Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

<u>Type</u>	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when nth set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type II, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- * additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of flow" not well defined). next header: identify upper layer protocol for data

ver	pri	flow label								
ŗ	payload	l len	next hdr	hop limit						
source address (128 bits)										
destination address (128 bits)										
data										
← 32 bits —										

Other changes from IPv4

- * checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- * ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Interplay between routing, forwarding

routing algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

Graph abstraction

graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms decentralized:
- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k iterations, know least cost path to k dest.'s

notation:

- * C(X,y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to dest. v
- P(V): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
1 Initialization:
  N' = \{u\}
3 for all nodes v
    if v adjacent to u
     then D(v) = c(u,v)
    else D(v) = \infty
  Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'
```

Example

```
Initialization:
   N' = \{u\}
   for all nodes v
    if v adjacent to u
                                               3
       then D(v) = c(u,v)
     else D(v) = \infty
6
   Loop
    find w not in N' such that D(w) is a minimum
    add w to N'
    update D(v) for all v adjacent to w and not in N':
      D(v) = \min(D(v), D(w) + c(w,v))
    /* new cost to v is either old cost to v or known
     shortest path cost to w plus cost from w to v */
   until all nodes in N'
```

Dijkstra's algorithm: example

		D(v)	D(w)	D(x)	D(y)	D(z)
Ste	p N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	3,u	5,u	∞	∞
1	uw	6,w		5,u) 11,w	∞
2	UWX	6,w			11,W	14,x
3	uwxv				10,	14,x
4	uwxvy					12,1
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm, discussion

algorithm complexity: n nodes

- * each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- more efficient implementations possible: O(nlogn)

oscillations possible:

e.g., support link cost equals amount of carried traffic:

given these costs, find new routing.... resulting in new costs

given these costs, find new routing.... resulting in new costs resulting in new costs

given these costs, find new routing....

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

```
let d_x(y) := \text{cost of least-cost path from } x \text{ to } y then d_x(y) = \min_{v} \{c(x,v) + d_v(y)\} cost from neighbor v to destination v cost to neighbor v
```