Exploratory Data Analysis - EDA

Titanic Dataset - Exploratory Data Analysis (EDA) and Data Cleaning

This notebook presents a thorough **data cleaning** and **exploratory data analysis (EDA)** of the Titanic dataset. The objective is to clean the dataset and uncover insights regarding the survival rates of passengers based on various factors.

Key Steps:

- Data Cleaning:
 - Address missing values in Age and Embarked columns
 - Remove the Cabin column due to excessive null values
 - Ensure data consistency and remove any duplicates
- Exploratory Data Analysis (EDA):
 - Visualize survival distribution across different features such as Gender,
 Passenger Class, Age Group, and Embarkation Point
 - Perform correlation analysis between key variables

Insights:

- Understand the relationship between socio-economic factors and survival rates
- Identify patterns related to gender, class, fare, and embarkation point in determining survival likelihood

Libraries Used:

pandas, numpy, seaborn, matplotlib

Importing the necessary libraries

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Reading the Dataset

In [2]: df = pd.read_csv("Titanic-Dataset.csv")

In [3]: df.head()

Out[3]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Tic
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	21
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/ 3101
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373

In [6]: df.shape

Out[6]: (891, 12)

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
dtypes: $float64(2)$ int64(5) object(5)							

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

df.describe() In [8]: **PassengerId** Survived **Pclass** Out[8]: Age SibSp **Parc** count 891.000000 891.000000 891.000000 714.000000 891.000000 891.00000 mean 446.000000 0.383838 2.308642 29.699118 0.523008 0.38159 0.486592 0.80605 std 257.353842 0.836071 14.526497 1.102743 min 1.000000 0.000000 1.000000 0.420000 0.000000 0.0000025% 223.500000 0.000000 2.000000 20.125000 0.000000 0.0000C**50%** 446.000000 0.000000 3.000000 28.000000 0.000000 0.000000.00000**75**% 668.500000 1.000000 3.000000 38.000000 1.000000 891.000000

Checking for null/missing values in the dataset

1.000000

max

- Checking for null or missing values is important to ensure data quality, prevent inaccuracies in analysis or models, and maintain data integrity.
- Handling missing values (e.g., through imputation or removal) is crucial for accurate insights and effective model performance.

3.000000

80.000000

8.000000

6.00000

```
In [9]: df.isnull().sum()
Out[9]:
         PassengerId
                           0
         Survived
                           0
                           0
         Pclass
         Name
                           0
         Sex
                         177
         Age
         SibSp
                           0
         Parch
                           0
         Ticket
                           0
         Fare
                           0
                         687
         Cabin
         Embarked
                           2
         dtype: int64
         Observation & Inference:
```

There are 177 null values in the age column, 687 in Cabin, 2 in Embarked.

Since the cabin column is not of much use and contains a lot of null values so we will drop it.

Dropping unnecessary columns

```
In [10]: df.drop(columns="Cabin",axis=1,inplace=True)
```

Imputing Missing Age Values with Column Mean

```
In [13]: df['Age'] = df['Age'].fillna(df['Age'].mean())
In [14]: df.fillna({'Age': df['Age'].mean()}, inplace=True)
```

Handled missing values in the 'Embarked' column by replacing them with its mode.

```
In [16]: df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
In [17]: df.isnull().sum().sum()
Out[17]: 0
```

Observation & Inference: - All the missing values are treated

Checking for duplicate values in the dataset

```
In [18]: df.duplicated().sum()
Out[18]: 0
```

Observation & Inference: - No duplicate records are present

Checking the survival of people

```
In [20]: sns.countplot(x='Survived', hue='Survived', data=df, palette='viridis', lege
  plt.xlabel("Survival status")
  plt.ylabel("Number of people")
  plt.xticks(ticks=[0,1], labels=['Not survived','Survived'])
  plt.show()
```


Pie chart

```
In [21]: plt.pie(df['Survived'].value_counts(),explode=[0,0.04],autopct="%1.2f%%",lat
    plt.title("Survival of people")
    plt.show()
```

Survival of people

Visualization of people survived from different gender

```
In [22]: df['Sex'].unique()
Out[22]: array(['male', 'female'], dtype=object)
In [35]: sns.countplot(x='Sex', hue='Sex', data=df, palette='viridis', legend=False)
    plt.xlabel("Gender")
    plt.ylabel("Number of people")
    plt.show()
```



```
In [34]: sns.countplot(x='Survived',hue='Sex',data=df,palette='viridis',)
   plt.xlabel("Survival status")
   plt.ylabel("Number of people")
   plt.xticks(ticks=[0,1],labels=['Not survived','survived'])
   plt.show()
```


Pie Chart For Male Survival Rate

```
In [27]: df[df['Sex'] == 'male'].Survived.groupby(df.Survived).count().plot(kind='pie
figsize=(3, 6),explode=[0,0.05],autopct='%1.1f%%',labels=["Not survived","Su
plt.ylabel("")
plt.title("Male Survival Rate")
plt.show()
```

Male Survival Rate

Pie Chart For Female Survival Rate

```
In [28]: df[df['Sex'] == 'female'].Survived.groupby(df.Survived).count().plot(kind='gfigsize=(3, 6),explode=[0,0.05],autopct='%1.1f%%',labels=["Not survived","Stplt.ylabel("")
    plt.title("Female Survival Rate")
    plt.show()
```

Female Survival Rate

Observation: Survival rate was female was much higher in comparison to male

Visualizing the population of different passenger : Class

```
In [30]: sns.countplot(x='Pclass', hue='Pclass', data=df, palette='viridis', legend=F
plt.xlabel("Pclass")
plt.ylabel("Number of people")
plt.show()
```


Visualization of people survived from different passenger class

```
In [32]: sns.countplot(x='Survived', hue='Pclass', data=df, palette='viridis')
  plt.xlabel("Survival status")
  plt.ylabel("Number of people")
  plt.xticks(ticks=[0, 1], labels=['Not survived', 'Survived'])
  plt.show()
```


In [36]: sns.catplot(x = 'Pclass', hue = 'Survived', col = 'Sex', kind = 'count', dat
 df,palette='viridis')
 plt.tight_layout()

Observation: - Though population of P class 3 was the highest, yet they had the least survival rate

Males from P class 3 had the least survival rate

Visualization of people survived from different Embarkment

```
In [38]: sns.countplot(x='Embarked', hue='Embarked', data=df, palette='coolwarm', leg
    plt.xlabel("Embarked")
    plt.ylabel("Number of people")
    plt.show()
```



```
In [39]: sns.countplot(x='Survived',hue='Embarked',data=df,palette='viridis',)
    plt.xlabel("Survival status")
    plt.ylabel("Number of people")
    plt.xticks(ticks=[0,1],labels=['Not survived','survived'])
    plt.show()
```


In [51]: fig,axes = plt.subplots(1, 2, figsize=(12, 6)) sns.countplot(x='SibSp', data=df, ax=axes[0], hue='SibSp', palette='husl', l sns.countplot(x='Parch', data=df, ax=axes[1], hue='Parch', palette='husl', l plt.show() 300 i ź ò

```
In [41]: sns.countplot(x ='Survived', hue='SibSp',data=df,palette='viridis')
   plt.xticks(ticks=[0,1],labels=['Not survived','survived'])
   plt.xlabel("Survival status")
   plt.ylabel("Number of people")
   plt.title("Survival population of Sibsp")
```

```
plt.show()
sns.countplot(x ='Survived',hue='Parch',data=df,palette='viridis')
plt.xticks(ticks=[0,1],labels=['Not survived','survived'])
plt.title("Survival population of Parch")
plt.xlabel("Survival status")
plt.ylabel("Number of people")
plt.show()
```


Survival population of Parch

Distribution of Fare and Age

Visualizing survival rate in different age category

Define cut points and label names

```
In [44]: cut_points = [ 0, 5, 12, 18, 35, 60, 100]
label_names = [ 'Infant', "Child", 'Teenager', "Young Adult", 'Adult', 'Seni
```

Create the " Age_categories " column

```
In [45]: df['Age_categories'] = pd.cut(df['Age'], bins=cut_points, labels=label_names
```

Creating a pivot table for survival rates based on age categories

```
In [49]: age_cat_pivot = df.pivot_table(index="Age_categories", values="Survived", ot
```

Plotting of the bar Chart

```
In [50]: # Define colors for each bar
    colors = ['blue', 'green', 'orange', 'purple', 'pink', 'brown']

# Plotting the bar chart with different colors for each bar
    fig, ax = plt.subplots()
    bars = ax.bar(age_cat_pivot.index, age_cat_pivot['Survived'], color=colors)

# Adding a legend with the specified colors
    handles = [plt.Rectangle((0, 0), 1, 1, color=colors[i]) for i in
    range(len(colors))]
    ax.legend(handles, label_names)
    ax.set_title('Survival Rates by Age Category')
    ax.set_xlabel('Age Category')
    ax.set_ylabel('Survival Rate')
    plt.xticks(rotation=40)
    plt.show()
```


Observation : Young adult had the least survival rate

```
In [52]: sns.histplot(x='Fare',hue='Survived',data=df,kde=True)
    plt.legend(labels=['survived','not survived'])
    plt.show()
```


In [53]: sns.histplot(x='Age',hue='Survived',data=df,kde=True)
 plt.legend(labels=['survived','not survived'])
 plt.show()

Checking for correlation

```
In [56]: df.replace({'Sex': {'male': 1, 'female': 0}, 'Embarked': {'S': 0, 'C': 1, 'C'
In [57]: df.head()
Out[57]:
             PassengerId Survived Pclass
                                                 Name Sex Age SibSp Parch
                                                                                     Ticke
                                                Braund,
                                                                                        A/!
          0
                        1
                                  0
                                          3
                                              Mr. Owen
                                                           1 22.0
                                                                        1
                                                                               0
                                                                                     2117:
                                                 Harris
                                              Cumings,
                                               Mrs. John
                                                Bradley
          1
                        2
                                  1
                                          1
                                                           0 38.0
                                                                        1
                                                                                0 PC 17599
                                               (Florence
                                                 Briggs
                                                   Th...
                                             Heikkinen,
                                                                                  STON/O2
          2
                                  1
                        3
                                          3
                                                  Miss.
                                                           0 26.0
                                                                        0
                                                                                   3101282
                                                  Laina
                                               Futrelle,
                                                   Mrs.
                                                Jacques
                                          1
          3
                        4
                                  1
                                                           0 35.0
                                                                        1
                                                                                0
                                                                                    113803
                                                 Heath
                                               (Lily May
                                                  Peel)
                                               Allen, Mr.
          4
                        5
                                  0
                                           3
                                                William
                                                           1 35.0
                                                                        0
                                                                                0
                                                                                    373450
                                                 Henry
         df num = df[['Fare','Parch','SibSp','Age','Sex','Pclass','Embarked','Survive
          Plot: Heat Map
In [60]: sns.heatmap(df num.corr(),annot=True)
          plt.show()
```


Observation: Fare, sex, Pclass, Embarked has correlation with survived column

Conclusion:

Gender Disparity: Females had a higher survival rate, reflecting the "women and children first" policy during the Titanic disaster.

Passenger Class Disparity: Class 3, with the highest number of passengers, had the lowest survival rate, suggesting socio-economic status influenced survival chances.

Gender and Passenger Class Interaction: Males in Class 3 had the lowest survival rate, showing the combined impact of gender and socio-economic status on survival.

Age Factor: Young adults had the lowest survival rate, likely due to the prioritization of women and children.

Correlation with Survival: Factors like fare, sex, passenger class, and embarkation point were key to survival chances.