

Rajshahi University of Engineering & Technology

Heaven's Light is Our Guide

Feature Mining for Effective Subspace Detection of Hyperspectral Image Classification

Presented By

Md. Tanvir Ahmed

Roll: 123086

Supervised by

Dr. Md. Ali Hossain Assistant Professor Department of CSE

August 26, 2017

Outlines

- Remote Sensing
- Hyperspectral Images
- Objectives
- Proposed Method
- Feature Extraction
- Feature Selection
- Classification
- Conclusion
- Future Work
- References

Remote Sensing

What is remote sensing?

- ❖ Acquisition of information about an object without making physical contact with the object
- Used in geography, land surveying, military, intelligence and planning

- ☐ Types:
 - □ Passive Remote Sensing
 - □ Active Remote Sensing

Remote Sensing(Con't)

Figure: Electromagnetic Spectrum

- Visible and infrared range of wavelengths represents only part of the story in remote sensing
- Can also image the earth in microwave range

Figure: Surveillance aircraft

Figure: Remote sensing satellite

Hyperspectral Images

Figure: Two dimensional projection of Hyperspectral cube [5]

Figure: Technical characteristics of digital image data [2]

Challenges with Hyperspectral Images

- Curse of dimensionality
- High correlation among data
- ❖ All the feature are not equally important

Figure: Curse of dimensionality [4]

Motivations and Objectives

- > Extract only relevant features
- Address curse of dimensionality
- ➤ Improve classification accuracy

Proposed Method

Collaboration of feature mining through feature extraction and feature selection

❖ Feature Extraction:

Principal Component Analysis(PCA)

❖ Feature Selection:

Normalized Mutual Information(nMI)

Classification:

Kernel Support Vector Machine(KSVM)

Dataset Description

❖ Dataset: AVIRIS 92AV3C

❖ Spectral Resolution:

 0.4μ m- 2.5μ m

❖ Spatial Resolution: 30m

❖ Band: 220

Classes: 16

Data Set: Captured Date:

June 12, 1992 Indian Pine Test Site 3 Version 1.0

220 Band AVIRIS
Hyperspectral Image
Each band has 145 x 145
=21025 pixel

- 1. Alfalfa
- 2. Com-notill
- 3. Com-min
- 4. Com
- 5. Grass/Pasture
- 6. Grass/Trees
- 7. Grass/pasture-mowed
- 8. Hay-windrowed
- 9. Oats
- 10. Soybeans-notill
- 11. Soybeans-min
- 12. Soybean-clean
- 13. Wheat
- 14. Woods
- 15. Bldg-Grass-Tree-Drives
- 16. Stone-steel towers

Feature Extraction

- Feature means unique measurable characteristics of an image/observed object (e.g., each band)
- Feature extraction means creating new features which have the essence of original features.
- Feature extraction helps to obtain relevant information from large dataset.

Principal Component Analysis(PCA)

- Perform orthogonal transformation
- Data are ordered based on high variance
- Dimensionality reduced by taking only first few components
- Classification accuracy Increased from the original set

Feature extraction using Principal Component Analysis(PCA)

- Principal Component Analysis (PCA) is a process of reduction input dimensionality.
 PC2 can be removed
- Transformed data is uncorrelated

Feature extraction using Principal Component Analysis(PCA)(Con't)

All the steps we need to perform Principal Component Analysis[1]:

- Step 1: Input the image
- Step 2: Subtract the mean
- Step 3: Calculate the covariance matrix
- Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix
- Step 5: Choose components and forming a feature vector FeatureVector = (eig1 eig2 eig3...eign)
- Step 6: Derive the new data set

FinalData = RowFeatureVector x RowDataAdjust

Original Band

Cumulative variance of Transformed data

After principal component analysis first **10** components have **99.75%** variance of the total

Figure: Cumulative variance

Limitations of PCA

- Depends on overall variance. Assumes high variance means high information
- Here though PC 8 has high variance but it contains less information of image contents.
- On the other hand PC 9 has low variance but it contains more information of image contents.

PC8

Feature Selection

Mutual Information

$$I(\mathbf{X}, \mathbf{Y}) = \sum_{y=1}^{L_1} \sum_{x=1}^{L_2} p(x, y) \log \frac{p(x, y)}{p(x)p(y)}$$
[7]

$$I(\mathbf{X}_i, \mathbf{C}) < I(\mathbf{X}_j, \mathbf{C})$$
 for all $j \neq i$, and $i = 1, 2, \dots, N$.

$$G(\mathbf{X}_i,k) = I(\mathbf{X}_i,\mathbf{C}) - \beta \sum_{\mathbf{X}_{sk} \in \mathbf{S}_k} I(\mathbf{X}_i,\mathbf{X}_{sk}), \quad \mathbf{X}_i \notin \mathbf{S}_k.$$

Where
$$\mathbf{S}_k = \{\mathbf{X}_{s1}, \mathbf{X}_{s2}, \dots, \mathbf{X}_{sk}\}$$

$$G(\mathbf{X}_i, k) = I(\mathbf{X}_i, \mathbf{C}) - \frac{1}{k} \sum_{\mathbf{X}_{sk} \in \mathbf{S}_k} I(\mathbf{X}_i, \mathbf{X}_{sk}), \quad \mathbf{X}_i \notin \mathbf{S}_k.$$

Figure: Mutual information between input classes and features

Normalized Mutual Information

$$\hat{I}(\mathbf{X}, \mathbf{C}) = \frac{I(\mathbf{X}, \mathbf{C})}{\sqrt{I(\mathbf{X}, \mathbf{X})} \sqrt{I(\mathbf{C}, \mathbf{C})}} [6]$$

$$\hat{G}(\mathbf{X}_i, k) = \hat{I}(\mathbf{X}_i, \mathbf{C}) - \frac{1}{k} \sum_{\mathbf{X}_{sk} \in \mathbf{S}_k} \hat{I}(\mathbf{X}_i, \mathbf{X}_{sk}), \quad \mathbf{X}_i \notin \mathbf{S}_k.$$

Two Constraints:

if
$$\widehat{I}(\mathbf{X}_i, \mathbf{C}) < T$$
 remove \mathbf{X}_i
 $\widehat{G}(\mathbf{X}_i, k) > 0$.

PCA	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
PCA-nMI	PC1	PC4	PC3	PC9	PC2	PC6	PC5	PC15	PC19	PC12

Table: Selected Component for PCA and for PCA-nMI

Classification

Kernel support vector machine (SVM)[3] classifier to classify 14 classes

Steps of classification:

Step 1: Get train and test data

Step 2: Scale data set into 0 to 1

Step 3: Calculate best c and g (kernel width)for RBF

kernel of SVM

10 fold cross validation was used

Step 4: Assess the test sample accuracy

 Radial basis function (RBF) kernel was used

Class Name	Train	Test	
Alfalfa	12	12	
Corn-notill	42	36	
Corn-min	49	42	
Corn	30	30	
Grass/Pasture	49	42	
Grass/Trees	48	48	
Hay-windrowed	77	88	
Soybeans-notill	117	117	
Soybeans-min	120	84	
Soybean-clean	54	54	
Wheat	54	60	
Woods	120	96	
Bldg-Grass-Tree-Drives	63	48	
Stone-steel towers	25	24	

Table: Data set

Conclusion

- ❖ 14 class is selected
- Selecting first 9 features after applying PCA-nMI gives 86.04% accuracy

Data set	С	g
Original Data	10	2.85
PCA Data	10	0.83
PCA-nMI Data	10	0.28

Data set	Classification Result (First 10 features only)
Original Data	43.91%
PCA Data	80.66%
PCA-nMI Data	85.53%

Figure: Comparison of classification result of original data, PCA data and PCA-nMI data.

Future Work

- Subset features are selected after PCA
- Selection will be performed by introducing adaptive thresholding T.

Acknowledgement

Special thanks to Professor Dr. David A. Landgrebe, Purdue University For the dataset and MUltiSpec

References

- [1]L. I. Smith, "A tutorial on Principal Component Analysis", February 26,2002.
- [2]J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis 4th edition, Verlag: Springer 2006.
- [3]C. Hsu, C. Chang, and C. Lin, Department of Computer Science, National Taiwan University, Taipei 106, Taiwan, "A Practical Guide to Support Vector Classication", Initial version: 2003, Last updated: May 19, 2016.
- [4]M. A. Hossain, X. Jia and M. Pickering, "Subspace detection using a mutual-information measure for hyperspectral image classification," IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 2, pp. 424-428, Feb. 2014.
- [5][Online]https://en.wikipedia.org/wiki/Hyperspectral_imaging

References

- [6]M. A. Hossain, X. Jia and M. Pickering, "Improved feature selection based on a mutual information measure for hyperspectral image classification," *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, Munich, Germany, pp. 3058-3061, Jul. 2012.
- [7]M. A. Hossain, M. Pickering and X. Jia, "Unsupervised feature extraction based on a mutual information measure for hyperspectral image classification," *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, Vancouver, Canada, pp. 1720-1723, Jul. 2011.

The End

Thank You