Probability 1

Lecture 02 : Elements of Set Theory

Dr. Daniel Flores-Agreda,

(based on the notes of Prof. Davide La Vecchia)

Spring Semester 2021

Objective

Kickstart the mathematical characterisation of probability by:

- Introducing: Random Experiments, Events, and Sample Spaces and characterising them as Sets.
- Providing elements of Set Theory helpful in the study of probability.
- Giving an informal definition Probability as Frequency.

Outline

- Random Experiments, Events and Sample Spaces
- Some Definitions from Set Theory
- The Venn Diagram
- Countable and Uncountable Sets
- De Morgan's Laws
- 6 Probability as Frequency

Outline

- Random Experiments, Events and Sample Spaces
- 2 Some Definitions from Set Theory
- The Venn Diagram
- Countable and Uncountable Sets
- De Morgan's Laws
- Probability as Frequency

Definition

A random experiment is a process that can **result in two or more different outcomes** with **uncertainty** as to which will be observed.

Definition

A random experiment is a process that can **result in two or more different outcomes** with **uncertainty** as to which will be observed.

Example

Drawing a card in a BlackJack game.

Definition

An event is an uncertain outcome of a random experiment.

Definition

An event is an uncertain outcome of a random experiment.

Example

The card drawn is a King of Hearts

Definition

An event is an uncertain outcome of a random experiment.

Example

The card drawn is a King of Hearts

An event can be:

- Elementary: it includes only one particular outcome of the experiment
- Composite: it includes more than one elementary outcome in the possible sets of outcomes.

Definition

The Sample Space(S) is the complete **listing of the elementary events** that can occur in a random experiment.

Example (Drawing a single card from a deck)

Suppose we choose one card at random from a deck of 52 playing cards.

$$S = \{A \clubsuit, 2 \clubsuit K \clubsuit, A \spadesuit, 2 \spadesuit, K \spadesuit, A \blacktriangledown, 2 \blacktriangledown, K \spadesuit\}$$

$$K = \text{ event of king} = \{K \clubsuit, K \spadesuit, K \blacktriangledown, K \bigstar\}$$

$$H = \text{event of heart} = \{A \lor, 2 \lor, \dots, K \lor\}$$

J = event of jack or better

$$= \{J \clubsuit, J \blacklozenge, J \blacktriangledown, J \spadesuit, Q \clubsuit, Q \blacklozenge, Q \blacktriangledown, Q \blacktriangledown, K \blacklozenge, K \blacktriangledown, K \spadesuit, A \clubsuit, A \blacklozenge, A \blacktriangledown, A \spadesuit\}$$

$$Q = \text{event of queen} = \{Q \clubsuit, Q \blacklozenge, Q \blacktriangledown, Q \spadesuit\}$$

Random Experiments, Events and Sample Spaces

Example (Tossing two coins)

• Flipping two coins, could be seen as an **Experiment**

Random Experiments, Events and Sample Spaces

Examples

Example (Tossing two coins)

- Flipping two coins, could be seen as an Experiment
- If we flip two coins and name:
 - H for Head and
 - T for Tail,

each of these pairs, e.g. (H, T) constitutes an **outcome**.

Example (Tossing two coins)

- Flipping two coins, could be seen as an Experiment
- If we flip two coins and name:
 - H for Head and
 - T for Tail,

each of these pairs, e.g. (H, T) constitutes an **outcome**.

Finally, the Sample Space contains the following four points

$$S = \{(HH), (HT), (TH), (TT)\}.$$

Example (Measuring time on screen)

- Taking a measure of time spent on your Phone, can be considered an experiment.
- Outcomes are positive measures
- The Sample Space consists of all non-negative real numbers:

$$S = \{x : 0 \le x < \infty\} \equiv \mathbb{R}^+$$

Outline

- 1 Random Experiments, Events and Sample Spaces
- 2 Some Definitions from Set Theory
- The Venn Diagram
- 4 Countable and Uncountable Sets
- De Morgan's Laws
- Probability as Frequency

Some Definitions from Set Theory

To deal with events, we rely on the set theory

Some Definitions from Set Theory

To deal with events, we rely on the set theory

Definition

 If every element of a set A is also an element of a set B, then A is a subset of B:

$$A \subset B$$
,

read as "A is contained in B"

Two sets A and B are equal if

$$A \subset B$$
 and $B \subset A$;

 If a set A contains no elements, it's a null set, or empty set, and denoted by Ø.

Outline

- Random Experiments, Events and Sample Spaces
- Some Definitions from Set Theory
- The Venn Diagram
- Countable and Uncountable Sets
- De Morgan's Laws
- 6 Probability as Frequency

A Venn diagram is an enclosed figure representing a set.

We will use Venn Diagrams to represent Events in the Sample Space

Two events are **mutually exclusive** is they cannot occur jointly.

Elements of set theory (Venn diagram)

Two events are **not mutually exclusive** if they share some elements.

The union of the events A and B is the event which occurs when either A or B occurs: $A \cup B$

The intersection of the events A and B is the event which occurs when both A and B occur: $A \cap B$

The complement of an event A is the event which occurs when A does not occur: A^c (or \overline{A})

The complement of an event A is the event which occurs when A does not occur: A^c (or \overline{A})

The complement of an event A is the event which occurs when A does not occur: A^c (or \overline{A})

$$A \cup A^c = S$$
 and $A^c = S \setminus A = S - A$.

Let A, B, and C be sets. The following laws hold:

Commutative laws:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

• Associative laws:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws:

The intersection is distributive with respect to the union

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Distributive laws:

The union is distributive with respect to the intersection

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Outline

- Random Experiments, Events and Sample Spaces
- 2 Some Definitions from Set Theory
- The Venn Diagram
- 4 Countable and Uncountable Sets
- De Morgan's Laws
- Probability as Frequency

Sets can be either **countable** or **uncountable**.

• A countable set is a set with the same number of elements as a subset of the set of natural numbers (\mathbb{N}) .

It can be either finite or countably infinite

- Its elements can be counted one a time i.e. using 1, 2, 3, ...
- The counting may never finish.
- We can't do the same with uncountable sets!

Example (Countable and Finite sets)

- $K \cup H = \{A \lor, 2 \lor, \dots, K \lor, K \diamondsuit, K \diamondsuit, K \diamondsuit \}$
- J∪H =
 {J♣, J♠, J♥, J♠,Q♣,Q♠,Q♠,Q♥, Q♠,K♣,K♠,K♥,K♠, A♠,A♠,A♥,A♠, 2♥, ...10♥}
- *H^c*= event of *not* a heart = {A♣, 2 ♣, K ♣, A ♦, 2 ♦, K ♦,

Exercise (Uncountable)

Sample space =
$$C = \{x: 0 < x < 1\}$$

C

0

1

$$A = \{x \in C: 0.3 < x < 0.8\}$$

$$B = \{x \in C: 0.6 < x < 1\}$$

Exercise (cont'd)

and using the definition of A and B compute:

- A^c
- B^c
- $B^c \cup A$
- $B^c \cup A^c$

- A ∪ B
- A ∩ B
- B ∪ A^c
- $A^c \cup A$

Exercise (Countable)

Let us consider the experiment where we flip two coins. (H stands for Head and T for Tail).

$$S = \left\{ (HH), (HT), (TH), (TT) \right\}.$$

Then, let us consider the events:

- A = H is obtained at least once $= \{(HH), (HT), (TH)\}$
- B =the second toss yields $T = \{(HT), (TT)\}$

Exercise (cont'd)

and using the definitions of A and B compute:

- A^c
- B^c
- $B^c \cup A$

- \bullet $A \cup B$
- A ∩ B
- B ∪ A^c

More on sets

Exercise (cont'd)

and using the definitions of A and B compute:

- $A^c = \{(TT)\}$
- $B^c = \{(HH), (TH)\}$
- $B^c \cup A$

- A ∪ B
- A ∩ B
- B ∪ A^c

Proposition

Let $A \subset S$ and \varnothing the empty set. The following relations hold:

- $A \cap S = A$:
- $A \cup S = S$;
- $A \cap \emptyset = \emptyset$:
- $A \cup \emptyset = A$;

- $A \cap A^c = \emptyset$:
- $A \cup A^c = S$;
- $A \cap A = A$;
- $A \cup A = A$;

Proposition

Let $A \subset S$ and \varnothing the empty set. The following relations hold:

- $A \cap S = A$:
- $A \cup S = S$:
- $A \cap \emptyset = \emptyset$;
- $A \cup \varnothing = A$;

- $A \cap A^c = \emptyset$:
- $A \cup A^c = S$;
- $A \cap A = A$;
- $A \cup A = A$;

Exercise

Verify these relations using Venn diagrams.

The above relations are helpful to define some other relations between sets/events.

Example

Let A and B be two sets in S. Then we have

$$B = (B \cap A) \cup (B \cap A^c).$$

To check it, we can proceed as follows:

$$B = S \cap B$$

The above relations are helpful to define some other relations between sets/events.

Example

Let A and B be two sets in S. Then we have

$$B = (B \cap A) \cup (B \cap A^c).$$

To check it, we can proceed as follows:

$$B = S \cap B$$
$$= (A \cup A^c) \cap B$$

The above relations are helpful to define some other relations between sets/events.

Example

Let A and B be two sets in S. Then we have

$$B = (B \cap A) \cup (B \cap A^c).$$

To check it, we can proceed as follows:

$$B = S \cap B$$

= $(A \cup A^c) \cap B$
= $(B \cap A) \cup (B \cap A^c)$.

Outline

- 1 Random Experiments, Events and Sample Spaces
- Some Definitions from Set Theory
- The Venn Diagram
- 4 Countable and Uncountable Sets
- De Morgan's Laws
- Probability as Frequency

Let A and B be two sets in S. Then:

$$(A\cap B)^c=A^c\cup B^c,$$

where:

- Left hand side: (A ∩ B)^c represents the set of all elements that are not both A and B;
- Right hand side: $A^c \cup B^c$ represents all elements that are not A (namely they are A^c) and not B either (namely they are B^c) \Rightarrow set of all elements that are not both A and B.

Put in words:

The complement of the Intersection is the Union of the Complements

Let A and B be two sets in S. Then:

$$(A \cup B)^c = A^c \cap B^c$$
,

where:

- Left hand side: $(A \cup B)^c$ represents the **set of all elements that are neither** A **nor** B;
- Right hand side: $A^c \cap B^c$ represents the intersection of all elements that are not A (namely they are A^c) and not B either (namely they are B^c) \Rightarrow set of all elements that are neither A nor B.

The complement of the Union is the Intersection of the Complements

These laws can be extended to **Three Sets**:

Let $A_1, A_2, A_3 \subset S$, and $A_1^c = \overline{A_1}$),

(i) First law:

$$\overline{(A_1 \cup A_2 \cup A_3)} = \overline{A_1} \cap \overline{A_2} \cap \overline{A_3}$$

(ii) Second Law:

$$\overline{(A_1 \cap A_2 \cap A_3)} = \overline{A_1} \cup \overline{A_2} \cup \overline{A_3}$$

And to the union or intersection of **infinite sets** (see the Course notes)

Outline

- 1 Random Experiments, Events and Sample Spaces
- 2 Some Definitions from Set Theory
- The Venn Diagram
- 4 Countable and Uncountable Sets
- 5 De Morgan's Laws
- 6 Probability as Frequency

Primary interest will be not in events but on their *likelihood*.

Primary interest will be not in events but on their *likelihood*.

Intuitively, the "probability of an event" is a number associated to the event:

$$event \rightarrow pr(event)$$

Primary interest will be not in events but on their *likelihood*.

Intuitively, the "probability of an event" is a number associated to the event:

$$event \rightarrow pr(event)$$

We would like this probability to feature the following properties:

1. To be **positive** or more generally non-negative (it can be zero);

Primary interest will be not in events but on their *likelihood*.

Intuitively, the "probability of an event" is a number associated to the event:

$$event \rightarrow pr(event)$$

We would like this probability to feature the following properties:

- 1. To be **positive** or more generally non-negative (it can be zero);
- 2. The pr(S) = 1 and $pr(\emptyset) = 0$;

Primary interest will be not in events but on their *likelihood*.

Intuitively, the "probability of an event" is a number associated to the event:

$$event \rightarrow pr(event)$$

We would like this probability to feature the following properties:

- 1. To be **positive** or more generally non-negative (it can be zero);
- 2. The pr(S) = 1 and $pr(\emptyset) = 0$;
- 3. The probability of two (or more) **mutually exclusive events** is the **sum** of the probabilities of each event.

In many experiments, it is natural to assume that all outcomes in the sample space (S) are equally likely to occur

For instance $S = \{1, 2, 3, ...N\}$

In many experiments, it is natural to assume that all outcomes in the sample space (S) are equally likely to occur

For instance $S = \{1, 2, 3, ... N\}$

$$P({1}) = P({2}) = ... = P({N})$$

or equivalently

$$P({i}) = \frac{1}{N}$$
, for $i = 1, 2, ..., N$

.

In many experiments, it is natural to assume that all outcomes in the sample space (S) are equally likely to occur

For instance $S = \{1, 2, 3, ... N\}$

$$P(\{1\}) = P(\{2\}) = \dots = P(\{N\})$$

or equivalently

$$P({i}) = \frac{1}{N}$$
, for $i = 1, 2, ..., N$

Example

Think of when you throw a die!

If we define a **composite event** A, there exist N_A realizations having the same likelihood (i.e. probability) in the event A, so:

$$P(A) = \frac{N_A}{N} = \frac{\text{\# of favorable outcomes}}{\text{total } \# \text{ of outcomes}} = \frac{\text{\# of outcomes in } A}{\text{\# of outcomes in } S}$$

(here # means "number").

Example

We roll a fair die and we define the event

A =the outcome is an even number $= \{2, 4, 6\}.$

What is the probability of *A*?

Example

We roll a fair die and we define the event

A =the outcome is an even number $= \{2, 4, 6\}.$

What is the probability of A?

Sample Space:

$$S = \{1, 2, 3, 4, 5, 6\}.$$

Example

We roll a fair die and we define the event

A =the outcome is an even number $= \{2, 4, 6\}.$

What is the probability of A?

Sample Space:

$$S = \{1, 2, 3, 4, 5, 6\}.$$

$$P(A) = \frac{N_A}{N} = \frac{3 \text{ favorable outcomes}}{6 \text{ total outcomes}} = \frac{1}{2}.$$

Building on this intuition we state a first **informal definition of probability**, namely in terms of *relative frequency*.

Building on this intuition we state a first **informal definition of probability**, namely in terms of *relative frequency*.

Definition (Informal)

An experiment with sample space is S, is repeatedly performed under exactly the same conditions.

For each event $A \subset S$, let n(A) the **number of times** A **occurs** in the **first** n **repetitions** of the experiment.

Building on this intuition we state a first **informal definition of probability**, namely in terms of *relative frequency*.

Definition (Informal)

An experiment with sample space is S, is repeatedly performed under exactly the same conditions.

For each event $A \subset S$, let n(A) the **number of times** A **occurs** in the **first** n **repetitions** of the experiment.

Then, the **probability of the event** A is:

$$P(A) = \lim_{n \to \infty} \frac{n(A)}{n},$$

Example (Tossing a well-balanced coin)

- 2 mutually exclusive equiprobrable outcomes: H and T.
- Let $A = \{H\}$, P(A) = 1/2.
- We can toss the coin a large number of times (each under identical conditions) and count the times we have H.

Let n total # of tosses and n(A) the # of times in which we observe A. Thus

$$P(A) \sim \frac{n(A)}{n}$$
, for large n .

Example (cont'd)

Example 4. Table 1 shows the results of a series of 10,000 coin tosses, a grouped into 100 different series of n = 100 tosses each. In every case, the table shows the number of tosses n(A) leading to the occurrence of a head. It is clear that the relative frequency of occurrence of "heads" in each set of 100 tosses differs only slightly from the probability $P(A) = \frac{1}{2}$ found in Example 1. Note that the relative frequency of occurrence of "heads" is even closer to $\frac{1}{2}$ if we group the tosses in series of 1000 tosses each.

Table 1. Number of heads in a series of coin tosses

Number of heads in 100 series of 100 trials each										Number of heads in 10 series of 1000 trials each
54	46	53	55	46	54	41	48	51	53	501
48	46	40	53	49	49	48	54	53	45	485
43	52	58	51	51	50	52	50	53	49	509
58	60	54	55	50	48	47	57	52	55	536
48	51	51	49	44	52	50	46	53	41	485
49	50	45	52	52	48	47	47	47	51	488
45	47	41	51	49	59	50	55	53	50	500
53	52	46	52	44	51	48	51	46	54	497
45	47	46	52	47	48	59	57	45	48	494
47	41	51	48	59	51	52	55	39	41	484

Clearly,

$$0 \le n(A) \le n$$
, so $0 \le P(A) \le 1$.

Thus, we say that:

the probability is a **set function**¹ that **associates a number between 0** and 1 to each set/event.

Clearly,

$$0 \le n(A) \le n$$
, so $0 \le P(A) \le 1$.

Thus, we say that:

the probability is a **set function**¹ that **associates a number between 0** and 1 to each set/event.

Next week:

We'll further formalise this notion, by adding **conditions** to the three desired properties. . .

¹A function that operates on a Set

Wrap-up

Thank you for your attention!

Thank you for your attention! "See you" next week!