Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Civil Engineering Stream (BMATC101)

TIME: 03 Hours Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing atleast **ONE** question from each **MODULE**
- 2. VTU Formula Hand Book is Permitted
- **3.** M: Marks, L: RBT levels, C: Course outcomes.

		M	L	C	
Q.1	a	With usual notations prove that for the curve $r = f(\theta)$, $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.	6	L2	CO1
	b	Find the angle between the curves	7	L2	CO1
		$r = a(1 + \cos \theta)$ and $r = b(1 - \cos \theta)$.			
	c	Show that the radius of curvature at any point of the cycloid	7	L3	CO1
		$x = a(\theta + \sin \theta), y = a(1 - \cos \theta) $ is $4a \cos \frac{\theta}{2}$.			
		OR			
Q.2	a	Derive an expression for the radius of curvature for a polar curve.	7	L2	CO1
	b	Find the pedal equation of the curve $r^n = a^n \sin n\theta$.	8	L2	CO1
	c	Using modern mathematical tool write a program/code to plot the curve $r = 2 \cos 2\theta $.	5	L2	CO5
		Module – 2			
Q.3	a	Expand $\log(1+\cos x)$ by Maclaurin's series up to the term containing x^4 .	6	L2	CO2
	b	If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.	7	L2	CO2
	c	Examine the function $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$ for extreme values.	7	L3	CO2
		OR			
Q.4	a	Evaluate (i) $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$ (ii) $\lim_{x\to 0} (\tan x)^{\tan x}$	7	L2	CO2
	b	If $x + y + z = u$, $y + z = uv$, $z = uvw$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	8	L2	CO2
	c	Using modern mathematical tool write a program/code to show that $u_{xx} + u_{yy} = 0$ given $u = e^x (x \cos(y) - y \sin(y))$.	5	L2	CO5

		Module – 3			
Q.5	a	Solve $x \frac{dy}{dx} + y = x^3 y^6$.	6	L2	CO3
	b	Find the orthogonal trajectories of the family of the curves $r^n \sin n\theta = a^n$ where a is a parameter.	7	L3	CO3
	c	Solve $xyp^2 - (x^2 + y^2)p + xy = 0$.	7	L2	CO3
		OR	ı	1	,
Q.6	a	Solve $(y \log y) dx + (x - \log y) dy = 0$	6	L2	CO3
	b	If the temperature of the air is $30^{\circ}C$ and a metal ball cools from $100^{\circ}C$ to $70^{\circ}C$ in 15 minutes, find how long will it take for the metal ball to reach the temperature of $40^{\circ}C$?	7	L3	CO3
	c	Find the general and singular solution of the equation	7	L2	CO3
		$(px-y)(py+x)=a^2p$ reducing into Clairaut's form, using the substitution $X=x^2$, $Y=y^2$.			
		Module – 4			
Q.7	a	Solve $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0$.	6	L2	CO3
	b	Solve $(D^2+1)y = \cos(2x-1)$.	7	L2	CO3
	c	Solve $(1+x^2)y'' + (1+x)y' + y = 2\sin(\log(1+x))$.	7	L2	CO3
		OR		_	
Q.8	a	Solve $(D^2 + D)y = x^2 + 2x + 4$.	6	L2	CO3
	b	Solve by variation of parameters $(D^2 + 4)y = \tan 2x$.	7	L2	CO3
	c	Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \sin(\log x)$.	7	L2	CO3
		Module – 5			
Q.9	a	Find the rank of the matrix 91 92 93 94 95 96 97 94 95 96 97 94 95 96 97 98 95 96 97 98 99	6	L2	CO4
	b	Solve the system of equations by Gauss-Jordan method $x + y + z = 11$, $3x - y + 2z = 12$, $2x + y - z = 3$.	7	L3	CO4
	c	Solve the system of equations $2x - 3y + 20z = 25$, $20x + y - 2z = 17$, $3x + 20y - z = -18$	7	L3	CO4

		using Gauss-Seidel method, taking (0, 0, 0) as an initial approximation. (Carry out 4 iterations).							
	OR								
Q.10	a	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & -1 & 0 \\ 3 & 3 & 2 & 1 \\ 2 & 4 & 6 & 2 \end{bmatrix}$.	7	L2	CO4				
	b	Test for consistency and solve $5x + 3y + 7z = 4$; $3x + 26y + 2z = 9$; $7x + 2y + 10z = 5$.	8	L2	CO4				
	С	Using modern mathematical tool write a program/code to find the largest eigen value of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ by power method.	5	L3	CO5				

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN					

First Semester B.E Degree Examination

Mathematics-I for Civil Engineering Stream (BMATC101)

TIME: 03 Hours Max. Marks: 100

Note:

- 1. Answer any **FIVE** full questions, choosing atleast **ONE** question from each **MODULE**
- 2. VTU Formula Hand Book is Permitted
- **3.** M: Marks, L: RBT levels, C: Course outcomes.

		Module - 1	M	L	C
Q.1	a	With usual notations prove that $\tan \phi = r \frac{d\theta}{dr}$.	6	L2	CO1
	b	Find the angle between the curves $r = a(1 - \cos \theta)$ and $r = 2a\cos \theta$.	7	L2	CO1
	c	Show that the radius of curvature for the curve	7	L3	CO1
		$r^n = a^n \cos n\theta$ varies inversely as r^{n-1} .			
	1	OR	ı	<u> </u>	ı
Q.2	a	Derive an expression for the radius of curvature for a Cartesian curve.	7	L2	CO1
	b	Find the pedal equation of the curve $r = 2(1 + \cos \theta)$	8	L2	CO1
	c	Using modern mathematical tool write a program/code to plot the sine and cosine curve.	5	L2	CO5
	1	Module – 2	1	<u> </u>	ı
Q.3	a	Expand $\log(1+e^x)$ by Maclaurin's series up to the term containing x^4 .	6	L2	CO2
	b	If $u = f(x - y, y - z, z - x)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	7	L2	CO2
	c	Examine the function $f(x, y) = xy(a - x - y)$ for extreme values.	7	L3	CO2
		OR			
Q.4	a	If $z = f(x + ay) + g(x - ay)$ Prove that $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$.	8	L2	CO2
	b	If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1, -1, 0)$.	7	L2	CO2
	c	Using modern mathematical tool write a program/code to evaluate $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x.$	5	L3	CO5

		Module – 3			
Q.5	5 a Solve $\frac{dy}{dx} + xy = xy^3$.			L2	CO3
	b	Find the orthogonal trajectories of the cardioids $r = a(1 - \cos \theta)$.	7	L3	CO3
	c	Solve $p^2 + 2py \cot x = y^3$.	7	L2	CO3
		OR			
Q.6	a	Solve $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$.	6	L2	CO3
	b	A body originally at 80° C cools down to 60° C in 20 minutes; the temperature of the air being 40° c. What will be the temperature of the body after 40 minutes from the original?	7	L3	CO3
	c	Find the general and singular solution of the equation	7	L2	CO3
		$x^{2}(y-px) = p^{2}y$ reducing into Clairaut's form, using the substitution $X = x^{2}, Y = y^{2}$.			
	ı	Module – 4		1	1
Q.7	a	Solve $(4D^4 - 4D^3 - 23D^2 + 12D + 36) y = 0.$	6	L2	CO3
	b	Solve $(D-2)^2y = 8(e^{2x} + \sin 2x + x^2)$.	7	L2	CO3
	c	Solve by the method of variation of parameter $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$.	7	L2	CO3
	T	OR	ı	1	1
Q.8	a	Solve $y'' + 3y' + 2y = 12x^2$.	6	L2	CO3
	b	Solve $\frac{d^2y}{dx^2} - 4y = \cosh(2x-1) + 3^x$.	7	L2	CO3
	c	Solve $(2x-1)^2 \frac{d^2 y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$.	7	L2	CO3
		Module – 5		1	Ī
Q.9	a	Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$.	6	L2	CO4
	b	Solve the system of equations by Gauss-Jordan method $x + y + z = 9$, $x - 2y + 3z = 8$, $2x + y - z = 3$.	7	L3	CO4
	c	Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of	7	L3	CO4

		$\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial eigenvector [carry out 6 iterations].			
		OR			
Q.10	a	[11 12 13 14] Find the rank of the matrix 12 13 14 15	7	L2	CO4
		This the rank of the matrix			
		13 14 15 16 14 15 16 17			
	b	Solve the system of equations $5x + 2y + z = 12$; $x + 4y + 2z = 15$; $x + 2y + 5z = 20$ Using Gauss-Seidel method, taking $(0, 0, 0)$ as an initial approximation. (Carryout 4 iterations).	8	L3	CO4
	c	Using modern mathematical tool write a program/code to test the consistency of the equations, x+2y-z=1, 2x+y+4z=2, 3x+3y+4z=1.	5	L3	CO5

Model Question Paper-I with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Civil Engineering Stream (22MATC11)

TIME: 03 Hours Max. Marks: 100

Note: Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module -1	Marks
Q.01	a	With usual notations prove that $\tan \varphi = r \frac{d\theta}{dr}$	06
	b	Find the angle between the curves $r = a(1 - \cos \theta)$ and $r = 2a \cos \theta$	07
	С	Show that the radius of curvature for the curve $r^n = a^n \cos n\theta$ varies inversely as r^{n-1} .	07
		OR	
Q.02	a	Derive an expression for the radius of curvature for a Cartesian curve.	06
	b	Find the pedal equation of the curve $r = 2(1 + \cos \theta)$	07
	С	Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the point where it cuts the line $y = x$.	07
		Module-2	
Q. 03	a	Expand $log(1 + e^x)$ by Maclaurin's series up to the term containing x^4 .	06
	b	If $u = f(x - y, y - z, z - x)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	07
	С	Examine the function $f(x, y) = xy(a - x - y)$ for extreme values.	07
		OR	
Q.04	a	Evaluate (i) $\lim_{x \to \frac{\pi}{2}} (\sin x)^{\tan x}$ (ii) $\lim_{x \to 0} (\cot x)^{\tan x}$	06
	b	If $z = f(x + ay) + g(x - ay)$ prove that $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$.	07
	С	If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$ find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at $(1,-1,0)$.	07
		Module-3	
Q. 05	a	Solve $\frac{dy}{dx} + xy = xy^3$.	06
	b	Find the orthogonal trajectories of the cardioids $r = a(1 - cos\theta)$.	07
	С	Solve $p^2 + 2pycotx = y^2$.	07
	1	OR	

Q. 06	a	Solve $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$	06					
	b A body originally at 80° C cools down to 60°C in 20 minutes; the temperature of the air being 40°c. What will be the temperature of the body after 40 minutes from the original?							
	С	Find the general and singular solution of the equation $x^2(y - px) = p^2y$ by reducing into Clairaut's form, using the substitution $X = x^2$, $Y = y^2$.	07					
	1	Module-4						
Q. 07	a	Solve $(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0$.	06					
	b	Solve $(D-2)^2y = 8(e^{2x} + \sin 2x + x^2)$.	07					
	С	Solve by the method of variation of parameter $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$.	07					
0.00		OR						
Q. 08	a	Solve $y'' + 3y' + 2y = 12x^2$.	06					
	b	Solve $\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$.						
	Solve $(2x-1)^2 \frac{d^2 y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$.							
		Module-5						
Q. 09	a	Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$	06					
	b	Solve the system of equations by Gauss-Jordan method $x + y + z = 9,$ $x - 2y + 3z = 8,$ $2x + y - z = 3$	07					
	С	Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial eigenvector [carry out 6 iterations].	07					
Q. 10	а	OR						
Q. 10	a	Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \\ 13 & 14 & 15 & 16 \\ 14 & 15 & 16 & 17 \end{bmatrix}$	06					

b	For what values λ and μ the system of equations $2x+3y+5z=9$, $7x+3y-2z=8$, $2x+3y+\lambda z=\mu$, has (i) no solution (ii) a unique solution and (iii) infinite number of solutions	07
С	Solve the system of equations $5x + 2y + z = 12$; $x + 4y + 2z = 15$; $x + 2y + 5z = 20$ Using Gauss-Seidel method, taking $(0, 0, 0)$ as an initial approximation. (Carry out 4 iterations).	07

Table sl	howing	g the Bloom's Taxonomy Level,	Course outcome and	Program outcome
Question		Bloom's taxonomy level	Course outcome	Program outcome
		attached		
	a)	L1	CO 01	PO 01
Q.1	b)	L2	CO 01	PO 01
•	c)	L3	CO 01	PO 02
	a)	L1	CO 01	PO 01
Q. 2	b)	L2	CO 01	PO 01
	c)	L3	CO 01	PO 02
	a)	L2	CO 02	PO 01
Q. 3	b)	L2	CO 02	PO 01
	c)	L3	CO 02	PO 03
	a)	L2	CO 02	PO 01
Q. 4	b)	L2	CO 02	PO 01
	c)	L3	CO 02	PO 02
	a)	L2	CO 03	PO 02
Q. 5	b)	L3	CO 03	PO 03
	c)	L2	CO 03	PO 01
	a)	L2	CO 03	PO 02
Q. 6	b)	L3	CO 03	PO 03
	c)	L2	CO 03	PO 01
	a)	L2	CO 04	PO 01
Q. 7	b)	L2	CO 04	PO 01
	c)	L2	CO 04	PO 02
	a)	L2	CO 04	PO 01
Q. 8	b)	L2	CO 04	PO 01
	c)	L2	CO 04	PO 02
	a)	L2	CO 05	PO 01
Q. 9	b)	L3	CO 05	PO 01
	c)	L3	CO 05	PO 02
	a)	L2	CO 05	PO 01
Q. 10	b)	L3	CO 05	PO 02
	c)	L3	CO 05	PO 01

Model Question Paper-II with effect from 2022 (CBCS Scheme)

USN

First Semester B.E Degree Examination

Mathematics-I for Civil Engineering Stream (22MATC11)

TIME: 03 Hours

Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE.

		Module -1	Marks
Q.01	a	If p be the perpendicular from the pole on the tangent, then show that	
		$\left \frac{1}{v^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta} \right)^2 \right $	06
		$p^2 - r^2 - r^4 \left(d\theta \right)$	
	b	Find the angle between the curves $r = a(1 + \cos \theta)$ and $r = b(1 - \cos \theta)$.	07
	С	Show that the radius of curvature of the curve	
		$y = 4\sin x - \sin 2x \text{ at } x = \frac{\pi}{2} \text{ is } \frac{5\sqrt{5}}{4}.$	07
		OR	
Q.02	a	Derive an expression for the radius of curvature for a polar curve.	06
	b	Find the pedal equation of the curve $r^n = a^n(\sin n\theta)$.	07
	С	Show that the radius of curvature at any point of the cycloid	
		$x = a(\theta + \sin\theta), \ y = a(1 - \cos\theta) \text{ is } 4 \cos\frac{\theta}{2}.$	07
	<u> </u>	Module-2	
Q. 03	a	Expand $log(1 + cos x)$ by Maclaurin's series up to the term containing x^4 .	06
	b	If $u = f\left(\frac{x}{z}, \frac{y}{z}\right)$ then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 0$.	07
	c	Examine the function $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$ for extreme values.	07
		OR	
Q.04	a	Evaluate (i) $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$ (ii) $\lim_{x \to 0} (\tan x)^{\tan x}$.	06
	b	If $z = e^{ax+by} f(ax - by)$, show that $b \frac{\partial z}{\partial x} + a \frac{\partial z}{\partial y} = 2abz$.	07
	c	If $x + y + z = u$, $y + z = uv$ and $z = uvw$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$	07
	1	Module-3	
Q. 05	a	Solve $x \frac{dy}{dx} + y = x^3 y^6$.	06
	b	Find the orthogonal trajectories of the family of the curves $r^n sinn\theta = a^n$, where a is the parameter.	07
	c	Solve $xyp^2 - (x^2 + y^2)p + xy = 0$.	07

		OR				
Q. 06	a	Solve(y log y)dx + (x - log y)dy = 0.				
	b	If the temperature of the air is 30° C and a metal ball cools from 100° C to 70°C in 15 minutes, find how long will it take for the metal ball to reach the temperature of 40°C?	07			
	c Find the general solution of the equation $(px - y)(py + x) = a^2 p$ by reducing into Clairaut's form, taking the substitution $X = x^2$, $Y = y^2$					
		Module-4				
Q. 07	a	Solve $(4D^4 - 8D^3 - 7D^2 + 11D + 6)y = 0.$				
	b	Solve $(D^2 + 1)y = \cos(2x - 1)$.				
	c	Solve $(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 2\sin[\log(1+x)].$				
		OR				
Q. 08	a	Solve $(D^2 + D)y = x^2 + 2x + 4$.	06			
	b	Solve by variation of parameters method $(D^2 + 4)y = tan2x$.	07			
	С	Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \sin(\log x)$.	07			
		Module-5				
Q. 09	a	Find the rank of the matrix [91 92 93 94 95] 92 93 94 95 96 93 94 95 96 97 94 95 96 97 98 95 96 97 98 99	06			
	b	Using Gauss Jordan method, solve $x + y + z = 11$; $3x - y + 2z = 12$; $2x + y - z = 3$	07			
	С	Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial eigenvector [carry out 6 iterations]	07			
		OR				
Q. 10	a	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & -1 & 0 \\ 3 & 3 & 2 & 1 \\ 2 & 4 & 6 & 2 \end{bmatrix}$	06			
	b	Test for consistency and solve $5x + 3y + 7z = 4$; $3x + 26y + 2z = 9$; $7x + 2y + 10z = 5$	07			
	С	Solve the system of equations $2x - 3y + 20z = 25$, $20x + y - 2z = 17$, $3x + 20y - z = -18$ using Gauss-Seidel method, taking $(0, 0, 0)$ as an initial approximation. (Carry out 4 iterations).	07			

Question		Bloom's Taxonomy Leve attached	el Course Outcome	Program Outcome
Q.1	(a)	L1	CO 01	PO 01
	(b)	L2	CO 01	PO 01
	(c)	L3	CO 01	PO 02
Q.2	(a)	L1	CO 01	PO 01
	(b)	L2	CO 01	PO 01
	(c)	L3	CO 01	PO 02
Q.3	(a)	L2	CO 02	PO 01
	(b)	L2	CO 02	PO 01
	(c)	L3	CO 02	PO 03
Q.4	(a)	L2	CO 02	PO 01
	(b)	L2	CO 02	PO 01
	(c)	L3	CO 02	PO 02
Q.5	(a)	L2	CO 03	PO 01
	(b)	L3	CO 03	PO 02
	(c)	L2	CO 03	PO 01
Q.6	(a)	L2	CO 03	PO 01
	(b)	L3	CO 03	PO 02
	(c)	L2	.2 CO 03	PO 01
Q.7	(a)	L2	CO 04	PO 01
	(b)	L2	CO 04	PO 01
	(c)	L2	CO 04	PO 02
Q.8	(a)	L2	CO 04	PO 01
	(b)	L2	CO 04	PO 01
	(c)	L2	CO 04	PO 02
Q.9	(a)	L2	CO 05	PO 01
	(b)	L3	CO 05	PO 02
	(c)	L3	CO 05	PO 01
Q.10	(a)	L2	CO 05	PO 01
	(b)	L3	CO 05	PO 01
	(c)	L3	CO 05	PO 02
			Lower-order thinking ski	lls
		Remembering	Understanding	Applying
Taxonomy		(Knowledge): L ₁	(Comprehension): L ₂	(Application): L ₃

	Lower-order thinking skills				
Bloom's	Remembering	Understanding	Applying		
Taxonomy	(Knowledge): L ₁	(Comprehension): L ₂	(Application): L ₃		
Levels	Higher-order thinking skills				
	Analyzing (Analysis): L ₄	Valuating (Evaluation): L ₅	Creating (Synthesis): L ₆		