Supplemental note for Week 3 Part 2

ver. 20180107-01

Ryoichi Yamamoto

1 Derivation of the mean square displacement

$$\langle |\Delta \mathbf{R}(t)|^2 \rangle = \left\langle \int_0^t dt_1 \mathbf{V}(t_1) \cdot \int_0^t dt_2 \mathbf{V}(t_2) \right\rangle$$
 (1)

$$= \int_0^t dt_1 \int_0^t dt_2 \langle \mathbf{V}(t_1) \cdot \mathbf{V}(t_2) \rangle \tag{2}$$

$$= \int_0^t dt_1 \int_0^t dt_2 \frac{3\tilde{D}}{\zeta m} \exp\left(-\frac{\zeta}{m} |t_2 - t_1|\right)$$
 (3)

$$= 2\int_0^t dt_1 \int_{t_1}^t dt_2 \frac{3\tilde{D}}{\zeta m} \exp\left(-\frac{\zeta}{m}(t_2 - t_1)\right)$$
(4)

$$= \frac{6\tilde{D}}{\zeta m} \int_0^t dt_1 \left[\exp\left(\frac{\zeta}{m} t_1\right) \int_{t_1}^t dt_2 \exp\left(-\frac{\zeta}{m} t_2\right) \right]$$
 (5)

$$= \frac{6\tilde{D}}{\zeta m} \int_0^t dt_1 \left[\exp\left(\frac{\zeta}{m} t_1\right) \left(-\frac{m}{\zeta} \left(\exp\left(-\frac{\zeta}{m} t\right) - \exp\left(-\frac{\zeta}{m} t_1\right) \right) \right) \right]$$
(6)

$$= \frac{6\tilde{D}}{\zeta^2} \int_0^t dt_1 \left[\exp\left(\frac{\zeta}{m}t_1\right) \left(\exp\left(-\frac{\zeta}{m}t_1\right) - \exp\left(-\frac{\zeta}{m}t\right) \right) \right] \tag{7}$$

$$= \frac{6\tilde{D}}{\zeta^2} \int_0^t dt_1 \left[1 - \exp\left(\frac{\zeta}{m} t_1\right) \exp\left(-\frac{\zeta}{m} t\right) \right]$$
 (8)

$$= \frac{6\tilde{D}}{\zeta^2} \left[t - \exp\left(-\frac{\zeta}{m}t\right) \int_0^t dt_1 \exp\left(\frac{\zeta}{m}t_1\right) \right]$$
 (9)

$$= \frac{6\tilde{D}}{\zeta^2} \left[t - \exp\left(-\frac{\zeta}{m}t\right) \frac{m}{\zeta} \left(\exp\left(\frac{\zeta}{m}t\right) - 1\right) \right]$$
 (10)

$$= \frac{6\tilde{D}}{\zeta^2} \left[t - \frac{m}{\zeta} + \frac{m}{\zeta} \exp\left(-\frac{\zeta}{m}t\right) \right] \tag{11}$$

$$\simeq \frac{6\tilde{D}}{\zeta^2}t \qquad (t \to \infty) \tag{12}$$