

11 al 15 de febrero 2019 Medellín - Colombia

RÂDA

Python for Data Science

Parameter Estimation

Anna Scaife University of Manchester

Parameter Estimation

Parameter estimation is one of the most common applications in numerical data science.

Parameter Estimation

Parameter Estimation

We think that the model which describes the data has this form:

$$y = ax^2 - mx + c$$

and we know the value of the measurement noise for each data point, σ_i .

What we don't know is the value of the parameters a, m and c.

Cost Function

To fit the model to our data we need to specify a *cost function*. This is a function that evaluates the deviation of the model from the measurements.

The most commonly used cost function is chi-squared:

$$\chi^2 = \sum_i \frac{(d_i - m_i)^2}{\sigma_i^2}$$

The cost function that we specify expresses our *a priori* knowledge of the data.

Import the library:

```
import scipy.optimize as op
```

Define the function you want to fit:

```
def model(p,x):
    a,m,c = p
    y = a*x**2 - m*x + c
    return y
```

Define the cost function. Here it is the Gaussian loglikelihood:

```
def ll(p,x,y,sigma):
    y_try = model(p,x)
    diff = y_try - y

ll = -0.5*np.sum(diff**2/sigma**2)
    return ll
```

scipy optimisation requires the negative loglikelihood:

```
nll = lambda *args: -ll(*args)
```

```
initial = np.array([1.,1.,1.])
```

```
result = op.minimize(nll, initial, args=(x, y_meas, sigma))
a, m, c = result["x"]
```


Import the library:

```
import emcee
```

Set up the MCMC sampler:

```
print("Running burn-in...")
p0,_,_ = sampler.run_mcmc(p0, 1000)
sampler.reset()
```

```
print("Running production...")
sampler.run_mcmc(p0, 3000)
```

