Lab_5

Могильников Дмитрий 2022-12-17

Задание 1

Сформируйте датасет самостоятельно на основе погодных данных (например, с сайта rp5).

С сайта гр5 были взяты данные города Нижневартовск за последние пять лет. Произведен парсинг этих данных в отдельный csv файл, в котором выделены два столбца:

- Дата
- Минимальная температура за сутки

Загрузим полученный датасет:

```
options(width = 100)
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
     method
##
     as.zoo.data.frame zoo
library(lubridate)
## Загрузка требуемого пакета: timechange
##
## Присоединяю пакет: 'lubridate'
## Следующие объекты скрыты от 'package:base':
##
##
       date, intersect, setdiff, union
df min temp <- read.csv('Nizhnevartovsk min temperature.csv', sep=',', header = TRUE)</pre>
head(df min_temp, 20)
##
           date min_temperature
## 1 2017-12-17
                           -9.8
     2017-12-18
                           -12.7
## 3 2017-12-19
                            -9.1
## 4 2017-12-20
                          -13.3
## 5 2017-12-21
                          -10.5
## 6 2017-12-22
                           -9.3
## 7 2017-12-23
                           -8.0
## 8 2017-12-24
                           -9.4
## 9 2017-12-25
                           -15.0
## 10 2017-12-26
                           -19.9
## 11 2017-12-27
                           -24.4
## 12 2017-12-28
                           -26.4
```

```
#Спарсим первую колонку в правильное значение даты
df_min_temp$date <- as.Date(df_min_temp$date, "%Y-%m-%d")
```

13 2017-12-29

14 2017-12-30

15 2017-12-31

16 2018-01-01

17 2018-01-02

18 2018-01-03

19 2018-01-04

20 2018-01-05

-19.6

-23.9

-27.0

-13.7

-20.2

-36.1

-25.4

-8.4

Создайте на основе датасета одномерный временной ряд. Выведите его на графике.


```
# Видим, что наблюдается сезонная периодичность, что естественно

#создадим переменную с датами
time <- time(df_ts)

#разделим на тестовую (15% ~270 элементов) и тестовую выборку
n_test <- 270
n_train <- length(df_ts) - n_test
df_train <- window(df_ts, start=time[1], end=time[n_train])
df_test <- window(df_ts, start=time[n_train+1], end=time[n_train+n_test])
```

Задание 3

Смоделируйте ряд тремя разными методами на Ваш выбор (naïve, snaive, ar, ma, arima, ses и т.д.).

```
# библиотека для проверки accuracy построенных моделей
library(knitr)
# Смоделируем наивную модель, h - сколько значений хотим предсказать(для сравнения с тестовой выборкой)
df_naive <- naive(df_train, h=n_test)</pre>
# Построим сезонную модель
df snaive <- snaive(df train, h=n test)</pre>
# Рассчитаем accuracy для каждой модели
acc_naive <- accuracy(df_naive, df_test)</pre>
acc_snaive <- accuracy(df_snaive, df_test)</pre>
# Воспользуемся методом ARIMA: для начала рассмотрим автоматическую регрессию
df_ar <- arima(df_train, c(1,0,0))</pre>
df_ar_res <-predict(df_ar, n.ahead=n test)</pre>
acc_ar <- accuracy(df_ar_res$pred, df_test)</pre>
# Рассмотрим скользящее среднее
df ma <- arima(df train, c(0,0,1))
df_ma_res <-predict(df_ma, n.ahead=n_test)</pre>
acc_ma <- accuracy(df_ma_res$pred, df_test)</pre>
# Рассмотрим полную ARIMA
df_arima <- arima(df_train, c(1,1,1))</pre>
df arima res <-predict(df arima, n.ahead=n test)</pre>
acc arima <- accuracy(df arima res$pred, df test)</pre>
```

Задание 4

Оцените точность прогнозирования построенных моделей (размер обучающей и тестовой выборок на Ваш выбор). Выберите наилучших метод.

```
# Сравним полученные результаты:
# Наивная модель
kable(acc_naive)
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0019506	9.544966	6.578284	NaN	Inf	0.8217388	-0.123298	NA
Test set	11.5165414	18.010740	16.355639	128.7663	424.4798	2.0430957	0.728016	1.955996

Сезонная модель kable(acc_snaive)

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.2049404	10.849156	7.999489	NaN	Inf	0.9992714	0.4754047	NA
Test set	-0.1612782	7.737141	5.843985	-12.07144	122.0261	0.7300125	0.3315575	0.6505751

Авторегрессионная модель kable(acc ar)

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	3.182797	14.15237	12.01099	108.5145	186.6458	0.7268222	1.146815

Скользящее среднее kable(acc_ma)

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	3.118175	14.18165	12.08093	109.7035	187.573	0.7286398	1.148454

Полная ARIMA kable(acc_arima)

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	9.084532	16.54989	14.96706	123.0399	353.8403	0.7278388	1.678547

Forecast

Исходя из полученных результатов, мы можем сделать вывод, что для прогнозирования погоды лучше всего подходит сезонная модель, это связанно с тем, что только она учитывает необходимые сезонные изменения. У остальных моделей показатели MAE и RMSE хуже, а также на графике видно, что для такого небольшого промежутка времени они все сходятся к константе. Сезонная модель же достаточно хорошо соотносится с тестовой выборкой.

Задание 5

Сформируйте дополнительный датасет на основе первого, возьмите данные только за определенный сезон (весна, лето, осень, зима) минимально за последние 5 лет.


```
# Видим, что наблюдается сезонная периодичность, что естественно

#создадим переменную с датами
time_summer <- time(df_summer_ts)

#разделим на тестовую (15% ~60 элементов) и тестовую выборку
n_test_summer <- 60
n_train_summer <- length(df_summer_ts) - n_test_summer
df_train_summer <- window(df_summer_ts, start=time_summer[1], end=time_summer[n_train_summer])
df_test_summer <- window(df_summer_ts, start=time_summer[n_train_summer+n_test_summer])
```

Задание 6

Те же пункты 2-4 ко второму датасету.

```
# Смоделируем наивную модель, h - сколько значений хотим предсказать(для сравнения с тестовой выборкой)
df naive summer <- naive(df train summer, h=n test summer)</pre>
# Построим сезонную модель
df snaive summer <- snaive(df train summer, h=n test summer)</pre>
# Paccчитаем accuracy для каждой модели
acc naive summer <- accuracy(df naive summer, df test summer)</pre>
acc snaive summer <- accuracy(df snaive summer, df test summer)</pre>
# Воспользуемся методом ARIMA: для начала рассмотрим автоматическую регрессию
df ar summer <- arima(df train summer, c(1,0,0))
df_ar_res_summer <-predict(df_ar_summer, n.ahead=n_test_summer)</pre>
acc_ar_summer <- accuracy(df_ar_res_summer$pred, df_test_summer)</pre>
# Рассмотрим скользящее среднее
df_ma_summer <- arima(df_train_summer, c(0,0,1))</pre>
df_ma_res_summer <-predict(df_ma_summer, n.ahead=n_test_summer)</pre>
acc ma summer <- accuracy(df ma res summer$pred, df test summer)</pre>
# Рассмотрим полную ARIMA
df arima summer <- arima(df train summer, c(1,1,1))
df_arima_res_summer <-predict(df_arima_summer, n.ahead=n_test_summer)</pre>
acc_arima_summer <- accuracy(df_arima_res_summer$pred, df_test_summer)</pre>
# Сравним полученные результаты:
# Наивная модель
kable(acc naive summer)
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.0229008	10.93955	6.692621	NaN	Inf	1.365187	-0.2172618	NA

Test set 25.7931034 27.54554 25.934483 380.9682 448.3189 5.290216 0.5136105 3.309321

Сезонная модель kable(acc_snaive_summer)

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.1758278	7.129848	4.936755	NaN	Inf	1.007018	0.2609642	NA
Test set	-1.3327586	6.305375	4.791379	-33.3399	73.11252	0.977364	0.2759359	0.3927724

Авторегрессионная модель kable(acc_ar_summer)

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	0.0030318	9.127295	6.615603	18.5837	94.32836	0.5079397	0.7352167

Скользящее среднее kable(acc_ma_summer)

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	-0.5364362	9.522379	6.944464	15.01676	107.9061	0.5220547	0.7030992

Полная ARIMA kable(acc_arima_summer)

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	0.0124203	9.124127	6.610899	18.75644	94.00066	0.5077359	0.7366301

Forecast

Исходя из полученных результатов, мы можем сделать вывод, что наилучший результат прогнозирования погоды для одного сезона также дает сезонная модель. У остальных моделей показатели MAE и RMSE хуже, а также на графике видно, что для такого небольшого промежутка времени они все сходятся к константе. Сезонная модель же достаточно хорошо соотносится с тестовой выборкой.