(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 6 October 2005 (06.10.2005)

PCT

(10) International Publication Number WO 2005/093209 A1

(51) International Patent Classification⁷:

E21B 43/12

(21) International Application Number:

PCT/EP2005/051298

(22) International Filing Date: 21 March 2005 (21.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

04101175.0 22 March 2004 (22.03.2004) EP

(71) Applicant (for all designated States except CA, US): SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. [NL/NL]; Carel van Bylandtlaan 30, NL-2596 HR THE HAGUE (NL).

(71) Applicant (for CA only): SHELL CANADA LIMITED [CA/CA]; 400 - 4th Avenue S.W., Calgary, Alberta T2P 2H5 (CA).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): GALLOWAY II, Arthur William [US/US]; 1330 Bluestone Drive, Missouri City, Texas 77459 (US). HALL, James William [US/NL]; Kesslerpark 1, NL-2288 GS Rijswijk (NL). JOHNSON, Joseph Larry [US/US]; 107 Villere Circle, Lafayette, Louisiana 70506 (US). NETTLESHIP, Gary [AU/AU]; Unit 5, 265 Roberts Road, Subiaco, Western Australia 6008 (AU).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Continued on next page]

(54) Title: METHOD OF INJECTING LIFT GAS INTO A PRODUCTION TUBING OF AN OIL WELL AND GAS LIFT FLOW CONTROL DEVICE FOR USE IN THE METHOD

(57) Abstract: A method is disclosed for injecting lift gas or other fluid into a production conduit of an oil well via one or more wear resistant downhole gas lift flow control devices which each comprise: a tubular valve housing (1) comprising a flow passage (2) having an upstream end (9) which is connected to a lift gas supply conduit and a downstream end (10) which is connected to the interior of the production conduit; a flapper type valve body (3) which is pivotally connected to the valve housing (1) and is arranged in the flow passage (2) such that if the valve body is pivoted in the open position the valve body is oriented substantially parallel to the flow passage and that if the valve body is pivoted in the closed position the valve body is oriented substantially perpendicular to the flow passage and is pressed against a ring shaped valve seat (4), thereby blocking passage of lift gas through the flow passage(2); a valve protection sleeve (5) which is slidably arranged in the flow passage (2) between a first position (shown in Fig.2) wherein the sleeve (5) extends through the ring-shaped valve seat, whilst the valve body (3) is pivoted in the open position thereof, thereby protecting the valve body and seat against wear by the flux of lift gas or other fluid and a second position (shown in Fig. 1) wherein the sleeve (5) extends through the section of the flow passage (2) upstream of the valve seat (4), whilst the valve body (3) is pivoted in the closed position thereof; and a flow restrictor (8) forming part of the valve protection sleeve (5), which is dimensioned such that the flux of lift gas flowing through the flow restrictor (8) creates a pressure difference which induces the sleeve (5) to move towards the first position.

WO 2005/093209 A1

- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

— with international search report