

Geometria Analitica

Videoaula 3.7

Produto escalar entre vetores

Departamento de Matemática (UF\$C)

Professora ALDA MORTARI

Professor CHRISTIAN WAGNER

Professor FELIPE TASCA

Professor GIULIANO BOAVA

Professor LEANDRO MORGADO

Professora MARÍA ASTUDILLO

Professor MYKOLA KHRYPCHENKO

Produto Escalar em R²

Sejam $\vec{u} = (x_1, y_1)$ e $\vec{v} = (x_2, y_2)$ vetores em \mathbb{R}^2 .

O **produto escalar** (ou produto interno) entre \vec{u} e \vec{v} é o número real dado por:

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2.$$

Exemplo

Produto Escalar em R³

Sejam $\vec{u} = (x_1, y_1, z_1)$ e $\vec{v} = (x_2, y_2, z_2)$ vetores em \mathbb{R}^3 .

O **produto escalar** (ou produto interno) entre \vec{u} e \vec{v} é o número real dado por:

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

Exemplo

Exercício

Considere os vetores $\vec{u} = (2, 1, -1), \ \vec{v} = (1, 0, 3), \ \vec{w} = (2, 2, 0).$

$$\vec{u} \cdot \vec{v}$$

$$(\vec{u} + \vec{v}) \cdot \vec{w}$$

$$2\vec{u} \cdot (\vec{v} - \vec{w})$$

Exercício

Considere os vetores $\vec{u} = (2, 0, 0), \ \vec{v} = (-1, 0, 3), \ \vec{w} = (1, 1, 1).$

Calcule as coordenadas do vetor $\vec{x} = (a, b, c)$ tal que:

- $\vec{u} \cdot \vec{x} = 6$.
- $\bullet \quad \vec{v} \cdot \vec{x} = 0.$
- $\bullet \quad \vec{w} \cdot \vec{x} = -2.$

Propriedades do Produto Escalar

Considerando os vetores no espaço ou no plano, são válidas as seguintes propriedades:

- $\bullet \quad \vec{u} \cdot \vec{u} \ \ge \ 0.$
- $\vec{u} \cdot \vec{u} = 0$ se e somente se $\vec{u} = \vec{0}$.

Propriedades do Produto Escalar

Considerando os vetores no espaço ou no plano, são válidas as seguintes propriedades:

- $\bullet \quad \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}.$
- $\bullet \quad (\lambda \ \vec{u}) \cdot \vec{v} \ = \ \lambda \ (\vec{u} \cdot \vec{v}).$
- $\bullet \quad (\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}.$