R: tidyverse 分析流程

2023年12月28日

tidyverse 是什么 tidyverse 出自于 R 大神 Hadley Wickham 之手, 他是 Rstudio 首席科学家, 也是 ggplot2 的作者。tidyverse 就是他将自己所写的包整理成了一整套数据处理的方法,包括 ggplot2, dplyr, tidyr, readr, purrr, tibble, stringr, forcats。同时也出了一本《R for Data Science》.

在 R 语言中, tidyverse 是一个庞大的数据分析生态系统,它由一系列数据可视化和数据处理软件包组成,能够极大地提高数据分析的效率和准确性。

在使用 Tidyverse 的过程中, 我们会经常用到以下几个工具:

- ggplot2: 用于数据可视化,可以绘制各种类型的图表,如散点图、柱状图、折线图等。
- dplyr:数据整理和转换工具,使用 pipe (%>%)操作符来实现数据的转换和筛选。
- tidyr: 用于数据整理,可以将数据从宽型转换成长型,或将多个变量合并为一个变量。
- readr: 用于读取常见的数据格式,如 CSV、TXT 等。
- stringr: 用于字符串处理,可以进行字符串匹配、提取、替换等操作。
- tibble: 用于创建数据框。

Attaching core tidyverse packages

tidyverse 2.0.0

dplyr 1.1.3 readr 2.1.4

1 READR 2

```
forcats
          1.0.0
                        stringr
                                   1.5.0
 ggplot2 3.4.4
                                   3.2.1
                        tibble
 lubridate 1.9.3
                        tidyr
                                   1.3.0
            1.0.2
 purrr
 Conflicts
tidyverse_conflicts()
 dplyr::filter() masks stats::filter()
 purrr::flatten() masks
jsonlite::flatten()
 dplyr::lag()
                   masks stats::lag()
 Use the conflicted package
(<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to
become errors
载入需要的程辑包: sysfonts
载入需要的程辑包: showtextdb
```

1 readr

readr: readcsv(); readtsv(); readdelim(); readfwf(); readtable(); readlog(); readxl: readxls(); readxls(); haven: 打开 SAS 、SPSS、Stata 等外部数据。

1.1 直接创建 tibble 格式数据

```
[2]: x \leftarrow c(1, 4, 5)

y \leftarrow c(211, 23, 45)

z \leftarrow c(20, 32)
```

```
[3]: my_tibble_2 <- tibble(v1 = x, v2 = y)
my_tibble_2
```

1.2 转换数据: as_tibble()

head(2)

head(2) %>%

as_tibble()

2 dplyr

dplyr 是一个强大的 R 库,用于数据的整理和转换,它具有简单易用的语法和高效的设计,通常使用%>% 运算符来组合多种操作。

dplyr 提供一些基本操作,包括:

- 选择数据列 (select)
- 重命名数据列 (rename)
- 过滤观测值 (filter)
- 排序 (arrange)
- 添加新变量 (mutate)
- 分组汇总 (summarize)

• 连接数据集(join)等。

2.1 filter

[6]: iris %>%
 filter(Species == "virginica", Sepal.Length > 7.5)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
A data.frame: 6×5	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
	7.6	3.0	6.6	2.1	virginica
	7.7	3.8	6.7	2.2	virginica
	7.7	2.6	6.9	2.3	virginica
	7.7	2.8	6.7	2.0	virginica
	7.9	3.8	6.4	2.0	virginica
	7.7	3.0	6.1	2.3	virginica

2.2 arrange

[7]: iris %>%
 head(5) %>%
 arrange(Species)

Sepal.Length	Sepal. Width	Petal.Length	Petal. Width	Species
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
	<dbl> 5.1 4.9 4.7 4.6</dbl>	dbl> dbl> 5.1 3.5 4.9 3.0 4.7 3.2 4.6 3.1	<dbl> <dbl> 5.1 3.5 1.4 4.9 3.0 1.4 4.7 3.2 1.3 4.6 3.1 1.5</dbl></dbl>	<dbl> <dbl> <dbl> 5.1 3.5 1.4 0.2 4.9 3.0 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2</dbl></dbl></dbl>

2.3 rename

```
[8]: iris1 <- iris %>% head(3) iris1
```

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
		<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<fct $>$
A data.frame: 3×5	1	5.1	3.5	1.4	0.2	setosa
	$2 \mid$	4.9	3.0	1.4	0.2	setosa
;	3	4.7	3.2	1.3	0.2	setosa

[9]: iris1 %>% names()

1. 'Sepal.Length' 2. 'Sepal.Width' 3. 'Petal.Length' 4. 'Petal.Width' 5. 'Species'

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	SPECIES
		<dbl></dbl>	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<fct $>$
A data.frame: 3×5	1	5.1	3.5	1.4	0.2	setosa
	2	4.9	3.0	1.4	0.2	setosa
	3	4.7	3.2	1.3	0.2	setosa

2.4 select

		Species	Sepal.Length <dbl></dbl>
		<fct></fct>	<dbl></dbl>
	1	setosa	5.1
A data.frame: 5×2	2	setosa	4.9
	3	setosa	
	4	setosa	4.6
	5	setosa	5.0

2.5 mulate

```
[12]: iris %>%
    mutate(Sepal.Area = Sepal.Width * Sepal.Length) %>%
    select(-Sepal.Length, -Sepal.Width) %>%
    head(5)
```

```
Sepal.Area
                         Petal.Length Petal.Width Species
                         <dbl>
                                        <dbl>
                                                      <fct>
                                                                <dbl>
                         1.4
                                        0.2
                                                                17.85
                                                      setosa
A data.frame: 5 \times 4 2
                         1.4
                                        0.2
                                                                14.70
                                                      setosa
                         1.3
                                        0.2
                                                                15.04
                                                      setosa
                     4
                         1.5
                                        0.2
                                                                14.26
                                                      setosa
                                        0.2
                         1.4
                                                      setosa
                                                               18.00
```

2.6 summarise

```
[13]: iris %>%
    mutate(Sepal.Area = Sepal.Width * Sepal.Length) %>%
    filter(Sepal.Area < 15) %>%
    summarise(count = n(), mean = mean(Sepal.Area))
```

```
A data.frame: 1 \times 2 count mean \frac{\text{count}}{\text{cint}} \times \frac{\text{dbl}}{\text{count}} \frac{\text{count}}{\text{29}} \times \frac{\text{mean}}{\text{13.36724}}
```

2.7 groupby

```
[14]: iris %>%
    mutate(Sepal.Area = Sepal.Width * Sepal.Length) %>%
    filter(Sepal.Area < 15) %>%
    group_by(Species) %>%
    summarise(count = n(), mean = mean(Sepal.Area))
```

Species count mean
$$\langle \text{fct} \rangle$$
 cint> $\langle \text{dbl} \rangle$
A tibble: 3×3 setosa 11 13.69545 versicolor 15 13.15333 virginica 3 13.23333

2.8 Join

```
[15]: df1 <- data.frame(id = c(1,2,3), var1 = c("a","b","c"))
df1
```

A data.frame:
$$3 \times 2$$
 $\begin{array}{c} \text{id} & \text{var1} \\ \text{} & \text{} \\ 1 & \text{a} \\ 2 & \text{b} \\ 3 & \text{c} \\ \end{array}$

$$\begin{array}{c} \text{id} & \text{var2} \\ \\ <\text{dbl}> & <\text{chr}> \\ \\ \text{A data.frame: } 3\times 2 & 1 & A \\ \\ 2 & B \\ \\ 4 & D \end{array}$$

A data.frame:
$$2 \times 3$$
 $\begin{array}{c|cccc} id & var1 & var2 \\ \hline & & \\ \hline 1 & a & A \\ 2 & b & B \end{array}$

3 tidyr

tidyr 是 Hadley (Tidy Data 的作者 Hadley Wickham) 写的非常有用、并且经常会使用到的包,常与 dplyr 包结合使用(这个包也是他写的)…elt

tidyr 是一个 R 库,用于数据整理和转换,它强调数据的长型与宽型转换,经常与 dplyr 结合使用,提供了许多有用的函数,如 gather、spread、separate 和 unite 等。

• gather: 将数据从宽型转换成长型。

• spread: 将数据从长型转换成宽型。

• separate: 将一个变量拆分成多个变量。

• unite: 将多个变量合并为一个变量。

[18]: library(tidyr)

	grade	female	$_{\mathrm{male}}$
	<chr $>$	<dbl $>$	<dbl $>$
	A	5	1
A data.frame: 5×3	В	4	2
	\mathbf{C}	1	3
	D	2	4
	\mathbf{E}	3	5

3.1 gather: 宽变长

gather 函数类似于 Excel (2016 起) 中的数据透视的功能,能把一个变量名含有变量的二维表转换成一个规范的二维表(类似数据库中关系的那种表,具体看例子)

```
[20]: stu_1 <-
gather(stu, gender, count, -grade)
stu_1</pre>
```

	grade	gender	count
	<chr $>$	<chr $>$	<dbl $>$
grade gender count	5		
	В	female	4
	\mathbf{C}	female	1
A data frama, 10 × 2	D	female	2
A data.frame. 10 × 3	E	female	3
	A	male	1
	В	male	2
	\mathbf{C}	male	3
	D	male	4
	\mathbf{E}	male	5

3.2 spread: 长变宽

spread 是 gather 逆向操作。

用来扩展表,把某一列的值(键值对)分开拆成多列。

spread(data, key, value, fill = NA, convert = FALSE, drop = TRUE, sep = NULL)

key 是原来要拆的那一列的名字(变量名),value 是拆出来的那些列的值应该填什么(填原表的哪一列)

[21]: spread(stu_1,gender,count)

	grade	female	male
	<chr $>$	<dbl $>$	<dbl $>$
	A	5	1
A data.frame: 5×3	В	4	2
	\mathbf{C}	1	3
	D	2	4
	E	3	5

3.3 separate: 数据分列

separate 负责分割数据,把一个变量中就包含两个变量的数据分来(上例 gather 中是属性名也是一个变量,一个属性名一个变量)

separate 用法如下:

• separate(data, col, into, sep (= 正则表达式), remove =TRUE,convert = FALSE, extra = "warn", fill = "warn", ...)

- 第一个参数放要分离的数据框;
- 第二个参数放要分离的列;
- 第三个参数是分割成的变量的列(肯定是多个),用向量表示;
- 第四个参数是分隔符,用正则表达式表示,或者写数字,表示从第几位分开

```
[22]: stu2 <- data.frame(grade = c("A", "B", "C", "D", "E"), female_1 = c(5, 4, 1, 2, \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \
```

	grade	$female_1$	male_1	$female_2$	${\rm male}_2$
	<chr $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$
	A	5	1	4	0
A data.frame: 5×5	В	4	2	5	2
	\mathbf{C}	1	3	1	3
	D	2	4	2	4
	\mathbf{E}	3	5	3	6

```
[23]: stu2_new <- gather(stu2, gender_class, count, -grade)
stu2_new</pre>
```

	grade	$gender_class$	count
	<chr $>$	<chr $>$	<dbl $>$
	A	$female_1$	5
	В	${\rm female}_1$	4
	\mathbf{C}	${\rm female}_1$	1
	D	${\rm female}_1$	2
	E	${\rm female}_1$	3
	A	$male_1$	1
	В	$male_1$	2
	\mathbf{C}	$male_1$	3
Λ data frame: 20×3	D	$male_1$	4
A data.frame: 20×3	E	$male_1$	5
	A	$female_2$	4
	В	$female_2$	5
	\mathbf{C}	$female_2$	1
	D	$female_2$	2
	\mathbf{E}	$female_2$	3
	A	$male_2$	0
	В	$male_2$	2
	\mathbf{C}	$male_2$	3
	D	$male_2$	4
	E	$male_2$	6

```
[24]: separate(stu2_new,gender_class,c("gender","class"))
```

	grade	gender	class	count
	<chr $>$	<chr $>$	<chr $>$	<dbl $>$
	A	female	1	5
	В	female	1	4
	\mathbf{C}	female	1	1
	D	female	1	2
	E	female	1	3
	A	male	1	1
	В	male	1	2
	\mathbf{C}	male	1	3
A data.frame: 20×4	D	male	1	4
II data.iiaiic. 20 × 4	E	male	1	5
	A	female	2	4
	В	female	2	5
	\mathbf{C}	female	2	1
	D	female	2	2
	E	female	2	3
	A	male	2	0
	В	male	2	2
	\mathbf{C}	male	2	3
	D	male	2	4
	E	male	2	6

3.4 unite: 多列数据合并

unite(data, col, ..., sep = "_", remove = TRUE) * 参数说明: data 数据; * col 构成新列的名称; * ...选择你需要组合的列; * sep 值之间的分隔符, 默认情况为"_"; * remove 是否删除被组合的列。

```
[25]: stu_2 <- separate(stu2_new,gender_class,c("gender","class")) %>% head(10)
stu_2
```

		grade	gender	class	count
		<chr></chr>	<chr $>$	<chr $>$	<dbl $>$
	1	A	female	1	5
	2	В	female	1	4
	3	C	female	1	1
A data.frame: 10×4	4	D	female	1	2
A data.name. 10 × 4	5	E	female	1	3
	6	A	male	1	1
	7	В	male	1	2
	8	С	male	1	3
	9	D	male	1	4
	10	E	male	1	5

[26]: unite(stu_2, "gender_class", c("gender", "class"), sep="_")

		grade	$gender_class$	count
		<chr></chr>	<chr></chr>	<dbl></dbl>
A data.frame: 10×3	1	A	${\rm female}_1$	5
	2	В	${\rm female}_1$	4
	3	С	${\rm female}_1$	1
	4	D	${\rm female}_1$	2
	5	E	${\rm female}_1$	3
	6	A	$male_1$	1
	7	В	$male_1$	2
	8	С	$male_1$	3
	9	D	$male_1$	4
	10	E	$male_1$	5

4 stringr

R 语言支持字符处理,内置了系列函数 (grep、gsub 等),但系列函数定义混乱,对使用者极不方便。stringr 包是专门用于字符处理的 R 包,函数定义简洁、使用方式统一,是使用率较高的 R 包。stringr 包中的大部分函数具有统一风格的命名方式,以 str_ 开头,正则表达式也完全适用该包。

4.1 str_c: 字符串拼接

字符串拼接函数 str_c, 与 R 语言自带的 paste 和 paste0 函数具有相同的作用。

```
[27]: # 默认无向量分割符拼接 str_c("a","b")
```

'ab'

```
[28]: # 指定向量分隔符
str_c("a","b",sep = "_")
```

'a b'

```
[29]: # 指定向量折叠符
str_c(c("a","b","c"),collapse = "_")
```

 $^{\prime}a_{b_{c}}$

```
[30]: # 混合应用
str_c(c("a","b"),c("c","d"),sep = "/",collapse = "_")
```

'a/c_b/d'

4.2 str_count: 字符计数

字符计数函数 str_count, 计算字符串中指定字符的个数。

```
[31]: # 单个目标字符计数
str_count(string = c("sql","json","java"),pattern = "s")
```

1. 1 2. 1 3. 0

```
[32]: # 多个目标字符计数
str_count(string = c("sql","json","java"),pattern = c("s","j","a"))
```

1. 1 2. 1 3. 2

```
[33]: # 元字符查找计数 (fixed 包裹元字符)
str_count(string = "a..b", pattern = fixed("."))
```

2

4.3 str_detect: 字符检查

字符检查函数 str detect, 检查字符串中是否包含指定字符, 返回逻辑向量。

```
[34]: str_detect(string = c("sql","json","java"),pattern = "s")
```

1. TRUE 2. TRUE 3. FALSE

4.4 str_dup: 字符复制

字符复制函数 str_dup,将字符向量重复若干次,返回重复后的字符向量。

```
[35]: str_dup(string = c("sql","json","java"),times = 2)
```

1. 'sqlsql' 2. 'jsonjson' 3. 'javajava'

4.5 str_extract: 字符提取

字符提取函数 str_extract 和 str_extract_all,对字符串进行提取,str_extract_all 函数返回所有的匹配结果。

```
[36]: # 提取第一个匹配到的字符
str_extract(string = "banana", pattern = "a")
```

'a'

```
[37]: # 提取所有匹配到的字符(返回列表)
str_extract_all(string = "banana", pattern = "a")
```

1. (a) 'a' (b) 'a' (c) 'a'

```
[38]: # 提取所有匹配到的字符(返回矩阵)
str_extract_all(string = "banana", pattern = "a", simplify = T)
```

A matrix: 1×3 of type chr a a a

4.6 Lstr_glue: 字符串格式化

字符串格式化函数 str_glue, 用花括号 {} 表示占位符, 括号内的变量被替换成全局变量值。

[39]: # 定义全局变量
name <- "jack"
age <- 12
字符串格式化
str_glue("My name is {name},","\n my age is {age}.")

'My name is jack,\nmy age is 12.'

4.7 str_length: 字符串长度

字符串长度函数 str_length, 计算字符串长度。

[40]: str_length(string = "banana")

6

4.8 str_locate: 字符位置提取

字符位置提取函数 str_locate 和 str_locate_all, 返回匹配到的字符的位置。

[41]: # 返回第一个匹配到的字符的位置 str_locate(string = "banana", pattern = "a")

A matrix: 1×2 of type int $\frac{\text{start}}{2} = \frac{\text{end}}{2}$

- [42]: # 返回所有匹配到的字符的位置
 str_locate_all(string = "banana", pattern = "a")

4.9 str_match: 字符匹配

字符匹配函数 str_match 和 str_match_all 与字符提取函数 str_extract 类似, 返回匹配到的字符, 不同之处在于返回格式。

```
[43]: # 返回第一个匹配到的字符 (矩阵)
str_match(string = "banana", pattern = "a")
```

A matrix: 1×1 of type chr a

```
[44]: # 返回所有匹配到的字符 (列表)
str_match_all(string = "banana", pattern = "a")
```

1. A matrix: 3×1 of type chr a

4.10 str_pad: 字符补齐

字符补齐函数 str_pad,用于在字符串中添加单个字符,可选择添加的位置,在参数 side 中进行设置。

```
[45]: # 默认字符串左边补齐
str_pad(string = "jack", width = 6, pad = "S")
```

'SSjack'

```
[46]: # 字符串右边补齐
str_pad(string = "jack", width = 6, side = "right", pad = "S")
```

'jackSS'

```
[47]: # 字符串两边补齐
str_pad(string = "jack", width = 6, side = "both", pad = "S")
```

'SjackS'

4.11 str_remove: 字符删除

字符删除函数 str_remove 和 str_remove_all,用于删除字符串中的部分字符。

```
[48]: # 删除第一个匹配到的字符
     str_remove(string = "banana",pattern = "a")
    'bnana'
[49]: # 删除所有匹配到的字符
     str_remove_all(string = "banana",pattern = "a")
    'bnn'
    4.12 str_replace: 字符替换
    字符替换函数 str_replace、str_replace_all 和 str_replace_na,用于替换字符串中的部分字符。
[50]: # 替换第一个匹配到的字符
     str_replace(string = "banana", pattern = "a", replacement = "A")
    'bAnana'
[51]: # 替换所有匹配到的字符
     str_replace_all(string = "banana",pattern = "a",replacement = "A")
    'bAnAnA'
[52]: # NA 替换成 NA 字符
     str_replace_na(string = c("banana",NA))
    1. 'banana' 2. 'NA'
    4.13 str_sort: 字符排序
    字符排序函数 str_sort 和 str_order, 对字符向量进行排序。
[53]: #字符向量升序排序,返回字符向量
     str_sort(c("sql","json","python"))
    1. 'json' 2. 'python' 3. 'sql'
[54]: #字符向量降序排序,返回字符向量
     str_sort(c("sql","json","python"),decreasing = TRUE)
```

1. 'sql' 2. 'python' 3. 'json'

```
[55]: # 字符向量升序排序, 返回索引向量 str_order(c("sql","json","pythn"))
```

1. 2 2. 3 3. 1

4.14 str_split: 字符分割

字符分割函数 str_split 和 str_split_fixed,对字符串进行分割。

```
[56]: # 字符分割, 返回列表 str_split(string = "banana", pattern = "")
```

1. (a) 'b' (b) 'a' (c) 'n' (d) 'a' (e) 'n' (f) 'a'

```
[57]: # 字符分割, 返回矩阵
str_split(string = "banana", pattern = "", simplify = T)
```

A matrix: 1×6 of type chr b a n a n a

```
[58]: # 字符分割, 指定分割块数 str_split_fixed(string = "banana", pattern = "",n = 3)
```

A matrix: 1×3 of type chr b a nana

4.15 str_sub: 字符过滤

字符过滤函数 str_sub 和 str_subset, str_sub 函数通过指定开始和结束位置,过滤出字符串的部分字符串。str_subset 函数通过匹配模式,过滤出满足模式的字符串。

```
[59]: # 字符过滤(正向索引)
str_sub(string = "banana", start = 1, end = 3)
```

'ban'

```
[60]: # 字符过滤 (反向索引)
str_sub(string = "banana", start = -2, end = -1)
```

'na'

```
[61]: #字符过滤,并赋值
     x <- "banana"
     str_sub(string = x,start = 1,end = 1) <- "A"</pre>
     print(x)
     [1] "Aanana"
[62]: #字符串过滤(返回字符串)
     str_subset(string = c("java", "sql", "python"), pattern = "^s")
     'sql'
[63]: # 字符串过滤(返回位置)
     str_which(string = c("java", "sql", "python"), pattern = "^s")
     2
     4.16 其他
    stringr 包中其他的有用函数,用于常见的字符处理。
[64]: #删除字符串两边的空格
     str_trim(string = " you are beautiful! ")
     'you are beautiful!'
[65]: # 删除字符串中多余的空格
     str_squish(string = " you are beautiful! ")
     'you are beautiful!'
[66]: # 字符转为小写
     dog <- "The quick brown dog"</pre>
     str_to_lower(dog)
     'the quick brown dog'
[67]: # 字符转为大写
     str_to_upper(dog)
```

'THE QUICK BROWN DOG'

```
[68]: # 字符转为标题
str_to_title(dog)
```

'The Quick Brown Dog'

```
[69]: # 字符转为语句
str_to_sentence(dog)
```

'The quick brown dog'

5 ggplot2

```
values=c(22,21)) + #
scale_linetype_discrete(name="Sex of payer") +
xlab("Time of day") + ylab("Total bill") + # 设定轴标签
ggtitle("Average bill for 2 people") + # 设定标题
theme_bw() +
theme(legend.position=c(.7, .4)) # 图例的位置
```

Warning message:

"Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. Please use `linewidth` instead."

Average bill for 2 people

Average bill for 2 people

5.1 基本语法

5.1.1 标题

```
[74]: bp + ggtitle("Plant growth")
```



```
[75]: ## 等同于 bp + labs(title='Plant growth')
## 如果标题比较长,可以用 \n 将它分成多行来显示
bp + ggtitle("Plant growth with\ndifferent treatments")
```


5.1.2 交换 x 和 y 轴

```
[76]: # 交换 x 和 y 轴 (让 x 垂直、y 水平)。
bp + coord_flip()
```


5.1.3 Label

```
[77]: bp + scale_x_discrete(breaks = c("ctrl", "trt1", "trt2"), labels = c("Control", \( \triangle \) "Treat 1", \( \triangle \) "Treat 2"))
```


5.1.4 隐藏元素

[78]: # 抑制标签和网格线

bp + scale_y_continuous(breaks = NULL)


```
[79]: # 隐藏 x 刻度、标签和网格线
bp + scale_x_discrete(breaks = NULL)
```



```
[80]: # 隐藏所有的刻度和标签 (X 轴), 保留网格线 bp + theme(axis.ticks = element_blank(), axis.text.x = element_blank())
```


5.1.5 对数坐标轴

```
[81]: # 创建指数分布数据
set.seed(201)
n <- 100
dat <- data.frame(xval = (1:n + rnorm(n, sd = 5))/20, yval = 2 * 2^((1:n + u) + vnorm(n, sd = 5))/20))
```

```
# 创建常规的散点图
sp <- ggplot(dat, aes(xval, yval)) + geom_point()
sp
```



```
[82]: # log2 比例化 (间隔相等)
library(scales) # 需要 scales 包
sp + scale_y_continuous(trans = log2_trans())
```

```
载入程辑包: 'scales'
```

```
The following object is masked from 'package:purrr':
```

discard

The following object is masked from 'package:readr':

col_factor


```
[83]: # log2 坐标转换, 空间间隔不同 sp + coord_trans(y = "log2")
```



```
[84]: sp + scale_y_continuous(trans = log2_trans(), breaks = trans_breaks("log2", function(x) 2^x), labels = trans_format("log2", math_format(2^.x)))
```


5.1.6 标度变化

```
[86]: # x 范围 0-10, y 范围 0-30
set.seed(202)
dat <- data.frame(xval = runif(40, 0, 10), yval = runif(40, 0, 30))
sp <- ggplot(dat, aes(xval, yval)) + geom_point()

# 强制比例相等
```

sp + coord_fixed()

[87]: # 相等的标度变化, 让 x 的 1 个单位等同 y 的 3 个单位 sp + coord_fixed(ratio = 1/3)

[]:

5.1.7 反转轴向

[88]: # 反转一个连续值轴的方向 bp + scale_y_reverse()

5.1.8 刻度

```
[89]: # 刻度不平等变化
bp + scale_y_continuous(breaks = c(4, 4.25, 4.5, 5, 6, 8))
```


5.1.9 映射到颜色

```
[90]: # 将性别映射到颜色
ggplot(data = dat1, aes(x = time, y = total_bill, group = sex,
shape = sex)) + # 映射到形状
geom_line(linewidth=1.5) + # 设定线宽
geom_point(size=3) # 设定点大小
```


5.1.10 图例

[92]: # 删除特定美学的图例 (填充) bp + guides(fill = FALSE)

Warning message:

"The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as of ggplot2
3.3.4."

5.1.11 更改图例

```
# 基本的图表
lp <- ggplot(data = df1, aes(x = time, y = total_bill, group = sex,
    shape = sex)) + geom_line() + geom_point()
lp

# 更改图例
lp + scale_shape_discrete(name = "Payer", breaks = c("Female",
    "Male"), labels = c("Woman", "Man"))</pre>
```


5.2 Maping

5.2.1 映射到形状

```
[94]: ggplot(data = dat1, aes(x = sex, y = total_bill, group = time, shape = time, color = time)) + #映射到形状 geom_line(linewidth=1.5) + #设定线宽 geom_point(size=3) #设定点大小
```


5.2.2 因子

```
[95]: datn <- read.table(header = TRUE, text = "
supp dose length
OJ 0.5 13.23
OJ 1.0 22.70
OJ 2.0 26.06
VC 0.5 7.98
```

```
VC 1.0 16.77

VC 2.0 26.14
```

```
[96]: # x-axis 作为连续变量
ggplot(data = datn, aes(x = dose, y = length, group = supp, colour = supp)) +□
→geom_line() +
geom_point()
```



```
[97]: #使用原始的数据框,但使用 factor 函数在绘图时转换
ggplot(data = datn, aes(x = factor(dose), y = length, group = supp,
colour = supp)) + geom_line() + geom_point()
```



```
[98]: # 连续值作为分类变量使用时,也可以绘制条形图 ggplot(data = datn, aes(x = dose, y = length, fill = supp)) + geom_bar(stat = □ → "identity", position = position_dodge())
```


5.3 分面

[100]: library(reshape2)
查看头几行数据
head(tips)

载入程辑包: 'reshape2'

The following object is masked from 'package:tidyr':

smiths

		total_bill	tip	sex	smoker	day	time	size
A data.frame: 6×7		<dbl></dbl>	<dbl></dbl>	<fct $>$	<fct $>$	<fct $>$	<fct $>$	<int $>$
	1	16.99	1.01	Female	No	Sun	Dinner	2
	2	10.34	1.66	Male	No	Sun	Dinner	3
	3	21.01	3.50	Male	No	Sun	Dinner	3
	4	23.68	3.31	Male	No	Sun	Dinner	2
	5	24.59	3.61	Female	No	Sun	Dinner	4
	6	25.29	4.71	Male	No	Sun	Dinner	4

5.3.1 facet_grid

facet_grid() 函数可以将绘图面板按行和列的方式排列成一个矩阵。这对于比较 y 轴位置非常有用,因为垂直刻度是对齐的。你可以使用 facet_grid(rows \sim cols) 来指定行和列

[102]: head(mpg)

	manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl
A tibble: 6×11	<chr $>$	<chr $>$	<dbl $>$	<int $>$	<int $>$	<chr></chr>	<chr $>$	<int $>$	<int $>$	<0
	audi	a4	1.8	1999	4	auto(l5)	f	18	29	p
	audi	a4	1.8	1999	4	manual(m5)	f	21	29	p
	audi	a4	2.0	2008	4	manual(m6)	f	20	31	p
	audi	a4	2.0	2008	4	auto(av)	f	21	30	p
	audi	a4	2.8	1999	6	auto(15)	f	16	26	p
	audi	a4	2.8	1999	6	manual(m5)	f	18	26	p

```
[103]: p <- ggplot(mpg, aes(displ, hwy)) + geom_point()

# 根据 'sex' 接水平方向分割
p + facet_grid(. ~ cyl)
```



```
[104]: # 根据 'sex' 按垂直方向分割 p + facet_grid(cyl~ .)
```



```
[105]: # 垂直方向以 'cyl' 分割, 水平方向以 'year' 分割。
p + facet_grid(cyl ~ year)
```



```
[107]: # 描绘一个 total_bill 的柱状图
hp <- ggplot(tips, aes(x = total_bill)) + geom_histogram(binwidth = 2, colour =□
→"white")
# 根据性别和是否吸烟进行分面
hp + facet_grid(sex ~ smoker)
```


[108]: # 画布的缩放比例不变,但各分面的范围有所改变,因此每个分面的物理大小都不一致 hp + facet_grid(sex ~ smoker, scales = "free", space = "free")

5.3.2 facet_wrap

facet_wrap() 函数可以将绘图面板按照一个变量的多个水平分组,并将其包装成 2D 的形式。这对于具有多个水平的单个变量的绘图排列非常有用。你可以使用 facet_wrap(~ variable) 来指定变量。

[109]: p + facet_wrap(~ model)

5.4 Maping

5.4.1 映射到形状

```
[110]: ggplot(data = dat1, aes(x = sex, y = total_bill, group = time, shape = time, color = time)) + #映射到形状 geom_line(linewidth=1.5) + #设定线宽 geom_point(size=3) #设定点大小
```


5.4.2 因子

```
VC 1.0 16.77
VC 2.0 26.14
```

```
[112]: # x-axis 作为连续变量
ggplot(data = datn, aes(x = dose, y = length, group = supp, colour = supp)) +□
→geom_line() +
geom_point()
```



```
[113]: # 使用原始的数据框, 但使用 factor 函数在绘图时转换
ggplot(data = datn, aes(x = factor(dose), y = length, group = supp,
colour = supp)) + geom_line() + geom_point()
```



```
[114]: # 连续值作为分类变量使用时,也可以绘制条形图 ggplot(data = datn, aes(x = dose, y = length, fill = supp)) + geom_bar(stat = □ → "identity", position = position_dodge())
```



```
[116]: # 根据 'sex' 按垂直方向分割 sp + facet_grid(sex ~ .)
```



```
[117]: # 根据 'sex' 按水平方向分割。
sp + facet_grid(. ~ sex)
```


[118]: # 垂直方向以 'sex' 分割, 水平方向以 'day' 分割。
sp + facet_grid(sex ~ day)

除了能够根据单个变量在水平或垂直方向上对图进行分面, facet_wrap() 函数可以通过设置特定的行数或列数, 让子图排列到一起。此时每个图像的上方都会有标签。

```
[119]: # 以变量 `day` 进行水平分面,分面的行数为 2。
sp + facet_wrap(~day, ncol = 2)
```



```
[121]: # 描绘一个 total_bill 的柱状图

hp <- ggplot(tips, aes(x = total_bill)) + geom_histogram(binwidth = 2, colour = □ → "white")

# 根据性别和是否吸烟进行分面
hp + facet_grid(sex ~ smoker)
```


[122]: # 画布的缩放比例不变, 但各分面的范围有所改变, 因此每个分面的物理大小都不一致 hp + facet_grid(sex ~ smoker, scales = "free", space = "free")

5.5 基本图形

5.5.1 直方图与核密度曲线

```
# 查看数据
head(dat)
```

```
\operatorname{cond}
                                  rating
                          <fct>
                                  <dbl>
                          A
                                  -1.2070657
                          Α
                                  0.2774292
A data.frame: 6 \times 2
                          A
                                  1.0844412
                      4
                          A
                                  -2.3456977
                      5
                          Α
                                  0.4291247
                      6
                                  0.5060559
                          Α
```



```
[125]: # 重叠直方图
ggplot(dat, aes(x = rating, fill = cond)) + geom_histogram(binwidth = 0.5, □
→alpha = 0.5,
position = "identity") # identity 表示将每个对象直接显示在图中,条形会彼此重叠。
```



```
[126]: #密度图
ggplot(dat, aes(x = rating, colour = cond)) + geom_density()
# 半透明填充的密度图
ggplot(dat, aes(x = rating, fill = cond)) + geom_density(alpha = 0.3)
```


5.5.2 添加均值线

```
[127]: # 求均值
library(plyr)
cdat <- ddply(dat, "cond", summarise, rating.mean = mean(rating))
cdat
# 给密度图添加均值线
```

```
You have loaded plyr after dplyr - this is likely to cause problems. If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
```

library(plyr); library(dplyr)

载入程辑包: 'plyr'

The following objects are masked from 'package:dplyr':

arrange, count, desc, failwith, id, mutate, rename, summarise, summarize

The following object is masked from 'package:purrr':

compact

A data.frame: 2×2 $\begin{array}{c} \text{cond} & \text{rating.mean} \\ & < \text{fct} > & < \text{dbl} > \\ \hline A & -0.05775928 \\ & B & 0.87324927 \end{array}$

5.5.3 散点图

```
[128]: set.seed(955)
# 创建一些噪声数据
dat <- data.frame(cond = rep(c("A", "B"), each = 10), xvar = 1:20 +
    rnorm(20, sd = 3), yvar = 1:20 + rnorm(20, sd = 3))
head(dat)
```

		cond	xvar	yvar
		<chr></chr>	<dbl></dbl>	<dbl></dbl>
		\CIII >	\db1>	<u> </u>
	1	A	-4.252354	3.473157275
A data.frame: 6×3	2	A	1.702318	0.005939612
A data.frame. 0 × 3	3	A	4.323054	-0.094252427
	4	A	1.780628	2.072808278
	5	A	11.537348	1.215440358
	6	A	6.672130	3.608111411

[129]: ggplot(dat, aes(x = xvar, y = yvar)) + geom_point(shape = 1) # 使用空心圆

[130]: #默认包含 95% 置信区间 ggplot(dat, aes(x=xvar, y=yvar)) + geom_point(shape=1) + #使用空心圆 geom_smooth(method=lm) #添加回归线

 $\ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using formula = 'y ~ x'}$


```
[131]: # (不包含 95% 置信区间)
ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) + # 使用空心圆
```

```
geom_smooth(method=lm, #添加回归线
se=FALSE) #不加置信区域
```

`geom_smooth()` using formula = 'y ~ x'


```
[132]: ggplot(dat, aes(x=xvar, y=yvar)) + geom_point(shape=1) + #使用空心圆 geom_smooth() #添加带置信区间的平滑拟合曲线
```

 $\ensuremath{\text{`geom_smooth()`}}\ using method = 'loess' and formula = 'y ~ x'$


```
[133]: # 同上, 但这里带了回归线
ggplot(dat, aes(x=xvar, y=yvar, color=cond)) +
geom_point(shape=1) +
scale_colour_hue(l=50) + # 使用稍暗的调色板
geom_smooth(method=lm,
se=FALSE)
```

`geom_smooth()` using formula = 'y ~ x'


```
[134]: # 拓展回归线到数据区域之外 (带预测效果)
ggplot(dat, aes(x=xvar, y=yvar, color=cond)) + geom_point(shape=1) +
scale_colour_hue(l=50) +
geom_smooth(method=lm,
se=FALSE,
fullrange=TRUE)
```

[`]geom_smooth()` using formula = 'y ~ x'

5.6 组合多图

5.6.1 multiplot()

最简单的方法就是使用 multiplot() 函数。

 $\operatorname{multiplot}()$ 函数可以将任意数量的图像对象作为参数,或者可以构建一个图像对象列表传递到该函数的 plotlist 参数中。

```
[135]: # 以下例子使用的是 ggplot2 包中自带的 Chickweight
      #数据集 第一幅图像
      p1 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet,
        group = Chick)) + geom_line() + ggtitle("Growth curve for individual chicks")
      # 第二幅图像
      p2 <- ggplot(ChickWeight, aes(x = Time, y = weight, colour = Diet)) +
        geom_point(alpha = 0.3) + geom_smooth(alpha = 0.2, size = 1) +
        ggtitle("Fitted growth curve per diet")
      #第三幅图像
      p3 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight,
        colour = Diet)) + geom density() + ggtitle("Final weight, by diet")
      # 第四幅图像
      p4 <- ggplot(subset(ChickWeight, Time == 21), aes(x = weight,
        fill = Diet)) + geom_histogram(colour = "black", binwidth = 50) +
        facet_grid(Diet ~ .) + ggtitle("Final weight, by diet") +
        theme(legend.position = "none") # 为了避免冗余,这里不添加图例
```

```
[136]: library(Rmisc)
multiplot(p1, p2, p3, p4, cols = 2)
```

载入需要的程辑包: lattice

 $\ensuremath{\tt `geom_smooth()`}\ using method = 'loess' and formula = 'y ~ x'$

5.6.2 patchwork

```
[137]: library(ggplot2)
library(patchwork)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))</pre>
```

p1 + p2

5.7 字体

```
p <- ggplot(dat, aes(x = 1, y = y)) + scale_y_continuous(limits = c(0.5,
3.5), breaks = NULL) + scale_x_continuous(breaks = NULL)

p + geom_text(aes(label = text))</pre>
```

```
Some more text

Text with
multiple lines

This is text
```

```
annotate(geom = "text", x = 1, y = 1.5, label = "Annotation text", colour = ∪

→ "red",

size = 7, family = "Courier", fontface = "bold", angle = 30)
```

```
Some more text
                                            Text with multiple lines
\geq
                                    Annotation text
                                             This is text
                                                 Х
```

```
serif, Times
, AvantGarde
,Bookman
,Helvetica-Narrow
,NewCenturySchoolbook
,Palatino
,URWGothic
, URWBookman
,NimbusMon
URWHelvetica, NimbusSan
, NimbusSanCond
,CenturySch
,URWPalladio
URWTimes, NimbusRom
")
fonttable$pos <- 1:nrow(fonttable)</pre>
library(reshape2)
fonttable <- melt(fonttable, id.vars = "pos", measure.vars = c("Short",</pre>
  "Canonical"), variable.name = "NameType", value.name = "Font")
# 创建一个分面形式的图表。确保因子的顺序是正确的
facetable <- data.frame(Face = factor(c("plain", "bold",</pre>
  "italic", "bold.italic"), levels = c("plain", "bold",
  "italic", "bold.italic")))
fullfonts <- merge(fonttable, facetable)</pre>
options(warn=-1)
pf <- ggplot(fullfonts, aes(x = NameType, y = pos)) + geom_text(aes(label = _ _
 ⊸Font,
 family = Font, fontface = Face)) + facet_wrap(~Face,
 ncol = 2)
pf
```


5.8 交互式图表

载入程辑包: 'plotly'

```
The following objects are masked from 'package:plyr':
         arrange, mutate, rename, summarise
      The following object is masked from 'package:rio':
         export
      The following object is masked from 'package:ggplot2':
         last_plot
      The following object is masked from 'package:stats':
         filter
      The following object is masked from 'package:graphics':
         layout
[142]: # 使用 gather 函数将数据从宽格式变为长格式
      iris_long <- iris %>%
          gather(key = "measurement", value = "value", Sepal.Length:Petal.Width)
      iris_long %>% head(10)
      # 计算每朵鸢尾花的大小
      iris <- iris %>%
          mutate(size = Petal.Length * Petal.Width)
```

```
Species
                                     measurement
                                                    value
                                                    <dbl>
                            <fct>
                                     <chr>
                           setosa
                                     Sepal.Length
                                                    5.1
                        1
                           setosa
                                     Sepal.Length
                                                    4.9
                                     Sepal.Length
                                                    4.7
                        3
                           setosa
                           setosa
                                     Sepal.Length
                                                    4.6
A data.frame: 10 \times 3
                           setosa
                                     Sepal.Length
                                                    5.0
                                     Sepal.Length
                        6
                                                    5.4
                           setosa
                        7
                                     Sepal.Length
                           setosa
                                                    4.6
                        8
                                     Sepal.Length
                           setosa
                                                    5.0
                        9
                                     Sepal.Length
                                                    4.4
                           setosa
                                     Sepal.Length
                       10
                           setosa
                                                    4.9
```

```
[143]: plot <- ggplot(iris, aes(x = Species, y = size, fill = Species)) +□

→geom_boxplot() + theme_bw() +

labs(title = "不同品种鸢尾花的大小") + xlab("Species") + ylab("Size")

ggplotly(plot, tooltip = NULL)
```

HTML widgets cannot be represented in plain text (need html)

```
[144]: plot2 <-
ggplot(iris_long, aes(x = measurement, y = value, fill = Species)) +□
→geom_boxplot() +
facet_grid(. ~ Species) + theme_bw() + labs(title = "不同品种鸢尾花的花瓣长度
和宽度") +
xlab("Measurement") + ylab("Value")
ggplotly(plot2, tooltip = NULL)
```

HTML widgets cannot be represented in plain text (need html)

6 Split - Apply - Combine

```
[145]: players_scores <- data.frame(player = rep(c("Tom", "Dick", "Jim"), times = c(2, \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \(
```

	player	score
	<chr $>$	<dbl $>$
	Tom	10
	Tom	90
	Dick	20
A data frame: 10×2	Dick	100
A data.frame: 10 × 2	Dick	70
	Dick	50
	Dick	60
	Jim	20
	Jim	10
	Jim	50

相同的 score 是同一个分组,填充到同一个列表项中:

[146]: # 分组数据

(scores_by_player <- with(players_scores,split(score,player)))</pre>

\$Dick 1. 20 2. 100 3. 70 4. 50 5. 60

\$Jim 1. 20 2. 10 3. 50

\$Tom 1. 10 2. 90

当数据分割之后,对每个分组计算平均分。使用 lapply() 函数,对于每个列表项,应用 mean() 函数,计算单个列表项的平均值,例如:

[147]: list_mean_by_player <- lapply(scores_by_player,mean)

[148]: # lapply() 函数返回的结果是一个列表对象,每一个列表项都是一个向量,

因此可以使用 unlist() 函数, 把列表转换为向量, 例如:

unlist(list_mean_by_player)

Dick 60 **Jim** 26.66666666667 **Tom** 50

6.1 apply 家族

在 apply 家族函数中,每个函数都用于特定的数据类型: * apply 函数只能用于矩阵, * lapply 函数能够用于向量和列表(list),其工作原理是把一个函数应用于一个列表中的每个元素上,并且把结果作为列表返回; * sapply 处理列表,返回向量。* mapply 函数,把调用的函数应用到多个列表

的每一个元素中。* tapply 函数用于分组聚合运算,在研究数据时,有时需要对数据按照特定的字段进行分组,然后统计各个分组的数据,这就是 SQL 语法中的分组聚合。

[149]: # 使用 tapply() 函数一次完成"拆分 - 应用 - 合并"三个步骤,一气呵成: with(players_scores,tapply(score,player,mean))

Dick 60 **Jim** 26.66666666667 **Tom** 50

tapply() 函数常用的参数共有三个,第一个参数是数据框对象或向量,第二个参数是因子列表,也就是分组字段,第三个参数是指对单个分组应用的函数:

by() 函数和 aggregate() 函数是 tapply() 函数的包装函数,功能相同,接口稍微不同。* by(data, INDICES, FUN, ..., simplify = TRUE) * aggregate(x, by, FUN, ..., simplify = TRUE, drop = TRUE)

[150]: # 使用 daply() 函数计算每个 player 的平均得分
在示例中, daply() 函数返回的类型是 list, 通过 unlist() 函数转换为向量。
unlist(daply(players_scores,.(player),summarize,varScore=mean(score)))

Dick 60 **Jim** 26.66666666667 **Tom** 50

6.2 plyr

plyr 包是 apply 家族函数的升级版本,使用 plyr 包可以实现:在一个函数内同时完成 "Split - Apply - Combine",并且, plyr 包实现 R 类型 (vector, list, data.frame) 之间的分组变换,基本上可以取代 Base 包中的 apply 家族函数。

plyr 包对核心函数的命名采用统一的格式: **ply, 所有的函数名都由 5 个字符组成, 且最后三个字符是 ply, 函数名的第一个字符代表输入数据的类型, 第二个字符代表输出数据的类型, R 类型的简写是:

- d: data.frame
- 1: list
- a: array, vector, matrix
- r: 代表 replicate, 重复多次
- m: 多输入
- 二: 舍弃输出结果

其他操作函数 * each(): each(min, max) 等价于 function(x) c(min = min(x), max = max(x))。 * colwise(): colwise(median) 将计算列的中位数。* arrange(): 超级顺手的函数,可以方便的给

dataframe 排序。* rename(): 又是一个 handy 的函数, 按变量名而不是变量位置重命名。* count(): 返回 unique 值, 等价于 length(unique(**))。* match_df(): 方便的配合 count() 等, 选出符合条件的行, 有点像 merge(...,all=F) 的感觉。* join(): 对于习惯 SQL 的童鞋, 可能比 merge() 用起来更顺手吧(当然也更快一点), 不过灵活性还是比不上 merge()。

6.2.1 plyr::ddply

plyr 包中最常用的函数是 ddply() 函数,该函数对数据框进行操作,对每一列调用一个函数,并返回数据框类型: ddply(.data,.variables,.fun = NULL,...)

[151]: # 在 ddply 函数或 R 中较新的 plyr::ddply 函数的上下文中, .(color) 用于指定一个变量或列, 您希望根据该变量或列对数据进行分组, 以便进行后续汇总

	color	avg_price	avg_carat
	$\langle ord \rangle$	<dbl $>$	<dbl $>$
	D	3169.954	0.6577948
	\mathbf{E}	3076.752	0.6578667
A data.frame: 7×3	F	3724.886	0.7365385
	G	3999.136	0.7711902
	H	4486.669	0.9117991
	I	5091.875	1.0269273
	J	5323.818	1.1621368

6.2.2 plyr::each 函数

plyr 包的 each() 函数,能够把多个函数整合到一个函数中,每一个函数必须只能返回一个数值

		cut	color	price	carat
		<ord></ord>	<ord $>$	<dbl $[,2]>$	<dbl $[,2]>$
-	1	Fair	D	4291.061, 699443	0.9201227, 149.98
	2	Good	D	3405.382,2254363	0.7445166,492.87
	3	Very Good	D	3470.467, 5250817	0.6964243,1053.69
A data.frame: 10×4	4	Premium	D	3631.293,5820962	0.7215471,1156.64
A data.frame. 10 × 4	5	Ideal	D	2629.095, 7450854	0.5657657,1603.38
	6	Fair	\mathbf{E}	3682.312,824838	0.8566071,191.88
	7	Good	\mathbf{E}	$3423.644,\ 3194260$	0.7451340,695.21
	8	Very Good	E	3214.652, 7715165	0.6763167,1623.16
	9	Premium	E	3538.914,8270443	0.7177450,1677.37
	10	Ideal	E	2597.550, 10138238	$0.5784012,\ 2257.50$

6.2.3 plyr::rename

	ļ	mpg	cyl	displacement	hp	drat	wt	qsec
		<dbl></dbl>	<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl></dbl>	<dbl></dbl>
-	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46
	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02
	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61
A data.frame: 10×11	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44
A data.name. 10 × 11	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02
	Valiant	18.1	6	225.0	105	2.76	3.460	20.22
	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84
	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00
	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90
	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30

6.2.4 plyr::arrange

Order a data frame by its colums

```
[154]: mtcars %>%
    plyr::arrange(cyl, disp) %>%
```

head	11	\wedge
neau	$(\top$	\cup \prime

		ı									
		mpg	cyl	disp	hp	drat	\mathbf{wt}	qsec	vs	am	ge
		<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<
	1	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4
	2	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4
	3	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4
A data.frame: 10×11	4	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4
A data.iiaiiie. 10 × 11	5	30.4	4	95.1	113	3.77	1.513	16.90	1	1	5
	6	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4
	7	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3
	8	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5
	9	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4
	10	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4

6.2.5 plyr::mutate

该函数和 transfrom 函数十分相似,不过,mutate() 函数是递进式的,这使得后期的转换可以使用早期创建的变量。

[155]: # Things transform can't do

plyr::mutate(mtcars, mpg1 = mpg^2, mpg2 = mpg1/mpg) %>%

head(10)

		mpg	cyl	disp	hp	drat	wt	qsec	vs
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<d1< td=""></d1<>
	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0
	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0
	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1
A data frame: 10×13	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1
A data.name. 10 × 13	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0
	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1
	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0
	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1
	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1
	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1

7 实战: IRIS 数据分析 102

6.2.6 plyr::name_rows

在设计时,没有 plyr 函数会保留行名称 (row names)。如果想保留行名称,可以使用 name_rows() 把行名称转换为显式的列值,在执行为相应的 plyr 操作之后,再使用 name_rows 把列值转换为行名称。

[156]: plyr::name_rows(mtcars) %>%

head(10)

		1									
		mpg	cyl	disp	hp	drat	wt	qsec	vs	am	ge
		<dbl></dbl>	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<
	1	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4
	2	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4
	3	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4
A data.frame: 10×12	4	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3
A data. Hame. 10 × 12	5	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3
	6	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3
	7	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3
	8	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4
	9	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4
	10	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4

参数 df: 数据框对象,拥有 rownames,或者显式的列名.rownames

7 实战: iris 数据分析

演示如何使用 R 语言中的 ggplot2、dplyr 和 tidyr 库进行数据分析。我们将使用一个真实的数据 集,并进行数据导入、清洗、转换、分析和可视化等多个任务。通过本部分的演示,读者可以更好 地理解 ggplot2、dplyr 和 tidyr 的相关知识,并在相似的数据分析任务中应用它们。

我们的任务是分析一份 R 语言自带的花的数据集。数据集包含了:

• Sepal.Length: 萼片长度, 以厘米为单位

• Sepal.Width: 萼片宽度, 以厘米为单位

• Petal.Length: 花瓣长度, 以厘米为单位

• Petal.Width: 花瓣宽度,以厘米为单位

• Species: 鸢尾花的品种,包括三个类别: setosa、versicolor 和 virginica

我们将尝试回答以下问题:

- 不同品种鸢尾花的花瓣长度和宽度是否存在差异?
- 鸢尾花的大小是否与种类有关?

[157]: # 加载 iris 数据集

data(iris)

[158]: # 查看前几行数据

head(iris)

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
A data.frame: 6×5		<dbl></dbl>	<dbl $>$	<dbl></dbl>	<dbl></dbl>	<fct $>$
	1	5.1	3.5	1.4	0.2	setosa
	2	4.9	3.0	1.4	0.2	setosa
n data.name. 0 × 9	3	4.7	3.2	1.3	0.2	setosa
	4	4.6	3.1	1.5	0.2	setosa
	5	5.0	3.6	1.4	0.2	setosa
	6	5.4	3.9	1.7	0.4	setosa

7.1 花瓣长度和宽度是否存在差异?

首先,我们用 gather()函数将数据从宽格式变为长格式,以便更好地进行可视化。

[159]: # 使用 gather 函数将数据从宽格式变为长格式

iris_long <- iris %>%

gather(key = "measurement", value = "value", Sepal.Length:Petal.Width)

iris_long %>% head(10)

		Species	measurement	value
		<fct></fct>	<chr $>$	<dbl $>$
	1	setosa	Sepal.Length	5.1
	2	setosa	Sepal.Length	4.9
	3	setosa	Sepal.Length	4.7
A data.frame: 10×3	4	setosa	Sepal.Length	4.6
A data.frame. 10 × 5	5	setosa	Sepal.Length	5.0
	6	setosa	Sepal.Length	5.4
	7	setosa	Sepal.Length	4.6
	8	setosa	Sepal.Length	5.0
	9	setosa	Sepal.Length	4.4
	10	setosa	Sepal.Length	4.9

然后,我们使用 facet_grid() 函数将不同种类的鸢尾花绘制在不同的子图中,更好地比较不同种类之间的差异。

不同品种鸢尾花的花瓣长度和宽度

7 实战: IRIS 数据分析 105

可以看到,不同品种鸢尾花的花瓣长度和宽度确实存在差异。鸢尾花 "setosa" 的花瓣相对较短而宽,而鸢尾花 "versicolor" 和 "virginica" 的花瓣相对较长但宽度较窄。

7.2 花的大小是否与种类有关?

接下来,我们可以使用 dplyr 库计算每朵鸢尾花的大小,并使用 ggplot2 可视化不同品种鸢尾花的大小分布情况。

```
[161]: # 计算每朵鸢尾花的大小
iris <- iris %>%
mutate(size = Petal.Length * Petal.Width)
```

```
[162]: # 绘制不同品种鸢尾花的大小分布情况
ggplot(iris, aes(x = Species, y = size, fill = Species)) + geom_boxplot() + ↓
→theme_bw() +
labs(title = "不同品种鸢尾花的大小") + xlab("Species") + ylab("Size")
```

8 结果导出 106

可以看到,不同品种鸢尾花的大小分布情况也存在差异。鸢尾花 "virginica" 的大小分布最大,而鸢尾花 "setosa" 的大小分布最小。

8 结果导出

[163]: library(broom)

8 结果导出 107

[164]: fit <- lm(Sepal.Length~Sepal.Width+

reg <- iris %>%

```
Petal.Length+Petal.Width,
          data=iris)
      summary(fit)
      Call:
      lm(formula = Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
          data = iris)
      Residuals:
           Min
                     1Q
                        Median
                                       3Q
                                               Max
      -0.82816 -0.21989 0.01875 0.19709 0.84570
      Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                               0.25078 7.401 9.85e-12 ***
      (Intercept)
                   1.85600
                              0.06665 9.765 < 2e-16 ***
      Sepal.Width
                   0.65084
      Petal.Length 0.70913
                              0.05672 12.502 < 2e-16 ***
      Petal.Width -0.55648
                              0.12755 -4.363 2.41e-05 ***
      Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
      Residual standard error: 0.3145 on 146 degrees of freedom
      Multiple R-squared: 0.8586,
                                         Adjusted R-squared: 0.8557
      F-statistic: 295.5 on 3 and 146 DF, p-value: < 2.2e-16
[165]: # broom 对 fit 格式化
      glance(fit)
                                                                                             AIC
                    r.squared
                              adj.r.squared sigma
                                                     statistic
                                                               p.value
                                                                           df
                                                                                   logLik
      A tibble: 1 \times 12 <dbl>
                               <dbl>
                                           <dbl>
                                                      <dbl>
                                                               <dbl>
                                                                            <dbl>
                                                                                   <dbl>
                                                                                             <dbl>
                    0.8586117
                              0.8557065
                                                               8.588101e-62
                                                                                   -37.32136
                                           0.3145491
                                                     295.5391
                                                                                             84.64272
[166]: # 分组回归
```

	term	estimate	std.error	statistic	p.value
A tibble: 4×5	<chr $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl></dbl>
	(Intercept)	1.8559975	0.25077711	7.400984	9.853855e-12
	Sepal.Width	0.6508372	0.06664739	9.765380	1.199846e-17
	Petal.Length	0.7091320	0.05671929	12.502483	7.656980 e-25
	Petal.Width	-0.5564827	0.12754795	-4.362929	2.412876e-05

9 R 语言便捷快捷的代码技巧

- 在 R 中**读取和写人数据文件**是数据分析任务中非常常见的操作。可以使用 base R 中的 read.table() 或 write.table() 函数,也可以使用 readr 包中的 read_csv() 或 write_csv() 等函数。
- 为了简化代码和提高效率,可以编写自己的函数来执行这些重复的任务。在R中,函数的编写非常简单,可以使用function()和 return()语句创建自己的函数并执行特定操作。
- 使用**管道符**(%>%): 该符号可以大大减少代码长度和提高代码可读性。它允许你将一系列函数链接在一起,并将中间结果传递给下一个函数。
- 使用**匿名函数**: 在某些情况下,使用匿名函数可以减少代码量。通过使用(function(x) x²)(5)这样的语法,可以直接对 5 进行平方运算,而不必定义一个具名函数。
- 使用**向量化操作**: R 中很多函数都是向量化的,这意味着它们可以同时处理整个向量。在处理数据分析任务中的大数据时,这是非常有用的。
- options(warn=-1) 在 ggplot2 函数的开头添加 options(warn=-1) 来关闭所有警告
- 如果你在脚本或函数中使用 ggplot2 进行绘图,必须使用 print() 命令确保图像得到渲染。