# Individual specific effects in myotonic dystrophy and other diseases

Adam Kurkiewicz MVLS/EPSRC PhD studentship application

# Myotonic Dystrophy





## Single-Gene Disease

# **Complex Disease**



#### Short Tandem Repeats (STRs)



Genotype to phenotype correlations in myotonic dystrophy



Length of STR

# Fallacy of Case / Control Paradigm



# Fallacy of Case / Control Paradigm



## Linear regression





**Length of STR** 

# How many genes affected?



# **Transcriptomics**

Gene X expression level in tissue Y



Length of STR

#### Individual specific effects



The pattern seems to work for many genes at a time With highly significant deviations from expected for individuals

#### Research Questions for a PhD project

- 1. How can we use Individual-Specific Effects to normalise the data and better identify disease relevant genes and pathways?
- 2. How do they influence disease severity?
- 3. What is the cause of these Individual-Specific Effects?
- 4. How can we apply this approach to other diseases?
- How can we apply this approach to other omics datasets (e.g. proteomics, metabolomics)

#### Why me?

First Class programmer – all programming courses at A5 or higher.

Python – A4 (UoG)

Java – A4 (UoG)

C - A5 (UoG)

SAS - 94% (SAS Ltd.)

Also Javascript, Go, Haskell

```
x Comultidime x O 2048wc/bc x 
                   B GitHub, Inc. [US] https://github.com/2048wc/2048wc/blob/master/boardLib/boardLib.go
🔛 Apps 🄌 exploit 💿 piotr 📳 important number 🐚 Formal proofs 🐚 skyscanner 🗐 todo 👢 lean 🐚 john's wisdom 🐚 recompile virtualb 📳 Wedding
                                             func (move *moveT) resolveBoardAtIndex(ism *iterationStateMachine) {
                                                                    giveHope := func() {
                                                                                             _, position := move.NewBoard.incrementFromBySteps(&move.OldBoard,
                                                                                                                      ism.currentIndex, ism.smallStepForward, ism.distance)
                                                                                              ism.mergeHopefulIndex = ism.currentIndex
                                                                                              ism.mergeHopefulDestination = position
                                                                                              ism.isMergeHopeful = true
                                                                                              if ism.distance == 0 {
                                                                                                                      ism.isHopefulUnmoved = true
                                                                                             } else {
                                                                                                                      ism.isHopefulUnmoved = false
                                                                     abandonHope := func() {
                                                                                              ism.isMergeHopeful = false
                                                                                              ism.isHopefulUnmoved = false
                                                                                              ism.mergeHopefulDestination = positionT{-1, -1}
                                                                                              ism.mergeHopefulIndex = positionT{-1, -1}
                                                                     dispatchLoser := func() {
                                                                                              if ism.isHopefulUnmoved == true {
                                                                                                                     move.NonMovedTiles = append(move.NonMovedTiles,
                                                                                                                                              ism.mergeHopefulIndex)
                                                                                             } else {
                                                                                                                      move.NonMergeMoves = append(move.NonMergeMoves,
                                                                                                                                              nonMergeMoveT{ism.mergeHopefulIndex,
                                                                                                                                                                      ism.mergeHopefulDestination})
```

# Machine Learning

Machine Learning often programmed in Python or Java

Project co-supervised by a Machine Learning specialist

First class result in Machine Learning.



#### Real, sustained interest in Natural Science

A named author of an article on bacterial membrane composition published in Journal of Analytical Chemistry [1]

A dissertation on the effect of evolution on relatedness at University of Glasgow [2]. Dissertation graded 1st class.

1st and 2nd year Biology, 1st year Chemistry

- 1. Kurkiewicz S, Kurkiewicz A. Profiling of bacterial cellular fatty acids by pyrolytic derivatization to 3-pyridylcarbinol esters. *Journal of Analytical Chemistry*. 2015;70(10):1225-1228.
- The effect of natural selection on relatedness in randomly mating population. https://github. com/picrin/naturalSelection/blob/master /dissertation/l4proj.pdf

#### Advanced understanding of maths and stats

Joint Honours CS + Mathematics.

Courses in Algebra, Number Theory, Analysis, Topology, Galois Theory among others.

#### **Data Scientist**

| ⊞  | Myotonic Dystrophy |                                                  |              |                     |
|----|--------------------|--------------------------------------------------|--------------|---------------------|
|    | ēra.               | £ % .0 <sub>←</sub> .00 <sub>→</sub> 123 → Arial | - 10 - B / S | <u>A</u> . D H EE . |
| fx |                    |                                                  |              |                     |
|    | А                  | В                                                | С            | D                   |
| 1  | STR Length         | svc                                              | PDS          | UTV                 |
| 2  | 16                 | 79.30503154                                      | 53.66494735  | 99.39480806         |
| 3  | 2                  | 27.60830944                                      | 49.5799717   | 95.54343672         |
| 4  | 6                  | 39.05532438                                      | 58.25547738  | 71.37035929         |
| 5  | 75                 | 79.71036365                                      | 29.36261104  | 48.92653332         |
| 6  | 8                  | 51.31822568                                      | 61.10106565  | 74.75878487         |
| 7  | 56                 | 96.25467951                                      | 61.91121989  | 1.472790237         |
| 8  | 56                 | 35.49397726                                      | 2.659524191  | 80.56169642         |
| 9  | 86                 | 53.92754623                                      | 59.69084768  | 15.64899263         |
| 10 | 27                 | 61,52810613                                      | 85.95784659  | 41.01678275         |
| 11 | 11                 | 1.138643908                                      | 37.37886323  | 84.13838703         |
| 12 | 34                 | 44.07580252                                      | 24.64222558  | 42.90677395         |
| 13 | 47                 | 13.27244813                                      | 56.86627767  | 58.34800339         |
| 14 | 98                 | 0.3442644536                                     | 92.84082127  | 91.83154141         |
| 15 | 69                 | 97.75043892                                      | 18.01711082  | 22.1369293          |
| 16 | 31                 | 50.12865421                                      | 20.97989761  | 62.20895579         |
| 17 | 61                 | 39.9197019                                       | 51.82645568  | 58.03116393         |
| 18 | 7                  | 61.55727941                                      | 6.693946769  | 72.77012805         |
| 19 | 9                  | 5.783592283                                      | 97.61782404  | 78.19065519         |
| 20 | 81                 | 71.06162991                                      | 34.97044669  | 72.31466216         |
| 21 | 44                 | 42.5900577                                       | 70.92045384  | 17.3941752          |
| 22 | 95                 | 31.08689137                                      | 26.66984376  | 45.49154693         |
| 23 | 44                 | 43.29324197                                      | 53.66714888  | 10.30762802         |
| 24 | 3                  | 64.05856009                                      | 59.56142465  | 73.37129992         |
| 25 | 57                 | 65.90402343                                      | 63.3533141   | 0.3014363331        |
| 26 | 64                 | 26.12079261                                      | 31.01566545  | 8.574997453         |
| 27 |                    | 00.74500045                                      | 00 70770077  | 50 00000174         |

#### Molecular Biologist



Project Title: Individual Specific Effects in Omics Datasets

Applicant: Adam Kurkiewicz

Key Strengths: Programming, Science, Statistics, Mathematics.

#### Me

