<u>אלגברה של קבוצות:</u>

- $A \setminus B = A \cap B^C \bullet$
 - כללי דה מורגן

$$(A \cup B)^C = A^C \cap B^C \quad (A \cap B)^C = A^C \cup B^C$$

• דיסטרבטיביות (= חוקי פילוג) של איחוד וחיתוך

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• חוקי בליעה (עקרון הדואליות מתקיים בהם).

$$A \cap A = A$$
, $A \cup A = A$, $A \cap \emptyset = \emptyset$, $A \cup \emptyset = A$

● המשלים של המשלים

$$(A^C)^C = A$$

תרגיל כמו 2 ו 3 ממן 11

תהיינה A,B,C קבוצות. הוכיחו שמתקיים $(A \setminus B) \setminus C = A \setminus (B \cup C)$

: ~1717; se ; 275/16 ~183412 V.21)

コレクノペ

תרגיל כמו 2 ו 3 ממן 11

תהיינה A,B,C קבוצות. הוכיחו שמתקיים $(A \setminus B) \setminus C = A \setminus (B \cup C)$

$$(4/8)/C$$
 $(4/8)/C$
 $(4/8)/C$

<u>תרגיל</u> כמו 2 ו 3 ממן 11

תהיינה A,B,C קבוצות. הוכיחו שמתקיים $(A\setminus B)\setminus \mathcal{C}=A\setminus (B\cup \mathcal{C})$

: コム・トン ーカンら シレンノリ

XE (AIB) C (A) XEAB, XEC (A) XEA, XEB, XEC (A) XEB, XEC

TONIC XEA X & BUC (BUC)

ハルイフ (= XEA/(BUC) がらに XE(AB)/C で りにつう

(x4Bn x4C) = 7(xeB v xeC) (=> x6BvC : C'C

תרגיל כמו 2 ו 3 ממן 11 <u>תרגיל</u>

תהיינה A,B,C קבוצות. הוכיחו שמתקיים A,B,C

$$(A \setminus B) \setminus C = A \setminus (B \cup C)$$

(ALB) / C S AI (BVC) : 77" 100

XE (AIB) C => XEAB, X&C => XEA, X&B, X&C

TIN'L'S XEA, X & BUC => XEA / (BUC)

(x4Bn x4C) = 7(xeB v xeC) (=> x6BvC : C'C

מתמטיקה בדידה תורת הקבוצות 11 ממן 11 ממן 11

תהיינה A,B,C קבוצות. הוכיחו שמתקיים $(A \setminus B) \setminus C = A \setminus (B \cup C)$

A/(BVC) = (A/B)/C

XE (AIB) C = XEAB, X&C = XEA, X&B, X&C

= XEA, X&BUC = XEA \(BUC)

~ N'7 (= XEA/(BUC) BBIC XE(AB)/C C 1)1077 دوی و ۱۵ دیال ای ای ای مادر در در در در در مادر مادر .

(x\dBn x\dC) = 7(x\eB v x\eC) (=> x\dBuc : Ci'C

תרגיל כמו 3א ממן 11 <u>תרגיל</u>

:הוכיחו את הטענה הבאה

U קבוצות חלקיות לקבוצה אוניברסילית A,B תהיינה A,B קבוצות חלקיות לקבוצה אז $A^{\mathcal{C}}\cap B\neq\emptyset$, אם $A\neq\emptyset$ אז $A\neq\emptyset$ אז $A^{\mathcal{C}}\cap B\neq\emptyset$, אם $A\neq\emptyset$ אם ומתקיים $A\setminus B$

$$A^{c} \cap B \neq \emptyset$$
, $B^{c} \cap A \neq \emptyset$

(A) B) \cap (B) \cap (B) \cap (1)

(A) \cap (B) \cap (2)

(A) \cap (B) \cap (2)

1. En 1235 WOLL (1 ロット(= (A1B) n (B1A) +ゆっいいのか ハツ XEAB XEBIA 1-12 (2) 128 (= XE(AB) U(BIA) TO XED, X4B MY XEB, X4A endition 101/= . (A13) n (B1 A) = p A18 # \$ (= A18 = A18 = BENA # \$]'~) \ (2)

-rolling
7'~'r (0)

$$A \Delta B = (A \Delta B) \cup (B \Delta A)$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

$$(A \Delta B) = (A \Delta B) \cup (B \Delta A) = \emptyset$$

 $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{$

 $(A \setminus B) \cap (B \setminus A) = (A \cap B) \cap (B \cap A^c) = A \cap B^c \cap B \cap A^c$ $= (A \cap A^c) \cap (B \cap B^c) = \phi \cap \phi = \phi$

|CUD| = |C| + |D| - |CD| |CD| = |C| + |D| - |CD|

11 **תרגיל** כמו 2 ו- 3 ממן

:הוכיחו את הטענה הבאה

U תהיינה A,B ו A קבוצות חלקיות לקבוצה אוניברסילית $(A \cup B) \setminus (B \cap C) \subseteq (A \cup C^C)$ הוכח

シマンプ x monge myn / my) x E (AUB) (B nc) (1)4-01 5.44 P.L. 0.12-4 Q = (AACe) - 241. XEAUB, XEBUC Loon in (= XEB 2 און ארנה א XEA או אנה ב XEAUB XE ANCE ILLIN AININ = XEB : 1777 18

X (B) 1) 11 XEB = 1 : 2 11/2 (name xebuc sixec six xec six xec) x & C . My''ol . X EAUC 3'17'16 -1112-4 <= XEC <= 10. ון בן השלמן XEAUC عالم راء ه المردد اس دادس دد داد

$$A \Delta \phi = A / \phi U \phi / A = A$$

<u>תרגיל</u> כמו 3ג ממן 11

:הוכיחו את הטענה הבאה

$$A\Delta B = \{1,2,4\}$$
 אז $A\Delta \{1,2,3\} = B\Delta \{3,4\}$ אם

$$A \triangle \S1, 7, 3\S = B \triangle \S3, 4\S \ / B \triangle$$
 $B \triangle A \triangle \S1, 7, 3\S = (B \triangle B) \triangle \S3, 4\S$
 $A \triangle B \triangle \S1, 7, 3\S = \phi \triangle \S3, 4\S$
 $A \triangle B \triangle \S1, 7, 3\S = \S3, 4\S \ / \triangle \S1, 7, 3\S$
 $A \triangle B \triangle (\S1, 7, 3\S \triangle \S1, 7, 3\S) = \S3, 4\S \triangle \S1, 7, 2, 3\S$
 $A \triangle B \triangle (\S1, 7, 3\S \triangle \S1, 7, 3\S) = \S3, 4\S \triangle \S1, 7, 2, 3\S$
 $A \triangle B \triangle (\S1, 7, 3\S \triangle \S1, 7, 3\S) = \S3, 4\S \triangle \S1, 7, 2, 3\S$
 $A \triangle B \triangle (\S1, 7, 3\S \triangle \S1, 7, 3\S \triangle \S1, 7, 3\S \triangle \S1, 7, 7, 3\S$

-C1.C

AUBUCU - - - UXUYUZZ

A, UAZU AS

$oldsymbol{I}$ תרגול עבור חיתוכים ואיחודים עבור קבוצה כלשהי

$$T = \{i, j, j\}$$

$$x \in \bigcup_{i \in I} A_i \quad \Leftrightarrow \quad \exists i \ (i \in I \land x \in A_i)$$

$$x \in \bigcap_{i \in I} A_i \quad \Leftrightarrow \quad \forall i \ (i \in I \rightarrow x \in A_i)$$

$$UA_n = UA_n = A_0 UA_1 UA_2 U \dots$$

$$n \in \mathbb{N}$$

תרגיל כמו שאלה 4 ממן 11

תהי ₪ קבוצת המספרים הטבעיים, היא הקב' האוניברסלית.

$$\{0$$
יג, איג, איט $\}=A_k=\{nk\mid n\in\mathbb{N}\}$ תהי $k\in\mathbb{N}$ לכל

א. חשבו את A_0,A_1,A_2 שווה ל A_k ב. מיצאו $k\in\mathbb{N}$ כך ש הקבוצה $k\in\mathbb{N}$

ג. מיצאו $A_8 \cup \{x+4 | x \in A_8\}$ כך ש הקבוצה $k \in \mathbb{N}$ שווה ל

 A_k

$$A_0 = \{n \cdot 0 \mid n \in \mathbb{N}\} = \{0\}$$
 $A_1 = \{n \cdot 1 \mid n \in \mathbb{N}\} = \mathbb{N}$
 $A_2 = \{2n \mid n \in \mathbb{N}\}$
 $A_3 = \{2n \mid n \in \mathbb{N}\}$

A3= {0,3,6,9,...} A4= {0,4,8,12,...}

 $\bigcap_{A_{i}} A_{i} = A_{0} \cap A_{1} \cap A_{2} \cap A_{2} \cap A_{3} \cap A_$

VAR = 90) U NUAZU... = N KEN

KEIN L'U AIS ZINZY ; JIN.)

n e An= { o.n, 1.n, z.n, ... }

XEN (= ALEIN KEIN S.S

NEIN [, [: 2 X E U A k KEN

111.00 Juleur:

$$\bigcap_{k \in I} A_k = A_1 \bigcap_{A_2} \bigcap_{A_3} \bigcap_{A_4} \bigcap_{A_5} \bigcap_{A_6} A_6 = ?$$

$$(a)$$

いっちょう ~い らんしん 2,3,4,5,6

»· \	2	3	Ч	5	6	
2	1 1 1	3	2	5	3	
2	1	3	1	5	3	
3	4	1	1	5	4	
5	1	1	1	1	1	

$$2 \cdot 2 \cdot 3 \cdot 5 = 60$$

$$\bigcap_{k \in I} A_k = A_{60}$$

$$k = 60$$

J'17 7 75'.

 $A_8 = \{0, 8, 16, 24, \dots\}$ $\{x + 4 \mid x \in A_8\} = \{4, 12, 20, 28, \dots\}$

ABU {X+4/X en }= {0,4,8,12,16,20,24,28,...} = A4

(ك

ر (د ساله عام ع ماره ا الاد عام ع

43= {8n | ve IN} = {4.(sn) | neIN} & -1/1324 6

1850 JOONS M 10 -1913>2 (3 4.2. 3, 1.10.10)

$$A_{60} = \{0, 60, 120, 180, ...\}$$

$$= \{6000 \mid n \in N\}$$

$$\bigcap_{n=1}^{\infty} \left(1 - \frac{1}{N}, 2 - \frac{1}{N} \right) = \emptyset$$

$$(0, 7) = \bigcup_{n=1}^{\infty} \left(1 - \frac{1}{n}, 2 - \frac{1}{n}\right)$$
 חשבו את $\frac{7}{4}$ $\frac{7}{2}$ $\frac{7}{4}$ $\frac{7$

प्रश्न र परीक्षा को संग्रह

:סעיף משאלת החובה

תהיינה X,Y קבוצות המוכלות בקבוצה אוניברסלית כלשהי. הוכיחו

$$(X\Delta Y)^c = (X \cap Y) \cup (X^c \cap Y^c)$$

מנחה: טלי אביגד תורת הקבוצות מתמטיקה בדידה

> . $U = \{1,2,3,4,5,6,7\}$, $A = \{1,2,3\}$, $B = \{3,4,5\}$ א. . $X = \{x \in U \mid x \in A \rightarrow x \in B\}$: קבוצה X מוגדרת כך

X היא: הקבוצה X היא: הסימן X בתוך הנוסחה הוא הקַשָּר הלוגי השם... אז...יי. הקבוצה

 $\{3\}$ [3] $\{3,4,5\}$ [2] $\{1,2,3,4,5\}$ [1]

 ${3,4,5,6,7}$ [5]

{3,6,7} [4]

מנחה : טלי אביגד מתמטיקה בדידה מנחה : טלי אביגד

. $A = \{1,2,3\}$, $B = \{2,3,4\}$ היא קבוצת המספרים הטבעיים. תהיינה N היא קבוצת המספרים הטבעיים . $X = \{x \in \mathbb{N} \mid x \in A \leftrightarrow x \not\in B\}$. קבוצה X מוגדרת כך:

הסימן ↔ שבתוך הנוסחה הוא הקַשָּר הלוגי ייאם ורק אםיי, שהוגדר בסעיף 5 בחוברת יימבוא מהיר ללוגיקהיי.

$$X = \{1,4\}$$
 [3] $X = \{1\}$ [2] $X = \emptyset$ [1]

$$X = N - \{2,3,4\}$$
 [5] $X = N - \{2,3\}$ [4]