Network Flow

Maximum Flow Problem, Ford-Fulkerson Algorithm, Max-Matching on Bipartite Graphs

Maximum Flow Problem

- Input:

- Railway system: a directed graph G(V, E), s and t.
- Edges Capacity: w(e) for each $e \in E$. (Maximum number of passengers a day.)

Output:

- The maximum number of passengers we can send from s to t a day.

Maximum Flow Problem

- Input:

- Railway system: a directed graph G(V, E), s and t.
- Edges Capacity: w(e) for each $e \in E$. (Maximum number of passengers a day.)

Output:

- The maximum number of passengers we can send from s to t a day.

Flow – Formal Definition

- A Flow $f: E \to \mathbb{R}_{\geq 0}$, f(e) for all $e \in E$.
- Capacity Constraint:
 - for each $e \in E$, $f(e) \le c(e)$.
- Flow Conservation:
 - for each $u \in V \setminus \{s, t\}$, $\sum_{v:(u,v)\in E} f(v,u) = \sum_{w:(u,w)\in E} f(u,w)$.
- Total flow:
 - $v(f) = \sum_{v:(s,v)\in E} f(s,v).$

More Applications

- We want to build a data transmission channel from s to t.
- We can use intermediate routers a, b, c, d, e.
- Each edge has a bandwidth, limiting the maximum rate of data transmission.
- What is the maximum rate of data that can be transferred?

• Iteratively find an s-t path and push as much flow as possible along it.

• Iteratively find an s-t path and push as much flow as possible along it.

s-u-t

• Iteratively find an s-t path and push as much flow as possible along it.

s-u-t

• Iteratively find an s-t path and push as much flow as possible along it.

- s-u-t, s-v-t

• Iteratively find an s-t path and push as much flow as possible along it.

s-u-t, s-v-t, s-u-v-t

- We have a flow of size 30, and it is optimal.
- Is it always optimal?

- Iteratively find an s-t path and push as much flow as possible along it.
- What if our first choice is s-u-v-t?

- Iteratively find an s-t path and push as much flow as possible along it.
- What if our first choice is s-u-v-t?

- Iteratively find an s-t path and push as much flow as possible along it.
- What if our first choice is s-u-v-t?

How to adjust the flow?

Put Back Edges

- Iteratively find an s-t path and push as much flow as possible along it.
- What if our first choice is s-u-v-t?

Augment Again!

- Iteratively find an s-t path and push as much flow as possible along it.
- We still want to go: $s \rightarrow v \rightarrow t$

Flow Cancellation

- Iteratively find an s-t path and push as much flow as possible along it.
- We still want to go: $s \rightarrow v \rightarrow t$

Flow Cancellation

- Iteratively find an s-t path and push as much flow as possible along it.
- We still want to go: $s \rightarrow v \rightarrow t$

Flow Cancellation

- What if our first choice is s-u-v-t?
- We need to be able to "cancel" flow on an edge!

• Residual Network G^f with respect to a flow f.

- Now we can continue!
- There is a path on G^f : s-v-u-t

- Now we are able to continue!
- We can push 10 unit of flow on s-v-u-t

Now it is clear to us that no more flow can be pushed from s to t!

Update Residual Network *G*^f

Given G = (V, E), c, and a flow f

 $G^f = (V^f, E^f)$ and the associated capacity $c^f : E^f \to \mathbb{R}^+$ are defined as follows:

- $V^f = V$
- $(u, v) \in E^f$ if one of the followings holds
 - $-(u,v) \in E$ and f(u,v) < c(u,v): in this case, $c^f(u,v) = c(u,v) f(u,v)$
 - $(v,u) \in E$ and f(v,u) > 0: in this case, $c^f(u,v) = f(v,u)$

Putting Together

- Initialize an empty flow f and the corresponding residual flow G^f .
- Iteratively
 - find a path on G^f ,
 - push maximum amount of flow on G^f , and
 - update f and G^f ,
- until there is no s-t path on G^f .

This is exactly Ford-Fulkerson Algorithm!

Ford-Fulkerson Algorithm

10. return f

```
FordFulkerson(G = (V, E), s, t, c):
1. initialize f such that \forall e \in E: f(e) = 0; initialize G^f \leftarrow G;
2. while there is an s-t path p on G^f:
      find an edge e \in p with minimum capacity b_i
     for each e = (u, v) \in p:
          if (u, v) \in E: update f(e) \leftarrow f(e) + b;
    if (v, u) \in E: update f(e) \leftarrow f(e) - b_i
      endfor
      update G^f;
8.
9. endwhile
```

A Small Bug...

```
4. for each e = (u, v) \in p:

5. if (u, v) \in E: update f(e) \leftarrow f(e) + b;

6. if (v, u) \in E: update f(e) \leftarrow f(e) - b;

7. endfor
```

- What if we have both $(u,v) \in E$ and $(v,u) \in E$?
- How to distinguish the cancel edge and the real edge?
- Fix: modify the graph so that no anti-parallel edge exists.

Correctness? Time Complexity?

- Correctness: Max-Flow-Min-Cut Theorem
- Let us assume it is correct!
- Time Complexity:
 - Question 1: Does the algorithm always halt?
 - Question 2: If so, what is the time complexity?

Let's start from simplest case: all the capacities are integers.

Does the algorithm always halt?

- Let's start from simplest case: all the capacities are integers.
- Lemma 1. Each while-loop iteration increase the value of f by at least 1.
- Thus, the algorithm will halt within f_{max} iterations.
- Lemma 2. If each c(e) is an integer, then the max flow f_{max} is an integer.
- Proof: By the correctness of FF.

Does the algorithm always halt?

- How about rational capacities?
- Rescale capacities to make them integers.
- Yes, the algorithm will halt!

Does the algorithm always halt?

- How about possibly irrational capacities?
- No, the algorithm do not always halt!

Non-terminating example [edit]

Consider the flow network shown on the right, with source s, sink t, capacities of edges e_1 , e_2 and e_3 respectively 1, $r=(\sqrt{5}-1)/2$ and 1 and the capacity of all other edges some integer $M \geq 2$. The constant r was chosen so, that $r^2 = 1 - r$. We use augmenting paths according to the following table, where $p_1 = \{s, v_4, v_3, v_2, v_1, t\}$, $p_2 = \{s, v_2, v_3, v_4, t\}$ and $p_3 = \{s, v_1, v_2, v_3, t\}$.

Step	Augmenting path	Sent flow	Residual capacities		
			e_1	e_2	e_3
0			$r^0=1$	r	1
1	$\{s,v_2,v_3,t\}$	1	r^0	r^1	0
2	p_1	r^1	r^2	0	r^1
3	p_2	r^1	r^2	r^1	0
4	p_1	r^2	0	r^3	r^2
5	p_3	r^2	r^2	r^3	0

Note that after step 1 as well as after step 5, the residual capacities of edges e_1 , e_2 and e_3 are in the form r^n , r^{n+1} and 0, respectively, for some $n \in \mathbb{N}$. This means that we can use augmenting paths p_1 , p_2 , p_1 and p_3 infinitely many times and residual capacities of these edges will always be in the same form. Total flow in the network after step 5 is $1+2(r^1+r^2)$. If we continue to use augmenting paths as above, the total flow converges to $1+2\sum_{i=1}^{\infty}r^i=3+2r$. However, note that there is a flow of value 2M+1, by sending M units of flow along sv_1t , 1 unit of flow along sv_2v_3t , and M units of flow along sv_4t . Therefore, the algorithm never terminates and the flow does not even converge to the maximum flow. [4]

Another non-terminating example based on the Euclidean algorithm is given by Backman & Huynh (2018), where they also show that the worst case running-time of the Ford-Fulkerson algorithm on a network G(V, E) in ordinal numbers is $\omega^{\Theta(|E|)}$.

The Bad Case

$$r = \frac{\sqrt{5}-1}{2}$$

- Three edges
 - 1
 - 1
 - γ

The Bad Case

$$r = \frac{\sqrt{5}-1}{2}$$

- Three edges

 - 1
 - γ

The Bad Case

$$r = \frac{\sqrt{5}-1}{2}$$

- Three edges

 - 0
 - r
- Flow: 1

$$r = \frac{\sqrt{5}-1}{2}$$

- Three edges

 - 0
 - r
- Flow: 1 + r

$$r = \frac{\sqrt{5}-1}{2}$$

$$-1-r$$

- -r
- 0
- Flow: 1 + r

$$r = \frac{\sqrt{5}-1}{2}$$

$$-1-r=r^2$$

- γ
- 0
- Flow: 1 + r

$$r = \frac{\sqrt{5}-1}{2}$$

$$-1-r=r^2$$

- **-** γ
- 0
- Flow: 1 + r + r

$$r = \frac{\sqrt{5}-1}{2}$$

Three edges

$$-1-r=r^{2}$$
 -0
 $-r$

• Flow: 1 + r + r

$$r = \frac{\sqrt{5}-1}{2}$$

Three edges

$$-1-r=r^{2}$$

$$-0$$

$$-r$$

• Flow: $1 + r + r + r^2$

$$r = \frac{\sqrt{5}-1}{2}$$

- Three edges
 - $\begin{array}{r}
 0 \\
 r^2 \\
 r r^2
 \end{array}$
- Flow: $1 + r + r + r^2$

$$r = \frac{\sqrt{5}-1}{2}$$

- Three edges
- Flow: $1 + r + r + r^2$

$$r = \frac{\sqrt{5}-1}{2}$$

- Three edges
 - -0 $-r^2$ $-r-r^2 = r(1-r) = r^3$
- Flow: $1 + r + r + r^2 + r^2$

$$r = \frac{\sqrt{5}-1}{2}$$

Three edges

$$- r^{2}$$
 $- 0$
 $- r - r^{2} = r(1 - r) = r^{3}$

• Flow: $1 + r + r + r^2 + r^2$

$$r = \frac{\sqrt{5}-1}{2}$$

$$- r^{2}$$
 $- 0$
 $- r - r^{2} = r(1 - r) = r^{3}$

• Flow:
$$1 + r + r + r^2 + r^2 + r^3$$

$$r = \frac{\sqrt{5}-1}{2}$$

Three edges

$$- r^{2} - r^{3} = r^{2}(1 - r) = r^{4}$$

$$- r^{3}$$

$$- 0$$

• Flow: $1 + r + r + r^2 + r^2 + r^3$

$$r = \frac{\sqrt{5}-1}{2}$$

Three edges

$$- r^{2} - r^{3} = r^{2}(1 - r) = r^{4}$$

$$- r^{3}$$

$$- 0$$

• Flow: $1 + r + r + r^2 + r^2 + r^3$

Conclusion

The max flow is

$$-2 \times 100 = 200$$

$$r = \frac{\sqrt{5}-1}{2}$$

The flow of FF

$$-1+r+r+r^{2}+r^{2}+r^{3}+r^{3}+\cdots$$

$$-1+2\sum_{i=1}^{\infty}r^{i}=1+2\frac{r}{1-r}$$

$$-1+2\frac{r}{1-r}=1+\frac{2(1-r^{2})}{1-r}=3+2r$$

- It does not halt.
- It does not converge to 200.

Time Complexity?

- Assume all capacities are integers, what is the time complexity?
- Each iteration requires O(|E|) time:
 - O(|E|) is sufficient for finding p, updating f and G^f
- There are at most f_{max} iterations.
- Overall: $O(|E| \cdot f_{max})$
- Can we analyze it better?

Time Complexity?

- Can we analyze it better?
- It depends on how you choose p in each iteration!
- The complexity bound $O(|E| \cdot f_{max})$ is tight for arbitrary choices!

Method vs Algorithm

- Different choices of augmenting paths p give different implementation of Ford-Fulkerson.
- For this reason, it is sometimes called Ford-Fulkerson Method.

Next Lecture...

- Max-Flow-Min-Cut Theorem
 - If all capacity is integral, then the max flow can be achieved by an integral flow.
 - Correctness of Ford-Fulkerson Method
 - Many theorem applications
- Edmonds-Karp Algorithm
 - An implementation of Ford-Fulkerson Method with complexity $O(|V| \cdot |E|^2)$.

- Table describes number of matches each team has won.
- Number on each edge represents number of remaining matches.
- Does Team D have a chance for the champion?

	Wins
Α	40
В	38
C	37
D	29

 Let us first assume Team D wins all the 12 remaining matches.

	Wins
Α	40
В	38
C	37
D	29+12=41

- Team A must win at most 1
- Team B must win at most 3
- Team C must win at most 4

	Wins
Α	40
В	38
C	37
D	41

Model the problem as Max-Flow.

	Wins	Max Num of Additional Wins
Α	40	1
В	38	3
C	37	4
D	41	

 If Team D has a chance for championship, the maximum flow should be 1+6+1=8.

	Wins	Max Num of Additional Wins
Α	40	1
В	38	3
C	37	4
D	41	

Correctness

- **Theorem**. If each c(e) is an integer, then the value of the maximum flow f_{max} is an integral.
- Remark: FF can find a max-flow f with $\forall e : f(e) \in \mathbb{Z}$.
- If D can win, there exists a flow with 8.
- ← If the max flow is 8, then we can set the game result as the integral flow.

- Top vertices are girls, bottom vertices are boys.
- An edge represent a possible match for a boy and a girl.
- Problem: find a maximum matching for boys and girls.

Maximum Bipartite Matching - Formal

- Given a graph G = (V, E), a matching M is a subset of edges that do not share vertices in common.
- The size of a matching is the number of edges in it.
- Input: A bipartite graph G = (A, B, E).
- Output: A matching with the maximum size.

Naïve Greedy doesn't work!

Naïve Greedy doesn't work!

Naïve greedy doesn't work!

Naïve greedy doesn't work!

- Naïve greedy doesn't work!
- A total of 4 matches...

- Greedy doesn't work!
- A better solution...

Applying maximum flow and Ford-Fulkerson Method.

- An integral flow corresponds to a matching.
- Integrality theorem ensures the maximum flow can be integral.

Dessert

- A graph is regular if all the vertices have the same degree.
- A matching is perfect if all the vertices are matched.
- Prove that a regular bipartite graph always has a perfect matching.