Department of Mathematics, IIT Guwahati

MA 101 - Mathematics - 1 Quiz - 1

- 1. Consider the function $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by, $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x 7y + 3z \\ 4x + 2y + 9z \end{bmatrix}$.
 - (a) Show that T is a linear transformation.
 - (b) Find the matrix of T with respect to the basis $B = \{(3, 1, 0), (-1, 1, -1), (1, 0, 1)\}$ of \mathbb{R}^3 .

[1]

[2]

[3]

[1]

[1]

[1]

[2]

2. Solve the following system of linear equations using Gauss-Jordan elimination:

$$x + 2y + 3z = 19$$
, $2x + 4y + z = 13$, $x + 2y + z = 9$.

3. Give a basis and the dimension for the subspace of \mathbb{R}^3 spanned by the set of vectors

$$\{(2,4,1),(1,2,3),(1,2,1)\}.$$

- 4. Consider the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 2 & 3 \end{bmatrix}$.
 - (a) Give the basis of column space of A among the column vectors of A.
 - (b) Express the vector v = (5, 7, 11) as a linear combination of above basis vectors.
 - (c) Give a basis of null space and nullity of A.
- 5. Let A and B be two row equivalent matrices. Show that the columns of A and B have the same dependence relationships.
- 6. Let p be a prime number and let A be an $m \times n$ matrix of rank r with entries in \mathbb{Z}_p . Prove that every consistent system of equations with coefficient matrix A has exactly p^{n-r} solutions over \mathbb{Z}_p .