

Toward Entailment Checking: Explore Eigenmarking Search

Tatpong Katanyukul

Computer Engineering, Khon Kaen University, Thailand

inCACCT 2025, 17-18 April, Chandigarh University, India

Big Picture

- Entailment is central to logic reasoning.
- Model checking goes through all combinations of logical symbols for validation of entailment: $O(2^n)$.
- Our work is to propose improved quantum search targeting a more efficient model checking.

Logic Entailment: Model Checking

 $KB \models \alpha$ if and only if, in **every truth scenario** in which KB is true, α is true.

Model checking = truth evaluation given truth values of all symbols.

KB:

Durians are spiky.

• Durians are yummy.

 α_1 : Montong durian is spiky.

 α_2 : Montong durian is not spiky.

 α_3 : There is life on Mars.

 α_4 : There is no life on Mars.

Spiky Montong	Life on Mars	КВ	α_1	α_2	α_3	α_4	
F	F	F	F	T	F	T	
F	Т	F	F	Т	Т	F	$O(2^n)$
Т	F	Т	Т	F	F	Т	
Т	Т	Т	Т	F	Т	F	
			$VD \vdash \alpha$	$VD \lor \alpha$	VD ot	$VD \vdash \alpha$	

 $KB \vDash \alpha_1 \quad KB \nvDash \alpha_2 \quad KB \nvDash \alpha_3 \quad KB \nvDash \alpha_4$

Quantum Computing and Quantum Mechanical Properties

- Quantum computing utilizes quantum mechanical properties for computing.
- The quantum effect is more prominent at a small scale.
 - Linear evolution
 - Measurement
 - Superposition, Entanglement, Tunneling.

Classical

Grover Search

- Problem: Given unknown $f(\cdot)$, find an answer $x' \in \{0,1\}^n$: f(x') = 1
- Promise: one and only one answer x': f(x') = 1 and f(x) = 0 for all $x \neq x'$.
- Classical approach: trial-and-error
 - Average computation cost $\sim O\left(\frac{N}{2}\right) = O(2^{n-1})$
 - All possible candidates $N = 2^n$.

Grover Algorithm: Key Ideas

- Evolve the probability amplitude of the answer eigenstate such that when measured, the answer is more likely to be observed.
- ~ Parallelism using superposition!
- Implementation:
 - Selective phase inversion: mark the answer.
 - Inversion about the mean: amplify the answer's probability amplitude.
 - This relies on that the answer is minority!

Challenges and Our Approach

Spiky Monton	Life on Mars	КВ	α_1	α_2	α ₃	$\alpha_{\scriptscriptstyle 4}$	
F	F	F	F	T	F	T	
F	Т	F	F	Т	Т	F	
Т	F	Т	Т	F	F	T	
Т	Т	Т	Т	F	Т	F	
				1	1	1	
When $KB = T$,		N	No F 2	Fs :	1 F	1 F	

- Original Grover search addresses 1-F case.
- Our approach:
 - Additional qubits
 - Maintain minority condition for Grover amplification
 - Facilitate easy identification of no-winner case

Conclusion & Discussion

- The ideas work! (at least for a two-qubit case, in a simulator.)
- Quality of outcomes
 - Eigenmarking
 - Better at suppressing chances of dummy states: best global winning margin.
 - Quite well on distinguishability: best relative scores.
 - Subtle marking
 - · Quite well on every aspect:
 - · best local winning margin,
 - · best absolute distinguishability.
- Architectural aspect: subtle marking requires less modification, but needs multiple-qubit controls.
- Limitations: Scalability? (more qubits) Reliability? (theoretical analysis)
 Robustness? (real QC)

6