PROJECT VADER

By: Joshua Caneday, David Wang, Jeevan Karandikar, Hansel Puthenparambi Artem, Connor, Arjun

Overview

01

1.7 million people just in the U.S. alone with limb loss

Prosthetic arms are very costly (easily in the thousands of dollars)

03

Goal: Provide a high number of gesture classifications at a low cost (less than \$500)

BrainFlow)

GUI

Arduino Code (via Serial)

> **Prosthetic** Arm

- Sérvos
- / Arduino Uno
- PCA 9685
 - Springs
- 20 lb Fishing Line

Armband

- Electrodes for sEMG Data
- Receive Data via BrainFlow
- Gyroscope Data

Arduino

- Receive Data via Serial
- Posture
 Alignment
- Signaling to PCA 9685

Rotation Classification

- Angular Velocity
- X-Axis Rotation
- Double Threshold
- 3 Rotational States

- Training Data
- 5 Classes
- Hyperdimensional Computing

Brain-Inspired Computing

- Flexible, noise-tolerant representation
- Very large, high-dimensional patterns ("hypervectors")
- Robustness through redundancy and randomness

How we use it

- Centroid-based
- Few-shot learning

Limitations:

• Classification, not regression

- 80 training samples per class:
 - o Test Accuracy:
 - 4 classes: ~95%
 - 5 classes: ~89%
 - 6 classes ~80%

Future Directions

• Custom Armband

• Bio-Feedback

• Regression-Based

Clanching

OBIOPOTENTIAL FILTER
Rev 1.0 C. Jon, G.

