

设计船排水量的确定

■ 浮性方程式

$$\Delta = \sum W_i = k\omega LBTCb$$

估算∆的方法有两类:

第一类:代数法

对DW较大且 η_{dw} 较稳定

$$\Delta = \sum f_i(\Delta, a, b, c, ...) + W_0 = F(\Delta, a, b, c, ...) + W_0$$

对η_{dw}不较稳定

$$\Delta = \sum_{i} f_{i}(L, B, T, D, C_{b}, a, b, c...) + W_{0}$$

$$= F(L, B, T, D, C_{b}, a, b, c...) + W_{0}$$

第二类:修改型船法或微分法

根据设计船与母型船技术上的差异修改 $\Delta = \Delta_0 + \delta \Delta$

第6讲船舶方案构思与主尺度确定

设计船排水量的确定-代数法

- 以△为函数的代数形式的方程求解
 - 载重量系数

$$\begin{split} \Delta &= \mathbf{W}_{\mathrm{H}} + \mathbf{W}_{\mathrm{O}} + \mathbf{W}_{\mathrm{M}} + D\mathbf{W} \\ &= C_{\mathrm{H}} \Delta^{\mathrm{o}} + C_{\mathrm{O}} \Delta^{\mathrm{g}} + C_{\mathrm{M}} \Delta^{\mathrm{y}} + D\mathbf{W} \\ \Delta &= \frac{D\mathbf{W}}{1 - (C_{\mathrm{H}} \Delta^{\mathrm{g-1}} + C_{\mathrm{O}} \Delta^{\mathrm{g-1}} + C_{\mathrm{M}} \Delta^{\mathrm{y-1}})} \end{split}$$

或

对照式(3.4.1),有

$$\eta_{\rm DW} = 1 - (C_{\rm H} \Delta^{s-1} + C_{\rm O} \Delta^{\beta-1} + C_{\rm M} \Delta^{s-1})$$

如果设: $\alpha=\beta=\gamma=1$ (即假定 $W_{\rm II}$ 、 $W_{\rm O}$ 和 $W_{\rm M}$ 都与 Δ 成线性比例关系),则 $\eta_{\rm DW}=1-(C_{\rm H}+C_{\rm O}+C_{\rm M})$

- 求解方法: 直接计算、作图法、牛顿法、其他迭代法

船舶ZY1401

设计船排水量的确定-代数法

■ 以主要要素为函数的代数形式的方程求解

$$k\omega LBTC_b = C_h LBD + C_f (LBD)^{\frac{2}{3}} + (C_m + k_r g_r \frac{R}{V})PB + W_0$$

- 应补充条件
 - 航道、港口、修造厂等的限制
 - 技术性能的制约
 - 快速性、经济性 Cb、L/B、L/∇²/3
 - 稳性要求的 B/T、D/T
 - 抗沉性要求及仓容、 最小干舷要求的D/T
 - · 强度要求的L/D、B/D
- 总布置对尺度的限制和要求

第6讲船舶方案构思与主尺度确定

设计船排水量的确定-代数法

- 以主要要素为函数的代数形式的方程求解
 - 货船或油船

$$k\omega LBTC_{b} = C_{h}LBD + C_{f}(LBD)^{\frac{2}{3}} + (C_{m} + k_{r}g_{r}\frac{R}{V})PB + W_{0}$$

$$\Delta = \frac{C_{h}}{\omega C_{b}}\frac{D}{T}\Delta + C_{f}(\frac{C_{h}}{\omega C_{b}}\frac{D}{T})^{\frac{2}{3}} + (C_{m} + k_{r}g_{r}\frac{R}{V})\frac{\Delta^{\frac{2}{3}}V^{3}}{C} + W_{0}$$

选定Cb及D/T可求△

设计船排水量的确定-代数法

- 以主要要素为函数的代数形式的方程求解
 - 客船

$$k\omega LBTC_b = C_h LBD + C_f (LBD)^{\frac{2}{3}} + (C_m + k_r g_r \frac{R}{V})PB + W_0$$

第6讲船舶方案构思与主尺度确定

总体设计方案构思

- 船型特征和总布置设想
 - 主船体特征、机舱部位、甲板层数、货舱形式、上层 建筑的大小和位置、船体结构特点等。
- ■考虑和初步选择主尺度
- 主要技术性能的估算与分析
- 其他重要方面的考虑(如船舶的主要装备、法规和规范的要求等)

限制条件---航线、码头通航标准GB50139

对新船主尺度限制提出要求:泊位、港域、航道曲折对L限制;航道、港区水深对T限制;过船闸或运河时对B和T的限制;过桥对B和H的限制。

葛州坝

NO.1和NO.2船闸有效长280m,净宽34m,槛上水深5m,可通万吨级船队; NO.3船闸有效长120m,净宽18m。可通行小型船队及客货船。

圣劳伦斯航道(美加边界上)对船尺度限制: LOA不大于222.5m(720尺) Bmax不大于23.16m(76尺) TMAX不大于7.925m(26尺)

巴拿马运河: 巴拿马境内国际水道,沟通太平洋和大西洋,全长46海里。

LOA(含球鼻)小于274.32m(900尺)

集装箱船和客船LOA小于289.56m(950尺)BMAX不大于32.309m(106尺)

苏伊士运河:沟通印度洋和大西洋人工水道,是联系东西方重要通道。总长87.5海里

(161.6公里)、水面宽160——198m,最窄处为89m,最大容许吃水11.58m。

对船舶尺度限制: LMAX=335.28m(1100尺)含球鼻在内最大尺度

BMAX=48.92m (160.5尺), TMAX=11.58m (38尺)

第6讲船舶方案构思与主尺度确定

17500dwt多用途货船设计

设计技术任务书

- (1) 航区、航线 无限航区,不定线航行。
- (2) 用途 本船适应于装载下列货物:集装箱、包装杂货、散装谷物、工业成品、原材料、成形木材等。在装载重货时,载重量不低于17500t。
 - (3) 货舱容积 包装容积不低于 25000m3。
- (4) 船级 除须满足中华人民共和国船舶检验局颁发的有关规范外,还应符合有关国际 公约及规则。
 - (5) 主机 主机型号: B& W6L67GF。

主机台数:1台。

常用功率:7497kW(10200PS),

转速 115r/min。

- (6) 航速 在静水中、风力不超过蒲氏 3 级时的满载试航速度不低于 15.9kn。
- (7) 续航力 12000n mile。
- (8) 起货设备 采用 25t 电动液压起重机,以便于集装箱的装卸。
- (9) 舱口盖负荷 上甲板舱口盖的设计负荷为 2.5t/m²。
- (10) 船员人数 高级船员:14人; 一般船员:23人; 备 员:2人; 总 计:39人。

17500dwt多用途货船设计

(一) 多用途货船特点

- (1) 建筑特征 为充分利用中部的方整地位,便于装货,一般用尾机型或中尾机型。为便于装载杂货,一般设一层中间甲板,并以下甲板作为装载轻货和集装箱时的干舷甲板。
 - (2) 货舱开口大 为提高装卸效率,减轻劳动强度,采用大开口舱口。
- (3) 船型 由于多用途货船需要在甲板上装载集装箱和甲板货,船宽较大,L/B 一般都在 6.5 以下,C。较大,以提高经济性。
 - (4) 稳性 考虑到各种使用情况的稳性和浮态要求,设置较多压载水舱。
 - (二)设计中应解决的中心问题
 - 1. 适应多用途的需要

考虑装运集装箱占相当比重,设计时首先应考虑有利于集装箱的安放及装卸,同时考虑兼运的要求。为此应采取下述措施;

- (1) B、D 及舱口尺寸应考虑集装箱的安放。
- (2) 一般可设计成变吃水,船体结构按最小干舷时的结构吃水设计,以便在吃水允许时,增加重货载运量。
 - (3)设置二层甲板,以利装运集装箱和杂货,避免货物挤压。
 - (4)设置长、短货舱,长舱可装运长件货;而装载谷物及矿砂时,长、短舱易于配载。
 - 2. 力求提高装卸效率

为此可采用尾机型,货舱数宜少,舱口应大,并用双列舱口。

3. 妥善处理好各种装载情况时的稳性

第6讲船舶方案构思与主尺度确定

17500dwt多用途货船设计

表 9-1 近年来建造的装载量为 16000t 至 20000t 的多用途船及杂货船

序号	船名	船型	I _{roA}	L _{pp}	<u>B</u>	D m	$\frac{T}{m}$	<i>DW /</i> △	20′ 集装箱数	容积包/散 m ³	货舱数	航速 kn	主机功率×转速 (最大持续/额定) kw×r/min
1	WILRI	多用途	154.00	145.00	22. 36	13. 20	10.08	16997 24319	548	22770 23696	3	16-6	$\frac{11400 \times 150}{10260 \times 144.8}$
2	ELERDAWH	货	154.80	145. 00	22. 40	13.40	9. 35	17100 23704	402	23300 24730	4	16- 1	11400×150 10260×144.8
3	ZULIA	货	159.99	148.00	22. 80	13.50	10, 00	17644 25509	144	22825 25393	4	16-1	12000×122 10800×118
4	若重丸	多用途	158. 00	148-00	23.00	13.00	9.63	18195	304	24641 27046	4	15.5	8250×150 7010×142
5	KAMNIK	货	147. 70	140.00	22.86	13.00	9. 607	18430 24435	232	23730 25620	4	15-0	9400×144 8600×140
6	ARISTODIKOS	货	147-50	140.00	22. 86	13.00	9- 633	18850 24450	300	23719 25467	4	15.0	9400×144 8600×140
7	CROWN CHERRY	多用途	154. 00	145.00	22. 86	13.50	9- 928	19425 25992	253	24824 26477	5	15- 5	11400×145 10250×140
8	APOLLO PEAK	货	161.00	153, 00	23. 70	13. 85	10.313	20181 26792	_	25101 27073	4	17:1	11500×150 9820×142
9	ATALANA	多用途	161. 58	152. 00	22. 86	13.60	9. 99	20409	454	24945 26873	4	16. 25	13100×145
10	VALERIA	多用途	167. 80	155. 00	22- 86	13.85	10. 20	20523	400	26519	4	16.80	$\frac{12800 \times 145}{10900 \times 137}$
11	VAN DVCK	多用途	164.10	153. 12	25-80	13.70	9. 999	20632	623	30036 31593	5	17. 2	$\frac{14400\times122}{13000\times117.8}$
12	伊培利丸	多用途	161.00	150.00	25.00	13.30	9. 624	20700 27456	车 344 箱 258	24949 27120	5	15- 7	11400×145 9700×137

17500dwt多用途货船设计

#B	80.61	21000/097	17900//97	17000 <i>09</i> 7	16500.007	15677/18144 1787	7000 PESE	5000.DET
8K	/10	174.0	164.3	162.0	159.0	159.0	119.0	106.9
果性何长	/10.	162.0	154.0	150.0	150.0	148.0	110.0	99.0
59%	/11	25.6	22.86	23.0	22.86	23.6	18.6	17.6
TH THE	/ex	14.2	13.2	14.0	13.3	13.6	10.4	9.0
投行吃水	/m	9.5	9.28	9.2	9.0	9,0	7.4	5.6
结构电水	/m	10.0	9.34			9.8		7.0
能依		œ	008	oos	LR	CCS, PRS	LR.	008
设计吃水时载重量	Λ	21000	17558	17000	16500	15677	7400	2943
结构吃水时载而量	Α	22600	18962	-	-	18344	7900	7141
货能继续将机 /107		33000	26576	24738	23154	23154 28343		8228
货幣包裹存积	/62	31000	-	21949	21000	25652	10676	
集装额总数(甲板上	/他内)/1000	399(3392/0)	534(162/372)	336	408(144/264)	723(373/350)	126	134
压载整容积	102	6000	4733	6190	5906	5358	1491	2095
超油整容积	100	1670	1977	1402	1240	1091	756	370
組水酸容积	14	350	280	350	467	327	238	325
主机整写及合数		6L60MC x 1	6L6TGC×1	SL60WCE × 1	60.5000C × 1	\$1.50WCE:×1	SRTA38×1	5877A38 × 1
MCR.	/W×s/min	8050 x 117	8235×119	5619 × 102	5882 × 114	5220 x 103.5	3420 x 196	2600 × 362
CSR	/W×y/wjs	7245 × 113	7500 × 115	5057 × 98.5	5000 × 108	4998 x 100	3074 × 189	
服务航途	/ke	16,5	16.11	15.0	15.63	15.6	13.5	12.5
主机物胚	/r-d*-1	28,6	37.0	20.0	30.72	18.1	13.34	11:34
绿机力	/n nile	15000	15000	14000	12500	12500	10000	5000
株在今居	/kN× a	245 × 24 × 2 f3	345×20×1 ft	-	-	345 × 22 × 2 fr	-	-
双共令品 /AN×m 196		196×26×1 鈴	345 × 29 × 1 69 345 × 20 × 1 69	-	118×2 f3 245×1 fq	345×20×1 信	347 × 2 ft	-
起使用行	/kN×m	-		147×1 航 216×3 旺	-	490 × 22,5 × 2	-	以肝疾患
船所	八	39	39	40	44	32	36	43
柴油发电机功率×1	的数 八個	680×3 fz	400×3 ft	450×3 ft	600 x 3 fs	600×3 fr	330×3 fs	260×3 fs
条 性					PORTE THOU	有機能 SISSW		1

現目	8:8	4700.0007	3880/6/50//07	3300/3600 <i>D</i> WT	2700.097	22001/9/7	17000/97	₹50 <i>0</i> ¥7
ž K	//	100.6	105.95	92.0	91.0	\$1.15	64.9	57.8
美线间 核	/0	95.8	96.3	\$4.6	84.0	76.0	59.9	54.0
orig	/m	18.8	17.5	16.0	14.7	15.0	13.8	11.2
va.	/m	8,4	9,0	7.8	7.6	p.8	6.1	4.5
设计如水	/6	6.1	5.5	5.3	4,6	4,2	4.5	3.4
结构起水	/8	6.55	7.0	5.6	4.95	5.2	5.2	3.5
6W		GL	GL.	LB	LR	os	ASS	ocs
设计吃水叫载重量	/1	4700	3880	3300	2740	2368	1837	950
结构吃水时获重量	Λ	5400	6190	3600	3130	3344	2290	1000
货舱款装容积	10		7590	5300	4255	4231	3120	1580
貨數包裝容和	14	7110						
集装额总数(甲級上	/触内) /1000	505(364/141)	310(165/145)	440(250/190)	204(108/96)	100(54/46)	52(20/32)	36(12/24)
压载绘容积	/al	2136	2308	1072	1490	990	476	64
燃油配容积	/12	400	496	351	297	100	200	30
清水敷存积	/12	110	212	99	67	127	49	50
主机祭号及台敷		9132/40×1	6UEC 37/88H × 1	6F02×1	41.3596E ×1	633020:×1	6822×1	63002C3 - 1
MR	/A♥×s/min	3960 × 750	2868 × 210	2220 × 720	1692 × 200	970 × 400	930 × 1000	484 × 400
CSR	/M×s/ein	3564 × 724	2581 × 209	1998 × 695	1360 × 186	873 × 386	790 x 947	441 × 386
服务就进	Λa	15.0	14.5	13	12.9	- 11	10	9.2
主机液料	/v-d-1	15.7	11.6	9.06	5.6	4.4	4.45	2.328
绒靴力	/e nile	7500	12000	6000	10900	3500	8000	2000
華克令品	/kN×n	500×1 fr	343×2 É	-	245 × 2 f3	- '	首吊345×1台 尾吊147×1台	-
双克令吊	/M×m		-	_	-	-	-	-
起货币件	/kN×m		-	-	-	245/73.5 ×20×1.78	-	-
航景	/,	13	18	18	11	34	17	30
杂油发电机功率×	台数 /2年	600 × 3 fr	360×2 台		212×3 S	120 × 3 fs	130×3 fr	34×2 fr
		独特发电极	- 独切发电机					

第6讲船舶方案构思与主尺度确定

17500dwt多用途货船设计

多用途货船的载重量范围较大,但有代表性的是大、中型的多用途货船。图 6.5.2.1 统计了各国所造多用途货船的主尺度与载重量的关系。载重量在 5000t~9000t 和 15000t~23000 区域内的船型比较集中,这主要是港口水深条件限制之故。载重量在 5000t~9000t 的船舶,其吃水一般在 6m~8m之间。适应于世界各国中等港口的条件;载重量在 15000t~23000t 的船舶,其吃水一般在 9m~10.5m之间,适应于世界各国的大型港口。而 23000t 以上的多用途货船,由于货源关系,较多的为以散货为主的多用途货船。

 $L_{PP} = 54.52 \left(\frac{DW}{1000}\right)^{0.3333}$ $B = 9.905 \left(\frac{DW}{1000}\right)^{0.2913}$ $D = 5.46 \left(\frac{DW}{1000}\right)^{0.2916}$ $T_s = 3.992 \left(\frac{DW}{1000}\right)^{0.3924}$ $L_{PP}/B = 5.504 \left(\frac{DW}{1000}\right)^{0.042}$ $B/T = 2.481 \left(\frac{DW}{1000}\right)^{-0.0011}$ $D/T = 1.368 \left(\frac{DW}{1000}\right)^{-0.0008}$

17500dwt多用途货船设计

集装箱多用途货船所载集装箱数与载重吨的关系如图 6.5.2.2 所示。由于平均箱重和甲板上载箱层数,以及主尺度、布置等各种因素的影响,所以同尺度的船舶,所载箱数也可能有很大的差异。

80年代初的多用途货船甲板上一般装载 2 层~3 层集装箱,90年代已发展到装载 4 层~6 层。为了不影响视线,首部一般要比后部少装 1 层~2 层。例如,首部装 4 层箱,舯部装 5 层箱,后部(机舱上部)装 6 层箱等等。由于受到稳性的限制,一般甲板上第 4 层及以上的集装箱均按空箱考虑。这些特点表现在图 6.5.2.2 上,箱位数据显得很离散。在作很粗略的估算时,载箱数与载重量的关系可用如下经验式估算:

图 6.5.2.2 集装箱数与载重量的关系

第6讲船舶方案构思与主尺度确定

17500dwt多用途货船设计

货舱数、货舱长度及货舱开口

采用尽量少的货舱数是现代多用途货船的设计特点之一。采用较少的货舱数可以提高装卸效率,可以装载较多的集装箱,可以减少起货设备和货舱口盖的数量,从而降低造价。一般情况下,多用途货船货舱数与载重量的关系如图 6.5.2.14 所示。

在采用3个货舱时,一般的型式为一小(前)二 大;4个货舱的一般型式为一小(前)三大或二小 (前后)二大。

船型构思

- (1) 采用尾机型、二层甲板及四个货舱。第二、三货舱为长舱,放四行集装箱,第一、四货舱为短舱,放置二行集装箱。
- (2) 采用大开口舱口。第一货舱设一列舱口;第二、三、四货舱设双列舱口,各舱舱口宽度相等,舱口盖规格化。在双列舱口甲板间设一纵舱壁,可增加总纵强度,装运散货时还可兼作止
- (3) 为改善船舶强度以及压载航行时的横摇性能,第二、三、四货舱甲板间设舷边顶舱。为 碗保装运集装箱时的稳性,还设有双层底压载水舱及局部边舱。

主尺度选优-应用举例

实例——用变值法求 50000DWT 油轮的最优主尺度方案

1. 设计要求

载重量不小于 50000t; 满载吃水不大于 12m; 在主机最大持续功率 12348kW 下,满载试航速率不低于 16.0kn; 原油的密度为 $0.84t/m^3$; 压载航行时,尾吃水应浸没螺旋桨,首吃水不小于 $0.027L_{to}$; 专用压载水舱的容积不小于货油舱容积的 25%。

2. 设计构思

经分析后作出如下的设计构思:货油舱及专用压载舱的容积需保证 $V_{\rm s}$ \prec 74500 ${\rm m}^{3}$ (包括一定的裕度);其余船舱包括尖舱、首部干货舱、燃油舱、货油泵舱、机舱等所需的总长为 66 ${\rm m}$ 。

经与其他载重量相近的一些油船资料比较后,取 L_{bs} =200~220m,B=30~31.5m,固定 D=16.8m,T=12m 进行分析。用 L_{bs} =200、205、210、215、220m 等 5 个船长值,每个船长值再配以 B=30、30.5、31、31.5m4 种船宽,组合成表 6-5 所示的 20 种主尺度方案。

3. 设计计算与绘图

如表 6-5 中,各方案的 C_b 值系根据对各方案计算出的空船重量加载重量(50000t)得出的 满载排水量,用 $C_b = \triangle/\rho k L_{b_b}BT$ 关系算得;各方案的货油舱及专用压载舱容积 V_{cb} 用模数(L_{b_p} —66) C_bBD 从一个初始方案换算而得;各方案可达到的试航速度通过计算有效功率及推进系数后求出。

第6讲船舶方案构思与主尺度确定

主尺度选优-应用举例

表 6-5 50000t 油船变值方案

方案号	$L_{ m bp/m}$	B/m	T/m	D/m	LW/t	DW/t	△/t	Сь	V _{cd} /m³	v _k /kn
1	200	30.0	12. 0	16.8	13290	50000	63290	0.853	71800	15.32
2	200	30.5	12.0	16.8	13450	50000	63450	0.842	72000	15.47
3	200	31.0	12.0	16.8	13610	50000	63610	0. 831	72200	15.69
4	200	31.5	12. 0	16.8	13770	50000	63770	0.820	72400	15.80
5	205	30.0	12.0	16.8	13640	50000	63640	0. 837	73000	15.64
6	205	30.5	12.0	16.8	13800	50000	63800	0.826	73200	15.73
7	205	31.0	12.0	16.8	13960	50000	63960	0. 815	73400	15.83
8	205	31.5	12.0	16.8	14120	50000	64120	0.804	73600	15.92
9	216	30.0	12.0	16.8	14010	50000	64010	0. 822	74200	15.92
10	210	30.5	12.0	16.8	14180	50000	64180	0. 811	74400	15.95
11	210	31.0	12.0	16. 8	14350	50000	64350	0. 800	74600	16.02
12	210	31.5	12.0	16.8	14520	50000	64520	0. 789	74800	16. 11
13	215	30.0	12.0	16.8	14390	50000	64390	0.808	75500	15.94
14	215	30.5	12.0	16.8	14560	50000	64560	0.797	75700	16.05
15	215	31.0	12.0	16.8	14730	50000	64730	0.786	75900	16. 15
16	215	31.5	12.0	16.8	14900	50000	64900	0.775	76100	16. 20
17	220	30. 0	12. 9	16.8	14790	50000	64790	0.795	76820	16.07
18	220	30. 5	12.0	16.8	14960	50000	64960	0.784	77050	16.11
19	220	31.0	12.0	16.8	15130	50000	65130	0.773	77250	16.17
20	220	31.5	12.0	16.8	15300	50000	65300	0.762	77450	16.24

主尺度选优-应用举例

4. 方案选优

在可行域中, $v_k \ge 16 \text{kn} \cdot C_b \ge 0.80$,75000 $\text{m}^3 \ge V_{cb} \ge 74500 \text{m}^3$,选择任何一点所对应的方案,都符合设计要求。

图中,A 点所对应的方案,其航速、舱容均处于临界状态,考虑到估算误差,A 点方案就可能不满足设计要求。如取 B 点所对应的方案,船长增加少许,而航速和舱容都略有增加,因此宜选取 B 点所对应的方案为最佳方案。其主要要素如下:

 $L_{bp} = 210 \text{m}$, B = 31. 0 m, D = 16. 80 m, T = 12. 0 m, $C_b = 0$. 80, $\triangle = 64350 \text{t}$, $v_k = 16$. 02 kn. $V_{cb} = 74600 \text{m}^3$.

主尺度选优-应用举例

某航线需要300TEU的集装箱船舶,航速12节。选取必要货运费C作取必要货运费C作为优化计算的目标函数。设计变量选取LPP、B、H、XH、YH、ZH共六个。

min RFR $\max \Delta^{\frac{2}{3}} V^{3} / MCR$ $\begin{bmatrix} L_{PP} \ge 43.040 e^{0.076 X_{H}} \\ B \ge 3.133 Y_{H} \\ H \ge 2.591 Z_{H} + 0.0425 B - 0.65 \\ 4.8 \le L_{PP} / B \le 6.8 \\ 2.4 \le B / T \le 3.8 \\ L_{PP} / H \le 17 \\ B / H \le 2.5 \\ H / T \ge 1.136 \\ 0.60 \le C_{b} \le 0.75 \\ K \ge 1.0 \end{bmatrix}$

第6讲船舶方案构思与主尺度确定

主尺度选优-应用举例

	L_{pp}	В	T	C_b	Н	$X_{\!H}$	Y	Z 4 .	RFR	С
1	97. 794	15. 473	6. 447	0.684	9. 439	10	5	3	0. 28500	342. 4156
2	96. 313	15. 482	6. 451	0.685	8.977	10	5	3	0. 28003	342. 1177
3	95. 841	15. 477	6. 449	0.687	8.841	10	5	3	0. 27957	339. 6213
4	95. 830	15. 474	6.448	0.687	8.839	10	5	3	0. 27956	339. 5693
5	95. 752	15. 475	6. 448	0.688	8.815	10	5	3	0. 27931	339. 5514
6	95. 719	15. 474	6. 447	0.688	8. 796	10	5	3	0. 27915	339. 5446
7	95. 625	15. 473	6. 447	0.688	8.776	10	5	3	0. 27891	339. 4831
8	95. 414	15. 474	6. 447	0.688	8.709	10	5	3	0. 27822	339. 4182
9	95. 276	15. 473	6. 447	0.688	8.669	10	5	3	0. 27779	339. 3607
10	95. 211	15. 473	6. 447	0.688	8.648	10	5	3	0. 27758	339. 3386
11	93. 879	15. 474	6. 448	0.691	8. 247	10	5	3	0. 27344	338. 8212
12	92. 475	15. 473	6. 447	0.694	7.827	10	5	3	0. 26922	338. 1853

主尺度选优-应用举例

根据船东要求,本船乘员定额30人,船员定额8人,满足A级航区对船舶的有关要求,续航力380公里,航速40公里/小时,船舶吃水不超过1.5米,主机功率(BHP)不超过1000kW。根据船东要求,希望设计船横摇尽可能缓和,从降低成本角度出发,希望主机功率尽可能小。

选用*LPP*、*BWL*、*CB*三个变量作为设计变量,其取值范围为*LPP*: 36~45米,*BWL*: 5~7米,*CB*: 0.470~0.5 *LPP*=36米 *BWL*=5米 *T*=1米 *CB*=0.478 *H*=2.3米

object: min BHP max Ts

s.t.

$$\begin{cases} GM \ge 1.2 \\ T \le 1.5 \\ L_{PP} \ge 36 \\ B_{WL} \ge 5 \\ 0.470 \le C_B \le 0.5 \\ H \ge 2.3 \end{cases}$$

第6讲船舶方案构思与主尺度确定

指标体系

 $\sum_{i=1}^{n_{ME}} P_{ME(i)} \cdot SFC_{ME(i)} \cdot C_{FME(i)} + \sum_{i=1}^{n_{ME}} P_{AE(i)} \cdot SFC_{AE(i)} \cdot C_{FAE(i)} \cdot C_{FAE(i)} \cdot P_{eff(i)} \cdot SFC_{ME(i)} \cdot C_{FME(i)} \cdot C_{FME(i)} \cdot P_{AEff(i)} \cdot SFC_{AE} \cdot C_{FME(i)}$ ained $EEDI = \sum_{i=1}^{n_{ME}} P_{ME(i)} \cdot SFC_{ME(i)} \cdot C_{FME(i)} \cdot C_{FME(i)} \cdot C_{FME(i)} \cdot C_{FME(i)} \cdot C_{FME(i)} \cdot SFC_{AE} \cdot C_{FME(i)} \cdot C_{FME$

式中: Attained EEDI——获得的能效设计指数, g/t·km;

n_{ME} ——主机台数; ↓

 $P_{MR(i)}$ ——第 i 台主机的额定功率的 75%, $kW; \phi$

 $SFC_{ME(i)}$ ——第 i 台主机在 75%额定功率下的燃油消耗率, $g/kW\cdot h$;

 $C_{FMR(i)}$ ——第 i 台主机所用燃油的 CO_2 转换系数,根据表 2.2.1 选取; ϵ

 n_{AE} ——在网辅机台数; \rightarrow

 $P_{AB(f)}$ ——船舶正常航行时所需的第i 台在网辅机 70%标定功率值,kW;就本指南而言,辅机仅指航行所需的发电机组的原动机,不包括燃油锅炉。当航行所需的发电机仅由主机驱动(如主机自由端带发电机或轴带发电机)

时, P_{AE(i)}取0; 。

 $SFC_{AE(t)}$ ——与上述 $P_{AE(t)}$ 定义相对应的辅机的燃油消耗率, $g/kW\cdot h$;

 $C_{\mathit{FAB}(i)}$ ——辅机所用燃油的 CO_2 转换系数,根据表 2.2.1 选取; $_{*}$

大作业

■ 要求:利用电子表格完成相应船型的主尺度选择

■ 18000-20000DWT近海散货船设计

■ 本船为钢质、单甲板、艉机型国内航行海上散货船。常年航行于沿海航线,属近海航区 ;主要用于煤炭等干散货运输。本船设计载重量10000t,积载因数经调研确定。按 "CCS"有关规范入级、设计和建造。并满足中华人民共和国海事局有关国内航行海船的 相关要求。满载试航速度不低于11 kn,续航力5000 nmile。

■ 18000-20000DWT近海多用途货船设计

本船为钢质、单甲板、艉机型国内航行海上多用途货船。常年航行于沿海航线,属近海航区;主要用于煤炭散货运输,兼装集装箱。本船设计载重量10000t,积载因数经调研确定。按"CCS"有关规范入级、设计和建造。并满足中华人民共和国海事局有关国内航行海船的相关要求。满载试航速度不低于13 kn,续航力5000 nmile。