НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет Программной Инженерии и Компьютерной Техники

Системы искусственного интеллекта Лабораторная работа № 2

Выполнил студент

Неизвестная Екатерина Павловна

Группа № Р33701

Преподаватель: Полещук Елизавета Александровна

г. Санкт-Петербург

Вариант: 2 (С.Петербург – Житомир)

Задание:

Отразить алгоритмы поиска по своему варианту и оценить сложность алгоритма (страница 89 из методички).

Отчет:

Граф:

Этап 1:

1) поиск в ширину;

Путь: С. Петербург – Москва – Донецк – Житомир

Сложность:

 b^{d+1} , где b — коэффициент ветвления, d — глубина самого поверхностного решения $b=6,\,d=3$

$$b^{d+1} = 6^4 = 1296$$

2) поиск в глубину;

Путь: С. Петербург – Москва – Донецк – Житомир

Сложность:

 b^{m} , где b — коэффициент ветвления, m — максимальная глубина дерева

$$b = 4, m = 15$$

 $b^m = 4^{15} = 1073741824$

3) поиск с ограничением глубины; (3 шага)

Путь: С. Петербург – Вильнюс – Киев – Житомир

Сложность:

 b^e , где b — коэффициент ветвления, е — предел глубины дерева

$$b = 3, e = 3$$

$$b^e = 3^3 = 27$$

4) поиск с итеративным углублением;

Путь: С. Петербург – Москва – Донецк – Житомир

Сложность:

 b^d , где b – коэффициент ветвления, d – глубина самого поверхностного решения

$$b = 6, d = 3$$

$$b^d = 6^3 = 216$$

5) двунаправленный поиск.

Путь: С. Петербург –Витебск – Волгоград – Житомир

Сложность:

 $b^{d/2}$, где b — коэффициент ветвления, d — глубина самого поверхностного решения $b=6,\,d=3$ $b^{d/2}=6^{3/2}=14.697$

Этап 2:

- 1) жадный поиск по первому наилучшему соответствию;
- 2) затем, использую информацию о расстоянии до цели по прямой от каждого узла, выполнить поиск методом минимизации суммарной оценки А*.

Отобразить на графе выбранный маршрут и сравнить его сложность с неинформированным поиском. Сделать выводы.

1) Жадный поиск

 $b^{1+{\rm C}/n}$, где b — коэффициент ветвления, C — стоимость решения, n — средняя стоимость одного шага

$$b = 6, C = 1827, n = 457$$

 $b^{1+C/n} = 6^{1828/457} = 1296$

2) Поиск методом минимизации суммарной оценки А*.

Город 1	Город 2	Реальное расстояние

Мурманск	Житомир	2667
Санкт-Петербург	Житомир	1344
Ярославль	Житомир	1268
Витебск	Житомир	645
Вильнюс	Житомир	710
Минск	Житомир	511
Нижний Новгород	Житомир	1410
Казань	Житомир	1813
Уфа	Житомир	2164
Самара	Житомир	1754
Даугавпилс	Житомир	797
Москва	Житомир	990
Орел	Житомир	660
Воронеж	Житомир	851
Волгоград	Житомир	1402
Симферополь	Житомир	839
Донецк	Житомир	889
Харьков	Житомир	608
Киев	Житомир	139
Одесса	Житомир	503
Кишинев	Житомир	498
Таллин	Житомир	1317
Рига	Житомир	1006
Каунас	Житомир	806
Брест	Житомир	470
Калининград	Житомир	896

С. Петербург – Витебск (645+602) – Вильнюс (1247+360+710) – Киев (2317+734+139) – Житомир (3190)

С.Петербург — Калининград (739+896) — Вильнюс (1635+333+710) — Киев (2678+734+139) — Житомир (3551)

 b^A , где b – коэффициент ветвления, A – количество вершин

$$b = 6, A = 5$$

$$b^A = 6^5 = 7776$$

Метод	Полнота	Временная сложность	Оптимальность
Поиск в ширину	Да	b^{d+1}	Да
Поиск в глубину	Нет	b^m	Нет
Поиск с ограничением глубины	Нет	b^e	Нет
Поиск с итеративным углублением	Да	b^d	Да
Двунаправленный поиск	Да	$b^{d/2}$	Да
Поиск по критерию стоимости	Да	$b^{1+C/n}$	Да

Поиск методом минимизации суммарной опенки А*.	Да	b^A	Да
onenka 11 .			

Вывод:

Я научилась работать с алгоритмами поиска. Самый лучший метод, в данном случае, - двунаправленный поиск. Поиск в глубину же был самым затратным по времени.