HOUSE PRICE PREDICTION

Group III

HOUSE PRICE PREDICTION

— House prices increase every year, so there is a need for a system to predict house prices in the future.

House price prediction can help the developer determine the selling price of a house and can help the customer to arrange the right time to purchase a house.

TARGET MARKET

Family buyers

Family orientated buyers have very specific requirements when it comes to buying a house. Deciding factors for these buyers typically include proximity to good schools and all necessary amenities such as hospitals.

"We will use alternative data that include schools, hospitals, food facilities and police station within a radius of 5 km."

OBJECTIVE

- Predict the sale price for each house.
- Find insight of features in data
- Minimize the difference between predicted and actual rating (RMSE/MSE)
- Find the best model for Prediction

DATA

MAIN DATA

House Sales in "King County Washington State, USA" dataset contains house sale prices. It includes homes sold between May 2014 and May 2015.

ALTERNATIVE DATA

In King County Washington State, USA

- Police Station
- Hospitals
- Food Facilities
- Schools

ArcGIS Pro

GET DATA

Acute_Service_ Food_Facilities Hospitals DATA MODEL lat lat long long **OBJECTID OBJECTID** FEATURE_ID FEATURE_ID NAME NAME **House Sales** CODE CODE id **ADDRESS ADDRESS** date **ZIPCODE** ZIPCODE price TRAUMA bedrooms WEBSITE Police_Station_ Bathrooms Locations School_Sites lat zipcode lat long lat long **OBJECTID** long **OBJECTID** FEATURE ID FEATURE_ID NAME NAME CODE CODE **ADDRESS ADDRESS ZIPCODE ZIPCODE**

DATA

PREPARATION DATA

DATA TRANSFORMATION

- Determined distance between house and location of alternative data.
- Count location that distance is lower than 5 km.

```
"def distance_from(loc1,loc2):
    dist=hs.haversine(loc1,loc2)
    if round(dist,2) > 5:
        dist = 0
    else:
        dist = 1
    return dist"
```

for _,row in pol_loc.iterrows():
 kc_loc[row.NAME]=kc_loc['coor'].apply(lambda x:
 distance_from(row.coor,x))

DATA TRANSFORMATION

id	price	lat	long	coor	WSP District 2 Seattle North Detachment	White Center Storefront	KC Airport Law Enforcement	Fairwood Storefront	KC Precinct 3 Headquarters	 Pacific Police Department	Burien City Hall North Storefront
7129300520	221900.0	47.5112	-122.257	(47.5112, -122.257)	0	0	1	0	0	 0	1
6414100192	538000.0	47.7210	-122.319	(47.721, -122.319)	0	0	0	0	0	 0	0
5631500400	180000.0	47.7379	-122.233	(47.7379, -122.233)	0	0	0	0	0	 0	0
2487200875	604000.0	47.5208	-122.393	(47.5208, -122.393)	0	1	0	0	0	 0	0
1954400510	510000.0	47.6168	-122.045	(47.6168, -122.045)	0	0	0	0	0	 0	0

id	pol
7129300520	5
6414100192	2
5631500400	4
2487200875	3
1954400510	2
263000018	1
6600060120	5
1523300141	5
291310100	1
1523300157	5

MERGE TABLE

EXPLORATORY DATA ANALYSIS (EDA)

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

SHOW CORRELATION OF EACH ATTRIBUTE

- Model 1 MLP RegressorModel 2 LGB Model
- Model 3 Random Forest Regression
- Model 4 Gradient Boosting Regression
- Model 5 XGB Model
- Model 6 Decision Tree

REGRESSION MODELING

EVALUATION

- MEAN ABSOLUTE ERROR (MAE)
- R-SQUARED(R²)

EVALUATION

EVALUATION

	Model	RMSE	R2 Score	MAE
0	LGB	50939.189275	0.976227	17071.772647
1	XGB	47729.553943	0.979129	18527.985326
2	Random_Forest	72680.106929	0.951604	23160.928087
3	Decision_Tree	132686.776624	0.838701	41298.544360
4	Gradient_Boost	85537.783602	0.932966	50896.417263
5	MLP	156906.026721	0.774443	100864.691388

CONCLUSIONS & THE FUTURE

CONCLUSIONS & THE FUTURE

Model 5 - XGB Model is the best model in this case. Top 5 features impact to housing price is 'bathroom, sqft_living, grade, sqft_above and sqft_living15' in main data. From alternative data the police station no impact to housing price

In the future, Finding more alternative data for develop model and performance. Finally Create platform for Finding Buy/Rent House and Condo

