Edge Computing Laboratory Lab Assignment 5

Name: Rahul Bhati Class: TY AIEC Batch B

Enrollment No: MITU22BTCS0624

Roll No: 2223416

Title

The "Hello World" of Edge Impulse Platform and Gesture Recognition(up-down, left-right, idle, circular)

Introduction

Edge Impulse is a development platform for machine learning on edge devices, targeted at developers who want to create intelligent device solutions. The "Hello World" equivalent in Edge Impulse would typically involve creating a simple machine learning model that can run on an edge device, like classifying sensor data or recognizing a basic pattern.

Objective

TinyML: Building and Training a Model

Materials Required

Raspberry Pi 4 / Nano BLE Sense Board

Theory

GPIO (General Purpose Input/Output) pins on the Raspberry Pi are used for interfacing with other electronic components. BCM numbering refers to the pin numbers in the Broadcom SOC channel, which is a more consistent way to refer to the GPIO pins across different versions of the

Here's a high-level overview of steps you'd follow to create a "Hello World" project on Edge Impulse:

Steps to Configure the Edge Impulse:

- 1. Create an Account and New Project:
 - Sign up for an Edge Impulse account.
 - Create a new project from the dashboard.

2. Connect a Device:

- You can use a supported development board or your smartphone as a sensor device.
- Follow the instructions to connect your device to your Edge Impulse project.

3. Collect Data:

- Use the Edge Impulse mobile app or the Web interface to collect data from the onboard sensors.
- For a "Hello World" project, you could collect accelerometer data, for instance.

4. Create an Impulse:

- Go to the 'Create impulse' page.
- Add a processing block (e.g., time-series data) and a learning block (e.g., classification).
- Save the impulse, which defines the machine learning pipeline.

5. Design a Neural Network:

- Navigate to the 'NN Classifier' under the 'Learning blocks'.
- Design a simple neural network. Edge Impulse provides a default architecture that works well for most basic tasks.

6. Train the Model:

• Click on the 'Start training' button to train your machine learning model with the collected data.

7. Test the Model:

• Once the model is trained, you can test its performance with new data in the 'Model Testing' tab.

8. Deploy the Model:

- Go to the 'Deployment' tab.
- Select the deployment method that suits your edge device (e.g., Arduino library, WebAssembly, container, etc.).
- Follow the instructions to deploy the model to your device.

9. Run Inference:

• With the model deployed, run inference on the edge device to see it classifying data in real-time.

10. Monitor:

• You can monitor the performance of your device through the Edge Impulse studio.

Screenshots:

1. Dataset Image

data collected 4m 37s

TRAIN / TEST SPLIT 88% / 12% ②

Dataset			1	۵	Bì
Training (61) Test (8)			♣ T	~	03
SAMPLE NAME	LABEL	ADDED	LENGTH		
idle.5n03iqpn	idle	Mar 24 2025, 12:2.	4s		:
idle.5n03i1sc	idle	Mar 24 2025, 12:2.	4s		:
idle.5n03hl1f	idle	Mar 24 2025, 12:2.	4s		:
idle.5n03h70k	idle	Mar 24 2025, 12:2.	4s		
idle.5n03gqk6	idle	Mar 24 2025, 12:2.	4s		
idle.5n03gdm5	idle	Mar 24 2025, 12:2.	4s		
idle.5n03g0dm	idle	Mar 24 2025, 12:2.	4s		
left-right.5n03e0lv	left-right	Mar 24 2025, 12:2.	4s		:
left-right.5n03djdf	left-right	Mar 24 2025, 12:2.	4s		:
left-right.5n03d50c	left-right	Mar 24 2025, 12:2.	4s		:
left-right.5n03cmjc	left-right	Mar 24 2025, 12:2.	4s		:

Dataset

Training (61) Test (8)			₹ _® T	~	£3
SAMPLE NAME	LABEL	ADDED	LENGTH		
left-right.5n03bqg0	left-right	Mar 24 2025, 12:2) 4s		:
left-right.5n03bdl2	left-right	Mar 24 2025, 12:2	4s		:
left-right.5n03aj67	left-right	Mar 24 2025, 12:2	2 4s		:
left-right.5n02fts2	left-right	Mar 24 2025, 12:0) 4s		:
left-right.5n02fgm8	left-right	Mar 24 2025, 12:0) 4s		:
left-right.5n02f3pt	left-right	Mar 24 2025, 12:0) 4s		:
left-right.5n02ellp	left-right	Mar 24 2025, 12:0) 4s		:
left-right.5n02e8p8	left-right	Mar 24 2025, 12:0) 4s		:
left-right.5n02dr6b	left-right	Mar 24 2025, 12:0) 4s		:
left-right.5n02def4	left-right	Mar 24 2025, 12:0) 4s		:
left-right.5n02d192	left-right	Mar 24 2025, 12:0) 4s		:
left-right.5n02cklu	left-right	Mar 24 2025, 12:0) 4s		:

Dataset

Training (61) Test (8)			₹ ⊚ T	~	£3
SAMPLE NAME	LABEL	ADDED	LENGTH		
left-right.5n02c83d	left-right	Mar 24 2025, 12	::0 4s		:
circular.5n02942l	circular	Mar 24 2025, 12	::0 4s		:
circular.5n028m4i	circular	Mar 24 2025, 12	:0 4s		:
circular.5n0288t6	circular	Mar 24 2025, 12	:0 4s		:
circular.5n0278rk	circular	Mar 24 2025, 12	:0 4s		:
circular.5n026q2n	circular	Mar 24 2025, 12	::0 4s		:
circular.5n026b8u	circular	Mar 24 2025, 12	::0 4s		:
circular.5n025t3s	circular	Mar 24 2025, 12	::0 4s		:
circular.5n025ft3	circular	Mar 24 2025, 12	::0 4s		:
circular.5n0252il	circular	Mar 24 2025, 12	:0 4s		:
circular.5n024lc4	circular	Mar 24 2025, 12	2:0 4s		:
circular.5n0241s8	circular	Mar 24 2025, 11	:5 4s		:

Dataset

Training (61) Test (8)			¢₀ T	Z 0
SAMPLE NAME	LABEL	ADDED	LENGTH	
up-down.5me418e0	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me40pqj	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me40c86	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me3vt7e	up-down	Mar 17 2025, 12:4	4 4s	:
up-down.5me3vg8q	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me3v30p	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me3ul9u	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me3u8i2	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me3topj	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me3t526	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me3sljc	up-down	Mar 17 2025, 12:4	ł 4s	:
up-down.5me3s7i9	up-down	Mar 17 2025, 12:4	ł 4s	:

2. Feature extraction - Image

3. Accuracy / Loss - Confusion Matrix – image

- 4. Validation Result Image
- **5.** Copy the code of Arduino Sketch
- **6.** Screen shot of Arduino Terminal Result

Conclusion:- Created and deployed ML model with sound based data on edge device