Resources for Reader Studies

Brandon D. Gallas, PhD

Division of Imaging, Diagnostics, and Software Reliability
OSEL/CDRH/FDA

Interesting Quote

• Editors of *Radiology*:

- The audience of their journal is interested in
- the variability between observers which
- "requires a sufficiently high number of observers."

Bankier, A. A.; Levine, D.; Halpern, E. F. & Kressel, H. Y. (2010), 'Consensus interpretation in imaging research: is there a better way?' *Radiology, 257, (1), 14--17.*

Interesting Quote

- American College of Radiology Imaging Network (ACRIN)
 - There is a great deal of variability among readers.
 - Reader variability "must be accounted for in the design of ACRIN trials."

Hillman, B. J. (2005), 'ACRIN—lessons learned in conducting multi-center trials of imaging and cancer.' *Cancer Imaging*, *5 Spec No A*, *S97--101*.

- Exploratory
 - Early
 - Pilot
- Intermediate
 - Challenge or Stress Test
 - Lab-based
- Advanced
 - Late
 - Clinical use

- Phase determines
 - Aims
 - Scope
 - Size
 - Analysis
 - Conclusions
- See my workshop summary paper in Academic Radiology

Gallas, Chan, D'Orsi, Dodd, Giger, Gur, Krupinski, Metz, Myers, Obuchowski, Sahiner, Toledano, Zuley (2012), 'Evaluating Imaging and Computer-aided Detection and Diagnosis Devices at the FDA.' *Acad Radiol*, *19*, *(4)*, *463-477*.

Outline

Data Collection and Reader Training

Statistical Analysis and Sizing

Split-Plot Study Design

Considerations

Data Collection

- Study task is distilled version of clinical task
 - No patient information
 - Limited decision options
 - Quantitative, ready for analysis
- Test and streamline workflow

Reader Training

- Provide Precise Written Instructions
- Discuss Instructions Face-to-Face
- Observe and assist training cases
- Cost is minimal compared to
 - Sourcing images
 - Reading time
 - Total effort

Resources

Data Collection

- eeDAP: Evaluation
 Environment for Digital and
 Analog Pathology
 - Retooling: integrate other image formats
 - Does not require images
 - Migrating to cloud platform
 - Can tweak to your needs
 - https://code.google.com/p/eedap/

Reader Training

- Instructions for ROC scoring
- Novel ROC data collection workflow (200 point scale)
- iMRMC website
 - https://code.google.com/p/i mrmc/wiki/iMRMCGuide

Reader 02, Screening study (prevalence = 0.31)

SFM nCases = 109

nBinsUsed = 37

FFDM

nCases = 109

nBinsUsed = 47

Reader 03, Screening study (prevalence = 0.31)

nCases = 108

nBinsUsed = 72

FFDM

SFM

nCases = 106

nBinsUsed = 67

Reader 04, Screening study (prevalence = 0.31)

FFDM

nCases = 55

nBinsUsed = 46

FDA VIPER data: Validation of Imaging Premarket Evaluation and Regulation

2/22/2015 SPIE MI 2015, workshop 10

Reader 01, Screening study (prevalence = 0.31)

nBinsUsed = 21

FFDM

nCases = 55

nBinsUsed = 13

Screening study (prevalence = 0.31): rdr02

77 noncancer, 32 cancer samples

Screening study (prevalence = 0.31): rdr03

74 noncancer, 32 cancer samples

Screening study (prevalence = 0.31): rdr04

39 noncancer, 16 cancer samples

Screening study (prevalence = 0.31): rdr01 39 noncancer, 16 cancer samples

FDA VIPER data: Validation of Imaging Premarket Evaluation and Regulation

"MRMC" Statistical Analysis Accounts for Multiple Readers, Multiple Cases

Components-of-variance

- Variance estimation is first step for
 - Confidence Intervals
 - Hypothesis Testing

MRMC Statistical Analysis Tools

- University of Chicago
 - http://metz-roc.uchicago.edu/
- University of Iowa
 - http://perception.radiology.uiowa.edu/Home/tabid/87/Default.aspx
- FDA: iMRMC
 - https://code.google.com/p/imrmc/

MRMC Analysis of the Area Under the ROC curve (AUC)

- + Alternate study designs
- + Sizing ROC studies given a pilot study
- + Simulate ROC studies
- + Can treat binary performance

iMRMC Demo?

https://code.google.com/p/imrmc/

Statistical Analysis and Sizing

Sizing results example

number of cases	60	60	70	70	80	80	100	100	120	120
number of observers	8	10	8	10	8	10	8	10	8	10
Power	0.77	0.86	0.79	0.88	0.8	0.89	0.84	0.91	0.86	0.93

Fully-crossed study design

- Every column indicates a case
- Every row indicates a reader
- Fully-crossed study
 - Every reader reads every case
- Takes a lot of reading time per reader and total
- Lots of redundant information

Fully-crossed study design

- Every column indicates a case
- Every row indicates a reader
- Split-plot study
 - Reader only read cases in their group
- BIG REDUCTION IN READING TIME
- MINIMAL IMPACT ON STATISTICAL PRECISION

Obuchowski, N.; Gallas, B. D. & Hillis, S. L. (2012), 'Multi-Reader ROC Studies with Split-Plot Designs: A Comparison of Statistical Methods.' *Acad Radiol*, *19*, *(12)*, *1508-1517*.

Split-plot study design Simulation example where variances are equal

Fully-crossed

- 120 cases
- 6 readers
- 1440 evaluations total
- 240 evaluations/reader
- Fewer readers to recruit

Split-plot (3 groups)

- 120 cases
- 9 readers
- 720 evaluations total
- 80 evaluations/reader
- 50% Fewer evaluations overall
- 33% Fewer evaluations per reader

Closing Remarks

- Reader training can determine study success
 - Resources provided
- MRMC analysis tools are available
 - We want to help: tutorials, features, workflows
- Split-plot study design is revolutionary
 - More bang for the buck
 - VIPER study: 5 study conditions for price of 2
 - Digital Pathology: 3 reading sessions instead of 6

- Exploratory
 - Early
 - Pilot
- Intermediate
 - Challenge or Stress Test
 - Lab-based
- Advanced
 - Late
 - Clinical use

- Ideal and controlled setting
 - Narrow task
 - Study cases, study readers
- Hypothesis:Superiority or Non-Inferiority
 - Compare technologies
- Analysis generalizes to
 - Population of Cases
 - Population of Readers
- Not trying to estimate realworld clinical performance

- Exploratory
 - Early
 - Pilot
- Intermediate
 - Challenge or Stress Test
 - Lab-based
- Advanced
 - Late
 - Clinical use

Exploratory

Size: Small

Scope: Narrow

- Results: Limited

Impact: New Hypothesis

Advanced

Size: Large

Scope: Intended Use

Results: Definitive

– Impact: Policy

- Exploratory
 - Early
 - Pilot
- Intermediate
 - Challenge or Stress Test
 - Lab-based
- Advanced
 - Late
 - Clinical use

Proof of Concept

- Sample size small
- Convenient samples vs. Representative
 - Simulations, phantoms, animal models, excised tissue and organs, patients
- PI and collaborator are sole study readers
- Answers
 - What does disease look like?
 - What does normal look like?
 - What can be measured?
 - How might patients benefit?

- Exploratory
 - Early
 - Pilot
- Intermediate
 - Challenge or Stress Test
 - Lab-based
- Advanced
 - Late
 - Clinical use

Prospective

- Sample size large
- Real world
 - Screening or diagnostic patient population
 - Patient care clinicians
 - Clinical reports, outcomes
 - Absolute performance
 - Meta and cost-benefit analyses
- Supports
 - Current practice guidelines
 - Policy and payment

Intermediate Phase Challenge Test, Stress Test

- Compare new modality to current practice
 - Better (Superiority hypothesis)
 - Equivalent (Non-Inferiority hypothesis)

- Ideal, tightly-controlled, lab-based study
 - Readers blind to patient info
 - Task is narrow, quantitative
 - Calibrated equipment and tight protocols

Intermediate Phase Challenge Test, Stress Test

- Challenging cases with and without disease
 - May not mimic intended use population
 - Creative sourcing to build study population
 - Enrich representation of key subgroups
 - Known or suspected differences
 - Statistical sub group analysis warranted?
 - Eliminate cases that don't help comparison
 - Obvious disease, obvious normal
- Technology Evaluation Not Clinical Performance

Aims of a Reader Study: Intermediate Phase

- Task: Doctor Evaluates Patient Image
 - Narrow, Singular, Clear vs. Clinically Relevant
 - Data: Categorical, Ordinal, Interval, Ratio

Information Increases

- Data and Reference Standard Dictate Endpoint
 - Binary reference
 Se/Sp, Area under ROC
 - Multi-level reference
 Concordance

Aims of a Reader Study: Intermediate Phase Hypothesis testing: Assume what you want to disprove

Better = Superiority

Equivalent = Non-Inferiority

Sample eCRF: ROC in 2 steps

Would you recall patient?

Yes

No

Simple question with clinical relevance == Operating point on ROC curve

Being more quantitative in reporting your *Numeric Rating*:

- Are there no dense areas and no abnormal findings?
 - If so, perhaps your *Numeric Rating* should be 1-25?
- Are there dense areas or benign findings, but not enough to prompt a decision to recall?
 - If so, perhaps your *Numeric Rating* should be 75-100.
- Are the visual cues somewhere in the middle?

Allow Quantitation
Allow Control

Reiterate

Instructions

Sample eCRF: ROC in 2 steps

Would you recall patient?

Yes

O No

Different "clinical" decision == Threshold @ 100

Being more quantitative in reporting your Numeric Rating:

- Are there only a few inconclusive visual cues prompting your decision to recall?
 - If so, perhaps your Numeric Rating should be 101-125?
- Are there many definitive visual cues prompting your decision to recall?
 - If so, perhaps your Numeric Rating should be 175-200.

Are the visual cues somewhere in the middle?

