COVID-19 Vaccine Allocation

Michael Burgher Collin Powell Sandra Robles Munoz

Agenda

Notice how this is not bright orange.

- 1. Motivation
- 2. Our Problem
- 3. The Data
 - 4. Codifying the Data
- 5. The model
- 6. AMPL Implementation
- 7. Results
- 8. Recommendations
- 9. Future Improvements

MOTIVATION

Current Vaccine Allocation Strategy

Federal Level

- Federal Government buys vaccines from pharmaceutical providers
- Allots them to States based population size

State Level

- Colorado has 1.69% of the US' total population
- It receives 1.69% of available doses at any given time from the Federal Government

County

- Available service provides (think: hospitals) in a county can sign up to receive doses
- Doses provided are based on capacity, population, and committee recommendations

Motivation

• Committee recommendations can be inherently biased

Population Density is only one thing that should be considered

Our Proposal

- Optimize vaccine allocation in a way that minimizes human cost
- Consider the cost of *not* vaccinating people in a census tract

THE DATA

General Data

- Allocation limited to the 144 census tracts for Denver County
- 52 Vaccine Service Providers
 - Pharmacies
 - Clinics & Hospitals
 - Mass Vaccination Sites
- Cost to open a Service Provider
- Maximum Vaccine capacity at provider
- Distance from census tract centroids to all service providers

Total Population Density overlaid with vaccine providers

Cost of not vaccinating

- Social Vulnerability Index of the CDC, which is derived from several factors:
 - Socioeconomic Status
 - Household Composition & Disability
 - Minority Status & Language
 - Housing Type & Transportation
 - In 2018, two additional variables were added
 - ACS Estimates for persons without health insurance
 - Estimates of daytime population

SVI overlaid with vaccine providers

CODIFYINGTHE DAIA

Balancing costs

- Human "cost" of not vaccinating is a very complex issue.
- Choose to make the cost of not vaccinating equal to population with a few modifications:
 - SVI added based on area in which they live
 - Reduced depending on vaccination rates in their community
 - Multiply by 0.70 %vaccinated
- "Cost" to obtain Vaccine based on longest distance reasonable to travel to obtain vaccine (about 25 miles)
 - A longer distance also lowers likelihood of getting even if available

PROBLEM FORMULAIIUN

Initial Considerations

- Point in time
 - o Winter 2020
- Number of Vaccines
 - 10% of the County

Objective Function

min
$$\sum_i \sum_j (d_{ij} - \frac{c_i}{2p_i}) x_{ij}$$
 $p_i = \text{population}$ $d_{ij} = \text{cost of vaccine } i \text{ from } j$ $c_i = \text{cost of vaccinating no one in } i$

- Cost of vaccine based on distance in latitude and longitude
- The one-half is based on an average maximal distance away a vaccine can be assigned, in this case it is roughly equivalent to 25 miles.

Constraints

s.t.
$$\sum_{j} x_{ij} \leq 0.7p_i - v_i$$
 x_{ij} (int var) = vaccines from j to i v_i = vaccinated individuals $x_{ij} \geq 0$ p_i = population
$$\sum_{ij} x_{ij} \leq S$$
 $S = \text{Supply}$
$$\sum_{j} x_{ij} \geq b_i \geq 0$$
 b_i = equity
$$f_j m_j y_j \leq \sum_{i} x_{ij} \leq m_j y_j$$
 m_j = max capacity f_j = min open ratio y_j (bin var) = 1 if j open

IMPLEMENTATION

Implementation - Interesting Observations

8113 Parameters, 7488 Variables, 7827 Constraints

- Natural Relaxation
 - MINOS 74 iterations
 - CPLEX 1 dual simplex iteration (0 in Phase I)
- Y Binary (52 variables)
 - MINOS 264 Iterations, ignores binary but bounds between 0 and 1
 - CPLEX 66 MIP Simplex Iterations, 0 Branch-and-Bound Nodes
- Y Binary (52 variables) and X Integer (7,436)
 - MINOS 181 Iterations, ignores binary and integrality but bounds y between 0 and 1
 - CPLEX 66 MIP Simplex Iterations, 0 Branch-and-Bound Nodes
- We were under the impression that CPLEX would brand-and-bound on integer variables

Implementation - Decreasing Value with Increasing Vaccines - Possible Solutions

Quadratic Programming

Iterative Process

RESULTS

Our Results

Our Results

RECOMMENDATIONS

Recommendations

- Vaccine allocation should take into consideration under-represented or vulnerable communities to ensure herd immunity
- Any vaccine allocation strategy should take into account the complexities of the human capital "cost" of distribution
- During initial vaccine distribution, we recommend a concentrated allocation strategy
 - Pick high vulnerability communities first

Future Work

- Equity Data
- Non-Linearity
- Times later than zero

References and Data

- American Community Survey Tracts
 - https://www.denvergov.org/opendata/dataset/city-and-county-of-denver-american-community-survey-tracts-2015-2019
- Service Providers and Capacities
 - https://www.denvergov.org/Government/COVID-19-Information/Vaccination
 - https://www.cnbc.com/2021/02/16/biden-administration-increases-weekly-covid-vaccineshipments-to-states-and-pharmacies-.html
 - https://www.9news.com/article/news/local/next/covid-vaccine-doses-in-colorado-gone-towaste-throw-away/73-0619d83e-b38c-474f-8c0d-b1254b588946
- CDC Social Vulnerability Index
 - https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI documentation 2018.h
 tml

Thank you