Análisis de las llamadas de A. pertinax (variable Tcall dur)

José R. Ferrer Paris

Leemos el archivo de datos de Aratinga pertinax, versión de 2019, y reclassificamos la variable Region para facilitar interpretación:

```
dts <- read.csv(sprintf("%s/data/mdf_JR_15viii19.csv",script.dir))</pre>
str(dts)
## 'data.frame':
                   1351 obs. of 9 variables:
## $ IndivGroup: Factor w/ 97 levels "AUA01", "AUA02",..: 1 1 1 1 1 1 1 2 2 ...
## $ soundfile : Factor w/ 1351 levels "0211327a", "0211344a",...: 1 2 3 4 5 6 7 8 9 10 ...
              : num 0.156 0.133 0.14 0.136 0.149 ...
## $ Tcall_dur : num 0.154 0.137 0.144 0.137 0.144 ...
## $ RecSite : Factor w/ 37 levels "A6","A7","B1",..: 1 1 1 1 1 1 1 1 1 ...
               : num 12.5 12.5 12.5 12.5 12.5 ...
## $ Lat
## $ Long
              : num -69.9 -69.9 -69.9 -69.9 -69.9 ...
## $ LocCode : Factor w/ 14 levels "AUA", "BON", "CUR", ...: 1 1 1 1 1 1 1 1 1 1 ...
               : Factor w/ 2 levels "isl", "main": 1 1 1 1 1 1 1 1 1 1 ...
dts$Region <- factor(dts$Region,levels=c("main","isl"))</pre>
```

Vamos a comparar ocho modelos para la variable Tcall dur

MODELO	efecto fijo	efecto aleatorio	heterocedasticidad
f000	isla	constante	sin
f010	isla	isla	\sin
f001	isla	constante	isla
f011	isla	isla	isla
f100	isla+long	constante	\sin
f110	isla+long	isla	\sin
f101	isla+long	constante	isla
f111	isla+long	isla	isla

El modelo nulo con efecto fijo de la isla

```
f000 <- lme(Tcall_dur~Region,dts,random=~1|LocCode/IndivGroup, method="ML")
```

Nulo + efecto aleatorio de isla/continente

```
f010 <- lme(Tcall_dur~Region,dts,
  random=list(LocCode=pdDiag(~Region),IndivGroup=pdDiag(~Region)), method="ML")</pre>
```

Nulo + heterocedasticidad

```
f001 <- lme(Tcall_dur~Region,dts,random=~1|LocCode/IndivGroup,weights=varIdent(form=~1|Region), method=
```

Nulo + efecto aleatorio de isla/continente + heterocedasticidad

```
f011 <- lme(Tcall_dur~Region,dts,
```

```
random=list(LocCode=pdDiag(~Region),IndivGroup=pdDiag(~Region)),
   weights=varIdent(form=~1|Region), method="ML")
Modelo alternativo con efecto fijo de la isla y longitud
f100 <- lme(Tcall_dur~Region+Long,dts,random=~1|LocCode/IndivGroup, method="ML")
Alternativo + efecto aleatorio de isla/continente
f110 <- lme(Tcall_dur~Region+Long,dts,
     random=list(LocCode=pdDiag(~Region),IndivGroup=pdDiag(~Region)), method="ML")
Alternativo + heterocedasticidad
f101 <- lme(Tcall_dur~Region+Long,dts,random=~1|LocCode/IndivGroup,weights=varIdent(form=~1|Region), me
Alternativo + efecto aleatorio de isla/continente + heterocedasticidad
f111 <-
      lme(Tcall_dur~Region+Long,dts,
        random=list(LocCode=pdDiag(~Region),IndivGroup=pdDiag(~Region)),
        weights=varIdent(form=~1|Region), method="ML")
Resultados
Comparamos el AIC de los modelos ajustados
anova(f000,f010,f001,f011,
 f100,f110,f101,f111)
##
        Model df
                       AIC
                                 BIC
                                       logLik
                                                 Test
                                                        L.Ratio p-value
## f000
            1 5 -2186.832 -2160.789 1098.416
## f010
            2 7 -2184.348 -2147.888 1099.174 1 vs 2
                                                        1.51642 0.4685
           3 6 -2301.774 -2270.522 1156.887 2 vs 3 115.42538 <.0001
## f001
## f011
           4 8 -2298.315 -2256.646 1157.157 3 vs 4
                                                        0.54116
                                                                 0.7629
           5 6 -2185.735 -2154.484 1098.868 4 vs 5 116.57950
## f100
                                                                 <.0001
## f110
            6 8 -2183.962 -2142.293 1099.981 5 vs 6
                                                        2.22657
                                                                 0.3285
## f101
            7 7 -2300.952 -2264.492 1157.476 6 vs 7 114.98989
                                                                 <.0001
## f111
            8 9 -2297.940 -2251.062 1157.970 7 vs 8
                                                        0.98812 0.6101
Reordenamos los modelos según el AIC
mis.aics <- AIC(f000,f010,f001,f011,
 f100,f110,f101,f111)
aic.tab <- cbind(mis.aics,delta.AIC=mis.aics[,2]-min(mis.aics[,2]))
aic.tab[order(aic.tab$AIC),]
##
        df
                 AIC
                       delta.AIC
## f001 6 -2301.774
                       0.000000
## f101 7 -2300.952
                       0.8218766
## f011 8 -2298.315
                       3.4588391
## f111 9 -2297.940
                       3.8337521
## f000 5 -2186.832 114.9418016
## f100 6 -2185.735 116.0383391
## f010 7 -2184.348 117.4253805
```

f110 8 -2183.962 117.8117676

El Mejor modelo incluye efectos fijos de Isla, con heterocedasticidad. El modelo con longitud en el efecto fijo tiene un soporte similar (delta AIC < 2).

Los detalles del modelo a continuación:

Regionisl

attr(,"label")
[1] "Fixed effects:"

```
summary(f001)
## Linear mixed-effects model fit by maximum likelihood
   Data: dts
##
##
           AIC
                     BIC
                           logLik
##
     -2301.774 -2270.522 1156.887
##
## Random effects:
   Formula: ~1 | LocCode
##
            (Intercept)
## StdDev: 7.073414e-06
##
##
   Formula: ~1 | IndivGroup %in% LocCode
##
           (Intercept) Residual
## StdDev: 0.06338031 0.1194013
##
## Variance function:
  Structure: Different standard deviations per stratum
  Formula: ~1 | Region
##
   Parameter estimates:
##
         isl
                  main
## 1.0000000 0.6444745
## Fixed effects: Tcall_dur ~ Region
                    Value
                            Std.Error
                                        DF
                                              t-value p-value
## (Intercept) 0.25138379 0.009432923 1254 26.649618 0.0000
               0.04777994 0.014436402
## Regionisl
                                        12 3.309685 0.0062
   Correlation:
##
##
             (Intr)
## Regionisl -0.653
##
## Standardized Within-Group Residuals:
##
           Min
                        Q1
                                   Med
                                                 QЗ
                                                            Max
## -3.03528534 -0.48939729 -0.08884927 0.42038880 5.63556696
##
## Number of Observations: 1351
## Number of Groups:
##
                   LocCode IndivGroup %in% LocCode
##
                                                 97
intervals(f001, which="fixed")
## Approximate 95% confidence intervals
##
   Fixed effects:
##
##
                    lower
                                est.
                                           upper
## (Intercept) 0.23289144 0.25138379 0.26987614
```

0.01634901 0.04777994 0.07921086

VarCorr(f001)

```
## LocCode = pdLogChol(1)
## (Intercept) 5.003319e-11 7.073414e-06
## IndivGroup = pdLogChol(1)
## (Intercept) 4.017064e-03 6.338031e-02
## Residual 1.425668e-02 1.194013e-01
```