TABLA DE LAPLACE

sent cate = = = = = (as) :

(18-8) + sen(A-B))	
Funcion f(t)	Iransformada FISI
8) + 60x (8 -6))	+ 10 000) 2 = 61000 A 200
δ(t)	1
	3 = 1 × 31 = 4 = 1 × 1 = 1 × 1 1
	1 1 X - 1 3 1X 2 - Ex 1 2 3
(A) (A)	- (0) x c - (0) 1/2 - 5 x k 1 = 2
	82
t^n	$\frac{n!}{s^{n+1}}$
	(1941)
e^{at}	<u>1</u> s—a
	L.
Sen kt	$\frac{k}{s^2+k^2}$
Cos kt	$\frac{s}{s^2+k^2}$
COS N	s^2+k^2
Sen h kt	$\frac{k}{s^2-k^2}$
	7
Cos h kt	$\frac{s}{s^2-k^2}$
	, h
e ^{at} Sen bt	$\frac{b}{(s-a)^2+b^2}$
e ^{at} Cos bt	$\frac{(s-a)}{(s-a)^2+b^2}$
C COM OF	$(s-a)^2+b^2$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
	(5. 4)
$rac{1}{\sqrt{t}}$	$\sqrt{\pi} rac{1}{\sqrt{s}}$.
1	a de
u(t-a)	$\frac{e^{-as}}{s}$
	- 95

L { 8 (t-4)}

1 e-as

Sen
$$X = \frac{1}{i} \operatorname{sen} h(ix)$$

 $\cos X = \cosh(ix)$

$$sen^{2}(at) = \frac{1}{2} - \frac{1}{2}cos(2at)$$

$$cos^{2}(\theta) = \frac{1}{2} + \frac{1}{2}cos(2\theta)$$

Sen A cos B =
$$\frac{1}{2}$$
 (sen (A+B) + sen (A-B))
cos A cos B = $\frac{1}{2}$ (cos CA+B) + cos (A-B))

$$L\{x'\} = sL\{x\} - x_0 \longrightarrow L\{x\} = L$$

$$L\{x''\} = sL\{x\} - sx(0) - x'(0)$$

$$L\{x'''\} = s^3L\{x\} - s^2x(0) - sx'(0) - x''(0)$$

$$\int_{a-b}^{a-1} \left\{ \frac{1}{(s-a)(s-b)} \right\} = \frac{1}{a-b} \left(e^{at} - e^{bt} \right)$$