

## **Unsupervised Learning**

Author: Wenxiao Yang

Institute: Department of Mathematics, University of Illinois at Urbana-Champaign

All models are wrong, but some are useful.

## **Contents**

| Chapte | r 1 Clu  | ustering                                                                                 | 1  |  |  |  |
|--------|----------|------------------------------------------------------------------------------------------|----|--|--|--|
| 1.1    | K-Mea    | ans                                                                                      | 1  |  |  |  |
|        | 1.1.1    | K-Means Clustering Optimization Problem                                                  | 1  |  |  |  |
|        | 1.1.2    | Lloyd's Algorithm                                                                        | 2  |  |  |  |
|        | 1.1.3    | Benefits and Drawbacks                                                                   | 2  |  |  |  |
|        | 1.1.4    | Elbow Method                                                                             | 3  |  |  |  |
| 1.2    | Types    | of Clusters Definitions                                                                  | 4  |  |  |  |
| 1.3    | K-Med    | dians                                                                                    | 6  |  |  |  |
|        | 1.3.1    | K-Medians Clustering Optimization Problem                                                | 6  |  |  |  |
|        | 1.3.2    | K-Medians Heuristic Algorithm                                                            | 7  |  |  |  |
| 1.4    | K-Med    | doids                                                                                    | 7  |  |  |  |
|        | 1.4.1    | K-Medoids Clustering Optimization Problem                                                | 7  |  |  |  |
|        | 1.4.2    | K-Medoids Clustering Algorithm                                                           | 8  |  |  |  |
|        | 1.4.3    | K-Medoids vs. K-Means                                                                    | 8  |  |  |  |
| 1.5    | Types    | of Clustering Algorithms Results                                                         | 9  |  |  |  |
|        | 1.5.1    | Partitional vs. Hierarchical Clustering Results                                          | 9  |  |  |  |
|        | 1.5.2    | Exclusive vs. Overlapping vs. Fuzzy Clustering Results                                   | 10 |  |  |  |
| Chapte | er 2 Clu | ustering Evaluation Metrics                                                              | 11 |  |  |  |
| 2.1    | Cluste   | erability Evaluation Metric: Is the dataset clusterable?                                 | 11 |  |  |  |
|        | 2.1.1    | Hopkin's Statistics                                                                      | 11 |  |  |  |
| 2.2    | Unsup    | pervised Clustering Evaluation Metrics: How cohesive and well separated are the clusters |    |  |  |  |
|        | in the   | in the clustering?                                                                       |    |  |  |  |
|        | 2.2.1    | Definition                                                                               | 12 |  |  |  |
|        | 2.2.2    | Graph-based view of cohesion and separation for a clustering                             | 13 |  |  |  |
|        | 2.2.3    | Silhouette Coefficients (Scores)                                                         | 13 |  |  |  |
|        | 2.2.4    | Prototype-Based View of Cohesion and Separation for a Clustering                         | 14 |  |  |  |
| 2.3    | Cluste   | er Number Evaluation Metrics: What is the 'correct' number of clusters?                  | 15 |  |  |  |
|        | 2.3.1    | General Elbow Plot Method                                                                | 15 |  |  |  |

|     | 2.3.2                      | Average Silhouette Score Plot Method                                                        | 15 |  |  |  |  |
|-----|----------------------------|---------------------------------------------------------------------------------------------|----|--|--|--|--|
| 2.4 | Superv                     | ervised Clustering Evaluation Metrics: How similar is the clustering to a set of (external) |    |  |  |  |  |
|     | pre-assigned class labels? |                                                                                             |    |  |  |  |  |
|     | 2.4.1                      | Rand Index and Jaccard Coefficient of Two Partitions                                        | 16 |  |  |  |  |
|     | 2.4.2                      | Adjusted Rand Index                                                                         | 17 |  |  |  |  |
| 2.5 | Cluste                     | ring Comparison Metrics: Which clustering is better for a given dataset?                    | 17 |  |  |  |  |

## **Chapter 1 Clustering**

#### General Goal of Clustering Algorithm:

- o the "similarity" of the objects in the same cluster is maximized while
- o the "similarity" of objects in different clusters is minimized.

#### **Definition 1.1**

For a given set of objects  $V = \{x_1, x_2, ..., x_m\}$ , we call a **cluster**  $\mathbf{S_k}$  a subset of these objects, and we call a **clustering** the set of all K clusters  $\{\mathbf{S_1}, \mathbf{S_2}, ..., \mathbf{S_k}\}$ .

**Example 1.1** Clustering of  $\{x_1, x_2, x_3, x_4\}$ : (1).  $\{\{x_1, x_3\}, \{x_2, x_4\}\}$ ; (2).  $\{\{x_1, x_3\}, \{x_1, x_2, x_4\}\}$ ; (3).  $\{\{x_3\}, \{x_2, x_4\}\}$ .

#### 1.1 K-Means

#### 1.1.1 K-Means Clustering Optimization Problem

#### 1. Input:

Desired number of clusters (ex: K = 3)

Dataset of m objects  $X = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_m\}$ , where each object  $\vec{x}_i = (x_{i1}, x_{i2}, ... \vec{x}_{in})$  has n numerical attributes. (We can also think of X as being an  $m \times n$  matrix  $X_{m \times n}$ .)

#### 2. Goal of K-Means:

Out of all possible clusterings of  $\{S_1, S_2, ..., S_K\}$  with K clusters that can be made from the m objects in X, find the optimal clustering  $\{S_1^*, S_2^*, ..., S_K^*\}$  that minimizes the sum of the "distance" of each object and the centroid (the mean of the cluster that object is assigned to).

Technically, we can write this as an optimization problem

$$\{S_1^*, S_2^*, ..., S_K^*\} = \operatorname*{argmin}_{S_1, S_2, ..., S_K} \sum_{k=1}^K \sum_{x \in S_k} \|x - \mu_k\|^2$$

Optimal Inertia = 
$$\min_{S_1, S_2, ..., S_K} \sum_{k=1}^K \sum_{x \in S_k} ||x - \mu_k||^2$$

Inertia measures how well a dataset was clustered by K-Means. It is calculated by measuring the distance between each data point and its centroid, squaring this distance, and summing these squares across one cluster. A good model is one with low inertia and a low number of clusters (K).

Find the clustering  $\{S_1^*, S_2^*, ..., S_K^*\}$  that provides a global minimum is **NP-hard**.

We use a <u>heuristic</u> algorithm to find a <u>local minimum</u> is good enough.

#### 1.1.2 Lloyd's Algorithm

#### 1. Input:

Desired number of clusters (ex: K = 3)

Dataset of m objects  $X = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_m\}$ , where each object  $\vec{x}_i = (x_{i1}, x_{i2}, ... x_{in})$  has n numerical attributes. (We can also think of X as being an  $m \times n$  matrix  $X_{m \times n}$ .)

#### 2. Algorithm:

#### • Step 1: Centroid Initialization Step

Randomly select K centroids  $\{\vec{\mu}_1, \vec{\mu}_2, ..., \vec{\mu}_K\}$ , where  $\vec{\mu}_k = (\mu_{k1}, \mu_{k2}, ..., \mu_{kn})$ 

#### • Step 2: Cluster Assignment Step

Assign each object  $x_i$  in the dataset to it's <u>closest</u> centroid (specifically the *smallest squared euclidean distance*)

#### • Step 3: Centroid Update Step

Find the mean of each cluster created in step 2. These means are now the new centroids.

#### • Step 4: Stopping Criterion

If the old centroids and the new centroids are the <u>same</u>, stop the algorithm. Otherwise, go back to step 2.

3. **Output:** Clustering with K clusters  $\{V_1, V_2, ..., V_K\}$ .

Lloyd's algorithm is known as a **non-deterministic** algorithm because, even with the same input, it can exhibit different behaviors on different runs.

#### 1.1.3 Benefits and Drawbacks

#### **Benefits**

- Fast algorithm.
- Computationally efficient.
- It scales well as the number of objects or attributes grows really large. (However, k-means is not great for "big data".)
- One of the easiest to understand.

#### **Drawbacks**

• Only works well with some types of data.

The K-means algorithm works best for data when "the underlying clustering" of the data has the following properties:

- (1). Each cluster has roughly the same number of objects;
- (2). The clusters are spherical;
- (3). The clusters have the same sparsity;
- (4). There is good separation between the clusters;
- (5). You know the right number of clusters to ask for;
- (6). Attributes are numerical (non-categorical);
- (7). Data does not have a lot of noise or outliers.

(Caveat: Just because some of these assumptions are not met does not mean necessarily the algorithm will perform worse.)

- Need to know the "right" number of clusters to ask for in advance. (We use k-means elbow plot method)
- It is a non-deterministic algorithm.

#### 1.1.4 Elbow Method

#### **Elbow Plot**

- 1. For k = 1 to K:
  - [a] Cluster the data several times into k clusters.
  - [b] Calculate the average inertia of these resulting clusterings.
- 2. Plot "k vs. average inertia".



Figure 1.1: Elbow Plot Example

#### **Interpretation of Elbow Plot**

- 1. If there is not a dramatic elbow, then this suggests that either:
  - 1. The dataset is not clusterable or
  - 2. K-means is not a suitable algorithm for detecting the underlying clusters.
- 2. If there is a dramatic elbow, then this suggests that:
  - 1. There is a clustering structure and
  - 2. The k-means clustering algorithm is suggesting that there are about K clusters where the plot levels off.

In the example of the figure

- 1. We see a somewhat dramatic elbow in the plot. This suggests that there is some clustering structure in the dataset and that k-means is capable of identifying some clustering structure.
- 2. We see that that plot levels off dramatically at k=2 clusters. So this suggests that asking the k-means algorithm to return k=2 clusters will be the most insightful.

### 1.2 Types of Clusters Definitions

As we know the K-means algorithm can only work well with data that fulfills specific properties, we define some common **types of clusters** that could be considered in a numerical dataset to help introduce our new algorithms.

#### **Definition 1.2 (Well-Separated Cluster)**

A well-separated cluster defines a cluster only when the data contains natural clusters that are far apart from each other. (This definition is vague in how far apart do clusters have to be.)

Why K-means may not work well?: Well-Separated Cluster can be non-spherical.

#### **Definition 1.3 (Density-Based Cluster)**

A density-based cluster defines a cluster as a <u>dense</u> region of objects that is surrounded by a region of <u>lower</u> density. (This definition is vague in how dense it needs to be considered a cluster.)

Why K-means may not work well?: Density-Based Cluster can have noise.

#### **Definition 1.4 (Graph-Based Cluster)**

*Graph-based cluster* is a group of objects that are <u>connected</u> to one another, but have no <u>connection</u> to objects outside the group. (This definition is vague in how do we decide objects are connected.)

Why K-means may not work well?: Graph-based cluster can be non-spherical and not well separated.

#### Definition 1.5 (Contiguity-Based Cluster (a type of graph-based cluster definition))

In contiguity-based cluster (a type of graph-based cluster definition), two objects are <u>connected</u> only if they are within a specified distance of one another.

Types of contiguity-based clustering algorithms: spectral clustering.



Figure 1.2: (1). Well-Separated Cluster; (2). Density-Based Cluster



Figure 1.3: Contiguity-Based Cluster

#### **Definition 1.6 (Prototype-Based Cluster)**

A prototype-based cluster defines a cluster as a set of objects in which each object is closer (or more similar) to the <u>prototype</u> (e.g. mean, median) that defines the cluster than to the <u>prototype</u> of any other cluster.

Why K-means may not work well?: Prototype-Based Cluster may be not well-separated and have outliers.



Figure 1.4: Prototype-Based Cluster

Types of prototype-based clustering algorithms:

- **K-means**: Prototype is the mean of the cluster.
- **K-median**: Prototype is the median of the cluster.

#### 1.3 K-Medians

#### 1.3.1 K-Medians Clustering Optimization Problem

#### Goal of K-Means:

Out of all possible clustering of  $\{S_1, S_2, ..., S_K\}$  with K clusters that can be made from the m objects in X, find the optimal clustering  $\{S_1^*, S_2^*, ..., S_K^*\}$  that <u>minimizes</u> the sum of the <u>Manhattan distances</u> (i.e.,  $L_1$  distances) of each object and the centroid (the <u>median</u> of the cluster that object is assigned to).

Technically, we can write this as an optimization problem

$$\{S_1^*, S_2^*, ..., S_K^*\} = \underset{S_1, S_2, ..., S_K}{\operatorname{argmin}} \sum_{k=1}^K \sum_{x \in S_k} \|x - c_k\|_1$$

Optimal Inertia = 
$$\min_{S_1, S_2, \dots, S_K} \sum_{k=1}^K \sum_{x \in S_k} \|x - c_k\|_1$$

#### 1.3.2 K-Medians Heuristic Algorithm

#### 1. Input:

Desired number of clusters (ex: K = 3)

Dataset of m objects  $X = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_m\}$ , where each object  $\vec{x}_i = (x_{i1}, x_{i2}, ... x_{in})$  has n numerical attributes. (We can also think of X as being an  $m \times n$  matrix  $X_{m \times n}$ .)

#### 2. Algorithm:

#### • Step 1: Centroid Initialization Step

Randomly select K centroids  $\{\vec{c}_1,\vec{c}_2,...,\vec{c}_K\}$ , where  $\vec{c}_k=(c_{k1},c_{k2},...,c_{kn})$ 

#### • Step 2: Cluster Assignment Step

Assign each object  $x_i$  in the dataset to its <u>closest</u> centroid (specifically the *smallest Manhattan distance*)

#### • Step 3: Centroid Update Step

Find the <u>median</u> of each cluster created in step 2. These medians are now the new <u>centroids</u>.

#### • Step 4: Stopping Criterion

If the old centroids and the new centroids are the <u>same</u>, stop the algorithm. Otherwise, go back to step 2.

3. **Output:** Clustering with K clusters  $\{V_1, V_2, ..., V_K\}$ .

#### 1.4 K-Medoids

#### **Definition 1.7 (Medoid)**

In the context of clustering, we define a **medoid** as <u>an actual object</u> in a cluster whose sum of distance to all the objects in the cluster is minimal.

#### 1.4.1 K-Medoids Clustering Optimization Problem

#### Goal of K-Medoids:

Out of all possible clustering of  $\{S_1, S_2, ..., S_K\}$  with K clusters that can be made from the m objects in X, find the optimal clustering  $\{S_1^*, S_2^*, ..., S_K^*\}$  that <u>minimizes</u> the sum of the <u>distances</u> (any distance metric) of each object and the centroid (the <u>medoid</u> of the cluster that object is assigned to).

Technically, we can write this as an optimization problem

$$\{S_1^*, S_2^*, ..., S_K^*\} = \operatorname*{argmin}_{S_1, S_2, ..., S_K} \sum_{k=1}^K \sum_{x \in S_k} \operatorname{dist}(x, c_k)$$

Optimal Inertia = 
$$\min_{S_1, S_2, \dots, S_K} \sum_{k=1}^K \sum_{x \in S_k} \operatorname{dist}(x, c_k)$$

#### 1.4.2 K-Medoids Clustering Algorithm

#### 1. Input:

Desired number of clusters (ex: K = 3)

Dataset of m objects  $X = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_m\}$ , where each object  $\vec{x}_i = (x_{i1}, x_{i2}, ... x_{in})$  has n numerical attributes. (We can also think of X as being an  $m \times n$  matrix  $X_{m \times n}$ .)

#### 2. Algorithm:

• Step 1: Centroid Initialization Step

Randomly select K centroids  $\{\vec{c}_1, \vec{c}_2, ..., \vec{c}_K\}$ , where  $\vec{c}_k = (c_{k1}, c_{k2}, ..., c_{kn})$ 

• Step 2: Cluster Assignment Step

Assign each object  $x_i$  in the dataset to its <u>closest</u> centroid (specifically the *using distance metric* you've chosen)

Step 3: Centroid Update Step

Find the <u>medoid</u> of each cluster created in step 2. These medians are now the new <u>centroids</u>.

• Step 4: Stopping Criterion

If the old centroids and the new centroids are the <u>same</u>, stop the algorithm. Otherwise, go back to step 2.

3. **Output:** Clustering with K clusters  $\{V_1, V_2, ..., V_K\}$ .

#### 1.4.3 K-Medoids vs. K-Means

#### **Benefit of K-Medoids over K-Means:**

- 1. The medoid is more robust to outliers.
- 2. Guaranteed to converge using any distance metric we want (K-means has to use squared euclidean distance).

#### **Benefit of K-Means over K-Medoids:**

K-Medoids is more computationally complex than k-means:

- 1. K-means: O (number of objects  $\times$  number of attributes  $\times$  number of clusters  $\times$  number of iterations)
- 2. K-medoids:  $O((\text{number of objects})^2 \times \text{number of attributes} \times \text{number of clusters} \times \text{number of iterations})$

### 1.5 Types of Clustering Algorithms Results

#### 1.5.1 Partitional vs. Hierarchical Clustering Results

#### **Definition 1.8 (Partitional Clustering)**

We call a **partitional clustering** a division of the set of data objects into k subsets (clusters) such that each object is in exactly one subset.

#### **Example 1.2** $\{1, 2, 8\}, \{3, 7\}, \{4, 5, 6\}$

#### **Definition 1.9 (Hierarchical Clustering)**

In a hierarchical clustering we allow for clusters to have nested subclusters.

A hierarchical clustering is displayed as a set of nested clusters displayed as a dendrogram tree. The dendrogram can reflect which objects and clusters are closer to each other than others.

**Example 1.3** 
$$\{\{1,3\}, \{\{\{6,9\},10\}, \{11,15\}\}\}, \{4, \{12,19\}\}, \{\{\{2,14\}, \{\{17,20\},18\}\}, \{5,8\}\}, \{7, \{13,16\}\}.$$



Figure 1.5: Hierarchical Clustering Example

#### 1.5.2 Exclusive vs. Overlapping vs. Fuzzy Clustering Results

#### **Definition 1.10**

Exclusive Clustering will assign an object to an exactly one cluster.

## .

**Example 1.4**  $\{1, 3, 5\}, \{2, 4\}.$ 

#### **Definition 1.11**

Overlapping Clustering can allow for an object to be assigned to more than one cluster.



**Example 1.5**  $\{1,3,5\},\{2,4,5\}$ 

#### Definition 1.12

In a Fuzzy Clustering every object belongs to every cluster with a membership weight that is between 0 (absolutely doesn't belong to the cluster) to 1 (absolutely belongs).

- 1. Usually the sum of each object's weights must sum to 1.
- 2.  $w_{ij}$  = the probability that object i belongs to cluster j.



## **Chapter 2 Clustering Evaluation Metrics**

### 2.1 Clusterability Evaluation Metric: Is the dataset clusterable?

#### **Definition 2.1**

A dataset is **clusterable** if there exist some distinct groupings of observations in a dataset.

\*

Then, how distinct do the observation need to be is a question.

#### 2.1.1 Hopkin's Statistics

• Input: Dataset of m objects  $X = \{\vec{x}_1, \vec{x}_2, ..., \vec{x}_m\}$ , where each object  $\vec{x}_i = (x_{i1}, x_{i2}, ... x_{in})$  has n numerical attributes.

#### • How to calculate:

- (1) Create a set of random artificial data point closest distances  $\{u_1, u_2, ..., u_p\}$  as follows.
  - a) Generate p random artificial data points  $\{\vec{y}_1, \vec{y}_2, ..., \vec{y}_p\}$  distributed across the range of the dataset.
  - b) For each random artificial data points i = 1, ..., p calculate

$$u_i = \min_{\vec{x} \in X} \operatorname{dist}(\vec{y_i}, \vec{x})$$

- (2) Create a set of random actual data point closest distances  $\{w_1, w_2, ..., w_p\}$  as follows.
  - a) Random select p actual points  $\{\vec{z}_1, \vec{z}_2, ..., \vec{z}_p\}$  from the dataset.
  - b) For each randomly selected actual points i = 1, ..., p calculate

$$w_i = \min_{\vec{x} \in X} \operatorname{dist}(\vec{z}_i, \vec{x})$$

(3)

$$\textbf{Hopkins Statistic} = \frac{\sum_{i=1}^p w_i}{\sum_{i=1}^p w_i + \sum_{i=1}^p u_i}$$

- <u>How to interpret:</u> The dataset is <u>clusterable</u> if the Hopkins Statistic <u>close to 0</u> and is <u>not clusterable</u> if the Hopkins Statistic <u>close to 0.5</u>.
- Intuition:
- Additional Tips and Information:  $p=10\% \times \text{(the number of observations in the dataset); Hopkins Statistic is non-deterministic evaluation metric.$



Figure 2.1: When Hopkins Statistic works well and not well

# 2.2 Unsupervised Clustering Evaluation Metrics: How cohesive and well separated are the clusters in the clustering?

#### 2.2.1 Definition

#### **Definition 2.2**

Unsupervised clustering evaluation metrics evaluate the goodness of the clustering without using preassigned class labels.

#### Types of Unsupervised Clustering Evaluation Metrics:

- 1. **Cohesion** measures how closely related the objects in a cluster are.
- 2. **Separation** measures how distinct or well-separated a cluster is from other clusters.
- 3. **Validity of a clustering** can be expressed as some function of **cohesion** and **separation** of all the clusters in a clustering.

#### 2.2.2 Graph-based view of cohesion and separation for a clustering

A graph-based view of calculating cohesion and separation for a clustering involves first creating a **proximity matrix** (graph) of the objects in the dataset, that measures the "proximity" of each pair of objects in the dataset.

|           |   | Cluster 1 |      |      | Cluster 2 |      |
|-----------|---|-----------|------|------|-----------|------|
|           |   | 1         | 2    | 3    | 4         | 5    |
|           | 1 | 1         | 0.9  | 0.95 | 0.2       | 0.1  |
| Cluster 1 | 2 | 0.9       | 1    | 0.8  | 0.15      | 0.05 |
|           | 3 | 0.95      | 0.8  | 1    | 0.02      | 0.03 |
| Chuston 2 | 4 | 0.2       | 0.15 | 0.02 | 1         | 0.8  |
| Cluster 2 | 5 | 0.1       | 0.05 | 0.03 | 0.8       | 1    |

Figure 2.2: Proximity Matrix

#### Different ways to measure proximity:

- Similarity metric measure of proximity: The more similar two objects are the lower the proximity
  measure is. e.g. Euclidean distance.
- 2. **Dissimilarity metric measure of proximity:** The more similar two objects are the higher this proximity measure is. e.g. The number of attribute agreements between two categorical objects.

**Cohesion** of a graph-based cluster is the sum of proximities between all pairs of points within the same cluster.

$$\operatorname{cohesion}(C_i) = \sum_{\vec{x} \in C_i, \vec{y} \in C_i} \operatorname{proximity}(\vec{x}, \vec{y})$$

<u>Separation</u> of a graph-based cluster is the sum of proximities between all pairs of points in the two different clusters.

separation
$$(C_i, C_j) = \sum_{\vec{x} \in C_i, \vec{y} \in C_j} \text{proximity}(\vec{x}, \vec{y})$$

#### **2.2.3** Silhouette Coefficients (Scores)

1. Cohesion Metric: Measure of how "well assigned" object  $x_i$  is to cluster  $C_k$ :

$$a_i = \frac{1}{|C_k| - 1} \sum_{\vec{x_j} \in C_k, \vec{x_i} \neq \vec{x_j}} \operatorname{dist}(\vec{x_i}, \vec{x_j})$$

2. **Separation Metric:** Find the Average Distance of object  $x_i$  to it's "neighboring cluster."

$$b_i = \min_{k' \neq k} \frac{1}{|C_{k'}|} \sum_{\vec{x}_j \in C_{k'}} \operatorname{dist}(\vec{x}_i, \vec{x}_j)$$

#### 3. Silhouette Coefficient (Score) of $x_i$

$$s_i = \begin{cases} \frac{b_i - a_i}{\max\{a_i, b_i\}}, & \text{if } |C_i| > 1\\ 0, & \text{if } |C_i| = 1 \end{cases}$$

The silhouette of a cluster visualizes the silhouette values  $s_i$  of all the points in it in the <u>decreasing order</u>. A silhouette plot shows the silhouettes of all the clusters in random order. Additionally, it inserts blank spaces between consecutive clusters and can color them differently.



Figure 2.3: Silhouette Plots

- 1. Silhouette Coefficient  $s_i$  of object  $\vec{x}_i$  is <u>large</u> and <u>positive</u>: the object is <u>closer</u> to objects in the cluster that it is assigned to than objects in other clusters.
- 2. Silhouette Coefficient  $s_i$  of object  $\vec{x}_i$  is close to 0: the object is equally close to objects in the cluster that it is assigned to than objects in other clusters.
- 3. Silhouette Coefficient  $s_i$  of object  $\vec{x}_i$  is <u>large</u> and <u>negative</u>: the object is <u>further away from</u> to objects in the cluster that it is assigned to than objects in other clusters.

**Warning:** Silhouette coefficients and plots (based off of Euclidean distances) will not be effective at assessing clustering separation and cohesion for all types of datasets. (e.g. the contiguity-based cluster.) We need to revise the distance metric.

#### 2.2.4 Prototype-Based View of Cohesion and Separation for a Clustering

1. **Cohesion of a prototype-based cluster:** the sum of proximities between all points <u>in a given cluster</u> and the prototype of that cluster.

\*

2. **Separation of a prototype-based cluster:** the proximity of the two cluster prototypes.

## 2.3 Cluster Number Evaluation Metrics: What is the 'correct' number of clusters?

#### 2.3.1 General Elbow Plot Method

#### **Definition 2.3 (General Elbow Plot Method)**

When determining whether a clustering structure can be detected by a particular clustering algorithm (K-means, K-medians, K-medoids), we can use an elbow plot that plots the value of the objective function that we are trying to minimize of the clusterings found by that particular clustering algorithm with k = 1, k = 2, ... clusters respectively.

The **drawback** of this method is each of these methods are dependent on the ability of a clustering algorithm to detect the clustering structure.

#### 2.3.2 Average Silhouette Score Plot Method

#### (1). Creating an Average Silhouette Score Plot

For k = 1 to K:

- Cluster the data several times into k clusters.
- Calculate the average of the average silhouette scores of these resulting clusterings.
- Then plot the average of these average silhouette scores for each k.



Figure 2.4: Average Silhouette Score Plot

- (2). How to interpret: Choose the number of clusters with the highest average silhouette score.
- (3). Warning: We need to make sure the distance metric we are using to measure the silhouette score with is a useful metric in measuring the cohesion and the separation of the clusters in the dataset.
  For instance, when using the Euclidean distance to measure distance in the silhouette score, the average silhouette score is not as effective in measuring clustering cohesion and separation of non-convex shapes.
- (4). **Benefit:** Using an average silhouette score plot do not assume using one particular algorithm/clustering problem to measure cluster performance.

# 2.4 Supervised Clustering Evaluation Metrics: How similar is the clustering to a set of (external) pre-assigned class labels?

#### **Definition 2.4 (Supervised Clustering Evaluation Metrics)**

Supervised clustering evaluation metrics evaluate the clustering by using a set of pre-assigned class labels. This can be useful for examining the association between our pre-assigned cluster labels and the clustering structure identified by our clustering algorithms.

#### 2.4.1 Rand Index and Jaccard Coefficient of Two Partitions

A partition of a set  $\{x_1, x_2, ..., x_m\}$  is a collection of K non-empty subsets (i.e. clusters/classes) of the set such that every element of the set is in exactly one of the subsets (i.e. clusters/classes).

#### **Definition 2.5 (Rand Index and Jaccard Coefficient)**

$$\mbox{Rand Index (Statistic)} = \frac{f_{00}+f_{11}}{f_{00}+f_{01}+f_{10}+f_{11}}$$
 
$$\mbox{Jaccard Coefficient} = \frac{f_{11}}{f_{01}+f_{10}+f_{11}}$$

- $\circ$   $f_{00} =$  number of pairs of objects in the dataset that are **apart** in partition 1 and partition 2
- $\circ$   $f_{11} =$  number of pairs of objects in the dataset that are **together** in partition 1 and partition 2
- $\circ$   $f_{01} =$  number of pairs of objects in the dataset that are **apart** in partition 1 and **together** in partition 2
- $\circ$   $f_{10} =$  number of pairs of objects in the dataset that are **together** in partition 1 and **apart** in partition

#### **Interpretation and Ranges:**

- 1. Rand Index (Statistic)  $\in [0,1]$ : 0 means all possible object pairs disagree between the two partitions; 1 means the partitions are exactly the same.
- 2. Jaccard Coefficient ∈ [0, 1]: 0 means none of the possible object pairs that have at least one partition that has put them together are together in both partitions; 1 means all possible object pairs that have at least one partition that has put them together are together in both partitions.

#### 2.4.2 Adjusted Rand Index

In Rand Index (Statistic), 0 means all possible object pairs disagree between the two partitions and 1 means clusterings are identical. However, we want a desired evaluation metric such that, 0 means random labeling independently of the number of clusters and samples and 1 means clusterings are identical

#### **Definition 2.6 (Adjusted Rand Index)**

$$Adjusted \ Rand \ Index = \frac{rand \ index - expected \ rand \ index}{maximum \ rand \ index - expected \ rand \ index}$$

For two partitions  $\{U_1, U_2, ..., U_K\}$  and  $\{V_1, V_2, ..., V_{K'}\}$  of the same set of m objects, we can define:

- 1.  $m_{k,k'}$  =number of objects in common in subset  $U_k$  and  $V_{k'}$ .
- 2.  $a_k$  =the total number objects in subset  $U_k$ .
- 3.  $b_{k'}$  =the total number objects in subset  $V_{k'}$ .

Adjusted Rand Index 
$$= \frac{\sum_{k,k'} \binom{m_{k,k'}}{2} - \left[\sum_{k} \binom{a_k}{2} \sum_{k'} \binom{b_{k'}}{2}\right] / \binom{m}{2}}{\frac{1}{2} \left[\sum_{k} \binom{a_k}{2} + \sum_{k'} \binom{b_{k'}}{2}\right] - \left[\sum_{k} \binom{a_k}{2} \sum_{k'} \binom{b_{k'}}{2}\right] / \binom{m}{2}}$$

Adjusted rand index can actually be negative for two clusterings that have very low similarity.

## 2.5 Clustering Comparison Metrics: Which clustering is better for a given dataset?

- 1. **Inertias** of the two clusterings: Inertia should only be used to compare clustering generated from the **same dataset**.
- 2. **Average silhouette scores** of the two clusterings: We can use this metric to compare the cohesion and separation of clusterings (and they **could** be two clusterings of **different dataset**),