Avsluttende Eksamen TTK4100 Kybernetikk introduksjon

Tirsdag 19. desember 2017

Tid: 09:00 - 13:00

Kontaktperson: Professor Tommy Gravdahl

Tlf.: 90144212

Hjelpemidler: D-ingen trykte eller håndskrevne hjelpemidler er tillatt.

NTNU typegodkjent kalkulator med tomt minne er tillatt.

Språk: Norsk (Bokmål)

Antall sider: 8

Da tidligere vurdering i faget teller 20 % av den endelige karakteren i faget, teller denne eksamen 80 %.

Figur 1: Bildekk

Oppgave 1. (33%)

Et automatisk system for å regulere lufttrykket i et bildekk skal designes. Dekket er vist i figur 1. Dekket har volum V som antas å være konstant. Videre er p trykk med enhet $Pa = \frac{kg}{ms^2}$, ρ massetetthet, w_i massestrøm (av luft) inn i dekket og w_u en lekkasjestrøm med enhet $\frac{kg}{s}$.

- a) (5%) Bruk massebalanse og sammenhengene
 - i) $w_i = k(p_i p)$, der k er en konstant med enhet m
s og p_i er inngangstrykket, og
 - ii) $\dot{\rho}=\frac{1}{c^2}\dot{p}$ der cer lydhastigheten i $\frac{\rm m}{\rm s}$

til å vise at trykket i dekket er gitt av

$$\dot{p} = -\frac{c^2 k}{V} p + \frac{c^2 k}{V} p_i - \frac{c^2}{V} w_u. \tag{1}$$

- b) (3%) Finn et uttrykk for systemets tidskonstant T og vis at enheten til T er s
- c) (5%) Sett $u=p_i$ og foreløbig $w_u=0$ slik at

$$\dot{p} = -\frac{c^2k}{V}p + \frac{c^2k}{V}u. \tag{2}$$

Regulatoren for trykket er gitt av

$$u = K_p e, (3)$$

der $e = p_{ref} - p$, K_p er en konstant og p_{ref} er et konstant referansetrykk. Denne regulatoren fører til et stasjonært avvik. Finn et uttrykk for dette avviket.

d) (3%) PI-regulatoren

$$u = K_p e + K_i \int e dt, \tag{4}$$

der K_p og K_i er konstanter kan brukes for å eliminere det stasjonære avviket. Tegn blokkdiagram for systemet (1), med $p_i = u$, i lukket sløyfe med (4).

e) (4%) Vis at feildynamikken til systemet (2) med regulator (4) kan skrives

$$\ddot{e} + \frac{c^2 k}{V} (1 + K_p) \dot{e} + \frac{c^2 k K_i}{V} e = 0.$$
 (5)

- f) (2%) Vis at PI-regulatoren fører til at det stasjonære avviket blir $e_s = 0$.
- g) (2%) Finn K_p og K_i som funksjoner av ω_0 , ζ og parameterene fra modellen.
- h) (2%) Forklar kort hva sammenhengene i deloppgave g) kan brukes til.
- i) (4%) Finn krav til hvordan man skal velge K_p og K_i for at likevektspunktet i systemet skal være asymptotisk stabilt.
- **j**) (3%) Gi et argument for, eller vis, at PI-regulatoren både eliminierer det stasjonære avviket og kompenserer for en konstant lekkasje w_u .

Figur 2: Svært forenklet modell av nedkjølingen til partikkelakseleratoren

Oppgave 2. (5%)

Du har fått sommerjobb ved CERN og jobber med å kjøle ned partikkelakseleratoren LHC med flytende helium. Ditt første oppdrag er å gjøre noen beregninger på en forenklet modell bestående av en isolert tank med innløp og utløp, vist i figur 2. Anta at tanken er så godt isolert at det ikke er noe tap til omgivelsene. Tanken er tett og full, som vil si at massestrøm inn er lik massestrøm ut.

Ved å bruke en balanselov har man kommet frem til en modell for temperaturen T i tanken gitt ved

$$\dot{T} = \frac{w}{\rho V} (T_i - T),\tag{6}$$

der w er massestrøm inn og ut, T_i er inngangstemperatur og V er tankens volum. Enhetene til de forskjellige størrelsene i modellen er gitt i figur 2.

- a) (2%) Hvilken balanselov har blitt brukt for å komme frem til (6)?
- b) (3%) På et tidspunkt er T(t) = 4K og så endres T_i fra 4K til 3K. Det er gitt at $w = 0.1\frac{\text{kg}}{\text{s}}$, $\rho = 0.125\frac{\text{kg}}{\text{m}^3}$ og $V = 1.0\text{m}^3$. Hvor lang tid tar det før temperaturen er T = 3.37K? (Det er ikke meningen at diff.ligningen skal løses)

Figur 3: Robot med rotasjonsledd og translasjonsledd

Oppgave 3. (10%)

Denne oppgaven omhandler en robotmanipulator med to ledd (eller frihetsgrader) som er vist i Figur 3. Ledd nummer 1 er et rotasjonsledd med lengde l_1 som kan bevege seg med en vinkel q_1 . Ledd nummer 2 er et translasjonsledd som kan bevege seg med en variabel avstand q_2 . I tillegg består det andre leddet i roboten av en fast avstand d_2 . Koordinatene til griperen eller verktøyet til roboten er gitt av punktet (x, y).

- a) (5%) Studer Figur 3 og sett opp uttrykk for robotens foroverkinematikk, det vil si finn x og y som funksjoner av leddvariablene q_1 og q_2 , lengden l_1 og forskyvningen d_2 .
- **b)** (5%) Finn uttrykk for robotens *inverskinematikk*, det vil si gitt x og y, finn q_1 og q_2 som funksjoner av x, y, forskyvningen d_2 og lengden l_1 .

Figur 4: Blokkdiagram

Regulator	K_p	T_i	T_d
Р	$0.5K_{pk}$	∞	0
PI	$0.4K_{pk}$	$0.8T_k$	0
PID	$0.6K_{pk}$	$0.5T_k$	$0.125T_{k}$

Tabell 1: Ziegler-Nichols lukket sløyfe-metode

Oppgave 4. (16%)

- a) (4%) Skriv ned differensialligningene som er beskrevet i blokkdiagrammet i figur 4. Blokken med $(t-\tau)$ representerer en tidsforsinkelse.
- b) (6%) Systemet reguleres med en P-regulator, men ytelsen er dårlig, så man bytter til en PID-regulator. For å tune denne regulatoren, endres K_p til $K_{pk} = 0.315$ slik at stående svingninger med periode $T_k = 12s$ oppstår. Bruk tabell 1 og finn verdier for regulatorparameterene K_p , K_i og K_d . Husk at $K_i = \frac{K_p}{T_i}$ og $K_d = K_p T_d$.
- c) (2%) Hva blir ordenen til totalsystemet når PID-regulator brukes?
- d) (4%) Systemet i den stiplede rammen i figur 4 representerer et måleinstrument. Forklar ved hjelp av en figur/kurve hva de to størrelsene τ og k_2 vil ha å si for oppførselen (responsen) til instrumentet.

Figur 5: Fly som roterer med en positiv rullhastighet x mot klokka. Løftekreftene oppstår fra forskjellen i utslag fra balanserorene på vingene.

Oppgave 5. (6%)

Denne oppgaven omhandler rulldynamikken til et fly som bruker balanserorene til å styre rullhastigheten. En forenklet modell av denne bevegelsen er gitt av

$$\dot{x} = a_p x + b_p u, \tag{7}$$

der x er rullhastigheten i rad/s, u er forskjellen i balanserorutslag i rad og a_p og b_p er konstanter. Gitt $a_p=-0.8$ rad/s og $b_p=1.6$ rad/s. Finn uttrykk og verdier for konstantene a_x og a_r slik at regulatoren

$$u = a_x x + a_r r, (8)$$

gir et lukket sløyfe-system gitt av

$$\dot{x} = a_m x + b_m r, (9)$$

 $der a_m = -2 og b_m = 2.$

Figur 6: Simularing av (10) og (11)

Oppgave 6. (10%)

Ligningssystemet

$$\dot{x}_1 = ax_1 - bx_1x_2 \tag{10}$$

$$\dot{x}_2 = -cx_2 + dx_1 x_2, \tag{11}$$

der a = 1.5, b = 1, c = 3 og d = 1 beskriver populasjonsdynamikken i et system med antall rovdyr x_1 og antall byttedyr x_2 . En simulering av systemet med $x_1(0) = 4$ og $x_2(0) = 6$ er gjengitt i figur 6.

- a) (2%) Systemet har to likevektspunkt, det ene er i origo. Finn det andre likevektspunktet.
- b) (2%) Basert på figur 6, hva kan du si om stabilitetsegenskapene til dette likevektspunktet?
- c) (6%) Systemet er simulert i matlab ved hjelp av Eulers metode. Et matlab-skript som gjør dette er listet under. Skriv de to linjene med matlabkode som må til for å simulere systemet

```
x=0;
h=0.01; %Skrittlengde
T=20; %Slutt-tid
a=1.5; b=1; c=3; d=1;
x1(1)=4; %Initialverdier
x2(1)=6;
for n=2:T/h+1 %Simulere i T sek
SKRIV DE TO LINJENE MED KODE SOM MÅ STÅ HER FOR
Å SIMULERE SYSTEMET
end
t=0:h:T;
figure(3)
plot(t,x1);
grid
```