Spannungsrichtige Messung

Gegeben: U, I, R Gesucht: R_V

Für eine Widerstandsmessung R_x steht ein I und ein U - Messgerät zur Verfügung Es soll so gemessen werden, dass die Korrekte Spannung am Widerstand gemessen wird . WIE ?

--> Antwort: Spannungsrichtige Messung

/

Es werden folgende Wert gemessen $U = \dots$, $I = \dots$

·		9
Gemessene Spannung U	2	V
Gemessener Strom I	0,202	19

(I größer, da auch ein Strom durch R_V fließt) 🗸

Darf hier R = U/I gerechnet werden?

--> Antwort: nein, da Strom wegen R_V nicht richtig gemessen wird.

lst der gemessene Strom kleiner oder größer als ohne Messgerät

--> Antwort: Größer, da R||R_V < R

Es sei R_x =... wie groß ist der Vorwiderstand des Spannungsmessgerätes?

			
R_x		10	Ohm

$$R_{\mathbf{x}} = \frac{U}{I - \frac{U}{R_{\mathbf{x}}}} \qquad \Longrightarrow I - \frac{U}{R_{\mathbf{Y}}} = \frac{U}{R_{\mathbf{x}}}$$

$$\Rightarrow \frac{U}{R_V} = I - \frac{U}{R_X} \qquad \Rightarrow R_V = \frac{U}{I - \frac{U}{R_X}}$$

direction in the second	
Widerstand R V	
At the result of the control of the	Section 1.
description of the second second	61
ides Spannungsmessers	Ohm

Referenzwiderstand

Gegeben: R_x, U, U_x (kleinstmöglicher Wert)

Gesucht: R_R (größtmöglicher Wert)

Ein Steuergerät misst den Widerstand eines ohmschen Sensors durch Nutzung eines Refrenzwiderstandes und eines U-Messeingangs am μP Die von der internen Spannungsversorgung bereit gestellte Spannung beträgt ... Der Widerstand des Sensors bewegege sich im Bereich ... Die kleinste durch den μP zuverlässig erfassbare Spannung ist ... Dimensionieren Sie den Wert des Referenzwiderstandes unter den gegebenen Bedingungen und der Maßgabe, dass ein möglichst kleiner Strom in der SG-Messchaltung fließen soll

Volt

Bereich Widerstands Sensor R_x

R_x,min	100	Ohm
R_x,max (hier ohne Bedeutung)	2000	Ohm

Stereuergerät

Steuerergeräte-uP

Spannungsversorgung U

U_x,min		
Minimal aufzulösender Spannungswert	0,01	Volt

R_R soll möglichst groß sein, damit ein kleiner Strom fließt beim Minimalalwert vom Sensor R_x fällt auch nur die Minimalspannung am Sensor ab diese muss noch U x,min betragen

$$R_X = R_R \frac{U_X}{U_X} \Rightarrow R_R = R_X \cdot \frac{U - U_X}{U_X}$$

Referenzwiderstand	49900 Ohm	

Schleifdraht-Messbrücke

Gegeben: R_R, R_X, Gesamtlänge Schleifbahn

Gesucht: Längen I_3, I_4

Mit einer Schleifdraht-Messbrücke wird im Abgleichbetrieb der Wert ... eines Widerstands ermittelt.

Der verwendete Referenzwidertsand hat den Wert ...

Die Widerstands-Schleifbahn hat die Gesamtlänge ...

Wie groß sind die einzelnen Längen bei abgeglichener Brücke?

Referenzwiderstand R_R	10000	Ohm
Gemessener Widerstand R_X	3000	Ohm
Länge Widerstansschleifbahn I_0	0,1	m

$$\frac{R_X}{R_R} = \frac{R_3}{R_4} \quad \frac{l_3}{l_4} = \frac{R_3}{R_4}$$

Die längen haben das gleiche Verhältnis wie die Widerstände

Zwischenergebnis: R_3/R_4	0,3	
Zwischenergebnis:		
Längenverhältnis I_3/I_4	0,3	

$$\Longrightarrow l_3 = \frac{R_3}{R_4} \, l_4$$

$$l_0 = l_3 + l_4$$

Einsetzen:

$$l_0 = \frac{R_3}{R_4} l_4 + l_4 \implies l_0 = l_4 \cdot (\frac{R_3}{R_4} + 1)$$

$$\Rightarrow l_4 = \frac{l_0}{(\frac{R_3}{R_4} + 1)}$$

und dazu noch:

$$I_3 = I_0 - I_4$$

I_4 (linke Seite)	0,076923	m
I_3 (rec hte Seite)	0,023077	m

۴

\/

Brücke im Ausschlagsbetrieb (beliebige Widertsandsänderungen)

Gegeben: R_x (Bereich), R_R

Gesucht: Differenzwert zweier U_d- Werte

Ein einzelner, veränderlicher ohmscher Sensor wird in einersapnnungsgespeisten Brückenschaltung zusammen mit drei Festwiderständen ... betrieben. Speisespannung: ... Der Widerstandswert des Sensors kann sich über einen weiten Bereich Verändern: ... bis ... Berechnen Sie die Differenz zwischen der minimalen und maximal möglichen Diagonalspannung

Messbrücke

R	200	Ohm
U_0 (Speisespannung)	5	Volt

R_x,min	0	Ohm
R_x,max	300	Ohm

(wichtig hier: da beliebig große Widerstandsänderungen, <u>nicht</u> die vereinfachte Viertelbrücken-Formel verwenden)

$$U_d = \frac{U_0}{2} \frac{R_x - R}{R_\perp + R}$$

Zwischenergebnisse

U_d, min	-2,5	Volt
U_d,max	0,5	Volt

Channy mandiffaring Dales	The example of stores of the side of	Superior Service States of Committee of the Committee of
Spannungsdifferenz Delta	U	ASSESSMENT OF THE PROPERTY OF THE
= U_d,max - U_d,min		1/al+
I O DITTO		VUIL

Halbbrücke

(beliebige u. kleine Widerstandsänderungen)

Gegeben: R_2, U_d (später R_0 und DeltaR, U_d)

Gesucht: R_1 (später U_0)

Roportionalitat DR rden. Zu Dehnung E

Zwei ohmsche Sensoren sollen in einer Halbbrücke verschaltet werden.

Wir gehen zunächst von beliebigen Widerstandswerten aus.

Einer der Sensoren (R2) hat den Momentanwert ...

In welchem Wertebereich darf andere dann leigen, damit die gelieferte Diagonalspannung nicht größer als ... % der Versorgungsspannung wird?

Prozentwert	10	%
Faktor k für Ud	0,1	

Momentanwertwert von R 2	500	Ohm

Schwarkung!

(wichtig hier: da beliebig große Widerstandsänderungen, nicht die vereinfachte Halbbrücken-Formel verwenden)

$$U_d = \frac{U_0}{2} \cdot \left(\frac{R_2 - R_1}{R_2 + R_1}\right) \implies kU_0 = \frac{U_0}{2} \cdot \left(\frac{R_2 - R_1}{R_2 + R_1}\right)$$

$$\Rightarrow k = \frac{1}{2} \cdot \left(\frac{R_2 - R_1}{R_2 + R_1} \right) \quad \Rightarrow 2k = \left(\frac{R_2 - R_1}{R_2 + R_1} \right).$$

$$\Rightarrow 2k(R_2 + R_1) = R_2 - R_1$$

$$\Rightarrow 2kR_2 + 2kR_1 = R_2 - R_1$$

$$\Rightarrow R_1(1+2k) = R_2(1-2k)$$

$$\Rightarrow R_1 = \frac{R_2(1-2k)}{(1+2k)}$$

R2=500 DZ

the first of the second	333.333333 Ohm
R1 (Minimalwert)	333,333333 Ohm
in a firmination of c	

R1 liegt im Wertebereich: R2 bis R1 (Minuimalwert)

Anmerkunhg: geht auch mit

$$U_d = \frac{U_0}{2} \cdot \left(\frac{\Delta R}{R_0}\right)$$

Wir finden zwei geeignete ohmsche Sensoren, deren Werte entgegengesetzt im Bereich von +/- ... um einen definierten Standardwert ... (RO) schwanken Wie groß darf die Versorgungsspannung sein, damit die Diagonalspannung nicht größer als ... V wird

U d,max	0,1	V
		,

R O	1000	Ohm
DeltaR (max)	40	Ohm

$$U_d = \frac{U_0}{2} \cdot \left(\frac{\Delta R}{R_0}\right) \quad \Rightarrow U_0 = 2U_d \frac{R_0}{\Delta R}$$

U 0	5	V

Frage: Ist dann die Größe der beiden Festwiderstaände in de Brücke von Bedeutuhng?
--> Antwort: Ja, sie sollen den Wert R_0 haben.