(1) (a) Suppose $X \sim \text{Poisson}(\lambda)$. By repeatedly differentiating the power series for $\exp(\lambda)$, compute

$$\mathbb{E}\left\{X(X-1)(X-2)\cdots(X+1-\ell)\right\}$$

for each $\ell = 1, 2, 3, ...$

- (b) By a parallel method evaluate such expectations when $X \sim \text{Binomial}(n, p)$.
- (c) If $n \to \infty$ with $p = \lambda/n$ show that your (b) answer converges to that for (a).
- (2) (a) Determine the mean and variance of the following random variables:

Poisson(λ), Binomial(n, p), and Geometric(p).

- (b) Tabulate then memorize these results.
- (3) (a) Let $X: \Omega \to \mathbb{Z}$ be a non-negative random variable. Show that

$$\mathbb{E}(X) = \sum_{n=1}^{\infty} \mathbb{P}(X \ge n),$$

including the assertion that $\mathbb{E}(X)$ exists if and only if this sum converges.

(b) More generally, what relation between functions G and g ensures

$$\mathbb{E}(G(X)) = \sum_{n=0}^{\infty} g(n) \, \mathbb{P}(X \ge n)$$

To simplify questions of convergence, let us just assume $g(k) \ge 0$ for all k.

- (4) We throw a die independently four times and let X denote the minimal value rolled.
 - (a) For each $n \in \mathbb{N}$, find probability that $X \geq n$.
 - (b) Compute the PMF of X.
 - (c) Determine the mean and variance of X.
- (5) I play the following game using a coin that lands heads with probability p. I start with $X_0 = \$1$ and at each stage I gamble all I have on the toss of the coin. If it lands heads I end up with twice what I started with; if it lands tails I lose everything. All coin tosses are statistically independent.
 - (a) With X_n denoting how much money I have after the nth toss, find

$$\mathbb{E}(X_{n+1}|X_n=k)$$

in terms of k.

(b) Find $\mathbb{E}(X_n)$ for all n.

Continues on next page

(6) I carry out an infinite sequence of independent Bernoulli(p) trials, 0 . $For each <math>r \in \mathbb{N}$ we let Y_r denote the position of my r^{th} success. In a previous homework, we found the PMF of X — it follows the negative Binomial law

$$\mathbb{P}(Y_r = k) = \begin{cases} \binom{k-1}{r-1} p^r (1-p)^{k-r} & : k \in \mathbb{N} \text{ and } k \ge r \\ 0 & : \text{ otherwise} \end{cases}$$

See also page 27 in the text.

- (a) Given a number $k \geq r$, verify that the event $Y_r = k$ has positive probability.
- (b) Compute

$$\mathbb{E}(Y_{r+1}|Y_r=k)$$
 and $\operatorname{var}(Y_{r+1}|Y_r=k)$.

The latter denotes the variance of Y_{r+1} under the probability law $\mathbb{P}(\cdot|Y_r=k)$.

- (c) Use (b) to find a recurrence between the means/variances of Y_r as r varies.
- (d) Find the mean and variance of Y_r .