

PESU Center for Information Security, Forensics and Cyber Resilience

Welcome to

PES University

Ring Road Campus, Bengaluru

10 June 2020

PESU Center for Information Security, Forensics and Cyber Resilience

APPLIED CRYPTOGRAPHY

Lecture 10

AES key scheduling

Subkey generation

AddRoundKey

- XOR state with 128-bits of the round key
- AddRoundKey proceeds one column at a time.
 - adds a round key word with each state column matrix the operation is matrix addition
- Designed to be as simple as possible

AddRoundKey Scheme

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	S _{1,1}	S _{1,2}	S _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

	s' _{0,0}	s' _{0,1}	s' _{0,2}	s' _{0,3}
	s' _{1,0}	s' _{1,1}	s' _{1,2}	s' _{1,3}
П				
l	s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}

AES Round

AES Key Scheduling

• takes 128-bits (16-bytes) key and expands into array of 44 32-bit words

Round		,	Words	
Pre-round	\mathbf{w}_0	\mathbf{w}_1	\mathbf{w}_2	\mathbf{w}_3
1	\mathbf{w}_4	\mathbf{w}_5	\mathbf{w}_6	\mathbf{w}_7
2	\mathbf{w}_8	\mathbf{w}_9	\mathbf{w}_{10}	\mathbf{w}_{11}
N_r	\mathbf{w}_{4N_r}	\mathbf{w}_{4N_r+1}	\mathbf{w}_{4N_r+2}	${\bf w}_{4N_r+3}$

Key generation

Rcon

$$rc_i = egin{cases} 1 & ext{if } i = 1 \ 2 \cdot rc_{i-1} & ext{if } i > 1 ext{ and } rc_{i-1} < 80_{16} \ (2 \cdot rc_{i-1}) \oplus 11 ext{B}_{16} & ext{if } i > 1 ext{ and } rc_{i-1} \geq 80_{16} \end{cases}$$

Values of rc_i in hexadecimal

i	1	2	3	4	5	6	7	8	9	10
rc	01	02	04	08	10	20	40	80	1B	36

$$W_i = \begin{cases} K_i & \text{if } i < N \\ W_{i-N} \oplus \text{SubWord}(\text{RotWord}(W_{i-1})) \oplus rcon_{i/N} & \text{if } i \geq N \text{ and } i \equiv 0 \pmod{N} \\ W_{i-N} \oplus \text{SubWord}(W_{i-1}) & \text{if } i \geq N, \, N > 6, \, \text{and } i \equiv 4 \pmod{N} \\ W_{i-N} \oplus W_{i-1} & \text{otherwise.} \end{cases}$$

2b	28	ab	09
7e	ae	f7	cf
15	d2	15	4f
16	a6	88	3с

Key Expansion Scheme

Making of t_i (temporary) words $i = 4 N_r$

Key Expansion Example (1st Round)

• Example of expansion of a 128-bit cipher key

Cipher key = 2b7e151628aed2a6abf7158809cf4f3c

w0=2b7e1516 w1=28aed2a6 w2=abf71588 w3=09cf4f3c

i	\mathbf{w}_{i-1}	RotWord	SubWord	Rcon[i/4]	t _i	w[i-4]	Wi
4	09cf4f3c	cf4f3c09	8a84eb0 1	0100000 0	8b84eb0 1	2b7e151 6	a0fafe17
5	a0fafe17	-	-	-	-	28aed2a 6	88542cb 1
6	88542cb 1	-	-	-	-	Abf7158 8	23a3393 9
7	23a3393 9	-	-	-	-	09cf4f3c	2a6c760 5

AES Security

- AES was designed after DES.
- Most of the known attacks on DES were already tested on AES.
- Brute-Force Attack
 - AES is definitely more secure than DES due to the larger-size key.
- Statistical Attacks
 - Numerous tests have failed to do statistical analysis of the ciphertext
- Differential and Linear Attacks
 - There are no differential and linear attacks on AES as yet.

Implementation Aspects

 The algorithms used in AES are so simple that they can be easily implemented using cheap processors and a minimum amount of memory.

- Very efficient
- Implementation was a key factor in its selection as the AES cipher
- AES animation:
 - http://www.cs.bc.edu/~straubin/cs381-05/blockciphers/rijndael_ingles2004.swf

Thank you

Next Class

Mandatory reading for the next class

https://seedsecuritylabs.org/Labs 16.04/Crypto/Crypto Encryption/

S Rajashree

Computer Science and Engineering

PES University, Bengaluru

PESU Center for Information Security, Forensics and Cyber Resilience

