Relação entre Autômatos Finitos e Gramáticas Regulares

Prof^a Jerusa Marchi

jerusa.marchi@ufsc.br

Departamento de Informática e Estatística Universidade Federal de Santa Catarina e-mail: jerusa.marchi@ufsc.br

Relação entre AF e GR

- Gramáticas Regulares são sistemas geradores das Linguagens Regulares
- Autômatos Finitos são sistemas reconhecedores das Linguagens Regulares
 - Seja G=(N,T,P,S) uma Gramática Regular, então existe um AF $M=(K,\Sigma,\delta,q_0,F)$ tal que L(M)=L(G)
 - Seja $M=(K,\Sigma,\delta,q_0,F)$ um Autômato Finito, então existe uma GR G=(N,T,P,S) tal que L(G)=L(M)

GR para AF

- Para encontrar o AF que reconhece a linguagem gerada por uma GR, construa M como segue:
 - 1. $K = N \cup \{A\}$ onde A é um novo símbolo não terminal
 - 2. $\Sigma = T$
 - 3. $q_0 = S$
 - **4.** $F = \{S \mid S \rightarrow \varepsilon \in P\} \cup \{A\}$
 - 5. Construa δ de acordo com as regras:
 - (a) Para cada produção da forma $B \to a \in P$, crie a transição $\delta(B,a) \to A$
 - (b) Para cada produção da forma $B \to aC \in P$, crie a transição $\delta(B,a) \to C$
 - (c) Para todo $a \in T$, $\delta(A, a) \to \emptyset$

GR para AF

Exemplo:

$$S \to aA \mid bB \mid b$$

$$A \to aS$$

$$B \to bB \mid b$$

$$\begin{array}{c|c|c|c} \delta & a & b \\ \hline \rightarrow S & A & B, C \\ A & S & \emptyset \\ *B & \emptyset & B, C \\ *C & \emptyset & \emptyset \end{array}$$

AF para GR

- Para encontrar a GR que gera a linguagem reconhecida por um AF, construa G como segue:
 - 1. N = K
 - 2. $T = \Sigma$
 - 3. $S = q_0$
 - 4. Defina *P* como segue:
 - (a) Se $\delta(B,a) \to C$, então adicione $B \to aC$ em P
 - (b) Se $\delta(B, a) \to C$ e $C \in F$, então adicione $B \to a$ em P
 - (c) Se $q_0 \in F$, então $\varepsilon \in L(M)$. Assim a gramática deve ser transformada para encontrar outra gramática G_1 , tal que $L(G_1) = L(G) \cup \{\varepsilon\}$ e $L(G_1) = L(M)$. Senão $\varepsilon \not\in L(M)$, e L(G) = L(M)

AF para GR

Exemplo:

$$\begin{array}{c|c|c|c}
\hline
\delta & a & b \\
\hline
\rightarrow S & A & B \\
*A & S & C \\
B & C & S \\
C & B & A
\end{array}$$

$$S \rightarrow aA \mid bB \mid a$$
 $A \rightarrow aS \mid bC$
 $B \rightarrow aC \mid bS$
 $C \rightarrow aB \mid bA \mid b$