Module LU2IN003 Graphes orientés 9

Alix Munier Kordon et Maryse Pelletier

Exercice 1 – Terminologie de base

Dans cet exercice, on considère le graphe orienté $G_0 = (V_0, A_0)$, avec $V_0 = \{1, 2, 3, 4, 5, 6, 7\}$ et $A_0 = \{(1, 2), (2, 3), (3, 1), (2, 4), (3, 4), (2, 5), (3, 5), (4, 5), (5, 4), (6, 7)\}$. On pose $n_0 = |V_0|$ et $m_0 = |A_0|$.

Question 1

Dessiner le graphe G_0 . Que valent n_0 et m_0 ?

Solution:

 $n_0 = 7$ et $m_0 = 10$.

Question 2

Pour chaque sommet x de G_0 , donner l'ensemble des successeurs de x, l'ensemble de ses prédecesseurs, son demidegré sortant et son demi-degré entrant. Que vaut la somme des demi-degrés sortants? des demi-degrés entrants?

Solution:

x	1	2	3	4	5	6	7
$\Gamma^+(x)$	{2}	${3,4,5}$	$\{1, 4, 5\}$	{5}	{4}	{7}	Ø
$\Gamma^{-}(x)$	{3}	{1}	{2}	${2,3,5}$	$\{2, 3, 4\}$	Ø	{6}
$d^+(x)$	1	3	3	1	1	1	0
$d^-(x)$	1	1	1	3	3	0	1

La somme des demi-degrés sortants et la somme des demi-degrés entrants sont toutes deux égales à 10.

Question 3

Donner un chemin élémentaire de G_0 et un circuit élémentaire de G_0 , ainsi que leurs longueurs (en nombre d'arcs) respectives.

Solution:

Un exemple chemin élémentaire : (1, 2, 3, 5, 4), de longueur 4. Ou (), de longueur 0. Ou encore (1, 2), de longueur 1.

Un exemple de circuit élémentaire : (1, 2, 3, 1), de longueur 3.

Question 4

Représenter le graphe non orienté G'_0 associé à G_0 en enlevant l'orientation des arcs. Le graphe G_0 est-il connexe? Justifier la réponse.

Solution:

Graphe G'_0 :

Le graphe G_0 n'est pas connexe car le graphe G_0' n'est pas connexe (pas de chaîne entre 5 et 6).

Question 5

Le graphe G_0 est-il fortement connexe? Donner ses composantes fortement connexes.

Solution:

Le graphe G_0 n'est pas fortement connexe, puisqu'il n'est pas connexe. Ses composantes fortement connexes sont $\{1,2,3\},\{4,5\},\{6\}$ et $\{7\}$.

Exercice 2 – Propriétés autour des degrés pour un graphe orienté

Soit G = (V, A) un graphe orienté. On pose n = |V| et m = |A|.

Question 1

Montrer que
$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = m$$
.

Solution:

Par récurrence sur m.

$$\textbf{Base} \ \ \text{Si} \ m=0 \ \text{alors} \ d^+(v)=d^-(v)=0 \ \text{pour tout} \ v\in V \ \text{donc} \ \sum_{v\in V} d^+(v)=\sum_{v\in V} d^-(v)=0.$$

Induction Soit m>0, on suppose que la propriété est vraie pour tout graphe orienté ayant m-1 arcs. Soit G un graphe ayant m arcs, soit (x,y) un arc de G, soit $A'=A\setminus\{(x,y)\}$ et soit G'=(V,A'). Notons $d'^+(v)$, resp. $d'^-(v)$, le demi-degré sortant, resp. entrant, de v dans G'.

Alors
$$\sum_{v \in V} d'^+(v) = \sum_{v \in V} d'^-(v) = m-1$$
 , par hypothèse de récurrence.

$$\sum_{v \in V} d^+(v) = \sum_{v \in V \setminus \{x\}} \overline{d^+(v)} + d^+(x) = \sum_{v \in V \setminus \{x\}} d'^+(v) + (d'^+(x) + 1) = \sum_{v \in V} d'^+(v) + 1 = m - 1 + 1 = m.$$

De même
$$\sum_{v \in V} d^-(v) = m.$$

Conclusion La propriété pour tout graphe orienté.

Question 2

Exprimer le nombre maximum d'arcs de G en fonction de n:

- si G est sans boucle
- si G est avec boucles.

Solution:

Remarquons que le nombre d'arcs d'un graphe orienté est égal au nombre d'arcs sortants. Le nombre maximum d'arcs est le nombre d'arcs d'un graphe orienté *complet*.

Si G est sans boucle, il y a au maximum n-1 arcs sortants par sommet. Au total n(n-1) arcs.

Si G est avec boucles, il y a au maximum n arcs sortants par sommet. Au total n^2 arcs.

Question 3

1. On suppose n > 2 et on pose $V = \{v_1, v_2, \dots, v_n\}$.

Calculer $d^+(x)$ et $d^-(x)$ pour tout $x \in V$ dans chacun des cas suivants :

- (a) G est composé uniquement d'un chemin élémentaire (v_1, v_2, \dots, v_n) passant par tous les sommets
- (b) G est composé uniquement d'un circuit élémentaire $(v_1, v_2, \dots, v_n, v_1)$ passant par tous les sommets
- (c) G est composé uniquement d'un chemin $(v_1, v_2, \dots, v_n, v_j)$, avec $2 \le j < n$ passant par tous les sommets.
- 2. Caractériser, sans preuve, les graphes orientés G=(V,A) tels que $d^+(x)=d^-(x)=1$ pour tout $x\in V$. Facultatif: prouver le résultat trouvé.

Solution:

- 1. (a) $d^+(v_n) = 0$ et $d^+(v_i) = 1$ pour les autres sommets, $d^-(v_1) = 0$ et $d^-(v_i) = 1$ pour les autres sommets.
 - (b) $d^+(v_i) = 1$ pour tous les sommets, $d^-(v_i) = 1$ pour tous les sommets.
 - (c) $d^+(v_i) = 1$ pour tous les sommets, $d^-(v_1) = 0$ et $d^-(v_i) = 2$ et $d^-(v_i) = 1$ pour les autres sommets.

2. G est composé de circuits élémentaires deux à deux disjoints.

Facultatif

On pose n=|V|. Soit $x\in V$. On construit un chemin (x_0,x_1,\ldots,x_n) avec $x_0=x$ (c'est possible puisque $d^+(y)=1$ pour tout $y\in V$). Ce chemin a n+1 sommets donc il existe $1\leq i< j\leq n$ tels que $x_i=x_j$. Soit i_0 le plus petit indice tel qu'il existe $j>i_0$ tel que $x_{i_0}=x_j$. Si $i_0>0$ alors x_j a comme prédecesseurs x_{i_0-1} et x_{j_1} donc $x_{i_0-1}=x_{j_1}$ (car $d^-(x_j)=1$), en contradiction avec la définition de i_0 . Donc $i_0=0$. Soit j_0 le plus grand indice tel qu'il existe $i< j_0$ tel que $x_{j_0}=x_i$. On montre de même que $j_0=n$.

Ainsi on a prouvé que (x_0, x_1, \dots, x_n) est un circuit et on prouve que ce circuit est élémentaire par un raisonnement analogue au précédent (laissé au lecteur).

Supposons que deux circuits différents $C=(x_0,x_1,\ldots,x_p,x_1)$ et $C'=(x'_0,x'_1,\ldots,x'_q,x'_1)$ ont un sommet en commun. Soit i_0 le plus petit indice tel qu'il existe j tel que $x_{i_0}=x'_j$. Alors x'_j a exactement deux prédecesseurs : son prédecesseur dans C et son prédecesseur dans C'. En contradiction avec $d^-(x'_j)=1$. Par conséquent les circuits sont deux à deux disjoints.

Exercice 3 - Représentation d'un graphe orienté

Question 1

Complétez le tableau suivant. Les graphes considérés sont des graphes orientés sans arc double ni boucle.

Définition ensembliste	Matrice sommet-sommet	Matrice sommet-arc	Liste d'adjacence
$V = \{1, 2, 3, 4\}$ $E = \{(1, 2), (2, 3),$ $(3, 1), (2, 4), (3, 4)\}$			
	$\left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$		
		$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			$ \begin{array}{ccc} -1 \to & [4, 5] \\ -2 \to & [3] \\ -3 \to & [2] \\ -4 \to & [] \\ -5 \to & [] \end{array} $

Solution:

Définition ensembliste	Matrice sommet-sommet	Matrice sommet-arc	Liste d'adjacence
Definition ensembliste	(,	3
$V = \{1, 2, 3, 4\}$ $E = \{(1, 2), (2, 3),$ $(3, 1), (2, 4), (3, 4)\}$	$\left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right]$	$\left(\begin{array}{cccccc} 1 & 0 & -1 & 0 & 0 \\ -1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & -1 \end{array}\right)$	$ \begin{array}{ccc} -1 \to & [2] \\ -2 \to & [3, 4] \\ -3 \to & [1, 4] \\ -4 \to & [] \end{array} $
$V = \{1, 2, 3, 4\}$ $E = \{(1, 2), (2, 3),$ $(2, 4), (3, 4)\}$	$ \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) $	$ \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & -1 \end{array}\right) $	$ \begin{array}{ccc} -1 \to & [2] \\ -2 \to & [3, 4] \\ -3 \to & [4] \\ -4 \to & [] \end{array} $
$V = \{1, 2, 3, 4, 5\}$ $E = \{(1, 2), (1, 4),$ $(2, 1), (4, 3), (4, 5)$ $(5, 1)\}$	$\left(\begin{array}{ccccc} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccc} -1 \to & [2,4] \\ -2 \to & [1] \\ -3 \to & [] \\ -4 \to & [3,5] \\ -5 \to & [1] \end{array} $
$V = \{1, 2, 3, 4, 5\}$ $E = \{(1, 4), (1, 5)$ $\{2, 3\}, \{3, 2\}\}$	$\left(\begin{array}{ccccc} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} $	$ \begin{array}{ccc} -1 \to & [4, 5] \\ -2 \to & [3] \\ -3 \to & [2] \\ -4 \to & [] \\ -5 \to & [] \end{array} $

Question 2

Que doit vérifier une matrice carrée M pour être la matrice sommet-sommet d'un graphe orienté? Même question pour une matrice R sommet-arc ou une liste d'adjacence L.

Solution:

Pour une matrice sommet-sommet M est à valeur dans $\{0,1\}$. Comme il n'y a pas de boucle, il y a des 0 sur la première diagonale.

Pour la matrice sommet-arc M est à valeur dans $\{0,1,-1\}$ et n'est pas carrée. Chaque arc est associé à une colonne avec exactement une valeur à 1, et une à -1 (pas de boucle). De plus, toutes les colonnes sont différentes car il n'y a pas d'arc multiple (i.e. arcs identiques).

Pour les listes d'adjacence Il y a n listes, et les listes contiennent des sommets. Pour tout sommet x, x ne fait pas partie de la liste L[x] car il n'y a pas de boucle.

Exercice 4 – Forte connexité, relation d'équivalence et graphe réduit

Soit G = (V, A) un graphe orienté. On définit la relation \mathcal{R}_{FC} sur V par : pour tout couple de sommets $(u, v) \in V^2$, $u\mathcal{R}_C v$ si il existe un chemin dans G entre u et v et un chemin de v à u.

Question 1

On considère dans cette question le graphe orienté G = (V, A) représenté par la figure suivante :

- 1. Donnez les composantes fortement connexes de G.
- 2. Que vaut \mathcal{R}_{FC} pour cet exemple. \mathcal{R}_{FC} peut être représentée par la matrice carrée R_{FC} tel que $R_{FC}[u,v]=1$ si $u\mathcal{R}_{FC}v$, 0 sinon.
- 3. Vérifiez sur la matrice R_{FC} que \mathcal{R}_{FC} est une relation d'équivalence
- 4. Représentez \mathcal{R}_{FC} par un graphe non orienté G_R ? A quoi correspondent les composantes connexes de G_R ?

Solution:

1. Les composantes fortement connexes de G=(V,A) sont $\{1,3\},\{2,5,6\}$ et $\{4\}$

2. On obtient la matrice carrée
$$R_{FC} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$
.

- 3. La matrice possède des 1 sur la diagonale, on en conclut que \mathcal{R}_{FC} est réflexive. La matrice est symétrique, donc la relation est symétrique. Enfin, on observe que les sommets en relations correspondent exactement aux ensembles $\{1,3\}$, $\{2,5,6\}$ et $\{4\}$ dont les éléments sont tous adjacents deux à deux. On en déduit que R_{FC} est transitive.
- 4. Il s'agit d'une matrice carrée symétrique avec des 1 sur la diagonale, qui correspondent à des boucles. On peut donc lui associer un graphe non orienté G_R avec des boucles sur chaque sommet. On remarque que les composantes connexes de G_R coincident avec les composantes fortement connexes de G.

Question 2

On souhaite démontrer que les composantes fortement connexes de G coincident avec les composantes connexes de G_R . On rappelle que les composantes fortement connexes de G_R correspondent aux classes d'équivalence de la relation R_{FC} .

1. Démontrez que si x et y sont dans une même composante fortement connexe de G, alors ils sont dans une même composante connexe de G_R .

2. Démontrez ensuite la réciproque.

Solution:

- 1. Supposons que x et y sont dans une même composante fortement connexe de G, alors par définition de la relation R_{FC} , $xR_{FC}y$, donc il y a une arête $\{x,y\}$ dans G_R . x et y sont donc dans la même composante connexe de G_R .
- 2. Réciproquement, si x et y sont dans la même composante connexe de G_R , alors il existe une chaîne dans G_R entre x et y. Comme R_{FC} est transitive, il existe une arête $\{x,y\}$ dans G_R et $xR_{FC}y$. On en déduit que x et y sont dans la même composante fortement connexe de G.

Question 3

A tout graphe orienté G=(V,A), on peut associer un graphe réduit $H_R=(V_H,A_H)$ qui est un graphe orienté défini de la manière suivante :

- Les sommets V_H sont les composantes fortement connexes de G;
- A tout arc $(x,y) \in A$ avec x et y dans des composantes fortement connexes C(x) et C(y) différentes, on associe un arc (C(x), C(y)) dans A_H .
- 1. Construire le graphe réduit associé au graphe de la question 1.
- 2. Démontrez par l'absurde que, dans le cas général, H_R est un graphe sans circuit.

Solution:

- 1. En posant $c_1 = \{1, 3\}, c_2 = \{2, 5, 6\}$ et $c_3 = \{4\}$, on obtient $V_H = \{c_1, c_2, c_3\}$ et $A_H = \{(c_1, c_2), (c_1, c_3)\}$.
- 2. Supposons par l'absurde qu'il y a un circuit $\nu=c_1,\ldots,c_p,c_1$ dans H_R . Alors pour tout arc (c_i,c_j) de ν , on peut associer un arc (x_i,y_j) dans G. Soient alors la suite de sommets $(x_1,y_2),(x_2,y_3),\ldots(x_p,y_1)$ obtenue. Les sommets x_α et y_α pour $\alpha\in\{1,\ldots p\}$ sont tous les deux dans une même composante fortement connexe de G, il y a donc un chemin de y_α à x_α dans G. On en déduit que ν est associé à un circuit de G et que tous les sommets x_α et y_α sont dans une seule et même composante fortement connexe de G, ce qui est impossible.

Exercice 5 – Tri topologique

Dans cet exercice, on considère le graphe orienté $G_5=(V_5,A_5)$ suivant :

Ouestion 1

Calculer (x) pour tout $x \in V_5$.

Solution:

Comme 3 et 6 sont sans prédécesseur, (3) = (6) = 0. (1) = (3) + 1 = 1, (7) = (6) + 1 = 1, (2) = (1) + 1 = 2, $(5) = 1 + \max((2), (3)) = 3$ et $(4) = 1 + \max((5), (2), (3)) = 4$.

Question 2

En déduire un tri topologique de G_5 .

Solution:

On fait un tri des sommets par rang croissant. Par exemple : (3, 6, 1, 7, 2, 3, 4).

Question 3

Un tri topologique est-il nécessairement rangé en ordre croissant des rangs?

Solution:

Non, par exemple : (3, 1, 2, 5, 6, 4, 7) est un tri topologique de G_5 .

On rappelle l'algorithme de calcul d'un tri topologique d'un graphe orienté sans circuit.

Algorithm 1 Calcul d'un tri topologique pour un graphe orienté sans circuit

Require: Un graphe orienté sans circuit G = (V, A)

Ensure: Un ordre topologique L

$$L := (), T := V, \Delta(u) := d^{-}(u), \forall u \in V$$

while $T \neq \emptyset$ do

Choisir un sommet $u \in T$ tel que $\Delta(u) = 0$

$$L := L + (u), T := T - \{u\}$$

$$\forall v \in \Gamma^+(u), \, \Delta(v) := \Delta(v) - 1$$

end while

Question 4

Appliquer cet algorithme au graphe G_5 . Pour cela, vous préciserez à la fin de chaque itération les valeurs de u, L, T et Δ . Quand plusieurs sommets sont possibles pour u, vous sélectionnerez le sommet de numéro minimal.

Solution:

u	L	T	Δ
init.	()	$\{1, 2, 3, 4, 5, 6, 7\}$	(1,1,0,4,2,0,1)
3	(3)	$\{1, 2, 4, 5, 6, 7\}$	(0,1,0,3,1,0,1)
1	(3,1)	$\{2,4,5,6,7\}$	(0,0,0,2,1,0,1)
2	(3, 1, 2)	$\{4, 5, 6, 7\}$	(0,0,0,1,0,0,1)
5	(3, 1, 2, 5)	$\{4, 6, 7\}$	(0,0,0,0,0,0,1)
4	(3,1,2,5,4)	$\{6, 7\}$	(0,0,0,0,0,0,1)
6	(3, 1, 2, 5, 4, 6)	{7}	(0,0,0,0,0,0,0)
7	(3, 1, 2, 5, 4, 6, 7)	Ø	(0,0,0,0,0,0,0)

Question 5

En supposant que les listes sont représentées par des listes circulaires doublement chaînées, calculer la complexité de cet algorithme lorsque les graphes sont représentés par :

- (a) des matrices sommets-arcs
- (b) des matrices sommets-sommets
- (c) des listes de successeurs.

Solution:

Pour calculer la complexité, il faut compter :

- le coût de l'initialisation :
- calcul de L (en $\Theta(1)$)
- calcul de T (en $\Theta(n)$)
- calcul de Δ (dépend de la représentation du graphe)
- le coût du k-ème passage dans la boucle, pour k variant de 1 à n:
- le choix de u (coûte n k)
- l'ajout à L (en $\Theta(1)$)
- —- la mise à jour de Δ (dépend de la représentation du graphe)
- la mise à jour de T (en $\Theta(1)$).

Pour le choix de u, on a donc du $\Theta(n^2)$ au total.

Matrices sommets-arcs:

- calcul de Δ en $\Theta(mn)$
- mise à jour de Δ en $\Theta(m)$, à chaque itération.

D'où un coût total en $\Theta(mn + n^2)$.

Matrices sommets-sommets:

- calcul de Δ en $\Theta(n^2)$
- mise à jour de Δ en $\Theta(n)$, à chaque itération.

D'où un coût total en $\Theta(n^2)$.

Listes de successeurs :

- calcul de Δ en $\Theta(n+m)$
- mise à jour de Δ en $\Theta(d^+(u))$, à chaque itération.

D'où un coût total en $\Theta(n^2)$.