From ω -regular Expressions to Büchi Automata via Partial Derivatives

Peter Thiemann¹ and Martin Sulzmann²

¹ Faculty of Engineering, University of Freiburg Georges-Köhler-Allee 079, 79110 Freiburg, Germany thiemann@acm.org

² Faculty of Computer Science and Business Information Systems Karlsruhe University of Applied Sciences Moltkestrasse 30, 76133 Karlsruhe, Germany martin.sulzmann@hs-karlsruhe.de

Abstract. We extend Brzozowski derivatives and partial derivatives from regular expressions to ω -regular expressions and establish their basic properties. We observe that the existing derivative-based automaton constructions do not scale to ω -regular expressions. We define a new variant of the partial derivative that operates on linear factors and prove that this variant gives rise to a translation from ω -regular expressions to nondeterministic Büchi automata.

Keywords: automata and logic, omega-regular languages, derivatives

1 Introduction

Brzozowski derivatives [3] and partial derivatives [2] are well-known tools to transform regular expressions to automata and to define algorithms for equivalence and containment on them [1]. Derivatives had quite some impact on the study of algorithms for regular languages on finite words and trees [9, 4], but they received less attention in the study of ω -regular languages.

While the extension of Brzozowski derivatives to ω -regular expressions is straightforward, the corresponding automaton construction does not easily extend to ω -automata. This observation leads Park [6] to suggest resorting to a different acceptance criterion based on transitions. Redziejowski [7] remarks that "the automaton constructed from the derivative has, in general, too few transitions as well as too few states." As a remedy, Redziejowski presents a construction of a deterministic automaton where states are certain combinations of derivatives with a non-standard transition-based acceptance criterion. In subsequent work, Redziejowski [8] improves on this construction by lowering the number of states and by simplifying some technical details. To the best of our knowledge, these papers [7, 8] are the only attempts to construct ω -automata using derivatives.

In comparison, our construction and proof are much simpler, we gain new insights into the structure of linear factors as a stepping stone to partial derivatives, and we obtain a standard nondeterministic Büchi automaton. Because Brzozowski derivatives invariably lead to deterministic automata, we analyze Antimirov's partial derivatives and identify linear factors as a suitable structure on which we base the construction of a nondeterministic automaton.

Overview

Section 2 reviews the basic definitions for $(\omega$ -) regular expressions and (Büchi) automata. Section 3 reviews Brzozowski derivatives, extends them to ω -regular expressions, and demonstrates the failure of the automaton construction based on Brzozowski derivatives. Section 4 introduces Antimirov's linear factors and partial derivatives, extends them to ω -regular expressions, establishes their basic properties, and demonstrates the failure of the automaton construction based on partial derivatives. Section 5 introduces a new notion of partial derivative that operates directly on linear factors of an ω -regular expression, defines a Büchi automaton on that basis, and proves its construction correct.

2 Preliminaries

An alphabet Σ is a finite set of symbols. The set Σ^* denotes the set of finite words over $\Sigma, \varepsilon \in \Sigma^*$ stands for the empty word; the set Σ^ω denotes the set of infinite words over Σ . For $u \in \Sigma^*$, we write $u \cdot v$ for the concatenation of words; if $v \in \Sigma^*$, then $u \cdot v \in \Sigma^\omega$; if $v \in \Sigma^\omega$, then $u \cdot v \in \Sigma^\omega$. Concatenation extends to sets of words as usual: $U \cdot V = \{u \cdot v \mid u \in U, v \in V\}$ where $U \subseteq \Sigma^*$ and $V \subseteq \Sigma^*$ or $V \subseteq \Sigma^\omega$.

Given a language $U\subseteq \Sigma^*$ and $W\subseteq \Sigma^*$ or $W\subseteq \Sigma^\omega$, the left quotient $U^{-1}W=\{v\mid \exists u\in U: uv\in W\}$. It is a subset of Σ^* or Σ^ω depending on W. For a singleton language $U=\{u\}$, we write $u^{-1}W$ for the left quotient.

Definition 1. The set R_{Σ} of regular expressions over Σ is defined inductively by $\mathbf{1} \in R_{\Sigma}$, $\mathbf{0} \in R_{\Sigma}$, $\Sigma \subseteq R_{\Sigma}$, and, for all $r, s \in R_{\Sigma}$, (r.s), (r+s), $r^* \in R_{\Sigma}$. The explicit bracketing guarantees unambiguous parsing of regular expressions.

Definition 2. The language denoted by a regular expression is defined inductively by $\mathcal{L}: R_{\Sigma} \to \wp(\Sigma^*)$ as usual. $\mathcal{L}(\mathbf{1}) = \{\varepsilon\}$. $\mathcal{L}(\mathbf{0}) = \{\}$. $\mathcal{L}(a) = \{a\}$ (singleton word) for each $a \in \Sigma$. $\mathcal{L}(r.s) = \mathcal{L}(r) \cdot \mathcal{L}(s)$. $\mathcal{L}(r+s) = \mathcal{L}(r) \cup \mathcal{L}(s)$. $\mathcal{L}(r^*) = \{u_1 \dots u_n \mid n \in \mathbb{N}, u_i \in \mathcal{L}(r)\}$.

Definition 3. The operations $\odot, \oplus : R_{\Sigma} \times R_{\Sigma} \to R_{\Sigma}$ are smart concatenation and smart union constructors for regular expressions.

$$r \odot s = \begin{cases} \mathbf{0} & r = \mathbf{0} \lor s = \mathbf{0} \\ r & s = \mathbf{1} \\ s & r = \mathbf{1} \\ (r.s) & otherwise \end{cases} \qquad r \oplus s = \begin{cases} r & s = \mathbf{0} \\ s & r = \mathbf{0} \\ r & r = s \\ (r+s) & otherwise \end{cases}$$

Lemma 4. For all $r, s: \mathcal{L}(r \odot s) = \mathcal{L}(r.s); \mathcal{L}(r \oplus s) = \mathcal{L}(r+s).$

Definition 5. A regular expression r is nullable if $\varepsilon \in \mathcal{L}(r)$. The function $N: R_{\Sigma} \to \{\mathbf{0}, \mathbf{1}\}$ detects nullable expressions: $N(\mathbf{1}) = \mathbf{1}$. $N(\mathbf{0}) = \mathbf{0}$. $N(r.s) = N(r) \odot N(s)$. $N(r+s) = N(r) \oplus N(s)$. $N(r^*) = \mathbf{1}$.

Lemma 6. For all $r \in R_{\Sigma}$. N(r) = 1 iff $\varepsilon \in \mathcal{L}(r)$.

Definition 7. The set R_{Σ}^{ω} of ω -regular expressions over Σ is defined by $\mathbf{0} \in R_{\Sigma}^{\omega}$; for all $\alpha, \beta \in R_{\Sigma}^{\omega}$, $(\alpha + \beta) \in R_{\Sigma}^{\omega}$; for all $r \in R_{\Sigma}$ and $\alpha \in R_{\Sigma}^{\omega}$, $(r.\alpha) \in R_{\Sigma}^{\omega}$; for all $s \in R_{\Sigma}$, if $\varepsilon \notin \mathcal{L}(s)$, then $s^{\omega} \in R_{\Sigma}^{\omega}$.

Remark 8. Definition 7 is equivalent to an alternative definition often seen in the literature, where an ω -regular-expression has a sum-of-product form $\sum_{i=1}^{n} (r_i.s_i^{\omega})$ with $\varepsilon \notin \mathcal{L}(s_i)$. An easy induction shows that every α can be rewritten in this form: cases $\mathbf{0}$, $(\alpha+\beta)$, s^{ω} : immediate; case $(r.\alpha)$: by induction, α can be written as $\sum_{i=1}^{n} (r_i.s_i^{\omega})$, distributivity and associativity yield $\sum_{i=1}^{n} (r.r_i).s_i^{\omega}$ for $(r.\alpha)$. When convenient for a proof, we assume that an expression is in sum-of-product form.

Definition 9. The language denoted by an ω -regular expression is defined inductively by $\mathcal{L}^{\omega}: R_{\Sigma}^{\omega} \to \wp(\Sigma^{\omega}): \mathcal{L}^{\omega}(\mathbf{0}) = \emptyset$. $\mathcal{L}^{\omega}(\alpha + \beta) = \mathcal{L}^{\omega}(\alpha) \cup \mathcal{L}^{\omega}(\beta)$. $\mathcal{L}^{\omega}(r,\alpha) = \mathcal{L}(r) \cdot \mathcal{L}^{\omega}(\alpha)$. $\mathcal{L}^{\omega}(s^{\omega}) = \{v_1 v_2 \cdots \mid \forall i \in \mathbb{N} : v_i \in \mathcal{L}(s)\}$.

Definition 10. A (nondeterministic) finite automaton (NFA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ where Q is a finite set of states, Σ an alphabet, $\delta : Q \times \Sigma \to \wp(Q)$ the transition function, $q_0 \in Q$ the initial state, and $F \subseteq Q$ the set of final states.

Let $w = a_0 \dots a_{n-1} \in \Sigma^*$ be a word. A run of \mathcal{A} on w is a sequence $q_0 \dots q_n$ such that, for all $0 \leq i < n$, $q_{i+1} \in \delta(q_i, a_i)$. The run is accepting if $q_n \in F$. The language $\mathcal{L}(\mathcal{A}) = \{w \in \Sigma^* \mid \exists \text{ accepting run of } \mathcal{A} \text{ on } w\}$ is recognized by \mathcal{A} .

The automaton A is deterministic if $|\delta(q,a)| = 1$, for all $q \in Q$, $a \in \Sigma$.

Definition 11. A (nondeterministic) Büchi-automaton (NBA) is a tuple $\mathcal{B} = (Q, \Sigma, \delta, Q_0, F)$ where Q is a finite set of states, Σ an alphabet, $\delta : Q \times \Sigma \to \wp(Q)$ the transition function, $Q_0 \subseteq Q$ the set of initial states, and $F \subseteq Q$ the set of accepting states.

Let $w = (a_i)_{i \in \mathbb{N}} \in \Sigma^{\omega}$ be an infinite word. A run of \mathcal{B} on w is an infinite sequence of states $(q_i)_{i \in \mathbb{N}}$ such that $q_0 \in Q_0$ and for all $i \in \mathbb{N}$: $q_{i+1} \in \delta(q_i, a_i)$.

A run $(q_i)_{i\in\mathbb{N}}$ of \mathcal{B} is accepting if there exists a strictly increasing sequence $(n_j)_{j\in\mathbb{N}}$ such that $q_{n_j} \in F$, for all $j \in \mathbb{N}$. The language $\mathcal{L}^{\omega}(\mathcal{B}) = \{w \in \Sigma^{\omega} \mid \exists \ accepting \ run \ of \ \mathcal{B} \ on \ w\}$ is recognized by \mathcal{B} . The automaton \mathcal{B} is deterministic if $|Q_0| = 1$ and $|\delta(q, a)| = 1$, for all $q \in Q$, $a \in \Sigma$.

3 Regular Expressions to Finite Automata

The textbook construction to transform a regular expression into a finite automaton is taken from Kleene's work [5]. However, there is an alternative approach based on Brzozowski's idea of derivatives for regular expressions.

Given a regular expression r and a symbol $a \in \Sigma$, the derivative $r' = d_a(r)$ is a regular expression such that $\mathcal{L}(r') = \{w \mid aw \in \mathcal{L}(r)\}$, the left quotient of $\mathcal{L}(r)$ by the symbol a. The derivative can be defined symbolically by induction on regular expressions.

Definition 12 (Brzozowski derivative [3]).

nition 12 (Brzozowski derivative [3]).
$$d_a(\mathbf{0}) = \mathbf{0} \qquad \qquad d_a(r.s) = (d_a(r) \odot s) \oplus (N(r) \odot d_a(s))$$

$$d_a(\mathbf{1}) = \mathbf{0} \qquad \qquad d_a(r+s) = d_a(r) \oplus d_a(s)$$

$$d_a(b) = \begin{cases} \mathbf{1} & a = b \\ \mathbf{0} & a \neq b \end{cases}$$

$$d_a(r^*) = d_a(r) \odot r^*$$

Brzozowski proved the following representation theorem that factorizes a regular language into its ε -part and the quotient languages with respect to each symbol of the alphabet.

Theorem 13 (Representation [3]).
$$\mathcal{L}(r) = \mathcal{L}(N(r)) \cup \bigcup_{a \in \Sigma} \{a\} \cdot \mathcal{L}(d_a(r))$$

He further proved that there are only finitely many different regular expressions derivable from a given regular expression. This finiteness result considers expressions modulo a *similarity relation* \approx that contains (at least) associativity, commutativity, and idempotence of the + operator as well as considering 0 as the neutral element. We further assume associativity of concatenation.

Definition 14 (Similarity). Similarity $\approx \subseteq R_{\Sigma} \times R_{\Sigma}$ is the smallest compatible relation that encompasses the following elements for all $r, s, t \in R_{\Sigma}$.

$$(r+s)+t \approx r+(s+t)$$
 $r+s \approx s+r$ $r+r \approx r$ $r+\mathbf{0} \approx r$ $(r.s).t \approx r.(s.t)$

Similarity extends to $\approx^{\omega} \subseteq R_{\Sigma}^{\omega} \times R_{\Sigma}^{\omega}$ as the smallest compatible relation that contains the following elements for all $\alpha, \beta, \gamma \in R_{\Sigma}^{\omega}$.

$$(\alpha + \beta) + \gamma \approx^{\omega} \alpha + (\beta + \gamma)$$
 $\alpha + \beta \approx^{\omega} \beta + \alpha$ $\alpha + \alpha \approx^{\omega} \alpha$ $\alpha + \mathbf{0} \approx^{\omega} \alpha$

$$(r.s).\alpha \approx^{\omega} r.(s.\alpha)$$
 $r \approx s \Rightarrow (r.t^{\omega}) \approx^{\omega} (s.t^{\omega})$ $s \approx t \Rightarrow (r.s^{\omega}) \approx^{\omega} (r.t^{\omega})$

Definition 15. The derivative operator extends to words $w \in \Sigma^*$ by $d_{\varepsilon}(r) = r$, $d_{aw}(r) = d_w(d_a(r))$ and to sets of words $W \subseteq \Sigma^*$ by $d_W(r) = \{d_w(r) \mid w \in W\}$.

Theorem 16 (Finiteness [3]). For each $r \in R_{\Sigma}$, the set $d_{\Sigma^*}(r)/_{\approx}$ is finite.

Taken together, these two theorems yield an effective transformation from a regular expression to a deterministic finite automaton.

Theorem 17 (DFA from regular expression [3]). Define the DFA $\mathcal{D}(r) =$ $(Q, \Sigma, \delta, q_0, F)$ where $Q = d_{\Sigma^*}(r)/_{\approx}$, for all $s \in Q, a \in \Sigma$: $\delta(s, a) = \{d_a(s)\},$ $q_0 = r$, $F = \{s \in Q \mid N(s) = 1\}$. Then $\mathcal{D}(r)$ is a deterministic finite automaton and $\mathcal{L}(\mathcal{D}(r)) = \mathcal{L}(r)$.

Let's try to apply an analogous construction to ω -regular expressions. We first straightforwardly extend the definition of derivatives [7].

Definition 18 (Brzozowski derivative for ω -regular expressions).

$$d_a(\mathbf{0}) = \mathbf{0} \qquad d_a(r,\alpha) = (d_a(r) \odot \alpha) \oplus (N(r) \odot d_a(\alpha))$$

$$d_a(\alpha + \beta) = d_a(\alpha) \oplus d_a(\beta) \qquad d_a(s^{\omega}) = d_a(s) \odot s^{\omega}$$

Lemma 19.
$$\mathcal{L}^{\omega}(d_a(\alpha)) = a^{-1}\mathcal{L}^{\omega}(\alpha)$$

Lemma 20.
$$\mathcal{L}^{\omega}(\alpha) = \bigcup_{a \in \Sigma} \{a\} \cdot \mathcal{L}^{\omega}(d_a(\alpha)).$$

The operation $d_w(\Sigma)$ also yields finitely many derivatives modulo similarity (extended to $R_{\Sigma}^{\omega} \times R_{\Sigma}^{\omega}$ in the obvious way), but applying Brzozowski's automata construction analogously results in a *deterministic* Büchi automaton, which is known to be weaker than its nondeterministic counterpart.

Example 21. Consider the ω -regular expression $(a+b)^*.b^{\omega}$ that describes the language of infinite words that contain only finitely many as. It is known that this language cannot be recognized with a deterministic Büchi automaton. Applying Brzozowski's automaton construction analogously yields the following:

$$\begin{array}{ll} Q &= \{q_0,q_1\} & \qquad \delta(q_0,a) = q_0 \\ q_0 &= (a+b)^*.b^\omega & \qquad \delta(q_0,b) = q_1 \\ q_1 &= (a+b)^*.b^\omega + b^\omega & \qquad \delta(q_1,a) = q_0 \\ Q_0 &= \{q_0\} & \qquad \delta(q_1,b) = q_1 \end{array}$$

As all states "contain" the looping expression b^{ω} , it is not clear which states should be accepting. Furthermore, the automaton is deterministic, so it cannot recognize $\mathcal{L}^{\omega}((a+b)^*.b^{\omega})$, regardless.

4 Partial Derivatives

As Brzozowski's construction only results in a deterministic automaton, we next consider a construction that yields a nondeterministic automaton. It is based on Antimirov's partial derivatives [2]. The partial derivative $\partial_a(r)$ of a regular expression r with respect to a is a set of regular expressions $\{s_1,\ldots,s_n\}$ such that $\bigcup_{i=1}^n \mathcal{L}(s_i) = \{w \mid aw \in \mathcal{L}(r)\}$. As a stepping stone to their definition, Antimirov introduces linear factors of regular expressions. A linear factor is a pair of a first symbol that can be consumed by the expression and a "remaining" regular expression. The following definition corresponds to Antimirov's definition [2, Definition 2.4], but we replace the smart constructor \odot for concatenation (that elides ε) by plain concatenation to simplify the finiteness proof.

Definition 22 (Linear factors [2]).

$$\begin{array}{ll} \operatorname{LF}(\mathbf{0}) = \{\} & \operatorname{LF}(r.s) = \operatorname{LF}(r).s \cup N(r) \odot \operatorname{LF}(s) \\ \operatorname{LF}(\mathbf{1}) = \{\} & \operatorname{LF}(r+s) = \operatorname{LF}(r) \cup \operatorname{LF}(s) \\ \operatorname{LF}(a) = \{\langle a, \mathbf{1} \rangle\} & \operatorname{LF}(r^*) = \operatorname{LF}(r).r^* \end{array}$$

where

$$\begin{array}{ll} \mathbf{0}\odot F = \{\} & \mathbf{1}\odot F = F \\ \langle a,r\rangle.s = \langle a,r.s\rangle & F.s = \{f.s \mid f \in F\} \end{array}$$

Defining the language of a linear factor and a set of linear factors F by

$$\mathcal{L}(\langle a, r \rangle) = a \cdot \mathcal{L}(r)$$
 $\mathcal{L}(F) = \bigcup \{\mathcal{L}(f) \mid f \in F\}$

we can prove the following results about linear factors by induction on r.

Lemma 23. If $\langle a, r' \rangle \in LF(r)$, then $a \cdot \mathcal{L}(r') \subseteq \mathcal{L}(r)$.

Lemma 24. If $av \in \mathcal{L}(r)$, then there exists $\langle a, r' \rangle \in LF(r)$ such that $v \in \mathcal{L}(r')$.

Lemma 25. For all r, $\mathcal{L}(LF(r)) = \mathcal{L}(r) \setminus \{\varepsilon\}$.

We label the symbol for partial derivative with A to signify Antimirov's definition. In Section 5, we define a different version of the partial derivative.

Definition 26 (Partial derivative [2]).

$$\partial_a^A(r) = \{r' \mid \langle a, r' \rangle \in \operatorname{LF}(r), r' \neq \mathbf{0} \}$$

Partial derivatives extend to words and sets of words $W \subseteq \Sigma^*$ in the usual way:

$$\partial_{\varepsilon}^{A}(r) = \{r\} \quad \partial_{aw}^{A}(r) = \bigcup \{\partial_{w}^{A}(r') \mid r' \in \partial_{a}^{A}(r)\} \quad \partial_{W}^{A}(r) = \bigcup \{\partial_{w}^{A}(r) \mid w \in W\}$$

Antimirov proves [2, Theorem 3.4] that the set of all partial derivatives of a given regular expression is finite. While his definition of linear factors uses the smart concatenation \odot , the finiteness proof does not rely on it: it approximates smart concatenation by the standard concatenation operator.

Theorem 27. For any $r \in R_{\Sigma}$, $|\partial_{\Sigma^{+}}^{A}(r)| \leq ||r||$ where ||r|| is the alphabetic width of r (i.e., the number of occurrences of symbols from Σ in r).

Furthermore, a language can be represented from its partial derivatives.

Lemma 28.
$$\mathcal{L}(r) = \mathcal{L}(N(r)) \cup \bigcup_{a \in \Sigma} a \cdot \mathcal{L}(\sum \partial_a^A(r))$$
.

Here, we write $\sum \{r_i \mid 1 \le i \le n\}$ for $r_1 + \dots + r_n$, if n > 0, or for **0** if n = 0. We also have the following characterization.

Lemma 29. If
$$\partial_a^A(r) = \{s_1, \dots, s_n\}$$
, then $\bigcup_{i=1}^n \mathcal{L}(s_i) = \{w \mid aw \in \mathcal{L}(r)\}$.

Antimirov defines a nondeterministic automaton for $\mathcal{L}(r)$ as follows.

Theorem 30 (NFA from regular expression [2]). Define the NFA $\mathcal{N}(r) = (Q, \Sigma, \delta, q_0, F)$ where $Q = \partial_{\Sigma^*}^A(r)$, for all $s \in Q$, $a \in \Sigma$: $\delta(s, a) = \partial_a^A(s)$, $q_0 = r$, $F = \{s \in Q \mid N(s) = 1\}$. Then $\mathcal{N}(r)$ is an NFA and $\mathcal{L}(r) = \mathcal{L}(\mathcal{N}(r))$.

Lemma 31. $w \in \mathcal{L}(r)$ iff $\varepsilon \in \bigcup N(\partial_w^A(r))$.

Proof. By induction on w.

Base case: $\varepsilon \in \mathcal{L}(r)$ iff $\varepsilon \in N(r)$ by Lemma 6. The claim follows because $N(r) = \bigcup N(\{r\}) = \bigcup N(\{\partial_{\varepsilon}^{A}(r)\})$.

Inductive case: Suppose that $aw \in \mathcal{L}(r)$ and $\partial_a^A(r) = \{r_1, \dots, r_k\}$. By Lemma 29, $\bigcup_i \mathcal{L}(r_i) = \{v \mid av \in \mathcal{L}(r)\}$ so that $w \in \bigcup_i \mathcal{L}(r_i)$, i.e., $\exists i : w \in \mathcal{L}(r_i)$. By induction, $\varepsilon \in \bigcup N(\partial_w^A(r_i)) \subseteq N(\partial_{aw}^A(r))$.

For the reverse direction, suppose that $\varepsilon \in \bigcup N(\partial_{aw}^A(r)) = N(\bigcup \{\partial_w^A(r') \mid r' \in \partial_a^A(r), r' \neq \mathbf{0}\})$. Hence, there exists $r' \in \partial_a^A(r)$ such that $\varepsilon \in N(\partial_w^A(r'))$. By induction, $w \in \mathcal{L}(r')$ and thus, by Lemma 29, $aw \in \mathcal{L}(r)$.

To scale the definition from Theorem 30 to ω -regular expressions we need to extend Definition 22.

Definition 32 (ω -Linear factors). Define LF: $R_{\Sigma}^{\omega} \to \Sigma \times R_{\Sigma}^{\omega} \times \{0,1\}$ by

Compared to the linear factor of a regular expression, an ω -linear factor is a *triple* of a next symbol, an ω -regular expression, and a bit that indicates whether the factor resulted from unrolling an ω -iteration.

For an ω -linear factor define $\mathcal{L}^{\omega}(\langle a, \beta, g \rangle) = a \cdot \mathcal{L}^{\omega}(\beta)$ and for a set F of ω -linear factors accordingly $\mathcal{L}^{\omega}(F) = \bigcup \{\mathcal{L}^{\omega}(f) \mid f \in F\}.$

Each ω -regular language can be represented by its set of ω -linear factors. Compared to the finite case (Lemma 25), the empty string need not be considered because it is not an element of Σ^{ω} .

Lemma 33. For all
$$\alpha$$
, $\mathcal{L}^{\omega}(\alpha) = \mathcal{L}^{\omega}(LF(\alpha))$.

Proof. By induction on α . We only show one illustrative case.

Case s^{ω} : let $w \in \mathcal{L}^{\omega}(s^{\omega})$. By definition, $w = v_0 v_1 \dots$ with $\varepsilon \neq v_i \in \mathcal{L}(s)$, for all $i \in \mathbb{N}$. Suppose that w = aw'. Then $v_0 = av'_0$. Show that there exists $f = \langle a, s', 1 \rangle \in LF(s^{\omega})$ such that $w' \in \mathcal{L}^{\omega}(s')$.

If $LF(s^{\omega}) = \emptyset$, then $\mathcal{L}^{\omega}(s^{\omega}) = \emptyset$, which contradicts the existence of w.

Suppose next that all ω -linear factors have the form $\langle b, s', 1 \rangle$ for some $b \neq a$. But then we obtain a contradiction to $av'_0 \in \mathcal{L}(s)$.

Thus, we need to examine the ω -linear factors of the form $\langle a, s'.s^{\omega}, 1 \rangle \in LF(s).s^{\omega} \times \{1\} = LF(s^{\omega})$. By Lemma 24, there must be a linear factor $\langle a, s' \rangle \in LF(s)$ such that $v'_0 \in \mathcal{L}(s')$. Hence, $w' = v'_0 v_1 \cdots \in \mathcal{L}^{\omega}(s'.s^{\omega})$ and thus $w = aw' \in \mathcal{L}^{\omega}(\langle a, s'.s^{\omega}, 1 \rangle) \subseteq \mathcal{L}^{\omega}(LF(s^{\omega}))$.

For the reverse direction, suppose that $w \in \mathcal{L}^{\omega}(LF(s^{\omega}))$. Then there exists $\langle a, s' \rangle \in LF(s)$ and hence $\langle a, s'.s^{\omega}, 1 \rangle \in LF(s).s^{\omega} \times \{1\} = LF(s^{\omega})$ such that $w \in a \cdot \mathcal{L}^{\omega}(s'.s^{\omega}) = a \cdot \mathcal{L}(s') \cdot \mathcal{L}^{\omega}(s^{\omega})$. By Lemma 23, $a \cdot \mathcal{L}(s') \subseteq L(s)$ so that $w \in a \cdot \mathcal{L}(s') \cdot \mathcal{L}^{\omega}(s^{\omega}) \subseteq \mathcal{L}(s) \cdot \mathcal{L}^{\omega}(s^{\omega}) = \mathcal{L}^{\omega}(s^{\omega})$.

Using the obvious extension of the partial derivative operator, Lemma 29 extends to the ω -regular case.

Lemma 34. If
$$\partial_a^A(\alpha) = \{\beta_1, \dots, \beta_n\}$$
, then $\bigcup_{i=1}^n \mathcal{L}^\omega(\beta_i) = \{w \mid aw \in \mathcal{L}^\omega(\alpha)\}$.

However, again it is not clear how to extend Antimirov's automaton construction to Büchi automata. The critical part is to come up with a characterization of the accepting states.

Example 35. Let $\alpha = (a+b)^*.b^{\omega}$ as in the previous example. Constructing an automaton analogously to Theorem 30 yields

$$\begin{array}{ll} q_0 &= (a+b)^*.b^\omega & \qquad \delta(q_0,a) = \{q_0\} \\ q_1 &= b^\omega & \qquad \delta(q_0,b) = \{q_0,q_1\} \\ Q &= \{q_0,q_1\} & \qquad \delta(q_1,a) = \{\} \\ Q_0 &= \{q_0\} & \qquad \delta(q_1,b) = \{q_1\} \end{array}$$

Thus, adopting the set of accepting states $F = \{q_1\}$ yields a nondeterministic Büchi automaton that accepts exactly $\mathcal{L}(\alpha)$. Apparently, we may categorize states of the form s^{ω} as accepting.

While the previous example is encouraging in that the construction leads to a correct automaton, a simple transformation of the ω -regular expression shows that the criterion for accepting states is not sufficient in the general case.

Example 36. Let $\beta = (a+b)^* \cdot (b \cdot b^*)^{\omega}$. This expression recognizes the same language as the expression of the previous example.

$$\begin{array}{ll} \partial_{a}(\beta) & = \partial_{a}((a+b)^{*}.(b.b^{*})^{\omega}) \\ & = \partial_{a}((a+b)^{*}).(b.b^{*})^{\omega} \cup \partial_{a}(b.b^{*}) \odot (b.b^{*})^{\omega} \\ & = \{(a+b)^{*}.(b.b^{*})^{\omega}\} \\ & = \{(a+b)^{*}.(b.b^{*})^{\omega}\} \\ & = \partial_{b}((a+b)^{*}.(b.b^{*})^{\omega}) \\ & = \partial_{b}((a+b)^{*}).(b.b^{*})^{\omega} \cup \partial_{b}(b.b^{*}) \odot (b.b^{*})^{\omega} \\ & = \{(a+b)^{*}.(b.b^{*})^{\omega}\} \cup \{b^{*}.(b.b^{*})^{\omega}\} \\ & \partial_{b}(b^{*}.(b.b^{*})^{\omega}) = \partial_{b}(b^{*}).(b.b^{*})^{\omega} \cup \partial_{b}(b.b^{*}) \odot (b.b^{*})^{\omega} \\ & = \{b^{*}.(b.b^{*})^{\omega}\} \cup \{b^{*}.(b.b^{*})^{\omega}\} \\ & \partial_{a}(b^{*}.(b.b^{*})^{\omega}) = \{\} \end{array}$$

Thus, we cannot construct a Büchi automaton for $\mathcal{L}^{\omega}(\beta)$ by simply classifying the states of the form s^{ω} as accepting because there are no such states in this automaton: thus, the automaton would accept the empty language.

Alternatively, we might be tempted to consider all expressions of the form $r.s^{\omega}$ where r is nullable as accepting states. This choice would classify *all states* in the example as accepting, which would cause the automaton to wrongly accept the infinite word a^{ω} .

5 NBA from ω -Linear Factors

The difficulties with the previous examples demonstrate that Antimirov's partial derivatives cannot be used directly as the states of a Büchi automaton. To fix these problems, we base our construction directly on the ω -linear factors that arise as an intermediate step in Antimirov's work.

Definition 37. For an ω -linear factor (and a set F of ω -linear factors) define the partial derivative as a set of ω -linear factors:

$$\partial_b(\langle a, \beta, g \rangle) = \begin{cases} \{\} & a \neq b \\ \mathrm{LF}(\beta) & a = b \end{cases} \qquad \partial_b(F) = \bigcup_{f \in F} \partial_b(f)$$

Define further the extension to words $\partial_{\varepsilon}(F) = F$ and $\partial_{aw}(F) = \partial_{w}(\partial_{a}(F))$ and the extension to sets of finite words $W \subseteq \Sigma^{*}$: $\partial_{W}(F) = \bigcup \{\partial_{w}(F) \mid w \in W\}$.

This definition of the derivative serves as the basis for defining the set of states $Q(\alpha)$ for the NBA, which we are aiming to construct.

Definition 38. Define $Q(\alpha)$ inductively as the smallest set such that $LF(\alpha) \subseteq Q(\alpha)$ and, for each $\alpha \in \Sigma$, $\partial_{\alpha}(Q(\alpha)) \subseteq Q(\alpha)$.

Lemma 39. If $\langle a, \beta, g \rangle \in \mathcal{Q}(\alpha)$, then $\exists w \in \Sigma^*$ such that $\langle a, \beta, g \rangle \in \partial_w(LF(\alpha))$.

Proof. By induction on the construction of $Q(\alpha)$.

Base case: $\langle a, \beta, g \rangle \in LF(\alpha) = \partial_{\varepsilon}(LF(\alpha)).$

Inductive case: $\langle a, \beta, g \rangle \in \partial_a(f)$, for some $f \in \mathcal{Q}(\alpha)$ and $a \in \Sigma$. By induction, $f \in \partial_w(LF(\alpha))$, for some w, and thus $\langle a, \beta, g \rangle \in \partial_a(\partial_w(LF(\alpha))) = \partial_{aw}(LF(\alpha))$. \square

Proposition 40. For each ω -regular expression α , $\mathcal{Q}(\alpha)$ is finite.

Proof. We prove that $Q(\alpha) \subseteq \Sigma \times \partial_{\Sigma^+}^A(\alpha) \times \{0,1\}.$

Suppose that $\langle a, \alpha', g \rangle \in \mathcal{Q}(\alpha)$. There are two cases. If $\langle a, \alpha', g' \rangle \in LF(\alpha)$, then $a \in \Sigma$ and $\alpha' \in \partial_a^A(\alpha) \subseteq \partial_{\Sigma^+}^A(\alpha)$.

If $\langle a, \alpha', g' \rangle \in \partial_b(\langle b, \beta, g \rangle)$ for some $\langle b, \beta, g \rangle \in \mathcal{Q}(\alpha)$, then there exists some $w \in \Sigma^*$ such that $\beta \in \partial_{wb}^A(\alpha)$ and $\langle a, \alpha', g \rangle \in LF(\beta)$. By definition, $\alpha' \in \partial_{wba}^A(\alpha) \subseteq \partial_{\Sigma^+}^A(\alpha)$.

By Theorem 27, $|\partial_{\Sigma^{+}}^{A}(\alpha)|$ is finite and so is $|\mathcal{Q}(\alpha)| \leq |\Sigma| \cdot |\partial_{\Sigma^{+}}^{A}(\alpha)| \cdot 2$.

Given this finiteness, we construct a non-deterministic Büchi automaton from an ω -regular expression as follows.

Definition 41 (NBA from ω -regular expression). Define the NBA $\mathcal{B}(\alpha) = (Q, \Sigma, \delta, Q_0, F)$ by $Q = \mathcal{Q}(\alpha)$; $Q_0 = \text{LF}(\alpha)$; $F = \{\langle a, \beta, g \rangle \in Q \mid g = 1\}$; and $\delta(f, a) = \partial_a(f)$.

Example 42. Consider (again) $\alpha = (a+b)^*.b^{\omega}$.

$$\begin{split} \operatorname{LF}(\alpha) &= \operatorname{LF}((a+b)^*).b^\omega \cup \operatorname{LF}(b^\omega) \\ &= \{\langle a, (a+b)^*.b^\omega, 0 \rangle, \langle b, (a+b)^*.b^\omega, 0 \rangle, \langle b, b^\omega, 1 \rangle\} \\ &= Q = Q_0 \\ \delta(\langle b, b^\omega, 1 \rangle, a) &= \{\} \\ \delta(\langle b, b^\omega, 1 \rangle, b) &= \{\langle b, b^\omega, 1 \rangle\} \\ \delta(\langle a, (a+b)^*.b^\omega, 0 \rangle, a) &= \operatorname{LF}((a+b)^*.b^\omega) = Q \\ \delta(\langle a, (a+b)^*.b^\omega, 0 \rangle, b) &= \{\} \\ \delta(\langle b, (a+b)^*.b^\omega, 0 \rangle, a) &= \{\} \\ \delta(\langle b, (a+b)^*.b^\omega, 0 \rangle, b) &= \operatorname{LF}((a+b)^*.b^\omega) = Q \end{split}$$

Accepting states: $F = \{\langle b, b^{\omega}, 0 \rangle\} = LF(b^{\omega}).$

The resulting automaton properly accepts $\mathcal{L}^{\omega}(\alpha)$.

Example 43. Next consider $\beta = (a+b)^* \cdot (b \cdot b^*)^{\omega}$.

$$\begin{split} \operatorname{LF}(\beta) &= \operatorname{LF}((a+b)^*).(b.b^{\omega}) \times \{0\} \cup \operatorname{LF}((b.b^*)^{\omega}) \\ &= \operatorname{LF}(a+b).(a+b)^*.(b.b^{\omega}) \times \{0\} \cup \operatorname{LF}(b.b^*).(b.b^*)^{\omega} \times \{1\} \\ &= \{\langle a, (a+b)^*.(b.b^{\omega}), 0 \rangle, \langle b, (a+b)^*.(b.b^{\omega}), 0 \rangle\} \\ & \cup \operatorname{LF}(b).b^*.(b.b^*)^{\omega} \times \{1\} \\ &= \{\langle a, (a+b)^*.(b.b^{\omega}), 0 \rangle, \langle b, (a+b)^*.(b.b^{\omega}), 0 \rangle, \langle b, b^*.(b.b^*)^{\omega}, 1 \rangle\} \\ &= \{\langle a, \beta, 0 \rangle, \langle b, \beta, 0 \rangle, \langle b, b^*.(b.b^*)^{\omega}, 1 \rangle\} \end{split}$$

$$\begin{split} \delta(\langle a,\beta\rangle,a) &= \operatorname{Lf}(\beta) \\ \delta(\langle b,\beta\rangle,b) &= \operatorname{Lf}(\beta) \\ \delta(\langle b,b^*.(b.b^*)^\omega\rangle,b) &= \operatorname{Lf}(b^*.(b.b^*)^\omega) \\ &= \operatorname{Lf}(b^*).(b.b^*)^\omega \times \{1\} \cup \operatorname{Lf}((b.b^*)^\omega) \\ &= \operatorname{Lf}(b).b^*.(b.b^*)^\omega \times \{1\} \cup \operatorname{Lf}(b.b^*).(b.b^*)^\omega \times \{1\} \\ &= \operatorname{Lf}(b).b^*.(b.b^*)^\omega \times \{1\} \cup \operatorname{Lf}(b).b^*.(b.b^*)^\omega \times \{1\} \\ &= \{\langle b,b^*.(b.b^*)^\omega,1\rangle\} \\ &= \operatorname{Lf}((b.b^*)^\omega) \end{split}$$

Accepting states:

$$F = \{ \langle b, b^* . (b.b^*)^{\omega}, 1 \rangle \} = \text{LF}((b.b^*)^{\omega})$$

The resulting automaton properly accepts $\mathcal{L}^{\omega}(\beta)$ with the same number of states as in the previous example.

It remains to prove the correctness of the construction in Definition 41.

Theorem 44. For all
$$\alpha \in R_{\Sigma}^{\omega}$$
: $\mathcal{L}^{\omega}(\alpha) = \mathcal{L}^{\omega}(\mathcal{B}(\alpha))$.

We start with some technical lemmas.

Lemma 45. For all
$$v \neq \varepsilon$$
, $\partial_v(LF(s^\omega)) = \partial_v(LF(s.s^\omega))$.

Proof. By definition of ω -regular expressions, $\varepsilon \notin \mathcal{L}(s)$ that is $N(s) = \mathbf{0}$. Observe that $\mathrm{LF}(s^\omega) = \mathrm{LF}(s).s^\omega \times \{1\}$, whereas $\mathrm{LF}(s.s^\omega) = \mathrm{LF}(s).s^\omega \times \{0\} \cup N(s) \odot \mathrm{LF}(s^\omega) = \mathrm{LF}(s).s^\omega \times \{0\}$. Because $v \neq \varepsilon$, it must be that v = av', for some a. Hence, $\partial_a(\mathrm{LF}(s^\omega)) = \bigcup \{\mathrm{LF}(s'.s^\omega) \mid \langle a, s' \rangle \in \mathrm{LF}(s)\} = \partial_a(\mathrm{LF}(s.s^\omega))$. Hence, $\partial_{av'}(\mathrm{LF}(s^\omega)) = \partial_{av'}(\mathrm{LF}(s.s^\omega))$

The next lemma is our workhorse in proving that $\mathcal{L}^{\omega}(\alpha)$ is contained in the language of $\mathcal{B}(\alpha)$.

Lemma 46. If
$$u \in \mathcal{L}(r)$$
, then $LF(\alpha) \subseteq \partial_u(LF(r,\alpha))$.

Proof. Induction on r.

Case $r = \mathbf{0}$: contradiction because $\mathcal{L}(\mathbf{0}.\alpha) = \{\}$.

Case r = 1: Then $u = \varepsilon$ and $\partial_{\varepsilon}(LF(1.\alpha)) = LF(1.\alpha) = LF(\alpha)$.

Case r = a: Then u = a and $\partial_a(LF(a,\alpha)) = \partial_a(\langle a,\alpha,0\rangle) = LF(\alpha)$.

Case $r = r_1.r_2$: Then $u = u_1u_2$ with $u_1 \in \mathcal{L}(r_1)$ and $u_2 \in \mathcal{L}(r_2)$.

By similarity (cf. Definition 14), $LF((r_1.r_2).\alpha) = LF(r_1.(r_2.\alpha))$.

By induction on r_1 , LF $(r_2.\alpha) \subseteq \partial_{u_1}(LF(r_1.(r_2.\alpha)))$.

By induction on r_2 ,

$$LF(\alpha) \subseteq \partial_{u_2}(LF(r_2.\alpha)) \subseteq \partial_{u_2}(\partial_{u_1}(LF(r_1.(r_2.\alpha)))) = \partial_u(LF(r.\alpha))$$

Case $r = r_1 + r_2$: Assume that $u \in \mathcal{L}(r_1) \subseteq \mathcal{L}(r)$. By induction, $LF(\alpha) \subseteq \partial_u(LF(r_1.\alpha)) \subseteq \partial_u(LF(r.\alpha))$. The case for r_2 is analogous.

Case $r = r_1^*$: Consider

$$LF(r_1^*.\alpha) = LF(r_1^*).\alpha \cup N(r_1^*) \odot LF(\alpha) = LF(r_1).r_1^*.\alpha \cup LF(\alpha)$$

For $u \in \Sigma^*$, $\partial_u(LF(r_1^*.\alpha)) = \partial_u(LF(r_1).r_1^*.\alpha) \cup \partial_u(LF(\alpha))$.

If $u \in \mathcal{L}(r)$, then $u = u_1 \dots u_n$, for some $n \in \mathbb{N}$, where all $u_i \neq \varepsilon$. Continue by induction on n.

If n = 0, $u = \varepsilon$, then clearly $LF(\alpha) \subseteq \partial_{\varepsilon}(LF(r_1^*.\alpha))$. Otherwise,

The next, final lemma is our workhorse in proving that the language of $\mathcal{B}(\alpha)$ is contained in $\mathcal{L}^{\omega}(\alpha)$. The proof requires the extra bit in the ω -linear factors.

Lemma 47. Let $q_0q_1 \dots q_n$ be a prefix of an accepting run of $\mathcal{B}(r.s^{\omega})$ on $uw = a_1 \dots a_n w$ where $q_n \in LF(s^{\omega})$, but $q_i \notin LF(s^{\omega})$, for $0 \le i < n$. Then $u \in \mathcal{L}(r)$.

Proof. Induction on n.

Case 0; $u = \varepsilon$: $q_0 \in LF(s^{\omega}) \cap LF(r.s^{\omega})$ because $q_0 \in Q_0$. Now $LF(s^{\omega}) = LF(s).s^{\omega} \times \{1\}$ and $LF(r.s^{\omega}) = LF(r).s^{\omega} \times \{0\} \cup N(r) \odot LF(s).s^{\omega} \times \{1\}$.

If N(r) = 1, then $q_0 \in LF(s^{\omega}) \subseteq LF(r,s^{\omega})$ and $u = \varepsilon \in \mathcal{L}(r)$.

If $N(r) = \mathbf{0}$, then $q_0 \in LF(s).s^{\omega} \times \{1\} \cap LF(r).s^{\omega} \times \{0\} = \emptyset$ so that this case is not possible. (Without the extra bit in LF, there may be common linear factors if $\mathcal{L}(r) \cap \mathcal{L}(s^*) \neq \emptyset$.)

Case n > 0: u = au' and $q_1 \in \partial_a(q_0)$. As $q_0 \in Q_0 = LF(r.s^{\omega}) = LF(r).s^{\omega} \times \{0\} \cup N(r) \odot LF(s^{\omega})$ but $q_0 \notin LF(s^{\omega})$, it must be that $q_0 \in LF(r).s^{\omega} \times \{0\}$.

Thus, $q_1 \in \partial_a(LF(r).s^\omega \times \{0\})$, so that there is a linear factor $\langle a, r' \rangle \in LF(r)$ such that $q_1 \in LF(r'.s^\omega)$.

Thus, $q_1
ldots q_n$ is a prefix of an accepting run of $\mathcal{B}(r'.s^{\omega})^1$ on $u'w = a_2
ldots a_n w$ where $q_n \in LF(s^{\omega})$, but $q_i \notin LF(s^{\omega})$, for $1 \le i < n$. By induction, $u' \in \mathcal{L}(r')$ so that $u = au' \in \mathcal{L}(r)$ by Lemma 23.

Proof (of Theorem 44). It is sufficient to consider $\alpha = r.s^{\omega}$.

Case " \subseteq ": Let $w \in \mathcal{L}^{\omega}(r.s^{\omega})$. Then $w = uv_0v_1...$ where $u \in \mathcal{L}(r)$ and $\varepsilon \neq v_i \in \mathcal{L}(s)$, for $i \in \mathbb{N}$.

Let $Q_0 = LF(r.s^{\omega})$. By Lemma 46, $LF(s^{\omega}) \subseteq \partial_u(LF(r.s^{\omega})) = \delta(Q_0, u)$.

While the set Q' of states of $\mathcal{B}(r'.s^{\omega})$ is a subset of the states Q of $\mathcal{B}(r.s^{\omega})$, it is easy to see that the states $q_1 \dots q_n$ as well as the remaining states $q_{n+1}q_{n+2}\dots$ of the accepting run are all elements of Q'.

Furthermore, for each $i \in \mathbb{N}$, by Lemmas 45 and 46,

$$\partial_{v_i}(LF(s^{\omega})) = \partial_{v_i}(LF(s.s^{\omega})) \supseteq LF(s^{\omega})$$

Hence, there exists a run of $\mathcal{B}(\alpha)$ which visits states from $F = LF(s^{\omega})$ infinitely often.

Case " \supseteq ": Suppose that $a_0a_1\cdots\in\mathcal{L}^{\omega}(\mathcal{B}(\alpha))$. Hence, there is a run $q_0q_1\cdots\in Q^{\omega}$ and a strictly increasing sequence $(n_i)_{i\in\mathbb{N}}\in\mathbb{N}^{\omega}$ such that, for all $j\in\mathbb{N}$, $q_i\in F$ iff $\exists i:j=n_i$.

Let $q = q_{n_0}$ be the first accepting state in the run and let $u = a_0 \dots a_{n_0-1}$. By construction of $\mathcal{B}(\alpha)$, $q \in \delta(Q_0, u)$ and $q \in LF(s^{\omega}) = F$. By Lemma 47, $u \in \mathcal{L}(r)$.

Next, for each $i \in \mathbb{N}$, define $v_i = a_{n_i} \dots a_{n_{i+1}}$ so that $w = uv_0v_1 \dots$ For each $i, \ q_{n_i} \in F$ and $\varepsilon \neq v_i = b_iv_i'$. By construction $q_{n_i+1} \in \delta(q_{n_i}, b_i)$ so that $q_{n_i+1} \dots q_{n_{i+1}} \dots$ is a prefix of an accepting run of $\mathcal{B}(q_{n_i+1})$ where $q_{n_i+1} = \langle b_i, s'. s^\omega, 1 \rangle$, for some $\langle b_i, s' \rangle \in \mathrm{LF}(s)$. By Lemma 47, $v_i' \in \mathcal{L}(s')$ so that $v_i = b_iv_i' \in \mathcal{L}(s)$ by Lemma 23.

Taken together, we have shown that $w \in \mathcal{L}(r) \cdot \{v_0 v_1 \cdots \mid v_i \in \mathcal{L}(s)\} = \mathcal{L}^{\omega}(r.s^{\omega}).$

We believe that it is possible to reduce the number of states of $\mathcal{B}(\alpha)$ by a factor of $|\Sigma|$ by merging suitable linear factors, but we leave this for future work.

References

- 1. Antimirov, V.M.: Rewriting regular inequalities. In: Proc. of FCT'95. LNCS, vol. 965, pp. 116–125. Springer-Verlag (1995)
- Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions. Theoretical Computer Science 155(2), 291–319 (1996)
- 3. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481-494 (1964)
- Caron, P., Champarnaud, J.M., Mignot, L.: Partial derivatives of an extended regular expression. In: LATA. LNCS, vol. 6638, pp. 179

 –191. Springer (2011)
- Kleene, S.C.: Representation of events in nerve nets and finite automata. Automata Studies (1956)
- Park, D.: Concurrency and automata on infinite sequences. In: Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany, March 23-25, 1981, Proceedings. LNCS, vol. 104, pp. 167–183. Springer (1981)
- 7. Redziejowski, R.R.: Construction of a deterministic ω -automaton using derivatives. Informatique Théorique et Applications 33(2), 133–158 (1999)
- 8. Redziejowski, R.R.: An improved construction of deterministic omega-automaton using derivatives. Fundam. Inform. 119(3-4), 393–406 (2012)
- 9. Rosu, G., Viswanathan, M.: Testing extended regular language membership incrementally by rewriting. In: Proc. of RTA'03. LNCS, vol. 2706, pp. 499–514. Springer (2003)