Mathematical Foundations of Infinite-Dimensional Statistical Models

Anderson's Lemma, Comparison and Sudakov's Lower Bound

XIN Baiying

2024/12/11

2.4.1 Anderson's Lemma

 Anderson's lemma focuses on centered Gaussian measures on convex and symmetric sets. Thus first define convex and symmetric sets.

Definition (Convex and Symmetric Set)

A set C in a real vector space is called convex, if $\sum_{i=1}^n \lambda_i x_i \in C$ for all $x_i \in C$ and $\lambda_i \in \mathbb{R}$ with $\sum_{i=1}^n |\lambda_i| = 1$.

- Convex: Intuitively, a set is convex, then the line segment between any two points in the set is also in the set.
- Symmetric: if $x \in C$, then $-x \in C$.

Example (Balls centered at the origin in Banach spaces)

$$\{x: ||x|| \le r\}$$

Then intuitevely, for a centered Gaussian measure μ on \mathbb{R}^n , if set C is measurable, convex and symmetric, then

$$\mu(C+x) \leq \mu(C) \quad ext{for all } x \in \mathbb{R}^n.$$

- $C+x=\{y+x:y\in C\}$, which is the set obtained by translating C in the direction of x.
- As C is symmetric, the origin must be in C, so C+x can be seen as the set away from the origin by x.

Specifically, assume Y, Z are two independent centered Gaussian random vectors in \mathbb{R}^n .

• i.e. Y,Z has 0 mean and covariance matrix C_Y,C_Z respectively.

Further define a combined random vector X=Y+Z, with covariance matrix $C_Z=C_X-C_Y$ being non-negative definite.

Then, we have:

$$\Pr\{X \in C\} = \int \Pr\{Y \in C - z\} \mathrm{d}\mathcal{L}_Z(z)$$

• This is because Y=X-Z, thus $X\in C\Leftrightarrow Y\in C-z$. Then $\Pr\{Y\in C-z\}=\Pr\{X\in C\mid Z=z\}.$ Finally integrate over all possible z.

(Cont.)

And an inequality:

$$\Pr\{X \in C\} = \int \Pr\{Y \in C - z\} \mathrm{d}\mathcal{L}_Z(z) \leq \int \Pr\{Y \in C\} \mathrm{d}\mathcal{L}_Z(z) = \Pr\{Y \in C\}$$

• Intuitively, it can be regarded as Y is a Gaussian random vector 'around' C, and Z is a (symmetric, centered) Gaussian noise added to Y. After convolution, the "effective" mass of Y+Z in C has been reduced. Thus the probability of observing X in C is no more that of Y in C.

The modern proof of Anderson's lemma uses **Brunn-Minkovski** inequality, expressing a **log-concavity** property of some certain functions.

Thus, first introduce some basic concepts w.r.t. **Brunn-Minkovski** inequality for Lebesgue measure in \mathbb{R}^n .

Given two sets A, B in vector space, define:

- Minkovski sum: $A+B=\{a+b:a\in A,b\in B\}.$
- λ -dilation: $\lambda A = \{\lambda a : a \in A\}$.

 \dagger In the following content, m will stand for the Lebesgue measure on $\mathbb R$ for any n-dimensional set.

Lemma 2.4.1

Let A,B be Borel measurable sets in $\mathbb R$. Then

$$m(A+B) \geq m(A) + m(B)$$
.

Proof

Generally, it can be proved by the following steps:

- 1. Show that A+B is Lebesgue measurable.
- 2. W.L.O.G, assume A, B are compact.
- 3. Translate A,B to $A\subset \{x\leq 0\}, B\subset \{x\geq 0\}$.
- 4. Show that $m(A+B) \geq m(A \cup B) = m(A) + m(B)$.

Proof (cont.):

- ullet Show that A+B is Lebesgue measurable.
 - \circ As A,B are Borel measurable, then A imes B is Borel measurable in \mathbb{R}^2 .
 - $\circ \ A+B$ is the image of a continuous mapping $(x,y)\mapsto x+y$ from A imes B to $\mathbb R.$
 - \circ By the property of Borel sets: any continuous mapping of Borel sets are analytic sets; analytic sets on $\mathbb R$ are always Lebesgue measurable.
- W.L.O.G, assume A,B are compact.
 - $\circ m$ is a Lebesgue measure on $\mathbb R$ and thus regular, so we can approximate A,B by compact sets.

Proof (cont.):

- Translate A,B to $A\subset \{x\leq 0\}, B\subset \{x\geq 0\}.$
 - Fact: For Lebesgue measure, translation does not change the measure of a set.
 - \circ Re-define $A:=A+\{-\sup A\}$, $B:=B+\{-\inf B\}$.
 - \circ Then $A\subset \{x\leq 0\}$, $B\subset \{x\geq 0\}$, $A\cap B=\{0\}$.
- Show that $m(A+B) \geq m(A \cup B) = m(A) + m(B)$.
 - $\circ \ A+B\supseteq A\cup B$, thus $m(A+B)\geq m(A\cup B)$.
 - $\circ \ m(A \cup B) = m(A) + m(B)$ as $A \cap B = \{0\}$.

Précopa-Leindler Theorem

Let f,g,arphi be Lebesgue measurable functions on \mathbb{R}^n taking values in $[0,\infty]$ and satisfying: for some $0<\lambda<1$ and all $u,v\in\mathbb{R}^n$,

$$\varphi(\lambda u + (1-\lambda)v) \ge f^{\lambda}(u)g^{1-\lambda}(v)$$
 (2.49)

Then

$$\int \varphi dm \ge \left(\int f dm \right)^{\lambda} \left(\int g dm \right)^{1-\lambda} \tag{2.50}$$

- Précopa-Leindler Theorem is a generalization of the classical Hölder inequality.
- Intuitively, (2.49) is a log-concavity property of φ w.r.t. f,g. And Précopa-Leindler shows that such property also holds for the integral perspective.

Précopa-Leindler Theorem (cont.)

Proof:

It can be proved by induction on the number of dimensions n.

For n=1, the inequality is proved from inequality (2.49) with Lemma 2.4.1.

- W.L.O.G, assume $\|f\|_{\infty}=\|g\|_{\infty}=1$.
- Define two sets $\{u:f(u)\geq t\}$ and $\{v:g(v)\geq t\}$. Then

$$\lambda \{f \ge t\} + (1 - \lambda)\{g \ge t\} \subseteq \{\varphi \ge t\}.$$

- \circ By definition, $f^{\lambda}(u)g^{1-\lambda}(v) \geq t^{\lambda}t^{1-\lambda} = t$.
- \circ By (2.49), $arphi(\lambda u + (1-\lambda)v) \geq f^{\lambda}(u)g^{1-\lambda}(v) \geq t$.
- \circ Thus, $\lambda u + (1-\lambda)v \in \{w: arphi(w) \geq t\}$.

Précopa-Leindler Theorem - Proof (cont. for n=1)

- By Lemma 2.4.1 $(m(A+B)\geq m(A)+m(B))$ and fact $m(\lambda A)=\lambda^n m(A)$: $m(\{\varphi\geq t\})\geq \lambda m(\{f\geq t\})+(1-\lambda)m(\{g\geq t\})$
- Integrate the last inequality over *t*:

$$\int_0^\infty m(\{arphi \geq t\}) \mathrm{d}t \geq \int_0^\infty \lambda m(\{f \geq t\}) + (1-\lambda) m(\{g \geq t\}) \mathrm{d}t$$

• By definition of measure:

$$\int arphi \mathrm{d} m \geq \lambda \int f \mathrm{d} m + (1-\lambda) \int g \mathrm{d} m$$

• By concavity of \log function ($\lambda a + (1-\lambda)b \geq a^{\lambda}b^{1-\lambda}$):

$$\int arphi \mathrm{d} m \geq \left(\int f \mathrm{d} m
ight)^{\lambda} \left(\int g \mathrm{d} m
ight)^{1-\lambda} \quad \Box$$

Précopa-Leindler Theorem - Proof (cont. for n-1 to n)

- Assume that the result holds for n-1, now proves it also holds on n.
- In \mathbb{R}^n , fix a one dimension's coordinate, say, x_n . Then rewrite x as (x',x_n) , where $x'\in\mathbb{R}^{n-1}$. Then re-define $\varphi_{x_n}(x')=\varphi(x',x_n)$, $f_{x_n}(x')=f(x',x_n)$, $g_{x_n}(x')=g(x',x_n)$.
 - \circ Then as x_n is fixed, use the hypothesis on n-1 dimensions:

$$\int_{\mathbb{R}^{n-1}} arphi_{x_n} \mathrm{d} m_{n-1} \geq \left(\int f_{x_n} \mathrm{d} m_{n-1}
ight)^{\lambda} \left(\int g_{x_n} \mathrm{d} m_{n-1}
ight)^{1-\lambda}$$

ullet Then integrate over x_n with Fubini Theorem and by induction hypothesis:

$$\int_{\mathbb{R}^n} arphi \mathrm{d} m \geq \left(\int_{\mathbb{R}^n} f \mathrm{d} m
ight)^{\lambda} \left(\int_{\mathbb{R}^n} g \mathrm{d} m
ight)^{1-\lambda} \quad \Box$$

2.4.1 Anderson's Lemma: Log-concavity of Gauss. Measures in \mathbb{R}^n

Theorem 2.4.3 (Log-concavity of Gaussian Measures in \mathbb{R}^n)

Let μ be a centered Gaussian measure on \mathbb{R}^n . Then, for any Borel sets A, B in \mathbb{R}^n and $0 < \lambda < 1$,

$$\mu(\lambda A + (1 - \lambda)B) \ge \mu(A)^{\lambda}\mu(B)^{1 - \lambda} \quad (2.51)$$

• Intuitively, this theorem shows that, for two sets A,B in \mathbb{R}^n , if we find a 'average' set $\lambda A + (1-\lambda)B$ (by convex combination), then the measure of this average set is no less than some 'geometric average' of the measures of A,B.

2.4.1 Anderson's Lemma: Log-concavity of Gauss. Measures in \mathbb{R}^n

Proof
$$(\mu(\lambda A + (1-\lambda)B) \geq \mu(A)^{\lambda}\mu(B)^{1-\lambda})$$

- Assume μ is supported by a subspace $V\subset\mathbb{R}^n$. And on V, the density of μ is $\phi(x)=c\exp(-|\Gamma x|^2/2)$, where $\Gamma:V\mapsto V$ is defined as $\Gamma=\Sigma^{-1/2}$, where Σ is the covariance matrix of μ ; Γ is a strictly positive definite operator.
 - \circ Intuitively, $\phi(x)$ represents the weight of some x in the Gaussian measure.
- Then take logrithm, function $x\mapsto \log \phi(x)=-|\Gamma x|^2/2, x\in V$ has the property of log-concavity:

$$\phi(\lambda u + (1-\lambda)v) \geq \phi^{\lambda}(u)\phi^{1-\lambda}(v), \quad u,v \in V \quad (2.52)$$

• Later we will use the **Précopa-Leindler Theorem** to prove the log-concavity of Gaussian measures. And this inequality can be checked that satisfies the condition $*: \varphi(\lambda u + (1-\lambda)v) \geq f^{\lambda}(u)g^{1-\lambda}(v)$.

2.4.1 Anderson's Lemma: Log-concavity of Gauss. Measures in \mathbb{R}^n

Proof (cont.)
$$(\mu(\lambda A + (1-\lambda)B) \ge \mu(A)^{\lambda}\mu(B)^{1-\lambda})$$

- Consider indicator functions \mathbb{I}_A , \mathbb{I}_B of sets A,B respectively. Then define the density function: $f=\phi\mathbb{I}_{A\cap V}$, $g=\phi\mathbb{I}_{B\cap V}$. And the density function of $\lambda A+(1-\lambda)B$ is $\varphi=\phi_{\lambda A+(1-\lambda)B}=\phi\cdot\mathbb{I}_{\lambda(A\cap V)+(1-\lambda)(B\cap V)}$.
- Then apply Précopa-Leindler Theorem to give:

$$\int_{\lambda(A\cap V)+(1-\lambda)(B\cap V)} \phi \mathrm{d}m \geq \left(\int_{A\cap V} \phi \mathrm{d}m \right)^{\lambda} \left(\int_{B\cap V} \phi \mathrm{d}m \right)^{1-\lambda}$$

where m is the Lebesgue measure on V.

• Given that $\mu(A)=\int_{A\cap V}\phi\mathrm{d}m$, and the same for $\mu(B)$ and $\mu(\lambda A+(1-\lambda)B)$. Then the inequality holds for the Gaussian measure μ on \mathbb{R}^n .

2.4.1 Anderson's Lemma

Theorem 2.4.4 (Anderson's Lemma)

Let $X=(g_1,\cdots,g_n)$ be a centered jointly normal vector in \mathbb{R}^n , and let C be a measurable convex symmetric set of \mathbb{R}^n . Then for all $x\in\mathbb{R}^n$,

$$\Pr\{X \in C + x\} \le \Pr\{X \in C\}$$
 (2.53)

Proof

- Define $\mu = \mathcal{L}(X)$, the Gaussian measure of X.
- Recall (2.51) with $\lambda=\frac{1}{2}$: $\mu(\frac{A+B}{2})\geq \mu(A)^{1/2}\mu(B)^{1/2}$ for all Borel sets.
 - $\circ \;$ Define A=C+x, B=C-x. As C is symmetric, $\mu(A)=\mu(B)$.
 - \circ Bring in A, B to (2.51):

$$\mu(C) \geq \mu(C+x)^{1/2} \mu(C-x)^{1/2} = \mu(C+x)^{1/2}$$

 \circ i.e. $\Pr\{X \in C + x\} \leq \Pr\{X \in C\}$.

2.4.1 Anderson's Lemma: Infinite-Dimensional Extension

Theorem 2.4.5 (Anderson's Lemma in Infinite-Dimensional Spaces)

Let B be a separable Banach space, let X be a B-valued centered Gaussian random variable, and let C be a cloased, convex, symmetric subset of B. Then for all $x \in B$,

$$\Pr\{X \in C + x\} \le \Pr\{X \in C\}$$

In particular, $\Pr\{\|X\| \leq \epsilon\} > 0$, for all $\epsilon > 0$.

Proof

ullet First apply **Hahn-Banach Separation Theorem** and the separability of Banach space to reduce the problem to a countable subset T_C :

$$C=\cap_{f\in T_C}\{x\in B: |f(x)|\leq 1\}$$

where $T_C \subset D_C \subset B^*$.

 \circ This means that, point $x \in B$ belongs to C if and only if for all linear functionals $f \in D_C$, $|f(x)| \leq 1$. And by approximation, it suffices to check only in T_C .

2.4.1 Anderson's Lemma: Infinite-Dimensional Extension

Proof (cont.)

• State that: $\{X\in C\}=\cap_{f\in T_C}\{x\in B:|f(X)|\leq 1\}=\sup_{f\in T_C}\{x\in B:|f(X)|\leq 1\}$ (the last equality holds by property of set operations). Thus,

$$\Pr\{X \in C\} = \Pr\{\sup_{f \in T_C} |f(X)| \leq 1\} = \lim_{n o \infty} \Pr\{\max_{f \in T_n} |f(X)| \leq 1\}$$

where T_n is a finite subset of T_C , and $T_n \uparrow T_C$.

• Similarly, for X + x:

$$\Pr\{X \in C + x\} = \lim_{n o \infty} \Pr\{\max_{f \in T_n} |f(X + x)| \leq 1\}$$

- Then by Theorem 2.4.4 (Finite case), for all finite T_n , $\Pr\{\max_{f\in T_n}|f(X+x)|\leq 1\}\leq \Pr\{\max_{f\in T_n}|f(X)|\leq 1\}.$
- By taking limit, $\Pr\{X \in C + x\} \leq \Pr\{X \in C\}$. \square

2.4.1 Anderson's Lemma: Infinite-Dimensional Extension

In particular, $\Pr\{\|X\| \leq \epsilon\} > 0$, for all $\epsilon > 0$.

Proof

- Consider a dense countable subset in Banach space $B:\{x_i\}_{i\in\mathbb{N}}\subseteq B.$ For each x_i , define a closed ball $C_i=\{x\in B:\|x-x_i\|\leq\epsilon\}.$
 - \circ These C_i covers the whole space B_i as $\{x_i\}$ is dense.
 - \circ C_i is closed, convex, symmetric, and thus satisfies the Andr. Lemma.
- ullet Then, by its density: $\Pr\{\|X\| \leq \epsilon\} = \Pr\{\cup_{i=1}^\infty C_i\}$
- Given that for each C_i , $\Pr\{X \in C_i\} > 0$, then $\Pr\{\|X\| \leq \epsilon\} = \Pr\{\cup_{i=1}^\infty C_i\} > 0$.

2.4.1 Anderson's Lemma: Khatri-Sidak Inequality

Collary 2.4.6 (Khatri-Sidak Inequality)

Let $n \geq 2$, and let g_1, \cdots, g_n be jointly normal centered random variables. Then, for all $x \geq 0$,

$$\Pr\{\max_{1\leq i\leq n}|g_i|\leq x\}\geq \Pr\{|g_1|\leq x\}\Pr\{\max_{2\leq i\leq n}|g_i|\leq x\}$$

and hence, iterating,

$$\Pr\{\max_{1\leq i\leq n}|g_i|\leq x\}\geq \prod_{i=1}^n\Pr\{|g_i|\leq x\}.$$

2.4.1 Anderson's Lemma: Khatri-Sidak Inequality

Proof (
$$\Pr\{\max_{1\leq i\leq n}|g_i|\leq x\}\geq \Pr\{|g_1|\leq x\}\Pr\{\max_{2\leq i\leq n}|g_i|\leq x\}$$
)

- Fact: $\Pr\{\max_{1\leq i\leq n}|g_i|\leq x\}=\lim_{t o\infty}\Pr\{\max_{2\leq i\leq n}|g_i|\leq x,|g_1|\leq t\}.$
- Define $f(t):=\Pr(|g_1|< t,(g_2,\cdots,g_n)\in A)$, where A is an arbitrary convex and symmetric subset of \mathbb{R}^{n-1} . $g(t):=\Pr(|g_1|\le t)$
- And now consider: $f(t)/g(t) = \Pr((g_2, \cdots, g_n) \in A \mid |g_1| \leq t)$.
 - \circ It suffices to show that f(t)/g(t) is monotone decreasing in t:
 - $lacksquare \mathsf{As}\,t o\infty$, $\Pr(|g_1|\le t) o 1$. Then

$$\lim_{t o\infty}\Pr(\max_{2\leq i\leq n}|g_i|\leq x\;\;|\;\;|g_1|\leq t)=\Pr(\max_{2\leq i\leq n}|g_i|\leq x)$$

■ Thus as long as f(t)/g(t) is monotone decreasing,

$$\Pr(\max_{2 \leq i \leq n} |g_i| \leq x \mid |g_1| \leq t) \geq \Pr(\max_{2 \leq i \leq n} |g_i| \leq x).$$

And the Khatri-Sidak inequality can be then proved.

2.4.1 Anderson's Lemma: Khatri-Sidak Inequality

Proof (cont.)

Now prove that f(t)/g(t) is monotone decreasing in t:

- Denote ϕ_1 as the density of g_1 , and $X=(g_2,\cdots,g_n)$.
- Then we have:

$$\Pr\{X \in A \mid |g_1| \leq t\} = \int_{-t}^t \Pr\{X \in A \mid g_1 = u\} \mathrm{d}\mathcal{L}_{g_1 \mid |g_1| \leq t}(u) = \int_{-t}^t \Pr\{X \in A \mid g_1 = u\} \phi_1(u) \mathrm{d}u / \Pr\{|g_1| \leq t\}$$

• Furthermore, there are facts that:

$$egin{aligned} \circ & f(t) = \int_{-t}^t \Pr\{X \in A \mid g_1 = u\} \phi_1(u) \mathrm{d}u, \ & f'(t) = 2\Pr\{X \in A \mid g_1 = t\} \phi_1(t). \end{aligned}$$

$$\circ \Pr\{X \in A \mid |g_1| \leq t\} \leq \Pr\{X \in A | g_1 = t\}$$

And finally:

$$(f/g)'(t) = 2arphi_1(t)\Pr\{X\in A\mid g_1=t\}\Pr\{|g_1|\leq t\} - 2\Pr\{|g_1|\leq t, (g_2,\ldots,g_n)\in A\}arphi_1(t) \ = 2arphi_1(t)\Pr\{|g_1|\leq t\}\left[\Pr\{X\in A\mid g_1=t\} - \Pr\{X\in A\mid |g_1|\leq t\}\right]\leq 0.$$

2.4.2 Slepian's Lemma: Identity of Normal Density

Let $f(C,x)=[(2\pi)^n\det C]^{-1/2}\exp(-xC^{-1}x^\top/2)$ be the $\mathcal{N}(0,C)$ density in \mathbb{R}^n , where $C=(c_{ij})_{n\times n}$ is a symmetric positive definite matrix, $x=(x_1,\cdots,x_n)$. Then the following identity holds:

$$\frac{\partial f(C,x)}{\partial C_{ij}} = \frac{\partial^2 f(C,x)}{\partial x_i x_j} = \frac{\partial^2 f(C,x)}{\partial x_j x_i}, \quad 1 \le i < j \le n \quad (2.54)$$

• The proof of this identity can be done by the inversion formula for characteristic functions of Gaussian measures.

2.4.2 Slepian's Lemma: Theorem 2.4.7

Theorem 2.4.7

Let $X=(X_1,\cdots,X_n)$ and $Y=(Y_1,\cdots,Y_n)$ be centered normal vectors in \mathbb{R}^n s.t.

 $\mathbb{E}X_i^2=\mathbb{E}Y_j^2=1$ for all i,j. Denote $C_{ij}^1=\mathbb{E}X_iX_j, C_{ij}^0=\mathbb{E}Y_iY_j$, and $ho_{ij}=\max\{|C_{ij}^1|,|C_{ij}^0|\}$, $(x)^+:=\max(x,0)$.

For any $\lambda_i \in \mathbb{R}$, we have:

$$\Pr\left(\bigcap_{i=1}^{n}\{X_{i} \leq \lambda_{i}\}\right) - \Pr\left(\bigcap_{i=1}^{n}\{Y_{i} \leq \lambda_{i}\}\right) \leq \frac{1}{2\pi} \sum_{1 \leq i < j \leq n} \left(C_{ij}^{1} - C_{ij}^{0}\right)^{+} \cdot \frac{1}{(1 - \rho_{ij}^{2})^{1/2}} \exp\left(-\frac{\lambda_{i}^{2} + \lambda_{j}^{2}}{2(1 + \rho_{ij})}\right), \ (2.55)$$

Moreover, for $\mu_i \leq \lambda_i$ and $\nu = \min\{|\lambda_i|, |\mu_i| : i = 1, \ldots, n\}$, we have:

$$\left| \Pr \left(\bigcap_{i=1}^n \{ \mu_i \leq X_i \leq \lambda_i \} \right) - \Pr \left(\bigcap_{i=1}^n \{ \mu_i \leq Y_i \leq \lambda_i \} \right) \right| \leq \frac{2}{\pi} \sum_{1 \leq i < j \leq n} \left| C_{ij}^1 - C_{ij}^0 \right| \cdot \frac{1}{(1 - \rho_{ij}^2)^{1/2}} \exp \left(- \frac{\nu^2}{1 + \rho_{ij}} \right), \ (2.56)$$