Please check the examination details be	ow before ente	ring your candidate information
Candidate surname		Other names
Centre Number Candidate N Pearson Edexcel Inter		al Advanced Leve
Thursday 29 May 20		
Morning (Time: 1 hour 30 minutes)	Paper reference	WMA13/01A
Mathematics International Advanced Le Pure Mathematics P3	evel	•
You must have: Mathematical Formulae and Statistica	ıl Tables (Yel	low), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions:

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
- there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information:

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice:

- Read each guestion carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

 Turn over

1: The point P(6, -2) lies on the continuous curve with equation $y = f(x), x \in \mathbb{R}$.

Find the point to which P is mapped when the curve with equation y = f(x) is transformed to the curve with equation

(a)
$$y = 2f(3x)$$

(2)

(b)
$$y = f(x-2) + 8$$

(2)

(c)
$$y = f^{-1}(x)$$

(1)

Question 1 continued	
(Total for Question 1 is 5 marks)	
, - /	

$$f(x) = 4x^3 + 2x^2 - 12$$

The equation f(x) = 0 has a single root α .

(a) Show that α lies in the interval [1, 2]

(2)

(b) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\frac{k}{2x+1}}$$

where k is a constant to be found.

(2)

(c) Using the iteration formula

$$x_{n+1} = \sqrt{\frac{k}{2x_n + 1}}$$

with $x_1 = 1$ and the value of k found in part (b), find, to 4 decimal places,

- (i) the value of x_3
- (ii) the value of α .

(3)

Question 2 continued	
(Tota	l for Question 2 is 7 marks)
(10ta	To yucston 2 is / marks)

3: The curve C has equation

$$x = \frac{4y^2 - 3}{2y + 1} \qquad y \neq -\frac{1}{2}$$

(a) Find $\frac{dy}{dx}$ in terms of y, giving the answer in simplest form.

(4)

A point P lies on C.

Given that

- the gradient of the tangent to C at P is $\frac{1}{3}$
- the point *P* lies above the *x*-axis
- (b) find the coordinates of P.

(Solutions relying entirely on calculator technology are not acceptable.)

Question 3 continued

Question 3 continued

Question 3 continued	
	(Total for Question 3 is 8 marks)

Figure 1

In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.

Figure 1 shows a sketch of part of the curve C with equation y = g(x) where

$$g(x) = \frac{3x^3 - 5x^2 + 7x - 5}{x^2 + 1}$$

Given that

$$\frac{3x^3 - 5x^2 + 7x - 5}{x^2 + 1} \equiv Ax + B + \frac{Cx + D}{x^2 + 1}$$

- (a) (i) find the values of the constants A, B and C
 - (ii) show that D = 0

(4)

The finite region R, shown shaded in Figure 1, is bounded by C, the x-axis and the lines with equations x=2 and x=3

(b) Find the exact area of region R using algebraic integration. Give the answer in the form $\alpha + \ln \beta$ where α and β are constants to be found.

(4)

Question 4 continued

Question 4 continued

Question 4 continued	
(To	etal for Question 4 is 8 marks)

5: In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

A curve C has equation

$$y = 5\cos 2x - 12\sin 2x \qquad -\pi < x < \pi$$

The point A with x coordinate $\frac{\pi}{3}$ lies on C.

(a) Use algebraic differentiation to find the gradient of the tangent to C at A. Give the answer in simplest form.

(3)

(b) Express $5\cos 2x - 12\sin 2x$ in the form

$$R\cos(2x+\alpha)$$

where
$$R > 0$$
 and $0 < \alpha < \frac{\pi}{2}$

Find the exact value of R and find the value of α to 3 decimal places.

(3)

A point P lies on C.

Given that the gradient of the tangent to C at P is 6

(c) find the greatest possible value for the *x* coordinate of *P*. Give the answer to 2 decimal places.

Question 5 continued

Question 5 continued

Question 5 continued	
	(T-4-1 f O4' 5 :- 10)
	(Total for Question 5 is 10 marks)

Figure 2

Figure 2 shows a sketch of the curve with equation y = f(x) where

$$f(x) = (2x - 3)^3 e^{4x - 2}$$

(a) Show that

$$f'(x) = 2(Px + Q)(2x - 3)^n e^{4x - 2}$$

where P, Q and n are constants to be found.

(4)

- (b) Hence find
 - (i) the x coordinates of the stationary points on the curve with equation y = f(x),
 - (ii) the range of the function g defined by

$$g(x) = 8(2x-3)^3 e^{4x-2}$$
 $x \le \frac{3}{2}$

(Solutions relying entirely on calculator technology are not acceptable.)

Question 6 continued

Question 6 continued

Question 6 continued	
(Total	al for Question 6 is 8 marks)

7: In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.

(a) Write $\sin 4\theta$ in the form

$$\sin\theta\cos\theta(P+Q\sin^n\theta)$$

where P, Q and n are constants to be found.

(3)

(b) Use the result from part (a) to show that, for $x \neq \frac{k\pi}{2}$ where $k \in \mathbb{Z}$, the equation

$$\sec x \sin 4x = 5 \sin^3 x \cot x$$

can be written in the form

$$4 \sec^2 x - 5 \tan x - 8 \tan^2 x = 0$$

(3)

(c) Use the result from part (b) to solve, for $0 < x < \pi, x \neq \frac{\pi}{2}$, the equation

$$\sec x \sin 4x = 5\sin^3 x \cot x$$

giving the answers in radians to 3 significant figures.

Question 7 continued

Question 7 continued

Question 7 continued	
(Total for	Question 7 is 10 marks)

8: The functions f and g are defined by

$$f(x) = \ln(2x - 3) \qquad x \in \mathbb{R} \quad x > 2$$

$$g(x) = \frac{3x - 2a}{x - a} \qquad x \in \mathbb{R} \quad x \neq a$$

where a is a positive constant.

(a) Find the exact value of fg(2a)

(2)

(b) Find f⁻¹

(3)

Figure 3

Figure 3 shows a sketch of the curve with equation y = g(x)

(c) Sketch a graph of the curve with equation y = |g(x)|

Indicate clearly on your sketch the equation of the horizontal asymptote.

(3)

The equation |g(x)| = 10 has two solutions.

Given that the larger solution is 8

- (d) (i) find the value of a,
 - (ii) find the value of the smaller solution.

Question 8 continued

Question 8 continued

Question 8 continued	
	(Total for Question 8 is 12 marks)

9: The amount of an antibiotic, *x* milligrams, in the bloodstream of a horse, *t* hours after the antibiotic had been administered, is given by the formula

$$x = D e^{-0.2t}$$

where D milligrams is the dose of the antibiotic given to the horse.

A dose of 30 mg of the antibiotic is given to the horse.

(a) Find the amount of the antibiotic in the bloodstream of the horse 8 hours after the dose is given. Give your answer in mg to 2 decimal places.

(2)

A second dose of 20 mg is given to the horse 8 hours after the first dose.

(b) Show that the amount of the antibiotic in the bloodstream of the horse, 2 hours after the second dose is given, is 17.5 mg to one decimal place.

(1)

No more doses of the antibiotic are given. At time *T* hours after the second dose is given, the amount of the antibiotic in the bloodstream is 10 mg.

(c) Find the value of T, giving your answer to 2 decimal places.

(Solutions relying entirely on calculator technology are not acceptable.)

Question 9 continued

Question 9 continued	
	(Total for Question 9 is 7 marks)
	TOTAL FOR PAPER IS 75 MARKS
	TOTAL FUNTAFER IS 75 MARKS

