# Convolutional Neural Network

(CNN)

### Convolution

# Convolutional Layer



# Convolution

| 1 | 0 | 0 | 0 | 0 | 1 |
|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |

6 x 6 image



(The values in the filters are unknown parameters.)

### Convolution

### Convolutional Layer



Filter 1

### Convolutional Layer



Filter 2

stride=1



6 x 6 image









#### stride=1

| 1 | 0 | 0 | 0 | 0 | 1 |
|---|---|---|---|---|---|
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |

6 x 6 image

Do the same process for every filter



# Pooling - Max pooling



# Pooling - Max pooling



#### CNN

# The whole CNN

#### Property 1

Some patterns are much smaller than the whole image

#### Property 2

> The same patterns appear in different regions.

#### Property 3

➤ Subsampling the pixels will not change the object

