# Sparse Recovery

Dhanus M Lal

April 26, 2022

1/8

• The number of linear measurements required to completely understand a signal in  $\mathbb{R}^n$  is n.

- The number of linear measurements required to completely understand a signal in  $\mathbb{R}^n$  is n.
- If it is known that all but the first coordinate of it is zero, only one measurement,  $y = \langle e_1, x \rangle$  is required.

- The number of linear measurements required to completely understand a signal in  $\mathbb{R}^n$  is n.
- If it is known that all but the first coordinate of it is zero, only one measurement,  $y = \langle e_1, x \rangle$  is required.
- If we know that at most one coordinate is non-zero, can we learn the signal with fewer than *n* measurements?

- The number of linear measurements required to completely understand a signal in  $\mathbb{R}^n$  is n.
- If it is known that all but the first coordinate of it is zero, only one measurement,  $y = \langle e_1, x \rangle$  is required.
- If we know that at most one coordinate is non-zero, can we learn the signal with fewer than *n* measurements?
- Surprising result is that such a signal can be recovered in  $\mathcal{O}(\log n)$  measurements

- The number of linear measurements required to completely understand a signal in  $\mathbb{R}^n$  is n.
- If it is known that all but the first coordinate of it is zero, only one measurement,  $y = \langle e_1, x \rangle$  is required.
- If we know that at most one coordinate is non-zero, can we learn the signal with fewer than *n* measurements?
- Surprising result is that such a signal can be recovered in  $\mathcal{O}(\log n)$ measurements

### Definition (Sparsity)

The number of non-zero coordinates of a signal in  $\mathbb{R}^n$ . Denoted by  $||x||_0$ .

• Recover x from linear measurement y = Ax with x being s – sparse and  $A \in \mathbb{R}^{m \times n}$  known.

- Recover x from linear measurement y = Ax with x being s sparse and  $A \in \mathbb{R}^{m \times n}$  known.
- Is there a measurement matrix  $A \in \mathbb{R}^{m \times n}$  that makes recovery possible?

- Recover x from linear measurement y = Ax with x being s sparse and  $A \in \mathbb{R}^{m \times n}$  known.
- Is there a measurement matrix  $A \in \mathbb{R}^{m \times n}$  that makes recovery possible?
- Answer is yes!

- Recover x from linear measurement y = Ax with x being s sparse and  $A \in \mathbb{R}^{m \times n}$  known.
- Is there a measurement matrix  $A \in \mathbb{R}^{m \times n}$  that makes recovery possible?
- Answer is yes!

### Proposition

If  $A \in \mathbb{R}^{m \times n}$  has m > 2s and every subset of 2s columns of A is linearly independent, then sparse recovery problem has a unique solution.

- Recover x from linear measurement y = Ax with x being s sparse and  $A \in \mathbb{R}^{m \times n}$  known.
- Is there a measurement matrix  $A \in \mathbb{R}^{m \times n}$  that makes recovery possible?
- Answer is yes!

### Proposition

If  $A \in \mathbb{R}^{m \times n}$  has m > 2s and every subset of 2s columns of A is linearly independent, then sparse recovery problem has a unique solution.

### Proof.

If  $x_1$  and  $x_2$  are two s-sparse vectors with  $Ax_1 = Ax_2$ , then  $A(x_1 - x_2) = 0$ . Now,  $x_1 \neq x_2$  would mean that a subset of 2s columns is linearly dependent.

• If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg\min \|x'\|_0$$
 s.t  $Ax' = y$ 

4/8

 If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg\min \|x'\|_0$$
 s.t  $Ax' = y$ 

• Solving this is computationally hard: requires solving  $\binom{n}{s}$  linear systems.

4/8

 If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg \min \|x'\|_0$$
 s.t  $Ax' = y$ 

- Solving this is computationally hard: requires solving  $\binom{n}{s}$  linear systems.
- Solve the convex relaxation instead

$$\hat{x} = \arg\min \|x'\|_1$$
 s.t  $Ax' = y$ 



 If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg \min \|x'\|_0$$
 s.t  $Ax' = y$ 

- Solving this is computationally hard: requires solving  $\binom{n}{s}$  linear systems.
- Solve the convex relaxation instead

$$\hat{x} = \arg\min \|x'\|_1$$
 s.t  $Ax' = y$ 

 This is a convex optimization problem called basis pursuit, it is computationally efficient.

 If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg\min \|x'\|_0$$
 s.t  $Ax' = y$ 

- Solving this is computationally hard: requires solving  $\binom{n}{s}$  linear systems.
- Solve the convex relaxation instead

$$\hat{x} = \arg\min \|x'\|_1$$
 s.t  $Ax' = y$ 

- This is a convex optimization problem called basis pursuit, it is computationally efficient.
- Questions:
  - How close is  $\hat{x}$  to x?
  - Exact recovery when?



#### Definition

 $\mathcal{A}(m,n)$  is the class of random matrices with isotropic, sub-gaussian, independent rows.

#### Definition

 $\mathcal{A}(m,n)$  is the class of random matrices with isotropic, sub-gaussian, independent rows.

Several useful properties of A(m, n) are known.

Dhanus M Lal

#### Definition

 $\mathcal{A}(m,n)$  is the class of random matrices with isotropic, sub-gaussian, independent rows.

Several useful properties of A(m, n) are known.

#### **Theorem**

If 
$$A \in \mathcal{A}(m,n)$$
 and  $E = A^{-1}(z)$ , then for any subset  $T$  of  $\mathbb{R}^n$ ,

$$\mathbb{E} diam(T \cap E) \leq Cw(T)/\sqrt{m}$$

#### Definition

 $\mathcal{A}(m,n)$  is the class of random matrices with isotropic, sub-gaussian, independent rows.

Several useful properties of A(m, n) are known.

#### **Theorem**

If  $A \in \mathcal{A}(m,n)$  and  $E = A^{-1}(z)$ , then for any subset T of  $\mathbb{R}^n$ ,

$$\mathbb{E} diam(T \cap E) \leq Cw(T)/\sqrt{m}$$

This can be used to get

$$\mathbb{E}||x - \hat{x}||_2 \le C\sqrt{\frac{s\log n}{m}}||x||_2$$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

## Exact Recovery for $A \in \mathcal{A}$

Another property of matrices in  $\mathcal{A}$ .

#### **Theorem**

If  $A \in \mathcal{A}(m,n)$  with  $m \ge Cw(T)^2$ , for  $T \subset S^{n-1}$ , then  $T \cap \ker(A) = \emptyset$  with high probability  $(\ge 1 - 2\exp(-cm))$ 

## Exact Recovery for $A \in \mathcal{A}$

Another property of matrices in  $\mathcal{A}$ .

#### **Theorem**

If  $A \in \mathcal{A}(m,n)$  with  $m \ge Cw(T)^2$ , for  $T \subset S^{n-1}$ , then  $T \cap \ker(A) = \emptyset$  with high probability  $(\ge 1 - 2\exp(-cm))$ 

- From theorem,  $\hat{x} = x$  with high probability provided  $m > Cs \log n$ .
- Because, if  $h = \hat{x} x \neq 0$ , then  $h/\|h\|_2 \in S^{n-1} \cap 2\sqrt{s}B_1^n$ , which is empty with high probability.

# Exact Recovery for $A \in \mathcal{A}$

Another property of matrices in  $\mathcal{A}$ .

#### **Theorem**

If  $A \in \mathcal{A}(m, n)$  with  $m \ge Cw(T)^2$ , for  $T \subset S^{n-1}$ , then  $T \cap \ker(A) = \emptyset$  with high probability  $(\ge 1 - 2 \exp(-cm))$ 

- From theorem,  $\hat{x} = x$  with high probability provided  $m > Cs \log n$ .
- Because, if  $h = \hat{x} x \neq 0$ , then  $h/\|h\|_2 \in S^{n-1} \cap 2\sqrt{s}B_1^n$ , which is empty with high probability.
- Exact recovery using basis pursuit is possible!

Dhanus M Lal

### Definition (RIP)

A matrix A satisfies RIP with parameter s if the following holds for every 3s—sparse vectors:

$$0.9||x||_2 \le ||Ax||_2 \le 1.1||x||_2$$

Dhanus M Lal

### Definition (RIP)

A matrix A satisfies RIP with parameter s if the following holds for every 3s—sparse vectors:

$$0.9||x||_2 \le ||Ax||_2 \le 1.1||x||_2$$

• RIP implies exact recovery for *s*–sparse vectors. Proof of this only involves triangle inequality and Cauchy-Schwarz inequality.

### Definition (RIP)

A matrix A satisfies RIP with parameter s if the following holds for every 3s-sparse vectors:

$$0.9||x||_2 \le ||Ax||_2 \le 1.1||x||_2$$

- RIP implies exact recovery for *s*–sparse vectors. Proof of this only involves triangle inequality and Cauchy-Schwarz inequality.
- All  $m \times 3s$  sub-matrices must be almost isometry: difficult condition.

### Definition (RIP)

A matrix A satisfies RIP with parameter s if the following holds for every 3s—sparse vectors:

$$0.9||x||_2 \le ||Ax||_2 \le 1.1||x||_2$$

- RIP implies exact recovery for *s*–sparse vectors. Proof of this only involves triangle inequality and Cauchy-Schwarz inequality.
- All  $m \times 3s$  sub-matrices must be almost isometry: difficult condition.
- Surprisingly,  $A \in \mathcal{A}(m, n)$  satisfies RIP if  $m > Cs \log n$  with high probability  $(\geq 1 2 \exp(-cm))$ .
- Alternate proof of the previous result.



Dhanus M Lal Sparse Recovery

7/8

## Further Reading

• Recovery of sparse signal using partial Fourier coefficients.

## Further Reading

• Recovery of sparse signal using partial Fourier coefficients.

Low rank matrix recovery

## Further Reading

• Recovery of sparse signal using partial Fourier coefficients.

Low rank matrix recovery

Numerical simulations.