Titulo: Informe sobre aislaciones ópticas

version 0.2

18 de marzo de 2014

autor: Francisco Luis Zurita

1 Introducción

En este informe se presenta la aislación a usar en cada canal de entrada y salida de tensión digital previo y posterior al conversor DA del proyecto de adquisición de señales de un banco de motores.

2 Especificaciones

El aislador especificado a utilizar es el 6N137, un aislador óptico rápido de 10Mbit/s, que satisface nuestros requerimientos ya que la señal digital mas rápida que se necesita aislar es de 52kHz.

3 Diseño

El diseño del prototipo se enfoca en medir el comportamiento del aislador ante diferentes corrientes de excitación y condiciones de carga. Dicho diseño se basa en la nota de aplicación 71[1].

Para fijar la corriente de excitación se conmuta entre tres resistores por medio de un jumper. Las corrientes de entrada quedarán determinadas por el valor de dicha resistencia. Las mismas son:

$$I_{1} = \frac{V_{CC1} - V_{LED} - V_{EC}}{R_{1}} = \frac{5V - 1.4V - 0.2V}{180\Omega} = 18.9mA$$

$$I_{2} = \frac{V_{CC1} - V_{LED} - V_{EC}}{R_{2}} = \frac{5V - 1.4V - 0.2V}{390\Omega} = 8.71mA$$

$$I_{2} = \frac{V_{CC1} - V_{LED} - V_{EC}}{R_{3}} = \frac{5V - 1.4V - 0.2V}{820\Omega} = 4.14mA$$

El valor de V_{LED} se obtiene de una curva de la hoja de datos y vale aproximadamente 1.4V.

Para fijar la carga se conmuta entre tres resistores de pull-up por medio de un jumper. Esta resistencia junto con la de la punta del osciloscopio y la capacitancia de dicha punta conforman el circuito RC de carga a la salida. Las cargas de salida son:

$$(R_4||R_{osc})||C_{osc} = 470\Omega||10M\Omega||10pF = 470\Omega||10pF$$

$$(R_5||R_{osc})||C_{osc} = 1k\Omega||10M\Omega||10pF = 999.9\Omega||10pF$$

$$(R_6||R_{osc})||C_{osc} = 10k\Omega||10M\Omega||10pF = 9.99k\Omega||10pF$$

3.1 Listado de componentes

Resistores			
Valor	Tolerancia	Cantidad	Referencia
180Ω	5%	1	R_1
390Ω	5%	1	R_2
820Ω	5%	1	R_3
470Ω	5%	1	R_4
$1k\Omega$	5%	3	$R_{5,7,8}$
10Ω	5%	1	R_6
Capacitores			
Valor	Tolerancia	Cantidad	Referencia
$0.1~\mu F$	5%	2	$C_{1,2}$
Circuitos Integrados			
Modelo	Fabricante	Cantidad	Referencia
6N137	ST	1	U1

4 Medición

4.1 Banco de Medición

Banco de Medición:

Figure 1: Banco de medición

- Fuente de Tensión Fair FR-305 A 0-30V
- Fuente de Tensión Zurich DF1730SB5A 0-30V
- Osciloscopio Fluke 192B 60MHz, 500MS/s Sensibilidad 2mV - 100V/div Rango de la base de tiempos: 10 ns - 2 min/div
- Punta Fluke VP200 10:1 200MHz, 1.000 V CAT II/600 V CAT III (EN61010-1)
- Generador de Funciones Hing Chang Sweep 9205 Frecuencia: 0.02Hz a 2MHz 7 rangos Precisión: $\pm 5\%$ (20KHz), $\pm 8\%$ (2MHz)

Rise-time del conjunto generador-punta-osciloscopio: 56.8ns.

Tensión de alimentación de entrada: 5VTensión de alimentación de salida: 3.3V

Señal de entrada: Tren de pulsos 0 - 5V a 10kHz

4.2 Imágenes

¡Reservado para foto;

4.3 Resultados

A continuación mostramos los resultados de las mediciones de retardo, risetime (tiempo transcurrido entre el 10% y el 90% de la transición de estado bajo a estado alto de la señal) y fall-time (tiempo transcurrido entre el 10% y el 90% de la transición de estado alto a estado bajo de la señal).

Rise-time

Figure 2: Medición de rise-time usando $R_2=390\Omega$ y $R_4=470\Omega$: 39.6ns

Figure 3: Medición de rise-time usando $R_2=390\Omega$ y $R_4=1k\Omega$: 68.8ns

Figure 4: Medición de rise-time usando $R_2=390\Omega$ y $R_4=10k\Omega$: 628ns

Figure 5: Comparación de las figuras anteriores

Fall-time

Figure 6: Medición de fise-time usando $R_2=390\Omega$ y $R_4=470\Omega{:}\ 12ns$

Figure 7: Medición de fise-time usando $R_2=390\Omega$ y $R_4=1k\Omega$: 10ns

Figure 8: Medición de fise-time usando $R_2=390\Omega$ y $R_4=10k\Omega$: 8.8ns

Figure 9: Comparación de las figuras anteriores

Retardo

Figure 10: Medición de retardo usando $R_1=180\Omega$ y $R_5=1k\Omega{:}75ns$

Figure 11: Medición de retardo usando $R_2=390\Omega$ y $R_5=1k\Omega{:}62.8ns$

Figure 12: Medición de retardo usando $R_3=820\Omega$ y $R_5=1k\Omega{:}56ns$

Figure 13: Comparación de las figuras anteriores

Corriente / Carga	470Ω	$1k\Omega$	$10k\Omega$		
$I_1 = 18.9mA$	75ns	75ns	76ns		
$I_2 = 8.71 mA$	62.8ns	63.6ns	62.8ns		
$I_3 = 4.14mA$	56ns	55.2ns	56.8ns		
Tabla de valores de Retardo.					
Corriente / Carga	470Ω	$1k\Omega$	$10k\Omega$		
$I_1 = 18.9mA$	32.8ns	67.2ns	624ns		
$I_2 = 8.71mA$	39.6ns	68.8ns	628ns		
$I_3 = 4.14mA$	32ns	67.8ns	620ns		
Tabla de valores de rise-time.					
Corriente / Carga	470Ω	$1k\Omega$	$10k\Omega$		
$I_1 = 18.9mA$	9.2ns	8.8 <i>ns</i>	8.0ns		
$I_2 = 8.71mA$	12ns	10ns	8.8ns		
$I_3 = 4.14mA$	17.6ns	16.8ns	9.2ns		

Tabla de valores de fall-time.

Se observa de las mediciones anteriores que el retardo a la salida no depende de la condición de carga. A su vez, el rise-time y fall-time no dependen de la corriente de excitación.

References

 $[1]\ AN71:\ 10MBd\ High-Speed\ Optocoupler\ Design\ Guide,$ Noviembre 2011, Vishay Semiconductors.