

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 1 Learning Outcomes

- Describe the importance of studying Mechanics of Materials
- Outline the general analysis approach
- List the major topics in the course

Engineering Mechanics/Engineering Science

Math

Physics

Basic Sciences

"How the physical world works"

Mechanical Engineering

Civil Engineering

Aerospace Engineering

Material Science Engineering

Other Engineering

"Application of science to fill a human need"

"Engineering Systems in Motion: 2D Dynamics"

"Advanced Engineering Systems in Motion: 3D Dynamics"

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

	rundamentals of Stress & Strain and Axial Loading
	Internal Forces due to External Loads
	Axial Centric Loads
	Normal Stress and Shear Stress
	General State of Stress at a Point (3D)
]	Plane Stress (2D)
	Normal Strain and Shear Strain
	Stress-Strain Diagrams
	Mechanical Properties of Materials
	Linear Elastic Behavior, Hooke's Law, and Poisson's Ratio
	Stresses on Inclined Planes
	Principal Stresses and Max Shear Stress
	Mohr's Circle for Plane Stress
	Stress Concentrations
	Mohr's Circle for Plane Strain
	Strain Transformation and Measuring Strains
	Generalized Hooke's Law for Isotropic Materials
	Factor of Safety and Allowable Stresses/Loads
	Nonlinear Behavior and Plasticity
	Statically Indeterminate Structures
	Thermal and Pre-strain Effects

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

- ☐ Thin-Walled Pressure Vessels Internal Pressure
- ☐ Torsional Shearing Stress and Strain
- ☐ Elastic Torsion Formula
- ☐ Elastic Torsion of Straight, Cylindrical Shafts
- ☐ Inelastic Torsion of Straight, Cylindrical Shafts
- Statically Indeterminate Torsion Members

Mechanics of Materials III: Beam Bending

- Elastic Flexural Stresses and Strains
- ☐ Elastic Flexural Formula
- Properties of Sections
- ☐ Inelastic Bending
- ☐ Shear Force and Bending Moment Diagrams
- **☐** Shear Stress in Beams
- Principal Stresses in Bending

Mechanics of Materials IV:Deflections,Buckling,Combined Loading,&Failure Theories

- ☐ Beam Curvature
- Singularity Functions for Beam Deflections
- Beam Deflections by Superposition
- **☐** Statically Indeterminate Beams
- Column Buckling
- □ Combined Static Loading
- Theories of Failure

My emphasis will be on understanding the principles of mechanics of materials rather than on extensive computational/computer work

Let's get started!