MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 June 30		
Standard: This student is able to C09: Param. Parametrize planar curves and sketch parametrized curves.		Mark:
3/4	* reattempt due on:	

Parametrize the curve $x = y^2$ from (4,2) to (9,3).

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 June 30		
Standard: This student is able to S08: ParamAppl. Parametrize a curve to find arclengths, surface areas, and slopes.		Mark:
$2/3$ \star reat	tempt due on:	

Consider the curve defined by the parametric equations $x=4+4t^3, y=t^2+2t+3, 0 \le t \le 3$. Use the Chain Rule $\frac{dy}{dt}=\frac{dy}{dx}\frac{dx}{dt}$ to find the point on the curve that has slope 1/3.

MA 126-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type (Cost):
J#:	In-Class	s (1AP)
Date: 2017 June 30		
Standard: This student is able to C10: Polar. Convert and sketch polar and Cartesian coordinates and equations.	i-	Mark:
1/4 * reat	tempt due on:	

Find a polar equation for the line segment connecting (3,0) and (3,3).