This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/51, C12O 1/68		(11) International Publication Number	WO 92/19743
C12N 15/40, C12Q 1/70 A61K 39/29, C07K 13/00 G01N 33/576	A2	(43) International Publication Date:	12 November 1992 (12.11.92)

US

(21) International Application Number: PCT/US92/04036 (22) International Filing Date: 8 May 1992 (08.05.92)

(71) Applicant: CHIRON CORPORATION [US/US]; 4560

8 May 1991 (08.05.91)

Horton Street, Emeryville, CA 94608 (US). (72) Inventors: CHA, Tai-An; 964 Springview Circle, San Ramon, CA 94583 (US). BEALL, Eileen; 1150 Lincoln Avenue, #5, Walnut Creek, CA 94596 (US). IRVINE, Bruce; 3401 El Monte Drive, Concord, CA 94519 (US). KOLBERG, Innia : 121 Sector Velley, Harring, CA 94542

BERG, Janice; 131 Scots Valley, Hercules, CA 94547 (US). URDEA, Michael, S.; 100 Bunce Meadow Road, Alamo, CA 94501 (US).

(74) Agent: JANIUK, Anthony, J.; Wolf, Greenfield & Sacks, 600 Atlantic Avenue, Boston, MA 02210 (US).

(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), EN (CAPI) GA (OAPI patent), GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC (European patent), MG, ML (OAPI patent), MN, MR (OA-PI patent), MW, NL (European patent), NO, PL, RO, RU, SD, SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: HCV GENOMIC SEQUENCES FOR DIAGNOSTICS AND THERAPEUTICS

(57) Abstract

(30) Priority data:

697,326

The present application features nucleic acid, peptide and antibody compositions relating to genotypes of hepatitis C virus and methods of using such compositions for diagnostic and therapeutic purposes.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	4 44	ES	Spain	MG	Madagascar
AT	Austria		Finland	Ml.	Mali
ΑU	Australia	FI		MN	Mongolia
BB	Barbados	FR	l·rance		•
BE	Belgium	GA	Gahon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
		GN	Guinea	NŁ	Netherlands
BC	Bulgaria		Greece	NO	Norway
BJ	Benia	GR		PL	Poland
BR	Brazil	HU	Hungary		Romania
CA	Canada	IT	ltaly	RO	
-	Central African Republic	JP	Japan	RU	Russian Federation
CF	•	KP	Democratic People's Republic	SD	Sudan
CC	Congo	W.L.		SE	Sweden
CH	Switzerland		of Korea		
CI	Côle d'Ivoire	KR	Republic of Korca	SN	Senegal
CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
	* * · · · · · · · · · · · · · · · · · ·	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia			TC	Togo
DE	Germany	LU	i usembourg		United States of America
DK	Denmark	MC	Munaco	US	United States of America

HCV GENOMIC SEQUENCES FOR DIAGNOSTICS AND THERAPEUTICS

This application is a continuation-in-part of U.S. Serial No. 07/697,326 entitled "Polynucleotide Probes Useful for Screening for Hepatitis C Virus, filed May 8, 1991.

Technical Field

The invention relates to compositions and methods for the detection and treatment of hepatitis C virus, (HCV) infection, formerly referred to as blood-borne non-A, non-B hepatitis virus (NANBV) infection. More specifically, embodiments of the present invention feature compositions and methods for the detection of HCV, and for the development of vaccines for the prophylactic treatment of infections of HCV, and development of antibody products for conveying passive immunity to HCV.

20

25

Background of the Invention

The prototype isolate of HCV was characterized in U.S. Patent Application Serial No. 122,714 (See also EPO Publication No. 318,216). As used herein, the term "HCV" includes new isolates of the same viral species. The term "HCV-1" referred to in U.S. Patent Application Serial No. 122,714.

10

15

20

25

HCV is a transmissible disease distinguishable from other forms of viral-associated liver diseases, including that caused by the known hepatitis viruses, i.e., hepatitis A virus (HAV), hepatitis B virus (HBV), and delta hepatitis virus (HDV), as well as the hepatitis induced by cytomegalovirus (CMV) or Epstein-Barr virus (EBV). HCV was first identified in individuals who had received blood transfusions.

The demand for sensitive, specific methods for screening and identifying carriers of HCV and HCV contaminated blood or blood products is significant. Post-transfusion hepatitis (PTH) occurs in approximately 10% of transfused patients, and HCV accounts for up to 90% of these cases. The disease frequently progresses to chronic liver damage (25-55%).

Patient care as well as the prevention of transmission of HCV by blood and blood products or by close personal contact require reliable screening, diagnostic and prognostic tools to detect nucleic acids, antigens and antibodies related to HCV.

Information in this application suggests the HCV has several genotypes. That is, the genetic information of the HCV virus may not be totally identical for all HCV, but encompasses groups with differing genetic information.

Genetic information is stored in thread-like molecules of DNA and RNA. DNA consists of covalently

25

linked chains of deoxyribonucleotides and RNA consists of covalently linked chains of ribonucleotides. Each nucleotide is characterized by one of four bases: adenine (A), guanine (G), thymine (T), and cytosine (C). The bases are complementary in the sense that, due to the orientation of functional groups, certain base pairs attract and bond to each other through hydrogen bonding and π -stacking interactions. Adenine in one strand of DNA pairs with thymine in an 10 opposing complementary strand. Guanine in one strand of DNA pairs with cytosine in an opposing complementary strand. In RNA, the thymine base is replaced by uracil (U) which pairs with adenine in an opposing complementary strand. The genetic code of living 15 organism is carried in the sequence of base pairs. Living cells interpret, transcribe and translate the information of nucleic acid to make proteins and peptides.

The HCV genome is comprised of a single positive strand of RNA. The HCV genome possesses a continuous, translational open reading frame (ORF) that encodes a polyprotein of about 3,000 amino acids. In the ORF, the structural protein(s) appear to be encoded in approximately the first quarter of the N-terminus region, with the majority of the polyprotein responsible for non-structural proteins.

10

15

20

The HCV polyprotein comprises, from the amino terminus to the carboxy terminus, the nucleocapsid protein (C), the envelope protein (E), and the non-structural proteins (NS) 1, 2 (b), 3, 4 (b), and 5.

HCV of differing genotypes may encode for proteins which present an altered response to host immune systems. HCV of differing genotypes may be difficult to detect by immuno diagnostic techniques and nucleic acid probe techniques which are not specifically directed to such genotype.

Definitions for selected terms used in the application are set forth below to facilitate an understanding of the invention. The term "corresponding" means homologous to or complementary to a particular sequence of nucleic acid. As between nucleic acids and peptides, corresponding refers to amino acids of a peptide in an order derived from the sequence of a nucleic acid or its complement.

The term "non-naturally occurring nucleic acid" refers to a portion of genomic nucleic acid, cDNA, semisynthetic nucleic acid, or synthetic origin nucleic acid which, by virtue of its origin or manipulation:

(1) is not associated with all of a nucleic acid with which it is associated in nature, (2) is linked to a nucleic acid or other chemical agent other than that to

10

15

nucleic acid.

which it is linked in nature, or (3) does not occur in nature.

Similarly the term, "a non-naturally occurring peptide" refers to a portion of a large naturally occurring peptide or protein, or semi-synthetic or synthetic peptide, which by virtue of its origin or manipulation (1) is not associated with all of a peptide with which it is associated in nature, (2) is linked to peptides, functional groups or chemical agents other than that to which it is linked in nature, or (3) does not occur in nature.

The term "primer" refers to a nucleic acid which is capable of initiating the synthesis of a larger nucleic acid when placed under appropriate conditions. The primer will be completely or substantially

complementary to a region of the nucleic acid to be copied. Thus, under conditions conducive to hybridization, the primer will anneal to a complementary region of a larger nucleic acid. Upon addition of suitable reactants, the primer is extended by the polymerizing agent to form a copy of the larger

The term "binding pair" refers to any pair of molecules which exhibit mutual affinity or binding

25 capacity. For the purposes of the present application, the term "ligand" will refer to one molecule of the binding pair, and the term "antiligand" or "receptor"

or "target" will refer to the opposite molecule of the binding pair. For example, with respect to nucleic acids, a binding pair may comprise two complementary nucleic acids. One of the nucleic acids may be designated the ligand and the other strand is designated the antiligand receptor or target. The designation of ligand or antiligand is a matter of arbitrary convenience. Other binding pairs comprise, by way of example, antigens and antibodies, drugs and drug receptor sites and enzymes and enzyme substrates, to name a few.

5

10

15

20

25

The term "label" refers to a molecular moiety capable of detection including, by way of example, without limitation, radioactive isotopes, enzymes, luminescent agents, precipitating agents, and dyes.

The term "support" includes conventional supports such as filters and membranes as well as retrievable supports which can be substantially dispersed within a medium and removed or separated from the medium by immobilization, filtering, partitioning, or the like. The term "support means" refers to supports capable of being associated to nucleic acids, peptides or antibodies by binding partners, or covalent or noncovalent linkages.

A number of HCV strains and isolates have been identified. When compared with the sequence of the original isolate derived from the USA ("HCV-1"; see

Q.-L. Choo et al. (1989) Science 244:359-362, Q.-L. Choo et al. (1990) Brit. Med. Bull. 46:423-441, Q.-L. Choo et al., Proc. Natl. Acad. Sci. 88:2451-2455 (1991), and E.P.O. Patent Publication No. 318,216, cited supra), it was found that a Japanese isolate ("HCV J1") differed significantly in both nucleotide and polypeptide sequence within the NS3 and NS4 regions. This conclusion was later extended to the NS5 and envelope (E1/S and E2/NS1) regions (see K. Takeuchi et al., <u>J. Gen. Virol.</u> (1990) <u>71</u>:3027-3033, Y. Kubo, 10 Nucl. Acids. Res. (1989) 17:10367-10372, and K. Takeuchi et al., <u>Gene</u> (1990) <u>91</u>:287-291). The former group of isolates, originally identified in the United States, is termed "Genotype I" throughout the present disclosure, while the latter group of isolates, initially identified in Japan, is termed "Genotype II" herein.

Brief Description of the Invention

The present invention features compositions of matter comprising nucleic acids and peptides corresponding to the HCV viral genome which define different genotypes. The present invention also features methods of using the compositions corresponding to sequences of the HCV viral genome which define different genotypes described herein.

10

15

20

25

A. Nucleic acid compositions

The nucleic acid of the present invention, corresponding to the HCV viral genome which define different genotypes, have utility as probes in nucleic acid hybridization assays, as primers for reactions involving the synthesis of nucleic acid, as binding partners for separating HCV viral nucleic acid from other constituents which may be present, and as anti-sense nucleic acid for preventing the transcription or translation of viral nucleic acid.

One embodiment of the present invention features a composition comprising a non-naturally occurring nucleic acid having a nucleic acid sequence of at least eight nucleotides corresponding to a non-HCV-1 nucleotide sequence of the hepatitis C viral genome. Preferably, the nucleotide sequence is selected from a sequence present in at least one region consisting of the NS5 region, envelope 1 region, 5'UT region, and the core region.

Preferably, with respect to sequences which correspond to the NS5 region, the sequence is selected from a sequence within a sequence numbered 2-22. The sequence numbered 1 corresponds to HCV-1. Sequences numbered 1-22 are defined in the Sequence Listing of the application.

Preferably, with respect to sequences corresponding to the envelope 1 region, the sequence is

10

15

selected from a sequence within sequences numbered 24-32. Sequence No. 23 corresponds to HCV-1. Sequences numbered 23-32 are set forth in the Sequence Listing of the application.

Preferably, with respect to the sequences which correspond to the 5'UT regions, the sequence is selected from a sequence within sequences numbered 34-51. Sequence No. 33 corresponds to HCV-1. Sequence No. 33-51 are set forth in the Sequence Listing of this application.

Preferably, with respect to the sequences which correspond to the core region, the sequence is selected from a sequence within the sequences numbered 53-66. Sequence No. 52 corresponds to HCV-1. Sequences 52-66 are set forth in the Sequence Listing of this application.

The compositions of the present invention form hybridization products with nucleic acid corresponding to different genotypes of HCV.

HCV has at least five genotypes, which will be referred to in this application by the designations GI-GV. The first genotype, GI, is exemplified by sequences numbered 1-6, 23-25, 33-38 and 52-57. The second genotype, GII, is exemplified by the sequences numbered 7-12, 26-28, 39-45 and 58-64. The third genotype, GIII, is exemplified by sequences numbered 13-17, 32, 46-47 and 65-66. The fourth genotype, GIV,

10

15

20

25

is exemplified by sequences numbered 20-22, and 29-31 and 48-49. The fifth genotype, GV, is exemplified by sequences numbered 18, 19, 50 and 51.

One embodiment of the present invention features compositions comprising a nucleic acid having a sequence corresponding to one or more sequences which exemplify a genotype of HCV.

B. Method of forming a Hybridization Product

Embodiments of the present invention also feature a method of forming a hybridization product with nucleic acid having a sequence corresponding to HCV nucleic acid. One method comprises the steps of placing a non-naturally occurring nucleic acid having a non-HCV-1 sequence corresponding to HCV nucleic acid under conditions in which hybridization may occur. The non-naturally occurring nucleic acid is capable of forming a hybridization product with HCV nucleic acid, under hybridization conditions. The method further comprises the step of imposing hybridization conditions to form a hybridization product in the presence of nucleic acid corresponding to a region of the HCV genome.

The formation of a hybridization product has utility for detecting the presence of one or more genotypes of HCV. Preferably, the non-naturally occurring nucleic acid forms a hybridization product

25

with nucleic acid of HCV in one or more regions comprising the NS5 region, envelope 1 region, 5'UT region and the core region. To detect the hybridization product, it is useful to associate the non-naturally occurring nucleic acid with a label. The formation of the hybridization product is detected by separating the hybridization product from labeled non-naturally occurring nucleic acid, which has not formed a hybridization product.

10 The formation of a hybridization product has utility as a means of separating one or more genotypes of HCV nucleic acid from other constituents potentially present. For such applications, it is useful to associate the non-naturally occurring nucleic acid with 15 a support for separating the resultant hybridization product from the the other constituents.

Nucleic acid "sandwich assays" employ one nucleic acid associated with a label and a second nucleic acid associated with a support. An embodiment of the present invention features a sandwich assay comprising 20 two nucleic acids, both have sequences which correspond to HCV nucleic acids; however, at least one non-naturally occurring nucleic acid has a sequence corresponding to non-HCV-1 HCV nucleic acid. At least one nucleic acid is capable of associating with a label, and the other is capable of associating with a support. The support associated non-naturally

10

20

25

occurring nucleic acid is used to separate the hybridization products which include an HCV nucleic acid and the non-naturally occurring nucleic acid having a non-HCV-1 sequence.

One embodiment of the present invention features a method of detecting one or more genotypes of HCV. method comprises the steps of placing a non-naturally occurring nucleic acid under conditions which hybridization may occur. The non-naturally occurring nucleic acid is capable of forming a hybridization product with nucleic acid from one or more genotypes of HCV. The first genotype, GI, is exemplified by seguences numbered 1-6, 23-25, 33-38 and 52-57. second genotype, GII, is exemplified by the sequences numbered 7-12, 26-28, 39-45 and 58-64. The third genotype, GIII, is exemplified by sequences numbered 13-17, 32, 46-47 and 65-66. The fourth genotype, GIV, is exemplified sequences numbered 20-22 and 29-31. The fifth genotype, GV, is exemplified by sequences numbered 18, 19, 50 and 51.

The hybridization product of HCV nucleic acid with a non-naturally occurring nucleic acid having non-HCV-1 sequence corresponding to sequences within the HCV genome has utility for priming a reaction for the synthesis of nucleic acid.

The hybridization product of HCV nucleic acid with a non-naturally occurring nucleic acid having a

10

15

sequence corresponding to a particular genotype of HCV has utility for priming a reaction for the synthesis of nucleic acid of such genotype. In one embodiment, the synthesized nucleic acid is indicative of the presence of one or more genotypes of HCV.

The synthesis of nucleic acid may also facilitate cloning of the nucleic acid into expression vectors which synthesize viral proteins.

Embodiments of the present methods have utility as anti-sense agents for preventing the transcription or translation of viral nucleic acid. The formation of a hybridization product of a non-naturally occurring nucleic acid having sequences which correspond to a particular genotype of HCV genomic sequencing with HCV nucleic acid may block translation or transcription of such genotype. Therapeutic agents can be engineered to include all five genotypes for inclusivity.

C. Peptide and antibody composition

A further embodiment of the present invention

features a composition of matter comprising a
non-naturally occurring peptide of three or more amino
acids corresponding to a nucleic acid having a
non-HCV-1 sequence. Preferably, the non-HCV-1 sequence
corresponds with a sequence within one or more regions
consisting of the NS5 region, the envelope 1 region,
the 5'UT region, and the core region.

Preferably, with respect to peptides corresponding to a nucleic acid having a non-HCV-1 sequence of the NS5 region, the sequence is within sequences numbered 2-22. The sequence numbered 1 corresponds to HCV-1. Sequences numbered 1-22 are set forth in the Sequence Listing.

5

10

15

1

Preferably, with respect to peptides corresponding to a nucleic acid having a non-HCV-1 sequence of the envelope 1 region, the sequence is within sequences numbered 24-32. The sequence numbered 23 corresponds to HCV-1. Sequences numbered 23-32 are set forth in the Sequence Listing.

Preferably, with respect to peptides corresponding to a nucleic acid having a non-HCV-1 sequence directed to the core region, the sequence is within sequences numbered 53-66. Sequence numbered 52 corresponds to HCV-1. Sequences numbered 52-66 are set forth in the Sequence Listing.

The further embodiment of the present invention

features peptide compositions corresponding to nucleic acid sequences of a genotype of HCV. The first genotype, GI, is exemplified by sequences numbered 1-6, 23-25, 33-38 and 52-57. The second genotype, GII, is exemplified by the sequences numbered 7-12, 26-28, 39-45 and 58-64. The third genotype, GIII, is exemplified by sequences numbered 13-17, 32, 46-47 and

65-66. The fourth genotype, GIV, is exemplified

25

s qu nc s numbered 20-22, 29-31, 48 and 49. genotype, GV, is exemplified by sequences numbered 18, 19, 50 and 51.

The non-naturally occurring peptides of the present invention are useful as a component of a 5 vaccine. The sequence information of the present invention permits the design of vaccines which are inclusive for all or some of the different genotypes of HCV. Directing a vaccine to a particular genotype allows prophylactic treatment to be tailored to maximize the protection to those agents likely to be encountered. Directing a vaccine to more than one genotype allows the vaccine to be more inclusive.

The peptide compositions are also useful for the 15 development of specific antibodies to the HCV. proteins. One embodiment of the present invention features as a composition of matter, an antibody to peptides corresponding to a non-HCV-1 sequence of the HCV genome. Preferably, the non-HCV-1 sequence is selected from the sequence within a region consisting 20 of the NS5 region, the envelope 1 region, and the core region. There are no peptides associated with the untranslated 5'UT region.

Preferably, with respect to antibodies directed to peptides of the NS5 region, the peptide corresponds to a sequence within sequences numbered 2-22. Preferably, with respect to antibodies directed to a peptide

10

15

20

25

corresponding to the envelope 1 region, the peptide corresponds to a sequence within sequences numbered 24-32. Preferably, with respect to the antibodies directed to peptides corresponding to the core region, the peptide corresponds to a sequence within sequences numbered 53-66.

Antibodies directed to peptides which reflect a particular genotype have utility for the detection of such genotypes of HCV and therapeutic agents.

One embodiment of the present invention features an antibody directed to a peptide corresponding to nucleic acid having sequences of a particular genotype. The first genotype, GI, is exemplified by sequences numbered 1-6, 23-25, 33-38 and 52-57. The second genotype, GII, is exemplified by the sequences numbered 7-12, 26-28, 39-45 and 58-64. The third genotype, GIII, is exemplified by sequences numbered 13-17, 32, 46-47 and 65-66. The fourth genotype, GIV, is exemplified sequences numbered 20-22, 29-31, 48 and 49. The fifth genotype, GV, is exemplified by sequences numbered 18, 19, 50 and 51.

Individuals skilled in the art will readily recognize that the compositions of the present invention can be packaged with instructions for use in the form of a kit for performing nucleic acid hybridizations or immunochemical reactions.

The present invention is further described in the following figures which illustrate sequences demonstrating genotypes of HCV. The sequences are designated by numerals 1-145, which numerals and sequences are consistent with the numerals and sequences set forth in the Sequence Listing. Sequences 146 and 147 facilitate the discussion of an assay which numerals and sequences are consistent with the numerals and sequences set forth in the Sequence Listing.

10

25

Brief Description of the Figures and Sequence Listing Figure 1 depicts schematically the genetic

organization of HCV;

Figure 2 sets forth nucleic acid sequences

numbered 1-22 which sequences are derived from the NS5 region of the HCV viral genome;

Figure 3 sets forth nucleic acid sequences numbered 23-32 which sequences are derived from the envelope 1 region of the HCV viral genome;

Figure 4 sets forth nucleic acid sequences numbered 33-51 which sequences are derived from the 5'UT region of the HCV viral genome; and,

Figure 5 sets forth nucleic acid sequences numbered 52-66 which sequences are derived from the core region of the HCV viral genome.

The Sequence Listing sets forth the sequences of sequences numbered 1-147.

Detailed Description of the Invention

5

10

15

The present invention will be described in detail as as nucleic acid having sequences corresponding to the HCV genome and related peptides and binding partners, for diagnostic and therapeutic applications.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See e.g., Maniatis, Fitsch & Sambrook, Molecular Cloning; A Laboratory Manual (1982); DNA Cloning, Volumes I and II (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); the series, Methods in Enzymology (Academic Press, Inc.), particularly Vol. 154 and Vol. 155 (Wu and Grossman, eds.).

The cDNA libraries are derived from nucleic acid
sequences present in the plasma of an HCV-infected
chimpanzee. The construction of one of these
libraries, the "c" library (ATCC No. 40394), is
described in PCT Pub. No. W090/14436. The sequences of
the library relevant to the present invention are set
forth herein as sequence numbers 1, 23, 33 and 52.

Nucleic acids isolated or synthesized in accordance with features of the present invention are

10

15

20

25

useful, by way of example without limitation as probes, primers, anti-sense genes and for developing expression systems for the synthesis of peptides corresponding to such sequences.

The nucleic acid sequences described define genotypes of HCV with respect to four regions of the viral genome. Figure 1 depicts schematically the organization of HCV. The four regions of particular interest are the NS5 region, the envelope 1 region, the 5'UT region and the core region.

The sequences set forth in the present application as sequences numbered 1-22 suggest at least five genotypes in the NS5 region. Sequences numbered 1-22 are depicted in Figure 2 as well as the Sequence Listing. Each sequence numbered 1-22 is derived from nucleic acid having 340 nucleotides from the NS5 region.

The five genotypes are defined by groupings of the sequences defined by sequence numbered 1-22. For convenience, in the present application, the different genotypes will be assigned roman numerals and the letter "G".

The first genotype (GI) is exemplified by sequences within sequences numbered 1-6. A second genotype (GII) is exemplified by sequences within sequences numbered 7-12. A third genotype (GIII) is exemplified by the sequences within sequences numbered 13-17. A fourth genotype (GIV) is exemplified by

10

15

sequences within sequences numbered 20-22. A fifth genotype (GV) is exemplified by sequences within sequences numbered 18 and 19.

The sequences set forth in the present application as sequences numbered 23-32 suggest at least four genotypes in the envelope 1 region of HCV. Sequences numbered 23-32 are depicted in Figure 3 as well as in the Sequence Listing. Each sequence numbered 23-32 is · · derived from nucleic acid having 100 nucleotides from the envelope 1 region.

A first envelope 1 genotype group (GI) is exemplified by the sequences within the sequences numbered 23-25. A second envelope 1 genotype (GII) region is exemplified by sequences within sequences numbered 26-28. A third envelope 1 genotype (GIII) is exemplified by the sequences within sequences numbered 32. A fourth envelope 1 genotype (GIV) is exemplified by the sequences within sequence numbered 29-31.

The sequences set forth in the present application as sequences numbered 33-51 suggest at least three 20 genotypes in the 5'UT region of HCV. Sequences numbered 33-51 are depicted in Figure 4 as well as in the Sequence Listing. Each sequence numbered 33-51 is derived from the nucleic acid having 252 nucleotides from the 5'UT region, although sequences 50 and 51 are 25 somewhat shorter at approximately 180 nucleotides.

10

15

20

25

The first 5'UT genotype (GI) is exemplified by the sequences within sequences numbered 33-38. A second 5'UT genotype (GII) is exemplified by the sequences within sequences numbered 39-45. A third 5'UT genotype (GIII) is exemplified by the sequences within sequences numbered 46-47. A fourth 5'UT genotype (GIV) is exemplified by sequences within sequences humbered 48 and 49. A fifth 5'UT genotype (GV) is exemplified by sequences within sequences numbered 50 and 51.

The sequences numbered 48-62 suggest at least three genotypes in the core region of HCV. The sequences numbered 52-66 are depicted in Figure 5 as well as in the Sequence Listing.

The first core region genotype (GI) is exemplified by the sequences within sequences numbered 52-57. The second core region genotype (GII) is exemplified by sequences within sequences numbered 58-64. The third core region genotype (GIII) is exemplified by sequences within sequences numbered 65 and 66. Sequences numbered 52-65 are comprised of 549 nucleotides. Sequence numbered 66 is comprised of 510 nucleotides.

The various genotypes described with respect to each region are consistent. That is, HCV having features of the first genotype with respect to the NS5 region will substantially conform to features of the first genotype of the envelope 1 region, the 5'UT region and the core region.

20

25

Nucleic acid isolated or synthesized in accordance with the sequences set forth in sequence numbers 1-66 are useful as probes, primers, capture ligands and anti-sense agents. As probes, primers, capture ligands and anti-sense agents, the nucleic acid wil normally comprise approximately eight or more nucleotides for specificity as well as the ability to form stable hybridization products.

10 Probes

A nucleic acid isolated or synthesized in accordance with a sequence defining a particular genotype of a region of the HCV genome can be used as a probe to detect such genotype or used in combination with other nucleic acid probes to detect substantially all genotypes of HCV.

With the sequence information set forth in the present application, sequences of eight or more nucleotides are identified which provide the desired inclusivity and exclusivity with respect to various genotypes within HCV, and extraneous nucleic acid sequences likely to be encountered during hybridization conditions.

Individuals skilled in the art will readily recognize that the nucleic acid sequences, for use as probes, can be provided with a label to facilitate detection of a hybridization product.

Capture Ligand

For use as a capture ligand, the nucleic acid selected in the manner described above with respect to probes, can be readily associated with supports. The manner in which nucleic acid is associated with supports is well known. Nucleic acid having sequences corresponding to a sequence within sequences numbered 1-66 have utility to separate viral nucleic acid of one genotype from the nucleic acid of HCV of a different genotype. Nucleic acid isolated or synthesized in accordance with sequences within sequences numbered 1-66, used in combinations, have utility to capture substantially all nucleic acid of all HCV genotypes.

15 Primers

20

25

Nucleic acid isolated or synthesized in accordance with the sequences described herein have utility as primers for the amplification of HCV sequences. With respect to polymerase chain reaction (PCR) techniques, nucleic acid sequences of eight or more nucleotides corresponding to one or more sequences of sequences numbered 1-66 have utility in conjunction with suitable enzymes and reagents to create copies of the viral nucleic acid. A plurality of primers having different sequences corresponding to more than one genotype can be used to create copies of viral nucleic acid for such genotypes.

15

20

The copies can be used in diagnostic assays to detect HCV virus. The copies can also be incorporated into cloning and expression vectors to generate polypeptides corresponding to the nucleic acid synthesized by PCR, as will be described in greater detail below.

Anti-sense

Nucleic acid isolated or synthesized in accordance with the sequences described herein have utility as anti-sense genes to prevent the expression of HCV.

Nucleic acid corresponding to a genotype of HCV is loaded into a suitable carrier such as a liposome for introduction into a cell infected with HCV. A nucleic acid having eight or more nucleotides is capable of binding to viral nucleic acid or viral messenger RNA. Preferably, the anti-sense nucleic acid is comprised of 30 or more nucleotides to provide necessary stability of a hybridization product of viral nucleic acid or viral messenger RNA. Methods for loading anti-sense nucleic acid is known in the art as exemplified by U.S. Patent 4,241,046 issued December 23, 1980 to Papahadjopoulos et al.

25 Peptide Synthesis

Nucleic acid isolated or synthesized in accordance with the sequences described herein have utility to

generate peptides. The sequences exemplified by sequences numbered 1-32 and 52-66 can be cloned into suitable vectors or used to isolate nucleic acid. The isolated nucleic acid is combined with suitable DNA linkers and cloned into a suitable vector. The vector can be used to transform a suitable host organism such as <u>E. coli</u> and the peptide encoded by the sequences isolated.

Molecular cloning techniques are described in the text Molecular Cloning: A Laboratory Manual, Maniatis et al., Coldspring Harbor Laboratory (1982).

The isolated peptide has utility as an antigenic substance for the development of vaccines and antibodies directed to the particular genotype of HCV.

15

Vaccines and Antibodies

The peptide materials of the present invention have utility for the development of antibodies and vaccines.

The availability of cDNA sequences, or nucleotide sequences derived therefrom (including segments and modifications of the sequence), permits the construction of expression vectors encoding antigenically active regions of the peptide encoded in either strand. The antigenically active regions may be derived from the NS5 region, envelope 1 regions, and the core region.

Fragments encoding the desired peptides are derived from the cDNA clones using conventional restriction digestion or by synthetic methods, and are ligated into vectors which may, for example, contain portions of fusion sequences such as beta galactosidase or superoxide dismutase (SOD), preferably SOD. Methods and vectors which are useful for the production of polypeptides which contain fusion sequences of SOD are described in European Patent Office Publication number 0196056, published October 1, 1986.

5

10

15

20

25

1

Any desired portion of the HCV cDNA containing an open reading frame, in either sense strand, can be obtained as a recombinant peptide, such as a mature or fusion protein; alternatively, a peptide encoded in the cDNA can be provided by chemical synthesis.

The DNA encoding the desired peptide, whether in fused or mature form, and whether or not containing a signal sequence to permit secretion, may be ligated into expression vectors suitable for any convenient host. Both eukaryotic and prokaryotic host systems are presently used in forming recombinant peptides. The peptide is then isolated from lysed cells or from the culture medium and purified to the extent needed for its intended use. Purification may be by techniques known in the art, for example, differential extraction, salt fractionation, chromatography on ion exchange resins, affinity chromatography, centrifugation, and

the like. See, for example, Methods in Enzymology for a variety of methods for purifying proteins. Such peptides can be used as diagnostics, or those which give rise to neutralizing antibodies may be formulated into vaccines. Antibodies raised against these peptides can also be used as diagnostics, or for passive immunotherapy or for isolating and identifying HCV.

An antigenic region of a peptide is generally 10 relatively small--typically 8 to 10 amino acids or less in length. Fragments of as few as 5 amino acids may characterize an antigenic region. These segments may correspond to NS5 region, envelope 1 region, and the core region of the HCV genome. The 5'UT region is not 15 known to be translated. Accordingly, using the cDNAs of such regions, DNAs encoding short segments of HCV peptides corresponding to such regions can be expressed recombinantly either as fusion proteins, or as isolated peptides. In addition, short amino acid sequences can be conveniently obtained by chemical synthesis. 20 instances wherein the synthesized peptide is correctly configured so as to provide the correct epitope, but is too small to be immunogenic, the peptide may be linked to a suitable carrier.

A number of techniques for obtaining such linkage are known in the art, including the formation of disulfide linkages using N-succinimidy1-3-(2-

pyridylthio)propionate (SPDP) and succinimidyl 4-(N-maleimido-methyl)cyclohexane-l-carboxylate (SMCC) obtained from Pierce Company, Rockford, Illinois, (if the peptide lacks a sulfhydryl group, this can be provided by addition of a cysteine residue). These reagents create a disulfide linkage between themselves and peptide cysteine residues on one protein and an amide linkage through the epsilon-amino on a lysine, or other free amino group in the other. A variety of such disulfide/amide-forming agents are known. See, for 10 example, Immun Rev (1982) 62:185. Other bifunctional coupling agents form a thioether rather than a disulfide linkage. Many of these thio-ether-forming agents are commercially available and include reactive esters of 6-maleimidocaprioc acid, 2-bromoacetic acid, 15 2-iodoacetic acid, 4-N-maleimido-methyl)cyclohexane-lcarboxylic acid, and the like. The carboxyl groups can be activated by combining them with succinimide or 1-hydroxyl-2 nitro-4-sulfonic acid, sodium salt. Additional methods of coupling antigens employs the 20 rotavirus/"binding peptide" system described in EPO Pub. No. 259,149, the disclosure of which is incorporated herein by reference. The foregoing list is not meant to be exhaustive, and modifications of the 25 named compounds can clearly be used.

Any carrier may be used which does not itself induce the production of antibodies harmful to the

1

10

host. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins; polysaccharides, such as latex functionalized Sepharose, agarose, cellulose, cellulose beads and the like; polymeric amino acids, such as polyglutamic acid, polylysine, and the like; amino acid copolymers; and inactive virus particles. Especially useful protein substrates are serum albumins, keyhole limpet hemocyanin, immunoglobulin molecules, thyroglobulin, ovalbumin, tetanus toxoid, and other proteins well known to those skilled in the art.

Peptides comprising HCV amino acid sequences encoding at least one viral epitope derived from the NS5, envelope 1, and core region are useful immunological reagents. The 5'UT region is not known 15 to be translated. For example, peptides comprising such truncated sequences can be used as reagents in an immunoassay. These peptides also are candidate subunit antigens in compositions for antiserum production or vaccines. While the truncated sequences can be 20 produced by various known treatments of native viral protein, it is generally preferred to make synthetic or recombinant peptides comprising HCV sequence. Peptides comprising these truncated HCV sequences can be made up entirely of HCV sequences (one or more epitopes, either 25 contiguous or noncontiguous), or HCV sequences and heterologous sequences in a fusion protein. Useful

25

heterologous sequences include sequences that provide for secretion from a recombinant host, enhance the immunological reactivity of the HCV epitope(s), or facilitate the coupling of the polypeptide to an immunoassay support or a vaccine carrier. See, E.G., EPO Pub. No. 116,201; U.S. Pat. No. 4,722,840; EPO Pub. No. 259,149; U.S. Pat. No. 4,629,783.

The size of peptides comprising the truncated HCV sequences can vary widely, the minimum size being a sequence of sufficient size to provide an HCV epitope, 10 while the maximum size is not critical. For convenience, the maximum size usually is not substantially greater than that required to provide the desired HCV epitopes and function(s) of the heterologous sequence, if any. Typically, the 15 truncated HCV amino acid sequence will range from about 5 to about 100 amino acids in length. More typically, however, the HCV sequence will be a maximum of about 50 amino acids in length, preferably a maximum of about 30 amino acids. It is usually desirable to select HCV 20 sequences of at least about 10, 12 or 15 amino acids, up to a maximum of about 20 or 25 amino acids.

HCV amino acid sequences comprising epitopes can be identified in a number of ways. For example, the entire protein sequence corresponding to each of the NS5, envelope 1, and core regions can be screened by preparing a series of short peptides that together span

10

the entire protein sequence of such regions. By starting with, for example, peptides of approximately 100 amino acids, it would be routine to test each peptide for the presence of epitope(s) showing a desired reactivity, and then testing progressively smaller and overlapping fragments from an identified peptides of 100 amino acids to map the epitope of interest. Screening such peptides in an immunoassay is within the skill of the art. It is also known to carry out a computer analysis of a protein sequence to identify potential epitopes, and then prepare peptides comprising the identified regions for screening.

The immunogenicity of the epitopes of HCV may also be enhanced by preparing them in mammalian or yeast systems fused with or assembled with particle-forming 15 proteins such as, for example, that associated with hepatitis B surface antigen. See, e.g., US 4,722,840. Constructs wherein the HCV epitope is linked directly to the particle-forming protein coding sequences 20 produce hybrids which are immunogenic with respect to the HCV epitope. In addition, all of the vectors prepared include epitopes specific to HBV, having various degrees of immunogenicity, such as, for example, the pre-S peptide. Thus, particles 25 constructed from particle forming protein which include HCV sequences are immunogenic with respect to HCV and HBV.

WO 92/19743 PCT/US92/04036

- 32 -

Hepatitis surface antigen (HBSAg) has been shown to be formed and assembled into particles in S. cerevisiae (P. Valenzuela et al. (1982)), as well as in, for example, mammalian cells (P. Valenzuela et al. 1984)). The formation of such particles has been shown to enhance the immunogenicity of the monomer subunit. The constructs may also include the immunodominant epitope of HBSAg, comprising the 55 amino acids of the presurface (pre-S) region. Neurath et al. (1984). Constructs of the pre-S-HBSAg particle expressible in yeast are disclosed in EPO 174,444, published March 19, 1986; hybrids including heterologous viral sequences for yeast expression are disclosed in EPO 175,261, published March 26, 1966. These constructs may also be expressed in mammalian cells such as Chinese hamster ovary (CHO) cells using an SV40-dihydrofolate reductase vector (Michelle et al. (1984)).

In addition, portions of the particle-forming protein coding sequence may be replaced with codons encoding an HCV epitope. In this replacement, regions which are not required to mediate the aggregation of the units to form immunogenic particles in yeast of mammals can be deleted, thus eliminating additional HBV antigenic sites from competition with the HCV epitope.

25

1

•

10

15

20

Vaccines

Vaccines may be prepared from one or more

10

immunogenic peptides derived from HCV. The observed homology between HCV and Flaviviruses provides information concerning the peptides which are likely to be most effective as vaccines, as well as the regions of the genome in which they are encoded.

Multivalent vaccines against HCV may be comprised of one or more epitopes from one or more proteins derived from the NS5, envelope 1, and core regions. In particular, vaccines are contemplated comprising one or more HCV proteins or subunit antigens derived from the NS5, envelope 1, and core regions. The 5'UT region is not known to be translated.

The preparation of vaccines which contain an immunogenic peptide as an active ingredient, is known to one skilled in the art. Typically, such vaccines 15 are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The preparation may also be emulsified, or the protein encapsulated in liposomes. 20 The active immunogenic ingredients are often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof. 25 addition, if desired, the vaccine may contain minor amounts of auxiliary substances such as wetting or

emulsifying agents, pH buffering agents, and/or adjuvants which enhance the effectiveness of the vaccine. Examples of adjuvants which may be effective include but are not limited to: aluminum hydroxide, N-acetyl-muramyl-L-theronyl-D- isoglutamine (thr-MDP), N-acetyl-nor-muramyl-L-alanyl- D-isoglutamine (CGP 11637, referred to as nor-MDP), N- acetylmuramyl-Lalanyl-D-isoglutaminyl-L-alanine-2-(1- 2-dipalmitovl -sn-glycero-3-hydroxyphosphoryloxy)- ethylamine (CGP 10 19835A, referred to as MTP-PE), and RIBI, which contains three components extracted from bacteria, monophosphoryl lipid A, trehalose dimycolate and cell wall skeleton (MPL+TDM+CWS) in a 2% squalene/Tween 80 emulsion. The effectiveness of an adjuvant may be 15 determined by measuring the amount of antibodies directed against an immunogenic peptide containing an HCV antigenic sequence resulting from administration of this peptide in vaccines which are also comprised of the various adjuvants.

20 The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers may include, for example, polyalkylene glycols or triglycerides; such

suppositories may be formed from mixtures containing the active ingredient in the range of 0/5% to 10%, preferably 1%-2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like.

The examples below are provided for illustrative purposes and are not intended to limit the scope of the present invention.

I. Detection of HCV RNA from Serum

RNA was extracted from serum using quanidinium salt, phenol and chloroform according to the

instructions of the kit manufacturer (RNAzol B kit, Cinna/Biotecx). Extracted RNA was precipitated with isopropanol and washed with ethanol. A total of 25 µl serum was processed for RNA isolation, and the purified RNA was resuspended in 5 µl diethyl pyrocarbonate treated water for subsequent cDNA synthesis.

II. <u>cDNA Synthesis and Polymerase Chain Reaction (PCR)</u> <u>Amplification</u>

Table 1 lists the sequence and position (with reference to HCV1) of all the PCR primers and probes used in these examples. Letter designations for

nucleotides are consistent with 37 C.F.R. §§1.821-1.825. Thus, the letters A, C, G, T, and U are used in the ordinary sense of adenine, cytosine, guanine, thymine, and uracil. The letter M means A or C; R 5 means A or G; W means A or T/U; S means C or G; Y means C or T/U; K means G or T/U; V means A or C or G, not T/U; H means A or C or T/U, not G; D means A or G or T/U, not C; B means C or G or T/U, not A; N means (A or C or G or T/U) or (unknown or other). Table 1 is set forth below:

Table 1

		Tente -	
	Seq. No		Nucleotide Position
15	67 68 69 70 71	CAAACGTAACACCAACCGRCGCCCACAG ACAGAYCCGCAKAGRTCCCCCACG GCAACCTCGAGGTAGACGTCAGCCTATC GCAACCTCGTGGAAGGCGACAACCTATC GTCACCAATGATTGCCCTAACTCGAGTA GTCACGAACGACGACTCCAACTCAAG	G 374-402 1192-1169 CC 509-538 CC 509-538 TT 948-977 948-973
20	73 74 75	TGGACATGATCGCTGGWGCYCACTGGGG TGGAYATGGTGGYGGGGGCYCACTGGGG ATGATGAACTGGTCVCCYAC	-686 1/07
25	76 77 78 79 80	ACCTTVGCCCAGTTSCCCRCCATGGA AACCCACTCTATGYCCGGYCAT GAATCGCTGGGGTGACCG CCATGAATCACTCCCCTGTGAGGAACTA TTGCGGGGGCACGCCCAA	205-226 171-188 30-57 244-227

25

For cDNA synthesis and PCR amplification, a protocol developed by Perkin-Elmer/Cetus (GeneAmp® RNA PCR kit) was used. Both random hexamer and primers with specific complementary sequences to HCV were 5 employed to prime the reverse transcription (RT) reaction. All processes, except for adding and mixing reaction components, were performed in a thermal cycler (MJ Research, Inc.). The first strand cDNA synthesis reaction was inactivated at 99°C for 5 min, and then cooled at 50°C for 5 min before adding reaction 10 components for subsequent amplification. After an initial 5 cycles of 97°C for 1 min, 50°C for 2 min, and 72°C for 3 min, 30 cycles of 94°C for 1 min, 55°C for 2 min, and 72°C for 3 min followed, and then a final 7 min of elongation at 72°C. 15

For the genotyping analysis, sequences 67 and 68 were used as primers in the PCR reaction. These primers amplify a segment corresponding to the core and envelope regions. After amplification, the reaction products were separated on an agarose gel and then transferred to a nylon membrane. The immobilized reaction products were allowed to hybridize with a 32p-labelled nucleic acid corresponding to either Genotype I (core or envelope 1) or Genotype II (core or envelope 1). Nucleic acid corresponding to Genotype 1 comprised sequences numbered 69 (core), 71 (envelope), and 73 (envelope). Nucleic acid corresponding to

10

15

20

25

Genotype II comprised sequences numbered 70 (core), 72 (envelope), and 74 (envelope).

The Genotype I probes only hybridized to the product amplified from isolates which had Genotype I sequence. Similarly, Genotype II probes only hybridized to the product amplified from isolates which had Genotype II sequence.

In another experiment, PCR products were generated using sequences 79 and 80. The products were analyzed as described above except Sequence No. 73 was used to detect Genotype I, Sequence No. 74 was used to detect Genotype II, Sequence No. 77 (5'UT) was used to detect Genotype III, and Sequence No. 78 (5'UT) was used to detect Genotype IV. Each sequence hybridized in a genotype specific manner.

III. <u>Detection of HCV GI-GIV using a sandwich</u> hybridization assay for HCV RNA

An amplified solution phase nucleic acid sandwich hybridization assay format is described in this example. The assay format employs several nucleic acid probes to effect capture and detection. A capture probe nucleic acid is capable of associating a complementary probe bound to a solid support and HCV nucleic acid to effect capture. A detection probe nucleic acid has a first segment (A) that binds to HCV nucleic acid and a second segment (B) that hybridizes to a second amplifier nucleic acid.

10

The amplifier nucleic acid has a first segment (B*) that hybridizes to segment (B) of the probe nucleic acid and also comprises fifteen iterations of a segment (C). Segment C of the amplifier nucleic acid is capable of hybridizing to three labeled nucleic acids.

Nucleic acid sequences which correspond to nucleotide sequences of the envelope 1 gene of Group I HCV isolates are set forth in sequences numbered 81-99. Table 2 sets forth the area of the HCV genome to which the nucleic acid sequences correspond and a preferred use of the sequences.

Table 2 Probe Type Sequence No. Complement of 15 Nucleotide Numbers Label 81 879-911 Label 82 912-944 Capture 83 945-977 Label 978-1010 20 84 Label 1011-1043 85 Label 1044-1076 Label 1077-1109 87 Capture 1110-1142 88 25 Label 1143-1175 89

Table 2 continued

	Probe Type	Sequence No.	Complement of Nucleotide Numbers
5	222355555555555	:#825656#################################	1176-1208
	Label	90	
	Label	91	1209-1241
	Label	92	1242=1274
	Capture	93	1275-1307
10	Label	94	1308-1340
	Label	95	1341-1373
	. Label	· 96	1374-1406
	Label	97	1407-1439
	Capture	98	1440-1472
15	Label	99	1473-1505

Nucleic acid sequences which correspond to nucleotide sequences of the envelope 1 gene of Group II HCV isolates are set forth in sequences 100-118. Table 3 sets forth the area of the HCV genome to which the nucleic acid corresponds and the preferred use of the sequences.

20

- 41 -

Table 3

	Probe Type	Sequence No.	Complement of Nucleotide Numbers
5	Label	100	======================================
	Label	101	912-944
	Capture	102	945-977
	Label	103	978-1010
10	Label	104	1011-1043
•	Label	105	1044-1076
	Label	106	1077-1109
	Capture	107	1110-1142
	Label	108	1143-1175
15	Label	109	1176-1208
	Label	110	1209-1241
	Label	111	1242=1274
	Capture	112	1275-1307
	Label	113	1308-1340
20	Label	114	1341-1373
	Label	115	1374-1406
	Label	116	1407-1439
	Capture	117	1440-1472
	Label	118	1473-1505
25			

Nucleic acid sequences which correspond to nucleotide sequences in the C gene and the 5'UT region

are set forth in sequences 119-145. Table 4 identifies the sequence with a preferred use.

Table 4

•	٠	
4		

5		
		Sequence No.
	Capture	119
•	Label	120
10	Label	121
•	Label	122
	Capture	123
	Label	124
	Label	125
15	Label	126
	Capture	127
	Label	128
	Label	129
	Label	130
20	Capture	131
	Label	132
	Label	133
	Label	134
	Label	135
25	Capture	136
	Label	137
	Label	138

Table 4 continued

	Probe Type	Sequence No.
	######################################	**********
5	Label	139
	Capture	140
	Label	141
	Label	142
	Label	143
10	Capture	144
	Label	145

The detection and capture probe HCV-specific segments, and their respective names as used in this assay were as follows.

Capture sequences are sequences numbered 119-122 and 141-144.

Detection sequences are sequences numbered 119-140.

the sequences substantially complementary to the HCV sequences, a 5' extension (B) which extension (B) is complementary to a segment of the second amplifier nucleic acid. The extension (B) sequence is identified in the Sequence Listing as Sequence No. 146, and is reproduced below.

AGGCATAGGACCCGTGTCTT

WO 92/19743 PCT/US92/04036

- 44 -

Each capture sequence contained, in addition to the sequences substantially complementary to HCV sequences, a sequence complementary to DNA bound to a solid phase. The sequence complementary to DNA bound to a solid support was carried downstream from the capture sequence. The sequence complementary to the DNA bound to the support is set forth as Sequence No. 147 and is reproduced below.

CTTCTTTGGAGAAAGTGGTG

25

ſ

Microtiter plates were prepared as follows. White Microlite I Removawell strips (polystyrene microtiter plates, 96 wells/plate) were purchased from Dynatech Inc.

Each well was filled with 200 μl 1 N HCl and incubated at room temperature for 15-20 min. The plates were then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The wells were then filled with 200 μl 1 N NaOH and incubated at room temperature for 15-20 min. The plates were again washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Poly(phe-lys) was purchased from Sigma Chemicals, Inc. This polypeptide has a 1:1 molar ratio of phe:lys and an average m.w. of 47,900 gm/mole. It has an average length of 309 amino acids and contains 155 amines/mole. A 1 mg/ml solution of the polypeptide was mixed with 2M NaCl/lX PBS to a final concentration of

0.1 mg/ml (pH 6.0). A volume of 200 μ l of this solution was added to each well. The plate was wrapped in plastic to prevent drying and incubated at 30°C overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

5 The following procedure was used to couple the nucleic acid, a complementary sequence to Sequence No. 147, to the plates, hereinafter referred to as immobilized nucleic acid. Synthesis of immobilized nucleic acid having a sequence complementary to 10 Sequence No. 133 was described in EPA 883096976. quantity of 20 mg disuccinimidyl suberate was dissolved in 300 μ l dimethyl formamide (DMF). A quantity of 26 OD₂₆₀ units of immobilized nucleic acid was added to 100 µl coupling buffer (50 mM sodium phosphate, pH 15 7.8). The coupling mixture was then added to the DSS-DMF solution and stirred with a magnetic stirrer for 30 min. An NAP-25 column was equilibrated with 10 mM sodium phosphate, pH 6.5. The coupling mixture DSS-DMF solution was added to 2 ml 10 mM sodium 20 phosphate, pH 6.5, at 4°C. The mixture was vortexed to mix and loaded onto the equilibrated NAP-25 column. DSS-activated immobilized nucleic acid DNA was eluted from the column with 3.5 ml 10 mM sodium phosphate, pH 6.5. A quantity of 5.6 OD₂₆₀ units of eluted 25 DSS-activated immobilized nucleic acid DNA was added to 1500 ml 50 mM sodium phosphate, pH 7.8. A volume of 50

10

15

20

25

µl of this solution was added to each well and the plates were incubated overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Final stripping of plates was accomplished as follows. A volume of 200 μl of 0.2N NaOH containing 0.5% (w/v) SDS was added to each well. The plate was wrapped in plastic and incubated at 65°C for 60 min. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The stripped plate was stored with desiccant beads at 2-8°C.

Serum samples to be assayed were analyzed using PCR followed by sequence analysis to determine the genotype.

Sample preparation consisted of delivering 50 µl of the serum sample and 150 µl P-K Buffer (2 mg/ml proteinase K in 53 mM Tris-HCl, pH 8.0/0.6 M NaCl/0.06 M sodium citrate/8 mM EDTA, pH 8.0/1.3%SDS/16µg/ml sonicated salmon sperm DNA/7% formamide/50 fmoles capture probes/160 fmoles detection probes) to each well. Plates were agitated to mix the contents in the well, covered and incubated for 16 hr at 62°C.

After a further 10 minute period at room temperature, the contents of each well were aspirated to remove all fluid, and the wells washed 2X with washing buffer (0.1% SDS/0.015 M NaCl/ 0.0015 M sodium citrate). The amplifier nucleic acid was then added to

25

each well (50 µl of 0.7 fmole/µl solution in 0..48 M NaCl/0.048 M sodium citrate/0.1% SDS/0.5% "blocking reagent" (Boehringer Mannheim, catalog No. 1096 176)). After covering the plates and agitating to mix the contents in the wells, the plates were incubated for 30 min. at 52°C.

After a further 10 min period at room temperature, the wells were washed as described above.

Alkaline phosphatase label nucleic acid, disclosed in EP 883096976, was then added to each well (50 μl/well of 2.66 fmoles/μl). After incubation at 52°C for 15 min., and 10 min. at room temperature, the wells were washed twice as above and then 3X with 0.015 M NaCl/0.0015 M sodium citrate.

An enzyme-triggered dioxetane (Schaap et al., Tet. Lett. (1987) 28:1159-1162 and EPA Pub. No. 0254051), obtained from Lumigen, Inc., was employed. A quantity of 50 μl Lumiphos 530 (Lumigen) was added to each well. The wells were tapped lightly so that the reagent would fall to the bottom and gently swirled to distribute the reagent evenly over the bottom. The wells were covered and incubated at 37°C for 20-40 min.

Plates were then read on a Dynatech ML 1000 luminometer. Output was given as the full integral of the light produced during the reaction.

The assay positively detected each of the serum samples, regardless of genotype.

IV. Expression of the Polypeptide Encoded in Sequences Defined by Differing Genotypes

HCV polypeptides encoded by a sequence within sequences 1-66 are expressed as a fusion polypeptide with superoxide dismutase (SOD). A cDNA carrying such sequences is subcloned into the expression vector psoDcfl (Steimer et al. 1986)).

First, DNA isolated from pSODcfl is treated with BamHI and EcoRI, and the following linker was ligated into the linear DNA created by the restriction enzymes:

GAT CCT GGA ATT CTG ATA AGA

CCT TAA GAC TAT TTT AA 3
After cloning, the plasmid containing the insert is isolated.

Plasmid containing the insert is restricted with EcoRI. The HCV cDNA is ligated into this EcoRI linearized plasmid DNA. The DNA mixture is used to transform E. coli strain D1210 (Sadler et al. (1980)). Polypeptides are isolated on gels.

20

25

5

10

V. Antigenicity of Polypeptides

The antigenicity of polypeptides formed in Section IV is evaluated in the following manner. Polyethylene pins arranged on a block in an 8 12 array (Coselco Mimetopes, Victoria, Australia) are prepared by placing the pins in a bath (20% v/v piperidine in dimethylformamide (DMF)) for 30 minutes at room

15

20

25

temperature. The pins are removed, washed in DMF for 5 minutes, then washed in methanol four times (2 min/wash). The pins are allowed to air dry for at least 10 minutes, then washed a final time in DMF (5Min). 1-Hydroxybenzotriazole (HOBt, 367 mg) is dissolved in DMF (80 μ L) for use in coupling Fmoc-protected polypeptides prepared in Section IV.

The protected amino acids are placed in micro-titer plate wells with HOBt, and the pin block placed over the plate, immersing the pins in the wells. The assembly is then sealed in a plastic bag and allowed to react at 25°C for 18 hours to couple the first amino acids to the pins. The block is then removed, and the pins washed with DMF (2 min.), MeOH (4 x, 2 min.), and again with DMF (2 min.) to clean and deprotect the bound amino acids. The procedure is repeated for each additional amino acid coupled, until all octamers are prepared.

The free N-termini are then acetylated to compensate for the free amide, as most of the epitopes are not found at the N-terminus and thus would not have the associated positive charge. Acetylation is accomplished by filling the wells of a microtiter plate with DMF/acetic anhydride/triethylamine (5:2:1 v/v/v) and allowing the pins to react in the wells for 90 minutes at 20°C. The pins are then washed with DMF (2

15

min.) and MeOH (4 x, 2 min.), and air dried for at least 10 minutes.

The side chain protecting groups are removed by treating the pins with trifluoroacetic acid/phenol/ dithioethane (95:2.5:1.5, v/v/v) in polypropylene bags 5 for 4 hours at room temperature. The pins are then washed in dichloromethane (2 x, 2 min.), 5% di-isopropylethylamine/dichloromethane (2 x, 5 min.), dichloromethane (5 min.), and air-dried for at least 10 minutes. The pins are then washed in water (2 min.), MeOH (18 hours), dried in vacuo, and stored in sealed plastic bags over silica gel. IV.B.15.b Assay of Peptides.

Octamer-bearing pins are treated by sonicating for 30 minutes in a disruption buffer (1% sodium dodecylsulfate, 0.1% 2-mercaptoethanol, 0.1 M NaH2PO4) at 60°C. The pins are then immersed several times in water (60°C), followed by boiling MeOH (2 min.), and allowed to air dry.

The pins are then precoated for 1 hour at 25°C in 20 microtiter wells containing 200 µL blocking buffer (1% ovalbumin, 1% BSA, 0.1% Tween, and 0.05% NaN3 in PBS), with agitation. The pins are then immersed in microtiter wells containing 175 μL antisera obtained from human patients diagnosed as having HCV and allowed 25 to incubate at 4°C overnight. The formation of a complex between polyclonal antibodies of the serum and

the polypeptide initiates that the peptides give rise to an immune response in vivo. Such peptides are candidates for the development of vaccines.

Thus, this invention has been described and illustrated. It will be apparent to those skilled in the art that many variations and modifications can be made without departing from the purview of the appended claims and without departing from the teaching and scope of the present invention.

- 52 -

SEQUENCE LISTING

(1) GENERAL	INFORMATION
-------------	-------------

- 5 (i) APPLICANT: Tai-An Cha
 - (ii) TITLE OF INVENTION: HCV GENOMIC SEQUENCES FOR DIAGNOSTICS AND THERAPEUTICS
- 10 (iii) NUMBER OF SEQUENCES: 147
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Wolf, Greenfield & Sacks, P.C.
 - (B) STREET: 600 Atlantic Avenue
- 15 (C) CITY: Boston
 - (D) STATE: Massachusetts
 - (E) COUNTRY: USA
 - (F) ZIP: 02210
- 20 (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25 inch
 - (B) COMPUTER: IBM compatible
 - (C) OPERATING SYSTEM: MS-DOS Version 3.3
 - (D) SOFTWARE: WordPerfect 5.1

		(vi)	CURRENT APPLICATION DATA:
			(A) APPLICATION NUMBER: Not Available
			(B) FILING DATE: Not Available
			(C) CLASSIFICATION: Not Available
5			
		(vii)	PRIOR APPLICATION DATA:
			(A) APPLICATION NUMBER: 07/697,326
			(B) FILING DATE: 8 May 1991
10		(viii)	ATTORNEY/AGENT INFORMATION:
			(A) NAME: Janiuk, Anthony J.
	•		(B) REGISTRATION NUMBER: 29,809
			(C) REFERENCE/DOCKET NUMBER: C0772/7000
15		(ix)	TELECOMMUNICATION INFORMATION:
			(A) TELEPHONE: (617) 720-3500
			(B) TELEFAX: (617) 720-2441
			(C) TELEX: EZEKIEL
20	(2)	INFORMA	ATION FOR SEQ ID NO: 1:
		(i)	SEQUENCE CHARACTERISTICS:
			(A) LENGTH: 340 nucleotides
			(B) TYPE: nucleic acid
25			(C) STRANDEDNESS: single
			(D) TOPOLOGY: linear

		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE: (ATCC # 40394) (C) INDIVIDUAL ISOLATE: ns5hcvl	
5 10		(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1 CTCCACAGTC ACTGAGAGCG ACATCCGTAC GGAGGAGGCA ATCTACCAAT GTTGTGACCT CGACCCCCAA GCCCGCGTGG CCATCAAGTC CCTCACCGAG AGGCTTTATG TTGGGGGCCC TCTTACCAAT TCAAGGGGGG AGAACTGCGG CTATCGCAGG TGCCGCGCGA GCGGCGTACT GACAACTAGC TGTGGTAACA CCCTCACTTG CTACATCAAG GCCCGGGCAG CCTGTCGAGC CGCAGGGCTC CAGGACTGCA CCATGCTCGT GTGTGGCGAC GACTTAGTCG TTATCTGTGA AAGCGCGGGG GTCCAGGAGG ACGCGGCGAG CCTGAGAGCC	40 80 120 160 200 240 280 320 340
15	(2)	TOP GEO ID NO: 2:	
20	~~/	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25		(ii) MOLECULE TYPE: DNA	

	•	(vi)	ORIGI	NAL SO	OURCE:				
			(C)	INDIV	/IDUAL	ISOL	ATE:	ns5i21	
		(xi)	SEQUE	NCE DE	ESCRIP	TION:	SEQ	ID NO: 2	
5		CTCCA	CAGTC A	CTGAGA	AGCG A	CATCC	GTAC	GGAGGAGG	CA 40
		ATTTA	CCAAT G	TTGTG	CCT G	GACCC	CCAA	GCCCGCATO	3G 80
		CCATC	AAGTC C	CTCACI	GAG A	GGCTTI	ratg '	TCGGGGGC	CC 120
		TCTTA	CCAAT T	CAAGGG	GGG A	GAACT	GCGG	CTACCGCAG	G 160
		TGCCG	CGCGA G	CGGCGI	ACT G	ACAACI	ragc '	TGTGGTAAC	A 200
10		CCCTC	ACTTG C	TACATO	AAG G	CCCGGG	CAG	CCTGTCGAG	C 240
								GTGTGGCGA	
								GTCCAGGAG	
			GCGAG C						340
15	(2)	INFOR	MATION :	FOR SE	Q ID 1	NO: 3:			
	-	(i)	SEQUE	NCE CH	ARACTI	ERISTI	CS:		
			(A)	LENGT	H: 34	40 nuc	leot	ides	
			(B)	TYPE:	nuc	leic a	cid		
20				STRAN				•	
				TOPOL			_		
		(ii)	MOLECT	ILE TY	PE: I	ONA			
25		(vi)	ORIGIN	IAL SO	JRCE:				
			(C)	indiv	idua?	isola	+ • •	ne5nt1	

		(xi)	SEQU	ENCE I	ESCR!	PTION:	SEQ	ID NO:	3	
								GGAGGAG		40
		ATCTA	CCAAT (STTGTG	ATCT	GGACCC	CCAA	GCCCGCG	TGG	80
		CCATC	AAGTC (CTCAC	TGAG	AGGCTI	TACG	TTGGGGG	CCC	120
5		TCTTA	CCAAT !	rcaage	GGGG	AGAACI	GCGG	CTACCGC	AGG	160
		TGCCG	GGCGA (CGGCG	TACT	GACAAC	TAGC	TGTGGTA	ATA	200
		CCCTC	ACTTG (TACAT	CAAG	GCCCGG	GCAG	CCTGTCG	AGC	240
		CGCAG	GCTC (CGGGAC	TGCA	CCATGO	TCGT	GTGTGGT	GAC	280
		GACTT	GGTCG :	TATCI	GTGA	GAGTGC	GGGG	GTCCAGG	AGG	320
10		ACGCG	GCGAG (CTGAG	AGCC					340
	(2)	INFOR	MOITAN	FOR S	EQ II	NO: 4				
	•									
		(i)	SEQUI	ENCE C	HARAC	TERIST	ics:			
15			(A)	LENG	TH:	340 nu	cleot	ides		
			(B)	TYPE	: nu	cleic	acid			
			(C)	STRA	NDEDN	ESS:	singl	le		
			(D)	TOPO	LOGY:	line	ar			
20		(ii)	MOLEC	ULE T	YPE:	DNA				
		(vi)	ORIGI	NAL S	OURCE	: :				
			(C)	INDI	VIDUA	L ISOL	ATE:	ns5gm2		
25		(xi)	SEQUE	NCE D	ESCRI	PTION:	SEQ	ID NO:	4	
		CTCTAC	CAGTC A	CTGAG	AACG	ACATCC	GTAC	GGAGGAG	GCA	40
		አጥጥጥአር	יראאיי פ	יחייבייבי	ልሮርሞ	GGACCC	CCAA	GCCCGCG!	rgg	80

			100
	•	CCATCAAGTC CCTCACTGAG AGGCTTTATG TTGGGGGCCC	120
	•	CCTTACCAAT TCAAGGGGGG AAAACTGCGG CTATCGCAGG	160
		TGCCGCGCGA GCGGCGTACT GACAACTAGC TGTGGTAACA	200
		CCCTCACTTG CTACATTAAG GCCCGGGCAG CCTGTCGAGC	240
5		CGCAGGGCTC CAGGACTGCA CCATGCTCGT GTGTGGCGAC	280
		GACTTAGTCG TTATCTGTGA GAGTGCGGGA GTCCAGGAGG	320
		ACGCGGCGAA CTTGAGAGCC	340
	(2)	INFORMATION FOR SEQ ID NO: 5	
10			
	•	(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
15		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
20		(C) INDIVIDUAL ISOLATE: ns5us17	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5	
		CTCCACAGTC ACTGAGAGCG ATATCCGTAC GGAGGAGGCA	40
			80
		ATCTACCAGT GTTGTGACCT GGACCCCCAA GCCCGCGTGG	120
25		CCATCAAGTC CCTCACCGAG AGGCTTTATG TCGGGGGCCC	160
		TCTTACCAAT TCAAGGGGGG AAAACTGCGG CTATCGCAGG	
		TGCCGCGCAA GCGGCGTACT GACAACTAGC TGTGGTAACA	200

- 58 -

		CCCTCACTTG TTACATCAAG GCCCAAGCAG CCTGTCGAGC	24
		CGCAGGGCTC CGGGACTGCA CCATGCTCGT GTGTGGCGAC	286
		GACTTAGTCG TTATCTGTGA AAGTCAGGGA GTCCAGGAGG	320
		ATGCAGCGAA CCTGAGAGCC	340
5			
	(2)	INFORMATION FOR SEQ ID NO: 6	
	•	(i) SEQUENCE CHARACTERISTICS:	
:	•	(A) LENGTH: 340 nucleotides	
10		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
15			
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5sp2	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6	
20		CTCTACAGTC ACTGAGAGCG ATATCCGTAC GGAGGAGGCA	40
		ATCTACCAAT GTTGTGACCT GGACCCCGAA GCCCGTGTGG	80
		CCATCAAGTC CCTCACTGAG AGGCTTTATG TTGGGGGCCC	120
		TCTTACCAAT TCAAGGGGGG AGAACTGCGG CTACCGCAGG	160
		TGCCGCGCAA GCGGCGTACT GACGACTAGC TGTGGTAATA	200
25		CCCTCACTTG TTACATCAAG GCCCGGGCAG CCTGTCGAGC	240
		CGCAGGGCTC CAGGACTGCA CCATGCTCGT GTGTGGCGAC	280

		averivated liviciacity wholiceage alcound	MGG 321
		ACGCGGCGAG CCTGAGAGCC	. 340
5	(2)	INFORMATION FOR SEQ ID NO: 7	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
10		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
15		(C) INDIVIDUAL ISOLATE: ns5j1	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	7
		CTCCACAGTC ACTGAGAATG ACACCCGTGT TGAGGAG	FCA 40
	•	ATTTACCAAT GTTGTGACTT GGCCCCCGAA GCCAGAC	AGG 80
20		CCATAAGGTC GCTCACAGAG CGGCTCTATG TCGGGGGG	TCC 120
		TATGACTAAC TCCAAAGGGC AGAACTGCGG CTATCGCG	CGG 160
	÷	TGCCGCGCGA GCGGCGTGCT GACGACTAGC TGCGGTAI	ATA 200
	•	CCCTCACATG CTACCTGAAG GCCACAGCGG CCTGTCGA	AGC 240
		TGCCAAGCTC CAGGACTGCA CGATGCTCGT GAACGGAC	
25		GACCTTGTCG TTATCTGTGA AAGCGCGGGG AACCAAGA	\GG 320
		ACGCGGCAAG CCTACGAGCC	340

	(2)	INFORMATION FOR SEQ ID NO: 8	
5		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
••		(ii) MOLECULE TYPE: DNA	
10		<pre>(vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: ns5kl</pre>	
15 20		(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 8 CTCAACGGTC ACTGAGAATG ACATCCGTGT TGAGGAGTCA ATTTACCAAA GTTGTGACTT GGCCCCCGAG GCCAGACAAG CCATAAGGTC GCTCACAGAG CGGCTTTACA TCGGGGGCCC CCTGACTAAT TCAAAAGGGC AGAACTGCGG CTATCGCCGA TGCCGCGCCA GCGGTGTGCT GACGACTAGC TGCGGTAATA CCCTCACATG TTACTTGAAG GCCACTGCGG CCTGTAGAGC TGCGAAGCTC CAGGACTGCA CGATGCTCGT GTGCGGAGAC GACCTTGTCG TTATCTGTGA AAGCGCGGGA ACCCAGGAGG ATGCGGCGAG CCTACGAGTC	40 80 120 160 200 240 280 320 340
25	(2)	INFORMATION FOR SEQ ID NO: 9	

		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
5		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
10		(C) INDIVIDUAL ISOLATE: ns5k1.1	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9	
		CTCAACGGTC ACCGAGAATG ACATCCGTGT TGAGGAGTCA	ł (
		ATTTATCAAT GTTGTGCCTT GGCCCCCGAG GCTAGACAGG	3 (
15		CCATAAGGTC GCTCACAGAG CGGCTTTATA TCGGGGGCCC 12	2(
		CCTGACCAAT TCAAAGGGGC AGAACTGCGG TTATCGCCGG 16	5(
		TGCCGCGCCA GCGGCGTACT GACGACCAGC TGCGGTAATA 20) (
		CCCTTACATG TTACTTGAAG GCCTCTGCAG CCTGTCGAGC 24	ł (
		CGCGAAGCTC CAGGACTGCA CGATGCTCGT GTGTGGGGAC 28	3 (
20		GACCTTGTCG TTATCTGTGA AAGCGCGGGA ACCCAGGAGG 32	2 (
		ACGCGGCGAA CCTACGAGTC 34	ŀ C
	(2)	INFORMATION FOR SEQ ID NO: 10	
25		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	

- 62 -

		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
5		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5gh6	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10	
10		CTCAACGGTC ACTGAGAGTG ACATCCGTGT CGAGGAGTCG	40
		ATTTACCAAT GTTGTGACTT GGCCCCCGAA GCCAGGCAGG	80
		CCATAAGGTC GCTCACCGAG CGACTTTATA TCGGGGGCCC	120
		CCTGACTAAT TCAAAAGGGC AGAACTGCGG TTATCGCCGG	160
		TGCCGCGCGA GCGGCGTGCT GACGACTAGC TGCGGTAATA	200
15		CCCTCACATG TTACTTGAAG GCCTCTGCAG CCTGTCGAGC	240
		TGCAAAGCTC CAGGACTGCA CGATGCTCGT GAACGGGGAC	280
		GACCTTGTCG TTATCTGCGA GAGCGCGGGA ACCCAAGAGG	320
		ACGCGGCGAG CCTACGAGTC	340
20	(2)	INFORMATION FOR SEQ ID NO: 11	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
25		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
		•	(C) INDIVIDUAL ISOLATE: ns5spl	
5				
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 11	
		CTCCAC	CAGTC ACTGAGAGTG ACATCCGTGT TGAGGAGTCA	40
		ATTTAC	CCAAT GTTGTGACTT GGCCCCCGAA GCCAGACAGG	80
	•.	CTATAA	AGGTC GCTCACAGAG CGGCTGTACA TCGGGGGTCC	120
10		CCTGAC	CTAAT TCAAAAGGGC AGAACTGCGG CTATCGCCGG	160
		TGCCGC	CGCAA GCGGCGTGCT GACGACTAGC TGCGGTAACA	200
		CCCTCA	ACATG TTACTTGAAG GCCTCTGCGG CCTGTCGAGC	240
		TGCGAA	AGCTC CAGGACTGCA CGATGCTCGT GTGCGGTGAC	280
		GACCTT	GTCG TTATCTGTGA GAGCGCGGGA ACCCAAGAGG	320
15		ACGCGG	GCGAG CCTACGAGTC	340
	(2)	INFORM	MATION FOR SEQ ID NO: 12	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 340 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	

	(C) individual isolate: ns5sp3	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12 CTCAACAGTC ACTGAGAGTG ACATCCGTGT TGAGGAGTCA ATCTACCAAT GTTGTGACTT GGCCCCCGAA GCCAGACAGG CTATAAGGTC GCTCACAGAG CGGCTTTACA TCGGGGGTCC CCTGACTAAT TCAAAAGGGC AGAACTGCGG CTATCGCCGG	8 12
10	TGCCGCGCAA GCGGCGTGCT GACGACTAGC TGCGGTAATA CCCTCACATG TTACCTGAAG GCCAGTGCGG CCTGTCGAGC TGCGAAGCTC CAGGACTGCA CAATGCTCGT GTGCGGTGAC	20 24 28
	GACCTTGTCG TTATCTGTGA GAGCGCGGGG ACCCAAGAGG ACGCGGCGAG CCTACGAGTC	34
(2)	INFORMATION FOR SEQ ID NO: 13	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 nucleotides (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (vi) ORIGINAL SOURCE:	
25	(C) INDIVIDUAL ISOLATE: ns5k2 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13	

		CTCAACCGTC ACTGAGAGAG ACATCAGAAC TGAGGAGTCC	40
		ATATACCGAG CCTGCTCCCT GCCTGAGGAG GCTCACATTG	80
		CCATACACTC GCTGACTGAG AGGCTCTACG TGGGAGGGCC	120
		CATGTTCAAC AGCAAGGGCC AGACCTGCGG GTACAGGCGT	160
5		TGCCGCGCCA GCGGGTGCT CACCACTAGC ATGGGGAACA	200
		CCATCACATG CTATGTAAAA GCCCTAGCGG CTTGCAAGGC	240
	•	TGCAGGGATA GTTGCACCCT CAATGCTGGT ATGCGGCGAC	280
		GACTTAGTTG TCATCTCAGA AAGCCAGGGG ACTGAGGAGG	320
••		ACGAGCGGAA CCTGAGAGCT	340
10			
	(2)	INFORMATION FOR SEQ ID NO: 14	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
15		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
20		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
•		(C) INDIVIDUAL ISOLATE: ns5arg8	
k		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14	
25		CTCTACAGTC ACGTAAAAGG ACATCACATC CTAGGAGTCC	40
		ATCTACCAGT CCTGTTCACT GCCCGAGGAG GCTCGAACTG	80
			120

		CATGACAAAC AGCAAGGGCC AATCCTGCGG GTACAGGCGT	160
		TGCCGCGCGA GCGCAGTGCT CACCACCAGC ATGGGCAACA	200
		CACTCACGTG CTACGTAAAA GCCAGGGCGG CGTGTAACGC	240
		CACTCACGTG CTACGTAAAA GCCAGGTGGT GTGCGGTGAC	280
		CGCGGGGATT GTTGCTCCCA CCATGCTGGT GCTGAGGAGG	320
5		GACCTGGTCG TCATCTCAGA GAGTCAAGGG GCTGAGGAGG	340
		ACGAGCAGAA CCTGAGAGTC	340
	(2)	INFORMATION FOR SEQ ID NO: 15	
10	•	(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
7.5		_	
15		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5i10	•
20			
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15	
-		CTCTACAGTC ACAGAGAGGG ACATCAGAAC CGAGGAGTCC	40
		ATCTATCTGT CCTGCTCACT GCCTGAGGAG GCCCGAACTG	80
		CTATACACTC ACTGACTGAG AGACTGTACG TAGGGGGGCC	120
25		CATGACAAAC AGCAAGGGGC AATCCTGCGG GTACAGGCGT	160
43		TGCCGCGCGA GCGGAGTGCT CACCACCAGC ATGGGCAACA	200
		CGCTCACGTG CTACGTGAAA GCCAGAGCGG CGTGTAACGC	240
		CGCT CALLED	

		COCOGCAII GITGCTCCCA CCATGTTGGT GTGCGGCGAC	,
		GACCTGGTTG TCATCTCAGA GAGTCAGGGG GTCGAGGAAG	320
		ATGAGCGGAA CCTGAGAGTC	340
			240
5	(2)	INFORMATION FOR SEQ ID NO: 16	
		- 00 Da 12 No. 20	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	•
		(B) TYPE: nucleic acid	
10		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
-		(ii) MOLECULE TYPE: DNA	
15		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5arg6	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16	
		CTCTACAGTC ACGGAGAGGG ACATCAGAAC CGAGGAGTCC	40
20		ATCTATCTGT CCTGTTCACT GCCTGAGGAG GCTCGAACTG	80
		CCATACACTC ACTGACTGAG AGGCTGTACG TAGGGGGGCC	
		CATGACAAAC AGCAAAGGGC AATCCTGCGG GTACAGGCGT	
	•	TGCCGCGCGA GCGGAGTGCT CACCACCAGC ATGGGTAACA	160
		CACTCACGTG CTACGTGAAA GCTAAAGCGG CATGTAACGC	200
25		CGCGGGCATT GTTGCCCCCA CCATGTAACGC	240
_ _		CGCGGGCATT GTTGCCCCCA CCATGTTGGT GTGCGGCGAC	280
		GACCTAGTCG TCATCTCAGA GAGTCAAGGG GTCGAGGAGG	320
		ATGAGCGAAA CCTGAGAGCT	340

	(2)	INFORMATION FOR SEQ ID NO: 17	
5		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 340 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10		(ii) MOLECULE TYPE: DNA	
10		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5k2b	
15		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17 CTCAACCGTC ACGGAGAGGG ACATAAGAAC AGAAGAATCC	40
		ATATATCAGG GTTGTTCCCT GCCTCAGGAG GCTAGAACTG	80 120
		CTATCCACTC GCTCACTGAG AGACTCTACG TAGGAGGGCC	160
		CATGACAAAC AGCAAGGGAC AATCCTGCGG TTACAGGCGT TGCCGCGCCA GCGGGGTCTT CACCACCAGC ATGGGGAATA	200
		TGCCGCGCCA GCGGGGTCII CACCACCAGG IIIOOGGAAAGC CCATGACATG CTACATCAAA GCCCTTGCAG CGTGCAAAGC	240
20		TGCAGGGATC GTGGACCCTA TCATGCTGGT GTGTGGAGAC	280
		GACCTGGTCG TCATCTCGGA GAGCGAAGGT AACGAGGAGG	320
		ACGAGCGAAA CCTGAGAGCT	340
25	(2)	INFORMATION FOR SEQ ID NO: 18	
		(i) SEOUENCE CHARACTERISTICS:	

		(A) LENGTH: 340 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
5			
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: ns5sa283	
10			
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18	
		CTCGACCGTT ACCGAACATG ACATAATGAC TGAAGAGTCT	40
		ATTTACCAAT CATTGTACTT GCAGCCTGAG GCGCGTGTGG	80
		CAATACGGTC ACTCACCCAA CGCCTGTACT GTGGAGGCCC	120
15		CATGTATAAC AGCAAGGGGC AACAATGTGG TTATCGTAGA	160
		TGCCGCGCCA GCGGCGTCTT CACCACTAGT ATGGGCAACA	
		CCATGACGTG CTACATTAAG GCTTTAGCCT CCTGTAGAGC	240
		CGCAAAGCTC CAGGACTGCA CGCTCCTGGT GTGTGGTGAT	320
		GATAAAGCGA CCTGAGAGCC	340
20			240
	(2)	INFORMATION FOR SEQ ID NO: 19	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
25		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	_
		(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: ns5sa156	
5				
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 19	
		CTCGA	ACCGTT ACCGAACATG ACATAATGAC TGAAGAGTCC	40
		ATTTA	ACCAAT CATTGTACTT GCAGCCTGAG GCACGCGCGG	80
		CAATA	ACGGTC ACTCACCCAA CGCCTGTACT GTGGAGGCCC	120
10		CATGT	TATAAC AGCAAGGGGC AACAATGTGG TTACCGTAGA	160
		TGCCG	CGCCA GCGCGTCTT CACCACCAGT ATGGGCAACA	200
		CCATG	ACGTG CTACATCAAG GCTTCAGCCG CCTGTAGAGC	240
		TGCAA	AGCTC CAGGACTGCA CGCTCCTGGT GTGTGGTGTG	280
		ACCTT	GGTGG CCATTTGCGA GAGCCAAGGG ACGCACGAGG	320
15		ATGAA	GCGTG CCTGAGAGTC	340
	(2)	INFOR	MATION FOR SEQ ID NO: 20	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 340 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	

	(C) INDIVIDUAL ISOLATE: ns5ill	
5	CTCTACTGT ATATACCAG TGATCTCCT	QUENCE DESCRIPTION: SEQ ID NO: 20 C ACTGAACAGG ACATCAGGGT GGAAGAGGAG T GCTGTAACCT TGAACCGGAG GCCAGGAAAG C CCTCACGGAG CGGCTTTACT GCGGGGGCCC	40 80 120 160
10	TGCCGTGCT CAATCACTT CGCAGGCCT GATCTGGTC	AC AGCAAGGGG CCCAGTGTGG TTATCGCCGT CA GTGGAGTCCT GCCTACCAGC TTCGGCAACA CG TTACATCAAG GCTAGAGCGG CTTCGAAGGC CC CGGAACCCGG ACTTTCTTGT CTGCGGAGAT CG TGGTGGCTGA GAGTGATGGC GTCGACGAGG CC CCTGAGAGCC	200 240 280 320 340
20	(i) SE (A (E	EQUENCE CHARACTERISTICS: A) LENGTH: 340 nucleotides B) TYPE: nucleic acid C) STRANDEDNESS: single D) TOPOLOGY: linear	
25	(vi) OF	OLECULE TYPE: DNA RIGINAL SOURCE: C) INDIVIDUAL ISOLATE: ns5i4 EQUENCE DESCRIPTION: SEQ ID NO: 21	

- 72 -

		CTCGACTGTC ACTGAACAGG ACATCAGGGT GGAAGAGGAG	40
		ATATACCAAT GCTGTAACCT TGAACCGGAG GCCAGGAAAG	80
		TGATCTCCTC CCTCACGGAG CGGCTTTACT GCGGGGGCCC	120
		TATGTTCAAT AGCAAGGGGG CCCAGTGTGG TTATCGCCGT	160
5		TGCCGTGCTA GTGGAGTTCT GCCTACCAGC TTCGGCAACA	200
		CAATCACTTG TTACATCAAG GCTAGAGCGG CTGCGAAGGC	240
		- CGCAGGGCTC CGGACCCCGG ACTTTCTCGT CTGCGGAGAT	280
		GATCTGGTTG TGGTGGCTGA GAGTGATGGC GTCGACGAGG	320
		ATAGAACAGC CCTGCGAGCC	340
10			
	(2)	INFORMATION FOR SEQ ID NO: 22	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 340 nucleotides	
15		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
20		(ii) MOLECULE TYPE: DNA	
20		(vi) ORIGINAL SOURCE:	•
		(C) INDIVIDUAL ISOLATE: ns5gh8	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22	
25		CTCAACTGTC ACTGAACAGG ACATCAGGGT GGAAGAGGAG	40
		ATATACCAAT GCTGTAACCT TGAACCGGAG GCCAGGAAAG	80
		TGATCTCCTC CCTCACGGAA CGGCTTTACT GCGGGGGCCC	120

		TATGTTCAAC AGCAAGGGGG CCCAGTGTGG TTATCGCCG1	100
		TGCCGTGCCA GTGGAGTTCT GCCTACCAGC TTCGGCAACA	200
		CARTCACTTG TTACATCAAA GCTAGAGCGG CTGCCGAAGC	240
		CGCAGGCCTC CGGAACCCGG ACTTTCTTGT CTGCGGAGAT	280
_		GATCTGGTTG TGGTGGCTGA GAGTGATGGC GTCAATGAGG	320
5		ATAGAGCAGC CCTGGGAGCC	340
		AIAGAGCAGC COICCEIDE	
	(2)	INFORMATION FOR SEQ ID NO: 23	
10	•	(i) SEQUENCE CHARACTERISTICS:	
•		(A) LENGTH: 100 nucleotides	
		(B) TYPE: nucleic acid	
•		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
15			
	A .	(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE: (ATCC # 40394)	
		(C) INDIVIDUAL ISOLATE: hcvl	
20			
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23	•
	•	GACGGCGTTG GTAATGGCTC AGCTGCTCCG GATCCCACAA	40
		GCCATCTTGG ACATGATCGC TGGTGCTCAC TGGGGAGTCC	80
		TGGCGGCAT AGCGTATTTC	100
		166C666CA1	٠
25	(0)	INFORMATION FOR SEQ ID NO: 24	
	(2)	INTOKANTION TOWARK TO THE TE	

	-	(1)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
5			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
10			(C) INDIVIDUAL ISOLATE: US5	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 24	
		GACGG	CGTTG GTGGTAGCTC AGGTACTCCG GATCCCACAA	40
		GCCAT	CATGG ACATGATCGC TGGAGCCCAC TGGGGAGTCC	80
15		TGGCG	GGCAT AGCGTATTTC	100
	(2)	INFOR	MATION FOR SEQ ID NO: 25	-
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	•
			(D) TOPOLOGY: linear	•
25	•	(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	

			(C) INDIVIDUAL ISOLATE: AUS5	
5	٠	AACGG(SEQUENCE DESCRIPTION: SEQ ID NO: 25 CGCTG GTAGTAGCTC AGCTGCTCAG GGTCCCGCAA CGTGG ACATGATCGC TGGTGCCCAC TGGGGAGTCC GGCAT AGCGTATTTT	
	(2)	INFOR	MATION FOR SEQ ID NO: 26	
10		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 100 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15		(ii)	MOLECULE TYPE: DNA	
20		(vi)	ORIGINAL SOURCE: (C) INDIVIDUAL ISOLATE: US4	
20		GACAG GCCGT	SEQUENCE DESCRIPTION: SEQ ID NO: 26 SCCCTA GTGGTATCGC AGTTACTCCG GATCCCACAA CATGG ATATGGTGGC GGGGGCCCAC TGGGGAGTCCGGGCCCT TGCCTACTAT	
25	(2)	INFOR	RMATION FOR SEQ ID NO: 27	

		(1)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
5			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
10			(C) INDIVIDUAL ISOLATE: ARG2	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 27	
		AGCAG	CCCTA GTGGTGTCGC AGTTACTCCG GATCCCACAA	40
		AGCAT	CGTGG ACATGGTGGC GGGGGCCCAC TGGGGAGTCC	80
15		TGGCG	GGCCT TGCTTACTAT	100
	(2)	INFOR	MATION FOR SEQ ID NO: 28	•
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	

- 77 -

			(C) INDIVIDUAL ISOLATE: 115	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 28	
		GGCAG	CCCTA GTGGTGTCGC AGTTACTCCG GATCCCGCAA	40
5		GCTGT	CGTGG ACATGGTGGC GGGGGCCCAC TGGGGAATCC	80
		TAGCG	GGTCT TGCCTACTAT	100
	(2)	INFORM	MATION FOR SEQ ID NO: 29	
10		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
15			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: GH8	
20				
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 29	
	•	TGTGGG	TATG GTGGTGGCGC ACGTCCTGCG TTTGCCCCAG	40
		ACCTTG	TTCG ACATAATAGC CGGGGCCCAT TGGGGCATCT	80
		TGGCGG	GCTT GGCCTATTAC	100
25				
	(2)	THEODM	ATION FOR CEO ID NO. 34	

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
5			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
10			(C) INDIVIDUAL ISOLATE: 14	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 30	
		TGTGG	GTATG GTGGTAGCAC ACGTCCTGCG TCTGCCCCAG	40
		ACCTT	GTTCG ACATAATAGC CGGGGCCCAT TGGGGCATCT	80
15		TGGCA	GGCCT AGCCTATTAC	100
	(2)	INFOR	MATION FOR SEQ ID NO: 31	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 100 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(sri)	OPIGINAL SOUPCE	

	÷.	. (C) INDIVIDUAL ISOLATE: III	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31	
		TGTGGGTATG GTGGTGGCGC AAGTCCTGCG TTTGCCCCAG	40
5		ACCTTGTTCG ACGTGCTAGC CGGGGCCCAT TGGGGCATCT	B 0
		TGGCGGGCCT GGCCTATTAC 10	00
	(2)	INFORMATION FOR SEQ ID NO: 32	
10		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 100 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
15		(ii) MOLECULE TYPE: DNA	-
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: 110	
20			
	:	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32	
		TACCACTATG CTCCTGGCAT ACTTGGTGCG CATCCCGGAG	40
		GTCATCCTGG ACATTATCAC GGGAGGACAC TGGGGCGTGA	В0
		TGTTTGGCCT GGCTTATTTC 10	00
25			
	(2)	INFORMATION FOR SEQ ID NO: 33	

		(i). SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
5		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE: (ATCC # 40394)	
10		(C) INDIVIDUAL ISOLATE: hcvl	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
15			120
		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA CC	252
20			
	(2)	INFORMATION FOR SEQ ID NO: 34	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
25		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

	(ii)	MOLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISO	LATE: us5
	(xi)	SEQUENCE DESCRIPTION	: SEQ ID NO: 34
	GTTAGT	iga gigicgigca gccic	CAGGA CCCCCCTCC 40
	CGGGAGI	OCC ATAGTGGTCT GCGGA	ACCGG TGAGTACACC 80
	GGAATT	CCA GGACGACCGG GTCCT	ITCTT GGATCAACCC 120
	GCTCAA	SCC TGGAGATTTG GGCGT	GCCCC CGCAAGACTG 160
	CTAGCC	AGT AGTGTTGGGT CGCGA	AAGGC CTTGTGGTAC 200
	TGCCTG	rag ggtgcttgcg agtgc	CCCGG GAGGTCTCGT 240
	AGACCG	SCA CC	252
(2)	INFORM	TION FOR SEQ ID NO:	35
• .		PROTENCE CUNDACTEDIC	
	• •		
•		•	
		•	
		•	~
		D) IOPOLOGI. IIMe	
	(ii)	OLECULE TYPE: DNA	
	(vi)	ORIGINAL SOURCE:	
		C) INDIVIDUAL ISO	LATE: ausl
	(2)	(vi) (vi) (vi) (vi) (vi) (vi) (vi) (vi)	(ii) MOLECULE TYPE: DNA (vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISO: (xi) SEQUENCE DESCRIPTION GTTAGTATGA GTGTCGTGCA GCCTCG CGGGAGAGCC ATAGTGGTCT GCGGAGGATTGCCA GGACGACCGG GTCCTGGAGATTGCCA GGACGACCGG GTCCTGCTAGCCGAGTAGGGTTGCG AGTGCGAGACCGTGCA AGACCGTGCA CC (2) INFORMATION FOR SEQ ID NO: (i) SEQUENCE CHARACTERISM (A) LENGTH: 252 nucces (B) TYPE: nucleic against (C) STRANDEDNESS: (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (vi) ORIGINAL SOURCE: (C) INDIVIDUAL ISOI

		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 35	
		GTTAG	STATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		CGGGA	GAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAAT	TGCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
5		GCTCA	ATGCC TGGAGATTTG GGCACGCCCC CGCAAGATCA	160
		CTAGC	CGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCT	GATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACC	GTGCA CC	252
			•	
10	(2)	INFOR	MATION FOR SEQ ID NO: 36	
			-	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
			(B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
-	-			
		(ii)	MOLECULE TYPE: DNA	
20		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: sp2	
			-	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 36	
		GTTAGT	ATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
25		CGGGAG	PAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATT	GCCA GGACGACCGG GTCCTTTCTT GGATAAACCC	120
		GCTCAA	TGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160

	٠	CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	20
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	24
		AGACCGTGCA CC	25
5	(2)	INFORMATION FOR SEQ ID NO: 37	
		(i) SEQUENCE CHARACTERISTICS:	
	•	(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
10		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
15		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: gm2	• •
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
20		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	
		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	
		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG	
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	
25		AGACCGTGCA CC	252
	(2)	INFORMATION FOR SEQ ID NO: 38	

		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
5		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
10		(C) INDIVIDUAL ISOLATE: 121	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
15		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATAAACCC 1	.20
		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG 1	.60
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC 2	00
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT 2	40
		AGACCGTGCA CC 2	52
20			
	(2)	INFORMATION FOR SEQ ID NO: 39	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
25		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

		(ii)	MOLE	CULE TY	PE: D	NA	•	
		(vi)	ORIG	INAL SO	URCE:			
			(C)	INDIV	IDUAL	ISOLATI	E: us4	
5								
		(xi)	SEQUE	NCE DE	SCRIPT	ION: SE	EQ ID NO: 39	
•		GTTAGT	TATGA G	TGTCGT	GCA GC	CTCCAG	SA CCCCCCTCC	40
		CGGGA	SAGCC A	TAGTGG	rct gc	GGAACCG	G TGAGTACACC	80
	•	GGAATI	GCCA G	GACGAC	CGG GT	CCTTTCI	T GGATCAACCC	120
10		GCTCAF	TGCC T	'GGAGAT'	rtg gg	CGTGCCC	C CGCGAGACTG	160
		CTAGCC	GAGT A	GTGTTG	GT CG	CGAAAGG	C CTTGTGGTAC	200
	•	TGCCTG	ATAG G	GTGCTT	CG AG	rgcccc	G GAGGTCTCGT	240
		AGACCG	TGCA C	C				252
15	(2)	INFORM	ATION	FOR SEC) ID No	D: 40		
		(i)	SEQUE	NCE CHA	RACTE	RISTICS	· .	
			(A)	LENGTH	: 252	nucleo	tides	
			(B)	TYPE:	nucle	lc acid		
20			(C)	STRAND	EDNESS	S: sin	gle	
			(D)	TOPOLO	GY: li	inear	-	
		(ii)	MOLEC	ULE TYP	E: DN	IA		
25		(vi)	ORIGI	NAL SOU	RCE:			-
			(C)	INDIVI	DUAL I	SOLATE	: jhl	

		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40)
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTC	CC 4
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACAC	CC 8
		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACC	CC 120
5		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCGAGACT	G 160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTA	C 200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCG	T 240
		AGACCGTGCA TC	252
10	(2)	INFORMATION FOR SEQ ID NO: 41	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
15		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
20		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: nac5	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCCTC	2 40
25		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACAC	2 80
		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACC	120
		<u> </u>	3 360

		CIAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	20
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	24
		AGACCGTGCA CC	25
5	(2)	INFORMATION FOR SEQ ID NO: 42	
	-	(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
10		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
15		(C) INDIVIDUAL ISOLATE: arg2	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
20		GGAATTGCCA GGACGACCGG GTCCTTTCTT GGATCAACCC	120
		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA CC	252
25			
	(2)	INFORMATION FOR SEQ ID NO: 43	

		(1) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
5		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
10		(C) INDIVIDUAL ISOLATE: spl	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43	
		GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
15			120
		GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCGAGACTG	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
	•	TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA CC	252
20		·	
	(2)	INFORMATION FOR SEQ ID NO: 44	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
25		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
5		٠	(C) INDIVIDUAL ISOLATE: gh1	
3		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 44	Ĺ
			GTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCCTC	
			AGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACAC	
			TTGCCA GGACGACCGG GTCCTTTCTT GGATCAACC	
10			AATGCC TGGAGATTTG GGCGTGCCCC CGCGAGACT	
			CCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTA	
			IGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCG	
			EGTGCA CC	252
15	(2)	INFOR	RMATION FOR SEQ ID NO: 45	•
	-	(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 252 nucleotides	
			(B) TYPE: nucleic acid	
20 [°]			(C) STRANDEDNESS: single	-
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: 115	

	•	(xi)	SEQUI	ENCE DE	SCRI	PTION	: SEQ	ID NO:	45	
		GTTAG:	TATGA (TGTCGT	GCA	GCCTC	CAGGA	CCCCC	CTCC	4(
		CGGGA	GAGCC A	TAGTGG	TCT	GCGGA	ACCGG	TGAGTA	CACC	80
		GGAAT:	rgcca (GACGAC	CGG	GTCCT	TTCTT	GGATCA	ACCC	120
5		GCTCAI	ATGCC I	GGAGAT	TTG	GGCGT	3CCCC	CGCGAG	ACTG	160
		CTAGC	CGAGT A	GTGTTG	GGT	CGCGA	AAGGC	CTTGTG	GTAC	200
	-	TGCCT	ATAG G	GTGCTT	GCG	AGTGC	CCGG	GAGGTC	TCGT.	240
		AGACCO	TGCA C	:C						252
									-	
10	(2)	INFORM	ation	FOR SE	Q ID	NO: 4	16			
		(i)	SEQUE	NCE CH	ARAC	TERIST	CICS:			
			(A)	LENGT	H: 2	52 nuc	leoti	ides		
			(B)	TYPE:	nuc	leic a	cid			
15			(C)	STRAN	DEDN	ESS:	singl	le		
			(D)	TOPOL	OGY:	linea	ır	. .		
		(ii)	MOLEC	ULE TY	PE:	DNA				
20		(vi)		NAL SO						
			(C)	INDIV	IDUA	L ISOL	ATE:	i10		

		(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 46	
		GCTAGTATCA GTGTCGTACA GCCTCCAGGC CCCCCCTCC	4 (
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATTGCCG GGAAGACTGG GTCCTTTCTT GGATAAACCC	120
5		ACTCTATGCC CGGCCATTTG GGCGTGCCCC CGCAAGACTG	160
		CTAGCCGAGT AGCGTTGGGT TGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA TC	252
10	(2)	INFORMATION FOR SEQ ID NO: 47	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
15		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
20		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: arg6	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47	
		GTTAGTATGA GTCTCGTACA GCCTCCAGGC CCCCCCTCC	40
25		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATTGCTG GGAAGACTGG GTCCTTTCTT GGATAAACCC	120
		ACTCTATGCC CAGCCATTTG GGCGTGCCCC CGCAAGACTG	160

		CTAGCCGAGT AGCGTTGGGT TGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA TC	252
5	(2)	INFORMATION FOR SEQ ID NO: 48	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
10		(D) TOPOLOGY: linear	
	-	(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
15		(C) INDIVIDUAL ISOLATE: 621	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48	
		GTTAGTACGA GTGTCGTGCA GCCTCCAGGA CTCCCCCTCC	40
20		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATCGCTG GGGTGACCGG GTCCTTTCTT GGAGCAACCC	120
		GCTCAATACC CAGAAATTTG GGCGTGCCCC CGCGAGATCA	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
25		AGACCGTGCA AC	252
	(2)	INFORMATION FOR SEQ ID NO: 49	

		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 252 nucleotides	
		(B) TYPE: nucleic acid	
5		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
10		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: gj61329	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49	
15		GTTAGTACGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC	40
		CGGGAGAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAATCGCTG GGGTGACCGG GTCCTTTCTT GGAGTAACCC	120
		GCTCAATACC CAGAAATTTG GGCGTGCCCC CGCGAGATCA	160
		CTAGCCGAGT AGTGTTGGGT CGCGAAAGGC CTTGTGGTAC	200
20		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	240
		AGACCGTGCA AC	252
	(2)	INFORMATION FOR SEQ ID NO: 50	
25		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 180 nucleotides	

			(B) TYPE: nucleic acid	
	:		(C) STRANDEDNESS: single	
		•	(D) TOPOLOGY: linear	
5		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	
			(C) INDIVIDUAL ISOLATE: sa3	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 50	
10				
		GTTAG'	TATGA GTGTCGAACA GCCTCCAGGA CCCCCCTCC	40
		CGGGA	GAGCC ATAGTGGTCT GCGGAACCGG TGAGTACACC	80
		GGAAT'	TGCCG GGATGACCGG GTCCTTTCTT GGATAAACCC	120
		GCTCA	ATGCC CGGAGATTTG GGCGTGCCCC CGCGAGACTG	160
15		CTAGC	CGAGT AGTGTTGGGT	180
	(2)	INFOR	MATION FOR SEQ ID NO: 51	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 180 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE:	

		(C)	INDIVIDU	JAL ISOL	ATE:	sa4		
	(xi)	SEQUE	NCE DESCR	RIPTION:	SEQ	ID NO:	51	
	GTTA	STATGA G	TGTCGAACA	GCCTCC	AGGA	cccccc	CTCC	40
5	CGGG?	AGAGCC A	TAGTGGTCI	' GCGGAA	CCGG	TGAGTAC	ACC	80
	GGAAT	TGCCG G	GATGACCGG	GTCCTT	TCTT	GGATAAA	CCC	120
	GCTCA	ATGCC C	GGAGATTTG	GGCGTG	cccc (CGCGAGA	CTG	160
	CTAGO	CGAGT A	GTGTTGGGT					180
10		-						
(2)	INFOR	MATION	FOR SEQ I	D NO: 5:	2			
•	(i)	SEQUE	NCE CHARA	CTERIST:	ICS:			
		(A)	LENGTH:	549 nuc	leotic	les		
15		(B)	TYPE: nu	cleic ad	cid			
		(C)	STRANDED	NESS: 8	single	•		
		(D)	TOPOLOGY	: linear	:			
20	(ii)	MOLEC	JLE TYPE:	DNA				
	(vi)		NAL SOURCE			0394)		
		(C)	INDIVIDUA	AL ISOLA	TE:	hcvl		

		(xi)	SEQ	UENCE	DESCR	IPTIO	N: SEQ	ID NO:	52	
		ATGAGC	ACGA	ATCC	TAAACC	TCAA	AAAAA	AACAAA	CGTA	40
		ACACCA	ACCG	TCGC	CCACAG	GACG	TCAAGT	TCCCGG	FTGG	80
		CGGTCA	GATC	GTTG	GTGGAG	TTTA	CTTGTT	GCCGCG	CAGG	120
5		GGCCCT	AGAT	TGGG:	rgtgcg	CGCG	ACGAGA	AAGACT	rccg	160
		AGCGGT	CGCA	ACCT	CGAGGT	AGAC	GTCAGC	CTATCC	CAA	200
	•	GGCTCG	TCGG	CCCG	AGGGCA	GGAC	CTGGGC	TCAGCCO	CGGG	240
		TACCCT	TGGC	CCCT	CTATGG	CAAT	GAGGGC	TGCGGGT	rggg	280
		CGGGAT	GGCT	CCTG	CTCCC	CGTG	GCTCTC	GGCCTAG	€CTG	320
10		GGGCCC	CACA	GACC	CCCGGC	GTAG	GTCGCG	CAATTT	} GGT	360
		AAGGTC	ATCG	ATAC	CCTTAC	GTGC	GGCTTC	GCCGACC	CTCA	400
		TGGGGT	ACAT	ACCG	CTCGTC	GGCGG	CCCTC	TTGGAGG	€CGC	440
•		TGCCAG	GGCC	CTGG	CGCATG	GCGT	CCGGGT	TCTGGAF	IGAC	480
		GGCGTG	AACT	ATGC	ACAGG	GAAC	CTTCCT	GGTTGCT	CTT	520
15		TCTCTA	TCTT	CCTT	CTGGCC	CTGC	CTCT			549
,	(2)	INFORM	ATION	I FOR	SEQ II	NO:	53			
		(i)	SEQU	JENCE	CHARAC	CTERIS	STICS:			
20			(A)	LEN	IGTH: 5	549 ni	icleot:	ides		
			(B)	TY	E: nuc	cleic	acid			
			(C)	STE	RANDEDI	TESS:	sing	le		
			(D)	TOP	POLOGY	line	ear			
25		(ii)	MOLE	CULE	TYPE:	DNA				
		(vi)	ORIG	INAL	SOURCE	E:				

(C) INDIVIDUAL ISOLATE: us5

•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53	
	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
5	ACACCAACCG TCGCCCACAG GACGTCAAGT TCCCGGGTGG	80
	CGGTCAGATC GTTGGTGGAG TTTACTTGTT GCCGCGCAGG	120
	GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG	160
	AGCGGTCGCA ACCTCGAGGT AGACGTCAGC CTATCCCCAA	200
	GGCGCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG	240
10	TACCCTTGGC CCCTCTATGG CAATGAGGGT TGCGGGTGGG	280
	CGGGATGGCT CCTGTCTCCC CGTGGCTCTC GGCCTAGTTG	320
	GGGCCCCACA GACCCCCGGC GTAGGTCGCG CAATTTGGGT	360
	AAGGTCATCG ATACCCTTAC GTGCGGCTTC GCCGACCACA	400
	TGGGGTACAT ACCGCTCGTC GGCGCCCCTC TTGGAGGCGC	440
15	TGCCAGGGCT CTGGCGCATG GCGTCCGGGT TCTGGAAGAC	480
	GGCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT	520
	TCTCTATCTT CCTTCTGGCC CTGCTCTCT	549

(2) INFORMATION FOR SEQ ID NO: 54

20

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 549 nucleotides
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- 25 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA

- 98 -

		(vi)	ORI	GINAL	SOURC	E:				
			(C)	IN	DIVIDU	AL IS	OLATE:	ausl		
-5		(xi)	SEO	JENCE	DESCR	ΙΡΤΙΟ	N: SEO	ID NO:	54	
		• •						ACCAAA		4(
		ACACCA								80
								GCCGCG		120
								AAGACT		160
10								CTATCC		200
10								TCAGCC		240
								TGCGGA'		280
					-			GGCCTA		320
• -								CAATTT		360
15								GCCGAC		400
								TTGGGG		440
		TGCCAGG	GCC	CTGGC	GCATG	GCGT	CCGGGT	TCTGGA	AGAC	480
		GGCGTGA	LACT	ATGCA	ACAGG	GAAT	CTTCCT	GGTTGC	CTT	520
		TCTCTAI	CTT	CCTTC	TGGCC	CTTCT	CTCT			549
20										
	(2)	INFORMA	TION	FOR	SEQ ID	NO:	55			
		(i)	SEQU	ENCE (CHARAC	TERIS	STICS:			
		• • •	(A)				cleoti	des		
25			•		E: nuc		_			
			(C)				singl	_		
			\ \ \	DIM	ンスカルカガバ	، جون	211171	ᆫ		

(D) TOPOLOGY: linear

		_								
		(ii)	MOL	ECULE	TYPE:	DNA	\			
5		(vi)	ORIG	SINAL	SOURC	E:				
			(C)	IN	DIVIDU	AL IS	OLATE:	sp2		
		(xi)	SEQ	JENCE	DESCR	IPTIO	N: SEQ	ID NO:	5 5 · ·	
		ATGAGC	ACGA	ATCC	TAAACC	TCAA	AGAAAA	ACCAAA	CGTA	4
		ACACCA	ACCG	TCGC	CACAG	GACG	TCAAGT	TCCCGG	GTGG	. 8
10		CGGTCA	GATC	GTTG	TGGAG	TTTA	CTTGTT	GCCGCG	CAGG	12
		GGCCCT	AGAT	TGGGI	GTGCG	CACG	ACGAGG	AAGACT'	TCCG	16
		AGCGGT	CGCA	ACCTO	GAGGT	AGAC	GTCAGC	CCATCC	CCAA	200
		GGCTCG	CGA	CCCGA	GGGCA	GGAC	CTGGGC	TCAGCC	CGGG	240
		TACCCT	rggc	CCCTC	TATGG	CAAT	GAGGGC	TGCGGG	rggg	280
15		CGGGAT	GCT	CCTGI	CTCCC	CGTG	GCTCTC	GGCCTA	GCTG	320
		GGGCCCC	CACA	GACCO	CCGGC	GTAG	GTCGCG	CAATTT	GGT	360
		AAGGTCA	ATCG	ATACC	CTTAC	GTGC	GGCTTC	GCCGAC	CTCA	400
		TGGGGT	CAT	ACCGC	TCGTC	GGCG	CCCTC	TTGGAG	GCGC	440
		TGCCAGA	IGCC	CTGGC	GCATG	GCGT	CCGGGT	TCTGGA	AGAC	480
20		GGCGTGA	ACT	ATGCA	ACAGG	GAAC	CTTCCC	GGTTGCT	CTT	520
		TCTCTAT	CTT	CCTTC	TGGCC	CTGC'	TCTCT			549
	(2)	INFORMA	TION	FOR	SEQ II	NO:	56			
25		(i)	SEQU	ENCE	CHARAC	TERIS	STICS:			
			(A)	LEN	GTH: 5	49 nu	ıcleoti	.des		
			(B)	TYP	E: nuc	eleic	acid			

		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
5		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: gm2	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56	
10		ATGAGCACGA ATCCTAAACC TCAAAGAAGA ACCAAACGTA	4
		ACACCAACCG TCGCCCACAG GACGTCAAGT TCCCGGGTGG	8
		CGGTCAGATC GTTGGTGGAG TTTACTTGTT GCCGCGCAGG	120
		GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG	160
		AGCGGTCGCA ACCTCGAGGT AGACGTCAGC CTATCCCCAA	200
15		GGCACGTCGG CCCGAGGGTA GGACCTGGGC TCAGCCCGGG	240
		TACCCTTGGC CCCTCTATGG CAATGAGGGT TGCGGGTGGG	280
•		CGGGATGGCT CCTGTCTCCC CGCGGCTCTC GGCCTAACTG	320
		GGGCCCCACA GACCCCCGGC GTAGGTCGCG CAATTTGGGT	360
		AAGGTCATCG ATACCCTTAC GTGCGGCTTC GCCGACCTCA	400
20		TGGGGTACAT ACCGCTCGTC GGCGCCCCTC TTGGAGGCGC	44(
		TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC	480
		GGCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT	520
		TCTCTATCTT CCTTCTGGCC CTGCTCTCT	549
25	(2)	INFORMATION FOR SEQ ID NO: 57	
		(i) SEQUENCE CHARACTERISTICS:	

- 101 -

		(A) LENGTH: 549 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
5			
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: 121	
10		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57	
		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
		ACACCAACCG TCGCCCACAG GACGTCAAGT TCCCGGGTGG	80
		CGGTCAGATC GTTGGTGGAG TTTACTTGTT GCCGCGCAGG	120
		GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG	160
15		AGCGGTCGCA ACCTCGTGGT AGACGCCAGC CTATCCCCAA	200
		GGCGCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG	240
		TACCCTTGGC CCCTCTATGG CAATGAGGGT TGCGGGTGGG	280
		CGGGATGGCT CCTGTCTCCC CGTGGCTCTC GGCCTAGCTG	320
		GGGCCCCACA GACCCCCGGC GTAGGTCGCG CAATTTGGGT	360
20		AAGGTCATCG ATACCCTTAC GTGCGGCTTC GCCGACCTCA	400
		TGGGGTACAT ACCGCTCGTC GGCGCCCCTC TTGGAGGCGC	440
		TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC	480
		GGCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT	520
25		TTTCTATTTT CCTTCTGGCC CTGCTCTCT	549
	(2)	INFORMATION FOR SEC ID NO. 50	

	(1) SEQ	UENCE CHARACTERISTICS:	
	(A)	LENGTH: 549 nucleotides	
	(B)	TYPE: nucleic acid	
5	(C)	STRANDEDNESS: single	
	(D)	TOPOLOGY: linear	
	(ii) MOLI	ECULE TYPE: DNA	
	(vi) ORIG	SINAL SOURCE:	
10	(C)	INDIVIDUAL ISOLATE: us4	
	(xi) SEQU	JENCE DESCRIPTION: SEQ ID NO: 58	
	ATGAGCACGA	ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
	ACACCAACCG	CCGCCCACAG GACGTTAAGT TCCCGGGCGG	80
15	TGGCCAGGTC	GTTGGTGGAG TTTACCTGTT GCCGCGCAGG	120
	GGCCCCAGGT	TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160
	AGCGGTCGCA	ACCTCGTGGA AGGCGACAAC CTATCCCCAA	200
	GGCTCGCCAG	CCCGAGGGCA GGGCCTGGGC TCAGCCCGGG	240
	TACCCTTGGC	CCCTCTATGG CAATGAGGGT ATGGGGTGGG	280
20	CAGGATGGCT	CCTGTCACCC CGTGGCTCTC GGCCTAGTTG	320
	GGGCCCCACG	GACCCCGGC GTAGGTCGCG TAATTTGGGT	360
•	AAGGTCATCG	ATACCCTCAC ATGCGGCTTC GCCGACCTCA	400
	TGGGGTACAT	TCCGCTCGTC GGCGCCCCC TTAGGGGCGC	440
	TGCCAGGGCC	TTGGCGCATG GCGTCCGGGT TCTGGAGGAC	480
25	GGCGTGAACT	ACGCAACAGG GAATCTGCCC GGTTGCTCCT	520
	ափաշան աշատ	CCTCTTGGCT CTGCTGTCC	549

520

(2) INFORMATION FOR SEQ ID NO: 59

			,				
	(i)	SEQUE	NCE CHAR	ACTERISTI	cs:		
		(A)	LENGTH:	549 nucl	eotide	S	
5		(B)	TYPE: nu	cleic ac	id		
		(C)	STRANDEI	NESS: s	ingle		
		(D)	TOPOLOGY	: linear			
10	(ii)	MOLEC	ULE TYPE:	DNA			
	(vi)	ORIGI	NAL SOURC	E:			
		(C)	INDIVIDU	AL ISOLA	TE: jl	ıl	
	(xi)	SEQUE	NCE DESCR	IPTION:	SEQ ID	NO: 59	
15	ATGAGCA	CAA A	TCCTAAACC	TCAAAGA	AAA ACC	AAACGTA	40
	ACACCAA	CCG C	CGCCCACAG	GACGTCA	AGT TCC	CGGGCGG	80
	TGGTCAG	SATC G	PTGGTGGAG	TTTACCT	GTT GCC	GCGCAGG	120
	GGCCCCA	GGT T	ggtgtgcg	CGCGACT	AGG AAG	ACTTCCG	160
	AGCGGTC	GCA A	CCTCGTGGA	AGGCGAC	AAC CTA	TCCCCAA	200
20	GGCTCGC	CAG C	CCGAGGGCA	GGGCCTG	GGC TCA	GCCCGGG	240
	TACCCTT	GGC C	CCTCTATGG	CAACGAG	GT ATG	GGGTGGG	280
	CAGGATG	GCT C	CTGTCACCC	CGTGGCT	CTC GGC	CTAGTTG	320
	GGGCCCC	ACG GA	ACCCCCGGC	GTAGGTC	GCG TAA	TTTGGGT	360
	AAGGTCA	TCG AT	RACCCTCAC	ATGCGGC	TTC GCC	GACCTCA	400
25	TGGGGTA	CAT TO	CCGCTTGTC	GGCGCCCC	CCC TAG	GGGGCGC	440
	TGCCAGG	GCC CI	GGCACATG	GTGTCCGG	GT TCT	GGAGGAC	480
	GGCGTGA	ACT AT	GCAACAGG	GAATTTGO	CC GGT	TGCTCTT	520

- 104 -

٠		TCTCTATCTT CCTCTTGGCT CTGCTGTCC	549
	(2)	INFORMATION FOR SEQ ID NO: 60	
5		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 549 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
10			
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: nac5	
15			
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60	
		ATGAGCACAA ATCCTAAACC CCAAAGAAAA ACCAAACGTA	40-
		ACACCAACCG TCGCCCACAG GACGTCAAGT TCCCGGGCGG	80
		TGGTCAGATC GTTGGTGGAG TTTACCTGTT GCCGCGCAGG	120
20		GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160
		AGCGGTCGCA ACCTCGTGGA AGGCGACAAC CTATCCCCAA	200
		GGCTCGCCGG CCCGAGGGCA GGTCCTGGGC TCAGCCCGGG	240
		TACCCTTGGC CCCTCTATGG CAACGAGGGT ATGGGGTGGG	280
		CAGGATGGCT CCTGTCACCC CGCGGCTCCC GGCCTAGTTG	
25		GGGCCCCACG GACCCCCGGC GTAGGTCGCG TAATTTGGGT	_
		AAGGTCATCG ATACCCTCAC ATGCGGCTTC GCCGACCTCA	400

- 105 -

		TGGGGTACAT TCCGCTCGTC GGCGCCCCCC TAGGGGGCGC	440
		TGCCAGGGCC CTGGCACATG GTGTCCGGGT TCTGGAGGAC	480
		GGCGTGAACT ATGCAACAGG GAATTTGCCT GGTTGCTCTT	520
		TCTCTATCTT CCTCTTGGCT CTGCTGTCC	549
5			
	(2)	INFORMATION FOR SEQ ID NO: 61	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 549 nucleotides	
		(B) TYPE: nucleic acid	
10		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
15		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: arg2	
			-
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61	
		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
20		ACACCAACCG CCGCCCACAG GACGTCAAGT TCCCGGGCGG	80
	-	TGGTCAGATC GTTGGTGGAG TTTACTTGTT GCCGCGCAGG	120
		GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160
		AGCGGTCGCA ACCTCGTGGA AGGCGACAAC CTATCCCCAA	200
		GGCTCGCCAG CCCGAGGGTA GGGCCTGGGC TCAGCCCGGG	240
25		TACCCTTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG	280
		CAGGGTGGCT CCTGTCCCCC CGCGCTCCC GCCCTACTTCC	200

		GGGCCCCACA GACCCCCGGC GTAGGTCGCG TAATTTGGGT	360
		AAGGTCATCG ATACCCTCAC ATGCGGCTTC GCCGACCTCA	400
		TGGGGTACAT TCCGCTCGTC GGCGCCCCCC TAGGGGGCGC	440
		TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC	480
5		GGCGTGAACT ATGCAACAGG GAATCTGCCC GGTTGCTCTT	520
		TCTCTATCTT CCTCTTGGCT TTGCTGTCC	549
	(2)	INFORMATION FOR SEQ ID NO: 62	
		(i) SEQUENCE CHARACTERISTICS:	
10		(A) LENGTH: 549 nucleotides	
_		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
15		(ii) MOLECULE TYPE: DNA	
	-	(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: spl	
20		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62	
•		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
		ACACCAACCG CCGCCCACAG GACGTCAAGT TCCCGGGCGG	80
		TGGTCAGATC GTTGGTGGAG TTTACCTGTT GCCGCGCAGG	120
,		GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160
25		AGCGGTCGCA ACCTCGTGGA AGGCGACAAC CTATCCCCAA	200
		GGCTCGCCGG CCCGAGGGCA GGGCCTGGGC TCAGCCCGGG	240
		TATCCTTGGC CCCTCTATGG CAATGAGGGT CTGGGGTGGG	280

		CAGGATGGCT CCTGTCACCC CGCGGCTCTC GGCCTAGCTG	320
		GGGCCCTACC GACCCCCGGC GTAGGTCGCG CAACTTGGGT	360
		AAGGTCATCG ATACCCTTAC GTGCGGCTTC GCCGACCTCA	400
		TGGGGTACAT TCCGCTCGTC GGCGCCCCCC TTAGGGGCGC	440
5		TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC	480
		GGCGTGAACT ATGCAACAGG GAATTTGCCC GGTTGCTCTT	520
		TCTCTATCTT CCTCTTGGCT TTGCTGTCC	549
	(2)	INFORMATION FOR SEQ ID NO: 63	
10		•	
		(1) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 549 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
15		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
		(vi) ORIGINAL SOURCE:	
20		(C) INDIVIDUAL ISOLATE: ghl	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63	••
		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
		ACACCAACCG CCGCCCACAG GACGTCAAGT TCCCGGGCGG	80
25		TGGTCAGATC GTTGGTGGAG TTTACTTGTT GCCGCGCAGG	
		GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG	160
		AGCGGTCGCA ACCTCGTGGA AGGCGACAAC CTATCCCCAA	200

-108 -

		GGCTCGCCGG CCCGAGGGCA GGGCCTGGGC TCAGCCCGGG	240
		TACCCTTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG	280
		CAGGATGGCT CCTGTCACCC CGTGGTTCTC GGCCTAGTTG	320
		GGGCCCCACG GACCCCCGGC GTAGGTCGCG CAATTTGGGT	360
5		AAGATCATCG ATACCCTCAC GTGCGGCTTC GCCGACCTCA	400
		TGGGGTACAT TCCGCTCGTC GGCGCCCCCC TAGGGGGCGC	440
	-	TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAGGAC	480
		GGCGTGAACT ATGCAACAGG GAATCTGCCC GGTTGCTCCT	520
		TTTCTATCTT CCTTCTGGCT TTGCTGTCC	549
10			
	(2)	INFORMATION FOR SEQ ID NO: 64	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 549 nucleotides	
15		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
20		(i) apparent company	
		(vi) ORIGINAL SOURCE:	
		(C) INDIVIDUAL ISOLATE: 115	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64	
25		ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA	40
		ACACCAACCG CCGCCCACAG GACGTCAAGT TCCCGGGCGG	80
		TGGTCAGATC GTTGGTGGAG TTTACCTGTT GCCGCGCAGG	120

		GGCC	CCAGGT	TGGGTGTGCG	CGCGACTAG	3 AAGACTTCCG	160
		AGCG	GTCGCA	ACCTCGTGGA	AGGCGACAA	CTATCCCCAA	200
		GGCT	CGCCAG	CCCGAGGGCA	GGGCCTGGG	CTCAGCCCGGG	240
		TACC	CCTGGC	CCCTCTATGG	CAATGAGGGT	ATGGGGTGGG	280
5		CAGG	ATGGCT	CCTGTCACCC	CGCGGCTCC	GGCCTAGTTG	320
		GGGC	CCCAAA	GACCCCGGC	GTAGGTCGCG	TAATTTGGGT	360
	•	AAGG!	ICATCG	ATACCCTCAC	ATGCGGCTTC	GCCGACCTCA	400
		TGGG	STACAT	TCCGCTCGTC	GGCGCCCCI	TAGGGGGCGC	440
		TGCC	AGGGCC	CTGGCGCATG	GCGTCCGGGT	TCTGGAGGAC	480
10		GGCG	IGAACT	ATGCAACAGG	GAATCTACCC	GGTTGCTCTT	520
		TCTCT	TATCTT	CCTCTTGGCT	TTGCTGTCC		549
	(2)	INFOR	MATION	FOR SEQ II	NO: 65		
15		(i)	SEQU	ENCE CHARAC	TERISTICS:		
			(A)	LENGTH: 5	49 nucleot	ides	
			(B)	TYPE: nuc	leic acid		
					ESS: sing	•	
				TOPOLOGY:	-		
20							
		(ii)	MOLEC	TULE TYPE:	DNA		
		(vi)	ORIGI	NAL SOURCE	:		
			(C)	INDIVIDUA	L ISOLATE:	i10	
25		• ••	-				
		(xi)	SEQUE	NCE DESCRI	PTION: SEQ	ID NO: 65	
						ACCAAAAGAA	

- 110 -

		ACACT	AACCG	CCGCCCA	CAG	GACGI	CAAGT	TCCCGGG	CGG	80
								GCCGCGC2		120
		GGCCC	GAGAT	TGGGTGT	GCG	CGCGA	CGAGG	AAAACTTO	CCG	160
		AACGA!	rccca	GCCACGC	GGA	AGGCG	TCAGC	CCATCCC	'AA'	200
5								AAGGCCAG		240
_								CTCGGCTG		280
								GCCCTTC		320
								CAACTTGG		360
								GCCGACCT		400
10								TTGGAGG		440
								TCTGGAGG		480
								GGTTGCTC		520
				TCTCTTA						549
15	(2)	INFORM	ATION	FOR SE	Q II	NO:	66			
				ENCE CH	ARAC	TERIS	TICS:			
			(A)	LENGT	H: 5	10 nu	cleot	des		
			(B)	TYPE:	nuc	leic	acid			
20			(C)	STRAN	DEDN	ESS:	sing	.e		
			(D)	TOPOL	OGY:	line	ar			
		(ii)	MOLE	CULE TY	PE:	DNA				
25		(vi)	ORIG	INAL SO	URCE	:				
			(C)	TNDTV	TDIIA	t. TSO	LATE:	arg6		

- 111 -

		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66	
		ATGAGCACAA ATCCTCAACC TCAAAGAAAA ACCAAAAGAA	4
		ACACTAACCG CCGCCCACAG GACGTCAAGT TCCCGGGCGG	8
		TGGTCAGATC GTTGGCGGAG TATACTTGTT GCCGCGCAGG	120
5		GGCCCCAGGT TGGGTGTGCG CGCGACGAGG AAAACTTCCG	160
		AACGGTCCCA GCCACGTGGG AGGCGCCAGC CCATCCCCAA	200
		AGATCGGCGC ACCACTGGCA AGTCCTGGGG GAAGCCAGGA	24(
		TACCCTTGGC CCCTGTATGG GAATGAGGGT CTCGGCTGGG	280
		CAGGGTGGCT CCTGTCCCC CGCGGTTCTC GCCCTTCATG	320
10		GGGCCCCACT GACCCCCGGC ATAGATCACG CAACTTGGGT	360
		AAGGTCATCG ATACCCTAAC GTGTGGTTTT GCCGACCTCA	400
		TGGGGTACAT TCCCGTCGGT GGTGCCCCCG TTGGTGGTGT	440
		CGCCAGAGCC CTTGCCCATG GGGTGAGGGT TCTGGAAGAC	480
		GGGATAAATT ATGCAACAGG GAATCTGCCC	510
15	•		
	(2)	INFORMATION FOR SEQ ID NO: 67	
		•	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 29 nucleotides	
20		(B) TYPE: nucleic acid	
	:	(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
25			
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67	
		CAAACGTAAC ACCAACCGRC GCCCACAGG	29

	(2)	INFORMATION FOR SEQ ID NO: 68	
		(i) SEQUENCE CHARACTERISTICS:	
5		(A) LENGTH: 24 nucleotides	
_		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
10		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68	
		ACAGAYCCGC AKAGRTCCCC CACG	24
15	(2)	INFORMATION FOR SEQ ID NO: 69	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 30 nucleotides	
		(B) TYPE: nucleic acid	
20		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
25		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69	
		CGAACCTCGA GGTAGACGTC AGCCTATECC	30

	(2)	INFOR	MATION FOR SEQ ID NO: 70	
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 70	
			CTCGT GGAAGGCGAC AACCTATCCC	3
15	(2)	INFORM	NATION FOR SEQ ID NO: 71	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 30 nucleotides	
			(B) TYPE: nucleic acid	-
20			(C) STRANDEDNESS: single	
20			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
			SEQUENCE DESCRIPTION: SEQ ID NO: 71	
25		GTCACC	AATG ATTGCCCTAA CTCGAGTATT	30
	(2)	TNFORM	ATION FOR SEC ID NO. 70	

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 26 nucleotides	
			(B) TYPE: nucleic acid	
5			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
10	•	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 72	
		GTCAC	GAACG ACTGCTCCAA CTCAAG	26
	(2)	INFOR	MATION FOR SEQ ID NO: 73	
15		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 28 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
•			(D) TOPOLOGY: linear	
20				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 73	
		TGGAC	ATGAT CGCTGGWGCY CACTGGGG	28
25				
	(2)	TNFORM	MATION FOR SEO ID NO: 74	

		(1)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 28 nucleotides	
			(B) TYPE: nucleic acid	
5			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 74	
10			ATGGT GGYGGGGCY CACTGGGG	28
	(2)	INFORM	MATION FOR SEQ ID NO: 75	
		(i)	SEQUENCE CHARACTERISTICS:	
15			(A) LENGTH: 20 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
20		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 75	
		ATGATG.	AACT GGTCVCCYAC	20
25	(2)	INFORM	ATION FOR SEQ ID NO: 76	
		(i)	SEOUENCE CHARACTERISTICS:	

			(A) LENGTH: 26 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 76	
		ACCTT	VGCCC AGTTSCCCRC CATGGA	26
10	(2)	INFOR	MATION FOR SEQ ID NO: 77	
		(i)	SEQUENCE CHARACTERISTICS:	
		·	(A) LENGTH: 22 nucleotides	
			(B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 77	
		AACCC	ACTCT ATGYCCGGYC AT	22
	(2)	INFORM	MATION FOR SEQ ID NO: 78	
25		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 18 nucleotides	
			(R) TVDF: muslais asid	

- 117 -

			(C) STRANDEDNESS: singl	
			(D) TOPOLOGY: linear	
5		(ii)	MOLECULE TYPE: DNA	
		(xi) GAATC	SEQUENCE DESCRIPTION: SEQ ID NO: 78 GCTGG GGTGACCG	18
10	(2)	INFOR	MATION FOR SEQ ID NO: 79	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 28 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
15			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 75	
20		CCATGA	ATCA CTCCCCTGTG AGGAACTA	28
	(2)	INFORM	ATION FOR SEQ ID NO: 80	
		(i)	SEQUENCE CHARACTERISTICS:	
25			(A) LENGTH: 18 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	

		•	(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
5	(2)	TTGCG	SEQUENCE DESCRIPTION: SEQ ID NO: 80 GGGGC ACGCCCAA MATION FOR SEQ ID NO: 81	18
10		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15		(ii)	MOLECULE TYPE: DNA	
20	(2)	YGAAGO	SEQUENCE DESCRIPTION: SEQ ID NO: 81 CGGGC ACAGTCARRC AAGARAGCAG GGC MATION FOR SEQ ID NO: 82	33
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	-

		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: DNA	
·5		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82	
	-	RTARAGCCCY GWGGAGTTGC GCACTTGGTR GGC	33
:	(2)	INFORMATION FOR SEQ ID NO: 83	
	•	(i) SEQUENCE CHARACTERISTICS:	
10		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
15		(ii) MOLECULE TYPE: DNA	
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83	
		RATACTCGAG TTAGGGCAAT CATTGGTGAC RTG	33
20	(2)	INFORMATION FOR SEQ ID NO: 84	
:		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 33 nucleotides	
		(B) TYPE: nucleic acid	•
25		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: .linear	
		•	

- 120 -

		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 84 GCAGG ATGGYATCRK BCGYCTCGTA CAC	33
3	(2)	TNFOR	MATION FOR SEQ ID NO: 85	
	(2)		SEQUENCE CHARACTERISTICS:	
		(-/	(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
10			(C) STRANDEDNESS: single	
20			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
15		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 85	
		GTTRC	CCTCR CGAACGCAAG GGACRCACCC CGG	33
	(2)	INFOR	MATION FOR SEQ ID NO: 86	
20		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25				
		(44)	MOLECILE, TVDF · DNA	

	•	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 86	
			GGGGTY AYCGCCACCC AACACCTCGA GRC	33
5	(2)	INFO	RMATION FOR SEQ ID NO: 87	
		(i)	SEQUENCE CHARACTERISTICS:	
		•	(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
		•	(C) STRANDEDNESS: single	
10			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 87	
15		CGTYG	YGGGG AGTTTGCCRT CCCTGGTGGC YAC	33
	(2)	INFOR	MATION FOR SEQ ID NO: 88	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEC ID NO: 00	

- 122 -

		CCCG	ACAAGC AGATCGATGT GACGTCGAAG CTG	33
	(2)	INFO	RMATION FOR SEQ ID NO: 89	
5		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
		•	(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
10				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 89	
15		CCCCA	ACGTAG ARGGCCGARC AGAGRGTGGC GCY	33
	(2)	INFOR	MATION FOR SEQ ID NO: 90	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
20			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 90	
		YTGRC	CGACA AGAAAGACAG ACCCGCAYAR GTC	33

	(2)	INFOR	MATION FOR SEQ ID NO: 91	
		(i)	SEQUENCE CHARACTERISTICS:	
5			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
		•	(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 91	
		CGTCC	AGTGG YGCCTGGGAG AGAAGGTGAA CAG	33
15	(2)	INFOR	MATION FOR SEQ ID NO: 92	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
20			(C) STRANDEDNESS: single	
		·	(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 92	
		GCCGGG	SATAG ATRGARCAAT TGCARYCTTG CGT	33

	(2)	INFORM	ATION FOR SEQ ID NO: 93	
•		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
5			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
		•	(D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
10		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 93	
		CATATC	CCAT GCCATGCGGT GACCCGTTAY ATG	33
	(2)	INFORM	ATION FOR SEQ ID NO: 94	
15				
		- -	SEQUENCE CHARACTERISTICS:	
· - · -			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
20			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
			SEQUENCE DESCRIPTION: SEQ ID NO: 94	
25		YACCAAS	GCC GTCGTAGGGG ACCARTTCAT CAT	33
	(2)	INFORM?	ATION FOR SEQ ID NO: 95	

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
5			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 95	
10			CTTGT GGGATCCGGA GYASCTGAGC YAY	33
	(2)	INFOR	MATION FOR SEQ ID NO: 96	
		(i)	SEQUENCE CHARACTERISTICS:	
15			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
-			(D) TOPOLOGY: linear	
20		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 96	
				33
25	(2)	INFORM	ATION FOR SEQ ID NO: 97	
		(i)	SECUENCE CHAPACTERISTICS.	

			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 97	
	_	CCCCA	CCATG GAGAAATACG CTATGCCCGC YAG	33
10	(2)	INFOR	MATION FOR SEQ ID NO: 98	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20	•	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 98	
		TAGYA	GCAGY ACTACYARGA CCTTCGCCCA GTT	33
	(2)	INFORM	MATION FOR SEQ ID NO: 99	
25		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(R) TVDR: nucleic acid	

			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5		(ii)	MOLECULE TYPE: DNA	
			SEQUENCE DESCRIPTION: SEQ ID NO: 99 CGTGR GTKTCYGCGT CRACGCCGGC RAA	33
10	(2)	INFOR	MATION FOR SEQ ID NO: 100	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
15			(D) TOPOLOGY: linear	
-		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 100	
20		GGAAG	YTGGG ATGGTYARRC ARGASAGCAR AGC	33
	(2)	INFORM	MATION FOR SEQ ID NO: 101	
		(i)	SEQUENCE CHARACTERISTICS:	
25			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	

- 128 -

		•	(D) TOPOLO	GY: linear	
		(ii)	MOLECULE TYPE	E: DNA	
5		(xi)	SEQUENCE DESC	CRIPTION: SEQ ID NO: 101	
		GTAYA	YCCG GACRCGTTO	SC GCACTTCRTA AGC	33
	(2)	INFOR	ATION FOR SEQ	ID NO: 102	
		(i)	SEQUENCE CHAR	RACTERISTICS:	
10			(A) LENGTH:	33 nucleotides	
			(B) TYPE: n	nucleic acid	
			(C) STRANDE	DNESS: single	
			(D) TOPOLOG	Y: linear	
15		(ii)	MOLECULE TYPE	: DNA	
		(xi)	SEQUENCE DESC	RIPTION: SEQ ID NO: 102	
		AATRCI	IGMG TTGGAGCAR	T CGTTYGTGAC ATG	33
20	(2)	INFORM	ATION FOR SEQ	ID NO: 103	
		(i)	SEQUENCE CHAR	ACTERISTICS:	
			(A) LENGTH:	33 nucleotides	
			(B) TYPE: no	ucleic acid	
25			(C) STRANDE	DNESS: single	
			(D) TOPOLOGY	Y: linear	

		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 103	
5			IGCATG ATCAYGTCCG YYGCCTCATA CAC	33
J	(2)	INFO	RMATION FOR SEQ ID NO: 104	
			SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
	٠		(B) TYPE: nucleic acid	
10			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
15		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 104	
		RTTGT	William Consequence of the conse	33
	- (2)	- INFOR	MATION FOR SEQ ID NO: 105	· _
20		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
:5			(D) TOPOLOGY: linear	
.5		(44)	WOT TOTT TO THE TOTAL	
		(11)	MOLECULE TYPE: DNA	

			SEQUENCE DESCRIPTION: SEQ ID NO: 105 GRGTS AGCGCYACCC AGCARCGGGA GSW	33
		00100		
	(2)	INFOR	MATION FOR SEQ ID NO: 106	
5				
		(i)	SEQUENCE CHARACTERISTICS:	
	•		(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
		•	(C) STRANDEDNESS: single	
10			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 106	
15		YGTRG	IGGGG AYGCTGKHRT TCCTGGCCGC VAR	33
-	.(2)	INFOR	MATION FOR SEQ ID NO: 107	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
÷			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 107	

- 131 -

		CCCR	ACGAGC AARTCGACRT GRCGTCGTAW TGT	33
	(2)	INFO	RMATION FOR SEQ ID NO: 108	
5		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
•			(C) STRANDEDNESS: single	
		•	(D) TOPOLOGY: linear	
10				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 108	
15		YCCCA	CGTAC ATAGCSGAMS AGARRGYAGC CGY	33
	(2)	INFOR	MATION FOR SEQ ID NO: 109	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
20			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
			SEQUENCE DESCRIPTION: SEQ ID NO: 109	
		CTGGG	AGAYR AGRAAAACAG ATCCGCARAG RTC	33

	(2)	INFO	RMATION FOR SEQ ID NO: 110	
		(i)	SEQUENCE CHARACTERISTICS:	
5			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 110	
		YGTCI	CRTGC CGGCCAGSBG AGAAGGTGAA YAG	3 3
15	(2)	INFOR	MATION FOR SEQ ID NO: 111	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
20			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 111	
		GCCGG	SATAG AKKGAGCART TGCAKTCCTG YAC	33

	(2)	INFOR	WATION FOR SEQ ID NO: 112	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
5			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
		•	(D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 112	
		CATAT	CCCAA GCCATRCGRT GGCCTGAYAC CTG	33
15	(2)	INFOR	MATION FOR SEQ ID NO: 113	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
20			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25			SEQUENCE DESCRIPTION: SEQ ID NO: 113	
23		CACTAR	GGCT GYYGTRGGYG ACCAGTTCAT CAT	33
	(2)	INFORM	ATION FOR SEQ ID NO: 114	

		(1)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
5			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
	•	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 114	
10		GACRG	CTTGT GGGATCCGGA GTAACTGCGA YAC	33
	(2)	INFOR	MATION FOR SEQ ID NO: 115	
		(i)	SEQUENCE CHARACTERISTICS:	
15			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
	•. •		(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
20		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 115	
		GACTCC	CCAG TGRGCCCCCG CCACCATRTC CAT	33
25	(2)	INFORM	ATION FOR SEQ ID NO: 116	
		(i)	SEQUENCE CHARACTERISTICS:	

- 135 - .

			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 116	
		SCCCA	CCATG GAWWAGTAGG CAAGGCCCGC YAG	33
10	(2)	INFOR	MATION FOR SEQ ID NO: 117	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
~		(ii)	MOLECULE TYPE: DNA	
20		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 117	
			SCATC ACAATCAADA CCTTAGCCCA GTT	33
	(2)	INFORM	MATION FOR SEQ ID NO: 118	
25		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	

WO 92/19743 PCT/US92/04036

- 136 -

			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 118	
	•	YGWCR	YGYRG GTRTKCCCGT CAACGCCGGC AAA	33
10	(2)	INFOR	MATION FOR SEQ ID NO: 119	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
15			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 119	
20		TCCTCA	CAGG GGAGTGATTC ATGGTGGAGT GTC	33
	(2)	INFORM	ATION FOR SEQ ID NO: 120	
		(i)	SEQUENCE CHARACTERISTICS:	
25			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	•
			(C) STRANDEDNESS: single	

		<i>:</i>	(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 120 TAGAC GCTTTCTGCG TGAAGACAGT AGT	
	(2)		MATION FOR SEQ ID NO: 121	33
;		(i)	SEQUENCE CHARACTERISTICS:	
10			(A) LENGTH: 33 nucleotides	
•			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
		-	(D) TOPOLOGY: linear	
15		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 121 SAGGC TGCACGRCAC TCATACTAAC GCC	33
20	(2)	INFORM	MATION FOR SEQ ID NO: 122	
			SEQUENCE CHARACTERISTICS:	
	*		(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
25			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
		(xi) CGCAGA	SEQUENCE DESCRIPTION: SEQ ID NO: 122 CCAC TATGGCTCTY CCGGGAGGGG GGG	33
5	(2)	INFORM	ATION FOR SEQ ID NO: 123	
	•	(i)	SEQUENCE CHARACTERISTICS:	
		•	(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
10			(C) STRANDEDNESS: single	
10			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
15		(xi) TCRTC	SEQUENCE DESCRIPTION: SEQ ID NO: 123 CYGGC AATTCCGGTG TACTCACCGG TTC	33
	(2)	INFOR	MATION FOR SEQ ID NO: 124	
20		(i)	SEQUENCE CHARACTERISTICS:	
20		(4)	(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25				
		(11)	MOLECULE TYPE: DNA	

		(XI)	SEQUENCE DESCRIPTION: SEQ ID NO: 124	
		GCATI	IGAGCG GGTTDATCCA AGAAAGGACC CGG	33
	(2)	INFOR	RMATION FOR SEQ ID NO: 125	
5				
		(1)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
10			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 125	
15		AGCAG	TCTYG CGGGGGCACG CCCAARTCTC CAG	33
	. (2)	INFOR	MATION FOR SEQ ID NO: 126	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 126	

		ACAAG	GCCTT TCGCGACCCA ACACTACTCG GCT	33
	(2)	INFOR	MATION FOR SEQ ID NO: 127	
5		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
10				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 127	
		GGGGC	ACTCG CAAGCACCCT ATCAGGCAGT ACC	33
15				
	(2)	INFOR	MATION FOR SEQ ID NO: 128	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
20			(B) TYPE: nucleic acid	
-			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	

		(ii) MOLECULE TYPE: DNA	
5		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128 YGTGCTCATG RTGCACGGTC TACGAGACCT CCC	33
	(2)	INFORMATION FOR SEQ ID NO: 129	
10		 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15		(ii) MOLECULE TYPE: DNA	
	÷	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129 GTTACGTTTG KTTYTTYTTT GRGGTTTRGG AWT	33
20	(2)	INFORMATION FOR SEQ ID NO: 130	
25		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	

- 142 -

		(ii)	MOLECULE TYPE: DNA	
			SEQUENCE DESCRIPTION: SEQ ID NO: 130 AACTTR ACGTCCTGTG GGCGRCGGTT GGT	33
5	(2)		RMATION FOR SEQ ID NO: 131	
•		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
10			(B) TYPE: nucleic acid	
	•		(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
15		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 131	
	•	CARGT	AAACT CCACCRACGA TCTGRCCRCC RCC	33
20	(2)	INFOR	MATION FOR SEQ ID NO: 132	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
25			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	

		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 132	
		RCGCA	ACACCC AAYCTRGGGC CCCTGCGCGG CAA	33
5	(2)	INFOR	MATION FOR SEQ ID NO: 133	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
10			(C) STRANDEDNESS: single	
		÷	(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 133	
15		AGGTT	GCGAC CGCTCGGAAG TCTTYCTRGT CGC	33
-	(2)	INFOR	MATION FOR SEQ ID NO: 134	
		(i)	SEQUENCE CHARACTERISTICS:	
20			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
25		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 134	

- 144 - .

		RCGHI	RCCTTG GGGATAGGCT GACGTCWACC TCG	33
	(2)	INFO	RMATION FOR SEQ ID NO: 135	
5		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
	•		(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
		•	(D) TOPOLOGY: linear	
10			^	
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 135	
			CCTTG GGGATAGGTT GTCGCCWTCC ACG	33
15	(2)	INFOR	MATION FOR SEQ ID NO: 136	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
20 ·			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
25		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 136	
		YCCRG	GCTGR GCCCAGRYCC TRCCCTCGGR YYG	33

	(2)	INFO	RMATION FOR SEQ ID NO: 137	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
5			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
		·•	(D) TOPOLOGY: linear	
10		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 137	
			CCTCR TTRCCRTAGA GGGGCCADGG RTA	33
15	(2)	INFOR	MATION FOR SEQ ID NO: 138	
		(i)	SEQUENCE CHARACTERISTICS:	
	-		(A) LENGTH: 33 nucleotides	
•			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
20			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
0.5			SEQUENCE DESCRIPTION: SEQ ID NO: 138	
25		GCCRC	GGGGW GACAGGAGCC ATCCYGCCCA CCC	33
	(2)	INFORM	ATION FOR SEO ID NO: 139	

		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
5			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
10	•	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 139	
		CCGGG	GGTCY GTGGGGCCCC AYCTAGGCCG RGA	33
	(2)	INFOR	MATION FOR SEQ ID NO: 140	
		(i)	SEQUENCE CHARACTERISTICS:	
15			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
20		(ii)	MOLECULE TYPE: DNA	
-		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 140	
		ATCGAT	GACC TTACCCAART TRCGCGACCT RCG	33
25	(2)	INFORM	MATION FOR SEQ ID NO: 141	
		(i)	SEQUENCE CHARACTERISTICS:	

- 147 -

			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
5				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 141	
			TGAGR TCGGCGAAGC CGCAYGTRAG GGT	33
10				
	(2)	INFOR	MATION FOR SEQ ID NO: 142	
		(i)	SEQUENCE CHARACTERISTICS:	
-	٠		(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
15			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 142	
			CWARR GGGGCGCCGA CGAGCGGWAT RTA	33
	(2)	INFORM	NATION FOR SEQ ID NO: 143	
25		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			-	

			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
5			SEQUENCE DESCRIPTION: SEQ ID NO: 143	
			GGACR CCRTGYGCCA RGGCCCTGGC AGC	33
	(2)	INFOR	MATION FOR SEQ ID NO: 144	
10		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	
15				
		(ii)	MOLECULE TYPE: DNA	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 144	
		RTTCCC	CTGTT GCATAGTTCA CGCCGTCYTC CAG	33
20				
	(2)	INFORM	MATION FOR SEQ ID NO: 145	
		(i)	SEQUENCE CHARACTERISTICS:	
			(A) LENGTH: 33 nucleotides	
25			(B) TYPE: nucleic acid	
			(C) STRANDEDNESS: single	
			(D) TOPOLOGY: linear	

		(ii)	MOLECULE TYPE: DNA	
5		(xi) CARR	SEQUENCE DESCRIPTION: SEQ ID NO: 145 AGGAAG AKAGAGAAAG AGCAACCRGG MAR	33
	(2)	INFO	RMATION FOR SEQ ID NO: 146	
10			SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15		(ii)	MOLECULE TYPE: DNA	
		(xi) AGGCA	SEQUENCE DESCRIPTION: SEQ ID NO: 146 TAGGA CCCGTGTCTT	20
20	(2)	INFOR	MATION FOR SEQ ID NO: 147	
25		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
		(xi) CTTCTT	SEQUENCE DESCRIPTION: SEQ ID NO: 147 TGGA GAAAGTGGTG	20

WO 92/19743 PCT/US92/04036

- 150 -

CLAIMS

1. As a composition of matter, a non-naturally occurring nucleic acid having a non-HCV-1 nucleotide sequence of eight or more nucleotides corresponding to a nucleotide sequence within the hepatitis C virus genome.

- 2. The composition of claim 1 wherein said nucleotide sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome is selected from the regions consisting of the NS5 region, envelope 1 region, 5'UT region, and the core region.
- 15 3. The composition of claim 1 wherein said nucleotide sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome corresponds to a sequence in the NS5 region.
- 20 4. The composition of claim 3 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence within the hepatitis C virus genome is selected from a sequence within sequences numbered 2-22.

5. The composition of claim 1 wherein said nucleotide sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome corresponds to a sequence in the envelope 1 region.

5

6. The composition of claim 5 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence within the hepatitis C virus genome corresponds to a sequence within sequence numbers 24-32.

10

7. The composition of claim 1 wherein at least one sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome corresponds to a sequence in the 5'UT region.

15

8. The composition of claim 7 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence within the hepatitis C virus genome corresponds to a sequence within sequences numbered 34-51.

20

9. The composition of claim 1 wherein said nucleotide sequence corresponding to a non-HCV-1 nucleotide sequence within the hepatitis C virus genome corresponds to a sequence in the core region.

10. The composition of claim 9 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence within the hepatitis C virus genome corresponds to a within sequences numbered 53-66.

5

11. The composition of claim 1 wherein said non-naturally occurring nucleic acid has a nucleotide sequence corresponding to one or more genotypes of hepatitis C virus.

10

15

ţ

- 12. The composition of claim 11 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a first genotype which first genotype is defined substantially by sequences numbered 1-6 in the NS5 region, 23-25 in the envelope 1 region, 33-38 in the 5'UT region, and 52-57 in the core region.
- 13. The composition of claim 11 wherein said
 20 non-naturally occurring nucleic acid has a sequence
 corresponding to a sequence of a second genotype which
 second genotype is defined substantially by sequences
 numbered 7-12 in the NS5 region, 26-28 in the envelope
 1 region, 39-45 in the 5'UT region, and 58-64 in the
 25 core region.

- 14. The composition of claim 11 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a third genotype which third genotype is defined substantially by sequences numbered 13-17 in the NS5 region, 32 in the envelope 1 region, 46-47 in the 5'UT region and 65-66 in the core region.
- 15. The composition of claim 11 wherein said

 10 non-naturally occurring nucleic acid has a sequence
 corresponding to a sequence of a fourth genotype which
 fourth genotype is defined substantially by sequences
 numbered 20-22 in the NS5 region, 29-31 in the envelope
 1 region and 48-49 in the 5'UT region.

 15
- 16. The composition of claim 11 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fifth genotype which fifth genotype is defined substantially by sequences numbered 18-19 in the NS5 region and 50-51 in the 5'UT region.
- 17. The composition of claim'l wherein said non-naturally occurring nucleic acid is capable of priming a reaction for the synthesis of nucleic acid to form a nucleic acid having a nucleotide sequence corresponding to hepatitis C virus.

- 18. The composition of claim 1 wherein said non-naturally occurring nucleic acid has label means for detecting a hybridization product.
- 5 19. The composition of claim 1 wherein said non-naturally occurring nucleic acid has support means for separating a hybridization product from solution.
- 20. The composition of claim 1 wherein said

 non-naturally occurring nucleic acid prevents the
 transcription or translation of viral nucleic acid.
- 21. A method of forming a hybridization product with a hepatitis C virus nucleic acid comprising the following steps:
 - a. placing a non-naturally occurring nucleic acid having a nucleotide sequence of eight or more nucleotides corresponding to a non-HCV-1 sequence in the hepatitis C viral genome into conditions in which hybridization conditions can be imposed said non-naturally occurring nucleic acid capable of forming a hybridization product with said hepatitis C virus nucleic acid under hybridization conditions; and

- imposing hybridization conditions to form a hybridization product in the presence of hepatitis C virus nucleic acid.
- 5 22. The method of claim 21 wherein said nucleotide sequence corresponding to a non-HCV-1 sequence in the hepatitis C virus genome corresponds to a sequence within at least one of the regions consisting essentially of NS5 region, envelope 1 region, 5'UT region, and the core region.
 - 23. The method of claim 21 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence corresponds to a sequence within the NS5 region.
- 24. The method of claim 23 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence corresponds to a sequence within sequences numbered 2-22.
 - 25. The method of claim 21 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence corresponds to a sequence within the envelope 1 region.

26. The method of claim 25 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence is selected from a sequence within sequences numbered 24-32.

- 27. The method of claim 21 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence corresponding to a sequence within the 5'UT region.
- 10 28. The method of claim 27 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence selected from a sequence within sequences numbered 34-51.
- 29. The method of claim 21 wherein said nucleotide 15 sequence corresponds to a non-HCV-1 sequence corresponding to a sequence within the core region.
- 30. The method of claim 29 wherein said nucleotide sequence corresponds to a non-HCV-1 sequence selected20 from a sequence within sequences numbered 53-66.
- 31. The method of claim 21 wherein said nucleotide sequence corresponds to a non-HCV-1 nucleotide sequence corresponding to one or more genotypes of hepatitis C virus.

- 32. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a first genotype which first genotype is defined substantially by sequences numbered 1-6 in the NS5 region, 23-25 in the envelope 1 region, 33-38 in the 5'UT region, and 52-57 in the core region.
- 33. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a second genotype which second genotype is defined substantially by sequences numbered 7-12 in the NS5 region, 26-28 in the envelope 1 region, 39-45 in the 5'UT region, and 58-64 in the core region.
- 15 34. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a third genotype which third genotype is defined substantially by sequences numbered 13-17 in the NS5 region, 32 in the envelope 1 region, 46-47 in the 5'UT region and 65-66 in the core region.
- 35. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fourth genotype which fourth genotype is defined substantially by sequences numbered 20-22 in the NS5 region, 29-31 in the envelope 1 region and 48-49 in the 5'UT region.

- 36. The method of claim 21 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fifth genotype which fifth genotype is defined substantially by sequences numbered 18-19 in the NS5 region and 50-51 in the 5'UT region.
- 37. The method of claim 21 wherein said hybridization product is capable of priming a reaction for the synthesis of nucleic acid.

- 38. The method of claim 21 wherein said non-naturally occurring nucleic acid has label means for detecting a hybridization product.
- 15 39. The method of claim 21 wherein said non-naturally occurring nucleic acid has support means for separating the hybridization product from solution.
- 40. The method of claim 21 wherein said non-naturally occurring nucleic acid prevents the transcription or translation of viral nucleic acid.
- 41. As a composition of matter, a non-naturally occurring polypeptide corresponding to a non-HCV-1
 25 nucleotide sequence of nine or more nucleotides which sequence of nine or more nucleotides corresponds to a sequence within hepatitis C virus genomic sequences.

- 42. The composition of claim 41 wherein said non-HCV-1 sequence is selected from one of the regions consisting of NS5 region, envelope 1 region, and the core region.
- 5 43. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence corresponds to a sequence in the NS5 region.
- 44. The composition of claim 43 wherein said non-HCV-1 sequence is selected from a sequence within sequences numbered 2-22.
 - 45. The composition of claim 41 wherein said non-HCV-1 sequence corresponds to a sequence in the envelope 1 region.
 - 46. The composition of claim 45 wherein said non-HCV-1 sequence is selected from a sequence within sequences numbered 24-32.

- 47. The composition of claim 41 wherein said non-HCV-1 sequence corresponds to a sequence in the core region.
- 48. The composition of claim 47 wherein said non-HCV-1 sequence is selected from a sequence within sequences numbered 52-66.

49. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a nucleotide sequence corresponding to one or more genotypes of hepatitis C virus.

5

10

ſ

- 50. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a first genotype which first genotype is defined substantially by sequences numbered 1-6 in the NS5 region, 23-25 in the envelope 1 region, and 52-57 in the core region.
- 51. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a second genotype which second genotype is defined substantially by sequences numbered 7-12 in the NS5 region, 26-28 in the envelope 1 region, and 58-64 in the core region.
- 20 52. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a third genotype which third genotype is defined substantially by sequences numbered 13-17 in the NS5 region, 32 in the envelope 1 region, and 65-66 in the core region.

- 53. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a fourth genotype which fourth genotype is defined substantially by sequences numbered 20-22 in the NS5 region, 29-31 in the envelope 1 region and 48-49 in the 5'UT region.
- 54. The composition of claim 41 wherein said non-HCV-1 nucleotide sequence has a sequence corresponding to a sequence of a fifth genotype which fifth genotype is defined substantially by sequences numbered 18-19 in the NS5 region and 50-51 in the 5'UT region.
- 55. The composition of claim 41 wherein said
 15 polypeptide is capable of generating an immune reaction in a host.
 - 56. An antibody capable of selectively binding to the composition of claim 41.
 - 57. A method of detecting one or more genotypes of hepatitis C virus comprising the following steps:
- a) placing a non-naturally occurring nucleic acid having a nucleotide sequence of eight or more nucleotides corresponding to one or more genotypes of hepatitis C virus under conditions where hybridization conditions can be imposed,

15

- b) imposing hybridization conditions to form a hybridization product in the presence of hepatitis
 C virus nucleic acid; and
- c) monitoring the non-naturally occurring nucleic acid for the formation of a hybridization product, which hybridization product is indicative of the presence of the genotype of hepatitis C virus.
- 58. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a first genotype which first genotype is defined substantially by sequences numbered 1-6 in the NS5 region, 23-25 in the envelope 1 region, 33-38 in the 5'UT region, and 52-57 in the core region.

59. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a second genotype which second genotype is defined substantially by sequences numbered 7-12 in the NS5 region, 26-28 in the envelope 1 region, 39-45 in the 5'UT region, and 58-64 in the core region.

- 60. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a third genotype which third genotype is defined substantially by sequences numbered 13-17 in the NS5 region, 32 in the envelope 1 region, 46-47 in the 5'UT region and 65-66 in the core region.
- 61. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fourth genotype which fourth genotype is defined substantially by sequences numbered 20-22 in the NS5 region, 29-31 in the envelope 1 region and 48-49 in the 5'UT region.
- 15 62. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence of a fifth genotype which fifth genotype is defined substantially by sequences numbered 18-19 in the NS5 region.

63. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence numbered 67-145.

- 64. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence numbered 69, 71, 73 and 81-99 to identify Group I genotypes in the core and region of the HCV genome.
- 65. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to a sequence numbered 70, 72, 70 and 100-118 to identify
 10 Group II genotypes in the core and envelope regions of the HCV genome.
- 66. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence corresponding to
 15 a sequence numbered 77 to identify Group III genotypes in the 5' UT region of the HCV genome.
- 67. The method of claim 57 wherein said non-naturally occurring nucleic acid has a sequence numbered 79 to identify Group IV genotypes in the 5' UT region of the HCV genome.

SUBSTITUTE SHEET

2/2-1

Fig. 2a

SEQUENCE	QUENCE	1) 1) 4) ()		#	11 11 11 11 11 11 11 11		11 11 11 11	# # # # # # # # # # #		
NUMBER	ບ									
		81 61 61 — 11:	andunantananananan CTCCACAGTC ACTGAGAGC	# 5	ACATOGGAAC				11 11 11 11 11 11 11 11 11 11 11 11 11	
2		-	CICCACAGIC AC	ACTGAGAGCG	ACATCCGTAC	GGAGGAGGCA	ATTTACCAAT	GITGEGACCI	CGACCCCAA	
က	•	-	CICCACAGIC AC	ACTGAGAGCG	ACATCCGTAC	GGAGGAGGCA	ATCTACCAAT	GITGIGACCI	GGACCCCAA	
₹ :		-	CTCTACAGTC AC	ACTGAGAACG	ACATCCGTAC	GGAGGAGGCA	ATTTACCAAT	GETGEGACOT	GGACCCCAA	
ıcı •		-	CTCCACAGIC AC	ACTGAGAGCG	ATATCCGTAC	GGAGGAGGCA	ATCTACCAGT	GTTGTGACCT	GGACCCCAA	
11 11 11 11 11 11 11	# # # # # # # # # # # # # # # # # # #	יי ה		ACTGAGAGCG	~	GGAGGAGGCA	ATCTACCAAT	GITGIGACCI	GGACCCCGAA	
	GII	1	CICCACAGIC AC	ACTGAGAATG	aracemeer: ACACCCGTGT	TGAGGAGTCA			11 11 11 11 11 11 11 11 11 11 11 11 11	
&		- 1	CICAACGGIC AC	ACTGAGAATG	ACATCCGTGT	TGAGGAGTCA	ATTITACCAAL	GITGICACIT	GGCCCCGAA	
6			CTCAACGGTC AC	ACCGAGAATG	ACATCCGTGT	TGAGGAGTCA	ATTTACCACA	GITGLGACII	GGCCCCGAG	
10		-	CTCAACGGTC AC	ACTGAGAGTG	ACATCCGTGT	CGAGGAGTCG	ATTTACCAAT	GTTGTGACTI	GCCCCCGAG	
11		-	CTCCACAGIC AC	ACTGAGAGTG	ACATCCGTGT	TGAGGAGTCA	ATTACCAAT	GTTGTGACTT	GGCCCCGAA	
12	1	-	CTCAACAGIC	ACTGAGAGTG	ACATCCGTGT	TGAGGAGTCA	ATCTACCAAT	GITGIGACIT	GGCCCCGAA	
1	14 50 (15 (10 (10 (11 (11 (11 (11 (11 (11	11 11 () () () ()		81 81 81 81 81 81 81 81 81 81 81 81 81 8						
13	GIII	-	CTCAACCGTC AC	ACTGAGAGAG	ACATCAGAAC	ACATCAGAAC TGAGGAGTCC	ATATACCGAG	出ししいようなようし		
14			CTCTACAGIC AC	ACGTAAAAGG	ACATCACATC	CTAGGAGTCC		むしてしましてい	SCCTORGONG SCCTORGONG	
15			CTCTACAGIC AC	ACAGAGAGGG	ACATCAGAAC	CGAGGAGTCC	ATCTATCTGT	モンベンボンジボンン	GCCCGAGGAG	
16		-	CTCTACAGIC AC	ACGGAGAGGG	ACATCAGAAC	CGAGGAGTCC	ATCTATCTGT	TOWNTON	GCTTCACCAC	
17	1 1 1 1 1	-	CTCAACCGTC	ACGGAGAGGG	ACATAAGAAC	AGAAGAATCC	ATATATCAGG	GTIGITCCCT	GCCTCAGGAG	
18	ΔS		CTCGACCGTT	ammammammamma Accgaacatg	anemenenes ACATAATGAC					
19		႕	CICGACCGII AC	CGAACATG	ACCGAACATG ACATAATGAC	TGAAGAGICC ATTIACCAAT		CATTGTACTT	GCAGCCTGAG	
11 11 11 11 11 11 11	81 81 81 81 81 81 81	11 11 11 11	4	- 61 41 41 11 11 11 11 11	## ## ## ## ## ## ## ## ## ## ## ## ##	11 11 11 11 11 11 11				
20	GIV	~	CICIACIGIC AC	ACTGAACAGG	ACATCAGGGT	GGAAGAGGAG	,			
21		-	CICGACIGIC AC	ACTGAACAGG	ACATCAGGGT	GGAAGAGGAG		エンンとくようしつう	TGAACCGGAG	
22		н	CICAACIGIC AC	ACTGAACAGG	ACATCAGGGT	GGAAGAGGAG		GCTGTAACCT	TGAACCGGAG	
11 th	81 81 81 81 81 81 81	H H H	经目标单位证明单位自由设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计							

3/2/

Fig. 2t

•
_
$\overline{}$
2
₩,
•
•
~
•
_
1
•
_
2
=
ð
Ħ
כש
~
REG
~
-
_
NS5
=:
ß
==
~
-

SEQUENCE				fi fi fi fi fi
ID NUMBER	GENOTYPE	8 8 8 11 11 11		•
1			GCCCGCGTGG CCATCAAGTC	
7	GI	7.1	CCGCATGG CCATCAAGTC CCTCACTGAG AGGCTTTATG TCGGGGGCCC TCTTACCAAT	366
ო	GI	7.1	CCGCGIGG CCAICAAGIC CCICACIGAG AGGCITIACG INGGGGCCC ICTIACCAAI	366
4	GI	17	CCGCGIGG CCATCAAGIC CCICACIGAG AGGCITIAIG IIGGGGGCCC CCIIACCAAI	366
ស	GI	71	CCGCGTGG CCATCAAGTC CCTCACCGAG AGGCTTTATG TCGGGGGCCC TCTTACCAAT	366
, •	GI	7.1	GCCCGTGTGG CCATCAAGTC CCTCACTGAG AGGCTTTATG TTGGGGGCCC TCTTACCAAT TCAAGGGGGG	366
11 11 11 11 11 11 11	H H H H H H H	11 11 11 11		11 11 11 11 11 11 11 11 11 11 11 11 11
7	GII	7.1	GCCAGACAGG CCATAAGGTC GCTCACAGAG CGGCTCTATG TCGGGGGTCC TATGACTAAC TCCAAAGGGC	360
80		71	GCCAGACAAG CCATAAGGIC GCICACAGAG CGGCIITIACA ICGGGGGCCC CCIGACIAAI ICAAAAGGGC	360
O		71	TAGACAGG CCATAAGGTC GCTCACAGAG CGGCTTTATA TCGGGGGCCC CCTGACCAAT	380
10		71	CAGGCAGG, CCATAAGGTC GCTCACCGAG CGACTTTATA TCGGGGGCCC CCTGACTAAT	200
11		71	CAGACAGG CTATAAGGTC GCTCACAGAG CGGCTGTACA TCGGGGGTCC CCTGACTAAT	200
12		71	GCCAGACAGG CTATAAGGTC GCTCACAGAG CGGCTTTACA TCGGGGGTCC CCTGACTAAT TCAAAAGGGC	360
## ## ## ## ## ## ## ## ## ## ## ##	11 11 11 11 11 11	11 11 11 11 11 11		11 13 14 14 14 14
13	GIIL	71	GCTCACATTG CCATACACTC GCTGACTGAG AGGCTCTACG TGGGAGGGCC CATGTTCAAC AGCAAGGGCC	ည္သင္မ
14		71	GCTCGAACTG CTATACACTC ACTGACTGAG AGACTATACG TAGGGGGGCC CATGACAAAC AGCAAGGGCC	ည္သ
15		11	GCCCGAACTG CTATACACTC ACTGACTGAG AGACTGTACG TAGGGGGGCC CATGACAAAC AGCAAGGGGC	ວອູດ
16		11	GCTCGAACTG CCATACACTC ACTGACTGAG AGGCTGTACG TAGGGGGGCC CATGACAAAC AGCAAAGGGC	၁၅၅
		11	CTAICCACIC GCICACIGAG AGACICIACG IAGGAGGGCC CAIGACAAAC	GAC
## ## ## ## ## ## ## ## ## ## ## ## ##	:======= @a	71	nasaasaasaasaasaasaasaasaasaasaasaasaasa	
19		7.1		၁၅၅
11 11 11 11 11	11 13 11 11 11 11 11 11	H H H H		11
20	GIV	71	GCCAGGAAAG TGATCTCCTC CCTCACGGAG CGCCTTTACT GCGGGGGCCC TATGTTCAAC AGCAAGGGGG	999
21		71	GCCAGGAAAG IGAICICCIC CCICACGGAG CGCCITIACI GCGGGGGCCC IAIGIICAAI AGCAAGGGGG	999
22		7.1	GCCAGGAAAG TGATCTCCTC CCTCACGGAA CGCTTTACT GCGGGGGCCC TATGTTCAAC AGCAAGGGGG	999
11 11 11 11 11		11 11 11 11 11		11 11 11 11 11

4/2/

NS5 REGION - (3/5)

1

SEQUENCE ID NUMBER GENOTYPE

. 	H 1)† 1 	11 11 11	21 15 17 11 11 41 11 11
CCCTCACTTG CCCTCACTTG CCCTCACTTG CCCTCACTTG CCCTCACTTG	CCCTCACATG CCCTCACATG CCCTCACATG CCCTCACATG CCCTCACATG CCCTCACATG	CCATCACATG CACTCACGTG CGCTCACGTG CACTCACGTG CACTCACGTG CACTCACGTG	CCATGACGTG	CAATCACTTG CAATCACTTG CAATCACTTG CAATCACTTG
		CCAT	CCAT	CAAT
TGTGGTAACA TGTGGTAACA TGTGGTAATA TGTGGTAATA TGTGGTAACA TGTGGTAACA	TGCGGTAATA TGCGGTAATA TGCGGTAATA TGCGGTAATA TGCGGTAATA	ATGGGGAACA ATGGGCAACA ATGGGCAACA ATGGGTAACA	ATGGGCAACA	TTCGGCAACA TTCGGCAACA TTCGGCAACA
#1			11 1	n 11
GACAACTAGC GACAACTAGC GACAACTAGC GACAACTAGC GACAACTAGC	GACGACTAGC GACGACTAGC GACGACCAGC GACGACTAGC GACGACTAGC GACGACTAGC GACGACTAGC	CACCACTAGC CACCACCAGC CACCACCAGC CACCACCAGC	CACCACCAGT	
GCGCCTACT GCGCCTACT GCGCCTACT GCGCCTACT GCGCCTACT	GCGCGTGCT GCGCGTGCT GCGCGTGCT GCGCGTGCT GCGCCGTGCT GCGCCGTGCT	GCGGGGTGCT GCGCAGTGCT GCGGAGTGCT GCGGAGTGCT	GCGGCGTCTT	GTGGAGTCCT GTGGAGTTCT GTGGAGTTCT
TGCCGCGCGA TGCCGCGCGA TGCCGGGCGA TGCCGCGCGA TGCCGCGCAA	TGCCGCGCGA TGCCGCGCCA TGCCGCGCCA TGCCGCGCGA TGCCGCGCGA	TGCCGCGCA TGCCGCGCA TGCCGCGCGA TGCCGCGCGA	TGCCGCGCCA	TGCCGTGCTA TGCCGTGCTA TGCCGTGCCA
CTATCGCAGG CTACCGCAGG CTACCGCAGG CTACCGCAGG CTACCGCAGG	CTATCGCCGG TTATCGCCGG TTATCGCCGG CTATCGCCGG CTATCGCCGG	GTACAGGCGT TGCCGCGCGA GTACAGGCGT TGCCGCGCGA GTACAGGCGT TGCCGCGCGA GTACAGGCGT TGCCGCGCGA	TTATCGTAGA TTACCGTAGA	TTATCGCCGT TTATCGCCGT
A A G G A A G G A A G G A A G G A A A G G A A A G G A A A G A A A G A	AGAACTGCGG AGAACTGCGG AGAACTGCGG AGAACTGCGG AGAACTGCGG AGAACTGCGG	AGACCTGCGG AATCCTGCGG AATCCTGCGG AATCCTGCGG	AA B	CCCAGIGIGG CCCAGIGIGG CCCAGIGIGG
1 1 4 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	141 141 141 141 141 141	141 141 141 141 141 141 1	141 141 ====	141 141 141
	G11 G11 G11	GIFI	GV	GIV
	7 8 9 10 11 12	13 14 15 16 17	18 19 119 11	20 21 22

Fig. 2d

NS5 REGION - (4/5)

# # # # # # # # # # # # # # # # # # #	11 11 11		ii H H	ij t II t	
======================================	GTGTGGCGAC GTGTGGCGAC GTGTGGCGAC =================================	GTGCGGAGAC GTGTGGGGAC GAACGGGGAC GTGCGGTGAC	ATGCGCCAC GTGCGCCAC GTGCGCCAC GTGCGGCGAC GTGCGGCGAC	GTGTGGTGAT	CTGCGGAGAT CTGCGGAGAT CTGCGGAGAT
	***		# # # # # # # # # # # # # # # # # # #		555
CCATGCTCGT CCATGCTCGT CCATGCTCGT	CCATGCTCGT CCATGCTCGT CCATGCTCGT		CATGITGE CCATGITGE CCATGITGE CCATGITGE TCATGITGE	CGCTCCTGGT	ACTITCITGT CIGCGGAGAT ACTITCITCGT CIGCGGAGAT ACTITCITGT CIGCGGAGAT
CAGGACTGCA CAGGACTGCA CAGGACTGCA	CAGGACTGCA CGGGACTGCA CAGGÀCTGCA FFFFFFFFF	CAGGACTGCA CAGGACTGCA CAGGACTGCA CAGGACTGCA	GTTGCACCT GTTGCTCCCA GTTGCTCCCA GTTGCCCCCA GTGGCCCCCA	CAGGACTGCA CGCTCCTGGT GTGTGGTGA CAGGACTGCA CGCTCCTGGT GTGTGGTGT	CGGAACCCGGCGGACCCGGCGGAACCCGG
CGCAGGGCTC CGCAGGCCTC CGCAGGGCTC CGCAGGCCTC CGCCCCCCCCCAGGCCCCCCCCCC	a		TGCAGGGATA CGCGGGGATT CGCGGGCATT CGCGGGCATT	CGCAAAGCTC CAGGACTGCA CGCTCCTGGT TGCAAAGCTC CAGGACTGCA CGCTCCTGGT	CGCAGGCCTC CGGAACCCGG CGCAGGGCTC CGGACCCCGG CGCAGGCCTC CGGAACCCGG
CCTGTCGAGC CGCAGGCTC CAGGACTGCA CCATGCTCG CCTGTCGAGC CGCAGGGCTC CAGGACTGCA CCATGCTCG CCTGTCGAGC CGCAGGGCTC CAGGACTGCA CCATGCTCG	91		TTGCAAGGC GTGTAACGC GTGTAACGC ATGTAACGC GTGCAAAGC		- 1
	SCCCAAGCAG SCCCGGGCAG SCCCGGGCAG SCCCACAGCGG	GCCACTGCGG GCCTCTGCAG GCCTCTGCAG GCCTCTGCGG	ATGTAAAA GCCCTAGCGG CTTGCAAGGC ACGTGAAA GCCAGGGCGG CGTGTAACGC ACGTGAAA GCCAGAGCGG CGTGTAACGC ACGTGAAA GCTAAAGCGG CATGTAACGC ACATCAAA GCCCTTGCAG CGTGCAAAGC	ACATTAAG GCTTTAGCCT ACATCAAG GCTTCAGCCG	ACATCAAG GCTAGAGCGG CTTCGAAGGC ACATCAAG GCTAGAGCGG CTGCGAAGGC ACATCAAA GCTAGAGCGG CTGCCGAAGC
CTACATCAAG CTACATCAAG CTACATCAAG CTACATCAAG CTACATCAAG CTACATCAAG CTACATCAAG CTACATTAAG C	TTACATCAAG TTACATCAAG TTACATCAAG CTACCTGAAG	TTACTTGAAG TTACTTGAAG TTACTTGAAG TTACTTGAAG TTACTTGAAG TTACTTGAAG	CTATGTAAAA CTACGTAAAA CTACGTGAAA CTACGTGAAA CTACATCAAA	CTACATTAAG CTACATCAAG	TTACATCAAG TTACATCAAG TTACATCAAA
211 211 211 211 211	11	211 211, 211, 211,	211 211 211 211 211	211 211	211 211 211
GENOTYPE	en en en en en	11 11 11 11 11 11 11 11	H 11	GV ====================================	GIV
SEQUENCE ID NUMBER SECTION OF THE SE	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 9 10 11 12	13 14 15 16 17	18	20 21 22 :=_=================================

6/21

Fig. 2e

NSS REGION - (5/5)

GENOTYPE

ID NUMBER

SEQUENCE

11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11 11 11	11 12 13 13 14 11						1
~ 1		~	GACTTAGTCG	TTATCTGTGA	AAGCGCGGGG	 199	: U	CCTGAGAGCC
8		281	GACTTAGTCG	TTATCTGTGA		GTCCAGGAGG	ACGCGGCGAG	CCTGAGAGCC
m		281	GACTTGGTCG	TTATCTGTGA	GAGTGCGGGG	GTCCAGGAGG	ACGCGGCGAG	CCTGAGAGCC
ぜ		281	GACTTAGTCG	TTATCTGTGA	GAGTGCGGGA	GTCCAGGAGG	ACCCCCCCAA	CTTGAGAGCC
Ŋ		281	GACTTAGTCG	TTATCTGTGA	AAGTCAGGGA	GTCCAGGAGG	ATGCAGCGAA	CCTGAGAGCC
v		281	GACCTAGTCG	-	TTATCTGCGA AAGTGCGGGG	GTCCAGGAGG	ACGCGGCGAG	CCTGAGAGCC
11 11 11 11 11 11 11	4	11 11 11 11 11 11 11 11 11 11 11 11 11 1						
_	110	707	SACCITGICS		LIAICIGIGA AAGCGCGGGG AACCAAGAGG	AACCAAGAGG	ACCCCCCAAG	CCTACGAGCC
ထ		281	GACCITGICG	-	TTATCTGTGA AAGCGCGGGA	ACCCAGGAGG	ATGCGGCGAG	CCTACGAGTC
6		281	GACCTTGTCG	TTATCTGTGA	AAGCGCGGGA	ACCCAGGAGG	ACGCGGCGAA	CCIACGAGIC
10		281	GACCTTGTCG	TTATCIGCGA	GAGCGCGGGA	ACCCAAGAGG	ACGCGGCGAG	CCTACGAGTC
11		281	GACCTTGTCG	TTATCTGTGA	GAGCGCGGGA	ACCCAAGAGG	ACGCGGCGAG	CCTACGAGTC
12		281	GACCTTGTCG	TTATCTGTGA	GAGCGCGGG	ACCCAAGAGG	ACCCCCCCAC	CCTACGAGTC
11 11 11 11 11 11 11 11	11 11 11 11 11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11					11 11 11 11 11 11 11 11	11
13	GIFI	281	GACTTAGTTG	-	TCATCTCAGA AAGCCAGGGG	ACTGAGGAGG	ACGAGCGGAA	CCTGAGAGCT
14		281	GACCTGGTCG		TCATCTCAGA GAGTCAAGGG	GCTGAGGAGG	ACGAGCAGAA	CCTGAGAGTC
15		281	GACCTGGTTG	-	TCATCTCAGA GAGTCAGGGG	GTCGAGGAAG	ATGAGCGGAA	CCTGAGAGTC
16		281	GACCTAGTCG		TCATCTCAGA GAGTCAAGGG	GTCGAGGAGG	ATGAGCGAAA	CCTGAGAGCT
11		~	GACCTGGTCG	TCATCTCGGA	TCATCTCGGA GAGCGAAGGT	AACGAGGAGG	ACGAGCGAAA	CCTGAGAGCT
	e e e e e e e e e e e e e e e e e e e		GATCTTGTGG	CCATTIGCGA	enressentennennannennennennennennennennennennenne	ACGCACGAGG	ATAAAGCGAG	CCTGAGAGCC
19		281	ACCTTGGTGG	CCATTTGCGA	CCATITIGCGA GAGCCAAGGG ACGCACGAGG AIGAAGCGIG	ACGCACGAGG	ATGAAGCGTG	
20	eeeeeeeeeeeeeeeeeeeee	281	GATCTGGTCG	TGGTGGCTGA	nneenneensensensensensensensensensensens	GTCGACGAGG	ATAGAGCAGC	CCTGAGAGCC
21		281	GATCTGGTTG	TGGTGGCTGA	TEGTEGCTEN CACTENTEGC	GTCGACGAGG	GTCGACGAGG ATAGAACAGC	CCTGCGAGCC
22		281	GATCTGGTTG		TGGTGGCTGA GAGTGATGGC GTCAATGAGG ATAGAGCAGC	GTCAATGAGG	ATAGAGCAGC	CCTGGGAGCC
0 14 0 15 18 18 11 11 11 11	11 11 11 11 11 11 11 11	11 11 11		11 11 11 11 11 11 11 11	11 11 11 11 11 11 11 11		11 11 11 11 11 11 11 11 11 11 11	\$1 \$1 \$1 \$1 \$1 \$1

340 TOTAL

100 Total

7/2/

Fig. 3

ENVELOPE REGION

SEQUENCE ID NÙMBER GENOTYPE

	11	#: 13 61 14 18	11 41 11 11	11 12 15 16 16 16 16 16 16 16 16 16 16 16 16 16	11 14 15 15 15 15 16	11 11 16 11	11 11 21 21 41	
	11 11 11 1F 11	ii 11 10 10 14 15 16 17	11 11 11 11 11 11		# 	11 11 13 14 18 18 18 18 18 18 18 18 18 18 18 18 18	0 0 0 10 10 10 10 10 10 10 10 10 10 10 1	11 11 11 11 11 11 11 11 11 11 11 11 11
	======================================	ATATGGTGGC ACATGGTGGC ACATGGTGGC	CATAATAGC CATAATAGC CATAATAGC	CATTATCAC	1) 11 11 11 11 11 11 11	41 61 51 51 51 52 52 51 61 61 61 61	11 15 11 11 11 11 11 11	61 61 61 61 61 61 61 61 61 61 61 61 61 6
•	G GTAATGGCTC AGCTGCTCCG GATCCCACAA GCCATCTTGG ACATGATCGC G GTGGTAGCTC AGGTACTCCG GATCCCACAA GCCATCATGG ACATGATCGC G GTAGTAGCTC AGCTGCTCAG GGTCCCACAA GCCATCATGG ACATGATCGC	GCCGTCATGG A AGCATCGTGG A GCTGTCGTGG A	TITGCCCCAG ACCTTGTTCG ACATAATAGC TCTGCCCCAG ACCTTGTTCG ACATAATAGC TCTGCCCCAG ACCTTGTTCG ACATAATAGC	TACCACTATG CTCCTGGCAT ACTTGGTGCG CATCCCGGAG GTCATCCTGG ACATTATCAC	0 0 11 13 14 14 15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	61 11 11 11 11 11 11 11 11 11 11 11 11 1		GCACAC TGGGGCGTGA TGTTTGCCCT GGCTTATTTC
	GCGTTG GTAATGGCTC AGCTGCTCCG GATCCCACAA GCCATCTTGG GCGTTG GTGGTAGCTC AGGTACTCCG GATCCCACAA GCCATCATGG GCGCTG GTAGTAGCTC AGCTGCTCAG GGTCCCGCAA GCCATCGTGG	GIGGIGICA AGITACICCO GAICCCACAA GCCGICAIGO GIGGIGICGC AGITACICCO GAICCCACAA AGCAICGIGG GIGGIGICGC AGITACICCO GAICCCACAA AGCAICGIGG	TITGCCCCAG TCTGCCCCAG TCTGCCCCAG	CATCCGGAG	GCTCAC TGGGGAGTCC TGGCGGGCAT AGCGTATTTC GCCCAC TGGGGAGTCC TGBCGGGCAT AGCGTATTTC GCCCAC TGGGGAGTCC TGGCGGGCAT AGCGTATTTTC	TGCCTACTAT TGCTTACTAT TGCTTACTAT	CGGGGCCCAT TGGGGCATCT TGGCGGGCTT GGCCTATTAC CGGGGCCCAT TGGGGCATCT TGGCAGGCCT AGCCTATTAC CGGGGCCCAT TGGGGCATCT TGGCGGGCCT GGCCTATTAC	GGCTTATTIC
	GTAATGGCTC AGCTGCTCCG GATCCCACAA GTGGTAGCTC AGGTACTCCG GATCCCACAA GTAGTAGCTC AGCTGCTCAG GGTCCCGCAA	**************************************	GGTATG GTGGTGCCC ACGTCCTGCG GGTATG GTGGTGCCC ACGTCCTGCG GGTATG GTGGTGGCGC AAGTCCTGCG	ACTTGGTGCG	TGGGGAGTCC TGGCGGCAT AGCGTATTTC TGGGGAGTCC TGGCGGGCAT AGCGTATTTC TGGGGAGTCC TGGCGGGCAT AGCGTATTTC	GCCCAC TGGGGAGTCC TGGCGGGCCT TGCCTACTAT GCCCAC TGGGGAGTCC TGGCGGGCCT TGCTTACTAT GCCCAC TGGGGAATCC TAGCGGGTCT TGCTTACTAT	TGGCGGGCTT TGGCAGGCCT TGGCGGGCCT	GGACAC TGGGGCGTGA TGTTTGGCCT GGCTTATTTC
	GTAATGGCTC AGCTGCTCCG GTGGTAGCTC AGGTACTCCG GTAGTAGCTC AGCTGCTCAG	GTGGTATCGC GTGGTGTCGC GTGGTGTCGC	GIGGIGGCGC ACGICCTGCG GIGGIAGCAC ACGICCTGCG GIGGIGGCGC AAGICCIGCG	CTCCTGGCAT	TGGGGAGTCC TGGCGGGCAT TGGGGAGTCC TGCCGGGCAT TGGGGAGTCC TGCCGGGCAT	TGGGGAGTCC TGGCGGGCCT TGGGGAGTCC TGGCGGGCCT TGGGGAATCC TAGCGGGTCT	CGGGGCCCAT TGGGGCATCT TGGCGGGCTT CGGGGCCCAT TGGGGCATCT TGGCGGGCTT CGGGGCCCAT TGGGGGCATCT TGGCGGGCCT	GGGAGGACAC TGGGGCGTGA '
11 11 11 11 11 11 11 11 11 11 11 11 11	GCGTT	GACAGCCCTA GIGGIAICGC AGTIACTCCG GATCCCACAA GCCGTCAIGG AGCAGCCCTA GIGGIGICGC AGTIACTCCG GATCCCACAA GCCGTCAIGG GGCAGCCCTA GIGGIGICGC AGTIACTCCG GATCCCACAA AGCATCGIGG	TGTGGGTATG TGTGGGTATG TGTGGGTATG	1	TGGT TGGA TGGT	GGGGCCCAC	CGGGCCCAT	GGGAGGACAC
ŧŧ	ппп		1		61 61 61	61 61	ti I	5 I I
## ## ## ## ## ## ## ## ## ## ## ## ##	GI		GIV		11 (1 (1	611	AID	GIII
11 11 11 11 11 11	23 25 25	26 27 28	29 30 31	32 32 32 32 32 33 32 33 32 33 32 33 33 3	23	26 27 28	29 30 31	32

Fig

•				ທ	5'UT Region			
SEQUENCE ID NUMBER GENOT	11 😕 1	1) t			01 01 01 01 01 01 01 01 01 01 01 01 01 0	17 10 11 11 11 11 11 11 11 11 11	II II II II II II II II II	## ## ## ## ## ## ## ## ## ## ## ## ##
	I I I I I I I I I I I I I I I I I I I	! !	GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC ATAGTGGCTTT GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC ATAGTGGTCT GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCCTCC CGGGAGAGCC ATAGTGGTCT GTTAGTATGA GTGTCGTGCT GCCTCCAGGA CCCCCCCTCC CGGGAGAGCC ATAGTGGTCT	GTGTCGTGCA GTGTCGTGCA GTGTCGTGCA GTGTCGTGCA GTGTCGTGCA	GCTCCAGGA GCTCCAGGA GCCTCCAGGA GCCTCCAGGA GCCTCCAGGA	00100000000000000000000000000000000000	CGGGAGACC ATAGTGGTCT CGGGAGACC ATAGTGGTCT CGGGAGACC ATAGTGGTCT CGGGAGACC ATAGTGGTCT CGGGAGACC ATAGTGGTCT CGGGAGACC ATAGTGGTCT	ATAGTGGTCT ATAGTGGTCT ATAGTGGTCT ATAGTGGTCT ATAGTGGTCT ATAGTGGTCT
39 90 90 90 90 90 90 90 90 90 90 90 90 90	GII		GTTAGTATGA GTTAGTATGA GTTAGTATGA GTTAGTATGA GTTAGTATGA GTTAGTATGA	GTGTCGTGCA GTGTCGTGCA GTGTCGTGCA GTGTCGTGCA GTGTCGTGCA GTGTCGTGCA	GTGTCGTGCA GCCTCCAGGA GTGTCGTGCA GCCTCCAGGA GTGTCGTGCA GCCTCCAGGA GTGTCGTGCA GCCTCCAGGA GTGTCGTGCA GCCTCCAGGA GTGTCGTGCA GCCTCCAGGA GTGTCGTGCA GCCTCCAGGA	201202020 2012020 2012020 2012020 2012020 2012020 2012020 20120	GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC CGGAGAGCC ATAGTGGTCT GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC CGGAGAGCC ATAGTGGTCT GTTAGTATGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC ATAGTGGTCT	ATAGTGGTCT ATAGTGGTCT ATAGTGGTCT ATAGTGGTCT ATAGTGGTCT ATAGTGGTCT
46	IIIS		i [GCTAGTATCA GTĞTCGTACA GTTAGTATGA GTCTCGTACA	GCTAGTATCA GTĞTCGTACA GCCTCCAGGC GTTAGTATGA GTCTCGTACA GCCTCCAGGC	CCCCCCTCC	GCCTCCAGGC CCCCCCTCC CGGGAGAGCC ATAGTGGTCT GCCTCCAGGC CCCCCCTCC CGGGAGAGCC ATAGTGGTCT	ATAGTGGTCT
48	AID		V 1 GITAGIACGA GIGICGIGCA GCCICCAGGA CICCCCCICC CGGAGAGCC AIAGIGGICI 1 GITAGIACGA GIGICGIGCA GCCICCAGGA CCCCCCICC CGGGAGAGCC AIAGIGGICI	GTGTCGTGCA GTGTCGTGCA	GTTAGTACGA GTGTCGTGCA GCCTCCAGGA GTTAGTACGA GTGTCGTGCA GCCTCCAGGA	כבככככבככ	GTTAGTACGA GTGTCGTGCA GCCTCCAGGA CTCCCCCTCC CGGGAGAGCC ATAGTGGTCT GTTAGTACGA GTGTCGTGCA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC ATAGTGGTCT	ATAGTGGTCT ATAGTGGTCT
51	30 E		1 GTTAGTATGA GTGTCGAACA GCCTCCAGGA CCCCCCCTCC CGGGAGAGCC ATAGTGGTCT 1 GTTAGTATGA GTGTCGAACA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC ATAGTGGTCT	GTGTCGAACA	GCCTCCAGGA	2212222222 22122222222	GTTAGTATGA GTGTCGAACA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC ATAGTGGTCT GTTAGTATGA GTGTCGAACA GCCTCCAGGA CCCCCCTCC CGGGAGAGCC ATAGTGGTCT	ATAGTGGTCT ATAGTGGTCT

Fig. 4b

5'UT Region (2/5)

33 34 35 36 37 39 40 41 45 46 46 46 46 47 48 48 48 49 50	EQUENCE D NUMBER	GENOTYPE		OTYPE	
34 61 GCGGAACGG TGAGTACACC GGAATTGCCA GGACGGG GTCCTTTCTT 35 61 GCGGAACGG TGAGTACACC GGAATTGCCA GGACGCG GTCCTTTCTT 36 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 37 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 40 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 41 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 42 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 43 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 45 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 47 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 47 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGACCGG GTCCTTTCTT 49 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGACCGG GTCCTTTCTT 49 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGACCGG GTCCTTTCTT 49 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACCG GGATGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACCG GGATGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACCG GGATTGCCG GGATGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACCG GGATGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACCG GGATCACCGG GTCCTTTC		EE EE EE	61	GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTC	respections
1 CCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 1 CCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 2 61 CCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 3 61 CCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 4 61 CCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 5 CCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 6 CCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 7 6 CCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 7 6 CCGGAACCGG TGAGTACACC GGAATTGCCAG GTCCTTTCTT 7 6 CCGGAACCGG TGAGTACACC GGAATTGCCAG GTCCTTTCTT 7 7 6 CCGGAACCGG TGAGTACACC GGAATTGCCAG GTCCTTTCTT 8 CTTTTCTT 8 CTTTTCTT 8 CTTTTCTT 8 CTTTTCTT 8 CCGGAACCGG TGAGTACACC GGATTGCCGG GTCCTTTCTT 8 CTTTTCTT			19	TGAGTACACC GGAATTGCCA GGACGACCGG	
37 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 39 GII			10	IGAGIACACC GGAATIGCCA GGACGACCGG TGAGTACACC GGAATIGCCA GGACGACGG	
38 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 40 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 41 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 43 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 44 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 45 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 45 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 45 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 47 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 47 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGAAGACTGG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGAAGACTGG GTCCTTTCTT 49 GCGGAACCGG TGAGTACACC GGAATTGCCG GGAAGACTGG GTCCTTTCTT 49 GCGGAACCGG TGAGTACACC GGAATTGCCG GGAAGACTGG GTCCTTTCTT 49 GCGGAACCGG TGAGTACACC GGAATTGCCG GGAAGACTGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACC GGAATTGCCG GGAAGACTGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACC GGAATTGCCTG GGATGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 40 GCGGAACCGG TGAGTACACCG GGATGACCGG GTCTTTCTT 40 GCGGAACCGG TGAGTACCCG GGATGACCCGG GTCTTTCTT 40 GCGGAACCGG TGAGTACCCG GGATCACCGG GTCTTTCTT 40 GCGGAACCGG TGAGTACCGC GGATCCCGG GTCTTTCTT 40 GCGGAACCGG GTCGACCGC GTCTTTCTT 40 GCGGAACCGG GTCTTTCTT 40			61	TGAGTACACC GGAATTGCCA GGACGACCGG	_
STATEMENT STAT	38		61	TGAGTACACC GGAATTGCCA GGACGACCGG	
40 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 41 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 42 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 43 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 45 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 46 GIII 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 47 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACGG GTCCTTTCTT 49 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGCCGG GTCCTTTCTT 50 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 50 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 50 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 50 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACGG GTCCTTTCTT <td> </td> <td>EERBERES GII</td> <td>11 []</td> <td>Ð</td> <td></td>		EERBERES GII	11 []	Ð	
41 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 42 61 GCGGAACCGG TGAGTACAC GGAATTGCCA GGACGACCGG GTCCTTTCTT 43 61 GCGGAACCGG TGAGTACAC GGATTGCCA GGACGACCGG GTCCTTTCTT 44 61 GCGGAACCGG TGAGTACAC GGATTGCCA GGACGACCGG GTCCTTTCTT 45 61 GCGGAACCGG TGAGTACAC GGATTGCCA GGACGACCGG GTCCTTTCTT 46 GIII 61 GCGGAACCGG TGAGTACAC GGATTGCCA GGACGCG GTCCTTTCTT 47 61 GCGGAACCGG TGAGTACAC GGATTGCCG GGACGCG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACAC GGATTGCCG GGATTGCTG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACAC GGATTGCTG GGATGACCG GTCCTTTCTT 49 GCGGAACCGG TGAGTACAC GGATTGCCG GGATGACCG GTCTTTCTT GCGGAACCGG TGAGTACAC GGATTGCCG GGATGACCG GTCTTTCTT 50 GCGGAACCGG TGAGTACAC GGATTGCCG GGATGACCGG GTCTTTCTT GCGGAACCGG TGAGTACAC GGATCGCTG GGATGACCG GTCTTTCTT 50 GCGGAACCGG TGAGTACAC GGATTGCCG GGATGACCGG GTCTTTCTT GCGGAACCGG TGAGTACAC GGATCGCTG GGATGACCG GATTGCCG GATGACCGG GTCTTTCTT			61	TGAGTACACC GGAATTGCCA GGACGACCGG	
42 61 GCGGAACCGG TGAGTACAC GGAATTGCCA GGACGACCGG GTCCTTTCTT 43 61 GCGGAACCGG TGAGTACAC GGAATTGCCA GGACGACCGG GTCCTTTCTT 45 61 GCGGAACCGG TGAGTACAC GGAATTGCCA GGACGACCG GTCCTTTCTT 46 GII 61 GCGGAACCGG TGAGTACAC GGAATTGCCA GGACGACCG GTCCTTTCTT 46 GII 61 GCGGAACCGG TGAGTACAC GGAAGACTGG GTCCTTTCTT 47 61 GCGGAACCGG TGAGTACAC GGAATTGCCG GAAGACTGG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACAC GGAATTGCCG GAAGACTGG GTCCTTTCTT 49 61 GCGGAACCGG TGAGTACACC GGATGACCGG GTCCTTTCTT 80 61 GCGGAACCGG TGAGTACACC GGATGACCGG GTCTTTCTT 80 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGTGACCGG GTCTTTCTT 80 61 GCGGAACCGG	41		. 19	TGAGTACACC GGAATTGCCA GGACGACCGG	
43 61 GCGGACCGG TGAGTACAC GGAATTGCCA GGACGACCGG GTCCTTTCTT 44 61 GCGGACCGG TGAGTACAC GGAATTGCCA GGACGACCGG GTCCTTTCTT 45 61 GCGGACCGG TGAGTACAC GGAATTGCCA GGACGACCGG GTCCTTTCTT 46 GIII 61 GCGGACCGG TGAGTACAC GGAATTGCCG GGAGACTGG GTCCTTTCTT 47 61 GCGGACCGG TGAGTACAC GGAATTGCCG GGAGACTGG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACAC GGAATTGCTG GGAGACTGG GTCCTTTCTT 49 61 GCGGAACCGG TGAGTACAC GGAATTGCTG GGAGACTGG GTCCTTTCTT 49 61 GCGGAACCGG TGAGTACAC GGAATTGCTG GGGTGACCGG GTCCTTTCTT 50 GV 61 GCGGAACCGG TGAGTACAC GGAATTGCTG GGGTGACCGG GTCCTTTCTT 51 GCGGAACCGG TGAGTACAC GGAATTGCTG GGGTGACCGG GTCCTTTCTT 52 GCGAACCGG TGAGTACAC GGAATTGCCG GGATGACCGG GTCCTTTCTT 53 GCGGAACCGG TGAGTACAC GGAATTGCCG GGATGACCGG GTCCTTTCTT 54 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 55 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 56 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 57 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 58 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 59 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 50 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 51 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 52 GCGAACCGC TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 51 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 51 GCGGAACCGG TGAGTACCCC GGAATTGCCG GGATGACCGG GTCCTTTCTT 52 GCGAACCGC TGAGTACCCC GGAATTGCCG GGATGACCGG GTCCTTTCTT 53 GCGAACCCCCC TGAATTGCCC GGAATTGCCCG GGATGACCCGC GTCCTTTCTT 54 GCGCAACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			61	TGAGTACACC GGAATTGCCA GGACGACCGG	
44 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGCGG GTCCTTTCTT			61	TGAGTACACC GGAATTGCCA GGACGACCGG	
45 61 GCGGAACCGG TGAGTACACC GGAATTGCCA GGACGACCGG GTCCTTTCTT 46 GIII 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGAGACTGG GTCCTTTCTT 47 61 GCGGACCGG TGAGTACACC GGAATTGCTG GGAAGACTGG GTCCTTTCTT 48 GIV 61 GCGGAACCGG TGAGTACACC GGAATTGCTG GGAGACTGG GTCCTTTCTT 49 61 GCGGAACCGG TGAGTACACC GGAATTGCTG GGGTGACCGG GTCCTTTCTT 49 61 GCGGAACCGG TGAGTACACC GGAATTGCTG GGGTGACCGG GTCCTTTCTT 50 GV 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGTGACCGG GTCCTTTCTT 51 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 51 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 51 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 52 GCGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 53 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 54 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 55 GCGCAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 56 GCGCAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 57 GCGCAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 58 GCGCAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 59 GCGCAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 50 GCCCAACCGC TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 51 GCCCAACCGC TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 51 GCCCAACCGC TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT 51 GCCCAACCCC TGAGTACCCC GGAATTGCCC GGATGACCCGG GTCCTTTCTTT 51 GCCCAACCCC TGAGTACCCC GGAATTGCCC GGATGACCCGG GTCCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTT			61	TGAGTACACC GGAATTGCCA GGACGACCGG	
46 GIII 61 47 61 48 GIV 61 49 61 50 GV 61	45		19	GCGGAACCGG IGAGIACACC GGAAIIGCCA GGACGACCGG GI	CCTITCII GGAICAA
48 GIV 61 49 61 50 GV 61 51 61		EBERREE GIII	61	GCGGAACCGG TGAGTACACC GGAATTGCCG GGAAGACTGG GT	nneenemaneene CCTTTCTT GGATAAA(
48 GIV 61 49 GIV 61 50 GV 61	47		61	GCGGAACCGG TGAGTACACC GGAATTGCTG GGAAGACTGG GT	CCTTTCTT GGATAAA
49 61 50 GV 61 51	11 12 12 12 12 12 12 12 12 12 12 12 12 1	eeeeeeeeeeeeeeeeeee	61	at as	eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
50 GV 61 61 61 61 61 61 61 61 61 61 61 61 61	49			GCGGAACCGG IGAGIACACC GGAAICGCIG GGGGACCGG GI	CCTTTCTT GGAGTAA
1 61 GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GTCCTTTCTT			ŧ	GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACGG GT	======================================
	51		19	GCGGAACCGG TGAGTACACC GGAATTGCCG GGATGACCGG GT	CCTTTCTT GGATAAA

Fig. 4

(3/2)
Region
S.UT

11 11 11 11 11 11	AGTGTTGGGT AGTGTTGGGT AGTGTTGGGT AGTGTTGGGT AGTGTTGGGT	AGTGTTGGGT AGTGTTGGGT AGTGTTGGGT AGTGTTGGGT AGTGTTGGGT AGTGTTGGGT	CGTTGGGT CGTTGGGT CGTTGGGT	TGTTGGGT
41 41 41 5 5 6 6 6 6 6	CTAGCCGAGT AG CTAGCCGAGT AG CTAGCCGAGT AG CTAGCCGAGT AG CTAGCCGAGT AG	CTAGCCGAGT AG CTAGCCGAGT AG CTAGCCGAGT AG CTAGCCGAGT AG CTAGCCGAGT AG CTAGCCGAGT AG	CCGAGT AG CCGAGT AG CCGAGT AG CCGAGT AG	CCGAGT AG
81 81 81 81	G CTAG	G CTAG G CTAG G CTAG G CTAG G CTAG	G CTAG	G CTAG
12 11 12 13 14 14 15 15 15 15	CGCAAGACTG CGCAAGACTG CGCAAGACTG CGCAAGACTG CGCCAAGACTG CGCCAAGACTG	CGCGAGACTG CGCGAGACTG CGCGAGACTG CGCGAGACTG CGCGAGACTG CGCGAGACTG	CGCAAGACT CGCAAGACT ======== CGCGAGATC	CGCGAGACT
# # # # # # # #	GGCGTGCCC CGCAAGACTG GGCGTGCCC CGCAAGACTG GGCACGCCC CGCAAGACTG GGCGTGCCC CGCAAGACTG GGCGTGCCC CGCAAGACTG GGCGTGCCC CGCAAGACTG	GGCGTGCCC CGCGAGACTG GGCGTGCCC CGCGAGACTG GGCGTGCCC CGCGAGACTG GGCGTGCCC CGCGAGACTG GGCGTGCCC CGCGAGACTG GGCGTGCCC CGCGAGACTG	GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGCGTTGGGT GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGCGTTGGGT ==============================	96CGTGCCC 96CGTGCCCC
# # # # # # # # # # # # # # # # # # #	TGGAGATITG TGGAGATITG TGGAGATITG TGGAGATITG TGGAGATITG TGGAGATITG TGGAGATITG	TGGAGATTTG TGGAGATTTG TGGAGATTTG TGGAGATTTG TGGAGATTTG TGGAGATTTG TGGAGATTTG	CGGCCATTTG CAGCCATTTG CAGCATTTG CAGAAATTTG CAGAAATTTG	CGGAGATITG (CGGAGATITG (CGGAGATITG (CGGAGATITG (CGGAGATITG (CGGAGATITG (CGGAGATITG (CGGAGATITG (CGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
cusars santenaria e compositivamentos de compositiv	121 GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT 121 GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT 121 GCTCAATGCC TGGAGATTTG GGCACGCCCC CGCAAGATCA CTAGCCGAGT AGTGTTGGGT 121 GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGATCA CTAGCCGAGT AGTGTTGGGT 121 GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT 121 GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT 121 GCTCAATGCC TGGAGATTTG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGTGTTGGGT		121 ACTCTATGCC CGGCCATTIG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGCGTTGGGT 121 ACTCTATGCC CAGCCATTIG GGCGTGCCCC CGCAAGACTG CTAGCCGAGT AGCGTTGGGT ==============================	50 GV 121 GCTCAATGCC CGGAGATTTG GGCGTGCCC CGCGAGACTG CTAGCCGAGACTG TAGCCGAGT AGTGTTGGGT 51 121 GCTCAATGCC CGGAGATTTG GGCGTGCCCC CGCGAGACTG CTAGCCGAGT AGTGTTGGGT 51 121 GCTCAATGCC CGGAGATTTG GGCGTGCCCC CGCGAGACTG CTAGCCGAGT AGTGTTGGGT
# # # # #	# #	GII 121 121 121 121 121 121 121	121 121 121 121 121	121
		GII,	GIII	
SEQUENCE ID NUMBER	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	39 441 443 444 454 454 85	46 47 48 49	50 21 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24

Fig. 4d

ENVELOPE REGION (4/5)

SEQUENCE						! ! ! ! !	: ! ! !	: : : : : :
ID NUMBER					•			
		ti 💮	sencesensensensensensensensensensensensensen	CTTGTGGTAC	resesses TGCCTGATAG	mememememememememememememememememememe	AGTGCCCCGG	GAGGICICGI
. 34		181	CGCGAAAGGC	CTTGTGGTAC		GGTGCTTGCG	AGTGCCCCGG	GAGGTCTCGT
35		181	CGCGAAAGGC	CTTGTGGTAC	TGCCTGATAG	GGTGCTTGCG	AGTGCCCCGG	GAGGTCTCGT
36		181	CGCGAAAGGC	CTTGTGGTAC	TGCCTGATAG	GGTGCTTGCG	AGTCCCCCG	GAGGTCTCGT
37		181	CGCGAAAGGC	CITGIGGIAC	TGCCTGATAG	GGTGCTTGCG	AGTGCCCGG	GAGGICTCGI
38		181	CGCGAAAGGC	CTTGTGGTAC	TGCCTGATAG	TGCCTGATAG GGTGCTTGCG	AGTGCCCCGG	GAGGTCTCGT
39	EEEEEE GI	 I 181	CGCGAAAGGC	CTTGTGGTAC	seesseesseesseesseesseesseesseesseesse	GGTGCTTGCG	AGTGCCCCGG	GAGGTCTCGT
40	•	181	CGCGAAAGGC		TGCCTGATAG	IGCCIGATAG GGIGCTIGCG AGIGCCCCGG	AGTGCCCCGG	GAGGICICGI
41		181	CĠCGAAAGGC	CTTGTGGTAC		TGCCTGATAG GGTGCTTGCG	AGTGCCCCGG	GAGGICICGI
42		181	CGCGAAAGGC	CTTGTGGTAC		recereatas serectrece asreceess	AGTGCCCCGG	GAGGTCTCGT
43		181	CGCGAAAGGC	CTTGTGGTAC		TGCCTGATAG GGTGCTTGCG	AGTGCCCCGG	GAGGICICGI
44		181	CGCGAAAGGC	CTTGTGGTAC		TGCCTGATAG GGTGCTTGCG AGTGCCCCGG	AGTGCCCCGG	GAGGICICGI
45		181	CGCGAAAGGC	CTTGTGGTAC	TGCCTGATAG	GGTGCTTGCG	AGTGCCCCGG	GAGGTCTCGT
11 11 11 11 11 11 11 11 11	61 61 81 81 81 81 81 81 81 81 81 81 81 81 81	8	\$	81 91 91 91 91 91 91 81 81			## ## ## ## ## ## ## ## ## ## ## ## ##	81 81 81 81 81 81
46	GIII	181	TGCGAAAGGC	CTTGTGGTAC	TGCGAAAGGC CTTGTGGTAC TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	GGTGCTTGCG	AGTGCCCCGG	GAGGICICGI
47		181	TGCGAAAGGC	CTTGTGGTAC	TGCGAAAGGC CTTGTGGTAC TGCCTGATAG GGTGCTTGCG AGTGCCCCGG GAGGTCTCGT	GGTGCTTGCG	AGTGCCCCGG	GAGGTCTCGT
11 11 11 11 11 11 11	11 11 11 11 11 11	11 11 11	{I	11 11 11 11 11	5.5.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6		0 0 0 0 0	81 81 81 81 81 81 81 81 81 81 81 81 81 8
48	GIV	181	CGCGAAAGGC	CTTGTGGTAC	COCGAAAGGC CITGIGGIAC IGCCIGAIAG GGIGCTIGCG AGIGCCCCGG	GGTGCTTGCG	AGTGCCCCGG	GAGGTCTCGT
49		181	CGCGAAAGGC	CTTGTGGTAC	CGCGAAAGGC CIIGIGGIAC IGCCIGAIAG GGIGCIIGCG AGIGCCCCGG GAGGICICGI	GGTGCTTGCG	AGTGCCCGG	GAGGTCTCGT

12/2/

D		
_	ת ת	
	ł	

5'UT Region (5/5)

ID NUMBER	GENOTYPE		
#		.====: 241	AGACCGTGCA CC
34		241	
35		241	AGACCGIGCA CC
36		241	
37		241	
38		241	AGACCGIGCA CC
	11 11 11 11 11 11	11 11 11 11	
39	CII	241	AGACCGIGCA CC
40		241	AGACCGIGCA IC
41		241	AGACCGIGCA CC
42		241	AGACCGTGCA CC
43		241	AGACCGIGCA CC
4		241	AGACCGIGCA CC
•		241	AGACCGIGCA CC
47		4	-
	######################################		
	•	7	

252 Total

13/21

Fig. 5a

CORE REGION

GENOTYPE

SEQUENCE ID NUMBER

	E1 60. 81 81 81	9000000					
22		-	ないのなりのないはん	***************************************			
	5	4	ATGAGGAGGA	AICCIAAACC	TCAAAAAAA	AACAAACGTA	AIGAGCACGA AICCIAAACC ICAAAAAAA AACAAACGIA ACACCAACGG TCGCCCAAA
53		_	ベジンペンごペジエペ	ひてん べましつかく			りだりとうりつりょ つうかいこうしょ
		1 (-	אזררואאארר	ATCLIANACE ICANAGARA ACCANACGIA ACACCANCG	ACCANACGIA	ACACCAACCG ICGCCCACAG
		-	ATGAGCACGA	ATCCTAAACC	ATCCTAAACC TCAAAGAAAA ACCAAACGTA	ACCAAACGTA	でんりつりつか じりつくりしくしく
55		_	そびしてしむべむよべ	いっていまりつかべ			りついないりいい
		4 ,	HOUSE PARTY	ATCLIABACC	ALCLIAMACC TCAAAGAAAA ACCAAACGTA	ACCAAACGTA	ACACCAACCG ICGCCCACAG
			ATGAGCACGA		ATCCTABACC TCAAAGAAGA ACCAAACGTA ACACCAACCG	ACCAAACGTA	ACACCAACCG TOROGRAPAGA
57		-	ATGAGCACGA	ATCCTAAACC	TCAAAGAAA	ACCAAACGTA	ATGAGCACGA ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACACCAACC TCCCCAAAA
18 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18	11 11 11 11 11				11 11 11 11 11 11 11 11 11 11 11 11 11		
. 28	GII	-1	ATGAGCACGA	ATCCTABACC	TCAAAGAAA		ATGAGCACGA ATCCTABACT TCABACABA ACCARACTAR ACARACA ACA
, L		•			*********	ALCARACOLA	ALACCAACCG CCGCCCACAG
ָר מ		4	ATGAGCACAA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ATCCTAAACC TCAAAGAAA ACCAAACGTA ACACCAACCG CCGCCCAACA
9	•	-	ATGAGCACAA	ATCCTAAACC	ATCCTAAACC CCAAAGAAA ACCAAACGTA ACACCAAACC	ATTORKATOR	りていていついつ かっついいかいいこ
61		_	*************************************	2004442044		***************************************	ACACCAACCO ICOCCCACAG
		4 ,	Y TOYOUTH		ALCIAMACC ICAMAGAMAM ACCAMACGIM ACACCAMCCG	ACCAAACGTA	ACACCAACCG CCGCCCACAG
70		-	ATGAGCACGA		ATCCTAAACC TCAAAGAAA ACCAAACGTA ACAACAA	ACCAAACGTA	
63		-	ATGAGCACGA		こうじょうしゃ そくくしゃくしか シンタペルシンルタ		
7		i •	400000000000000000000000000000000000000	つりをななすりって	TCARAGARA	ACCAAACGIA	ACACCAACCG CCGCCCACAG
		7	ATGAGCACGA	ATCCTAAACC	TCAAAGAAAA	ACCAAACGTA	ATCCTAAACC TCAAAGAAAA ACCAAACGTA ACAGGAAGGG GGGAAGGG
11 11 11 11 11 11	11 11 11- 11- 11		11 11				りてンマンソン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
65	GIII	-1	ATGAGCACAA	ATCCTAAACC	TCAAAGAAAA		ATGAGCACAA ATCCTAAACC TCAAAGAAA ACCAAAAAAAAAA
99	-	. 🗲	べん ないかい ないかん	のなるない思うなから		***************************************	ACACTARCCO CCCCCACAG
	1	•	まなりなりりなり さい	ALCICARACC	TCAAGGAAAA	ACCAAAAGAA	nishernan hilulahata Ilaakkaaa ACCAAAAGAA ACACIAACCG CCGCCACAG

Fig. 5b

CORE REGION (2/9)

SEQUENCE ID NUMBER GENOTYPE

52	GI	19	GACCICAAGI	TCCCGGGTGG	GACGICAAGI ICCCGGGIGG CGGICAGAIC GIIGGIGGAG	GTTGGTGGAG	TITACITGII	GCCGCGCAGG
53	•	19	GACGTCAAGT	rccccccccc	recedence cegreagare	GTTGGTGGAG	TTTACTIGIT	GCCGCGCAGG
54		19	GACGITAAGI	TCCCGGGTGG	CGGTCAGATC	GTTGGTGGAG	TITACTIGIT	GCCGCGCAGG
55		61	GACGTCAAGT	TCCCGGGTGG	CGGTCAGATC	GTTGGTGGAG	TTTACTTGTT	GCCGCGCAGG
56		61	GACGTCAAGT	TCCCGGGTGG	CGGTCAGATC	GTTGGTGGAG	TITACTIGIT	GCCGCGCAGG
5.7		61	GACGICAAGI	receesage	GACGTCAAGT TCCCGGGTGG CGGTCAGATC GTTGGTGGAG		TTTACTTGTT	GCCGCGCAGG
# # !! !! &		**************************************	GACGTTAAGT	TCCCGGGCGG	HITHERTHERMOUND CONTROLLER CONTROL CON	ssammersmannennennennennennennennennennennennenne	TTTACCTGTT	GCCGCGCAGG
59		61	GACGTCAAGT	rccceecee		TGGTCAGATC GTTGGTGGAG	TITACCIGIT	GCCGCGCAGG
9	:	61	GACGICAAGI	TCCCGGGCGG	TGGTCAGATC	GTTGGTGGAG	TTTACCTGTT	GCCGCGCAGG
61		61	GACGTCAAGT	TCCCGGGCGG	TGGTCAGATC	GTTGGTGGAG	TITACTIGIT	GCCGCGCAGG
62		. 61	GACGTCAAGT	TCCCGGGCGG	TGGTCAGATC	GTTGGTGGAG	TTTACCTGTT	GCCGCGCAGG
63		61	GACGTCAAGT	TCCCGGGCGG	TGGTCAGATC	GTTGGTGGAG	TTTACTTGTT	GCCGCGCAGG
64		61	GACGICAAGI	TCCCGGGCGG	GACGICAAGI ICCCGGGCGG IGGICAGAIC GIIGGIGGAG	GTTGGTGGAG	TTTACCTGTT	GCCGCGCAGG
						TO COCCOOL MOTERNATION OF THE CONTRACT OF CONTRACT CONTRA		CONCREDENTIAL PROBUST OF STATES OF STATES AND STATES OF
	1110	5	TOWKITONED	10000000	TROUGHT.	STIGGEGGAG	TATACITOCI	occocked occocked
99		. 61	GACGICAAGI	TCCCGGCCGG	TGGTCAGATC	GACGICAAGI ICCCGGGCGG IGGICAGAIC GIIGGCGGAG IAIACIIGII GCCGCGCAGG	TATACTIGIT	99 Y D D D D D D D D D D D D D D D D D D
11 61 61 61 61 61 61 61	# # # # # # # # # # # # # # # # # # #	11 11 11 11						

Fig. 5c

CORE REGION (3/9)

GENOTYPE

SEQUENCE ID NUMBER

66T 66T 66T 66T 66T	66A 66A 66A 66A 66A 66A	GGA GGG
ACCTCGAGGT ACCTCGAGGT ACCTCGAGGT ACCTCGAGGT ACCTCGAGGT	ACCTCGT ACCTCGT ACCTCGT ACCTCGT ACCTCGT ACCTCGT	GCCACGC
AGCGGTCGCA AGCGGTCGCA AGCGGTCGCA AGCGGTCGCA AGCGGTCGCA	AGCGGTCGCA AGCGGTCGCA AGCGGTCGCA AGCGGTCGCA AGCGGTCGCA AGCGGTCGCA	AACGATCCCA AACGGTCCCA
AAGACTTCCG AAGACTTCCG AAGACTTCCG AAGACTTCCG AAGACTTCCG	AAGACTTCCG AAGACTTCCG AAGACTTCCG AAGACTTCCG AAGACTTCCG AAGACTTCCG	AAAACTTCCG AAAACTTCCG
GGCCCTAGAT TGGGTGTGCG CGCGACGAGA AAGACTTCCG AGCGGTCGCA ACCTCGAGGT GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT GGCCCTAGAT TGGGTGTGCG CACGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT	GGCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA GGCCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA GGCCCCCAGGT TGGGTGTGCG CGCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA GGCCCCCAGGT TGGGTGTGCG CCCGACTAGG AAGACTTCCG AGCGGTCGCA ACCTCGTGGA	GGCCCGAGAT TGGGTGTGCG CGCGACGAGG AAAACTTCCG AACGATCCCA GCCACGCGGA GGCCCCAGGT TGGGTGTGCG CGCGACGAGG AAAACTTCCG AACGGTCCCA GCCACGTGGG
GGCCCTAGAT TGGGTGTGCG GGCCCTAGAT TGGGTGTGCG GGCCCTAGAT TGGGTGTGCG GGCCCTAGAT TGGGTGTGCG GGCCCTAGAT TGGGTGTGCG	GGCCCCAGGT TGGGTGTGCGGGGCGCCCCAGGT TGGGTGTGCGGGCCCCAGGT TGGGTGTGCGGGCCCCAGGT TGGGTGTGCGGGCCCCAGGT TGGGTGTGCGGGCCCCAGGT TGGGTGTGCGGGCCCCAGGT TGGGTGTGCGGGCCCCAGGT TGGGTGTGCGGGCCCCAGGT TGGGTGTGCG	recererece
121 GGCCTAGAT TGGGTGTGCG CGCGACGAGA AAGACTTCCG AGCGGTCGCA ACTCCGAGGT 121 GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT 121 GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT 121 GGCCCTAGAT TGGGTGTGCG CACGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT 121 GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT 121 GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT 121 GGCCCTAGAT TGGGTGTGCG CGCGACGAGG AAGACTTCCG AGCGGTCGCA ACCTCGAGGT	GGCCCCAGGT TGGGTGTGCG GGCCCCAGGT TGGGTGTGCG GGCCCCAGGT TGGGTGTGCG GGCCCCAGGT TGGGTGTGCG GGCCCCAGGT TGGGTGTGCG	121 GGCCCGAGAT TGGGTGTGC CGCGACGAGG AAAACTTCCG AACGATCCCA GCCACGCGGA 121 GGCCCCAGGT TGGGTGTGCG CGCGACGAGG AAAACTTCCG AACGGTCCCA GCCACGTGGG
121 121 121 121 121 121	121 121 121 121 121 121	121
11 (1	611	GIII
52 GI 53 54 55 55 57	58 59 60 61 63 64	65 66

				CORE	CORE REGION (4/9,)	6		
SEQUENCE ID NUMBER	11 D. I		11 11 11 11 11 11 11 11 11 11 11 11 11		### ### ##############################	H H H H H H H H H H H H H H H H H H H	# # # # # # # # # # # # # # # # # # #	
52 GI 53 54 55 55 57 58 60 60 61 63	11 .		181 AGACGTCAGC CTATCCCCAA GGCTCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG 181 AGACGTCAGC CTATCCCCAA GGCTCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG 181 AGACGTCAGC CTATCCCCAA GGCGCTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG 181 AGACGTCAGC CTATCCCCAA GGCTCGTCGA CCCGAGGGCA GGACCTGGGC TCAGCCCGGG 181 AGACGTCAGC CTATCCCCAA GGCTCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG 181 AGACGTCAGC CTATCCCCAA GGCTCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GGCTCGCCAG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GGCTCGCCAG CCCGAGGGCA GGCCTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GGCTCGCCAG CCCGAGGGCA GGCCTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCCGAGGGCA GGCCTTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCCGAGGGCA GGCCTTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCCGAGGGCA GGCCTTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GCTTCGCCGG CCCGAGGGCA GGCCTTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GCTTCGCCGG CCCGAGGGCA GGCCTTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GCTTCGCCGG CCGGAGGGCA GGGCCTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GCTTCGCCGG CCGAGGGCA GGGCCTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GCTTCGCCGG CCGGAGGGCA GGGCCTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GCTTCGCCGG CCGAGGGCA GGGCCTGGGC TCAGCCCGGG 181 AGGCGACAAC CTATCCCCAA GCTTCGCCGG CCGAGGGCA GGGCCTGGGC TCAGCCCGGG	CTATCCCCAA CTATCCCCAA CTATCCCCAA CTATCCCCAA CTATCCCCAA CTATCCCCAA CTATCCCCAA CTATCCCCAA CTATCCCCAA CTATCCCCAA	CTATCCCAA GGCTCGTCGG CTATCCCTAA GGCGCGTCGG CCATCCCCAA GGCTCGTCGG CCATCCCCAA GGCTCGTCGG CTATCCCCAA GGCTCGTCGG CTATCCCCAA GGCTCGCGTCGG CTATCCCCAA GGCTCGCCAG CTATCCCCAA GGCTCGCCAG CTATCCCCAA GGCTCGCCGG CTATCCCCAA GGCTCGCCGG CTATCCCCAA GGCTCGCCGG CTATCCCCAA GGCTCGCCGG CTATCCCCAA GGCTCGCCGG	CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCA CCCGAGGCCA	AGACGTCAGC CTATCCCCAA GGCTCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG AGACGTCAGC CTATCCCCAA GGCTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG AGACGTCAAC CTATCCCCAA GGCTCGCCAG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCAA GGCTCGCCAG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCAA GGCTCGCCAG CCCGAGGGCA GGGCTTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCCGAGGGCA GGGCCTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCGGAGGGCA GGGCCTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCGAGGGCA GGGCCTGGGC TCAGCCCGGG	AGACGTCAGC CTATCCCCAA GGCTCGTCGG CCGAAGGCA GGACCTGGGC TCAGCCCGGG AGACGTCAGC CTATCCCCAA GGCTCGTCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG AGACGTCAGC CTATCCCCAA GGCTCGCCGG CCCGAGGGCA GGACCTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCAA GGCTCGCCAG CCCGAGGGCA GGGCTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCAA GGCTCGCCGG CCCGAGGGCA GGGCTTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCCAA GGCTCGCCGG CCCGAGGGCA GGGCTTGGGC TCAGCCCGGG AGGCGACAAC CTATCCCCCAA GGCTCGCCGG CCCGAGGGCA GGGCCTGGGC TCAGCCCGGG
######################################	GII	1 .181 1 .181	AGGCGTCAGC AGGCGCCAGC	CCATCCCTAA	AGATCGTCGC AGATCGGCGC	ACCGCTGGCA ACCACTGGCA	65 GIII 181 AGGCGTCAGC CCATCCCTAA AGATCGTCGC ACCGCTGGCA AGTCCTGGG AAGGCCAGGA 66 181 AGGCGCCAGC CCATCCCAA AGATCGGCG ACCATGGCA AGTCCTGGGG AAGGCCAGGA 66 181 AGGCGCCAGC CCATCCCCAA AGATCGGCG ACCATGGCA AGTCCTGGGG GAAGCCAGGA	AGGCGCCAGC CCATCCCTAA AGATCGTCGC ACCGCTGGCA AGTCCTGGGG AAGGCCAGGA AGGCGCCAGC CCATCCCCAA AGATCGGCGC ACCGCTGGCA AGTCCTGGGG GAAGCCAGGA

17/21

Fig. 5e

CORE REGION (5/9)

schouserencessandencessandencessandencessandencessandencessandencessandencessandencessandencessandencessandenc SEQUENCE ID NUMBER GENOTYPE

	0 0 0	11 11 11 11				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
52	GI	241	TACCCTTGGC	CCCTCTATGG	TACCCITGGC CCCICIATGG CAATGAGGGC TGCGGGTGGC CGGGATGCT CCCCAATGAGGGC TGCGGGTGGC CAATGAGGGG CAATGAGGGG TGCGGGTGGG CAATGAGGGG CAATGAGGGG TGCGGGTGGG CAATGAGGGG CAATGAGGGG TGCGGGTGG CAATGAGGGG CAATGAGGGG CAATGAGGGG CAATGAGGGG CAATGAGGGG CAATGAGGG CAATGAGGGG CAATGAGGG CAATGAGGGG CAATGAGGG CAATGAGGG CAATGAGG CAATGAGGG CAATGAGG CAATGAGG CAATGAGG CAATGAGG CAATGAGG CAATGAGG CAATGAGG CAATGAGGGG CAATGAGG CAATGAG CAATGAGG CAATGAGG CAATGAG CAATGAG CAATGAG CAATGAG CAATGAGAG CAATGAG CAA	TGCGGGTGG		
53.		241	TACCCTTGGC	CCCTCTATGG	TACCCTTGGC CCCTCTATGG CAATGAGGGT	TGCGGGTGGG CGGGATGGCT	CGGGATGGCT	
54		241	TACCCCTGGC	CCCTCTATGG	TACCCCTGGC CCCTCTATGG TAATGAGGGT	TGCGGATGGG CGGGATGCT	CGGGATGGCT	ついていない
55		241	TACCCTTGGC	CCCTCTATGG	TACCCTTGGC CCCTCTATGG CAATGAGGGC	TGCGGGTGGG CGGGATGCTT	CGGGATGGCT	
26		241	TACCCTTGGC	CCCTCTATGG	TACCCTTGGC CCCTCTATGG CAATGAGGGT	TGCGGGTGGG CGGGATGGCT	CGGGATGGCT	つついしいしいしい
57		241	TACCCTTGGC	CCCTCTATGG	TACCCITGGC CCCTCTATGG CAATGAGGGT TGCGGGTGGG CGGGATGGCT	TGCGGGTGGG	CGGGATGCCT	CCIGICICC
11 11 11 11 11 11 11 11 11 11 11 11 11	11 11 11	11 11 11 11 11 11 11 11 11 11 11 11 11						
28	GII	241	TACCCTTGGC	CCCTCTATGG	TACCCTTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG CAGGATGGT FCTGTATA	ATGGGGTGGG	CAGGATGGTT	しいしくしょうようし
59	•	241	TACCCTTGGC	CCCTCTATGG	TACCCTTGGC CCCTCTATGG CAACGAGGGT	ATGGGTGGG CAGGATGGCT	CAGGATGGCT	
09	•	241	TACCCTTGGC	TACCCTTGGC CCCTCTATGG	CAACGAGGGT	ATGGGGTGGG CAGGATGGCT	CAGGATGGCT	ひつしゃしむししし
61		241	TACCCTTGGC	CCCTCTATEG	TACCCTTGGC CCCTCTATGG CAATGAGGGT		CAGGGTGGCT	りついていたびたひし
62		241	TATCCTTGGC	CCCTCTATGG	TATCCTTGGC CCCTCTATGG CAATGAGGGT	CTGGGGTGG CAGGATGGTT	CAGGATGGCT	ついしゃしたじたしい
63		241	TACCCTTGGC	CCCTCTATGG	TACCCTTGGC CCCTCTATGG CAATGAGGGT	ATGGGGGGG CAGGATGCT	CAGGATGGCT	りつつなつよりようし
64		241	TACCCCTGGC	CCCTCTATGG	TACCCCTGGC CCCTCTATGG CAATGAGGGT ATGGGGTGGG CAGGATGGCT	ATGGGGTGGG	CAGGATGGCT	
	11 11 11 11 11	## ## ## ## ## ## ## ## ## ## ## ## ##				11 11 11 11 11 11 11 11	91 11 11 11 11 11 11 11	
65	GIII	241	TATCCTTGGC	CCCTGTATGG	TATCCITGGC CCCIGIAIGG GAAIGAGGGI CICGGCIGGG CAGGGIGGCI CCTGTCCCC	CICGGCIGGG	CAGGGTGGCT	CCTGTCCCC
99		241	TACCCTTGGC	CCCTGTATGG	TACCCTTGGC CCCTGTATGG GAATGAGGGT CTCGGCTGGG CAGGGTGGCT CCTGTCCCCC	CICGGCIGGG	CAGGGTGGCT	CCIGICCCC
	11 11 11 11 11 11 11 11							

18/2/

Fig. 5f

CORE REGION (6/9)

GENOTYPE

SEQUENCE ID NUMBER

		301	CGTGGCTCTC	GGCCTAGCTG			**************************************
53		301	CGTGGCTCTC	GGCCTAGITG	GGGCCCCACA	GACCCCCGGC	GGCCTAGITG GGGCCCCACA GACCCCCGC GTAGGICGCG CAAITIGGGT
		301	CGTGGCTCTC		GGCCIAGITG GGGCCCIACA GACCCCCGGC GTAGGTCGC	GACCCCCGGC	GTAGGTGGCG CAAIIIGGGT
52		301	CGTGGCTCTC		GGCCIAGCIG GGGCCCCACA GACCCCCGGC GTAGGTCGCG	GACCCCCGGC	
56		301	CGCGGCTCTC		GGCCIAACIG GGGCCCACA GACCCCGGG GTAGGTGCA	GACCCCGGC	
21		301	CGTGGCTCTC	GGCCTAGCTG	GGGCCCCACA	GACCCCCGGC	GGCCTAGCTG GGGCCCCACA GACCCCCGGC GTAGGTCGCG CAATTTGGGT
11 11 11 11 11 11 11 11					# # # # # # # # # # # # # # # # # # #		1
58	GII	301	CGTGGCTCTC	GGCCTAGTTG	GGGCCCCACG	GACCCCCGGC	GGCCTAGITG GGGCCCCACG GACCCCCGC GTAGGTCCC TAATTAGGT
59		301	CGIGGCICIC		GGGCCCCACG	GACCCCGGC	GGCCTAGITG GGGCCCTACG GARRERER GTAGGREGG TAATATAGGT
09	•	301	CGCGGCTCCC		GGCCTAGTTG GGGCCCCACG GAPTOTTGGC GAAGGTCGC	GACTCTGGC	GINGGE TANITIEGEL
61		301	Céceecree		GGCCTAGTTG GGGCCCCACA GACCTCCGC GTAGGTCGC	CACCCCCCC	
62		301	CGCGGCTCTC	GGCCTAGCTG	GGGCCTACC GACCCCGC GTAGGTGCC	GACTOCOCC	
63		301	CGTGGTTCTC	GGCCTAGTTG	GGCCTAGTTG GGGCCCCACG GACCCCCC CTAGGTCCC	CACCCCCC	
64		301	CGCGGCTCCC	GGCCTAGTTG	GGCCCCAAA	GACTCTGGC	CGCGCCTCCC GGCCTAGTTG GGGCCCCAAA GACTCCCGCC GTAGGTCCCC TAATIIGGGT
61 61 81 81 81 81 81 81 81 81 81	11 11 11 11 11 11 11	11 11 11 11 11	# # # # # # # # # # # # # # # # # # #				
65	GIII	301	CGIGGCICIC	GCCCTTCATG	GGGCCCCACT	GACTCCCGC	CGTGGCTCTC GCCCTTCATG GGGCCCCACT GALTHURGAL ATAGATAGA CAAAAAAAAAAAAAAAAAAAAAAAAAAAA
99		301	CGCGGTTCTC	GCCCTTCATG	GGGCCCCACT	GACCCCGGC	CGCGGTTCTC GCCCTTCATG GGGCCCCACT GACCCCCGGC ATAGATCACG CAACTTGGGT
		11 11 11 11	11 11 11 11 11 11 11 11 11 11	## ## ## ## ## ## ## ## ## ## ## ## ##		11 11 11 11 11 11 11	

Fig. 5g

CORE REGION (7/9)

GENOTYPE

SEQUENCE ID NUMBER

25	GI	361	361 AAGGICATCG AIACCCTIAC GIGCGGCTIC GCCGACCICA IGGGGIACAT ACCGCTCGTC	ATACCCTTAC	GIGCGGCITC	GCCGACCTCA	AAGGICAICG AIACCCIIAC GIGCGGCIIC GCCGACCICA IGGGGIACAI ACCGCICAI	ACCGCTCGTC
53		361	AAGGTCATCG	ATACCTTAC	AAGGTCATCG ATACCCTTAC GTGCGCTTC GCCGACCACA	ペンペンンペジンンジ	ひもりひもりりしく よくしくもりりりし	
) (34430000	*************	THOROTOPI	ארנפרזנפזנ
54		361	AAGGTCATCG	ATACCCTCAC	AAGGTCATCG ATACCCTCAC GIGGGGCTTC	GCCGACCACA		TGGGGTACAT TCCGCTCGTT
52		361	AAGGTCATCG	ATACCCTTAC	AAGGICAICG AIACCCITAC GIGCGGCTIC GCCGACCICA	GCCGACCTCA		TGGGGTACAT ACCGCTCGTC
26		361	AAGGICAICG	ATACCCTTAC	AAGGICAICG AIACCCIIAC GIGCGGCIIC GCCGACCICA	GCCGACCTCA		ACCGCTCGTC
57		361	AAGGTCATCG	ATACCCTTAC	GIGCGCCIIC	GCCGACCTCA		ACCGCTCGTC
11 11 11 11 11 11 11 11 11 11 11	11 11 11 11 11	11 11 11 11						
28	GII	361	AAGGTCATCG	ATACCCTCAC	ATGCGGCTTC	GCCGACCTCA	AAGGICAICG AIACCCICAC AIGCGGCIIC GCCGACCICA IGGGGIACAI ICCGCICGIC	TCCGCTCGTC
59		361	AAGGTCATCG	ATACCCTCAC	ATGCGGCTTC	GCCGACCTCA	AAGGICAICG AIACCCICAC AIGCGGCIIC GCCGACCICA IGGGGIACAI ICCGCIIGIC	TCCGCTTGTC
09	•	361	AAGGTCATCG	ATACCCTCAC	AAGGTCATCG ATACCCTCAC ATGCGGCTTC GCCGACCTCA	GCCGACCTCA	TGGGGTACAT	TGGGGTACAT TCCGCTCGTC
61		361	AAGGTCATCG	ATACCCTCAC	AAGGTCATCG ATACCCTCAC ATGCGGCTTC	GCCGACCTCA		TCCGCTCGTC
62		361	AAGGTCATCG	ATACCCTTAC	AAGGTCATCG ATACCCTTAC GIGGGCTTC GCCGACCTCA	GCCGACCTCA		TGGGGTACAT TCCGCTCGTC
63		361	AAGATCATCG	ATACCCTCAC	AAGATCATCG ATACCCTCAC GIGCGGCTTC GCCGACCTCA	GCCGACCTCA		TGGGGTACAT TCCGCTCGTC
64		361	AAGGTCATCG	ATACCCTCAC	Argegerre	GCCGACCTCA		したいとしていること
11 56 69 10 10 11	# # # # # # # # # # #	11 11 11 11 11						
9	GIII	361	AAGGTCATCG	ATACCCTAAC	GTGCGGTTTT	GCCGACCTCA	AAGGICAICG AIACCCIAAC GIGCGGIIII GCCGACCICA IGGGGIACAI ICCCGICAIC	TCCCGTCATC
99		361	AAGGTCATCG	ATACCCTAAC	AAGGICAICG AIACCCIBAC GIGIGGITIT GCCGACCICA IGGGGIACAT ICCCGICA	GCCGACCTCA	TGGGGT&C&T	よりしんじししん

	} 	16 11 11 18 18 18				# # # # # # # # # #	11 11 11 11 11 11 11 11 11 11 11 11 11	
ID NUMBER	GENOTYP							
52	61	421	421 GGCGCCCCTC TTGGAGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC	TTGGAGGCGC	GGCGCCCCTC TTGGAGGCGC TGCCAGGGCC CTGGCGCATG GCGTCCGGGT TCTGGAAGAC	CTGGCGCATG	GCGTCCGGGT	TCTGGAAGAC
53		421	CCCCCTC	GGCGCCCTC TTGGAGGCGC	TGCCAGGGCT	CIGGCGCAIG	TGCCAGGGCT CTGGCGCATG GCGTCCGGGT	TCTGGAAGAC
54		421	CCCCCTC	TTGGGGGGCGC	TGCCAGGGCC	CTGGCGCATG	TGCCAGGGCC CTGGCGCATG GCGTCCGGGT	TCTGGAAGAC
55		421	CGCGCCCTC	TTGGAGGCGC		CTGGCGCATG	GCGTCCGGGT	
56		421	CCCCCTC	TTGGAGGCGC		CTGGCGCATG	TGCCAGGGC CTGGCGCATG GCGTCCGGGT	
57		421	GGCGCCCTC	GGCGCCCTC TTGGAGGCGC	TGCCAGGGCC	CTGGCGCATG	TGCCAGGGCC CTGGCGCATG GCGTCCGGGT	TCTGGAAGAC
58 GII		421	**************************************	GGCGCCCCC TTAGGGGCGC	TGCCAGGGCC	TTGGCGCATG	TGCCAGGGCC TTGGCGCATG GCGTCCGGGT TCTGGAGGAC	TCTGGAGGAC
59		421	ລລວລວລລອອ	GGCGCCCC TAGGGGGCGC		CTGGCACATG	TGCCAGGGCC CTGGCACATG GTGTCCGGGT TCTGGAGGAC	TCTGGAGGAC
9	•	421	ລວລວລວລອ	TAGGGGGCGC		CTGGCACATG	GIGICCGGGI	TCTGGAGGAC
61		421	೧೦೦೦೦೦೦೦೦ ೦೦	GECECECE TAGGGGGGGG	-	TGCCAGGGCC CTGGCGCATG	CCGTCCGGGT	TCTGGAGGAC
62		421	ວວວວວວວວວ	GGCGCCCCC TTAGGGGCGC	TGCCAGGGCC	CTGGCGCATG	GCGTCCGGGT	TCTGGAGGAC
63		421	ວວວວວວວວອ	GCCCCCCC TAGGGGCGC		CTGGCGCATG	receasese cresceears sceresser	TCTGGAGGAC
64		421	LOCOCCCL	GGCGCCCCT TAGGGGGCGC		CTGGCGCATG	TGCCAGGGCC CTGGCGCATG GCGTCCGGGT	TCTGGAGGAC
# # # # # # # # # # # # # # # # # # #	HERERES ES	421	**************************************	TTGGAGGCGT	GGCGCCCCCG TTGGAGGCGT TGCCAGAGCT CTCGCCCACG GAGTGAGGGT TCTGGAGGAT	CTCGCCCACG	GAGTGAGGGT	TCTGGAGGAT
99		421	じしししししいし	おびよびではなりなか かしししししのもない	ひしかんかんしかひし		ひゃりゃくりかいお おうじょくじかりじゅ じきくりじりかかし りしじくじゃしりじし	

Fig. 5i

CORE REGION (9/9)

ID NUMBER GENOTYPE

1

3	15	481	GGCGTGAACT ATGCAACAGG GAACCTTCCT GGTTGCTCTT TCTCTATCTT CCTTCTGGCC CTGCTCTTT	ATGCAACAGG	GAACCITCCI	GGTTGCTCTT	TCTCTATCTT	CCTTCTGGCC	はいまいましましましまし
53		481	GGCGTGAACT	ATGCAACAGG	ATGCAACAGG GAACCTTCCT GGTTGCTCTT TCTCTATCTT	GGTTGCTCTT	TCTCTATCTT	Correage creerere	CTGCTCTCT
54		481	GGCGTGAACT	ATGCAACAGG	AIGCAACAGG GAAICTICCI	GETTGCTCTT	TCTCTATCTT		CTTCTCTCT
52		481	GGCGTGAACT	ATGCAACAGG	ATGCAACAGG GAACCTTCCC	GGTTGCTCTT	TCTCTATCTT		ようようようじょう
56		481	GGCGTGAACT	ATGCAACAGG	ATGCAACAGG GAACCTTCCT		TCTCTATCTT	CCTTCTGGCC	CTGCTCTCT
21		481	GGCGTGAACT	ATGCAACAGG		GGTTGCTCTT	TTTCTATTT	CCTTCTGGCC	CIGCICICI
81 81 81	# #	11 11 11 11 11			## ## ## ## ## ## ## ## ## ## ## ## ##		## ## ## ## ## ## ## ## ## ## ## ## ##	计计划转移作机制程序 经工程证券 医多种性神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经	11 11 11 11 11 11 11 11
28	GII	481	GGCGTGAACT	ACGCAACAGG	GGCGTGAACT ACGCAACAGG GAATCTGCCC GGTTGCTCCT TTTCTATCTT	GGTTGCTCCT	TTTCTATCTT	cererreger creerere	CIGCIGICC
59		481	GGCGTGAACT	ATGCAACAGG	GGCGIGAACT ATGCAACAGG GAATTIGCCC GGTTGCTCTT ICTCTAICTT	GGTTGCTCTT	TCTCIATCIT		CIGCIGICC
90	•	481	GGCGTGAACT	ATGCAACAGG	ATGCAACAGG GAATTTGCCT	GGTTGCTCTT	TCTCTATCTT	CCTCTTGGCT	CTGCTGTCC
61		481	GGCGTGAACT		ATGCAACAGG GAATCTGCCC	GGTTGCTCTT	TCTCTATCTT	CCTCTTGGCT	
62		481	GGCGTGAACT	ATGCAACAGG	ATGCAACAGG GAATTTGCCC	GGTTGCTCTT	TCTCTATCTT	CCTCTTGGCT	
63		481	GGCGTGAACT	ATGCAACAGG	ATGCAACAGG GAATCTGCCC	GGTTGCTCCT	TITCIAICIT		TIGCIGICC
64		481	GGCGTGAACT		ATGCAACAGG GAATCTACCC	GGTTGCTCTT		CCICIIGGCI	
	nnenenenen Gitt		THEFT BEST TO THE THEFT THE THEFT THEFT THEFT TO THE THEFT THE THEFT THE THEFT THEFT THEFT THEFT THE THEFT THE THEFT THEFT THE THEFT THE THEFT T	***************************************		***************************************		COCCASA TO AGOVANCE TO A SAMPROS CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR C	
		481	GGGATAAATT	GGGATAAATI ATGCAACAGG GAATCTGCCC	GAATCIGCCC	117777	TETETATET	TCICITAGCC	CICIIGICI

549 Total