

Correspondence analysis

Michael Friendly
Psych 6136

http://friendly.github.io/psy6136

Correspondence analysis: Basic ideas

Analog of PCA for frequency data

- Account for maximum % of χ^2 in few (2-3) dimensions
- Finds scores for row (x_{im}) and col (y_{im}) categories on these dimensions
- · Uses Singular Value Decomposition of residuals from independence,

$$d_{ij} = (n_{ij} - \widehat{m}_{ij})/\sqrt{\widehat{m}_{ij}}$$
 \longrightarrow $d_{ij} = \sqrt{n} \sum_{m=1}^{M} \lambda_m x_{im} y_{jm} \leftrightarrow \mathbf{D} = \mathbf{X} \mathbf{\Lambda} \mathbf{Y}^{\mathsf{T}}$

- Optimal scaling: each pair of scores for rows (x_{im}) and col (y_{jm}) have highest possible correlation $(= \lambda_m)$
- Plots of the row and column scores show associations
 - Row point (x_{im}) near col point $(y_{im}) \rightarrow$ positive association $d_{ii} > 0$

2

CA software for R

- ca package
 - ca() two-way tables; plot(ca()) for graphs
 - mjca() multiple & joint CA
- FactoMineR & factoextra packages
 - CA() many options for graphical displays
 - fviz_ca() uses ggplot2; can repel point labels
- ade4 package
 - dudi.coa() very nice graphics, but somewhat quirky

Example: Hair color, eye color

```
> library(ca)
> haireye <- margin.table(HairEyeColor, 1:2)
> (haireye.ca <- ca(haireye))
 Principal inertias (eigenvalues):
          0.208773 0.022227 0.002598
                                          \chi^2 % for dimensions
Percentage 89.37% 9.52%
                            Red Blond
         Black
                Brown
         0.1824 0.4831 0.1199 0.215
         0.5512
                0.1595
        0.0554 0.0123 0.0151 0.151
Dim. 1 -1.1043 -0.3245 -0.2835 1.828
                                           Hair category scores, Dim1-2
        1.4409 -0.2191 -2.1440 0.467
         Brown Blue Hazel
         0.3716 0.363 0.1571
ChiDist 0.5005 0.554 0.2887
Inertia 0.0931 0.111 0.0131
Dim. 1 -1.0771 1.198 -0.4653 0.3540
                                           Eye category scores, Dim1-2
        0.5924 0.556 -1.1228 -2.2741
```

plot(haireye.ca, lines=TRUE)

- Rough interpretation: row/col points "near" each other are positively associated (independence residuals d_{ii} >> 0)
- Dim 1: 89.4% of χ^2 (dark \rightarrow light)
- Dim 2: 9.5% of χ^2 (Red/Green vs. others)

Hair color, Eye color data: Compare with mosaic display

- The main dark-light dimension is reflected in the opposite-corner pattern of residuals
- The 2nd dimension is reflected in deviations from this pattern (e.g., Red hair—Green eyes)
- CA is "accounting for" residuals (deviations) from independence

Row & column profiles

- For a two-way table, row profiles & column profiles give relative proportions of the categories
- An association is present to the extent that the row/col profiles differ
- Profiles add to 1.0 (100%), and can be visualized in profile space

Example: Toothpaste purchases by region

120 people in three regions where asked which of four brands of toothpaste, A–D, they had most recently purchased. Is there a difference among regions?

```
toothpaste

## Region

## Brand R1 R2 R3

## Brand A 5 5 30

## Brand B 5 25 5

## Brand C 15 5 5

## Brand D 15 5 0
```

- Row profiles pertain to the differences among brand preference
- Column profiles pertain to the differences among regions

Region					
Brand		R1	R2	R3	Sum
Brand	Α	12.5	12.5	75.0	100
Brand	В	14.3	71.4	14.3	100
Brand	С	60.0	20.0	20.0	100
Brand	D	75.0	25.0	0.0	100

Region				
Brand		R1	R2	R3
Brand	A	12.5	12.5	75.0
Brand	В	12.5	62.5	12.5
Brand	С	37.5	12.5	12.5
Brand	D	37.5	12.5	0.0
Sum		100.0	100.0	100.0

There is clearly an association: the row (& column) profiles differ

Plotting profiles

In this simple example we can plot the row profiles as points in 3D space, with axes corresponding to regions, R1, R2, R3

- Each brand is positioned in this space according to its proportions for the regions
- Because proportions sum to 100%, all points lie in the dashed plane PQR
- The Average profile is at the (weighted) centroid
- If no association, all brands would appear at the centroid

Plotting profiles

Analogous 2D plot is a trilinear plot that automatically scales the R1–R3 values so they sum to 100%

- The Avg profile has coordinates of 33.3% for each region
- Brand preferences by region can be seen by their positions wrt the R1–R3 axes
- This suggests that differences among brands can be measured by their (squared) distances from the centroid, weighted by their row margins (mass)
- Physical analogy suggests the term inertia for this weighted variation

11

10

12

CA solution

The CA solution has at most min(r – 1, c -1) dimensions The 2D solution here is exact, i.e., accounts for 100% of Pearson χ^2

Pearson $\chi^2 = \sum \lambda^2 / N$

```
> # reproduce chi-square
> sum(tp.ca$sv^2) * sum(toothpaste)
[1] 79.607
```

CA solution

```
res <- plot(tp.ca)
polygon(res$cols, border="red", lwd=2)</pre>
```


Profiles & inertia

Exhibit 4.2: A series of data tables with increasing total inertia. The higher the total inertia, the greater is the association between the rows and columns, displayed by the higher dispersion of the profile points in the profile space. The values in these tables have been chosen specifically so that the column sums are all equal, so the weights in the χ^2 -distance formulation are the same, and hence distances we observe in these maps are true χ^2 -distances.

Singular value decomposition

The singular value decomposition (SVD) is a basic technique for factoring a matrix and for matrix approximation

For an $m \times n$ matrix **X** of rank $r \le \min(m, n)$ the SVD of **X** is:

14

16

Properties of the SVD

- U: columns are eigenvectors of XX^T and form an orthonormal basis for observation profiles such that U^TU = I
- Λ: diagonal, r singular values = sqrt eigenvalues of both XX^T and X^TX
- V: columns are eigenvectors of X^TX , orthonormal: $V^TV = I$

SVD: Matrix approximation

- Let **X** be an $m \times n$ matrix such that rank(**X**) = r
- If $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_r$ are the singular values of **X**, then $\hat{\mathbf{X}}$, the rank q approximation of **X** that minimizes $||\mathbf{X} \hat{\mathbf{X}}||$, is

$$\hat{\mathbf{X}}_{m \times n} = \sum_{i=1}^{q} \lambda_{i} \begin{pmatrix} u_{i1} \\ \vdots \\ u_{im} \end{pmatrix} \begin{pmatrix} v_{i1} & \cdots & v_{in} \end{pmatrix} = \lambda_{1} u_{1} v_{1}^{T} + \cdots + \lambda_{q} u_{q} v_{q}^{T}$$
row scores

a sum of q rank=1 (outer) products. The variance in **X** accounted for each term is λ_1^2

CA notation & terminology

Notation:

• Contingency table: $N = \{n_{ij}\}$

• Correspondence matrix (cell probabilities): $\mathbf{P} = \{p_{ij}\} = \mathbf{N}/n$

• Row/column masses (marginal probabilities): $r = \sum_{i} p_{ij}$ and $c = \sum_{i} p_{ij}$

• Diagonal weight matrices: $\mathbf{D}_r = \operatorname{diag}(\mathbf{r})$ and $\mathbf{D}_c = \operatorname{diag}(\mathbf{c})$

The SVD is then applied to the correspondence matrix of cell probabilities as:

$$P = AD_{\lambda}B^{T}$$

where

- Singular values: D_λ = diag (λ) is the diagonal matrix of singular values
 λ₁ ≥ λ₂ ≥ · · · ≥ λ_M
- Row scores: $\mathbf{A}_{I \times M}$, normalized so that $\mathbf{A} \mathbf{D}_r^{-1} \mathbf{A}^T = \mathbf{I}$
- Column scores: $\mathbf{B}_{J\times M}$, normalized so that $\mathbf{B}\mathbf{D}_c^{-1}\mathbf{B}^{\mathsf{T}}=\mathbf{I}$

17

Principal & standard coordinates

Two types of coordinates are used in CA, based on re-scalings of A and B. Principal coordinates are most commonly used in plotting CA solutions.

Principal coordinates

Coordinates of the row (\mathbf{F}) and column (\mathbf{G}) profiles wrt their own principal axes

$$F = D_r^{-1}AD_{\lambda}$$
 scaled so that $F^TD_rF = D_{\lambda}$
 $G = D_c^{-1}BD_{\lambda}$ scaled so that $G^TD_cG = D_{\lambda}$

- Defined so that the inertia along each axis is the corresponding singular value, λ_i,
- i.e., weighted average of squared principal coordinates = λ_i on dim. i
- The joint plot in principal coordinates, F and G, is called the symmetric map because both row and column profiles are overlaid in the same coordinate system.

Geometric & statistical properties

- Nested solutions: CA solutions are nested, meaning that the first two dimensions of a 3D solution will be identical to the 2D solution (similar to PCA)
- Centroids at origin: In both principal coordinates and standard coordinates the points representing the row and column profiles have their centroids (weighted averages) at the origin.
 - The origin represents the (weighted) average row profile and column profile.
- Chi-square distances: In principal coordinates, distances between two row profiles, r_i and $r_{i'}$ are χ^2 distances
 - The squared difference $(r_{ij} r_{i'j})^2$ between two row profiles is inversely weighted by the column frequency, to account for the different relative frequency of the column categories.
- Plotting: For distances to be interpretable, it's crucial to scale the axes equally, so 1^{cm} is the same on both axes (aspect ratio = 1). This is standard in most packages.

Standard coordinates

Standard coordinates

The standard coordinates (Φ, Γ) are a rescaling of the principal coordinates to unit inertia along each axis,

$$\Phi = \mathbf{D}_r^{-1} \mathbf{A}$$
 scaled so that $\Phi^T \mathbf{D}_r \Phi = \mathbf{I}$
 $\Gamma = \mathbf{D}_c^{-1} \mathbf{B}$ scaled so that $\Gamma^T \mathbf{D}_c \Gamma = \mathbf{I}$

- The weighted average of squared standard coordinates = 1 on each dimension
- An asymmetric map shows one set of points (say, the rows) in principal coordinates and the other set in standard coordinates.

•

19

The ca package in R

ca () calculates CA solutions, returning a "ca" object with all the details

The result contains the standard row coordinates (rowcoord: Φ) and column coordinates (colcoord: Γ) used in plotting

> haireye.ca\$colcoord							
	Dim1	Dim2	Dim3				
Brown	-1.077	0.592	-0.4240				
Blue	1.198	0.556	0.0924				
Hazel	-0.465	-1.123	1.9719				
Green	0.354	-2.274	-1.7184				

ca plots

The plot() method provides a wide variety of scalings (map=), with different interpretative properties. Some of these:

- "symmetric" both rows & cols in principal coordinates (default)
- "rowprincipal" or "colprincipal" asymmetric maps with rows in principal coordinates and cols in std coordinates, or vice versa
- "symbiplot" scales both rows and cols to have variances equal to the singular value

The mjca() function is used for multiple correspondence analysis (MCA) for 3+ way tables. Has analogous print(), summary() and plot() methods

• vcdExtra::mcaplot() does a nicer job of plotting MCA solutions

Asymmetric row/col principal plots are biplots – can interpret the projection of points on vectors for the other variable

```
plot(haireye.ca, map="rowprincipal", arrows=c(FALSE,TRUE))
plot(haireye.ca, map="colprincipal", arrows=c(TRUE,FALSE))
```


Optimal category scores

- CA has a close relation to canonical correlation analysis, applied to dummy variables representing the categories
- The singular values, λ_i , are the correlations between the category scores
 - Assign Dim 1 scores, X1 and Y1 to the row/column categories: → Max. possible correlation, λ₁
 - Assign Dim 2 scores, **X**2 and **Y**2 to the row/column categories: \rightarrow Max. possible correlation, λ_2 , but uncorrelated with **X**1, **Y**1
 - All association between row/col categories is captured by the scores

24

- This optimal scaling interpretation can be used to quantify categorical variables, particularly if Dim 1 is large
- Mosaics: Permute rows / cols by Dim 1 scores

Optimal category scores

```
> haireye.ca <- ca(haireye)
> round(haireye.ca$sv, 3)
[1] 0.457 0.149 0.051
```

The singular values λ_i = canonical correlations

To demonstrate category scores, extract row/col coordinates to a data frame

```
HE.df <- as.data.frame(haireye)

RC <- haireye.ca$rowcoord  # row coordinates

CC <- haireye.ca$colcoord  # col coordinates

Y1 <- RC[match(HE.df$Hair, haireye.ca$rownames), 1]  # Dim 1

X1 <- CC[match(HE.df$Eye, haireye.ca$colnames), 1]

Y2 <- RC[match(HE.df$Hair, haireye.ca$rownames), 2]  # Dim 2

X2 <- CC[match(HE.df$Eye, haireye.ca$colnames), 2]

HE.df <- cbind(HE.df, X1, Y1, X2, Y2)
```

Optimal category scores

```
> HE.df <- cbind(HE.df, X1, Y1, X2, Y2)
> print(HE.df, digits=3)
   Hair Eye Freq
                     X1
  Black Brown 68 -1.077 -1.104 0.592 1.441
  Brown Brown 119 -1.077 -0.324 0.592 -0.219
    Red Brown 26 -1.077 -0.283 0.592 -2.144
                7 -1.077 1.828 0.592 0.467
4 Blond Brown
13 Black Green
                5 0.354 -1.104 -2.274 1.441
14 Brown Green
               29 0.354 -0.324 -2.274 -0.219
15 Red Green
               14 0.354 -0.283 -2.274 -2.144
16 Blond Green 16 0.354 1.828 -2.274 0.467
```

Calculate Freq-weighted correlations. All are zero except $r(X1, Y1) = \lambda_1 \& r(X2, Y2) = \lambda_2$

25

Permuting for a mosaic

Permuting for a mosaic

The seriate package has a CA method to permute rows/cols of a df or matrix

library(seriation)
order <- seriate(housetasks, method = "CA")
ht <- permute(housetasks, order, margin=1)
mosaic(ht, shade = TRUE, ...)

Alpha ordered

CA ordered

Simultaneous linear regression

Assign linear scores (1-4) X1 to eye color and Y1 to hair color

- Lines connecting the weighted (conditional) means of Y1 | X1 and X1 | Y1 are not-linear
- The scatterplot uses bubble symbols showing frequency in each cell
- Is it possible to assign row and column scores so that both regressions are linear?

Simultaneous linear regressions

Yes, use CA scores on the first dimension

- The regression of Y1 on X1 is linear, with slope λ₁
- The regression of X1 on Y1 is linear, with slope $1/\lambda_1$
- λ₁ is the (canonical) correlation between X1 and Y1
- The angle between the two lines would be 0 if perfect correlation
- The conditional means (dots) are the principal coordinates

30

Example: Mental impairment & parent' SES

Data on mental health status of 1660 young NYC residents, by parents' SES, a 6 x 4 table. Is higher SES associated with better kids' mental health?

Both ses and mental are ordered factors in a frequency data frame

For ca(), convert this to a table using xtabs()

```
> (mental.tab <- xtabs(Freq ~ ses + mental, data=Mental))
  mental
ses Well Mild Moderate Impaired
     64
          94
                   58
     57
          94
                   54
                            40
     57 105
                   65
                            60
     72
         141
                   77
                            94
     36
          97
                   54
                            78
     21
          71
                   54
```

Mental data: CA solution

- The exact CA solution requires min(r-1, c-1) = 3 dimensions
- Total Pearson χ^2 is $n\Sigma \lambda_i^2 = 1660 \times 0.0277 = 45.98$ with 15 df
- Of this, 93.9% is accounted for by the 1st dimension

Mental data: CA plot

plot(mental.ca, lines = TRUE)

Category spacing:

SES: perhaps collapse categories (1,2) ??

Mental: Smaller diff betw. Mild, Moderate ??

33

35

Looking ahead

- CA is largely an exploratory method row/column scores are not parameters of a statistical model; no confidence intervals
- Only rough tests for the number of CA dimensions
- Can't test a hypothesis that the row/column scores are have some particular spacing (e.g., are mental and ses equally spaced?)
- These questions can be answered with specialized loglinear models
- Nevertheless, plot(ca(table)) gives an excellent quick view of associations

Multi-way tables

Correspondence analysis can be extended to *n*-way tables in several ways:

Stacking approach

- n-way table flattened to a 2-way table, combining several variables "interactively"
- Each way of stacking corresponds to a *loglinear model*
- Ordinary CA of the flattened table → visualization of that model
- Associations among stacked variables are not visualized

Multiple correspondence analysis (MCA)

- Extends CA to n-way tables
- Analyzes all pairwise bivariate associations
- Can plot all factors in a single plot
- An extension, joint correspondence analysis, gives a better account of inertia for each dimension

Multi-way tables: Stacking

A 3-way table of size $I \times J \times K$ can be sliced and stacked as a two-way table in several ways

- The variables combined are treated "interactively"
- Each way of stacking corresponds to a loglinear model
 - $(I \times J) \times K \rightarrow [AB][C]$
 - $I \times (J \times K) \rightarrow [A][BC]$
 - $J \times (I \times K) \rightarrow [B][AC]$
- Only the associations in separate

 [] terms are analyzed and displayed
- The stacked table is analyzed with ordinary CA of the two-way stacked table

Interactive coding in R

Data in table or array form: use

```
as.matrix(structable(rows ~ cols))
```

 Data as frequency data frame: use interaction() or paste() followed by xtabs()

```
mydf$AB <- interaction(mydf$A, mydf$B, sep='.')  # levels: A.B
mydf$AB <- paste(mydf$A, mydf$B, sep=':')  # levels: A:B
...
mytab <- xtabs(Freq ~ AB + C, data=mydf)  # [A B] [C]</pre>
```

37

Suicide rates in Germany

```
> suicide.tab <- xtabs(Freq ~ age sex + method2, data=Suicide)
> suicide.tab
       method2
age sex poison gas hang drown gun knife jump other
 10-20 F 921 40 212 30 25
                                11 131
 10-20 M 1160 335 1524 67 512
                                 47 189
 25-35 F 1672 113 575 139 64
                                 41 276
 25-35 M 2823 883 2751 213 852
                                139 366
 40-50 F 2224 91 1481 354 52
                                 80 327
 40-50 M 2465 625 3936 247 875
                                183 244
 55-65 F 2283 45 2014 679 29 103 388
 55-65 M 1531 201 3581 207 477
                                154 273
 70-90 F 1548 29 1355 501 3
                                 74 383
 70-90 M 938 45 2948 212 229 105 268 147
```

- The CA analysis will be that of the loglinear model [Age Sex] [Method]
- It will show associations between the age—sex combinations and method of suicide
- Associations between age and sex will not be shown in this analysis

Example: suicide rates in Germany

- vcd::Suicide gives a 2 x 5 x 8 table of sex by age.group by method for 53,158 suicides in Germany, in a frequency data frame
- Use paste() to join age.group and sex → age_sex in the form '10-20 M'

```
> Suicide <- within (Suicide, {
   age sex <- paste(age.group, toupper(substr(sex,1,1)))</pre>
> head(Suicide)
 Freq sex method age age.group method2 age sex
1 4 male poison 10 10-20 poison 10-20 M
2 0 male cookgas 10
                         10-20
                                gas 10-20 M
   0 male toxicgas 10
                         10-20
                                  gas 10-20 M
4 247 male hang 10
                         10-20
                                hang 10-20 M
5 1 male drown 10
                         10-20 drown 10-20 M
6 17 male
            gun 10
                        10-20
                                  gun 10-20 M
```

Suicide rates in Germany

For this table χ^2 (63) = 8946. Of this, 92.6% is accounted for in the first two dimensions

40

> plot(suicide.ca)

- Dim 1: Sex
- · Dim 2: Age
- Can interpret method use by age-sex combination
- young M: gas, gun,
- · young F: poison

Compare with a mosaic plot, also fitting the model [Age Sex][Method]

DDAR Fig 6.7, p 238

(I permuted methods by CA Dim1 & deleted "Other")

41

42

44

Marginal tables & supplementary variables

- Supplementary variables provide a way to include more info in CA
 - An *n*-way table is collapsed to a marginal table by ignoring factors
 - Omitted variables can be included by treating them as supplementary
 - These are projected into the space of the marginal CA
- E.g., age by method, ignoring sex as the main analysis

```
> suicide.tab2 <- xtabs(Freq ~ age.group + method2, data=Suicide)
> suicide.tab2
         method2
age.group poison
                 gas hang drown gun knife jump other
    10-20
           2081
                  375 1736
                              97
                                  537
                                         58 320
                                            642
                                                  1038
    25-35
                  996 3326
                             352
                                  916
                                        180
    40-50
            4689
                  716 5417
                             601
                                  927
                                        263 571
                                                   839
                                                   590
    55-65
            3814
                  246 5595
                             886
                                  506
                                        257
                                             661
    70-90
            2486
                  74 4303
                             713 232
                                        179 651
```

Also have data on relation of sex and method

```
method2
age.group poison gas hang drown gun knife jump other
           2081
                 375 1736
                                537
   25-35
           4495 996 3326
                          352 916
                                     180 642 1038
                                                               Main analysis table
           4689
                716 5417
                          601 927
                                     263 571
   55-65
          3814 246 5595
                          886 506
                                     257 661 590
                          713 232
   70-90
          2486
                 74 4303
                                     179 651
sex poison gas hang drown gun knife jump other
  male 8917 2089 14740 946 2945 628 1340 2214 female 8648 318 5637 1703 173 309 1505 1070
                                                               Supplementary rows
```

Supplementary variables

Call ca(table, suprow =) to treat some rows as supplementary variables

The relation of age and method is now essentially 1 dimensional The inertia of Dim 1 here (0.604) is nearly the same as that of Dim 2 (0.596) for age in the stacked table

Plotting the solution shows points for row, col & supplementary rows

Ignoring Sex has collapsed Sim 1 (Sex) of the [Age Sex][Method] analysis Supp. points for Sex show the association of Method with Sex in this space

Multiple correspondence analysis

- Extends CA to n-way tables
- Useful when simpler stacking approach doesn't work well, e.g., 10 categorical attitude items
- Analyzes all pairwise bivariate associations. Analogous to:
 - Correlation matrix (numbers)
 - Scatterplot matrix (graphs)
 - All pairwise χ^2 tests (numbers)
 - Mosaic matrix (graphs)
- Provides an optimal scaling of the category scores for each variable
- Can plot all factors in a single plot
- An extension, joint correspondence analysis, gives a better account of inertia for each dimension

Example: Titanic data

Plot of MCA for the Titanic data

46

48

All 4 variables represented in a single plot

Dim 1: Sex

Dim 2: Class & Age

47 Dimension I (76.8%)

CA → MCA: Indicator & Burt

Two ways to think about MCA:

Indicator matrix (dummy variables)

- A given categorical variable, q, can be represented by an indicator matrix $\mathbf{Z}(n \times J_q)$ of dummy variables, $z_{ij} = 1$ if case i is in category j
- Let Z_1, Z_2, \dots, Z_Q be the indicator matrices for Q variables
- MCA is then a simple CA applied to the partitioned matrix $Z = [Z_1, Z_2, \dots, Z_Q]$

Burt matrix

• The Bert matrix is the product of the indicator matrix **Z** and its transpose

$$\boldsymbol{B} = \boldsymbol{Z}^{\mathsf{T}}\boldsymbol{Z}$$

 MCA can be defined using the SVD of B, giving category scores for all variables accounting for the largest proportion of all bivariate associations.

Indicator matrix: Hair Eye color

- For the hair-eye data, the indicator matrix **Z** has n=592 rows (observations) and 4 + 4 = 8 columns (categories).
 - Shown below in frequency form: h1 h4 indicators for hair color, e1—e4 for eve color
 - E.g., 1st row represents 68 observations with black hair and brown eyes

	Hair	Eye	Freq	h1	h2	h3	h4	e1	e2	e3	e4
1	Black	Brown	68	1	0	0	0	1	0	0	0
2	Brown	Brown	119	0	1	0	0	1	0	0	0
3	Red	Brown	26	0	0	1	0	1	0	0	0
4	Blond	Brown	7	0	0	0	1	1	0	0	0
5	Black	Blue	20	1	0	0	0	0	1	0	0
6	Brown	Blue	84	0	1	0	0	0	1	0	0
7	Red	Blue	17	0	0	1	0	0	1	0	0
8	Blond	Blue	94	0	0	0	1	0	1	0	0

Expand this to case form to get **Z** (592 x 8)

```
> Z <- expand.dft(haireye.df)[,-(1:2)]
> vnames <- c(levels(haireye.df$Hair), levels(haireye.df$Eye))
> colnames(Z) <- vnames
> dim(Z)
[1] 592 8
```

If the indicator matrix is partitioned as $\mathbf{Z} = [\mathbf{Z}_1; \mathbf{Z}_2]$, corresponding to the hair, eye categories, then the contingency table is given by $\mathbf{N} = \mathbf{Z}_1^\mathsf{T} \mathbf{Z}_2$.

```
> Z1 <- as.matrix(Z[,1:4])
> Z2 <- as.matrix(Z[,5:8])
> (N <- t(Z1) %*% Z2)
      Brown Blue Hazel Green
Black
        68
             20
                   15
Brown 119
             84
                   54
                         29
        26
           17
                   14
                         14
             94
Blond
                   10
                         16
```

- We can then use ordinary CA on the indicator matrix, Z
- Except for scaling, this is the same as the CA of N
- The inertia contributions differ, and this is handled better by MCA

```
Z.ca <- ca(Z)
res <- plot(Z.ca, what=c("none", "all")) # plus customization</pre>
```


50

The Burt matrix

For two categorical variables, the Burt matrix is

$$\boldsymbol{B} = \boldsymbol{Z}^{\mathsf{T}} \boldsymbol{Z} = \left[\begin{array}{cc} \boldsymbol{N}_1 & \boldsymbol{N} \\ \boldsymbol{N}^{\mathsf{T}} & \boldsymbol{N}_2 \end{array} \right] .$$

- N_1 and N_2 are diagonal matrices containing the marginal frequencies of the two variables
- The contingency table, **N** appears in the off-diagonal block

A similar analysis to that of the indicator matrix **Z** is produced by:

```
Burt <- t(as.matrix(Z)) %*% as.matrix(Z)
rownames(Burt) <- colnames(Burt) <- vnames
Burt.ca <- ca(Burt)
plot(Burt.ca)</pre>
```

- Standard coords are the same
- Singular values of B are the squares of those of Z

Multivariate MCA

For Q categorical variables, the Burt matrix is

$$m{B} = m{Z}^{\mathsf{T}} m{Z} = \left[egin{array}{cccc} m{N}_1 & m{N}_{[12]} & \cdots & m{N}_{[1Q]} \\ m{N}_{[21]} & m{N}_2 & \cdots & m{N}_{[2Q]} \\ dots & dots & \ddots & dots \\ m{N}_{[Q1]} & m{N}_{[Q2]} & \cdots & m{N}_Q \end{array}
ight]$$

- ullet The diagonal blocks $oldsymbol{N}_i$ contain the one-way marginal frequencies
- The off-diagonal blocks $N_{[ij]}$ contain the bivariate contingency tables for each pair (i,j) of variables.
- Classical MCA can be defined as a SVD of the matrix B
- It produces scores for the categories of all variables accounting for the greatest proportion of the bivariate associations in off-diagonal blocks in a small number of dimensions.

53

55

MCA properties

- The inertia contributed by a given variable increases with the number of response categories:
 - inertia $(Z_a) = J_a 1$
- The centroid of the categories for each variable is at the origin of the display.
- For a given variable, the inertia contributed by a given category increases as the marginal frequency in that category decreases.
 - Low frequency points therefore appear further from the origin.
- The category points for a binary variable lie on a line through the origin.

MCA example: pre- and extramarital sex

- PreSex data: the 2 x 2 x 2 x 2 table of gender, premarital sex, extramatrial sex and marital status (divorced, still married)
- The function mjca () provides several scalings for the singular values
- Here I use lambda="Burt"

MCA example: pre- and extramarital sex

Accounts for 76% of total inertia

Women less likely to report pre- and/or extra-marital sex

Divorced associated with preand extra- sex

 $\mathsf{Gender} \perp \mathsf{Marital}$

NB: This only analyzes bivariate associations, i.e., no 3-way associations

Inertia in MCA

- In simple CA, total inertia = $\sum \lambda_i^2 = \chi^2/n$
- \implies sensible to consider % inertia for each dimension

Not so straight-forward in MCA:

- For a given indicator matrix, Z_q , the inertia is $J_q 1$
- For all variables, with $J = \sum J_q$ categories, the total inertia of $Z = [Z_1, \dots, Z_Q]$ is the average of the inertias of the sub-tables

$$inertia(\mathbf{Z}) = \frac{1}{Q} \sum_{q} inertia(\mathbf{Z}_q) = \frac{1}{Q} \sum_{q} (J_q - 1) = \frac{J - Q}{Q}$$

- The average inertia per dimension is therefore 1/Q
- \implies Interpret dimensions with inertia > 1/Q (as in PCA: $\lambda > 1$)
- In analysis of the Burt matrix, average inertia is inflated by the diagonal blocks

58

60

Inertia in MCA

Two solutions:

Adjusted inertia

- Ignores the diagonal blocks in the Burt matrix
- Calculates adjusted inertia as

$$(\lambda_i^{\star})^2 = \left[\frac{Q}{Q-1}(\lambda_i^Z - \frac{1}{Q})\right]^2$$

• Express contributions of dimensions as $(\lambda_i^{\star})^2/\sum(\lambda_i^{\star})^2$, with summation over only dimensions with $(\lambda^Z)^2 > 1/Q$.

Joint correspondence analysis

- Start with MCA analysis of the Burt matrix
- Replace diagonal blocks with values estimated from that solution
- Repeat until solution converges, improving the fit to off-diagonal blocks

59

NB: JCA solutions aren't nested. I generally use adjusted inertia

MCA example: Survival on the *Titanic*

Analyse the Titanic data using ca::mcja()

- The default inertia method is lambda = "adjusted"
- Other methods: "indicator", "Burt", "JCA"

```
data(Titanic)
titanic.mca <- mjca(Titanic)
summary(titanic.mca, columns = FALSE)</pre>
```

Using adjusted inertia, the 2D solution accounts for $^{\sim}$ 83% of total, bivariate association.

Plot the solution with vcdExtra::mcaplot()

mcaplot(titanic.mca, legend=TRUE, legend.pos = "topleft")

Dim 1 perfectly aligned with Sex Also strongly aligned w/ survival & class

Dim 2: reflects class & age

 \rightarrow Survival associated with Female, 1st vs 3rd class, child

61

63

Biplots for contingency tables

The biplot is a related visualization that also uses the SVD to give a low-rank (2D) approximation.

- In CA, the weighted χ² distances between row (column) points reflect the differences among row (column) profiles
- In the biplot, rows (columns) are represented by vectors from the origin, with an inner-product (projection) interpretation row point \mathbf{a}_i is fit by projection on col point \mathbf{b}_i

62

Example: Suicide rates

There are different scalings for CA biplots. Here I use the 'contribution' biplot I find the plot less messy to plot arrows for only rows or cols and imagine the projection

plot(suicide.ca, map="colgreen", arrows=c(FALSE, TRUE), lwd=2)

Associations between age-sex categories and suicide methods can be read as projections of the points on the vectors

Lengths of vectors for suicide reflect their contributions to this 2D plot

Summary

- CA is an exploratory method designed to account for association (Pearson χ^2) in a small number of dimensions
 - Row and column scores provide an optimal scaling of the category levels
 - Plots of these can suggest an explanation for association
- CA uses the singular value decomposition to approximate the matrix of residuals from independence
- Standard and principal coordinates have different geometric properties, but are essentially re-scalings of each other
- Multi-way tables can be handled by:
 - Stacking approach— collapse some dimensions interactively to a 2-way table
 - Each way of stacking → a loglinear model
 - MCA analyzes the full n way table using an indicator matrix or the Burt matrix

Given a new 2-way table, my first thought is nearly always: plot (ca (mytable))