Linux Security and Hardening Essential Training

General Security

- Linux is "secure", but it's not a panacea.
- People play a key role in security.
- Security is an ongoing process.
- Linux security features
 - Open Source.
 - It's not a popular target.
 - Package management.
 - Separation of privileges(multi-user system).
- Security Principles
 - Principles of Least Privilege
 - Use encryption
 - Shared accounts (Yes, root can be a shared account!)
 - Multi-factor authentication
 - Firewall
 - Monitoring logs

Physical Security

Protect from Grub e edit single user mode

- In systemd go to /lib/systemd/system/
- Replace sushell with sulogin in emergence.service and rescue.service

Protect Grub by password

- Let's just say username=grubProtect and password=grubzilla123
- In /etc/grub.d/40_custom add

```
set superuser="grubProtect"
password grubProtect grubzilla123
```

• For encrypted password

grub-mkpasswd-pbkdf2

• Enter the password=grubzilla123 and get an output like this

PBKDF2 hash of your password is grub.pbkdf2.sha512.10000.1CAEF371E5B24AF502560031A265F2

• In /etc/grub.d/40_custom

set superuser="grubProtect" password_pbkdf2 grubProtect grub.pbkdf2.sha512.10000.1CAEF371E5B24AF502560031A265F29E05

• Then update-grub

Disk Encryption

- Install cryptsetup
- Encrypt New Device/Disk

Encrypting Disk Will Remove All Data

- Fill device with random data sudo shred -v -n 1 <e.g. /dev/sdb , i.e diskname>
- Now Run cryptsetup and put in the passphrase
 sudo cryptsetup luksFormat <e.g. /dev/sdb , i.e diskname>
- sudo cryptsetup luksOpen <e.g. /dev/sdb , i.e diskname> <e.g. opt, i.e name for theSince here we named the folder opt, you can find that disk on
- Since here we named the folder opt, you can find that disk of /dev/mapper/opt
- Formating the devicesudo mkfs -t ext4 /dev/mapper/opt

- Open the device and put in the passphrase

- Close the device
 sudo cryptsetup luksClose opt
- Updating /etc/fstab for mounting while login
 /dev/mapper/opt /opt ext4 defaults 0 0
- Updating /etc/crypttab for asking passphrase while mounting opt /dev/sdb none luks
- Encrypt a File or Folder
 - For example Make folder /data
 sudo mkdir /data
 - Locate 100mb to a file opt in /data
 sudo fallocate -l 100M /data/opt
 - Adding random data to file opt sudo dd if=/dev/urandom of=/data/opt bs=1M count=100
 - To check the random data in /data/opt
 sudo strings /data/opt
 - Now encrypting /data/opt
 sudo cryptsetup luksFormat /data/opt

- Open
 - sudo cryptsetup luksOpen /data/opt opt
- Format
 - sudo mkfs -t ext4 /dev/mapper/opt
- Mount
 - sudo mount /dev/mapper/opt /opt
- Encrypting Device with Data
 - Backup this Device
 - Fill the Device with random data using shred or dd
 - Encrypting the Device
 - Open the Device
 - Format it, mostly ext4
 - Mount and use it

Disable Control + Alt + Delete

- Control + Alt + Delete in systemd, rebooting your system.
- To disable this

```
systemctl mask ctrl-alt-del.target
systemctl daemon-reload
```

Summary

- Physical security threats.
- Physical security guidelines.
- Single user mode defenses.
- Kernel Parameter Protection.
- Disk encryption with LUKS.
- Disabling reboots from Ctrl+Alt+Del

Account Security

PAM (Pluggable Authentication Modules)

- Location: /etc/pam.d /etc/pam.d/login /etc/pam.d/sshd
- Format:

```
module_interface
control_flag
module_name
module_args
```

• PAM Modules Interfaces

- auth Authenticates users.
- account Verifies if access is permitted.
- password Changes user's password.
- session Manages user's sessions.
- PAM Control Flags
 - required Module result must be successful to continue.
 - requisite Like required, but no other modules are invoked.
 - sufficient Authenticates user if no required modules have failed, otherwise iggnored.
 - optional Only used when no other modules reference the interface.
 - include Includes configuration from another file.
 - complext control flags attribute=value for more info man pam.d
- PAM configuration
 - Configuration:

```
account required pam_nologin.so
session required pam_unix.so
```

- Getting Help:

man pam_nologin
man pam_unix

Linux Account Types

- root, the superuser
 - Root can do anything.
 - Always has the UID of 0.
- System Accounts
 - UIDs of System Accounts are < 1000
 - Configured in /etc/login.defs
 - useradd with -r flag specifies to have UID of System Account Range useradd -r system_account_name
- Normal User Accounts
 - UIDs of Normal User Accounts are 1000
 - Intended for human (interactive) use
- Password Security
 - Enforcing, not hope for, strong passwords.
 - Protect against weak use pam_pwquality, based on pam_cracklib.
 - * Configuration File:
 - /etc/security/pwquality.conf
 - * PAM Usage:
 - password requisite pam_pwquality
 - * Module attributes: man pam_pwquality

- Use Shadow Password
 - * Usually encrypted passwords is stored in /etc/passwd
 - * But /etc/passwd is accessible with all users
 - * When shadow password is enabled, the passwords at /etc/passwd is replaced with x
 - * And the passwords are stored in /etc/shadow which is only accessible by root or the superuser
 - * Converting regular passwords to shadow passwords pwconv
 - * Converting shadow passwords to regular passwords pwunconv
 - * Each feild of /etc/shadow is separated by :
 - · Username
 - \cdot HashedPassword
 - $\cdot \ \ Days Since Epoch Of Last Password Change$
 - · Days until change allowed
 - · Days before change required
 - $\cdot\;$ Days warning for expiration
 - $\cdot\;$ Days before account inactive
 - · Days since epoch when account expires
 - · Reserved
- User account expire info

```
chage -1 <account>
```

Controlling Account Access

- Locking and Unlocking Accounts
 - Locking

```
passwd -1 <account>
```

Unlocking

passwd -u <account>

• Locking using nologin as Shell

```
chsh -s <shell> <account>
chsh -s /sbin/nologin <account>
```

Account Security

- Disable root Logins
 - Update /etc/pam_securetty
 auth [user_unknown=ignore success=ok \

ignore=ignore default=bad] pam_securetty.so

- * /etc/securetty contains list of devies where root is allowed to login
 - · Example console tty1
- Disable SSH root Logins
 - * Update /etc/ssh/sshd_config

PermitRootLogin no

* Then reload systemctl

systemctl reload sshd

- System/Application Accounts
 - Use one Account per service
 webs service (httpd), web service account (apache)
 - Don't allow direct logins from the account
 - * Update /etc/ssh/sshd_config
 DenyUsers <account1> <account2> ... <accountN>
 - Use sudo for all access
 sudo -u apache apachectl configtest
- Delete Accounts
 - Determine the UID

id <account>

- Delete Account

userdel -r <account>

- * The -r flag removes the home directory with removing user
- Find files belonging to that account

```
find / -user <UID>
findn / -nouser
```

Network Security

Securing Network Services

• Use a dedicated user for each service.

Take advantage of privilege separation.

- Ports below 1024 are privileged.
 - Use root to open them, then drop privileges.
 - Configuration Controlled by each service.
- Stop and unistall unused services
- Avoid unsecure services

Use SSH instead of telnet, rlogin, rsh, and FTP

- Avoid information leakage or revealing information where possible
 - Web server banners.
 - Files /etc/motd,/etc/issue, and /etc/issue.net
- Disable and Uninstall services that are not required.
- List Listening Programs with netstat

```
sudo netstat -nutlp
```

• Port Scanning using nmap

```
nmap <hostname/IP>
nmap localhost
nmap 10.11.123.23
```

- List open file using lsof
 - -i flag shows all listening network files

lsof -i

- Testing a Specific Port
 - Using telnet

```
telnet <hostname/IP> <port>
```

- Using nc
 - -v flag means its running in verbose mode

```
nc -v <hostname/IP> <port>
```

- Xinetd Controlled Services
 - Services Controlled by Xinetd could be found in /etc/xinetd.d/ folder
 - To disable a service update service config file disable=yes

SSH (Secure SHell)

- Allows for key based authentication.
- To allow key-authentication update /etc/ssh/sshd_config
 PubkeyAuthentication yes
- Create SSH Keys
 - Use the ssh-keygen command to create a key.
 - You can create a passphrase for the key.
 - The ssh-keygen command creates ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub.
- Adding the Public Key to Remote Host
 - To copy the key, use ssh-copy-id: ssh-copy-id <user>@<host>
 - This adds public key to ~/.ssh/authorized_keys
- Force only Key Authentication
 - Updating /etc/ssh/sshd_config
 - PasswordAuthentication no
 - This allowing only authentication with keys
 - Hence, protecting ssh from brute force attacks
- Controlling Root Logins
 - Updating /etc/ssh/sshd_config
 - To disable root logins
 - PermitRootLogin no
 - To only allow root to login with key
 - ${\tt PermitRootLogin\ without-password}$
- Allow Only Certain Users and Groups SSH Access
 - Updating /etc/ssh/sshd_config

```
AllowUsers <user1> <user2> ... <userN>
AllowGroups <group1> <group2> ... <groupN>
```

- Deny Certain Users and Groups SSH Access
 - Updating /etc/ssh/sshd_config

```
DenyUsers <user1> <user2> ... <userN>
DenyGroups <group1> <group2> ... <groupN>
```

• Comman ssh flag

- L for SSH Port Forwording

Basically using host machines port as the host machines by the client

```
ssh -L <client port>:<host IP>:<host port> <user@host/dns>
ssh -L 3306:127.0.0.1:3306 server1
ssh -L 8080:www.google.com:80 server1
```

- D for Dynamic Port Forwarding / SOCKS

Basically forwarding all request to the client port to host port

```
ssh -D <client port> <user@host/dns>
ssh -D 8080 server1
```

- -R for Reverse Port Forwarding

Basically forward all request from host machine back to client machine

```
ssh -R <host port>:<host IP>:<client port> <user@host/dns>
ssh -R 2222:127.0.0.1:22 server1
```

- Disable TCP Port Forwording
 - Updating /etc/ssh/sshd_config

AllowTcpForwarding no GatewayPorts no

- - Updating /etc/ssh/sshd_config

Protocol 2

- Bind SSH to a Specific Address
 - Updating /etc/ssh/sshd_config

```
ListenAddress <host/address1>
ListenAddress <host/address2>
```

.

ListenAddress <host/addressN>

- Change the Default SSH Port
 - Update /etc/ssh/sshd_configPort 2222
- Adding New Port to SELinux

```
semanage port -a <SSH port> -p tcp <new port>
semanage port -l | grep ssh
```

- Avoid Information Leakage
 - Disable the Banner

Banner data that is usually stored at /etc/issue.net which is sent a remote user before authentication is allowed

* Update /etc/ssh/sshd_config

Banner none

• To Reload the Configuration

systemctl reload sshd

• More Info

man ssh
man sshd_config

Linux Firewall

- Firewalls control network access.
- Linux firewall = Netfilter + IPTables
- Netfilter is kernal framework.
- IPTables is packet selection system.
- Use the iptables command to control the firewall.
- Default Tables
 - Filter
 - * Most commanly used table.
 - * It is used to block incoming or deny outgoing connections
 - NAT
 - * Network Address Translation.
 - * It allows a single IP address to be shared
 - Managle
 - * Alter packets.
 - Raw
 - * Rarely used
 - * Used to disable connection tracking
 - Security
 - * Used for manadatory access control networking rules
 - * Used by SELinux
- Default Chains
 - INPUT
 - OUTPUT

- FORWARD
- PREROUTING
- POSTROUTING
- Tables vs Chains

	INPUT	OUTPUT	FORWARD	PREROUTING	POSTROUTING
Filter	X	x	x		
\mathbf{NAT}	X	X		X	X
Mangle	X	X	X	X	X
Raw		X		X	
Security	X	X	X		

- Rules
 - Rules = Match + Target
 - Match on
 - * Protocol
 - \ast Source/Destination IP or Network
 - * Source/Destination Port
 - * Network Interface
 - * Eg: protocol:TCP, source IP:1.2.3.4, destination port:80
 - Targets
 - * Chain
 - * Built-in targets
 - · ACCEPT
 - · DROP
 - \cdot REJECT
 - \cdot LOG
 - · RETURN

Command-Line interface

- Command iptables/ip6tables
 - iptables for IPv4.
 - ip6tables for IPv6.
 - List/View
 - \ast Display the filter table.
 - iptables -L
 - $\ast\,$ Display the NAT table.

```
iptables -t nat -L
```

* Display using numeric output.

iptables -nL

* Display using verbose output.

iptables -vL

* Use line numbers.

iptables --line-numbers -L

- Creating and Deleting a Chain
 - * Create Chain

iptables -t -N <chain>

* Delete Chain

iptables -t -X <chain>

- Appending, Inserting, and Deleting Rules
 - * Appending Rule
 - · For appending a rule in the end of chain.

iptables -A <chain> <rule-specification>

- · To specify table use -t flag, if not default is filter table.
- iptables -t -A <chain> <rule-specification>
- * Inserting Rule
 - · For inserting rule at the beginning of the chain.

iptables -I <chain> <rule-specification>

· After specifing the chain add a rule number to specify where the rule need to be inserted, if not it will default at 0th position

iptables -I <chain> <rule-number> <rule-specification>

- * Deleting Rule
 - · For deleting a rule from the chain
 - · A rule can be deleted by specify the rule itself or rule number iptables -D <chain> <rule-specification>

iptables -D <chain> <rule-number>

- * Flushing Rules
 - · To delete all rules for a chain

iptables -t -F <chain>

- Rule Specification Options

Option	Description
-s Source IP -s 10.11.12.13 -s	Source IP, Network or Name. Name is
10.11.12.0/24	resolved when the rule is added.

Option	Description
-d Destination IP -d 10.11.12.13 -d 10.11.12.0/24	Destination IP, Network, or Name
-p Protocol -p tcp -p udp -p icmp	Protocol
-m Module module_options	Enable extended packet matching module.(man iptables-extensions)
-p Protocol -m Protocol -sport Port	Source Port
-p tcp -m tcp -sport 8080 -p tcp -sport 8080	
-p Protocol -m Protocol -dport Port	Destination Port
-p tcp -m tcp -dport 80 -p tcp -dport	
80 -p udp –dport 53	
-p icmp -m icmp -icmp-type Type -p	ICMP packet type(iptables -p icmp
icmp -m icmp -icmp-type echo-reply	-h)
-p icmp –icmp-type echo-reply -p icmp –icmp-type echo-request	
-m limit -limit rate	Match until a limit is reached.—limit
[/second/minute/hour/day]-m limit	default is 3/hours–limit-burst default
-limit-burst -m limit -limit 5/m	is $5/s = \text{second/m} = \text{minute/h} =$
-limit-burst 10-m limit! -limit 5/s	hour/d = day! invert the match

- Target/Jump
 - * To specify a jump point or target
 - -j <target/chain>
 - -j ACCEPT #Built-in target
 - -j DROP #Built-in target
 - -j LOGNDROP #Custom chain
- To Save the Rules
 - In Debian and Ubuntu install iptables-persistent
 apt install iptables-persistent
 - To save the rulesnetfilter-persistent save
 - Rules and Configuration will be saved in /etc/iptables
- iptables Examples
 - Drop all connection from source IP of 10.0.0.124
 iptables -A INPUT -s 10.0.0.124 -j DROP
 - $-\mathtt{A}$ $\,$ INPUT means the rule is being added to the INPUT chain

- Accepts all TCP connection from source IP of 10.0.0.0/24 and destination port $22\,$

```
iptables -A INPUT -s 10.0.0.0/24 -p tcp -dport 22 -j ACCEPT
```

- Drops all TCP connection for destination port 22

```
iptables -A INPUT -p tcp --dport 22 -j DROP
```

- To Protect against DOS attacks

```
iptables -I INPUT -p tcp --dport 80 \
-m limit --limit 50/min --limit-burst 200 \
-j REJECT

iptables -I INPUT -p tcp --dport 80 \
-m limit --limit 50/min --limit-burst 200 \
-m state --state NEW -j REJECT
```

TCP Wrappers

- Host-based network ACL system.
- Controls access to "wrapped" services.
- A wrapped service is compiled with libwrap support.
- To Print required shared libraries run ldd <path to the binary of the file>
- Can control access by IP address/Networks.
- Can control access by hostname.
- Transparent to the client and service.
- Used with xinetd.
- Centralized management for multiple network services.
- Runtime configuration.
- TCP Wrapper Configuration
 - Configuration files to TCP Wrappers are /etc/hosts.allow and /etc/hosts.deny
 - When TCP connection request received first /etc/hosts.allow is checked.
 - If match is found, access is granted.
 - If not then next /etc/hosts,deny is checked.
 - If match is found access is denied and log message will be written.
 - If there are no matches, access is granted.
- TCP Wrappers Examples

The format given below is valid for both /etc/hosts.allow and /etc/hosts.deny

```
# SERVICE(S) : CLIENT(S) [ : ACTION(S) ]
  sshd : 10.11.12.13
  imapd : www.example.com
  sshd, imapd: 10.12.11.13
  ALL: 10.9.8.12, .example.com, .admin.example.com
  sshd : jumbox*.example.com, jumbox0?.example.com # Regex Matching
  sshd : 10.11.12.
  sshd : 10.
  sshd: 10.11.0.0/255.255.0.0
  sshd : /etc/hosts.sshd # Path to a file with list of host
  imapd : ALL
    -\ {
m In}\ /{
m etc/hosts.allow}
      # SERVICE(S) : CLIENT(S) [ : ACTION(S) ]
      sshd : ALL EXPECT .hacker.net
• TCP Wrappers Logging
  # SERVICE(S) : CLIENT(S) [ : ACTION(S) ]
  sshd : 10.11.12.13 : severity emerg
  \mathtt{sshd} \; : \; 10.11.12.13 \; : \; \mathtt{severity} \; \, \mathtt{local0.alert}
    - In /etc/hosts.deny
      # SERVICE(S) : CLIENT(S) [ : ACTION(S) ]
      sshd : .hacker.net : spawn /usr/bin/wall "Attack in progress."
      sshd : .hacker.net : spawn /usr/bin/wall "Attack from %a."
```

• Expansions

Format Specifiers	Description
%a (%A)	The client (server) host address
%c	Client information.
%d	The daemon process name.
%h (%H)	The client (server) host name or address.
%n (%N)	The client (server) host name.
$\%\mathrm{p}$	The daemon process id.
%s	Server information.
$\%\mathrm{u}$	The client user name (or "unknown").
%%	Expands to single % charater.

File System Security

File and Directory Permissions

ls -l
-rwxrw-r-- user:group bytes data time filename

• Permission - Files vs Directories

Symbol	Permission	File	Directory
r	Read	Allows a file to be read.	Allows file names in the directory to be read.
W	Write	Allows a file to be modifed.	Allows entries to be modified within the directory.
X	Execute	Allows the execution of a file.	Allows access to contents and metadata for entries.

• Permission Categories

Symbol	Categories
u	User
g	Group
О	Other
a	All

• Groups

- Every user is at one group.
- Users can belong to many groups.
- Groups are used to organize users.
- The group command displays a user's groups.
- You can also use id -Gn

• Secret Decoder Ring

Type	User	Group	Other
1	3	3	3
d-	rwx	rwx	rwx

- In Type
 - * Directory is denoted by d.
 - * File is denoted by or .
- In Users, Groups, and Others the order of permission is (Read , Write m Execute) rwx
- If any permission is not granted to a file or folder the charater of the permission gets replaced with -

• Changing Permission

Item	Meaning
chmod	Change mode command
ugoa	User categoryuser ,group, other, all
+-=	Add, subtract, or set permissions
rwx	Read, Write, Execute

chmod u+w filename # User is granted with Write permission chmod u-rw filname # User is denied of Read and Write permission chmod u+rwx,g-x,o-rwx filname # User is granter with rwx, Groups are denied of x, and Chmod a=r filname # All (User, Groups, and Others) are Granted with only r permission chmod u=rwx,g=rx,o= filename # User has rwx, Groups have rx and Others has None

• Numeric Based Permissions

	r	w	X
Value for off	0	0	0
Binary value for on	1	1	1
Base 10 value for on	4	2	1

- Possible Numeric Permissions

Octal	Binary	String	Description
0	000		No permissions
1	001	X	Execute only
2	010	-W-	Write only
3	011	-wx	Write and Execute $(2+1)$
4	100	r	Read only
5	101	r-x	Read and Execute (4+1)
6	110	rw-	Read and Write (4+2)
7	111	rwx	Read, Write, and Execute (4+2+1)

• Working with Group

- New files belong to your primary group.
- The chgrp command changes the group.

chgrp group filename/directoryname

- Directory Permissions Revisited
 - Permissions on a directory can affect the files in the directory.
 - If the file permissions look correct, start checking directory permissions.
 - Work your way up to the root
- File Creation Mask
 - File creation mask determines default permissions.
 - If no mask were used permissions would be:
 - * 777 for directory
 - * 666 for files
- The umask Command

```
umask [-S] <mode>
```

- Sets the file creation mask to mode, if given.
- Use -S t symbolic notation.

```
| | |Directory|File|
|---|:---:|:---:|
|Base Permission|777|666|
|Subtract Umask|\-022|\-022|
|Creations Permission|755|644|
```

- Special Modes
 - umask 0022 is the same as umask 022
 - chmod 0644 is the same as chmod 644
 - The special modes are:
 - * setuid
 - * setgid
 - * sticky
- Summary
 - Symbolic permissions.
 - Numeric/octal permissions.
 - File vs Directory permissions
 - Changing permissions.
 - Working with groups.
 - File creation mask.

Special Modes

File Attributes

 \mathbf{ACLs}

Rookit Hunter