Seconda Esercitazione SPICE utilizzo transistor

Luca Fantin - matricola: 2000156

Esercizio 1: inverter CMOS

Valori				
V_{DD}	5 V			
V_{Tn}	0.7 V			
k'_n	$48 \mu A/V^2$			
λ_n	$0.01 \ V^{-1}$			
V_{Tp}	-0.7 V			
k'_{p}	12 $\mu A/V^2$			
λ_p	$0 V^{-1}$			
\hat{L}	$1 \mu m$			

1.1 Definire W_p e W_n in modo che l'inverter sia bilanciato.

Affinchè l'inverter sia bilanciato, i due transistor devono avere conducibilità uguali:

$$k_p = k_n \longrightarrow k'_p \frac{W_p}{L} = k'_n \frac{W_n}{L} \longrightarrow \frac{W_p}{W_n} = \frac{k'_n}{k'_p} = \frac{48\mu A/V^2}{12\mu A/V^2} = 4$$

Poniamo $W_p=100\mu m$ e $W_n=25\mu m$, così $k_p=k'_p\frac{W_p}{L}=k_n=k'_n\frac{W_n}{L}=1.2mA/V^2.$

1.2 Utilizzare SPICE per simulare la caratteristica DC v_{out} vs v_{in} tra 0 e 5V.

.model NMOS nmos level=1 VT0=0.7 V KP=48u lambda=0.01 W=25u L=1u .model PMOS pmos level=1 VT0=-0.7 V KP=12u lambda=0 W=100u L=1u

- * nome / percorso file * -----* componenti del circuito M2 Vout Vin 0 0 NMOS Vdd N001 0 5 Vin Vin 0 0 M1 Vout Vin NOO1 NOO1 PMOS .model NMOS NMOS .model PMOS PMOS * importiamo il modello di MOSFET .lib C:\Users\ferra\OneDrive\Documenti\ LTspiceXVII\lib\cmp\standard.mos
- * specifichiamo i parametri dei MOSFET .model NMOS nmos level=1 VTO=0.7 V KP=48u lambda=0.01 W=25u L=1u .model PMOS pmos level=1 VTO=-0.7 V KP=12u lambda=0 W=100u L=1u * istruzioni varie * DC sweep: facciamo variare Vin tra 0-5V, * a intervalli di 0.01 V
 - .dc Vin 0 5 0.01
 - .backanno

 - .end

1.3 Applicare nella simulazione un'onda quadra all'ingresso con frequenza 1 MHz e simulare la forma d'onda di uscita.

Modifichiamo il valore di V_{in} e la simulazione da effettuare:

* segnale di tipo impulsivo: impulso di 1 V, * analisi del transitorio tra 0 e 10u s, * tempi di salita e discesa tra i * dati presi a partire da 10nsf * segnali di 1 ns, durata .tran 0 10u 10n 1n uic * dell'impulso di 0.5 u s, periodo di 1u s Vin Vin O PULSE(0 1 0 1n 1n 0.5u 1u)

1.4 Ripetere nella simulazione i punti 2) e 3) mantenendo il rapporto $\frac{W}{L}$ del transistor p costante e assumendo per il transistor nMOS un valore di $\frac{W}{L}$ pari a $\frac{1}{10}$, $\frac{2}{10}$, $\frac{5}{10}$, $\frac{50}{10}$, $\frac{100}{10}$ rispetto al valore trovato al punto 1).

Modifichiamo i valori di W_n in base ai valori di $(\frac{W}{L})_n$ forniti mantenendo L costante:

$$W_n = 2.5 \mu m, \quad 5 \mu m, \quad 12.5 \mu m, \quad 50 \mu m, \quad 125 \mu m, \quad 250 \mu m$$

Per applicare il parametro, aggiungiamo la direttiva di tipo .step e modifichiamo la dichiarazione del modello di nMOS.

- * dichiariamo il parametro Wn con una lista
- * di valori, usando quelli calcolati prima .step param Wn list 2.5u 5u 12.5u 50u 125u

250u

- * applichiamo il parametro dichiarato
- * al modello di nMOS
- .model NMOS nmos level=1 VTO=0.7 V KP=48u lambda=0.01 {W=Wn} L=1u

Simulazione	$W_n[\mu m]$		
1/6	2.5		
2/6	5		
3/6	12.5		
4/6	50		
5/6	125		
6/6	250		

Notiamo che aumentare le dimensioni dell'inMOS fa diminuire la tensione di transizione dell'inverter. Di conseguenza, dato che la tensione di uscita inizia prima a diminuire, ciò fa diminuire il valore della stessa in risposta ad un'onda quadra in ingresso.

Esercizio 2: amplificatore operazionale CMOS

Valori				
I_{ref}	$200 \mu A$			
V_{DD}	+0.9 V			
V_{SS}	-0.9 V			
V_{Tn}	+0.4 V			
V_{Tp}	-0.4 V			
k'_n	$400 \ \mu A/V^2$			
k'_p	$100 \ \mu A/V^2$			

Valori $\frac{W}{L}$			
Q1	12.5		
Q2	12.5		
Q3	50		
Q4	50		
Q5	25		
Q6	100		
Q7	25		
Q8	25		

2.1 Assumere $\lambda = 0V^{-1}$ per tutti i transistor; trovare il valore di k_n e $V_{OV} = V_{GS} - V_{Tn}$ per i transistor $Q5,\ Q7$ e Q8.

$$k_{n5} = k'_n \frac{W}{L} = 400 \mu A/V^2 \cdot 25 = 10 mA/V^2$$

Q5, Q7 e Q8 formano uno specchio di corrente: dato che hanno la stessa k_n , hanno anche la stessa corrente di drain:

$$I_{D5} = I_{ref} = \frac{1}{2}k_{n5}V_{OV5}^2 \longrightarrow V_{OV5} = \sqrt{\frac{2I_{ref}}{k_{n5}}} = 0.2V$$

2.2 Sotto la stessa ipotesi, calcolare k_n e $V_{OV} = V_{GS} - V_{Tn}$ per i transistor Q1-Q2.

$$k_{n1} = k'_n \frac{W}{L} = 400 \mu A/V^2 \cdot 12.5 = 5mA/V^2$$

Per i calcoli sulla polarizzazione, consideriamo i gate di Q1 e Q2 a massa. Pertanto, visto che hanno la stessa k_n , hanno la stessa corrente di drain:

$$I_{D1} + I_{D2} = I_{D5} \longrightarrow I_{D1} = I_{D2} = \frac{I_{D5}}{2} = \frac{I_{ref}}{2} = 100\mu A$$

$$I_{D1} = \frac{1}{2}k_{n1}V_{OV1}^2 \longrightarrow V_{OV1} = \sqrt{\frac{2I_{D1}}{k_{n1}}} = 0.2V$$

2.3 Trovare la tensione drain-source V_{DS5} del transistor Q5 e verificare l'ipotesi di polarizzazione in saturazione.

$$V_{GS1} = V_{G1} - V_{S1} = -V_{S1}; \quad V_{OV1} = V_{GS1} - V_{Tn} = -V_{S1} - V_{Tn} \longrightarrow V_{S1} = -V_{OV1} - V_{Tn} = -0.6V_{OV1} - V_{Tn$$

$$V_{DS5} = V_{D5} - V_{S5} = V_{S1} - V_{SS} = 0.3V \ge 0.2V = V_{OV5}$$

2.4 Calcolare il valore di k_p e $V_{OV} = V_{SG} - |V_{Tp}|$ per i transistor PMOS Q3-Q4.

$$k_{p3} = k'_{p} \frac{W}{L} = 100 \mu A/V^{2} \cdot 50 = 5 mA/V^{2}$$

Q3 e Q4 formano uno specchio di corrente, la cui corrente viene imposta da Q1 e Q2:

$$I_{D3} = I_{D4} = I_{D1} = \frac{1}{2}k_{p3}V_{OV3}^2 \longrightarrow V_{OV3} = \sqrt{\frac{2I_{D1}}{k_{p3}}} = 0.2V$$

2.5 Calcolare il valore della tensione drain-source del transistor Q1 e verificare che sia in saturazione.

$$V_{G3} = V_{D3} \longrightarrow V_{GS3} = V_{DS3}; \quad V_{OV3} = V_{SG3} - |V_{Tp}| \longrightarrow V_{GS3} = -(V_{OV3} + |V_{Tp}|) = -0.6V$$

$$V_{GS3} = V_{DS3} = V_{D3} - V_{S3} = V_{D3} - V_{DD} \longrightarrow V_{D3} = V_{GS3} + V_{DD} = 0.3V$$

$$V_{DS1} = V_{D1} - V_{S1} = V_{D3} - V_{S1} = 0.9V \ge 0.2V = V_{OV1}$$

2.6 Calcolare il valore di k_p e il valore della tensione V_{GS6} del transistor PMOS Q6.

$$k_{p6} = k'_{p} \frac{W}{L} = 100 \mu A/V^{2} \cdot 100 = 10 mA/V^{2}$$

La corrente di drain di Q6 viene imposta dallo specchio di corrente Q5-Q7-Q8:

$$I_{D6} = I_{ref} = \frac{1}{2}k_{p6}V_{OV6}^2 \longrightarrow V_{OV6} = \sqrt{\frac{2I_{ref}}{k_{p6}}} = 0.2V$$

2.7 Calcolare la tensione drain-source V_{DS4} del transistor Q4 e verificare che sia in saturazione.

$$V_{OV6} = V_{SG6} - |V_{Tp}| \longrightarrow V_{GS6} = -(V_{OV6} + |V_{Tp}|) = -0.6V$$

$$V_{GS6} = V_{G6} - V_{S6} = V_{G6} - V_{DD} \longrightarrow V_{G6} = V_{GS6} + V_{DD} = 0.3V$$

$$V_{SD4} = V_{S4} - V_{D4} = V_{DD} - V_{G6} = 0.6V \ge 0.2V = V_{OV4}$$

Prima di procedere coi punti successivi, verifichiamo che tutti i transistor siano in saturazione:

- Q1: verificato nel punto 2.5
- $Q2: V_{DS2} = V_{D4} V_{D5} = 0.3V (-0.6V) = 0.9V \ge 0.2V = V_{OV2}$
- $Q3: V_{SD3} = V_{SG3} \ge V_{OV3}$
- Q4: verificato nel punto 2.7
- \bullet Q5: verificato nel punto 2.3

• *Q*6, *Q*7:

$$\begin{cases} V_{SD6} = V_{DD} - V_D \ge V_{OV6} = 0.2V \longrightarrow V_D \le V_{DD} - V_{OV6} = 0.7V \\ V_{DS7} = V_D - V_{SS} \ge V_{OV7} = 0.2V \longrightarrow V_D \ge V_{SS} + V_{OV6} = -0.7V \end{cases}$$

Esiste un intervallo di valori di V_D per cui questi due transistor sono in saturazione; tuttavia, non è possibile trovare il valore esatto analiticamente.

• $Q8: V_{DS8} = V_{GS8} > V_{OV8}$

2.8 Assumere $\lambda=0.166V^{-1}$ per i soli transistor Q6-Q7 e trovare il valore della tensione $V_{D6}=V_{D7}$. Trovare V_{DS6} e V_{DS7} .

Lo specchio di corrente Q5 - Q8 non è cambiato; pertanto V_{G6} non cambia, e di conseguenza V_{OV6} non cambia. Per lo stesso motivo, V_{G7} non cambia, e di conseguenza V_{OV7} non cambia:

$$I_{D6} = \frac{1}{2} k_{p6} V_{OV6}^2 (1 + \lambda V_{SD6}); \quad I_{D7} = \frac{1}{2} k_{n7} V_{OV7}^2 (1 + \lambda V_{DS7})$$

Chiamando $V_{D6}=V_{D7}=V_D$ e notando che $\frac{1}{2}k_{p6}V_{OV6}^2=\frac{1}{2}k_{n7}V_{OV7}^2=I_{ref}$ (calcolata per $\lambda=0$):

$$I_{D6} = I_{D7} \longrightarrow I_{ref}(1 + \lambda V_{SD6}) = I_{ref}(1 + \lambda V_{DS7}) \longrightarrow 1 + \lambda (V_{DD} - V_{D}) = 1 + \lambda (V_{D} - V_{SS}) \longrightarrow 1 + \lambda (V_{DD} - V_{D}) = 1$$

$$\longrightarrow \lambda V_{DD} - \lambda V_D = \lambda V_D - \lambda V_{SS} \longrightarrow 2V_D = V_{DD} + V_{SS} \longrightarrow V_D = \frac{V_{DD} + V_{SS}}{2} = 0V$$

$$V_{DS6} = -V_{S6} = -V_{DD} = -0.9V; \quad V_{DS7} = -V_{S7} = -V_{SS} = 0.9V$$

Verifichiamo che i due transistor siano ancora in saturazione:

$$V_{SD6} = 0.9V \ge 0.2V = V_{OV6}; \quad V_{DS7} = 0.9V \ge 0.2V = V_{OV7}$$

2.9 Assumere $\lambda=0.166V^{-1}$ per tutti i transistor. Trovare il valore di V_{GS} per il transistor Q8 tenendo conto di λ .

$$V_{G8} = V_{D8} \longrightarrow V_{GS8} = V_{DS8} \longrightarrow I_{D8} = I_{ref} = \frac{1}{2}k_{n8}(V_{GS8} - V_{Tn})^2(1 + \lambda V_{GS8})$$

Risolvendo questa equazione di terzo grado otteniamo i valori $V_{GS8} = -6.01825V$, $V_{GS8} = 0.203292V$ e $V_{GS8} = 0.590859V$; troviamo quello per cui Q8 è acceso e in saturazione:

- $V_{GS8} = -6.01825V$: $V_{GS8} < V_{Tn} \longrightarrow \text{transistor spento}$
- $V_{GS8} = 0.203292V$: $V_{GS8} < V_{Tn} \longrightarrow \text{transistor spento}$
- $V_{GS8} = 0.590859V$: $V_{GS8} > V_{Tn} \longrightarrow \text{transistor acceso}$; $V_{DS8} = V_{GS8} > V_{GS8} V_{Tn} \longrightarrow \text{transistor acceso}$ in saturazione
- 2.10 Calcolare il valore di g_m per i transistor Q1-Q2 approssimando i valori di V_{GS} e V_{DS} con quelli calcolati ai punti precedenti con $\lambda = 0V^{-1}$.

$$g_{m1} = k_{n1}V_{OV1} = 1mS$$

2.11 Calcolare il valore di r_o per tutti i transistor tranne Q8.

$$r_{oi} = \frac{1}{\lambda I_{Di}^*} \longrightarrow r_{o1} = r_{o2} = r_{o3} = r_{o4} = 60.2k\Omega; \quad r_{o5} = r_{o6} = r_{o7} = 30.1k\Omega$$

 $(I_{Di}^*$: corrente di drain del transistor Qi calcolata considerando $\lambda = 0)$

2.12 Calcolare il guadagno differenziale single-ended con l'uscita al drain di Q2-Q4 applicando un segnale differenziale puro agli ingressi A e B. La resistenza r_{o4} sostituisce R_{D} ; r_{o5} sostituisce R_{SS} .

$$A_d = \frac{g_{m1}r_{o4}}{2} = 30.1$$

2.13 Calcolare il guadagno di modo comune con uscita single-ended, come sopra, applicando un segnale di modo comune agli ingressi A e B.

Dato che esiste un'asimmetria di carico tra Q1 e Q2, la formula per questo guadagno è diversa dalla formula classica per un amplificatore differenziale a MOSFET con drain resistivo:

$$A_{cm} = -\frac{1}{2g_{m1}r_{o5}} = -0.0166$$

2.14 Calcolare il guadagno in tensione dell'amplificatore a source comune Q6. La resistenza r_{o7} sostituisce R_D . Nota bene: dato che r_o è diversa da ∞ sia per Q6 che per Q7, il guadagno dello stadio è $-g_m(r_{o6}//r_{o7})$.

Calcolando la g_m di Q6 usando la V_{OV6} calcolata per $\lambda=0$:

$$g_{m6} = k_{p6}V_{OV6} = 2mS;$$
 $A = -g_{m6}(r_{o6}//r_{o7}) = -g_{m6}\frac{r_{o6}}{2} = -30.1$

2.15 Calcolare il guadagno differenziale complessivo, il guadagno di modo comune complessivo e il CMRR complessivo.

Consideriamo il drain di Q2/Q4 come uscita dello stadio differenziale. Da lì, il segnale amplificato dal primo stadio viene ulteriormente amplificato dallo stadio costituito da Q6. Pertanto, i guadagni totali saranno costituiti dal prodotto dei guadagni del primo stadio per il guadagno del secondo:

$$A_{d,tot} = A_d \cdot A = -906, \quad A_{cm,tot} = A_{cm} \cdot A = 0.500 \longrightarrow CMRR = 20 \log_{10} \frac{|A_{d,tot}|}{|A_{cm,tot}|} = 65.1$$

2.16 Simulare tramite LTSpice l'amplificatore e confrontare i risultati con quelli della soluzione analitica. Calcolare il punto operativo di ogni transistor assumendo $\lambda = 0V^{-1}$.

.model PMOS PMOS
.lib C:\Users\ferra\OneDrive\Documenti\
LTspiceXVII\lib\cmp\standard.mos
.model NMOS1 nmos level=1 VTO=0.4V KP=400u
lambda=0 W=12.5 L=1
.model NMOS2 nmos level=1 VTO=0.4V KP=400u
lambda=0 W=25 L=1
.model PMOS1 pmos level=1 VTO=-0.4V KP=100u
lambda=0 W=50 L=1
.model PMOS2 pmos level=1 VTO=-0.4V KP=100u
lambda=0 W=100 L=1
* cerchiamo il punto di lavoro
.op
.backanno
.end

LTspice fornisce i seguenti risultati, attraverso lo SPICE Error Log:

Q	$I_{DQ}[A \cdot 10^{-4}]$	$V_{GSQ}[V \cdot 10^{-1}]$	$V_{DSQ}[V \cdot 10^{-1}]$
Q1	1.00	6.00	9.00
Q2	1.00	6.00	9.00
Q3	-1.00	-6.00	-6.00
Q4	-1.00	-6.00	-6.00
Q5	2.00	6.00	3.00
Q6	-2.00	-6.00	-16.0
Q7	2.00	6.00	1.99
Q8	2.00	6.00	6.00

Come prima cosa notiamo che le correnti I_{DQ} per i pMOS hanno segno negativo. Questo succede perchè la corrente di drain per tutti i pMOS del circuito viene imposta da un nMOS, nei quali I_{DQ} ha verso opposto rispetto ai pMOS.

Successivamente, calcoliamo V_{OV} per tutti i transistor partendo dai valori di V_{GSQ} forniti da Spice, per verificare che corrispondano ai valori analitici:

Q	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
$V_{OV}[V]$	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2

Infine, notiamo che i valori di V_{DS} corrispondono per tutti i transistor, a parte Q6 e Q7. In tal caso, dai dati di Spice possiamo trovare che $V_{D6} = V_{D7} = -0.7V$, valore che rientra nell'intervallo trovato analiticamente.

2.17 Trovare i valori di $A_{d1}=v_{o2}/v_{id},~A_{d3}=v_{o3}/v_{id}$ e di A_{cm1} e A_{cm2} tramite simulazioni assumendo $\lambda=0.166V^{-1}$.

Cambiamo il tipo di simulazione:

- * analisi in frequenza del circuito, per le frequenze
- * da 1Hz a 100MHz, 10 punti per decade
- .ac dec 10 1 100k

Per trovare i valori dei guadagni differenziali, cambiamo il circuito, in modo da rappresentare correttamente i segnali differenziali in ingresso:

- V(vo2)/(V(Vdiff/2)-V(-Vdiff/2)): $(A_{d1})_{dB} = 31.3dB \longrightarrow |A_{d1}| = 36.7$
- V(vo3)/(V(Vdiff/2)-V(-Vdiff/2)): $(A_{d3})_{dB} = 62.7dB \longrightarrow |A_{d3}| = 1360$

Per calcolare i guadagni di modo comune, usiamo lo stesso schema usato nel punto 2.16, sempre sostituendo il tipo di simulazione:

- V(vo2)/((V(vi2)+V(vi1))/2): $(A_{cm1})_{dB} = -37.0dB \longrightarrow |A_{cm1}| = 0.0141$
- V(vo3)/((V(vi2)+V(vi1))/2): $(A_{cm2})_{dB} = -5.62dB \longrightarrow |A_{cm2}| = 0.524$

Troviamo leggere differenze tra questi risultati e quelli calcolati analiticamente. Esse possono essere spiegate considerando che nei calcoli dei punti 10-15 abbiamo considerato il punto di lavoro del circuito calcolato per $\lambda=0$, mentre Spice lo ricalcola considerando $\lambda=0.166V^{-1}$.

2.18 Sostituire I_{ref} con una resistenza di valore tale da mantenere $I_D(M8)=200\mu A$.

$$V_{DD} - V_{G8} = R_{ref}I_{ref} \longrightarrow R_{ref} = \frac{V_{DD} - V_{G8}}{I_{ref}} = \frac{V_{DD} - V_{GS8} - V_{SS}}{I_{ref}} = 6k\Omega$$

I valori di V_{GS8} trovati per $\lambda=0$ e $\lambda=0.166V^{-1}$ differiscono di 0.01V, comportando una differenza tra i valori di R_{ref} di 50Ω , un errore pari all'0.83%. Pertanto, possiamo approssimare V_{GS8} al valore trovato per λ nullo.

2.19 Sostituire M3, M4 e M7 con resistenze dello stesso valore e calcolare nuovamente il valore dei guadagni $A_{d1} = v_{o2}/v_{id}$, $A_{d3} = v_{o3}/v_{id}$, A_{cm1} e A_{cm2} .

 v_{o2} è la tensione d'uscita single-ended dello stadio differenziale Q1/Q2, mentre v_{o3} è la tensione d'uscita dello stadio amplificatore Q6. Lo specchio di corrente Q5-Q8 non cambia, pertanto le tensioni V_{OV} di Q1, Q2 e Q6 non cambiano. Inoltre, dato che abbiamo un drain resistivo, per il guadagno a modo comune possiamo usare la formula base:

$$A_{d1} = \frac{v_{o2}}{v_{id}} = \frac{g_{m1}R_{ref}}{2} = 3, \quad A_{cm1} = -\frac{g_{m1}R_{ref}}{1 + 2g_{m1}r_{o5}} = -0.0980$$

$$A = -g_{m6}(r_{o6}//R_{ref}) = -10.0$$

$$A_{d3} = A_{d1} \cdot A = -30, \quad A_{cm2} = A_{cm1} \cdot A = 0.980$$