Exercise 3.1

Which of the following expressions are meaningful? Which are meaningless? Explain.

(a)
$$(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$$

(b)
$$(\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$

(c)
$$\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c})$$

(d)
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$$

(e)
$$\mathbf{a} \cdot \mathbf{b} + \mathbf{c}$$

(f)
$$|\mathbf{a}| \cdot (\mathbf{b} + \mathbf{c})$$

2. Find the dot product of two vectors if their lengths are 6 and $\frac{1}{3}$ and the angle between them is $\pi/4$.

3-8 ■ Find a · b.

3.
$$|\mathbf{a}| = 6$$
, $|\mathbf{b}| = 5$, the angle between \mathbf{a} and \mathbf{b} is $2\pi/3$

4.
$$\mathbf{a} = \langle -2, 3 \rangle$$
, $\mathbf{b} = \langle 0.7, 1.2 \rangle$

5.
$$\mathbf{a} = \langle 4, 1, \frac{1}{4} \rangle, \quad \mathbf{b} = \langle 6, -3, -8 \rangle$$

6.
$$\mathbf{a} = \langle s, 2s, 3s \rangle$$
, $\mathbf{b} = \langle t, -t, 5t \rangle$

7.
$$a = i - 2j + 3k$$
, $b = 5i + 9k$

8.
$$\mathbf{a} = 4\mathbf{j} - 3\mathbf{k}$$
, $\mathbf{b} = 2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$

Exercise 3.2

1–7 ■ Find the cross product $\mathbf{a} \times \mathbf{b}$ and verify that it is orthogonal to both \mathbf{a} and \mathbf{b} .

I.
$$\mathbf{a} = \langle 1, 2, 0 \rangle, \quad \mathbf{b} = \langle 0, 3, 1 \rangle$$

2.
$$\mathbf{a} = \langle 5, 1, 4 \rangle, \quad \mathbf{b} = \langle -1, 0, 2 \rangle$$

3.
$$a = 2i + j - k$$
, $b = j + 2k$

4.
$$a = i - j + k$$
, $b = i + j + k$

5.
$$\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$$
, $\mathbf{b} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$

6.
$$\mathbf{a} = \mathbf{i} + e^{t}\mathbf{j} + e^{-t}\mathbf{k}$$
, $\mathbf{b} = 2\mathbf{i} + e^{t}\mathbf{j} - e^{-t}\mathbf{k}$

7.
$$\mathbf{a} = \langle t, t^2, t^3 \rangle, \quad \mathbf{b} = \langle 1, 2t, 3t^2 \rangle$$

Exercise 3.3

- 1. Determine whether each statement is true or false.
 - (a) Two lines parallel to a third line are parallel.
 - (b) Two lines perpendicular to a third line are parallel.
 - (c) Two planes parallel to a third plane are parallel.
 - (d) Two planes perpendicular to a third plane are parallel.
 - (e) Two lines parallel to a plane are parallel.
 - (f) Two lines perpendicular to a plane are parallel.
 - (g) Two planes parallel to a line are parallel.
 - (h) Two planes perpendicular to a line are parallel.
 - (i) Two planes either intersect or are parallel.
 - (j) Two lines either intersect or are parallel.
 - (k) A plane and a line either intersect or are parallel.

2=5 = Find a vector equation and parametric equations for the line.

- 2. The line through the point (1, 0, -3) and parallel to the vector $2\mathbf{i} 4\mathbf{j} + 5\mathbf{k}$
- 3. The line through the point (-2, 4, 10) and parallel to the vector (3, 1, -8)
- **4.** The line through the origin and parallel to the line x = 2t, y = 1 t, z = 4 + 3t
- 5. The line through the point (1, 0, 6) and perpendicular to the plane x + 3y + z = 5

6=10 ■ Find parametric equations and symmetric equations for

6-10 ■ Find parametric equations and symmetric equations for the line.

- **6.** The line through the points (6, 1, -3) and (2, 4, 5)
- 7. The line through the points $(0, \frac{1}{2}, 1)$ and (2, 1, -3)
- **8.** The line through (2, 1, 0) and perpendicular to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$
- **9.** The line through (1, -1, 1) and parallel to the line $x + 2 = \frac{1}{2}y = z 3$
- **10.** The line of intersection of the planes x + y + z = 1 and x + z = 0

.

- III. Is the line through (-4, -6, 1) and (-2, 0 -3) parallel to the line through (10, 18, 4) and (5, 3, 14)?
- **12.** Is the line through (4, 1, −1) and (2, 5, 3) perpendicular to the line through (−3, 2, 0) and (5, 1, 4)?
- 13. (a) Find symmetric equations for the line that passes through the point (0, 2, -1) and is parallel to the line with parametric equations x = 1 + 2t, y = 3t, z = 5 7t.
 - (b) Find the points in which the required line in part (a) intersects the coordinate planes.
- **14.** (a) Find parametric equations for the line through (5, 1, 0) that is perpendicular to the plane 2x y + z = 1.
 - (b) In what points does this line intersect the coordinate planes?
- **15.** Find a vector equation for the line segment from (2, -1, 4) to (4, 6, 1).
- 16. Find parametric equations for the line segment from (10, 3, 1) to (5, 6, −3).
- **■7–20** Determine whether the lines L_1 and L_2 are parallel, skew, or intersecting. If they intersect, find the point of intersection.

17.
$$L_1$$
: $x = -6t$, $y = 1 + 9t$, $z = -3t$
 L_2 : $x = 1 + 2s$, $y = 4 - 3s$, $z = s$

18.
$$L_1$$
: $x = 1 + 2t$, $y = 3t$, $z = 2 - t$
 L_2 : $x = -1 + s$, $y = 4 + s$, $z = 1 + 3s$

19.
$$L_1$$
: $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$

$$L_2: \ \frac{x-3}{-4} = \frac{y-2}{-3} = \frac{z-1}{2}$$

20.
$$L_1$$
: $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-2}{-1}$

$$L_2$$
: $\frac{x-2}{1} = \frac{y-6}{-1} = \frac{z+2}{3}$

- 21-30 = Find an equation of the plane.
- **21.** The plane through the point (6, 3, 2) and perpendicular to the vector $\langle -2, 1, 5 \rangle$
- 22. The plane through the point (4, 0, −3) and with normal vector j + 2k
- 23. The plane through the origin and parallel to the plane 2x y + 3z = 1
- **24.** The plane that contains the line x = 3 + 2t, y = t, z = 8 t and is parallel to the plane 2x + 4y + 8z = 17
- **25.** The plane through the points (0, 1, 1), (1, 0, 1), and (1, 1, 0)
- **26.** The plane through the origin and the points (2, -4, 6) and (5, 1, 3)
- 27. The plane that passes through the point (6, 0, -2) and contains the line x = 4 2t, y = 3 + 5t, z = 7 + 4t
- **28.** The plane that passes through the point (1, -1, 1) and contains the line with symmetric equations x = 2y = 3z
- **29.** The plane that passes through the point (-1, 2, 1) and contains the line of intersection of the planes x + y z = 2 and 2x y + 3z = 1
- **30.** The plane that passes through the line of intersection of the planes x z = 1 and y + 2z = 3 and is perpendicular to the plane x + y 2z = 1

.

- **31.** Find the point at which the line x = 3 t, y = 2 + t, z = 5t intersects the plane x y + 2z = 9.
- **32.** Where does the line through (1, 0, 1) and (4, -2, 2) intersect the plane x + y + z = 6?