18CA314-Cryptography and Network Security

ASSIGNMENT-1

2. Find the multiplicative inverse of all the elements in Z5 and Z11

Ans: Multiplicative Inverse of:

 Z_5 ->

a	1	2	3	4
a ⁻¹	1	3	2	4

 $Z_{11->}$

a	1	2	3	4	5	6	7	8	9	10
a ⁻¹	1	6	4	3	9	2	8	7	5	10

3. Determine the gcd of 56245 and 43159

Ans: 56245=43159*1+13086

43159=13086*3+3901

13086=3901*3+1383

3901=1383*2+1135

1383=1135*1+248

1135=248*4+143

248=143*1+105

143 = 105 * 1 + 38

105=38*2+29

38=29*1+9

29=9*3+2

9=2*4+1

2=<u>1</u>*2+0

Therefore, gcd(56245,43159)=1.

4. Compute phi(n) for 3^4 and 2^{10}

Ans: According to Euler's product formula

5. Compute $3^{100} \mod(31319)$

Ans: Here $e=100 = >2^6+2^5+2^2$

 $3^0 \mod 31319=3$

 $3^2 \mod 31319=9$

3⁴ mod 31319=81

38 mod 31319=6561

3¹⁶ mod 31319=14418

3³² mod 31319=21979

3⁶⁴ mod 31319=12185

 $3^{100} \mod(31319) = 12185 * 21979 * 81 \mod 31319$

=5346*81 mod 31319

=25879.