Smart Inventory Pallets - Requirements Specification Document

Version: 1.0

Project: Smart Inventory Pallets for Beverage Distribution Warehouses

Student: Chameera K.H.D (220080N) **Course:** Embedded Systems Project

1. Introduction

1.1 Purpose

This document specifies the functional and non-functional requirements for the Smart Inventory Pallets system. The system aims to automate inventory tracking in beverage distribution warehouses using embedded IoT devices integrated with existing SaaS platforms.

1.2 Scope

The Smart Inventory Pallets system covers:

- Automated weight measurement using load cells
- Real-time inventory calculation based on weight changes
- ESP32-based embedded device for local processing
- WiFi connectivity for cloud data transmission
- Integration with existing SaaS platform for beverage distribution
- Real-time dashboard updates and reporting

1.3 Document Conventions

- SHALL/MUST: Mandatory requirement
- **SHOULD**: Highly recommended requirement
- MAY/COULD: Optional requirement
- FR: Functional Requirement
- NFR: Non-Functional Requirement

1.4 Intended Audience

- Project supervisor and academic reviewers
- Development team (student)
- Future maintainers and developers
- End users (warehouse staff)

2. Overall Description

2.1 Product Perspective

The Smart Inventory Pallets system is an embedded IoT solution that extends the existing SaaS platform for beverage distribution. It operates as a complementary system that automates manual inventory tracking processes currently performed by warehouse clerks.

2.2 Product Functions

- Automated Weight Monitoring: Continuous monitoring of pallet weight using load cells
- Inventory Calculation: Real-time calculation of bottle/product quantities based on weight
- **Data Transmission**: Wireless transmission of inventory data to cloud platform
- Local Display: Real-time status display on embedded device
- Cloud Integration: Seamless integration with existing SaaS dashboard

2.3 User Classes and Characteristics

- Warehouse Staff: Primary users who load/unload vehicles and monitor inventory
- Warehouse Managers: Users who review reports and monitor overall inventory status
- System Administrators: Technical users responsible for system maintenance
- **Delivery Drivers**: Indirect users whose activities trigger inventory changes

2.4 Operating Environment

- Physical Environment: Industrial warehouse setting with temperature variations
- **Network Environment**: WiFi network with internet connectivity
- **Power Environment**: Mains power with optional battery backup
- Mechanical Environment: Subject to loading/unloading vibrations and weight changes

3. Functional Requirements

3.1 Weight Measurement System (FR-WM)

FR-WM-001: Load Cell Integration

- The system SHALL integrate with 20kg capacity load cells to measure pallet weight
- The system SHALL use HX711 amplifier for accurate weight signal conditioning
- The system SHALL support calibration procedures for accurate weight measurement

FR-WM-002: Real-time Weight Monitoring

- The system SHALL continuously monitor pallet weight at configurable intervals
- The system SHALL detect weight changes greater than a configurable threshold
- The system SHALL filter out vibrations and temporary weight fluctuations

FR-WM-003: Weight Data Processing

- The system SHALL calculate net product weight by subtracting pallet tare weight
- The system SHALL convert weight measurements to product quantities using configurable unit weights
- The system SHALL maintain weight measurement history for analysis

3.2 Display and User Interface (FR-UI)

FR-UI-001: Local Display

- The system SHALL display current weight measurements on an integrated screen
- The system SHALL show calculated product quantities in real-time
- The system SHALL display system status and connectivity information

FR-UI-002: Status Indicators

- The system SHALL provide visual indicators for system operational status
- The system SHALL display error conditions and alerts
- The system SHALL show network connectivity status

3.3 Data Communication (FR-DC)

FR-DC-001: WiFi Connectivity

- The system SHALL connect to wireless networks using WPA2/WPA3 security protocols
- The system SHALL automatically reconnect to known networks after connectivity loss
- The system SHALL support network configuration through user interface

FR-DC-002: Cloud Data Transmission

- The system SHALL transmit weight and inventory data to cloud platform via HTTP/HTTPS
- The system SHALL send data in JSON format with standardized data structures
- The system SHALL include timestamp and device identification in all transmissions

FR-DC-003: Offline Operation

- The system SHALL continue local operation when network connectivity is unavailable
- The system SHALL store unsent data locally during network outages
- The system SHALL automatically sync stored data when connectivity is restored

3.4 SaaS Platform Integration (FR-SI)

FR-SI-001: API Integration

- The system SHALL integrate with existing SaaS platform through RESTful APIs
- The system SHALL authenticate with cloud services using secure protocols
- The system SHALL handle API responses and error conditions appropriately

FR-SI-002: Real-time Updates

- The system SHALL enable real-time inventory updates on SaaS dashboard
- The system SHALL support configurable update intervals based on weight changes
- The system SHALL provide inventory change notifications to the SaaS platform

FR-SI-003: Data Synchronization

- The system SHALL maintain data consistency between local device and cloud platform
- The system SHALL resolve data conflicts using timestamp-based resolution
- The system SHALL support bulk data synchronization for initial setup

3.5 Configuration and Calibration (FR-CC)

FR-CC-001: System Configuration

- The system SHALL support configuration of product-specific weight parameters
- The system SHALL allow configuration of network settings and cloud endpoints
- The system SHALL provide factory reset functionality

FR-CC-002: Load Cell Calibration

- The system SHALL support guided calibration procedures using known weights
- The system SHALL store calibration parameters in non-volatile memory
- The system SHALL detect and alert for calibration drift or errors

4. Non-Functional Requirements

4.1 Performance Requirements (NFR-P)

NFR-P-001: Weight Measurement Accuracy

- The system SHALL achieve weight measurement accuracy within ± 50 grams
- The system SHALL maintain accuracy across operating temperature range
- The system SHALL provide consistent measurements under normal warehouse conditions

NFR-P-002: Response Time

- The system SHALL display weight changes within 500 milliseconds of detection
- The system SHALL transmit critical data to cloud within 2 seconds
- The system SHALL respond to user interface interactions within 200 milliseconds

NFR-P-003: Data Processing Speed

- The system SHALL process weight data and calculate inventory quantities within 100 milliseconds
- The system SHALL handle multiple simultaneous weight measurements efficiently
- The system SHALL maintain real-time performance under normal load conditions

4.2 Reliability Requirements (NFR-R)

NFR-R-001: System Availability

- The system SHALL maintain 99% uptime during normal operating hours
- The system SHALL recover automatically from temporary power interruptions
- The system SHALL continue operation during brief network connectivity issues

NFR-R-002: Data Integrity

- The system SHALL ensure 100% accuracy in data transmission to cloud platform
- The system SHALL implement error detection and correction for critical data
- The system SHALL maintain audit trails for all inventory transactions

NFR-R-003: Fault Tolerance

- The system SHALL detect and report sensor failures automatically
- The system SHALL continue operation with degraded functionality during component failures
- The system SHALL provide graceful degradation rather than complete system failure

4.3 Usability Requirements (NFR-U)

NFR-U-001: Ease of Use

- The system SHALL require minimal training for warehouse staff operation
- The system SHALL provide intuitive user interface with clear visual indicators
- The system SHALL support operation by users with basic technical knowledge

NFR-U-002: Installation and Setup

- The system SHALL support installation by technical staff within 2 hours
- The system SHALL provide automated setup procedures where possible
- The system SHALL include comprehensive setup documentation

4.4 Security Requirements (NFR-S)

NFR-S-001: Data Security

- The system SHALL encrypt all data transmissions to cloud platform
- The system SHALL implement secure authentication for cloud services
- The system SHALL protect against unauthorized access to configuration settings

NFR-S-002: Network Security

- The system SHALL support secure WiFi protocols (WPA2/WPA3)
- The system SHALL validate server certificates for cloud connections
- The system SHALL implement secure firmware update mechanisms

4.5 Compatibility Requirements (NFR-C)

NFR-C-001: Hardware Compatibility

- The system SHALL be compatible with standard warehouse pallet sizes
- The system SHALL operate with common 20kg load cell specifications
- The system SHALL support standard power supply voltages (5V/12V)

NFR-C-002: Software Compatibility

- The system SHALL integrate with existing SaaS platform APIs without modifications
- The system SHALL support common WiFi router configurations
- The system SHALL maintain compatibility with standard JSON data formats

4.6 Environmental Requirements (NFR-E)

NFR-E-001: Operating Conditions

- The system SHALL operate in temperature range of 0°C to 50°C
- The system SHALL function in humidity levels up to 85% non-condensing
- The system SHALL withstand typical warehouse dust and vibration levels

NFR-E-002: Power Requirements

- The system SHALL operate on 5V DC power supply with $\pm 5\%$ tolerance
- The system SHALL consume less than 2 watts during normal operation
- The system SHALL support optional battery backup for 8+ hours operation

5. System Constraints

5.1 Hardware Constraints

- Microcontroller: ESP32-based development board with WiFi capability
- Load Cells: Maximum 20kg capacity with appropriate load distribution
- **Display**: OLED or LCD display suitable for industrial environment
- **Power**: Standard 5V/12V power supply with optional battery backup

5.2 Software Constraints

- **Development Platform**: Arduino IDE or ESP-IDF for firmware development
- **Programming Language**: C/C++ for embedded firmware
- **Communication Protocol**: HTTP/HTTPS for cloud communication
- Data Format: JSON for data exchange with SaaS platform

5.3 Regulatory Constraints

- Safety Standards: Compliance with industrial equipment safety standards
- Electromagnetic Compatibility: FCC/CE compliance for wireless operation
- **Data Protection**: Compliance with applicable data privacy regulations

6. Assumptions and Dependencies

6.1 Assumptions

- Existing SaaS platform provides stable APIs for integration
- Warehouse WiFi network provides reliable internet connectivity
- Standard warehouse pallets support load cell integration
- Warehouse staff will receive basic training on system operation
- Product weights are consistent and known for accurate inventory calculation

6.2 Dependencies

- Hardware Procurement: Timely delivery of electronic components
- SaaS Platform: Availability of existing platform for integration testing
- Network Infrastructure: Functional WiFi network in warehouse environment
- Power Supply: Reliable electrical power or battery backup system
- **Technical Support**: Access to technical documentation and support resources

7. Acceptance Criteria

7.1 Functional Acceptance

- All functional requirements (FR-WM, FR-UI, FR-DC, FR-SI, FR-CC) are implemented and tested
- System successfully integrates with existing SaaS platform
- Real-time inventory updates are accurately reflected in dashboard
- Local display shows correct weight and inventory information

7.2 Performance Acceptance

- Weight measurement accuracy meets ± 50 g specification
- System response times meet specified performance targets
- Network connectivity and data transmission function reliably
- System maintains 99% uptime during testing period

7.3 Integration Acceptance

• Seamless integration with existing SaaS platform without disruption

- API calls function correctly with proper authentication
- Data synchronization maintains consistency between device and cloud
- Error handling and recovery procedures function as specified

8. Validation and Verification

8.1 Testing Strategy

- Unit Testing: Individual component functionality verification
- Integration Testing: System-level operation and API integration
- **Performance Testing**: Load testing and response time validation
- User Acceptance Testing: End-user workflow validation

8.2 Test Environment

- **Development Environment**: Breadboard prototype with test weights
- Integration Environment: Test SaaS platform instance
- **Production-like Environment**: Warehouse simulation with actual pallets
- Field Testing: Limited deployment in actual warehouse environment

9. Future Considerations

9.1 Scalability

- Support for multiple smart pallets in single warehouse
- Central management system for multiple devices
- Enhanced analytics and reporting capabilities
- Integration with additional warehouse management systems

9.2 Enhancement Opportunities

- Advanced sensor integration for improved accuracy
- Machine learning for predictive inventory management
- Mobile application for warehouse staff
- Enhanced security and authentication mechanisms

10. Glossary

Term	Definition
Load Cell	Sensor that converts mechanical force/weight into electrical signal
HX711	24-bit analog-to-digital converter designed for load cell applications
ESP32	Microcontroller with integrated WiFi and Bluetooth capabilities
SaaS	Software as a Service - cloud-based software delivery model
Tare Weight	Weight of empty pallet without products
JSON	JavaScript Object Notation - data interchange format
API	Application Programming Interface
MQTT	Message Queuing Telemetry Transport protocol
ІоТ	Internet of Things

Document Control:

- **File Location:** docs/requirements-specification-v1.pdf
- Version History: Initial version
- Related Documents: Project Proposal, System Architecture Design
- Next Version: v2.0