Mechanics In Design and Manufacturing

Material Removal (Machining)
 Processes

Machining is a general term describing a group of processes that remove material from a workpiece.

A machined stamping die and the part it produced from sheet metal

One-half of a machined mold and the plastic molded part produced by the mold

Main Advantages of Machining:

- 1. Capable of reliably producing good dimensional accuracy.
- 2. The equipment and processes are adaptable to many workpiece materials and geometries.
- 3. Often the most economical means of manufacturing, especially for low part quantities.

Main Disadvantages of Machining:

- 1. Wastes material
- 2. Takes more time than other processes

Essential elements of successful machining operations:

- Rigid work holding
- Rigid tool holding
- Sharp cutting tools suited for the material being machined
- Proper feeds and speeds
- Cutting fluid selection and application

Machinability of Various Materials

Material	Note

Traditional Machining Operations

Sawing

- 1. Width Tip of the cutting edge to the back of the blade.
- 2. Thickness Measurement taken on body (gauge).
- 3. Blade Body The back of the blade to the bottom of the gullet.
- 4. Tooth The cutting portion of the blade.
- 5. Tooth Pitch Distance from one tooth tip to the next tip.
- 6. TPI Number of teeth per 25mm (inch).
- 7. Tooth Set Bending of the teeth, right or left, to allow blade clearance through the cut (or kerf) - see illustration 'A'.

 8. Tooth Face - Surface of the tooth where the chip is formed.
- 9. Tooth Back the angled surface of the tooth opposite the
- 10. Tooth Rake Angle Positive (P) or Straight (S). The angle of the tooth face measured from a line perpendicular to the back
- 11. Gullet The curved area between two teeth.
- 12. Gullet Depth The distance from the tooth tip to the bottom

Drilling

Drilling Speeds (High-Speed Steel Drills)

Material	Average Drill Speed (sfm)	
Magnesium	300	
Aluminum	250	
Brass/Bronze	200	
Copper	70	
Cast Iron (soft)	120	
Cast Iron (hard)	80	
Mild Steel	110	
Cast Steel	50	
Alloy Steels (hard)	60	
Tool Steel	60	
Stainless Steel	30	
Titanium	30	
High manganese steel	15	

^{*}Note: for carbide drills, double the average speeds

Turning

Copyright ©2017 Pearson Education, All Rights Reserved.

Milling

Knee Mill

Threading

Unified Screw Thread Designation

ISO Metric Thread Designation M10 x 1.25 ISO metric thread designation (M Profile) Nominal Major Diameter in millimeters Pitch of thread in millimeters

Broaching

Mechanics In Design and Manufacturing

 Abrasive and Other Material Removal Processes

Non-Traditional Processes

TABLE 9.1 Knoop hardness range for various materials and abrasives.

Material	Knoop hardness	Material	Knoop hardness
Common glass	350-500	Titanium nitride	2000
Flint, quartz	800-1100	Titanium carbide	1800-3200
Zirconium oxide	1000	Silicon carbide	2100-3000
Hardened steels	700-1300	Boron carbide	2800
Tungsten carbide	1800-2400	Cubic boron nitride	4000-5000
Aluminum oxide	2000-3000	Diamond	7000-8000

Copyright ©2017 Pearson Education, All Rights Reserved.

Main Types of Abrasives

Conventional Abrasives:

Superabrasives: least expensive

Grinding

Copyright ©2017 Pearson Education, All Rights Reserved.

Honing

Copyright ©2017 Pearson Education, All Rights Reserved.

Lapping

Lapping involves the cutting and shearing action of loose abrasive particles and the fine grinding of abrasive particles embedded in the lap plate.

Nontraditional Processes

EDM

Copyright @2017 Pearson Education, All Rights Reserved.

Copyright @2017 Pearson Education, All Rights Reserved.

The wire EDM uses a very-small-diameter electrically charged wire to cut through material. A flow of fluid helps to wash away the eroded material.

The work being machined by the EDM must be submerged in a liquid called dielectric fluid during operation. $$_{\rm 38}$$

Flat Operations

Plasma

L.A.S.E.R

Waterjet

The "Other" Ones (continued)

USM ECM

Surface Finish

