Package 'Giotto'

November 25, 2019

```
Title Spatial single-cell transcriptomics pipeline.
Version 0.1.2
Description Pipeline to process, analyze and visualize (spatial) single-cell transcriptomic data.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Depends data.table (>= 1.12.2),
      ggplot2 (>= 3.1.1),
      base (>= 3.5.1),
      utils (>= 3.5.1),
      R (>= 3.5.1)
Imports Rtsne (>= 0.15),
      uwot (>= 0.0.0.9010),
      multinet (>= 3.0.2),
      FactoMineR (>= 1.34),
      factoextra (>= 1.0.5),
      cowplot (>= 0.9.4),
      grDevices,
      RColorBrewer,
      jackstraw (>= 1.3),
      dbscan (>= 1.1-3),
      ggalluvial (>= 0.9.1),
      scales (>= 1.0.0),
      ComplexHeatmap (>= 1.20.0),
      \frac{1}{2} qvalue (>= 2.14.1),
      1fa (>= 1.12.0),
      igraph (>= 1.2.4.1),
      plotly,
      reticulate,
      magrittr,
      limma,
      png,
      tiff,
      ggdendro
```

Suggests knitr,

rmarkdown,

2 R topics documented:

MAST, scran (>= 1.10.1)

biocViews

VignetteBuilder knitr

R topics documented:

addCellMetadata	6
addCellStatistics	7
addGeneMetadata	7
addGeneStatistics	8
addHMRF	9
addNetworkLayout	9
addStatistics	10
adjustGiottoMatrix	11
aes string2	11
allCellCellcommunicationsScores	12
all_plots_save_function	13
annotateGiotto	14
annotateSpatialNetwork	14
annotate_spatlocs_with_spatgrid_2D	15
annotate_spatlocs_with_spatgrid_3D	15
average_gene_gene_expression_in_groups	16
binGetSpatialGenes	17
calculateHVG	18
calculateMetaTable	19
calculateSpatialGenes	19
calculate_spatial_genes_python	21
cellProximityBarplot	22
cellProximityEnrichment	23
cellProximityHeatmap	24
cellProximityNetwork	25
cellProximitySpatPlot2D	26
cellProximitySpatPlot3D	28
cellProximityVisPlot	29
cellProximityVisPlot_2D_ggplot	31
cellProximityVisPlot_2D_plotly	
cellProximityVisPlot_3D_plotly	34
changeGiottoInstructions	35
clusterCells	36
createGiottoInstructions	38
createGiottoObject	39
createHeatmap_DT	40
createNearestNetwork	41
createSpatialGrid	42
createSpatialGrid_2D	42
createSpatialGrid_3D	43
createSpatialNetwork	44
create_average_detection_DT	45
create_average_DT	
create cell type random cell IDs	

create_cluster_matrix	
create_dimObject	
decide_cluster_order	
detectSpatialPatterns	
dimGenePlot2D	
dimGenePlot3D	
dimPlot2D	. 52
dimPlot3D	. 53
direction_test_CPG	. 55
doHclust	. 56
doHMRF	. 57
doKmeans	. 58
doLeidenCluster	
doLeidenSubCluster	
doLouvainCluster	
doLouvainCluster_community	
doLouvainCluster_multinet	
doLouvainSubCluster	
doLouvainSubCluster_community	
doLouvainSubCluster_multinet	
doRandomWalkCluster	
doSNNCluster	
dt_to_matrix	
exportGiottoViewer	
exprOnlyCellCellcommunicationScores	
extended_gini_fun	
extractNearestNetwork	
fDataDT	
filterCombinations	
filterCPGscores	
filterDistributions	
filterGiotto	
findGiniMarkers	
findGiniMarkers_one_vs_all	
findMarkers	
findMarkers_one_vs_all	
findMastMarkers	
findMastMarkers_one_vs_all	
findScranMarkers	
findScranMarkers_one_vs_all	. 83
find_grid_2D	
find_grid_3D	. 85
find_grid_x	. 85
find_grid_y	. 85
$find_grid_z \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 85
fish_function	. 86
fish_function2	. 86
FSV_show	
GenePattern_show	
general_save_function	
getCellProximityGeneScores	
getClusterSimilarity	

getDendrogramSplits	91
getDistinctColors	92
getGeneToGeneScores	93
get_cell_to_cell_sorted_name_conversion	94
get_interaction_gene_enrichment	94
get_specific_interaction_gene_enrichment	95
ggplot_save_function	
giotto-class	
iterCluster	
iterLeidenCluster	98
iterLouvainCluster	99
iterLouvainCluster_community	
iterLouvainCluster_multinet	101
kmeans_binarize	
loadHMRF	
make_simulated_network	
mergeClusters	
mygini_fun	
nnDT_to_kNN	
node_clusters	
normalizeGiotto	
OR function2	
pDataDT	
plotCPGscores	
plotGTGscores	
plotHeatmap	
plotly_axis_scale_2D	
plotly_axis_scale_3D	
plotly_grid	
plotly_network	
plotMetaDataHeatmap	
plotPCA	
plotPCA_2D	
plotPCA_3D	
plotTSNE	
plotTSNE 2D	
plotTSNE_2D	
plotUMAP	
plotUMAP 2D	
plotUMAP_3D	
plot_network_layer_ggplot	
plot_network_rayer_ggplot	
plot_spat_point_layer_ggplot	
print.giotto	
rank_binarize	
readGiottoInstructions	
removeCellAnnotation	
removeGeneAnnotation	
runPCA	
runtSNE	
runUMAP	
selectPatternGenes	137

_	
	on_values
	thod
	ndrogram
	atmap
	S
showGeneExp	essionProximityScore
showGiottoIns	ructions
showGTGsco	S
	ionProximityScore
-	
	nes
	Steps
	oGene
spatDimGenel	ot2D
spatDimGenel	ot3D
spatDimPlot21	
)
)
	,
_	
. –	
	communicationScores
	m_in_two
stitchFieldCoo	dinates
subClusterCel	
subsetGiotto .	
viewHMRFres	ılts
	ılts2D
	ılts3D
	st_2D_ggplot
	t_3D_plotly
visDimPlot_2	_ggplot
visDimPlot_2	_plotly
visDimPlot_3	_plotly
visForceLayou	Plot
-	
	D_ggplot
	S_ggptot
	<u> </u>
	olot
	tly
	tly
	ePlot
vicSnotDimCe	nePlot_2D

6 addCellMetadata

Index	2	10
	write_giotto_viewer_dim_reduction	08
	write_giotto_viewer_annotation	08
	writeHMRFresults	07
	visSpatDimPlot_3D	06
	visSpatDimPlot_2D	04
	visSpatDimPlot	02
	visSpatDimGenePlot_3D	00

addCellMetadata

addCellMetadata

Description

adds cell metadata to the giotto object

Usage

```
addCellMetadata(gobject, new_metadata, by_column = F,
    column_cell_ID = NULL)
```

Arguments

gobject giotto object

new_metadata new metadata to use

by_column merge metadata based on cell_ID column in pDataDT

 $\verb|column_cell_ID| column name of new metadata to use if by_column = TRUE$

Details

Description of how to add cell metadata ...

Value

giotto object

Examples

addCellMetadata(gobject)

addCellStatistics 7

addCellStatistics addCellStatistics

Description

adds cells statistics to the giotto object

Usage

```
addCellStatistics(gobject, expression_values = c("normalized", "scaled",
   "custom"), detection_threshold = 0, return_gobject = TRUE)
```

Arguments

Details

Details about cell statistics that are returned.

Value

```
giotto object if return_gobject = TRUE
```

Examples

```
addCellStatistics(gobject)
```

addGeneMetadata a

addGeneMetadata

Description

adds gene metadata to the giotto object

Usage

```
addGeneMetadata(gobject, new_metadata, by_column = F,
   column_gene_ID = NULL)
```

Arguments

```
gobject giotto object new_metadata new metadata to use
```

by_column merge metadata based on gene_ID column in fDataDT column_cell_ID column name of new metadata to use if by_column = TRUE

8 addGeneStatistics

Details

Description of how to add gene metadata ...

Value

```
giotto object
```

Examples

```
addGeneMetadata(gobject)
```

addGeneStatistics

addGeneStatistics

Description

adds gene statistics to the giotto object

Usage

```
addGeneStatistics(gobject, expression_values = c("normalized", "scaled",
   "custom"), detection_threshold = 0, return_gobject = TRUE)
```

Arguments

Details

Details about gene statistics that are returned.

Value

```
giotto object if return_gobject = TRUE
```

```
{\tt addGeneStatistics(gobject)}
```

addHMRF 9

addHMRF addHMRF

Description

Add selected results from doHMRF to the giotto object

Usage

```
addHMRF(gobject, HMRFoutput, k = NULL, betas_to_add = NULL,
hmrf_name = NULL)
```

Arguments

gobject giotto object

HMRF output from doHMRF()

k number of domains

betas_to_add results from different betas that you want to add

name specify a custom name

Details

Description ...

Value

giotto object

Examples

addHMRF(gobject)

addNetworkLayout

addNetworkLayout

Description

Add a network layout for a select nearest neighbor network

Usage

```
addNetworkLayout(gobject, nn_network_to_use = NULL,
  network_name = NULL, layout_type = c("drl"), options_list = NULL,
  layout_name = "layout", return_gobject = TRUE)
```

10 addStatistics

Arguments

gobject giotto object

nn_network_to_use

kNN or sNN

network_name name of NN network to be used

layout_type layout algorithm to use

options_list list of options for selected layout

layout_name name for layout

return_gobject boolean: return giotto object (default = TRUE)

Details

Description of layouts and options.

Value

giotto object with updated layout for selected NN network

Examples

addNetworkLayout(gobject)

addStatistics

addStatistics

Description

adds genes and cells statistics to the giotto object

Usage

```
addStatistics(gobject, expression_values = c("normalized", "scaled",
   "custom"), detection_threshold = 0, return_gobject = TRUE)
```

Arguments

```
gobject giotto object
```

expression_values

expression values to use

detection_threshold

detection threshold to consider a gene detected

return_gobject boolean: return giotto object (default = TRUE)

Details

Details about gene and cell statistics that are returned.

Value

```
giotto object if return_gobject = TRUE, else a list with results
```

adjustGiottoMatrix 11

Examples

```
addStatistics(gobject)
```

adjustGiottoMatrix

adjustGiottoMatrix

Description

normalize and/or scale expresion values of Giotto object

Usage

```
adjustGiottoMatrix(gobject, expression_values = c("normalized", "scaled",
   "custom"), batch_columns = NULL, covariate_columns = NULL,
   return_gobject = TRUE, update_slot = c("custom"))
```

Arguments

```
gobject giotto object
expression_values
expression values to use

batch_columns metadata columns that represent different batch
covariate_columns
metadata columns that represent covariates to regress out
return_gobject boolean: return giotto object (default = TRUE)
update_slot expression slot that will be updated (default = custom)
```

Details

Description of adjusting steps ...

Value

giotto object

Examples

```
adjustGiottoMatrix(gobject)
```

aes_string2

aes_string2

Description

makes sure aes_string can also be used with names that start with numeric values

Usage

```
aes_string2(...)
```

```
all {\tt Cell Cell communications Scores} \\ all {\tt Cell Cell communications Scores}
```

Description

All Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
allCellCellcommunicationsScores(gobject,
   spatial_network_name = "spatial_network",
   cluster_column = "cell_types", random_iter = 100, gene_set_1,
   gene_set_2, log2FC_addendum = 0.1, min_observations = 2,
   verbose = c("a little", "a lot", "none"))
```

Arguments

```
gobject
                  giotto object to use
spatial_network_name
                  spatial network to use for identifying interacting cells
cluster_column cluster column with cell type information
                  number of iterations
random_iter
gene_set_1
                  first specific gene set from gene pairs
                  second specific gene set from gene pairs
gene_set_2
log2FC_addendum
                  addendum to add when calculating log2FC
min_observations
                  minimum number of interactions needed to be considered
verbose
                  verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

```
allCellCellcommunicationsScores(gobject)
```

all_plots_save_function

```
all\_plots\_save\_function \\ all\_plots\_save\_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
all_plots_save_function(gobject, plot_object, save_dir = NULL,
    save_folder = NULL, save_name = NULL,
    default_save_name = "giotto_plot", save_format = NULL,
    show_saved_plot = F, ncol = 1, nrow = 1, scale = 1,
    base_width = NULL, base_height = NULL, base_aspect_ratio = NULL,
    units = NULL, dpi = NULL, limitsize = TRUE, ...)
```

Arguments

```
gobject
                  giotto object
                  object to plot
plot_object
save_dir
                  directory to save to
save_folder
                  folder in save_dir to save to
save_name
                  name of plot
save_format
                  format (e.g. png, tiff, pdf, ...)
show_saved_plot
                  load & display the saved plot
ncol
                  number of columns
nrow
                  number of rows
scale
                  scale
base_width
                  width
base_height
                  height
base_aspect_ratio
                  aspect ratio
units
                  units
dpi
                  Plot resolution
                  When TRUE (the default), ggsave will not save images larger than 50x50 inches,
limitsize
                  to prevent the common error of specifying dimensions in pixels.
                  additional parameters to ggplot_save_function or general_save_function
. . .
```

See Also

```
{\tt Giotto::general\_save\_function}
```

```
all_plots_save_function(gobject)
```

annotateGiotto

annotateGiotto

Description

adds cell annotation to giotto object based on clustering

Usage

```
annotateGiotto(gobject, annotation_vector = NULL,
  cluster_column = NULL, name = "cell_types")
```

Arguments

Details

Description of how to add cell metadata ...

Value

giotto object

Examples

```
annotateGiotto(gobject)
```

```
annotateSpatialNetwork
```

annotate Spatial Network

Description

Annotate spatial network with cell metadata information.

Usage

```
annotateSpatialNetwork(gobject, spatial_network_name = "spatial_network",
  cluster_column)
```

Arguments

Value

annotated network in data.table format

Examples

annotateSpatialNetwork(gobject)

Description

annotate spatial locations with 2D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_2D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_2D()
```

```
annotate\_spatlocs\_with\_spatgrid\_3D \\ annotate\_spatlocs\_with\_spatgrid\_3D
```

Description

annotate spatial locations with 3D spatial grid information

Usage

```
annotate_spatlocs_with_spatgrid_3D(spatloc, spatgrid)
```

Arguments

spatloc spatial_locs slot from giotto object

spatgrid selected spatial_grid slot from giotto object

Value

annotated spatial location data.table

Examples

```
annotate_spatlocs_with_spatgrid_3D()
```

```
average_gene_gene_expression_in_groups

average_gene_gene_expression_in_groups
```

Description

calculate average expression per cluster

Usage

```
average_gene_gene_expression_in_groups(gobject,
  cluster_column = "cell_types", gene_set_1, gene_set_2)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs
```

Details

Details will follow.

Value

data.table with average expression scores for each cluster

```
average_gene_gene_expression_in_groups(gobject)
```

binGetSpatialGenes 17

binGetSpatialGenes binGetSpatialGenes

Description

compute genes that are spatially clustered

Usage

```
binGetSpatialGenes(gobject, bin_method = c("kmeans", "rank"),
  expression_values = c("normalized", "scaled", "custom"),
  spatial_network_name = "spatial_network", nstart = 3,
  iter_max = 10, percentage_rank = 10, do_fisher_test = F,
  community_expectation = 5, verbose = F)
```

Arguments

gobject giotto object bin_method method to binarize gene expression expression_values expression values to use spatial_network_name name of spatial network to use (default = 'spatial_network') nstart kmeans: nstart parameter kmeans: iter.max parameter iter_max do_fisher_test perform fisher test $community_expectation$ cell degree expectation in spatial communities verbose be verbose rank_percentage

percentage of top cells for binarization

Details

Description of how we compute spatial genes.

Value

giotto object spatial genes appended to fDataDT

```
binGetSpatialGenes(gobject)
```

18 calculateHVG

calculateHVG

calculateHVG

Description

compute highly variable genes

Usage

```
calculateHVG(gobject, expression_values = c("normalized", "scaled",
   "custom"), method = c("cov_groups", "cov_loess", "gini_loess"),
   reverse_log_scale = T, logbase = 2, expression_threshold = 0,
   nr_expression_groups = 20, zscore_threshold = 1.5, HVGname = "hvg",
   difference_in_variance = 1, show_plot = T, return_gobject = T)
```

Arguments

gobject giotto object

expression_values

expression values to use

method method to calculate highly variable genes

reverse_log_scale

reverse log-scale of expression values

logbase if reverse_log_scale is TRUE, which log base was used?

expression_threshold

expression threshold to consider a gene detected

 $nr_expression_groups$

number of expression groups for cov_groups

zscore_threshold

zscore to select hvg for cov_groups

HVGname name for highly variable genes in cell metadata

difference_in_variance

minimum difference in variance required

show_plot show plots

return_gobject boolean: return giotto object (default = TRUE)

Details

Description of how we compute highly variable genes.

Value

giotto object highly variable genes appended to gene metadata (fDataDT)

```
calculateHVG(gobject)
```

calculateMetaTable 19

calculateMetaTable calculateMetaTable

Description

calculates the average gene expression for one or more (combined) annotation columns.

Usage

```
calculateMetaTable(gobject, expression_values = c("normalized", "scaled",
   "custom"), metadata_cols = NULL, selected_genes = NULL)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

metadata_cols annotation columns found in pDataDT(gobject)

selected_genes subset of genes to use
```

Value

data.table with average expression values for each gene per (combined) annotation

Examples

```
calculateMetaTable(gobject)
```

 $calculate Spatial Genes \quad calculate Spatial Genes$

Description

compute genes that are spatially clustered

Usage

```
calculateSpatialGenes(gobject, expression_values = c("normalized",
   "scaled", "custom"), method = c("kmeans", "gini", "rank"),
   spatial_network_name = "spatial_network", simulations = 10,
   detection_threshold = 0, loess_span = 0.2, pred_difference = 0.01,
   split_gene_groups = 10, show_plot = T, rank_percentage = 10,
   pvalue = 0.01, OddsRatio = 2, min_N = 20, max_N = 5000,
   SVname = "SV", show_genes = T, nr_genes = 20, return_gobject = T)
```

20 calculateSpatialGenes

Arguments

gobject giotto object

expression_values

expression values to use

method method to calculate spatial genes

spatial_network_name

name of spatial network to use (default = 'spatial_network')

detection_threshold

detection threshold to consider a gene detected

loess_span loess span for loess regression

pred_difference

minimum difference between observed and predicted

split_gene_groups

number of groups to split genes in

show_plot show plots

rank_percentage

percentage of top cells for binarization

pvalue minimum p-value

OddsRatio minimum odds ratio

min_N minimum number of cells that need to display high expression upon binarization

max_N maximum number of cells that can display high expression upon binarization

SVname name for identified spatial genes (default = 'SV')

show_genes show top genes on plot

nr_genes # of genes to plot if show_genes = TRUE

return_gobject boolean: return giotto object (default = TRUE)

Details

Description of how we compute spatial genes.

Value

giotto object spatial genes appended to fDataDT

Examples

 ${\tt calculateSpatialGenes(gobject)}$

Description

Calculate spatial genes using distance matrix.

Usage

```
calculate_spatial_genes_python(gobject,
  expression_values = c("normalized", "scaled", "custom"),
  metric = "euclidean", subset_genes = NULL, rbp_p = 0.95,
  examine_top = 0.3, python_path = NULL)
```

Arguments

Details

Description of how we compute spatial pattern genes.

Value

data.table with spatial scores

```
{\tt calculate\_spatial\_genes\_python(gobject)}
```

22 cellProximityBarplot

```
cell Proximity Barplot \quad \textit{cell Proximity Barplot}
```

Description

Create barplot from cell-cell proximity scores

Usage

```
cellProximityBarplot(gobject, CPscore, min_orig_ints = 5,
  min_sim_ints = 5, p_val = 0.05, show_plot = NA, return_plot = NA,
  save_plot = NA, save_param = list(),
  default_save_name = "cellProximityBarplot")
```

Arguments

gobject giotto object **CPscore** CPscore, output from cellProximityEnrichment() filter on minimum original cell-cell interactions min_orig_ints filter on minimum simulated cell-cell interactions min_sim_ints p_val p-value show_plot show plot return_plot return ggplot object directly save the plot [boolean] save_plot list of saving parameters from all_plots_save_function() save_param default_save_name default save name for saving, don't change, change save_name in save_param

Details

This function creates a barplot that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

ggplot barplot

```
{\tt cellProximityBarplot(CPscore)}
```

```
cellProximityEnrichment
```

cellProximityEnrichment

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

```
cellProximityEnrichment(gobject,
  spatial_network_name = "spatial_network", cluster_column,
  number_of_simulations = 100)
```

Arguments

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by random permutations of the cell type labels of each node (cell) in the spatial network.

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm res) shows the enrichment results.

```
cellProximityEnrichment(gobject)
```

```
cellProximityHeatmap cellProximityHeatmap
```

Description

Create heatmap from cell-cell proximity scores

Usage

```
cellProximityHeatmap(gobject, CPscore, scale = T, order_cell_types = T,
  color_breaks = NULL, color_names = NULL, show_plot = NA,
  return_plot = NA, save_plot = NA, save_param = list(),
  default_save_name = "cellProximityHeatmap")
```

Arguments

gobject giotto object **CPscore** CPscore, output from cellProximityEnrichment() scale cell-cell proximity interaction scores scale order_cell_types order cell types based on enrichment correlation numerical vector of length 3 to represent min, mean and maximum color_breaks color_names character color vector of length 3 show plot show_plot return ggplot object return_plot save_plot directly save the plot [boolean] save_param list of saving parameters from all_plots_save_function() default_save_name

Details

This function creates a heatmap that shows the spatial proximity enrichment or depletion of cell type pairs.

default save name for saving, don't change, change save_name in save_param

Value

ggplot heatmap

```
cellProximityHeatmap(CPscore)
```

cellProximityNetwork 25

```
cellProximityNetwork cellProximityNetwork
```

Description

Create network from cell-cell proximity scores

Usage

```
cellProximityNetwork(gobject, CPscore, remove_self_edges = FALSE,
  self_loop_strength = 0.1, color_depletion = "lightgreen",
  color_enrichment = "red", rescale_edge_weights = TRUE,
  edge_weight_range_depletion = c(0.1, 1),
  edge_weight_range_enrichment = c(1, 5), layout = "Fruchterman",
 only_show_enrichment_edges = F, edge_width_range = c(0.1, 2),
 node_size = 4, node_text_size = 6, show_plot = NA,
  return_plot = NA, save_plot = NA, save_param = list(),
 default_save_name = "cellProximityNetwork")
```

Arguments

```
gobject
                  giotto object
CPscore
                  CPscore, output from cellProximityEnrichment()
remove_self_edges
                  remove enrichment/depletion edges with itself
self_loop_strength
                  size of self-loops
color_depletion
                  color for depleted cell-cell interactions
color_enrichment
                  color for enriched cell-cell interactions
rescale_edge_weights
                  rescale edge weights (boolean)
edge_weight_range_depletion
                  numerical vector of length 2 to rescale depleted edge weights
edge_weight_range_enrichment
                  numerical vector of length 2 to rescale enriched edge weights
                  layout algorithm to use to draw nodes and edges
layout
only_show_enrichment_edges
                  show only the enriched pairwise scores
edge_width_range
                  range of edge width
                  size of nodes
node_size
node_text_size size of node labels
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
```

default save name for saving, don't change, change save_name in save_param

Details

This function creates a network that shows the spatial proximity enrichment or depletion of cell type pairs.

Value

igraph plot

Examples

```
cellProximityNetwork(CPscore)
```

```
cellProximitySpatPlot2D
```

cellProximitySpatPlot2D

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximitySpatPlot2D(gobject, interaction_name = NULL,
    cluster_column = NULL, sdimx = "sdimx", sdimy = "sdimy",
    cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
    show_other_cells = F, show_network = F, show_other_network = F,
    network_color = NULL, spatial_network_name = "spatial_network",
    show_grid = F, grid_color = NULL,
    spatial_grid_name = "spatial_grid", coord_fix_ratio = 1,
    show_legend = T, point_size_select = 2,
    point_select_border_col = "black", point_select_border_stroke = 0.05,
    point_size_other = 1, point_alpha_other = 0.3,
    point_other_border_col = "lightgrey",
    point_other_border_stroke = 0.01, show_plot = NA, return_plot = NA,
    save_plot = NA, save_param = list(),
    default_save_name = "cellProximitySpatPlot2D")
```

Arguments

```
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
show_legend
                  show legend
point_size_select
                  size of selected points
point_select_border_col
                  border color of selected points
point\_select\_border\_stroke
                  stroke size of selected points
point_size_other
                  size of other points
point_other_border_col
                  border color of other points
point_other_border_stroke
                  stroke size of other points
```

show_plot show plots

return_plot return ggplot object

save_plot directly save the plot [boolean]

list of saving parameters from all_plots_save_function() save_param

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

cellProximitySpatPlot2D(gobject)

```
{\tt cellProximitySpatPlot3D}
```

cellProximitySpatPlot2D

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximitySpatPlot3D(gobject, interaction_name = NULL,
   cluster_column = NULL, sdimx = "sdimx", sdimy = "sdimy",
   sdimz = "sdimz", cell_color = NULL, cell_color_code = NULL,
   color_as_factor = T, show_other_cells = T, show_network = T,
   show_other_network = F, network_color = NULL,
   spatial_network_name = "spatial_network", show_grid = F,
   grid_color = NULL, spatial_grid_name = "spatial_grid",
   show_legend = T, point_size_select = 4, point_size_other = 2,
   point_alpha_other = 0.5, axis_scale = c("cube", "real", "custom"),
   custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
   z_ticks = NULL, show_plot = NA, return_plot = NA, save_plot = NA,
   save_param = list(), default_save_name = "cellProximitySpatPlot3D",
   ...)
```

Arguments

```
gobject
                  giotto object
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
                  x-axis dimension name (default = 'sdimx')
sdimx
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
```

cellProximityVisPlot 29

```
show_legend
                  show legend
point_size_select
                  size of selected points
point_size_other
                  size of other points
                  show plots
show_plot
                  return plotly object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

plotly

Examples

cellProximitySpatPlot3D(gobject)

```
cellProximityVisPlot cellProximityVisPlot
```

Description

Visualize cell-cell interactions according to spatial coordinates

Usage

```
cellProximityVisPlot(gobject, interaction_name = NULL,
  cluster_column = NULL, sdimx = NULL, sdimy = NULL, sdimz = NULL,
  cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
  show_other_cells = F, show_network = F, show_other_network = F,
  network_color = NULL, spatial_network_name = "spatial_network",
  show_grid = F, grid_color = NULL,
  spatial_grid_name = "spatial_grid", coord_fix_ratio = 1,
  show_legend = T, point_size_select = 2,
  point_select_border_col = "black", point_select_border_stroke = 0.05,
  point_size_other = 1, point_alpha_other = 0.3,
  point_other_border_col = "lightgrey",
  point_other_border_stroke = 0.01, axis_scale = c("cube", "real",
  "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
  z_ticks = NULL, plot_method = c("ggplot", "plotly"), ...)
```

Arguments

gobject giotto object interaction_name cell-cell interaction name cluster_column cluster column with cell clusters x-axis dimension name (default = 'sdimx') sdimx sdimy y-axis dimension name (default = 'sdimy') sdimz z-axis dimension name (default = 'sdimz') color for cells (see details) cell_color cell_color_code named vector with colors color_as_factor convert color column to factor show underlying spatial network show_network color of spatial network network_color spatial_network_name name of spatial network to use show spatial grid show_grid color of spatial grid grid_color spatial_grid_name name of spatial grid to use coord_fix_ratio fix ratio between x and y-axis show_legend show legend point_size_select size of selected points point_select_border_col border color of selected points point_select_border_stroke stroke size of selected points point_size_other size of other points point_other_border_col border color of other points point_other_border_stroke stroke size of other points

Details

Description of parameters.

Value

ggplot or plotly

Examples

cellProximityVisPlot(gobject)

Description

Visualize 2D cell-cell interactions according to spatial coordinates in ggplot mode

Usage

```
cellProximityVisPlot_2D_ggplot(gobject, interaction_name = NULL,
    cluster_column = NULL, sdimx = NULL, sdimy = NULL,
    cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
    show_other_cells = F, show_network = F, show_other_network = F,
    network_color = NULL, spatial_network_name = "spatial_network",
    show_grid = F, grid_color = NULL,
    spatial_grid_name = "spatial_grid", coord_fix_ratio = 1,
    show_legend = T, point_size_select = 2,
    point_select_border_col = "black", point_select_border_stroke = 0.05,
    point_size_other = 1, point_alpha_other = 0.3,
    point_other_border_col = "lightgrey",
    point_other_border_stroke = 0.01, ...)
```

Arguments

```
giotto object
gobject
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

Value

ggplot

Examples

cellProximityVisPlot_2D_ggplot(gobject)

Description

Visualize 2D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_2D_plotly(gobject, interaction_name = NULL,
    cluster_column = NULL, sdimx = NULL, sdimy = NULL,
    cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
    show_other_cells = F, show_network = F, show_other_network = F,
    network_color = NULL, spatial_network_name = "spatial_network",
    show_grid = F, grid_color = NULL,
    spatial_grid_name = "spatial_grid", show_legend = T,
    point_size_select = 2, point_size_other = 1,
    point_alpha_other = 0.3, axis_scale = c("cube", "real", "custom"),
    custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL, ...)
```

Arguments

gobject giotto object

interaction_name

cell-cell interaction name

cluster_column cluster column with cell clusters

sdimx x-axis dimension name (default = 'sdimx')

sdimy y-axis dimension name (default = 'sdimy')

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor

show_other_cells

decide if show cells not in network

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid

grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

show_legend show legend

point_size_select

size of selected points

coord_fix_ratio

fix ratio between x and y-axis

Details

Description of parameters.

Value

plotly

Examples

cellProximityVisPlot_2D_plotly(gobject)

Description

Visualize 3D cell-cell interactions according to spatial coordinates in plotly mode

Usage

```
cellProximityVisPlot_3D_plotly(gobject, interaction_name = NULL,
   cluster_column = NULL, sdimx = NULL, sdimy = NULL, sdimz = NULL,
   cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
   show_other_cells = F, show_network = F, show_other_network = F,
   network_color = NULL, spatial_network_name = "spatial_network",
   show_grid = F, grid_color = NULL,
   spatial_grid_name = "spatial_grid", show_legend = T,
   point_size_select = 2, point_size_other = 1,
   point_alpha_other = 0.5, axis_scale = c("cube", "real", "custom"),
   custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
   z_ticks = NULL, ...)
```

Arguments

```
giotto object
gobject
interaction_name
                  cell-cell interaction name
cluster_column cluster column with cell clusters
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
show_other_cells
                  decide if show cells not in network
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
                  color of spatial grid
grid_color
spatial_grid_name
                  name of spatial grid to use
                  show legend
show_legend
```

Details

Description of parameters.

Value

plotly

Examples

```
cellProximityVisPlot_3D_plotly(gobject)
```

 ${\tt change} {\tt GiottoInstructions}$

change Giot to Instructions

Description

Function to change instructions to giotto object

Usage

```
changeGiottoInstructions(gobject, params = NULL, new_values = NULL,
  return_gobject = TRUE)
```

Arguments

gobject giotto object

params parameter(s) to change

new_values new value(s) for parameter(s)
return_gobject (boolean) return giotto object

Value

named vector with giotto instructions

Examples

changeGiottoInstructions()

36 clusterCells

clusterCells

clusterCells

Description

cluster cells using a NN-network and community detection algorithms

Usage

```
clusterCells(gobject, cluster_method = c("leiden", "louvain_community",
  "louvain_multinet", "randomwalk", "sNNclust", "kmeans", "hierarchical"),
 name = "cluster_name", nn_network_to_use = "sNN",
 network_name = "sNN.pca", pyth_leid_resolution = 1,
 pyth_leid_weight_col = "weight",
 pyth_leid_part_type = c("RBConfigurationVertexPartition",
  "ModularityVertexPartition"), pyth_leid_init_memb = NULL,
 pyth_leid_iterations = 1000, pyth_louv_resolution = 1,
 pyth_louv_weight_col = NULL, python_louv_random = F,
 python_path = NULL, louvain_gamma = 1, louvain_omega = 1,
 walk_steps = 4, walk_clusters = 10, walk_weights = NA,
  sNNclust_k = 20, sNNclust_eps = 4, sNNclust_minPts = 16,
 borderPoints = TRUE, expression_values = c("normalized", "scaled",
  "custom"), genes_to_use = NULL, dim_reduction_to_use = c("cells",
  "pca", "umap", "tsne"), dim_reduction_name = "pca",
 dimensions_to_use = 1:10, distance_method = c("original", "pearson",
  "spearman", "euclidean", "maximum", "manhattan", "canberra", "binary",
  "minkowski"), km_centers = 10, km_iter_max = 100, km_nstart = 1000,
 km_algorithm = "Hartigan-Wong",
 hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete",
  "average", "mcquitty", "median", "centroid"), hc_k = 10, hc_h = NULL,
 return_gobject = TRUE, set_seed = T, seed_number = 1234, ...)
```

Arguments

```
gobject
                 giotto object
cluster_method community cluster method to use
                 name for new clustering result
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
pyth_leid_resolution
                 resolution for leiden
pyth_leid_weight_col
                 column to use for weights
pyth_leid_part_type
                 partition type to use
pyth_leid_init_memb
                 initial membership
pyth_leid_iterations
                 number of iterations
```

clusterCells 37

pyth_louv_resolution

resolution for louvain

pyth_louv_weight_col

python louvain param: weight column

python_louv_random

python louvain param: random

python_path specify specific path to python if required

louvain_gamma louvain param: gamma or resolution

louvain_omega louvain param: omega

walk_steps randomwalk: number of steps
walk_clusters randomwalk: number of clusters
walk_weights randomwalk: weight column
sNNclust_k SNNclust: k neighbors to use

sNNclust_eps SNNclust: epsilon

sNNclust_minPts

SNNclust: min points

borderPoints SNNclust: border points

expression_values

expression values to use

genes_to_use = NULL,
dim_reduction_to_use

dimension reduction to use

dim_reduction_name

name of reduction 'pca',

dimensions_to_use

dimensions to use

distance_method

distance method

km_centers kmeans centers km_iter_max kmeans iterations

km_nstart kmeans random starting points

km_algorithm kmeans algorithm

hc_agglomeration_method

hierarchical clustering method

hc_k hierachical number of clusters

hc_h hierarchical tree cutoff

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

 ${\tt seed_number} \qquad {\tt number} \ {\tt for} \ {\tt seed}$

... additional parameters

Details

Description of different clustering methods.

38 createGiottoInstructions

Value

giotto object appended with new cluster

Examples

```
clusterCells(gobject)
```

createGiottoInstructions

createGiottoInstructions

Description

Function to create instructions for giotto functions

Usage

```
createGiottoInstructions(python_path = NULL, show_plot = NULL,
  return_plot = NULL, save_plot = NULL, save_dir = NULL,
  plot_format = NULL, dpi = NULL, units = NULL, height = NULL,
  width = NULL)
```

Arguments

python_path path to python bin to use print plot to console, default = TRUE show_plot return_plot return plot as object, default = TRUE automatically save plot, dafault = FALSE save_plot save_dir path of directory to use to save figures dpi resolution for raster images to save height height of the plots to save width width of the plots to save

Value

named vector with giotto instructions

Examples

createGiottoInstructions()

createGiottoObject 39

Description

Function to create a giotto object

Usage

```
createGiottoObject(raw_exprs, spatial_locs = NULL, norm_expr = NULL,
norm_scaled_expr = NULL, custom_expr = NULL, cell_metadata = NULL,
gene_metadata = NULL, spatial_network = NULL,
spatial_network_name = NULL, spatial_grid = NULL,
spatial_grid_name = NULL, dimension_reduction = NULL,
nn_network = NULL, offset_file = NULL, instructions = NULL)
```

Arguments

```
raw_exprs
                  matrix with raw expression counts [required]
spatial_locs
                  data.table with coordinates for cell centroids [required]
                  normalized expression values
norm_expr
norm_scaled_expr
                  scaled expression values
                  custom expression values
custom_expr
cell_metadata
                  cell metadata
gene_metadata
                  gene metadata
spatial_network
                  list of spatial network(s)
spatial_network_name
                  list of spatial network name(s)
spatial_grid
                  list of spatial grid(s)
spatial_grid_name
                  list of spatial grid name(s)
dimension_reduction
                  list of dimension reduction(s)
nn_network
                  list of nearest neighbor network(s)
offset_file
                  file used to stitch fields together (optional)
```

Value

giotto object

```
createGiottoObject(raw_exprs, spatial_locs)
```

40 createHeatmap_DT

createHeatmap_DT

createHeatmap_DT

Description

creates order for clusters

Usage

```
createHeatmap_DT(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes, cluster_column = NULL, cluster_order = c("size",
   "correlation", "custom"), cluster_custom_order = NULL,
   cluster_cor_method = "pearson", cluster_hclust_method = "ward.D",
   gene_order = c("custom", "correlation"), gene_custom_order = NULL,
   gene_cor_method = "pearson", gene_hclust_method = "complete")
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
genes
                  genes to use
cluster_column name of column to use for clusters
                  method to determine cluster order
cluster_order
cluster_custom_order
                  custom order for clusters
cluster_cor_method
                  method for cluster correlation
cluster_hclust_method
                  method for hierarchical clustering of clusters
gene_order
                  method to determine gene order
gene_custom_order
                  custom order for genes
gene_cor_method
                  method for gene correlation
gene_hclust_method
                  method for hierarchical clustering of genes
```

Details

Creates input data.tables for plotHeatmap function.

Value

list

```
createHeatmap_DT(gobject)
```

createNearestNetwork 41

createNearestNetwork createNearestNetwork

Description

create a nearest neighbour network based on previously computed dimension reductions

Usage

```
createNearestNetwork(gobject, expression_values = c("normalized",
   "scaled", "custom"), type = c("sNN", "kNN"),
   dim_reduction_to_use = "pca", dim_reduction_name = "pca",
   dimensions_to_use = 1:10, genes_to_use = NULL, name = "sNN.pca",
   return_gobject = TRUE, k = 30, minimum_shared = 5,
   top_shared = 3, verbose = T, ...)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 kNN or sNN
type
dim_reduction_to_use
                 dimension reduction method to use
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
                 arbitrary name for NN network
name
return_gobject boolean: return giotto object (default = TRUE)
k
                 number of k neighbors to use
```

Details

top_shared

verbose

Description of nearest neighbor network creation and filter steps.

additional parameters

Value

giotto object with updated NN network

minimum_shared minimum shared neighbors

keep at ...

be verbose

```
createNearestNetwork(gobject)
```

42 createSpatialGrid_2D

createSpatialGrid

createSpatialGrid2

Description

```
create a spatial grid
```

Usage

```
createSpatialGrid(gobject, sdimx_stepsize = NULL,
   sdimy_stepsize = NULL, sdimz_stepsize = NULL, minimum_padding = 1,
   name = "spatial_grid", return_gobject = TRUE)
```

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding

minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid2(gobject)
```

```
createSpatialGrid\_2D \quad \textit{createSpatialGrid}\_2D
```

Description

```
create a spatial grid
```

Usage

```
createSpatialGrid_2D(gobject, sdimx_stepsize = NULL,
   sdimy_stepsize = NULL, minimum_padding = 1, name = "spatial_grid",
   return_gobject = TRUE)
```

createSpatialGrid_3D 43

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

minimum_padding

minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid_2D(gobject)
```

```
createSpatialGrid\_3D \quad \textit{createSpatialGrid\_3D}
```

Description

```
create a spatial grid
```

Usage

```
createSpatialGrid_3D(gobject, sdimx_stepsize = NULL,
   sdimy_stepsize = NULL, sdimz_stepsize = NULL, minimum_padding = 1,
   name = "spatial_grid", return_gobject = TRUE)
```

Arguments

```
gobject giotto object

sdimx_stepsize stepsize along the x-axis

sdimy_stepsize stepsize along the y-axis

sdimz_stepsize stepsize along the z-axis

minimum_padding minimum padding on the edges

name name for spatial grid (default = 'spatial_grid')

return_gobject boolean: return giotto object (default = TRUE)
```

Details

Creates a spatial grid with defined x, y (and z) dimensions.

Value

giotto object with updated spatial grid slot

Examples

```
createSpatialGrid_3D(gobject)
```

createSpatialNetwork createSpatialNetwork

Description

Create a spatial network based on cell centroid distances.

Usage

```
createSpatialNetwork(gobject, k = 4, dimensions = "all",
   maximum_distance = NULL, minimum_k = 0, name = "spatial_network",
   verbose = F, return_gobject = TRUE)
```

Arguments

gobject giotto object

k number of nearest neighbors based on physical distance

dimensions which spatial dimensions to use (default = all)

maximum_distance

distance cuttof for nearest neighbors to consider

minimum_k minimum nearest neighbours if maximum distance != NULL

name name for spatial network (default = 'spatial_network')

verbose verbose

return_gobject boolean: return giotto object (default = TRUE)

Details

Creates a spatial network connecting single-cells based on their physical distance to each other. Number of neighbors can be determined by k, maximum distance from each cell with or without setting a minimum k for each cell.

Value

giotto object with updated spatial network slot

```
createSpatialNetwork(gobject)
```

```
create\_average\_detection\_DT \\ create\_average\_detection\_DT
```

Description

calculates average gene detection for a cell metadata factor (e.g. cluster)

Usage

```
create_average_detection_DT(gobject, meta_data_name,
  expression_values = c("normalized", "scaled", "custom"),
  detection_threshold = 0)
```

Arguments

Value

data.table with average gene epression values for each factor

Description

calculates average gene expression for a cell metadata factor (e.g. cluster)

Usage

```
create_average_DT(gobject, meta_data_name,
  expression_values = c("normalized", "scaled", "custom"))
```

Arguments

```
gobject giotto object
meta_data_name name of metadata column to use
expression_values
 which expression values to use
```

Value

data.table with average gene epression values for each factor

46 create_cluster_matrix

```
create\_cell\_type\_random\_cell\_IDs \\ create\_cell\_type\_random\_cell\_IDs
```

Description

creates randomized cell ids within a selection of cell types

Usage

```
create_cell_type_random_cell_IDs(gobject, cluster_column = "cell_types",
   needed_cell_types)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

needed_cell_types

vector of cell type names for which a random id will be found
```

Details

Details will follow.

Value

list of randomly sampled cell ids with same cell type composition

Examples

```
create_cell_type_random_cell_IDs(gobject)
```

```
create_cluster_matrix create_cluster_matrix
```

Description

creates aggregated matrix for a given clustering

Usage

```
create_cluster_matrix(gobject, expression_values = c("normalized",
    "scaled", "custom"), cluster_column, gene_subset = NULL)
```

```
create_cluster_matrix(gobject)
```

create_dimObject 47

create_dimObject

Description

Creates an object that stores a dimension reduction output

Usage

```
create_dimObject(name = "test", reduction_method = NULL,
  coordinates = NULL, misc = NULL)
```

Arguments

name arbitrary name for object

reduction_method

method used to reduce dimensions

coordinates accepts the coordinates after dimension reduction misc any additional information will be added to this slot

Value

number of distinct colors

```
decide_cluster_order
```

Description

creates order for clusters

Usage

```
decide_cluster_order(gobject, expression_values = c("normalized",
   "scaled", "custom"), genes, cluster_column = NULL,
   cluster_order = c("size", "correlation", "custom"),
   cluster_custom_order = NULL, cor_method = "pearson",
   hclust_method = "ward.D")
```

Arguments

gobject giotto object

expression_values

expression values to use

genes genes to use

cluster_column name of column to use for clusters cluster_order method to determine cluster order

cluster_custom_order

custom order for clusters

cor_method method for correlation

hclust_method method for hierarchical clustering

48 detectSpatialPatterns

Details

Calculates order for clusters.

Value

custom

Examples

```
decide_cluster_order(gobject)
```

 ${\tt detectSpatialPatterns} \ \ \textit{detectSpatialPatterns}$

Description

Identify spatial patterns through PCA on average expression in a spatial grid.

Usage

```
detectSpatialPatterns(gobject, expression_values = c("normalized",
   "scaled", "custom"), spatial_grid_name = "spatial_grid",
   min_cells_per_grid = 4, scale_unit = F, ncp = 100, show_plot = T,
   PC_zscore = 1.5)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
spatial_grid_name
                  name of spatial grid to use (default = 'spatial_grid')
min_cells_per_grid
                  minimum number of cells in a grid to be considered
scale_unit
                  scale features
                  number of principal components to calculate
ncp
show_plot
                  show plots
PC_zscore
                  minimum z-score of variance explained by a PC
```

Details

Description of how we compute spatial pattern genes.

Value

```
spatial pattern object 'spatPatObj'
```

```
detectSpatialPatterns(gobject)
```

dimGenePlot2D 49

dimGenePlot2D dimGenePlot2D

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot2D(gobject, expression_values = c("normalized", "scaled",
    "custom"), genes = NULL, dim_reduction_to_use = "umap",
    dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
    show_NN_network = F, nn_network_to_use = "sNN",
    network_name = "sNN.pca", network_color = "lightgray",
    edge_alpha = NULL, scale_alpha_with_expression = FALSE,
    point_size = 1, genes_high_color = "red",
    genes_mid_color = "white", genes_low_color = "blue",
    point_border_col = "black", point_border_stroke = 0.1,
    midpoint = 0, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
    cow_align = "h", show_legend = T, show_plot = NA,
    return_plot = NA, save_plot = NA, save_param = list(),
    default_save_name = "dimGenePlot2D")
```

Arguments

```
gobject
                 giotto object
expression_values
                 gene expression values to use
                 genes to show
genes
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
edge_alpha
                 column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
point_size
                 size of point (cell)
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
```

50 dimGenePlot3D

```
midpoint
                  size of point (cell)
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
cow_rel_w
                  cowplot param: relative width
                  cowplot param: how to align
cow_align
show_legend
                  show legend
show_plot
                  show plots
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
```

Details

Description of parameters.

Value

ggplot

Examples

dimGenePlot2D(gobject)

dimGenePlot3D dimGenePlot3D

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
dimGenePlot3D(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes = NULL, dim_reduction_to_use = "umap",
   dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
   dim3_to_use = 3, show_NN_network = F, nn_network_to_use = "sNN",
   network_name = "sNN.pca", network_color = "lightgray",
   cluster_column = NULL, select_cell_groups = NULL,
   select_cells = NULL, show_other_cells = T,
   other_cell_color = "lightgrey", other_point_size = 1,
   edge_alpha = NULL, point_size = 2, genes_high_color = NULL,
   genes_mid_color = "white", genes_low_color = "blue",
   show_legend = T, show_plot = NA, return_plot = NA,
   save_plot = NA, save_param = list(),
   default_save_name = "dimGenePlot3D")
```

dimGenePlot3D 51

Arguments

gobject giotto object

expression_values

gene expression values to use

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
dim3_to_use dimension to use on z-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use, if show_NN_network = TRUE

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

show_legend show_plot show plots

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

... parameters for cowplot::save_plot()

Details

Description of parameters.

Value

ggplot

Examples

dimGenePlot3D(gobject)

52 dimPlot2D

dimPlot2D

dimPlot2D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
dimPlot2D(gobject, dim_reduction_to_use = "umap",
   dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
   show_NN_network = F, nn_network_to_use = "sNN",
   network_name = "sNN.pca", cell_color = NULL, color_as_factor = T,
   cell_color_code = NULL, select_cell_groups = NULL,
   select_cells = NULL, show_other_cells = T,
   other_cell_color = "lightgrey", other_point_size = 0.5,
   show_cluster_center = F, show_center_label = T,
   center_point_size = 4, center_point_border_col = "black",
   center_point_border_stroke = 0.1, label_size = 4,
   label_fontface = "bold", edge_alpha = NULL, point_size = 1,
   point_border_col = "black", point_border_stroke = 0.1,
   show_legend = T, show_plot = NA, return_plot = NA,
   save_plot = NA, save_param = list(),
   default_save_name = "dimPlot2D")
```

Arguments

```
gobject
                 giotto object
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
                 color for cells (see details)
cell_color
color_as_factor
                 convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                 select subset of cells/clusters based on cell_color parameter
select_cells
                 select subset of cells based on cell IDs
show_other_cells
                 display not selected cells
```

dimPlot3D 53

```
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

dimPlot2D(gobject)

dimPlot3D dimPlot3D

Description

Visualize cells according to dimension reduction coordinates

54 dimPlot3D

Usage

```
dimPlot3D(gobject, dim_reduction_to_use = "umap",
 dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
 dim3_to_use = 3, select_cell_groups = NULL, select_cells = NULL,
 show_other_cells = T, other_cell_color = "lightgrey",
 other_point_size = 2, show_NN_network = F,
 nn_network_to_use = "sNN", network_name = "sNN.pca",
 color_as_factor = T, cell_color = NULL, cell_color_code = NULL,
 show_cluster_center = F, show_center_label = T,
 center_point_size = 4, label_size = 4, edge_alpha = NULL,
 point_size = 3, show_plot = NA, return_plot = NA, save_plot = NA,
 save_param = list(), default_save_name = "dim3D")
```

Arguments

```
gobject
                  giotto object
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimension reduction name
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
dim3_to_use
                  dimension to use on z-axis
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
network_name
color_as_factor
                  convert color column to factor
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
```

direction_test_CPG 55

label_size size of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

show_legend show legend

Details

Description of parameters.

Value

plotly

Examples

dimPlot3D(gobject)

direction_test_CPG

 $direction_test_CPG$

Description

shows direction of change

Usage

```
direction_test(x, min_fdr = 0.05)
```

```
direction_test_CPG()
```

56 doHclust

doHclust doHclust

Description

cluster cells using hierarchical clustering algorithm

Usage

```
doHclust(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes_to_use = NULL, dim_reduction_to_use = c("cells",
   "pca", "umap", "tsne"), dim_reduction_name = "pca",
   dimensions_to_use = 1:10, distance_method = c("pearson", "spearman",
   "original", "euclidean", "maximum", "manhattan", "canberra", "binary",
   "minkowski"), agglomeration_method = c("ward.D2", "ward.D", "single",
   "complete", "average", "mcquitty", "median", "centroid"), k = 10,
   h = NULL, name = "hclust", return_gobject = TRUE, set_seed = T,
   seed_number = 1234)
```

Arguments

```
giotto object
gobject
expression_values
                  expression values to use
genes_to_use
                  subset of genes to use
dim_reduction_to_use
                  dimension reduction to use
dim_reduction_name
                  dimensions reduction name
dimensions_to_use
                  dimensions to use
distance_method
                  distance method
{\it agglomeration\_method}
                  agglomeration method for helust
                  number of final clusters
h
                  cut hierarchical tree at height = h
                  name for hierarchical clustering
name
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                  set seed
seed_number
                  number for seed
                  additional parameters
```

Details

Description on how to use Kmeans clustering method.

doHMRF 57

Value

giotto object appended with new cluster

Examples

doHclust(gobject)

doHMRF

doHMRF

Description

Run HMRF

Usage

```
doHMRF(gobject, expression_values = c("normalized", "scaled", "custom"),
   spatial_network_name = "spatial_network", spatial_genes = NULL,
   spatial_dimensions = c("sdimx", "sdimy", "sdimz"),
   dim_reduction_to_use = NULL, dim_reduction_name = "pca",
   dimensions_to_use = 1:10, name = "test", k = 10, betas = c(0, 2,
   50), tolerance = 1e-10, zscore = c("none", "rowcol", "colrow"),
   numinit = 100, python_path = NULL, output_folder = NULL,
   overwrite_output = TRUE)
```

Arguments

overwrite_output

```
gobject
                 giotto object
expression_values
                 expression values to use
spatial_network_name
                 name of spatial network to use for HMRF
spatial_genes spatial genes to use for HMRF
spatial_dimensions
                 select spatial dimensions to use, default is all possible dimensions
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
name
                 name of HMRF run
                 number of HMRF domains
betas
                 betas to test for
tolerance
                 tolerance
zscore
                 zscore
                 number of initializations
numinit
python_path
                 python path to use
                 output folder to save results
output_folder
```

overwrite output folder

58 doKmeans

Details

Description of HMRF parameters ...

Value

Creates a directory with results that can be viewed with viewHMRFresults

Examples

doHMRF(gobject)

doKmeans

doKmeans

Description

cluster cells using kmeans algorithm

Usage

```
doKmeans(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes_to_use = NULL, dim_reduction_to_use = c("cells",
   "pca", "umap", "tsne"), dim_reduction_name = "pca",
   dimensions_to_use = 1:10, distance_method = c("original", "pearson",
   "spearman", "euclidean", "maximum", "manhattan", "canberra", "binary",
   "minkowski"), centers = 10, iter_max = 100, nstart = 1000,
   algorithm = "Hartigan-Wong", name = "kmeans",
   return_gobject = TRUE, set_seed = T, seed_number = 1234)
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
genes_to_use
                 subset of genes to use
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimensions reduction name
dimensions_to_use
                 dimensions to use
distance_method
                 distance method
centers
                 number of final clusters
iter max
                 kmeans maximum iterations
nstart
                 kmeans nstart
algorithm
                 kmeans algorithm
                 name for kmeans clustering
return_gobject boolean: return giotto object (default = TRUE)
```

doLeidenCluster 59

```
set_seed set seed
seed_number number for seed
... additional parameters
```

Details

Description on how to use Kmeans clustering method.

Value

giotto object appended with new cluster

Examples

doKmeans(gobject)

doLeidenCluster

doLeidenCluster

Description

cluster cells using a NN-network and the Leiden community detection algorithm

Usage

```
doLeidenCluster(gobject, name = "leiden_clus",
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    python_path = NULL, resolution = 1, weight_col = "weight",
    partition_type = c("RBConfigurationVertexPartition",
    "ModularityVertexPartition"), init_membership = NULL,
    n_iterations = 1000, return_gobject = TRUE, set_seed = T,
    seed_number = 1234, ...)
```

Arguments

```
giotto object
gobject
                 name for cluster
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
                 specify specific path to python if required
python_path
resolution
                 resolution
weight_col
                 weight column
partition_type partition type to use
init_membership
                 initial membership of cells
n_iterations
                 number of interations
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
```

additional parameters

60 doLeidenSubCluster

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

doLeidenCluster(gobject)

doLeidenSubCluster

doLeidenSubCluster

Description

subcluster cells using a NN-network and the Leiden algorithm

Usage

```
doLeidenSubCluster(gobject, name = "sub_pleiden_clus",
   cluster_column = NULL, selected_clusters = NULL,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 10, resolution = 0.5, n_iterations = 500,
   python_path = NULL, nn_network_to_use = "sNN",
   network_name = "sNN.pca", return_gobject = TRUE, verbose = T, ...)
```

Arguments

gobject giotto object

name name for new clustering result cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

doLouvainCluster 61

k_neighbors number of k for createNearestNetwork resolution resolution of Leiden clustering n_iterations number of iterations specify specific path to python if required python_path nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use return_gobject boolean: return giotto object (default = TRUE) verbose verbose additional parameters

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

doLeidenSubCluster(gobject)

doLouvainCluster doLouvainCluster

Description

cluster cells using a NN-network and the Louvain algorithm.

Usage

```
doLouvainCluster(gobject, version = c("community", "multinet"),
  name = "louvain_clus", nn_network_to_use = "sNN",
  network_name = "sNN.pca", python_path = NULL, resolution = 1,
  weight_col = NULL, gamma = 1, omega = 1, louv_random = F,
  return_gobject = TRUE, set_seed = F, seed_number = 1234, ...)
```

Arguments

gobject giotto object

version implemented version of Louvain clustering to use

name name for cluster

nn_network_to_use

type of NN network to use (kNN vs sNN)

python_path specify specific path to python if required

resolution resolution

```
gamma gamma
omega omega
return_gobject boolean: return giotto object (default = TRUE)
set_seed seed_number number for seed
... additional parameters
```

Details

Louvain clustering using the community or multinet implementation of the louvain clustering algorithm.

Value

giotto object appended with new cluster

Examples

```
doLouvainCluster(gobject)
```

```
\label{lower_community} do Louvain Cluster\_community
```

Description

cluster cells using a NN-network and the Louvain algorithm from the community module in Python

Usage

```
doLouvainCluster_community(gobject, name = "louvain_clus",
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    python_path = NULL, resolution = 1, weight_col = NULL,
    louv_random = F, return_gobject = TRUE, set_seed = F,
    seed_number = 1234, ...)
```

Arguments

```
gobject
                 giotto object
                 name for cluster
name
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
                 specify specific path to python if required
python_path
resolution
                 resolution
                 weight column
weight_col
louv_random
                 random
return_gobject boolean: return giotto object (default = TRUE)
set_seed
                 set seed
seed_number
                 number for seed
                 additional parameters
```

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

```
doLouvainCluster_community(gobject)
```

```
{\tt doLouvainCluster\_multinet}
```

doLouvainCluster_multinet

Description

cluster cells using a NN-network and the Louvain algorithm from the multinet package in R.

Usage

```
doLouvainCluster_multinet(gobject, name = "louvain_clus",
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    weight_col = NULL, gamma = 1, omega = 1, return_gobject = TRUE,
    set_seed = F, seed_number = 1234, ...)
```

Arguments

```
gobject giotto object name for cluster
```

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

gamma gamma omega omega

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed
... additional parameters

python_path specify specific path to python if required

Details

See louvain algorithm from the multinet package in R.

Value

giotto object appended with new cluster

```
doLouvainCluster_multinet(gobject)
```

64 doLouvainSubCluster

doLouvainSubCluster doLouvainSubCluster

Description

subcluster cells using a NN-network and the Louvain algorithm

Usage

```
doLouvainSubCluster(gobject, name = "sub_louvain_clus",
   version = c("community", "multinet"), cluster_column = NULL,
   selected_clusters = NULL, hvg_param = list(reverse_log_scale = T,
   difference_in_variance = 1, expression_values = "normalized"),
   hvg_min_perc_cells = 5, hvg_mean_expr_det = 1,
   use_all_genes_as_hvg = FALSE, min_nr_of_hvg = 5,
   pca_param = list(expression_values = "normalized", scale_unit = T),
   nn_param = list(dimensions_to_use = 1:20), k_neighbors = 10,
   resolution = 0.5, gamma = 1, omega = 1, python_path = NULL,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   return_gobject = TRUE, verbose = T, ...)
```

Arguments

gobject giotto object

name name for new clustering result
version version of Louvain algorithm to use

cluster_column cluster column to subcluster

 $selected_clusters$

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork resolution resolution for community algorithm

gamma gamma omega omega

python_path specify specific path to python if required

nn_network_to_use

type of NN network to use (kNN vs sNN)

```
network_name name of NN network to use
return_gobject boolean: return giotto object (default = TRUE)
verbose verbose
... additional parameters
```

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

Examples

```
doLouvainSubCluster(gobject)
```

```
\label{lower_community} do Louvain SubCluster\_community
```

Description

subcluster cells using a NN-network and the Louvain community detection algorithm

Usage

```
doLouvainSubCluster_community(gobject, name = "sub_louvain_comm_clus",
    cluster_column = NULL, selected_clusters = NULL,
    hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
    expression_values = "normalized"), hvg_min_perc_cells = 5,
    hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
    min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
    scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
    k_neighbors = 10, resolution = 0.5, python_path = NULL,
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    return_gobject = TRUE, verbose = T, ...)
```

Arguments

```
gobject giotto object

name name for new clustering result

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells
threshold for detection in min percentage of cells

hvg_mean_expr_det
threshold for mean expression level in cells with detection
```

```
use_all_genes_as_hvg
                 forces all genes to be HVG and to be used as input for PCA
                 minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
pca_param
                 parameters for runPCA
                 parameters for parameters for createNearestNetwork
nn_param
                 number of k for createNearestNetwork
k_neighbors
resolution
                 resolution
python_path
                 specify specific path to python if required
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use
network_name
return_gobject boolean: return giotto object (default = TRUE)
                  verbose
verbose
                 additional parameters
. . .
```

Details

Description of Leiden clustering method.

Value

giotto object appended with new cluster

Examples

doLouvainSubCluster_community(gobject)

```
\label{lower_multinet} do Louvain SubCluster\_multinet \\ do Louvain SubCluster\_multinet
```

Description

subcluster cells using a NN-network and the Louvain multinet detection algorithm

Usage

```
doLouvainSubCluster_multinet(gobject, name = "sub_louvain_mult_clus",
   cluster_column = NULL, selected_clusters = NULL,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 10, gamma = 1, omega = 1,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   return_gobject = TRUE, verbose = T, ...)
```

Arguments

gobject giotto object

name name for new clustering result

cluster_column cluster column to subcluster

selected_clusters

only do subclustering on these clusters

hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

 $hvg_mean_expr_det$

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for createNearestNetwork

k_neighbors number of k for createNearestNetwork

gamma gamma omega omega

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

... additional parameters

python_path specify specific path to python if required

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

Examples

doLouvainSubCluster_multinet(gobject)

68 doRandomWalkCluster

 $do Random Walk Cluster \\ do Random Walk Cluster$

Description

Cluster cells using a random walk approach.

Usage

```
doRandomWalkCluster(gobject, name = "random_walk_clus",
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    walk_steps = 4, walk_clusters = 10, walk_weights = NA,
    return_gobject = TRUE, set_seed = F, seed_number = 1234, ...)
```

Arguments

giotto object gobject name name for cluster nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use network_name number of walking steps walk_steps walk_clusters number of final clusters cluster column defining the walk weights walk_weights return_gobject boolean: return giotto object (default = TRUE) set_seed set seed number for seed seed_number

Details

See random walk algorithm from the igraph package in R.

additional parameters

Value

giotto object appended with new cluster

```
{\tt doRandomWalkCluster(gobject)}
```

doSNNCluster 69

doSNNCluster	doSNNCluster	

Description

Cluster cells using a SNN cluster approach.

Usage

```
doSNNCluster(gobject, name = "sNN_clus", nn_network_to_use = "kNN",
  network_name = "kNN.pca", k = 20, eps = 4, minPts = 16,
  borderPoints = TRUE, return_gobject = TRUE, set_seed = F,
  seed_number = 1234, ...)
```

Arguments

gobject giotto object name name for cluster

nn_network_to_use

type of NN network to use (only works on kNN)

network_name name of kNN network to use

k Neighborhood size for nearest neighbor sparsification to create the shared NN

graph.

eps Two objects are only reachable from each other if they share at least eps nearest

neighbors.

minPts minimum number of points that share at least eps nearest neighbors for a point

to be considered a core points.

borderPoints should borderPoints be assigned to clusters like in DBSCAN?

return_gobject boolean: return giotto object (default = TRUE)

set_seed set seed

seed_number number for seed
... additional parameters

Details

See sNNclust algorithm from dbscan package

Value

giotto object appended with new cluster

```
doSNNCluster(gobject)
```

70 exportGiottoViewer

dt_to_matrix

dt_to_matrix

Description

converts data.table to matrix

Usage

```
dt_to_matrix(x)
```

Examples

```
dt_to_matrix(x)
```

exportGiottoViewer

exportGiottoViewer

Description

compute highly variable genes

Usage

```
exportGiottoViewer(gobject, output_directory = NULL, annotations,
  dim_reductions, dim_reduction_names,
  expression_values = c("normalized", "scaled", "custom"),
  dim_red_rounding = NULL, dim_red_rescale = c(-20, 20),
  expression_rounding = NULL, overwrite_dir = F, verbose = T)
```

Arguments

verbose

```
gobject
                  giotto object
output_directory
                  directory where to save the files
                  giotto cell annotations to view
annotations
dim_reductions high level dimension reductions to view
dim_reduction_names
                  specific dimension reduction names
expression_values
                  expression values to use in Viewer
dim_red_rounding
                  numerical indicating how to round the coordinates
dim_red_rescale
                  numericals to rescale the coordinates
expression_rounding
                  numerical indicating how to round the expression data
                  overwrite files in the directory if it already existed
overwrite_dir
```

be verbose

Details

Giotto Viewer expects the results from Giotto Analyzer in a specific format, which is provided by this function.

Value

writes the necessary output to use in Giotto Viewer

Examples

```
exportGiottoViewer(gobject)
```

```
expr {\tt OnlyCellCellcommunicationScores} \\ expr {\tt OnlyCellCellcommunicationScores}
```

Description

Cell-Cell communication scores based on expression only

Usage

```
exprOnlyCellCellcommunicationScores(gobject,
  cluster_column = "cell_types", random_iter = 100, gene_set_1,
  gene_set_2, log2FC_addendum = 0.1, verbose = T)
```

Arguments

```
gobject giotto object to use

cluster_column cluster column with cell type information

random_iter number of iterations

gene_set_1 first specific gene set from gene pairs

gene_set_2 second specific gene set from gene pairs

log2FC_addendum

addendum to add when calculating log2FC

verbose verbose
```

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on expression only

```
exprOnlyCellCellcommunicationScores(gobject)
```

72 extractNearestNetwork

```
extended_gini_fun extended_gini_fun
```

Description

calculate gini coefficient on a minimum length vector

Usage

```
extended_gini_fun(x, weights = rep(1, length = length(x)),
    minimum_length = 16)
```

Value

gini coefficient

extractNearestNetwork extractNearestNetwork

Description

Extracts a NN-network from a Giotto object as an igraph object

Usage

```
extractNearestNetwork(gobject, nn_network_to_use = "sNN",
   network_name = "sNN.pca")
```

Arguments

```
\begin{array}{ccc} \text{gobject} & \text{giotto object} \\ & \text{nn\_network\_to\_use} \\ & & kNN \text{ or sNN} \\ \\ & \text{network\_name} & \text{name of NN network to be used} \end{array}
```

Value

igraph object

```
extractNearestNetwork(gobject)
```

fDataDT 73

fDataDT

fDataDT

Description

show gene metadata

Usage

```
fDataDT(gobject)
```

Arguments

gobject

giotto object

Value

data.table

Examples

pDataDT(gobject)

filterCombinations

filterCombinations

Description

Shows how many genes and cells are lost with combinations of thresholds.

Usage

```
filterCombinations(gobject, expression_values = c("raw", "normalized",
   "scaled", "custom"), expression_thresholds = c(1, 2),
   gene_det_in_min_cells = c(5, 50), min_det_genes_per_cell = c(200,
   400), scale_x_axis = "identity", x_axis_offset = 0,
   scale_y_axis = "identity", y_axis_offset = 0, show_plot = TRUE)
```

Arguments

74 filterCPGscores

```
scale_x_axis ggplot transformation for x-axis (e.g. log2)
x_axis_offset x-axis offset to be used together with the scaling transformation
scale_y_axis ggplot transformation for y-axis (e.g. log2)
y_axis_offset y-axis offset to be used together with the scaling transformation
show_plot show plot
```

Details

Creates a scatterplot that visualizes the number of genes and cells that are lost with a specific combination of a gene and cell threshold given an arbitrary cutoff to call a gene expressed. This function can be used to make an informed decision at the filtering step with filterGiotto.

Value

list of data.table and ggplot object

Examples

```
filterCombinations(gobject)
```

filterCPGscores filterCPGscores

Description

visualize Cell Proximity Gene enrichment scores

Usage

```
filterCPGscores(CPGscore, min_cells = 5, min_fdr = 0.05,
  min_spat_diff = 0.2, min_log2_fc = 0.5, keep_int_duplicates = TRUE,
  direction = c("both", "up", "down"))
```

Arguments

Details

This function filters the output from getCellProximityGeneScores based on false-discovery rate, minimum absolute difference, minimum log fold-change and direction of change.

filterDistributions 75

Value

Gene to gene scores in data.table format

Examples

```
filterCPGscores(CPGscore)
```

filterDistributions filterDistributions

Description

show gene or cell filter distributions

Usage

```
filterDistributions(gobject, expression_values = c("raw", "normalized",
   "scaled", "custom"), expression_threshold = 1, detection = c("genes",
   "cells"), plot_type = c("histogram", "violin"), nr_bins = 30,
   fill_color = "lightblue", scale_axis = "identity", axis_offset = 0,
   show_plot = TRUE)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
expression\_threshold
                  threshold to consider a gene expressed
detection
                  look at genes or cells
plot_type
                  type of plot
nr_bins
                  number of bins for histogram plot
fill_color
                  fill color for plots
                  ggplot transformation for axis (e.g. log2)
scale_axis
axis_offset
                  offset to be used together with the scaling transformation
show_plot
                  show plot
```

Value

ggplot object

```
filterDistributions(gobject)
```

76 findGiniMarkers

filterGiotto

filterGiotto

Description

filter Giotto object

Usage

```
filterGiotto(gobject, expression_values = c("raw", "normalized",
   "scaled", "custom"), expression_threshold = 1,
   gene_det_in_min_cells = 100, min_det_genes_per_cell = 100,
   verbose = F)
```

Arguments

```
gobject giotto object

expression_values

expression values to use

expression_threshold

threshold to consider a gene expressed

gene_det_in_min_cells

minimum # of cells that need to express a gene

min_det_genes_per_cell

minimum # of genes that need to be detected in a cell

verbose

verbose
```

Value

giotto object

Examples

filterGiotto(gobject)

findGiniMarkers

findGiniMarkers

Description

Identify marker genes for selected clusters based on gini detection and expression scores.

```
findGiniMarkers(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, subset_clusters = NULL, group_1 = NULL,
   group_2 = NULL, min_expr_gini_score = 0.5,
   min_det_gini_score = 0.5, detection_threshold = 0, rank_score = 1)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  filter on minimum gini coefficient for expression
min_det_gini_score
                  filter minimum gini coefficient for detection
detection_threshold
                  detection threshold for gene expression
                  rank scores to include
rank_score
```

Details

Description of parameters.

Value

data.table with marker genes

Examples

```
findGiniMarkers(gobject)
```

Description

Identify marker genes for all clusters based on gini detection and expression scores.

```
findGiniMarkers_one_vs_all(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, subset_clusters = NULL,
   min_expr_gini_score = 0.5, min_det_gini_score = 0.5,
   detection_threshold = 0, min_genes = 10, verbose = TRUE)
```

78 findMarkers

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
min_expr_gini_score
                  filter on minimum gini coefficient on expression
min_det_gini_score
                  filter on minimum gini coefficient on detection
detection_threshold
                  detection threshold for gene expression
                  minimum genes to keep per cluster, overrides pval and logFC
min_genes
verbose
                  be verbose
```

Details

Description of parameters.

Value

data.table with marker genes

Examples

```
findGiniMarkers_one_vs_all(gobject)
```

findMarkers

findMarkers

Description

Identify marker genes for selected clusters.

```
findMarkers(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, method = c("scran", "gini", "mast"),
   subset_clusters = NULL, group_1 = NULL, group_2 = NULL,
   min_expr_gini_score = 0.5, min_det_gini_score = 0.5,
   detection_threshold = 0, rank_score = 1, group_1_name = NULL,
   group_2_name = NULL, adjust_columns = NULL, ...)
```

findMarkers_one_vs_all 79

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
method
                  method to use to detect differentially expressed genes
subset_clusters
                  selection of clusters to compare
                  group 1 cluster IDs from cluster_column for pairwise comparison
group_1
                  group 2 cluster IDs from cluster_column for pairwise comparison
group_2
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min\_det\_gini\_score
                  gini: filter minimum gini coefficient for detection
{\tt detection\_threshold}
                  gini: detection threshold for gene expression
rank_score
                  gini: rank scores to include
group_1_name
                  mast: custom name for group_1 clusters
                  mast: custom name for group_2 clusters
group_2_name
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
                  additional parameters for the findMarkers function in scran or zlm function in
                  MAST
```

Details

Wrapper for findScranMarkers, findGiniMarkers and FindMastMarkers.

Value

data.table with marker genes

Examples

```
findMarkers(gobject)
```

Description

Identify marker genes for all clusters.

Usage

```
findMarkers_one_vs_all(gobject, expression_values = c("normalized",
    "scaled", "custom"), cluster_column, subset_clusters = NULL,
    method = c("scran", "gini", "mast"), pval = 0.01, logFC = 0.5,
    min_genes = 10, min_expr_gini_score = 0.5,
    min_det_gini_score = 0.5, detection_threshold = 0, rank_score = 1,
    adjust_columns = NULL, verbose = TRUE, ...)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
                  method to use to detect differentially expressed genes
method
pval
                  scran & mast: filter on minimal p-value
                  scan & mast: filter on logFC
logFC
                  minimum genes to keep per cluster, overrides pval and logFC
min_genes
min_expr_gini_score
                  gini: filter on minimum gini coefficient for expression
min_det_gini_score
                  gini: filter minimum gini coefficient for detection
detection_threshold
                  gini: detection threshold for gene expression
rank_score
                  gini: rank scores to include
adjust_columns mast: column in pDataDT to adjust for (e.g. detection rate)
                  be verbose
verbose
                  additional parameters for the findMarkers function in scran or zlm function in
                  MAST
```

Details

Wrapper for findScranMarkers_one_vs_all, findGiniMarkers_one_vs_all and FindMastMarkers_one_vs_all.

Value

data.table with marker genes

```
findMarkers_one_vs_all(gobject)
```

findMastMarkers 81

|--|--|

Description

Identify marker genes for selected clusters based on the MAST package.

Usage

```
findMastMarkers(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, group_1 = NULL, group_1_name = NULL,
   group_2 = NULL, group_2_name = NULL, adjust_columns = NULL, ...)
```

Arguments

Details

This is a minimal convenience wrapper around the MAST functions to detect differentially expressed genes.

Value

data.table with marker genes

```
findMastMarkers(gobject)
```

Description

Identify marker genes for all clusters based on the MAST package.

Usage

```
findMastMarkers_one_vs_all(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, subset_clusters = NULL,
   adjust_columns = NULL, pval = 0.001, logFC = 1, min_genes = 10,
   verbose = TRUE, ...)
```

Arguments

```
gobject
                  giotto object
expression_values
                  gene expression values to use
cluster_column clusters to use
subset_clusters
                  selection of clusters to compare
adjust_columns column in pDataDT to adjust for (e.g. detection rate)
pval
                  filter on minimal p-value
                  filter on logFC
logFC
min_genes
                  minimum genes to keep per cluster, overrides pval and logFC
verbose
                  be verbose
                  additional parameters for the zlm function in MAST
. . .
```

Details

This is a minimal convenience wrapper around the MAST functions to detect differentially expressed genes.

Value

data.table with marker genes

```
findMastMarkers_one_vs_all(gobject)
```

findScranMarkers 83

findScranMarkers	findScranMarkers

Description

Identify marker genes for selected clusters based on scran's implementation of findMarkers.

Usage

```
findScranMarkers(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, subset_clusters = NULL, group_1 = NULL,
   group_2 = NULL, ...)
```

Arguments

```
gobject giotto object
expression_values
gene expression values to use

cluster_column clusters to use
subset_clusters
selection of clusters to compare
group_1 group 1 cluster IDs from cluster_column for pairwise comparison
group_2 group 2 cluster IDs from cluster_column for pairwise comparison
additional parameters for the findMarkers function in scran
```

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

Value

data.table with marker genes

Examples

```
findScranMarkers(gobject)
```

```
find Scran Markers\_one\_vs\_all \\ find Scran Markers\_one\_vs\_all
```

Description

Identify marker genes for all clusters in a one vs all manner based on scran's implementation of findMarkers.

84 find_grid_2D

Usage

```
findScranMarkers_one_vs_all(gobject, expression_values = c("normalized",
    "scaled", "custom"), cluster_column, subset_clusters = NULL,
    pval = 0.01, logFC = 0.5, min_genes = 10, verbose = TRUE, ...)
```

Arguments

gobject giotto object

expression_values

gene expression values to use

cluster_column clusters to use

 $subset_clusters$

subset of clusters to use

pval filter on minimal p-value

logFC filter on logFC

min_genes minimum genes to keep per cluster, overrides pval and logFC

verbose be verbose

... additional parameters for the findMarkers function in scran

Details

This is a minimal convenience wrapper around the findMarkers function from the scran package.

Value

data.table with marker genes

Examples

findScranMarkers_one_vs_all(gobject)

find_grid_2D $find_grid_2D$

Description

find grid location in 2D

```
find_grid_2D(grid_DT, x_loc, y_loc)
```

find_grid_3D 85

find_grid_3D

find_grid_3D

Description

find grid location in 3D

Usage

```
find_grid_3D(grid_DT, x_loc, y_loc, z_loc)
```

 $find_grid_x$

find_grid_x

Description

find grid location on x-axis

Usage

```
find_grid_x(grid_DT, x_loc)
```

find_grid_y

find_grid_y

Description

find grid location on y-axis

Usage

```
find_grid_y(grid_DT, y_loc)
```

find_grid_z

 $find_grid_z$

Description

find grid location on z-axis

```
find_grid_z(grid_DT, z_loc)
```

86 FSV_show

fish_function fish_function

Description

perform fisher exact test

Usage

```
fish_function(x_to, x_from)
```

fish_function2

fish_function2

Description

perform fisher exact test

Usage

```
fish_function2(A, B, C, D)
```

FSV_show

FSV_show

Description

Visualize spatial varible genes caculated by spatial_DE

Usage

```
FSV_show(results, ms_results = NULL, size = c(4, 2, 1),
color = c("blue", "green", "red"), sig_alpha = 0.5,
unsig_alpha = 0.5)
```

Arguments

results results caculated by spatial_DE
ms_results ms_results caculated by spatial_DE
size indicate different levels of qval
color indicate different SV features
sig_alpha transparency of significant genes
unsig_alpha transparency of unsignificant genes

Details

Description of parameters.

GenePattern_show 87

Value

nothing

Examples

FSV_show(results)

GenePattern_show

GenePattern_show

Description

Visualize genes distribution patterns calculated by spatial_AEH

Usage

```
GenePattern_show(gobject = NULL, AEH_results = NULL, sdimx = NULL,
   sdimy = NULL, point_size = 3, point_alpha = 1,
   low_color = "blue", mid_color = "white", high_color = "red",
   midpoint = 0)
```

Arguments

gobject giotto object

AEH_results results from spatial_AEH sdimx x axis of spatial locus sdimy y axis of spatial locus

point_size size of points to indicate cells

point_alpha transparency of points to indicate cells

low_color color to indicate low score level mid_color color to indicate middle score level high_color color to indicate high score level

midpoint point to set mid_color

Details

Description of parameters.

Value

nothing

```
GenePattern_show(gobject,AEH_results)
```

88 general_save_function

```
general_save_function general_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
general_save_function(gobject, plot_object, save_dir = NULL,
   save_folder = NULL, save_name = NULL,
   default_save_name = "giotto_plot", save_format = c("png", "tiff",
   "pdf", "svg"), show_saved_plot = F, base_width = NULL,
   base_height = NULL, base_aspect_ratio = NULL, units = NULL,
   dpi = NULL, ...)
```

Arguments

giotto object gobject plot_object non-ggplot object to plot save_dir directory to save to folder in save_dir to save to save_folder name of plot save_name save_format format (e.g. png, tiff, pdf, ...) show_saved_plot load & display the saved plot base_width width base_height height base_aspect_ratio aspect ratio units units Plot resolution dpi

```
general_save_function(gobject)
```

```
{\it getCellProximityGeneScores} \\ {\it getCellProximityGeneScores}
```

Description

Compute cell-cell interaction enrichment (observed vs expected)

Usage

```
getCellProximityGeneScores(gobject,
   spatial_network_name = "spatial_network",
   cluster_column = "louvain_clus.1", selected_genes = NULL,
   expression_values = c("normalized", "scaled", "custom"),
   do_diff_test = TRUE, diff_test = c("t.test", "wilcox"),
   minimum_unique_cells = NA, fold_change_addendum = 0.1,
   in_two_directions = TRUE, exclude_selected_cells_from_test = F,
   verbose = T)
```

Arguments

```
gobject
                  giotto object
spatial_network_name
                  name of spatial network to use
cluster_column name of column to use for clusters
selected_genes selection of genes to perform calculations for
expression_values
                  expression values to use
do_diff_test
                  perform differential test
                  which differential expression test
diff_test
minimum_unique_cells
                  minimum number of cells needed to proceed
fold_change_addendum
                  constant to add when calculating log2 fold-change
in_two_directions
                  shows enrichment in both directions: cell1-cell2, cell2-cell1
exclude_selected_cells_from_test
                  exclude certain cells from test
verbose
                  verbose
```

Details

Function to calculate if genes are differentially expressed in cell types when they interact (according to physical proximity) with other cell types. The results data.table contains the following columns:

- genes: All or selected list of tested genes
- cell_expr_1: average gene expression in cell type 1 from unified_int cell-cell interaction
- cell_expr_2: average gene expression in cell type 2 from unified_int cell-cell interaction

- comb_expr: combined average gene expression in cell type 1 and 2 from unified_int cell-cell interaction
- all cell expr 1: average gene expression for all cells from cell type 1
- all_cell_expr_2: average gene expression for all cells from cell type 2
- all_comb_expr: combined average gene expression for all cells from cell type 1 and 2
- pval_1: p-value from test between interacting cells and all cells from cell type 1
- pval_2: p-value from test between interacting cells and all cells from cell type 2
- cell_type_1: first cell type of cell-cell interaction
- cell_type_2: second cell type of cell-cell interaction
- interaction: the cell-cell interaction, based on physical proximity
- nr_1: number of cell type 1 in the unified cell-cell interaction
- nr_2: number of cell type 2 in the unified cell-cell interaction
- all_nr_1: number of all cell type 1 in the whole dataset
- all_nr_2: number of all cell type 2 in the whole dataset
- diff_spat: difference between comb_expr and all_comb_expr
- diff_spat_1: difference between cell_expr_1 and all_cell_expr_1
- diff_spat_2: difference between cell_expr_1 and all_cell_expr_1
- log2fc_spat_1: fold-change of diff_spat_1
- log2fc_spat_2: fold-change of diff_spat_2
- log2fc_spat: fold-change of diff_spat
- type_int: type of interaction
- unified int: interaction with alphabetically sorted cell type 1 and cell type 2
- unif_int_rank: 1 or 2
- fdr_1: fdr from test between interacting cells and all cells from cell type 1
- fdr_2: fdr from test between interacting cells and all cells from cell type 2

Value

Cell Proximity Gene scores (CPGscores) in data.table format

Examples

getCellProximityGeneScores(gobject)

getClusterSimilarity 91

```
getClusterSimilarity
```

Description

Creates data.table with pairwise correlation scores between each cluster.

Usage

```
getClusterSimilarity(gobject, expression_values = c("normalized",
    "scaled", "custom"), cluster_column, cor = c("pearson", "spearman"))
```

Arguments

```
gobject giotto object
expression_values
expression values to use
cluster_column name of column to use for clusters
cor correlation score to calculate distance
```

Details

Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.

Value

data.table

Examples

```
\verb"getClusterSimilarity" (\verb"gobject")
```

```
getDendrogramSplits getDendrogramSplits
```

Description

Split dendrogram at each node and keep the leave (label) information..

```
getDendrogramSplits(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, cor = c("pearson", "spearman"),
   distance = "ward.D", h = NULL, h_color = "red", show_dend = TRUE,
   verbose = TRUE)
```

92 getDistinctColors

Arguments

gobject giotto object

expression_values

expression values to use

cluster_column name of column to use for clusters

cor correlation score to calculate distance

distance method to use for hierarchical clustering

h height of horizontal lines to plot

h_color color of horizontal lines

show_dend show dendrogram

verbose be verbose

Details

Creates a data.table with three columns and each row represents a node in the dendrogram. For each node the height of the node is given together with the two subdendrograms. This information can be used to determine in a hierarchical manner differentially expressed marker genes at each node.

Value

data.table object

Examples

getDendrogramSplits(gobject)

getDistinctColors

Description

Returns a number of distint colors based on the RGB scale

Usage

getDistinctColors(n)

Arguments

n number of colors wanted

Value

number of distinct colors

getGeneToGeneScores 93

```
getGeneToGeneScores getGeneToGeneScores
```

Description

Compute gene-gene enrichment scores.

Usage

```
getGeneToGeneScores(CPGscore, selected_genes = NULL,
   specific_genes_1 = NULL, specific_genes_2 = NULL, min_cells = 5,
   min_fdr = 0.05, min_spat_diff = 0.2, min_log2_fc = 0.5,
   direction = c("both", "up", "down"), fold_change_addendum = 0.1,
   verbose = TRUE)
```

Arguments

```
CPGscore
                  CPGscore, output from getCellProximityGeneScores()
selected_genes select subset of genes
specific_genes_1
                  specific source genes (see details)
specific_genes_2
                  specific target genes (see details)
min_cells
                  min number of cells threshold
                  spatial difference threshold
min_spat_diff
                  log2 fold-change threshold
min_log2_fc
direction
                  up or downregulation or both
fold_change_addendum
                  constant to add when calculating log2 fold-change
verbose
                  verbose
                  p-value threshold
min_pval
```

Details

Give more details ...

Value

Gene to gene scores in data.table format

```
getGeneToGeneScores(CPGscore)
```

Description

creates unified cell-cell interaction names

Usage

```
get_cell_to_cell_sorted_name_conversion(all_cell_types)
```

Examples

```
get_cell_to_cell_sorted_name_conversion()
```

Description

Computes gene enrichment between all interactions

Usage

```
get_interaction_gene_enrichment(spatial_network,
  unified_int_col = "unified_int", source_col = "source_clus",
  source_IDs = "from", neighb_col = "neighb_clus", neighb_IDs = "to",
  expression_matrix, cell_annotation, annotation_ID = "uniq_ID",
  cell_type_col, do_diff_test = T, diff_test = c("t.test", "wilcox"),
  minimum_unique_cells = NA, exclude_selected_cells_from_test = T,
  verbose = T)
```

```
get_interaction_gene_enrichment()
```

Description

Computes gene enrichment between specified interaction

Usage

```
get_specific_interaction_gene_enrichment(sub_spatial_network,
  source_col = "source_clus", source_IDs = "from",
  neighb_col = "neighb_clus", neighb_IDs = "to", expression_matrix,
  interaction_name = "to_specify", cell_annotation,
  annotation_ID = "uniq_ID", cell_type_col, do_diff_test = T,
  diff_test = c("t.test", "wilcox"), minimum_unique_cells = NA,
  exclude_selected_cells_from_test = T)
```

Examples

```
get_specific_interaction_gene_enrichment()
```

```
ggplot_save_function ggplot_save_function
```

Description

Function to automatically save plots to directory of interest

Usage

```
ggplot_save_function(gobject, plot_object, save_dir = NULL,
    save_folder = NULL, save_name = NULL,
    default_save_name = "giotto_plot", save_format = NULL,
    show_saved_plot = F, ncol = 1, nrow = 1, scale = 1,
    base_width = NULL, base_height = NULL, base_aspect_ratio = NULL,
    units = NULL, dpi = NULL, limitsize = TRUE, ...)
```

Arguments

```
gobject giotto object

plot_object ggplot object to plot

save_dir directory to save to

save_folder folder in save_dir to save to

save_name name of plot

save_format format (e.g. png, tiff, pdf, ...)

show_saved_plot

load & display the saved plot
```

96 giotto-class

ncol number of columns nrow number of rows

scale scale
base_width width
base_height height
base_aspect_ratio

aspect ratio

units units

dpi Plot resolution

limitsize When TRUE (the default), ggsave will not save images larger than 50x50 inches,

to prevent the common error of specifying dimensions in pixels.

See Also

```
cowplot::save_plot
```

Examples

ggplot_save_function(gobject)

giotto-class

S4 giotto Class

Description

Framework of giotto object

Slots

```
raw_exprs raw expression counts

norm_expr normalized expression counts

norm_scaled_expr normalized and scaled expression counts

custom_expr custom normalized counts

spatial_locs spatial location coordinates for cells

cell_metadata metadata for cells

gene_metadata metadata for genes

cell_ID unique cell IDs

gene_ID unique gene IDs

spatial_network spatial network in data.table/data.frame format

spatial_grid spatial grid in data.table/data.frame format

dimension_reduction slot to save dimension reduction coordinates

nn_network nearest neighbor network in igraph format

parameters slot to save parameters that have been used

offset_file offset file used to stitch together image fields
```

iterCluster 97

iterCluster iterCluster

Description

cluster cells iteratively

Usage

```
iterCluster(gobject, cluster_method = c("leiden", "louvain_community",
    "louvain_multinet"), nr_rounds = 5,
    hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
    expression_values = "normalized"), hvg_min_perc_cells = 5,
    hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
    min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
    scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
    k_neighbors = 20, resolution = 1, gamma = 1, omega = 1,
    python_path = NULL, nn_network_to_use = "sNN",
    network_name = "sNN.pca", name = "iter_clus",
    return_gobject = TRUE, ...)
```

Arguments

gobject giotto object cluster_method clustering algorithm to use number of iterative rounds nr_rounds parameters for calculateHVG hvg_param hvg_min_perc_cells threshold for detection in min percentage of cells hvg_mean_expr_det threshold for mean expression level in cells with detection use_all_genes_as_hvg forces all genes to be HVG and to be used as input for PCA minimum number of HVG, or all genes will be used as input for PCA min_nr_of_hvg parameters for runPCA pca_param parameters for parameters for runPCA nn_param k for nn-network k_neighbors resolution resolution gamma gamma omega omega python path to use for Leiden clustering python_path nn_network_to_use NN network to use NN network name network_name name of clustering return_gobject boolean: return giotto object (default = TRUE) additional parameters

98 iterLeidenCluster

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

```
iterCluster(gobject)
```

iterLeidenCluster

iterLeidenCluster

Description

cluster cells iteratively

Usage

```
iterLeidenCluster(gobject, name = "iter_clus", nr_rounds = 5,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 20, resolution = 1, n_iterations = 1000,
   python_path = NULL, nn_network_to_use = "sNN",
   network_name = "sNN.pca", return_gobject = TRUE, ...)
```

Arguments

giotto object gobject name name of clustering nr_rounds number of iterative rounds parameters for calculateHVG hvg_param hvg_min_perc_cells threshold for detection in min percentage of cells hvg_mean_expr_det threshold for mean expression level in cells with detection use_all_genes_as_hvg forces all genes to be HVG and to be used as input for PCA minimum number of HVG, or all genes will be used as input for PCA min_nr_of_hvg pca_param parameters for runPCA parameters for parameters for runPCA nn_param k for nn-network k_neighbors resolution resolution for Leiden clustering number of iterations for Leiden clustering n_iterations

iterLouvainCluster 99

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

iterLeidenCluster(gobject)

iterLouvainCluster

iterLouvainCluster

Description

cluster cells iteratively

Usage

```
iterLouvainCluster(gobject, version = c("community", "multinet"),
    nr_rounds = 5, hvg_param = list(reverse_log_scale = T,
    difference_in_variance = 1, expression_values = "normalized"),
    hvg_min_perc_cells = 5, hvg_mean_expr_det = 1,
    use_all_genes_as_hvg = FALSE, min_nr_of_hvg = 5,
    pca_param = list(expression_values = "normalized", scale_unit = T),
    nn_param = list(dimensions_to_use = 1:20), k_neighbors = 20,
    resolution = 1, gamma = 1, omega = 1, python_path = NULL,
    nn_network_to_use = "sNN", network_name = "sNN.pca",
    name = "iter_clus", return_gobject = TRUE, ...)
```

Arguments

gobject giotto object

version louvain clustering algorithm to use

nr_rounds number of iterative rounds hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

```
use_all_genes_as_hvg
                 forces all genes to be HVG and to be used as input for PCA
                 minimum number of HVG, or all genes will be used as input for PCA
min_nr_of_hvg
                 parameters for runPCA
pca_param
                 parameters for parameters for runPCA
nn_param
k_neighbors
                 k for nn-network
resolution
                 resolution
gamma
                 gamma
                 omega
omega
python_path
                 python path to use for Leiden clustering
nn_network_to_use
                 NN network to use
network_name
                 NN network name
```

Details

name

. . .

Description of iterative clustering.

Value

giotto object appended with new cluster

name of clustering

additional parameters

return_gobject boolean: return giotto object (default = TRUE)

Examples

iterLouvainCluster(gobject)

Description

cluster cells iteratively

```
iterLouvainCluster_community(gobject, nr_rounds = 5,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 20, resolution = 1, python_path = NULL,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   name = "iter_clus", return_gobject = TRUE, ...)
```

Arguments

gobject giotto object

nr_rounds number of iterative rounds hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for runPCA

k_neighbors k for nn-network

resolution resolution for Leiden clustering

python_path python path to use for Leiden clustering

nn_network_to_use

NN network to use

network_name NN network name name of clustering

return_gobject boolean: return giotto object (default = TRUE)

... additional parameters

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

iterLouvainCluster_community(gobject)

iterLouvainCluster_multinet

iterLouvainCluster_multinet

Description

cluster cells iteratively

Usage

```
iterLouvainCluster_multinet(gobject, nr_rounds = 5,
   hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
   expression_values = "normalized"), hvg_min_perc_cells = 5,
   hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
   min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
   scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
   k_neighbors = 20, gamma = 1, omega = 1,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   name = "iter_clus", return_gobject = TRUE, ...)
```

Arguments

gobject giotto object

nr_rounds number of iterative rounds hvg_param parameters for calculateHVG

hvg_min_perc_cells

threshold for detection in min percentage of cells

hvg_mean_expr_det

threshold for mean expression level in cells with detection

use_all_genes_as_hvg

forces all genes to be HVG and to be used as input for PCA

min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA

pca_param parameters for runPCA

nn_param parameters for parameters for runPCA

k_neighbors k for nn-network

gamma gamma omega omega nn_network_to_use

NN network to use

network_name NN network name name of clustering

return_gobject boolean: return giotto object (default = TRUE)

... additional parameters

python_path python path to use for Leiden clustering

Details

Description of iterative clustering.

Value

giotto object appended with new cluster

Examples

 $iter Louvain Cluster_multinet(gobject)$

kmeans_binarize 103

kmeans_binarize

kmeans_binarize

Description

create binarized scores using kmeans

Usage

```
kmeans_binarize(x, nstart = 3, iter.max = 10)
```

loadHMRF

loadHMRF

Description

load previous HMRF

Usage

```
loadHMRF(name_used = "test", output_folder_used, k_used = 10,
  betas_used, python_path_used)
```

Arguments

name_used name of HMRF that was run

 $output_folder_used$

output folder that was used

k_used number of HMRF domains that was tested

betas_used betas that were tested

python_path_used

python path that was used

Details

Description of HMRF parameters ...

Value

reloads a previous ran HMRF from doHRMF

Examples

loadHMRF(gobject)

104 mergeClusters

```
make_simulated_network
```

make_simulated_network

Description

Simulate random network.

Usage

```
make_simulated_network(gobject, spatial_network_name = "spatial_network",
    cluster_column, number_of_simulations = 100)
```

Examples

```
make_simulated_network(gobject)
```

mergeClusters

mergeClusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
mergeClusters(gobject, expression_values = c("normalized", "scaled",
   "custom"), cluster_column, cor = c("pearson", "spearman"),
   new_cluster_name = "merged_cluster", min_cor_score = 0.8,
   max_group_size = 20, force_min_group_size = 10,
   return_gobject = TRUE, verbose = TRUE)
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
cluster_column name of column to use for clusters
cor
                  correlation score to calculate distance
new_cluster_name
                  new name for merged clusters
min_cor_score min correlation score to merge pairwise clusters
max_group_size max cluster size that can be merged
force_min_group_size
                  size of clusters that will be merged with their most similar neighbor(s)
return_gobject return giotto object
verbose
                  be verbose
```

mygini_fun 105

Details

Merge selected clusters based on pairwise correlation scores and size of cluster. To avoid large clusters to merge the max_group_size can be lowered. Small clusters can be forcibly merged with their most similar pairwise cluster by adjusting the force_min_group_size parameter. Clusters smaller than this value will be merged independent on the provided min_cor_score value.

A giotto object is returned by default, if FALSE then the merging vector will be returned.

Value

Giotto object

Examples

```
mergeClusters(gobject)
```

mygini_fun

mygini_fun

Description

calculate gini coefficient

Usage

```
mygini_fun(x, weights = rep(1, length(x)))
```

Value

gini coefficient

nnDT_to_kNN

nnDT_to_kNN

Description

Convert a nearest network data.table to a kNN object

Usage

```
nnDT_to_kNN(nnDT)
```

Arguments

nnDT

nearest neighbor network in data.table format

Value

kNN object

106 normalizeGiotto

node_clusters node_clusters

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
node_clusters(hclus_obj, verbose = TRUE)
```

Arguments

hclus_obj hclus object verbose be verbose

Value

list of splitted dendrogram nodes from high to low node height

Examples

```
node_clusters(hclus_obj)
```

normalize Giotto

normalize Giotto

Description

normalize and/or scale expresion values of Giotto object

Usage

```
normalizeGiotto(gobject, norm_methods = c("standard", "osmFISH"),
  library_size_norm = TRUE, scalefactor = 6000, log_norm = TRUE,
  logbase = 2, scale_genes = T, scale_cells = T,
  scale_order = c("first_genes", "first_cells"), verbose = F)
```

Arguments

gobject giotto object

norm_methods normalization method to use

library_size_norm

normalize cells by library size

scalefactor scale factor to use after library size normalization

log_norm transform values to log-scale

logbase log base to use to log normalize expression values

scale_genes z-score genes over all cells scale_cells z-score cells over all genes scale_order order to scale genes and cells

verbose be verbose

OR_function2

Details

Currently there are two 'methods' to normalize your raw counts data.

A. The standard method follows the standard protocol which can be adjusted using the provided parameters and follows the following order:

- 1. Data normalization for total library size and scaling by a custom scale-factor.
- 2. Log transformation of data.
- 3. Z-scoring of data by genes and/or cells.
- B. The normalization method as provided by the osmFISH paper is also implemented:
- 1. First normalize genes, for each gene divide the counts by the total gene count and multiply by the total number of genes.
- 2. Next normalize cells, for each cell divide the normalized gene counts by the total counts per cell and multiply by the total number of cells.

This data will be saved in the Giotto slot for custom expression.

Value

giotto object

Examples

normalizeGiotto(gobject)

OR_function2

OR_function2

Description

calculate odds-ratio

Usage

```
OR_function2(A, B, C, D)
```

pDataDT

pDataDT

Description

show cell metadata

Usage

pDataDT(gobject)

Arguments

gobject

giotto object

108 plotCPGscores

Value

data.table

Examples

```
pDataDT(gobject)
```

plotCPGscores

plotCPGscores

Description

Create heatmap from cell-cell proximity scores

Usage

```
plotCPGscores(CPGscores, selected_interactions = NULL,
   selected_genes = NULL, detail_plot = T, simple_plot = F,
   simple_plot_facet = c("interaction", "genes"),
   facet_scales = "fixed", facet_ncol = length(selected_genes),
   facet_nrow = length(selected_interactions), show_plot = F)
```

Arguments

```
CPGscores
                  CPGscores, output from getCellProximityGeneScores()
selected_interactions
                  interactions to show
selected_genes genes to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
facet_ncol
                  ggplot facet ncol parameter
facet_nrow
                  ggplot facet nrow parameter
show_plot
                  show plot
```

Details

Give more details ...

Value

ggplot barplot

```
plotCPGscores(CPGscores)
```

plotGTGscores 109

plotGTGscores	plotGTGscores
---------------	---------------

Description

Create heatmap from cell-cell proximity scores

Usage

```
plotGTGscores(gobject, GTGscore, selected_interactions = NULL,
    selected_gene_to_gene = NULL, detail_plot = T, simple_plot = F,
    simple_plot_facet = c("interaction", "genes"),
    facet_scales = "fixed", facet_ncol = length(selected_gene_to_gene),
    facet_nrow = length(selected_interactions), colors = c("blue",
    "red"), show_plot = NA, return_plot = NA, save_plot = NA,
    save_param = list(), default_save_name = "plotGTGscores")
```

Arguments

```
gobject
                  giotto object
GTGscore
                  GTGscore, output from getGeneToGeneScores()
selected_interactions
                  interactions to show
detail_plot
                  show detailed info in both interacting cell types
simple_plot
                  show a simplified plot
simple_plot_facet
                  facet on interactions or genes with simple plot
facet_scales
                  ggplot facet scales paramter
                  ggplot facet ncol parameter
facet_ncol
facet_nrow
                  ggplot facet nrow parameter
colors
                  vector with 2 colors to represent respectively all and selected cells
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
selected_genes genes to show
```

Details

Give more details ...

Value

ggplot barplot

Examples

```
plotGTGscores(GTGscore)
```

110 plotHeatmap

plotHeatmap

plotHeatmap

Description

creates order for clusters

Usage

```
plotHeatmap(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes, cluster_column = NULL, cluster_order = c("size",
   "correlation", "custom"), cluster_custom_order = NULL,
   cluster_color_code = NULL, cluster_cor_method = "pearson",
   cluster_hclust_method = "ward.D", gene_order = c("custom",
   "correlation"), gene_custom_order = NULL,
   gene_cor_method = "pearson", gene_hclust_method = "complete",
   show_values = c("rescaled", "z-scaled", "original"),
   size_vertical_lines = 1.1, gradient_colors = c("blue", "yellow",
   "red"), gene_label_selection = NULL, axis_text_y_size = NULL,
   legend_nrows = 1, show_plot = NA, return_plot = NA,
   save_plot = NA, save_param = list(),
   default_save_name = "plotHeatmap")
```

Arguments

```
gobject
                 giotto object
expression_values
                 expression values to use
                 genes to use
genes
cluster_column name of column to use for clusters
cluster_order
                 method to determine cluster order
cluster_custom_order
                 custom order for clusters
cluster_color_code
                 color code for clusters
cluster_cor_method
                 method for cluster correlation
cluster_hclust_method
                 method for hierarchical clustering of clusters
gene_order
                 method to determine gene order
gene_custom_order
                 custom order for genes
gene_cor_method
                 method for gene correlation
gene_hclust_method
                 method for hierarchical clustering of genes
                 which values to show on heatmap
show_values
```

plotly_axis_scale_2D 111

size for y-axis text

legend_nrows number of rows for the cluster legend

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Creates heatmap for genes and clusters.

Value

ggplot

Examples

plotHeatmap(gobject)

```
plotly_axis_scale_2D plotly_axis_scale_2D
```

Description

adjust the axis scale in 3D plotly plot

Usage

```
\label{eq:plotly_axis_scale_2D(cell_locations, sdimx = NULL, sdimy = NULL, mode = c("cube", "real", "custom"), custom_ratio = NULL)
```

Arguments

```
cell_locations spatial_loc in giotto object
sdimx x axis of cell spatial location
sdimy y axis of cell spatial location
mode axis adjustment mode
custom_ratio set the ratio artificially
```

112 plotly_axis_scale_3D

Value

```
edges in spatial grid as data.table()
```

Examples

```
plotly_axis_scale_2D(gobject)
```

```
{\tt plotly\_axis\_scale\_3D} \quad \textit{plotly\_axis\_scale\_3D}
```

Description

```
adjust the axis scale in 3D plotly plot
```

Usage

```
plotly_axis_scale_3D(cell_locations, sdimx = NULL, sdimy = NULL,
    sdimz = NULL, mode = c("cube", "real", "custom"),
    custom_ratio = NULL)
```

Arguments

```
cell_locations spatial_loc in giotto object
sdimx x axis of cell spatial location
sdimy y axis of cell spatial location
sdimz z axis of cell spatial location
mode axis adjustment mode
custom_ratio set the ratio artificially
```

Value

```
edges in spatial grid as data.table()
```

Examples

```
plotly_axis_scale_3D(gobject)
```

plotly_grid 113

plotly_grid

plotly_grid

Description

```
provide grid segment to draw in plot_ly()
```

Usage

```
plotly_grid(spatial_grid, x_start = "x_start", y_start = "y_start",
    x_end = "x_end", y_end = "y_end")
```

Arguments

```
spatial_grid spatial_grid in giotto object
```

Value

edges in spatial grid as data.table()

Examples

```
plotly_grid(gobject)
```

plotly_network

plotly_network

Description

```
provide network segment to draw in 3D plot_ly()
```

Usage

```
plotly_network(network, x = "sdimx_begin", y = "sdimy_begin",
    z = "sdimz_begin", x_end = "sdimx_end", y_end = "sdimy_end",
    z_end = "sdimz_end")
```

Arguments

gobject

network in giotto object

Value

edges in network as data.table()

Examples

```
plotly_network(gobject)
```

```
plotMetaDataHeatmap
```

Description

creates order for clusters

Usage

```
plotMetaDataHeatmap(gobject, expression_values = c("normalized",
    "scaled", "custom"), metadata_cols = NULL, selected_genes = NULL,
    first_meta_col = NULL, second_meta_col = NULL,
    show_values = c("zscores", "original", "zscores_rescaled"),
    custom_cluster_order = NULL, clus_cor_method = "pearson",
    clus_cluster_method = "complete", custom_gene_order = NULL,
    gene_cor_method = "pearson", gene_cluster_method = "complete",
    midpoint = 0, x_text_size = 8, x_text_angle = 45,
    y_text_size = 8, strip_text_size = 8, show_plot = NA,
    return_plot = NA, save_plot = NA, save_param = list(),
    default_save_name = "plotMetaDataHeatmap")
```

Arguments

```
gobject
                  giotto object
expression_values
                  expression values to use
metadata_cols annotation columns found in pDataDT(gobject)
selected_genes subset of genes to use
first_meta_col if more than 1 metadata column, select the x-axis factor
second_meta_col
                  if more than 1 metadata column, select the facetting factor
show_values
                  which values to show on heatmap
custom_cluster_order
                  custom cluster order (default = NULL)
clus_cor_method
                  correlation method for clusters
clus_cluster_method
                  hierarchical cluster method for the clusters
custom_gene_order
                  custom gene order (default = NULL)
gene_cor_method
                  correlation method for genes
gene_cluster_method
                  hierarchical cluster method for the genes
midpoint
                  midpoint of show_values
                  size of x-axis text
x_text_size
                  angle of x-axis text
x_text_angle
```

plotPCA 115

```
y_text_size
                  size of y-axis text
strip_text_size
                  size of strip text
show_plot
                  show plot
return_plot
                  return ggplot object
```

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

 $default_save_name$

default save name for saving, don't change, change save_name in save_param

Details

Creates heatmap for average the average expression of selected genes in the different annotation groups

Value

ggplot or data.table

Examples

plotMetaDataHeatmap(gobject)

plotPCA plotPCA

Description

Short wrapper for PCA visualization

Usage

```
plotPCA(gobject, ...)
```

Arguments

gobject giotto object dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dimension to use on z-axis dim3_to_use show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name

cell_color color for cells (see details)

color_as_factor

convert color column to factor

116 plotPCA

cell_color_code

named vector with colors

show_cluster_center

plot center of selected clusters

show_center_label

plot label of selected clusters

center_point_size

size of center points

label_size size of labels
label_fontface font of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

See Also

visDimPlot

Examples

plotPCA(gobject)

plotPCA_2D 117

plotPCA_2D plotPCA_2D

Description

Short wrapper for PCA visualization

Usage

```
plotPCA_2D(gobject, dim_reduction_name = "pca",
  default_save_name = "PCA_2D", ...)
```

Arguments

gobject giotto object dim_reduction_name name of pca reduction to use, default = 'pca' default_save_name default save name for saving, don't change, change save_name in save_param dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim3_to_use dimension to use on z-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE ${\tt network_name}$ cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters ${\tt center_point_size}$ size of center points size of labels label_size label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points

118 plotPCA_3D

```
show_legend show legend
show_plot show plot
```

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

Details

Description of parameters.

Value

ggplot

See Also

dimPlot2D

Examples

```
plotPCA_2D(gobject)
```

plotPCA_3D plotPCA_3D

Description

Visualize cells according to 3D PCA dimension reduction

Usage

```
plotPCA_3D(gobject, dim_reduction_name = "pca",
  default_save_name = "PCA_3D", ...)
```

Arguments

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

plotPCA_3D

```
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
point_size
                  size of point (cell)
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters.

Value

plotly

Examples

```
plotPCA_3D(gobject)
```

120 plotTSNE

plotTSNE plotTSNE

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE(gobject, ...)
```

Arguments

return_plot

save_plot

gobject giotto object dim1_to_use dimension to use on x-axis $dim2_to_use$ dimension to use on y-axis dim3_to_use dimension to use on z-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters center_point_size size of center points size of labels label_size label_fontface font of labels edge_alpha column to use for alpha of the edges point_size size of point (cell) point_border_col color of border around points point_border_stroke stroke size of border around points show_legend show legend show_plot show plot

return ggplot object

directly save the plot [boolean]

plotTSNE_2D 121

```
save_dir directory to save the plot
```

save_folder (optional) folder in directory to save the plot

save_name name of plot

 $\texttt{save_format} \qquad \text{format of plot (e.g. tiff, png, pdf, ...)}$

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

See Also

visDimPlot

Examples

plotTSNE(gobject)

plotTSNE_2D

plotTSNE_2D

Description

Short wrapper for tSNE visualization

Usage

```
plotTSNE_2D(gobject, dim_reduction_name = "tsne",
  default_save_name = "tSNE_2D", ...)
```

Arguments

```
giotto object
gobject
dim_reduction_name
                 name of tsne reduction to use, default = 'tsne'
default_save_name
                 default save name for saving, don't change, change save_name in save_param
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
```

122 plotTSNE_2D

```
name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
```

label_size size of labels

label_fontface font of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

list of saving parameters from all_plots_save_function() save_param

Details

Description of parameters.

Value

ggplot

See Also

dimPlot2D

Examples

plotTSNE_2D(gobject)

plotTSNE_3D 123

plotTSNE_3D plotTSNE_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotTSNE_3D(gobject, dim_reduction_name = "tsne",
  default_save_name = "TSNE_3D", ...)
```

Arguments

```
gobject
                  giotto object
dim_reduction_name
                  tsne dimension reduction name
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
dim3_to_use
                  dimension to use on z-axis
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use, if show_NN_network = TRUE
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
```

124 plotUMAP

```
label_size size of labels
```

edge_alpha column to use for alpha of the edges

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

Details

Description of parameters.

Value

plotly

Examples

```
plotTSNE_3D(gobject)
```

plotUMAP plotUMAP

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP(gobject, ...)
```

Arguments

gobject giotto object

dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
dim3_to_use dimension to use on z-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

cell_color color for cells (see details)

color_as_factor

convert color column to factor

plotUMAP 125

cell_color_code

named vector with colors

show_cluster_center

plot center of selected clusters

show_center_label

plot label of selected clusters

center_point_size

size of center points

label_size size of labels label_fontface font of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

See Also

visDimPlot

Examples

plotUMAP(gobject)

126 plotUMAP_2D

plotUMAP_2D plotUMAP_2D

Description

Short wrapper for UMAP visualization

Usage

```
plotUMAP_2D(gobject, dim_reduction_name = "umap",
  default_save_name = "UMAP_2D", ...)
```

Arguments

```
gobject
                  giotto object
dim_reduction_name
                  name of umap reduction to use, default = 'umap'
default_save_name
                  default save name for saving, don't change, change save_name in save_param
dim1_to_use
                  dimension to use on x-axis
dim2_to_use
                  dimension to use on y-axis
dim3_to_use
                  dimension to use on z-axis
show_NN_network
                  show underlying NN network
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
                  name of NN network to use, if show_NN_network = TRUE
{\tt network\_name}
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
{\tt center\_point\_size}
                  size of center points
                  size of labels
label_size
label_fontface font of labels
edge_alpha
                  column to use for alpha of the edges
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
```

plotUMAP_3D

show_legend show legend
show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

Details

Description of parameters.

Value

ggplot

See Also

dimPlot2D

Examples

```
plotUMAP_2D(gobject)
```

plotUMAP_3D

plotUMAP_3D

Description

Visualize cells according to dimension reduction coordinates

Usage

```
plotUMAP_3D(gobject, dim_reduction_name = "umap",
  default_save_name = "UMAP_3D", ...)
```

Arguments

gobject giotto object
dim_reduction_name

umap dimension reduction name

default_save_name

default save name for saving, don't change, change save_name in save_param

dim1_to_use dimension to use on x-axis
dim2_to_use dimension to use on y-axis
dim3_to_use dimension to use on z-axis
show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use, if show_NN_network = TRUE

128 plotUMAP_3D

```
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
other_point_size
                  size of not selected cells
show_cluster_center
                  plot center of selected clusters
show_center_label
                  plot label of selected clusters
center_point_size
                  size of center points
label_size
                  size of labels
                  column to use for alpha of the edges
edge_alpha
point_size
                  size of point (cell)
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
```

Details

Description of parameters.

Value

plotly

Examples

```
plotUMAP_3D(gobject)
```

Description

Visualize cells in network layer according to dimension reduction coordinates

Usage

```
plot_network_layer_ggplot(ggobject, annotated_network_DT,
  edge_alpha = NULL, show_legend = T)
```

Arguments

```
annotated\_network\_DT
```

annotated network data.table of selected cells

edge_alpha alpha of network edges

show_legend show legend gobject giotto object

Details

Description of parameters.

Value

ggplot

Examples

```
plot_network_layer_ggplot(gobject)
```

Description

Visualize cells in point layer according to dimension reduction coordinates

Usage

color_as_factor

cell_color_code

select_cells

show_other_cells

other_cell_color

other_point_size

show_cluster_center

show_center_label

center_point_size

label_fontface font of labels

label_size

edge_alpha

point_size

show_legend

gobject

point_border_col

point_border_stroke

select_cell_groups

```
plot_point_layer_ggplot(ggobject, annotated_DT_selected,
     annotated_DT_other, cell_color = NULL, color_as_factor = T,
     cell_color_code = NULL, select_cell_groups = NULL,
     select_cells = NULL, show_other_cells = T,
     other_cell_color = "lightgrey", other_point_size = 0.5,
      show_cluster_center = F, show_center_label = T,
     center_point_size = 4, center_point_border_col = "black",
     center_point_border_stroke = 0.1, label_size = 4,
     label_fontface = "bold", edge_alpha = NULL, point_size = 1,
     point_border_col = "black", point_border_stroke = 0.1,
      show_legend = T)
Arguments
   annotated_DT_selected
                   annotated data.table of selected cells
   annotated_DT_other
                   annotated data.table of not selected cells
   cell_color
                   color for cells (see details)
```

convert color column to factor

select subset of cells based on cell IDs

select subset of cells/clusters based on cell_color parameter

named vector with colors

display not selected cells

color of not selected cells

size of not selected cells

plot center of selected clusters

plot label of selected clusters

column to use for alpha of the edges

color of border around points

stroke size of border around points

size of center points

size of point (cell)

size of labels

show legend

giotto object

Details

Description of parameters.

Value

ggplot

Examples

```
plot_point_layer_ggplot(gobject)
```

Description

creat ggplot point layer for spatial coordinates

Usage

```
plot_spat_point_layer_ggplot(ggobject, sdimx = NULL, sdimy = NULL,
    cell_locations_metadata_selected, cell_locations_metadata_other,
    cell_color = NULL, color_as_factor = T, select_cell_groups = NULL,
    select_cells = NULL, cell_color_code = NULL, show_legend = TRUE,
    point_size = 2, point_border_stroke = 0.1,
    point_border_col = "lightgrey", show_other_cells = T,
    other_cell_color = "lightgrey", other_point_size = 1)
```

Arguments

```
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
cell_locations_metadata_selected
                  annotated location from selected cells
cell_locations_metadata_other
                  annotated location from non-selected cells
cell_color
                  color for cells (see details)
color_as_factor
                  convert color column to factor
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
cell_color_code
                  named vector with colors
                  show legend
show_legend
                  size of point (cell)
point_size
point_border_stroke
                  stroke size of border around points
```

rank_binarize

Details

Description of parameters.

Value

ggplot

Examples

```
plot_spat_point_layer_ggplot(gobject)
```

print.giotto

print method for giotto class

Description

print method for giotto class. Prints the chosen number of genes (rows) and cells (columns) from the raw count matrix. Also print the spatial locations for the chosen number of cells.

Usage

```
print.giotto(object, ...)
```

Arguments

nr_genes number of genes (rows) to print nr_cells number of cells (columns) to print

rank_binarize

rank_binarize

Description

create binarized scores using arbitrary rank of top genes

```
rank\_binarize(x, max\_rank = 200)
```

readGiottoInstructions 133

```
readGiottoInstructions
```

readGiottoInstrunctions

Description

Function to read instructions for giotto functions

Usage

```
readGiottoInstructions(giotto_instructions, param = NULL)
```

Arguments

giotto_instructions

giotto object or result from createGiottoInstructions()

param parameter to retrieve

Value

specific parameter

Examples

readGiottoInstrunctions()

remove Cell Annotation remove Cell Annotation

Description

removes cell annotation of giotto object

Usage

```
removeCellAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Value

giotto object

Examples

removeCellAnnotation(gobject)

runPCA

removeGeneAnnotation removeGeneAnnotation

Description

removes gene annotation of giotto object

Usage

```
removeGeneAnnotation(gobject, columns = NULL, return_gobject = TRUE)
```

Arguments

gobject giotto object

columns names of columns to remove

return_gobject boolean: return giotto object (default = TRUE)

Value

giotto object

Examples

removeGeneAnnotation(gobject)

runPCA

runPCA

Description

run PCA

Usage

```
runPCA(gobject, expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"), name = "pca", genes_to_use = NULL,
  return_gobject = TRUE, scale_unit = F, ncp = 200, ...)
```

Arguments

gobject giotto object

expression_values

expression values to use

reduction cells or genes

name arbitrary name for PCA run genes_to_use subset of genes to use for PCA

return_gobject boolean: return giotto object (default = TRUE)

scale_unit scale features before PCA

ncp number of principal components to calculate

... additional parameters for PCA

runtSNE 135

Details

Description of PCA steps...

Value

giotto object with updated PCA dimension recuction

Examples

runPCA(gobject)

runtSNE

runtSNE

Description

run tSNE

Usage

```
runtSNE(gobject, expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"), dim_reduction_to_use = "pca",
  dim_reduction_name = "pca", dimensions_to_use = 1:10,
  name = "tsne", genes_to_use = NULL, return_gobject = TRUE,
  dims = 2, perplexity = 30, theta = 0.5, do_PCA_first = F,
  set_seed = T, seed_number = 1234, ...)
```

Arguments

gobject giotto object

expression_values

expression values to use

reduction cells or genes

dim_reduction_to_use

use another dimension reduction set as input

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

name arbitrary name for tSNE run

genes_to_use if dim_reduction_to_use = NULL, which genes to use

return_gobject boolean: return giotto object (default = TRUE)
dims tSNE param: number of dimensions to return

perplexity tSNE param: perplexity theta tSNE param: theta

do_PCA_first tSNE param: do PCA before tSNE (default = FALSE)

set_seed use of seed

seed_number seed number to use

... additional tSNE parameters

136 runUMAP

Details

Description of tSNE steps and params ...

Value

giotto object with updated tSNE dimension recuction

Examples

```
runtSNE(gobject)
```

runUMAP

runUMAP

Description

run UMAP

Usage

```
runUMAP(gobject, expression_values = c("normalized", "scaled", "custom"),
 reduction = c("cells", "genes"), dim_reduction_to_use = "pca",
 dim_reduction_name = "pca", dimensions_to_use = 1:10,
 name = "umap", genes_to_use = NULL, return_gobject = TRUE,
 n_neighbors = 40, n_components = 2, n_epochs = 400,
 min_dist = 0.01, n_threads = 1, spread = 5, set_seed = T,
 seed_number = 1234, \ldots)
```

Arguments

n_components

n_epochs min_dist

n_threads

```
gobject
                 giotto object
expression_values
                 expression values to use
reduction
                 cells or genes
dim_reduction_to_use
                 use another dimension reduction set as input
dim_reduction_name
                 name of dimension reduction set to use
dimensions_to_use
                 number of dimensions to use as input
                 arbitrary name for UMAP run
name
                 if dim_reduction_to_use = NULL, which genes to use
genes_to_use
return_gobject boolean: return giotto object (default = TRUE)
                 UMAP param: number of neighbors
n_neighbors
                 UMAP param: number of components
```

UMAP param: number of epochs

UMAP param: minimum distance

UMAP param: threads to use

selectPatternGenes 137

spread UMAP param: spread

set_seed use of seed

seed_number seed number to use

... additional UMAP parameters

Details

Description of UMAP steps...

Value

giotto object with updated UMAP dimension recuction

Examples

runUMAP(gobject)

selectPatternGenes selectPatternGenes

Description

Select genes correlated with spatial patterns

Usage

```
selectPatternGenes(spatPatObj, dimensions = 1:5, top_pos_genes = 10,
  top_neg_genes = 10, min_pos_cor = 0.5, min_neg_cor = -0.5,
  return_top_selection = FALSE)
```

Arguments

spatPatObj Output from detectSpatialPatterns

dimensions dimensions to identify correlated genes for.

top_pos_genes Top positively correlated genes.
top_neg_genes Top negatively correlated genes.

min_pos_cor Minimum positive correlation score to include a gene.

min_neg_cor Minimum negative correlation score to include a gene.

Details

Description.

Value

ggplot

Examples

selectPatternGenes(gobject)

Description

helper function to select expression values

Usage

```
select_expression_values(gobject, values)
```

Arguments

gobject giotto object

values expression values to extract

Value

expression matrix

show,giotto-method

show method for giotto class

Description

show method for giotto class

Usage

```
## S4 method for signature 'giotto'
show(object)
```

 $show {\tt ClusterDendrogram} \ \ \textit{show ClusterDendrogram}$

Description

Creates dendrogram based on identified clusters

```
showClusterDendrogram(gobject, expression_values = c("normalized",
   "scaled", "custom"), cluster_column, cor = c("pearson", "spearman"),
   distance = "ward.D", h = NULL, h_color = "red", rotate = FALSE,
   show_plot = NA, return_plot = NA, save_plot = NA,
   save_param = list(), default_save_name = "showClusterDendrogram",
   ...)
```

showClusterHeatmap 139

Arguments

gobject giotto object
expression_values

expression values to use

cluster_column name of column to use for clusters

cor correlation score to calculate distance

distance distance method to use for hierarchical clustering

h height of horizontal lines to plot

h_color color of horizontal lines
rotate rotate dendrogram 90 degrees

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

. . . additional parameters for ggdendrogram()

Details

Correlation dendrogram of selected clustering.

Value

ggplot

Examples

showClusterDendrogram(gobject)

showClusterHeatmap

showClusterHeatmap

Description

Creates heatmap based on identified clusters

```
showClusterHeatmap(gobject, expression_values = c("normalized", "scaled",
  "custom"), genes = "all", cluster_column, cor = c("pearson",
  "spearman"), distance = "ward.D", show_plot = NA, return_plot = NA,
  save_plot = NA, save_param = list(),
  default_save_name = "showClusterHeatmap", ...)
```

showCPGscores

Arguments

gobject giotto object
expression_values

expression values to use

genes vector of genes to use, default to 'all'
cluster_column name of column to use for clusters
cor correlation score to calculate distance

distance distance method to use for hierarchical clustering

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

... additional parameters for the Heatmap function from ComplexHeatmap

Details

Correlation heatmap of selected clusters.

Value

ggplot

Examples

showClusterHeatmap(gobject)

showCPGscores

showCPGscores

Description

visualize Cell Proximity Gene enrichment scores

```
showCPGscores(gobject, CPGscore, method = c("volcano", "cell_barplot",
   "cell-cell", "cell_sankey"), min_cells = 5, min_fdr = 0.05,
   min_spat_diff = 0.2, min_log2_fc = 0.5, keep_int_duplicates = TRUE,
   direction = c("both", "up", "down"), cell_color_code = NULL,
   show_plot = NA, return_plot = NA, save_plot = NA,
   save_param = list(), default_save_name = "showCPGscores")
```

Arguments

CPGscore CPGscore, output from getCellProximityGeneScores()

method visualization method

min_cells min number of cells threshold

min_fdr fdr threshold

min_spat_diff spatial difference threshold
min_log2_fc min log2 fold-change

keep_int_duplicates

keep both cell_A-cell_B and cell_B-cell_A

direction up or downregulation or both

cell_color_code

color code for cell types

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Give more details ...

Value

Gene to gene scores in data.table format

Examples

showCPGscores(CPGscore)

 $\verb|showGeneExpressionProximityScore| \\$

show Gene Expression Proximity Score

Description

Create heatmap from cell-cell proximity scores

Usage

```
showGeneExpressionProximityScore(scores, selected_gene,
   sort_column = "diff_spat")
```

Arguments

scores CPscore, output from getAverageCellProximityGeneScores()

selected_gene gene to show

sort_column column name to use for sorting

showGTGscores

Details

Give more details ...

Value

ggplot barplot

Examples

showGeneExpressionProximityScore(scores)

showGiottoInstructions

showGiottoInstructions

Description

Function to show instructions from giotto object

Usage

showGiottoInstructions(gobject)

Arguments

gobject

giotto object

Value

named vector with giotto instructions

Examples

showGiottoInstructions()

 $\verb|showGTGscores||$

show GTG scores

Description

visualize Cell Proximity Gene enrichment scores

```
showGTGscores(GTGscore, method = c("cell_barplot", "cell-cell",
   "cell_sankey"), min_cells = 5, min_pval = 0.05,
   min_spat_diff = 0.2, min_log2_fc = 0.5, direction = c("both", "up",
   "down"), cell_color_code = NULL, show_plot = T,
   specific_genes_1 = NULL, specific_genes_2 = NULL,
   first_cell_name = "ligand cell", second_cell_name = "receptor cell",
   return_DT = F)
```

Arguments

visualization method method min number of cells threshold min_cells min_pval p-value threshold min_spat_diff spatial difference threshold min_log2_fc log2 fold-change threshold direction up or downregulation or both cell_color_code color code for cell types show_plot print plot specific_genes_1 subset of genes, matched with specific_genes_2 specific_genes_2 subset of genes, matched with specific_genes_1 first_cell_name name for first cells second_cell_name name for second cells **CPGscore** CPGscore, output from getCellProximityGeneScores()

Details

Give more details ...

Value

ggplot

Examples

showGTGscores(CPGscore)

```
show Int {\it Expression Proximity Score} \\ show Int {\it Expression Proximity Score}
```

Description

Create heatmap from cell-cell proximity scores

```
showIntExpressionProximityScore(scores, selected_interaction,
   sort_column = "diff_spat", show_enriched_n = 5,
   show_depleted_n = 5)
```

144 showPattern

Arguments

Details

Give more details ...

Value

ggplot barplot

Examples

showIntExpressionProximityScore(scores)

showPattern

showPattern

Description

create a spatial grid

Usage

```
showPattern(spatPatObj, dimension = 1, trim = c(0.02, 0.98),
background_color = "white", grid_border_color = "grey",
show_legend = T, plot_dim = 2, point_size = 1,
axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, show_plot = F)
```

Arguments

show_plot

Show the plot.

showPattern2D 145

Details

Description.

Value

ggplot

Examples

```
showPattern(gobject)
```

showPattern2D

showPattern2D

Description

show patterns for 2D spatial data

Usage

```
showPattern2D(gobject, spatPatObj, dimension = 1, trim = c(0.02, 0.98),
background_color = "white", grid_border_color = "grey",
show_legend = T, point_size = 1, show_plot = NA,
return_plot = NA, save_plot = NA, save_param = list(),
default_save_name = "showPattern2D")
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

grid_border_color

color for grid

show_legend show legend of ggplot

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description.

146 showPattern3D

Value

ggplot

Examples

showPattern2D(gobject)

showPattern3D

showPattern3D

Description

show patterns for 3D spatial data

Usage

```
showPattern3D(gobject, spatPatObj, dimension = 1, trim = c(0.02, 0.98),
background_color = "white", grid_border_color = "grey",
show_legend = T, point_size = 1, axis_scale = c("cube", "real",
"custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
z_ticks = NULL, show_plot = NA, return_plot = NA, save_plot = NA,
save_param = list(), default_save_name = "showPattern3D")
```

Arguments

gobject giotto object

spatPatObj Output from detectSpatialPatterns

dimension dimension to plot

trim Trim ends of the PC values.

background_color

background color for plot

grid_border_color

color for grid

show_legend show legend of plot point_size adjust the point size

axis_scale scale the axis

 $\begin{array}{ll} \text{custom_ratio} & \text{cutomize the scale of the axis} \\ \text{x_ticks} & \text{the tick number of x_axis} \\ \text{y_ticks} & \text{the tick number of y_axis} \\ \text{z_ticks} & \text{the tick number of z_axis} \\ \end{array}$

show_plot show plot

return_plot return plot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

showPatternGenes 147

Details

Description.

Value

plotly

Examples

showPattern3D(gobject)

showPatternGenes

showPatternGenes

Description

show genes correlated with spatial patterns

Usage

```
showPatternGenes(gobject, spatPatObj, dimension = 1, top_pos_genes = 5,
top_neg_genes = 5, point_size = 1, return_DT = FALSE,
show_plot = NA, return_plot = NA, save_plot = NA,
save_param = list(), default_save_name = "showPatternGenes")
```

Arguments

gobject giotto object

 ${\tt spatPatObj} \qquad {\tt Output} \ from \ detectSpatial Patterns$

dimension dimension to plot genes for.top_pos_genes Top positively correlated genes.top_neg_genes Top negatively correlated genes.

point_size size of points

return_DT if TRUE, it will return the data.table used to generate the plots

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description.

Value

ggplot

showTopGeneToGene

Examples

```
showPatternGenes(gobject)
```

showProcessingSteps showProcessingSteps

Description

shows the sequential processing steps that were performed

Usage

```
showProcessingSteps(gobject)
```

Arguments

gobject giotto object

Value

list of processing steps and names

Examples

```
showProcessingSteps(gobject)
```

showTopGeneToGene

showTopGeneToGene

Description

Show enriched/depleted gene-gene enrichments

Usage

```
showTopGeneToGene(GTGscore, top_interactions = 10,
   direction = c("increased", "decreased"), complement_data = T,
   subset_cell_ints = NULL, subset_genes = NULL)
```

signPCA 149

Details

Give more details ...

Value

ggplot barplot

Examples

showTopGeneToGene(scores)

signPCA

signPCA

Description

identify significant prinicipal components (PCs)

Usage

```
signPCA(gobject, method = c("screeplot", "jackstraw"),
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "genes"), genes_to_use = NULL,
  scale_unit = T, ncp = 50, scree_labels = T, scree_ylim = c(0,
  10), jack_iter = 10, jack_threshold = 0.01, jack_verbose = T,
  show_plot = T, return_plot = TRUE, save_plot = F,
  save_dir = NULL, save_folder = NULL, save_name = NULL,
  save_format = NULL, show_saved_plot = F, ...)
```

Arguments

gobject giotto object

 $method \qquad \qquad method \ to \ use \ to \ identify \ significant \ PCs$

expression_values

expression values to use

reduction cells or genes

genes_to_use subset of genes to use for PCA scale_unit scale features before PCA

ncp number of principal components to calculate

scree_labels show labels on scree plot scree_ylim y-axis limits on scree plot

jack_iter number of interations for jackstraw
jack_threshold p-value threshold to call a PC significant
jack_verbose show progress of jackstraw method

show_plot show plots

. . . additional parameters for PCA

150 spatDimGenePlot2D

Details

Description of PCA steps...

Value

ggplot object for scree method and maxtrix of p-values for jackstraw

Examples

```
signPCA(gobject)
```

spatDimGenePlot2D

spatDimGenePlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot2D(gobject, expression_values = c("normalized", "scaled",
 "custom"), plot_alignment = c("vertical", "horizontal"), genes,
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, point_size = 1,
 dim_point_border_col = "black", dim_point_border_stroke = 0.1,
 show_NN_network = F, show_spatial_network = F,
 show_spatial_grid = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", edge_alpha_dim = NULL,
 scale_alpha_with_expression = FALSE,
 spatial_network_name = "spatial_network",
 spatial_grid_name = "spatial_grid", spatial_point_size = 1,
 spatial_point_border_col = "black",
 spatial_point_border_stroke = 0.1, midpoint = 0,
 genes_high_color = "red", genes_mid_color = "white",
 genes_low_color = "blue", cow_n_col = 2, cow_rel_h = 1,
 cow_rel_w = 1, cow_align = "h", show_legend = T, show_plot = NA,
 return_plot = NA, save_plot = NA, save_param = list(),
 default_save_name = "spatDimGenePlot2D")
```

spatDimGenePlot2D 151

```
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
point_size
                 size of point (cell)
dim_point_border_col
                 color of border around points
dim_point_border_stroke
                 stroke size of border around points
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
edge_alpha_dim dim reduction plot: column to use for alpha of the edges
scale_alpha_with_expression
                 scale expression with ggplot alpha parameter
spatial_network_name
                 name of spatial network to use
spatial_grid_name
                 name of spatial grid to use
spatial_point_size
                 spatial plot: point size
spatial_point_border_col
                 color of border around points
spatial_point_border_stroke
                 stroke size of border around points
midpoint
                 size of point (cell)
cow_n_col
                 cowplot param: how many columns
cow_rel_h
                 cowplot param: relative height
cow_rel_w
                 cowplot param: relative width
                 cowplot param: how to align
cow_align
                 show legend
show_legend
show_plot
                 show plots
return_plot
                 return ggplot object
                 directly save the plot [boolean]
save_plot
                 list of saving parameters from all_plots_save_function()
save_param
default_save_name
                 default save name for saving, don't change, change save_name in save_param
dim_point_size dim reduction plot: point size
```

Details

Description of parameters.

Value

ggplot

Examples

spatDimGenePlot2D(gobject)

152 spatDimGenePlot3D

spatDimGenePlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
spatDimGenePlot3D(gobject, expression_values = c("normalized", "scaled",
 "custom"), plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, dim3_to_use = NULL,
 sdimx = "sdimx", sdimy = "sdimy", sdimz = "sdimz", genes,
 cluster_column = NULL, select_cell_groups = NULL,
 select_cells = NULL, show_other_cells = T,
 other_cell_color = "lightgrey", other_point_size = 1.5,
 show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", label_size = 16,
 genes_low_color = "blue", genes_mid_color = "white",
 genes_high_color = "red", dim_point_size = 3,
 nn_network_alpha = 0.5, show_spatial_network = F,
 spatial_network_name = "spatial_network",
 network_color = "lightgray", spatial_network_alpha = 0.5,
 show_spatial_grid = F, spatial_grid_name = "spatial_grid",
 spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
 spatial_point_size = 3, legend_text_size = 12,
 axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
 x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, show_plot = NA,
 return_plot = NA, save_plot = NA, save_param = list(),
 default_save_name = "spatDimGenePlot3D")
```

```
gobject
                 giotto object
expression_values
                 gene expression values to use
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
genes
                 genes to show
show_NN_network
                 show underlying NN network
```

spatDimPlot2D 153

```
nn_network_to_use
                  type of NN network to use (kNN vs sNN)
network_name
                  name of NN network to use, if show_NN_network = TRUE
dim_point_size dim reduction plot: point size
spatial_network_name
                  name of spatial network to use
{\tt spatial\_grid\_name}
                  name of spatial grid to use
spatial_point_size
                  spatial plot: point size
show_plot
                  show plots
                  return plotly object
return_plot
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
{\tt default\_save\_name}
                  default save name for saving, don't change, change save_name in save_param
edge_alpha_dim dim reduction plot: column to use for alpha of the edges
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  size of point (cell)
point_size
                  show legend
show_legend
```

Details

Description of parameters.

Value

plotly

Examples

spatDimGenePlot3D(gobject)

spatDimPlot2D spatDimPlot2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot2 mode

154 spatDimPlot2D

Usage

```
spatDimPlot2D(gobject, plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, sdimx = "sdimx",
 sdimy = "sdimy", show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", show_cluster_center = F,
 show_center_label = T, center_point_size = 4, label_size = 4,
 label_fontface = "bold", cell_color = NULL, color_as_factor = T,
 cell_color_code = NULL, select_cell_groups = NULL,
 select_cells = NULL, show_other_cells = T,
 other_cell_color = "lightgrey", other_point_size = 1,
 dim_point_size = 1, dim_point_border_col = "black",
 dim_point_border_stroke = 0.1, nn_network_alpha = 0.05,
 show_spatial_network = F, spatial_network_name = "spatial_network",
 spatial_network_color = "blue", show_spatial_grid = F,
 spatial_grid_name = "spatial_grid", spatial_grid_color = "blue",
 spatial_point_size = 1, spatial_point_border_col = "black",
 spatial_point_border_stroke = 0.1, spatial_other_point_size = 1,
 spatial_network_alpha = 0.5, spatial_other_cells_alpha = 0.5,
 dim_other_point_size = 1, show_legend = T, show_plot = NA,
 return_plot = NA, save_plot = NA, save_param = list(),
 default_save_name = "spatDimPlot2D")
```

```
giotto object
gobject
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
                 = spatial dimension to use on x-axis
sdimx
                 = spatial dimension to use on y-axis
sdimy
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
show_cluster_center
                 show the center of each cluster
show_center_label
                 provide a label for each cluster
center_point_size
                 size of the center point
label_size
                 size of the center label
label_fontface font of the center label
```

spatDimPlot2D 155

cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells dim_point_size size of points in dim. reduction space dim_point_border_col border color of points in dim. reduction space dim_point_border_stroke border stroke of points in dim. reduction space nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use spatial_network_color color of spatial network show_spatial_grid show spatial grid spatial_grid_name name of spatial grid to use spatial_grid_color color of spatial grid spatial_point_size size of spatial points spatial_point_border_col border color of spatial points spatial_point_border_stroke border stroke of spatial points ${\tt spatial_other_point_size}$ size of not selected spatial points spatial_network_alpha alpha of spatial network ${\tt spatial_other_cells_alpha}$ alpha of not selected spatial points dim_other_point_size size of not selected dim. reduction points

show_legend

show legend

156 spatDimPlot3D

```
show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param
```

Details

Description of parameters.

Value

ggplot

Examples

spatDimPlot2D(gobject)

spatDimPlot3D spatDimPlot3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
spatDimPlot3D(gobject, plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, dim3_to_use = NULL,
 sdimx = "sdimx", sdimy = "sdimy", sdimz = "sdimz",
 show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", show_cluster_center = F,
 show_center_label = T, center_point_size = 4, label_size = 16,
 select_cell_groups = NULL, select_cells = NULL,
  show_other_cells = T, other_cell_color = "lightgrey",
 other_point_size = 1.5, cell_color = NULL, color_as_factor = T,
 cell_color_code = NULL, dim_point_size = 3, nn_network_alpha = 0.5,
 show_spatial_network = F, spatial_network_name = "spatial_network",
 network_color = "lightgray", spatial_network_alpha = 0.5,
 show_spatial_grid = F, spatial_grid_name = "spatial_grid",
 spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
  spatial_point_size = 3, axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
 z_ticks = NULL, legend_text_size = 12, show_plot = NA,
 return_plot = NA, save_plot = NA, save_param = list(),
 default_save_name = "spatDimPlot3D")
```

spatDimPlot3D 157

Arguments

gobject giotto object plot_alignment direction to align plot dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dimension to use on x-axis dim1_to_use dimension to use on y-axis dim2_to_use dim3_to_use dimension to use on z-axis sdimx = spatial dimension to use on x-axis = spatial dimension to use on y-axis sdimy sdimz = spatial dimension to use on z-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name show_cluster_center show the center of each cluster show_center_label provide a label for each cluster center_point_size size of the center point size of the center label label_size select_cell_groups select subset of cells/clusters based on cell_color parameter select_cells select subset of cells based on cell IDs show_other_cells display not selected cells other_cell_color color of not selected cells other_point_size size of not selected cells cell_color color for cells (see details) color_as_factor convert color column to factor cell_color_code named vector with colors dim_point_size size of points in dim. reduction space nn_network_alpha column to use for alpha of the edges show_spatial_network show spatial network spatial_network_name name of spatial network to use

158 spatDimPlot3D

spatial_network_alpha

alpha of spatial network

show_spatial_grid

show spatial grid

spatial_grid_name

name of spatial grid to use

spatial_grid_color

color of spatial grid

spatial_point_size

size of spatial points

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_param list of saving parameters from all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

dim_point_border_col

border color of points in dim. reduction space

dim_point_border_stroke

border stroke of points in dim. reduction space

spatial_network_color

color of spatial network

spatial_other_point_size

size of not selected spatial points

spatial_other_cells_alpha

alpha of not selected spatial points

dim_other_point_size

size of not selected dim. reduction points

show_legend show legend

Details

Description of parameters.

Value

plotly

Examples

spatDimPlot3D(gobject)

spatGenePlot2D 159

spatGenePlot2D spatGenePlot2D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot2D(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes, genes_high_color = "darkred",
   genes_mid_color = "white", genes_low_color = "darkblue",
   show_network = F, network_color = NULL,
   spatial_network_name = "spatial_network", edge_alpha = NULL,
   show_grid = F, grid_color = NULL,
   spatial_grid_name = "spatial_grid", midpoint = 0,
   scale_alpha_with_expression = FALSE, point_size = 1,
   point_border_col = "black", point_border_stroke = 0.1,
   show_legend = T, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
   cow_align = "h", show_plot = NA, return_plot = NA,
   save_plot = NA, save_param = list(),
   default_save_name = "spatGenePlot2D")
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
                  genes to show
genes
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
                  show spatial grid
show_grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
                  size of point (cell)
point_size
```

160 spatGenePlot3D

```
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
                  cowplot param: how many columns
cow_n_col
cow_rel_h
                  cowplot param: relative height
                  cowplot param: relative width
cow_rel_w
                  cowplot param: how to align
cow_align
show_plot
                  show plots
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
                  default save name for saving, don't change, change save_name in save_param
                  parameters for cowplot::save_plot()
```

Details

Description of parameters.

Value

ggplot

Examples

spatGenePlot2D(gobject)

spatGenePlot3D spatGenePlot3D

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
spatGenePlot3D(gobject, expression_values = c("normalized", "scaled",
  "custom"), genes, show_network = F, network_color = NULL,
  spatial_network_name = "spatial_network", edge_alpha = NULL,
  show_grid = F, cluster_column = NULL, select_cell_groups = NULL,
  select_cells = NULL, show_other_cells = T,
  other_cell_color = "lightgrey", other_point_size = 1,
  genes_high_color = NULL, genes_mid_color = "white",
  genes_low_color = "blue", spatial_grid_name = "spatial_grid",
  point_size = 2, show_legend = T, axis_scale = c("cube", "real",
  "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
  z_ticks = NULL, show_plot = NA, return_plot = NA, save_plot = NA,
  save_param = list(), default_save_name = "spatGenePlot3D")
```

spatGenePlot3D 161

Arguments

gobject giotto object expression_values gene expression values to use genes to show genes show underlying spatial network show_network network_color color of spatial network spatial_network_name name of spatial network to use show_grid show spatial grid genes_high_color color represents high gene expression genes_mid_color color represents middle gene expression genes_low_color color represents low gene expression spatial_grid_name name of spatial grid to use point_size size of point (cell) show_legend show legend show_plot show plots return_plot return ggplot object directly save the plot [boolean] save_plot save_param list of saving parameters from all_plots_save_function() default_save_name default save name for saving, don't change, change save_name in save_param color of spatial grid grid_color midpoint expression midpoint scale_alpha_with_expression

scale expression with ggplot alpha parameter

parameters for cowplot::save_plot()

Details

. . .

Description of parameters.

Value

ggplot

Examples

spatGenePlot3D(gobject)

Spatial_DE

Spatial_AEH

Spatial_AEH

Description

calculate automatic expression histology with spatialDE method

Usage

```
Spatial_AEH(gobject = NULL, results = NULL, pattern_num = 5,
    l = 1.05, show_AEH = T, sdimx = NULL, sdimy = NULL,
    point_size = 3, point_alpha = 1, low_color = "blue",
    mid_color = "white", high_color = "red", midpoint = 0,
    python_path = NULL)
```

Arguments

gobject Giotto object

results output from spatial_DE

pattern_num the number of gene expression patterns

show_AEH show AEH plot

python_path specify specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

```
Spatial_DE(gobject)
```

Spatial_DE

Spatial_DE

Description

calculate spatial varible genes with spatialDE method

Usage

```
Spatial_DE(gobject = NULL, show_plot = T, size = c(4, 2, 1),
  color = c("blue", "green", "red"), sig_alpha = 0.5,
  unsig_alpha = 0.5, python_path = NULL)
```

spatPlot2D 163

Arguments

 $\begin{array}{ll} \mbox{gobject} & \mbox{Giotto object} \\ \mbox{show_plot} & \mbox{show FSV plot} \end{array}$

python_path specify specific path to python if required

Details

Description.

Value

a list or a dataframe of SVs

Examples

Spatial_DE(gobject)

spatPlot2D

spatPlot2D

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot2D(gobject, sdimx = "sdimx", sdimy = "sdimy", point_size = 3,
    point_border_col = "black", point_border_stroke = 0.1,
    cell_color = NULL, cell_color_code = NULL, color_as_factor = T,
    select_cell_groups = NULL, select_cells = NULL,
    show_other_cells = T, other_cell_color = "lightgrey",
    other_point_size = 1, show_network = F, network_color = NULL,
    network_alpha = 1, other_cells_alpha = 0.1,
    spatial_network_name = "spatial_network", show_grid = F,
    grid_color = NULL, spatial_grid_name = "spatial_grid",
    coord_fix_ratio = 0.6, title = "", show_legend = T,
    show_plot = NA, return_plot = NA, save_plot = NA,
    save_param = list(), default_save_name = "spatPlot2D")
```

164 spatPlot2D

```
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
coord_fix_ratio
                  fix ratio between x and y-axis
                  title of plot
title
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
save_param
                  list of saving parameters from all_plots_save_function()
default_save_name
```

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

spatPlot2D(gobject)

spatPlot3D 165

spatPlot3D spatPlot3D

Description

Visualize cells according to spatial coordinates

Usage

```
spatPlot3D(gobject, sdimx = "sdimx", sdimy = "sdimy",
    sdimz = "sdimz", point_size = 3, cell_color = NULL,
    cell_color_code = NULL, select_cell_groups = NULL,
    select_cells = NULL, show_other_cells = T,
    other_cell_color = "lightgrey", other_point_size = 0.5,
    show_network = F, network_color = NULL, network_alpha = 1,
    other_cell_alpha = 0.5, spatial_network_name = "spatial_network",
    show_grid = F, grid_color = NULL,
    spatial_grid_name = "spatial_grid", title = "", show_legend = T,
    axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
    x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, show_plot = NA,
    return_plot = NA, save_plot = NA, save_param = list(),
    default_save_name = "spat3D")
```

```
giotto object
gobject
sdimx
                  x-axis dimension name (default = 'sdimx')
sdimy
                  y-axis dimension name (default = 'sdimy')
sdimz
                  z-axis dimension name (default = 'sdimy')
point_size
                  size of point (cell)
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
                  color of spatial grid
grid_color
```

```
spatial_grid_name
                  name of spatial grid to use
title
                  title of plot
show_legend
                  show legend
axis_scale
                  the way to scale the axis
custom_ratio
                  customize the scale of the plot
                  set the number of ticks on the x-axis
x_ticks
y_ticks
                  set the number of ticks on the y-axis
z_ticks
                  set the number of ticks on the z-axis
show_plot
                  show plot
return_plot
                  return ggplot object
```

save_plot directly save the plot [boolean]

list of saving parameters from all_plots_save_function() save_param

default_save_name

default save name for saving, don't change, change save_name in save_param

Details

Description of parameters.

Value

ggplot

Examples

```
spatPlot3D(gobject)
```

```
{\tt specific Cell Cell communication Scores}
                           specificCellCellcommunicationScores
```

Description

Specific Cell-Cell communication scores based on spatial expression of interacting cells

Usage

```
specificCellCellcommunicationScores(gobject,
 spatial_network_name = "spatial_network",
 cluster_column = "cell_types", random_iter = 100,
 cell_type_1 = "astrocyte", cell_type_2 = "endothelial", gene_set_1,
 gene_set_2, log2FC_addendum = 0.1, min_observations = 2,
 verbose = T)
```

167

Arguments

gobject giotto object to use spatial_network_name spatial network to use for identifying interacting cells cluster_column cluster column with cell type information random_iter number of iterations first cell type cell_type_1 cell_type_2 second cell type first specific gene set from gene pairs gene_set_1 gene_set_2 second specific gene set from gene pairs log2FC_addendum addendum to add when calculating log2FC min_observations minimum number of interactions needed to be considered verbose verbose

Details

Details will follow.

Value

Cell-Cell communication scores for gene pairs based on spatial interaction

Examples

```
specificCellCellcommunicationScores(gobject)
```

Description

Merge selected clusters based on pairwise correlation scores and size of cluster.

Usage

```
split_dendrogram_in_two(dend)
```

Arguments

dend dendrogram object

Value

list of two dendrograms and height of node

Examples

```
{\tt split\_dendrogram\_in\_two(dend)}
```

168 stitchFieldCoordinates

```
stitchFieldCoordinates
```

stitchFieldCoordinates

Description

Helper function to stitch field coordinates together to form one complete picture

Usage

```
stitchFieldCoordinates(location_file, offset_file, cumulate_offset_x = F,
  cumulate_offset_y = F, field_col = "Field of View",
  X_coord_col = "X", Y_coord_col = "Y", reverse_final_x = F,
  reverse_final_y = T)
```

Arguments

```
location_file
                  location dataframe with X and Y coordinates
offset_file
                  dataframe that describes to offset for each field (see details)
cumulate_offset_x
                  (boolean) Do the x-axis offset values need to be cumulated?
cumulate_offset_y
                  (boolean) Do the y-axis offset values need to be cumulated?
field_col
                  column that indicates the field within the location_file
X_coord_col
                  column that indicates the x coordinates
Y_coord_col
                  column that indicates the x coordinates
reverse_final_x
                  (boolean) Do the final x coordinates need to be reversed?
reverse_final_y
                  (boolean) Do the final y coordinates need to be reversed?
```

Details

Describe how stitching works.

Value

Updated location dataframe with new X ['X_final'] and Y ['Y_final'] coordinates

Examples

```
stitchFieldCoordinates(gobject)
```

subClusterCells 169

subClusterCells subClusterCells

Description

subcluster cells

Usage

```
subClusterCells(gobject, name = "sub_clus",
    cluster_method = c("leiden", "louvain_community", "louvain_multinet"),
    cluster_column = NULL, selected_clusters = NULL,
    hvg_param = list(reverse_log_scale = T, difference_in_variance = 1,
    expression_values = "normalized"), hvg_min_perc_cells = 5,
    hvg_mean_expr_det = 1, use_all_genes_as_hvg = FALSE,
    min_nr_of_hvg = 5, pca_param = list(expression_values = "normalized",
    scale_unit = T), nn_param = list(dimensions_to_use = 1:20),
    k_neighbors = 10, resolution = 1, gamma = 1, omega = 1,
    python_path = NULL, nn_network_to_use = "sNN",
    network_name = "sNN.pca", return_gobject = TRUE, verbose = T, ...)
```

Arguments

gobject giotto object name for new clustering result name cluster_method clustering method to use cluster_column cluster column to subcluster selected_clusters only do subclustering on these clusters parameters for calculateHVG hvg_param hvg_min_perc_cells threshold for detection in min percentage of cells hvg_mean_expr_det threshold for mean expression level in cells with detection use_all_genes_as_hvg forces all genes to be HVG and to be used as input for PCA min_nr_of_hvg minimum number of HVG, or all genes will be used as input for PCA parameters for runPCA pca_param parameters for parameters for createNearestNetwork nn_param number of k for createNearestNetwork k_neighbors resolution resolution gamma gamma omega omega python_path specify specific path to python if required nn_network_to_use

type of NN network to use (kNN vs sNN)

170 subsetGiotto

```
network_name name of NN network to use
```

return_gobject boolean: return giotto object (default = TRUE)

verbose verbose

... additional parameters

Details

Description of Louvain clustering method.

Value

giotto object appended with new cluster

Examples

```
subClusterCells(gobject)
```

subsetGiotto

subsetGiotto

Description

subsets Giotto object including previous calculations

Usage

```
subsetGiotto(gobject, cell_ids = NULL, gene_ids = NULL)
```

Arguments

gobject giotto object
cell_ids cell IDs to keep
gene_ids gene IDs to keep

Value

giotto object

Examples

```
subsetGiotto(gobject)
```

viewHMRFresults 171

viewHMRFresults viewHMRFresults

Description

View results from doHMRF.

Usage

```
viewHMRFresults(gobject, HMRFoutput, k = NULL, betas_to_view = NULL,
    third_dim = NULL, ...)
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

visPlot

Examples

viewHMRFresults(gobject)

viewHMRFresults2D viewHMRFresults2D

Description

View results from doHMRF.

Usage

```
\label{eq:continuity} viewHMRFresults2D(gobject, \ HMRFoutput, \ k = NULL, \ betas\_to\_view = NULL, \\ third\_dim = NULL, \ \ldots)
```

172 viewHMRFresults3D

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

See Also

```
spatPlot2D
```

Examples

viewHMRFresults2D(gobject)

viewHMRFresults3D viewHMRFresults3D

Description

View results from doHMRF.

Usage

```
\label{eq:polynomial_polynomial} $$ viewHMRFresults 3D(gobject, HMRFoutput, k = NULL, betas_to_view = NULL, third_dim = NULL, \ldots)$
```

Arguments

gobject giotto object

HMRF output from doHMRF k number of HMRF domains

betas_to_view results from different betas that you want to view

... paramters to visPlot()

Details

Description ...

Value

spatial plots with HMRF domains

violinPlot 173

See Also

```
spatPlot3D
```

Examples

viewHMRFresults3D(gobject)

violinPlot

violinPlot

Description

Creates heatmap based on identified clusters

Usage

```
violinPlot(gobject, expression_values = c("normalized", "scaled",
  "custom"), genes, cluster_column, cluster_custom_order = NULL,
  color_violin = c("genes", "cluster"), cluster_color_code = NULL,
  strip_position = c("top", "right", "left", "bottom"), strip_text = 7,
  axis_text_x_size = 10, axis_text_y_size = 6, show_plot = NA,
  return_plot = NA, save_plot = NA, save_param = list(),
  default_save_name = "violinPlot")
```

Arguments

color_violin

```
gobject
                  giotto object
expression_values
                  expression values to use
                  genes to plot
genes
cluster_column name of column to use for clusters
cluster_custom_order
                  custom order of clusters
color_violin
                  color violinplots according to genes or clusters
cluster_color_code
                  color code for clusters
strip_position position of gene labels
                  size of strip text
strip_text
axis_text_x_size
                  size of x-axis text
axis_text_y_size
                  size of y-axis text
show_plot
                  show plot
return_plot
                  return ggplot object
save_plot
                  directly save the plot [boolean]
                  list of saving parameters from all_plots_save_function()
save_param
default_save_name
                  default save name for saving, don't change, change save_name in save_param
```

color violin according to genes or clusters

174 visDimGenePlot

Details

Correlation heatmap of clusters vs genes.

Value

ggplot

Examples

violinPlot(gobject)

visDimGenePlot

visDimGenePlot

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot(gobject, expression_values = c("normalized", "scaled",
    "custom"), genes = NULL, dim_reduction_to_use = "umap",
    dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
    dim3_to_use = NULL, show_NN_network = F, nn_network_to_use = "sNN",
    network_name = "sNN.pca", network_color = "lightgray",
    edge_alpha = NULL, scale_alpha_with_expression = FALSE,
    point_size = 1, genes_high_color = NULL, genes_mid_color = "white",
    genes_low_color = "blue", point_border_col = "black",
    point_border_stroke = 0.1, midpoint = 0, cow_n_col = 2,
    cow_rel_h = 1, cow_rel_w = 1, cow_align = "h", show_legend = T,
    plot_method = c("ggplot", "plotly"), show_plots = F)
```

```
gobject
                 giotto object
expression_values
                 gene expression values to use
genes
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
                 dimension to use on z-axis
dim3_to_use
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
```

```
network_name
                 name of NN network to use, if show NN network = TRUE
edge_alpha
                 column to use for alpha of the edges
scale\_alpha\_with\_expression
                 scale expression with ggplot alpha parameter
                 size of point (cell)
point_size
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
midpoint
                 size of point (cell)
cow_n_col
                 cowplot param: how many columns
                 cowplot param: relative height
cow_rel_h
                 cowplot param: relative width
cow_rel_w
cow_align
                 cowplot param: how to align
                 show legend
show_legend
show_plots
                 show plots
```

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot(gobject)

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_2D_ggplot(gobject, expression_values = c("normalized",
    "scaled", "custom"), genes = NULL, dim_reduction_to_use = "umap",
    dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
    show_NN_network = F, nn_network_to_use = "sNN",
    network_name = "sNN.pca", network_color = "lightgray",
    edge_alpha = NULL, scale_alpha_with_expression = FALSE,
    point_size = 1, genes_high_color = "red",
    genes_mid_color = "white", genes_low_color = "blue",
    point_border_col = "black", point_border_stroke = 0.1,
    midpoint = 0, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
    cow_align = "h", show_legend = T, show_plots = F)
```

Arguments

gobject giotto object

expression_values

gene expression values to use

genes genes to show

dim_reduction_to_use

dimension reduction to use

dim_reduction_name

dimension reduction name

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis

show_NN_network

show underlying NN network

nn_network_to_use

type of NN network to use (kNN vs sNN)

network_name name of NN network to use, if show_NN_network = TRUE

edge_alpha column to use for alpha of the edges

scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

midpoint size of point (cell)

cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align

show_legend show_plots show plots

Details

Description of parameters.

Value

ggplot

Examples

visDimGenePlot_2D_ggplot(gobject)

Description

Visualize cells and gene expression according to dimension reduction coordinates

Usage

```
visDimGenePlot_3D_plotly(gobject, expression_values = c("normalized",
   "scaled", "custom"), genes = NULL, dim_reduction_to_use = "umap",
   dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
   dim3_to_use = 3, show_NN_network = F, nn_network_to_use = "sNN",
   network_name = "sNN.pca", network_color = "lightgray",
   edge_alpha = NULL, point_size = 1, genes_high_color = NULL,
   genes_mid_color = "white", genes_low_color = "blue",
   show_legend = T, show_plots = F)
```

Arguments

```
gobject
                 giotto object
expression_values
                 gene expression values to use
genes
                 genes to show
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show NN network = TRUE
network_name
                 column to use for alpha of the edges
edge_alpha
point_size
                 size of point (cell)
                 show legend
show_legend
show_plots
                 show plots
```

Details

Description of parameters.

Value

ggplot

178 visDimPlot

Examples

visDimGenePlot_3D_plotly(gobject)

visDimPlot

visDimPlot

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot(gobject, dim_reduction_to_use = "umap",
  dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
 dim3_to_use = NULL, show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", cell_color = NULL, color_as_factor = T,
  cell_color_code = NULL, select_cell_groups = NULL,
  select_cells = NULL, show_other_cells = T,
 other_cell_color = "lightgrey", other_point_size = 0.5,
  show_cluster_center = F, show_center_label = T,
  center_point_size = 4, center_point_border_col = "black",
  center_point_border_stroke = 0.1, label_size = 4,
  label_fontface = "bold", edge_alpha = NULL, point_size = 3,
  point_border_col = "black", point_border_stroke = 0.1,
 plot_method = c("ggplot", "plotly"), show_legend = T,
  show_plot = F, return_plot = TRUE, save_plot = F,
  save_dir = NULL, save_folder = NULL, save_name = NULL,
  save_format = NULL, show_saved_plot = F, ...)
```

```
gobject
                 giotto object
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
                 dimension to use on z-axis
dim3_to_use
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
```

visDimPlot_2D_ggplot 179

show_cluster_center

plot center of selected clusters

show_center_label

plot label of selected clusters

center_point_size

size of center points

label_size size of labels
label_fontface font of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot or plotly

Examples

visDimPlot(gobject)

 $\verb|visDimPlot_2D_ggplot| | |visDimPlot_2D_ggplot| |$

Description

Visualize cells according to dimension reduction coordinates

Usage

show_other_cells

other_cell_color

other_point_size

show_cluster_center

show_center_label

display not selected cells

color of not selected cells

size of not selected cells

plot center of selected clusters

plot label of selected clusters

```
visDimPlot_2D_ggplot(gobject, dim_reduction_to_use = "umap",
     dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
      show_NN_network = F, nn_network_to_use = "sNN",
     network_name = "sNN.pca", cell_color = NULL, color_as_factor = T,
     cell_color_code = NULL, select_cell_groups = NULL,
      select_cells = NULL, show_other_cells = T,
     other_cell_color = "lightgrey", other_point_size = 0.5,
     show_cluster_center = F, show_center_label = T,
     center_point_size = 4, center_point_border_col = "black",
     center_point_border_stroke = 0.1, label_size = 4,
     label_fontface = "bold", edge_alpha = NULL, point_size = 1,
     point_border_col = "black", point_border_stroke = 0.1,
     show_legend = T, show_plot = F, return_plot = TRUE,
      save_plot = F, save_dir = NULL, save_folder = NULL,
     save_name = NULL, save_format = NULL, show_saved_plot = F, ...)
Arguments
   gobject
                    giotto object
   dim_reduction_to_use
                    dimension reduction to use
   dim_reduction_name
                    dimension reduction name
   dim1_to_use
                    dimension to use on x-axis
   dim2_to_use
                    dimension to use on y-axis
    show_NN_network
                    show underlying NN network
   nn_network_to_use
                    type of NN network to use (kNN vs sNN)
   network_name
                    name of NN network to use, if show_NN_network = TRUE
   cell_color
                    color for cells (see details)
   color_as_factor
                    convert color column to factor
   cell_color_code
                    named vector with colors
   select_cell_groups
                    select subset of cells/clusters based on cell_color parameter
                    select subset of cells based on cell IDs
   select cells
```

visDimPlot_2D_plotly 181

Details

Description of parameters.

Value

ggplot

Examples

```
visDimPlot_2D_ggplot(gobject)
```

```
visDimPlot_2D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot_2D_plotly(gobject, dim_reduction_to_use = "umap",
   dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
   select_cell_groups = NULL, select_cells = NULL,
   show_other_cells = T, other_cell_color = "lightgrey",
   other_point_size = 0.5, show_NN_network = F,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   color_as_factor = T, cell_color = NULL, cell_color_code = NULL,
   show_cluster_center = F, show_center_label = T,
   center_point_size = 4, label_size = 4, edge_alpha = NULL,
   point_size = 5)
```

Arguments

gobject giotto object dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis ${\tt dim2_to_use}$ dimension to use on y-axis show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name color_as_factor convert color column to factor cell_color color for cells (see details) cell_color_code named vector with colors show_cluster_center plot center of selected clusters show_center_label plot label of selected clusters

center_point_size

size of center points

label_size size of labels

edge_alpha column to use for alpha of the edges

point_size size of point (cell)

Details

Description of parameters.

Value

plotly

Examples

visDimPlot_2D_plotly(gobject)

```
visDimPlot_3D_plotly
```

Description

Visualize cells according to dimension reduction coordinates

Usage

```
visDimPlot_3D_plotly(gobject, dim_reduction_to_use = "umap",
   dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
   dim3_to_use = 3, select_cell_groups = NULL, select_cells = NULL,
   show_other_cells = T, other_cell_color = "lightgrey",
   other_point_size = 0.5, show_NN_network = F,
   nn_network_to_use = "sNN", network_name = "sNN.pca",
   color_as_factor = T, cell_color = NULL, cell_color_code = NULL,
   show_cluster_center = F, show_center_label = T,
   center_point_size = 4, label_size = 4, edge_alpha = NULL,
   point_size = 1)
```

```
gobject
                 giotto object
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
dim3 to use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
color_as_factor
                 convert color column to factor
cell_color
                 color for cells (see details)
cell_color_code
                 named vector with colors
show_cluster_center
                 plot center of selected clusters
show_center_label
                 plot label of selected clusters
center_point_size
                 size of center points
label size
                 size of labels
edge_alpha
                 column to use for alpha of the edges
                 size of point (cell)
point_size
```

184 visForceLayoutPlot

Details

Description of parameters.

Value

plotly

Examples

```
visDimPlot_3D_plotly(gobject)
```

visForceLayoutPlot visForceLayoutPlot

Description

Visualize cells according to forced layout algorithm coordinates

Usage

```
visForceLayoutPlot(gobject, nn_network_to_use = "sNN",
  network_name = "sNN.pca", layout_name = "layout", dim1_to_use = 1,
  dim2_to_use = 2, show_NN_network = T, cell_color = NULL,
  color_as_factor = F, cell_color_code = NULL, edge_alpha = NULL,
  point_size = 1, point_border_col = "black",
  point_border_stroke = 0.1, show_legend = T, show_plot = F,
  return_plot = TRUE, save_plot = F, save_dir = NULL,
  save_folder = NULL, save_name = NULL, save_format = NULL,
  show_saved_plot = F, ...)
```

```
gobject
                 giotto object
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 NN network to use
network_name
layout_name
                 name of layout to use
dim1_to_use
                 dimension to use on x-axis
                 dimension to use on y-axis
dim2_to_use
show_NN_network
                 show underlying NN network
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
                 column to use for alpha of the edges
edge_alpha
                 size of point (cell)
point_size
```

visGenePlot 185

```
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
show_legend
                  show legend
show_plot
                  show plot
return_plot
                  return ggplot object
                  directly save the plot [boolean]
save_plot
                  directory to save the plot
save_dir
                  (optional) folder in directory to save the plot
save_folder
save_name
                  name of plot
save_format
                  format of plot (e.g. tiff, png, pdf, ...)
show_saved_plot
                  load & display the saved plot
```

Details

Description of parameters.

Value

ggplot

Examples

visForceLayoutPlot(gobject)

visGenePlot visGenePlot

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot(gobject, expression_values = c("normalized", "scaled",
   "custom"), genes, genes_high_color = NULL, genes_mid_color = "white",
   genes_low_color = "blue", show_network = F, network_color = NULL,
   spatial_network_name = "spatial_network", edge_alpha = NULL,
   show_grid = F, grid_color = NULL,
   spatial_grid_name = "spatial_grid", midpoint = 0,
   scale_alpha_with_expression = FALSE, point_size = 1,
   point_border_col = "black", point_border_stroke = 0.1,
   show_legend = T, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
   cow_align = "h", axis_scale = c("cube", "real", "custom"),
   custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
   z_ticks = NULL, plot_method = c("ggplot", "plotly"),
   show_plots = F)
```

186 visGenePlot

Arguments

gobject giotto object

expression_values

gene expression values to use

genes genes to show

genes_high_color

color represents high gene expression

genes_mid_color

color represents middle gene expression

genes_low_color

color represents low gene expression

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

midpoint expression midpoint
scale_alpha_with_expression

scale expression with ggplot alpha parameter

point_size size of point (cell)

point_border_col

color of border around points

point_border_stroke

stroke size of border around points

show_legend show legend

cow_n_col cowplot param: how many columns cow_rel_h cowplot param: relative height cow_rel_w cowplot param: relative width cow_align cowplot param: how to align three mode to adjust axis scale axis_scale x_ticks number of ticks on x axis number of ticks on y axis y_ticks number of ticks on z axis z_ticks plot_method two methods of plot show plots show_plots

Details

Description of parameters.

Value

ggplot or plotly

Examples

```
visGenePlot(gobject)
```

```
visGenePlot_2D_ggplot visGenePlot_2D_ggplot
```

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_2D_ggplot(gobject, expression_values = c("normalized",
    "scaled", "custom"), genes, genes_high_color = "darkred",
    genes_mid_color = "white", genes_low_color = "darkblue",
    show_network = F, network_color = NULL,
    spatial_network_name = "spatial_network", edge_alpha = NULL,
    show_grid = F, grid_color = NULL,
    spatial_grid_name = "spatial_grid", midpoint = 0,
    scale_alpha_with_expression = FALSE, point_size = 1,
    point_border_col = "black", point_border_stroke = 0.1,
    show_legend = T, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
    cow_align = "h", show_plots = F)
```

```
gobject
                  giotto object
expression_values
                  gene expression values to use
                  genes to show
genes
genes_high_color
                  color represents high gene expression
genes_mid_color
                  color represents middle gene expression
genes_low_color
                  color represents low gene expression
                  show underlying spatial network
show_network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
midpoint
                  expression midpoint
scale_alpha_with_expression
                  scale expression with ggplot alpha parameter
```

```
point_size
                 size of point (cell)
point_border_col
                 color of border around points
point_border_stroke
                 stroke size of border around points
                 show legend
show_legend
cow_n_col
                 cowplot param: how many columns
                 cowplot param: relative height
cow_rel_h
                 cowplot param: relative width
cow_rel_w
                 cowplot param: how to align
cow_align
show_plots
                 show plots
```

Details

Description of parameters.

Value

ggplot

Examples

```
visGenePlot_2D_ggplot(gobject)
```

```
visGenePlot_3D_plotly visGenePlot_3D_plotly
```

Description

Visualize cells and gene expression according to spatial coordinates

Usage

```
visGenePlot_3D_plotly(gobject, expression_values = c("normalized",
    "scaled", "custom"), genes, show_network = F, network_color = NULL,
    spatial_network_name = "spatial_network", edge_alpha = NULL,
    show_grid = F, genes_high_color = NULL, genes_mid_color = "white",
    genes_low_color = "blue", spatial_grid_name = "spatial_grid",
    point_size = 1, show_legend = T, axis_scale = c("cube", "real",
    "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
    z_ticks = NULL, show_plots = F)
```

```
gobject giotto object
expression_values
gene expression values to use
genes genes to show
show_network show underlying spatial network
```

visGenePlot_3D_plotly

 ${\tt network_color} \quad color \ of \ spatial \ network$

spatial_network_name

name of spatial network to use

show_grid show spatial grid

genes_high_color

color represents high gene expression

genes_mid_color

color represents middle gene expression

genes_low_color

color represents low gene expression

 ${\tt spatial_grid_name}$

name of spatial grid to use

point_size size of point (cell)

show_legend show legend

axis_scale three mode to adjust axis scale

x_ticks number of ticks on x axis y_ticks number of ticks on y axis

z_ticks number of ticks on z axis

show_plots show plots

grid_color color of spatial grid

cow_n_col cowplot param: how many columns

cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width

cow_align cowplot param: how to align

Details

Description of parameters.

Value

plotly

Examples

visGenePlot_3D_plotly(gobject)

190 visPlot

visPlot visPlot

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot(gobject, sdimx = NULL, sdimy = NULL, sdimz = NULL,
 point_size = 3, point_border_col = "black",
 point_border_stroke = 0.1, cell_color = NULL,
 cell_color_code = NULL, color_as_factor = T,
 select_cell_groups = NULL, select_cells = NULL,
 show_other_cells = T, other_cell_color = "lightgrey",
 show_network = F, network_color = NULL, network_alpha = 1,
 other_cells_alpha = 0.1, spatial_network_name = "spatial_network",
  show_grid = F, grid_color = NULL, grid_alpha = 1,
  spatial_grid_name = "spatial_grid", coord_fix_ratio = 0.6,
  title = "", show_legend = T, axis_scale = c("cube", "real",
  "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
 z_ticks = NULL, plot_method = c("ggplot", "plotly"), show_plot = F,
 return_plot = TRUE, save_plot = F, save_dir = NULL,
 save_folder = NULL, save_name = NULL, save_format = NULL,
 show_saved_plot = F, ...)
```

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
                  size of point (cell)
point_size
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
                  color for cells (see details)
cell_color
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
```

visPlot_2D_ggplot 191

show_network show underlying spatial network

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid

spatial_grid_name

name of spatial grid to use

coord_fix_ratio

fix ratio between x and y-axis

title title of plot show_legend show legend show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

Examples

visPlot(gobject)

visPlot_2D_ggplot
visPlot_2D_ggplot

Description

Visualize cells according to spatial coordinates

192 visPlot_2D_ggplot

Usage

```
visPlot_2D_ggplot(gobject, sdimx = NULL, sdimy = NULL,
  point_size = 3, point_border_col = "black",
  point_border_stroke = 0.1, cell_color = NULL,
  cell_color_code = NULL, color_as_factor = T,
  select_cell_groups = NULL, select_cells = NULL,
  show_other_cells = T, other_cell_color = "lightgrey",
  show_network = F, network_color = NULL, network_alpha = 1,
  other_cells_alpha = 0.1, spatial_network_name = "spatial_network",
  show_grid = F, grid_color = NULL,
  spatial_grid_name = "spatial_grid", coord_fix_ratio = 0.6,
  title = "", show_legend = T, axis_scale = c("cube", "real",
  "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
  z_ticks = NULL, show_plot = F, return_plot = TRUE, save_plot = F,
  save_dir = NULL, save_folder = NULL, save_name = NULL,
  save_format = NULL, show_saved_plot = F, ...)
```

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
point_size
                  size of point (cell)
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
color_as_factor
                  convert color column to factor
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
                  select subset of cells based on cell IDs
select_cells
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
show_network
                  show underlying spatial network
                  color of spatial network
network_color
spatial_network_name
                  name of spatial network to use
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
spatial_grid_name
                  name of spatial grid to use
```

visPlot_2D_plotly 193

coord_fix_ratio

fix ratio between x and y-axis

title title of plot show_legend show legend show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

 $\texttt{save_format} \qquad \text{format of plot (e.g. tiff, png, pdf, ...)}$

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

Examples

visPlot_2D_ggplot(gobject)

visPlot_2D_plotly

Description

Visualize cells according to spatial coordinates

Usage

```
visPlot_2D_plotly(gobject, sdimx = NULL, sdimy = NULL,
   point_size = 3, cell_color = NULL, cell_color_code = NULL,
   color_as_factor = T, select_cell_groups = NULL,
   select_cells = NULL, show_other_cells = T,
   other_cell_color = "lightgrey", other_point_size = 0.5,
   show_network = F, network_color = "lightgray", network_alpha = 1,
   other_cell_alpha = 0.5, spatial_network_name = "spatial_network",
   show_grid = F, grid_color = NULL, grid_alpha = 1,
   spatial_grid_name = "spatial_grid", show_legend = T,
   axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
   x_ticks = NULL, y_ticks = NULL, show_plot = F)
```

194 visPlot_3D_plotly

Arguments

gobject giotto object

sdimx x-axis dimension name (default = 'sdimx')
sdimy y-axis dimension name (default = 'sdimy')

point_size size of point (cell)

cell_color color for cells (see details)

cell_color_code

named vector with colors

color_as_factor

convert color column to factor

select_cell_groups

select a subset of the groups from cell_color

 $show_network \qquad show \ underlying \ spatial \ network$

network_color color of spatial network

spatial_network_name

name of spatial network to use

show_grid show spatial grid grid_color color of spatial grid grid_alpha alpha of spatial grid

spatial_grid_name

name of spatial grid to use

show_legend show legend
show_plot show plot

Details

Description of parameters.

Value

plotly

Examples

visPlot_2D_plotly(gobject)

 ${\tt visPlot_3D_plotly} \qquad {\tt \it visPlot_3D_plotly}$

Description

Visualize cells according to spatial coordinates

visPlot_3D_plotly 195

Usage

```
visPlot_3D_plotly(gobject, sdimx = NULL, sdimy = NULL, sdimz = NULL,
point_size = 3, cell_color = NULL, cell_color_code = NULL,
select_cell_groups = NULL, select_cells = NULL,
show_other_cells = T, other_cell_color = "lightgrey",
other_point_size = 0.5, show_network = F, network_color = NULL,
network_alpha = 1, other_cell_alpha = 0.5,
spatial_network_name = "spatial_network",
spatial_grid_name = "spatial_grid", title = "", show_legend = T,
axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, show_plot = F)
```

Arguments

```
gobject
                  giotto object
sdimx
                  x-axis dimension name (default = 'sdimx')
                  y-axis dimension name (default = 'sdimy')
sdimy
sdimz
                  z-axis dimension name (default = 'sdimz')
                  size of point (cell)
point_size
cell_color
                  color for cells (see details)
cell_color_code
                  named vector with colors
select_cell_groups
                  select a subset of the groups from cell_color
show_network
                  show underlying spatial network
network_color
                  color of spatial network
spatial_network_name
                  name of spatial network to use
spatial_grid_name
                  name of spatial grid to use
title
                  title of plot
show_legend
                  show legend
show_plot
                  show plot
point_border_col
                  color of border around points
point_border_stroke
                  stroke size of border around points
color_as_factor
                  convert color column to factor
show_grid
                  show spatial grid
grid_color
                  color of spatial grid
coord_fix_ratio
                  fix ratio between x and y-axis
```

Details

Description of parameters.

196 visSpatDimGenePlot

Value

ggplot

Examples

```
visPlot_3D_plotly(gobject)
```

visSpatDimGenePlot

visSpatDimGenePlot

Description

integration of visSpatDimGenePlot_2D(ggplot) and visSpatDimGenePlot_3D(plotly)

Usage

```
visSpatDimGenePlot(gobject, plot_method = c("ggplot", "plotly"),
 expression_values = c("normalized", "scaled", "custom"),
 plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, dim3_to_use = NULL,
 sdimx = NULL, sdimy = NULL, sdimz = NULL, genes,
 dim_point_border_col = "black", dim_point_border_stroke = 0.1,
 show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", edge_alpha_dim = NULL,
 scale_alpha_with_expression = FALSE, label_size = 16,
 genes_low_color = "blue", genes_mid_color = "white",
 genes_high_color = "red", dim_point_size = 3,
 nn_network_alpha = 0.5, show_spatial_network = F,
 spatial_network_name = "spatial_network",
 network_color = "lightgray", spatial_network_alpha = 0.5,
 show_spatial_grid = F, spatial_grid_name = "spatial_grid",
 spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
 spatial_point_size = 3, spatial_point_border_col = "black",
 spatial_point_border_stroke = 0.1, legend_text_size = 12,
 axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
 x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, midpoint = 0,
 point_size = 1, cow_n_col = 2, cow_rel_h = 1, cow_rel_w = 1,
 cow_align = "h", show_legend = T, show_plots = F)
```

```
gobject giotto object
expression_values
gene expression values to use
plot_alignment direction to align plot
dim_reduction_to_use
dimension reduction to use
dim_reduction_name
dimension reduction name
```

visSpatDimGenePlot 197

dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis dim3_to_use dimension to use on z-axis sdimx x-axis dimension name (default = 'sdimx') sdimy y-axis dimension name (default = 'sdimy') z-axis dimension name (default = 'sdimz') sdimz genes genes to show dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) network_name name of NN network to use, if show_NN_network = TRUE edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter size for the label label_size genes_low_color color to represent low expression of gene genes_high_color color to represent high expression of gene dim_point_size dim reduction plot: point size spatial_network_name name of spatial network to use spatial_grid_name name of spatial grid to use spatial_point_size spatial plot: point size spatial_point_border_col color of border around points spatial_point_border_stroke stroke size of border around points legend_text_size the size of the text in legend axis_scale three modes to adjust axis scale ratio set the axis scale ratio on custom custom_ratio number of ticks on x axis x_ticks y_ticks number of ticks on y axis z_ticks number of ticks on z axis midpoint size of point (cell) size of point (cell) point_size

```
cow_n_col cowplot param: how many columns
cow_rel_h cowplot param: relative height
cow_rel_w cowplot param: relative width
cow_align cowplot param: how to align
show_legend show_plot show plot
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

visSpatDimGenePlot(gobject)

visSpatDimGenePlot_2D visSpatDimGenePlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot mode

Usage

```
visSpatDimGenePlot_2D(gobject, expression_values = c("normalized",
  "scaled", "custom"), plot_alignment = c("horizontal", "vertical"),
 genes, dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, point_size = 1,
 dim_point_border_col = "black", dim_point_border_stroke = 0.1,
 show_NN_network = F, show_spatial_network = F,
 show_spatial_grid = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", edge_alpha_dim = NULL,
 scale_alpha_with_expression = FALSE,
 spatial_network_name = "spatial_network",
 spatial_grid_name = "spatial_grid", spatial_point_size = 1,
 spatial_point_border_col = "black",
 spatial_point_border_stroke = 0.1, midpoint = 0,
 genes_high_color = "red", genes_mid_color = "white"
 genes_low_color = "blue", cow_n_col = 2, cow_rel_h = 1,
 cow_rel_w = 1, cow_align = "h", axis_scale = c("cube", "real",
  "custom"), custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
  show_legend = T, show_plots = F)
```

Arguments

gobject giotto object expression_values gene expression values to use plot_alignment direction to align plot genes genes to show dim_reduction_to_use dimension reduction to use dim_reduction_name dimension reduction name dim1_to_use dimension to use on x-axis dim2_to_use dimension to use on y-axis point_size size of point (cell) dim_point_border_col color of border around points dim_point_border_stroke stroke size of border around points show_NN_network show underlying NN network nn_network_to_use type of NN network to use (kNN vs sNN) name of NN network to use, if show_NN_network = TRUE network_name edge_alpha_dim dim reduction plot: column to use for alpha of the edges scale_alpha_with_expression scale expression with ggplot alpha parameter spatial_network_name name of spatial network to use spatial_grid_name name of spatial grid to use spatial_point_size spatial plot: point size spatial_point_border_col color of border around points spatial_point_border_stroke stroke size of border around points midpoint size of point (cell) cowplot param: how many columns cow_n_col cowplot param: relative height cow_rel_h cowplot param: relative width cow_rel_w cow_align cowplot param: how to align show_legend show legend

dim_point_size dim reduction plot: point size

show plot

show_plot

Details

Description of parameters.

Value

ggplot

Examples

```
visSpatDimGenePlot_2D(gobject)
```

```
visSpatDimGenePlot_3D visSpatDimGenePlot_3D
```

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
visSpatDimGenePlot_3D(gobject, expression_values = c("normalized",
 "scaled", "custom"), plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, dim3_to_use = NULL,
 sdimx = NULL, sdimy = NULL, sdimz = NULL, genes,
  show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", label_size = 16,
 genes_low_color = "blue", genes_mid_color = "white",
 genes_high_color = "red", dim_point_size = 3,
 nn_network_alpha = 0.5, show_spatial_network = F,
 spatial_network_name = "spatial_network",
 network_color = "lightgray", spatial_network_alpha = 0.5,
 show_spatial_grid = F, spatial_grid_name = "spatial_grid",
 spatial\_grid\_color = NULL, \ spatial\_grid\_alpha = 0.5,
 spatial_point_size = 3, legend_text_size = 12,
 axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
 x_ticks = NULL, y_ticks = NULL, z_ticks = NULL)
```

```
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
genes_low_color
                 color represent high gene expression (see details)
genes_high_color
                 color represent high gene expression (see details)
nn_network_alpha
                 column to use for alpha of the edges
show_spatial_network
                 show spatial network
spatial_network_name
                 name of spatial network to use
network_color color of spatial/nn network
spatial_network_alpha
                 alpha of spatial network
show\_spatial\_grid
                 show spatial grid
spatial_grid_name
                 name of spatial grid to use
spatial_grid_color
                 color of spatial grid
spatial_grid_alpha
                 alpha of spatial grid
legend_text_size
                 text size of legend
show_legend
                 show legend
```

Details

show_plot

Description of parameters.

Value

plotly

Examples

```
\verb|visSpatDimPlot_3D(gobject)|\\
```

show plot

202 visSpatDimPlot

visSpatDimPlot

visSpatDimPlot

Description

integration of visSpatDimPlot_2D and visSpatDimPlot_3D

Usage

```
visSpatDimPlot(gobject, plot_method = c("ggplot", "plotly"),
 plot_alignment = NULL, dim_reduction_to_use = "umap",
 dim_reduction_name = "umap", dim1_to_use = 1, dim2_to_use = 2,
 dim3_to_use = NULL, sdimx = NULL, sdimy = NULL, sdimz = NULL,
 show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", show_cluster_center = F,
  show_center_label = T, center_point_size = 4, label_size = NULL,
 label_fontface = "bold", cell_color = NULL, color_as_factor = T,
  cell_color_code = NULL, select_cell_groups = NULL,
  select_cells = NULL, show_other_cells = T,
 other_cell_color = "lightgrey", dim_point_size = 3,
 dim_point_border_col = "black", dim_point_border_stroke = 0.1,
 nn_network_alpha = NULL, show_spatial_network = F,
 spatial_network_name = "spatial_network",
 network_color = "lightgray", spatial_network_alpha = 0.5,
 show_spatial_grid = F, spatial_grid_name = "spatial_grid",
  spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
 spatial_point_size = 3, legend_text_size = 12,
 spatial_point_border_col = "black",
 spatial_point_border_stroke = 0.1, show_legend = T,
 axis_scale = c("cube", "real", "custom"), custom_ratio = NULL,
 x_ticks = NULL, y_ticks = NULL, z_ticks = NULL, show_plot = F)
```

```
giotto object
gobject
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
                 dimension to use on x-axis
dim1_to_use
dim2_to_use
                 dimension to use on y-axis
dim3_to_use
                 dimension to use on z-axis
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
```

visSpatDimPlot 203

```
color_as_factor
                  convert color column to factor
cell_color_code
                  named vector with colors
select_cell_groups
                  select subset of cells/clusters based on cell_color parameter
select_cells
                  select subset of cells based on cell IDs
show_other_cells
                  display not selected cells
other_cell_color
                  color of not selected cells
nn_network_alpha
                  column to use for alpha of the edges
show_spatial_network
                  show spatial network
spatial\_network\_name
                  name of spatial network to use
spatial\_network\_alpha
                  alpha of spatial network
show_spatial_grid
                  show spatial grid
spatial_grid_name
                  name of spatial grid to use
spatial_grid_color
                  color of spatial grid
spatial_grid_alpha
                  alpha of spatial grid
legend_text_size
                  text size of legend
show_legend
                  show legend
                  show plot
show_plot
plot_mode
                  choose the mode to draw plot: ggplot or plotly
spatial_network_color
                  color of spatial network
```

Details

Description of parameters.

Value

ggplot or plotly

Examples

visSpatDimPlot(gobject)

204 visSpatDimPlot_2D

visSpatDimPlot_2D
visSpatDimPlot_2D

Description

Visualize cells according to spatial AND dimension reduction coordinates in ggplot2 mode

Usage

```
visSpatDimPlot_2D(gobject, plot_alignment = c("vertical", "horizontal"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, sdimx = NULL, sdimy = NULL,
  show_NN_network = F, nn_network_to_use = "sNN",
 network_name = "sNN.pca", show_cluster_center = F,
 show_center_label = T, center_point_size = 4, label_size = 4,
 label_fontface = "bold", cell_color = NULL, color_as_factor = T,
 cell_color_code = NULL, select_cell_groups = NULL,
 select_cells = NULL, show_other_cells = T,
 other_cell_color = "lightgrey", dim_plot_mode = NULL,
 dim_point_size = 1, dim_point_border_col = "black",
 dim_point_border_stroke = 0.1, nn_network_alpha = 0.05,
 show_spatial_network = F, spatial_network_name = "spatial_network",
  spatial_network_color = NULL, show_spatial_grid = F,
  spatial_grid_name = "spatial_grid", spatial_grid_color = NULL,
  spatial_point_size = 1, spatial_point_border_col = "black",
  spatial_point_border_stroke = 0.1, show_legend = T, show_plot = F,
 plot_method = "ggplot")
```

```
gobject
                 giotto object
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
                 dimension to use on y-axis
dim2_to_use
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
network_name
                 name of NN network to use, if show_NN_network = TRUE
cell color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
```

visSpatDimPlot_2D 205

 $select_cell_groups$

select subset of cells/clusters based on cell_color parameter

select_cells select subset of cells based on cell IDs

show_other_cells

display not selected cells

other_cell_color

color of not selected cells

nn_network_alpha

column to use for alpha of the edges

show_spatial_network

show spatial network

spatial_network_name

name of spatial network to use

spatial_network_color

color of spatial network

show_spatial_grid

show spatial grid

spatial_grid_name

name of spatial grid to use

spatial_grid_color

color of spatial grid

show_legend show legend

show_plot show plot

return_plot return ggplot object

save_plot directly save the plot [boolean]

save_dir directory to save the plot

save_folder (optional) folder in directory to save the plot

save_name name of plot

save_format format of plot (e.g. tiff, png, pdf, ...)

show_saved_plot

load & display the saved plot

Details

Description of parameters.

Value

ggplot

Examples

visSpatDimPlot_2D(gobject)

206 visSpatDimPlot_3D

visSpatDimPlot_3D
visSpatDimPlot_3D

Description

Visualize cells according to spatial AND dimension reduction coordinates in plotly mode

Usage

```
visSpatDimPlot_3D(gobject, plot_alignment = c("horizontal", "vertical"),
 dim_reduction_to_use = "umap", dim_reduction_name = "umap",
 dim1_to_use = 1, dim2_to_use = 2, dim3_to_use = NULL,
 sdimx = NULL, sdimy = NULL, sdimz = NULL, show_NN_network = F,
 nn_network_to_use = "sNN", network_name = "sNN.pca",
 show_cluster_center = F, show_center_label = T,
 center_point_size = 4, label_size = 16, cell_color = NULL,
 color_as_factor = T, cell_color_code = NULL, dim_point_size = 3,
 nn_network_alpha = 0.5, show_spatial_network = F,
 spatial_network_name = "spatial_network",
 network_color = "lightgray", spatial_network_alpha = 0.5,
 show_spatial_grid = F, spatial_grid_name = "spatial_grid",
 spatial_grid_color = NULL, spatial_grid_alpha = 0.5,
 spatial_point_size = 3, axis_scale = c("cube", "real", "custom"),
 custom_ratio = NULL, x_ticks = NULL, y_ticks = NULL,
 z_ticks = NULL, legend_text_size = 12)
```

```
giotto object
gobject
plot_alignment direction to align plot
dim_reduction_to_use
                 dimension reduction to use
dim_reduction_name
                 dimension reduction name
dim1_to_use
                 dimension to use on x-axis
dim2_to_use
                 dimension to use on y-axis
                 dimension to use on z-axis
dim3_to_use
show_NN_network
                 show underlying NN network
nn_network_to_use
                 type of NN network to use (kNN vs sNN)
                 name of NN network to use, if show_NN_network = TRUE
network_name
cell_color
                 color for cells (see details)
color_as_factor
                 convert color column to factor
cell_color_code
                 named vector with colors
nn_network_alpha
                 column to use for alpha of the edges
```

writeHMRFresults 207

```
show_spatial_network
```

show spatial network

spatial_network_name

name of spatial network to use

spatial_network_alpha

alpha of spatial network

show_spatial_grid

show spatial grid

spatial_grid_name

name of spatial grid to use

spatial_grid_color

color of spatial grid

spatial_grid_alpha

alpha of spatial grid

 $legend_text_size$

text size of legend

spatial_network_color

color of spatial network

show_legend show legend show_plot show plot

Details

Description of parameters.

Value

plotly

Examples

visSpatDimPlot_3D(gobject)

writeHMRFresults

writeHMRFresults

Description

write results from doHMRF to a data.table.

Usage

```
writeHMRFresults(gobject, HMRFoutput, k = NULL, betas_to_view = NULL,
    print_command = F)
```

Arguments

gobject giotto object

HMRF output from doHMRF

k k to write results for

betas_to_view results from different betas that you want to view

print_command see the python command

Value

data.table with HMRF results for each b and the selected k

Examples

```
writeHMRFresults(gobject)
```

```
write\_giotto\_viewer\_annotation \\ write\_giotto\_viewer\_annotation
```

Description

write out annotation data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_annotation(annotation, annot_name = "test",
  output_directory = getwd())
```

Arguments

```
annotation annotation from the data.table from giotto object
annot_name name of the annotation
output_directory
directory where to save the files
```

Value

write a .txt and .annot file for the selection annotation

Description

write out dimensional reduction data from a giotto object for the Viewer

Usage

```
write_giotto_viewer_dim_reduction(dim_reduction_cell, dim_red = NULL,
  dim_red_name = NULL, dim_red_rounding = NULL,
  dim_red_rescale = c(-20, 20), output_directory = getwd())
```

Arguments

dim_reduction_cell

dimension reduction slot from giotto object

dim_red high level name of dimension reduction

dim_red_name specific name of dimension reduction to use

dim_red_rounding

numerical indicating how to round the coordinates

dim_red_rescale

numericals to rescale the coordinates

output_directory

directory where to save the files

Value

write a .txt and .annot file for the selection annotation

Index

*Topic giotto ,	<pre>cellProximityVisPlot_3D_plotly, 34</pre>
giotto-class, 96	changeGiottoInstructions, 35
print.giotto, 132	clusterCells, 36
show, giotto-method, 138	cowplot::save_plot, 96
*Topic giotto	<pre>create_average_detection_DT, 45</pre>
createGiottoObject, 39	create_average_DT, 45
*Topic object	<pre>create_cell_type_random_cell_IDs, 46</pre>
giotto-class, 96	<pre>create_cluster_matrix, 46</pre>
print.giotto, 132	create_dimObject,47
show, giotto-method, 138	createGiottoInstructions, 38
	createGiottoObject,39
addCellMetadata, 6	${\sf createHeatmap_DT,40}$
addCellStatistics, 7	createNearestNetwork, 41
addGeneMetadata, 7	createSpatialGrid,42
addGeneStatistics, 8	createSpatialGrid_2D,42
addHMRF, 9	createSpatialGrid_3D,43
$\operatorname{addNetworkLayout}, 9$	createSpatialNetwork,44
addStatistics, 10	
adjustGiottoMatrix, 11	decide_cluster_order, 47
aes_string2, 11	detectSpatialPatterns, 48
all_plots_save_function, 13	dimGenePlot2D, 49
allCellCellcommunicationsScores, 12	dimGenePlot3D, 50
<pre>annotate_spatlocs_with_spatgrid_2D, 15</pre>	dimPlot2D, 52, 118, 122, 127
<pre>annotate_spatlocs_with_spatgrid_3D, 15</pre>	dimPlot3D, 53
annotateGiotto, 14	direction_test (direction_test_CPG), 55
annotateSpatialNetwork, 14	direction_test_CPG, 55
average_gene_gene_expression_in_groups,	doHclust, 56
16	doHMRF, 57
himCatCastialCassa 17	doKmeans, 58
binGetSpatialGenes, 17	doLeidenCluster, 59
calculate_spatial_genes_python, 21	doLeidenSubCluster, 60
calculateHVG, 18	doLouvainCluster, 61
calculateMotaTable, 19	doLouvainCluster_community, 62
calculateSpatialGenes, 19	doLouvainCluster_multinet, 63
cellProximityBarplot, 22	doLouvainSubCluster, 64
cellProximityEnrichment, 23	doLouvainSubCluster_community, 65
cellProximityHeatmap, 24	doLouvainSubCluster_multinet, 66
cellProximityNetwork, 25	doRandomWalkCluster, 68 doSNNCluster, 69
cellProximitySpatPlot2D, 26	dt_to_matrix, 70
cellProximitySpatPlot3D, 28	ut_to_mati 1x, /0
cellProximityVisPlot, 29	exportGiottoViewer,70
cellProximityVisPlot_2D_ggplot, 31	expr0nlyCellCellcommunicationScores,
cellProximityVisPlot_2D_plotly, 32	71
5511 5.11 15 , 151 155_P15613, 51	/ ±

INDEX 211

extended_gini_fun,72	mygini_fun, 105
extractNearestNetwork, 72	
	nnDT_to_kNN, 105
fDataDT, 73	node_clusters, 106
filterCombinations, 73	normalizeGiotto, 106
filterCPGscores, 74	
filterDistributions, 75	OR_function2, 107
filterGiotto, 76	
find_grid_2D, 84	pDataDT, 107
find_grid_3D,85	<pre>plot_network_layer_ggplot, 129</pre>
find_grid_x, 85	plot_point_layer_ggplot, 129
find_grid_y, 85	<pre>plot_spat_point_layer_ggplot, 131</pre>
<pre>find_grid_z, 85</pre>	plotCPGscores, 108
findGiniMarkers, 76	plotGTGscores, 109
<pre>findGiniMarkers_one_vs_all, 77</pre>	plotHeatmap, 110
findMarkers, 78	plotly_axis_scale_2D, 111
findMarkers_one_vs_all, 79	plotly_axis_scale_3D, 112
findMastMarkers, 81	plotly_grid, 113
findMastMarkers_one_vs_all, 82	plotly_network, 113
findScranMarkers, 83	plotMetaDataHeatmap, 114
findScranMarkers_one_vs_all, 83	plotPCA, 115
fish_function, 86	plotPCA_2D, 117
fish_function2, 86	plotPCA_3D, 118
FSV_show, 86	plotTSNE, 120
	plotTSNE_2D, 121
GenePattern_show, 87	plotTSNE_3D, 123
general_save_function, 88	plotUMAP, 124
<pre>get_cell_to_cell_sorted_name_conversion,</pre>	plotUMAP_2D, 126
94	plotUMAP_3D, 127
<pre>get_interaction_gene_enrichment, 94</pre>	print.giotto, 132
<pre>get_specific_interaction_gene_enrichment,</pre>	pr 111c. g10cco, 132
95	rank_binarize, 132
getCellProximityGeneScores, 89	readGiottoInstructions, 133
getClusterSimilarity, 91	removeCellAnnotation, 133
getDendrogramSplits, 91	removeGeneAnnotation, 134
getDistinctColors, 92	runPCA, 134
getGeneToGeneScores, 93	runtSNE, 135
ggplot_save_function, 95	runUMAP, 136
giotto (giotto-class), 96	i unorizi , 130
giotto-class, 96	select_expression_values, 138
Giotto::general_save_function, 13	selectPatternGenes, 137
	show, giotto-method, 138
iterCluster, 97	showClusterDendrogram, 138
iterLeidenCluster, 98	showClusterHeatmap, 139
iterLouvainCluster, 99	
iterLouvainCluster_community, 100	showCPGscores, 140
iterLouvainCluster_multinet, 101	showGeneExpressionProximityScore, 141
_ ,	showGiottoInstructions, 142
kmeans_binarize, 103	showGTGscores, 142
	showIntExpressionProximityScore, 143
loadHMRF, 103	showPattern, 144
	showPattern2D, 145
make_simulated_network, 104	showPattern3D, 146
mergeClusters, 104	showPatternGenes, 147

212 INDEX

```
showProcessingSteps, 148
showTopGeneToGene, 148
signPCA, 149
spatDimGenePlot2D, 150
spatDimGenePlot3D, 152
spatDimPlot2D, 153
spatDimPlot3D, 156
spatGenePlot2D, 159
spatGenePlot3D, 160
Spatial_AEH, 162
Spatial_DE, 162
spatPlot2D, 163, 172
spatPlot3D, 165, 173
specificCellCellcommunicationScores,
split_dendrogram_in_two, 167
stitchFieldCoordinates, 168
subClusterCells, 169
subsetGiotto, 170
viewHMRFresults, 171
viewHMRFresults2D, 171
viewHMRFresults3D, 172
violinPlot, 173
visDimGenePlot, 174
visDimGenePlot_2D_ggplot, 175
visDimGenePlot_3D_plotly, 177
visDimPlot, 116, 121, 125, 178
visDimPlot_2D_ggplot, 179
visDimPlot_2D_plotly, 181
visDimPlot_3D_plotly, 183
visForceLayoutPlot, 184
visGenePlot, 185
visGenePlot_2D_ggplot, 187
visGenePlot_3D_plotly, 188
visPlot, 171, 190
visPlot_2D_ggplot, 191
visPlot_2D_plotly, 193
visPlot_3D_plotly, 194
visSpatDimGenePlot, 196
\verb|visSpatDimGenePlot_2D|, 198|
visSpatDimGenePlot_3D, 200
visSpatDimPlot, 202
visSpatDimPlot_2D, 204
visSpatDimPlot_3D, 206
write_giotto_viewer_annotation, 208
write_giotto_viewer_dim_reduction, 208
writeHMRFresults, 207
```