Reading course homework

Goal

Take the exercises for STAT 244 and turn them into computational problems, to get a better sense of what's going on.

How to do the homework

For each exercise, produce an Rmd file documenting the code and the mathematics. Run simulations etc. to solve the exercise. An example is provided below.

Example: HW1.1

Three cards are drawn randomly from a standard 52 card deck.

First, we need to create a deck of cards, along with their suit and value. I chose to encode them into a data.frame:

The structure looks like:

head(deck)

```
id suit value
## 1
           Η
## 2 2
                 2
           Η
## 3 3
           Η
                 3
## 4 4
                 4
           Η
## 5 5
           Η
                 5
## 6 6
           Н
```

Next, we need to write a function that draws cards from the deck without replacement:

```
draw_k_cards <- function(deck, k){
    # draw cards without repetition
    drawn <- sample(deck$id, k)
    return(deck[deck$id %in% drawn,])
}</pre>
```

For example:

```
draw_k_cards(deck, 3)
```

```
## id suit value
## 4 4 H 4
## 42 42 S 3
## 51 51 S 12
```

Now we can attack the first question:

(a) What is the probability that all three cards are from the same suit (i.e. all hearts, or all diamonds, or all clubs, or all spades)?

We write a function that estimates this probability by repeatedly drawing k cards, and checking whether they're all of the same suit:

```
prob_all_same_suit <- function(deck, k, nreps){
  tot_all_same <- 0
  for (i in 1:nreps){
    drawn <- draw_k_cards(deck, k)
    if (length(unique(drawn$suit)) == 1) {
       tot_all_same <- tot_all_same + 1
    }
  }
  return(tot_all_same / nreps)
}</pre>
```

If we run this for a sufficiently large number of times, it should converge to the actual probability (note: this might take a few seconds to run):

```
estimate_p_all_same_suit <- prob_all_same_suit(deck, 3, 50000)
estimate_p_all_same_suit</pre>
```

[1] 0.05118

Suppose that we want to compute the probability of drawing 3 hearts. Then we have probability 13/52 of drawing a hearth as a first card; probability 12/51 of drawing a hearth as a second card (provided that we've drawn a hearth first); and finally we have probability 11/50 of drawing the third hearth. Multiplying we have $1716/132600 \approx 0.129$. Because we only care if we've got cards of the same suit, we can multiply this probability by four, obtaining 0.05176.

The same calculation can be done in a slightly more elegant manner. Suppose all the cards are now balls, of two colors: the hearths are black balls, and the other cards are white balls. Then, the probability of sampling without replacement k black balls is given by the Hypergeometric distribution.

```
n <- 13 # number of black balls
m <- 52 - n # number of white balls
k <- 3 # how many balls we draw
x <- 3 # how many are black (hearths)
p_all_hearths <- dhyper(x, n, m, k)
p_all_hearths</pre>
```

[1] 0.01294118

And therefore the answer is:

```
p_all_same_suit <- 4 * dhyper(x, n, m, k)
p_all_same_suit</pre>
```

[1] 0.05176471

We can do something very similar for the second point:

(b) What is the probability that the three cards come from three different suits?

```
prob_all_different_suit <- function(deck, k, nreps){
  tot_all_different <- 0
  for (i in 1:nreps){
    drawn <- draw_k_cards(deck, k)
    if (length(unique(drawn$suit)) == 3) {
      tot_all_different <- tot_all_different + 1
    }
}</pre>
```

```
return(tot_all_different / nreps)
}
# The solution should be close to
prob_all_different_suit(deck, 3, 50000)
```

[1] 0.39416

We draw a first card; the probability that the second card is not of the suit of the first is 39/51 (we can choose any of the 39 cards out of 51 belonging to the other three suits); the probability that the third card will not be of one of the suits we've seen before is 26/50 (i.e., we can choose from the remaining two suits). As such the answer is

```
(39 / 51) * (26 / 50)
```

[1] 0.3976471