Deep Multi-task Learning with Cross Connected Layer for Slot Filling

Junsheng Kong, Yi Cai, Da Ren, and Zilu Li 1 South China University of Technology, Guangzhou, China ycai@scut.edu.cn

2 Guangzhou Tianhe Foreign Language School, Guangzhou, China

Contribution

It is common that there is semantic correspondence between slots defined in different domains. Consider these two sentences:

- 1. I want to buy a computer which is about $\{price_middle\}$ four thousand yuan and has a ram of $\{ram_size\ 8\ G\}$.
- 2. I plan to get a new mobile phone of $\{brand Huawei\}$, which costs about $\{price_middle 3000 \text{ yuan}\}$.

The main contribution of this work lies on:

- 1. We propose an original MTL architecture with CCL to capture the information of shared slots. The experiment results show the effectiveness of the CCL.
- 2. We build three datasets for slot filling tasks on three domains: computer, mobile phone, and camera. These datasets enrich the experimental data in Chinese slot filling field.

Dataset

We evaluate the proposed model on the datasets across multiple domains: E-commerce Computer, E-commerce Camera, E-commerce Phone. These datasets are obtained from the websites of the camera, computer and mobile phone. Then, we manually filter and tag the data to get the final datasets. These datasets are divided into three parts: train set, development set and test set. The vocabulary size of the dataset is 1189. The Table.1 shows the statistics of these datasets. These datasets are available online at https://github.com/JansonKong/Deep-Multi-task-Learning-with-Cross-Connected-Layer-for-Slot-Filling.

Table 1: The statistics of the datasets

Dataset	Train	Dev	Test	Label num	$egin{array}{c} \mathbf{Avg.} \\ \mathbf{length} \end{array}$
E-commerce Computer	6145	1087	1113	47	17.20
E-commerce Camera	3408	522	521	25	21.84
E-commerce Phone	3455	626	616	37	19.00

Model

Fig. 1: The architecture of our proposed model

Cross Connected Layer

Union process: this process transforms the hidden states h_i into the union label representation D_i on the union slots L_u . The union slots L_u is

$$L_u = \bigcup L_t. \tag{4}$$

The shared label representation D_i is

$$D_i = h_i \ W_{fc}. \tag{5}$$

Here, the dimensionality of W_{fc} is $s \times l$ where s is the hidden size and l is the size of union slots L_u .

Separate process: this process convert the shared label representation D_i to the task-oriented label representation $D_{(i,t)}$ for task t. For each task-oriented label representation $D_{(i,t)}$, it only use the label representation of corresponding slots. This process avoids the problem caused by that we mix all slots into one label representation. The procedure of the separate algorithm is summarized as Algorithm 1.

Experiments

Table 2: Experiment results on three datasets

Model	camera		computer			phone			
	P	R	F1	Р	R	F1	P	R	F1
BiLSTM	0.878	0.904	0.8908	0.837	0.823	0.8295	0.812	0.797	0.8045
BiLSTM-CRF	0.904	0.910	0.9071	0.896	0.864	0.8800	0.863	0.863	0.8677
MT-BiLSTM	0.909	0.910	0.9092	0.870	0.837	0.8534	0.892	0.902	0.8969
MT-BiLSTM-CRF	0.916	0.919	0.9175	0.905	0.891	0.8981	0.907	0.910	0.9086
MT-BiLSTM-CCL	0.944	0.952	0.9480	0.908	0.908	0.9078	0.893	0.914	0.9033
MT-BiLSTM-CRF-CCL	0.957	0.951	0.9541	0.931	0.924	0.9274	0.916	0.926	0.9207

Fig. 2: F1 scores for shared slots and non-shared slots on the E-commerce camera dataset

Conclusion

- 1. We propose an original MTL architecture with CCL to capture the information of shared slots. The experiment results show the effectiveness of the CCL.
- 2. We build three datasets for slot filling tasks on three domains: computer, mobile phone, and camera. These datasets enrich the experimental data in Chinese slot filling field.