# Интерфейсная шина АМВА

Занятие 4

#### АМВА шина

Advanced Microcontroller Bus

Architecture - усовершенствованная
архитектура шины микроконтроллера



## Разновидности АМВА

| Key AMBA specifications       |                                                                                         | AMBA  | AMBA 2 | AMBA 3       | AMBA 4                 | AMBA 5        |
|-------------------------------|-----------------------------------------------------------------------------------------|-------|--------|--------------|------------------------|---------------|
| CHI<br>Coherent Hub Interface | Credited coherent protocol Layered architecture for scalability                         |       |        |              |                        | СНІ           |
| ACE AXI coherency Extensions  | ACE is a superset of AXI – system-wide coherency across multicore clusters              |       |        |              | ACE<br>+Lite           | ACE5<br>+Lite |
| AXI Adv. eXtensible Interface | AXI supports separate A/D phases, bursts, multiple outstanding addresses, OoO response. | onses |        | AXI3         | AXI4<br>+Lite, +Stream | AXI5          |
| AHB Adv. High-performance Bus | AHB supports 64/128 bit multi-managers AHB-Lite for single managers                     |       | АНВ    | AHB<br>+Lite |                        | AHB5<br>+Lite |
| APB Advanced Peripheral Bus   | System bus for low bandwidth peripherals                                                | АРВ   | APB2   | APB3         | APB4                   | APB5          |

#### Протокол АНВ

Advanced High-perfomance Bus - усовершенствованная высокопроизводительная

шина



## Арбитраж



#### **AHB-Lite**



#### Особенности AHB Lite

- одно ведущее устройство
- нет арбитража
- несколько простых ведомых устройств
- пакетная и конвейерная передача данных
- все операции по переднему фронту тактового сигнала
- однонаправленные взаимодействия, нет tri-state
- ширина шины 32, 64, 128, 256, 512 или 1024 бит

#### Пакетная передача данных



\*) 2 байта для макс. 12 байтов F I/O данных 4 байта для макс. 122 байтов F I/O данных

## Конвейерная передача данных



#### Ведущее и ведомое устройства



#### Сигналы ведущего устройства



## Сигналы мастера

| Сигнал       | Направление     | Описание                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HADDR[31:0]  | Slave + Decoder | 32-битная системная шина адреса                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HBURST[2:0]  | Slave           | Тип пакета указывает, является ли передача одиночной передачей или является частью пакета. Поддерживаются пакеты фиксированной длины по 1, 4, 8 и 16 тактов. Пакет может быть увеличивающимся или обёрнутым. Также поддерживаются увеличивающиеся пакеты неопределенной длины                                                                                                                                                                                |
| HMASTLOCK    | Slave           | При ВЫСОКОМ уровне этот сигнал указывает на то, что текущая передача является частью заблокированной последовательности. При заблокированной последовательности арбитр (в полной АНВ) не может менять сигнал разрешения                                                                                                                                                                                                                                      |
| HPROT[3:0]   | Slave           | Сигналы управления защитой предоставляют дополнительную информацию о доступе к шине и в первую очередь предназначены для использования любым модулем, который хочет реализовать некоторый уровень защиты. Сигналы указывают, является ли передача выборкой кода операции или доступом к данным, и является ли передача доступом в привилегированном режиме или доступом в пользовательском режиме. Не всем ведомым устройствам нужно пользоваться этой шиной |
| HSIZE[2:0]   | Slave           | Указывает размер передачи, который обычно составляет байт (8 бит), полслова (16 бит) или слово (32 бита). Протокол допускает большие размеры передачи, максимум до 1024 бит.                                                                                                                                                                                                                                                                                 |
| HTRANS[1:0]  | Slave           | Указывает тип передачи текущей передачи.* Это может быть:  IDLE (ожидание)  BUSY (занят)  NONSEQUENTIAL (не последовательный)  SEQUENTIAL (последовательный)                                                                                                                                                                                                                                                                                                 |
| HWDATA[31:0] | Slave           | Шина данных записи передает данные от ведущего устройства к ведомым устройствам во время операций записи. Рекомендуется использовать минимальную ширину шины данных в 32 бита. Однако это может быть расширено, чтобы обеспечить работу с более высокой пропускной способностью.                                                                                                                                                                             |
| HWRITE       | Slave           | Указывает направление передачи. При ВЫСОКОМ уровне этот сигнал указывает на передачу записи, а при НИЗКОМ - на передачу чтения. Он имеет ту же синхронизацию, что и адресные сигналы, однако он должен оставаться постоянным на протяжении всей пакетной передачи                                                                                                                                                                                            |

## Сигналы ведомого устройства



## Сигналы слейва

| Сигнал       | Направление | Описание                                                                                                                                                                                                                                                                                 |  |
|--------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| HRDATA[31:0] | Mux         | Во время операций чтения шина считывания данных передает данные с выбранного ведомого устройства на мультиплексор. Затем мультиплексор передает данные ведущему устройству. Рекомендуется использовать минимальную ширину шины данных в 32 бита.                                         |  |
| HREADYOUT    | Mux         | При высоком уровне сигнал HREADYOUT указывает на то, что передача по шине завершена (состояние READY). Этот сигнал может быть переведен на низкий уровень, чтобы продлить передачу (состояние WAIT).                                                                                     |  |
| HRESP[1:0]   | Mux         | Ответ на передачу после прохождения через мультиплексор предоставляет ведущему устройству дополнительную информацию о статусе передачи:  ■ 0 − OKAY − передача прошла без ошибок ■ 1 − ERROR − передача прошла с ошибкой ■ 2 − RETRY − необходима повторная передача посылки ■ 3 − SPLIT |  |

#### Межсоединения в шине



### Пример транзакций



#### Простая запись



### Запись с ожиданием



#### Простое чтение



#### Чтение с ожиданием



### Несколько транзакций



# Размер одной части (beat) пакета

| HSIZE[2:0] | Размер beat, биты | HSIZE[2:0] | Размер beat, биты |
|------------|-------------------|------------|-------------------|
| 000        | 8 (BYTE)          | 100        | 128 (4-WORD LINE) |
| 001        | 16 (HALFWORD)     | 101        | 256 (8-WORD LINE) |
| 010        | 32 (WORD)         | 110        | 512               |
| 011        | 64                | 111        | 1024              |

Определяет шаг в изменении адреса при пакетной передаче

#### Операции с пакетной передачей данных

- Одиночная передача данных (SINGLE)
- Пакетная передача данных:
  - последовательный пакет (INCR): последовательное увеличение предыдущего адреса передачи
  - обёрнутый пакет (**WRAP**): если достигается граница адресов раньше окончания передачи, то адрес обнуляется

| HBURST[2:0] | Тип<br>передачи | Описание                                        | Адреса (размер HSIZE[2:0] = 010, 32 бита,<br>начальный адрес - 0x38)                                  |
|-------------|-----------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 000         | SINGLE          | Одиночная передача                              | 0x38                                                                                                  |
| 001         | INCR            | Пакетная передача неопределённой длины          | 0x38, 0x3C, 0x40, 0x44,                                                                               |
| 010         | WRAP4           | Обёрнутная пакетная передача за 4 такта         | 0x38, 0x3C, <b>0x30, 0x34</b>                                                                         |
| 011         | INCR4           | Последовательная пакетная передача за 4 такта   | 0x38, 0x3C, <b>0x40, 0x44</b>                                                                         |
| 100         | WRAP8           | Обёрнутная пакетная передача за 8 тактов        | 0x38, 0x3C, 0x40, 0x44, 0x48, 0x4C, <b>0x30, 0x34</b>                                                 |
| 101         | INCR8           | Последовательная пакетная передача за 8 тактов  | 0x38, 0x3C, 0x40, 0x44, 0x48, 0x4C, <b>0x50, 0x54</b>                                                 |
| 110         | WRAP16          | Обёрнутная пакетная передача за 16 тактов       | 0x38, 0x3C, 0x40, 0x44, 0x48, 0x4C, 0x50, 0x54, 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, <b>0x30, 0x34</b> |
| 111         | INCR16          | Последовательная пакетная передача за 16 тактов | 0x38, 0x3C, 0x40, 0x44, 0x48, 0x4C, 0x50, 0x54, 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, <b>0x70, 0x74</b> |

### Пакетная передача данных (INCR4)





#### Пакетная передача данных (WRAP4)





# Увеличивающийся пакет INCR



# Особенности пакетной передачи

Размер пакета определяется HSIZE x HBURST

Пакетная передача данных не может превысить границу в 1 кБ

NONSEQ  $\rightarrow$  SEQ  $\rightarrow$  1 kB

NONSEQ → SEQ → ...

Мастер не может начать пакетную передачу фиксированной длины, если будет пересечение границы

## Передача с ожиданием



## Передача с ошибкой



|       | HREADY                      |                               |  |
|-------|-----------------------------|-------------------------------|--|
| HRESP | 0                           | 1                             |  |
| 0     | Transfer pending            | Successful transfer completed |  |
| 1     | ERROR response, first cycle | ERROR response, second cycle  |  |

#### Протокол АРВ

Advanced Peripheral Bus (усовершенствованная периферийная шина)



#### **Moct AHB2APB**



Диаграмма состояний



### Сигналы АРВ

| <u>Сигнал</u>      | Источник  | <u>Описание</u>                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCLK               | Системный | Тактовый сигнал                                                                                                                                                                                                                                                                                                                                                      |
| PRESETn            | Системный | Сброс                                                                                                                                                                                                                                                                                                                                                                |
| PADDR[31:0]        | Мост      | Адресная шина. Он может иметь ширину до 32 бит и управляется мостовым блоком периферийной шины.                                                                                                                                                                                                                                                                      |
| PPROT              | Мост      | Тип защиты. Этот сигнал указывает на обычный, привилегированный или защищённый уровень транзакции и является ли<br>транзакция доступом к данным или доступом к командам                                                                                                                                                                                              |
| PSELx              | Мост      | Выбор. Мостовой блок APB генерирует этот сигнал для каждого ведомого устройства периферийной шины. Это указывает на то, что выбрано ведомое устройство и требуется передача данных. Для каждого ведомого устройства имеется сигнал PSELx.                                                                                                                            |
| PENABLE            | Мост      | Включить. Этот сигнал указывает на второй и последующие циклы передачи APB. Активна 1 такт, после чего состояние возвращается либо в IDLE, либо в SETUP                                                                                                                                                                                                              |
| PWRITE             | Мост      | Направление. Этот сигнал указывает на доступ APB для записи при ВЫСОКОМ уровне и доступ APB для чтения при НИЗКОМ уровне                                                                                                                                                                                                                                             |
| PWDATA[31:0]       | Мост      | Запись данных. Эта шина управляется мостовым блоком периферийной шины во время циклов записи, когда значение PWRITE на ВЫСОКОМ уровне. Шина может иметь ширину до 32 бит.                                                                                                                                                                                            |
| PSTRB[3:0]<br>APB4 | Мост      | Стробы записи. Этот сигнал указывает, какие байтовые каналф следует обновить во время передачи записи. Существует один строб записи для каждых восьми битов шины данных записи. Передача полностью корректна, если PSTRB[3:0] = 1111.<br>Следовательно, PSTRB[n] соответствует PWDATA[(8n + 7):(8n)]. Стробы записи не должны быть активны во время передачи чтения. |
| PREADY             | Slave     | Готов. Ведомое устройство использует этот сигнал для разрешения передачи АРВ                                                                                                                                                                                                                                                                                         |
| PRDATA[31:0]       | Slave     | Чтение данных. Выбранное ведомое устройство управляет этой шиной во время циклов чтения, когда уровень PWRITE НИЗКИЙ.<br>Эта шина может иметь ширину до 32 бит                                                                                                                                                                                                       |
| PSLVERR<br>APB4    | Slave     | Этот сигнал указывает на сбой передачи. Периферийные устройства APB не требуют этот пин. Если периферийное устройство не включает этот вывод, то соответствующий вход для моста APB привязан к НИЗКОМУ уровню.                                                                                                                                                       |

#### Запись данных



#### Запись данных с ожиданием



#### Чтение данных



## Запись стробов

Сигнал STROBE актуален в большинстве случаев только для записи данных. Полезен при передаче данных в регистры периферии (UART, SPI, GPIO и так далее).

Сигнал STROBE в режиме записи обеспечивает передачу разреженных данных по шине записи PWDATA. Регистр PSTRB[3:0] является маской байтов.

Каждый бит PSTRB соответствует одному байту данных записи. Если задано высокое значение, то данный байт содержит валидные данные, если 0, то байт игнорируется (сохраняет старое значение).

PSRTB[i] = PWDATA[ (8i+7) : 8i ]



## Применение АРВ

- 1. Передача данных внешним интерфейсам
- 2. Настройка внутренних регистров (например, в UART)



### AXI-шина

Advanced eXtencible Interface - усовершенствованный расширяемый интерфейс



### AXI4





# Множество транзакций



## Сигналы «рукопожатия»





## Транзакция чтения из ведомого устройства



## Пакетная передача данных

**AXLEN[3:0]** 

AXSIZE[2:0]

AXBURST[1:0]

AXLEN = 3 (4 beats in each burst)

AXSIZE = 0 (1 byte in each beat)

AXBURST = 0 (fixed burst)

AXLEN = 3 (4 beats in each burst)

AXSIZE = 0 (1 byte in each beat)

AXBURST = 1 (incrementing burst)

AXLEN = 3 (4 beats in each burst) AXSIZE = 0 (1 byte in each beat) AXBURST = 2 (wrapping burst)







## Чтение с INCR адресом



# Чтение с WRAP адресом



## Чтение с FIXED адресом



## Транзакция записи в ведомое устройство



## Простая запись



# Запись с переменным количеством частей



## Соединения





### Сигналы чтения

#### Read Address **Channel Signals** ARID[3:0] Master Read address ID **ARADDR**[31:0] Master Read address **ARLEN[3:0]** Master Burst length ARSIZE[2:0] Master Burst size ARBURST[1:0] Master Burst type ARLOCK[1:0] Master Lock type ARCACHE[3:0] Master Cache type ARPROT[2:0] Master Protection type ARVALID Master Read address valid **ARREADY** Slave Read address

ready

### **Global Signals**

| ACLK<br>Global clock<br>signal | Clock source |
|--------------------------------|--------------|
| ARESETn                        | Reset source |
| Global reset signal            |              |

### Read Data Channel Signals

| RID[3:0]<br>Read ID tag     | Slave  |
|-----------------------------|--------|
| RDATA[31:0]<br>Read data    | Slave  |
| RRESP[1:0]<br>Read response | Slave  |
| RLAST<br>Read last          | Slave  |
| RVALID<br>Read valid        | Slave  |
| RREADY<br>Read ready        | Master |

### Сигналы записи

| Write Address Channel Signals  |        | Write Data<br>Channel Signals     |        |
|--------------------------------|--------|-----------------------------------|--------|
| AWID[3:0] Write address ID     | Master | WID[3:0] Write ID tag.            | Master |
| AWADDR[31:0] Write address     | Master | WDATA[31:0]<br>Write data         | Master |
| AWLEN[3:0] Burst length        | Master | WSTRB[3:0] Write strobes          | Master |
| AWSIZE[2:0] Burst size         | Master | WLAST<br>Write last               | Master |
| AWBURST[1:0] Burst type        | Master | WVALID<br>Write valid             | Master |
| AWLOCK[1:0] Lock type          | Master | WREADY<br>Write ready             | Slave  |
| AWCACHE[3:0] Cache type        | Master | Write Response<br>Channel Signals |        |
| AWPROT[2:0] Protection type    | Master | BID[3:0]<br>Response ID           | Slave  |
| AWVALID<br>Write address valid | Master | BRESP[1:0] Write response         | Slave  |
| AWREADY<br>Write address ready | Slave  | BVALID<br>Write response<br>valid | Slave  |
|                                |        | BREADY<br>Response ready          | Master |

## **AXI-Lite**

Отсутствует работа с несколькими мастерами. Следовательно, нет необходимости в сигнале xID.

| Глабальные<br>сигналы | Канал адреса<br>для записи | Канал записи<br>данных | Канал ответа<br>после записи | Канал адреса<br>для чтения | Канал чтения<br>данных |
|-----------------------|----------------------------|------------------------|------------------------------|----------------------------|------------------------|
| ACLK                  | AWVALID                    | WVALID                 | BVALID                       | ARVALID                    | RVALID                 |
| ARESETn               | AWREADY                    | WREADY                 | BREADY                       | ARREADY                    | RREADY                 |
| -                     | AWADDR                     | WDATA                  | BRESP                        | ARADDR                     | RDATA                  |
| -                     | AWPROT                     | WSTRB                  | -                            | ARPROT                     | RRESP                  |

| MASTER    | SLAVE     | Взаимодействие                                               |
|-----------|-----------|--------------------------------------------------------------|
| AXI       | AXI       | Полное                                                       |
| AXI       | AXI4-Lite | Требуется отображение ID. Может потребоваться преобразование |
| AXI4-Lite | AXI       | Полное                                                       |
| AXI4-Lite | AXI4-Lite | Полное                                                       |

### **AXI4-Stream**

- Передача данных от одного ведущего к одному ведомому
  - Отсутствует адресация (только через TID, TDEST)
- Передача данных от нескольких ведущих к нескольких ведомым
- Поддерживает несколько потоков данных, использующих один и тот же набор общих проводов
  - создание универсального межсоединения с операциями увеличения и уменьшения размеров передаваемых данных

## Сигналы интерфейса

| Сигнал          | Источник                   | Описание                                                                                                                          |
|-----------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| ACLK            | Источник<br>синхроимпульса | Глобальный синхросигнал. Все сигналы синхронизуются по переднему фронту ACLK                                                      |
| ARESETn         | Источник сброса            | Глобальный сигнал сброса                                                                                                          |
| TVALID          | Ведущий                    | Индицирует, что ведущее устройство осуществляет действительную (валидную) передачу                                                |
| TREADY          | Ведомый                    | Индицирует, что ведомое устройство может принять данные в текущем цикле                                                           |
| TDATA[(8n-1):0] | Ведущий                    | Передаваемые данные. Ширина данных – целое число байт                                                                             |
| TSTRB[(n-1):0]  | Ведущий                    | Определяет, какие байты в TDATA должны быть записаны                                                                              |
| TKEEP[(n-1):0]  | Ведущий                    | Определяет, какие байты валидны в сигнале TDATA даже, если TVALID = 1. В большинстве случаев идентичен TSTRB, но встречается чаще |
| TLAST           | Ведущий                    | Индицирует окончание пакета                                                                                                       |
| TID[(i-1):0]    | Ведущий                    | Идентификатор потока данных, указывает на различные потоки                                                                        |
| TDEST[(d-1):0]  | Ведущий                    | Предоставляет информацию о маршруте для потока данных                                                                             |
| TUSER[(u-1): 0] | Ведущий                    | Дополнительная информация, определённая пользователем, которая может передаваться вместе с потоком данных                         |

## Протокол «рукопожатия»

TVALID раньше TREADY

TVALID после TREADY





TVALID вместе с TREADY



## Сравнение AHB и AXI

| Параметр сравнения                                                    | AHB                                  | AXI                             |
|-----------------------------------------------------------------------|--------------------------------------|---------------------------------|
| Расшифровка                                                           | Advanced High-<br>performance Bus    | Advanced eXtensible Interface   |
| Каналы                                                                | Одноканальная шина                   | Многоканальная шина             |
| Адресное пространство, предназначенное для одного ведомого устройства | 1 KБ                                 | 4 КБ                            |
| Длина пакета                                                          | 1, 2, 6, 16 (за<br>исключением INCR) | 1-16 для АХІЗ<br>1-256 для АХІ4 |
| Режим работы                                                          | Полудуплексный                       | Полнодуплексный                 |