Coordinated Electric System Interconnect Review

Distributed Energy Resources - NYSSIR

Doc. # **CDG-00471**

Page 1 of 10

Template Version 1.1 - 8/14/18

For

Interconnection Customer: Delaware River Solar
Applicant: Rosario Giufre
5000 KW Solar Generator System
129 Old Ridge Road, Warwick NY 10990

Interconnection to Orange & Rockland Utilities

NY Central Division

Wisner 69KV Substation

13.2 kV Feeder 80-1-13

THIS DOCUMENT AND ANY ATTACHMENTS HERETO ("DOCUMENT") IS MADE AVAILABLE BY ORANGE & ROCKLAND UTILITIES UPON AND SUBJECT TO THE EXPRESS UNDERSTANDING THAT: (A) NEITHER ORANGE & ROCKLAND UTILITIES NOR ANY OF ITS OFFICERS, DIRECTORS, AFFILIATES, AGENTS, OR EMPLOYEES MAKES ANY WARRANTY, ASSURANCE, GUARANTY, OR REPRESENTATION WITH RESPECT TO THE CONTENTS OF THE DOCUMENT OR THE ACCURACY OR COMPLETENESS OF THE INFORMATION CONTAINED OR REFERENCED IN THE DOCUMENT, AND (B) ORANGE & ROCKLAND UTILITIES, ITS OFFICERS, DIRECTORS, AFFILIATES, AGENTS, AND EMPLOYEES SHALL NOT HAVE ANY LIABILITY OR RESPONSIBILITY FOR INACCURACIES, ERRORS, OR OMISSIONS IN, OR ANY BUSINESS OR POLICY DECISIONS MADE BY ANY DIRECT OR INDIRECT RECIPIENT IN RELIANCE ON, THIS DOCUMENT OR THE INFORMATION CONTAINED OR REFERENCED THEREIN; ALL SUCH LIABILITY IS EXPRESSLY DISCLAIMED.

Coordinated Electric System Interconnect Review

Doc. # **CDG-00471**

Page 2 of 10

Distributed Energy Resources - NYSSIR

Template Version 1.1 - 8/14/18

TABLE OF CONTENTS

Section	<u>on</u>	<u>Page</u>
1.0	INTRODUCTION	3
2.0	EXECUTIVE SUMMARY	3
3.0	COMPANY EPS PARAMETERS	3
4.0	INTERCONNECTION CUSTOMER SITE	4
5.0	SYSTEM IMPACT ANALYSIS	4
6.0	MITIGATIONS FOR SYSTEM IMPACT ANALYSIS FAILURES	7
7.0	CONCEPTUAL COST ESTIMATE	9
8.0	REVISION HISTORY	10

Coordinated Electric System Interconnect Review

Page 3 of 10

Distributed Energy Resources - NYSSIR

Template Version 1.1 - 8/14/18

Doc. # CDG-00471

1. INTRODUCTION

This report presents the analysis results of the Orange and Rockland Utilities ("Orange and Rockland" or the "Company") interconnection study based on the proposed interconnection and design submittal from the Interconnection Customer in accordance with the Company. The intent of this report is to assess this project's feasibility, determine its impact to the existing electric power system (EPS), determine interconnection scope and installation requirements, and determine costs associated with interconnecting the Interconnection Customer's generation to the Company's Electric Power System (EPS). This Coordinated Electric System Impact Review (CESIR) study; according to the New York State Standardized Interconnection Requirements (NYSSIR) Section I.C Step 6; identifies the scope, schedule, and costs specific to this Interconnection Customer's installation requirements.

2. EXECUTIVE SUMMARY

The total estimated planning grade cost of the work associated with the interconnection of the Interconnection Customer is **\$498,926**.

The interconnection was found to be feasible with modifications to the existing Company EPS and operating conditions, which are described in detail in the body of this Study.

The study was performed between daylight hours of 08:00-20:00 hrs.

3. COMPANY EPS PARAMETERS

Substation	Wisner
Transformer Name (list multiple where normally tied to common bus)	Bank 280
Transformer Peak Load (kW)	20990
Contingency Condition Load, N-1 Criteria (kW) (as applicable)	N/A
[Daytime, 12 hours] Light Load (kW)	3720
Generation: Total, Connected, Queued Ahead (kW)	18600, 5370, 13230
Contingency Condition Generation: Total, Connected, Queued Ahead (kW)	N/A
Supply Voltage (kV)	69
Transformer Maximum Nameplate Rating (kVA)	25000
Distribution Bus Voltage Regulation	N
Transmission GFOV Status	Not installed
Bus Tie	Open
Number of Feeders Served from this Bus	3

Connecting Feeder/Line	80-1-13
Peak Load on feeder (kW)	4880
[Daytime, 12 hours] Light Load on Feeder (kW)	970
Feeder Primary Voltage at POI (kV)	13.2

Coordinated Electric System Interconnect Review Doc. # CDG-00471 Page 4 of 10 Distributed Energy Resources - NYSSIR Template Version 1.1 - 8/14/18

Line Phasing at POI	3
Circuit distance from POI to substation	5.46 mile(s)
Distance from POI to nearest 3-phase, (if applicable)	0.0 miles
Line Regulation	N
Line/Source Grounding Configuration at POI	effective
Other Generation: Total, Connected, Queued Ahead (kW)	5956, 956, 5000

System Fault Characteristics without Interconnection Customer DG at POI with System Upgrades described in Section 6	
	Pole# 85/89: 129 Old
	Ridge Road, Warwick NY
Interconnection Customer POI Location (Pole X/Y)	10990
I 3-phase (3LLL)	1894 Amps
I Line to Ground (310)	1813 Amps
Z1 (100 MVA base)	1.1637 + j4.4836 PU
Z0 (100 MVA base)	1.4672 + j4.5534 PU

4. INTERCONNECTION CUSTOMER SITE

The Interconnection Customer is proposing a new primary service connection at a new customer location. The service voltage is 13.2 kV. The applicant proposes installing one Solar Generation System with AC power rating of 5,000 kW. The proposed solar project is interfaced with two (2) inverters and two (2) medium voltage transformers.

The proposed point of interconnection (POI) is on Feeder 80-1-13 supplied from Transformer Bank #280 at the Wisner substation. The POI is on a three-phase line section.

The proposed generating system consists of:

- 10,608 PV modules each rated 535 Watts
- 2 Inverters each rated 2,500 KW at 600 Volts (SUNGROW, SG3425UD-MV)
- 2 Generator Step Up transformer(s), 3420 kVA, YG-Y winding configuration, 13.2 KV primary volts, 600 V secondary volts.

5. SYSTEM IMPACT ANALYSIS

The analysis was run at the rated project size in normal system configuration connected to the feeder 80-1-13. The following table shows the impact study results of 5000 kW at 1.0 power factor project interconnecting to the distribution system.

Coordinated Electric System Interconnect Review

Page 5 of 10

Doc. # **CDG-00471**

Distributed Energy Resources - NYSSIR

Template Version 1.1 - 8/14/18

#	Category	Criteria	Limit	Result
1	Voltage	Overvoltage	< 105% (ANSI C84.1)	Pass
	With the addition of the subject generator the maximum voltage as modeled on the Feeder is 105% nominal.			eeder is 105% of
2	Voltage	Undervoltage	> 95% (ANSI C84.1)	Pass
	With the addition	on of the subject generator the minim	um voltage as modeled on the Fe	eder is 99% of
3	Voltage	Substation Regulation for Reverse Power	<100% minimum load criteria	Fail
	_	ation on Feeders 80-1-13, 80-2-13, 80-3-13, 80-3-13, 80-3-13 MW. Therefore, the generation		imum load on
4	Voltage	Feeder Regulation for Reverse	<100% Minimum load to	Pass
	There is an line	Power	generation ratio	
	There is no line	regulator on the project circuit.		
5	Voltage	Fluctuation	<3% steady state from	Pass
			proposed generation on	
			feeder	
	The greatest voltage fluctuation on the feeder occurs at: The resulting fluctuation at the feeder location is 2.17% due to this project's generation output stepping from 0% to 100%.			
6	Voltage	Fluctuation	<5% steady state from	Pass
			aggregate DER on substation bus	
The maximum component voltage fluctuation on the system stepping from 0% to 100%.		system is 0.732% due to all gene	ration output	
7	Voltage	Fluctuation	Regulator tap movement	Pass
			exceeds 1 position;	
			generation change of 75% of nameplate rating does not	
			result in voltage change > ½	
			the bandwidth of any feeder	
			voltage regulating device.	
	No voltage fluctuation observed.			
8	Voltage	Flicker	Screen H Flicker	Pass
	The Pst for the location with the greatest voltage fluctuation is 0.09 and the emissions limit is 0.35.			limit is 0.35.
	L			

Coordinated Electric System Interconnect Review

Doc. # **CDG-00471**

Page 6 of 10

Distributed Energy Resources - NYSSIR

Template Version 1.1 - 8/14/18

9	Equipment	Thermal (continuous current)	< 100% thermal limits	Pass
	Ratings assuming no load			
	The subject generator's full output current is 218.7 A. No thermal limits are exceeded			
10	Equipment	Withstand (fault current)	<90% withstand limits	Pass
	Ratings			
	The additional fa	ault current contribution from the gen	eration contributes 7.27% to inte	errupting ratings
	in excess of exist	ting EPS equipment.		
11	Protection	Unintentional Islanding	Unintentional Islanding	Fail
		G	Document & Company	
			Guidelines	
	The subject gene	l erator is a 5000 MW PV generation sy:	l stem Failed at Stens 1 & 2 for mi	l dline recloser
		ent Reclose Delay to avoid the possibil	·	diffic recioser.
	•	· ·	·	
12	Protection	Protective device coordination	Company Guidelines	Fail
	Project will requ	ire a recloser that coordinates with th	e feeder breaker and upstream r	eclosers. A
	detailed protect	ion study is required to evaluate the p	rotection coordination impact du	ue to fault current
	increase by the p	oroposed project.		
	Update: Project CDG-00471 will require a recloser that coordinates with the feeder breaker and upstream			ker and upstream
	reclosers. The p	project and O&R owned site reclose	r will not cause any issues witl	n coordination of
	upstream distrib	oution protection devices.		
13	Protection	Fault Sensitivity	Rated capabilities of EPS	Pass
			equipment	
	A detailed prote	ction study is required to determine if	fault contribution is above the a	llowed limit of
	10%.			
	<u>Update:</u> Project CDG-00471 interconnecting to the O&R electric power system with the recommended			
	grounding transformer will not cause any adverse effects to fault sensitivity of upstream distribut			
	•	es. The additional fault current contri	_	
		ngs in excess of existing EPS equipme		500KVA, Z=6.18%,
	•	nnect to the secondary 480V side of th		
14	Protection	Ground Fault Detection	Reduction of reach > 10% (by	Pass
			Utility)	
	The Interconnec	tion Customer has proposed a ground	resistance (Rg) at least 25 Ohms	. The utility will
	verify the size of	the grounding transformers and eval	uate the feeder breaker relay set	tings for
	reduction of rea	ch by conducting a detailed protection	n study.	
		CDG-00471 interconnecting to the O		
	•	former will cause a reduction of reach	•	~
		have no adverse effects on protect		
	_	KVA grounding bank with an impeda		4 shall connect to
		the generating step-up transformer (se		
15	Protection	Overvoltage - Transmission System	Company 3V0 criteria	Fail
		Fault		

Coordinated Electric System Interconnect Review

Page 7 of 10

Doc. # CDG-00471

Distributed Energy Resources - NYSSIR

Template Version 1.1 - 8/14/18

The generation to load ratio on the serving distribution system has failed the Company's planning threshold in which transmission ground fault overvoltage become an electrical hazard due to the distribution source contribution. An evaluation of the existing EPS has been performed and it has been determined that protection mitigation methods are required. 16 Protection Overvoltage - Distribution System < 138% voltage rise **Pass** Fault With subject generator interconnected the modeled voltage rise on the un-faulted phases of the system is 239%. Update: Project CDG-00471 interconnecting to the O&R electric power system with the recommended grounding transformer will cause a maximum ground fault overvoltage (GFOV) of 0.87 per unit **17** Protection **Effective Grounding** IEEE 142 (0<R0/X1<1; Pass 0 < X0/X1 < 3With subject generator interconnected the modeled RO/X1 is 0.33 PU and the XO/X1 is 1.02 PU **Update:** Project CDG-00471 interconnecting to the O&R electric power system with the recommended grounding transformer, the modeled RO/X1 is 0.66 PU and the XO/X1 is 3.08 PU. However, based on IEEE C62.92.6 the definition of effective grounding is when the Coefficient of grounding being less than or equal to 0.8. Coefficient Of Grounding (CoG) is defined as V_{I-G}(fault)/V_{I-I}(no fault). CoG for Project CDG-00471 interconnecting to the O&R electric power system with the recommended grounding transformer is 0.67. **SCADA** Required EMS Visibility for **Monitoring & Control** 18 **Generation Sources** Requirements The 5000 MW subject generator triggers the requirement for SCADA reporting to the Utility. 19 Auto-Loop or Yes Other This project is on an autoloop. If a fault occurs between the Wisner substation and 80-1 SR 49334/47212 this SR will lockout. TR 49391/48306 will close thus feeding CDG471 from Chester 63-8.

6. MITIGATIONS FOR SYSTEM IMPACT ANALYSIS FAILURES

Detail below is intended to provide sufficient information and clarity to give the Interconnection Customer an understanding to the relationship of costs and scope associated with the DER interconnection and the system modifications due to the DER impact. This includes any required EPS equipment upgrades. Where scope items are identified, associated labor, equipment rentals and indirect project support functions (such as engineering and project management) are intended and implied.

Upgrade Required	Failed Screens After Interconnection to Circuit 80-1-13
Upgrade substation components to handle reverse power flow	Substation Regulation for Reverse Power

Coordinated Electric System Interconnect Review

Distributed Energy Resources - NYSSIR

Doc. # **CDG-00471**

Page 8 of 10

Template Version 1.1 - 8/14/18

Install reclose delay to avoid possibility of the islanding	Protection, Unintentional Islanding
Install 3V0 control for substation components	Protection, Overvoltage - Transmission System Fault (Company 3V0)
Install electronic recloser	Monitoring & Control
Install SCADA monitoring and control for communications and reporting for proposed DG site	SCADA, Required EMS Visibility for Generation Sources
Install primary metering cluster at PCC	Monitoring and Control
500 KVA grounding bank with an impedance of 6.18% and an X/R ratio of 4 shall connect to the DER side of the generating step-up transformer (secondary side).	Fault Sensitivity, Ground Fault Detection, Overvoltage - Distribution System Fault, Effective Grounding

Additional details on the scope of each option can be found below:

Option 1:

The substation upgrades required to facilitate the proposed installation include the following:

- Install 3V0 protection to feeder breaker to work with existing 3V0 protection installed at substation
- Upgrade existing substation meter with bi-directional meter
- Upgrade Bank 280 components to support reverse flow

The Distribution upgrades required to facilitate the proposed installation include the following:

- Operate the CDG-00471 project at unity power factor producing maximum output of 5000 KW AC
- Install electronic recloser at PCC
- Install primary metering at PCC
- A detailed grounding and protection study is required to evaluate sensitivity, reduction of reach, protection coordination, and effective grounding
- Install Reclose Delay to avoid the possibility of an Island
- Power Quality Metering

This study was conducted based upon this facility being served by the interconnecting circuit during normal utility operating conditions. The terms, conditions, notification requirements, and other obligations of both the Company and the facility pertaining to disconnection of the facility are set forth in the applicable section(s) of the NYSSIR and the Interconnection Agreement that will be executed for the project(s) that were studied in this CESIR. Any change in system size and/or design is subject to the requirements of the NYSSIR, as well as supplemental documents developed by the Interconnection Technical Working Group and Interconnection Policy Working Group.

Coordinated Electric System Interconnect Review

Page 9 of 10

Doc. # CDG-00471

Distributed Energy Resources - NYSSIR

Template Version 1.1 - 8/14/18

7. CONCEPTUAL COST ESTIMATE

The following items are a good faith estimate for the scope and work required to interconnect the project estimated under rates and schedules in effect at the time of this study in accordance with the most recent version of the NYSSIR.

Planning Grade Estimate

Description	Option 1
Installing Conductor 477 (150ft)	\$5,850
Installing Recloser	\$80,000
Installing Smart Capacitors (4)	\$162,800
Installing Junction Pole	\$10,000
Installing Primary Metering Cluster	\$6,800
Commissioning Time Post Installation	\$5,500
Design and Inspections	\$5,000
SCADA Monitoring/Power Quality Meter	\$40,000
Contingency (15%)	\$47,393
Total Distribution Estimate	\$363,343

Substation Costs: the following table shows the costs for 3V₀ installation

Description	Cost
Engineering	\$12,000
Design/Drafting	\$10,500
ECC	\$10,400
OH Line	\$23,520
Substation Operations - Electricians	\$29,920
Substation Operations - Relay Techs	\$22,800
Connectors	\$258
Control Wire & Misc - Stores	\$8,500
Contingency (15%)	\$17,685
Total Substation Estimate	\$135,583

The total interconnection cost estimate:

Coordinated Electric System Interconnect Review

Distributed Energy Resources - NYSSIR

Doc. # **CDG-00471**

Page 10 of 10

Template Version 1.1 - 8/14/18

Notes:

- 1. These estimated costs are based upon the results of this study and are subject to change. All costs anticipated to be incurred by the Company are listed.
- 2. The Company will reconcile actual charges upon project completion and the Interconnection Customer will be responsible for all final charges, which may be higher or lower than estimated according to the NYSSIR I.C step 11.
- 3. This estimate does not include the following:
 - additional interconnection study costs, or study rework
 - additional application fees,
 - · applicable surcharges,
 - property taxes,
 - overall project sales tax,
 - future operation and maintenance costs,
 - adverse field conditions such as weather and Interconnection Customer equipment obstructions.
 - extended construction hours to minimize outage time or Company's public duty to serve,
 - the cost of any temporary construction service, or
 - any required permits.
- 4. Cost adders estimated for overtime would be based on 1.5 and 2 times labor rates if required for work beyond normal business hours. Per Diems are also extra costs potentially incurred for overtime labor.

8. REVISION HISTORY

<u>Revisio</u>	n Date	Description of Revision
1.0	08/01/2022	Initial document
2.0	08/03/2022	Corrected autoloop info
3.0	09/09/2022	Updated Screens 12, 13, 14, 16, 17 with EGPC info