0,f} + x_{0,g})\right] (\Delta x)^2.$$

$$(0.19)$$

Defining m = n - l, and swapping summation order, you obtain:

$$H[k(\Delta\nu)_{h}] = (\Delta x)^{2} \exp[-2\pi i k(\Delta\nu)_{h} x_{0,f}] \sum_{l=0}^{N_{f}-1} f[l(\Delta\nu)_{h} + x_{0,f}]$$

$$\exp[-2\pi i k(\Delta\nu)_{h} x_{0,g}] \sum_{m=-l}^{N_{f}+N_{g}-l-1} g[m\Delta x + x_{0,g}] \exp[-2\pi i k(\Delta\nu)_{h} (m+l)\Delta x],$$
(0.20)

reevaluating the boundries on the second summation, inputing eq. (0.18) and shuffling above result leads to:

$$H[k(\Delta\nu)_{h}] = \exp[-2\pi i k(\Delta\nu)_{h} x_{0,f}] \sum_{l=0}^{N_{f}-1} f[l(\Delta\nu)_{h} + x_{0,f}] \exp[-2\pi i k l/(N_{f} + N_{g})]$$

$$\exp[-2\pi i k(\Delta\nu)_{h} x_{0,g}] \sum_{m=0}^{N_{g}-1} g[m\Delta x + x_{0,g}] \exp[-2\pi i k h m/(N_{f} + N_{g})].$$
(0.21)

Looking at the above equation, one almost recognizes a multiplication of two approximate CFT's (see eq. (0.6)). However, there is a significant difference, which means it is not a simple multiplication of the two CFT's: where in the CFT of the singular function, you see that $\Delta \nu = 1/N_f$ or $\Delta \nu = 1/N_g$ resectivily, whereas in eq. (0.21), $\Delta \nu = 1/(N_f + N_g)$, as given by eq. (0.18). Nor is it a simple factor with which the CFT's could be multiplied: the factor is present in the exponential within the summations. Each single exponential term in the summations need to raised to the power $(N_f + N_g)/N_f$ and $(N_f + N_g)/N_g$ respectively. THIS IS THE PROBLEM.

0.1.4 Other calculations on CFTs

For the deconvolution of the spectra, we will need the devision and logaritmic values of two CFT's.