Reg. No.:

Name :

Mid-Term Examinations, April 2021

Programme	:	B.Tech	Semester	:	Winter 2020-2021
Course	:	Digital Logic Design	Code	:	ECE2002
Faculty	:	Dr. Anirban Bhowmick	Slot/Class No.	:	D11+D12+D13/0377
Time	:	1½ hours	Max. Marks	:	50

Answer all the Questions

- Q. No.

 Question Description

 1 (i) Design a 3 bit combinational circuit which produce logic '1' when more than one input variables are at logic '1'.

 Marks

 5
 - (ii) Show that AB'C + B + BD' + ABD' + A'C = B + C.
 - 2 (i) A Boolean function, F is given by the minterms as $f(A,B,C)=\sum m(3,4,5,6)$. Implement this function on 4:1 MUX by considering AC as your selection lines.
 - (ii) Design a multiplier which can perform the multiplication of two numbers $(5)_{10} \times (3)_{10}$.
 - 3 (i) Minimize the following function using K-MAP: $F = \sum m(0,2,6,10,11,12,13) + d(3,4,5,14,15).$ 7
 - (ii) Convert decimal 27.315 to binary.
 - 4 (i) In a J K flip flop, we have J = Q' and K =1. Assume the flip flop was initially cleared and then clocked for 6 pulses, find the sequence at the Q after 6 pulse (Fig. 1).

(ii) Design a Half adder using 2 × 4 Decoder

6

5

5

(ii) A sequential circuit using D flip-flop and logic gates is shown in the Fig.2, calculate the output for 4 clock cycle when you apply. X=1 and Y=1 and the clock is a negative edge trigger. Assume that initially the flip flop is cleared.

Fig.2

