

In the Specification:

- (1) Please amend paragraph 36 as follows:

In the third equation appearing in paragraph 36, please add the square symbol in the fourth square root in the equation to read as follows:

$$n_1 : n_2 : n_3 : n_4 = \sqrt{\left(x_n + \frac{y_n}{\tan \alpha_n} - W \right)^2 + L^2} : \sqrt{\left(x_n + \frac{y_n}{\tan \alpha_n} + W \right)^2 + L^2}$$
$$: \sqrt{\left(x_n + \frac{y_n}{\tan \alpha_n} - W \right)^2 + L^2} : \sqrt{\left(x_n + \frac{y_n}{\tan \alpha_n} + W \right)^2 + L^2}$$

- (2) Please amend paragraph 37 as follows:

Please change "y_n" to "L+y_n" in the equations appearing in paragraph 37 to read as follows:

$$\alpha_1 = \tan^{-1} \left(\frac{2L}{x_n + \frac{L+y_n}{\tan \alpha_n} - W} \right)$$

$$\alpha_2 = \tan^{-1} \left(\frac{2L}{x_n + \frac{L+y_n}{\tan \alpha_n} + W} \right)$$

- (3) Please amend paragraph 38 as follows:

Please change "y_n" to "L+y_n" in the equation appearing in paragraph 38 to read as follows:

$$n_1 : n_2 : n_3 : n_4 = \sqrt{\left(x_n + \frac{L+y_n}{\tan \alpha_n} - W \right)^2 + (2L)^2} : \sqrt{\left(x_n + \frac{L+y_n}{\tan \alpha_n} + W \right)^2 + (2L)^2}$$
$$: \left| x_n + \frac{L+y_n}{\tan \alpha_n} - W \right| : \left| x_n + \frac{L+y_n}{\tan \alpha_n} + W \right|$$

- (4) Please amend paragraph 49 as follows:

Please change “l” to “1” in the equations appearing in paragraph 49 to read as follows:

$$\alpha_1 = -\alpha_3 = \tan^{-1} \left(\frac{1}{\frac{1}{\tan \alpha_0} - \frac{W}{L}} \right)$$

$$\alpha_2 = -\alpha_4 = \tan^{-1} \left(\frac{1}{\frac{1}{\tan \alpha_0} + \frac{W}{L}} \right)$$

- (5) Please amend paragraph 51 as follows:

Please change “l” to “1” in the second equation appearing in paragraph 51 to read as follows:

$$\alpha_2 = \tan^{-1} \left(\frac{1}{\frac{1}{\tan \alpha_0} + \frac{W}{2L}} \right)$$

- (6) Please amend paragraph 161 as follows:

Please change “y_n1” to “y_n” in Equation (31) to read as follows:

$$n_1 : n_2 : n_3 : n_4 = \sqrt{\left(x_n + \frac{y_n}{\tan \alpha_n} - W \right)^2 + L^2} : \sqrt{\left(x_n + \frac{y_n}{\tan \alpha_n} + W \right)^2 + L^2} \\ : \sqrt{\left(x_n + \frac{y_n}{\tan \alpha_n} - W \right)^2 + L^2} : \sqrt{\left(x_n + \frac{y_n}{\tan \alpha_n} + W \right)^2 + L^2}$$

- (7) Please amend paragraph 162 as follows:

Please delete “the above equation (28)(steering command value):” as noted below.

Please delete the equations (E11) and (E32) as noted below.

Please add equations $\tan \alpha_n = \frac{L + y_n}{R - x_n}$ and $R = \frac{L + y_n}{\tan \alpha_n} + x_n$ as noted below.

Please change "y_n" to "L+y_n" in Equations (32), (33) and (34) as noted below.

[00162] For steering mode M3, the above equation (28) can be substituted in equations (E31), (E32) and (E34) to obtain the following equations (32), (33) and (34), and the wheel steering angles α_1 , α_2 , α_3 , α_4 , and rotation speeds n₁, n₂, n₃, n₄ can then be controlled based on α_n , the direction of travel of the point Pn (steering command value):

$$\alpha_1 = \tan^{-1} \left(\frac{2L}{R - W} \right) \quad (\text{E11})$$

$$\tan \alpha_n = \frac{L + y_n}{R - x_n}$$

$$R = \frac{L + y_n}{\tan \alpha_n} + x_n$$

$$\alpha_1 = \tan^{-1} \left(\frac{2L}{x_n + \frac{L + y_n}{\tan \alpha_n} - W} \right) \quad \text{Equation (32)}$$

$$\alpha_2 = \tan^{-1} \left(\frac{2L}{R + W} \right) \quad (\text{E32})$$

$$\alpha_2 = \tan^{-1} \left(\frac{2L}{x_n + \frac{L + y_n}{\tan \alpha_n} + W} \right) \quad \text{Equation (33)}$$

$$\alpha_3 = \alpha_4 = 0 \quad \text{Equation (E33)}$$

$$n_1 : n_2 : n_3 : n_4 = \sqrt{\left(x_n + \frac{L + y_n}{\tan \alpha_n} - W \right)^2 + (2L)^2} : \sqrt{\left(x_n + \frac{L + y_n}{\tan \alpha_n} + W \right)^2 + (2L)^2} \\ : \left| x_n + \frac{L + y_n}{\tan \alpha_n} - W \right| : \left| x_n + \frac{L + y_n}{\tan \alpha_n} + W \right|$$

$$\text{Equation (34)}$$

In the Abstract:

Please amend Abstract of the Disclosure as follows:

In steering control for individually controlling wheel steering angles α_1 , α_2 , α_3 , and α_4 of a vehicle in accordance with a condition equation for forming a prescribed mode, one of the condition equation variables is used as a steering command value S. In a process for changing the command value S from a value S_1 to a value S_2 , for transitioning the steering angles α_1 , α_2 , α_3 , α_4 from values $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]_{S1}$ corresponding to the steering command value S_1 , to values $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]_{S2}$ corresponding to the steering command value S_2 , the steering angles α_1 , α_2 , α_3 , α_4 are changed toward incremental transition steering angles $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]_{S1 + \Delta S}$ corresponding to a steering command value $(S_1 + \Delta S)$, which is the steering command value S_1 to which an incremental steering command value ΔS has been added. After the steering angles α_1 , α_2 , α_3 , α_4 reach their incremental transition steering angles and steering angle conformance is detected, the angles are changed toward incremental transition steering angles $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]_{S1 + n\Delta S}$ corresponding to a steering command value $(S_1 + n\Delta S)$, which is the steering command value to which an incremental steering command value ΔS has been added [n times] in succession. [[f]]This is repeated as many times as required[[f]]to change the steering angles α_1 , α_2 , α_3 , α_4 from $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]_{S1}$ to $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]_{S2}$.