

SPARSE QUANTIZED SPECTRAL CLUSTERING

Zhenyu Liao¹, Romain Couillet², Michael W. Mahoney¹

¹ICSI and Department of Statistics University of California, Berkeley, USA ²G-STATS Data Science Chair, GIPSA-lab, University Grenobles-Alpes, France

Introduction

- Big Data: number of data n and dimension p both large, thousands or even millions
- Computational challenge: time and/or space complexity $O(n^2)$, unaffordable for low-power devices
- Idea: compress machine learning models (e.g., sketching, quantization or binarization), with non-trivial performance-complexity trade-off
- · Objective: theoretical understanding of performancecomplexity trade-off and optimal parameter tuning
- Example: unsupervised (kernel) spectral clustering

Reminder on spectral clustering

EM or k-means clustering.

Computational challenge

- $\mathbf{K} = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$: pairwise comparison of n data points, require $O(n^2)$ to retrieve top eigenvectors with, e.g., power method
- Idea: sparsifying, quantizing, and even binarizing: gain in both time and space!
- Key object: eigenspectrum of "compressed" matrix, statistics of top eigenvectors, as a function of data statistics and compression method parameters!

System model

Assumption 1 (Data: two-class signal-plus-noise mixture). Let $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$ be independently (non-necessarily uniformly) drawn from:

$$C_1: \mathbf{x}_i = -\mu + \mathbf{z}_i, \quad C_2: +\mu + \mathbf{z}_i \tag{1}$$

for z_i having i.i.d. zero-mean, unit-variance, κ -kurtosis, sub-exponential entries. X = $[\mathbf{x}_1,\ldots,\mathbf{x}_n] = \mathbf{Z} + \mu \mathbf{v}^\mathsf{T}$ for random $\mathbf{Z} \in \mathbb{R}^{p \times n}$, $\mu \in \mathbb{R}^p$ and label vector $\mathbf{v} \in \{\pm 1\}^n$.

Assumption 2 (High-dimensional asymptotics). *As* $n, p \to \infty$, $p/n \to c \in (0, \infty)$ and signal-to-noise ratio (SNR) $\|\mu\|^2 \to \rho \ge 0$.

Compression as entry-wise nonlinear transformation:

$$\mathbf{K} = \left\{ f(\mathbf{x}_i^\mathsf{T} \mathbf{x}_j / \sqrt{p}) / \sqrt{p} \right\}_{i,j=1}^n \tag{2}$$

Sparsification: $f_1(t) = t \cdot 1_{|t| > \sqrt{2}s}$

Quantization: $f_2(t) = 2^{2-M} (\lfloor t \cdot 2^{M-2} / \sqrt{2}s \rfloor + 1/2) \cdot 1_{|t| < \sqrt{2}s} + \text{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$

Binarization: $f_3(t) = \operatorname{sign}(t) \cdot 1_{|t| > \sqrt{2}s}$

Truncation threshold s > 0, number of information bits M.

Key parameters: for each f and $\xi \sim \mathcal{N}(0,1)$,

f	a_1	ν	\mathbf{a}_2
f_1		$\operatorname{erfc}(s) + 2se^{-s^2}/\sqrt{\pi}$	0
f_2	$\sqrt{\frac{2}{\pi}} \cdot 2^{1-M} (1 + e^{-s^2})$	$1 - \frac{2^{M} - 1}{4^{M-1}} \operatorname{erf}(s)$	0
	$+\sum_{k=1}^{2^{M-2}-1} 2e^{-\frac{k^2s^2}{4^{M-2}}}$	$-\sum_{k=1}^{2^{M-2}-1} \frac{k \operatorname{erf}(ks \cdot 2^{2-M})}{2^{2M-5}}$	
f_3	$e^{-s^2}\sqrt{2/\pi}$	erfc(s)	0

Ouestion to answer

To save X% of computational time and/or space, clustering accuracy drop by Y%(depends on data SNR, dimension, sample size, and compression parameters)

Main results

Theorem 1 (Eigenvalue distribution). *As* $n, p \to \infty$ *with* $p/n \to c \in (0, \infty)$, *the empirical spectral* measure $\omega_{\mathbf{K}} = \frac{1}{u} \sum_{i=1}^{n} \delta_{\lambda_i(\mathbf{K})}$ of **K** converges to a deterministic limit ω_i , uniquely defined through its Stieltjes transform $m(z) = \int (t-z)^{-1} \omega(dt)$ solution to

$$z = -\frac{1}{m(z)} - \frac{v - a_1^2}{c} m(z) - \frac{a_1^2 m(z)}{c + a_1 m(z)}.$$
 (4)

Theorem 2 (Informative spike and a phase transition). For $a_1 > 0$ and $a_2 = 0$, define F(x) = 0 $x^4 + 2x^3 + \left(1 - \frac{cv}{a_1^2}\right)x^2 - 2cx - c$ and $G(x) = \frac{a_1}{c}(1+x) + \frac{a_1}{x} + \frac{v - a_1^2}{a_1} + \frac{1}{1+x}$ and let γ be the largest real solution to $F(\gamma) = 0$. Then, the largest eigenpair $(\hat{\lambda}, \hat{\mathbf{v}})$ of **K** satisfies

$$\hat{\lambda} \to \lambda = \begin{cases} G(\rho), & \rho > \gamma \\ G(\gamma), & \rho \le \gamma \end{cases} \frac{1}{n} |\hat{\mathbf{v}}^{\mathsf{T}} \mathbf{v}|^2 \to \alpha = \begin{cases} \frac{F(\rho)}{\rho(1+\rho)^3}, & \rho > \gamma \\ 0, & \rho \le \gamma \end{cases}$$
(5)

as $n, p \to \infty$ with $p/n \to c \in (0, \infty)$, for SNR $\rho = \lim \|\mu\|^2$.

Remark (Spurious non-informative spikes). If $a_2 \neq 0$, there may be up to two non-informative eigenvalues (with eigenvectors containing only noise) on the left or right of the main bulk.

Corollary 1 (Performance of spectral clustering). Let $a_1 > 0$, $a_2 = 0$, and $\hat{C}_i = \text{sign}([\hat{\mathbf{v}}]_i)$ be the estimate of the underlying class C_i of the datum \mathbf{x}_i , with $\hat{\mathbf{v}}^\mathsf{T}\mathbf{v} \geq 0$ for $\hat{\mathbf{v}}$ the top eigenvector of \mathbf{K} . As $n, p \to \infty$, the misclassification rate satisfies

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{\mathcal{C}_i \neq \mathcal{C}_i} \to \frac{1}{2} \operatorname{erfc}(\sqrt{\alpha/(2-2\alpha)})$$

$$\frac{1}{0.8} \bigcup_{\substack{0.8 \\ 0.4 \\ 0.2 \\ 0.1 \text{ yz}}} \bigcup_{\substack{0.4 \\ 0.2 \\ 0.1 \text{ yz}}} \bigcup_{\substack{0.8 \\ 0.1 \\ 0.1 \\ 0.1 \text{ yz}}} \bigcup_{\substack{0.8 \\ 0.1 \\ 0.1 \\ 0.1 \text{ yz}}} \bigcup_{\substack{0.8 \\ 0.1 \\ 0.1 \\ 0.1 \text{ yz}}} \bigcup_{\substack{0.8 \\ 0.1 \\$$

(Left) Eigenvector alignment (green) and classif. error (purple) versus SNR ρ . (Right) Comparison of 1%, 10% and 50% classif. error curves between subsampling (green), uniform (blue) and selective sparsification f_1 (red), as a function of sparsity level ε and SNR ρ .

References

• Zhenyu Liao, Romain Couillet, and Michael W. Mahoney. "Sparse Quantized Spectral Clustering". In: International Conference on Learning Representations. 2021