1 Некоторые определения из теории множеств. Прямое произведение, разбиение множеств. Мощность объединения

Опр

Пустое множество (\varnothing) - мно-во, которому $\not\in$ ни один элемент

Опр

Число элементов мн-ва A - мощность |A|

Опр

Множество чисел от k до l обозначается k:l

Опр

Мн-во A - подм
н-во мн-ва B ($A\subset B$), если каждый элемент из A принадлежит B

Опр

С - объединение А и В $(A \cap B)$, если оно состоит из всех элементов А и В $(C = \{x | x \in A \text{ и } x \in B\})$

Опр

 $\bigcap_{i=1}^n A_i, \quad \bigcup_{i=1}^n A_i$ - объединение и пересечение конечного числа мн-в $(\bigcap_{i\in I} A_i, \quad \bigcup_{i\in I} A_i)$ - аналогично

Опр

Если пересечение мн-в пусто, то они называются дизъюнктивными

Опр

Мн-во C называется разностью мн-в A и B ($C = A \setminus B$), если оно состоит из всех эл-в, принадлежащих A и не принадлежащих B

Опр

 $A\triangle B=A\setminus B\cap B\setminus A$ - симметрическая разность

Опр

Мн-во упорядоченных пар (i,j), где $i\in A,\ j\in B$ называется прямым произведением мн-в A и B

$$A \times B = \{(i, j) | i \in A, \quad j \in B\}$$

Замечание

Мощность прямого произведения $|A \times B| = |A| \cdot |B|$. Аналогично произведение \forall конечного числа множеств

Опр

Пусть $A_1,...,A_k$ - ненулевые и попарно дизъюнктивные, $M=A_1\cap...\cap A_k$ и мн-во $\{A_1,...,A_k\}$ называется разбиением М (если они попарно не дизъюнктивные, то это покрытие)

Опр

Разбиение A мн-ва M называется измельчением B, если $\forall A_i \in A$ содержится в некотором $B_i \in B$

Опр

Пусть A, B - размельчения мн-ва M, разбиение C называется произведением A и B, если оно является из измельчением, причем самым крупным $C = A \cdot B$

Теорема

Произведение двух разбиений существует

Док-во

Предъявим разбиение, которое будет пересечением $A = \{A_1, ..., A_k\}$ и $B = \{B_1, ..., B_l\}$, точнее $D_{ij} = A_i \cup B_j$, $i \leqslant k$, $j \leqslant l$ и $\mathcal{P} = \cup D_{ij}$ (т.е. без пустых строк). Покажем, что тогда оно самое крупное.

Пусть $\exists F = \{F_1, ..., F_t\}$ - измельчение A и B, тогда $\forall F_k \ \exists A_{i_k}, \ B_{i_k} : F_k A_{i_k}, \ B_{i_k} \Rightarrow F_k \subset (A_{i_k} \cup B_{i_k}) = D_{i_k j_k} \Rightarrow$ мельче F

2 Вектора из нулей и единиц

Пусть мн-во B состоит из двух элементов которые отождествляются с 0 и 1, т.е. B=0:1

Произведение m экзмемпляров такого мн-ва обозначим за $B^m = (0:1)^m$, состоит из 2^m эл-ов

Опр

Вектор из нулей и единиц - упорядоченный набор из фиксированного числа нулей и единиц, т.е. эл-т мн-ва B^m

Упорядоченный набор из чисел оычно называется вектором, m - размерностью вектора, каждый отдельный элемент набора - компонента вектора

Замечание

Модели, в которых используются наборы из 0 и 1:

1. Геометрическая интерпретация

Точкой в m-мерном пространстве является m-мерный вектор, каждая его компонента - одна из декартовых координат точки. Набор из 0 и 1, рассматриваемый как точка в пространстве, определяет вершину куба, построенного на ортах (единичных отрезках) координатных вероятностей

2. Логичнская интерпретация

Операции над векторами выполняются покомпонентно, т.е. независимо над соотв. компонентами векторов-операндов

Пример

- 3. Двоичное представление (натуральные числа)
 - Число представляется в виде суммы степеней 2
- 4. Состояние памяти компьютера
- 5. Сообщение, передаваемое по каналу связи
- 6. Можно задавать подмножества мн-ва 1:n

3 Алгоритм перебора 0-1 векторов. Коды Грея

Опр

Код Γ рея — такое упорядочение k-ичных (обычно двоичных) векторов, что соседние вектора отличаются только в одном разряде

Алгоритм

it - номер итерации, k_{it} - номер обновляемой компоненты

x_4	x_3	x_2	x_1	it	\mathbf{k}_{it}
0	0	0	0	0	1
0	0	0	<u>1</u>	1	2
0	0	1	1	2	1
0	0	1	0	3	3
0	1	1	0	4	1
0	1	1	<u>1</u>	5	2
0	1	0	1	6	1
0	1	0	0	7	4
	•	••			

Суть алгоритма: зафиксируем нулевое значение у m-й компоненты и переберем все наборы длины m-1 для ост. компонент. Перебрав их меняем значение m-й компоненты на 1 и перебинаем набор длины m-1 в обратном порядке

Замечание

Явная формула для проверки $G_i = i \oplus (\lfloor i/2 \rfloor)$

4 Перебор элементов прямого произведения множеств

ВНИМАНИЕ! ВЫ ВСТУПАЕТЕ НА ЗЕМЛЮ ТУПОГО ПЕРЕПИСЫВАНИЯ ИЗ ТУПОГО ПЕРЕПИСЫВАНИЯ!!!

$$M(1:k)=M_1 imes M_2 imes ... imes M_k$$
 $|M_1 imes M_2 imes ... imes M_k|=\prod_{i\in 1:k}m_i,$ где $m_i=|M_i|$

Пусть каждое M_i состоит из целых чисел от 0 до m_i-1 , тогда каждый элемент M(1:k) - последовательность неотрицательных чисел $r_1,...,r_k$, причем $r_i < m_i$

$$\operatorname{num}(r_1, ..., r_k) = \sum_{i=0}^k r_i \cdot (\prod_{j=1}^{i-1} m_j) = r_1 + r_2 m_1 + ... + r_k m_1 \cdot ... \cdot m_{k-1}$$

5 Размещения, сочетания, перестановки без повторений

Опр

Перестановка из n без повторений - упорядоченный набор из n неповторяющихся элементов, каждый из которых берется из диапазона 1:n

$$|P_k| = n!$$

Опр

Размещение - упорядоченный набор из k неповторяющихся элементов из диапазона 1:n

$$A_n^k = \frac{n!}{(n-k)!} = n(n-1)(n-k+1)$$

Опр

Сочетание - набор из k неповторяющихся элементов из диапазона 1:n (порядок не важен)

$$|C_n^k| = \frac{n!}{(n-k)!k!}$$

6 Размещения, сочетания, перестановки с повторениями

Перестановки с повторениями:

Последовательность длины n, составленных из k разных символов, i-ый из которых повторяется n_i раз $(n_1+n_2+...+n_k=n)$

Пример (ааbc)

Перестановки: abac, baac, aabc, aacb, abca, abca, acba, acab, bcaa, cbaa, caba, caba

$$P(n_1, n_2, ..., n_k) = \frac{n!}{n_1! n_2! ... n_k!}$$

7 Два алгоритма перебора перестановок. Нумерация перестановок

$$|P_k| = k! = |T_k|$$

 P_k - мн-во всех перестановок

 T_k - произведение k любых таких множеств M_i , каждый из которых представляет собой мн-во чисел от 0 до i-1

$$T_k = \{0\} \times \{0, 1\} \times ... \times \{0, 1, ..., k - 1\}$$

Построим взаимно однозначное соответствие между P_k и T_k . Возьмем перестановку $(t_1,...,t_k)$ следующим образом: для любого $i\in 1:k$ найдем число значений, меньше r_i среди $r_{i+1},...,r_k$ - это число мы и примем в качестве t_i

В соответсвии с таким определеничем чисел t_i в мн-ве T_k будет соответственно ??? значения m_i не возраст., а убывающая до единицы

Пример (4,8,1,5,7,2,3,6)

По $(t_1,...,t_k)$ легко восстановить исходную перестановку. Для этого меняя і от 1 до k нужно нужно проверить мн-во значений S_i , которые могут быть в перестановке на і месте. Для i=1 $S_1=1$: $S_1=1$:

Опр

 $(r_1,...,r_k)$ предшествует $(R_1,...,R_k)$, если начала перестановок совпадают до индекса d, а дальше $r_d < R_d$

$\underline{\mathbf{y}_{\mathbf{TB}}}$

Из этого перестановки перебираются в лексикографическом порядке, можно вывести правило получения следующего:

1. В $(r_1,...,r_k)$ найти наибольший суффикс $(r_t,...,r_k)$, в котором $r_t>...>r_k$ $(r_{i-1}< r_t)$

2. Выбрать $(r_t,...,r_k)$ элемент следующий по велечине после $r_{t-1},$ поставить после в возр. порядке

num	t_k				\mathbf{p}_k			
0	0	0	0	0	1	2	3	4
1	0	0	1	0	1	2	4	3
2	0	1	0	0	1	3	2	4
3	0	1	1	0	1	3	4	2
4	0	2	0	0	1	4	2	3
5	0	2	1	0	1	4	3	2

Ещё один алгоритм

8 Задача о минимуме скалярного произведения

Пусть заданы числа $x_1, ..., x_m$ и $y_1, ..., y_m$. Составим пары (x, y), включив каждое x_i и y_i ровно в одну пару. Затем перемножим числа каждой пары и сложим полученное произведение. Требуется найти min такое разбиение чисел на пары S

Теорема

$$\overline{x} = (x_1, ..., x_n)$$
 $x_1 \geqslant x_2 ... \geqslant x_n$

$$\overline{y} = (y_1, ..., y_n)$$
 $y_1 \leqslant y_2 ... \leqslant y_n$

$$S = \sum_{i=1}^n x_i y_i \to \min$$

Док-во

Покажем, что если найдутся пары чисел (x_i, y_i) и (x_j, y_j) : $x_i < x_j$, $y_i < y_j$, то S можно уменьшить, заменив парами (x_i, y_j) и (x_j, y_i) Действительно,

9 Числа Фибоначчи. Теорема о представлении

Опр

Последовательность чисел Фибоначчи F:

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$, $n > 1$

 y_{TB}

$$\varphi_n = \frac{F_{n+1}}{F_n}$$
 - сходится

Следствие

$$\varphi_n = \frac{F_{n+1}}{F_n} = \frac{F_{n-1} + F_n}{F_n} = 1 + \frac{1}{\varphi}$$

$$\Rightarrow \varphi = \frac{\sqrt{5} + 1}{2}$$

Лемма

При n>1 выполнено $\varphi^{n+2}=v^{n+1}+v^n$

Док-во

Лемма

При k > 2 выполнено:

$$F_{2k} = F_{2k-1} + F_{2k-3} + \dots + F_1$$

$$F_{2k+1} = 1 + F_{2k} + F_{2k-2} + \dots + F_0$$

Док-во (по индукции)

$$(k = 3)$$
:

$$F_6 = 8 = 5 + 2 + 1$$

$$F_7 = 13 = 1 + 8 + 3 + 1 + 0$$

$$(k \to k+1)$$
:

$$F_{2(k+1)} = F_{2k+2} = F2k + 1 + F_{2k} = F_{2k+1} + F_{2k-1} + \dots + F_1 = ????$$

Теорема

Любое натуральное число можно однозначно представить в виде суммы чисел Фибоначчи

$$s = F_{i_0} + F_{i_1} + \dots + F_{i+r}$$
, где $i_{k-1} + 1 < i_k$, $k \in 1: r$ $i_0 = 0$

Док-во

Существование:

Пусть j(s) - номер масимального числа Фиббоначи, не превосходящего s. Положим $s'=s-F_j(s)$. Из определения j(s) следует, что $s'< F_{j(s)-1}$, иначе число Фиббоначи не было бы максимальным. Теперь мы получим искобое представление для s как представление s', дополненное слагаемым $F_{j(s)}$

Единственность:

Пусть есть ещё одно представление $s=F_{j_0}+...+F_{j_q}$. Н.У.О. считаем, что $j_q< j(s)$. Если мы заменим F_{j_q} на $F_{j(q)-1}$, то правая часть разве что лишь увеличится. Аналогично заменим с возможным увеличением предпоследнее слагаемое на $F_{j(s)-3}$. ???

10 Перебор сочетаний. Нумерация сочетаний

Состояние вычислительного процесса. Массив $(x_1, ..., x_m)$ номеров, включенных в сочетание. Начальное состояние: принять $x_i = i \quad \forall i \in 1:m$. Стандартный шаг: просматривать компоненты вектора x, начиная с x_m и искать первую компоненту, которую можно увеличить (нельзя $x_m = n, \ x_{m-1} = n-1$ и т.д.). Если такой нет, то закончить процесс. В противном случае пусть k - наибольшее число, для которого $x_k < n-m+k$, тогда увеличиьть x на единицу, а для всех следующиь за k-ый продолжаем, но ряд от значения x_k , т.е. $x_i = x_k + (i-k)$

num		Соч	ета	ниє)	k
1	1	2	3	4	5	5
2	1	2	3	4	6	5
3	1	2	3	4	7	5
4	1	2	3	5	6	4
5	1	2	3	5	7	5

11	Бином Ньютона и его комбинаторное использование

12 Свойства биномиальных коэффициентов

13 Основные определения теории вероятностей

14 Условные вероятности и формула Байеса

15 Математическое ожидание и дисперсия случайной величины

16 Схема Бернулли

17 Случайные числа. Схема Уолкера

18 Двоичный поиск и неравенство Крафта

19 Энтропия. 2 леммы

20 Теорема об энтропии

21 Операции над строками переменной длины

22 Поиск образца в строке (Карпа-Рабина, Бойера-Мура)

23 Суффиксное дерево

24 Задача о максимальном совпадении двух строк

25 Код Шеннона-Фано. Алгоритм Хаффмена. 3 леммы

26 Сжатие информации по методу Зива-Лемпеля

27 Метод Барроуза-Уилера

28 Избыточное кодирование. Коды Хэмминга

29 Шифрование с открытым ключом

30 Сортировки (5 методов)

31 Информационный поиск и организация информации	31	Информационный	поиск и	организация	информации
--	----	----------------	---------	-------------	------------

32 Хеширование

33 АВЛ-деревья

34 В-деревья

35 Биноминальные кучи

36 Основные определения теории графов

37 Построение транзитивного замыкания

38 Обходы графа в ширину и глубину. Топологическая сортировка

39 Связность. Компоненты связности и сильной связности

40 Алгоритм поиска контура и построение диаграммы порядка

41 Теорема о связном подграфе

Деревья. Теорема о шести эквивалентных определениях дерева

43	Задача о кратчайшем остовном дереве. Алгоритм Прима

44 Алгоритм Краскала

45 Задача о кратчайшем пути. Алгоритм Дейкстры

46 Алгоритм Левита

47 Задача о кратчайшем дереве путей

48 Сетевой график и критические пути. Нахождение резервов работ

49 Задача о максимальном паросочетании в графе. Алгоритм построения

50 Теорема Кенига

51 Алгоритм построения контролирующего множества

52 Задача о назначениях. Венгерский метод

53 Задача коммивояжера. Метод ветвей и границ

54 Метод динамического программирования. Задача линейного раскроя

55 Приближенные методы решения дискретных задач. Жадные алгоритмы 56 Алгоритмы с гарантированной оценкой точности. Алгоритм Эйлера 57 Жадные алгоритмы. Задача о системе различных представителей

58 Приближенные методы решения дискретных задач

59 Конечные автоматы

60 Числа Фибоначчи. Производящие функции

61 Числа Каталана

62 ?Алгоритм Кристофидеса (возможно будет)