

Topology Crash Course - Lecture 05

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • September 10, 2021

Session Agenda

Paths in Topological Spaces

Definition (1.0)

Let (X, \mathcal{T}) be a topological space and $p_1, p_2 \in X$. We say the points p_1 and p_2 are connected by a path in X if there exists a continuous map $\gamma: [0,1] \longrightarrow X$ such that $\gamma(0) = p_1$ and $\gamma(1) = p_2$.

We say p_1 and p_2 are the endpoints of the path. Intuitively, a path is just an abstraction of being able to walk from point p_1 to the point p_2 .

- If γ is a homeomorphism, then it's called an 'arc-path' (or just arc) from p_1 to p_2 .
- ▶ Obviously, if p_1 and p_2 are connected by a path and p_2 is connected to p_3 by a path then p_1 and p_3 are also connected by a path right? In fact, the notion of path in X defines an equivalence relation \sim in X i.e. $p_1 \sim p_2$ iff the two points are connected by a path.
- Wouldn't it be nice that any two points in X can be connected by a path?

Path-Connected Spaces

Definition (1.1)

A topological space (X, \mathcal{T}) is path-connected if every two points $p_1, p_2 \in X$ can be connected by some path $\gamma : [0, 1] \longrightarrow X$.

- Intuitively, X being path-connected means we can walk between any two points in X. From a modelling point of view, this is great for our friends in physics right?
- X is called 'arcwise-connected' if there exists an arc-path between any two points. Interestingly, it can be proven that a Hausdorff space is path connected iff it is arcwise- connected!

Side note: Some authors use 'arcwise-connected' to mean the same thing as 'path connected' when dealing with Hausdorff spaces.

Path-Connectedness Is an Invariant

Proposition (1.0)

Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. If X is path-connected and $f: X \longrightarrow Y$ is a continuous map, then f(X) is path-connected.

Proof: Homework challenge!

Hence, path-connectedness is a topological invariant! Therefore it can be used to check whether two topological spaces are homeomorphic.

Theorem (1.0)

If a topological space (X, \mathcal{T}) is path-connected, then it is connected.

Proof : Textbook or try prove it yourself!

- Please note the opposite is not true i.e. not every connected space is path-connected! A famous counter-example is the so-called 'Topologist's Sine Curve' which connected but not path connected.
- Hence, path-connectedness is a stronger notion than connectedness. Very often it is easier and more intuitive to try to prove that a space is path-connected first before trying to prove if it's connected!

Path-Connectedness Challenge

- Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two path-connected topological spaces. Is it true that the product space $(X \times Y, \mathcal{T}_1 \times \mathcal{T}_2)$ is also path-connected?
- Which of the following topological spaces are path-connected (therefore connected):
 - 1. The closed interval [0,1] equipped with the subspace topology of the standard topology on \mathbb{R} .
 - 2. The open interval (0,1) equipped with the subspace topology of the standard topology on \mathbb{R} .
 - 3. The unit circle $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ equipped with subspace topology of the standard topology on \mathbb{R}^2 .
 - 4. The torus (aka doughnut) $\mathbb{T}^2 = S^1 \times S^1$.
 - 5. The unit sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ equipped with subspace topology of the standard topology on \mathbb{R}^3 .
 - 6. ℝ equipped with the standard topology.7. ℝ \ {0} equipped with the standard topology.
 - 7. $\mathbb{R} \setminus \{0\}$ equipped with the standard topology.
- 8. $\mathbb{R}^2 \setminus \{(0,0)\}$ equipped with the standard topology.
- ▶ Which of the topological spaces above are arc-connected?

Connectedness Comments

We left out some other important notions associated with connectedness and path-connectedness:

1. Local Connectedness and local-path connectedness:

Connectedness and path-connectedness are what topologists call 'global properties' of a space X i.e. they say something about X as a whole. Whereas local connectedness and local path-connectedness are 'local properties' of a space X i.e. they say what happens locally at arbitralily small neighbourhoods of points.

Note: In general, global properties do not imply local properties and vice-versa. For example, *X* can be locally path-connected but fails to be path-connected!

2. Simply Connected Spaces: How can we prove (formally) that the sphere is not homeomorphic to the torus?

In a nusthell, simply connected spaces are spaces that have no holes!

To formalise this, we need the notion of 'homotopy', which essentially helps detect holes in a space!

PART B

Open Covers

Definition (1.2)

Let (X, \mathcal{T}) be a topological space. A collection of open sets $\mathcal{C} = \{C_i\}_{i \in I} \subseteq \mathcal{T}$ is said to form an open cover if $\bigcup_{i \in I} C_i = X$.

- The indexing set I can be infinite or even uncountable!
- We could have started more abstractly with the notion 'cover' as being a subcollection of the power-set i.e. $C = \{C_i\}_{i \in I} \subseteq \mathcal{P}(X)$.

Definition (1.3)

Let $C = \{C_i\}_{i \in I} \subseteq T$ be an open cover of (X, T). A subcollection $C' = \{C'_j\}_{j \in J} \subseteq C$ where $J \subseteq I$ is called a subcover of C if it's also an open cover of (X, T) i.e. $\bigcup_{i \in I} C'_j = X$.

▶ In principle, a subcover can be finite i.e. $J \subseteq I$ can be a finite set.

Open Cover Challenge

- Let X = (0,1) be equipped with subspace topology of the standard topology on \mathbb{R} . Is $C = \{(0,1), (0,\frac{1}{2}), (\frac{1}{2},1)\}$ an open cover of X i.e. is $X = (0,1) \cup (0,\frac{1}{2}) \cup (\frac{1}{2},1)$?
- Let now X=(0,1] be equipped with subspace topology of the standard topology on \mathbb{R} and let $C_n=(\frac{1}{n},1)$ for all $n\in\mathbb{N}$. So for example, $C_1=(1,1), C_2=(\frac{1}{2},1), C_3=(\frac{1}{3},1)$ etc.

Is
$$C = \{C_n \mid n \in \mathbb{N}\}$$
 an open cover of X i.e. is $\bigcup_{i \in I} C_i = X$?

Consider $X = \mathbb{R}$ equipped with the standard topology. Let us construct the open intervals $C_n = (-n, n)$ for all $n \in \mathbb{N}$.

For example,
$$C_1 = (-1, 1)$$
, $C_2 = (-2, 2)$, $C_3 = (-3, 3)$ etc. Is $C = \{C_n \mid n \in \mathbb{N}\}$ an open cover of \mathbb{R} i.e. is $\bigcup_{n \in \mathbb{N}} C_n = \mathbb{R}$?

Consider $X = \mathbb{R}$ again equipped with the standard topology. But now let $C_k = (k, k+2)$ for all $k \in \mathbb{Z}$.

So for example,
$$C_0 = (0, 2)$$
, $C_1 = (1, 3)$, $C_{-1} = (-1, 1)$ etc.

Is
$$\mathcal{C}=\{C_k\mid k\in\mathbb{Z}\}$$
 an open cover of \mathbb{R} i.e. $\bigcup_{k\in\mathbb{Z}}C_k=\mathbb{R}$?

Try find at least a subcover for the open covers above. Are there finite subcovers?

Compact Spaces

Definition (1.4)

A topological space (X, \mathcal{T}) is compact if every open cover \mathcal{C} has a finite subcover $\mathcal{C}' = \{C'_j\} \subseteq \mathcal{C}$ where $j \in \{1, ..., k\}$ for some $k \in \mathbb{N}$.

- This means that X can be written as finite union of the subcover i.e. $\bigcup_{j=1}^k C_j' = C_1' \cup \ldots \cup C_k' = X$.
- ▶ Hence, if X is a finite set, then (X, \mathcal{T}) is always compact regardless of our choice for the topology \mathcal{T} .
- Likewise, let X be any set (finite or infinite) and equipped with the indiscrete topology i.e. $\mathcal{T} = \{\emptyset, X\}$. Then (X, \mathcal{T}) is obviously compact!
- Suppose now that X is infinite and equipped with the discrete topology i.e. $\mathcal{T} = P(X)$. Is (X, \mathcal{T}) compact?

Compact Subsets

Definition (1.5)

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is compact if the induced subspace topology (A, \mathcal{T}_A) is compact.

▶ Does a proper subset $A \subset X$ being compact necessarily means the parent space (X, \mathcal{T}) is compact?

Proposition (1.1)

If (X, \mathcal{T}) is compact, then a closed subset $A \subseteq X$ is compact.

Proof: Homework challenge?

- ▶ Recall that $A \subseteq X$ being closed means its complement in X is open i.e. $X \setminus A \in \mathcal{T}$.
- Worth noting that in general compactness does not imply closed. However, if (X, \mathcal{T}) is Hausdorff and $A \subseteq X$ is compact, then A is closed in X!
- Another interesting property is that if (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) are compact Hausdorff spaces, then any bijective continuous map $f: X \longrightarrow Y$ is a homeomorphism!

Compactness Is an Invariant

Proposition (1.2)

Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be topological spaces. If X is compact and $f: X \longrightarrow Y$ is a continuous map, then f(X) is compact.

Proof: Homework challenge!

Hence, as you might have already suspected, compactness is a topological invariant! Therefore it can be used to check whether two topological spaces are homeomorphic.

Compactness Challenge

- Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) be two compact spaces. Is it true that the product space $(X \times Y, \mathcal{T}_1 \times \mathcal{T}_2)$ is also compact?
- Which of the following topological spaces are compact:
 - 1. The closed interval [0,1] equipped with the subspace topology of the standard topology on \mathbb{R} .
 - 2. The open interval (0,1) equipped with the subspace topology of the standard topology on \mathbb{R} .
 - 3. The unit circle $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ equipped with subspace topology of the standard topology on \mathbb{R}^2 .
 - 4. The torus (aka doughnut) $\mathbb{T}^2 = S^1 \times S^1$.
 - 5. The unit sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ equipped with subspace topology of the standard topology on \mathbb{R}^3 .
 - 6. R equipped with the standard topology.
 - 7. $\mathbb{R} \setminus \{0\}$ equipped with the standard topology.
 - 8. $\mathbb{R}^2 \setminus \{(0,0)\}$ equipped with the standard topology.

Why Compactness Matters?

- In Module II we'll learn about 'Compact Lie Groups'. These are very important class of Lie Groups with applications in Physics and Quantum Computation. Famous examples are:
 - 1. The unitary group U(n) and the special unitary group SU(n).
 - 2. The orthogonal group O(n).
 - 3. The special orthogonal group SO(n).

Lie Theory for Quantum Control

Abstract

One of the main theoretical challenges in quantum computing is the design of explicit schemes that enable one to effectively factorize a given final unitary operator into a product of basic unitary operators. As this is equivalent to a constructive controllability task on a Lie group of special unitary operators, one faces interesting classes of bilinear optimal control problems for which efficient numerical solution algorithms are sought for. In this paper we give a review on recent Lie-theoretical developments in finite-dimensional quantum control that play a key role for solving such factorization problems on a compact Lie group.

"If a city is compact, it can be guarded by a finite number of arbitrarily short-sighted policemen."

Hermann Weyl

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

Linkedin: linkedin.com/company/zaikugroup