Neural Networks

+

Word Embeddings

CS 287

Contents

Sentence Tagging

Window Models

Features and Preprocessing

Neural Networks

Output

Classification

Linear Models

Linear Model 1: Naive Bayes

Linear Model 2: Multiclass Logistic Regression

Linear Model 3: Multiclass Hinge-Loss

Tagging

Sentiment

Multiclass Sentiment

Tagging

- Straightforward setup.
- Lots of practical applications:
 - Spam Filtering
 - Sentiment
 - Text Categorization
 - e-discovery
 - ► Twitter Mining
 - Author Identification
 - ▶ ...
- Introduces machine learning notation.

However, a relatively solved problem these days.

Dataset: Penn Treebank

Penn Treebank,

- Central dataset in NLP.
- 1M word tokens, collected from Wall Street Journal.
- Annotated with syntactic structure.

Contents

Sentence Tagging

Window Models

Features and Preprocessing

Neural Networks

Output

Classification

Linear Models

Linear Model 1: Naive Bayes

Linear Model 2: Multiclass Logistic Regression

Linear Model 3: Multiclass Hinge-Loss

Sentence Tagging

- \triangleright w_1, \ldots, w_n ; sentence words
- $ightharpoonup t_1, \ldots, t_n$; sentence tags
- $ightharpoonup \mathcal{C}$; output class, set of tags.

Window Model

Goal: predict t_5 .

Windowed word model.

$$w_1 w_2 [w_3 w_4 w_5 w_6 w_7] w_8$$

- ▶ w₃, w₄; left context
- ► *w*₆, *w*₇; right context

Boundary Cases

Goal: predict t_2 .

$$[< s > w_1 w_2 w_3 w_4] w_5 w_6 w_7 w_8$$

Goal: predict t_8 .

$$w_1 w_2 w_3 w_4 w_5 [w_6 w_7 w_8 < /s > < /s >]$$

Symbols $\langle s \rangle$ and $\langle s \rangle$ represent boundary padding.

Review: Features

- $ightharpoonup \mathcal{F}$; a discrete set of features types.
- ▶ $f_1 \in \mathcal{F}$,..., $f_k \in \mathcal{F}$; active features for input.

For a given sentence, let $f_1, \ldots f_k$ be the relevant features.

Typically $k \ll |\mathcal{F}|$.

Sparse representation of the input defined as,

$$\mathbf{x} = \sum_{i=1}^k \delta(f_i)$$

 $oldsymbol{\mathsf{x}} \in \mathbb{R}^{1 imes d_{\mathrm{in}}}$; input representation

Tag Features 1: Sparse Bag-of-Words

Representation is counts of input words,

- \triangleright \mathcal{F} ; the vocabulary of the language.
- $\mathbf{x} = \sum_{i} \delta(f_i)$

Example: ,

of New York-based Lorillard Corp.

$$\mathbf{x} = \delta(\texttt{word:0:York-based}) + \delta(\texttt{word:-2:of}) + \delta(\texttt{word:-1:New}) + \delta(\texttt{word:-1:$$

Tag Features 2: Sparse Word Properties

Representation based on word properties

```
▶ \mathcal{F};

prefix(1) prefix(2) prefix(3)

suffix(1) suffix(2) suffix(3)

isFirstCapital hasHyphen endsInS

isAllCapital hasDigit isAllDigits

word

▶ \mathbf{x} = \sum_{i} \delta(f_i)
```

Example:

of New York-based Lorillard Corp.

 $\mathbf{x} = \delta(\texttt{word:0:York-based}) + \delta(\texttt{isFirstCapital:0:York-based}) + \delta(\texttt{s}$

The Role of Features

- ► Recall Zipf's law.
- ► Many words are ..
- ► Can capture patterns. example.

How much does this matter?

 $graph\ of\ tagging.$

Sparse Tagging Model

Create training data,

$$(\mathbf{x}_1, \mathbf{y}_1), \ldots, (\mathbf{x}_n, \mathbf{y}_n)$$

- ► Each **x**_i includes features of window.
- ▶ Each y_i is the one-hot tag encoding.
- Prediction accuracy is measured identically.

Naive Bayes/Logistic Regression for Tagging

▶ Setup is identical to text classification.

$$\hat{\mathbf{y}} = \mathbf{x}\mathbf{W} + \mathbf{b}$$

Contents

Sentence Tagging

Window Models

Features and Preprocessing

Neural Networks

Output

Classification

Linear Models

Linear Model 1: Naive Bayes

Linear Model 2: Multiclass Logistic Regression

Linear Model 3: Multiclass Hinge-Loss

Non-Linear Models for Classification

▶ Neural network represent any non-linear classifier, for example

$$\mathcal{N}\mathcal{N}_1 = \tanh(\mathbf{x}\mathbf{W}^1 + \mathbf{b}^1))$$

= $\mathcal{N}\mathcal{N}_1\mathbf{W}^2 + \mathbf{b}^2)$

- $lackbox{W}$ Where $\mathbf{W}^1 \in \mathbb{R}^{d_{\mathrm{in}} imes dmid}$, $\mathbf{b}^1 \in \mathbb{R}^{1 imes dmid}$
- $ightharpoonup \mathbf{W}^2 \in \mathbb{R}^{dmid imes dout}$, $\mathbf{b}^2 \in \mathbb{R}^{1 imes d_{\mathrm{out}}}$

Dense Features

Tag Features 2: Just Words

Representation can use specific aspects of text.

- ▶ F; Spelling, all-capitals, trigger words, etc.
- $\mathbf{x} = \sum_{i} \delta(f_i)$

Example: Spam Email

Your diploma puts a UUNIVERSITY JOB PLACEMENT COUNSELOR at your disposal.

$$\mathbf{x} = v(\mathtt{misspelling}) + v(\mathtt{allcapital}) + v(\mathtt{trigger:diploma}) + \dots$$

$$\mathbf{x}^{ op} = egin{bmatrix} 0 \\ dots \\ 0 \\ 0 \end{bmatrix} + egin{bmatrix} 0 \\ dots \\ 1 \\ 0 \end{bmatrix} + egin{bmatrix} 0 \\ dots \\ 0 \\ 1 \end{bmatrix} = egin{bmatrix} 1 \\ dots \\ 1 \\ 0 \\ 1 \end{bmatrix} ext{ misspelling} \\ dots \\ 1 \\ 0 \\ capital \\ 1 \\ word:diploma \end{bmatrix}$$

Text Classification: Output Representation

- 1. Extract pertinent information from the sentence.
- 2. Use this to construct an input representation.
- 3. Classify this vector into an output class.

Output Representation:

- ▶ How do encode the output classes?
- ▶ We will use a one-hot output encoding.
- ▶ In future lectures, efficiency of output encoding.

Output Class Notation

- $ightharpoonup \mathcal{C} = \{1, \ldots, d_{\text{out}}\};$ possible output classes
- $ightharpoonup c \in \mathcal{C}$; always one true output class
- ullet $\mathbf{y} = \delta(c) \in \mathbb{R}^{1 imes d_{\mathrm{in}}}$; true one-hot output representation

Output Form: Binary Classification

Examples: spam/not-spam, good review/bad review, relevant/irrelevant document, many others.

- $d_{\text{out}} = 2$; two possible classes
- In our notation,

bad
$$c = 1$$
 $\mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ vs. good $c = 2$ $\mathbf{y} = \begin{bmatrix} 0 & 1 \end{bmatrix}$

ightharpoonup Can also use a single output sign representation with $d_{\mathrm{out}}=1$

Output Form: Multiclass Classification

Examples: Yelp stars, etc.

- $d_{\text{out}} = 5$; for examples
- ▶ In our notation, one star, two star...

$$\star c = 1$$
 $\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$ vs.
 $\star \star c = 2$ $\mathbf{y} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix} \dots$

Examples: Word Prediction (Unit 3)

- $d_{out} > 100,000;$
- ▶ In our notation, C is vocabulary and each c is a word.

the
$$c = 1$$
 $\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$ vs. $\log c = 2$ $\mathbf{y} = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \end{bmatrix}$...

Evaluation

- ▶ Consider evaluating accuracy on outputs $y_1, ..., y_n$.
- ▶ Given a decisions $\hat{c_1} \dots \hat{c_n}$ we measure accuracy as,

$$\sum_{i=1}^n \frac{\mathbf{1}(\delta(\hat{c}_i) = \mathbf{y}_i)}{n}$$

▶ Simplest of several different metrics we will explore in the class.

Contents

Sentence Tagging

Window Models

Features and Preprocessing

Neural Networks

Output

Classification

Linear Models

Linear Model 1: Naive Bayes

Linear Model 2: Multiclass Logistic Regression

Linear Model 3: Multiclass Hinge-Loss

Supervised Machine Learning

Let,

- $(\mathbf{x}_1, \mathbf{y}_1), \ldots, (\mathbf{x}_n, \mathbf{y}_n);$ training data
- $\mathbf{x}_i \in \mathbb{R}^{1 \times d_{\mathrm{in}}}$; input representations
- ullet $oldsymbol{y}_i \in \mathbb{R}^{1 imes d_{
 m out}}$; gold output representations (one-hot vectors)

Goal: Learn a classifier from input to output classes.

Note:

- $ightharpoonup \mathbf{x}_i$ is an input vector $x_{i,j}$ is element of the vector, or just x_j when there is a clear single input .
- lacktriangle Practically, store design matrix $old X \in \mathbb{R}^{n imes d_{\mathrm{in}}}$ and output classes.

Experimental Setup

- Data is split into three parts training, validation, and test.
- Experiments are all run on training and validation, test is final output.
- ► For assignments, full training and validation data, and only inputs for test.

For very small text classification data sets,

- Use K-fold cross-validation.
 - 1. Split into K folds (equal splits).
 - 2. For each fold, train on other K-1 folds, test on current fold.

Linear Models for Classification

Linear model,

$$\hat{\mathbf{y}} = \mathbf{xW} + \mathbf{b}$$

- $lackbox{W} \in \mathbb{R}^{d_{
 m in} imes d_{
 m out}}$, $lackbox{b} \in \mathbb{R}^{1 imes d_{
 m out}}$; model parameters
- ▶ Note \hat{y} is **not** one-hot, informally "score" vector.

Class decision,

$$\hat{c} = \arg\max_{i \in \mathcal{C}} \hat{y_i}$$

Interpreting Linear Models

Parameters give scores to possible outputs,

- $ightharpoonup W_{f,i}$ is the score for sparse feature f under class i
- \triangleright b_i is a prior score for class i
- \triangleright \hat{y}_i is the total score for class i
- ightharpoonup \hat{c} is highest scoring class under the linear model.

Example:

For single feature score,

$$[eta_1,eta_2]=oldsymbol{\delta}(exttt{word:dreadful})oldsymbol{W}$$
,

Expect $\beta_2 > \beta_1$ (assuming 2 is class *good*).

Probabilistic Linear Models

Can estimate a linear model probabilistically ,

- Let output be a random variable Y, with sample space C.
- \triangleright Representation be a random vector X.
- ▶ Interested in estimating parameters θ of,

$$P(Y|X;\theta)$$

Informally we use $p(\mathbf{y} = c | \mathbf{x})$ for $P(Y = c | X = \mathbf{x})$.

Log-Likelihood as Loss

- $(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n);$ supervised data
- ▶ Select parameters to maximize likelihood of training data.

$$\mathcal{L}(\theta) = -\sum_{i=1}^{n} \log p(\mathbf{y}_i|\mathbf{x}_i;\theta)$$

For linear models $\theta = (\mathbf{W}, \mathbf{b})$

▶ Do this by minimizing negative log-likelihood (NLL).

$$\arg\min_{\theta} \mathcal{L}(\theta)$$

Naive Bayes 1: Probabilistic Factorization

Reminder, Bayes Rule

$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{y})p(\mathbf{y})}{p(\mathbf{x})}$$

Can be instead written (with ∝ as normalizing factor)

$$p(\mathbf{y}|\mathbf{x}) \propto p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$$

For NLL, $p(\mathbf{x})$ doesn't matter, estimate $p(\mathbf{x}|\mathbf{y})$ and $p(\mathbf{y})$.

For a sparse model, with observed classes we can write as,

$$p(x_{f_1} = 1, ..., x_{f_k} = 1 | \mathbf{y} = c) p(\mathbf{y} = c)$$

Naive Bayes 2: Independence Assumption

$$\begin{aligned} & p(x_{f_1} = 1, \dots, x_{f_k} = 1 | \mathbf{y} = c) p(\mathbf{y} = c) = \\ & \prod_{i=1}^k p(x_{f_i} = 1 | x_{f_1} = 1, \dots, x_{f_{i-1}} = 1, \mathbf{y} = c) p(\mathbf{y} = c) \approx \\ & \prod_{i=1}^k p(x_{f_i} | \mathbf{y}) p(\mathbf{y}) \end{aligned}$$

First is by chain-rule, second is by assumption.

Multinomial Model

Brief aside,

- \triangleright $P(S; \theta)$; parameterized as a multinomial distribution.
- ▶ Minimizing NLL for multinomial for data has a closed-form.

$$P(S = s; \theta) = \theta_s = \sum_{i=1}^n \frac{\mathbf{1}(s_i = s)}{n}$$

ightharpoonup Exercise: Derive this by minimizing \mathcal{L} .

Multinomial Naive Bayes

- ▶ Both p(y) and p(x|y) are parameterized as multinomials.
- Fit first as,

$$p(\mathbf{y}=c)=\sum_{i=1}^n\frac{1(\mathbf{y}_i=c)}{n}$$

- ► Fit second using count matrix **F** ,
 - ▶ | et

$$F_{f,c} = \sum_{i=1}^{n} \mathbf{1}(\mathbf{y}_i = c)\mathbf{1}(x_{i,f} = 1) \text{ for all } c \in \mathcal{C}, f \in \mathcal{F}$$

▶ Then

$$p(x_f = 1 | \mathbf{y} = c) = \frac{F_{f,c}}{\sum_{C \in T} F_{f',c}}$$

How does this become a linear classifier?

$$W_{f,c} = \log p(x_f = 1 | \mathbf{y} = c)$$

$$b_c = \log p(\mathbf{y} = c) \text{ for all } c \in \mathcal{V}$$

Multinomial Naive Bayes

- ▶ Both p(y) and p(x|y) are parameterized as multinomials.
- Fit first as,

$$p(\mathbf{y}=c)=\sum_{i=1}^n\frac{1(\mathbf{y}_i=c)}{n}$$

- ► Fit second using count matrix **F**,
 - ▶ Let

$$F_{f,c} = \sum_{i=1}^{n} \mathbf{1}(\mathbf{y}_i = c) \mathbf{1}(x_{i,f} = 1) \text{ for all } c \in \mathcal{C}, f \in \mathcal{F}$$

► Then,

$$p(x_f = 1 | \mathbf{y} = c) = \frac{F_{f,c}}{\sum_{f' \in \mathcal{T}} F_{f',c}}$$

How does this become a linear classifier?

$$W_{f,c} = \log p(x_f = 1 | \mathbf{y} = c)$$
$$b_c = \log p(\mathbf{y} = c) \text{ for all } c \in \mathcal{V}$$

Multinomial Naive Bayes

- ▶ Both p(y) and p(x|y) are parameterized as multinomials.
- Fit first as,

$$p(\mathbf{y}=c) = \sum_{i=1}^{n} \frac{1(\mathbf{y}_i=c)}{n}$$

- ► Fit second using count matrix **F**,
 - Let

$$F_{f,c} = \sum_{i=1}^{n} \mathbf{1}(\mathbf{y}_i = c)\mathbf{1}(x_{i,f} = 1) \text{ for all } c \in \mathcal{C}, f \in \mathcal{F}$$

► Then,

$$p(x_f = 1 | \mathbf{y} = c) = \frac{F_{f,c}}{\sum_{i=1}^{n} F_{f',c}}$$

How does this become a linear classifier?

$$W_{f,c} = \log p(x_f = 1|\mathbf{y} = c)$$

$$b_c = \log p(\mathbf{v} = c)$$
 for all $c \in \mathcal{Y}$

Digression: Zipf's Law

Laplacian Smoothing

Method for handling the long tail of words by distributing mass,

▶ Add a value of α to each element in the sample space before normalization.

$$\theta_s = \frac{\alpha + \sum_{i=1}^n \mathbf{1}(s_i = s)}{\alpha |\mathcal{S}| + n}$$

(Similar to Dirichlet prior in a Bayesian interpretation.)

For naive Bayes

$$\hat{\mathbf{F}} = \alpha + F$$

Laplacian Smoothing

Method for handling the long tail of words by distributing mass,

▶ Add a value of α to each element in the sample space before normalization.

$$\theta_s = \frac{\alpha + \sum_{i=1}^n \mathbf{1}(s_i = s)}{\alpha |\mathcal{S}| + n}$$

(Similar to Dirichlet prior in a Bayesian interpretation.)

For naive Bayes:

$$\hat{\mathbf{F}} = \alpha + F$$

Naive Bayes In Practice

- Very fast to train
- Relatively interpretable.
- Performs quite well on small datasets ?

Method	RT-s	MPQA	CR	Subj.
MNB-uni	77.9	85.3	79.8	92.6
MNB-bi	79.0	86.3	80.0	93.6
SVM-uni	76.2	86.1	79.0	90.8
SVM-bi	77.7	<u>86.7</u>	80.8	91.7
NBSVM-uni	78.1	85.3	80.5	92.4
NBSVM-bi	<u>79.4</u>	86.3	<u>81.8</u>	93.2
RAE	76.8	85.7	_	
RAE-pretrain	77.7	86.4	_	_
Voting-w/Rev.	63.1	81.7	74.2	

(RT-S [movie review], CR [customer reports], MPQA [opinion polarity], SUBJ [subjectivity])

Multiclass Logisitic Regression

Alternative parametrization of probabilistic model.

Use a softmax to force a distribution,

$$softmax(\mathbf{z}) = \frac{exp(\mathbf{z})}{\sum_{c \in \mathcal{C}} exp(z_c)}$$

- Exercise: Confirm always gives a distribution.
- ▶ Denominator known as *partition* function (we'll see many times).

Why is it called the softmax?

$$\mathsf{softmax}([x\ y]) = \frac{\mathsf{exp}(x)}{\mathsf{exp}(x) + \mathsf{exp}(y)}$$

 $\arg\max([x\ y])=\mathbf{1}(x>y)$

Multiclass logistic regression

$$z = xW + b$$

$$p(\mathbf{y} = c | \mathbf{x}; \theta) = \hat{y} = \text{softmax}(\mathbf{z}) = \frac{\exp(z_c)}{\sum_{c'} \exp(z_{c'})}$$

 $lackbox{W} \in \mathbb{R}^{d_{
m in} imes d_{
m out}}$, $lackbox{b} \in \mathbb{R}^{1 imes d_{
m out}}$; model parameters

Special Case: Logistic Regression

For binary classification:

softmax([
$$z_1 \ z_2$$
]) = $\frac{\exp(z_1)}{\exp(z_1) + \exp(z_2)}$
= $\frac{1}{1 + \exp(-(z_1 - z_2))} = \sigma(z_1 - z_2)$

Logistic sigmoid function:

$$\sigma(t) = \frac{1}{1 + \exp(-t)}$$

A Model with Many Names

- Multinomial Logistic Regression
- ► Log-Linear Model (particularly in NLP)
- Softmax Regression
- Max-Entropy (MaxEnt)

Fitting Parameters

Recall probabilistic objective is:

$$\mathcal{L}(\theta) = -\sum_{i=1}^{n} \log p(\mathbf{y}_{i}|\mathbf{x}_{i};\theta) = \sum_{i=1}^{n} L_{cross-entropy}(\mathbf{y}_{i},\hat{\mathbf{y}}_{i})$$

4 And the distribution is parameterized as a softmax,

$$\begin{aligned} L_{cross-entropy}(\mathbf{y}, \hat{\mathbf{y}}) &= -\log p(\mathbf{y} = c | \mathbf{x}; \theta) \\ &= \log \operatorname{softmax}(\mathbf{z})_c \\ &= \hat{z}_c - \log \sum_{c' \in \mathcal{C}} \exp(z_{c'}) \end{aligned}$$

However, this is much harder to minimize, no closed form.

▶ Partials of $L(y, \hat{y})$

$$\frac{\partial L(y,\hat{y})}{\partial \hat{y}_j} = \frac{\mathbf{1}(y_j = 1)}{\hat{y}_j}$$

▶ Partials of $\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{z})$

$$rac{\partial \hat{y}_j}{\partial z_i} = egin{cases} \hat{y}_i (1 - \hat{y}_i) & i = j \ -\hat{y}_i \hat{y}_j & i
eq j \end{cases}$$

ightharpoonup Partials of z = xW + b

$$\frac{\partial z_i}{\partial b_{i'}} = \mathbf{1}(i = i') \quad \frac{\partial z_i}{\partial W_{f i'}} = \mathbf{1}(i = i')$$

Homework: Compute these for yourself.

▶ Partials of $L(y, \hat{y})$

$$\frac{\partial L(y,\hat{y})}{\partial \hat{y}_j} = \frac{\mathbf{1}(y_j = 1)}{\hat{y}_j}$$

ightharpoonup Partials of $\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{z})$

$$\frac{\partial \hat{y}_j}{\partial z_i} = \begin{cases} \hat{y}_i (1 - \hat{y}_i) & i = j \\ -\hat{y}_i \hat{y}_j & i \neq j \end{cases}$$

ightharpoonup Partials of z = xW + b

$$\frac{\partial z_i}{\partial b_{i'}} = \mathbf{1}(i = i') \quad \frac{\partial z_i}{\partial W_{f i'}} = \mathbf{1}(i = i')$$

Homework: Compute these for yourself.

▶ Partials of $L(y, \hat{y})$

$$\frac{\partial L(y,\hat{y})}{\partial \hat{y}_j} = \frac{\mathbf{1}(y_j = 1)}{\hat{y}_j}$$

▶ Partials of $\hat{\mathbf{y}} = \text{softmax}(\mathbf{z})$

$$\frac{\partial \hat{y}_j}{\partial z_i} = \begin{cases} \hat{y}_i (1 - \hat{y}_i) & i = j \\ -\hat{y}_i \hat{y}_j & i \neq j \end{cases}$$

ightharpoonup Partials of $\mathbf{z} = \mathbf{x}\mathbf{W} + \mathbf{b}$

$$\frac{\partial z_i}{\partial b_i} = \mathbf{1}(i = i') \ \frac{\partial z_i}{\partial W_{\epsilon,i'}} = \mathbf{1}(i = i')$$

Homework: Compute these for yourself.

Review: Chain Rule

Assume we have a function and a loss:

$$f: \mathbb{R}^m \to \mathbb{R}^n \quad L: \mathbb{R}^n \to \mathbb{R}$$

Then

$$\frac{\partial L(f(\mathbf{x}))}{\partial x_i} = \sum_{j=1}^n \frac{\partial f(\mathbf{x})_j}{\partial x_i} \frac{\partial L(f(\mathbf{x}))}{\partial f(\mathbf{x})_j}$$

For Softmax regression

$$\frac{\partial L(y, \hat{y})}{\partial z_i} = \sum_{j} \frac{\partial \hat{y}_j}{\partial z_i} \frac{\mathbf{1}(y_j = 1)}{\hat{y}_j} = \begin{cases} 1 - \hat{y}_i & y_i = 1\\ -\hat{y}_j & ow. \end{cases}$$

Review: Chain Rule

Assume we have a function and a loss:

$$f: \mathbb{R}^m \to \mathbb{R}^n \quad L: \mathbb{R}^n \to \mathbb{R}$$

Then

$$\frac{\partial L(f(\mathbf{x}))}{\partial x_i} = \sum_{j=1}^n \frac{\partial f(\mathbf{x})_j}{\partial x_i} \frac{\partial L(f(\mathbf{x}))}{\partial f(\mathbf{x})_j}$$

For Softmax regression:

$$\frac{\partial L(y, \hat{y})}{\partial z_i} = \sum_j \frac{\partial \hat{y}_j}{\partial z_i} \frac{\mathbf{1}(y_j = 1)}{\hat{y}_j} = \begin{cases} 1 - \hat{y}_i & y_i = 1 \\ -\hat{y}_j & ow. \end{cases}$$

Minimizing Gradients in Practice

Consider one example (x, y), we compute forward and then backward,

- 1. Compute scores $\mathbf{z} = \mathbf{xW} + \mathbf{b}$
- 2. Compute softmax of scores, $\hat{\mathbf{y}} = \text{softmax}(\mathbf{z})$
- 3. Compute loss of scores, $L(\mathbf{y}, \hat{\mathbf{y}})$
- 4. Compute gradient $\frac{\partial L(y,\hat{y})}{\partial \hat{y}_j}$
- 5. Compute gradient $\frac{\partial L(y,\hat{y})}{\partial z_i}$
- 6. Compute gradient of **b** for all $i' \in \mathcal{C}$ and **W** for all $i' \in \mathcal{C}$, $f \in \mathcal{F}$

$$\frac{\partial L}{\partial b_i'} = \frac{\partial L}{\partial z_i'} \quad \frac{\partial L}{\partial W_{f,i'}} = \frac{\partial L}{\partial z_i'}$$

Minimizing Gradients in Practice

Consider one example (x, y), we compute forward and then backward,

- 1. Compute scores $\mathbf{z} = \mathbf{xW} + \mathbf{b}$
- 2. Compute softmax of scores, $\hat{\mathbf{y}} = \text{softmax}(\mathbf{z})$
- 3. Compute loss of scores, $L(\mathbf{y}, \hat{\mathbf{y}})$
- 4. Compute gradient $\frac{\partial L(y,\hat{y})}{\partial \hat{y}_i}$.
- 5. Compute gradient $\frac{\partial L(y,\hat{y})}{\partial z_i}$.
- 6. Compute gradient of **b** for all $i' \in \mathcal{C}$ and **W** for all $i' \in \mathcal{C}$, $f \in \mathcal{F}$,

$$\frac{\partial L}{\partial b_i'} = \frac{\partial L}{\partial z_i'} \quad \frac{\partial L}{\partial W_{f,i'}} = \frac{\partial L}{\partial z_i'}$$

Gradient-Based Optimization: SGD

```
procedure SGD
     while training criterion is not met do
           Sample a training example \mathbf{x}_i, \mathbf{y}_i
           Compute the loss L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta)
           Compute gradients \hat{\mathbf{g}} of L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta) with respect to \theta
           \theta \leftarrow \theta + \eta_k \hat{\mathbf{g}}
     end while
     return \theta
end procedure
```

Gradient-Based Optimization: Minibatch SGD

```
while training criterion is not met do
      Sample a minibatch of m examples (\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_m, \mathbf{y}_m)
      \hat{\mathbf{g}} \leftarrow 0
      for i = 1 to m do
             Compute the loss L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta)
             Compute gradients \mathbf{g}' of L(\hat{\mathbf{y}}_i, \mathbf{y}_i; \theta) with respect to \theta
             \hat{\mathbf{g}} \leftarrow \hat{\mathbf{g}} + \frac{1}{m}\mathbf{g}'
      end for
      \theta \leftarrow \theta + \eta_k \hat{\mathbf{g}}
end while
return \theta
```

Softmax Notes: Regularization

$$\mathcal{L}(\theta) = -\sum_{i=1}^{n} L(\hat{\mathbf{y}}, \mathbf{y}) + ||\theta||_{2}^{2}$$

Softmax Notes: Calculating Log-Sum-Exp

- ► Calculating $\log \sum_{c' \in C} \exp(\hat{y}_{c'})$ directly numerical issues.
- ▶ Instead log $\sum_{c' \in \mathcal{C}} \exp(\hat{y}_{c'} M) + M$ where $M = \max_{c' \in \mathcal{C}} \hat{y}'_c$

Pros and Cons of Logistic Regression

- Less strong independence assumption.
- Can be very effective with good features.
- ▶ Still yields a probability distribution.
- ▶ Fitting parameters is more difficult.

Similar models make will be the main focus of this class.

Other Loss Functions

What if we just try to directly find \mathbf{W} and \mathbf{b} ?

$$\hat{\mathbf{y}} = \mathbf{x}\mathbf{W} + \mathbf{b}$$

- ▶ No longer a probabilistic interpretation.
- Just try to find parameters that fit training data.

Hinge Loss

$$\mathcal{L}(heta) = \sum_{i=1}^{n} L_{hinge}(\hat{\mathbf{y}}, \mathbf{y})$$

$$L(\hat{\mathbf{y}},\mathbf{y}) = \max\{0,1-(\hat{y}_c+\hat{y}_{c'})\}$$

Where

- ▶ Let c be defined as gold class $y_{i,c} = 1$
- Let c' be defined as the highest scoring non-gold class

$$c' = \arg\max_{i \in \mathcal{C} \setminus \{c\}} \hat{y}_i$$

Hinge Loss

$$\mathit{hinge}(\hat{\mathbf{y}}) = \mathbf{1}(\max\{0, 1 - (y - x))$$

 $\arg\max([x\ y])=\mathbf{1}(x>y)$

- Let c be defined as gold class $y_{i,c} = 1$
- \blacktriangleright Let c' be defined as the highest scoring non-gold class

$$c' = \arg\max_{i \in \mathcal{C} \setminus \{c\}} \hat{y}_i$$

Much simpler than logistic regression.

▶ Partials of $L(y, \hat{y})$

$$\frac{\partial L(y, k\hat{y})}{\partial \hat{y}_j} = \mathbf{1}(j=c) - \mathbf{1}(j=c')$$

Notes: Hinge Loss: Regularization

- Many different names,
 - Margin Classifier
 - Multiclass Hinge
 - Linear SVM
- ▶ Important to use regularization.

$$\mathcal{L}(\theta) = -\sum_{i=1}^{n} L(\hat{\mathbf{y}}, \mathbf{y}) + ||\theta||_{2}^{2}$$

▶ Can be much more efficient to train than LR. (No partition).

Results: Longer Reviews

Our results	RT-2k	IMDB	Subj.
MNB-uni	83.45	83.55	92.58
MNB-bi	85.85	86.59	<u>93.56</u>
SVM-uni	86.25	86.95	90.84
SVM-bi	87.40	89.16	91.74
NBSVM-uni	87.80	88.29	92.40
NBSVM-bi	89.45	91.22	93.18
BoW (bnc)	85.45	87.8	87.77
BoW ($b\Delta t'c$)	85.8	88.23	85.65
LDA	66.7	67.42	66.65
Full+BoW	87.85	88.33	88.45
Full+Unlab'd+BoW	88.9	88.89	88.13

IMDB (longer movie review), Subj (longer subjectivity)

▶ NBSVM is hinge-loss interpolated with Naive Bayes.