Nom, Prénom: CORRECTION

Évaluation : Vecteurs (Sujet A)

La calculatrice est autorisée.

Les exercices 5 et 6 sont à faire sur une feuille à part.

Exercice 1:

1. Deux vecteurs sont égaux si ils ont la même direction , le même sens et la même norme .

2. Si deux vecteurs ont la même direction, la même norme mais des sens opposés, alors ils sont opposés .

3.

En se basant sur la figure ci-contre, répondre VRAI ou FAUX à chaque question :

(a) $\overrightarrow{AB} = \overrightarrow{ED}$: VRAI

(b) $\overrightarrow{DA} = \overrightarrow{CB}$: FAUX

(c) \overrightarrow{DB} et \overrightarrow{AE} ont la même direction : VRAI

(d) \overrightarrow{CF} et \overrightarrow{EB} ont la même norme : VRAI

Exercice 2:

- 1. Construire le translaté de la figure ABCDE par le vecteur \vec{u} .
- 2. Construire le translaté de la figure ABCDE par le vecteur \overrightarrow{CB} + \overrightarrow{DC} + \overrightarrow{EA} .

Exercice 3:

Pour chaque vecteur ci-dessous, donner deux de ses représentants :

1. $\overrightarrow{AB} + \overrightarrow{BG} : \overrightarrow{AG} \text{ et } \overrightarrow{FL}$

2. $\frac{1}{4}\overrightarrow{FJ}$: \overrightarrow{FG} et \overrightarrow{KL}

3. $2\overline{KM} - \overline{EI}$: \overline{KS} et \overline{FN}

4. $2\overrightarrow{FR} + \frac{2}{3}\overrightarrow{RC}$: \overrightarrow{FT} et \overrightarrow{AO}

Exercice 4:

- 1. Tracer le représentant du vecteur $\vec{u} + \vec{v}$ ayant pour origine O.
- 2. Tracer le représentant du vecteur $-\vec{u} + 2\vec{v}$ ayant pour origine O.
- 3. Tracer le représentant du vecteur $\frac{1}{2}\vec{u} \vec{v}$ ayant pour origine O.

Exercice 5: (À faire sur une feuille à part)

Simplifier les expressions suivantes, en détaillant les calculs :

1.
$$\overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{AE}$$

2.
$$\overrightarrow{FE} - \overrightarrow{CD} + \overrightarrow{ED} = \overrightarrow{FC}$$

3.
$$\overrightarrow{EA} - (\overrightarrow{EC} + \overrightarrow{ED}) + \overrightarrow{AD} = \overrightarrow{CE}$$

4.
$$\overrightarrow{AE} + \overrightarrow{TA} + \overrightarrow{FT} + \overrightarrow{EF} = \overrightarrow{0}$$

5.
$$5(\vec{u} + \vec{v}) - 2\vec{v} = 5\vec{u} + 3\vec{v}$$

Exercice 6: (À faire sur une feuille à part)

Soit ABC un triangle quelconque. Les points K et L vérifient : $\overrightarrow{AK} = 3\overrightarrow{AB}$ et $\overrightarrow{AL} = 3\overrightarrow{AC}$.

- 1. Faire une figure représentant cette situation.
- 2. (Les étapes de cette question doivent être bien détaillées) En remarquant que $\overrightarrow{KL} = \overrightarrow{KA} + \overrightarrow{AL}$, montrer que $\overrightarrow{KL} = 3\overrightarrow{BC}$.

On a alors

$$\overrightarrow{KL} = \overrightarrow{KA} + \overrightarrow{AL}$$

$$= -\overrightarrow{AK} + \overrightarrow{AL}$$

$$= -3\overrightarrow{AB} + 3\overrightarrow{AC}$$

$$= 3\overrightarrow{BA} + 3\overrightarrow{AC}$$

$$= 3(\overrightarrow{BA} + \overrightarrow{AC})$$

$$= 3\overrightarrow{BC}$$

Nom, Prénom: CORRECTION

Évaluation : Vecteurs (Sujet B)

La calculatrice est autorisée.

Les exercices 5 et 6 sont à faire sur une feuille à part.

Exercice 1:

- Deux vecteurs sont égaux si ils ont la même direction, le même sens et la même norme.
- 2. Si deux vecteurs ont la même direction, la même norme mais des sens opposés, alors ils sont opposés .

3.

En se basant sur la figure ci-contre, répondre VRAI ou FAUX à chaque question :

(a) $\overrightarrow{AB} = \overrightarrow{ED}$: VRAI (b) $\overrightarrow{DA} = \overrightarrow{CB}$: FAUX (c) \overrightarrow{DB} et \overrightarrow{AE} ont la même direction : VRAI

(d) \overrightarrow{CF} et \overrightarrow{EB} ont la même norme : VRAI

Exercice 2:

- 1. Construire le translaté de la figure ABCDE par le vecteur \vec{u} .
- 2. Construire le translaté de la figure ABCDE par le vecteur \overrightarrow{CB} + \overrightarrow{DC} + \overrightarrow{EA} .

Exercice 3:

Pour chaque vecteur ci-dessous, donner deux de ses représentants :

1. $\overrightarrow{FG} + \overrightarrow{GL} : \overrightarrow{AG} \text{ et } \overrightarrow{FL}$

2. $\frac{1}{2}\overrightarrow{KO}$: \overrightarrow{KM} et \overrightarrow{LN}

3. $2\overrightarrow{AH} - \overrightarrow{IE}$: \overrightarrow{AS} et \overrightarrow{BT} 4. $2\overrightarrow{TH} + \frac{2}{3}\overrightarrow{CR}$: \overrightarrow{TF} et \overrightarrow{OA}

Exercice 4:

- 1. Tracer le représentant du vecteur $\vec{u} + \vec{v}$ ayant pour origine O.
- 2. Tracer le représentant du vecteur $-\vec{u}$ + $2\vec{v}$ ayant pour origine O.
- 3. Tracer le représentant du vecteur $\frac{1}{2}\vec{u} \vec{v}$ ayant pour origine O.

Exercice 5: (À faire sur une feuille à part)

Simplifier les expressions suivantes, en détaillant les calculs :

1.
$$\overrightarrow{FC} + \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{FE}$$

2.
$$\overrightarrow{AE} - \overrightarrow{CD} + \overrightarrow{ED} = \overrightarrow{AC}$$

3.
$$\overrightarrow{FB} - (\overrightarrow{FD} + \overrightarrow{FE}) + \overrightarrow{BE} = \overrightarrow{DF}$$

4.
$$\overrightarrow{BE} + \overrightarrow{TB} + \overrightarrow{FT} + \overrightarrow{EF} = \overrightarrow{0}$$

5.
$$7(\vec{u} + \vec{v}) - 3\vec{v} = 7\vec{u} + 4\vec{v}$$

Exercice 6: (À faire sur une feuille à part)

Soit ABC un triangle quelconque. Les points K et L vérifient : $\overrightarrow{AK} = 3\overrightarrow{AB}$ et $\overrightarrow{AL} = 3\overrightarrow{AC}$.

- 1. Faire une figure représentant cette situation.
- 2. (Les étapes de cette question doivent être bien détaillées) En remarquant que $\overrightarrow{KL} = \overrightarrow{KA} + \overrightarrow{AL}$, montrer que $\overrightarrow{KL} = 3\overrightarrow{BC}$.

On a alors

$$\overrightarrow{KL} = \overrightarrow{KA} + \overrightarrow{AL}$$

$$= -\overrightarrow{AK} + \overrightarrow{AL}$$

$$= -3\overrightarrow{AB} + 3\overrightarrow{AC}$$

$$= 3\overrightarrow{BA} + 3\overrightarrow{AC}$$

$$= 3(\overrightarrow{BA} + \overrightarrow{AC})$$

$$= 3\overrightarrow{BC}$$