UNIVERSAL LOW-RANK MATRIX RECOVERY FROM PAULI MEASUREMENTS: AN IDEA

Yi-Kai Liu

ALIREZA NADERI

THE PROBLEM

- $M \in \mathbb{C}^{d \times d}$ is an unknown matrix of rank $r \ll d$
- $\{W_1, ..., W_{d^2}\}$ is an orthonormal basis for $\mathbb{C}^{d \times d}$ with $\|W_i\|_{op} \leq \frac{K}{\sqrt{d}}$

- $\{S_1, ..., S_m\} \subset \{W_1, ..., W_{d^2}\}$ is randomly uniformly chosen
- $[\mathcal{A}(X)]_i = \frac{d}{\sqrt{m}} \langle S_i, X \rangle = \frac{d}{\sqrt{m}} \operatorname{tr}(S_i^* X)$ are given
- If \mathcal{A} has RIP on $U = \{Z \in \mathbb{C}^{d \times d} : ||Z||_F \le 1, \text{ rank}(Z) \le r\}$, reconstruction is possible
- Clearly, $U \subset V = \{Z \in \mathbb{C}^{d \times d} : \|Z\|_F \le 1, \|Z\|_* \le \sqrt{r} \|Z\|_F\} \subset \sqrt{r} B_*$
- The proof is essentially the same as (Rudelson, 2007) except for the technique used to bound $\mathcal{N}(B_*, \|\cdot\|_X, \epsilon)$

SOME DEFINITIONS

• $(E, \|\cdot\|)$ is said to be 2-convex, if for some finite λ we have for all $y, z \in E$

$$||y||^2 + \frac{||z||^2}{\lambda^2} \le \frac{1}{2}(||y+z||^2 + ||y-z||^2)$$

- The smallest such λ is denoted by $\lambda(E)$
- A Hilbert space is 2-convex with $\lambda(H) = 1$ (parallelogram identity)
- $(E, \|\cdot\|)$ is said to be type 2, if for some finite T_2 we have for all $(y_i)_{i=1}^N \subset E$

$$\mathbb{E}_{\epsilon} \left\| \sum_{i=1}^{N} \epsilon_i y_i \right\|^2 \le T_2^2 \sum_{i=1}^{N} \|y_i\|^2$$

- The smallest such T_2 is denoted by $T_2(E)$
- A Hilbert space is type 2 with $T_2(H) = 1$ (contraction principle)

THE MAIN THEOREM

• Let E be a 2-convex Banach space with constant $\lambda(E)$. Let E^* be its dual space with the type 2 constant of $T_2(E^*)$. If $x_1, x_2, ..., x_m \in E^*$ such that $\|x_j\|_{op} \leq L$ for all $j \in [m]$, for

every
$$y \in E$$
 define $||y||_X = \max_{j \in [m]} |\langle x_j, y \rangle|$. Then
$$\epsilon \sqrt{\log \mathcal{N}(B_E, ||\cdot||_X, \epsilon)} \le CL\lambda^2(E)T_2(E^*)\sqrt{\log m} \,.$$

APPLYING THE THEOREM

To bound $\mathcal{N}(B_1, \|\cdot\|_X, \epsilon)$ [or $\mathcal{N}(B_*, \|\cdot\|_X, \epsilon)$] we cannot directly use the theorem because $(\mathbb{R}^n, \|\cdot\|_1)$ [or $(\mathbb{C}^{d\times d}, \|\cdot\|_*)$] is not 2-convex

- Instead, we bound $\mathcal{N}(B_p, \|\cdot\|_X, \epsilon)$ for some $1 and use the fact that <math>B_1 \subset B_p$
- $\lambda(\mathbb{R}^n, \|\cdot\|_p) = \frac{1}{\sqrt{p-1}}$ for $p \in (1,2]$
- $T_2(E^*) \leq \lambda(E)$
- But then L means $\max_{j} \|x_j\|_q$, where $\frac{1}{p} + \frac{1}{q} = 1$
- So, for the best bound we need to find

$$\inf_{p \in (1,2]} \frac{\max_{j} \|x_{j}\|_{q}}{(p-1)^{3/2}}$$

THE UNIVERSITY OF BRITISH COLUMBIA