JAK inhibitors in development and New indications

Joel M. Kremer, MD
Pfaff Family Professor of Medicine,
Albany Medical College,
Director of Research,
The Center for Rheumatology,
Albany, NY

CLINICAL REVIEW; JAK Inhibitors

Tofacitinib (Approved in US at 5 mg BID dose)

I.Under Development for RA: 1.Baricitinib 2.GLPG0634 3.VX-309

COI

- I will be discussing products made by Lilly, Galapagos (Abbvie) and Vertex. I have consulted with all of these companies. I have performed research supported by Lilly and Abbvie.
 - I have conducted research and consulted with Pfizer.

Refs will be supplied during the presentation

II. Other JAKs in Development

Tofacitinib is a Novel Inhibitor of JAKs that Modulates Cytokines Important in Pathogenesis of RA

JAK-Janus kinase.
Shuai K, Liu B. Nar Rev Immunol. 2003;3(11):900-911; Flanagan ME et al., J Med Chem 2010; 53:8468-8484

Baricitinib Phase 2

· Presented by Keystone et al, EULAR, 2012 and Genovese et al, ACR 2012

Baricitinib: Potent Selective JAK1/JAK2 Inhibitor

- · Nanomolar inhibitor of JAK1 and JAK2
- Minimal effect against JAK3 and non-JAK family kinases*
- Potent inhibitor of IL-6 and IL-23 signaling, validated cytokine targets in inflammatory diseases

IL-6 Cellular 70 20

JAK1

6

>400

*INCB28050 was evaluated against a panel of 28 non-JAK kinases and demonstrated no significant inhibition at a concentration > 100x its potency against JAK1/2

Figure 1. Study JADA Trial Design Patients and investigators remained blinded during Parts A and B Part A (12 Weeks) Part B (12 Weeks) Part C (Extension Oral Placebo QD (N=98) ■ Baricitinib 2 mg BID (N=61) Study) aricitinib 4 mg QD Baricitinib 4 mg QD (N=52) Baricitinib 4 mg QD (N=49) Baricitinib 8 mg QD Baricitinib 8 mg QD (N=50) Baricitinib 8 mg QD (N=48) 0 Week 12 Weeks 24 Weeks 128 Weeks Primary Endpoint Data for patients re-randomized to 2 mg BID or 4 mg QD in Part B are not shown. NCT01185353

BID: twice daily, QD: once daily, R: re-randomized

Entry Criteria

Major inclusion criteria

- . ≥ 8 swollen and ≥ 8 tender joints based on the 66/68 joint count
- · Stable use of MTX (10-25 mg/week) for at least 12 weeks
- · Patients on corticosteriods were to be on a stable dose for 6 weeks (<10 mg of prednisone daily)
- · CRP >1.2X ULN or ESR >28 mm/hr
- · Major exclusion criteria
 - Use of traditional DMARDs (other than MTX) within 8 12 weeks
 - Prior biologic DMARD therapy
 - ALT>3x ULN or total bili ≥1.5x ULN
 - eGFR <50 mL/min

Baseline Disease Activity

		Baricitinib						
Mean	Placebo (N=98)	1 mg (N=49)	2 mg (N=52)	4 mg (N=52)	8 mg (N=50)	Combined (N=203)		
Tender joint count (68)	22.2	21.4	23.0	19.9	24.4	22.2		
Swollen joint count (66)	15.8	15.2	17.0	14.8	16.1	15.8		
DAS28-CRP	5.5	5.5	5.4	5.3	5.8	5.5		
HAQ-DI	1.2	1.3	1.1	1.0	1.3	1.2		
hsCRP * (mg/L)	14.0	11.2	12.0	11.4	14.3	12.2		
ESR (mm/hr)	40	38	37	35	43	38		

*hsCRP ULN = 3 mg/L

ACR Responses by Dose at 12 Weeks 90

Change in Hemoglobin over 12 Weeks

	Placebo (N=98)	1 mg (N=49)	2 mg (N=52)	4 mg (N=52)	8 mg (N=50)
Mean Change from	m Baseline to W	eek 12 (g/dL)			
	-0.14	0.09	-0.09	-0.15	-0.57
Maximum Decreas	se Post-baseline	[g/dL; n (%)]			
Decrease ≥ 1.0 – < 1.5	16 (16%)	7 (15%)	10 (19%)	15 (29%)	15 (31%)
Decrease ≥ 1.5 – < 3.0	6 (6%)	1 (2%)	4 (8%)	4 (8%)	13 (26%)
	Decrea	ises ≥ 3 g/dL o	or values < 8.0	g/dL not obse	rved.
Shift from ≥LLN at	handing to all I	N at Wook 12	In (9/1)		
OHILL HOLL SEEN AL	5 (7%)	3 (9%)	3 (7%)	2 (5%)	11 (27%)

Change in Renal Parameters over 12 Weeks

	Placebo (N=98)	1 mg (N=49)	2 mg (N=52)	4 mg (N=52)	8 mg (N=50)
Mean Change from	Baseline to W	eek 12 (mg/dL)		
Creatinine	0.01	0.02	0.04	0.11	0.09
Cystatin C	0.01	-0.01	-0.02	-0.05	0.00
Maximum Ingrana	in Creatinine F	loot boooline I	ma/dl : n /9/ \1		
Maximum Increase	in Creatinine F	ost-baseline	mg/aL; n (%)]		
≥ 0.11 - < 0.23	23 (23%)	12 (24%)	15 (29%)	12 (24%)	18 (36%)
≥ 0.23 - < 0.45	4 (4%)	3 (6%)	7 (13%)	7 (14%)	5 (10%)
≥ 0.45	1 (1%)	0	1 (2%)	2 (4%)	2 (4%)
Creatinine Shift fro	m≤ULN* at ba	seline to > ULI	N at Week 12	[n (%)]	
	1 (1%)	2 (5%)	1 (2%)	2 (4%)	1 (2%)

^{*} Creatinine ULN was 1.20 mg/dL for females and 1.30 mg/dL for males

Change in Cholesterol over 12 Weeks

	Placebo (N=98)	1 mg (N=49)	2 mg (N=52)	4 mg (N=52)	8 mg (N=50)
Mean Change from B	aseline to Wee	k 12 (mg/dL)			
HDL*	0.62	3.30	2.97	7.26	8.02
LDL	-4.36	3.42	7.95	9.52	11.95
HDL*/LDL Ratio	0.04	0.05	0.03	0.03	0.01
Shift from baseline to < 100 shift to ≥100	20/44	8/23	12/23	12/22	21/26
100 to <130 shift to ≥130	8/28	6/14	11/19	4/13	8/14
130 to <160 shift to ≥160	5/21	6/8	5/8	5/13	5/6

*DEXTRAN PRECIP

Baricitinib Effects on Serum Cholesterol and Circulating Lipid Particles in a Phase 2b Study in Patients With Rheumatoid Arthritis

Joel Kremer,¹ Mark C. Genovese,² Edward Keystone,³ Peter Taylor,⁴ Steven H. Zuckerman,⁵ Douglas E. Schlichting,⁵ Scott D. Beattie,⁵ William L. Macias⁵

¹Albany Medical College, Albany, NY, USA; ²Stanford University Medical Center Palo Alto CA USA: ³University of Toronto Toronto ON:

Methods

- Patients with moderate to severe RA were randomized to once daily (QD) dosing with placebo or 1, 2, 4, or 8 mg of baricitinib.
- Serum lipids were determined using conventional chemistry methods at screening and at Weeks 0, 2, 4, 8, 12, 14, 16, 20, and 24.
- Fasting lipids were measured at baseline, Week 12, and Week 24
- Particle size and number were determined by NMR spectroscopy at Weeks 0, 12, and 24.6
- Particle concentrations of lipoproteins of different sizes were calculated from the measured amplitudes of their spectroscopically distinct lipid methyl group NMR signals.
- Weighted-average very-low density lipoprotein (VLDL), LDL, and HDL particle sizes were derived from the sum of the diameter of each subclass multiplied by its relative mass percentage based on the amplitude of its methyl NMR

Table 2. Changes in LDL, HDL, Total Cholesterol, and Triglycerides

	LDL (mg/dL)				HDL (mg/dL)			Total Cholesterol (mg/dL)		
mean ± SD	Baseline	Week 12	Week 24	Baseline	Week 12	Week 24	Baseline	Week 12	Week 24	
Placebo (n=98)	108 ± 34	105 ± 31		57 ± 15	58 ± 16		193 ± 40	190 ± 34	-	
1 mg QD (n=47)	102 ± 35	108 ± 35		57 ± 19	59 ± 19		192 ± 44	202 ± 42*	-	
2 mg QD (n=52)	107 ± 31	115 ± 40°	119 ± 37	56 ± 16	58 ± 19	61 ± 18	192 ± 38	206 ± 49**	211 ± 45	
4 mg QD (n=52)	109 ± 33	120 ± 33*	119 ± 32	54 ± 14	62 ± 19*	60 ± 17	191 ± 39	213 ± 39**	208 ± 39	
8 mg QD (n=50)	107 ± 30	117 ± 31**	125 ± 33	54 ± 17	62 ± 18"	64 ± 19	189 ± 37	212 ± 39**	219 ± 37	

	Trig	lycerides (mg	/dL)
Placebo (n=98)	131 ± 73	119 ± 72	-
1 mg QD (n=47)	143 ± 86	155 ± 93	-
2 mg QD (n=52)	121 ± 65	138 ± 87*	137 ± 69
4 mg QD (n=52)	130 ± 65	141 ± 71	134 ± 55
9 ma OD (n=60)	120 - 59	126 + 94*	124 + 76

Data for patients re-randomized to 2 mg BID or 4 mg QD in Part B are not shown

HDL: high-density lipoprotein, LDL: low-density lipoprotein Change from baseline analysis:

"p<0.05 vs. placebo "p<0.001 vs. placebo

Table 3. LDL Cholesterol Increases With Baricitinib are Not

Obs	erved in I	atients	on Conc	omitant	Statins		
	Mean LDL Cholesterol (mg/dL)			Mean Change from Baseline (mg/dL)			
	Baseline	Week 12	Week 24	Week 12	p-value Within Treatment	Week 24	p-value Within Treatmen
With Statin Use							
Placebo (n=19)	122 ± 30	105 ± 28	-	-19 ± 31	0.021		
1 mg QD (n=6)	113 ± 43	126 ± 46	-	13 ± 40	0.453	-	
2 mg QD (n=3)	97 ± 56	98 ± 66	81 ± 49	2 ± 35	0.946	-10 ± 28	0.705
4 mg QD (n=11)	108 ± 37	110 ± 33	123 ± 33	-4 ± 24	0.584	8 ± 32	0.436
8 mg QD (n=11)	131 ± 28	135 ± 35	124 ± 34	8 ± 32	0.429	-9 ± 40	0.510
Without Statin Use							
Placebo (n=79)	104 ± 35	105 ± 32		-1 ± 22	0.788		
1 mg QD (n=41)	101 ± 34	105 ± 32	-	2 ± 21	0.617	-	
2 mg QD (n=49)	108 ± 30	116 ± 39	121 ± 36	8 ± 24	0.021	12 ± 22	< 0.001
4 mg QD (n=41)	109 ± 33	123 ± 33	118 ± 32	13 ± 31	0.012	9 ± 33	0.107

8 mg QD (n=39) 100 ± 28 113 ± 29 125 ± 34 13 ± 21 <0.001 21 ± 25 <0.001

Data are mean ± SD unless noted otherwise.

Approximately 17% of the patients enrolled were on statins at the time of entry.

n: number of patients with baseline data

Table 6. Baricitinib Appears to <u>Decrease</u> the Number of Very Small LDL Particles

	Part	Mean Very Small LDL Particle Number (nmol/L)			ean Change in Very Small article Number from Base (nmol/L)			
	Baseline	Week 12	Week 24	Week 12	p-value Within Treatment	Week 24	p-value Within Treatment	
Placebo (n=94)	547 ± 339	512 ± 333	-	-39 ± 208	0.097		-	
1 mg QD (n=49)	607 ± 439	559 ± 423	-	-79 ± 250	0.043		-	
2 mg QD (n=52)	638 ± 403	547 ± 418	551 ± 396	-97 ± 218	0.002	-86 ± 317	0.062	
4 mg QD (n=52)	613 ± 314	555 ± 413	509 ± 409	-52 ± 244	0.137	-96 ± 275	0.021	
8 mg QD (n=50)	597 ± 360	511 ± 392	512 ± 399	-81 ± 330	0.094	-106 ± 348	0.049	

Data are mean ± SD unless noted otherwise. n: number of patients with baseline data

Table 4. No Increase in Total LDL Particle Number With Baricitinib Across Treatment Groups

	Mean Tota	I LDL Particle	es (nmol/L)	Mean Chan	Mean Change in Total LDL Particles from Ba (nmol/L)			
	Baseline	Week 12	Week 24	Week 12	p-value Within Treatment	Week 24	p-value Within Treatment	
Placebo (n=94)	1251 ± 386	1191 ± 374		-80 ± 280	0.013			
1 mg QD (n=49)	1269 ± 474	1243 ± 441		-55 ± 307	0.245			
2 mg QD (n=52)	1324 ± 504	1275 ± 512	1309 ± 474	-56 ± 294	0.177	-18 ± 344	.707	
4 mg QD (n=52)	1319 ± 374	1306 ± 404	1233 ± 422	-4 ± 288	0.924	-69 ± 301	.124	
8 mg QD (n=50)	1285 ± 398	1248 ± 414	1270 ± 429	-35 ± 303	0.428	-67 ± 366	.232	

Data are mean ± SD unless noted otherwise.

LDL: low-density lipoprotein, n: number of patients with baseline data, QD: once daily, SD: standard deviation.

Table 7. Increases in HDL Cholesterol With Baricitinib are Associated With an Increase in Total HDL Particle Number

	Mean Tota	I HDL Particle	es (µmol/L)	Mean Char	Mean Change in Total HDL Particles from Basel (µmol/L)			
	Baseline	Week 12	Week 24	Week 12	p-value Within Treatment	Week 24	p-value Within Treatment	
Placebo (n=94)	32 ± 6	32 ± 7		1 ± 6	0.448			
1 mg QD (n=49)	33 ± 7	34 ± 7		2 ± 7	0.065			
2 mg QD (n=52)	32 ± 8	33 ± 8	35 ± 8	1 ± 6	0.331	2 ± 6	0.009	
4 mg QD (n=52)	34 ± 7	38 ± 8	37 ± 8	4 ± 6	<0.001	3 ± 5	< 0.001	
8 mg QD (n=50)	31 ± 8	36 ± 9	37 ± 7	4 ± 6	<0.001	5 ± 6	< 0.001	

Data are mean ± SD unless noted otherwise. n: number of patients with baseline data

Table 5. Increases in LDL Cholesterol With Baricitinib are Associated With an Increase in the Number of Large LDL Particles

	Mean Large LDL Particle Number (nmol/L)			Mean Change in Large LDI Particle Number from Baseli			
	Baseline	Week 12	Week 24	Week 12	p-value Within Treatment	Week 24	p-value Within Treatment
Placebo (n=94)	521 ± 293	507 ± 226	-	-29 ± 200	0.197	-	
1 mg QD (n=49)	463 ± 283	494 ± 293		45 ± 193	0.129	-	
2 mg QD (n=52)	476 ± 207	536 ± 265	569 ± 302	61 ± 168	0.012	88 ± 212	0.005
4 mg QD (n=52)	512 ± 242	564 ± 271	544 ± 263	56 ± 163	0.018	42 ± 220	0.195
8 mg QD (n=50)	490 ± 234	555 ± 284	581 ± 251	61 ± 250	0.092	69 ± 229	0.053

Data are mean ± SD unless noted otherwise. n: number of patients with baseline data

Table 8. Increases in Total HDL Particle Number are Consistent With an Increase in Medium-Sized HDL Particles

	Part	Medium icle Nun (µmol/L)	nber	Mean Change in Medium HDI Particle Number from Baselin (µmol/L)			
	Baseline	Week 12	Week 24	Week 12	p-value Within Treatment	Week 24	p-value Within Treatment
Placebo (n=94)	4 ± 4	3 ± 3		-1 ± 3	0.067		
1 mg QD (n=49)	4 ± 5	4 ± 3		-1 ± 4	0.226		
2 mg QD (n=52)	4 ± 4	5 ± 7	5 ± 5	1 ± 5	0.084	1 ± 3	0.007
4 mg QD (n=52)	3 ± 3	4 ± 5	4 ± 4	2 ± 5	0.030	1 ± 3	0.033
8 mg QD (n=50)	4 ± 5	5 ± 7	6 ± 6	1 ± 4	0.132	1 ± 5	0.068

Data are mean ± SD unless noted otherwise. n: number of patients with baseline data

Lipid changes, summary and conc.

- Increases in LDL cholesterol with baricitinib treatment are associated
 with increases in number of large LDL particles. Treatment with
 baricitinib is not associated with an increase in number of very small
 LDL particles (considered more atherogenic).
- The total number of LDL particles did not increase, suggesting that the increase in the proportion of large LDL particles may be related to particle remodeling (i.e. a shift from small to large particle size).

Baricitinib, an Oral Janus Kinase Inhibitor, in the Treatment of Rheumatoid Arthritis: 52-Week Safety and Efficacy in an Open-Label Long-Term Extension Study

Study was funded by Eli Lilly & Company and Incyte Corporation

Peter Taylor¹, Mark C. Genovese², Edward Keystone³, Douglas Schlichting⁴, Scott D. Beattie⁴, William L. Macias⁴

¹University of Oxford, United Kingdom; ²Stanford University Medical Center, Palo Alto, CA, USA; ³University of Toronto, Toronto, ON, Canada; ⁴Eli Lilly & Company, Indianapolis, IN, USA

JADA Study Design (Part C)

Dashed arrow represents optional dose escalation at Weeks 28 and 32. Patients with ≥6 tender and ≥6 swollen joints were eligible for escalation.

Demographics and Disease Activity

All Patients Entering Part A at Week Part C at Week

Mean ± SD	All Patients Entering Part A at Week 0 N=301	All Patients Entering Part C at Week 24 N=201
Gender, female, %	83	83
Age, years	51 ± 12	52 ± 12
Duration of RA, years	6 ± 4	6 ± 5
ACPA+ (>5 U/mL), %	69	67
RF+ (>14 IU/mL), %	71	70
Weekly dose of MTX, mg	16.3 ± 6.8	15.6 ± 4.1
Concomitant prednisone, %	49	50
Tender joint count (28)	14.3 ± 6.2	4.9 ± 5.3
Swollen joint count (28)	11.7 ± 5.1	4.2 ± 4.6
CRP, mg/L	12.8 ± 19.4	6.1 ± 11.9
ESR, mm/hr	38.8 ± 18.4	27.4 ± 19.3

100 patients did not continue to Part C: 42 patients who discontinued during treatment in Part A or B and 58 patients who completed Part B (47 patients from sites not participating in Part C and 11 patients who elected not to participate).

Percent of Patients Escalating to 8 mg

Part A dose → Part B dose → Part C starting dose

PBOT mg → 2 PBOT mg → 4 2 mg → 4 mg → 8 mg mg BD → 4 mg → 4 mg → 8 mg mg → 2 mg → 4 mg → 8 mg mg → 2 mg → 4 mg → 8 mg mg → 2 mg → 4 mg → 8 mg mg → 2 mg → 4 mg → 8 mg mg → 2 mg → 4 mg → 8 mg mg → 2 mg → 4 mg → 8 mg mg → 2 mg → 8 mg → 2 mg → 8 mg mg → 2 mg → 8 mg → 8 mg mg → 2 mg → 8 mg → 8 mg → 2 mg → 8 mg → 8 mg → 2 mg → 8 mg → 8 mg → 8 mg → 2 mg → 8 mg → 8

	Part A dose → Part B dose → Part C starting dose 4 mg → 4 mg → 4 mg 8 mg → 8 mg → 8 mg				
n (%)	Week 24	Week 52 (NRI)	Week 24	Week 52 (NRI)	
ACR20	31/40 (78%)	31/39 (79%)	24/32 (75%)	21/32 (66%)	
ACR50	22/40 (55%)	22/39 (56%)	18/32 (56%)	16/32 (50%)	
ACR70	13/40 (33%)	15/39 (38%)	9/32 (28%)	9/32 (28%)	
CDAI Remission ≤2.8	12/40 (30%)	13/39 (33%)	9/31 (29%)	7/31 (23%)	
DAS-ESR≤3.2	15/40 (38%)	21/39 (54%)	12/31 (39%)	13/31 (42%)	
DAS-ESR <2.6	12/40 (30%)	14/39 (36%)	7/31 (23%)	7/31 (23%)	

Hemoglobin	Alwa	ays on 4 mg (n= Baseline	32)
Veek 52	No Grade	Grade 1	Grade 2
No Grade	24 (80%)	3 (10%)	
Grade 1 (< LLN and ≥ 10.0 g/dL)	1 (3%)	2 (7%)	
Grade 2 (< 10.0 g/dL and ≥ 8.0 g/dL)			
	Alwa	ys on 8 mg (n=3 Baseline	(2)
Week 52	No Grade	Grade 1	Grade 2
No Grade	14 (52%)	2 (7%)	
Grade 1 (< LLN and ≥ 10.0 g/dL)	4 (15%)	4 (15%)	2 (7%)
Grade 2 (< 10.0 g/dL and ≥ 8.0 g/dL)	1 (4%)		

	Week	s 0-24 ¹	Week	s 24-52
	4 mg (N=52)	8 mg (N=50)	Remained on 4 mg (N=108)	On 8 mg or Escalate to 8 mg (N=93)
Patients with ≥1 TEAE, n (%)	32 (62%)	36 (72%)	57 (53%)	59 (63%)
Blood/lymphatic disorders	4 (8%)	5 (10%)	1 (1%)	5 (5%)
Anemia	2	2		
Neutropenia				
GI disorders	5 (10%)	9 (18%)	7 (6%)	13 (14%)
Nausea		2	2	0
Colitis				
Infections & Infestations	13 (25%)	14 (28%)	34 (31%)	37 (40%)
Bronchitis	2			
Gastroenteritis				
Herpes zoster				
Influenza				
Pharyngitis				
Sinusitis				
URI				
			10	

	Week	s 0-24 ¹	Week	s 24-52
	4 mg (N=52)	8 mg (N=50)	Remained on 4 mg (N=108)	On 8 mg or Escalated to 8 mg (N=93)
SAEs, n (%)	0	4 (8%)	11 (10%)	7 (8%)
ALT increased				0
Anemia			0	
Angioedema				0
Blood CK increased				ó
Cataract			2	ó
Colitis			0	2
Dehydration				
Gastroenteritis				2
Herpes simplex			0	
Herpes zoster			3	0
Myocardial infarction	ó	Ó	Ö	
Pancytopenia	ó		Ö	0
Pneumonia bacterial			Ö	ó
Presyncope			Ö	
Renal failure			Ö	0
Trauma	ó	0	3	o o

	Week	Weeks 0-241		ks 24-52
n (%)	4 mg (N=52)	8 mg (N=50)	Remained on 4 mg (N=108)	On 8 mg or Escalated to 8 m (N=93)
SAEs	0	4 (8%)	11 (10%)	8 (9%)
TEAEs	32 (62%)	36 (72%)	57 (53%)	59 (63%)
		cases of tube		
No opportun	nistic infections, of		rculosis, or lyr	mphomas

GLGP0634

However.....

Inhibition of activation of 1 of the 2 JAK heterodimer pairs is not all or nothing

- "Recent findings suggest that JAK1 dominates JAK1/JAK3/y signalling, suggesting that JAK1 inhibition might be largely responsible for the in vivo efficacy of JAK inhibitors in immune-inflammatory diseases."
- Van Rompaey et al J Immunol, Published online 4 Sept, 2013
- Haan C, et al. Jak1 has a dominant role over Jak3 in signal transduction through \(\gamma \)-containing cytokine receptors. Chem Biol 2011;18:314-323.
- Other JAK3 selective inhibitors have been abandoned.

JAKs signal for cytokines and growth factors

	Cytokine rec sharing the ?	eptors c-chain Cytokine recept sharing gp130 su	Homodimeric cytokine receptori tors I ubunit	s nterferon rece (Type II recep	Cytokine receptors sharing IL-12Rβ1 subunit ptors
	IL-2	IL-6	Erythropoietin	IFN	IL-12, IL-23
		100			100
÷	Daks Daks	88	(a) (a)	THE SECOND	S S
D'Shea, NIH,	Τ	Ť	Ŧ	T	T
Jakt inhibit	or +	+	-	+	-
Jak2 inhibit	tor _	+	+	+	+
Jak3 inhibit	or +	-	-	-	-
Tyke inhibit	tor	+	-	+	+

JAK selectivity in biochemical assay

IC₅₀ (nM) potency data of compounds in biochemical assays

Compound	JAK1	JAK2	JAK3	TYK2
GLPG0634	10	28	810	116
baricitinib	5.9	5.7	>400	53
tofacitinib	1.3	1.9	0.2	23
VX-509	11	13	2.5	11
ASP015K	3.9	5.0	0.7	4.8
* Ki values by radiom	atric agency NA: not as	allable		

- Discrepancy in JAK selectivity among biochemical and cellular assays
 - > May be associated with incomplete JAK constructs in biochemical systems

Van Rompaey, JI, published online Sept 4, 2013, cont'd

GLPG0634 Biochemical assays show marked inhibition of <u>both</u> JAK 1 and 2, and very low activity for JAK3.

However, the biochemical observation did not translate in WB assays for effects on INFa (JAK1-tyk1, JAK2) and IL-2(JAK1-3),as both p'ways are inhibited.

GLPG0634

Potency in cellular assays

GLPG0	0634 in cellular	assays
JAKs	Assay	IC ₅₀ (nM)
JAK1/JAK3	IL-4/pSTAT6 (THP1 cells)	180
JAK1/TYK2	IFNα/pSTAT1 (U2OS cells)	460
JAK1/JAK2	OSM/STAT1 (HeLa reporter)	1,040
JAK2	EPO/pSTAT5 (UT-7 cells)	>10,000

GLPG063	GLPG0634 in human whole blood				
JAKs	Assay	IC ₅₀ (nM)			
JAK1	IL-6/pSTAT1	620			
JAK1/JAK3	IL-2/pSTAT5	1,700			
JAK1/TYK2	IFNα/pSTAT1	1,120			
JAK2	GM-CSF/pSTAT5	17,500			

N5

Van Rompaey JI, 2013, cont'd Conclusion

"No univocal explanation for the discrepancy between the biochemical and cellular/whole blood assay results. But:

- Biochemical assays rely on truncated purified protein vs wild-type protein in the cellular/whole blood assay.
- JAKs part of a large cellular complex, including cytoplasmic receptor tails, STATs, and other proteins.
- Endogenous JAKs susceptible to posttranslational modification such as phosphorylation which gives rise to different IC50 values.
- The potential exists for differential positive feedback mechanisms for JAK1 vs JAK2 signaling by means of phosphatases which can impact the amplitude and kinetics of JAK enzyme activity and output."

Partial and Reversible Inhibition of JAK with 5 and 10 mg BID Tofacitinib

45

Tofacitinib <u>Partially And Reversibly</u> Inhibits Multiple JAK Dependent Cytokine Signaling Pathways

 $IL = interleukin; STAT = signal\ transducer and\ activator\ of\ transcription;\ IFN = interferon\ alpha$

JAK1 selectivity over JAK2

Baricitinib, tofacitinib and GLPG0634 in human whole blood

- · JAK1 assay: IL-6 induced pSTAT1 in CD4+ cells
- JAK2 assay: GM-CSF induced pSTAT5 in CD33+ cells

GLPG0634 in moderate to severe RA

Design PoC and Phase 2a studies

	PoC	Phase 2a
# patients on stable MTX	36	91
doses	Placebo vs 200 mg daily (100 mg BID, 200 mg QD)	Placebo vs 30, 75, 150, 300 mg QD
duration	28 days	28 days
study centers	1	19
countries	Moldova	Hungary, Moldova Russia, Ukraine

PoC: designed to give rapid evaluation Phase 2a: extended version of PoC

GLPG0634 PoC study

ACR response

 Achieved primary endpoint
 ACR20 scores at Day 28: 42-58% improvement over

placebo

GLPG0634 PoC study

DAS28 response

GLPG0634 rapidly improves disease activity score

GLPG0634

Clinical safety summary

- · "Favorable safety profile was observed"
- · No SAEs on GLPG0634 treatment
- · Few patients reported treatment-emergent side-effects
- No effects on cardiovascular safety (incl. blood pressure)
- No overall change to LDL-cholesterol or ALT
- · Slight hemoglobin increase
- No significant changes in lymphocyte counts and lymphocyte differentials
- · Modest decrease in neutrophils no dose trend

GLPG0634

- Phase IIA, 4 week trial of 91 pts
- Mean DAS improvements of -1.7, -1.8,-2.3 in 75, 150 and 300 mg groups respectively.
- Improvements in 300 mg "similar to those with 200 mg in prior PoC";(45%ACR 50)
- "no anemia, no SAEs, no impact on lymphs, limited decrease in neutrophils"
- · Abstract 2381, Tuesday poster session

GLPG0634

Ongoing Phase 2b program in moderate to severe RA

Patients with inadequate response to MTX

VX-509

JAK-STAT Network and Implications for Drug Selectivity

· JAK family kinases have high sequence homology - which required significant innovation when designing a JAK3 selective inhibitor (VX-509)

DISCOVERY OF VX-509: A Selective

JAK3 Inhibitor
Target JAK3 specifically to prevent broad effects of JAK1/2 inhibition and

The Goal:

The Challenge: The high degree of similarity in structure of the ATP binding pocket between

JAK2 and JAK3 posed a significant challenge in the design of molecules selective for JAK3

Identification of these co-complex structures of the different JAKs and our compounds led to creation of compounds that are highly selective for JAK3

In cell-based assays, showed high selectivity for JAK3 compared to

Inhibition of JAK3 Blocks Only JAK1/3 Pair Signaling

Selective inhibition of JAK3 blocks downstream signal transduction for JAK1/3 pair without impacting the other JAK pairs 1.2

Hoock T et al. Presented at ACR; November 5–9, 2011; Chicago, IL, USA. Abstract 1136;
 Reischmann R et al. Presented at ACR; November 5–9, 2011; Chicago, IL. Poster L9.

Signaling Controlled by JAK3 Is Restricted to Common γc

VX-509 shows >25-fold selectivity for JAK3 compared to Jak1, Jak2 & Jak1/Tyk2, in JAK dependent cell assays

Cell Assay	JAK Involved	VX-509 IC ₅₀ (nM)
HT-2/IL-2/P-STAT5	JAK3	99 ± 40
TF-1/GMCSF/P-STAT5	JAK2	2600 ± 1600
Mouse 2-Way MLR	JAK3	170 ± 100
1º Human IL-2 T-cell Blast	JAK3	140, 400
Human CFU-E 3 U/ml EPO	JAK2	7700 ± 6100
Human CFU-E 0.3 U/ml EPO	JAK2	5300 ± 3600
HeLa IFN-q STAT2	JAK1/TYK2	11900 ± 3650
Ratio CFU-E to MLR IC50 3 U/ml EPO		45.3
Ratio CFU-E to MLR IC50 0.3 U/ml EPO		31.3

VX-509 JAK3 Selectivity Confirmed with Ph1 Biomarkers

VX-509 Phase 2a Study 101 Dose-ranging study of VX-509, an oral selective JAK inhibitor, as monotherapy in patients with active RA Subjects: 204 Study Completion: July 2011 Data Presented: ACR 2011

Vertex, data on file

Study Endpoints

Primary Endpoints

- · Proportion of subjects who achieve an ACR20 response at Week 12
- Change from baseline in DAS28-CRP at Week 12

Secondary Endpoints

- · ACR 50/70, DAS28-CRP, EULAR responses, HAQ-DI
- PK
- QoL: SF-36
- · Safety and tolerability: adverse events, laboratory results, ECG

CRP, C-reactive protein; QoL, quality of life; SF-36, Short-Form 36 Health Survey; ECG, electrocardiogram. Vertex, data on file.

Patient Population

- Active RA
 - ≥6 swollen AND ≥6 tender joints (28 joint counts)
 - CRP ≥1.5×ULN
- Failure of ≥1 nonbiologic DMARD for any reason
- Previous use of ≤1 biologic other than rituximab allowed if failure for reasons other than inadequate response
- · No concurrent DMARD allowed
- Stable doses of oral corticosteroids (≤10 mg/day prednisone equivalent) and 1 NSAID permitted

ULN, upper limit of normal; NSAID, nonsteroidal anti-inflammatory drug. Vertex, data on file.

Study Design

SJC, swollen joint count; TJC, tender joint count. Fleischmann R et al. Presented at ACR; November 5-9, 2011; Chicago, IL. Poster L9; Vertex, data on file.

Patient Disposition

Vertex, data on file

Baseline Characteristics and Patient Demographics

ICIIL	ווטכו	iouic		<u> </u>	
	VX-509 BID				
Placebo (n=41)	25 mg (n=41)	50 mg (n=41)	100 mg (n=40)	150 mg (n=41)	Overall (N=204)
78	78	83	85	83	81
98	95	98	95	95	96
54.9 (31–74)	56.8 (31–74)	55.6 (22–75)	56.5 (24–75)	57.0 (35–73)	56.1 (22–75)
10.0	8.5	6.3	6.7	7.1	7.7
	Piacebo (n=41) 78 98 54.9 (31-74)	Placebo (n=41)	VX-56 Pfacebo 25 mg 50 mg (n=41) (n=41) 78 78 83 98 95 96 54.9 56.8 (31-74) (31-74) (22-75)	VX-509 BID VX-	Placebo 25 mg 50 mg 100 mg 155 mg (m-41) (m-41) (m-40) (m-40) (m-41) (m-40) (m-41) 78 78 83 85 83 85 85

RF+, rheumatoid factor (RF) positive; CCP+, anti-cyclic citrulinated peptide (CCP) positive Fleischmann R et al. Presented at ACR; November 5–9, 2011; Chicago, IL. Poster L9...

Baseline Disease Activity

		VX-509 BID				
	Placebo (n=41)	25 mg (n=41)	50 mg (n=41)	100 mg (n=40)	150 mg (n=41)	Overall (N=204)
TJC (28 joints), mean	15.6	17.0	17.4	15.6	16.5	16.4
SJC (28 joints), mean	13.5	13.3	13.3	11.6	12.9	12.9
CRP, mean, mg/L ⁺	22.8	19.1	22.8	29.1	24.9	23.7
ESR, mean, mm/h	44.0	53.1	47.5	52.5	56.8	50.7
HAQ-DI, mean	1.61	1.70	1.58	1.64	1.70	1.65
DAS28-CRP, mean	6.0	6.2	6.2	6.0	6.1	6.1

*ULN for CRP was 5 mg/L. Fleischmann R et al. Presented at ACR; November 5-9, 2011; Chicago, IL. Poster L9; Vertex, data on file.

ACR Responses at Week 12[†]

*P<0.05; **P<0.01; ***P≤0.001; P values vs placebo.

Norresponder imputation.
Fleischmann R et al. Presented at ACR; November 5–9, 2011; Chicago, IL. Poster L9.

*Norresponder imputation: Fleischmann R et al. Presented at ACR; November 5–9, 2011; Chicago, IL. Poster L9.

ACR50 and ACR70 Over Time†

DAS28-CRP < 2.6 at Week 12[†]

**P<0.01 vs placebo. Norresponder imputation.
Fleischmann R et al. Presented at ACR; November 5–9, 2011; Chicago, IL. Poster L9.

Treatment-Emergent Adverse Events (TEAEs) Summary

		VX-509 BID				
Event, n (%)	Placebo (n=41)	25 mg (n=41)	50 mg (n=41)	100 mg (n=40)	150 mg (n=41)	All VX-509 (n=163)
Any TEAE	19 (46.3)	12 (29.3)	18 (43.9)	25 (62.5)	22 (53.7)	77 (47.2)
Discontinuation due to adverse event	2 (4.9)	0	1 (2.4)	7 (17.5)	5 (12.2)	13 (7.9)
Serious adverse event	1 (2.4)	0	1 (2.4)	5 (12.5)	2 (4.9)	8 (4.9)
Any infection	7 (17.0)	5 (12.2)	5 (12.2)	10 (25.0)	8 (19.5)	28 (17.2)
Serious infection	0	0	0	3 (7.5)	2 (4.9)	5 (3.1)
Death	0	0	0	2 (5.0)	0	2 (1.2)

169% of placebo/84% of VX-509 subjects completed 12 weeks of dosing. Fleischmann R et al. Presented at ACR; November 5–9, 2011; Chicago, IL. Poster L9.

Most Common TEAEs†

				_,	_		
		VX-509 BID					
	Placebo (n=41)	25 mg (n=41)	50 mg (n=41)	100 mg (n=40)	150 mg (n=41)	AII VX-509 (n=163)	
Nausea	0	0	5 (12)	1 (2.5)	4 (9.8)	10 (6.1)	
ALT increased	2 (4.9)	0	0	4 (10)	3 (7.3)	7 (4.3)	
Headache	2 (4.9)	1 (2.4)	2 (4.9)	2 (5.0)	2 (4.9)	7 (4.3)	
Hypercholesterolemia	0	0	0	4 (10.0)	2 (4.9)	6 (3.7)	
AST increased	0	0	0	2 (5.0)	3 (7.3)	5 (3.1)	
Bronchitis	1 (2.4)	0	0	1 (2.5)	4 (9.8)	5 (3.1)	
Diarrhea	1 (2.4)	0	2 (4.9)	1 (2.5)	2 (4.9)	5 (3.1)	
Constipation	0	1 (2.4)	1 (2.4)	2 (5.0)	0	4 (2.5)	
Peripheral edema	0	1 (2.4)	0	3 (7.5)	0	4 (2.5)	
Urinary tract infection	2 (4.9)	0	2 (4.9)	2 (5.0)	0	4 (2.5)	

[†]Occurring in ≥2% of all patients treated with VX-509
ALT, alarine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamy
Fleischmann R et al. Presented at ACR; November 5-9, 2011; Chicago, IL. Poster L9.

Other Indications

JAKs

VX-509 phase 2b trial

- N=358; 100 mg QD, 150 mg QD, 200 mg QD and 100 mg BID
- Efficacious
- Higher rate of serious infection (2.8% vs 1.4%) and "elevations in transaminase levels and decreases in median neutrophil and lymphocyte counts were observed."
- · Genovese, abstract L3, Tuesday oral late breaker, 3PM

JAK Inhibition in RA, Summary

- There are multiple possible approaches which affect different JAK targets.
- 2.Tofacitinib has the most clinical data, by farl
 3.The 'real world' effects of different degrees of JAK selective targeting may be somewhat difficult to predict from in-vitro assays alone. (eg., it is possible that the biochemical complexities and stoichiometry of partial target inhibition of 1 of the 2 JAK heterodimers confers a variable degree of clinical inhibition (Ihat is, not an "all or nothing phenomenom".])
- 4. The actual effects in humans is what bears watching!

The "ideal" JAK target for the best Efficacy/Toxicity profile has not yet been determined.

Tofacitinib Oral Psoriasis Program: Phase 2b

Tofacitinib Oral Psoriasis Program: Phase 3 OPT Compare, a 12-week, non-inferiority study comparing the efficacy and safety of tofacitinib

OPT Compare, a 12-week, morninerionity study comparing the enicacy and salety of totalcumb 5 and 10 mg twice-daily (BID) to high-dose etanercept 50 mg twice-weekly (BIW), and placebo for the treatment of adult patients with moderate-to-severe chronic plaque psoriasis.

- Tofacitinib met the primary endpoint of non-inferiority to high-dose ENBREL at the 10 mg BID dose.
- Tofacitinib did not meet the non-inferiority criteria to high-dose ENBREL at the 5 mg BID dose. Additionally, rates of
 important safety events were similar across the active treatment arms.

OPT Retreatment , a 56-week study compared the efficacy and safety of withdrawal and retreatment with tofactifinib 5 and 10 mg BID to placebo for the treatment of adult patients with moderate-to-severe chronic plaque ps

The OPT Retreatment study met its primary efficacy endpoints at the 5 and 10 mg BID doses by demonstrating that a
greater proportion of patients continuing tolarchinb restment maintained their response during the treatment withdrawa
phase compared to patients who switched to placebo.

Top-line results for the OPT Pivotal 1 and OPT Pivotal 2 trials (A3921078 and A3921079) are anticipated in the second quarter of 2014.

Tofacitinib Topical Psoriasis Program: Phase 2a

Tofacitinib: Other Psoriasis Studies in Progress

Tofacitinib Ointment For Plaque Psoriasis (PhasII)

Ediminated Study Completion Date: 49/ 2014
Ediminated Plemary Completion Date: 49/ 2014 Final data collection date for primary outcome measure)
Tofacitinib In Psoriatic Arthritis Subjects With Inadequate Response to TNF Inhibitors

(OPAL BEYOND)
Estimated Enrollment:
Study Start Date:
Estimated Study Completion Date:
Estimated Primary Completion Date

Efficacy And Safety Of Tofacitinib In Psoriatic Arthritis: Comparator Study (OPAL

Tofacitinib in Ulcerative Colitis

Completed Phase 2b Study in UC

Tofacitinib: Other IBD Studies in Progress

A Study Of Oral CP-690550 As A Maintenance Therapy For UC (OCTAVE)

Estimated Enrollment: Study Start Date: Estimated Study Completion Date: Estimated Primary Completion Date 654 July 2012 January 2016 December 201

A Study Evaluating The Efficacy And Safety Of CP-690,550 In Patients With Moderate To Severe Ulcerative Colitis (OCTAVE)

Estimated Enrollment: Study Start Date: Estimated Study Completion Date: 545 April 2012

Tofacitinib: Other Arthropathy Studies in Progress

Pharmacokinetics Of CP-690,550 In Pediatric Patients With Juvenile Idiopathic Arthritis (JIA)

Estimated Enrollment: Study Start Date: Estimated Study Completion Date: Estimated Primary Completion Date:

December 2014 (Final data collection date for primary out

Long-Term Safety Study Of CP-690,550 In Patients With JIA

Estimated Enrollment: Study Start Date: 290 March 2013 Estimated Study Completion Date: Estimated Primary Completion Date September 2020 September 2020 (Final data collection date for primary outcome measure)

Dose-Ranging Study Of Tofacitinib In Adults With Active Ank Spond
Estimated Furniture:

April 2013
April 2013
Estimated Study Completion Date:
Estimated Study Completion Date:
April 2014
April 2014 200
April 2013
September 2014
August 2014 (Final data collection date for primary outcome measure)

Drug	Target	Status	Diseases
Ruxolitinib	Jak1, Jak2	FDA approved Phase II	Polycythemia, Myelofibrosis, Various cancers
Tofacitinib	Jak1, Jak3	FDA approved Phase III Phase II	RA Psoriasis, Ulcerative colitis spondyloarthropathy juvenile arthritis
Baracitinib	Jak1, Jak2	Phase II	RA, Psoriasis, Diabe nephropathy
INCB047986	check	Not open yet	Malignancy
GLPG0778 GSK2586184	Jak1	Phase II	SLE, Psoriasis
GLPG0634	Jak1 (check)	Phase II	RA, Crohn's
CYT387	Jak1, Jak2	Phase II	Myelofibrosis
ASP015K(Astellas/Jansser NCT01711814 clinical trials		Phase II	Psoriasis, RA
R256			Asthma
R333			Discoid lupus
ABT-494 (Abbott)	Jak1	Phase I	
PF-04965842	Jak1	Phase I	
GLG0778	Jak1	Phase II	SLE
VX-509	Jak3	Phase II	RA
Lestaurtinib			

Thank you!

DAS28 scores

Time (weeks)

Signaling Controlled by JAK1 Effects

O Not Required Activates/Required Cox L, Cods J. Chem Bio. 2011;85:277-278; Chomsch K et al. Immunol Rev. 2009;228:273-287; Lee Y et al. Blood. 2009;11:855-833; Nakashima K et al. J Neurosci. 1999;19:54:29-5434; O'Shea JJ et al. NEng J Med 2013;26:195-175; O'Sullivan LA et al. Mole: Immunol 2007;44:2487-2009;Pass M et al. Immunol Rev. 2009;221:33-145.

Signaling Controlled by JAK2 Includes Hematopoietic

0 0

0 0 0

0

OO

0

0 0 0

0

Effects of JAK2 Signaling

and Growth Factors

Common **y**c IL-2, -4, -7, -9, -15, -21

E-10 Family (L-10, -19, -20, -22, -24, -26

GLPG0634