Processamento digital de imagens

Agostinho Brito

Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte

13 de maio de 2016

- Uma vez que um conjunto de pixels denha sido selecionado a partir da segmentação, é necessário representá-los e descrevê-los de forma adequada para posterior processamento.
- A representação de uma região pode ser feita de duas formas:
 - Pelo seu contorno.
 - Pelos pixels que representam o interior.
- A descrição consiste gerar características com base no esquema de representação escolhido.
- Ex: uma região pode ser representada por sua fronteira e descrita pelo número de concavidades do polígono que aproxima esta fronteira.
- Representações externas: formas de objetos.
- Representações internas: cor e textura.

Algoritmo seguidor de fronteira

Critério de parada: O ponto inicial é encontrado e o próximo ponto é o mesmo encontrado para a primeira ocorrência.

_	_	_	_	_	_		_	_	_	_	_	,	_
		Lг		Ь.									
		•	1	V						1	•	Б	Γ
		1		1					1	1	1		
		1							1	L		Г	Г
	1		1					1		1			Г
	1	1	1					1	1	1			Г
										П			Γ

Esquemas de representação - códigos de encadeamento

- Utilizados para representar uma fronteira de comprimento e direção especificados.
- Baseados em conectividades tipo 4 ou 8 dos segmentos.
- Operar diretamente nos pixels da imagem pode ser inviável, pois:
 - os códigos gerados são longos(direção dos vetores que ligam pares de pixels).
 - as imperfeições na segmentação podem afetar os códigos, de modo que as mudanças ocorrentes no mesmo não estariam diretamente relacionada com a forma da fronteira.
 - Possível solução: reamostrar os pixels utilizando uma grade mais espaçada.
- O contorno pode ser representado por 4- ou 8-códigos.

Esquemas de representação - códigos de encadeamento

- Códigos de cadeia de Freeman: segue-se a grade reamostrada, substituindo a direção dos segmentos por números.
- Normalização em relação ao ponto inicial: trata-se a cadeia como uma sequência circular e escolhe-se a combinação que gera o menor número inteiro.
- Normalização em relação à rotação: contagem das mudanças de direção que separam os segmentos no sentido anti-horário, ou primeira diferença do código.

código de cadeia 000667554433121 006016070706177 primeira diferença

Aproximação por polígonos de perímetro mínimo - MPP

- Percorre-se a fronteira procurando vértices côncavos (Pretos) ou convexos (Brancos).
- Vértices côncavos possuem espelhos na diagonal.
- O MPP não possui autointerseção
- Todo vértice convexo é um vértices Branco, mas nem todo vértice Branco pertence ao polígono.
- Todo vértice côncavo espelhado do MPP é um vértice Preto, mas nem todo vértice Preto pertence ao MPP.
- Vértices Pretos estão no MPP ou fora dele. Vértices brancos estão no MPP ou dentro dele.

- Percorra a fronteira no sentido anti-horário.
- Para três pontos em sequência, $a=(x_1,y_1)$, $b=(x_2,y_2)$ e $c=(x_3,y_3)$, arranje

$$\mathbf{A} = \left[\begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right]$$

- Avaliar sinal(a, b, c) = det(A)
 - se sinal(a, b, c) > 0: a sequência ocorre no sentido anti-horário
 - se sinal(a, b, c) = 0: pontos colineares
 - se sinal(a, b, c) < 0: a sequência ocorre no sentido horário
- Ex: $(3,4) \rightarrow (2,3) \rightarrow (3,2)$

- Organize os vértices em sequência, incluindo indicação se o vértice é Preto ou Branco. Vértices pretos devem ser previamente espelhados.
- Prepare dois vértices B_R e P_R para rastrear os pontos brancos e pretos.
- Faça $B_R = P_R = V_0$. V_L é o último vértice encontrado. V_k é o vértice atual analisado.
- Três condições podem acontecer:
 - $sinal(V_L, B_R, V_k) > 0$
 - $sinal(V_L, B_R, V_k) \leq 0$ (ou $sinal(V_L, P_R, V_k) \geq 0$)
 - $sinal(V_L, P_R, V_k) < 0$
- Se $sinal(V_L, B_R, V_k) > 0$, o próximo **vértice do MPP** é B_R . Faz-se $V_L = B_R$ e reinicializa-se o algoritmo: $B_R = P_R = V_L$. Caminha-se para o próximo vértice.
- Se sinal(V_L, B_R, V_k) ≤ 0, V_L é candidato ao MPP. Define-se B_R = V_L se V_K é convexo, ou P_R = V_K se este é côncavo.
- Se $sinal(V_L, P_R, V_k) < 0$, o próximo **vértice do MPP** é P_R . Faz-se $V_L = P_R$ e reinicializa-se o algoritmo: $B_R = P_R = V_L$. Caminha-se para o próximo vértice.
- O conjunto de vértice V_L forma o MPP.

Index	Ponto	$s(V_L, B_R, V_k)$	$s(V_L, P_R, V_k)$	B_R	$ P_R $	V_L
0	(1,4)	-	-	(1,4)	(1,4)	(1,4)
1	(2,3)	0	0	(1,4)	(2,3)	(1,4)
2	(3,3)	0	1	(3,3)	(2,3)	(1,4)
3	(3, 2)	-2	0	(3,3)	(3, 2)	(1,4)
4	(4, 1)	-3	0	(4, 1)	(3, 2)	(1,4)
5	(7, 1)	9	-	(4, 1)	(3, 2)	(4, 1)
5	(7, 1)	-	-	(4, 1)	(4, 1)	(4, 1)
5	(7, 1)	0	0	(7, 1)	(4, 1)	(4, 1)
6	(8, 2)	3	-	(7, 1)	(4, 1)	(7, 1)
6	(8, 2)	-	-	(7, 1)	(7, 1)	(7, 1)
6	(8, 2)	0	0	(8, 2)	(7, 1)	(7, 1)

- Outras técnicas
 - Fusão
 - Separação
- Assinaturas: distância para o centroide a passos fixos do ângulo

- Invariância à rotação: uso dos eixos principais com pontos do contorno.
- Invariância à escala: normalização em relação ao máximo, ou divisão pela variância.

0	0	1
1	p_1	0
1	0	1

p_9	p_2	p_3
p 8	p_1	<i>p</i> ₄
p ₇	p ₆	p 5

Esqueletos

 Não pode remover pontos extremos, sem quebrar a conectividade e sem causar erosão excessiva

Algoritmo:

- N(P): número de vizinhos de P.
- T(P): número de transições $0 \rightarrow 1$ ao redor de P
- Ex: $N(p_1) = 4$, $T(p_1) = 3$.
- Passo 1: marcar para remoção
 - $2 < N(p_1) < 6$
 - $T(p_1) = 1$
 - $p_2 \cdot p_4 \cdot p_6 = 0$
- Remover pontos marcados no passo 1
- Passo 2: marcar para remoção
 - $2 \le N(p_1) \le 6$
 - $T(p_1) = 1$
 - $\bullet \ p_2 \cdot p_4 \cdot p_8 = 0$
 - $p_2 \cdot p_6 \cdot p_8 = 0$
- Remover pontos marcados no passo 2
- Repetir passos 1 e 2 até não haver mais remoções

- Medida baseada numa representação escolhida para identificar uma determinada região. Ex:
 - Diâmetro da fronteira
 - Curvatura: medida das diferenças entre as inclinações do contorno
 - Códigos de cadeia para montar números de formato

- Pares de coordenadas s\u00e3o montados percorrendo a fronteira no sentido anti-hor\u00e1rio.
- Cada ponto é representado como um número complexo da forma s(k) = x(k) + jy(k), para $k = 0, 1, 2, \dots, K-1$ pares.

$$a(u) = \sum_{k=0}^{K-1} s(k)e^{-j2\pi uk/K}$$

- Os valores a(u) são os descritores de fourier.
- Reconstrução pela transformada inversa.

$$\hat{s}(k) = \frac{1}{K} \sum_{u=0}^{P-1} a(u) e^{-j2\pi uk/P}$$

 Com menos componentes de frequência é possível reconstruir o contorno com menos detalhes, entretanto usando a mesma quantidade de pontos.

Descritores de Fourier

- Problemas: invarância à rotação, translação, ponto de partida e escala.
- Rotação por θ : $s_r(k) = s(k)e^{j\theta}$

$$a_r(u) = \sum_{k=0}^{K-1} s(k)e^{j\theta}e^{-j2\pi uk/K}$$
$$= a(u)e^{j\theta}$$

• Translação por $z_0 = x_0 + jy_0$: $s_t(k) = s(k) + z_0$.

$$u(k) = \sum_{k=0}^{K-1} s(k) + z_0] e^{-j2\pi uk/K}$$

$$= \sum_{k=0}^{K-1} s(k) e^{-j2\pi uk/K} + \sum_{k=0}^{K-1} z_0 e^{-j2\pi uk/K}$$

$$= u(k) + z_0 \delta(k)$$

É afetada apenas a componente DC da transformada: u(0). O impulso vale zero em outros lugares da transformada

Descritores de Fourier

• Ponto inicial: $s_p(k) = x(k - k_0) + jy(k - k_0)$. Pelo teorema do deslocamento,

$$u_p(k) = u(k)e^{-j2\pi k_0 u/K}$$

• Escala: $s_s(k) = \alpha s(k)$

$$u_s(k) = \alpha u(k)$$

Resumo das propriedades

Treatment and property		
Transformação	Fronteira	Descritor
Identidade	s(k)	u(k)
Rotação	$s(k)e^{j heta}$	a(u)e ^{jθ}
Translação	$s_t(k) = s(k) + z_0$	$u_t(k) = u(k) + z_0 \delta(k)$
Ponto de partida	$s_p(k) = x(k - k_0) + jy(k - k_0)$	$u_p(k) = u(k)e^{-j2\pi k_0 u/K}$
Escala	$s_s(k) = \alpha s(k)$	$u_s(k) = \alpha u(k)$

O que fazer para assegurar invariância?

Textura

Estatística, estrutural e espectral.

Abordagens estatísticas: Momentos estatísticos

- Momentos estatísticos do histograma de uma região
- Seja $p(z_i)$, $i = 0, 1, \dots, L-1$ o histograma de uma região.
- O n-ésimo momento de z em torno da média é dado por

$$\mu_n(z) = \sum_{i=0}^{L-1} (z_i - m)^n p(z_i)$$

- $\mu_0 = 1$ e $\mu_1 = 0$.
- \bullet $\;\mu_{2}$ é a variância. Fornece medida de contraste presente na região.
- Suavidade relativa:

$$R(z) = 1 \frac{1}{1 + \mu_2^2(z)}$$

R(z) = 0 para regiões de intensidade constante. R(z) é próximo de 1 para regiões com muita variação de tons.

• O terceiro momento $\mu_3(z)$ mede a assimetria do histograma. O quarto momento $\mu_4(z)$ mede o quão este é plano.

Abordagens estatísticas: Momentos estatísticos

Uniformidade

$$U(z) = \sum_{i=0}^{L-1} p^2(z_i)$$

• Entropia média: medida de variabilidade

$$e(z) = -\sum_{i=0}^{L-1} p(z_i) log_2 p(z_i)$$

Textura	Média	Desv. Pad.	R	μ_{3}	U(z)	e(z)
Suave	82.64	11.79	0.002	-0.105	0.026	5.434
Rugosa	143.56	74.63	0.079	-0.151	0.005	7.783
Regular	99.72	33.73	0.017	0.750	0.013	6.674

- Incorporação de informação sobre posição relativa de pixels: Matriz de co-ocorrência.
- Os elementos g_{ij} de uma matriz de co-ocorrência G contam a quantidade de vezes que o tom de cinza j ocorreu à direita do tom de cinza i.
- Para imagens com 256 tons de cinza, tais matrizes podem ter tamanhos de 256 x 256, podendo ser quantizadas em tamanhos menores pela conveniência.
- Médias e variâncias nas linhas e colunas

$$m_r = \sum_{i=1}^{K} i \sum_{j=1}^{K} p_{ij} \quad \sigma_r^2 = \sum_{i=1}^{K} (i - m_r)^2 \sum_{j=1}^{K} p_{ij}$$

$$m_c = \sum_{i=1}^{K} j \sum_{i=1}^{K} p_{ij} \quad \sigma_c^2 = \sum_{i=1}^{K} (j - m_c)^2 \sum_{i=1}^{K} p_{ij}$$

Alguns descritores baseados em matrizes de co-ocorrência

Aiguilo accontore	aguno decontereo baceados em matrizeo de co coorrencia								
Prob. Máxima	Resposta mais forte de G	$max_{i,j}(p_{ij})$							
Correlação	Diz como um pixel está correlacio- nado com seu vizinho	$\sum_{i=1}^K \sum_{j=1}^K \frac{(i-m_r)(j-m_c)p_{ij}}{\sigma_r \sigma_c}$							
Contraste	Contraste entre um pixel e seu vizi- nho	$\sum_{i=1}^K \sum_{j=1}^K (i-j)^2 p_{ij}$							
Uniformidade	Uniformidade da matriz	$\sum_{i=1}^K \sum_{j=1}^K \rho_{ij}^2$							
Homogeneidade	Proximidade da diagonal	$\sum_{i=1}^K \sum_{j=1}^K \frac{p_{ij}}{1+ i-j }$							
Entropia	Aleatoriedade de G	$\sum_{i=1}^K \sum_{j=1}^K \rho_{ij} \log \rho_{ij}$							

G	Prob.	Corr	Contr.	Unif.	Homog.	Entr
G_1/n_1	0.00006	-0.0005	10.838	0.0002	0.0366	15.75
G_2/n_2	0.01500	0.965	570	0.01230	0.0824	6.43
G_3/n_3	0.06860	0.8798	1356	0.0048	0.2048	13.58

- Abordagens estruturais usam regras de produção para criar a textura
- Abordagens espectrais avaliam o espectro de Fourier de uma região para medir características de textura.
 - Monta-se uma função $S(r,\theta)$, função da distância r para o centro do espectro e do ângulo θ formado com o eixo horizontal.

$$S(r) = \sum_{\theta=0}^{\pi} S_{\theta}(r) \quad S(\theta) = \sum_{r=0}^{\pi} S_{r}(\theta)$$

Momentos invariantes

• O momento de ordem (p + q) de f(x, y) é definido como:

$$m_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} x^p y^q f(x, y)$$

• O momento central de ordem (p + q) de f(x, y) é definido como:

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - \bar{x})^p (y - \bar{y})^q f(x, y)$$

Os momentos centrais normalizados são definidos como

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}} \quad \gamma = \frac{p+q}{2} + 1 \quad p+q = 2, 3, \cdots$$

Momentos invariantes

$$\begin{split} \phi_1 = & \eta_{20} + \eta_{02} \\ \phi_2 = & (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ \phi_3 = & (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ \phi_4 = & (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ \phi_5 = & (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 \\ & - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03}) \\ & [3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ \phi_6 = & (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ & + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\ \phi_7 = & (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 \\ & - 3(\eta_{21} + \eta_{03})^2] - (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03}) \\ & [3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \end{split}$$

Momentos invariantes

Moment Invariant	Original Image	Translated	Half Size	Mirrored	Rotated 45°	Rotated 90°
ϕ_1	2.8662	2.8662	2.8664	2.8662	2.8661	2.8662
ϕ_2	7.1265	7.1265	7.1257	7.1265	7.1266	7.1265
ϕ_3	10.4109	10.4109	10.4047	10.4109	10.4115	10.4109
ϕ_4	10.3742	10.3742	10.3719	10.3742	10.3742	10.3742
ϕ_5	21.3674	21.3674	21.3924	21.3674	21.3663	21.3674
ϕ_6	13.9417	13.9417	13.9383	13.9417	13.9417	13.9417
ϕ_7	-20.7809	-20.7809	-20.7724	20.7809	-20.7813	-20.7809