

Mark Scheme (Results)

January 2020

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2020 WFM01/01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme		No	tes	Marks
1.	(a) $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} p & -5 \\ -2 & p+3 \end{pmatrix} $ (b) $p=3$; $\mathbf{A} = \begin{pmatrix} a & -5 \\ -2 & d \end{pmatrix}$				
(a)	$det(\mathbf{A}) =$	p(p+3)-(-5)(-2) = p(p+3)-10		Applies $p(p +$	$\pm (-5)(-2)$	M1
			Obtains a	correct expressi	ion for $det(A)$,	
	$n^2 + 2n$	$-10 = 0 \Rightarrow (p+5)(p-2) = 0 \Rightarrow p = \dots$			$det(\mathbf{A}) = 0$ and	M1
	p + 3p -	$(p+3)(p-2)=0 \Rightarrow p=\dots$			s their $3TQ = 0$	1V1 1
			by an	y valid method		
	p = -5, 2				p = -5, 2	A1
	((2,5)				(3)
(b)	$\begin{cases} p = 3 \implies 3 \end{cases}$	$\Rightarrow \mathbf{A} = \begin{pmatrix} 3 & -5 \\ -2 & 6 \end{pmatrix}$				
			For aither	$\begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix}$ or a con	rect numerical	
	For either	$\begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix}$ or $\det(\mathbf{A}) = 3(3+3) - 10$ or 8	roi either	$\begin{pmatrix} 2 & 3 \end{pmatrix}$ or a con	rect numerical	B1
		$\begin{pmatrix} 2 & 3 \end{pmatrix}$	expression	or value for det	(A), which can	D 1
				be s	een or implied	
		1 (6.5)		1	$\frac{1}{(-2)}$ Adj(A),	
	$A^{-1} = \frac{1}{2(2)}$	$\frac{1}{3+3)-(-5)(-2)}\begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix}$	`			M1
	3(3	5+3) - (-3)(-2) (2 3)	where a correct method has been employed for finding their Adj(A)			
		(3 5)			3()	
	A -1 _ 1($\begin{pmatrix} 6 & 5 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} 0.75 & 0 \end{pmatrix}$	0.625	$\frac{1}{8}$ $\frac{1}{8}$	a	4.1
	$A = \frac{8}{8}$	$\begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix} \text{ or } = \begin{pmatrix} \frac{3}{4} & \frac{5}{8} \\ \frac{1}{4} & \frac{3}{8} \end{pmatrix} \text{ or } = \begin{pmatrix} 0.75 & 0 \\ 0.25 & 0 \end{pmatrix}$	$(0.375)^{101} = $	2 3	Correct \mathbf{A}^{-1}	A1
		(4 8)		(8 8)		
						(3)
		Ouest	tion 1 Notes			0
1. (b)	Note	$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow \operatorname{Adj}(\mathbf{A}) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \mathbf{i}$	s a correct m	ethod for finding	g their Adj(A)	
	Note	Allow B1 M1 A0 for just writing	1	$\frac{1}{2}$ $\begin{pmatrix} p+3 & 5\\ 2 & p \end{pmatrix}$		
		3(3+	+3) - (-5)(-2)	(2)(2 p)		
	Note	Allow B0 M1 A0 for just writing	1	$\frac{p+3}{2}\begin{pmatrix} p+3 & 5 \\ 2 & p \end{pmatrix}$		
	- 1000	3(3+	+3) + (-5)(-2)	2)(2 p)		
	Note	Allow B0 M1 A0 for just writing ${p(p)}$	1	p+3 5		
	Note	Allow M1 for evidence of a correct num				
		$\frac{1}{\text{their det}(A)} \text{ Adj}(\mathbf{A}) \text{ where a correct m}$	ethod has bee	en employed for	finding their A	$dj(\mathbf{A})$
	7 6. T 4					
	Note	Give final A0 for $\frac{1}{18-10} \begin{pmatrix} 6 & 5 \\ 2 & 3 \end{pmatrix}$ with	out reference	$\frac{10}{8}$ 2 3 or $\frac{1}{8}$	any other accept	able answer

Question Number		Scheme	e		Notes	Marks
2.	Let $f(x)$	$= 3x^3 + kx^2 + 33x + 13 \; ; \; k \in \mathbb{R}$	$; x = -\frac{1}{3} \text{ is a roc}$	ot of $f(x) = 0$		
		Note: Ignore laborate	elling of parts wh	en marking Q2		
	_	_	_	Some evid	ence of substituting	
(a) Way 1	$3(-\frac{1}{3})^3$	$+k\left(-\frac{1}{3}\right)^2+33\left(-\frac{1}{3}\right)+13=0$	$\Rightarrow k = \dots$	$x = -\frac{1}{-}$ into	the given equation	M1
Way I	3)	(3)		3	olves to find $k =$	
	[1 1)	and s		
	$\left\{-\frac{1}{9} + \frac{1}{9}\right\}$	$k-11+13=0 \Rightarrow -1+k+18=0$	$0 \Longrightarrow \begin{cases} k = -17 \end{cases}$		k = -17	A1
						(2)
(a)	, , ,	$(x+1)(x^2 + Ax + 13)$	Ех	expresses $f(x) = (3x)$	$(x\pm 1)(x^2 + Ax\pm 13),$	
Way 2	x: 3(13)	$A = 33 \Rightarrow A = -6$		•	es x terms to find A	M1
	$x^2: k=1$	1 + ("-6")(3)		and equate	x^2 terms to find k	
	k = -17				k = -17	A1
<i>A</i> \		Т			.1	(2)
(b)				•	the quadratic factor g division to obtain	
) with $(x^2 \pm qx +)$	
	(6())	(2 - 1)(2 - (- 12)		``		
	$\{1(x) = \}$	$(3x+1)(x^2-6x+13)$	or $x \pm \frac{1}{2}$	or $\left(x \pm \frac{1}{3}\right)$ with $(3x^2 \pm qx +)$; $q = \text{value} \neq 0$		M1
	or		e.g. fact	e.g. factorising/equating coefficients to obtain		
	$\{f(x)=\}$	$\left(x+\frac{1}{3}\right)(3x^2-18x+39)$		$f(x) = (3x \pm 1)(x^2 \pm qx \pm r) \text{ or}$ $f(x) = \left(x \pm \frac{1}{3}\right)(3x^2 \pm qx \pm r),$		
	$\{\Gamma(x)-\}$	$\left(\frac{x+\frac{\pi}{3}}{3}\right)^{(3x^2-16x+39)}$				
				$q = v_0$	alue $\neq 0$, r can be 0	
			$x^2 - 6x + 13$ or	$3x^2 - 18x + 39$ se	en in their working	A1
	$\{x^2-6x\}$	$+13 = 0$ or $3x^2 - 18x + 39 = 0$	⇒}			
	e.g.				previous M mark	
	• x =	$\frac{-6 \pm \sqrt{(-6)^2 - 4(1)(13)}}{2(1)}$	Cor		olying the quadratic mpleting the square	dM1
					solving their 3TQ	GIVII
	$\bullet (x-3)$	$x^2 - 9 + 13 = 0 \Rightarrow x = \dots$		on their quadratic factor		
	$\{x = \} \ 3$	$\pm 2i$ (or $3\pm i2$)			3 + 2i and $3 - 2i$	A1
						(4)
	Question 2 Notes					
2. (b)	Note	You can assume $z \equiv x$ for s				
` '	Note	Give final dM1A1 for $x^2 - 6$	6x + 13 = 0 or $3x + 13 = 0$	$x^2 - 18x + 39 = 0 = 0$	$\Rightarrow x = 3 + 2i, 3 - 2i$	
		with no intermediate working			,	
	Note	Give M1 A1 dM1 A1 for 3x		$13 = 0 \implies x = 3 + 2$	2i, 3-2i	
		with no intermediate working				
	Note	They must be solving a 3TQ	<u> </u>	"C" where		
		A, B, C are all numerical A	values $\neq 0$ for the	e final dM1 mark.		
	Note	Special Case: If their quad			e factorised then	
		allow dM1 for correct factorisation leading to $x =$				
		Otherwise, give dM0 for app	olying a method of	of factorisation to	solve their $3TQ = 0$.	

		Question 2 Notes Continued				
2. (b)	Note	Reminder: Method mark for solving a $3TQ = 0$				
		Formula: $Ax^2 + Bx + C = 0 \Rightarrow$ Attempt to use the correct formula (with values for	(A, B, C)			
		Completing the Square: $x^2 + Bx + C = 0 \Rightarrow \left(x \pm \frac{B}{2}\right)^2 \pm q \pm C = 0, q \neq 0$, leading	to $x = \dots$			
	Note:	Comparing coefficients: $f(x) = (3x+1)(x^2 + \alpha x + \beta) \equiv 3x^3 - 17x^2 + 33x + 13$				
		$\alpha^2: 3\alpha + 1 = -17 \Rightarrow \alpha = -6; z: 3\beta + \alpha = 33 \Rightarrow 3\beta - 6 = 33 \Rightarrow \beta = 13; constant: \beta = 13$				
		yielding quadratic factor = $x^2 - 6x + 13$				
	Note	The solutions $3 \pm 2i$ need to follow on from a correct $x^2 - 6x + 13 = 0$ or $3x^2 - 18$.	x + 39 = 0			
		in order to gain the final A mark.				
	Note	Give final A0 for writing $\frac{6\pm 4i}{2}$ followed by either $3\pm 4i$ or $6\pm 2i$				
2. (a)	Note	Long division:				
ALT 1		$3x^2 - 18x + 39$ $x^2 - 6x + 13$				
		$x + \frac{1}{3} 3x^3 + kx^2 + 33x + 13$ $3x + 1 3x^3 + kx^2 + 33x + 13$				
		$3x^3 + x^2$ $3x^3 + x^2$				
		$(k-1)x^2 + 33x$ or $(k-1)x^2 + 33x$				
		$-18 x^2 - 6x$ $-18 x^2 - 6x$				
		39x + 13 $39x + 13$				
		39x + 13 $39x + 13$				
		0				
		Full complete method of dividing by either $x + \frac{1}{3}$				
		$(k-1)-18=0 \Rightarrow k=$ or $(3x+1)$, applying remainder = 0 and solving a	M1			
		relevant equation to find $k = \dots$				
		k = -17 k = -17	A1 (2)			
	No.4s	Give M0 for dividing by either x 1 or 3x 1	(2)			
	Note	Give M0 for dividing by either $x - \frac{1}{3}$ or $3x - 1$				

		Questio	n 2 Notes Continued	
2. (a)	Note	Long division:	(100 1)	
ALT 2		$x^2 + \left(\frac{k-1}{3}\right)x$	$+\left(\frac{100-k}{9}\right)$	
		$3x+1 \mid 3x^3 + kx^2 + 33x$	+ 13	
		$3x^3 + x^2$		
		$(k-1)x^2 + 33x$		
		$(k-1)x^2 + \left(\frac{k-1}{3}\right)x$		
		$\frac{100-k}{3}x$	+13	
		$\left(\frac{100-k}{3}\right)x$	$+\left(\frac{100-k}{9}\right)$	
			$13 - \left(\frac{100 - k}{9}\right)$	
		or		
		$3x^2 + (k-1)x$	$+\left(\frac{100-k}{3}\right)$	
		$\left x + \frac{1}{3} \right \overline{3x^3 + kx^2 + 33x}$	+13	
		$3x^3 + x^2$		
		$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		
		$(k-1)x^2 + \left(\frac{k-1}{3}\right)x$		
		$\frac{100-k}{3}x$	+ 13	
		$\left(\frac{100-k}{2}\right)_{x}$	$+\left(\frac{100-k}{9}\right)$	
			$13 - \left(\frac{100 - k}{9}\right)$	
		$13 - \left(\frac{100 - k}{9}\right) = 0 \Rightarrow k = \dots$	Full complete method of dividing by either	
		or (L 1)	$x + \frac{1}{3}$ or $(3x + 1)$, applying remainder = 0	M1
		$33 - \left(\frac{k-1}{3}\right) = 39 \implies k = \dots$	and solving a relevant equation to find $k =$	
		$\left\{ \frac{117 - 100 + k}{9} = 0 \implies \right\} k = -17$	k = -17	A1
				(2)
	Note	Give M0 for dividing by either x -	$-\frac{1}{3}$ or $3x-1$	

Question Number		Scheme			Notes	Marks
3. (a)	$\sum_{r=1}^{n} r^2 (2r -$	$+3) = 2\sum_{r=1}^{n} r^3 + 3\sum_{r=1}^{n} r^2 + 3\sum_{r$	$\sum_{i=1}^{n} r^2$			
	(1	(1	,	Attempts to substitute at 1 $\sum_{r=1}^{n} r^{3} \text{ or } \sum_{r=1}^{n} r^{3}$	M1	
	$=2\left(\frac{1}{4}n^2\right)$	$(n+1)^2 + 3\left(\frac{1}{6}n(n+1)^2\right)$	+1)(2n+1)		Obtains an expression of the form -1) ² + $\beta n(n+1)(2n+1)$; $\alpha, \beta \neq 0$	M1
					$(n+1)^2 + 3\left(\frac{1}{6}n(n+1)(2n+1)\right)$ can be simplified or un-simplified	A1
	_	1) $(n(n+1)+(2n+1)$ +1) (n^2+3n+1) *))		the given result via an appropriate ep with no algebraic errors seen in their working	A1 * cso
						(4)
	25)		{Note	: Let $f(n) = \frac{n}{2}(n+1)(n^2+3n+1)$	
(b)	$\left\{ \sum_{r=10}^{\infty} r^2 (2) \right\}$	(2r+3)=) or their un-simplified expression $1)^2 + \beta n(n+1)(2n+1); \alpha, \beta \neq 0$	
	$=\frac{25}{2}(25)$	$+1)((25)^2 + 3(25)$	$+1)-\frac{9}{2}(9+1)($	$((9)^2 + 3(9) + 1)$	Applies $f(25) - f(9)$ Note: Give M0 for applying $f(25) - f(10)$	M1
	$\left\{=\frac{25}{2}(26)\right\}$	$6)(701) - \frac{9}{2}(10)(10)$	09) = 227825 -	- 4905}		
	= 22292	0		-	222920 cao	A1
						(2)
				Question 3 No	otes	ı U
3. (a)	Note	Final A mark:				
		$LHS = \frac{1}{2}n^2(n+1)$	$n^2 + \frac{1}{2}n(n+1)(2n+1)$	$(n+1) = \frac{1}{2}n^2(n^2 + 2)$	$(n+1) + \frac{1}{2}n(2n^2 + 3n + 1)$	
		$= \frac{1}{2}n^4 + n^3 +$	$\frac{1}{2}n^2 + n^3 + \frac{3}{2}n^2$	$x^2 + \frac{1}{2}n = \frac{1}{2}n^4 + 2n$	$n^3 + 2n^2 + \frac{1}{2}n$	
		$RHS = \frac{n}{2}(n+1)n$	$(n^2+3n+1)=$	$\frac{n}{2}(n^3+3n^2+n+n)$	$n^2 + 3n + 1) = \frac{n}{2}(n^3 + 4n^2 + 4n + 1)$	
		$= \frac{1}{2}n^4 + 2$	$2n^3 + 2n^2 + \frac{1}{2}n$			
					the LHS and RHS are the same wit ED or \Box) that their proof is complete	

		Question 3 Notes Continued
3. (a)	Note	Give final A0 for
		• jumping from $\frac{1}{2}n^4 + 2n^3 + 2n^2 + \frac{1}{2}n$ to $\frac{n}{2}(n+1)(n^2+3n+1)$ with no intermediate working
	Note	Condone final A1 for
		• jumping from $\frac{n}{2}(n^3 + 4n^2 + 4n + 1)$ to $\frac{n}{2}(n+1)(n^2 + 3n + 1)$ with no intermediate working
	Note	Achieving the given result via an appropriate intermediate step with no algebraic errors seen in
		their working includes e.g.
		• $2\left(\frac{1}{4}n^2(n+1)^2\right) + 3\left(\frac{1}{6}n(n+1)(2n+1)\right) = \frac{1}{2}n^2(n+1)^2 + \frac{1}{2}n(n+1)(2n+1)$
		$= \frac{1}{2}n(n+1)(n^2+3n+1)$
		• $2\left(\frac{1}{4}n^2(n+1)^2\right) + 3\left(\frac{1}{6}n(n+1)(2n+1)\right) = \frac{1}{2}n(n+1)(n^2+n) + \frac{1}{2}n(n+1)(2n+1)$
		$= \frac{1}{2}n(n+1)(n^2+3n+1)$
		• $2\left(\frac{1}{4}n^2(n+1)^2\right) + 3\left(\frac{1}{6}n(n+1)(2n+1)\right) = \frac{1}{2}n(n+1)[n(n+1)] + \frac{1}{2}n(n+1)(2n+1)$
		$= \frac{1}{2}n(n+1)(n^2+3n+1)$
3. (b)	Note	Allow M1 for 227825 – 4905 and A1 for obtaining 222920
	Note	Allow M1 for $\left(\frac{1}{2}(25)^2(26)^2 + \frac{1}{2}(25)(26)(51)\right) - \left(\frac{1}{2}(9)^2(10)^2 + \frac{1}{2}(9)(10)(19)\right)$
		$\{=(211250+16575)-(4050+855)=227825-4905\}$ and A1 for obtaining 222920
	Note	Give M0 A0 for writing 222 920 by itself with no supporting working
	Note	Allow M1 A1 for writing $\sum_{r=1}^{25} r^2 (2r+3) - \sum_{r=1}^{9} r^2 (2r+3) = 222920$
	Note	Give M0 A0 for listing individual terms
		i.e. $\sum_{r=10}^{25} r^2 (2r+3) = (10)^2 (23) + (11)^2 (25) + (12)^2 (27) + \dots + (25)^2 (53)$
		= 2300 + 3025 + 3888 + + 33125 = 222920 by itself is M0 A0
	Note	Give M0 A0 for applying
		$f(25) - f(10) = \frac{25}{2}(25+1)((25)^2 + 3(25) + 1) - \frac{10}{2}(10+1)((10)^2 + 3(10) + 1)$
		$= \frac{25}{2}(26)(701) - 5(11)(131) = 227825 - 7205 = 220620$
	Note	For M1 allow only one slip when substituting in $n = 25$ and $n = 9$
	Note	Give M0 for • $\frac{25}{2}(25+1)((25)^2+3(25)+1)-\frac{9}{2}(9+1)((10)^2+3(10)+1)$ {= 227825 - 5895 = 221930}

Question Number	Scheme			Notes	Marks	
4.	$z_1 = p + 5i$, $z_2 = 9 + 8i$, $z_3 = \frac{z_1}{z_2}$	$; \arg(z_1) = \frac{\pi}{3}$				
(a) Way 1	$z_3 = \frac{(p+5i)}{(9+8i)} \times \frac{(9-8i)}{(9-8i)}$			Multiplies numerator and denominator of z_3 by $9-8i$	M1	_
	$=\frac{9p-8pi+45i+40}{81+64}$		ımerical	Applies $i^2 = -1$ to give either ession in terms of p for the numerator or expression or value for the denominator	A1	
	$= \frac{9p+40}{145} + \left(\frac{-8p+45}{145}\right)i$			tes a correct $x = \frac{9p+40}{145}$, $y = \frac{-8p+45}{145}$	A1	
	(• • • • • • • • • • • • • • • • • • •					(3)
(a) Way 2	$z_3 = \frac{(p+51)}{(9+8i)} \times \frac{(-9+81)}{(-9+8i)}$			Multiplies numerator and denominator of z_3 by $-9+8i$	M1	
	$=\frac{-9p + 8pi - 45i - 40}{-81 - 64}$			Applies $i^2 = -1$ to give either ession in terms of p for the numerator or expression or value for the denominator	A1	
	$= \frac{-9p - 40}{-145} + \left(\frac{8p - 45}{-145}\right)i$	or		act answer written in the form $x + iy$ o.e. correct $x = \frac{-9p - 40}{-145}$ and $y = \frac{8p - 45}{-145}$	A1	
						(3)
(b)	$\left\{ \left z_2 \right = \sqrt{9^2 + 8^2} \Longrightarrow \right\} \left z_2 \right = \sqrt{14}$	15		$\sqrt{145}$	B1	
(c)(i) Way 1	$\left\{\arg(z_1) = \frac{\pi}{3} \Longrightarrow \right\}$					(1)
	e.g. $\arctan\left(\frac{5}{p}\right) = \frac{\pi}{3}$ or $\tan\left(\frac{\pi}{3}\right)$	$=\frac{5}{p}$ or $\sqrt{3}=$	$\frac{5}{p}$	Uses trigonometry to form a correct equation in <i>p</i>	M1	
	$p = \frac{5}{\sqrt{3}}$ or $\frac{5}{3}\sqrt{3}$ or $\sqrt{\frac{25}{3}}$			Correct exact value for <i>p</i> Note: You can apply isw	A1	
(c)(i) Way 2	$\left\{z_1 = \sqrt{p^2 + 25} \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right\}$	$= p + 5i \Longrightarrow$				
	e.g. $\sqrt{p^2 + 25} \left(\cos \frac{\pi}{3} \right) = p$ or	$\sqrt{p^2 + 25} \left(\sin \frac{\pi}{3} \right)$	$\left(\frac{5}{5}\right) = 5$	Uses trigonometry to form a correct equation in <i>p</i>	M1	
	$p = \frac{5}{\sqrt{3}} \text{or} \frac{5}{3}\sqrt{3} \text{or} \sqrt{\frac{25}{3}}$			Correct exact value for <i>p</i> Note: You can apply isw	A1	
(ii)	• $ z_3 = \frac{ z_1 }{ z_2 } = \frac{\sqrt{\left(\frac{5}{\sqrt{3}}\right)^2 + (5)^2}}{\sqrt{145}}$	·				
	• $z_3 = \frac{8 + 3\sqrt{3}}{29} + \frac{27 - 8\sqrt{3}}{87} \Rightarrow$	$\left z_{3}\right = \sqrt{\left(\frac{8+3\sqrt{2}}{29}\right)^{2}}$	$\left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right)^2$	$\left(\frac{27-8\sqrt{3}}{87}\right)^2$		
	$ z_3 = \frac{10}{\sqrt{435}}$ or $\frac{10}{435}\sqrt{435}$ or	$\frac{2}{87}\sqrt{435}$ or $\frac{2}{}$	$\frac{\sqrt{435}}{87}$	Correct exact answer written in the form $\frac{a}{\sqrt{b}}$ or $c\sqrt{b}$; $a,b\in\mathbb{Z},c\in\mathbb{Q}$	B1	
		Note: Give B1	for $ z_3 $	$=\sqrt{\frac{20}{87}}$		(3)
				101		7

		Question 4 Notes
4. (a)	Note	Give 2^{nd} A0 for $z_3 = \frac{9p+40}{81+64} + \left(\frac{-8p+45}{81+64}\right)i$ without reference to $z_3 = \frac{9p+40}{145} + \left(\frac{-8p+45}{145}\right)i$
	Note	$\frac{9p+40+(45-8p)i}{145}$ is not considered to be in the form $x+iy$
	Note	Allow final A1 for $z_3 = \frac{9p}{145} + \frac{8}{29} + \left(\frac{9}{29} - \frac{8p}{145}\right)i$
	Note	Allow final A1 for $z_3 = \frac{9p + 40}{145} - \left(\frac{8p - 45}{145}\right)i$
	Note	y written as $y = \left(\frac{-8p + 45}{145}\right)i$ is incorrect
	Note	M1 A1 can be implied for writing $z_3 = \frac{(p+5i)}{(9+8i)} = \frac{9p-8pi}{145} + \frac{8+9i}{29}$
		and final A1 is then given for $z_3 = \frac{9p}{145} + \frac{8}{29} + \left(\frac{9}{29} - \frac{8p}{145}\right)i$
(b)	Note	You can apply isw after seeing $\sqrt{145}$
	Note	Give B0 for writing 12, 12.0 or awrt 12.0 without reference to $\sqrt{145}$
(c)(i)	Note	Give M1 for any of $\arctan\left(\frac{5}{p}\right) = 60$, $\tan 60 = \frac{5}{p}$, $\arctan\left(\frac{p}{5}\right) = \frac{\pi}{6}$, $\tan 30 = \frac{p}{5}$
	Note	Give M1 A0 for $p = 2.88$ (truncated) or $p =$ awrt 2.89 without reference to a correct exact value
	Note	Give A0 for $p = \pm \frac{5}{\sqrt{3}}$ with no evidence of rejecting the negative value of p
(c)(ii)	Note	Allow B1 for $ z_3 = \frac{\sqrt{1740}}{87}$

Question Number		Scheme				Notes	Marks
5.	$f(x) = x^4$	$-12x^{\frac{3}{2}} + 7$; $x \geqslant 0$					
(a) Way 1	f(3) = 2	0.9411255 5.64617093) (15() :		Atı	tempts to evaluate both $f(2)$ and $f(3)$ and either $f(2) = -10$ (truncated) or awrt -11 or $f(3) = 25$ (truncated) or awrt 26	M1
	_	<pre>ige {negative, positi is} therefore a root [2, 3]}</pre>			Both va	lues correct awrt (or truncated) to 2 sf, reason and a valid conclusion	A1 cso
			Γ				(2)
(b)	f'(x) = 4x	$x^3 - 18x^{\frac{1}{2}}$				At least one of either $x^4 \to \pm Ax^3$ or $-12x^{\frac{3}{2}} \to \pm Bx^{\frac{1}{2}}$; $A, B \neq 0$	M1
			Correct dif	fferentia	ation, wl	hich can be un-simplified or simplified	A1
	$\left\{\alpha \simeq 2.5 - 1\right\}$	$-\frac{f(2.5)}{f'(2.5)} \Longrightarrow \left\{ \alpha \approx 2. \right.$	$.5 - \frac{(2.5)^4 - 12(2)^4}{4(2.5)^3 - 18}$	$\frac{2.5)^{\frac{3}{2}} + 7}{8(2.5)^{\frac{1}{2}}}$	7_	Valid attempt at Newton-Raphson using the applied f (2.5) and their applied f'(2.5)	dM1
	$\left\{\alpha \simeq 2.5 - 10^{-10}\right\}$	$-\frac{-1.3716649}{34.0395011} = 1$	2.5 + 0.0402962	2}			
						dependent on all 3 previous marks	A1
	$\alpha = 2.54$	(2 dp)				2.54 on first iteration	cao
	Correct	differentiation follo	owed by 2.54 (v	with no	workin	(Ignore any subsequent iterations) g seen) scores full marks in part (b)	(4)
(c)			0 (initiable interval $[x_L, x_U]$ for x, which is	(.)
Way 1	, ,	=-0.137392933			hin ± 0.005 and either side of their answer to (b)		M1
	1(2.545)	= 0.231219419			and	attempts to find either $f(x_L)$ or $f(x_U)$	
	_	ge {negative, positius} therefore (a root)	, , , , , ,			Both values correct awrt 1 sf, reason and a valid conclusion	A1
							(2)
(c)	Condone	d Method: Applyi	ng Newton-Rap	phson a	igain. E	E.g. Using $\alpha = 2.54, 2.5402962$	
Way 2	• α ≃	$2.54 - \frac{0.046101609}{36.8609766}$	$\frac{0}{} = 2.5387516$ $\frac{0}{0.000000000000000000000000000000$	631		Evidence of applying Newton- Raphson for a second time on their answer to part (b)	M1
	• $\alpha \simeq$ So $\alpha = 2$.	$2.5402962 \frac{0.05}{36.88}$ 54 (2 dp)	$\frac{8822382}{8822382} = 2.$.538752	2436	Obtains either a truncated 2.538 or awrt 2.539 and a valid conclusion	A1
		Note:	Work for Way	2 can b	e recov	vered in part (b)	(2)
					I		8
	. .				on 5 No	tes	
5. (a)	Note	a reason and a conf(2) $< 0 < f(3)$ or reasons. There may	both values for onclusion. Refer a diagram or < ust be a conclusion.	f(2) are erence to a o and a ion, e.g	o change > 0 or 0 . $\{x \text{ or }\}$	correct awrt (or truncated) to 2 sf along α of sign α e.g. $f(2) \times f(3) < 0$ or one negative, one positive are sufficient $\alpha \in [2, 3]$ or $\{x \text{ or }\} \alpha \in (2, 3)$ or root lie of any reference to continuity.	
	Note	A minimal accepta or "change of sign	able reason and n, so root is betw	conclus	sion is "ond 3" o	change of sign, so $\alpha \in [2, 3]$ " or "change of sign, so root" or "change of sign, so in the interval"	,

		Question 5 Notes Continued
5. (a)	Note	Give final A0 for writing as their conclusion "root lies between f(2) and f(3)"
5. (a)	Note	ALT The root of $f(x) = 0$ is 2.5388, so they can choose x_1 which is less than 2.5388, and choose x_2 which is greater than 2.5388 with both x_1 and x_2 lying in the interval [2, 3]. M1: Finds $f(x_1)$ and $f(x_2)$ with one of these values correct awrt (or truncated) to 2 sf A1: Both values correct awrt (or truncated) to 2 sf, reason (e.g. sign change) and conclusion
	Note	Helpful Table
	11010	
		x $f(x)$
		2 -10.9411255
		2.1 -10.0701694
		2.2 -8.731928012
		2.3 -6.873372451
		2.4 -4.439168148
		2.5 -1.371664903
		2.6 2.389111651
		2.7 6.90546741
		2.8 12.24204622
		2.9 18.46583545 3 25.64617093
(1.)		
(b)	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(2.5)$ or their $f'(2.5)$ (where $f'(2.5)$ is found using their $f'(x)$) to awrt 2 significant figures in $2.5 - \frac{f(2.5)}{f'(2.5)}$. So <i>just writing</i> $2.5 - \frac{f(2.5)}{f'(2.5)}$ with an incorrect ft answer on their $f'(2.5)$ scores dM0 A0.
	Note	Allow M1 A1 dM1 A1 for $2.5 - \frac{f(2.5)}{f'(2.5)} = 2.54$ with no algebraic differentiation
	Note	Allow M1 A1 dM1 A1 for correct answer 2.54 given with no other working
	Note	You can imply the M1 A1 marks for the absence of algebraic differentiation by either
		• $f'(2.5) = 4(2.5)^3 - 18(2.5)^{\frac{1}{2}}$
		• f'(2.5) applied correctly in $\alpha \approx 2.5 - \frac{(2.5)^4 - 12(2.5)^{\frac{3}{2}} + 7}{4(2.5)^3 - 18(2.5)^{\frac{1}{2}}}$ • f'(2.5) = awrt 34
	Note	Differentiating INCORRECTLY to give $f'(x) = 4x^3 + 18x^{\frac{1}{2}}$ leads to
		$\alpha \simeq 2.5 - \frac{-1.3716649}{90.9604989} = 2.51507978 = 2.52 \text{ (2 dp)}$
		This response should be given M1 A0 dM1 A0
	Note	Differentiating INCORRECTLY to give $f'(x) = 4x^3 + 18x^{\frac{1}{2}}$ and
		$\alpha \approx 2.5 - \frac{f(2.5)}{f'(2.5)} = 2.52$ is M1 A0 dM1 A0

		Question 5 Notes Continued					
5. (c)	Note	If they obtain a correct answer 2.54 by an incorrect method in part (b) then M1 A1 is					
		allowed in part (c).					
	Note	Way 1: A1, correct solution only					
		Required to state both values for $f(x_L)$ and $f(x_U)$ correct awrt (or truncated) to 1 sf along with					
		a reason and a conclusion. Reference to change of sign or e.g. $f(2.535) \times f(2.545) < 0$ or					
		f(2.535) < 0 < f(2.545) or a diagram or < 0 and > 0 or one negative, one positive are sufficient					
		reasons. There must be a (minimal, not incorrect) conclusion e.g. $\alpha = 2.54$, root (or α to part					
		(b)) is correct, QED or □ are all acceptable. Ignore the presence or absence of any reference to					
		continuity.					
	Note	A minimal acceptable reason and conclusion is any of					
		• "change of sign, hence root"					
		• "change of sign, so $\alpha = 2.54$ "					
		• "change of sign, so $x = 2.54$ "					
		• "change of sign, so α is correct {to 2 decimal places}"					
		• " $f(2.535) = -0.1 < 0$, $f(2.545) = 0.2 > 0$, so root"					
		• "f(2.535) = $-0.1 < 0$, f(2.545) = $0.2 > 0$, so $\alpha = 2.54$ "					
	Note	No explicit reference to 2 decimal places is necessary for the conclusion					
	Note	Give A0 for stating "root is in between 2.535 and 2.545" or "root lies in the given interval"					
		without reference to either $\alpha = 2.54$, root (or α to part (b)) is correct, QED or \square					
(c)	Note	Way 1: ALT					
		The root of $f(x) = 0$ is 2.5388, so they can choose x_L which is less than 2.5388,					
		and choose x_U which is greater than 2.5388 with both x_L and x_U lying in the interval					
		[2.535, 2.545] and evaluate $f(x_L)$ and $f(x_U)$					
		M1: Chooses a suitable interval $[x_L, x_U]$ and attempts to find either $f(x_L)$ or $f(x_U)$					
		A1: Both values correct awrt (or truncated) to 1 sf, reason (e.g. sign change) and conclusion					
	Note	Helpful Table					
		x $f(x)$					
		0.127202020					
		0.100054201					
		2.330					
		2.337					
		2.538 -0.02/562401 2.539 0.00919099					
		2.54 0.046016091					
		2.541 0.082912964					
		2.542 0.119881671					
		2.543 0.156922274 2.544 0.194034836					
		2.545 0.231219419					
()							
(c) Way 2	Note	If $\alpha = 2.54$ in part (b), then give M1 A1 in part (c) for any of					
Way 2		• " $\alpha_2 = 2.538 \Rightarrow \alpha_2 = 2.54$ "					
		• " $\alpha_2 = 2.539 \Rightarrow \alpha_2 = 2.54$ "					
		• " $\alpha_2 = 2.539$, so answer to part (b) is correct"					
	Note	If $\alpha = 2.54$ in part (b), then give M1 A0 in part (c) for writing " $\alpha \approx 2.54 - \frac{f(2.54)}{f'(2.54)} = 2.54$ "					
		1 (2.54)					

Question Number	Scheme		Notes	Marks
6.	$\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}; A: R(3p-13, p-4) \mapsto$	R'(7, -2)		
(a) Way 1	$\begin{cases} \begin{pmatrix} x_{R'} \\ y_{R'} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 3p - 13 \\ p - 4 \end{pmatrix} = \\ = \begin{pmatrix} 2(3p - 13) + 3(p - 4) \\ 1(3p - 13) - 4(p - 4) \end{pmatrix}$	(2 t	orrect method of multiplying out either $(2 - 3) \binom{3p-13}{p-4}$ or $(1 - 4) \binom{3p-13}{p-4}$ or give a linear expression in terms of p for either $x_{R'}$ or $y_{R'}$ at Allow one slip in their multiplication	M1
	• $2(3p-13) + 3(p-4) = 7 \Rightarrow p =$ • $1(3p-13) - 4(p-4) = -2 \Rightarrow p =$ { $9p-38 = 7 \text{ or } -p+3 = -2 \Rightarrow$ } $p =$	5	dependent on the previous M mark Solves either their $x_{R'} = 7$ or their $y_{R'} = -2$ to give $p =$ p = 5	dM1
(a)	$(\mathbf{A}\mathbf{D} - \mathbf{D}' \rightarrow \mathbf{D} - \mathbf{A}^{-1}\mathbf{D}' \rightarrow)$			(3)
(a) Way 2	$\mathbf{R} = \frac{1}{-8-3} \begin{pmatrix} -4 & -3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ Applies $\mathbf{A}^{-1} \begin{pmatrix} 7 \\ -2 \end{pmatrix}$ to find the value for either x_R or y_R Note: Allow one slip in finding \mathbf{A}^{-1}			M1
	• $3p-13=2 \Rightarrow p=$ • $p-4=1 \Rightarrow p=$ p=5		dependent on the previous M mark Solves either $3p-13$ = their x_R or $p-4$ = their y_R to give $p=$ p=5	dM1
	p-3		p-3	A1 (3)
(a) Way 3	$\{\mathbf{A}\mathbf{R} = \mathbf{R'} \Rightarrow \} \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$ $2a + 3b = 7$ $a - 4b = -2 \Rightarrow a = 2 \text{ or } b = 1$	simu	Correct method of applying $\begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 7 \\ -2 \end{pmatrix}$ to form a pair of ltaneous equations and attempts to find either $a =$ or $b =$	M1
		Note	Allow one slip in their multiplication	
	• $3p-13=2 \Rightarrow p=$ • $p-4=1 \Rightarrow p=$	Note:	Allow one slip in their multiplication dependent on the previous M mark Solves either $3p-13$ = their a or $p-4$ = their b to give $p=$	dM1
		Note:	dependent on the previous M mark Solves either $3p-13$ = their a	A1
(b) Way 1	• $p-4=1 \Rightarrow p=$	Note:	dependent on the previous M mark Solves either $3p-13$ = their a or $p-4$ = their b to give $p =$	
, ,	• $p-4=1 \Rightarrow p=$ $p=5$ $\{R(3(5)-13, 5-4) = R(2,1)\}$	Note	dependent on the previous M mark Solves either $3p-13$ = their a or $p-4$ = their b to give p = $p = 5$ A correct method for finding their x_R	A1 (3)
, ,	• $p-4=1 \Rightarrow p=$ p=5 $\{R(3(5)-13, 5-4) = R(2,1)\}$ $\{Area(ORS) = \} \frac{1}{2}(7)("2")$	Note	dependent on the previous M mark Solves either $3p-13$ = their a or $p-4$ = their b to give $p=$ $p=5$ A correct method for finding their x_R and applies $\frac{1}{2}(7)$ (their x_R)	A1 (3)
Way 1	• $p-4=1 \Rightarrow p =$ p=5 $\{R(3(5)-13, 5-4) = R(2,1)\}$ $\{Area(ORS) = \} \frac{1}{2}(7)("2")$ $= 7 \text{ (units)}^2$	Correc	dependent on the previous M mark Solves either $3p-13$ = their a or $p-4$ = their b to give $p=$ $p=5$ A correct method for finding their x_R and applies $\frac{1}{2}(7)$ (their x_R)	A1 (3) M1 A1 cao (2)

Question Number	Scheme		Notes	Marks		
6. (b) Way 2	{Area (ORS)} = $\frac{1}{2} \begin{vmatrix} 0 & 2 & 0 & 0 \\ 0 & 1 & 7 & 0 \end{vmatrix} = \frac{1}{2} (0+14+0)-(0+0+0) $		A correct method for finding their $R(2, 1)$ with a complete applied method for finding area(ORS) using $S(0, 7)$ and their $R(2, 1)$	M1		
	= 7 (uni		7	Al cao		
			4 (2)	(2)		
			uestion 6 Notes			
6.	Note	$ORS \mapsto OR'S' \Rightarrow \begin{pmatrix} 0 & 2 & 0 \\ 0 & 1 & 7 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 7 & 21 \\ 0 & -2 & -28 \end{pmatrix}$			
(b)	Note	A correct method for finding their				
Way 1			="5" is found using part (a), Way 1			
		• their x_R found by applying A				
		• x_R = their a found using part ((a), Way 3			
(b) Way 2	Note	Give M1 A1 for $\frac{1}{2} \begin{vmatrix} 2 & 0 \\ 1 & 7 \end{vmatrix} = \frac{1}{2} 14 - 0 $	= 7			
	Note	Give M1 A1 for $\frac{1}{2}\begin{vmatrix} 2 & 0 \\ 1 & 7 \end{vmatrix} = \frac{1}{2} 14-0 $ Give M0 A0 for $\begin{vmatrix} 0 & 2 & 0 & 0 \\ 0 & 1 & 7 & 0 \end{vmatrix} = \ (0 + 1)\ $	(0+14+0)-(0+0+0) = 14			
	Note There are other ways to find Area(ORS). All ways require a complete correct method to the M mark and a correct area of 7 for the A mark.					
	Note		") as this method is equivalent to writing $\frac{1}{2}$ (7)("2	2")		
	Note	Give M0 for the calculation $\frac{1}{2}(7)(7) \left\{ = \frac{49}{2} \right\}$				
(c)	Note		-3(1)) × (7) to give -77 with no reference to 77	1		
	Note	Part (c) requires the use of the answ So give M0 A0 for	wer to part (b).			
		C	$\begin{vmatrix} 0 \\ 0 \end{vmatrix} = \frac{1}{2} (0 - 196 + 0) - (0 - 42 + 0) = \frac{1}{2} (154) = 77$			
	• Area $(OR'S') = \frac{1}{2} \begin{vmatrix} 7 & 21 \\ -2 & -28 \end{vmatrix} = \frac{1}{2} (-196) - (-42) = \frac{1}{2} (154) = 77$					
		• Area $(OR'S') = (28)(21) - \frac{1}{2}(21)$	$(28) - \frac{1}{2}(7)(2) - \frac{1}{2}(2+28)(14)$			
		= 588 - 294 - 7 - 2	210 = 77			
	Note Allow M1 A1 for $ \bullet \frac{\begin{vmatrix} 7 & 21 \\ -2 & -28 \end{vmatrix}}{\begin{vmatrix} 2 & 0 \\ 1 & 7 \end{vmatrix}} \times 7 = \frac{ (-196) - (-42) }{ 14 - 0 } \times 7 = \frac{154}{14} \times 7 = 11 \times 7 = 77 $					

Question Number	Scheme		Notes	Marks
7.	$3x^2 + 1$	px - 5 = 0 has	roots α , β ; p is a constant	
	(c) ($\alpha + \frac{1}{\beta} + \left(\beta + \frac{1}{\beta} \right)$	$\left(\frac{1}{\alpha}\right) = 2\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$	
(a) (i)	$\alpha\beta = -\frac{5}{3}$		$\alpha\beta = -\frac{5}{3}$	B1
(ii)	$\left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right)$ $= \alpha\beta + 2 + \frac{1}{\alpha\beta} = -\frac{5}{3} + 2 + \frac{1}{\left(-\frac{5}{3}\right)}$		Expands to give $\frac{1}{\alpha\beta} + 1 + 1 + \alpha\beta$; and uses their value of $\alpha\beta$ at least once in a resulting expression	M1
	$=-\frac{4}{15}$		$-\frac{4}{15}$	A1
				(3)
(b)(i)	$\alpha + \beta = -\frac{p}{3}$		$\alpha + \beta = -\frac{p}{3}$ (may be recovered from (a))	B1
(ii)	$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = \alpha + \beta$	$+\frac{\alpha+\beta}{\alpha\beta}$	Evidence of $\frac{1}{\beta} + \frac{1}{\alpha}$ rewritten as $\frac{\alpha + \beta}{\alpha \beta}$ Can be implied	M1
	$= -\frac{p}{3} + \frac{-\frac{p}{3}}{-\frac{5}{3}} \text{ or } -\frac{p}{3} + \frac{p}{5} \text{ or } -\frac{2p}{15}$		$-\frac{p}{3} + \frac{-\frac{p}{3}}{-\frac{5}{3}} \text{ or } -\frac{p}{3} + \frac{p}{5} \text{ or } -\frac{2p}{15}$ or an equivalent fraction in terms of p Note: You can apply isw	A1
				(3)
(c)	$-\frac{2p}{15} = 2\left(-\frac{4}{15}\right) \implies p = 4$		Correctly obtains $p = 4$	B1
(d)	$\sum = 2\left(-\frac{4}{15}\right) = -\frac{8}{15}; \prod$	$\left[=-\frac{4}{15}\right]$		(1)
	$x^{2}\frac{8}{15}x - \frac{4}{15} = 0$		Valid method for finding (their sum) and x^2 – (their sum) x + their product (can be implied), for their numerical values of the sum and product. Note: "=0" is not required for this mark Note: E.g. Using (their sum) = $\alpha + \beta = -\frac{p}{3} = -\frac{4}{3}$ is considered a valid method for finding (their sum)	M1
	$15x^2 + 8x - 4 = 0$	Any integer multiple of $15x^2 + 8x - 4 = 0$, including the "=0"	A1 cso	
				(2)
				9

Question Number		Scheme	Notes	Marks		
(a)(ii) Way 2	$\left(\alpha + \frac{1}{\beta}\right)\left(\alpha + \frac{1}{\beta}\right)$ $= \frac{(\alpha\beta + 1)}{\beta}$	$\frac{\left(\beta + \frac{1}{\alpha}\right)}{\alpha\beta} = \frac{\left(-\frac{5}{3} + 1\right)\left(-\frac{5}{3} + 1\right)}{\left(-\frac{5}{3}\right)} = \frac{\frac{4}{9}}{-\frac{5}{3}}$	Expands to give $\frac{(\alpha\beta+1)(\alpha\beta+1)}{\alpha\beta}$ and uses their value of $\alpha\beta$ at least once in a resulting expression	M1		
	$=-\frac{4}{15}$		$-\frac{4}{15}$	A1		
(b)(ii) Way 2	$\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$ $= \frac{(\alpha\beta + 1)}{\beta} + \frac{(\alpha\beta + 1)}{\alpha} = \frac{\alpha^2\beta + \alpha + \alpha\beta^2 + \beta}{\alpha\beta}$		Embedded evidence of $\frac{1}{\beta} + \frac{1}{\alpha}$ rewritten as $\frac{\alpha + \beta}{\alpha \beta}$ Can be implied	M1		
	$=\frac{\alpha\beta(\alpha+1)}{\alpha}$	$\frac{(-\beta) + \alpha + \beta}{(\alpha\beta)}$				
	$=\frac{\left(-\frac{5}{3}\right)\left(-\frac{5}{3}\right)}{\left(-\frac{5}{3}\right)}$	$\frac{(\frac{5p}{3}) + (-\frac{p}{3})}{(-\frac{5}{3})}$ or $\frac{(\frac{5p}{9} - \frac{p}{3})}{(-\frac{5}{3})}$ or $\frac{(\frac{2p}{9})}{(-\frac{5}{3})}$ or $-\frac{2p}{15}$	Correct expression in terms of <i>p</i> Note: You can apply isw	A1		
		Question				
7. (d)	Note	• applying their $p =$ in (c) to α	Valid method for finding (their sum) includes • applying their $p =$ in (c) to $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = \text{their } -\frac{2p}{15}$ found in (b)(ii) • applying $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = 2\left(\text{their } -\frac{4}{15}\text{ from (a)(ii)}\right)$			
	Note	Defining a quadratic equation $px^2 + qx + r$ p = 15, q = 8, r = -4 without writing a firm	= 0 and a correct method leading to	11 A0		
	Note	Give M0 for $\sum = -\frac{8}{15}$, $\Pi = -\frac{4}{15}$ leading	$\frac{1}{1} = \frac{8}{15} - \frac{4}{15} = 0 \text{ (without recovery)}$)		
	Note	Allow M1 for $\sum = -\frac{8}{15}$, $\Pi = -\frac{4}{15}$ with $x^2 - (\text{sum})x + (\text{product})$ leading to $x^2 + \frac{8}{15} - \frac{4}{15} = 0$				
	Note	Give A1 for $15y^2 + 8y - 4 = 0$ (i.e. writing)	ng their answer completely in another vari	able)		
	Note	$\alpha, \beta = \frac{-2 \pm \sqrt{19}}{3}$ and $\alpha + \frac{1}{\beta}, \beta + \frac{1}{\alpha} = \frac{1}{\beta}$ and product of $\alpha + \frac{1}{\beta}$ and $\beta + \frac{1}{\alpha}$				
		β α				

		Question 7 Notes Continued
7.	ALT	For finding α , $\beta = \frac{-p + \sqrt{p^2 + 60}}{6}, \frac{-p - \sqrt{p^2 + 60}}{6}$
(a) (i)	Note	Give B1 for α , $\beta = \frac{-p + \sqrt{p^2 + 60}}{6}$, $\frac{-p - \sqrt{p^2 + 60}}{6}$ and then finding $\alpha\beta = -\frac{5}{3}$ or $-\frac{60}{36}$
(b) (i)	Note	Give B1 for α , $\beta = \frac{-p + \sqrt{p^2 + 60}}{6}$, $\frac{-p - \sqrt{p^2 + 60}}{6}$ and then finding $\alpha + \beta = -\frac{p}{3}$
	Note	Allow B1 for writing $\alpha + \beta = \frac{-p + \sqrt{p^2 + 60}}{6} + \frac{-p - \sqrt{p^2 + 60}}{6}$
(b)(ii)	Note	Allow M1 A1 for writing $\left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right)$ as
		$\frac{-p+\sqrt{p^2+60}}{6} + \frac{-p-\sqrt{p^2+60}}{6} + \frac{6}{-p+\sqrt{p^2+60}} + \frac{6}{-p-\sqrt{p^2+60}}$

Question Number	Schei	me	Notes	Marks
8.	H: xy = 16;	$P\left(4t, \frac{4}{t}\right), t \neq 0, \text{ and } A$: t = 2 lies on H. A(8, 2)	
(a)	$y = \frac{16}{x} = 16x^{-1} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = -1$	$16x^{-2} \text{ or } -\frac{16}{x^2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-2} ; k \neq 0$	
	$xy = 16 \implies x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$		Uses implicit differentiation to give $\pm x \frac{dy}{dx} \pm y$	M1
	$x = 4t, y = \frac{4}{t} \implies \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\left(\frac{4}{t^2}\right)\left(\frac{1}{4}\right)$	their $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}$; Condone $p \equiv t$	
	So at P , $m_T = -\frac{1}{t^2}$	Co	orrect calculus work leading to $m_T = -\frac{1}{t^2}$	A1
	So, $m_N = t^2$		$_{V} = \frac{-1}{m_{T}}$, where m_{T} is found using calculus	M1
	$\bullet y - \frac{4}{t} = "t^2"(x - 4t)$ $\bullet \frac{4}{t} = "t^2"(4t) + c \implies y = 0$	" t^2 " x + their c	Correct straight line method for an equation of a normal where $m_N (\neq m_T)$ is found by using calculus	M1
	Correct algebra leading to		Correct solution only	A1 cso
(b)	$\{t = 2 \Longrightarrow\} \ \mathbf{N}: 2y - 8x = 4 -$	$64 \ \{ \Rightarrow y = 4x - 30 \}$	Uses $t = 2$ to find the equation of the normal to H at A	(5) M1
	• $x(4x-30) = 16 $ { $\Rightarrow 2x^2$ • $\left(\frac{y+30}{4}\right)y = 16 $ { $\Rightarrow y^2 = 16$ • $\frac{4}{t} = 4(4t) - 30 $ { $\Rightarrow 8t^2 = 16$	$+30y-64=0$ }	Substitutes the equation of the normal into the equation of the curve H to obtain an equation in x only or y only or t only	M1
	• $(x-8)(2x+1) = 0 \Rightarrow x$ • $(y-2)(y+32) = 0 \Rightarrow$ • $(t-2)(8t+1) = 0 \Rightarrow t_B =$	$y_B = -32$	dependent on the first two M marks Solves their $3 \text{ TQ} = 0$ to obtain a value for the x (or y) coordinate of B or a value of t at B	ddM1
	B(-0.5, -32)		Correct coordinates for B	A1
	$AB = \sqrt{(8 - 0.5)^2 + (2 - 0.5)^2}$	32) ²	dependent on the second M mark Correct Pythagoras method to find the length of AB	dM1
	$=\frac{17\sqrt{17}}{2}$ or $\frac{\sqrt{4913}}{2}$ or $$	$\sqrt{\frac{4913}{4}}$ or $\sqrt{1228.25}$	Correct exact length	A1
			7. 1. (1	(6)
(c)	$y-2 = -\frac{1}{4}(x-8)$ and $x = 0 \Rightarrow y_C = 2+2=4$ $AC = \sqrt{(8-0)^2 + (2-4)^2} = \sqrt{68}$		Finds the equation of the tangent at $(8, 2)$ to H , and sets $x = 0$ to find $y_C =$	M1
	$AC = \sqrt{(8-0)^2 + (2-4)^2} $ { $Area ABC = \frac{1}{2} \left(\frac{17\sqrt{17}}{2} \right) \left(\sqrt{6} \right)$		Uses the points $(8, 2), (-0.5, -32)$ and $(0, 4)$ in a complete method to find the area of triangle <i>ABC</i>	M1
	$=144.5$ or $\frac{289}{2}$		Correct answer	A1
				(3)
				14

		Question 8 Notes
8. (b)	Note	The correct coordinates of B can be implied. e.g. embedded in the distance expression for AB
	Note	An incorrect N: $y = 4x + 30$ leads to the correct length AB for $A(-8, -2)$ and $B(0.5, 32)$
	Note	Condone final dM1 for $x_B = -\frac{1}{2}$ leading to $B(-2, -8)$ and $AB = \sqrt{(8-2)^2 + (2-8)^2}$
(c)	Note	Give 1 st M0 for setting $x = 0$ in the equation of the normal to find $y_C =$
	Note	The 2^{nd} M mark can only be gained by using all 3 correct points $(8, 2), (-0.5, -32)$ and $(0, 4)$
		Complete area methods include
		• Area $ABC = \frac{1}{2} \left(\frac{17\sqrt{17}}{2} \right) \left(\sqrt{68} \right) \{ = 144.5 \}$
		• AB crosses y-axis at $(0, -30)$ and so Area $ABC = \frac{1}{2}(34)(\frac{1}{2}) + \frac{1}{2}(34)(8) \{ = 8.5 + 136 = 144.5 \}$
		• Area $ABC = \frac{1}{2} \begin{vmatrix} 8 & -0.5 & 0 & 8 \\ 2 & -32 & 4 & 2 \end{vmatrix} = \frac{1}{2} (-256 - 2 + 0) - (-1 + 0 + 32) \left\{ = \frac{1}{2} (-289) = 144.5 \right\}$
		• Area $ABC = (32+4)\left(\frac{1}{2}+8\right) - \frac{1}{2}(32+2)\left(\frac{1}{2}+8\right) - \frac{1}{2}(32+4)\left(\frac{1}{2}\right) - \frac{1}{2}(2)(8)$
		$\{=306-144.5-9-8=144.5\}$
		• Area $ABC = \frac{1}{2}(8+8.5)(36) - \frac{1}{2}(32+2)\left(\frac{1}{2}+8\right) - \frac{1}{2}(2)(8) $ {= 297 - 144.5 - 8 = 144.5}
	Note	Helpful Sketch
		$(0,4)$ $(0,-30)$ $\frac{17\sqrt{17}}{2}$ $(-0.5,-32)$

Question Number	Scheme		Notes			Marks
9.	$f(n) = 7^n (3n+1) - 1$ is a multiple of 9		$u_1 = 2, u_2 = 6, u_{n+2} = 3u_{n+1} - 2u_n \Rightarrow u_n = 2(2^n - 1)$			
(i)	$f(1) = 7(4) - 1 = 27$ {is a multiple of 9	9}	f(1) = 27 is the minimum			B1
Way 1	C(1 + 1) C(1) 7k+1/2(1 + 1) 1	(nk ((21 - 1) 1)		Attempts $f(k+1) - f(k)$	M1
	$f(k+1) - f(k) = \frac{7^{k+1}(3(k+1)+1)-1}{2^{k+1}(3(k+1)+1)-1}$	(/"(.	(3k+1)-1)		A correct expression for $f(k+1)$	A1
	$=7^{k+1}(3k+4)-1-7^{k}(3k+1)+1=7^{k}$	$(21k \cdot$	$+28)-7^{k}(3k-1)$	+1)		
			, , ,	depe	endent on the previous M mark	
	$=18k(7^k) + 27(7^k)$ or $7^k(18k + 27)$		Uses correct		a to achieve an expression where	dM1
	$f(k+1) = 9(7^k)(2k+3) + 7^k(3k+1) -$	1		each	term is an obvious multiple of 9 Correct algebra leading to either	
	or $1(k+1) = 9(7)(2k+3) + 7(3k+1) - 9(7)(2k+1) - 9(7)(2k+1)$	· 1	e.g.	f(k+1)	$1) = 9(7^k)(2k+3) + 7^k(3k+1) - 1$	A1
	$f(k+1) = 18k(7^k) + 27(7^k) + f(k)$				$(k+1) = 18k(7^k) + 27(7^k) + f(k)$	AI
	If the result is true for $n = k$, then it	t is tr	rue for $n = k + $		· · · · · · · · · · · · · · · · · · ·	
	true for $n = 1$, the			_		A1 cso
	$\frac{1}{1}$			2 101 an	<u> </u>	(6)
(i)	$f(1) = 7(4) - 1 = 27$ {is a multiple of 9)}			f(1) = 27 is the minimum	(6) B1
Way 2		,			Attempts $f(k+1)$	M1
,, u _y =	$f(k+1) = 7^{k+1}(3(k+1)+1)-1$				A correct expression for $f(k+1)$	A1
	$=7^{k+1}(3k+4)-1=7^k(21k+28)-1$				1 (v ·)	711
	- / (3N + 1) 1 - / (21N + 20) 1			dene	endent on the previous M mark	
	$= 18k(7^{k}) + 27(7^{k}) + 7^{k}(3k+1) - 1$ or $= (7^{k})(18k+27) + 7^{k}(3k+1) - 1$			шърс	Uses correct algebra to express	
					$f(k+1) = g(k) + 7^{k}(3k+1) - 1$	dM1
			or $f(k+1) = g(k) + f(k)$ where each term in $g(k)$ is an obvious multiple of 9			
	$\begin{array}{l} \mathbf{or} \\ = 9(7^k)(2k+3) + 7^k(3k+1) - 1 \end{array}$				Correct algebra leading to either	
	= 9(7)(2k+3)+7(3k+1)-1		_	$f(k+1) = 9(7^k)(2k+3) + 7^k(3k+1) - 1$	A1	
				or $f(k+1) = 18k(7^k) + 27(7^k) + f(k)$		
	If the result is $\underline{\text{true for } n = k}$, then it	t is tr	rue for $n = k +$	1. As t	the result has been shown to be	A1 cso
	true for $n=1$, the	en th	ne result is true	e for all	$\underline{\underline{l}\ n}\ (\in \mathbb{Z}^+)$	Areso
						(6)
(ii)	$\{n=1,\}$ $u_1=2(2^1-1)=2$;	Che	ecks that the go	eneral f	Formula works for either u_1 or u_2	M1
	${n = 2,} u_2 = 2(2^2 - 1) = 6$				formula works for both u_1 and u_2	A1
	$\{u_{k+2} = 3u_{k+1} - 2u_k \Longrightarrow \}$	Fi			ng to substitute $u_{k+1} = 2(2^{k+1} - 1)$	
	$u_{k+2} = 3(2(2^{k+1}-1)) - 2(2(2^{k}-1))$		an	$u_k =$	$2(2^k - 1) \text{ into } u_{k+2} = 3u_{k+1} - 2u_k$	M1
					Condone one slip	
	$\{u_{k+2}\} = 6(2^{k+1}) - 6 - 4(2^k) + 4$		37 1'1 '1		C 1: : : .1	3.61
	$\{u_{k+2}\}=3(2^{k+2})-2^{k+2}-2$		Valid evidence of working in the same power of 2		M1	
	$= 2(2^{k+2}) - 2 = 2(2^{k+2} - 1)$ Uses algebra in a complete method achieve this result with no error				achieve this result with no errors	A1
	If the result is true for $n = k$ and for $n = k + 1$, then it is true for $n = k + 2$.					
	As the result has been shown to be true for $n = 1$ and $n = 2$,				A1	
	then the result is true for all $n \in \mathbb{Z}^+$			cso		
				_ (,	(6)
						12

		Question 9 Notes				
9. (i)	Note	Final A1 is dependent on all previous marks being scored.				
		It is gained by candidates conveying the ideas of all four underlined points in part (i)				
		either at the end of their solution or as a narrative in their solution.				
	Note	Shows $f(k+1) - f(k) = 7^k (18k+27)$ or $f(k+1) - f(k) = 9(7^k)(2k+3)$ and writing if				
		$f(k+1) - f(k) = 9(7^k)(2k+3)$ o.e. is a multiple of 9 then $f(k+1)$ is a multiple of 9 is acceptable				
		for the penultimate A mark in part (i). This means that the final A mark can potentially be available.				
	Note	Only showing $f(k+1) = 7f(k) + 6 + 21(7^k)$ (see Way 4) does not get the final dM mark because				
		$6+21(7^k)$ is not an obvious multiple of 9				
	Note	Allow dM1 for obtaining e.g. $f(k+1) - f(k) = 18k(7^k) - 27(7^k)$ or $f(k+1) - f(k) = 7^k(18k - 27)$				
	Note	Allow dM1 for obtaining $f(k+1) = 18k(7^k) - 27(7^k) + 7^k(3k+1) - 1$				
		or $f(k+1) = 9(7^k)(2k-3) + f(k)$				
(ii)	Note	1 st M1: At least one check is correct. 1 st A1: Both checks are correct				
		• Check 1: Shows $u_1 = 2$ by writing an intermediate step of e.g. $2(2^1 - 1)$ or 2×1				
		• Check 2: Shows $u_2 = 6$ by writing an intermediate step of e.g. $2(2^2 - 1)$ or 2×3				
	Note	Ignore $u_3 = 3u_2 - 2u_1 = 3(6) - 2(2) = 14$ as part of their solution to (ii)				
	Note	Ignore $\{n=3,\}$ $u_2=2(2^3-1)=14$ as part of their solution to (ii)				
	Note	Valid evidence of working in the same power of 2 includes:				
		• $6(2^{k+1}) - 4(2^k) \rightarrow 6(2^{k+1}) - 2(2^{k+1})$ or $2(3(2^{k+1}) - 2^{k+1})$				
		• $3(2(2^{k+1})) - 2(2(2^k)) \rightarrow 3(2^{k+2}) - (2^{k+2})$				
		• $3(2(2^{k+1})) - 2(2(2^k)) \rightarrow 12(2^k) - 4(2^k)$				
		• $6(2^{k+1}) - 4(2^k) \rightarrow 8(2^k)$ (by implication)				
		• $6(2^{k+1}) - 4(2^k) \rightarrow 4(2^{k+1})$ (by implication)				
	Note	Writing $u_{k+2} = 3(2(2^{k+1}-1)) - 2(2(2^k-1)) = 2(2^{k+2}-1)$ is 2^{nd} M1, 3^{rd} M0, 2^{nd} A0				
	Note	Showing {RHS = } $u_{k+2} = 2(2^{k+2} - 1) = 8(2^k) - 2$ and writing				
		$\{LHS = \}$ $u_{k+2} = 3(2(2^{k+1} - 1)) - 2(2(2^k - 1))$ and using valid algebra to show that				
		$u_{k+2} = 8(2^k) - 2 $ {= RHS} is fine for the 2 nd M, 3 rd M and 2 nd A marks				
	Note	Final A1 is dependent on all previous marks being scored.				
		It is gained by candidates conveying the ideas of all four underlined points in part (ii)				
		either at the end of their solution or as a narrative in their solution.				
	Note	"Assume for $n = k$, $u_k = 2(2^k - 1)$ and for $n = k + 1$, $u_{k+1} = 2(2^{k+1} - 1)$ " satisfies the requirement				
		"true for $n = k$ and $n = k + 1$ "				
	Note	"For $n \in \mathbb{Z}^+$, $u_n = 2(2^n - 1)$ " satisfies the requirement "true for all n "				
	Note	Full marks in (ii) can be obtained for an equivalent proof where e.g.				
		• $n = k, n = k + 1, \rightarrow n = k - 2, n = k - 1$; i.e. $k \equiv k - 2$				
		• $n = k, n = k + 1, \rightarrow n = k - 1, n = k$; i.e. $k \equiv k - 1$				
(i), (ii)	Note	Allow as part of their conclusion "true for all positive values of n"				
	Note	Allow as part of their conclusion "true for all values of n"				
	Note	Allow as part of their conclusion "true for all $n \in \mathbb{N}$ "				
	Note	Condone referring to <i>n</i> as any integer in their conclusion for the final A1				
	Note	Condone $n \in \mathbb{Z}^*$ as part of their conclusion for the final A1				
	Note	Referring to <i>n</i> as a real number their conclusion is final A0				

Question Number	Scheme		Notes	Marks	
9.	$f(n) = 7^{n}(3n+1) - 1 \text{ is a multiple of 9; } P \in \mathbb{Z}$	Z ⁺			
(i)	$f(1) = 7(4) - 1 = 27$ {is a multiple of 9}		f(1) = 27 is the minimum	B1	
Way 3	f(k+1) - (9P+1)f(k)		Attempts $f(k+1) - (9P+1)f(k)$	M1	
	$= \underline{7^{k+1}(3(k+1)+1)-1} - (9P+1)(7^k(3k+1)-1)$	-1)	A correct expression for $\underline{f(k+1)}$	A1	
	$= 7^{k} (21k + 28 - (9P+1)(3k+1)) - 1 + 9P + 1$				
	$= 7^{k} (21k + 28 - (27Pk + 9P + 3k + 1)) - 1 + 9$	P+1			
	$= 7^{k} (21k + 28 - 27Pk - 9P - 3k - 1) + 9P$				
			dependent on the previous M mark		
	$= 7^k (18k - 27Pk - 9P + 27) + 9P$		rrect algebra to achieve an expression	dM1	
		where	each term is an obvious multiple of 9		
	$f(k+1) = 7^{k} (18k - 27PK - 9P + 27) + 9P + 6$	(9P+1)f(k)	Achieves a correct result for $f(k+1) =$	A1	
	If the result is true for $n = k$, then it is true	te for $n = k + 1$.	As the result has been shown to be		
	true for $n = 1$, then the	result is true f	or all $n \in \mathbb{Z}^+$	A1 cso	
				(6)	
	Note:				
	$P = 0 \Rightarrow f(k+1) - f(k) = 7^{k} (18k + 27)$				
	$P = 1 \Rightarrow f(k+1) - 10f(k) = 7^{k}(18 - 9k) + 9$				
	$P = 2 \Rightarrow f(k+1) - 19f(k) = 7^{k}(9 - 36k) + 18$				
	$P = 3 \Rightarrow f(k+1) - 28f(k) = 7^{k}(-63k) + 27 =$	$= 27 - 9k(7^{k+1})$			

Question Number	Scheme	Notes	Marks
9.	$f(n) = 7^n (3n+1) - 1$ is a multiple of 9		
(i)	$f(1) = 7(4) - 1 = 27$ {is a multiple of 9}	f(1) = 27 is the minimum	B1
Way 4	$f(k+1) = 7^{k+1}(3(k+1)+1)-1$	Attempts $f(k+1)$ A correct expression for $f(k+1)$	M1 A1
	$= 7(7^k)(3k+3+1)-1$		
	$= 7(7^k)(3k+1) + 3(7)(7^k) - 1$		
	$= 7[(7^{k})(3k+1) - 1] + 7 + 21(7^{k}) - 1$ $= 7f(k) + 6 + 21(7^{k})$ Let $g(n) = 6 + 21(7^{n})$ $g(1) = 6 + 21(7^{1}) = 153$ {is a multiple of 9} {Assume the result is true for $n = k$ } $g(k+1) = 6 + 21(7^{k+1})$ $= 6 + 147(7^{k})$ $= 6 + 21(7^{k}) + 126(7^{k})$ or $= g(k) + 9(14)(7^{k})$	dependent on the previous M mark Uses correct algebra to express $f(k+1) = \alpha(7^k(3k+1)-1) + g(k)$ or $f(k+1) = \alpha f(k) + g(k)$; $\alpha \neq 0$ and uses correct algebra to achieve an expression for $g(k+1)$ where each term is an obvious multiple of 9 Correct algebra leading to $f(k+1) = 7f(k) + 6 + 21(7^k)$ o.e. and $g(k+1) = 6 + 21(7^k) + 126(7^k)$ where $g(n) = 6 + 21(7^n)$	M1
	Proves that $g(n) = 6 + 21(7^n)$ is a multiple of 9 and proves that for $f(n)$ if the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result <u>is true for all n</u> $(\in \mathbb{Z}^+)$		
	Note: An alternative Way 4 method shows • $f(k+1) = 7f(k) + 6 + 21(7^k) = 7f(k)$ • Defines $g(n) = 3(7^n) - 3$ and proceeds	$+9(7^{k}+1)+3(7^{k})-3$ to show that g(n) is also a multiple of 9	(6)