On the size of good-for-games Rabin automata and its link with the memory in Muller games

Antonio Casares, Thomas Colcombet, Karoliina Lehtinen

Muller games

Muller languages:

For \mathcal{F} a family of subsets of colours (for ex. $\mathcal{F} = \{\{a, b, c\}, \{a\}, \{b\}\}\}$): $\mathcal{L}_{\mathcal{F}} = \{w \in C^{\omega} \mid \text{ Colours appearing infinitely often in } w \text{ form a set in } \mathcal{F}\}.$

Player 1 wins the Muller game if the word $w \in C^{\omega}$ produced is in $\mathcal{L}_{\mathcal{F}}$.

Memory structures

Structure that tells Player 1 how to play.

It is updated after each move in the game.

Two kinds of memory structures:

General memory: Update transitions can depend on the specific edges of the game.

Chromatic memory: Update transitions only depend on the colours of the condition (for example, the memory structure above).

$\textbf{Main results: Correspondance Memory} \leftrightarrow \textbf{Automata}$

Let $\mathcal{L}_{\mathcal{F}}$ be a Muller language.

Rabin automata

Automaton recognising $\mathcal{L}_{\mathcal{F}}$ for $\mathcal{F} = \{\{a,b\}, \{a,c\}, \{b\}\}.$

Rabin condition:

Output alphabet: $\Gamma = \{\bullet, \bullet, \bullet\}^k$, (k = 2 in the example). A run in \mathcal{A} produces an infinite sequence of arrays $v_1 v_2 v_3 \cdots \in \Gamma^{\omega}$.

A run is accepting if for some component $x \in \{1, ..., k\}$, $v_i[x] = \bullet$ infinitely often and $v_i[x] \neq \bullet$ from some point onwards.

Good-for-Gameness (GFG)

A non-deterministic automaton \mathcal{A} is good-for-games (GFG) if there exists a strategy resolving its non-determinism

$$\sigma: \Sigma^* \to \Delta,$$

such that:

 $w \in \Sigma^{\omega}$ is accepted by the automaton

The run over w obtained following σ is accepting.

 $\Sigma = \text{Input alphabet. } \Delta = \text{Transitions of the automaton.}$

For example, the Rabin automaton on the left is GFG (but it is not deterministic).