UNIVERSIDAD DE CALDAS FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE SISTEMAS Y COMPUTACION

INTEGRANTE 1 INTEGRANTE 2

1. TOPICOS DEL MARCO TEORICO

a. Definiciones

Definiciones básicas del producto a desarrollar, historia, proceso general,

b. Materias primas

Describir una a una las materias primas requeridas para el desarrollo del producto como tal

c. Capacidad de la planta

Anual pero con cálculos previos de producción por hora y teniendo en cuenta las capacidades de las maquinas del punto 4 así como la cantidad de operarios y de turnos a manejar (ej: 2 turnos de 8 horas c/u...). Igualmente se debe considerar un % de pérdida de producto o de producto fallido.

2. DIAGRAMA DE PROCESO

Diagrama de FLUJO del proceso

Ejemplos:

3. DESCRIPCION DEL PROCESO (CON VARIABLES ESPECIFICAS A CONTROLAR)

Descripción detallada de cada subproceso según el diagrama de **FLUJO** del proceso identificando claramente en dicha descripción las **variables especificas a controlar**, esto con el fin de ir preparando la búsqueda de los sensores y actuadores del punto 5. Las variables deben informar en que rangos se requieren.

Ejemplo:

Torrefacción

Este es un proceso delicado que impacta el color, el aroma y el sabor del producto final, pues es en este proceso donde el haba de cacao desarrolla más de 400 aromas. Las habas de cacao se tuestan a una temperatura que oscila entre 120 y 150 °C durante un tiempo variable que puede llegar a 25 minutos. Temperatura y tiempo de tostado son las variables claves a controlar para obtener un sabor y otro de chocolate. Conseguir el punto exacto de torrefacción es clave para obtener después el mejor chocolate.

Variables a controlar:

Temperatura: rango 120 a 150 °C Tiempo: rango 10 a 25 minutos

4. MAQUINARIA REQUERIDA

Nombre					
Link al PDF con hoja de datos completa (datasheet)					
Imagen	Marca				
	Referencia				
	Que Hace				
	Como lo hace				
	Porque se hace				
	Detalles Técnicos				

Ejemplo:

Concentrador				
Ver hoja de datos				
	Marca	CHINZ		
	Referencia	e QN-300		
11.00	Que Hace	Concentración de zumos de frutas		
	Como lo hace	A través de la evaporación, filtración por membranas y la crioconcentración.		
Z-/ III	Porque se	para lograr un alto grado de concentración, incluso con un alto contenido de pulpa, sin		
	hace	perjuicio de las características organolépticas de la fruta		
		País de procedencia: China		
		Tasa de transpiración (Kg/h): 70		
	Detalles	Volumen(L): 300L		
	Técnicos	Presión del vapor(Mpa): 0.09		
5		Peso(Kg): 380		
		Dimensiones: (mm): Largo 1900 Ancho 1200 Alto 2300		

5. INSTRUMENTACION

a. SENSORES

Nombre				
Link al PDF con hoja de datos completa (datasheet)				
Imagen	Característica 1			
	Característica 2			
	Característica 3			
	Característica 4			
	Característica 5			
	Característica 6			

REFRACTOMETRO 30PX - UE1				
Link al PDF con hoja de datos completa (datasheet)				
	Campo de medida (range)	1.32 - 1.50		
	Alcance (span)	0.18		
	Exactitud	+/- 0.2%		
	Resolución	0.1%		
	Temperatura	10 − 40°C		
	Índice de refracción	1.32 - 1.50		
	Tiempo de medida	3 – 180 segundos		

SENSOR DE PESO - WE1 Link al PDF con hoja de datos completa (datasheet)				
	Campo de medida (range)	0-50Kg		
	Error	0.2		
	Dimensiones	28 * 28 *8 mm		
(E9)	Sobrecarga	150kg		
-3	Temperatura del proceso	-10 +50 °C		
	Voltaje	5 - 10 v		

- b. **CONTROLADORES** (PLC y SCADA)
- c. **ACTUADORES**

7. REFERENCIAS

Siguiendo la normativa APA y con las respectivas citaciones en el texto del documento de todo aquello que no sea originalmente escrito por quienes presentan el documento.

Ejemplos de citaciones en el texto:

"De acuerdo con Smith (2003), las representaciones..."
"Smith y Adams (2006) han reportado..."
"Diferentes trabajos han demostrado la validez de este enfoque (Cárdenas et al., 2010; Smith, 2004a, 2004b; Taylor y Martínez, 2011)...".

Este tipo de citaciones aplican igualmente para tablas, figuras u hojas de datos que sean tomadas de algún otro autor diferente a quienes presentan el documento.

1) Artículos de revistas

Ejemplo: Numminen K., Sipila O., Makisalo H. (2005). Preoperative hepatic 3D models: Virtual liver resection using three-dimensional imaging technique. European Journal of Radiology, 56:179-184.

2) Libros

Ejemplo: Edgar T.F., Himmelbleau D.M., Lasdon L.S. (2001). Optimization of Chemical Processes. McGraw-Hill: New York. 651 p. 118

3) Secciones de Libro

Ejemplo: Madson P.W., Monceaux D.A. (1995). Fuel ethanol production. En: The Alcohol Textbook. Lyons T.P., Kelsall D.R., Murtagh J.E. (Eds.). University Press: Nottingham. pp. 257-268.

4) Informes

Ejemplo: Espinal C.F., Martínez H.J., Acevedo X. (2005). La cadena de cereales, alimentos balanceados para animales, avicultura y horcicultura en Colombia. Una mirada global de su estructura y dinámica 1991-2005. Documento de Trabajo No. 87. Observatorio Agrocadenas Colombia, Ministerio de Agricultura y Desarrollo Rural: Bogotá. 94 p. Disponible en: http://www.agronet.gov.co/www/docs_agronet/200511215360_caracterizacion_cereales.pdf.

5) Tesis doctorales o trabajos de grado.

Ejemplo: Li X. (2004). Conflict-based method for conceptual process synthesis. Tesis de Ph.D. Departamentode Tecnología Química, Lappeenranta University of Technology: Lappeenranta, Finlandia. 79 p.

6) Congresos, simposios, encuentros o similares

Ejemplo: Stadherr M.A. (1997). Large-scale process simulation and optimization in a high performance computing environment. En: Aspen World 97. Boston, MA, EUA.

7) Páginas web

Éjemplo 1: ETPI. (2003). The sugar sector environmental report. Environmental Technology Program for Industry (ETPI). Disponible en: http://www.cpp.org.pk/etpirpt/SugarSectorReport.pdfS. [Visitada en julio de 2006].
Ejemplo 2: Berg C. (2004). World Fuel Ethanol Analysis and Outlook. Murtagh & Associates. Disponible en:

http://www.distill.com/World-Fuel-Ethanol-A&O-2004.html. [Visitada en noviembre 2007].

Ejemplo: Maranhao L.E.C. (1982). Individual bagasse drier. Patente de Estados Unidos 4326470.