Sparse regression

CWI Autumn School - Scientific Machine Learning and Dynamical Systems

Urban Fasel

Imperial College London

<u>Literature</u>

- SL Brunton, JL Proctor, JN Kutz (2016) <u>Discovering governing equations from data by sparse identification of nonlinear dynamical systems</u>.
- G Sanchez, E Marzban (2020) <u>All Models Are Wrong: Concepts of Statistical Learning</u>.
- L Tibshirani (1996) Regression shrinkage and selection via the lasso.
- H Zou, T Hastie (2005) <u>Regularization and variable selection via the elastic net</u>.
- P Zheng, T Askham, SL Brunton, JN Kutz, AY Aravkin (2018) <u>A Unified Framework for Sparse Relaxed Regularized Regression: SR3.</u>
- T Blumensath, ME Davies (2009) <u>Iterative hard thresholding for compressed sensing</u>.

SINDy – sparse regression

$$\rightarrow \hat{\boldsymbol{\xi}}_k = \operatorname{argmin}_{\boldsymbol{\xi}_k} \| \dot{\mathbf{X}}_k - \mathbf{\Theta}(\mathbf{X}) \boldsymbol{\xi}_k \|_2^2 + \lambda \| \boldsymbol{\xi}_k \|_0$$
 least squares ℓ_0 -penalized

Identified System

Lecture outline

- Sparse regression notation
- Ordinary least squares
- Ridge regression (ℓ_2)
- LASSO regression (ℓ₁)
- Geometric intuition for sparse solution
- Sequentially thresholded least squares
 - approximating ℓ_0
- MATLAB examples

Sparse regression – notation

SINDy system of ODEs: $\dot{X} = \Theta(X)\Xi$

- Library terms: $\Theta(X) \in \mathbb{R}^{m \times D}$
- Derivatives: $\dot{\mathbf{X}} \in \mathbb{R}^{m \times n}$
- Coefficients: $\Xi \in \mathbb{R}^{D \times n}$ (e.g. $\Xi = [\xi_1, \xi_2, \xi_3]$)

Sparse regression – notation

SINDy system of ODEs: $\dot{X} = \Theta(X)\Xi$ (**b** = Ax)

- Library terms (*features* A): $\Theta(X) \in \mathbb{R}^{m \times D}$
- Derivatives (response b): $\dot{\mathbf{X}} \in \mathbb{R}^{m \times n}$
- Coefficients (*loadings* x): $\Xi \in \mathbb{R}^{D \times n}$ (e.g. $\Xi = [\xi_1, \xi_2, \xi_3]$)

Change notation and n=1

$$\rightarrow \qquad \dot{\mathbf{X}} = \mathbf{\Theta}(\mathbf{X})\mathbf{\Xi}$$

$$\rightarrow$$
 b = **Ax**

Sparse regression – notation

- Library terms (*features* A): $\Theta(X) \in \mathbb{R}^{m \times D}$
- Derivatives (*response* **b**): $\dot{\mathbf{X}} \in \mathbb{R}^{m \times n}$
- Coefficients (*loadings* \mathbf{x}): $\mathbf{\Xi} \in \mathbb{R}^{D \times n}$

- Objective: find accurate & sparse model
- Solve least squares regression with regularization $(\ell_0, \ell_1, (\ell_2))$:
- Optimization: $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} L(\mathbf{x})$
 - Find argument x that minimizes loss function L(x)
 - Loss function: $L(\mathbf{x}) = \|\mathbf{b} \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$
- Accuracy $\rightarrow \|\mathbf{b} \mathbf{A}\mathbf{x}\|_2^2$ & Sparsity $\rightarrow \lambda \|\mathbf{x}\|_1$

Ordinary least squares: $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} ||\mathbf{b} - \mathbf{A}\mathbf{x}||_2^2$

Minimize mean squared error:
$$MSE = \frac{1}{n} ||\mathbf{b} - \mathbf{A}\mathbf{x}||_2^2 = \frac{1}{n} (\mathbf{b} - \mathbf{A}\mathbf{x})^T (\mathbf{b} - \mathbf{A}\mathbf{x})$$

$$\frac{\partial}{\partial \mathbf{x}} MSE(\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}} \left(\frac{1}{n} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x} - \frac{2}{n} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{b} + \frac{1}{n} \mathbf{b}^{T} \mathbf{b} \right)$$

$$= \frac{2}{n} \mathbf{A}^{T} \mathbf{A} \mathbf{x} - \frac{2}{n} \mathbf{A}^{T} \mathbf{b} = 0$$

■
$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
 \rightarrow $\hat{\mathbf{x}} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$ \rightarrow unique solution

Challenges / limitations

- 1. Multicollinearity: Two or more features (e.g. library terms) are highly correlated
 - A^TA ill-conditioned → near singular
 - Leads to unstable, irregular estimates of $x \rightarrow$ fit is sensitive to small perturbations
- 2. Dense solutions: we don't perform feature (variable) selection ...
 - possibly overfitting to data, difficult to interpret the results ...

Approach: regularization → Ridge regression, LASSO, STLS

Ridge regression: $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{2}^{2}$

Idea: impose restriction on squared magnitude of sum of coefficients x

- ℓ₂-penalized least squares
- Loss function:

■
$$L(\mathbf{x}) = \frac{1}{n} ||\mathbf{b} - \mathbf{A}\mathbf{x}||_2^2 + \lambda ||\mathbf{x}||_2^2 = MSE(\mathbf{x}) + \frac{\lambda}{n} \mathbf{x}^T \mathbf{x}$$

Unique solution:

•
$$\hat{\mathbf{x}} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{\Theta}^T \mathbf{b}$$
 \rightarrow adding positive elements $(\lambda \ge 0)$ to diagonal

→ increasing condition number, stabilizing solution

How to select the parameter λ ? \rightarrow model selection

■ e.g. cross validation → discussed in next lecture

LASSO regression: $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$

Ridge regression solution not sparse ...

Idea: impose restriction on magnitude of sum of coefficients x

- ℓ₁-penalized least squares
- Loss function:

•
$$L(\mathbf{x}) = \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1 = MSE(\mathbf{x}) + \lambda \sum |x_i|$$

- Loss function (ℓ_1 norm) not differentiable ...
 - Variety of methods to solve optimization from convex analysis and optimization theory:
 - e.g. coordinate descent, proximal gradient method (soft thresholding), ...

LASSO: Least Absolute Shrinkage and Selection Operator

- Shrinkage: constraining magnitude of coefficients → similar to ridge regression
- Selection: promoting sparsity → setting small coefficients to zero

LASSO implementation

MATLAB example: feature selection (comparing OLS, ridge, LASSO)

- Data set consisting of 100 observations of a response b
 - SINDy → derivatives X
- Each outcome given by a combination of 3 of 10 candidate features A with loading x
 - $SINDy \rightarrow time series data X$, library $\Theta(X)$, and coefficients ξ

Why is LASSO solution sparse?

Equivalent formulations of the LASSO optimization problem:

- 1. Regularized least squares
 - $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \|\mathbf{b} \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$
- 2. Constrained optimization:
 - $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} ||\mathbf{b} \mathbf{A}\mathbf{x}||_{2}^{2}$ subject to $||\mathbf{x}||_{1} \le c$
- 3. Constrained optimization 2:
 - $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} ||\mathbf{x}||_1$ subject to $||\mathbf{b} \mathbf{A}\mathbf{x}||_2^2 \le \epsilon$

ℓ_1 vs ℓ_2 constrained optimization (for D=2)

- ℓ_2 : solution constrained to a circle around origin
- ℓ_1 : solution constrained to a diamond around origin \rightarrow promoting sparse solution

MATLAB example

Sequentially thresholded least squares – approx ℓ_0 penalty

Unfortunately: ℓ_1 penalized LS solutions for SINDy often not really sparse ...

Solution: <u>STLS</u> → iteratively solving LS and hard thresholding small coefficients

- STLS approximates the solution to the ℓ_0 -penalized least squares
 - ℓ_0 penalty: $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} ||\mathbf{b} \mathbf{A}\mathbf{x}||_2^2 + \lambda ||\mathbf{x}||_0$
 - ℓ_0 -norm: counting all non-zero terms \rightarrow non-convex, combinatorial search
- Improved performance over ℓ_1 -penalized least squares (LASSO)

SINDY sparse regression


```
function Xi = sparsifyDynamics(Theta,dXdt,lambda,n)
% Compute Sparse regression: sequential least squares
Xi = Theta\dXdt; % Initial guess: Least-squares

% Lambda is our sparsification knob.
for k=1:10
    smallinds = (abs(Xi)<lambda); % Find small coefficients
    Xi(smallinds)=0; % and threshold
    for ind = 1:n % n is state dimension
        biginds = ~smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi
        Xi(biginds,ind) = Theta(:,biginds)\dXdt(:,ind);
end
end</pre>
```

LASSO vs STLS example

MATLAB example: SINDy Lorenz system

- Limitations of LASSO: false discovery occur early, already at small λ
 - False discoveries occur early in LASSO: Wu, Bogdam, Candes, 2015
 - SINDy uses STLS → approximate solution to ℓ₀-penalized LS

Coding examples and discussion

1. MATLAB live scripts (or implement SINDy in Python, Julia, ...)

- Test / break the method
- Identify different dynamical systems
 - e.g. dysts database W Gilpin: <u>Database</u>, <u>paper</u>, <u>PySINDy</u>
 - 131 chaotic dynamical systems: fields such as astrophysics, climatology, and biochemistry
- Test data requirements for different dynamical systems
- Test custom libraries, e.g. combining polynomial with trig functions

2. Explore PySINDy

- PySINDy <u>lectures notebook</u> by Alan Kaptanoglu
- PySINDy <u>feature overview</u>