On Learning Monotone probability distributions over the Boolean cube.

R. Rubinfeld, MIT

A. Vasilyan MIT

Learning distributions

Monotone distributions over Boolean cube

Main result

If ρ is monotone, can learn with $\frac{2^n}{2^{\Theta(n^{1/5})}}$ samples.

Together with the L_1 distance tester in [VV11], can be applied to test whether a distribution is monotone with $O\left(\frac{2^n}{n}\right)$ samples.

Algorithm outline

1. For every $i \in \{0, \dots n\}$ carefully pick a parameter L(i).

2. Define $\eta(x, y) := \frac{1}{2^{||x||-||y||}} \Pr_{z \sim \rho}[x \ge z \ge y]$, graphically the average density here. And $\hat{\eta}(x, y) := \frac{1}{2^{||x||-||y||}} \Pr_{z \sim \{\text{samples}\}}[x \ge z \ge y]$ is the empirical estimate of $\eta(x, y)$.

3. To estimate $\hat{\rho}(x)$, compute $\max_{y \text{ s.t. } y \le x \text{ and } ||y|| = ||x|| - L(|x|)} \hat{\eta}(x, y)$

Definition: Tight and slacky elements

The case of {0,1}-valued functions: most levels are completely tight

Lemma [Blais, Håstad, Servedio, Tan '14] (restated): Consider monotone $f: \{0,1\}^n \to \{0,1\}$. Then:

Few slacky levels is good for our algorithm

Extending to monotone distributions

Unfortunately, one cannot guarantee literally this.

We get around this issue by carefully assigning weights to levels and bounding total weight of special slacky levels.

References

[AGPRY19] Maryam Aliakbarpour, Themis Gouleakis, John Peebles, Ronitt Rubinfeld and Anak Yodpinyanee. Towards Testing Monotonicity of Distributions Over General Posets COLT 2019/

[BHST14] Eric Blais, Johan Hastad, Rocco A Servedio, and Li-Yang Tan. On DNF approximators for monotone Boolean functions. ICALP 2014.

[BFRV11] Arnab Bhattacharyya, Eldar Fischer, Ronitt Rubinfeld and Paul Valiant. Testing monotonicity of distributions over general partial orders. ICS 2011

[VV11] Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing, 40(6):1927–1968, 2011.