Bedlam

Contents

1. Topology	į
2. Measure Theory	
3. Probability Theory	
4. Wasserstein Distance	

1. Topology

Definition 1.1 (Topology):

Let X bet a set. A **topology over** X is a subset Σ of 2^X such that:

- A ⊆ Σ ⇒ ∪_{E∈A} E. Infinite or finite unions of sets.
 A, B ∈ Σ ⇒ A ∩ B ∈ Σ. Finite intersections of sets.
- 3. $X \in \Sigma$

Definition 1.2 (Topological Space):

 (X, Σ) is a **topological space** iff. Σ is a topology of X.

Definition 1.3 (Everywhere dense):

Let (X, Σ) topological space, and $H \subseteq X$. H is said everywhere dense in Σ iff. $\forall E \in \Sigma, E \neq \emptyset : H \cap E = \emptyset$. We can find a bit of H in every corner of the topology Σ .

Definition 1.4 (Separable):

Let (X,Σ) be a topological space. (X,Σ) is said separable iff $\exists H\subseteq X,H$ is countable: H is everywhere dense $\in \Sigma$. There is a sequence of elements $\{x_n \in X\}_{n=1}^{\infty}$ such that every set in the topology

Definition 1.5 (Metric Space):

(X,d) is a metric space iff.

- 1. $X \neq \emptyset$
- 2. $d: X \times X \longrightarrow \mathbb{R}_{>0}$ such that (d is a distance):
 - 1. $\forall x, y \in X : d(x, y) = 0 \Longrightarrow x = y$, there are no different elements at zero-distance.
 - 3. $\forall x, y \in X : d(x, y) = d(y, x)$. symmetry.
 - 2. $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$. triangular inequality.

Definition 1.6 (open ε -ball):

Let (X,d) be a metric space, $x \in X$, and $\varepsilon \in \mathbb{R}_{>0}$. We call $B_{\varepsilon}(x) = \{y \in X \mid d(x,y) < \varepsilon\}$ an open ε -ball. A ball of ε radius centered at some point.

Definition 1.7 (Neighborhood):

Let (X,d) be a metric space, $S\subseteq X$, $x\in S$, and $\varepsilon\in\mathbb{R}_{>0}$ such that the open ε -ball $B_{\varepsilon}(x)\subseteq S$. Then S is said a neighborhood of x. A neighborhood of an element is simply a set that contains an open ball containing the

Definition 1.8 (Open Set):

Let (X,d) be a metric space and $U \subseteq X$. U is an open set iff. $\forall u \in U : \exists \varepsilon \in \mathbb{R}_{>0} : B_{\varepsilon}(u) \subseteq U$. An open set is simply a set which is also neighborhood for all its points.

Definition 1.9 (Induced Topology):

Let (X, d) be a metric space. Σ is said an induced topology iff. $\Sigma = \{U \subseteq X \mid U \text{ is an open set in } (X, d)\}$

Definition 1.10 (Metrizable):

Let (X, Σ) be a topological space. (X, Σ) is said **metrizable** iff. $\exists (X, d)$ metric space : Σ is a topology induced by (X, d).

Definition 1.11 (Cauchy Sequence):

Let (X,d) be a metric space, $[x_n \in X]$ a sequence. $[x_n]$ is said a cauchy sequence iff. $\forall \varepsilon \in \mathbb{R}_{>0}: \exists N \in \mathbb{N}: \forall m,n \in \mathbb{N}: d(x_n,x_m) \leq \varepsilon$. There is a point after which all pairs of elements are close to each other.

Definition 1.12 (Convergent Sequence):

Let (X,d) be a metric space, $l \in X$, $[x_n \in X]$ a sequence. $[x_n]$ is said a **convergent sequence to the limit** l iff. $\forall \varepsilon \in \mathbb{R}_{>0}: \exists N \in \mathbb{R}_{>0}: \forall n > N: d(x_n,l) < \varepsilon$. If such a limit exists the sequence is simply said **convergent**.

Definition 1.13 (Complete Metric Space):

Let (X, d) be a metric space. (X, d) is said a **complete metric space** iff. every cauchy sequence is convergent.

Definition 1.14 (Polish Space):

Let (X, Σ) be a topological space. (X, Σ) is said a **Polish Space** iff. (X, Σ) is separable, metrizable, and a complete metric space for some metric.

2. Measure Theory

Definition 2.1 (σ -algebra):

Let X be a set. $\Sigma \subseteq 2^X$ is said a sigma algebra of X iff.:

- 1. $X \in \Sigma$
- 2. $E \in \Sigma \Longrightarrow X \setminus E \in \Sigma$. close under complement.
- 3. $\{A_n \in \Sigma\}_{n=1}^{\infty} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma$. close under infinite unions.

Definition 2.2 (generate σ -algebra):

Let X be a set and $G\subseteq 2^X$. The σ -algebra generated by G, denoted $\sigma_X(G)$, is the smallest σ -algebra such that:

- 1. $G \subseteq \sigma_X(G)$.
- 2. $\forall \Sigma$ σ -algebra : $G \subseteq \Sigma \Longrightarrow \sigma_X(G) \subseteq \Sigma$. Every other σ -algebra that contains G contains also the generated one, $\sigma_X(G)$.

Definition 2.3 (σ -algebra product):

Let Σ_1 and Σ_2 be σ -algebras on X_1 and X_2 respectively. The **product** σ -algebra denoted $\Sigma_1 \otimes \Sigma_2$ is defined as $\sigma_{X_1 \times X_2}(\{S_1 \times S_2 \mid S_1 \in \Sigma_1, S_2 \in \Sigma_2\})$

Definition 2.4 (measurable space):

 (X, Σ) is said **measurable** iff. Σ is a sigma-algebra of X.

Definition 2.5 (measure):

Given (X, Σ) measurable space. $\mu : \Sigma \longrightarrow \mathbb{R} \cup \{+\infty, -\infty\}$ is said a **measure** iff.

- 1. $E \in \Sigma \Longrightarrow \mu(E) \ge 0$. positive.
- 2. $\{E_n \in \Sigma\}_{n=1}^{\infty}$ such that $E_i \cap E_j$ for $i \neq j \Longrightarrow \mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$. The measure of disjoint sets is is the sum of the measures of each set.
- 3. $\exists E \in \Sigma : \mu(E) \in \mathbb{R}_{>0}$. For at least an element μ is finite.

Definition 2.6 (measure space):

 (X, Σ, μ) is said a **measure space** iff. (X, Σ) is a sigma algebra and μ is a measure of (X, Σ) .

Definition 2.7 (measurable function):

Let (X_1, Σ_1) and (X_2, Σ_2) be a measurable spaces. $fX_1 \longrightarrow X_2$ is said a measurable function iff. $\forall E \in \Sigma_2$: $f^{-1}(E) \in \Sigma_1$. The pre-image of each measurable set is again measurable.

Definition 2.8 (pushforward):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. The pushforwad of μ under f is the mapping $f_{\#}\mu: \Sigma_2 \longrightarrow \mathbb{R}_{>0}$ defined as:

$$\forall E \in \Sigma_2 : f_{\#}\mu(E) = \mu(f^{-1}(E))$$

Proposition 2.1 (pushforward of a measure is a measure):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. Then $(X_2, \Sigma_2, f_{\#}\mu)$ is a measure space.

Proof 2.1 (of Proposition 2.1):

To prove that statement, we need to prove only the axioms of a measure.

- 1. Let $E \in \Sigma_2$, we need to show that $f_{\#}\mu(E) \geq 0$. This is trivial by definition of pushforward and measure.
- 2. Let $[E_n \in \Sigma_2]_{n=1}^{\infty}$ be a sequence of pairwise disjoint sets. We need to show that: $f_{\#}\mu\left(\bigcup_{n=1}^{\infty}E_n\right) = \sum_{n=1}^{\infty}f_{\#}\mu(E_n)$.

$$\begin{split} f_{\#}\mu\bigg(\bigcup_{n=1}^{\infty}E_{n}\bigg) &= \mu\bigg(f^{-1}\bigg(\bigcup_{n=1}^{\infty}E_{n}\bigg)\bigg) \text{ definition of pushforward} \\ &= \mu\bigg(\bigcup_{n=1}^{\infty}f^{-1}(E_{n})\bigg) \\ &= \sum_{n=1}^{\infty}\mu(f^{-1}(E_{n})) \text{ definition of measure} \\ &= \sum_{n=1}^{\infty}f_{\#}\mu(E_{n}) \text{ definition of pushforward} \end{split}$$

3. We need to show that $\exists E \in \Sigma_1$ such that $f_\#(E) \ge 0$. Let $E' \in \Sigma_1$ such that $\mu(E') \ge 0$ (such E' exists by defintion of measure). Then, f(E') is a set that meets the requirements, that is

$$f_{\#}(f(E')) = \mu\big(f^{-1}(f(E'))\big) = \mu(E') \geq 0$$

3. Probability Theory

Definition 3.1 (Probability Space):

 (Ω, Σ, p) is said a probability space iff.

- 1. (Ω, Σ, p) is a measure space.
- 2. $p(\Omega) = 1$.

Intuitively, Ω represents the set of all possible outcomes, it is also known as **sample space**. Σ represents the set of all possible events. These are nothing more than set of outcomes. It is also known as **event space**. p is a measure on the event space, it is also known as **probability function**. It maps events to their likelihood.

Example 3.1 (Fair Die):

Consider the probability space (Ω, Σ, p) , where:

- 1. $\Omega = \{1, 2, 3, 4, 5, 6\}$ is the sample space, representing the possible outcomes of rolling a standard six-sided die.
- 2. $\Sigma = 2^{\Omega}$ is the event space.
- 3. $p: \Sigma \longrightarrow [0,1]$ is the probability measure function, defined as $P(E) = \frac{|E|}{6}$ for any event $E \in \Sigma$.

For example, consider the event $A=\{1,2,3\}$, which represents rolling a 1, 2, or 3. This event is an element of Σ . The probability of event A occurring is $p(A)=\frac{|A|}{6}=\frac{3}{6}=\frac{1}{2}$.

Definition 3.2 (Coupling):

Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be probability spaces. A **coupling** is a probability space $(\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, \gamma)$ such that:

- 1. $\forall E \in \Sigma_1 : \gamma(E \times \Omega_2) = \mu_1(E)$. The left marginal of γ is μ_1 .
- 2. $\forall E \in \Sigma_2 : \gamma(\Omega_1 \times E) = \mu_2(E)$. The right marginal of γ is μ_2 .

Example 3.2 (Coupling a Dice and a Coin):

Consider a probability space $\mathcal{F}_1 = \left(\Omega_1 = \{1,2,3,4\}, \Sigma_1 = 2^{\Omega_1}, p_1 = A \mapsto \frac{|A|}{4}\right)$ (The probability space corresponding to a 4 sided die). Further, consider a probability space $\mathcal{F}_2 = \left(\Omega_2 = \{1,2\}, \Sigma_2 = 2^{\Omega_2}, p_2 = A \mapsto \frac{|A|}{2}\right)$ (The probability space corresponding to a coin). We can define a probability space $\mathcal{F} = \left(\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, p\right)$ by coupling \mathcal{F}_1 and \mathcal{F}_2 . Here, sample space and event space are already decided, we need to provide only a proper measure p. Such a measure can be built by providing a coupling table:

$$\begin{pmatrix} p & \{1\} & \{2\} & \{3\} & \{4\} & p_1 \\ \{1\} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{2} \\ \{2\} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} \\ p_2 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 1 \end{pmatrix}$$

On the top row, we have the possible singleton events from \mathcal{F}_1 . On the left column, we have the possible singleton event from \mathcal{F}_2 . The last row and column corresponds to marginal distributions. These marginals match p_2 and

 p_1 as required by the definition of coupling. The central body of this matrix represents join probabilities of the die and coin. For example, $p(\{1\} \times \{3\}) = \frac{1}{4}$.

Note that we could fill this matrix in such a way that we have a probability space but not a coupling by breaking the marginal axioms.

Retrieving event probabilities from singleton events is only matter of applying traditional probability rules.

4. Wasserstein Distance