2022 年 10 月 16 日 泛函分析 强基数学 002 吴天阳 2204210460

第五次作业

题目 1. (1.4.1) 在二维空间 \mathbb{R}^2 中,对每一点 z = (x, y),令

$$||z||_1 = |x| + |y|;$$
 $||z||_2 = \sqrt{x^2 + y^2};$ $||z||_3 = \max(|x|, |y|);$ $||z||_4 = (x^4 + y^4)^{\frac{1}{2}}.$

- (1) 求证 $||\cdot||_i$ (i=1,2,3,4) 都是 \mathbb{R}^2 的范数.
- (2) 画出 $(\mathbb{R}^2, ||\cdot||_i)$ (i = 1, 2, 3, 4) 各空间中的单位球面图形.
- (3) 在 \mathbb{R}^2 中取定三点 $O=(0,0),\ A=(1,0),\ B=(0,1),\ 试在上述四种不同范数下求出 <math>\triangle OAB$ 三边的长度.

解答. (1). $\forall x, y \in \mathbb{R}^2$, $\diamondsuit x = (x_1, x_2), y = (y_1, y_2).$

正定性: 由于 $|x_1|, x_1^2, x_1^4 \ge 0$,则 $||x||_i \ge 0$,(i = 1, 2, 3, 4) 且 $||x||_i = 0 \iff x = (0, 0)$,(i = 1, 2, 3, 4).

三角不等式: $||x+y||_1 = |x_1+y_1| + |x_2+y_2| \leq |x_1| + |x_2| + |y_1| + |y_2| = ||x||_1 + ||y||_1$. 下证 p-范数上的三角不等式, $||x||_p = (|x_1|^p + |x_2|^p)^{\frac{1}{p}}$

$$||x+y||_p^p = \sum_{i=1}^2 |x_i + y_i|^{p-1} |x_i + y_1| \leqslant \sum_{i=1}^2 |x_i| \cdot |x_i + y_i|^{p-1} + \sum_{i=1}^2 |y_i| \cdot |x_i - y_i|^{p-1}$$

$$(\text{Holder } \vec{\Lambda} \overset{\text{\textbf{4F}}}{\Rightarrow} \vec{\Lambda}) \leqslant \left(\left(\sum_{i=1}^2 |x_i|^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^2 |y_i|^p \right)^{\frac{1}{p}} \right) \left(\sum_{i=1}^2 |x_i + y_i|^p \right)^{\frac{p-1}{p}} = (||x||_p + ||y||_p)||x + y||_p^{p-1}$$

则 $||x+y||_p \leq ||x||_p + ||y||_p$, 故 $||\cdot||_2$, $||\cdot||_4$ 满足三角不等式.

 $||x+y||_3 = \max(|x_1+y_1|,|x_2+y_2|) \leqslant \max(|x_1|+|y_1|,|x_2|+|y_2|) \leqslant \max(|x_1|,|x_2|) + \max(|y_1|,|y_2|) = ||x||_3 + ||y||_3.$

齐次型: $\forall \alpha \in \mathbb{K}$, 由于 $|\alpha x_1| = |\alpha| \cdot |x_1|$, $\sqrt{\alpha^2} = (\alpha^4)^{\frac{1}{4}} = |\alpha|$, 则以上范数均满足齐次性.

- (2). 单位球面如右图所示
- (3). $||OA||_i = ||OB||_i = ||(1,0)||_1 = ||(0,1)||_1 = 1.$ $||AB||_1 = 2, ||AB||_2 = \sqrt{2}, ||AB||_3 = 1, ||AB||_4 = 2^{\frac{1}{4}}.$

题目 2. (1.4.3) 在 $C^1[a,b]$ 中,令

$$||f||_1 = \left(\int_a^b (|f|^2 + |f'|^2) \, \mathrm{d}x\right)^{\frac{1}{2}}, \quad (\forall f \in C^1[a, b]),$$

- (1) 求证 $||\cdot||_1$ 是 $C^1[a,b]$ 上的范数.
- (2) 问 $(C^1[a,b],||\cdot||_1)$ 是否完备?

解答. 由定义易得 $||f|| \ge 0$,当 $f \equiv 0$ 时, ||f|| = 0, 反之,当 ||f|| = 0 时,

$$\int_{a}^{b} (|f|^{2} + |f'|^{2}) dx = 0 \Rightarrow |f|^{2} \text{在}[a, b] \text{上几乎处处为 } 0$$

由于 $f \in C[a,b]$, 则 $f \equiv 0$.

三角不等式:

$$\begin{split} ||f+g||^2 &= \int_a^b \left(|f+g|^2 + |f'+g'|^2\right) \, \mathrm{d}x \leqslant \int_a^b \left(|f| \cdot |f+g| + |f'| \cdot |f'+g'| + |g| \cdot |f+g| + |g'| \cdot |f'+g'|\right) \, \mathrm{d}x \\ &\leqslant \int_a^b \left(\sqrt{|f|^2 + |f'|^2} \sqrt{|f+g|^2 + |f'+g'|^2} + \sqrt{|g|^2 + |g'|^2} \sqrt{|f+g|^2 + |f'+g'|^2}\right) \, \mathrm{d}x \\ &\leqslant \left(\int_a^b (|f|^2 + |f'|) \, \mathrm{d}x\right)^{\frac{1}{2}} \left(\int_a^b (|f+g|^2 + |f'+g'|^2) \, \mathrm{d}x\right)^{\frac{1}{2}} \\ &+ \left(\int_a^b (|g|^2 + |g'|^2) \, \mathrm{d}x\right)^{\frac{1}{2}} \left(\int_a^b (|f+g|^2 + |f'+g'|^2) \, \mathrm{d}x\right)^{\frac{1}{2}} \, \mathrm{d}x \\ &= (||f|| + ||g||) \, ||f+g|| \end{split}$$

则 $||f + g|| \le ||f|| + ||g||$.

齐次性:
$$\forall \alpha \in \mathbb{K}$$
, 则 $||\alpha f|| = \int_a^b (|\alpha f|^2 + |\alpha f'|^2) \, \mathrm{d}x = |\alpha| \int_a^b (|f|^2 + |f'|^2) \, \mathrm{d}x = |\alpha| \cdot ||f||.$
(2) 不完备. 令 $\varphi_n(x) = \left(\frac{x-a}{b-a}\right)^{\frac{1}{n}}$, 则 $\{\varphi_n\} \subset C^1[a,b]$, 令 $\varphi(x) = \begin{cases} 0, & x=a, \\ 1, & a < x \leqslant b. \end{cases}$ 下证

 $\varphi_n \to \varphi$.

$$||\varphi_{n} - \varphi||^{2} = \int_{a}^{b} \left\{ \left(\left(\frac{x - a}{b - a} \right)^{\frac{1}{n}} - 1 \right)^{2} + \left(\frac{1}{n} \left(\frac{x - a}{b - a} \right)^{\frac{1 - n}{n}} \right)^{2} \right\} dx$$

$$= \int_{a}^{b} \left(\frac{x - a}{b - a} \right)^{\frac{2}{n}} dx - 2 \int_{a}^{b} \left(\frac{x - a}{b - a} \right)^{\frac{1}{n}} dx + \int_{a}^{b} dx + \frac{1}{n^{2}} \int_{a}^{b} \left(\frac{x - a}{b - a} \right)^{\frac{2 - 2n}{n}} dx$$

$$= \frac{b - a}{\frac{2}{n} + 1} - \frac{2(b - a)}{\frac{1}{n} + 1} + b - a + \frac{1}{n^{2} \left(\frac{2 - 2n}{n} + 1 \right)} \to b - a - 2(b - a) + b - a = 0, \quad (n \to \infty).$$

则 $\varphi_n \to \varphi$, $(n \to \infty)$, 而 $\varphi \notin C^1[a,b]$, 则 $(C^1[a,b], ||\cdot||)$ 不完备.

题目 3. (1.4.4) 在 C[0,1] 中,对每一个 $f \in C[0,1]$,令

$$||f||_1 = \left(\int_0^1 |f|^2 \, \mathrm{d}x\right)^{\frac{1}{2}}, \quad ||f||_2 = \left(\int_0^1 (1+x)|f|^2 \, \mathrm{d}x\right)^{\frac{1}{2}},$$

求证: $||\cdot||_1$ 和 $||\cdot||_2$ 是 C[0,1] 中的两个相等范数.

证明. 由于 $x \in [0,1]$ 时

$$\left(\int_0^1 |f|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \leqslant \left(\int_0^1 (1+x)|f|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \leqslant \left(\int_0^1 2|f|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} = \sqrt{2} \left(\int_0^1 |f|^2 \, \mathrm{d}x \right)^{\frac{1}{2}}.$$
 所以 $||\cdot||_1$ 与 $||\cdot||_2$ 等价.

题目 4. (1.4.6) 设 $BC[0,\infty]$ 表示 $[0,\infty)$ 上连续且有界的函数 f(x) 全体,对于每个 $f\in BC[0,\infty)$ 及 a>0,定义

$$||f||_a = \left(\int_0^\infty e^{-ax}|f|^2 dx\right)^{\frac{1}{2}}.$$

- (1) 求证 $|\cdot|_a$ 是 $BC[0, \infty)$ 上的范数.
- (2) 若 a, b > 0, $a \neq b$, 求证 $||\cdot||_a$ 与 $||\cdot||_b$ 作为 $BC[0, \infty)$ 上的范数是不等价的.

证明. 先证明定义 $||\cdot||_a$ 有意义, $\forall f \in BC[0,\infty)$,设 $\sup_{x \ge 0} |f(x)| = M$,则

$$||f||_a = \left(\int_0^\infty e^{-ax}|f|^2 dx\right)^{\frac{1}{2}} \le |M| \left(\int_0^\infty e^{-ax} dx\right)^{\frac{1}{2}} = \frac{|M|}{\sqrt{a}}.$$

再证明 $||\cdot||_a$ 满足范数定义. 正定性:由于 $|f|^2\geqslant 0$,则 $||f||_a\geqslant 0$,当 $f\equiv 0$ 时, $||f||_a=0$,反之,当 $||f||_a=0$ 时, $|f|^2$ 在 $[0,\infty)$ 上几乎处处为零,又由于 $f\in C[0,\infty)$,则 $f\equiv 0$.

三角不等式:

$$\begin{split} ||f+g||_a^2 &= \int_0^\infty \mathrm{e}^{-ax} |f+g|^2 \, \mathrm{d}x = \int_0^\infty \mathrm{e}^{-\frac{ax}{2}} |f| \cdot \mathrm{e}^{-\frac{ax}{2}} |f+g| \, \mathrm{d}x + \int_0^\infty \mathrm{e}^{-\frac{ax}{2}} |g| \cdot \mathrm{e}^{-\frac{ax}{2}} |f+g| \, \mathrm{d}x \\ &\leqslant \left(\int_0^\infty \mathrm{e}^{-ax} |f|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_0^\infty \mathrm{e}^{-ax} |f+g|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} + \left(\int_0^\infty \mathrm{e}^{-ax} |g|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \left(\int_0^\infty \mathrm{e}^{-ax} |f+g|^2 \, \mathrm{d}x \right)^{\frac{1}{2}} \\ &= (||f||_a + ||g||_a) \, ||f+g||_a, \end{split}$$

则 $||f + g||_a \le ||f||_a + ||g||_a$.

济次性:
$$\forall \alpha \in \mathbb{K}$$
, $||\alpha f||_a = \left(\int_0^\infty e^{-ax}|\alpha f|^2 dx\right)^{\frac{1}{2}} = |\alpha| \left(\int_0^\infty e^{-ax}|f|^2 dx\right)^{\frac{1}{2}} = |\alpha| \cdot ||f||_a$. (2)

题目 5. (1.4.6) 设 X_1, X_2 是两个 B^* 空间, $x_1 \in X_1$ 和 $x_2 \in X_2$ 的序对 (x_1, x_2) 全体构成空间 $X = X_1 \times X_2$,并赋以范数

$$||x|| = \max(||x_1||_1, ||x_2||_2),$$

其中 $x = (x_1, x_2), x_1 \in X_1, x_2 \in X_2, ||\cdot||_1$ 和 $||\cdot||_2$ 分别是 X_1 和 X_2 的范数. 求证:如果 X_1, X_2 是 B 空间,那么 X 也是 B 空间.

证明. 令 $\{x_n\}\subset X$ 是 Cauchy 列,则 $||x_n-x_m||\to 0,\ (n,m\to 0)$,令 $x_n=(x_1^{(n)},x_2^{(n)})$,则

$$\max\left(||x_1^{(n)}-x_1^{(m)}||_1,||x_2^{(n)}-x_2^{(m)}||_2\right)\to 0,\quad (n,m\to 0)$$

则 $||x_i^{(n)} - x_i^{(m)}||_i \to 0$, $(n, m \to \infty, i = 1, 2)$, 由于 X_1, X_2 是 B 空间,则 $\exists x_1^{(0)} \in X_1, x_2^{(0)} \in X_2$ 使得 $||x_i^{(n)} - x_i^{(0)}||_i \to 0$, $(n \to \infty, i = 1, 2)$, 令 $x_0 = (x_1^{(0)}, x_2^{(0)})$, 则

$$||x_n - x_0|| = \max(||x_i^{(n)} - x_1^{(0)}||, ||x_2^{(n)} - x_2^{(0)}|) \to 0, \quad (n \to \infty)$$

所以 $\{x_n\}$ 收敛于 x_0 ,故 X 是 B 空间.

题目 6. (1.4.8) 记 [a,b] 上次数不超过 n 的多项式全体为 \mathbb{P}_n . 求证: $\forall f(x) \in C[a,b], \exists P_0(x) \in \mathbb{P}_n$ 使得

$$\max_{a \leqslant x \leqslant b} |f(x) - P_0(x)| = \min_{P \in \mathbb{P}_n} \max_{a \leqslant x \leqslant b} |f(x) - P(x)|.$$

也就是说,如果用所有次数不超过 n 的多项式去对 f(x) 一致逼近,那么 $P_0(x)$ 是最佳的.

证明. 令 C[a,b] 上的范数为 $||f||=\max_{a\leqslant x\leqslant b}|f(x)|$ 则 $(C[a,b],||\cdot||)$ 是 B^* 空间. 由于 \mathbb{P}_n 是 C[a,b] 的真闭子空间且 $\dim \mathbb{P}_n=n+1<\infty$,则存在最佳逼近,即 $\forall f\in C[a,b],\ \exists P_0\in\mathbb{P}_n$ 使得 $||f-P_0||=\rho(f,\mathbb{P}_n)$,也即

$$\max_{a \leqslant x \leqslant b} |f(x) - P_0(x)| = \min_{P \in \mathbb{P}_n} \max_{a \leqslant x \leqslant b} |f(x) - P(x)|.$$

题目 7. (1.4.9) 在 \mathbb{R}^2 中,对 $\forall x = (x_1, x_2) \in \mathbb{R}^2$,定义范数

$$||x|| = \max(|x_1|, |x_2|),$$

并设 $e_1 = (1,0), x_0 = (0,1).$ 求 $a \in \mathbb{R}$ 使得

$$||x_0 - ae_1|| = \min_{\lambda \in \mathbb{R}} ||x_0 - \lambda e_1||,$$

并问这样的 a 是否唯一?请对结果做出几何解释.

解答. 不唯一. $||x_0 - \lambda e_1|| = ||(-\lambda, 1)|| = \max(|\lambda|, 1) \ge 1$ 当 $|\lambda| \le 1$ 时取到最小值 1. 则 $a \in [-1, 1]$.

若把 $\{\lambda e_1 : \lambda \in \mathbb{R} \$ 视为一维平面,则 x_0 到该平面的投影不唯一.

题目 8. (1.4.10) 求证: 范数的严格凸性等价于下列条件:

$$||x + y|| = ||x|| + ||y|| (\forall x \neq 0, y \neq 0) \Rightarrow x = cy \quad (c > 0).$$

证明. 充分性,证明其逆否命题. $\forall x, y \neq \theta, x \neq cy (c > 0)$,只需证 ||x + y|| < ||x|| + ||y||,不 妨令 $||x|| \geqslant ||y||$.

- (i) $||x|| = ||y|| =: d \ \text{Iff}, \ \left| \left| \frac{1}{2} \frac{x}{d} + \frac{1}{2} \frac{y}{d} \right| \right| < \frac{1}{2} + \frac{1}{2} \Rightarrow ||x + y|| < d + d = ||x|| + ||y||.$
- (ii) 当 $||x|| \neq ||y||$ 时,不妨令 ||x|| > ||y|| 则

$$\left| \left| \frac{x}{||x||} + \frac{y}{||x||} \right| \right| - \frac{||y||}{||x||} \leqslant \left| \left| \frac{x}{||x||} + \frac{y}{||x||} - \frac{||y||}{||x||} \right| \right| \leqslant \left| \left| \frac{||x|| - ||y||}{||x||} \frac{x}{||x||} + \frac{||y||}{||x||} \frac{y}{||y||} \right| \right| < 1$$

左侧不等号是因为 $||x|| = ||x-y+y|| \leqslant ||x-y|| + ||y||$,所以 $||x|| - ||y|| \leqslant ||x-y||$,于是

$$\left| \left| \frac{x}{||x||} + \frac{y}{||x||} \right| \right| < 1 + \frac{||y||}{||x||} \Rightarrow ||x+y|| < ||x|| + ||y||$$

必要性,反设 $||\alpha x + \beta y|| = 1 = \alpha ||x|| + \beta ||y||$,则 $\exists c > 0$ 使得 x = cy,由于 1 = ||x|| = c||y|| = c,则 x = y 矛盾.

题目 9. (1.4.13) 设 $X \in B^*$ 空间, $X_0 \in X$ 的线性子空间,假定 $\exists c \in (0,1)$ 使得

$$\inf_{x \in X_0} ||y - x|| \leqslant c||y|| \quad (\forall y \in X).$$

求证: X_0 在 X 中稠密.

证明. $\forall y \in X$,由下确界定义可知, $\exists \varepsilon > 0$, $\exists x_1 \in X_0$ 使得 $||y - x_1|| \leq c||y|| + \varepsilon$;

 $\exists x_2 \in X_0$ 使得 $||y - x_1 - x_2|| \le c||y - x_1|| + \varepsilon \le c^2||y|| + (1 + c)\varepsilon$;

$$\exists x_3 \in X_0$$
 使得 $||y - x_1 - x_2 - x_3|| \le c||y - x_1 - x_2|| + \varepsilon \le c^3||y|| + (1 + c + c^2)\varepsilon$;

. . .

$$\exists x_n \in X_0$$
 使得 $||y - \sum_{i=1}^n x_i|| \leqslant c^n ||y|| + \varepsilon \frac{1 - c^n}{1 - c} \to \varepsilon, \quad (n \to \infty)$

令
$$S_n = \sum_{i=1}^{\infty} x_i \in X_0$$
,则 $||y - S_n|| \to 0$, $(n \to \infty)$,由 y 的任意性可知, X_0 在 X 中稠密.

题目 10. (1.4.14) 设 C_0 表示以 0 为极限的实数列全体,并在 C_0 中赋以范数

$$|\xi| = \max_{i \ge 1} |x_i|, \quad (\forall \xi = \{x_1, x_2, \cdots, x_n, \cdots\} \in C_0)$$

又设
$$M := \left\{ \xi = \{x_n\} \in C_0 : \sum_{i=1}^{\infty} \frac{x_i}{2^i} = 0 \right\}.$$

(1) 求证: $M \in C_0$ 的闭线性子空间.

(2) 设
$$\mu_0 = \{2, 0, \dots, 0, \dots\}$$
,求证: $\inf_{z \in M} ||x_0 - z|| = 1$,但 $\forall y \in M$ 有 $||x_0 - y|| > 1$.

证明. (1) $\forall \{\xi_n\} \subset M$ 收敛于 ξ ,则 $||\xi_n - \xi|| = \max_{i \geqslant 1} |x_i^{(n)} - x_i| \to 0$,令 $xi_n = \{x_i^{(n)}\}$, $\xi = \{x_i\}$,则

$$x_i^{(n)} o x_i, \ (n o \infty, \ i \geqslant 1).$$
 由于 $\xi_n \in C_0$,则 ξ_n 一致有界,令 $\sup_{i \geqslant 1} |x_i^{(n)}| = M$,则 $\left| \frac{x_i^{(n)}}{2^i} \right| \leqslant \frac{M}{2^i}$,

由 Weierstrass 判别法知 $\sum_{i=1}^{\infty} \frac{x_i^{(n)}}{2^i}$ 一致收敛,则 $\lim_{n\to\infty} \sum_{i=1}^{\infty} \frac{x_i^{(n)}}{2^i} = \sum_{i=1}^{\infty} \frac{x_i}{2^i} = 0$,则 $\xi \in M$,故 M 是闭

的. 令 $\alpha, \beta \in \mathbb{K}$, $\xi, \eta \in M$, 则 $\lim_{i \to \infty} x_i = \lim_{i \to \infty} y_i = 0$, 于是 $\lim_{i \to \infty} \alpha x_i + \beta y_i = \alpha \lim_{i \to \infty} x_i + \beta \lim_{i \to \infty} y_i = 0$, 则 $\alpha \xi + \beta \eta \in M$,其他线性空间性质与 C_0 类似,故 M 是闭线性子空间.

(2) 设 $\mu_0 = (2, 0, \dots, 0, \dots)$. 先证明 $\forall \xi \in M$ 有 $||\mu_0 - \xi|| > 1$. 反设, $\exists \xi_0 \in M$ 使得 $||\mu_0 - \xi_0|| \le 1$,令 $\xi_0 = \{x_i^{(0)}\}$,则必有 $x_1^{(0)} \ge 1$ 且 $|x_i^{(0)}| \le 1$, $(i \ge 2)$,于是

$$\sum_{i=1}^{\infty} \frac{x_i^{(0)}}{2^i} \geqslant \frac{1}{2} + \sum_{i=2}^{\infty} \frac{x_i^{(0)}}{2^i} \geqslant \frac{1}{2} - \sum_{i=2}^{\infty} \frac{1}{2^i} = 0$$

上式取到等号, 当且仅当, $x_i^{(0)} = -1$, $(i \ge 2)$. 由于 $\xi_0 \in M$, 则上式必取等号, 则 $x_i^{(0)} = -1$, $(i \ge 2)$ 与 $\xi_0 \in C_0$ 矛盾, 则原命题成立.

再证明 $\exists \{\xi_n\} \subset M$ 使得 $\lim_{n \to \infty} ||\mu_0 - \xi_n|| = 1$,则可说明 $\inf_{\xi \in M} ||\mu_0 - \xi|| = 1$ (结合上述证明),构造

$$\xi_1 = \{1, -2, 0, 0, \cdots\}, \quad \xi_2 = \{1, -\frac{4}{3}, -\frac{4}{3}, 0, 0, \cdots\}, \cdots, \xi_n = \{1, -a_n, \cdots, -a_n, 0, \cdots\} (\bar{\mathbf{f}}n + 1 \uparrow \sharp 0 \bar{\mathbf{y}})$$

其中 $a_n = \frac{2^n}{2^n - 1}$,可以验证 $\xi_n \in M$,则 $||\mu_0 - \xi_n|| = a_n = \frac{2^n}{2^n - 1} \to 1$, $(n \to \infty)$.

题目 11. (1.4.15) 设 X 是 B^* 空间,M 是 X 的有限维真子空间. 求证: $\exists y \in X, ||y|| = 1$,使得 $||y-x|| \geqslant 1 \quad (\forall x \in M)$.

证明. $\forall z \in X - X_0$,由于 $\dim X < \infty$,则 $\exists x_0 \in X_0$ 使得 $||z - x_0|| = \rho(z, x_0)$,令 $y = \frac{z - x_0}{||z - x_0||}$,则 $\forall x \in X_0$ 有

$$||y - x|| = \left| \left| \frac{z - x_0 - ||z - x_0||x}{||z - x_0||} \right| \right| \geqslant 1.$$

6