Public Key Cryptography

Gianluca Dini
Dept. Ingegneria dell'Informazione
University of Pisa

Email: gianluca.dini@unipi.it

Version: 2021-03-29

Public Key Cryptography

INTRODUCTION

Public key encryption

- pubK_{Bob}: public key \ αωνίστ€ πε μΑ ≥ C tπΑνν
- privK_{Bob}: private key)

Alice knows Bob's public key pubK_{Bob}

Bob keeps secret his own private key privK_{Bob}

FOCUS SU

Public key encryption - Definition

- A public key encryption scheme is a triple of algs (G, E, D) s.t. και το τος του και κισμένη ανανικη ανανικη ανανικη
 - G is a randomized alg. for key generation (pk, sk)
 - -y = E(pk, x) is a randomized alg. that takes x ∈ M and outputs y ∈ C
 - -x = D(sk, y) is deterministic alg. that takes y ∈ C and outputs x ∈ M
 - fulfill the consistency property
 - ∀(pk, sk), ∀ x ∈ M, D(sk, E(pk, x)) = x
 OGM HESSIGGIO CUEDATO ROO' ESTIGNE DECEPTION

Security of PKE: informal

- Known pk ∈ K and y ∈ C, it is computationally infeasible to find the message x ∈ M such that E(pk, x) = y
- Known the public key pk ∈ K, it is computationally infeasible to determine the corresponding secret key sk ∈ K
- Constructions generally rely on hard problems from number theory and algebra

PKE is not perfect

- PK encryption scheme is not perfect
 - Proof
 - Let y = E(pk, x)
 - Adversary intercepts y over the channel
 - Adversary

 selects x' s.t. $Pr[M = x'] \neq 0$ (a priori)

 computes V' = E(pk, x')- lf y' == y (a posteriori)

 then x' = x and $Pr[M = x' \mid C = y] = 1$ else $Pr[M = x' \mid C = c] = 0$

PKE basic protocol

<u>Alice</u> <u>Bob</u>

 $(pk, sk) \leftarrow G()$

Digital envelope

- Public key cryptography is 2-3 orders of magnitude slower than symmetric key cryptography
 - Public-key performance can be a more serious bottleneck in constrained devices, e.g., mobile phones or smart cards, or on network servers that have to compute many publickey operations per second
- A digital envelope uses two layers for encryption:
 - Symmetric key encryption is used for message encryption and decryption.
 - Public key encryption is used to send symmetric key to the receiving party

I NOW WA USY OF POPL WESSAGEN WACENER 10 DER SESSELENT, There everyste

Hybrid protocol: digital envelope

Basic key transport protocol

Families of pub key algs

- Built on the common principle of one-way function
- A function f() is a one-way function if:
 - -y = f(x) is computationally easy, and
 - $-x = f^{-1}(y)$ is computationally infeasible
- Two popular one-way functions
 - Integer factorization
 - Discrete logarithm

Families of PK Cryptography

- Integer factorization schemes (mid 70s)
 - Most prominet scheme: RSA
- Discrete Logarithm Schemes (mid 70s)
 - Most prominet schemes: DHKE, ElGamal, DSA
- Elliptic Curves Schemes (mid 80s)
 - EC schemes are a generalization of the Discrete Logarithm algorithm
 - Most prominet schemes: ECDH, ECDSA

Families of PK Cryptography

- Other schemes
 - Multivariate Quadratic, Lattice
 - They lack maturity
 - Poor performance characteristics
 - Hyperelliptic curve cryptosystems
 - Secure and efficient
 - They have not gained widespread adoption

Main security mechanisms

- Key establishment
 - Establishing keys over an insecure channel
 - DHKE, RSA key transport
- Non repudiation and message integrity
 - Digital signatures
 - RSA, DSA, ECDSA
- Identification
 - Challenge-response protocol together digital signatures
- Encryption
 - RSA and ElGamal

Key Lenghts and Security Level

- An algorithm has security level of n bit, if the best known algorithm requires 2ⁿ steps
- Symmetric algorithms with security level of n have a key of length of n bits
- In asymmetric algorithms, the relationship between security level and cryptographic strengh is no at straightforward

CHAN 3 VOLE AND CERANDI -> CARRAGEON PU DIFFICILITY Key Lenghts and Security Level

	Algorithm Family	Cryptosystem	Security Level			
			80	128	192	256
\	Integer Factorization	RSA	1024 bit	3072 bit	7680 bit	15360 bit
	Discrete Logarithm	DH, DSA, ElGamal	1024 bit	3072 bit	7680 bit	15360 bit
	Elliptic curves	ECDH, ECDSA	160 bit	256 bit	384 bit	512 bit
	Symmetric key	AES, 3DES	80 bit	128 bit	192 bit	256 bit

RULE OF THUMB - The computational complexity of the three public key algorithm families grows roughly with the cube bit length

Public Key Cryptography

KEY AUTHENTICATION

Basic key transport protocol

Man-in-the-middle (MIM) attack

The protocol is insecure against **active** attacks

MIM attack against digital envelope

A trusted repository (I)

Public read-only repository trusted to preserve the integrity of the pairs <identifier, public key>

A trusted repository (II)

A trusted repository is not sufficient

Key authentication

- MIM attack is an active attack
- Lack of key authentication makes MIM possible
- Certificates are a solution

Public Key Cryptography

PLAINTEXT RANDOMIZATION

Attack against a small plaintex space

pubK: auctioneer's public key

- Intercept y
- Try all the possible x's until find x^* such that $y = E_{pubK}(x^*)$, then $x^* == x$
- $\text{ Let } x' = x^* + 1$
- Send $y' = E_{pubK}(x')$

Attack against a small plaintex space

- Attack complexity
 - If bid x is an integer, then up to 2^{32} attempts
 - − If bid $x \in [x_{min}, x_{max}]$, then #attempts $\ll 2^{32}$

Attack against a small plaintex space

- Countermeasure: salting
 - Bidder side
 - Salt s \leftarrow random()|_{r-bit}
 - Bid b \leftarrow (s, x)
 - $y = E_{pubK}(b)$
 - Auctioneer side
 - $(s, x) \leftarrow D_{privK}(b)$ and retain x
 - Adversary
 - Try alle the possible pairs (bid, salt)
 - Attack complexits gets multiplied by 2^r

UNIVERSITÀ DI PISA

(Annightermo non anoka