函数与极限

Didnelpsun

目录

1	函数	[1
	1.1	中值定	E理	1
		1.1.1	罗尔定理	1
			1.1.1.1 直接式子	1
			1.1.1.2 含参数式子	1
		1.1.2	拉格朗日中值定理	2
			1.1.2.1 对数函数特性	2
			1.1.2.2 查找特定值	2
		1.1.3	柯西中值定理	2
2	极限	Į		3
	2.1	基本计	 算方式	3
		2.1.1	基础四则运算	3
		2.1.2	重要极限	3
		2.1.3	导数定义	4
		2.1.4	等价无穷小替换	4
		2.1.5	夹逼准则	4
		2.1.6	拉格朗日中值定理	4
		2.1.7	洛必达法则	5
		2.1.8	泰勒公式	5
	2.2	常用化	上简技巧	6
		2.2.1	对数法则	6
		2.2.2	指数法则	6

	2.2.3	三角函数关系式 7
	2.2.4	提取常数因子
	2.2.5	提取公因子 7
	2.2.6	有理化8
	2.2.7	换元法9
	2.2.8	倒代换9
		2.2.8.1 含有分式
		$2.2.8.2$ $\infty - \infty$ 型
		$2.2.8.3$ $\infty \cdot \infty$ 型
	2.2.9	拆项
		2.2.9.1 积拆项
		2.2.9.2 和拆项
2.3	极限计	算形式
	2.3.1	极限不定式类型11
	2.3.2	极限转换 12
		2.3.2.1 整体换元
		2.3.2.2 关系转换
		2.3.2.3 脱帽法
	2.3.3	求参数
		2.3.3.1 常数
		2.3.3.2 无穷小
	2.3.4	极限存在性
	2.3.5	极限唯一性
	2.3.6	函数连续性
		2.3.6.1 极限判连续性 15
		2.3.6.2 连续性求极限 15
	2.3.7	迭代式数列
		2.3.7.1 数列表达式
		2.3.7.2 单调有界准则
	2.3.8	变限积分极限

1 函数

1.1 中值定理

中值定理一般用于判断不等式。

1.1.1 罗尔定理

罗尔定理在判断不等式时一般用于零点的状况。

1.1.1.1 直接式子

需要证明所给式子的导数是否在该区间为 0 即可。

例题: 证明多项式 $f(x) = x^3 - 3x + a$ 在 [0,1] 上不可能有两个零点。

假设 $f(x) = x^3 - 3x + a$ 在 [0,1] 有两个零点 x_1 和 x_2 ,其中 $x_1 < x_2$ 。

因为 $f(x) = x^3 - 3x + a$ 在 [0,1] 内连续,所以 $f(x) = x^3 - 3x + a$ 在 [0,1] 内可导。

由罗尔定理得知 $\exists \xi \in (x_1, x_2) \subset (0, 1)$,使得 $f'(\xi) = 0$,但是 $f'(x) = 3x^2 - 3$ 在 (0, 1) 上不超过 0,所以 ξ 不存在,从而多项式 $f(x) = x^3 - 3x + a$ 在 [0, 1] 上不可能有两个零点。

1.1.1.2 含参数式子

若所求式子是一个含参数,那么其一定还有另一个式子约束参数,此时我们就需要构建一个新的式子来利用所给的条件,然后将新式子转换为旧式子。

例题: 设 $a_0 + \frac{a_1}{2} + \dots + \frac{a_n}{n+1} = 0$,证明多项式 $f(x) = a_0 + a_1 x + \dots + a_n x^n$ 在 (0,1) 中至少有一个零点。

因为所要证明零点,所以一定使用罗尔定理。所给出的约束参数式子 $a_0 + \frac{a_1}{2} + \cdots + \frac{a_n}{n+1} = 0$ 与所求 f(x) 之间存在一个关系。

设
$$F(x) = a_0 x + a_1 \frac{x^2}{2} + \dots + a_n \frac{x^{n+1}}{n+1}$$
, $F'(x) = a_0 + a_1 x + \dots + a_n x^n = f(x)$ 。 又 $F(0) = 0$, $F(1) = a_0 + \frac{a_1}{2} + \dots + \frac{a_n}{n+1} = 0$, 又罗尔定理一定存在一个 $\xi \in (0,1)$,使得 $F'(\xi) = f(\xi) = 0$ 。

从而 $f(x) = a_0 + a_1 x + \dots + a_n x^n$ 在 (0,1) 中至少有一个零点。

1.1.2 拉格朗日中值定理

证明不等式最重要的还是找到 f(x), 有时候不等式不存在 f(a) - f(b) 这种 式子,就需要我们转换。

1.1.2.1 对数函数特性

对于对数函数,要记住其特定的性质: $\log_n(\frac{a}{b}) = \log_n a - \log_n b$.

例题: 设
$$a > b > 0$$
, 证明: $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$.

因为
$$\ln \frac{a}{b} = \ln a - \ln b$$
,所以令 $f(x) = \ln x$ 。

所以根据拉格朗日中值定理: $\ln a - \ln b = f'(\xi)(a-b)$ ($\xi \in (b,a)$)。

又
$$f'(\xi) = \frac{1}{\xi}$$
,所以 $\ln a - \ln b = \frac{a-b}{\xi}$ 。

又
$$\xi \in (b,a)$$
,所以 $\frac{1}{\xi} \in (\frac{1}{a},\frac{1}{b})$ 。

所以
$$\frac{a-b}{a} < \frac{a-b}{\varepsilon} < \frac{a-b}{b}$$
,从而 $\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$,得证。

1.1.2.2 查找特定值

对于证明一种不等式,如果里面没有差式,也无法转换为差式,那么就可以 考虑制造差式,对于 f(x) 一般选择更高阶的, a 选择 x, b 要根据题目和不等式 设置一个常数。

一般是 0 或 1。可以先尝试 1。

例题: 当 x > 1 时,证明 $e^x > ex$ 。

题目中没有差式, 所以需要选择一个函数作为基准函数, 里面有一个指数函 数和一个幂函数,所以选择 e^x 作为基准函数。

然后选择一个常数作为 b 值,可以先选一个 1 作为 b 值: f(x) - f(1) = $f'(\xi)(x-1)$.

从而 $e^x - e = e^{\xi}(x-1)$, $\xi \in (1,x)$, 所以 $e^x - e > e(x-1)$, 即 $e^x > ex$, 得 证。

1.1.3 柯西中值定理

需要找到两个函数,使得 $\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)}$ 。 **例题**: 设 0 < a < b,函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,证明存 在一点 $\xi \in (a,b)$ 使得 $f(b) - f(a) = \xi f'(\xi) \ln \frac{b}{a}$ 。

由对数函数的特性可以知道 $\frac{b}{a} = \ln b - \ln a$,所以可以令 $F(x) = \ln x$,所以 $F'(x) = \frac{1}{x}$ 。 $f(b) - f(a) = \xi f'(\xi) \ln \frac{b}{a} = \frac{f(b) - f(a)}{\ln b - \ln a} = \frac{f'(\xi)}{\frac{1}{\xi}} \frac{f(b) - f(a)}{F(b) - F(a)} = \frac{f'(\xi)}{F'(\xi)}$ 。

根据柯西中值定理得证。

2 极限

2.1 基本计算方式

课本上极限计算可以使用的主要计算方式:

2.1.1 基础四则运算

只有式子的极限各自存在才能使用四则运算,使用的频率较少。

2.1.2 重要极限

重要极限有两个,但是 $\lim_{x\to 0} \frac{\sin x}{x} = 1$ 这个很少用,因为往往用等价无穷小替代了,而 $\lim_{x\to \infty} \left(1+\frac{1}{x}\right)^x = e$ 则用的较多,当出现分数幂的幂指函数时,不要先去取对数,而是使用重要极限看看能不能转换。

例题: 求
$$\lim_{x \to \infty} \left(\frac{3+x}{6+x} \right)^{\frac{x-1}{2}}$$
。
$$= \lim_{x \to \infty} \left(1 - \frac{3}{6+3} \right)^{\frac{6+x}{-3} \cdot \frac{-3}{6+x} \cdot \frac{x-1}{2}} = \lim_{x \to \infty} e^{\frac{-3}{6+x} \cdot \frac{x-1}{2}} = \lim_{x \to \infty} e^{-\frac{3}{2} \cdot \frac{x-1}{x+6}} = e^{-\frac{3}{2}}$$

$$\theta$$
例题: 求 $\lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x+1}$ 。
$$= \lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x} \cdot \frac{2x+3}{2x+1} = \lim_{x \to \infty} \left(\frac{2x+3}{2x+1} \right)^{x}$$

$$= \lim_{x \to \infty} \left(\frac{1+\frac{3}{2x}}{1+\frac{1}{2x}} \right)^{x} = \lim_{x \to \infty} \frac{\left(1+\frac{3}{2x} \right)^{x}}{\left(1+\frac{1}{2x} \right)^{x}}$$

$$= \lim_{x \to \infty} \frac{\left[\left(1+\frac{3}{2x} \right)^{\frac{2x}{3}} \right]^{\frac{3}{2}}}{\left[\left(1+\frac{1}{2x} \right)^{2x} \right]^{\frac{1}{2}}} = \frac{e^{\frac{3}{2}}}{e^{\frac{1}{2}}} = e \, .$$

2.1.3 导数定义

极限转换以及连续性的时候会用到, 但是使用的频率也较小。

2.1.4 等价无穷小替换

当看到复杂的式子,且不论要求的极限值的趋向,而只要替换的式子是 $\Delta \rightarrow 0$ 时的无穷小,就使用等价无穷小进行替换。

注意:替换的必然是整个求极限的乘或除的因子,一般加减法与部分的因子 不能进行等价无穷小替换。

对于无法直接得出变换式子的,可以对对应参数进行凑,以达到目标的可替 换的等价无穷小。

2.1.5 夹逼准则

夹逼准则可以用来证明不等式也可以用来计算极限。但是最重要的是找到 能夹住目标式子的两个式子。

例题: 求极限 $\lim_{x\to 0} x\left[\frac{10}{x}\right]$, 其中 [·] 为取整符号。

取整函数公式:
$$x-1 < [x] \leqslant x$$
,所以 $\frac{10}{x} - 1 < \left[\frac{10}{x}\right] \leqslant \frac{10}{x}$ 。

当 x > 0 时, $x \to 0^+$,两边都乘以 10, $10 - x < x \cdot \left[\frac{10}{x}\right] \leqslant x \cdots \frac{10}{x} = 10$,而左边在 $x \to 0^+$ 时极限也为 10,所以夹逼准则,中间 $x \cdot \left[\frac{10}{x}\right]$ 极限也为 10。

当 x > 0 时, $x \to 0^-$,同样也是夹逼准则得到极限为 10。

$$\therefore \lim_{x \to 0} x \left[\frac{10}{x} \right] = 10.$$

2.1.6 拉格朗日中值定理

对于形如 f(a) - f(b) 的极限式子就可以使用拉格朗日中值定理,这个 f(x) 为任意的函数。使用拉格朗日中值定理最重要的还是找到这个 f(x)。

可以将极限式子中形如 f(a) - f(b) 的极限部分使用拉格朗日中值定理进行替换。

例题: 求极限
$$\lim_{n\to\infty} n^2 \left(\arctan \frac{2}{n} - \arctan \frac{2}{n+1}\right)$$
。

因为式子不算非常复杂,其实也可以通过洛必达法则来完成,但是求导会很复杂。而 $\arctan x$ 可以认定为 f(x)。

从而
$$\arctan \frac{2}{n} - \arctan \frac{2}{n+1}$$
 为 $f(\frac{2}{n}) - f(\frac{2}{n+1}) = f'(\xi) \left(\frac{2}{n} - \frac{2}{n+1}\right)$ 。
其中 $\frac{2}{n+1} < \xi < \frac{2}{n}$,而当 $n \to \infty$ 时, $f'(\xi) = \frac{1}{1+\xi^2} \to 1$ 。
 $\therefore \arctan \frac{2}{n} - \arctan \frac{2}{n+1} \sim \frac{2}{n} - \frac{2}{n+1} = \frac{2}{n(n+1)}$ 。
 $\therefore \lim_{n \to \infty} n^2 \left(\arctan \frac{2}{n} - \arctan \frac{2}{n+1}\right) = \lim_{n \to \infty} n^2 \cdot \frac{2}{n(n+1)} = 2$ 。

2.1.7 洛必达法则

洛必达法则的本质是降低商形式的极限式子的幂次。

洛必达在处理一般的极限式子比较好用,但是一旦式子比较复杂最好不要 使用洛必达法则,最好是对求导后有规律或幂次较低的式子进行上下求导。

对于幂次高的式子必然使用洛必达法则。

洛必达法则必须使用在分式都趋向 0 或 ∞ 时,如果不是这样的趋向则不能使用。如:

例题: 求
$$\lim_{x\to 1} \frac{x^2-x+1}{(x-1)^2}$$
。

如果使用洛必达法则,则会得到结果为 1,这是错误的,因为分子在 $x \to 1$ 时结果为常数 1。正确的计算方式:

$$=\lim_{x\to 1}\frac{1}{(x-1)^2}=\infty\,.$$

2.1.8 泰勒公式

泰勒公式一般会使用趋向 0 的麦克劳林公式,且一般只作为极限计算的一个小部分,用来替代一个部分。

且一般只有麦克劳林公式表上的基本初等函数才会使用倒泰勒公式,复合函数最好不要使用。

例题: 求极限
$$\lim_{x\to 0} \frac{\arcsin x - \arctan x}{\sin x - \tan x}$$
。

分析:该题目使用洛必达法则会比较麻烦且难以计算,所以先考虑是否能用 泰勒展开:

$$x \to 0, \sin x = x - \frac{1}{6}x^3 + o(x^3), \tan x = x + \frac{1}{3}x^3 + o(x^3), \arcsin x = x + \frac{1}{6}x^3 + o(x^3), \arctan x = x - \frac{1}{3}x^3 + o(x^3).$$

$$\therefore \sin x - \tan x = -\frac{1}{2}x^3 + o(x^3), \arcsin x - \arctan x = \frac{1}{2}x^3 + o(x^3)$$

$$\therefore 原式 = \frac{\frac{1}{2}x^3 + o(x^3)}{-\frac{1}{2}x^3 + o(x^3)} = -1.$$

2.2 常用化简技巧

2.2.1 对数法则

如
$$\log_n(a \cdot b) = \log_n a + \log_n b$$
, $\log_n \frac{a}{b} = \log_n a - \log_n b$ 。
换底公式: 对于 $a, c \in (0,1) \cup (1,+\infty)$ 且 $b \in (0,+\infty)$ 时,有 $\log_a b = \frac{\log_n b}{\log_n a}$ 。
例题: 求 $\lim_{x \to 0} \frac{(e^{x^2}-1)(\sqrt{1+x}-\sqrt{1-x})}{[\ln(1-x)+\ln(1+x)]\sin\frac{x}{x+1}}$ 。

注意在积或商的时候不能把对应的部分替换为 0,如分母部分的 $[\ln(1-x) + \ln(1+x)]$ 就无法使用 $\ln(1+x) \sim x$ 替换为 -x+x,这样底就是 0 了,无法求得最后的极限。

这时可以尝试变形,如对数函数相加等于对数函数内部式子相乘: $\ln(1-x)$ + $\ln(1+x) = \ln(1-x^2) \sim -x^2$ 。

2.2.2 指数法则

当出现 $f(x)^{g(x)}$ 的类似幂函数与指数函数类型的式子,需要使用 $u^v = e^{v \ln u}$ 。一般需要与洛必达法则配合使用。

例题: 求
$$\lim_{x \to +\infty} (x + \sqrt{1 + x^2})^{\frac{1}{x}} \circ$$

$$\lim_{x \to +\infty} (x + \sqrt{1 + x^2})^{\frac{1}{x}} = e^{\lim_{x \to +\infty} \frac{\ln(x + \sqrt{1 + x^2})}{x}} \left(\ln(x + \sqrt{1 + x^2})' = \frac{1}{\sqrt{1 + x^2}} \right)$$

$$= e^{\lim_{x \to +\infty} \frac{1}{\sqrt{1 + x^2}}} = e^0 = 1$$
例题: 求 $\lim_{x \to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}} (a > 0, b > 0, c > 0) \circ$

$$= e^{\lim_{x \to 0} \frac{\ln\left(\frac{a^x + b^x + c^x}{3}\right)}{x}} = e^{\lim_{x \to 0} \frac{\ln(a^x + b^x + c^x) - \ln 3}{x}} = e^{\lim_{x \to 0} \frac{a^x \ln a + b^x \ln b + c^x \ln c}{a^x + b^x + c^x}}$$
(洛必达法则)
$$= e^{\lim_{x \to 0} \frac{\ln a + \ln b + \ln c}{1 + 1 + 1}} = e^{\lim_{x \to 0} \frac{\ln(abc)}{3}} = \sqrt[3]{abc} \circ$$
例题: 求 $\lim_{x \to \infty} n \left[\left(1 + \frac{1}{n} \right)^{\frac{n}{2}} - \sqrt{e} \right] \circ$

首先对于幂指函数需要取指数,所以 $\left(1 + \frac{1}{n}\right)^{\frac{n}{2}} = e^{\frac{n}{2}\ln(1+\frac{1}{n})}$ 。

而后面的多一个 \sqrt{e} 导致整个式子变为一个复杂的式子,而与 e^x 相关的是 $e^x - 1 \sim x$ 。

所以
$$e^{\frac{n}{2}\ln(1+\frac{1}{n})} - \sqrt{e} = e^{\frac{1}{2}} \cdot \left(e^{\frac{n}{2}\ln(1+\frac{1}{n})-\frac{1}{2}} - 1\right) = e^{\frac{1}{2}} \cdot \left[\frac{n}{2}\ln(1+\frac{1}{n}) - \frac{1}{2}\right]$$
。 综上:
$$\lim_{n \to \infty} n \left[\left(1+\frac{1}{n}\right)^{\frac{n}{2}} - \sqrt{e}\right] = \lim_{n \to \infty} n \left(e^{\frac{n}{2}\ln(1+\frac{1}{n})} - \sqrt{e}\right)$$

$$= \lim_{n \to \infty} n \left[e^{\frac{1}{2}} \cdot \left(e^{\frac{n}{2} \ln(1 + \frac{1}{n}) - \frac{1}{2}} - 1 \right) \right] = \frac{e^{\frac{1}{2}}}{2} \lim_{n \to \infty} n^2 \left[\ln\left(1 + \frac{1}{n}\right) - \frac{1}{n} \right]$$

$$= \frac{e^{\frac{1}{2}}}{2} \lim_{n \to \infty} \frac{\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{n}}{\frac{1}{n^2}} = \frac{e^{\frac{1}{2}}}{2} \cdot \left(-\frac{1}{2} \right) = -\frac{\sqrt{e}}{4}$$

2.2.3 三角函数关系式

例题: 求极限
$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{\cos^2 x}{x^2}\right)$$
。
$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{\cos^2 x}{x^2}\right) = \lim_{x\to 0} \frac{x^2 - \sin^2 x \cos^2 x}{\sin^2 x \cdot x^2} (\sin x \sim x)$$

$$= \lim_{x\to 0} \frac{x^2 - \sin^2 x \cos^2 x}{x^4} (\sin x \cos x \sim \frac{1}{2} \sin 2x) = \lim_{x\to 0} \frac{x^2 - \frac{1}{4} \sin^2 2x}{x^4}$$

$$= \lim_{x\to 0} \frac{2x - \frac{1}{4} \cdot 2 \sin 2x \cdot \cos 2x \cdot 2}{4x^3} (\sin x \cos x \sim \frac{1}{2} \sin 2x) = \lim_{x\to 0} \frac{2x - \frac{1}{2} \sin 4x}{4x^3}$$

$$= \lim_{x\to 0} \frac{2 - \frac{1}{2} \cos 4x \cdot 4}{12x^2} = \frac{1}{6} \lim_{x\to 0} \frac{1 - \cos 4x}{x^2} (1 - \cos x \sim \frac{1}{2} x^2) = \frac{4}{3}$$

2.2.4 提取常数因子

提取常数因子就是提取出能转换为常数的整个极限式子的因子。这个因子 必然在自变量的趋向时会变为非 0 的常数,那么这个式子就可以作为常数提出。

2.2.5 提取公因子

当作为商的极限式子上下都具有公因子时可以提取公因子然后相除,从而 让未知数集中在分子或分母上。

例题: 求
$$\lim_{x\to 4} \frac{x^2-6x+8}{x^5-5x+4}$$
。

需要先提取公因子:

$$= \lim_{x \to 4} \frac{(x-2)(x-4)}{(x-1)(x-4)} = \lim_{x \to 4} \frac{x-2}{x-1} = \frac{2}{3}.$$

(当然可以使用洛必达法则得到极限为 $\lim_{x\to 4} \frac{2x-6}{2x-5} = \lim_{x\to 4} \frac{8-6}{8-5}$)

注意: 提取公因子的时候应该注意开平方等情况下符号的问题。如果极限涉及倒正负两边则必须都讨论。

当趋向为负且式子中含有根号的时候最好提取负因子, 从而让趋向变为正。

例题: 求
$$\lim_{x \to -\infty} \left[\sqrt{4x^2 + x} \ln \left(2 + \frac{1}{x} \right) + 2 \ln 2x \right]$$
。

题目的形式为 $\infty - \infty$,所以必须使用后面的倒代换转换为商的形式。

$$= \lim_{x \to -\infty} -x \left[\sqrt{4 + \frac{1}{x}} \ln \left(2 + \frac{1}{x} \right) - 2 \ln 2 \right].$$

这里就需要注意到因为 $\sqrt{4x^2+x}$ 的限制导致这个式子必然为正数, 而 $x \to \infty$ $-\infty$ 代表自变量为负数,所以提出来的 x 必然是负数,而原式是正数,所以就需 要添加一个负号, 而后面的 $2 \ln 2x$ 则没有要求, 所以直接变成 $-2 \ln 2$ 就可以了。

将
$$x$$
 下翻变成分母为 $\frac{1}{x}$, 并令 $t = \frac{1}{x}$.

$$=\lim_{t\to 0^-}\frac{\sqrt{t+4}\ln\left(2+\frac{1}{x}\right)-2\ln 2}{-t}.$$

幂次不高可以尝试洛必达:

$$= \lim_{t \to 0^-} \left(\frac{1}{2} \cdot \frac{\ln(2+t)}{\sqrt{t+4}} + \frac{\sqrt{t+4}}{2+t} \right) = - \left(\frac{1}{2} \cdot \frac{\ln 2}{2} + \frac{2}{2} \right) = - \frac{\ln 2}{4} - 1 \circ$$

2.2.6 有理化

当遇到带有根号的式子可以使用等价无穷小,但是只针对形似 (1+x)a-1 ~ ax 的式子,而针对 $x^a \pm x^b$ 的式子则无法替换,必须使用有理化来将单个式子变 为商的形式。

如
$$\sqrt{a} \pm \sqrt{b} = \frac{a+b}{\sqrt{a} \mp \sqrt{b}}$$
。

例题: 求极限
$$\lim_{x\to -\infty} x(\sqrt{x^2+100}+x)$$
。

例题: 求极限
$$\lim_{x\to-\infty} x(\sqrt{x^2+100}+x)$$
。
首先定性分析: $\lim_{x\to-\infty} x\cdot(\sqrt{x^2+100}+x)$ 。

在 $x \to -\infty$ 趋向时, x 就趋向无穷大。

而
$$\sqrt{x^2+100}$$
 为一次,所以 $\sqrt{x^2+100}+x$ 趋向 0 。

又
$$\sqrt{x^2+100}$$
 在 $x\to-\infty$ 时本质为根号差,所以有理化:

又
$$\sqrt{x^2 + 100}$$
 在 $x \to -\infty$ 时本质为根号差,所以有理化:
$$\lim_{x \to -\infty} x(\sqrt{x^2 + 100} + x) = \lim_{x \to -\infty} x \frac{x^2 + 100 - x^2}{\sqrt{x^2 + 100} - x} = \lim_{x \to -\infty} \frac{100x}{\sqrt{x^2 + 100} - x}$$

$$\xrightarrow{\frac{4}{2}x=-t} \lim_{t \to +\infty} \frac{-100t}{\sqrt{t^2 + 100} + t} = \lim_{t \to +\infty} \frac{-100}{\sqrt{1 + \frac{100}{t^2} + 1}} = -50$$

例题: 求
$$\lim_{x\to 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x\sqrt{1+\sin^2 x}-x}$$
。

$$= \lim_{x \to 0} \sqrt{1 + \tan x} - \sqrt{1 + \sin x} \cdot \lim_{x \to 0} \frac{1}{x\sqrt{1 + \sin^2 x} - x}$$

$$= \lim_{x \to 0} \frac{\tan x - \sin x}{\sqrt{1 + \tan x} + \sqrt{1 + \sin x}} \cdot \lim_{x \to 0} \frac{x\sqrt{1 + \sin^2 x} + x}{x^2(1 + \sin^2 x) - x^2}$$

$$=\lim_{x\to 0}\frac{\tan x-\sin x}{\sqrt{1+\tan x}+\sqrt{1+\sin x}}\cdot\lim_{x\to 0}\frac{\sqrt{1+\sin^2 x}+1}{x\sin^2 x}$$

$$= \lim_{x \to 0} \frac{\tan x - \sin x}{2} \cdot \lim_{x \to 0} \frac{2}{x \sin^2 x}$$

$$= \lim_{x \to 0} \frac{\tan x - \sin x}{x \sin^2 x} = \lim_{x \to 0} \frac{1 - \cos x}{x \cos x \sin x} = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{x^2} = \frac{1}{2}.$$

2.2.7 换元法

换元法本身没什么技巧性,主要是更方便计算。最重要的是获取到共有的最 大因子进行替换。

例题: 求极限
$$\lim_{x\to 1^-} \ln x \ln(1-x)$$
。
当 $x\to 1^-$ 时, $\ln x$ 趋向 0, $\ln(1-x)$ 趋向 $-\infty$ 。
又 $x\to 0$, $\ln(1+x)\sim x$,所以 $x\to 1$, $\ln x\sim x-1$:
$$\lim_{x\to 1^-} \ln x \ln(1-x) = \lim_{x\to 1^-} (x-1) \ln(1-x) \xrightarrow{t=1-x} = -\lim_{t\to 0^+} t \ln t$$
$$= -\lim_{t\to 0^+} \frac{\ln t}{\frac{1}{t}} = -\lim_{t\to 0^+} \frac{\frac{1}{t}}{-\frac{1}{t^2}} = \lim_{t\to 0^+} t = 0$$

2.2.8 倒代换

2.2.8.1 含有分式

当极限式子中含有分式中一般都需要用其倒数,把分式换成整式方便计算。

例题: 求极限
$$\lim_{x\to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}}$$

$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}} = \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}} \cdot 2x^{-3}}{100x^{99}} = \lim_{x \to 0} \frac{1}{50} \lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{102}}$$

使用洛必达法则下更复杂,因为分子的幂次为负数,导致求导后幂次绝对值 越来越大,不容易计算。

使用倒代换再洛必达降低幂次,令
$$t = \frac{1}{x^2}$$

$$\lim_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}} = \lim_{t \to +\infty} \frac{e^{-t}}{t^{-50}} = \lim_{t \to +\infty} \frac{t^{50}}{e^t} = \lim_{t \to +\infty} \frac{50t^{49}}{e^t}$$

 $= \lim_{t \to +\infty} \frac{50!}{e^t} = 0$

$$= \lim_{t \to +\infty} \frac{1}{e^t} = 0$$
 例题:求极限 $\lim_{x \to +\infty} [x^2(e^{\frac{1}{x}} - 1) - x]$ 。

该式子含有分数, 所以尝试使用倒数代换:

$$\lim_{x \to +\infty} \left[x^2 \left(e^{\frac{1}{x}} - 1 \right) - x \right] \xrightarrow{\stackrel{x}{\Leftrightarrow} x = \frac{1}{t}} \lim_{t \to 0^+} \left(\frac{e^t - 1}{t^2} - \frac{1}{t} \right) = \lim_{t \to 0^+} \frac{e^t - 1 - t}{t^2}$$

$$\xrightarrow{\text{$\frac{x}{$}$}} \lim_{t \to 0^+} \frac{\frac{1}{2} t^2}{t^2} = \frac{1}{2}$$

2.2.8.2 $\infty-\infty$ 型

2.2.8.3 $\infty \cdot \infty$ 型

2.2.9 拆项

拆项需要根据式子形式进行, 所以很难找到普遍规律。

2.2.9.1 积拆项

例题: 求
$$\lim_{n\to\infty} \frac{(n+1)(n+2)(n+3)\cdots(n+6)}{6n^6}$$
。 需要将分子和分母都拆为 6 项:
$$= \frac{1}{6} \lim_{n\to\infty} \frac{n+1}{n} \times \frac{n+2}{n} \times \cdots \frac{n+6}{n} = \frac{1}{6} \lim_{n\to\infty} (1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{6}{n}) = \frac{1}{6}$$
。 当极限式子中出现不知道项数的 n 时,一般需要使用拆项,把项重新组合。一般的组合是根据等价无穷小。

2.2.9.2 和拆项

而对于复杂的具有同一结构的和的式子也可以考虑拆项。
例题:求极限
$$\lim_{x\to 0} \left(\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}\right)^{\frac{e}{x}}$$
。 $(n\in N^+)$ 这里可以使用等价无穷小 $e^x-1\sim x$ 。
 $\lim_{x\to 0} \left(\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}\right)^{\frac{e}{x}}=e^{\lim_{x\to 0}\frac{e}{x}\ln\left(\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}\right)}$
 $=e^{\lim_{x\to 0}\frac{e}{x}\left(\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}-1\right)}=e^{\lim_{x\to 0}\frac{e}{x}\left(\frac{e^x+e^{2x}+\cdots+e^{nx}-n}{n}\right)}$
 $=e^{\frac{e}{n}\lim_{x\to 0}\left(\frac{e^x-e^{2x}+e^{2x}+\cdots+e^{nx}-1}{n}\right)}=e^{\frac{e}{n}\ln(1+2+\cdots+n)}=e^{\frac{e}{n}\cdot\frac{n(1+n)}{2}}=e^{\frac{e(1+n)}{2}}$
例题:求 $\lim_{x\to 0}\frac{1-\cos x\sqrt{\cos 2x}\sqrt{\cos 3x}}{\ln\cos x}$
可以使用 $\cos x-1\sim\frac{x^2}{2}$ 。
$$\lim_{x\to 0}\frac{1-\cos x\sqrt{\cos 2x}\sqrt{\cos 3x}}{\ln\cos x}$$
 $=\lim_{x\to 0}\frac{1-\cos x+\cos x-\cos x\sqrt{\cos 2x}\sqrt{\cos 3x}}{-\frac{x^2}{2}}$
 $=\lim_{x\to 0}\frac{x^2}{2}+\frac{\cos x(1-\sqrt{\cos 2x})\sqrt{\cos 3x}}{-\frac{x^2}{2}}$
 $=-1+\lim_{x\to 0}\frac{(1-\sqrt{\cos 2x})+\sqrt{\cos 2x}-\sqrt{\cos 2x}\sqrt[3]{\cos 3x}}{-\frac{x^2}{2}}$

$$= -1 + \lim_{x \to 0} \frac{-\frac{1}{2}(\cos 2x - 1) + \sqrt{\cos 2x}(1 - \sqrt[3]{\cos 3x})}{-\frac{x^2}{2}}$$
$$= -1 + \lim_{x \to 0} \frac{-\frac{1}{2}(-\frac{4x^2}{2}) + \left(-\frac{1}{3}\right)\left(-\frac{9x^2}{2}\right)}{-\frac{x^2}{2}} = -6$$

2.3 极限计算形式

极限相关计算形式主要分为下面六种:

- 1. 未定式: 直接根据式子计算极限值。
- 2. 极限转换: 根据已知的极限值计算目标极限值。
- 3. 求参数: 已知式子的极限值, 计算式子中未知的参数。
- 4. 极限存在性: 根据式子以及极限存在性计算极限或参数。
- 5. 极限唯一性:式子包含参数,根据唯一性计算两侧极限并求出参数与极限 值。
- 6. 函数连续性:根据连续性与附加条件计算极限值或参数。
- 7. 迭代式数列: 根据数列迭代式计算极限值。
- 8. 变限积分: 根据变限积分计算极限值。

2.3.1 极限不定式类型

七种:
$$\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, \infty^0, 0^0, 1^\infty$$
。

①其中 $\frac{0}{0}$ 为洛必达法则的基本型。 $\frac{\infty}{\infty}$ 可以类比 $\frac{0}{0}$ 的处理方式。 $0\cdot\infty$ 可以转为 $\frac{0}{\frac{1}{\infty}}=\frac{0}{0}=\frac{\infty}{\frac{1}{0}}=\frac{\infty}{\infty}$ 。设置分母有原则,简单因式才下放(简单:幂函数,e 为底的指数函数)。

62∞ - ∞ 可以提取公因式或通分,即和差化积。

 $3\infty^{0}, 0^{0}, 1^{\infty}$, 就是幂指函数。

$$u^{v} = e^{v \ln u} = \begin{cases} \infty^{0} & \to e^{0 \cdot + \infty} \\ 0^{0} & \to e^{0 \cdot - \infty} \\ 1^{\infty} & \to e^{\infty \cdot 0} \end{cases}$$

$$\therefore \lim u^v = e^{\lim v \cdot \ln u} = e^{\lim v (u-1)}$$

综上,无论什么样的四则形式,都必须最后转换为商的形式。

2.3.2 极限转换

整体换元 2.3.2.1

最常用的方式就是将目标值作为一个部分,然后对已知的式子进行替换。

例题: 已知
$$\lim_{x\to 0} \frac{\ln(1-x) + xf(x)}{x^2} = 0$$
,求 $\lim_{x\to 0} \frac{f(x)-1}{x}$ 。

令目标
$$\frac{f(x)-1}{x}=t$$
, $f(x)=tx+1$ 。

$$\lim_{x \to 0} \frac{\ln(1-x) + xf(x)}{x^2} = \lim_{x \to 0} \frac{\ln(1-x) + tx^2 + x}{x^2} ($$
 泰勒展开 $)$

$$= \lim_{x \to 0} \frac{-x - \frac{x^2}{2} + tx^2 + x}{x^2} = \lim_{x \to 0} \frac{\left(t - \frac{1}{2}\right)x^2}{x^2} = \lim_{x \to 0} \left(t - \frac{1}{2}\right) = 0$$

$$\therefore \lim_{x \to 0} t = \lim_{x \to 0} \frac{f(x) - 1}{x} = \frac{1}{2} \circ$$

2.3.2.2 关系转换

例题: 如果
$$\lim_{x\to 0} \frac{x-\sin x+f(x)}{x^4}$$
 存在,则 $\lim_{x\to 0} \frac{x^3}{f(x)}$ 为常数多少?

例题: 如果
$$\lim_{x\to 0} \frac{x \sin x + f(x)}{x^4}$$
 存在,则 $\lim_{x\to 0} \frac{x}{f(x)}$ 为常的 由 $\lim_{x\to 0} \frac{x \sin x + f(x)}{x^4} = A$,而目标是 x^3 ,所以需要变形:
$$\lim_{x\to 0} \frac{x \sin x + f(x)}{x^4} = A$$

$$\lim_{x \to 0} \frac{x \sin x + f(x)}{x^4} = A$$

$$\lim_{x \to 0} \frac{x \sin x + f(x) \cdot x}{x^4} = A \cdot \lim_{x \to 0} x = 0$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} + \lim_{x \to 0} \frac{f(x)}{x^3} = 0$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^3} + \lim_{x \to 0} \frac{f(x)}{x^3} = 0$$

泰勒展开:
$$x - \sin x = \frac{1}{6}x^3$$

$$\lim_{x \to 0} \frac{f(x)}{x^3} = -\frac{1}{6}$$

$$\lim_{x \to 0} \frac{x^3}{f(x)} = -6$$

$$\lim_{x \to 0} \frac{x^3}{f(x)} = -6$$

2.3.2.3 脱帽法

$$\lim_{x \to x_0} f(x) \Leftrightarrow f(x) = A + \alpha(x), \lim_{x \to x_0} \alpha(x) = 0.$$

例题: 如果
$$\lim_{x\to 0} \frac{x-\sin x+f(x)}{x^4}$$
 存在,则 $\lim_{x\to 0} \frac{x^3}{f(x)}$ 为常数多少? 由 $\lim_{x\to 0} \frac{x\sin x+f(x)}{x^4}=A$ 脱帽: $\frac{x\sin x+f(x)}{x^4}=A+\alpha$ 。 得到: $f(x)=Ax^4+\alpha\cdot x^4-(x-\sin x)$ 。 反代入: $\lim_{x\to 0} \frac{f(x)}{x^3}=\lim_{x\to 0} \frac{Ax^4+\alpha\cdot x^4-x+\sin x}{x^3}=0+0-\frac{1}{6}=-\frac{1}{6}$ 。 $\therefore \lim_{x\to 0} \frac{x^3}{f(x)}=-6$ 。

2.3.3 求参数

因为求参数类型的题目中式子是未知的,所以求导后也是未知的,所以一般 不要使用洛必达法则,而使用泰勒展开。

一般极限式子右侧等于一个常数,或是表明高阶或低阶。具体的关系参考无 穷小比阶。

在求参数的时候要注意与 0 的关系。

2.3.3.1 常数

例题: 设
$$\lim_{x\to 0} \frac{\ln(1+x) - (ax + bx^2)}{x^2} = 2$$
,求常数 a,b。
根据泰勒展开式: $x\to 0, \ln(1+x) = x - \frac{x^2}{x} + o(x^2)$, $x - \ln(1+x) \sim \frac{1}{2}x^2 \sim 1 - \cos x$ 。
$$\lim_{x\to 0} \frac{\ln(1+x) - (ax + bx^2)}{x^2} = 2$$
$$= \lim_{x\to 0} \frac{(1-a)x - \left(\frac{1}{2} + b\right)x^2 + o(x^2)}{x^2} = 2 \neq 0$$
$$1 - a = 0; -\left(\frac{1}{2} + b\right) = 2$$
$$\therefore a = 1; b = -\frac{5}{2}$$
。

2.3.3.2 无穷小

若是求某个式子与另一个式子的某阶无穷小,则同右边等于常数一样,也需要使用泰勒展开。

例题: 确定常数 a 和 b,使得 $f(x) = x - (a + b \cos x) \sin x$ 当 $x \to 0$ 时关于 x 的 5 阶等价无穷小。

使用泰勒展开展开到五阶:

$$f(x) = x - (a + b\cos x)\sin x$$

$$= x - a \left[x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5) \right] - \frac{b}{2} \left[2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} + o(x^5) \right]$$
$$= (1 - a - b)x + \left(\frac{a}{6} + \frac{2b}{3} \right) x^3 - \left(\frac{a}{120} + \frac{2b}{15} \right) x^5 + o(x^5).$$

所以若为五阶无穷小,则五阶前的常数应该都为0。

所以
$$1-a-b=0$$
, $\frac{a}{6}+\frac{2b}{3}=0$, $\frac{a}{120}+\frac{2b}{15}\neq 0$ 。解得 $a=\frac{4}{3}$, $b=-\frac{1}{3}$ 。

2.3.4 极限存在性

一般会给出带有参数的例子,并给定一个点指明在该点极限存在,求参数。若该点极限存在,则该点两侧的极限都相等。

例题: 设函数
$$f(x) = \begin{cases} \frac{\sin x (b \cos x - 1)}{e^x + a}, & x > 0 \\ \frac{e^x + a}{\ln(1 + 3x)}, & x < 0 \end{cases}$$
 在 $x = 0$ 处极限存在,

则 a, b 分别为。

解: 首先根据极限在 x = 0 存在,且极限的唯一性。分段函数在 0 两侧的极限值必然相等。

$$\because \lim_{x \to 0^{-}} \frac{\sin x}{\ln(1+3x)} = \lim_{x \to 0^{-}} \frac{\sin x}{3x} = \frac{1}{3} = \lim_{x \to 0^{+}} \frac{\sin x (b\cos x - 1)}{e^{x} + a} \circ$$

又 $\lim_{x\to 0^+} \frac{\sin x(b\cos x-1)}{e^x+a}$ 的分母的 e^x 当 $x\to 0^+$ 时 $e^x\to 1$,假如 $a\neq -1$,则 $e^x+a\neq 0$,则为一个常数。

从而提取常数因子: $\lim_{x\to 0^+} \frac{\sin x(b\cos x-1)}{e^x+a} = \frac{1}{1+a} \lim_{x\to 0^+} \sin x(b\cos x-1)$,这时候 $\sin x$ 是趋向 0 的,而 $b\cos x-1$ 无论其中的 b 为何值都是趋向一个常数或 0,这时候他们的乘积必然为无穷小,从而无法等于 $\frac{1}{3}$ 这个常数。

∴
$$a = -1$$
,从而让极限式子变为一个商的形式:

$$\begin{split} &\lim_{x \to 0^+} \frac{\sin x (b \cos x - 1)}{e^x + a} = \lim_{x \to 0^+} \frac{\sin x (b \cos x - 1)}{e^x - 1} = \lim_{x \to 0^+} \frac{\sin x (b \cos x - 1)}{x} \\ &= \lim_{x \to 0^+} b \cos x - 1 = b - 1 = \frac{1}{3} \\ &\therefore a = -1, b = \frac{4}{3} \, \circ \end{split}$$

2.3.5 极限唯一性

若极限存在则必然唯一。

例题:设 a 为常数,
$$\lim_{x\to 0} \left(\frac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1}+a \cdot \arctan \frac{1}{x}\right)$$
存在,求出极限值。
因为求 $x\to 0$,所以需要分两种情况讨论:

$$\begin{split} &\lim_{x\to 0^+} \left(\frac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1} + a \cdot \arctan\frac{1}{x}\right) \\ &= \lim_{x\to 0^+} \left(\frac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1}\right) + \lim_{x\to 0^+} \left(a \cdot \arctan\frac{1}{x}\right) \\ &= \lim_{x\to 0^+} \left(\frac{0\cdot \left(e^{\frac{2}{x}}\right)^2 + e^{\frac{1}{x}}-\pi}{1\cdot \left(e^{\frac{2}{x}}\right)^2 + 1}\right) + a \cdot \frac{\pi}{2} = a \cdot \frac{\pi}{2} \\ &\lim_{x\to 0^-} \left(\frac{e^{\frac{1}{x}}-\pi}{e^{\frac{2}{x}}+1} + a \cdot \arctan\frac{1}{x}\right) = -\pi + a \cdot \left(-\frac{\pi}{2}\right) = -\pi - \frac{\pi}{2} \cdot a \\ & \text{因为极限值具有唯一性,所以} -\pi - \frac{\pi}{2}a = \frac{\pi}{2}a, \text{所以} \ a = -1, \ \text{极限值为} -\frac{\pi}{2}. \end{split}$$

2.3.6 函数连续性

函数的连续性代表:极限值 = 函数值。所以函数的连续性需要靠极限完成。

2.3.6.1 极限判连续性

题目给出函数,往往是分段函数,然后判断分段点的连续性。

例题: 讨论函数
$$f(x) = \begin{cases} \left[\frac{(1+x)^{\frac{1}{x}}}{e}\right]^{\frac{1}{x}}, & x>0 \\ e^{-\frac{1}{2}}, & x\leqslant 0 \end{cases}$$
 在 $x=0$ 处的连续性。
$$E^{-\frac{1}{2}}, & x\leqslant 0 \end{cases}$$
 因为 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \left[\frac{(1+x)^{\frac{1}{x}}}{e}\right]^{\frac{1}{x}} = e^{\lim_{x\to 0^+} \frac{1}{x}\ln\left[\frac{(1+x)^{\frac{1}{x}}}{e}\right]} \circ$
$$Z \lim_{x\to 0^+} \frac{1}{x}\ln\left[\frac{(1+x)^{\frac{1}{x}}}{e}\right] = \lim_{x\to 0^+} \frac{1}{x}\left[\frac{1}{x}\ln(1+x) - 1\right] = \lim_{x\to 0^+} \frac{\ln(1+x) - x}{x^2}$$

$$= \lim_{x\to 0^+} \frac{\frac{1}{1+x}-1}{2x} = \lim_{x\to 0^+} -\frac{1}{2(1+x)} = -\frac{1}{2} \circ$$

$$\therefore \lim_{x\to 0^+} f(x) = e^{-\frac{1}{2}} \circ$$

$$Z \lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} e^{-\frac{1}{2}} = e^{-\frac{1}{2}}, \ E f(0) = e^{-\frac{1}{2}} \circ$$
 从而 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} f(x) = f(0), \ \text{所以 } f(x) \text{ 在 } x=0 \text{ 处连续} \circ$

2.3.6.2 连续性求极限

例题: 函数在 f(x) 在 x=1 处连续,且 f(1)=1,求 $\lim_{x\to +\infty} \ln\left[2+f\left(x^{\frac{1}{x}}\right)\right]$ 。 根据题目,所求的 $\lim_{x\to +\infty} \ln\left[2+f\left(x^{\frac{1}{x}}\right)\right]$ 中,唯一未知的且会随着 $x\to +\infty$ 而变换就是 $f\left(x^{\frac{1}{x}}\right)$ 。如果我们可以求出这个值就可以了。

而我们对于 f(x) 的具体的关系是未知的,只知道 f(1) = 1。那么先需要考察 $\lim_{x \to +\infty} x^{\frac{1}{x}}$ 的整数最大值。

$$\lim_{x \to +\infty} x^{\frac{1}{x}} = e^{\lim_{x \to +\infty} \frac{\ln x}{x}} = e^{\lim_{x \to +\infty} \frac{1}{x}} = e^{0} = 1$$

$$\therefore \lim_{x \to +\infty} f(x^{\frac{1}{x}}) = f(1) = 1.$$

2.3.7 迭代式数列

2.3.7.1 数列表达式

最重要的是将迭代式进行变形。

例题: 数列 $\{a_n\}$ 满足 $a_0=0, a_1=1, 2a_{n+1}=a_n+a_{n-1}, n=1, 2, \cdots$ 。 计算 $\lim_{n\to\infty}a_n$ 。

首先看题目,给出的递推式设计到二阶递推,即存在三个数列变量,所以我们必须先求出对应的数列表达式。因为这个表达式涉及三个变量,所以尝试对其进行变型:

$$a_{n+1} - a_n = \frac{a_{n-1} - a_n}{2} = \left(-\frac{1}{2}\right) (a_n - a_{n-1}) = \left(-\frac{1}{2}\right)^2 (a_{n-1} - a_{n-2})$$

$$= \cdots$$

$$= \left(-\frac{1}{2}\right)^n (a_1 - a_0) = \left(-\frac{1}{2}\right)^n$$

然后得到了 $a_{n+1}-a_n=\left(-\frac{1}{2}\right)^n$,而需要求极限,所以使用列项相消法的逆运算:

$$a_{n} = (a_{n} - a_{n-1}) + (a_{n-1} - a_{n-2}) + \dots + (a_{1} - a_{0}) + a_{0}$$

$$= \left(-\frac{1}{2}\right)^{n-1} + \left(-\frac{1}{2}\right)^{n-2} + \dots + \left(-\frac{1}{2}\right)^{0}$$

$$= \frac{1 \cdot \left(1 - \left(-\frac{1}{2}\right)^{n}\right)}{1 - \left(-\frac{1}{2}\right)} = \frac{2}{3} \left[1 - \left(-\frac{1}{2}\right)^{n}\right]$$

$$\therefore \lim_{n \to \infty} a_{n} = \frac{2}{3}$$

2.3.7.2 单调有界准则

对于无法将关系式通过变形归纳为一般式的关系式,对于其极限就必须使 用单调有界准则来求出。

单调有界的数列必有极限。需要证明单调性和有界性,然后对式子求极限就能求出目标极限。

例题:
$$x_0 = 0$$
, $x_n = \frac{1 + 2x_{n-1}}{1 + x_{n-1}} (n \in N*)$, 求 $\lim_{n \to \infty} x_n$ 。

首先应该知道数列的趋向都是趋向正无穷。

自先应该知道数列的趋向都是趋向正无穷。
然后对关系式进行变形:
$$x_n = \frac{1+2x_{n-1}}{1+x_{n-1}} = 1 + \frac{x_{n-1}}{1+x_{n-1}} = 2 - \frac{1}{1+x_{n-1}}$$
。
首先证明单调性,令 $f(x) = 2 - \frac{1}{1+x}$ 。

$$\therefore f'(x) = \frac{1}{(x+1)^2} > 0$$
,则 $f(x)$ 单调递增。

所以不管 $x = x_{n-1}$ 或其他,f'(x) > 0, x_n 都是单调递增,则 $x_n \ge x_0 = 0$ 。

然后证明有界性, $:: x_n \ge 0$ 且单调, $:: x_n = 2 - \frac{1}{1 + x_n} \in [0, 2]$ 。

从而 x_n 有界。

所以根据单调有界定理, x_n 的极限存在。

对于关系式两边取极限:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1 + 2x_{n-1}}{1 + x_{n-1}} = \frac{1 + 2\lim_{n \to \infty} x_{n-1}}{1 + \lim_{n \to \infty} x_{n-1}} = \frac{1 + 2\lim_{n \to \infty} x_n}{1 + \lim_{n \to \infty} x_n} \,.$$

解该一元二次方程: $\lim_{n\to\infty} x_n = \frac{1\pm\sqrt{5}}{2}$,又根据保号性, $\lim_{n\to\infty} x_n > 0$ 。

$$\therefore \lim_{n \to \infty} x_n = \frac{1 + \sqrt{5}}{2} \, .$$

而许多题目只给出样子,连通项公式都不会给出。

例题: 求出数列
$$\sqrt{2}$$
, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2+\sqrt{2}}}$... 的极限。

根据数列样式,无法通过普通的通项公式来表达,所以需要考虑使用递推式 来表示: $x_{n+1} = \sqrt{2 + x_n}$.

首先证明有界性:

给定一个任意的正整数 k, 再根据递推式, 假定 $x_k < 2$, 所以 $x_{k+1} =$ $\sqrt{2+x_k} < \sqrt{2+2} = 2$ 。且 $x_1 = \sqrt{2}$ 满足假定,所以 $x_k < 2$ 对于任意的正 整数 k 都成立,所以 x_n 存在上界 2。

然后证明单调性,根据其递推式:

$$x_{n+1} - x_n = \sqrt{2 + x_n} - x_n = \frac{2 + x_n - x_n^2}{\sqrt{2 + x_n} + x_n} = \frac{-(x_n - 2)(x_n + 1)}{\sqrt{2 + x_n} + x_n}$$

又 $0 < x_n < 2$,从而上式子大于 0,从而数列单调递增。

所以根据单调有界定理,数列 $x_{n+1} = \sqrt{2 + x_n}$ 一定存在极限,令其极限值 $\lim_{n\to\infty} x_n = a \, \circ$

将递推式两边平方并取极限: $\lim_{n\to\infty} x_{n+1}^2 = \lim_{n\to\infty} (2+x_n)$ 。

从而 $a^2 = 2 + a$,得出 a = 2 (根据极限的保号性 -1 被舍去)。

2.3.8 变限积分极限

已知更改区间限制的积分 $s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\,\mathrm{d}x$, $s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$ 。