# A Multifrequency MAC Specially Designed for Wireless Sensor Network Applications\*

This is a subtitle<sup>†</sup>

GANG ZHOU, College of William and Mary, USA

VALERIE BÉRANGER, Inria Paris-Rocquencourt, France

APARNA PATEL, Rajiv Gandhi University, India

HUIFEN CHAN, Tsinghua University, China

TING YAN, Eaton Innovation Center, Czech Republic

TIAN HE, University of Virginia, USA and University of Minnesota, USA

CHENGDU HUANG, JOHN A. STANKOVIC, and TAREK F. ABDELZAHER, University of Virginia,

USA
 Multi

Multifrequency media access control has been well understood in general wireless ad hoc networks, while in wireless sensor networks, researchers still focus on single frequency solutions. In wireless sensor networks, each device is typically equipped with a single radio transceiver and applications adopt much smaller packet sizes compared to those in general wireless ad hoc networks. Hence, the multifrequency MAC protocols proposed for general wireless ad hoc networks are not suitable for wireless sensor network applications, which we further demonstrate through our simulation experiments. In this article, we propose MMSN, which takes advantage of multifrequency availability while, at the same time, takes into consideration the restrictions of wireless sensor networks. Through extensive experiments, MMSN exhibits the prominent ability to utilize parallel transmissions among neighboring nodes. When multiple physical frequencies are available, it also achieves increased energy efficiency, demonstrating the ability to work against radio interference and the tolerance to a wide range of measured time synchronization errors. 

1

 ${\tt CCS\ Concepts: \bullet\ Computer\ systems\ organization} \rightarrow {\tt Embedded\ systems}; \ \textit{Redundancy}; \ {\tt Robotics}; \bullet \ {\tt Networks} \rightarrow {\tt Networks}$  reliability;

Additional Key Words and Phrases: Wireless sensor networks, media access control, multi-channel, radio interference, time synchronization

Authors' addresses: Gang Zhou, College of William and Mary, 104 Jamestown Rd, Williamsburg, VA, 23185, USA, gang\_zhou@wm.edu; Valerie Béranger, Inria Paris-Rocquencourt, Rocquencourt, France, beranger@inria.fr; Aparna Patel, Rajiv Gandhi University, Rono-Hills, Doimukh, Arunachal Pradesh, India, aprna\_patel@rguhs.ac.in; Huifen Chan, Tsinghua University, 30 Shuangqing Rd, Haidian Qu, Beijing Shi, China, chan0345@tsinghua.edu.cn; Ting Yan, Eaton Innovation Center, Prague, Czech Republic, yanting02@gmail.com; Tian He, University of Virginia, School of Engineering, Charlottesville, VA, 22903, USA, University of Minnesota, USA, tinghe@uva.edu; Chengdu Huang; John A. Stankovic; Tarek F. Abdelzaher, University of Virginia, School of Engineering, Charlottesville, VA, 22903, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2010 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM

<sup>\*</sup>This is a titlenote

<sup>†</sup>Subtitle note

<sup>&</sup>lt;sup>1</sup>This is an abstract footnote

2 Zhou, G. et al

#### **ACM Reference Format:**

53

54

55

60

61

67

68 69

70

71

72 73

74

75

78

79

80 81

82

84

92

93 94

95

99

100 101

102

103 104 Gang Zhou, Valerie Béranger, Aparna Patel, Huifen Chan, Ting Yan, Tian He, Chengdu Huang, John A. Stankovic, and Tarek F. Abdelzaher. 2010. A Multifrequency MAC Specially Designed for Wireless Sensor Network Applications: This is a subtitle. *ACM Comput. Entertain.* 9, 4, Article 39 (March 2010), 7 pages. https://doi.org/0000001.0000001

#### 1 INTRODUCTION

As a new technology, Wireless Sensor Networks (WSNs) has a wide range of applications [???], including environment monitoring, smart buildings, medical care, industrial and military applications. Among them, a recent trend is to develop commercial sensor networks that require pervasive sensing of both environment and human beings, for example, assisted living [???] and smart homes [???].

"For these applications, sensor devices are incorporated into human cloths [????] for monitoring health related information like EKG readings, fall detection, and voice recognition".

While collecting all these multimedia information [?] requires a high network throughput, off-the-shelf sensor devices only provide very limited bandwidth in a single channel: 19.2 Kbps in MICA2 [?] and 250 Kbps in MICAz.

In this article, we propose MMSN, abbreviation for Multifrequency Media access control for wireless Sensor Networks. The main contributions of this work can be summarized as follows.

- To the best of our knowledge, the MMSN protocol is the first multifrequency MAC protocol especially designed
  for WSNs, in which each device is equipped with a single radio transceiver and the MAC layer packet size is
  very small.
- Instead of using pairwise RTS/CTS frequency negotiation [????], we propose lightweight frequency assignments, which are good choices for many deployed comparatively static WSNs.
- We develop new toggle transmission and snooping techniques to enable a single radio transceiver in a sensor device to achieve scalable performance, avoiding the nonscalable "one control channel + multiple data channels" design [?].

#### 2 MMSN PROTOCOL

#### 2.1 Frequency Assignment

We propose a suboptimal distribution to be used by each node, which is easy to compute and does not depend on the number of competing nodes. A natural candidate is an increasing geometric sequence, in which

$$P(t) = \frac{b^{\frac{t+1}{T+1}} - b^{\frac{t}{T+1}}}{b-1},\tag{1}$$

where t = 0, ..., T, and b is a number greater than 1.

In our algorithm, we use the suboptimal approach for simplicity and generality. We need to make the distribution of the selected back-off time slice at each node conform to what is shown in Equation (1). It is implemented as follows: First, a random variable  $\alpha$  with a uniform distribution within the interval (0, 1) is generated on each node, then time slice i is selected according to the following equation:

$$i = \lfloor (T+1) \log_b [\alpha(b-1)+1] \rfloor.$$

It can be easily proven that the distribution of i conforms to Equation (1).

Manuscript submitted to ACM

**Output:** The frequency number ( $FreNum_{\alpha}$ ) node  $\alpha$  gets assigned.

**if**  $(Rnd_{\alpha} < Rnd_{\beta})$  or  $(Rnd_{\alpha} == Rnd_{\beta} \text{ and } ID_{\alpha} < ID_{\beta})$ ;

**for** each node  $\beta$  in  $\alpha$ 's two communication hops **do** 

**Input:** Node  $\alpha$ 's ID ( $ID_{\alpha}$ ), and node  $\alpha$ 's neighbors' IDs within two communication hops.

**Algorithm 1:** Frequency Number Computation

index = 0;  $FreNum_{\alpha} = -1$ ;

Found = TRUE;

end

if Found then

index ++;

**until**  $FreNum_{\alpha} > -1$ ;

 $FreNum_{\alpha} = index;$ 

end

else

end

 $Rnd_{\alpha} = \text{Random}(ID_{\alpha}, index);$ 

 $Rnd_{\beta} = Random(ID_{\beta}, index);$ 

Found = FALSE; break;

repeat

## 

So protocols [??????] that use RTS/CTS controls<sup>2</sup> for frequency negotiation and reservation are not suitable for WSN applications, even though they exhibit good performance in general wireless ad-hoc networks.

2.1.1 Exclusive Frequency Assignment. In exclusive frequency assignment, nodes first exchange their IDs among two communication hops so that each node knows its two-hop neighbors' IDs. In the second broadcast, each node beacons all neighbors' IDs it has collected during the first broadcast period.

*Eavesdropping*. Even though the even selection scheme leads to even sharing of available frequencies among any two-hop neighborhood, it involves a number of two-hop broadcasts. To reduce the communication cost, we propose a lightweight eavesdropping scheme.

#### 2.2 Basic Notations

As Algorithm 1 states, for each frequency number, each node calculates a random number  $(Rnd_{\alpha})$  for itself and a random number  $(Rnd_{\beta})$  for each of its two-hop neighbors with the same pseudorandom number generator.

Bus masters are divided into two disjoint sets,  $\mathcal{M}_{RT}$  and  $\mathcal{M}_{NRT}$ .

**RT Masters**  $\mathcal{M}_{RT} = \{\vec{m}_1, \dots, \vec{m}_n\}$  denotes the *n* RT masters issuing real-time constrained requests. To model the current request issued by an  $\vec{m}_i$  in  $\mathcal{M}_{RT}$ , three parameters—the recurrence time  $(r_i)$ , the service cycle  $(c_i)$ , and the relative deadline  $(d_i)$ —are used, with their relationships.

**NRT Masters**  $\mathcal{M}_{NRT} = \{\vec{m}_{n+1}, \dots, \vec{m}_{n+m}\}$  is a set of m masters issuing nonreal-time constrained requests. In our model, each  $\vec{m}_j$  in  $\mathcal{M}_{NRT}$  needs only one parameter, the service cycle, to model the current request it issues.

<sup>&</sup>lt;sup>2</sup>RTS/CTS controls are required to be implemented by 802.11-compliant devices. They can be used as an optional mechanism to avoid Hidden Terminal Problems in the 802.11 standard and protocols based on those similar to [?] and [?].

Zhou, G. et al

Fig. 1. Code before preprocessing.

Here, a question may arise, since each node has a global ID. Why don't we just map nodes' IDs within two hops into a group of frequency numbers and assign those numbers to all nodes within two hops?

#### 3 SIMULATOR

If the model checker requests successors of a state which are not created yet, the state space uses the simulator to create the successors on-the-fly. To create successor states the simulator conducts the following steps.

- (1) Load state into microcontroller model.
- (2) Determine assignments needed for resolving nondeterminism.
- (3) For each assignment.
  - (a) either call interrupt handler or simulate effect of next instruction, or
  - (b) evaluate truth values of atomic propositions.
- (4) Return resulting states.

Figure 1 shows a typical microcontroller C program that controls an automotive power window lift. The program is one of the programs used in the case study described in Section 3. At first sight, the programs looks like an ANSI C program. It contains function calls, assignments, if clauses, and while loops.

#### 3.1 Problem Formulation

The objective of variable coalescence-based offset assignment is to find both the coalescence scheme and the MWPC on the coalesced graph. We start with a few definitions and lemmas for variable coalescence.

Definition 3.1 (Coalesced Node (C-Node)). A C-node is a set of live ranges (webs) in the AG or IG that are coalesced. Nodes within the same C-node cannot interfere with each other on the IG. Before any coalescing is done, each live range is a C-node by itself.

Definition 3.2 (C-AG (Coalesced Access Graph)). The C-AG is the access graph after node coalescence, which is composed of all C-nodes and C-edges.

LEMMA 3.3. The C-MWPC problem is NP-complete.

PROOF. C-MWPC can be easily reduced to the MWPC problem assuming a coalescence graph without any edge or a fully connected interference graph. Therefore, each C-node is an uncoalesced live range after value separation and Manuscript submitted to ACM

Table 1. Simulation Configuration

| 00m×200m) Square               |
|--------------------------------|
| 39                             |
| niform                         |
| any-to-Many/Gossip CBR Streams |
| bytes                          |
| F                              |
| SMA/MMSN                       |
| ADIO-ACCNOISE                  |
| 0Kbps                          |
| m-45m                          |
|                                |

Source: This is a table sourcenote. This is a table sourcenote. This is a table sourcenote. Note: This is a table footnote.

C-PC is equivalent to PC. A fully connected interference graph is made possible when all live ranges interfere with each other. Thus, the C-MWPC problem is NP-complete.

LEMMA 3.4 (LEMMA SUBHEAD). The solution to the C-MWPC problem is no worse than the solution to the MWPC.

PROOF. Simply, any solution to the MWPC is also a solution to the C-MWPC. But some solutions to C-MWPC may not apply to the MWPC (if any coalescing were made). П

#### 4 PERFORMANCE EVALUATION

During all the experiments, the Geographic Forwarding (GF) by Akyildiz et al. [?] routing protocol is used. GF exploits geographic information of nodes and conducts local data-forwarding to achieve end-to-end routing. Our simulation is configured according to the settings in Table 1. Each run lasts for 2 minutes and repeated 100 times. For each data value we present in the results, we also give its 90% confidence interval.

### 5 CONCLUSIONS

In this article, we develop the first multifrequency MAC protocol for WSN applications in which each device adopts a single radio transceiver. The different MAC design requirements for WSNs and general wireless ad-hoc networks are compared, and a complete WSN multifrequency MAC design (MMSN) is put forth. During the MMSN design, we analyze and evaluate different choices for frequency assignments and also discuss the nonuniform back-off algorithms for the slotted media access design.

### 6 TYPICAL REFERENCES IN NEW ACM REFERENCE FORMAT

A paginated journal article [?], an enumerated journal article [?], a reference to an entire issue [?], a monograph (whole book) [?], a monograph/whole book in a series (see 2a in spec. document) [?], a divisible-book such as an anthology or compilation [?] followed by the same example, however we only output the series if the volume number is given [?] (so Editor00a's series should NOT be present since it has no vol. no.), a chapter in a divisible book [?], a chapter in a divisible book in a series [?], a multi-volume work as book [?], an article in a proceedings (of a conference, symposium, workshop for example) (paginated proceedings article) [?], a proceedings article with all possible elements [?], an

Manuscript submitted to ACM

<sup>&</sup>lt;sup>a</sup>This is a table footnote. This is a table footnote. This is a table footnote.

6 Zhou, G. et al

example of an enumerated proceedings article [?], an informally published work [?], a doctoral dissertation [?], a master's thesis: [?], an online document / world wide web resource [???], a video game (Case 1) [?] and (Case 2) [?] and [?] and (Case 3) a patent [?], work accepted for publication [?], 'YYYYb'-test for prolific author [?] and [?]. Other cites might contain 'duplicate' DOI and URLs (some SIAM articles) [?]. Boris / Barbara Beeton: multi-volume works as books [?] and [?].

A couple of citations with DOIs: [??].

Online citations: [???].

#### **A SWITCHING TIMES**

In this appendix, we measure the channel switching time of Micaz [?] sensor devices. In our experiments, one mote alternatingly switches between Channels 11 and 12. Every time after the node switches to a channel, it sends out a packet immediately and then changes to a new channel as soon as the transmission is finished. We measure the number of packets the test mote can send in 10 seconds, denoted as  $N_1$ . In contrast, we also measure the same value of the test mote without switching channels, denoted as  $N_2$ . We calculate the channel-switching time s as

$$s = \frac{10}{N_1} - \frac{10}{N_2}.$$

By repeating the experiments 100 times, we get the average channel-switching time of Micaz motes:  $24.3 \,\mu s$ .

### **B SUPPLEMENTARY MATERIALS**

## B.1 This is an Example of Appendix Subsection Head

Channel-switching time is measured as the time length it takes for motes to successfully switch from one channel to another. This parameter impacts the maximum network throughput, because motes cannot receive or send any packet during this period of time, and it also affects the efficiency of toggle snooping in MMSN, where motes need to sense through channels rapidly.

By repeating experiments 100 times, we get the average channel-switching time of Micaz motes:  $24.3 \mu s$ . We then conduct the same experiments with different Micaz motes, as well as experiments with the transmitter switching from Channel 11 to other channels. In both scenarios, the channel-switching time does not have obvious changes. (In our experiments, all values are in the range of  $23.6 \mu s$  to  $24.9 \mu s$ .)

## **B.2** Appendix Subsection Head

The primary consumer of energy in WSNs is idle listening. The key to reduce idle listening is executing low duty-cycle on nodes. Two primary approaches are considered in controlling duty-cycles in the MAC layer.

#### **ACKNOWLEDGMENTS**

The authors would like to thank Dr. Maura Turolla of Telecom Italia for providing specifications about the application scenario.

The work is supported by the National Natural Science Foundation of China under Grant No.: 61273304\_a and Young Scientists' Support Program (http://www.nnsf.cn/youngscientists).