Propositions and Rules of Boolean Algebra

There is an order of precedence of operations, just as there is in ordinary arithmetic. In Boolean algebra, it is as follows:

Brackets (evaluated first), then NOT, then AND, then OR.

These four basic rules are all provable:

1: Commutative Proposition

$$A.B = B.A$$
 $A \text{ and } B = B \text{ and } A$
 $A+B=B+A$ $A \text{ or } B=B \text{ or } A$

2: Distributive Proposition

$$A(B+C) = A.B + A.C$$
 A and $(B \text{ or } C) = (A \text{ and } B) \text{ or } (A \text{ and } C)$

3: Identity Proposition

A+0=A	A or 0 = A
A+1 = 1	A or $1 = 1$
A.1 = A	A and $1 = A$
A.0 = 0	A and $0 = 0$

4: Inverse Proposition

$$A+/A = 1$$
 $A ext{ or } NOT A = 1$ $A ext{ and } NOT A = 0$

With these propositions a large number of Boolean algebra theorems may be developed, and proved. The most important which we will need are:

1: De Morgan's Theorem

$$/(A+B) = /A./B$$
 $NOT(A \text{ or } B) = (NOT \text{ A and } NOT \text{ B})$
 $/(A.B) = /A+/B$ $NOT(A \text{ and } B) = (NOT \text{ A or } NOT \text{ B})$

2: Simplification Theorem

$$A+A.B=A$$
 $A or (A and B)=A$ $A+/A.B=A+B$ $A or (NOT A and B)=A or B$