Συναρτήσεις Γραφική Παραστάση

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Ορισμός

Ορισμός

Γραφική παράσταση μιας συνάρτησης είναι το σύνολο των σημείων A(x,f(x)), $x\in D_f$, και συμβολίζεται με C_f

- Είναι γραφική παράσταση?
- Πεδίο Ορισμού
- Σύνολο τιμών
- Ρίζες
- Πρόσημο
- Κοινά σημεία
- Κατακόρυφη απόσταση
- Σχετική θέση

- Είναι γραφική παράσταση?
- Πεδίο Ορισμού
- ο Σύνολο τιμών
- Ρίζες
- Πρόσημο
- Κοινά σημεία
- Κατακόρυφη απόσταση
- Σχετική θέση

- Είναι γραφική παράσταση?
- Πεδίο Ορισμού
- Σύνολο τιμών
- Ρίζες
- Πρόσημο
- Κοινά σημεία
- Κατακόρυφη απόσταση
- Σχετική θέση

- Είναι γραφική παράσταση?
- Πεδίο Ορισμού
- Σύνολο τιμών
- Ρίζες
- Πρόσημο
- Κοινά σημεία
- Κατακόρυφη απόσταση
- Σχετική θέση

- Είναι γραφική παράσταση?
- Πεδίο Ορισμού
- Σύνολο τιμών
- Ρίζες
- Πρόσημο
- Κοινά σημεία
- Κατακόρυφη απόσταση
- Σχετική θέση

- Είναι γραφική παράσταση?
- Πεδίο Ορισμού
- Σύνολο τιμών
- Ρίζες
- Πρόσημο
- Κοινά σημεία
- Κατακόρυφη απόσταση
- Σχετική θέση

- Είναι γραφική παράσταση?
- Πεδίο Ορισμού
- Σύνολο τιμών
- Ρίζες
- Πρόσημο
- Κοινά σημεία
- Κατακόρυφη απόσταση
- Σχετική θέση

- Είναι γραφική παράσταση?
- Πεδίο Ορισμού
- Σύνολο τιμών
- Ρίζες
- Πρόσημο
- Κοινά σημεία
- Κατακόρυφη απόσταση
- Σχετική θέση

$$y = a$$

- y = ax + b
- $y = x^2$, $y = ax^2 + bx + c$
- $y = ax^3$
- $y = \frac{a}{x}$
- y = |x|
- $y = \eta \mu x, y = \sigma v \nu x, y = \varepsilon \varphi x$
- $y = a^x, y = e^x$
- $y = \ln x$
- Μετατοπίσεια

$$y = a$$

$$y = ax + b$$

•
$$y = x^2$$
, $y = ax^2 + bx + c$

$$y = ax^3$$

•
$$y = \frac{a}{x}$$

$$y = |x|$$

$$y = \eta \mu x, y = \sigma v \nu x, y = \varepsilon \varphi x$$

$$y = a^x, y = e^x$$

- $y = \ln x$
- Μετατοπίσεις

$$y = a$$

$$y = ax + b$$

•
$$y = x^2$$
, $y = ax^2 + bx + c$

$$y = ax^3$$

$$y = \frac{a}{x}$$

$$y = |x|$$

 $y = \eta \mu x, y = \sigma v \nu x, y = \varepsilon \varphi x$

- $y = a^x, y = e^x$
- $y = \ln x$
- Μετατοπίσεις

$$y = a$$

$$y = ax + b$$

•
$$y = x^2$$
, $y = ax^2 + bx + c$

$$y = ax^3$$

•
$$y = \frac{a}{3}$$

$$y = |x|$$

•
$$y = \eta \mu x$$
, $y = \sigma v \nu x$, $y = \varepsilon \varphi x$

$$y = a^x, y = e^x$$

- $y = \ln x$
- Μετατοπίσεια

$$y = a$$

$$y = ax + b$$

•
$$y = x^2$$
, $y = ax^2 + bx + c$

$$y = ax^3$$

•
$$y = \frac{a}{r}$$

$$y = |x|$$

•
$$y = \eta \mu x$$
, $y = \sigma v \nu x$, $y = \varepsilon \varphi x$

•
$$y = a^x$$
, $y = e^x$

- $y = \ln x$
- Μετατοπίσεις

$$y = a$$

$$y = ax + b$$

$$y = x^2$$
, $y = ax^2 + bx + c$

$$y = ax^3$$

•
$$y = \frac{a}{r}$$

$$\bullet$$
 $y = |x|$

•
$$y = \eta \mu x$$
, $y = \sigma v \nu x$, $y = \varepsilon \varphi x$

•
$$y = a^x$$
, $y = e^x$

$$y = \ln x$$

Μετατοπίσεις

4/16

$$y = a$$

$$y = ax + b$$

•
$$y = x^2$$
, $y = ax^2 + bx + c$

$$y = ax^3$$

•
$$y = \frac{a}{r}$$

$$\bullet$$
 $y = |x|$

$$ullet$$
 $y=\eta\mu x$, $y=\sigma vvx$, $y=arepsilon arphi x$

•
$$y = a^x$$
, $y = e^x$

- $y = \ln x$
- Μετατοπίσειο

$$y = a$$

$$y = ax + b$$

•
$$y = x^2$$
, $y = ax^2 + bx + c$

$$y = ax^3$$

•
$$y = \frac{a}{r}$$

$$y = |x|$$

•
$$y = \eta \mu x$$
, $y = \sigma v \nu x$, $y = \varepsilon \varphi x$

•
$$y = a^x$$
, $y = e^x$

- $y = \ln x$
- Μετατοπίσεις

$$y = a$$

$$y = ax + b$$

•
$$y = x^2$$
, $y = ax^2 + bx + c$

$$y = ax^3$$

•
$$y = \frac{a}{x}$$

$$y = |x|$$

•
$$y = \eta \mu x$$
, $y = \sigma v \nu x$, $y = \varepsilon \varphi x$

•
$$y = a^x$$
, $y = e^x$

$$y = \ln x$$

$$y = a$$

$$y = ax + b$$

$$y = x^2, y = ax^2 + bx + c$$

•
$$y = ax^3$$

•
$$y = \frac{a}{x}$$

$$y = |x|$$

$$ullet$$
 $y=\eta\mu x$, $y=\sigma vvx$, $y=arepsilon arphi x$

•
$$y = a^x, y = e^x$$

$$y = \ln x$$

• Μετατοπίσεις

4/16

$$y = f(x)$$

$$y = f(x) + c$$

$$\quad \bullet \ y = f(x+c)$$

$$\bullet \ a \cdot f(x)$$

$$y = f(a \cdot x)$$

$$y = -f(x)$$

$$y = |f(x)|$$

$$y = f(-x)$$

$$y = f(x)$$

•
$$y = f(x) + c$$

$$\quad \bullet \ y = f(x+c)$$

$$\bullet \ a \cdot f(x)$$

$$y = f(a \cdot x)$$

$$y = -f(x)$$

•
$$y = |f(x)|$$

$$y = f(-x)$$

$$y = f(x)$$

$$y = f(x) + c$$

$$\quad \bullet \ y = f(x+c)$$

$$\bullet$$
 $a \cdot f(x)$

$$y = f(a \cdot x)$$

$$y = -f(x)$$

$$y = |f(x)|$$

$$y = f(-x)$$

$$y = f(x)$$

$$y = f(x) + c$$

$$\bullet \ y = f(x+c)$$

$$\bullet$$
 $a \cdot f(x)$

$$y = f(a \cdot x)$$

$$y = -f(x)$$

$$y = |f(x)|$$

$$y = f(-x)$$

$$y = f(x)$$

$$y = f(x) + c$$

$$\quad \bullet \ y = f(x+c)$$

$$\bullet$$
 $a \cdot f(x)$

$$y = f(a \cdot x)$$

$$y = -f(x)$$

$$y = |f(x)|$$

$$y = f(-x)$$

$$y = f(x)$$

$$y = f(x) + c$$

$$y = f(x+c)$$

$$\bullet \ a \cdot f(x)$$

$$y = f(a \cdot x)$$

$$y = -f(x)$$

$$\bullet$$
 $y = |f(x)|$

$$y = f(-x)$$

$$y = f(x)$$

$$y = f(x) + c$$

$$y = f(x+c)$$

$$\bullet \ a \cdot f(x)$$

$$\quad \bullet \ y = f(a \cdot x)$$

$$y = -f(x)$$

•
$$y = |f(x)|$$

$$\quad \bullet \ y = f(-x)$$

🕨 Ασκηση Geogebra

- 📵 Να βρείτε το πεδίο ορισμού και το σύνολο τιμών
- \mathbf{Q} Να βρείτε τις τιμές: f(2) και f(f(0))
- ③ Να λύσετε γραφικά την f(x)=0
- ullet Να λύσετε γραφικά την f(x) < 0
- **⑤** Να βρείτε το πεδίο ορισμού της συνάρτησης $q(x) = \ln f(x)$

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 6/16

► Ασκηση Geogebra

- 1 Να βρείτε το πεδίο ορισμού και το σύνολο τιμών
- $oldsymbol{3}$ Να λύσετε γραφικά την f(x)=0
- ullet Να λύσετε γραφικά την f(x) < 0
- ⑤ Να βρείτε το πεδίο ορισμού της συνάρτησης $g(x) = \ln f(x)$

Λόλας (10° ΓΕΛ) Συναρτήσεις 6/16

► Ασκηση Geogebra

- 📵 Να βρείτε το πεδίο ορισμού και το σύνολο τιμών
- $oldsymbol{3}$ Να λύσετε γραφικά την f(x)=0
- ullet Να λύσετε γραφικά την f(x) < 0
- \bigcirc Να βρείτε το πεδίο ορισμού της συνάρτησης $g(x) = \ln f(x)$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 6/16

🕨 Ασκηση Geogebra

- 📵 Να βρείτε το πεδίο ορισμού και το σύνολο τιμών
- $oldsymbol{3}$ Να λύσετε γραφικά την f(x)=0
- ullet Να λύσετε γραφικά την f(x) < 0
- $f egin{aligned} f eta & eta$ Να βρείτε το πεδίο ορισμού της συνάρτησης $g(x) = \ln f(x)$

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 6/16

- Να βρείτε τα κοινά σημεία των C_f και C_g

- Να βρείτε τα κοινά σημεία των C_f και C_g
- Nα λύσετε την f(x) = g(x)

- Να βρείτε τα κοινά σημεία των C_f και C_g
- Nα λύσετε την f(x) = g(x)
- Να λύσετε τις ανισώσεις:

- Να βρείτε τα κοινά σημεία των C_f και C_g
- Nα λύσετε την f(x) = g(x)
- Να λύσετε τις ανισώσεις:
 - **1** f(x) > g(x)

- Να βρείτε τα κοινά σημεία των C_f και C_g
- Nα λύσετε την f(x) = g(x)
- Να λύσετε τις ανισώσεις:
 - **1** f(x) > g(x)
 - **2** f(x) < g(x)

► Ασκηση Geogebra

- Να βρείτε τα κοινά σημεία των C_f και C_g
- Nα λύσετε την f(x) = g(x)
- Να λύσετε τις ανισώσεις:
 - **1** f(x) > g(x)
 - (x) < q(x)
- Φ Να λύσετε την εξίσωση 2g(x) = f(g(0))

Συναρτήσεις 7/16

- Να βρείτε τα κοινά σημεία των C_f και C_g
- Nα λύσετε την f(x) = g(x)
- Να λύσετε τις ανισώσεις:
 - **1** f(x) > g(x)
 - (x) < q(x)
- Φ Να λύσετε την εξίσωση 2g(x) = f(g(0))
- Να βρείτε την κατακόρυφη απόσταση των συναρτήσεων στο $x_0 = 0$

Συναρτήσεις 7/16

Δίνεται η συνάρτηση $f(x)=ax^2-5a+1$, της οποίας η γραφική παράσταση διέρχεται από το σημείο ${\rm A}(3,5).$ Να βρείτε:

- $\mathbf{0}$ την τιμή του a
- ② τα κοινά σημεία της C_f με τους άξονες y'y και x'x
- 3 τα διαστήματα του x που η C_f βρίσκεται πάνω από τον άξονα x'x

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 8/16

Δίνεται η συνάρτηση $f(x)=ax^2-5a+1$, της οποίας η γραφική παράσταση διέρχεται από το σημείο ${\rm A}(3,5).$ Να βρείτε:

- **1** την τιμή του a
- $oldsymbol{2}$ τα κοινά σημεία της C_f με τους άξονες y'y και x'x
- ullet τα διαστήματα του x που η C_f βρίσκεται πάνω από τον άξονα x'x

Λόλας (10^o ΓΕΛ) Συναρτήσεις 8/16

Δίνεται η συνάρτηση $f(x) = ax^2 - 5a + 1$, της οποίας η γραφική παράσταση διέρχεται από το σημείο A(3,5). Να βρείτε:

- $\mathbf{0}$ την τιμή του a
- τα κοινά σημεία της C_f με τους άξονες $y^\prime y$ και $x^\prime x$
- τα διαστήματα του x που η C_f βρίσκεται πάνω από τον άξονα $x^\prime x$

Συναρτήσεις 8/16

Δίνονται οι συναρτήσεις $f(x) = \frac{1}{x}$ και g(x) = 1. Να βρείτε:

- 1 τα κοινά τους σημεία

Συναρτήσεις 9/16

Δίνονται οι συναρτήσεις $f(x) = \frac{1}{x}$ και g(x) = 1. Να βρείτε:

- 1 τα κοινά τους σημεία
- την σχετική τους θέση

Συναρτήσεις 9/16

Να σχεδιάσετε τις γραφικές παραστάσεις των συναρτήσεων:

$$f(x) = \begin{cases} \frac{1}{x}, & x < 0 \\ x^2, & x \ge 0 \end{cases}$$

$$f(x) = \begin{cases} e^{-x}, & x < 0 \\ -\sigma v \nu x, & x \ge 0 \end{cases}$$

Από τη γραφική παράσταση να προσδιορίσετε το σύνολο τιμών σε καθεμία περίπτωση

Να σχεδιάσετε τις γραφικές παραστάσεις των συναρτήσεων:

$$f(x) = \begin{cases} e^{-x}, & x < 0 \\ -\sigma v \nu x, & x \ge 0 \end{cases}$$

Από τη γραφική παράσταση να προσδιορίσετε το σύνολο τιμών σε καθεμία περίπτωση

Συναρτήσεις 10/16

Στο ίδιο σύστημα αξόνων να σχεδιάσετε τις γραφικές παραστάσεις των συναρτήσεων e^x , $\eta \mu x$ για x>0, να βρείτε τη σχετική τους θέση και να επιβεβαιώσετε αλγεβρικά την ανισώτητα:

$$e^x > \eta \mu x$$
, για κάθε $x > 0$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 11/16

Να σχεδιάσετε τις γραφικές παραστάσεις των παρακάτω συναρτήσεων στο ίδιο σύστημα αξόνων

$$f(x)=(x-1)^2+1$$
, $x\geq 1$ каз $g(x)=1+\sqrt{x-1}$

- Nα λύσετε την εξίσωση f(x) = 2

$$g(x) = \frac{1}{f(x) - 1}$$

Συναρτήσεις 13/16

- Nα λύσετε την εξίσωση f(x) = 2
- Να βρείτε πεδίο ορισμού της

$$g(x) = \frac{1}{f(x) - 1}$$

- Nα λύσετε την εξίσωση f(x) = 2
- Να βρείτε πεδίο ορισμού της

$$g(x) = \frac{1}{f(x) - 1}$$

- Να Βρείτε το πλήθος ριζών των εξισώσεων

- Nα λύσετε την εξίσωση f(x) = 2
- Να βρείτε πεδίο ορισμού της

$$g(x) = \frac{1}{f(x) - 1}$$

- Να Βρείτε το πλήθος ριζών των εξισώσεων
 - **1** f(x) = 5/2

- Nα λύσετε την εξίσωση f(x) = 2
- Να βρείτε πεδίο ορισμού της

$$g(x) = \frac{1}{f(x) - 1}$$

- Να Βρείτε το πλήθος ριζών των εξισώσεων
 - f(x) = 5/2
 - 2f(x) 1 = 0

- Nα λύσετε την εξίσωση f(x) = 2
- Να βρείτε πεδίο ορισμού της

$$g(x) = \frac{1}{f(x) - 1}$$

- Να Βρείτε το πλήθος ριζών των εξισώσεων
 - **1** f(x) = 5/2
 - 2f(x) 1 = 0
 - 3 $f(x) = a^2 + 1, a \neq 0$

- Να βρείτε το πλήθος των λύσεων της εξίσωσης f(x) = a, για τις διάφορες τιμές του $a \in \mathbb{R}$

Συναρτήσεις 14/16

- Να βρείτε το πλήθος των λύσεων της εξίσωσης f(x) = a, για τις διάφορες τιμές του $a \in \mathbb{R}$
- ② Να δείξετε ότι η εξίσωση $f(x) = 3\eta \mu a 5$ είναι αδύνατη, για κάθε $a \in \mathbb{R}$

Να εξετάσετε

- $\ \, \ \,$ αν ο αριθμός 2 ανήκει στο σύνολο τιμών της συνάρτησης $f(x)=1+\sqrt{x}$
- 2αν ο αριθμός 0ανήκει στο σύνολο τιμών της συνάρτησης $f(x) = \frac{e^x 1}{x}$

Λόλας (10° ΓΕΛ) Συναρτήσεις 15/16

Να εξετάσετε

- 🚇 αν ο αριθμός 2 ανήκει στο σύνολο τιμών της συνάρτησης $f(x) = 1 + \sqrt{x}$
- ② αν ο αριθμός 0 ανήκει στο σύνολο τιμών της συνάρτησης $f(x)=rac{e^x-1}{x}$

Συναρτήσεις 15/16

Εστω $f: A \to \mathbb{R}$ μία συνάρτηση με $A = \mathbb{R}$ και $f(A) = (1, +\infty)$.

- Να δείξετε ότι η εξίσωση f(x) = 2023 έχει μία τουλάχιστον λύση

Συναρτήσεις 16/16

Εστω $f:A \to \mathbb{R}$ μία συνάρτηση με $A=\mathbb{R}$ και $f(A)=(1,+\infty).$

- Δ Να δείξετε ότι η εξίσωση f(x) = 2023 έχει μία τουλάχιστον λύση
- ② Να δείξετε ότι η εξίσωση $f(x)=a^2+1$ έχει μία τουλάχιστον λύση, για κάθε $a\in\mathbb{R}^*$
- ullet Να εξετάσετε αν υπάρχει $x_0 \geq 0$ τέτοιο ώστε $f(x) = e^{x_0}$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 16/16

Εστω $f: A \to \mathbb{R}$ μία συνάρτηση με $A = \mathbb{R}$ και $f(A) = (1, +\infty)$.

- Να δείξετε ότι η εξίσωση f(x) = 2023 έχει μία τουλάχιστον λύση
- Να δείξετε ότι η εξίσωση $f(x) = a^2 + 1$ έχει μία τουλάχιστον λύση, για κάθε $a \in \mathbb{R}^*$

Συναρτήσεις 16/16