CREDIT SCORE CLASSIFICATION

April 30, 2023

1 Problem Satetment :-) Credit Score Classification: Case Study

Description :-) The credit score of a person determines the creditworthiness of the person. It helps financial companies determine if you can repay the loan or credit you are applying for.

1.0.1 1. Importing Necessary Libraries

[1]: import pandas as pd import numpy as np

import plotly.express as px

import plotly.graph_objects as go

import plotly.io as pio

import matplotlib.pyplot as plt

2 2. Data Set Information

- 1. ID: Unique ID of the record
- 2. Customer ID: Unique ID of the customer
- 3. Month: Month of the year
- 4. Name: The name of the person
- 5. Age: The age of the person
- 6. SSN: Social Security Number of the person
- 7. Occupation: The occupation of the person
- 8. Annual_Income: The Annual Income of the person
- 9. Monthly_Inhand_Salary: Monthly in-hand salary of the person
- 10. Num_Bank_Accounts: The number of bank accounts of the person
- 11. Num_Credit_Card: Number of credit cards the person is having
- 12. Interest_Rate: The interest rate on the credit card of the person
- 13. Num_of_Loan: The number of loans taken by the person from the bank
- 14. Type_of_Loan: The types of loans taken by the person from the bank
- 15. Delay_from_due_date: The average number of days delayed by the person from the date of payment
- 16. Num_of_Delayed_Payment: Number of payments delayed by the person
- 17. Changed Credit Card: The percentage change in the credit card limit of the person
- 18. Num Credit Inquiries: The number of credit card inquiries by the person
- 19. Credit Mix: Classification of Credit Mix of the customer

- 20. Outstanding_Debt: The outstanding balance of the person
- 21. Credit_Utilization_Ratio: The credit utilization ratio of the credit card of the customer
- 22. Credit_History_Age: The age of the credit history of the person
- 23. Payment_of_Min_Amount: Yes if the person paid the minimum amount to be paid only, otherwise no.
- 24. Total_EMI_per_month: The total EMI per month of the person
- 25. Amount_invested_monthly: The monthly amount invested by the person
- 26. Payment_Behaviour:The payment behaviour of the person
- 27. Monthly_Balance: The monthly balance left in the account of the person
- 28. Credit_Score: The credit score of the person
- The Credit_Score column is the target variable in this problem. You are required to find relationships based on how banks classify credit scores and train a model to classify the credit score of a person.

2.0.1 2.1 Reading Datset

[2]: data=pd.read_csv("train.csv")								
	da	ita.hea	d()					
[2]:		ID	Customer_ID N		Name Age SSN Occupation			
	0	5634	3392	1	Aaron Maashoh 23.			
	1	5635	3392		Aaron Maashoh 23.			
	2	5636	3392			0 821000265.0 Scientist		
	3	5637	3392		Aaron Maashoh 23.			
	4	5638	3392	5	Aaron Maashoh 23.	0 821000265.0 Scientist		
		Лрри	al Incomo Mont	thly Ink	and Calary Num	Pank Assounts Cradit Mix	\	
	0		31_111COME MOM 19114.12		1824.843333		1	
			19114.12		1824.843333			
	1				1824.843333			
	3		19114.12			3.0 Good		
			19114.12		1824.843333	3.0 Good		
	4		19114.12		1824.843333	3.0 Good		
		Outst	anding Debt (redit l	Jtilization_Ratio Cred	it History Age \		
	0		809.98	_		265.0		
	1		809.98		31.944960	266.0		
	2		809.98		28.609352	267.0		
	3		809.98		31.377862	268.0		
	4		809.98		24.797347	269.0		
		Daym	ent of Min Am	ountTo	tal EMI per month	Amount_invested_monthly \		
	0	rayiii		No	49.574949	21.46538		
	1			No	49.574949	21.46538		
	2			No	49.574949	21.46538		
	3							
				No No	49.574949 49.574949	21.46538		
	4		21.46538	21.46538				

Payment_Behaviour Monthly_Balance Credit_Score

0	High_spent_Small_value_payments	312.494089	Good
1	Low_spent_Large_value_payments	284.629162	Good
2	Low_spent_Medium_value_payments	331.209863	Good
3	Low_spent_Small_value_payments	223.451310	Good
4	High spent Medium value payments	341.489231	Good

[5 rows x 28 columns]

• Let's have a look at the information about the columns in the dataset:

[3]: data.shape

[3]: (100000, 28)

• The DataSet Contain Observation => 100000 , Feature => 28

[4]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 100000 entries, 0 to 99999

Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	ID	100000 non-null	int64
1	Customer_ID	100000 non-null	int64
2	Month	100000 non-null	int64
3	Name	100000 non-null	object
4	Age	100000 non-null	float64
5	SSN	100000 non-null	float64
6	Occupation	100000 non-null	object
7	Annual_Income	100000 non-null	float64
8	Monthly_Inhand_Salary	100000 non-null	float64
9	Num_Bank_Accounts	100000 non-null	float64
10	Num_Credit_Card	100000 non-null	float64
11	Interest_Rate	100000 non-null	float64
12	Num_of_Loan	100000 non-null	float64
13	Type_of_Loan	100000 non-null	object
14	Delay_from_due_date	100000 non-null	float64
15	Num_of_Delayed_Payment	100000 non-null	float64
16	Changed_Credit_Limit	100000 non-null	float64
17	Num_Credit_Inquiries	100000 non-null	float64
18	Credit_Mix	100000 non-null	object
19	Outstanding_Debt	100000 non-null	float64
20	Credit_Utilization_Ratio	100000 non-null	float64
21	Credit_History_Age	100000 non-null	float64
22	Payment_of_Min_Amount	100000 non-null	object
23	Total_EMI_per_month	100000 non-null	float64

24	Amount_invested_monthly	100000 non-null	float64
25	Payment_Behaviour	100000 non-null	object
26	Monthly_Balance	100000 non-null	float64
27	Credit_Score	100000 non-null	object

dtypes: float64(18), int64(3), object(7) memory usage: 21.4+ MB

• Some Feature is Object and some numeric

[5]: data.describe()

[5]:	count mean std min 25% 50% 75% max	100000.000000 100000.0 80631.500000 25982 43301.486619 14340 5634.000000 1006. 43132.750000 13664 80631.500000 25777 118130.250000 38385	omer_ID 000000 1000 .666640 .543051 .000000 .500000 .000000 .000000	2.291299 1.000000 2.750000 4.500000 6.250000	Age 00.000000 33.316340 10.764812 14.000000 24.000000 42.000000 56.000000	\
	count mean std min 25% 50% 75% max	SSN Annual_Ir 1.000000e+05 100000.0 5.004617e+08 50505.1 2.908267e+08 38299.4 8.134900e+04 7005.9 2.451686e+08 19342.9 5.006886e+08 36999.7 7.560027e+08 71683.4 9.999934e+08 179987.2	000000 123449 122093 930000 972500 705000 170000	/_Inhand_Salary 100000.00000 4197.27083 3186.43249 303.64541 1626.59416 3095.90500 5957.71500	00 100 5 7 7 7 0	nk_Accounts \ 000.000000 5.368820 2.593314 0.000000 3.000000 5.000000 7.000000 11.000000
	count mean std min 25% 50% 75% max	Num_Credit_Card Intere 100000.000000 1000 5.533570 2.067098 0.000000 4.000000 5.000000 7.000000 11.000000	est_Rate I 000.00000 14.53208 8.74133 1.00000 7.00000 13.00000 20.00000 34.00000	14.8 0.0 10.0 18.0 28.0		
	count mean std min 25% 50%	Num_of_Delayed_Payme 100000.00000 13.313120 6.237166 0.000000 9.000000 14.000000	0 100 0 5 0 0	redit_Limit Nur 000.000000 10.470323 6.609481 0.500000 5.380000 9.400000	5. 3. 0. 3.	quiries \ 0.000000 0.798250 0.867826 0.000000 0.000000

75% max	18.000 25.000		
count mean std min 25% 50% 75% max	Outstanding_Debt 0 100000.000000 1426.220376 1155.129026 0.230000 566.072500 1166.155000 1945.962500 4998.070000	redit_Utilization_Ratio 100000.000000 32.285173 5.116875 20.000000 28.052567 32.305784 36.496663 50.000000	Credit_History_Age
count mean std min 25% 50% 75% max	Total_EMI_per_month 100000.000000 107.699208 132.267056 0.0000000 29.268886 66.462304 147.392573 1779.103254	55.10131 39.00693 0.00000 5 27.95911 45.15655 71.29579	100000.000000 5 392.697586 2 201.652719 0 0.007760 1 267.615983 0 333.865366 7 463.215683

[8 rows x 21 columns]

3 3. Handling Null Value

6]: c	data.isnu	ıll()							
6]:		ID	Customer_ID	Month	Name	e Age	SSN	Occupation	\
	0	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	
	•••	•••		•••			•••		
	99995	False	False	False	False	False	False	False	
	99996	False	False	False	False	False	False	False	
	99997	False	False	False	False	False	False	False	
	99998	False	False	False	False	False	False	False	
	99999	False	False	False	False	False	False	False	
	Annual_Income Monthly_Inhand_Salary					\			
	0		False	-	Fa	lse		False	
	1		False		Fa	lse		False	
	2		False		Fa	lse		False	

```
3
                 False
                                           False
                                                                 False
4
                 False
                                           False
                                                                 False
                 ...
99995
                 False
                                           False
                                                                 False
99996
                 False
                                           False
                                                                 False
99997
                 False
                                           False
                                                                 False
99998
                 False
                                           False
                                                                 False
99999
                 False
                                           False
                                                                 False
        Credit_Mix
                     Outstanding_Debt Credit_Utilization_Ratio
                                                                        ١
0
             False
                                  False
                                                                False
1
             False
                                  False
                                                                False
2
                                  False
                                                                False
             False
3
             False
                                  False
                                                                False
4
             False
                                  False
                                                                False
99995
             False
                                  False
                                                                False
99996
             False
                                  False
                                                                False
99997
             False
                                  False
                                                                False
99998
             False
                                  False
                                                                False
                                  False
99999
             False
                                                                False
       Credit_History_Age
                               Payment_of_Min_AmountTotal_EMI_per_month \
0
                       False
                                                 False
                                                                         False
1
                       False
                                                 False
                                                                         False
2
                       False
                                                 False
                                                                         False
3
                       False
                                                 False
                                                                         False
4
                       False
                                                                         False
                                                 False
                       ...
99995
                       False
                                                 False
                                                                         False
99996
                       False
                                                 False
                                                                         False
99997
                       False
                                                 False
                                                                         False
99998
                       False
                                                 False
                                                                         False
99999
                       False
                                                 False
                                                                         False
       Amount_invested_monthly Payment_Behaviour
                                                          Monthly_Balance \
0
                            False
                                                  False
                                                                      False
1
                            False
                                                  False
                                                                      False
2
                            False
                                                  False
                                                                      False
3
                            False
                                                  False
                                                                      False
4
                            False
                                                  False
                                                                      False
99995
                            False
                                                  False
                                                                      False
99996
                            False
                                                  False
                                                                      False
                            False
99997
                                                  False
                                                                      False
99998
                            False
                                                  False
                                                                      False
99999
                            False
                                                  False
                                                                      False
```

	Credit_Score
0	False
1	False
2	False
3	False
4	False
•••	
99995	False
99996	False
99997	False
99998	False
99999	False

[100000 rows x 28 columns]

[7]: data.isnull().sum()

[7]: ID	0
Customer_ID	0
Month	0
Name	0
Age	0
SSN	0
Occupation	0
Annual_Income	0
Monthly_Inhand_Salary	0
Num_Bank_Accounts	0
Num_Credit_Card	0
Interest_Rate	0
Num_of_Loan	0
Type_of_Loan	0
Delay_from_due_date	0
Num_of_Delayed_Payment	0
Changed_Credit_Limit	0
Num_Credit_Inquiries	0
Credit_Mix	0
Outstanding_Debt	0
Credit_Utilization_Ratio	0
Credit_History_Age	0
Payment_of_Min_Amount	0
Total_EMI_per_month	0
Amount_invested_monthly	0
Payment_Behaviour	0
Monthly_Balance	0
Credit_Score	0
dtype: int64	

The dataset doesn't have any null values. As this dataset is labelled, let's have a look at the Credit_Score column values:

[8]: data['Credit_Score'].value_counts()

```
[8]: Standard 53174
Poor 28998
Good 17828
```

Name: Credit_Score, dtype: int64

4 4. Data Exploration

• The dataset has many features that can train a Machine Learning model for credit score classification.Let's explore all the features one by one.

```
[9]: data.columns.unique()
```

• There's not much difference in the credit scores of all occupations mentioned in the data. Now let's explore whether the Annual Income of the person impacts your credit scores or not:

Credit score Based On Occupation


```
[11]: fig=px.box(data,
                    x='Credit_Score',
                    y='Annual_Income',
                    color='Credit_Score',
                    color_discrete_map={'Poor':'red',
                                           'Standard':'yellow',
                                           'Good':'green'},
       fig.update traces(quartilemethod='exclusive')
       fig.update layout(
            plot bgcolor='rgba(0,0,0,0,0.7)', # sets the plot background color to a dark,
          gray
            paper_bgcolor='rgba(0,0,0,0,0.7)', # sets the paper background color to a_{1,1}
          dark gray
           font_color='white',
           title={'text':'Credit score Based On Occupation','font_color':'red'},
           width=1400,
           height=900
       fig.show()
```

- According to the above visualization, the more you earn annually, the better your credit score is.
- Now let's explore whether the monthly in-hand salary impacts credit scores or not

```
[12]: fig=px.box(data,
                   x='Credit Score',
                   y='Monthly_Inhand_Salary',
                   color='Credit_Score',
                    color_discrete_map={'Poor':'red',
                                           'Standard':'yellow',
                                           'Good':'green'},
       fig.update_traces(quartilemethod='exclusive')
       fig.update_layout(
           plot_bgcolor='rgba(0,0,0,0.7)', # sets the plot background color to a dark,
          gray
           paper_bgcolor='rgba(0,0,0,0,0.7)', # sets the paper background color to a_{1,1}
          dark gray
           font color='white',
           title={'text':'Credit score Based On Monthly Inhand Salary ','font color':
          'red'},
           width=1400,
           height=900
       fig.show()
```


- Like annual income, the more monthly in-hand salary you earn, the better your credit score will become.
- Now let's see if having more bank accounts impacts credit scores or not

```
[13]: fiq=px.box(data,
                    x='Credit_Score',
                   v='Num Bank Accounts',
                    color='Credit_Score',
                    color_discrete_map={'Poor':'red',
                                           'Standard':'yellow',
                                           'Good':'green'},
                   )
       fig.update_traces(quartilemethod='exclusive')
       fig.update layout(
           plot_bgcolor='rgba(0,0,0,0,0.7)', # sets the plot background color to a dark,
            paper_bgcolor='rgba(0,0,0,0.7)', # sets the paper background color to a_
          dark gray
           font color='white',
           title={'text':'Credit score Based On Number of Bank Accounts ','font color':
          'red'},
           width=1400,
           height=900
       fig.show()
```

- Maintaining more than five accounts is not good for having a good credit score.
- A person should have 2 3 bank accounts only. So having more bank accounts doesn't positively impact credit scores.
- Now let's see the impact on credit scores based on the number of credit cards you have:


```
title={'text':'Credit score Based On Number Of Credit Card','font_color':
    'red'},
    width=1400,
    height=900
)
fig.show()
```

- Just like the number of bank accounts, having more credit cards will not positively impact your credit scores.
- Having 3 5 credit cards is good for your credit score.
- Now let's see the impact on credit scores based on how much average interest you pay on loans and EMIs:

```
[15]: fig=px.box(data,
                    x='Credit Score',
                    y='Interest_Rate',
                    color='Credit_Score',
                    color_discrete_map={'Poor':'red',
                                            'Standard':'yellow',
                                            'Good':'green'},
                    )
       fig.update_traces(quartilemethod='exclusive')
       fig.update_layout(
            plot bgcolor='rgba(0,0,0,0,0.7)', # sets the plot background color to a dark,
            paper_bgcolor='rgba(0,0,0,0,0.7)', # sets the paper background color to a_{1,1}
          dark gray
           font color='white',
            title={'text':'Credit score Based On Average Interest rates','font_color':
          'red'},
           width=1400,
           height=900
       fig.show()
```

- If the average interest rate is 4 11%, the credit score is good.
- Having an average interest rate of more than 15% is bad for your credit scores.
- Now let's see how many loans you can take at a time for a good credit score:

Credit score Based On Average Interest rates


```
fig.update_traces(quartilemethod='exclusive')
fig.update_layout(
    plot_bgcolor='rgba(0,0,0,0.7)', # sets the plot background color to a dark_
    gray
    paper_bgcolor='rgba(0,0,0,0.7)', # sets the paper background color to a_
    dark gray
    font_color='white',
    title={'text':'Credit score Based On Number Of Loan','font_color':'red'},
    width=1400,
    height=900
)
fig.show()
```

- To have a good credit score, you should not take more than 1 3 loans at a time.
- Having more than three loans at a time will negatively impact your credit scores.
- Now let's see if delaying payments on the due date impacts your credit scores or not:

```
[17]: fig=px.box(data,
                    x='Credit_Score',
                    y='Delay_from_due_date',
                    color='Credit_Score',
                    color_discrete_map={'Poor':'red',
                                           'Standard':'yellow',
                                           'Good':'green'},
       fig.update_traces(quartilemethod='exclusive')
       fig.update layout(
           plot_bgcolor='rgba(0,0,0,0,0.7)', # sets the plot background color to a dark,
           paper_bqcolor='rqba(0,0,0,0.7)', # sets the paper background color to a_{i,j}
          dark gray
           font color='white',
           title={'text':'Credit score Based On Average Number of Days Delayed For...
          Credit Crad Payments ','font_color':'red'},
           width=1400,
           height=900
       fig.show()
```

- So you can delay your credit card payment 5 14 days from the due date.
- Delaying your payments for more than 17 days from the due date will impact your credit scores negatively.
- Now let's have a look at if frequently delaying payments will impact credit scores or not:

- So delaying 4 12 payments from the due date will not affect your credit scores.
- But delaying more than 12 payments from the due date will affect your credit scores negatively.
- Now let's see if having more debt will affect credit scores or not:

```
[19]: fig=px.box(data,
                    x='Credit_Score',
                    y='Outstanding_Debt',
                    color='Credit_Score',
                    color_discrete_map={'Poor':'red',
                                           'Standard':'yellow',
                                           'Good':'green'},
       fig.update traces(quartilemethod='exclusive')
       fig.update_layout(
            plot bgcolor='rgba(0,0,0,0,0.7)', # sets the plot background color to a dark,
            paper_bgcolor='rgba(0,0,0,0,0.7)', # sets the paper background color to a_{1,1}
          dark gray
            font color='white',
            title={'text':'Credit score Based On Oustanding Debt','font_color':'red'},
            width=1400,
            height=900
       fig.show()
```

- An outstanding debt of \$380 \$1150 will not affect your credit scores.
- But always having a debt of more than \$1338 will affect your credit scores nega-

tively.

• Now let's see if having a high credit utilization ratio will affect credit scores or not:

```
[20]: fig=px.box(data,
                    x='Credit_Score',
                    y='Credit_Utilization_Ratio',
                    color='Credit Score',
                    color_discrete_map={'Poor':'red',
                                            'Standard':'yellow',
                                            'Good':'green'},
       fig.update traces(quartilemethod='exclusive')
       fig.update_layout(
            plot_bgcolor='rgba(0,0,0,0,0.7)', # sets the plot background color to a dark,
            paper_bgcolor='rgba(0,0,0,0,0.7)', # sets the paper background color to a_{1,1}
          dark gray
            font color='white',
            title={'text':'Credit score Based On Credit Utilization Ratio_
          ','font_color':'red'},
            width=1400,
            height=900
       fig.show()
```

- Credit utilization ratio means your total debt divided by your total available credit.
- According to the above figure, your credit utilization ratio doesn't affect your credit scores.
- Now let's see how the credit history age of a person affects credit scores:


```
title={'text':'Credit score Based On Credit History Age','font_color':
    'red'},
    width=1400,
    height=900
)
fig.show()
```

So, having a long credit history results in better credit scores. EMIs you can have in a month for a good credit score:

* Now let's see how many

```
[22]: fig=px.box(data,
                   x='Credit Score',
                   y='Total_EMI_per_month',
                    color='Credit Score',
                    color_discrete_map={'Poor':'red',
                                           'Standard':'yellow',
                                           'Good':'green'},
                   )
       fig.update traces(quartilemethod='exclusive')
       fig.update_layout(
           plot_bgcolor='rgba(0,0,0,0,0.7)', # sets the plot background color to a dark,
          gray
           paper_bgcolor='rgba(0,0,0,0.7)', # sets the paper background color to a...
          dark gray
           font_color='white',
           title={'text':'Credit score Based On Total EMI Per Month','font_color':
         'red'},
           width=1400,
           height=900
       fig.show()
```

- The number of EMIs you are paying in a month doesn't affect much on credit scores.
- Now let's see if your monthly investments affect your credit scores or not:

Credit_Score Good 1800 Standard Poor 1600 1400 1200 Total_EMI_per_month 1000 800-600-200

Standard

Credit_Score

Poor

Good

```
plot_bgcolor='rgba(0,0,0,0.7)', # sets the plot background color to a dark_gray

paper_bgcolor='rgba(0,0,0,0.7)', # sets the paper background color to a_dark gray

font_color='white',

title={'text':'Credit score Based On Amount Invested Monthly','font_color':

'red'},

width=1400,

height=900

)

fig.show()
```

- The amount of money you invest monthly doesn't affect your credit scores a lot.
- Now let's see if having a low amount at the end of the month affects credit scores or not:

```
[24]: fig=px.box(data,
                    x='Credit_Score',
                    y='Monthly Balance',
                    color='Credit Score',
                    color discrete map={'Poor':'red',
                                           'Standard':'yellow',
                                           'Good':'green'},
       fig.update_traces(quartilemethod='exclusive')
       fiq.update_layout(
            plot_bgcolor='rgba(0,0,0,0,0.7)', # sets the plot background color to a dark,
            paper bgcolor='rgba(0,0,0,0,0.7)', # sets the paper background color to a_{1,1}
          dark gray
           font color='white',
           title={'text':'Credit score Based On Monthly Balance Left','font_color':
          'red'},
           width=1400,
           height=900
       fig.show()
```

So, having a high monthly balance in your account at the end of the month is good for your credit scores. * A monthly balance of less than \$250 is bad for credit scores.

4.0.1 Credit Score Classification Model

- One more important feature (Credit Mix) in the dataset is valuable for determining credit scores.
- The credit mix feature tells about the types of credits and loans you have taken.
- As the Credit_Mix column is categorical, I will transform it into a numerical feature so that we can use it to train a Machine Learning model for the task of

credit score classification:

```
[25]: data['Credit_Mix']=data['Credit_Mix'].map({"Standard":1,"Good":2,"Bad":0})
```

• Now I will split the data into features and labels by selecting the features we found important for our model:

```
[26]: from sklearn.model_selection import train_test_split
```

• Making Dependent and Independent Feature

```
[28]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
```

```
[29]: from sklearn.ensemble import RandomForestClassifier
  model = RandomForestClassifier()
  model.fit(x_train, y_train)
```

- [29]: RandomForestClassifier()
 - Now, let's make predictions from our model by giving inputs to our model according to the features we used to train the model:

```
[30]: print("Credit Score Prediction:")

a = float(input("Annual Income: "))

b = float(input("Number of Bank Accounts: "))

c = float(input("Number of Credit cards: "))

e = float(input("Interest rate: "))

f = float(input("Number of Loans: "))

g = float(input("Average number of days delayed by the person: "))

h = float(input("Number of delayed payments: "))

i = input("Credit Mix (Bad: 0, Standard: 1, Good: 3): ")

j = float(input("Outstanding Debt: "))

k = float(input("Credit History Age: "))

I = float(input("Monthly Balance: "))
```

```
features = np.array([[a, b, c, d, e, f, g, h, i, j, k, l]])
print("Predicted Credit Score = ", model.predict(features))
```

Credit Score Prediction:
Annual Income: 19114.12
Monthly Inhand Salary: 1824.6
Number of Bank Accounts: 2
Number of Credit cards: 2
Interest rate: 9
Number of Loans: 2
Average number of days delayed by the person: 12
Number of delayed payments: 3
Credit Mix (Bad: 0, Standard: 1, Good: 3): 3
Outstanding Debt: 250
Credit History Age: 200

Predicted Credit Score = ['Good']

•

5 Summary

Monthly Balance: 310

Classifying customers based on their credit scores helps banks and credit card companies immediately to issue loans to customers with good creditworthiness. A person with a good credit score will get loans from any bank and financial institution. I hope you liked this article on Credit Score Classification with Machine Learning using Python. Feel free to ask valuable guestions in the comments section below.

6 Reference

- DataSet Link (Click Me
- Aman Kharwal (medium.com)

```
<h2 style='padding: 20px;
color:red;
text-align:center;'>
END OF THE PROJECT!
</h2>
</div>
<h2 style='padding: 20px;
color:GREEN;
```

```
text-align:center;'>
THANK YOU !
</h2>
</div>
```