Università degli Studi di Salerno

Teoria e Tecnica delle Telecomunicazioni - 17 dicembre 2015 -

— PROVA IN ITINERE —

Quesito 1 Si consideri una sorgente di informazione senza memoria X con alfabeto discreto \mathcal{X} e con pmf p(x). Sia $x^n = (x_1, \dots, x_n)$ una generica sequenza di lunghezza n prodotta dalla sorgente (cioè una n-sequenza di variabili aleatorie iid, ciascuna con pmf p(x)).

- **a.** Definire l'insieme tipico $\mathcal{T}_{\epsilon}^{(n)}$.
- **b.** Elencare e dimostrare le proprietà salienti dell'insieme tipico $\mathcal{T}^{(n)}_\epsilon$

Si consideri poi il caso binario: $\mathcal{X} = \{0, 1\}$, con $\mathbb{P}(X = 1) = a$, 0 < a < 1.

c. Stabilire per quali valori di a si verifica la seguente relazione

$$x^n \in \mathcal{T}_{\epsilon}^{(n)} \quad \Rightarrow \quad \left| \frac{1}{n} \sum_{i=1}^n x_i - a \right| < 10^{-3}$$

Quesito 2 Si illustri, con dovizia di dettagli analitici, il metodo geometrico per giustificare le formule della capacità di canale in relazione a:

- a. canale BSC con probabilità di errore ϵ (conteggio delle sequenze, approssimazione di Stirling);
- **b.** canale gaussiano con vincolo di potenza P (tecnica di impacchettamento delle sfere).

Quesito 3 Un dado da gioco è stato truccato in modo che mostri faccia pari con probabilità doppia rispetto a faccia dispari. Qual è la distribuzione a massima entropia del dado compatibile con tale vincolo?

Quesito 4 Siano X_1, X_2, X_3 , tre variabili aleatorie binarie definite sull'alfabeto $\mathcal{X} = \{0, 1\}$. Sia inoltre $\mathbb{P}(X_1 = 1) = p$. La variabile X_1 rappresenta l'ingresso di un canale BSC con probabilità di crossover 1/2, la cui uscita è X_2 . A sua volta X_2 rappresenta l'ingresso di un ulteriore canale BSC con probabilità di crossover ϵ , la cui uscita è X_3 . Si consideri la sorgente di informazione \mathcal{S} la cui uscita è il vettore $\mathbf{X} = (X_1, X_2, X_3)$. Assumendo $1/2 , ed <math>\epsilon > 0$ piccolo a piacere:

- **a.** calcolare l'entropia di sorgente H(X);
- **b.** progettare un codice di Huffman per la sorgente S, e determinarne la lunghezza media $\mathcal{L}(p,\epsilon)$.
- c. Ripetere l'esercizio assumendo questa volta $\epsilon=0$.

Quesito 5 Calcolare la capacità del canale $X \to Y$ DMC binario $(\mathcal{X}, p(y|x), \mathcal{Y})$, con $\mathcal{X} = \{0, 1\}$ e $\mathcal{Y} = \{0, 1, 2\}$, la cui matrice di transizione è

$$\left(\begin{array}{cccc} 1-a-b & a & b \\ & & & \\ b & & a & 1-a-b \end{array}\right)$$

Discutere poi il caso particolare in cui 1 - a - b = b.