

MultilayerGraphs.jl: Multilayer Network Science in

- ₂ Julia
- 3 Claudio Moroni ¹0 ^{1,2*} and Pietro Monticone ^{1,2*}
- 4 1 University of Turin, Italy 2 Interdisciplinary Physics Team, Italy * These authors contributed equally.

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🗗
- Archive □

Editor: Open Journals ♂ Reviewers:

@openjournals

Submitted: 01 January 1970 Published: unpublished

License

Authors of papers retain copyrigh № and release the work under a 16 Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

MultilayerGraphs.jl is a Julia package for the creation, manipulation and analysis of the structure, dynamics and functions of multilayer graphs.

A multilayer graph consists of multiple subgraphs called *layers* which can be interconnected through bipartite graphs called *interlayers* composed of the vertex sets of two different layers and the edges between them. The vertices in each layer represent a single set of nodes, although not all nodes have to be represented in every layer.

Formally, a multilayer graph can be defined as a triple G = (V, E, L), where:

- V is the set of vertices;
- E is the set of edges, pairs of nodes (u, v) representing a connection, relationship or interaction between the nodes u and v;
- lacksquare L is a set of layers, which are subsets of V and E encoding the nodes and edges within each layer.

Each layer ℓ in L is a tuple (V_ℓ, E_ℓ) , where V_ℓ is a subset of V that represents the vertices within that layer, and E_ℓ is a subset of E that represents the edges within that layer.

MultilayerGraphs.jl is an integral part of the JuliaGraphs ecosystem extending Graphs.jl (Fairbanks et al., 2021) so all the methods and metrics exported by Graphs.jl work for multilayer graphs, but due to the special nature of multilayer graphs the package features a peculiar implementation that maps a standard integer-labelled vertex representation to a more user-friendly framework exporting all the objects an experienced practitioner would expect such as nodes (Node), vertices (MultilayerVertex), layers (Layer), interlayers (Interlayer), etc.

- MultilayerGraphs.jl features multilayer-specific methods and metrics including the global clustering coefficient, the overlay clustering coefficient, the multilayer eigenvector centrality, the multilayer modularity and the Von Neumann entropy.
- Finally, MultilayerGraphs.jl has been integrated within the JuliaDynamics ecosystem so that any Multilayer(Di)Graph can be utilised as an argument to the GraphSpace constructor in
- Agents.jl (Datseris et al., 2022).

Statement of Need

- Several theoretical frameworks have been proposed to formally subsume all instances of multilayer graphs (Aleta & Moreno, 2019; Artime et al., 2022; Bianconi, 2018; Boccaletti et al., 2014; Cozzo et al., 2018; M. D. Domenico et al., 2013; M. D. Domenico, 2022; Kivela et al., 2014; Lee et al., 2015).
- Multilayer graphs have been adopted to model the structure and dynamics of a wide spectrum of high-dimensional, non-linear, multi-scale, time-dependent complex systems including physi-

cal, chemical, biological, neuronal, socio-technical, epidemiological, ecological and economic networks (Aleta et al., 2022, 2020; Amato et al., 2017; Arruda et al., 2017; Azimi-Tafreshi, 2016; Baggio et al., 2016; Buldú & Porter, 2018; Cozzo et al., 2013; M. D. Domenico, 2017; M. D. Domenico et al., 2016; Estrada & Gómez-Gardeñes, 2014; Gosak et al., 2018; Granell et al., 2013; Lim et al., 2019; Mangioni et al., 2020; Massaro & Bagnoli, 2014; Pilosof et al., 2017; Soriano-Paños et al., 2018; Timóteo et al., 2018).

At the best of our knowledge there are currently no software packages dedicated to the creation, manipulation and analysis of multilayer graphs implemented in the Julia language (Bezanson et al., 2017) apart from MultilayerGraphs.jl itself (Moroni & Monticone, 2022).

Main Features

The two main data structures are collections of layers connected through interlayers called MultilayerGraph and MultilayerDiGraph.

The vertices of a multilayer graph are representations of one set of distinct objects called Nodes. Each layer may represent all the node set or just a subset of it. The vertices of Multilayer(Di)Graph are implemented via the MultilayerVertex custom type. Each MultilayerVertex encodes information about the node it represents, the layer it belongs to and its metadata.

Both the intra-layer and inter-layer edges are embedded in the MultilayerEdge struct, whose arguments are the two connected multilayer vertices, the edge weight and its metadata. It's important to highlight that Multilayer(Di)Graphs are weighted and able to store metadata by default (i.e. they have been assigned the IsWeighted and IsMeta traits from SimpleTraits.jl).

The layers are implemented via the Layer struct composed of an underlying graph and a mapping from its integer-labelled vertices to the collection of MultilayerVertexs the layer represents. Interlayers are similarly implemented via the Interlayer mutable struct, and they are generally constructed by providing the two connected layers, the (multilayer) edge list between them and a graph. This usage of underlying graphs allows for an easier debugging procedure during construction and a more intuitive analysis afterwards allowing the package to leverage all the features of the JuliaGraphs ecosystem so that it can be effectively considered as a real proving ground of its internal consistency.

The Multilayer(Di)Graph structs are weighted and endowed with the functionality to store both vertex-level and edge-level metadata by default so that at any moment the user may add or remove a Layer or specify an Interlayer and since different layers and interlayers could be better represented by graphs that are weighted or unweighted and with or without metadata, it was crucial for us to provide the most general and adaptable structure. A Multilayer(Di)Graph is instantiated by providing the ordered list of layers and the list of interlayers to the constructor. The latter are automatically specified, so there is no need to instantiate all of them.

Alternatively, it is possible to construct a Multilayer(Di)Graph making use of a graph generator-like signature allowing the user to set the degree distribution or the degree sequence and employs graph realisation methods such as the Havel-Hakimi algorithm for undirected graphs (Hakimi, 1962) and the Kleitman-Wang algorithm for directed ones (Kleitman & Wang, 1973).

Multilayer(Di)Graphs structure may be represented via dedicated WeightTensor, MetadataTensor and SupraWeightMatrix structs, all of which support indexing with MultilayerVertexs. Once a Multilayer(Di)Graph has been instantiated, its layers and interlayers can be accessed as their properties.

For a more comprehensive exploration of the package features and functionalities we strongly recommend consulting the package README and documentation.

Installation and Usage

- To install MultilayerGraphs.jl it is sufficient to activate the pkg mode by pressing] in the Julia
- 89 REPL and then run the following command:

```
pkg> add MultilayerGraphs
```

- In the following code chunks we synthetically illustrate some of the main features outlined in
- 91 the previous section.
- 92 Let's begin by importing the necessary dependencies and setting the relevant constants.

```
using Distributions, Graphs, SimpleValueGraphs
using MultilayerGraphs

# Set the number of nodes: objects represented by multilayer vertices
const n_nodes = 100
# Create a list of nodes
const node_list = [Node("node_$i") for i in 1:n_nodes]
```

33 Layers and Interlayers

- 94 We will instantiate layers and interlayers with randomly-selected edges and vertices adopting a
- 95 variety of techniques. Layers and Interlayers are not immutable, and mostly behave like normal
- 96 graphs. The reader is invited to consult the API for more information.
- 97 Here we define a layer with an underlying simple directed graph using a graph generator-like
- 98 (or "configuration model"-like) constructor which allows us to specify both the indegree and
- the outdegree sequences. Before instantiating each layer we sample the number of its vertices
- and, optionally, of its edges.

```
n_vertices = rand(1:100)  # Number of vertices
layer_simple_directed = layer_simpledigraph( # Layer constructor
    :layer_simple_directed, # Layer name
    sample(node_list, n_vertices; replace=false), # Nodes represented in the layer
    Truncated(Normal(5, 5), 0, 20), # Indegree sequence distribution
    Truncated(Normal(5, 5), 0, 20) # Outdegree sequence distribution
)
```

Then we define a layer with an underlying simple weighted directed graph. This is another kind of constructor that allows the user to specify the number of edges to be randomly distributed among vertices.

Similar constructors, more flexible at the cost of ease of use, enable a finer tuning. The constructor we use below should be necessary only in rare circumstances, e.g. if the equivalent simplified constructor layer_simplevaldigraph is not able to infer the correct return types of default_vertex_metadata or default_edge_metadata, or to use and underlying graph structure that isn't currently supported.


```
default_vertex_metadata = v -> ("vertex_$(v)_metadata")
                                                                     # Vertex metadata
   default_edge_metadata = (s, d) -> (rand(),)
                                                                     # Edge metadata
   layer_simple_directed_value = Layer(
                                                                     # Layer constructor
        :layer_simple_directed_value,
                                                                     # Layer name
        sample(node_list, n_vertices; replace=false), # Nodes represented in the layer
        n edges,
                                                 # Number of randomly distributed edges
        ValDiGraph(
            SimpleDiGraph{Int64}();
            vertexval_types=(String,),
            vertexval_init=default_vertex_metadata,
            edgeval_types=(Float64,),
            edgeval init=default edge metadata,
        ),
       Float64:
        default_vertex_metadata=default_vertex_metadata, # Vertex metadata
        default_edge_metadata=default_edge_metadata
                                                           # Edge metadata
   )
   # Create a list of layers
   layers = [layer_simple_directed, layer_simple_directed_weighted, layer_simple_directed_v
   There are many more constructors the user is encouraged to explore in the package documen-
   tation.
110
   The interface of interlayers is very similar to that of layers. It is very important to notice that,
111
   in order to define a Multilayer(Di)Graph, interlayers don't need to be explicitly constructed
112
   by the user since they are automatically identified by the Multilayer(Di)Graph constructor,
   but for more complex interlayers the manual instantiation is required.
114
   Here we define an interlayer with an underlying simple directed graph.
   n_vertices_1 = nv(layer_simple_directed)
                                                             # Number of vertices of layer 1
   n_vertices_2 = nv(layer_simple_directed_weighted)
                                                            # Number of vertices of layer 2
   n_edges = rand(1:(n_vertices_1 * n_vertices_2 - 1))
                                                            # Number of interlayer edges
   interlayer_simple_directed = interlayer_simpledigraph( # Interlayer constructor
        layer_simple_directed,
                                                             # Layer 1
        layer_simple_directed_weighted,
                                                             # Layer 2
                                                             # Number of edges
       n edges
   # The interlayer exports a more flexible constructor too
   n_vertices_1 = nv(layer_simple_directed_weighted) # Number of vertices of layer 1
   n_vertices_2 = nv(layer_simple_directed_value)
                                                         # Number of vertices of layer 2
   n_edges = rand(1:(n_vertices_1 * n_vertices_2 - 1)) # Number of interlayer edges
    interlayer_simple_directed_meta = interlayer_metadigraph( # Interlayer constructor
        layer simple directed weighted,
                                                                # Layer 1
        layer_simple_directed_value,
                                                                # Layer 2
                                                                # Number of edges
        n_edges;
        default_edge_metadata=(src, dst) ->
                                                                # Edge metadata
            (edge_metadata="metadata_of_edge_from_$(src)_to_$(dst)"),
        transfer_vertex_metadata=true # Boolean deciding layer vertex metadata inheritance
   )
   # Create a list of interlayers
   interlayers = [interlayer_simple_directed, interlayer_simple_directed_meta]
```


Multilayer Graphs In what follows we construct a directed multilayer graph (MultilayerDiGraph). multilayerdigraph = MultilayerDiGraph(# Constructor # The (ordered) collection of layers layers, interlayers; # The manually specified interlayers # The interlayers that are left unspecified # will be automatically inserted according # to the keyword argument below default interlayers structure="multiplex" # The automatically specified interlayers will have only diagonal couplings) # Layers and interlayer can be accessed as properties using their names multilayerdigraph.layer_simplevaldigraph Then we proceed by showing how to add nodes, vertices and edges to a directed multilayer graph. The user may add vertices that do or do not represent nodes which are already present in the multilayergraph. In the latter case, we have to create a node first and then add the vertex representing such node to the multilayer graph. The vertex-level metadata are effectively 121 considered only if the graph underlying the relevant layer or interlayer supports them, otherwise 122 they are discarded. The same holds for edge-level metadata and/or weight. 123 # Create a node new node 1 = Node("new node 1") # Add the node to the multilayer graph add_node!(multilayerdigraph, new_node_1) # Create a vertex representing the node # Constructor (alias for "MultilayerVertex") $new_vertex_1 = MV($ new_node_1, # Node represented by the vertex :layer_simplevaldigraph, # Layer containing the vertex ("new_metadata") # Vertex metadata) # Add the vertex add_vertex!(multilayerdigraph, # MultilayerDiGraph the vertex will be added to new_vertex_1 # MultilayerVertex to add # Create another node in another layer new_node_2 = Node("new_node_2") # Create another vertex representing the new node new_vertex_2 = MV(new_node_2, :layer_simpledigraph) # Add the new vertex add vertex!(multilayerdigraph, new vertex 2; add node=true # Add the associated node before adding the vertex) # Create an edge new_edge = MultilayerEdge(# Constructor new_vertex_1, # Source vertex # Destination vertex new_vertex_2, ("some_edge_metadata") # Edge metadata

Add the edge


```
add edge!(
        multilayerdigraph, # MultilayerDiGraph the edge will be added to
        new_edge
                            # MultilayerVertex to add
   )
   Finally we illustrate how to compute a few multilayer metrics such as the global clustering
   coefficient, the overlay clustering coefficient, the multilayer eigenvector centrality, and the
125
   multilayer modularity as defined in M. D. Domenico et al. (2013).
   # Compute the global clustering coefficient
   multilayer_global_clustering_coefficient(multilayerdigraph)
   # Compute the overlay clustering coefficient
   overlay clustering coefficient(multilayerdigraph)
   # Compute the multilayer eigenvector centrality
   eigenvector_centrality(multilayerdigraph)
   # Compute the multilayer modularity
   modularity(
        multilayerdigraph,
        rand([1, 2, 3, 4], length(nodes(multilayerdigraph)), length(multilayerdigraph.layers
   )
```

Related Packages

R

129

130

131

132

133

135

136

137

138

139

140

141

146

147

148

150

151

152

153

Here is a list of software packages for the creation, manipulation, analysis and visualisation of multilayer graphs implemented in the R language:

- muxViz implements functions to perform multilayer correlation analysis, multilayer centrality analysis, multilayer community structure detection, multilayer structural reducibility, multilayer motifs analysis and utilities to statically and dynamically visualise multilayer graphs (D. Domenico et al., 2014);
- multinet implements functions to import, export, create and manipulate multilayer graphs, several state-of-the-art multiplex graph analysis algorithms for centrality measures, layer comparison, community detection and visualization (Magnani et al., 2021);
- mully implements functions to import, export, create, manipulate and merge multilayer graphs and utilities to visualise multilayer graphs in 2D and 3D (Hammoud & Kramer, 2018):
- multinets implements functions to import, export, create, manipulate multilayer graphs and utilities to visualise multilayer graphs (Lazega et al., 2008).

Python

Here is a list of software packages for the creation, manipulation, analysis and visualisation of multilayer graphs implemented in the Python language:

- MultiNetX implements methods to create undirected networks with weighted or unweighted links, to analyse the spectral properties of adjacency or Laplacian matrices and to visualise multilayer graphs and dynamical processes by coloring the nodes and links accordingly;
- PyMNet implements data structures for multilayer graphs and multiplex graphs, methods to import, export, create, manipulate multilayer graphs and for the rule-based generation and lazy-evaluation of coupling edges and utilities to visualise multilayer graphs (Kivela et al., 2014).

54 Acknowledgements

This open-source research software project received no financial support.

References

- Aleta, A., Martín-Corral, D., Bakker, M. A., Piontti, A. P. y, Ajelli, M., Litvinova, M., Chinazzi, M., Dean, N. E., Halloran, M. E., Longini, I. M., Pentland, A., Vespignani, A., Moreno, Y., & Moro, E. (2022). Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas. *Proceedings of the National Academy of Sciences*, 119(26). https://doi.org/10.1073/pnas.2112182119
- Aleta, A., Martín-Corral, D., Piontti, A. P. y, Ajelli, M., Litvinova, M., Chinazzi, M., Dean, N. E., Halloran, M. E., Jr, I. M. L., Merler, S., Pentland, A., Vespignani, A., Moro, E., & Moreno, Y. (2020). Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. *Nature Human Behaviour*, 4(9), 964–971. https://doi.org/10.1038/s41562-020-0931-9
- Aleta, A., & Moreno, Y. (2019). Multilayer networks in a nutshell. Annual Review of Condensed Matter Physics, 10(1), 45–62. https://doi.org/10.1146/annurev-conmatphys-031218-013259
- Amato, R., Díaz-Guilera, A., & Kleineberg, K.-K. (2017). Interplay between social influence and competitive strategical games in multiplex networks. *Scientific Reports*, 7(1). https://doi.org/10.1038/s41598-017-06933-2
- Arruda, G. F. de, Cozzo, E., Peixoto, T. P., Rodrigues, F. A., & Moreno, Y. (2017). Disease localization in multilayer networks. *Physical Review X*, 7(1). https://doi.org/10.1103/physrevx.7.011014
- Artime, O., Benigni, B., Bertagnolli, G., dAndrea, V., Gallotti, R., Ghavasieh, A., Raimondo, S., & Domenico, M. D. (2022). *Multilayer network science*. Cambridge University Press. https://doi.org/10.1017/9781009085809
- Azimi-Tafreshi, N. (2016). Cooperative epidemics on multiplex networks. *Physical Review E*, 93(4). https://doi.org/10.1103/physreve.93.042303
- Baggio, J. A., BurnSilver, S. B., Arenas, A., Magdanz, J. S., Kofinas, G. P., & Domenico, M. D. (2016). Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. *Proceedings of the National Academy of Sciences*, 113(48), 13708–13713. https://doi.org/10.1073/pnas.1604401113
- Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/141000671
- Bianconi, G. (2018). *Multilayer networks*. Oxford University Press. https://doi.org/10.1093/oso/9780198753919.001.0001
- Boccaletti, S., Bianconi, G., Criado, R., Genio, C. I. del, Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., & Zanin, M. (2014). The structure and dynamics of multilayer networks. *Physics Reports*, 544(1), 1–122. https://doi.org/10.1016/j.physrep.2014.07.001
- Buldú, J. M., & Porter, M. A. (2018). Frequency-based brain networks: From a multiplex framework to a full multilayer description. *Network Neuroscience*, 2(4), 418–441. https://doi.org/10.1162/netn_a_00033
- Cozzo, E., Arruda, G. F. de, Rodrigues, F. A., & Moreno, Y. (2018). *Multiplex networks*. Springer International Publishing. https://doi.org/10.1007/978-3-319-92255-3

- Cozzo, E., Baños, R. A., Meloni, S., & Moreno, Y. (2013). Contact-based social contagion in multiplex networks. *Physical Review E*, 88(5). https://doi.org/10.1103/physreve.88.050801
- Datseris, G., Vahdati, A. R., & DuBois, T. C. (2022). Agents.jl: A performant and feature-full agent-based modeling software of minimal code complexity. *SIMULATION*, 003754972110688. https://doi.org/10.1177/00375497211068820
- Domenico, D., Porter, & Arenas. (2014). MuxViz: A tool for multilayer analysis and visualization of networks. *Journal of Complex Networks*, 3(2), 159–176. https://doi.org/10.1093/comnet/cnu038
- Domenico, M. D. (2017). Multilayer modeling and analysis of human brain networks. *Giga-Science*, 6(5). https://doi.org/10.1093/gigascience/gix004
- Domenico, M. D. (2022). *Multilayer networks: Analysis and visualization*. Springer International Publishing. https://doi.org/10.1007/978-3-030-75718-2
- Domenico, M. D., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. *Nature Physics*, 12(10), 901–906. https://doi.org/10.1038/nphys3865
- Domenico, M. D., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., Gómez, S., & Arenas, A. (2013). Mathematical formulation of multilayer networks. *Physical Review X*, 3(4). https://doi.org/10.1103/physrevx.3.041022
- Estrada, E., & Gómez-Gardeñes, J. (2014). Communicability reveals a transition to coordinated behavior in multiplex networks. *Physical Review E*, 89(4). https://doi.org/10.1103/physreve.89.042819
- Fairbanks, J., Besançon, M., Simon, S., Hoffiman, J., Eubank, N., & Karpinski, S. (2021).

 JuliaGraphs/graphs.jl: An optimized graphs package for the julia programming language.

 https://github.com/JuliaGraphs/Graphs.jl/
- Gosak, M., Markovič, R., Dolenšek, J., Rupnik, M. S., Marhl, M., Stožer, A., & Perc, M. (2018). Network science of biological systems at different scales: A review. *Physics of Life Reviews*, 24, 118–135. https://doi.org/10.1016/j.plrev.2017.11.003
- Granell, C., Gómez, S., & Arenas, A. (2013). Dynamical interplay between awareness and epidemic spreading in multiplex networks. *Physical Review Letters*, 111(12). https://doi.org/10.1103/physrevlett.111.128701
- Hakimi, S. L. (1962). On realizability of a set of integers as degrees of the vertices of a linear graph. i. *Journal of the Society for Industrial and Applied Mathematics*, 10(3), 496–506. https://doi.org/10.1137/0110037
- Hammoud, Z., & Kramer, F. (2018). Mully: An r package to create, modify and visualize multilayered graphs. *Genes*, 9(11), 519. https://doi.org/10.3390/genes9110519
- Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014).
 Multilayer networks. *Journal of Complex Networks*, 2(3), 203–271. https://doi.org/10.
 1093/comnet/cnu016
- Kleitman, D. J., & Wang, D. L. (1973). Algorithms for constructing graphs and digraphs with given valences and factors. *Discrete Mathematics*, 6(1), 79–88. https://doi.org/10.1016/0012-365x(73)90037-x
- Lazega, E., Jourda, M.-T., Mounier, L., & Stofer, R. (2008). Catching up with big fish in the big pond? Multi-level network analysis through linked design. *Social Networks*, 30(2), 159–176. https://doi.org/10.1016/j.socnet.2008.02.001
- Lee, K.-M., Min, B., & Goh, K.-I. (2015). Towards real-world complexity: An introduction to multiplex networks. *The European Physical Journal B*, 88(2). https://doi.org/10.1140/epjb/e2015-50742-1

- Lim, S., Radicchi, F., Heuvel, M. P. van den, & Sporns, O. (2019). Discordant attributes of structural and functional brain connectivity in a two-layer multiplex network. *Scientific Reports*, 9(1). https://doi.org/10.1038/s41598-019-39243-w
- Magnani, M., Rossi, L., & Vega, D. (2021). Analysis of multiplex social networks with r. Journal of Statistical Software, 98(8). https://doi.org/10.18637/jss.v098.i08
- Mangioni, G., Jurman, G., & Domenico, M. D. (2020). Multilayer flows in molecular networks identify biological modules in the human proteome. *IEEE Transactions on Network Science* and Engineering, 7(1), 411–420. https://doi.org/10.1109/tnse.2018.2871726
- Massaro, E., & Bagnoli, F. (2014). Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method. *Physical Review E*, 90(5). https://doi.org/10.1103/physreve.90.052817
- Moroni, C., & Monticone, P. (2022). MultilayerGraphs.jl: A julia package for the creation, manipulation and analysis of the structure, dynamics and functions of multilayer graphs.
 University of Turin (UniTO); Interdisciplinary Physics Team (InPhyT). https://doi.org/10.
 5281/zenodo.7009172
- Pilosof, S., Porter, M. A., Pascual, M., & Kéfi, S. (2017). The multilayer nature of ecological networks. *Nature Ecology &Amp*; *Evolution*, 1(4). https://doi.org/10.1038/s41559-017-0101
- Soriano-Paños, D., Lotero, L., Arenas, A., & Gómez-Gardeñes, J. (2018). Spreading processes in multiplex metapopulations containing different mobility networks. *Physical Review X*, 8(3). https://doi.org/10.1103/physrevx.8.031039
- Timóteo, S., Correia, M., Rodríguez-Echeverría, S., Freitas, H., & Heleno, R. (2018). Multilayer networks reveal the spatial structure of seed-dispersal interactions across the great rift landscapes. *Nature Communications*, 9(1). https://doi.org/10.1038/s41467-017-02658-y

