Chapter Seven

Graphs

Classification of Data Structures

Linear Data Structure

Non-Linear Data Structure

Arrays

Trees

Linked Lists

Graphs

Stacks

Queues

What is a Graph?

- A data structure that consists of a set of nodes (vertices) and a set of edges that relate the nodes to each other.
- The set of edges describes relationships among the vertices.

Formal Definition of Graphs

A graph G is defined as follows:

$$G=(V,E)$$

V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)

- □ An edge e = (u,v) is a pair of vertices
- Example:

Applications of Graphs

Applications of Graphs (cont.)

Computer Networks

(a) A star network

(b) A ring network

Directed vs. Undirected Graphs

When the edges in a graph have no direction, the graph is called undirected.

Directed vs Undirected Graphs (cont.)

When the edges in a graph have a direction, the graph is called directed (or digraph).

Warning: if the graph is directed, the order of the vertices in each edge is important!!

E is a set of ordered pairs of elements of V.

Trees vs Graphs

Trees are special cases of graphs!!

Graph Terminology

Adjacent nodes: two nodes are adjacent if they are connected by an edge.

5 is adjacent to 77 is adjacent from 5

Path: a sequence of vertices that connect two nodes in a graph.

Graph Terminology (cont.)

- Complete graph: a graph in which every vertex is directly connected to every other vertex.
- What is the *number of edges* in a complete directed graph with *N vertices*?

$$O(N^2)$$

(a) Complete directed graph.

Graph Terminology (cont.)

What is the number of edges in a complete undirected graph with N vertices?

$$N * (N-1)/2$$

$$O(N^2)$$

(b) Complete undirected graph.

Graph Terminology (cont.)

Weighted graph: a graph in which each edge carries a value.

Graph Implementation

Array-based Implementation

- » A 1D array is used to represent the vertices.
- » A 2D array (adjacency matrix) is used to represent the edges.

Array-based Implementation

Adjacency Matrix Representation

- □ Let G = (V,E), n = |V|, m = |E|, $V = \{v_1, v_2, ..., v_n\}$
- G can be represented by an n x n matrix.

Implemented using 2D array

(a) An undirected graph

(b) Its adjacency matrix

Adjacency Matrix Representation (cont.)

Adjacency Matrix Example

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

Graph Implementation (cont.)

Linked-list Implementation

- » A 1D array is used to represent the vertices.
- » A list is used for each vertex v which contains the vertices which are adjacent from v (adjacency list).

Adjacency List Example

Each list A[i] stores the ids of the vertices adjacent to vertex i.

Adjacency Matrix vs Adjacency List Representation

Adjacency Matrix

- » Good for dense graphs (more edges): $|E| \sim O(|V|^2)$.
- » Memory requirements: $O(|V| + |E|) = O(|V|^2)$.
- » Connectivity between two vertices can be tested quickly.

Adjacency List

- » Good for sparse graphs(few edges) -- $|E| \sim O(|V|)$.
- » Memory requirements: O(|V| + |E|) = O(|V|).
- » Vertices adjacent to another vertex can be found quickly.

Graph Searching

- Problem: find a path between two nodes of the graph (e.g., Austin and Washington).
- Methods:
 - » Depth-First Search (DFS) or
 - » Breadth-First Search (BFS)

Depth-First Search (DFS)

- What is the idea behind DFS?
 - » Travel as far as you can down a path.
 - » Search deeper in the graph, when ever possible.
- □ Given an input graph G = (V, E) and a source *vertex S*, from where the *searching starts*.
 - » First we visit the starting node.
 - Then we travel through each node along a path, which begins at S.
 - That is we visit a neighbor vertex of S and again a neighbor of a neighbor of S, and so on.
- DFS can be implemented efficiently using a stack.

Algorithm

- 1. Input the vertices and edges of the graph G = (V, E).
- 2. Input the source vertex and assign it to the variable S.
- Push the source vertex to the stack.
- Repeat the steps 5 and 6 until the stack is empty & destination is found.
- Pop the top element of the stack and display it.
- 6. Push the vertices which is *neighbor* to just popped element, if it is not in the stack displayed (i.e; not visited).
- Exit.

Algorithm

```
Set found to false
Push(startVertex)
DO
 Pop(vertex)
 IF vertex == endVertex
  Set found to true
 FI SF
  Push all adjacent vertices onto stack
WHILE !IsEmpty() AND !found
IF(!found)
 Write "Path does not exist"
```

Example: Is there a path from Austin to Washington?

Breadth-First Search (BFS)

- What is the idea behind BFS?
 - » Look at all possible paths at the same depth before you go at a deeper level.
 - Explore every vertex that is reachable from source vertex, S.
 - » Examine the entire vertices neighbor to S.
 - Then traverse all the neighbors of the neighbors of S and so on.
 - » A queue is used to keep track of the progress of traversing the neighbor nodes.
 - » BFS can be implemented efficiently using a queue.

Algorithm

```
Set found to false
enqueue(startVertex)
DO
dequeue(vertex)
IF vertex == endVertex
Set found to true
ELSE
Enqueue all adjacent vertices onto queue
WHILE !IsEmpty() AND !found
IF(!found)
Write "Path does not exist"
```

Example: Is there a path from Austin to Washington?

Reading Assignment

- Minimum Spanning Tree
 - » Kruskal's Algorithm
 - » Prim's Algorithm