

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10106606 A

(43) Date of publication of application: 24 . 04 . 98

(51) Int. CI **H01M 8/06**

(21) Application number: 08259775 (71) Applicant SANYO ELECTRIC CO LTD

(22) Date of filing. 30 . 09 . 96 (72) Inventor: HATAYAMA RYUJI ODA KATSUYA MIYAKE YASUO

(54) HYDROGEN MANUFACTURING DEVICE, AND MANUFACTURE THEREOF

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a hydrogen manufacturing device and a method thereof capable of compact device designing and capable of being operated without supplying steam.

SOLUTION: Fuel from a fuel pump and air from an air blast machine 3 are fed to a device main body 1 each at a specified flow rate. The fed fuel and air are mixed in an inlet mixing layer 10, partial oxidization reaction and complete combustion reaction are achieved in an oxidization layer 20, and a high-temperature gas including carbon monoxide, carbon dioxide, and steam is obtained. This gas is mixed while passing through an intermediate mixing layer 30, and the temperature is lowered. In a conversion reaction layer 40, while the gas temperature is gradually lowered, carbon monoxide and steam in the gas conversely react with each other, and carbon dioxide and hydrogen are generated. Then, hydrogen-rich gas is generated and fed to a fuel cell 101.

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-106606

(43)公開日 平成10年(1998) 4月24日

(51) Int.Cl.⁶

識別記号

H 0 1 M 8/06

FΙ

R

H 0 1 M 8/06

審査請求 未請求 請求項の数5 OL (全 9 頁)

(21)出願番号

特願平8-259775

(71)出願人 000001889

三洋電機株式会社

(22)出顧日

平成8年(1996)9月30日

大阪府守口市京阪本通2丁目5番5号

(72)発明者 畑山 龍次

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 小田 勝也

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 三宅 泰夫

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(74)代理人 弁理士 中島 司朝

(54) 【発明の名称】 水素製造装置及び水素製造方法

(57)【要約】

【課題】 コンパクトな装置設計か可能で、水蒸気の供給を受けなくても運転することのできる水素製造装置及び水素製造方法を提供することを提供することを目的とする。

【解决手段】 燃料ボンブ2から燃料を、送風機3から空気を、各々所定の流量で装置本体1に送り込む。送り込まれた燃料及び空気は、入口混合層10で混合されて、酸化層20で部分酸化反応と完全燃焼反応とがなされ、水素、一酸化炭素、工酸化炭素、水蒸気を含む高温のガスとなる。このガスは、中間混合層30を通過しながら混合され温度も低下する。転化反応層40においては、ガスの温度が徐々に低下しながら、ガス中の一酸化炭素と水蒸気とが転化反応して二酸化炭素と水素が生じる。そして、水素リッチなガスとなって燃料電池101に送られる

【特許請求の範囲】

【請求項1】 燃料及び空気を混合し混合ガスを生成する混合部と

前記混合部で生成された混合ガスを、当該混合ガス中に 含まれる燃料の一部が部分酸化されると共に別の一部が 完全燃焼されるよう酸化する酸化部と、

混合カス中に含まれる部分酸化によって生成した一酸化 研素を、混合ガソ中に含まれる完全燃焼によって生成し た水によって二酸化炭素と水素に転化させる転化反応部 とからなることを特徴とする水素製造装置

【請永頃2】 前記酸化部は、

前記混合部からの混合ガスを所定の比率で二分するガス 分割手段と、

前記ガス分割手段で分割された一方の混合ガス中の燃料 に対して、部分酸化反応を主とした酸化を行う部分酸化 反応層と、

前記ガス分割手段で分割された他 かの混合ガス中の燃料 に対して、完全燃焼を主とした酸化を行う燃焼反応層と からなることを特徴とする請求項1記載の水素製造装 置

【請求項3】 前記混合部は、

燃料と空気とを第1の比率で混合する第1の混合手段及 ひ第2の比率で混合する第2の混合手段を備え、 前記酸化部は、

第1の混合手段で混合された混合ガスに対して部分酸化 反応を主とした酸化を行う部分酸化反応層と、

第2 り混合手段で混合された混合ガスに対して完全燃焼 を主とした酸化を行う燃焼反応層とを備えることを特徴 とする請求項1記載の水素製造装置。

【請求項4】 前記転化反応部は、

転化反応用の触媒層を備え、

当該触媒層の人口から出口にかけて、放熱量を調整する 放熱量調整手段が設けられていることを特徴とする請求 項1~3 記載の水素製造装置。

【請求項5】 燃料と空気とを混合し混合ガスを生成する混合ステップと、

前記混合ステップで生成された混合ガスを、当該混合ガス中に含まれる燃料の一部が部分酸化されると共に別の一部が完全燃焼されるよう酸化する酸化ステップと、

混合ガス中に含まれる部分酸化によって生成した一酸化 40 炭素を、混合ガス中に含まれる完全燃焼によって生成したれによって二酸化炭素と水素に転化させる転化反応フ たかによって二酸化炭素と水素に転化させる転化反応フ ケップとからなることを特徴とする水素製造方法。

【発明7詳細な説明】

[0001]

【発明り属する技術分野】本発明は、天然ガフ、メタノール、ナフサ等の戻化水素系の燃料を改質して水素リッチなガンを製造する水素製造装置及び水素製造方法に関する

[0002]

2

【従来の技術】燃料電池等に水素を供給するための水素製造装置としては、天然ガス、メタノール、ナフサ、メタン等の燃料を水蒸気と混合して改質用触媒で水素リーチなガスに改質するいわゆる水蒸気改質方式のものが広づ用いられている。この水蒸気改質の反応は、触媒を備えた改質器中において、通常750~800℃程度の高温下でなされ、メタンの場合を例にとると下記化1つ反応式で示される

[0003]

0 [451]

CH4 + H2O + 3H2 + CO

このような水蒸気改質反応で生成される改質ガスには一酸化炭素がある程度含まれているが、一酸化炭素は燃料電池の電極触媒を劣化させる原因となるので、更に転化反応用触媒層を有するCO変成器を通して、改質ガス中の一酸化炭素を下記化2の反応で二酸化炭素に転化してから燃料電池に供給するようにしているものが多い。通常、CO変成器は、転化反応用触媒層を200~300 C程度に保ちながら運転する。

[0004]

【化2】

CO + H2O = CO2 + H2

ところで、このような水素製造装置に対しては、家庭で使用したり戸外に携帯して使用するのに便利なように、装置のコンパケトさが求められることが多い。従来の比較的コンパケトな水素製造装置としては、例えば、特開平2-264903号公報で特開平5-186201号公報に開示されているように、二重円筒管の中に改質用触媒が充填された反応層をハーナで加熱しながら、該反30 応屬に燃料と水蒸気を送り込んで改質するものが知られている

【0005】また、特開平7-335238号公報に開示されているもののように、まず原料を空気と混合して部分酸化用触媒を用いて部分的に酸化し、高温になった燃料ガスを外部から供給する水蒸気と混合して改質触媒で水蒸気改質する装置も開発されている。この装置では、部分酸化反応によって発生する熱が改質触媒に伝熱されて改質反応に利用されるようになっているため、別途に加熱が等を設ける必要がなくコンパクトな設計さなっている。

[0006]

【発明が解決しようとする課題】しかしたがら、このよっな水塩、改質方式の水素製造装置では、水蒸気改質反応の連度が遅いため水蒸気改質用の触媒が多量に必要であり、この点が、装置のコニハクト化に対する妨げになっているという問題がある。また、上記の水蒸気改質方式の水素製造装置は、外部から水蒸気の供給を受けながら運動するようになっているため、ボイラー等の水蒸気 供給源がないところでは運転することができないという

50 問題もある

【0007】ニッような問題に対して、生素製造装置に 小型のボイラーを付設しておくことも考えられるが、装 置のコンパクト化にとっては妨げとなる。本発明は、こ のような課題に鑑み、コンパクトな装置設計が可能で、 水蒸気の供給を受けなくても運転することのできる水素 製造装置及び水素製造方法を提供することを目的とす る

[0008]

【課題を解決するための手段】上記目的を達成するため、本発明の水素製造装置は、燃料及び空気を混合し混 10合かスを生成する混合部と、混合部で生成された混合ガスを、混合ガス中に含まれる燃料の一部が部分酸化されると共に別の一部が完全燃焼されるよう酸化する酸化部と、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合ガス中に含まれる完全燃焼によって生成した水によって二酸化炭素と水素に転化させる転化反応部とからなる構成とした。

【0009】この水素製造装置において、混合部で燃料及び空気が混合されて混合ガスが生成され、酸化部では、この混合ガス中に含まれる燃料の一部が部分酸化されると共に別の一部が完全燃焼されるよう酸化される。そして、燃料が部分酸化されることによって、一酸化炭素と水素が生成し、完全燃焼されることによって、二酸化炭素と水が生成される。

【0010】燃料がメタンの場合を例にとると、部分酸化は主に下記化3の反応式で示される反応であって、完全燃焼に上記化4以収に式に示される反応である。

[0011]

【化3】

2 C H4 + O2 - 2 C O + 4 H2

[0012]

【化4】

なお、部分酸化においては、上記化3の反応式の他に、 下記化5の反応式で示される反応もある程度起こる。

[0013]

【化5】

このように酸化部で酸化された混合ガスには、一酸化炭素、水、水素、二酸化炭素が含まれている。次に、転化 40 反応部では、酸化部からの混合ガス中に含まれている一酸化炭素及び水が、上記化2の反応式に至すような転化反応をすることによって、一酸化炭素及り水素が生成される

【0014】このようにして、本水素製造装置においては、外部から水蒸気や水の供給を受けなくても、燃料と空気だけを供給することによって、一酸化炭素含有量の少ない水素リッチなガフが生成される。また、酸化部において発生する熱で転化反応部を加熱することができるので、ハーナ等の別途の加熱手段を設ける必要もない。

【0015】また、このような酸化部に、部分酸化用た触媒を用いることによって実現できるが、水茶気改質用の触媒を用いる場合と比べて、触媒量がかなり生量で済むので、それだけ装置を小型化することができる。ここで、酸化部を、混合部からの混合ガスを所定り比率で、方するガス分割手段と、ガノ分割手段で分割された。方混合ガス中の燃料に対して、部分酸化反応を主とした酸化を行う部分酸化反応層と、ガス分割手段で分割された他力の混合ガス中の燃料に対して、定合燃焼を主とした酸化を行う燃焼反応層とのご構成することもできる。

【0016】この場合、ガス分割手段で混合ガスを二分する比率を調整することにより、部分酸化反応層で行われる部分酸化と燃焼反応層で行われる完全燃焼との割合を調整することができる。僅って、この調整によって、転化反応部に導入されるガス中の一酸化炭素と水の比率を、転化反応に適した比率(一酸化炭素農康を低下させるのに適した比率)となるようにすることができる

【0017】また、混合部に、燃料と空気とを第1の比率で混合する第1の混合手段及び第2の比率で混合する第2の混合手段を設け、酸化部に、第1の混合手段で混合された混合カスに対して部分酸化反応を主とした酸化を行う部分酸化反応層と、第2の混合手段で混合された。混合ガスに対して完全燃焼を主とした酸化を行う燃焼反応層とを設けることもできる。

【0018】この場合、第1の混合手段において第1の 比率で混合された燃料と空気が、部分酸化反応層に送り 心まれ、単2の混合手段において第2万比率で混合され た燃料と空気が、燃焼反応層に送り込まれる。従って、 部分酸化反応層に対しては、燃料と空気を、部分酸化反 第0 応に適した比率で供給し、燃焼反応層に対しては、燃料 と空気を、反応に適した比率で供給することができると 共に、部分酸化反応層で行われる部分酸化と燃焼反応層 で行われる完全燃焼との割合を調整することもできる。

【0019】更に、転化反応部は、転化反応用の触媒層を備え、この触媒層の人口から出口にかけて、放熱量を調整する放熱量調整手段が設けられている構成とすれば、この転化反応用の触媒層の人口から出口にかけての温度分布を、転化反応に適した状態に調整することができる。また、上記目的を達成するため、本発明の本素製造方法は、燃料と空気とを混合し混合力スを生成する混合ステップと、混合ステップで生成された混合カスを、当該混合ガス中に含まれる場合によって生成した一酸化炭素を、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合ガス中に含まれる部分酸化によって生成した水によって一酸化炭素と水素に転化させる転化反応スページとからなる構成とした。

[0020]

【発明の実施の形態】37下、本発明の実施の形態について、国面を否照しながら説明を行う。

(実施力制態1)

「水素製造装置の全体構成の説明」図1は、本発明の一 実施形態にかかる水素製造装置の料視図である。また、 図2は、この水素製造装置の装置水体の概略断面図であって図中にガスの流れが矢印で示されている

5

【0021】こり水素製造装置は、燃料タンク100から供給される燃料を水素リッチなガスに変換して燃料電池101に供給するものでもって、ガスを混合して触媒反応を行う装置本体1に送り込む燃料 ボンゴ2と 空気を装置本 10体1に送り込む迷風機3とからなる ここでは、燃料タンク100から、メタンを主成分とする都市ガスを供給する場合について説明するが、同様にして、天然ガス・ナフサ等の炭化水素系の燃料を供給して運転することもできるし、メタノール等を液体燃料を気化させて供給して運転することもできる

【0022】装置本体1は、燃料と空気を混合する人口 混合層10と、部分酸化と完全燃焼とがなされるように 混合力スを酸化する酸化層20と、酸化層20からのヴ スを混合する中間混合層30と、部分酸化によって生成 20 した一酸化炭素を完全燃焼によって生成した水で転化反 応させる転化反応層40とから構成されている。人口混 合層10、酸化層20、中間混合層30、転化反応層4 0は、円筒容器4の中にこの順に設けられており、薩合 う層と層の間は、カスか流通できる網状の仕切板5、 6、7で仕切られている。

【0023】入日混合層10は、門筒容器4の人口側の端面4aと仕切板5とに挟まれた円柱状空間の中に充填材11か充填されてなり、端面4aの中央部に燃料ボンフ2からの燃料の入口である燃料112と送風機3から 30の空気の入口である空気113とか取付けられている。充填材11は、ガスを均一的に混合するためのものであって、その具体例としては、図1に示されているような金属或はセラミーケスからなる球(直径2~3mm)の他に、円形の金属網を積層して円柱状に成形したもの等を挙げることかできる。

【0024】燃料ロ12から近り込まれる燃料と空気ロ13から近り送まれる空気とは、この人口混合層10で混合されて酸化層20に送られる。酸化層20は、仕切板5と仕切板6とに挟まれた円柱状空間の中に酸化反応触媒が充填されてなる酸化触媒層21分形成された構造されてている。酸化触媒層21を形成する酸化反応触媒の具体例としてに、ハニカム状に成型されたアルトナ多れ体に日金、ハラ、ウム、ルデニウム、コジウム等の日金至触媒を担持させたものと他に、ダブンット状に成形されたものや、身状のものを挙げることができる。

【0025】ここを通過する燃料と空気との混合ガンに 対しては、主として、上記化3に示すような部分酸化と 主記化4に示すような完全燃焼との両方がなされ、一部 分は上記化5に示す部分酸化がなされる。また、こり部 50 分酸化及び完全燃焼は共に発熱反応であるので、混合サ 本が酸化層20を通過した後には、水素、一酸化炭素、 一酸化炭素、水蒸気を含む高温のガスとなって、中間混 合層30に送られる

【0026】なお、この酸化層20では、部分酸化反応 並びに完全燃焼反応に伴う発熱でガノの温度が上昇する か、これによって酸化層20万温度が600~7000 程度となるように酸化層20に達り込まれる混合ガスの 流量等は設定されている。中間混合層30は、仕切板6 11と同様の充填材31が充填されて形成されている 【0027】この中間混合層30は、酸化層20からの ガスを混合して均一化する。また、酸化層20からの ガスを混合して均一化する。 は、転化反応層40に直接導くには温度が高すぎるため、中間混合層30の周りに放熱用フィン等を設けても よい。

【0028】反応層40は、仕切板7と門簡容器45端面4bとに挟まれた円柱状空間の中に、転化反応用の触媒が充填されて転化反応触媒層11か形成された構造となっており、端面4bの中央部には水素リッチをガスを燃料電池101に送出するガス出口14が取付けられている。転化反応触媒層41を形成する触媒は、水蒸気改質装置と組み合わせられたCO変成器において従来から用いられている転化反応用の触媒であって、その具体例としては、タブレット状の銅ー亜鉛系触媒を挙げることが出来る。

【0029】通常、この転化反応触媒層41の容積は、酸化触媒層21の10倍程度力容積に設定すればよい。 また、転化反応層40の温度は入口側で300で程度、 出口側で200で程度となるように温度勾配を形成する ことが望まして、本実施の形態では、その温度調整のために、転化反応層40の周囲には円筒容器4に対してフィン42が取り付けられている。

【0030】このような温度勾配を形成することによって、比較的高温(300℃)の入口側では上記化2式に示される転化反応が速やかに平衡に達し、比較的低温(200℃)の出口側では上記化2式の転化反応の平衡が右方向に移動するので、ガス中の一酸化炭素濃度は低いよいのにまで低減される。以上説明したような水素製造装置を用いて、3kw級の燃料電池101を運転する場合、都市ガスの消費量は2Nmン/h程度となる。この場合、装置本体1の酸化触媒層21の容積は150cc程度、転化反応触媒層41の容積は1500cc程度に設定すればよい

【0031】これに対して、水蒸気改質触媒層と転化反 に触媒層とを備えた従来の水蒸気改質方式の水素製造装 置を用いて同じ燃料電池を運転する場合、転化反応触媒

.

層の設定存積は同等となるが、水蒸気改質触媒層の容積 は上記酸化触媒層21カ3×10倍程度に設定すること が必要となるので、本実施の形態の水素製造装置と比べ 、コンパク上化が難しいということが言える

【0032】 水素製造装置の動作及び運転方法についての説明 このような構成の水素製造装置において、運転時においては、燃料ボニフ2から燃料を、送風機3から空気を、各を所定の流量で装置本体1に近り込む。図2に示されるように、送り込まれた燃料及び空気は、人口混合層10で混合されて、酸に層20で部分酸化反応と完全燃焼反応とがなされ、水素、一酸化炭素、二酸化炭素。水素気を含む高温(750~800℃)のガスとなる。このガスは、中間混合層30を通過しながら混合され温度も低下する。転化反応層40においては、ガスの温度が徐々に低下しなから、ガス中の一酸化炭素と水素の生じる。そして、一酸化炭素濃度の低い水素リッチなガスとなって燃料電池101に送られる。

【0033】燃料電池101では、この水素リッチなガスを用いて発電を行う。ここで、酸化層20における反。20応条件の設定について説明する。酸化層20において生たる部分酸化反応と完全燃焼反応とつ比率によって、転化反応層40に導入される一酸化炭素と水の比率が左右されるので、酸化層20における反応条件は、転化反応に適した比率となるように部分酸化反応と完全燃焼反応が生しるように設定すればよい。

【0034】この条件の設定方法としては、酸化層20 において部分酸化反応と完全燃焼反応とかとのような比率で生しるかは、酸化層20に送り込まれる燃料と空気の比率や流速、或は酸化層20の温度等の条件によって 30 左右されるので、予めこれらの条件をいろいる変化させて実験的に最適な条件を求めておいて、その最適条件に設定すればよい。

【0035】なお、この比率は、燃料がメタンのみからなるものとし、単純計算で次のように求めることができる。上記化2に示されるように、転化反応層40での転化反応においては、一酸化度素1molに対して水1molが基20において一酸化度素1molに対して水1molが生しるように設定すればよい。

【0036】従って、酸化層とのにおいて化3式の部分酸化反応及び化4式の完全燃焼だけかなされるものとすれば、酸化層とのにおいて処理される3mットウスタンの中、2moit化3の部分酸化反応がなされ、1moit化4の完全燃焼がなされるように調整すればよいことになる。また、このような比率で化3式の部分酸化反応及び化4式の完全燃焼がなされる場合、酸化層と0においてメタンと酸素とは等moin費されるので、単純計算によれば、人口混合層10に近り込むメタンと空気の体積比率も、1・5程度に設定すればよいことにな

【0037】ただし、実験的には、この単純計算値より も過剰の空気(単純計算値の2倍程度の空気)を用いた 方がよい結果が得られている。

(実施の形態2)図3は、本実施の形態に係る水素製造 装置の斜視図である。本形態の水素製造装置も、実施の 形態1と同様、燃料タンク100から供給される燃料を 水素シッチなガスに変換して燃料電池101に供給する ものであって。触媒反応によって水素リッチなガスを生 成する装置本体201に差り込む燃料形にブ202とから構成されている

【0038】装置本体201は、燃料ボンブ202から送り込まれる燃料(都市ガス)に所定の比率で空気を混合するエジェクタ方式の混合器210と、混合器210で混合された混合ガスに対して触媒反応を行う角形の触媒層220とからなる。触媒層220には、ガスカ人ロ側から出口側にかけて、酸化部220a,中間混合部220b,転化反応部220cの3つの部分が形成されている。この酸化部220a,中間混合部220b,転化反応部220cは、実施の形態1の酸化層20,中間混合層30,転化反応層40と同様の機能を有するものである

【0039】混合器210は触媒層220の人口側(酸化部220a側)に取り付けられている。混合器210の内部構造については図示しないが、混合器210の内部には吸引室が設けられており、燃料ボンコ202から送り込まれる燃料ガスは燃料噴射管211の先端のノブル(このノブルは前記吸引室内に配置されている)から噴射されるようになっており、この噴射に伴って、外気を空気取入口212から取り込んで吸引室内に引き込み、燃料ガスと混合するようになっている。

【0040】また、混合器210の内部には、燃料ガスの噴射量に対する空気取込量の比率を調整する空気量調整機構(不図示)が設けられている。この空気量調整機構は、具体的には、空気取入1212から吸引室に到る空気流通路に、該通路の開口度を調整するタンハを設けたり、前記吸引室内におけるアズルの位置を移動させる手段を設けたりすることによって実現することができ40る。

【0041】なお、このような空気最調整機能を持ったエジェクタは、一般のガフ・一寸において広じ用いられているので、これについてつ話しい説明は省略する一触 媒層220は、直方形状の外装ケース221内に触媒成 形体230が充填された構造であって、外装ケース221は、上面が開口したケース本体221aと、この開口を覆う蓋2216とからなる

【0042】触媒成形体230は、触媒232a、23 2cが配設された複数のコルゲート板231が、上下り 向に積層されて形成されている。各コルゲート板231

11

において、酸化部220 aに相当する領域にはタブレット状に成形された酸化反応用触媒232a(白金系触媒)が配設され、中間混合部220bに相当する領域には触媒は配設されず、転化反応部220cに相当する領域にはタブレット状に成形された転化反応用触媒232cが配設されている。そして、上記り酸化部220a、中間混合部220b、転化反応部220cは、このような触媒配置によって形成されている

【0043】「こに用いられている酸化反応用触媒232a及で転化反応用触媒232cは、実施の形態1で流 10明したメブレー・共に成形された触媒と同様のものでもる。転化反応部220cの人は側から出は側にかけての温度は、実施の形態1の転化反応層40と同様に300で~200でに調整するのが望まして、図3には示していないか、この温度調整のために、転化反応部220cの周囲の外装ケース221にフィンを設けてもよい

【0044】このような構成の水素製造装置において、運転時においては、燃料ポンプ202から所定の流量で混合器210に燃料を送り込む。混合器210においては、空気量調整機構によって、送り込まれた燃料に対して所定の比率で空気を取り込む。こうして混合器210に取り込まれた燃料と空気は混合器210で混合され、酸化部220a、中間混合部220b、転化反応部220cを順に通過することによって、実施の形態1の場合と同様に触媒反応が行われ、一酸化炭素震度の低い水素リッチなガスに変換されて燃料電池101に送られる。

【0045】 (主権の単準3) 図 1は、本実施の形態の水素製造装置の本体の概略断面図である。なお実施の形態1と同様の構成要素には、図中に同じ番号を付して説明を省略する。この装置本体301は、実施の形態1の 30装置本体1と同様の構成であるが、本実施の形態では、酸化層320か仕切板302によって仕切られて部分酸化層321と完全燃焼層322とに分けられており、人口混合層10で混合されたガスは、所定の比率で部分酸化層321と完全燃焼層322とに分かれて流れるようになっている。

【0046】部分酸化層321及び完全燃焼層322の基本的な構成は、実施の形態1の酸化層20と同様であって、実施の形態1において説明した自金系触媒等が用いられるが、各層に用いる触媒の種類や各層の設定温度は、部分酸化層321では主として部分酸化反応が生しるように、完全燃焼層322では主として完全燃焼が生しるように選択されている。

【10147】具体的な触媒の種類の選択方法としては、部分酸化層321に用いるものは、上記の各自金系触媒について実験し、その中から部分酸化反応に適しているものを選択すればよい。 方、完全燃焼層322に用いるものは、上記白金系触媒の中から完全燃焼に適しているものを実験によって選択してもよいし、或は完全燃焼に適したニッケル系触媒を用いてもよい。

【0048】また、各層の設定温度については、部分酸化は比較的低い温度で生じやすり、完全燃焼は比較的高い温度で生じやすりので、部分酸化層321は完全燃焼層322よりも低い温度となるように設定する。各層の通常の設定温度は、部分酸化層321が500℃~60℃、完全燃焼層322が700~800℃である。このように部分酸化層321の温度を完全燃焼層322の温度とり低、設定するために、本実施り肝態では、図4に示すように円筒容器の部分酸化層321の外側にフレ323が取りいている。

【0049】上記の所定の比率(部分酸化層3212定主燃焼層322とに分かれる比率)についても、様々な比率に変化させて実験を行いその結果から最適比率を水めればよいが、実施の形態1での計算と同様に、燃料がメタンのみからなるものとして単純計算をすると、3mo1のメタンの中、2mo1は部分酸化層321で化3の部分酸化反応がなされ、1mo1は完全燃焼層322で化4の完全燃焼がなされるように設定すればよいことになる

【0050】このような構成の水素製造装置において、運転時には、実施の形態1と同様に、燃料及び空気を各を所定の流量で装置本体1に送り込む。送り込まれた燃料及び空気は、人口混合層10で混合されて、所定の比率で部分酸化層321と完全燃焼層322とに分かれる。そして、部分酸化層321では主として部分酸化反応がなされて水素及び一酸化炭素を含む高温のガスが生成され、完全燃烧層322では元と燃焼反応かなされて、酸化炭素及び水蒸気を含む高温のガスが生成される。

【0051】中間混合層30では、部分酸化層321からのガスと完全燃焼層322からのガスとが混合されると共に温度が低下して転化反応層40に流れる。そして、転化反応層40で転化反応されて一酸化炭素濃度の低い水素リッチなカスが生成され燃料電池101に送られる。このように、本実施の形態においては、酸化層320が、主として部分酸化反応を行う部分酸化層321と、主として完全燃焼を行う完全燃焼層322とに分けられているので、混合カスを一分する比率を調整することにより、部分酸化反応層で行われる部分酸化と燃焼反応層で行われる第分酸化と燃焼反応層で行われる完全燃焼に層で行われる完全燃焼に層で行われる完全燃焼に両て行われる完全燃焼に両であることができ、これによって、転化反応層40に導入される一酸化炭素と水との比率を調整することができる

【0052】なお、本実施の刑態の装置本体301においては、混合ガイが高分酸化層321と完全燃焼層322に分かれる所定の比率は固定されているが、人口混合層10と酸化層320上の間にガス流通量を調整するダンパを設ければ上記比率を容易に変更することができる。即ち、部分酸化層321と完全燃焼層322とに「分されるガスの比率を、運転条件の変化に適応するよう調整することも可能となる

) 【0053】 (実施の圧態4) 同るは、本実施の圧態の

1.1

水素製造装置の本体の概略断面図である。なお実施の形態1と同様の構成要素には、図中に同じ番号を付して説明を省略する。この装置本体401は、実施の形態1つ装置本体1と同様の構成であるが、本実施の形態では、人口混合層410及び酸化層320が仕切板402によって仕切られて、人口混合層410は、第1混合層411と第2混合層412とに分けられ、酸化層420は、部分酸化層421と定分けられている。

【0055】第1混合層411に送り込まれる燃料と空 20 気は、ここで混合された後、部分酸化層421に送り込まれ、ここで主として部分酸化反応がなされることによって水素及び一酸化炭素を含む高温のガスが生成される。一方、第2混合層412に送り込まれる燃料と空気は、ここで混合された後、完全燃焼層422に送り込まれ、ここで十七して完全燃焼反応がなされることによって二酸化炭素及小水条気を含む高温のガスが生成される

【0056】中間混合層30では、部分酸化層421からのガスと完全燃焼層422からのガスとが混合されると共に温度が低下して転化反応層40に流れる。そして、転化反応層40では転化反応することによって一酸化炭素濃度の低い水素リッチなガスが生成され燃料電池101に送られる。第1混合層411及砂第2混合層412に送り込む燃料と空気の量については、実験的に各流量を変動させた結果から最適な流量を求め、それに基ついて設定すればよいが、燃料がメタンのみからなるものとして次のように各量の比率を単純計算をすることもできる

【0057】部分酸化層421では化3式に従ってメタン2molか1molの酸素(空気では約5molに相当)と部分酸化反応し、完全燃焼層422では化4式に使ってメター1molか2molの酸素(空気で約10molに相当)と完全燃焼するように設定すればよいので、第1混合層411には2molのメタンと5mol相当の空気を、第2混合層412には1molのメタンと10mol相当の空気を送り込むようにすればよいことになる

【0058】このように、本実施の形態においては、酸 化層420分、主人とで部分酸化反応を行う部分酸化層 50 421と、主として完全機塊を行う完全燃塊層422と に分けられており、部分酸化層421と完全燃焼層42 2とに導入される燃料及び空気の動も、各を独立して設 定することができる。従って、部分酸化層421に対し ては、燃料と空気とを部分酸化反応に適した比率で供給 し、完全燃焼層422に対しては、燃料と空気とを完全 燃焼に適した比率で供給することができる

(その他の事項) なお、上記実施の形態1.3.4においては、転化反応層や部分酸化反応層の温度を調整するためにエデンを設ける例の示。ケケーニの他に、例えば、人口混合層に導入される空気の配管を転化反応層や部分酸化反応層の周りにコイル状に配設することによって温度調整をするようにしてもよい。なお、この場合、人口混合層に導入される空気は、配管内を通過するときに余熱されることになる。

[0059]

30

【発明の効果】以上のように、本発明の水素製造装置は、燃料及び空気を混合し混合ガスを生成する混合部と、混合部で生成された混合ガスを、混合ガス中に含まれる燃料が一部が部分酸化されると共に別の一部が完全燃焼されるよう酸化する酸化部と、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合ガス中に含まれる完全燃焼によって生成した水によって二酸化炭素と水素に転化させる転化反応部とからなる構成としているので、装置をコンパクトにすることが可能であると共に、水蒸気の供給を受けなくても運転することができる。

【0060】また、本発明の水素製造方法は、燃料と空気とを混合し混合ガスを生成する混合ステップと、混合ステップで生成された混合ガスを、当該混合ガス中に含まれる燃料の一部が部分酸化されると共に別の一部が完全燃焼されるよう酸化する酸化ステップと、混合ガス中に含まれる部分酸化によって生成した一酸化炭素を、混合カス中に含まれる完全燃焼によって生成した水によって二酸化炭素と水素に転化させる転化反応ステップとからなる構成とすることによって、同様の効果を得ることができる。

【0061】このような本発明の水素製造装置及び水素製造方法は、特に携帯用の燃料電池に水素を供給するものとして実用的価値が大きい。

【図面の簡単な説明】

【図1】実施の形態1にかかる水素製造装置の斜視図である。

【図2】[41に示す水素製造装置の装置本体の概略断面 図である

【図3】実施の形態 2 に任る水素製造装置の斜視図である

【図4】実施の刑態3に係る水素製造装置の本体の概略 断面図である

【[45】実施の圧能4に係る木素製造装置の本体の概略

1-4

(8)

13		
断面図である	* 2 2 0	触媒層
【符号の説明】	2 2 0 a	酸化部
1 装置本体	2 2 0 b	中間混合部
2 燃料ホンフ	2 2 0 c	転化反応部
3 送風機	3 0 1	装置本体
4 円筒容器	3 2 0	酸化層
1-0 人口混合層	3 2 1	部分酸化層
20 酸化層	3 2 2	完全燃烧層
3.0 中間混合層	4 0 1	装置本体
4.0 転化灰応層	10 4 1 O	人口混合層
42 741/	4 1 1	第1混合層
100 燃料タンク	4 1 2	第2混合層
101 燃料電池	420	酸化層
201 装置本体	421	部分酸化層
202 燃料ポンプ	4 2 2	完全燃焼層
2.1.0 混合器	*	

(図1)

[図3]

【図5】

