

Simplifying Testing of Spark Applications

Megan Yow

How Pyspark actually works

Python

Pyspark is not python native

A Balance of what you want

Python Logic Spark Logic

Pandas Dataframe Spark Dataframe

A Balance of what you want

Pandas Dataframe Spark Dataframe

Python Logic Spark Logic

Native Execution Trumps Cluster Spin Up

	Pandas Dataframe	Spark RDD/ Dataframe	
Python Logic	No cluster spin up	 Have to spin up cluster Have to convert spark dataframe to pandas (may be expensive) Use UDF to wrap python functionality 	
	Easiest to test	Cumbersome to test (may be expensive)	
Spark Logic	 May have to spin up cluster May have to convert pandas dataframe to spark dataframe Cumbersome to test (may be expensive) 	Have to spin up cluster OK to test, can spin up local spark cluster	

Native Execution Trumps Cluster Spin Up

	Pandas Dataframe	Spark RDD/ Dataframe	
Python Logic	No cluster spin up Easiest to test	 Have to spin up cluster Have to convert spark dataframe to pandas (may be expensive) Use UDF to wrap python functionality Cumbersome to test (may be expensive) 	
	Easiest to test		
Spark Logic	 May have to spin up cluster May have to convert pandas dataframe to spark dataframe 	Have to spin up cluster	
	Cumbersome to test (may be expensive)	OK to test, can spin up local spark cluster	

UDFs, Pandas UDFs

Evolution of Python UDFs #1

Testing your python logic would encounter less time

Python API UDFs (Spark 0.7)

to

Pandas UDFs (Spark 2.3)

Pandas_UDF outperforms the vanilla UDF

Evolution of Python UDFs #2

Your tests can take a python native type hint!

PandasUDFType (Spark 2.3) to Python Type Hints (Spark 3.0)

```
27
28 @pandas_udf('long', PandasUDFType.SCALAR)
29 def pandas_plus_one(v):
30 | ····#·`v`·is-a-pandas-Series
31 | ····return·v·+·1··#·outputs-a-pandas-Series
```

```
def pandas_plus_one(v: pd.Series) -> pd.Series:
    return v + 1

def pandas_plus_one(itr: Iterator[pd.Series]) -> Iterator[pd.Series
    return map(lambda v: v + 1, itr)

def pandas_plus_one(pdf: pd.DataFrame) -> pd.DataFrame:
    return pdf + 1
```


Evolution of Python UDFs #3

Familiar syntax and natively executable functions work with Spark's API!

```
# mapInPandas
from typing import Iterator
import pandas as pd
df = spark.createDataFrame([(1, 21), (2, 30)], ("id", "age"))
def pandas_filter(iterator: Iterator[pd.DataFrame]) -> Iterator[pd.DataFrame]:
   for pdf in iterator:
yield pdf[pdf.id == 1]
df.mapInPandas(pandas_filter, schema=df.schema).show()
```


Yet.. it may be cumbersome to test

```
from typing import Iterator, Any, Union
from pyspark.sql.types import StructType
from pyspark.sql.types import StructField
from pyspark.sql.types import IntegerType
from pyspark.sql import DataFrame, SparkSession
def predict wrapper(
    dfs: Iterator[pd.DataFrame],
    model path:str
) -> Iterator[pd.DataFrame]:
    for df in dfs:
        yield predict(df, model path)
def run predict(
    df: DataFrame, model path:str
) -> DataFrame:
    schema = StructType(list(df.schema.fields))
    schema.add(
        StructField("pred", IntegerType()))
    return df.mapInPandas(
        lambda dfs:predict wrapper(dfs, model path),
        schema=schema
if isinstance(input df, pd.DataFrame):
    sdf = spark session.createDataFrame(input df)
else:
    sdf = input df
result = run predict(spark session, sdf, model path)
```

```
from fugue import transform

result = transform(
    input_df, predict, schema="*,pred:int",
    params=dict(model_path=some_path),
    engine=spark_session
)
```

Python execution engine

Spark execution engine

Databricks and databricks-connect

- Databricks founded by the original creators of Apache Spark
- Allows developers to spin up their own spark clusters
- Databricks-connect library that allows you to run your pyspark on the a databricks spark cluster remotely

Step 1: Install the client

 Uninstall PySpark. This is required because the databricks-connect package conflicts with PySpark. For details, see Conflicting PySpark installations.

Introducing Fugue!

- An abstraction framework that allows users write code in native Python or Pandas, and then port it over to Spark and Dask
- Enables users to keep their native python logic for spark testable
- No need for cluster spin up unless warranted

The guarantee on consistency is beneficial for developing your spark applications with Fugue

	Pandas	Spark	
Joining	NULL joins with NULL	NULL records are not joined (they are joined if NaN is used, which is different from NULL)	
Sorting	NULLs are put at the end of the column for both ascending and descending	NULLs are treated as biggest value, meaning it is at the bottom when ascending and top when descending	
Groupby	NULLs are dropped from the groupby	NULLs are kept in the groupby	
Representation	Pandas represents NULLs with None, numpy.NaN and more recently pd.NA	Spark can use None and NaN, but not pd.NA. NaN can lead to some typing issues occasionally.	

Fugue will also save you development and execution time

Fugue's schema validation at compile time allows you to fail fast!

```
# schema: *, all_toxic:float
def make_new_col(df: pd.DataFrame) -> pd.DataFrame:
    #df['all_toxic'] = df[['toxic', 'severe_toxic']].max(axis=1)
    df['all_toxic'] = 'hello'
    return df

    # schema: *, all_toxic:float
    schema will speed up
    your development
    time.
```


Contact Us

Github

https://github.com/fugue-project/fugue

Fugue Tutorials

https://fuque-project.github.io/tutorials/

Slack

https://slack.fugue.ai/

We're Hiring! https://jobs.lever.co/spotify

Extra Slides

pandas_udfs are great for extending spark functionality but can be confusing to use

Benefits of testing!

	Cost for development	Speed of development	Risk of production
Less testing	Unpredictable	Unpredictable	High
More testing	Low	High	Low