$-k_j \left. \frac{\partial \theta_j}{\partial x} \right|_{x=\mathbf{Y}_*} = -k_{j+1} \left. \frac{\partial \theta_{j+1}}{\partial x} \right|_{x=\mathbf{Y}_*}$

 $\theta_i(x = X_1, t) = \theta_{i+1}(x = X_1, t)$

where:

 k_i : conductivity of i^{th} layer T_A : ambient air temperature

Assumptions:

$$S(t) = S_0$$

$$\dot{Q}_W(t) = A(u(\theta_S - T_R))$$

$$h_o$$
: outer convection coefficient h_i : inner convection coefficient

(3.4)

$$\frac{1}{u} = \frac{1}{h_o} + \sum_{i} \frac{X_j}{k_j} + \frac{1}{h_i}$$

(3.3)

(3.1)

(3.2)