课程基本信息								
课例编号	2020QJ11WLRJ011	学科	物理	年级	高二	学期	上学期	
课题	电势差与电场强度的关系							
教科书	书名: 物理必修(第三册)							
	出版社:人民教育出版	出版日期: 2019 年 4 月						
教学人员								
	姓名	单位						
授课教师	张红明	北京师范大学附属中学						
指导教师	王莉萍	北京师范大学附属中学						
	黎红	西城教育研修学院						
平 577 □ 1-;								

教学目标

教学目标:

- (1) 经历探究匀强电场中电势差与电场强度的定量关系的过程,理解关系式的意义。
- (2) 知道电场强度另一个单位"伏每米"的物理意义。

教学重点:

匀强电场中 $U_{AB}=Ed$ 的推导,因为此关系式体现了电场两个核心概念之间的联系。 教学难点:

电场强度新的物理意义: 电场强度在数值上等于沿电场方向单位距离上降低的电势, 空间变化率概念的渗透。

教学过程								
时	教学	主 要個化活动						
间	环节	主要师生活动						
3	新	从静电场的力的性质和能的性质形象描述入手,给出电场线和等势线						
	课	空间分布的剖面图。						
分 钟	引	观察带电体周围的电场线和等势面空间分布图,发现规律,引入研究						
* #	入	的问题电势差与电场强度的关系。						
	理	1)探究方案的确定						
	论	2) 创设简单的问题情景:						
7	探							
分	究 1	在匀强电场中,设 $A \times B$ 为电场线方向上的两点,它们间的距离为 d 。						
钟	(U	U 将一正电荷 q 沿电场线方向由 A 移动到 B。						
	= <i>Ed</i>	3)探究活动的实施,推导出 $U=Ed$ 。						

		4) 思考与讨论:如图所示,如果 A、B 两点不在电场线上,以上结论还成立吗? 5) 深入探究:从匀强电场得到的关系 <i>U=Ed</i> 是否可以推广到任意电					
	理 论 探 完 (E =U/ d)	场 1) 由 $U=Ed$ 变形得 $E=U/d$, 场强的单位可以写作什么?					
6 分钟		2) 如何证明电场强度的两个单位是一致的?					
		3) 由 $U=Ed$ 变形得 $E=U/d$, 有什么新的含义?					
		4) 如何由 $E=U/d$ 解释电场线密的地方,等差等势面也密?					
		5) 类比 $a=\Delta v/\Delta t$,加速度描述的是速度随时间的变化快慢,加速度是速度对时间的变化率。则 $E=U/d$ 可以怎么理解?					
		6) 电场强度方向的再理解					
		7)等势线与等高线的再类比					
4 分钟	教材例题	材 容易运用动能定理来解释。由于静电力做的功等于带电粒子动能的 化,得 $qu=mv^2/2$ 。					
	例题讨论	下面继续来思考一个问题。上述例题中,M、N是两块平行金属板,两板间的电场是匀强电场。如果 M、N是其他形状,中间的电场不再均匀,例题中的三个问题还有确定答案吗?为什么? (1)由于是非匀强电场,电场强度变化,故电场力就没有确定答案;(2)(3)由于电场力是变力,故采用牛顿运动定律的方法求解就不太方便。但仍然可以采用动能定理求解,由于电场力做功 W=qU只与两板间的电压有关,故(2)、(3)答案保持不变。再一次体会,电场力做功 W只与两点间的电势差有关,与电场的分布无关,是适用于一切电场的普遍公式。再一次表明,用功能关系处理问题比牛顿运动定律更方便。					
1 分 钟	新课小结	本节课从电场线与等势面间的疏密对应关系入手,探究到匀强电场中电势差与电场强度之间的关系为 $U_{AB}=Ed$ 或 $E=U/d$,这个关系式的建立必将促进我们对静电场物质观念的形成,静电场是力的性质和能的性质的完整统一。 在此过程中,我们经历了科学探究,运用了逻辑推理,采用了类比法、微元法、从简单到复杂的解决问题的方法。					