

第四讲 贝叶斯估计

CSDN学院 2017年7月

▶参数估计

- 给定模型类别 $p(x|\theta)$ 和数据 D , 选择与数据最 匹配的参数 θ : 参数估计
- 有多种方法可用来估计模型的参数
 - 矩估计法
 - 极大似然估计:频率学派
 - 贝叶斯方法:贝叶斯学派
 - 参数也是随机变量,可以讨论其分布

Outline

- 贝叶斯估计的基本思想
 - 先验、似然、后验、后验预测
- 常见分布参数的贝叶斯估计
 - 正态分布、Binomial分布、Multinomial分布
- 一些机器学习模型的参数估计
 - 线性回归、Logistic回归

▶贝叶斯估计

- MLE是频率学派估计参数的方法
 - MLE只是一个点估计
 - 估计的不确定性可以通过计算其方差确定(估计的分布只能根据其渐 近正态的性质假设为正态分布)
- 贝叶斯估计:参数也是随机变量,用概率分布描述其性质
 - 先验分布 (prior) $p(\theta)$: 在没有看到数据之前,参数的分布
 - 同MLE相同,似然为 $p(\mathcal{D}|\theta)$
 - 后验分布 (posterior) $p(\theta|\mathcal{D})$: 在看到数据后 \mathcal{D} , 对参数分布的更新

▶贝叶斯估计

- 设先验为: $p(\theta)$
 - 先验反映我们对参数取值的信念:偏好更简单或更光滑的模型
 - 如果不太确定参数的取值范围,实践中通常取一个分布范围较宽的分布,反映我们对参数的不确定性
- 似然为: $p(\mathcal{D}|\theta)$
- 则根据贝叶斯公式,得到参数的后验为

$$p(\theta | \mathcal{D}) = \frac{p(\mathcal{D} | \theta) p(\theta)}{p(\mathcal{D})} \propto p(\mathcal{D} | \theta) p(\theta)$$

- 参数估计不再是一个点估计,而是一个分布(信息更多)

▶贝叶斯估计

• 参数的后验估计为 $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) p(\theta)$

• 则后验预测为: $p(X=\tilde{x}|\mathcal{D}) = \int p(X=\tilde{x}|\theta) p(\theta|\mathcal{D}) d\theta$

- 对参数0积分:用参数后验进行加权平均

▶ Beta-binomial模型——先验

- 假设 $X_i \sim \text{Ber}(\theta)$,则IID数据 $\mathcal{D} = \{X_1, ..., X_N\}$ 似然为 $p(\mathcal{D}|\theta) = \theta^{N_1} (1-\theta)^{N_0}$
- - 注意: $N_1 \sim \text{Bin}(N_1 | \theta, N_1 + N_0)$
- 为了计算方便,参数 θ 先验的形式最好与似然相同:共轭 先验,即 $p(\theta) = \theta^{\gamma_1} (1-\theta)^{\gamma_2}$
- 在Binomial模型中,共轭先验为Beta分布: Beta $(\theta \mid a,b) \propto \theta^{a-1} (1-\theta)^{b-1}$
 - a, b: 超参数

▶ Beta-binomial模型——后验

• 以然为
$$p(\mathcal{D}|\theta) = \theta^{N_1} (1-\theta)^{N_0}$$

$$\left| \operatorname{Beta}(\theta \mid a, b) \propto \theta^{a-1} (1 - \theta)^{b-1} \right|$$

- 先验为Beta分布: $p(\theta|a,b) = \theta^{a-1}(1-\theta)^{b-1}$

则后验
$$p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) p(\theta)$$

$$\sim \theta^{N_1} (1-\theta)^{N_0} \theta^{a-1} (1-\theta)^{b-1}$$

$$= \theta^{N_1+a-1} (1-\theta)^{N_0+b-1}$$

$$\propto \operatorname{Bin}(N_1 | N_1 + N_0, \theta) \operatorname{Beta}(\theta | a, b)$$

$$\propto \operatorname{Beta}(\theta | N_1 + a, N_0 + b)$$

- 为Beta分布 Beta $(\theta | N_1 + a, N_0 + b)$
 - 将超参数加到经验计数上:先验的强度(先验的有效样本大小) 为伪计数的和 a+b , 与样本数 N_1+N_0 的作用类似

▶ 例:

MLE等价于先验为Beta (1,1)的后验

• 例:

$$N_1 = 3, N_0 = 17$$

先验 Beta(2,2) 后验为 Beta(5,19)

$$N_1 = 11, N_0 = 13$$

先验 Beta(5,2) 后验为 Beta(16,15)

▶ Beta-binomial模型——后验点估计

• 后验为 $p(\theta|\mathcal{D}) \propto \text{Beta}(\theta|N_1+a,N_0+b)$. 则最大后验估计 (Maximum A Posteriori, MAP)为

$$\hat{\theta}_{MAP} = \frac{a + N_1 - 1}{a + b + N - 2}$$

- 若采用均匀先验,则MAP退化为MLE: $\hat{\theta}_{MAP} = \frac{N_1}{\lambda_T} = \hat{\theta}_{MLE}$
- 后验均值: $\bar{\theta} = \frac{a + N_1}{1 + N_2}$

• 可视为先验均值和MLE的加权平均,令
$$m = \frac{a}{a+b+N}$$

$$\bar{\theta} = \frac{a+N_1}{a+b+N} = \frac{am+N_1}{a+b+N} = \frac{a}{a+b+N} m + \frac{N}{a+b+N} \times \frac{N_1}{N}$$

► Recall: Beta分布

• Beta
$$(\theta | a, b) = \frac{1}{B(a, b)} \theta^{a-1} (1-\theta)^{b-1}$$

$$B(a, b) := \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

$$\mathbb{E}(\theta) = \frac{a}{a+b}, \quad \text{mode}[\theta] = \frac{a-1}{a+b-2}$$

$$\mathbb{V}(\theta) = \frac{ab}{(a+b)^2(a+b+1)}$$

▶ Beta-binomial模型——后验方差

- 后验为 $p(\theta|\mathcal{D}) \propto \text{Beta}(\theta|N_1+a,N_0+b)$,则方差为 $\mathbb{V}(\theta|\mathcal{D}) = \frac{(a+N_1)(b+N_0)}{(a+b+N_1+N_0)^2(a+b+N_1+N_0+1)}$
- 当 $N\gg a,b$ 时,

$$\mathbb{V}(\theta \mid \mathcal{D}) = \frac{N_1 N_0}{N^2 N} = \frac{\hat{\theta}(1 - \hat{\theta})}{N}$$

- 结果同MLE。
- 标准差为 $\sigma = \sqrt{\mathbb{V}(\theta \mid \mathcal{D})}$

▶ Beta-binomial模型——在线学习

• 序列训练:有两批数据 \mathcal{D}_a 和 \mathcal{D}_b 顺序来更新模型,其充分 统计量分别为 N_1^a,N_0^a 和 N_1^b,N_0^b . 则

$$\begin{split} p\big(\theta \,|\, \mathcal{D}_{\!a}, \mathcal{D}_{\!b}\big) &\propto p\big(\mathcal{D}_{\!b} \,|\, \theta\big) \, p\big(\theta \,|\, \mathcal{D}_{\!a}\big) \\ &\propto & \text{Bin}\big(N_{\!1}^b \,|\, \theta, N_{\!1}^b + N_{\!0}^b\big) \, \text{Beta}\big(\theta \,|\, N_{\!1}^a + a, N_{\!0}^a + b\big) \\ &\propto & \text{Beta}\big(\theta \,|\, N_{\!1}^a + N_{\!1}^b + a, N_{\!0}^a + N_{\!0}^b + b\big) \end{split}$$

• 这两批数据合在一起更新模型时,令 $N_1 = N_1^a + N_1^b, N_0 = N_0^a + N_0^b$

$$p(\theta | \mathcal{D}_{a}, \mathcal{D}_{b}) \propto \text{Bin}(N_{1} | \theta, N_{1} + N_{0}) \text{Beta}(\theta | a, b)$$

$$\propto \text{Beta}(\theta | N_{1} + a, N_{0} + b)$$

$$\propto \text{Beta}(\theta | N_{1}^{a} + N_{1}^{b} + a, N_{0}^{a} + N_{0}^{b} + b)$$

▶ Beta-binomial模型——后验预测

- 后验为 $p(\theta|\mathcal{D}) \propto \text{Beta}(N_1 + a, N_0 + b)$
- 后验预测为

$$p(\tilde{x}=1|\mathcal{D}) = \int_0^1 p(\tilde{x}=1|\theta) p(\theta|\mathcal{D}) d\theta$$
$$= \int_0^1 \theta \text{Beta}(\theta|N_1 + a, N_0 + b) d\theta = \mathbb{E}(\theta|\mathcal{D}) = \frac{a + N_1}{a + b + N}$$

▶ Dirichlet-multinomial模型——先验

- 将两种输出可能(投掷硬币)推广到投掷*K*面骰子
- 观测到骰子投掷结果 $\mathcal{D}=\{x_1,...,x_N\}$,其中 $x_i \in \{1,...,K\}$,则 multinomial似然为

$$p(\mathcal{D}|\mathbf{\theta}) = \prod_{k=1}^K \theta_k^{N_k}$$

- 其中 $N_k = \sum_{i=1}^N \mathbb{I}(x_i = k)$ 表示N次试验中第k面出现的次数
- 共轭先验为Dirichlet分布: $Dir(\mathbf{\theta}|\mathbf{\alpha}) = \frac{1}{B(\mathbf{\alpha})} \prod_{k=1}^{K} \theta_k^{a_k-1}$

▶ Dirichlet-multinomial模型——后验

• 则后验为: $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) p(\theta)$

$$\propto \prod_{k=1}^{K} \theta_k^{N_k} \prod_{k=1}^{K} \theta_k^{a_k-1} = \prod_{k=1}^{K} \theta_k^{N_k+a_k-1}$$

$$\propto \operatorname{Dir}(\mathbf{\theta} | \alpha_1 + N_1, ..., \alpha_K + N_K)$$

- 后验:将超参数 α_k 加到经验计数 N_k 上
- MAP为 $\hat{\theta}_k = \frac{\alpha_k + N_k 1}{\alpha_0 + N K}$

当
$$\alpha_k = 1$$
 时,退化为MLE $\hat{\theta}_{MAP} = \frac{N_k}{N} = \hat{\theta}_{MLE}$

▶ Dirichlet-multinomial模型——后验预测

• 后验预测为

$$\begin{split} p(\tilde{x} = j \mid \mathcal{D}) &= \int p(\tilde{x} = j \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) d\boldsymbol{\theta} \\ &= \int p(\tilde{x} = j \mid \theta_j) \Big[\int ... \int p(\boldsymbol{\theta}_{-j} \mid \theta_j) d\boldsymbol{\theta}_{-j} \Big] d\theta_j \\ &= \int \theta_j p(\theta_j \mid \mathcal{D}) d\theta_j = \mathbb{E}(\theta_j \mid \mathcal{D}) = \frac{\alpha_j + N_j}{\sum_k \alpha_k + N} \end{split}$$

▶例: Bag of Words语言模型

- mary lamb little big fleece white black snow rain unk 例:假设词典为 10
- Mary had a little lamb, little lamb, little lamb, 给定序列 Mary had a little lamb, its fleece as white as snow
- 得到每个单词的使用次数(直方图)为

用 N_j 表示单词j出现的次数, θ 的先验用 $Dir(\alpha)$ 表示,则后验预测为

$$p(\tilde{x} = j \mid \mathcal{D}) = \mathbb{E}(\theta_j \mid \mathcal{D}) = \frac{\alpha_j + N_j}{\sum_k \alpha_k + N}$$

▶共轭先验

• 若后验 $p(\theta|\mathcal{D}) \in \mathcal{F}$, 则称先验 $p(\theta)$ 与似然 $p(\mathcal{D}|\theta) \in \mathcal{F}$ 共轭

Likelihood	Prior
Binomial/Bernoulli	Beta
Multinomial/ multinoulli	Dirichlet
Poisson	Gamma
MVN (fixed Σ)	MVN (Multiple Variables Normal)
MVN (fixed μ)	Wishart
MVN (general case)	MVN-Wishart
Exponential family	Conjugate
Linear regression (fixed σ 2)	MVN
Linear regression (general case)	MVN-Gamma

► Recall:线性回归

- 例: $Y = \sin(2\pi X) + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, 0.3^2)$ N = 10个数据点,用9阶多项式拟合

- 系数有+、有-、绝对值非常大
- 曲线波动很大:为了拟合数据点
- 如果数据有一点小的变化,得到的拟 合结果会有很大不同 → 结果不稳定

系数:

0.35 , 232.37 , -5321.83 , 48568.31 , -231639.30 640042.26 , -1061800.52 , 1042400.18 , -557682.99 , 125201.43

▶高斯先验

• 先验:偏向较小的系数值,从而得到的曲线比较平滑: 0均值的高斯: $w_j \sim \mathcal{N}\left(0,\tau^2\right)$

高斯:
$$W_j \sim \mathcal{N}\left(0, \tau^2\right)$$

$$p(\mathbf{w}) = \prod_{j=1}^{D} \mathcal{N}\left(w_{j} \mid 0, \tau^{2}\right) \propto \exp\left(-\frac{1}{2\tau^{2}} \sum_{j=1}^{D} \mathbf{w}_{j}^{2}\right) = \exp\left(-\frac{1}{2\tau^{2}} \left[\mathbf{w}^{T} \mathbf{w}\right]\right)$$

其中 1/22控制先验的强度

•
$$p(y_i | \mathbf{x}_i, \mathbf{w}, \sigma^2) = \mathcal{N}(y_i | \mathbf{w}^T \mathbf{x}_i, \sigma^2)$$

$$p(\mathbf{y} | \mathbf{X}, \mathbf{w}, w_0, \sigma^2) = \mathcal{N}(\mathbf{y} | \mathbf{X}\mathbf{w} + w_0 \mathbf{1}_N, \sigma^2 \mathbf{I}_N)$$

$$\propto \exp \left(-\frac{1}{2\sigma^2} \left[\left(\mathbf{y} - \left(\mathbf{X}\mathbf{w} + w_0 \mathbf{1}_N\right)\right)^T \left(\mathbf{y} - \left(\mathbf{X}\mathbf{w} + w_0 \mathbf{1}_N\right)\right) \right] \right)$$
RSS(\mathbf{w})

▶岭回归

 $p(\mathbf{w}, w_0 \mid \mathbf{X}, \mathbf{y}, \sigma^2) \propto \exp\left(-\frac{1}{2\sigma^2} \left[(\mathbf{y} - \mathbf{X}\mathbf{w} - w_0 \mathbf{1}_N)^T (\mathbf{y} - \mathbf{X}\mathbf{w} - w_0 \mathbf{1}_N) \right] - \frac{1}{2\tau^2} \left[\mathbf{w}^T \mathbf{w} \right] \right)$

• MAP等价于最小目标函数:

$$J(\mathbf{w}) = \sum_{i=1}^{N} \left(y_i - \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) \right)^2 + \lambda \underbrace{\| \mathbf{w} \|_2^2}_{\text{E则项,}}$$
 $= \left(\mathbf{y} - \left(\mathbf{X} \mathbf{w} + w_0 \mathbf{1}_N \right) \right)^T \left(\mathbf{y} - \left(\mathbf{X} \mathbf{w} + w_0 \mathbf{1}_N \right) \right) + \lambda \mathbf{w}^T \mathbf{w}$

- 其中 $\lambda = \sigma^2/\tau^2$
- 称为岭回归,或正则化的最小二乘
- 注意: w_0 没有被正则(w_0 只影响函数的高度,不影响复杂性)

▶例:多项式回归

• 例:

• 系数值:

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

▶例:多项式回归(cont.)

- 训练误差 vs 测试误差:
 - λ增加(模型越简单),训练误差总是增加

- λ增加,测试误差是U形,有一个最低点 → 最佳模型 (模型复杂度适中)

- λ的选择: 交叉验证(CV)

►Laplace先验

• 线性回归中参数的先验还可以设置为Laplace先验:

$$p(\mathbf{w} \mid \lambda) = \prod_{j=1}^{D} \operatorname{Lap}(w_j \mid 0, 1/\lambda) \propto \prod_{j=1}^{D} \exp(-\lambda |w_j|) = \exp(-\lambda \sum_{j=1}^{D} |w_j|)$$

• 似然为:

$$p(y_i \mid \mathbf{x}_i, \mathbf{w}, \sigma^2) = \mathcal{N}(y_i \mid \mathbf{w}^T \mathbf{x}_i, \sigma^2) \propto \exp\left(-\frac{1}{2\sigma^2} \left(y_i - \left(\mathbf{w}^T \mathbf{x}_i + w_0\right)\right)^2\right)$$

• 后验为:

$$p(\mathbf{w}, w_0 \mid \mathbf{X}, \mathbf{y}, \sigma^2) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} \left(y_i - \left(\mathbf{w}^T \mathbf{x}_i + w_0\right)\right)^2 - \sum_{j=1}^{D} \lambda \left|w_j\right|\right)$$

► Laplace先验 (cont.)

- 后验 $p(\mathbf{w}, w_0 | \mathbf{X}, \mathbf{y}, \sigma^2) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i (\mathbf{w}^T \mathbf{x}_i + w_0))^2 \sum_{j=1}^{D} \lambda |w_j|\right)$ 不是已知分布的概率函数③)
- 最大后验估计MAP等价于L1正则的线性回归(Lasso):

$$J(\mathbf{w}) = \underbrace{\sum_{i=1}^{N} \left(y_i - \left(\mathbf{w}^T \mathbf{x}_i + w_0 \right) \right)^2}_{RSS(\mathbf{w})} + \lambda \mathbf{w}$$
正则项, 复杂性惩罚

- 当 λ 取合适值时,w变得稀疏(有些系数为0)

▶案例:波士顿房价预测

• L2L1LR_bostonhouseprice.ipynb

▶ 贝叶斯Logistics回归

- 类似线性回归, Logistics回归也可以在MLE的基础上加正则
- 似然: $p(y_i = 1 | \mathbf{x}_i, \mathbf{w}) = \text{sigm}(y | \mathbf{w}^T \mathbf{x}_i)$
- 但没有共轭先验,通常取先验: $p(\mathbf{w}) = \mathcal{N}(\mathbf{m}_0, \mathbf{V}_0)$
- 事实上,正则对分类尤其重要

 - Skearn中LogisticRegression缺省正则参数C=1,必须有正则
- L2正则的目标函数为: $J'(\mathbf{w}) = NLL(\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$

- 也可以和L1正则结合

Example: LR

▶案例:蘑菇毒性预测

• L2L1LR_Mushroom.ipynb

▶总结

• 贝叶斯推断

- -输入:数据 \mathcal{D} 和似然 $p(\mathcal{D}|\theta)$
- 确定先验:为了计算方便,通常采用共轭先验 $p(\theta)$
- 根据贝叶斯公式, 计算后验 $p(\theta|\mathcal{D}) \propto p(\mathcal{D}|\theta) p(\theta)$
 - 模型训练
- 根据学习到的模型进行预测(后验预测)
 - 模型测试

THANK YOU

