Lecture-1 Main Points

- What is Logic?
 - Logic is about reasoning.
 - That is deriving new facts from given facts.
- It has interested Mathematicians and Philosophers since ancient times.
 - Aristotle formulated some laws of reasoning
 - Interest has been in understanding limitations of reasoning also.
 - Apart from reasoning in mathematics, interest has also been in principles of reasoning for everyday life situations such as
 - * reasoning about time.
 - * reasoning about knowledge and beliefs etc.
- Logic of mathematics
 - Logical foundation for current mathematics was formulated in early twentieth century.
 - This was in response to paradoxes such as:
 - * Liar's paradox
 - * Russell's paradox about sets (similar to barber's paradox)
 - Formalization of logical languages.
 - Replacing naive concept of sets by ZF set theory.
- Meta-mathematical Results
 - Formalization of mathematical reasoning paved the way for studying these formal systems themselves as mathematical objects.

- Some limitative results, for example Godel's theorems.
 - * Any sufficiently rich mathematical theory can not prove its own consistency.
- Study of mathematical logic flourished in first half of the twentieth century.
- Why is mathematical logic relevant to computer science?
 - We give two main reasons below.
 - First, in CS we are interested in developing formal models of computational systems or of computation itself.
 - One is also interested in specifying and reasoning about these systems.
 - In these tasks, conceptual tools and techniques developed in mathematical logic often provide some insight.
 - Second is automation. Using computers, we would like to automate as many routine tasks as possible.
 - For rigorous and foolproof reasoning, computers need to be provided with formal description of objects and reasoning principles involving them.
 - Techniques developed in mathematical logic can be useful in coming up with such formal descriptions.