Conteúdo

3 ′	Trai	nsformada de Laplace
;	3.1	Definição da transformada de Laplace
;	3.2	Existência da Transformada de Laplace
	3.3	Linearidade da transformada de Laplace
;	3.4	Transformadas de Laplace fundamentais
;	3.5	Deslocamento na transformada
;	3.6	Transformada do deslocamento
	3.7	Transformada da contração/expansão de uma função
	3.8	Derivada da transformada
	3.9	Transformada da derivada
	3.10	Transformada de Laplace Inversa
		Problemas de Valor Inicial ou de Cauchy
;	3.12	Exercícios do capítulo
	3.13	Soluções dos exercícios

Capítulo 3

Transformada de Laplace

3.1 Definição da transformada de Laplace

A transformada de Laplace de uma função $f:[0,+\infty[\to\mathbb{R}$ é a função $\mathcal{L}\{f\}$ definida por

$$\mathcal{L}{f}(s) = \int_0^{+\infty} f(t)e^{-st}dt,$$

para os valores de $s \in \mathbb{R}$ onde o integral converge.

Exemplo 3.1.1. Determinar a transformada de Laplace da função f(t)=t. Calcula-se o integral impróprio de 1^a espécie

$$\int_0^{+\infty} t e^{-st} dt = \lim_{x \to +\infty} \int_0^x t e^{-st} dt$$

Usando a integração por partes, considerando $u' = e^{-st}$ e v = t (consequentemente, $u = -\frac{1}{s}e^{-st}$ e v' = 1) vem

$$\int_0^x t e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \int_0^x -\frac{1}{s} e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x - \left[\frac{1}{s^2} e^{-st} \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int_0^x e^{-st} dt = \left[-\frac{1}{s} e^{-st} \, t \right]_0^x + \frac{1}{s} \int$$

Substituindo agora t pelos valores 0 e x vem,

$$\int_0^x t e^{-st} dt = \left(-\frac{1}{s} e^{-sx} \, x + \frac{1}{s} e^0 \, 0 \right) - \left(\frac{1}{s^2} e^{-sx} - \frac{1}{s^2} e^0 \right) = -\frac{1}{s} e^{-sx} \, x - \frac{1}{s^2} e^{-sx} + \frac{1}{s^2} e$$

Tomando agora o limite,

$$\lim_{x \to +\infty} \int_0^x t e^{-st} dt = \lim_{x \to +\infty} \left(-\frac{1}{s} e^{-sx} \, x - \frac{1}{s^2} e^{-sx} + \frac{1}{s^2} \right) = \frac{1}{s^2}, \ s > 0$$

Note-se que se s > 0

$$\lim_{x \to +\infty} \left(-\frac{1}{s} e^{-sx} x - \frac{1}{s^2} e^{-sx} \right) = -\frac{1}{s} \lim_{x \to +\infty} \frac{x + \frac{1}{s}}{e^{sx}} = 0(1)$$

Se s < 0, -sx tende para $+\infty$ e portanto

$$\lim_{x \to +\infty} \left(-\frac{1}{s} e^{-sx} x - \frac{1}{s^2} e^{-sx} \right) = -\frac{1}{s} \lim_{x \to +\infty} \left(x + \frac{1}{s} \right) e^{-sx} = +\infty$$

Por último, se s=0

$$\int_0^{+\infty} te^{-st} dt = \int_0^{+\infty} te^0 dt = \int_0^{+\infty} t dt$$

Este integral é divergente, já que

$$\lim_{x \to +\infty} \int_0^x t dt = \lim_{x \to +\infty} \left[\frac{t^2}{2} \right]_0^x = \lim_{x \to +\infty} \frac{t^2}{2} = +\infty$$

¹Podem usar a regra de Cauchy para levantar a indeterminação

Se $s \le 0$ o integral impróprio é divergente. Se s > 0 o integral impróprio é convergente e o seu valor é $\frac{1}{s^2}$. Podemos então concluir que a transformada de Laplace de f(t) = t é

$$\mathcal{L}\{t\}(s) = \frac{1}{s^2}, \ s > 0$$

Exercício 3.1.1 Calcule as transformadas de Laplace das seguintes funções, indicando os respetivos domínios.

3.2 Existência da Transformada de Laplace

Seja $f:[0,+\infty[\to\mathbb{R}.$ Suponhamos que

- 1. f é seccionalmente contínua em $[0, +\infty[; ^2$
- 2. f é de **ordem exponencial à direita**, isto é, existem $a \in \mathbb{R}$, M > 0 e T > 0 tais que

$$|f(t)| \le Me^{at}, \quad \forall t \ge T.$$

Então $\mathcal{L}{f}(s)$ existe para s > a.

Exemplo 3.2.1. Vamos mostrar que a transformada de Laplace da função

$$f(x) = \begin{cases} 8 & \text{se} \quad x \ge 1\\ -3x & \text{se} \quad 0 \le x < 1 \end{cases}$$

é

$$\mathcal{L}{f}(s) = \frac{(11s - 3e^s + 3)e^{-s}}{s^2}$$

Note-se que f é seccionalmente contínua (apenas apresenta um ponto de descontinuidade em x=1 e é limitada em qualquer intervalo $[0,b],\ b>0$) e ainda que $f(x)\leq 8,\ \forall x\geq 0.$

Assim, tomando M=8 e a=0, para qualquer T>0 se verifica a desigualdade

$$|f(x)| \le Me^{ax}, \quad \forall x \ge T$$

Uma função $f:[0,+\infty[\to\mathbb{R}$ diz-se seccionalmente contínua em $[0,+\infty[$ se o conjunto dos seus pontos de descontinuidade é um conjunto numerável e a função é limitada em qualquer intervalo [0,b], b>0.

seccionalmente contínua

não seccionalmente contínua

Figura 3.1: Gráfico da função f.

portanto, f admite transformada de Laplace.

Dada uma função f definida em $I = [0, +\infty[$, a sua transformada de Laplace é uma função de s, F(s), dada pelo integral impróprio

$$\int_0^{+\infty} e^{-sx} f(x) \, dx$$

para os valores de s para os quais o integral é convergente.

Como f é uma função definida por ramos, vem

$$\int_{0}^{+\infty} e^{-sx} f(x) dx = \int_{0}^{1} -3x e^{-sx} dx + \int_{1}^{+\infty} 8e^{-sx} dx$$

O primeiro integral é dado por

$$\int_0^1 -3xe^{-sx} dx = \left[\frac{3(sx+1)e^{-sx}}{s^2} \right]_0^1 = \frac{3(s+1)e^{-s}}{s^2} - \frac{3}{s^2}$$

A convergência do segundo integral pode ser estudada pela existência do limite

$$\lim_{t \to +\infty} \int_{1}^{t} 8e^{-sx} dx = \lim_{t \to +\infty} \left[-\frac{8e^{-sx}}{s} \right]_{1}^{t} = \lim_{t \to +\infty} \left[-\frac{8e^{-st}}{s} + \frac{8e^{-s}}{s} \right]$$

Este limite só existe em \mathbb{R} se s>0 e neste caso

$$\lim_{t\to +\infty} \left[-\frac{8\,e^{-st}}{s} + \frac{8\,e^{-s}}{s} \right] = \frac{8\,e^{-s}}{s}$$

Se s<0 o limite é $+\infty$. Observe-se que se s=0 temos o integral

$$\int_{1}^{+\infty} 8 \, dx$$

que é divergente (para $+\infty$).

Assim, para s > 0 temos

$$F(s) = \frac{11e^{-s}}{s} + \frac{3e^{-s}}{s^2} - \frac{3}{s^2} = \frac{(11s - 3e^s + 3)e^{-s}}{s^2}$$

Exercício 3.2.1 Considere a função

$$f(x) = \begin{cases} -1 & \text{se} \quad x \ge 5\\ 9x & \text{se} \quad 0 \le x < 5 \end{cases}$$

Justifique que a função f admite transformada de Laplace e mostre que

$$\mathcal{L}{f}(s) = -\frac{46 e^{-5 s}}{s} - \frac{9 e^{-5 s}}{s^2} + \frac{9}{s^2}$$

para todos os valores de $s \in \mathbb{R}^+$.

3.3 Linearidade da transformada de Laplace

Sejam $\alpha \in \mathbb{R}$ e duas funções $f,g:[0,+\infty[\to \mathbb{R}.$ Suponhamos que existem

$$\mathcal{L}\{f\}(s)$$
, para $s>s_f$ e $\mathcal{L}\{g\}(s)$, para $s>s_g$

Então:

1.
$$\mathcal{L}{f+g}(s) = \mathcal{L}{f}(s) + \mathcal{L}{g}(s), \ s > \max{s_f, s_g}$$

2.
$$\mathcal{L}\{\alpha f\}(s) = \alpha \mathcal{L}\{f\}(s), s > s_f.$$

Exemplo 3.3.1. A transformada de f(t) = 5 + 3t é dada por

$$\mathcal{L}\{5+3t\}(s) = 5\mathcal{L}\{1\}(s) + 3\mathcal{L}\{t\}(s) = \frac{5}{s} + \frac{3}{s^2}$$

com s > 0.

3.4 Transformadas de Laplace fundamentais

1.
$$\mathcal{L}\{e^{at}\}(s) = \frac{1}{s-a}, \ s > a, a \in \mathbb{R}$$

2.
$$\mathcal{L}\{\cos(at)\}(s) = \frac{s}{s^2 + a^2}, \ s > 0, a \in \mathbb{R}$$

3.
$$\mathcal{L}\{\text{sen}(at)\}(s) = \frac{a}{s^2 + a^2}, \ s > 0, a \in \mathbb{R}$$

4.
$$\mathcal{L}\{t^n\}(s) = \frac{n!}{s^{n+1}}, \ s > 0, n \in \mathbb{N}_0$$

5.
$$\mathcal{L}\{\cosh(at)\}(s) = \mathcal{L}\{\frac{e^{at} + e^{-at}}{2}\}(s) = \frac{s}{s^2 - a^2}, \ s > |a|, a \in \mathbb{R}$$

6.
$$\mathcal{L}\{\operatorname{senh}(at)\}(s) = \mathcal{L}\{\frac{e^{at} - e^{-at}}{2}\}(s) = \frac{a}{s^2 - a^2}, \ s > |a|, a \in \mathbb{R}$$

Exercício 3.4.1 Determine a transformada de Laplace das funções, indicando os respetivos domínios:

$$f(t) = t^2 + \cos(3t) + \pi$$

2.
$$g(t) = 3e^{-2t} + \sin\left(\frac{t}{6}\right) + \cosh(4t)$$

$$3. h(t) = t^{10} + \frac{e^t}{3} + \cos^2(t)$$

$$4j(t) = \operatorname{senh}(\sqrt{2}t) + \left(\frac{t}{2}\right)^2$$

3.5 Deslocamento na transformada

Sejam $f:[0,+\infty[\to\mathbb{R}$ integrável em [0,b], para qualquer b>0 e $\lambda\in\mathbb{R}$. Se $\mathcal{L}\{f\}(s)=F(s)$ existe para $s>s_f$, então

$$\mathcal{L}\lbrace e^{\lambda t} f(t) \rbrace (s) = F(s - \lambda), \quad s > s_f + \lambda.$$

Exemplo 3.5.1. Para calcular a transformada de Laplace da função $g(t) = e^{-3t} \operatorname{sen}(2t)$ começamos por determinar a transformada

$$\mathcal{L}\{\text{sen}(2t)\}(s) = \frac{2}{s^2 + 4}, \ s > 0$$

Aplicamos agora a propriedade acima referida

$$\mathcal{L}\left\{e^{-3t}\operatorname{sen}(2t)\right\}(s) = \frac{2}{(s-(-3))^2 + 4} = \frac{2}{(s+3)^2 + 4}, \ s > -3$$

Exercício 3.5.1 Calcule as transformadas de Laplace de:

- 1. $f(t) = e^{2t}t^2$
- 2. $h(t) = e^{-t} \cosh(4t)$

3.6 Transformada do deslocamento

Seja $f: \mathbb{R} \to \mathbb{R}$, integrável em [0, b], para qualquer b > 0 e nula em \mathbb{R}^- . Se $\mathcal{L}\{f\}(s) = F(s)$ existe para $s > s_f$, então

$$\forall a \in \mathbb{R}^+, \quad \mathcal{L}\{f(t-a)\}(s) = e^{-as}F(s), \quad s > s_f$$

Demonstração. A transformada $\mathcal{L}\{f(t-a)\}(s)$ é dada por

$$\mathcal{L}\{f(t-a)\}(s) = \int_0^{+\infty} e^{-st} f(t-a) dt = \int_{-a}^{+\infty} e^{-s(t_1+a)} f(t_1) dt_1$$

fazendo a mudança de variável $t = t_1 + a$. Aplicando agora as propriedades do integral, temos

$$\int_{-a}^{+\infty} e^{-s(t_1+a)} f(t_1) dt_1 = \int_{-a}^{0} e^{-s(t_1+a)} f(t_1) dt_1 + \int_{0}^{+\infty} e^{-s(t_1+a)} f(t_1) dt_1$$

O primeiro integral é nulo já que f(t) = 0 em \mathbb{R}^- . Então,

$$\int_{-a}^{+\infty} e^{-s(t_1+a)} f(t_1) dt_1 = \int_{0}^{+\infty} e^{-s(t_1+a)} f(t_1) dt_1 = e^{-sa} \int_{0}^{+\infty} e^{-st_1} f(t_1) dt_1 = e^{-sa} \mathcal{L}\{f(t_1)\}(s) = e^{-sa} F(s).$$

Exercício resolvido 3.6.1. Use o resultado anterior para calcular a seguinte transformada de Laplace:

$$f(t) = \begin{cases} 0 & \text{se } t < 2\\ 1 & \text{se } t \ge 2 \end{cases}$$

Resolução:

Comecemos por considerar os gráficos da função f e da função g:

onde q é dada por

$$g(t) = \begin{cases} 0 & \text{se } t < 0 \\ 1 & \text{se } t \ge 0 \end{cases}$$

Observe-se que f(t) = g(t-2). Como a transformada de Laplace de g é

$$\mathcal{L}\lbrace g\rbrace(s) = \frac{1}{s}, \ s > 0$$

resulta que a transformada de Laplace de f é dada por

$$\mathcal{L}{f}(s) = e^{-2s} \frac{1}{s}, \ s > 0$$

Exercício 3.6.1 Use o resultado anterior para calcular a transformada de Laplace:

$$f(t) = \begin{cases} 0 & \text{se } t < \pi \\ \sin(t - \pi) & \text{se } t \ge \pi \end{cases}$$

3.7 Transformada da contração/expansão de uma função

Seja $f:[0,+\infty[\to\mathbb{R}$, integrável em [0,b], para qualquer b>0 e $a\in\mathbb{R}^+$. Se $\mathcal{L}\{f\}(s)=F(s)$ existe para $s>s_f$, então

$$\mathcal{L}{f(at)}(s) = \frac{1}{a}F\left(\frac{s}{a}\right), \quad s > as_f$$

Exemplo 3.7.1. Sabendo que a transformada de $f(t) = \cos t$ é $\mathcal{L}\{\cos(t)\}(s) = \frac{s}{s^2 + 1}$, podemos determinar a transformada de $\mathcal{L}\{\cos(4t)\}(s)$, onde a = 4. Assim,

$$\mathcal{L}\{\cos{(4t)}\}(s) = \frac{1}{4} \frac{\frac{s}{4}}{\frac{s^2}{16} + 1} = \frac{s}{s^2 + 16}$$

Exercício 3.7.1 Use a propriedade anterior para obter a Transformada de Laplace de:

- 1. $n(t) = \frac{t^2}{2}$
- 2. $p(t) = e^{3t}$

3.8 Derivada da transformada

Seja $f:[0,+\infty[\to\mathbb{R}$, integrável em [0,b], para qualquer b>0. Se $\mathcal{L}\{f\}(s)=F(s)$ existe para $s>s_f$, então

$$\forall n \in \mathbb{N}, \quad \mathcal{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n F^{(n)}(s), \quad s > s_f.$$

Exemplo 3.8.1. Para calcular $\mathcal{L}\{t^2\cos(t)\}$, consideramos a transformada $\mathcal{L}\{\cos(t)\} = \frac{s}{s^2+1}$; a transformada de $t^2\cos(t)$ é dada por

$$\mathcal{L}\lbrace t^2 \cos(t)\rbrace = (-1)^2 \left(\frac{s}{s^2 + 1}\right)'' = \left(\frac{-s^2 + 1}{(s^2 + 1)^2}\right)' = \frac{2s^3 - 6s}{(s^2 + 1)^3}$$

Exercício 3.8.1 Use a propriedade anterior para obter a Transformada de Laplace de:

- 1. $f(t) = te^{2t}$
- 2. $h(t) = (t^2 3t + 2)\operatorname{sen}(3t)$.

3.9 Transformada da derivada

Seja $f:[0,+\infty[\to\mathbb{R}]$ seccionalmente contínua. Admita-se que as derivadas $f', f'', \ldots, f^{(n-1)}$ são de ordem exponencial e que $f^{(n)}$ é seccionalmente contínua. Se existem

$$\mathcal{L}{f}(s) = F(s), \ \mathcal{L}{f'}(s), \ \dots, \ \mathcal{L}{f^{(n-1)}}(s)$$

para $s > s_f, \ s > s_{f'}, \dots, \ s > s_{f^{(n-1)}},$ respetivamente, então

$$\mathcal{L}\lbrace f^{(n)}\rbrace(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - s^{n-3} f''(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0),$$

para $s > \max\{s_f, s_{f'}, s_{f''}, \ldots, s_{f^{(n-1)}}\}.$

Exemplo 3.9.1. Supondo que y = f(x) e as suas derivadas satisfazem as condições do Teorema anterior, vamos determinar $\mathcal{L}\{f'''(t)\}$ em função de $F(s) = \mathcal{L}\{f\}$ sabendo que f(0) = -2, f'(0) = 0 e f''(0) = 1.

$$\mathcal{L}\{f'''(t)\} = s^3 F(s) - s^2 f(0) - sf'(0) - f''(0) = s^3 F(s) + 2s^2 - 1$$

Exercício 3.9.1 Supondo que y = f(x) e as suas derivadas satisfazem as condições do Teorema anterior, determine em função de $F(s) = \mathcal{L}\{f\}$

- 1. $\mathcal{L}\{f''(t)\}\$ sabendo que f(0) = 1 e f'(0) = 2.
- 2. $\mathcal{L}\{f''(t) + 3f'(t) f(t)\}\$ sabendo que f(0) = 3 e f'(0) = 0.
- 3. $\mathcal{L}\{f'''(t) 2f''(t) f'(t)\}$ sabendo que f(0) = 0, f'(0) = 1 e f''(0) = 0.

Exercício 3.9.2 Determine $Y(s) = \mathcal{L}\{y(t)\}$ sabendo que

$$\begin{cases} y'' + y' = \cos(t) \\ y(0) = 2 \\ y'(0) = 0 \end{cases}$$

3.10 Transformada de Laplace Inversa

Seja F(s) uma função definida para $s > \alpha$.

Chama-se transformada de Laplace inversa de F, que se representa por $\mathcal{L}^{-1}\{F\}$ ou $\mathcal{L}^{-1}\{F(s)\}$, à função f, caso exista, definida em \mathbb{R}_0^+ tal que $\mathcal{L}\{f\}(s) = F(s)$, para $s > \alpha$.

Observação 3.1. Dada F definida para $s > \alpha$, nem sempre existe $\mathcal{L}^{-1}\{F\}$; no caso de existir, a transformada inversa pode não ser única e nesse caso escolhemos a solução que origina uma função contínua (o que é justificado pelo resultado seguinte)

Teorema 3.1. Sejam f e g duas funções seccionalmente contínuas em \mathbb{R}_0^+ tais que

$$\mathcal{L}{f}(s) = F(s) = \mathcal{L}{g}(s),$$

para $s > \alpha$. Se f e g são contínuas no ponto $t \in \mathbb{R}^+$, então f(t) = g(t).

Por outras palavras, o resultado diz que não podem existir duas funções contínuas distintas com a mesma transformada de Laplace.

Exemplo 3.10.1. A função contínua cuja transformada de Laplace é $\frac{2}{s^2+4}$ é

$$\mathcal{L}^{-1}\left\{\frac{2}{s^2+4}\right\} = \text{sen}(2t), \ t \ge 0$$

Para calcularmos transformadas de Laplace inversas convém referir algumas propriedades.

Teorema 3.2. Suponha-se que existem $\mathcal{L}^{-1}\{F\}$ e $\mathcal{L}^{-1}\{G\}$. Então

1.
$$\mathcal{L}^{-1}{F+G} = \mathcal{L}^{-1}{F} + \mathcal{L}^{-1}{G};$$

2.
$$\mathcal{L}^{-1}\{\alpha F\} = \alpha \mathcal{L}^{-1}\{F\}.$$

Teorema 3.3. Se existe $\mathcal{L}^{-1}\{F\}$, então

$$\forall \lambda \in \mathbb{R}, \quad \mathcal{L}^{-1}\{F(s-\lambda)\} = e^{\lambda t} \mathcal{L}^{-1}\{F(s)\}.$$

Estas propriedades e a tabela de transformadas (tomada agora no sentido inverso) serão usadas para determinar transformadas inversas.

Exercício resolvido 3.10.1. Vamos mostrar que a inversa da transformada de Laplace da função

$$F(s) = \frac{-0.2 \, s + 2}{s^2 + 0.04}$$

é

$$f(x) = 10 \operatorname{sen}\left(\frac{1}{5}x\right) - \frac{1}{5}\cos\left(\frac{1}{5}x\right)$$

Resolução:

A lineariedade permite-nos escrever

$$\mathcal{L}^{-1}\left[\frac{-0.2\,s+2}{s^2+0.04}\right] = \mathcal{L}^{-1}\left[-\frac{0.2\,s}{s^2+0.04}\right] + \mathcal{L}^{-1}\left[\frac{2}{s^2+0.04}\right]$$

Recordando a transformada de laplace das funções seno e cosseno:

$$\mathcal{L}[\cos(ax)](s) = \frac{s}{s^2 + a^2}$$
 e $\mathcal{L}[\sin(ax)](s) = \frac{a}{s^2 + a^2}$

basta observar que

$$-\frac{0.2 s}{s^2 + 0.04} = -0.2 \frac{s}{s^2 + 0.2^2} \quad e \quad \frac{2}{s^2 + 0.04} = 10 \frac{0.2}{s^2 + 0.2^2}$$

Portanto,

$$\mathcal{L}^{-1}\left[-\frac{0.2\,s}{s^2 + 0.04}\right] = -\frac{1}{5}\mathcal{L}^{-1}\left[\frac{s}{s^2 + 0.2^2}\right] = -\frac{1}{5}\cos\left(\frac{1}{5}\,x\right)$$

 \mathbf{e}

$$\mathcal{L}^{-1} \left[\frac{2}{s^2 + 0.04} \right] = 10 \mathcal{L}^{-1} \left[\frac{0.2}{s^2 + 0.2^2} \right] = 10 \operatorname{sen} \left(\frac{1}{5} x \right)$$

Efetuando os cálculos tem-se

$$\mathcal{L}^{-1} \left[\frac{-0.2 \, s + 2}{s^2 + 0.04} \right] = 10 \, \text{sen} \left(\frac{1}{5} \, x \right) - \frac{1}{5} \, \cos \left(\frac{1}{5} \, x \right)$$

Exercício resolvido 3.10.2. Determine a função y sabendo que a sua transformada de Laplace é

$$\mathcal{L}{y} = \frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)}, \ s > \frac{2}{3}$$

Resolução:

Vamos decompor esta fração em elementos simples:

$$\frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)} = \frac{As + B}{s^2 + 4} + \frac{C}{9 s - 6}$$

Para determinar os coeficientes $A,\,B$ e C podemos atender apenas aos numeradores

$$(As + B)(9s - 6) + C(s2 + 4) = -36s2 + 5s - 144$$

Fazendo s igual a $\frac{2}{3}$ vem $\frac{40}{9}C=-\frac{470}{3}\Leftrightarrow C=-\frac{141}{4};$ se fizermos s=0 obtemos imediatamente o valor de B: $-6\,B-141=-144\Leftrightarrow B=\frac{1}{2}.$ Para determinar o valor de A, toma-se, por exemplo, s=1 e vem $3\,A-\frac{699}{4}=-175\Leftrightarrow A=-\frac{1}{12}.$

Assim,

$$\frac{-36\,s^2 + 5\,s - 144}{(s^2 + 4)(9\,s - 6)} = \frac{-\frac{1}{12}\,s + \frac{1}{2}}{s^2 + 4} + \frac{-\frac{141}{4}}{9\,s - 6}$$

Aplicando a inversa da transformada de Laplace, temos

$$y = \mathcal{L}^{-1} \left\{ \frac{-\frac{1}{12}s + \frac{1}{2}}{s^2 + 4} \right\} + \mathcal{L}^{-1} \left\{ \frac{-\frac{141}{4}}{9s - 6} \right\}$$

Calculando as inversas das transformadas de Laplace, temos

$$\mathcal{L}^{-1}\left\{\frac{-\frac{1}{12}s + \frac{1}{2}}{s^2 + 4}\right\} = \frac{1}{4}\operatorname{sen}(2t) - \frac{1}{12}\cos(2t) \quad \text{e} \quad \mathcal{L}^{-1}\left\{\frac{-\frac{141}{4}}{9s - 6}\right\} = -\frac{47}{12}e^{\frac{2}{3}t}$$

Finalmente, a função y é dada por:

$$y = -\frac{47}{12}e^{\frac{2}{3}t} + \frac{1}{4}\sin(2t) - \frac{1}{12}\cos(2t)$$

Exercício 3.10.1 Determine a transformada de Laplace inversa das seguintes funções:

1.
$$\frac{5}{s^2 + 25}$$

2.
$$\frac{3}{s-4}$$

3.
$$\frac{4}{s^7}$$

$$4. \ \frac{s+2}{s^2+4s+40}$$

5.
$$\frac{5}{s^2 - 6s - 7}$$

6.
$$\frac{1}{s^2 - 3s}$$

7.
$$\frac{1}{(s-2)^2}$$

8.
$$\frac{s^2 + 20s + 9}{(s-1)^2(s^2 + 9)}$$

3.11 Problemas de Valor Inicial ou de Cauchy

Chamamos Problema de Cauchy ou problema de valores iniciais ao sistema

$$\begin{cases} F(x, y, y', y'', \dots, y^{(n)}) = 0 \\ y(x_0) = y_0 \\ y'(x_0) = y_1 \\ \vdots \\ y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$

Às n condições $y(x_0) = y_0, \dots, y^{(n-1)}(x_0) = y_{n-1}$ chamamos **condições iniciais**. Se estas condições respeitarem a pontos diferentes, designam-se **condições de fronteira** e ao problema chamamos **problema de valores de fronteira**.

Exemplo 3.11.1. O problema

$$\begin{cases} y'' = 3t + 4y \\ y(0) = 0 \\ y(1) = 0 \end{cases}$$

é um problema de valores de fronteira. Contudo,

$$\begin{cases} y'' = 3t + 4y \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

é um problema de valores iniciais ou de Cauchy.

A determinação da solução de um problema de Cauchy, passa pela resolução de uma equação diferencial e pela solução dessa equação que satisfaz as condições iniciais.

Vimos já algumas técnicas de resolução de EDOs, que podem ser aplicadas nestas situações.

Consideremos o problema de Cauchy

$$\begin{cases} y' - y = -e^x \\ y(0) = 0 \end{cases}$$

A equação diferencial $y'-y=-e^x$ é uma equação linear e podemos resolvê-la usando a técnica do fator integrante (ver secção $\ref{eq:condition}$). A sua solução é

$$y = (-x+c)e^x, \ c \in \mathbb{R}$$

Pretendemos a solução que satisfaz a condição y(0) = 0. Vamos determinar o valor da constante c que satisfaz esta condição:

$$y(0) = 0 \Leftrightarrow (-0+c)e^0 = 0 \Leftrightarrow c = 0$$

Assim, a solução do problema de Cauchy será

$$y = -xe^x$$

Este exemplo pode também ser resolvido recorrendo à Transformada de Laplace.

Como $y' - y = -e^x$, se aplicarmos a transformada de Laplace a ambos os membros da equação, continuamos a obter uma igualdade:

$$\mathcal{L}\lbrace y' - y \rbrace(s) = \mathcal{L}\lbrace -e^x \rbrace(s) \tag{3.1}$$

Sabemos que

$$\mathcal{L}{y'} = s\mathcal{L}{y} - y(0) = s\mathcal{L}{y} - 0 = s\mathcal{L}{y}$$
 e $\mathcal{L}{-e^x} = -\frac{1}{s-1}, s > 1$

Substituindo agora estas igualdades em 3.1 temos a equação

$$s\mathcal{L}\{y\} - \mathcal{L}\{y\} = -\frac{1}{s-1} \tag{3.2}$$

ou seja,

$$(s-1)\mathcal{L}{y} = -\frac{1}{s-1} \Leftrightarrow \mathcal{L}{y} = -\frac{1}{(s-1)^2}$$

Para determinar a função y basta saber a transformada de Laplace inversa de $\mathcal{L}^{-1}\left\{-\frac{1}{(s-1)^2}\right\}$. Como

$$\mathcal{L}^{-1}\left\{-\frac{1}{s^2}\right\} = -x$$

aplicando o deslocamento da transformada, vem

$$y = \mathcal{L}^{-1} \left\{ -\frac{1}{(s-1)^2} \right\} = -xe^x$$

Exercício 3.11.1. Resolva o seguinte problema de Cauchy usando duas técnicas diferentes:

$$\begin{cases} 3y' - 4y = x \\ y(0) = \frac{1}{3} \end{cases}$$

Quando, num problema de Cauchy temos uma equação linear de coeficientes constantes e o 2º membro é uma função que admite transformada de Laplace, podemos utilizar a transformada de Laplace para determinar a sua solução, recorrendo à transformada de Laplace inversa. Contudo, podemos também resolver a EDO recorrendo a outras técnicas e no final, escolher a solução que satisfaz as condições iniciais.

No caso particular das equações lineares o seguinte teorema permite-nos afirmar que um problema de Cauchy tem solução única.

Teorema 3.4. Se a_0, a_1, \ldots, a_n e b são funções contínuas num intervalo I, $a_0(x) \neq 0$, $\forall x \in I$, $x_0 \in I$ e $\beta_i \in \mathbb{R}$, $i = 0, \ldots, n-1$, então o problema de Cauchy

$$\begin{cases} a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = b(x) \\ y(x_0) = \beta_0, y'(x_0) = \beta_1, \dots, y^{(n-1)}(x_0) = \beta_{n-1} \end{cases}$$

tem nesse intervalo uma e uma só solução.

No caso particular de n=1 (equação linear de 1^a ordem), este teorema pode enunciar-se da forma

Teorema 3.5. Se p e q são funções contínuas num intervalo I, então o problema de Cauchy

$$\begin{cases} y' + p(x)y = q(x) \\ y(x_0) = y_0 \end{cases}$$

tem nesse intervalo uma e uma só solução.

Apresentamos de seguida alguns exemplos de problemas de valor inicial, recorrendo à transformada de Laplace.

Exercício resolvido 3.11.1. Considere o problema de valor inicial

$$\begin{cases} -6y + 9y' = 5\cos(-2t) \\ y(0) = -4 \end{cases}$$

Mostraremos que a solução deste problema é

$$y = -\frac{47}{12}e^{\frac{2}{3}t} + \frac{1}{4}\sin(2t) - \frac{1}{12}\cos(2t)$$

Resolução:

Aplicando a transformada de Laplace a ambos os membros da equação diferencial vem:

$$9\mathcal{L}{y'} - \mathcal{L}{6y} = \mathcal{L}{5\cos(-2t)}$$

Como a transformada de Laplace da derivada é dada por $\mathcal{L}\{y'\} = s\mathcal{L}\{y\} - y(0) = s\mathcal{L}\{y\} + 4$ e a transformada de Laplace do 2º membro é $\mathcal{L}\{5\cos{(-2t)}\} = \frac{5s}{s^2+4}$, vem

$$9(s\mathcal{L}{y} + 4) - 6\mathcal{L}{y} = \frac{5s}{s^2 + 4} \Leftrightarrow (9s - 6)\mathcal{L}{y} = \frac{5s}{s^2 + 4} - 36$$

Portanto,

$$\mathcal{L}{y} = \frac{\frac{5 s}{s^2 + 4} - 36}{9 s - 6} = \frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)}$$

Vamos decompor esta fração em elementos simples:

$$\frac{-36 s^2 + 5 s - 144}{(s^2 + 4)(9 s - 6)} = \frac{As + B}{s^2 + 4} + \frac{C}{9 s - 6}$$

Para determinar os coeficientes A, B e C podemos atender apenas aos numeradores

$$(As + B)(9s - 6) + C(s^{2} + 4) = -36s^{2} + 5s - 144$$

- Fazendo s igual a $\frac{2}{3}$ vem $\frac{40}{9}C = -\frac{470}{3} \Leftrightarrow C = -\frac{141}{4}$.
- Se fizermos s=0 obtemos imediatamente o valor de B: $-6B-141=-144 \Leftrightarrow B=\frac{1}{2}$.
- Para determinar o valor de A, toma-se, por exemplo, s=1 e vem $3A-\frac{699}{4}=-175 \Leftrightarrow A=-\frac{1}{12}$.

Assim.

$$\frac{-36\,s^2 + 5\,s - 144}{(s^2 + 4)(9\,s - 6)} = \frac{-\frac{1}{12}\,s + \frac{1}{2}}{s^2 + 4} + \frac{-\frac{141}{4}}{9\,s - 6}$$

Aplicando a inversa da transformada de Laplace, temos

$$y = \mathcal{L}^{-1} \left\{ \frac{-\frac{1}{12} s + \frac{1}{2}}{s^2 + 4} \right\} + \mathcal{L}^{-1} \left\{ \frac{-\frac{141}{4}}{9 s - 6} \right\}$$

Calculando as inversas das transformadas de Laplace, temos

$$\mathcal{L}^{-1}\left\{\frac{-\frac{1}{12}\,s+\frac{1}{2}}{s^2+4}\right\} = \frac{1}{4}\,\mathrm{sen}\,(2\,t) - \frac{1}{12}\,\cos{(2\,t)} \quad \mathrm{e} \quad \mathcal{L}^{-1}\left\{\frac{-\frac{141}{4}}{9\,s-6}\right\} = -\frac{47}{12}\,e^{\frac{2}{3}\,t}$$

Finalmente, a solução da equação diferencial é

$$y = -\frac{47}{12}e^{\frac{2}{3}t} + \frac{1}{4}\sin(2t) - \frac{1}{12}\cos(2t)$$

Exercício resolvido 3.11.2. Determine a solução do problema de valor inicial

$$\begin{cases} 2y - 4y' + 2y'' = \cos(-3t) \\ y(0) = 6 \\ y'(0) = 1 \end{cases}$$

Resolução:

Aplicando a transformada de Laplace a ambos os membros da equação diferencial vem:

$$2\mathcal{L}\{y''\} - 4\mathcal{L}\{y'\} + 2\mathcal{L}\{y\} = \mathcal{L}\{\cos(-3t)\}$$

Atendendo às transformadas de Laplace das derivadas:

$$\mathcal{L}{y''} = s^2 \mathcal{L}{y} - sy(0) - y'(0)$$
 e $\mathcal{L}{y'} = s\mathcal{L}{y} - y(0)$

obtemos

$$\mathcal{L}{y''} = s^2 \mathcal{L}{y} - 6s - 1$$
 e $\mathcal{L}{y'} = s\mathcal{L}{y} - 6$

Como a transformada de Laplace de $\cos{(-3t)}$ é $\frac{s}{s^2+9}$, efetuando os cálculos temos

$$(2s^2 - 4s + 2)\mathcal{L}{y} = 12s + \frac{s}{s^2 + 9} - 22 \Leftrightarrow \mathcal{L}{y} = \frac{12s + \frac{s}{s^2 + 9} - 22}{2s^2 - 4s + 2}$$

vem,

$$\mathcal{L}{y} = \frac{12 s^3 - 22 s^2 + 109 s - 198}{(s^2 + 9)(2 s^2 - 4 s + 2)}$$

Vamos decompor esta fração em elementos simples. Para isso vejamos se $2 s^2 - 4 s + 2$ se pode decompor em elementos de 1º grau. Como a equação $2 s^2 - 4 s + 2 = 0$ só tem uma raiz, 1, podemos escrever

$$2s^2 - 4s + 2 = 2(s-1)^2$$

Assim.

$$\frac{12s^3 - 22s^2 + 109s - 198}{(s^2 + 9)(2s^2 - 4s + 2)} = \frac{12s^3 - 22s^2 + 109s - 198}{2(s - 1)^2(s^2 + 9)}$$

A fração decomposta em elementos simples é:

$$\frac{12 s^3 - 22 s^2 + 109 s - 198}{2 (s-1)^2 (s^2 + 9)} = -\frac{4 s + 9}{100 (s^2 + 9)} + \frac{151}{25 (s-1)} - \frac{99}{20 (s-1)^2}$$

Nota: Recorde a decomposição em elementos simples estudada na determinação de primitivas. Para determinar a solução da equação diferencial basta calcular a inversa da transformada de Laplace

$$y = \mathcal{L}^{-1} \left\{ -\frac{4s+9}{100(s^2+9)} + \frac{151}{25(s-1)} - \frac{99}{20(s-1)^2} \right\}$$

Usando a lineariedade vem:

$$y = -\frac{99}{20}te^{t} + \frac{151}{25}e^{t} - \frac{3}{100}\sin(3t) - \frac{1}{25}\cos(3t)$$

que é a solução do problema de valor inicial dado.

Exercício resolvido 3.11.3. Determine a solução do problema de valor inicial

$$\begin{cases}
-3y - 6y' - 3y'' = 5e^{-t} \\
y(0) = -4 \\
y'(0) = -9
\end{cases}$$

Resolução

Aplicando a transformada de Laplace a ambos os membros da equação diferencial vem:

$$-3\mathcal{L}\{y''\} - 6\mathcal{L}\{y'\} - 3\mathcal{L}\{y\} = \mathcal{L}\{5e^{-t}\}\$$

Atendendo às transformadas de Laplace das derivadas:

$$\mathcal{L}{y''} = s^2 \mathcal{L}{y} - sy(0) - y'(0)$$
 e $\mathcal{L}{y'} = s\mathcal{L}{y} - y(0)$

obtemos

$$\mathcal{L}{y''} = s^2 \mathcal{L}{y} + 4s + 9$$
 e $\mathcal{L}{y'} = s\mathcal{L}{y} + 4$

Como a transformada de Laplace de $5e^{-t}$ é $\frac{5}{s+1}$, efetuando os cálculos temos

$$(-3s^2 - 6s - 3)\mathcal{L}{y} = 12s + \frac{5}{s+1} + 51 \Leftrightarrow \mathcal{L}{y} = \frac{12s + \frac{5}{s+1} + 51}{-3s^2 - 6s - 3} \Leftrightarrow \mathcal{L}{y} = \frac{12s^2 + 63s + 56}{(s+1)(-3s^2 - 6s - 3)}$$

Vamos decompôr esta fração em elementos simples. Para isso vejamos se $-3s^2 - 6s - 3$ se pode decompôr em elementos de 1º grau. Como a equação $-3s^2 - 6s - 3 = 0$ só tem uma raiz, -1, podemos escrever

$$-3s^2 - 6s - 3 = -3(s+1)^2$$

Assim,

$$\frac{12\,s^2 + 63\,s + 56}{(s+1)(-3\,s^2 - 6\,s - 3)} = \frac{12\,s^2 + 63\,s + 56}{-3\,(s+1)^3}$$

A fração decomposta em elementos simples é:

$$\frac{12 s^2 + 63 s + 56}{-3 (s+1)^3} = -\frac{4}{s+1} - \frac{13}{(s+1)^2} - \frac{5}{3 (s+1)^3}$$

Nota: Recorde a decomposição em elementos simples estudada na determinação de primitivas. Para determinar a solução da equação diferencial basta calcular a inversa da transformada de Laplace

$$y = \mathcal{L}^{-1} \left\{ -\frac{4}{s+1} - \frac{13}{(s+1)^2} - \frac{5}{3(s+1)^3} \right\}$$

Usando a lineariedade vem:

$$y = -\frac{5}{6}t^2e^{-t} - 13te^{-t} - 4e^{-t}$$

que é a solução do problema de valor inicial dado.

Exercício 3.11.1 Considere os seguintes problemas de Cauchy e determine as suas soluções.

1.
$$\begin{cases} y' - e^{ax} = 0, \ a \in \mathbb{R} \setminus \{0\} \\ y(0) = 0 \end{cases}$$

2.
$$\begin{cases} y'' + 2y' - 8y = 12e^{2x} \\ y(0) = 0 \\ y'(0) = 1 \end{cases}$$

3.
$$\begin{cases} y'' + y' = \cos(t) \\ y(0) = 2 \\ y'(0) = 0 \end{cases}$$

3.12 Exercícios do capítulo

Exercício 3.12.1 Para cada uma das funções seguintes, determine $F(s) = \mathcal{L}\{f(t)\}$:

1.
$$f(t) = 2\operatorname{sen}(3t) + t - 5e^{-t}$$
;

2.
$$f(t) = e^{2t} \cos(5t)$$
;

3.
$$f(t) = te^{3t}$$
:

4.
$$f(t) = \pi - 5e^{-t}t^{10}$$
;

5.
$$f(t) = (3t - 1) \operatorname{sen} t$$
.

Exercício 3.12.2 Para cada uma das funções seguintes, determine $\mathcal{L}^{-1}{F(s)}$:

1.
$$F(s) = \frac{2s}{s^2 - 9}$$
;

2.
$$F(s) = \frac{4}{s^7}$$
;

3.
$$F(s) = \frac{1}{s^2 + s - 2}$$
;

4.
$$F(s) = \frac{1}{s^2 + 4s + 6}$$
;

Exercício 3.12.3 Calcule o valor do integral impróprio $\int_0^{+\infty} t^{10} e^{-2t} dt$.

Exercício 3.12.4 Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável. Sabendo que $f'(t) + 2f(t) = e^t$ e que f(0) = 2, determine a expressão de f(t).

Exercício 3.12.5 Calcule:

1.
$$\mathcal{L}\{(t-2+e^{-2t})\cos(4t)\};$$

2.
$$\mathcal{L}^{-1}\left\{\frac{2s-1}{s^2-4s+6}\right\}$$
;

Exercício 3.12.6 Calcule $\mathcal{L}^{-1} \left\{ \frac{2s}{(s-1)(s^2+2s+5)} \right\}$

Exercício 3.12.7 Resolva os seguintes problemas de Cauchy:

1.
$$xy' + y = y^2$$
, $y(1) = \frac{1}{2}$;

2.
$$xy + x + y'\sqrt{4 + x^2} = 0$$
, $y(0) = 1$;

3.
$$(1+x^3)y' = x^2y$$
, $y(1) = 2$.

Exercício 3.12.8 Resolva cada um dos seguintes problemas de Cauchy usando a transformada de Laplace.

1.
$$3x' - x = \cos t$$
, $x(0) = -1$;

2.
$$\frac{d^2y}{dt^2} + 36y = 0$$
, $y(0) = -1$, $\frac{dy}{dt}(0) = 2$;

3.
$$y'' + 2y' + 3y = 3t$$
, $y(0) = 0$, $y'(0) = 1$;

4.
$$y'' + y = t^2 + 1$$
, $y(\pi) = \pi^2$, $y'(\pi) = 2\pi$. (Sugestão: Efetue a substituição definida por $x = t - \pi$.)

Exercício 3.12.9 Resolva o problema de Cauchy $\begin{cases} y' + y \cos x = \cos x \\ y(0) = 2 \end{cases}$

Exercício 3.12.10 Determine uma solução contínua para os seguintes problemas de valor inicial, e represente-a graficamente:

1.
$$y' + 2y = f(x)$$
, $f(x) = \begin{cases} 1 & \text{se } 0 \le x \le 3 \\ 0 & \text{se } x > 3 \end{cases}$, $y(0) = 0$;

2.
$$(x^2 + 1)y' + 2xy = f(x)$$
, $f(x) = \begin{cases} x & \text{se } 0 \le x < 1 \\ -x & \text{se } x \ge 1 \end{cases}$, $y(0) = 0$.

Exercício 3.12.11 Determine uma solução contínua para o problema de valor inicial y' + P(x) y = 4x, y(0) = 3, onde $P(x) = \begin{cases} 2 & \text{se } 0 \le x \le 1 \\ -2/x & \text{se } x > 1 \end{cases}$, e represente-a graficamente.

3.13 Soluções dos exercícios

Exercício 3.1.1

- 1. $\mathcal{L}{f}(s) = \frac{1}{s}, s > 0.$
- 2. $\mathcal{L}f(s) = \frac{1}{s-1}, s > 1.$

Exercício 3.2.1

Exercício 3.4.1

- 1. $\mathcal{L}{f}(s) = \frac{2}{s^3} + \frac{s}{s^2+9} + \frac{\pi}{s}, s > 0$
- 2. $\mathcal{L}{g}(s) = \frac{3}{s+2} + \frac{6}{36s^2+1} + \frac{s}{s^2-16}, s > 4$
- 3. $\mathcal{L}\{h\}(s) = \frac{10!}{s^{11}} + \frac{1}{3s-3} + \frac{1}{2s} + \frac{s}{2s^2+8}, s > 1$
- 4. $\mathcal{L}\{j\}(s) = \frac{\sqrt{2}}{2^2 \cdot 2} + \frac{1}{2 \cdot 3}, s > \sqrt{2}$

Exercício 3.5.1

- 1. $\mathcal{L}{f}(s) = \frac{2}{(s-2)^3}, s > 2$
- 2. $\mathcal{L}\{h\}(s) = \frac{s+1}{(s+1)^2-16}, s > 3$

Exercício 3.6.1

- 1. $\mathcal{L}{f}(s) = \frac{e^{-2s}}{s}, s > 0$ 2. $\mathcal{L}{g}(s) = \frac{e^{-\pi s}}{s^2 + 1}, s > 0$

Exercício 3.7.1

- 1. $\mathcal{L}\{n\}(s) = \frac{1}{s^3}, s > 0$
- 2. $\mathcal{L}\{p\}(s) = \frac{1}{s-3}, s > 3$

Exercício 3.8.1

- 1. $\mathcal{L}{f}(s) = \frac{1}{(s-2)^2}, s > 2$
- 2. $\mathcal{L}{h}(s) = \frac{18s^2 54}{(s^2 + 9)^3} \frac{18s}{(s^2 + 9)^2} + \frac{6}{s^2 + 9}, \ s > 0.$

Exercício 3.9.1

- 1. $s^2F(s) s 2$
- 2. $(s^2 + 3s 1)F(s) 3s 9$
- 3. $(s^3 2s^2 s)F(s) s + 2$

Exercício 3.9.2 $Y(s) = \frac{1}{(s+1)(s^2+1)} + \frac{2}{s}$

Exercício 3.10.1

- 1. $y(x) = \text{sen}(5x), x \ge 0$
- 2. $y(x) = 3e^{4x}, x \ge 0$
- 3. $y(x) = \frac{x^6}{180}, x \ge 0$ 4. $y(x) = e^{-2x} \cos(6x), x \ge 0$
- 5. $y(x) = \frac{5}{4}e^{3x} \operatorname{senh}(4x), x \ge 0$
- 6. $y(x) = -\frac{1}{3} + \frac{1}{3}e^{3x}, x \ge 0$
- 7. $y(x) = e^{2x}x, x \ge 0$
- 8. $y(x) = \frac{8}{5}e^{-x} + 3e^{x}x \frac{8}{5}\cos(3x) \frac{18}{15}\sin(3x), x \ge 0$

Exercício 3.11.1

- $\begin{aligned} &1. \ \ y(x) = \frac{1}{a}e^{ax} \frac{1}{a}; \\ &2. \ \ y(t) = -\frac{1}{6}e^{2t} + 2te^{2t} + \frac{1}{6}e^{-4t}; \end{aligned}$
- 3. $y(t) = \frac{e^{-t}}{2} \frac{\cos(t)}{2} + \frac{\sin(t)}{2} + 2$.

- Exercício 3.12.1 $1. \ \ \, \frac{6}{s^2+9} + \frac{1}{s^2} \frac{5}{s+1} \, , \quad s>0;$ $2. \ \ \, \frac{s-2}{(s-2)^2+25} \, , \quad s>2;$

- $3. \ \frac{1}{(s-3)^2} \,, \ s>3;$
- 4. $\frac{\pi}{s} \frac{5 \cdot 10!}{(s+1)^{11}}, \quad s > 0;$ 5. $\frac{6s}{(s^2+1)^2} \frac{1}{s^2+1}, \quad s > 0.$

Exercício 3.12.2

- 1. $2\cosh(3t) = e^{3t} + e^{-3t}, t \ge 0;$
- 2. $\frac{t^6}{180}$, $t \ge 0$;
- 3. $\frac{1}{3}e^t \frac{1}{3}e^{-2t}$, $t \ge 0$;
- 4. $\frac{e^{-2t}}{\sqrt{2}} \operatorname{sen}(\sqrt{2}t), \ t \ge 0.$

Exercício 3.12.3 $\frac{10!}{211}$

Exercício 3.12.4 $f(t) = \frac{1}{3}e^t + \frac{5}{3}e^{-2t}$.

- $\begin{array}{l} \textbf{Exercício 3.12.5} \\ 1. \ \ \, \frac{s^2-16}{(s^2+16)^2} \frac{2s}{s^2+16} + \frac{s+2}{(s+2)^2+16} \,, \ \ \, s>0; \end{array}$
 - 2. $e^{2t} \left(2\cos(\sqrt{2}t) + \frac{3}{\sqrt{2}} \sin(\sqrt{2}t) \right), \ t \ge 0.$

Exercício 3.12.6 $\frac{1}{4}e^t - \frac{1}{4}e^{-t}\cos(2t) + \frac{3}{4}e^{-t}\sin(2t), \quad t \ge 0.$

Exercício 3.12.7

- 1. $y = \frac{1}{x+1}$;
- 2. $y = -1 + 2e^{2-\sqrt{4+x^2}}$;
- 3. $y = \sqrt[3]{4(1+x^3)}$.

Exercício 3.12.8

- 1. $x(t) = \frac{3}{10} \operatorname{sen} t \frac{1}{10} \cos t \frac{9}{10} e^{\frac{t}{3}};$
- 2. $y(t) = \frac{1}{3} \operatorname{sen}(6t) \cos(6t);$
- 3. $y(t) = t \frac{2}{3} + \frac{2}{3\sqrt{2}}e^{-t}\operatorname{sen}(\sqrt{2}t) + \frac{2}{3}e^{-t}\cos(\sqrt{2}t);$
- 4. $y(t) = (t \pi)^2 + 2\pi(t \pi) + \pi^2 1 + \cos(t \pi)$

Exercício 3.12.9 $y = 1 + e^{-\sin x}, x \in \mathbb{R}.$

- tercicio 3.12.10

 1. $y = \begin{cases} \frac{1 e^{-2x}}{2}, & \text{se } 0 \le x \le 3\\ -\frac{e^{-2x}}{2} + \frac{e^{-2(x-3)}}{2}, & \text{se } x > 3 \end{cases}$ 2. $y = \begin{cases} \frac{x^2}{2} \\ \frac{1}{x^2 + 1}, & \text{se } 0 \le x < 1 \end{cases}$

Exercício 3.12.11
$$y = \begin{cases} 2x - 1 + 4e^{-2x}, \text{ se } 0 \le x \le 1 \\ 4x^2 \ln x + (1 + 4e^{-2})x^2, \text{ se } x > 1 \end{cases}$$
.