Computer Vision

Naeemullah Khan

naeemullah.khan@kaust.edu.sa

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

KAUST Academy King Abdullah University of Science and Technology

November 19, 2023

4ロト4回ト4ミト4ミト ミークQで

1 / 61

KAUST Academy Computer Vision November 19, 2023

Computer Vision

Building artificial systems that process, perceive, and reason about visual data

Computer Vision is Everywhere

Some Applications

Image Classification

Image Retrieval

Object Detection

Ren, He, Girshick, and Sun, 2015

Image Segmentation

Fabaret et al, 2012

Video Classification

Simonyan et al, 2014

Pose Recognition (Toshev and Szegedy, 2014)

Medical Imaging

11 / 61

A white teddy bear sitting in the grass

A man in a baseball uniform throwing a ball

A woman is holding a cat in her hand

A man ridina a wave on top of a surfboard

A cat sitting on a suitcase on the floor

A woman standing on a beach holding a surfboard

KAUST Academy

Image Captioning

Vinyals et al, 2015

November 19, 2023

Image Generation

"Teddy bears working on new Al research underwater with 1990s technology"

DALL-E 2

Style Transfer

3D Vision

Gkioxari et al., "Mesh R-CNN", ICCV 2019

How to represent an image?

16 / 61

- Images are represented as Matrices with elements in [0, 255]
- Grayscale images have one channel while RGB images have 3 channels

KAUST Academy Computer Vision November 19, 2023

Ohttps://www.v7labs.com/blog/image-recognition-guide □ → ← 🗇 → ← 🗏 → 👢 → 🤉 🗸

Fully-Connected Neural Networks

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

$$z = W_1x_1 + W_2x_2 + \cdots + W_nx_n + b$$

⁰https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

KAUST Academy Somputer Vision November 19, 2023

Drawbacks of Fully-Connected Neural Networks

► The number of trainable parameters becomes extremely large

18 / 61

Drawbacks of Fully-Connected Neural Networks (cont.)

► Little or no invariance to shifting, scaling, and other forms of distortion

Drawbacks of Fully-Connected Neural Networks (cont.)

► Little or no invariance to shifting, scaling, and other forms of distortion

20 / 61

Drawbacks of Fully-Connected Neural Networks (cont.)

- ► The topology of the input data is completely ignored
- ightharpoonup For a 32 imes 32 image, we have
 - Black and white patterns: $2^{32*32} = 2^{1024}$
 - Grayscale patterns: $256^{32*32} = 256^{1024}$

Convolutional Neural Networks (CNNs)

$$z = W * x_{i,j} = \sum_{a=0}^{m-1} \sum_{b=0}^{n-1} W_{ab} x_{(i+a)(j+b)}$$

How Convolution Works?

Processing a single tile

channels

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

The **kernel** slides across the image and produces an output value at each position

The **kernel** slides across the image and produces an output value at each position

The **kernel** slides across the image and produces an output value at each position

We convolve multiple kernels and obtain multiple feature maps or **channels**

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \quad \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \quad \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Vertical edge detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	1	0	-1	
*	1	0	-1	=
	1	0	-1	

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Edge detection example

Padding

- ► Applying Convolution as such reduces the size of the borders.
- Sometimes this is not desirable.
- ► We can pad the border with zeros.

Padding (cont.)

► Same Convolution: Output is the same size as input

Padding (cont.)

► Full Convolution: output size = input size + kemel size - 1

Strided Convolution

► Kernel slides along the image with a step > 1

Strided Convolution (cont.)

► Kernel slides along the image with a step > 1

Pooling

► Compute mean or max over small windows to reduce resolution

Convolutions on RGB images

Multiple filters

Example of a conv layer

Pooling (cont.)

Χ

Single depth slice

y

max pool with 2x2 filters and stride 2

6	8	
3	4	

- No learnable parameters
- Introduces spatial invariance

Dilated Convolution

► Kernel is spread out, step > 1 between kernel elements

Activation

- ► Just like Fully-Connected Neural Networks, we can apply an activation over convolutional layer outputs
- ► It helps break linearity
- ► For example, Rectified Linear Unit (ReLU): $\sigma(x) = \max(0, x)$

15	5 20 0		35
18	0	25	100
20	0	25	0
101	75	18	23

RetU Layer

Why convolutions

10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0	0	*	
10	10	10	0	0	0		
10	10	10	0	0	0		
10	10	10	0	0	0		

1	0	-1	
1	0	-1	
1	0	-1	

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Convolutional Neural Networks

Components of a CNN

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Number of parameters

If you have 10 filters that are $3 \times 3 \times 3$ in one layer of a neural network, how many parameters does that layer have?

Floor
$$\left(\frac{(W-F+2P)}{S} + 1\right)$$

Most Notable CNNs

- ► AlexNet [Krizhevsky et al. 2012]
- ► VGGNet [Simonyan and Zisserman, 2014]
- ► InceptionNet (GoogLeNet) [Szegedy et al., 2014]
- ResNet [He et al., 2015]

AlexNet

- ► First big improvement in image classification
- ► Made use of CNN, pooling, dropout, ReLU and training on GPUs.
- 5 convolutional layers, followed by max-pooling layers; with three fully connected layers at the end

VGGNet

- ► Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer
- ► But deeper, more non-linearities and lesser parameters
- 13 or 16 conv layers with 3 fully-connected layers. Most params in the fully connected layer

InceptionNet

- Going Deep: 22 layers
- Only 5 million parameters! (12x less than AlexNet and 27x less than VGGNet)
- ► Introduced efficient "Inception module"
- ► Introduced "bottleneck" layers that use 1x1 convolutions to reduce feature channel size and computational complexity

Inception network

The problem of computational cost

Inception network

InceptionNet (cont.)

► Inception module: design a good local network topology (network within a network) and then stack these modules on top of each other

Inception module

Inception network

[Szegedy et al. 2014. Going deeper with convolutions]

- ► Very deep networks using residual connections
- ► 152-layer model for ImageNet
- Stacked Residual Blocks

► What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

► What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

63 / 61

► What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

► 56-layer model performs worse on both test and training error

64 / 61

► What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

- ► 56-layer model performs worse on both test and training error
- ► The deeper model performs worse, but it's not caused by overfitting!

► Fact: Deep models have more representation power (more parameters) than shallower models.

- ► Fact: Deep models have more representation power (more parameters) than shallower models.
- ► **Hypothesis:** The problem is an optimization problem, deeper models are harder to optimize

67 / 61

- ► Fact: Deep models have more representation power (more parameters) than shallower models.
- Hypothesis: The problem is an optimization problem, deeper models are harder to optimize
- Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

- ► Fact: Deep models have more representation power (more parameters) than shallower models.
- ► **Hypothesis:** The problem is an optimization problem, deeper models are harder to optimize
- Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

69 / 61

Motivation for MobileNets

- Low computational cost at deployment
- Useful for mobile and embedded vision applications
- Key idea: Normal vs. depthwiseseparable convolutions

Normal Convlution

Depthwise separable convolution

Normal Convolution

Depthwise Separable Convolution

Depthwise convolution

Computational cost

filter positions

#filter params x

of filters

Pointwise convolution

Depthwise separable convolution

Depthwise Convolution

Pointwise Convolution

MobileNet

[Sandler et al. 2019, MobileNetV2: Inverted Residuals and Linear Bottlenecks]

ImageNet

- ► The most extensive data for Image Classification
- ► 3 RGB channels from 0 to 255
- ► 14,197,122 images
- ► 1000 classes

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Transfer Learning

- ► Improvement of learning in a **new** task through the **transfer of knowledge** from a **related** task that has already been learned.
- ► We will look at one strategy of transfer learning called Fine-Tuning

When to fine-tune your model?

- ► New dataset is small with distribution similar to original dataset.
 - Keep the feature extraction part fixed and fine-tune the classifier part of the network
- New dataset is large with similar distribution to the original dataset
 - Fine tune both the feature extractor and the classifier part of the network
- New dataset is small but different distribution from the original dataset
 - Use SVM classifier on the features extracted from the feature extractor part of the Network
- New dataset is large and different distribution from the original dataset
 - Fine tune both the feature extractor and the classifier part of the network

When to fine-tune your model? (cont.)

Finetuning

Figure 2: Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks

References

These slides have been adapted from

- ► Fei-Fei Li, Yunzhu Li & Ruohan Gao, Stanford CS231n: Deep Learning for Computer Vision
- Assaf Shocher, Shai Bagon, Meirav Galun & Tali Dekel, WAIC DL4CV <u>Deep Learning for Computer Vision: Fundamentals and Applications</u>
- Justin Johnson, UMich EECS 498.008/598.008: <u>Deep Learning for Computer Vision</u>
- ► Sander Dieleman, Deepmind: <u>Deep Learning Lecture Series 2020</u>

83 / 61