A02176917 Name Eric Larsen

Open book. Open notes. Open recorded lectures and all other resources provided from this course. Closed neighbor, additional internet, AI, or any other resource. All work done neatly and logically. Calculators allowed.

I did not communicate about this exam with anyone who had already started the exam, and I will not communicate with anyone about this exam until after it is due. Sign here if this is true:

Part 1. Short Answer (2 Points Each = 100 points) Note: Circle one option when multiple options separated by the symbol | are shown.

- 1.1 Consider an aircraft with a single wing with zero sweep. The wing uses a simply cambered airfoil with positive camber. The aircraft does not have an empennage. In order for this aircraft to be trim, the center of gravity must be located (forward | at (aft) of the aerodynamic center of the wing.
- 1.2 Consider an aircraft with a single wing with zero sweep. The wing uses a simply cambered airfoil with positive camber. The aircraft does not have an empennage. In order for this aircraft to be stable in pitch, the center of gravity must be located (forward) at | aft) of the aerodynamic center of the wing.
- 1.3 For an aircraft to be trim, the forces and moments about the center of gravity must sum to be (greater than | less than | equal to) zero.
- 1.4 (True) False) The simplified linear longitudinal analysis, in which all components lie along the fuselage reference line, predicts that the pitch stability derivative is independent of angle of attack.
- 1.5 Shifting the center of gravity of an aircraft forward will make the pitch-stability derivative (more positive) more negative | not change).
- 1.6 Shifting the center of gravity of an aircraft aft will make the static margin (more positive more negative) not change).
- 1.7 The downwash angle in radians in the symmetry plane (z=0) behind an elliptic wing approaches a value of C_{L_w}/R_{A_w} far downstream of the wing.
- 1.8 For a canard design, the main wing is (stabilizing) destabilizing) and the canard is (stabilizing destabilizing).
- 1.9 A propeller mounted in front of the center of gravity is longitudinally (stabilizing (destabilizing))
- 1.10 In order for an aircraft to be stable about all three axes, the following must be true: (Circle one symbol for each)

 $C_{\ell,\beta} (> | = | \bigcirc) 0.$

 $C_{m,\alpha}$ (> | = $|\bigcirc$ 0.

 $C_{n,\beta}(3) = |<) 0.$

- 1.11 Increasing positive dihedral makes the roll-stability derivative (more positive (more negative knot change).
- 1.12 Moving the vertical tail further aft makes the yaw-stability derivative (more positive) more negative | not change).
- 1.13 Carrying a nacelle or tank directly below the wing tip makes the roll-stability derivative (more positive) more negative | not change). destable effect.

- 1.14 When a traditional aircraft uses aileron deflection to roll the aircraft to the right, many aircraft experience adverse yaw, which for this scenario is the tendency of the aircraft to yaw to the (left) right).
- 1.15 The stick-fixed neutral point of an aircraft near the ground is (further forward) further aft | the same) than when the aircraft is not near the ground.
- 1.16 Frise ailerons are sometimes used to reduce or eliminate adverse you.
- 1.17 Which one of the following modes usually has the highest damping rate?

- (a) Short-period mode
- b. Phugoid mode
- c. Dutch roll mode
- d. Roll mode

e. Spiral mode

For problems 1.18-1.24, use the following information: For a certain airplane, the dimensional eigenvalues obtained from the linearized longitudinal and lateral equations of motion are:

		Longitudinal	Lateral	
	أس المال	$\lambda = (-2.2000 + 3.1000i) \text{ sec}^{-1}$ $\lambda = (-2.2000 - 3.1000i) \text{ sec}^{-1}$	$\lambda = (-8.2000 + 0.0000i) \text{ sec}^{-1}$	3 Roll Mode.
	me bourse		$\lambda = (-0.6700 + 2.6000i) \text{ sec}^{-1}$ $\lambda = (-0.6700 - 2.6000i) \text{ sec}^{-1}$	2 dutch roll
	phygeral	$\lambda = (-0.0150 + 0.4200i) \text{ sec}^{-1}$	$\lambda = (-0.6700 - 2.6000i) \text{ sec}^{-1}$)
the same of the sa	Printeres	$\lambda = (-0.0150 - 0.4200i) \text{ sec}^{-1}$	$\lambda = (-0.0700 - 2.0000i) \text{ sec}^{-1}$ $\lambda = (-0.0070 + 0.0000i) \text{ sec}^{-1}$	Spreet
Wh = loztwo		$\lambda = (0.0000 + 0.0000i) \text{ sec}^{-1}$	$\lambda = (0.0000 + 0.0000i) \text{ sec}^{-1}$	
Wh	-	$\lambda = (0.0000 + 0.0000i) \text{ sec}^{-1}$	$\lambda = (0.0000 + 0.0000i) \text{ sec}^{-1}$	
mg= rimal	Compute the following a	nd give units if any: - 1/4 wd = limage 0.47	= [14.95996 Secen	/ 5/
· 0°	1.18, phugoid period 19.95996 Secon	L Was a transfer	AND THE REAL PROPERTY AND THE PROPERTY A	
de= tin	1.19. phugoid damping r	atio $W_n = 0.47076$ $\frac{Q}{G_1}$	12026 = 0.03569	•
	1.20. short-period dampe	ed natural frequency	-17	
	1.21. short-period mode	99% damping time -\(\frac{3.100}{\text{co.ol}}\)	$= \frac{-\ln(0.01)}{2.7} = \begin{bmatrix} 2.893 \\ 2.68493 \end{bmatrix}$	525 Seconds
	1.22. Dutch roll undamp $\sqrt{\sqrt{3+w^2}}$ 1.23. roll mode time con	ed natural frequency $= \sqrt{2.67 + 2.6^2} = $ stant	2.68493 Second	3
	1/0 = reall	1.	3.12195 Seconds	
	1.25 The ratio $\frac{t_{np}}{\bar{c}_w}$ is called	ed the <u>Static Mar</u>	<u>zin</u> .	
	1.26 The ratio $\frac{l_{mp}}{r_{yy_b}}$ is cal	led the Dynamic M	argin.	401
	1.27 The ratio $\frac{(\omega_n^2)_{SP}}{C_{L,\alpha}/C_W}$ i	s called the Control Antici	patien Parameter (C	4F)
	1.28 The ratio $\frac{gl_{mp}}{r_{yy_b}^2}$ is ca	lled the Control Anticip	iation Parameter CC	/TT)
	1.29 The physic or and potential thergy.	long penicol (longitudinal)	mode is an interchange between tra	anslational kinetic energy

a axial velocity d. roll rate g. bank angle	b normal velocity pitch rate h elevation angle	c. sideslip velocityf. yaw ratei. azimuth angle	
1.31 Determine the	Euler angles that describ	pe this position:	
		y _i	
$\phi = \frac{O}{\theta} = \frac{VO}{VO}$ $\psi = \frac{O}{O}$ 1.32 The derivative	degrees degrees $C_{L,\alpha}$ is called the	r. H slope	
1.33 The derivative	$C_{m,\alpha}$ is called the P_{i}	eh Stability	derivative.
	$\in C_{\ell,eta}$ is called the R_{o}		derivative.
	$C_{n,eta}$ is called the Y_{∞}		derivative.
	$C_{m,q}$ is called the $P:F_{q}$, , V	derivative.
	$\in C_{\ell,ar{p}}$ is called the $ar{\mathcal{R}oll}$, , ,	derivative.
	$\in C_{n,r}$ is called the $\sqrt{a_N}$, , ,	derivative.
		' (")	and B are called Aerocynomic
1.40 Change in ford derivatives.	es and moments with resp	ect to rotational rates p, q , and	d r are called <u>down ping</u>
1.41 Change in force derivatives.	es and moments with respe	ct to control-surface deflection	as δ_a, δ_e , and δ_r are called <u>Control</u>
1.42 Which stabil and the Dutch roll	mode?	we could you change to increase. Chr $\overline{\Gamma}$	ease the damping for both the spiral mode

1.30 Which of the following can vary during pure longitudinal motion? Circle all that apply.

For problems 1.43–1.50, refer to the following figure:

- 1.43 The open and filled circles on this plot denote (stable) unstable) trim points.
- 1.44 The square on this plot denotes a/an (stable |unstable) trim point.
- 1.45 The filled circle on this plot denotes a point with a specific name often referred to as a <u>deep-Stall</u> trim point.
- 1.46 Assume an aircraft has the properties shown in the figure above. If this aircraft found itself at an angle of attack of 28 degrees, it would naturally rotate to a trim point denoted by the (open circle | square filled circle).
- 1.47 Below stall, the lift is very nearly a (linear) quadratic) function of angle of attack.
- 1.48 Below stall, the drag is very nearly a (linear (quadratic) function of angle of attack.
- 1.49 At 90 degrees angle of attack, the lift coefficient is very nearly (0.0] 1.0 | 2.0).
- 1.50 At 90 degrees angle of attack, the drag coefficient is very nearly (0.0 \ 1.0 (2.0)

if & is not known assume and iterate on solution until true alpha is found for CL = Cw for trim flight for this I am assumi

Part 2. Work-Out Problems (10 Points Each = 100 points)

For these work out problems, use the following information:

The F-16 Fighting Falcon is a single-engine aircraft with the engine aligned with the centerline of the aircraft. Hence the propulsion system produces no yawing moment or side force. Assume that the propulsion system also produces no rolling moment. For the purposes of these problems, assume the properties and operating condition for the F-16 flying at sea level can be approximated as:

level 0

$$S_w = 300 \text{ ft}^2$$
, $b_w = 30 \text{ ft}$
 $x = 0.1431 \text{ md}$
 $f_{zz} = -0.06998 \text{ red}$

$$S_{w} = 300 \text{ ft}^{2}$$
, $b_{w} = 30 \text{ ft}$ $W = 26,500 \text{ lbf}$, $\rho = 0.0023769 \text{ slug/ft}^{3}$ $V = 240 \text{ ft/s}$ to Solve.

 $C_{L} = 0.105 + 5.01\alpha + 0.465\delta_{e}$
 $C_{L} = 0.018 + 0.048C_{L}^{2}$ $C_{L} = 0.018 + 0.004\delta_{e}$
 $C_{V} = -0.525\beta + 0.135\delta_{r}$
 $C_{L} = 0.028\beta - 0.140\delta_{a} + 0.004\delta_{r}$
 $C_{L} = 0.089\beta - 0.012\delta_{a} - 0.050\delta_{r}$
 $C_{L} = C_{L}$
 $C_{L} = C_{L}$

where all aerodynamic and control-surface angles are in radians.

Compute the following:

$$C_L = \frac{26,500}{12(0,0013769)} 240 300 = 1.29039$$

$$2.1 C_L = \frac{1.79039}{C_{col}}$$

$$2.2 C_{L,\alpha} = \frac{5.01}{5.01}$$

$$2.3 C_{m,\alpha} = -0.380 \frac{\partial c_m}{\partial x} = -0.380$$

$$2.1 C_{L} = \frac{1.79039}{2.2 C_{L,\alpha}} = \frac{5.01}{000} \frac{dC}{dC} = 5.01$$

$$2.2 C_{L,\alpha} = \frac{5.01}{000} \frac{dC}{dC} = 5.01$$

$$2.3 C_{m,\alpha} = \frac{-0.380}{000} \frac{dC}{dC} = -0.380$$

$$C_{m,\alpha} = \frac{C_{m,\alpha} C_{m,\beta}}{C_{m,\alpha} C_{m,\beta}} = \frac{C_{m,\alpha} C_{m,\alpha}}{C_{m,\alpha} C_{m,\beta}} = \frac{C_{m,\alpha} C_{m,\alpha}}{C_{m,\alpha} C_{m,\beta}} = \frac{C_{m,\alpha} C_{m,\alpha}}{C_{m,\alpha} C_{m,\beta}} = \frac{C_{m,\alpha} C_{m,\alpha}}{C_{m,\alpha} C_{m,\alpha}} = \frac{C_{m,\alpha} C_{m,\alpha}}{C_{m,\alpha}} = \frac{C_{m,\alpha} C_{m,\alpha$$

$$2.4 C_{L,\delta_e} = \underline{0.465}$$

$$2.5 C_{m,\delta_e} = -1.320$$

$$\begin{bmatrix} 5.01 & 0.465 \\ -e.380 & -1.320 \end{bmatrix} \begin{bmatrix} \infty \\ \delta e \end{bmatrix} = \begin{bmatrix} 1.29039 - 0.105 \\ 0 \end{bmatrix}$$

2.6 Compute the angle of attack in degrees required to trim at zero bank angle: $\alpha = 13.9286$

2.7 Compute the elevator deflection in degrees required to trim at zero bank angle: $\delta_e = \frac{-4.0095}{\text{Computed}}$ via RREF on Confo.

For problems 2.8-2.10, assume the aircraft is now operating at the same airspeed, but at a bank angle of +5 degrees. Use the small-angle lateral trim equations to estimate the following:

2.8 Compute the sideslip angle in degrees required to trim: $\beta = \frac{23.0216}{}$

2.9 Compute the aileron deflection in degrees required to trim: $\delta_a = -3.410Z$ degrees.

2.10 Compute the rudder deflection in degrees required to trim: $\delta_r = \frac{41.79669}{}$

okay I have a, B, de, dr, da, that need to be solved.

Part Z problems 8-10

$$Cy, \beta = -0.525$$
 $Cl, \beta = -0.028$
 $Cu, \delta = -0.012$
 $Cy, \delta = 0$
 $Cy, \delta = 0.004$
 $Cy, \delta = 0.000$

$$\begin{bmatrix} c_{y,8} & c_{y,6a} & c_{y,6r} \\ c_{l,8} & c_{l,6a} & c_{l,5r} \\ c_{n,8} & c_{n,6a} & c_{n,6r} \end{bmatrix} \begin{bmatrix} \beta \\ \delta_n \end{bmatrix} = \begin{bmatrix} -c_w & sin\phi \\ 0 \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{n,6a} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{n,6a} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{n,6a} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{n,6a} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{n,6a} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{n,6a} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{n,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l,9} \\ c_{l,9} & c_{l,9} \end{bmatrix} \begin{bmatrix} c_{l,9} & c_{l$$

$$C_{W} = \frac{26,500}{0.5(0.0023769)240300} = 1.29039$$
 $C_{W} = \frac{26,500}{0.5(0.0023769)240300} = 1.29039$
 $C_{W} = \frac{26,500}{0.15(0.0023769)240300} = 1.29039$
 $C_{W} = \frac{26,500}{0.15(0.0023769)240300} = 1.29039$
 $C_{W} = \frac{26,500}{0.15(0.0023769)240300} = 1.29039$

$$\begin{bmatrix} -0.575 & 0 & 0.135 \\ -0.078 & -0.140 & 0.004 \end{bmatrix} \begin{bmatrix} \beta \\ \delta_{\alpha} \\ \delta_{r} \end{bmatrix} = \begin{bmatrix} -0.1124649 \\ 0 \\ 0 \end{bmatrix}$$

RREF on calc,

$$\beta = 0.4018028 \text{ rad} = 23.0216 \text{ deg}_{11}$$
 $\delta_{\alpha} = -0.05952 \text{ rad} = -3.4102 \text{ deg}_{12}$
 $\delta_{r} = 0.72949 \text{ rad} = 41.79669 \text{ deg}_{12}$