

Abhijeet Kumar,
Director, Data Scientist
Fidelity Investments

Agenda

01. State of LLMs

Available options with us. Why need?

02. Memory Math & Scaling Laws

Challenge - How much memory? Quantization - Train or Infer Scaling Laws

03. Train models to follow Instructions

FLAN-T5 ALPACA DOLLY etc.

04. Finetuning for Use-Case

- 1. Full Finetuning
- 2. Parameter Efficient Finetuning
 - a) Prompt Tuning
 - b) LORA

05. Implementation

- 1. Sentiment Analysis: text Classification
- 2. Dialog Summarization.
- 3. Training Alpaca/Dolly.

State of LLMs

			Complexity Increases		
	Open-source LLMs (Llama, Falcon-40B)	3 rd Party API based LLMs (GPT-4, Anthropic)	Few-Shot Tuning LLMs (PEFT over Falcon-40B, Fine- tune GPT-3.5)	Instruction-Tuned LLMs (Supervised, RLHF, Finetuning Falcon-40B, T5-XXL)	(Pre)Training Fidelity LLM (Bloomberg GPT)
Time to Market	Fastest	Fastest	Fast	Time consuming	Long Term Effort
Customization	Least	Least	Medium, Refine tasks.	High	Very High
<u>Accuracy</u>	Low (In-domain task)	High	High (In-Domain Tasks)	Very High (In-Domain Tasks)	Very High (In-domain tasks)
<u>Privacy</u>	✓	×	✓	✓	~
Cost	Low	High	Low	High	Very high
<u>Data Req.</u>	Zero-shot, Few shots	Zero-Shot, Few shots	Less Labelled Training Data Required (~100-1K)	More Labelled Training Data Required (~50K)	Lots of Unsupervised & Supervised Data Required.
Skill Req.	Prompt (AI) Engineers	Prompt (AI) Engineers	Data Scientists	Highly Skilled Data Scientists	Highly skilled Data Scientist
<u>Use-cases</u>	Simple Task (General English)	Complex Task (General English)	Complex task, nuances of domain learnt	Better at complex tasks, learn domain nuances well	Domain Foundational Model
Model Updates	Becomes Stale	3 rd party Responsibility	Owned	Owned	Owned (Costly)

Not enough accuracy

Zero-shot Prompt Single-shot Prompt Few-shots Prompt

Scope

Select

Adapt and align model

Application integration

Define the use case

Choose an existing model or pretrain your own

Prompt engineering

Fine-tuning

Align with human feedback

Evaluate

Optimize and deploy model for inference Augment model and build LLMpowered applications

Coursera reference

Memory

OutOfMemoryError: CUDA out of memory.

Let's do a quick math....

1 parameter = 4 bytes (32-bit float) 1B parameters = 4 x 10^9 bytes = **4GB**

Param name	Bytes per param
Weights	4 bytes
Adam states	8 bytes
Gradients	4 bytes
Activations & temp memory	8 bytes

Approx. GPU needed for 1B param model

Memory

OutOfMemoryError: CUDA out of memory.

Let's do a quick math....

1 parameter = 4 bytes (32-bit float) 1B parameters = 4 x 10^9 bytes = **4GB**

Param name	Bytes per param
Weights	4 bytes
Adam states	8 bytes
Gradients	4 bytes
Activations & temp memory	8 bytes

Approx. GPU needed for 1B param model with Quantization

Quantization

Data Type	PI value	Exponent	Fraction
FP32	3.1415920257568359375	8	23
FP16	3.140625	5	10
BF16	3.140625	8	7
INT8**	3	0	7

**INT8 & INT4 can only be used for inference (not training)

Instruction Following Models

Multi-task Instruction Finetuning from base models

https://ai.googleblog.com/2021/10/introducing-flan-more-generalizable.html

Instruction Following Models

Base Model	Instruction Models	Finetuning?	Dataset (Task)
T5-XXL	FLAN T5-XXL	SFT	FLAN - 1836 tasks, 15M pairs
Falcon-40B	Falcon-40B-Instruct	SFT	Baize - 100K pairs
Llama2-70B	Llama2-70B-Chat	RLHF	27.5K pairs, 2.9M pairs
GPT-3.5	Chat-GPT	RLHF	
PALM	Flan-PALM	SFT	FLAN - 1836 tasks, 15M pairs
Pythia	Dolly	SFT	Dolly - 15K pairs
Llama-13B	Alpaca-13B	SFT	GPT3 - 52K pairs
Llama-13B	Vicuna-13B	SFT	GPT-4 - 70K pairs
Llama-13B	Koala-13B	SFT	Public Dialogues - 500K pairs

Instruction Following Models

Base Model	Instruction Models	Finetuning?	Dataset (Task)
T5-XXL	FLAN T5-XXL	SFT	FLAN – 1836 tasks, 15M pairs
Falcon-40B	Falcon-40B-Instruct	SFT	Baize - 100K pairs
Llama2-70B	Llama2-70B-Chat	RLHF	27.5K pairs, 2.9M pairs
GPT-3.5	Chat-GPT	RLHF	
PALM	Flan-PALM	SFT	FLAN – 1836 tasks, 15M pairs
Pythia	Dolly	SFT	Dolly - 15K pairs
Llama-13B	Alpaca-13B	SFT	GPT3 - 52K pairs
Llama-13B	Vicuna-13B	SFT	GPT-4 - 70K pairs
Llama-13B	Koala-13B	SFT	Public Dialogues - 500K pairs

Imitating Models

Imitating Models

The False Promise of Imitating Proprietary LLMs

Alpaca reference
Vicuna reference
Koala reference
Dolly reference

Why? Need?

- 1. Fine-tuning can significantly increase the performance of a model on a specific task.
 - but can lead to reduction in ability on other tasks. Phenomenon called catastrophic forgetting Who cares? use-case solved. (Generalist vs Specialist)
- 2. Examples take up space in the context window.
 - Less space for new tokens generated.
 - Larger prompts leads to slow inferencing. Show Llama-2-70B-Chat model as example

3. In-context learning may not work for smaller models.

18

Full Finetuning aka SFT

Loss: Cross-Entropy

Issues:

- Catastrophic forgetting
- Hyperparameter optimization
 - Overfitting
- Compute Cost (Budget)
 - > 7B param updated

Use instruction models.

Full Finetuning aka SFT

Full Finetuning aka SFT

Parameter Efficient Finetuning (PEFT)

- Less prone to catastrophic forgetting Frozen Weights
- Full fine-tuning of large LLMs is challenging Compute budget
- Full fine-tuning creates full copy of original LLM per task Inefficient
- PEFT fine-tuning saves space and is flexible

Full fine-tuning

Parameter Efficient Finetuning (PEFT)

- Less prone to catastrophic forgetting Frozen Weights
- Full fine-tuning of large LLMs is challenging Compute budget
- Full fine-tuning creates full copy of original LLM per task Inefficient
- PEFT fine-tuning saves space and is flexible

Parameter Efficient Finetuning

Low Rank Adaption (LORA)

Figure 1: Our reparametrization. We only train A and B.

- 1. Freeze most of the original LLM weights.
- 2. Inject 2 rank decomposition matrices
- 3. Train the weights of the smaller matrices

Steps to update model for inference

1. Matrix multiply the low rank matrices

B

* A = A x B

2. Add to original weights

+ A x B

Advantage (Rank=8) 512X64 = 32,768 params 512 x 8 = 4,096 (A) 8 x 64 = 512 (B) 86% reduction in params

Prompt Tuning

Soft prompt

September 21, 2023

Model tuning requires making a taskspecific copy of the entire pre-trained model for each downstream task and inference must be performed in separate batches. **Prompt tuning** only requires storing a small task-specific prompt for each task, and enables mixed-task inference using the original pretrained model. With a T5 "XXL" model, each copy of the tuned model requires 11 billion parameters. By contrast, our tuned prompts would only require 20,480 parameters per task—a reduction of over five orders of magnitude—assuming a prompt length of 5 tokens.

Prompt Tuning

Soft prompt Same length as token vectors Typically 20-100 tokens The teacher teaches the student with the book.

Figure 1: Standard **model tuning** of T5 achieves strong performance, but requires storing separate copies of the model for each end task. Our **prompt tuning** of T5 matches the quality of model tuning as size increases, while enabling the reuse of a single frozen model for all tasks. Our approach significantly outperforms few-shot **prompt design** using GPT-3. We show mean and standard deviation across 3 runs for tuning methods.

Guidelines: Finetuning for Use-case

Use instruct models for Finetuning for single task.

Example, Llama-chat. FLAN-T5 (not base models)

Use PEFT techniques, oppose to Full Finetuning

Example: Plug LORA adapters for specific use-case

Quality of training data is very important

Research proves high quality datasets performs well even if quantity is less.

Do not go for Full Finetuning. Finding right hyperparameter is difficult.

Unless you have the **compute budget** and **lot of training data**.

Thank you