Exercices récapitulatifs

Sections 1.1 à 1.3

▲ 1. Soit les nombres

 $\sqrt[4]{8}$, $-\frac{72}{3}$, $-\frac{8}{2}$, $\sqrt[3]{1331}$, $\sqrt[5]{-32}$, $5\frac{2}{4}$, 5, $\overline{38}$ et 10,775

- a) Lesquels sont des nombres naturels?
- b) Lesquels sont des nombres entiers?
- c) Lesquels sont des nombres rationnels?
- d) Lesquels sont des nombres irrationnels?
- e) Lesquels sont des nombres réels?
- 2. Dites si les énoncés suivants sont vrais ou faux et justifiez vos réponses. h) 3√9 ∈ Q'
 - a) 0 ∈ Q'
- b) 32/4 ∈ N
- i) $\mathbb{Z}^+ \cap \mathbb{Z}^- = \{0\}$
- c) $-36/8 \in \mathbb{Z}$
- j) $\mathbb{Q}^+ \subseteq \mathbb{Z}$
- d) $\pi \in \mathbb{R}$
- k) $\mathbb{R}\backslash\mathbb{Q} = \mathbb{Q}'$
- e) 4 ∈ Z\N
- 1) $\mathbb{N} \subseteq \mathbb{Z}$ m) $\mathbb{Q} = \mathbb{Q}^+ \cup \mathbb{Q}^-$
- f) -2 ∈ Q g) $\sqrt{169} \in \mathbb{N}$
- n) $\mathbb{Z} \subseteq \mathbb{Q}$
- ▲ 3. Soit les ensembles

 $A = \left\{ x \in \mathbb{N} \mid x \text{ est un diviseur de 36} \right\}$

 $B = \left\{ x \in \mathbb{N} \mid x \text{ est un diviseur de 54} \right\}$

- a) Donnez $A \cup B$ en extension et en compréhension.
- b) Donnez $A \cap B$ en extension et en compréhension.
- c) Donnez $A \setminus B$ en extension et en compréhension.
- d) Donnez $B \setminus A$ en extension et en compréhension.
- 4. Soit les ensembles

 $A = \left\{ x \in \mathbb{N} \mid x \text{ est un diviseur de 36} \right\}$

 $B = \left\{ x \in \mathbb{N}^* \,\middle|\, x \text{ est pair et inférieur à 20} \right\}$

- a) Donnez $A \cup B$ en extension et en compréhension.
- b) Donnez $A \cap B$ en extension et en compréhension.
- c) Donnez $A \setminus B$ en extension et en compréhension.
- d) Donnez $B \setminus A$ en extension et en compréhension.
- 5. Soit $A = \{4, 6, 8, 10, 12, 14\}$ et $B = \{3, 4, 5, 6, 7, 8\}$. Dites si les énoncés suivants sont vrais ou faux et justifiez vos réponses.
 - a) $\{6,8\}\subseteq A\cap B$
- d) $\{5,7\} \subseteq B \setminus A$
- b) $5 \in A \backslash B$
- e) $10 \in A \cup B$
- c) $\{3,4,5\} \in B$
- f) $\{3, 8, 14\} \subseteq A \cup B$
- 6. Décrivez les intervalles suivants en compréhension et donnez-en une représentation visuelle.
 - a)]-12,-2]
- e) $-2, \frac{3}{2}$
- b)]√3,∞[
- f) [-6, ∞[
- c) $[\frac{5}{6}, 3]$
- $g) \quad]-\infty, -4[$
- d) $]-\infty, \frac{3}{4}]$
- h) [-3,75;1,25]

A 7. Donnez l'intervalle correspondant à la représe

- ections 1.4 à 1.7 . Simplifiez les fractions 1.4 b) a) 15/4
- b) 65/10
- d)
- Effectuez les opération
- d) 1/12 + 23/18 g)
- e) 2/46 1) 3/12 + 3/16
- 8. Donnez l'intervalle correspondant à l'ensen h) / 1/4 g) 1/15 + 17/10
 - a) $\{x \in \mathbb{R} \mid x \le -4\}$
 - b) $\{x \in \mathbb{R} \mid -6 < x < 4\}$
 - c) $\{x \in \mathbb{R} \mid x \ge 5\}$
 - d) $\{x \in \mathbb{R} \mid -\frac{7}{2} \le x \le -\frac{1}{3} \}$
 - e) $\left\{ x \in \mathbb{R} \mid x < \sqrt{7} \right\}$
 - f) $\{x \in \mathbb{R} \mid \frac{7}{8} < x \le \frac{8}{3}\}$
 - g) $\{x \in \mathbb{R} \mid x > -\frac{3}{2}\}$

 - $h) \left\{ x \in \mathbb{R} \,\middle|\, -\sqrt{2} \le x < \sqrt{5} \right\}$
 - ▲ 9. Dites si les énoncés suivents sont vraisoul vos réponses.
 - a) $\mathbb{Q}^- =]-\infty, 0[$
 - d) $]-\frac{1}{4},\frac{7}{5}]$ e) $\{5,6,7\}\in [1]$ $(2x^3y^7)^4$ b) $4 \in [-1, 4]$
 - c) $\{\sqrt{2}, \sqrt{3}\} \subseteq [0, 2]$
- f) [-2,1]c effectuez les le priorité.) 4×12-

1) 4×(12-

(8-3)+

) (5 + 27 -

 $10^2 - 80$

 $-2 \times 3 -$

 $\frac{1}{30} + \left(\frac{3}{2}\right)$

 $\frac{3}{4} \times \frac{10}{9}$

comporter que d

c) -4-2

- **10.** Déterminez $A \cup B$, $A \cap B$ et $A \setminus B$
 - a) $A =]-\infty, \frac{11}{3}[$ et $B =]2, \infty[$
 - b) A =]-8, -5[et B =]-6, -3[
 - c) $A = \begin{bmatrix} \frac{1}{2}, 2 \end{bmatrix}$ et $B = \begin{bmatrix} -1, \frac{4}{3} \end{bmatrix}$
 - d) $A = \begin{bmatrix} -\frac{5}{4}, 1 \end{bmatrix}$ et $B = \begin{bmatrix} -3, -\frac{2}{5} \end{bmatrix}$
 - e) A = [2, 4] et B = [-4, 2]
 - f) $A =]-\infty, -2]$ et $B =]-\frac{17}{5}, 0]$
 - g) $A = \frac{3}{2}, \infty$ et B = [0, 3]
 - h) $A = \begin{bmatrix} -3, -\frac{1}{4} \end{bmatrix}$ et $B = \begin{bmatrix} 1, \frac{7}{2} \end{bmatrix}$

Sections 1.4 à 1.7

▲11. Simplifiez les fractions suivantes

- a) 15/36
- f) -52/117
- b) 65/40

g) 64/84

- c) 40/68

- h) 72/81
- d) $-\frac{24}{51}$
- i) $-\frac{24}{120}$

e) 12/90

j) -450/180

12. Effectuez les opérations suivantes et simplifiez le résultat.

- a) $\frac{14}{15} \times \frac{25}{49}$
- j) 11/24 5/36
- b) $-\frac{27}{16} \times \frac{8}{81}$
- k) $\frac{27 \times \frac{5}{9}}{\frac{2}{5} \frac{3}{4} + \frac{1}{10}}$
- c) 4/9 ÷ 8/15
- d) $-\frac{5}{12} + \frac{25}{18}$ e) $\frac{22}{3} \div 6$
- 1) $\frac{\frac{3}{7} + \frac{2}{3} \frac{1}{2}}{30 \times \frac{5}{6}}$
- f) $\frac{5}{12} + \frac{9}{16}$
- m) $\frac{\frac{5}{6} \frac{1}{4} + \frac{2}{3}}{\frac{35}{2} \times \frac{3}{2}}$
- g) $\frac{32}{15} + \frac{17}{10}$
- h) 3/8 17/24
- n) $\frac{\frac{3}{4} \times \frac{6}{5}}{\frac{1}{4} + \frac{2}{4} \frac{5}{4}}$
- i) 5/6 4/9
- 13. Utilisez les propriétés des exposants pour évaluer ou simplifier les expressions suivantes. Les réponses ne doivent comporter que des exposants positifs.
 - a) $(\frac{2}{5})^3$

- b) $(-3)^{-3}$
- j) $\frac{x^2x^3x^{-1}(x^{-2})^3}{x^{-3}}$ c) -4^{-2}
- d) $(\frac{5}{3})^{-2}$
- $k) \ \frac{12x^3y^{-1}}{8x^{-2}y}$
- e) $2^{-8} \times (2^{-2} \times 2 \times 2^5)^4$ f) $\frac{3^5 x^7}{}$
- 1) $(4x^3y^4)^3(2x^2y^4)^{-2}$
- m) $\left(\frac{3x^{-2}yz^2}{x^4y^{-3}z^2}\right)^3$

h) $(2x^3y^7)^4$

- n) $\left(\frac{x^{-4}y^2z^{-3}}{x^3(yz)^{-2}}\right)^{-2}$
- 14. Effectuez les opérations suivantes en respectant les règles de priorité.
 - a) $4 \times 12 5 \times 3$
 - b) $4 \times (12 5) \times 3$
 - c) $(8-3)+2\times4$
 - d) $(5 + 27 \div 9) 6 \div 2$
 - e) $10^2 80 \div 10 \times 3^2$
 - f) $-2 \times 3 (-5^2 + 10) + 1$
 - g) $\frac{1}{30} + \left(\frac{3}{2}\right)^2 \times \frac{4}{15}$
 - h) $\frac{3}{4} \times \frac{10}{9} \div \left(2 \frac{3}{4}\right)$

- i) $\frac{7}{8} + \frac{21}{10} + \frac{15}{4} \times \frac{1}{12} \frac{1}{24}$
- j) $\frac{2}{5} + 6 \times \left(\frac{1}{2}\right)^4 + \frac{1}{4} \frac{3}{20}$
- 15, Résolvez les équations suivantes.
- g) $5t \frac{2}{3} = \frac{4}{9}$
- h) $-3x + \frac{2}{5} = -\frac{3}{2}$ c) $\frac{y}{4} - 3 = 7$
- d) $-\frac{t}{6} + 9 = -3$
- i) $\frac{3x}{8} + 1 = -\frac{3}{4}$
- e) $\frac{3x}{4} + 2 = 11$
- j) $-\frac{2u}{9} \frac{5}{6} = 2$
- f) $-\frac{5y}{6} 3 = 8$

Sections 1.8 à 1.10

- ▲ 16. Évaluez les expressions suivantes.
 - a) 4/5
- b) |-12|
- f) |-4| |-6|
- c) |-5 4|
- g) $\left| \frac{2}{3} \frac{3}{10} \right|$
- d) |25 12|
- ▲ 17. Déterminez, si elle existe, la ou les valeurs réelles de x qui satisfont aux égalités suivantes.
 - a) |x| = 5
- b) |x| = -2
- c) $|x| = \frac{1}{8}$
- ▲ 18, Évaluez les expressions sus vantes
 - a) $-\sqrt{81}$

- b) √-81
- c) $\sqrt{\frac{49}{144}}$
- d) 31/8
- e) ³√-512
- j) \$\\ 4096
- 19. Évaluez les expressions suivantes en utilisant les propriétés des radicaux.
 - a) $\sqrt[3]{3} \times \sqrt[3]{-9}$
- g) $\sqrt{58}$
- b) $\sqrt[4]{2} \times \sqrt[4]{8}$
- h) 3/(3/4)6
- c) 6/64/729
- i) $(-216)^{\frac{2}{3}}$
- d) $\sqrt[3]{-64/125}$
- i) 81-1/4
- k) (16/25)-3/2

- 20. Simplifiez les expressions suivantes en utilisant les propriétés
 - a) $\sqrt{288}$

des radicaux.

b) \$\square{48}\$

Chapitre 1

- **1.** a) $\sqrt[3]{1\ 331} = 11$ et $\sqrt[52]{4} = 13$
 - b) $-\frac{72}{3} = -24$, $\sqrt[3]{1331} = 11$, $\sqrt[5]{-32} = -2$ et $\sqrt[52]{4} = 13$
 - c) $-\frac{72}{3} = -24$; $\sqrt[3]{1331} = 11$; $\sqrt[5]{-32} = -2$; $\sqrt[52]{4} = 13$; $\sqrt[5]{38}$; $\sqrt{10}$; $\sqrt{10}$
 - d) $\sqrt[4]{8}$ et $-\frac{\pi}{2}$
 - e) Tous les nombres donnés sont des nombres réels.
- 2. a) Faux
- e) Faux
- i) Faux
- m) Faux n) Vrai

- b) Vrai
- f) Vrai
- j) Faux

- c) Faux
- g) Vrai
- k) Vrai

- d) Vrai
- h) Vrai
- 1) Vrai
- **3.** On a $A = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ et $B = \{1, 2, 3, 6, 9, 18, 27, 54\}$
 - a) $A \cup B = \{1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54\}$

 $A \cup B = \left\{ x \in \mathbb{N} \mid x \text{ est un diviseur de 36 ou de 54} \right\}$

b) $A \cap B = \{1, 2, 3, 6, 9, 18\}$

 $A \cap B = \{x \in \mathbb{N} \mid x \text{ est un diviseur de 36 et de 54} \}$

e) $A \setminus B = \{4, 12, 36\}$

 $A \setminus B = \{x \in \mathbb{N} \mid x \text{ est un diviseur de 36 mais pas de 54} \}$

d) $B \setminus A = \{27, 54\}$

 $B \setminus A = \{x \in \mathbb{N} \mid x \text{ est un diviseur de 54 mais pas de 36} \}$

- 4. On a $A = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ et $B = \{2, 4, 6, 8, 10, 12, 14, 16, 18\}$.
 - a) $A \cup B = \{1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 16, 18, 36\}$

 $A \cup B = \{x \in \mathbb{N}^* | x \text{ est un diviseur de 36 ou un nombre pair inférieur à 20} \}$

b) $A \cap B = \{2, 4, 6, 12, 18\}$

 $A \cap B = \{x \in \mathbb{N} \mid x \text{ est un diviseur pair de 36 et est inférieur à 20} \}$

 $A \setminus B = \{x \in \mathbb{N} \mid x \text{ est un diviseur de 36 qui est impair ou supérieur ou égal à 20} \}$ c) $A \setminus B = \{1, 3, 9, 36\}$

 $B \setminus A = \{x \in \mathbb{N}^* | x \text{ est un nombre pair inférieur à 20 qui ne divise pas 36} \}$ d) $B \setminus A = \{8, 10, 14, 16\}$

- c) Faux

- 5. a) Vrai
- d) Vrai
- f) Vrai

b)
$$]\sqrt{3}, \infty[$$
 = $\left\{x \in \mathbb{R} \mid x > \sqrt{3}\right\}$

- d) $]-\infty, \frac{3}{4}] = \{x \in \mathbb{R} | x \le \frac{3}{4} \}$
- e) $]-2, \frac{3}{2}[= \{x \in \mathbb{R} | -2 < x < \frac{3}{2}\}]$
- f) $\left[-6, \infty\right[= \left\{x \in \mathbb{R} \,\middle|\, x \ge -6\right\}$
- g) $]-\infty, -4[= \{x \in \mathbb{R} | x < -4\}]$
- h) $[-3,75; 1,25[= \{x \in \mathbb{R} | -3,75 \le x < 1,25\}]$ 1,25
- 7. a) $]-\infty, -7]$ c) $]-\frac{4}{3}, \infty[$
- e)]-∞, 2[
- g) [15/₄,∞[

- b)]1,4;5
- d) $]-3,\sqrt{5}$
- f) $[-2\pi, -4[$ e)]-∞, √7[

- b)]-6,4[
- **8.** a) $]-\infty, -4]$ c) $[5, \infty[$ d) $[-\frac{7}{2}, -\frac{1}{3}]$ f) $[\frac{7}{8}, \frac{8}{3}]$

- 9. a) Faux c) Vrai
- e) Faux

- b) Faux
- d) Vrai
- f) Faux
- **10.** a) $A \cup B =]-\infty, \frac{11}{3}[\cup]2, \infty[= \mathbb{R}]$ $A \cap B = \left] -\infty, \frac{11}{3} \right[\cap \left] 2, \infty \right[= \left] 2, \frac{11}{3} \right[$ $A \setminus B = \left] -\infty, \frac{11}{3} \left[\setminus \left[2, \infty \right[= \right] -\infty, 2 \right]$
 - b) $A \cup B =]-8, -5[\cup]-6, -3[=]-8, -3[$ $A \cap B =]-8, -5[\cap]-6, -3[=]-6, -5[$ $A \setminus B = \left] -8, -5 \right[\setminus \left] -6, -3 \right[= \left] -8, -6 \right]$
 - c) $A \cup B = \begin{bmatrix} \frac{1}{2}, 2 \end{bmatrix} \cup \begin{bmatrix} -1, \frac{4}{3} \end{bmatrix} = \begin{bmatrix} -1, 2 \end{bmatrix}$ $A \cap B = \begin{bmatrix} \frac{1}{2}, 2 \end{bmatrix} \cap \begin{bmatrix} -1, \frac{4}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}, \frac{4}{3} \end{bmatrix}$ $A \setminus B = \begin{bmatrix} \frac{1}{2}, 2 \end{bmatrix} \setminus \begin{bmatrix} -1, \frac{4}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3}, 2 \end{bmatrix}$
 - d) $A \cup B = [-\frac{5}{4}, 1[\cup [-3, -\frac{2}{5}[= [-3, 1[$ $A \cap B = \left[-\frac{5}{4}, 1 \right[\cap \left[-3, -\frac{2}{5} \right] = \left[-\frac{5}{4}, -\frac{2}{5} \right]$ $A \setminus B = \begin{bmatrix} -\frac{5}{4}, 1 \end{bmatrix} \setminus \begin{bmatrix} -3, -\frac{2}{5} \end{bmatrix} = \begin{bmatrix} -\frac{2}{5}, 1 \end{bmatrix}$
 - e) $A \cup B =]2, 4[\cup [-4, 2[= [-4, 4[\setminus \{2\}$ $A \cap B = \left]2, 4\right[\cap \left[-4, 2\right[= \emptyset]$ $A \setminus B =]2, 4[\setminus [-4, 2[=]2, 4[$
 - f) $A \cup B =]-\infty, -2] \cup]-\frac{17}{5}, 0] =]-\infty, 0]$ $A \cap B =]-\infty, -2] \cap]^{-1}/_5, 0] =]^{-1}/_5, -2]$ $A \backslash B = \left] -\infty, -2 \right] \backslash \left] -\frac{17}{5}, 0 \right] = \left] -\infty, -\frac{17}{5} \right]$

	$A \cap B = \begin{bmatrix} 3/2, \infty [\cup]0, 3 \end{bmatrix} = \begin{bmatrix} 0, \infty [= \mathbb{R}^+ \\ A \setminus B = \end{bmatrix} $
	$A \cap B = \begin{bmatrix} 3/2, \infty [\cup]0, 3 \end{bmatrix} = \begin{bmatrix} 0, \infty [= \mathbb{R}^+ \\ A \setminus B = \end{bmatrix} \begin{bmatrix} 3/2, \infty [\cap]0, 3 \end{bmatrix} = \begin{bmatrix} 3/2, 3 \end{bmatrix}$ $A \cup B = \begin{bmatrix} 3/2, \infty [\setminus]0, 3 \end{bmatrix} = \begin{bmatrix} 3/2, \infty [\setminus]0, 3 \end{bmatrix} = \begin{bmatrix} 3/2, \infty $
h)	$A \cup B = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$

- $= [-3, -\frac{1}{4}] \cup [1, \frac{1}{2}] = [-3, -\frac{1}{4}] \cup [1, \frac{1}{2}]$ $A \cap B = \begin{bmatrix} -3, -1/4 \end{bmatrix} \cap \begin{bmatrix} 1, \frac{1}{2} \end{bmatrix} = \emptyset$ $A \setminus B = \begin{bmatrix} -3, -\frac{1}{4} \end{bmatrix} \setminus \begin{bmatrix} 1, \frac{7}{2} \end{bmatrix} = \begin{bmatrix} -3, -\frac{1}{4} \end{bmatrix}$
- 11. a) 5/12
 - d) -8/17 b) 13/8
 - e) 2/15 c) 10/17 f) -4/9
- h) 8/9 12. a) 10/21 i) -1/5 b) -1/6 e) 11/9 i) 7/18
 - c) 5/6 f) 47/48 j) 23/72 g) 23/6 d) $-\frac{3}{10}$ k) -60
- h) $-\frac{1}{3}$ 13. a) $\frac{2^3}{5^3} = \frac{8}{125}$ 1) 1/42 f) 9x5 b) $\frac{1}{(-3)^3} = -\frac{1}{27}$ j) x
 - c) $-\frac{1}{4^2} = -\frac{1}{16}$ d) $\frac{3^2}{5^2} = \frac{9}{25}$ h) $16x^{12}v^{28}$

g) 16/21

g) 19/30

j) -5/2

m) 2/3

n) 12/5

j) 1/4

- e) $2^8 = 256$ 1) $16x^5y^4$
- 14. a) 33 d) 5 84 e) 28 f) 10
- h) ²/₃ i) 11/16 15. a) x = -3d) t = 72g) $t = \frac{2}{9}$ b) u = -3j) $u = -\frac{51}{4}$ e) x = 12
 - h) $x = \frac{19}{30}$ y = 40f) $y = -\frac{66}{5}$ i) $x = -\frac{14}{3}$ c) 9
- e) 0 g) 11/30 d) 13 f) -2h) 5/12 (a) x = 5 ou x = -5
 - d) $x = \pi \text{ ou } x = -\pi$ 5) Il n'y a aucune solution. e) Il n'y a aucune solution.
 - c) $x = \frac{1}{8}$ ou $x = -\frac{1}{8}$ f) x = 2.5 ou x = -2.5
- 18. a) -9 f) 7 b) $\sqrt{-81}$ n'existe pas dans les nombres h) $\sqrt[4]{-81}$ n'existe pas dans les nombres
 - réels (il est impossible de trouver un nombre réel qui, élevé au carré, donnerait -81).
 - c) 7/12 d) ½
 - e) -8
- **19.** a) -3 d) $-\frac{4}{5}$ e) 8 b) 2
 - f) 2 c) ²/₃
- e) $\sqrt[6]{2}$ **20.** a) $12\sqrt{2}$ b) 2√√3 f) %5
 - c) $-\sqrt{3}$ g) x^5
- j) 4 g) 625 j) 1/3 h) %16 k) 125/64 i) 36 i) 10x j) $x^2\sqrt{y}$

donnerait -81).

i) -3

réels (il est impossible de trouver un

nombre réel qui, élevé à la puissance 4,

d) $2\sqrt{5}$