Status of California Scorpionfish (*Scorpaena guttata*) Off Southern California in 2017

Melissa H. Monk¹ Xi He¹ John Budrick²

¹Southwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, California 95060

8

10

11

12

13

14

15

²California Department of Fish and Wildlife, 350 Harbor Blvd., Belmont, California 94002

DRAFT SAFE

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

Status of California Scorpionfish (*Scorpaena* guttata) Off Southern California in 2017

« Contents

19	Ex	cecut	ive Summary	1
20		Stoc	k	1
21		Cato	ches	1
22		Data	a and Assessment	5
23		Stoc	k Biomass	7
24		Recr	ruitment	10
25		Expl	loitation status	12
26		Ecos	system Considerations	15
27		Refe	rence Points	15
28		Man	agement Performance	16
29		Unre	esolved Problems And Major Uncertainties	16
30		Deci	sion Table(s) (groundfish only)	16
31		Rese	earch And Data Needs	20
32		Rebu	uilding Projections	20
33	1	Intr	roduction	21
34		1.1	Basic Information and Life History	21
35		1.2	Early Life History	21
36		1.3	Map	22
37		1.4	Ecosystem Considerations	22
38		1.5	Fishery Information	22
39		1.6	Summary of Management History	23
40		1.7	Management Performance	26
41		1.8	Fisheries off Mexico	26

42	2	Asse	essmen	\mathbf{nt}	26
43		2.1	Data		26
44			2.1.1	Commercial Fishery Landings	26
45			2.1.2	Sport Fishery Removals	27
46			2.1.3	Estimated Discards	27
47			2.1.4	Abundance Indices	27
48			2.1.5	Fishery-Independent Data: possible sources	27
49			2.1.6	Biological Parameters and Data	28
50			2.1.7	Environmental Or Ecosystem Data Included In The Assessment $$	30
51		2.2	Histor	y Of Modeling Approaches Used For This Stock	30
52			2.2.1	Previous Assessments	30
53			2.2.2	2005 Assessment Recommendations	30
54		2.3	Model	Description	31
55			2.3.1	Transition To The Current Stock Assessment	31
56			2.3.2	Definition of Fleets and Areas	31
57			2.3.3	Summary of Data for Fleets and Areas	31
58			2.3.4	Modeling Software	31
59			2.3.5	Data Weighting	32
60			2.3.6	Priors	32
61			2.3.7	General Model Specifications	32
62			2.3.8	Estimated And Fixed Parameters	32
63		2.4	Model	Selection and Evaluation	32
64			2.4.1	Key Assumptions and Structural Choices	32
65			2.4.2	Alternate Models Considered	32
66			2.4.3	Convergence	33
67		2.5	Respon	nse To The Current STAR Panel Requests	33
68		2.6	Model	1	34
69			2.6.1	Model 1 Base Case Results	34
70			2.6.2	Model 1 Uncertainty and Sensitivity Analyses	34
71			2.6.3	Model 1 Retrospective Analysis	34
72			2.6.4	Model 1 Likelihood Profiles	34
73			2.6.5	Model 1 Harvest Control Rules (CPS only)	34
74			2.6.6	Model 1 Reference Points (groundfish only)	34

75	3	Harvest Projections and Decision Tables	3 4
76	4	Regional Management Considerations	35
77	5	Research Needs	35
78	6	Acknowledgments	35
79	7	Tables	36
80	8	Figures	6 4
81	Re	eferences	

Executive Summary

executive-summary

Stock stock

This assessment reports the status of the California scorpionfish (Scorpaena guttata) resource

- in U.S. waters off the coast of the California, Oregon, and Washington using data through
- 86 2016. Etc...

 $_{
m 87}$ Catches

88 Catch figure(s) with fleets: (Figures a-c)

89 Catch table: (Table a)

Figure a: California scorpionfish landings history for the recreational fleets. $f^{ig:Exec_catch1}$

Figure b: Stacked line plot of California scorpionfish landings history for the commercial fleets.

Figure c: Stacked line plot of California scorpionfish landings history by region, north of Pt. Conception, between Pt. Conception and the U.S.-Mexico border, and Mexican waters.

Figure d: Landings history of California scorpionfish in the base model. fig:r4ss_catches

Table a: Recent California scorpionfish landings (mt) by recreational (Rec.) and commercial (Com.) fleets.

					ta	<u>ab:Exec_c</u>	atch
Year	Rec.	Rec.	Rec. Dead	Com.	Com.	Com.	Total
	Private	Party/Charter	Discards	Hook-and-line	Trawl	Gillnet	
2007	14.24	118.87	2.89	1.90	1.48	0.21	139.58
2008	8.38	89.65	2.25	2.46	0.86	0.28	103.89
2009	14.68	93.16	2.09	2.97	0.27	0.13	113.31
2010	8.07	92.55	2.03	2.99	0.18	0.14	105.97
2011	6.84	91.18	2.66	3.24	1.05	0.24	105.21
2012	6.22	107.63	2.34	3.22	0.43	0.18	120.00
2013	8.18	101.31	2.94	1.73	0.83	0.14	115.14
2014	5.88	113.83	2.93	1.03	0.13	0.04	123.82
2015	4.15	73.78	3.59	2.21	0.13	0.03	83.89
2016	3.86	64.56	3.29	2.32	0.13	0.00	74.16

Data and Assessment

data-and-assessment

California scorpionfish was assessed in 2005 (Maunder et al. 2005) using Stock Synthesis

¹² II version 1.18. This assessment uses the newest version of Stock Synthesis (3.30.0.4). The

model begins in 1916, and assumes the stock was at an unfished equilibrium that year.

Map of assessment region: (Figure e).

Figure e: Map depicting the boundaries for the base-case model. $\begin{tabular}{l} fig:assess_region_map \\ \end{tabular}$

Stock Biomass stock-biomass

- Spawning output Figure: Figure f
 Spawning output Table(s): Table b
 Relative depletion Figure: Figure g
- The estimated relative depletion level (spawning output relative to unfished spawning output) of the the base-case model in 2016 is 70.4% (~95% asymptotic interval: \pm 53.8%-87%) (Figure g).

Table b: Recent trend in beginning of the year spawning output and depletion for the base model for California scorpionfish.

			ta	b:SpawningDeplete_mod1
Year	Spawning Output	~ 95% confidence	Estimated	$\sim 95\%$ confidence
	(mt)	interval	depletion	interval
2008	1411.880	(826-1997.76)	0.821	(0.667 - 0.976)
2009	1327.280	(779.49-1875.07)	0.772	(0.628 - 0.916)
2010	1240.230	(727.54-1752.92)	0.722	(0.587 - 0.856)
2011	1188.880	(694.44-1683.32)	0.692	(0.561 - 0.823)
2012	1180.620	(686.04-1675.2)	0.687	(0.556 - 0.818)
2013	1149.250	(662.71-1635.79)	0.669	(0.541 - 0.796)
2014	1103.550	(630.12 - 1576.98)	0.642	(0.517 - 0.767)
2015	1085.150	(607.15-1563.15)	0.631	(0.504 - 0.759)
2016	1122.560	(616.11-1629.01)	0.653	(0.516 - 0.79)
2017	1209.890	(634.69-1785.09)	0.704	(0.538-0.87)

Spawning biomass (mt) with ~95% asymptotic intervals

Figure f: Time series of spawning output trajectory (circles and line; median; light broken lines: 95% credibility intervals) for the base case assessment model. fig:Spawnbio_all

Spawning depletion with ~95% asymptotic intervals

Figure g: Estimated relative depletion with approximate 95% asymptotic confidnce intervals (dashed lines) for the base case assessment model. \lceil fig:RelDeplete_all

Recruitment recruitment

Recruitment Figure: (Figure h)
Recruitment Tables: (Tables c, ?? and ??)

Table c: Recent recruitment for the base model.

tab	: R	ecri	ıit.	mο	d1

Year	Estimated	~ 95% confidence
	Recruitment (1,000s)	interval
2008	2334.67	(1188.11 - 4587.71)
2009	3043.29	(1586.6 - 5837.4)
2010	5924.02	(3274.03 - 10718.9)
2011	1919.20	(814.17 - 4524.02)
2012	466.56	(145.49 - 1496.19)
2013	6221.57	(3237.03 -
		11957.84)
2014	2427.69	(894.39 - 6589.64)
2015	7513.87	(2659.09 - 21232.2)
2016	3822.13	(796 - 18352.62)
2017	3861.95	(804.12 - 18547.73)

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure h: Time series of estimated California scorpionfish recruitments for the base-case model with 95% confidence or credibility intervals.

105 Exploitation status

exploitation-status

- Exploitation Tables: Table d, Table ??, Table ?? Exploitation Figure: Figure i).
- A summary of California scorpionfish exploitation histories for base model is provided as Figure j.

Table d: Recent trend in spawning potential ratio and exploitation for California scorpionfish in the base model. Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is F divided by F_{SPR} .

				tab:SPR_Exploit_mod1
Year	Fishing	~ 95% confidence	Exploitation	~ 95% confidence
	intensity	interval	rate	interval
2007	0.36	(0.21 - 0.52)	0.04	(0.02-0.06)
2008	0.31	(0.17 - 0.45)	0.03	(0.02 - 0.04)
2009	0.34	(0.19 - 0.5)	0.04	(0.02 - 0.05)
2010	0.34	(0.19 - 0.49)	0.04	(0.02 - 0.05)
2011	0.36	(0.2-0.51)	0.03	(0.02 - 0.05)
2012	0.41	(0.24 - 0.58)	0.04	(0.02 - 0.06)
2013	0.41	(0.24-0.59)	0.04	(0.02-0.06)
2014	0.45	(0.26-0.63)	0.05	(0.02-0.07)
2015	0.35	(0.19 - 0.51)	0.03	(0.02-0.05)
2016	0.32	(0.17 - 0.46)	0.02	(0.01-0.04)

Figure i: Estimated spawning potential ratio (SPR) for the base-case model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR $_{50\%}$ harvest rate. The last year in the time series is 2016.

Figure j: Phase plot of estimated relative (1-SPR) vs. relative spawning biomass for the base case model. The relative (1-SPR) is (1-SPR) divided by 50% (the SPR target). Relative depletion is the annual spawning biomass divided by the unfished spawning biomass.

109 Ecosystem Considerations

In this assessment, ecosystem considerations were.....

111 Reference Points

reference-points

This stock assessment estimates that California scorpionfish in the base model are above the biomass target, but above the minimum stock size threshold. Add sentence about spawning output trend. The estimated relative depletion level for Model 1 in 2016 is 70.4% (~95% asymptotic interval: \pm 53.8%-87%, corresponding to an unfished spawning output of 1209.89 mt (~95% asymptotic interval: 634.69-1785.09 mt) of spawning output in the base model (Table e). Unfished age 1+ biomass was estimated to be 3780.4 mt in the base case model. The target spawning output based on the biomass target ($SB_{40\%}$) is 687.5 mt, which gives a catch of 295.1 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 276.8 mt.

Table e: Summary of reference points and management quantities for the base case base model.

		tab:Ref_pts_mod1
Quantity	Estimate	95% Confidence
		Interval
Unfished spawning output (mt)	1718.8	(1076.9-2360.7)
Unfished age 1+ biomass (mt)	3780.4	(2208.7 - 5352.1)
Unfished recruitment (R0, thousands)	4021.4	(1722.4 - 6320.4)
Spawning output(2016 mt)	1122.6	(616.1-1629)
Depletion (2016)	0.6531	(0.5164 - 0.7898)
Reference points based on $\mathrm{SB}_{40\%}$		
Proxy spawning output $(B_{40\%})$	687.5	(430.8 - 944.3)
SPR resulting in $B_{40\%}$ ($SPR_{B40\%}$)	0.4589	(0.4589 - 0.4589)
Exploitation rate resulting in $B_{40\%}$	0.1461	(0.1305 - 0.1618)
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	295.1	(150.3-440)
Reference points based on SPR proxy for MSY		
Spawning output	765.8	(479.8 - 1051.8)
SPR_{proxy}	0.5	
Exploitation rate corresponding to SPR_{proxy}	0.1267	(0.1134 - 0.1401)
Yield with SPR_{proxy} at SB_{SPR} (mt)	276.8	(141.3-412.3)
Reference points based on estimated MSY values		
Spawning output at MSY (SB_{MSY})	433.4	(262.4 - 604.3)
SPR_{MSY}	0.3256	(0.3157 - 0.3354)
Exploitation rate at MSY	0.2346	(0.2124 - 0.2568)
\overline{MSY} (mt)	333.2	(169.2-497.2)

121 Management Performance

management-performance

Management performance table: Table f

Table f: Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch reflect the commercial landings plus the model estimated discarded biomass.

				tab:mnmgt_	perform
Year	OFL (mt;	ABC (mt)	ACL (mt; OY	Estimated	_
	ABC prior to		prior to 2011)	total catch	
	2011)			(mt)	
2007	-	-	-	-	
2008	-	-	-	-	
2009	-	-	-	-	
2010	-	-	-	-	
2011	-	-	-	-	
2012	-	-	-	-	
2013	-	-	-	-	
2014	-	-	-	-	
2015	-	-	-	-	
2016	-	-	-	-	
2017	-	-	-	-	
2018	-	-	-		

123 Unresolved Problems And Major Uncertainties

unresolved-problems-and-major-uncertainties

124 TBD after STAR panel

$_{125}$ Decision Table(s) (groundfish only)

decision-tables-groundfish-only

tab:OFL_projection

OFL projection table: Table g

Decision table(s) Table h, Table ??, Table ??

128 Yield curve: Figure \ref{fig:Yield_all}

Table g: Projections of potential OFL (mt) for each model, using the base model forecast.

Year OFL 2017 507.83

Figure k: Equilibrium yield curve for the base case model. Values are based on the 2016 fishery selectivity and with steepness fixed at... fig:Yield_all

Table h: Summary of 10-year projections beginning in 2018 for alternate states of nature based on an axis of uncertainty for the base model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. An entry of "—" indicates that the stock is driven to very low abundance under the particular scenario.

 ${\tt tab:Decision_table_mod1}$ States of nature

			Low N	M = 0.05		M 0.07	High I	M 0.09
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
Low M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule	2022	-	-	-	-	-	-	-
	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
High M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
Average	2022	-	-	-	-	-	_	-
Catch	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	_	-
	2025	-	-	-	-	-	_	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	_	-
	2028	_	_	_	_	_	_	-

Table i: Base case results summary.

	2008	2009	2010	2011	2012	2013	2014	2015	2016	6 2017
$1-SPR)(1-SPR_{50\%})$	0.31	0.34	0.34	0.36	0.41	0.41	0.45	0.35	0.32	
Exploitation rate	0.03	0.04	0.04	0.03	0.04	0.04	0.05	0.03	0.02	
Age 1+ biomass (mt)	3512.93	3280.86	3090.02	2944.76	3006.93	2893.02	2665.74	2758.96	2684.49	2943.31
Spawning Output	1411.9	1327.3	1240.2	1188.9	1180.6	1149.2	1103.5	1085.2	1122.6	1209.9
П	95% CI (826-1997.76)	(779.49-	(727.54-	(694.44-	(686.04 - 1675.2)	(662.71-	(630.12-	(607.15-	(616.11-	(634.69-
		1875.07)	1752.92)	1683.32)		1635.79)	1576.98)	1563.15)	1629.01)	1785.09)
Depletion	0.8	0.8	0.7	0.7	0.7	0.7	9.0	0.6	0.7	0.7
I	95% CI (0.667-0.976)	(0.628-0.916)	(0.587-0.856)	(0.561-0.823)	(0.556-0.818)	(0.541-0.796)	(0.517-0.767)	(0.504-0.759)	(0.516-0.79)	(0.538-0.87)
Recruits	2334.67	3043.29	5924.02	1919.20	466.56	6221.57	2427.69	7513.87	3822.13	3861.95
95% CI	(1188.11 -	(1586.6 -	(3274.03 -	(814.17 -	(145.49 -	(3237.03 -	(894.39 -	(2659.09 -	(796 - 18352.62)	(804.12 -
	4587.71)	5837.4)	10718.9)	4524.02)	1496.19)	11957.84)	6589.64)	21232.2)		18547.73)

129 Research And Data Needs

research-and-data-needs

- 130 We recommend the following research be conducted before the next assessment:
- 1. List item No. 1 in the list
- 2. List item No. 2 in the list, etc.

133 Rebuilding Projections

rebuilding-projections

1 Introduction

introduction

55 1.1 Basic Information and Life History

basic-information-and-life-history

California scorpionfish (*Scorpaena guttata*), also known locally as sculpin or spotted scorpionfish, originates from the Greek word for scorpionfishes and *guttata* is Latin for speckled.
California scorpionfish is a medium-bodied fish and like other species in the genus *Scorpaena*,
it produces a toxin in its dorsal, anal, and pectoral fin spines, which produces intense, painful
wounds (Love et al. 1987). Scorpionfish are very resistant to hooking mortality and have
shown survival under extreme conditions.

Its range extends from central California (Santa Cruz) to the Gulf of California, although within U.S. waters they are most common in the Southern California Bight (Eschmeyer et al. 1983, Love et al. 1987). The species generally inhabits rocky reefs, caves and crevices, but in certain areas and seasons it aggregates over sandy or muddy substrate (Love et al. 1987, Frey n.d.). California scorpionfish have been observed from the intertidal to 600 ft with a preferred depth range from 20-450 ft.

Males and females show different growth rates, with females growing to a larger size than males, and the sexes exhibit different length-weight relationships (Love et al. 1987). Few California scorpionfish are mature at one year old (14 cm TL). Fifty-percent of fish mature at 17-18 cm (2 years old) and all by 22 cm (4 years old) (Love et al. 1987).

California scorpionfish feed on a wide variety of mobile prey, including crabs, fishes (e.g., include northern anchovy, spotted cusk-eel), octopi, isopods and shrimp, (Taylor 1963, Quast 1968, Love et al. 1987, TuRNER et al. n.d.). The species is nocturnal, but have been observed feeding during the day. Predation on scorpionfish is believed to be low, but one individual was found in the gut of a leopard shark (Love pers comm.).

₅₇ 1.2 Early Life History

early-life-history

California scorpionfish utilize the "explosive breeding assemblage" reproductive mode in 158 which fish migrate to, and aggregate at traditional spawning sites for brief periods (Love 159 et al. 1987). California scorpionfish migrate to deeper waters (120-360 ft) to spawn during 160 May-August, with peak spawning occurring July. The species is oviparous, producing floating, 161 gelatinous egg masses in which the eggs are embedded in a single layer (Orton 1955). and 162 it is believed that spawning takes place just before, and perhaps after dawn, in the water 163 column (Love et al. 1987). Tagging data suggest California scorpionfish return to the same 164 spawning site, but information is not available on non-spawning season site fidelity. 165

Little is known about California scorpionfish larvae. The CalCOFI survey observed 463 California scorpionfish larvae from 1977-2000, with the majority at station close to Oxnard

(east of the Channel Islands) (Moser, H. G., R. L. Charter, P. E. Smith, D. A. Ambrose, W. Watson et al. 2002). Higher densities of larvae have been observed in the CalCOFI stations throughout Baja, peaking south of Punta Eugenia from July to September. The hatching length is reported as 1.9-2.0 mm (Washington et al. n.d.) and transformation length of greater than 1.3 cm (Washington et al. n.d.) less than 2.1 cm (Moser n.d.).

1.3 Map

map

A map showing the scope of the assessment and depicting boundaries for fisheries or data collection strata is provided in Figure 1.

1.4 Ecosystem Considerations

ecosystem-considerations-1

In this assessment, ecosystem considerations were not explicitly included in the analysis. This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere) that could contribute ecosystem-related quantitative information for the assessment.

1.5 Fishery Information

fishery-information

Rockfish example: The rockfish fishery off the U.S. Pacific coast first developed off California in the late 19th century as a hook-and-line fishery (Love et al. 2002).

The rockfish trawl fishery was established in the early 1940s, when the United States became involved in World War II and wartime shortage of red meat created an increased demand for other sources of protein (Harry and Morgan 1961, Alverson et al. 1964).

California scorpionfish comprise a minor part of the Californian sport and commercial fisheries (Love et al. 1987). Historically, California scorpionfish were taken commercially by hook and 187 line and, occasionally, by round haul nets (Daugherty 1949). Scorpionfish were commonly caught around Santa Catalina Island during the late 19th Century with gillnets (???). The 189 1937 Bureau of Commercial Fisheries report noted that California scorpionfish had been a fairly important commercial species for a long time. The species was targeted by a few 191 fishermen during the summer months, and was also taken as a bycatch in the rockfish fisheries. 192 By 1949, Bureau of Marine Fisheries reported "[Scorpionfish] will even come to the surface 193 to lights at night" and were also taken in round haul nets. At that time, scorpionfish were 194 rarely targeted by fishermen except by a few specialists. 195

More recently, commercial bottom longlines have been used to target spawning aggregations offshore of Long Beach (Love et al. 1987). Since the early 1990s, trawl catch has been a substantial component of the commercial catch. Commercial landings have fluctuated

substantially over time, which could, in part, be due to changes in targeting and El Nio events (Love et al. 1987). A high proportion of the catch landed in California during the 1960s and 1970s was taken from Mexican waters. In recent years, most of the catch has come from around the Los Angeles region. In general, the majority of the commercial catch has come from the Los Angeles region, except in the 1960s and 1970s when the majority of the catch came from the San Diego region and Mexican waters.

They are most often taken by boat fishermen, but fairly large numbers are caught from 205 piers, jettys, and rocky shorelines. The CPFV effort has remained relatively constant over 206 a long period (1959-1998) (Dotson and Charter 2003). However, there appears to be a 207 shift in effort towards less utilized species, such as California scorpionfish, over the past 208 decade (Dotson and Charter 2003). Especially as catch limits for rockfish have become 209 more restricted commercial passenger fishing vessels (CPFV) operators target California 210 scorpionfish spawning aggregations during spring and summer (Love et al. 1987), and also target California scorpionfish in the winter when other fisheries are closed. California 212 scorpionfish become a target species for day boats during the spawning months when spawning aggregations can be located. There are a small number of boats that specialize in targeting 214 these aggregations. The spawning aggregations occur in deeper waters, often times outside of 215 the three nautical mile state jurisdiction. It is also unknown what fraction of the population 216 aggregates during the spawning season, e.g., all mature fish. 217

Aggregate mortality has been far below the Annual Catch Limits (ACL) established by the 218 2005 stock assessment. The ACL projections from the 2005 assessment assumed that the 219 entire ACL was being taken each year and as a result, the ACL for each subsequent year 220 declined despite under-attainment in reality. In addition, in 2014, recreational catch was 221 higher than expected. As a result, in 2014, the combined recreational and commercial catch 222 exceeded the OFL by 2mt (1%) resulting from assumption that the ACL had been attained. Subsequently, action was taken to decrease the recreational season by four months (Sept 1-224 Dec 31). A catch only update of the stock was undertaken in 2015 (???) that imputed the actual catch values since the last assessment, resulting in significant increase in the OFL and 226 ACL. Retrospectively, the catch in 2014 was well below the OFL as well as the ACL that 227 would have been in place had the ACL values from the actual attainment been in place in 228 2014. Thus the stock has not been subject to overfishing since the original assessment or been 229 in an overfished condition historically and is considered healthy. The season restriction in the 230 recreational fishery remained in place as a precautionary measure until the full assessment is 231 completed to better inform the current status of the stock, catch limits and regulations given 232 the perspective provided. 233

1.6 Summary of Management History

summary-of-management-history

Prior to the adoption of the Pacific Coast Groundfish Fishery Management Plan (FMP) in 1982, California scorpionfish (*Scorpaena guttata*) was managed through a regulatory process that included the California Department of Fish and Wildlife (CDFW) along with

either the California State Legislature or the Fish and Game Commission (FGC) depending
on the sector (recreation or commercial) and fishery. With implementation of the Pacific
Coast Groundfish FMP, California scorpionfish came under the management authority of
the Pacific Fishery Management Council (PFMC), being incorporated, along with all genera
and species of the family Scorpaenidae, into a federal rockfish classification and managed as
part of "Remaining Rockfish" under the larger heading of "Other Rockfish" ((Pacific Fishery
Management Council (Institution/Organization) 2002, 2004), Tables 31-39).

The ABCs provided by the PFMC's Groundfish Management Team (GMT) in the 1980's were 245 based on an analysis of commercial landings from the 1960's and 1970's. For this analysis, 246 most of the rockfishes were lumped into one large group. This analysis indicated that the 247 landings for rockfish in the Monterey-Conception area were at or near ABC levels (Pacific Fishery Management Council (Institution/Organization) 1993). To keep landings within 240 these adopted harvest targets, the Pacific Coast Groundfish FMP provided the Council with a variety of management tools including area closures, season closures, gear restrictions, and. 251 for the commercial sector, cumulative limits (generally for two-month periods). With the implementation of a federal groundfish restricted access program in 1994, allocations of total 253 catch and cumulative limits began to be specifically set for open access (including most of 254 California's commercial fisheries that target California scorpionfish in Southern California) 255 and limited entry fisheries (Pacific Fishery Management Council (Institution/Organization) 256 2002, 2004). As a result, in the later 1990'ss as commercial landings decreased and recreational 257 harvest became a greater proportion of the available harvest. 258

Beginning in 1997, California scorpionfish was managed as part of the Sebastes complex-250 south, Other Rockfish category. (Sebastes complex-south included the Eureka, Monterey, 260 and Conception areas while Sebastes complex-north included the Vancouver and Columbia 261 areas.) The PFMC's rockfish management structure changed significantly in 2000 with the 262 replacement of the Sebastes complex -north and -south areas with Minor Rockfish North 263 (now covering the Vancouver, Columbia, and Eureka areas) and Minor Rockfish South (now 264 Monterey and Conception areas only). The OY for these two groups (which continued to be 265 calculated as 0.50 of the ABC) was further divided (between north and south of 40°10′ N. latitude) into nearshore, shelf, and slope rockfish categories with allocations set for Limited 267 Entry and Open Access fisheries within each of these three categories (January 4, 2000, 268 65 FR 221; (Pacific Fishery Management Council (Institution/Organization) 2002), Tables 269 54-55). Because of its depth range and southern distribution, California scorpionfish was 270 included within the Minor Rockfish South, Other Rockfish ABC and managed under the south 271 of 40°10′ N. latitude nearshore rockfish OY and trip limits ((Pacific Fishery Management 272 Council (Institution/Organization) 2002), Table 29). 273

Along with the above changes, in 2000 the southern area divided into two separate management areas at Point Lopez, 36°00′ N. latitude. This was followed in 2001 with the implementation of the northern rockfish and lingcod management area between (40°10′ N. latitude) and Point Conception (34°27′ N. latitude); and the southern rockfish and lingcod management area between Point Conception and the U.S.- Mexico border. These were later revised starting in 2004 with the northern rockfish and lingcod management area redefined as ocean waters

from the Oregon-California border (42°00′ N. latitude) to 40°10′ N. latitude, the central rockfish and lingcod management area defined as ocean waters from 40°10′ N. latitude to Point Conception, and the southern rockfish and management area continuing to be defined as ocean waters from Point Conception to the U.S.-Mexico border.

Cowcod Conservation Areas (CCAs) also were established in 2001 to reduce fishing effort 284 for cowcod rockfish ((Pacific Fishery Management Council (Institution/Organization) 2002), 285 Table 29). These areas were closed to all recreational and commercial fishing for groundfish 286 except for minor nearshore rockfish1 (including California scorpionfish) within waters less 287 than 20 fathoms. In addition, Rockfish Conservation Areas (RCAs) were established in 2003 to allow for the closure of specific area and depth ranges along the West Coast for 289 the purpose of reducing fishing effort for shelf and slope rockfish. The California Rockfish Conservation Area (CRCA) was defined as those ocean waters south 40°10′ N. latitude to 291 the U.S.-Mexico border with different depth zones specified for the areas north and south of 292 Pt. Reves (37°59.73′ N. latitude). 293

During the late 1990's and early 2000's, major changes also occurred in the way that California 294 managed its nearshore fishery. The Marine Life Management Act (MLMA), which was passed 295 in 1998 by the California Legislature and enacted in 1999, required that the FGC adopt 296 an FMP for nearshore finfish. It also gave authority to the FGC to regulate commercial 297 and recreational nearshore fisheries through FMPs and provided broad authority to adopt 298 regulations for the nearshore fishery during the time prior to adoption of the nearshore finfish 299 FMP. Within this legislation, the Legislature also included commercial size limits for nine 300 nearshore species including California scorpionfish (10-inch minimum size) and a requirement 301 that commercial fishermen landing these nine nearshore species possess a nearshore permit. 302

Following adoption of the Nearshore FMP and accompanying regulations by the FGC in fall of 2002, the FGC adopted regulations in November 2002 which established a set of marine reserves around the Channel Islands in Southern California (which became effective April 2003) and adopted a nearshore restricted access program in December 2002 (which included the establishment of a Deeper Nearshore Permit) to be effective starting in the 2003 fishing year.

Although the Nearshore FMP provided for the management of the nearshore rockfish and California scorpionfish, management authority for these species continued to reside with 310 the Council. Even so, for the 2003 and subsequent fishery seasons, the State provided 311 recommendations to the Council specific to the nearshore species that followed the directives 312 set out in the Nearshore FMP. These recommendations, which the Council incorporated into the 2003 management specifications, included a recalculated OY for Minor Rockfish South 314 - Nearshore, division of the Minor Rockfish South - Nearshore into three groups (shallow 315 nearshore rockfish; deeper nearshore rockfish; and California scorpionfish), and specific harvest 316 targets and recreational and commercial allocations for each of these groups. 317

Also, since the enactment of the MLMA, the Council and State in a coordinated effort developed and adopted various management specifications to keep harvest within the harvest

targets, including seasonal and area closures (e.g. the CCAs; a closure of Cordell Banks to specific fishing), depth restrictions, minimum size limits, and bag limits to regulate the recreational fishery and license and permit regulations, finfish trap permits, gear restrictions, seasonal and area closures (e.g. the RCAs and CCAs; a closure of Cordell Banks to specific fishing), depth restrictions, trip limits, and minimum size imits to regulate the commercial fishery.

1.7 Management Performance

management-performance-1

Management performance table: (Table f)

A summary of these values as well as other base case summary results can be found in Table i.

330 1.8 Fisheries off Mexico

fisheries-off-mexico

Include if necessary.

332 2 Assessment

assessment

 $_{ ext{data}}$ 2.1 $ext{Data}$

- Data used in the California scorpionfish assessment are summarized in Figure 2.
- A description of each data source is below.

336 2.1.1 Commercial Fishery Landings

commercial-fishery-landings

- 337 Sub-heading 1
- 338 Sub-heading 2
- 339 Sub-heading 3

340 2.1.2 Sport Fishery Removals

sport-fishery-removals

- 341 Sub-heading 1
- $_{342}$ Sub-heading 2
- 343 Sub-heading 3

344 2.1.3 Estimated Discards

estimated-discards

- 345 Sub-heading 1
- 346 Sub-heading 2
- 347 Sub-heading 3

348 2.1.4 Abundance Indices

abundance-indices

- 349 Sub-heading 1
- 350 Sub-heading 2

2.1.5 Fishery-Independent Data: possible sources

fishery-independent-data-possible-sources

- Northwest Fisheries Science Center (NWFSC) slope survey
- The NWFSC slope survey was conducted annually from 1999 to 2002.
- The depth range of this survey is 100-700 fm.
- Northwest Fisheries Science Center (NWFSC) shelf-slope survey
- This survey is referred to as the "combo," conducted annually since 2003.
- The survey consistently covered depths between 30 and 700 fm.
- 358 Alaska Fisheries Science Center (AFSC) shelf survey
- The survey, often referred to as the "triennial" survey was conducted every third year between
- ³⁶⁰ 1977 and (and conducted in 2004 by the NWFSC using the same protocols). The triennial
- survey trawls in depths of 30 to 275 fm.
- Partnership For Interdisciplinary Studies of Coastal Oceans (PISCO)
- 363 Blurb on species presence in PISCO surveys

4 2.1.6 Biological Parameters and Data

biological-parameters-and-data

365 Length And Age Compositions

369

370

371

373

374

375

377

378

379

380

381

382

383

384

- Include: Sample size information for length and age composition data by area, year, gear, market category, etc., including both the number of trips and fish sampled.
- Length compositions were provided from the following sources, with brief descriptions below:
 - CDFW market category study (commercial dead fish, 1996-2003)
 - CALCOM (commercial dead fish, 2013-2016)
 - CDFW onboard observer (recreational charter discards, 2003-2016)
 - Ally onboard observer study (recreational charter discards, 1984-1989)
 - California recreational sources combined (recreational charter retained catch)
 - CDFW and Ally onboard observer surveys (1984-1989)
 - Collins and Crooke onboard observer surveys (1975-1978)
 - MRFSS (1980-2003)
 - CRFS (2004-2014)
 - California recreational sources combined (private mode retained catch)
 - MRFSS (1980-2003)
 - CRFS (2004-2016)
 - Sanitation district trawl surveys (research, 1970-2016)
 - CSUN/VRG gillnet survey (research, 1995-2008)
 - Power plant impingement surveys (research, 1974-2016)
 - Southern California Bight trawl survey (research, 1994,1998,2003,2008,2013)
- Recreational: California MRFSS And CRFS Length Composition Data Individual fish lengths recorded by MRFSS (1980-2003) and CRFS (2004-2011) samplers were downloaded from the RecFIN website (www.recfin.org). CRFS data from 2012-2014 were obtained directly from CDFW.
- 389 Commercial: PacFIN
- 390 $Research: NWFSC \ shelf\mbox{-}slope \ survey$
- Research: NWFSC slope survey
- Age Structures Age data were provided from the NWFSC trawl survey from 2005-2016.
- Length-at-age was initially estimated external to the population dynamics models using the von Bertalanffy growth curve (Bertalanffy 1938), $L_i = L_{\infty}e^{(-k[t-t_0])}$, where L_i is the length (cm) at age i, t is age in years, k is rate of increase in growth, t_0 is the intercept, and L_{∞} is the asymptotic length.

397 Aging Precision And Bias

398 Weight-Length

The weight-length relationship is based on the standard power function: $W = \alpha(L^{\beta})$ where W is individual weight (kg), L is length (cm), and α and β are coefficients used as constants.

401 Maturity And Fecundity

Natural Mortality Hamel (2015) developed a method for combining meta-analytic approaches to relating the natural mortality rate M to other life-history parameters such as 403 longevity, size, growth rate and reproductive effort, to provide a prior on M. In that same 404 issue of ICESJMS, Then et al. (2015), provided an updated data set of estimates of M and 405 related life history parameters across a large number of fish species, from which to develop 406 an M estimator for fish species in general. They concluded by recommending M estimates 407 be based on maximum age alone, based on an updated Hoenig non-linear least squares 408 (nls) estimator $M = 4.899 * A_{max}^{-.916}$. The approach of basing M priors on maximum age 409 alone was one that was already being used for west coast rockfish assessments. However, 410 in fitting the alternative model forms relating -.916M to A_{max} , Then et al. (2015) did 411 not consistently apply their transformation. In particular, in real space, one would expect 412 substantial heteroscedasticity in both the observation and process error associated with the 413 observed relationship of M to A_{max} . Therefore, it would be reasonable to fit all models under 414 a log transformation. This was not done. Revaluating the data used in Then et al. (2015) by 415 fitting the one-parameter A_{max} model under a log-log transformation (such that the slope is 416 forced to be -1 in the transformed space (as in Hamel (2015)), the point estimate for M is:

$$M = \frac{5.4}{A_{max}} \tag{1}$$

The above is also the median of the prior. The prior is defined as a lognormal with mean $ln\frac{5.4}{A_{max}}$ and SE = 0.4384343. Using a maximum age of 21 the point estimate and median of the prior is 0.2545, which is used as a prior for females in the assessment model.

421 Sex ratios

22.1.7 Environmental Or Ecosystem Data Included In The Assessment environmental-or-ecosystem-data-included-in-the-assessment

2.2 History Of Modeling Approaches Used For This Stock history-of-modeling-approaches-used-for-this-stock

2.2.1 Previous Assessments

433

434

435

436

441

442

443

444

450

451

452

previous-assessments

2.2.2 2005 Assessment Recommendations

assessment-recommendations

Include: Response to STAR panel recommendations from the most recent previous assessment.

Recommendation 1: The sanitation surveys conducted to track the impact of sewage outfall provided a fishery independent index of abundance for scorpionfish. This data source should be more fully explored for other near-shore species of recreational or commercial interest. Methods should be developed to produce a more statistically rigorous index from the separate surveys.

STAT response: Data from all sanitation districts in southern California were obtained for this assessment. All of the data were pooled across surveys to develop one index of abundance using the delta-GLM method

Recommendation 2: An age, growth and maturity study for scorpionfish is needed. Although there has been previous research on scorpionfish age and growth, the available information is not appropriate for stock assessment modeling.

STAT response: Age data are available from the NWFSC trawl survey from 2005-2016. There have been no additional studies on growth or maturity for California scorpionfish since the 2005 assessment.

Recommendation 3: Location information for the historic groundfish data of all species is currently available, in hard copy form only, from the California Department of Fish and Game. Putting this information into electronic format would greatly improve the ability to assign catches of all species to specific stocks on a trip-by-trip basis.

STAT response: The location-sepcific catches referred to above have been key-punched and are available in electornic form from the SWFSC, Santa Cruz.

Recommendation 4: The SS2 model should be modified to allow for projections of user-specified recruitment at user defined values. It would be most

helpful if the default harvest policies were then recalculated automatically for these user-specified recruitments.

457

458

STAT response: The status of this within Stock Synthesis is unknown.

459 2.3 Model Description

model-description

460 2.3.1 Transition To The Current Stock Assessment transition-to-the-current-stock-assessment

- 461 Include: Complete description of any new modeling approaches
- Below, we describe the most important changes made since the last full assessment and explain rationale for each change.:
- 1. Change No. 1. Rationale: blah blah blah.
- 2. Change No. 2. Rationale: blah blah blah.
- 3. Change No. 3. Rationale: Continue list as needed.

2.3.2 Definition of Fleets and Areas

definition-of-fleets-and-areas

- 468 We generated data sources for each of the models. Fleets by model include:
- 469 Model Region 1 or remove this line if only one model
- 470 Commercial: The commercial fleets include...
- 471 Recreational: The recreational fleets include...
- 472 Research: Research derived-data include...

2.3.3 Summary of Data for Fleets and Areas

summary-of-data-for-fleets-and-areas

474 2.3.4 Modeling Software

modeling-software

- The STAT team used Stock Synthesis 3 version 3.30.0.4 by Dr. Richard Methot at the NWFSC.
- This most recent version was used, since it included improvements and corrections to older
- versions. The r4SS package (GitHub release number v1.27.0) was used to post-processing
- output data from Stock Synthesis.

2.3.5 Data Weighting

data-weighting

- 480 Citation for Francis method (Francis 2011)
- Citation for Ianelli-McAllister harmonic mean method (McAllister and Ianelli 1997)

482 **2.3.6** Priors

priors

Citation for Hamel prior on natural mortality (Hamel 2015)

484 2.3.7 General Model Specifications

general-model-specifications

Model data, control, starter, and forecast files can be found in Appendices A-D.

486 2.3.8 Estimated And Fixed Parameters

estimated-and-fixed-parameters

A full list of all estimated and fixed parameters is provided in Tables.... Estimated and fixed parameters tables currently read in from .csv file, EXAMPLE: Table ??

2.4 Model Selection and Evaluation

model-selection-and-evaluation

90 2.4.1 Key Assumptions and Structural Choices

key-assumptions-and-structural-choices

- 491 Include: Evidence of search for balance between model realism and parsimony.
- Comparison of key model assumptions, include comparisons based on nested models (e.g.,
- asymptotic vs. domed selectivities, constant vs. time-varying selectivities).

494 2.4.2 Alternate Models Considered

alternate-models-considered

Include: Summary of alternate model configurations that were tried but rejected.

2.4.3 Convergence

convergence

Include: Randomization run results or other evidence of search for global best estimates.

Convergence testing through use of dispersed starting values often requires extreme values to actually explore new areas of the multivariate likelihood surface. Jitter is a SS option that generates random starting values from a normal distribution logistically transformed into each parameter's range (Methot 2015). Table 28 shows the results of running 100 jitters for each pre-STAR base model....

$_{\scriptscriptstyle{03}}$ 2.5 Response To The Current STAR Panel Requests

response-to-the-current-star-panel-requests

```
Request No. 1: Add after STAR panel.
504
505
        Rationale: Add after STAR panel.
506
        STAT Response: Add after STAR panel.
507
   Request No. 2: Add after STAR panel.
508
500
        Rationale: Add after STAR panel.
510
        STAT Response: Add after STAR panel.
511
   Request No. 3: Add after STAR panel.
512
513
        Rationale: Add after STAR panel.
514
        STAT Response: Add after STAR panel.
515
   Request No. 4: Example of a request that may have a list:
516
517
           • Item No. 1
518
           • Item No. 2
519
           • Item No. 3, etc.
520
        Rationale: Add after STAR panel.
521
```

STAT Response: Continue requests as needed.

2.6 Model 1 model-1Model 1 Base Case Results 2.6.1model-1-base-case-results Table ?? 2.6.2Model 1 Uncertainty and Sensitivity Analyses model-1-uncertainty-and-sensitivity-analyses Table 29 Model 1 Retrospective Analysis 2.6.3model-1-retrospective-analysis Model 1 Likelihood Profiles 2.6.4 model-1-likelihood-profiles Model 1 Harvest Control Rules (CPS only) 2.6.5model-1-harvest-control-rules-cps-only Model 1 Reference Points (groundfish only) 2.6.6model-1-reference-points-groundfish-only Intro sentence or two....(Table 30). Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 276.8 mt. Table e shows the full suite of estimated reference points for the northern area model and Figure k shows the equilibrium yield curve. Harvest Projections and Decision Tables 3 harvest-projections-and-decision-tables

Table f Model 1 Projections and Decision Table (groundfish only) (Table 31 Table h 539 Model 2 Projections and Decision Table (groundfish only)

Model 3 Projections and Decision Table (groundfish only)

⁵⁴² 4 Regional Management Considerations

regional-management-considerations

- 1. For stocks where current practice is to allocate harvests by management area, a recommended method of allocating harvests based on the distribution of biomass should be provided. The MT advisor should be consulted on the appropriate management areas for each stock.
 - 2. Discuss whether a regional management approach makes sense for the species from a biological perspective.
 - 3. If there are insufficient data to analyze a regional management approach, what are the research and data needs to answer this question?

551 5 Research Needs

research-needs

- 1. Research need No. 1
- 553 2. Research need No. 2
- 3. Research need No. 3
- 555 4. etc.

543

544

545

547

548

549

550

552

$_{\scriptscriptstyle{556}}$ 6 Acknowledgments

acknowledgments

Include: STAR panel members and affiliations as well as names and affiliations of persons who contributed data, advice or information but were not part of the assessment team. Not required in draft assessment undergoing review.

7 Tables

tables

Table 1: Commercial removals (mt) from the commercial fisheries. Data sources are the the CDFG Fishery Bulletins (availabl from California Explores the Ocean) and the California Fisheries Information System (CFIS)

Year	Hook-and-line	Trawl	Gillnet	Mexico	Total U.S.	Source
1 Cai	1100k-and-ime	11aw1	Gilliet	MEXICO	Removals	Dource
1916	3.64	0.00	0.00	0.00	3.64	CDFG Bulletins
1917	7.90	0.00	0.00	0.00	7.90	CDFG Bulletins
1918	12.81	0.00	0.00	0.00	12.81	CDFG Bulletins
1919	11.54	0.00	0.00	0.00	11.54	CDFG Bulletins
1920	16.18	0.00	0.00	0.00	16.18	CDFG Bulletins
1921	26.48	0.00	0.00	0.00	26.48	CDFG Bulletins
1921	19.11	0.00	0.00	0.00	19.11	CDFG Bulletins
1923	27.43	0.00	0.00	0.00	27.43	CDFG Bulletins
1924	49.47	0.00	0.00	0.00	49.47	CDFG Bulletins
1925	101.20	0.00	0.00	0.00	101.20	CDFG Bulletins
1926	49.02	0.00	0.00	0.00	49.02	CDFG Bulletins
1927	51.46	0.00	0.00	0.00	51.46	CDFG Bulletins
1928	44.04	0.00	0.00	0.00	44.04	CDFG Bulletins
1929	48.90	0.00	0.00	0.00	48.90	CDFG Bulletins
1930	40.19	0.00	0.00	0.00	40.19	CDFG Bulletins
1931	41.54	0.00	0.00	0.05	41.54	CDFG Bulletins
1932	38.78	0.00	0.00	0.00	38.78	CDFG Bulletins
1933	29.10	0.00	0.00	0.00	29.10	CDFG Bulletins
1934	29.91	0.00	0.00	0.00	29.91	CDFG Bulletins
1935	30.76	0.00	0.00	0.79	30.76	CDFG Bulletins
1936	49.75	0.00	0.00	0.34	49.75	CDFG Bulletins
1937	62.19	0.00	0.00	0.09	62.19	CDFG Bulletins
1938	70.44	0.00	0.00	0.05	70.44	CDFG Bulletins
1939	58.29	0.00	0.00	0.06	58.29	CDFG Bulletins
1940	55.37	0.00	0.00	0.03	55.37	CDFG Bulletins
1941	43.07	0.00	0.00	0.14	43.07	CDFG Bulletins
1942	20.00	0.00	0.00	0.11	20.00	CDFG Bulletins
1943	16.32	0.00	0.00	2.98	16.32	CDFG Bulletins
1944	24.03	0.00	0.00	1.95	24.03	CDFG Bulletins
1945	42.13	0.00	0.00	0.81	42.13	CDFG Bulletins
1946	65.63	0.00	0.00	0.16	65.63	CDFG Bulletins
1947	56.79	0.00	0.00	0.84	56.79	CDFG Bulletins
1948	70.17	0.00	0.00	0.18	70.17	CDFG Bulletins
1949	66.72	0.00	0.00	0.58	66.72	CDFG Bulletins
1950	63.16	0.00	0.00	0.12	63.16	CDFG Bulletins
1951	45.85	0.00	0.00	0.16	45.85	CDFG Bulletins
1952	37.93	0.00	0.00	0.00	37.93	CDFG Bulletins

Table 1: Commercial removals (mt) from the commercial fisheries. Data sources are the the CDFG Fishery Bulletins (availabl from California Explores the Ocean) and the California Fisheries Information System (CFIS)

Year	Hook-and-line			MEXICO	1(1)(2)	Source
		Trawl	Gillnet	Mexico	Total U.S. Removals	Source
1953	54.17	0.00	0.00	0.05	54.17	CDFG Bulletins
1954	60.92	0.00	0.00	0.00	60.92	CDFG Bulletins
1955	47.71	0.00	0.00	1.29	47.71	CDFG Bulletins
1956	45.47	0.00	0.00	0.00	45.47	CDFG Bulletins
1957	33.23	0.00	0.00	0.00	33.23	CDFG Bulletins
1958	29.43	0.00	0.00	0.00	29.43	CDFG Bulletins
1959	16.94	0.00	0.00	0.00	16.94	CDFG Bulletins
1960	13.25	0.00	0.00	0.00	13.25	CDFG Bulletins
1961	12.12	0.00	0.00	0.00	12.12	CDFG Bulletins
1962	26.18	0.00	0.00	0.11	26.18	CDFG Bulletins
1963	34.11	0.00	0.00	0.14	34.11	CDFG Bulletins
1964	35.19	0.00	0.00	7.55	35.19	CDFG Bulletins
1965	34.78	0.00	0.00	2.75	34.78	CDFG Bulletins
1966	38.31	0.00	0.00	10.90	38.31	CDFG Bulletins
1967	25.42	0.00	0.00	12.07	25.42	CDFG Bulletins
1968	40.60	0.00	0.00	16.18	40.60	CDFG Bulletins
1969	33.28	0.28	0.10	18.72	33.66	CFIS
1970	34.45	0.00	0.16	35.67	34.62	CFIS
1971	17.76	0.00	0.63	40.41	18.38	CFIS
1972	27.84	0.11	0.13	31.81	28.08	CFIS
1973	16.80	0.17	0.24	54.85	17.21	CFIS
1974	37.94	0.00	0.06	33.59	38.00	CFIS
1975	41.95	0.02	3.03	33.64	45.01	CFIS
1976	15.41	0.06	0.01	63.29	15.49	CFIS
1977	5.75	0.00	0.13	47.07	5.88	CFIS
1978	8.99	0.00	1.26	21.62	10.25	CFIS
1979	8.40	0.00	0.97	5.43	9.37	CFIS
1980	14.47	0.00	0.56	11.72	15.03	CFIS
1981	15.48	0.01	5.93	4.09	21.41	CFIS
1982	17.95	0.00	1.34	8.46	19.29	CFIS
1983	10.91	0.00	0.83	2.31	11.74	CFIS
1984	9.89	0.15	1.07	0.08	11.11	CFIS
1985	12.73	0.02	2.48	0.00	15.24	CFIS
1986	4.76	0.02	1.76	0.11	6.54	CFIS
1987	7.46	0.11	3.99	0.00	11.56	CFIS
1988	7.77	0.00	3.65	0.00	11.42	CFIS
1989	15.87	0.02	2.80	0.00	18.69	CFIS
1990	32.07	0.78	6.17	0.00	39.01	CFIS
1991	20.12	4.80	3.29	0.00	28.20	CFIS

Table 1: Commercial removals (mt) from the commercial fisheries. Data sources are the the CDFG Fishery Bulletins (availabl from California Explores the Ocean) and the California Fisheries Information System (CFIS)

Year	Hook-and-line	Trawl	Gillnet	Mexico	Total U.S.	Source
1000	0F F1	0.04	0.00	0.00	Removals	ODIO .
1992	27.71	3.94	3.33	0.00	34.98	CFIS
1993	13.72	7.76	4.66	0.22	26.14	CFIS
1994	34.85	13.08	1.92	0.00	49.86	CFIS
1995	23.69	16.20	0.98	0.13	40.87	CFIS
1996	20.17	12.97	1.19	0.00	34.33	CFIS
1997	20.22	13.28	3.82	0.00	37.31	CFIS
1998	32.34	16.80	1.59	0.00	50.72	CFIS
1999	30.88	6.56	1.78	0.00	39.22	CFIS
2000	11.74	4.57	2.00	0.00	18.30	CFIS
2001	14.18	2.98	2.64	0.00	19.80	CFIS
2002	10.09	2.16	1.18	0.00	13.43	CFIS
2003	2.13	2.75	0.35	0.00	5.24	CFIS
2004	2.00	2.36	0.62	0.00	4.98	CFIS
2005	1.47	3.12	0.70	0.00	5.29	CFIS
2006	0.86	1.38	0.44	0.00	2.68	CFIS
2007	1.90	1.48	0.21	0.00	3.59	CFIS
2008	2.46	0.86	0.28	0.00	3.61	CFIS
2009	2.97	0.27	0.13	0.00	3.38	CFIS
2010	2.99	0.18	0.14	0.00	3.32	CFIS
2011	3.24	1.05	0.24	0.00	4.54	CFIS
2012	3.22	0.43	0.18	0.00	3.82	CFIS
2013	1.73	0.83	0.14	0.00	2.70	CFIS
2014	1.03	0.13	0.04	0.00	1.19	CFIS
2015	2.21	0.13	0.03	0.00	2.37	CFIS
2016	2.32 :Comm_catches	0.13	0.00	0.00	2.45	CFIS

_

Table 2: Recreational removals (mt) from the party/charter and private vessels. Removals from man-made and beach/bank modes were included in the private mode removals. Dead discards include all modes. CDFW provided all data. Note: A discard mortality rate of 7to the dead discard removals.

1929 0.06 0.54 0.00 0.61 1930 0.12 1.08 0.01 1.21 1931 0.18 1.62 0.01 1.81 1932 0.24 2.16 0.01 2.42 1933 0.30 2.70 0.02 3.02 1934 0.36 3.24 0.02 3.63 1935 0.42 3.78 0.03 4.23 1936 0.48 4.33 0.03 4.84 1937 0.34 3.01 0.02 3.37 1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	Year	Private	Party/charter	Dead Discard (all modes)	Total Removals
1931 0.18 1.62 0.01 1.81 1932 0.24 2.16 0.01 2.42 1933 0.30 2.70 0.02 3.02 1934 0.36 3.24 0.02 3.63 1935 0.42 3.78 0.03 4.23 1936 0.48 4.33 0.03 4.84 1937 0.34 3.01 0.02 3.37 1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1929	0.06	0.54	0.00	0.61
1932 0.24 2.16 0.01 2.42 1933 0.30 2.70 0.02 3.02 1934 0.36 3.24 0.02 3.63 1935 0.42 3.78 0.03 4.23 1936 0.48 4.33 0.03 4.84 1937 0.34 3.01 0.02 3.37 1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1930	0.12	1.08	0.01	1.21
1933 0.30 2.70 0.02 3.02 1934 0.36 3.24 0.02 3.63 1935 0.42 3.78 0.03 4.23 1936 0.48 4.33 0.03 4.84 1937 0.34 3.01 0.02 3.37 1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1931	0.18	1.62	0.01	1.81
1934 0.36 3.24 0.02 3.63 1935 0.42 3.78 0.03 4.23 1936 0.48 4.33 0.03 4.84 1937 0.34 3.01 0.02 3.37 1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1932	0.24	2.16	0.01	2.42
1935 0.42 3.78 0.03 4.23 1936 0.48 4.33 0.03 4.84 1937 0.34 3.01 0.02 3.37 1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1933	0.30	2.70	0.02	3.02
1936 0.48 4.33 0.03 4.84 1937 0.34 3.01 0.02 3.37 1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1934	0.36	3.24	0.02	3.63
1937 0.34 3.01 0.02 3.37 1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1935	0.42	3.78	0.03	4.23
1938 0.56 5.06 0.04 5.66 1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1936	0.48	4.33	0.03	4.84
1939 0.44 3.90 0.03 4.36 1940 0.40 3.61 0.02 4.04	1937	0.34	3.01	0.02	3.37
1940 0.40 3.61 0.02 4.04	1938	0.56	5.06	0.04	5.66
	1939	0.44	3.90	0.03	4.36
10.11	1940	0.40	3.61	0.02	4.04
$1941 0.00 \qquad 0.00 \qquad 0.00$	1941	0.00	0.00	0.00	0.00
$1942 0.00 \qquad 0.00 \qquad 0.00$	1942	0.00	0.00	0.00	0.00
$1943 0.00 \qquad 0.00 \qquad 0.00 \qquad 0.00$	1943	0.00	0.00	0.00	0.00
$1944 0.00 \qquad 0.00 \qquad 0.00 \qquad 0.00$	1944	0.00	0.00	0.00	0.00
$1945 0.00 \qquad 0.00 \qquad 0.00 \qquad 0.00$	1945	0.00	0.00	0.00	0.00
$1946 0.00 \qquad 0.00 \qquad 0.00 \qquad 0.00$	1946	0.00	0.00	0.00	0.00
1947 1.76 15.73 0.11 17.60	1947	1.76	15.73	0.11	17.60
$1948 3.65 \qquad 32.67 \qquad 0.23 \qquad 36.55$	1948	3.65	32.67	0.23	36.55
1949 2.58 23.12 0.16 25.86	1949	2.58	23.12	0.16	25.86
1950 3.38 30.29 0.21 33.89	1950	3.38	30.29	0.21	33.89
1951 2.11 18.84 0.13 21.08	1951	2.11	18.84	0.13	21.08
1952 2.29 20.48 0.14 22.91	1952	2.29	20.48	0.14	22.91
1953 1.93 17.24 0.12 19.28	1953	1.93	17.24	0.12	19.28
1954 2.26 20.27 0.14 22.67	1954	2.26	20.27	0.14	22.67
1955 1.93 17.33 0.12 19.38	1955	1.93	17.33	0.12	19.38
1956 1.70 15.26 0.11 17.07	1956	1.70	15.26	0.11	17.07
1957 0.94 8.44 0.06 9.44	1957	0.94	8.44	0.06	9.44
1958 0.96 8.60 0.06 9.62	1958	0.96	8.60	0.06	9.62
1959 0.80 7.19 0.05 8.04	1959	0.80	7.19	0.05	8.04
1960 1.06 9.47 0.07 10.59	1960	1.06	9.47	0.07	10.59
1961 1.86 16.71 0.12 18.69	1961	1.86	16.71	0.12	18.69
1962 2.33 20.87 0.14 23.34	1962	2.33	20.87	0.14	23.34
1963 3.77 33.75 0.23 37.75	1963	3.77	33.75	0.23	37.75
1964 5.16 46.25 0.32 51.73	1964	5.16	46.25	0.32	51.73
1965 5.02 45.03 0.31 50.36	1965	5.02	45.03	0.31	50.36
1966 6.44 43.74 0.31 50.48	1966	6.44	43.74	0.31	50.48
$1967 7.34 \qquad 39.64 \qquad 0.29 \qquad 47.27$	1967	7.34	39.64	0.29	47.27

Table 2: Recreational removals (mt) from the party/charter and private vessels. Removals from man-made and beach/bank modes were included in the private mode removals. Dead discards include all modes. CDFW provided all data. Note: A discard mortality rate of 7to the dead discard removals.

Year	Private	Party/charter	Dead Discard (all modes)	Total Removals
1968	8.46	37.50	0.29	46.25
1969	10.62	39.47	0.32	50.41
1970	16.32	51.69	0.43	68.44
1971	19.46	53.19	0.46	73.10
1972	15.80	37.62	0.34	53.76
1973	25.01	52.28	0.49	77.78
1974	29.18	53.84	0.52	83.55
1975	31.19	51.01	0.52	82.72
1976	20.44	29.75	0.32	50.50
1977	35.19	45.69	0.51	81.39
1978	23.82	27.63	0.33	51.77
1979	49.76	40.23	0.58	90.57
1980	53.27	52.35	3.72	109.35
1981	41.08	44.42	2.85	88.36
1982	49.04	40.92	2.81	92.77
1983	12.65	35.56	0.93	49.14
1984	27.06	31.25	0.96	59.27
1985	28.77	39.93	1.71	70.41
1986	24.07	42.53	3.19	69.79
1987	23.05	31.78	3.02	57.85
1988	106.56	76.88	5.89	189.34
1989	56.79	79.32	7.90	144.00
1990	95.63	92.27	1.16	189.06
1991	107.40	103.63	1.30	212.34
1992	31.91	44.10	3.60	79.60
1993	23.31	43.49	2.26	69.07
1994	45.62	54.40	6.42	106.45
1995	28.44	57.03	6.21	91.68
1996	30.46	67.48	4.00	101.93
1997	24.39	77.23	2.62	104.24
1998	32.12	75.91	2.08	110.11
1999	50.11	132.50	2.83	185.43
2000	35.86	109.64	4.97	150.47
2001	56.20	114.90	8.33	179.43
2002	43.39	61.57	9.20	114.15
2003	31.49	58.46	9.56	99.52
2004	5.29	42.42	4.53	52.24
2005	21.34	57.15	5.04	83.53
2006	14.44	129.58	3.31	147.33

Table 2: Recreational removals (mt) from the party/charter and private vessels. Removals from man-made and beach/bank modes were included in the private mode removals. Dead discards include all modes. CDFW provided all data. Note: A discard mortality rate of 7to the dead discard removals.

Year	Private	Party/charter	Dead Discard (all modes)	Total Removals
2007	14.24	118.87	2.89	135.99
2008	8.38	89.65	2.25	100.28
2009	14.68	93.16	2.09	109.93
2010	8.07	92.55	2.03	102.65
2011	6.84	91.18	2.66	100.68
2012	6.22	107.63	2.34	116.18
2013	8.18	101.31	2.94	112.44
2014	5.88	113.83	2.93	122.63
2015	4.15	73.78	3.59	81.52
2016	3.86	64.56	3.29	71.71
tab	:Rec_remo	oval		

Table 3: Recreational private mode dockside data sample sizes at each data filtering step. The bold value indicates the final sample size used for delta-GLM analysis.

tab:Fl	<u>eet4_RecPR_doc</u>	kside_filter
Criteria	Sample size	Sample size
	(no. positive	(no. of trips)
	trips)	
		108,171
CRFS-PR1 survey only, Southern	3,802	43,956
California only (sub $_{reg} = 1$), Hook		
and line gear only (geara = 'H'),		
Ocean only (Area_ $X = 1 \text{ or } 2$)		
Remove trips from Santa Barbara	3,757	42,956
Remove 2004-2005; fishery closed	3,094	33,770
majority of year		
Remove remaining trips when fishery	3,056	32,236
closed		
Remove trips with yellowfin tuna	3,056	30,033
and dolphinfish and species present		
in 1% of all trips and in at least 5		
years of data		
Retain all positive trips, plus "False	3,056	4,873
Positives" (trips predicted to be in		
California scorpionfish habitat, but		
with no California scorpionfish		
retained)		
	CRFS-PR1 survey only, Southern California only (sub_reg = 1), Hook and line gear only (geara = 'H'), Ocean only (Area_X = 1 or 2) Remove trips from Santa Barbara Remove 2004-2005; fishery closed majority of year Remove remaining trips when fishery closed Remove trips with yellowfin tuna and dolphinfish and species present in ;1% of all trips and in at least 5 years of data Retain all positive trips, plus "False Positives" (trips predicted to be in California scorpionfish habitat, but with no California scorpionfish	CRFS-PR1 survey only, Southern California only (sub_reg = 1), Hook and line gear only (geara = 'H'), Ocean only (Area_X = 1 or 2) Remove trips from Santa Barbara 3,757 Remove 2004-2005; fishery closed majority of year Remove remaining trips when fishery closed Remove trips with yellowfin tuna 3,056 Remove trips with yellowfin tuna and dolphinfish and species present in ;1% of all trips and in at least 5 years of data Retain all positive trips, plus "False Positives" (trips predicted to be in California scorpionfish habitat, but with no California scorpionfish

Table 4: AIC values for each model in the recreational private mode dockside sample index.

		tab:Fleet4_RecPR_dockside_aic
Model	Binomial	Lognormal
Year	6182.366	8103.204
Year + County	5862.9	8003.9
Year + Wave	6091	8092.2
Year + County + Wave	5792.29	8000.45

Table 5: The recreational private mode dockside sample index.

		tab:	Fleet4_RecPR_docks1
Year	Index	Log-scale SE	
2006	1.1154	0.0533	
2007	0.9353	0.0500	
2008	0.8052	0.0481	
2009	0.7645	0.0516	
2010	0.6716	0.0657	
2011	0.7660	0.0734	
2012	0.6651	0.0807	
2013	0.6143	0.0708	
2014	0.6076	0.0826	
2015	0.6465	0.0901	
2016	0.6530	0.1275	

Table 6: Recreational CPFV logbook sample sizes at each data filtering step. The bold value indicates the final sample size used for delta-GLM analysis.

		CPFVlogbook_filter
Filter	Criteria	Sample size
		(no. of trips)
All CA data	No filter	1,164,662
Gear	Remove trips reported as diving, mooching or trolling	959,740
Effort or missing	Remove trips with missing effort or species	930,233
data	information	
Year	Remove 2017, remaining years 1980-2016	929,781
Region	Remove trips north of Pt. Conception and in Mexico	568,222
Fish encountered	Remove trips reporting number of retained fish greater than in the 99% quantile (>325 fish)	564,433
Target species	Remove trips targeting sharkes, striped bass, sturgeon, tun, misc. bay, and potluck	558,872
Single-species trips	Filter trips reporting catches of only species and that one species in <100 trips	558,833
Offshore trips	Remove trips catching yellowtail, tunas, and dolphinfish that were not designated as offshore trips	475,492
Vessel	Remove trips by vessels that had fewer than 10 trips catching scorpionfish	466,023
Anglers	Remove trips with number of anglers < the 1% and > the 99% quantile (retain 5-75 anglers)	452,938
Depth	Remove trips in blocks with a minimum depth of >140m	443,929
Scorpionfish targets	Blocks with at least 100 scorpionfish trips	433,248
Sample size	Blocks with at least 500 trips	432,868

Table 7: AIC values for each model in the recreational CPFV logbook sample index.

	tab:Fleet5_RecPC_CPFVlogbook_ai
Model	Negative Binomial
Year	1918470
Year+ Month	1901592
Year + Block	1872224
Year + Month + Block	1854652

Table 8: The recreational CPFV logbook sample index.

tab:Fleet5_RecPC_CPFVlogbook_index

		t	ab:F	<u>leet5_</u>
Year	Index	Log-scale SE	NA	NA
1980	0.0159	0.0579		
1981	0.0128	0.0580		
1982	0.0143	0.0583		
1983	0.0134	0.0610		
1984	0.0111	0.0605		
1985	0.0188	0.0588		
1986	0.0165	0.0579		
1987	0.0168	0.0593		
1988	0.0291	0.0584		
1989	0.0296	0.0581		
1990	0.0293	0.0585		
1991	0.0348	0.0579		
1992	0.0172	0.0587		
1993	0.0166	0.0590		
1994	0.0226	0.0588		
1995	0.0291	0.0587		
1996	0.0316	0.0583		
1997	0.0498	0.0592		
1998	0.0289	0.0595		
1999	0.0482	0.0583		
2000	0.0338	0.0587		
2001	0.0345	0.0586		
2002	0.0203	0.0588		
2003	0.0193	0.0593		
2004	0.0168	0.0595		
2005	0.0146	0.0592		
2006	0.0457	0.0592		
2007	0.0489	0.0589		
2008	0.0355	0.0593		
2009	0.0399	0.0595		
2010	0.0400	0.0597		
2011	0.0304	0.0593		
2012	0.0296	0.0591		
2013	0.0330	0.0592		
2014	0.0311	0.0602		
2015	0.0252	0.0622		
2016	0.0253	0.0615		

Table 9: Recreational onboard observer data sample sizes at each data filtering step. The bold value indicates the final sample size used for delta-GLM analysis. The same sample data were used for the discard-only index and the retained-only catch indices

	tab:F	<u> </u>	board_filter
Filter	Criteria	Sample size	Sample size
		(no. positive	(no. of trips)
		trips)	
Initial SQL filtering		6,475	59,192
Habitat filter	Remove drifts >1000 m of alpha hull	6,365	30,987
	buffer, remove "reefs" with <0 drifts		
	or 5% positives, or in CCA		
Exclude 1999 and	Management changes (depth and	5,986	29,577
2000	gear restrictions)		
Depth	Remove upper and lower 1% of data	5,921	29,002
	(retain 26-330ft)		
Minutes Fished	Remove upper and lower 1% of data	5,780	28,460
	(retain 4 - 155 minutes)		
Observed Anglers	Remove upper and lower 1% of data	5,679	27,946
	(retain 4 - 15 anglers)		
Boats	Include boats encountering	5,509	26,805
	scorpionfish in at least 3 years; at		
	least 30 drifts and 10 with		
	scorpionfish		
Second depth filter	Remove anything >100 m after	5,507	26,733
•	looking at 20 m depth bins	•	,

Table 10: AIC values for each model in the The recreational CPFV onboard observer discard-only catch index.

tab:Fleet6_RecDD_onboard_aic Model Binomial Lognormal Year 19619.56 9177.115 Year + Reef18677.119177.115Year + Depth19374.02 8860.893 Year + Depth + Reef18392.13 8778.47 Year + Month + Reef + Depth18318.928769.844

Table 11: The recreational CPFV onboard observer discard-only catch sample index.

tab:Fleet6_RecDD_onboard_index Year Log-scale SE Index 2001 0.03730.03732002 0.08360.08342003 0.06700.06702004 0.07360.07352005 0.08420.08402006 0.07660.07652007 0.06910.06902008 0.06110.06102009 0.05960.05962010 0.06400.06402011 0.05060.05062012 0.04000.04002013 0.03920.03922014 0.03870.03860.03492015 0.03492016 0.05350.0535

Table 12: AIC values for each model in the The recreational CPFV onboard observer retained-only catch index.

	tab	:Fleet12_RecPC_onboard_aic
Model	Binomial	Lognormal
Year	21826.47	11507.73
Year + Reef	21192.97	11325.43
Year + Depth	21265.79	10704.15
Year + Depth + Reef	20691.44	10619.25
Year + Month + Reef + Depth	20453.43	10599.42

Table 13: The recreational CPFV onboard observer retained-only catch sample index.

tab:Fleet12_RecPC_onboard_index

		tab.
Year	Index	Log-scale SE
2001	0.1134	0.1611
2002	0.0759	0.1566
2003	0.0374	0.1600
2004	0.0880	0.1410
2005	0.0615	0.1444
2006	0.0898	0.1025
2007	0.1360	0.0760
2008	0.1048	0.0722
2009	0.1027	0.0723
2010	0.1121	0.0701
2011	0.0905	0.0775
2012	0.0807	0.0736
2013	0.0654	0.0763
2014	0.0663	0.0895
2015	0.0403	0.1088
2016	0.0720	0.1026

Table 14: The trawl sample sizes for each sanitation district at each data filtering step. The bold value indicates the final sample size used for delta-GLM analysis.

			tab:I	Fleet7_San	itation_filte	er
Filter	Criteria	City of	LA	Orange	City of San	Total
		LA	County	County	Diego	trawls
General	Erroneous and missing data,	1,496	2,321	1,671	1,180	6,668
	harbors or Mexican waters					
District-	Stations sampled >29 years		1,848			
specific	or <305 ft					
filters						
	Stations sampled >9 years	930			998	
	Stations sampled >13 years			1,558		
	Stations sampled >11 years					
Station	Stations encountering	930	1,848	1,500	998	
	scorpionfish $>4\%$ of trawls					
Tow time	Stations with tow times >4	921				
and depth	minutes and <24 ft					
	Tow distance $100-599 \text{ m}$			1,490		
	(target tow distance 400 m)					
Final data		921	1,848	1,490	998	5,257

Table 15: AIC values for each model in the sanitation districts trawl sample index.

		<u>tab:Flee</u> t/_Sanitation_aic
Model	Binomial	Lognormal
Year	7330.73	6748.7
Year + Quarter	7179.5	6642.7
Year + Station	6321.6	6372.8
Year + Station + Quarter	6130.94	6252.71

Table 16: The sanitation districts trawl sample index.

tab:Fleet7_Sanitation_index

Year	Index	Log-scale SE
1970	0.0548	0.5975
1971	0.0703	0.4554
1972	0.1261	0.3709
1973	0.1047	0.3344
1974	0.0841	0.2973
1975	0.0719	0.3571
1976	0.0737	0.2780
1977	0.1408	0.2035
1978	0.1426	0.2135
1979	0.3617	0.1598
1980	0.4085	0.1645
1981	0.4360	0.1543
1982	0.3841	0.2056
1983	0.1343	0.2110
1984	0.0627	0.2817
1985	0.1087	0.1745
1986	0.1624	0.2172
1987	0.2377	0.1644
1988	0.2382	0.1471
1989	0.1605	0.1513
1990	0.1691	0.1551
1991	0.1037	0.1801
1992	0.1126	0.1595
1993	0.1147	0.1055
1994	0.1120	0.1267
1995	0.1970	0.1083
1996	0.2276	0.1006
1997	0.2407	0.1036
1998	0.1795	0.1148
1999	0.2343	0.1001
2000	0.1281	0.1439
2001	0.2433	0.0947
2002	0.1329	0.1411
2003	0.1632	0.1688
2004	0.1873	0.1320
2005	0.2435	0.1673
2006	0.2497	0.1368
2007	0.1347	0.1615
2008	0.1126	0.1643
2009	0.1246	0.1717
2010	0.0791	0.1772
2011	0.1081	0.1851
2012	0.0462	0.2760
2013	0.0190	0.4105
2014	0.0674	0.2917
2015	0.1290	0.2641
2016	0.1167	0.2660

Table 17: NWFSC trawl survey sample sizes at each data filtering step. The bold value indicates the final sample size used for delta-GLM analysis.

		tab:Fleet8_NWFSCTrawl_filter
Filter	Criteria	Sample size Sample size
		(no. positive (no. of trips)
		$\operatorname{trips})$

Table 18: AIC values for each model in the NWFSC trawl survey sample index.

_____tab:Fleet8_NWFSCTrawl_aic

Model	Binomial	Lognormal

Table 19: The NWFSC trawl survey index.

<u>tab:Fleet8_NWFSCTrawl_index</u>

Year	Index	Log-scale SE
2003	615.6453	0.5708
2004	1000.1240	0.4503
2005	936.2185	0.5943
2006	245.5559	0.5092
2007	1001.1330	0.5099
2008	195.6025	0.4484
2009	1940.3440	0.5137
2010	277.3953	0.5338
2011	710.0569	0.3744
2012	561.1833	0.5361
2013	3243.2760	0.5728
2014	370.3868	0.7000
2015	409.8495	0.4045
2016	366.7447	0.4809

Table 20: Recreational private mode dockside data sample sizes at each data filtering step. The bold value indicates the final sample size used for delta-GLM analysis.

	tab:F	<u> </u>	urvey_filter
Filter	Criteria	Sample size	Sample size
		(no. positive	(no. of trips)
		$\operatorname{trips})$	
Entire dataset		325	3,558
General data filters	Samples with no net failures	269	3,515
Net type	Samples using a net type 1", 1.5" and 2" mesh	269	2,815
Sites	Sites frequently sampled	266	2,170
Month	Months sampled consistently (April,	259	2,019
	June, August, October)		

Table 21: AIC values for each model in the recreational private mode dockside sample index.

	tab:Fleet9_GillnetSurvey_a	
Model	Binomial	Lognormal
$Year + month + site + perp_para + floats$	1983.12	1008.62
$Year + site + perp_para + floats$	2000.281	1004.4
$Year + month + perp_para + floats$	2349.989	1264.8
Year + site + perp_para	2010.078	1004.1

Table 22: The recreational private mode dockside sample index.

	-		-
		tak	:Fleet9_GillnetSurvey_in
Year	Index	Log-scale SE	·
1995	0.0537	0.0536	-
1996	0.0401	0.0401	
1997	0.0478	0.0477	
1998	0.0275	0.0275	
1999	0.0360	0.0360	
2000	0.0299	0.0299	
2001	0.0331	0.0331	
2002	0.0348	0.0348	
2003	0.0304	0.0304	
2004	0.0541	0.0541	
2005	0.0324	0.0324	
2006	0.0572	0.0572	
2007	0.0508	0.0508	
2008	0.0618	0.0618	
2008	0.0618	0.0618	-

Table 23: Recreational private mode dockside data sample sizes at each data filtering step. The bold value indicates the final sample size used for delta-GLM analysis.

		tab:Fleet11_SCBS	Survey_filter
Filter	Criteria	Sample size	Sample size
		(no. positive	(no. of trips)
		$\operatorname{trips})$	
All trawls	No filter	158	944
Depth	Trawls < 98 m (retains 95% of all	149	662
	data)		
Region	Exclude trawls in harbors, south of	f 129	398
	Ventura and islands (few		
	scorpionfish)		

Table 24: AIC values for each model in the recreational private mode dockside sample index.

		<u>tab:Flee</u> t11_SC
Model	Binomial	Lognormal
Year	494.73	339.56
Year + Region	490.24	343.16
Year + Month	493.02	336.68
Year + Month + Region	486.55	337.87

Table 25: The recreational private mode dockside sample index.

				tab:F	leet11_S	CBSurvey.	_index
Year	Index	Log-scale SE	NA	NA		v	
1994	0.0475	0.3042					
1998	0.0223	0.2499					
2003	0.0514	0.2356					
2008	0.0156	0.3187					
2013	0.0214	0.3021					

Table 26: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No. Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp. Val, SD)
1 NatM_p_1_Fem_GP_1	0.246	3	(0.01, 1)	OK	0.018	None
2 L-at_Amin_Fem_GP_1	13.874	2	(10, 30)	OK	0.563	None
3 L-at_Amax_Fem_GP_1	33.203	2	(30, 50)	OK	0.535	None
4 VonBert_K_Fem_GP_1	0.223	2	(0.05, 0.5)	OK	0.022	None
5 CV_young_Fem_GP_1	0.145	က	(0.02, 0.5)	OK	0.015	None
6 CV_old_Fem_GP_1	0.111	က	(0.02, 0.75)	OK	0.000	None
7 Wtlen_1_Fem	0.000	. -	(-3, 3)			None
8 Wtlen_2_Fem	3.058	ကု				None
9 Mat50%-Fem	17.188	.	(10, 30)			None
10 Mat_slope_Fem	-0.466	د -	(-3, 3)			None
11 Eggs/kg_inter_Fem	1.000	د -	(-3, 3)			None
12 Eggs/kg_slope_wt_Fem	0.000	ငှ	(-3, 3)			None
13 NatM_p_1_Mal_GP_1	-0.216	က	(-3, 3)	OK	0.037	Normal $(-0.22, 99)$
14 L_at_Amin_Mal_GP_1	0.230	2		OK	0.042	None
15 L-at_Amax_Mal_GP_1	-0.136	2	(-3, 3)	OK	0.018	None
16 VonBert_K_Mal_GP_1	-0.588	2	(-3, 3)	OK	0.159	None
17 CV_young_Mal_GP_1	-0.327	က	(-1, 1)	OK	0.114	None
18 CV_old_Mal_GP_1	-0.325	က	(-3, 3)	OK	0.085	None
19 Wtlen_1_Mal	0.000	ည်	(0, 1)			None
	2.981	ည်	(2, 4)			None
24 CohortGrowDev	1.000	-	(1, 1)			None
25 FracFemale_GP_1	0.500	-4 (0.000001, 0.999999			None
$26 ext{ SR-LN(R0)}$	8.299	2	(0, 31)	OK	0.292	None
27 SR_BH_steep	0.718	-2	(0.21, 0.99)			Full_Beta (0.718, 0.158)
28 SR_sigmaR	0.900	-2	(0, 2)			None
29 SR_regime	0.000	-4	(-5, 5)			None
Continuod on wart wow						

Continued on next page

Table 26: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

					i	į	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
No.	Parameter	Value	$_{ m Phase}$	Bounds	Status	$_{ m SD}$	Prior (Exp. Val, SD)
30	SR_autocorr	0.000	-3	(0, 0.5)			None
134	InitF_seas_1_flt_1ComHL	0.000	Τ-	(0, 1)			Normal (0.01, 1000)
135	$LnQ_base_RecPR(4)$	-8.721	Τ-	(-15, 15)			None
136	$Q_{-extraSD_RecPR(4)}$	0.006	4	(0.0001, 1)	ГО	0.014	None
137	$LnQ_base_RecPC(5)$	-10.639	Τ-	(-15, 15)			None
138	$Q_{-extraSD_RecPC(5)}$	0.386	4	(0.0001, 1)	OK	0.057	None
139	$LnQ_base_Sanitation(7)$	-10.885		(-15, 15)			None
140	$Q_{-extraSD_Sanitation(7)}$	0.218	4	(0.0001, 1)	OK	0.047	None
141	$LnQ_base_NWFSCTrawl(8)$	-1.480		(-15, 15)			None
142	$Q_{-extraSD_{-}NWFSCTrawl(8)}$	0.250	4	(0.0001, 1)	OK	0.145	None
143	$LnQ_base_SCBSurvey(11)$	-12.854		(-15, 15)			None
144	$Q_{-extraSD_SCBSurvey(11)}$	0.177	4	(0.0001, 1)	OK	0.143	None
145	LnQbaseRecPCOBR(12)	-8.945	Τ-	(-15, 15)			None
146	$Q_{-extraSD_RecPCOBR(12)}$	0.093	2	(0.0001, 1)	OK	0.032	None
147	$SizeSel_P1_ComHL(1)$	39.749	4	(13, 44)	OK	2.095	None
148	$SizeSel_P2_ComHL(1)$	15.000	-3	(-10, 16)			None
149	$SizeSel_P3_ComHL(1)$	4.713	4	(-1, 10)	OK	0.191	None
150	$SizeSel_P4_ComHL(1)$	15.000	-3	(-1, 16)			None
151	$SizeSel_P5_ComHL(1)$	-17.448	ಬ	(-25, -1)	OK	103.065	None
152	$SizeSel_P6_ComHL(1)$	10.000	-3	(-5, 11)			None
153	$SizeSel_P1_ComNet(2)$	1.000	-2	(1, 45)			None
154	$SizeSel_P2_ComNet(2)$	45.000	-3	(1, 45)			None
155	SizeSel_P1_ComTrawl(3)	1.000	-2	(1, 45)			None
156	SizeSel_P2_ComTrawl(3)	45.000	ç-	(1, 45)			None
157	$SizeSel_P1_RecPR(4)$	35.320	4	(13, 44)	OK	0.736	None
158	SizeSelP2RecPR(4)	15.000	ç-	(-10, 16)			None
159	$SizeSel_P3_RecPR(4)$	4.105	4	(-1, 10)	OK	0.101	None
Cont	Continued on next page						

Continued on next page

Table 26: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp.Val, SD)
160	SizeSel_P4_RecPR(4)	15.000	-3	(-1, 16)			None
161	$SizeSel_{D5}RecPR(4)$	-6.188	ಬ	(-25, -1)	OK	0.343	None
162	$SizeSel_P6_RecPR(4)$	10.000	£-	(-5, 11)			None
163	SizeSelPlRecPC(5)	39.414	4	7	OK	1.052	None
164	$SizeSel_{P2}RecPC(5)$	15.000	3	(-10, 16)			None
165	$SizeSel_{-}P3_{-}RecPC(5)$	4.264	4	(-1, 10)	OK	0.114	None
166	$SizeSel_{-}P4_{-}RecPC(5)$	15.000	-3	(-1, 16)			None
167	$SizeSel_{D5}RecPC(5)$	-7.030	ರ	(-25, -1)	OK	0.362	None
168	$SizeSel_{RecPC(5)}$	10.000	-3	(-5, 11)			None
169	$SizeSel_P1_RecDD(6)$	24.506	4	(13, 44)	OK	0.020	None
170	$SizeSel_P2_RecDD(6)$	-12.531	3	(-15, 16)	OK	43.212	None
171	$SizeSel_{-}P3_{-}RecDD(6)$	1.508	4	(-1, 10)	OK	0.235	None
172	SizeSelP4RecDD(6)	-12.601	3	(-20, 5)	OK	35.327	None
173	$SizeSel_{D5}RecDD(6)$	-1.723	က	(-25, 3)	OK	0.187	None
174	$SizeSel_P6_RecDD(6)$	-1.932	3	(-5, 11)	OK	0.181	None
175	$SizeSel_{1}Sanitation(7)$	26.150	4	(13, 44)	OK	0.499	None
176	$SizeSel_{-}P2_Sanitation(7)$	15.000	-3	(-10, 16)			None
177	$SizeSel_{-}P3_Sanitation(7)$	3.462	4		OK	0.128	None
178	$SizeSel_{-}P4_Sanitation(7)$	15.000	-3	(-1, 16)			None
179	$SizeSel_{-}P5_Sanitation(7)$	-3.595	4	(-25, 5)	OK	0.497	None
180	$SizeSel_{-}P6_{-}Sanitation(7)$	10.000	-3	(-5, 11)			None
181	SizeSelP1NWFSCTrawl(8)	26.815	4	(13, 44)	OK	2.433	None
182	$SizeSel_P2_NWFSCTrawl(8)$	15,000	-3	(-10, 16)			None
183	SizeSel_P3_NWFSCTrawl(8)	4.173	4	(-1, 10)	OK	1.047	None
184	SizeSel_P4_NWFSCTrawl(8)	15.000	-3	(-1, 16)			None
185	$SizeSel_{-}5NWFSCTrawl(8)$	-2.000	4	(-25, 5)	OK	2.252	None
186	SizeSel_P6_NWFSCTrawl(8)	10.000	-3	$\overline{}$			None
Cont	Continued on next name						

Continued on next page

Table 26: List of parameters used in the base model, including estimated values and standard deviations (SD), bounds (minimum and maximum), estimation phase (negative values indicate not estimated), status (indicates if parameters are near bounds, and prior type information (mean, SD).

No.	Parameter	Value	Phase	Bounds	Status	SD	Prior (Exp.Val, SD)
187	SizeSel_P1_GillnetSurvey(9)	1.000	-2	(1, 45)			None
188	SizeSel_P2_GillnetSurvey(9)	45.000	-3	(1, 45)			None
189	SizeSel_P1_Impingement(10)	1.000	-2	(1, 45)			None
190	SizeSel_P2_Impingement(10)	45.000	-3	(1, 45)			None
191	SizeSel_P1_SCBSurvey(11)	21.519	4	(13, 44)	OK	2.011	None
192	SizeSel_P2_SCBSurvey(11)	15.000	ç- -3	(-10, 16)			None
193	SizeSel_P3_SCBSurvey(11)	2.216	4	(-1, 10)	OK	1.182	None
194	SizeSel_P4_SCBSurvey(11)	15.000	-3	(-1, 16)			None
195	$SizeSel_{5}SCBSurvey(11)$	-2.987	ಬ	(-25, -1)	OK	1.329	None
196	$SizeSel_P6_SCBSurvey(11)$	10.000	-3	(-5, 11)			None
197	SizeSel_P1_RecPCOBR(12)	1.000	-2	(1, 45)			None
198	SizeSel_P2_RecPCOBR(12)	45.000	 5-	(1, 45)			None
199	SizeSel_P1_ComHL(1)_BLK1repl_1999	28.986	4	(13, 44)	OK	0.284	None
200	SizeSel_P3_ComHL(1)_BLK1repl_1999	2.099	4	(-1, 10)	OK	0.124	None
201	SizeSel_P1_RecPR(4)_BLK1repl_1999	28.199	4	(13, 44)	OK	0.220	None
202	SizeSel_P3_RecPR(4)_BLK1repl_1999	1.870	4		OK	0.120	None
203	SizeSel_P1_RecPC(5)_BLK1repl_1999	35.289	4	(13, 44)	OK	0.369	None
204	SizeSel_P3_RecPC(5)_BLK1repl_1999	3.355	4	(-1, 10)	OK	0.074	None
Ρ_	_tab:model_params						

56

Table 27: Summary of the biomass/abundance time series used in the stock assessment.

tab:Index_summary	d Endorsed	JM SSC mal)	e SSC	JM SSC mal)	JM SSC mal)	JM SSC mal)	JM SSC mal)	JM SSC mal)	JM SSC mal)
tak	Method	delta-GLM (bin-lognormal)	negative binomial	, delta-GLM (bin-lognormal)	$\det_{\text{cln-lognormal}}$	$\frac{1}{1}$ delta-GLM $\frac{1}{1}$ (bin-lognormal)	$\frac{1}{1}$ delta-GLM $\frac{1}{1}$	delta-GLM (bin-lognormal)	, delta-GLM (bin-lognormal)
	Filtering	trip, area, regulations, Stephens-MacCall	trip, gear, effort, species, depth, sample size	habitat ,regulations, effort, boats	sample size, depth, tow times	depth, area	gear, site, month	depth, area	$\label{eq:condition} \text{habitat, regulations, effort,} \\ \text{boats}$
	Fishery ind.	No	$N_{\rm O}$	$N_{\rm O}$	Yes	Yes	Yes	Yes	No
	Name	Recreational PR dockside CPUE	CPFV logbook CPUE	Onboard observer discard catch CPUE	Sanitation district CPUE	NWFSC trawl survey CPUE	CSUN/VRG Gillnet survey CPUE	Southern Califrnia Bight trawl survey CPUE	Onboard observer retained catch CPUE
	Years	2004-2016	1980-2016	2002-2016	1970-2016	2003-2016	1995-2008	1994; 1998; 2003; 2008; 2013	2002-2016
	Fleet	4	ರ	9	<u></u>	∞	6	11	12

Table 28: Results from 100 jitters from each of the three models.

tab:jitter

Status	Model.1	Model.2	Model.3
Returned to base case	-	-	-
Found local minimum	-	-	-
Found better solution	-	-	-
Error in likelihood	-	-	-
Total	100	100	100

Table 30: Time-series of population estimates from the base-case model.

Yr	Total	Spawning	Depletion	Age-0	Total catch	Relative ex-	SPR
	biomass	biomass		recruits	(mt)	ploitation	
	(mt)	(mt)				rate	
1916	3764	1719	1.00	4022	4	0.00	0.99
1917	3745	1717	1.00	4022	8	0.00	0.99
1918	3723	1713	1.00	4021	13	0.00	0.98
1919	3728	1707	0.99	4020	12	0.00	0.98
1920	3708	1703	0.99	4019	16	0.00	0.97
1921	3663	1697	0.99	4018	26	0.01	0.96
1922	3694	1686	0.98	4015	19	0.01	0.97
1923	3658	1681	0.98	4014	27	0.01	0.96
1924	3567	1673	0.97	4013	49	0.01	0.92
1925	3376	1654	0.96	4008	101	0.03	0.85
1926	3561	1611	0.94	3998	49	0.01	0.92
1927	3549	1603	0.93	3996	51	0.01	0.92
1928	3578	1594	0.93	3995	44	0.01	0.93
1929	3555	1592	0.93	3995	49	0.01	0.92
1930	3589	1586	0.92	3994	41	0.01	0.93
1931	3581	1586	0.92	3995	43	0.01	0.93
1932	3590	1585	0.92	3996	41	0.01	0.93
1933	3630	1586	0.92	3997	32	0.01	0.94
1934	3624	1591	0.93	4000	33	0.01	0.94
1935	3619	1595	0.93	4003	35	0.01	0.94
1936	3537	1597	0.93	4006	54	0.02	0.91
1937	3491	1589	0.92	4006	65	0.02	0.89
1938	3449	1577	0.92	4005	76	0.02	0.88
1939	3498	1561	0.91	4005	62	0.02	0.90
1940	3509	1554	0.90	4007	59	0.02	0.90
1941	3575	1551	0.90	4010	43	0.01	0.93
1942	3681	1557	0.91	4017	20	0.01	0.96
1943	3700	1575	0.92	4029	16	0.00	0.97
1944	3665	1592	0.93	4041	24	0.01	0.96
1945	3586	1603	0.93	4052	42	0.01	0.93
1946	3490	1603	0.93	4062	66	0.02	0.89
1947	3461	1591	0.93	4070	74	0.02	0.88
1948	3348	1576	0.92	4080	107	0.03	0.84
1949	3386	1547	0.90	4087	93	0.03	0.85
1950	3368	1532	0.89	4100	97	0.03	0.85
1951	3475	1517	0.88	4115	67	0.02	0.89
1952	3501	1522	0.89	4156	61	0.02	0.90
1953	3450	1531	0.89	4218	74	0.02	0.88
1954	3412	1534	0.89	4226	84	0.02	0.86
1955	3475	1533	0.89	4263	67	0.02	0.89

Table 30: Time-series of population estimates from the base-case model.

Yr	Total	Spawning	Depletion	Age-0	Total catch	Relative ex-	SPR
	biomass	biomass	_	recruits	(mt)	ploitation	
	(mt)	(mt)			,	rate	
1956	3494	1544	0.90	4313	63	0.02	0.89
1957	3577	1557	0.91	4367	43	0.01	0.92
1958	3596	1582	0.92	4431	39	0.01	0.93
1959	3661	1608	0.94	4524	25	0.01	0.96
1960	3670	1641	0.95	4698	24	0.01	0.96
1961	3644	1674	0.97	4990	31	0.01	0.95
1962	3570	1706	0.99	5212	50	0.01	0.92
1963	3492	1734	1.01	5535	72	0.02	0.89
1964	3445	1759	1.02	6391	87	0.02	0.87
1965	3452	1793	1.04	7533	85	0.02	0.87
1966	3443	1856	1.08	8524	89	0.02	0.87
1967	3503	1956	1.14	4618	73	0.02	0.89
1968	3465	2081	1.21	2678	87	0.02	0.88
1969	3485	2146	1.25	1552	84	0.02	0.89
1970	3440	2119	1.23	974	103	0.02	0.87
1971	3478	1992	1.16	849	92	0.02	0.88
1972	3499	1809	1.05	648	82	0.02	0.89
1973	3453	1600	0.93	728	95	0.03	0.87
1974	3344	1374	0.80	1064	122	0.04	0.84
1975	3278	1148	0.67	6362	128	0.05	0.81
1976	3456	978	0.57	15965	66	0.03	0.88
1977	3341	1012	0.59	3790	88	0.03	0.83
1978	3425	1228	0.71	9023	62	0.02	0.87
1979	3269	1496	0.87	1534	100	0.03	0.81
1980	3193	1706	0.99	856	131	0.03	0.78
1981	3278	1778	1.03	891	118	0.03	0.81
1982	3304	1724	1.00	2100	119	0.03	0.82
1983	3506	1588	0.92	5316	64	0.02	0.89
1984	3474	1476	0.86	6742	73	0.02	0.88
1985	3417	1423	0.83	12359	87	0.03	0.86
1986	3449	1478	0.86	2011	76	0.02	0.87
1987	3430	1637	0.95	1038	79	0.02	0.87
1988	3063	1740	1.01	959	204	0.05	0.74
1989	3140	1660	0.97	618	175	0.05	0.76
1990	3001	1512	0.88	858	229	0.07	0.72
1991	2942	1289	0.75	1433	241	0.09	0.70
1992	3200	1054	0.61	15257	126	0.05	0.79
1993	3258	980	0.57	2527	102	0.03	0.81
1994	2920	1095	0.64	15750	188	0.06	0.69
1995	3053	1266	0.74	1927	143	0.04	0.73

Table 30: Time-series of population estimates from the base-case model.

Yr	Total	Spawning	Depletion	Age-0	Total catch	Relative ex-	SPR
	biomass	biomass		recruits	(mt)	ploitation	
	(mt)	(mt)				rate	
1996	3092	1535	0.89	3795	140	0.04	0.75
1997	3146	1731	1.01	9011	141	0.03	0.76
1998	3147	1839	1.07	3079	160	0.04	0.77
1999	3060	1910	1.11	9011	228	0.05	0.72
2000	3218	1913	1.11	2555	168	0.04	0.78
2001	3150	1945	1.13	3020	203	0.05	0.76
2002	3328	1905	1.11	5369	130	0.03	0.83
2003	3420	1861	1.08	1486	103	0.02	0.86
2004	3578	1811	1.05	2377	55	0.01	0.92
2005	3519	1746	1.02	3973	76	0.02	0.89
2006	3332	1646	0.96	3186	149	0.04	0.82
2007	3337	1517	0.88	2231	139	0.04	0.82
2008	3411	1412	0.82	2335	103	0.03	0.85
2009	3362	1327	0.77	3043	113	0.04	0.83
2010	3368	1240	0.72	5924	105	0.04	0.83
2011	3351	1189	0.69	1919	105	0.03	0.82
2012	3283	1181	0.69	467	121	0.04	0.79
2013	3277	1149	0.67	6222	115	0.04	0.79
2014	3236	1104	0.64	2428	124	0.05	0.78
2015	3359	1085	0.63	7514	84	0.03	0.82
2016	3403	1123	0.65	3822			

tab:Timeseries_mod1

Table 29: Sensitivity of the base model to dropping or down-weighting data sources and alternative assumptions about growth.

Label	Base	Harmonic	Drop	Drop	Down-	Free size	Free CV	External
	(Francis weights)	$\begin{array}{c} \text{mean} \\ \text{weights} \end{array}$	index	ages	${ m weight}$ lengths	Age0	Amin	growth
TOTAL_like	ı	1	ı	ı	1			
Catch_like	ı	ı	ı	ı	ı	ı	1	1
Equil_catch_like	ı	ı	1	ı	ı	ı	1	ı
Survey_like	1	ı	ı	1	ı	ı	1	1
Length-comp_like	ı	ı	ı	ı	ı	ı	1	1
Age_comp_like	ı	1	ı	ı	1	ı	1	1
Parm_priors_like	ı	1	İ	ı	ı	ı	1	1
SSB_Unfished_thousand_mt	ı	ı	ı	ı	ı	ı	ı	1
TotBio_Unfished	ı	ı	ı	ı	ı	ı	1	1
SmryBio_Unfished	ı	ı	ı	ı	ı	ı	1	1
Recr_Unfished_billions	ı	ı	ı	ı	ı	ı	ı	1
SSB_Btgt_thousand_mt	ı	ı	I	ı	ı	ı	ı	1
${ m SPR_Btgt}$	ı	ı	1	1	1	1	1	1
Fstd_Btgt	ı	ı	ı	ı	1	ı	ı	ı
TotYield_Btgt_thousand_mt	ı	ı	ı	ı	ı	ı	ı	ı
SSB_SPRtgt_thousand_mt	ı	ı	ı	ı	ı	ı	1	1
Fstd_SPRtgt	ı	ı	ı	ı	ı	ı	1	1
TotYield_SPRtgt_thousand_mt	ı	ı	ı	ı	ı	ı	ı	ı
SSB_MSY_thousand_mt	ı	1	İ	ı	ı	ı	1	1
SPR_MSY	ı	ı	ı	ı	ı	ı	1	1
Fstd_MSY	ı	ı	I	ı	ı	ı	ı	1
TotYield_MSY_thousand_mt	ı	ı	1	ı	ı	ı	ı	1
RetYield_MSY	1	ı	1	1	1	ı	1	1
Bratio_2015	ı	1	1	ı	ı	ı	1	1
$F_{-}2015$	ı	ı	ı	ı	ı	ı	ı	ı
SPRratio_2015	ı	ı	ı	ı	ı	ı	1	1
Recr_2015	ı	ı	ı	ı	ı	ı	ı	1
Recr_Virgin_billions	ı	ı	I	ı	ı	ı	ı	1
L_at_Amin_Fem_GP_1	ı	ı	1	ı	1	ı	1	1
$L_at_Amax_Fem_GP_1$	ı	ı	ı	ı	ı	ı	ı	1
VonBert_K_Fem_GP_1	ı	ı	ı	ı	1	,	,	
CV_young_Fem_GP_1	1	ı	ı	1	ı	ı	1	1
)								

Table 31: Projection of potential OFL, spawning biomass, and depletion for the base case model.

					tab:Forecast_mod1
Yr	OFL	ACL landings	Age 5+	Spawning	Depletion
	contriubtion	(mt)	biomass (mt)	Biomass (mt)	
	(mt)				
2017	507.83	507.83	3053.30	1209.89	0.70

561 8 Figures

figures

Figure 1: Map showing the state boundary lines for management of the recreational fishing fleets. CRFS Districts 1-6 in California are presented as well as the WDFW Recreational Management Areas in Washington. Florence, OR is shown as a potential location of model stratification.

Data by type and year

Figure 2: Summary of data sources used in the base model. fig:data_plot

Length comps, retained, ComHL

Length (cm)

Figure 3: Length comps, retained, ComHL fig:mod1_1_comp_lenfit_flt1mkt2

Pearson residuals, retained, ComHL (max=7.96)

Figure 4: Pearson residuals, retained, ComHL (max=7.96)
Closed bubbles are positive residuals (observed > expected) and open bubbles are negative residuals (observed < expected). fig:mod1_2_comp_lenfit_residsflt1mkt2

N-EffN comparison, Length comps, retained, ComHL

 $\label{eq:figure 5: N_EffN comparison, Length comps, retained, ComHL fig: mod1_3_comp_lenfit_satisfies the comparison of the comps of the comps of the comparison of the comps of the co$

Figure 6: Francis data weighting method TA1.8: ComHL Suggested sample size adjustment (with 95% interval) for len data from ComHL: 0.197 (0.1179_1.1745) For more info, see Francis, R.I.C.C. (2011). Data weighting in statistical fisheries stock assessment models. Cap. J. Fish. Aquat. Sci. 68: 1124_1138.

Length comps, retained, ComNet

Length (cm)

Figure 7: Length comps, retained, ComNet | fig:mod1_5_comp_lenfit_flt2mkt2

references

- Alverson, D.L., Pruter, a T., and Ronholt, L.L. 1964. A Study of Demersal Fishes and Fisheries of the Northeastern Pacific Ocean. Institute of Fisheries, University of British
- Columbia.
- $_{566}$ Bertalanffy, L. von. 1938. A quantitative theory of organic growth. Human Biology **10**: $_{567}$ 181–213.
- Daugherty, A. 1949. The commercial fish catch of California for the year 1947 With an
- historical review 1916–1947. In California department of fish and game fishery bulletin no.
- 570 74.
- Dotson, R., and Charter, R. 2003. Trends in the Southern California sport fishery. CalCOFI
- Report 44: 94–106. Available from http://calcofi.org/publications/calcofireports/v44/Vol_
- 573 44_Dotson_Charter.pdf.
- Eschmeyer, W.N., Herald, E., and Hammann, H. 1983. A field guide to Pacific coast fishes of
- North America. Houghton Mifflin Company, Boston, MA.
- Francis, R. 2011. Data weighting in statistical fisheries stock assessment models. Canadian
- Journal of Fisheries and Aquatic Sciencies 68: 1124–1138.
- Frey, H. (n.d.). California's living marine resources and their utilization. California Depart-
- ment of Fish; Game, Sacramento, CA.
- Hamel, O. 2015. A method for calculating a meta-analytical prior for the natural mortality
- rate using multiple life history correlates. ICES Journal of Marine Science 72: 62–69.
- Harry, G., and Morgan, A. 1961. History of the trawl fishery, 1884-1961. Oregon Fish
- 583 Commission Research Briefs 19: 5–26.
- Love, M., Yoklavich, M., and Thorsteinson, L. 2002. The rockfishes of the northeast Pacific.
- University of California Press, Berkeley, CA, USA.
- Love, M.S., Axell, B., Morris, P., Collins, R., and Brooks~-, A. 1987. Life history and
- fishery of the California scorpionfish, Scorpaena guttata, within the Southern California Bight.
- 588 Fishery Bulletin **85**: 99–116.
- Maunder, M.N., Barnes, T., Aseltine-Neilson, D., and MacCall, A.D. 2005. The status of
- ⁵⁹⁰ California scorpionfish (Sorpaena guttata) off southern California in 2004. Pacific Fishery
- Management Council, Portland, OR.
- McAllister, M.K., and Ianelli, J.N. 1997. Bayesian stock assessment using catch-age data and
- the sampling importance resampling algorithm. Canadian Journal of Fisheries and Aquatic

- Sciences 54(2): 284–300.
- Methot, R.D. 2015. User manual for Stock Synthesis model version 3.24s. NOAA Fisheries, US Department of Commerce.
- Moser, H. (n.d.). Scorpaenidae *Scorpaena guttata*. *In* CalCOFI atlas 33: The early stages of the fishes in the california current region. pp. 788–789.
- Moser, H. G., R. L. Charter, P. E. Smith, D. A. Ambrose, W. Watson, S.R., Charter, and
- Sandknop, E.M. 2002. Atlas 35: Distributional atlas of fish larvae and eggs from Manta
- 601 (surface) samples collected on CalCOFI surveys from 1977 to 2000. California Cooperative
- 602 Oceanic Fisheries Investigations.
- Orton, G. 1955. Early developmental stages of the California scorpionfish, *Scorpaena guttata*. Copeia: 210–214.
- Pacific Fishery Management Council (Institution/Organization). 1993. The Pacific Coast
- 606 Groundfish Fishery Management Plan: Fishery Management Plan for the California, Oregon,
- and Washington Groundfish Fishery as Amended Through Amendment 7. Pacific Fishery
- 608 Management Council, Portland, OR.
- Pacific Fishery Management Council (Institution/Organization). 2002. Status of the Pacific
- 610 Coast Groundfish Fishery Through 2001 and Acceptable Biological Catches for 2002: Stock
- Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.
- Pacific Fishery Management Council (Institution/Organization). 2004. Pacific Coast Ground-
- 613 fish Fishery Management Plan: Fishery Management Plan for the California, Oregon, and
- 614 Washington Groundfish Fishery as Amended Through Amendment 17. Pacific Fishery
- 615 Management Council, Portland, OR.
- Quast, J. 1968. Observations on the food of the kelp-bed fishes. California Department of Fish and Game Fish Bulletin (139): 109–142.
- (--)
- Taylor, P. 1963. The venom and ecology of the California scorpionfish, Scorpaena guttata
- 619 Girard. PhD Thesis, University of California San Diego.
- Then, A., Hoenig, J., Hall, N., and Hewitt, D. 2015. Evaluating the predictive performance
- of empirical estimators of natural mortality rate using information on over 200 fish species.
- 622 ICES Journal of Marine Science **72**: 82–92.
- ⁶²³ Turner, C.H., Ebert, E.E., and GIVEN, R.R. (n.d.). Man-mae reef ecology. California
- Department of Fish and Game Fish Bulletin 146: 221.
- Washington, B., Moser, H.G., Laroche, W.A., and W. J. Richards, J. (n.d.). Scorpaeniformes:
- development. In Ontogeny and systematics of fishes. american society of ichthyologists and
- herpetologists special publication 1. Edited by H. G., A.W. Moser, W. J. Richards, D. M.
- 628 Cohen, M. P. Fahay, J. Kendall, and S.L. Richardson. pp. 405–428.