a) $c = m^e mod \ n$ $c^{dp} mod \ p \equiv (m^e mod \ n)^{dp} \ mod \ p$ $let \ x_p = \left(m^{edmod(p-1)} mod \ n\right) mod \ p$ $let \ x_q = \left(m^{edmod(q-1)} mod \ n\right) mod \ q$ $let \ x_q = \left(m^{edmod(q-1)} mod \ n\right) mod \ q$ $let \ x_q = \left(m^{edmod(q-1)} mod \ n\right) mod \ q$ $x_p = m \ mod \ n \ mod \ p$ $= x_p \ mod \ p$ $= x_p \ mod \ p$ $as \ n = pq \ and \ m < n$ $x_p \ mod \ p = m \ mod \ n$ = m $x_q \ mod \ q = m \ mod \ n$ = m

Since both $x_p \mod p$ and $x_q \mod q = m$. $x \equiv m$. Therefore, c is the correct encryption of M

- b) The square-and- multiply algorithm has a time complexity of $O(l^3)$ bit operations, from l squarings and l modular multiplications

 With the above procedure, one reduces the size of the squarings and multiplications to p and q < l, before combining. The time complexity becomes $O(l * p^2 q^2)$ which can be shorter
- c) The adversary can compare between message m and incorrect decryption x' to determine which portion corresponds to $x^q mod \ q$. From there,

$$x_{correct} = x_q mod \ q = c^{dmod(q-1)} mod \ q$$

$$x_c^e = c^{edmod(q-1)mod \ q}$$

Since $ed \ mod(q-1) = 1$,

than $O(l^3)$ assuming p * q < l

$$x_c^e = c \bmod q$$

He can now determine q and pa from the relation n = pq

d) use large capacitors as well in the machine to smooth any power spikes, with diodes to reduce the chance of reverse discharge. In fact, one should use a redundant power supply to prevent the machine from losing power halfway during calculations as well.

Discussed with Sean, Louis, Min Htet, Min Yue