

Simulation – Basics & Integrals

ROBERTO ALEJANDRO CÁRDENAS OVANDO

Outline

Taylor Polynomials

Approximating integrals with Taylor polynomials

Random and Pseudo Random Numbers

Riemann Sum

Taylor Polynomials

- The derivatives are the instantaneous rate of change of a function f(x) at a given point c
- ❖Therefore f'(x) gives us a linear approximation of f(x) near c_i for small values of $\epsilon \in \mathbb{R}$, we have:

$$f(c + \epsilon) \approx f(c) + \epsilon f'(c)$$

 \clubsuit If f(x) has higher derivatives, why stop at the first derivative?

Taylor Polynomials

Taylor series

- \clubsuit Let f(x) be a C^n polynomial. F is n-times continuously differentiable
- The n-th order Taylor polynomial off(x) about c is:

$$T_n(f)(x) = \sum_{k=0}^{n} \frac{f^k(c)}{k!} (x - c)^k$$

- As Taylor polynomials are approximations of f(x), there will be residuals R_n
- \clubsuit We want $R_n(f)(x) \to 0$

Taylor series

❖Theorem: Suppose f(x) is (n+1)-times continuously differentiable. Then,

$$R_n(f)(x) = \int_{C}^{x} \frac{f^{(n+1)}(y)}{n!} (x - y)^{n+1} dy$$

This says how much Tn(f)(x) is off the true value of f(x).

Example

Taylor series for:

$$f(x) = e^x$$
 about 0

$$\forall k, f^{(k)}(x) = e^x$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x-0)^{k} f^{(0)}(0) = e^{0} = 1$$

$$f^{(0)}(0) = e^0 = 1$$
 $\frac{f^{(2)}(0)}{2!}x^2 = \frac{x^2}{2}$

$$\frac{f^{(1)}(0)}{1!}x^{1} = \frac{x^{1}}{1} \qquad \qquad \frac{f^{(3)}(0)}{3!}x^{3} = \frac{x^{3}}{3!}$$

$$\therefore e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

 ∞

Example

 \Rightarrow Function f(x) = cos(x) about 0

Approximating Integrals

*Approximate the Gaussian curve $\mu = 0$ and $\sigma = 1$:

$$\int_0^{1/3} e^{-x^2} dx$$

Approximating Integrals

Riemann Sum

Let a closed interval [a,b] be partitioned by points:

$$a < x_1 < x_2 < \dots < x_{n-1} < b$$

Where the length of the points are denoted by:

$$\Delta x_1 < \Delta x_2 < \dots < \Delta x_n$$

Let X_n^* be an arbitrary point in the k^{th} subinterval. Then:

$$\sum_{k=1}^{n} f(X_k^*) \Delta x_k$$

❖ Is called a Riemann sum for a given function f(x)

Riemann Sum

Riemann sum

The value $\max(\Delta x_k)$ is called the mesh size

Riemann sum 2D

Using random numbers

 \clubsuit Let g(x) be a function and suppose we wanted θ where

$$\theta = \int_0^1 g(x) dx$$

To compute the value of θ , note that if U is uniformly distributed over (0,1) then we can express θ as

$$\theta = E[g(U)]$$

Using random numbers

❖Independent and identically distributed (iid) random variables have mean θ →Strong law of large numbers

Random Numbers

The building block of a simulation study is the ability to generate random numbers

The generated random number will represent an observation from the measured system

A random number represents the value of a random variable uniformly distributed an (0,1)

Pseudo Random Numbers (PRN) is a sequence of values

They are deterministically generated

*Have the appearances of being an independent uniform (0,1) random variables

- \bullet To generate a PRN starts with an initial value X_0 called the seed
- The most common approach uses recursion to compute successive values where X_n , $n \ge 1$, by letting:

$$X_n = aX_{n-1} \mod ulo m$$

Where $a, m \in \mathbb{N}^+$

- The quantity X_n/m is an approximation to the uniform (0,1)
- The method is called Multiplicative congruential method

- Criteria to choose a and m:
 - 1. For any "seed", the result must "appear" to be a uniform random variable
 - 2. For any seed, the number of values generated before repetition must be large
 - 3. The values can be computed efficiently on a digital computer

Multiplicative congruential method

Another PRN Generator

$$X_n = (aX_{n-1} + C) \ modulo \ m$$

- This is called mixed congruential method
- Mixed = addition + multiplication
- Quiet efficient
 - m bigger than in Multiplicative Congruential method

Mixed congruential method

Transforming the uniform (0,1) to (a,b)

$$\sum_{i=1}^{N} \frac{g(u_i)}{N} = E[g(u)] = \theta$$

$$as N \to \infty$$

This approach is called the Monte Carlo approach

❖ What happens if the integral goes from a to b, instead of 0,1

❖ Ejemplo

What happens if we have a multivariate function?

❖ Hence, if we generate k independent sets, each consisting of n independent uniform (0,1) random variables

 \Rightarrow Since $g(U_1^i, U_2^i, ..., U_P^i)$ for all i are iid

HW

- Taylor series: (25 points)
 - Handwritten until the 6th-term to get the formula
 - Function 1

$$f(x) = \sin(x)$$

Function 2

If
$$i^2 = -1$$
 compute e^{ix} about 0

HW

- Code: (25 points)
 - Riemann sums function
- Function (25 points)

$$\int_{-2}^{2} e^{x+x^2} dx$$

- Handwritten : Apply Taylor series
- R Code: Riemann sum, and Monte Carlo approach to:

HW

Monte Carlo approach to: (25 points)

$$\int_{0}^{1} \int_{0}^{1} e^{(x+y)^{2}} dy dx$$