

Curso de Engenharia de Computação ECM253 – Linguagens Formais, Autômatos e Compiladores

Modelos de computação – Autômatos finitos

Slides da disciplina ECM253 – Linguagens Formais, Autômatos e Compiladores
Curso de Engenharia de Computação
Instituto Mauá de Tecnologia – Escola de Engenharia Mauá
Prof. Marco Antonio Furlan de Souza
<marco.furlan@maua.br>

MAUÁ

Agenda

- Autômatos de estados finitos
- Autômatos de estados finitos determinísticos
- Autômatos de estados finitos não-determinísticos
- Teorema de Kleene

MAUÁ

Agenda

- Autômatos de estados finitos
- Autômatos de estados finitos determinísticos
- Autômatos de estados finitos não-determinísticos
- Teorema de Kleene

Autômatos de estados finitos

Conceitos

- São máquinas de estado que são especificamente projetadas para reconhecer linguagens;
- No lugar de produzirem saída, estas máquinas possuem estados finais;
- Uma cadeia é reconhecida se e somente se leva a máquina do estado inicial para um de seus estados finais;
- Máguinas de estados finitos sem saída são denominadas de autômatos de estados finitos.
- Autômatos de estados finitos podem ser:
 - Determinísticos: para cada par contendo um estado e um valor de entrada, há um único próximo estado, obtido por uma função de transição;
 - Não-determinísticos: para cada par contendo um estado e um valor de entrada, pode haver diversos próximos estados.

MAUÁ

Agenda

- Autômatos de estados finitos
- Autômatos de estados finitos determinísticos
- Autômatos de estados finitos não-determinísticos
- Teorema de Kleene

Definição

Definição. Um autômato de estados finitos determinístico $M=(Q,\Sigma,\delta,q_0,F)$ consiste de um conjunto Q de estados, um alfabeto finito Σ de entrada, uma função de transição δ , que atribui um próximo estado a cada par de estado e entrada $(\delta:Q\times\Sigma\to Q)$, um estado inicial $q_0\in Q$ e um subconjunto $F\subseteq Q$ consistindo de estados finais.

Exemplo

- O autômato de estados finito representado por $M = (Q, \Sigma, \delta, q_0, F)$ onde $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, F = \{q_0, q_3\}$ e δ , representada pela tabela a seguir, é representado pelo diagrama abaixo:

	δ	
	Entrada	
Estado	0	1
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_0	q_0
q_3	q_2	q_1

Função de transição

- A função de transição δ pode ser **estendida** de modo que seja definida para **todos** os **pares** de **estados** e **cadeias**;
- Pode-se **estender** δ em $\hat{\delta}$: $Q \times \Sigma^* \to Q$ assim: seja $x = x_0x_1...x_{k-2}x_{k-1}$ uma cadeia em Σ^* . Então $\hat{\delta}(q_0,x)$ é o **estado obtido** a partir de q_0 **aplicando** sucessivamente δ em **todos** os símbolos de x a partir de q_0 , deste modo: $q_1 = \delta(q_0,x_0), \ q_2 = \delta(q_1,x_1), \ldots$, assim sucessivamente, de modo que $\delta(q_0,x) = \delta(q_{k-1},x_{k-1})$;
- a função $\hat{\delta}$ pode ser descrita de forma recursiva:

$$\hat{\delta}(q,\epsilon)=q$$
 $(\epsilon,$ a cadeia vazia, não provoca transição) $\hat{\delta}(q,xa)=\delta(\hat{\delta}(q,x),a)$

Reconhecimento de cadeias

- A cadeia x é dita ser reconhecida ou aceita pela máquina $M = (Q, \Sigma, \delta, q_0, F)$ se ela conduz os estados da máquina do estado inicial q_0 a um estado final, $\hat{\delta}(q_0, x) \in F$;
- A linguagem reconhecida ou aceita pela máquina M, denotada por L(M) é o conjunto de todas as cadeias que são reconhecidas por M;
- Duas máquinas de estados finitos são equivalentes se elas reconhecem a mesma linguagem.

Exemplos

(a)
$$L(M_1) = \{1^n | n = 0, 1, 2, ...\}$$

(b) $L(M_2) = \{1,01\}$

(c) $L(M_3) = \{0^n, 0^n 10x\}$ (x é qualquer cadeia contendo 0s e 1s)

MAUÁ

Agenda

- Autômatos de estados finitos
- Autômatos de estados finitos determinísticos
- Autômatos de estados finitos não-determinísticos
- Teorema de Kleene

Definição

Definição. Um autômato de estados finitos não-determinístico $M=(Q,\Sigma,\delta,q_0,F)$ consiste de um conjunto Q de estados, um alfabeto finito Σ de entrada, uma função de transição δ , que atribui um conjunto de estados a cada par de estado e entrada $(\delta:Q\times\Sigma\to\wp(Q))$, um estado inicial $q_0\in Q$ e um subconjunto $F\subseteq Q$ consistindo de estados finais.

Exemplo

- O autômato de estados finito representado por $M = (Q, \Sigma, \delta, q_0, F)$ onde $Q = \{q_0, q_1, q_2, q_3\}, \Sigma = \{0, 1\}, F = \{q_2, q_3\}$ e δ dada pela tabela a seguir é representado pelo autômato a seguir:

	δ	
	Entrada	
Estado	0	1
q_0	$\{q_0, q_1\}$	$\{q_{3}\}$
q_1	$\{q_{0}\}$	$\{q_1, q_3\}$
q_2	Ø	$\{q_0, q_2\}$
q_3	$\{q_0, q_1, q_2\}$	$\{q_1\}$

• Elaborar uma tabela de estados para o autômato não-determinístico ilustrado a seguir:

Reconhecimento de cadeias

- O **reconhecimento** de uma cadeia $x = x_0x_1...x_{k-1}$ por um autômato de estados finitos não-determinístico se dá da seguinte forma:
 - O símbolo de entrada x_0 leva a máquina do estado inicial q_0 a um conjunto S_0 de estados;
 - O próximo símbolo de entrada, x_1 , leva a cada um dos estados de S_0 a um conjunto de estados, que podem ser reunidos no conjunto S_1 ;
 - Continua-se este processo incluindo a cada estágio todos os estados obtidos em um estágio anterior e o símbolo de entrada atual.
- Uma cadeia x é reconhecida ou **aceita** se existe um **estado final** no conjunto de estados que podem ser obtidos a partir de q_0 com x;
- A linguagem reconhecida por um autômato de estados finitos não-determinístico é o conjunto de todas as cadeias reconhecidas por este autômato.

Reconhecimento de cadeias

− Do mesmo modo que foi apresentado para autômatos determinísticos, pode-se definir uma função de **transição estendida** para autômatos não-determinísticos, $\hat{\delta} = \wp(Q) \times \Sigma^* \rightarrow \wp(Q)$, aplicada a um **conjunto de estados atual** A e uma **cadeia de entrada** qualquer, xa, assim:

$$\hat{\delta}(A,\epsilon)$$
 = A (cadeia vazia não provoca transição) $\hat{\delta}(A,xa) = \bigcup_{q \in \hat{\delta}(A,x)} \delta(q,a)$

– Assim, o autômato não-determinístico **aceita** uma cadeia $x \in \Sigma$ * se:

$$\hat{\delta}(S, x) \cap F \neq \emptyset$$

Onde S é um **conjunto de estados iniciais** do autômato (normalmente, $S = \{s_0\}$).

Exemplo

- A linguagem reconhecida pelo autômato finito apresentado a seguir é $L(M) = \{0^n, 0^n 01, 0^n 11 | n \ge 0\}$ (verifique).

Conversão de autômato não-determinístico → determinístico

Teorema. Se a linguagem L é reconhecida por um autômato de estados finitos não-determinístico M_0 , então L também é reconhecida por um autômato de estados finitos determinístico M_1 .

Conversão de autômato não-determinístico → determinístico

Demonstração. Cada estado de M_1 é composto por um conjunto de estados de M_0 . O símbolo inicial de M_1 é $\{q_0\}$. As entradas de M_1 são as mesmas de M_0 . Dado um estado $\{q_{i_1},q_{i_2},\ldots,q_{i_k}\}$ de M_1 , o símbolo de entrada x leva a um próximo estado que é a união dos próximos estados dos elementos deste conjunto, $\bigcup_{j=1}^k f(q_{i_k})$. Os estados de M_1 são subconjuntos de $\wp(Q)$, sendo que $|\wp(Q)| = 2^n$ e n é o número de estados do autômato determinístico. Os estados finais de M_1 são conjuntos de estados que contém estado final de M_0 . Se uma cadeia é reconhecida por M_0 , então um estado final de M_0 é alcançável. Em M_1 , esta cadeia conduz de $\{q_0\}$ a um conjunto de estados de M_0 que contém o estado final de M_0 . Este conjunto também é um estado final de M_1 , logo a cadeia também é reconhecida por M_1 . De forma similar, pode-se provar que uma cadeia não aceita por M_0 também não será aceita por M_1 .

Exemplo

O autômato determinístico da direita é equivalente ao não-determinístico da esquerda (verificar).
 Não é necessário representar o "conjunto de estados vazio".

Descobrir a linguagem reconhecida pelos autômatos determinísticos a seguir:

Descobrir a linguagem reconhecida pelos autômatos determinísticos a seguir:

(c)

(d) Determinar um autômato de estados finitos determinístico que reconheça o conjunto $\{1^n|n=2,3,4,\ldots\}$.

Descobrir a linguagem reconhecida pelos autômatos a seguir (não-determinísticos):

(g) Converter o autômato anterior em um autômato determinístico.

MAUÁ

Agenda

- Autômatos de estados finitos
- Autômatos de estados finitos determinísticos
- Autômatos de estados finitos não-determinísticos
- Teorema de Kleene

- Definição de **expressões regulares** sobre um conjunto Σ (**alfabeto**):
 - – Ø (conjunto vazio) é uma expressão regular que denota um conjunto de zero cadeias;
 - $-\epsilon$ (**cadeia vazia**) é uma expressão regular que denota um conjunto contendo apenas um símbolo que é a cadeia vazia, ϵ ;
 - − O símbolo \mathbf{x} é uma expressão regular sempre que $x \in \Sigma$ e denota um conjunto de cadeias contendo apenas o símbolo x;
 - Para duas expressões regulares A e B, também são expressões regulares:
 - A concatenação de expressões regulares, AB, denotando o conjunto formado pela concatenação das cadeias dos conjuntos denotados por A e B;
 - A união de expressões regulares, A∪B, denotando a união das cadeias dos conjuntos denotados por A e
 B;
 - Fechamento de Kleene de expressão regular, A*, denotando o conjunto formado pelo fechamento de Kleene do conjunto denotado por A.

Notas

- A operação de **fechamento de Kleene** para um **conjunto** A qualquer é definida como a **união infinita de todas as potências de** A:

$$A^* = \bigcup_{i \ge 0} A^i$$

- Na teoria dos autômatos e linguagens formais, a potência n de um conjunto de cadeias A é dado pela **concatenação** realizada n vezes sobre os elementos de A. Por exemplo, se $A = \{ab,aab\}$, então $A^2 = \{abab,abaab,aabab,aabaab\}$;
- Definição recursiva de A*:

$$A^0 = \{\epsilon\}$$
$$A^{n+1} = AA^n$$

Observação: Convenciona-se que $\emptyset^* = \{\epsilon\}$.

Notas

- Expressões regulares representam de forma concisa conjuntos de cadeias denominados de conjuntos regulares.
- Por exemplo, a expressão regular D = 0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9 é a união de expressões regulares simples, cada uma reconhecendo um dígito simples;
- A expressão regular N = D.DD*, por exemplo, representa um conjunto infinito de cadeias que se iniciam por um único dígito, e são seguidas por um único ponto e depois por ou mais dígitos, tais como 0.0, 45.89012, etc, um esboço de uma expressão regular para números reais positivos.

Teorema. Um conjunto é regular se e somente se ele é reconhecido por um autômato de estados finitos.

- Para provar que todo conjunto regular é reconhecido por um autômato de estados finitos, é necessário provar que:
 - 1. Ø é reconhecido por um autômato de estados finito;
 - 2. $\{e\}$ é reconhecido por um autômato de estados finito;
 - 3. $\{a\}$ é reconhecido por um autômato de estados finito;
 - 4. Se $A \in B$ são conjuntos regulares reconhecidos por autômatos de estados finitos, então AB, $A \cup B$ e A^* são reconhecidos por autômatos de estados finitos.

Prova

- A prova utiliza autômatos de estados finitos não-determinísticos, pois simplifica a composição de máquinas de estado e depois pode-se proceder à conversão em autômatos de estados finitos determinístico;
- Pode-se provar os três primeiros itens com exemplos dos autômatos a seguir:
 - Reconhecedor de Ø:
 - $\neg q_0$
 - Reconhecedor de $\{\epsilon\}$:
 - $-\overline{q_0}$
 - Reconhecedor de {a}:
 - $-q_0$ q_1

Prova

- Concatenação

- Se $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ e $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ são duas máquinas que reconhecem respectivamente os conjuntos A e B, procede-se à construção de uma máquina $M_{AB} = (Q_{AB}, \Sigma, \delta_{AB}, q_{AB}, F_{AB})$ assim:
 - As máquinas são ligadas em série de modo que uma cadeia em M_A leve a máquina combinada de q_A para q_B e depois de q_B para o estado final da máquina combinada;
 - O estado inicial q_{AB} é o mesmo que q_A ;
 - O conjunto de estados finais, F_{AB} é o conjunto de estados finais de M_B com q_{AB} , incluído apenas se $\epsilon \in A \cap B$ (se ambas reconhecem ϵ);
 - Preservam-se em M_{AB} as transições existentes de M_A e M_B . Se em M_A há um estado que transita com símbolo i para um estado final de M_A , então este estado deve ser ligado ao estado q_B com a mesma entrada.

Prova

- União

- Se $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ e $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ são duas máquinas que reconhecem respectivamente os conjuntos A e B, procede-se à construção de uma máquina $M_{AB} = (Q_{AB}, \Sigma, \delta_{AB}, q_{AB}, F_{AB})$ assim:
 - As máquinas são ligadas em paralelo, com um estado inicial adicional, $q_{A\cup B}$, que possua transições para os próximos estados tanto de q_A quanto de q_B com seus respectivos símbolos de entrada;
 - O conjunto de estados finais, $F_{A\cup B}$ será $F_{A}\cup F_{B}\cup \{q_{A\cup B}\}$ se $\epsilon\in A\cup B$ ou $F_{A}\cup F_{B}$ caso contrário;
 - As transições em $M_{A \cup B}$ incluem todas aquelas de M_A e de M_B .

Prova

- Fechamento de Kleene

- Se $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ é uma máquina que reconhece o conjunto A, procede-se à construção de uma máquina $M_{A^*} = (Q_{A^*}, \Sigma, \delta_{A^*}, q_{A^*}, F_{A^*})$ assim:
 - Acrescenta-se o estado inicial q_{A^*} , que também é um estado final;
 - A partir de q_{A^*} , cria-se uma transição com o símbolo de entrada que havia de q_A para seu próximo estado, utilizando o mesmo símbolo de entrada (para reconhecer ϵ);
 - O conjunto de estados finais de F_{A^*} inclui todos os estados finais de F_A , acrescido de q_{A^*} ;
 - Para reconhecer concatenações de cadeias arbitrárias de A, além da transição de q_{A^*} para o próximo estado de q_A com a entrada que havia de q_A para aquele estado, adicionam-se também ligações de todos os estados finais para o próximo estado de q_A com a entrada que havia de q_A para aquele estado.

Referências bibliográficas

RICH, E. Automata, Computability and Complexity: Theory and Applications. [S.l.]: Pearson Prentice Hall, 2008.

ROSEN, K. **Discrete Mathematics and Its Applications**. New York: McGraw-Hill, 2003. (McGraw-Hill higher education).