Variance-Gamma and Monte Carlo

Rohit Arora, Ying Wang

https://github.com/rpackage/VG-MonteCarlo.git

June 6, 2014

Table of contents

- Motivation
- 2 VG Distribution
- 3 Pricing
- Wariance Reduction
- Greeks
- 6 References

Motivation

- Asymmetric
- Heavy-Tailed

Normal Q-Q Plot

No Jumps

(Why VG?)

- Asymmetric
- Heavy-Tailed

No Jumps

$VG(\theta, \sigma, \nu)$

Density

$$f(x) = \int_0^\infty \frac{1}{\sigma\sqrt{2\pi g}} \exp\left(-\frac{(x - \theta g)}{2\sigma^2 g}\right) \frac{g^{t/\nu - 1} \exp\left(\frac{-g}{\nu}\right)}{\nu^{t/\nu} \Gamma\left(\frac{t}{\nu}\right)} dg$$

Characteristic function

$$\phi(u) = \left(\frac{1}{1 - \theta \nu u + (\sigma^2 \nu/2) u^2}\right)^{t/\nu}$$

API Functions

[E. Seneta (2004)]

- dVG
- pVG
- qVG
- fit.VG

Empirical CDF vs. Three distribution CDFs (sigma=0.0074,theta=-0.001,nu=0.36)

Parameter Sensitivity

$VG(\theta, \sigma, \nu, t)$

Process

$$S_t = S_0 e^{(r+\omega)t+X_t}$$
 $X_t = \theta G_t + \sigma W_{G_t} \quad \omega = rac{1}{
u} \ln \left(1 - heta
u - \sigma^2
u/2
ight)$

Characteristic function of $log(S_T)$

$$\phi(u) = S_0 e^{(r+\omega)iut} \left(\frac{1}{1 - \theta \nu u + (\sigma^2 \nu/2) u^2}\right)^{t/\nu}$$

Two Forms of VG process

Time Changed Brownian Motion

$$X_t = B_{\gamma_t^{\nu}}^{(\theta,\sigma)} = \theta \gamma_t^{\nu} + \sigma W_{\gamma_t^{\nu}}$$

Difference of Gamma Processes

$$\begin{split} X_t &= \gamma_t^{(\mu_+,\nu_+)} - \gamma_t^{(\mu_-,\nu_-)} \\ \mu_{\pm} &= \frac{1}{2} \left(\sqrt{\theta^2 + 2\frac{\sigma^2}{\nu}} \, \pm \, \theta \right) \quad \nu_{\pm} = \mu_{\pm}^2 \nu \end{split}$$

Simulating VG Paths

• Generate $\Delta G \sim \Gamma\left(\frac{\Delta t_i}{\nu}, \nu\right), \; Z_i \sim \mathcal{N}\left(0, 1\right)$ independently

BenchMarking

Fourier Transform of Call Price [Carr-Madan (1999)]

$$C_{T}(k) = \frac{e^{-\alpha k}}{2\pi} \int_{0}^{\infty} e^{-iuk} \Psi_{T}(u) du$$

Fourier Transform of Asian Call Price [Fusai-Meucci (2008)]

$$G_T = \left(\prod_{i=0}^N S_{t_i}\right)^{1/(N+1)}$$

$$\phi_{\ln(G_T)} = \exp\left\{i\omega\left(\ln\left(S_0 + m\frac{\Delta N}{2}\right)\right) + \sum_{k=1}^N \Psi_\Delta\left(\omega\frac{N-k+1}{N+1}\right)\right\}$$

Pricing with VG

	Estimated Price	Standard Error
VG Time Changed	7.3624611	0.0502044
VG Diff Gamma	7.43042828	0.05110586
VG FFT	7.402404	NA
GBM	8.05231697	0.04896859
GBM FFT	8.026385	NA

Table: European Call

	Estimated Price	Standard Error
VG Time Changed	12.00348248	0.04563806
VG Diff Gamma	11.95911826	0.04570866
VG FFT	12.03764	NA
GBM	12.73824066	0.04516489
GBM FFT	12.66162	NA

Table: European Put

Pricing with VG (Contd.)

	Estimated Price	Standard Error
VG Time Changed	2.39295990	0.02190057
VG FFT	2.393005	NA
GBM	2.73848509	0.02005997
GBM FFT	2.76867	NA

Table: Asian Call

	Estimated Price	Standard Error
VG Time Changed	10.0600321	0.0318425
VG FFT	10.00268	NA
GBM	10.37265283	0.03154842
GBM FFT	10.38007	NA

Table: Asian Put

Control Variate

Discretely monitored fixed strike Geometric option Control Variate: Same option but using BS framework

	Estimated Price	Standard Error
VG Time Changed	2.395449	8.785859e-05

Table: Asian Call

	Estimated Price	Standard Error
VG Time Changed	10.03663	0.0001258223

Table: Asian Put

Bridge Sampling [Avramidis-L'Ecuyer (2006)]

- **1** $X_0 = 0$ $\gamma_0 = 0$
- ② Generate $\gamma_T \sim \Gamma\left(\frac{T}{\nu}, \nu\right), X_T \sim \mathcal{N}\left(\theta \gamma_T, \sigma^2 \gamma_T\right)$
- 3 Loop from k = 1 to M: $n \leftarrow 2^{M-k}$ Loop from j =1 to 2^{k-1} $Y_i \sim \beta\left(\frac{t_i-t_{i-n}}{\nu}, \frac{t_{i+n}-t_i}{\nu}\right)$ $\gamma_{t_i} \leftarrow \gamma_{t_{i-n}} + Y_i\left(\gamma_{t_{i+n}} - \gamma_{t_{i-n}}\right)$ $Z_i \sim \mathcal{N}\left(0, \left(\gamma_{t_{i+n}} - \gamma_{t_i}\right) \sigma^2 Y_i\right)$ $X_{t_i} \leftarrow YX_{t_{i+n}} + (1 - Y_i)X_{t_{i-n}} + Z_i$

Importance Sampling

Exponential Twisting [Radon-Nikodym derivative]

$$\frac{dP}{dP'} = \exp\left(-t \int_{-\infty}^{+\infty} \left(k\left(x\right) - k'\left(x\right)\right) dx\right) \cdot \varphi^{+}\left(\tilde{\gamma}_{t}^{+}\right) \cdot \varphi^{-}\left(-\tilde{\gamma}_{t}^{-}\right)$$

$$\varphi^{\pm}\left(x\right) = \exp\left(2 \cdot \left(\frac{\mu'_{\mp}}{\sigma'^{2}} - \frac{\mu_{\mp}}{\sigma^{2}}\right) \cdot |x|\right)$$

σ	ν	θ	σ'	ν'	θ'
0.25	-0.05	0.5	0.35	-0.1	0.5

	Estimated Price	Standard Error
VG Diff Gamma	0.025807280	0.001583751
VG Importance Sampling	0.0237484936	0.0005620372

Table: European Call

Greeks

Pathwise Estimation

$$\frac{dY\left(\chi\right)}{d\chi} = \frac{dE\left[e^{-rT}payoff\left(S_{T}\right)\right]}{d\chi} = E\left[\frac{d\left(e^{-rT}payoff\left(S_{T}\right)\right)}{d\chi}\right]$$

European Calls

$$\Delta = \frac{de^{-rT}(S_T - K)^+}{dS_0} = e^{-rT} \mathbf{1}_{\{S_T > K\}} \frac{S_T}{S_0}$$

$$\rho = \frac{de^{-rT}(S_T - K)^+}{dr} = e^{-rT} \mathbf{1}_{\{S_T > K\}} TK$$

$$\theta = \frac{de^{-rT}(S_T - K)^+}{d\theta} = e^{-rT} \mathbf{1}_{\{S_T > K\}} S_T \left(T \frac{d\omega}{d\theta} + \gamma_T^{(\nu)} \right)$$

$$\kappa = \frac{de^{-rT}(S_T - K)^+}{d\sigma} = e^{-rT} \mathbf{1}_{\{S_T > K\}} S_T \left(T \frac{d\omega}{d\sigma} + W_{\gamma_T^{(\nu)}} \right)$$

Greeks Results

	Estimated Value	Standard Error
Finite Difference	0.47934777	0.03566071
Pathwise	0.465494395	0.001945311
Fourier	0.4653853	NA

Table: Delta European Call

	Estimated Value	Standard Error
Finite Difference	0.09000361	0.12400942
Pathwise	0.018325135	0.001374918
Fourier	0.01978011	NA

Table: Gamma European Call

	Estimated Value	Standard Error
Finite Difference	39.6033748	0.3656007
Pathwise	38.9640694	0.1599638
Fourier	39.13612	NA

Greeks Vs ν

Greeks Vs θ

Greeks Vs σ

References

- Madan, Dilip B.; Seneta, Eugene (1990). "The Variance Gamma (V.G.) Model for Share Market Returns". Journal of Business 63 (4): 511524
- Yu, Michael C. "Variance-Gamma and Monte Carlo." In Advances in Mathematical Finance, edited by Michael C. Fu, Robert A. Jarrow, Ju-Yi J. Yen and Robert J. Elliott, 21-34: Birkhuser Boston, 2007.
- Oilip Madan, Peter Carr, Eric Chang (1998). "The Variance Gamma Process and Option Pricing". European FinanceReview 2: 79105
- Carr, P., and Madan, D. (1999). "Option valuation using the fast Fourier transform", The Journal of Computational Finance 2(4), 6173
- Fusai G, Meucci, A. (2008), Pricing Discretely Monitored Asian Options under Levy Processes, Journal of Banking and Finance, 32(10), p.2076-2088
- E. Seneta (2004). Fitting the variance-gamma model to financial data, Stochastic methods and their applications, J. Appl. Probab. 41A, 177187.

Thank you for your attention Any Questions

