Lista 2 - Lógica para Computação 2018.1

Aluno: Matrícula:

- 1. Traduza as seguintes fórmulas para forma normal conjuntiva, e verifique a validade das mesmas.
 - a. $p \rightarrow (q \land \neg (r \lor p))$
 - b. $(p \rightarrow q) \rightarrow (\neg q \land \neg p)$
 - c. $(p \rightarrow q) \rightarrow (\neg r \rightarrow (s \land t))$
- 2. Identifique com verdadeiro ou falso as afirmações abaixo justificando sua resposta caso seja falsa.
- () As fórmulas abaixo estão em CNF.
 - 1. $(p \lor q) \land (\neg q \lor r \lor \neg s) \land (s \lor \neg t)$
 - 2. $a \lor (b \lor (c \land d)$
 - 3. $(\neg r \lor d) \rightarrow (r \rightarrow (a \lor d))$
- () O algoritmo CNF deve satisfazer os seguintes requisitos:
 - 1. CNF recebe uma fórmula φ de L.P. como entrada e reescreve-a para outra fórmula em L.P.(pode ser recursivo);
 - 2. Para cada uma das entradas, CNF tem como saída uma fórmula equivalente;
 - 3. Toda saída computada por CNF está em CNF.
- () Uma fórmula é válida se somente se qualquer uma de suas fórmulas equivalentes é válida. No entanto, uma fórmula pode ser satisfazível, porém não válida.
- () Os passos as seguir estão corretos e definem a tradução de uma fórmula φ para CNF.
 - 1. Dado uma entrada ϕ , eliminamos todos os condicionais transformando as subformulas de $\phi \to n$, em ϕ v n.
 - Essa aplicação pode introduzir negações duplas ou complexas, por isso, devemos remover apenas as negações complexas;
 - 3. por último, devemos recorrer à distributividade que nos permite colocar qualquer disjunção de conjunções em conjunções de disjunções.
- 3. Deduza os argumentos abaixo, usando as regras da lógica proposicional:
 - a) $\neg a \rightarrow r$, $\neg q$, $b \rightarrow q$, $a \rightarrow b \vdash r$
 - b) $\neg p \land \neg q \vdash \neg (p \lor q)$
 - c) \vdash $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
 - d) $\neg p \lor q \vdash (\neg p \rightarrow \neg r) \rightarrow (r \rightarrow q)$
 - e) $p \rightarrow q \land r \vdash (p \rightarrow q) \land (p \rightarrow r)$