Problem F: The Yes-Man

In a given day, Nat will receive requests from N alluring females. Saying yes to a date with girl i doesn't cost Nat energy, but it does cost him C_i dollars. Saying no to a date costs Nat E_i energy (because it's really draining for him to say no), but it doesn't cost him any money.

If Nat uses more than Q total energy or spends more than X total dollars, he will consider himself a "No-Man". This is undesirable. Can you help him find out whether there is a set of dates he can go on to avoid becoming a "No-Man"?

Input Specification:

The input consists of a series of test cases. The input begins with an integer $T \leq 75$, the number of test cases. Each test case takes up three lines. The first line has three positive integers: $N \leq 100$, $Q \leq 1000$, and $X \leq 10000$. The next line consists of N non-negative integers, which represent the energy required E_i to say no to the i^{th} girl. The third line consists of N non-negative integers, which represent the money cost C_i of going out with the i^{th} girl.

Output Specification:

If Nat can get through these date requests without using too much energy or money, output Yes-Man. Otherwise, output No-Man.

Sample Input:

2

1 4 1

3

2 4 1

2 3

3 2

Sample Output:

Yes-Man No-Man