

SATELLIETBEELDEN IN JE (DIGITALE) BROEKZAK

Eveline Helder & Simon Pouwelse

De tijdlijn van dit project

Een vraag over maaidata bij de Provincie Noord-Holland

Interesse vanuit het Provinciaal Overleg Data Science (PODS)

Opschaling door de Provincie Zeeland

```
# If the NOVI image needs to be created, create an empty list for the red, NDR and Scene Classification Layer (SLC) bands from the different inc

"ce_langes = []

NDR_images =
```

Waar het allemaal mee begon..: Maaidata

Maaien agrariërs/beheerders hun graslanden tijdens het

broedseizoen van weidevogels?

Eveline Helder

Dorien Ottenhof

Gerda Edelman

Weidevogels

- Bescherming van soorten, biodiversiteit
- Subsidie voor uitgestelde maaidatum

Monitoring

NDVI

Normalized Difference Vegetation Index:

• (NIR - R)/(NIR + R)

NDVI

- Normalized Difference Vegetation Index:
 - (NIR R)/(NIR + R)

NDVI

- Normalized Difference Vegetation Index:
 - (NIR R)/(NIR + R)

Normalized Difference Vegetation Index (NDVI)

Perceel

Maaimomenten

- > 50 % van de pixels?
- Gemiddelde NDVI
- Sprong van >0.8 naar <0.6

Beheer eigenaar

Tal

Jaar

2020

2019

2018

Eigenaar

(All)

NNN gebied

(All)

Aantal maaibeurten

(All)

Gemaaid

(1 april - 15 juni)

(All)

Oppervlakte perceel ha.

0,50

66,37

Gemaaid periode 1 april - 15 juni 2020

Oppervlakte (ha.)

2020

Totaal: 23.318 NNN: 3.921 (17%) ANLb: 6.667 (29%)

Eigenaar/ perceel

2020

Percelen: 8.753 Eigenaren: 2.224

Maaibeurten

2020

Totaal: 10.723 Broedseizoen: 3.474

% Percelen minimaal 1 x gemaaid

periode 1 april - 15 juni

Aantal maaibeurten totaal per perceel

1 3

Gemaaid periode 1 april - 15 juni

Ja Nee

Eigenaarschap

@ Mapbox @ OSM -

Eigenaar	Jaar ₹	Unieke percelen	Percelen min. 1	1 april - 15 juni	Totaal maaibeur	NNN perceel	ANLb gebied
	2020	157	62	39%	193	42	57
	2019	165	24	15%	181	48	61
0	2018	212	53	25%	243	77	67

Provinciaal Overleg Data Science (PODS)

- Sinds een jaar
- Meeting in februari in Haarlem
- Live coding door Gerda
- Code gedeeld met aanwezigen

```
for path in satellite_imagery['path']:
  # Search the whole map of the satellite image
  for root, dirs, files in os.walk(path):
    # And look for the map with the 20x20 meter resolution, but not the previously cropped images
   if 'R20m' in root:
      for images in os.walk(root):
        for image in images[2]:
          # Now, open the red band with rasterio and store it with a custom name in the created list
         # But skip over the previously cropped images
         if ('B04' in image) and ('cropped' not in root):
            satellite_image_path = root + '/' + image
            if crop == True:
              vars()['red image'+str(i)] = crop_satellite_image(satellite_image_path, coordinates_area)
            else:
              vars()['red_image'+str(i)] = rio.open(satellite_image_path)
```

OPSCHALING

1-2-3

01

Kies een regio

02

Kies een periode

May					June								
Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa
	1	2	3	4	5	6					1	2	3
7	8	9	10	11	12	13	4	5	6	7	8	9	10
14	15	16	17	18	19	20	11	12	13	14	15	16	17
21	22	23	24	25	26	27	18	19	20	21	22	23	24
28	29	30	31				25	26	27	28	29	30	

03

Kies een map

Naam	Datum	Туре
NDVI_2023-06-0	31-8-2023 1	PNG-bestand
■ NDVI_2023-06-0	31-8-2023 1	TIFF-bestand
NDVI_2023-06-0	31-8-2023 1	PNG-bestand
■ NDVI_2023-06-0	31-8-2023 1	TIFF-bestand
NDVI_2023-06-0	31-8-2023 1	PNG-bestand
■ NDVI_2023-06-0	31-8-2023 1	TIFF-bestand

Simpele code

```
satellite_imagery = Sentinel2_images(
    coordinates_area = (3.6, 51.5),
    start_date = 20210601,
    end_date = 20210631,
    download_path = 'C:/.../folder',
    username_copernicus = 'username123',
    password_copernicus = 'password456'
    )
```


Gebied selecteren

1. Coordinaat:

(3.6, 51.5)

2. Lijst aan coordinaten:

[(3.6, 51.5), (3.7, 51.5), (3.7, 51.4), (3.6, 51.4)]

3. Polygoon:

Shapely of Folium

4. Keene:

https://www.keene.edu/campus/maps/tool/

Geavanceerdere opties

1. Wolken & Uitsnijden

```
satellite_imagery = Sentinel2_images(
    coordinates_area = area,
    start_date = 20230801,
    end_date = 20230805,
    cloudcover_percentage = 30,
    sentinel_tiles = ['31UET'],
    crop = False
    username_copernicus = 'username123',
    password_copernicus = 'password456'
```

```
b68e1cbe-
 cf12-4b3c-
              S2B_MSIL2A_20230801T105629_N0509_R094_T31UES_2... Middelburg10ET
   b574-
0ea8f7aa1673
 d47c605f-
 e083-4050-
              S2B MSIL2A 20230801T105629 N0509 R094 T31UET 2...
   ac8a-
e4853d941be2
```


31UES

2. GeoTiff

```
satellite_imagery = Sentinel2_images(
    area = area,
    start_date = 20230307,
    end_date = 20230312,
    download_path = 'C:/.../folder',
    cloudcover_percentage = 30,
    sentinel_tiles = ['31UET'],
    crop = True,
    output_sort = 'geotiff',
    username_copernicus = 'username123',
    password_copernicus = 'password456'
```


3. Analyses

```
output_sort = 'image'

RGB = False,

NDVI = True,

AWEI = True,

Username conernicus = 'Username123'
```

RGB

NDVI

AWEI

4. Tijdlijn

```
cloudcover_percentage = 50,
crop = True,
output_sort = 'image'
RGB = False,
NDVI = True,
difference_overview = True,
username_copernicus = 'username123',
password_copernicus = 'password456'
```

Project description

SatImages: the powerful and user-friendly way for satellite imagery

pypi v1.0.0

The **Sat Images** Python package is a powerful tool that allows you to easily access satellite images for a specific area or region. With this module, you can explore the possibilities that satellite imagery brings you. Whether you want a simple RGB-image or a vegetation (NDVI) analysis of your region. We hope to provide the perfect package for every environmental researcher, GEO enthusiast, or anyone who is just curious about satellite imagery. This module makes it easy and effortless to work with such data!

WORDT VERVOLGD...

Sentinel-1, Sentinel 5-p, nieuwe analyses, etc.

