STAT 3100 Lecture Note

Week Four (Sep 27 & 29, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Sep/29 16:14:34

Estimating equations

Parametric models

- A parametric model is a set of distributions indexed by unknown $\theta \in \Theta \subset \mathbb{R}^p$ with small or moderate $p \text{Say } \{f(\cdot \mid \theta) : \theta \in \Theta \subset \mathbb{R}^p\}$, where f is either a pdf or a pmf and Θ is the set of all the possible values of θ
- Believed that the true parameter (vector) $\boldsymbol{\theta}_0 \ (\in \boldsymbol{\Theta} \subset \mathbb{R}^p)$ is fixed
 - Rather than making $\boldsymbol{\theta}_0$ random in the Bayesian philosophy

Method of moments (MOM, CB Sec 7.2.1)

- Procedure
 - 1. Equate raw moments to their empirical counterparts.
 - 2. Solve the resulting simultaneous equations for $\theta = (\theta_1, \dots, \theta_p)$.
- Features
 - Easy implementation
 - Start point for more complex methods
 - No constraint
 - Not uniquely defined
 - No guarantee on optimality

Exercise Lec7.1

- Let X_1, \ldots, X_n iid follow the following distributions. Find MOM estimators for (θ_1, θ_2) .
 - a. $N(\theta_1, \theta_2), (\theta_1, \theta_2) \in \mathbb{R} \times \mathbb{R}^+$.
 - b. $Binom(\theta_1, \theta_2)$ with pmf

$$p_X(x \mid \theta_1, \theta_2) = \binom{\theta_1}{x} \theta_2^x (1 - \theta_2)^{\theta_1 - x} \mathbf{1}_{\{0, \dots, \theta_1\}}(x), \quad (\theta_1, \theta_2) \in \mathbb{Z}^+ \times (0, 1).$$

Exercise Lec7.2

- Let X_1, \ldots, X_n iid follow pdf $f(x \mid \theta) = \theta x^{\theta-1} \mathbf{1}_{[0,1]}(x), \theta > 0$.
 - a. Find an MOM estimator of θ .
 - b. Can we employ the second (raw) moment instead of the first one?

Maximum Likelihood Estimator (MLE, CB Sec 7.2.2)

• Likelihood function: $L: \Theta \to \mathbb{R}$ such that, given x (a realization of X),

$$L(\boldsymbol{\theta}) = L(\boldsymbol{\theta}; \boldsymbol{x}) = f_{\mathbf{X}}(\boldsymbol{x} \mid \boldsymbol{\theta}),$$

where $f_{\mathbf{X}}$ is the joint pdf or pmf.

• For each x, let $\hat{\theta}(x)$ be the maximizer of $L(\theta;x)$ (or log-likelihood $\ell(\theta;x) = \ln L(\theta;x)$) with respect to $\boldsymbol{\theta}$ constrained in $\boldsymbol{\Theta}$, i.e.,

$$\hat{\boldsymbol{\theta}}(\boldsymbol{x}) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}; \boldsymbol{x}) = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ell(\boldsymbol{\theta}; \boldsymbol{x}).$$

Then the statistic $\hat{\boldsymbol{\theta}} = \hat{\boldsymbol{\theta}}(\mathbf{X})$ is the MLE for $\boldsymbol{\theta} \in \boldsymbol{\Theta}$.

- Invariance property of MLE (CB Thm 7.2.10): As long as $\hat{\theta}$ is the MLE of θ , for ANY function g, the $g(\hat{\boldsymbol{\theta}})$ is the MLE of $g(\boldsymbol{\theta})$.
- If ℓ is differetiable, the score funtion **S** is defined as its gradient

$$\mathbf{S}(oldsymbol{ heta}) = \mathbf{S}(oldsymbol{ heta}; oldsymbol{x}) = \left[rac{\partial}{\partial heta_1} \ell(oldsymbol{ heta}; oldsymbol{x}), \ldots, rac{\partial}{\partial heta_p} \ell(oldsymbol{ heta}; oldsymbol{x})
ight]^ op.$$

• If ℓ is twice differentiable, we have hessian of $\ell(\theta; x)$

$$\mathbf{H}(\boldsymbol{\theta}) = \mathbf{H}(\boldsymbol{\theta}; \boldsymbol{x}) = \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \ell(\boldsymbol{\theta}; \boldsymbol{x})\right]_{p \times p}.$$

- Maximizing differentiable (but non-monotonic) $\ell(\theta)$ with $\theta \in \Theta$
 - 1. Find out stationary points, i.e., solutions to simultaneous equations $S(\theta) = 0$
 - 2. Determine the global maximizer within Θ : by comparing values of likelihood (or log-likelihood) evaluated at stationary points and boundary points of Θ

Exercise Lec7.3

- Suppose X_1, \ldots, X_n are iid as the following distributions. Find MLEs for corresponding parameters.
 - a. $N(\mu, \sigma^2), (\mu, \sigma) \in \mathbb{R} \times \mathbb{R}^+$.

 - b. Bernoulli(θ): $p(x \mid \theta) = \theta^x (1 \theta)^{1-x} \mathbf{1}_{\{0,1\}}(x), \ \theta \in [0, 1/2].$ c. Two-parameter exponential: $f(x \mid \alpha, \beta) = \beta^{-1} \exp\{-(x \alpha)/\beta\} \mathbf{1}_{(\alpha,\infty)}(x), \ (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^+.$

Other examples of estimating equations

- Least-squares estimator
- Generalized estimating equations (GEE)
- M-estimator