Министерство науки и высшего образования Российской Федерации Казанский национальный исследовательский технический университет – КАИ им. А.Н. Туполева

Институт компьютерных технологий и защиты информации Отделение СПО ИКТЗИ «Колледж информационных технологий»

# ОСНОВЫ АЛГОРИТМИЗАЦИИ И ПРОГРАММИРОВАНИЕ

Методические указания к лабораторным работам

Составитель преподаватель СПО ИКТЗИ Мингалиев Заид Зульфатович

Методические указания к лабораторным работам по дисциплине «ОСНОВЫ АЛГОРИТМИЗАЦИИ И ПРОГРАММИРОВАНИЕ» предназначены для студентов направления подготовки 09.02.07 «Информационные системы и программирование»

## ПРОЦЕСС СДАЧИ ВЫПОЛНЕННОЙ РАБОТЫ

По итогам выполнения работы студент:

- 1. демонстрирует преподавателю правильно работающие программы;
- 2. демонстрирует приобретённые знания и навыки отвечает на пару небольших вопросов преподавателя по составленной программе, возможностям её доработки;
  - 3. демонстрирует отчет по выполненной лабораторной работе.

Итоговая оценка складывается из оценок по трем указанным составляющим.

Шаблон оформления отчета представлен в приложении 1. Требования к формированию отчета представлены в приложении 2.

#### ЛАБОРАТОРНАЯ РАБОТА №4.

## Программирование алгоритмов преобразования матриц.

#### ЦЕЛЬ РАБОТЫ

Приобрести умения и практические навыки для программирования алгоритмов преобразования матриц.

### ХОД РАБОТЫ

### <u>1) Массивы в С#</u>

**Массив** представляет набор однотипных данных. Объявление массива в С# похоже на объявление переменной за тем исключением, что после указания типа ставятся квадратные скобки:

```
1 <Тип>[] <название_массива>;
```

Например, определим массив целых чисел:

```
1 int[] numbers;
```

После определения переменной массива мы можем присвоить ей определенное значение:

```
1 int[] numbers = new int[5];
```

Здесь вначале мы объявили массив nums, который будет хранить данные типа int. Далее используя операцию new, мы выделили память для пяти элементов массива: new int[4]. Число 5 еще называется длиной массива. При таком определении все элементы получают значение по умолчанию, которое предусмотрено для их типа. Для типа int значение по умолчанию - 0.

Также мы сразу можем указать значения для этих элементов:

```
1 int[] nums2 = new int[4] { 1, 2, 3, 5 };
2 int[] nums3 = new int[] { 1, 2, 3, 5 };
3 int[] nums4 = new[] { 1, 2, 3, 5 };
4 int[] nums5 = { 1, 2, 3, 5 };
```

Все перечисленные выше способы будут равноценны.

Для обращения к элементам массива используются индексы. Индекс представляет номер элемента в массиве, при этом нумерация начинается с

нуля, поэтому индекс первого элемента будет равен 0. А чтобы обратиться к четвертому элементу в массиве, нам надо использовать индекс 3, к примеру: nums[3].

Используем индексы для получения и установки значений элементов массива:

```
1 int[] nums = new int[4];
2 nums[0] = 1;
3 nums[1] = 2;
4 nums[2] = 3;
5 nums[3] = 5;
6 Console.WriteLine(nums[3]); // 5
```

И так как у нас массив определен только для 4 элементов, то мы не можем обратиться, например, к шестому элементу: nums[5] = 5;. Если мы так попытаемся сделать, то мы получим исключение **IndexOutOfRangeException**.

## 2) Массивы в С++

Объявление массива в С++ выглядит следующим образом:

```
1 <Tuп> <название_массива>[<кол-во элементов>];

Например:

1 int numbers[5];
```

Этим кодом мы создали массив типа int с именем numbers в котором может храниться до 5-ти элементов.

Рассмотрим способ указания значения элементам массива при его инициализации:

| 1        | int arr[] = {0, 1, 2, 3, 4, 5}; // массив будет иметь |
|----------|-------------------------------------------------------|
| <b>T</b> | 6 элементов (от 0 до 5)                               |
| 2        | int mas[100] = {0}; // все 100 элементов будут иметь  |
| 2        | значение 0                                            |

Для того, чтобы задать значения, нужно сразу после объявления массива указать через равно в фигурных скобках требуемые значения.

Для того, чтобы присвоить элементу массива требуемое значение, достаточно указать имя массива и номер требуемого элемента, а затем после знака равенства указать присваиваемое значение:

Для обращения к элементу массива в C++ надо использовать следующею конструкцию:

Это может выглядеть следующим образом:

Таким образом мы выводим на экран значения одиннадцатого и двенадцатого элементов.

### 3) Многомерные массивы

Массивы характеризуются таким понятием как **ранг** или **количество измерений**. Выше мы рассматривали массивы, которые имеют одно измерение (то есть их ранг равен 1) - такие массивы можно представлять в виде горизонтального ряда элемента. Но массивы также бывают многомерными. У таких массивов количество измерений (то есть ранг) больше 1.

Массивы, которые имеют два измерения (ранг равен 2), называют двухмерными. Например, создадим одномерный и двухмерный массивы, которые имеют одинаковые элементы:

Визуально оба массива можно представить следующим образом:

## Одномерный массив nums1

Двухмерный массив nums2

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |

Поскольку массив nums2 двухмерный, он представляет собой простую таблицу. Все возможные способы определения двухмерных массивов:

```
1 int[,] nums1;
2 int[,] nums2 = new int[2, 3];
3 int[,] nums3 = new int[2, 3] { { 0, 1, 2 }, { 3, 4, 5 } };
4 int[,] nums4 = new int[,] { { 0, 1, 2 }, { 3, 4, 5 } };
5 int[,] nums5 = new [,] { { 0, 1, 2 }, { 3, 4, 5 } };
6 int[,] nums6 = { { 0, 1, 2 }, { 3, 4, 5 } };
```

Массивы могут иметь и большее количество измерений. Объявление трехмерного массива могло бы выглядеть так:

Соответственно могут быть и четырехмерные массивы, и массивы с большим количеством измерений. Но на практике обычно используются одномерные и двухмерные массивы.

Если мы хотим отдельно пробежаться по каждой строке в таблице, то надо получить количество элементов в размерности. В частности, у каждого массива есть метод GetUpperBound(dimension), который возвращает индекс последнего элемента в определенной размерности. И если мы говорим непосредственно о двухмерном массиве, то первая размерность (с индексом И 0),таблица. ПО сути, ЭТО есть c помощью выражения mas.GetUpperBound(0) + 1 можно получить количество строк таблицы,

представленной двухмерным массивом. А через mas. Length / rows можно получить количество элементов в каждой строке:

```
int[,] mas = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 },
1
   { 10, 11, 12 } };
   int rows = mas.GetUpperBound(0) + 1;
2
   int columns = mas.Length / rows;
3
   // или так
4
   // int columns = mas.GetUpperBound(1) + 1;
   for (int i = 0; i < rows; i++)
6
7
   {
       for (int j = 0; j < columns; j++)
8
9
        {
            Console.Write($"{mas[i, j]} \t");
10
11
        }
12
       Console.WriteLine();
13
   }
```

От многомерных массивов надо отличать массив массивов или так называемый «зубчатый массив»:

```
1 int[][] nums = new int[3][];
2 nums[0] = new int[2] { 1, 2 };
// выделяем память для первого подмассива
nums[1] = new int[3] { 1, 2, 3 };
// выделяем память для второго подмассива
nums[2] = new int[5] { 1, 2, 3, 4, 5 };
// выделяем память для третьего подмассива
```

Здесь две группы квадратных скобок указывают, что это массив массивов, то есть такой массив, который в свою очередь содержит в себе другие массивы. Причем длина массива указывается только в первых квадратных скобках, все последующие квадратные скобки должны быть

пусты: new int[3][]. В данном случае у нас массив nums содержит три массива. Причем размерность каждого из этих массивов может не совпадать.

## Зубчатый массив nums

| 1 | 2 |   |   |   |
|---|---|---|---|---|
| 1 | 2 | 3 |   |   |
| 1 | 2 | 3 | 4 | 5 |

Примеры массивов представлены на рисунке 2.



Рисунок 1. Примеры массивов

Причем можно использовать в качестве массивов и многомерные:

| 1 | <pre>int[][,] nums = new int[3][,]</pre> |
|---|------------------------------------------|
| 2 | {                                        |
| 3 | new int[,] { {1,2}, {3,4} },             |
| 4 | new int[,] { {1,2}, {3,6} },             |
| 5 | new int[,] { {1,2}, {3,5}, {8, 13} }     |
| 6 | };                                       |

Так здесь у нас массив из трех массивов, причем каждый из этих массивов представляет двухмерный массив.

Используя вложенные циклы, можно перебирать зубчатые массивы. Например:

```
int[][] numbers = new int[3][];
1
   numbers[0] = new int[] { 1, 2 };
2
   numbers[1] = new int[] { 1, 2, 3 };
3
   numbers[2] = new int[] { 1, 2, 3, 4, 5 };
4
   // перебор с помощью цикла for
5
   for (int i = 0; i<numbers.Length;i++)</pre>
6
7
   {
        for (int j =0; j<numbers[i].Length; j++)</pre>
8
9
        {
            Console.Write($"{numbers[i][j]} \t");
10
11
        }
12
        Console.WriteLine();
13
   }
```

Суммируем основные понятия массивов:

- Ранг (rank): количество измерений массива
- Длина измерения (dimension length): длина отдельного измерения массива
  - Длина массива (array length): количество всех элементов массива Например, возьмем массив

```
1 int[,] numbers = new int[3, 4];
```

Массив numbers двухмерный, то есть он имеет два измерения, поэтому его ранг равен 2. Длина первого измерения - 3, длина второго измерения - 4. Длина массива (то есть общее количество элементов) - 12.

Для объявления двумерного массива в C++ можно использовать следующую конструкцию:

```
1 int arr[100][50] = {0}; // двухмерный массив
```

Этим кодом мы создали матрицу размером 100×50, которая изначально заполнена нулями. Ее использование ничуть не отличается от выше рассмотренных обычных массивов:

```
1 int matrix[100][100] = {0};
2 matrix[5][10] = 11;
3 matrix[10][5] = 1;
4 cout << "Interesting values:\n";
cout << matrix[0][0] << ", " << matrix[5][10] << ", " << matrix[5][10] << ", "</pre>
```

Также можно реализовывать трехмерные, четырехмерные и т.д. массивы.

## 4) Задание на лабораторную работу

Обе части лабораторной работы должны быть выполнены либо на языке программирования C++, либо на языке программирования C#.

**Часть 1**В соответствии с вариантом необходимо написать консольную программу.

| Варианты | Индивидуальное задание                                                                                                     |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------|--|--|
|          | Ввести 2 массива строк – по 12 элементов в каждом.                                                                         |  |  |
| 1        | Сформировать новый массив, на четных местах которого будут                                                                 |  |  |
| 1        | элементы с нечетными индексами из первого массива, а на                                                                    |  |  |
|          | нечетных, с четными индексами из второго.                                                                                  |  |  |
| 2        | Ввести целочисленный массив, состоящий из 15 элементов.                                                                    |  |  |
| 2        | Вычислить сумму цифр всех чисел, входящих в данный массив.                                                                 |  |  |
|          | Дана действительная квадратная матрица $\begin{bmatrix} a_{ij} \end{bmatrix}_{i,j=\overline{1,n}}$ .                       |  |  |
|          | Размерность матрицы задается пользователем. Получить две                                                                   |  |  |
| 3        | квадратные матрицы $\left[b_{ij}\right]_{i,j=\overline{1,n}}$ и $\left[c_{ij}\right]_{i,j=\overline{1,n}}$ , для элементов |  |  |
|          | которых выполняются условия:                                                                                               |  |  |
|          | $b_{ij}^{}=\{a_{ij}^{}$ , при $j< i\ a_{ji}^{}$ , при $j{\geq}i$                                                           |  |  |

| Варианты | Индивидуальное задание                                              |
|----------|---------------------------------------------------------------------|
|          | $c_{ij}^{}=\{a_{ij}^{},$ при $j< i\ -a_{ij}^{},$ при $j{\geq}i$     |
|          | Дана действительная матрица размерности $m \times n$ , в которой не |
| 4        | все элементы равны нулю. Получить новую матрицу путем               |
| •        | деления всех элементов данной матрицы на ее наибольший по           |
|          | модулю элемент.                                                     |
| 5        | Дана действительная матрица размерности $m \times n$ . Найти        |
| 3        | сумму наибольшего значений элементов ее строк.                      |
|          | В действительной матрице размерности $m \times n$ поменять          |
| 6        | местами строку, содержащую элемент с наибольшим значением,          |
| 0        | со строкой, содержащей элемент с наименьшим значением.              |
|          | Предполагается, что эти элементы единственны.                       |
|          | Дана действительная матрица размера $m \times n$ , все элементы в   |
|          | которой различны. В каждой строке выбирается элемент с              |
| 7        | наибольшим значением, затем среди чисел выбирается                  |
|          | наименьшее. Указать индексы элемента с найденным                    |
|          | значением.                                                          |
|          | Дана действительная квадратная матрица порядка 12. Заменить         |
| 8        | нулями все элементы, расположенные на главной диагонали, и          |
|          | единицами, расположенные выше главной диагонали.                    |
|          | Дана действительная квадратная матрица порядка 11. Получить         |
|          | целочисленную квадратную матрицу того же порядка, в которой         |
| 9        | элемент равен единице, если соответствующий ему элемент             |
|          | исходной матрицы больше элемента, расположенного в его              |
|          | строке на главной диагонали, и равен нулю в противоположном         |
|          | случае.                                                             |
| 10       | Определить, является ли введенная действительная квадратная         |
| 10       | матрица симметричной относительно своей главной диагонали.          |

| Варианты | Индивидуальное задание                                                                                         |  |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
|          | Известна зарплата каждого из 12 работников фирмы за каждый                                                     |  |  |  |  |
|          | месяц первого квартала.                                                                                        |  |  |  |  |
|          | Месяц                                                                                                          |  |  |  |  |
|          | Работники 1 2 3                                                                                                |  |  |  |  |
|          | 1                                                                                                              |  |  |  |  |
| 11       |                                                                                                                |  |  |  |  |
|          | 12                                                                                                             |  |  |  |  |
|          | Организовать ввод информации по этой таблице и определить:                                                     |  |  |  |  |
|          | а) общую сумму, выплаченную за квартал всем работникам;                                                        |  |  |  |  |
|          | б) зарплату, полученную за квартал каждым работником;                                                          |  |  |  |  |
|          | в) общую зарплату всех работников за каждый месяц.                                                             |  |  |  |  |
|          | Даны натуральные числа $i, j$ , действительная матрица размера                                                 |  |  |  |  |
| 12       | $18 \times 24$ (1≤ $i < j$ ≤24). Поменять в матрице местами $i$ -й и $j$ -й                                    |  |  |  |  |
|          | столбцы.                                                                                                       |  |  |  |  |
|          | Дана действительная квадратная матрица порядка 9. Вычислить                                                    |  |  |  |  |
|          | сумму тех из ее элементов, расположенных на главной                                                            |  |  |  |  |
| 13       | диагонали и выше неё, которые превосходят по величине все                                                      |  |  |  |  |
| 13       | элементы, расположенные ниже главной диагонали. Если на                                                        |  |  |  |  |
|          | главной диагонали и выше неё нет элементов с указанным                                                         |  |  |  |  |
|          | свойством, то вывести сообщение об этом.                                                                       |  |  |  |  |
|          | Будем называть соседями элемента с индексами $i, j$ некоторой                                                  |  |  |  |  |
|          | матрицы такие элементы этой матрицы, соответствующие                                                           |  |  |  |  |
|          | индексы которых отличаются от $i$ и $j$ не более чем на единицу.                                               |  |  |  |  |
| 14       | Для данной целочисленной матрицы $\left[a_{ij}\right]_{i=\overline{1,n},j=\overline{1,m}}$ найти               |  |  |  |  |
|          | матрицу из нулей и единиц $\left[b_{ij}\right]_{i=\overline{1,n},j=\overline{1,m}}$ , элемент которой $b_{ij}$ |  |  |  |  |
|          | равен единице, когда все соседи $a_{ij}$ меньше самого $a_{ij}$ .                                              |  |  |  |  |

| Варианты | Индивидуальное задание                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15       | Таблица футбольного чемпионата задана квадратной матрицей порядка <i>п</i> , в которой все элементы, принадлежащие главной диагонали, равны нулю, а каждый элемент, не принадлежащий главной диагонали, равен 2, 1 или 0 (числу очков, набранных в игре: 2 – выигрыш, 1 – ничья, 0 – проигрыш). Найти число команд, имеющих больше побед, чем поражений и определить номера команд, прошедших чемпионат без поражений. |
| 16       | Найти решение системы линейных алгебраических уравнений $\{a_{11}x_1=b_1\ a_{21}x_1+a_{22}x_2=b_2\\ a_{n1}x_1+a_{n2}x_2++a_{nn}x_n=$ Если задана действительная матрица $[a]_{n\times n}$ и массив свободных членов $[b]_n$ . Для решения СЛАУ можно использовать метод Крамера.                                                                                                                                       |
| 17       | В квадратной матрице <i>nxn</i> обменять значения элементов в каждой строке, расположенные на главной и побочной диагоналях.                                                                                                                                                                                                                                                                                           |
| 18       | Сформировать матрицу из чисел от 0 до 999, вывести ее на экран. Посчитать количество двузначных чисел в ней.                                                                                                                                                                                                                                                                                                           |
| 19       | Записать элементов прямоугольной матрицы в одномерный массив в порядке следования столбцов.                                                                                                                                                                                                                                                                                                                            |
| 20       | Вводятся пять вещественных чисел. Записать в первый столбец матрицы целую часть чисел, во второй - дробную часть, приведенную к пятизначному целому, в третий столбец - знак числа: 0 для положительных чисел и 1 - для отрицательных. Например, если вводится число 5.452456, то в первой ячейке строки присваивается 5, второй присваивается 45245, а третьей - число 0.                                             |

**Часть 2.**В соответствии с вариантом необходимо написать консольную программу.

| Варианты | Индивидуальное задание                                       |
|----------|--------------------------------------------------------------|
|          | Узник пытается бежать из замка, который состоит из MN        |
|          | квадратных комнат, расположенных в виде прямоугольника       |
|          | M×N. Между любыми двумя соседними комнатами есть дверь,      |
|          | однако некоторые комнаты закрыты и попасть в них нельзя. В   |
|          | начале узник находится в угловой комнате и для спасения ему  |
|          | надо попасть в противоположную угловую комнату. Времени у    |
|          | него немного, всего он может побывать не более, чем в M+N-1  |
|          | комнате, включая начальную и конечную комнату на своем       |
|          | пути, то есть с каждым переходом в соседнюю комнату          |
|          | расстояние до выхода из замка должно уменьшаться. От вас     |
|          | требуется найти количество различных маршрутов, ведущих к    |
| 1        | спасению.                                                    |
|          | Первая строчка входных данных содержит натуральные числа     |
|          | М и N, не превосходящих 1000. Далее идет план замка в виде М |
|          | строчек из N символов в каждой. Один символ соответствует    |
|          | одной комнате: если символ равен 1, то в комнату можно       |
|          | попасть, если он равен 0, то комната закрыта. Первоначальное |
|          | положение узника – левый нижний угол (первый символ          |
|          | последней строки), выход находится в правом верхнем углу     |
|          | (последний символ первой строки, оба этих символа равны 1).  |
|          | Программа должна напечатать количество маршрутов, ведущих    |
|          | узника к выходу и проходящих через M+N-1 комнату, или слово  |
|          | «Невозможно», если таких маршрутов не существует.            |
| 2        | Всем хорошо известна "Игра в 15", представляющая собой 15    |
| 2        | квадратных фишек, пронумерованных числами от 1 до 15.        |

| Варианты | Индивидуальное задание                                        |
|----------|---------------------------------------------------------------|
|          | Фишки уложены в квадрат со стороной в 4 стороны фишки,        |
|          | одна позиция для фишки свободна. Если обозначить свободную    |
|          | позицию за *, то головоломка состоит в том, чтобы получить из |
|          | произвольной начальной позиции позицию следующего вида:       |
|          | 1 2 3 4                                                       |
|          | 5 6 7 8                                                       |
|          | 9 10 11 12                                                    |
|          | 13 14 15 *                                                    |
|          | Единственной разрешенной операцией является обмен * с         |
|          | одной из соседних по ребру фишек. Операции будем кодировать   |
|          | буквами:                                                      |
|          | R – поменять * с фишкой, которая стоит справа от *            |
|          | L – поменять * с фишкой, которая стоит слева от *             |
|          | U – поменять * с фишкой, которая стоит сверху от *            |
|          | D – поменять * с фишкой, которая стоит снизу от *             |
|          | Например, решением головоломки                                |
|          | 1 2 3 4                                                       |
|          | 5 6 7 8                                                       |
|          | 9 10 12 *                                                     |
|          | 13 14 11 15                                                   |
|          | является последовательность LDR.                              |
|          | От вас требуется решить более простую головоломку "Игра в     |
|          | 8", в которой требуется расположить 8 фишек в виде:           |
|          | 1 2 3                                                         |
|          | 4 5 6                                                         |
|          | 7 8 *                                                         |
|          | На вход программе подается описание исходной позиции в виде   |
|          | строки, в которой перечислены номера фишек, разделенные       |

| Варианты | Индивидуальное задание                                       |
|----------|--------------------------------------------------------------|
|          | пробелами в квадрате слева направо сверху вниз. Вместо       |
|          | свободной фишки напечатана *.                                |
|          | Например, позиция                                            |
|          | 1 2 3                                                        |
|          | * 4 6                                                        |
|          | 7 5 8                                                        |
|          | задается строкой                                             |
|          | 1 2 3 * 4 6 7 5 8                                            |
|          | На выход программа должна вывести одну строку, состоящцю     |
|          | из букв l, r, u, d, содержащую последовательность операций,  |
|          | разрешающую данную головоломку, в которой одна буква         |
|          | соответствует перемещению одной фишки (см. выше правило      |
|          | кодирования операций). Если же головоломка неразрешима, то   |
|          | требуется вывести одно слово unsolvable.                     |
|          | На прямоугольном поле для игры в морской бой размером M×N    |
|          | расположено несколько прямоугольных кораблей. Корабли не     |
|          | соприкасаются друг с другом. Ваша задача — определить        |
|          | всевозможные типы кораблей на поле и число кораблей каждого  |
|          | типа. Два корабля относятся к одному типу, если их размеры   |
|          | совпадают (корабли, которые могут быть получены друг из      |
| 3        | друга поворотом, также относятся к одному типу).             |
|          | Первая строка входных данных содержит два положительных      |
|          | числа М и N, не превосходящих 1000, задающие размеры поля.   |
|          | Далее идет М строк, каждая из которых состоит из N символов. |
|          | Символ `1' означает, что соответствующая клетка поля занята  |
|          | кораблем, символ `0' — что свободна. Пробелов в строке нет.  |
|          | Программа должна для каждого обнаруженного типа корабля      |
|          | вывести одну строку, содержащую три числа. Первые два числа  |

| Варианты | Индивидуальное задание                                         |
|----------|----------------------------------------------------------------|
|          | задают размеры корабля (первое число должно быть не меньше     |
|          | второго), третье число задает количество кораблей данного типа |
|          | на поле. Строки в выводе должны быть отсортированы по          |
|          | первому числу, затем по второму числу.                         |
|          | Пример входных данных                                          |
|          | 6 10                                                           |
|          | 0111000011                                                     |
|          | 0000011011                                                     |
|          | 0100011000                                                     |
|          | 0101011011                                                     |
|          | 010000000                                                      |
|          | 0001111011                                                     |
|          | Пример выходных данных                                         |
|          | 1 1 1                                                          |
|          | 2 1 2                                                          |
|          | 2 2 2                                                          |
|          | 3 1 2                                                          |
|          | 3 2 1                                                          |
|          | 4 1 1                                                          |
|          | На сайте сотового оператора BeepLine сделали защиту от         |
|          | роботов, рассылающих SMS-сообщения: прежде, чем отправить      |
|          | SMS, пользователь должен написать, какую фигуру он видит в     |
| 4        | специальном окошке: квадрат или круг. Причем, для усиления     |
| 4        | защиты, в рисунок внесены небольшие помехи.                    |
|          | Коле срочно нужно разослать всем друзьям сообщение, поэтому    |
|          | он просит Вас написать программу, распознающую                 |
|          | изображение.                                                   |

### Варианты

#### Индивидуальное задание

Экспериментально установлено, что система рисует квадрат с помехами следующим образом: сначала на белом фоне рисуется черный квадрат  $k \times k$  клеток  $(k \ge 3)$ , затем некоторые клетки на границе квадрата (на рисунке обозначены цифрой 1) закрашиваются белым, а некоторые клетки (если таковые существуют), граничащие с квадратом (на рисунке обозначены цифрой 2), закрашиваются черным.

| 2 | 2 | 2 | 2 | 2 | 2 |  |
|---|---|---|---|---|---|--|
| 2 | 1 | 1 | 1 | 1 | 2 |  |
| 2 | 1 |   |   | 1 | 2 |  |
| 2 | 1 |   |   | 1 | 2 |  |
| 2 | 1 | 1 | 1 | 1 | 2 |  |
| 2 | 2 | 2 | 2 | 2 | 2 |  |
|   |   |   |   |   |   |  |

Например, квадрат 4×4 после нанесения помех может выглядеть так:



На входе пользователь задает размерность  $m \times n$  размера экрана. Следующие n строк, по m символов в каждой, содержат описание картинки. Черные клетки обозначены символом «+», а

| Варианты | Индивидуальное задание                                                         |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------|--|--|--|--|--|
|          | белые - символом «.». Программа на выходе должна                               |  |  |  |  |  |
|          | определить, какое изображение – квадрат или круг,                              |  |  |  |  |  |
|          | представлено на изображении. Если изображение не                               |  |  |  |  |  |
|          | соответствует ни одной из фигур, вывести сообщение об ошибке распознавания.    |  |  |  |  |  |
|          |                                                                                |  |  |  |  |  |
|          | Спецслужбы получили информацию о том, что в                                    |  |  |  |  |  |
|          | труднодоступной части Муравийской пустыни расположена                          |  |  |  |  |  |
|          | хорошо замаскированная база террористов. В руки спецслужб                      |  |  |  |  |  |
|          | попал и план этой базы, которая с большой высоты выглядит                      |  |  |  |  |  |
|          | как группа скальных обломков, весьма часто встречающихся                       |  |  |  |  |  |
|          | среди Муравийских песков. Президент отдал приказ                               |  |  |  |  |  |
|          | уничтожить базу крылатыми ракетами. Ваша задача - по карте                     |  |  |  |  |  |
|          | пустыни, полученной со спутника и плану базы определить                        |  |  |  |  |  |
|          | количество возможных положений базы террористов.                               |  |  |  |  |  |
|          | На входе вводятся числа $N_b$ и $M_b$ ( $1 \le N_b, M_b \le 20$ ). В           |  |  |  |  |  |
| 5        | следующих $N_{_{b}}$ строках записан план базы. Каждая из этих                 |  |  |  |  |  |
|          | строк содержит по $M_b$ символов "#" (ASCII 35) или "." (ASCII                 |  |  |  |  |  |
|          | 46). Символ "#" обозначает фрагмент базы, а символ "." - песок.                |  |  |  |  |  |
|          | В следующей строке записаны числа $N_d$ и $M_d$ (1 $\leq$ $N_d$ , $M_d$ $\leq$ |  |  |  |  |  |
|          | 100). И остаток входных данных содержит карту участка                          |  |  |  |  |  |
|          | пустыни, на котором, предположительно, находится база                          |  |  |  |  |  |
|          | террористов - $N_d$ строк по $M_d$ символов "#" или "." в каждой.              |  |  |  |  |  |
|          | Пример входных даных:                                                          |  |  |  |  |  |
|          | 2 2                                                                            |  |  |  |  |  |
|          | #.                                                                             |  |  |  |  |  |
|          | ##                                                                             |  |  |  |  |  |
|          | 3 5                                                                            |  |  |  |  |  |

| Варианты | Индивидуальное задание |  |  |  |
|----------|------------------------|--|--|--|
|          | #.#.#                  |  |  |  |
|          | #####                  |  |  |  |
|          | .###.                  |  |  |  |