Speed Control of Brushless DC Motors Using **Emotional Intelligent Controller**

E. Daryabeigi, Student member, IEEE¹, H. Sadeghi², G.R. Arab Markadeh³ and C. Lucas⁴ ¹- Islamic Azad University, Tiran branch, ²-Faculty of engineering Sama, Astara branch ³- Shahrekord University, ⁴– COE, Control and Intelligent Processing, University of Tehran ¹-daryabeigi_e_e_e@yahoo.com, ²- hamed22441@yahoo.com, ³-arab_gh@eng.sku.ac.ir, ⁴- clucas@ut.ac.ir

Abstract-This paper presents an improved emotional controller for brushless DC motor (BLDC) drive. The proposed controller is called brain emotional learning based intelligent controller (BELBIC). The utilization of the new controller is based on the emotion processing mechanism in brain. This intelligent control is inspired by the limbic system of mammalian brain, especially amygdala. The controller is successfully implemented in simulation using MATLAB software, brushless dc drive with trapezoidal back-emf. In this work, a novel and simple implementation of BLDC motor drive system is achieved by using the intelligent controller, which controls the motor speed accurately. This emotional intelligent controller has simple structure with high auto learning feature. Simulation results show that both accurate steady state and fast transient speed responses can be achieved in wide range of speed from 20 to 300 [rpm]. Moreover, for evaluate this emotional controller and hence to assess the effectiveness and control capability of the proposed BELBIC scheme, the performances of proposed control scheme are compared with a conventional PID controller for the BLDC drive control, in simulation different conditions. This is shown proper operating than the PID controller. And also shows excellent promise for industrial scale utilization.

INTRODUCTION

Brushless dc (BLDC) motors have been desired for small horsepower control motors such as: heating, ventilation, and air conditioning systems to achieve great energy saving effects for partial loads by lowering motor speeds [1]. In addition, BLDC motors have been used as variable speed drives in wide array of applications due to their high efficiency, silent operation, compact form, reliability, and low maintenance. However, there remain there problems to be considered: 1) the proper and reliability control in different conditions 2) the reduction of torque ripple and mechanical vibration noise, and 3) the implementation cost.

For the first & second problems, although various methods have been proposed to improve the robustness or to enhance the load disturbance rejection [2]-[4], the phase-locked loop (PLL) control can provide more accurate speed regulating control of motor. In fact, the more accurate speed regulation comes from the better current loop control. Hence, the ripple torque is simultaneously reduced to lessen the mechanical vibration noise. However, unlike applications to control signal synchronization, stable implementation of the PLL control for adjustable speed motor drives is rather difficult to achieve due to the large motor inertia. Hence, most existing conventional C_PLL motor speed controllers are mainly for that, depending on system parameters and operating point, which are caused to not achieve a desirable control in different conditions. However, in [5] has been proposed a new PLL control that claimed, that is independent on controller parameters, but can be seeing, which isn't independent on variations of motor parameters utterly, because of existing conventional PID. Also in the BLDC motor, the torque ripple is decided by the back-electromotive force (EMF) and current waveform. If the back-EMF is constant in the conduction region of current, the torque ripple depends on the current ripple [6].

Except current loop control for a proper control of drives, DTC method is a good control scheme that therein, does not require any current regulator, coordinate transformation and conventional PWM inverter voltage [7].

In addition to simplicity, the DTC of the BLDC motor allows a good torque control in steady state and transient operating conditions. However, high torque pulsation is produced, which is reflected in speed estimation responses. It also increases acoustical noise [8]. The DTC method presents some other disadvantages, such as i) difficulty to control torque and flux at very low speed ii) relatively high noise level at low speed iii) lack of direct current control.

For these reasons, properly intelligent methods can be adopted to solve the problems of electric drives as BLDC motor control for high performance applications [10-13].

From the viewpoint of industrial applications, ANN applications can be divided into four main categories [10]:

1) Modeling and Identification [11]. 2) Optimization and Classification [12]. 3) Process Control [12]. 4) Pattern Recognition [13-14].

In [15] was presented a fuzzy control (FLC) set based on immune (IS) feedback for BLDC control, which have complexity of fuzzy implementations and also FLs are based rules.Despite the versatility of bio-inspired and intelligent systems, many practical applications require computational power to overcome complexity and real-time constraints of these systems. In addition, dedicated systems are needed in many industrial applications to meet lower power and space requirements [16].

Based on the cognitively motivated open loop model, brain emotional learning based intelligent controller (BELBIC) was introduced for the first time in 2004 [17], and during the past few years this controller has been used, with minimal modifications, in control devices for several industrial applications [18]-[21]. For the first time, implementation of implemented for constant speed control [5]. Other problem 29th BELBIC method for electrical drive control was presented

by Rahman et al. [18]. Also this method used for some other electric drives control, successfully [19, 20]. Based on the above mentioned evidence of the emotional control approaches in computer and control engineering and presenting modified models of BLBIC, it can be concluded that the application of emotion in systems could by its simple and unique control design, overcome the problems of nonlinear system acceptably.

The paper is organized as follows; at first, the mathematical model of an equivalent dc brush motor of the PMBLDC motor is presented in Section II. Then in section III the structure of the novel intelligent controller is explained. The block diagram of the control system is described in section IV and the simulation results are presented and discussed in section V. Finally, the conclusion is represented in section VI.

II. MATHEMATICAL MODEL OF EQUIVALENT OF THE BRUSHLESS DC MOTOR (PMBLDC)

Full Consider a PMBLDC motor with symmetric threephase stator windings and trapezoidal air-gap flux distribution. When it is driven by an inverter, the circuit equations of the three windings in phase variables can be expressed as follows [22], and the typical waveforms are shown in Fig. 1:

$$V_{j} = R \cdot i_{j} + L_{s} \frac{di_{j}}{dt} + e_{j} , j = a, b, c$$

$$L_{s} = L - M$$
(1)

Where V_{ab} and V_{bc} are stator line voltages, i_a , i_b and i_c are stator currents, R and L are stator winding resistance and self inductance and M is stator winding mutual inductance, e_a , e_b and e_c are back-electromagnetic forces (EMFs) voltages of each phase (a,b,c), respectively.

In addition, the peak value of the trapezoidal back EMFs is given as:

$$\left| e_{j}(t) \right|_{peak} = k_{c} \cdot \varphi \cdot \omega_{r}(t), \quad j = \{a, b, c\}$$
 (2)

Where k_c , φ and ω_r are constant, magnetic flux and rotor mechanical angle velocity, respectively.

Let $i_{eq}(t)$, be the equivalent armature current of the equivalent dc brush motor for the PMBLDC motor. Since the stator currents $i_a(t)$, $i_b(t)$, and $i_c(t)$ of the PMBLDC motor is controlled using an inverter to generate three-phase rectangular shape currents, and the corresponding electromagnetic torque is given as following:

$$T_{e} = \frac{(e_{a}i_{a} + e_{b}i_{b} + e_{c}i_{c})}{\omega_{r}} = \sqrt{2} k_{c} \varphi i i_{eq}$$
 (3)

Now, consider the motion equation of the BLDC motor, i.e.

$$J\frac{d\omega_r}{dt} = T_e - T_l - B \cdot \omega_r \tag{4}$$

Where T_e , T_l , B and J are the electromagnetic and load torques, friction coefficient and moment of inertia,

Fig.1. Waveforms of the EMFs, phase currents, and the corresponding commutating signals for the BLDC motor drives.

respectively. It follows from (3) and (4) that the equivalent armature current to the rotor angular speed transfer function becomes:

$$\frac{\omega_r(s)}{i_{ea}(s)} = \frac{\sqrt{2} k_c \phi}{Js + B}$$
 (5)

It is shown that the three-phase BLDC motor can now be considered as an equivalent dc brush motor with equivalent back EMF $e_{eq}(t)$ and equivalent armature current $i_{eq}(t)$, which is proportional to the generating torque Te. Hence, the three phase driver control can be reduced to a simple scalar control.

III. COMPUTATIONAL MODEL of BELBIC

Motivated by the success in functional modeling of emotions in control engineering applications [17]-[21], the main purpose of this paper is to use a structural model based on the limbic system of mammalian brain and emotional learning based action selection, for decision making and control engineering applications. Fig. 2 shows the pertinent pictures of the human brain, and Fig. 3 provides a graphical depiction of the modified sensory signal and learning network connection model inside the brain.

The small almond-shaped subcortical area of the amygdala, as illustrated in Fig. 2& 4, is very well placed to receive stimuli from all sensory cortices and other sensory areas of the hippocampus [23]. There are two approaches to intelligent and cognitive control; direct and indirect approaches. In the indirect approach, the intelligent system is utilized for tuning the parameters of a good controller. Here, we adopt the direct approach via using the computational model as a feedback control system selecting the control action to be applied to the plant. The intelligent computational model termed BELBIC is used as the controller block [17, 20]. The model of the proposed BELBIC structure is illustrated in Fig. 3. The BELBIC technique is essentially an action generation mechanism based on sensory inputs and emotional cues. In any given application, the choice of the sensory inputs (feedback signals) is informed by control engineering judgment whereas the choice of emotional cues depend on the performance objectives in that application. Amygdala is a part of brain that must be responsible for processing emotions and correspond to orbitofrontal cortex, thalamus, and sensory input cortex.

Fig. 2. Sectional view of the human brain for emotion processing.

Fig. 3. Graphical depiction of the developed computational model of brain emotional learning process (BELBIC).

Also, there is another connection for thalamus input within amygdala. The value of this input is equal to maximum sensory inputs value. In Fig. 3, there is one A node for every stimulus S, including one for the thalamic stimulus. There is also one O node for each of the stimuli, except for the thalamic node.

There is one output node E that is common for all the outputs of the model. The E node simply sums the outputs from the A nodes and then subtracts the inhibitory outputs from the O nodes.

The result is the output from the model. In other words, E can be obtained from:

$$E = \sum_{j} A_{j} + A_{th} - \sum_{j} O_{j}$$
 (6)

The internal areas output are computed pursuant to (7)-(10).

$$A_{th} = V_{th} \cdot \left\{ \max(S_j) = S_{th} \right\} \tag{7}$$

$$A_{i} = S_{i}V_{i} \tag{8}$$

$$O_{i} = S_{i}W_{i} \tag{9}$$

$$Sc_{j} = S_{j} \otimes \left[e^{-k \cdot t}\right] \tag{10}$$

Where A_j and O_j are the values of amygdala output and output of orbitofrontal cortex at each time, V_j and, W_j are

Fig. 4. The abstract structure of the computational model mimicking some parts of mammalian brain.

the gains in orbitofrontal and amygdala connection, S_j and S_{C_j} are sensory and sensory-cortex outputs respectively and also j is the jth input. Variations of V_j and W_j can be calculated as:

$$\Delta V_i = \alpha \left(\max \left(0, Sc_i(R - \sum_i A_i) \right) \right)$$
 (11)

$$\Delta V_{th} = \alpha_{th} \left(\max \left(0, S_{th} \left(R - A_{th} \right) \right) \right) \tag{12}$$

And likewise, the E' node sums the outputs from A except A_{th} , and then subtracts from inhibitory outputs from the O nodes.

$$E' = \sum_{i} A_{j} - \sum_{i} O_{j} \tag{13}$$

$$\Delta W_{i} = \beta \left(Sc_{i} \left(E' - R \right) \right) \tag{14}$$

Where (α, α_{th}) and β are the learning steps in amygdala and orbitofrontal cortex, respectively. R is the value of emotional cue function at each time. The learning rule of amygdala is given in (12) which cannot decrease. It means that it does not forget information in amygdala. Whereas idiomatically inhibiting (forgetting) is the duty of orbitofrontal cortex (11). Eventually, model output is obtained from (6). The used functions in emotional cue R and sensory input S blocks can be given by the following relations:

$$R = f(E, e, y, y_d)$$
 (15)

$$S = g(y, y_d, e) \tag{16}$$

In this application, the functions f and g are given by relations:

$$g = k_1 e + k_2 \frac{d}{dt} e + k_3 \int e \, dt \tag{17}$$

$$f = K_1 |e| + K_2 |e \cdot y| + K_3 |y_p|$$
 (18)

Where e, y_p and y are system error, controller output and system output respectively. Also, k_1 and K_1 , k_2 and K_2 as well as k_3 and K_3 are gains, which must be tuned for designing a satisfactory

Fig. 5. Control system structure of BLDC drive using BELBIC.

controller. Eventually, initial values for α and β in O and A and functions R and S should be selected for emotional signal generation.

In this work, the proposed controller is modified by separating the learning process of the thalamic stimulus from sensory cortex stimuli in amygdala (11), (12). A simple low-pas filter is used for modeling thalamus. The neurophysiological speed response in sensory cortex is faster than in thalamus (10) [20].

IV. BLDC DRIVE CONTROL SYSTEM DESIGN

The emotional control system receives the error signals between the command speed and the actual motor speed as part of inputs according to equations (15)-(18). And it generates the output signals following equations (6)-(14). In this control system design of Fig. 5, the emotional intelligent controller (BELBIC) receives motor speed error as input and then generates i_s^* as output, directly. So, according to III section, the drive can be control with control of stator winding current (i_s^*).

Fig. 5 shows the overall system configuration of the 3-phase BLDC motor drive. The three phase currents are controlled to take a form of quasi-square waveform in order to synchronize with the trapezoidal back-EMF to produce the constant torque. In each time only two phases are excited, so it is possible to use only one current sensor which is placed in DC-link voltage.

Fig. 3 shows the overall block diagram of the developed model for BLDC motor drives. Speed controller block generates the current demand to maintain the speed at reference value. Back-EMF voltage block calculates the phase back-EMF voltages according to rotor position. Phase current block calculates the phase current. Current control block controls the phase current via hysteresis current control and generates the switching signals for Inverter. In Inverter block, phase voltages are obtained. According to above mentioned control procedure, it is evident that proper control is achieved without any requirement to other conventional

controllers (PI, PID controllers, etc.) in generating command current, and quite independent of motor parameters. Unlike in conventional PI controllers, the proposed emotional control technique is auto learning, model-free and the controller coefficients are adaptive, which facilitates the vector control of the BLDC motor drive to be controlled independent of parameters variations.

V. RESULTS AND DISCUSSION

In order to evaluate this emotional controller and hence to assess the effectiveness and control capability of the proposed BELBIC scheme, the performances of proposed control scheme for the BLDC drive are investigated in simulation and experimental test at different operating conditions.

Digital computer simulations have been performed using Matlab/Simulink [24]. The simulated responses are given in Figs 6-9. In all cases, the drive system is started and operated according to the flowing sequence of tests:

Test1: The speed command and load torque are given in Table I:

TABLE I
REFERENCE COMMANDS for TEST 1

REFERENCE COMMANDS 101 1EST 1						
Time [sec]	0	0.2	0.5	1		
ω_r^* [rpm]	300	300	300	300		

Time [sec]	0.2	0.4	0.4	1
T_L [Nm]	1	1	11	11

According to Fig. 6 control system of BLBIC operated properly. Actual speed tracked its reference and also rotor flux is fixed at its reference. Rotor speed and electromagnetic torque, stator current and voltage are shown in Figs. 6(a, b, c, d), respectively. At Fig. 7, responses of control system of conventional PID are shown by an overshoot at speed curve. Test2: The speed and External signal commands are given in Table II:

 $\begin{array}{c} \text{TABLE II} \\ \text{Reference Commands for Test 2} \end{array}$

Time, [sec]	0	0.35	0.4	0.6	0.7	1
$\boldsymbol{\omega}_r^*$ [rpm]	300	300	150	150	20	20

Time, [sec]	0	0.2	0.2	1
T_L [Nm]	1	1	8	8

Time, [sec]	0	0.2	0.3	0.3
$Ex \cdot sig * .[A]$ $f_{Ex} = 10 / 3[Hz]$	0	20	-20	0

Test1:

Fig.6. Simulation results of BLBIC, the BLDC control speed, Test1: a) Motor Speed, b) Electromagnetic torque, c) Steady-state stator current phase-a, d) Stator voltage-ab.

In this test, an external alternative signal (Ex. Sig*.) is added control signal (Te* or i_s *), as disturbance signal. Fig. 9 shows the operating responses of the drive system using emotional controller BELBIC. It can be seen that the proposed controller gives regulated responses in terms of fast tracking, small overshoot and zero steady-state errors, which adapts itself with the external signal.

Also, rotor speed value as shown in Fig. 8(a) converges to its reference properly. As one can see that the control system BLBIC can control the BLDC drive at wide region of speed (between 20 to 300 rpm) with exist, a disturbance signal which is added control signal.

Fig. 9 shows the simulation responses of the drive system using conventional PID for test 2. It can be seen that, there are significant ripple in speed curve, which are resulted electromagnetic torque Fig. 9(a, d). Also the controller

Fig.7. Simulation results of PID, the BLDC control speed, Test1: a) Motor Speed.

Test2:

Fig.8. Simulation results of BEBIC, the BLDC control speed, Test2: a) Motor Speed, b) Error of speed, c) disturbance signal d) Electromagnetic torque & control signal, e) Stator phase-a.

doesn't product a smooth speed for the BLDC drive Fig. 9(a). The controller doesn't give a tuned operate.

Fig9. Simulation results of PID, the BLDC control speed, Test2: a) Motor Speed, b) Error of speed.

$\label{eq:table_iii} \textbf{TABLE III.}$ Parameters of the BLDC Drive

18Nm	Rated Toque	0.2 ohm	Stator Resistance
320V	DC link Voltage	1.8 ohm	Rotor Resistance
4	Number of Poles	0.175 V.S	Flux Inductance by Magnet
0.089 Kg.m ²	J. Inertia	8.5 mH	Stator phase- Inductances
0.005 N.m.s	Friction Factor	0.175 V.S	Flux Inductance by Magnet

Another important advantage of the proposed emotional intelligent controller is that it is relatively easy to tune the gain parameters of the controllers effectively and efficiently for high performance BLDC drives.

CONCLUSION

This paper presents an improved emotional controller for a brushless DC motor drive. The implementation of emotional controller shows excellent control performance and good robustness and adaptability, even in presence of a disturbance signal. At a comparison to a conventional PID controller, was seen that, the conventional PID can't operate at wide range of work points and in disturbance condition, properly. Also in the proposed control method the conventional PI and PID controllers, which are conventionally used in the vector control of BLDC drive, are eliminated. A simple structure of brain emotional learning based intelligent controller with its fast auto learning, model-free and good tracking features is used. The proposed emotional intelligent technique can be easily adapted for large scale industrial applications.

REFERENCES

- M. Naidu, T. W. Nehl, S. Gopalakrishnan, and L. Wurth, "Keeping cool while saving space and money: A semi-integrated, sensorless PM brushless drive for a 42-V automotive HVAC compressor," *IEEE Ind. Appl. Mag.*, vol. 11, no. 4, pp. 20–28, Jul./Aug. 2005.
- DZ. Y. Pan and F. L. Luo, "Steady state reference current determination technique for brushless dc motor drive system," *Proc. Inst. Elect. Eng.*—*Elect. Power Appl.*, vol. 152, no. 6, pp. 1585–1594, Nov. 2005.
- J. K. Seok, K. T. Kim, and D. C. Lee, "Automatic mode switching of P/PI speed control for industry servo drives using online spectrum analysis of torque command," *IEEE Trans. Ind. Electron.*, vol. 54, no. 5, pp. 2642–2647, Oct. 2007.
- Y. Zhang, C. M. Akujuobi, W. H. Ali, C. L. Tolliver, and L. S. Shieh, "Load disturbance resistance speed controller design for PMSM," *IEEE Trans. Ind. Electron.*, vol. 53, no. 4, pp. 1198–1207, Aug. 2006.

- C. Tsai Pan, E. Fang." A Phase-Locked-Loop-Assisted Internal Model Adjustable-Speed Controller for BLDC Motors", *IEEE Trans. Ind. Electron*, vol. 55, no. 9, pp. 3415-3425, Sep. 2008
- K. Yong Nam , W.Taik Lee , C. Man Lee and J. Pyo Hong," Reducing Torque Ripple of Brushless DC Motor by Varying Input Voltage", IEEE Trans.on Mag. vol. 42, no. 4, pp. 1307-1310, Apr. 2006.
- G. S. Buja and M.P. Kazmierkowski, "Direct Torque Control of PWM Inverter-Fed AC Motors—A Survey", IEEE Trans. Ind. Electron., vol. 51, NO. 4, pp. 744-757, Aug. 2004.
- G. R. Arab Markadeh, S. I. Mousavi, E. Daryabeigi," Position Sensorless Direct Torque Control of BLDC Motor by Using Modifier", Proc. IEEE, OPTIC, pp. 93-99, May. 2008.
- Y. Liu, Z. Q. Zhu, D. Howe "Direct torque control of brushless DC drives with reduced torque ripple", *IEEE Trans. Ind. App.* vol.41, no.2, pp 599-608. March/April 2005
- M. R. G. Meireles, P. E. M. Almeida and M. G. Simões," A Comprehensive Review for Industrial Applicability of Artificial Neural Networks", IEEE Trans. on Ind. Electron. vol. 50, no. 3, pp. 585-601, Jun. 2003
- H. Rouhani, M. Jalili, B. Arabi, W. Eppler and C. Lucas "Brain emotional learning based intelligent controller applied to neurofuzzy model of micro-heat exchanger," Expert Systems with Applications, ELSEVIER, vol. 32, no. 3, pp. 911–918, 2007.
- Y. Wang, C. Xia, M. Zhang, D. Liu," Adaptive Speed Control for Brushless DC Motors Based On Genetic Algorithm and RBF Neural Network", IEEE Proc. ICCA, pp. 1219-1222. Jun. 2007.
 Chang-Liang Xia, Wei Chen. "Senseless control of BLDCM at low
- Chang-Liang Xia, Wei Chen. "Senseless control of BLDCM at low speed using neural networks (Published Conference Proceeding style)," Machine Learning and Cybernetics. 18 -21 Aug. 2005, pp. 1099-1103.
- W. Wan Tan and H. Huo, "A generic neuro fuzzy model-based approach for detecting faults in induction motors", IEEE Trans. on Ind. Electron, vol. 52, no. 5, pp. 1420-1427, Oct 2005.
- D. Liu, C. Xia, M. Zhang, Y. Wang "Control of Brushless DC Motor Using Fuzzy Set Based Immune Feedback PID Controller", IEEE Proc. 2007, pp. 1045-1049
- B. K. Bose," Neural Network Applications in Power Electronics and Motor Drives—An Introduction and Perspective", IEEE Trans. on Ind. Electron, vol. 54, no. 1, pp. 14-33, Feb. 2007.
- C. Lucas, D. Shahmirzadi, N. Sheikholeslami "Introducing BELBIC: brain emotional learning based intelligent control" Int. J. of Intelligent Automation and Soft Computing, vol.10, no. 1, pp. 11-22, 2004.
- M. A. Rahman , R. M. Milasi, C. Lucas, B. N. Arrabi and T. S. Radwan "Implementation of Emotional Controller for Interior Permanent Magnet Synchronous Motor Drive," IEEE Trans. Ind. Applicat. , vol. 44, no. 5, pp. 1466-1476, Sept. /Oct. 2008.
- M.R.Jamaly, A. Armani. M.Dehyadegari, C.Lucas, Z. Navabi, "Emotion on FPGA: model driven approach". Expert System with Applications. ELSEVIER, vol. 36, no. 4, pp. 7369–7378, May 2009.
- E. Daryabeigi, G. Arab Markade, C. Lucase," Simultaneously, speed and flux control of a induction motor, with emotional controller (BELBIC) ", in Proc. IEEE, IEMDC, May. 2009, pp 894 - 901.
- M. R. Jamali, M. Dehyadegari, A. Arami, C. Lucas, Z. Navabi, "Realtime embedded emotional controller", J. Neural Comput & Applic, Springer-Verlag London, published online Jan. 2009.
- P. Pillay and R. Krishnan, "Modeling, simulation, and analysis of permanent-magnet motor drives—Part II: The brushless dc motor drive," *IEEE Trans. Ind. Appl.*, vol. 25, no. 2, pp. 274–279, Mar./Apr. 1989.
- J. Moren, C. Balkenius "A Computational Model of Emotional Learning in The Amygdala" in Proc. the 6th International conference on the simulation of adaptive behavior" Cambridge, Mass, The MIT Press, 2000
- 24. Matlab Simulink User Guide, The Math works Inc., Natick, MA, 2003.