Lecture 17

Formal testing using p-values

Test statistic

$$ar{x}\sim N\left(\mu=8,SE=rac{7}{\sqrt{206}}pprox0.5
ight)$$
 $Z=rac{9.7-8}{0.5}=3.4$

statistically significant

Test statistic

$$ar{x}\sim N\left(\mu=8,SE=rac{7}{\sqrt{206}}pprox0.5
ight)$$
 $Z=rac{9.7-8}{0.5}=3.4$

statistically significant

Yes, and we can quantify how unusual it is using a p-value.

p-values

· p-value

p-values

p-value

 \cdot low lpha

reject H_0

p-values

· $extbf{p-value}$ · $extbf{low}$ extstyle lpha $extbf{reject H_0}$ · $extbf{high}$ extstyle lpha

do not reject H_0

Number of university applications - p-value

p-value:

 H_A

 H_0

$$P(\bar{x} > 9.7 \mid \mu = 8) = P(Z > 3.4) = 0.0003$$

.

-

_

•

-

_

low

reject H_0

•

-

_

low

reject H_0

•

low

reject H_0

not due to chance

less than

 \cdot H_0

 \cdot H_0

 \cdot H_0

 \cdot H_0

 \cdot H_0

Two-sided hypothesis testing with p-values

•

different

$$H_0: \mu = 7 \ H_A: \mu
eq 7$$

Two-sided hypothesis testing with p-values

•

different

would change as well

$$= 0.0485 \times 2 = 0.097$$

Computing the -value

pnorm()

Example test statistic

$$H_0: \mu = 5$$
 versus $H_A: \mu > 5$

Example, continued

```
pnorm(2.3, mean = 0, sd = 1, lower.tail = FALSE)
```

[1] 0.01072411

one-tailed hypothesis test

0.011 < 0.05

 $\mu > 5$

The Alternative Hypothesis ...

Two-tailed H_A (≠)

Find the area to the right of z and multiply by 2, (or to the left of z if z were negative and multiply by 2).

Left-tailed H_A (<)

Find the area to the left of z.

Right-tailed H_A (>)

Find the area to the right of z.

.

•

.

•

•

•

Decision

fail to reject H_0 reject H_0

 H_0 true

 H_A true

 \checkmark

Type 1 Error

 H_0

Decision fail to reject H_0 reject H_0 Type 1 Error H_0 true **Truth** Type 2 Error

Type 1 Error

 H_A true

 H_0

Type 2 Error

 H_A

Decision fail to reject H_0 reject H_0 Type 1 Error H_0 true **Truth** Type 2 Error H_A true

 H_0

 H_A

- Type 1 Error
- Type 2 Error
- $H_0 H_A$

 H_0 : Defendant is innocent

 H_A : Defendant is guilty

 H_0 : Defendant is innocent

 H_A : Defendant is guilty

•

 H_0 : Defendant is innocent

 H_A : Defendant is guilty

.

- Type 2 error

.

- Type 1 error

 H_0 : Defendant is innocent

 H_A : Defendant is guilty

.

- Type 2 error

.

- Type 1 error

— SIR WILLIAM BLACKSTONE (1765)

Another way to remember

Type I error (false positive)

Type II error (false negative)

Another way to remember

medical test

· medical test

· reject the null

· medical test

· reject the null

-

· medical test

reject the null

- false

· medical test

· reject the

null

-

- false

_

 declaring the defendent guilty, when they are actually innocent

· medical test

to reject the null

medical test

to reject the null

fail

-

· medical test

to reject the null

-

- false

fail

medical test

to reject the null

-

- false

_

declaring the defendent innocent, when they are actually guilty

fail

. H_0 significance level lpha=0.05

. H_0 significance level lpha=0.05

 \cdot H_0

. H_0 significance level lpha=0.05

 \cdot H_0

•

 $P(\text{Type 1 error } | H_0 \text{ true}) = \alpha$

$$H_0 \ lpha = 0.05$$

$$\cdot$$
 H_0

•

$$P(\text{Type 1 error } | H_0 \text{ true}) = \alpha$$

error rate

 α increasing α increases the Type 1

•

•

.

•

•

•

 H_A

 H_0

•

•

 H_A H_0

•

 H_0

Recap: Hypothesis testing framework

•

•

test statistic

•

Recap: Hypothesis testing for a population mean

.

- $H_0: \mu = \text{null value}$
- $H_A:\mu<~>~\neq$

•

•

-

t distribution

 $n \ge 30$

or use the

Recap: Hypothesis testing for a population mean

test statistic

$$Z = rac{ar{x} - \mu}{SE}$$
, where $SE = rac{s}{\sqrt{n}}$

 H_A

•

-
$$< \alpha$$
 H_0 H_A

$$> lpha$$
 H_0