Teoria dos Grafos Árvore Geradora Mínima

Paulo Henrique Ribeiro Gabriel

Faculdade de Computação Universidade Federal de Uberlândia

2019/1

Árvore geradora mínima

Definição

Árvore geradora mínima A árvore geradora mínima de um grafo G com peso nas arestas, onde p(vw) é o peso da aresta vw, é uma árvore geradora T de G com o menor peso total possível possível, sendo:

$$custo(T) = \sum \{p(vw) \ | \ vw \in E(T)\}$$

Árvore Geradora Mínima

Aplicações:

- Interconexão de todos os pontos de uma rede a custo mínimo
 - ► A rede, no caso, pode ser uma malha rodoviária, elétrica, ou mesmo uma rede de computadores
- Aproximação do problema difícil de computar um passeio de custo mínimo que passa por todos os vértices de um grafo

Algoritmo de Kruskal

- Utiliza uma abordagem gulosa
- ullet Seja F uma floresta inicialmente com cada vértice como uma árvore
- \bullet Enquanto F não é uma árvore geradora, adicione em E(F) a aresta de menor peso que mantém F uma floresta

Algoritmo de Kruskal

```
Entrada: Grafo G.
Saída: Floresta geradora F.

1 E \leftarrow ordenar E(G) em relação aos pesos;

2 para vw \in E faça

3 | se E(F) \cup \{vw\} mantém F floresta então

4 | E(F) \leftarrow E(F) \cup \{vw\};

5 retorna F
```

Algoritmo 1: Função kruskal(G).

Algoritmo de Kruskal

Teorema

Se F é a floresta definida ao final de cada iteração do algoritmo de Kruskal, então existe um árvore geradora mínima que contém F.

Algoritmo de Prim

- Também utiliza uma abordagem gulosa
- Seja T uma árvore inicialmente com qualquer vértice
- \bullet Enquanto T não é uma árvore geradora, adicione em E(F) a aresta de menor peso que mantém T uma árvore

Algoritmo de Prim

```
Entrada: Grafo G.
  Saída: Arvore geradora T.
1 escolha um vértice v \in V(G);
2 insira v \in T:
3 para cada aresta de G faça
 vw \leftarrow \text{ aresta de menor custo tal que } v \in T, w \notin T;
5 | E(T) \leftarrow E(T) \cup \{vw\};
6 retorna T
```

4

Algoritmo 2: Função prim(G).

Algoritmo de Prim

Teorema

Se T é a árvore definida ao final de cada iteração do algoritmo de Prim, então existe um árvore geradora mínima que contém T.

Créditos

Parte deste material foi baseada nas notas de aula do Prof. Fabiano Oliveira.