UNIVERSIDADE FEDERAL DE SANTA CATARINA – UFSC- CTC DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO PROJETO E ANÁLISE DE ALGORITMO

Prof. Alexandre Gonçalves Silva Aluno: Osmar de Oliveira Braz Junior

Questão 1

- 1. Para comparação de problemas com custos conhecidos em função de n, pede-se:
- (a) Suponha que estamos comparando implementações dos algoritmos de ordenação insertion sort e merge sort em uma mesma máquina. Para entradas de tamanho \mathbf{n} , o insertion sort executa com custo total de $8n^2$, enquanto o merge sort executa com custo 64n lg n. Para quais valores de n o insertion sort supera o merge sort?

R.

Para calcularmos essa questão, devemos escrevê-la em forma de inequações e calcular seu resultado. Como queremos saber os valores de n para os quais a ordenação de inserção supera a ordenação por intercalação temos:

insertion sort < merge sort $8n^2 < 64n \log n$ $n < 8 \log n$ $n/8 < \log n$ $2^{n/8} < n$ $2^{n/8} - n < 0$ 2 <= n <= 43

ou

Elaborando uma tabela com três colunas, n, tempo para o algoritmo por inserção e o tempo para o algoritmo por intercalação tem-se a tabela abaixo. Onde foram simulados os valores de 1 a 50 para n.

	Tempo	Tempo	
Valor de n	Inserção (8n^2)	Intercalação (64n lg n)	
1	8	0,00	
2	32	128,00	
3	72	304,31	
4	128	512,00	
5	200	743,02	
6	288	992,63	
7	392	1257,70	
8	512	1536,00	
9	648	1825,88	
10	800	2126,03	
11	968	2435,44	
12	1152	2753,25	

13	1352	3078,77
14	1568	3411,39
15	1800	3750,61
16	2048	4096,00
17	2312	4447,16
18	2592	4803,75
19	2888	5165,48
20	3200	5532,07
21	3528	5903,27
22	3872	6278,88
23	4232	6658,68
24	4608	7042,50
25	5000	7430,17
26	5408	7821,53
27	5832	8216,45
28	6272	8614,78
29	6728	9016,41
30	7200	9421,23
31	7688	9829,13
32	8192	10240,00
33	8712	10653,76
34	9248	11070,32
35	9800	11489,59
36	10368	11911,51
37	10952	12335,99
38	11552	12762,96
39	12168	13192,36
40	12800	13624,14
41	13448	14058,22
42	14112	14494,55
43	14792	14933,08
44	15488	15373,76
45	16200	15816,54
46	16928	16261,37
47	17672	16708,20
48	18432	17157,00
49	19208	17607,73
50	20000	18060,34

O *insertion sort* é melhor que o mergesort no intervalo de n=2 até n=43, a partir de n=44 o *merge sort* tem melhor desempenho.

(b) Qual é o menor valor de n para o qual um algoritmo, cujo tempo de execução é $100n^2$, executa mais rápido que um algoritmo cujo tempo de execução é 2^n ?

R.

Devemos encontrar o menor valor de n para qual a seguinte inequação é verdadeira $100n^2 < 2^n$.

Algoritmo1 < Algoritmo2

 $100n^2 < 2^n$.

Elaborando uma tabela com três colunas, n, tempo para o algoritmo 1 e o tempo para o algoritmo 2 tem-se a tabela abaixo. Foi simulado o intervalo de 1 a 16 para n.

Valor de n	Tempo Algoritmo 1 100n ²	Tempo Algoritmo 1 2 ⁿ
1	100	2
2	400	4
3	900	8
4	1600	16
5	2500	32
6	3600	64
7	4900	128
8	6400	256
9	8100	512
10	10000	1024
11	12100	2048
12	14400	4096
13	16900	8192
14	19600	16384
15	22500	32768
16	25600	65536

O algoritmo 2 com o custo $100n^2$, para entradas(n) de 1 até =14 tem pior desempenho, contudo a partir de n=15 o algoritmo 1 com custo 2^n tem melhor desempenho. Por isso, concluímos que 15 é o menor valor de n para qual o algoritmo, cujo tempo de execução é $100n^2$, executa mais rápido que um algoritmo cujo temo de execução é 2^n .

