HN62318B Series HN62328B Series

8M (1M x 8-bit) Mask ROM

■ DESCRIPTION

The Hitachi HN62318B/HN62328B Series is an 8-Megabit CMOS Mask Programmable Read Only Memory organized as 1,048,576 x 8-bit

The low power consumption of this device makes it ideal for battery powered, portable systems. In addition, the high density and high speed provide enough capacity and high performance to be used as a character generator in laser printers.

Hitachi's HN62318B/HN62328B is offered with JEDEC-standard pinouts in 32-pin Plastic DIP and 32-lead Plastic SOP and TSOP packages.

■ FEATURES

- · Single Power Supply:
 - $V_{cc} = 5 \text{ V} \pm 10\%$
- Fast Access Time:
 - 150 ns/200 ns (Max)
- · Low Power Consumption:

Active Current: 100 mW (typ) Standby Current: 5 µW (typ)

- · Byte-Wide Data Organization
- · TTL-Compatible Inputs and Outputs
- · Three-State Data Outputs
- · Packages:

32-pin Plastic DIP

32-lead Plastic SOP

32-lead Plastic TSOP (Type II)

■ ORDERING INFORMATION

Type No.	Access Time	Package
HN62318BP	150 ns/200 ns	32-pin Plastic DIP
HN62328BP	150 ns/200 ns	(DP-32)
HN62318BF	150 ns/200 ns	32-lead Plastic SOP
HN62328BF	150 ns/200 ns	(FP-32D)
HN62318BTT	150 ns/200 ns	32-lead Plastic TSOP
HN62328BTT	150 ns/200 ns	(TTP-32D)

■ PIN DESCRIPTION

Pin Name	Function
A ₀ - A ₁₉	Address
D ₀ - D ₇	Input/Output
CE	Chip Enable
ŌĒ	Output Enable
V _{cc}	Power Supply
V _{ss}	Ground
NC	No Connection

■ PIN ARRANGEMENT

HITACHI

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit	
Supply Voltage ¹	V _{cc}	-0.3 to +7.0	V	
Terminal Voltage 1	V _T	-0.3 to V _{cc} + 0.3	V	
Operating Temperature Range	T _{OPR}	0 to +70	°C	
Storage Temperature Range	T _{STG}	-55 to +125	°C	
Temperature Under Bias	T _{BIAS}	-20 to +85	°C	

Notes: 1. With respect to V_{ss}.

■ CAPACITANCE

$$(V_{CC} = 5V \pm 10\%, V_{SS} = 0V, T_a = 25^{\circ}C, V_{IN} = 0 V, f = 1MHz)$$

Item	Symbol	Min.	Max.	Unit
Input Capacitance 1	C _{IN}	-	15	pF
Output Capacitance 1	C _{out}	-	15	ρF

Notes: 1. This parameter is sampled and not 100% tested.

■ DC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

(V_{CC} = 5V ± 10%, V_{SS} = 0 V, T_a = 0 to 70°C)

Item	Symbol	Min.	Max.	Unit	Test Condition
Input Leakage Current	I _{IL}	-	10	μА	V _{IN} = 0 to V _{CC}
Output Leakage Current	l _{oL}	-	10	μА	$\overline{\text{CE}}$ = 2.2 V, V _{OUT} = 0 to V _{CC}
Operating V _{cc} Current	Icc	-	50	mA	$V_{CC} = 5.5 \text{ V}, I_{DOUT} = 0 \text{ mA}, t_{RC} = \text{Min}.$
Standby V _{cc} Current	I _{SB}	-	30	μА	$V_{cc} = 5.5 \text{ V}, \overline{CE} \ge V_{cc} - 0.2 \text{V}$
Input Voltage	V _{IH}	2.2	V _{cc} +0.3	٧	
	V _{iL}	-0.3	0.8	٧	
Output Voltage	V _{OH}	2.4	-	٧	l _{OH} = -205 μA
	V _{OL}	-	0.4	٧	I _{OL} = 1.6 mA

■ AC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

 $(V_{CC} = 5V \pm 10\%, V_{SS} = 0 \text{ V}, T_a = 0 \text{ to } 70^{\circ}\text{C})$

Test Conditions

· Input pulse levels:

0.8 V / 2.4 V

· Input rise and fall times:

≤10 ns

· Output load:

1 TTL Gate + CL = 100 pF (Including jig capacitance)

· Input/Output Timing Reference level:

		HN62318B		HN62328B		
Item	Symbol	Min.	Max.	Min.	Мах.	Unit
Read Cycle Time	t _{RC}	150	-	200	-	ns
Address Access Time	t _{AA}	-	150	-	200	ns
CE Access Time	t _{ACE}	-	150	-	200	ns
OE Access Time	t _{oe}	-	70	-	100	ns
Output Hold Time from Address Change	t _{dha}	0	-	0	-	ns
Output Hold Time from CE	t _{DHC}	0	-	0	-	ns
Output Hold Time from OE	t _{DHO}	0	-	0	-	ns
CE to Output in High Z	t _{CHZ} 1	-	70	-	70	ns
OE to Output in High Z	t _{OHZ} 1	-	70	-	70	ns
CE to Output in Low Z	t _{cLZ}	10	-	10	-	ns
OE to Output in Low Z	t _{oLZ}	10	-	10	-	ns

 $\rm t_{\rm CHZ}$, and $\rm t_{\rm OHZ}$ define the time at which the output becomes an open circuit and are not Note: referenced to output voltage levels.

■ READ TIMING WAVEFORM

(TD.R.HN62328B)

Note:

- $\rm t_{DHA}$, $\rm t_{DHC}$, $\rm t_{DHO}$ are determined by the faster time. $\rm t_{AA}$, $\rm t_{ACE}$, $\rm t_{OE}$ are determined by the slower time.
- t_{CLZ} , t_{OLZ} are determined by the slower time.

HITACHI