Plano Hiperbólico, Aplicaciones del Teorema de Svarc-Milnor y Grupos Hiperbólicos

Proyecto: Grupos y Geometría: Acciones, Dimensión y Dualidad

Cristo Daniel Alvarado

Escuela Superior de Física y Matemáticas Instituto Politécnico Nacional

31 de enero de 2025

Index

1. El Plano Hiperbólico \mathbb{H}^2 y su Grupo de Isometrías El Grupo PSL $(2,\mathbb{R})$ Acción de SL $(2,\mathbb{R})$ en \mathbb{H}^2 Švarc-Milnor y el plano hiperbólico Grupos Fuchsianos

2. Espacios Hiperbólicos Hiperbólicidad y δ -hiperbolicidad Hiperbolicidad del Plano \mathbb{H}^2 Hiperbolicidad es invariante cuasi-isométrico Grupos Hiperbólicos El problema de la palabra en Grupos Hiperbólicos

El Plano Hiperbólico \mathbb{H}^2 y su Grupo de Isometrías

$$\mathsf{PSL}(2,\mathbb{R}) \curvearrowright \mathbb{H}^2$$

El Grupo $\overline{\mathsf{PSL}\left(2,\mathbb{R} ight)}$

Definición

 $\mathsf{SL}\,(n,\mathbb{A})$ denota al espacio de todas las matrices $n \times n$ con entradas en $\mathbb{A} \subseteq \mathbb{C}$ tales que:

$$det(A) = 1, \forall A \in A$$

Definición (Transformaciones de Möbius)

Para la matriz 2×2 :

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$$

definimos la **transformación de Möbius asociada** $f_A: H \to H$, dada por:

$$z \mapsto \frac{a \cdot z + b}{c \cdot z + d}$$

Observación

Toda transformación de Möbius está bien definida, ya que como H es el plano superior, entonces la parte real de z nunca será un número con parte imaginaria cero, así que $c \cdot z + d \neq 0$ para todo $z \in H$.

Ejemplo

La función $z\mapsto z$ es una transformación de Möbius. Al igual que la función $z\mapsto \frac{1}{z}$. En particular, todas las funciones lineales de H en H son transformaciones de Möbius.

Proposición

Se tiene lo siguiente:

- (1) f_A está bien definido y es un difeomorfismo C^{∞} (o suave).
- (2) Para todo $A, B \in SL(2, \mathbb{R})$ se tiene que $f_{A \cdot B} = f_A \circ f_B$.
- (3) $f_A = f_{-A}$ para todo $A \in SL(2, \mathbb{R})$.

Demostración:

De (1) y (2): Son inmediatas.

De (3): Si

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R})$$

entonces,

$$f_A(z) = \frac{a \cdot z + b}{c \cdot z + d} = \frac{-a \cdot z + -b}{-c \cdot z + -d} = f_{-A}(z)$$

para todo $z \in H$.

Ejemplo (**Generadores SL** $(2, \mathbb{R})$)

Tenemos los siguientes dos tipos de transformaciones de Möbius:

■ Sea $b \in \mathbb{R}$. Entonces, la transformación de Möbius asociada a la matriz:

$$\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \in \mathsf{SL}\left(2,\mathbb{R}\right)$$

es la traslación horizontal $z \mapsto z + b$ en H por un factor b se denotará por T_b .

■ La transformación de Möbius asociada a la matriz:

$$\left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight)\in\mathsf{SL}\left(2,\mathbb{R}
ight)$$

es la función $z \mapsto -\frac{1}{z}$ se denotará por -In.

Ejemplo (**Generadores SL** $(2, \mathbb{R})$)

Se tiene que el grupo $SL(2,\mathbb{R})$ es generado por:

$$\left\{\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)\right\} \cup \left\{\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right) \left|b \in \mathbb{R}\right.\right\}$$

Proposición (Transformaciones de Möbius son isometrías)

Si $A \in SL(2,\mathbb{R})$, entonces la transformación de Möbius asociada $f_A: H \to H$ es una isometría Riemanniana de \mathbb{H}^2 . En particular, tenemos un monomorfismo de grupos:

$$\mathsf{PSL}\left(2,\mathbb{R}\right) = \mathsf{SL}\left(2,\mathbb{R}\right) / \left\{I,-I\right\} \to \mathsf{Isom}\left(H,d_H\right)$$

dado por $[A] \mapsto f_A$.

Demostración:

Por el ejemplo anterior basta con ver que T_b y In son isometrías Riemannianas de \mathbb{H}^2 , ya que la composición de isometrías Riemannianas sigue siendo una isometría Riemanniana.

Teorema (El grupo de isometrías hiperbólicas)

El grupo Isom (H, d_H) es generado por:

$$\{f_A | A \in SL(2,\mathbb{R})\} \cup \{z \mapsto -\overline{z}\}$$

En particular, toda isometría de (H, d_H) es una isometría Riemanniana suave y, Isom $(H, d_H) = \text{Isom } (\mathbb{H}^2)$. Además, la función:

$$\mathsf{PSL}\,(2,\mathbb{R}) \to \mathsf{Isom}\,(H,d_H)^+$$
$$[A] \mapsto f_A$$

es un isomorfismo, siendo Isom $(H, d_H)^+$ al grupo de todas las isometrías que preservan orientación de Isom (H, d_H) .

Proposición (Acción de SL $(2, \mathbb{R})$ en H)

La acción de $SL(2,\mathbb{R})$ en H:

$$f: \mathsf{SL}(2,\mathbb{R}) \to \mathsf{Sym}(H)$$

tal que $A \mapsto f_A$ cumple lo siguiente:

- (1) El grupo $SL(2,\mathbb{R})$ actúa en H vía transformaciones de Möbius, más aún, esta acción es transitiva.
- (2) El subgrupo estabilizador de i respecto a esta acción es SO (2).
- (3) Para todo $z, z' \in H$ existe $A \in SL(2, \mathbb{R})$ tal que:

$$f_A(z) = i$$
 y $\Re(f_A(z')) = 0, \Im(f_A(z')) > 1$

Demostración:

De (1): Es inmediato que el grupo actúa via transformaciones de Möbius con la acción dada por:

$$(A, z) \mapsto A \cdot z = f_A(z), \quad \forall A \in SL(2, \mathbb{R}), \forall z \in H$$

Veamos que esta acción es transitiva. Basta probar que para todo $z \in H$ existe un $A_z \in SL(2,\mathbb{R})$ tal que:

$$f_{A_z}(z) = i$$

Tomemos $x = \Re(z)$ y $y = \Im(z)$. Entonces la transformación de Möbius asociada a la matriz:

$$A_z = \begin{pmatrix} \frac{1}{\sqrt{y}} & -\frac{x}{\sqrt{y}} \\ 0 & \sqrt{y} \end{pmatrix} \in SL(2, \mathbb{R})$$

es tal que:

$$A_z \cdot z = f_{A_z}(z) = \frac{\frac{x+iy}{\sqrt{y}} - \frac{x}{\sqrt{y}}}{\sqrt{y}} = i$$

Con lo que la acción es transitiva.

De (2): Se tiene que:

$$SL(2, \mathbb{R})_{i} = \left\{ A \in SL(2, \mathbb{R}) \middle| A \cdot i = i \right\}$$

$$= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{R}) \middle| a = d \text{ y } c = -b \right\}$$

$$= \left\{ \begin{pmatrix} a & -c \\ c & a \end{pmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}) \middle| a^{2} + c^{2} = 1 \right\}$$

$$= SO(2)$$

De (3): Inmediato del inciso (1).

Resulta que podemos dotar al grupo PSL $(2,\mathbb{R})$ con una topología. Para ello, notemos que la función:

$$[A] \mapsto (a, b, c, d)$$

es una función suprayectiva de PSL $(2, \mathbb{R})$ en el subconjunto:

$$\left\{(a,b,c,d)\in\mathbb{R}^4\middle|ad-bc=1\right\}$$

y es una función biyectiva al espacio cociente:

$$\left\{(a,b,c,d)\in\mathbb{R}^4\Big|ad-bc=1\right\}/\left\{(a,b,c,d)\sim(-a,-b,-c,-d)\right\}$$

Dotando al subespacio $\left\{(a,b,c,d)\in\mathbb{R}^4\middle| ad-bc=1\right\}$ con la norma usual de \mathbb{R}^4 resulta que el cociente también se puede dotar de una norma, así que el grupo PSL $(2,\mathbb{R})$ tiene una norma inducida por la norma del espacio cociente, a saber:

$$||[A]|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

donde

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Proposición

 $\mathsf{PSL}(2,\mathbb{R})$ es un grupo topológico con la métrica inducida por la norma:

$$||[A]|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

Lema (Švarc-Milnor)

Sea G un grupo actuando en un espacio métrico no vacío (X,d) por isometrías. Suponga que existen constantes $c,b\in\mathbb{R}_{>0}$ tales que (X,d) es (c,d)-cuasi-geodésico y además que existe un conjunto $B\subseteq X$ con las siguientes propiedades:

- El diámetro de B es finito.
- Las traslaciones de B cubren a todo X, esto es: $\bigcup_{g \in G} g \cdot B = X$.
- El conjunto $S = \left\{ g \in G \middle| g \cdot B' \cap B' \neq \emptyset \right\}$ es finito, donde:

$$B' = B_{2 \cdot b}^{(X,d)}(B) = \left\{ x \in X \middle| \exists y \in B \text{ tal que } d(x,y) \le 2b \right\}$$

Lema (Švarc-Milnor)

Entonces:

- (1) El grupo G es generado por S; en particular, G es finitamente generado.
- (2) Para todo $x \in X$, la función:

$$G \to X$$

 $g \mapsto g \cdot x$

es una cuasi-isometría (con respecto a la métrica de palabras en G). Por tanto, $G \underset{C}{\sim} X$.

Observación

Notemos que para la acción de $SL(2,\mathbb{R})$ en el espacio métrico (H,d_H) estamos en la posibilidad de aplicar el lema anterior, solo basta verificar algunas condiciones. Las que ya se tienen son las siguientes:

- (1) El espacio (H, d_H) es no vacío (1, 0)-cuasi-geodésico, por ser geodésico.
- (2) $SL(2,\mathbb{R})$ actúa por isometrías en (H,d_H) . Para aplicar el lema, debemos ver que las tres condiciones del lema se cumplen para un conjunto $B \subseteq H$.

Sea $B = \{z\} \subseteq H$. Se tiene que:

- (1) El diámetro de B es cero, es decir que es finito.
- (2) $\bigcup_{A \in SL(2,\mathbb{R})} A \cdot B = \bigcup_{A \in SL(2,\mathbb{R})} A \cdot \{z\} = H$, pues la acción de $SL(2,\mathbb{R})$ en H es transitiva.
- (3) Como el espacio es (1,0)-cuasi-geodésico, solo hay que ver si el conjunto:

$$\left\{A\cdot B\cap B\neq\emptyset\Big|A\in\mathsf{SL}(2,\mathbb{R})\right\}=\left\{A\cdot z=z\Big|A\in\mathsf{SL}(2,\mathbb{R})\right\}$$

es finito o no. Esto ya que en este caso se tiene:

$$B' = B_{2\cdot 0}^{(X,d)}(B) = \left\{ x \in X \middle| d(x,z) = 0 \right\} = B$$

Resulta que tal conjunto no es finito, pues si $A_z \in SL(2,\mathbb{R})$ es tal que:

$$f_{A_z}(z) = i$$

se tiene que:

$$A_{z}^{-1}\cdot\mathsf{SO}\left(2\right)\cdot A_{z}\subseteq\left\{ A\cdot B\cap B
eq\emptyset\middle|A\in\mathsf{SL}\left(2,\mathbb{R}
ight)
ight\}$$

pues:

$$f_{A_z^{-1}\cdot O\cdot A_z}(z) = f_{A_z^{-1}}\circ f_O\circ f_{A_z}(z) = f_{A_z^{-1}}\circ f_O(i) = f_{A_z^{-1}}(i) = z$$

con lo que el conjunto de la derecha no es finito, pues $A_z^{-1} \cdot SO(2) \cdot A_z$ no lo es.

¿Cómo solucionamos este problema?

¿Cómo solucionamos este problema? Usando subgrupos de $SL(2,\mathbb{R})$ o equivalentemente de $PSL(2,\mathbb{R})$.

Corolario (Formulación topológica del lema de Švarc-Milnor)

Sea G un grupo actuando por isometrías en un espacio métrico no vacío (X,d) propio y geodésico. Más aún, suponga que esta acción es propia y cocompacta. Entonces, G es finitamente generado y, para todo $x \in X$ la función:

$$G \to X$$

 $g \mapsto g \cdot x$

es una cuasi-isometría.

Definición (Familias localmente finitas)

Una familia $\{F_i \subseteq X | i \in I\}$ de subconjuntos un espacio métrico (X, d) es **localmente finita** si el conjunto:

$$\{i \in I | F_i \cap C \neq \emptyset\}$$

es un conjunto finito para todo $C \subseteq X$ compacto.

Definición (Acciones propias)

Decimos que un grupo G actuando en un espacio métrico (X,d) actúa propiamente si la familia $\left\{G\cdot x\middle|x\in X\right\}$ es localmente finita. En este caso diremos que la acción es **propia**.

Definición (Acciones cocompactas)

Una acción de un grupo G en un espacio topológico X es **cocompacta** si el espacio cociente G/X es compacto respecto a la topología cociente.

Definición

Un subgrupo $H < \text{Isom}(H, d_H)^+$ es llamado **discreto** si el grupo H visto como subgrupo de $PSL(2, \mathbb{R})$ es discreto.

En tal caso, H es llamado grupo Fuchsiano.

Ejemplo

El **grupo modular** PSL $(2, \mathbb{Z})$ es un subgrupo discreto de PSL $(2, \mathbb{R})$, por lo que es Fuchsiano.

Ejemplo

El grupo PSL $(2,\mathbb{Q})$ es un subgrupo de PSL $(2,\mathbb{R})$ que no es discreto, luego no es Fuchsiano.

Ejemplo

El conjunto de todas las traslaciones reales enteras $\left\{T_n\middle|n\in\mathbb{Z}\right\}$ es un grupo Fuchsiano.

Ejemplo

El conjunto de todas las traslaciones reales $\left\{T_r\middle|r\in\mathbb{R}\right\}$ no es un grupo Fuchsiano por no ser discreto.

Teorema (Caracterización de las acciones propias)

Un grupo G actúa propiamente sobre un espacio métrico (X,d) si y sólo si para todo $x \in X$ existe $\epsilon > 0$ tal que:

$$\left\{g \in G \middle| g \cdot B_{\varepsilon}^{(X,d)}(x) \cap B_{\varepsilon}^{(X,d)}(x) \neq \emptyset\right\}$$

es un conjunto finito.

Grupos Fuchsianos

Teorema (Caracterización de los grupos Fuchsianos)

Sea $\Gamma < \mathsf{PSL}(2,\mathbb{R}).$ Entonces, Γ es Fuchsiano si y sólo si la acción es propia.

Grupos Fuchsianos

Teorema (Cuasi-isometría de grupos Fuchsianos y (H, d_H))

Sea $\Gamma < \mathsf{PSL}(2,\mathbb{R})$ un grupo Fuchsiano. Conisdere la acción de Γ en (H,d_H) dada por:

$$[A] \mapsto f_A$$

Entonces, si la acción es cocompacta se sigue que $H \underset{C.I.}{\sim} \Gamma$ y, para todo $z \in H$ la función:

$$[A] \mapsto [A] \cdot z = A \cdot z$$

es una cuasi-isometría.

Grupos Fuchsianos

Teorema (Cuasi-isometría de grupos Fuchsianos y (H, d_H))

Sea $\Gamma < \mathsf{PSL}(2,\mathbb{R})$ un grupo Fuchsiano. Conisdere la acción de Γ en (H,d_H) dada por:

$$[A] \mapsto f_A$$

Entonces, si la acción es cocompacta se sigue que $H \underset{C.I.}{\sim} \Gamma$ y, para todo $z \in H$ la función:

$$[A] \mapsto [A] \cdot z = A \cdot z$$

es una cuasi-isometría.

Demostración:

Inmediato del Corolario al lema de Svarc-Milnor y de la caracterización de los grupos Fuchsianos.

Espacios Hiperbólicos

Espacios Hiperbólicos

Espacios Hiperbólicos

Espacios Hiperbólicos

Hablaremos de triángulos.

Triángulos geodésicos sobre superficie hiperbólica:

Idea: generalizar noción de hiperbolicidad a espacios métricos.

- Queremos conservar noción de distancia mínima (geodésicas).
- Vía triángulos geodésicos.
- Ensanchamientos.

Idea: generalizar noción de hiperbolicidad a espacios métricos.

- Queremos conservar noción de distancia mínima (geodésicas).
- Vía triángulos geodésicos.
- Ensanchamientos.

Ensanchamiento:

Figura: Ejemplo de conjunto A y $B_{\delta}^{(X,d)}(A)$ (ensanchamiento de A).

Definición

Sea (X,d) un espacio métrico. Para cada $\delta>0$ y para cada $A\subseteq X$ se define el conjunto:

$$B_{\delta}^{(X,d)}(A) = \left\{ x \in X \middle| \exists a \in A \text{ tal que } d(x,a) \leq \delta \right\}$$

en este caso $B_{\delta}^{(X,d)}(A)$ será llamado **ensanchamiento de** A **por factor** δ .

Figura: Triángulo geodésico $\Delta = (\gamma_0, \gamma_1, \gamma_2)$ y $B_{\delta}^{(X,d)}$.

Definición (**Triángulos geodésicos** δ -**delgados**)

Sea (X, d) un espacio métrico. Un **triángulo geodésico en** X es una tripleta $(\gamma_0, \gamma_1, \gamma_2)$ de geodésicas $\gamma_i : [0, L_i] \to X$ en X tales que:

$$\gamma_0(L_0) = \gamma_1(0), \quad \gamma_1(L_1) = \gamma_2(0), \quad \gamma_2(L_2) = \gamma_0(0)$$

Definición (**Triángulos geodésicos** δ -delgados)

Un triángulo geodésico es δ -delgado si:

$$\begin{split} & \operatorname{im}\left(\gamma_{0}\right) & \subseteq B_{\delta}^{(X,d)}(\operatorname{im}\left(\gamma_{1}\right) \cup \operatorname{im}\left(\gamma_{2}\right)), \\ & \operatorname{im}\left(\gamma_{1}\right) & \subseteq B_{\delta}^{(X,d)}(\operatorname{im}\left(\gamma_{0}\right) \cup \operatorname{im}\left(\gamma_{2}\right)), \\ & \operatorname{im}\left(\gamma_{2}\right) & \subseteq B_{\delta}^{(X,d)}(\operatorname{im}\left(\gamma_{0}\right) \cup \operatorname{im}\left(\gamma_{1}\right)) \end{split}$$

¿El triángulo anterior es δ -delgado?

¿El triángulo anterior es δ -delgado?

No, la imagen de γ_0 no está contenida en $B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_1)) \cup B_{\delta}^{(X,d)}(\operatorname{im}(\gamma_2))$.

Definición (Espacios hiperbólicos)

Sea (X, d) un espacio métrico.

- (1) Sea $\delta \in \mathbb{R}_{\geq 0}$. Decimos que (X, d) es δ -hiperbólico si X es geodésico y todos los triángulos geodésicos de X son δ -delgados.
- (2) (X, d) es **hiperbólico** si existe $\delta \in \mathbb{R}_{\geq 0}$ tal que (X, d) es δ -hiperbólico.

Definición (Espacios hiperbólicos)

Sea (X, d) un espacio métrico.

- (1) Sea $\delta \in \mathbb{R}_{\geq 0}$. Decimos que (X, d) es δ -hiperbólico si X es geodésico y todos los triángulos geodésicos de X son δ -delgados.
- (2) (X, d) es **hiperbólico** si existe $\delta \in \mathbb{R}_{\geq 0}$ tal que (X, d) es δ -hiperbólico.

Ejemplo

Todo espacio métrico geodésico X de diámetro finito es diam (X)-hiperbólico.

Ejemplo

La recta real $\mathbb R$ es 0-hiperbólico ya que cada triángulo geodésico en $\mathbb R$ es degenerado, pues estos se ven simplemente como líneas rectas.

Ejemplo

La recta real $\mathbb R$ es 0-hiperbólico ya que cada triángulo geodésico en $\mathbb R$ es degenerado, pues estos se ven simplemente como líneas rectas.

Ejemplo

El plano euclideano \mathbb{R}^2 no es hiperbólico.

Figura: \mathbb{R}^2 no es hiperbólico.

¿Coincide esta nueva noción de hiperbolicidad de espacios métricos con la definición sobre superficies?

Nuestro objetivo en esta subsección será probar el siguiente resultado:

Proposición

El plano hiperbólico \mathbb{H}^2 (visto como espacio métrico) es un espacio métrico hiperbólico en el sentido de la definición de la sección anterior.

Antes de llegar a ello, probaremos algunos resultados adicionales y enunciaremos algunas definciones.

Definición (Integral hiperbólica)

Sea $f: H \to \mathbb{R}_{\geq} 0$ una función Lebesgue integrable. Se define la integral de f sobre \mathbb{H}^2 como:

$$\int_{H} f \, dV_{H} = \int_{H} f(x, y) \sqrt{\det(G_{H,(x,y)})} \, dxdy$$
$$= \int_{H} \frac{f(x, y)}{y^{2}} \, dxdy$$

donde:

$$G_{H,(x,y)} = \left(\begin{array}{cc} g_{H,(x,y)}(e_1,e_1) & g_{H,(x,y)}(e_1,e_2) \\ g_{H,(x,y)}(e_2,e_1) & g_{H,(x,y)}(e_2,e_2) \end{array} \right) = \left(\begin{array}{cc} 1/y^2 & 0 \\ 0 & 1/y^2 \end{array} \right)$$

siendo $e_1, e_2 \in T_{(x,v)}H = \mathbb{R}^2$ los vectores canónicos.

Definición (Área hiperbólica)

Si $A \subseteq H$ es un conjunto Lebesgue medible, definimos el **área** hiperbólica de A por:

$$\mu_{\mathbb{H}^2}(A) = \int_H \chi_A \; dV_H$$

siendo χ_A la función característica de A.

Definición (Área de un triángulo geodésico)

Sea Δ un triángulo geodésico en (H, d_H) . Se define el **área de** Δ como:

$$\mu_{\mathbb{H}^2}(\Delta) = \mu_{\mathbb{H}^2}(A_{\Delta})$$

siendo $A_{\Delta} \subseteq H$ el conjunto compacto encerrado por las geodésicas de Δ .

Proposición (Las isometrías preservan el área)

Sea $A \subseteq H$ un conjunto Lebesgue medible y tomemos $f \in \text{Isom}(H, d_H)$. Entonces, f(A) es medible y:

$$\mu_{\mathbb{H}^2}(A) = \mu_{\mathbb{H}^2}(f(A))$$

Teorema (**Teorema de Gauß-Bonnet para triángulos** hiperbólicos)

Sea Δ un triángulo geodésico en (H, d_H) con ángulos α, β, γ y suponga que la imagen de Δ no está contenida en una sola línea geodésica. Entonces:

$$\mu_{\mathbb{H}^2}(\Delta) = \pi - (\alpha + \beta + \gamma)$$

En particular, la suma de los ángulos de un triángulo geodésico es menor que π y el área hiperbólica está acotada por π .

Proposición (Crecimiento exponencial del área hiperbólica)

Para todo $r \in \mathbb{R}_{>10}$ tenemos que:

$$\mu_{\mathbb{H}^2}(B_r^{(H,d_H)}(i)) \ge e^{\frac{r}{10}}(1-e^{-\frac{r}{2}})$$

Demostración:

Sea $r \in \mathbb{R}_{>10}$. Se tiene que el conjunto:

$$Q_r = \left\{ x + iy \middle| x \in [0, e^{r/10}], y \in [1, e^{r/2}] \right\}$$

está contenido en $B_r^{(H,d_H)}(i)$. En particular, obtenemos que:

$$\mu_{\mathbb{H}^{2}}(B_{r}^{(H,d_{H})}(i)) \geq \mu_{\mathbb{H}^{2}}(Q_{r})$$

$$= \int_{0}^{e^{r/10}} \int_{1}^{e^{r/2}} \frac{dxdy}{y^{2}}$$

$$= e^{\frac{r}{10}}(1 - e^{-\frac{r}{2}})$$

Teorema (Triángulos son delgados)

Existe una constante $C \in \mathbb{R}_{\geq 0}$ tal que todo triángulo geodésico en (H, d_H) es C-delgado.

Demostración:

Por la proposición anterior, existe C > 0 tal que:

$$\mu_{\mathbb{H}^2}(B_C^{(H,d_H)}(i)) \ge 4 \cdot \pi$$

(por ejemplo C=26). Tomemos $\Delta=(\gamma_0,\gamma_1,\gamma_2)$ un triángulo geodésico en (H,d_H) y sea $x\in \operatorname{im}(\gamma_0)$.

Sin pérdida de generalidad, podemos suponer que el triángulo geodésico Δ no está contenido en una sola línea geodésica. Por una proposición se sigue que podemos trasladar los puntos x a i y un extremo de la geodésica que lo contiene a un punto tal que:

$$\Im f_A(z) > 1$$

 $\mathcal{M}_{f}(z) = 0$

Figura: Movimiento del triángulo Δ .

Luego, de un teorema y otra prosición se sigue que la geodésica γ_0 es un segmento vertical que yace sobre el eje y.

Supongamos que para todo $y \in \operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)$ se tiene $d_H(i,y) > C$. Se tiene entonces que:

$$B_c^{(H,d_H)}(i) \subseteq A_\Delta \cup \operatorname{im}(\gamma_0) \cup f(A_\Delta)$$

siendo A_{Δ} el conjunto encerrado por las geodésicas de Δ y $f: H \to H$ la isometría $z \mapsto -\overline{z}$.

Por tanto:

$$\begin{aligned} 4 \cdot \pi & \leq \mu_{\mathbb{H}^{2}}(B_{C}^{(H,d_{H})}(i)) \\ & \leq \mu_{\mathbb{H}^{2}}(A_{\Delta} \cup \operatorname{im}(\gamma_{0}) \cup f(A_{\Delta})) \\ & = \mu_{\mathbb{H}^{2}}(A_{\Delta}) + \mu_{\mathbb{H}^{2}}(\operatorname{im}(\gamma_{0})) + \mu_{\mathbb{H}^{2}}(f(A_{\Delta})) \\ & = \mu_{\mathbb{H}^{2}}(\Delta) + \mu_{\mathbb{H}^{2}}(D) \\ & \leq 2 \cdot \pi \end{aligned}$$

Lo cual es una contradicción. Por lo cual existe $y \in \operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)$ tal que $d(x,y) \leq C$. En particular se sigue que:

$$\operatorname{im}(y_0) \subseteq \bigcup_{y \in \operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2)} B_C^{(H,d_H)}(y) \subseteq B_C^{(H,d_H)}(\operatorname{im}(\gamma_1) \cup \operatorname{im}(\gamma_2))$$

el procedimiento anterior se puede repetir para las otras geodésicas, resultando en que:

$$\begin{split} &\operatorname{im}\left(\gamma_{0}\right)\subseteq B_{C}^{(H,d_{H})}(\operatorname{im}\left(\gamma_{1}\right)\cup\operatorname{im}\left(\gamma_{2}\right)),\\ &\operatorname{im}\left(\gamma_{1}\right)\subseteq B_{C}^{(H,d_{H})}(\operatorname{im}\left(\gamma_{0}\right)\cup\operatorname{im}\left(\gamma_{2}\right)),\\ &\operatorname{im}\left(\gamma_{2}\right)\subseteq B_{C}^{(H,d_{H})}(\operatorname{im}\left(\gamma_{0}\right)\cup\operatorname{im}\left(\gamma_{1}\right)) \end{split}$$

así que Δ es un triángulo geodésico C-delgado. Como el Δ triángulo geodésico fue arbitrario se sigue que el plano hiperbólico es C-hiperbólico, es decir que es hiperbólico en el sentido de espacio métrico.

Un resultado más general nos dice lo siguiente:

Un resultado más general nos dice lo siguiente:

Teorema (Hiperbolicidad de variedades Riemannianias)

Si M es una variedad de Riemann cerrada, conexa y de curvatura seccional negativa, entonces el cubriente universal de M es hiperbólico como espacio métrico.

Y, ¿para qué nos sirve la hiperbolicidad?

La hiperbolicidad es un invariante cuasi-isométrico

Para llegar a probar tal cosa, debemos debilitar la definición de hiperbolicidad:

Definición (**Triángulos cuasi-geodésicos** δ**-delgados**)

Sea (X, d) un espacio métrico.

1 Un **triángulo cuasi-geodésico en** X es una tripleta $(\gamma_0, \gamma_1, \gamma_2)$ de (c, b)—cuasi-geodésicas $\gamma_i : [0, L_i] \to X$ en X tales que:

$$\gamma_0(L_0) = \gamma_1(0), \quad \gamma_1(L_1) = \gamma_2(0), \quad \gamma_2(L_2) = \gamma_0(0)$$

2 Un triángulo (c, b)-cuasi-geodésico es δ -delgado si:

$$\begin{split} &\operatorname{im}\left(\gamma_{0}\right)\subseteq B_{\delta}^{(X,d)}(\operatorname{im}\left(\gamma_{1}\right)\cup\operatorname{im}\left(\gamma_{2}\right)),\\ &\operatorname{im}\left(\gamma_{1}\right)\subseteq B_{\delta}^{(X,d)}(\operatorname{im}\left(\gamma_{0}\right)\cup\operatorname{im}\left(\gamma_{2}\right)),\\ &\operatorname{im}\left(\gamma_{2}\right)\subseteq B_{\delta}^{(X,d)}(\operatorname{im}\left(\gamma_{0}\right)\cup\operatorname{im}\left(\gamma_{1}\right)) \end{split}$$

Figura: Triángulo cuasi-geodésico y $B^{(X,d)}_{\delta}$

¿El triángulo (c, b)-cuasi-geodésico anterior es δ -delgado?

¿El triángulo (c, b)-cuasi-geodésico anterior es δ -delgado? Sí

Observación

De la definición anterior es inmediato que todo triángulo geodésico es triángulo cuasi-geodésico.

Definición (Espacios cuasi-hiperbólicos)

Sea (X, d) un espacio métrico.

- (1) Sean $c, b \in \mathbb{R}_{>0}$, $\delta \in \mathbb{R}_{\geq 0}$. Decimos que el espacio (X, d) es (c, b, δ) -cuasi-hiperbólico si (X, d) es (c, b)-cuasi-geodésico y todos los triángulos (c, b)-cuasi-geodésicos en X son δ -delgados.
- (2) Sean $c, b \in \mathbb{R}_{>0}$. El espacio (X, d) es llamado (c, b)-cuasi-hiperbólico si para todo $c', b' \in \mathbb{R}_{>0}$ con $c' \geq c$ y $b' \geq b$ existe $\delta \in \mathbb{R}_{\geq 0}$ tal que (X, d) es (c', b', δ) -cuasi-hiperbólico.
- (3) El espacio (X, d) es **cuasi-hiperbólico** si existen $c, b \in \mathbb{R}_{>0}$ tales que (X, d) es (c, b)-cuasi-hiperbólico.

Ejemplo

Todos los espacios métricos de diámetro finito son cuasi-hiperbólicos.

Observación

En general resultará muy complicado probar que un espacio es cuasi-hiperbólico usando la definición anterior, por el hecho de que pueden existir demasiadas cuasi-geodésicas. Resulta que este proceso se puede hacer más sencillo usando unos resultados que se verán más adelante.

Proposición (Invariancia de la cuasi-hiperbolicidad bajo cuasi-isometrías)

Sean (X, d) y (Y, ρ) espacios métricos.

- (1) Si (Y, ρ) es cuasi-geodésico y, (X, d) y (Y, ρ) son cuasi-isométricos, entonces (X, d) es cuasi-geodésico.
- (2) Si (Y, ρ) es cuasi-hiperbólico, (X, d) es cuasi-geodésico y existe un encaje cuasi-isométrico de (X, d) en (Y, ρ) , entonces (X, d) es cuasi-hiperbólico.
- (3) Si (X, d) y (Y, ρ) son cuasi-isométricos, entonces X es cuasi-hiperbólico si y sólo si Y es cuasi-hiperbólico.

Resulta que no existe mucha diferencia entre la propiedad de hiperbolicidad y cuasi-hiperbolicidad, como lo muestra el siguiente resultado:

Resulta que no existe mucha diferencia entre la propiedad de hiperbolicidad y cuasi-hiperbolicidad, como lo muestra el siguiente resultado:

Teorema (**Hiperbolicidad y cuasi-hiperbolicidad**)

Sea (X, d) un espacio métrico geodésico. Entonces (X, d) es hiperbólico si y sólo si es cuasi-hiperbólico.

Resulta que no existe mucha diferencia entre la propiedad de hiperbolicidad y cuasi-hiperbolicidad, como lo muestra el siguiente resultado:

Teorema (**Hiperbolicidad y cuasi-hiperbolicidad**)

Sea (X, d) un espacio métrico geodésico. Entonces (X, d) es hiperbólico si y sólo si es cuasi-hiperbólico.

Si (X, d) es cuasi-hiperbólico, entonces es hiperbólico (ya que en particular toda geodésica es una cuasi-geodésica y por ende, todo triángulo geodésico es cuasi-geodésico).

La idea para probar la otra parte de la demostración de este teorema radica en ver como podemos aproximar cuasi-geodésicas con geodésicas y por ende, aproximar cuasi-triángulos geodésicos con triángulos geodésicos.

Figura: Aproximación del triángulo cuasi-geodésico $\Delta=(\gamma_0,\gamma_1,\gamma_2)$ por el triángulo geodésico $\Delta'=(\sigma_0,\sigma_1,\sigma_2)$.

Corolario (Invariancia cuasi-isométrica de la hiperbolicidad)

Sean (X, d) y (Y, ρ) espacios métricos.

- (1) Si (Y, ρ) es hiperbólico, (X, d) es cuasi-geodésico y existe un encaje cuasi-isométrico de (X, d) en (Y, ρ) , entonces X es cuasi-hiperbólico.
- (2) Si (Y, ρ) es geodésico y (X, d) es cuasi-isométrico a (Y, ρ) , entonces (X, d) es cuasi-hiperbólico si y sólo si (Y, ρ) es hiperbólico.
- (3) Si (X, d) y (Y, ρ) son geodésicos y cuasi-isométricos, entonces (X, d) es hiperbólico si y sólo si (Y, ρ) es hiperbólico.

Como algunos ejemplos de la aplicación del teorema anterior tenemos los siguientes:

Corolario (**Hiperbolicidad de gráficas**)

Sea X una gráfica conexa. Entonces X es cuasi-hiperbólica si y sólo si su realización geométrica |X| es hiperbólica.

Proposición (Hiperbolicidad de árboles)

Si T es un árbol, entonces su realización geométrica |T| es 0-hiperbólica. En particular, T es cuasi-hiperbólico.

¿Y PARA QUÉ SIRVE LA HIPERBOLICIDAD?

Debido a que la hiperbolicidad (y cuasi-hiperbolicidad) es un invariante cuasi-isométrico, resulta que podemos extender la noción de hiperbolicidad a grupos:

Definición (Grupos hiperbólicos)

Un grupo finitamente generado G es **hiperbólico** si para algún conjunto generador S de G se tiene que la gráfica de Caley Cay (G,S) es cuasi-hiperbólica.

Observación

Como la gráfica de Caley de un grupo G es un invariante cuasi-isométrico, es decir que si $S,S'\subseteq G$ son conjuntos finitos que generan a G, se tiene que:

$$Cay(G, S) \sim_{G, I} Cay(G, S')$$

Proposición (**Hiperbolicidad es un invariante cuasi-isométrico**)

Sean G y H grupos finitamente generados.

- (1) Si H es hiperbólico y existen conjuntos finitos generadores S y T, de G y H, respectivamente tal que existe un encaje cuasi-isométrico entre (G, d_S) y (H, d_T) , entonces G es hiperbólico.
- (2) Si G y H son cuasi-isométricos, entonces G es hiperbólico si y sólo si H es hiperbólico.

Ejemplo

Todos los grupos finitos son hiperbólicos ya que la realización geométrica de su gráfica de Caley es de diámetro finito.

Ejemplo

 $\mathbb Z$ es hiperbólico por ser cuasi-isométrico a $\mathbb R$, que es un espacio métrico hiperbólico.

Ejemplo

 \mathbb{Z}^2 no es hiperbólico, ya que es cuasi-isométrico al plano euclideano \mathbb{R}^2 , el cual no es hiperbólico.

¿De qué nos sirve generalizar esta noción a grupos?

Definición

Sea $\langle S|R\rangle$ una presentación finita de un grupo. Decimos que **el problema de la palabra es soluble para la presentación** $\langle S|R\rangle$, si existe una función total computable que recibe como entrada una palabra en $(S \cup S^{-1})^*$ que decida si esta representa o no un elemento trivial en el grupo $\langle S|R\rangle$.

Al decir que exista una función total computable, en términos más simples estamos diciendo que existe un algoritmo que para cada entrada que demos, termina en un tiempo finito.

Observación

Otra forma de enunciar la definición anterior es que los conjuntos:

$$\left\{w\in (S\cup S^{-1})^*\Big| w \text{ representa un elemento trivial de } \langle S|R\rangle\right\}$$

$$\left\{w\in (S\cup S^{-1})^*\Big| w \text{ no representa un elemento trivial de } \langle S|R\rangle\right\}$$

son conjuntos computablemente enumerables.

Al decir que son computablemente enumerables, intuitivamente estamos diciendo que existe un algoritmo que va arrojando todos los elementos de este conjunto.

Ejemplo

La presentación $\langle x,y|\emptyset\rangle$ tiene problema de la palabra soluble, al igual que $\langle x,y|xyx^{-1}y^{-1}\rangle$.

A primera vista uno podría imaginar que todo grupo finitamente presentado tiene problema de la palabra soluble, cosa que no es cierta, como muestra el siguiente resultado:

A primera vista uno podría imaginar que todo grupo finitamente presentado tiene problema de la palabra soluble, cosa que no es cierta, como muestra el siguiente resultado:

Teorema

Existen grupos finitamente presentados tales que ninguna presentación finita de ellos tiene problema de la palabra soluble.

Por ejemplo, se encontró en 1986 que el grupo:

Por ejemplo, se encontró en 1986 que el grupo:

```
a,b,c,d,e,p,q,r,t,k
p^{10}a = ap,
                           pacqr = rpcaq,
                                                        ra = ar,
p^{10}b = bp,
                           p^2adq^2r = rp^2daq^2,
                                                        rb = br,
p^{10}c = cp,
                           p^3bca^3r = rp^3cba^3.
                                                        rc = cr,
p^{10}d = dp,
                           p^4bda^4r = rp^4dba^4.
                                                       rd=dr.
p^{10}e = ep,
                           p^5 cea^5 r = rp^5 ecaa^5.
                                                        re=er,
                           p^6 dea^6 r = rp^6 edba^6, pt = tp,
aq^{10} = qa,
ba^{10} = ab,
                           p^7 c d c a^7 r = r p^7 c d c e a^7, q t = t a,
ca^{10} = qc
                           p^8 ca^3 a^8 r = rp^8 a^3 a^8.
da^{10} = qd,
                           p^9 da^3 q^9 r = r p^9 a^3 q^9,
                           a^{-3}ta^3k = ka^{-3}ta^3
ea^{10} = qe,
```

Por ejemplo, se encontró en 1986 que el grupo:

```
a,b,c,d,e,p,q,r,t,k
p^{10}a = ap,
                           pacqr = rpcaq,
                                                        ra = ar,
p^{10}b = bp,
                           p^2adq^2r = rp^2daq^2,
                                                       rb = br.
                           p^3bcq^3r = rp^3cbq^3, rc = cr,
p^{10}c = cp
p^{10}d = dp.
                           p^4bdq^4r = rp^4dbq^4.
                                                       rd=dr,
p^{10}e = ep.
                           p^5 cea^5 r = rp^5 ecaa^5.
                                                        re=er,
                           p^6 dea^6 r = rp^6 edba^6, pt = tp,
aq^{10} = qa,
ba^{10} = ab,
                           p^7 c d c a^7 r = r p^7 c d c e a^7, q t = t a,
                           p^8 ca^3 q^8 r = rp^8 a^3 q^8,
cq^{10} = qc,
dq^{10} = qd
                           p^9da^3a^9r = rp^9a^3a^9.
                           a^{-3}ta^3k = ka^{-3}ta^3
ea^{10} = qe,
```

no tiene problema de la palabra soluble.

Definición (Presentaciones de Dehn)

Una presentación finita $\langle S|R\rangle$ es una **presentación de Dehn** si existe $n \in \mathbb{N}$ y palabras $u_1, ..., u_n, v_1, ..., v_n$ tales que:

- $R = \{u_1v_1^{-1}, ..., u_nv_n^{-1}\}.$
- Para todo j = 1, ..., n, la palabra v_i es más corta que u_i .
- Para topa palabra $w \in (S \cup S^{-1})^* \setminus \{e\}$ que representa un elemento neutro del grupo $\langle S|R\rangle$ existe j=1,...,n tal que u_j es subpalabra de w.

Ejemplo

La presentación:

$$\langle x, y | xx^{-1}e, yy^{-1}e, x^{-1}xe, y^{-1}ye \rangle$$

es una presentacion de Dehn del grupo libre de rango 2.

Ejemplo

La presentación:

$$\langle x, y | xx^{-1}e, yy^{-1}e, x^{-1}xe, y^{-1}ye \rangle$$

es una presentacion de Dehn del grupo libre de rango 2.

Ejemplo

La presentación:

$$\langle x, y | [x, y] \rangle$$

no es una presentación de Dehn de \mathbb{Z}^2 .

Proposición (Algoritmo de Dehn)

Si $\langle S|R\rangle$ es una presentación de Dehn, entonces el problema de la palabra es soluble para $\langle S|R\rangle$.

Demostración:

Escribimos:

$$R = \left\{u_1v_1^{-1}, ..., u_nv_n^{-1}\right\}$$

como en la definición de presentación de Dehn. Tomemos $w \in (S \cup S^{-1})^*$ una palabra.

- Si w = e, entonces w representa un elemento trivial del grupo $\langle S|R\rangle$.
- Si $w \neq e$, tenemos dos casos:
 - Si ninguna de las palabras $u_1, ..., u_n$ es una subpalabra de w, entonces w no representa un elemento trivial del grupo $\langle S|R\rangle$ (por la tercera parte de la definción de presentaciones de Dehn).

Demostración:

- Si $w \neq e$, tenemos dos casos:
 - Existe j=1,...,n tal que u_j es subpalabra de w, en cuyo caso se sigue que existen palabras w',w'' tales que: $w=w'u_jw''$. Ahora, como $u_jv_j^{-1}\in R$ se sigue que los elementos:

$$w'u_jw''$$
 y $w'v_jw''$

representan el mismo elemento en el grupo $\langle S|R\rangle$. Así que la palabra w es trivial si y sólo si la palabra $w'v_jw''$ (que es más corta) es trivial. Aplicando recursivamente el algoritmo se llega a determinar si w es la palabra trivial o no.

Este algoritmo siempre determina si la palabra w es trivial o no, por lo que el problema de la palabra es soluble en $\langle S|R\rangle$.

Teorema (Presentaciones de Dehn en grupos hiperbólicos)

Sea G un grupo hiperbólico y S un conjunto generador de G. Entonces existe un conjunto finito $R\subseteq (S\cup S^{-1})^*$ tal que $\langle S|R\rangle$ es una presentación de Dehn y $G\cong \langle S|R\rangle$.

Corolario (Grupos hiperbólicos tienen problema de la palabra soluble)

Sea G grupo hiperbólico y $S\subseteq G$ un conjunto generador finito. Entonces existe una presentación finita $\langle S|R\rangle$ de G tal que el problema de la palabra es soluble.

Corolario (**Grupos hiperbólicos tienen problema de la** palabra soluble)

Sea G grupo hiperbólico y $S\subseteq G$ un conjunto generador finito. Entonces existe una presentación finita $\langle S|R\rangle$ de G tal que el problema de la palabra es soluble.

¡¡Todo grupo hiperbólico finitamente generado tiene problema de la palabra soluble!!

Fin

Referencias