

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERIA MAESTRÍA EN CIENCIAS DE LA INFORMACION Y LAS COMUNICACIONES

SYLLABUS

Inteligencia Computacional Aplicada

L						
NOMBRE DEL DOCENTE: Ing. M.Sc. Cesar Andrey Perdomo Charry						
ESPACIO ACADÉMICO (Asign	atura):					
Inteligencia Computacional Ap	CÓDIGO:					
Obligatorio(): Básico()(
Electivo (X): Intrínsecas () Extrínsecas (X)					
NUMERO DE ESTUDIANTES:	GRUPO:					
NÚMERO DE CREDITOS:						
TIPO DE CURSO: TEÓRICO PRACTICO TEO-PRAC:						
Alternativas metodológicas:						
Clase Magistral (x), Seminario (), Seminario – Taller (), Taller (x), Prácticas (), Proyectos						
tutoriados (), Otro:						
HORARIO:						
DIA	HORAS	SALON				
	2					
	2					
I. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO						

La Inteligencia Computacional se enfoca en la teoría, el diseño, aplicación y desarrollo de paradigmas computacionales motivados e inspirados por la biológica y la lingüística haciendo hincapié en las redes neuronales, los sistemas conexionistas, los algoritmos genéticos, la programación evolutiva, los sistemas difusos y los sistemas inteligentes híbridos en los que estos paradigmas se combinan.

La Inteligencia Computacional se encuentra estrechamente relacionada con otras áreas de las ciencias y ramas de la informática como los son: la inteligencia artificial (IA), la clasificación, la informática cognitiva, conexionismo, minería de datos, métodos gráficos, agentes inteligentes y sistemas inteligentes, y el descubrimiento del conocimiento en los datos (KDD), el aprendizaje de máquina, la computación natural, el procesamiento distribuido en paralelo, el reconocimiento de patrones, los métodos probabilísticos,

SoftComputing, la estadística multi-variada, y la optimización. En la actualidad estos tópicos han sido altamente investigados y se encuentran en un intenso debate científico, pero no hay un consenso a la vista.

La inteligencia computacional se convirtió en una tendencia que significa diferentes cosas para diferentes personas. Las ramas de la ciencia no se definen, pero poco a poco se desarrollan en el proceso de compartir y agrupar intereses comunes. En este contexto, la Inteligencia Computacional y en especial sus aplicaciones a diversas áreas poseen un interés general y colectivo, y la mayoría se centran en resolución de problemas de elevada complejidad que sólo los humanos y los animales pueden resolver y que requieren de inteligencia. Los intereses específicos también se centran en los métodos y herramientas que son aplicables a este tipo de problemas. De este modo, la Inteligencia Computacional ha permeado otras esferas como la teleinformática y sus problemas relacionados han empezado a ser parte del conjunto de investigaciones científicas actuales.

II. PROGRAMACION DEL CONTENIDO

OBJETIVO GENERAL

El objetivo principal es la introducción a los conceptos básicos y las técnicas de SoftComputing Informáticas, tales como la Lógica Difusa, Redes Neuronales y la Computación Evolutiva. El curso presentará también las últimas novedades y aplicaciones de SoftComputing.

OBJETIVOS ESPECÍFICOS

- Introducción de conceptos, modelos, algoritmos y herramientas para el desarrollo de sistemas inteligentes: lógica difusa, redes neuronales artificiales, algoritmos genéticos, sistemas difusos, la inteligencia de enjambre, optimización de colonia de hormigas, la vida artificial, e hibridaciones de las técnicas anteriores. Este dominio se llama Inteligencia Computacional, y es una interpretación numérica de la inteligencia biológica.
- Comprender la necesidad de la Inteligencia Computacional (SoftComputing).
- Comprender los diferentes usos del SoftComputing en diversas áreas y en especial en Teleinformática.
- Comprender los pasos involucrados en el desarrollo de paradigmas de Inteligencia
 Computacional y su aplicación.
- Adquirir un conocimiento práctico de algunas herramientas populares de SoftComputing e Inteligencia computacional. Diseñar, implementar y verificar los sistemas de computación utilizando técnicas y herramientas adecuadas.

COMPETENCIAS DE FORMACIÓN:

Al término de este curso, el alumno deberá:

contexto culturales

 Comprender las representaciones numéricas de la naturaleza, y su importancia en la construcción de sistemas bio-inspirados.

básicas cognitivas

Comprender los modelos fundamentales de Inteligencia Computacional.

lahoralos

- Implementación de redes neuronales, algoritmos genéticos, redes neuronales difusas, y los algoritmos de optimización.
- Aplicar paradigmas Inteligencia Computacional a las técnicas de clasificación, reconocimiento de patrones, predicción, extracción de reglas, y los problemas de optimización.

PROGRAMA SINTÉTICO:

Introducción

Imitando la naturaleza en la resolución de problemas: Conceptos básicos Introducción a Sistemas Neuro-Difusos y *SoftComputing*

1. Sistemas Difusos (Fuzzy Systems)

Conjuntos Difusos (Fuzzy Sets)

Lógica Difusa

Relaciones Difusas

Inferencia Difusa

Operaciones en Lógica Difusa

Adaptación de Sistemas Difusos

Razonamiento Disyuntivo vs. Conjuntivo

Modelos Difusos (Mamdami - Sugeno - Tsukamoto)

Aplicación de Sistemas Difusos

2. Redes Neuronales

Redes Neuronales de una sola capa y multi-capa

Perceptrones

Redes Neuronales de Aprendizaje Supervisado

Redes Neuronales de Aprendizaje No Supervisado

Redes de Aprendizaje Competitivo

Auto-organización - Kohonen

Funciones de Base Radial en Redes Neuronales

Vector Cuantizador de Aprendizaje (LVQ)

Aprendizaje Hebbian

Aplicación de Redes Neuronales

3. Computación Evolutiva

Algoritmos Genéticos

Algoritmos Evolutivos Multi-Objetivo Sistemas Bio-Inspirados Redes Bayesianas Búsqueda con Enjambre de Partículas

Aplicación de Computación Evolutiva

4. Sistemas Neuro-Difuso e Híbridos

Sistemas de Inferencia Neuro-Difusa Adaptativa Métodos de Aprendizaje ANFIS/RBFN Arquitectura y Algoritmos de Aprendizaje Híbridos Aplicación de Sistemas Inteligentes Híbridos

5. Aplicaciones de Inteligencia Computacional

La complejidad y potencia computacional de los modelos de Inteligencia Computacional

III. ESTRATEGIAS

Metodología Pedagógica y Didáctica:

Cátedra magistral:

La cátedra magistral se realizará para cada tema, mostrando definiciones, su estado del arte y su relevancia en la formación del estudiante de Maestría.

Talleres de Diseño, Implementación y Simulación:

Consistirán en el desarrollo de ejercicios, cuya finalidad es poner práctica los conceptos teóricos. Al menos un taller podrá ser dictado por un experto invitado nacional o internacional.

Lecturas dirigidas

Se desarrollarán lecturas sobre los temas relevantes de cada unidad.

Conferencias

Se invitarán a especialistas en el tema a dictar charlas y conferencias durante el semestre.

Proyecto Final

Los estudiantes llevarán a cabo el desarrollo de proyecto final, donde aplican los conceptos vistos en clase. El estudiante realizará una sustentación del proyecto realizado para recibir la respectiva retroalimentación.

Sitio Web Compartido

Se utilizará el espacio virtual de las aulas virtuales de la facultad de Ingeniería, para el manejo de material bibliográfico, entrega de trabajos y discusiones de los diferentes temas a través de la red.

		Hora			Horas	Horas	Total Horas	Créditos	
		s			profesor/seman	Estudiante/seman	Estudiante/semest		
		а	а	re					
	Tipo de	TD	TC	TA	(TD + TC)	(TD + TC +TA)	X 16 semanas		

Curso							
	2	2	5	4	9	144	3

Trabajo Presencial Directo (TD): trabajo de aula con plenaria de todos los estudiantes.

Trabajo Mediado Cooperativo (TC): Trabajo de tutoría del docente a pequeños grupos o de forma individual a los estudiantes.

Trabajo Autónomo (TA): Trabajo del estudiante sin presencia del docente, que se puede realizar en distintas instancias: en grupos de trabajo o en forma individual, en casa o en biblioteca, laboratorio, etc.)

IV. RECURSOS

- Aula de Informática
- Laboratorio de Teleinformática
- Software Lenguaje de Programación Científica (MatLab / Octave)
- Proyector de Video
- Sitio Web de la Asignatura

BIBLIOGRAFÍA

TEXTOS GUÍAS

- Computational Intelligence Paradigms: Theory & Applications using <u>MATLAB</u> by <u>S. Sumathi</u> and Surekha Paneerselvam (Jan 5, 2010).
- Scientific Computing with MATLAB and Octave (Texts in Computational Science and Engineering) by Alfio Quarteroni, Fausto Saleri and Paola Gervasio(Sep 10, 2010).
- Computational Intelligence: Principles, Techniques and Applications by Amit Konar (May 31, 2005).

TEXTOS COMPLEMENTARIOS

- Rojas, P. "Neural Networks: A Systematic Introduction", Springer, 1996.
- Hastie, T., Tibshirani, R., and Friedman, J. "The Elements of Statistical Learning", Springer, 2009.
- Hassoun, M., "Fundamentals of Artificial Neural Networks", MIT Press, 1995.
- Zurada, J. "Introduction to Artificial Neural Systems". West Publishing Company, St. Paul, 1992.
- Haykin, S. "Neural Networks A Comprehensive Foundation". Macmillan College Publishing Company, New York, 1999.
- Engelbrecht, A.P. "Computational Intelligence: An Introduction", Wiley, NY, 2007.

REVISTAS

Applied Soft Computing - Elsevier

- IEEE Computational Intelligence Magazine
- IEEE Transactions on Neural Networks
- IEEE Transactions on Fuzzy Systems
- IEEE Transactions on Evolutionary Computation
- IEEE Transactions on Computational Intelligence and AI in Games
- IEEE Press Books Computational Intelligence Series
- Computational Intelligence: An International Journal Wiley
- Encyclopedia of Computational Intelligence

SOFTWARE - DIRECCIONES DE INTERNET

- MatLab Lenguaje de Programación Científica (ToolBox Redes Neuronales y Lógica Difusa).
- Stuttgart Neural Network Simulator
- CIlib (Computational Intelligence Library) Java framework para el desarrollo de paradigmas de Inteligencia computacional (University of Pretoria, South Africa).
- Java Object Oriented Neural Network (JOONE) proyecto de código abierto para la programación de paradigma de Redes Neuronales en Java.
- Java-based Evolutionary Computation and Genetic Programming System (George Mason University).

http://www.abo.fi/~rfuller/fuzs.html

http://www.cse.dmu.ac.uk/~rij/tools.html

http://www.cse.dmu.ac.uk/~rij/general.html

http://www.eece.maine.edu/mm/matweb.html

http://www.cs.berkeley.edu/~zadeh/

http://www.cranfield.ac.uk/sims/asc/asc.htm

V. ORGANIZACIÓN / TIEMPOS

Espacios, Tiempos, Agrupamientos:

La asignatura electiva de profundización comprende sesiones de cuatro horas semanales. Además, los estudiantes desarrollan un trabajo autónomo en la elaboración de su proyecto final y una serie de trabajos de carácter colaborativo en la realización de talleres de diseño, implementación y simulación de paradigmas de inteligencia computacional aplicados, con tutorías en clase y extra-clase. Se utilizará un sitio web compartido a través de la infraestructura institucional implementada en la plataforma Google. Además el estudiante desarrollará dos productos de investigación en forma de artículos.

VI. EVALUACIÓN

La asignatura electiva de profundización comprende la realización de seis (6) talleres de diseño, implementación y simulación de paradigmas de inteligencia computacional aplicados, el desarrollo de dos (2) productos de investigación en forma de artículos y la entrega y sustentación de un proyecto final.

4	TIPO DE EVALUACIÓN	FECHA	PORCENTAJE
PRIMERA NOTA	Taller I	Semana 2	5%
H. H.	Taller II	Semana 3	5%
≥ ≈	Taller III	Semana 5	10%
8	Articulo I	Semana 7	15%
∢	Taller IV	Semana 8	5%
Q ₹	Taller V	Semana 9	5%
SEGUNDA	Taller VI	Semana 11	10%
SE	Articulo II	Semana 13	15%
TERCERA	Entrega y sustentación del Proyecto Final – (Aplicación de Paradigma de Inteligencia Computacional en un Problema en el área de Teleinformática).	Semana 15-16	30%
EXAM. FINAL			

ASPECTOS A EVALUAR DEL CURSO

- 1. Evaluación del desempeño docente
- **2.** Evaluación de los aprendizajes de los estudiantes en sus dimensiones: individual/grupo, teórica/práctica, oral/escrita.
- 3. Auto-evaluación:
- 4. Co-evaluación del curso: de forma oral entre estudiantes y docente.