

Digital microrobotics

Contexte: manipulation de micro/nano objets

Microrobot (système mécatronique)

Fonctionnalités du robot

- action sur l'environnement (actionnement)
- fonction de perception (mesure)
- traitement de l'information

Spécificités du micromonde

- taille des objets
- objectifs dimensionnels de la tâche

upositionnement

Très bonne résolution

Précision

Contexte : manipulation de micro/nano objets

robots traditionnels miniaturisés

Non applicable dans le micromonde

- friction
- jeu mécanique
- Faible précision

Robots à base de matériaux actifs (Piézo, polymère actif...+ structures flexibles)

- Hautes résolutions
- Dynamique élevée
- non-linéaire (hystérésis, dérive)
- commande complexes
- Besoin capteur/boucle fermée

Microrobots numériques

- Positions discrètes
- Sans capteur/boucle ouverte
- Répétables et précises
- forces de blocage importantes
- Adapté aux milieux confinés
- Insensible aux perturbations

Introduction

Microrobot numérique

- √ 16 positions discrètes atteignable
- ✓ résolution de 3.5 µm
- ✓ Bonne répétabilité

inconvénients

- Structure moins compacte
- Structure plus fragile
- Possibilités d'échecs dans la fabrication
- Connexions électriques se multiplient

Optimisationsatifabeicationcation diès génération DiMiBot màdales destantelules bistables

Remplacer les modules bistables par un module compacte

Module multistable

3 systèmes à base de pinces +

une partie mobile supportant l'effecteur

déplacement vers le haut/bas

combinaison des actions des 3 pinces perme de réaliser un pas vers le haut/bas

Système 2

Système 3

Système 1

Déplacer (10µm) le système 2 vers le haut

Système 2

Maintenir et déplacer la partie mobile

Système 3

Maintenir la partie mobile lorsque le système 2 est ouvert

- ✓ Structure compacte.
- √13 positions discrètes.
- ✓ pas de 10 µm.

Pas vers le haut

Pas vers le haut

- 1. Pince S₂ se déplace vers le haut (grâce au système 1) en tenant la partie mobile
- 2. Pince S₃ tient la partie mobile
- 3. Pince S₂ libère la partie mobile
- 4. Pince S₂ se déplace vers le bas (système 1: retour à la position initiale)
- 5. Pince S₂ tient la partie mobile
- 6. Pince S₃ libère la partie mobile

Durée du pas: 50 ms

Pas moyen: 10,06 µm

Répétabilité: 300 nm (3%)

DiMiBot à base de multistable

Connecter la partie mobile
Du multistable à « end effector »
(Via des <u>poutres</u> et des <u>articulations flexibles</u>)

DiMiBot à base de multistable

169 positions (13X13)

Résolution : 4.2 µm

Course: 50 µm

Répétabilité: 180 nm

Conclusions et perspectives

Conclusions

- ✓ Conception et fabrication du module multistable et DiMibot
- ✓ Caractérisation:
 - Module multistable seul (r=10,06±0,15 µm)
 - DiMiBot complet $(r_{mov}=4,18\pm0,09 \mu m)$

Perspectives

- ➤ Application dans le MEB/MET
- >Adaptation du design de la structure pour diverses tâches microrobotiques
- > Amélioration de la dynamique

