UNIVERSITY OF OULU

Department of Computer Science and Engineering

Dr. Tapio Seppänen

Pattern Recognition and Neural Networks (521497S, 5 cp / 3 cu) Examination 3.11.2013

NEITHER PROGRAMMABLE/GRAPHICAL CALCULATORS NOR COURSE MATERIAL ARE ALLOWED IN THE EXAM!

1. The Design of Pattern Recognition Systems

The design cycle of a pattern recognition system can be partitioned into several rather distinguishable steps. Describe what these steps typically are, what they consist of, and how they link to each other! (6p)

2. Bayes Decision Rule

You have one real-valued feature x that can attain values in the range [0,4]. Within this range, the class-conditional density functions for the classes c_1 and c_2 are

$$p(x|c_1) = \frac{1}{2} - \frac{1}{8}x$$
 and $p(x|c_2) = \begin{cases} \frac{2}{9}x & \text{when } x \le 3\\ 0 & \text{when } x > 3 \end{cases}$.

In accordance with the Bayes decision rule, derive a classifier when the a priori probabilities for the classes are $P(c_1) = \frac{2}{5}$, and $P(c_2) = \frac{3}{5}$! (6p)

3. Bayesian networks

What are Bayesian networks? What for and how are they used in pattern recognition? [Maximum answer length 2 pages] (6p)

4. Perceptrons and Artificial Neural Networks

Describe the so-called *XOR*-problem and construct a multilayer Perceptron capable of solving it! Justify the choices you make and validate the resulting network! (6p)