СЛОЖНЫЕ ЭФИРЫ, ЖИРЫ И МАСЛА СТРОЕНИЕ

ОБЩАЯ ФОРМУЛА - R,COOR,

Функциональная группа: - СОО - карбокси-группа, карбоксильная группа.

НОМЕНКЛАТУРА СЛОЖНЫХ ЭФИРОВ

этилпропионат

Существует два основных способа назвать сложный эфир.

- В любом случае читаем соединение задом наперёд.
- 1) "Название R2 + ЭФИР + название R1 + КИСЛОТЫ"
- 2) "Название R2 + название кислотного остатка"

Пример:

метиловый эфир уксусной (этановой) кислоты ИЛИ метилацетат

изомерия у сложных эфиров

ФИЗИЧЕСКИЕ СВОЙСТВА СЛОЖНЫХ ЭФИРОВ

Сложные эфиры низших карбоновых кислот и низших спиртов - летучие, нерастворимые в воде жидкости. Многие сложные эфиры имеют приятный фруктовый запах. Температуры кипения сложных эфиров ниже, чем у изомерных им карбоновых кислот, т.к. между молекулами сложных эфиров ОТСУТСТВУЮТ ВОДОРОДНЫЕ СВЯЗИ.

Сложные эфиры высших карбоновых кислот и спиртов - это воскообразные, нерастворимые в воде вещества, не имеющие, как правило, запаха. Хорошо растворяются в органических растворителях.

ХИМИЧЕСКИЕ СВОЙСТВА СЛОЖНЫХ ЭФИРОВ

-> гидролиз

$$H_3C-CH_2-C''$$
 $O-CH_3$
 H_3C-CH_2-C''
 $O-CH_3$
 H_3C-CH_2-C''
 $O-CH_3$
 H_3C-CH_2-C''
 $O-CH_3$
 $O-CH_3$

-> восстановление [условия - Ni/Pt/Pd + t]

-> образование амидов

$$H_3C-CH_2-C_{O-CH_3}^{O}$$
 + NH_3 --- $H_3C-CH_2-C_{NH_2}^{O}$ + H_3C-OH_3

-> горение

получение сложных эфиров

реакции этерификации карбоновых кислот со спиртами	H_3C-CH_2-C' + H_3C-OH H^+ , t^o H_3C-CH_2-C' + $H-OH$ $O-CH_3$
взаимодействие ангид- ридов/галогенангидри- дов со спиртами/алко- голятами	$(CH_3COO)_2O + CH_3OH = CH_3COOCH_3 + CH_3COOH$ $CH_3COCI + CH_3OH = CH_3COOCH_3 + HCI$ $CH_3COCI + CH_3ONa = CH_3COOCH_3 + NaCI$
взаимодействие солей карбоновых кислот с галогеналканами	H_3C-CH_2-C'' + H_3C-CI - H_3C-CH_2-C'' + $Ag-CI$ O- CH_3

ПРИМЕНЕНИЕ СЛОЖНЫХ ЭФИРОВ

Сложные эфиры применяются в качестве растворителей лакокрасочных веществ, в парфюмерии, в производстве различных напитков.

Метакрилат и метилметакрилат - в производстве пластмасс.

РАЗНОВИДНОСТЬ СЛОЖНЫХ ЭФИРОВ - ЖИРЫ

жиры -

это сложные эфиры, образованные в результате реакции этерификации глицерина и высших карбоновых кислот. Обладают всеми св-вами сложных эфиров.

Взаимодействие глицерина и высших карбоновых кислот в присутствии H⁺ и ферментов называется РЕАКЦИЕЙ БЕРТЛО.

Соли высших жирных кислот = $\underline{\text{мыла}}$, $\underline{\text{Na}}^*$ = твёрдое мыло, $\underline{\text{K}}^*$ = жидкое. Гидрирование жидких жиров приводит к получению твёрдых жиров.

для заметок

