

United International University (UIU)

Department of Computer Science and Engineering CSE 225: DIGITAL LOGIC DESIGN, Midterm Fall 2018

Total Marks: **40** Duration: 2 hour

Section A: Answer both of the Questions, 1 and 2.

1.	For the given state diagram, find out (a) the flip-flops' input table, (b) equations and (c) the logic diagram when J-K flip-flops are being used	(a) JK Flip-Flop Q(t) Q(t+1) J K 0 0 0 X 0 1 1 X 1 0 X 1 1 1 X 0	0/1 0/0 D 1/1 0/0 1/0 C	[3+ 3+ 2]
2.	2 and repeat. You have to show (a) the flip-flops' input table, (b) equations and (c) the logic diagram			[3+ 3+ 2]

Section B: Answer any two of the Questions from 4, 5 and 6.

3.	A) An electronic game uses an array of seven LEDs (light-emitting diodes) to display the results of a random roll of a die. Use a 3–to–8-line decoder and OR gates to map the 3-bit			
	combinations on inputs X_2 , X_1 , and X_0 for values 1 through 6 to the outputs a through g . Input			
	combinations 000 and 111 are don't-cares.			
	$\begin{bmatrix} a & b \\ c & d & e \\ f & g \end{bmatrix} \qquad \begin{bmatrix} \bullet & & & & & & & & & & & & & & & & & &$			
	B) Construct a 1-bit full adder using two 1-bit half adders.			
4.	A) Implement the following Boolean function F with an 8-to-1 line multiplexer and necessary basic logic gates.			
	$F(A, B, C, D) = \sum m(0, 2, 4, 5, 7, 9, 10, 11, 15)$			
	B) Design a 3-to-8 active low decoder using 2-to-4 active low decoder. Label the decoder pin names and their inputs/outputs carefully.			
5.	A) Design an 8-to-1 multiplexer using 4-to-1 multiplexer and 2-to-1 multiplexer.			
	B) Design an Octal-to-Binary encoder. Show the function table and the equations only.			
	C) Design a 6-bit full adder using multiple 2-bit full adders. Show the diagram only.			

Section C: Answer <u>any one</u> Question from 7 and 8.

6. A) What sequence should be repeated for the sequential circuit of the following Figure for the following initial state Q₃Q₂Q₁: 001?

B) Draw the diagram of a master-slave flip-flop using D flip-flops.

[2]

[5]

7. A) Design a 4 bit register which can do the following operations based on the two control INPUTS X and Y as given below:

X	Y	Operation
0	0	Right Shift
0	1	Parallel Load
1	0	1's complement
1	1	Left Shift

You can use any kind of flip-flops and other necessary gates as required. Draw a neat logic diagram of your solution.

B) Following is a logic diagram for an asynchronous ripple counter.

[3]

Now, if the FF1 is replaced with a flip-flop that has negative edge triggered clock, the circuit will behave in a different way. Find out the sequence it will show in Q_1Q_0 for that situation.