

RESTRICTED 内部文件

89 CE Maths I-1

Solution	Marks	Remarks
1. (a) Increase percentage = $(\frac{1000}{8000} \times 100)\%$ = 12.5%	1A <u>1A</u> 2	for $\frac{1000}{8000}$ Accept 12.5
(b) His savings = $\$9000 \times \frac{3}{10}$ = \$2700	1A <u>1A</u> 2	
2. (a) $x + 1 > \frac{1}{5}(3x + 2)$ $5x - 3x > 2 - 5$ $2x > -3$ $x > -\frac{3}{2}$	1M 1M <u>1A</u> 2	OR $x - \frac{3}{5}x > \frac{2}{5} - 1$ 1M $\frac{2}{5}x > -\frac{3}{5}$ $x > -\frac{3}{2}$ 1A
(b) Furthermore, if $-4 \leq x \leq 4$, then the range of x is $-\frac{3}{2} < x \leq 4$.	2A 2	-1 if '=' incorrect Accept graphical representation
3. (a) Since $(x + 1)$ is a factor of $x^4 + x^3 - 8x + k$, $(-1)^4 + (-1)^3 - 8(-1) + k = 0$ <i>using FF</i> $k = -8$	1M 1A 2	
(b) $x^4 + x^3 - 8x - 8 = (x + 1)(x^3 - 8)$ $= (x + 1)(x - 2)(x^2 + 2x + 4)$	1M+1A 1A+1A 4	1M for $(x+1) \times$ cubic exp. 1A for $x^3 - 8 =$ $(x-2)(x^2+2x+4)$
OR $(2)^4 + (2)^3 - 8(2) - 8 = 0$ $\Rightarrow x - 2$ is another factor	1A 2A	
$\therefore x^4 + x^3 - 8x - 8 = (x + 1)(x - 2)(x^2 + 2x + 4)$	1M+2A 1M+2A 1P	1M for $(x+1)(x-2) \times$ quadratic exp.

RESTRICTED 内部文件

89 CE Maths I-2

RESTRICTED 内部文件

Solution	Marks	Remarks
<p>7. $3\tan\theta = 2\cos\theta$</p> $3 \frac{\sin\theta}{\cos\theta} = 2\cos\theta$ $3\sin\theta = 2\cos^2\theta$ $3\sin\theta = 2(1 - \sin^2\theta)$ $\therefore 2\sin^2\theta + 3\sin\theta - 2 = 0 \dots\dots\dots\dots\dots\dots$ $(2\sin\theta - 1)(\sin\theta + 2) = 0$ $\sin\theta = \frac{1}{2} \text{ or } -2 \text{ (rejected)}$ <p>The solutions are $\theta = 30^\circ$ or 150° ($\frac{\pi}{6}$ or $\frac{5\pi}{6}$) [as $\cos 30^\circ$ and $\cos 150^\circ \neq 0$].</p>	1M 1M 1A 1A 1A+1A <hr style="width: 10px; margin-left: 0;"/> 7	Accept ' $\sin\theta = \frac{1}{2}$ ' or ' $\sin\theta = -2$ ' Deduct 1 for each extraneous solution.

RESTRICTED 内部文件

89 CE Maths I-4

RESTRICTED 内部文件

89 CE Maths I-5

Solution	Marks	Remarks
9. (a) $\frac{k}{1} = \frac{\frac{1}{2}}{k}$ $k^2 = \frac{1}{2}$ $k = \frac{1}{\sqrt{2}}$ (or $\frac{\sqrt{2}}{2}$) (as $k > 0$)	1M <hr/> 1A <hr/> 2	
(b) $T(n) = \left(\frac{1}{\sqrt{2}}\right)^{n-1}$ [or $\frac{1}{(\sqrt{2})^{n-1}}$, $2^{-\frac{n-1}{2}}$, etc.]	1M+1A <hr/> 2	$\frac{1}{\sqrt{2}}^{n-1}$ p.p. Do not accept $\pm \frac{1}{\sqrt{2}}$ but follow through
(c) Sum to infinity = $\frac{1}{1 - \frac{1}{\sqrt{2}}}$ $= \frac{\sqrt{2}}{\sqrt{2} - 1}$ $= \frac{\sqrt{2}(\sqrt{2} + 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)}$ $= 2 + \sqrt{2}$	1M+1A <hr/> 1M <hr/> 1A <hr/> 4	
(d) No. of terms in the product = $\frac{2n - 1 - 1}{2} + 1 = n$ $T(1) \times T(3) \times T(5) \times \dots \times T(2n-1)$ $= 1 \times \frac{1}{2} \times \frac{1}{4} \dots \times \left(\frac{1}{\sqrt{2}}\right)^{2n-2}$ [or $1 \times \frac{1}{(\sqrt{2})^2} \times \frac{1}{(\sqrt{2})^4} \times \dots \times \frac{1}{(\sqrt{2})^{2n-2}}$] $= 1 \times \frac{1}{2} \times \frac{1}{2^2} \times \dots \times \frac{1}{2^{n-1}}$ $= \frac{1}{2^{1+2+\dots+(n-1)}} \dots$ $= \frac{1}{2^{\frac{-n(n-1)}{2}}} \quad$ [or $2^{\frac{-n(n-1)}{2}}$, etc.]	1A <hr/> 1M <hr/> 1M+1A	1M for summing index as A.P. <hr/> 4

RESTRICTED 内部文件

89 CE Maths I-6

Solution	Marks	Remarks
10. (a) $AB' = 10\cos 45^\circ$ $= 5\sqrt{2}\text{m}$ (or $\frac{10}{\sqrt{2}}$), (7.07107) $AC' = 10\cos 30^\circ$ $= 5\sqrt{3}\text{m}$ (8.66025)	1A <hr/> 1A <hr/>	Any figure roundable to 7.07
(b) $BC = \sqrt{10^2 + 10^2}$ $= 10\sqrt{2}\text{m}$ (14.14214) $BB' = 10\sin 45^\circ$ $= 5\sqrt{2}\text{m}$ (7.07107) $CC' = 10\sin 30^\circ$ $= 5\text{m}$	1A <hr/> 1A <hr/> 1A <hr/>	No unit - 1m for n - 1
	1A <hr/>	
(c) Let D be the foot of the perpendicular from C to BB' . $BD = (5\sqrt{2} - 5)\text{m}$ (= 2.07107) $B'C' = CD$ $= \sqrt{(10\sqrt{2})^2 - (5\sqrt{2} - 5)^2}$ $= \sqrt{125 + 50\sqrt{2}}\text{m}$ (= 13.9897)	1M <hr/> 1M <hr/> 1A <hr/>	Accept figures roundable to 13.9 - 14.0
(d) By the cosine rule, $\cos B'AC' = \frac{50 + 75 - (125 + 50\sqrt{2})}{2 \times 5\sqrt{2} \times 5\sqrt{3}}$ (= $-\frac{1}{\sqrt{3}}$, -0.57735) 1M $\angle B'AC' = 125^\circ$ (125.264) Area of the shadow = $\frac{1}{2} \times 5\sqrt{2} \times 5\sqrt{3} \sin 125.264^\circ$ $= 25\text{m}^2$	1A <hr/> 1M <hr/> 1A <hr/>	124° - 125° For $\Delta = \frac{1}{2} ab \sin C$ 25.0 - 25.4

RESTRICTED 内部文件

89 CE Maths I-7

Solution	Marks	Remarks
11. (a) Area of cross-section = $\frac{50}{2} (2 + 10) = 300\text{m}^2$ Vol. of water = $20 \times 300 = 6000\text{m}^3$	2CA 1M+1A	1M for Vol. = Area of cross-section x width OR $\frac{20 \times 50 \times 20}{2} + \frac{1}{2}(50 \times 8) \times 20$
(b) (i) When the depth of water at the deeper end is 8m, the cross-section of water is a triangle of area $\frac{8 \times 50}{2} = 200\text{m}^2$. Vol. of water left = $200 \times 20 = 4000\text{m}^3$.	2A	Drop in water level = 2m Water pumped out = $2 \times 50 \times 20 = 2000\text{m}^3$ 1A Water left = 4000m^3 1A
(ii) Vol. of water pumped out in 8 hours $= (0.125)^2 \pi \times 3600 \times 8 \times 3$ $= 1350\pi \text{ m}^3$ $= 4241\text{m}^3$ (correct to the nearest m^3) (4241.15)	1M+1A 1A	1M for area of cross-section
(iii). Vol. of water left after 8 hrs = $6000 - 4241$ $= 1759\text{m}^3$ When the depths of water are 8m and h m, the corresponding cross-sections of water are two similar triangles with bases 50m and b m. $\frac{b}{h} = \frac{50}{8}$ or $b = \frac{50}{8} h$	1M 1A 1M 1M	$\left(\frac{h}{8}\right)^2 = \frac{1759}{4000}$
$\therefore \frac{1}{2}b \times h \times 20 = 1759$ $\frac{20}{2} \times \frac{50}{8} h^2 = 1759$ $h = 5.305 = 5.3$ (correct to 1 d.p.)	1A 10	

RESTRICTED 内部文件

89 CE Maths I-8

Solution	Marks	Remarks																											
12. (a) (i) Area of $\triangle OAB = \frac{1}{2}(2)(2)\sin\theta = 2\sin\theta \text{ cm}^2$	1A																												
(ii) The area is greatest when $\theta = \frac{\pi}{2} \approx 1.57$	1A	90° not acceptable																											
	2																												
(b) Area of sector $OAB = \frac{1}{2}(2)^2\theta = 2\theta \text{ (cm}^2)$ $2\theta = 2\sin\theta = 2$ $\therefore \theta - \sin\theta - 1 = 0$	1A 1M 1A 3																												
(c) $f(0) = 0 - 0 - 1 < 0$ $f(3) = 3 - \sin 3 - 1 (= 1.859) > 0$ $\therefore 0 < \alpha < 3$ <i>If wrong, 1A is not given.</i> <i>If omitted, no 1A</i>	1M	For sub. $f(0)$, $f(3)$ Accept graphical method																											
	1A 2																												
(d)																													
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Interval</th> <th>Mid-value θ</th> <th>$f(\theta)$</th> </tr> </thead> <tbody> <tr> <td>$0 < \alpha < 3$</td> <td>1.5</td> <td>-</td> </tr> <tr> <td>$1.5 < \alpha < 3$</td> <td>2.25</td> <td>+</td> </tr> <tr> <td>$1.5 < \alpha < 2.25$</td> <td>1.875 (1.88)</td> <td>-</td> </tr> <tr> <td>$1.875 < \alpha < 2.25$</td> <td>2.063 (2.06)</td> <td>+</td> </tr> <tr> <td>$1.875 < \alpha < 2.063$</td> <td>1.969 (1.97)</td> <td>+</td> </tr> <tr> <td>$1.875 < \alpha < 1.969$</td> <td>1.922 (1.92)</td> <td>-</td> </tr> <tr> <td>$1.922 < \alpha < 1.946$</td> <td>1.946 (1.95)</td> <td>+</td> </tr> <tr> <td colspan="2">$1.922 < \alpha < 1.946$</td><td></td></tr> </tbody> </table>	Interval	Mid-value θ	$f(\theta)$	$0 < \alpha < 3$	1.5	-	$1.5 < \alpha < 3$	2.25	+	$1.5 < \alpha < 2.25$	1.875 (1.88)	-	$1.875 < \alpha < 2.25$	2.063 (2.06)	+	$1.875 < \alpha < 2.063$	1.969 (1.97)	+	$1.875 < \alpha < 1.969$	1.922 (1.92)	-	$1.922 < \alpha < 1.946$	1.946 (1.95)	+	$1.922 < \alpha < 1.946$			1M+1A	1M Testing of sign at mid-value of suitable interval 1A Correct sign Correct choice of sub-interval
Interval	Mid-value θ	$f(\theta)$																											
$0 < \alpha < 3$	1.5	-																											
$1.5 < \alpha < 3$	2.25	+																											
$1.5 < \alpha < 2.25$	1.875 (1.88)	-																											
$1.875 < \alpha < 2.25$	2.063 (2.06)	+																											
$1.875 < \alpha < 2.063$	1.969 (1.97)	+																											
$1.875 < \alpha < 1.969$	1.922 (1.92)	-																											
$1.922 < \alpha < 1.946$	1.946 (1.95)	+																											
$1.922 < \alpha < 1.946$																													
	1A																												
We see that α lies between 1.922 and 1.946. $\therefore \alpha = 1.9$ (correct to 1 d.p.)	1A 5																												

RESTRICTED 内部文件

89 CE Maths I-9

Solution	Marks	Remarks
13. (a) Since $p + q = 1$, putting $p = 3q$ $4q = 1$ $q = \frac{1}{4}$	1A <hr/> 1A <hr/>	optional <i>only</i> $q = \frac{1}{4}$ 1A.
(b) (i) The probability that the first ball drawn is black is $\frac{n}{10}$. After a black ball has been drawn, the probability of drawing a second black ball is $\frac{n-1}{9}$. \therefore the probability that both balls are black	1A <hr/> 1A <hr/>	
$= \frac{n}{10} \times \frac{n-1}{9}$ $= \frac{n(n-1)}{90}$	1M <hr/>	$\frac{n}{10} \times \frac{n-1}{9}$ 1A + 1M $\frac{n}{10} \times \frac{n-1}{10}$ wrong 1A + 1M
(ii) $\frac{n(n-1)}{90} > \frac{1}{3}$ $3n^2 - 3n - 90 > 0$ $n^2 - n - 30 > 0$ $(n - 6)(n + 5) > 0$ $\therefore n > 6$ or $n < -5$	1M <hr/> 1A <hr/> 1A <hr/>	Accept $n > 6$ with $n \in \mathbb{N}$ <i>by selecting n = 7, 8, 9, 10</i> 3A <i>all correct</i>
As n is integral and positive, $n = 7, 8, 9$ or 10 .	1A <hr/> <hr/>	
(c) The probability that the first ball drawn is red and the second is also red $= \frac{1}{2} \times \frac{4}{6} (= \frac{1}{3})$. The probability that the first is green and the second is red $= \frac{1}{2} \times \frac{3}{6} (= \frac{1}{4})$. \therefore the probability that the ball drawn from N is red $= \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$.	1A <hr/> 1A <hr/> 1A <hr/> 1A <hr/>	
<i>no explanation</i> <i>only expression</i>	<hr/> <hr/> <hr/> <hr/>	

RESTRICTED 内部文件

89 CE Maths I-10

Solution	Marks	Remarks
<p>14. (a).</p>	<p>1A + 1A + 1A</p> <p>1A</p> <p>Region</p> <hr style="width: 10%; margin-left: auto; margin-right: 0;"/> <p>4</p>	<p>1A for each line</p> <p>±1 horizontal/ vertical unit at (100, 0), (0, 100); (20, 0), (60, 80); (0, 20), (100, 20)</p>
<p>(b) (i) $z = 100 - x - y$</p>	1A	
<p>(ii) Cost of mixture = $6x + 5y + 4z$ $= 6x + 5y + 4(100 - x - y)$ $= 2x + y + 400$ dollars</p>	1A	
<p>(iii) $400x + 600y + 400z \geq 44\ 000$ $800x + 200y + 400z \geq 48\ 000$ Putting $z = 100 - x - y$, $y \geq 20$</p>	1A	
$2x - y \geq 40$ Further, (as $z \geq 0$, $100 - x - y \geq 0$) $x + y \leq 100$	1A	<i>or least cost</i>
<p>(iv) Drawing the line $2x + y = 0$ in the figure, the least cost is attained when $x = 30$, $y = 20$. ∴ $x = 30$, $y = 20$, $z = 50$</p>	<p>1M</p> <p>1A</p> <p>1A</p> <hr style="width: 10%; margin-left: auto; margin-right: 0;"/> <p>8</p>	<p>Any line. Costs at (30,20), (80,20), ($\frac{140}{3}$, $\frac{160}{3}$) are 480, 580 and 546.7 (Any point)</p>