Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	9 November 2022
Team ID	PNT2022TMID37251
Project Name	AI-Powered Nutrition Analyzer For Fitness Enthusiasts
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks) Use

the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Numbe r	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As an biogeography, I can register for the application by entering my email, password, and confirming my password.	2	High	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep
Sprint-1	User Confirmation	USN-2	As an biogeography, I will receive confirmation email once I have registered forth application	1	Medium	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep
Sprint-1	Login	USN-3	As an biogeography, I can log into the application by entering email & password	2	High	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep

Sprint-2	Data Collection	USN-1	Download the dataset used in Digital Naturalist – AI Enabled tools for Biodiversity Researchers	2	High	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep	
Sprint-2	Image Preprocessing	USN-1	Improving the image data that suppresses unwilling distortions orenhances some image features important for further processing, although performing some geometric transformations of images like rotation, scaling, etc.	1	High	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep	
Sprint-3	Getting started with Convolutional Neura lNetwork	USN-1	Neural network are integral for teaching computers to think and learn by classifying information, similar to how we as humans learn. With neural networks, the software can learn to recognize images, for example. Machines can also make predictions and decisions with a high level of accuracy based on data inputs.	2	High	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep	
Sprint-3	Evaluation and model saving	USN-1	well a model behaves after each iteration of optimization. An accuracy metric is used to measure the algorithm's performance in an interpretable way. The accuracy of a model is usually determined after the model parameters and is calculated in the form of a percentage. Saving The Model get_weights , set_weights .	1	Medium	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep	

Sprint-4	Application Building	USN-2	After the model is built, we will be integrating it to a web application so that normal users can also use it. The users need to give the images of species	1	High	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep
Sprint-4	Train the Model on IBM	USN-3	Build Deep learning model and computer vision Using the IBMcloud.	2	High	Anush Venkatesh Harsh Hashwanth Sriraam Kuldeep

Project Tracker, Velocity & Burndown Chart: (4 Marks)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

			reteetty	10000000		
Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date(Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	3 Days	30 Oct 2022	1 Nov 2022	20	7 Nov 2022
Sprint-2	20	3 Days	2 Nov 2022	5 Nov 2022	20	8 Nov 2022
Sprint-3	20	3 Days	5 Nov 2022	8 Nov 2022	20	8 Nov 2022

Sprint-4	20	3 Days	8 Nov 2022	19 NOV 2022	20	-

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)