

UŞAK ÜNİVERSİTESİ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ 2022-2023 GÜZ DÖNEMİ

MİKROELEKTRONİK DEVRELER-I PROJE RAPORU

Proje No: Proje 1

Proje Tarihi :14/03/2023

Proje Teslim Tarihi: 15/04/2023

Adı Soyadı: Şerif Batıkan Çobanoğlu

Öğrenci No:190517012

I. GİRİŞ

Uşak Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Mikroelektronik Devreler-I dersinde Proje olarak verilen bu proje sismik enkaz dinleme modelinin LTSpice simülasyonu, Altium Schematic ve PCB çiziminin yapılması ve baskı devreye dönüştürülmesi amaçlanmıştır.

II. RAPOR VE ARAŞTIRMA TEKNİKLERİ

İlgili proje hazırlanırken öncelikle ders kapsamında anlatılan bilgilerden ve proje ile alakalı atılan örnek projelerden yararlanılmıştır.

Rapor tekniğine gelince ise, projenin önce ne olduğu amacı daha sonrasında projenin yapım aşamaları, kullanılan komponentler ve karşılaşılan zorluklar anlatılmıştır.

III. SİSMİK ENKAZ DİNLEME CİHAZI

AMAÇ: Depremden sonra yıkılan binalarda enkaz altında kalan canlı birisinin olup olmadığını tespit etmek.

Çalışma Prensibi: Öncelikle enkazdaki insandan eğer sesimizi duyuyor ise duvara veya sert bir yere vurulması istenir. Duvara vurulduktan sonra katının iletimi sayesinde vurmadan kaynaklı oluşan titreşim sensörü titreşimi algılar, devrenin içindeki opamp sayesinde ise yükseltme işlemi yapılır ve kulaklığımıza iletir. Ses algılanıp tespit edildikten sonra ise gerekli kurtarma çalışmalarına başlanır.

Devrede Kullanılan Malzemeler:

Direnç: 2 adet $100k\Omega$, 2 adet $1M\Omega$, 1 adet $1k\Omega$

Diyot: 2 adet 1N4148 diyot

Kapasitör: 2 adet 100nF, 1 adet 1uF, 1 adet 220uF, 1 adet 10uF

Opamp: 1 adet TL072

Batarya: 9V pil

Piezo Titreşim Sensörü

Kulaklık jak soketi: Pj320 d

Devrede Kullanılan Malzemelerin Datasheet ve Açıklamaları:

Diyot: Diyot akımı tek yönlü geçiren bir yarı elektronik devre elemanıdır. Aktarılan akım değerini sınırlamaya yararlar.

Kapasitör: Kapasitör devreyi kısa devrelerden ve aşırı yüklenmeden korur. Aynı zamanda güç kaynağında filtreleme işlevi de görür.

Piezo Titreşim Sensörü: Piezo titreşim sensörü titreşimi algılar ve devreye aktarır.

Opamp: Opamp devrede yükseltme işlemi için gereklidir. TL072 opamp 9V pile uygun olduğu için kullanılmıştır.

Batarya: Devreye enerji vermesini ve devrenin çalışmasını sağlar.

TL072 Opamp Datasheet:

PIN CONNECTIONS (top view)

Figure 1 Pin Giriş ve Çıkışları

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
Vcc	Supply Voltage - (note 1)		±18	V
Vi	Input Voltage - (note 3)		±15	V
Vid	Differential Input Voltage - (note 2)		±30	V
Ptot	Power Dissipation		680	mW
	Output Short-circuit Duration - (note 4)		Infinite	
T _{oper}	Operating Free Air Temperature Range	TL072C,AC,BC TL072I,AI,BI TL072M,AM,BM	0 to 70 -40 to 105 -55 to 125	°C
T _{stg}	Storage Temperature Range		-65 to 150	°C

Figure 2 Mutlak Maksimum Değerleri

ELECTRICAL CHARACTERISTICS

V_{CC} = ±15V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter		721,M,A 1,BC,BI,			TL0720	:	Unit
		Min.	Тур.	Max.	Min.	Тур.	Max.	
Vio	Input Offset Voltage (R _S = 50Ω) $T_{amb} = 25^{\circ}C$ TL072 TL072A TL072B $T_{min.} \le T_{amb} \le T_{max.}$ TL072 TL072A TL072A TL072B		3 3 1	10 6 3 13 7 5		3	10 13	mV
DVio	Input Offset Voltage Drift		10			10		αV/°C
lio	Input Offset Current * T _{amb} = 25°C T _{min.} ≤ T _{amb} ≤ T _{max.}		5	100 4		5	100 10	pA nA
lь	Input Bias Current * T _{amb} = 25°C T _{min.} ≤ T _{amb} ≤ T _{max.}		20	200 20		20	200 20	pA nA
A _{vd}	Large Signal Voltage Gain ($R_L = 2k\Omega$, $V_O = \pm 10V$) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	50 25	200		25 15	200		V/mV
SVR	Supply Voltage Rejection Ratio (R _S = 50Ω) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	80 80	86		70 70	86		dB
Icc	Supply Current, per Amp, no Load $T_{amb} = 25^{\circ}C$ $T_{min.} \leq T_{amb} \leq T_{max.}$		1.4	2.5 2.5		1.4	2.5 2.5	mA
Vicm	Input Common Mode Voltage Range	±11	+15 -12		±11	+15 -12		V
CMR	Common Mode Rejection Ratio (Rs = 50Ω) $T_{amb} = 25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$	80 80	86		70 70	86		dB
los	Output Short-circuit Current Tamb = 25°C T _{min.} ≤ T _{amb} ≤ T _{max.}	10 10	40	60 60	10 10	40	60 60	mA
±V _{OPP}	$ \begin{array}{ll} \text{Output Voltage Swing} \\ \text{$T_{amb} = 25^{\circ}$C} & \text{$R_{L} = 2k\Omega$} \\ \text{$R_{L} = 10k\Omega$} \\ \text{$T_{min, \le T_{amb} \le T_{max.}$} & \text{$R_{L} = 2k\Omega$} \\ \text{$R_{L} = 10k\Omega$} \end{array} $	10 12 10 12	12 13.5		10 12 10 12	12 13.5		V
SR	Slew Rate (V_{in} = 10V, R_L = 2k Ω , C_L = 100pF, T_{amb} = 25°C, unity gain)	8	16		8	16		V/ccs
tr	Rise Time (V_{in} = 20mV, R_L = 2k Ω , C_L = 100pF, T_{amb} = 25°C, unity gain)		0.1			0.1		œs
Kov	Overshoot (V_{in} = 20mV, R_L = 2k Ω , C_L = 100pF, T_{amb} = 25°C, unity gain)		10			10		96
GBP	Gain Bandwidth Product (f = 100kHz, $T_{amb} = 25^{\circ}C$, $V_{in} = 10mV$, $R_{L} = 2k\Omega$, $C_{L} = 100pF$)	2.5	4		2.5	4		MHz
Ri	Input Resistance		10 ¹²			10 ¹²		Ω
THD	Total Harmonic Distortion (f = 1kHz, A_V = 20dB, R_L = 2k Ω , C_L = 100pF, T_{amb} = 25°C, V_O = 2 V_{PP})		0.01			0.01		%
en	Equivalent Input Noise Voltage (f = $1kHz$, $R_s = 100\Omega$)		15			15		nV ⊠⊞z
Øm	Phase Margin		45			45		Degree
V ₀₁ /V ₀₂	Channel Separation (A _v = 100)		120			120		dB

^{*} The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.

Figure 3 Karakteristik Tablo

PJ320 D datasheet:

PJ320

Product	Headphone jack/Audio connector/3PIN/TH
Product Mode	PJ320 / 3.5mm
Operating Temperature	-30°C ~70°C
Rated Load	DC 30V 0.5A
Insulation Resistance	>=100MΩ
Contact Resistance	=<0.03Ω
Actuating Force	3~20N
Life Test	10000 times
Pressure	AC500V(50Hz)/min
Colour	Black

Devrenin LTSpice Simülasyon Çizimi ve Simülasyonu:

* C:\Users\Batikan\AppData\Local\LTspice\Draft1.asc

O	perating Point	
V(n001):	9	voltage
V(n003):	4.5	voltage
V(n004):	4.5	voltage
7(n002):	9.19568	voltage
7(n008):	9.19568	voltage
7(n005):	9.19568	voltage
7(+):	4.5e-07	voltage
7(n007):	-0.000904543	voltage
7(n006):	-4.11246	voltage
(nc 01):	9.19572	voltage
7(nc 03):	-4.11242	voltage
(nc 02):	-4.30816	voltage
(C1):	4.5e-19	device current
(C2):	9.19568e-18	device current
(C3):	9.04543e-16	device current
(C4):	9e-19	device_current
(C5):	9e-17	device current
(R1):	4.5e-05	device current
(R2):	4.5e-05	device current
(R3):	-2.66454e-12	device current
(R4):	1.06581e-17	device_current
(R5):	-1.77636e-12	device_current
(V1):	-4.5079e-05	device current
x(u1:1):	2.5e-12	subckt current
x (u1:2):	-2.5e-12	subckt_current
x (u1:99):	-4.55032e-12	subckt_current
(u1:50):	-1.23735e-17	subckt current
x (u1:45):	4.5512e-12	subckt current
x (u2:1):	2.5e-12	subckt_current
(u2:2):	-2.5e-12	subckt_current
(u2:99):	-3.48842e-17	subckt current
x (u2:50):	-4.24872e-17	subckt current
x (u2:45):	-2.49909e-12	subckt current
x (u3:1):	-7.89823e-08	subckt current
x (u3:2):	7.89823e-08	subckt_current
x(u4:1):	-7.89823e-08	subckt current
(u4:2):	7.89823e-08	subckt current

Devrenin Altium Schematic ve PCB Çizimi:

