<u>Práctico 1 – Memoria compartida</u>

- 1. Para el siguiente programa concurrente suponga:
 - Que las instrucciones del siguiente código no son atómicas (la ejecución puede ser interrumpida).
 - Todas las variables están inicializadas en 0 antes de empezar.

Indique cual/es de las siguientes opciones son verdaderas:

- a) En algún caso el valor de x al terminar el programa es 188.
- b) En algún caso el valor de x al terminar el programa es 95.
- c) En algún caso el valor de x al terminar el programa es 942.

P1::	P2::	P3::
If (x = 0) then y:= 4*23; x:= y + 2;	If $(x > 0)$ then $x := x + 1;$	x:= (x*8) + x*2;

- 2. Suponga ahora, el mismo ejercicio anterior pero las instrucciones son atómicas. Indique cual/es de las siguientes opciones son verdaderas
- a) El valor de x al terminar el programa es 20.
- b) El valor de x al terminar el programa es 94.
- c) Es posible calcular todos los resultados posibles para las variables x e y.
- 3. A partir del código multiplicacion.c, pruebe ejecutar el algoritmo con diferente cantidad de hilos (2, 4, y 8) para tamaños de matriz de 32 x 32, y 64 x 64 posiciones. Complete la tabla con los tiempos de ejecución obtenidos. Para compilar:

Cantidad de hilos/	32 X 32	64 X 64
Tamaño de la matriz		
2		
4		
8		

4. Implemente una versión secuencial del algoritmo y realice el cálculo de speedup y eficiencia. Tenga en cuenta que la versión secuencial no debe ser el algoritmo paralelo con un solo hilo dado que la existencia de hilos agrega

overhead en el procesamiento y se debe utilizar la mejor versión secuencial para calcular correctamente la performance del algoritmo.

En este enlace pueden encontrar información de la librería OPENMP: https://computing.llnl.gov/tutorials/openMP/