

Euler Method with FORTRAN 90

Computer Languages for Engineers

Statik und Dynamik der Tragwerke

University of Duisburg-Essen

Presenting to:

Dr.-Ing. R. Ostwald

Presented by:

- Bhargav Sanchania
- Vashishth Shukla

(3106382)

(3098673)

Contents:

- Euler methods
- User guide for the program
- FORTRAN 90
- Outputs
- Conclusion
- References

Motivation:

- Its not easy / possible to find antiderivatives of all functions
- Computers aren't good with Calculus
- We have some function

$$f'(y, t) = y^2 + 1 - t^2$$

Euler Methods:

Forward Euler method:

Approximation of next value

$$y_{n+1} = y_n + \Delta t y'_n$$

- Advantages
 - Easy to calculate
- Limitations
 - Error explodes

Euler Methods:

Backward Euler method:

Approximation of next value

$$y_{n+1} = y_n + \Delta t y'_{n+1}$$

- Advantages
 - More accurate than forward Euler
- Limitations
 - Not easy to compute

Euler Methods:

Open-Minded

Newton method:

To calculate such an equation,

$$R(y_{n+1}) := y_{n+1} - y_n - \Delta t * y'(y_{n+1}, t_{n+1})$$

 ≈ 0

$$y^{(k+1)}_{n+1} = y^{(k)}_{n+1} - \frac{R^{(k)}}{R'^{(k)}}$$
 with

$$R'^{(k)} = \frac{\partial R(y_{n+1})}{\partial y_{n+1}} | y^{(k)}_{n+1} |$$

- Advantages
 - Can slove any equation having solution

UNIVERSITÄT DUISBURG ESSEN

Euler Methods:

Open-Minded

Newton method:

Limitations

- It's convergence is not guaranteed. So, sometimes, for given equation and for given guess we may not get solution.
- Division by zero problem can occur.
- Root jumping might take place thereby not getting intended solution.
- Inflection point issue might occur.
- Symbolic derivative is required.
- In case of multiple roots, this method converges slowly.
- Near local maxima and local minima, due to oscillation, its convergence is slow.

User guide for the program

Name	Date modified	Туре	Size
######## READ_ME_FIRST.txt	08/09/2022 15:41	Text Document	2 KB
eulerLib.f90	08/09/2022 15:25	F90 File	8 KB
EulerMethod.cbp	08/09/2022 14:06	CBP File	2 KB
input.txt	04/09/2022 12:37	Text Document	2 KB
mainEuler.f90	08/09/2022 15:27	F90 File	4 KB
newtonLib.f90	08/09/2022 15:01	F90 File	6 KB
® RUN.bat	02/09/2022 16:58	Windows Batch File	1 KB

Name	Date modified	Туре	Size
######## READ_ME_FIRST.txt	08/09/2022 15:41	Text Document	2 KB
eulerLib.f90	08/09/2022 15:25	F90 File	8 KB
EulerMethod.cbp	08/09/2022 14:06	CBP File	2 KB
input.txt	04/09/2022 12:37	Text Document	2 KB
mainEuler.f90	08/09/2022 15:27	F90 File	4 KB
newtonLib.f90	08/09/2022 15:01	F90 File	6 KB
RUN.bat	02/09/2022 16:58	Windows Batch File	1 KB

newtonLib.f90	08/09/2022 15:01	F90 File	6 KB
newtonlib.mod	08/09/2022 15:27	Movie Clip	2 KB
output.txt	08/09/2022 15:27	Text Document	1 KB
RUN.bat	02/09/2022 16:58	Windows Batch File	1 KB

this is the input file for Euler Method # please read the 'READ ME FIRST txt' first # comments have '#' as first word in line # format: <kev> <value> # data for the Euler # initial condition # starting of time t0 0.0d0 # value of y at t0 v0 -0.01d0 # h = delta(t) h 0.3d0 # t starting point tStart 0.d0 # t ending point tEnd 6.d0 # --log and outputs will be added to the respective files--# --following variables determine printing in console only--# to see the log on Screen make logOnScreen true logOnScreen .false. # to see the output on Screen make outOnScreen true outOnScreen .true. # data for the Newton method # error tolerance tol 1.0d-6 # max iterations # --log and outputs will be added to the respective files--# --following variables determine printing in console only--# to print newton iterations on screen newtOnScreen .false. # to print newton iterations in output file newtInOut .false.

UNIVERSITÄT DUISBURG ESSEN

- FORmulaTRANsform
 - Made for engineers
- Advantages
 - Compiled
 - Fast and efficient than interpreted languages

- Limitations
 - Not so pupular
 - Resources
 - Pseudo OOPs

OOPs in our code:

eulerLIb		newtonLib
+ EulerParams		+ NewtonParams
	to solve eq. of Backward Euler	
+ readInput() + forEuler() + backEuler()		+ output() + yPrime() + fdot() + newton()

FORTRAN 90:

FORTRAN 90:

FORTRAN 90:

Open-Minded

Forward Euler:

Backward Euler: if y1 = flasereturn : false value output(): output(): newton(): calculate t0 >= backEuler() t0 and y0 starting return : true endTime calculate new t0 line in in outpur у1 output file file

UNIVERSITÄT DUISBURG ESSEN

FORTRAN 90:

Open-Minded

yPrime:

Outputs:

Forward Euler – output.txt

```
**** Forward Euler Method ****
---t(i)|-----y(t)
    0.00 -0.0100
    0.30
           0.2900
    0.60
           0.5883
           0.8841
    0.90
    1.20
           1.1756
    1.50
           1.4581
    1.80
           1.7210
    2.10
           1.9376
    2.40
           2.0408
    2.70
           1.8623
           1.0157
    3.00
    3.30 -1.0749
    3.60 -3.6953
    3.90 -3.1868
    4.20 -4.4031
    4.50 -3.5789
    4.80 -5.5114
    5.10 -3.0108
    5.40 -7.7943
    5.70
          1.9830
    6.00 -6.2843
```

Backward Euler – output.txt

```
**** Backward Euler Method ****
---t(i)|-----y(t)
    0.00 -0.0100
    0.30 0.2879
    0.60 0.5812
    0.90 0.8602
    1.20 1.0746
    1.50 0.9989
    1.80 0.3674
    2.10 -0.5611
    2.40 -1.4006
    2.70 -2.0396
    3.00 -2.5258
    3.30 -2.9254
    3.60 -3.2820
    3.90 -3.6180
    4.20 -3.9438
    4.50 -4.2641
    4.80 -4.5808
    5.10 -4.8951
    5.40 -5.2076
    5.70 -5.5185
    6.00 -5.8282
```


Outputs:

Plot 0.3 value of Δh

Plot 0.1 value of Δh

Outputs:

■ Plot 2 value of ∆h

References:

- Lecture notes
- Wikipedia
 - https://en.wikipedia.org/wiki/Euler_method
 - https://en.wikipedia.org/wiki/Backward_Euler_method
 - https://en.wikipedia.org/wiki/Newton%27s_method
- https://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node3.html
- https://www.codesansar.com/numerical-methods/disadvantages-newton-raphson-method.htm
- https://ocw.metu.edu.tr/pluginfile.php/3961/mod_resource/content/12/ch3/3-9.htm
- https://www.lucidchart.com
- https://yuml.me/

Thank you!

Form:

Bhargav Sanchania

Vashishth Shukla

(3106382)

(3098673)

