Estimação e Identificação - Trabalho sobre o Filtro de Kalman

Paulo Lopes dos Santos

Nov. 2023

1 - Escrever e testar, em Matlab, uma função que simule o sistema

$$\begin{array}{rcl} x(t+1) & = & Ax(t) + Bu(t) + q(t) \\ y(t) & = & Cx(t) + Du(t) + r(t) \end{array}$$

em que

$$\begin{array}{rcl} u(t) & \in & \mathbb{R}^m \\ y(t), r(t) & \in & \mathbb{R}^\ell \\ x(t), q(t) & \in & \mathbb{R}^n \\ A & \in & \mathbb{R}^{n \times n} \\ B & \in & \mathbb{R}^{n \times m} \\ C & \in & \mathbb{R}^{\ell \times n} \\ D & \in & \mathbb{R}^{\ell \times m} \end{array}$$

As entradas desta função são

- Parâmetros do sistema
 - $-\ sys$ Objeto ids
s com os parâmetros do sistema
 - $-x_0$ vector coluna ou linha de dimensão n (estado inicial do sistema)
- Sinais
 - -u Matriz de dimensão $N \times m$ ou $m \times N$ em que cada coluna (ou linha) armazena um canal de entrada e cada linha (ou coluna) um instante de tempo (são simulados N instantes de tempo)
 - q Matriz de dimensão $N\times n$ ou $n\times N$.
 - -r matriz de dimensão $N \times \ell$ ou $\ell \times N$.

As saídas:

- y Matriz $N \times \ell$ ou $\ell \times N$ (cada coluna um canal de saída e cada linha um instante de tempo ou cada linha é um canal de saída e cada coluna um instante de tempo).
- x Matriz $N \times n$ ou $n \times N$ (cada coluna uma variável de estado e cada linha um instante de tempo ou cada linha uma variável de estado e cada coluna um instante de tempo).

Esta função deve chamar-se simSS e deve ser guardada no ficheiro "SimSS.m". **Nota:** idss é uma classeda toolbox de Identificação de Sistemas. Os objetos desta classe podem criados pelo comando:

>> sys=idss(A,B,C,D)

2- Simule o sistema com parâmetros guardados no ficheiro "T1-Dados.mat" com entrada u(t) ruído branco binário com valor médio nulo e variância unitária, q(t) e r(t) realizações independentes de ruído branco gaussianos com média nulas e matrizes de covariância $Q=\mathbf{E}\left\{q(t)q^T(t)\right\}$ e $R=\mathbf{E}\left\{r^2(t)\right\}$, respectivamente (os valores de Q e R encontram-se no ficheiro T1-Dados.mat) e com $x(0)=\begin{bmatrix} -500\\100\end{bmatrix}$

Sugestão: Utilize o comando do Matlab idinput para gerar u(t) (para ver como funciona este comando digite $help\ idinput$ no Matlab)

- 3- Escreva e teste, em MATLAB, uma função que implemente o previsor e filtro de Kalman As variáveis entradas desta função devem ser:
 - sinais- objeto iddata com os sinais de entrada e de saída do sistema
 - sys Objeto idss com os parâmetros do modelo verdadeiro
 - xp0 Estimativa do estado inicial.
 - P0 Covariância do erro da estimativa inicial do estado inicial.
 - ruido Estrutura com os as matrizes de covariância do ruído:
 - ruido. $Q=\mathbf{E}\left\{q(t)q^{T}(t)\right\}$, matriz covariância do ruído de estado.
 - ruido. S
= $\mathbf{E}\left\{q(t)r^T(t)\right\},$ covariância entre os ruídos de estado e de medição.
 - $R = \mathbf{E} \{r(t)r^T(t)\},$ covariância do ruído de medição.

As saídas:

- xp matriz das previsões do estado calculadas pelo previsor de Kalman.
- xf matriz das estimativas de estado do filtro de Kalman.
- yp Previsões da saída.
- yf Saída estimada pelo filtro de Kalman.
- K Ganhos do previsor de Kalman.
- Kf Ganhos do filtro de Kalman.
- P Matrizes de covariância dos erros da previsão dos estados.
- Pf Matrizes de covariância dos erro do filtro de Kalman.

Nota:

A função deve ter o nome de $\mathbf{NonStatKalman}$ e deve estar no ficheiro $\mathbf{Non-StatKalman.m}$

- Utilize o previsor de Kalman para estimar o estado do sistema simulado na tarefa 2. Compare as estimativas de estado do previsor e do filtro com as de um observador de Luenberger com valores próprios $\Lambda_1=\Lambda_2=0.8.$