Tables

Table 1 Units with special names and symbols¹

ALL VALUES DECIMAL

Unit Catagory		Dimension		The Universal Unit Systems						
	Unit Category	Dimension	with the l	Rydberg constant(u)	with the GCD Unit(h)					
	base units	length	m _u	272.102883 mm	$m_{h \text{ or}} hm^{-2}$	272.352206	mm			
	that are not	time	s_u	390.267520 ms	s _{h or} nc	390.625115	ms			
	natural units	energy	J_{u}	64.143274 mJ	\mathbf{J}_{h}	64.084555	mJ			
		temperature ³	K _u	58.441061 μΚ	K _h	58.387561	μΚ			
	base units	plane angle	rad	$(2/\pi)$ arc $\sin(1)$						
	that are	logarithm	neper	log(e)						
	natural units	amount of substance	mol_n or N_A^{-1}	mol / 6.022140857 × 10. ^{23.}						
ent		impedance	$\Omega_{\rm n}$, $Z_{\rm P}$	$29.9792458 \Omega (=1 \text{sr/}(\epsilon_0)$	c ₀) strict ⁴ , is	called 'nohm')			
Coherent			or nh							
ٽ ا	derived units of	charge	Cu	28.896578 mC						
	electromagnetic	electric current	A_{u}	74.043000 mA	A_h	73.975218	mA			
	quantities	field strength	O _u 5	272.113986 mA/m	O _h	271.616004	mA/m			
		flux density	G _u 5	390.283444 mC/m ²	G _h	389.569207	mC/m ²			
	derived units of	mass	g _u	131.950080 g	g _{h or} 11	131.829287	g			
	dynamical	power	\mathbf{W}_{u}	164.357194 mW	W_h	164.056412	mW			
	quantities	force	N _u	235.731697 mN	N _h	235.300297	mN			
		pressure	P _u	3.183843 Pa	P _h	3.172201	Pa			
ınt	defining constants	wave number	R_{∞}	10,973,731.568508 /m	Rydberg')					
Non coherent		velocity	c_0	299,792,458 m/s (defined, and is called 'light')						
on cc		action	ħ	1.054571800×10. ⁻³⁴ .Js	ıantum')					
ž		heat capacity	1.38064852×10. ⁻²³ .J/K (is called 'Boltzmann')							

¹ Please see also http://www.asahi-net.or.jp/~dd6t-sg/univunit-e/units.pdf and http://z13.invisionfree.com/DozensOnline/index.php?showtopic=371&st=6 for details. A web based unit converter is available at http://hosi.org:8080/cgi-bin/conv.cgi .

² 'harmon(hm)', 'nic(nc)', 'looloh(ll)', and 'nohm(nh)' constitutes a quartet. These are alias for common use.

³ The unit of thermodynamic temperature has been changed. The new unit is one-1,0000;th of the old unit in the paper http://dozenal.com along with the introduction of the Earth local extension.

 $^{^4\,}$ If we adopt the elementary charge as one of definition constants, Ω_u is used in substitution for Ω_n

⁵ The unit symbol O(Ørsted) and G(Gauß) are associated with the units of CGS unit system.

	supplementary	total solid angle	Ω_k	k=0,1,2
	constants	of a hypershere		$\frac{2\pi^{\frac{k+1}{2}}}{\Gamma(\frac{k+1}{2})} \text{rad}^{k} \qquad \begin{array}{c} k=0,1,\ 2\\ \Omega_{0}=2\\ \Omega_{1}=2\pi \text{ rad} \text{(circle, cycle)}\\ \Omega_{2}=4\pi \text{ sr} \text{(sphere, turn)} \end{array}$
ereni		logalithm of an	\mathbf{f}_k	$log(2^k)$ $k=1$ (bit), d (figure), 4 (nibble), 8 (byte), .
Non coherent		integer		d=log ₂ (12.)
Non		amount of	mol_u	132.007618 mol $(=12.^{24}/N_A)$
		substance		
		elementary	e	$1.6021766208 \times 10^{-19} \cdot C \qquad (= \boxed{\alpha \hbar})$
		charge		$\sqrt{\Omega_{_{_{n}}}}$

Table 2 Physical, material and astronomical constants⁶

ALL VALUES DOZENAL

Constant Symbols and Navis		Constant Valu	Exponent	Unit	
	Constant Symbols and Name	the Universal	N of	Symbol	
,	UNDERLINE INDICATES CONSTANT	with the	with the GCD	×10; ^N	(u and h
IV.	MAINTAINS SAME VALUE BETWEEN	Rydberg	Unit (h)		suffixes
	SYSTEMS u, e AND h)	constant (u)			omitted)
R_{∞}	Rydberg constant	1	1;00170000	6;	Ω_1/m
c_0	speed of light in vacuum	1		8;	m/s
\hbar	quantum of action	1		-26;	J s
$k_{ m B}$	Boltzmann constant	1	-20;	J/K	
N_{A}	Avogadro constant	1	20;	mol ⁻¹	
R	gas constant	1	0;	J/(mol K)	
и	unified atomic mass unit	1;0009061	1;0024073	-20;	g ⁷
a_{B}	Bohr Radius	1;005E85686	1;00447X740	-9;	m
α	fine structure constant	1;07399405	-2;	-	
e	elementary charge	1;0374439E		-14;	С
$m_{ m e}$	electron mass	0;E469222	0;E48324X	-23;	g
σ	Stefan-Boltzmann constant	1;E82E28		-1E;	$W/(m^2K^4)$
m_{G}	gravitic meter $(\sqrt{2E}; l_P)$	1;0018	1;0001	-27;	m
$l_{ m P}$	Planck length	2;0445	2;0413	-28;	m
$F_{ m P}$	Planck force $(\hbar c_0/l_P^2)$	2;XE23	2;XEE5(\(\div 2;E)^8\)	35;	N

⁶ If CODATA (2014) values are required, see http://physics.nist.gov/cuu/Constants/index.html .

⁷ Because g_u is approximately 100; 10 ; u, I add alias name 'looloh'(lú:loʊ/əʊ) to g_h .

 $^{^8}$ If this is expressed as 2;E, the error from CODATA (2014) becomes -2;53(-2.44) times standard deviation. The Gravitic Universal Unit System can be derived from 35G (m_G), c_0 , \hbar , $k_{\rm B}$ and $Z_{\rm P}$.

G	Newtonian constant of gravitation (c_0^4/F_P)	4;1574	4;1463	-X;	$(m^4/s^4)/N$
$ heta_{ m W}$	weak mixing angle	E;304			Ω_1
V_{m}	molar volume of an ideal gas	1;02X468	1;025664	2;	m ³ /mol
	under standard conditions				
	black-body radiation at the ice point	0;EX2462	0;EX8780	2;	W/m ²
	maximum density of water	1;088184	1;092X47 (\(\disp 15;\/14;\)	2;	g/m ³
	density of ice at the ice point	0;E7E9	0;E85E	2;	g/m ³
	specific heat of water ⁹	0;6052	0;6045 (\div 1/2)	0;	J/(g K)
	surface tension of water at 25°C	0;EE68	0;EEE4	-1;	N/m
atm	standard atmosphere	1;65008E	1;659967 (\$\dip 1;66)	4;	P
$g_{\rm n}$	standard gravitational acceleration	5;5X54XE9	5;5E21264 (\(\disp\)E;/2)	0;	m/s ²
$r_{ m E}$	gravitational radius of the Earth	2;41E8982X13	2;4180306534	-2;	m
011	astronomical unit	8;X67575537	8;X55509X33	X;	m
au	astronomical unit	9;E91731X53			$c_0 s_{\rm E} {\rm day}$

Table 3 Power prefixes

name	symbol	Plain text	value	name	symbol	symbol Plain text	
dirac	D		10; ¹	dour		d	
hecty		Н	10; ²	centy		c	
kily		K	10; ³	milly		m	
super	S		10;4	sub		S	
cosmic	+	_+	10;8(=M)	atomic	-		M -1
di-cosmic	2+	_2+	\mathbf{M}^2	di-atomic	2-	_2-	\mathbf{M}^{-2}
tri-cosmic ₃₊ _3+		_3+	M ³	tri-atomic	3-	_3-	M -3
tetra-cosmic	4+	_4+	M ⁴	tetra-atomic 44-		_4-	M -4
penta-cosmic	5+	_5+	M ⁵	penta-atomic	5-	_5-	M -5
hexa-cosmic	6+	_6+	M ⁶	hexa-atomic	6-	_6-	M ⁻⁶
hepta-cosmic 7+ _7+		M 7	hepta-atomic	77-		\mathbf{M}^{-7}	

A prefix with no corresponding unit is treated as a noun form, which means the abbreviation of the corresponding plain angle unit prefixed to Ω_1 . The above-proposed is an explanation of the prefixes put on the unit. As for number counting, I propose duodecimal myriad system replacing ten/hundred with dozen/gross. ¹⁰ 'y' is pronounced [α_1] and is treated as a duodecimal context mark. The notation 'M(=10;⁸) to the power of octal number' is used for exponential expression of big pure numbers.

⁹ This corresponds to the definition of thermodynamic calorie.

¹⁰ See http://www.asahi-net.or.jp/~dd6t-sg/univunit-e/myriad.pdf.

Table 4 Examples of natural scale quantity representation ¹¹

quantity	symbol	plain text	value	refer to
2E; penta-cosmic Newton	2E;N _{5+h}	2E;N_5+h	2E;×M ⁵ [harmonic] Newton	the Planck force
6;di-cosmic second	6;s _{2+h}	6;s_2+h	6;×M ² [harmo]nic[second]	the age of the universe
cosmic super bit [Boltzmann]	$\mathrm{Sf}_{+1}[k_{\mathrm{B}}]$	Sf_+1 [k_B]	M ^{1@4} log2 ¹ [Boltzmann]	1.01 Tera Byte(=2 ⁴³ ·bit)
cosmic meter	m _{+h}	m_+h	M ¹ harmon[ic meter]	the speed of light in vacuum
atomic dour meter	dm _{-h}	dmh	M ^{-1@1} harmon[ic meter]	the Bohr radius
di-atomic Coulomb	C _{2-u}	C_2-u	M ⁻² [universal] Coulomb	the elementary charge
di-atomic sensible Watt 12	W _{2-sen[h]}	W_2-sen[h]	M ⁻² [harmonic]sensible Watt	a photon energy (540.THz)
tri-atomic gram	g _{3-h}	g_3-h	M -3 [harmonic] gram	the unified atomic mass unit
2; tetra-atomic meter 2;m _{4-h} 2;m_4-h		2;m_4-h	2;×M ⁻⁴ harmon[ic meter]	the Planck length

Table 5 The Earth local extension for the Harmonic Universal Unit System

Table 5 The Earth local extension for the Harmonic Universal Unit System							
category		name / description	symbol	plain text	value		
Non	prefix	septi	sep or ","		2^{-7} (<u>se</u> venth <u>p</u> ower of <u>t</u> wo <u>i</u>nversed)		
coherent	units	day	day		$1~\Omega_1$		
calendar					'day' corresponds to 86,400. s		
time					at the beginning of year 1900.		
		year	3	or a	265'27 days (365.+ 31./128.)days		
		span or octal century	spar	1 or "\"	64. years		
Non		difference between	°S	deg S	1,0000; K_h (\doteqdot 1.210724 K \doteqdot 23./19. K)		
coherent		thermodynamic temperature and			100; 0000°S is 99.9839 °C		
unit and		118,2354; $K_h (\doteqdot -74.36^{\circ}C)$			78;0000°S is 37.0262°C		
constants		approximate formula			61;0000°S is 14.0224°C		
		$^{\circ}$ C = $\frac{1E}{17}$; $^{\circ}$ S - 62;4 $^{\circ}$ S = $\frac{17}{1E}$; $^{\circ}$ C + 51;5	°C 1E; °C 62:4 °C 17; °C 151:5		51;5026°S is 0.0000°C		
		17; S-02,4 E; E;			99.9839 °C is the boiling point of		
					water at the standard atmosphere.		
	supple-	the gravitational acceleration of	$g_{ m E}$	g_E or gee	$5;611X615 \text{ m}_{\text{h}}/\text{s}_{\text{h}}^2$		
	mentary	the Earth (is called 'gee [of			$g_{\rm E}$ is defined as $c_0^2 r_{\rm E} (m_{\rm E} {\rm rad})^{-2}$		
	constants	Earth] ')					
		the rotation period of the Earth	$s_{\rm E}$	s_E or	0;EEEEEE153565 s _h /septi milly day		
		(is called '[Earth] solar')	solar		(This should be 'coordinated'.)		
		at the beginning of year 1900.					
		the meridian length of the Earth	$m_{\rm E}$ m_E or meridian		4124,216E; mh/Ω1		
		(is called '[Earth] meridian')		menunan			

¹¹ The part enclosed with '[]' can be omitted in Table 4 and Table 5.

 $W_{sen}\ corresponds\ to\ 1; di-cosmic\ photon\ (540.THz)\ /\ harmonic\ second\ and\ 115.667210\ lumen.$

 $^{^{12}}$ Units for quantity weighted by dimensionless human sensitivity are indicated by 'sensible'.