Vorname **Name** Nummer, ITET email@student.ethz.ch

Lfd.Nr.: /206

Sessionsprüfung Elektromagnetische Felder und Wellen (227-0052-10S)

14. August 2021, 09:00-11:00 Uhr, HIL C 15 und HIL D 15

Prof. Dr. L. Novotny

Bitte beachten Sie:

- Diese Prüfung besteht aus 3 Aufgaben. Die Angabe umfasst 3 beidseitig bedruckte Blätter (6 Seiten) exklusive dieses Deckblatts. Die Bearbeitungszeit beträgt **120 Minuten**.
- Einzig zugelassene Hilfsmittel sind **3 eigenhändig beidseitig beschriebene A4-Blätter**. Bücher, Vorlesungsmaterialien, ausgedruckte oder kopierte Dokumente und elektronische Geräte sind ausdrücklich nicht erlaubt.
- Geben Sie dieses Deckblatt für Ihre Lösungen mit ab. Unterschreiben Sie dieses Deckblatt.
- Lösungen sind nachvollziehbar zu begründen. Nicht eindeutig lesbare Passagen bleiben unbewertet. Nicht eindeutig zuzuordnende Passagen bleiben ebenso unbewertet!
- Benutzen Sie einen dokumentenechten schwarzen oder blauen Stift (kein Rotstift, kein radierbarer Stift). Verwenden Sie keine Korrekturhilfen (z.B. Tipp-Ex oder Tintenlöscher).
 Mit Korrekturhilfen oder radierbarem Stift bearbeitete Passagen bleiben unbewertet!
- Lösungen auf Angabenblättern oder Deckblatt bleiben unbewertet!
- Verwenden Sie Ihr mitgebrachtes Papier im Format A4 für Ihre Lösungen. Versehen Sie jedes Blatt mit Ihrem Namen.
- Legen Sie bitte Ihre Legi auf den Tisch.
- Allfällige weitere Hinweise von allgemeinem Interesse werden während der Prüfung mitgeteilt.

	Viel Erfolg!
Unterschrift Student/-in:	

Aufgabe	Punkte	Visum Korrektor
1	/35	
2	/25	
3	/40	
Total:	/100	

1. Transmission durch einen Doppelspalt (35 Punkte)

Wir betrachten eine monochromatische ebene Welle im Vakuum mit Wellenvektor $\mathbf k$ (der Wellenvektor liege in der xz Ebene), die auf eine unendlich dünne Metallplatte in der Ebene z=0 treffe. Die Metallplatte besitze zwei in y Richtung unendlich ausgedehnte Spalte mit jeweils Breite d. Zunächst behandeln wir einen einzelnen Spalt, verlaufend entlang der y Achse, so wie in der folgenden Abbildung dargestellt.

Die Wellenlänge der ebenen Welle sei λ und der Einfallswinkel α . Die Welle sei in Richtung des Spaltes polarisiert und die Feldstärke zur Zeit t=0 am Orte $\mathbf{r}=0$ sei E_0 . Wir dürfen annehmen, dass die Metallplatte perfekt reflektierend ist und dass das Feld im Spalt dem Feld der einfallenden ebenen Welle entspricht. Zudem kann diese Aufgabe als ein zwei-dimensionales Problem betrachtet werden, das heisst, $\mathbf{E}(\mathbf{r},t)=\mathbf{E}(x,z,t)$. Ignorieren Sie jede y Abhängigkeit.

- (a) (4 Punkte) Bestimmen Sie das Feld $\mathbf{E}(x,t)$ in der Ebene z=0. Geben Sie den Zusammenhang zwischen Wellenzahl k und Wellenlänge λ an. Drücken Sie hier und im Rest der Aufgabe alle Komponenten des Wellenvektors stets durch die Wellenzahl k und den Einfallswinkel α aus.
- (b) (5 Punkte) Berechnen Sie das Feldwinkelspektrum $\hat{\mathbf{E}}(k_x;z=0)$ in der Ebene z=0. Formulieren Sie Ihr Ergebnis kompakt unter Verwendung der Funktion $\mathrm{sinc}(x)=\sin(x)/x$.

Hinweis: Berücksichtigen Sie Fouriertransformationen nur bezüglich x.

(c) (3 Punkte) Wie berechnet sich das Feld $\mathbf{E}(x,z,t)$ in einem beliebigen Punkt z>0?

Hinweis: Das Lösen von Integralen ist nicht nötig.

- (d) (5 Punkte) Bestimmen Sie das Fernfeld $\mathbf{E}_{\infty}(x)$ in einem Abstand $r=\sqrt{x^2+z^2}$, der gross ist gegenüber der Wellenlänge $(kr\gg 1)$ und der Spaltbreite $(kd\gg 1)$.
- (e) (6 Punkte) Berechnen Sie die Intensität $I_{\infty}(x)$ im Fernfeld. An welchen Orten x/r hat die Intensität ein Maximum und wo liegen die Seitenminima? Hinweis: Es gilt $x \ll r$.

10)
$$k^{-\frac{2\pi}{\lambda}} | k_x^- k \sin \alpha_x | k_y^- O | k_z^- k \cos \alpha_x$$
 $E(x)^+ E_0 e^{-|k|^2} | f_0^- f$

(f) (2 Punkte) Beschreiben Sie in knappen Worten und unabhängig von Ihrer Rechnung, was laut Ihrer Erwartung qualitativ mit der Intensitätsverteilung im Fernfeld (bezüglich ihrer x Abhängigkeit) mit zunehmender Wellenlänge λ geschieht.

Für den Einfallswinkel $\alpha=0^{\circ}$ kann das Fernfeld wie folgt approximiert werden

$$\mathbf{E}_{\infty}(x) = E_{\infty} \operatorname{sinc}\left(\frac{kd}{2r}\right) \frac{\exp\left[\mathrm{i}kr\right]}{\sqrt{kr}} \mathbf{n}_{y},$$

wobei E_{∞} eine konstante Feldamplitude ist.

- (g) (3 Punkte) Wie gross muss der Abstand r, ausgedrückt durch d und λ sein, damit die Fraunhofer-Näherung gültig ist?
- (h) (4 Punkte) Wir versetzen den Spalt in x Richtung um eine Distanz x_0 . Beschreiben Sie die beiden essentiellen Schritte der Fraunhofer-Näherung. Verwenden Sie die Fraunhofer-Näherung, um das Fernfeld des versetzten Spaltes zu berechnen.
- (i) (3 Punkte) Es werde nun der zweite Spalt eingeführt. Dieser habe die gleiche Breite d, sei aber in die entgegengesetzte Richtung, also um $-x_0$ versetzt. Berechnen Sie die Intensität der beiden durch die ebene Welle beschienenen Spalte im Fernfeld.

2. Gepulster Dipol (25 Punkte)

Wir betrachten einen strahlenden Dipol im Vakuum. Das Frequenzspektrum des Dipols sei $\hat{\mathbf{p}}(\omega)$. Wir wählen ein Koordinatensystem, in welchem die Quelle $\hat{\mathbf{p}}$ im Ursprung liege und in Richtung der z Achse ausgerichtet sei.

(a) (4 Punkte) Geben Sie die Green'sche Funktion für das Fernfeld $\hat{\mathbf{G}}_{\infty}$ explizit an, sowie den Zusammenhang zwischen dem Dipolmoment $\hat{\mathbf{p}}(\omega)$, der Green'schen Funktion, und dem elektrischen Feld $\hat{\mathbf{E}}(\mathbf{r},\omega)$. Berechnen Sie sodann anhand der Green'schen Funktion $\hat{\mathbf{G}}_{\infty}$ das Spektrum des elektrischen Feldes $\hat{\mathbf{E}}(\mathbf{r},\omega)$ im Fernfeld des Dipols.

Um einen elektromagnetischen Puls zu generieren, wählen wir das Spektrum des Dipols wie folgt

$$\hat{\mathbf{p}}(\omega) \; = \; A \; \left\{ \begin{array}{ll} 1/\omega^2 & \quad (-\omega_0 < \omega < \omega_0) \\ 0 & \quad \text{sonst} \end{array} \right. \; , \label{eq:power_power}$$

wobei A eine Konstante sei.

- (b) (5 Punkte) Berechnen Sie das Spektrum $\hat{E}_{z}(x,\omega)$ entlang der x Achse und dann den zeitlichen Verlauf $E_{z}(x,t)$ des elektrischen Feldes.
- (c) (2 Punkte) Zu welchem Zeitpunkt t ist das Feld am Ort $x = x_0$ maximal?
- (d) (6 Punkte) Verwenden Sie eine Maxwell-Gleichung, um das zugehörige magnetische Feld $H_{\rm y}(x,t)$ entlang der x Achse zu berechnen. Hinweis: Verwenden Sie ab sofort das Spektrum

$$\hat{E}_{\rm z}(x,\omega) \ = \ \frac{A\,\mu_0}{4\pi x} \left\{ \begin{array}{cc} \exp{\left[{\rm i}\omega x/c\right]} & \left(-\omega_0 < \omega < \omega_0\right) \\ 0 & {\rm sonst} \end{array} \right. \, , \label{eq:energy_energy}$$

des elektrischen Feldes, unabhängig von Ihren Resultaten aus vorheringen Teilaufgaben.

- (e) (3 Punkte) Formulieren Sie $E_z(x,t)$ für den Spezialfall $\omega_0 \to \infty$.
- (f) (5 Punkte) Die Dipolantenne wird nun in ein dispersives Medium mit Permittivität $\varepsilon(\omega)$ gesetzt. Wie berechnet sich das Feld $E_{\rm z}(x,t)$? Hinweis: Wenn Sie für Ihre Antwort Integrale benötigen, so sind diese nicht explizit zu lösen.

20)
$$\hat{G}_{\omega}(\vec{r},\vec{r}_{0}) = \frac{2^{N}N_{0}}{4^{N}N_{0}} \hat{G}_{\omega}^{\dagger} \hat{G}_{\omega}^{\dagger}$$

Diese Seite ist aus technischen Gründen leer. Unterschreiben Sie das Deckblatt!

3. Antireflexionsfilm (40 Punkte)

Wir betrachten eine monochromatische ebene Welle (Kreisfrequenz ω), die aus Vakuum kommend senkrecht auf eine ideal reflektierende Metalloberfläche trifft. Wir möchten die Metalloberfläche mit einem verlustbehafteten Material der Dicke L beschichten, sodass die Reflexion an der Struktur unterdrückt wird (siehe Abbildung). Die Permeabilität der Antireflexionsschicht sei $\mu=1$ und die Permittivität sei ε . Das magnetische Feld der einfallenden ebenen Welle im Vakuum habe die Form

$$\mathbf{H}_{\rm in}(\mathbf{r},t) = \mathbf{H}_0 \cos(k_0 z - \omega t) \mathbf{n}_x$$

wobei $k_0 = \omega/c$ gelte und H₀ eine reelle Amplitude sei. Die Grenzfläche zwischen Vakuum und Antireflexionsschicht liege in der Ebene z = 0.

- (a) (3 Punkte) Schreiben Sie $\mathbf{H}_{\mathrm{in}}(\mathbf{r},t)$ in komplexer Schreibweise und definieren Sie dazu das komplexe Feld $\mathbf{\underline{H}}_{\mathrm{in}}(\mathbf{r})$.
- (b) (5 Punkte) Wir schreiben das komplexe magnetische Feld im Innern der Antireflexionsschicht als Summe zweier gegenläufiger Teilfelder

$$\underline{\mathbf{H}}_{\mathrm{abs}}(\mathbf{r}) = \underline{\mathbf{H}}_{1} \, \mathrm{e}^{\mathrm{i}kz} \, \mathbf{n}_{x} + \underline{\mathbf{H}}_{2} \, \mathrm{e}^{-\mathrm{i}kz} \, \mathbf{n}_{x}.$$

Leiten Sie das entsprechende komplexe elektrische Feld $\underline{\mathbf{E}}_{abs}(\mathbf{r})$ her und drücken Sie es durch $\underline{\mathbf{H}}_1$, $\underline{\mathbf{H}}_2$ und ε aus.

- (c) (2 Punkte) Wie berechnet sich die Wellenzahl in der Antireflexionsschicht k aus jener im Vakuum k_0 ?
- (d) (5 Punkte) Unter Verwendung der Randbedingung bei z=L, drücken Sie die magnetische Feldamplitude $\underline{\mathrm{H}}_2$ durch $\underline{\mathrm{H}}_1$ aus.
- (e) (5 Punkte) Wir schreiben das komplexe magnetische Feld im Vakuum ebenfalls als Summe zweier gegenläufiger Teilfelder

$$\underline{\mathbf{H}}(\mathbf{r}) = \underline{\mathbf{H}}_{\text{in}} e^{\mathrm{i}k_0 z} \mathbf{n}_x + \underline{\mathbf{H}}_{\text{ref}} e^{-\mathrm{i}k_0 z} \mathbf{n}_x.$$

```
30) Hin(F) = Hoeikoz ñx
  b) -i\omega\vec{D}(\vec{r}) = \nabla \times \vec{H}(\vec{r}) \Rightarrow \vec{E}(\vec{r}) = \frac{-k}{\log n} \times \vec{H}(\vec{r})
      Eabs= WEOE nx x Habs = WEOE [nz x Heikznx + (-nz) x Hoeikznx)
                 = \frac{-k}{w \epsilon_0 \epsilon} \left[ H_1 e^{ikz} \vec{n}_y - H_2 e^{-ikz} \vec{n}_y \right]
d) z=L: \overline{H}abs(L) = 0 \Rightarrow H_1 e^{ikL} + H_2 e^{-ikL} = 0
              \rightarrow H_3 = -H_2 e^{2il< L}
e) z=0: F1(0) = F100 (0) = H10+ H10+ H10+ H10
              Ē(O) = Éobs(O) ⇒ Hin-Href = √E [H1-H2]
    \overrightarrow{A} = \begin{bmatrix} 1 & 1 & -1 \\ \sqrt{\varepsilon} & -\sqrt{\varepsilon} & 1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}
a) m=m2=1, kz=ko, kz=nko
      r = \frac{M_2 k_{Z1} - M_1 k_{Z2}}{M_2 k_{Z2} + M_1 k_{Z2}} = \frac{k_0 - n k_0}{k_0 + n k_0} = \frac{1 - n}{1 + n}
h) E_{ret} = 0 \Rightarrow r = \frac{1-n}{1+n} = e^{2ik}
i) \vec{H}(\vec{r}) = \frac{1}{\omega_{No}} \vec{k} \times \vec{E}(\vec{r}) = \frac{1}{\omega_{No}} \vec{n}_z \times \vec{E}_{abs} e^{ikz} \vec{n}_y = \frac{1}{\omega_{No}} \vec{E}_{abs} e^{ikz} \vec{n}_x
   (5(F)) = 1 Re[ExFI*] = 1 Re[Eabseikziny x - k Eabseikzin]
                 = K | Eabs|2 nz = nc | Eabs|2 nz
j) P= S_ <3> nzda = <5(F)> nz A = nC | Eabs|2 A
```

Formulieren Sie die Randbedingungen für die elektrischen und magnetischen Felder an der Grenzfläche z=0. Leiten Sie daraus zwei Gleichungen ab, die den Zusammenhang zwischen $\underline{\mathrm{H}}_1, \underline{\mathrm{H}}_2, \underline{\mathrm{H}}_{\mathrm{in}}$ und $\underline{\mathrm{H}}_{\mathrm{ref}}$ herstellen.

(f) (3 Punkte) Schreiben Sie alle Randbedingungen in Form eines Gleichungssystems für die unbekannten Amplituden \underline{H}_1 , \underline{H}_2 und \underline{H}_{ref} . Hinweis: Gesucht ist ein Gleichungssystem von der Gestalt

$$\stackrel{\leftrightarrow}{A} \left[\begin{array}{c} \underline{\underline{H}}_1 \\ \underline{\underline{H}}_2 \\ \underline{H}_{ref} \end{array} \right] = \mathbf{u} \ \underline{\underline{H}}_{in}, \tag{2}$$

wobei $\overset{\leftrightarrow}{A}$ eine von Ihnen zu bestimmende Matrix und $\mathbf u$ ein von Ihnen zu bestimmender Vektor sind.

Unter Berücksichtigung der Randbedingungen lässt sich das reflektierte elektrische Feld wie folgt ausdrücken

$$\underline{\mathbf{E}}_{\mathrm{ref}} = \underline{\mathbf{E}}_{\mathrm{in}} \frac{r^s - \mathrm{e}^{2\mathrm{i}kL}}{1 - r^s \, \mathrm{e}^{2\mathrm{i}kL}} \,,$$

wobei r^s den Fresnel Reflexionskoeffizienten für die Grenzschicht bei z=0 bezeichnet (s-Polarisation).

- (g) (3 Punkte) Drücken Sie r^s für den vorliegenden Fall als Funktion des Brechungsindex n aus.
- (h) (3 Punkte) Geben Sie eine Bedingung an für n, k und L, unter der die Reflexion komplett unterdrückt wird.
- (i) (7 Punkte) Wir nehmen ab sofort an, dass das komplexe elektrische Feld im Inneren des Antireflexionsfilmes näherungsweise wie folgt beschrieben werden kann

$$\underline{\mathbf{E}}(\mathbf{r}) = \underline{\mathbf{E}}_{\mathrm{abs}} \, \mathrm{e}^{\mathrm{i}kz} \, \mathbf{n}_y \; ,$$

wobei $\underline{\mathbf{E}}_{\mathrm{abs}}$ eine konstante Feldamplitude sei und zudem gelte $k=k'+\mathrm{i}k''$. Bestimmen Sie zunächst das Magnetfeld und mit dessen Hilfe den zeitgemittelten Poynting Vektor $\langle \mathbf{S}(\mathbf{r}) \rangle$ im Film. Schreiben Sie das Resultat als Funktion des komplexen Brechungsindex $n=n'+\mathrm{i}n''$.

(j) (4 Punkte) Die Näherung in der vorigen Aufgabe bedingt ein (unrealistisches) Eindringen von Feldern in die Metalloberfläche (die ursprünglich als perfekt reflektierend modelliert wurde). Berechnen Sie die mittlere Leistung \bar{P} pro Querschnittsfläche A, welche in unserer Näherung die Ebene z=L durchfliesst.